US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication Kind Code Publication Date Inventor(s) 20250253653 A1 August 07, 2025 DeJonge; Stuart W. et al.

DIRECT-CURRENT POWER DISTRIBUTION IN A CONTROL SYSTEM

Abstract

A control system may include a direct-current (DC) power bus for charging internal energy storage elements in control devices of the control system. For example, the control devices may be motorized window treatments configured to adjust a position of a covering material to control the amount of daylight entering a space. The system may include a bus power supply that may generate a DC voltage on the DC power bus. For example, the DC power bus may extend from the bus power supply around the perimeter of a floor of the building and may be connected to all of the motorized window treatments on the floor (e.g., in a daisy-chain configuration). An over-power protection circuit may be configured to disconnect the bus power supply if a bus current exceeds a threshold for a period of time.

Inventors: DeJonge; Stuart W. (Riegelsville, PA), Wu; Chen Ming (Emmaus, PA)

Applicant: Lutron Technology Company LLC (Coopersburg, PA)

Family ID: 78086125

Assignee: Lutron Technology Company LLC (Coopersburg, PA)

Appl. No.: 19/184121

Filed: April 21, 2025

Related U.S. Application Data

parent US continuation 18200726 20230523 parent-grant-document US 12300996 child US 19184121 parent US continuation 17477463 20210916 parent-grant-document US 11677245 child US 18200726 us-provisional-application US 63078976 20200916 us-provisional-application US 63105033 20201023

Publication Classification

Int. Cl.: H02J1/14 (20060101); E06B9/68 (20060101)

U.S. Cl.:

CPC **H02J1/14** (20130101); **E06B9/68** (20130101); E06B2009/6809 (20130101); H02J2310/52

(20200101)

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application is a continuation of Non-Provisional U.S. patent application Ser. No. 18/200,726, filed May 23, 2023, which is a continuation of Non-Provisional U.S. patent application Ser. No. 17/477,463, filed Sep. 16, 2021, which claims the benefit of Provisional U.S. Patent Application No. 63/078,976, filed Sep. 16, 2020 and Provisional U.S. Patent Application No. 63/105,033, filed Oct. 23, 2020, the disclosures of which are incorporated herein by reference in their entirety.

BACKGROUND

[0002] A typical window treatment, such as a roller shade, a drapery, a roman shade, and/or a venetian blind, may be mounted in front of a window or opening to control an amount of light that may enter a user environment and/or to provide privacy. A covering material (e.g., a shade fabric) on the window treatment may be adjusted to control the amount of daylight from entering the user environment and/or to provide privacy. The covering material may be manually controlled and/or automatically controlled using a motorized drive system to provide energy savings and/or increased comfort for occupants. For example, the covering material may be raised to allow light to enter the user environment and allow for reduced use of lighting systems. The covering material may also be lowered to reduce the occurrence of sun glare.

SUMMARY

[0003] A control system may include a power bus for charging (e.g., trickle charging) internal energy storage elements in control devices of the control system. For example, the control devices may be motorized window treatments configured to adjust a position of a covering material to control the amount of daylight entering a space. The system may include a bus power supply that may generate a direct-current (DC) voltage on the power bus. The bus power supply may generate a bus current to power one or more devices connected to the power bus. The bus power supply may comprise an over-power protection circuit configured to disconnect the bus power supply (e.g., a power converter of the bus power supply) from the power bus. For example, the over-power protection circuit may be configured to disconnect the bus power supply if the bus current exceeds a threshold for a period of time. In some examples, the bus power supply may be configured with a plurality of thresholds, where each threshold has a different, associated time limit. The power bus may extend from the bus power supply around the perimeter of a floor of the building and may be connected to all of the motorized window treatments on the floor (e.g., in a daisy-chain configuration). Wiring the power bus in such a manner may dramatically reduce the installation labor and wiring costs of an installation, as well as decreasing the chance of a miswire.

[0004] Each control device may be configured to control when the internal energy storage element charges from the bus voltage. For example, each control device may be configured to determine when to charge the internal energy storage element from the bus voltage in response to a message received via a communication circuit. Each control device may be configured to transmit a message including a storage level of the internal energy storage element. The storage level of the internal storage element may be a percentage of a maximum capacity (e.g., 60% of the maximum storage capacity) or a percentage of a maximum voltage, or a preset voltage level of the internal storage element.

[0005] A drive unit (e.g., a motor drive unit, such as a drive unit for a motorized window treatment) may be used in a power distribution system, where the power distribution system may comprises the bus power supply and a plurality of drive units. The drive unit may include a power limiting circuit that is configured to conduct current from a power bus and generate a supply voltage. The drive unit may include a load circuit (e.g., a motor drive circuit) that is configured to receive the supply voltage and control power delivered to an electrical load. The drive unit may include a control circuit that is configured to determine an allocated amount of power that the drive unit can consume from the power bus based on an amount of power required by the drive unit, a cumulative total power required by the plurality of drive units, and the power capability of the bus power supply. The control circuit may be configured to control the power limiting circuit to consume the allocated amount of power from the power bus. For example, the control circuit is configured to determine a proportional amount of power required by the drive unit and the cumulative total power required by the plurality of drive units, and may be configured to determine the allocated amount of power based on the proportional amount of power for the drive unit and a power capability of the bus power supply. The control circuit may be configured to determine the cumulative total power required by the plurality of drive units based on a magnitude of a current conducted by the plurality of drive units onto the power bus.

[0006] The drive unit may also include an internal energy storage element that is configured to store enough power for multiple operations of the load circuit. In such examples, the amount of power required by the drive unit may be based on an amount of power required by the load circuit to power the electrical load and a voltage across the internal energy storage element.

[0007] The bus power supply may be configured to provide the bus voltage on the power bus during an on portion of a periodic time period, and configured to not provide the bus voltage on the power bus during an off portion of the periodic time period. In such instances, the control circuit may be configured to measure a magnitude of the bus voltage across the power bus during the off portion of the periodic time period, where the magnitude of the bus voltage across the power bus may indicate the cumulative total power required by the plurality of drive units.

[0008] For example, the control circuit may be configured to conduct a power-requirement current onto the power bus during the off portion of the periodic time period, where a magnitude of the power-requirement current may be proportional to the amount of power required by the drive unit. The control circuit may be configured to measure a magnitude of the bus voltage across the power bus during the off portion of the periodic time period. The control circuit may be configured to calculate a proportionate amount of the power capability of the bus power supply that the drive unit can consume during the next on portion of the periodic time period based on the power required by the drive unit and the magnitude of the bus voltage across the power bus during the off portion of the periodic time period. The control circuit may be configured to control the power limiting circuit to consume the allocated amount of power from the power bus during the next on portion of the periodic time period, where the allocated amount of power may be determined based on the proportionate amount that the drive unit can consume multiplied by the power capability of the bus power supply. In some examples, the control circuit may be configured to determine the amount of power required by the drive unit based on a power required by the drive unit to power the electrical load, charge an internal energy storage element of the motor drive unit, and a standby power consumption of the motor drive unit. [0009] The control circuit may be configured to signal the required amount of power of the drive unit to the bus power supply prior to controlling the power limiting circuit to consume the allocated amount of power from the power bus.

[0010] The drive unit may be part of a system that includes a plurality of drive units and a bus power supply that includes a power converter that is configured to generate the bus voltage on the power bus, where the bus power supply may have a power capability that defines a maximum amount of power that the bus power supply can deliver over the power bus. The bus power supply may be characterized by a nominal power capability that defines a nominal power threshold at or below which the bus power supply may supply power indefinitely to the plurality of drive units, wherein the nominal power threshold may be less than the maximum amount of power defined by the power capability of the bus power supply. The bus power supply may be configured to continuously supply power to the power bus at or below the nominal power threshold without interruption or disconnection by an over-power protection circuit of the bus power supply. The bus power supply may be configured to supply power to the plurality of drive units at one or more increased power capabilities that are greater than the nominal power capability for up to, but not longer than, respective predetermined increased-power time periods.

[0011] The bus power supply may include a power converter circuit and an over-power protection circuit. The over-power protection circuit may be configured disconnect the bus voltage from the power bus in response to a magnitude of an output power of the power converter circuit exceeding a first increased-power threshold for more than a first increased-power time period, and may be configured to disconnect the bus voltage from the power bus in response to the magnitude of the output power of the power converter circuit exceeding a second increased-power threshold for more than a second increased-power time period.

[0012] The bus power supply may include a variable resistor, and the bus power supply may be configured to adjust a variable resistance of the variable resistor to adjust the allocated power calculated by each of the motor drive units on the power bus. An increase of the variable resistance may cause the control circuit of each of the plurality of drive units to determine that the cumulative total power required by the plurality of drive units has increased.

[0013] A load control system for controlling a plurality of electrical loads may include a bus power supply and a plurality of drive units (e.g., motor drive units). The bus power supply may include a power converter. The bus power supply may be configured to generate a bus voltage on a power bus during an on portion of a periodic time period, and configured to not generate the bus voltage on the power bus during an off portion of the periodic time period. The bus power supply may have a power capability that defines a maximum amount of power that the bus power supply can deliver over the power bus.

[0014] A drive unit may include a power limiting circuit that is configured to conduct current from the power bus and generate a supply voltage. The drive unit may include an internal energy storage element and/or a load circuit. The load circuit may be configured to receive the supply voltage and control power delivered to an electrical load. The drive unit may include a control circuit that is configured to determine an amount of power required by the drive unit to power the electrical load and charge the internal energy storage element. The control circuit may be configured to conduct a power-requirement current onto the power bus during the off portion of the periodic time period. A magnitude of the power-requirement current may be proportional to the amount of power required by the drive unit. The control circuit may be configured to measure a magnitude of the bus voltage across the power bus during the off portion of the periodic time period. The control circuit may be configured to calculate a proportionate amount of the power capability of the bus power supply that the drive unit can consume during the next on portion of the periodic time period based on the power required by the drive unit and the magnitude of the bus voltage across the power bus during the off portion of the periodic time period. The control circuit may be configured to control the power limiting circuit to consume the proportionate amount of power from the power bus during the next on portion of the periodic time period. The allocated amount of power may be determined based on the proportionate amount that the drive unit can consume multiplied by the power capability of the bus power supply. The magnitude of the bus voltage across the power bus may represent the cumulative total power required by the plurality of drive units. [0015] A bus power supply, which may be used in a load control system for controlling a plurality of electrical

loads, may include a power converter circuit and an over-protection circuit. The power converter circuit may be configured to generate a DC bus voltage on a DC power bus of the load control system. The over-current protection circuit may be configured to disconnect the power converter circuit from the power bus in response to a magnitude of a bus current of the power bus exceeding a first current threshold for a first time period or exceeding a second current threshold for a second time period. In some examples, the over-current protection circuit may be configured to render a controllably conductive device non-conductive to disconnect the power converter circuit from the power bus. For example, the controllably conductive device may include two fieldeffect transistors (FETs) in an anti-series configuration. The first current threshold may be smaller than the second current threshold, and the first time period may be longer than the second current threshold. [0016] The over-current protection circuit may include a first comparator that is configured to compare the bus current to the first current threshold, and a second comparator that is configured to compare the bus current to the second current threshold. The over-current protection circuit may also include a first timer that is configured to determine whether the first time period has elapsed, and a second timer that is configured to determine whether the second time period has elapsed. The over-current protection circuit may include a latching circuit configured to disconnect the power converter circuit from the power bus. The over-current protection circuit may be further configured to disconnect the power converter circuit from the power bus instantaneously when the bus current exceeds an instantaneous trip current.

[0017] A bus power supply, which is configured to provide a bus voltage to a plurality of devices, may include a first controllable switching circuit and a second controllable switching circuit. The second controllable switching circuit may be coupled between a junction of the first controllable switching circuit and circuit common through a sense resistor. The bus power supply may include a control circuit that is configured to render the first controllable switching circuit conductive and render the second controllable switching circuit non-conductive for an on portion of a periodic time period to provide the bus voltage on the power bus during the on portion of the periodic time period, and render the first controllable switching circuit non-conductive and render the second controllable switching circuit non-conductive for an off portion of the periodic time period to not provide the bus voltage on the power bus during the off portion of the periodic time period. The control circuit may be configured to measure a total amount of voltage across the power bus during the off portion of the periodic time period, and determine a total power requirement of the plurality of devices based on the measurement.

[0018] The bus power supply may include a first power connector for receiving an input voltage from an external power supply, and a second power connector that is configured to be connected to the power bus, wherein the bus is configured to be electrically coupled to the plurality of devices. The first controllable switching circuit may be coupled between an output of a power converter and the second power connector. The second controllable switching circuit and the second power connector and circuit common through the sense resistor. The second controllable switching circuit and the sense resistor may be coupled in parallel between the terminals of the second power connector. The external power supply may include an alternating-current power source for generating an AC main line voltage.

[0019] The sense resistor may include a variable resistor. The control circuit may be configured to adjust a variable resistance of the variable resistor to adjust an amount of power that the bus power supply can deliver over the power bus during the on portion of the periodic time period. In some examples, the bus power supply may include a power converter circuit, and the bus power supply may have a power capability that defines a maximum output power of the power converter circuit. In such examples, the control circuit may be configured to adjust the variable resistance of the variable resistor to adjust a magnitude of the output power of the power converter circuit. The control circuit may be configured to adjust the variable resistance of the variable resistor to adjust the total power requirement of the plurality of devices. The bus power supply may be characterized by a nominal power capability that defines a nominal power threshold at or below which the bus power supply may supply power indefinitely to the plurality of devices. The bus power supply may be configured to adjust the variable resistance of the variable resistor to allow the plurality of devices to consume a magnitude of power on the power bus that is greater than (e.g., and/or less than) the nominal power threshold.

[0020] The bus power supply comprises a current source, and the bus power supply may be configured to conduct current onto the power bus during the off portion of the periodic time period to adjust an amount of power consumed by the plurality of devices.

[0021] The bus power supply may be configured to supply power to the plurality of devices at one or more increased power capabilities that are greater than the nominal power capability for up to, but not longer than, respective predetermined increased-power time periods. For example, the bus power supply may include an over-power protection circuit that is configured to disconnect the bus voltage from the power bus in response to an over-power condition. The first controllable switching circuit may be coupled between an output of the over-power protection circuit and the power bus. The bus power supply may continuously supply power to the power bus at or below the nominal power threshold without interruption or disconnection by the over-power protection circuit of the bus power supply. The bus power supply may include a power converter circuit. The over-power protection circuit may be configured disconnect the bus voltage from the power bus in response to a magnitude of an output power of the power converter circuit exceeding a first increased-power threshold for more than a first increased-power time period, and may be configured to disconnect the bus voltage from the power bus in response to the magnitude of the output power of the power converter circuit exceeding a second increased-power threshold for more than a second increased-power time period.

[0022] A bus power supply may include a power converter circuit configured to generate a power supply voltage, and an over-current protection circuit configured to receive the power supply voltage from the power converter circuit and provide the bus voltage on the power bus. The over-current protection circuit may be configured to disconnect the power converter circuit from the power bus in response to a magnitude of the power supply voltage exceeding a first power threshold for a first period of time, and/or disconnect the power converter circuit from the power bus in response to the magnitude of the power supply voltage exceeding a second power threshold for a second period of time, wherein the first power threshold is smaller than the second power threshold, and the first time period is longer than the second time period. The over-current protection circuit may be configured to disconnect the power converter circuit from the power bus instantaneously when the magnitude of the bus current exceeds a maximum power threshold.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] FIG. **1** is a simplified block diagram of a load control system having load control devices and motorized window treatments.

[0024] FIGS. **2**A-**2**C are floorplan views of a direct-current (DC) power distribution system for a control system.

[0025] FIG. **3** is a block diagram of an example motor drive unit of a motorized window treatment.

[0026] FIG. **4**A is a block diagram of an example bus power supply used in a DC power distribution system of a load control system.

[0027] FIG. **4**B is a block diagram of an example over-power protection circuit of a bus power supply used in a DC power distribution system of a load control system.

[0028] FIG. **4**C is a block diagram of an example over-power protection circuit of a bus power supply used in a DC power distribution system of a load control system.

[0029] FIG. **4**D illustrates an example of increased-power threshold and associated increased-power time periods for an over-power protection circuit.

[0030] FIG. **5** shows examples of waveforms that illustrate an operation of a bus power supply that is

connected to a power bus in a DC power distribution system.

- [0031] FIG. **6** is a block diagram of an example motor drive unit of a motorized window treatment.
- [0032] FIG. **7** is an example of a control device used in a DC power distribution system.
- [0033] FIG. **8** shows examples of waveforms that illustrate an operation of two motor drive units that are connected to a power bus in a DC power distribution system.
- [0034] FIG. **9** is a flowchart of an example procedure that may be performed by a control circuit of a motor drive unit.
- [0035] FIG. **10**A is a flowchart of an example procedure that may be performed by a bus power supply.
- [0036] FIG. **10**B is a flowchart of an example procedure that may be performed by a bus power supply.
- [0037] FIG. 11 is a block diagram of an example DC power distribution system.
- [0038] FIG. **12** is an example waveform that illustrates an output power of a bus power supply.

DETAILED DESCRIPTION

[0039] FIG. **1** is a simple diagram of an example load control system for controlling the amount of power delivered from an alternating-current (AC) power source (not shown) to one or more electrical loads. The load control system **100** may comprise a system controller **110** (e.g., a load controller or a central controller) operable to transmit and/or receive digital messages via a wired and/or a wireless communication link. For example, the system controller **110** may be coupled to one or more wired control devices via a wired digital communication link **104**. The system controller **110** may be configured to transmit and/or receive wireless signals, e.g., radio-frequency (RF) signals **106**, to communicate with one or more wireless control devices. The load control system **100** may comprise a number of control-source devices and/or a number of control-target devices for controlling an electrical load. The control-source devices may be input devices operable to transmit digital messages configured to control an electrical load via a control-target device. For example, controlsource devices may transmit the digital messages in response to user input, occupancy/vacancy conditions, changes in measured light intensity, or other input information. The control-target devices may be load control devices operable to receive digital messages and control respective electrical loads in response to the received digital messages. A single control device of the load control system **100** may operate as both a control-source and a control-target device. The system controller 110 may be configured to receive digital messages from the control-source devices and transmit digital messages to the control-target devices in response to the digital messages received from the control-source devices. The control-source devices and the control-target devices may also, or alternatively, communicate directly.

[0040] The load control system **100** may comprise a load control device, such as a dimmer switch **120**, for controlling a lighting load **122**. The dimmer switch **120** may be adapted to be wall-mounted in a standard electrical wallbox. The dimmer switch **120** may comprise a tabletop or plug-in load control device. The dimmer switch 120 may comprise a toggle actuator 124 (e.g., a button) and/or an intensity adjustment actuator 126 (e.g., a rocker switch). Successive actuations of the toggle actuator 124 may toggle, e.g., turn off and on, the lighting load 122. Actuations of an upper portion or a lower portion of the intensity adjustment actuator 126 may respectively increase or decrease the amount of power delivered to the lighting load 122 and increase or decrease the intensity of the lighting load from a minimum intensity (e.g., approximately 1%) to a maximum intensity (e.g., approximately 100%). The dimmer switch **120** may further comprise a plurality of visual indicators 128, e.g., light-emitting diodes (LEDs), which may be arranged in a linear array and/or may be illuminated to provide feedback of the intensity of the lighting load 122. The dimmer switch 120 may be configured to receive digital messages from the system controller **110** via the RF signals **106** and to control the lighting load **122** in response to the received digital messages. The dimmer switch **120** may also, or alternatively, be coupled to the wired digital communication link 104. Examples of wall-mounted dimmer switches are described in greater detail in U.S. Pat. No. 5,248,919, issued Sep. 28, 1993, entitled LIGHTING CONTROL DEVICE, and U.S. Pat. No. 9,679,696, issued Jun. 13, 2017, entitled WIRELESS LOAD CONTROL DEVICE, the entire disclosures of which are hereby incorporated by reference. [0041] The load control system **100** may further comprise one or more remotely-located load control devices, such as light-emitting diode (LED) drivers **130** for driving respective LED light sources **132** (e.g., LED light engines). The LED drivers **130** may be located remotely, for example, in the lighting fixtures of the respective LED light sources 132. The LED drivers 130 may be configured to receive digital messages from the system controller **110** via the digital communication link **104** and to control the respective LED light sources **132** in response to the received digital messages. The LED drivers **130** may be coupled to a separate digital communication link, such as an Ecosystem® or digital addressable lighting interface (DALI) communication link, and the load control system **100** may include a digital lighting controller coupled between the digital

communication link **104** and the separate communication link. The LED drivers **132** may include internal RF

communication circuits or be coupled to external RF communication circuits (e.g., mounted external to the lighting fixtures, such as to a ceiling) for transmitting and/or receiving the RF signals **106**. The load control system **100** may further comprise other types of remotely-located load control devices, such as, for example, electronic dimming ballasts for driving fluorescent lamps.

[0042] The load control system **100** may further comprise a plurality of daylight control devices, e.g., motorized window treatments, such as motorized roller shades 140, to control the amount of daylight entering the building in which the load control system may be installed. A motorized roller shades **140** may comprise a covering material (e.g., a window treatment fabric **142**). The covering material may be wound around a roller tube for raising and/or lowering the window treatment fabric 142. The motorized roller shades 140 may comprise motor drive units 144 (e.g., electronic drive units). The motor drive units 144 may be located inside the roller tube of the motorized roller shade. The motor drive units 144 may be coupled to the digital communication link **104** for transmitting and/or receiving digital messages. The motor drive units **144** may include a control circuit. The control circuit may be configured to adjust the position of the window treatment fabric **142**, for example, in response to digital messages received from the system controller **110** via the digital communication link **104**. Each of the motor drive units **144** may include memory for storing association information for associations with other devices and/or instructions for controlling the motorized roller shade **140**. The motor drive units **144** may comprise an internal RF communication circuit. The motor drive units **144** may also, or alternatively, be coupled to an external RF communication circuit (e.g., located outside of the roller tube) for transmitting and/or receiving the RF signals **106**. The load control system **100** may comprise other types of daylight control devices, such as, for example, a cellular shade, a drapery, a Roman shade, a Venetian blind, a Persian blind, a pleated blind, a tensioned roller shade systems, an electrochromic or smart window, and/or other suitable daylight control device.

[0043] The load control system **100** may comprise one or more other types of load control devices, such as, for example, a screw-in luminaire including a dimmer circuit and an incandescent or halogen lamp; a screw-in luminaire including an LED driver and an LED light source; an electronic switch, a controllable circuit breaker, or other switching device for turning an appliance on and off; a plug-in load control device, a controllable electrical receptacle, or a controllable power strip for controlling one or more plug-in loads; a motor control unit for controlling a motor load, such as a ceiling fan or an exhaust fan; a drive unit for controlling a motorized window treatment or a projection screen; motorized interior or exterior shutters; a thermostat for a heating and/or cooling system; a temperature control device for controlling a setpoint temperature of a heating, ventilation, and air conditioning (HVAC) system; an air conditioner; a compressor; an electric baseboard heater controller; a controllable damper; a variable air volume controller; a fresh air intake controller; a ventilation controller; hydraulic valves for use in radiators and radiant heating systems; a humidity control unit; a humidifier; a dehumidifier; a water heater; a boiler controller; a pool pump; a refrigerator; a freezer; a television or computer monitor; a video camera; an audio system or amplifier; an elevator; a power supply; a generator; an electric charger, such as an electric vehicle charger; and/or an alternative energy controller.

