ASSIGNEMENT – A.1 Distribuição de tamanhos de sólidos

Uma amostra dum sólido finamente moído foi classificado num sistema de peneiração usando a série padrão I.M.M. (*Institution of Mining and Metallurgy, UK*) tendo produzido o seguinte resultado:

Peneiro	Abertura nomir	nal (μm)	Número de partículas			
1	Passando por	2540	13715			
2	Retido em	1574	18			
3	Retido em	1270	74			
4	Retido em	1056	629			
5	Retido em	792	2597			
6	Retido em	635	3324			
7	Retido em	422	2131			
8	Retido em	347	1443			
9	Retido em	254	822			
10	Retido em	211	580			
11	Retido em	180	417			
12	Retido em	157	368			
13	Retido em	139	329			
14	Retido em	127	310			
15	Retido em	107	238			
16	Retido em	84	172			
17	Passando por	63	122			

<u>Determine e represente graficamente</u>:

- a) Curva de distribuição de frequência e cumulativa em base número
- b) Curva de distribuição de frequência e cumulativa em base comprimento
- c) Curva de distribuição de frequência e cumulativa em base superficial.
- d) Curva de distribuição de frequência e cumulativa em base volúmica.
- e) Curva de distribuição de frequência e cumulativa em base mássica.

Calcule o tamanho médio e desvio padrão:

- f) Determine os diâmetros médios em base número, comprimento, superfície, volume e peso
- g) Determine o desvio padrão em base número, comprimento, superfície, volume e peso

ASSIGNEMENT – A.2 Redução de tamanho de sólidos

Um triturador de maxilas é usado para reduzir o tamanho de determinado betão cuja resistência à compressão é 28 MPa (Figura 1).

Figura 1. A: Diagrama de triturador de maxilas de Blake

Em condições operatórias normais, a máquina é alimentada a um caudal de 5 kg/s dum material cujo tamanho está na gama 13-45 cm, resultando num produto na gama 0.6-8 cm. A distribuição de tamanhos (frequência) é a indicada na tabela. A potência necessária para esta operação é de 60 kw.

d, mm	450	390	320	290	240	190	130	80	60	40	20	10	8	6
n%,	4	7	33	27	13	11	5	0	0	0	0	0	0	0
alimentação														
n%,	0	0	0	0	0	0	0	9	10	13	27	23	11	7
produto														

- a) Que potência seria necessário fornecer a esta máquina para processar 3.8 kg/s dum betão com composição distinta (resistência à compressão de 22 MPa) dum tamanho inicial médio de 27,8 cm até um tamanho final médio de 0.5 cm.
- b) Proponha uma estimativa de custo energético para processar 10000 toneladas deste material? Assuma que o custo de energia para a empresa é de 133 €/MWH

ASSIGNEMENT – A.3 Movimento de partículas num fluido

Um material cerâmico com tamanho de partículas na gama dos micrómetros foi classificado num sistema de elutriação multiestágio composto por 9 colunas cilíndricas (Figura). As colunas possuem área de secção reta na gama 0,01-2,56 m². Foi injetada uma amostra de 3,5 kg de material sólido na coluna 1. A massa específica do material sólido é 2300 kg/m³. O fluido de arrasto é a água (viscosidade = 1×10-3 Pa.s e massa específica = 1000 kg/m³) que entra na base da coluna 1 a um caudal de 1×10-5 m³/s.

O processo de elutriação fracionou a amostra de sólido em 9 partes, as quais foram obtidas por recolha do material sedimentado em cada coluna. O material recolhido foi seco e pesado (última linha da tabela):

Coluna	1	2	3	4	5	6	7	8	9
A(m2)	0,01	0,02	0,04	0,08	0,16	0,32	0,64	1,28	2,56
x (kg)	0,03	0,07	0,11	0,84	1,13	0,9	0,24	0,09	0,02

- a) Determine e represente graficamente a distribuição de tamanhos de frequência e cumulativa em base superficial.
- b) Determine o diâmetro médio e o desvio padrão da distribuição de tamanhos em base superficial

