Duale Hochschule Baden-Württemberg Mannheim

Studienarbeit

Location-based services

TODO (Theoretische Erarbeitung und prototypische Implementierung)

Name: Melanie Hammerschmidt, Victor Schwartz & Patrick Senneka

Matrikelnummer: TODO

Kurs: TAI12AI-BC

Studiengang: Angewandte Informatik Studiengangsleiter: Prof. Dr. H. Hofmann Betreuer: Prof. Dr. H. Hofmann

Semester: 5. - 6. Semester
Datum: 01.06.2015

Ehrenwörtliche Erklärung

Gemäß \S 5 Abs. 3 der Studien- und Prüfungsordnung DHBW Technik vom 22.09.2011 versichere ich hiermit, die vorliegende Arbeit selbstständig und nur mit den angegebenen Quellen und Hilfsmitteln verfasst zu haben.

01.06.2015	
Datum	Melanie Hammerschmidt, Victor
	Schwartz & Patrick Senneka

Abstract

Hier folgt das Abstract...

Inhaltsverzeichnis

Eh	renw	örtlich	e Erklärung			Ш
ΑĿ	strac	t				IV
Inl	naltsv	erzeicl/	nnis			٧
ΑĿ	kürz	ungsve	rzeichnis			VII
ΑĿ	bildı	ıngsver	zeichnis			VIII
Та	belle	nverzei	chnis			IX
Vo	rwor	t				X
1.	1.1.		ation			
2.	2.1.2.2.2.3.	Stando Positio 2.2.1. 2.2.2. Sonder	he Grundlagen ortarten	 	 	 13 27 27 27
3.	3.1.	Histor	gsfälle für LBS ie von LBS			
4.	4.1.	Anford Archit	che Umsetzung derungen ektur ologien und Entscheidungen Phonegap und Apache Cordova Ionic HTML5 CSS Angular-JS Kartenmaterial	 	 	
5.	lmp	lement	ierung			56

6. Fazit 6.1. Ausblick	57 57
Literatur	i
A. Appendix sections	ii

Abkürzungsverzeichnis

hal hal9000

Abbildungsverzeichnis

1.	Context-aware services	4
2.	Grundprinzip Satelliten Positionsbestimmung	15
3.	Umlaufbahn von GPS Satelliten	16
4.	GPS Basissationen	19
5.	GPS Präzision	19
6.	Präzision Differential GPS	20
7.	GSM Abdeckung in Deutschland	21
8.	Cell of Origin	22
9.	Antennen Segment	23
10.	Timing Advance mit Segment antenna	23
11.	Uplink Time of Arrival	24
12.	WLAN Messwerttabelle	25
13.	SpotOn	26

_		•		•	
ีเล	hel	len	verze	שוכ	hnis
ıч					

Vorwort

1. Einleitung

1.1. Motivation

Historisch war der eigene Standort schon immer von Bedeutung (Kriege, Schiffe, Weltent-decker)

Historisch gesehen war die Information über den eigenen Standort schon immer von großer Bedeutung. In Verbindung mit Daten die auf den Standort bezogen sind, war der Mehrwert enorm. So konnte man z.B. in der Seefahrt mit einem durch Sterne bestimmtem Standort in Verbindung mit einer Karte die Reiseroute so bestimmen, dass man Land erreicht bevor die Vorräte ausgehen.

Dieses noch recht weit hergeholte Beispiel über die Nutzung von Standort-bezogenen Daten konnte mit Hilfe von Technik auf die Informatik übertragen werden. Damit wurde der Begriff Location-based Services geprägt. Fachliteratur über Location-based Services existiert auch schon seit mehr als 10 Jahren.

Dem Endverbraucher waren solche Services zunächst einmal nur über spezielle Geräte, wie Navigationssystem möglich. In den letzten Jahren wurden milliardenfach Smartphones mit mobilem Internet und GPS-Modulen verkauft. Solch ein Smartphone besitzen nun eine Mehrzahl der in Deutschland lebenden Menschen. Durch die gerade erwähnten technischen Gegebenheiten der Smartphones ist die Nutzung von Location-based Services für den Nutzer ein Kinderspiel geworden.

Diese Arbeit beschäftigt sich mit der

(Aufklärung über LBS und Möglichkeiten von LBS)?

1.2. Bedeutung und Verbreitung von LBS

Bedeutung für Firmen, NSA, Privatpersonen, verbreitete Apps

Bedeutung für: Konzerne, Werbeindustrie, NSA, IT-Forensik Privatpersonen: Schnellste Zugverbindung, Restaurant, Freunde treffen, Reiseführer

Definitionen

Für diese Arbeit über Location-based Services ist es wichtig zu definieren, was unter diesem Begriff genau zu verstehen ist. Der erste Schritt dazu ist den Begriff ins deutsche zu übersetzen. Unter Location-based Services versteht man nach einer wörtlichen Übersetzung Standort-bezogene Dienste. Nach der deutschen Sprache wäre nun anzunehmen, dass es Dienste sind, die unter Zuhilfenahme des Standorts angeboten werden. In der Literatur gibt es allerdings nicht eine feste Definition, die mit dem ersten Location-based Service festgelegt wurde. Es ist vielmehr so, dass es mehrere Begrifflichkeiten gibt, die nicht das gleiche aussagen, aber dennoch so verwendet werden. Vergleiche hierzu Zitat 1 von Alex Küpper.

Zitat 1: "Although Location-based Services (LBSs) have been an issue in the field of mobile communication for many years, there exists neither a commen definition nor a commen terminology for them. For example, the terms location-based service, location-aware service, location-related service, and location service are often interchangeably used. [1, S.1]

Übersetzung: Obwohl Location-based Services (LBSs) schon seit vielen Jahren ein Thema sind, existiert weder eine einheitliche Definition noch eine einheitliche Begrifflichkeit. Zum Beispiel werden die Ausdrücke lacation-baded service, location-aware service, location-related service and location service oft austauschbar verwendet.

Eine eindeutige Definition zu Location-based Services wurde von Jochen Schiller in seinem Buch "Location-Based Services "aufgestellt. Vergleiche Definition?.?.

Definition ?.?: "The term location-based services (LBS) is a recent concept that denotes applications integrating geographic location (i.e., spatial coordinates) with the general notion of services. "[2, S.1]

Übersetzung: Der Begriff Location-based Services (LBS) ist ein aktuelles Konzept, dass Applikationen, die geografische Standorte integrieren (z.B., räumliche Koordinaten) mit dem eigentlichen Gedanken eines Services vereint.

Obwohl die Definition für Location-based Services von Jochen Schniller klar und eindeutig erscheint, besteht nach der Aussage von Alex Küpper noch Klärungsbedarf bezüglich der andren oft synonym verwendeten Begriffen:

- location service
- location-based service
- location-aware service
- and location-related service

TODO: immer breiter gefasst LBS LRS

location service

Der Hauptunterschied zwischen Location Service und Location-based Services besteht in der Verarbeitung der Standortdaten. Bei einem Location Service wird der Standort eines Objekts (z.B eines Handys) bestimmt. Dieser ermittelte Standort wird dann als Service extern bereitgestellt. Die Standortdaten werden also erfasst und zur Verfügung gestellt, ohne diese zu verarbeiten. Der Unterschied zu einem Location-based Service besteht darin, dass bei diesem die Standortdaten weiterverarbeitet werden. Ein location service ist also einer der wichtigsten Bestandteile eines Location-based Service, der dabei die Standortdaten nicht extern bereitstellt, sondern zu Weiterverarbeitung dem Location-based Service zu Verfügung stellt.

location-based service

In Definition?.? abgehandelt. (Schiller)

location-aware service

Definition ?.?: "Generally, context-aware services are defined to be services that automatically adapt their behavior, for example, filtering or presenting information, to one or several parameters reflecting the context of a target. These parameters are termed context information."[1, S.2]

Übersetzung: Im Allgemeinen sind context-aware services als solche definiert, dass sie automatisch ihr Verhalten, z.B. filtern oder darstellen von Informationen, an ein oder mehrere Parameter anpassen, die den Kontext des Ergebnisses widerspiegeln. Diese Parameter werden als Kontext Informationen bezeichnet.

TODO Übersetzung prüfen.

Die in Definition?.? beschriebene Kontext Parameter können einerseits Daten sein, die direkt von einem Sensor wie zum Beispiel einem Thermometer oder Positionssensor sein. Diese Rohdaten bilden den Primären Kontext. Andererseits gibt es noch aus Rohdaten abgeleitete Kontextdaten. Diese entstehen durch Kombination und oder Filterung von Rohdaten. Das sind die Sekundär Kontextdaten.

Die beispielhafte Aufzählung von Rohdaten zeigt, dass context-aware services location-aware services mit einschließen könne allerdings nicht müssen. Verdeutlicht wird das durch Abbildung 1.

Abbildung 1: Context-aware services [1, S. 2]

location-related service

Definition ?.?: "Therefore, mobile services relying on this importance of location will be referred to in the following as location related services (LRS). Location Based Services (LBS) are a sub-category of LRS "[3, S.5]

2. Theoretische Grundlagen

2.1. Standortarten

Betrachtet man sich den Titel dieser Arbeit "Location Based Services" (Standort bezogene Dienste) wird schnell klar aus welchen Bestandteilen sich LBS zusammensetzt. Zum einen der eigene Standort und ein Dienst der diesen nutzt. Dieses Kapitel beschäftigt sich mit ersterem, dem Standort. Es wird aufgezeigt wie ein Standort definiert werden kann. Als einleitendes Beispiel kann man sich vorstellen, man steht mitten in einer groß Stadt wie Mannheim. Für einen selbst ist klar wo der eigene Standort ist. Will man diesem einem Freund mitteilen kann dies schwierig sein. Deshalb gibt es definierte Arten seinen Standort bis auf wenige Zentimeter genau zu bestimmen. Aufgebaut ist dieses Kapitel anhand der genauigkeit des angegbenen Ortes mit dem beschrieben Hilsmittel. Begonnen wird mit dem ungenauesten Typ und als letztes wird die genauste Art zur Standortbeschreibung genannt. Im Anschluss folgt eine Zusammenfassung zur Standortbeschreibung in Gebäuden.

TO DO Wichtig ist noch zu sagen, dass es sich hierbei nicht um alle möglichkeiten Handelt, es ist immer möglich eine individuelle Beschreibung des eigenen Standortes zu geben. Beispielsweise über eine Kombination von Straßennamen und Bekannten Gebäuden wie einem Rathaus oder Wasserturm. TO DO Standortbeschreibung anhand von Objekten in der Nähe Man sucht sich Punkte in der Umgebung welche gesehen werden können. Diese gibt man dann weiter. Was sehr ungenau sein kann.

Standortbeschreibung anhand der Sterne Standortbeschreibung mit einem Kompass Dieser Abschnitt beschreibt wie man mit Hilfe eines Kompasses seine Position bestimmen bzw. angeben kann. Hierfür wird erst vorgestellt wie ein Kompass funktioniert und welche Voraussetzungen zur Standortbestimmung gegeben sein müssen. Bei einem Kompass handelt es sich um ein Gerät dessen Aufgabe es ist, in die Richtung zu zeigen in der der Norpol liegt. Dieses Ziel wird durch das Erdmagnetfeld erreicht.

Das Erdmagnetfeld ist in Abbildung XX zu sehen. Durch dieses Feld ist die komplette Erdkugel magnetisiert. In der Nähe des geografischen Südpols liegt der magnetische Nordpol. Umgekehrtes gilt für den geografischen und magnetischen Nord- bzw. Südpol. Damit ein Kompass dieses Feld nutzen kann wird ein magnetisches Metallstück benötigt. Da die magnetische Anziehung nicht sehr stark ist, sollte das Metallstück sehr leichtgängig sein. Hierfür besitzen die meisten Kompasse ein rundes Gehäuse welches mit einer Flüssigkeit gefüllt ist. In dieser Flüssigkeit ist das Metallstück in der Mitte fixiert und kann sich so mit sehr geringem Reibungswiderstand drehen. Hält man den Kompass waagerecht und dreht sich nicht dabei, wird sich das magnetisierte Metallstück Richtung geografischem Nordpol ausrichten. Bei einem Kompass wird dieses Metallstück Nadel genannt und ist meist in den Farben rot und grün lackiert. Die Rote Spitze der Nadel zeigt nach Norden.

Bei einem Kompass kommt neben der Nadel auch eine Kompassrose zum Einsatz. Diese ist unter der Nadel angebracht und entweder fest mit dem Gehäuse oder der Nadel verbunden. Mit Hilfe dieser Rose lässt sich eine Gradzahl ablesen diese Gradzahl orientiert sich immer am Abstand von der angezeigten Richtung des Norpols. Diese Gradzahl kann für die Beschreibung des eigenen Standort genutzt werden. Wie dieses Verfahren funktioniert wird im nächsten Abschnitt erklärt.

Standortbeschreibung mit zwei Fixpunkten Möchte man seinen geografischen Standpunkt jemandem Mitteilen oder sich dieses notieren, muss man diesen beschreiben. Hat man dafür nur einen Kompass zur Verfügung, kann man sich zwei Fixpunkte zur Hilfe nehmen um den eigenen Standort zu bestimmen. Anhand eines Beispiels soll dieses Verfahren erklärt werden. Befindet man sich auf einem Boot in der Nähe der Küste und möchte den Standort mit einem Kompass bestimmen, so sucht man sich zwei gut sichtbare Punkte an der Küste, dies können beispielsweise Leuchttürme oder eindeutig identifizierbare Felswände sein. Nun fixiert man den ersten Punkt mit dem Kompass. Anschließend liest man die exakte Grad Zahl auf der Kompassrose ab. In Abbildung XX entspricht dies der blauen Linie (TODO). Mit Hilfe der Angabe von Gradzahl und erstem Fixpunkt, kann der eigene Standort auf eine Linie differenziert werden. Um nun den Standort auf einen Punkt zu differenzieren fixiert man mit dem Kompass den zweiten Fixpunkt und liest ebenfalls die Grad Zahl ab. Zeichnet man diese Informationen in eine Karte ergibt sich ein Schnittpunkt von zwei Geraden. An dieser Stelle befindet man sich. Die Beschreibung des eigenen Standortes könnte beispielsweise wie folgt aussehen: 270 Grad von Leuchtturm X 250 Grad von Gebäude Y Vorteil, verfahren kann überall

angewendet werden wo es fixpunkte Gibt (excl. Offenes Meer) Nachteile dieser Methode sind, es wird keine Höhe angegeben und es kann eine große Ungenauigkeit beim Ablesen des Kompasses entstehen.

