

Auxiliar 4:

Inducción y Relaciones

Profesores: Alejando Hevia, Federico Olmedo Auxiliares: Ismael Correa, Nahuel Gómez, Nelson Marambio, Javier Oliva, Fernanda Sanchirico, Lucas Torrealba, Ayudantes: Felix Avilés, Daniel Báez

P1.-

Definición 1 (Conjunto de palabras sobre un alfabeto Σ) El conjunto Σ^* de palabras sobre el alfabeto finito Σ , se define inductivamente como sigue:

- Caso Base: $\epsilon \in \Sigma^*$ (con ϵ la palabra vacía).
- Caso Inductivo: Dado un símbolo $x \in \Sigma$, y una palabra $w \in \Sigma^*$, luego $wx \in \Sigma^*$.
- 1. De una definición recursiva del operador potencia sobre strings, donde dada una palabra $w \in \Sigma^*$, se denota como w^i a la concatenación i veces del string w.
- 2. Dada una palabra $w \in \Sigma^*$, denotamos como l(w) al largo del string w. De una definición recursiva para el largo de strings.
- 3. Muestre por inducción estructural que, $\forall w_1, w_2 \in \Sigma^*, l(w_1 \cdot w_2) = l(w_1) + l(w_2)$.
- 4. Muestre por inducción matemática que, $\forall i \in \mathbb{N}$ y $\forall w \in \Sigma^*$, $l(w^i) = i \cdot l(w)$.

P2.-

Definición 2 (Relación Euclidiana) Una relación R sobre un conjunto A se dice euclidiana si satisface que:

$$\forall \alpha, \beta, \gamma \in A, \ \alpha R \beta \wedge \alpha R \gamma \Rightarrow \beta R \gamma$$

Demuestre que R es relación de equivalencia si y solo si R es reflexiva y euclidiana.

Auxiliar 4: