Set Theory Cheatsheet

Set Theory Concepts

This cheatsheet summarizes key set theory concepts with definitions and examples for quick reference.

1. Set

- Definition: A well-defined collection of distinct objects (elements or members).
- Example: Set of vowels: {a, e, i, o, u}.

2. Methods to Describe a Set

- Definition: Sets can be described using:
 - Descriptive: Words describing the set.
 - Tabular (Roster): List elements in { }.
 - Set Builder: $\{x \mid \text{condition}\}.$
- Example: First five natural numbers:
 - Descriptive: The set of the first five natural numbers.
 - Tabular: $\{1, 2, 3, 4, 5\}$.
 - Set Builder: $\{x \mid x \in \mathbb{N} \land x \leq 5\}.$

3. Set Builder Notation

- Definition: Describes a set using a rule: $\{x \mid \text{condition}\}.$
- *Example*: Even numbers from 2 to 10: $\{x \mid x \in \mathbb{Z} \land 2 \le x \le 10 \land x \text{ is even}\}\$ = $\{2, 4, 6, 8, 10\}.$

4. Finite and Infinite Sets

- *Definition*: Finite sets have a limited number of elements; infinite sets have unlimited elements.
- Example:
 - Finite: Days of the week = $\{Monday, Tuesday, ..., Sunday\}$.
 - Infinite: Natural numbers = $\{1, 2, 3, ...\}$.

5. Subset

- Definition: Set A is a subset of B $(A \subseteq B)$ if every element of A is in B.
- Example: $A = \{1, 2\}, B = \{1, 2, 3, 4\}. A \subseteq B \text{ since } 1, 2 \text{ are in } B.$

6. Proper Subset

- Definition: $A \subset B$ if $A \subseteq B$ and $A \neq B$ (B has extra elements).
- Example: $A = \{1, 2\}, B = \{1, 2, 3\}. A \subset B \text{ since } B \text{ has } 3.$

7. Improper Subset

- Definition: A is an improper subset of B if A = B.
- Example: $A = \{1, 2\}, B = \{1, 2\}. A \subseteq B \text{ and } A = B.$

8. Empty Set

- Definition: A set with no elements, denoted \emptyset or $\{\}$.
- Example: Set of people 10 feet tall = \emptyset .

9. Power Set

- Definition: The set of all subsets of a set S, denoted P(S). If S has n elements, P(S) has 2^n elements.
- Example: $S = \{1, 2\}$. $P(S) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.

10. Equivalent Sets

- Definition: Sets with the same number of elements (same cardinality).
- Example: $A = \{a, b, c\}, B = \{1, 2, 3\}$. Both have 3 elements, so they are equivalent.

11. Equal Sets

- Definition: Sets with exactly the same elements, regardless of order.
- Example: $A = \{1, 2\}, B = \{2, 1\}.$ A = B since they have the same elements.

12. Set Membership

- Definition: \in means an element is in a set; \notin means it is not.
- Example: $A = \{1, 2, 3\}$. $2 \in A$, $4 \notin A$.

13. Union of Sets $(A \cup B)$

- Definition: All elements in A, B, or both (no duplicates).
- Example: $A = \{1, 2, 3\}, B = \{3, 4, 5\}. A \cup B = \{1, 2, 3, 4, 5\}.$

14. Intersection of Sets $(A \cap B)$

- Definition: Elements common to both A and B.
- Example: $A = \{1, 2, 3\}, B = \{3, 4, 5\}. A \cap B = \{3\}.$

15. Complement of a Set (A')

• Definition: All elements in the universal set U not in A.

• Example: $U = \{1, 2, 3, 4, 5\}, A = \{1, 2\}. A' = \{3, 4, 5\}.$

16. Disjoint Sets

- Definition: Sets with no common elements $(A \cap B = \emptyset)$.
- Example: $A = \{1, 2\}, B = \{3, 4\}. A \cap B = \emptyset.$

17. Overlapping Sets

- Definition: Sets with at least one common element $(A \cap B \neq \emptyset)$.
- Example: $A = \{1, 2, 3\}, B = \{2, 3, 4\}. A \cap B = \{2, 3\}.$

18. Venn Diagrams

- Definition: Diagrams using circles in a rectangle (universal set) to show set relationships.
- Example: For $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $A \cup B$ shades both circles; $A \cap B$ shades the overlap.

19. Common Set Notations

- Definition: Standard symbols for sets:
 - N: Natural numbers $\{1, 2, 3, ...\}$.
 - \mathbb{Z} : Integers {..., -2, -1, 0, 1, 2, ...}.
 - $-\mathbb{Q}$: Rational numbers (fractions).
 - $-\mathbb{R}$: Real numbers.
 - E: Even integers $\{\dots, -2, 0, 2, \dots\}$.
 - O: Odd integers {..., -1, 1, 3, ...}.
 - P: Prime numbers $\{2, 3, 5, 7, ...\}$.
 - W: Whole numbers $\{0, 1, 2, ...\}$.
- Example: Odd integers from 1 to 5: $\{x \mid x \in O \land 1 \le x \le 5\} = \{1, 3, 5\}.$

20. Empty Set as a Solution

- Definition: A set is empty if no elements satisfy the condition.
- Example: $\{x \mid x \in \mathbb{N} \land x + 4 = 0\} = \emptyset$ (no natural number satisfies x = -4).

21. Sets Defined by Equations

- Definition: Sets defined by elements satisfying an equation.
- Example: $\{x \mid x \in \mathbb{Q} \land x^2 = 2\} = \emptyset$ (no rational number satisfies $x^2 = 2$).

22. Difference Between $\{a, b\}$ and $\{\{a, b\}\}$

- Definition: {a, b} has two elements; {{a, b}} has one element (the set {a, b}).
- Example: $\{1, 2\}$ has elements 1, 2; $\{\{1, 2\}\}$ has one element: $\{1, 2\}$.

23. True/False Statements About Sets

- Definition: Statements about sets (e.g., equality, membership) are evaluated as true or false.
- $Example: \{1, 2\} = \{2, 1\}$ is true (same elements, order doesn't matter).