Standortbeschreibung mittels einer Adresse Im Gegensatz zur eben Vorgestellten Standortbeschreibung ist die in diesem Abschnitt behandelt wird wesentlich bekannte. Es handelt sich um die Anschrift bzw. Adresse. Bei dieser Beschreibung wird kein exakter Standort angeben, sondern ein Haushalt. Dies geschieht über einen Namen, eine Straße mit Hausnummer und die Angabe einer Stadt welche konkretisiert über die Postleitzahl angeben wird. Eine Adresse kann in Deutschland beispielsweise wie folgt aus: Max Mustermann Coblitzalle 53 12345 Mannheim

3. Zeile: Postleitzahl und Stadtname Die letzte Zeile der Adresse enthält den Namen einer Stadt sowie eine Postleitzahl. Bei der Angabe der Stadt handelt es sich um die gröbste Angabe innerhalb der Adresse. Mit Hilfe des Städtenames soll eine erste Orientierung innerhalb deutschlands ermöglicht werden. Es handelt sich nicht nur um Großstädte wie Berlin, Frankfurt, Hamburg etc. sondern alle Gemeinden welche den Titel Stadt tragen . Da manche Städtenamen mehrfach vorkommen oder die Angabe zu ungenau ist wird der Stadname mit der Postleitzahl (PLZ) definiert bzw. konkretierst. Alleine für die Stadt Mannheim gibt es über 15 verschieden PLZs. Diese sind teilweise jedem Stadtteil zugeordnet.

Die PLZs in Deutschland haben sich im Laufe der Jahre häufig geändert, seit 1993 gibt es fünfstellige PLZs in Deutschland. Die erste Ziffer 0-9 gibt ein Gebiet an. Mit jeder weiteren Ziffer wird das Gebiet konkretisiert. Siehe Abbildung XX. Da die Angabe von einer Stadt und dazugehörigen PLZ, das Gebiet noch nicht weit genug einschränkt um einzelne Häuser bzw. Haushalte zu identifizieren, wird ein Straßenname angegeben. Die europäischen Straßennamen sind meist mit Wort Namen angeben. Einige Beispiele hierfür sind: - Lindenstraße - Schillerstraße - Hauptstraße Teilweise sind die Namen historisch gewachsen, eine Hauptstraße beispielsweise war früher eine Haupthandelsroute für reisende. Auch Berühmte Persönlichkeiten wie Schriftsteller oder Politiker werden als Straßennamen verwendet. Besonders zu beachten ist, dass eine Straße eindeutig in einem PLZ Gebiet identifiziert werden kann. Um ein Haus innerhalb einer Straße exakt definieren zu können bedient man sich einer Nummerierung. Den sogenannten Hausnummern. Jedes Haus hat eine eigene Hausnummer. In Deutschland findet die Nummerierung der Häuser nach einer speziellen Ordnung statt. Auf einer Straßenseite wird mit der Zahl eins begonnen, auf der anderen Straße bekommt das erste Haus die Nummer zwei. Diese Ordnung wird bis zum Ende der Straße vortgeführt, daraus resultierte, dass eine Straßenseite nur gerade Hausnummern besitzt und die andere nur ungerade. Da es nicht selten vorkommt, dass in einem Haus mehrere Parteien wohnen, wird neben den Beschriebenen

Bestandteilen einer Adresse noch ein Empfänger mit Vor- und Nachname oder nur Nachname angegeben. Diese Beschreibung findet auf der ganzen Welt anwenund, allerdings nicht immer in diesem Format. Das beschrieben Format trifft größtenteils in Europa zu. Zwei Beispiele für die Abweichung dieser Beschreibung, sind die Stadt Mannheim und die vereinigten Staaten von Amerika. In Mannheim ist die Innenstadt in Quadrate aufgeteilt. Siehe Abbildung XX

Dort gibt es keine Straßennamen sondern nur Koordinaten mit einem Buchstaben und einer Zahl. !!TODO!! In New York wird eine Straße in realtion zu einem Fixpunkt angegeben. Es wird als Straßenname angebgen die wie vielte Straße es ist vom definierten Fixpunkt !!TODO!!

Verwendung von Adressen Die vorgestellte Beschreibung des eigenen Standortes mithilfe einer Adresse ist besonders wichtig für Brief- und Paketversandorganisationen. In Deutschland wurden in den letzten Jahre hauptsächlich mit der Deutschen Post AG Briefe verschickt. Diese ist darauf angewiesen, dass auf jedem Pakte und Brief die Adresse im beschriebenen Format angegeben ist damit eine Zustellung erfolgen kann. Desweiteren hat die Adresse stark an Bedeutung dazu gewonnen mit der Entwicklung von Navigationsgeräten. Im Jahr 2014 haben ca. 48Auch im Alltag wird die Adresse meist zur Beschreibung des eigenen Standortes verwendet. Möchte man Freunde zu sich einladen gibt man meist die Adresse an und mit eine Navigationsgerät oder einer Karte kann der Haushalt gefunden werden. Vergleicht man eine Adresse mit der Standortbeschreibung des letzten Kapitels über einen Kompass ist zu erkennen, dass man sich einen groben Überblick über den Standort mit Adresse viel leichter verschaffen kann. Die Koordinaten eines Kompass kann man nur mit entsprechendem Fachwissen deuten. Als Nachteile

zählen die Genaugkeit und Abdeckung der Erde mit Adressen. Die Genaugkeit des eigenen Standortes kann mit einer Adresse nicht exakt angegeben werden. Während bei einer kleinen Einzimmerwohnung der Standort auf wenige Meter genau angegeben werden kann, kann sich dies auf mehrere Kilometer ausweiten wenn die Adresse zu einem großen Anwesen gehört. Für manche Location Based Sevices ist es wichtig, dass diese auch in nicht besiedelten Gebieten verwendet werden können. Hierzu zählen Beispielsweise LBS zum Wandern und Radfahren. Hierfür eignet sich die Angabe des eigenen Standortes mit einer Adresse nicht, da ein Standort nur auf der Minderheit der Erde mit einer Adresse angegeben werden kann. Im nächsten Abschnitt wird die Beschreibung des Standortes mithilfe von Längen- und Breitengraden erläutert.

Dieser Abschnitt erläutert die Standortbeschreibung mittels Längen- und Breitengrade. Bildlich kann man sich ein zweidimensionales Koordinatensystem vorstellen, welches den Nullpunkt im Zentrum besitzt, diese "Netz" legt man bildlich gesprochen über den Globus. So kann für jeden Ort auf dem Globus eine exakte Beschreibung stattfinden. Grundlagen für diese Standortbeschreibung Beim Globus handelt es sich annährend um eine Kugel. Diese Kugel dreht sich in ca. 24 Stunden um ihre eigene Achse. Die Achse kann man sich als gedachte Gerade vorstellen, welche an der untersten Stelle, dem Südpol einsticht und am obersten Punkt wieder austritt, dem Nordpol. Stellt man sich nun die Achse als Strecke von Nord- nach Südpol vor und halbiert diese, befindet man sich im ungefähren Mittelpunkt des Globus. Spannt man auf der Höhe der halbierten Achse

einen Kreis um den Globus, so befindet man sich an der dicksten Stelle, dem Aquator. Dieser befindet sich im Rechtenwinkel zur Achse.

Breitengrade Nachdem der Äquator im letzten Abschnitt definiert wurde, wird nun erklärt was Breitengrade sind. Um den gesamten Globus mit Graden zu beschreiben, hat man sich dazu entschieden den Globus am Äquator in eine nördliche und eine südliche Halbkugel aufzuteilen. Der Gesamte Globus ist in 180 Breitengrade aufgeteilt. Beim Aquator handelt es sich um den 0. Grad. In Abhängigkeit dieses Grades wird der Standort auf einem Längengrad angegeben. Es gibt jeweils 90 Grade in die nördliche und südliche Richtung. Mithilfe dieser Angabe kann man seinen Standort auf eine Linie um den Globus beschränken. Die Stadt Mannheim beispielsweise liegt auf der Linie welche im 49 Grad Winkel zum Äquator steht auf der nördlichen Halbkugel. Im Vergleich hierzu liegt Sydney im 33 Grad Winkel zum Äquator auf der südlichen Halbkugel. Damit der eigene Standort nicht nur einer Linie beschrieben werden kann, welche im schlimmsten Fall 40.075km lang ist, gibt es Längengrade. Diese Beiden Grade schneiden sich bei der Standortbeschreibung in einem Punkt und geben den Standort exakt an.

Längengrade Ähnlich wie bei Breitengraden handelt es sich bei Längengraden um gedachte Linien um den Globus. Längengrade stehen allerdings senkrecht zum Äquator und nicht parallel wie die Breitengrade. Bei diesen Graden ist zu beachten, dass sie immer den gleichen Umfang besitzen. Um den kompletten Globus abzudecken gibt es 360 Längengrade. Diese wurden aufgeteilt in westliche und östliche Grade mit jeweils 180 Grad. Für Längengrade gibt es keinen gegebenen Nullpunkt wie den Äquator. 1883 wurde sich darauf geeinigt den Nullmeridian (0 Längengrad) durch eine Sternenwarte im englischen Greenwich laufen zu lassen. Seit dieser Einigung wird wird er Längengrad in Abhängigkeit des Winkels zur Stadt Grennwich angegeben. Um auf die Beispiele des letzten Abschnitts zurück zukommen, die Stad Mannheim liegt auf dem 8. Längengrad östlich von Grennwich und Sydney 151. Grad östlich von Greenwich.

Genauigkeit der Längen- und Breitengrade Der Umfang des Globus beträgt ca. 40.000 km. Teilt man diesen nun durch 360 Längengrade erhält man einen Abstand von 111km zwischen zwei Längengraden. Das bedeutet, wenn der Längengrad lediglich mit einer Gradzahl angegeben ist, handelt es sich um eine Strecke von 111km auf dem der Standort liegen kann. Daher teilt man entweder ein Grad in 60 Minuten und eine Minute in 60 Sekunden, was eine Strecke von 30m entspricht oder man gibt zu einer Grad Zahl Dezimalstellen an. Bei der Angabe von 5 Dezimalstellen beträgt die Genauigkeit 1 Meter. Durch die Krümmung der Erde, lässt sich diese Rechnung nicht auf Breitengrade übertragen. handelt es sich ca um ein Gebiet von 111 kmhoch2. Dies ist selbstverständlich nicht genau genug um den eigenen Standort zu beschreiben. Deshalb wird ein Grad in 60 Minuten unterteilt. Draus resultiert eine Genauigkeit von 1,85 kmhoch2. Da dies immer noch nicht genau genug ist, teilt man eine Minute in 60 Sekunden. Damit ergibt sich eine Genauigkeit von 30 mhoch2.

Adresse + PLZ, analoge Karte, Länge+Breit, 3D-Position, indoor (WLAN Blue)

2.2. Positionsbestimmung

UND FUNKTIONSWEISE

In diesem Kapitel wird zunächst einmal geklärt, was Positionsbestimmung ist. Nach Alex Küpper ist die Positionsbestimmung wie folgt definiert:

Zitat ?: "Positioning is a process to obtain the spatial position of a target "[1, S.121] **Übersetzung:** Positionsbestimmung ist ein Prozess, um die räumliche Position eines Ziels zu erhalten.

Mit räumlicher Position ist hierbei ein Standort gemeint, der zu einem geeigneten Bezugssystem bestimmt wird. Das bedeutet ein Position der sich auf das Bezugssystem "Weltkarte" bezieht repräsentiert den geografischen Standort auf der Weltkarte. Die Position mit dem Bezugssystem eines bestimmten Gebäudes repräsentiert den Standort in dem Gebäude. Bsp.: Stockwerk 1 Raum 139b.

Ein weiteres Zitat bezüglich der Positionsbestimmung grenzt den Begriff Positionsbestimmung deutlich von Ortung ab. Dieser Unterschied soll hier auch aufgezeigt werden. Hierzu das Zitat der Webseite www.itwissen.info:

Zitat ?: "Die Begriffe Positionsbestimmung und Ortung werden häufig synonym benutzt; sie unterscheiden sich allerdings im Detail. So wird mit der Positionsbestimmung der Ort von Objekten oder Personen eindeutig in einem geografischen Koordinatensystem festgelegt. Sie bildet die Basis für die Ortung und wird dann zur Ortung, wenn Dritten die ermittelte Position mitgeteilt wird. "[4, Positionsbestimmung]

Das Zitat ist aussagekräftig und grenz Positionsbestimmung und Ortung eindeutig voneinander ab.

In diesem Kapitel wird, wie es der Titel vorgibt, nur die Positionsbestimmung betrachtet. Dieser ist die Voraussetzung, um Ortung (die Übertragung der Position) überhaupt

durchzuführen. Allerdings wird im weiteren Teil dieser Arbeit verstärkt die Ortung betrachtet werden. Die Übertragung der Position spielt nämlich zur Bereitstellung eines "location based Services" in nahezu allen Fällen eine große Rolle. Da die Positionsbestimmung für die Ortung benötigt wird, diese hier im Detail vorgestellt.

TODO: Küpper S.123 Fundamentals ergänzen??

