Semi-Riemannian Representations

Matt R

Contents

1	Boundary Distance Representation of a Riemannian Man- ifold	2
2	Reconstruction of (M,g) as a Lorentzian Manifold 2.1 Construction of V as a Topological and Differentiable Man-	6
	ifold	9
3	Distance Different Representation	11
	3.1 M and $\mathcal{D}(M)$ are Homeomorphic	11
	3.2 M and $\mathcal{D}(M)$ are Diffeomorphic	13
4	Constructing a Connection from Pregeodesics	17
	4.1 Pregeodesics	17
	4.2 Uniqueness of Connection up to Gauge Freedom	20

1 Boundary Distance Representation of a Riemannian Manifold

See Section 3.8 in [8].

Let (M, g) be a compact, connected Riemannian manifold with nonempty boundary of dimension n. We will construct a differentiable and Riemannian structure on the set R(M) of Riemannian distance functions and we will show that $(R(M), \tilde{g})$ is isometric to (M, g).

Let $d: M \times M \to \mathbb{R}$ denote the Riemannian distance function on M, and for $x \in M$, let $r_x: \partial M \to \mathbb{R}$ denote $r_x(y) = d(x,y)$. Since d is continuous, we have that r_x is continuous for each $x \in M$, that is, $r_x \in C(\partial M) \subset L^{\infty}(\partial M)$ for each $x \in M$. Let $R: M \to C(\partial M)$ denote this map, that is,

$$R(x) = r_x$$
.

Then $R(M) \subset C(\partial M)$ and is a topological space with the inherited topology of $L^{\infty}(\partial M)$.

Lemma 1.1. $R: M \to R(M) \subset C(\partial M) \subset L^{\infty}(M)$ is a homeomorphism.

Proof: By the reverse triangle inequality, we get that

$$||r_x - r_y||_{L^{\infty}(\partial M)} = \sup_{z \in \partial M} |r_x(z) - r_y(z)|$$
$$= \sup_{z \in \partial M} |(d(x, z) - d(y, z))|$$
$$\leq d(x, y),$$

and so R is continuous. Next, suppose $r_x = r_y$ in $C(\partial M)$. Let

$$s = \min_{z' \in \partial M} r_x(z'),$$

and let $z \in \partial M$ be such that $r_x(z) = s$. But then x lies on the normal geodesic from the boundary $\gamma_{z,\nu}$ with $\gamma_{z,\nu}(s) = x$. As the same is true for r_y , we see that x = y. Hence R is injective. Since $R: M \to R(M)$ is by definition surjective, M is compact and $L^{\infty}(\partial M)$ is Hausdorff, we see by the Closed Map Lemma that $R: M \to R(M)$ is a homeomorphism. Indeed, we need only show that R is a closed map. To this end, suppose $K \subseteq M$ is closed, and hence compact. Since R is continuous, R(K) is compact in $L^{\infty}(\partial M)$, and since $L^{\infty}(\partial M)$ is Hausdorff, R(K) is closed. \square

Remark 1.2. Note that if (M,g) is geodesically regular, (i.e., any two points has a unique geodesic connecting them, and any geodesic can

be continued to a geodesic whose endpoints lie on the boundary), then (M, d_g) is an isometric as metric spaces to $(R(M), d_\infty)$ via R, and hence via the Myers-Steenrod theorem is actually a Riemannian isometry.

Proposition 1.3. There is a differentiable structure on R(M) making $R: M \to R(M)$ a diffeomorphism.

Proof: Fix $r \in R(M)$. Let $S(r) \in [0, \infty)$ and $Z(r) \in \partial M$ be defined as

$$S(r) = \min_{z \in \partial M} r(z),$$

and

$$r(Z(r)) = S(r).$$

Note that $Z(r) \in \partial M$ may not be unique. Let

$$\Gamma_z = \{ r \in R(M) : r(z) = S(r) \}, \quad z \in \partial M,$$

and

$$\tau_b(z) = \max_{r \in \Gamma_z} r(z),$$

is the boundary cut distance as defined in the previous section. Note that

$$\Gamma_z = R(\gamma_{z,\nu}([0,\tau_b(z)]),$$

is the image of the normal geodesic before the cut point. Letting $\operatorname{Cut}_{\partial M}$ denote the boundary cut locus as in the previous section, it's clear that we can now define $R(\operatorname{Cut}_{\partial M})$ from these terms. Indeed,

$$R(\mathrm{Cut}_{\partial M}) = \{ r \in R(M) : S(r) = \tau_b(Z(r)) \}.$$

We first construct coordinates on $R(M \setminus \text{Cut}_{\partial M}) = R(M) \setminus R(\text{Cut}_{\partial M})$. Since we have boundary normal coordinates given by

$$\exp_{\partial M}: \partial M \times [0, \rho) \to \{x \in M: d(x, \partial M) < \rho\},\$$

that is,

$$(z,s)(x) = \exp_{\partial M}^{-1}(x).$$

We know that $s = s(x) \in C(M)$ and $z = z(x) \in C(M \setminus \text{Cut}_{\partial M})$. Hence $S = s \circ R^{-1}$ is continuous on R(M) and $Z = z \circ R^{-1}$ is continuous on $R(M \setminus \text{Cut}_{\partial M})$.

Now let $r_0 \in R(M \setminus \text{Cut}_{\partial M})$ and $z_0 = Z(r_0)$. Let $V \subseteq \partial M$ be a coordinate neighborhood of z_0 with coordinates $(z^1, ..., z^{n-1})$. Then $(z^1, ..., z^{n-1}, s)$ form coordinates on the open set

$$Z^{-1}(V) = \{ r \in R(M \setminus \cup(\partial M)) : Z(r) \in V \}.$$

Thus, the pair (Z(r), S(r)) determine a system of smooth coordinates on $R(M \setminus \text{Cut}_{\partial M})$ making

$$R: M \setminus \operatorname{Cut}_{\partial M} \to R(M \setminus \operatorname{Cut}_{\partial M})$$

a diffeomorphism.

Near $R(\operatorname{Cut}_{\partial M})$ we will use boundary distance coordinates instead of normal coordinates. Let $r_0 \in R(\operatorname{int}(M))$ and $x = R^{-1}(r_0)$. Then there are points $z^1, ..., z^n \in \partial M$ such that $\rho^j(x) = d(x, z^j)$ define local coordinates near x. For $z \in \partial M$, let $E_z : R(M) \to \mathbb{R}_+$ denote the evaluation functions, that is,

$$E_z(r) = r(z).$$

Then

$$(E_{z^{1}}(r),...,E_{z^{n}}(r)) = (r(z^{1}),...,r(z^{n}))$$

$$= (d(x,z^{1}),...,d(x,z^{n}))$$

$$= (\rho^{1}(x),...,\rho^{n}(x))$$

$$= (\rho^{1}(R^{-1}(r)),...,\rho^{n}(R^{-1}(r))).$$

These two coordinate structures combine to make R(M) a smooth manifold such that $R: M \to R(M)$ is a diffeomorphism.

Proposition 1.4. There exists a Riemannian metric \tilde{g} on R(M) such that $R:(M,g) \to (R(M),\tilde{g})$ is a Riemannian isometry.

Note that such a metric exists on R(M) since R is a diffeomorphism, its pushforward R_* is an isomorphism, so defining $\tilde{g} = R_*g$ would work, but as we don't know g, we need to construct \tilde{g} explicitly.

Fix $r_0 \in R(\text{int}(M))$, and let $z^1, ..., z^n$ be points in ∂M such that

$$(\rho^1, ..., \rho^n) = (E_{z^1}(r), ..., E_{z^n}(r)),$$

define local coordinates near r_0 . Consider the evaluation function $E_z(r)$ where z lies in some neighborhood V of $z_0 = Z(r_0)$ and r lies in some neighborhood R(U), where U is a neighborhood of $x_0 = R^{-1}(r_0)$. Now

$$E_z(r) = d(x, z),$$

where R(x) = r. By possibly shrinking U and V, the distance function d is smooth on $U \times V$ and the collection of vectors

$$W = \{ \operatorname{grad}_{x}(d(x, z))_{x_0} \in S_{x_0}M : z \in V \}$$

is open in the unit ball $S_{x_0}M \subset T_{x_0}M$. Since R_* is an isomorphism, it then follows that

$$W = \{ \operatorname{grad} (E_z)_{r_0} \in T_{r_0} R(M) : z \in V \},$$

is an n-1-dimensional submanifold of $T_{r_0}R(M)$. Moreover, for R to be an isometry, we actually have that $\mathcal{W} \subseteq S_{r_0}R(M)$. For the moment, due to not knowing \tilde{g} as of yet, let's work with

$$\mathcal{W}^* = \{ d(E_z)_{r_0} \in T_{r_0}^* R(M) : z \in V \}.$$

Then similarly, $\mathcal{W}^* \subseteq S_{r_0}^* R(M)$ is open.

This submanifold $W^* \subseteq S_{r_0}^*R(M)$ determines the metric tensor $\tilde{g}^{jk}(r_0)$. Since $(\rho^1, ..., \rho^n)$ are local coordinates about r_0 , we have that

$$W^* = \{ (\partial_{\rho^1}(E_z)_{r_0}, ..., \partial_{\rho^n}(E_z)_{r_0}) : z \in V \},$$

and so $\mathbb{R}_+\mathcal{W}$ is an open cone in $T_{r_0}^*R(M)$. Therefore, for any

$$\xi = \alpha(\partial_{\rho^1}(E_z)_{r_0}, ..., \partial_{\rho^n}(E_z)_{r_0}) \in \mathbb{R}_+ \mathcal{W},$$

we have the function

$$F(\xi) = \tilde{g}(\xi, \xi) = \tilde{g}^{jk}(r_0)\xi_j\xi_k = \alpha^2,$$

is known. Since this is known on the open subset $\mathbb{R}_+\mathcal{W}^*$, we can compute the differentials to determine

$$\tilde{g}^{jk}(r_0) = \partial_{\xi_j} \partial_{\xi_k} F(\xi).$$

Thus we have determined $\tilde{g}^{jk}(r_0)$. Since $r_0 \in R(\text{int}(M))$ was arbitrary, we've determine \tilde{g} on all of R(int(M)). Rewriting \tilde{g} in the boundary normal coordinates and using the smoothness on R(M) then recovers \tilde{g} on all of R(M), and hence concludes the reconstruction.

2 Reconstruction of (M,g) as a Lorentzian Manifold

See [9].

Let (M, g) be a globally hyperbolic spacetime of dimension n+1 with $n \geq 2$. Let $U \subseteq M$ be a domain and suppose p^- and p^+ are two points U such that there is a timelike path $\mu \subset U$ from p^- to p^+ . Also suppose that $V \subset J^-(p^+) \setminus I^-(p^-)$ is a relatively compact open subset of M.

We will construct a differentiable and Lorentzian structure on the set $\mathcal{F}(V)$ of observation time functions which is conformally equivalent to $(V, g|_V)$.

Let g^+ be an arbitrary Riemannian metric placed on M. For $q \in V$, we define the light observation set of q as

$$\mathcal{P}_U(q) = \mathcal{L}_q^+ \cap U.$$

Then we have the unindexed collection of light observation sets

$$\mathcal{P}_U(V) = \{\mathcal{P}_U(q) : q \in V\} \subset 2^U.$$

Given such a μ , we can find a family $\{\mu_a : [-1,1] \to U : a \in \mathcal{A}\}$ of future-pointing timelike paths indexed by $a \in \mathcal{A}$ with \mathcal{A} a metric space and $\mu = \mu_{a_0}$ for some $a_0 \in \mathcal{A}$. Moreover, we may assume that $(a,s) \mapsto \mu_a(s)$ is an open and continuous map, and by possibly shrinking U that

$$U = \bigcup_{a \in A} \mu_a([-1, 1]).$$

Theorem 2.1. Suppose we know the differentiable manifold U, the conformal class of $g|_U$, the paths $\mu_a : [-1,1] \to U$, $a \in \mathcal{A}$ with the above properties, and the set $\mathcal{P}_U(V)$. Then this data determines the unique topological and differentiable structure of V and the conformal class of $g|_V$.

Let $-1 < s_- < s_+ < 1$ be such that $\mu(s_{\pm}) = p^{\pm}$. Furthermore, let $s_{-2} \in (-1, s_-)$ and $s_{+2} \in (s_+, 1)$ with $p^{\pm 2} = \mu(s_{\pm 2})$. By possibly shrinking \mathcal{A} , we further assume that for any $a \in \mathcal{A}$ that

$$\mu_a(s_{-2}) \in I(\mu(-1), p^-),$$

$$\mu_a(s_{+2}) \in I(p^+, \mu(1)).$$

Let \mathfrak{t} denote the time-separation function, that is, for $x \leq y$,

$$\mathfrak{t}(x,y) = \sup_{\gamma} L(\gamma) = \sup_{\gamma} = \int_{0}^{1} \sqrt{-g(\gamma'(s), \gamma'(s))} ds,$$

where γ is any piecewise smooth causal path $\gamma:[0,1]\to M$ from x to y. If $x\not\leq y$, then $\mathfrak{t}(x,y)=0$. Since M is globally hyperbolic, we have that $\mathfrak{t}:M\times M\to[0,\infty)$ is continuous and $J^\pm(x)$ is closed for all $x\in M$. Moreover for x< y there is a longest causal geodesic $\gamma:[0,1]\to M$ with $\gamma(0)=x,\gamma(1)=y$ and $\mathfrak{t}(x,y)=L(\gamma)$.

For a nonzero $(x,\xi) \in TM$, define $\mathcal{T}(x,\xi) \in (0,\infty]$ to be the maximal value for which $\gamma_{x,\xi} : [0,\mathcal{T}(x,\xi)) \to M$ is defined, that is, $\gamma_{x,\xi}$ on this interval is future-inextendible. Now, for $(x,\xi) \in L^+M$, $x \in J^-(p^+)$, define

$$T_{+2}(x,\xi) = \sup\{t \ge 0 : \gamma_{x,\xi}(t) \in J^{-}(p_{+2})\}.$$

Since $J^-(p_{+2})$ is closed, and $\gamma_{x,\xi}$ are future-pointing curves, $T_{+2}:L^+(J^-(p^+))\to\mathbb{R}$ is upper-semicontinuous. Moreover, since the set

$$K := \{(x, \xi) \in L^+M : x \in \overline{V}, ||\xi||_{q^+} = 1\},$$

is compact, there exists $c_0 \in \mathbb{R}_+$ such that $T_{+2}(x,\xi) \leq c_0$ for all $(x,\xi) \in K$.

For $(x,\xi) \in L^+M$, we define the null cut distance function

$$\rho(x,\xi) = \sup\{s \in [0, \mathcal{T}(x,\xi)) : \mathfrak{t}(x,\gamma_{x,\xi}(s)) = 0\}.$$

If $\rho(x,\xi) < \infty$, then the point $p(x,\xi) = \gamma_{x,\xi}(\rho(x,\xi))$ is called the (first) null cut point of the geodesic $\gamma_{x,\xi}$. Since (M,g) is globally hyperbolic $p(x,\xi)$ is either a first conjugate point (i.e., \exp_x is degenerate at $\rho(x,\xi)\xi \in T_xM$) or there exists another lightlike geodesic $\gamma_{x,\eta}$ from x to $p(x,\xi)$ with $\eta \neq c\xi$ for any $c \in \mathbb{R}$.

Definition 2.2. Let $a \in \mathcal{A}$ and $q \in J^{-}(p^{+}) \setminus I^{-}(p^{-})$. The observation time function $f_a: J^{-}(p^{+}) \setminus I^{-}(p^{-}) \to [-1, 1]$ is defined by

$$f_a(q) = \inf (\{s \in [-1, 1] : \mu_a(s) \in J^+(q)\} \cup \{1\}).$$

Moreover, let $\mathcal{E}_a(q) = \mu_a(f_a(q))$. Then $\mathcal{E}_a(q)$ is the earliest point on μ_a as which light is observed from q.

Lemma 2.3. Let $a \in \mathcal{A}$ and $q \in J^{-}(p^{+}) \setminus I^{-}(p^{-})$.

- i. It holds that $s_{-2} \leq f_a(q) \leq s_{+2}$.
- ii. We have that $\mathcal{E}_a(q) \in J^+(q)$ and $\mathfrak{t}(q, \mathcal{E}_a(q)) = 0$. Moreover, the function $s \mapsto \mathfrak{t}(q, \mu_a(s))$ is continuous, nondecreasing on [-1, 1] and strictly increasing on $[f_a(q), 1]$.
- iii. Assume that $p \in U$. Then $p = \mathcal{E}_a(q)$ for some $a \in \mathcal{A}$ if and only if $p \in \mathcal{P}_U(q)$ and $\mathfrak{t}(q,p) = 0$. Furthermore, this is equivalent to the fact that there exists $\xi \in L_q^+M$ and $t \in [0, \rho(q, \xi)]$ such that $p = \gamma_{q,\xi}(t)$.

iv. The function $q \mapsto f_a(q)$ is continuous on $J^-(p^+) \setminus I^-(p^-)$.

Definition 2.4. Let $q \in J^-(p^+) \setminus I^-(p^-)$. Let

$$\mathcal{D}_{U}(q) := \{ (y, \eta) \in L^{+}U : y = \gamma_{q,\xi}(t) \in U, \eta = \gamma'_{q,\xi}(t),$$

$$for \ some \ \xi \in L_{q}^{+}M, 0 \le t \le \rho(q, \xi) \}$$

and

$$\mathcal{D}_{U}^{reg}(q) := \{ (y, \eta) \in L^{+}U : y = \gamma_{q, \xi}(t) \in U, \eta = \gamma'_{q, \xi}(t),$$

$$for \ some \ \xi \in L_{q}^{+}M, 0 < t < \rho(q, \xi) \}.$$

We say that $\mathcal{D}_U(q)$ is the direction set of q and $\mathcal{D}_U^{reg}(q)$ is the regular direction set of q.

Let $\mathcal{E}_U(q) = \pi(\mathcal{D}_U(q))$ and $\mathcal{E}_U^{reg}(q) = \pi(\mathcal{D}_U^{reg}(q))$, where $\pi: TU \to U$ is the standard bundle projection. We say that $\mathcal{E}_U(q)$ is the set of earliest observations of q in U and $\mathcal{E}_U^{reg}(q)$ is the set of regular earliest observations of q in U. Denote

$$\mathcal{E}_U(V) = \{ \mathcal{E}_U(q) \in 2^U : q \in V \}.$$

Note that $\mathcal{E}_U(q) = \{\mathcal{E}_a(q) : a \in \mathcal{A}\}$ and the lower-semicontinuity of ρ implies that $\mathcal{D}_U^{\text{reg}}(q) \subset TU$ is a smooth 2n-manifold and $\mathcal{E}_U^{\text{reg}}(q) \subset U$ is a smooth n-manifold.

It's now easily seen that

$$\mathcal{E}_U(q) = \{x \in \mathcal{P}_U(q) : \text{there is no } y \in \mathcal{P}_U(q) \text{ such that } y \ll x\}.$$

By our Lemma, we have that

$$f_a(q) = \min\{s \in [-1, 1] : \mu_a(s) \in J^+(q)\}, \qquad \mathcal{E}_a(q) = \mu_a(f_a(q)),$$

and by the above remark we have that

$$\mathcal{E}_U(q) = \{ \mathcal{E}_a(q) : a \in \mathcal{A} \},\$$

so we may now conclude that the data $\mathcal{P}_U(V)$ and $\{\mu_a : a \in \mathcal{A}\}$ determine $\mathcal{E}_U(V)$.

Remark. Given $\mathcal{E}_U(V)$, one can then determine the sets $\mathcal{D}_U(q)$, $\mathcal{D}_U^{\text{reg}}(q)$, and $\mathcal{E}_U^{\text{reg}}(q)$.

2.1 Construction of V as a Topological and Differentiable Manifold

Given $q \in J^-(p^+) \setminus I^-(p^-)$, define the function $F_q : \mathcal{A} \to \mathbb{R}$ by

$$F_q(a) = f_a(q).$$

We then can define the function $\mathcal{F}: J^-(p^+) \setminus I^-(p^-) \to \mathbb{R}^{\mathcal{A}}$, that maps q to the function $F_q: \mathcal{A} \to \mathbb{R}$, that is,

$$\mathcal{F}(q) = F_q.$$

We endow $\mathbb{R}^{\mathcal{A}}$ with the product topology (which is Hausdorff since \mathbb{R} is Hausdorff). By considering the set $\mathcal{F}(V)$ we will construct our topological and differentiable structure on V, and by using $\mathcal{E}_{U}(V)$ our conformal class of the metric $g|_{V}$.

Lemma 2.5. Let $V \subset J^-(p^+) \setminus I^-(p^-)$ be a relatively compact open set. Then the map $\mathcal{F}: V \to \mathcal{F}(V)$ is a homeomorphism.

Proof: Since $\mathbb{R}^{\mathcal{A}}$ has the product topology, and

$$\pi_a \circ \mathcal{F} = f_a,$$

is continuous by the above, we see that $\mathcal{F}: V \to \mathcal{F}(V)$ is continuous.

Now we show that $\mathcal{F}: \overline{V} \to \mathcal{F}(\overline{V}) = \overline{\mathcal{F}(V)}$ is injective. Since $\mathcal{F}(q)$ uniquely determines the set $\mathcal{E}_U(q)$, it suffices to show that $\mathcal{E}_U: \overline{V} \to \mathcal{E}_U(\overline{V})$ is injective. To this end, suppose $q_1, q_2 \in \overline{V}$ with $q_1 \neq q_2$ and assume that $\mathcal{E}_U(q_1) = \mathcal{E}_U(q_2)$. By our remark, we then have that $\mathcal{D}_U(q_1) = \mathcal{D}_U(q_2)$. Choose $a \in \mathcal{A}$ such that $q_j \notin \mu_a$ for j = 1, 2. Let $(p, \eta) \in \mathcal{D}_U(q_j)$ with $p = \mathcal{E}_a(q_j)$. Then there exists $t_1, t_2 > 0$ such that $\gamma_{p,\eta}(-t_j) = q_j, j = 1, 2$. Since $q_1 \neq q_2$, we have that $t_1 \neq t_2$ and so without loss of generality assume that $t_2 > t_1$. Moreover, by definition of $\mathcal{D}_U(q_j)$, there exists $\xi_j \in L_{q_j}^+M$ such that

$$(p,\eta) = (\gamma_{q_i,\xi_i}(t_j), \gamma'_{q_i,\xi_i}(t_j)), \qquad (q_1,\xi_1) = (\gamma_{q_2,\xi_2}(t_2-t_1), \gamma'_{q_2,\xi_2}(t_2-t_1)),$$

with

$$0 \le t_1 \le \rho(q_1, \xi_1), \qquad 0 \le t_2 \le \rho(q_2, \xi_2).$$

Thus

$$t_2 - t_1 < t_2 < \rho(q_2, \xi_2),$$

and so (q_1, ξ_1) is not a null cut point of γ_{q_2,ξ_2} . By lower-semicontinuity, for any $\delta_1 > 0$ there exists $\delta_2 > 0$ such that

$$\rho(q_2, \xi_2') > \rho(q_2, \xi_2)\delta_1,$$

whenever $\|\xi_2' - \xi_2\| < \delta_2$. Choose $\xi_2' \in T_{q_2}M$ with $\|\xi_2' - \xi_2\| < \delta_2$ and ξ_2' not parallel with ξ_2 , and $t_2' \in (t_2 - 2\delta_1, t_2 - \delta_1)$ such that $p' = \gamma_{q_2, \xi_2'}(t_2') \in U$ and $p' \neq q_1$. Then

$$t_2' < t_2 - \delta_1 \le \rho(q_2, \xi_2) - \delta_1 < \rho(q_2, \xi_2').$$

Let $\eta' = \gamma_{q_2,\xi'_2}(t'_2)$ and so $(p',\eta') \in \mathcal{D}_U(q_2) = \mathcal{D}_U(q_1)$. Hence, there exists $t'_1 > 0$ such that $q_1 = \gamma_{p',\eta'}(-t'_1)$. Let $\xi'_1 = \gamma_{p',\eta'}(-t'_1)$, which is seen to not be parallel with ξ_1 , otherwise ξ'_2 would be parallel with ξ_2 . Now, the union of the geodesic $\gamma_{q_2,\xi_2}([0,t_2-t_1])$ and the geodesic $-\gamma_{p',\eta'}([-t'_1,0])$ is a causal curve from q_2 to p' that is not a lightlike pregeodesic, indeed, if it were a lightlike geodesic then p' would be an ordinary cut point of γ_{q_2,ξ'_2} , but $t'_2 < \rho(q_2,\xi'_2)$. Thus $\mathfrak{t}(q_2,p') > 0$ which is a contradiction since $p' \in \mathcal{E}_U(q_2)$. Thus $\mathcal{E}_U : \overline{V} \to \mathcal{E}_U(\overline{V})$ in injective, and hence so is $\mathcal{F} : \overline{V} \to \mathcal{F}(\overline{V})$.

