Computability Theory

Check List For Final Exam, Xiaofeng Gao's Section, 2015 Spring

Description:

This checklist covers all the contents for the final exam. It includes Chapter 6 to Chapter 9. (Note: Multiple options are available to prepare for the final exam. Reading the textbook is a must for success. Slides, assignments, and answer keys can be good supplements for all topics. For the notations, please refer to the Notations in the text book, page 241-245.)

Chapter 6. Decidability, undecidability and partial decidability

- 1. Decidability:
 - (a) **Definition**. A predicate $M(\mathbf{x})$ is decidable if its characteristic function $c_M(\mathbf{x})$ given by $c_M(\mathbf{x}) = \begin{cases} 1, & \text{if } M(\mathbf{x}) \text{ holds,} \\ 0, & \text{if } M(\mathbf{x}) \text{ does not hold.} \end{cases}$ is computable. (b) The predicate $M(\mathbf{x})$ is undecidable if it is not decidable.

 - (c) In literature $M(\mathbf{x})$ is decidable can be described as $M(\mathbf{x})$ is recursively decidable, $M(\mathbf{x})$ has recursive decision problem, $M(\mathbf{x})$ is solvable, $M(\mathbf{x})$ is recursively solvable, or $M(\mathbf{x})$ is computable.
- 2. Undecidable problems in computability:
 - (a) **Theorem**. The problem ' $x \in W_x$ ' is undecidable.
 - (b) Corollary. There is a computable function h such that both ' $x \in Dom(h)$ ' and ' $x \in Dom(h)$ Ran(h)' are undecidable.
 - (c) **Theorem**. (the Halting problem) The problem ' $\phi_x(y)$ is defined' is undecidable.
 - (d) **Theorem**. The problem ' $\phi_x = 0$ ' is undecidable.
 - (e) Corollary. The problem ' $\phi_x = \phi_y$ ' is undecidable.
 - (f) **Theorem**. Let c be any number. The followings are undecidable.
 - i. Acceptance Problem: ' $c \in W_x$ ',
 - ii. Printing Problem: ' $c \in E_x$ '.
 - (g) **Theorem**. (Rice's theorem) ' $\phi_x \in \mathcal{B}$ ' is undecidable for $\emptyset \subsetneq \mathcal{B} \subsetneq \mathcal{C}_1$.
- 3. Partially decidable predicates:
 - (a) **Definition**. A predicate $M(\mathbf{x})$ of natural numbers is partially decidable if the function given by $f(\mathbf{x}) = \begin{cases} 1, & \text{if } M(\mathbf{x}) \text{ holds,} \\ \text{undefined,} & \text{if } M(\mathbf{x}) \text{ does not hold,} \end{cases}$ is computable.
 - The function is called the partial characteristic function for M.
 - (b) In the literature the terms partially solvable, semi-computable, and recursively enumerable are used with the same meaning as partially decidable.
 - (c) partially decidable predicates:
 - i. The halting problem is partially decidable. Its partial characteristic function is given by $f(x,y) = \begin{cases} 1, & \text{if } P_x(y) \downarrow, \\ \text{undefined, otherwise.} \end{cases}$ ii. The problem ' $x \notin W_x$ ' is not partially decidable. The domain of its partial charac-
 - teristic function differs from the domain of every computable function.
 - (d) **Theorem**. A predicate $M(\mathbf{x})$ is partially decidable iff there is a computable function q(x) such that $M(\mathbf{x}) \Leftrightarrow \mathbf{x} \in Dom(q)$.
 - (e) **Theorem**. A predicate $M(\mathbf{x})$ is partially decidable iff there is a decidable predicate $R(\mathbf{x}, y)$ such that $M(\mathbf{x}) \Leftrightarrow \exists y. R(\mathbf{x}, y)$.
 - (f) **Theorem**. If $M(\mathbf{x}, y)$ is partially decidable, so is $\exists y. M(\mathbf{x}, y)$.
 - (g) Corollary. If $M(\mathbf{x}, \mathbf{y})$ is partially decidable, so is $\exists \mathbf{y}.M(\mathbf{x}, \mathbf{y})$.

- (h) **Theorem**. $M(\mathbf{x})$ is decidable iff both $M(\mathbf{x})$ and $\neg M(\mathbf{x})$ are partially decidable.
- (i) Corollary. The problem ' $y \notin W_x$ ' is not partially decidable.
- (j) **Theorem**. Let $f(\mathbf{x})$ be a partial function. Then f is computable iff the predicate ' $f(\mathbf{x}) \simeq y$ ' is partially decidable.

Key Terms:

Decidability, Undecidability, the Halting problem, Rice's theorem, partial decidability.

Practice and Sources:

1. Slide08-Undecidability; 2. Textbook page 100-120

Chapter 7. Recursive And Recursively Enumerable Sets

- 1. Recursive Sets:
 - (a) **Definition**. Let A be a subset of \mathbb{N} . The characteristic function of A is given by $c_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \end{cases}$ A is recursive if $c_A(x)$ is computable.
 - (b) Examples of recursive sets: (c) Examples of unsolvable problems:

i. \mathbb{N} , \mathbb{Z} .

i. $K = \{x \mid x \in W_x\}, \quad \overline{K} = \{x \mid x \notin W_x\}$

ii. \mathbb{E} (even numbers).

ii. $Fin = \{x \mid W_x \text{ is finite}\}, Inf = \{x \mid W_x \text{ is infinite}\},$

iii. \mathbb{O} (odd numbers).

iii. $Cof = \{x \mid W_x \text{ is cofinite}\}, Tot = \{x \mid \phi_x \text{ is total}\},\$

iv. \mathbb{O} (prime numbers).

iv. $Rec = \{x \mid W_x \text{ is recursive}\},\$

v. Any finite set.

v. $Ext = \{x \mid \phi_x \text{ is extensible to total recursive function}\}.$

- (d) Fact. Recursive Set \Leftrightarrow Solvable Problem \Leftrightarrow Decidable Predicate.
- (e) **Theorem**. If A, B are recursive sets, then so are the sets \overline{A} , $A \cap B$, $A \cup B$, $A \setminus B$.
- 2. Recursively Enumerable Sets (r.e. set):
 - (a) **Definition**. Let A be a subset of \mathbb{N} . Then A is recursively enumerable if the function f given by $f(x) = \begin{cases} 1, & \text{if } x \in A, \\ \text{undefined, if } x \notin A. \end{cases}$ is computable.

Notation 1. A is also called semi-recursive set, semi-computable set.

Notation 2. Subsets of \mathbb{N}^n can be defined as r.e. by coding to r.e. subsets of \mathbb{N} .

- (b) Fact. Partially Decidable Problem \Leftrightarrow Partially Decidable Predicate \Leftrightarrow R. E. Set
- (c) **Index Theorem**. A set is r.e. iff it is the domain of a unary computable function.
- (d) **Normal Form Theorem**. The set A is r.e. iff there is a primitive recursive predicate $R(\mathbf{x}, y)$ such that $\mathbf{x} \in A$ iff $\exists y. R(\mathbf{x}, y)$.
- (e) Quantifier Contraction Theorem. If $M(\mathbf{x}, \mathbf{y})$ is partially decidable, so is $\exists \mathbf{y}.M(\mathbf{x}, \mathbf{y})$ $(\{\mathbf{x} \mid \exists \mathbf{y}.M(\mathbf{x},\mathbf{y})\} \text{ is r.e.}).$
- (f) Uniformisation Theorem. If R(x,y) is partially decidable, then there is a computable function c(x) such that $c(x) \downarrow \text{ iff } \exists y. R(x,y) \text{ and } c(x) \downarrow \text{ implies } R(x,c(x)).$
- (g) Complementation Theorem. A is recursive iff A and A are r.e.
- (h) Graph Theorem. Let f(x) be a partial function. Then f(x) is computable iff the predicate ' $f(x) \simeq y$ ' is partially decidable iff $\{\pi(x,y) \mid f(x) \simeq y\}$ is r.e.
- (i) **Listing Theorem**. A is r.e. iff $A = \emptyset$ or A = Ran(f) for a total function $f \in \mathscr{C}_1$. **Equivalence Theorem**. Let $A \subseteq \mathbb{N}$. Then the following are equivalent:
 - i. A is r.e.
 - ii. $A = \emptyset$ or A is the range of a unary total computable function.
 - iii. A is the range of a (partial) computable function.

Theorem. Every infinite r.e. set has an infinite recursive subset.

Theorem. An infinite set is recursive iff it is the range of a total increasing computable

function (if it can be recursively enumerated in increasing order).

Theorem. The set $\{x \mid \phi_x \text{ is total}\}\$ is not r.e.

- (j) Closure Theorem. The recursively enumerable sets are closed under union and intersection uniformly and effectively.
- (k) Rice-Shapiro Theorem. Suppose that \mathcal{A} is a set of unary computable functions such that the set $\{x \mid \phi_x \in \mathcal{A}\}$ is r.e. Then for any unary computable function $f, f \in \mathcal{A}$ iff there is a finite function $\theta \subseteq f$ with $\theta \in \mathcal{A}$.

Corollary. The sets $\{x \mid \phi_x \text{ is total}\}\$ and $\{x \mid \phi_x \text{ is not total}\}\$ are not r.e.

- (1) **Theorem**. If A and B are r.e., then so are $A \cap B$ and $A \cup B$.
- 3. Productive Sets:
 - (a) **Definition**. A set A is productive if there is a total computable function g such that whenever $W_x \subseteq A$, then $g(x) \in A \setminus W_x$. g is called a productive function for A.

Notation. A productive set is not r.e.

- (b) Examples of productive sets:
 - i. $\{x \mid \phi_x \neq \mathbf{0}\}$ is productive.
 - ii. $\{x \mid c \notin W_x\}$ is productive.
 - iii. $\{x \mid c \notin E_x\}$ is productive.

Fig. A productive set

- (c) **Reduction Theorem**. Suppose that A and B are sets such that A is productive, and there is a total computable function such that $x \in A$ iff $f(x) \in B$. Then B is productive.
- (d) **Theorem**. Suppose that \mathscr{B} is a set of unary computable functions with $f_{\varnothing} \in \mathscr{B}$ and $\mathscr{B} \neq \mathscr{C}_1$. Then the set $B = \{x \mid \phi_x \in \mathscr{B}\}$ is productive.
- 4. Creative sets:
 - (a) **Definition**. A set A is creative if it is r.e. and its complement \overline{A} is productive.

Example. K is creative. (The simplest example of a creative set).

Notation. From the theorem that A is recursive $\Leftrightarrow A$ and \overline{A} are r.e. we can say that a creative set is an r.e. set that fails to be recursive in a very strong way. (Creative sets are r.e. sets having the most difficult decision problem.)

- (b) **Theorem**. Suppose that $\mathscr{A} \subseteq \mathscr{C}_1$ and let $A = \{x \mid \phi_x \in \mathscr{A}\}$. If A is r.e. and $A \neq \emptyset$, N, then A is creative.
- (c) **Lemma**. Suppose that g is a total computable function. Then there is a total computable function k such that for all x, $W_{k(x)} = W_x \cup \{g(x)\}$.

Subset Theorem. A productive set contains an infinite r.e. subset.

Corollary. If A is creative, then \overline{A} contains an infinite r.e. subset.

- 5. Simple Set:
 - (a) **Definition**. A set A is simple if A is r.e., \overline{A} is infinite and contains no infinite r.e. subset.
 - (b) **Theorem**. A simple set is neither recursive nor creative.
 - (c) **Theorem**. There is a simple set.

Key Terms:

Recursive Set, Recursively Enumerable Set, Productive Set, Creative Set, Simple Set.

- 1. Slide09-RESet
- 2. Textbook page 121-142;
- 3. Lab08, Lab09.

