Содержание

- Некоторые приложения (продолжение)
 - Гассова кривизна как якобиан
 - Параллельные поверхности
- 2 Символы Кристоффеля
 - Определение, выражение через первую форму
 - Восстановление поверхности по І и ІІ
 - Ковариантное дифференцирование
- ③ Theorema Egregium Гаусса, приложения
 - Теорема Гаусса
 - Развёртывающиеся поверхности

Якобиан отображения между поверхностями

Пусть $M_1 \subset \mathbb{R}^{N_1}$, $M_2 \subset \mathbb{R}^{N_2}$ — подмногообразия одинаковой размерности m, $f: M_1 \to M_2$ — гладкое.

Определение

Якобиан f в точке $p \in M_1$ — такое $c \ge 0$, что отображение $d_p f: T_p M_1 \to T_{f(p)} M_2$ умножает все объемы на c:

$$Vol(d_p f(V)) = c Vol(V)$$

для любого измеримого $V \subset T_p M_1$, где Vol — m-мерный евклидов объем.

(Такое число существует, так как $d_p f$ линейно.)

Обозначение: c = Jf(p).

Замечание

Jf(p) равно модулю определителя матрицы $d_p f$ в любых ортонормированных базисах $T_p M_1$ и $T_{f(p)} M_2$.

$$dpf: TpM_1 \rightarrow T_{f(p)}M_2 - mn$$

$$<, > T_{f(p)}M_2 - mn$$

$$<, > C_1 = C(f, p).$$

$$\forall A \subset TpM_1$$

$$\forall S \in \{d_pf(A)\} = (Vol(A))$$

$$C = Jf(p) \ge 0.$$

2 / 48

Лекция 12 25 ноября 2020 г.

Формула площади

Теорема

Пусть $f: M_1 o M_2$ — диффеоморфизм. Тогда

$$Vol(M_2) = \int_{M_1} Jf(x) \, d \, Vol(x)$$

Доказательство.

Из анализа.

Якобиан гауссова отображения

Для упрощения формул рассматриваем только 2-мерные поверхности в \mathbb{R}^3 .

Теорема

Для любой ориентируемой поверхности $M^2 \subset \mathbb{R}^3$ якобиан гауссова отображения $n: M \to \mathbb{S}^2$ равен |K|.

Доказательство.

После естественного отождествления $T_p M$ и $T_{n(p)} \mathbb{S}^2$ и выбора базиса из собственных направлений dn становится оператором -S с матрицей $\begin{pmatrix} -\kappa_1 & 0 \\ 0 & -\kappa_2 \end{pmatrix}$. Якобиан Jn — модуль её определителя.

h: M -> S Jn = | det (0 - k2) = | K, K2 = | K): 1p

Лекция 12 25 ноября 2020 г.

Интеграл K по выпуклой поверхности

Будем обозначать 2-мерный объем (площадь) буквой (А.)

Следствие

Пусть $M^2 \subset \mathbb{R}^3$ — строго выпуклая поверхность. Тогда

$$\int_{M} K \, dA = 4\pi$$

Доказательство.

Из строгой выпуклости, $n: M \to \mathbb{S}^2$ — диффеоморфизм. По формуле площади,

$$A(\mathbb{S}^2) = \int_M Jn \, dA = \int_M K \, dA$$

где Jn — якобиан n. С другой стороны, $A(\mathbb{S}^2) = 4\pi$.

Лекция 12

Формула Гаусса-Бонне (информация)

Информация

Для любой компактной поверхности $M\subset\mathbb{R}^3$,

$$\int_{M} K \, dA = 2\pi \cdot \chi(M),$$

где χ — эйлерова характеристика.

Лекция 12 25 ноября 2020 г.

Для записей

25 ноября 2020 г.

