Vereinbarte Konstanten:

Normaleingriffs- winkelwinkel:	Schrägungswinkel:	Überschlägiger Anwendung Belastungswert:	gsfaktor:
$lpha_n$:= 20 °	β := 20 °	$B_{zul}\!\coloneqq\!4rac{N}{mm^2}$ $K_A\!\coloneqq\!2.0$	
Druckkraft vom Boden:	Schaltdrehzahl:	Dauerfestigkeitsschubspannung:	
$F_B = 1500 N$	$n_s = 1400 \ rpm$	$\tau_{Tzul} = 50 \frac{N}{mm^2} $ (42CrMo4)	

Antriebsdrehzahl:

$$n_{Antrieb} \coloneqq 2000 \ \frac{1}{min}$$

Übersetzungsverhältnis:

Antriebsmoment:

$$T_{an} = 50 \ N \cdot m$$

Theoretisch benötigte Übersetzungen:

$$i_1 := 3.40$$
 $i_2 := 2.95$

orientiert an TB 21-11

$$i_{Gesamt} \coloneqq i_1 \cdot i_2$$
 $i_{Gesamt} = 10.03$

Errechnete Übersetzungen (siehe Zahnraddaten):

$$i'_1 = 3.381$$

$$i'_2 = 2.964$$

$$i'_{Gesamt} \coloneqq {i'}_1 \cdot {i'}_2$$

$$i'_{Gesamt} = 10.021$$

Moment der Vorgelegewelle:

$$T_{Vorgelege}\coloneqq T_{an}\cdot i'_{1}$$

$$T_{Vorgelege} = 169.05 \ N \cdot m$$

Abtriebsmoment:

$$T_{ab} := T_{an} \cdot i'_{Gesamt}$$
 $T_{ab} = 501.064 \ N \cdot m$

10.08.2022 Seite 1 von 27

T 05 37			
$F_F = 25 N$	$n_s = 1400 \frac{1}{min}$	$\omega_s = 2 \ \pi \cdot n_s = 146.6$	08
$\mu_0 := 0.9$			
$\Delta l \coloneqq 2.5 \ mm$			
$C\!\coloneqq\!rac{F_F}{\Delta l}$		$C = 10 \frac{N}{mm}$	
F_{Flieh} :=	$m_{FK}\!\cdot\!r_{FK}\!\cdot\!\omega_s^{\;2}$	$F_{Flieh} = 0.537 \ kN$	
$F_N \coloneqq ig(F)$	$_{Flieh}$ $ 2 \cdot F_F angle$	$F_N = 0.487 \ kN$	
ers: $F_R \coloneqq \mu_0$	$\cdot F_N$	$F_R = 438.611 \ N$	
T_R := N_F	$_{K}oldsymbol{\cdot}F_{R}oldsymbol{\cdot}rac{d_{R}}{2}$	$T_R = 52.633 \ N \cdot m$	
	$\Delta l \coloneqq 2.5 \; mm$ $C \coloneqq rac{F_F}{\Delta l}$ $F_{Flieh} \coloneqq F_N = F_$	$\mu_0 \coloneqq 0.9$ $\Delta l \coloneqq 2.5 \; mm$ $C \coloneqq \frac{F_F}{\Delta l}$ $F_{Flieh} \coloneqq m_{FK} \cdot r_{FK} \cdot \omega_s^2$ $F_N \coloneqq (F_{Flieh} - 2 \cdot F_F)$	$\mu_0\coloneqq 0.9$ $\Delta l\coloneqq 2.5~mm$ $C=10~rac{N}{mm}$ $F_{Flieh}\coloneqq m_{FK}\cdot r_{FK}\cdot \omega_s^{\ 2}$ $F_{Flieh}=0.537~kN$ $F_N\coloneqq (F_{Flieh}-2\cdot F_F)$ $F_N=0.487~kN$ Ders: $F_R\coloneqq \mu_0\cdot F_N$

10.08.2022 Seite 2 von 27

Antriebswelle:	Vorgelegewelle:	Abtriebswelle:
$d_{min1} \coloneqq \sqrt[3]{rac{\left(16 m{\cdot} T_{an} m{\cdot} K_A ight)}{\pi m{\cdot} au_{Tzul}}}$	$d_{min2} \coloneqq \sqrt[3]{rac{\left(16 \cdot T_{Vorgelege} \cdot K\right)}{\pi \cdot au_{Tzul}}}$	$\frac{1}{A}$ $\frac{1}$
$\sqrt{\pi \cdot au_{Tzul}}$	$\pi \cdot au_{Tzul}$	$\pi \cdot au_{Tzul}$
$d_{min1} = 21.677 \ mm$	$d_{min2} = 32.535 \ mm$	$d_{min3} = 46.735 \ mm$
Gewählt: $d_{W1} = 25 \ mm$	Gewählt: $d_{W2} = 35 \ mm$	Gewählt: $d_{W3} = 50 \ m$
ahnraddaten:		
Ritzelzähnezahlen:		
$z_1 = 21$	$z_3 = 28$	
$z_2 = 71$	z_4 := 83	
$i'_1 = \frac{z_2}{z_1} = 3.381$	i'_2 := $\frac{z_4}{z_3}$ =2.96	34
Damit ist $i'_1 \sim i_1$ und $i'_2 \sim i_2$		
orientiert an TB 21-12		
Modul 1,2:		
$m_{n12} \coloneqq \frac{\left(1.8 \cdot d_{W1} \cdot \cos\left(\beta\right)\right)}{z_1 - 2.5}$	$m_{n12} = 2.286 \; mm$	nach Gl. 21-63
Gerundet:	$m_{n12} = 3.0 \ mm$	nach TB 21-1
Teilkreisdurchmesser 1,2:		
$egin{aligned} oldsymbol{d}_1 &\coloneqq rac{ig(z_1 \cdot m_{n12}ig)}{\cosig(etaig)} \ oldsymbol{d}_2 &\coloneqq rac{ig(z_2 \cdot m_{n12}ig)}{\cosig(etaig)} \end{aligned}$	$d_1 = 67.043 \ mm$	nach Gl. 21-38
$(z_2 \cdot m_{n12})$	1 000.07	
$a_2 := \frac{1}{\cos(\beta)}$	$d_2 = 226.67 \ mm$	

Zahnradbreite 1	.,2:						
Zahnrad Z1:	$b_1 := 0$	$egin{pmatrix} ig(2 \cdot T_0 \ d_1^2 & E \end{matrix}$	$\left rac{\partial an}{\partial zul} ight $	$b_1 = 5.562 \ mm$	nach	Vei	reinbarung
Gewählt:		25 m ı	n		gewählt	na	ch TB-21-13 a/b.)
	b_2 :=	<i>b</i> ₁					
Null-Achsabstar	nd 1,2:						
$a_{d1} \coloneqq \frac{\left(d_1 + d_2\right)}{2}$	-			$a_{d1} = 146.857 \ mm$	nach	GI.	21-8
Modul 3,4:							
$m_{n34} \coloneqq \frac{\left(2 \cdot a_{d1}\right.}{\left(1 + \right.}$	$oldsymbol{\cdot}\cosig(oldsymbol{eta}ig)$))_		$m_{n34} = 2.495 \ mm$	nach	GI.	21-64
Gerundet:	$m_{n34} \coloneqq$		m		nach	ТВ	21-1
		, 11					
$d_3 \coloneqq \frac{(z_3 \cdot m_{n34})}{\cos(\beta)}$)			$d_3 = 74.492 \ mm$			
$d_4 \coloneqq \frac{(z_4 \cdot m_{n34})}{\cos(eta)}$)			$d_4 = 220.817 \ mm$	nach	Gl.	21-38
$\cos(\rho)$							

Zahnradbreite 3,4:

	(o T		
Zahnrad Z3:	$b_3 = \frac{(2 \cdot T_{Vorgelege})}{d^2 P}$	$b_3 = 15.232 \ mm$	nach Vereinbarung

Gewählt:
$$b_3 = 40 \ mm$$
 gewählt nach TB-21-13 a/b.)

$$b_4 \coloneqq b_3$$

Null-Achsabstand 3,4:

$$a_{d2} := \frac{(d_3 + d_4)}{2}$$
 $a_{d2} = 147.655 \ mm$
 $a_{d1} = 146.857 \ mm$
nach Gl. 21-8

$$a_{d1} - a_{d2} = -0.798 \ mm$$

Die Nullachsabstände sind verschieden, a_{d1} wird angeglichen. D.h. eine negative Profilverschiebung wird an den Zahnrädern z_1 und z_2 vorgenommen, damit keine Schwächung des Ritzels entsteht.