Table 1: Various Sets

Set	Definition	Theorem	Example	Counter Example
Recursive Set	$c_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \end{cases}$ is computable.	 ① Recursive Function Theorems ② Closure: A,B are r. ⇒ Ā, A ∪ B, A ∩ B are r. ③ Rice Theorem: Ø ⊊ ℬ ⊊ ℒ₁ ⇒ 'φ_x ∈ ℬ' is undecidable. ④ Any Theorems for Decidable Predicates. 	$\mathbb{N}, \mathbb{Z}, \mathbb{E}, \mathbb{O}, \mathbb{P}$ Any finite set	$K, \overline{K};$ $Fin, Inf, Cof;$ Rec, Tot, Ext Any non-r.e. set
Recursively Enumerable Set (r.e. set)	$\chi_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ \uparrow, & \text{if } x \notin A. \end{cases}$ is computable.	① Index \leftrightarrow ② Listing $\begin{cases} \text{③ Equvilence} \\ \exists \text{ infinite } r. \subseteq r.e. \\ r. \Leftrightarrow \exists f \in \mathscr{C}_1 \uparrow \uparrow, Ran(f) \end{cases}$ ④ Normal Form $\begin{cases} \text{⑤ Uniformization} \\ \text{⑥ Graph} \\ \text{⑦ Quantifier Constraction} \end{cases}$ ⑧ Complementation $(A \text{ is } r. \Leftrightarrow A, \overline{A} \text{ are r.e.})$ ⑨ Closure $(A, B \text{ are r.e.} \Rightarrow A \cap B, A \cup B \text{ are r.e.})$ ⑩ Rice-Shapiro: $\mathscr{A} \subseteq \mathscr{C}_1, \{x \mid \phi_x \in \mathscr{A}\} \text{ is r.e.}, \\ \text{then } \forall f \in \mathscr{C}_1, f \in \mathscr{A} \Leftrightarrow \exists \text{ finite } \theta \subseteq f \text{ with } \theta \in \mathscr{A} \end{cases}$	all recursive set non-recursive r.e. set $ \{x \mid x \in W_x\} $ $ \{x \mid \phi_x(x) = 0\} $ $ \{x \mid W_x \neq \varnothing\} $ $ \{x \mid x \ 7's \ \text{in} \ \pi\} $	\overline{K} ; Fin, Inf, Cof; Tot, \overline{Tot} , Con; Rec, Ext
Productive Set	A is productive if \exists total $g \in \mathscr{C}_1$ s.t. $\forall W_x \subseteq A$, $g(x) \in A \setminus W_x$	 Reduction Theorem A is productive and A ≤_m B ⇒ B is productive Quasi-Rice Theorem \$\mathscr{G}\$ ⊆ \$\mathscr{C}\$_1, f_{\omega\$} ∈ \$\mathscr{B}\$ ⇒ {x φ_x ∈ \$\mathscr{B}\$} is productive Quasi-Listing Theorem Productive set has r.e. subset 	$ \begin{cases} x \mid \phi_x(x) \neq 0 \\ \{x \mid c \notin W_x \} \\ \{x \mid c \notin E_x \} \\ \{x \mid \phi_x \text{ is not total} \} \end{cases} $	① r.e. set ② doesn't have r.e. subset
Creative Set	$\begin{cases} \frac{A}{A} \text{ is r.e.;} \\ \hline A \text{ is productive.} \end{cases}$	① Quasi-Rice Theorem $\mathscr{A} \subseteq \mathscr{C}_1, A = \{x \mid \phi_x \in \mathscr{A}\}.$ If A is r.e., $A \neq \varnothing$, \mathbb{N} , then A is creative	$\begin{cases} x \mid \phi_x(x) = 0 \\ \{x \mid c \in W_x \} \\ \{x \mid c \in E_x \} \end{cases}$	① non-r.e. set ② simple set
Simple Set	$\begin{cases} \frac{A \text{ is r.e.;}}{\overline{A} \text{ is infinite;}} \\ \overline{A} \text{ contains no infinite r.e. subset.} \end{cases}$	 ① Characteristic Theorem (A simple set is neither recursive nor creative) ② Existence Theorem (There is a simple set) 	If A , B are simple: $A \oplus B$ is simple $A \otimes B$ is not simple $\overline{A} \otimes \overline{B}$ is simple	Any recursive set Any creative set

Chapter 8. Arithmetic And Gödel's Incompleteness Theorem

1. Formal arithmetic:

(a) **Definition**. The formalization of arithmetic is specifying an adequate formal logical language L and making statements of ordinary arithmetic of the natural numbers (First order logic with equality).

Functional symbols (alphabet): $0, 1, +, \times, =$.

Logical notions: \neg (not); \land (and); \lor (or); \rightarrow (implies); \forall (for all); \exists (exists).

Variables: x, y, z, \dots

Other symbols: brackets (and), \neq , etc.

- (b) **Definition**. The statements (formulas) of L are the meaningful finite sequences of symbols from the alphabet of L.
 - \mathcal{S} be the set of all possible meaningful statements.
 - \mathcal{T} be the set of all statements that are true in the ordinary arithmetic on \mathbb{N} .
 - \mathscr{F} be the set of all statements that are false in the ordinary arithmetic on \mathbb{N} .
- (c) Standard coding: It is straightforward to assign a Gödel number to every member of \mathscr{S} in a uniform manner. $\mathscr{S} = \{\theta_0, \theta_1, \theta_2, \ldots\}$. We can use it to code any set of statements \mathscr{X} by the set of number $\mathbf{X} = \{n \mid \theta_n \in \mathscr{X}\}$.