Содержание

- Некоторые приложения (продолжение)
 - Гассова кривизна как якобиан
 - Параллельные поверхности
- 2 Символы Кристоффеля
 - Определение, выражение через первую форму
 - Восстановление поверхности по I и II
 - Ковариантное дифференцирование
- ③ Theorema Egregium Гаусса, приложения
 - Теорема Гаусса
 - Развёртывающиеся поверхности

PRETERIE

Параллельные поверхности

Пусть $M^2 \subset \mathbb{R}^3$ — ориентируемая поверхность. Пусть выбрано направление нормали и число $a \in \mathbb{R}$. Определим $f_a \colon M \to \mathbb{R}^3$:

$$f_a(p) = p + a \cdot n(p), \qquad p \in M,$$

где + — откладывание вектора от точки в \mathbb{R}^3 . Положим $M_a=f_a(M)$.

Теорема

Если М компактна и |а| достаточно мало, то

- ✓ **①** М_а гладкая поверхность. (чодин-е).
- \lor **2** Касательная плоскость M_a в точке $f_a(p)$ параллельна T_pM .

$$A(M_a) = A(M) - 2a \int_M H dA + a^2 \int_M K dA,$$

где К и Н — гауссова и средняя кривизна М.

Uto Dave Coruzuarix.

25 ноября 2020 г.

Лекция 12

Комментарии к формулировке

Замечание

Условия на M и a можно ослабить:

- Компактность можно заменить на условие:

 «замыкание M в \mathbb{R}^3 компактно и содержится в некоторой гладкой поверхности M'?
- Если M выпукла и нормаль направлена внутрь, то теорема верна для любого a < 0 (т.е. для отступа наружу).

Это будет ясно из доказательства теоремы.

Замечание

При отступании от выпуклой поверхности наружу слагаемое $-2a\int_M H \, dA$ положительно.

Сначала докажем теорему локально

1 шаг. Дифференцируем $f_a\colon M o \mathbb{R}^3$ в точке $p\in M$ вдоль $v\in T_pM$:

$$d_p f_a(v) = v + \underbrace{a \, d_p \, n(v)}_{\bullet \bullet} = v - a \, S(v).$$

Оба вектора v и S(v) лежат в $T_p M$ (как векторы из \mathbb{R}^3). $\Longrightarrow d_p f_a(v)$ — оператор из $T_p M$ в себя.

$$- - \int_{a}^{b} (p) = p + a \cdot h(p)$$

Лекция 12 25 ноября 2020 г.

Сначала докажем теорему локально

1 шаг. Дифференцируем $f_a\colon M o \mathbb{R}^3$ в точке $p\in M$ вдоль $v\in T_pM$:

$$d_p f_a(v) = v + a d_p n(v) = v - a S(v).$$

Оба вектора v и S(v) лежат в T_pM (как векторы из \mathbb{R}^3). $\implies d_pf_a(v)$ — оператор из T_pM в себя.

В базисе из главных направлений его матрица имеет

вид:
$$\begin{pmatrix} 1-a\kappa_1 & 0 \\ 0 & 1-a\kappa_2 \end{pmatrix}$$
.

 \Longrightarrow она невырождена, если $a \notin \{1/\kappa_1, 1/\kappa_2\}.$

Считаем, что $|a| < \sup\{\kappa_i\}$ где супремум берётся по всем точкам поверхности. Тогда f_a — погружение, образ $d_p f$ равен (параллелен) $T_p M$, а якобиан равен $(1-a\kappa_1)(1-a\kappa_2)=1-2aH+a^2K$.

Отсюда следует теорема для любой части поверхности M, на которой погружение f_a является вложением.

$$A(M_{a}) = \int (1 - 2aH + a^{2}K) dA_{m}$$

$$= A(M) - 2a \int H dA + a^{2} \int K$$

$$|a| < in4 \int |b|^{-1} \int_{a}^{b} M$$

11 / 48

Лекция 12 25 ноября 2020 г.

Докажем, что f_a — вложение, если |a| достаточно мало Определим $F\colon M \times \mathbb{R} \to \mathbb{R}^3$ равенством

$$F(p, \underline{a}) = p + an(p).$$

В точке (p,0) дифференциал $d_{(p,0)}F$ невырожден \Longrightarrow применима теорема об обратной функции \Longrightarrow есть окрестность $U_p\subset M$ точки p и $\delta_p>0$ такие, что сужение F на $U_p\times (-\delta_p,\delta_p)$ — диффеоморфизм на открытую область в \mathbb{R}^3 .