Profilverschiebung:

Stirneingriffswinkel:

$$\alpha_t \coloneqq \operatorname{atan}\left(\frac{\tan\left(\alpha_n\right)}{\cos\left(\beta\right)}\right)$$
 $\alpha_t = 21.173$ ° nach Gl. 21-35

Betriebseingriffswinkel:

$$\alpha_{wt} \coloneqq \operatorname{acos}\left(\cos\left(\alpha_{t}\right) \cdot \frac{a_{d1}}{a_{d2}}\right) \cdot \frac{360}{2 \cdot \pi}$$
 $\alpha_{wt} = 21.959$ nach Gl. 21-21

Summe Profilverschiebungsfaktoren:

$$invlpha_{wt} \coloneqq an(lpha_{wt}) - lpha_{wt} \cdot rac{2 \cdot \pi}{360^{\circ}}$$
 $invlpha_{t} \coloneqq an(lpha_{t}) - lpha_{t} \cdot rac{2 \cdot \pi}{360^{\circ}}$ $invlpha_{wt} = 0.018$

$$\Sigma x \coloneqq \frac{inv\alpha_{wt} - inv\alpha_t}{2 \cdot \tan{(\alpha_n)}} \cdot (z_1 + z_2)$$
 nach Gl. 21-56

$$\Sigma x = 0.271$$

Ersatzzähnezahlen:		
$\beta_b := a\cos\left(\cos\left(\beta\right) \cdot \frac{\cos\left(\alpha_n\right)}{\cos\left(\alpha_t\right)}\right)$	$\beta_b = 18.747$ °	nach Gl. 21-36
$\cos^2\left(\beta_b\right) \coloneqq \frac{1}{2} \left(1 + \cos\left(2 \cdot \beta_b\right)\right)$	$\cos^2\left(\beta_b\right) = 0.897$	Additionstheorem
$z_{n1} \coloneqq \frac{z_1}{\cos^2(\beta_b) \cdot \cos(\beta)}$	$z_{n2} \coloneqq rac{z_2}{\cos^2\left(oldsymbol{eta}_b ight) \cdot \cos\left(oldsymbol{eta} ight)}$	nach Gl. 21-47
$z_{n1} = 24.922$	$z_{n2} = 84.26$	
Sinnvolle Wahl von x_1 nach Gl. 21.3		
$\log\left(\frac{z_2}{z_2}\right)$		
$\boldsymbol{x}_1 \coloneqq \frac{\boldsymbol{\Sigma} \boldsymbol{x}}{2} + \left(0.5 - \frac{\boldsymbol{\Sigma} \boldsymbol{x}}{2}\right) \cdot \frac{\log\left(\frac{\boldsymbol{z}_2}{\boldsymbol{z}_1}\right)}{\log\left(\frac{\boldsymbol{z}_{n1} \cdot \boldsymbol{z}_{n2}}{100}\right)}$		nach Gl. 21-33
$x_1 = 0.281$		
$x_2\!\coloneqq\! \Sigma x\!-\!x_1$		
$x_2 = -0.01$		
Verschiebungen:		
$V_1 \coloneqq x_1 \cdot m_{n12}$	$V_1 = 0.844 \ mm$	
$V_2 \coloneqq x_2 \cdot m_{n12}$	$V_2 \! = \! -0.031 \; mm$	nach Gl. 21-49
$V_3 = 0 \ mm$		
$V_4 = 0 \ mm$		
aße der Zahnräder nach Profilve	rschiebung:	
Kopfhöhenänderung:		
$k\coloneqq a_{d2}-a_{d1}-m_{n12}ullet \left(x_1+x_2 ight)$	$k = -0.014 \ mm$	nach Gl. 21-23
Kopfspiel (Soll):		
$c_{12}\!\coloneqq\!0.25\!\cdot\! m_{n12}$	$c_{12}\!=\!0.75~mm$	nach S.769
$c_{34} = 0.25 \cdot m_{n34}$	$c_{34} \! = \! 0.625 \; mm$	11dC11 5./09

$d_{a1} \coloneqq d_1 + 2 \cdot m_{n12} + 2 \cdot V_1 + 2 \cdot$	$d_{a1} = 74.702 \ mm$	nach Gl. 21-24
ω_{a1} - ω_{1} - ω_{1} - ω_{n12} + ω_{1} + ω_{1}	w _{a1} - 14.102 111111	IIIGII GI. ZI ZT
$d_{a2} \coloneqq d_2 + 2 \cdot m_{n12} + 2 \cdot V_2 + 2 \cdot$	$d_{a2} = 232.578 \ mm$	
$d_{a3} \coloneqq d_3 + 2 \boldsymbol{\cdot} m_{n34}$	$d_{a3} = 79.492 \ mm$	nach Gl. 21-40
$d_{a4} \coloneqq d_4 + 2 \cdot m_{n34}$	$d_{a4} = 225.817 \ mm$	
Fußkreisdurchmesser nach Pro	ofilverschiebung:	
$d_{f1} \coloneqq d_1 - 2 ullet \left(\left(m_{n12} + c_{12} ight) - V ight.$	$d_{f1} = 61.231 \ mm$	nach Gl. 21-25
$d_{f2} \coloneqq d_2 - 2 \cdot ((m_{n12} + c_{12}) - V_{n12})$	$d_{f2} = 219.107 \ mm$	
$d_{f3} \coloneqq d_3 - 2.5 \cdot m_{n34}$	$d_{f3} = 68.242 \ mm$	nach Gl. 21-41
$d_{f4} \coloneqq d_4 - 2.5 \cdot m_{n34}$	$d_{f4} = 214.567 \ mm$	
Kopfspiel nach Profilverschieb	ung:	
$c \coloneqq a_{d2} - 0.5 \cdot \left(d_{a1} + d_{f2}\right)$	$c = 0.75 \ mm$	nach Gl. 21-22c
üfen der Zahndicke am Koj	pfkreis:	
tangentiales Modul:	$m_{t12}\!\coloneqq\!rac{m_{n12}}{\cos\left(eta ight)}$	
min. Kopfdicke des Zahnes:	$s_{a12min} \coloneqq 0.2 \boldsymbol{\cdot} m_{n12}$	nach S.791
	$s_{a12min} = 0.6 \ mm$	
Stirnteilung:	$p_{t12} \!\coloneqq\! m_{t12}\! \cdot\! \pi$	nach Gl. 21-34
Stirnzahndicke:	$s_{t1} \coloneqq \frac{p_{t12}}{2} + 2 \cdot V_1 \cdot \tan\left(\alpha_t\right)$	nach Gl. 21-51

" s_{t1} " ist in Bezug auf den tangentialen Stirnschnitt (S-S) durch das Zahnrad. (S.802 - Bild 21-14) " s_{a1} " ist auf den Kopfkreis bezogen

Profilwinkel am Kopfkreis:
$$lpha_{at1} \coloneqq cos\left(rac{d_1 \cdot \cos\left(lpha_t
ight)}{d_{a1}}
ight)$$

nach S.806

"
$$lpha_{at1}$$
" entspricht " $lpha_{ut1}$ " aus Roloff Matek

$$inv\alpha_{at1} := \tan(\alpha_{at1}) - \alpha_{at1} \cdot \frac{2 \cdot \pi}{360}$$

aus Vorlesung

Kopfdicke des Zahnes an den gewählten Zahnrädern (nach Profilverschiebung):

$$s_{a1} \coloneqq d_{a1} \cdot \left(\frac{s_{t1}}{d_1} + inv\alpha_t - inv\alpha_{at1} \right)$$
 $s_{a1} = 2.055 \ mm$

$$s_{a1} = 2.055 \ mm$$

$$s_{t2} \coloneqq \frac{p_{t12}}{2} + 2 \cdot V_2 \cdot \tan\left(\alpha_t\right)$$

$$lpha_{at2} \coloneqq cos\left(rac{d_2 \cdot \cos\left(lpha_t
ight)}{d_{a2}}
ight)$$

$$inv\alpha_{at2} := \tan(\alpha_{at2}) - \alpha_{at2} \cdot \frac{2 \cdot \pi}{360}$$

Kopfdicke des Zahnes an den gewählten Zahnrädern (nach Profilverschiebung):

$$s_{a2} \coloneqq d_{a2} \cdot \left(\frac{s_{t2}}{d_2} + inv\alpha_t - inv\alpha_{at2} \right)$$

$$s_{a2} = 2.583 \ mm$$

Sowohl s_{a1} als auch s_{a2} sind > s_{a12min} . Die Zahndicke am Kopfkreis ist damit ausreichend. Zusätzliche Prüfung über TB 21-8 R/M führt zum gleichen Ergebnis.

Grundkreisdurchmesser db:

(Der Durchmesser welcher von der Normalen N-N, die durch den Berührpunkt der Zahnflanken geht, tangiert wird - Bild 21.3)

$$d_{b1} \coloneqq d_1 \cdot \cos\left(\alpha_t\right)$$
 $d_{b1} = 62.517 \ mm$

$$d_{b1} = 62.517 \ mm$$

$$d_{b2} := d_2 \cdot \cos(\alpha_t)$$
 $d_{b2} = 211.369$ mm

$$d_{10} = 211.369 \ mm$$

nach Gl. 21-2

$$d_{b3} := d_3 \cdot \cos\left(\alpha_t\right)$$
 $d_{b3} = 69.464 \ mm$

$$d_{b3} = 69.464 \ mm$$

$$d_{b4} \coloneqq d_4 \cdot \cos\left(\alpha_t\right) \qquad d_{b4} = 205.911 \ mm$$

$$d_{14} = 205.911 \ mm$$

Profilüberdeckung:

Profilüberdeckung des ersten Zahnradpaares

$$\varepsilon_{\alpha12} \coloneqq \frac{\left(0.5 \cdot \left(\sqrt{{d_{a1}}^2 - {d_{b1}}^2} + \frac{z_2}{\left|z_2\right|} \cdot \sqrt{{d_{a2}}^2 - {d_{b2}}^2}\right) - a_{d2} \cdot \sin\left(\alpha_{wt}\right)\right)}{\boldsymbol{\pi} \cdot \boldsymbol{m}_{t12} \cdot \cos\left(\alpha_t\right)}$$

nach Gl. 21-57

10.08.2022 Seite 8 von 27

Seite 9 von 27

	$arepsilon_{lpha12}$ $=$ 1.47	
$arepsilon_{eta12}\coloneqqrac{b_1\cdot anig(etaig)}{p_{t12}}$	$arepsilon_{eta12}\!=\!0.907$	nach Gl. 21-44
$arepsilon_{\gamma_{12}} \! \coloneqq \! arepsilon_{lpha 12} \! + \! arepsilon_{eta_{12}}$	$arepsilon_{\gamma12}\!=\!2.377$	nach Gl. 21-46

-> Profilüberdeckung des ersten Zahnradpaares ist ausreichend (nach Erklärung S. 804)

Profilüberdeckung des zweiten Zahnradpaares:

$$\varepsilon_{\alpha 3 4} \coloneqq \frac{\left(0.5 \cdot \left(\sqrt{{d_{a3}}^2 - {d_{b3}}^2} + \frac{z_2}{\left|z_2\right|} \cdot \sqrt{{d_{a4}}^2 - {d_{b4}}^2}\right) - a_{d2} \cdot \sin\left(\alpha_{wt}\right)\right)}{\pi \cdot m_{t12} \cdot \cos\left(\alpha_t\right)}$$

$$\varepsilon_{\alpha 34} = 1.119$$

$$arepsilon_{eta34}\coloneqq rac{b_3\cdot anig(etaig)}{p_{t12}}$$
 $arepsilon_{eta34}=1.452$

$$\varepsilon_{\gamma 34} \coloneqq \varepsilon_{\alpha 34} + \varepsilon_{\beta 34} \qquad \qquad \varepsilon_{\gamma 34} = 2.57$$

-> Profilüberdeckung des zweiten Zahnradpaares ist ausreichend (nach Erklärung S. 804)

Betriebswälzkreisdurchmesser:

$d_{w1} \coloneqq rac{d_1 \cdot \cos\left(lpha_t ight)}{\cos\left(lpha_{wt} ight)}$	$d_{w1}\!=\!67.408\;m{mm}$	nach Gl. 21-22a
$d_{w1} \coloneqq rac{d_1 \cdot \cos\left(oldsymbol{lpha}_t ight)}{\cos\left(oldsymbol{lpha}_{wt} ight)}$ $d_{w2} \coloneqq rac{d_2 \cdot \cos\left(oldsymbol{lpha}_t ight)}{\cos\left(oldsymbol{lpha}_{wt} ight)}$	d_{w2} =227.902 $m{mm}$	nach Gl. 21-22b
$d_{w3}\!\coloneqq\!d_3$	d_{w3} =74.492 mm	
$d_{w4}\!\coloneqq\!\boldsymbol{d_4}$	$d_{w4} = 220.817 \; m{mm}$	

Kontrolle Achsabstand:

$$a \coloneqq \frac{d_{w1} + d_{w2}}{2} = 147.655 \ \textit{mm}$$

identisch mit:

$$a_{d2} = 147.655 \ mm$$

$$a := \frac{d_{w3} + d_{w4}}{2} = 147.655 \ \textit{mm}$$

Zusammenfassung:

usammentassung:			
$d_1 = 67.043 \ mm$	$d_{b1} = 62.517 \ mm$	$d_{a1} = 74.702 \ mm$	$d_{f1} = 61.231 \ mm$
$d_2 = 226.67 \ mm$	$d_{b2} = 211.369 \ mm$	$d_{a2} = 232.578 \ mm$	$d_{f2} = 219.107 \ mm$
$d_3 = 74.492 \ mm$	$d_{b3} = 69.464 \ mm$	$d_{a3} = 79.492 \ mm$	$d_{f3} = 68.242 \ mm$
d ₄ =220.817 mm	$d_{b4} = 205.911 \ mm$	$d_{a4} = 225.817 \ mm$	$d_{f4} = 214.567 \ mm$
b ₁ =25 mm	d_{w1} = 67.408 mm	$z_1 = 21$	$m_{n12}=3 mm$
b ₂ =25 <i>mm</i>	$d_{w2}\!=\!227.902\;m{mm}$	$z_2 = 71$	
b ₃ =40 mm	$d_{w3}\!=\!74.492$ mm	$z_3 = 28$	$m_{n34} = 2.5 \ mm$
b ₄ =40 mm	$d_{w4} = 220.817 \; \pmb{mm}$	$z_4 = 83$	
$V_1 = 0.844 \ mm$	$arepsilon_{lpha12}$ $=$ 1.47	$\varepsilon_{\alpha 34} = 1.119$	$x_1 = 0.281$
$V_2 = -0.031 \ mm$	$arepsilon_{eta12}\!=\!0.907$	$arepsilon_{eta34} = 1.452$	$x_2 = -0.01$
$V_3 = 0 mm$	$arepsilon_{\gamma12}$ $=$ 2.377	$arepsilon_{\gamma 34} = 2.57$	
$V_4 = 0 mm$			

