Конспект билетов

Теория вероятностей

Содержание

1	Дискретное вероятностью пространство, классическая вероятность, геометрическая вероятность	4
2	Колмогоровское определение вероятностного пространства. Свойства вероятности 2.1 Колмогоровское определение вероятностного пространства	4 4 4
3	Независимость событий, условная вероятность, формула полной вероятности, формула Байеса	4
4	Схема испытаний Бернулли: два определения и их эквивалентность	4
5	Распределения в \mathbb{R} , функция распределения и её свойства. Теорема о построении вероятностной меры на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ по функции распределения 5.1 Распределения в \mathbb{R} , функция распределения и её свойства	4 4 4
6	Дискретные и абсолютно непрерывные распределения в \mathbb{R} . Плотность. Связь плотности и функции распределения. Примеры 6.1 Дискретные и абсолютно непрерывные распределения в \mathbb{R} 6.2 Плотность 6.3 Связь плотности и функции распределения 6.4 Примеры	5 5 5 5
7	Распределения в \mathbb{R}^n , функция распределения и её свойства. Теорема о построении вероятностной меры на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ по функции распределения $(6/\mathbf{д})$ 7.1 Распределения в \mathbb{R}^n , функция распределения и её свойства	5 5
8	Дискретные и абсолютно непрерывные распределения в \mathbb{R}^n . Плотность. Связь плотности и функции распределения. Примеры	5
9	Случайные величины и случайные векторы. Характеристики случайной величины (вектора): распределение вероятностей, функция распределения, плотность. Действия над случайными величинами (векторами) 9.1 Случайные величины и случайные векторы	5 5 6
10	Касательный вектор к абстрактному гладкому многообразию как оператор дифференцирования. Теорема о структуре множества $T_P(M)$ касательных векторов. Изменение координат касательного вектора при замене локальной системы координат 10.1 Касательный вектор к абстрактному гладкому многообразию как оператор дифференцирования	6 6 6
11	Край многообразия. Теорема о независимости краевой точки карты от карты 11.1 Край многообразия	6

12	Ориентация гладкого многообразия. Существование ровно двух ориентаций линейносвязного ориентируемого многообразия	7
	12.1 Ориентация гладкого многообразия	7
	12.2 Существование ровно двух ориентаций линейно-связного ориентируемого многообразия	7
13	Ориентация гладкого $(N-1)$ -мерного подмногообразия пространства \mathbb{R}^N . Теорема о	
	непрерывной нормали	7
	13.1 Ориентация гладкого $(N-1)$ -мерного подмногообразия пространства R^N	7
	13.2 Теорема о непрерывной нормали	7
14	Теорема о построении ориентирующего атласа для края многообразия на основе ори-	
	ентирующего атласа исходного многообразия. Согласование ориентации гладкого мно-	
	гообразия и ориентации его края	8
	14.1 Теорема о построении ориентирующего атласа для края многообразия на основе ориенти-	
	рующего атласа исходного многообразия	8
	14.2~ Согласование ориентации гладкого многообразия и ориентации его края	8
15	Тензорное поле на многообразии. Изменение компонент тензорного поля при замене	
	локальной системы координат. Выражение тензорного поля через его компоненты с	
	помощью операции тензорного произведения	8
	15.1 Тензорное поле на многообразии	8
	15.2 Изменение компонент тензорного поля при замене локальной системы координат	9
	15.3 Выражение тензорного поля через его компоненты с помощью операции тензорного произ-	
	ведения	9
16	Дифференциальные формы на гладком многообразии, их представление через внеш-	
	нее произведение дифференциалов координатных функций. Внешний дифференциал	
	дифференциальной формы, его независимость от локальной системы координат	9
	16.1 Дифференциальные формы на гладком многообразии, их представление через внешнее про-	
	изведение дифференциалов координатных функций	9
	16.2 Внешний дифференциал дифференциальной формы, его независимость от локальной си-	
	стемы координат	9
17	Правило Лейбница для внешнего дифференциала внешнего произведения двух диф-	
		10
18	Перенос касательных векторов. Выражение для переноса базисного вектора касатель-	
		10
	18.1 Перенос касательных векторов	10
	18.2 Выражение для переноса базисного вектора касательного пространства через частные про-	
	изводные координатных функций отображения.	10
19	Перенос дифференциальных форм при отображении многообразий. Выражение для	
	переноса базисного вектора кокасательного пространства через частные производные	10
		10
	19.1 Перенос дифференциальных форм при отображении многообразий	10
	19.2 Выражение для переноса базисного вектора кокасательного пространства через частные	10
	производные координатных функций отображения	10
20	Обратный перенос дифференциальных форм при суперпозиции отображений много-	
	образий. Коммутативность операций внешнего дифференцирования и обратного пере-	
	носа дифференциальной формы	10
	20.1 Обратный перенос дифференциальных форм при суперпозиции отображений многообразий	10
	20.2 Коммутативность операций внешнего дифференцирования и обратного переноса дифферен-	
	циальной формы.	11
21	Теорема о разбиении единицы на многообразии	11
22	Определение интеграла от дифференциальной формы и его корректность. Криволи-	
		11
		11
	22.2 Криволинейный и поверхностный интегралы второго рода	12