We say that
$$\mathscr{X}$$
 is
$$\left\{ \begin{array}{c} recursive \\ r.e. \\ productive \\ creative \\ etc. \end{array} \right\} \text{ if } \mathscr{X} \text{ is } \left\{ \begin{array}{c} recursive \\ r.e. \\ productive \\ creative \\ etc. \end{array} \right\}$$

(d) Gödel's Lemma. Suppose $M(x_1, \ldots, x_n)$ is a decidable predicate. Then it is possible to construct a statement $\sigma(x_1, \ldots, x_n)$ that is a formal counterpart of $M(x_1, \ldots, x_n)$ in the following sense: for all $a_1, \ldots, a_n \in \mathbb{N}$, $M(a_1, \ldots, a_n)$ holds iff $\sigma(a_1, \ldots, a_n) \in \mathcal{F}$.

Lemma. Foe any $n \in \mathbb{N}$,

- (a) $n \in K$ iff $n \in K \in \mathcal{T}$,
- (b) $n \notin K$ iff $n \notin K \in \mathcal{T}$
- (e) **Transform Lemma**. There is a total computable function g such that $\forall n, \theta_{g(n)}$ is $n \notin K$.
- (f) **Theorem**. \mathcal{T} is productive.

2. Incompleteness:

- (a) **Definition**. A formal system $(\mathscr{A}, \mathscr{D})$ consists of a set $\mathscr{A} \subseteq \mathscr{S}$ (the axioms) and an explicit definition \mathscr{D} of the notion of a formal proof of a statement in \mathscr{S} from the axioms, satisfying the conditions:
 - i. Proofs are finite objects.
 - ii. Provability is decidable if \mathscr{A} is recursive.
- (b) Is there a simple-minded subset of \mathscr{T} (a set of axioms) from which all other statements in \mathscr{T} can be proved? \iff Is there a formal system $(\mathscr{A}, \mathscr{D})$ for L such that
 - i. \mathscr{A} is recursive, and
 - ii. the provable statements are precisely those in \mathcal{T} ?
- (c) **Definition**. Consistency: There is no statement σ such that both σ and $\neg \sigma$ are provable; Completeness: For any statement σ , either σ is provable or $\neg \sigma$ is provable.
- (d) **Lemma**. In any recursively axiomatized formal system Pr (provable statements) is r.e.
- (e) **Simplified Gödel Theorem**. Suppose that $(\mathscr{A}, \mathscr{D})$ is a recursively axiomatized formal system in which all provable statements are true. Then there is a statement σ that is true but not provable (and consequently $\neg \sigma$ is not provable either).
- 3. Gödel's incompleteness theorem:
 - (a) First Order Peano Axioms:

PA1	$\forall x. (\mathbf{s}(x) \neq 0)$
PA2	$\forall xy.(s(x) = s(y) \Rightarrow x = y)$
PA3	$\forall x. (x = 0 \lor \exists y. s(y) = x)$
PA4	$\forall x.(x < s(x))$
PA5	$\forall xy. (x < y \Rightarrow s(x) \le y)$
PA6	$\forall xy. (\neg (x < y) \Leftrightarrow y \le x)$
PA7	$\forall xy.((x < y) \land (y < z) \Rightarrow x < z)$

- (b) **Lemma**. (Gödel) Let $M(x_1, ..., x_n)$ be a decidable predicate, then there is a statement $\sigma(\mathsf{x}_1, ..., \mathsf{x}_n)$ in Peano arithmetic that satisfies the following properties: for any $a_1, \cdots, a_n \in \mathbb{N}$,
 - i. If $M(a_1, \ldots, a_n)$ holds, then $\sigma(\mathsf{a}_1, \ldots, \mathsf{a}_n)$ is provable.
 - ii. If $M(a_1, \ldots, a_n)$ does not hold, then $\neg \sigma(a_1, \ldots, a_n)$ is provable.

Corollary. For any $n \in \mathcal{N}$, if $n \in K$ then $n \in K$ is provable in Peano arithmetic.

(c) **Definition**. A formal system is ω -consistent if there is no statement $\tau(y)$ such that all of the following are provable. $\exists y. \tau(y), \neg \tau(0), \neg \tau(1), \neg \tau(2), \dots$

Lemma. Suppose that Peano arithmetic is ω -consistent. Then for any natural number n, if $n \in K$ is provable then $n \in K$.

(d) **Theorem** (Gödel's Incompleteness Theorem, 1931).

There is a statement σ of Peano arithmetic such that

- i. If Peano arithmetic is consistent, then σ is not provable;
- ii. If Peano arithmetic is ω -consistent, then $\neg \sigma$ is not provable

4. Rosser's Refinement:

(a) **Definition**. Let $K_0 = \{x \mid \phi_x(x) = 0\}$ and $K_1 = \{x \mid \phi_x(x) = 1\}$.

Definition. Two disjoint sets A, B are recursively inseparable if there is no recursive set C such that $A \subseteq C$ and $B \subseteq \overline{C}$.

Proposition. Two disjoint sets A, B are recursively inseparable iff whenever $A \subseteq W_a$, $B \subseteq W_b$ and $W_a \cap W_b = \emptyset$ then there is a number $x \notin W_a \cup W_b$.

Fact. K_0 and K_1 are recursively inseparable.

- (b) **Lemma**. For each natural number n, the following are valid in Peano arithmetic.
 - i. If $n \in K_0$ then $n \in K_0$ is provable.
 - ii. If $n \in K_1$ then $n \in K_1$ is provable.
 - iii. If $n \in K_1$ is provable, then $n \notin K_0$ is also provable.
- (c) **Theorem**. (Gödel-Rosser Incompleteness Theorem) There is a statement τ such that if Peano arithmetic is consistent, then neither τ nor $\neg \tau$ is provable.

5. Undecidability:

- (a) **Theorem**. Suppose that $(\mathscr{A}, \mathscr{D})$ is an ω -consistent formal system of arithmetic in which all decidable predicates are representative. Then the set of provable statements is creative.
- (b) Corollary. If Peano arithmetic is ω -consistent, then the provable statements form a creative set.

Key Terms:

Formal Arithmetic, Gödel's Incompleteness Theorem, Rosser's Refinement, Undecidability.

- 1. Slide12-Incompleteness;
- 2. Textbook page 143-156;
- 3. Lab12.

