SYSTEMATIC STUDIES (Part II)

Variational Cuts Effect on Missing Momentum Yield Ratio for

Q2: (4,5) GeV2 and

th_nq: (35, 45) deg

The DATA / SIMC Missing Momentum Yield Ratio is compared for nominal, loose and tight cuts to study the systematics on the analysis cuts applied.

NOMINAL CUTS APPLIED

Pm: 80 MeV

Model: Laget PWIA

Radiative Effects (not corrected)

Em: (-20, 40) MeV

HMS Delta: (-8, 8) %

SHMS Delta: (-10,22)%

Ztar_Diff: (-2,2) cm

Q2: (4, 5) GeV2

theta_nq: (35, 45) deg

HMS Coll. Cut: Scale 1 (collimator geometry cut)

Cuts ONLY on DATA:

SHMS Calorimeter: (0.7, 5)

epCoinTime: (10.5, 14.5) ns

The Yield Ratio
Systematic Studies
were done at:

Q2: (4, 5) GeV2 and theta_nq: (35, 45) deg

Nuclear Missing Energy

 P_m Yield Ratio: E_{miss} Systematics

HMS Momentum Acceptance, δ

 P_m Yield Ratio: HMS δ Systematics

Nominal: (-10, 22)%

SHMS Momentum Acceptance, δ

 P_m Yield Ratio: SHMS δ Systematics

Ztar Difference

DATA

HMS Collimator

SIMC

P_m Yield Ratio: HMS Collimator Systematics

P_m Yield Ratio: E_{tot}TrkNorm Systematics

P_m Yield Ratio: Coin. Time Systematics

SUMMARY

Overall, I think the systematic variation for most of the cuts (except ZtarDiff) Are well within statistical uncertainty, and no large variations in the DATA/SIMC Yield Ratio were observed, which is expected.

With respect to the Ztar_difference background on DATA, I can try putting a tighter cut on the collimator and see it reduces this background.