 $\frac{\mathcal{Y}_{\alpha p}}{\mathcal{T}_{(p,q)}}$ $\mathcal{Y}_{\alpha M}$ \mathcal{M} , \mathcal{N} . $\frac{\mathcal{T}_{(p,q)}}{\mathcal{T}_{(m \times N)}} \simeq \mathcal{T}_{p}^{\alpha_1 \times \mathcal{T}_{q}} \mathcal{M}$. $\mathcal{T}_{(m \times N)} \simeq \mathcal{T}_{M} \times \mathcal{T}_{N}$

Лекция 12 25 ноября 2020 г.

Докажем, что f_a — вложение, если |a| достаточно мало

Определим $F\colon M imes \mathbb{R} o \mathbb{R}^3$ равенством

$$F(p,a) = p + an(p).$$

⇒ применима теорема об обратной функции

 \implies есть окрестность $U_p\subset M$ точки p и $\delta_p>0$ такие, что сужение F на $U_p imes (-\delta_p,\delta_p)$ — диффеоморфизм на

открытую область в \mathbb{R}^3 .

Выберем подокрестность $V_p \subseteq U_p$ (знак \subseteq означает «содержится вместе с компактным замыканием»), выберем конечное подпокрытие $\{V_{p_i}\}$ и потребуем, что $|a| < \min\{\delta_{p_i}\}$ и $|a| < \min_i \operatorname{dist}(V_{p_i}, M \setminus U_{p_i})/2$.

Тогда F инъективно на $M \times [-a, a]$

- \implies сужение F инъективно на $M \times [-a,a]$
- $\implies f_a$ инъективно как сужение на $M imes \{a\}$
- ⇒ оно вложение (в силу компактности).

4 □ ▶ ⟨□ ▶ ⟨□ ▶ ⟨□ ▶ ⟨□ ♥ ○

Лекция 12

25 ноября 2020 г.

Минимальные поверхности (информация)

Определение

Поверхность $M^2 \subset \mathbb{R}^3$ — минимальная, если у нее средняя кривизна H равна 0 во всех точках.

Информация

Минимальные поверхности возникают при решении задачи Плато: найти поверхность минимальной площади с наперёд заданным краем.

Условие $H\equiv 0$ — необходимое для минимизации площади (это проверяется аналогично доказанному). Оно достаточное для маленьких частей поверхности.

A(Ma) = 29 H+

Лекция 12 25 ноября 2020 г.

Для записей

Содержание

- Некоторые приложения (продолжение)
 - Гассова кривизна как якобиан
 - Параллельные поверхности
- 2 Символы Кристоффеля
 - Определение, выражение через первую форму
 - Восстановление поверхности по I и II
 - Ковариантное дифференцирование
- ③ Theorema Egregium Гаусса, приложения
 - Теорема Гаусса
 - Развёртывающиеся поверхности

Лекция 12

Определение

Пусть $r \colon U \subset \mathbb{R}^m \to \mathbb{R}^N$ — простая регулярная поверхность, M = r(U), $x \in U$, p = r(x), (x_i) — координаты в U. Размерности любые.

Определение

Для $i,j \in \{1,\ldots m\}$ определим $\Gamma_{ij} = \Gamma_{ij}(x) \in T_pM$:

$$\Gamma_{ij} = \operatorname{Pr}_{T_p M}(r_{x_i x_j}),$$

где \Pr_{T_pM} — ортогональная проекция на T_pM .

Символы Кристоффеля 1-го рода Γ_{ij}^k , $k \in \{1, \dots, m\}$ — коэффициенты вектора Γ_{ij} в разложении по базису (r_{x_k}) .

Разложение: $\Gamma_{ij} = \sum_k \Gamma^k_{ij} r_{y_k}$.

Символы Кристоффеля 2-го рода: $\Gamma_{ij,k} = \langle \Gamma_{ij}, r_{x_k} \rangle$.

Замечание

Они симметричны: $\Gamma_{ii} = \Gamma_{ii}$.

Лекция 12 25 ноября 2020 г.

Вычисление одних через другие

Свойство

Символы Кристоффеля 1-го и 2-го рода выражаются друг через друга и коэффициенты **I**.

