

SEMICONDUCTOR TECHNICAL DATA

KIA78R25API~KIA78R37API

BIPOLAR LINEAR INTEGRATED CIRCUIT

4 TERMINAL LOW DROP VOLTAGE REGULATOR

The KIA78R \times × series are Low Drop Voltage Regulator suitable for various electronic equipments. It provides constant voltage power source with TO-220 4 terminal lead full molded PKG.

The Regulator has multi function such as over current protection, overheat protection and ON/OFF control.

FEATURES

- · 1.0A Output Low Drop Voltage Regulator.
- · Built in ON/OFF Control Terminal.
- · Built in Over Current Protection, Over Heat Protection Function.

LINE UP

ITEM	OUTPUT VOLTAGE (Typ.)	UNIT
* KIA78R25API	2.5	
* KIA78R30API	3.0	
KIA78R33API	3.3	V
* KIA78R35API	3.5	
* KIA78R37API	3.7	

Note) * : Under development

MAXIMUM RATING (Ta=25 ℃)

CHARACTERISTIC	SYMBOL	RATING	UNIT	Remark
Input Voltage	V _{IN}	15	V	-
ON/OFF Control Voltage	$V_{\rm C}$	15	V	-
Output Current	I _O	1	A	-
Power Dissipation 1	P_{d1}	1.5	W	No heatsink
Power Dissipation 2	P_{d2}	15	W	with heatsink
Junction Temperature	$T_{\rm j}$	125	${\mathbb C}$	-
Operating Temperature	T_{opr}	-20~80	${\mathbb C}$	-
Storage Temperature	$T_{\rm stg}$	-30 ~ 125	$^{\circ}$	-
Soldering Temperature (10sec)	T_{sol}	260	${\mathbb C}$	-

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, I_0 =0.5A, Ta=25 $^{\circ}$ C, Note1.)

CHARACTERISTIC		SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Output Voltage	KIA78R25	Vo	-	2.438	2.50	2.562	V
	KIA78R30		-	2.925	3.00	3.075	
	KIA78R33		-	3.220	3.30	3.380	
	KIA78R35		-	3.413	3.50	3.587	
	KIA78R37		-	3.608	3.70	3.792	
Load Regulation		Reg Load	$I_O=5$ mA ~ 1 A	-	0.1	2.0	%
Line Regulation		Reg Line	(Note 2)	-	0.5	2.5	%
Temperature Coefficient of Output Voltage		$T_{C}V_{O}$	Tj=0 ~125 ℃	-	±0.02	±0.05	%/℃
Ripple Rejection		R · R	-	45	55	-	dB
Drop Out Voltage		V_{D}	I _O =1A	-	-	0.5	V
Output ON state for control Voltage		V _{C(ON)}	-	2.0	-	-	V
Output ON state for control Current		$I_{C(ON)}$	V _C =2.7V	-	-	20	μA
Output OFF state for control Voltage		V _{C(OFF)}	-	-	-	0.8	V
Output OFF state for control Current		I _{C(OFF)}	V _C =0.4V	-	-	-0.4	mA
Quiescent Current		I_Q	I _O =0	-	-	10	mA

Note1) V_{IN} of KIA78R25=4.2V Note2) V_{IN} of KIA78R25=3.2 ~10V

Note3) At V_{IN} =0.95 V_{O}

" KIA78R30=4.7V

" KIA78R30= $3.7 \sim 10V$

KIA78R33=5.0V KIA78R35=5.2V " KIA78R33= $4.0 \sim 10V$ " KIA78R35= $4.2 \sim 10V$

" KIA78R37=5.4V

" KIA78R37= $4.4 \sim 10V$

BLOCK DIAGRAM

Fig. 1 Standard Test Circuit

Fig. 1-2 Ripple Rejection Test Circuit

Fig. 2 Application Circuit for Standard

POWER DISSIPATION PD (W)

AMBIENT TEMPERATURE Ta (°C)

Note) Oblique line portion: Overheat protection may operate in this area.

Fig.5-1 T_j - $\triangle V_0$ (KIA78R25)

Fig.5-3 T_j - ΔV_o (KIA78R33)

Fig.4 I_O - V_O

Fig.5-2 T_j - $\triangle V_o$ (KIA78R30)

Fig.5-4 T_j - ΔV_0 (KIA78R35)

