BTS CPI session 2019

Épreuve E4 : étude préliminaire de produit Unité U41 : expression du besoin et cahier des charges fonctionnel

SUJET: Outil EREMS

Loriane Mazeau Armand Parendel Louis Siguier Dylan Urban

Table des matières

1. Présentation générale		4
1.1 Présentation du projet		. 4
1.2 Présentation de l'entreprise		. 5
1.3 Formulation initiale du besoin		. 6
2.1 Énoncé fonctionnel du besoin		. 7
2.1.1 Diagramme de FUSTIER	7	
2.1.2 Validité du besoin	7	
2.1.2.1 Objectifs et raisons d'existence du	ı besoin7	
	le disparition du besoin7	
2.1.2.3 Probabilité d'évolution ou de dispa	arition du besoin7	
2.1.2.4 Conclusion sur la stabilité du beso	oin7	
2.2 Étude du cycle de vie et des différentes phas	ses	.8
	8	
2.2.2 Analyse des différentes phases	8	
		.8
	8	
2.3.2 Caractérisation de l'environnement	9	
	de vie9	
	9	
2.3.5 Validation des fonctions de service	10	
	e10	
2.3.7 Hiérarchisation des fonctions de service	e12	
2.3.7.1 Tableau de tri croisé	12	
	12	
		13
3.4 Principes techniques interdits		13
	13	
	14	
3.7 Normes et réglementation		14
	14	
	14	
		14
	14	
	14	
	14	

1. PRÉSENTATION GÉNÉRALE

1.1 Présentation du projet

La société EREMS conçoit et fabrique des équipements électroniques (boîtier distribution d'énergie, Calculateur embarqué, Moniteur de radiation) embarqués pour le domaine spatial (satellites et ISS). Il est nécessaire pour l'entreprise de mesurer la position du centre de gravité des équipements fabriqués afin de le fournir au client avec précision car par exemple dans le cas d'un satellite il est nécessaire de connaître la somme des centres de gravité des composants pour de mieux contrôler l'ajustement du satellite une fois dans l'espace.

Étant donné la complexité des pièces et leur fragilité certaines contraintes nous sont imposées, comme les dimensions, masses, formes des pièces a mesurer, éviter les risques d'endommagement ainsi qu'une précision de mesure répondant a leurs attentes.

Pour réaliser ce projet nous sommes quatre étudiants en deuxième année de BTS Conceptions produits industriels Nous avons comme responsabilité de rédiger un cahier des charges ainsi que de faire des recherches sur la partie conception du projet à l'aide du modélisateur 3D CATIA V5R18.

1.2 Présentation de l'entreprise

EREMS est une entreprise créée en 1979 localisée à Flourens dans la Haute-Garonne Elle est spécialisée dans l'étude et la réalisation d'équipements électroniques et de logiciels associés. Elle intervient dans des domaines technologiques de pointe : le spatial, la défense, l'aéronautique, le nucléaire par exemple.

Quelques chiffres clés :

Nombre d'employés : environ 120 personnes dont 70 ingénieurs spécialisés.

Chiffre d'affaire : 12M d'Euros en 2107

Moyens techniques:

EREMS dispose de différents moyens d'étude et de fabrication:

- ✓ Moyens de développements électroniques
- ✓ Logiciels de CAO mécanique et électronique : CATIA, CADSTAR
- ✓ Logiciels de simulation
- ✓ Outils de développement sur FGPA (Field Programmable Gate Arrays ou "réseaux logiques programmables")
- ✓ Moyens de fabrication conformes aux normes spatiales : hotte à flux laminaire, enceintes thermiques, salles blanches classe 100000/10000, etc ...

