සියලු	9	නිම්කම	91836
Ti	4	5	or and to

ආනන්ද විදනලය - කොළඹ 10

02 S I

අවසාන වාර පරීක්ෂණය - 2022 ජනවාරි අධ්නයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2022

රසායන විදනව I Chemistry I

12 ශේුණිය

පැය දෙකයි Two hours

සැලකිය යුතුයි :

- 🟶 මෙම පුග්ත පනුය පිටු 07 කින් යුක්ක වේ.
- # සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ නම ලියන්න.
- උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් ද සැලකිලිමත් ව කියවන්න.
- ት I සිට 50 තෙක් වූ එක් එක් පුශ්නය සඳහා (1), (2), (3), (4), (5) යන පිළිතුරුවලින් නිවැරදි හෝ ඉතාමත් ගැළපෙන පිළිතුර තෝරාගෙන, එය උත්තර පතුයේ දැක්වෙන උපදෙස් පරිදි කතිරයක් (X) යොදා දක්වන්න.

ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ. සාර්වතු වායු නියනය, $R=8.314\,\mathrm{J\,K^{-1}\,mol^{-1}}$ ඇවගාඩ්රෝ නියනය, $N_A=6.022\times10^{23}\,\mathrm{mol^{-1}}$ ප්ලෑන්ක්ගේ නියනය, $h=6.626\times10^{-34}\,\mathrm{J\,s}$ ආලෝකයේ පුවේගය, $C=3\times10^8\,\mathrm{m\,s^{-1}}$ පැරඩේ නියනය, $F=96500\,\mathrm{C\,mol^{-1}}$

- 01. පරමාණුවේ නාෂ්ටිය පිළිබඳ ආකෘතියක් මුලින්ම ඉදිරිපත් කරන ලද්දේ කවුරුන් විසින් ද ?
 - (1) නිල්ස් බෝර්
- (2) ජේ. ජේ. ස්ටෝනි
- (3) ආර්. ඒ. මිලිකන්

- (4) අර්නස්ට රදර්ෆඩ
- (5) ජේ. ජේ. තොම්සන්
- 02. Co පරමාණුවේ $\ell=1$ සහ m, = -1 ක්වොන්ටම අංක ඇති ඉලෙක්ටෝන සංඛන පිළිවෙළින්.
 - (1) 12 කත 05

- (2) 12 50 06
- (3) 06 සහ 04

(4) 06 සහ 06

- (5) 12 හන 08
- 03. හයිවුජන් බන්ධන නිසා ඇති වන සුවිශේෂී ලක්ෂණයක් වන්නේ.
 - NH, වලට වඩා H₂O හි බන්ධන කෝණය කුඩා වීම.
 - (2) HCl , HBr හා HI හි පිළිවෙළින් තාපාංක වැඩි වීම.
 - (3) අයිස් දුව ජලය මත පාවීම.
 - (4) C₃H₁₂ නී සමාවයවිකවල තාපාංක වෙනස් වීම.
 - (5) ඉහත සියල්ලම
- 04. පහත දැක්වෙන පුභේදවල අයනික අරය වැඩි වන පිළිවෙළ වනුයේ,
 - (1) $Ca^{2+} < Cl^{-} < S^{2-} < Ar$

(2) $Ca^{2} < Ar < Cl^{-} < S^{2}$

(3) $S^{2-} < Cl^- < Ar < Ca^{2+}$

(4) Ar < Cl - < S2- < Ca2"

- (5) $Ca^{2+} < Ar < S^{2-} < CI^{-}$
- 05. X නම් පරමාණුවක පුළුම අයනීකරණ එන්කැල්පිය 524kJ mol⁻¹ වේ. X පරමාණුවෙන් ඉලෙක්ටුෝනයක් ඉවත් කළ හැකි උපරිම තරංග ආයාමය කුමක් ද ?
 - (1) 328 nm
- 2) 250 nm
- (3) 230 nm
- (4) 228 nm
- (5) 240 nm

= +						02						ĺ
06.	ದಗೆ ಜ	ලික `මාධපයේ මෙඟ පුතිකිුියා SO} ²⁻	කරයි ද	9		10 ⁻³ mol			ශ්සිභාරකය	(5)	x 10 ⁻² mo	
07.	dea	90 g 🖘 N	NaOH 10	දුක් දිය ස	නෙ වීව	ලැබෙන උ	n Designed N	SALON	වඩල භාග	ය වනුග	ತಿದೆ.	
		711	(2)	1/21	(3)	711	(4)	721		(5)	2/9	
08.	NH	, NH ₃ , NC	0, N ₂ O	යන අණු	/ අයන	De N é	ී මුහුමකර	රණය පිළිර	වෙළින්,			
	(1)	sp ³ , sp ²	, sp', s	p³ (2)	sp³,	sp ² , sp ²	, sp ²	(3) sp	', sp',	sp²,s	sp	
	(4)	sp ³ , sp ²	, sp³, s	p ² (5)	sp',	sp', sp²	, sp²		-			
09.	A ස සංල (1)	ත B මූලදුවා න්ග දෙකක් ර P සහ CI	DIGO. P	COD B OC	0750	: 5.					N සහ O හ උදාසීන	
10.	Na ₂	CO ₃ 21.2 mg)ත්ටලයක්	ama	වන්නේ	
	(1)	Na* අයන	සං යුතිය	92 x 10 ³ pp	om වේ.	1,	, , , , , ,	,	,0,00000,	w0//0	00,625,	
	(2)	Na ₂ CO ₃ e		200							71	
-	(3)	Na eca	සංයුතිය 9	92 ppm 🙉	2 1		- 10	OR	0 0	ri		
2	(5)	Na ecan Na ecan Na ecan		20 pm 60								
11.	M ສ	සයඅය දනුලු ම	් සාන්දු	HNO, 400	ුය සමඟ	පුතිකුියා	කළ විට	M හී නයි	මුවය NO	BD H	ුට සාදයි.	
	ලම්ම	පුතිකියාවේ 8	₹М ⊚до	ල 1 ක් සම	ඟ පුතිසි	යා කරන	HNO, Og	වුල සංඛන	ව කොපම	es ç	?	
	(1)	1 -	(2) 2		(3)	5	(4)	5	(5) 8			
12.	පහත (1)	කුමන වගන් MgCO, වල			co, ව	යෝජනය (වේ.					1111
	(2)	කාණ්ඩයේ	Li,CO, a	ාැර ඉතිරි ස	තාබ නේ ර	ව සියල්ල	වියෝජනා	ය වේ.				
	(3)] කාණ්ඩයේ	අලදුවසු	සාදන නයි	ටෙට සි	යල්ල වියේ	ා්ජනය වී	0, ලබා	දයි.			I
	(4)] කාණ්ඩයේ !! කාණ්ඩයේ	අයදවනු	සාදන නයි	වේට සි	යල්ල වියෙ	ා්ජනය වි	NO, ca	දෙයි.			I
		II කාණ්ඩයේ ඒවායේ තාප	wo.	ام د ساد	Made (පහළට යන	378 66 6	් වේ.				I
13.	පරමාද	ඡුක මක්සිජන්	් සහ ජල	වාෂ්ප පුතිදි	යා වී ව	ායිම ය . OH	මුක්ත බ	න්ඩ 02 ක්	සැදීම සඳා	හා වූ එ)න්තැල්පි	l
	විපර්ය:	සය X kJ mo	ol' GD.	<u>මක්සිජන්හී (</u>	පරමාණු	තරන එන්ස	ැල්පිය Y k	J mol' Da	න අතර ජල	යේ වා	ෂ්පිකරණ	
· · ·	එන්තැ	ල්පිය Z kJ m	nol¹ ⊕Đ	නම්,					10			
	$\frac{1}{2}O_{2}$	$(e) + H_2O_{(1)} -$	—→2*O	H _(*) යන පු	තිකියාගේ	ව එන්නැල	පි විපර්ය:	ාසය kJ m	iol ⁻¹ වලින	š.	**************************************	
	(1)	X + Y + Z		(2)	$X + \frac{Y}{2}$	2 + Z	(3) X -	$\frac{Y}{2} + Z$			
100	(4)	X + Y - Z		(5)	X - Y -	Z			, 2			