[0044] The load control system **100** may comprise one or more input devices, e.g., such as a wired keypad device **150**, a battery-powered remote control device **152**, an occupancy sensor **154**, a daylight sensor **156**, and/or a shadow sensor **158**. The wired keypad device **150** may be configured to transmit digital messages to the system controller **110** via the digital communication link **104** in response to an actuation of one or more buttons of the wired keypad device. The battery-powered remote control device **152**, the occupancy sensor **154**, the daylight sensor **156**, and/or the shadow sensor **158** may be wireless control devices (e.g., RF transmitters) configured to transmit digital messages to the system controller 110 via the RF signals 106 (e.g., directly to the system controller). For example, the battery-powered remote control device **152** may be configured to transmit digital messages to the system controller **110** via the RF signals **106** in response to an actuation of one or more buttons of the battery-powered remote control device **152**. The occupancy sensor **154** may be configured to transmit digital messages to the system controller **110** via the RF signals **106** in response to detection of occupancy and/or vacancy conditions in the space in which the load control system **100** may be installed. The daylight sensor **156** may be configured to transmit digital messages to the system controller **110** via the RF signals **106** in response to detection of different amounts of natural light intensity. The shadow sensor **158** may be configured to transmit digital messages to the system controller **110** via the RF signals **106** in response to detection of an exterior light intensity coming from outside the space in which the load control system 100 may be installed. The system controller **110** may be configured to transmit one or more digital messages to the load control devices (e.g., the dimmer switch **120**, the LED drivers **130**, and/or the motorized roller shades **140**) in response to the received digital messages, e.g., from the wired keypad device **150**, the battery-powered remote

control device **152**, the occupancy sensor **154**, the daylight sensor **156**, and/or the shadow sensor **158**. While the system controller **110** may receive digital messages from the input devices and/or transmit digital messages to the load control devices for controlling an electrical load, the input devices may communicate directly with the load control devices for controlling the electrical load.

[0045] The load control system **100** may comprise a wireless adapter device **160** that may be coupled to the digital communication link **104**. The wireless adapter device **160** may be configured to receive the RF signals **106**. The wireless adapter device **160** may be configured to transmit a digital message to the system controller **110** via the digital communication link **104** in response to a digital message received from one of the wireless control devices via the RF signals **106**. For example, the wireless adapter device **160** may re-transmit the digital messages received from the wireless control devices on the digital communication link **104**.

[0046] The occupancy sensor **154** may be configured to detect occupancy and/or vacancy conditions in the space in which the load control system **100** may be installed. The occupancy sensor **154** may transmit digital messages to the system controller **110** via the RF signals **106** in response to detecting the occupancy and/or vacancy conditions. The system controller **110** may be configured to turn one or more of the lighting load **122** and/or the LED light sources **132** on and off in response to receiving an occupied command and a vacant command, respectively. The occupancy sensor **154** may operate as a vacancy sensor, such that the lighting loads are turned off in response to detecting a vacancy condition (e.g., not turned on in response to detecting an occupancy condition).

[0047] The daylight sensor **156** may be configured to measure a total light intensity in the space in which the load control system is installed. The daylight sensor **156** may transmit digital messages including the measured light intensity to the system controller **110** via the RF signals **106**. The digital messages may be used to control an electrical load (e.g., the intensity of lighting load **122**, the motorized window shades **140** for controlling the level of the covering material, the intensity of the LED light sources **132**) via one or more control load control devices (e.g., the dimmer switch **120**, the motor drive unit **144**, the LED driver **130**).

[0048] The shadow sensor **158** may be configured to measure an exterior light intensity coming from outside the space in which the load control system **100** may be installed. The shadow sensor **158** may be mounted on a façade of a building, such as the exterior or interior of a window, to measure the exterior natural light intensity depending upon the location of the sun in sky. The shadow sensor **158** may detect when direct sunlight is directly shining into the shadow sensor **158**, is reflected onto the shadow sensor **158**, or is blocked by external means, such as clouds or a building, and may send digital messages indicating the measured light intensity. The shadow sensor **158** may transmit digital messages including the measured light intensity to the system controller **110** via the RF signals **106**. The digital messages may be used to control an electrical load (e.g., the intensity of lighting load **122**, the motorized window shades **140** for controlling the level of the covering material, and/or the intensity of the LED light sources **132**) via one or more control load control devices (e.g., the dimmer switch **120**, the motor drive unit **144**, and/or the LED driver **130**). The shadow sensor **158** may also be referred to as a window sensor, a cloudy-day sensor, or a sun sensor.

[0049] The load control system **100** may comprise other types of input device, such as: temperature sensors; humidity sensors; radiometers; pressure sensors; smoke detectors; carbon monoxide detectors; air quality sensors; motion sensors; security sensors; proximity sensors; fixture sensors; partition sensors; keypads; kinetic-or solar-powered remote controls; key fobs; cell phones; smart phones; tablets; personal digital assistants; personal computers; laptops; timeclocks; audio-visual controls; safety devices; power monitoring devices (such as power meters, energy meters, utility submeters, utility rate meters); central control transmitters; residential, commercial, or industrial controllers; or any combination of these input devices. These input devices may transmit digital messages to the system controller **110** via the RF signals **106**. The digital messages may be used to control an electrical load (e.g., the intensity of lighting load **122**, the motorized window shades **140** for controlling the level of the covering material, and/or the intensity of the LED light sources **132**) via one or more control load control devices (e.g., the dimmer switch **120**, the motor drive unit **144**, and/or the LED driver **130**).

[0050] The system controller **110** may be configured to control the load control devices (e.g., the dimmer switch **120**, the LED drivers **130**, and/or the motorized roller shades **140**) according to a timeclock schedule. The timeclock schedule may be stored in a memory in the system controller. The timeclock schedule may be defined by a user of the system controller (e.g., a system administrator using a programming mode of the system controller **110**). The timeclock schedule may include a number of timeclock events. The timeclock events may have an event time and a corresponding command or preset. The system controller **110** may be configured to keep track of the present time and/or day. The system controller **110** may transmit the appropriate command or preset at the respective event time of each timeclock event.

[0051] The load control system **100** may be part of an automated window treatment control system. The system controller **110** may control the shades according to automated window treatment control information. For example, the automated window treatment control information may include the angle of the sun, sensor information, an amount of cloud cover, and/or weather data, such as historical weather data and real-time weather data. For example, throughout course of calendar day, the system controller **110** of the automated window treatment control system may adjust the position of the window treatment fabric multiple times, based on the calculated position of the sun or sensor information. The automated window treatment control system may determine the position of the window treatments in order to affect a performance metric. The automated window treatment system may command the system controller **110** to adjust the window treatments to the determined position in order to affect a performance metric. The automated window treatment control system may operate according to a timeclock schedule. Based on the timeclock schedule, the system controller may change the position of the window treatments throughout a calendar day. The timeclock schedule may be set to prevent the daylight penetration distance from exceeding a maximum distance into an interior space (e.g., work space, transitional space, or social space). The maximum daylight penetration distance may be set to a user's workspace. The system controller **110** may adjust the position of the window treatments according to collected sensor information.

[0052] The system controller **110** may be operable to be coupled to a network, such as a wireless or wired local area network (LAN) via a network communication bus **162** (e.g., an Ethernet communication link), e.g., for access to the Internet. The system controller **110** may be connected to a network switch **164** (e.g., a router or Ethernet switch) via the network communication bus **162** for allowing the system controller **110** to communicate with other system controllers for controlling other electrical loads. The system controller **110** may be wirelessly connected to the network, e.g., using Wi-Fi technology. The system controller **110** may be configured to communicate via the network with one or more network devices, such as a smart phone, a personal computer **166**, a laptop, a tablet device (e.g., a hand-held computing device), a wireless-communication-capable television, and/or any other suitable wireless communication device (e.g., an Internet-Protocol-enabled device). The network device may be operable to transmit digital messages to the system controller **110** in one or more Internet Protocol packets.

[0053] The operation of the load control system **100** may be programmed and/or configured using the personal computer **166** or other network device. The personal computer **166** may execute a graphical user interface (GUI) configuration software for allowing a user to program how the load control system **100** may operate. The configuration software may generate load control information (e.g., a load control database) that defines the operation and/or performance of the load control system **100**. For example, the load control information may include information regarding the different load control devices of the load control system (e.g., the dimmer switch **120**, the LED drivers **130**, and/or the motorized roller shades **140**). The load control information may include information regarding associations between the load control devices and the input devices (e.g., the wired keypad device **150**, the battery-powered remote control device **152**, the occupancy sensor **154**, the daylight sensor **156**, and/or the shadow sensor **158**), and/or how the load control devices may respond to input received from the input devices.

[0054] The system controller **110** may be configured to automatically control the motorized window treatments (e.g., the motorized roller shades **140**). The motorized window treatments may be controlled to save energy and/or improve the comfort of the occupants of the building in which the load control system **100** may be installed. For example, the system controller **110** may be configured to automatically control the motorized roller shades **140** in response to a timeclock schedule, the daylight sensor **156**, and/or the shadow sensor **158**. The roller shades **140** may be manually controlled by the wired keypad device **150** and/or the battery-powered remote control device **152**.

[0055] FIGS. 2A-2C are floorplan views of a direct-current (DC) power distribution system 200 for a control system (e.g., the load control system 100 shown in FIG. 1) that may be installed in a building 202. The control system may comprise one or more motorized window treatments 240 (e.g., the motorized roller shades 140 shown in FIG. 1) for controlling the amount of daylight entering the building 202 through respective windows 204. Each motorized window treatment 240 may comprise a respective roller tube and a respective covering material (not shown), such as the window treatment fabric 142 of the motorized roller shades 140 shown in FIG. 1. The motorized window treatments 240 may also comprise respective motor drive units 244 (e.g., the motor drive units 144 shown in FIG. 1) configured to adjust the positions of the respective covering materials. Each motor drive unit 244 may comprise an internal energy storage element, such as one or more rechargeable batteries and/or supercapacitors (e.g., as will be described in greater detail below).

[0056] The DC power distribution system **200** may comprise a bus power supply **290** (e.g., a Class **2** power

supply), which may be electrically coupled to the motor drive units **244** of the motorized window treatments **240** via a power bus **292** (e.g., a DC power bus). The bus power supply **290** may be electrically coupled to an alternating-current (AC) mains supply for receiving an AC mains line voltage. The bus power supply **290** may be configured to generate (e.g., from the AC mains line voltage) a bus voltage on the bus power supply 292 for charging (e.g., trickle charging) the energy storage elements of the motor drive units 244. The power bus 292 may be electrically coupled to the motor drive units **244** in a daisy-chain configuration. For example, each motor drive unit **244** may comprise two power connectors (e.g., a power-in connector and a power-out connector) to allow for each daisy-chaining of the motor drive units. The bus power supply **290** may be configured to adjust (e.g., temporarily adjust) the magnitude of the DC bus voltage under certain conditions (e.g., in response to the number of motor drive units **244** that presently need to charge their internal energy storage elements). The bus power supply **290** may be configured to perform the functions (e.g., any of the example functions of described herein) of a system controller (e.g., the system controller 110). Further, in some examples, the bus power supply **290** may comprise a system controller (e.g., the system controller **110**). [0057] As shown in FIG. 2A, the power bus 292 may be a single cable (e.g., a single wire run) that may extend (e.g., in approximately a full loop) around the perimeter of an entire floor of the building **202** for charging the energy storage elements of all of the motor drive units **244** on the floor. The cable of the power bus **292** may comprise at least two or more electrical wires (e.g., electrical conductors) for distributing the bus voltage from the bus power supply **290** to the motor drive units **244** of the DC power distribution system **200**. For example, the building may comprise a plurality of floors and the DC power distribution system **200** may comprise a plurality of respective power buses **292**, with one of the power buses **292** on each of the floors of the building. The AC mains power source may be coupled to the power bus **292** on each floor of the building through a single circuit breaker 294 on each floor.

[0058] The energy storage elements of the motor drive units **244** may have a limited capacity for moving (e.g. capacity to power the movement of) the covering materials of the respective motorized window treatments **240**. For example, the energy storage elements of the motor drive unit **244** may have a capacity to power a predetermined number of movements (e.g., full movements) of the covering materiel, where a full movement of the covering material may be a movement from a fully-raised position (e.g., a fully-open position) to a fullylowered position (e.g., a fully-closed position) or a movement from the fully-lowered position to the fullyraised position. The motor drive units **244** may be configured to limit (e.g., prevent future movement at the limit or after the limit is exceeded) the number of movements (e.g., full movements) and/or the total amount (e.g., a number of rotations of the roller tube) of movement, for example, over a period of time (e.g., one day). For example, the motor drive units **244** may be configured to count the number of movements (e.g., full movements) during a day and prevent future movement of the covering material after the number (e.g., predetermined number) of movements exceeds a movement threshold (e.g., less than or equal to ten full movements, such as approximately five to ten full movements). In addition, the motor drive units 244 may be configured to store the total amount of movement (e.g., in units of rotation of the motor and/or linear distance of movement of a lower edge of the covering material) during a day and prevent future movement of the covering material after the total amount of movement exceeds a distance threshold (e.g., a predetermined amount of movement). For example, the distance threshold may be a value representing four full movements of the covering material between the fully-lowered position and the fully-raised position. The motor drive units **244** may also be configured to limit the frequency of movements. The motor drive units **244** may once again allow movement of the covering material at the end of the present day, at the end of a predetermined period of time after movement is stopped, and/or when the internal energy storage element has charged to an acceptable

[0059] The motor drive units **244** may be configured to communicate with each other via a communication link (not shown), such as a wired or wireless communication link. For example, if the motor drive units **244** are configured to transmit and receive wireless signals, such as radio-frequency (RF) signals, the power bus **292** may simply comprise two electrical conductors for suppling voltage and current to the motor drive units. In addition, the power bus **292** may be packaged together with a wired digital communication link (e.g., an RS-485 digital communication link) to allow the motor drive units **244** to communicate via the wired communication link. Further, the motor drive units **244** may be configured to communicate with each other by transmitting signals via the two electrical conductors of the power bus **292**, for example, using a power-line communication (PLC) technique.

[0060] The motor drive units **244** may be configured to learn the storage levels of the energy storage elements of the other motor drive units **244** in the DC power distribution system **200** (e.g. as a percentage of a maximum storage capacity of the energy storage elements and/or a voltage level of the energy storage elements). For

example, the motor drive units **244** may each periodically transmit the storage level of its energy storage element

[0061] The motor drive units **244** may each be configured to control when the internal energy storage element charges. Multiple motor drive units **244** may charge the internal energy storage elements at the same time. In addition, a limited number of motor drive units **244** (e.g., one at a time) may be configured to charge the internal energy storage elements at once. The motor drive units **244** may be configured to coordinate when each of the motor drive units **244** charges its internal energy storage element. The motor drive units **244** may be configured to arbitrate with each other by communicating via the communication link in order to determine which motor drive unit(s) **244** should presently be charging its internal energy storage element. The motor drive units **244** may be configured to prioritize which motor drive unit should charge its internal energy storage element based on power needs of the motor drive units. For example, the motor drive units **244** having the lowest storage level of all of the motor drive units in the DC power distribution system **200** may be configured to charge its energy storage element before the other motor drive units.

[0062] Another device, such as a system controller (e.g., the system controller 110) and/or the bus power supply 290, may communicate with the motor drive units 244 to manage which of the motor drive unit(s) 244 is presently charging its internal energy storage element (e.g. based on the storage level(s) of the internal energy storage element(s)). The system controller may be configured to learn when multiple shades are required to move at the same time (e.g., to close all of the motorized window treatments at the end of a day as part of a timeclock schedule). For example, the system controller may store a history of movements of the motorized window treatments 240 and may be configured to determine which motor drive unit 244 should charge its internal energy storage element based on a determination of a motorized window treatment that is expected to move next (e.g., the most likely motorized window treatment to move). As such, the motor drive units 244 may be configured to control the charging of their internal energy storage element (e.g., to a particular storage level) based on past and/or expected usage of the motorized window treatment 240.

[0063] The motor drive units **244** may be configured to operate in a normal power mode. In normal power mode, the motor drive units **244** may be configured rotate their motor at a normal speed. Further, in normal power mode, the motor drive units **244** may be configured to charge their internal energy storage element to maximum capacity, or in some examples, to less than the maximum capacity, such as 60% of the maximum capacity. The motor drive units **244** may be configured to operate in a low-power mode during a high power demand event and/or during an energy depletion event. A high-power demand event may be a period of high energy usage of a plurality of load control devices, for example, such as when many (e.g., more than one or a majority) of the motorized window treatments need to move at the same time and/or when many (e.g., more than one or a majority) of the internal energy storage elements of the motor drive units **244** are charging. An energy depletion event may be, for example, when the DC power distribution system **200** is operating in a condition in which many (e.g., a majority of) of the internal energy storage elements of the motor drive units **244** are depleted (e.g., below a threshold level of storage, such as 20%). When operating in the low-power mode, the motor drive units **244** may be configured to, for example, control the motor to rotate as a slower speed (e.g., to reduce power consumption of the motor) and/or delay movements or operation of the motor. [0064] The system controller and/or the bus power supply **290** may cause the motor drive units **244** to enter the low-power mode by transmitting a message to the motor drive units 244 (e.g., to the control circuits of the motor drive units **244**). For example, the system controller and/or the bus power supply **290** may be configured to transmit a digital message to the motor drive units **244** (e.g., via the RF signals **106**) for causing the motor drive units to enter the low-power mode. Alternatively or additionally, the bus power supply 290 may be configured to detect the high-power demand event (e.g., by measuring a magnitude of an output current of the bus power supply) and signal to the motor drive units **244** by generating a pulse on the power bus **292**. For example, the bus power supply **290** may generate the pulse by temporarily increasing the magnitude of the DC bus voltage and/or may temporarily decreasing the magnitude of the DC bus voltage (e.g., to approximately zero volts). The motor drive units **244** may be configured to enter the low-power mode in response to detecting the pulse in the magnitude of the DC bus voltage.

[0065] In some cases, one motorized window treatment **240** may be required to move more often than another motorized window treatment. If one of the motor drive units **244** determines that its internal energy storage element has a large storage level (e.g., as compared to the storage level of one or more of the other motor drive units), the motor drive unit **244** may be configured to share charge from its internal energy storage element with one or more of the other motor drive units (e.g., the internal energy storage elements of other motor drive units). In addition, multiple motor drive units **244** may be configured to share charge with multiple other motor drive units.

[0066] As shown in FIG. 2B, the DC power distribution system 200 may further comprise a supplemental energy storage element 296 (e.g., an external energy storage element) that may be coupled to the power bus 292 between two of the motor drive units 244. The supplemental energy storage element 296 may be configured to charge from the bus power supply 292, for example, at times when the internal energy storage elements of the motor drive units 244 are charged to suitable levels. For example, during an energy depletion event, the supplemental energy storage element 296 may be configured to charge the internal energy storage elements of the motor drive units 244 that are downstream (e.g., a subset of motor drive units electrically coupled to the power bus 292 after the supplemental energy storage element 296 in the power bus 292. At this time, the supplemental energy storage element 296 may be configured to disconnect from the bus power supply 290 and the motor drive units 244 that are upstream (e.g., a subset of motor drive units electrically coupled to the power bus 292 between the supplemental energy storage element 296 on the power bus 292. For example, the supplemental energy storage element may comprise an internal switching circuit, such as a relay, for disconnecting from the bus power supply 290. The DC power distribution system 200 may comprise more than one supplemental energy storage element 296.

[0067] The system controller may be configured to determine the existence of an energy depletion event (e.g., when the DC power distribution system 200 is operating in a condition in which most of the internal energy storage elements of the motor drive units 244 are depleted). For example, the supplemental energy storage element 296 may be configured to log in memory and/or report to the system controller when the supplemental energy storage element 296 is needed to charge the internal energy storage elements of the downstream motor drive units 244. The system controller may be configured to optimize when the motor drive units 244 move and/or charge their internal energy storage elements to avoid further energy depletion events. For example, the personal computer 166 may be configured to send an alert to a building manager to indicate that the DC power distribution system 200 was operating in a condition in which most of the internal energy storage elements of the motor drive units 244 were depleted.

[0068] As shown in FIG. 2C, the bus power supply **290** may comprise two outputs **298***a*, **298***b* that are connected to two power bus legs **292***a*, **292***b* (e.g., two cables electrically coupled to the motor drive units **244**) that extend around the floor of the building **202**. For example, the bus power supply **290** may include a first output **298***a* that is electrically coupled, via a first cable of the power bus **292***a*, to a first subset of the motor drive units of the plurality of motorized window treatments, and a second output **298***b* that is electrically coupled, via a first cable of the power bus **292***b*, to a second subset of the motor drive units of the plurality of motorized window treatments. With the two power bus legs **292***a*, **292***b*, the distance between the bus power supply **290** and the motor drive units **244** at the ends of the power bus legs **292***a*, **292***b* may be reduced. [0069] FIG. **3** is a block diagram of an example DC power distribution system **300** used in a for a control system (e.g., the load control system **100** shown in FIG. **1**). The DC power distribution system **300** may comprise a bus power supply **310** (e.g., the bus power supply **290**), one or more motor drive units **330***a*, **330***b*, **330***c* (e.g., the motor drive units **244**), and a power bus **340** (e.g., a DC bus voltage). The control system may comprise one or more motor drive units 330a-330c (e.g., of the motorized roller shades 140 and/or of the motorized window treatments **240**). For example, when the motor drive units **330***a***-330***c* are configured as motor drive units of a motorized roller shade or a motorized window treatment, the motor drive units 330a-**330***c* may adjust the positions of the respective covering materials to control the amount of daylight entering the building through respective windows. The power bus **340** may be electrically coupled to the motor drive units **330** in a daisy-chain configuration and configured to provide a bus voltage V.sub.BUS to the motor drive units **330***a***-330***c*. Although illustrated as three motor drive units **330***a***-330***c*, more or less motor drive units may be coupled to the power bus **340**.

[0070] Each motor drive unit **330***a*-**330***c* may include a respective internal load circuit **332***a*, **332***b*, **332***c*, which may each be a motor or other load internal to the motor drive unit **330**. For instance, each internal load circuit **332***a*-**332***c* may include any combination of an internal energy storage element, a motor drive circuit, and a motor, in some examples. Although described with reference to the motor drive units **330**, any control-source devices and/or control-target devices may be connected to the power bus **340** and configured to operate in a manner similar to the motor drive units **330**. The energy storage element of the motor drive unit **330** may have a limited capacity for moving (e.g., capacity to power the movement of) the covering materials of the respective motorized window treatments. For example, the energy storage element of the motor drive unit **330** may have a capacity to power a predetermined number of movements (e.g., full movements) of the covering material, where a full movement of the covering material may be a movement from a fully-lowered position to a fully-raised position or a movement from the fully-raised position to the fully-lowered position. The energy storage

element may be any combination of a supercapacitor, a rechargeable battery, and/or other suitable energy storage device. The motor drive units **330** may each be configured to control when the internal energy storage element charges. Multiple motor drive units **330** may charge the internal energy storage elements at the same time.

[0071] Each motor drive unit **330***a*-**330***c* may further comprise a respective current source **334***a*, **334***b*, **334***c* that may be coupled to the power bus **340**. For example, the current source **334***a* of the motor drive unit **330***a* may be coupled between a positive terminal T1*a* and a negative terminal T2*a*, the current source **334***b* of the motor drive unit **330***c* may be coupled between a positive terminal T1*b* and a negative terminal T2*b*, and the current source **334***c* of the motor drive unit **330***c* may be coupled between a positive terminal T1*c* and a negative terminal T2*c*. Each motor drive unit **330***a*-**330***c* may further comprise a respective energy storage element **338***a*, **338***b*, **338***c*, (e.g., such as a capacitor) that may be configured to charge from the power bus **340** through a respective diode **336***a*, **336***b*, **336***c*.

[0072] The bus power supply **310** may comprise a power converter circuit **320**, a first controllable switching circuit **322**, a second controllable switching circuit **326**, and a sense resistor **324**. In some examples, the sense resistor **324** may be a variable resistor, which may have a resistance R.sub.VAR that may be controlled by the bus power supply **310**. The bus power supply **310** may also include a control circuit (not shown), such as a microprocessor, a programmable logic device (PLD), a microcontroller, an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or any suitable processing device or control circuit. The bus power supply **310** may be configured to generate the bus voltage V.sub.Bus on the power bus **340** using the power converter circuit **320**. The bus voltage V.sub.Bus may be provided to the power bus **340** when the first controllable switching circuit **322** is conductive and the second controllable switching circuit **326** is non-conductive. The bus voltage V.sub.Bus may be used to charge the (e.g., trickle charge) energy storage elements **338***a***-338***c* of the motor drive units **330***a***-330***c*. Further, although not illustrated in FIG. **3**, the bus power supply **310** may be electrically coupled to an AC mains supply for receiving an AC mains line voltage, and the power converter circuit **320** may be an AC-to-DC converter that is configured to receive the AC mains line voltage and generate the bus voltage V.sub.BUS. The control circuit may determine the magnitude of the bus voltage V.sub.Bus, for example, when the first controllable switching circuit **322** is non-conductive and the second controllable switching circuit **326** is conductive. For example, the control circuit may determine the magnitude of the current conducted through the power bus **340** based on one or more sense signals. The control circuit may control the resistance R.sub.VAR of the sense resistor **324** to adjust the magnitude of the sense signals received while the control circuit is determining the magnitude of the bus voltage V.sub.BUS (e.g., as will be explained in greater detail below).

[0073] The power bus **340** may be electrically coupled to the motor drive units **330***a***-330***c* in a daisy-chain configuration. For example, each motor drive unit **330***a***-330***c* may comprise two power connectors (e.g., a power-in connector and a power-out connector) to allow for each daisy-chaining of the motor drive units. Alternatively, each motor drive unit **330***a***-330***c* may comprise a single power connector and the daisy-chaining (e.g., connection of power-in and power-out wiring) may occur at the terminals of the single power connector or external to the single power connector (e.g., using a wire-nut with a third wire terminating at the single power connector). These are just various ways of doing daisy-chain wiring. The cable of the power bus **340** may comprise at least two or more electrical wires (e.g., electrical conductors) for distributing the bus voltage V.sub.Bus from the power converter circuit **320** to the motor drive units **330***a***-330***c* of the DC power distribution system **300**. The bus power supply **310** may be configured to adjust (e.g., temporarily adjust) the magnitude of the bus voltage V.sub.Bus under certain conditions (e.g., in response to the number of motor drive units **330***a***-330***c* that presently need to charge their internal energy storage elements **338***a***-338***c* and/or drive their respective motors). The bus power supply **310** may be configured to perform the functions (e.g., any of the example functions as described herein) of a system controller (e.g., the system controller **110**). Further, in some examples, the DC power distribution system **300** may comprise a system controller (e.g., the system controller **110**).

[0074] The bus power supply **310** may have a power capability PCAP (e.g., a limited power capability) that may define a maximum amount of power that the bus power supply **310** may to deliver power over the power bus **340** to the motor drive units **330***a***-330***c*. When one of the motor drive units **330***a***-330***c* operates its internal load circuit **332***a***-332***c* (e.g., the motor), the motor drive unit may consume most (e.g., all) of the power needed to operate the internal load circuit from the power bus **340**. If most (e.g., all) of the motor drive units **330***a***-330***c* operate their internal load circuits **332***a***-332***c* at the same time (e.g., and/or need to recharge their respective internal energy storage elements **338***a***-338***c*), the cumulative total of the required power could exceed the power capability PCAP of the power converter circuit **320**, which in some instances could cause the bus power

310 to become overloaded. When the bus power supply **310** becomes overloaded, the bus power supply **310** could overheat, suffer from a shorter lifetime of the product, reduce the magnitude of the bus voltage V.sub.Bus, cause the magnitude of the bus voltage V.sub.Bus to drift from the desired operating range, etc. Even if the bus power supply **310** does not become overloaded, power could be distributed unevenly amongst the motor drive units **330***a***-300***c*. One limitation of existing systems is that a motor drive unit may know how much power it requires, but the motor drive unit may not know how much power all of the other motor drive units require.

[0075] The DC power distribution system **300** may include a system controller (e.g., the system controller **110**) that operates as a master device that learns a required power (e.g., required power) of each motor drive unit **330***a***-300***c* and arbitrates the amount of power that each of the motor drive units **330***a***-300***c* may consume at any given time. But the use of a system controller to arbitrate the distribution of power within the system 300 increases overhead, including both the necessary physical components, the increased communication bandwidth, and the necessary computational resources to enable routine communication between the motor drive units 330a-330c and the system controller. For example, significant bandwidth resources may be required if the motor drive units **330***a***-330***c* are configured to communicate their required power routinely, such as every one second, using a digital and/or wireless communication technique. Accordingly, the bus power supply 310 and the motor drive units **330***a***-330***c* of the DC power distribution system **300** shown in FIG. **3** may be configured to use the power bus **340** to enable each of the motor drive units **330***a***-330***c* to communicate a required power P.sub.REQ, to learn a total required power P.sub.TOT of all the motor drive units 330a-330c, to determine an allocated power P.sub.ALLOC (e.g., a proportionate amount of the power capability of the bus power supply **310** (e.g., 100 W)) that the motor drive unit **330***a***-330***c* can consume at a particular time, and to only consume the allocated power P.sub.ALLOC from bus voltage V.sub.BUS across the power bus **340**. [0076] The bus power supply **310** may operate the first and second controllable switching circuits **322**, **326** in a coordinated manner using a periodic cycle having a periodic time period T.sub.PBUS (e.g., approximately one second). The bus power supply **310** may provide the bus voltage V.sub.BUS on the power bus **340** during an on portion T.sub.ON of the periodic time period T.sub.PBUS. The bus power supply **310** may not provide the bus voltage V.sub.Bus on the power bus **340** during an off portion T.sub.OFF of the periodic time period T.sub.PBUS, for example, to allow for the motor drive units **330***a***-330***c* to each communicate their required power P.sub.REQ to the bus power supply **310** and the other motor drive units in the DC power distribution system **300**. The bus power supply **310** may generate the bus voltage V.sub.BUS using the power converter circuit **320**. The bus power supply **310** may provide the bus voltage V.sub.BUS on the power bus **340** by rendering the controllable switching circuit 322 conductive and rendering the controllable switching circuit 326 non-conductive during the on portion T.sub.ON of the periodic time period T.sub.PBUS. When the controllable switching circuit **322** is conductive and the controllable switching circuit **326** is non-conductive and the bus voltage V.sub.Bus is provided on the power bus **340**, the motor drive units **330***a***-330***c* may charge their internal energy storage elements **338***a***-338***c* and/or drive their internal load circuits **332***a***-332***c* (e.g., motors) from the bus voltage V.sub.BUS.

[0077] The bus power supply **310** may render the controllable switching circuit **322** non-conductive and render the controllable switching circuit **326** conductive off portion T.sub.OFF of the periodic time period T.sub.PBus. for example, to allow the motor drive units **330***a***-330***c* to each communicate (e.g., communicate a required power P.sub.REQ) on the power bus **340**. For example, the bus power supply **310** may render the controllable switching circuit **322** non-conductive and render the controllable switching circuit **326** conductive periodically at the periodic time period T.sub.PBUS. For example, the on portion T.sub.ON may be approximately 995 milliseconds and the off portion T.sub.OFF may be approximately 5 milliseconds. It should be appreciated that even though the bus power supply **310** is not providing the bus voltage V.sub.Bus on the power bus **340** during the off portion T.sub.OFF, the bus voltage V.sub.Bus may have a non-zero magnitude during the off portion T.sub.OFF, for example, to allow the motor drive units **330***a***-330***c* to communicate the required powers P.sub.REQ on the power bus **340**. Further, even though the bus power supply **310** is not providing the bus voltage V.sub.Bus on the power bus **340** for the off portion T.sub.OFF of each time period, the energy storage elements **338***a***-338***c* of each motor drive units **330***a***-330***c* may each operate as a bus capacitor for holding up an input voltage of the motor drive unit, which for example, could be used to power the respective internal load circuits 332a-332c during the off portion T.sub.OFF of each periodic time period T.sub.PBUS. [0078] When the controllable switching circuit **322** is non-conductive and the controllable switching circuit **326** is conductive (e.g., during the off portion T.sub.OFF), the motor drive units **330***a***-330***c* (e.g., the current sources 334*a*-334*c*) may conduct a power-requirement current I.sub.PR (e.g., a small current) onto the power bus 340.

The magnitude of the power-requirement current I.sub.PR may be dependent upon (e.g., proportional to) the

required (e.g., requested)) power P.sub.REQ of the motor drive unit **330**. For example, immediately before or at the beginning of the off portion T.sub.OFF of the periodic time period T.sub.PBUS, each motor drive units **330***a***-330***c* may calculate its required power based on, for example, the power requirements of the respective internal load circuit **338***a***-338***c* (e.g., whether the motor drive unit is driving its motor, and if so, how much power is required to drive the motor, etc.) and/or whether the respective internal energy storage element **338***a***-338** needs to be recharged. Then, after the beginning of the off portion T.sub.OFF of the periodic time period T.sub.PBUS, the motor drive units **330***a***-330***c* may each output a respective power-requirement current I.sub.PRa, I.sub.PRb, I.sub.PRc onto the power bus **340**, where the magnitude of the power-requirement current I.sub.PR is dependent upon (e.g., proportional to) the required power P.sub.REQ of the motor drive unit. The motor drive units **330***a***-330***c* may each control the respective current source **334***a***-334***c* to conduct the respective power-requirement current I.sub.PRa-I.sub.PRc onto the power bus **340** during the off portion T.sub.OFF of the periodic time period T.sub.PBUS. The off portion T.sub.OFF of the periodic time period T.sub.PBUS may also be referred to as a communication period.

[0079] When the controllable switching circuit **322** is non-conductive and the controllable switching circuit **326** is conductive (e.g., during the off portion T.sub.OFF), the motor drive units **330***a***-330***c* may each detect the magnitude of the bus voltage V.sub.BUS (e.g., which may indicate the magnitude of the power-requirement current I.sub.PRa, I.sub.PRb, I.sub.PRc on the power bus **340**), for example, to determine the total required power P.sub.TOT of the motor drive units **330***a***-330***c* on the power bus. As such, each motor drive unit **330***a***-330***c* is aware of its required power P.sub.REQ and the total required power P.sub.REQ of the motor drive units **330***a***-330***c* on the power bus **340**. During the next cycle (e.g., the next of the periodic time periods T.sub.PBUS) when the controllable switching circuit **322** is conductive and the controllable switching circuit **326** is non-conductive (e.g., during the next on portion T.sub.ON), the motor drive units **330***a***-330***c* may each consume its allocated power P.sub.ALLOC from the power bus to charge the respective energy storage elements **338***a***-338***c* and/or drive their internal load circuits **332***a***-332***c* (e.g., motors).

[0080] Although described in the context of communicating a required power P.sub.REQ across the power bus, in other examples, the motor drive units **330***a***-330***c* may communicate a required amount of other resources, such as current, voltage, bandwidth, communication resources, time, etc.

[0081] FIG. 4A is a block diagram of an example bus power supply 400 (e.g., the bus power supply 290 and/or the bus power supply 310) used in a DC power distribution system of a load control system (e.g., the load control system 100 shown in FIG. 1, the DC power distribution system 300, etc.). The bus power supply 400 (e.g., a Class 2 power supply) may be electrically coupled to one or more of the motor drive units (e.g., the motor drive units 244 and/or the motor drive units 330a-330c) via a power bus (e.g., the power bus 340). For example, the bus power supply 400 may comprise one or more power connectors, such as a power connector 410 (e.g., comprising two power terminals, such as a positive terminal and a negative terminal) for receiving an input voltage from an external power supply (e.g., such as an AC mains line voltage V.sub.AC from an AC power source). The bus power supply 400 may also comprise a power connector 412, which may be connected to the power bus that is electrically coupled to one or more motor drive units in a daisy-chain configuration. The bus power supply 400 may be configured to generate a bus voltage V.sub.BUS, and the power connector 412 may provide the bus voltage V.sub.Bus to the power bus. For example, the bus voltage V.sub.Bus may have a magnitude that is less than the Class 2 limit of 60 volts (e.g., approximately 50 volts, such as 48 volts). The motor drive units connected to the power bus may conduct an output current I.sub.OUT from the bus power supply 400 through the power connector 412.

[0082] The bus power supply **400** may include a power converter circuit **420**, an over-power protection circuit **430** (e.g., an over-current protection circuit), and a power bus management circuit **440**. The power converter circuit **420** may be coupled to the power connector **410** for receiving the input voltage (e.g., the AC mains line voltage V.sub.AC), and generating a DC power supply voltage V.sub.PS_DC. The power converter circuit **420** may be an AC/DC converter or a DC/DC converter, for example, depending on whether the power connector **410** is connected to an AC power source or a DC power source. The DC power supply voltage V.sub.PS_DC may be a relatively constant voltage. For example, the magnitude of the DC power supply voltage V.sub.PS_DC may be approximately 50 volts.

[0083] The over-power protection circuit **430** may couple the DC power supply voltage V.sub.PS_DC to the power bus under normal operating conditions and output a protected power supply voltage V.sub.PS_PRT (e.g., also having a DC magnitude). The bus power supply **400** may also disconnect the power converter circuit **420** from the power bus (e.g., disable the bus power supply **400**) in response to an output power P.sub.OUT of the power converter circuit **420** exceeding a threshold, such as the power capability P.sub.CAP of the power converter circuit **420**. The over-power protection circuit **430** may determine the output power P.sub.OUT of the

bus power supply **400** by monitoring a current (e.g., a monitored current I.sub.MON) conducted through the over-power protection circuit **430** (e.g., since the protected power supply voltage V.sub.PS_PRT has a DC magnitude). The monitored current I.sub.MON may be the output current I.sub.OUT plus any current consumed by the power bus management circuit **440**. The monitored current I.sub.MON may be roughly (e.g., nearly) equivalent to the output current I.sub.OUT. For example, the current consumed by the power bus management circuit **440** may be small (e.g., negligible). Further, in instances where the bus power supply **400** does not include the power bus management circuit **440**, the monitored current I.sub.MON may be equal to the output current I.sub.OUT. Accordingly, the output power P.sub.OUT of the power supply **400** may be equal to the output current I.sub.OUT multiplied times the bus voltage V.sub.BUS (e.g., P.sub.OUT=V.sub.OUT.Math.I.sub.OUT).

[0084] In examples, the over-power protection circuit **430** may have multiple, timed thresholds, where each threshold is associated with a different power threshold and an amount of time (e.g., a different amount of time). In some examples, the over-power protection circuit **430** may be configured to disconnect the power converter circuit **420** from the power bus by rendering a controllable conductive switching circuit non-conductive. Further, the over-power protection circuit **430** may be configured to keep the power converter circuit **420** disconnected from the power bus until, for example, power to the bus power supply **400** is fully cycled by fully removing power from the bus power supply **400** and then restored again (e.g., the bus power supply **400** has been turned both off and back on again).

[0085] The over-power protection circuit **430** of the bus power supply **400** may have a nominal power capability (e.g., approximately 85 watts, such as 84 watts). For example, the nominal power capability P.sub.CAP-NOM may be characterized by a nominal power threshold P.sub.TH-NOM at or below which the bus power supply 400 may supply power indefinitely (e.g., the over-power protection circuit 430 may never disconnect the bus power supply **400** from the power bus when the power converter circuit **420** is operating at or below the nominal power threshold P.sub.TH-NOM). For example, the bus power supply 400 may continuously supply power to the power bus at or below the nominal power threshold P.sub.TH-NOM without interruption and/or disconnection by the over-power protection circuit **430**. The nominal power capability P.sub.CAP-NOM may correspond to a rated current of the bus power supply **400** (e.g., a rated continuous current of the bus power supply **400**). The over-power protection circuit **430** may be configured to prevent the output power P.sub.OUT of the bus power supply **400** from indefinitely exceeding the nominal power threshold P.sub.TH-NOM, for example, by disconnecting the power converter circuit **420** from the power bus. [0086] The over-power protection circuit **430** may allow the bus power supply **400** to operate (e.g., supply power) at one or more increased power capabilities that are greater than the nominal power capability P.sub.TH-NOM for up to, but not longer than, respective predetermined increased-power time periods (e.g., a different respective time periods based on the increased power capability). Allowing the bus power supply 400 to operate at one of the increased power capabilities for up to the respective predetermined increased-power time period may allow the bus power supply **400** to cope with peaks in power consumed on the power bus. For example, devices consuming power from the power bus may all consume power simultaneously or at higher levels when high-power demand events are occurring, which may occur, for example, if multiple (e.g., all) of the motor drive units coupled to the power bus drive their motors simultaneously.

[0087] The over-power protection circuit **430** may be configured with a plurality of different power capabilities that are greater than the nominal power capability, where each of the plurality of different power capabilities are associated with a different increased-power time period that that the power converter circuit **420** can supply power at or below that increased power capability without tripping the over-power protection circuit **430**. For example, the over-power protection circuit **430** may be configured with a first increased power capability that may be characterized by a first increased-power threshold P.sub.TH-IP1 (e.g., approximately 150 watts, such as 148 watts) and a first increased-power time period T.sub.IP1 (e.g., approximately 60 minutes) during which the bus power supply 400 may operate at or below the first increased-power threshold P.sub.TH-IP1 (e.g., and above the nominal power threshold P.sub.TH-NOM) without tripping. If the output power P.sub.OUT of the power converter circuit **420** exceeds the nominal power threshold P.sub.TH-NOM (e.g., approximately 85 watts) and remains below the first increased-power threshold P.sub.TH-IP1 (e.g., approximately 150 watts) for more than the first increased-power time period T.sub.IP1 (e.g., approximately 60 minutes), the over-power protection circuit **430** may trip and disconnect the power converter circuit **420** from the power bus. [0088] The over-power protection circuit **430** may also be configured with a second increased power capability that may be characterized by second increased-power threshold P.sub.TH-IP2 (e.g., approximately 240 watts, such as 237 watts) and a second increased-power time period T.sub.IP2 of time (e.g., approximately two minutes) that the bus power supply **400** can operate at or below the second increased-power threshold

P.sub.TH-IP2 (e.g., and above the first increased-power threshold P.sub.TH-IP1) without tripping. If the output power P.sub.OUT of the power converter circuit **420** exceeds the first increased-power threshold P.sub.TH-IP1 (e.g., approximately 150 watts) and remains below the second increased-power threshold P.sub.TH-IP2 (e.g., approximately 240 watts) for more than the second increased-power time period T.sub.IP2 (e.g., approximately two minutes), the over-power protection circuit **430** may trip and disconnect the power converter circuit **420** from the power bus. Although described with two increased power capabilities, the over-power protection circuit **430** may be configured with more or fewer increased power capabilities.

[0089] The over-power protection circuit **430** may be configured to instantaneously (e.g., nearly instantaneously) disconnect the power converter circuit **420** from the power bus when the output power P.sub.OUT of the power converter circuit **420** exceeds a maximum power threshold P.sub.TH-MAX (e.g., when the magnitude of the monitored current I.sub.MON exceeds a maximum current threshold I.sub.TH-MAX). The over-power protection circuit **430** may determine if the magnitude of the output power P.sub.OUT exceeds the maximum power threshold P.sub.TH-MAX using, for example, a third increased-power time period T.sub.IP3 (e.g., less than approximately 200 milliseconds), which may be regarded as nearly instantaneous. For example, the maximum power threshold P.sub.TH-MAX may be equal to the increased-power threshold of the highest increased power capability of the over-power protection circuit 430 (e.g., the maximum power threshold P.sub.TH-MAX may be equal to the second increased-power threshold P.sub.TH-IP2). If the output power exceeds the maximum power threshold P.sub.TH-MAX (e.g., approximately 240 watts) for more than the third increased-power time period T.sub.IP3 (e.g., less than approximately 200 milliseconds), the over-power protection circuit **430** may trip and disconnect the power converter circuit **420** from the power bus. [0090] In some examples, the over-power protection circuit **430** may rely on analog circuits alone to disconnect (e.g., instantaneously disconnect and/or disconnect after a period of time) the power converter circuit **420** from the DC power bus. The analog circuits may bypass the need for a microcontroller if the magnitude of the monitored current I.sub.MON exceeds one or more of the increased-power thresholds. Bypassing the need for a microcontroller may allow the over-power protection circuit **430** to determine that the magnitude of the monitored current I.sub.MON has exceeded one of the increased-power thresholds and disconnect the bus power supply **400** from the DC power supply faster (e.g., instantaneously or nearly instantaneously) than may be achieved with the use of a microcontroller (e.g., digital circuits).

