Introduction to Nanopore sequencing

Thomas Haverkamp (Norwegian veterinary institute)
@Thomieh

Outline

- The nanopore sequencing method
- Software applications for Nanopore
 - Genome assembly
 - Amplicon Sequencing
- A small NGS comparison

Rapid development in instrumentation

Drastic increase in both

- Read length
- Amount of sequence / run
- Single molecule sequencer
- Long read sequencers

Oxford Nanopore sequencers

The minION nanopore sequencer

minION sequencer & flowcell

Out of the lab usage...

Antarctica

ISS spacestation

The Jungle

You do need lab equipment to process your samples !!!

Nanopore sequencing explained

The minION flowcell

Specifications:

- 512 pores (Guaranteed)
- Needs to be stored at 2-8 °C
- Pores deteriorate over time Fresh is best
- Longest single read of a single molecule sequence 'Record': 2 Mbp
- 'Happy' at about 15 kb
- Up to 450 bases per second / sampling rate 4000 kHz
- May give a near 'realtime sequencing' data for up to 48 hrs
- Current capacity up to 48 hrs/20-40gb

The nanopore sensor chip

Sensor chip

Each microscaffold corresponds to its own electrode that is connected to a channel in the sensor array chip.

ASIC Application-Specific Integrated Circuit Each nanopore channel is controlled and & measured individually by the bespoke ASIC.

The flowcell layout

A flow cell has 2048 wells → 512 pores sequenced in parallel

Nanopore sequencing explained

Nanopore sequencing

- The electric potential over the membrane pulls the DNA toward the nanopore.
- The motor protein regulates the speed of sequencing (≈ 450 bases s⁻¹).
- Current changes are measured when a base is pulled through the pore.

1D vs 2D sequencing

Note: 2D sequencing is no longer available. 1D² is now the standard.

Nanopore basecalling

- The length of the passage (pore) determines the signal
- The assumption was that 5 bases fitted in the pore.
- Newer basecallers dropped assumption and derive basecalls directly from the signal

Variation in basecalling

- Translocation time through the pore time is variable
- Depending on the surrounding sequence
- Basecallers need advanced algorithms to deal with this "noisy data".

Improving basecalling

- Addition of Lambda DNA might improve basecalling per run.
- But the software needs to be able to use that information

DNA methylation?

- Basecalling is highly variable.
- Methylated bases have a different signal than non-methylated bases.

DNA methylation

Methylated nucleotides.

Methylation in Eukaryotes needed for:

- Gene regulation
- Cell differentiation
- Silencing of mobile elements

Methylation in Prokaryotes:

- Silencing of mobile elements
- Phages recognized
- Gene regulation

Detecting methylation

Methylation changes the detected current

Sequencing library preparation - DNA

Rapid Barcoding Kit protocol

- Input: 200ng HMW DNA
- Typical output:
 - 1-2 Gb in 6 hrs
 - 4-8 Gb in 48 hrs
- Enzymatic Shearing of DNA
 - → 40-60 % GC required

A very quick library preparation is possible

Sequencing output

Sequencing E.coli K-12 MG1655

minION output

Total bases: 5.014.576.373 (5Gb)

Number of reads: 150.604

N50: 63.747

Mean lenght: 33.296,44

Longest alignable sequence: 2,272,580 bp (2018)

Possible due to very careful phenol / chloroform extractions with very pure DNA (260/280 ≈ 2.0).!!!

1.000.000

Read length (template strand) - log10 transformed

Sequencing library preparation - RNA

Direct RNA sequencing

- Poly-A tail needed
- Optional reverse transcriptase to make cDNA → improves output
- Input: 500 ng RNA
- Typical output:
 - < 1 Gb in 6 hrs</p>
 - 1-4 Gb in 48 hrs

RNA is very easily degraded.

With this "quick" protocol direct sequencing is possible!

Working with the minION

WHAT THE COMPANY SAYS IT LOOKS LIKE

WHAT YOUR PI THINKS IT LOOKS LIKE

HOW THE ACTUAL DATA LOOKS LIKE

HOW REALITY LOOKS LIKE

Veterinæri

MinION applications

- De novo shotgun sequencing (pcr / primer free sequencing)
 - Especially good for repetitive regions
 - Finishing Prokaryote / Eukaryote genomes
 - Detection of structural genome variation (indels)

MinION applications

- Amplicon sequencing
 - Prokaryotes / Eukaryotes: 16S rRNA / 18S rRNA
 - Fungi: ITS-1
 - Animal barcoding: CO1
- Shotgun metagenomics
- Transcriptomics / Direct RNA sequencing
 - → Detection of RNA isoforms
- Epigenome (methylation) sequencing

De novo genome assembly

Basecalling software

Many options available:

- Nanopore provides several basecallers
 - MINknow (Included in the sequencing software)
 - Albacore
 - Guppy (standard)
 - Scrappie
 - Nanonet
- Other groups have also made basecallers for the nanopore machines:
 - Metrichor (In the cloud basecaller, part of minION workflow)
 - Chiron
 - DeepNano
 - etc

Nanopore basecalling

Original basecallers used Hiden Markov Models

Latest basecallers use Recurrent Neural Network (RRN)

Basecalling software - Chiron

A combined convolutional neural network and a Recurrent Neural Network

Genome assembly

Table 1. Summary of comparisons between long read assemblers. (A) Selected metrics for three benchmarking efforts on MinION reads, including chemistries used in the respective studies. Bold values denote the best score per metric. (B) Short descriptions and reference papers for all assemblers discussed in this paper. 1: reads were corrected by Canu prior to assembly.

