Задача А. АВВС

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Замените все подстроки, которые начинаются с нескольких букв «а» (хотя бы одной), продолжаются несколькими буквами «b» (хотя бы двумя) и заканчиваются несколькими буквами «с» (хотя бы одной), на три буквы «Q». При имеющихся альтернативах всегда заменяйте более длинные подстроки.

Постарайтесь использовать для работы со строками только регулярные выражения.

Формат входных данных

Любой текст, состоящий из любого количества любых непустых строк. Все строки, включая последнюю, завершаются символом перевода строки. Все символы входного файла (кроме переводов строки) имеют ASCII-коды в диапазоне от 32 до 127.

Формат выходных данных

Текст, состоящий из того же количества строк, но с выполненной заменой.

Примеры

стандартный ввод	стандартный вывод
abbbbcc	QQQ
abc	abc
abbcababbbbc	QQQabQQQ

Замечание

```
Заготовка для Python:
import re
import sys
```

```
REGEX_MASK = r''
REGEX_SUB = r''
```

```
for line in sys.stdin:
    res = re.sub(REGEX_MASK, REGEX_SUB,line)
    print(res,end='')
```

Задача В. EuroEnglish

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Европейская комиссия планирует принять решение о том, что официальным языком Евросоюза станет английский. Был также разработан план упрощения английской письменности, который планируется реализовать за четыре года.

Первоочередной задачей будет избавление от буквы «с», которая в сочетаниях «сі» и «се» будет изменяться на «s», в сочетании «сk» — опускаться, а в остальных случаях заменяться на «k». При этом все замены будут производиться в строгом порядке слева направо. То есть, например, в слове «success» сначала первая из двух букв «с» заменится на «k», а затем вторая — на «s», то есть получится «suksess». А слово «cck» превратится в «kk».

На второй год из английских слов изымут все удвоенные буквы: «ее» изменят на «i», «оо» — на «u», а в остальных комбинациях будут просто писать одну букву вместо двух одинаковых. Такие замены также будут делать строго в порядке слева направо. Так, слово «ооо» превратится в «u», а «оои» — просто в «u» (в нем сначала «оо» заменится на «u», а затем «uu» — на «u»), слово «iee» превратится в «i» (в нем сначала «ee» заменится на «i», а затем «ii» — на «i»).

На третий год на конце слова станут опускать букву «е», если эта буква не является единственной буквой в слове.

Наконец, завершением реформы станет отмена артиклей (в английском языке три артикля: «а», «ап» и «the»). При этом удаляться эти артикли будут только тогда, когда они в исходном тексте были словами «а», «ап», «the». То есть, например, текст «the table» после реформ первых трех лет превратиться в «th tabl», а после реформы четвертого года — просто в «tabl». А слово «ааааа» после реформы первых лет станет словом «а», но поскольку изначально оно не было словом «а» (артиклем), то оно в итоге так и останется словом «а».

Напишите программу, которая будет переводить классический английский текст на Евроинглиш.

Формат входных данных

Во входном файле записана одна строка текста, состоящая не более чем из 200 символов: латинских строчных и заглавных букв, пробелов и знаков препинания (в тексте могут встречаться: точка, запятая, вопросительный и восклицательный знаки, двоеточие, тире, точка с запятой, открывающаяся и закрывающаяся скобки, апострофы, кавычки). Заглавные буквы могут встречаться только в начале слова. Нигде подряд не могут стоять два пробела. В начале и в конце строки не может стоять пробел. Слова отделяются друг от друга пробелами и/или знаками препинания.

Формат выходных данных

В выходной файл нужно выдать преобразованную строку с учетом следующих требований:

- начинаться с заглавной буквы должны те и только те слова, которые начинались с заглавной буквы в исходном тексте;
- не должно встречаться двух пробелов подряд;
- пробелы между словами и знаками препинания должны остаться там и только там, где они были в исходной строке, в начале и в конце строки пробелов быть не должно.

Примеры

стандартный ввод	стандартный вывод
cacao and coffee	kakao and kofi
Cinderella! Where Is The Dress???	Sinderela! Wher Is Dres???
'A' is a letter	'' is leter
!!!Hello!!!A-the-"word"	!!!Helo!!!"word"

Задача С. Поворот на 90

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вам дан текст, в котором нужно поменять все координаты центров окружностей местами. Более конкретно, для строки вида «\circle $\{(x,y)$ », где x и y — неотрицательные целые числа, нужно сделать замену на «\circle $\{(y,x)$ ». Заметьте, что фигурной скобки справа нет, потому что оригинальная команда «\circle» поддерживает разное количество аргументов, и наша замена должна происходить и для любых случаев.

Формат входных данных

Любой текст, состоящий из любого количества любых непустых строк. Все строки, включая последнюю, завершаются символом перевода строки. Все символы входного файла (кроме переводов строки) имеют ASCII-коды в диапазоне от 32 до 127

Гарантировано, что x и y — неотрицательные целые числа; гарантированно также, что внутри строк, содержащих «\circle», нет ни одного пробела.

Формат выходных данных

Текст, состоящий из того же количества строк, но с выполненной заменой.

Пример

стандартный ввод	стандартный вывод
\circle{(60,280),2}	\circle{(280,60),2}
\circle{(60,90)}	\circle{(90,60)}
\gfill\circle{(90,960),2}	\gfill\circle{(960,90),2}

Замечание

Заготовка для решения на Python:

```
import re
import sys
REGEX_MASK = r''
REGEX_SUB = r''
for line in sys.stdin:
    res = re.sub(REGEX_MASK, REGEX_SUB,line)
    print(res,end='')
```

Задача D. Индексы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

При наборе текста лекций Костя часто использует формулы v_i , которые записываются в разметке IATEX как « v_i ». Давайте обработаем его текст, чтобы индексы превратились в более каноничные обозначения для обращения к индексам v[i].

