

CS-E4640 Big Data Plaforms Issues in Time-series Data Ingestion

Minh Tri Nguyen PhD student at Department of Computer Science Researcher at AaltoSEA

Content

What is time series data?

- The applications of time series
- Characteristic

Challenges in time series data ingestion

- Handling streaming data
- Database
- Data Partitioning

My Experiences

- Who was I?
 - A data analyst
- Applications:
 - Predicting stock value:
 - Dataset: NASDAQ 100
 - Predicting the popularity of online contents
 - Dataset: Youtube, MovieLens,...
 - Predicting alarm events
 - Dataset: BTS

What is time series?

- Time series data is a sequence of data point indexed in time order. The observation is collected by repeating measurements
 - Fixed/dynamic time intervals
 - Triggered event
 - > Tracking changes over time.

Corona virus data [https://www.columbiaspectator.com/contributors/Jun-Yi-Zhang/]

The application of time series

Simple applications:

- Weather forecast: hourly, daily, weekly,...
- Health care: heart rate, breathing rate, blood sugar level,...
- Stock trading value
- AI system: autonomous, self-driving car, sensor system

Complex applications:

- NLP
- Image processing
- **-** ...

Characteristics of Time series data

- Volume:
 - Single data point: small (a few KB)
 - *The whole dataset: big (GB, TB,...)*
- Velocity: every day, hour, minute, second,...
- Variety: Structured, semi structured, unstructured, dynamic
- Veracity: noise, wrong data,...
- My initial approaches for each application always based on these characteristics

Time series data in "a whole picture"

- Trend the general direction of the changing value within the dataset: upward/downward,...
- Pattern following a function: linear, cycle, sin(x),...
- Cohesion and correlation with other values,...

- I must be able to see the dataset in a whole picture
 - > The approach must consider tools/frameworks for data processing and visualization

Time series data in "a small piece"

Hidden pattern?

Look at the data in details

Challenges in time series data ingestion

Challenges 1:

Data Ingestion

- From streaming:
 - Velocity
 - *Unstable network connection.*

BTS application:

- recording alarm event of IoT device failures.
- I simulate the streaming data using MQTT
- Techniques: buffering, queueing,...

Challenges 1:

- Data Ingestion
 - From big files:
 - Transferring speed
 - Secure transmission/privacy
 - Data availability
 - Replication
 - Sharding

Challenge 2:

- Choosing Database:
 - Data nature: data types, data schema
 - Ingestion method: API, ...
 - Operating speed: Move, copy, insert,...
 - Supporting tools/frameworks

For Youtube data, I choose MongoDB - Flexible schema, map-reduce, connector to spark, and other ML tools and frameworks.

Inform ix

Challenges 3:

- Storing Data Data partitioning
 - Geographical location
 - Data attributes
 - •
 - Querying, Visualizing data
 - Look at data in details
 - Quick access
 - Lower communication cost
 - Choosing the methods for data partitioning based on how I manipulate the data.

- Cohesion and correlation with other values
 - How do we know?
 - ➤ Visualization, experiments,...

➤ Correlated data should be in the same data partitions for quicker access and analysis.

- MovieLens dataset: recording the movie's views with location.
 - Partition data based on geographical location.

View-count distribution within a day in 2 different places (MovieLens dataset)

 MovieLens dataset: recording the movie's views with location.

Partition data based on geographical location.

Predicting Movie's views (MovieLens dataset)

- Youtube dataset: recording the views number of 50 most popular videos in 50 countries.
 - Partition data based on number of views, author, genre,...

Collecting data from Youtube

(https://developers.google.com/youtube/v3)

- Youtube dataset: recording the views number of 50 most popular videos in 50 countries.
 - Partition data based on number of views, author, genre,...

View distribution on Youtube dataset

Sum up

Different applications will come up with different approaches

- Streaming/files ingestion
- Volume
- Velocity
- Data nature
- Supporting tools/frameworks
- ...
- Database, techniques, ...

Always look at the dataset with different views

- Within different views, I may want to partition the dataset in different ways.
- Visualizing, performing a lot experiments to find the optimal solutions.

References and further information

- https://version.aalto.fi/gitlab/bigdataplatforms/cs-e4640
- https://grouplens.org/datasets/movielens/
- https://cseweb.ucsd.edu/~yaq007/NASDAQ100_stock_data.ht ml#:~:text=Description,2017%2C%20in%20total%20191%20da ys.
- https://developers.google.com/youtube/v3
- https://version.aalto.fi/gitlab/bigdataplatforms/cs-e4640/-/tree/master/data%2Fbts
- https://ieeexplore.ieee.org/abstract/document/8855675

Thank you!

Any Question?