

CHEERSECURITH BOOTCAMP

Intro to Cryptography

I am Mokrane Abdelmalek

3rd Year C5 Student at E51
Dev co-manager of GDG Algiers
CTF player @ShellSec & @CyberErudites

I. First step into cryptography

• What is cryptography?

Cryptography is the set of methods and tools that ensure a secure transmission and communication between two entities.

Terminology

Cipher PlainText→ CipherText

Cryptosystem

Cryptanalysis

Cryptography Objectives

Integrity

Non Repudiation

Confidentiality

Why so important?

Most Vulnerabilities are Cryptography based Cryptography are used everywhere

Once learned you can be secure

Learning How to exploit Systems

Art To Exploit

The Most Important Thing is To Learn How to Exploit A cryptography System

II. Types of cryptography

- Classical cryptography
- Modern cryptography

II. I. Classical cryptography

1111

Caesar Cipher

Shift each letter of plaintext with a given Key

Specifications:

- Very simple
- Easy to break

Break me this

Z yrmv cvrievu yfn kf sivrb Trvjri Tzgyvi !!!

Substitution Cipher

Replace each letter with its corresponding new value

Specifications:

- Very simple
- Needs some time to break

How to break it?

Frequency Analysis

XOR operator

Xor is reversible that is why it is widely used.

Inp	out	Output				
Α	В	A xor B				
0	0	0				
0	1	1				
1	0	1				
1	1	nive 8				

ENCRYPT					
					Plaintext Secret Key
= 1	110	10	11	0	Ciphertext
DECRYPT					
⊕ 1	10	10	11	0	Ciphertext
					Secret Key
= C	0 -	110	10	1	Plaintext

III. Encodings

What are encodings?

Encoding Examples

BASE 64

Index	Binary	Char									
0	000000	Α	16	010000	Q	32	100000	g	48	110000	W
1	000001	В	17	010001	R	33	100001	h	49	110001	x
2	000010	С	18	010010	S	34	100010	i	50	110010	у
3	000011	D	19	010011	T	35	100011	j	51	110011	Z
4	000100	E	20	010100	U	36	100100	k	52	110100	0
5	000101	F	21	010101	V	37	100101	1	53	110101	1
6	000110	G	22	010110	W	38	100110	m	54	110110	2
7	000111	Н	23	010111	X	39	100111	n	55	110111	3
8	001000	I	24	011000	Υ	40	101000	0	56	111000	4
9	001001)	25	011001	Z	41	101001	р	57	111001	5
10	001010	K	26	011010	a	42	101010	q	58	111010	6
11	001011	L	27	011011	b	43	101011	r	59	111011	7
12	001100	М	28	011100	c	44	101100	s	60	111100	8
13	001101	N	29	011101	d	45	101101	t	61	111101	9
14	001110	0	30	011110	e	46	101110	u	62	111110	+
15	001111	Р	31	011111	f	47	101111	v	63	111111	1

SGVsbG8gV29ybGQ=

Hexadecimal

68656c6c6f20776f726c64

Morse Code

```
      Aa • Jj • • Ss • • Bb • • • Kk • • Tt • Cc • • Ll • • Uu • • Dd • • Mm • Vv • • • • Ee • Nn • Ww • • • Ff • • • Oo • • Xx • • • Gg • Pp • • • Yy • • • • Hh • • • Qq • • Zz • • • I i • • Rr
```


IV. Hash functions

One way to go

Hash Functions

A function that takes message as input and give a supposedly unique output . F(x) = Y

Known Hash Algorithms

m="admin"

md5[m] = 21232f297a57a5a743894a0e4a801fc3 - 32 hex

sha1[m] = d033e22ae348aeb5660fc2140aec35850c4da997 - 40 hex

sha256(m) = 8c6976e5b5410415bde908bd4dee15dfb167a9c873fc4bb8a81f6f2ab448a918 - 64 hex

V. Modern cryptography

- Symmetric cryptography
- Asymmetric cryptography

V.I. Symmetric cryptography

1111

Advanced Encryption Standard "AES"

- The most widely used symmetric cipher today
- A block cipher which operates on block size of 128 bits (16 bytes)
- For both encrypting and decrypting
- There are multiple modes: ECB,CBC,CTR

Advanced Encryption Standard "AES"

CBC mode is like ECB mode but with an additional key:

 IV, which will initiate the xor of the blocks

But there is an issue

V.II. Asymmetric cryptography

1111

RSA

- The most famous algorithm in Public key cryptography
- It's Math based operations (power, modular Inverse, GCD, Euler to Tient)
- It has 2 keys (private and public)
- We use the public key to encrypt
- and the private one to decrypt
- It lies on the Factorization problem

RSA

To generate RSA keys:

- p and q are prime numbers.
- N :the modulus is the product of p and q.
- phi(N) = (p-1)^{*}(q-1) Euler totient
- e:public exponent (it has to be prime with phi)
- d: private exponent [(e^{*}^{*}d)% phi == 1)

```
public\_key = [N,e] \qquad private\_key = [N,d] \\ ciphertext = [plaintext ** e]%N \qquad plaintext = [ciphertext ** d]%N
```


What's next?

• what is the next step!

Learning resources

- CryptoHack: best website to learn cryptography.
- Rootme: Best website to learn cybersecurity and specially to get started.
- Cryptopals: A website filled with good cryptography resources and it contains a numerous number of ciphers.
- CTFTime: To checkout the write-ups of old crypto challenges.
- Coursera: course of Cryptography 1 and Cryptography 2.

Thank you! any questions?