Bei einer Positionsbestimmung werden Messdaten gesammelt, um die eigenen Position festzulegen. Die Messdaten beziehen sich dabei immer auf festgelegte Fixpunkte, von welchen die Position schon bekannt ist. Diese Daten sind zum Beispiel Winkel, Geschwindigkeit und Entfernung.

In den kommenden Kapiteln werden unterschiedliche Methoden/Techniken zur Positionsbestimmung aufgezeigt. Diese werden in drei Kategorien eingeordnet, die satellitengestützte Positionierung, Positionierung in Mobilfunknetzen und Positionsbestimmung in Gebäuden.

TODO: Robustheit ergänzen???

Kein Verfahren zur Positionsbestimmung ist perfekt. Deshalb werden die unterschiedlichen Methoden/Techniken zur Positionsbestimmung anhand von drei ?Qualitäts?-Merkmalen betrachtet. Diese werden hier kurz erläutert.

1. Bereich (Scope)

Ein Positionssystem ist immer auf einen Bereich bezogen, in dem eine Position theoretisch bestimmt werden kann. Dieser Bereich kann stark variieren von einem Raum bis zu einem weltweiten Bereich.

 \longrightarrow Ein großer Scope ist besser

2. Abdeckung (Coverage)

Die Abdeckung eines Positionssystems kann maximal so groß sein, wie es der Bereich zulässt. Die Abdeckung ist die Teilmenge des Bereichs, in dem tatsächlich die Position bestimmt werden kann. So ist es beispielsweise bei einem Satellitenpositionssystem nicht möglich eine Abdeckung in Gebäuden oder unter der Erde zu gewährleisten.

 \longrightarrow Eine große Abdeckung ist besser

3. Präzision (Precision)

Ein Positionssystem kann einen Standort nicht exakt, sondern mit einer gewissen Abweichung bestimmen. Diese Abweichung kann von Umwelteinflüssen abhängen und für eine Positionsbestimmung an der selben Stelle abweichende Ergebnisse liefern. Die Robustheit eines Positionssystem trägt somit zur Präzision bei.

→ Eine höhere Präzision ist besser

[2, S.183]

Satellitengestützte Positionierung

Satellitengestützte Positionierung basiert, wie der Name schon vermuten lässt, auf Satelliten.

Das bekannteste System zur satellitengestützte Positionierung ist das Global Positioning System, dass mit GPS abgekürzt wird. Auf GPS wird nach einer Erläuterung über das generelle Funktionsprinzip von Satellitenpositionierung eingegangen.

Gegeben für eine Positionsbestimmung sind Satelliten, die sich in der Erdumlaufbahn befinden und elektromagnetische Wellen auf die Erde funken. Damit eine Position auf der Erdoberfläche mit Hilfe von Satelliten errechnet/bestimmt werden kann, muss zuerst einmal ein Gerät vorhanden sein, dass die elektromagnetischen Wellen der Satelliten empfangen kann.

Ist das gegeben kann prinzipiell die Position des Nutzers auf der Erdoberfläche anhand von der exakten Position von mindestens drei Satelliten (s_n) und des Abstands zu diesen Satelliten (r_m) bestimmt werden.

[2, S. 188]

Vergleiche hierzu Abbildung 2

Abbildung 2: Grundprinzip Satelliten Positionsbestimmung [2, S. 188]

In Abbildung 2 a) stellen die Kreise Positionen auf der Erde dar, an denen ein User-

Position anhand des gemessenen Abstands (r_m) möglich ist. In dieser Darstellung mit drei Satelliten ist die User-Position eindeutig an dem Schnittpunkt aller drei Kreise. In Abbildung 2 b) wird die Darstellung ins dreidimensionale überführt. Hierbei ist nun zu erkennen, dass die Kreise zu Kugeln geworden sind. Daraus resultierend gibt es nun einen zweiten Schnittpunkt. Für die Positionsbestimmung gibt es nun zwei mögliche User-Positionen. Dieses Problem beseitigt man einfach, indem man die logisch wahrscheinlichere Position als richtige ansieht. In der Abbildung wäre das Intersection Point 1, da Intersection Point 2 im Weltall liegt und davon auszugehen ist, dass sich Menschen auf der Erdoberfläche befinden.

Es wurde nun erläutert, wie sich die Position ermitteln lässt, wenn dem Nutzer die Position der Satelliten und der Abstand zu diesen bekannt ist. Wie diese Werte ermittelt werden wurde noch nicht erwähnt. Darauf wird nun eingegangen.

Satelliten Positionen:

Satelliten kreisen um die Erde. Sie sind also Ständig in Bewegung.

Abbildung 3: Umlaufbahn von GPS Satelliten [1, S. 164]

Da sie in zuvor festgelegten Umlaufbahnen kreisen, kann die Position eines Satelliten abhängig von der Zeit errechnet werden. Diese Berechnung kann ohne Probleme auf einem Smartphone stattfinden. Die einzigen Daten die dazu nötig sind, ist eine aktuelle Uhrzeit, sowie die Satellitennamen mit der dazugehörigen Umlaufbahn. Solche Daten befinden sich standardmäßig auf GPS fähigen Geräten. Bei Bedarf, durch den Ausfall oder das Hinzukommen neuer Satelliten, werden diese Daten aktualisiert.

Abstand zu den Satelliten:

Der Abstand zu Satelliten wird anhand von der Zeit berechnet, die das Signal vom Satelliten bis zum Empfänger benötigt. Diese Zeit wird dadurch ermittelt, dass ein vom Satelliten die aktuelle Zeit gesendet wird. Sobald diese beim Empfänger ankommt wird der Zeitunterschied Δt zur aktuellen Zeit ermittelt. Da sich elektromagnetische Wellen mit Lichtgeschwindigkeit c fortbewegen, beträgt die Geschwindigkeit näherungsweise 300.000 km/s. Mit der Formel r=c Δt lässt sich dann die Entfernung zum Satelliten ermitteln. Das Verfahren funktioniert allerdings nur, wenn die Uhren vom Satelliten und des Empfängers exakt synchronisiert sind. [2, S. 189]

Verfahren zur Uhren Synchronisation:

Eine Abweichung der Uhren von nur $1\mu s$ ergibt aufgrund der hohen Geschwindigkeit der elektromagnetischen Wellen eine Abweichung der bestimmten Position von ca. 300 Metern. [2, S. 189]

Jeder Satellit ist mit einer Atomuhr ausgestattet um immer die richtige Zeit zu senden. Eine Atomuhr in ein Smartphone einzubauen macht allein schon aus wirtschaftlicher Sicht keinen Sinn. Deshalb muss es ein Verfahren geben, mit dem die Uhren synchronisiert werden könne, oder der Unterschied zwischen den Uhren bestimmt werden kann.

Das Grundprinzip dieses Verfahrens wird nun erläutert. Dazu werden zunächst einige Variablen definiert.

 t_s steht für die Systemzeit des Satelliten, an der das Signal gesendet wurde.

 $\tilde{t}_{s=t_s+\delta t_s}$ ist die Zeit des Satelliten unter Berücksichtigung der Abweichung δt_s zur exakten Zeit.

 t_u steht für die Systemzeit der Users, zu der er das Signal empfangen hat.

Die Systemzeit des Users kann eine Abweichung zur exakten Zeit haben. Deshalb wird für die weitere Betrachtung $\tilde{t}_{u=t_u+\delta t_u}$ unter Berücksichtigung der Abweichung δt_u zur exakten Zeit verwendet.

 $\Delta \tilde{t} = \tilde{t}_u -_s$ ist die gemessene Zeit zwischen dem Abschicken des Signals vom Satelliten bis zum Empfang des Signals beim User.

c gibt die Lichtgeschwindigkeit an.

Im Abschnitt "Abstand zu den Satelliten "wurde schon die Formel zur Berechnung des Abstands $r=c \triangle t$ erwähnt. Diese basiert allerdings darauf, dass beide Uhren synchronisiert sind.

Hier wir diese Formel dahingehend angepasst, dass die Abweichungen $\triangle t$ von den Systemzeiten berücksichtigt werden. Das ist dann der gemessen Abstand p:

,,

$$p = c * \Delta \tilde{t} \tag{1}$$

$$= c * (\tilde{t}_u - \tilde{t}_s) \tag{2}$$

$$= c * ((t_u + \delta t_u) - (t_s + \delta t_s)) \tag{3}$$

$$= c * (t_u - t_s) + c * (\delta t_u - \delta t_s)$$

$$\tag{4}$$

$$= r + c * (\delta t_u - \delta t_s) \tag{5}$$

"[2, S. 190]

Die Systemzeit des Satelliten ist bei dieser Betrachtung als exakt anzusehen, da Satelliten mit einer Atomuhr ausgestattet sind und von Bodenstationen kontrolliert werden. δt_s ist damit als 0 anzusehen.

Daraus erhalten wir $p = r + c * \delta t_u$

r kann hierbei durch die Koordinaten des Satelliten und des Users dargestellt werden: $p = \sqrt{(s_x - u_x)^2 + (s_y - u_y)^2 + (s_z - u_z)^2} + c * \delta t_u$

Diese Gleichung enthält nun vier unbekannte Variablen $u_x, u_y, u_z und \delta t_u$.

Um diese Gleichung zu lösen benötigt man diese vier unbekannten Variablen. Jeder dieser Variable kann selbst wieder über eine Gleichung bestimmt werden. Um alle vier Gleichungen zu lösen sind dann vier Satelliten nötig.

Es gibt nun mehrere Möglichkeiten diese Lösung anzugehen. Es kann zum Beispiel durch ein Näherungsverfahren geschehen. Herr Schiller verweist in deiner Arbeit dabei auf die Möglichkeit eine Taylor Reihe.

Da es ab dieser Stelle nur noch eine mathematische Aufgabe ist die Lösung zu finden, und es dafür wiederum unterschiedliche Ansätze gibt, wird darauf nicht weiter eingegangen. [2, S. 190]

GPS

Das Global Position System wurde vom Amerikanischen Verteidigungsministerium entwickelt. Es gibt eine Variante, die nur dem Militär zugänglich ist und eine, die der Zivilbevölkerung frei zur Verfügung steht.

Das GPS System besteht auf 24 Satelliten, die um die Erde kreisen. Die Satelliten können über Basisstationen, die auf der ganzen Erde verteilt sind, ihre Uhren synchronisieren und ihre richtige Umlaufbahn beibehalten. [1, S. 162]

Abbildung 4: GPS Basissationen [1, S. 163]

Das GPS basiert grundsätzlich auf den zuvor vorgestellten Mechanismen zur Standortbestimmung.

Es gibt allerdings einen Unterschied in der militärischen und der zivilen Variante. Die militärische Variante bietet eine höhere Präzision, steht allerdings nur Ländern die der NATO angehören zur Verfügung.

Die zivile Variante bietet im Normalfall eine fast so hohe Präzision, wie die militärische, kann aber von der U.S. Army durch einen Mechanismus, der Selective Avaulability (SA) heißt deutlich ungenauer gemacht werden.

Vergleiche hierzu Abbildung 5.

PPS steht für die militärische Variante wohingegen SPS für die zivile Variante des GPS steht.

Service	Horizontal Precision	Vertical Precision		
PPS	22 m	27.7 m		
SPS with SA	100 m	156 m		
SPS without SA	25 m	43 m		

Abbildung 5: GPS Präzision [2, S. 195]

Die Präzision von GPS kann durch Differential GPS nochmals verbessert werden. Dazu

wird in einer Basisstation, zu der eine exakte Position vorhanden ist, die GPS Position ermittelt. Gibt es Abweichungen durch die Atmosphäre wird von der Basistation eine Korrektur erstellt, die dann an den User weitergeleitet werden kann, um auch dessen Präzision zu verbessern.

Vergleiche hierzu Abbildung 12

Abbildung 6: Präzision Differential GPS [2, S. 196]

Betrachtet man Satelliten Positionierung und im speziellen GPS kann man für die Qualitätskriterien die folgende Bewertung abgeben.

- → Bereich (Scope) Prinzipiell ist eine Standortbestimmung auf der ganzen Welt möglich.
- → Abdeckung (Coverage) Die Position kann überall auf der Erdoberfläche, mit einer Ausnahme, der Positionsbestimmung in Gebäuden, bestimmt werden. Das bietet eine sehr große Abdeckung.
- → Präzision (Precision) Eine hohe Präzision wird durch viele Satelliten und Korrektursignale ermöglicht. Die Position ist so robust gegen Umwelteinflüsse.

[2, S. 187]

Die Kosten zum Betreiben von Satelliten sind immens hoch. Es gibt allerdings auch andere Positionierungssysteme, die auf vorhandene Funknetze setzen. Diese werden nun vorgestellt.

Positionierung in (Mobil)Funknetzen

Ein weit verbreitetes Funknetz ist das Mobilfunknetz Es ist in über 190 Ländern verfügbar. [2, 206] Um zu verdeutlichen, wie groß die Abdeckung in Deutschland ist, wird die Netzabdeckung von drei großen Mobilfunkanbietern aufgezeigt. Vergleiche hierzu Abbildung 7.

Abbildung 7: GSM Abdeckung in Deutschland [5] [6] [7]

Die Abbildungen zeigen eine nahezu vollständige Abdeckung Deutschlands durch das GSM Netz. Partiell ist je nach Netzbetreiber die Abdeckung durch GSM nicht gegeben.

Zu Abbildung 7 ist noch anzumerken, dass es sich hierbei um Darstellungen der einzelnen Mobilfunkanbietern handelt. Es ist davon auszugehen, dass auf Grund von Marketingeinflüssen auf die Grafiken eine höhere Abdeckung dargestellt wird, als in der Realität vorhanden ist. Um einen groben Eindruck für die Abdeckung in Deutschland zu bekomme, sollten diese Abbildungen ausreichend sein.

Basierend auf GSM gibt es verschieden präzise Ansätze die Position eines Netzers über dessen Handy zu finden.

