6/6/2016 report4.html

Created with

Company Name Project Title
Group/Team Name Subtitle
Designer Job Number

Date 06 /06 /2016 Method Limit State Design (No Earthquake Load)

Design Conclusion

Finplate Pass

Finplate

Connection Properties

Connection

Connection Title Single Finplate
Connection Type Shear Connection

Connection Category

Connectivity Column flange-Beam web

Beam Connection Bolted
Column Connection Welded

Loading (Factored Load)

Shear Force (kN) 200

Components

Column Section ISSC 200

Material Fe 410

Beam Section ISMB 400

Material Fe 410

Hole STD

Plate Section 300X80X14

Thickness (mm) 14
Width (mm) 80
Depth (mm) 300
Hole STD

Weld

Type Double Fillet

Size (mm) 12

Bolts

Type **HSFG** Grade 8.8 Diameter (mm) 12 7 **Bolt Numbers** 1 Columns (Vertical Lines) Bolts Per Column 7 0 Gauge (mm) Pitch (mm) 40 End Distance (mm) 30 Edge Distance (mm) 30

6/6/2016 report4.html

Assembly

Column-Beam Clearance (mm) 20

Created with

Company Name Project Title
Group/Team Name Subtitle
Designer Job Number

Date 06 /06 /2016 Method Limit State Design (No Earthquake Load)

Design Check			
Check	Required	Provided	Remark
Bolt shear capacity (kN)		$V_{\text{dsb}} = (800*0.6126*12*12)/(\sqrt{3}*1.25*1000) = 31.223$ [cl. 10.3.3]	
Bolt bearing capacity (kN)		$V_{\text{dpb}} =$ (2.5*0.519*12*8.9*410)/(1.25*1000) = 45.452 [cl. 10.3.4]	
Bolt capacity (kN)		Min (31.223, 45.452) = 31.223	
No. of bolts	200/31.223 = 6.4	7	Pass
No.of column(s)	≤2	1	
No. of bolts per column		7	
Bolt pitch (mm)	$\geq 2.5* 12 = 30, \leq Min(32*8.9, 300) =$ 285 [cl. 10.2.2]	40	Pass
Bolt gauge (mm)	$\geq 2.5*12 = 30, \leq Min(32*8.9, 300) =$ 285 [cl. 10.2.2]	0	
End distance (mm)	$\geq 1.7*13 = 22.1, \leq 12*8.9 = 106.8$ [cl. 10.2.4]	30	Pass
Edge distance (mm)	$\geq 1.7*13 = 22.1, \leq 12*8.9 = 106.8$ [cl. 10.2.4]	30	Pass
Block shear capacity (kN)	$^{\prime}\geq200$	$V_{\rm db} = 538$	Pass
Plate thickness (mm)	(5*200*1000)/(300*250) = 13.33 [Owens and Cheal, 1989] $\geq 0.6*400=240.0, \leq 400-16-14-$	14	Pass
Plate height (mm)	10=330.0 [cl. 10.2.4, Insdag Detailing Manual, 2002]	300	Pass
Plate width (mm)		100	
Plate moment capacity (kNm)	$(2*31.223*40^2)/(40*1000) = 14.987$	$M_{\rm d} = (1.2*250*Z)/(1000*1.1) = 57.27$ [cl. 8.2.1.2]	Pass
Effective weld length (mm)		300-2*12 = 276	

6/6/2016 report4.html

Weld strength $\sqrt{[(14987*6)/(2*276^2)]^2} + f_v = (0.7*12*410)/(\sqrt{3}*1.25)$

(kN/mm) $[200/(2*276)]^2 = 1.591$ = 0.693 [cl. 10.5.7]

 $Max((0.693*1000*\sqrt{3}*1.25)/(0.7*$

Weld thickness 410,14*0.8 = 11.2

(mm) [cl. 10.5.7, Insdag Detailing Manual, Pass

2002]

Created with

Pass

Company Name Project Title
Group/Team Name Subtitle
Designer Job Number

Date 06 /06 /2016 Method Limit State Design (No Earthquake Load)

Views

Created with

Company Name Project Title
Group/Team Name Subtitle
Designer Job Number

Date 06 /06 /2016 Method Limit State Design (No Earthquake Load)

Additional Comments