Chapter 11.8 Informative Prior

Jim Albert and Monika Hu

Chapter 11 Simple Linear Regression

Priors

- One challenge in a Bayesian analysis is the construction of a prior that reflects beliefs about the parameters
- ▶ Thinking about prior beliefs can be difficult since the intercept β_0 does not have a meaningful interpretation
- One way to help: standardization

Standardization

 Standardization is the process of putting different variables on similar scales

$$y_i^* = \frac{y_i - \bar{y}}{s_y}, \ x_i^* = \frac{x_i - \bar{x}}{s_x}$$
 (1)

```
PriceAreaData$price_standardized <-
    scale(PriceAreaData$price)
PriceAreaData$size_standardized <-
    scale(PriceAreaData$newsize)</pre>
```


- ► A standardized value represents the number of standard deviations that the value falls above or below the mean
- ► The ranges of the standardized scores for the x* and y* are similar: both sets of standardized scores fall between -2 and 2
- ► The association pattern of the two graphs agree which indicates that the standardization procedure has no impact on the relationship of house size with the sale price

▶ Standardization of the variables provides more meaningful interpretations of the regression parameters β_0 and β_1

$$Y_i^* \mid \mu_i^*, \sigma \stackrel{ind}{\sim} \operatorname{Normal}(\mu_i^*, \sigma),$$
 (2)
 $\mu_i^* = \beta_0 + \beta_1 x_i^*$ (3)

- ► The intercept parameter β_0 now is the expected standardized sale price for a house where $x_i^* = 0$ corresponding to a house of average size
- The slope β_1 gives the change in the expected standardized sale price μ_i^* when the standardized size x_i^* increases by 1 unit, or when the size variable increases by one standard deviation

- ▶ In addition, when the variables are standardized, the slope β_1 can be shown equal to the correlation between x_i and y_i
 - ▶ a positive value β_1 indicates a positive linear relationship between the two variables
 - ightharpoonup the absolute value of eta_1 indicates the strength of the relationship

Prior distributions

▶ As before, assume that the three parameters β_0 , β_1 and σ are independent

$$\pi(\beta_0, \beta_1, \sigma) = \pi(\beta_0)\pi(\beta_1)\pi(\sigma)$$

- ► The task of assigning a joint prior simplifies to the task of assigning priors separately to each of the three parameters
- We will describe the process one by one

Prior on the intercept β_0

- After standardization, the intercept β_0 represents the expected standardized sale price given a house of average size (i.e. $x_i^* = 0$)
- ▶ If we believe a house of average size will also have an average price, then a reasonable guess of β_0 is zero
- ▶ We can give a normal prior for β_0 with mean $\mu_0 = 0$ and standard deviation s_0 :

$$\beta_0 \sim \text{Normal}(0, s_0)$$

▶ The standard deviation s_0 in the normal prior reflects how confident we believe in the guess of $\beta_0 = 0$

Prior on the slope β_1

- ▶ After standardization, the slope β_1 represents the correlation between the house size and the sale price
- ▶ We represent our belief about the location of β_1 by means of a normal prior.

$$\beta_1 \sim \text{Normal}(\mu_1, s_1)$$

- \blacktriangleright μ_1 represents our guess of the correlation
- \triangleright s_1 represents the sureness of this guess

Prior on σ

 \blacktriangleright As before, assign a weakly informative prior for the sampling error standard deviation σ

$$1/\sigma^2 \sim \text{Gamma}(1,1)$$

Summary of priors

$$\pi(\beta_0, \beta_1, \sigma) = \pi(\beta_0)\pi(\beta_1)\pi(\sigma)$$
 $\beta_0 \sim \text{Normal}(0, 1)$
 $\beta_1 \sim \text{Normal}(0.7, 0.15)$
 $1/\sigma^2 \sim \text{Gamma}(1, 1)$

Posterior analysis

- Use JAGS
- Make sure to work with standardized data

```
PriceAreaData$price_standardized <-
    scale(PriceAreaData$price)
PriceAreaData$size_standardized <-
    scale(PriceAreaData$newsize)</pre>
```

JAGS step 1: describe the model by a script

► Same modelString as before

```
modelString <-"
model {
## sampling
for (i in 1:N){
v[i] ~ dnorm(beta0 + beta1*x[i], invsigma2)
## priors
beta0 ~ dnorm(mu0, g0)
beta1 ~ dnorm(mu1, g1)
invsigma2 ~ dgamma(a, b)
sigma <- sqrt(pow(invsigma2, -1))</pre>
}"
```

JAGS step 2: define the data and prior parameters

JAGS step 3: generate samples from the posterior distribution

Comparing posteriors for two priors

► To understand the influence of the informative prior, we can contrast this posterior distribution with a posterior using a weakly informative prior

Comparing posteriors for two priors cont'd

Comparing posteriors for two priors cont'd

- ► The "informative prior" posterior has less spread than the "weakly informative prior" posterior
- ► The "informative prior" posterior shifts the "weakly informative prior" posterior towards the prior belief that the slope is close to the value 0.7

Comparing posteriors for two priors cont'd

```
print(posterior2, digits = 3)
     Lower95 Median Upper95
                              Mean
                                    SD Mode
                                             M(
beta0 -0.267 0.000358 0.276 0.000372 0.138 -- 0.00
beta1 0.551 0.751 0.959 0.749 0.104 -- 0.00
sigma 0.498 0.67 0.878 0.682 0.102 -- 0.00
print(posterior3, digits = 3)
     Lower95
             Median Upper95
                              Mean
                                  SD Mode
                                            Mo
beta0 -0.273 0.000362 0.281 0.000421 0.141 -- 0.00
beta1 0.501 0.794 1.08 0.792 0.146 -- 0.00
sigma 0.502 0.677 0.894 0.688 0.105 -- 0.00
```