Philips Components—Signetics

Document No.	853-1501
ECN No.	00732
Date of Issue	October 17, 1990
Status	Product Specification
ACL Products	

74AC/ACT11620

Octal transceiver with dual enable (3-State), INV

FEATURES

- Octal bidirectional bus interface
- 3-State buffers
- Inverting version of '623
- Output capability: ±24 mA
- CMOS (AC) and TTL (ACT) voltage level inputs
- 50Ω incident wave switching
- Center-pin V_{CC} and ground configuration to minimize high-speed switching noise
- I_{CC} category: MSI

DESCRIPTION

The 74AC/ACT11620 high-performance CMOS devices combine very high speed and high output drive comparable to the most advanced TTL families.

The 74AC/ACT11620 device is an octal transceiver featuring inverting 3-State bus compatible outputs in both send and receive directions.

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The (continued)

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDI T _{amb} = 25°C;	TYP	UNIT		
J		V _{CC} =		AC	ACT	UNIT
t _{PLH} / t _{PHL}	Propagation delay A _n to B _n , or B _n to A _n	C _L = 50pF		5.0	5.8	ns
C _{PD}	Power dissipation capacitance per	f = 1MHz;	Enabled	54	54	pF
	transceiver ¹	C _L = 50pF	Disabled	11	11	pr
CIN	Input capacitance	V _I = 0V or V _{CC}		4.0	4.0	рF
C ^{IO}	I/O capacitance	V _{VO} = 0V or V _{CC} ; Disabled		12	12	pF
ILATCH	Latch-up current	Per Jedec JC Standard 17	500	500	mA	

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W): $P_D = C_{PD} \times V_{CC}^2 \times f_1 + \sum (C_L \times V_{CC}^2 \times f_O) \text{ where:}$ $f_1 = \text{input frequency in MHz, } C_L = \text{output load capacitance in pF,}$ $f_O = \text{output frequency in MHz, } V_{CC} = \text{supply voltage in V,}$ $\sum (C_L \times V_{CC}^2 \times f_O) = \text{sum of outputs}$

$$P_D = C_{DD} \times V_{CC}^2 \times f_1 + \sum (C_1 \times V_{CC}^2 \times f_2)$$
 where:

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE		
24-pin plastic DIP (300mil-wide)	-40°C to +85°C	74AC11620N 74ACT11620N		
24-pin plastic SOL (300mil-wide)	-40°C to +85°C	74AC11620D 74ACT11620D		

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74AC/ACT11620

control function implementation allows for maximum flexibility in timing.

These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending upon the logic levels at the Enable inputs (OE_{AB},

 $\overline{\text{OE}}_{\text{BA}}$). The Enable inputs can be used to disable the device so that the buses are effectively isolated.

The dual-enable configuration gives this transceiver the capability to store data by the simultaneous enabling of OE_{AB}

and $\overline{\text{OE}}_{\text{BA}}$. Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of the bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states.

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION	
24	OE _{AB}	3-state output enable (active High)	
13	OE _{BA}	3-state output enable (active Low)	
1, 2,3, 4, 9, 10, 11, 12	A ₀ - A ₇	Data inputs/outputs (A side)	
23, 22, 21, 20, 17, 16, 15, 14	B ₀ - B ₇	Data inputs/outputs (B side)	
5, 6, 7, 8	GND	Ground (0V)	
18, 19	V _{CC}	Positive supply voltage	

FUNCTION TABLE

ENABLE	INPUTS	00504500
OE _{AB}	OE _{BA}	OPERATION
L	L	B data to A bus
Н	н	A data to B bus
L	н	Z
Н	L	B data to $\overline{\underline{A}}$ bus, A data to $\overline{\underline{B}}$ bus

H = High voltage level

L = Low volatge level

Z = High-impedance (OFF) state

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		PARAMETER 74AC11620				74ACT11620			
			Min	Nom	Max	Min	Nom	Max	UNIT	
V _{cc}	DC supply voltage		3.01	5.0	5.5	4.5	5.0	5.5	V	
V _I	Input voltage		0		V _{CC}	0		V _{cc}	V	
Vo	Output voltage		0		V _{CC}	0		V _{cc}	V	
Δt/Δν	Input transition	A or B	0		10	0		10		
Δυ Δ v	rise or fall rate	OE _{BA} or OE _{AB}	0		5	0		5	ns/V	
Tamb	Operating free-air	temperature range	-40		+85	-40		+85	°C	

NOTE:

No electrical or switching characteristics are specified at V_{CC} < 3V. Operation between 2V and 3V is not recommended, but within that range, a device output will maintain a previously established logic state.