23	Теорема Стокса.	12
24	Условия независимости криволинейного интеграла от пути интегрирования. Связь условий точности и замкнутости дифференциальных форм 24.1 Условия независимости криволинейного интеграла от пути интегрирования	12 12
2 5	Теорема о цепном равенстве. Лемма Пуанкаре 25.1 Теорема о цепном равенстве	
26	Риманова метрика. Выражение для индуцированной римановой метрики в полярной системе координат на плоскости и сферической системе координат в трехмерном пространстве 26.1 Риманова метрика	13 13
27	Определение формы Риманова объёма и ее связь с дифференциальной формой (тензором Леви-Чивиты). Определение интеграла первого рода скалярной функции по гладкому многообразию. Поток векторного поля через двумерное ориентируемое подмногообразие пространства R^3 , выражение потока через интеграл от дифференциальной формы и интеграл первого рода 27.1 Определение формы Риманова объёма и ее связь с дифференциальной формой (тензором Леви-Чивиты) 27.2 Определение интеграла первого рода скалярной функции по гладкому многообразию	
28	Дивергенция и ротор векторного поля в области трехмерного евклидова пространства. Геометрический смысл дивергенции и ротора векторного поля. Условия существования скалярного и векторного потенциалов векторного поля в области трехмерного евклидова пространства 28.1 Дивергенция и ротор векторного поля в области трехмерного евклидова пространства 28.2 Геометрический смысл дивергенции и ротора векторного поля. 28.3 Условия существования скалярного и векторного потенциалов векторного поля в области трехмерного евклидова пространства	14 14
29	Определение производной Ли тензорного поля через его обратный перенос фазовым потоком. Выражение компонент производной Ли тензорного поля по векторному полю через компоненты этих полей. Выражение производной Ли для тензорных полей типов (0,0), (1,0) и (0,1) 29.1 Определение производной Ли тензорного поля через его обратный перенос фазовым потоком 29.2 Выражение компонент производной Ли тензорного поля по векторному полю через компоненты этих полей	15 15
30	Коммутативность производной Ли и внешнего дифференциала формы.	15
31	Правило Лейбница для внутреннего произведения векторного поля на внешнее произведение двух дифференциальных форм	16
32	Магическое тож лество Картана	16

1 Дискретное вероятностное пространство, классическая вероятность, геометрическая вероятность

Опр Элементарные события (исходы) и и х пространство

Опр Дискретное вероятностное пространство

Опр Классическая вероятностная модель

Опр Модель геометрической вероятности

2 Колмогоровское определение вероятностного пространства. Свойства вероятности

2.1 Колмогоровское определение вероятностного пространства

Опр Событие и вероятностная мера (вероятность)

2.2 Свойства вероятности

Вероятность обладает 7 свойствами; доказывать некоторые из них лучше, опираясь на рисунок \mathbf{Onp} Вероятностное пространство

3 Независимость событий, условная вероятность, формула полной вероятности, формула Байеса

