Nome:

Cartão:

Prova 3

Dicas gerais:

- Lê todas as questões antes de começar e pergunta em caso de dúvidas.
- Sempre justifique a sua resposta.
- Responde a cada questão, ainda que a resposta não esteja completa.

Questão 1 (2 pt)

Encontra uma desigualdade válida do conjunto X que o ponto x não satisfaz.

a)
$$X = \{(x_1, x_2) \in \mathbb{R}_+ \times \mathbb{Z}_+ \mid x_1 \le 9, x_1 \le 4x_2\}, x = (9.9/4).$$

b)
$$X = \{x \in \mathbb{Z}_+^5 \mid 9x_1 + 12x_2 + 8x_3 + 17x_4 + 13x_5 \ge 50\}, x = (0.25/6.0.0).$$

Questão 2 (2.5 pt)

Queremos maximizar uma função objetivo linear sobre uma partição das arestas de um grafo nãodirecionado G=(V,A). Nenhum dos dois partes da partição pode conter um triângulo do grafo. Seja $x_a\in\mathbb{B}, a\in A$ uma variável tal que, para $x_a=0$ a aresta está no primeiro parte, e para $x_a=1$ no segundo. A restrição acima pode ser formulada por

$$\begin{aligned} x_a + x_b + x_c &\leq 2 \\ (1 - x_a) + (1 - x_b) + (1 - x_c) &\leq 2 \end{aligned} \qquad \forall \{a, b, c\} \in \Delta$$

com Δ o conjunto de triângulos de grafo G. Um triângulo é representado pelo seu conjunto de arestas. Supondo isso é a única restrição do problema, as matrizes resultantes são totalmente unimodulares, para cada instância G?

Questão 3 (2 pt)

A solução da relaxação linear de

$$\begin{array}{ll} \mathbf{maximiza} & 2x_1 + x_2 \\ \mathbf{sujeito\ a} & 7x_1 + x_2 \leq 28 \\ & -x_1 + 3x_2 \leq 7 \\ & -8x_1 - 9x_2 \leq -32 \\ & x_1, x_2 \in \mathbb{Z}_+ \end{array}$$

possui o dicionário ótimo

- a) Quais os cortes de Gomory correspondentes com a três linhas do dicionário final?
- b) Escreve os cortes no espaço da variáveis originais.

Questão 4 (2.5 pt)

Você está resolvendo um programa inteira de maximização com variáveis x_1 , x_2 e x_3 usando branchand-bound. O valor atual do limite inferior é $-\infty$. A lista dos subproblemas ativas é

Subproblema	z^*	x_1^*	x_2^*	x_3^*
PI com $x_1 \ge 6, x_2 \le 3$	90.50	6.00	3.00	0.50
PI com $x_1 \le 5, x_2 \le 13$	165.25	5.00	13.00	5.75
PI com $x_1 \le 5, x_2 \ge 14, x_3 \ge 1$	138.00	4.25	16.00	1.00
PI com $x_1 < 5, x_2 > 14, x_3 < 0$	121.25	3.75	15.25	0.00

com x^* a solução ótima da relaxação linear do subproblema e z^* o valor de x^* .

- a) Qual o valor atual do limite superior? Explique.
- b) O algoritmo já encontrou uma solução inteira? Explique.
- c) O algoritmo já descartou um subproblema por corte por limite ou corte por otimalidade? Explique.

Questão 5 (2.5 pt)

Prove ou mostre um contra-exemplo.

- a) Se A é totalmente unimodular, então (A_0 0_A) também.
- b) Se A é totalmente unimodular, então (A A^t) também.

Questão 6 (2.5 pt)

Considera o conjunto de pontos S

a) Mostra que S é igual ao conjunto de pontos inteiros que satisfaz

$$x_1 + x_2 \ge 3/2$$

$$x_1 + x_2 \le 11/2$$

$$2/5 x_1 + 4x_2 \ge 2$$

$$-16/9x_1 + x_2 \ge -4$$

$$-x_1 + x_2 \le 3/2$$

b) Encontra uma descrição linear da envoltória convexa de S (i.e. o menor conjunto convexo que contém S). A descrição deve ser mínima, i.e. sem restrições redundantes.