Finally, since \overline{V} is compact, $\mathbb{R}^{\mathcal{A}}$ is Hausdorff and $\mathcal{F}: \overline{V} \to \mathcal{F}(\overline{V})$ is bijective, it follows that $\mathcal{F}: \overline{V} \to \mathcal{F}(\overline{V})$ is a homeomorphism, and hence $\mathcal{F}: V \to \mathcal{F}(V)$ is a homeomorphism as desired.

We now introduce coordinates on $\mathcal{F}(V)$ to make it into a smooth manifold for which $\mathcal{F}:V\to\mathcal{F}(V)$ is a diffeomorphism.

Let

$$\mathcal{Z} := \{(q, p) \in V \times U : p \in \mathcal{E}_U^{\text{reg}}(q)\}.$$

Then for every $(q,p) \in \mathcal{Z}$, there exists a unique $\xi \in L_q^+M$ such that $\gamma_{q,\xi}(1) = p$ and $\rho(q,\xi) > 1$. We denote the aforementioned map via $\Theta(q,p) = (q,\xi)$ which maps $\Theta: \mathcal{Z} \to L^+V$. Given $(q,\xi) \in TM$, let $B_{\epsilon}(q,\xi)$ denote an ϵ -neighborhood about (q,ξ) in TM with respect the g^+ -Sasaki metric on TM.

3 Distance Different Representation

See [7] and [11], and in particular [10].

Let (M, g) be an n-dimensional, compact Riemannian manifold without boundary with $n \geq 2$. Let $N \subseteq M$ be an open submanifold, and let $\Omega = M \setminus N$ with the crucial assumption that $\operatorname{int}(\Omega) \neq \emptyset$.

For a point $x \in M$, define the *(restricted) distance difference function* $D_x : \Omega \times \Omega \to \mathbb{R}$ by

$$D_x(p,q) = \operatorname{dist}_g(p,x) - \operatorname{dist}_g(q,x),$$

which yields the collection

$$\mathcal{D}(M) = \mathcal{D}_{\Omega}(M) = \{ D_x : \Omega \times \Omega \to \mathbb{R} : x \in M \},$$

or rather as a representation

$$\mathcal{D}: M \to C(\Omega \times \Omega), \qquad x \mapsto D_x.$$

We then have the subcollection

$$\mathcal{D}(N) = \{D_y : y \in N\} \subset \mathcal{D}(M).$$

3.1 M and $\mathcal{D}(M)$ are Homeomorphic

We consider $\mathcal{D}(M) \subset C(\Omega \times \Omega)$ as a subspace with the supremum norm

$$||f||_{L^{\infty}} = \sup_{x,y \in \Omega} |f(x,y)|.$$

Theorem 3.1. $\mathcal{D}(M) \subset C(\Omega \times \Omega)$ is a topological manifold homeomorphic to M. In particular, $\mathcal{D}(N)$ is homeomorphic to N.

Proof: We first note that \mathcal{D} is 2-Lipschitz and hence continuous. Indeed, let $x,y\in M$ and $p,q\in\Omega$, then

Uses both
$$n \geq 2$$
 and $\operatorname{int}(\Omega) \neq \emptyset$

$$|D_x(p,q) - D_y(p,q)| = |\operatorname{dist}(p,x) - \operatorname{dist}(q,x) - \operatorname{dist}(p,y) + \operatorname{dist}(q,y)|$$

$$\leq |\operatorname{dist}(p,x) - \operatorname{dist}(p,y)| + |\operatorname{dist}(q,x) - \operatorname{dist}(q,y)|$$

$$\leq \operatorname{dist}(x,y) + \operatorname{dist}(x,y)$$

$$= 2\operatorname{dist}(x,y),$$

independent of $p, q \in \Omega$. Thus

$$||D_x - D_y||_{L^{\infty}} \le 2 \operatorname{dist}(x, y),$$

as desired.

We need show \mathcal{D} is injective.¹ To this end, let $x, y \in M$ and suppose $D_x = D_y$, but $x \neq y$. Let $q \in \operatorname{int}(\Omega)$ and $\ell_x = \operatorname{dist}(q, x)$, $\ell_y = \operatorname{dist}(q, y)$. Without loss of generality, assume $\ell_x \leq \ell_y$. Let $\eta \in S_q M$ be such that $\gamma_{q,\eta}([0,\ell_x])$ is a minimizing geodesic segment from q to x.

Let $0 < s < \ell_x$ be such that $\gamma_{q,\eta}([0,s]) \subset \operatorname{int}(\Omega)$ and let $p = \gamma_{q,\eta}(s)$. Then

$$(\operatorname{dist}(q, p) + \operatorname{dist}(p, y)) - \operatorname{dist}(q, y) = \operatorname{dist}(q, p) + D_y(p, q)$$

$$= \operatorname{dist}(q, p) + D_x(p, q)$$

$$= \operatorname{dist}(q, p) + \operatorname{dist}(p, x) - \operatorname{dist}(q, x)$$

$$= 0,$$

and hence p is on the minimizing geodesic from q to y.

Let α denote a minimizing geodesic segment from p to y with length ℓ_y-s . Then the union $\gamma_{q,\eta}([0,s])\cup\alpha$ is a distance minimizing curve from q to y and is thus a geodesic. Hence α is the continuation of $\gamma_{q,\eta}([0,s])$, and so $y=\gamma_{q,\eta}(\ell_y)$. Since $\gamma_{q,\eta}([0,\ell_x])$ and $\gamma_{q,\eta}([0,\ell_y])$ are distance minimizing geodesics from q to x, and from q to y, respectively, and $x\neq y$, we conclude that $\ell_x\neq\ell_y$ and hence that $\ell_x<\ell_y$.

Let $q' \in \operatorname{int}(\Omega)$ be such that $q' \notin \gamma_{q,\eta}(\mathbb{R})$ (which clearly exists as $n \geq 2$), and let $\ell'_x = \operatorname{dist}(q',x)$ and $\ell'_y = \operatorname{dist}(q',y)$. Then as before, there exists $\eta' \in S_{q'}M$ such that $\gamma_{q',\eta'}([0,\ell'_x])$ and $\gamma_{q',\eta'}([0,\ell'_y])$ are distance minimizing geodesics from q' to x and from q' to y, respectively, again since $x \neq y$, we have that $\ell'_x \neq \ell'_y$.

Let β denote the minimizing geodesic segment with length $|\ell_y - \ell_x|$ (accounting for either possibility of $\ell'_x < \ell'_y$ or $\ell'_y < \ell'_x$). Then the union $\gamma_{q,\eta}([0,\ell_x]) \cup \beta$ is a distance minimizing geodesic from q to y, and is thus a geodesic. In particular, this implies that

$$\gamma'_{q,\eta}(\ell_x) = \pm \gamma'_{q',\eta'}(\ell'_x),$$

and hence that $q' \in \gamma_{q,\eta}(\mathbb{R})$, a contradiction. Thus x = y.

Finally, since M is compact and $(C(\Omega \times \Omega), \|\cdot\|_{L^{\infty}})$ is Hausdorff, we conclude via a basic topological result (cf. the Closed Map Lemma in [12]) that $\mathcal{D}: M \to \mathcal{D}(M)$ is a homeomorphism, and hence that $\mathcal{D}: N \to \mathcal{D}(N) \subset \mathcal{D}(M)$ is a homeomorphism.