1.3 Formulation initiale du besoin

Projet	Outil EREMS, 02.
Demandeur	Société EREMS, Société à responsabilité limitée, au capital de 12M euros, immatriculée au Registre du commerce et des sociétés Toulouse sous le numéro B 317 426 294, dont le siège social est situé à Flourens, représentée par Maxime VALLIN, en qualité d'ingénieur d'études. Coordonnées: Adresse: 13 chemin de la madeleine ZI Tel standard: +33 (0)561 360 606 Tel représentant: +33 (0)626093302 Fax: +33 (0)5 61 83 99 45 Email: maxime.vallin@erems.fr
Objectifs	Quels sont les objectifs du demandeur? Mesurer la position du centre de gravité de leurs systèmes en interne
Produit	Créer un système de calcul de centre de gravité, précision ±1mm sur des pièces de500g à 20kg pour des dimensions de 150x100x100mm à 600x450x150mm.
Marché	Utilisation en interne. Machine spéciale.
	Responsable du produit chez le demandeur : Maxime Vallin
Contexte du projet	Limite de l'étude et nature des prestations : - Cahier des charges, validé par le client. - Conception préliminaire - Conception détaillée
Environnement du produit	Fabrication: ITM St Orens (Moyen: Fraiseuse, plieuse, tour, poste de soudure) Montage: EREMS, prémontage ITM Transport: Fourgonnette, < 10km Utilisation: EREMS, énergie électrique, employés Maintenance: interne pour calibration soit en soutraitance Recyclage: tri, incinération, récupération
	3(4-5) étudiants, 150h/étudiant réparties de la manière suivante :
Moyens	 Cahier des charges, dans le cadre de l'unité U41 (20h/étudiant) Conception préliminaire, en TP (50h) Conception détaillée, dans le cadre de l'unité U51(80h/étudiant) Logiciels de bureautique Logiciels de calcul : RDM le Mans(structure), CATIA V5R18 (éléments finis) Logiciel CFAO CATIA V5R18 Logiciel d'éco-conception CES

2. CAHIER DES CHARGES FONCTIONNEL

2.1 Expression et validation du besoin

2.1.1 Expression du besoin

Dans quei but

2.1.2 Validation du besoin

2.1.2.1 Objectifs et raisons d'existence du besoin

Pourquoi le besoin existe-t-il? Pour fournir au client la position du centre de gravité de manière précise.

2.1.2.2 Causes possibles d'évolution ou de disparition du besoin.

- · Augmentation de la précision demandée
- · Réduction de la taille des systèmes électroniques
- · Arrêt des programmes spatiaux

2.1.2.3 Probabilité d'évolution ou de disparition du besoin.

Tableau de probabilité d'apparition du risque

risque	Court terme 2ans	Moyen terme 5ans	Long terme 10 ans
 Augmentation de la précision demandée 	nul	faible	probable
 Modification de la taille des systèmes électroniques 	nul	faible	probable
Arrêt des programmes spatiaux	nul	nul	nul

2.1.2.4 Conclusion sur la stabilité du besoin.

Le besoin est stable sur le court et moyen termes. Pour ce qui est du long terme, on a une probabilité d'augmentation de la précision demandé et de la réduction de la taille des systèmes électroniques. Quand à l'arrêt des programmes spatiaux cela dépend uniquement des enjeux politiques et nous avons aucun moyen de le savoir sur le long terme.

Pour conclure nous dire que l'étude est stable et ainsi validée.

2.2 Étude du cycle de vie

2.2.1 Cycle de vie

2.2.2 Analyse des différentes phases

La phase d'élimination est la plus importantes à prendre en compte dans note conception ainsi que la phase maintenance et test. Il n'y à pas d'autre contrainte par rapport à notre intervention sur le projet.

2.2.3 Profil environnemental du produit NFE 01-005

Le profil est défini en utilisant les algorithmes de la norme NFE 01-005 (voir annexes)

Aspect Environnemental (AE)	
Matières premières	MP= 3
Fabrication	F= 2
Utilisation	U= 4, correction U=2 car faible utilisation 1 fois par mois
Recyclabilité en fin de vie	FV-R= 2
Substances dangereuses	S= 3
Transport	T= 1
Emballage	EMB= 1

Pour correspondre le mieux à l'aspect environnemental, notre conception va se concentrer sur le choix et l'utilisation des matières première ainsi que certaine substance dangereuse.

