Data Mining for Business Analytics Project(mid-term)

Predicting Software Reselling Profits

2023.04.17.

박영제(2022254001)

- 타이코 소프트웨어(Tayko Software)는 게임 및 교육용 소프트웨어를 판매하는 소프트웨어 카탈로그 회사이다. 이 회사는 소프트웨어 제품 제조로 창업하였고 나중에 제품에 대한 제3의 소유권을 가지게 되었다. 최근 이 회사는 새로운 카탈로그에 들어갈 제품 목록을 수정하였고, 이를 고객에게 우편 배송하였다.
- 이 우편물 발송으로 2,000건의 구매 성과를 올렸다. 이 데이터를 기반으로 구매 고객의 소비금액을 예측하는 모델을 고안하고자 한다.
- [Tayko.csv] 파일은 2,000건에 대한 구매 정보를 포함하고 있다. 아래의 표는 이 문제에서 사용된 변수들에 대하여 기술한 것이다. (엑셀 파일에는 추가적인 변수들이 포함되어 있음)

변수 이름	변수 내역
US	미국 주소인지에 대한 여부
Freq	전년도의 거래 건수
last_update_days_ago	고객레코드 최종갱신일로부터의 경과 일수
Web order	고객이 최소한 한 번 이상 인터넷 구매를 했는가에 대한 여부
Gender=male	남성(1) 또는 여성(0)
Address_is_res	거주지 주소인지에 대한 여부
Spending (결과 변수)	테스트 우편물에 의한 구매액(달러)

- a. 범주형 변수들에 대한 테이블을 만들고, 각 범주별로 소비금액의 평균과 표준편차를 계산하시오.
- b. 연속형 변수들에 대하여 산점도(2개)를 작성하여 소비금액과의 관계를 탐색하시오(Spending 대 Freq, Spending 대 last_update_days_ago). 이들이 선형관계가 있어 보이는가?
- c. Spending에 대한 예측모델을 적합시키기 위해:
 - 1) 2,000개의 레코드를 학습 데이터와 검증 데이터로 나누시오.
 - 2) Spending을 결과변수로 설정하고 위 표의 6개 예측변수를 사용하여 다중 선형회귀 모델을 만드시오. 추정된 회귀모델식을 구하시오.
 - 3) 이 모델을 기반으로 하였을 때, 가장 많은 돈을 지출할 것 같은 구매고객의 유형은 무엇인가?
 - 4) 예측변수들의 수를 줄이기 위하여 후진제거 방법을 사용한다면, 어떠한 예측변수가 모델로부터 가장 먼저 탈락되겠는가?
 - 5) 검증 데이터의 첫 번째 구매 데이터를 이용하여 예측값과 예측오차가 어떻게 계산되는지 보이시오. (식을써라)
 - 6) 검증 데이터에 대한 모델의 성능을 검토한 후, 모델의 예측 정확도에 대하여 평가하시오. RMSE
 - 7) 모델의 잔차에 대한 히스토그램을 작성하시오. 정규분포를 따르는가? 이는 모델의 예측 성능에 어떠한 영향을 미치는가?

소프트웨어 재판매 이익 예측

a. 범주형 변수들에 대한 테이블을 만들고, 각 범주별로 소비금액의 평균과 표준편차를 계산하시오.

		_																			
US	soEH_O	rce_c	source_b		source_e	\	source_m	source_o	source_h	 source_x	source_w	Freq	\	last_update_days_ago	1st_update_days_ago	Web order	Gender=male	\	Address_is_res	Purchase	Spending
1	0	0	1	0	0	0	0	0	0	 0	0	2	0	3662	3662	1	0	0	1	1	128
1	0	0	0	0	1	1	0	0	0	 0	0	0	1	2900	2900	1	1	1	0	0	0
1	0	0	0	0	0	2	0	0	0	 0	0	2	2	3883	3914	a	a	2	О	1	127
1	0	1	0	0	0	3	0	0	0	 0	0	1	3	829	829	9	1	3	О	9	a
1	0	1	0	0	0	4	0	0	0	 0	0	1	4	869	869	9	9	4	0	0	0
1	0	0	0	0	0	1995	0	0	0	 0	0	1	1995	1701	1701	1	а	1995	О	1	30
1	0	0	0	0	0	1996	0	9		 9	9	1	1996	2633	2633	1	1	1996	a	1	10
1	0	0	0	0	0	1997	9	9		 9	9	0	1997	3394	3394	9	9	1997	a	ā	9
1	0	0	0	0	0	1998	a	9			1	1	1998	253	253	9	1	1998	1	9	9
1	0	0	0	0	0	1999	a	9		 9	0	1	1999	1261	1844	a	9	1999	9	9	9
						1,,,,				 •	•	-	1999	1201	1044	9	U	1999	0		
																		[2000	rows x 25 column	ns]	

표준편차 nan의 경우 한 개의 레코드만 있다. 이 경우 의미 없음으로 배제할것인지?

Spending		_	mean	std		mean	std	Web order	mean	std
mean	std	Freq			last_update_days_ago				82 002430	173 417000
S		0	0.000000	0.000000	1	109.000000	NaN	0	82.902439	173.417088
101.216524	174.844401	1	66.322476	104.424412	7	129.000000	NaN	1	129.199531	200.463840
102.924803	189.275664	2	123.479714	151.509696	9	196.000000	NaN			
		3	234.993243	226.259754	14	303.000000	NaN		mea	n std
		4	306.061224	165.153642	15	71.000000	100.409163	Gender=male	9	
		5	459.862069	270.661719				0	107.33964	2 190.83233
		6	556.750000	344.195009	4065	64.750000	58.987993	1	98.35081	0 183.02006
		7	642.125000	520.126478	4096	75.666667	93.681731	Add :		
		8	933.500000	324.925120	4127	17.500000	24.748737			mean
		9	870.500000	433.828307	4157	75.666667	95.516840	Address_is_	_	C4 C2 400 F24
		10	1199.000000	21.213203	4188	88.000000	76.374079	0	105.30	
		11	1334.000000	151.320851				1	93.17	4208 132.204
		12	1320.500000	177.483802						
		13	1443.000000	NaN						
		15	1133.000000	NaN						

소프트웨어 재판매 이익 예측

b. 연속형 변수들에 대하여 산점도(2개)를 작성하여 소비금액과의 관계를 탐색하시오(Spending 대 Freq, Spending 대 last_update_days_ago). 이들이 선형관계가 있어 보이는가?

```
fig, ax = plt.subplots(1, 2, figsize = (20, 10))
ax[0].scatter(soft_df['Freq'],soft_df['Spending'],label = 'Freq vs. Specnding')
ax[0].set_xlabel('Freq'), ax[0].set_ylabel('Spending')
ax[0].legend()
ax[1].scatter(soft_df['last_update_days_ago'],soft_df['Spending'],label = 'last_update_days_ago vs. Spending')
ax[1].set_xlabel('Days'), ax[0].set_ylabel('Spending')
ax[1].legend()
plt.show()
                                                          Freq vs. Specnding

    last_update_days_ago vs. Spending

                                                                                 1400
 1200
                                                                                 1200
 1000
                                                                                 1000
                                                                                  800
  600
  400
  200
```

로그스케일을 적용해서 자세히 보자 Np.log()

VS Freq 선형관계가 있다고 판단됨.

VS Last update days ago 선형관계가 없다고 판단됨.

소프트웨어 재판매 이익 예측

- C. Spending에 대한 예측모델을 적합시키기 위해:
 - 1) 2,000개의 레코드를 학습 데이터와 검증 데이터로 나누시오.

```
X_train, X_valid, y_train, y_valid = train_test_split(X[:2000], y[:2000], test_size=0.2, random_state=42)
print("Train set size:", len(X_train))
print("Validation set size:", len(X_valid))
```

Train set size: 1600 Validation set size: 400

- C. Spending에 대한 예측모델을 적합시키기 위해:
 - 2) Spending을 결과변수로 설정하고 위 표의 6개 예측변수를 사용하여 다중 선형회귀 모델을 만드시오. 추정된 회귀모델식을 구하시오.

```
df = pd.read_csv('Tayko.csv')
X = df[['US', 'Freq', 'last_update_days_ago', 'Web order', "Gender=male", 'Address_is_res']]
y = df['Spending']
model = LinearRegression()
model.fit(train_X, train_y)

print('intercept ', model.intercept_)
print(pd.DataFrame({'Predictor': X.columns, 'coefficient': soft_lm.coef_}))
regressionSummary(train_y, model.predict(train_X))
```

```
다중선형회귀모델 수식 y = b0 + b1 * x1 + b2 * x2 + ... + bn *
```

```
Spending = 10.17 + (-4.62) * US + 91.27 * Freq + (- 0.01) * last_update_days_ago + 18.62 * Web order + (- 9.11) * Gender=male +(- 75.81) * Address_is_res / 실제 계산 해 볼것
```


소프트웨어 재판매 이익 예측

- C. Spending에 대한 예측모델을 적합시키기 위해:
 - 3) 이 모델을 기반으로 하였을 때, 가장 많은 돈을 지출할 것 같은 구매고객의 유형은 무엇인가?

변수 이름	변수 내역	추정계수	긍정/부정
US	미국 주소인지에 대한 여부	-4.620293	부정
Freq	전년도의 거래 건수	91.274450	긍정
last_update_days_ago	고객레코드 최종갱신일로부터의 경과 일수	-0.010374	관계약함
Web order	고객이 최소한 한 번 이상 인터넷 구매를 했는가 여부	18.628731	긍정
Gender=male	남성(1) 또는 여성(0)	-9.111366	여성
Address_is_res	거주지 주소인지에 대한 여부	-75.815354	부정

우선순위 정열 시 다음과 같이 표현 가능 전년도 거래자, 거주지 주소가 아닌 자, 인터넷 구매이력이 있는 자, 여성, 미국 주소가 아닌 자

소프트웨어 재판매 이익 예측

C. Spending에 대한 예측모델을 적합시키기 위해:

4) 예측변수들의 수를 줄이기 위하여 후진제거 방법을 사용한다면, 어떠한 예측변수가 모델로부터 가장 먼저 탈락되겠는가?

의미가 없는 컬럽을 우선제거 어떤 컬럼이 의미가 없는가?

소프트웨어 재판매 이익 예측

- C. Spending에 대한 예측모델을 적합시키기 위해:
 - 5) 검증 데이터의 첫 번째 구매 데이터를 이용하여 예측값과 예측오차가 어떻게 계산되는지 보이시오. (식을써라)

숫자를 넣고 실제로 계산 해 봐라

- C. Spending에 대한 예측모델을 적합시키기 위해:
 - 6) 검증 데이터에 대한 모델의 성능을 검토한 후, 모델의 예측 정확도에 대하여 평가하시오. RMSE

소프트웨어 재판매 이익 예측

C. Spending에 대한 예측모델을 적합시키기 위해:

7) 모델의 잔차에 대한 히스토그램을 작성하시오. 정규분포를 따르는가? 이는 모델의 예측 성능에 어떠한 영향을 미치는가?

회귀분석 자체에 문제가 있는지 여부 / 정규분포를 따르면 문제가 없는것 0에 많이 몰려 있을수록 예측성능이 좋다