The idea follows from the standard representation: $r_1(p) = \operatorname{dist}(x_1, p)$ and $r_2(p) = \operatorname{dist}(x_2, p)$. If $r_1 = r_2$ on open set, then outside $\operatorname{Cut}(x_1) \cup \operatorname{Cut}(x_2)$ grad $(r_1)_p = \operatorname{grad}(r_2)_p$, and hence $x_1 = \gamma_{p,-\xi}(r_1(p)) = \gamma_{p,-\xi}(r_2(p)) = x_2$. However, the lengths aren't the same in the above proof, and must be circumvented.

²See Riemannian Geodesics notes, "Cut Points" section.

We note that if $X\subseteq M$ is a dense subset, then since $\mathcal D$ is a homeomorphism, that

$$\mathcal{D}(M) = \overline{\mathcal{D}(X)},$$

where the closure is taken with respect to the topology of $C(\Omega, \Omega)$. That is, the distance difference functions corresponding to x in a dense subset X determine the distance difference functions on the whole space M.

3.2 M and $\mathcal{D}(M)$ are Diffeomorphic

We first need a linear algebra lemma.

thm:linAlgLemma

Lemma 3.2. Let $(V, \langle \cdot, \cdot \rangle)$ be an n-dimensional, inner product space, with a fixed $v \in V \setminus \{0\}$. Then there exists a a basis $v_1, ..., v_n \in V$ such that $||v_j|| = 1$ for $1 \leq j \leq n$, and

$$v = a^1 v_1 + a^2 v_2,$$

with

$$c^i \neq \frac{\|v\|^2}{\langle v_i, v \rangle}, \qquad ci \neq 0,$$

for i = 1, 2.

Moreover, for a basis, there exists $\epsilon > 0$ such that the vectors

$$\left\{ \frac{v + tv_1}{\|v + tv_1\|} - \frac{v}{\|v\|}, ..., \frac{v + tv_n}{\|v + tv_n\|} - \frac{v}{\|v\|} \right\}$$

are linearly independent for any $t \in (0, \epsilon)$.

Proof: Let $v^{\perp} \in V$ be such that $\langle v, v^{\perp} \rangle = 0$, $||v^{\perp}|| = ||v||$ (in fact, nonzero is all that's needed). Then for i = 1, 2, let

$$v_i = \frac{v + (-1)^i v^{\perp}}{\sqrt{2} \|v\|},$$

and

$$c^i = \frac{\|v\|}{\sqrt{2}}.$$

Complete $\{v_1, v_2\}$ to a basis $\{v_1, ..., v_n\}$ and we've satisfied the first claim. Let $v = c^j v_j$, where c^1, c^2 are as above and $c^j = 0$ for $3 \le j \le n$. Then for each $1 \le j \le n$, let

$$f_j(t) = t ||v|| + c^j(||v|| - ||tv_j + v||).$$

Then $f_j(0) = 0$, and

$$\frac{df_j}{dt}(0) = ||v|| - c^j \frac{\langle v_j, v \rangle}{||v||},$$

which is nonzero by our choices of c^j . That is, there exists $\epsilon > 0$ such that $f_j(t) \neq 0$ for all $t \in (0, \epsilon)$ for each $1 \leq j \leq n$. Let $\{a_1, ..., a_n\} \subset \mathbb{R}$ be such that

$$0 = \sum_{j=1}^{n} a_j \left(\frac{v + tv_j}{\|v + tv_j\|} - \frac{v}{\|v\|} \right) = \sum_{j=1}^{n} a_j \left(\frac{t + c^j}{\|v + tv_j\|} - \frac{c^j}{\|v\|} \right) v_j.$$

Since $\{v_i\}$ forms a basis, we see that

$$a_j \left(\frac{t + c^j}{\|v + tv_j\|} - \frac{c^j}{\|v\|} \right) = 0,$$

for each $1 \leq j \leq n$. Since the expression in the parentheses vanishes exactly when $f_j(t) = 0$, we see that it's nonzero for our chosen $t \in (0, \epsilon)$, and hence

$$a_1 = \dots = a_n = 0,$$

as desired. \Box

Proposition 3.3. Fix $(x, \xi) \in SM$ and let $\gamma_{x,\xi} : [0, b] \to M$ be a distance minimizing geodesic segment. For any $a \in (0, b)$, let $z = \gamma_{x,\xi}(a)$ and $\zeta = \gamma'_{x,\xi}(a) \in S_zM$. Then there exists a basis $\{\eta_j \in T_zM : 1 \leq j \leq n\}$ of T_zM and $\epsilon > 0$ such that for all $s \in (0, \epsilon)$, there is a neighborhood $U \subseteq M$ of x such that the function $F : U \to \mathbb{R}^n$,

$$F(y) = (D_y(z, z_j) : 1 \le j \le n), \qquad z_j = \gamma_{z, n_j}(s),$$

is a smooth coordinate map.

Proof: Since $\gamma_{x,\xi}|_{[0,b]}$ is minimizing, $\gamma_{x,\xi}|_{[0,a]}$ has no cut points from x to z. Then there exists neighborhoods $U_x \subset M$ of x and $U_z \subset M$ of z such that $(p,q) \mapsto \operatorname{dist}(p,q)$ is smooth on U_x and U_z . Letting $v := a\xi$, we have that $d(\exp_x)_v$ is nonsingular. Choose vectors $v_1, v_2 \in T_xM$ as in Lemma 3.2 and complete to a basis $\{v_j\}$ of T_xM . Then again by Lemma 3.2, there exists $\delta > 0$ such that for any $t \in (0,\delta)$ that

$$\left\{ \frac{v + tv_1}{\|v + tv_1\|} - \frac{v}{\|v\|}, ..., \frac{v + tv_n}{\|v + tv_n\|} - \frac{v}{\|v\|} \right\}$$

forms a basis for T_xM .

Let $\eta_j = d(\exp_x)_v(v_j) \in T_zM$, and note that $\{\eta_j\}$ then forms a basis for T_zM by the nondegeneracy of $d(\exp_x)_v$. Let

$$c_j(t) = \exp_x^{-1}(\gamma_{z,\eta_j}(t))$$

denote a curve in T_xM by possibly restricting U_z so that $\exp_x^{-1}|_{U_z}$ is a diffeomorphism. Then

$$c_j(0) = \exp_x^{-1}(\gamma_{z,\eta_j}(0))$$
$$= \exp_x^{-1}(z)$$
$$= a\xi$$
$$= v,$$

and

$$c'_{j}(0) = \frac{d}{dt} \Big|_{t=0} (\exp_{x}^{-1}(\gamma_{z,\eta_{j}}(t)))$$

$$= d(\exp_{x}^{-1})_{z}(\eta_{j})$$

$$= (d(\exp_{x}^{-1})_{v})^{-1}(\eta_{j})$$

$$= v_{j}.$$

Hence for fixed $1 \leq j \leq n$, the two curves in T_xM given by

$$t \mapsto \left(\frac{c_j(t)}{|c_j(t)|_g} - \frac{v}{|v|_g}\right), \qquad t \mapsto \left(\frac{v + tv_j}{|v + tv_j|_g} - \frac{v}{|v|_g}\right),$$

satisfy the same initial point

$$0 \mapsto 0$$

and the same initial velocity

$$0 \mapsto \frac{v_j|v|_g^2 - vg(v, v_j)}{|v|_q^3}.$$

Thus by considering the determinants obtained by the coefficients of the above vectors in the basis $\{v_j\}$, we see there exists $\epsilon > 0$ such that any $t \in (0, \epsilon)$, the vectors

$$\left\{ \frac{c_1(t)}{|c_1(t)|_g} - \frac{v}{|v|_g}, ..., \frac{c_n(t)}{|c_n(t)|_g} - \frac{v}{|v|_g} \right\}$$

are linearly independent.

