

The Art of R Programming

Alireza Doustmohammadi

M.Sc. student in Bioinformatics, Tarbiat Modares University

What is algorithm?

- A set of instructions that:
 - Is in order
 - Exhaustible
 - It has at least one input

What is algorithm?

- A set of instructions that:
 - Is in order
 - Exhaustible
 - It has at least one input

Example: The number of subsets of a 2n-1 member set is 32. Find the value of n.

The question confuses me.

- Give different examples
- Divide and Conquer

Example: The number of even numbers from 1 to 20

Example: Write an algorithm to calculate and print the average of three arbitrary numbers.

Example: Write an algorithm that determines the number M is even or odd

Example: Write an algorithm that determines the divisibility of one number over another.

Example: Write an algorithm that takes three arbitrary numbers and determines and prints the largest value among them.

Example: Calculate Human organism GC content.

Example: Sort numbers

> Give an Example

10	30	17	12	1

10	30	17	12	1	
----	----	----	----	---	--

10 30	17	12	1
-------	----	----	---

10 30	17	12	1
-------	----	----	---

10	30	17	12	1

1	30	17	12	10
•	00	• •	' -	'

1 30 17 12	10
------------	----

30 12 10

1	12	30	17	10
•	. —		• •	. •

1	12	30	17	10
•	. –			. •

1	10	30	17	12
•	' •	~ ~		- -

1	10	30	17	12

1	10	17	30	12

1 10 12 30	17
------------	----

1 10	12	30	17
------	----	----	----

1	10	12	17	30
'	10	12	17	30

