Instrumentação 1 Sensores Ópticos

Professor Cicero Martelli DAELN/CPGEI

Tópicos desta Aula

- INTRODUÇÃO
- POR QUE SENSORES ÓPTICOS?
- PRINCÍPIOS DOS SENSORES ÓPTICOS
- CLASSIFICAÇÃO E COMPARAÇÃO
- ALGUMAS APLICAÇÕES INTERESSANTES

Introdução

Introdução

Um sistema de sensoriamento óptico é um sistema que <u>converte</u> os raios de luz em um sinal eletrônico.

O **Sensor Óptico** ou fotoelétrico tem como principio de funcionamento o uso da propagação da luz. Este tipo de sensor é utilizado comumente para indexação de objetos ou para medições de distância em que um objeto se encontra em relação ao sensor.

Exemplo: Sensores ópticos podem ser usados para detecção, contagem ou posicionamento de peças sem contato.

Sensor de feixe contínuo ou barreira

Figura 1 – Exemplo de funcionamento dos Sensores Ópticos de barreira com luz vermelha.

Sensor óptico difuso

Figura 2 – Exemplo de funcionamento do sensor óptico difuso de luz vermelha

Por que sensores ópticos?

Vantagens

- Imunidade eletromagnética (isolamento elétrico)
- Compacto e leve
- 2 configurações possíveis: sensor pontual ou distribuído
- Ampla faixa dinâmica
- Aceitável à multiplexação (fibras ópticas)
- Aplicação recente:
 - Inspeção de microchips (componentes são menores do que aquele que o microscópio eletrônico pode "ver"). Ordem de microchips processadores com tamanho de de 5nm ou 4 nm.

O que é luz?

Onda eletromagnética…

- Onda autossustentada
- Campo elétrico e magnético acoplados/ 90°
- Oscilação em fase dos campos E e M.
- Frequência depende da fonte
- Comprimento de onda do meio em que se propaga

Ordem de grandeza - Wavelenghts

Parâmetros de medição dos Sensores Ópticos

Parâmetros de medição dos Sensores Ópticos

Os sensores podem ser baseados em:

- INTENSITY BASED SENSORS E_P (t)
- FREQUENCY VARYING SENSORS ω_P(t)
- PHASE MODULATING SENSING- θ(t)
- POLARIZATION MODULATING FIBER SENSING
- Alterações do feixe de luz detectado.
 - O parâmetro/ fenômeno que está sendo medido é alterado e altera o feixe luminoso que nele se propaga.
 (alterações no meio – volume/ densidade do meio propagante)
- A luz pode se alterar em suas cinco propriedades ópticas: intensidade, fase, polarização, comprimento de onda e distribuição espectral

Medições com sensores ópticos

Mensurandos

- TEMPERATURA
- FLUXO
- PRESSÃO
- ROTAÇÃO
- VIBRAÇÃO
- DESLOCAMENTO
- NÍVEL DE LÍQUIDO
- CAMPOS MAGNÉTICOS
- ACELERAÇÃO

- COMPOSTOS QUÍMICOS
- RADIAÇÃO
- FORÇA (CARREGAMENTO)
- VELOCIDADE
- STRAIN (DEFORMAÇÃO)
- UMIDADE
- pH
- CAMPOS ELÉTRICOS
- CAMPOS ACÚSTICOS (ONDAS SONORAS)

Intrínsecos X Extrínsecos

Os sensores ópticos podem ser do tipo intrínsecos ou extrínsecos.

Os sensores intrínsecos – fibra óptica

se utilizam da mudança de amplitude/fase do pulso luminoso, que ocorre dentro da própria fibra. Elemento sensor e meio de transmissão do sinal simultaneamente.

Isso contrasta com os <u>sensores extrínsecos</u>, nos quais a mudança está fora da fibra e a própria fibra permanece inalterada. Sendo a fibra óptica apenas o meio de transmissão do sinal.

