Metastability for the Contact Process on \mathbb{Z} , Part 1.

O. Lynch¹

¹Department of Mathematics Universiteit Utrecht

December 5, 2020

Outline

- 1. Introduction
- 1.1 Metastability
- 1.2 Contact Process
- 2. Toolbox
- 2.1 Useful Properties of Contact Process
- 3. Theorem 1
- 3.1 Overview
- 3.2 An Excerpt from Schonman Op. 1

Informal Metastability

Informal Metastability

- ightharpoonup Markov process $X_N(t)$
- ▶ As *N* goes to ∞ , looks like figure 1.

Figure: Coarse Graining as $N \to \infty$

Formal Metastability

- 1. Exponential hitting time
 - ightharpoonup There is a "trap state", with hitting time T_N
 - Asymptotically as $N \to \infty$, T_N has an exponential distribution.

Formal Metastability

- 1. Exponential hitting time
 - ightharpoonup There is a "trap state", with hitting time T_N
 - Asymptotically as $N \to \infty$, T_N has an exponential distribution.
- 2. Quasi-stationary distribution before hitting time
 - ightharpoonup There is a "approximate invariant distribution" μ
 - Up until T_N , temporal means of $X_N(t)$ approximate μ

Contact Process, Generator Definition

- lacksquare $\xi(t)$ is a Markov process taking values in $2^{\mathbb{Z}}=\mathcal{P}(\mathbb{Z})$
- Characterized by

$$Lf(\eta) = \sum_{x} c(x, \eta) (f(\eta^{x}) - f(\eta))$$
 (1)

With rates

$$c(x,\eta) = \begin{cases} 1 & \text{if } \eta(x) = 1\\ \lambda(\eta(x-1) + \eta(x+1)) & \text{otherwise} \end{cases}$$
 (2)

▶ (show animation 1)

- ▶ (show animation 1)
- ▶ 3 processes for each site $x \in \mathbb{Z}$: P_x (rate 1), $P_{x \to x+1}$ and $P_{x \to x-1}$ (both rate λ).

- ▶ (show animation 1)
- ▶ 3 processes for each site $x \in \mathbb{Z}$: P_x (rate 1), $P_{x \to x+1}$ and $P_{x \to x-1}$ (both rate λ).
- ▶ $\xi^A(t)$ is the set of $x \in \mathbb{Z}$ such that there is a path from $y \in A$ at time 0 to x at time t, $\xi(t) = \xi^{\mathbb{Z}}(t)$

- ▶ (show animation 1)
- ▶ 3 processes for each site $x \in \mathbb{Z}$: P_x (rate 1), $P_{x \to x+1}$ and $P_{x \to x-1}$ (both rate λ).
- ▶ $\xi^A(t)$ is the set of $x \in \mathbb{Z}$ such that there is a path from $y \in A$ at time 0 to x at time t, $\xi(t) = \xi^{\mathbb{Z}}(t)$
- A path is...

- ▶ (show animation 1)
- ▶ 3 processes for each site $x \in \mathbb{Z}$: P_x (rate 1), $P_{x \to x+1}$ and $P_{x \to x-1}$ (both rate λ).
- ▶ $\xi^A(t)$ is the set of $x \in \mathbb{Z}$ such that there is a path from $y \in A$ at time 0 to x at time t, $\xi(t) = \xi^{\mathbb{Z}}(t)$
- ▶ A path is... easier to see intuitively in than write down formally

- ▶ (show animation 1)
- ▶ 3 processes for each site $x \in \mathbb{Z}$: P_x (rate 1), $P_{x \to x+1}$ and $P_{x \to x-1}$ (both rate λ).
- ▶ $\xi^A(t)$ is the set of $x \in \mathbb{Z}$ such that there is a path from $y \in A$ at time 0 to x at time t, $\xi(t) = \xi^{\mathbb{Z}}(t)$
- A path is... easier to see intuitively in than write down formally
- Percolation structure is very useful for proofs

Critical λ

Proposition

There exists λ_c such that for $\lambda < \lambda_c$, $\xi(t)$ has only one invariant measure, which is concentrated at \emptyset . For $\lambda > \lambda_c$, there is also another extremal invariant measure, which is obtained by time-averaging $\xi(t)$.