Опр Независимые события

Опр Условная вероятность

Опр Разбиение

Theorem Формула полной вероятности

Theorem Формула Байеса

4 Схема испытаний Бернулли: два определения и их эквивалентность

Опр Попарно независимые события

Опр Независимые в совокупности события

Опр Схема испытаний Бернулли

5 Распределения в \mathbb{R} , функция распределения и её свойства. Теорема о построении вероятностной меры на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ по функции распределения

5.1 Распределения в \mathbb{R} , функция распределения и её свойства

Опр Борелевская сигма-алгебра $\mathcal{B}(\mathbb{R}$

Опр Распределение вероятностей

Опр Функция распределения

Свойства Функции распределения

Первое свойство тривиально. Во втором надо понимать связь пределов и параметров. С третьим я не согласен

5.2 Теорема о построении вероятностной меры на $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ по функции распределения

Theorem

- 6 Дискретные и абсолютно непрерывные распределения в \mathbb{R} . Плотность. Связь плотности и функции распределения. Примеры
- 6.1 Дискретные и абсолютно непрерывные распределения в $\mathbb R$

Опр Дискретные распределения вероятности

6.2 Плотность

Опр Абсолютно непрерывное распределение, его плотность

6.3 Связь плотности и функции распределения

Плотность и функция распределения связаны формулой Ньютона–Лейбница

6.4 Примеры

By the text

- 7 Распределения в \mathbb{R}^n , функция распределения и её свойства. Теорема о построении вероятностной меры на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ по функции распределения (6/д)
- 7.1 Распределения в \mathbb{R}^n , функция распределения и её свойства

By the text

Многомерная функция распределения обладает 3 свойствами. Первое доказывается вводом функции одной переменной (как с частными производными), а затем совместно с остальным свойствами доказывается аналогично одномерному случаю

7.2 Теорема о построении вероятностной меры на $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$ по функции распределения (6/д)

By the text

8 Дискретные и абсолютно непрерывные распределения в \mathbb{R}^n . Плотность. Связь плотности и функции распределения. Примеры

By the text

- 9 Случайные величины и случайные векторы. Характеристики случайной величины (вектора): распределение вероятностей, функция распределения, плотность. Действия над случайными величинами (векторами)
- 9.1 Случайные величины и случайные векторы

By the text

9.2 Характеристики случайной величины (вектора): распределение вероятностей, функция распределения, плотность

By the text

 y_{TB}

Для доказательства необходимости поместим борелевское множество на i место и воспользуемся сохранением бореливости. Для достаточно распишем, что такое декартово произведение и воспользуемся свойством сигма-алгебры

9.3 Действия над случайными величинами (векторами)

Theorem

Доказывается по определению случайного вектора

10 Теорема о плотности $\varphi(\xi)$. Маргинальные распределения. Вычисление маргинальной плотности

10.1 Теорема о плотности $\varphi(\xi)$

Theorem

- 1. Перейдём к интегралу плотности вероятности и разделим M на два множества
- 2. Та часть, что не пересекается с областью значений, вклад в интеграл давать не будет.
- 3. Сделаем замену переменных в соответствии с теоремой и проследим, что множество интегрирования верно

10.2 Маргинальные распределения

By the text

10.3 Вычисление маргинальной плотности

Theorem Вычисление маргинальной плотности

Расписываем плотность по определению и находим общие части с переменными, которые могут именоваться по-другому

11 Край многообразия. Теорема о независимости краевой точки карты от карты

11.1 Край многообразия

Опр Край допустимой области параметров

Край, вообще говоря, не совпадает с границей множества, потому как граничные точки могут не принадлежать множеству

Опр Краевая точка карты

11.2 Теорема о независимости краевой точки карты от карты.