Passfederberechnung:

Werkstoff Passfeder E295 GC

$$S_F \coloneqq 1.1$$
 $Re \coloneqq 420 \ \frac{N}{mm^2}$ $p_{fzul} \coloneqq \frac{Re}{S_F}$ $p_{fzul} = 381.818 \ \frac{N}{mm^2}$

$$arphi \coloneqq 1$$
 für n=1 $n_{Pass} \coloneqq 1$ $K_{\lambda} \coloneqq 1$ $K_{A} = 2$

Antriebswelle - Fliehkraftkupplung

für Wellendurchmesser 25mm: -Passfeder DIN 6885 - A8x7x25

$$h_{Pass} = 7 \, mm$$
 $l_{Pass} = 25 \, mm$ $h = 3.0 \, mm$

$$b_{Pass} \coloneqq 8$$
 mm $l'_{Pass} \coloneqq l_{Pass} - b_{Pass}$ $d_{Kritisch1} \coloneqq 25$ mm

$$p_m \coloneqq \frac{2 \cdot K_A \cdot T_{an} \cdot K_\lambda}{d_{Kritisch1} \cdot h \cdot l'_{Pass} \cdot n_{Pass} \cdot \varphi} = 156.863 \frac{N}{mm^2} \qquad p_m < p_{fzul} \qquad \text{nach Gl. 12-1}$$

Werkstoff Passfeder E295 GC

$$S_F \coloneqq 1.1$$
 $Re \coloneqq 420 \ \frac{N}{mm^2}$ $p_{fzul} \coloneqq \frac{Re}{S_F}$ $p_{fzul} = 381.818 \ \frac{N}{mm^2}$

$$\varphi := 1$$
 für n=1 $n_{Pass} := 1$ $K_{\lambda} := 1$ $K_{A} = 2$

Abtriebswelle - Rutschkupplung

für Wellendurchmesser 50mm: -Passfeder DIN 6885 - A14x9x36

$$h_{Pass} = 9 \, \, mm$$
 $l_{Pass} = 36 \, \, mm$ $h = 4 \, \, mm$

$$b_{Pass} \coloneqq 14 \, \, \boldsymbol{mm} \quad l'_{Pass} \coloneqq l_{Pass} - b_{Pass} \qquad \boldsymbol{d_{Kritisch2}} \coloneqq 50 \, \, \boldsymbol{mm}$$

$$p_m \coloneqq \frac{2 \cdot K_A \cdot T_{an} \cdot K_\lambda}{d_{Kritisch2} \cdot h \cdot l'_{Pass} \cdot n_{Pass} \cdot \varphi} = 45.455 \frac{N}{mm^2} \qquad \text{nach Gl. 12-1}$$

Werkstoff Passfeder E295 GC

$$S_F\coloneqq 1.1 \qquad Re \coloneqq 420 \frac{N}{mm^2} \qquad p_{fzul}\coloneqq \frac{Re}{S_F} \qquad p_{fzul}=381.818 \frac{N}{mm^2}$$
 nach TB 12-1b
$$\varphi\coloneqq 1 \qquad \text{für n=1} \qquad n_{Pass}\coloneqq 1 \qquad K_\lambda\coloneqq 1 \qquad K_A=2$$

10.08.2022 Seite 11 von 27

	für Wellendurchmesser 35mm:	-Passfeder DIN 6885 - A10x8x25
	$h_{Pass} \coloneqq 8$ mm $l_{Pass} \coloneqq 25$ mm	h:=3 mm
	$b_{Pass} \coloneqq 10$ mm $l'_{Pass} \coloneqq l_{Pass} - b_{Pass}$	$d_{Kritisch3} \coloneqq 35 \; mm$
o _m :=	$= \frac{2 \cdot K_A \cdot T_{an} \cdot K_{\lambda}}{d_{Kritisch3} \cdot h \cdot l'_{Pass} \cdot n_{Pass} \cdot \varphi} = 126.98$	$\frac{N}{mm^2}$ nach Gl. 12-1
		$p_m < p_{fzul}$

Vorauswahl der Lagergrößen: (Vorauswahl erfolgte durch Schätzung der wirklichen Lagerbelastungen, Anpassung der Lagerung erfolgte nach Ermittlung der Lagerkräfte)

Festlager Abtriebswelle:	/	. 1	
$P \coloneqq 6 \ kN$ $p \coloneqq 3$	$n_{Antrieb} = (2 \cdot 10^3)$	$\frac{1}{min}$	
	$n \coloneqq rac{n_{Antrieb}}{i'_{Gesamt}}$	$L_{10h} = 10000 \ hr$	
$C_{erf} \coloneqq P \cdot \sqrt[p]{rac{n \cdot L_{10h}}{10^6}}$	nach Gl. 14.1	$C_{\it erf}$ = 29.574 $\it kN$	
V 10	(Faktor 60		
	weggelassen wegen den		
Festlager Antriebswelle:	Einheiten)		
P := 2.5 kN	<i>p</i> := 3	$n \coloneqq n_{Antrieb}$	$L_{10h} = 10000 \ hr$
$C_{erf} \coloneqq \! P \! \cdot \! \sqrt[p]{rac{n \cdot L_{10h}}{10^6}}$		$C_{erf}\!=\!26.566$ kN	
Festlager Vorgelegewelle:			
$P \coloneqq 4 \ kN$	<i>p</i> := 3	$n \coloneqq rac{n_{Antrieb}}{{i'}_1}$	_{10h} :=10000 hr
$C_{erf} \coloneqq P \cdot \sqrt[p]{rac{n \cdot L_{10h}}{10^6}}$	nach Gl. 14.1	C_{erf} = 28.321 kN	

10.08.2022 Seite 12 von 27

Loslager An-/Abtrie											
P :=6 kN	$p \coloneqq 3$	eig.:	$n \coloneqq$	n_{Antri}		$n_{Antri} \ i'_{Gesar}$		$oldsymbol{L}_1$.0h :=	= 100	00 <i>F</i>
		3,3333				^u Gesar	nt				
$C_{erf} \coloneqq P^{-1}$	$\sqrt[p]{rac{n \cdot L_{10h}}{10^6}}$			C_{er}	f = 6	1.564	kN				
	V 10°										
Loslager Vorgelege	ewelle:										
$P = 6.5 \ kN$	p :=3	eig.:	n := 0	n_{Antr}	ieb_			L_{10h} :	= 1(0000	hr
		3,3333		i'_1				10/1			
$C_{erf} \coloneqq P \cdot \sqrt{-1}$	$n \cdot L_{10h}$			v _	46 O	21 k/ \	7				
erf ·- I	10^{6}			erf —	40.0	21 M/					
gorkräfte an der An		chnitt:									
gerkräfte an der An Antriebsmoment Wälzkreisdurchmes	ntriebswelle: $T_{an}\!=\!50~ extbf{N}$	extstyle ext									
Antriebsmoment	ntriebswelle: $T_{an}\!=\!50~ extbf{N}$	√· · m 08 mm				X_2 :=	23.5	5 mn	$\boldsymbol{\imath}$		
Antriebsmoment Wälzkreisdurchmes	atriebswelle: $T_{an}\!=\!50~\text{N}$ $\text{Sser}~d_{w1}\!=\!67.40$ $X_1\!\coloneqq\!26.5$	√· · m 08 mm	gskraf	t nac	h Gl	Ī				: 1.48	34 k)
Antriebsmoment Wälzkreisdurchmes Wirkabstände Zahnrad Z1 F_{tZ1}	atriebswelle: $T_{an}\!=\!50~\text{N}$ $\text{Sser}~d_{w1}\!=\!67.40$ $X_1\!\coloneqq\!26.5$	V·m 08 mm mm Umfanç				Ī)	F_t	_{Z1} =	= 1.48 = 0.54	
Antriebsmoment Wälzkreisdurchmes Wirkabstände Zahnrad Z1 F_{tZ1} F_{aZ1}	atriebswelle: $T_{an} = 50 \text{ N}$ $\text{SSER} \ d_{w1} = 67.40$ $X_1 \coloneqq 26.5$ $\coloneqq \frac{2 \cdot T_{an}}{d_{w1}}$	V·m 08 mm mm Umfang	lkraft	nac	h Gl	. 21.70	2	F_t	$z_1 =$ $z_2 =$		1 <i>kN</i>
Antriebsmoment Wälzkreisdurchmes Wirkabstände Zahnrad Z1 F_{tZ1} F_{aZ1} F_{rZ1} Loslager F_{L1y} :=-	Intriebswelle: $T_{an} = 50 \text{ N}$ Since $d_{w1} = 67.40$ $X_1 \coloneqq 26.5$ $\lim_{t \to \infty} \frac{2 \cdot T_{an}}{d_{w1}}$ $\lim_{t \to \infty} F_{tZ1} \cdot \tan{(\beta)}$	$N \cdot m$ $08 \ mm$ mm Umfano $(2n)$ Radi	lkraft	nac	h Gl	. 21.70	2	F_t	$Z_{1} =$ $Z_{1} =$ $Z_{1} =$	= 0.54	1 kN 75 k J

