

Dual Structured Light 3D using a 1D Sensor

Jian Wang, Aswin C. Sankaranarayanan, Mohit Gupta, and Srinivasa G. Narasimhan

Why Use a 1D Sensor for 3D Scanning?

The Digital Michelangelo Project **Structured Light 3D Imaging**

Visible Infrared Ultraviolet Wavelength Shorter Longer

Short-wave infrared (wavelength 0.9um~2.5um)

See through Smoke and Fire

Per-pixel Price Spectral **Detector** \$/pix **Technology** band $< 10^{-6}$ NIR/VIS/NUV Si 10^{-1} InGaAs **SWIR** 10^{-1} **Dynamic Vision Sensor**

Case studies:

Cost \$100K

Cost

Cost

\$100

Cost

\$100

1D SWIR Camera 2D SWIR Camera 1024×1 1024×1024

 240×180

\$5K

1D DVS Camera 1024×1

Structured Light Outside Visible Spectrum or Using Special Sensors

Proposed: Optical Dual of Traditional Structured Light System

3D location obtained by ray-plane triangulation

Replace the 2D projector by 1D projector + cylindrical lens

Switch the role of camera and projector

Proposed: Dual Structured Light (DualSL)

Traditional SL

with 2D sensor

DualSL

with 1D sensor

Conventional Structured Light

Hardware Prototype and Results

Ray Diagrams of the Optics Design

Hardware Setup

Results