Telecom Data Processing and Analysis

Sveta Milusheva, Leonardo Viotti and Dunstan Matekenya

Outline

Why focus on telecom data (CDR)?

What is CDR data?

Extraction and Aggregation of Data

Quality Checks

Analysis and Visualizations

Practical exercises

CDR and mobility

Mobility and Density

Importance of Mobility

- Large increases in mobility in recent years
- Can lead to spread of information & technology, but also disease

How to measure?

- Lack of information about mobility on a population level
- Cell phones are ubiquitous even among lowincome
- Where people use their cellphones is a good proxy for their current location

Especially important for COVID19

Use mobility to inform modeling to understand spread of cholera and other diseases

Broad Application Areas

What is CDR data?

Cellular Networks

- Mobile phone networks (e.g., GSM, CDMA, LTE) require regular pings between mobile phone devices and cellular communication antennas. The networks constantly determine the <u>location</u> of the mobile phone devices even when the device is on standby.
- Two types of location updates
 - Network triggered updates
 - being switched on and connects to the cellular network
 - involved in a call and moves between two different cell areas (i.e. cell handover)
 - Event triggered updates: based on device usage (e.g., call, SMS, internet use, apps)

Call Detail Records (CDR)?

Call Detail Records or CDRs are created whenever an individual interacts with the mobile network (event-triggered updates). They are used by MNOs for billing purposes.

A Typical CDR contains the following:

- Phone numbers (origin, party-A& receiver, party-B)
- Time stamp of the call
- Cell tower (as latitude, longitude)
 through which the call entered
 and left the exchange
- Call type (e.g., voice, SMS, internet)
- Call duration

Source: University of Tokyo slides

CDR Data Structure

CDR and privacy

Since CDR data contains confidential information for the subscribers and the telecom companies, observing strict practices to keep the data safe and private is crucial:

- Often, only anonymized data is analyzed. Anonymization
 - Removes personally identifying information (PII) (e.g., phone numbers and IMEIs)
 - Reduces risk of re-identification of individuals in the data
 - Access to individual level data is limited to few people
 - Data storage and processing is done within secure environments

CDR limitations

Important biases to consider when interpreting CDR data:

- Data representativeness of a population depends on cell phone penetration and usage patterns across different groups
- Geographic coverage: Towers more concentrated in urban areas
- Data from single operator: Different operators can represent different users and behaviours (e.g. one operator has a more wealthy or urban user-base while another has more users in rural areas)

Aggregation

Aggregation and analysis

Aggregations are indicators used for summarizing and interpreting the data.

- One of the most efficient way to anonymize individual level data
- Reduces the size of data, but preserves key information

msisdn	time	location_id
206832561	17/10/2017 05:41:03	HRE0022
758811555	17/10/2017 05:42:08	HRE0360
115329673	17/10/2017 05:41:49	MSH0085
804874762	17/10/2017 05:42:19	MVO0127
262147937	17/10/2017 05:41:48	MAT0007
961348676	17/10/2017 21:49:58	MID0021
579954691	17/10/2017 21:50:03	MSH0241
483167842	17/10/2017 21:50:00	BYO0085
488978200	17/10/2017 21:50:05	MVO0055

location_id	date	count
BYO0001	2017-10-17	5009
BYO0002	2017-10-17	2275
BYO0003	2017-10-17	5968
BYO0004	2017-10-17	19437
BYO0005	2017-10-17	14937
MVO0190	2017-10-17	5806
MVO0193	2017-10-17	286
MVO1001	2017-10-17	14668
MVO1011	2017-10-17	2018

Aggregation and analysis

Here are some common types of aggregation we can create from raw CDR data:

- Number of transactions per day and region
- Number of active subscribers per day and region
- Number of movements between two regions per day

We will see examples of each on the practical exercises.

Data Quality Checks

CDR Data Quality Challenges

Causes

- When towers are deactivated (e.g for maintenance) transactions are redirected to other towers.
- Errors with initial data extraction

How These may impact the Data

- Sudden spikes or drops in a certain region
- Missing data or duplicates
- Much fewer observations at periods in time

Quality checks

Completeness

Check if all expected data is present.

- Does it cover the entire time period?
- Does it include all geographic regions?

Consistency

Check if data is internally consistent and with known facts or other data available such as

- Population size or MNO market share
- Number of subscribers is comparable to the number of calls.

Anomalies

General checks for outliers or other general data issues:

- Duplicated rows
- Sudden drops or spikes on specific regions.

Example: Completeness

Example: Consistency

Example: Anomalies

Analysis and Interpretation

Analysis

- Once indicators are checked for quality, can be analyzed to inform policy
- Example: Change in mobility over time after a new policy

Interpretation

Data can be interpreted in different ways

For example, change in a variable can be measured differently, each with advantages and disadvantages

- Level comparison from previous day
- Percent change from previous day
- Percent change from a baseline (e.g month before COVID19 lockdown)
 - Definition of baseline can also vary:
 - Average across previous month
 - Average by day of week
 - Average by weekend vs weekday
- Z-score (avg adjusted for standard deviation)

Example:

	day 1	day 2	day 3	day 4	day 5
Travelers to district A	35	15	40	20	40
Travelers to district B	2500	3000	2700	2500	4000

Indicator	Change district A	Change district B
Level change from previous day	20	1500
% change from previous day	100%	75%
% change from baseline average	45%	49%
Z-score	1.2	6.5

Example:

Baseline

	day 1	day 2	day 3	day 4	day 5
Travelers to district A	35	15	40	20	40
Travelers to district B	2500	3000	2700	2500	4000

Indicator	Change district A	Change district B
Level change from previous day	20	1500
% change from previous day	100%	75%
% change from baseline average	45%	49%
Z-score	1.2	6.5

Visualization

Visualization: Choropleth

Practical exercises

Instructions

- 1. The following files have been shared over e-mail:
 - admin1.geojson
 - movements per day.csv
 - subscribers per day.csv
 - transactions_per_day.csv
- 2. Use the link below to access the exercises notebook:

https://colab.research.google.com/github/LeonardoViotti/cdr-training/blob/main/notebooks/aggregated-cdr-analysis.ipynb