[0091] The over-power protection circuit **430** may be configured to determine that the output power P.sub.OUT of the power converter circuit **420** exceeds one of the increased-power capability for more than the respective period of time associated with that increased-power capability. For example, the over-power protection circuit **430** may be configured to determine that the magnitude of the monitored current I.sub.MON conducted through the over-power protection circuit **430** exceeds a respective current threshold associated with each of the increased-power capabilities for more than the respective increased-power time period associated with that increased-power capability. When the over-power protection circuit **430** determines that the magnitude of the monitored current I.sub.MON exceeds the respective current threshold for more than the respective increased-power time period associated with that increased-power capability, the over-power protection circuit **430** may disconnect the power converter circuit **420** from the power bus (e.g., disable the bus power supply **400**). In some examples, the over-power protection circuit **430** may maintain the power converter circuit **420** disconnected from the DC power bus until the bus power supply **400** is fully cycled by fully removing power from the bus power supply **400** and then restored again (e.g., the bus power supply **400** has been turned both off and back on again).

[0092] The over-power protection circuit **430** may comprise a control circuit such as a microprocessor, a programmable logic device (PLD), a microcontroller, an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or any suitable processing device or control circuit. In examples, the over-power protection circuit **430** may comprise a microcontroller and/or analog circuits that are configured to perform determinations, maintain voltage signals, disconnect the bus power supply **400** from the DC power bus, operate as a timer, compare signals, and/or any other functionality within the over-power protection circuit **430**.

[0093] The power bus management circuit **440** may include a first controllable switching circuit **442** that is coupled between the output of the over-power protection circuit **430** and the second power connector **412**. The power bus management circuit **440** may include a second controllable switching circuit **444** between the junction of the first controllable switching circuit **442** and the second power connector **412** and circuit common through a variable resistor **446**, where the second controllable switching circuit **444** and the variable resistor **446** are coupled in parallel between the terminals of the second power connector **412**.

[0094] The power bus management circuit **440** may also include a control circuit **448** for controlling the

operation of the power bus management circuit **440**. The control circuit **448** may comprise, for example, a microprocessor, a programmable logic device (PLD), a microcontroller, an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), and/or any suitable processing device or control circuit. The control circuit **448** may be configured to generate a first switch control signal V.sub.SW1 for rendering the first controllable switching circuit **442** conductive and non-conductive, a second switch control signal V.sub.SW2 for rending the second controllable switching circuit **444** conductive and non-conductive, and a variable resistor control signal V.sub.RES-CNTL for controlling a resistance R.sub.VAR of the variable resistor **446**. The control circuit **448** may control the operation of the first and second controllable switching circuits **442**, **444** in a coordinated or mutually exclusive manner. The control circuit **448** may be configured to control the resistance R.sub.VAR of the variable resistor **446** from a minimum resistance R.sub.MIN to a nominal resistance R.sub.NOM (e.g., a maximum resistance), and/or to intermediate resistances between the minimum resistance R.sub.MIN and the nominal resistance R.sub.NOM.

[0095] The control circuit **448** may receive a first power-requirement signal, such as a voltage sense signal V.sub.V-SENSE, that may have a magnitude that indicate the magnitude of the bus voltage V.sub.Bus, for example, when the first controllable switching circuit **442** is non-conductive and the second controllable switching circuit **448** may also receive a second power-requirement signal, such as a current sense signal V.sub.I-SENSE, that may have a magnitude that indicates the magnitude of a sense current I.sub.SENSE conducted through the variable resistor **446** (e.g., and the total current I.sub.TOTAL conducted on the power bus), for example, when the first controllable switching circuit **442** is non-conductive and the second controllable switching circuit **444** is conductive (e.g., during the off portion T.sub.OFF of the time period).

[0096] The control circuit **448** may adjust the resistance R.sub.VAR of the variable resistor **446** using the variable resistor control signal V.sub.RES-CNTL to, for example, adjust an allocated power P.sub.ALLOC determined (e.g., calculated) by each of the motor drive units on the power bus. Further, adjustment of the value of the resistance R.sub.VAR of the variable resistor **446** may cause adjustment of the magnitudes of the voltage sense signal V.sub.V-SENSE and the current sense signal V.sub.I-SENSE, for example, when the first controllable switching circuit **442** is non-conductive and the second controllable switching circuit **444** is conductive (e.g., during the off portion T.sub.OFF of the time period). Further, in some examples, the control circuit **448** may control the resistance R.sub.VAR of the variable resistor **446** to be greater than the resistance on the power bus (e.g., the wire that makes up the power bus), but not so large that it delay the time it takes to discharge the wire capacitance during the off portion t.sub.OFF of each periodic time period T.sub.PBus. For example, the nominal resistance R.sub.NOM of the variable resistor may be 100 ohms. The bus power supply may be configured to provide a high-end amount of power on the power bus for a limited amount of time (e.g., up to 240 watts for two minutes).

[0097] The power bus management circuit **440** may further comprise a low-voltage power supply **449** that receives the protected power supply voltage V.sub.PS_PRT and generates a supply voltage V.sub.CC (e.g., approximately 3.3 V) for powering the control circuit **448** and other low-voltage circuitry of the bus power supply **400**.

[0098] Further, in some examples, the power bus management circuit **440** may include a current source that may be coupled to the power bus. For example, rather than adjusting the resistance R.sub.VAR of the variable resistor **446**, the control circuit **448** may be configured to conduct current into the variable resistor **446** (e.g., during off portions of the periodic time period), for example, to reduce the allocated power P.sub.ALLOC determined by the motor drive units coupled to the power bus. For example, by conducting current onto the power bus during the off portions of the periodic time period, the motor drive units will calculate a greater amount of required current on the power bus during the off portion, which will cause them to reduce their proportional allocated amount during the next on portion of the periodic time period.

[0099] FIG. **4B** is a block diagram of an example over-power protection circuit **450** (e.g., the over-power protection circuit **430**) of a bus power supply (e.g., the bus power supply **400**) used in a DC power distribution system of a load control system. The over-power protection circuit **450** (e.g., over-current protection circuit) may receive an output voltage of a power converter circuit (e.g., the DC power supply voltage V.sub.PS_DC of the power converter circuit **420** of FIG. **4**A), and may output a protected power supply voltage (e.g., the protected power supply voltage V.sub.PS_PRT of FIG. **4**A). The over-power protection circuit **450** may comprise a power monitoring circuit **452** (e.g., a current monitoring circuit), a controllable switching circuit **454**, a latching circuit **458**, a drive circuit **471**, and a plurality of threshold comparison and timing circuits, such as a first threshold comparison and timing circuit **456***a* through an Nth threshold comparison and timing circuit **456***n*.

[0100] The power monitoring circuit **452** may be configured to monitor the magnitude of the output power P.sub.OUT of the power converter circuit **420**. For example, the power monitoring circuit **452** may be configured to monitor the magnitude of the output power P.sub.OUT of the power converter circuit **420** by monitoring the magnitude of current flowing through the over-power protection circuit **450** (e.g., the monitored current I.sub.MON). The power monitoring circuit **452** may receive the DC power supply voltage V.sub.PS-DC and may measure the magnitude of a sense voltage V.sub.SNS developed in the power monitoring circuit (e.g., across a resistor of the power monitoring circuit) in order to determine the magnitude of the monitored current I.sub.MON flowing through the resistor. The power monitoring circuit 452 may generate a power monitoring signal, such as a current monitoring signal V.sub.I-MON, which may have a magnitude that may be proportional to the magnitude of the sense voltage V.sub.SNS developed across the resistor of the current monitoring circuit **452** and/or the magnitude of the monitored current I.sub.MON. As such, the magnitude of the current monitoring signal V.sub.I-MON may indicate the magnitude of the monitored current I.sub.MON. [0101] A plurality of threshold comparison and timing circuits **456***a***-465***n* may be associated with a respective power level of the over-power protection circuit **450**. The plurality of threshold comparison and timing circuits **456***a***-465***n* may receive the current monitoring signal V.sub.I-MON and output a respective signal that may be used to render the controllable switching circuit **454** non-conductive when the magnitude of the output power P.sub.OUT of the power converter circuit exceeds a respective increased-power threshold for more than a respective increased-power time period associated with the respective increased-power threshold of the overpower protection circuit **450**. Since the magnitude of the DC power supply voltage V.sub.PS DC generated by the power converter circuit (e.g., and the bus voltage V.sub.BUS) are maintained approximately constant, the plurality of threshold comparison and timing circuits **456***a***-465***n* may determine that the magnitude of the output power P.sub.OUT of the power converter circuit exceeds the respective increased-power thresholds by determining that the current through the over-power protection circuit 450 (e.g., the magnitude of the monitored current I.sub.MON) is greater than a respective current threshold for more than the respective increased-power time period associated with the respective increased-power threshold of the over-power protection circuit **450**. [0102] FIG. 4D illustrates an example of increased-power threshold and associated increased-power time periods for an over-power protection circuit (e.g., the over-power protection circuit **430**, the over-power protection circuit **450**, the over-power protection circuit **460**, etc.). The plurality of threshold comparison and timing circuits **456***a***-465***n* may be configured to allow the output power P.sub.OUT of the power converter circuit (e.g., as indicated by the magnitude of the monitored current I.sub.MON) to remain within a nominal power range Range.sub.NOM (e.g., at or below a nominal power threshold P.sub.TH-NOM, such as approximately 85 watts) without rendering the controllable switching circuit **454** non-conductive. The plurality of threshold comparison and timing circuits **456***a***-465***n* may be configured to allow the output power P.sub.OUT of the power converter circuit (e.g., as indicated by the magnitude of the monitored current I.sub.MON) to remain within a first power range Range.sub.1 (e.g., above the nominal power threshold P.sub.TH-NOM and at or below a first increased-power threshold P.sub.TH-IP1, such as between approximately 84-150 watts) for a first period of time (e.g., the first increased-power time period T.sub.IP1, such as approximately 60 minutes) without rendering the controllable switching circuit **454** non-conductive. The plurality of threshold comparison and timing circuits **456***a***-465***n* may be configured to allow the output power P.sub.OUT of the power converter circuit (e.g., as indicated by the magnitude of the monitored current I.sub.MON) to remain within a second power range Range.sub.2 (e.g., above the first increased-power threshold P.sub.TH-IP1 and at or below a second increased-power threshold P.sub.TH-IP2, such as between approximately 150-240 watts) for a second period of time (e.g., the second increased-power time period T.sub.IP2, such as approximately 2 minutes) without rendering the controllable switching circuit 454 nonconductive.

[0103] The over-power protection circuit **450** may include a first threshold comparison and timing circuit **456***a* that may be associated with a first power threshold P.sub.TH1. For example, the first power threshold P.sub.TH1 may be equal to the nominal power threshold P.sub.TH-NOM. Since the magnitude of the DC power supply voltage V.sub.PS_DC of the power converter circuit is approximately constant, the first threshold comparison and timing circuit **456***a* may use a first current threshold I.sub.TH1 (e.g., approximately 1.7 amps, such as 1.75 amps) that corresponds to the first power threshold P.sub.TH1 (e.g., approximately 85 watts, such as 84 watts). The over-power protection circuit **450** may be configured to receive the current monitoring signal V.sub.I-MON, and compare the magnitude of the current monitoring signal V.sub.I-MON with a first voltage threshold V.sub.I-TH1, which may correspond to the first current threshold I.sub.TH1. Using the current monitoring signal V.sub.I-MON, the first threshold comparison and timing circuit **456***a* may be configured to determine whether the magnitude of the monitored current I.sub.MON through the over-power protection

circuit **450** is greater than the first current threshold I.sub.TH1 for the first increased-power time period T.sub.IP1 (e.g., approximately 60 minutes). For example, the magnitude of the first voltage threshold V I-TH1 may be a magnitude that corresponds to the magnitude of the first current threshold I.sub.TH1. [0104] The over-power protection circuit **450** may include a second threshold comparison and timing circuit that may be associated with a second power threshold P.sub.TH2. For example, the second power threshold P.sub.TH2 may be equal to the first increased-power threshold P.sub.TH-IP1. The second threshold comparison and timing circuit may be characterized by a second current threshold I.sub.TH2 (e.g., which may correspond to the second power threshold P.sub.TH2, such as approximately 3 amps, such as 3.08 amps) and the second increased-power time period T.sub.IP2 (e.g., approximately 2 minutes). The second threshold comparison and timing circuit may be configured to determine that the magnitude of the monitored current I.sub.MON through the over-power protection circuit **450** is greater than the second current threshold I.sub.TH2 (e.g., by determining that the magnitude of the current monitoring signal V.sub.I-MON is greater than a second voltage threshold V I-TH2) for the second increased-power time period T.sub.IP2.

[0105] Further, in some examples, the over-power protection circuit **450** may include a third threshold comparison and timing circuit that may be associated with an instantaneous power-threshold. For example, the instantaneous power-threshold may be equal to the maximum power threshold P.sub.TH-MAX. The third threshold comparison and timing circuit may be characterized by a third current threshold I.sub.TH2 (e.g., which may correspond to the instantaneous power-threshold, such as approximately 4.8 amps, such as 4.94 amps) and a third increased-power time period T.sub.IP3 (e.g., which may be substantially instantaneous, such as approximately 200 milliseconds). The third threshold comparison and timing circuit may be configured to determine that the magnitude of the monitored current I.sub.MON through the over-power protection circuit **450** is greater than the instantaneous power-threshold (e.g., by determining that the magnitude of the current monitoring signal V.sub.I-MON is greater than a maximum voltage threshold V.sub.I-MAX) for the third increased-power time period T.sub.IP3.

[0106] If any of the first through Nth comparison and timing circuits determines that the magnitude of the monitored current I.sub.MON is greater than the respective threshold for the respective period of time, the comparison and timing circuit will control the disable signal V.sub.I-DSBL, which may be used to render the controllable switching circuit **454** non-conductive. Further, although described with reference to three threshold comparison and timing circuits, the over-power protection circuit **450** may include a plurality of threshold comparison and timing circuits **456***a***-456***n*, where each threshold comparison and timing circuit may be associated with a respective nominal or increased-power threshold and may be configured with a respective current threshold and/or time period.

[0107] The latching circuit **458** may receive the disable signal V.sub.I-DSBL, which may be controlled by any of the comparison and timing circuits, and, in response, the latching circuit **458** generate a latch signal V.sub.LATCH. The drive circuit **471** may be configured to receive the latch signal V.sub.LATCH from the latching circuit **458**, and in response, generate a drive signal V.sub.DR for controlling the controllable switching circuit **454**. For example, the drive circuit **471** may render the controllable switching circuit **454** non-conductive in response to receiving the latch signal V.sub.LATCH, which in turn may disconnect the power converter circuit **420** from the power bus. As such, if any of the first through Nth comparison and timing circuits determines that the magnitude of the monitored current I.sub.MON is greater than the respective current threshold for the respective time period, the controllable switching circuit **454** may be rendered non-conductive to disconnect the power converter circuit **420** from the power bus.

[0108] When the controllable switching circuit **454** disconnects the power converter circuit **420** from the power bus, the latching circuit **458** may be configured to maintain controllable switching circuit **454** non-conductive to keep the power converter circuit **420** disconnected from the power bus. That is, the latching circuit **458** may maintain the power converter circuit **420** in a state disconnected from the power bus until power to the bus power supply **400** is fully cycled by fully removing power from the bus power supply **400** and then restored again (e.g., the bus power supply **400** has been turned both off and back on again). Alternatively or additionally, the latching circuit **458** may reset (e.g., render the controllable switching circuit **454** conductive) after a timeout period (e.g., without the need of the bus power supply **400** to turn off and back on again).

[0109] FIG. **4**C is a block diagram of an example over-power protection circuit **460** (e.g., the over-power protection circuit **430** of FIG. **4**A and/or the over-power protection circuit **450** of FIG. **4**B) of a bus power supply (e.g., the bus power supply **400**) used in a DC power distribution system of a load control system (e.g., the DC power distribution system **300**). The over-power protection circuit **460** may comprise a power monitoring circuit, such as a current monitoring circuit **462** (e.g., the current monitoring circuit **452**), a first threshold comparison and timing circuit **466***a* (e.g., the first threshold comparison and timing circuit **456***a*), a

second threshold comparison and timing circuit **466***n* (e.g., one of the additional threshold comparison and timing circuits of the over-power protection circuit **450**), a latching circuit **468** (e.g., the latching circuit **458**), a drive circuit **473** (e.g., the drive circuit **471**), and a controllable switching circuit **464** (e.g., the controllable switching circuit **454**).

[0110] The current monitoring circuit **462** may comprise a resistor **470** (e.g., a sense resistor) and an amplifier **480**. The resistor **470** of the current monitoring circuit **462** may be coupled in series with the controllable switching circuit **464** and may conduct a monitored current I.sub.MON through the over-power protection circuit **460**. The current monitoring circuit **462** may be configured to receive the DC power supply voltage V.sub.PS_DC from a power converter circuit of the bus power supply (e.g., the power converter circuit **420**), the controllable switching circuit **464** may be configured to produce the protected power supply voltage V.sub.PS_PRT.

[0111] The controllable switching circuit **464** may comprise a pair of field-effect transistors (FETs) Q**475***a* and Q**475***b* (e.g., arranged in an anti-series configuration). The gates of the FETs Q**475***a* and Q**475***b* may receive a drive signal V.sub.DR from the drive circuit **472** for rendering the FETs Q**475***a* and Q**475***b* conductive and non-conductive. The controllable switching circuit **464** may receive the drive signal V.sub.DR, and be configured to be rendered non-conductive when the drive signal V.sub.DR is low and to be rendered conductive when the drive signal V.sub.DR is high.

[0112] The drive circuit **472** may comprise an input **473** that may be pulled high towards a supply voltage V.sub.CC (e.g., through a resistor **414**) to render the FETs Q**475***a* and Q**475***b* conductive. The input **473** of the drive circuit **472** may also be coupled to circuit common through the series combination of a resistor **408** and a capacitor **406**. For example, when the bus power supply is powered up and a low-voltage power supply (e.g., the low-voltage power supply **449**) begins to generate the supply voltage V.sub.CC, the voltage at the input **473** of the drive circuit **472** may begin to rise with respect to time. When the magnitude of the voltage at the input **473** exceeds a turn-on voltage of the drive circuit **472** (e.g., approximately 1.6-2 volts), the drive circuit **472** may render the FETs Q**475***a* and Q**475***b* conductive. The resistor-capacitor (RC) circuit formed by the resistors **408**, **414** and the capacitor **406** may provide some delay between when the bus power supply first receives power and when the controllable switching circuit **464** is rendered conductive (e.g., to allow the circuitry of the bus power supply to be powered up before the controllable switching circuit **464** is rendered conductive). The FETs Q**475***a* and Q**475***b* may be maintained in the conductive state while the magnitude of the voltage at the input **473** of the drive circuit **472** is maintained above approximately the turn-on voltage.

[0113] The current monitoring circuit **462** may be configured to monitor (e.g., measure) the magnitude of the monitored current I.sub.MON conducted through the current monitoring circuit 462 and the controllable switching circuit **464**. The amplifier **480** of the current monitoring circuit **462** may be configured to receive a sense voltage V.sub.SNS developed across the resistor **470**. The amplifier **480** may output a current monitoring signal V.sub.I-MON corresponding to the magnitude of the sense voltage V.sub.SNS. For example, the magnitude of the current monitoring signal V.sub.I-MON may be proportional (e.g., substantially proportional) to the magnitude of the sense voltage V.sub.SNS and thus the magnitude of the monitored current I.sub.MON. [0114] The first threshold comparison and timing circuit **466***a* may comprise a timer **484**, a comparator **482**, and a logic AND gate **486**. The first threshold comparison and timing circuit **466***a* may be configured to allow the over-power protection circuit **460** to operate with a first power range Range.sub.1 (e.g., between approximately 85 watts and 150 watts) for a first period of time (e.g., approximately 60 minutes). The comparator 482 may be configured to receive the current monitoring signal V.sub.I-MON (e.g., at the positive input) and a first voltage threshold V.sub.I-TH1 (e.g., at a negative input). The first voltage threshold V.sub.I-TH1 may correspond to a first current threshold I.sub.TH1 (e.g., approximately 1.7 amps) and/or the first power threshold P.sub.TH1 (e.g., approximately 85 watts). In some examples, the first power threshold P.sub.TH1 may correspond to the nominal power threshold P.sub.TH-NOM.

[0115] The comparator **482** may be configured to compare the magnitude of the current monitoring signal V.sub.I-MON to the first voltage threshold V.sub.I-TH1 to determine whether the output power P.sub.OUT of the power converter circuit is greater than the first power threshold P.sub.TH1. The comparator **482** may drive its output low if the magnitude of the current monitoring signal V.sub.I-MON is lower than the first voltage threshold V.sub.I-TH1 (e.g., the output power P.sub.OUT of the power converter circuit is less than or equal to the nominal power threshold P.sub.TH-NOM), and drive its output high if the magnitude of the current monitoring signal V.sub.I-MON is higher than the first voltage threshold V.sub.I-TH1 (e.g., the output power P.sub.OUT of the power converter circuit is greater than the nominal power threshold P.sub.TH-NOM). [0116] The timer **484** may be configured to start and run for a first time period when the output of the comparator **482** is driven high (e.g., when the magnitude of the current monitoring signal V.sub.I-MON is

higher than the first voltage threshold V.sub.I-TH1. signifying that the magnitude of the monitored current I.sub.MON is above the first current threshold I.sub.TH1). The timer **484** may continue running as long as the output of the comparator **482** is driven high (e.g., for as long as the magnitude of the monitored current I.sub.MON is above the first current threshold I.sub.TH1). While the magnitude of the monitored current I.sub.MON remains above the first current threshold I.sub.TH1, the timer **484** may be configured to drive its output low until the timer **484** reaches the expiration of the first time period. If the magnitude of the monitored current I.sub.MON drops below the first current threshold I.sub.TH1, the output of the comparator **482** may be driven low and the timer **484** may stop and reset to zero. If the timer **484** reaches the expiration of the first time period while the magnitude of the monitored current I.sub.MON has remained above the first current threshold I.sub.TH1, the timer **484** may be configured to drive its output high.

[0117] The logic AND gate **486** may receive the outputs of the comparator **482** and the timer **484**. When either of the output of the comparator **482** or the output of the timer **484** is driven low, the logic AND gate **486** may drive its output low. When both of the outputs of the comparator **482** and the timer **484** are driven high (e.g., signifying the magnitude of the monitored current I.sub.MON has remained above the first current threshold I.sub.TH1 for the first period of time), the logic AND gate **486** may drive its output high to control the disable signal V.sub.I-DSBL.

[0118] The second threshold comparison and timing circuit **466***b* may comprise a timer **490**, a comparator **488**, and a logic AND gate **492**. The second threshold comparison and timing circuit **466***b* may be configured to allow the over-power protection circuit **460** to operate within a second power range Range.sub.2 (e.g., between approximately 150 watts and 240 watts) for a second period of time (e.g., approximately 2 minutes). The comparator **488** may be configured to receive the current monitoring signal V.sub.I-MON (e.g., at the positive input) and a second voltage threshold V.sub.I-TH2 (e.g., at a negative input). The second voltage threshold V.sub.I-TH2 may correspond to a second current threshold I.sub.TH2 (e.g., approximately 3 amps) and/or the second power threshold P.sub.TH2 (e.g., 150 watts).