- 1. Докажем от противного: пусть краевая для одной карты и нет для другой
- 2. \exists две окрестности, операции с которым показывают, что x_2 внутренняя точка множества V_2 .
- 3. Сделаем замену координат, а потом и тождественное изображение. Получим невырожденность замены координат.
- 4. Воспользуемся теоремой о неявной функции и получим окрестность точки x_1 в V_1 первой карты
- 5. Таким образом, точка x_1 не лежит на границе области, а значит, P не краевая точка карты, противоречие

Опр Край гладкого многообразия

12 Ориентация гладкого многообразия. Существование ровно двух ориентаций линейно-связного ориентируемого многообразия

12.1 Ориентация гладкого многообразия

Опр Согласованные (по ориентации) карты

Опр Ориентирующий атлас

Опр (Не)ориентируемое многообразие

Опр Согласованные атласы

Опр Ориентация многообразия

Опр Ориентированное многообразие

Опр Карты, соответствующие ориентации (согласованные с ориентацией) гладкого многообразия

12.2 Существование ровно двух ориентаций линейно-связного ориентируемого многообразия.

Theorem O двух ориентациях многообразия.

- 1. Возьмём ориентирующий атлас и сделаем из него атлас с противоположной ориентацией. Заметим, что допустимая область параметров таковой остаётся
- 2. Таким образом, существуют по крайней мере две различные ориентации многообразия это класс всех атласов, согласованных с первым или со вторым
- 3. Покажем, что третьей ориентации многообразия не существует. Фиксируем ориентирующий атлас.
- 4. Выберем $\forall P$ и проанализируем знак якобиана замены координат
- 5. Знак якобиана непрерывно зависит от точки, притом не может обращаться в ноль как якобиан диффеоморфизма
- 6. Итак, в зависимости от знака якобиана, кандидат согласован либо с первым, либо со вторым атласом

13 Ориентация гладкого (N-1)-мерного подмногообразия пространства \mathbb{R}^N . Теорема о непрерывной нормали

13.1 Ориентация гладкого (N-1)-мерного подмногообразия пространства \mathbb{R}^N

Опр Единичный вектор нормали к многообразию

Опр Согласованные единичный вектор нормали и карта

Опр Согласованный с ориентацией многообразия вектор нормали

13.2 Теорема о непрерывной нормали.

Theorem О непрерывной нормали

- 1. ⇒: покажем непрерывность функции. Зафиксируем $\forall P_0$ и покажем, что частичный предел последовательности стремящихся точек единственен.
- 2. Зафиксируем карту с P_0 и перейдём к пределу в скалярных произведениях и по модулю
- 3. Условие согласованности нормали и карты \Leftrightarrow det > 0. Перейдя к пределу, получим равенство пределов нормалей, притом функция нормали непрерывна в любой точке M
- 4. ⇐: перейдём к карте и возьмём правый базис (или изменим до правого)
- 5. Пользуемся непрерывностью и линейной связностью для получения правого базиса в каждой точке
- 6. Полученный атлас будет ориентирующим, так как все карты имеют правые тройки, поэтому они согласованы

14 Теорема о построении ориентирующего атласа для края многообразия на основе ориентирующего атласа исходного многообразия. Согласование ориентации гладкого многообразия и ориентации его края

14.1 Теорема о построении ориентирующего атласа для края многообразия на основе ориентирующего атласа исходного многообразия

Лемма 2

- 1. Зафиксируем гладкий атлас и перейдём от обычной окрестности к открытому шару или полушару
- 2. Из предыдущей леммы ⇒ ∃ диффеоморфизм между область параметров и (полу)пространством
- 3. Введём новые обозначения, получим гладкий атлас, а затем и гладкий атлас из (полу)пространства

Лемма 3

- 1. Пользуясь предыдущей леммой, получим гладкий атлас с нужной областью параметров
- 2. У всех карт, ориентации которых не совпадают с ориентацией M, поменяем вторую координату (область параметров, заметим, не изменится)

Theorem О построении ориентирующего атласа для края многообразия

- 1. Сначала получим гладкий атлас на крае, а затем покажем, что ∀ две карты атласа согласованы
- 2. От открытого образа перейдём к открытому прообразу и рассмотрим отображение замены координат. Покажем, что якобиан сужения на крае положителен (то есть атлас ориентирующий)
- 3. Зафиксируем краевую точку и посчитаем частные производные по координатам.
- 4. Перейдём к якобианам и получим, что атлас на краю действительно ориентирующий (исходный таковой по условию)

