The Expressive Power of Graph Neural Networks (PART 2)

1/30/2025

Arun Cheriakara Joseph, Faculty Of Math

What Is the Problem?

- Core Issue: GNNs rely on local message passing
- Often can't capture:
 - They can fail to distinguish **nodes or subgraphs** that look similar in small neighborhoods (like counting cycles, differentiating long-range distances, or separating certain regular graphs).

Why Is It Important?

- Many real-world tasks (link prediction, graph classification, node role labeling) require long-range structural insight.
- If GNNs can't handle distances, they may fail in domains like **social networks**, **chemistry**, or **knowledge graphs**.

Why Don't Previous Methods Work?

Standard MP-GNN:

 Essentially a 1-WL (Weisfeiler–Lehman) isomorphism test → limited in distinguishing certain symmetric graphs.

Local Aggregation Only:

• **Shallow** GNN layers fail if structural differences appear **beyond** a few hops.

No Positional/Distance info:

GNNs without explicit distance or identity labels can't break symmetrical patterns.

What Is the Proposed Solution?

- Randomized Matrix Factorization (Srinivasan & Ribeiro 2020, Dwivedi et al. 2020)
- Deterministic Distance Attributes (Li et al. 2020e)
- **ID-GNN** (You et al. 2021)

RANDOMIZED MATRIX FACTORIZATION

Goal: Understand how randomized node embeddings preserve permutation invariance & help GNNs

SRINIVASAN & RIBEIRO (2020) AND DWIVEDI ET AL. (2020)

GNNs & Permutation Invariance

- GNNs encode graph structure in permutation-invariant ways
- Relabeling nodes shouldn't change the output
- Traditional GNNs often lack explicit positional or structural node info

Matrix Factorization Basics

- Adjacency matrix A or Laplacian L
- Singular value decomposition (SVD): $A = U\Sigma U^T$
- Eigen-decomposition $L = U\Lambda U^T$
- Each row of $U \rightarrow$ Node embedding

Undirected graph Incidence matrix						Laplacian matrix					
e1 e2	1	1	1	1	0 \	1	3	-1	-1	-1	١
e3 3		-1	0	0	0	1	-1	1	0	0	l
/e4		0	-1	0	1	П	-1	0	2	-1	
4	\	0	0	-1	-1	\	-1	0	-1	$_2$	/

Non-Uniqueness & Random Perturbations

- Non-uniqueness: SVD/eigen decompositions can differ by sign flips, column order, etc.
- Random sign flips or noise → unify different valid decompositions
- Preserves permutation invariance in expectation

Srinivasan & Ribeiro (2020) - Approach

- Proposed concept: random factorization → node embeddings
- Didn't do explicit SVD in practice
- Used random Gaussian matrices + graph propagation
- e.g., for the two hops: $Z_G = \psi(\hat{A}\psi(\hat{A}Z_{G1}) + Z_{G2})$,
- where:
 - Z_{G1} , Z_{G2} = Gaussian random matrices
 - ψ = MLP
 - \hat{A} = adjacency matrix
 - Rows of Z_G = final node embeddings

Dwivedi et al. (2020) Approach

- Explicit eigen-decomposition of the normalized Laplacian
- $L = I D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$, then $L = U\Lambda U^{T}$
- where:
 - \hat{A} = adjacency matrix
 - D = diagonal degree matrix
 - Λ is a diagonal matrix of eigenvalues
 - U = corresponding eigenvectors
- $Z_{LE} = U \Gamma^T$ with random ± 1 sign flips

Permutation Invariance in Expectation

- Key claim: Random sign flips preserve permutation invariance
- If the graph is relabeled ⇒ factorization permutes the same way
- Lemma 5.3 & Theorem 5.8
 - Random sign flips preserve **permutation invariance** in expectation
 - If **eigenvalues** of L are distinct
 - Ensures consistency under **node relabeling**

Takeaways

- Factorizing A or $L \rightarrow$ "positional" node embeddings
- **Random perturbations** = crucial to preserve invariance & inductive power
- Empirical **trade-offs**: not always top performance vs. alternatives like distance encoding

Injecting Deterministic Distance Attributes

- **Problem**: MP-GNNs struggle to measure **long-range distances**, **count cycles**, etc.
- Solution: Inject deterministic distance features into nodes/edges
- **Result**: Boost the **expressive power** of MP-GNN

Designing Deterministic Distance Attributes

- **Task-Specific** Distance Info
 - Node classification (|S| = 1): distance from node to itself
 - Link prediction (|S| = 2): distance between two end nodes
 - Graph-level (S = V(G)) distances among all node pairs

Applications

- **SEAL** (Zhang & Chen, 2018b):
 - Extract enclosing subgraph
 - Annotate each node w/ shortest-path distance to end-nodes
- Chen et al. (2019a), Maziarka et al. (2020a):
 - Use Shortest Path Distance (SPDs) as edge attributes
- You et al. (2021):
 - Mark target node as 1, others as 0 in node classification