Доказательство.

Зафиксируем i, j и рассмотрим векторы-столбцы

$$X = (\Gamma_{ij}^k)_{k=1}^m \text{ if } Y = (\Gamma_{ij,k})_{k=1}^m.$$

Тогда верно матричное равенство: Y = IX.

Она выражает $\Gamma_{ij,k}$ через Γ_{ij}^k .

Обратно,
$$X = \mathbf{I}^{-1} Y$$
.

Лекция 12 25 ноября 2020 г.

Выражение через первую форму

Теорема

Символы Кристоффеля выражаются через коэффициенты первой формы и их первые производные.

Следствие

Символы Кристоффеля принадлежат внутренней геометрии (не меняются при изометриях).

Замечание

Символы Кристоффеля зависят от выбора параметризации r и не имеют простого бескоординатного смысла.

Лекция 12

Обозначаем коэффициенты I через (g_{ij}) , $g_{ij} = \langle r_{x_i}, r_{x_j} \rangle$. Дифференцируем g_{ij} по x_k :

$$(g_{ij})'_{x_k} = \langle r_{x_i}, r_{x_j} \rangle'_{x_k} = \langle r_{x_i x_k}, r_{x_j} \rangle + \langle r_{x_i}, r_{x_j x_k} \rangle = \Gamma_{ik,j} + \Gamma_{jk,i}$$

Аналогично,

$$(g_{ik})'_{x_j} = \Gamma_{ij,k} + \Gamma_{ik,j}$$

 $(g_{jk})'_{x_i} = \Gamma_{ij,k} + \Gamma_{jk,i}$

(переставляем индексы и пользуемся симметрией $\Gamma_{ij,k}$).

Складываем два последних равенства, вычитаем первое, делим на 2:

$$\Gamma_{ij,k} = rac{(g_{ik})'_{x_j} + (g_{jk})'_{x_i} - (g_{ij})'_{x_k}}{2}$$

Выразили $\Gamma_{ij,k}$, а Γ_{ij}^k выражаются через них и g_{ij} .

$$(2)+(3)-(1)$$

Для записей

Содержание

- Некоторые приложения (продолжение)
 - Гассова кривизна как якобиан
 - Параллельные поверхности
- 2 Символы Кристоффеля
 - Определение, выражение через первую форму
 - Восстановление поверхности по І и ІІ
 - Ковариантное дифференцирование
- ③ Theorema Egregium Гаусса, приложения
 - Теорема Гаусса
 - Развёртывающиеся поверхности

Формулировка

Рассматриваем m-мерные поверхности в \mathbb{R}^{m+1} .

Теорема

Поверхность определяется своей первой и второй формой однозначно с точностью до движения.

Подробнее:

Пусть r_1, r_2 : $U \not \subset \mathbb{R}^{m+1}$ — регулярные поверхности, U связна, u в каждой точке $x \in U$ первая u вторая форма r_1 — такие же, как у r_2 . Тогда существует движение $F: \mathbb{R}^{m+1} \to \mathbb{R}^{m+1}$ такое, что $r_2 = F \circ r_1$.

Замечание

Неверно, что любая пара матричных функций на U реализуется как \mathbf{I} и \mathbf{II} некоторых поверхностей. Даже если выполнены все поточечные условия (симметричность, положительная определённость \mathbf{I}).

Доказательство теоремы – 1: деривационные уравнения

Пусть r — одна из данных поверхностей. Напишем дифференциальные уравнения на векторнозначные функции $X_i = r_{x_i}$ и n (нормаль) из U в \mathbb{R}^{m+1} .

$$(X_i)'_{x_j} = \underbrace{r_{x_i x_j}}_{\text{k.d.s.}} = \Gamma_{ij} + \widehat{\mathbf{II}}(X_i, X_j) \cdot n = \sum_{k=1}^{m} \Gamma_{ij}^k X_k + h_{ij} n$$

где (h_{ij}) — коэффициенты **II**.

$$n'_{x_j} = -S(X_j) = \sum_{i=1}^m a_{ij} X_i$$

где S = -dn — оператор Вейнгартена, $(a_{ij}) = \mathbf{I}^{-1}\mathbf{I}\mathbf{I}$ — его матрица в базисе (X_i) .