00	පායන (1 00030			- 03 -				12	e Sey
14.	DW	ා සඳහන් අ	nfifon ARa	e man	වගන්නිය තෝර	do				
	(1)), රත් කිරීමේ			0,0,.				
	(2)				N, පිට කරයි.					
	(3)				තියාවේ දී NO	සමග H,S	O, Cte	a.		
	(4)									
	(5)	PCI, DIE	වීපුර ජලය ස	මග පුතිද	මුයා කර H,PO	, පාදයි.				
			0 - 0 - 1		00	JO . 5	9090		-S do-	~ S 82
15.					ා පුතිකුියා කර					QE OU
	(1)	දන NH, වා 85	යුවෙ සකනය	ය ගුැම t (2)	වලින් කොපමණ 34	ζ ? (Ca - ·	40 , N	8.5	,	7
	(4)	3.4		(5)	0.85			ro	or	n l
0	0	Λ	/1 /	202	9 1	al	$) \in$	10	91	M 1
. 16.	1	E -	දී d ගොනු	ව ලෝහ	තැවායන ලබා	දෙන වර්ණ	ය නිවැ	රදිව දක්වා	නොවැත්වෙ	ත් තුමන
	(1)	ටෙ ද?	3d #8	(2)	Ni ²⁺ - eme		(3)	Fe3- = ===	- e8di	
		Co2- 20			Fe2- ome		-	re DD	250	
						1		the state of		
17.	127°	C & A	(g) + 2B(g) =		AB _{2(g)} යන	පුතිතියා ජේ	ΔΗ	l=-145kJ i	nol De	೧ ಧವಾರ
	ΔS =	+90 J mol	·¹ K·¹ වේ.	127°C {	දී පුනිකිුියාවේ Δ	G වනුයේ,				
	(1)	-190 kJ n	nol ⁻¹	(2)	-100 kJ mol ⁻¹		(3)	+190 kJ m	lol-	-2
	(4)	-181 kJ n	nol ⁻¹	(5)	ශූතා වේ.					
18.					ක චාලත ශක්ති කය පිළිවෙළින්		ාට සම	ාත වේ. ර	මෙම අංකු	දෙපෙහි
	(1)	$2\sqrt{2}:1$		(2)	$2:\sqrt{2}$	panés :	(3)	1:2√2		A Pro
	(4)	$\sqrt{2}:1$		(5)	1: $\sqrt{2}$					The same
19.	3d @@ (1)				යෝග පිළිබඳව ලදුවා නොවේ.	පහත දැක්	වන පු	ාමන පුකාශ	ವ ಧದವಾಶ	⊝ D
	(2)	Cr(OH),	අවක්ෂේපය (වැඩිපුර N	aOH වල දාවක	වේ.				
		-			දුනුරු පැතැ ජේ			and the same		
	(4)	Co2+ , Ni	, Cu² ĐC	ජලීය දු	වණ H,S සමග	කළු අවක්ර	දෙය ල	බාදෙයි.		w/ 3m
	(5)	Fe3+ qua	ා ජලීය දාව€	≨K,[Fe	:(CN ₆)] සමහ	පුශියන් නිල	d Dimi	යක් ලබාදෙ	8.	
20.	සන Na	,SO, 103 N	a,S,O, &g &	රෙත ස්	ාන්ධ අතර අපු	දිපාතය 1 :	2 ලව	. මෙම ස	න මිගුණ	යන් යම්
					විට පිට වූ වාද					
	₹ 560 ¢	cm³eO. N	Na ₂ SO, ස්කප	්ධය වනු	ඉයේ, (Na = 2	3 , O = 16 ,	S = 3	2)		
	50.55	0.25 g	E	(2)	0.65 g		(3)	1.21 g		
	(4) 4	1.82 g	j.	(5)	5.10 g					
			6.7							

