On the link pattern distribution of quarter-turn-symmetric FPL configurations

Philippe Duchon

LaBRI, Université Bordeaux 1

FPSAC 2008 - June 23, 2008

Outline

- Fully-packed loops and link patterns
- 2 New conjectures for link patterns of QTFPLs
- Proofs for rarest link patterns
- 4 Conclusion

FPL vs ASM

FPL vs ASM

Alternating-Sign Matrix:

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 -1 1 0 0 0 1 -1 0 1 0 -1 1 0 0 0 1 0 -1 1 0 0 0 0 0 0 1 0 -1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

(easy bijection: corner = 0, straight line = ± 1)

Link patterns

FPL F

Link pattern C(F)

(Catalan)

Each FPL is a collection of "open" and "closed" loops; the open loops determine a perfect matching of the 2n border points, with non-crossing condition: $i < j < \sigma(i) \implies j < \sigma(j) < \sigma(i)$

Link patterns

The link pattern C(F) of an FPL F is this perfect matching, coded as a Dyck word (a for the first endpoint of each edge, b for the second endpoint)

$Possible\ rotational\ symmetries$

Possible rotational symmetries

Possible rotational symmetries

Possible rotational symmetries

(Quarter-turn invariant ASMs of odd size exist, but do not yield quarter-turn invariant FPLs because the border condition are not quarter-turn invariant for odd size)

Symmetric link patterns

Symmetric link patterns

Symmetric link patterns

More symmetric link patterns

More symmetric link patterns

More symmetric link patterns

Link patterns for QTFPLs of size 4n are coded with the same words as those for HTFPLs of size 2n

Theorem (Zeilberger, Kuperberg)

$$\begin{array}{rcl} A(n) & = & (-3)^{\binom{n}{2}} \prod_{1 \leq i,j \leq n} \frac{3(j-i)+1}{j-i+n} \\ \\ A_{HT}(2n) & = & A(n) \times (-3)^{\binom{n}{2}} \prod_{1 \leq i,j \leq n} \frac{3(j-i)+2}{j-i+n} \\ \\ A_{OT}(4n) & = & A_{HT}(2n)A(n)^2 \end{array}$$

Theorem (Zeilberger, Kuperberg)

$$\begin{array}{rcl} A(n) & = & (-3)^{\binom{n}{2}} \prod_{1 \leq i,j \leq n} \frac{3(j-i)+1}{j-i+n} \\ \\ A_{HT}(2n) & = & A(n) \times (-3)^{\binom{n}{2}} \prod_{1 \leq i,j \leq n} \frac{3(j-i)+2}{j-i+n} \\ \\ A_{QT}(4n) & = & A_{HT}(2n)A(n)^2 \end{array}$$

1, 2, 7, 42, 429, 7436, 218348, 10850216...

Theorem (Zeilberger, Kuperberg)

$$\begin{array}{rcl} A(n) & = & (-3)^{\binom{n}{2}} \prod_{1 \leq i,j \leq n} \frac{3(j-i)+1}{j-i+n} \\ \\ A_{HT}(2n) & = & A(n) \times (-3)^{\binom{n}{2}} \prod_{1 \leq i,j \leq n} \frac{3(j-i)+2}{j-i+n} \\ \\ A_{QT}(4n) & = & A_{HT}(2n)A(n)^2 \end{array}$$

1, 2, 7, 42, 429, 7436, 218348, 10850216...

1, 2, 10, 140, 5544, 622908...

Theorem (Zeilberger, Kuperberg)

$$\begin{array}{rcl} A(n) & = & (-3)^{\binom{n}{2}} \prod_{1 \leq i,j \leq n} \frac{3(j-i)+1}{j-i+n} \\ \\ A_{HT}(2n) & = & A(n) \times (-3)^{\binom{n}{2}} \prod_{1 \leq i,j \leq n} \frac{3(j-i)+2}{j-i+n} \\ \\ A_{QT}(4n) & = & A_{HT}(2n)A(n)^2 \end{array}$$

- 1, 2, 7, 42, 429, 7436, 218348, 10850216...
- 1, 2, 10, 140, 5544, 622908...
- 1, 2, 40, 6860, 9779616...