Smaller Processes

- ▶ $\xi_B^A(t)$ is the set of $x \in B$ such that there is a path from $y \in A$ at time 0 to x at time t that does not go out of B
- Special cases

 - $\xi_{[-N,\infty)}$
 - \blacktriangleright $\xi_{(-\infty,N]}$
- Last two also have invariant measure μ , for $\lambda > \lambda_c$.

Fundamental Lemma of the Percolation Structure

Lemma

▶ Suppose there is a path from $(y_1, 0)$ to (x_1, t) and a path from $(y_2, 0)$ to (x_2, t) , and $y_1 < y_2$, $x_1 > x_2$

Fundamental Lemma of the Percolation Structure

Lemma

- Suppose there is a path from $(y_1,0)$ to (x_1,t) and a path from $(y_2,0)$ to (x_2,t) , and $y_1 < y_2$, $x_1 > x_2$
- ▶ Then \exists a path from $(y_1,0)$ to (x_2,t) and a path from $(y_2,0)$ to (x_1,t) .

Fundamental Lemma of the Percolation Structure

Lemma

- Suppose there is a path from $(y_1,0)$ to (x_1,t) and a path from $(y_2,0)$ to (x_2,t) , and $y_1 < y_2$, $x_1 > x_2$
- ▶ Then \exists a path from $(y_1,0)$ to (x_2,t) and a path from $(y_2,0)$ to (x_1,t) .

Proof.

The two paths must intersect at some point (z,s). So then there are paths $(y_1,0) \rightarrow (z,s)$, $(y_2,0) \rightarrow (z,s)$, $(z,s) \rightarrow (x_1,t)$, and $(z,s) \rightarrow (x_2,t)$. Compose these paths to get our answer.

Monotone Convergence

▶ $\mathbb{P}(\xi^A(t) \cap B \neq \emptyset)$ is a nonincreasing function of t.

Monotone Convergence

- ▶ $\mathbb{P}(\xi^A(t) \cap B \neq \emptyset)$ is a nonincreasing function of t.
- ▶ Converges to $\mu_B(\eta \mid \eta \cap A \neq \emptyset)$, where μ_B is the invariant measure of ξ started in state B.

Self-duality

As long as A or B is finite, then for all t.

$$\mathbb{P}(\xi^{A}(t) \cap B \neq \emptyset) = \mathbb{P}(\xi^{B}(t) \cap A \neq \emptyset)$$
 (3)

Self-duality

As long as A or B is finite, then for all t.

$$\mathbb{P}(\xi^{A}(t) \cap B \neq \emptyset) = \mathbb{P}(\xi^{B}(t) \cap A \neq \emptyset)$$
 (3)

Specifically, for A finite

$$\mathbb{P}(\xi^{A}(t) \neq \emptyset) = \mathbb{P}(\xi(t) \cap A \neq \emptyset) \tag{4}$$

Goals

- Not feasible to give whole proof
- Instead, will give strategy and then give detailed proof of just one part

▶ Use β_N instead of $\mathbb{E} T_N$, where β_N is unique number such that

$$\mathbb{P}(T_N > \beta_N) = \mathrm{e}^{-1}$$

▶ Use β_N instead of $\mathbb{E} T_N$, where β_N is unique number such that

$$\mathbb{P}(T_N > \beta_N) = \mathrm{e}^{-1}$$

▶ Let $G_N(t) = \mathbb{P}\left[\frac{T_N}{\beta_N} > t\right]$ be CDF for T_N/β_N

▶ Use β_N instead of $\mathbb{E} T_N$, where β_N is unique number such that

$$\mathbb{P}(T_{N} > \beta_{N}) = e^{-1}$$

- ▶ Let $G_N(t) = \mathbb{P}\left[\frac{T_N}{\beta_N} > t\right]$ be CDF for T_N/β_N
- Prove that

$$\lim_{N\to\infty} |G_N(t)G_N(s) - G_N(t+s)| = 0$$

▶ Use a set $F_b \subseteq \mathcal{P}([-N, N])$ of "sufficiently dense" initial conditions

- ▶ Use a set $F_b \subseteq \mathcal{P}([-N, N])$ of "sufficiently dense" initial conditions
- If we are not in F_b , then we are most likely already dead. Therefore, the probability that we end up in F_b at time t is approximately $G_N(t)$

- ▶ Use a set $F_b \subseteq \mathcal{P}([-N, N])$ of "sufficiently dense" initial conditions
- If we are not in F_b , then we are most likely already dead. Therefore, the probability that we end up in F_b at time t is approximately $G_N(t)$
- ▶ Starting from $A \in F_b$ is "just as good" as starting from [-N, N], so if we end up in $A \in F_b$ at time t, then we have approximately $G_N(s)$ chance of still being alive at time s + t.