රසා	යන 8	වීදහව I				- 04 -				12	9(3 m) co
21.	මීල:	ත්ත් (CH.)	සහ එල	ವಶ(C.H.)	වලින්	සමන්විත ව	ායු මිගු	ණයක 10dm	'ත් සම	මත උප්ණ	ත්ව හා
	පිඩ	ත යටතේ දී යි	ක්සිජන්	තුළ සම්පූර්	රණයෙ	න් දහනය ක	ල වීට (පිට වූ තාප	ශක්තිය .	474.8kJ m	ol-1@D.
		් හී සම්මත ද									
		H ₄ හී සම්මත මිගුණයේ එ	7/1								
	(1)	28 %			_	75 %		52 X	(5)	80 Z	10
22.		₂ CO, හා Na ණයේ අඩංගු]									
	(1)	16.2 %	(2)	83.6 %	(3)	61.3 %	(4)	30.5 %	(5)	38.9 %	
23.	D 54	ාම් සංයෝගය ණ විපර්යාසයක හංයෝගය විය	ස් සිදු වූ	අතර අවක්ර	ಕಲೆರಬದ	C 01585. C					
	(1)	$K_2Cr_2O_7$	(2)	Ag ₂ CrO ₄	(3)	$ZnCr_2O_7$	(4)	ZnCrO ₄	(5)	PbS ₂ O ₃	
24.	අාම	ලික මාධායේ	ξ Fe(Mi	nO ₄), මවුල	එතක් :	සමඟ පුතිතිය	ා කිරීම	ට වැය චන	KI ୭ନ୍ତ	: පැතියෙස්	වන්නේ,
	(1)	15	(2)	10	(3)	5	(4)	8	(5)	16	
25.	27්° කුම: (1)	C දී පරිපූර්ණ (ත උෂ්ණත්වයෙ 675°C	र्दे द ?					එහි මධානා 405°C	වේගය (5)	300 ms ⁻¹	වන්නේ
26.	Sc, (1) (2) (3) (4) (5)	අවසාන ශප	ාය මක්? d උපශෘ iිති මට්ට යන ජලි	සිකරණ අංස ක්ති මට්ටම මට අදාළ (ය ඇමෝනි	ශය පම සහිත යධාන	් මින් කුමන ණක් පවති. අයන නොස ක්වොන්ටම් අ ග වර්ණවත්	දෙයි.	1.00			
27.	පහස	ා දක්වා ඇත්ම	ත් හයිල	ඩුාකාබනය	ක කාබ	න් සැකිල්ලස්	3.				
	C, to	C,	C,	109° C,	- AB	120°	_ C _s				
	(1)	sp³ cos sp³	් වේ.	(2)	SP 80	sp² වේ.	٥.	(3)	1		
	(4)	sp² to sp	GD.	(5)	sp to	sp' @0.		(3) sp ³	හා sp	් වේ.	
28.	ඔක්ස (a) (b) (c) (d)	යිඩ හා හයිඩුයි SO, වලට ව සියලුම අලෙ 14 වන කාණ ලෝහවල සිං	ඩ පදන ඩා P ₂ O ග්හවල ස බ්ඩයේ ස	ම් කරගනිමි: , ආමලික ෙ ගයිඩුයිඩ ආ සිඩුයිඩවල	න් පහස වේ. ම්ලික නාපාස	ා සඳහන් වග වේ.	ත්ති වැ			15	∍Ð ç ?
	(1)	a පමණි.		(2)	c 50	€5.		(3) b to			
	(4)	a හා d පමණි		(5)	b soo d	් පමණි.		(J) U 60	0 C D⊚€	Σα.	

- රල විච්ඡේදනයෙන් සුදු පැහැ අවක්ගේපයක් ලබාදෙන්නේ මින් කුමක් ද ?
 - AsCl,
- (2) NCI,
- PCI, (3)
- (4) SbCl,
- PCI,
- $\rm H_2O_2$ $10.0 cm^3$ දුංචණයකට $0.1~\rm mol~dm^{-3}~KMnO_4$ $10.0~\rm cm^3$ දමා තනුක $\rm H_2SO_4$ අමලයෙන් ආම්ලික කර ලැබෙන දුාවණය 0.1 mol dm ් C,O2 දාවණය මඟින් අනුමාපනය කරන ලදී. එහිදී වැය වූ C,O² පරිමාව 10.0 cm³ විය. දී ඇති H,O, දාවණයේ සාන්දණය වන්නේ.
 - 1.5 mol dm⁻³
- (2) 0.05 mol dm⁻³
- (3) 0.15 mol dm⁻³

- 0.1 mol dm⁻³ (4)
- (5) 0.25 mol dm⁻³
- අංක 31 සිට අංක 40 තෙක් එක් එක් පුශ්නය සඳහා දී ඇති (a), (b), (c) හා (d) යන පුතිචාර හතර අතුරින් එකක් හෝ වැඩි සංඛාාවක් හෝ නිවැරදිය. නිවැරදි පුතිචාරය / පුතිචාර කවරේ දයි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුනිචාර සංඛනාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද

උත්තර පතුයෙහි දක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

2	g wi	ා උපදෙස් සම්පි	ස් ඩනය	0.84
-(1)	(2)	(3)	(4)	(5)
(a) සහ (b) පමණක් නිවැරදියි	(b) සහ (c) පමණක් නිවැරදියි	(c) සහ (d) පමණක් නිවැරදියි	(d) සහ (a) පමණක් නිවැරදියි	වෙනත් පුතිචාර සංඛතාවක් හෝ සංයෝජනයක් හො නිවැරදි

