The circuit below represents an AC circuit in steady-state in the phasor domain (for the complex numbers, you may assume units are V, A, Ω , etc. as appropriate). Both sources in the circuit have the same ω , but you are not told the value of ω . Each box represents the impedance of a single circuit element (a resistor, capacitor or inductor).

- What are the maximum value of $v_S(t)$ and $i_S(t)$, called v_{Smax} and i_{Smax} respectively? For v_{Smax} , find Y_1 such that $v_{Smax} = Y_1\sqrt{2}$.
- b. We now double ω of both sources but keep everything else the same (such as the capacitor, inductor and resistor values; the amplitude and phase of the sources, etc.). Find the new value of all complex numbers in the circuit (the new value of a_1 is called a_2 , etc.) as well as the new magnitude of the current source $|\mathbf{I}_{S}| = X_{2}$.

a. The max value of a sinusoidal navelerm is its amplitude

$$V_{S,max} = |V_S| = \sqrt{d_1^2 \cdot c_1^2} = \sqrt{1^2 \cdot 1} = \sqrt{2} \implies 3_1 = 1$$

b. Aralyze which elements have a dependence on w

q, is the impedance of a resister \Rightarrow 2R = SO, this has no dependence on w so if $w \Rightarrow 2w$, $SO \Rightarrow SO \Rightarrow Q_2 = SO$

bij => -20's is the impedance of a capaciter

$$Z_{c} = \frac{1}{j\omega(c)} = 2\omega$$
, then $\frac{1}{j2\omega(c)} = \frac{1}{2} \cdot \frac{1}{j\omega(c)} = \frac{1}{2} \cdot \frac{1}{j\omega(c)} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2}$

Cij => 10; is the impedance of an inductor

Vs = d, re, j = 1+j is the phasor for a source v(t) = 1/2 cos(w+ 1/4)

if w=2w, then
$$v_s(t) = \frac{\sqrt{2}}{2}\cos(2\omega t + \frac{\pi}{4}) \Rightarrow V_s = \frac{\sqrt{2}}{2}e^{iN_4} = 1r_j \Rightarrow \begin{cases} d_2 = 1 \\ e_2 = 1 \end{cases}$$

=) the phaser for a voltage naveform does not depend on w

Similarly, is(1) = Scos(
$$\omega t - \frac{\pi}{2}$$
) if $\omega \rightarrow 2\omega$, is(1) = Scos($2\omega t - \frac{\pi}{2}$) => $X_2 = SA$