Comparing Deterministic vs. Random Attributes

- **Deterministic** Pros:
 - Less **noise**, faster convergence
 - Often better generalization in practice
- **Deterministic** Cons:
 - May lack universal approximation
 - Must be **recomputed** for each query S
- Random (from earlier) can be universal in a probabilistic sense

DISTANCE ENCODING

Goal: **Attach extra node attributes** to a GNN which captures distance between nodes

LI ET AL., 2020E

Overview of Distance Encoding

- Motivation: Enhance MP-GNN with explicit distance information
- **Key Idea**: Define $\zeta(u|S)$ = "distance encoding" for node u w.r.t. subset S
- Goal: Make GNN more expressive (e.g., differentiate structurally similar nodes)

Definition of Distance Encoding

• Equation **5.14**:

$$\zeta(u \mid S) = \sum_{v \in S} MLP(\zeta(u \mid v))$$

- $\zeta(\mathbf{u}|\mathbf{v})$ = pairwise distance descriptor from node u to v
- **Interpretation**: Summation of MLP outputs, one per v∈S

Defining $\zeta(u|v)$

- ζ(u|v) (pairwise distance descriptor between u and v) can be computed in multiple ways:
 - Shortest-path distance (SPD)
 - Random-walk or PageRank distances
 - **Heat-kernel** or other spectral distances
- **Example**: $\ell_{uv} = (1, (W)_{uv}^2, (W)_{uv}^3, ...), Where W = AD^{-1}$
 - Then $g(\ell_{uv})$ picks out a distance measure
 - $\zeta(\mathbf{u}|\mathbf{v}) = \mathbf{g}(\ell_{uv})$

DE-GNN: Using Distance Encoding as Node Attributes

• Concatenate $\zeta(v \mid S)$ with node features:

$$\tilde{X}_{v} = X_{v} \oplus \zeta(v \mid S)$$

- **Feed** $\{\tilde{X}_v\}$ into an MP-GNN
- Result: A model called **DE-GNN**

Expressive Power: Lemma 5.4 & Theorem 5.9

- Lemma 5.4: Permutation-invariance still holds for isomorphic graphs
- **Theorem 5.9**: DE-GNN can distinguish certain **regular graphs** that MP-GNN cannot
- Implication: Stronger than standard MP-GNN on tricky graphs

Node Classification

• S1 vs. S2 in the figure—MP-GNN might confuse them, but DE-GNN can tell them apart.

Link Prediction

• Without node identities, these pairs look **isomorphic**

Link prediction

+ distance encoding (use shortest path distance as an example)

 $\zeta(Seal | \{Orca, Pelagic Fish\}) = \{1,1\}$ $\zeta(Seal | \{Lynx, Pelagic Fish\}) = \{1, \infty\}$

Caveats & Limitations

- Not universally expressive (some distance-regular graphs remain indistinguishable)
- Additional computational cost for distance metrics

IDENTITY-AWARE GNN

Goal: Simplify distance encoding for **single-node** tasks

(YOU ET AL, 2021

Intro to Identity-aware GNN (ID-GNN)

- Motivation: Simplify distance encoding for single-node tasks
- **Key Idea**: Attach a **binary attribute** $\zeta ID(u \mid \{v\})$

$$\zeta ID(u \mid \{v\}) = \begin{cases} 1 \text{ if } u = v \\ 0 \text{ otherwise} \end{cases}$$

• **Focus**: Node classification (where |S|=1)

ID-GNN vs. DE-GNN for Node Classification

- When |S|=1, ID-GNN matches DE-GNN's power
- The 1 bit acts like distance = ∞
- Same representation power, sometimes more layers needed

Theorem 5.10 - Layer Complexity

- **Statement**: "If DE-GNN distinguishes two examples in L layers, ID-GNN does so in **at most** 2L layers."
- **Reason**: 1st L layers to spread identity info, 2nd L layers to gather it back
- Implication: ID-GNN is less layer-efficient, but equally strong in principle

ID-GNN vs DE-GNN

- Each graph has a pair of target nodes (like {a,b} or {c,d}).
- **ID-GNN**: not designed for multi-node identity → struggles or needs extra passes
- DE-GNN: can label each node's distance to both targets at once → easier distinction

Wrap-Up on ID-GNN

- Power: Matches DE-GNN for single-node tasks
- Limitations:
 - Potentially 2× deeper GNN needed
 - Doesn't natively handle |S|≥2
- **Practical**: Simpler than distance calculations, less overhead for single-target tasks

What Interesting Research Questions Remain?

Explored

- Random Factorization: Adds global "positional" info, might need sign flips
- **Deterministic Distances**: Often strong in practice, e.g. SEAL, DE-GNN
- **ID-GNN**: Handy for single-node tasks, needs more layers or separate runs for |S|≥2

• Future Research:

- Efficiency of distance computations or large matrix factorizations
- **Hybrid** embeddings: Combine random & deterministic?

WATER LOO

Thank You!