Der technisch einfachste aber auch unpräziseste Ansatz ist die Positionsbestimmung anhand des Funkmasten, an dem des Handy angemeldet ist. Das Prinzip dahinter ist, dass sich ein Handy immer mit dem stärksten Signal eines Funkmasten verbindet. Von dem Funkmast mit dem stärksten Signal ist auszugehen, dass es der nächstgelegene ist.

Die Position, sowie ein Radius, in dem dessen Signal empfangen werden kann ist zu jedem Funkmasten ist dessen Betreiber bekannt.

Sobald sich ein Handy mit einem Funkmasten verbindet, wird das in einer dezentralen Datenbank (Visitor Location Register) erfasst. Die Informationen aus der VLR Datenbank werden anschließend in die zentrale Datenbank des Betreibers des Funkmasten, dem Home Location Register, übertragen. Der Betreiber kann anhand seiner Positionsinformationen des Funkmasten ermitteln, in welchem Bereich die Position des Handys bzw. des Nutzers ist. Vergleiche Abbildung 8.

Abbildung 8: Cell of Origin [2, S. 209]

Die Präzision dieser Positionierung hängt von der Größe der Funkzelle ab. So ist in Städten von einem Radius von ca. 1 km auszugehen, wohingegen in ländlicheren Regionen der Radius einer Funkzelle bis zu 35 km betragen kann. [2, S. 207]

Ein präziseres Verfahren wurde von Ericsson entwickelt und heißt Mobile Positioning System (MPS).

Dieses Verfahren besteht aus mehreren Teilverfahren, die hier nacheinander vorgestellt werden.

1. Cell of Global Identity

Dieses Verfahren entspricht den zuvor beschriebenen Positionsbestimmung anhand der Funkzelle. Vergleiche Abbildung 8. Diese Variante des MPS bildet die Grundlage für alle weiteren.

2. Segment antennas

Eine Funkzelle breitet sich meist 360° um einen Funkmasten aus. Dieser Bereich kann nicht von einer Antenne abdeckt werden. Dafür werden normalerweise drei bis vier Antennen benötigt. Jede einzelne Antenne ist dann für einen geringeren Winkel zuständig (90° oder 120°).

Die Position eines Handys kann anhand der genutzten Antenne auf ein Segment der Funkzelle eingeschränkt werden. [2, S. 208]

Vergleich hierzu Abbildung 9.

Abbildung 9: Antennen Segment [2, S. 209]

3. Timing Advance

In einer Funkzelle gibt es mehr als ein Gerät. Deshalb gibt es ein "Time-division multiplexing", was jedem Gerät einen Zeitslot gibt, in dem es mit der Funkzelle kommunizieren kann. Dieses Verfahren berücksichtigt auch die Laufzeit des Signals von einem Handy zu einem Funkmasten. Die Informationen über die Laufzeit des Signals können dazu verwendet werden die Entfernung des Geräts zu einem Funkmasten zu bestimmen. Die Entfernung kann dabei in Abstufungen von ca. 555 Metern ermittelt werden. Unter Zuhilfenahme des Segment antenna Verfahrens kann die Präzision der Position so weiter verbessert werden. [2, S. 208]

Vergleiche hierzu Abbildung 10.

Abbildung 10: Timing Advance mit Segment antenna [2, S. 209]

4. Uplink Time of Arrival

Befindet sich ein Handy in mindestens 4 Funknetzen kann zu allen verfügbaren Funknetzen nach dem "Timing Advance "Verfahren die Entfernung bestimmt werden.

Ähnlich wie bei der Satelliten Positionierung ist es dann möglich eine genaue Position zu ermitteln. Diese ist dann auch 50 - 150 Meter genau. [2, S. 209]

Vergleiche Abbildung 11.

Abbildung 11: Uplink Time of Arrival [2, S. 209]

- \longrightarrow großer Bereich (Überall Funktmasten installiert werden können. \longrightarrow Abdeckung sehr flächendeckend. sogar in Gebäuden.
- → Bereich (Scope) Die Standortbestimmung ist in 190 Ländern möglich.
- → Abdeckung (Coverage) Die Abdeckung der Funknetze ist in den Ländern sehr hoch. Es ist sogar möglich in Gebäuden den Standort zu bestimmen.
- \longrightarrow Präzision (Precision) Die Präzision liegt im besten Fall bei 50 150 Metern, was für viele LBS schon ausreichend sein dürfte.

Positionsbestimmung mit geringer Abdeckung

Positionsbestimmung mit einer geringen Abdeckung bieten sich besonders für den Einsatz in Gebäuden an, da dort Verfahren wie GPS versagen und Gebäudeflächen nicht so groß sind.

Auf zwei Verfahren, die Positionsbestimmung mit geringer Abdeckung wird nun im genauer eingegangen. Zuerst wird die Positionsbestimmung anhand von WLAN Netzwerken dargestellt. Danach werden Radio Beacons genauer betrachtet.

WLAN Netzwerke Heutzutage sind in vielen Gebäuden WLAN-Netzwerke verfügbar. Ein gutes Beispiel dazu ist die DBHW-Mannheim. Dort ist in jedem Raum ein WLAN Accesspoint vorhanden.

Von Microsoft gibt es ein prototypisches Verfahren, welches anhand der Signalstärke aller verfügbaren WLAN Accespoints eine Positionierung in WLAN-Netzwerken ermöglicht.

Das Verfahren basiert darauf, dass man Messpunkte erstellt. Zu den erstellten Messpunkten ist die Position bekannt. Aus vielen Messpunkten ergibt sich dann eine Tabelle.

Eine solche Tabelle sieht nach Herr Schillers Buch Location-based Services so aus:

Anhand solch einer Tabelle kann zur Positionierung die Signalstärke der einzelnen WLAN

x/m	y/m	d /°	SS₁/dBm	SS₂/dBm	SS/dBm	SS./dBm
1.0	3.5	0	20	10	18	25
2.0	3.5	90	25	15	17	25
2.5	3.0	90	15	18	16	16
2.5	1.5	180	6	35	18	20
2.0	2.5	0	12	10	22	14

Abbildung 12: WLAN Messwerttabelle [2, S. 210]

Accesspoints ermittelt werden und auf den am besten passenden Standort gemappt werden. So ist eine Positionierung in einem zuvor festgelegtem Raster möglich.

Problem an dem Verfahren ist, dass wenn zu wenig Accespoints vorhanden sind, wird die Position schnell ungenau. Außerdem sind Messerung zum Konfigurieren erforderlich.

Ein alternativer Ansatz wäre Triangulation. Das ist ähnlich zum dem Verfahren, das bei GPS vorgestellt wurde. Der Abstand zu den Accesspoint kann anhand er Signalstärke errechnet werden. Die Position von den Accesspoint ändert sich nicht und ist bekannt. Damit kann aus dem Schnittpunkt der Radium am die Accesspoints der eigene Standort ermittelt werden. [2, S. 209-211]

- → Bereich (Scope) Die Reichweite eines WLAN Accesspoint beträgt maximal 100 Meter. In Deutschland und anderen Ländern ist WLAN nicht flächendeckend Verfügbar, sondern nur in wenigen Städten vorhanden. Der Bereich ist meist auf ein Gebäude beschränkt.
- → Abdeckung (Coverage) Die Abdeckung von WLAN Netzwerken entspricht ziemlich genau dem Scope.
- → Präzision (Precision) Die Präzision von WLAN Positionierung ist bis auf wenige Meter genau. Damit ist eine hohe Präzision gegeben.

Radio Beacons

Radio Beacons sind kleine Geräte, die ständig elektromagnetische Wellen senden. Diese übermitteln Daten, wie die ID des Radio Beacons, bis zu einer Entfernung von 30 Metern.

Alleine durch die Lokalisation eines Beacons (Funkzelle) ist eine hohe Genauigkeit gegeben. Beacons können so konfiguriert werden, dass ihr Signal nur in einem Radius von ca. 5 Meter empfangen werden kann. Ermittelt ein Gerät (Handy) solch einen Beacon ist die eigene Position schon sehr präzise bestimmt.

Auch bei dieser Technologie ist es wieder möglich Signale von mehreren Beacons zur Positionsbestimmung zu verwenden. Dadurch wird die ermittelte Position genauer. Bei Beacons ist es sogar möglich eine 3D-Position zu ermitteln.

Ahnlich zu dem bei Satelliten Positionsbestimmung beschriebenem Verfahren ist es auch hier wieder möglich eine genaue Position zu ermitteln, wenn man Signale von mehreren Beacons empfängt. Das Verfahren beruht auf einer Abstandsmessung anhand der Time of Arrival von Signalen. Ein beispielhaftes Verfahren dafür heißt SpotOn. Nutz man SpotOn wird eine Präzision der Position von 3 Meter erreicht. Das ist ein sehr gutes Wert.

Vergleiche Abbildung 13.

Abbildung 13: SpotOn [2, S. 201]

- → Bereich (Scope) Der Bereich kommt auf die Anzahl der Beacons an, ist aber als klein einzustufen.
- → Abdeckung (Coverage) Die Abdeckung in dem Gegebenen Scope sollte 100 prozentig sein.
- → Präzision (Precision) Die Präzision ist mit 3 Metern sehr gut.

GPS, Mobilfunk, WLAN, Bluetooth

2.2.1. Kriterien für die Standortbestimmung

Genauigkeit, Bestimmungszeit, Robustheit

2.2.2. Arten der Standortbestimmung

GPS, Mobilfunk, WLAN, Sterne, Beacons

2.3. Sonderformen

3Dimensionale Standorte + Kartenmaterial + Indoor

Google Earth 3D

2.4. Typen von LBS

TODO: Kapitel hier oder in Einleitung platzieren?

Location-based Services lassen sich grundsätzlich in zwei Kategorien einteilen. Diese unterscheiden sich über die Art und Weise, wann der eigene Standort bestimmt und genutzt wird.

In diesem Kapitel geht es darum diese beiden Kategorien zu definieren und voneinander durch Vor und Nachteile abzugrenzen.

In den Büchern von Alexander Küpper und vielen Onlinequellen sind LBS in die Kategorien reaktive und proaktive-LBS unterteilt. Der Autor Jochen Schiller verwendet die Begrifflichkeit Pull- und Push Services, die allgemein für Services gültig ist. Hierbei entsprechen reaktive LBS den Pull Services, sowie die proaktiven LBS den Push-Services.

Im Weiteren wird die für Location-based Services spezifischere Notation, reaktive- und proaktive-LBS, von Alexander Küpper verwendet.

Reaktive LBS

Herr Küpper unterscheidet in seinem Buch "Location-Based Services - Fundamentals and Operation "grundsätzlich zwischen reaktiven- und proaktiven-LBS. Diese Unterscheidung macht er an der Nutzung der Standortdaten von dem LBS fest. Erhält ein LBS den Standort nur dann wenn dieser vom Nutzer aktiviert ist, ist es ein reaktiver LBS.

Vergleiche hierzu Zitat?:

Zitat ?: "LBSs can be classified into reactive and proactive LBSs. A reactive LBS is always explicitly activated by the user. "[1, S.3]

Übersetzung: LBSs können in reaktive und proaktive LBSs klassifiziert werden. Ein reaktiver LBS wird immer ausdrücklich durch den Nutzer aktiviert.

Herr Schiller definiert die reaktiven LBS (Pull Services) dahingehend, dass eine Applikation nur Informationen aus einem Netzwerk oder über einen Standort erhebt, wenn diese aktiv genutzt wird.

Vergleiche hierzu Zitat?:

Zitat ?: "Pull services, in contrast, mean that a user actively uses an application and, in this context, "pullsïnformation from the network. This information may be location-enhanced (e.g., where to find the nearest cinema) "[2, S.20]

Übersetzung: Pull-Dienste bedeuten, dass ein Nutzer eine Applikation aktiv nutzt, und in diesem Kontext Informationen von einem Netzwerk bezieht. Diese Informationen können in Verbindung zu einem Standort sein (z.B. wo das nächste Kino zu finden ist).

Bezugnehmend auf die zwei Zitate/Definitionen über reaktive LBS wird dieser Begriff nochmals in Bezug auf eine Smartphone App, wie sie im Rahmen dieser Studienarbeit erstellt wird, erläutert.

Spezielle Definition:

Reaktive LBS sind für ein Smartphone Apps, die nur während der Benutzung auf den Standort zugreifen und diesen verwenden. Während der Benutzung bedeutet dabei, dass die App geöffnet sein muss und nicht im Hintergrund läuft.

Proaktive LBS

Im Vergleich zu reaktiven LBS zeichnen sich nach Alexander Küpper proaktive LBS dadurch aus, dass diese durch Standortereignisse automatisch aktiviert werden.

Vergleiche hierzu Zitat?:

Proaktive LBS nach Jochen Schniller stellt klar, dass der Nutzer Informationen zu seinen Standorten erhält und das sogar ohne, diese Informationen aktiv oder bewusst anzufordern. Diesen Schritt übernimmt der proaktive LBS für den Nutzer.

Vergleiche hierzu Zitat?:

Zitat ?: "Proactive LBSs, on the other hand, are automatically initialized as soon as a predefined location event occurs, for example, if the user enters, approaches, or leaves a certain point of interest or if he approaches, meets, or leaves another target. "[1, S.3]

Übersetzung: Proaktive LBSs werden automatisch initialisiert, sobald ein zuvor definiertes Standortevent auftritt. Dies kann zum Beispiel sein, dass ein Nutzer eine Sehenswürdigkeit betritt, sich dieser annähert oder diese verlässt. Oder wenn der Nutzer sich einem anderen Ziel nähert, es trifft oder es verlässt.