Letting

$$z_j = \gamma_{z,\eta_j}(s) = \exp_x(c_j(s))$$

as in the statement of the proof, we then see that

$$z_j = \gamma_{x,c_j(s)}(1) = \gamma_{x,\frac{c_j(s)}{|c_j(s)|_g}}(|c_j(s)|_g) = \gamma_{xz_j}(|c_j(s)|_g),$$

I don't see why this is true. Linear algebra fact?

and hence

$$\gamma'_{x,\frac{c_j(s)}{|c_j(s)|_g}}(0) = \frac{c_j(s)}{|c_j(s)|_g}.$$

Thus

$$\begin{aligned} \operatorname{grad} \left(D_{(\cdot)}(z, z_j) \right)_x &= \operatorname{grad} \left(\operatorname{dist}(z, \cdot) - \operatorname{dist}(z_j, \cdot) \right)_x \\ &= \gamma'_{zx} (\operatorname{dist}(z, x)) - \gamma'_{z_j x} (\operatorname{dist}(z_j, x)) \\ &= -\gamma'_{xz}(0) + \gamma'_{xz_j}(0) \\ &= -\frac{v}{|v|_g} + \frac{c_j(s)}{|c_j(s)|_g}. \end{aligned}$$

As this is true for each $j \in \{1, ..., n\}$, we conclude that F is regular at x, and hence by the Inverse Function Theorem, there exists an open neighborhood $U \subseteq M$ of x such that $F: U \to \mathbb{R}^n$ is a coordinate map. \square

These charts $\{(U, F)\}$ on M thus must form a compatible smooth structure on M.

Theorem 3.4. The map $\mathcal{D}: M \to \mathcal{D}(M)$ is a diffeomorphism.

Proof: Let $\{U_{\alpha}, F_{\alpha}\}$ denote the coordinate charts on M as defined above. Since \mathcal{D} is a homeomorphism, $\{\mathcal{D}(U_{\alpha})\}$ is an open cover of $\mathcal{D}(M)$ and consider the maps $F_{\alpha} \circ \mathcal{D}^{-1} : \mathcal{D}(U_{\alpha}) \to \mathbb{R}^{n}$. Then for any $U_{\alpha} \cap U_{\beta} \neq \emptyset$, we see that on this intersection that the maps between

$$(F_{\alpha} \circ \mathcal{D}^{-1}) \circ (F_{\beta} \circ \mathcal{D}^{-1})^{-1} = F_{\alpha} \circ F_{\beta}^{-1}$$

which are smooth, and thus determine a charts on $\mathcal{D}(M)$ turning $\mathcal{D}(M)$ into a smooth *n*-dimensional manifold.

Finally, fix some chart (U, F) on M and $(\mathcal{D}(U), F \circ \mathcal{D}^{-1})$ on $\mathcal{D}(M)$. Then on U, we have that

$$\mathcal{D} = (\mathcal{D} \circ F)^{-1} \circ F,$$

which is smooth, and hence D is smooth. Similarly, on $\mathcal{D}(U)$, we have that

$$\mathcal{D}^{-1} = F^{-1} \circ (F \circ \mathcal{D}^{-1}),$$

which is also smooth. Since \mathcal{D} is smooth homeomorphism with smooth inverse, we conclude that \mathcal{D} is a diffeomorphism.

For pregeodesics and geodesic equivalence and projective equivalence and such, cf. [4], [15], [2], [1], [16], [13], [6], [14], [3], [5].

4 Constructing a Connection from Pregeodesics

Let M be a connected smooth manifold of dimension $n \geq 2$. Suppose we are given a collection of curves $\{t \mapsto \gamma(t; \alpha) : \alpha \in A\}$ on M.

Goal: Does there exist a symmetric affine connection ∇ on M such that for each $\alpha \in A$, the curve $t \mapsto \gamma(t; \alpha)$ is a pregeodesic with respect to ∇ ?

We first note that if ∇ is a connection on M, then in coordinates $(U,(x^j))$, we have the Christoffel symbols $\Gamma_{ij}^k:U\to\mathbb{R}$ given by

$$\nabla_{\partial_i}\partial_j = \Gamma^k_{ij}\partial_k.$$

Thus if we know Γ_{ij}^k with respect to $(U,(x^j))$, we know the connection $\nabla|_U$. Hence this is a local problem, and so we may assume $U \subset \mathbb{R}^n$ is small with our usual coordinates (x^j) , and we've reduced the problem to the following.

New Goal: Does there exist a symmetric affine connection (now denoted) Γ_{ij}^k on U such that for each $\alpha \in A$, the curve $t \mapsto \gamma(t; \alpha)$ is a pregeodesic with respect to Γ_{ij}^k ? Note that now the collection of curves lives in U.

We first specify that our curves in the collection each come with a domain, i.e., γ is in our collection if $\gamma = \gamma(t; \alpha)$ and $\gamma : (a, b) \to M$ for some $a \le -\infty < b \le \infty$. We let $I(\gamma)$ or $I(\alpha)$ denote the domain of γ .

We need our collection of curves to be "large". That is, for any $x \in U$, define the set of vectors

$$\Omega_x := \{ \xi \in T_x U : \text{ there exists } \alpha \in A, t_0 \in I(\alpha) \text{ such that } \gamma'(t_0; \alpha) \propto \xi \}.$$

Our collection of curves will be large enough if each $x \in U$ the set Ω_x contains an open subset of T_xU . Set $\Omega = \bigcup_{x \in U} \Omega_x$. We call a pair $(t_0; \alpha)$, x_0 -admissible if $\gamma'(t_0; \alpha) \in \Omega_{x_0}$.

4.1 Pregeodesics

Let M be a smooth manifold with symmetric connection ∇ . Recall that a curve $\gamma: J \to M$ is a geodesic if γ satisfies the geodesic equation, $D_t \gamma' = 0$ which in local coordinates with Christoffel symbols Γ_{ij}^k is written

$$\frac{d^2\gamma^k}{dt^2} + \frac{d\gamma^i}{dt} \frac{d\gamma^j}{dt} \Gamma^k_{ij} = 0. \tag{4.1}$$

A curve $\hat{\gamma}:I\to M$ is said to be a pregeodesic if it satisfies the pregeodesic equation

$$D_t \hat{\gamma}' = f(t) \hat{\gamma}',$$

for some continuous $f: I \to \mathbb{R}$. In coordinates, this reads

$$\frac{d^2\hat{\gamma}^k}{dt^2} + \frac{d\hat{\gamma}^i}{dt}\frac{d\hat{\gamma}^j}{dt}\Gamma^k_{ij} = f(t)\frac{d\hat{\gamma}^k}{dt}.$$
 (4.2)

{eq:pregeoEqunGen}

We shall let s denote our affine parameters for geodesics and t our arbitrary parameters.

Proposition 4.1. A curve $\hat{\gamma}: I \to M$ is a pregeodesic if and only if there exists a diffeomorphism $\phi: J \to I$ such that the curve $\gamma:=\hat{\gamma}\circ\phi$ is a geodesic.

Cf. Lemma 6.1.66 in

Also in the same source Theorem 8.4.16.

Proof: Suppose there exists a diffeomorphism $\phi: J \to I$ with $t = \phi(s)$ such that $\gamma = \hat{\gamma} \circ \phi$ is a geodesic. Then

$$\frac{d\gamma^k}{ds} = \frac{d\hat{\gamma}^k}{dt} \frac{d\phi}{ds},$$

and

$$\frac{d^2\gamma^k}{ds^2}(s) = \frac{d^2\hat{\gamma}^k}{dt^2}(\phi(s))(\phi'(s))^2 + \frac{d\hat{\gamma}^k}{dt}(\phi(s))\phi''(s).$$

Moreover, for $\psi: I \to J$, $\psi = \phi^{-1}$, we have that

$$\psi'(t) = \frac{1}{\phi'(\psi(t))},$$

and

$$\phi''(\psi(t)) = -(\phi'(\psi(t)))^3 \psi''(t).$$

Now, since γ is a geodesic, we have that

$$0 = \frac{d^2 \gamma^k}{ds^2} + \frac{d\gamma^i}{ds} \frac{d\gamma^j}{ds} \Gamma^k_{ij}$$

$$= \frac{d^2 \hat{\gamma}^k}{dt^2} \bigg|_{\phi(s)} (\phi'(s))^2 + \frac{d\hat{\gamma}^k}{dt} \bigg|_{\phi(s)} \phi''(s) + \frac{d\hat{\gamma}^i}{dt} \bigg|_{\phi(s)} \frac{d\hat{\gamma}^j}{dt} \bigg|_{\phi(s)} (\phi'(s))^2 \Gamma^k_{ij},$$

or rather

$$0 = (\phi'(\psi(t)))^2 D_t \hat{\gamma}' + \phi''(\psi(t)) \hat{\gamma}',$$

and simplifying

$$D_t \hat{\gamma}' = -\frac{\phi''(\psi(t))}{(\phi'(\psi(t)))^2} \hat{\gamma}'$$
$$= \phi'(\psi(t))\psi''(t)\hat{\gamma}',$$

thus showing $\hat{\gamma}$ is a pregeodesic.

Conversely, suppose $D_t \hat{\gamma}' = f(t) \hat{\gamma}'$ for some continuous $f: I \to \mathbb{R}$. Then fix any $a \in I$ and define a function $g: I \to \mathbb{R}$ by

$$g(t) = \exp\left\{\int_{a}^{t} f(\lambda)d\lambda\right\}.$$

Then g'(t) = f(t)g(t) which is continuous, so $g \in C^1(I)$. Moreover, fix any $b \in I$ and define $\psi : I \to \mathbb{R}$ by

$$\psi(t) = \int_{b}^{t} g(\tau)d\tau.$$

Then $\psi \in C^2(I)$ by construction, and $\psi'(t) = g(t) \neq 0$ for all $t \in I$, and so $\psi : I \to J$ is a diffeomorphism for some $J \subseteq \mathbb{R}$. Let $\phi := \psi^{-1} : J \to I$ with $t = \phi(s)$ and let $\gamma = \hat{\gamma} \circ \phi$. Then from our previous calculation

$$D_{s}\gamma' = (\phi'(\psi(t)))^{2}D_{t}\hat{\gamma}' + \phi''(\psi(t))\hat{\gamma}'$$

$$= \hat{\gamma}'(f(t)\phi'(\psi(t))^{2} + \phi''(\psi(t)))$$

$$= \hat{\gamma}'(f(t)\phi'(\psi(t))^{2} - (\phi'(\psi(t)))^{3}\psi''(t))$$

$$= \hat{\gamma}'(f(t)\phi'(\psi(t))^{2} - (\phi'(\psi(t)))^{3}f(t)\psi'(t))$$

$$= f(t)\hat{\gamma}'((\phi'(\psi(t)))^{2} - (\phi'(\psi(t)))^{2})$$

$$= 0.$$

thus showing that γ is a geodesic.

From the above proof, we note that for an affine change of parameter $s \mapsto as + b$ geodesics go to geodesics, that is, given a geodesic $\gamma(s)$, the curve $\gamma(as + b)$ is also a geodesic. However, $\gamma(t)$ is a pregeodesic, then from the above computation, if $\tilde{\gamma}(t) = \gamma(at + b)$, we get that

$$D_t \tilde{\gamma'} = a^2 D_t \gamma = a^2 f(t) \gamma' = a f(t) \tilde{\gamma}'.$$

So $\tilde{\gamma}$ is still a pregeodesic, but satisfies a different pregeodesic equation with af instead of f.

We with impose further restrictions on f so that pregeodesics satisfy the same pregeodesic equation under affine changes in parameter. To this end, let $F:TM\to\mathbb{R}$ be a continuous function on the tangent bundle, that's homogeneous of degree 1, i.e.,

$$F(a\xi) = aF(\xi)$$

for any $a \in \mathbb{R}$, $\xi \in TU$, and consider the equation

$$D_t \gamma' = F(\gamma') \gamma'.$$
 (4.3) [eq:pregeoEqun]

If $\gamma: I \to \mathbb{R}$, then letting $f(t) = F(\gamma'(t))$, we see that $f: I \to \mathbb{R}$ is continuous and hence that γ is a pregeodesic. Moreover, by previous remarks, this equation is invariant under affine changes of parameter.

In particular, if $\xi \in T_xM$ is such that $\gamma'(t_0) = \xi$ for some pregeodesic γ which satisfies

$$D_t \gamma' = F(\gamma') \gamma',$$

for some F with the above properties. Then for any $a \in \mathbb{R} \setminus \{0\}$, the pregeodesic $\tilde{\gamma}(t) = \gamma(at)$ solves the same pregeodesic equation and satisfies

$$\tilde{\gamma}'(a^{-1}t_0) = a\gamma(t_0) = a\xi.$$

The relates our interlude of pregeodesics to our topic at hand. Namely, if $\gamma(t,\alpha)$ is in our collection of curves, we assume without loss of generality that all affine reparametrization of $\gamma(t;\alpha)$ are in the collection as well, since they solve the exact same pregeodesic equation, Equation (4.3).

Moreover, by this assumption on our collection of curves, if $\xi \in \Omega_x$, then $a\xi \in \Omega_x$ for all $a \neq 0$. Moreover, since we assume Ω_x contains an open subset of T_xU , we conclude that Ω_x contains a nonempty open double C_x .

Given a pregeodesic γ , can we always find such an F? Seems to be true, but I can't find a source for this. Check Levi-Civita's paper. Yes! If $\hat{\gamma}$ is a pregeodesic starting at $(x,v) \in TM$, and let $\gamma = \hat{\gamma} \circ \phi$ denote the geodesic starting (x,v) after reparametrization by ϕ . Then

$$f(\phi(s)) = -\frac{\phi''(s)}{(\phi'(s))^2},$$

and since $\phi(0) = 0$, define

$$F(v) = f(0).$$

4.2 Uniqueness of Connection up to Gauge Freedom

We first describe a gauge freedom on the problem. Suppose we have a symmetric affine connection Γ_{ij}^k on U, and let $\alpha \in \Omega^1(U)$ be any differential 1-form. Then define a new symmetric affine connection by

$$\overline{\Gamma}_{ij}^k = \Gamma_{ij}^k + \delta_i^k \alpha_j + \delta_j^k \alpha_i.$$

Suppose $\gamma: I \to U$ is a curve that satisfies the pregeodesic equation

$$\ddot{\gamma}^k + \dot{\gamma}^i \dot{\gamma}^j \Gamma^k_{ij} = f(\gamma') \dot{\gamma}^k,$$

for some prescribed continuous, homogeneous of degree 1 map $f:TU\to\mathbb{R}$. Then

$$f(\gamma')\dot{\gamma}^{k} = \ddot{\gamma}^{k} + \dot{\gamma}^{i}\dot{\gamma}^{j}\Gamma^{k}_{ij}$$

$$= \ddot{\gamma}^{k} + \dot{\gamma}^{i}\dot{\gamma}^{j}\overline{\Gamma}^{k}_{ij} - \dot{\gamma}^{i}\dot{\gamma}^{j}\delta^{k}_{i}\alpha_{j} - \dot{\gamma}^{i}\dot{\gamma}^{j}\delta^{k}_{j}\alpha_{i}$$

$$= \ddot{\gamma}^{k} + \dot{\gamma}^{i}\dot{\gamma}^{j}\overline{\Gamma}^{k}_{ij} - 2\alpha(\gamma')\dot{\gamma}^{k},$$

and so γ solves the pregeodesic equation with respect to $(\overline{\Gamma}, \overline{f})$, where

$$\overline{f} = f + 2\alpha$$
.

Thus any pregeodesic γ with respect to (Γ, f) is also a pregeodesic with respect to $(\overline{\Gamma}, \overline{f})$ for any 1-form α . This means our data cannot distinguish between connections up to gauge freedom.

We now show that such a gauge freedom is our only obstruction to uniqueness when such a connection exists. To this end, let change our thinking of the pregeodesic equation, and firstly, we shall only work at a fixed point $x_0 \in U$. Let $(t_0; \alpha)$ be an x_0 -admissible curve, and consider the system of equations

$$\ddot{\gamma}^k + \dot{\gamma}^i \dot{\gamma}^j \Gamma_{ij}^k(x_0) = f(\gamma') \dot{\gamma}^k. \tag{*}$$

As γ is part of our data, we wish to find Γ_{ij}^k and $f|_{\Omega_{x_0}}$ for which (*) is satisfied. We note that if γ solves (*) then infinitely many do as well, by the homogeneity of f and using infinitely many affine changes of parameter of γ .