Festlager $F_{F1x} = F$	aZ1		$F_{F1x} = 0.54 \ kN$
$F_{F1y} \coloneqq F$	$\Gamma_{tZ1} - F_{L1y}$		$F_{F1y} = 0.786 \ kT$
F_{F1z} := F	$\Gamma_{rZ1} - F_{L1z}$		$F_{F1z} = 0.634 \ kT$
gerkräfte an der Vor	gelegewelle:		
Moment an der Vorg	gelegewelle: $T_{Vorgelege}$ =	= 169.05 N·m	
Wälzkreisdurchmess	ser d_{w2} = 227.902 mm	d_{w3} $=$ 7	74.492 <i>mm</i>
Wirkabstände	$X_3 = 26 \ mm$	$T_4 \coloneqq 21 \; mm$	$X_5 \coloneqq 36.5 \ \boldsymbol{mm}$
Zahnrad Z2	$F_{aZ2} = -F_{aZ1}$ F	$_{tZ2}\coloneqq -F_{tZ1}$	$\boldsymbol{F}_{rZ2}\!\coloneqq\!-\boldsymbol{F}_{rZ1}$
Zahnrad Z3	$F_{tZ3} \coloneqq rac{2 ullet T_{Vorgelege}}{d_{w3}}$	F_{tZ3} $=$	4.539 kN
	$F_{aZ3} = F_{tZ3} \cdot \tan(\beta)$	F_{aZ3} =	1.652 kN
	$F_{rZ3} \coloneqq \frac{F_{tZ3} \cdot \tan\left(\alpha_n\right)}{\cos\left(\beta\right)}$	F_{rZ3} =	1.758 kN
Loslager	$F_{L2y} \coloneqq -rac{F_{tZ2} {ullet} X_3 + F_{tZ3} {ullet}}{X_3 + X_4 +}$	X_5 X_5 X_5	-2.093 kN
	F - Y + F	$\frac{d_{w2}}{2} + F_{rZ3} \cdot \left(X_3 + X_3 + X_4 + X_5 + X$	
	F_{L2z} :=	$\frac{1}{2} X_3 + X_4 + X_5$	$(-4) + r_{aZ3} \cdot {2}$
			1.168 kN
Festlager	$F_{F2x}\!:=\!F_{aZ3}\!+\!F_{aZ2}$	$F_{F2x} =$	1.112 kN
	$F_{F2y}\!:=\!-F_{tZ2}\!-\!F_{tZ3}\!-\!F_{L2}$	$_{y}$ $F_{F2y}=$	−0.962 kN
	$F_{F2z}\!\coloneqq\!F_{rZ2}\!-\!F_{rZ3}\!+\!F_{L2z}$	$F_{F2z} =$	−1.164 kN

Die Lagerkräfte	F_{L2y} , F_{F2y} und	F_{F2z} wurde	n im Freischnitt falsch
	igenommen, ďaraus res		
	g wird die Orientierung	der Kraftvektor	ren positiv angenommen
daher folgt:			
$F_{L2y} \coloneqq 2.093 \ \mathbf{kN}$			
$F_{F2y} = 0.962 \ kN$			
$F_{F2z} \coloneqq 1.164 \ \boldsymbol{kN}$			
1-7			
Lagerkräfte an der Abtrie	bswelle:		
Bodenkraft	$F_B \coloneqq 1.5 \text{ kN}$		
Abtriebsmoment	$T_{ab} = 501.064 \ N \cdot m$		
Wälzkreisdurchmesser	$d_{w4} = 220.817$ mm		
Wirkabstände	$X_6 \coloneqq 27.5 \ \textit{mm}$		$X_7 \coloneqq 41 \ mm$
Zahnrad Z4	$F_{aZ4} := -F_{aZ3}$	$F_{tZ4} \coloneqq -F_{tZ3}$	$F_{rZ4} \coloneqq -F_{rZ3}$
		124 126	124 126
	${F}_{tZ4} \coloneqq rac{2 \cdot {T}_{ab}}{d_{w4}}$		$F_{tZ4} = 4.538 \ kN$
	d_{w4}		02.1
	$F_{aZ4} = F_{tZ3} \cdot \tan(\beta)$		$F_{aZ4} = 1.652 \ kN$
	$F_{rZ4} := \frac{F_{tZ4} \cdot \tan{(\alpha_n)}}{\cos{(\beta)}}$		$F_{rZ4} = 1.758 \; kN$
	$\cos(\beta)$		1 _{rZ4} = 1.765 MIV
Loslager	$F = -F_{tZ4} \cdot X_7$		F - 2716 hN
Losiagei	$F_{L3y} \coloneqq \frac{-F_{tZ4} \cdot X_7}{X_6 + X_7}$		$F_{L3y} = -2.716 \ kN$
	$-F_{rZ4} \cdot X_7 - F_a$	d_{w4}	
	$-r_{rZ4} \cdot \Lambda_7 - r_a$	$\frac{1}{2}$	77 0 74 7 73 7
	F_{L3z} := $X_6 + X_7$		$F_{L3z} = -3.715 \text{ kN}$
	216 217	7	
Festlager	$F_{F3x}\!\coloneqq\!-F_{aZ4}\!+\!F_B$		F_{F3x} = -0.152 kN
	$F_{F3y}\!\coloneqq\!-F_{tZ4}\!-\!F_{L3y}$		$F_{F3y} = -1.822 \ kN$
	$F_{F3z} \coloneqq -F_{rZ4} - F_{L3z}$		F_{F3z} = 1.957 kN
	- r 3z - rZ4 - L3z		- 132 200 100

