2d. Grundlagen Optimalitätsbedingungen

Optimierung SoSe 2020 Dr. Alexey Agaltsov

Plan

- Allgemeine Optimalitätsbedingungen
- Optimalitätsbedingungen für konvexe Programme
- Starke Konvexität

Optimalitätsbedingungen

Minimiere
$$f(x)$$

 $U \subseteq \mathbb{R}^n$ offen, $f \in C^1(U)$

- Wie kann man die optimalen Lösungen erkennen?
- Notwendige Optimalitätsbedingungen (NOB):

Sei x_* ein lokales/globales Minimum, so gilt ...

Hinreichende Optimalitätsbedingungen (HOB):

Erfülle $x_* \in U$..., so ist x_* ein lokales/globales Minimum

Bemerkung: Maximierungsprobleme

- Der Einfachheit halber werden wir die Theorie nur für die Minimierungsprobleme entwickeln
- Notwendige Modifikationen f
 ür Maximierungsprobleme sind geradlinig
- In Beispielen wird eventuell Maximierung von Funktionen auftreten

Erinnerung: Taylor-Formel

• Seien $f \in C^1(U)$, U offen und konvex, $x, x + p \in U$. Dann:

$$\exists \xi \in [0,1]: \ f(x+p) = f(x) + \nabla f(x+\xi p)^T p$$

• Ist weiterhin $f \in C^2(U)$, so gilt:

1.
$$\exists \eta \in [0,1]$$
: $f(x+p) = f(x) + \nabla f(x)^T p + p^T \nabla^2 f(x+\eta p) p$

2.
$$\nabla f(x+p) = \nabla f(x) + \int_0^1 \nabla^2 f(x+tp) p \ dt$$

Restglied in Integralform

Restglied nach Lagrange

Wann ist x_* ein lokales Minimum von $f \in C^1$?

Tangentialebene bei x_* ist horizontal

- x_* heißt stationärer Punkt von f falls $\nabla f(x_*) = 0$
- Lemma. Sei $U \subseteq \mathbb{R}^n$ offen, $f \in C^1(U)$. Ist $x_* \in U$ ein lokales Minimum so gilt $\nabla f(x_*) = 0$

Beweis

Eweis
$$\{x \in \mathbb{R}^n : \|x - x_*\|_2 < \varepsilon \}$$

$$\exists \varepsilon > 0 : \ \overline{B_{\varepsilon}(x_*)} \subseteq U, f(x_*) \le f(x) \ \forall x \in B_{\varepsilon}(x_*)$$
Seien $d \in S_1(0), t \in (0, \varepsilon)$

$$\{x \in \mathbb{R}^n : \|x\|_2 = 1\}$$

$$f(x_* + td) - f(x_*) = t\nabla f(x_* + \xi td)^T d$$

$$\geq 0$$

$$\nabla f(x_* + \xi td)^T d \ge 0$$

$$\nabla f(x_*)^T d \ge 0$$

$$d = -\nabla f(x_*) / \|\nabla f(x_*)\|_2$$

$$- \|\nabla f(x_*)\|_2 = 0$$

Wann ist x_* ein lokales Minimum von $f \in C^2$?

Ist $\nabla f(x_*) = 0$, so kann x_* kein lokales Minimum sein

Wann ist x_* ein lokales Minimum von $f \in C^2$?

Lemma. Sei $U \subseteq \mathbb{R}^n$ offen, $f \in C^2(U)$, $x_* \in U$ ein Punkt mit $\nabla f(x_*) = 0$

- 1. Sei x_* ein lokales Minimum, so gilt $\nabla^2 f(x_*) \ge 0$
- 2. Gelte $\nabla^2 f(x_*) > 0$, so ist x_* ein striktes lokales Minimum

Beweis: x_* ein lokales Min. $\Longrightarrow \nabla^2 f(x_*) \geqslant 0$

$$\exists \varepsilon > 0 \colon B_{\varepsilon}(x_*) \subseteq U, f(x_*) \leq f(x) \ \forall x \in B_{\varepsilon}(x_*)$$
 Seien $d \in S_1(0), t \in (0, \varepsilon)$
$$\exists \eta \in [0,1]$$
 Taylor-Formel
$$f(x_* + td) - f(x_*) = t \nabla f(x_*)^T d + \frac{1}{2} t^2 d^T \nabla^2 f(x_* + \eta td) d$$

$$\geq 0$$

$$d^{T}\nabla^{2}f(x_{*} + \xi td)d \ge 0$$

$$t \to 0$$

$$f \in C^{2}(U)$$

$$d^{T}\nabla^{2}f(x_{*})d \ge 0$$

Also
$$\nabla^2 f(x_*) \geqslant 0$$

Behauptung. $\nabla f(x_*) = 0$, $\nabla^2 f(x_*) > 0 \Longrightarrow \text{ist } x_* \text{ ein striktes lokales Minimum}$

