IN THE CLAIMS

1. (Currently Amended) A multi-stack optical data storage

Please amend the claims as follows:

	-, ,,,
	medium for recording using a focused radiation beam having a
	wavelength ${\boldsymbol{\cdot}}$ and entering through an entrance face of the ${\tt medium}$
	during recording, the multi-stack optical data storage medium
5	comprising:
	- a first substrate with presenthaving, on a side thereof:
	a first L $_{\underline{0}}$ guide groove formed therein, and
	- a first recording stack $\frac{1}{10000000000000000000000000000000000$
	type ${\tt L}_0$ recording layer, and formed in a first ${\tt L}_0$ guide groove, the
10	${\rm L}_{\rm 0}$ recording layer having a thickness ${\rm d}_{\rm L0G}$ in the groove and a
	thickness \mathtt{d}_{L0L} adjacent the groove, and a first reflective layer
	present between the ${\tt L}_0$ recording layer and the first substrate $\!$
	<u>a_second substrate with presenthaving</u> , on a side thereof:
	a second $L_{\underline{1}}$ quide groove formed therein, and
15	- a second recording stack ${\tt named-}L_1$ comprising a recordable
	type L_1 recording layer, the L_1 recording layer having a thickness
	$d_{\rm L1G}$ in the groove and a thickness $d_{\rm L1L}$ adjacent the groove, said
	second recording stack being present at a position closer to the
	entrance face than the ${\tt L}_0$ recording stack—and—formed—in—a—second— ${\tt L}_1$
20	guide_groove_r; and

- a transparent spacer layer sandwiched between the recording stacks, said transparent spacer layer having a thickness substantially larger than the depth of focus of the focused radiation beam.
- 25 characterized in that the depth of the first L_0 guide groove is smaller than 0.15•, the recordable type L_0 and L_1 recording layers comprise an organic dye, and that the thickness d_{L0L} of the L_0 recording layer adjacent the groove is substantially equal to or larger than the thickness d_{L1G} of the L_1 recording layer in the 30 groove.
 - 2. (Currently Amended) A—The multi-stack optical data storage medium according to as claimed in claim 1, wherein the thickness d_{L0G} of the L_0 recording layer in the groove is substantially equal to or larger than twice the thickness $2d_{L1L}$ of the L_1 recording layer adjacent the groove.

(Cancelled).

4. (Currently Amended) A—The multi-stack optical data storage medium according to claim $3\underline{1}$, wherein the thickness d_{L1G} of the $L_{\underline{1}}$ recording layer in the groove is larger than the thickness d_{L1L} of the $L_{\underline{1}}$ recording layer adjacent to the groove.

- 5. (Currently Amended) A—The multi-stack optical data storage medium according to as claimed in claim 4, wherein a dielectric layer is present at a side of the ${\rm L}_0$ recording layer opposite from the side where the first reflective layer is present.
- (Currently Amended) A—The multi-stack optical data storage medium according to as claimed in claim 5, wherein the dielectric layer has a thickness in the range of 5 nm - 120 nm.
- 7. (Currently Amended) A—The multi-stack optical data storage medium according to as claimed in claim 4, wherein a second reflective layer comprising a metal is present at a side of the ${\tt L}_0$ recording layer opposite from the side where the first reflective layer is present.
 - 8. (Currently Amended) A—The_multi-stack optical data storage medium according to as claimed in claim 7, wherein the second reflective layer has a thickness in the range of 5 nm -15 nm.
 - 9. (Currently Amended)

 A The multi-stack optical data storage medium according to as claimed in claim 7, wherein the second reflective layer mainly comprises a metal selected from the group of Ag, Au and Cu.
 - 10. (Currently Amended) Use of an The optical data storage medium as claimed in claim 1, for multi stack recording with wherein

a reflectivity level of the first recording stack $\rm L_0$ as such of is more than 50%, and a modulation of recorded marks in the $\rm L_0$ recording layer of is more than 60%.