Chapter 9. Reducibility And Degrees

- 1. Many-One Reducibility:
 - (a) **Definition**. The set A is many-one reducible (m-reducible) to the set B if there is a total computable function f such that $x \in A$ iff $f(x) \in B$ for all x.

We shall write $A \leq_m B$ or more explicitly $f : A \leq_m B$.

Notation. If f is injective, then we are talking about one-one reducibility, denoted by $f: A \leq_1 B$.

- (b) **Theorem**. Let A, B, C be sets.
 - i. \leq_m is reflexive: $A \leq_m A$.
 - ii. \leq_m is transitive: $A \leq_m B$, $B \leq_m C \Rightarrow A \leq_m C$.
 - iii. $A \leq_m B$ iff $\overline{A} \leq_m \overline{B}$.
 - iv. If A is recursive and $B \leq_m A$, then B is recursive.
 - v. If A is recursive and $B \neq \emptyset$, N, then $A \leq_m B$.
 - vi. If A is r.e. and $B \leq_m A$, then B is r.e.
 - vii. (i). $A \leq_m \mathbb{N}$ iff $A = \mathbb{N}$; (ii). $A \leq_m \emptyset$ iff $A = \emptyset$.
 - viii. (i). $\mathbb{N} \leq_m A$ iff $A \neq \emptyset$; (ii). $\emptyset \leq_m A$ iff $A \neq \mathbb{N}$.
- (c) Corollary. Neither $\{x \mid \phi_x \text{ is total}\}\ \text{nor}\ \{x \mid \phi_x \text{ is not total}\}\ \text{is }m\text{-reducible to }K.$

Corollary. If A is r.e. and is not recursive, then $\overline{A} \not\leq_m A$ and $A \not\leq_m \overline{A}$.

Notation. It contradicts to our intuition that A and \overline{A} are equally difficult.

(d) **Theorem**. A is r.e. iff $A \leq_m K$.

Notation. K is the most difficult partially decidable problem.

2. m-Degrees:

- (a) **Definition**. Two sets A, B are many-one equivalent, notation $A \equiv_m B$ (abbreviated m-equivalent), if $A \leq_m B$ and $B \leq_m A$.
- (b) **Theorem**. The relation \equiv_m is an equivalence relation.
- (c) **Definition**. Let $d_m(A)$ be $\{B \mid A \equiv_m B\}$.

Definition. An m-degree is an equivalence class of sets under the relation \equiv_m . It is any class of sets of the form $d_m(A)$ for some set A.

(d) **Definition**. The set of m-degrees is ranged over by $\mathbf{a}, \mathbf{b}, \mathbf{c}, \dots$

Definition. (Partial Order on *m*-Degree) Let **a**, **b** be *m*-degrees.

- i. $\mathbf{a} \leq_m \mathbf{b}$ iff $A \leq_m B$ for some $A \in \mathbf{a}$ and $B \in \mathbf{b}$.
- ii. $\mathbf{a} <_m \mathbf{b}$ iff $\mathbf{a} \leq_m \mathbf{b}$ and $\mathbf{b} \nleq_m \mathbf{a} \ (\mathbf{a} \neq \mathbf{b})$.

The relation \leq_m is a partial order.

Notation. From the definition of \equiv_m , $\mathbf{a} \leq_m \mathbf{b} \Leftrightarrow \forall A \in \mathbf{a}, B \in \mathbf{b}, A \leq_m B$.

- (e) **Theorem**. The relation \leq_m is a partial ordering of m-degrees.
- (f) **Theorem**. Difficulty Class
 - i. o and n are respectively the recursive m-degrees $\{\emptyset\}$ and $\{\mathbb{N}\}$.
 - ii. The recursive m-degree $\mathbf{0}_m$ consists of all the recursive sets except \emptyset , \mathbb{N} . $\mathbf{0}_m \leq_m \mathbf{a}$ for any m-degree \mathbf{a} other than \mathbf{o} , \mathbf{n} .
 - iii. \forall m-degree \mathbf{a} , $\mathbf{o} \leq_m \mathbf{a}$ provided $\mathbf{a} \neq \mathbf{n}$; $\mathbf{n} \leq_m \mathbf{a}$ provided $\mathbf{a} \neq \mathbf{o}$.
 - iv. An r.e. *m*-degree consists of only r.e. sets.
 - v. If $\mathbf{a} \leq_m \mathbf{b}$ and \mathbf{b} is an r.e. m-degree, then \mathbf{a} is also an r.e. m-degree.
 - vi. The maximum r.e. m-degree $d_m(K)$ is denoted by $\mathbf{0}'_m$.
- (g) Algebraic Structure
 - i. **Theorem**. *m*-degrees form an upper semi-lattice.
 - ii. Lattice: A lattice is a partially ordered set (poset) (L, \leq) in which any two elements have a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).

To qualify as a lattice, the set and the operation must satisfy tow conditions: join-semilattice, meet-semilattice.

join-semilattice: $\forall a, b \in L$, $\{a, b\}$ has a join $a \vee b$. (the least upper bound)

meet-semilattice: $\forall a, b \in L, \{a, b\}$ has a meet $a \land b$. (the greatest lower bound)

- iii. **Theorem**. Any pair of m-degrees a, b have a least upper bound; i.e. there is an m-degree csuch that
 - A. $\mathbf{a} \leq_m \mathbf{c}$ and $\mathbf{b} \leq_m \mathbf{c}$ (\mathbf{c} is an upper bound);
 - B. $\mathbf{c} \leq_m$ any other upper bound of \mathbf{a} , \mathbf{b} .

Fig. The m-degrees

3. m-complete r.e. sets:

(a) **Definition**. An r.e. set is m-complete if every r.e. set is m-reducible to it.

Notation. $\mathbf{0}'_m$, the m-degree of K is maximum among all r.e. m-degrees, and thus K is *m*-complete r.e. set (or just called *m*-complete set).