$$\exists \varepsilon > 0 \colon \ \nabla^2 f(x) > 0 \quad \forall x \in B_{\varepsilon}(x_*)$$
 Sei $d \in B_{\varepsilon}(0) \setminus \{0\} \colon \underbrace{\exists \eta \in [0,1]}$ Taylor-Formel
$$f(x_* + d) = f(x_*) + \underbrace{\nabla f(x_*)^T d}_{0} + \underbrace{d^T \nabla^2 f(x_* + \eta d) d}_{>0}$$
 Taylor-Formel
$$f(x) > f(x_*) \ \forall x \in B_{\varepsilon}(x_*) \setminus \{x_*\}$$

Geometrische Interpretation in 2D

• $\nabla^2 f(x,y)$ ist die Matrix der zweiten Fundamentalform des Graphen

• $\nabla^2 f(x,y)e_i = \lambda_i e_i$ für i=1,2 mit $e_i \neq 0$ λ_1,λ_2 sind Hauptkrümmungen e_1,e_2 sind Hauptkrümmungsrichtungen

Hauptkrümmungsrichtungen

Satz 2.19. Optimalitätsbedingungen

Sei U offen, $f \in C^1(U)$. Dann gelten die folgenden Aussagen:

- Ist $x_* \in U$ ein lokales Minimum von f, so gilt $\nabla f(x_*) = 0$ Ist weiterhin $f \in C^2(U)$, so gilt $\nabla^2 f(x_*) \ge 0$
- Ist $x_* \in U$ ein Punkt mit $\nabla f(x_*) = 0$, $\nabla^2 f(x_*) > 0$, so ist x_* ein striktes lokales Minimum von f

Notwendige Optimalitätsbedingungen (NOB)

Mithilfe der NOB kann man das globale Minimum von f finden:

- Bestimme alle Punkte die NOB erfüllen
- Wähle von denen den Punkt x_* mit minimalem Zielfunktionswert
- Nimmt f ihr Minimum an, so ist x_* ein Minimum von f

Beispiel: Nichtexistenz von Lösungen

Vorsicht: Zuerst muss man die Existenz von Lösungen feststellen

Minimiere
$$f(x) = x^2 - x^4$$

$$f'(x) = 2x - 4x^3$$

$$= 3x(1 - \sqrt{2}x)(1 + \sqrt{2}x)$$

$$f''(x) = 2 - 12x^2$$

Beispiel: Nichtexistenz von Lösungen

$$f'(x) = 0$$
 für $x \in \{0, \pm 1/\sqrt{2}\}$

$$f''(0) = 2$$
 lokales Minimum $f''(\pm 1/\sqrt{2}) = -4$ lokale Maxima

$$f(x) \to -\infty$$
 für $x \to \pm \infty$

Plan

- Allgemeine Optimalitätsbedingungen
- Optimalitätsbedingungen für konvexe Programme
- Starke Konvexität

Optimierung über konvexe Mengen

Minimiere
$$f(x)$$
 über $x \in K$
 $f \in C^1(\mathbb{R}^n), K \subseteq \mathbb{R}^n$ konvex

- Wir nehmen an, x_* ist eine optimale Lösung
- Ist x_* ein innerer Punkt von K, so gilt nach Satz 2.19:

$$\nabla f(x_*) = 0$$

• Was ist die Optimalitätsbedingung für ein allgemeines x?

Optimalitätsbedingung für konvexe Funktionen

$$-\nabla f(x_*)^T(x-x_*) \le 0 \ \forall x \in K$$

Satz 2.20. Optimalitätsbedingungen für konvexe Funktionen

Sei $K \subseteq \mathbb{R}^n$ konvex und $f \in C^1(\mathbb{R}^n)$

• Ist $x_* \in K$ ein lokales Minimum von f auf K, so gilt:

$$-\nabla f(x_*)^T(x-x_*) \le 0 \quad \forall x \in K$$

• Seien f konvex und $x_* \in K$ ein Punkt, der die obige Bedingung erfüllt Dann ist x_* ein globales Minimum von f auf K

Sei x_* ein lokales Minimum von f auf K

Seien
$$x \in K$$
 und $t \in (0,1)$ Taylor-Formel
$$f(x_* + t(x - x_*)) - f(x_*) = t\nabla f(x_* + \xi t(x - x_*))^T (x - x_*)$$

$$\geq 0 \text{ für } t \in (0,\varepsilon)$$

$$\nabla f(x_* + \xi t(x - x_*))^T (x - x_*) \geq 0 \qquad t \in (0,\varepsilon)$$
 lasse $t \to 0$
$$\nabla f(x_*)^T (x - x_*) \geq 0 \qquad f \in C^1(\mathbb{R}^n)$$

