Quantitative pH and Temperature Mapping In Vivo

Philip S. Boyd¹, Jana C. Lechner¹, Jannis B. Wirtz¹, Mark E. Ladd¹, Peter Bachert¹ and Andreas Korzowski¹ (German Cancer Research Center (DKFZ), Heidelberg, Germany

INTRODUCTION: The pH and temperature (T) represent two valuable imaging biomarkers for the assessment of many diseases (e.g., cancer, inflammation, stroke and neurodegenerative diseases). In principle, pH and T mapping is feasible by means of endogenous CEST signals, which originate mainly from proteins and metabolites within cells. In fact, the complete information about pH and T is hidden within the measured exchange rate $k_{ex}(pH,T)$. However, state-of-the-art methods do not allow for isolation of the pH and T components of k_{ex} .

The aim of this study was to develop a method that allows for isolation of pH and T in order to enable quantitative pH and T mapping in vivo. We hypothesize that this can be realized at $B_0\!\!=\!\!7T$ by using (i) extracted $k_{ex,s}$ from endogenous s=amide, amine and guanidino protons

Fig. 1: The system of equations (left) can be numerically solved for pH_{CEST} and T_{CEST} (right) using a lookup-based approach encompassing $k_{ex}(pH,T)$ for s= amide, amine, and guanidino protons (colors). This enables quantitative pH and temperature mapping.

 $(\Delta \omega_{amide}=3.5, \Delta \omega_{amine}=2.7 \text{ and } \Delta \omega_{gua}=2.0 \text{ ppm}, \text{ respectively})$ in combination with (ii) a numerical lookup-based approach.

THEORY and METHODS: Recently, we extended our method for quantitative pH mapping in vivo²⁻⁴ by introducing an $T-37^{\circ}C$

exponential T dependency of the calibration parameter (k_c), yielding⁵: $k_{ex}(pH,T) = k_c(T) \cdot 10^{pH} = k_{c37} \cdot 2^{\frac{T-37^{\circ}C}{T \, double}} \cdot 10^{pH}$ [Eq.1]. Here, k_{c37} represents the value of k_c at T=37°C and T_{double} represents the T increase for which the value of k_c, and thus k_{ex}, doubles. For each proton species s, this theoretical framework enables the complete description and calculation of k_{ex,s}(pH,T) lookup tables using only two calibration parameters (i.e., k_{c37,s} and T_{double,s}). For any individual proton species s, it is not possible to isolate the pH and T components of the measured k_{ex,s}(pH,T). However, (i) Eq.1 holds true for each s, i.e. yielding a system of n_s=3 equations (Fig.1, left), and, more importantly, (ii) the calibrated values of k_{c37} and T_{double} are distinct and characteristic for each s,⁵ thus enabling to numerically solve for pH_{CEST} and T_{CEST} (Fig.1, right).

The lower leg muscle of one healthy volunteer was measured (B_0 =7T, whole-body MR scanner, Siemens). All examinations were approved by the local ethics committee. Written informed consent was received before examinations. Acquisition of CEST data and calculation of the relaxation-compensated MTR_{Rex}⁶ at multiple B₁ [0.3:0.1:0.9 μ T] allows for precise extraction of k_{ex,s} \forall s.^{2,3} Using literature values⁵ of k_{c37,s} and T_{double,s} allows for calculation of quantitative pH and T maps by numerically solving for pH_{CEST} and T_{CEST} in each voxel (Fig.1). CEST data was corrected for B₀ and B₁ inhomogeneities.^{7,8}

RESULTS and DISCUSSION: For the measured $k_{ex,s}$ of each proton species s, using Eq.1 enables voxel-wise calculation of distinct pairs of values (pH_s,T_s) that are represented as straight lines (Fig.1) in the parameter space (pH,T). Assuming that all n_s signals within one voxel originate from the same micromolecular environment, it follows that pH and T must be

pH_{CEST}

6.5 6.5 6.5 37 36 36

Fig. 2: Application in vivo to human lower leg muscle.

the same for all s. In an ideal measurement of $k_{ex,s}$, the true (pH_{true},T_{true}) are given by the point of intersection. However, in a real CEST experiment, the measured values of $k_{ex,s}$ will be somewhat erroneous. Therefore, a weighted approach can be used to obtain broader sets of (pH_s,T_s), with their overlap yielding an estimated value of pH and T (i.e. pH_{CEST} and T_{CEST}).

The application in vivo to human lower leg muscle showed plausible values of pH_{CEST} = 6.98 ± 0.46 and T_{CEST} = 35.52 ± 1.57 °C (Fig.2), in good agreement with literature⁹⁻¹¹, thus supporting the proposed method and the transferability of in vitro calibrated values (k_{c37} and T_{double})⁵ for examinations in vivo. However, the influence of the specific chemical environment and buffer/ion concentration^{5,12,13} on k_{ex} needs to be further investigated. In the future, the obtained pH_{CEST} and T_{CEST} can be validated directly in vivo by correlation with ³¹P MRSI pH data.^{9,10}

CONCLUSION: We presented a novel method that enables quantitative pH and temperature mapping in vivo. This was accomplished by exploiting the different temperature dependencies (T_{double}) of endogenous amide, amine and guanidino CEST signals to isolate the pH and temperature components of k_{ex}(pH,T), which previously was not possible. Applicability in vivo was demonstrated in the human lower leg muscle showing an average pH_{CEST} and T_{CEST} of approximately 7.0 and 35.5°C.

REFERENCES: 1. Zhou J, *et al.* Nat Med. 2003;9:1085–1090. **2.** Boyd PS, *et al.* MRM. 2022;87:2436–2452. **3.** Boyd PS, Dissertation; Heidelberg Uni. 2022; DOI:10.11588/heidok.00032083. **4.** Boyd PS, *et al.* ISMRM. 2023;#2998. **5.** Boyd PS, *et al.* ISMRM. 2024;#4456. **6.** Zaiss M, *et al.* NMR Biomed. 2014;27:240–252. **7.** Schuenke P, *et al.* MRM. 2017;77:571–580. **8.** Windschuh J, *et al.* NMR Biomed. 2015;28:529–537. **9.** Korzowski A, *et al.* MRM 2020;84.4:1707-1723. **10.** Franke VL, *et al.* NMR Biomed. 2024:e5113. **11.** Yoshioka Y, *et al.* Spectroscopy 2002;16.3-4:183-190. **12.** Goerke S, *et al.* NMR Biomed. 2014;27:507–518. **13.** Wermter FC, *et al.* NMR Biomed. 2015;28:1507–1517.