Zitat ?: "Push services imply that the user receives information as a result of his or her whereabouts without having to actively request it. The information may be sent to the user with prior consent (e.g., a subscription-based terror attack alert system) or without prior consent (e.g., an advertising welcome message sent to the user upon entering a new town). "[2, S.20]

Übersetzung: TODO

In Bezug auf eine Smartphone App laufen proaktive LBS im Hintergrund mit. Sie erfassen und verarbeiten ständig den Standort des Smartphone Nutzers, ohne dass dieser solch eine Aktion angefordert hat. Tritt allerdings ein Standortereignis auf, tritt die Applikation in den Vordergrund und teilt dem Nutzer das Ergebnis mit.

Solch ein Ereignis kann zum Beispiel eine App zum Freunde treffen sein. Wenn man sich in der Nähe des Standorts eines Freundes befindet kann ein proaktiver LBS darüber informieren.

Heutzutage fällt bei der Betrachtung mehreren Apps auf, dass diese hauptsächlich zur Gruppe der reaktiven LBS gehören. So stellen Kartendienste auf dem Handy erst Kartenmaterial zu Verfügung, wenn die App geöffnet ist.

Dem gegenüber gibt es allerdings schon proaktive LBS, die weit verbreitet sind. Dazu zählt zum Beispiel Google Now. Google Now bestimmt ständig die Standortdaten des Smartphones. Erst, wenn ein mit dem Standort in Verbindung stehendes Ereignis eintritt, wird der Nutzer den Service wahrnehmen. Das kann zum Beispiel abends sein, wenn der letzte Zug zwischen dem momentanen Standort und dem Zuhause in kürze abfährt.

3. Anwendungsfälle für LBS

Aufzählen wie in SE (Nutzer Potentiale, welches Nutzerproblem wird befriedigt, wie ist Konkurrenz)

Wecker Restaurantfinder Navigation Freunde finden Reiseführer Spiele

3.1. Historie von LBS

Bedeutung von Location Based Services in der heutigen Zeit. Erfunden wurden LBS von der U.S. abwehr behörde. Hierfür wurde das System Navstar entwickelt. Mit Hilfe von Sattelitten kann die Position bis auf wenige Meter bestimmt werde. Bekannt geworden ist diese System unter dem Namen Global Positioning System (GPS). Nutzer dieses System war das Militär. 1980 entschied man sich dazu, dass System der Öffentlichkeit bereitzustellen. Ziel dieses Schrittes war es, Fortschritte in der Entwicklung von Satelliten Systemen zu machen.

Die Europäische Union entwickelte daraufhin mit der Europäischen Raumfahrt Behörde (ESA) einen eigenes System namens Galileo. Galileo verwendet ähnliche Frequenzen wie GPS, würde die UN oder die USA diese Signale blockieren, wären beide Systeme gestört, was politisch von hoher Bedeutung ist.

Location Based Services, also mobile, positionsbezogene Dienste haben allgemein ein sehr breites Einsatzgebiet.

Theoretische Einsatzgebiete Der Autoren Allan J Brimicombe und Chao Li unterscheiden in ihrem Buch "Location-Based Services and Geo-Information Engineering" [8, S.132 zehn verschiedene Einsatzgebiete:

Navigation

The process or activity of accurately ascertaining one's position and planning and following a route. Seit der kostenfreien und öffentlichen Nutzung des GPS hat sich viel in der Navigationsbranche getan. Immer mehr Geräte verfügen über GPS Empfänger, welche eine Lokalisierung ermöglichen. Mit Hilfe des genauen Standortes, ist es möglich den Nutzer des Gerätes zu navigieren. Bei einer Navigation, benötigt das System einen Start- und Zielpunkt. Das Gerät berechnet eine Route und informiert den Nutzer über Distanzen und Richtungsänderungen kurz vor bevor diese ausgeführt werden müssen um der Route folgen zu können. Dies ist dem Gerät möglich, das es ständig den eigenen Standort abfragt. Folgt der Nutzer den Anweisungen befindet er sich am Ende der Navigation am Ziel.

• Wegfindung

Im Gegensatz zur Navigation wird bei der Wegfindung nur bei der Planung der Route der Standort benötigt. Eine Führung zum Ziel findet nicht statt. Im Umfeld von LBS wird bei einer Wegfindung der eigene Standort als Startpunkt gesetzt und ein Zielpunkt muss vom Nutzer angegeben werden. Ein Wegfindungsalgorithmus berechnet daraufhin eine Route. Diese kann beispielsweise auf einer Kartedargestellt werden oder jeder Richtungsänderung wird mit einer Strecke in Textform aufgelistet. Moderne Wegfindungsprogramme erlauben die zusätzliche Angabe von Routen-Kriterien. Unter anderem kann die kürzeste Strecke favorisiert werden oder die schnellste. Hierfür benötigt das Systeme nicht nur die Streckenlänge sondern auch Tempolimits wie auf Autobahnen.

• Echtzeit-Verfolgung

Ein weiteres Einsatzgebiet von LBS sind Verfolgungs- und Tracking-Systeme. Diese liefern in Echtzeit den Standort des Gerätes welches den Empfänger enthält. Dies kann beispielsweise genutzt werden um einen Freund in einem schwer überschaubaren Gebiet zu finden. Derjenige der gefunden werden möchte muss seinen Standort bestimmen lassen und diesen an den suchenden übermitteln. Möglich ist dies voll automatisiert durch Apps bei Smartphones. Ein ähnlicher Anwendungsfall ist die Ortung des eigenen Kindes. Das Handy des Kindes sendet in regelmäßigen Abständen die Position an eine Webseite und die Eltern können sich den Standort über eine Karte betrachten. [9] [10]

• Elektronischer Handel

Im Zeitalter des Internets können viele Informationen und Aufgaben kostenlos im Internet abgerufen werden können. Einige Beispiele sind: Zeitung lesen, Recherchen durchführen, Musik hören, einkaufen. Daher gewinnt das Werbung schalten im Internet immer mehr an Bedeutung. Neben der personalisierten Werbung welche durch Nutzerdaten Erfassung ermöglicht wird, spielt der Standort des Nutzers eine Rolle zum schalten geeigneter Werbung. Neben Versand- und Online-Händlern gibt es viele Firmen welche ihre Produkte überwiegend in der Produktionsregion verkaufen für diese Händler ist Hyperlokale Werbung von großer Bedeutung. Das Verfahren ist wie folgende, zuerst wird der Standort des Nutzers ermittelt. Je nachdem auf was der Zugriff erlaubt ist kann der Standort bis auf wenige Meter bestimmt werden. Anschließend kann gezielt Werbung über das mobile Internet

geschaltet werden. Diese kann auf Webseiten oder in Applikationen angezeigt werden. [11] [12]

• User-solicited Informations (vom Nutzer gewünschte Informationen)
Unter diese Kategorie fallen alle Anwendungen, die vom Nutzer für den geschäftlichen
oder sozialen Gebrauch genutzt werden. Beispiele dafür sind: Wetterprognosen,
Zugverspätungen und Filmvorführungen.

• Ortsgebundene Tarife

Am Anfang der 1990er Jahre wurden flächendeckend digitale Mobilfunknetzte ausgebaut. Mit dieser Technik war es mit einem Handy möglich von überall aus zu telefonieren. Abgerechnet wirde pro telefonierter Minute bzw. Sekunde. Die Preise sind deutlich teurer im Vergleich zu Festnetz Telefonen. Aus diesem Grund hat man Ortsgebundene Tarife eingeführt. Über die Cell-ID, welche den ungefähren Standort des Handys mitteilt, können Anbieter günstigere Tarife anbieten. Bei Vertragsabschluss kann der Kunde seine Heimatadresse angeben. In einem definierten Radius beispielsweise 3km, wird dann beim Telefonieren über das Handy ein günstigerer Tarif berechnet. Ziel ist es, dem Kunden eine alternative für das Festnetzt zu bieten. Je nach Anbieter kann sich bei Vertragsabschluss zusätzlich zur Handynummer eine Festnetznummer gegeben werden, welche nur aktiv wird wenn der Kunde sich in dem definierten Radius befindet. Bekannte Beispiele sind: Homezone des Anbieters O2, Vodafone Zuhause von Vodafone oder T-Mobile@home von Telekom.

- Fulfilment
- Koordination
- Kunstvoller Ausdruck
- Mobile Spiele

3.2. Hauptnutzer von LBS

LBS wurden erstmals vom amerikanischen Militär erfunden und genutzt. Nachdem die Services der Öffentlichkeit bereitgestellt wurden, führte dies zu immer mehr Anwendungsbereichen beispielsweise zur Lokalisierung von Notrufen. In Europa findet dies über die Rufnummer "112" statt, in Amerika "911". Seit 1996 besteht in den USA eine Pflicht, den ungefähren Standort mitzusenden bei einem Notruf.

Im Laufe der letzten Jahre wurden immer mehr Möglichkeiten geschaffen, mobil Telefone zu lokalisieren und den Standort für beispielsweise Informationsdarstellung zu nutzen. Damit ergibt sich der dritte große Anwendungsbereich von LBS, die kommerzielle Nutzung für privat Personen und Unternehmen.

Im folgenden Abschnitt werden die genannten Hauptnutzer von LBS genauer erläutert und aufgezeigt wofür LBS verwendet wird.

LBS im Umfeld des Militärs

Den eigenen Standort zu kennen und beschreiben zu können ist nicht immer auf Anhieb möglich. Befindet man sich an einem Ort, bei dem viele Sehenwürdigkeiten oder bekannte Gegenstände wie beispielsweise Häuser, Parks, Straßen in der Nähe sind, fällt es einem meist einfacher den eigenen Standort einer anderen Person mittzuteilen, damit dieser einen findet.

Wesentlich schwieriger ist die Standortbestimmung wenn man sich an einem Ort befindet, der sehr allgemein ist und keine Besonderheiten bzw. identifikations Merkmale aufweist. Oft befindet sich das Militär an solchen schwer zu definierenden Orten. Einige Beispiele für solche Orte sind: Wüsten, Wälder, Berge und Gebirge. Vermutlich war dies einer der Hauptgründe ein System zur Bestimmung des Standortes zu entwickeln.

Die Anwenudng FBCB2 ist ein Beispiel für die Verwendung von mehreren Standorten. Sie wird bereits seit 10 Jahren vom amerikanischen Militär eingesetzt. FBCB2 ist die Abkürzung für "Force-Twenty-One Battle Command Brigade and Below". Die Anwendung ist bei Panzer Brigaden anführern im Einsatz. Auf einer Karte wird dem Nutzer angezeigt welche verbündeten Panzer in der Nähe sind. Zu jedem dieser Panzer werden einem weiter Informationen bereitgestellt. Mit diesem System braucht man keinen Kompass und keine Papier- Karte mehr um sich eine Überblick zu verschaffen.

Im Kriegs Geschehen allgemein nimmt die Bedeutung von LBS stark zu. Genutzt wird dies Technik unter anderem bei Lenkraketen. Der Befehlshaber braucht nur die Koordinaten anzugeben und die Rakete berechnet den optimalen Weg zum Ziel. Essenziel wichtig ist dabei für die Rakete zu jedem Zeitpunkt im Flug zu wissen an welchen Standort sie sich befindet um gegebenenfalls die Geschwindigkeit oder Höhe anzupassen.

Neben Lenkraketen gibt es immer mehr unbemannte Kriegsflugzeuge, sogenannte Drohnen. Gesteurt werden dies nicht aus dem Cockpit des Flugzeugs sondern am Boden über einen Joystick. Der Joystick ist mit einem Computer verbunden und per Kamera kann der "Pilot" sehen wohin er fliegt. Auch in diesem Anwenungsfall ist es von sehr große

Bedeutung, dass der Pilot jederzeit weiß wo er sich befindet und in welche Richtung er fliegen muss.

LBS zur Lokalisierung von Notrufen

Benötigt man schnelle Hilfe, dann ist es von großem Vorteil, wenn der jenige, der einem Helfen soll schnellst möglich an seinem Ziel ankommt. Voraussetzung dafür ist es, das Ziel zu kennen.

Deshalb werden LBS bei Notrufen verwendet. Die Idee dahinter ist, wenn jemand den Notruf wählt, in Deutschland ist das die Nummer "112" und Amerika "911", wird der Leitstelle, welche den Anruf entgegen nimmt der Standort des Anrufers übermittelt. Dies ist nur bei Notrufen von mobil Telefonen möglich. Noch während des Anrufes kann ein Rettungswagen oder ein Einsatzwagen der Feuerwehr in Richtung des Anrufers aufbrechen. Der Anrufer hat so mehr Zeit seinen Standort detailliert mitzuteilen.

Bereits 1996 wurde in Amerika ein Gesetz verabschiedet welches den Mobilfunkanbieter dazu verpflichtet den ungefähren Standort des Anrufers bei einem Notruf mit zu übermitteln. 2003 wurde für Europa ein ähnliches Gesetzt verabschiedet. Das amerikanische Gesetz wurde 2001 überarbeitet und die Genauigkeit des Standortes muss nun zwischen 50-300 m liegen.

Aus einer Quelle von 2004 lässt sich entnehmen, dass in den USA ca. 33% (170.000 täglich) und in Europa 50-70% (220.000 täglich) der Notruf mit Hilfe eines mobil Telefons getätigt werden. Man geht davon aus, dass mit dieser Technik ca. 5000 Menschenleben jährlich gerettet werden können.

Zur Ortung wird kein GPS- Modul benötigt, über sogenannten ID-Zellen kann der Standort des Anrufes auf bis zu 100m genau bestimmt werden. Die einzelnen Techniken werden in Kapitel XX genauer erläutert werden.

Nutzung im Kommerziellen Umfeld

Praktische Einsatzgebiete Nach einer Goldmedia-Analyse [13, S.9] verteilten sich die deutsche LBS-Marktstruktur 2014 auf 15 unterschiedliche Gebiete.

