Álgebra Lineal Grupo 3044, 2020-II

Reposición del examen parcial 1 (tarea examen) Fecha de entrega: viernes 12 de junio, 20:00 hrs.

"Nunca he permitido que la escuela interfiera con mi educación."

—Mark Twain, escritor estadounidense

1. Sea L^2 el conjunto de todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

$$\int_{-\infty}^{\infty} f^2(x) \ dx < \infty.$$

Demuestra que (L^2, \mathbb{R}) es un espacio vectorial. (2 ptos.)

2. Siguiendo del ejercicio anterior, define una operación $(\cdot,\cdot):L^2\times L^2\to\mathbb{R}$ como

$$(f,g) = \int_{-\infty}^{\infty} f(x)g(x) dx.$$

Demuestra que es un producto escalar en L^2 , y que a partir de él se puede definir una norma que cumple todas las propiedades necesarias. Si las funciones de L^2 tuvieran imágenes en $\mathbb C$ en vez de $\mathbb R$, ¿cómo podrías modificar la operación (\cdot,\cdot) para que siga teniendo todas las propiedades del producto escalar? (2 ptos.)

- 3. Demuestra que un conjunto de vectores L es linealmente independiente si y sólo si cualquier subconjunto finito de L es linealmente independiente. (2 ptos.)
- **4.** Sea R_{α} el conjunto de todas las matrices de $M_{n\times n}(\mathbb{C})$ con traza igual a α , donde $\alpha\in\mathbb{R}$ y $m,n\in\mathbb{N}$. ¿Cuánto debe valer α para que R_{α} sea un subespacio vectorial de $M_{n\times n}(\mathbb{C})$? Demuéstralo. (2 ptos.)
- ${f 5.}$ Sea V un espacio vectorial con producto interior. Demuestra que cualquier conjunto finito de vectores de V ortogonales entre sí es linealmente independiente. (2 ptos.)