- d ගොනුවේ මූලදුවා සහ ඒවායේ සංයෝග පිළිබඳව පහත කුමන පුකාශය / පුකාශ නිවැරදි වේද ?
 - සංකීර්ණ අයනවල මධා ලෝහ අයනයේ පුමාණය සංගත අංකය කෙරෙහි බලපායි.
 - d ගොනුවේ ලෝහ අයනවල ව්යුග්ම ඉලෙක්ටුෝන පැවකීම හේතුවෙන් ඒවායේ ජලීය දුෘවණ වර්ණවත් වේ.
 - d ගොනුවේ මූලදුවා සියල්ල s හා p ගොනුවල ලෝහ වලට සාපේක්ෂව ඉහළ දෘඩතාවක් සහිත ලෝහ වේ.
 - $\left[\operatorname{NiCl}_4\right]^{2^-}$ නී වර්ණය කහ වන අතර $\left[\operatorname{Cu}\left(\operatorname{NH}_3\right)_6\right]^{2^+}$ නී වර්ණය නිල් වේ. (d)
- පහත කුමන පුකාශය/ පුකාශ සතා වේ ද ? 32.
 - කෲක්ස් නළය තුළ ඇති වායුවෙන් නාළ කිරණ ඇති වේ.
 - රදර්ෆඩගේ රන්පත් පරීක්ෂාවේ දී රන් නාෂ්ටිය එක එල්ලේ පැමිණෙන α කිරණ නාෂ්ටියෙහි ගැටී නැවතත් පැමිණි දිශාව චෙත හැරී ගමන් කරයි.
 - යම් පරමාණුවක ඇති ඉලෙක්ටෝන දෙකකට එකම ක්වොන්ටම් අංක කුලකය පැවතිය නොහැකි බව හුන්ඩ නීතියෙන් විස්තර වේ.
 - පරමාණුක නාෂ්ටියක ස්ථායිතාව ඇති කරන උපපරමාණුක අංශුව තියුටුෝනය වේ. (d)
- පහත කුමන පුකාශය / පුකාශ සතා නොවේ ¢ ?
 - යම් සංයෝගයක ලුවිස් වපුහය තීරණය කිරීමේ දී සැමවිටම මධා පරමාණුවේ අෂ්ඨකය සම්පූර්ණ වීම අතපාවගප නොවේ.
 - සෑමව්ටම සම්පුයුක්ත මුහුමට, සම්පුයුක්ත වෘහුවලට සාපේක්ෂව අඩු ශක්තියක් පවතී. (b)
 - අණුක අයවින් ස්ඵටිකය තුළ අන්තර් අණුක බල ලෙස ද්විධුැව ජෙවීන ද්විධුැව අන්තර් කිුයා පවතී. (c)
 - CaCO, වලට වඩා MgCO, හි තාප වියෝජන උෂ්ණත්වය ඉහළ වේ. (d)

- 34. පහත කුමන පුකාශය/ පුකාශ සතා වේද ඉ
 - තියත පීඩනයේ දී තිතා වායු පුමාණයක උෂ්ණත්වය 1°C කින් ඉහළ යන විට වායුවේ පරිමාව

එය –273.15°C හි පැවති පරිමාවෙන් $\frac{1}{273.15}$ ක සාධකයකින් වැඩි වේ. (b)

- සෛද්ධාන්තිකව නිරපේක්ෂ ශූනා උෂ්ණත්වයේ දී පදාර්ථයේ වායු අවස්ථාව නොපවතී. (c)
- යම් දුවායක වාෂ්පය දුව කළ නොහැකි උපරිම උෂ්ණත්වය එම දුවායේ අවධි උෂ්ණත්වයයි. (d) දෙන ලද උෂ්ණත්වයක දී හා පීඩනයක දී වායුවක් පරිපූර්ණව හැසිරේ නම් එහි මවුලික පරිමාවත් එම උෂ්ණක්වයේ දී හා පීඩනයේ දී වායුවේ සතා මවුලික පරිමාවත් අතර අනුපාතය සම්පීඩානා
- 35 පහත කුමන පුකාශය / පුකාශ සතා නොවේ ද ?

මවුලික පරිමාව වින්නි ගුණයකි. (a)

- Cl₂ හී සම්මන බන්ධන විසටන එන්තැල්පිය හා සම්මත පරමාණුකරණ එන්තැල්පිය අගයෙන් (b)
- (c) යම් පුතිතිුයාවක සම්මන එන්තැල්පි විපර්යාසය ධන අගයක් ද සම්මන එන්ටෝපි විපර්යාසය සෑණ අගයක් ද ගන්නා විට එම පුතිකිුියාවේ ආපසු පුතිකිුිිිිිියාව ස්වියංසිද්ධ වේ.
- (d) අවස්ථා ශුිත, පද්ධතියක ආරම්භක හා අවසාන අවස්ථා මත පමණක් රැඳී පවති.
- පහත පුකාශන අතුරින් නිවැරදි වනුයේ, (ρ සනත්වය) 36.

(a)
$$P = \frac{1}{3} \rho C^{2}$$

(b)
$$C^{2} = \frac{3RT}{m}$$

(c)
$$P = \frac{1}{3} MC^{\frac{1}{2}}$$

(d)
$$C^{\frac{3}{2}} = \frac{3PV}{mN}$$

- ි d මූලදුවා සාදන ආසන්නව සමාන වර්ණයක් සහිත සංකීර්ණ වන්නේ,
 - Ni(NH₃),]2+

(b) $[C_0CI_{\lambda}]^{2-}$

(c) $\left[Co(NH_3)_{\kappa} \right]^{3+}$

- (d) $[CuCl_{\lambda}]^{2}$
- MgBr, යන අයනික සංයෝගයේ දැලිස් එන්නැල්පිය ගණනය කිරීම සඳහා,
 - මැග්තිසියම්හී පළමුවැති අයතිකරණ එන්තැල්පිය අවශා වේ.
 - මැග්නිසියමනී දෙවැනි අයනිකරණ එන්නැල්පිය අවශා වේ.
 - $\frac{1}{2} \operatorname{Br}_2(\ell) \longrightarrow \operatorname{Br}(\mathsf{g})$ යන කියාවලියේ සම්මත එන්තැල්පි විපර්යාසය අවශා වේ.
 - බෝමීන්හී දෙවන ඉලෙක්ටුෝනය ලබාගැනීමේ එන්නැල්පිය
- එකම තලයේ පරමාණු හතරත් සහිත සංයෝග/ය වනුයේ, 39.
 - (a) PCI,
- (b) NCI,
- (c) BCI,
- (d) AICI,

- අයනික සංයෝග සම්බන්ධයෙන් අසතා වන්නේ, 40.
 - ජලීය හා විලින අවස්ථාවේ දී විදසුතය සන්නයනය කරයි.
 - සන අවස්ථාවේ දැලිසනි අයන අතර ලන්ඩන් බල පවතී. (b)
 - ජලීය දාවණවල දී සවල ඉලෙක්ටුෝන මඟින් විදසුකය සන්නයනය කරයි. (c)
 - කැටායනයේ විශාලක්වය අවුවන විට හා ආරෝපණය වැඩි වන විට ටුැවිකාරක බලය වැඩි වේ.

 අංක 41 සිට 50 තෙක් එක් එක් ප්‍රශ්නය සඳහා ප්‍රකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම ප්‍රකාශ යුගලයට හොඳින් ම ගැළපෙනුයේ පහත වගුවෙහි දක්වෙන පරිදි (1), (2), (3), (4) සහ (5) යන ප්‍රතිචාරවලින් කවර ප්‍රතිචාරය ද'යි තෝරා උත්තර පත්‍රයෙහි උච්‍රිත ලෙස ලකුණු කරන්න.

