

Hochschule RheinMain - University of Applied Sciences

6. Interpolation, 6.2 Linear Interpolation

If we denote in Eq. 2

Eq.2: g'(x') = g(x) + (g(x+1) - g(x))*(x_{calculated} - x)

(x_{calculated} - x) by x_d, the distance of the destination pixel to the target pixel, we get:

g'(x') = (1 - x_d)* g(x) + x_d* g(x+1)

for 1-dimensional interpolation.

Hochschule RheinMain - University of Applied Sciences

6. Interpolation, 6.3 Bilinear Interpolation

In line y:

g'(x',y) = g(x,y) + (g(x+1,y) - g(x,y)) *(x_{calculated} - x)

In line y+1:

g'(x',y+1) = g(x,y+1) + (g(x+1,y+1) - g(x,y+1)) *(x_{calculated} - x)

g'(x',y') = int [(g'(x',y)+(g'(x',y+1) - g'(x',y)) * (y_{calculated} - y))+0.5] (Eq.3)

Hochschule RheinMain - University of Applied Sciences 6. Interpolation, 6.3 Bilinear Interpolation If we denote in Eq.3 $(y_{calculated} - y)$ by $(x_{calculated} - x)$ by and \mathbf{y}_{d} the vertical resp. horizontal distance of the destination pixel to the target pixel, we get $\,:\,$ $g'(x', y') = (1 - x_d)$ * (1 - y_d) * g(x,y) * (1 - y_d)
* (1 - y_d)
* y_d * g(x+1,y) * g(x,y+1) * g(x+1,y+1) for 2-dimensional interpolation. Department [Design>Computer Science>Media] Prof. Dr. D. Richter

6. Interpolation, 6.6 Projective Collineation

Simple procedure:

Known are the points P_i und P_i ' for i = 1, 2, 3 and 4

Compose matrix P

with
$$i = 1, 2, 3$$

$$A*P = A*\left(P_{1} - P_{2} - P_{3}\right) \underset{(Eq.2)}{=} \left(\lambda_{1}P_{1}' - \lambda_{2}P_{2}' - \lambda_{3}P_{3}'\right) \underset{(Eq.5)}{=} \lambda_{4}*\left(\frac{a_{1}'}{a_{1}'}P_{1}' - \frac{a_{2}'}{a_{2}'}P_{2}' - \frac{a_{3}'}{a_{3}}P_{3}'\right)$$

Calculate
$$\mathbf{P}^{-1}$$
 and multiply from the right by \mathbf{P}^{-1} :
$$A = A * P * P^{-1} = \lambda_4 * \left(\frac{a_1}{a_1} P_1, \frac{a_2}{a_2} P_2, \frac{a_3}{a_3} P_3, \right) * P^{-1}$$

In which the a_i and a_i' are known from (Eq. 1b).

Prof. Dr. D. Richter

Department [Design>Computer Science>Media]

6. Interpolation, 6.6 Projective Collineation

The inverse matrix P-1 exists, because P1, P2 and P3 are linear independent.

 $\lambda_4 \neq 0$ is arbitrary, because the matrix A is defined except for an unknown factor.

Use A * P_i = P_i to calculate the new positions in the target image.

Note 1: These equations were derived without resampling! Use resampling to avoid undefined grey values in the target image.

Note 2 : Only two-dimensional problems are considered.

Prof. Dr. D. Richter

Department [Design>Computer Science>Media]

