数列の和・複素数

2022.06.06

数列

等差数列と等比数列

差が等しい数列を等差数列,等しい差を公差という

ullet 初項をa,公差をdの等差数列の第n項を a_n とおくと

$$a_1=a,\ a_2=a+d,\ a_3=a+2d,\ \cdots$$
一般項 $a_n=\boxed{a+(n-1)d}$

ullet 初項をa,公比をrの等比数列の第n項を a_n とおくと

$$a_1=a,\; a_2=ar,\; a_3=ar^2,\; \cdots$$
一般項 $a_n=\boxed{ar^{n-1}}$

等差数列の和

初項a,公差d,項数が4の場合で説明する

$$S = a + (a+d) + (a+2d) + (a+3d)$$

逆順にして

$$S = (a+3d) + (a+2d) + (a+d) + a$$

2つの式を加えると

$$2S = (2a + 3d) \times 4$$

2で割ると
$$S=rac{4(2a+3d)}{2}=\left|rac{n(a+a+3d)}{2}
ight|$$

等差数列の和の公式

初項a,公差d,項数nの等差数列の和Sは

$$S = \frac{n(2a+(n-1)d)}{2}$$

$$2a + (n-1)d = a + (a + (n-1)d) =$$
初項 $+$ 末項

$$S=rac{項数 imes(初項+末項)}{2}$$

等差数列の和の例題

例題)
$$S=1+3+5+7+\cdots+99$$
 を求めよ.

解)項数nを求める.

初項
$$1$$
,公差 2 より,末項 $($ 第 n 項 $)a_n$ は $a_n=1+2(n-1)=2n-1$ $a_n=2n-1=99$ より $n=rac{99+1}{2}=50$

したがって
$$S=rac{50(1+99)}{2}=2500$$

等比数列の和

初項a,公比r,項数が5の場合で説明する

$$S = a + ar + ar^{2} + ar^{3} + ar^{4}$$
 $rS = ar + ar^{2} + ar^{3} + ar^{4} + ar^{5}$

2つの式を引くと

$$S - rS = a - ar^5$$

$$\therefore (1-r)S = a(1-r^5)$$

したがって,
$$r
eq 1$$
のとき $S = rac{a(1-r^5)}{1-r}$

等比数列の和の公式

初項a,公比r,項数nの等比数列の和Sは

$$S=rac{a(1-r^n)}{1-r}$$

ただし、 $r \neq 1$ とする

$$[$$
覚え方 $]$ $S=rac{
olimits \overline{N} \overline{N} \overline{N} \overline{N} \overline{N}}{1-r}$

項数は第n項の式から求める

$$a_n = ar^{n-1}$$

等比数列の和の例題

例題)
$$S=1+2+2^2+2^3+\cdots+2^{10}$$
を求めよ.

解)初項1,公比2より,末項(第n項 $) <math>a_n$ は $a_n=ar^{n-1}=2^{n-1}$

$$a_n=2^{n-1}=2^{10}$$
 より $n-1=10$ $n=11$

$$S = \frac{1 \times (1 - 2^{11})}{1 - 2} = \frac{1 - 2^{11}}{-1} = 2^{11} - 1$$

課題 (等差数列と等比数列の和)

課題 0605-1 次の和を求めよ.(TextP202,204)

- [1] 初項 3, 末項 19, 項数 15 の等差数列の和
- [2] 初項 3, 公比 2 の等比数列の初項から第 n 項までの和

和の記号 (シグマ)

例) 1, 2, 3, …, 10 の和を表す

(1)
$$S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10$$

(2)
$$S = 1 + 2 + 3 + \cdots + 9 + 10$$

(3) 第k 項は k $k=1,\ 2,\ 3,\ \cdots, 10$ $S=\sum_{l=1}^{10} k$ KeTMath $\mathrm{sum(k=1,10,k)}$

k に $1, 2, \cdots, 10$ を順に入れて加えるという意味

∑ の使い方

例 1)
$$\sum_{k=1}^{5} (2k+1) = \boxed{3+5+7+9+11}$$

例 2)
$$1^2+2^2+3^2+\cdots+20^2=\sum_{k=1}^{\infty} \boxed{k^2}$$

第
$$k$$
項は k^2 , $k=1, 2, \cdots 20$

課題 0605-2 S, n, a_k を求めよ.

$$[1] \ S = \sum_{k=1}^{4} \frac{1}{k} \qquad [2] \ 2 + 4 + 6 + \dots + 10 = \sum_{k=1}^{n} a_k$$

