QUESTÕES CAPÍTULO 8 TEORÍA

Problema 8.1. Compacte a informação das seguintes expressões numa matriz de informação, onde A, B, C e D são de 4 bits. Projete um compressor para reduzir a dois vetores a matriz de informação e, finalmente, some eles com um somador completo.

- a) F_1 =33A+21B+387C+131D.
- b) $F_2=65A+43B+135C+278D+8$.

Problema 8.2. Faça a compressão de uma matriz de informação de 8×8 em formato tabular usando contadores de 7 bits, *Full-Adders* (FAs), *Half-Adders* (HAs) e apenas um somador de 8 bits com *carry-in e carry-out*.

Problema 8.3. Projete os diagrama de pontos e os circuitos usando *Full-Adders* (FAs) e *Half-Adders* (HAs) que fazem as seguintes compressões, identifique às quais correspondem com blocos conhecidos:

- a) {2,2,3; 1, 1, 1, 1};
- b) {3; 1, 1};
- c) {1, 4, 3; 1, 1, 1, 1};
- d) {5, 5; 1, 1, 1, 1};
- e) {2, 2; 1, 1, 1}
- f) {5; 1, 1, 1};
- g) {7; 1, 1, 1};
- h) {3, 3, 3; 1, 2, 2, 1}.
- i) {4, 7; 1, 1, 1, 1}
- j) {2, 5; 1, 2, 1}
- k) {5; 2, 1}

Obtenha o custo e caminho critico dos blocos considerando A_{FA} e T_{FA} como a área e atraso por *Full-Adder*, e $0.5 \times A_{FA}$ e $0.5 \times T_{FA}$, para o *Half-Adder*.

Problema 8.4. Usando os blocos obtidos no exercício anterior faça a redução das matrizes de informação do exercício 8.1 a dos vectores. Finalmente, some eles com um somador completo.

Problema 8.5. Refaça o exercício 8.1 usando RNS para modulo 63.

Problema 8.6. Obtenha o caminho critico por operação de multiplicação ao conjunto modular M1={256,43,85}:

Delay (ps) Modular Multipliers

Thirty 200 200 1 200

- a) Usando os valores modulares dados.
- b) Aplicando a ideia de redução modular usando pseudo-modulos.

Delay (ps) Modular Multipliers					
# bits	2^n	2^n - 1	2^n+1	2n-k	2^n+k
5	960	1120	1480	2200	2600
7	1130	1360	1670	2840	3020
9	1320	1460	1750	3040	3320
11	1440	1670	1830	3120	3620
13	1590	1820	2010	3360	3580
15	1680	1840	2170	3460	3700
17	1770	2010	2320	3510	3770
19	1870	2200	2350	3760	3740
21	1940	2150	2420	3660	3830
23	1980	2240	2500	3850	3980
25	2090	2380	2590	4010	3980
27	2180	2530	2740	4140	4040
29	2280	2590	2750	4180	4200
31	2320	2530	2800	4340	4340
33	2340	2660	2810	4390	4260
35	2450	2690	2850	4390	4450
37	2470	2770	2960	4435	4393
	2522	2700	2000	4404	4400