Zadania do deklaracji (piątek)

Zadanie 1 Obliczyć $\lim_{n \to +\infty} \int_0^\infty \frac{1}{1+x^n} d\lambda_1(x)$

Zadanie 2 Obliczyć granicę $\lim_{n\to+\infty}\int_0^\infty \frac{(\frac{1}{2}+x)^n}{(\frac{1}{2}+x)^n+1}e^{-2x}d\lambda_1(x)$

Zadanie 3 Oblicz $\int_W d\lambda_3(x)$ gdzie $W = \{x \in \mathbb{R}^3 : x_1, x_2, x_3 \ge 0, x_1 + x_2 + x_3 \le 1\}$ (objętość czworościanu).

Zadanie 4 Oblicz całkę $\int_R d\lambda_2(x)$, gdzie R jest równoległobokiem w \mathbb{R}^2 o wierzchołkach (0,0),(2,1),(1,1),(3,2) (pole równoległoboku).

Zadanie 5 Czy istnieje niemierzalny zbiór $A \subset \mathbb{R}$ taki że $B = \{x \in A : x \text{ jest liczbą niewymierną}\}$ jest mierzalny?

Zadanie 6 Udowodnić, że jeśli funkcja $f:[0,\infty)\to\mathbb{R}$ jest różniczkowalna, to jej pochodna f' jest mierzalna.

Zadanie 7 Obliczyć następujące całki:

- $\int_K x_1 x_2 d\lambda_3(x)$, gdzie $K = \{x \in \mathbb{R}^3 : x_1, x_2, x_3 > 0, ||x|| < 1\}$
- $\int_{\mathbb{R}} x_1 d\lambda_2(x)$, gdzie R jest równoległobokiem w \mathbb{R}^2 o wierzchołkach (0,0),(2,1),(1,1),(3,2)

1

Zadanie 8 Wyznaczyć następujące granice

•
$$\lim_{n \to \infty} \int_W \sqrt[n]{x_1 x_2} \ d\lambda_2(x)$$
, gdzie $W = \{x \in \mathbb{R}^3 : ||x|| \le 1, 0 \le x_1 < x_2\}$

•
$$\lim_{n\to\infty} \int_A \left(1 + \frac{x+y}{n}\right)^n d\lambda_2(x)$$
, gdzie $A = \{(x,y) : x > 0, x+y > 0\}$