74AC/ACT11620

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	UNIT
Vcc	DC supply voltage		-0.5 TO +7.0	V
I _{IK}	2	V ₁ < 0	-20	
or	DC input diode current ²	V _I >V _{CC}	20	mA
V _I	DC input voltage		-0.5 to V _{CC} +0.5	V
lok	.2	V ₀ <0	-50	
or	DC output diode current ²	V _o > V _{cc}	50	mA
v _o	DCoutput voltage		-0.5 to V _{CC} +0.5	V
10	DC output source or sink current per output pin	V _O = 0 to V _{CC}	±50	mA
Icc	DC V _{CC} current		±200	
or I _{GND}	DC ground current		±200	→ mA
T _{STG}	Storage temperature		-65 to 150	°C
	Power dissipation per package	Above 70°C; derate linearly by 8mW/K	500	mW
Ртот	Power dissipation per package Plastic surface mount (SO)	Above 70°C; derate linearly by 8mW/K	400	mW

NOTES:
 1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74AC/ACT11620

DC ELECTRICAL CHARACTERISTICS

					74AC11620				74ACT11620						
SYMBOL	PARAMETER TEST CONDITIONS	PARAMETER TEST CONDITIONS		METER TEST CONDITIONS		V _{cc}	T _{amb} =	+25°C	T _{amb} =	-40°C 85°C	T _{amb} =	+25°C	T _{amb} =	= -40°C 85°C	UNIT
				V	Min	Max	Min	Max	Min	Max	Min	Max	1		
				3.0	2.10		2.10								
ViH	High-level input voltage			4.5	3.15		3.15		2.0		2.0		V		
				5.5	3.85		3.85		2.0		2.0		1		
	1 1			3.0		0.90		0.90							
V_{IL}	Low-level input voltage			4.5		1.35		1.35		0.8		0.8] v		
			· · · · · · · · · · · · · · · · · · ·	5.5		1.65		1.65		0.8		0.8			
				3.0	2.9		2.9								
			I _{OH} = -50μ A	4.5	4.4		4.4		4.4		4.4				
	t !!-t- !			5.5	5.4		5.4		5.4		5.4				
V_{OH}	$V_{OH} \begin{array}{c} \text{High-level} \\ \text{output voltage} \end{array} \begin{array}{c} V_{I} = V_{IL} \\ \text{or } V_{IH} \end{array}$	V _I = V _{IL} or V _{IH}	I _{OH} = -4mA	3.0	2.58		2.48						\ \ \ \ \		
		"'	I _{OH} = -24mA	4.5	3.94		3.8		3.94		3.8				
					5.5	4.94		4.8		4.94		4.8			
					I _{OH} = -75mA ¹	5.5			3.85				3.85	İ	
				3.0		0.1		0.1							
			l _{OL} = 50μA	4.5		0.1		0.1		0.1		0.1			
				5.5		0.1		0.1		0.1		0.1			
V_{OL}	Low-level output voltage	$V_i = V_{iL}$ or V_{iH}	I _{OL} = 12mA	3.0		0.36		0.44					V		
	output voltage	IH	I _{OL} = 24mA	4.5		0.36		0.44		0.36		0.44	1		
			IOL - 24IIIA	5.5		0.36		0.44	-	0.36		0.44			
			I _{OL} = 75mA ¹	5.5				1.65				1.65			
11	Input leakage current	V _I = V _{CC}	or GND	5.5		±0.1		±1.0		±0.1		±1.0	μА		
loz	3-State output off-state current	V _I = V _{IL} C V ₀ = V _{CC}		5.5		±0.5		5.0		±0.5		5.0	μA		
Icc	Quiescent supply current	V _I = V _{CC} I ₀ = 0mA		5.5		8.0		80		8.0		80	μА		
Δl _{CC}	Supply current, TTL inputs High²		t at 3.4V, other V _{CC} or GND	5.5						0.9		1.0	mA		

Not more than one output should be tested at a time, and the duration of the test should not exceed 10ms.
 This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0V or V_{cc}.

