

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»
Παδορατορμος ραδοτα Να 1
Лабораторная работа № <u>1</u>
Дисциплина Конструирование компиляторов
Тема Распознавание цепочек регулярного языка
Вариант №6
Студент Иванов В.А.
Группа ИУ7-21М
Преподаватель _Ступников А.А.

Москва. 2023 г. **Цель работы**: приобретение практических навыков реализации важнейших элементов лексических анализаторов на примере распознавания цепочек регулярного языка.

Задачи работы:

- 1) Ознакомиться с основными понятиями и определениями, лежащими в основе построения лексических анализаторов.
- 2) Прояснить связь между регулярным множеством, регулярным выражением, праволинейным языком, конечноавтоматным языком и недетерминированным конечно-автоматным языком.
- 3) Разработать, тестировать и отладить программу распознавания цепочек регулярного или праволинейного языка в соответствии с предложенным вариантом грамматики.

Вариант 6

Напишите программу, которая в качестве входа принимает произвольное регулярное выражение, и выполняет следующие преобразования:

- 1) Преобразует регулярное выражение непосредственно в ДКА.
- 2) По ДКА строит эквивалентный ему КА, имеющий наименьшее возможное количество состояний (Воспользоваться алгоритмом Хопкрофта)
- 3) Моделирует минимальный КА для входной цепочки из терминалов исходной грамматики.

Текст программы и набор тестов приведены в приложении.

Пример работы программы (в режиме отладки):

```
Regular expression:

(a|b)*abb

Input string:

ababb

3- "ababb" | 2- "babb" | 1- "abb" | 2- "bb" | 1- "b" | 0- ""

String valid: True
```

Выводы

В результате выполнения лабораторной работы были изучены основные понятия построения лексических анализаторов, разработана программа распознавания цепочек регулярного языка.

Контрольные вопросы

- 1) Какие из следующих множеств регулярны? Для тех, которые регулярны, напишите регулярные выражения.
- 2) Найдите праволинейные грамматики для тех множеств из вопроса 1, которые регулярны.
- 3) Найдите детерминированные и недетерминированные конечные автоматы для тех множеств из вопроса 1, которые регулярны.
- а. Множество цепочек с равным числом нулей и единиц.

Нерегулярное. Соответствующий автомат будет иметь бесконечность состояний (состояния соответствуют текущей разнице между количеством нулей и единиц).

b. Множество цепочек из $\{0,1\}^*$ с четным числом нулей и нечетным числом единиц.

Регулярно. Составим ДКА,

Если существует ДКА, то из него можно получить соответствующее регулярное выражение:

(0(11)*0)*(1|0(11)*10)(0(11)*0|(1|0(11)*10)(0(11)*0)*(1|0(11)*10))*

Праволинейная грамматика:

$S \rightarrow A$	A→0B	D→1E	Е→0Н	E→1K	K→0N	K→1E
	B→11B		H→11H		N→11N	
	$B \rightarrow C$	D→0F	H→I	E→0L	N→O	K→0P
	C→0A	F→11F	I→0E	L→11L	O→0K	P→11P
	A→D	F→J		L→M		P→U
		J→10E	Е→е	M→10K		U→10E

с. Множество цепочек из $\{0,1\}^*$, длины которых делятся на 3.

Регулярно.

((0|1)(0|1)(0|1))*

Праволинейная грамматика:

S->A	A->0B A->1B	C->0A C->1A
	A->e	

d. Множество цепочек из $\{0,1\}^*$, не содержащих подцепочки 101.

Регулярно.

0*(1|000*)*0*

Праволинейная грамматика:

S->A	A->0A	B->1B	C->0C	D->0D
	A->B	B->00C B->D	C->B	D->e

4) Найдите конечный автомат с минимальным числом состояний для языка, определяемого автоматом $M=(\{A,B,C,D,E\},\{0,1\},d,A,\{E,F\}),$ где функция d задается таблицей

Состояние	Вход	
	0	1
A	В	С
В	Е	F
С	A	A
D	F	Е
Е	D	F
F	D	Е

По алгоритму минимизации (алгоритм Хопкрофта)

 $P = \{\{A, B, C, D\}, \{E, F\}\}$ – начальное разбиение

Перебираются сплитеры (пара множество состояний - символ).

Сплитер <Р0, 1> разбивает Р0 на множества $\{A,C\}$, $\{B,D\}$

$$P = \{\{A, C\}, \{B, D\}, \{E, F\}\}$$

Сплитер <P0, 0> разбивает P0 на множества $\{A\}$, $\{C\}$

$$P = \{\{A\}, \{C\}, \{B, D\}, \{E, F\}\}$$

Больше разбиений не происходит. Новый автомат имеет 4 состояния