[0119] The comparator **488** may be configured to compare the magnitude of the current monitoring signal V.sub.I-MON to the second voltage threshold V.sub.I-TH2 to determine whether the output power P.sub.OUT of the power converter circuit is greater than the second power threshold P.sub.TH2. The comparator **488** may drive its output low if the magnitude of the current monitoring signal V.sub.I-MON is lower than the second voltage threshold V.sub.I-TH2 (e.g., the output power P.sub.OUT of the power converter circuit is less than the second power threshold P.sub.TH2), and drive its output high if the magnitude of the current monitoring signal V.sub.I-MON is higher than the second voltage threshold V.sub.I-TH2 (e.g., the output power P.sub.OUT of the power converter circuit is greater than the second power threshold P.sub.TH2).

[0120] The timer **490** may be configured to start and run for a second time period when the output of the comparator **488** is driven high (e.g., when the magnitude of the current monitoring signal V.sub.I-MON is higher than the second voltage threshold V.sub.I-TH2. signifying that the magnitude of the monitored current I.sub.MON is above the second current threshold I.sub.TH2). The second time period may be shorter than the first period of time. The timer **490** may continue running as long as the output of the comparator **488** is driven high (e.g., for as long as the magnitude of the monitored current I.sub.MON is above the second current threshold I.sub.TH2). While the magnitude of the monitored current I.sub.MON remains above the second current threshold I.sub.TH2, the timer **490** may be configured to drive its output low until the timer **490** reaches the expiration of the second time period. If the magnitude of the monitored current I.sub.MON drops below the second current threshold I.sub.TH2, the output of the comparator **488** may be driven low and the timer **490** may stop and reset to zero. If the timer **490** reaches the expiration of the second time period while the magnitude of the monitored current I.sub.MON has remained above the second current threshold I.sub.TH2, the timer **490** may be configured to drive its output high.

[0121] The logic AND gate **492** may receive the outputs of the comparator **488** and the timer **490**. When either of the output of the comparator **488** or the output of the timer **490** is driven low, the logic AND gate **492** may drive its output low. When both of the outputs of the comparator **488** and the timer **490** are driven high (e.g., signifying the magnitude of the monitored current I.sub.MON has remained above the second current threshold I.sub.TH2 for the second period of time), the logic AND gate **492** may drive its output high to control the disable signal V.sub.I-DSBL.

[0122] Although described with two threshold comparison and timing circuits **466***a*, **466***b*, the over-power protection circuit **460** may comprise any number of threshold comparison and timing circuits (e.g., each with a different power threshold and time period). For example, the over-power protection circuit **460** may include a threshold comparison and timing circuit **466***c* that is configured to output the disable signal V.sub.I-DSBL when the current monitoring signal V.sub.I-MON exceeds a third voltage threshold VI-TH3 for a third time period

(e.g., approximately 200 milliseconds). The third voltage threshold VI-TH3 may correspond to a third current threshold I.sub.TH2 (e.g., approximately 4.8 amps) and/or the maximum power threshold P.sub.TH-MAX (e.g., 240 watts). As such, the over-power protection circuit **460** may be configured to instantaneously (e.g., nearly instantaneously) disconnect from the power bus when the output power P.sub.OUT exceeds the maximum power threshold P.sub.TH-MAX.

[0123] An effect of the second period of time being shorter than the first period of time may be, for example, that if the first current threshold I.sub.TH1 and second current threshold I.sub.TH2 (e.g., or any other threshold) are both exceeded for the duration of the second timer, then the second timer **490** will expire before the first timer **484** and trip the over-power protection circuit **460**. In other words, if two current thresholds are exceeded simultaneously for the same duration, the shorter time period (e.g., of the higher threshold) will be the one to cause the over-power protection circuit **460** to disconnect the power converter circuit from the power bus. [0124] As noted above, in some examples, the bus power supply may be configured to adjust (e.g., temporarily adjust) the magnitude of the bus voltage V.sub.Bus under certain conditions (e.g., in response to the number of motor drive units that presently need to charge their internal energy storage elements and/or drive their respective motors). If the bus power supply adjusts the magnitude of the bus voltage V.sub.Bus, the bus power supply may adjust the magnitude of the current thresholds (e.g., as dictated by the first and second voltage thresholds V.sub.I-TH1, V.sub.I-TH2), for example, to keep the power thresholds at the same level. [0125] The latching circuit **468** may comprise a comparator **494**, resistors **474**, **476**, **478**, **402**, **404**, and a diode **405**. The latching circuit **468** may be configured to receive the disable signal V.sub.I-DSBL, which may be coupled to a negative input of the comparator 494. The latching circuit 486 may comprise a first voltage divider including the resistors **474**, **476**, and a second voltage divider including the resistors **478**, **402**. The junction of the resistors **474**, **476** of the first voltage divider may be coupled to the negative input of the comparator **494**, and the junction of the resistors **478**, **402** may be coupled to the positive input of the comparator **494**. The resistors **474**, **476**, **478**, **402** may be sized such that the magnitude of the voltage at the positive input of the comparator **494** is greater than the magnitude of the voltage at the negative input of the comparator (e.g., without influence from the threshold comparison and timing circuits **466***a*, **466***b*). Thus, when the magnitude of the disable signal V.sub.I-DSBL is low (e.g., if the magnitude of the monitored current I.sub.MON has not exceeded a current threshold for the respective time period), the comparator **494** may drive its output high. When the disable signal V.sub.I-DSBL is driven high (e.g., if the magnitude of the monitored current I.sub.MON has exceeded a current threshold for the respective time period), the comparator **494** may drive its output low and thus the latch signal V.sub.LATCH low.

[0126] The resistor **404** and the diode **405** may be coupled in series between the positive input and the output of the comparator **494**. When the output of the comparator **494** is driven low, the positive input of the comparator **494** may be pulled low through the resistor **404** and the diode **405**, such that the disable signal V.sub.I-DSBI cannot cause the output of the comparator **494** to be driven high again. In other words, once the disable signal V.sub.I-DSBL has been driven high, the output of the comparator **494** may maintain the latch signal V.sub.LATCH (e.g., latch to) a low level.

[0127] The drive circuit **472** may receive the latch signal V.sub.LATCH from the latching circuit **468** through a diode **495** and may control the drive signal V.sub.DR in accordance with the latch signal V.sub.LATCH. For example, if the latch signal V.sub.LATCH is high, the drive circuit **472** may control the drive signal V.sub.DR to render the controllable switching circuit **464** conductive. When the latch signal V.sub.LATCH is driven low, the input **473** of the drive circuit **472** may be pulled low through the diode **495** (e.g., below the turn-on voltage of the drive circuit) to cause the drive circuit **472** to control the drive signal V.sub.DR to render the controllable switching circuit **464** non-conductive. As such, if any of the threshold comparison and timing circuits **466***a*, **466***b* drive the disable signal V.sub.I-DSBL high (e.g., if the magnitude of the monitored current I.sub.MON has exceeded a current threshold for a respective time period), the latching circuit **458** may drive the latch signal V.sub.LATCH low, which may cause the drive circuit **472** to render the controllable switching circuit **464** non-conductive. For example, drive circuit **472** may render the FETs Q**475***a* and Q**475***b* non-conductive to disconnect the power converter circuit from the power bus when the power converter circuit has exceeded a current threshold for a respective time period.

[0128] In addition, the drive circuit **472** may be configured with a maximum current threshold ITH-MAX for rendering the controllable switching circuit **464** non-conductive in response to a very large current conducted through the over-power protection circuit **460**. For example, the drive circuit **472** may also receive the current monitoring signal V.sub.I-MON for determining the magnitude of the monitoring current I.sub.MON. If the magnitude of the monitored current I.sub.MON exceeds the maximum current threshold ITH-MAX (e.g., which corresponds to the maximum power threshold P.sub.TH-MAX), the drive circuit **472** may be configured to

render the FETs Q**475***a* and Q**475***b* to disconnect the power converter circuit **420** from the power bus nearly instantaneously (e.g., in less than 200 milliseconds).

[0129] FIG. **5** shows examples of waveforms that illustrate an operation of a bus power supply (e.g., the bus power supply **400**) that is connected to a power bus (e.g., a DC power bus) in a DC power distribution system (e.g., the DC power distribution system **300**). Although described with reference to the bus power supply **400**, the waveforms may be applicable to any of the DC power supplies described herein (e.g., the bus power supply **290**, the bus power supply **310**, and/or the bus power supply **400**).

[0130] The bus power supply **400** may operate the first and second controllable switching circuits **442**, **444** in a coordinated manner to generate the bus voltage V.sub.Bus on the power bus and to allow for the motor drive units to communicate their required power to the other motor drive units in the DC power distribution system. The control circuit **448** may operate the first and second controllable switching circuits **442**, **444** periodically (e.g., every one second). For example, the control circuit **448** may render the first controllable switching circuit **442** conductive and render the second controllable switching circuit **444** non-conductive for an on portion T.sub.ON (e.g., approximately 995 milliseconds) of each of the periodic time periods T.sub.PBUS, and render the first controllable switching circuit **442** non-conductive and render the second controllable switching circuit **444** conductive for an off portion T.sub.OFF (e.g., approximately five milliseconds) of each of the periodic time periods T.sub.PBUS. Accordingly, the bus power supply **400** may provide the bus voltage V.sub.BUS on the power bus during the on portion T.sub.ON, and may stop providing the bus voltage V.sub.Bus on the power bus during the off portion T.sub.OFF. However, it should be appreciated that the power converter circuit **420** is configured to generate the DC power supply voltage V.sub.PS_DC regardless of state of the first controllable switching circuit **442**.

[0131] Referring to FIG. 5, the control circuit 448 may render the first controllable switching circuit 442 nonconductive and render the second controllable switching circuit 444 conductive at the beginning of the off portion T.sub.OFF of each of the periodic time periods T.sub.PBus, for example, at time t1. While the first controllable switching circuit **442** is non-conductive and the second controllable switching circuit **444** is conductive, the motor drive units may communicate their required power onto the power bus. For example, during the off portion T.sub.OFF of the each of the periodic time periods T.sub.PBUS, the motor drive units may conduct a power-requirement current I.sub.PR (e.g., a small current) onto the power bus. The magnitude of the power-requirement current I.sub.PR is dependent upon (e.g., proportional to) the required power P.sub.REQ of the motor drive unit. Accordingly, the magnitude of the bus voltage V.sub.Bus during the off portion T.sub.OFF of each of the periodic time periods T.sub.PBUS may be dependent upon (e.g., proportional to) the total required power P.sub.TOT of the motor drive units of the DC power distribution system. Further, the control circuit **448** may receive the voltage sense signal V.sub.V-SENSE that indicates the magnitude of the bus voltage V.sub.Bus and/or the current sense signal V.sub.I-SENSE that indicates the magnitude of the sense current I.sub.SENSE conducted through the variable resistor **446** (e.g., and the current conducted through the power bus). Accordingly, the control circuit 448 may determine the total required power P.sub.TOT of all the motor drive units of the DC power distribution system to be used in the next subsequent periodic time period T.sub.PBUS.

[0132] At time t.sub.2, which is the end of the off portion T.sub.OFF of the periodic time period T.sub.PBUS (e.g., the beginning of the on portion T.sub.ON), the control circuit 448 may render the first controllable switching circuit **442** conductive and render the second controllable switching circuit **444** non-conductive. While the first controllable switching circuit **442** is conductive and the second controllable switching circuit **444** is non-conductive, the power converter circuit **420** may generate the DC power supply voltage V.sub.PS_DC to enable the bus power supply **400** to provide the bus voltage V.sub.BUS on the power bus, and the motor drive units may charge their internal energy storage elements and/or drive their internal load circuits (e.g., motors) from the bus voltage V.sub.BUS. Further, during the on portion T.sub.ON of the periodic time period T.sub.PBUS, the motor drive units may consume their allocated power P.sub.ALLOC from the power bus to charge their internal energy storage elements and/or drive their internal load circuits (e.g., motors). [0133] In some examples, the nominal power capability P.sub.CAP-NOM of the bus power supply **400** and/or the nominal resistance R.sub.NOM (e.g., the maximum resistance) of the variable resistor **446** may be known by the bus power supply **400** and/or the motor drive units. During the off portion T.sub.OFF, each motor drive unit may control its current source to conduct the respective power-requirement current I.sub.PR onto the power bus, which may result in change in the magnitude of the bus voltage V.sub.Bus that is equal to a bus voltage contribution V.sub.BUS ONE DRIVE on the power bus (e.g., as at least a portion of the magnitude of the bus voltage V.sub.BUS). For example, the magnitude of the bus voltage contribution V.sub.BUS ONE DRIVE may be equal to the magnitude of the power-requirement current I.sub.PR from the current source (e.g., the current sources **334***a***-334***c*) of the motor drive unit multiplied by the resistance R.sub.VAR of the variable resistor **446**. The magnitude of the bus voltage V.sub.BUS during the off portion T.sub.OFF may be equal to the sum of the power-requirement currents I.sub.PR of the current sources of the motor drive units **330***a***-330***c* multiplied by the resistance R.sub.VAR of the variable resistor **446**. Thus, each motor drive unit may use the magnitude of the power-requirement current I.sub.PR (e.g., which may be proportional to its required power P.sub.REQ), and the magnitude of the bus voltage V.sub.BUS (e.g., which may be proportional to the total required power P.sub.REQ-TOT of motor drive units) to calculate a proportional amount K.sub.P of the nominal power capability P.sub.CAP-NOM of the bus power supply 400 that could be consumed (e.g., K.sub.P=required power/total required power). The motor drive units may each determine an allocated power P.sub.ALLOC that it is allowed (e.g., allocated) to consume from the power bus as the proportional amount K.sub.P multiplied by the nominal power capability P.sub.CAP-NOM of the bus power supply **400**. [0134] In some examples, the bus power supply **400** may control the resistance R.sub.VAR of the variable resistor **446** to adjust the allocated power P.sub.ALLOC calculated by each of the motor drive units on the power bus. For example, the control circuit **448** may make it appear to each motor drive unit as if the cumulative total power required (e.g., requested) by all the motor drive units is more than (e.g., or less than) the actual total power required by all the motor drive units. Since each motor drive unit is configured to only consume their proportional amount of the total required power, the control circuit **448** may adjust the resistance R.sub.VAR of the variable resistor **446** to adjust the magnitude of the cumulative total required power to make it appear the total cumulative required power of all of the motor drive units has increased (e.g., or decreased). Accordingly, the control circuit **448** may cause each motor drive unit to consume less (e.g., or more) power during the next on portion T.sub.ON. For example, if the resistance R.sub.VAR of the variable resistor **446** is increased, then the total cumulative required power of all of the motor drive units will appear to the motor drive units to have to larger, which may cause the allocated power P.sub.ALLOC of each motor drive unit to

[0135] In some examples, it may be desirable for the bus power supply **400** to adjust the power capability of the bus power supply **400** that is available to all of the motor drive units above the nominal power capability P.sub.CAP-NOM. Alternatively or additionally, the bus power supply **400** may be configured with one or more increased-power capabilities, and the bus power supply **400** may be configured to cause the motor drive units to consume less power from the power bus, for example, when the output power P.sub.OUT of the bus power supply **400** is exceeding an increased-power capability for a period of time (e.g., a period of time that is less that the time period associated with that increased-power capability, such as a time before the bus power supply **400** renders the controllable switching circuit **454** non-conductive).

[0136] FIG. **6** is a block diagram of an example motor drive unit **500** of a motorized window treatment (e.g., one of the motor drive units **144** of the motorized roller shades **140** of FIG. **1** and/or one of the motor drive units **244** of the motorized window treatments **240** of FIGS. **2**A-**2**C and/or one of the motor drive units **330** of FIG. **3**). The motor drive unit **500** may comprise a motor **510** (e.g., a DC motor) that may be coupled (e.g., mechanically) for raising and lowering a covering material. For example, the motor **510** may be coupled to a roller tube of the motorized window treatment for rotating the roller tube for raising and lowering a covering material (e.g., a flexible material, such as a shade fabric). The motor drive unit **500** may comprise a load circuit, such as a motor drive circuit **520** (e.g., an H-bridge drive circuit) that may generate a pulse-width modulated (PWM) voltage V.sub.PWM for driving the motor **510** (e.g., to move the covering material between a fully-lowered and fully-raised position).

[0137] Although described with a motor **510**, a motor drive unit **520**, and a half-effect sensor **540**, in some examples the motor drive unit **500** may not include any of these components, and rather, could be another type of periodic load, such as a high powered sensor comprising a sensing circuit (e.g. an occupancy sensing circuit with higher power processing, such as radar), a periodic light source, such as an LED driver and lighting load, a light source that consumes high power for a short period of time (e.g., an ballast that requires more power when striking the lamp than during steady-state operation, a lighting load located in a seldomly frequented location, such as a closet, a lighting load on a short time clock or timer, such an exterior lighting loads that are triggered by motion, an event, or at a predetermined time of day, etc.), a motorized room divider, and/or a camera (e.g., that is configured to detect glare at window(s), detect occupants, etc.). Further, although described primarily as a motor drive unit for a motorized window treatment, the motor drive unit **500** may drive any sort of motor for any purpose, such as a motor for condenser, a burner for a furnace, etc.

[0138] The motor drive unit **500** may comprise a control circuit **530** for controlling the operation of the motor drive unit **500**. The control circuit **530** may comprise, for example, a microprocessor, a programmable logic device (PLD), a microcontroller, an application specific integrated circuit (ASIC), a field-programmable gate

array (FPGA), or any suitable processing device or control circuit.

[0139] The control circuit **530** may be configured to generate a drive signal V.sub.DRV for controlling the motor drive circuit **520** to control the rotational speed of the motor **510**. For example, the drive signal V.sub.DRV may comprise a pulse-width modulated signal, and the rotational speed of the motor **510** may be dependent upon a duty cycle of the pulse-width modulated signal. In addition, the control circuit **530** may be configured to generate a direction signal V.sub.DIR for controlling the motor drive circuit **520** to control the direction of rotation of the motor **510**. The control circuit **530** may be configured to control the motor **510** to adjust a present position P.sub.PRES of the shade fabric of the motorized window treatment between a fully-lowered position P.sub.LOWERED and a fully-raised position PRAISED.

[0140] The control circuit **530** may also receive a motor power signal V.sub.PM that indicates a present power consumption of the motor **510**. For example, the motor power signal V.sub.PM may have a magnitude that indicates the present power consumption of the motor **510**. For instance, in some examples, the motor drive circuit **520** may filter the drive signal V.sub.DRV, measure a magnitude of the filtered drive signal (e.g., which indicate an average magnitude of the drive signal V.sub.DRV), and multiple the magnitude of the filtered drive signal by the magnitude of the supply voltage V.sub.SUP to determine the magnitude at which to generate the motor power signal V.sub.PM.

[0141] The motor drive unit **500** may include a rotational position sensing circuit, e.g., a Hall effect sensor (HES) circuit **540**, which may be configured to generate two Hall effect sensor (HES) signals V.sub.HES1, V.sub.HES2 that may indicate the rotational position and direction of rotation of the motor **510**. The HES circuit **540** may comprise two internal sensing circuits for generating the respective HES signals V.sub.HES1, V.sub.HES2 in response to a magnet that may be attached to a drive shaft of the motor. The magnet may be a circular magnet having alternating north and south pole regions, for example. For example, the magnet may have two opposing north poles and two opposing south poles, such that each sensing circuit of the HES circuit **540** is passed by two north poles and two south poles during a full rotation of the drive shaft of the motor. Each sensing circuit of the HES circuit **540** may drive the respective HES signal V.sub.HES1, V.sub.HES2 to a high state when the sensing circuit is near a north pole of the magnet and to a low state when the sensing circuit is near a south pole. The control circuit **530** may be configured to determine that the motor **510** is rotating in response to the HES signals V.sub.HES1, V.sub.HES2 generated by the HES circuit **540**. In addition, the control circuit **530** may be configured to determine the rotational position and direction of rotation of the motor **510** in response to the HES signals V.sub.HES1, V.sub.HES2.

[0142] The motor drive unit **500** may comprise one or more power connectors, such as two power connectors **550***a*, **550***b* (e.g., each comprising two power terminals, such as a positive terminal and a negative terminal) for receiving a bus voltage V.sub.Bus from, for example, an external power supply (e.g., the bus power supply **292**, the bus power supply **310**, or the bus power supply **400**) via a power bus (e.g., the power bus **292**). For example, one of the two power connectors **550***a*, **550***b* may be a power-in connector that is connected to upstream motor drive units, and the other of the two power connectors **550***a*, **550***b* may be a power-out connector that is connected to downstream motor drive units, which may allow for easy wiring of the motor drive units (e.g., in the daisy-chain configuration). The motor drive unit **500** may comprise a diode D**554** configured to receive the bus voltage V.sub.Bus and produce an input voltage VIN across a bus capacitor CBUS.

[0143] The bus voltage V.sub.Bus may be coupled to the control circuit **530** through a scaling circuit **536**, which may generate a scaled bus voltage V.sub.BUS_S. The control circuit **530** may be configured to determine the magnitude of the bus voltage V.sub.Bus in response to the magnitude of the scaled bus voltage V.sub.BUS_S. For example, the control circuit **530** may determine the on portion T.sub.ON and the off portion T.sub.OFF of each periodic time period T.sub.PBUS based on the scaled bus voltage V.sub.BUS S. Further, the control circuit may determine the total amount of required power (e.g., requested power) of all the devices on the power bus during the off portions T.sub.OFF using the scaled bus voltage V.sub.BUS S. [0144] The motor drive unit **500** may comprise a power limiting circuit **552** that is configured to receive the input voltage VIN and generate a supply voltage V.sub.SUP. The power limiting circuit **552** may draw an input current I.sub.IN from the power bus and/or the bus capacitor C.sub.BUS. The magnitude of the supply voltage

current I.sub.IN from the power bus and/or the bus capacitor C.sub.BUS. The magnitude of the supply voltage V.sub.SUP may be less than the magnitude of the input voltage VIN. For example, the power limiting circuit **552** may act as a limiter (e.g., a power limiter and/or a current limiter), and in some examples, may comprise a power converter circuit that acts as a limiter. The control circuit **530** may be configured to control the operation of the power limiting circuit **552** using a power limit control signal V.sub.PL to control (e.g., ramp) the magnitude of the input current I.sub.IN and/or the magnitude of the supply voltage V.sub.SUP. The supply voltage V.sub.SUP may be coupled to the control circuit **530** through a scaling circuit **532**, which may generate

a scaled supply voltage V.sub.SUP_S. The control circuit **530** may be configured to determine the magnitude of the supply voltage V.sub.SUP in response to the magnitude of the scaled supply voltage V.sub.SUP_S. [0145] The motor drive unit **500** may comprise a charging circuit **553** (e.g., that receives the supply voltage V.sub.SUP) and an energy storage element **555**. The energy storage element **555** may comprise one or more supercapacitors, rechargeable batteries, or other suitable energy storage devices. A supercapacitor of a motor drive unit may have an energy storage capability in the range of approximately 12-26 J/cm.sup.3. By contrast, an electrolytic capacitor may have an energy storage capability of approximately 1 J/cm.sup.3 (e.g., in the range of about 1/10th to 1/30th of a supercapacitor), while a battery has an energy storage capability of greater than approximately 500 J/cm.sup.3 (e.g., about 15 to 50 times (or more) the energy storage capability of a supercapacitor).

