Intermediate Microeconomics (Fall 2023) Lecture 2 Elasticity

-	_
Part	ı

Elasticity – A measure of the	of	
	to	
in		•

• We need to assess:

Part II

Own-Price Elasticity of Demand

• Key Points

Own-price elasticity of de	mand is	due to the
		Also, it is shown from the fac
that the	of the	
is		
When	the own-pric	ce elasticity of demand between two
goods, we are usually inter	rested in their	
which means that an item	with own-price elast	ticity of demand equal to -2 is more
		than an item with own-price
elasticity of demand equal	to -1, although -2 is	is actually a smaller number than -1
Interpretation: a	change in	the
of a product will lead to a	1	change in
		of the produc
	by	, there will be
		iı
		variable
given the		variables in the
definition of the own-price		

• Comparison between Elastic and Inelastic

	 	_
		E.g., stuff with, but can be
		such as,
$\left E_{Q_x^D,P_x} \right $	 	_
		E.g.,
		, such as
		E.g., stuff used for the, such as

- Elasticity vs. Slope
 - o Elasticity _____ Slope
 - Slope
 - Elasticity

- > For linear demand function
 - ❖ Demand curve is a _____
 - ⇒_____is____
 - On _______, and _____ are ______
 - ⇒ ______ is
 - _____ for each point on a linear demand curve
 - ❖ The point of unit-elastic demand is ______ down the demand curve

* Math Proof

Suppose _____

Vertical Intercept:

Horizontal Intercept:

At the point of unit-elastic demand:

⇒ _____

⇒ _____

 \Rightarrow

O Slope does ______ elasticity

• demand curve \Rightarrow More

■ _____ demand curve ⇒ More _____

Perfectly inelastic

Q^D______

Perfectly elastic

The law of demand:

⇒ For any prices ______,

Q^D______;

Exercise 1

The demand function is given by $Q^D = 400 - 5P$. Find the own-price elasticity of demand at P = 70, P = 40, P = 15.

• Relationship between Own-Price Elasticity of Demand and Total Revenue

____*__=

- Elastic demand: price and total revenue move in the ______

 direction.
- Inelastic demand: price and total revenue move in the _____

 direction.

Peking University

Dr. Jin Qin

➤ Math Proof

	Flastic	demand
-	Elastic	demand

⇒	
~	

⇒______

⇒ Price and total revenue move in the ______ direction

Inelastic demand

⇒_____

⇒_____

⇒ Price and total revenue move in the ______ direction

o Unit-elastic demand: total revenue

Math Proof

Suppose _____

⇒

⇒ Axis of Symmetry: _____

• Factors Affecting Own-Price Elasticity of Demand

⇒ More		
⇒		demand cur
	, such as	
⇒ More		
⇒		demand cur
	(e.	
	is	
	or	
	to	
for the		
	People are able to	
⇒ More		

0 _____

- · _____
 - ⇒ More _____
 - \Rightarrow _____ demand curve
- _____
 - ⇒ More _____
 - ⇒ _____ demand curve

Exercise 2

Refer to the figure.

If close substitutes are difficult to find in the short-run, which of the demand curves in the figure best represents market demand in the short-run?

- $A. D_1$
- B. D_2
- C. Both curves are short-run curves.
- D. Both curves are long-run curves.

Part III

Other Types of Price Elasticity of Demand

• Cross-Price Elasticity of Demand

0	
	⇒
	\Rightarrow x and y are
0	
	⇒
	\Rightarrow x and y are

• Income Elasticity of Demand

0				
	⇒			
	⇒ x is			
0				
Ü				
	⇒ x is			
	⇒ 1 percent	increase in	leads to	
				
	in			
	\Rightarrow x is a			

Exercise 3

The demand function is given by $Q_x^D = 1000 - 5P_x + 1.5P_y + 0.25M$. Find the own-price elasticity of demand, the cross-price elasticity of demand, the income elasticity of demand at $P_x = 150$, $P_y = 100$, M = 2000.

Part IV

Elasticity from the Demand Function

Peking University

Interpret Coefficients in Different Functional Forms

Functional Form	Expression	The Change in y When x Changes	Interpretation of the Coefficients
Level-Level (Linear)		Take total differential: ———————————————————————————————————	If x increases by, y will change by
Log-Level		Take total differential: ———————————————————————————————————	If x increases by, y will change by
Level-Log		Take total differential: ———————————————————————————————————	If x increases by, y will change by
Log-Log (Double-Log)		Take total differential: ———————————————————————————————————	If x increases by, y will change by

• Elasticity from Linear Demand Fu	nction
0	
0	
0	
To generalize,	
Elasticity from Non-linear Demand	
(Take the	of the demand function):
0	
0	
0	
If we do not use log-linearizing, we ce.g.,	could still calculate elasticity in our previous method,
$\mathrm{E}_{\mathrm{Q}_{\mathrm{x}}^{\mathrm{D}},\mathrm{P}_{\mathrm{x}}}$	

Part V

Point Elasticity vs. Arc Elasticity

• Point Elasticity – Price elasticity at a particular _____ on the demand curve.

o Problem: cannot calculate a price elasticity over ______ of the demand curve.

• Arc Elasticity – Price elasticity calculated over a ______ of _____.

E =

where

Example 1

 P_x = \$10. When income = \$1000, Q_x^D = 400; when income = \$1050, Q_x^D = 450. Calculate the arc income elasticity of demand.

Exercise 4

Suppose the demand curve for wheat is linear. When the market price for wheat changes, it moves from Point A to Point B on the wheat demand curve. If the price elasticity of wheat demand was -0.3 at Point A and -0.4 at Point B, what is a plausible value for the arc elasticity of demand for wheat between Points A and B?

- A. -0.25 B. -0.35 C. -0.45

- D. -0.70