Prerequisite – Hardwired v/s Micro-programmed Control Unit

Basically, **control unit** (**CU**) is the engine that runs the entire functions of a computer with the help of control signals in the proper sequence. In the **micro-programmed** control unit approach, the control signals that are associated with the operations are stored in special memory units. It is convenient to think of sets of control signals that cause specific micro-operations to occur as being "microinstructions". The sequences of microinstructions could be stored in an internal "*control*" memory.

Micro-programmed control unit can be classified into two types based on the type of Control Word stored in the Control Memory, viz., Horizontal micro-programmed control unit and Vertical micro-programmed control unit.

- In *Horizontal micro-programmed* control unit, the control signals are represented in the decoded binary format, i.e., 1 bit/CS. Here 'n' control signals require n bit encoding. On the other hand.
- In *Vertical micro-programmed* control unit, the control signals are represented in the encoded binary format. Here 'n' control signals require log₂n bit encoding.

Comparison between Horizontal micro-programmed control unit and Vertical micro-programmed control unit:

Horizontal μ-programmed CU	Vertical μ-programmed CU
It supports longer control word.	It supports shorter control word.
It allows higher degree of parallelism. If	It allows low degree of parallelism i.e., degree of
degree is n, then n Control Signals are	parallelism is either 0 or 1.
enabled at a time.	
No additional hardware is required.	Additional hardware in the form of decoders are required
	to generate control signals.
It is faster than Vertical micro-programmed	it is slower than Horizontal micro-programmed control
control unit.	unit.
It is less flexible than Vertical micro-	It is more flexible than Horizontal micro-programmed
programmed control unit.	control unit.
Horizontal micro-programmed control unit	Vertical micro-programmed control unit uses vertical
uses horizontal microinstruction, where	microinstruction, where a code is used for each action to
every bit in the control field attaches to a	be performed and the decoder translates this code into
control line.	individual control signals.
Horizontal micro-programmed control unit	Vertical micro-programmed control unit makes more use
makes less use of ROM encoding than	of ROM encoding to reduce the length of the control
vertical micro-programmed control unit.	word.

Example: Consider a hypothetical Control Unit which supports 4 k words. The Hardware contains 64 control signals and 16 Flags. What is the size of control word used in bits and control memory in byte using:

- a) Horizontal Programming
- b) Vertical programming

Solution:

a) For Horizontal

64 bits for 64 signals Control Word Size = 4 + 64 + 12 = 80 bits

Control Memory = 4 kW = ((4*80) / 8) = 40 kByte

a) For Vertical6 bits for 64 signals i.e log₂64

Control Word Size = 4 + 6 + 12 = 22 bits

Control Memory = 4 kW = ((4*22)/8) = 11 kByte