2A Multivariable Calculus 2020

Tutorial Exercises

T1 State the type of surface given by each of the following equations in *three dimensional space*.

(a)
$$4x + 5y - 2z = 20$$
, (b) $x^2 + y^2 = 1$, (c) $x^2 + y^2 + z^2 - 2x = 10$,

(d)
$$x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$$
, (e) $25x^2 + 4y^2 + z^2 = 100$, (f) $x^2 + y^2 + z^2 = 16$.

Solution

(a) Plane, (b) Cylinder, (c) Sphere centre (1,0,0), radius $\sqrt{11}$, as seen by completing the square in the x terms, $(x^2 - 2x + 1) + y^2 + z^2 = 10 + 1$ giving $(x - 1)^2 + y^2 + z^2 = 11$, (d) Ellipsoid, (e) Ellipsoid – Divide the equation by 100 to reduce to standard form:

$$\frac{x^2}{4} + \frac{y^2}{25} + \frac{z^2}{100} = 1$$

(f) Sphere.

T2 Sketch the part of the plane 3x + 2y + z = 3, that lies in the first octant (= $\{(x, y, z) : x \ge 0, y \ge 0, z \ge 0\}$.)

Solution

T3 Match the graphs in Figure 1 with its corresponding contourmaps (cross-sections) from Figure 2. Give reasons for your choices.

Solution —

A-(c), B-(d), C-(a), D-(b).

T4 Complete the square in each of the following expressions

(a)
$$x^2 + y^2 + z^2 + 2 = 2(x + y + z)$$
, (b) $z = \sqrt{2x + 2y - x^2 - y^2 - 1}$.

Figure 1: Cross sections of 4 graphs (See question T₃).

Figure 2: Cross sections of 4 graphs (See question T₃).

and hence describe and sketch the surfaces they represent.

Solution =

- (a) We have $x^2-2x+y^2-2y+z^2-2z+2=0$ and so completing the square gives $(x-1)^2+(y-1)^2+(z-1)^2=1$, the sphere with centre (1,1,1) and radius 1. (b) We have $z\geq 0$ and $(x-1)^2+(y-1)^2+z^2=1$, the upper hemisphere with centre (1,1,0) and
- radius 1.

By considering the level curves and cross sections x = 0 and y = 0, sketch the surfaces

(a)
$$x^2 + y^2 - z^2 = 0$$
, (b) $z = x^2 + y^2$, (c) $2x^2 + y^2 + z^2 = 1$.

Which surface is the paraboloid and which is the ellipsoid?

Solution -

(a) Cross section x=0: $z=\pm y$; Cross section y=0: $z=\pm x$; Level curves: $x^2+y^2=c^2$, so that $L_0 = \{(0,0)\}$ or L_c is the circle centre (0,0), radius |c| for $c \neq 0$.

- (b) Cross section x = 0: $z = y^2$ (parabola); Cross section y = 0: $z = x^2$ (parabola); Level curves: $x^2 + y^2 = c$, so that $L_c = \emptyset$ for c < 0 or $L_0 = \{(0,0)\}$ or L_c is the circle centre (0,0), radius \sqrt{c} for c > 0. This is paraboloid.
- (c) Cross section x = 0: $y^2 + z^2 = 1$ (circle); Cross section y = 0: $2x^2 + z^2 = 1$ (ellipse); Level curves: $2x^2 + y^2 = 1 - c^2$, so that $L_{\pm 1} = \{(0,0)\}$, L_c is an ellipse for $|c| \le 1$ or $L_c = \emptyset$ for |c| > 1. This is an ellipsoid.
- Sketch the region bounded by the cylinder $x^2 + y^2 = 1$ and the planes x - y + z = 1 and z = 2.

Find all partial derivatives of the functions

(a)
$$f(x,y) = x\cos(xy+x)$$
, (b) $g(s,t) = \frac{st}{s+t}$, (c) $r(u,v) = (uv+v)^3$, (d) $h(x,y,z) = \frac{yz+zx+xy}{xyz}$, (e) $q(x,y,z) = xe^{-(x^2+y^2)}$.

Can you find a way to rewrite h(x, y, z) in (d) so that calculating its partial derivatives is very easy?

(a)
$$f_x = \cos(xy + x) - x(y + 1)\sin(xy + x)$$
, $f_y = -x^2\sin(xy + x)$,
(b) $g_s = \frac{t(s+t) - st.1}{(s+t)^2} = \frac{t^2}{(s+t)^2}$, $g_t = \frac{s^2}{(s+t)^2}$.
(c) $r_u = 3v(uv + v)^2$, $r_v = 3(u+1)(uv + v)^2$.
(d) $h = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$. Hence $h_x = -\frac{1}{x^2}$, $h_y = -\frac{1}{y^2}$ and $h_z = -\frac{1}{z^2}$.
(e) $q_x = (1 - 2x^2)e^{-(x^2 + y^2)}$, $q_y = -2xye^{-(x^2 + y^2)}$ and $q_z = 0$.

T8 Let
$$u(x,y) = x^2 - y^2$$
, $v(x,y) = 2xy$. Show that
$$\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial v}{\partial x} \frac{\partial u}{\partial y} = 4(x^2 + y^2).$$

Solution —

$$\frac{\partial u}{\partial x}\frac{\partial v}{\partial y} - \frac{\partial v}{\partial x}\frac{\partial u}{\partial y} = 2x \cdot 2x - 2y \cdot (-2y) = 4(x^2 + y^2).$$