පුති වාරය	පළමුවැති පුකාශය	දෙවැනි පුකාශය
(1) (2) (3) (4)	සතා වේ. සතා වේ. සතා වේ. අසතා වේ.	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදි ව පහද දෙයි. සතා වන නමුත් පළමුවැනි පුකාශය නිවැරදි ව පහද නොදෙයි. අසතා වේ. සතා වේ.
· (5)	අසතා වේ.	අසතා වේ.

පළමුවැනි පුකාශය

දෙවැනි පුකාශය

- 41	. d ගොනුවේ මූලදුවාවල පළමු අයනිකරණ ශක්තිය තෙවන ආවර්තයේ එමේ සිට දකුණට යාමේ දි කුමිකව වැඩි වේ.	
42.	එකම තත්ත්ව යටතේ දී තාත්වික වායුවක් මඟින ඇති කරන පීඩනය පරිපූර්ණ වායුවක් මඟින් ඇති කරන පීඩනයට වඩා අඩු වේ.	
43.	10 1/1 2025 1	Na* ට වඩා K* හි ධැවිපරණ බලය ඉහළ වේ.
44	H හී අවශෝෂණ වර්ණාවලිය He හී අවශෝෂණ වර්ණාවලිය හා සර්වසම වේ.	H මෙන්ම He* ද ඒක ඉලෙක්ටුෝන පද්ධති වේ.
45.	බොහෝ අන්තරික ලෝහ හා සංයෝග උත්ලේරක ලෙස හැසිරේ.	d මූලදුවාවලට විචලා ඔක්සිකරණ අංක දැක්වීමේ හැකියාව හේතුවෙන් ඒවාට විචලා විදපුත් සාණතා පෙන්නුම් කළ හැක.
46.	CO3- අයනයෙහි C – O බන්ධන තුනෙහි දිග සමානය.	CO3²- අයනයෙහි C – O බන්ධන තුන සර්වසම වේ.
47.	H ₂ S මඟින් SO ₂ සල්පර් බවට ඔක්සිහරණය කරයි.	H ₂ S ඔක්සිකාරක ගුණ පෙන්වයි.
48.	CCl ₄ හි තාපාංකය CBr ₄ හි තාපාංකයට වඩා ඉහළය.	C - Cl බන්ධනය, C - Br බන්ධනයට වඩා ටුැවිය වේ.
49.	MgCl ₂ නී සම්මත දැලිස් විසටන එන්තැල්පියට වඩා NaCl නී සම්මත දැලිස් විසටන එන්තැල්පිය විශාලය.	Mg ^{2*} හී අයනික අරය Na [*] හී අයනික අරයට වඩා කුඩාය.
50.	සමාන තත්ත්ව යටතේ පවතින ඔක්සිජන් වායුවට වඩා නීලියම් වායුව පරිපූර්ණ හැසිරීම පෙන්වයි.	හීලියම් අණු ඔක්සිජන් වායු අණුවලට වඩා කුඩා වන අතර දුබල අන්තර් අණුක ආකර්ෂණ බල පවති.

ආවර්තිතා වගුව

																	1	
1																		2
																		154
1	н												-: 1		7	1	9	10
- 1	3	4											2		<u>ن</u> ا	0	7	No
2	u	Be											ъ-		-12-	16	17	11
	11	12											13	14	15		_	1
_	1												Al	53_	P_	_5_	G.	Dr.
3	N	Mg			_	_	_	-			20	30	31	32	33	34	35	36
	15	20	21	22	23	24	25	26	27	28	29			Ge	A.	5-	Br	Ke
4	K	C	Se.	27	v	Ġ	Mn	Fe	Çe.	M	Cu.	7.5	(70		31	572	53	54
	37	38	39	40	41	42	43	44	45	46	47	48	49	501			1	I I
_						240	Te	R.	Rb	Per	AE	Cd	10	Se.	56	Te		-
3	KD	21		44	NÞ	Mo	_		77	79	79	200	RI	E2	KO	14	13	56
	55	56	-	72	73	74	73	76	′′′				11	1-1-	111	re	AT	Ron
6		B.a	La	HI	Ta	w	Re	O.	Ic	17	AB	112						
_	¥7	23	Ac-	304	103	106	107	108	109	110	111	113	113)				
7	Fr	Ra	Le	RI	Db	SE	Bh	Ю	MI	Oun	Cyre	Qu's	Uut)				

සියලු ප නිම්කම් ඇව්රිණි.

1	75	14		7
18	100	7	100	П
. 1	1	a		
	1			/
	1	M	"	
	a sign and a	•		

tarks 10 Aranda College Coll

02 S II

අවසාන වාර පරීක්ෂණය - 2022 ජනවාරි අධනයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2022

රසායන විදනව II Chemistry II

12 ශේුණිය

B කොටස - රචනා

* දී ඇති පුශ්න හයෙන් කැමති ඕනෑම පුශ්න හතරකට පිළිතුරු සපයන්න.

- (a) (i) ඩෝල්ටන්ගේ අාංශික පීඩන නියමය සඳහන් කරන්න.
 - (ii) පරිපූර්ණ වායු නියමය භාවිතයෙන් ඉහත නියමය වපුත්පන්න කරන්න.
 - (iii) 400 K උෂ්ණත්වයේ පවතින 7 dm³ වන A වීදුරු බල්බය තුළ P₂ වායුව අන්තර්ගත කළ විට එහි පීඩනය 2.5 x 106 Pa විය. 400 K හිදීම පවතින 2dm³ වන තවත් B වීදුරු බල්බයක් තුළ Q₂ වායුව අන්තර්ගත වේ. එම බල්බ දෙක පරිමාව නොගැනිය හැකි තරම් වූ කරාමයක් සහිත නළයකින් සම්බන්ධ වේ. කරාමය විවෘත කළ පසු A සහ B බල්බ තුළ පීඩනය 3.5 x 106 Pa වේ. ආරම්භක උෂ්ණත්ව නොවෙනස්ව පවතින බව සළකා පහත දෑ ගණනය කරන්න.
 - A බල්බය තුළ P, මවුල ගණන
 - II. B බල්බය තුළ Q ුමවුල ගණන
 - III. කරාමය විවෘත කිරීමට පෙර B බල්බය තුළ පීඩනය (400 R = 3500 J mol⁻¹ ලෙස සලකන්න.)
 - (iv) ඉහත P, හා Q, චායුන් 400 K දී පුතිකිුයා නොකරන නමුත් 600 K දක්වා වැඩි කළ විට පහත පුතිකිුයාව සිදුවේ.