14.2 Согласование ориентации гладкого многообразия и ориентации его края

Опр Согласованная ориентация края и многообразия

Опр Перенос ориентации между многообразиями

15 Тензорное поле на многообразии. Изменение компонент тензорного поля при замене локальной системы координат. Выражение тензорного поля через его компоненты с помощью операции тензорного произведения

15.1 Тензорное поле на многообразии

Опр Тензор на пространстве

Опр Компоненты (координаты) тензора

Опр Тензорное произведение тензора

Оно не коммутативно

Опр Векторное, ковекторное поле, скалярное поле

Опр Тензорное поле

Опр Компоненты тензорного поля

15.2 Изменение компонент тензорного поля при замене локальной системы координат.

Theorem O законе изменения компонент тензорного поля npu замене ΠCK

Перейдём к другим координатам по формуле, подставим это в старый тензор, вынесем константы и получим новую формулу

15.3 Выражение тензорного поля через его компоненты с помощью операции тензорного произведения

Опр Сумма двух тензорных полей (одинакового типа)

Опр Произведение тензорного и скалярного полей

Опр Тензорное произведение тензорных полей.

Theorem

16 Дифференциальные формы на гладком многообразии, их представление через внешнее произведение дифференциалов координатных функций. Внешний дифференциал дифференциальной формы, его независимость от локальной системы координат

16.1 Дифференциальные формы на гладком многообразии, их представление через внешнее произведение дифференциалов координатных функций

Опр Внешняя форма

Опр Перестановка чисел, транспозиция

Опр Знак перестановки

Опр Перестановка набора элементов

Опр Альтернирование тензора

Опр Внешнее произведение внешних форм

Опр Дифференциальная форма

Опр Множество гладких дифференциальных форм

Опр Внешнее произведение дифференциальных форм

Опр Моном

Опр Внешний дифференциал

Из определения внешнего дифференциала и линейности дифференциала скалярного поля следует линейность внешнего дифференциала формы

16.2 Внешний дифференциал дифференциальной формы, его независимость от локальной системы координат

Theorem Об инвариантности внешнего дифференциала формы относительно ΠCK

- 1. Сначала рассмотрим скалярное поле (q=0), для которого утверждение верно из прошлых параграфов
- 2. В случае q=1 покажем, что мы доказываем и заменим компоненты тензорного поля при замене $\Pi \mathrm{CK}.$
- 3. Сведём к доказываемому, преобразуем и проверим требуемое равенство
- 4. Переобозначим индексы суммирования, воспользуемся кососимметричностью и получим требуемое
- 5. Случай q>1 рассматривается аналогично

17 Правило Лейбница для внешнего дифференциала внешнего произведения двух дифференциальных форм.

Theorem Правило Лейбница для внешнего дифференциала.

- 1. Запишем общий вид дифференциальной формы. В силу линейности достаточно рассмотреть суммы из одного слагаемого.
- 2. Используем определение внешнего дифференциала и правило Лейбница для скалярных полей
- 3. Далее используем свойство дифференциальных форм по перестановкам и получаем требуемое

18 Перенос касательных векторов. Выражение для переноса базисного вектора касательного пространства через частные производные координатных функций отображения

18.1 Перенос касательных векторов

Опр Прямой перенос

18.2 Выражение для переноса базисного вектора касательного пространства через частные производные координатных функций отображения.

Theorem Выражение для прямого переноса базисного вектора касательного пространства через частные производные координатных функций отображения.

- 1. Запишем переход к другой системе координат и преобразуем его
- 2. Последовательно используем определение прямого переноса, требованием, чтобы функция зависела от аргумента производной при дифференцировании, производной сложной функции и ещё раз определением прямого переноса
- 19 Перенос дифференциальных форм при отображении многообразий. Выражение для переноса базисного вектора кокасательного пространства через частные производные координатных функций отображения
- 19.1 Перенос дифференциальных форм при отображении многообразий

Опр Дифференциал отображения, касательное отображение Опр Обратный перенос

19.2 Выражение для переноса базисного вектора кокасательного пространства через частные производные координатных функций отображения.