Proposition 4.2. For all $x_0 \in U$, suppose (Γ, f) and $(\overline{\Gamma}, f)$ solve (*) for all x_0 -admissible $(t_0; \alpha)$'s. Then there exists $\alpha \in \Omega^1(U)$ such that

$$\overline{\Gamma}_{ij}^k = \Gamma_{ij}^k + \delta_i^k \alpha_j + \delta_j^k \alpha_i$$

and

$$\overline{f} = f + 2\alpha.$$

Proof: Fix $x_0 \in U$, and since (Γ, f) and $(\overline{\Gamma}, \overline{f})$ both solve (*), we subtract the expressions to obtain

$$\hat{\Gamma}_{ij}^k(x_0)\dot{\gamma}^i\dot{\gamma}^j=\hat{f}(\gamma')\dot{\gamma}^k$$

for all x_0 -admissible $(t_0; \alpha)$'s, where

$$\hat{\Gamma}_{ij}^k = \Gamma_{ij}^k - \overline{\Gamma}_{ij}^k, \qquad \hat{f} = f - \overline{f}.$$

In particular, we have that

$$\hat{\Gamma}^k_{ij} v^i v^j = \hat{f}(v) v^k$$

for all $v \in \Omega_{x_0}$.

For $k \in \{1, ..., n\}$, let $\sigma^k : T_{x_0}U \times T_{x_0}U \to \mathbb{R}$ denote the symmetric, bilinear form defined by

$$\sigma^k(u,v) = \hat{\Gamma}^k_{ij} u^i v^j.$$

In particular, σ^k satisfies the parallelogram law, i.e.,

$$0 = \sigma^{k}(u + v, u + v) + \sigma^{k}(u - v, u - v) - 2\sigma^{k}(u, u) - 2\sigma^{k}(v, v).$$

Hence, for $u, v \in \Omega_{x_0}$ with $u + v, u - v \in \Omega_{x_0}$ as well (which clearly exists by continuity and that Ω_{x_0} contains an open subset of $T_{x_0}U$), we have that

$$\begin{split} 0 &= \hat{f}(u+v)(u^k+v^k) + \hat{f}(u-v)(u^k-v^k) - 2\hat{f}(u)u^k - 2\hat{f}(v)v^k \\ &= \left(\hat{f}(u+v) + \hat{f}(u-v) - 2\hat{f}(u)\right)u^k + \left(\hat{f}(u+v) - \hat{f}(u-v) - 2\hat{f}(v)\right)v^k, \end{split}$$

for all k = 1, ..., n, and in particular, as a vectorial equation

$$0 = (\hat{f}(u+v) + \hat{f}(u-v) - 2\hat{f}(u))u + (\hat{f}(u+v) - \hat{f}(u-v) - 2\hat{f}(v))v.$$

Since Ω_{x_0} contains a nonempty open subset of $T_{x_0}U$, we may choose $u, v \in \Omega_{x_0}$ which are linearly independent. Hence we get the two equations

$$0 = \hat{f}(u+v) + \hat{f}(u-v) - 2\hat{f}(u),$$

$$0 = \hat{f}(u+v) - \hat{f}(u-v) - 2\hat{f}(v),$$

which then yields

$$\hat{f}(u+v) = \hat{f}(u) + \hat{f}(v).$$

Let $V \subset \Omega_{x_0}$ denote this open subset for which on, the above calculations are performed. Then since \hat{f} is homogeneous of degree 1, we conclude that $\hat{f}\Big|_V$ is linear, and hence there exists $\alpha \in T_{x_0}^*U$ such that $\hat{f}\Big|_V = 2 \alpha|_V$. Since V is open, by linearly, we conclude that $\hat{f} = 2\alpha$ on $T_{x_0}U$, and hence that

$$f = \overline{f} + 2\alpha.$$

Now, define a new connection

$$\tilde{\Gamma}_{ij}^k = \overline{\Gamma}_{ij}^k + \delta_i^k \alpha_j + \delta_j^k \alpha_i.$$

Then for all x_0 -admissible $(t_0; \alpha)$'s, we have that

$$\ddot{\gamma}^{k} + \dot{\gamma}^{i}\dot{\gamma}^{j}\tilde{\Gamma}_{ij}^{k} = \ddot{\gamma}^{k} + \dot{\gamma}^{i}\dot{\gamma}^{j}\overline{\Gamma}_{ij}^{k} + 2\alpha(\gamma')\dot{\gamma}^{k}$$

$$= \ddot{\gamma}^{k} + \dot{\gamma}^{i}\dot{\gamma}^{j}\overline{\Gamma}_{ij}^{k} + \hat{f}(\gamma')\dot{\gamma}^{k}$$

$$= \ddot{\gamma}^{k} + \dot{\gamma}^{i}\dot{\gamma}^{j}\overline{\Gamma}_{ij}^{k} + f(\gamma')\dot{\gamma}^{k} - \overline{f}(\gamma')\dot{\gamma}^{k}$$

$$= f(\gamma')\dot{\gamma}^{k}$$

$$= \ddot{\gamma}^{k} + \dot{\gamma}^{i}\dot{\gamma}^{j}\Gamma_{ij}^{k},$$

that is,

$$\tilde{\Gamma}^k_{ij} v^i v^j = \Gamma^k_{ij} v^i v^j$$

for all $v \in C_{x_0}$. Since this set is open, we have that

$$\tilde{\Gamma}^k_{ab} = \partial_{v^a} \partial_{v^b} (\tilde{\Gamma}^k_{ij} v^i v^j) = \partial_{v^a} \partial_{v^b} (\Gamma^k_{ij} v^i v^j) = \Gamma^k_{ab},$$

and hence that

$$\tilde{\Gamma}_{ij}^k = \Gamma_{ij}^k.$$

This is missing a lot of details, and potentially needs more work. I think I'm missing why Teemu needed to add some of the details he did.

References

- [1] Alexey V. Bolsinov and Bozidar Jovanovic. Integrable geodesic flows on riemannian manifolds: Construction and obstructions. 2003.
- [2] Alexey V. Bolsinov and Vladimir S Matveev. Geometrical interpretation of benenti systems. *Journal of Geometry and Physics*, 44(4):489–506, 2003.
- [3] Robert Bryant, Gianni Manno, and Vladimir S Matveev. A solution of a problem of sophus lie: normal forms of two-dimensional metrics admitting two projective vector fields. *Mathematische Annalen*, 340(2):437–463, 2008.
- [4] Anna Maria Candela and Miguel Sánchez. Geodesics in semiriemannian manifolds: geometric properties and variational tools. Recent developments in pseudo-Riemannian geometry, 4:359, 2008.
- [5] Michael G Eastwood. Notes on projective differential geometry. In Symmetries and overdetermined systems of partial differential equations, pages 41–60. Springer, 2008.
- [6] Michael G Eastwood and Vladimir S Matveev. Metric connections in projective differential geometry, symmetries and overdetermined systems of partial differential equations (minneapolis, mn, 2006), 339–351. IMA Vol. Math. Appl, 144, 2007.
- [7] Sergei Ivanov. Distance difference representations of riemannian manifolds. arXiv preprint arXiv:1806.05257, 2018.
- [8] Alexander Kachalov, Yaroslav Kurylev, and Matti Lassas. *Inverse boundary spectral problems*. CRC Press, 2001.
- [9] Yaroslav Kurylev, Matti Lassas, and Gunther Uhlmann. Inverse problems in spacetime ii: Reconstruction of a lorentzian manifold from light observation sets. *Preprint*, 2014.
- [10] Matti Lassas and Teemu Saksala. Determination of a riemannian manifold from the distance difference functions. arXiv preprint arXiv:1510.06157, 2015.
- [11] Matti Lassas and Teemu Saksala. Distance difference representation of subsets of complete riemannian manifolds (spectral and scattering theory and related topics). 2017.
- [12] John Lee. Introduction to topological manifolds, volume 202. Springer Science & Business Media, 2010.

- [13] Vladimir S Matveev. Geodesically equivalent metrics in general relativity. *Journal of Geometry and Physics*, 62(3), 2012.
- [14] Josef Mikeš. Geodesic mappings of affine-connected and riemannian spaces. *Journal of Mathematical Sciences*, 78(3):311–333, 1996.
- [15] Peter J Topalov. Tensor invariants of natural mechanical systems on compact surfaces, and the corresponding integrals. *Shornik: Mathematics*, 188(2):307–326, 1997.
- [16] Peter J Topalov. Geodesic compatibility and integrability of geodesic flows. *Journal of Mathematical Physics*, 44(2):913–929, 2003.