Known conjectures on link pattern distribution

Define 2n operators e_i on link patterns of size n:

Known conjectures on link pattern distribution

Define 2n operators e_i on link patterns of size n:

Conjectures (Razumov-Stroganov, de Gier)

$$\begin{split} \sum_{(w',i):e_i(w')=w} & A(n,w') &= 2nA(n,w) \\ & \sum_{(w',i):e_i\circ e_{i+n}(w')=w} & A_{HT}(n,w') &= nA_{HT}(n,w) \end{split}$$

Known conjectures on link pattern distribution

Define 2n operators e_i on link patterns of size n:

Conjectures (Razumov-Stroganov, de Gier)

Picking a random link pattern with probability proportional to its number of FPLs (respectively, number of HTFPLs), or picking such a random link pattern and then applying to it one of the e_i operators (respectively, symmetrized operators $e_i \circ e_{i+n})$ at random, are equivalent.

Outline

- 1 Fully-packed loops and link patterns
- 2 New conjectures for link patterns of QTFPLs
- 3 Proofs for rarest link patterns
- 4 Conclusion

Link patterns for QTFPLs of size 4n

Conjecture (D.)

With link patterns written words of length 8n,

$$\sum_{(w',i): e_i \circ e_{i+2n} \circ e_{i+4n} \circ e_{i+6n}(w') = w} A_{QT}(4n,w') = 2nA_{QT}(4n,w)$$

Link patterns for QTFPLs of size 4n

Conjecture (D.)

With link patterns written words of length 8n,

$$\sum_{(w',i): e_i \circ e_{i+2n} \circ e_{i+4n} \circ e_{i+6n}(w') = w} A_{QT}(4n, w') = 2nA_{QT}(4n, w)$$

Equivalently, up to de Gier's conjecture for even size (and with bilateral Dyck words for patterns),

Conjecture

$$A_{QT}(4n, w) = A_{HT}(2n, w)A(n)^2$$

Link patterns for QTFPLs of size 4n

Conjecture (D.)

With link patterns written words of length 8n,

$$\sum_{(w',i): e_i \circ e_{i+2n} \circ e_{i+4n} \circ e_{i+6n}(w') = w} A_{QT}(4n, w') = 2nA_{QT}(4n, w)$$

Equivalently, up to de Gier's conjecture for even size (and with bilateral Dyck words for patterns),

Conjecture

$$A_{QT}(4n, w) = A_{HT}(2n, w)A(n)^2$$

Checked up to n = 5 (A_{QT}(20) = 114,640,611,228)

Quasi-QTFPLs of size 4n + 2

The "only thing" making it impossible to have quarter-turn symmetric FPLs of size 4n + 2 is the center square; define a quasi-quarter-turn symmetric FPL (qQTFPL) of size 4n + 2 as one having two horizontal edges around the center square, and otherwise QT-symmetric.

Quasi-QTFPLs of size 4n + 2

The "only thing" making it impossible to have quarter-turn symmetric FPLs of size 4n + 2 is the center square; define a quasi-quarter-turn symmetric FPL (qQTFPL) of size 4n + 2 as one having two horizontal edges around the center square, and otherwise QT-symmetric.

Conjecture (D. 2007)

The number of qQTFPLs of size 4n + 2 is

$$A_{QT}(4n + 2) = A_{HT}(2n + 1)A(n)A(n + 1)$$

Quasi-QTFPLs of size 4n + 2

The "only thing" making it impossible to have quarter-turn symmetric FPLs of size 4n + 2 is the center square; define a quasi-quarter-turn symmetric FPL (qQTFPL) of size 4n + 2 as one having two horizontal edges around the center square, and otherwise QT-symmetric.

Theorem (Aval, D. 2008)

The number of qQTFPLs of size 4n + 2 is

$$A_{QT}(4n + 2) = A_{HT}(2n + 1)A(n)A(n + 1)$$

qQTFPLs have link patterns, too...