10.08.2022 Seite 15 von 27

Die Lagerkräfte F_{L3y} , F_{I} herum orientiert angenommen, da weitere Berechnung wird die Oriendaher folgt:	$_{53z}$ und F_{F3y} wurden im Freischnitt fals iraus resultiert ihr negativer Wert. Für die intierung der Kraftvektoren positiv angenomm	en
$egin{aligned} F_{L3y} &\coloneqq 2.716 \ \emph{kN} \ F_{L3z} &\coloneqq 3.715 \ \emph{kN} \ F_{F3y} &\coloneqq 1.822 \ \emph{kN} \end{aligned}$		
Wälzlagerberechnung:		
Festlager Antriebswelle: (62205)		
$C_0 = 7.8 \; kN$	aus WLK	
$F_a \coloneqq \left F_{F1x} \right = 0.54 \ extbf{kN}$	aus Freischnitt	
$F_r = \sqrt[2]{F_{F1y}^2 + F_{F1z}^2} = 1.01 \text{ kN}$		
$\frac{F_a}{C_0}$ = 0.069 $\frac{F_a}{F_r}$ = 0.535 nach	daraus ergibt sich nach TB Seite 538 14-3a X und Y zu:	$X \coloneqq 1$ $Y \coloneqq 0.55$
e:=1.14	aus TB14-3a	
$P \coloneqq X \cdot F_r + Y \cdot F_a = 1.307 \text{ kN}$	nach Gl. 14.6	
$p\!\coloneqq\!3$ für Kugellager	nach Seite 565	
$C \coloneqq 19.3 \ \textit{kN}$	nach WLK	
$L_{10h} \coloneqq rac{10^6}{n_{Antrieb}} oldsymbol{\cdot} \left(rac{C}{P} ight)^p = 26831 \; oldsymbol{hr}$	nach Gl. 14.5a (Faktor 60 weggelassen wegen den Einheiten)	

10.08.2022 Seite 16 von 27

Loslager Antriebswelle: (6004)

 $F_a := 0$ **kN** aus Freischnitt

$$F_r := \sqrt[2]{\left(F_{L1y} + F_{L1z}\right)^2} = 0.638 \ kN$$

$$P \coloneqq F_r = 0.638 \text{ kN}$$

Seite 538

$$p = \frac{10}{3}$$

für Rollenlager

$$C = 9.3 \text{ kN}$$

aus WLK

$$L_{10h} \coloneqq rac{10^6}{n_{Antrieb} - rac{n_{Antrieb}}{i'_{Gesamt}}} \cdot \left(rac{C}{P}
ight)^p = 70105 \; extbf{hr}$$

Die Drehzahl am Loslager ergibt sich durch die gleiche Drehrichtung der Wellen

zu:
$$n_{Antrieb} - \frac{n_{Antrieb}}{i'_{Gesamt}} = (1.8 \cdot 10^3) \frac{1}{min}$$

mit $i'_{Gesamt} = 10.021$

Festlager Vorgelegewelle: (NUP204)

 $C_0 = 24.7 \text{ kN}$ aus WLK

 $F_a := |F_{F2x}| = 1.112 \text{ kN}$ aus Freischnitt

$$F_r = \sqrt[2]{F_{F2y}}^2 + F_{F2z}^2 = 1.51 \text{ kN}$$

$$\frac{F_a}{C_0} = 0.045$$
 $\frac{F_a}{F_r} = 0.736$

weil 0.02< $\frac{F_a}{C_0}$ <=0.5 ergibt sich e zu:

$$e\coloneqq 0.51 \cdot \left(\frac{F_a}{C_0}\right)^{0.233} = 0.248$$
 aus TB14-3a Fußnote

daraus ergibt sich nach TB 14-3a X und Y zu: (weil Fa/Fr > e ist, siehe Fußnote)

$$X = 0.56$$

$$Y = 0.866 \left(\frac{F_a}{C_0}\right)^{-0.229} = 1.762$$

$$P \coloneqq X \cdot F_r + Y \cdot F_a = 2.804 \ kN$$

 $p \coloneqq 3$

für Kugellager

$L_{10h}\!\coloneqq\!rac{10^6}{n_{Abtrieb}}\!ullet\!\left(\!rac{C}{H}\! ight)$	$\binom{r}{r}^p = 15491 \; rac{m{hr}}{m{hr}} = mit \; \; n_{Abtrieb} \coloneqq rac{n_{Antrieb}}{m{i'}_{Gesamt}}$	
$n_{Abtrieb} \setminus F$	nach Gl. 14.5a	
oslager Abtriebswelle: (NU	J208)	
$F_a \coloneqq 0$ kN aus Freischn	itt	
$F_r := \sqrt[2]{F_{L3y}^2 + F_{L3z}^2} = 4$	1.602 <i>kN</i>	
$P \coloneqq F_r = 4.602 \text{ kN}$	Seite 538	
p := 3	für Kugellager	
$C \coloneqq 63 \ kN$	aus WLK	

 $L_{10h} \coloneqq rac{10^6}{n_{Antrieb}} - rac{n_{Antrieb}}{i'_{Gesamt}} \cdot \left(rac{C}{P}
ight)^p = 23750 \; hr$

Die Drehzahl am Loslager ergibt sich durch die gleiche Drehrichtung der Wellen

zu:
$$n_{Antrieb} - \frac{n_{Antrieb}}{i'_{Gesamt}} = \left(1.8 \cdot 10^3\right) \frac{1}{min}$$

$$mit$$
 $i'_{Gesamt} = 10.021$

Zusammenfassung Lebensdauern:

Antriebswelle - Festlager L_{10h} := 26831 hr Vorgelegewelle - Loslager L_{10h} := 37827 hr Vorgelegewelle - Festlager L_{10h} := 43849 hr Abtriebswelle - Loslager L_{10h} := 23750 hr Abtriebswelle - Festlager L_{10h} := 15491 hr	Antriebswelle - Loslager	$L_{10h}\!\coloneqq\!70105\; \pmb{hr}$
Vorgelegewelle - Festlager $L_{10h}\!:=\!43849~{\it hr}$ Abtriebswelle - Loslager $L_{10h}\!:=\!23750~{\it hr}$	Antriebswelle - Festlager	$L_{10h} \coloneqq 26831 \; extbf{hr}$
Abtriebswelle - Loslager $L_{10h}\!\coloneqq\!23750\; \pmb{hr}$	Vorgelegewelle - Loslager	$L_{10h}\!:=\!37827\; \pmb{hr}$
	Vorgelegewelle - Festlager	$L_{10h}\!:=\!43849\; \pmb{hr}$
Abtriebswelle - Festlager $L_{10h}\!\coloneqq\!15491\; \pmb{hr}$	Abtriebswelle - Loslager	$L_{10h}\!:=\!23750\; \pmb{hr}$
	Abtriebswelle - Festlager	$L_{10h} \! \coloneqq \! 15491 \; \pmb{hr}$

Festigkeitsnachweis der Wellen:

Antriebswelle:

Kraft- und Momentenverläufe (siehe auch Isometrie der Antriebswelle):

Y-Z-Ebene: X-Y-Ebene: X-Z-Ebene:

Schnitt entlang s_1 (positives Schnittufer) $s_{1max} \coloneqq 26.5 \cdot mm$ $s_{1min} \coloneqq 0 \cdot mm$ $Mt(s_1) \coloneqq 0$ $N_x \coloneqq 0$

at at

 $Q_y\left(s_1\right) \coloneqq -F_{L1y} = -0.697 \text{ kN} \qquad Q_z\left(s_1\right) \coloneqq -F_{L1z} = 0.059 \text{ kN}$

 $Mb_{z}\left(s_{1}
ight)\coloneqq-F_{L1z}ullet s_{1} \qquad \qquad Mb_{y}\left(s_{1}
ight)\coloneqq-F_{L1z}ullet s_{1}$

 $Mb_z(s_{1max}) = -18.477 \ N \cdot m$ $Mb_y(s_{1max}) = 1.575 \ N \cdot m$

 $Mb_z(s_{1min}) = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$ $Mb_y(s_{1min}) = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$

Schnitt entlang s_2 (negatives Schnittufer) $s_{2max} = 23.5 \cdot mm$ $s_{2min} = 0 \cdot mm$

 $Mt\left(s_{2}\right)\coloneqq50\ \emph{N}\cdot\emph{m}$ $N_{x}\coloneqq-F_{F1x}=-0.54\ \emph{kN}$ $N_{x}\coloneqq-F_{F1x}=-0.54\ \emph{kN}$

