UN VISTAZO A LA TOKENIZACIÓN

Presentan

Daniel Ayala Zamorano

DAZ23AYALA@GMAIL.COM

Laura Natalia Borbolla Palacios

LN.BORBOLLA.42@GMATI..COM

RICARDO QUEZADA FIGUEROA

QF7.RICARDO@GMAIL.COM

Sandra Díaz Santiago

SDIAZS@GMAIL.COM

Primera Reunión de Ciberseguridad para la Industria 4.0 Puebla, 14 de octubre de 2018

> ESCUELA SUPERIOR DE CÓMPUTO INSTITUTO POLITÉCNICO NACIONAL

Contenido

El problema de la protección de datos bancarios

¿Qué es la tokenización?

Clasificación del PCI

Métodos reversibles: FFX y BPS

Métodos irreversibles: TKR, AHR y DRBG

Resultados y conclusiones

EL PROBLEMA DE LA PROTECCIÓN DE DATOS BANCARIOS

► El crecimiento del comercio en línea, aunado a sistemas débilmente protegidos, propició un incremento en los robos de datos bancarios.

Pérdidas debidas al fraude en línea (2001-2012) [1].

EL PROBLEMA DE LA PROTECCIÓN DE DATOS BANCARIOS

- ► En el 2004 se publicó el PCI DSS¹[2].
- ► Hasta este momento el enfoque era proteger la información en donde sea que se encuentre.
- ► A pesar de la publicación del estándar, las filtraciones de datos no han cesado.

¹Payment Card Industry, Data Security Standard

LA TOKENIZACIÓN EN OTROS CONTEXTOS

- ► Moneda de uso particular sin valor legal.
- ► Componente de seguridad en la comunicación por sesiones.
- ► Componente léxico de una gramática.
- ▶ Una unidad lingüística básica.
- ► Fenómeno social.

¿Qué es la tokenización?

- ► Es la sustitución de datos sensibles por valores representativos sin una relación directa.
- ► Existen muchas empresas que proveen el servicio de tokenización, pero lo hacen sin detallar la forma en la que se realiza [3]-[5].
- ► En 2011, el PCI publicó su guía de tokenización [6].

Arquitectura de sistema tokenizador: operación de tokenización.

¿Qué es la tokenización?

- ► Es la sustitución de datos sensibles por valores representativos sin una relación directa.
- ► Existen muchas empresas que proveen el servicio de tokenización, pero lo hacen sin detallar la forma en la que se realiza [3]-[5].
- ► En 2011, el PCI publicó su guía de tokenización [6].

Arquitectura de sistema tokenizador: transacción bancaria.

CLASIFICACIÓN DE LOS ALGORITMOS TOKENIZADORES CLASIFICACIÓN DEL PCI [6]

- ► Reversibles: se puede regresar, a partir del token, al número de tarjeta original.
 - ► Criptográficos: cifran la tarjeta y descifran el token.
 - ▶ No criptográficos: utilizan una base de datos para guardar la relación entre números de tarjeta y tokens.
- ► Irreversibles: no se puede regresar al número de tarjeta a partir del token.
 - ▶ Autenticables: permiten validar cuando un token corresponde a un número de tarjeta dado.
 - ▶ No autenticables: no se puede hacer la validación anterior.

CLASIFICACIÓN DE LOS ALGORITMOS TOKENIZADORES CLASIFICACIÓN PROPUESTA

- ► Criptográficos: ocupan primitivas criptográficas en su operación.
 - ► Reversibles: cifran la tarjeta y descifran el token.
 - ▶ Irreversibles: requieren una base de datos para guardar la relación entre números de tarjetas y tokens.
- No criptográficos: no utilizan nada relacionado con la criptografía.

MÉTODOS REVERSIBLES: FFX Y BPS

- ► Métodos que utilizan cifrados que preservan el formato.
- ► Cifran la tarjeta y descifran el token.
- ▶ Se volvieron estándares en 2016 y fueron renombrados por el NIST a FF1 y FF3 respectivamente [7].
- ► Están basados en redes Feistel.

(b) Proceso de detokenización

COMPARATIVA: FFX Y BPS

Características	FFX	BPS	
Longitud de cadena	4 - 36	$0 - 1.9x10^{40}$	
(en caracteres)			
Primitivas	AES CBC-MAC	AES	
criptográficas		1125	
Tamaño de llave	128 bits	128 bits	
Tamaño de tweak	menor a 2 ⁶⁴ bits	64 bits	
Número de rondas	12, 24 o 28	mínimo 8 reco-	
	,	mendadas	

Características de los algoritmos tokenizadores reveribles $[8],\ [9].$

MÉTODOS IRREVERSIBLES: TKR, AHR Y DRBG

- ► Utilizan varias primitivas criptográficas (cifrados por bloque, funciones hash, generadores pseudoaleatorios).
- ► Requieren guardar la relación tarjeta-token.
- ► Su desempeño está ligado a la base de datos.