[0146] The charging circuit **553** may be configured to charge the energy storage element **555** from the supply voltage V.sub.SUP to produce a storage voltage V.sub.ES across the energy storage element **555**. The charging

circuit 553 may also be configured to draw current from the energy storage element 555 to use the storage voltage V.sub.ES to generate (e.g., supplement) the supply voltage V.sub.SUP. The storage voltage V.sub.ES may be coupled to the control circuit 530 through a scaling circuit 534, which may generate a scaled storage voltage V.sub.ES S. The control circuit **530** may be configured to determine the magnitude of the storage voltage V.sub.ES in response to the magnitude of the scaled storage voltage V.sub.ES S. [0147] The motor drive unit **500** may comprise a current source circuit **570** that may be coupled across the power connectors **550***a*, **550***b*. The control circuit **530** may be configured to control the operation of the current source circuit **570** using a current source control signal V.sub.CS to control a magnitude of a power-requirement current I.sub.PR (e.g., a source current) conducted onto the power bus (e.g., during the off portion T.sub.OFF of each periodic time period T.sub.PBUS), where the magnitude of the power-requirement current I.sub.PR is dependent upon (e.g., proportional to) the required power of the motor drive unit **500**. The control circuit **530** may calculate a magnitude of the power-requirement currents I.sub.PR to be conducted onto the power bus based on any combination of a present power consumption P.sub.MOT of the motor 510 (e.g., using the magnitude of the motor power signal V.sub.PM), a magnitude of voltage depreciation in the charge of the energy storage element 555 (e.g., by determining the difference between the magnitude of the storage voltage V.sub.ES and a maximum storage voltage V.sub.ES_MAX of the energy storage element 555), and/or a standby power consumption P.sub.STANDBY of the motor drive unit **500** (e.g., the power consumption of circuitry other than the motor **510**).

[0148] In some examples, the control circuit **530** may calculate a magnitude of the power-requirement currents I.sub.PR to be conducted onto the power bus based on (e.g., based further on) one or more scaling factors (e.g., scaling factors K.sub.IPR, K.sub.PM, and K.sub.ES). For example, the control circuit **530** may calculate the magnitude of the power-requirement current I.sub.PR using the present power consumption P.sub.MOT of the motor **510**, the magnitude of the storage voltage V.sub.ES, the maximum storage voltage V.sub.ES_MAX, and the scaling factors K.sub.IPR, K.sub.PM, and K.sub.ES, e.g., [00001]

 $I_{\rm PR}=K_{\rm IPR}$.Math. $(K_{\rm PM}$.Math. $V_{\rm PM}+K_{\rm ES}$.Math. $[(V_{\rm ES_MAX^2}-V_{\rm ES^2})/V_{\rm ES_MAX^2}]+P_{\rm STANDBY})$. Equation of the scaling factor K.sub.IPR may be based on the resistance of a sense resistor in the bus power supply (e.g., the nominal resistance R.sub.NOM of the variable resistor 426) and the maximum possible voltage of the bus voltage V.sub.Bus on the power bus during the off portion T.sub.OFF of each periodic time period T.sub.PBUS (e.g., one-half the average bus voltage V.sub.BUS). K.sub.PM may be based on the power usage requirements of the motor 510, and the value of the scaling factor K.sub.ES may be based on the energy storage element (e.g., the magnitude of the storage voltage V.sub.ES across the energy storage element). In some examples, the scaling factor K.sub.IPR may be equal to one, and the scaling factor K.sub.PM may be equal to 1/5000. The scaling factor K.sub.ES may be the maximum amount of power that a motor drive unit could request when its energy storage element is empty (e.g., the energy storage voltage V.sub.ES=0V). The value of K.sub.ES*V.sub.ES_MAX may be selected so that it is substantially less than K.sub.PM*V.sub.PM. In some examples, the scaling factor K.sub.IPR may be equal to the total power-requirement currents I.sub.PR from all the devices divided by the total required power during the off portion T.sub.OFF. It should be appreciated that in some examples, the scaling factors may be omitted.

[0149] The control circuit **530** may calculate an allocated power P.sub.ALLOC that the power limiting circuit **552** may consume from the power bus and/or the bus capacitor C.sub.BUS (e.g., during the on portions T.sub.ON) to charge the energy storage element **555** and/or drive the motor **510**. The control circuit **530** may calculate a proportionate amount K.sub.P of the nominal power capability P.sub.CAP-NOM of the bus power supply **(e.g.,** the bus power supply **400**) that the motor drive unit **500** is allowed (e.g., allocated) to consume

from the power bus. For example, the proportionate amount K.sub.P may be equal to the required power P.sub.REQ of the motor drive unit **500** divided by the total required power P.sub.TOT of the motor drive unit (e.g., all of the motor drive units) on the power bus, e.g.,

[00002] $K_P = P_{REO} / P_{TOT}$. Equation 2

[0150] The control circuit **530** may be configured to calculate the allocated power P.sub.ALLOC by multiplying the nominal power capability P.sub.CAP-NOM by the proportionate amount K.sub.P, e.g., [00003] $P_{\rm ALLOC} = K_P$.Math. $P_{\rm CAP-NOM}$. Equation3

[0151] The control circuit **530** may control the power limiting circuit **552** based on the allocated power P.sub.ALLOC, so that the motor drive unit **500** consumes the proportionate amount K.sub.P of the nominal power capability P.sub.CAP-NOM from the power bus during the on portion T.sub.ON of each periodic time period T.sub.PBUS. Further, and for example, the motor drive unit **500** may consume the allocated power P.sub.ALLOC from the bus capacitor C.sub.BUS during the off portion T.sub.OFF of each periodic time period T.sub.PBUS.

[0152] The motor drive unit **500** may further comprise a power supply **558** that receives the supply voltage V.sub.SUP and generates a low-voltage supply voltage V.sub.CC (e.g., approximately 3.3 V) for powering the control circuit **530** and other low-voltage circuitry of the motor drive unit **500**. The power supply **558** may conduct current from the energy storage element **555** and/or the power limiting circuit **552**, for example, when the control circuit **530** controls the motor drive circuit **520** to rotate the motor **510**

[0153] In some examples, the charging circuit **553** is configured to conduct an average current from the power bus that meets (or exceeds) the peak current required by the motor drive circuit **520** to drive the motor **510**. However, in other examples, the charging circuit **553** is configured to conduct an average current from the power bus that is much smaller than the peak current required by the motor drive circuit **520** to drive the motor **510**. The storage level of the energy storage element **555** may decrease when the motor **510** is rotating and may slowly increase as the charging circuit **553** charges (e.g., trickle charges) the energy storage element. For example, the energy storage element **555** of the motor drive unit **500** may have a capacity to power a predetermined number of full movements (e.g., less than or equal to 10 full movements, such as approximately 5-10 full movements) of the covering materiel.

[0154] The motor drive unit **500** may include a communication circuit **542** that allows the control circuit **530** to transmit and receive communication signals, e.g., wired communication signals and/or wireless communication signals, such as radio-frequency (RF) signals. For example, the motor drive unit **500** may be configured to communicate signals with external control devices (e.g., the motor drive units **244** shown in FIGS. **2A-2C**). [0155] The motor drive unit **500** may further comprise a user interface **544** having one or more buttons that allow a user to provide inputs to the control circuit **530** during setup and configuration of the motorized window treatment. The control circuit **530** may be configured to control the motor **510** to control the movement of the covering material in response to a shade movement command received from the communication signals received via the communication circuit **542** or the user inputs from the buttons of the user interface **544**. The user interface **544** may also comprise a visual display, e.g., one or more light-emitting diodes (LEDs), which may be illuminated by the control circuit **530** to provide feedback to the user of the motorized window treatment system. The motor drive unit **500** may comprise a memory (not shown) configured to store the present position P.sub.PRES of the shade fabric and/or the limits (e.g., the fully-raised position PRAISED and the fully-lowered position P.sub.LOWERED). The memory may be implemented as an external integrated circuit (IC) or as an internal circuit of the control circuit **530**.

[0156] In some examples (e.g., alternative examples), the control circuit **530** may be configured to periodically transmit messages including the storage level of the energy storage element **555** (e.g., the magnitude of the storage voltage V.sub.ES) via the communication circuit **542**. The control circuit **530** may be configured to learn the storage levels of energy storage elements of the other motor drive units coupled to the power bus in the DC power distribution system via messages received via the communication circuit **542**. The control circuit **530** may be configured to communicate with the other motor drive units to coordinate when each of the charging circuits **553** charges its energy storage element **555**. The control circuit **530** may generate a charging enable signal V.sub.CHRG for enabling and disabling the charging circuit **553** (e.g., to charge the energy storage element **555** based on communication with the other motor drive units).

[0157] The motor drive unit **500** may also comprise a controllable switching circuit **560** coupled between the energy storage element **555** and the power connectors **550***a*, **550***b* through a diode D**562**. The control circuit **530** may generate a switch control signal V.sub.SW for rendering the controllable switching circuit **560** conductive and non-conductive. The control circuit **530** may be configured to render the controllable switching

circuit **560** conductive to bypass one or more components of the motor drive unit **500** (e.g., the charging circuit **553** and the diode **D554**) and allow the energy storage element **555** to charge energy storage elements of other motor drive units coupled to the power bus. The control circuit **530** may allow the energy storage element **555** to charge energy storage elements of other motor drive units coupled to the power bus based on the storage levels of energy storage elements of the other motor drive units (e.g. if the storage levels of energy storage elements of the other motor drive units are low), based on a message received from the system controller, based on a message received from another motor drive unit, based on a determination that another motor drive unit is charging from the power bus, based on another motor drive unit in use/moving a motor, based on a determination that another motor drive unit has an upcoming energy usage event, and/or based on another motor drive unit having a high-power demand event.

[0158] Further, in some examples, the motor drive unit **500** may include a boost converter (not shown) in series with or instead of the switch **560**. In such examples, the control circuit **530** may be configured to increase (e.g., boost) the voltage across the energy storage element **555** when connecting the energy storage element **555** to the power bus). The inclusion of a boost converter in the motor drive unit **500** may be beneficial when, for example, the internal storage element **555** has a low voltage rating.

[0159] The DC power distribution system (e.g., the load control system 100 shown in FIG. 1 and/or the DC power distribution system 300) may include a variety of different types of control devices, such as various input devices. For example, as described above, the DC power distribution system may include wired keypad device(s), battery-powered remote control device(s), occupancy sensor(s), daylight sensor(s), shadow sensor(s), radar sensor(s), and/or camera(s) (e.g., that are configured to detect glare at window(s), detect occupants, etc.). [0160] FIG. 7 is an example of a control device 600 (e.g., an input device, such as the wired keypad device 150, the battery-powered remote control device 152, the occupancy sensor 154, the daylight sensor 156, and/or the shadow sensor 158) used in a DC power distribution system (e.g., the load control system 100 shown in FIG. 1). The control device 600 may include a load circuit 610. For example, the load circuit 610 may include a sensor and/or sensing circuit (e.g., when the control device 600 is an occupancy sensor, a daylight sensor, and/or a shadow sensor), and/or a light source, such as one or more LEDs (e.g., when the control device 600 is a keypad, a battery-powered remote control device, or a low powered light source). However, in some examples, the control device 600 may not include a load circuit 610, for example, when the control device 600 is a wireless adapter circuit, for example, because the control device 600 already includes a communication circuit 642.

[0161] The control device **600** may comprise a control circuit **630** for controlling the operation of the control device **600**. The control circuit **630** may comprise, for example, a microprocessor, a programmable logic device (PLD), a microcontroller, an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or any suitable processing device or control circuit. The control circuit **630** may be configured to generate a control signal V.sub.CNTL. for controlling the load circuit **610** to control the internal load, for instance, in examples where the control device **600** comprises the load circuit.

[0162] The control device **600** may include a communication circuit **642** that allows the control circuit **630** to transmit and receive communication signals, e.g., wired communication signals and/or wireless communication signals, such as radio-frequency (RF) signals. For example, the control device **600** may be configured to communicate signals with external control devices (e.g., any of the control-target devices in the load control system **100**). The control device **600** may further comprise a user interface **644** having one or more buttons that allow a user to provide inputs to the control circuit **630**, for example, to control one or more control-target devices. The user interface **644** may also comprise a visual display, e.g., one or more light-emitting diodes (LEDs), which may be illuminated by the control circuit **630** to provide feedback to the user of the control device **600**. Or, alternatively, the visual display (e.g., one or more LEDs) may be part of the load circuit **610**. The control device **600** may comprise a memory (not shown) configured to store one or more operational settings of the control device **600**. The memory may be implemented as an external integrated circuit (IC) or as an internal circuit of the control circuit **630**.

[0163] The control device **600** may comprise one or more power connectors, such as two power connectors **650***a*, **650***b* (e.g., each comprising two power terminals, such as a positive terminal and a negative terminal) for receiving a bus voltage V.sub.Bus from, for example, an external power supply (e.g., the bus power supply **292**, the bus power supply **310**, or the bus power supply **400**) via a power bus (e.g., the power bus **292**). For example, one of the two power connectors **650***a*, **650***b* may be a power-in connector that is connected to upstream motor drive units, and the other of the two power connectors **650***a*, **650***b* may be a power-out connector that is connected to downstream motor drive units, which may allow for easy wiring of the motor

drive units and other devices (e.g., in the daisy-chain configuration) to the power bus.

[0164] The control device **600** may be configured to draw a relative constant current from the power bus (e.g., using the bus voltage V.sub.BUS). That is, the control device **600** may consume a relatively constant and continuous amount of power from the power bus. This is contrasted with the motor drive units that are coupled to the power bus, which operate relatively infrequently (e.g., a couple times per day), but require large amounts of power when they operate.

[0165] The control device **600** may comprise a current source circuit **670** that is coupled across the power connectors **650***a*, **650***b*. In some examples, the control circuit **630** may be configured to control the operation of the current source circuit **670** using a current source control signal V.sub.CSC to control a magnitude of the power-requirement current I.sub.PR (e.g., source current) conducted onto the power bus (e.g., during the off portion T.sub.OFF of each periodic time period T.sub.PBUS), where the magnitude of the power-requirement currents I.sub.PR conducted onto the power bus is dependent upon (e.g., proportional to) the required power P.sub.REQ of the control device **600**. In some examples, the control circuit **630** may control the magnitude of the power-requirement currents I.sub.PR to be the same value for the off portion T.sub.OFF of each periodic time period T.sub.PBus, for example, when the control device **600** draws a constant current from the power bus (e.g., when the magnitude of the input current VIN is relatively constant over time). However, in some examples, the current source circuit **670** is not controlled by the current source control signal V.sub.CSC, but is rather configured (e.g., preconfigured) to conduct a constant power-requirement currents I.sub.PR (e.g., having a magnitude of approximately 3 mA) during the off portion T.sub.OFF of every periodic time period T.sub.PBUS.

[0166] Finally, in some examples, the control device **600** may not include the current source circuit **670**, and the control device **600** may consume a constant amount of power from the power bus and not communicate this to the other devices on the power bus using the power-requirement currents I.sub.PR. In such examples, the bus power supply (e.g., the bus power supply **400**) that is connected to the power bus may determine the amount of constant power required by the control device(s) **600** that are connected to the power bus, for example, by averaging the steady state load on the power bus. Accordingly, the bus power supply may then control the resistance R.sub.VAR of the variable resistor during the off portion T.sub.OFF of each periodic time period T.sub.PBUS to ensure that the constant power load(s) are continuously provided sufficient power on the power bus (e.g., regardless of the power needs of any peaky loads, such as one or more motor drive units, coupled to the power bus).

[0167] The bus voltage V.sub.Bus may be coupled to the control circuit **630** through a scaling circuit **636**, which may generate a scaled bus voltage V.sub.BUS S. The control circuit **630** may be configured to determine the magnitude of the bus voltage V.sub.Bus in response to the magnitude of the scaled bus voltage V.sub.BUS S. Further, using the scaled bus voltage V.sub.BUS s, the control circuit **630** may be configured to determine the power requests of all the other devices on the DC power bus and/or determine when the bus power supply on the DC power bus has started and stopped generating the bus voltage V.sub.BUS (e.g., to determine the on portion T.sub.ON and off portion T.sub.OFF of each periodic time period T.sub.PBUS). [0168] The control device **600** may further comprise a power supply **652** that receives an input voltage VIN and generates a supply voltage V.sub.CC (e.g., approximately 3.3 V) for powering the control circuit **630** and other low-voltage circuitry of the control device **600**. The control circuit **630** may receive a power supply control signal VPS CNTL that indicates the power being used by the power supply **652**. The supply voltage V.sub.CC may be coupled to the control circuit **630** through a scaling circuit **632**, which may generate a scaled supply voltage V.sub.CC S. The control circuit **630** may be configured to determine the magnitude of the supply voltage V.sub.CC in response to the magnitude of the scaled supply voltage V.sub.CC_S. In some examples, the power supply **652** may be controlled by the control circuit **630** (e.g., via a power limit control signal V.sub.PL) to limit the supply voltage V.sub.CC. For example, the control circuit **630** may be configured to control the operation of the power supply 652 using the power limit control signal V.sub.PL to control the magnitude of the supply voltage V.sub.CC.

[0169] FIG. **8** shows examples of waveforms that illustrate an operation of two motor drive units (e.g., the motor drive unit **500**) that are connected to a power bus (e.g., a DC power bus) in a DC power distribution system (e.g., the DC power distribution system **300**). In FIG. **8**, the first motor drive unit (MDU "A") operates its motor first, and the second motor drive unit (MDU "B") operates its motor second. The first and second motor drive units may be coupled to the same DC power bus (e.g., the power bus **292**, **340**) and be supplied a bus voltage V.sub.Bus from the same bus power supply (e.g., the bus power supply **310**, **400**). [0170] As noted above, the bus power supply may operate first and second controllable switching circuits (e.g., the first and second controllable switching circuits **442**, **444**) periodically (e.g., every one second). For

example, as noted above, the bus power supply may render the first controllable switching circuit conductive and render the second controllable switching circuit non-conductive for an on portion T.sub.ON (e.g., 995 milliseconds) of each time period T.sub.PBUS, and render the first controllable switching circuit non-conductive and render the second controllable switching circuit conductive for an off portion T.sub.OFF (e.g., five milliseconds) of each time period T.sub.PBUS. Accordingly, the bus power supply may provide a bus voltage V.sub.Bus on the power bus during the on portion T.sub.ON, and may stop providing the bus voltage V.sub.Bus on the power bus during the off portion T.sub.OFF.

[0171] Prior to the time t.sub.1, the respective motors of the first and second motor drive units may be stopped and the storage voltages V.sub.ES (A). V.sub.ES (B) across the respective energy storage elements (e.g., the energy storage device 555) may be in a steady state condition (e.g., at a constant maximum capacity V.sub.ES_MAX). Further, prior to the time t.sub.1, the input current I.sub.IN (A), I.sub.IN(B), at the first and second motor drive units may be in a steady state condition. For example, the supply voltages V.sub.SUP(A), V.sub.SUP(B) may be at a relatively small constant value. At time t.sub.1, the first motor drive unit may control a drive signal V.sub.DRV to drive its motor (e.g., the motor 310), for example, in response to receiving a user input or control signal indicating a new position of a covering material of a motorized window treatment. The first motor drive unit may consume power to drive the motor from an energy storage device, and as such, the storage voltage V.sub.ES(A) across the energy storage element may begin to decrease starting at time t.sub.1. Further, the motor power signal V.sub.PM(A) of the first motor drive unit may indicate the power being used by the motor.

[0172] At time t.sub.2, the bus power supply may render the first controllable switching circuit non-conductive and render the second controllable switching circuit conductive to stop generating the bus voltage V.sub.Bus across the power bus. The time t.sub.2 may represent the beginning of the off portion T.sub.OFF of the time period T.sub.PBUS. In some examples, the first and/or second motor drive units may be configured to determine the occurrence of the off portion of the periodic time period T.sub.PBUS when a magnitude of the bus voltage V.sub.Bus drops below a threshold value. At time t.sub.2 (e.g., or immediately prior to time t.sub.2), the first and second motor drive units may calculate their required power from the power bus. Then, at time t.sub.2 (e.g., or immediately after the time t.sub.2), the first and second motor drive units may provide a power-requirement current I.sub.PR onto the power bus at a magnitude that is dependent upon (e.g., proportional to) the required power of the respective motor drive unit. For example, the first motor drive unit may control the operation of a current source circuit (e.g., the current source circuit 570) using a current source control signal V.sub.CSC to control a magnitude of a power-requirement current I.sub.PR(A) conducted onto the power bus, where the magnitude of the power-requirement current I.sub.PR(A) is dependent upon (e.g., proportional to) the required power of the first motor drive unit.

[0173] As noted above, the first motor drive unit may calculate the magnitude of the power-requirement current I.sub.PR(A) based on the power being used by the motor (e.g., using the motor power signal V.sub.PM(A)), a level of depreciation in the charge of the energy storage element 555 (e.g., by comparing the magnitude of the storage voltage V.sub.ES to a maximum storage V.sub.ES_MAX of the energy storage element 555), and, in some examples, one or more scaling factors. Since the second motor drive unit is not driving its motor at time t.sub.2 and the energy storage element of the second motor drive unit is above a threshold voltage level, such as V.sub.ES MAX, the second motor drive unit may not control a magnitude of the power-requirement current I.sub.PR (B) to be conducted onto the power bus (e.g., control the magnitude of the power-requirement current I.sub.PR (B) to be zero).

[0174] At a time delay TDELAY after the beginning of the off portion T.sub.OFF of time period T.sub.PBUS (e.g., after the time t.sub.2), the first and second motor drive units may measure the total amount of voltage across the power bus, for example, using the scaled bus voltage V.sub.BUS_S. For instance, the first motor drive unit may measure the total amount of voltage across the power bus at the time t.sub.10. Based on the desired amount of power of the first motor control unit and the total amount of required power for all the motor drive units, the first motor drive unit may calculate an amount of power (e.g., a proportionate amount of power) that it may consume during the next on portion T.sub.ON. For example, the first motor drive unit may calculate the allocated amount of power as a scaled fraction of its desired amount of power (e.g., based on the power-requirement current I.sub.PR(A) divided by the total required power of all the devices on the power bus (e.g., based on the bus voltage V.sub.BUS). During the off portion T.sub.OFF between the time t.sub.2 and the time t.sub.3, the magnitude of the bus voltage V.sub.Bus may be equal to the resistance R.sub.VAR of the variable resistor of the bus power supply times the magnitude of the power-requirement current I.sub.PR(A) (e.g., V.sub.BUS=R.sub.VAR.Math.I.sub.PR(A)).

