Napomena: ovaj završni ispit održan je u vrijeme koronavirusa, tako da je sadržavao gradivo oba ciklusa.

Paralelno programiranje – završni ispit 2019/20

1. (1) Ukupan broj poruka koje se razmijene (pošalju) u provedbi komunikacijske strukture binarnog stabla za 2 ^D procesora iznosi	
(1) Kompozicija modula u paralelnim programima može biti	
(1) Ako je učinkovitost 25%, a ubrzanje je 4, koliki je broj procesora?	
(1) Izoučinkovitost opisuje kako se mora promijeniti u ovisnosti o količini posla (računanja) kako bi ostala nepromijenjena.	
(1) Pridruživanje se provodi ukoliko je broj veći od broja	
(1) Na APRAM računalu, unutar istog asinkronog odsječka, samo procesor smije pristupiti memorijskoj lokaciji.	
(1) Koje dodatne parametre uvodi model APRAM u odnosu na model PRAM?	
(1) T/N : Trajanje izvođenja paralelnog programa ovisi o promatranom procesoru iz skupa svih proceso koji izvode paralelni program.	
(1) T/N : Kako bi ubrzanje bilo veće od 1, trajanje komunikacije i čekanja mora biti kraće od trajanja računanja na pojedinom procesoru.	
(1) T/N : Ukupno trajanje računanja (T_R) paralelnog programa može ovisiti o raspodijeli zadataka po procesorima.	
2. (6) Neki tekst je zapisan u obliku niza znakova T[] duljine n. Napišite algoritam za CRCW PRAM računalo uz najviše n procesora koji će ispisati duljinu najdulje rečenice u tekstu (po ukupnom broju znakova, uključujući i razmak). Svaka rečenica na kraju ima točku (".").	
3. (4) Uporabom MPI funkcija Send i Recv (skraćena sintaksa), navedite primjer MPI programa koji se ponaša nedeterministički i pokažite moguće primjere izvođenja (skicirajte razmjenu poruka).	
4. (6) Paralelno računalo plaća se 1 kunu po satu po procesoru. Na raspolaganju nam je paralelni program čije se trajanje izvođenja može izraziti kao $T_p = 50 + 250P$ (u satima). Čekanje na rezultate programa uzrokuje trošak koji se može opisati izrazom $TR = 12T_p$ (u kunama). Koje trajanje izvođenja nam donosi minimalnu ukunnu potrošnju (cijena izvođenja + trošak) i uz koju učinkovitost?	

- 5. (4) Paralelni algoritam izvodi prescan niza uz operaciju OP, gdje svaki od P zadataka posjeduje N/P elemenata niza. Trošak izvođenja jedne operacije OP za dva elementa je t_c (sve ostale troškove računanja zanemarujemo), a parametri komunikacije za pojedine elemente su t_s i t_w. Koliko traje izvođenje algoritma ako se koristi komunikacijska struktura lanca (svaki zadatak prima jedan međurezultat od prethodnog zadatka, računa novi međurezultat i šalje ga sljedbeniku)?
- 6. (6) Napišite algoritam za EREW PRAM računalo koji će za zadani niz P[] odrediti broj različitih vrijednosti elemenata niza. Npr. za niz [1, 2, 1, 3, 4, 2, 5, 1] rezultat iznosi 5. Za niz od n elemenata na raspolaganju je n procesora. Rezultat mora biti zapisan u jednoj izlaznoj varijabli. Ocijenite složenost algoritma.
- 7. (5) Napišite primjer APRAM programa za 2 procesora. Upotrijebite sve četiri vrste instrukcija.
- 8. (6) Provedite XOR_prescan algoritam na zadanom nizu duljine n = 14 elemenata i na p = 8 procesora. Označite podjelu elemenata po procesorima i napišite izvedbu algoritma u obliku stabla. Ulazni niz je A[] = [10110010011].
- 9. Paralelni algoritam koji se izvodi na P procesora iterativno računa elemente matrice N x N. Računanje nove vrijednosti svakog elementa zahtijeva pristup svim neposrednim susjedima nekog elementa (8 susjeda u 8 smjerova!). Trošak računanja nove vrijednosti elementa je t_c , a parametri komunikacije su t_s i t_w .
- a. (6) Odredite trajanje algoritma, te učinkovitost i izoučinkovitost.
- b. (2) Odredite trajanje i ubrzanje algoritma za posebni slučaj kada je $N^2 = P$.

(Napomena profesora tijekom ispita: matrica je po procesorima podijeljena na podmatrice):

- 10. U svakom od N procesa postoje varijable VAR i P. U svakom procesu ID je indeks, a N ukupan broj procesa.
- a. (5) Korištenjem MPI funkcija Send(<podatak>, <odredište>) i Recv(<podatak>, <izvorište>) napišite odsječak programa logaritamske složenosti koji će u varijablu P na svakom procesu zapisati broj pozitivnih primjeraka varijable VAR u svim procesima.
- b. (5) Pretpostavimo da ste riješili prvi dio zadatka. Korištenjem MPI funkcija Send(<podatak>, <odredište>) i Recv(<podatak>, <izvorište>) napišite odsječak programa logaritamske složenosti koji će vrijednost varijable VAR iz procesa O zapisati u istoimenu varijablu na svim ostalim procesima.