2.3 Analyse fonctionnelle en phase d'utilisation

2.3.1 Frontière d'étude

Outil EREMS seul qui détermine la position du centre de gravité

2.3.2 Caractérisation de l'environnement

	Énergies
type	caractéristiques
Électrique	Branché sur secteur 230V, 16 A
Mécanique humaine	Déplacer les équipements électroniques manuellement

	Individus
type	caractéristiques
Opérateur	Homme/Femme de 18ans à 65ans Opérateur salle blanche Ingénieur bureau d'études et toute personne formée à l'utilisation

	Objets
type	caractéristiques
Équipement électronique	Forme : parallélépipède entre 500g et 20Kg, 150x100x100 à 600x450x150
Support	Sol / paillasse / établi

	Ambiance
type	caractéristiques
Salle Blanche	Norme ISO 14644-1

2.3.3 Intégration des autres phases du cycle de vie

Phase	Élément du diagramme	Fonction
Écoconception	Normes	Réduire l'emprunte écologique du produit

2.3.4 Diagramme des interacteurs

FP1 : Mesurer la position du centre de gravité

FC1 : Garder l'horizontalité du système

FC2: Faciliter la maintenance

FC3: Respecter les normes

FC4 : S'adapter à l'environnement (salle blanche)

FC5 : S'adapter à l'alimentation électrique

FC6 : Sécuriser l'équipement électronique

2.3.5 Validation des fonctions de service

	Énoncé de la fonction	Dans quel but ?	Cause possible de disparition	Probabilité de disparition	Conclusion
FP1	Mesurer la position du centre de gravité	Fournir aux clients les données	Demande des clients différentes	Très faible	Validé
FC1	Garder l'horizontalité du système	Effectuer des mesures précises	Aucune	Nulle	Validé
FC2	Faciliter la maintenance	Réduire le temps de l'intervention	Remplacement de l'outil EREMS, si défectueux	Très faible	Validé
FC3	Respecter les normes	Qualité	Aucune	Nulle	Validé
FC4	S'adapter à l'environnement (salle blanche)	Réduire les impacts extérieur, meilleurs résultats	Utilisation hors salle blanche	Très faible	Validé
FC5	S'adapter à l'alimentation électrique	Alimenter l'outil EREMS	Nouvelle source primaire d'énergie	Nulle	Validé
FC6	Sécuriser l'équipement électronique	Ne pas perdre de temps et d'argents	Perte négligeable	Nulle	Validé

2.3.6 Caractérisation des fonctions de service

FP1 : Mesurer la position du centre de gravité		
Critère	Niveau d'appréciation	Flexibilité*
Précision marge d'erreur	Max 1 mm	F0
Dimension du plus petit système acceptable	Max 150x100x100	F0
Dimension du plus grand système acceptable	Min 600x450x150	F0
Masse du plus petit système acceptable	max 500g	F0
Masse du plus grand système acceptable	Min 20kg	F0
Forme acceptable du système	Parallélépipède	F0
Adaptation aux interfaces des système électronique	Trou lisses Ø5,5 ou taraudé M5	F0

^{*} F0 : flexibilité nulle (niveau impératif), F1 flexibilité faible, F2 flexibilité moyenne, F3 flexibilité important (niveau très négociable)

Critère	Niveau d'appréciation	Flexibilité*
Horizontalité optimale**	En somme nous autorisons un angle d'inclinaison de maximum $\alpha \le 0,2^\circ$ ce qui nous engendrera une erreur de 0,52mm sur notre erreur max de 1mm.	F0

^{*} F0 : flexibilité nulle (niveau impératif), F1 flexibilité faible, F2 flexibilité moyenne, F3 flexibilité important (niveau très négociable)

^{**}cf page 11

FC2 : Faciliter la maintenance					
Critère	Niveau d'appréciation	Flexibilité*			
Temps d'accès aux composants mécanique	Démontage du carter inf. à 10 min	F1			
Temps d'accès aux composants de mesure pour étalonnage	Accès direct sans démontage	F1			

^{*} F0 : flexibilité nulle (niveau impératif), F1 flexibilité faible, F2 flexibilité moyenne, F3 flexibilité important (niveau très négociable)

FC3: Respecter les normes		
Critère	Niveau d'appréciation	Flexibilité*
Utiliser la norme NFE 01-005	Définir le profil environnemental	F0
Utiliser la norme NFE 01-005	Définir une ligne directrice de conception (cf 2.2)	F0
Utiliser la norme NFE 01-005	Appliquer la ligne directrice	F0
Directive Machines 2006/42/CE	Définir les risques liée a la machine	F0
Directive Machines 2006/42/CE	Prendre en compte les risques liée a la machine lors de la conception	F0