$$2 P_2 + Q_2 \longrightarrow 2QP$$

600 K දී බල්බ වල පරිමා වෙනස් නොවන බව සළකන්න.

- I. ඉහත පුතිකිුිිියාව අවසන් වූ විට නිපද වී ඇති QP, මවුල ගණන කොපමණ ද ?
- II. කුමන පුතිකියකය ඉතිරි වේ ද ? එම මවුල ගණන කොපමණ ද ?
- III. පුනිකුියාවෙන් පසු පද්ධතියේ පීඩනය කොපමණ ද ?
- IV. පුතිකියාවෙන් පසු පද්ධතියේ පවතින සංසටකවල ආංශික පීඩන කොපමණ වේ ද ?
- (b) (i) වායු පිළිබඳ චාලක අණුක සමීකරණය ලියා එහි සියලු පද හඳුන්වන්න.
 - (ii) දෙන ලද T K උෂ්ණත්වයක දී CH₄වායු අණු වල වර්ග මධානා ප්‍රවේශය 3RT බව පෙන්වන්න.
 (C=12, H=1) මෙහිදී ඔබ විසින් සිදුකළ උපකල්පන සඳහන් කරන්න.
 - (iii) CH4 වායුව 15 g ක් පරිමාව 5 dm³ භාජනයක් තුළ අඩංගු වන අතර භාජනය තුළ ජීඩනය 1.5 x 10° Pa වේ. මෙම තත්ත්ව යටතේ දී.
 - I. CH₄ වායුවේ වර්ග මධානා මූල වේගය සොයන්න.
 - සාජනය තුළ උෂ්ණත්වය ගණනය කරන්න.
 - (iv) T_1 හා T_2 K උෂ්ණන්ව දෙකක දී $(T_1 < T_2)$ ඉහත CH_4 වායුවේ වේගය සමඟ අණු භාගය වසාප්තිය දැක්වෙන බෝල්ට්ස්මාන් වකුය එකම පුස්තාරයක ඇඳ දක්වන්න.

වගුවේ දී ඇති දත්ත භාවිතයෙන් පහත දී ඇති රසායනික පුනිතියාවට අදාළ ගණනය කිරීම සිදුකරන්න. 6. (a) $4 \text{ NO}_{2(g)} + O_{2(g)} + 2H_2O_{(\ell)} \longrightarrow 4H\text{NO}_{3(aq)}$

සංයෝගය	සම්මත උත්පාදන එන්තැල්පි / ΔH _f (kJ mol ⁻¹)	සම්මන එන්ටොපි / S⁰ (JK ⁻ ' mol ^{-'})
HNO _{3(aq)}	- 207	+ 99
$NO_{2(g)}$	+ 33	+240 ·
$H_2O_{(\ell)}$	- 286	+ 70
$O_{2(g)}$	F	+ 204

- ඉහත පුතිකුියාවේ සම්මත එන්නැල්පි විපර්යාසය / ΔH^{0} ගණනය කරන්න.
- ඉහත පුතිකිුයාවේ සම්මත එන්ටොපි විපර්යාසය/ ΔS^{0} ගණනය කරන්න. එන්ටොපි විපර්යාසයේ (ii) ලකුණ පුතිකියාව සඳහා උචිත වේ ද ? යන වග පැහැදිලි කරන්න.
- නිර්ණය කරන්න.
- (b) ` සන MgCl₂ අයනික සංයෝගයේ සම්මත දැලිස් එන්නැල්පිය බෝන් හේබර් චකුයක් මඟින් ගණනය කරන්න.

= - 642 kJ mol⁻¹ MgCl₂₍₁₎ සම්මන උත්පාදන එන්තැල්පිය = + 148 kJ mol-1 Mg සම්මත පරමාණුකරණ එන්තැල්පිය $= +737 \text{ kJ mol}^{-1}$ Mg සම්මත පළමු අයනිකරණ එන්නැල්පිය = + 1451 kJ mol⁻¹ Mg සම්මත දෙවන අයනීකරණ එන්තැල්පිය = + 242 kJ mol⁻¹ Cl, සම්මත බන්ධන ව්සටන එන්තැල්පිය $= -349 \text{ kJ mol}^{-1}$ Cl සම්මන ඉලෙක්ටුෝනකරණ එන්කැල්පිය

NaOH_(sq) හා HCl_(sq) අතර පුනිකිුයාවේ සම්මත උදාසීනිකරණ එන්කැල්පිය සෙවීම සඳහා සිදුකළ (c) පරීක්ෂණයක් පහත දැක්වේ.

පොලිස්ටයිරීන් භාජනයක් තුළ lmoldm⁻³ HCl 250cm³ ක් සහ lmoldm⁻³ NaOH 250cm³ ක් මිගු කළ විට දාවණයෙහි උෂ්ණත්වය 6.5°C න් ඉහළ නගියි. (ජලයෙහි සනත්වය = $lgcm^{-3}$, ජලයෙහි වී. තා. ධා. = $4.2Jg^{-1}K^{-1}$)

- සම්මත උදාසිනිකරණ එන්තැල්පිය අර්ථ දක්වන්න. (i)
- භාජනය තුළ සිදු වූ තාප ශක්ති වෙනස ගණනය කරන්න. (ii)
- මෙහිදී සිදුකළ උපකල්පන ලියන්න. (iii)
- මෙම පුතිකිුයාවේ සම්මත උදාසිතිකරණ එන්තැල්පිය / ΔH⁰ neut (kJmol⁻¹) ගණනය කරන්න. (iv)
- ඉහත (iv) හී අගය ඇසුරින් $H_2O_{(\ell)}$ l mol ක් සම්මත තත්ත්ව යටතේ දී ජලීය මාධායේ දී සම්පූර්ණයෙන්ම අයනිකරණයේ දී සිදුවන එන්නැල්පි විපර්යාසය නිර්ණය කරන්න. (v)

7. (a) P යනු වර්ණවත් ජලීය දුාවණයක් වන අතර එහි කැටායන තුනක් අඩංගු වේ. එයට තනුක NaOH එකතු කළ විට කැටායන තුනම අවක්ෂේප විය. එම අවක්ෂේපය Q වේ.

Q අවක්ෂේපයට වැඩිපුර NaOH එකතු කළ විට අවක්ෂේපයෙන් කොටසක් දිය වී අවර්ණ දුාවණයක් R ලැබුණි. ඉතිරි වූ අවක්ෂේපය (S) කොළ පාට වේ.

R දුාවණයට තනුක H_2SO_4 බිංදු වශයෙන් එකතු කළ විට සුදු අවක්ෂේපයක් (T) ලැබුණි. එම අවක්ෂේපය සාන්දු NH_1 හි දුාවා වේ.

S අවක්ෂේපයට වැඩිපුර NH, එකතු කරන විට තද නිල් දුාවණයක් (U) සහ කොළ පාට අවක්ෂේපයක් (V) ලැබුණි.

V අවක්ෂේපය චාතයට තිරාවරණය කර තැබූ විට දුඹුරු පැහැ විය.

- (i) P ජලීය දුාවණයේ ඇති කැටායන තුන ්හඳුනා ගන්න.
- (ii) Q, S, T සහ V අවක්ෂේපවල සූතු පිළිවෙළින් ලියන්න.
- (iii) R සහ U දාවණවල ඇති සංයෝගවලට අදාළ සූනු ලියන්න.
- (iv) T අවක්ෂේපය සාන්දු NH, හී දුාවණය වීමෙන් ලැබුණු පුභේදයේ සූතුය හා වර්ණය සඳහන් කරන්න.
- (v) V අවක්ෂේපය වාතයට නිරාවරණය කළ විට ලැබුණු සංයෝගයේ සූතුය ලියන්න.
- (b) එකම ඔක්සිකරණ අවුස්ථාවේ පවතින Cu සාදන අෂ්ටතලීය සංකීර්ණ පුභේද දෙකක අණුක පූතු CuN, H, Cl, සහ CuH, O, Cl, වේ. ඉන් එක් පුභේදයක් පමණක් තනුක HNO, / AgNO, සමඟ සූදු අවක්ෂේපයක් ලබාදෙයි.
 - (i) භුම් අවස්ථාවේ පවතින Cu හී ඉලෙක්ටුානික විනාහසය ලියන්න.
 - (ii) ඉහත පුභේද දෙකෙහි Cu වල ඔක්සිකරණ අංකය කුමක් ද ?
 - (iii) එම පුතේද දෙකෙහි වනුහ සූතු ලියන්න.
 - (iv) තනුක HNO, / AgNO, දැමූ විට සුදු අවක්ෂේපයක් ලබාදෙන සංකීර්ණ පුභේදයේ IUPAC නම සඳහන් කරන්න.
 - (v) ඉහත (iv) නී සඳහන් පුභේදයේ වර්ණය කුමක් ද ?

ආචර්තිතා වගුව

1																		2 He
V1	H			,								- 1	3	6	7	8	9.0	10
	3	•										. 1	В	C	N	0	7	Ne
2	ш	Be											13	14	15	16	17	18
	11	12										1	AL	SI	-	5	a	AC
3	No	Mg											21	32	33	34	35	36
	19	20	21	22	23	24	25	26	27	28	29	30		_				K.
4	×	Ca.	Sc	73	v	œ	Ma	F	Ce.	N	C=	Zn	Cim	Ce	A.	50	Br	
-	37	38	39	40	41	42	43	44	45	46	47	48	49	540	51	52	53	54
		Sr	*	70	NB	Mo	Te	Re	Rb	N	AR	Cd	In	50	42.	70	1	X.
3	RB			72	73	74	75	76	77	78	79	80	RI	E2	10	34	25	36
	55	56	-	175	_	w	Ra	O.	Le	TH	40	Hg	77	47	111	re	At	Rn
6	0	Ba	LA	HI	Ta			106	109	130	111	112	113	8				
	27	22	Ao-	704	105	106	107		105	72		72.5	Chat					
7	EL	Re	10	RF	Db	SE	Bh	H	MI	Cris	1000	IVY-	72.	•				
										_		1	1	T	1 60	70	71	
			57	58	59	60	61	62	မ	64	65	66	67	(12	_		81000	1
			La	C	77	Nd	7-	See	E-	Ca	Tb	Dy	Ho	Kr	Ton	YP	14	4
			89	90	91	92	93	94	95	96	97	98	99	100	101	103	703	1
			Ac	1~	1	Ü	No	-	Am	Cm	Bk	Cr	Es	Fm	224	No	1	J

- 8. (a) C, H, O පමණක් ඇති A නම් කාඛනික සංයෝගයේ සා. අ. ස්. 72 කි. A හි l mol ක් මුළුමනින්ම දහනය කළ විට CO2 4mol ක් ද, H2O 4mol ක්ද ලැබේ.
 - (i) A හී අණුක සූතුය සොයන්න.
 - (ii) A බෙඩි ප්‍රතිකාරකය සමඟ ප්‍රතික්‍රියා කර අවක්ෂේපයක් ලබා නොදෙන අතර Na ලෝහය සමඟ ප්‍රතික්‍රියා කර වායුවක් ලබා දෙයි. තව ද A ජනාමිතික සමාවයවිකතාව දක්වයි. A වල ස්ථායී සමාවයවිකයන්ගේ වනුහ අඳින්න.
 - (iii) A සෝඩියම් සමඟ පුතිතියා කළ විට ලැබෙන එලයන්ගේ වපුහ අඳින්න.
 - (iv) Na සමඟ පුතිකියාවෙන් පිටවන චායුව කුමක් ද ?
 - (b) $C_2O_4^{2-}$, NO_5^- හා SO_4^{2-} අයන අඩංගු දුාවණයකින් $100 \mathrm{cm}^3$ කට වැඩිපුර $CaCl_2$ දුාවණයකින් එකතු කරන ලදී. ලැබුණු අවක්ෂේපය පෙරා පෙරණය දෙවන විශ්ලේෂණය සඳහා තබාගන්නා ලදී. අවක්ෂේපය පෙරා වියළා එහි ස්කන්ධය කිරා ගන්නා ලදී. එය $0.40 \mathrm{g}$ ක් විය. අනතුරුව එම අවක්ෂේපය ආමලික $\mathrm{KMnO_4}$ දාවණයක් සමඟ පුනිකියා කරවන ලදී. අවශා වූ $0.02 \mathrm{moldm}^{-3}$ $\mathrm{KMnO_4}$ පරිමාව $20.0 \mathrm{cm}^3$ ක් විය.

