Tema 2: Aprendizaje Supervisado

Regresión Lineal Regularizada I

Prof. Wladimir Rodríguez

wladimir@ula.ve

Departamento de Computación

Demostración de sobreajuste sobre datos sintéticos

Crear un conjunto de datos basado en una función sinusoidal

Veamos un conjunto de datos sintéticos que consta de 30 puntos extraídos de la sinusoide $y = \sin(4x)$:

```
In [1]: import math
   import random
   import numpy as np
   import pandas as pd
   from sklearn.linear_model import LinearRegression
   from sklearn.model_selection import train_test_split
   from sklearn.utils import shuffle
   from sklearn.metrics import mean_squared_error
   from matplotlib import pyplot as plt
%matplotlib inline
```

Crear valores aleatorios para x en el intervalo [0,1]

```
In [2]: np.random.seed(98103)
    n = 30
    x = np.random.uniform(0, 1, size=n)
    x = np.sort(x)
```

Calcular y. Y agregar ruido gaussiano aleatorio a y

```
In [3]: def f(x):
    return np.sin(4 * x)
y = f(x) + np.random.normal(scale=0.3, size=n)
```

Crear un dataframe de pandas.

```
In [4]: data = pd.DataFrame({'x':x, 'y':y})
  data.head()
```

Out[4]:

```
        x
        y

        0
        0.007306
        0.168648

        1
        0.031659
        0.291408

        2
        0.036159
        0.700509

        3
        0.052886
        -0.049021

        4
        0.140329
        0.207564
```

Crea una función para graficar los datos, ya que lo haremos muchas veces

```
In [5]: def graficar_data(data):
    plt.plot(data['x'],data['y'],'k.')
    plt.xlabel('x')
    plt.ylabel('y')

graficar_data(data)
```


Definir algunas funciones útiles de regresión polinomial

Función para generar los dataframe polinomiales

Definir una función para ajustar un modelo de regresión lineal polinomial de grado "grado" a los datos en "data":

```
In [7]: def regresion_polinomial(data, grado):
    poli_data_X = polinomial_dataframe(data.x, grado)
    modelo = LinearRegression()
    modelo.fit(poli_data_X, y)
    return modelo
```

Definir la función para graficar los datos y las predicciones hechas, ya que vamos a usarlo muchas veces.

```
In [8]: | def graficar_predicciones_poly(data, modelo):
            graficar_data(data)
            # Graficar la verdadera relación entre X e y
            x_v = np.random.uniform(0, 1, size=200)
            x v = np.sort(x v)
            y_v = f(x_v)
            plt.plot(x_v, y_v, 'r-')
            # Obtener el grado del polinomio
            grado = len(modelo.coef )
            # Crear 200 puntos en el eje x axis y calcular la predicción para cada punto
            x = np.random.uniform(0, 1, size=200)
            x = np.sort(x)
            x pred = pd.DataFrame({'x': x})
            y_pred = modelo.predict(polinomial_dataframe(x_pred.x,grado))
            # graficar predicciones
            plt.plot(x_pred.x, y_pred, 'g-', label='ajuste de grado ' + str(grado))
            plt.legend(loc='upper left')
            plt.axis([0,1,-1.5,2])
```

Cree una función que imprima los coeficientes polinomiales de una manera bonita:)

```
In [9]: def imprimir_coefficientes(modelo):
    # Obtener el grado del polinomio
    grado = len(modelo.coef_)

# Obtener los parámetros aprendidos como una lista
w = [modelo.intercept_]
w += (modelo.coef_).tolist()
# Numpy tiene un a función para imprimir polinomios de manera elegante
# (La usaremos, pero necesita los parámetros en orden inverso)
print ('Polinomio de grado ' + str(grado) + ':')
w.reverse()
print (np.poly1d(w))
```

Ajustar un polinomio de grado 2

```
In [16]: modelo = regresion_polinomial(data, grado=2)
```

Inspeccionar los parámetros aprendidos

```
In [17]: imprimir_coefficientes(modelo)
```

Polinomio de grado 2:

Formar y graficar nuestras predicciones a lo largo de una cuadrícula de valores x:

In [18]: graficar_predicciones_poly(data, modelo)

Calcular la media del error al cuadrado (MSE = mean squared error)

```
In [19]: print('MSE = ', mean_squared_error(data.y, modelo.predict(polinomial_dataframe(data.x,2))))
MSE = 0.084715734984617
```