Это линейная система дифференциальных уравнений \Longrightarrow решение однозначно определяется начальными данными $(X_i(x_0))$, $n(x_0)$ для произвольной $x_0 \in U$.

$$\langle r_{x_{i}}x_{j},h\rangle = \mathbb{I}(e_{i},e_{j}) =$$

$$= \widehat{\mathbb{I}}(r_{x_{i}},r_{x_{j}})$$

$$h_{ij} = \mathbb{I}(e_{i},e_{j}).$$

23 / 48

Лекция 12 25 ноября 2020 г.

Доказательство теоремы – 2: окончание

Построим движение $F \colon \mathbb{R}^{m+1}$ такое, что

- $F(r_1(x_0)) = r_2(x_0)$
- \overrightarrow{F} переводит базис $(r_1)_{x_1}, \ldots, (r_1)_{x_m}, n_{r_1}$ в аналогичный базис для r_2 .

Это возможно, так как у двух базисов одинаковые матрицы Грама.

Теперь у двух поверхностей $F \circ r_1$ и r_2 одинаковые начальные данные деривационных уравнений.

Коэффициенты уравнений Γ^k_{ij} , h_{ij} , a_{ij} тоже одинаковы \Longrightarrow решения совпадают.

Теперь уравнение $r_{x_i} = X_i$ где X_i даны, однозначно определяет поверхность.

Теорема доказана

Лекция 12 25 ноября 2020 г.

Для записей

Содержание

- Некоторые приложения (продолжение)
 - Гассова кривизна как якобиан
 - Параллельные поверхности
- 2 Символы Кристоффеля
 - Определение, выражение через первую форму
 - Восстановление поверхности по I и II
 - Ковариантное дифференцирование
- ③ Theorema Egregium Гаусса, приложения
 - Теорема Гаусса
 - Развёртывающиеся поверхности

Лекция 12

Касательные векторные поля

Снова рассматриваем любые размерности

Определение

Пусть M — гладкое многообразие. (Касательное) векторное поле на M — гладкое отображение $V: M \to TM$ такое, что $V(p) \in T_p M$ для всех $p \in M$.

Обозначение: вместо V(p) часто пишут V_p .

Ковариантная производная векторного поля

Пусть $M^m \subset \mathbb{R}^N$ — гладкое подмногообразие.

Определение

Пусть W — векторное поле на M, $p \in M$, $\mathbf{w} \in T_p M$. Ковариантная производная W вдоль v — вектор $\nabla_v W \in T_p M$, определяемый равенством

$$abla_{v}W=\overline{\mathsf{Pr}_{T_{p}M}(W'_{v})}$$

где W_{ν}' — производная вдоль ν поля W, рассматриваемого как отображение из M в \mathbb{R}^N , \Pr_{T_pM} — ортогональная проекция на T_pM .

Определение

Для векторных полей V и W, ковариантная производная $\nabla_V W$ — векторное поле, определяемое равенством $(\nabla_V W)_p = \nabla_{V_p} W$, где нижний индекс p обозначает значение в точке p.

28 / 48

4□ > 4回 > 4回 > 4 = > = 9000

Свойства ∇

lacktriangle Если X_i — координатные поля параметризации r (т.е. $X_i(p) = r_{x_i}(r^{-1}(p))$, то $\nabla_{X_i}X_j = \Gamma_{ij}$.

$$\Gamma_{ij} = Pr_{TM} \left(P_{x_i x_j} \right)$$

25 ноября 2020 г.

Свойства abla

- **①** Если X_i координатные поля параметризации r (т.е. $X_i(p) = r_{x_i}(r^{-1}(p))$, то $\nabla_{X_i}X_j = \Gamma_{ij}$.
- **2** Операция ∇ линейна по обоим аргументам.

Лекция 12 25 ноября 2020 г.