- ▶ Use a set $F_b \subseteq \mathcal{P}([-N, N])$ of "sufficiently dense" initial conditions
- If we are not in F_b , then we are most likely already dead. Therefore, the probability that we end up in F_b at time t is approximately $G_N(t)$
- ▶ Starting from $A \in F_b$ is "just as good" as starting from [-N, N], so if we end up in $A \in F_b$ at time t, then we have approximately $G_N(s)$ chance of still being alive at time s + t.
- ▶ Put together, these two imply that $G_N(t)G_N(s) \sim G_N(t+s)$

- ▶ Show that $\mathbb{P}[T_N = T_N^A] > 1 \varepsilon$ when $A \in F_b$, for sufficiently large N and b.
- Let

$$F_b = \{A \in \mathbb{Z} \mid \frac{|A \cap [-b, -1]|}{b} \ge \frac{\rho}{2}, \frac{|A \cap [1, b]|}{b} \ge \frac{\rho}{2}\}$$

Theorem 1

Let $n = n(\varepsilon)$ large enough so that

$$\mu(\eta \mid \eta \cap [1, n]) > 1 - \frac{\varepsilon}{2}$$

ightharpoonup Then choose b such that $b\rho/2 > n$, so that for $A \in F_b$,

$$|A\cap[-b,-1]|\geq b\rho/2\geq n$$

Then.

$$\begin{split} \mathbb{P}[\xi_{[-N,\infty)}^{A\cap[-b,-1]}(t) \neq \emptyset, \forall t] &\geq \mathbb{P}[\xi_{[-N,\infty)}^{[-N,-N+n]}(t) \neq \emptyset, \forall t] \\ &= \lim_{t \to \infty} \mathbb{P}[\xi_{[-N,\infty)}^{[-N,-N+n]} \neq \emptyset] \\ &= \lim_{t \to \infty} \mathbb{P}[\xi_{[-N,\infty)} \cap [-N,-N+n] \neq \emptyset] \\ &= \mu(\eta \mid \eta \cap [-N,-N+n] \neq \emptyset) \\ &> 1 - \frac{\varepsilon}{2} \end{split}$$

By symmetry,

$$\mathbb{P}[\xi_{(-\infty,N]}^{A\cap[1,b]}(t)\neq\emptyset,\forall t]>1-\frac{\varepsilon}{2}$$

- ▶ Let E be the event that $\xi_{(-\infty,N]}^{A\cap[1,b]}(t) \neq \emptyset, \forall t$ and $\xi_{[-N,\infty)}^{A\cap[-b,-1]}(t) \neq \emptyset, \forall t$. We have shown $\mathbb{P}(E) > 1 - \varepsilon$.
- ▶ It remains to show that $T_N^A = T_N$ on E.

Define two stopping times

$$U = \inf t \mid N \in \xi_{[-N,\infty)}^{A \cap [-b,-1]}(t)$$

$$V = \inf t \mid -N \in \xi_{(-\infty,N]}^{A \cap [1,b]}(t)$$

- These are almost surely finite on E.
- At time U, ξ_N^A is alive, because $\xi_N^A(U) \supset \xi_{[-N,\infty)}^{A\cap [-b,-1]}(t)$, and similarly for V, so $T_N > T_N^A > \max(U, V)$

- After U and V, there is a path from $[-b, -1] \cap A$ to N, and a path from $[1,b] \cap A$ to -N. Intuitively, one of those paths intersects any path from $x \in [-N, N]$ to $y \in \xi_N(t)$. (draw picture)
- ► Therefore, for $t > \max(U, V)$, $\xi_N(t) = \xi_N^A(t)$
- ▶ Therefore, $T_N = T_N^A$ on E, and we have shown that $\mathbb{P}(T_N = T_N^A) > 1 - \varepsilon$.