Logique - Calculabilité - Complexité

Université de Montpellier Examen - 2022-2023 29 mars 2023

Durée 2h

Aucun document n'est autorisé

Pas de calculatrice, téléphone portable, montre programmable, appel à un ami, consultation de l'avis du public, etc.

Justifiez vos réponses avec grand soin!

Exercice 1 mise en jambes

- 1. Montrez qu'un ensemble A est énumérable si et seulement s'il est l'image d'une fonction calculable qu'on notera f.
- 2. Soient A et B deux ensembles infinis énumérables disjoints. Construisez un algorithme p qui s'arrête sur $A \cup B$ et vérifie $\forall x \ x \in A \implies [p|x] = 1$ et $\forall x \ x \in B \implies [p|x] = 0$.

Exercice 2 réductions

On considère l'ensemble des programmes x tels que les trois ensembles $\{n, [x|n] = 0\}$, $\{n, [x|n] = 1\}$ et $\{n, [x|n] \uparrow\}$ soient infinis. On appelle F cet ensemble de programmes et dans la suite, le symbole \prec représente la réduction many-one.

- 1. En utilisant le théorème de Rice, montrez que F n'est pas récursif.
- 2. Montrez que $\mathbb{K} \prec F$.
- 3. Montrez que $\mathbb{K} \prec \overline{F}$.
- 4. Montrez que ni F ni \overline{F} ne sont énumérables.
- 5. Soient A et B deux ensembles d'entiers, $f \in F$ et $C(A,B) = \{x, ([f|x] = 0 \land x \in A) \lor ([f|x] = 1 \land x \in B)\}$. Montrez que si A et B sont énumérables alors $C(A,B) \prec \mathbb{K}$.
- 6. Montrez que si $f \in F$ alors $\{x, [f|x] = 0\}$ est énumérable et contient un ensemble récursif infini.
- 7. Construisez A et B tels que $\mathbb{K} \prec A$, $\mathbb{K} \prec B$ et $\mathbb{K} \prec C(A, B)$.
- 8. Construisez A et B tels que $\mathbb{K} \prec A$, $\mathbb{K} \prec B$ et $C(A, B) = \emptyset$.

Exercice 3 Récursion

Exercice 4 - Récursion

- 1. Montrez qu'il existe un programme a tel que $\forall x \ [a|x] \downarrow$ et $\forall n \ [[a \mid n] \mid \cdot] = [n \mid \cdot] + n + 1$
- 2. Quelles sont les fonctions calculées par les points fixes de $[a\mid\cdot]$? (justifiez)

Exercice 4 la cohérence et la contradiction

Soit T une théorie cohérente sur le langage \mathcal{L}_T , et f,g,h des formules de \mathcal{L}_T . On suppose dans tout l'exerice que $\{\neg f\} \cup T \vdash (g \land \neg g)$. Répondez aux questions ci-dessous en justifiant avec soin vos réponses.

- 1. Est-ce que $\{\neg f\} \cup T \vdash h$?
- 2. Est-ce que $\{\neg f\} \cup T \vdash f$?
- 3. Est-ce que $T \vdash f$?
- 4. Est-ce que $T \vdash \neg f$?

- 5. Est-ce que $T \vdash g$?
- 6. Est ce que $(T \vdash g \text{ ou } T \vdash \neg g)$?
- 7. Esiste-t-il un modèle de T? un modèle de $T \cup \{f\}$? un modèle de $T \cup \{\neg f\}$?
- 8. Si \mathcal{M} est un modèle de T est-ce que $(\mathcal{M} \models g \text{ ou } \mathcal{M} \models \neg g)$?
- 9. Supposons que si \mathcal{M} est un modèle de T alors $\mathcal{M} \models \neg g$. Est-ce que $(T \vdash g \text{ ou } T \vdash \neg g)$?

Exercice 5 cours - incomplétude

On se place dans une théorie énumérable assez puissante (au sens du cours) qu'on note T sur le langage \mathcal{L}_T .

- 1. Énoncez un lemme de codage pour la fonction step de la calculabilité puis utilisez-le pour construire une formule de \mathcal{L}_T (qu'on note f(x)) qui est vraie si et seulement si $[x|x] \downarrow$.
- 2. Soit a tel que $T \nvdash f(a)$ et $T \nvdash \neg f(a)$. T est-elle cohérente? Montrez que $[a|a] \uparrow$.