

- MLP downsides for images
 - Local features
 - Position invariant
 - Big weight matrix $(n_{in} * n_{out})$
 - Overfitting

- Cross-Correlation
- Output size
- Padding
- Stride
- $n_{out} = \left[\frac{n_{in} + 2p k}{s}\right] + 1$

EXAMPLE (EDGE DETECTION)

-1	-1	-1
-1	8	-1
-1	-1	-1

Edge detection

Sharpening

Original image

	0	-1	0
*	-1	5	-1
	0	-1	0

Blurring

- Convolves a filter
- Learns filters weight tensor
- Local processing
- Position invariant
- Small weight $(f * k * \overline{c_{in}})$
- Rank 3+ tensor
- Time consuming $O(WHk^2)$

- Max / Average
- Not trainable
- Stride = kernel size
- Decrease image size
- Increase speed

CNN ARCHITECTURE

Input

Convolution + ReLU

Pooling

Convolution + ReLU

Pooling

Fully Connected

CNN VS SHALLOW

- Prevent overfitting
- Weak model in train phase
- Powerful model in inference phase
- Randomness

- Conv1D
- Batch normalization
- Global max pooling
- Global average pooling

CNN

- Whole model is not totally position invariant
 - There is MLP layer
- Usually we use 3*3 conv with stride 1
- Usually number of features increase over layers
- Usually we use 2*2 pooling with stride 2