Ajustar un polinomio de grado 4

```
imprimir_coefficientes(modelo)
graficar_predicciones_poly(data, modelo)
print('MSE = ', mean_squared_error(data.y, modelo.predict(polinomial_dataframe(data.x,4))))
Polinomio de grado 4:
-1.366 \times + 3.125 \times - 8.299 \times + 5.259 \times + 0.1204
        0.0845842722706234
    2.0
              ajuste de grado 4
    1.5
    1.0
    0.5
    0.0
   -0.5
   -1.0
   -1.5
                 0.2
                           0.4
                                      0.6
       0.0
                                                0.8
                                                          1.0
```

modelo = regresion_polinomial(data, grado=4)

Ajustar un polinomio de grado 8

```
modelo = regresion_polinomial(data, grado=8)
In [21]:
          imprimir_coefficientes(modelo)
          graficar_predicciones_poly(data, modelo)
          print('MSE = ', mean_squared_error(data.y, modelo.predict(polinomial_dataframe(data.x,8))))
           Polinomio de grado 8:
           -1.192e+04 \times + 3.974e+04 \times - 5.286e+04 \times + 3.558e+04 \times - 1.261e+04 \times
           + 2176 \times - 135.5 \times + 1.609 \times + 0.2985
          MSE = 0.06820283083276239
               2.0
                        ajuste de grado 8
               1.5
               1.0
               0.5
               0.0
              -0.5
```

Ajustar un polinomio de grado 16

-1.0

```
In [24]: modelo = regresion_polinomial(data, grado=16)
  imprimir_coefficientes(modelo)
```

```
graficar_predicciones_poly(data, modelo)
print('MSE = ', mean_squared_error(data.y, modelo.predict(polinomial_dataframe(data.x,16)))
Polinomio de grado 16:
            16
                            15
                                          14
                                                          13
7.098e+09 \times - 4.998e+10 \times + 1.6e+11 \times
                                            -3.079e+11 x + 3.977e+11 x
                              10
 -3.64e+11 x + 2.431e+11 x
                               - 1.201e+11 x + 4.404e+10 x
                                                                            3
 -1.191e+10 \times + 2.339e+09 \times -3.237e+08 \times +3.017e+07 \times -1.756e+06 \times
 + 5.663e+04 x - 837.4 x + 3.866
MSE = 0.04056444128518675
```


Los coeficientes para el polinomio de grado 16 son de una magnitud altisima!!!!

Demostración de sobreajuste sobre datos reales

En primer lugar, dividir los datos de ventas en cuatro subconjuntos de aproximadamente el mismo tamaño y llamarlos ventas_1, ventas_2, ventas_3 y ventas_4

```
In [26]: ventas = pd.read_csv('../datos/kc_house_data.csv')
ventas = shuffle(ventas)

In [28]: ventas_1 = ventas[:5403]
ventas_2 = ventas[5403:10806]
ventas_3 = ventas[10806:16209]
ventas_4 = ventas[16209:]
```

Ajustar un modelo polinomial de grado 15 al conjunto ventas_1

mse = mean_squared_error(y_1, modelo.predict(poli_data_X))

imprimir_coefficientes(modelo)

print('MSE = ', mse)

print()

```
print('RMSE = ', math.sqrt(mse))
          plt.plot(poli_data_X['potencia_1'],y_1,'.',
                  poli_data_X['potencia_1'], modelo.predict(poli_data_X),'-')
          Polinomio de grado 15:
                                                                        12
                       15
                                       14
          -4.857e-17 \times -8.153e-16 \times -3.011e-16 \times +8.674e-16 \times
                                        10
                        11
           - 3.53e-16 x - 4.632e-16 x - 1.214e-16 x - 1.856e-16 x
           -1.735e-16 \times -7.147e-16 \times -1.473e-14 \times +3.582e-10 \times -6.104e-06 \times
           + 0.07172 x + 2.953e-05 x + 2.442e+05
          MSE = 64864198859.398575
          RMSE = 254684.50847940982
Out[36]: [<matplotlib.lines.Line2D at 0x26d6061d6a0>,
           <matplotlib.lines.Line2D at 0x26d6061d790>]
           8
           7
           6
           5
           4
           3
           2
```