^{*} F0 : flexibilité nulle (niveau impératif), F1 flexibilité faible, F2 flexibilité moyenne, F3 flexibilité important (niveau très négociable)

FC4 : S'adapter à l'environnement (salle blanche)					
Critère Niveau d'appréciation Flexibilité*					
Matériaux	Non dégazant (Aluminium traité , inox traité , Delrin , etc)	F0			
Substances interdites	Graisse , huile, essence , etc	F0			
Encombrement	Contrainte de taille du à l'encombrement en salle blanche	F0			
ESD	Aucun élément mécanique flottant	F0			

^{*} F0 : flexibilité nulle (niveau impératif), F1 flexibilité faible, F2 flexibilité moyenne, F3 flexibilité important (niveau très négociable)

FC5 : S'adapter à l'alimentation électrique				
Critère Niveau d'appréciation Flexibilité*				
Électricité	230V /16A	F0		

^{*} F0 : flexibilité nulle (niveau impératif), F1 flexibilité faible, F2 flexibilité moyenne, F3 flexibilité important (niveau très négociable)

FC6 : Sécuriser l'équipement électronique					
Critère Niveau d'appréciation Flexibilité*					
Dégradation	Aucune	F0			
Panne	Stabilisation de l'équipement	F0			

^{*} F0 : flexibilité nulle (niveau impératif), F1 flexibilité faible, F2 flexibilité moyenne, F3 flexibilité important (niveau très négociable)

Liste des normes utilisées dans la conception du produit :

NFE 01-005 : Méthodologie de réduction des impacts environnementaux à la conception et au développement des produits

**Calcul erreur d'horizontalité maximum acceptée :

Erreur = $h/2*tan \alpha$

h = hauteur du système

 α = angle d'inclinaison par rapport au sol.

Les pièces a calculer seront de hauteur max 300mm soit :

Erreur: 300/2*tan 0,2 = 0,52 mm

2.3.7 Hiérarchisation des fonctions de service

2.3.7.1 Tableau de tri croisé

FP1	FC1	FC2	FC3	FC4	FC5	FC6	Points	Poids relatif
FP1	FP1:2	FP1 :	FP1: 3	FP1: 1	FP1 :3	FP1: 1	13	32 %
	FC1	FC1:3	FC1:2	FC4:1	FC1 :2	FC6: 1	7	17 %
	•	FC2	FC3:1	FC4:2	FC2:1	FC6: 2	1	3 %
			FC3	FC4:2	FC3:1	FC6: 3	2	5 %
				FC4	FC4:2	FC6: 2	7	17 %
					FC5	FC6: 3	0	0 %
						FC6	11	27 %

TOTAL	41	100 %

Poids corrigé
30 %
15 %
5 %
5 %
15 %
5 %
25 %

100 %

2.3.7.2 Histogramme des besoins

Conclusion : répartition souhaitable des coûts par fonction.

3. REFORMULATION EN LANGAGE SYSML

3.1 Diagramme des exigences (req)

3.2 Diagramme des cas d'utilisation (uc)

3.3 Diagramme de définition des blocs (bdd) : contexte

4. CONTRAINTES GÉNÉRALES

4.1 Contraintes économiques

Coût objectif du produit (client) : <10.000 € HT

oodt objectii da produit (ciiciit	<i>,</i> . •10.000 c 11	· •
Coût prévisionnel	€HT	Remarque
Étude (BTS CPI)	0	Coût nul car projet scolaire
Étude (autre)	5000	Coût supplémentaire si besoin de modifications
Prototype (BTS CPI)	600	Prototype au sein du Lycée
Prototype (autre)	0	Nul besoin
Production	2000	Frais en fonction d'ITM
Production sous-ensemble	2000	Achat d'éléments standards
Transport	5	Négligeable car distance < 10km

4.2 Moyens techniques et humains

Liste détaillée des moyens de fabrication disponibles y compris sous-traitance.

Entreprise	Moyens
Client	Perceuse a colonne
Sous-traitant ITM habituel	Fraiseuse / tour / plieuse / poste à soudé

4.3 Principes techniques imposés

S'adapter au interfaces des systèmes a mesurer.

