

Model: Mixed Indivisible and Divisible Goods

- Agents $N = \{1, 2, ..., n\}$
- m indivisible goods and a cake
- Each agent has
 utility function for the indivisible goods;
 density function for the cake.
- Allocation $A = (A_1, A_2, \dots, A_n)$, where $A_i = M_i \cup C_i$ Indivisible goods: (M_1, M_2, \dots, M_n) Cake: (C_1, C_2, \dots, C_n)
- Utility $u_i(A_i) = u_i(M_i) + u_i(C_i)$

Candidate Fairness Notions

• Envy-freeness (EF): No agent envies another.

$$\forall i, j \in N, u_i(A_i) \geq u_i(A_j)$$

• Envy-freeness up to one (indivisible) good (EF1): Any envy that an agent has towards another agent can be eliminated by removing *some* good from the latter agent's bundle.

$$\forall i, j \in N, \exists g \in A_j \text{ such that } u_i(A_i) \geq u_i(A_j \setminus \{g\})$$

• EF for divisible goods + EF1 for indivisible goods.

Envy-freeness for Mixed Goods (EFM)

Definition (EFM)

For all agents i, j,

- if agent j's bundle consists of *only* indivisible goods, there exists $g \in A_j$ such that $u_i(A_i) \ge u_i(A_i \setminus \{g\})$;
- otherwise, $u_i(A_i) \ge u_i(A_i)$.

With only divisible goods: EFM reduces to EF.

With only indivisible goods: EFM reduces to EF1.

EFM Existence

Theorem

EFM allocations always exist for any number of agents and can be found in polynomial time.

Proof Sketch.

- Start with an EF1 allocation of indivisible goods.
- Iteratively (and carefully) add some cake.
- Maintain EFM throughout the process.

Envy Graph

Definition

A directed graph of agents with

Envy edge: $i \longrightarrow j$ if $u_i(A_i) < u_i(A_i)$;

Equality edge: $i \longrightarrow j$ if $u_i(A_i) = u_i(A_j)$.

Addable Set

Definition

A subset of agents $S \subseteq N$ such that

- no envy edge in *S*;
- no edge from $N \setminus S$ to S.

Maximal addable set

There does not exist any other addable set $S' \subseteq N$ such that $S \subsetneq S'$.

- If exists, is unique.
- Can be found in polynomial time.

Intuition

Add some cake to the maximal addable set (in a "perfect" manner).

Cake-Adding Phase

Perfect allocation [Alon, 1987]

Every agent in N values all |S| pieces equally.

Given an EFM allocation, after a cake-adding phase, the resulting allocation is still EFM.

CS4261/5461 (NUS) Fair Division of Mixed Goods Semester 1, 2025 8/13

Envy Cycle

Definition

A cycle in the envy graph with at least one envy edge.

Intuition

Eliminate an envy cycle by rotating bundles.

Envy-Cycle-Elimination Phase

Given an EFM allocation, after an envy-cycle-elimination phase, the allocation is still EFM.

What can we do now?

CS4261/5461 (NUS) Fair Division of Mixed Goods Semester 1, 2025 10 / 13

Connection Between Addable Set and Envy Cycle

Key Lemma

At any time, there exists either an addable set or an envy cycle.

- Always make progress.
- The partial allocation is always EFM.
- The process always terminates.

Caveat

- A polynomial-time algorithm if we have a perfect allocation oracle for cake cutting.
- The perfect allocation oracle cannot be implemented in a bounded time in the Robertson-Webb model.

Open Question

A bounded (or even finite) EFM protocol in the Robertson-Webb model?

CS4261/5461 (NUS) Fair Division of Mixed Goods Semester 1, 2025 12 / 13

EFM Relaxation

ε -Envy-freeness for mixed goods (ε -EFM)

For all agents i, j,

- if agent j's bundle consists of only indivisible goods, there exists $g \in A_j$ such that $u_i(A_i) \ge u_i(A_i \setminus \{g\})$;
- otherwise, $u_i(A_i) \ge u_i(A_i) \varepsilon$.

Theorem

An ε -EFM allocation can be found in time poly $(n, m, \frac{1}{\varepsilon})$ in the Robertson–Webb model.

CS4261/5461 (NUS) Fair Division of Mixed Goods Semester 1, 2025

13 / 13