 $Q_y\left(s_2
ight) \coloneqq F_{F1y} = 0.786 \,\, kN$ $Q_z\left(s_2
ight) \coloneqq F_{F1z} = 0.634 \,\, kN$

 $Mb_z(s_2) \coloneqq -F_{F1z} \cdot s_2$ $Mb_u(s_2) \coloneqq -F_{F1z} \cdot s_2$

 $Mb_z(s_{2max}) = -18.477 \ N \cdot m$ $Mb_y(s_{2max}) = -14.9 \ N \cdot m$

 $Mb_z(s_{2min}) = 0 \ \mathbf{N} \cdot \mathbf{m}$ $Mb_u(s_{2min}) = 0 \ \mathbf{N} \cdot \mathbf{m}$

Statischer & dynamischer Festigkeitsnachweis Antriebswelle:

 $Rz \coloneqq 6.3 \ \mu m$ $d_{Kritisch1} \coloneqq 25 \ mm$ $Rm \coloneqq 1100 \ \frac{N}{mm^2}$

 $Wb_1 := \frac{\pi}{32} \cdot (d_{Kritisch1})^3 = 1533.98 \ mm^3$ $W_{t1} := \frac{\pi}{16} \cdot (d_{Kritisch1})^3 = 3067.96 \ mm^3$

Flächenträgheitsmoment aus TB11-3

$$\begin{aligned} &Mb_{res1} \coloneqq \sqrt{Mb_z \left(s_{2max}\right)^2 + Mb_y \left(s_{2max}\right)^2} & T_{max} \coloneqq T_{an} & \text{da das Anfahren mit Anlaufkupplung erfolgt} \\ &R_{p0.2N} \coloneqq 900 \frac{N}{mm^2} & K_i \coloneqq 1 - 0.34 \cdot \log \left(\frac{d_{Kritisch1}}{16 \ mm}\right) = 0.934 \\ &\text{nach TB 1-1} & \text{nach TB 3-11} \end{aligned}$$

$$K_{Db} \coloneqq \left(\frac{\beta_{kb}}{K_g} + \frac{1}{K_{0\sigma}} - 1\right) \cdot \frac{1}{K_V} = 2.868$$

$$K_{Dt} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473$$
aus Bild 3-27
$$\operatorname{nach} \operatorname{Gl. 3-16}$$

$$\sigma_{bGW} \coloneqq K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} = 179.121 \frac{N}{mm^2}$$

$$\operatorname{nach} \operatorname{Gl. 3-17}$$

$$r_{tGW} \coloneqq K_t \cdot \frac{\tau_{tWN}}{K_{Dt}} = 124.637 \frac{N}{mm^2}$$

$$\operatorname{nach} \operatorname{Gl. 3-17}$$

$$S_F \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmax}}{\sigma_{bF}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tF}}\right)^2}} = 31.3$$

$$\operatorname{nach} \operatorname{Bild} \operatorname{3-30}$$

$$S_D \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tGW}}\right)^2}} = 3.2$$

$$\operatorname{nach} \operatorname{Bild} \operatorname{3-31}$$

$$\operatorname{Ergebnis:} \operatorname{Die} \operatorname{Antriebswelle} \operatorname{ist} \operatorname{dauerfest.}$$

Vorgelegewelle:

Y-Z-Ebene:	X-Y-Ebene:	X-Z-Ebene:	
	T	$s_{3max} \coloneqq 26.5 \cdot mm$	$s_{3min} \coloneqq 0 \cdot mn$
$Mt(s_3) \coloneqq 0$	$N_x = 0$	N_x := 0	
	$Q_y\left(s_3\right) \coloneqq -F_{L2y} = -2.09$	$Q_z\left(s_3 ight)$:	$=F_{L2z}=1.168$ kN
	$Mb_zig(s_3ig)\coloneqq -F_{L2y}ullet s_3$	$Mb_yig(s_3ig)$	$\big)\!\coloneqq\!F_{L2z}\!ullet\!s_3$
	$Mb_z \left(s_{3max} \right) = -55.465 \ .$	$ extbf{ extit{N}} ullet extbf{ extit{m}} extbf{ extit{M}} b_y ig(s_3 egin{array}{cccccccccccccccccccccccccccccccccccc$	$_{max}) = 30.964 \ N \cdot r$
	$Mb_z(s_{3min}) = 0 \ m{N} \cdot m{m}$	$Mb_yig(s_3 ig)$	$_{min}\rangle = 0 \boldsymbol{N \cdot m}$
Schnitt entlang s_4 $N_x \coloneqq -F_{aZ3} = -1$.		$s_{4max} \coloneqq 21 \cdot mm$ $-F_{aZ3} = -1.652 \ kN$	$s_{4min}\!\coloneqq\!0\cdot\!m{mn}$

10.08.2022 Seite 22 von 27

$\sigma_{bWN} = 550 \frac{N}{mm^2}$		$ au_{tWN} = 330 \; rac{N}{mm^2}$	_
$eta_{kb} \coloneqq 2.8$		$\beta_{kt} = 2.6$ Rm =	B 3-8 mit 1100N/mm^2, wege rungsring
$K_g \coloneqq 1 - 0.2 \cdot \frac{\log\left(\frac{d_{Krg}}{7.5}\right)}{\log\left(2\right)}$	$\left(\frac{mm}{20}\right) = 0.897$		aus TB 3-11c
$K_{0\sigma} \coloneqq 1 - 0.22 \log \left(\frac{R}{\mu r} \right)$	$\left(\frac{z}{n}\right) \cdot \left(\log \left(\frac{Rm}{20 \frac{N}{mm^2}}\right)\right)$	-1)=0.87	aus TB 3-10
$K_V = 1$	aus TB 3-12	$K_{0 au}\!\coloneqq\!0.575{f \cdot} K_{0\sigma}$	+0.425=0.925
$K_{Db} \coloneqq \left(\frac{\beta_{kb}}{K_g} + \frac{1}{K_{0\sigma}} - \frac{1}{K_{0\sigma}}\right)$	$-1\bigg) \cdot \frac{1}{K_V} = 3.271$	$K_{Dt} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}}\right)$	$-1\bigg) \cdot \frac{1}{K_V} = 2.979$
σ_{bGW} := K_t • $\frac{\sigma_{bWN}}{K_{Db}}$ =	$=148.726 \frac{N}{mm^2}$	$ au_{tGW} \!\!\coloneqq\! \! K_t \! \cdot \! rac{ au_{tWN}}{K_{Dt}} \!\!:$	$=97.973 \frac{N}{mm^2}$
	$S_F \!\coloneqq\! rac{1}{\sqrt{\left(rac{\sigma_{bmax}}{\sigma_{bF}} ight)^2}}.$	$+\left(rac{ au_{tmax}}{ au_{tF}} ight)^2$	
	$S_D \coloneqq rac{1}{\sqrt{\left(rac{\sigma_{ba}}{\sigma_{bGW}} ight)^2}}$	$ = \frac{1}{\left(\frac{\tau_{ta}}{\tau_{tGW}}\right)^2} = 2.329 $	
	Ergebnis: Die Vorgeleg	gewelle ist dauerfest.	