Theorem Выражение для обратного переноса базисного вектора кокасательного пространства через частные производные координатных функций отображения

- 20 Обратный перенос дифференциальных форм при суперпозиции отображений многообразий. Коммутативность операций внешнего дифференцирования и обратного переноса дифференциальной формы
- 20.1 Обратный перенос дифференциальных форм при суперпозиции отображений многообразий

Лемма 2

Первый пункт доказывается по конспекту, а второй лучше всего по лекции 9 (1:25:00)

20.2 Коммутативность операций внешнего дифференцирования и обратного переноса дифференциальной формы.

Theorem О коммутативности внешнего дифференцирования и отображения обратного переноса.

- 1. Рекомендуется доказывать по лекции 9 (1:50:00)
- 2. Сначала рассмотрим случай скалярной функции и воспользуемся определением дифференциала отображения и $\Pi 2$

3. В общем случае рассмотрим лишь моном (из-за линейности). Запишем обратный перенос формы, возьмём дифференциал и применим правило Лейбница (для последнего и остальных слагаемого)

- 4. Второе слагаемое в этой формуле будет ноль, поэтому слагаемые будут "выноситься".
- 5. После вынесения всего воспользуемся случаем скалярной функции и получим требуемое.

Опр Гладкое подмногообразие, каноническая ЛСК

21 Теорема о разбиении единицы на многообразии

Опр Компактное многообразие

Лемма 1

- 1. Введём обозначение допустимой области параметров и x_0 .
- 2. Возьмём окрестность поменьше и воспользуемся леммой о функции шапочки. Соорудим новую функцию и обозначение и получим требуемое

Theorem O разбиении единицы на многообразии

- 1. Для любой точки выберем индекс окрестности, которой она принадлежит
- 2. В силу леммы найдутся окрестность поменьше и гладкая функция.
- 3. Выделим из компакта конечное подпокрытие и напишем пару следствий из леммы.
- 4. Введём гладкие функции γ , используя лишь оставшуюся нам часть от единицы. Посчитаем, как выглядит разность этих функций и единицы.
- 5. В силу второго следствия сумма $\gamma_i = 1$, но пока это разбиение не подчинено покрытию.
- 6. Введём новые множества S_i , затем определим ρ_i . Сумма таковых по всем картам и будет равна единице

22 Определение интеграла от дифференциальной формы и его корректность. Криволинейный и поверхностный интегралы второго рода

22.1 Определение интеграла от дифференциальной формы и его корректность

Опр Носитель дифференциальной формы

Опр Финитная дифференциальная форма

Опр Интеграл от дифференциальной формы по допустимой области параметров

Опр Интеграл от дифференциальной формы с носителем в районе действия одной карты Лемма

Благодаря лемме, можно сделать вывод, что оба определения интеграла совпадают (достаточно взять стандартную ЛСК)

Опр Интеграл от дифференциальной формы по гладкому многообразию.

Theorem Корректность определения интеграла

- 1. Существование интеграла следует из разбиения единицы, поэтому осталось доказать независимость от атласа.
- 2. Введём новую функцию ρ_{ij} и требуемые суммы просуммируем в нужном порядке Используя линейности и выражение для суммы ρ_{ij} , получим равенство

Благодаря лемме, можно сделать вывод, что определения 2 и 3 интеграла совпадают (достаточно взять одну карту)

22.2 Криволинейный и поверхностный интегралы второго рода

Опр Криволинейный интеграл второго рода

Для него можно получить формулу через интеграл для отрезка. Для этого достаточно ввести гладкую параметризацию и перейти к другим координатам

Опр Поверхность, поверхностный интеграл второго рода

Для него можно получить формулу через кратный интеграл по "допустимой области". Аналогично криволинейному случаю меняем переменные, применяем теорему о координатном представлении обратного переноса дифференциальной формы и соединяем всё в один интеграл

23 Теорема Стокса.

Theorem Cmorca.