Ajustar un modelo polinomial de grado 15 al conjunto ventas_2

10000

12000

8000

0

2000

4000

6000

Ajustar un modelo polinomial de grado 15 al conjunto ventas_3

```
In [39]: X_3 = ventas_3.sort_values(['sqft_living', 'price'])
    poli_data_X_3 = polinomial_dataframe(X_3.sqft_living, 15)
    y_3 = X_3.price
```

```
modelo.fit(poli_data_X_3, y_3)
         imprimir_coefficientes(modelo)
         print()
         mse = mean_squared_error(y_3, modelo.predict(poli_data_X_3))
         print('MSE = ', mse)
         print('RMSE = ', math.sqrt(mse))
         plt.plot(poli_data_X_3['potencia_1'],y_3,'.',
                  poli_data_X_3['potencia_1'], modelo.predict(poli_data_X_3),'-')
          Polinomio de grado 15:
                      15
                                      14
                                                      13
                                                                      12
          -3.469e-17 \times + 9.541e-17 \times + 1.143e-15 \times + 7.667e-16 \times
                                        10
                        11
          + 8.752e-16 x - 3.608e-16 x - 1.041e-16 x + 7.546e-17 x
           -1.188e-16 \times +1.228e-15 \times -3.345e-15 \times -1.875e-10 \times -1.152e-06 \times
          + 0.06064 \times + 2.555e-05 \times + 2.535e+05
         MSE = 52739844261.61342
          RMSE = 229651.5714329284
Out[40]: [<matplotlib.lines.Line2D at 0x26d60706460>,
           <matplotlib.lines.Line2D at 0x26d60706550>]
             le6
           4
           3
           2
          1
                  2000
                        4000
                               6000
                                     8000
                                           10000
                                                 12000
                                                        14000
         Ajustar un modelo polinomial de grado 15 al conjunto ventas_4
In [41]: | X_4 = ventas_4.sort_values(['sqft_living', 'price'])
         poli_data_X_4 = polinomial_dataframe(X_4.sqft_living, 15)
         y_4 = X_4.price
In [42]:
         modelo = LinearRegression()
```

In [40]:

modelo = LinearRegression()

modelo.fit(poli_data_X_4, y_4)
imprimir_coefficientes(modelo)

print('RMSE = ', math.sqrt(mse))

plt.plot(poli_data_X_4['potencia_1'],y_4,'.',

print('MSE = ', mse)

mse = mean_squared_error(y_4, modelo.predict(poli_data_X_4))

poli_data_X_4['potencia_1'], modelo.predict(poli_data_X_4),'-')

print()

Polinomio de grado 15:

15

14

13

12

7.529e-16 x - 2.862e-16 x + 4.059e-16 x + 1.557e-16 x

11

10

9

8

+ 7.026e-16 x + 2.715e-16 x - 1.232e-15 x + 6.332e-16 x

7

6

5

4

- 9.202e-16 x - 1.422e-16 x - 2.259e-14 x - 3.241e-10 x + 4.422e-06 x

2

+ 0.04271 x + 2.245e-05 x + 2.75e+05

Regresión Ridge

La Regresión Ridge tiene como objetivo evitar el sobreajuste añadiendo un coste al término RSS de mínimos cuadrados estándar que depende de la norma 2 de los coeficientes ||w||. El resultado es penalizar ajustes con grandes coeficientes. La fuerza de esta penalización, y por lo tanto el balance de complejidad vs. complejidad del modelo, se controla mediante un parámetro α (aquí llamado "Penalidad_L2").

$$J(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \boldsymbol{\beta}^T \mathbf{x}_i')^2 + \alpha ||\boldsymbol{\beta}||_2$$

• α = 0:

El objetivo se vuelve igual que la simple regresión lineal. Obtendremos los mismos coeficientes que la regresión lineal simple.

• $\alpha = \infty$:

Los coeficientes serán cero. ¿Por qué? Debido a una ponderación infinita del cuadrado de coeficientes, cualquier cosa menos de cero hará que el objetivo se a infinito.

• $0 < \alpha < \infty$:

La magnitud de \$\alpha\$ determinará la ponderación dada a diferentes partes del objetivo.

Los coeficientes estarán entre 0 y unos para la regresión lineal simple.

```
In [43]: from sklearn.linear_model import Ridge
```

Definir nuestra función para resolver el objetivo de la Regresión Ridge para un modelo de regresión polinomial de cualquier grado:

```
In [44]: def regresion_ridge_polinomial(data, grado, penalidad_12):
    poli_data_X = polinomial_dataframe(data.x, grado)
    modelo = Ridge(alpha=penalidad_12)
    modelo.fit(poli_data_X, y)
    return modelo
```

Realizar un ajuste de Regresion Ridge de un polinomio de grado 16 usando una penalidad muy pequeña

```
12 11 10 9
+ 3.207e+11 x - 2.933e+11 x + 1.958e+11 x - 9.668e+10 x
8 7 6 5 4
+ 3.545e+10 x - 9.587e+09 x + 1.882e+09 x - 2.603e+08 x + 2.422e+07 x
```