In der Studie werden folgende Punkte unterschieden:

• Tourismus

Mit Hilfe von LBS ist es möglich auf einen Stadtführer aus Papier zu verzichten. Informationen können für Touristen in einer Applikation über das Smartphone breitgestellt werden. So bekommt der Tourist immer genau die Informationen angezeigt, die für die Gegenstände oder Gebäude in der Nähe relevant sind. Ebenfalls kann der Tourist seine eigne Stadttour bestreiten, da eine integrierte Navigation zu Interessenten Punkten realisiert werden kann. Des Weiteren können POI "Points of Intererst" in Abhängigkeit vom eigenen Standort als mögliche Ziele vorgeschlagen werden. POI können beispielsweise Sehenswürdigkeiten, Musen, Restaurants, Parkhäuser sein. Alle diese Informationen können mit einem Gerät bereitgestellt werden.

• Beförderung und Verkehr

Im Bereich öffentlicher Personen Nahverkehr ergeben sich durch LBS neue Möglichkeiten. Der Verkehrsverbund Rhein –Neckar beispielsweise bietet eine App an, welche unter anderem den Standort des Nutzers ermittelt und daraufhin die nächste Haltestelle in der Nähe als Start definiert und anzeigt, welche Linien der Busse und Straßenbahnen von dieser Haltestelle abfahren. Auch wird beschrieben wie man zu dieser Haltestelle gelangt. Auch für Autofahrer kann LBS von Vorteil sein, in der App "Maps" von Google kann sich der aktuelle Verkehr auf öffentlichen Straßen angezeigt werden. So ist es dem Fahrer möglich vor der Abfahrt zu überprüfen ob auf den geplanten Strecken eine Stau ist. Mit Hilfe von LBS werden anonymisierte Standort Daten an Google gesendet, erkennt der Algorithmus, dass auf einer Autobahn viele Standortdaten mit geringer Geschwindigkeit vorhanden sind, wird auf der Karte ein Stau dargestellt und in die Routenplanung von Google Maps aufgenommen. Dies ist wiederum ein weiteres Einsatzgebiet von LBS. [14]

• Navigation und Maps

Bereits bei den Theoretischen Einsatzgebieten wurde die Navigation und Wegfindung genauer erläutert. Zum Einsatz kommen diese Technologien in Handys mit GPS-Modul und Navigationsgeräten.

• Gastronomie

Im Gastronomiebereich finden LBS auch einen Anwendungsbereich. Beispielsweise können sich Nutzer über Restaurants in der Nähe informieren. Diese können auf einer Karte mit weiterführenden Informationen dargestellt werden. Diese Informationen sind Öffnungszeiten, Richtung der Küche (Asiatisch, deutsch, Pizzaria...), Bewertungen durch andere Nutzer. Bekannt aus dem TV sind aber auch Apps welche viele Lieferdienste in der Umgebung anzeigen. Anhand des Standortes wird

dem Nutzer eine Liste von Lieferdiensten in seiner Umgebung zusammengestellt. Zwei Beispiele sind: Lieferando und Lieferheld.

- Couponing und Einkauf
- Social
- Taxi, Carsharing und Bikesharing

In städtischen Gebieten braucht man für den Alltag nicht unbedingt ein Auto. Meist befinden sich viele Geschäfte in der Nähe oder sind über öffentliche Verkehrsmittel gut erreichbar. Trotzdem kommt es vor, dass ein Auto gebraucht wird. Zum Beispiel für größere Einkäufe wie Möbel oder lange Gegenstände. Deshalb gibt es Carsharing Anbieter. Über eine Internetseite kann sich ein Nutzer dort registrieren und sich dann Stunden oder Minutenweise ein Auto mieten. Besonders ist hierbei, dass es keine expliziten Mietstationen gibt. Die Autos werden einfach in der Stadt geparkt. Möchte ein Kunde ein Auto mieten, kann er das in der Nähe parkende nehmen. An dieser Stelle spielt LBS eine wichtige Rolle. Die Autos sind mit Transpondern ausgestattet. Auf einer Karte des Nutzers werden alle Autos in der Nähe abgebildet. Mit dieser Technik ist es möglich schnell und einfach ein Auto des Vermieters zu finden. Ahnlich ist das Verfahren bei Bikesharing Anbietern und Taxis. In diesem Fall sind die Fahrräder bzw. Taxis mit Transpondern ausgestattet und der Nutzer kann sich das nächstgelegenen Aussuchen.

• Sport

Sogenannte Sport-Apps nutzen ebenfalls LBS. Es handelt sich hierbei um Programme zur Aufzeichnung und Dokumentation sportlicher Aktivitäten. Fährt der Nutzer mit dem Fahrrad oder geht Joggen, wird die zurückgelegte Streck über den eigenen Standort ermittelt sowie die Geschwindigkeiten. Mit einem Computer oder Smartphone kann anschließend die eigenen Aktivitäten betrachtet werden.

- Augmented Reality
- Allgemeine Informationen
- Carsharing
- Gaming
- Gesundheit
- Media
- Sonstiges

Ganz offensichtlich ist diese Unterteilung vielschichtiger als die von Allan J Brimicombe und Chao Li. Es werden jeweils andere Schwerpunkte gesetzt. Es gibt jedoch auch Gemeinsamkeiten.

Gemeinsamkeiten und Unterschiede Navigation ist ein wichtiger Punkt in beiden Übersichten. Den Standort anzuzeigen bzw. den Nutzer zu navigieren ist eine der ersten Anwendungsbereiche von LBS.

4. Prototypische Umsetzung

Um die erlangten Kenntnisse im Bereich der Location Based Services zu vertiefen, wurde im Verlauf dieser Arbeit auch eine App entwickelt, die die Grundzüge der Positionierung nutzt.

Die App soll dem Nutzer ermöglichen auf spielerische Weise die Koordination zu verbessern. Das Spiel basiert auf der Funktionsweise einer Wünschelrute. Dem Spieler werden dabei, basierend auf seiner Startposition verschiedene Aufgaben gestellt. Diese sind in der Form gestellt, dass der Spieler eine ganz bestimmte Position innerhalb eines selbstgewählten Radius erreichen muss. Für eine erfolgreiche Annäherung an das Ziel bekommt der Spieler Punkte, für ein entfernen Minuspunkte.

Das Ziel des Spiels ist, bis auf eine Abweichung von 10 Meter die Ziel-Position zu erreichen. Dafür ist eine ständige Verfolgung seiner Position nötig, über die der Spieler jederzeit Rückmeldung erhält und sich so, wie bei einer Wünschelrute, langsam an sein Ziel annähern kann.

4.1. Anforderungen

Die Analyse im Vorfeld der Implementierung ergab die folgenden Anforderungen. Unterschieden wurden diese im Bezug auf Fachlichkeit und technischen Anspruch.

- 1. Fachliche Anforderungen
 - a) Grundeinstellungen für Spieler speichern
 - i. Name
 - ii. Spielradius
 - iii. Startposition
 - b) Aufgaben erstellen (entsprechend Startposition eines Spielers)
 - i. Erreichen von definierten Orten/Koordinaten
 - A. entsprechend gewähltem Radius
 - B. steigender Schwierigkeitsgrad
 - ii. Erreichen einer gewissen Höhe
 - c) Aufgaben spielen

- i. Prüfung der aktuellen Position
- ii. Vergleich zwischen Aufgabe und aktueller Position
- iii. ständige Rückmeldung (verbleibende Entfernung zum Ziel) an den Spieler
- iv. Punkte neu berechnen (sammeln oder verlieren)
- v. Punkte in Highscore speichern
- vi. Möglichkeit, das Spiel zu unterbrechen und später wieder zu starten

2. Technische Anforderungen

- a) Benutzbarkeit
 - i. übersichtliche Steuerung
 - ii. Selbstbeschreibend
 - iii. Erwartungskonformität
 - iv. Fehlertoleranz
- b) gute Animation der "Wünschelrute"

4.2. Architektur

Die App ist streng nach dem Konzept des Model-View-Controller aufgebaut.

Model-View-Controller ist ein Design Pattern, das häufig für heutige Programmierung eingesetzt wird. Es setzt eine strikte Trennung von Teilkomponenten voraus, die für eine hohe Wiederverwendbarkeit und einen strukturierten Aufbau sorgen. Im Falle einer GUI-Anwendung trennt man bei Anwendung dieses Patter das Model, die View und den Controller. Das Pattern ist also lediglich eine Erweiterung der schon seit langem verbreiteten Trennung von Eingabe (Controller), Verarbeitung (Model) und Ausgabe (View). Das Model sorgt sich dabei allein um die Verarbeitung der Daten einer Anwendung. Alle Änderungen, die an den Daten ausgeführt werden sollen, finden im Model statt. Ein Model kann mit beliebig vielen Views verbunden werden und so Informationen austauschen.

Eine View kümmert sich um die graphische Darstellung der Anwendungsdaten, die es von seinem konkret zugewiesenen Model erhält.

Der Controller ist für die Möglichkeiten des Anwendungsnutzers zur Interaktion zuständig. Er übernimmt die Zuordnung von Benutzereingaben zu Funktionen des Models. Um die-

se Überleitung zu ermöglichen müssen sowohl Verbindungen zu Models als auch zu den Views existieren.

Entsprechend dieses Patterns ist die Architektur der hier beschriebenen App ebenfalls strukturiert gehalten. Einfach gesagt, besteht die App lediglich aus einer HTML-Seite, die immer wieder mit verändertem Inhalt dargestellt wird. Diese wird mithilfe von Javascript (Angular JS) ständig mit dem Inhalt einer neuen View gefüllt.

Für jede dargestellte Seite der App existiert eine View. Diese besteht ebenfalls wieder aus einer einfache HTML-Seite, die allerdings über einen extra dafür definierten Controller mittels Variablen- und Funktionszuweisung verändert werden kann. Dieser Controller weißt auch die Methoden, die dann z.B. bei einem Button-Druck ausgeführt werden können, die entsprechende Verarbeitung zu.

Diese Verarbeitung findet in sogenannten Services statt. In jedem Controller besteht die Möglichkeit auf diese Services zuzugreifen. Sie bilden das Model in unserer Model-View-Controller-Darstellung. Sie enthalten die Daten und können sich sowohl mit dem lokalen Speicher der App als auch mit den Daten des Geräts verbinden. Außerdem können an dieser Stelle auch selbst definierte Werte und damit verbundene Funktionen hinterlegt werden, die jeder Controller aufrufen kann.

Um zwischen den einzelnen View wechseln zu können, wird immer ein aktueller Status der App gespeichert. Dieser Status entscheidet, welche View und welcher dazugehörige Controller in dem Moment verwendet werden. Über den Status der App kann man ganz leicht zwischen den Views unterscheiden und jeder Status hat seinen eigenen Historienstapel. Dadurch lassen sich vergangene Klicks leicht rückgängig machen.

..Detaillierte Darstellung der einzelnen Views in Kombination mit ihren jeweiligen Controllern + Services - graphisch aufbereitet!..

4.3. Technologien und Entscheidungen

4.3.1. Phonegap und Apache Cordova

PhoneGap entstand als Framework zur Entwicklung von Apps auf Basis von Web-Technologien wie HTML, CSS und JavaScript. 2011 wurde die Firma Nitobi Software, die PhoneGap einst entwickelte, von Adobe Systems aufgekauft welche das Produkt weiter unter dem Namen Apache Cordova fokussierten.

Im Rahmen der hier vorgestellten Arbeit wurde Cordova genutzt, um eine hybride App zu entwickeln. Da der Vorteil des Frameworks vor allem aus seiner Wiederverwendbarkeit besteht. Der geschriebene HTML-, CSS- und JavaScript-Code kann nämlich über Cordova entsprechend der verschiedenen Mobilplattformen unterschiedlich transformiert werden, um die entsprechende Applikation im richtigen Format zu erstellen. Unterstützt werden dabei die verbreitetsten Betriebssysteme Andorid und iOS, aber auch weitere wie Windows Phones, Blackberrys oder sogar FirefoxOS.

4.3.2. Ionic

Ein weiteres genutztes Framework ist Ionic. Es handelt sich dabei um ein HTML5-Framework, das sich um das Benutzerinterface einer Web-Applikation kümmert. Der Fokus des Frameworks liegt dabei speziell auf mobilen Endgeräten. Ionic bietet, in Zusammenarbeit mit Angular JS, einige UI-Komponenten, die eine Oberfläche leicht in modernem Licht erscheinen lassen.

4.3.3. HTML5

4.3.4. CSS

4.3.5. Angular-JS

Angular JS ist ein Framwork, das voll auf JavaScript aufbaut und komplett klientseitig ausgeführt wird.

4.3.6. Kartenmaterial

Kartenmaterial im Browser bzw. der Hybrid-App ist ein essentieller Bestandteil von Location based Services. Durch eine Positionsbestimmung alleine erhält man nur Daten die für den Nutzer nicht anschaulich sind. Diese liegen normalerweise als geografische Koordinaten vor, die in geografischer Breite und geografischer Länge angegeben werden. Eine Beispielposition soll die Bedeutung von Kartenmaterial für den Nutzer von Location based Services verdeutlichen.

Als Beispiel hierfür wurde die Position der DHBW Mannheim in der Coblitzallee gewählt. Hierbei werden die geografischen Koordinaten, eine Adresse und ein Kartenausschnitt in einer Tabelle gegenübergestellt. Siehe hierzu Tabelle 1.

Tabelle 1: Bedeutung von Kartenmaterial

In der Tabelle sind verschiedenen Ortsdaten zur Verfügung gestellt, die alle Vor- und Nachteile aufweisen.

Die Geographischen Koordinaten geben die Position am genausten an, sind für fast keine Nutzer einer App von Bedeutung.

Die Adresse ist im Alltag am geläufigsten und somit für Nutzer am verständlichsten. Allerdings ist die Angabe nicht so genau, wie die Geographischen Koordinaten. Denn die Angabe Hausnummer 1-9 gibt einen relativ großen Bereich an.