24 Условия независимости криволинейного интеграла от пути интегрирования. Связь условий точности и замкнутости дифференциальных форм

24.1 Условия независимости криволинейного интеграла от пути интегрирования

Опр Точная форма, обобщённый потенциал

Опр Потенциальное ковекторное поле, скалярный потенциал.

Theorem Условия независимости криволинейного интеграла от пути интегрирования

- 1. $3 \Rightarrow 2$: используя представление через компоненты, сведём к производной по времени и после интегрирования получим зависимость от концов, которые совпадают в случае замкнутости.
- $2. \ 2 \Rightarrow 1$: тривиально следует после смены ориентации второй кривой.
- 3. $1 \Rightarrow 3$: фиксируем точку и вводим скалярный потенциал.
- 4. Введём новые кривые и сведём интеграл по кривой к разности этого потенциала.
- 5. Теперь рассмотрим малое приращение δ вдоль одной координаты i. Интеграл всей формы обнулится, за исключением компоненты с i.
- 6. Воспользуемся малостью δ , потом вычислим производную и получим требуемое после цепочки равенств

24.2 Связь условий точности и замкнутости дифференциальных форм

Опр Замкнутая форма

Лемма

Необходимость очевидна. Недостаточность докажем от противного, рассмотрев форму дифференциала частного и её интеграл по тригонометру

25 Теорема о цепном равенстве. Лемма Пуанкаре

25.1 Теорема о цепном равенстве

Лемма О цепном равенстве.

- 1. Рекомендуется доказывать по лекции 11 (2:30:00)
- 2. Введём ЛСК, запишем два возможных вида дифференциальной формы β и определим действие на них. В результате получим линейное отображение.
- 3. Рассмотрим действие на формах с dt и докажем для них цепное равенство. Аналогично для форм без dt
- 4. Любая форма может быть представлена как сумма конечного числа слагаемых с и без dt, поэтому доказано

Опр Стягиваемое в точку многообразие

Опр Выпуклое множество

25.2 Лемма Пуанкаре.

Theorem Лемма Пуанкаре

- 1. Из точности замкнутость следует всегда, поэтому доказываем лишь в обратную сторону.
- 2. Воспользуемся определением стягиваемости и рассмотрим дифференциальную форму β
- 3. Применим лемму о цепном равенстве, преобразуем и получим требуемое равенство, из которой следует точность
- 26 Риманова метрика. Выражение для индуцированной римановой метрики в полярной системе координат на плоскости и сферической системе координат в трехмерном пространстве

26.1 Риманова метрика

Опр Риманова метрика или (ковариантный) метрический тензор

Опр Риманово многообразие

Опр Скалярное произведение

Опр Длина, угол

Опр Матрица Грама на Риманово многообразие

Опр Индуцированная метрика

26.2 Выражение для индуцированной римановой метрики в полярной системе координат на плоскости и сферической системе координат в трехмерном пространстве

Найдём компоненты метрического тензора индуцированной метрики. В итоге, матрица Грама индуцированной метрики определяется через матрицу Якоби гомеоморфизма карты

Теперь можно вычислить матрицы Грама некоторых часто используемых метрик

Опр Первая квадратичная форма (гипер) поверхности

Первая квадратичная форма является значением тензора, то она не зависит от ЛСК на поверхности

- 27 Определение формы Риманова объёма и ее связь с дифференциальной формой (тензором Леви-Чивиты). Определение интеграла первого рода скалярной функции по гладкому многообразию. Поток векторного поля через двумерное ориентируемое подмногообразие пространства R^3 , выражение потока через интеграл от дифференциальной формы и интеграл первого рода
- 27.1 Определение формы Риманова объёма и ее связь с дифференциальной формой (тензором Леви-Чивиты)

Опр n-мерный параллелепипед в пространстве R^N , n-мерный объём

Опр Форма Риманова объема

Опр Тензор Леви-Чивиты

Theorem О тензоре Леви-Чивиты

Достаточно показать, что при замене ЛСК значение формы не меняется

Опр Символ Леви-Чивиты

27.2 Определение интеграла первого рода скалярной функции по гладкому многообразию.