Extrínsecos X Intrínsecos

Características

Sensores Ópticos Extrínsecos	Sensores Ópticos Intrínsecos
Eles são usados em aplicações de sensores como temperatura, pressão, nível de líquido, vazão etc.	Eles são usados em aplicações de sensores como rotação, aceleração, tensão, pressão acústica, vibração etc.
São menos sensíveis.	São mais sensíveis.
Eles são fáceis de multiplexar.	Requerem maior tecnologia para realizar multiplexação.
São propensos a problemas de conexão nos pontos de entrada e saída.	Não têm muitos problemas relacionados à conexão. ((Dependendo do tipo de conexão – fusão/ engate mecânico.)
São "fáceis" de serem usados em várias aplicações.	Precisam de demodulação de sinal mais elaborada. Processamento/ Aquisição.
Menor custo associado	Maior custo associado

Sensor Extrínseco

Diferentes Tipos de Sensores ópticos

Tipos - Extrínsecos

Diferentes Tipos de Sensores ópticos

Sensores e Áreas de Aplicação

Os Sensores e áreas de Aplicações

SENSORES QUÍMICOS

- Espectroscopia remota
- Contaminação de águas
- Subterrâneas e solos
- Detecção de gases em ambiente explosivo
- Identificação de biomarcadores em amostras (ácidos nucleicos i.e)

Typical fibre-optic chemical sensors based on (a) fibre tip and (b) evanescent field sensing. (c) Simple transmission setup, based on a chemicallyreactive fibre, proposed in this communication.

Sensores e áreas de Aplicações

SENSORES DE TEMPERATURA

- EM AMBIENTES EXPLOSIVOS
- INDUSTRIA DE ÓLEO E GÁS
- AMBIENTE DE ALTISSÍMO RANGE DE TEMPERATURA: -40°C a 1000°C
- ONDE HAJA NECESSIDADE DE ELEVADO NÚMERO DE SENSORES

Sensores e áreas de Aplicações

<u>SENSORES DE DEFORMAÇÃO (STRAIN) – TENSÃO OU</u> <u>COMPRESSÃO</u>

- FBG'S (é um dos tipos: Sensores do tipo quase-distribuído : intermediario entre sensores pontual e distribuído)
- Onde haja requisito de altíssima sensibilidade com peso reduzido
- Ambiente explosivo (fibras ópticas)
- Ambiente com elevados campos eletromagnéticos
- Indústria Aeronáutica
- Monitoramento de estruturas edifícios, grandes estruturas
- Onde haja restrição de peso adicional para implementação do sistema de monitoramento.
- DAS (fibra óptica)
- Wearables Devices

Sensores e áreas de Aplicações

SENSORES DE ROTAÇÃO/ GIROSCÓPIO

- Baseados de efeito Sagnac
 - Divisão 2 feixes:
 - Fase/velocidade
 - Interferometria
- 2 TIPOS:
 - FOG fiber optic gyroscope
 - Ring Laser Gyroscope

SENSORES DE PRESSÃO

- DIAFRAGMAS MÓVEIS
- FIBRA ÓPTICA
- SENSORES DE ALTA
- PERFORMANCE: BASEADOS EM POLARIZAÇÃO

- Imagens
 - Reconhecimento de imagens
 - IR
 - Efeito fotoelástico

https://www.youtube.com/watch?v=vDZ5yISiADM

- Imagens
 - Reconhecimento de imagens
 - IR
- Efeito fotoelástico
- Cristalografia
- Sensores de presença/ alarme
- Tecnologia usada em reprodução de DVD/ CD's
- Biometria (Digital/ reconhecimento facial/ leitura de retina)
- Oximetro de pulso/dedo (medição de O2 através da absorção da luz pelo sangue emitida por sistema emissor/receptor)

Sensor de Nível

Sensor Biomédico

Fotopletismografia.