10.08.2022 Seite 24 von 27

Abtriebswelle:

Kraft- und Momentenverläufe (siehe auch Isometrie der Abtriebswelle):

Y-Z-Ebene: X-Y-Ebene: X-Z-Ebene:

Schnitt entlang s_6 (positives Schnittufer)

$$Mt(s_6) := -T_{ab}$$
 $N_x := -F_B = -1.5 \text{ kN}$ $N_x := -F_B = -1.5 \text{ kN}$

$$Q_{y}\left(s_{6}\right) \coloneqq 0 \qquad \qquad Q_{z}\left(s_{6}\right) \coloneqq 0$$

$$Mb_{z}(s_{6}) := 0$$
 $Mb_{y}(s_{6}) := 0$

Schnitt entlang s_7 (positives Schnittufer) $s_{7max} = 41 \cdot mm$ $s_{7min} = 0 \cdot mm$

$$Mt\left(s_{7}\right)\coloneqq-T_{ab}$$
 $N_{x}\!\coloneqq-F_{B}-F_{F3x}\!\equiv-1.348~kN$ $N_{x}\!\coloneqq-F_{B}-F_{F3x}\!\equiv-1.348~kN$

$$Q_y\left(s_7
ight) \coloneqq F_{F3y} = 1.822 \ kN$$
 $Q_z\left(s_7
ight) \coloneqq -F_{F3z} = -1.957 \ kN$

$$Mb_{z}\left(s_{7}\right)\coloneqq F_{F3y}\cdot s_{7}$$
 $Mb_{y}\left(s_{7}\right)\coloneqq F_{F3z}\cdot s_{7}$

$$Mb_z(s_{7max}) = 74.702 \ N \cdot m$$
 $Mb_y(s_{7max}) = 80.235 \ N \cdot m$

$$Mb_z\left(s_{7min}\right) = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$$
 $Mb_y\left(s_{7min}\right) = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$

Schnitt entlang s_8 (negatives Schnittufer) $s_{8max} = 27.5 \ \textit{mm}$ $s_{8min} = 0 \cdot \textit{mm}$

$$Mt\left(s_{8}\right)\coloneqq0$$
 $N_{x}\coloneqq0$ $N_{x}\coloneqq0$

$$Q_{y}(s_{8}) := -F_{L3y} = -2.716 \text{ kN}$$
 $Q_{z}(s_{8}) := -F_{L3z} = -3.715 \text{ kN}$

$$Mb_z(s_8) \coloneqq F_{L3y} \cdot s_8$$
 $Mb_y(s_8) \coloneqq -F_{L3z} \cdot s_8$

$$Mb_z(s_{8max}) = 74.69 \ N \cdot m$$
 $Mb_y(s_{8max}) = -102.163 \ N \cdot m$

$$Mb_z\left(s_{8min}\right) = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$$
 $Mb_y\left(s_{8min}\right) = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$

Statischer & dynamischer Festigkeitsnachweis Abtriebswelle:

 $Rz \coloneqq 6.3 \ \mu m$ $d_{Kritisch3} \coloneqq 55 \ mm$ $Rm \coloneqq 1100 \ \frac{N}{mm^2}$

$$Wb_3 := \frac{\pi}{32} \cdot \left(\frac{d_{Kritisch3}^4 - (42 \ mm)^4}{d_{Kritisch3}} \right) = 10779.46 \ mm^3$$

 $W_{43} := \frac{\pi}{4} \cdot \left(\frac{d_{Kritisch3}^{4} - (42 \ mm)^{4}}{1 + (42 \ mm)^{4}} \right) = 21558.93 \ mm^{3}$

	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$Mb_{res3}\!\coloneqq\!\sqrt{Mb_{z}\left(s_{8max} ight)^{2}+Mb_{y}\left(s_{8max} ight)^{2}}$	8max)
$R_{p0.2N} = 900 \; rac{N}{mm^2}$ nach TB 1	1-1 $K_t = 1 - 0.34 \cdot \log \left(\frac{d_{Kritisch3}}{16 \ \textit{mm}} \right) = 0.818$
Biegung	Torsion
$\sigma_{bmax} \coloneqq \frac{Mb_{res3}}{Wb_3} = 11.74 \; \frac{N}{mm^2}$	$ au_{tmax} \coloneqq \frac{T_{ab}}{W_{t3}} = 23.242 \; rac{N}{mm^2}$
$\sigma_{ba} \coloneqq \frac{\mathbf{K_A} \cdot Mb_{res3}}{Wb_3} = 23.48 \frac{\mathbf{N}}{\mathbf{mm}^2}$	$\tau_{ta} \coloneqq \frac{K_A \cdot T_{ab}}{W_{t3}} = 46.483 \frac{N}{mm^2}$
$\sigma_{bF}\!\coloneqq\!1.2\!ullet\!R_{p0.2N}\!ullet\!K_{t}\!=\!883.092 -\!$	$rac{N}{mm^2}$ $ au_{tF} \coloneqq rac{1.2 \cdot R_{p0.2N} \cdot K_t}{\sqrt{3}} = 509.853 rac{N}{mm^2}$
$\sigma_{bWN} = 440 \frac{N}{mm^2}$	$ au_{tWN} \coloneqq 330 \ rac{N}{mm^2}$
aus TB 3- Rm =110	
eta_{kb} := 2.3	$eta_{kt}\!\coloneqq\!1.55$ wegen Pressverband
$K_g \coloneqq 1 - 0.2 \cdot rac{\log\left(rac{d_{Kritisch3}}{7.5 \ m{mm}} ight)}{\log\left(20 ight)} = 0.8$	aus TB 3-11c
$K_{0\sigma} = 1 - 0.22 \log \left(\frac{Rz}{\mu m}\right) \cdot \left(\log \left(\frac{z}{2}\right)\right)$	aug TR 3-10
$K_V \coloneqq 1$ aus TB 3-	$K_{0\tau}\!\coloneqq\!0.575 \bullet\! K_{0\sigma}\!+\!0.425\!=\!0.925$ -12
$K_{Db} \coloneqq \left(\frac{\beta_{kb}}{K_g} + \frac{1}{K_{0\sigma}} - 1\right) \cdot \frac{1}{K_V} = 2$	2.803 $K_{Dt} := \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 1.869$
$\sigma_{bGW} \coloneqq K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} = 128.375 - \frac{1}{r}$	$rac{oldsymbol{N}}{oldsymbol{mm}^2}$ $ au_{tGW}$:= $K_t \cdot rac{ au_{tWN}}{K_{Dt}}$ = 144.394 $rac{oldsymbol{N}}{oldsymbol{mm}^2}$

$$S_F \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmax}}{\sigma_{bF}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tF}}\right)^2}} = 21.06$$

$$S_D \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tGW}}\right)^2}} = 2.701$$

Ergebnis: Die Abtriebswelle ist dauerfest.

Schmierstoffberechnung

Für Auslegung eines Schmierstoffes für das Getriebe muss zuerst die benötigte kinematische Nennviskosität des Schmieröles bestimmt werden. Diese erhalten wir über TB 20-7 a) mit Hilfe des

Kraft-Geschwindigkeits-Faktors $\frac{k_s}{v}$. Es wird die Umfangsgeschwindigkeit und Durchmesser von

Zahnrad 4 gewählt.

$$u \coloneqq rac{z_4}{z_3}$$
 $n_{Abtrieb} \coloneqq rac{n_{Antrieb}}{i'_{Gesamt}}$

$$\underline{k_s} := \left(3 \cdot \frac{F_{tZ4}}{b_4 \cdot d_4} \cdot \frac{u+1}{u}\right) \cdot \frac{1}{\pi \cdot d_4 \cdot n_{Abtrieb}} = 0.893 \frac{s}{m} \cdot MPa$$

Durch das Ablesen von TB 20-7 a) ergibt sich ca. ein Wert von: $\nu_{40} = 2.3 \cdot 10^2 \cdot \frac{mm^2}{s}$

Gewähltes Schmieröl:

DIN 51517 - CLP 220: Umlaufschmieröl auf Basis eines Mineralöls (C) mit Zusatzstoffen für erhöhten Korrosionsschutz, Alterungsbeständigkeit (L), sowie Herabsetzung der Reibung und des Verschleißes (P).

Geeignet für kinematische Viskositäten von $\nu_{40} \coloneqq 198\dots 242 \ \frac{{\it mm}^2}{\it s}$ - ISO VG 220 (220).

10.08.2022 Seite 27 von 27