74AC/ACT11620

AC ELECTRICAL CHARACTERISTICS AT 3.3V ± 0.3 V

SYMBOL	PARAMETER	WAVEFORM	T	_{amb} = +25	°C		-40°C to 5°C	UNIT
			Min	Тур	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation delay A _n to B _n	1	1.5 1.5	6.8 6.5	9.0 8.2	1.5 1.5	11.1 9.8	ns
t _{PLH} t _{PHL}	Propagation delay B _n to Ā _n	1	1.5 1.5	6.8 6.5	9.0 8.2	1.5 1.5	11.1 9.8	ns
t _{PZH} t _{PZL}	Output enable time OE _{BA} to A n	2	1.5 1.5	8.0 7.3	10.3 9.8	1.5 1.5	12.7 11.6	ns
t _{PZH} t _{PZL}	Output enable time OE_{AB} to \overline{B}_n	2	1.5 1.5	8.4 8.1	10.0 10.1	1.5 1.5	12.4 12.3	ns
t _{PHZ} t _{PLZ}	Output disable time OE _{BA} to A _n	2	1.5 1.5	6.7 7.8	8.4 9.6	1.5 1.5	9.5 11.0	ns
t _{PHZ} t _{PLZ}	Output disable time OE _{AB} to B n	2	1.5 1.5	7.0 7.7	8.7 9.6	1.5 1.5	9.8 10.9	ns

AC ELECTRICAL CHARACTERISTICS AT 5.0V ±0.5V

				-				
SYMBOL	PARAMETER	WAVEFORM	Т	amb = +25°	°C	T _{amb} = -40°C to +85°C		UNIT
			Min	Тур	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation delay A _n to B _n	1	1.5 1.5	5.2 4.8	6.6 6.3	1.5 1.5	7.9 7.7	ns
t _{PLH} t _{PHL}	Propagation delay B _n to Ā _n	1	1.5 1.5	5.2 4.8	6.6 6.3	1.5 1.5	7.9 7.7	ns
t _{PZH} t _{PZL}	Output enable time OE _{BA} to Ā _n	2	1.5 1.5	6.0 5.5	7.8 7.6	1.5 1.5	9.6 9.2	ns
t _{PZH} t _{PZL}	Output enable time OE _{AB} to B _n	2	1.5 1.5	6.2 6.0	7.7 7.8	1.5 1.5	9.5 9.6	ns
t _{PHZ} t _{PLZ}	Output disable time OE _{BA} to A _n	2	1.5 1.5	5.9 6.3	7.5 8.1	1.5 1.5	8.4 9.2	ns
t _{PHZ} t _{PLZ}	Output disable time OE_{AB} to \overline{B}_n	2	1.5 1.5	6.1 6.2	7.7 7.9	1.5 1.5	8.5 9.0	ns

74AC/ACT11620

AC ELECTRICAL CHARACTERISTICS AT $5.0V \pm 0.5V$

SYMBOL	PARAMETER	WAVEFORM	T _{amb} = +25°C			T _{amb} = -40°C to +85°C		UNIT
			Min	Тур	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation delay A _n to B n	1	1.5 1.5	5.7 5.9	8.5 7.7	1.5 1.5	10.0 9.2	ns
t _{PLH} t _{PHL}	Propagation delay B _n to Ā _n	1	1.5 1.5	5.7 5.9	8.5 7.7	1.5 1.5	10.0 9.2	ns
t _{PZH} t _{PZL}	Output enable time OE _{BA} to Ā _n	2	1.5 1.5	7.2 7.1	9.1 9.2	1.5 1.5	11.1 10.8	ns
t _{PZH} t _{PZL}	Output enable time OE_{AB} to \overline{B}_n	2	1.5 1.5	7.5 7.7	10.2 9.8	1.5 1.5	12.2 11.9	ns
t _{PHZ} t _{PLZ}	Output disable time \overline{OE}_{BA} to \overline{A}_n	2	1.5 1.5	7.9 8.3	9.6 10.0	1.5 1.5	11.0 11.6	ns
t _{PHZ} t _{PLZ}	Output disable time OE_{AB} to \overline{B}_n	2	1.5 1.5	7.2 7.2	8.9 8.9	1.5 1.5	9.8 10.0	ns

AC WAVEFORMS

74AC/ACT11620

WAVEFORM CONDITIONS

	INPUTS	OUTPUTS
AC	$V_{IN} = GND$ to V_{CC} ,	V _{OUT} = V _{OL} to V _{OH}
	$V_{M} = 50\% V_{CC}$	YOU! - VOL SO YOH
ACT	V _{IN} = GND to 3.0V,	V 500 V
ACT	V _M = 1.5V	V _M = 50% V _{CC}

TEST CIRCUIT

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	2*V _{CC}
t _{PHZ} /t _{PZH}	GND

SWITCH POSITION

DEFINITIONS

C_L = Load capacitance, 50pF; includes jig and probe capacitance

 $R_L = Load resistor, 500\Omega$

 $R_T = Termination resistance should be equal to <math>Z_{OUT}$ of pulse generators

input puises: PRR ≤ 10MHz

 $\boldsymbol{t_f} = \boldsymbol{t_f} = 3 \text{ns}$

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.