${rac{{ m Supp Note \ on}}{{ m m Modules}}}$

Xu Gao

Last update: March 24, 2018

Contents

1	She	aves of differential operators	2
	1.1	Differential operators for commutative algebras	2
	1.2	First definition of the sheaf \mathcal{D}	3
	1.3	Kähler differentials	3
	1.4	Second definition of the sheaf \mathcal{D}	3

Conventions

• Unless specify otherwise, all rings are commutative and unitary.

§ 1 Sheaves of differential operators

1.1 Differential operators for commutative algebras

Let K be a ring and A be a K-algebra. Recall that, a K-derivation on A is a K-endomorphism D of the K-module A such that for any $a, b \in A$, we have the Leibniz rule:

$$D(ab) = D(a)b + aD(b).$$

The collection of all K-derivations on A from an A-submodule $Der_K(A)$ of the module $End_K(A)$ consisting of all K-endomorphisms on A. Moreover, $End_K(A)$ is an associative algebra and hence a Lie algebra over K. Then

- $Der_K(A)$ is then a Lie subalgebra of $End_K(A)$;
- and A can be identified with the subalgebra $\operatorname{End}_A(A)$ of $\operatorname{End}_K(A)$ via the left (or right) multiplication operators.

Those gives a prototype of the notion *Lie-Rinehart algebras*, the algebraic version of *Lie algebroids*.

Using the Lie bracket of $\operatorname{End}_K(A)$, one can see that a K-endomorphism D of A is a K-derivation if and only if for any $a \in A$, we have

$$[D, a] = D(a),$$

where we identify A with $\operatorname{End}_A(A)$ via left multiplication operators. Motivated by this, we have the following inductive definition.

- **1.1.1 Definition** A K-endomorphism D of A is called a K-linear differential operator of order $\leq n$, where $n \in \mathbb{N}$, if for any $a \in A$, [D, a] is a K-linear differential operator of order $\leq n-1$. We use the convention that the zero endomorphism is of order ≤ -1 . The set of all K-linear differential operator of order $\leq n$ on A is denoted by $\mathrm{Diff}_K^n(A)$ and their union is denoted by $\mathrm{Diff}_K^n(A)$.
- **1.1.2 Proposition** We have the followings.
 - 1. Each $\operatorname{Diff}_K^n(A)$ is an A-submodule of $\operatorname{End}_K(A)$.
 - 2. Diff $_{K}^{0}(A) = A$.
 - 3. $\operatorname{Diff}_{K}^{1}(A) = A \oplus \operatorname{Der}_{K}(A)$.
 - 4. For any $m, n \in \mathbb{N}$, $\operatorname{Diff}_{K}^{m}(A) \circ \operatorname{Diff}_{K}^{n}(A) \subset \operatorname{Diff}_{K}^{m+n}(A)$.
 - 5. For any $m, n \in \mathbb{N}$, $[\operatorname{Diff}_K^m(A), \operatorname{Diff}_K^n(A)] \subset \operatorname{Diff}_K^{m+n-1}(A)$

In this proposition, 1 shows that $\operatorname{Diff}_K^{\bullet}(A)$ form a positive increasing exhaustive filtration of A-submodules of $\operatorname{Diff}_K(A)$. 2, 3, 4 show that such a filtration makes $\operatorname{Diff}_K(A)$ a filtered non-commutative ring, which extends the Lie-Rinehart algebra $(A,\operatorname{Der}_K(A))$. Finally, 5 shows that $\operatorname{Diff}_K(A)$ is moreover an almost commutative ring, i.e. its associated graded ring

$$\operatorname{Gr}_{\bullet}(\operatorname{Diff}_K(A)) = \bigoplus_{n=0}^{\infty} \operatorname{Diff}_K^n(A) / \operatorname{Diff}_K^{n-1}(A)$$

is a graded commutative ring. Note that $Gr_0(Diff_K(A)) = Diff_K^0(A) = A$. Hence $Gr_{\bullet}(Diff_K(A))$ is moreover a graded A-algebra.

1.2 First definition of the sheaf \mathcal{D}

How to define?

1.3 Kähler differentials

1.4 Second definition of the sheaf \mathcal{D}

How to use the higher conormal sheaves?