Die Vorteile eines Kartenausschnitts sind, dass die Detaillierung vom Nutzer angepasst werden kann. Des Weiteren werden viele grafische Informationen angezeigt, wie zum Beispiel der eigene Standort, an denen sich ein Nutzer Orientieren kann. Der Nachteil dieser Variante ist, dass die Kartenausschnitte eine Abhängigkeit von externen Quellen und einem erhöhten höheren Programmieraufwand mit sich bringen.

Auf Smartphones gehört Kartenmaterial und dessen Integration in Apps mittlerweile zum Standard, an welchen sich Nutzer gewöhnt haben. Und über die Hälfte der Deutschen, 44 Millionen nutzen schon ein Smartphone. Die Tendenz ist dabei steigend. Dies ist das Ergebnis einer Bitkom Studie. [15] Aus diesem Grund sollte auch Kartenmaterial in die Location based Services App integriert werden, welche die Autoren bei dieser Studienarbeit entwickeln.

Mögliche Quellen für das Kartenmaterial sind "Google Maps", "Bing Maps"und "Open Street Maps".

Da Kartenmaterial eine zentrale Quelle der App darstellen wird ist die Auswahl eines

Anbieters von großer Bedeutung. Aus diesem Grund wird hier eine genaue Analyse durchgeführt, welches Kartenmaterial sich am besten für diese App eignet.

Anforderungen an das Kartenmaterial

Die Anforderungen an interaktives Kartenmaterial bezüglich der in dieser Studienarbeit entwickeltem Projekt lassen sich in zwei Gruppen einteilen, die funktionalen und nichtfunktionalen Anforderungen.

Die nichtfunktionalen Anforderungen sind:

- 1. Kostenlose Abfragen
- 2. Ohne Account nutzbar
- 3. Gute Dokumentation mit Codebeispielen

Die funktionalen Anforderungen an das interaktive Kartenmaterial sind:

- 1. JavaScript API
- 2. Unterstütze Browser
- 3. Eigenen Standort anzeigen
- 4. Markierungen auf der Karte setzen
- 5. Markierungen bündeln (optional)

Bevor "Google Maps", "Bing Maps"und "Open Street Map"bezüglich der Anforderungen untersucht werden, müssen diese genauer spezifiziert werden.

Zuerst widmen wir uns den nichtfunktionalen Anforderungen.

1. Kostenlose Abfragen

Da es sich bei der Implementierung um einen Prototypen für diese Studienarbeit handelt und dieser nicht kommerziell verwendet werden soll, sollen auch die Abfragen (map-loads) kostenlos sein. Zudem sollten genug kostenlose Abfragen zur Verfügung stehen. Bei 3 Entwicklern und Tests über die Dauer der Studienarbeit (8-9 Monate) darf das Kontingent der kostenlosen Abfragen nicht aufgebraucht sein.

2. Ohne Account nutzbar

Die Nutzung ohne Account vereinfacht den Einstieg für das Kartenmaterial und sollte deshalb gewährleistet sein. Zudem würden dann alle Teammitglieder dieser Studienarbeit mit dem selben Account eines Teammitglieds arbeiten.

3. Gute Dokumentation mit Codebeispielen

Eine gute Dokumentation der API des Kartenmaterials mit vielen Codebeispielen erleichtert den Einstieg deutlich. Da alle Teammitglieder dieser Studienarbeit noch keine Erfahrung mit Kartenmaterial haben ist dies eine wichtige Anforderung.

TODO: Überleitung

1. JavaScript API

Eine JavaScript API ist essentiell wichtig, da der Prototyp mit HTML, CSS und Java Script entwickelt wird.

2. Unterstütze Browser

Als unterstützte Browser sollten die Browser von den drei großen Smartphone-Betriebssystemen Android, IOS und Windows Phone unterstützt werden.

3. Eigenen Standort anzeigen

Der eigene Standort muss grafisch auf einer interaktiven Karte angezeigt werden. Das zentrieren des Kartenmaterials auf den eigenen Standort soll auch möglich sein.

4. Markierungen auf der Karte setzen

Eigenen Markierungen müssen auf der Karte gesetzt werden könne. Dies muss grafisch erfolgen, denn es ist für den Prototypen besonders wichtig zu veranschaulichen, wo sich das gesuchte Ziel befindet.

5. Markierungen bündeln (optional)

Markierungen auf der Karte sollten gebündelt werden, wenn der Zoom-Faktor zu klein wird. Dies soll der Übersichtlichkeit bei vielen Markierungen auf der Karte dienen. Hierbei soll der Radius, in dem Markierungen gebündelt werden eingestellt werden könne.

Google Maps

Seit 2005 gehört zu dem Produktportfolio von dem Suchmaschinenriesen Google ein Internet Kartendienst namens Google Maps. Google Maps gehört zu den verbreitetsten und erfolgreichsten Internet Kartendiensten der Welt. [4, Lexikon Google Maps][16, S.88]

Zunächst wird Google Maps anhand der nichtfunktionalen Anforderungen bewertet, danach werden die funktionalen Anforderungen betrachtet.

Nichtfunktionale Anforderungen

1. Kostenlose Abfragen

Die Google Maps API steht generell als kostenloser Dienst zur Verfügung. Dieser darf in Webseiten, sowie mobile Apps eingebaut werden. Als Voraussetzung für die kostenlose Nutzung gilt allerdings, dass die eigene Webseite oder mobile App für alle Endnutzern kostenlos ist und öffentlich zugänglich sein muss.

Unter der kostenlosen Lizenz dürfen bis zu 25.000 Kartenladevorgänge pro Tag erfolgen. Ein Kartenladevorgang ist als Initiales Laden der Karte Definiert. Das bedeutet, dass Nutzerinteraktion mit der Karten nicht als erneuter Ladevorgang gewertet wird. In den Nutzungsbedingungen von Google wird darauf verwiesen, dass eine Sperre von mehr als 25.000 Abfragen pro Tag erst dann durchgeführt wird, wenn die Begrenzung mehr als 90 Tage in Folge überschritten werden sollte. Diese Auslegung erscheint sehr nutzerfreundlich. Für diese Studienarbeit sollten die 25.000 Abfragen pro Tag in jedem Fall völlig ausreichen. [17, Nutzungsbedingungen][17, Lizenzierung]

2. Ohne Account nutzbar

Seit dem die Google Maps JavaScript API in der Version 3 vorliegt ist die Nutzung ohne einen Schlüssel möglich. Das bedeutet, dass keine Registrierung bzw. Anmeldung zum nutzen nötig ist. Diese Praxis erleichtert den Einstieg in Google Maps, da man sofort starten kann. [18]

3. Gute Dokumentation mit Codebeispielen

Google Maps bietet ein Entwicklerhandbuch für die JavaScript API v3, dass sowohl ausführlich ist, als auch viele Beispiele bietet. Zudem ist das Benutzerhandbuch in deutsch abrufbar, was das erarbeiten und nachlesen vereinfacht. Zu dem ausführlichen Entwicklerhandbuch gibt es nochmals fast 150 Beispiele, zu denen die jeweils passende Output (Karte) angezeigt wird.[17, Documentation]
Neben der Dokumentation von Google selbst gibt es auch andere Tutorials im

Neben der Dokumentation von Google selbst gibt es auch andere Tutorials im Netz. Eines davon ist von der Webseite www.w3schools.com, dass versucht von Grund auf eine Einführung in Google Maps zu geben.

funktionale Anforderungen

1. JavaScript API

Mit der Google Maps JavaScript API Version 3 bietet Google eine JavaScript API die sich sehr leicht in Webseiten integrieren lässt.

Bei einer HTML-Webseite muss lediglich ein Script Tag eingefügt werden, in dem als Quelle (src) die Google Maps API zu finden ist. Vergleiche Listing Zeile 1.

Danach können mit JavaScript Karten von Google Maps erstellt werden. Vergleiche Listing Zeile 2 - 12.

```
1 <script src="https://maps.googleapis.com/maps/api/js?v=3.exp">//
      script>
2
       <script>
3
       var map;
4
       function initialize() {
         var mapOptions = {
5
6
           zoom: 8,
7
           center: new google.maps.LatLng(-34.397, 150.644)
8
         };
9
         map = new google.maps.Map(document.getElementById('map-
             canvas'),
10
           mapOptions);
11
12
       google.maps.event.addDomListener(window, 'load', initialize);
13
       </script>
```

[17, Codebeispiel Simple Map]

2. Unterstütze Browser

Von der Google Maps JavaScript API 3 werden alle gängigen Browser unterstützt. Diese sind:

```
"IE 7.0 und höher (Windows)
```

Firefox 3.0 und höher (Windows, Mac OS X und Linux)

Safari 4 und höher (Mac OS X und iOS)

Chrome (Windows, Mac OS X und Linux)

Android

BlackBerry 6

Dolfin 2.0 und höher (Samsung Bada) "[17]

Die offizielle Unterstützung des Windows Phone Internetexplorers fehlt hierbei.

3. Eigenen Standort anzeigen

Den eigenen Standort kann man, sofern dieser bestimmt werden konnte (Listing Zeile 1 - 5), mit der Google Maps API auf der Karte anzeigen. Dies kann man zum Beispiel mit einer Informationsbox, die man mit "new google.maps.Infowindow "auf dem eigenen Standort erstellt erfolgen. (Listing Zeile 7 - 11) Zur besseren

Veranschaulichung wird die Karten dann noch auf die Eigene Position zentriert (Listing Zeile 13)

```
1
     // Try HTML5 geolocation
2
     if(navigator.geolocation) {
3
       navigator.geolocation.getCurrentPosition(function(position) {
4
         var pos = new google.maps.LatLng(position.coords.latitude,
5
                                            position.coords.longitude);
6
         var infowindow = new google.maps.InfoWindow({
8
           map: map,
9
           position: pos,
           content: 'Location found using HTML5.'
10
11
         });
12
13
         map.setCenter(pos);
14
       }
```

[17, Codebeispiel Geolocation]

4. Markierungen auf der Karte setzen

Markierungen könne mit der API sehr leicht gesetzt werden. Neben der Position der Markierung muss noch eine Referenz auf die Google Maps Karte, sowie ein Name bei der Erstellung angegeben werden. Vergleiche Listing.

```
var marker = new google.maps.Marker({
    position: new google.maps.LatLng(-25.363882,131.044922),
    map: map,
    title: 'Hello World!'
};
```

[17, Codebeispiel Simple Markers]

Den Markierungen auf der Karte können allerdings auch Bilder mit dem Attribut "icon "zugeordnet werden. Des Weiteren kann man mit dem Attribut "draggable "einstellen, ob man die Markierung verschieben kann oder nicht.

5. Markierungen bündeln (optional)

Markierungen können in der Standard JavaScript API in Version 3 nicht gebündelt werden. Mit einer zusätzlichen Bibliothek von Google kann dieser Funktionalität allerdings ergänzt werden. Die Bibliothek heißt "google-maps-utility-library-v3". Mit Hilfe dieser Bibliothek kann ein "Markercluster "erstellt werden, dass Markierungen bei einer gewissen Zoomstufe bündelt. Hierbei wird dem Markercluster

ein Array der Markierungen, eine Refernz auf die Karte, sowie Markercluster-Einstellungen. TODO: Formulierung an Listing anpassen? markers anstatt Markierungen

```
1 var mcOptions = {gridSize: 50, maxZoom: 15};
2 var markers = [...]; // Create the markers you want to add and collect them into a array.
3 var mc = new MarkerClusterer(map, markers, mcOptions);
[19]
```

Bing Maps

Bing Maps ist der Kartendienst des Softwarekonzerns Microsoft. Neben Kartenmaterial bietet der Internet-basierte Dienst auch Satellitenbilder und Luftaufnahmen.

Nichtfunktionale Anforderungen

1. Kostenlose Abfragen

Bing Maps bietet für öffentlich zugängliche Webseiten, sowie für mobile Apps für Konsumenten ein kostenloses Kontingent von 125.000 Transaktionen pro Jahr. Will man dieses Kontingent von Transaktionen überschreiten, werden Kosten fällig.

2. Ohne Account nutzbar

Bing Maps ist nicht ohne einen Account nutzbar. Bevor man mit der dazugehörigen API entwickeln kann ist es nötig zuerst eine Microsoft ID anzulegen, mit der man dann wiederum einen Entwickler Key für Bing Maps anfordern kann. Ein schneller Einstieg ist auf Grund von Registrierungen nicht möglich. Zudem gibt es unterschiedliche Lizenzmodelle, die zwischen Webseite und mobile App unterscheiden, was zur Folge hat, dass man für eine neue Plattform einen neuen Key benötigt.

3. Gute Dokumentation mit Codebeispielen

Bing Maps bietet eine ausführliche Dokumentation für die Bing Maps AJAX Control Version 7.0. Dabei werden die Klassen beschrieben und fast jede mit einem Beispiel verdeutlicht. Zusätzlich gibt es über 200 Codebeispiele, die man direkt im Browser ausprobieren und editieren kann. Diese Beispiele kann man auch ohne Account (Key) nutzen.

funktionale Anforderungen

1. JavaScript API

Bing Maps bietet eine JavaScript API, die "Bing Maps AJAX Control Version 7.0". Es ist möglich diese einfach in einem script-Tag in eine Webseite einzubinden

(Listing Zeile 1). Danach kann man eine Karte erstellen indem man ein neues Map Objekt erzeugt. (Listing Zeile 6)

```
1 <script type="text/javascript" src="http://ecn.dev.virtualearth.
     net/mapcontrol/mapcontrol.ashx?v=7.0"></script>
2
        <script type="text/javascript">
3
        var map = null;
4
        function getMap()
5
        {
6
            map = new Microsoft.Maps.Map(document.getElementById(')
                myMap'), {credentials: 'Your Bing Maps Key'});
        }
7
8
        </script>
```

[20, Codebeispiel CreateMap1]

2. Unterstütze Browser

Die JavaScript API von Bing Maps wird laut Microsoft von fast allen Browsern unterstützt. Die unterstützen Desktop Browser sind: "

- Internet Explorer 7.0 and later
- Firefox 3.6 and later
- Safari 5 and later
- Google Chrome

Die unterstützen mobilen Browser sind:

- Internet Explorer Mobile Browser
- Apple iPhone Browser
- Google Android Browser
- Research in Motion (RIM) BlackBerry Browser

"[?]