A	Judge et al. 4			Istace et al.40			Giordano et al. ³⁶		
	subs/ kbase	indels/ kbase	N50 (Mbase)	subs/ kbase	indels/ kbase	N50 (Mbase)	subs/ kbase	indels/ kbase	N50 (Mbase
PBcR	1.0	12.2	1.20				0.2	17	0.616
Canu	0.3	7.8	2.80	0.105	10.0	0.610	0.1	17	0.698
SMARTdenovo				0.580	11.1	0.783	0.3	14	0.625
Minimap & miniasm	6.7	18.6	6.60	0.207	13.51	0.7361	34	67	0.739
ABruijn				0.130	10.1	0.816	0.1	15	0.769
Chemistry		MAP006			MAP005/MAP006			MAP006/007	
Read type		2D			2D			2D	
Pore		R7.3			R7.3			R7.3/R9	
Basecaller		EPI2ME			EPI2ME			EPI2ME	
Organism		Enterobacter kobei			S. cerevisiae			S. cerevisiae	
В	Description						Ref.		
PBcR	Celera OLC assembler adapted for long error-prone reads.						42		
Canu	The more accurate successor of PBcR.							43	
SMARTdenovo	Fast and reasonably accurate assembler without prior error correction step.							Github	
Minimap & miniasm	Fast assembly pipeline without error correction and consensus steps.							44	
ABruijn	DBG assembler that fuses unique strings prior to assembly, produces highly contiguous assemblies.							45	
TULIP	uses seed extension principle to efficiently assemble large genomes.							25	
HINGE	Assesses coverage of low complexity regions prior to assembly and processes them more efficiently.						46		

Canu assembler

Canu Assembly pipeline

- 1. Error correction
- 2. Trimming
- 3. Assembly

gkpStore: reads database

ovlStora: overlap database

tigStore: contigs database

Error correction

- 1. Reads split into **kmers**
- 2. Kmers used to identify overlap
- 3. Correct reads using overlap

Corrected reads are trimmed

Kmers

Error correction

- 1. Reads split into **kmers**
- 2. Kmers used to identify overlap
- 3. Correct reads using overlap

Corrected reads are trimmed

Canu assembly E. coli genome

Figure 5. Canu can assemble both 1D and 2D Nanopore *Escherhicia coli* reads. (*A*) A comparison of error rates for 1D and 2D read error rates versus the reference. Template 1D and 2D reads from the MAP006-1 *E. coli* data set were aligned independently to compute an identity for all reads with an alignment >90% of their length (95% of the 2D reads and 86% of the 1D reads had an alignment >90% of their length). The 2D sequences averaged 86% identity, and the 1D reads averaged 70% identity. (*B*) Bandage plot of the Canu BOG for the 2D data. The genome is in a single circle representing the full chromosome. (*C*) The corresponding plot for 1D data. While highly continuous, there are multiple components due to missed overlaps and unresolved repeats (due to the higher sequencing error rate).

Polishing

Nanopolish: Improve consensus sequence of assemblies

Options:

- Predict methylated bases
- detect SNPs and indels with respect to a reference genome
- calculate an improved consensus sequence for a draft genome assembly
- align signal-level events to k-mers of a reference genome
 - Align raw sequence data to deal with homopolymers and other hard to analyse sequences

Amplicon sequencing

Amplicon sequencing

A short comparison

	Illumina	PacBio	minION	
Output (Gb)	7.5 – 6000	5-8	10-20	
Reads (million)	25 – 20-000	0.15 - 1	≈ 0.15	
Read length	150 – 300 bp	0 - 70 Kbp	0 - 800 Kbp	
Pros	Many readsHigh qualityTolerant for poor input material	Long readsImprove genome assemblies	High mobilityLong readsImprove genome assemblies	
Cons	Fragmented genome assemblies	High quality input neededexpensive	 High quality input needed Flowcell has limited shelf life 	

Experimental design important to decide which platform to use.

The End

A few papers:

The long reads ahead: de novo genome assembly using the MinION

https://f1000research.com/articles/6-1083/v2

Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis

https://doi.org/10.1186/s13073-015-0220-9

NanoAmpli-Seq: A workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform

https://academic.oup.com/gigascience/article/7/12/giy140/5202451

The End

Contact details:

Thomas Haverkamp@vetinst.no

twitter: @Thomieh

