BSTS Part 3 Script

Slide 1

Welcome back! We hope your journey so far has been rewarding. As we noted in the previous part, this stage of your journey is the most challenging. But worry not. For once you understand how the Bayesian philosophy can be applied to structural time series, you will be ready to apply it to data. (-> Slide 2)

Slide 3

In this part of you adventure, we will see how the Bayesian framework can be applied to structural time series. We first discuss Bayesian structural time series when we do not have a regression component. This includes:

(->) the prior distribution of our parameters (->) and how to obtain the posterior distribution.

We only briefly cover this as our main focus is the case where we do have a regression component (->). Again, we discuss

(->) the prior distribution (->) and obtaining the posterior distribution. (-> Slide 4)

Slide 4

Assuming we don't have a regression component in our model, for example, the local level model, then our parameters are the variances of the error terms.

- (->) So, we would need to specify a distribution for say, σ_{ε}^2 . To keep things simple, we won't discuss a particular prior here. Just remember the parameters in structural time series models are the error variances and we would need to specify a prior for each.
- (->) The posterior distribution is obtained numerically.
- (->) The Kalman filter and Kalman smoother are used,
- (->) along with Markov Chain Monte Carlo sampling.

When we do have a regression component, we use what is called a *Spike and Slab Prior* (-> Slide 5). We will consider our regression coefficients fixed through time because otherwise (->) they could be added as an additional state component.

- (->) The *Spike* in Spike and Slab regression is a prior that specifies a positive probabilty for each regression coefficient being equal to zero.
- (->) The *Slab* is the prior for each of the regression coefficients that are not zero, and also the prior for the variance of the error term.

This should become more clear as we discuss each of these in more detail. (-> Slide 6)

Slide 6

To understand the Spike component, we will need a bit of set up notation. Suppose we have a vector γ where each component γ_k is one if $\beta_k \neq 0$ and is otherwise zero. Here, β is the vector of regression coefficients.

(->) Further, we use β_{γ} to denote the subset of the vector β corresponding to the γ_k s that are equal to one. For example, if γ_1 and γ_2 are equal to one and all other components are zero, then β_{γ} will be the vector of β_1 and β_2 .

The prior distribution we use for γ is an independent Bernoulli prior (->). This means that, for each component γ_k of γ , π_k is the probability that γ_k is equal to one and thus, β_k is included in the model.

While we could use a different prior, this prior provides a lot of flexibility. For example, if we are very certain β_1 should be in the model, we could specify π_1 to be 0.95. And actually we can specify an inclusion probability π_k for each β_k . If we don't have any previous knowledge as to which regression coefficients should be included, we could set π_k to 1/2 for every k, which is the default in the bsts package.

Along with specifying our spike prior, we need to specify the slab prior. (-> Slide 7).

Slide 7

Again, we need a little notation to start with. For a symmetric matrix Ω^{-1} , (->) we let Ω_{γ}^{-1} denote the sub matrix whose rows and columns correspond to the indices k where $\gamma_k = 1$. This is the same idea as with β_{γ} . The slab prior is shown here.

(->) It says that β_{γ} , given σ_{ε}^2 and γ follows a normal distribution with mean vector b_{γ} and covariance matrix $\sigma_{\varepsilon}^2 \Omega_{\gamma}$. As is often done in Bayesian statistics to ease calculations, we specify a distribution for $\frac{1}{\sigma_{\varepsilon}^2}$ instead of σ_{ε}^2 . This distribution is Gamma with parameters $\frac{v}{2}$ and $\frac{ss}{2}$. The parameterization for the Gamma distribution here is the shape-rate parameterization.

For this prior, we need to specify $b_{\gamma}, \sigma_{\varepsilon}^2, \Omega_{\gamma}^{-1}, v$, and ss. But before we do we want to note the full prior. (-> Slide 8)