4.4 Principes techniques interdits

Interdiction de principes polluant (huile, graisse).

4.5 Prototypage

4.5.1 Prototype visuel

Le prototype visuel ne serra pas nécessaire pour ce projet car le coté esthétique n'est pas une priorité. En revanche pour les dimensions nous auront une idée grâce au prototypage ainsi qu'au modèle CAO.

4.5.2 Prototype preuve de concept

On peut envisager de prototype le système de rotations de l'outil EREMS dans le but de vérifier sa conformité avec le palpage sur les différents axes.

La réalisation se ferra dans l'atelier du lycée avec comme moyen : imprimante 3d , découpe laser , matériaux divers ainsi que certaines machines d'outillage.

4.5.3 Prototype de présentation

Inutile car le coût de ce prototype serai équivalent à celui de l'outil EREMS lui même.

4.6 Confidentialité

Le projet n'est pas confidentiel car c'est une machine spécial en interne.

4.7 Analyse de la concurrence

4.7.1 Recherche

Outil de recherche	Mots clés utilisés	Nombre total de résultats	Nombres de résultats analysés	Nombres de résultats retenus
Google	Centre de gravité, machine, système, calcul	565.000	20	0
Vallin Maxime		3	3	2

Les systèmes ci-dessous répondent partiellement au besoin auquel on est confronté

CARBON AERO Reference de Systratec

Balance de poids avec programme de calcul centre de gravité,

Outil COMAT sur le principe de balance,

4.8 Normes et réglementation

4.8.1 Recherche

Outil de recherche	Mots clés utilisés	Nombre total de résultats	Nombres de résultats analysés	Nombres de résultats retenus
norminfo.afnor.org	Machine spéciale	74	6	0
inforisque.info.php	Directive européenne sur la sécurité des machines	11	3	1

4.8.2 Synthèse des normes à respecter

Normes	Bilan des contraintes
Directive Machines 2006/42/CE	Les exigences essentielles de santé et de sécurité auxquelles doivent répondre les machines sont réparties en deux catégories : a) Des exigences communes à toutes les machines en termes de sécurité générale des produits (exemples :éliminer ou réduire les risques dans toute la mesure du possible, envisager, non seulement l'usage normal de la machine, mais aussi, les situations anormales prévisibles etc.). b) Des exigences complémentaires applicables aux machines présentant des risques spécifiques ou liés à des contraintes d'exploitation particulières, tels que la prise en compte de l'hygiène alimentaire, le levage, la mobilité, etc.
NFE 01-005	Une méthode concrète pour faire de l'éco-conception dans la mécanique , (cf algorithmes en annexes)

4.9 Brevets propriété industrielle

4.9.1 Recherche

Outil de recherche	Mots clés utilisés	Nombre total de résultats	Nombres de résultats analysés	Nombres de résultats retenus
patents.google.com	Centre gravité	3M	10	0
bases-brevets.inpi.fr	Centre gravité	500	2	0
bases-brevets.inpi.fr	Mesure centre gravité	386	15	3

4.9.2 Synthèse des solutions protégées

Brevet	Principe protégé		
Dispositif de mesure de la position d'un centre de gravité	6a 5a 5a 4c 6a 6 6 3b 3 4 4b		
	[554]		
	6a 6 5a 5a 5a 4 4a 6 6		
Dispositif de mesure de la position du centre de gravité d'un véhicule à mesurer sur une bascule et bascule	FIG. 2 AG BG 51C(51D) 10 12 51A(51B) 52A B1 52B BWI 3A(13B) AL1 AL1 AL1 B1 B1 13C(13D)		
Dispositif de mesure du centre de gravité et de support de charges à axes multiples	221		
	FIG. 1		

4.10 Planning prévisionnel

5. ANNEXES

5.1 Profil environnemental du produit NFE 01-005

5.1.1 Matières premières (MP), Fabrication (F), Recyclabilité en fin de vie (FV-R)

MP= 3 F= 2 FV-R= 2

5.1.2 Utilisation (U)

U= 4

5.1.3 Substances dangereuses (S)

S= 3

5.1.4 Transport (T)

T= 1

5.1.5 Emballage (EMB)

EMB= 1