[0175] At the time t.sub.3, the bus power supply may render the first controllable switching circuit conductive

and render the second controllable switching circuit non-conductive to provide the bus voltage V.sub.Bus for an on portion T.sub.ON (e.g., 995 milliseconds) of the next one of the periodic time periods T.sub.PBUS. The time t.sub.3 may correspond to the end of the off portion T.sub.OFF of the previous one of the periodic time period T.sub.PBus and the beginning of the on portion T.sub.ON of the next time period T.sub.PERIOD. Further, at the time t.sub.3, the first and second motor drive units may begin consuming the allocated amount of power (e.g., a proportionate amount of power) from the DC power bus based on the performed calculation. For example, the first motor drive unit may control the operation of a power limiting circuit (e.g., the power limiting circuit **552**) based on the calculated allocation of power (e.g., to which the first motor drive unit is entitled) from the DC power bus during the on portion T.sub.ON of the present time period T.sub.PERIOD. The first motor drive unit may consume the allocated power P.sub.ALLOC from the power bus during the on portion T.sub.ON of the present one of the time periods T.sub.PBus to drive the motor and recharge the internal energy storage element of the first motor drive unit. As such, the input current I.sub.IN(A) of the first motor drive unit may begin to increase at the time t.sub.3, and the energy storage element may begin to recharge. For example, a power limiting circuit (e.g., power limiting circuit 552) of the first motor drive unit may control the input current I.sub.IN(A) to increase (e.g., increase gradually) at the time t.sub.3. Since the bus voltage V.sub.Bus is substantially constant, the input power is proportional to the input current I.sub.IN(A) (e.g., as shown in FIG.

[0176] Further, since the second motor drive unit did not request any power from the DC power bus during the off portion T.sub.OFF of the previous time period T.sub.PBUS (e.g., the second motor drive unit did not generate a power-requirement current I.sub.PR (B) during the off portion T.sub.OFF), the second motor drive unit may not consume any power (e.g., additional power) form the DC power bus during the on portion T.sub.ON of the present time period T.sub.PBUS. As such, the input current I.sub.IN (B) of the second motor drive unit does not increase during the on portion T.sub.ON of the present time period T.sub.PBUS. [0177] At time t.sub.4, the second motor drive unit may generate a drive signal V.sub.DRV to drive its motor, for example, in response to receiving a user input or control signal indicating a new position of a covering material of a motorized window treatment. The second motor drive unit may consume power to drive the motor from an energy storage device, and as such, the storage voltage V.sub.ES (B) across the energy storage element may begin to decrease starting at time t.sub.4. Further, the motor power signal V.sub.PM (B) of the second motor drive unit may indicate the power being used by the motor.

[0178] At time t.sub.5, the bus power supply may render the first controllable switching circuit non-conductive and render the second controllable switching circuit conductive to stop generating the bus voltage V.sub.Bus across the DC power bus. The time t.sub.5 may represent the beginning of the off portion T.sub.OFF of the time period T.sub.PBUS. At time t.sub.5 (e.g., or immediately prior to time t.sub.5), the first and second motor drive units may calculate their required power from the DC power bus. Then, at time t.sub.5 (e.g., or immediately after the time t.sub.5), the first and second motor drive units may provide a power-requirement current I.sub.PR onto the DC power bus at a magnitude that is dependent upon (e.g., proportional to) the required power of the respective motor drive unit. For example, the first motor drive unit may control the operation of a current source circuit to control a magnitude of the power-requirement currents I.sub.PR(A) that is conducted onto the DC power bus, where the magnitude of the power-requirement currents I.sub.PR(A) is dependent upon (e.g., proportional to) the required power of the first motor drive unit. Similarly, the second motor drive unit may control the operation of a current source circuit to control a magnitude of the power-requirement currents I.sub.PR (B) that is conducted onto the DC power bus, where the magnitude of the power-requirement currents I.sub.PR (B) is dependent upon (e.g., proportional to) the required power of the second motor drive unit. Since both the first and second motor drive units are providing (e.g., conducting) the respective power-requirement currents I.sub.PR (A), I.sub.PR (B) onto the DC power bus, the magnitude of the bus voltage V.sub.Bus during the off portion T.sub.OFF between times t.sub.5 and t.sub.6 may be more than (e.g., double) the magnitude of the bus voltage V.sub.BUS during the off portion T.sub.OFF between times t.sub.2 and t.sub.3. For example, during the off portion T.sub.OFF between the time t.sub.5 and the time to, the bus voltage V.sub.Bus may be equal to the resistance R.sub.VAR of the variable resistor of the bus power supply times the combination of the magnitudes of the power-requirement currents I.sub.PR(A) and I.sub.PR (B) (e.g., V.sub.BUS=R.sub.VAR.Math.(I.sub.PR (A)+I.sub.PR(B))).

[0179] At a time t.sub.11. (e.g., after a time delay TDELAY from the beginning of the off portion T.sub.OFF of time period T.sub.PBUS at the time t.sub.5), the first and second motor drive units may measure the magnitude of the bus voltage V.sub.Bus across the DC power bus (e.g., using a scaled bus voltage V.sub.BUS_S). For instance, the first and second motor drive unit may measure the magnitude of the bus voltage V.sub.Bus across the DC power bus at the time t.sub.1. Based on the desired amount of power of the motor control unit and the

total amount of required power for all the motor drive units, the first and second motor drive unit may calculate an allocated amount of power (e.g., proportionate amount of power) that each may consume during the next time period T.sub.PBUS. For example, the first and second motor drive units may calculate an allocated amount of power as a scaled fraction of its desired amount of power (e.g., based on the magnitude of the powerrequirement currents I.sub.PR(A) of the first motor drive unit, and based on the magnitude of the powerrequirement currents I.sub.PR (B) of the second motor drive unit) divided by the total required power of all the devices on the DC power bus (e.g., based on the bus voltage V.sub.Bus during the off portion T.sub.OFF). [0180] At the time to, the bus power supply may render the first controllable switching circuit conductive and render the second controllable switching circuit non-conductive to provide the bus voltage V.sub.Bus for an on portion T.sub.ON (e.g., 995 milliseconds) of the next time period T.sub.PBUS. At the time to, the first and second motor drive units may begin consuming an allocated (e.g., proportionate) amount of power from the DC power bus based on the performed calculation. For example, the first motor drive unit may control the operation of a power limiting circuit based on the calculated proportion of power that the first motor drive unit is entitled to from the DC power bus during the on portion T.sub.ON of the present time period T.sub.PBUS. and the second motor drive unit may do the same. The first motor drive unit may consume an allocated (e.g., proportionate) amount of the bus voltage V.sub.BUS during the on portion T.sub.ON of the present time period T.sub.PBus to drive the motor and recharge the internal energy storage element of the first motor drive unit, and likewise, the second motor drive unit may do the same. As such, the input current I.sub.IN (B) of the second motor drive unit may begin to increase, and the energy storage voltage V.sub.ES (B) of the energy storage element of the second motor drive unit may begin to recharge. However, at the time to, since the second motor drive unit is now consuming power from the DC power bus, the input current I.sub.IN(A) of the first motor drive unit may decrease by an offset based on the additional motor drive unit(s) that are consuming power from the DC power bus. Finally, although not illustrated, the energy storage element of the first motor drive unit may decrease slightly during the off portion T.sub.OFF of time period (e.g., between the time t.sub.5 and the time t.sub.6), and, in such instances, would recharge at the beginning of the on portion T.sub.ON of the next time period T.sub.PBUS.

[0181] FIG. **9** is a flowchart of an example procedure **900** that may be performed by a control circuit of a motor drive unit (e.g., a control circuit of one of the motor drive units **144** of the motorized roller shades **140** of FIG. **1**, a control circuit of one of the motor drive units **244** of the motorized window treatments **240** of FIGS. **2**A-**2**C, and/or the control circuit of the motor drive unit **500** of FIG. **5**), for example, to consume an allocated (e.g., proportionate) amount of power from a DC power bus. The control circuit of motor drive unit may perform the procedure **900** periodically, for example, every one second. The motor drive unit may be coupled to a DC power bus (e.g., the DC power bus **292**) and be supplied a bus voltage V.sub.Bus from a bus power supply (e.g., the bus power supply **400**).

[0182] The bus power supply may render the first controllable switching circuit conductive and render the second controllable switching circuit non-conductive for an on portion T.sub.ON (e.g., 995 milliseconds) of each time period T.sub.PBUS, and render the first controllable switching circuit non-conductive and render the second controllable switching circuit non-conductive for an off portion T.sub.OFF (e.g., five milliseconds) of each time period T.sub.PBUS. Accordingly, the bus power supply may provide (e.g., generate) the bus voltage V.sub.Bus on the DC power bus during the on portion T.sub.ON, and may stop providing (e.g., generating) the bus voltage V.sub.Bus during the off portion T.sub.OFF.

[0183] The control circuit of motor drive unit may begin the procedure **900** at **910**. At **910**, the control circuit may determine one or more operating characteristics, such as an amount of power presently being used by the internal load, such as a motor, the present voltage across the energy storage element, etc. For example, the control circuit may receive one or more internal signals (e.g., voltages) that indicate the operating characteristics of the motor drive unit. For example, the control circuit unit may determine (e.g., measure) an amount of power used by an internal load, such as a motor (e.g., using the motor power signal V.sub.PM). The control circuit unit may determine (e.g., measure) the voltage across an internal energy storage element of the motor drive unit (e.g., based on the energy storage element voltage signal V.sub.ES s). The control circuit unit may determine a maximum voltage that can be stored across the internal energy storage element, which for example, may be preconfigured in (e.g., stored in memory of) the motor drive unit.

[0184] At **912**, the control circuit may determine a desired amount of power that the motor drive unit expects to need during the next time period T.sub.PBUS. The control circuit may calculate the desired amount of power based on the power presently being used by the motor (e.g., using a motor power signal V.sub.PM), the amount of voltage in the internal energy storage element (e.g., by comparing V.sub.ES to the maximum storage of the internal energy storage element V.sub.ES_MAX), and in some examples, one or more scaling factors. In some

examples, instead of determining the amount of voltage in the internal energy storage element, the control circuit may determine a percentage of total or maximum storage capacity of the internal energy storage element, which may not require that the control circuit measure the voltage of the internal energy storage element (e.g., such as using coulomb counting). The control circuit may determine (e.g., compute) a magnitude of the power-requirement current I.sub.PR to conducted onto the power bus. The magnitude of the power-requirement current I.sub.PR may be dependent upon (e.g., proportional to) the required power of the motor drive unit during the next time period T.sub.PBUS. The control circuit may calculate the power-requirement current I.sub.PR based on the power being used by the motor (e.g., using a motor power signal V.sub.PM), the amount of voltage in the internal energy storage element (e.g., by comparing V.sub.ES to the maximum storage of the internal energy storage element V.sub.ES_MAX), and in some examples, one or more scaling factors. For example, the control circuit may calculate the power-requirement current I.sub.PR based on Equation 1, noted above and re-recited below.

[00004]

 $I_{PR} = K_{IPR}$.Math. $(K_{PM}$.Math. $V_{PM} + K_{ES}$.Math. $[(V_{ES_MAX^2} - V_{ES^2}) / V_{ES_MAX^2}] + P_{STANDBY})$. Equation 1 [0185] In some examples, the control circuit may determine a standby amount of power P.sub.STANDBY that the motor drive unit will request regardless of the other power requirements of the motor drive unit. For example, in some examples, the desired amount of power will be no smaller than the standby amount of power P.sub.STANDBY.

[0186] At **914**, the control circuit may communicate the desired amount of power to the other devices on the DC power bus. For example, the control circuit may communicate the power-requirement current I.sub.PR to the other devices (e.g., the bus power supply, motor drive units **500**, and/or devices **600**) on the DC power bus. The control circuit may communicate the power-requirement current I.sub.PR using an analog technique over the DC power bus. For example, the control circuit may control the operation of a current source circuit (e.g., the current source circuit **570**) using a current source control signal V.sub.CSC to control the magnitude of the power-requirement current I.sub.PR conducted onto the DC power bus. Alternatively, the control circuit may communicate the desired amount of power using a digital technique over the DC power bus or using a wireless or wired digital communication technique (e.g., using the communication circuit **542**, such as a digital wire protocol (e.g., rs485)).

[0187] At **916**, the control circuit may determine the required power of all the other devices on the DC power bus. For example, the control circuit may determine the total cumulative amount of required power of all the devices on the DC power bus during the off portions T.sub.OFF by determining the magnitude of the DC bus voltage V.sub.Bus during the off period (e.g., using a scaled bus voltage V.sub.BUS s). Alternatively, the control circuit may determine the total amount of required power of all the devices on the DC power bus by receiving one or more wireless signals from the other devices (e.g., using the communication circuit **542**).

[0188] At **918**, the control circuit may compute the fraction of the total power that the motor drive unit may consume during the on portion T.sub.ON of the next time period T.sub.PBUS. For example, the control circuit may calculate the desired amount of power as a scaled fraction of its desired amount of power (e.g., based on the power-requirement current I.sub.PR) divided by the total required power of all the devices on the power bus (e.g., based on the bus voltage V.sub.BUS).

[0189] For example, the control circuit may calculate a proportionate amount K.sub.P of the nominal power capability P.sub.CAP-NOM of the bus power supply that the motor drive unit is allowed (e.g., allocated) to consume from the DC power bus. For example, the proportionate amount K.sub.P may be equal to the required power P.sub.REQ (e.g., the desired amount of power determined at **912**) of the motor drive unit divided by the total required power P.sub.TOT of all of the motor drive units (e.g., the required power of all devices determined at **916**) on the power bus, e.g.,

[00005] $K_P = P_{REQ} / P_{TOT}$. Equation2

[0190] At **920**, the control circuit may compute an allocated amount of power it may consume from the DC power bus during the on portion T.sub.ON of the next time period T.sub.PBUS. For example, the control circuit may calculate the absolute amount of power that it may consume from the DC power bus, and in some examples, scale that power into the voltage. In some examples, from **910** and **920**, the bus power supply may render the first controllable switching circuit non-conductive and render the second controllable switching circuit conductive (e.g., **910-920** may occur during an off portion T.sub.OFF of a time period T.sub.PBUS). [0191] For example, the control circuit may calculate an allocated power P.sub.ALLOC that the power limiting circuit may consume from the DC power bus and/or the bus capacitor C.sub.BUS (e.g., during the subsequent on portion T.sub.ON) to charge the energy storage element and/or drive the motor. The control circuit may be

configured to calculate the allocated power P.sub.ALLOC by multiplying the nominal power capability P.sub.CAP-NOM of the power supply by the proportionate amount K.sub.P (e.g., the fraction of the total power determined at **918**), e.g.,

[00006] $P_{ALLOC} = K_P$.Math. $P_{CAP-NOM}$. Equation 3

[0192] Finally, at **922**, the control circuit may adjust an input current I.sub.IN of the motor drive unit based on the allocated amount of power. For example, the control circuit may generate a supply voltage V.sub.SUP based on the computed amount of power that it may consume from the DC power bus. For example, the control circuit may control a power limit control signal V.sub.PL to control a power limiting circuit (e.g., the power limiting circuit **552**) to control the magnitude of the supply voltage V.sub.SUP such that the magnitude of the supply voltage V.sub.SUP is equal to (e.g., or less than) the computer amount of power that the motor drive unit may consume from the DC power bus. At **922**, the bus power supply may render the first controllable switching circuit conductive and render the second controllable switching circuit non-conductive (e.g., **920** may occur during the on portion T.sub.ON of the next time period T.sub.PBUS).

[0193] For instance, using an analog technique, the control circuit may determine a total amount of current I.sub.TOTAL that the motor drive unit may draw from the DC power bus at **916**, where I.sub.TOTAL=V.sub.PRAD/R.sub.VAR. The control circuit may then determine an allocated amount of power P.sub.ALLOC at 918 and 920, where P.sub.ALLOC=P.sub.CAP-NOM. (P.sub.REQ/P.sub.TOT). Finally, the control circuit may determine a magnitude of a power limit control signal V.sub.PL that is used to control the magnitude of the input current I.sub.IN at 922, where V.sub.PL=K.sub.PL.Math.P.sub.ALLOC. Further, using a digital technique and in some examples, the control circuit may sum the required power from all the motor drive units at **916**. The control circuit may determine an allocated amount of power P.sub.ALLOC, where P.sub.ALLOC=P.sub.REQ/P.sub.TOTAL at **918** and **920**. And the control circuit may determine a current limit I.sub.LIMIT for the input current, where I.sub.LIMIT=P.sub.ALLOC/V.sub.BUS, and may control a limiting circuit (e.g., power limiting circuit 552) to limit the input current to the current limit I.sub.LIMIT at 922. [0194] FIG. **10**A is a flowchart of an example procedure **1000** that may be performed by a bus power supply, such as an over-power protection circuit (e.g., the over-power protection circuit **430**, the over-power protection circuit **450**, and/or the over-power protection circuit **460**) and/or a power bus management circuit (e.g., the power bus management circuit **440**) of the bus power supply. For example, a control circuit of the over-power protection circuit may perform the procedure **1000**. Further, in some examples, a control circuit of a power bus management circuit (e.g., the control circuit **448** of the power bus management circuit **440**) may perform the procedure **1000**. The over-power protection circuit may perform the procedure **1000** periodically. The overpower protection circuit may perform the procedure **1000** to detect and protect against over-power (e.g., overcurrent) conditions. The over-power protection circuit may perform the procedure **1000** to allow the bus power supply to operate at one or more increased power capabilities that are greater than the nominal power capability P.sub.TH-NOM of the bus power supply for up to, but not longer than, respective predetermined increasedpower time periods.

[0195] The over-power protection circuit may determine a magnitude of a monitored current I.sub.MON conducted through the over-power protection circuit by sampling a current monitoring signal (e.g., current monitoring signal V.sub.I-MON) at **1010**. For example, the over-power protection circuit may generate the current monitoring signal V.sub.I-MON in response to a sense voltage developed across a sense resistor through which the through which the monitored current I.sub.MON is conducted. The magnitude of the current monitoring signal V.sub.I-MON may be representative of the magnitude of the monitored current I.sub.MON conducted through the over-power protection circuit (e.g., the current flowing from the power converter circuit to a power bus).

[0196] At **1012**, the over-power protection circuit may determine whether the magnitude of the current monitoring signal V.sub.I-MON is greater than a voltage threshold V.sub.I-TH. For example, the voltage threshold V.sub.I-TH may be the first, second, third, or Nth voltage threshold as described herein. The voltage threshold V.sub.I-TH may correspond to a current threshold ITH that indicates when the over-power protection circuit is operating at a particular power level that is associated with a respective increased-power time period at which the power converter circuit may operate at or below for the increased-power respective time period. For example, the voltage threshold V.sub.I-TH may correspond with an increased-power threshold of the bus power supply, and may be associated with an increased-power time period, as noted herein. [0197] If the magnitude of the current monitoring signal V.sub.I-MON is greater than the voltage threshold V.sub.I-TH at **1012**, the over-power protection circuit may determine if the timer for the voltage threshold

V.sub.I-TH at **1012**, the over-power protection circuit may determine if the timer for the voltage threshold V.sub.I-TH is running at **1014**. The timer may be based on an increased-power time period that may be specific to the voltage threshold V.sub.I-TH. For example, as noted herein, a first voltage threshold V.sub.I-TH1 may be

associated with a first increased-power time period T.sub.IP1 (e.g., approximately 60 minutes), a second voltage threshold V.sub.I-TH2 may be associated with a second increased-power time period T.sub.IP2 (e.g., approximately 2 minutes), etc. In some examples, the timer may be implemented as a threshold comparison and timing circuit (e.g., the threshold comparison and timing circuits **456***a***-465***n*), a timer (e.g., the timer **484**, **490**), and/or as a timer that is part of a control circuit. If the timer for V.sub.I-TH is not running at **1014**, the overpower protection circuit may start (e.g., set) a timer for the voltage threshold V.sub.I-TH at **1024** before returning to **1010**. For example, the timer may be configured to start a timer value counting up from zero and run for the increased-power time period associated with the respective power level (e.g., or count down from the increased-power power time period to zero).

[0198] If the timer for V.sub.I-TH is running at **1014**, the over-power protection circuit may determine if the timer for V.sub.I-TH has expired at **1016** (e.g., if the increased-power time period associated with the respective power level has elapsed). For example, the over-power protection circuitry may compare the timer value to a timer threshold (e.g., which may be the increased-power time period associated with the respective increased-power level) at **1016**, and determine that the timer has expired if the timer value of meets or exceeds the timer threshold. Alternatively, the timer may be a timer that counts down, and the over-power protection circuit may determine that the timer has expired when the timer value has reached zero at **1016**.

[0199] If the timer has expired at **1016**, the over-power protection circuit may disconnect the power converter circuit from the power bus at **1018** and exit the procedure **1000**, for example, by rendering a controllable switching circuit non-conductive (e.g., by rendering the controllable switching circuit **454** or **464** non-conductive). Therefore, by performing the procedure **1000**, the over-power protection circuit is configured to disconnect the power converter circuit from the power bus when the magnitude of the monitored current I.sub.MON has exceeded a current threshold for the duration of the increased-power time period associated with respective increased-power threshold.

[0200] If, at **1016**, the timer has not expired, the over-power protection circuit may return to **1010** to sample the current monitoring signal V.sub.I-MON again. For example, the current monitoring signal V.sub.I-MON may continue exceeding the threshold until the timer expires, or the current monitoring signal V.sub.I-MON may cease to exceed the threshold before the timer expires. If, at **1012**, the magnitude of the current monitoring signal V.sub.I-MON is not greater than the voltage threshold V.sub.I-TH, then, at **1020**, the over-power protection current may determine if the timer is already running. If the timer was already running, the over-power protection circuit may stop and reset the corresponding timer for the voltage threshold V.sub.I-TH and exit the procedure **1000**. If, at **1020**, the timer for the voltage threshold V.sub.I-TH is not already running, the over-power protection circuit may exit the procedure **1000**.

[0201] The entire procedure **1000** may be repeated (e.g., concurrently and/or sequentially) for a plurality of increased-power thresholds and/or increased-power time periods. For example, power levels may correspond to various power levels of the bus power supply, and each increased-power threshold may be associated with a respective time period. As such, the procedure **1000** may allow the bus power supply to operate at one or more increased power capabilities that are greater than the nominal power capability P.sub.TH-NOM of the bus power supply for up to, but not longer than, respective predetermined increased-power time periods. Further, the procedure **1000** may allow the over-power protection circuit to evaluate whether the magnitude of the monitored current I.sub.MON has operating at or below a variety of different increased-power thresholds (e.g., has exceeded a variety of different respective current thresholds) for respective increased-power time periods. [0202] In some examples, after determining that the magnitude of the current monitoring signal V.sub.I-MON is greater than the voltage threshold V.sub.I-TH at **1012**, the over-power protection circuit may send a message (e.g., an analog signal, a digital message, etc.) to the one or more motor drive units indicating that the magnitude of the output power of the bus power supply is exceeding the nominal power capability P.sub.TH-NOM of the bus power supply and/or asking that the one or more motor drive units step down their consumed power to avoid a future trip.