- 1.403e+06 x + 4.48e+04 x - 651.6 x + 3.016

```
In [46]: graficar_predicciones_poly(data, modelo)
```


Realizar un ajuste de Regresion Ridge de un polinomio de grado 16 usando una penalidad alta

```
In [47]: modelo = regresion_ridge_polinomial(data, grado=16, penalidad_12=100)
    imprimir_coefficientes(modelo)
```

```
Polinomio de grado 16:

16 15 14 13 12

-0.002467 x - 0.002856 x - 0.003314 x - 0.003853 x - 0.00449 x
```

```
In [31]: graficar_predicciones_poly(data, modelo)
```


Veamos los ajustes para una secuencia de valores alfa en aumento

```
In [48]:
         for alfa in [1e-25, 1e-10, 1e-6, 1e-3, 1e1, 1e2]:
              modelo = regresion_ridge_polinomial(data, grado=16, penalidad_12=alfa)
              print ('alpha = %.2e' % alfa)
              imprimir_coefficientes(modelo)
              print ('\n')
              plt.figure()
              graficar_predicciones_poly(data, modelo)
              plt.title('Ridge, alfa = %.2e' % alfa)
          alpha = 1.00e-25
          Polinomio de grado 16:
                                                       14
                                                                        13
                      16
                                       15
          5.741e+09 \times - 4.039e+10 \times + 1.292e+11 \times - 2.485e+11 \times
                                          11
           + 3.207e+11 x - 2.933e+11 x + 1.958e+11 x - 9.668e+10 x
                                                        6
           + 3.545e+10 \times - 9.587e+09 \times + 1.882e+09 \times - 2.603e+08 \times + 2.422e+07 \times 
           -1.403e+06 x + 4.48e+04 x - 651.6 x + 3.016
          alpha = 1.00e-10
          Polinomio de grado 16:
                                         14
                                                    13
                             15
                                                               12
          509.6 \times + 2322 \times - 9.445 \times - 3071 \times - 3804 \times - 932.9 \times + 3782 \times
                                       7
                                                                 5
                             8
                                                  6
           + 5767 x + 1044 x - 7020 x - 4838 x + 1.063e+04 x - 5191 x + 887.6 x
```

Regresión Lasso

La Regresión Lasso reduce conjuntamente los coeficientes para evitar el ajuste excesivo, e implica

implícitamente la selección de los atributos estableciendo algunos coeficientes exactamente a 0 para una fuerza de penalidad suficientemente grande alfa (aquí llamada "penalidad_L1"). En particular, Lasso toma el término RSS de los mínimos cuadrados estándar y añade un coste de norma 1 de los coeficientes ||w||.

```
In [49]: from sklearn.linear_model import Lasso
```

Definir nuestra función para resolver el objetivo de la Regresión Lasso para un modelo de regresión polinomial de cualquier grado:

```
In [50]: def regresion_lasso_polinomial(data, grado, penalidad_l1):
    poli_data_X = polinomial_dataframe(data.x, grado)
    modelo = Lasso(alpha=penalidad_l1)
    modelo.fit(poli_data_X, y)
    return modelo
```

Explore la solución de la Regresión Lasso en función de diferentes valores de alfa

```
In [51]: for alfa in [0.0001, 0.001, 0.01, 0.1, 10]:
             modelo = regresion lasso polinomial(data, grado=16, penalidad l1=alfa)
             print ('alpha = %.2e' % alfa)
             imprimir_coefficientes(modelo)
             print ('\n')
             plt.figure()
             graficar_predicciones_poly(data, modelo)
             plt.title('Lasso, alfa = %.2e' % alfa)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\ coordinate descent.py:64
         8: ConvergenceWarning: Objective did not converge. You might want to increase the number
         of iterations, check the scale of the features or consider increasing regularisation. Dua
         lity gap: 1.949e-03, tolerance: 7.537e-04
           model = cd_fast.enet_coordinate_descent(
         alpha = 1.00e-04
         Polinomio de grado 16:
                         3
         0.02452 \times - 0 \times - 6.019 \times + 4.681 \times + 0.1556
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinate_descent.py:64
         8: ConvergenceWarning: Objective did not converge. You might want to increase the number
         of iterations, check the scale of the features or consider increasing regularisation. Dua
         lity gap: 9.789e-04, tolerance: 7.537e-04
           model = cd_fast.enet_coordinate_descent(
         alpha = 1.00e-03
 In [ ]:
```