Zahlentheorie 1

Zahlentheorie ist die Mathematik der ganzen Zahlen.

Diophantische Gleichungen

Eine Gleichung der Form ax + by = c mit $a, b, c \in \mathbb{N}$ und $x, y \in \mathbb{Z}$ heißt diophantische Gleichung.

In der Regel sind a, b, c gegeben und x, y gesucht.

Wir schreiben Lösungen als Zahlenpaar (x/y).

Teiler und Primzahlen

Definition:

- (i) Es seien $x \in \mathbb{Z}, k \in \mathbb{N}$. k heißt Teiler von x, geschrieben k|x, falls es ein $q \in \mathbb{Z}$ gibt, so dass $x = k \cdot q$.
- (ii) Seien $a, b \in \mathbb{N}$. Dann ist der größte gemeinsame Teiler von a, b definiert durch:

 $ggT(a,b) = max\{k \in \mathbb{N} : k|a \wedge k|b\}$

(iii) Eine natürliche Zahl p > 1 heißt Primzahl oder prim, wenn sie genau zwei Teiler besitzt: die 1 und sich selbst.

Hauptsatz der Zahlentheorie

Jede natürliche Zahl n > 1 lässt sich, bis auf die Reihenfolge der Faktoren, eindeutig als Produkt von Primzahlen darstellen.

Folgerung: Jeder gemeinsame Teiler von a und b ist auch Teiler von ggT(a,b).

Satz: Seien $a, b, k \in \mathbb{N}, x, y \in \mathbb{Z}$. Dann gilt:

Aus k|a und k|b folgt k|(ax + by).

Satz: Seien $a, b, c \in \mathbb{N}$, $x, y \in \mathbb{Z}$. Dann gilt:

Besitzt die Gleichung ax + by = c eine Lösung (x/y), so folgt: ggT(a,b)|c.

Satz: (Teilen mit Rest) Seien $a, b \in \mathbb{N}$.

Dann gibt es eindeutig bestimmte Zahlen $q, r \in \mathbb{N}_0$ mit: $a = q \cdot b + r$ und $0 \le r \le b - 1$

Satz: Seien $a,b\in\mathbb{N},q,r\in\mathbb{N}_0$ und $a=q\cdot b+r$. Dann gilt:

ggT(a, b) = ggT(b, r)

Satz: (Erweiterter Euklidscher Algorithmus)

 $\forall a, b \in \mathbb{N} \,\exists x, y \in \mathbb{Z} : ax + by = \operatorname{ggT}(a, b)$

Satz: (Lösungen diophantischer Gleichungen)

Gegeben sei die diophantische Gleichung ax + by = c mit ggT(a, b)|c. Dann gilt:

- (i) Es gibt mindestens eine Lösung (x_0, y_0)
- (ii) Ist (x_0, y_0) eine Lösung, dann sind auch alle Zahlenpaare $(x_0 + kb/y_0 ka)$ mit $k \in \mathbb{Z}$ Lösungen.
- (iii) Gilt ${\rm ggT}(a,b)=1,$ dann sind durch (ii) alle Lösungen gegeben.

Kongruenz

Definition: Seien $a, b \in \mathbb{Z}, m \in \mathbb{N}$.

Dann heißt a kongruent zu b modulo m, falls a - b durch m teilbar ist.

Wir schreiben dann: $a \equiv b \mod m$.

Satz: Folgende Aussagen sind äquivalent:

- (1) $a \equiv b \mod m$.
- (2) $\exists k \in \mathbb{Z} : a = b + k \cdot m$
- (3) Beim Teilen mit Rest a durch m, b durch m bleibt derselbe Rest.

Satz: Die Relation kongruent modulo m ist eine Äquivalenzrelation auf \mathbb{Z} .

- (1) $a \equiv a \mod m$ (Reflexivität)
- (2) $a \equiv b \mod m \Rightarrow b \equiv a \mod m$ (Symmetrie)
- (3) $a \equiv b \mod m \text{ und } b \equiv c \mod m \Rightarrow a \equiv c \mod m$ (Transitivität)

Satz: (Rechenregeln für Kongruenzen)

Wenn $a \equiv b \mod m$ und $c \equiv d \mod m$, dann gilt:

- $(1) -a \equiv -b \mod m$
- (2) $a + c \equiv b + d \mod m$
- (3) $a \cdot c \equiv b \cdot d \mod m$
- (4) $a^2 \equiv b^2 \mod m$, $a^3 \equiv b^3 \mod m$, etc.

Zahlentheorie

Restklassen

Definition: Die Restklasse \overline{a} von a modulo m ist definiert durch:

 $\overline{a} := \{ b \in \mathbb{Z} : b \equiv a \mod m \}$

Andere Schreibweise für die Restklasse \overline{a} : [a]

Rechnen im Restklassenring

Definition: Seien $a, b \in \mathbb{Z}$.

$$\overline{a} + \overline{b} := \overline{a + b}$$
$$\overline{a} \cdot \overline{b} := \overline{a \cdot b}$$

Satz: (Satz vom Dividieren)

Ist p eine Primzahl und sind $a \in \mathbb{Z}, b \in \{1, ..., p-1\}$, so besitzt die Gleichung

 $\overline{b} \cdot \overline{x} = \overline{a}$ in \mathbb{Z}_p genau eine Lösung \overline{x} , d.h. $\frac{\overline{a}}{\overline{b}}$ ist definiert.

Merkregel:

Wenn wir $\frac{1}{a}$ in \mathbb{Z}_m suchen, dann lösen wir die diophantische Gleichung ax + my = 1.

Es gilt dann:
$$\frac{\overline{1}}{\overline{a}} = \overline{x}$$

Der kleine Satz von Fermat:

Sei p Primzahl, $a\in\mathbb{N}$ kein Vielfaches von p. Dann gilt:

$$a^{p-1} \equiv 1 \mod p$$

Primitivwurzel

Definition: Ein Element $\overline{g} \in \mathbb{Z}_m$ heißt *Primitivwurzel*, falls durch \overline{g}^k alle Elemente von \mathbb{Z}_m außer $\overline{0}$ dargestellt werden können.

Diffie-Hellman Schlüsselaustausch

Alice und Bob vereinbaren Primzahl p und $g \in \{1, ..., p-1\}$ (am besten eine Primitivwurzel).

Alice wählt geheim eine Zahl a aus, Bob geheim eine Zahl b mit $a, b \in \{1, ..., p-1\}$.

Alice berechnet $A = g^a \mod p$, Bob berechnet $B = g^b \mod p$.

Dann tauschen Sie A und B aus. Öffentlich bekannt sind also p, g, A, B.

Beide können nun den gemeinsamen Schlüssel K berechnen:

Alice rechnet $K = B^a \mod p$, Bob rechnet $K = A^b \mod p$

RSA-Verfahren

Alice wählt zwei Primzahlen p, q und berechnet $m = p \cdot q$ und $\tilde{m} = (p-1)(q-1)$.

Alice wählt Verschlüsselungsexponent e mit $1 < e < \tilde{m}$ und $ggT(e, \tilde{m}) = 1$.

Alice berechnet den Entschlüsselungsexponent d mit: $e \cdot d \equiv 1 \mod \tilde{m}$

(m,e) ist der öffentliche Schlüssel, (m,d) der private Schlüssel von Alice.

Bob verschlüsselt die Nachricht n, (0 < n < m): $N = n^e \mod m$

Alice entschlüsselt die Nachricht: $n = N^d \mod m$