[0203] FIG. **10**B is a flowchart of an example procedure **1050** that may be performed by a bus power supply, such as a power bus management circuit (e.g., the power bus management circuit **440**). For example, a control circuit of the power bus management circuit (e.g., the control circuit **448** of the power bus management circuit **440**) may perform the procedure **1050**. The control circuit may perform the procedure **1050** to allow the bus power supply to operate at one or more increased power capabilities that are greater than the nominal power capability P.sub.TH-NOM of the bus power supply for up to, but not longer than, respective predetermined increased-power time periods. For example, the control circuit may perform the procedure **1050** to adjust a resistance R.sub.VAR of a sense resistor (e.g., the variable resistor **446**) to, for example, adjust an allocated power P.sub.ALLOC determined

(e.g., calculated) by each of the motor drive units on the power bus to prevent the output power P.sub.OUT of the bus power supply from exceeding an increased-power threshold for more than the respective increased-power time period of that increased-power threshold. The control circuit may be configured to control the resistance R.sub.VAR of the variable resistor between a minimum resistance R.sub.MIN to a nominal resistance R.sub.NOM (e.g., a maximum resistance).

[0204] The control circuit may sample a current sense signal V.sub.I-SENSE at **1060**. The current sense signal V.sub.I-SENSE may have a magnitude that indicates the magnitude of a sense current I.sub.SENSE conducted through a sense resistor of the power bus management circuit (e.g., the variable resistor **446**). For example, the current sense signal V.sub.I-SENSE may indicate the total current I.sub.TOTAL conducted on the power bus, for example, during the off portion T.sub.OFF of the periodic time period (e.g., when the first controllable switching circuit 442 is non-conductive and the second controllable switching circuit 444 is conductive). [0205] At **1062**, the control circuit may determine a total required current I.sub.REO-TOTAL from current sense signal V.sub.I-SENSE. The total required current I.sub.REQ-TOTAL may equal the total magnitude of the power-requirement currents I.sub.PR conducted onto the power bus by the plurality of motor drive units coupled to the power bus, for example, during the off portion T.sub.OFF of the periodic time period. As noted above, the magnitude of the power-requirement current I.sub.PR may be dependent upon (e.g., proportional to) the required (e.g., requested)) power P.sub.REQ of the motor drive unit, and as such the total required current I.sub.REO-TOTAL may equal the total required power of all of the motor drive units coupled to the power bus. [0206] At **1064**, the control circuit may determine whether the total required current I.sub.REQ-TOTAL is greater than a voltage threshold V.sub.I-TH. As described herein, the voltage threshold V.sub.I-TH1 may correspond to a current threshold I.sub.TH1 and/or the power threshold P.sub.TH. In some examples, the voltage threshold V.sub.I-TH may be the first, second, third, or Nth voltage threshold as described herein. In such examples, the voltage threshold V.sub.I-TH may correspond with an increased-power threshold of the bus power supply, and may be associated with an increased-power time period, as noted herein. However, in other examples, the voltage threshold V.sub.I-TH may be configured to be slightly less than the first, second, third, or Nth voltage threshold.

[0207] If the magnitude of the total required current I.sub.REQ-TOTAL is greater than the voltage threshold V.sub.I-TH at **1064**, the control circuit may determine if the timer for the voltage threshold V.sub.I-TH is running at **1066**. The timer may be specific to the voltage threshold V.sub.I-TH. In some examples, the timer may be configured to be slightly less than the timers used for the increased-power time periods. For example, a first voltage threshold V.sub.I-TH1 may be associated with a first time period T.sub.IP1 (e.g., approximately 58 minutes, which is slightly less than 60 minutes), a second voltage threshold V.sub.I-TH2 may be associated with a second time period T.sub.IP2 (e.g., approximately 1 minute and 50 seconds, which may be slightly less than 2 minutes), etc. As such, the timers used in the procedure **1050** may be configured to expire before the timers used in the procedure **1000**.

[0208] If the timer for V.sub.I-TH is not running at **1066**, the control circuit may start (e.g., set) a timer for the voltage threshold V.sub.I-TH at **1072**. At **1074**, the control circuit may control the resistance R.sub.VAR of the variable resistor to increase the power capabilities of the bus power supply. For example, the control circuit may reduce the resistance R.sub.VAR of the variable resistor to make it appear to the motor drive units as if the total cumulative required power of all of the motor drive units has decreased, which may cause the allocated power P.sub.ALLOC of each motor drive unit to increase during the next on portion of the periodic time period. After controlling the resistance R.sub.VAR of the variable resistor at **1074**, the control circuit may return to **1060**. However, in some examples 1074 may be omitted, and the control circuit may be configured to return to **1060** after starting the timer at **1072**.

[0209] If the timer for V.sub.I-TH is running at **1066**, the control circuit may determine if the timer for V.sub.I-TH has expired at **1068**. If the timer has expired at **1068**, the control circuit may control the resistance R.sub.VAR of the variable resistor to decrease the power capabilities of the bus power supply. For example, the control circuit may induce the resistance R.sub.VAR of the variable resistor to make it appear to the motor drive units as if the total cumulative required power of all of the motor drive units has increased, which may cause the allocated power P.sub.ALLOC of each motor drive unit to decrease during the next on portion of the periodic time period. Therefore, by performing the procedure **1050**, the control circuit may be configured to adjust the resistance R.sub.VAR of the variable resistor to adjust the power capabilities of the bus power supply, to for example, adjust the allocated power P.sub.ALLOC determined (e.g., calculated) by each of the motor drive units on the power bus to prevent the output power P.sub.OUT of the bus power supply from exceeding an increased-power threshold for more than the respective increased-power time period of that increased-power threshold.

[0210] If, at **1068**, the timer has not expired, the control circuit may return to **1060** to sample the current sense signal V.sub.I-SENSE again. For example, the total required current I.sub.REQ-TOTAL may continue exceeding the voltage threshold V.sub.I-TH until the timer expires, or the total required current I.sub.REQ-TOTAL may cease to exceed the threshold before the timer expires. If, at **1064**, the total required current I.sub.REQ-TOTAL is not greater than the voltage threshold V.sub.I-TH, then, at **1076**, the control current may determine if the timer is already running. If the timer was already running, the control circuit may stop and reset the corresponding timer for the voltage threshold V.sub.I-TH at **1078** and exit the procedure **1050**. If, at **1076**, the timer for the voltage threshold V.sub.I-TH is not already running, the control circuit may exit the procedure **1050**.

[0211] The entire procedure **1050** may be repeated (e.g., concurrently and/or sequentially) for a plurality of thresholds and/or time periods, where for example, each of the thresholds and/or time periods may be slighted less than the increased-power thresholds and/or increased-power time periods described herein (e.g., to ensure that the control circuit has the ability to adjust the variable resistance R.sub.VAR of the variable resistor before the over-power protection circuit trips).

[0212] FIG. **11** is a block diagram of an example DC power distribution system **1100**. The DC power distribution system **1100** may comprise one or more motor window treatments **1150** (e.g., of the motorized roller shades **140**). For example, the motor window treatments **1150** may each comprise a respective motor drive units **1152** configured to adjust the positions of a respective covering material **1154** to control the amount of daylight entering the building through respective windows.

[0213] The DC power distribution system **1100** may comprise a DC power bus **1140** (e.g., a Class **2** power bus) and may be electrically coupled to the motor drive units **1152** in a daisy-chain configuration. The DC power distribution system **1100** may further comprise a bus power supply **1110** (e.g., a Class **2** protected power supply) configured to provide a protected power supply voltage V.sub.PS_PRT to the motor drive units **1152** via the DC power bus **1140**. Although illustrated as four motor drive units **1152**, in some examples, more or less motor drive units **1152** may be coupled to the DC power bus **1140**.

[0214] Each motor drive unit 1152 may include one or more power connectors, a diode and bus capacitor, a control circuit, a communication circuit, a user interface, a power supply, a motor drive circuit, a rotational position sensing circuit, and/or a motor. Further, the motor drive units 1152 may include a power converter circuit to convert the protected power supply voltage V.sub.PS_PRT to a motor voltage used to drive the motor. However, the motor drive units 1152 may not include any energy storage elements (e.g., the energy storage element 555, such as one or more supercapacitors, rechargeable batteries, or other suitable energy storage devices) and associated circuitry, such as a power limiting circuit, a charging circuit, a current source, and a controllable switching circuit coupled between the energy storage element and the power connectors. For example, each of the motor drive units 1152 may be similar to the motor drive unit 500 of FIG. 6, but without the inclusion of the power limiting circuit 552, the charging circuit 553, the energy storage element 555, the current source 570, the controllable switching circuit 560, and one or more of the scaling circuits. Accordingly, without the energy storage element 555, the motor drive units 1150 may be forced to consume all the power required to drive its internal motor from the bus power supply 1110 at the time of movement (e.g., may lack the ability to consume the necessary power to power a predetermined number of full movements, such as less than or equal to 10 full movements).

[0215] The bus power supply **1110** may be electrically coupled to one or more of the motor drive units **1152** via the DC power bus **1140**. For example, the bus power supply **1110** may comprise one or more power connectors (e.g., the power connector **410**, which may include two power terminals, such as a positive terminal and a negative terminal) for receiving an input voltage from an external power supply, such as an AC mains supply for receiving an AC mains line voltage V.sub.AC. The bus power supply **1110** may also comprise a power connector (e.g., the power connector **412**) that is connected to the DC power bus **1140** that is electrically coupled to the one or more motor drive units **1152**. The bus power supply **1110** may be configured to generate the protected power supply voltage V.sub.PS_PRT, and the power connector **412** may provide the protected power supply voltage V.sub.PS_PRT to the DC power bus **1140**. The motor drive units **1152** connected to the DC power bus **1140** may conduct an output current from the bus power supply **1110** through output the power connector of the bus power supply **1110**.

[0216] The bus power supply **1110** may include a power converter circuit **1120** that is coupled to the input power connector for receiving the input voltage (e.g., the AC main line voltage V.sub.AC), and for generating a direct-current (DC) power supply voltage V.sub.PS_DC. The power converter circuit **1120** may be an example of the power converter circuit **420** of the bus power supply **400**. The power converter circuit **1120** may be an AC/DC converter or a DC/DC converter, for example, depending on whether the bus power supply **1110** is

connected to an AC power source or a DC power source.

[0217] The bus power supply **1110** may include an over-power protection circuit **1130** that is configured to receive the DC power supply voltage V.sub.PS_DC and output the protected power supply voltage V.sub.PS_PRT under normal conditions. The bus power supply **1110** may also disconnect the power converter **1120** from the DC power bus **1140** (e.g., disable the bus power supply **1110**) in response to the output power of the power converter **1120** exceeding a threshold. The over-power protection circuit **1130** may be an example of the over-power protection circuit **430** of the bus power supply **400**.

[0218] As noted above with respect to the over current protection circuit 430, the over-power protection circuit 1130 may monitor the output power of the bus power supply 1110 by monitoring a current (e.g., a monitored current I.sub.MON) conducted through the over-power protection circuit 1130 (e.g., since the protected power supply voltage V.sub.PS_PRT has a DC magnitude). For example, the over-power protection circuit 1130 may have multiple, timed thresholds, where each threshold is associated with a different power level and a respective amount of time. In some examples, the over-power protection circuit 1130 may be configured to disconnect the power converter circuit 1120 from the DC power bus 1140 by opening a switch (e.g., a controllable conductive switching circuit). Further, the over-power protection circuit 1110 may be configured to keep the power converter circuit 1120 disconnected from the DC power bus until, for example, power to the bus power supply 1110 is fully cycled (e.g., the bus power supply 1110 has been turned both on and back off again) or power to the bus power supply 1110 has been removed (e.g., the bus power supply 1110 has been turned off) and then restored again.

[0219] Notably, the bus power supply **1110** may not include a power bus management circuit, such as the power bus management circuit **440** of the bus power supply **400**. As such, the bus power supply **1110** may be identical to the bus power supply **400**, with the exception that the bus power supply **1110** does not include the power bus management circuit **440**.

[0220] FIG. 12 is an example waveform 1200 that illustrates an output power of the bus power supply 1110, when connected to the DC power bus **1140** in the DC power distribution system **1100** that includes the multiple (e.g., four) motor drive units **1152**. As noted above, the motor drive units **1152** may not be capable of storing enough power for multiple full operations of the motor without drawing higher amounts of current directly from the DC power bus **1140**. And, as also noted above, the bus power supply **1110** may include the over-power protection circuit **1130**. During instances where none of the motor drive units **1152** are driving their internal motors, the output power of the bus power supply may reside at a standby power P.sub.SB level (e.g., .5 watts or 1 watt per motor drive unit, 1.6 watts, 2 watts, or 4 watts in total). The standby power P.sub.SB may represent a combined nominal or standby power consumed by the motor drive units **1152** connected to the DC power bus **1140** when the motor drive units **1152** are not driving their internal motors. When all of the motor drive units **1152** each receive a command to raise the respective covering materials **1154** from a fully-lowered position to a fully-raised position, the motor drive units **1152** may be configured to move the covering materials **1154** in unison. The period of time that it takes for all the motor drive units **1150** to fully raise their motorized window treatments from the fully-lowered position to the fully-raised position may be represented by a movement time period T.sub.MOVE (e.g., approximately 60 seconds). For example, at the time t.sub.1, the motorized window treatment of each of the motor drive units **1150** may be in the fully-lowered position, and all of the motor drive units **1150** may begin to drive their motors in response to receiving a command. And, at the time t.sub.2, all of the motor drive units **1150** may stop driving their motor and the motorized window treatments may be in the fully-raised position.

[0221] As illustrated by the graph **1200**, during the movement time period T.sub.MOVE, the output power of the bus power supply **1110** may exceed a nominal power level, but may be maintained lower than a maximum increased-power threshold of the bus power supply **1110** (e.g., 240 watts). It should be noted that this is the case even though the motor drive units **1150** do not include an internal energy storage element that is capable of storing enough power for multiple full operations of the motor, and, as such, the bus power supply **1110** supplies the full power to drive the respective motors of the motor drive units **1150** connected to the DC power bus. Further, it should be appreciated that the output power of the bus power supply **1110** is highest when the motorized window treatments are near the fully-lowered position, and decreases as they raise towards the fully-raised position. As such, during the movement time period T.sub.MOVE, the output power of the bus power supply **1110** may not exceed the nominal power level of the bus power supply **1110** (e.g., 85 watts) for more than a first increased-power period of time (e.g., 60 minutes), and also does not exceed a first increased-power threshold (e.g., 150 watts) for more than a second increased-power period of time (e.g., 2 minutes). Accordingly, even though multiple (e.g., four) motor drive units **1150** are all driving their motors simultaneously, the over-power protection circuit **1130** of the bus power supply **1110** does not trip.

[0222] Although not illustrated, the combined power needed to lower the motorized window treatments of all of the motor drive units **1150** simultaneously is smaller than the combined power needed to raise the motorized window treatments of all of the motor drive units **1150**. For example, when lowering the motorized window treatment, the motor drive unit **1150** may drive the motor to slow down the speed at which the motorized window treatment lowers due to the force of gravity. That is, the force of gravity would cause the motorized window treatment to lower faster but for the use of the motor to break and maintain the lowering to be a more constant motion. As such, the output power of the bus power supply **1110** is less when lowering all of the motorized window treatments simultaneously than when raising them. Accordingly, even if the motorized window treatments of all of the motor drive units 1152 were to be raised and lowered in a consistent, repeated manner, the output power of the bus power supply 1110 may not exceed the maximum increased-power threshold (e.g., 240 watts), may not exceed the nominal power level of the bus power supply (e.g., 85 watts) for more than the first increased-power period of time (e.g., 60 minutes), and also may not exceed the first increased-power threshold (e.g., 150 watts) for more than the second increased-power period of time (e.g., 2 minutes). Further, the average output power to complete a raise, followed by a lower may be (e.g., may always be) lower than the nominal continuous power level of the bus power supply 1110 (e.g., 85 watts.) [0223] Although described with the motor drive units **1152** of the motorized window treatments **1150**, the bus power supply **1110** of the DC power distribution system **1100** shown in FIG. **11** may be configured to power other types of periodic loads, such as a high powered sensor comprising a sensing circuit (e.g. an occupancy sensing circuit with higher power processing, such as radar), a periodic light source, such as an LED driver and lighting load, a light source that consumes high power for a short period of time (e.g., a ballast that requires more power when striking the lamp than during steady-state operation, a lighting load located in a seldomly frequented location, such as a closet, a lighting load on a short time clock or timer, such as an exterior lighting loads that are triggered by motion, an event, or at a predetermined time of day, etc.), a motorized room divider, a camera (e.g., that is configured to detect glare at window(s), detect occupants, etc.) and/or the like. Further, the motor drive units **1152** may each drive any sort of motor for any purpose, such as a motor for condenser, a burner for a furnace, etc.

Claims

- 1. A bus power supply for providing a bus voltage to a plurality of devices, the bus power supply comprising: a first controllable switching circuit; a second controllable switching circuit, wherein the second controllable switching circuit is coupled between a junction of the first controllable switching circuit and circuit common through a sense resistor; and a control circuit configured to: render the first controllable switching circuit conductive and render the second controllable switching circuit non-conductive for an on portion of a periodic time period to provide the bus voltage on a power bus during the on portion of the periodic time period, and render the first controllable switching circuit non-conductive and render the second controllable switching circuit non-conductive for an off portion of the periodic time period to not provide the bus voltage on the power bus during the off portion of the periodic time period; measure a total amount of voltage across the power bus during the off portion of the periodic time period; and determine a total power requirement of the plurality of devices based on the measurement.
- **2**. The bus power supply of claim 1, further comprising: a first power connector configured to receive an input voltage from an external power supply, and a second power connector that is configured to be connected to the power bus, wherein the power bus is configured to be electrically coupled to the plurality of devices.
- **3**. The bus power supply of claim 2, wherein the first controllable switching circuit is coupled between an output of a power converter and the second power connector; and wherein the second controllable switching circuit is coupled between a junction of the first controllable switching circuit and the second power connector and circuit common through the sense resistor, wherein the second controllable switching circuit and the sense resistor are coupled in parallel between terminals of the second power connector.
- **4.** The bus power supply of claim 2, wherein the external power supply comprises an alternating-current power source for generating an AC main line voltage.
- **5**. The bus power supply of claim 1, wherein the sense resistor comprises a variable resistor, and wherein the control circuit is configured to: adjust a variable resistance of the variable resistor to adjust an amount of power that the bus power supply can deliver over the power bus during the on portion of the periodic time period.
- **6**. The bus power supply of claim 5, further comprising: a power converter circuit, wherein the bus power supply has a power capability that defines a maximum output power of the power converter circuit; and wherein the control circuit is configured to adjust the variable resistance of the variable resistor to adjust a

magnitude of the output power of the power converter circuit.

- **7**. The bus power supply of claim 5, wherein the control circuit is configured to adjust the variable resistance of the variable resistor to adjust the total power requirement of the plurality of devices.
- **8.** The bus power supply of claim 5, wherein the bus power supply is characterized by a nominal power capability that defines a nominal power threshold at or below which the bus power supply may supply power indefinitely to the plurality of devices; and wherein the bus power supply is configured to adjust the variable resistance of the variable resistor to allow the plurality of devices to consume a magnitude of power on the power bus that is greater than the nominal power threshold.
- **9.** The bus power supply of claim 5, wherein the bus power supply is characterized by a nominal power capability that defines a nominal power threshold at or below which the bus power supply may supply power indefinitely to the plurality of devices; and wherein the bus power supply is configured to adjust the variable resistance of the variable resistor to cause the plurality of devices to consume a magnitude of power on the power bus that is less than or equal to the nominal power threshold.
- **10**. The bus power supply of claim 1, wherein the bus power supply comprises a current source, and the bus power supply is configured to conduct current onto the power bus during the off portion of the periodic time period to adjust an amount of power consumed by the plurality of devices.
- **11**. The bus power supply of claim 1, wherein the bus power supply has a power capability that defines a maximum amount of power that the bus power supply can deliver over the power bus; and wherein the bus power supply is characterized by a nominal power capability that defines a nominal power threshold at or below which the bus power supply may supply power indefinitely to the plurality of devices, wherein the nominal power threshold is less than the maximum amount of power defined by the power capability of the bus power supply.
- **12**. The bus power supply of claim 11, wherein the bus power supply is configured to supply power to the plurality of devices at one or more increased power capabilities that are greater than the nominal power capability for up to, but not longer than, respective predetermined increased-power time periods.
- **13**. The bus power supply of claim 11, further comprising: an over-power protection circuit configured to configured to disconnect the bus voltage from the power bus in response to an over-power condition, wherein the first controllable switching circuit is coupled between an output of the over-power protection circuit and the power bus.
- **14.** The bus power supply of claim 13, wherein the bus power supply is configured to continuously supply power to the power bus at or below the nominal power threshold without interruption or disconnection by the over-power protection circuit of the bus power supply.
- **15.** The bus power supply of claim 13, wherein the bus power supply comprises a power converter circuit, wherein the over-power protection circuit is configured disconnect the bus voltage from the power bus in response to a magnitude of an output power of the power converter circuit exceeding a first increased-power threshold for more than a first increased-power time period, and configured to disconnect the bus voltage from the power bus in response to the magnitude of the output power of the power converter circuit exceeding a second increased-power threshold for more than a second increased-power time period.
- **16**. A method performed by a bus power supply, the method comprising: rendering a first controllable switching circuit conductive and rendering a second controllable switching circuit non-conductive for an on portion of a periodic time period to provide a bus voltage on a power bus during the on portion of the periodic time period; rendering the first controllable switching circuit non-conductive and rendering the second controllable switching circuit non-conductive for an off portion of the periodic time period to not provide the bus voltage on the power bus during the off portion of the periodic time period; measuring a total amount of voltage across the power bus during the off portion of the periodic time period; and determining a total power requirement of the power bus based on the measurement.
- **17**. The method of claim 16, further comprising: adjusting a variable resistance of a variable resistor to adjust an amount of power that the bus power supply can deliver over the power bus during the on portion of the periodic time period.
- **18**. The method of claim 17, further comprising: adjusting the variable resistance of the variable resistor to adjust the total power requirement of a plurality of devices that receive the bus voltage.
- **19.** The method of claim 16, further comprising: disconnecting the bus voltage from the power bus in response to an over-power condition.
- **20**. The method of claim 16, further comprising: disconnecting the bus voltage from the power bus in response to a magnitude of an output power of a power converter circuit exceeding a first increased-power threshold for more than a first increased-power time period; or disconnecting the bus voltage from the power bus in response