複素数

虚数

•
$$x^2 + 6x + 10 = 0$$
 (1)
 $(x+3)^2 - 9 + 10 = 0$ より $(x+3)^2 = -1$ (2)

- 実数では,2乗して −1 になることはない
- \bullet 2乗して-1になるものも数と考え,iとおく(虚数単位)
- $ullet i^2 = -1$ また $(-i)^2 = -1$
- ullet 2 乗して-1になる数は $\pm i$ があるが $\sqrt{-1}=i$ とする
- ullet (2) より $x+3=\pm i$ $x=-3\pm i$

負の数の平方根

例) $\sqrt{-4}$

● 2乗して -4 になる数

$$(2i)^2=4i^2=-4, \ (-2i)^2=4i^2=-4$$
 $\sqrt{-4}=2i$ と定める

例)
$$\sqrt{-2} = \boxed{\sqrt{2}\,i}$$

$$\sqrt{-a} = \sqrt{a} i$$

課題 0605-3 計算せよ.

$$[1] \sqrt{-6}$$

$$[3] \sqrt{-6}\sqrt{-2}$$

$$[2] \sqrt{-rac{9}{4}}$$

$$[4] \sqrt{-3}\sqrt{2}$$

複素数

- ullet z = a + b i の形の数を複素数という (a,b は実数) $1 + i, \ 2 + 3i, \ 4 2i, \cdots$
- a を z の実部,b を z の虚部という

複素数の計算

- ullet ふつうの式のように計算し, i^2 が出たら-1 で置き換える
- 和 (2+3i)+(5-i)=|7+2i|
- 積 (2+3i)(4+i)= $8+2i+12i+3i^2=8+14i-3=5+14i$ (2+i)(2-i)= $4-i^2=4+1=5$

$$(a+bi)(a-bi) = a^2 + b^2$$

複素数の計算(商)

$$egin{aligned} ullet rac{1+3i}{2+i} \ & (2+i)(2-i) = 5$$
を用いる $=rac{(1+3i)(2-i)}{(2+i)(2-i)} = rac{5+5i}{5} = 1+i \end{aligned}$

複素数の計算問題

課題 0605-4 計算せよ.

TextP132 問 1

$$[1] \ (1-3i) + (2-5i) \ [2] \ (10-7i) - (3+9i)$$

$$[3] (-4+7i)(3+2i) [4] (-2+6i)(2+6i)$$

$$[5] \ \frac{5+2i}{1-3i} \qquad \qquad [6] \ \frac{1+i}{-2+5i} - \frac{4-2i}{2+5i}$$

複素数平面

$$[1]$$
 $2+3i \leftrightarrow$ 点 $(2,3)$

$$[2]$$
 $-2+i \leftrightarrow$ 点

- [3] $3 \leftrightarrow$ 点
- [4] $-3 \leftrightarrow$ 点
- [5] $4i \leftrightarrow$ 点

課題 0605-5 [2]-[5] の点を求めよ ここでは, (2,3) の代わりに[2,3] の形で答えよ

複素数の和z+wと図形

- $z=a+bi,\ w=c+di\ (a,b,c,d$ は実数)z+w=a+bi+c+di=(a+c)+(b+d)i
- 複素数の和を動かそう
 - (1) ID に学生番号を入れて「確認」「出題」を押す.
 - (2) 赤い点をz+w(=lpha+eta) の位置に動かす.
 - (3) 点が決まったら,「採点」を押す.
 - (4) 以上を4回ほど繰り返す.

課題 0605-6 O, z, z+w, w でできる四辺形は何か.

絶対値と偏角

• z=a+biを平面上の点 $(a,\ b)$ で表したとき

絶対値 |z|

原点Oとzの距離

$$|z| = \sqrt{a^2 + b^2}$$

偏角 $\arg z$

Ozとx軸(正)の角 θ

例) z = 1 + i

絶対値 $\sqrt{2}$,偏角

絶対値と偏角の問題

課題 0605-7 次の複素数の絶対値と偏角を求めよ.

$$[1] \ z_1 = \sqrt{3} + i \qquad [2] \ z_2 = i$$

$$[2] \ z_2=i$$

$$[3] \ z_3 = -2 \qquad \qquad [4] \ z_4 = -3i$$

$$[4]$$
 $z_4=-3i$

絶対値と偏角の応用問題

課題 0605-8 $z=a+bi,\ w=c+di$ とする.

- $[1] |z|^2$ をa,bで表せ
- $[2] |w|^2$ をc,dで表せ
- [3] zwの実部と虚部をa,b,c,dで表せ
- $[4] |zw|^2$ を計算せよ
- $[5] |zw|^2 = |z|^2 |w|^2$ を証明せよ