- (b) **Theorem**. The following statements are valid.
 - i. K is m-complete.
 - ii. A is m-complete iff $A \equiv_m K$ iff A is r.e. and $K \leq_m A$.
 - iii. $0'_m$ consists exactly of all the m-complete sets.
- (c) Myhill's Theorem. A set is m-complete iff it is creative.

Corollary. If a is the m-degree of any simple set, then $\mathbf{0}_m <_m \mathbf{a} <_m \mathbf{0}'_m$ (Simple sets are not m-complete).

4. Relative Computability:

- (a) Unlimited Register Machine with Oracle (URMO):
 - i. **Definition**. Suppose χ is a total unary function.

Informally a function f is computable relative to χ , or χ -computable, if f can be computed by an algorithm that is effective in the usual sense, except from time to time during computations f is allowed to consult the oracle function χ .

Such an algorithm is called a χ -algorithm.

ii. **Definition**. A URM with oracle, URMO for short, can recognize a fifth kind of instruction, O(n), for every n > 1.

If χ is the oracle, then the effect of O(n) is to replace the content r_n of R_n by $\chi(r_n)$. P^{χ} denote the program P when used with the function χ in the oracle.

 $P^{\chi}(\mathbf{a}) \downarrow b$ means the computation $P^{\chi}(\mathbf{a})$ with initial configuration $a_1, a_2, \cdots, a_n, 0, 0, \cdots$ stops with the number b is register R_1 .

- iii. **Definition**. Let χ be a unary total function, and f a partial function from \mathbb{N}^n to \mathbb{N} .
 - A. Let P be a URMO program, then P URMO-computes f relative to χ (or f is χ -computed by P) if, for every $\mathbf{a} \in \mathbb{N}^n$ and $b \in \mathbb{N}$, $P^{\chi}(\mathbf{a}) \downarrow b$ iff $f(\mathbf{a}) \simeq b$.
 - B. The function f is URMO-computable relative to χ (or χ -computable) if there is a URMO program that URMO-computes it relative to χ .

iv. Theorem.

- A. $\chi \in \mathscr{C}^{\chi}$.
- B. $\mathscr{C} \subseteq \mathscr{C}^{\chi}$.
- C. If χ is computable, then $\mathscr{C} = \mathscr{C}^{\chi}$.
- D. \mathscr{C}^{χ} is closed under substitution, recursion and minimalisation.
- E. If ψ is a total unary function that is χ -computable, then $\mathscr{C}^{\psi} \subseteq \mathscr{C}^{\chi}$.
- (b) χ -partial recursive function:

- i. **Definition**. The class \mathscr{R}^{χ} of χ -partial recursive functions is the smallest class of functions such that
 - A. the basic functions are in \mathcal{R}^{χ} .
 - B. $\chi \in \mathscr{R}^{\chi}$.
 - C. \mathcal{R}^{χ} is closed under substitution, recursion, and minimalisation.
- ii. **Theorem**. For any χ , $\mathcal{R}^{\chi} = \mathcal{C}^{\chi}$.
- (c) Numbering URMO programs
 - i. Let's fix an effective enumeration of all URMO programs: Q_0, Q_1, Q_2, \ldots Let $\phi_m^{\chi,n}$ be the *n*-ary function χ -computed by Q_m .

 ϕ_m^{χ} is $\phi_m^{\chi,1}$. $W_m^{\chi} = Dom(\phi_m^{\chi})$ and $E_m^{\chi} = Ran(\phi_m^{\chi})$.

- ii. The relativised s-m-n Theorem. For each $m, n \ge 1$ there is a total computable (m+1)-ary function $s_n^m(e, \mathbf{x})$ such that for any χ , $\phi_e^{\chi, m+n}(\mathbf{x}, \mathbf{y}) \simeq \phi_{s_m^m(e, \mathbf{x})}^{\chi, n}(\mathbf{y})$.
- (d) Universal programs for relative computability:

Universal Function Theorem. For each n, the universal function $\psi_U^{\chi,n}$ for n-ary χ -computable functions given by $\psi_U^{\chi,n}(e,\mathbf{x}) \simeq \phi_e^{\chi,n}(\mathbf{x})$ is χ -computable.

- (e) χ -recursive and χ -r.e. sets :
 - i. **Definition**. Let A be a set
 - A. A is χ -recursive if c_A is χ -computable.
 - B. A is χ -r.e. if its partial characteristic function $f(x) = \begin{cases} 1 & \text{if } x \in A, \\ \uparrow & \text{if } x \notin A \end{cases}$ is χ -computable.
 - ii. **Theorem**. The following statements are valid.
 - A. For any set A, A is χ -recursive iff A and \overline{A} are χ -r.e.
 - B. For any set A, the following are equivalent.
 - (1) A is χ -r.e.
 - (2) $A = W_m^{\chi}$ for some m.
 - (3) $A = E_m^{\chi}$ for some m.
 - (4) $A = \emptyset$ or A is the range of a total χ -computable function.
 - (5) For some χ -decidable predicate $R(x,y), x \in A$ iff $\exists y. R(x,y)$.
 - C. $K^{\chi} \stackrel{\text{def}}{=} \{x \mid x \in W_x^{\chi}\}$ is χ -r.e. but not χ -recursive.
- (f) Computability relative to set A means relative to characteristic function c_A .
- 5. Turing reducibility and Turing degrees:
 - (a) **Definition**. The set A is Turing reducible to B, notation $A \leq_T B$, if A has a B-computable characteristic function c_A .

Definition. A, B are Turing equivalent, notation $A \equiv_T B$, if $A \leq_T B$ and $B \leq_T A$.