Опр Интеграл первого рода

Опр Риманов объём, площадь поверхности

Пример Длина кривой

Пример Площадь поверхности

27.3 Поток векторного поля через двумерное ориентируемое подмногообразие пространства R^3 , выражение потока через интеграл от дифференциальной формы и интеграл первого рода

Опр Поток векторного поля через поверхность.

Theorem О выражении потока векторного поля через интеграл от дифференциальной формы

28 Дивергенция и ротор векторного поля в области трехмерного евклидова пространства. Геометрический смысл дивергенции и ротора векторного поля. Условия существования скалярного и векторного потенциалов векторного поля в области трехмерного евклидова пространства

28.1 Дивергенция и ротор векторного поля в области трехмерного евклидова пространства

Опр Свёртка тензора

Опр Свёртка тензорного поля

Опр Свёртка тензоров (или тензорных полей)

Опр Операция опускания индекса

Опр Контравариантный метрический тензор

Опр Ковариантные компоненты векторного поля

Опр Криволинейным интегралом второго рода

Опр Смешанное и векторное произведение векторных полей

Данные определения соответствуют стандартным определениям этих понятий

Опр Градиент

Опр Дивергенция

Опр Ротор (вихрь)

Лемма 1

Используем правило Лейбница; в последнем пункте следует перейти к рассмотрению отдельной компоненты

Лемма 2

- 1. В первом пункте перейдём к рассмотрению отдельной компоненты и получим смешанную частную производную.
- 2. Изменим порядок дифференцирования и изменится знак. Получили, что компонента равна минус себе, что возможно лишь в нулевом случае
- 3. Во втором пункте действуем в лоб и сводим к первому пункту
- 4. В третьем в лоб

Опр Оператор Гамильтона

28.2 Геометрический смысл дивергенции и ротора векторного поля.

Theorem Геометрическое определение дивергенции.

Theorem Геометрическое определение ротора

28.3 Условия существования скалярного и векторного потенциалов векторного поля в области трехмерного евклидова пространства

Опр Скалярный потенциал

Опр Бизвихревое поле.

Теория вероятностей

Theorem О существовании скалярного потенциала

Опр Векторный потенциал

Опр Бездивергентное поле.

Theorem О существовании векторного потенциала

- 29 Определение производной Ли тензорного поля через его обратный перенос фазовым потоком. Выражение компонент производной Ли тензорного поля по векторному полю через компоненты этих полей. Выражение производной Ли для тензорных полей типов (0,0), (1,0) и (0,1)
- 29.1 Определение производной Ли тензорного поля через его обратный перенос фазовым потоком

Опр Производная семейства тензорных полей в точке

Опр Фазовый поток

Опр Производная Ли

29.2 Выражение компонент производной Ли тензорного поля по векторному полю через компоненты этих полей

Лемма

- 1. Рекомендуется доказывать по лекции 14 (2:35:00)
- 2. Выразим y(x) через координатное представление потока и запишем обратный перенос тензорного поля фазового потока.
- 3. Возьмём $\frac{dy_t(x_0)}{dt}$ и разложим $y_t(x_0)$ по формуле Тейлора полностью и по координатам.
- 4. Выразим отсюда компоненты обратного переноса явно и с помощью обратных матриц и разложения по Тейлору.
- 5. Подставим всё в обратный перенос и перемножим скобки с точностью до o(t). Используем свойство символа Кронекера и получаем итоговую формулу
- 29.3 Выражение производной Ли для тензорных полей типов $(0,0),\ (1,0)$ и (0,1)

Пример Производная Ли скалярного поля

Опр Первый интеграл

Пример Производная Ли векторного поля

Пример Производная Ли ковекторного поля

30 Коммутативность производной Ли и внешнего дифференциала формы.

Theorem О коммутативности производной Ли и внешнего дифференцирования

31 Правило Лейбница для внутреннего произведения векторного поля на внешнее произведение двух дифференциальных форм

Опр Внутреннее произведение.

Theorem Правило Лейбница для внутреннего умножения

32 Магическое тождество Картана.

Theorem *Тожедество Картана (формула гомотопии)* Доказывается аналогично правилу Лейбница для внутреннего умножения