Свойства ∇

- **②** Если X_i координатные поля параметризации r (т.е. $X_i(p) = r_{x_i}(r^{-1}(p))$, то $\nabla_{X_i} X_i = \Gamma_{ij}$.
- Операция ∇ линейна по обоим аргументам.
- 3 Дифференцирование произведения:

$$\nabla_{V}(fW) = \underbrace{f'_{V} \cdot W(p) + f(p) \cdot \nabla_{V} W}_{V(fW)} = \underbrace{f'_{V} \cdot W + f \cdot \nabla_{V} W}_{V}$$

для любой гладкой функции $f: M \to \mathbb{R}$.

$$W - 6eur \cdot uone$$

$$f - dynague$$

$$(fw)'_{v} = \underbrace{1'_{v} W(p) + f(p)}_{p} \cdot \underbrace{W'_{v}}_{v}$$

$$\sum_{w} W.$$

29 / 48

Лекция 12 25 ноября 2020 г.

Свойства ∇

- **②** Если X_i координатные поля параметризации r (т.е. $X_i(p) = r_{x_i}(r^{-1}(p))$, то $\nabla_{X_i} X_i = \Gamma_{ij}$.
- Операция ∇ линейна по обоим аргументам.
- Оправодния обращения произведения:

$$\nabla_{V}(fW) = f'_{V} \cdot W(p) + f(p) \cdot \nabla_{V}W$$
$$\nabla_{V}(fW) = f'_{V} \cdot W + f \cdot \nabla_{V}W$$

для любой гладкой функции $f:M o\mathbb{R}$.

4 Дифференцирование скалярного произведения

$$\langle W_1, W_2 \rangle_{\nu}' = \langle \nabla_{\nu} W_1, W_2(p) \rangle + \langle W_1(p), \nabla_{\nu} W_2 \rangle$$
 (1)

$$\langle W_1, W_2 \rangle_V' = \langle \nabla_V W_1, W_2 \rangle + \langle W_1, \nabla_V W_2 \rangle$$
 (2)

для любых векторных полей W_1, W_2

Доказательство:
$$\langle \nabla_v W_1, W_2 \rangle = \langle (W_1)_v', W_2 \rangle$$
, так как $(W_1)_v' - \nabla_v W_1 \oplus T_p M \ni W_2(p)$. Аналогично для второго слагаемого.

 $W_{1}, W_{2} - beer$. $\langle W_{1}, W_{2} \rangle - dynugue M-9/R$... = $\langle (W_{1})_{V}^{\prime}, W_{2} \rangle + \langle W_{1}, (W_{2})_{V}^{\prime} \rangle$

Выражение ∇ через символы Кристоффеля

Пусть X_1, \ldots, X_m — координатные векторные поля. Данные поля можно разложить по координатным:

$$V = \sum_{i=1}^{m} \xi_i X_i,$$

$$W = \sum_{i=1}^{m} \eta_i X_i,$$

51, - 7 5m

где ξ_i , η_i — гладкие функции.

Теорема

В этих обозначениях,

$$\nabla_V W = \sum_i (\eta_i)_V' X_i + \sum_{i,j} \xi_i \eta_j \Gamma_{ij}.$$

Как следствие, операция ∇ принадлежит внутренней геометрии.

$$\Gamma(V,W)$$
.

Лекция 12 25 ноября 2020 г.

Пользуемся линейностью и дифференцированием произведения:

$$\nabla_V W = \nabla_V \left(\sum_i \eta_i X_i \right) = \sum_i (\eta_i)_V' X_i + \sum_i \eta_i \nabla_V X_i$$

Первое слагаемое входит в ответ, преобразуем второе, подставив $V = \sum_i \xi_j X_j$:

$$\nabla_{V} X_{i} = \nabla_{\sum_{j} \xi_{j} X_{j}} X_{i} = \sum_{j} \xi_{j} \nabla_{X_{j}} X_{i} = \sum_{j} \xi_{j} \Gamma_{ji}$$

Умножая на η_i и суммируя по i, получаем вторую часть ответа:

$$\sum_{i} \eta_{i} \nabla_{V} X_{i} = \sum_{i,j} \eta_{i} \xi_{j} \Gamma_{ji}$$

(с точностью до переобозначения i и j).

$$\Gamma_{ij} = \nabla_{x_i} X_j$$

Лекция 12 25 ноября 2020 г.