The link patterns of qQTFPLs can be coded with the same words as those of odd size HTFPLs (any loop touching the center square now coded by c).

qQTFPLs have link patterns, too...

The link patterns of qQTFPLs can be coded with the same words as those of odd size HTFPLs (any loop touching the center square now coded by c).

Conjecture (D.)

$$A_{QT}(4n + 2, w) = A_{HT}(2n + 1, w)A(n)A(n + 1).$$

Outline

- Fully-packed loops and link patterns
- 2 New conjectures for link patterns of QTFPLs
- 3 Proofs for rarest link patterns
- 4 Conclusion

The rarest link patterns

Note: Wieland's construction proves that the number of (QT,HT-)FPLs with a given pattern is invariant if the pattern is rotated around the circle; for HTFPLs and QTFPLs, this means A(n, w) only depends on w as a cyclic word.

The rarest link pattern for HTFPLs is $w = a^n b^n$ (even size) or $w = a^n b^n c$ (odd size), and one has

$$A_{\mathrm{HT}}(2n,a^{n}b^{n})=A_{\mathrm{HT}}(2n+1,a^{n}b^{n}c)=1.$$

Rarest link patterns for (q)QTFPLs

Theorem

The numbers of (quasi-)QTFPLs with the rarest link patterns are

$$A_{QT}(4n, a^nb^n) = A(n)^2$$

 $A_{QT}(4n + 2, a^nb^nc) = A(n)A(n + 1)$

Proof uses the "fixed edges" technique (de Gier; Caselli et al.) and Ciucu's Factorization Theorem.

Fixed edges

Key observation

Some edges appear in all FPL with a given link pattern.

Fixed edges

Key observation

Some edges appear in all FPL with a given link pattern.

Fixed edges in $\mathcal{A}_{QT}(4n, b^n a^n)$ and $\mathcal{A}_{QT}(4n + 2; b^n ca^n)$

Non fixed edges

The remaining edges must form a (rotationally symmetric) perfect matching of some graph

Size 4n

For QTFPLs of size 4n, the quarter-turn invariant matchings are in easy bijection with cyclically symmetric, self-complementary plane partitions of size 2n (cyclically symmetric lozenge tilings of a hexagon), known to be counted by $A(n)^2$

Size 4n + 2

For size 4n + 2, the quarter-turn invariant matchings are in easy bijection with "quasi" cyclically symmetric, self-complementary plane partitions of size 2n + 1 (cyclically symmetric lozenge tilings of a hexagon of odd side, with a hexagonal hole in the center).

Size 4n + 2

For size 4n + 2, the quarter-turn invariant matchings are in easy bijection with "quasi" cyclically symmetric, self-complementary plane partitions of size 2n + 1 (cyclically symmetric lozenge tilings of a hexagon of odd side, with a hexagonal hole in the center).

Ciucu's Factorization Theorem lets one express the number of these perfect matchings as a determinant, which Krattenthaler already evaluated to A(n)A(n+1).

Outline

- Fully-packed loops and link patterns
- 2 New conjectures for link patterns of QTFPLs
- 3 Proofs for rarest link patterns
- 4 Conclusion

Unfinished Business

• New intriguing "Razumov-Stroganov-like" conjectures (as if we needed any!)

Unfinished Business

- New intriguing "Razumov-Stroganov-like" conjectures (as if we needed any!)
- qQTFPLs really seem to be the right substitute to nonexistant QTFPLs of size 4n + 2 (also have a definition in terms of the distributive lattice of ASMs)

Unfinished Business

- New intriguing "Razumov-Stroganov-like" conjectures (as if we needed any!)
- qQTFPLs really seem to be the right substitute to nonexistant QTFPLs of size 4n + 2 (also have a definition in terms of the distributive lattice of ASMs)
- All this calls for bijective proofs; possibly, a unified proof of the Razumov-Stroganov, de Gier, and QTFPL conjectures (ideas welcome!)