MÉTODOS IRREVERSIBLES: TKR, AHR Y DRBG

Características	TKR	AHR	DRBG
Primitivas Cifrado por	Cifrado por	Función	
criptográficas	_	bloque y	hash o
criptograneas		función	cifrado por
		hash.	bloque.
Tamaño de llave	16 bytes	32 bytes	-
¿Utiliza tweak?	Sí	Sí	No

 ${\it Caracter\'isticas\ de\ los\ algoritmos\ tokenizadores\ irreversibles\ [10]-[12].}$

RESULTADOS

Las pruebas de desempeño de llevaron a cabo en una computadora con las siguientes características:

- ▶ Procesador: Intel i5-7200U (2.5 GHz) de 4 núcleos.
- ► Sistema operativo: Arch Linux, kernel 4.18.
- ▶ Base de datos: MariaDB 10.1.
- ► Compilador: GCC 8.1.1.

El procesador utiliza los conjuntos de instrucciones de Intel AES-NI y RD-SEED [13].

RESULTADOS

Tokenización y detokenización.

RESULTADOS

Generación de tokens.

Conclusiones

- La tokenización es una aplicación de la criptografía.
- ▶ La denominación no criptográfica del PCI es contradictoria.
- ► Los algoritmos reversibles son más últiles cuando se necesita tanto tokenizar como detokenizar con frecuencia.
- ► Los algoritmos irreversibles son más últiles cuando se requiere detokenizar con frecuencia.

Bibliografía I

- [1] John S. Kiernan. Credit Card And Debit Card Fraud Statistics. https://wallethub.com/edu/credit-debit-card-fraud-statistics/25725/. Consultado en marzo de 2018 (vid. pág. 3).
- [2] Payment Card Industry Security Standards Council. Data Security Standard Version 3.2. 2016. URL: https://www.pcisecuritystandards.org/documents/pci_dss_v3-2.pdf (vid. pág. 4).
- [3] Shift4 Payments. The History of TrueTokenization. https://www.shift4.com/dotn/4tify/trueTokenization.cfm.
 Consultado en agosto de 2018 (vid. págs. 6, 7).

Bibliografía II

- [4] Braintree. Tokenization Secures CC Data and Meet PCI Compliance Requirements. https://www.braintreepayments.com/blog/using-tokenization-to-secure-credit-card-data-and-meet-pci-compliance-requirements/. Consultado en marzo de 2018 (vid. págs. 6, 7).
- [5] Securosis. Understanding and Selecting a Tokenization Solution. https://securosis.com/assets/library/reports/Securosis_Understanding_Tokenization_V.1_.0_.pdf.
 Consultado en febrero de 2018 (vid. págs. 6, 7).
- [6] Payment Card Industry Security Standards Council. Tokenization Product Security Guidelines Irreversible and Reversible Tokens. 2015. URL: https://www.pcisecuritystandardorg/documents/Tokenization_Product_Security_Guidelinespdf (vid. págs. 6-8).

Bibliografía III

- [7] Morris Dworkin. NIST Special Publication 800-38G Recommendation for Block Cipher Modes of Operation: Methods for Format-Preserving Encryption. 2016. URL: http://dx.doi.org/10.6028/NIST.SP.800-38G (vid. pág. 10).
- [8] Mihir Bellare, Phillip Rogaway y Terence Spies. "The FFX Mode of Operation for Format-Preserving Encryption". Ver. 1.0. En: (2009). Presentado al NIST para estandarización (vid. pág. 11).
- [9] Eric Brier, Thomas Peyrin y Jacques Stern. "BPS: a Format-Preserving Encryption Proposal". En: (2010). Presentado al NIST para estandarización (vid. pág. 11).
- [10] Sandra Diaz-Santiago, Lil María Rodríguez-Henríquez y Debrup Chakraborty. "A cryptographic study of tokenization systems". En: Int. J. Inf. Sec. 15.4 (2016), págs. 413-432.

 DOI: 10.1007/s10207-015-0313-x. URL: https://doi.org/10.1007/s10207-015-0313-x (vid. pág. 13).

Bibliografía IV

- [11] Riccardo Aragona, Riccardo Longo y Massimiliano Sala. "Several proofs of security for a tokenization algorithm". En: Appl. Algebra Eng. Commun. Comput. 28.5 (2017), págs. 425-436. DOI: 10.1007/s00200-017-0313-3. URL: https://doi.org/10.1007/s00200-017-0313-3 (vid. pág. 13).
- [12] Elaine Barker y John Kelsey. NIST Special Publication 800-90A Recommendation for Random Number Generation Using Deterministic Random Bit Generators. 2015. URL: http://dx.doi.org/10.6028/NIST.SP.800-90Ar1 (vid. pág. 13).
- [13] Gael Hofemeier y Robert Chesebrough. Introduction to Intel AES-NI and Intel Secure Key Instructions. https://software.intel.com/sites/default/files/m/d/4/1/d/8/Introduction_to_Intel_Secure_Key_Instructions.pdf. Consultado en abril de 2018. 2014 (vid. pág. 14).

Gracias por su atención.

UN VISTAZO A LA TOKENIZACIÓN

Presentan

Daniel Ayala Zamorano

DAZ23AYALA@GMAIL.COM

Laura Natalia Borbolla Palacios

LN.BORBOLLA, 42@GMATI..COM

RICARDO QUEZADA FIGUEROA

QF7.RICARDO@GMAIL.COM

Sandra Díaz Santiago

SDIAZS@GMAIL.COM

Primera Reunión de Ciberseguridad para la Industria 4.0 Puebla, 14 de octubre de 2018

> ESCUELA SUPERIOR DE CÓMPUTO INSTITUTO POLITÉCNICO NACIONAL