Monitor óptico de frequência cardíaca

Tank Wall

Output

Liquid Media

Sensor Tip

Infrared Light

- Fonte detector em visada
 - ON-OFF
 - Doppler
 - Absorção (Beer-Lambert)

Absorção/Absorbância Lei de Beer-Lambert)

Efeito do espalhamento/ absorbância/ perdas e luz transmitida

- Fonte detector não em visada
 - Espalhamento e tempo de vôo
 - Luminescência
 - Piroelétrico

Sensores em guia de onda

Sensores em guias de onda

O que é um guia de onda?

Cilindrico Planar

FIBRA ÓPTICA

Sensores em guias de onda

• Principalmente químicos quando não empregam fibras ópticas

Sensores em guias de onda – fibra óptica

Sensores Extrínsecos:

Fiber Optic Temperature Sensor Using Fiber Deformation

Sensores em guias de onda – fibra óptica

Sensores Intrínsecos:

Acoustic or seismic excitation strikes the fibre, causing minute strains in the fibre

Sensores em guias de onda – fibra óptica

Mais algumas aplicações

Optical Time Of Flight Sensors

- As medições de tempo de voo são frequentemente usadas para a medição de alguma distância, por exemplo. Com um telêmetro a laser, usado, por exemplo, em um avião, possivelmente na forma de um radar de varredura a laser.
- Um pulso de luz curto é enviado e calcula-se o tempo até que uma porção refletida do pulso seja detectada pelos fotodetectores.
- A distância é então calculada: como metade do tempo de ida e volta medido dividido pela velocidade da luz naquele meio.
- Em LIDAR's i.e. devido a alta velocidade, a precisão temporal é alta por exemplo, 1 ns para uma precisão espacial de 15 cm.

OTDR LIDAR DISTRIBUTED TEMPERAURE SENSING DISTRIBUTED ACOUSTIC SENSING

OTDR - Princípio

Optical Time Domain Reflectometer

Princípio de Tempo de Vôo do pulso

Fonte: Curtos pulsos de laser, por ex. com durações de pulso de algumas dezenas de nanossegundos e uma potência de pico de algumas centenas de miliwatts (com um diodo laser, por exemplo).

Reflexão: A luz refletida é "extraída" com um acoplador de fibra direcional e enviada para um fotodetector rápido e sensível. Isso permite uma medição resolvida no tempo da potência óptica refletida e, portanto, da perda de retorno.

Variáveis conhecidas: velocidade da luz, velocidade da luz na fibra óptica de índice de refração n, instante t que o pulso foi lançado e o seu instante t1 de retorno.

OTDR – Equipamento de monitoramento

- Dispositivos usados para localizar com rapidez e eficácia uma grande variedade de problemas em redes ópticas.
- Entre eles: rupturas de fibra, defeitos intermitentes, esmagamentos, problemas em conectores e outros.
- Assim, detecta "vazamentos" de luz, degradação da fibra, além de indicar o comprimento do cabo e o comprimento de onda de todos os transmissores ativos na rede.
- Pode ser usado para medir perdas totais ou em um intervalo definido, em emenda ou conector e determinar o comprimento total do lance óptico.

OTDR - Princípio

Cálculo da distância por tempo de vôo – OTDR Técnica utilizada por diversos equipamentos

Correlaciona distâncias medindo o tempo transcorrido entre o envio da luz e recepção do sinal refletido.

A distância e o tempo estão relacionadas ao índice de refração (também conhecido como índice de grupo).

Índice de Refração

Deve-se conhecer o exato

índice de refração da fibra

em teste. Ele dependerá

do material usado na

fabricação da fibra, é

informado pelo fabricante.

n = Velocidade da luz no vácuo Velocidade do pulso de luz na fibra

Distância no OTDR

Distância = Tempo medido x Velocidade da luz no vácuo

Índice de refração

Distância = Tempo medido x Velocidade da luz no vácuo

Velocidade da luz no vácuo

Velocidade do pulso de luz na fibra

Velocidade da luz no vácuo

OTDR – Princípio

Cálculo da distância por tempo de vôo – Equipamento OTDR

OTDR – Princípio

Cálculo da distância por tempo de vôo – Equipamento OTDR

Localização de evento reflexivo

OTDR – Equipamento de monitoramento

Perguntas?