වෙන් කරගත් පෙරණයට Al කුඩු හා වැඩිපුර NaOH සමඟ පිරියම් කර නිදහස් වූ වායුව $0.1 \mathrm{moldm^{-3}\ HCl\ }30.0 \mathrm{cm^3}$ ක් තුළට යවන ලදී. ඉතිරිව ඇති HCl උදාසීන කිරීමට අවශා වූ $0.1 \mathrm{moldm^{-3}\ NaOH}$ පරිමාව $10.0 \mathrm{cm^3}$ ක් විය.

- (i) CaCl, එකතු කළ විට ලැබෙන අවක්ෂේපයේ අන්තර්ගත සංයෝග නම් කරන්න.
- (ii) ලැබුණු අවක්ෂේපය අාම්ලික KMnO₄ සමඟ සිදුකරන පුතිකියාව සඳහා තුලින සමීකරණය ලියන්න.
- (iii) දාවණයේ $C_2O_4^{2-}$ අයන සාන්දුණය ගණනය කරන්න.
- (iv) අවක්ෂේප වූ එක් එක් සංසටකයන්හි ස්කන්ධ සොයන්න.
- (v) සමාරීය මාධායේ දී NO, අයන හා Al අතර පුතිකිුයාව සඳහා තුලිත සමීකරණ ලියන්න.
- (vi) (iv) හිදී පිට වූ වායුව හඳුනාගැනීම සඳහා පරීක්ෂණයක් ලියන්න.
- (vii) දුාවණයේ NO; අයන සාන්දුණය ගණනය කරන්න.
- 09. (a) ආචර්තිතා වගුවේ 3 d මූලදුවා ඇසුරින් පහත ඒවාට පිළිතුරු සපයන්න.
 - (i) ආන්තරික මූලදුවන දෙකක් හා ආන්තරික නොවන මූලදුවනයක් ලියන්න.
 - (ii) ආන්තරික ලෝහ මඟින් වර්ණවත් සංකීර්ණ සාදයි.
 - ඒවායේ වර්ණය කෙරෙහි බලපාන සාධක 03 ක් ලියන්න.
 - එක් එක් සාධකයේ බලපෑම සුදුසු උදාහරණ ඇසුරින් පැහැදිලි කරන්න.
 - (iii) පහත පුතේදවල IUPAC නාම ලියන්න.
 - I. [Co CI(H₂O),]Cl₂
 - II. [Fe (SCN)(H₂O),]SO,
 - (iv) ඉහත (iii) හි සංකීර්ණවල ඇතායන කාණ්ඩය හඳුනාගැනීමට පරීක්ෂාවක් බැගින් ලියන්න. පුතිකාරකය සහ නිරීක්ෂණය පැහැදිලිව දැක්විය යුතුය.

(b) A, B, C යන ලෝහ කැටායන 03 ක් අඩංගු දාවණයක එක් එක් කැටායනය හඳුනාගැනීමට සිදුකරන ලද පරීක්ෂණ කියාවලියක් පහත සටහනේ දක්වා ඇත.

- (i) A, B, C ලෝහ කැටායන හඳුනාගෙන ඒවායේ සංකේත ලියන්න.
- (ii) (1) , (2) , (3) . (4) පියවර වල දී සිදුවන පුතිකිුයා සඳහා තුලින රසායනික සමීකරණ ලියන්න.
- 10. (a) P යනු HNO₃ සහ H₂SO₄ යන අමල දෙකින් සමන්විත ජලීය දාවණයකි. මෙම දාවණයෙන් 25.00 cm³ ක් සමපූර්ණයෙන් උදාසින කිරීම සඳහා 1.0 moldm³ NaOH දාවණයෙකින් 8.00 cm³ ක් වැය විය. P දාවණයෙන් තවත් 25.00 cm³ කට BaCl₂ ජලීය දාවණයකින් වැඩිපුර පරිමාවක් එකතු කළ විට ලැබුණු අවක්ෂේපයේ ස්කන්ධය 0.699 g විය. (Ba - 137, S - 32, O - 16, H - 1)
 - (i) මෙහිදී සිදුවන ප්‍රතිකියා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
 - (ii) P දාවණය තුළ වූ අම්ල දෙකෙහි සාන්දුණ සොයන්න.
 - (iii) P දාවණය තුළ HNO, හා H₂SO₄ හි මවුල භාග සොයන්න.
 - (iv) P දුංචණය $25.00~{
 m cm}^3$ ක් තුළ අන්තර්ගත වූ HNO_3 හා H_2SO_4 පරිමා වෙන වෙනම සොයන්න.
 - (b) (i) ආවර්තිතා වගුවේ 2 වන කාණ්ඩයේ පහළට යන්ම මූලදුවායන්ගේ හයිඩොක්සයිඩයන්හි වියෝජන හැකියාව කෙසේ වෙනස් වේ ද ?
 - (ii) එම හයිඩුොක්සයිඩවල වියෝජනයට අදාළ පොදු සමීකරණය ලියන්න.
 - (iii) ආවර්තිතා වගුවේ 2 වන කාණ්ඩයට අයත් X නම් මූලදුවායකින් සැදෙන හයිඩොක්සයිඩයක් X (OH), nH,O ලෙස සජල ස්වරූපයක් පවතී. මෙහි 1.00 g ක් රත් කර නිර්ජල හයිඩොක්සයිඩය බවට පත්කළ විට හුමාලය 0.542 g ක් නිදහස් වේ. මෙම අවශේෂය තවදුරටත් නියන ස්කන්ධයක් ලැබෙන තුරු රත් කළ විට ස්කන්ධය තවත් 0.068 g කින් අඩුවිය.
 - L n හි අගය සොයන්න_ම
 - II. X හි සා. ප. ස්. සොයන්න PAST PAPERS