Intersection Cahouslegy.

nousngular, irreducible proj variety, d=duzx Notivation: Pancaré duality $H^{2}(X, C_{X}) = (H^{2d-1}(X, C_{X}))^{*}$.

For singular Variety, Goresly and Macherson Constructed

ICX [-1] E Perv(X), and Lethe intersection Chamalogy groups

 $|H^{i}(x):=H^{i}(x, I(x^{i}-J1)) \quad 0 \leq i \leq 2d$

then I a generalized Poincaré duality

(Hi(x) = (1H2d-i(x))* for any soj. Jarrety X

From now on, Let's assume X= UXx is a Whitney

Stratification,

Minimal extension of perverse sheaves X meducible, USX Zariski open deuse. Z:= X\U. (--) X (--) U Take PH°, We get PAIF - PAF. in Peru(Gx) Det Pj:xF: = image (Pj.T -> PjxF) & Pen (ax)

F'EPen(U) 3 Causnical morphism JiFi) J*Fi.

Prop: Dx (PJ: AF) = PJ: * (DuF) pf: Applying Dx to Pj F ->> Pj. F, we get Dx(PjxF) ->> Dx(J;xF) (>> Dx(Pj;F)

Since Dx is t-exact.

$$D_{x}(\stackrel{p}{j}_{*}F) \simeq \stackrel{p}{H}^{\circ}D_{x}(\stackrel{g}{j}_{*}F) = \stackrel{p}{j}_{!}(D_{u}F)$$

$$D_{x}(\stackrel{p}{j}_{!}F) = \stackrel{p}{H}^{\circ}D_{x}(\stackrel{g}{j}_{!}F) = \stackrel{p}{j}_{*}D_{u}F)$$
Helice
$$P_{\stackrel{q}{j}_{!}}(D_{u}F) \Rightarrow D_{x}(\stackrel{g}{j}_{!}*F) \hookrightarrow \stackrel{p}{j}_{*}(D_{u}F)$$

 $=) D_{x}(p_{j|xF}) \approx p_{j|x}(D_{nF})$ $=) D_{x}(p_{j|xF}) \approx p_{j|x}(D_{nF})$

(ii)
$$i^*G \in PD \stackrel{>}{\leq} (Z)$$

(iii) $i^*G \in PD \stackrel{>}{\leq} (Z)$

If: We first show
$$P\hat{J}_{!*}F$$
. Satisfy these properties $\hat{j}^* = \hat{j}^!$ is t-exact, hence

$$= Im \left(j^* \stackrel{\circ}{i}_{1}F^{\cdot} \rightarrow j^* \stackrel{\circ}{i}_{7}F^{\cdot} \right)$$

$$= Im \left(\stackrel{\circ}{i}_{1}F^{\cdot} \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \right) \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \left(j^* \stackrel{\circ}{j}_{*}F^{\cdot} \right)$$

$$= Im \left(\stackrel{\circ}{i}_{1}F^{\cdot} \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \right) \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \left(j^* \stackrel{\circ}{j}_{*}F^{\cdot} \right)$$

$$= Im \left(\stackrel{\circ}{i}_{1}F^{\cdot} \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \right) \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \left(j^* \stackrel{\circ}{j}_{*}F^{\cdot} \right)$$

$$= Im \left(\stackrel{\circ}{i}_{1}F^{\cdot} \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \right) \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \left(j^* \stackrel{\circ}{j}_{*}F^{\cdot} \right)$$

$$= Im \left(\stackrel{\circ}{i}_{1}F^{\cdot} \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \right) \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \left(j^* \stackrel{\circ}{j}_{*}F^{\cdot} \right)$$

$$= Im \left(\stackrel{\circ}{i}_{1}F^{\cdot} \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \right) \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \left(j^* \stackrel{\circ}{j}_{*}F^{\cdot} \right)$$

$$= Im \left(\stackrel{\circ}{i}_{1}F^{\cdot} \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \right) \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \left(j^* \stackrel{\circ}{j}_{*}F^{\cdot} \right)$$

$$= Im \left(\stackrel{\circ}{i}_{1}F^{\cdot} \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \right) \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \left(j^* \stackrel{\circ}{j}_{*}F^{\cdot} \right)$$

$$= Im \left(\stackrel{\circ}{i}_{1}F^{\cdot} \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \right) \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \left(j^* \stackrel{\circ}{j}_{*}F^{\cdot} \right) \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \left(j^* \stackrel{\circ}{j}_{*}F^{\cdot} \right)$$

$$= Im \left(\stackrel{\circ}{i}_{1}F^{\cdot} \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \right) \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \left(j^* \stackrel{\circ}{j}_{*}F^{\cdot} \right) \rightarrow \stackrel{\circ}{i}_{1}F^{\cdot} \left(j^* \stackrel$$

We get PH°(j.j*G) -> H°(G) -> H°(j.j*G)-> H′(j.j*G)->

ĵ.j*G. - G. - i,i*G. +1

=> 1 f((i,i*G)=D

η βΗ' (ἦΕ΄)

11 ji is right

0 texact.

2x=21, 15 pH° (1*6)=0 trained $\left\{ \frac{1}{2} \right\} = \frac{1}{4} \left(\frac{1}{2} \right) = \frac{1}{4} \left(\frac{1}{2} \right)$

Exercise: use 1x1. G -> G -> j*j*G -> to prove (iii).

Finally (et's show that GE Peru (Cx) Sortisfying (i), (ii) is Canonically isomorphic to PjixF'. Since j'G'=F'=j*G', we get j.F' - G' - j.F' by adjuvation. => PJIF > G -> JAF m Perv (Cx) House, enough to show PJIF - G' is an epimorphism, and G. > + j* I. I's a monomorphism in few (Gx) Let's show the former.