Aufgabe 2.21. Quadratische Programme

Minimiere
$$f(x) = \frac{1}{2}x^TQx - c^Tx + r$$
 über $x \in \mathbb{R}^n$ $Q \in \mathbb{S}_{\geq}^n, c \in \mathbb{R}^n, r \in \mathbb{R}$

Beweisen Sie die folgenden Aussagen:

- Ist f nach unten beschränkt, so gibt es eine optimale Lösung
- $x_* \in \mathbb{R}^n$ ist eine optimale Lösung $\Leftrightarrow Qx_* = c$

Plan

- Allgemeine Optimalitätsbedingungen
- Optimalitätsbedingungen für konvexe Programme
- Starke Konvexität

Starke Konvexität

Minimiere
$$f(x)$$
 über $x \in U$

$$U \subseteq \mathbb{R}^n \text{ offen und konvex}$$

$$f \in C^2(U) \text{ konvex}$$

- Wir nehmen an, es gibt eine eindeutige Lösung $x_* \in U$
- Also ist x_* durch $\nabla f(x_*) = 0$ gekennzeichnet
- Sei $x \in U$ ein Punkt mit $\|\nabla f(x)\|_2 < \varepsilon$

Wie kann man $||x - x_*||_2$ und $f(x) - f(x_*)$ durch ε abschätzen?

Starke Konvexität

Notation: $\forall X, Y \in \mathbb{S}^n$ setzen wir $X \geq Y$ falls $(X - Y) \geq 0$

- $f \in C^2(U)$ heißt stark konvex falls $\exists m > 0$, sodass: $\nabla^2 f(x) \geqslant mI \ \forall x \in U$
- Gilt $\nabla^2 f(x_*) > 0$, so ist f stark konvex neben x_*
- Ist f stark konvex, so kann man die Optimalitätskriterien quantifizieren

Lemma 2.22. Starke Konvexität

Sei $U \subseteq \mathbb{R}^n$ offen und konvex, $f \in C^2(U)$. Wir nehmen an:

- f ist stark konvex mit Konstante m > 0
- $x_* \in U$ ist ein Minimum von f auf U und $f_* = f(x_*)$

Dann gelten die folgenden Abschätzungen:

1.
$$f(y) \ge f(x) + \nabla f(x)(y - x) + \frac{m}{2}||y - x||_2^2 \ \forall x, y \in U$$

2.
$$f(x) - f_* \le \frac{1}{2m} \|\nabla f(x)\|_2^2 \quad \forall x \in U$$

3.
$$||x - x_*||_2 \le \frac{2}{m} ||\nabla f(x)||_2 \quad \forall x \in U$$

Behauptung:
$$f(y) \ge f(x) + \nabla f(x)(y - x) + \frac{m}{2}||y - x||_2^2 \ \forall x, y \in U$$

Sei
$$f \in C^2(U), \ \nabla^2 f \geqslant mI$$

$$\text{Seien } x,y \in U \qquad \qquad \exists z \in [x,y]$$

$$\text{Taylor-Formel}$$

$$f(y) = f(x) + \nabla f(x)(y-x) + \frac{1}{2}(y-x)^T \nabla^2 f(z)(y-x)$$

$$\geq \frac{m}{2} \|y-x\|_2^2$$

Behauptung:
$$f(x) - f_* \le \frac{1}{2m} \|\nabla f(x)\|_2^2 \quad \forall x \in U$$

$$f(y) \ge f(x) + \nabla f(x)(y - x) + \frac{m}{2} ||y - x||_2^2 \ \forall x, y \in U$$

$$g(y)$$

$$\nabla f(x) + m(y_* - x) = 0 \qquad \text{minimiere } g(y)$$

$$y_* = x - \frac{1}{m} \nabla f(x)$$

$$f(y) \ge g(y_*) = f(x) - \frac{1}{2m} \|\nabla f(x)\|_2^2$$

$$f_* \ge f(x) - \frac{1}{2m} \|\nabla f(x)\|_2^2$$

$$y \coloneqq x$$

Behauptung:
$$||x - x_*||_2 \le \frac{2}{m} ||\nabla f(x)||_2 \quad \forall x \in U$$

$$f(x_*) \ge f(x) + \nabla f(x)(x_* - x) + \frac{m}{2} ||x - x_*||_2^2 \ \forall x \in U \setminus \{x_*\}$$