- (b) Theorem.
 - i. \leq_T is reflexive and transitive.
 - ii. \equiv_T is an equivalence relation.
 - iii. If $A \leq_m B$ then $A \leq_T B$.
 - iv. $A \equiv_T A$ for all A.
 - v. If A is recursive, then $A \leq_T B$ for all B.
 - vi. If B is recursive and $A \leq_T B$, then A is recursive.
 - vii. If A is r.e. then $A \leq_T K$.
- (c) **Definition**. A set A is T-complete if A is r.e. and $B \leq_T A$ for every r.e. set B.
- (d) **Definition**. T-Degree
 - i. The equivalence class $d_T(A) = \{B \mid A \equiv_T B\}$ is the Turing degree (T-degree) of A.
 - ii. A T-degree containing a recursive set is called a recursive T-degree.
 - iii. A T-degree containing an r.e. set is called an r.e. T-degree.

- (e) **Definition**. The set of degrees is ranged over by $\mathbf{a}, \mathbf{b}, \mathbf{c}, \dots$
 - i. $\mathbf{a} \leq \mathbf{b}$ iff $A \leq_T B$ for all $A \in \mathbf{a}$ and $B \in \mathbf{b}$.
 - ii. $\mathbf{a} < \mathbf{b}$ iff $\mathbf{a} \le \mathbf{b}$ and $\mathbf{a} \ne \mathbf{b}$.

Notation. The relation \leq is a partial order.

- (f) Theorem.
 - i. There is precisely one recursive degree **0**, which consists of all the recursive sets and is the unique minimal degree.
 - ii. Let $\mathbf{0}'$ be the degree of K. Then $\mathbf{0} < \mathbf{0}'$ and $\mathbf{0}'$ is a maximum among all r.e. degrees.
 - iii. $d_m(A) \subseteq d_T(A)$; and if $d_m(A) \leq_m d_m(B)$ then $d_T(A) \leq d_T(B)$.
- (g) **Theorem**. The jump operation:
 - i. $K^A \stackrel{\text{def}}{=} \{x \mid x \in W_x^A\}$. K^A is a T-complete A-r.e. set. Also called the completion of A, or the jump of A, and denoted as A'. $A <_T K^A$.
 - ii. If B is A-r.e., then $B \leq_T K^A$.
 - iii. If A is recursive then $K^A \equiv_T K$.
 - iv. If $A \leq_T B$ then $K^A \leq_T K^B$.
 - v. If $A \equiv_T B$ then $K^A \equiv_T K^B$.
- (h) **Definition**. The jump of **a**, denoted **a**', is the degree of K^A for any $A \in \mathbf{a}$.

Notation. By Relativization jump is a valid definition because the degree of K^A is the same for every $A \in \mathbf{a}$. The new definition of $\mathbf{0}'$ as the jump of $\mathbf{0}$ accords with our earlier definition of $\mathbf{0}'$ as the degree of K.

- (i) **Theorem**. For any degree **a** and **b**, the following statements are valid.
 - i. a < a'.
 - ii. If $\mathbf{a} < \mathbf{b}$ then $\mathbf{a}' < \mathbf{b}'$
 - iii. If $B \in \mathbf{b}$, $A \in \mathbf{a}$ and B is A-r.e. then $\mathbf{b} \leq \mathbf{a}'$.
- (j) **Theorem**. Any degrees **a**, **b** have a unique least upper bound.
- (k) **Theorem**. Any non-recursive r.e. degree contains a simple set.
- (1) **Theorem**. There are r.e. sets A, B s.t. $A \not\leq_T B$ and $B \not\leq_T A$. Hence, if \mathbf{a} , \mathbf{b} are $d_T(A)$, $d_T(B)$ respectively, $\mathbf{a} \not\leq \mathbf{b}$ and $\mathbf{b} \not\leq \mathbf{a}$, and thus $\mathbf{0} < \mathbf{a} < \mathbf{0}'$ and $\mathbf{0} < \mathbf{b} < \mathbf{0}'$.
- (m) **Theorem**. For any r.e. degree a > 0, there is an r.e. degree b such that $b \mid a$.
- (n) Sack's Density Theorem. For any r.e. degrees a < b, \exists r.e. degree c with a < c < b.
- (o) Sack's Splitting Theorem. For any r.e. degrees a > 0 there are r.e. degrees b, c such that b < a c < a and $a = b \cup c$ (hence $b \mid c$).
- (p) Lachlan, Yates Theorem.
 - i. \exists r.e. degrees a, b > 0 such that 0 is the greatest lower bound of a and b.
 - ii. \exists r.e. degrees \mathbf{a} , \mathbf{b} having no greatest lower bound (either among all degrees or among r.e. degrees).
- (q) Shoenfield Theorem. There is a non-r.e. degree a < 0'.
- (r) **Spector Theorem**. There is a minimal degree. (A minimal degree is a degree m > 0 such that there is no degree a with 0 < a < m).
- (s) Corollary. For any r.e. m-degree $\mathbf{a} >_m \mathbf{0_m}$, \exists an r.e. m-degree \mathbf{b} s.t. $\mathbf{b} \mid \mathbf{a}$.

Key Terms:

Many-one Reducibility, Many-one Equivalent, m-degrees, m-complete, Relative Computability, UR-MO, χ -computable, Turing Reducibility, Turing Degrees.

- 1. Slide10-Reducibility; Slide11-NPReduction
- 2. Textbook page 157-181;
- 3. Lab10, Lab11

Chapter 10-11. Effective Operators and Recursion Theorems

- 1. **Function Operator**: An operator $\Phi: \mathscr{F}_m \to \mathscr{F}_n$ is a total function.
 - (a) Effectiveness: the conversion can be effectively calculated in a finite time using a finite part of the input function f.
 - (b) Check finite subfunction $\theta \subseteq f$. (A function θ is finite if its domain of definition is finite)
- 2. Continuity and Monotonicity: Let $\Phi: \mathscr{F}_m \to \mathscr{F}_n$ be an operator.
 - (a) Φ is continuous if for any $f \in \mathscr{F}_m$ and all $\mathbf{x}, y, \Phi(f)(\mathbf{x}) \simeq y$ iff $\exists \theta \subseteq f.\Phi(\theta)(\mathbf{x}) \simeq y$.
 - (b) Φ is monotone if $\Phi(f) \subseteq \Phi(g)$ whenever $f \subseteq g \in \mathscr{F}_m$.
- 3. **Lemma.** If Φ is continuous, then it is monotone.
- 4. **Definition.** $\Phi: \mathscr{F}_m \to \mathscr{F}_n$ is a recursive operator if there is a computable function $\phi(z, \mathbf{x})$ such that for all $f \in \mathscr{F}_m$ and $\mathbf{x} \in \mathbb{N}^n$, $y \in \mathbb{N}$, $\Phi(f)(\mathbf{x}) \simeq y$ iff $\exists \theta \subseteq f. \phi(\theta, \mathbf{x}) \simeq y$.
- 5. **Theorem.** All recursive operators are continuous.
- 6. **Theorem.** Let $\Phi: \mathscr{F}_m \to \mathscr{F}_n$ be an operator. Then Φ is a recursive operator iff

 - (a) Φ is continuous; (b) Function $\varphi(z, \mathbf{x}) = \begin{cases} \Phi(\theta)(\mathbf{x}), & \text{if } z = \widetilde{\theta} \text{ for some } \theta \in \mathscr{F}_m, \\ \uparrow, & \text{otherwise.} \end{cases}$ is computable.
- 7. Corollary. Suppose $\Phi: \mathscr{F}_m \to \mathscr{F}_n$ is a recursive operator with the computable function ϕ . Then $\Phi(\theta)(\mathbf{x}) \simeq y$ iff $\phi(\theta, \mathbf{x}) \simeq y$.
- 8. Extensional. A total $h \in \mathcal{C}_1$ is extensional if, for all $a, b, \phi_{h(a)} = \phi_{h(b)}$ whenever $\phi_a = \phi_b$.
- 9. Theorem (Myhill-Shepherdson, Part I). Suppose that $\Psi: \mathscr{F}_m \to \mathscr{F}_n$ is a recursive operator. Then there is a total extensional computable function h such that $\Psi(\phi_e^{(m)}) = \phi_{h(e)}^{(n)}$.
- 10. Theorem (Myhill-Shepherdson, Part II). Suppose that h is a total extensional computable function. Then there is a unique recursive operator Ψ such that $\Psi(\phi_e^{(m)}) = \phi_{h(e)}^{(n)}$.
- 11. The First Recursion Theorem. Suppose that $\Phi: \mathscr{F}_m \to \mathscr{F}_m$ is a recursive operator. Then there is a computable function f_{Φ} that is the least fix point of Φ , i.e.
 - $\bullet \ \Phi(f_{\Phi}) = f_{\Phi};$
 - if $\Phi(g) = g$, then $f_{\Phi} \subseteq g$.
- 12. The Second Recursion Theorem. Let f be a total unary computable function. Then there is a number n such that $\phi_{f(n)} = \phi_n$.
 - (a) Corollary. If f is a total computable function, then there is a number n such that $W_{f(n)} = W_n$ and $E_{f(n)} = E_n$.
 - (b) Corollary. If f is a total computable function, then there are arbitrarily large numbers n such that $\phi_{f(n)} = \phi_n$.
 - (c) Corollary. Let f(x,y) be a computable function, then there is an index e such that $\phi_e(y) \simeq f(e,y)$.
 - (d) Corollary. There is a program P such that for all $x, P(x) \downarrow \gamma(P)$.
- 13. **Theorem.** K is not recursive.
- 14. Rice Theorem. Suppose $\emptyset \subsetneq \mathscr{A} \subsetneq \mathscr{C}_1$ and $A = \{x \mid \phi_x \in \mathscr{A}\}$. Then A is not recursive.
- 15. Generalize Second Recursive Theorem. If f(x,z) is a total computable function. there is a total computable function n(z) such that for all z, $\phi_{f(n(z),z)} = \phi_{n(z)}$. (diagonal argument)

Key Terms:

Operator, Finite Operator, Continuous Operator, Second Order Computable Function, Myhill-Shepherdson Theorem, The First/Second Recursion Theorem; Generalization of Diagonal Argument

- 1. Slide-13
- 2. Textbook page 182-199 (except sec 4)

NP, NP-Complete and NP Reduction

- 1. **Decision Problem**: The "Yes" or "No" questions for any input instance.
 - (a) For maximization problem: add a threshold k and determine whether there exists a solution with size/weight/measure $\geq k$.
 - (b) For minimization problem: add a threshold k and determine whether there exists a solution with size/weight/measure $\leq k$.
- 2. Polynomial Time Algorithm: Algorithm A runs in poly-time if for every string s, A(s) terminates in at most p(|s|) "steps", where p(.) is some polynomial.
- 3. P Problem: Decision problems for which there is a poly-time algorithm.
- 4. **NP** Problem: Decision problems for which there exists a poly-time certifier.
 - (a) Certifier: a polynomial time algorithm to check whether a given string is a solution.
 - (b) Certificate: a solution for a given instance.
- 5. NP-Completeness: a set of the hardest NP problems.
 - (a) P is NP-Complete if i) $P \in \mathbf{NP}$; and ii) $\forall Q \in \mathbf{NP}, Q \leq_m^p P$.
 - (b) P is **NP**-Hard if $\forall Q \in \mathbf{NP}, Q \leq_m^p P$.
- 6. Polynomial Time Reduction:
 - (a) Cook Reduction: Problem X polynomial reduces (Cook) to problem Y if arbitrary instances of problem X can be solved using polynomial number of standard computational steps, plus polynomial number of calls to oracle that solves problem Y.
 - (b) Karp Reduction: Problem X polynomial transforms (Karp) to problem Y if given any input $x \in X$, we can construct an input y such that x is a yes instance of X iff y is a yes instance of Y. Here we require |y| to be of size polynomial in |x|. (Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at the end of the algorithm for X.)

Key Terms:

Polynomial-time Reduction, P, NP, NP-Complete, NP-Hard, Certificate, Certifier, Decision Problem

- 1. Slide11-NPReduction
- 2. Lab-11