Série Nº2

Exercise 1:

1-a- At =
$$a\sqrt{b+c}$$
 d Bt = $(a\sqrt{b})+(a\sqrt{c})$
 $A_a = a+(b+c)$ $B_1 = a+b+a+c$
 $= \overline{a}(b+c)$ $= \overline{a}b+\overline{a}c$
 $= \overline{a}(b+\overline{c})$ $= \overline{a}(b+\overline{c})$
 $= \overline{a+b+c}$ $= \overline{a+b}$
 $= \overline{a+b+c}$ $= \overline{a+b+a+c}$
 $= \overline{a}(b+\overline{c})$ $= \overline{a+b+a+c}$
 $= \overline{a}(b+\overline{c})$ $= \overline{a+b+a+c}$
 $= \overline{a+b+c}$ $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$
 $= \overline{a+b+c}$

-c-NANDN'ed pas distributive

Exercice 2:

a	b	C	F
0	0	0	1
0	0	7	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	11	1	1

Exercice 3 ?

 $S = (a.b) + \overline{c} \cdot a \cdot c = \overline{ab} \cdot c \cdot a \cdot c = (\overline{a} + \overline{b}) ac = a\overline{ac} + a\overline{bc}$

Exercice 4 ;

1. Avec des NAND à l'entrées.

$$f = \frac{\overline{a + bc}}{\overline{a \cdot b \cdot c}}$$

$$\begin{aligned}
& + = \overline{a+bc} = (a \lor bc) \lor (a \lor bc) \\
& = (a \lor (b \lor c)) \lor (a \lor (b \lor c)) \\
& = a \lor [((b \lor b) \lor (c \lor c))] \lor [a \lor ((b \lor b) \lor (c \lor c))] \\
& = a \lor [((b \lor b) \lor (c \lor c))] \lor [a \lor ((b \lor b) \lor (c \lor c))]
\end{aligned}$$

Exercice 5:

$$1)F_{1} = (\overline{a}+b)(a+\overline{b})$$

$$F_{1} = (\overline{a}+b)(a+\overline{b}) = (\overline{a}+b)+(\overline{a}+\overline{b}) = \overline{a}, \overline{b}+\overline{a}, \overline{b} = \overline{a}+\overline{b}$$

$$Principe de dualdé:$$

$$F_{2} = (a+\overline{b})+(\overline{a},b) = a\overline{b}+\overline{a}b = a\overline{b}b$$

$$F_{3} = (a+\overline{b})+(\overline{a},b) = a\overline{b}+\overline{a}b = a\overline{b}b$$

2)
$$t_2 = \overline{a \cdot b + a \cdot b \cdot (c + \overline{a})}$$
; principe de dualidé.
 $t_2 = (a+b)[\overline{a+b}] + \overline{(c \cdot \overline{a})}$
 $t_3 = (a+b)[\overline{a+b}] + \overline{(c \cdot \overline{a})}$; principe de dualidé.
 $t_4 = (a+b)[\overline{a+b}] + \overline{(c \cdot \overline{a})}$; principe de dualidé.
 $t_4 = (a+b)[\overline{a+b}] + \overline{(c \cdot \overline{a})}$; principe de dualidé.
 $t_4 = (a+b)[\overline{a+b}] + \overline{(c \cdot \overline{a})}$; principe de dualidé.
 $t_4 = (a+b)[\overline{a+b}] + \overline{(c \cdot \overline{a})}$; principe de dualidé.
 $t_4 = (a+b)[\overline{a+b}] + \overline{(c \cdot \overline{a})}$; principe de dualidé.
 $t_4 = (a+b)[\overline{a+b}] + \overline{(c \cdot \overline{a})}$; principe de dualidé.
 $t_4 = (a+b)[\overline{a+b}] + \overline{(c \cdot \overline{a})}$; principe de dualidé.
 $t_4 = (a+b)[\overline{a+b}] + \overline{(c \cdot \overline{a})}$; principe de dualidé.

Exercice 6:

$$S_{4} = \overline{a}(a+b) = \overline{a}a + \overline{a}b = ab$$

$$S_{2} = \overline{a+b+a\cdot b} = \overline{a+b} \cdot \overline{a\cdot b} = (\overline{a}b)a\cdot b = 0$$

$$S_{3} = (\overline{a+c})(b+\overline{a}) = (\overline{a+c}) + (\overline{b+a}) = (\overline{a}.\overline{c}) + \overline{b}\overline{a}$$

$$= ac+\overline{b}\overline{a}$$

$$S_{4} = a.b.c + a.b + a.b + a\overline{c} + ab.c + c$$

$$= a(bc+b+b+\overline{c}+\overline{b}c) + C = a+c$$

$$S_5 = (a+a.b)(a+b)+b(a+bc)$$

$$= a(a+b)+ba+bc$$

$$= a+ab+ab+bc = a+bc$$

$$S_6 = \overline{a}bc+ab.c+ab\overline{c}+a.b.c$$

$$= a(b\oplus c)+bc(\overline{a}+a)$$

$$= a(b\oplus c)+bc$$

· S7 = a.b. C+ abc+ a.b+b, c

Exercice 7:

de	00	01	11	10	
00	1	0	(1)	11	
01	0	0	1	O	
11	3	J	0	a	
10	1)	1	0	1	明
	1				SI
	- 0	ō+	dt +	bat +	ad
SI	$=\alpha$		d5 +	2	4

ba				1	1
Sc/	00	01	11	10	
00	1	0	O	1	
01	0	1	F	0	
11	0	1	7	0	
10	0	1	1	0	
					S

Se = atc +ac +ad

Exercice 8: