Week 9 Solutions

(1) a.
$$f \times = \frac{-y}{(x+y)^2}$$
 fy = $\frac{\infty}{(x+y)^2}$

b. $f_X = \frac{2x+y}{x^2+xy}$ fy = $\frac{x}{x^2+xy}$

c. $f_X = \frac{x}{x^2+xy}$ fy = $-\frac{x}{x^2+xy}$

(2)

(3) $f_X = \frac{x}{x^2+xy}$ fy = $-\frac{x}{x^2+xy}$ fy

(2)

$$\frac{1}{4x} \left(\frac{1}{12} \right) = 6 \cdot 2 + 12 \cdot 4 - 7 \cdot 32 = |2 + 48 - 224 = -164$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}} = \frac{-y^{2}}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}} = \frac{-y^{2}}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}} = \frac{-y^{2}}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}} = \frac{-y^{2}}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}} = \frac{-y^{2}}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}} = \frac{-y^{2}}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}} = \frac{-y^{2}}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}} = \frac{-y^{2}}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}}$$

$$\frac{1}{4x} \left(\frac{1}{12} \right) = \frac{(x - 4)^{2} - xy}{(x - 4)^{2}}$$

40-224

164

In
$$\nabla h = \langle \gamma z^{-3}, xz^{-3}, -3xyz^{-4} \rangle$$

a. $\nabla f = \langle 2x, 3y^2 \rangle, \nabla f(P) = \langle 2, 12 \rangle$
 $u = \sqrt{||y||} = \langle 4/5, 3/5 \rangle$

Duf = $\nabla f(P) \cdot u = 2 \cdot 4/5 + 12 \cdot 3/5 = 8$

b. $\nabla f = \langle 2xy^3, 3x^2y^2 \rangle, \nabla f(P) = \langle 9, 3/4 \rangle$
 $u = \sqrt{||y||} = \langle 1/\sqrt{2}, 1/\sqrt{2} \rangle$

Duf $\nabla f(P) \cdot u = \frac{1}{\sqrt{2}} (9 + 3/4) = \frac{39}{4\sqrt{2}}$

c. $\nabla g = \langle \ln(1+2), \frac{x}{4+2}, \frac{x}{4+2} \rangle$
 $\nabla g(P) = \langle \ln(2) + 1, \frac{1}{2} \rangle, \frac{1}{2} \rangle$
 $u = \sqrt{||y||} = \langle 2/\sqrt{2}, -1/\sqrt{2}, \frac{1}{2} \rangle$

Duf = $\nabla g(P) \cdot u = \frac{2}{\sqrt{6}} (\ln(2) + 1)$