$$\ge -||\nabla f(x)||_2 ||x - x_*||_2 \ \text{(Cauchy-Schwarz)}$$

$$0 \ge -||\nabla f(x)||_2 ||x - x_*||_2 + \frac{m}{2} ||x - x_*||_2^2 \ \text{dividiere durch}$$

$$||x - x_*||_2 \le \frac{2}{m} ||\nabla f(x)||_2$$

Geometrische Interpretation

$${x \in \mathbb{R}^n : ||x||_2 = 1}$$

- Sei $K \subseteq \mathbb{R}^n$ konvex und $d \in \overline{S_1^n(0)}$
- Die Breite von *K* in der Richtung *d*

$$W(K,d) = S_K(d) + S_K(-d)$$

$$\searrow$$
Stützfunktion

$$S_K(d) = \sup_{x \in K} d^T x$$

Maximale und minimale Breite

$$W_{max}(K) = \sup_{\|d\|_2 = 1} W(K, d)$$
$$W_{min}(K) = \inf_{\|d\|_2 = 1} W(K, d)$$

$$\kappa(K) := \frac{W_{max}^2(K)}{W_{min}^2(K)}$$

Beispiel: Ellipsoid

$$\mathcal{E} = \{x: (x-x_*)^T \Sigma^{-1} (x-x_*) \le 1\} \quad \Sigma \in \mathbb{S}^n_{\succ}$$
 Aufgabe 2.15
$$\mathcal{S}_{\mathcal{E}}(d) = d^T x_* + \left\| \Sigma^{1/2} d \right\|_2$$

$$W(\mathcal{E},d) = S_{\mathcal{E}}(d) + S_{\mathcal{E}}(-d) = 2 \|\Sigma^{1/2}d\|_{2}$$

$$W_{max}(\mathcal{E}) = 2\sqrt{\lambda_{max}}$$
 — max. Eigenwert von Σ

$$W_{min}(\mathcal{E}) = 2\sqrt{\lambda_{min}}$$
 — min. Eigenwert von Σ

$$\kappa(\mathcal{E}) = \frac{W_{max}^2(\mathcal{E})}{W_{min}^2(\mathcal{E})} = \frac{\lambda_{max}}{\lambda_{min}} = \kappa(\Sigma)$$
 Kondition von Σ

Satz 2.23. Kondition der Unterniveau-Mengen

Sei $f \in C^2(\mathbb{R}^n)$ und $S = \{x : f(x) \le \alpha\}$ mit $\alpha \in \mathbb{R}$. Wir nehmen an:

- $\nabla^2 f \geqslant mI$ auf S (bzw. $\nabla^2 f \leqslant MI$ auf S)
- x_* ist ein globales Minimum von f und $f_* = f(x_*)$

Dann gilt:

$$W_{max}^{2}(S) \le \frac{2}{m}(\alpha - f_{*})$$
 (bzw. $W_{min}^{2}(S) \ge \frac{2}{M}(\alpha - f_{*})$)

Gelte gleichzeitig $mI \leq \nabla^2 f \leq MI$ auf S, so gilt:

$$\kappa(S) \leq \frac{M}{m}$$

Beweis

Behauptung: $\nabla^2 f \geqslant mI$ auf $S \implies W_{max}^2(S) \leq \frac{2}{m}(\alpha - f_*)$

$$f_* + \nabla f(x_*)^T (x - x_*) + \frac{m}{2} ||x - x_*||_2^2 \le f(x) \quad \forall x \in S \quad \text{(Lemma 2.22)}$$

$$f(x) \le \alpha \qquad f_* + \frac{m}{2} ||x - x_*||_2^2 \le \alpha$$

$$x \in S$$

$$||x - x_*||_2^2 \le \frac{2}{m}(\alpha - f_*)$$

$$x \in \overline{B_R}(x_*), R = \sqrt{\frac{2}{m}}(\alpha - f_*)$$

$$S \subseteq \overline{B_R}(x_*) \longrightarrow W_{max}(S) \leq R$$

Beweis

Behauptung: $mI \leq \nabla^2 f \leq MI$ auf $S \Longrightarrow \kappa(S) \leq \frac{M}{m}$

$$W_{min}^{2}(S) \ge \frac{2}{M}(\alpha - f_{*})$$

$$W_{max}^{2}(S) \le \frac{2}{m}(\alpha - f_{*})$$

$$\kappa(S) \coloneqq \frac{W_{max}^{2}(S)}{W_{min}^{2}(S)} \le \frac{M}{m}$$

Zusammenfassung

- Allgemeine Optimalitätsbedingungen
- Optimalitätsbedingungen für konvexe Programme
- Starke Konvexität

Nächstes Video

• 3a. Abstiegsverfahren: Definition und Schrittweitenwahl