Alle relevanten Browser für Smartphone werden unterstützt.

3. Eigenen Standort anzeigen

Der Eigene Standort kann bei Bing Maps mit einem "GeoLocationProvider "ermittelt werden. Dieser erhält eine Referenz auf das Kartenobjekt, in dem der Standort angezeigt werden soll (Listing Zeile 2). Mit der Funktion "getCurrentPosition "kann dann der Standort des Nutzers ermittelt werden.

4. Markierungen auf der Karte setzen

Mit Bing Maps ist es möglich Markierungen auf der Karte zu platzieren. Dieser werden bei hierbei PushPins genannt. Diese Pushpins werden an zum Anzeigen dem Map Objekt übergeben (Listing Zeile 3). Eine nachträgliche Positionsänderung der gesetzten Pushpins ist einfach möglich, indem man diesem eine neue Position zuweist (Listing Zeile 4).

```
1 map.entities.clear();
2 var pushpin= new Microsoft.Maps.Pushpin(map.getCenter(), null);
3 map.entities.push(pushpin);
4 pushpin.setLocation(new Microsoft.Maps.Location(47.5, -122.33));
[20, Pushpins7]
```

5. Markierungen bündeln (optional)

Microsoft bietet keine Funktion mit der man Markierungen (Pushpins) zusammenfassen kann. Um diese Funktionalität dennoch mit Bing Maps nutzen zu können kann man auf Code von Drittherstellen zurückgreifen. Dieser Code kann allerdings in einer neuen Version von Bing Maps unbrauchbar sein. Und eine Weiterentwicklung ist nicht sehr wahrscheinlich, da hinter den Drittherstellen meist nur eine Person steht. [16, S. 92]

Open Street Maps

Open Street Map ist die sogenannte "offenste aller Karten "[16, S.92]. Das bedeutet, dass das Kartenmaterial von der OpenStreetMap Foundation jedem frei und kostenlos zu Verfügung gestellt wird. Das Kartenmaterial selbst kann von jedem Nutzer überarbeitet werden oder es kann als Basis für neues Kartenmaterial dienen (Points of Interest). So steht es auch jedem frei Fehler zu finden und verbessertes Kartenmaterial einzureichen.

Mit Open Streetmap ist es sogar möglich seine eigenen Karten zu verwenden.

TODO: Hinweis auf Leaflet

Nichtfunktionale Anforderungen

1. Kostenlose Abfragen

Open Steet Map bietet jedem privaten oder Kommerziellen Nutzer die Möglichkeit auf das Kartenmaterial zuzugreifen. Abfragen sind dabei generell umsonst. Des Weiteren ist die Anzahl der Abfragen weder für einen Tag, noch für ein Jahr begrenzt.

2. Ohne Account nutzbar

TODO: Überprüfen!!! Für die Nutzung von Open Street Map ist weder eine Registrierung, noch ein Account erforderlich. Nach der Angabe der Ressource im Script Tag (Leaflet API) einer Webseite kann mit JavaScript auf das Kartenmaterial von Open Street Map zugegriffen werden.

3. Gute Dokumentation mit Codebeispielen

Eine gute Dokumentation ist durch die Webseite von Leaflet gegeben. Alle Funktionen werden dort übersichtlich beschrieben, sowie anhand von Beispielen erläutert.

Ein großer Vorteil der Dokumentation von Leaflet sind die Tutorials. Diese beschränken sich auf die wesentlichen Funktionen, wie beispielsweise die Nutzung von Leaflet unter mobilen Geräten.

Bei schwierigen Aufgaben ist es durch Wiki-Beiträge nahezu immer diese zu lösen.

funktionale Anforderungen

1. JavaScript API

Die OpenStreetMap Foundation selbst bietet nur Kartenmaterial an. Eine JavaScript API von der OpenStreetMap Foundation ist nicht vorhanden. Allerdings gibt es Bibliotheken, die von anderen Projekten veröffentlicht wurden, die diese Funktionalitäten abbilden. Die bekannteste dürfte "Leaflet "sein. Leaflet wird nämlich auch auf der Webseite von Open Steet Map, "www.openstreetmap.org", genutzt.

Die API von Fremdprojekten haben zum Nachteil, dass nicht mehr alles aus einer Hand kommt.

2. Unterstütze Browser

Leaflet untersützt Browser nahezu alle Browser. Generell werden Browser unterstützt, die unter der HTML-Rendering-Engine WebKit laufen, was schon fast alle Browser abdeckt. Die unterstützten Browser sind im einzelnen:

"On Desktop

Chrome,

Firefox,

```
Safari 5+,
Opera 12+,
IE 7-11
On Mobile
Safari for iOS 3-7+,
Android browser 2.2+, 3.1+, 4+,
Chrome for Android 4+ and iOS,
Firefox for Android,
Other WebKit browsers (webOS, Blackberry 7+, etc.),
IE10/11 for Win8 devices "[21]
```

Alle relevanten Browser von Smartphones werden unterstützt.

3. Eigenen Standort anzeigen

Der Eigene Standort lässt sich mit Leaflet mit einer einzigen Funktion bestimmen. Vergleiche hierzu Listing Zeile 17.

Um den Standort anzuzeigen ist zunächst ein Kartenobjekt nötig. Dieses wird in Zeile 1 des Listings initialisiert. Um die eigene Position auf der Karte grafisch anzeigen zu können ist die Funktion "onLocationFound", im Listing Zeile 3 bis 8, nötig. Diese Funktion wird aktiviert, wenn der eigene Standort gefunden wurde. Dann wird ein die Genauigkeit des Standorts ermittelt und grafisch über einen circle dargestellt (Zeile 4 und 7). Das Zentrum des Standorts wird durch einen Marker (Zeile 5) dargestellt.

Wenn der Standort nicht bestimmt werden konnte wird dem Nutzer mit der Funktion "onLocationError "eine Fehlermeldung angezeigt.

```
1 var map = L.map('map');
2
3 function onLocationFound(e) {
4  var radius = e.accuracy / 2;
5  L.marker(e.latlng).addTo(map)
6  .bindPopup("You are within " + radius + " meters from this point").openPopup();
7  L.circle(e.latlng, radius).addTo(map);
8 }
```

```
9
10 function onLocationError(e) {
11   alert(e.message);
12 }
13
14 map.on('locationfound', onLocationFound);
15 map.on('locationerror', onLocationError);
16
17 map.locate({setView: true, maxZoom: 16});
[21]
```

Dieses Beispiel zeigt gut, wie die Leaflet JavaScript API aufgebaut ist. Hier ist alle Funktion separat und können einzeln genutzt werden. So kann man als Programmierer genau die Funktionalitäten nutzen, die man braucht. In diesem Beispiel ist es auch Möglich die Karte stets auf den eigenen Standort zu zentrieren und diesen nicht zusätzlich grafisch anzuzeigen.

4. Markierungen auf der Karte setzen

Markierungen können mit der Funktion "marker (latitude, longitude) "erstellt werden und der Karte hinzugefügt werden. Ein Beispiel dafür ist schon im Listing der Funktionalen Anforderung 3 in Zeile 5 bis 6 enthalten.

5. Markierungen bündeln (optional)

Mit LeafletJS lassen sich Marker nicht bündeln. Diese Funktionalität kann durch das einbinden eines weiteren Projekts, "Leaflet.markercluster "ergänzt werden. [16, S.92]

Das Markercluster kann eine Sammlung von Markern auf der Karte gebündelt anzeigen. Die Marker können mit ".addLayer() "zum Markercluster hinzugefügt werden. Dieses wird wiederum als Layer zur Karte hinzugefügt. (Listing Zeile 6)

```
var markers = new L.MarkerClusterGroup();

markers.addLayer(L.marker([175.3107, -37.7784]));

// add more markers here...

map.addLayer(markers);

[21]
```

Fazit Kartenmaterial

Um ein Fazit zu ziehen, welches Kartenmaterial zum Einsatz in der Location-based

Services App kommt, wird hierbei zuerst auf die Vor und Nachteile der einzelnen Anbieter eingegangen.

Google:

Vorteile: Alles aus einer Hand Keine Registrierung nötig Gute und ausführliche Dokumentation mit vielen Beispielen

Nachteile: Lizenzkosten fallen an, wenn 25000 Abfragen pro Tag häufig überschritten werden Der Internetexplorer für Windows Phone wird offiziell nicht unterstützt

Bing:

Vorteile: Gute und ausführliche Dokumentation mit vielen Beispielen Untersützte Browser

Nachteile: Cluster nur mit externer Bibliothek nutzbar Registrierung und unterschiedliche Lizenzmodelle für Web und mobile Anzahl der kostenlosen Abfragen ist sehr begrenzt

Open Street Map:

Vorteile: Unbegrenzt viele kostenlose Abfragen Individualisierbarkeit(eigenes Kartenmaterial) Unterstützte Browser Gute und ausführliche Dokumentation mit vielen Beispielen API Struktur

Nachteile: Man ist auf 3 Hersteller bzw. Quellen angewiesen

Bewertung der nichtfunktionale Anforderungen:

1. Kostenlose Abfragen:

OpenStreetMap bietet unlimitiert viele kostenlose Abfragen und kann damit überzeugen.

2. Ohne Account nutzbar:

OpenStreetMap kann generell ohne Account genutzt werden.

3. Gute Dokumentation mit Codebeispielen:

Alle drei Anbieter bieten ausführliche Dokumentationen mit Tutorials an.

Bei den nichtfunktionalen Anforderungen schneidet Open Steet Maps am besten ab.

Bewertung der funktionalen Anforderungen:

1. JavaScript API:

Alle Anbieter bieten eine JavaScript API und überzeugen damit. Die Kapselung der Funktionen von OpenStreetMap scheint aber für die Autoren am sinnvollsten gewählt zu sein.

2. Unterstützte Browser:

Google Maps unterstützt den Internet Explorer für Windows Phone Geräte offiziell nicht. Bing Maps und OpenStreetMap können mit den unterstützten Browsern überzeugen.

3. Eigenen Standort anzeigen:

Alle drei Anbieter überzeugen hierbei gleichermaßen.

4. Markierungen auf der Karte setzen:

Auch hierbei überzeugen alle drei Anbieter gleichermaßen.

5. Markierungen bündeln:

Google Maps liefert alles aus einer Hand sowohl bei Bing Maps, als auch bei OpenStreetMap muss auf Bibliotheken dritter zurückgegriffen werden.

Durch die fehlende offizielle Unterstützung von Google Maps für den Windows Phone Browser ist es nicht für diese Studienarbeit geeignet eine plattformübergreifende mobile LBS App zu entwickeln.

Im Vergleich der Vor und Nachteile und den nichtfunktionalen Anforderungen überzeugt OpenStreetMaps bei den gewählten Anforderungen deutlich mehr als Bing Maps.

Das Fazit ist, dass sich OpenStreetMaps am besten für den Einsatzzweck dieser Studienarbeit und der damit verbundenen Location-based Services App eignet.

5. Implementierung

6. Fazit

6.1. Ausblick

Literatur

- [1] Kuepper, A., Location-Based Services Fundamentals and Operation, John Wiley and Sons, New York, 2005.
- [2] Schiller, J. und Voisard, A., Location-Based Services -, Elsevier, Amsterdam, 1. aufl. edition, 2004.
- [3] Jens Strueker, Stefan Sackmann, D. E. I. P., Location-related services for mobile commerce an analysis of the potentials for small and medium-sized enterprises, Technischer bericht, Albert-Ludwigs-Universität Freiburg, 2003.
- [4] GmbH, D. B., www.itwissen.info, 2015.
- [5] ??, https://www.t-mobile.de/netzausbau/0,25250,15400-_,00.html, 2015.
- [6] ??, http://www.vodafone.de/privat/hilfe-support/netzabdeckung.html, 2015.
- [7] ??, http://geoinfo.eplus.de/evinternet/, 2015.
- [8] Brimicombe, A. und Li, C., Location-Based Services and Geo-Information Engineering, John Wiley + Sons Ltd., 2009.
- [9] ??, https://play.google.com/store/apps/details?id=com.fsp.android.friendlocator&hl=de, 2015.
- [10] ??, http://www.focus.de/digital/experten/asfour/ortung-per-smartphone-wie-eltern-stets-wissen-wo-ihre-kinder-gerade-sind_id_3336081.html, 2015.
- [11] ??, http://www.mittelstandswiki.de/wissen/Hyperlokale_Werbung, 2015.
- [12] ??, http://www.google.de/adwords/express/, 2015.
- [13] Goldhammer, P. D. K., Location-based services monitor 2014, Technischer bericht, Goldmedia GmbH Strategy Consulting, 2014.
- [14] ??, http://www.pcwelt.de/ratgeber/Stau-Warnung-Google-Maps-Tomtom-Verkehrslage-Echtzeitverkehrsinformationen-373385.html, 2015.
- [15] ??, http://www.bitkom.org/de/presse/8477_81896.aspx, 2015.
- [16] Gruber, B., Javascript-apis fuer eigene kartenanwendungen im browser, ix Magazin fuer professionelle Informationstechnik (2015).
- [17] GoogleInc., https://developers.google.com/maps/, 2015.
- [18] ??, http://googlegeodevelopers.blogspot.de/2010/03/introducing-new-googlegeocoding-web.html, 2015.
- [19] ??, https://googlemaps.github.io/js-marker-clusterer/docs/examples.html, 2015.
- [20] MicrosoftCorporation, https://www.bingmapsportal.com/Isdk/AjaxV7, 2015.
- [21] ??, http://leafletjs.com, 2015.

A. Appendix sections