Olimpiada Naţională de Matematică Etapa Judeţeană și a Municipiului București, 10 Martie 2012 CLASA a IX-a – Soluţii și barem orientativ

Problema 1. Rezolvați în mulțimea \mathbb{R} ecuația $[x]^5 + \{x\}^5 = x^5$.
Soluție. Observăm că, dacă $\{x\}=0$, atunci ecuația este verificată2p
De asemenea, ecuația este verificată în cazul când $[x] = 0$
Pentru $\{x\} \neq 0$ ecuația este $\{x\}^5 = (x - [x])(x^4 + x^3[x] + x^2[x]^2 + x[x]^3 + [x]^4)$,
adică $\{x\}^4 = x^4 + x^3[x] + x^2[x]^2 + x[x]^3 + [x]^4$. Dacă $[x] \neq 0$, atunci membrul drept
din ultima ecuație este suma dintre $[x]^4$ și patru termeni pozitivi, deci este mai mare
decât 1, iar membrul stâng este mai mic decât 1, ceea ce arată că în acest caz nu există
soluții. Așadar, mulțimea soluțiilor este $[0,1] \cup \mathbb{Z}$
Problema 2. Demonstrați că, dacă a,b,c sunt numere reale strict pozitive, atunci $\frac{a}{2a+b+c} + \frac{b}{a+2b+c} + \frac{c}{a+b+2c} \leq \frac{3}{4}.$
Soluție. Notăm $S = a + b + c$
Membrul stång este $\frac{a}{S+a} + \frac{b}{S+b} + \frac{c}{S+c} = 3 - S\left(\frac{1}{S+a} + \frac{1}{S+b} + \frac{1}{S+c}\right) \dots 2p$
Inegalitatea devine $4S\left(\frac{1}{S+a} + \frac{1}{S+b} + \frac{1}{S+c}\right) \ge 9.$ 1p
Deoarece $4S = (S+a) + (S+b) + (S+c)$ şi $(x+y+z)\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \ge 9$ pentru orice
x, y, z > 0, inegalitatea este demonstrată3p
Problema 3. Un cerc care trece prin vârfurile B și C ale unui triunghi ABC taie
din nou laturile (AB) și (AC) în N , respectiv M . Luăm punctele $P \in (MN), Q \in (BC)$
astfel încât unghi <u>urile</u> $\angle \underline{BAC}$ și $\angle PAQ$ să aibă aceeași bisectoare.
a) Arătați că $\frac{PM}{PN} = \frac{QB}{QC}$.
b) Arătați că mijloacele segmentelor $(BM), (CN), (PQ)$ sunt coliniare.
Soluție. a) Din ipoteză reiese $\angle AMP \equiv \angle ABQ$ și $\angle MAP \equiv \angle BAQ$, deci $\triangle APM \sim$
ΔAQB , de unde $\frac{MP}{BQ} = \frac{AP}{AQ}$; analog $\frac{NP}{CQ} = \frac{AP}{AQ}$ 2p
Prin împărțire obținem concluzia1p
Prin împărțire obținem concluzia
Pentru mijlocul S al segmentului (BM) avem $AS = \frac{1}{2}(AB + AM)$; analog pentru
mijloacele T, U ale segmentelor (CN) , respectiv (PQ) 1p
Deducem $AU = \frac{1}{k+1}AS + \frac{k}{k+1}AT$, de unde concluzia
Problema 4. Un şir $(a_n)_{n\geq 1}$ de numere naturale este crescător, neconstant şi are
proprietatea: a_n divide n^2 , oricare ar fi $n \ge 1$. Arătaţi că:
– fie există un număr natural n_1 astfel încât $a_n = n$ pentru orice $n \ge n_1$;
– fie există un număr natural n_2 astfel încât $a_n = n^2$ pentru orice $n \ge n_2$.
Soluție. Deoarece șirul este neconstant, există n_0 astfel încât $a_n > 1$ pentru $n \ge n_0$.
Astfel, dacă $p > n_0$ este un număr prim, atunci $a_p = p$ sau $a_p = p^2 \dots 1$
În cazul când $a_n \leq n$ pentru orice n , luând un număr prim $p > n_0$ obținem $a_p = p$.
Rezultă apoi inductiv că $a_n = n$ pentru $n \ge p$: dacă $a_n = n$, atunci $n + 1 \ge a_{n+1} \ge n$
şi $a_{n+1} \mid (n+1)^2$ implică $a_{n+1} = n+1$. Aşadar, în acest caz putem lua $n_1 = p \dots 3p$ Rămâne cazul când există $m \in \mathbb{N}^*$ astfel încât $a_m > m$. În acest caz, deoarece
$m+1 \not\mid m^2$ (deoarece $m+1 \mid m^2-1, m+1>1$ iar m^2 și m^2-1 sunt prime între ele)
rezultă că $a_m \ge m+2$, deci $a_{m+1} > m+1$. Continuând inductiv obținem $a_n > n$ pentru
orice $n \ge m$. În particular, luând un număr prim $p > m$ obținem $a_p = p^2$. Rezultă apoi
inductiv că $a_n = n^2$ pentru $n \ge p$: dacă $a_n = n^2$, atunci $a_{n+1} \ge n^2 > \frac{1}{2}(n+1)^2$ (ultima
inegalitate fiind valabilă deoarece $n \ge p \ge 3$) și $a_{n+1} \mid (n+1)^2$ implică $a_{n+1} = (n+1)^2$.

Aşadar, în acest caz putem lua $n_2 = p \dots 3p$