

Rappel : La pente d'une droite (non verticale) est le nombre relatif m qui indique de combien d'unités la droite monte (ou descend si m < 0) lorsqu'on avance d'une unité vers la droite.

La pente d'une droite d'équation « y = mx + p » est son coefficient directeur m.

Idée : La dérivée d'une fonction en un point (de sa courbe) est la pente de la fonction en ce point. La dérivée généralise la notion de pente à une fonction. Elle <u>dépend du point</u>. Elle n'existe <u>pas toujours</u>. Plus précisément : On se place en un point d'abscisse a de la courbe représentative d'une fonction f. Si en faisant un zoom infini sur le point, la courbe se déforme et devient <u>une droite</u> (non verticale), <u>alors</u> :

- Cette droite est appelée tangente à la courbe représentative de f en a.
- On dit que la fonction f est **dérivable en** a, (elle admet une dérivée en a)
- La dérivée de la fonction f en a, notée f'(a) est la pente de la tangente (à f en a).

Définition précise. Soit I un intervalle. Soit $f:I\to\mathbb{R}$. Soit a et b des réels de l'intervalle I. On note A et B les points de la courbe C_f d'abscisses respectives $x_A=a$ et $x_B=b$. Donc $A=\left(a\,;f(a)\right)$ et $B=\left(b\,;f(b)\right)$. On note h=b-a f est dérivable en a ssi $\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$ existe et est finie.

Définition (Tangente). Si f est dérivable en a, la tangente à C_f en a est la droite passant par A = (a; f(a)) et de coefficient directeur f'(a). **Propriété.** L'équation de cette droite est : « y = f'(a)(x - a) + f(a) »

Dérivées usuelles. A chaque ligne, f est définie et vaut l'expression de la colonne à gauche <u>sur tout</u> D_f . On déduit que f est dérivable sur $D_{f'}$, et f'(x) vaut l'expression dans la dernière colonne <u>sur tout</u> $D_{f'}$.

Opérations sur les dérivées. A chaque ligne :

f(a) 2

- On suppose que u et v sont dérivables.
- On déduit que f est dérivable sur I.

l'expression dans la dernière colonne sur tout $D_{f'}$.							
f(x)	Conditions	D_f	$D_{f'}$	f'(x)	f	Conditions	f'
С	$c \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	0	u + v	$u, v: I \to \mathbb{R}$	u' + v'
x		\mathbb{R}	\mathbb{R}	1	u-v	$u, v: I \to \mathbb{R}$	u'-v'
ax	$a \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	а	$a \times u$	$a \in \mathbb{R}, \ u:I \to \mathbb{R}$	au'
ax + b	$a,b \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	а	$u \times v$	$u, v: I \to \mathbb{R}$	u'v + v'u
x ²		\mathbb{R}	\mathbb{R}	2 <i>x</i>	1_	$v:I\to\mathbb{R}^*$	-v'
<i>x</i> ³		\mathbb{R}	\mathbb{R}	$3x^2$	\overline{v}		$\overline{v^2}$
x^n	$n \in \mathbb{Z}, n \ge 0$	\mathbb{R}	\mathbb{R}	nx^{n-1}	<u>u</u>	$u: I \to \mathbb{R}, \ v: I \to \mathbb{R}^*$	$\underline{u'v-v'u}$
x^n	$n \in \mathbb{Z}, n < 0$	\mathbb{R}^*	\mathbb{R}^*	nx^{n-1}	v		v^2
x^r	$r \in \mathbb{R}$	\mathbb{R}_{+}	\mathbb{R}_+^*	rx^{r-1}	x	$v: \mathbb{R} \to \mathbb{R}$	$x \mapsto av'(ax+b)$
1		\mathbb{R}^*	\mathbb{R}^*	1	$\rightarrow v(ax+b)$		
$\frac{1}{x} = x^{-1}$				$-\frac{1}{x^2} = -x^{-2}$	e^u	$u:I\to\mathbb{R}$	u'e ^u
$\sqrt{x} = x^{\frac{1}{2}}$		\mathbb{R}_+	\mathbb{R}_+^*	$\frac{1}{1}$ 1 $-\frac{1}{2}$			
$\sqrt{x} = x^2$				$\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}}$			
e^x		\mathbb{R}	\mathbb{R}	e^x			

Remarques. $x \mapsto |x|$ n'est pas dérivable en 0. $x \mapsto \sqrt{x}$ n'est pas dérivable en 0.

(AB)

f(a+h) - f(a)