Вместо i может стоять выражение, которое тогда группируется как « v_{ij} ». индексы могут являться комбинацией букв или цифр. Если индекс из >1 символа не обернут в скобки, замену делать не надо, потому что иначе может просочиться ошибка. Мы считаем, что получить « v_{ij} » после прогона вашей программы лучше, чем получить « v_{ij} » или « v_{ij} » ввиду неоднозначности трактовки.

В индексе может лежать любая комбинация букв и цифр, а вот название массива зафиксировано как «v» и не меняется.

Формат входных данных

Любой текст, состоящий из любого количества непустых строк. Все строки, включая последнюю, завершаются символом перевода строки. Все символы входного файла (кроме переводов строки) имеют ASCII-коды в диапазоне от 32 до 127.

Гарантируется, что все фигурные скобки имеют пару.

Формат выходных данных

Текст, состоящий из того же количества строк, но с выполненной заменой.

Пример

стандартный ввод	стандартный вывод
Vertex \$v_1\$ is isolated	Vertex v[1] is isolated
it's of degree 0.	it's of degree 0.
Vertice \$v_2\$, \$v_{7}\$	Vertice v[2], v[7]
and \$v_{12}\$ are terminal	and v[12] are terminal
each of them is of degree 1.	each of them is of degree 1.
Note that \$v_1u\$ actually means	Note that \$v_1u\$ actually means
not \$v_{1u}\$ but \${v_1}u\$,	not v[1u] but \${v_1}u\$,
so \$v_1u\$ should NOT be changed	so \$v_1u\$ should NOT be changed
to v[1u].	to v[1u].

Замечание

Заготовка для решения на Python:

```
import re
import sys
REGEX_MASK = r''
REGEX_SUB = r''
for line in sys.stdin:
    res = re.sub(REGEX_MASK, REGEX_SUB,line)
    print(res,end='')
```

Задача Е. Химия

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вам даны химические формулы, соответствующие веществу, в следующем формате:

- <формула> ::= [<число>] <последовательность> { «+» [<число>] <последовательность>}
- <последовательность> ::= <элемент> [<число>] {<элемент> [<число>]}
- <элемент> ::= <химический элемент> | «(» <последовательность> «)»
- <химический элемент> ::= <прописная буква> [<строчная буква>]
- <прописная буква> ::= «А»..«Z»
- <строчная буква> ::= «а»..«z»
- <число> ::= «1»..«9»{«0»..«9»}

Будем говорить, что каждый отдельный химический элемент встречается в формуле всего X раз, если X — сумма всех различных вхождений этого химического элемента, умноженных на все числа, относящиеся к ним. Например, в формуле C2H5OH + 3O2 + 3(SiO2)

- 1. C встречается всего 2 раза;
- 2. H встречается всего 6 раз (5+1);
- 3. O встречается всего 13 раз; $(1+3\cdot 2+3\cdot 2)$;
- $4. \,\, Si$ встречается всего 3 раза.

Все множители в формулах — целые числа не меньше 2, если заданы явно, или равны 1 - по умолчанию.

От вас требуется проверять формулы на равенство.

Формат входных данных

В первой строке находится формула — левая часть уравнения, во второй — одно число N - количество рассматриваемых правых частей, в каждой из следующих N строк — одна формула - предлагаемая правая часть уравнения.

 $1 \leqslant N \leqslant 10$, длина формулы не превосходит 100 символов, каждый отдельный химический элемент встречается всего не более 10^4 раз в каждой формуле.

Формат выходных данных

Для каждой из N заданных правых частей выведите одну строку вида

<формула левой части>==<формула правой части>

если общее количество вхождений каждого отдельного химического элемента в левую часть равно общему числу вхождений этого химического элемента в правую часть. В противном случае вывелите:

<формула левой части>!=<формула правой части>

Здесь <формула левой части> должна быть замещена посимвольной копией формулы левой части, как она дана в первой строке входного файла, а <формула правой части> - замещена точной копией формулы правой части, как она дана во входном файле. В строках не должно быть пробелов.

Tinkoff Students Algo 2023 10. Parsing, RegExp Russia,

Пример

стандартный ввод	стандартный вывод
C2H5OH+3O2+3(SiO2)	C2H5OH+3O2+3(SiO2)==2CO2+3H2O+3SiO2
7	C2H5OH+3O2+3(SiO2)==2C+6H+13O+3Si
2CO2+3H2O+3SiO2	C2H5OH+3O2+3(SiO2)!=99C2H5OH+3SiO2
2C+6H+13O+3Si	C2H5OH+3O2+3(SiO2)==3SiO4+C2H5OH
99C2H5OH+3SiO2	C2H5OH+3O2+3(SiO2)!=C2H5OH+3O2+3(SiO2)+G
3SiO4+C2H5OH	C2H5OH+3O2+3(SiO2)==3(Si(O)2)+2CO+3H2O+O
C2H5OH+3O2+3(SiO2)+Ge	C2H5OH+3O2+3(SiO2)!=2CO+3H2O+3O2+3Si
3(Si(0)2)+2CO+3H2O+O2	
2CO+3H2O+3O2+3Si	