The cokernel of Pj.T. -> G. is supported on Z,

and
$$i': \mathbb{L} i dx) \in \mathcal{D}_{2}^{3}(2)$$
.

$$\frac{1}{2!} \frac{1}{2!} \frac$$

 Π

i) Pjt has no non-trivial Subobj. Supported on Z. ii) Pj. [has no nou-trivial quotient obj. Supp. on Z. pf: 1) 0 -> G' -> PJ*F', G' E Peruz(Cx)

is left t-exact, then (Proposilis in IHTT]) a) t⁵⁰ i. t⁵⁰ ~ T⁵⁰ i.

G = 1 * 12 G.

Prop: FE Peru (Cu), than

b) Pilis a left exact functor.

By b), apply by! to OHG: - Plat in Perv (Gx) We get 0-) Priging 19/3×F

Shee j* is also left t-exect. 1:1×F=0 Cor the minimal extension PjixF has neither neu-trivial Subolij. nor non-trivial quotient object whose SUPP. is centained in Z. Or: Assume F @Paru(Cu) is simple, they PjixF is also a simple object. Of: Let G' = PjixT' be a sub object la ponca) 0-> G->Pj:*F->H->). j'=j* is t-exect, Hence, it's also an exect functor on Pen (Ex),

$$0 \rightarrow j' G \rightarrow F' \rightarrow j' H' \rightarrow 0$$
.
 $F \text{ supple} \rightarrow j' G = 0 \text{ or } j' H' = 0$.
i.e. either $G \text{ or } H \text{ is Supp. on } Z$.

Cor (Perverse continuation principle).

uniquely extended to a morphism Pj. xL, -> Pj. xLz of the minimal extensions, this gives an isomorphism

minimal extensions, this gives an isomorphism
$$Holm(1, f_2) \longrightarrow Holm(fixf_1, fixf_2)$$

=) either G or H IS O.

Truncation formula

UR=XXX

U:= Vdx dx on out of dx 1

Prop: YLELoc(U)

Lemma: Let U'ZU, spen.

then (i) Pj = PjexPj1x, Pj = j2! " j1!

1 2 1 1 2 X

 $X_{k}:=\bigcup_{\lambda\in\mathcal{X}}X_{\lambda},$

X=11/2 Whitney Stratification.

(ii) Pj,x F~Pjz!* PjixF.

X = X dx = X dx 1 = ... = X , = X -= \$

 $PJ_{!k}(I_{Ldx}) \simeq (I_{Ldx}) \sim ... \circ (I_{Ldx})$

Pf of the prop: By the lemma, we only need to show. for any F' & Peru (Cux), whose restriction to any Xx syk has locally constant chamology sheaves, we have PJK: +F = TS-RJK*F. We show this using the characterizing properties of PJKIJI. Let G:= TE+ JknF. Shice Uk Coustasts of Strute with din 3k, we get $\mathcal{H}^{r}(F)=0$ for r>-k.

Gudition i) V

Let $Z := M_{K_1} M_K = \frac{1}{dM_{K_2} + 1}$ $G' := T^{S-1} \widehat{J}_{K_1} \overline{f}', \mathcal{H}'(G') = 0$ for $Y \neq X$ =) $\mathcal{H}'(i^*G) = 0$ for $Y \neq X$. =) $i^*G \in D_c^{S-1}(2)$ =) $\mathcal{H}'(i^*G) = 0$ for $Y \neq X$. =) $i^*G \in D_c^{S-1}(2)$

=) TS-K RJK*(F) | UL=F.

(ousider the distd
$$O$$
,

 $G' \longrightarrow 0 \text{ bex} F \longrightarrow T \xrightarrow{\text{left}} 1 \text{ lex} F \xrightarrow{\text{left}}$)

Apply i' , use $i' \cdot 1 \text{ lex} F \xrightarrow{\text{left}} 1 \text{ le$

$$\Rightarrow \mathcal{H}^{r}(i^{!}G) = 5 \quad \text{for } r \leq -k+1$$

$$=$$
 $2^{1}G \in \mathcal{P}D_{c}^{7}(Z) = 2$ (and then iii) U

as before.

J. ZZi) has stalks

7 2 -1 1 0 7 0 L 0 3 7: 0 V' V_u 0

$$G \in \mathcal{D}'_{\mathcal{E}}(Z) \rightarrow \mathcal{D}'_{\mathcal{E}}(Z)$$

$$\epsilon$$
 $D_{\epsilon}^{\prime\prime}(z) > 2$ (9)

$$E$$
 $D_{c}(2) > 0$

$$e^{\beta}D_{c}^{7/2}(Z) = 2$$

TS-1(j* LLI]) has stalks

4 0 L 0

Suppose the monodromy doesn't have 1 as an eigenvalue,

then
$$V'' = Vu = \{0\}$$

=) $\hat{J}_*(L\bar{L}_1) = \hat{J}_!(L\bar{L}_1)$

Det:) For an areducible variety X, define its intersection

Cohomology complex
$$T(x \in Pen(Cx))$$
 by
$$T(x) := P \int_{\mathbb{R}^n} (Cx) \left(C \times \frac{1}{2} dx \right).$$

j: Xrey ~X.

2) intersection whomology groups

= (P: ICxidx])*

 $=) IH^{i}(X) = H^{i}(P_{*}IC_{i}C-d_{*}J)$

= (H-i(P: I4(dx)))*

 $=(H^{2d-1}(X))^*$