

7- Momento de inércio de sistemo de porticular e teorema de Steiner 1.7 - Utilizzo on Wreto e as mossos my e m2 1.2- Register o volver das mossos o my, mz e a mosso da voreto 1.3 - Medier or comprimento, L, da voreto 1.4 - Cologo as mossos my mz a diforcios de de iquis e o moior posséreis. Medir a distanción entre os centros dar nomos e o porto central da voreta (eixo de rotat) 1.5 - Alistos o sistemo poro a un posição de equilibria 1.6-Rodor o sistemo um ângulo inferior o 180º (90° e recomendado) no voti do contrório aos porteros do relegio e medir o període Le una oscilação completa. 1.7 - hodor o sistemo no mesmo singulo no sentido dos gortiones do relógio (rentido invesso I) e registre o tempo be une esciloter inverse complete, TI.
1.8-Repeter codo medicio pelo menos 2 vezes 7.9 - Mulor a distanció dos tos mossos ao lisco e rejetion o procedimento acimo 7.70 - Repetir 7.9 pora vorios posições distintos todo em Vista à coloule de D otrovés de uma anolise grafica I'(T2) 1.11 - Forger toleto com - distancias dy=dz TOB, TI, T= TO+TI Noto: Na tolela, I depende de D, pelo que esta constante depende do sistemo e dellero ser colculado doperimentolmento com o grofus I'(72) 1.12- Considerer o caso em que o eixo de rimetria da voreta nos coincide com o eixo de rotoso do m sistemo. 1.13 - West Considerates de de (Ver figura olevisco), rejetir os possos 7.5 a 1.8 pora períodos dos movimentos 7.14 - Forger tobels com d, Ty, Tz, To, Tz, Te I 7.75 - Terter o topeno de Steiner

di=dz Tz	To
19 6,292 6,290	6,296 6,298
18 6,069	6,072
77 5,862	5,807
16 5,584	5,807 5,591 5,592
15 5,331	5,339 5,343
10 4,225	9,243 4,233 4, 331
7,224	
Steiner	26,55 26,55
4.0	22 - Z6,55 Ycm
	53,1
Dz TI	To
23,5 7,595	7,603
22 7,552	7,567
20 7,531 20 7,530	7,5 3 7 7,5 410
19 7,532	7,544 7,546 7,586
18 7,524 17 7,576	7.586
Solidos	.)
Coliano oco	Disco
n = (370,05 \$0,07) g D = (10, 10 ± 0,00 z) cm D L = (0,900 ± 0,00 z) cm penuro = (0,450 ± 0,00 z	D=(27,75±0,05)cm
D & - 50 900 + 0 007) a	L=(1, 240 +0,007/cm

TI . T_{D} cilandro oco 7,181 1,180 7,182 1,180 1,181 1,187 Disco 1,465 7,465 7,4604 7,469 1,4686 Anolise de Pados - Monento de Inércia de Sistemo de massas portues. - No tolly 1, obside, temos or volores determinados no primeira porte sa experiência, em que re estela o momento de un sistema com z pomosos parturais.

(T _i ±0,001)s	(T±0,0005) (s)	T ² (s ²)	u (T²) (s²)	I' (kg m²)	u(I') (kg m²)	I (kg m²)	u(I) (%)	Desvio de I e I'(%)	
7,812	(120,0003) (3)	1 (3)	u (1 / (3 /	I (KgIII)	u(i) (kg iii)	I (Kg III)	u(1) (70)	DESVIO GETET (70)	
7,814	7,811	61,012	7,811E-03	3,497E-02	8,109E-05	3,505E-02	0,24158%	0,22869%	
7,554									
7,548	7,549	56,991	7,549E-03	3,273E-02	7,811E-05	3,274E-02	0,24161%	0,04152%	
7,306	7 200	F2 202	7,0005,00		7.5405.05	2 0545 02	0.044.500/	0,13682%	
7,299	7,300	53,283	7,300E-03	3,057E-02	7,513E-05	3,061E-02	0,24163%		
7,044	7,043	49,597	7,043E-03	2,849E-02	7,215E-05	2,849E-02	0,24166%	0,00568%	
7,046	7,013	13,037	7,0152 00	2,0132 02	7,2152 66	2,0132 02	0,2110070	0,0000070	
6,808	6,808	46,345	6.808E-03	2,650E-02	6.917E-05	2,662E-02	0.24169%	0,45245%	
6,801	0,000	40,545	0,8082-03	2,000L-02	0,5172 05	Z,OOZZ OZ	0,2120370	0,1021070	
6,547	6,552	42,922	6,552E-03	2,460E-02	6,619E-05	2,466E-02	0,24172%	0,23585%	
6,549	0,002	42,322						5,2300070	
6,292	6,294	39,614	6,294E-03	2,278E-02	6,321E-05	2,276E-02	0,24176%	0,09716%	
6,290	5,25 .	05,021	5,23 .2 55	2,2702 02		2,2,02 02	0,2.2.0.0	-,	
6,069	6,070	36,845	6.070E-03	2,104E-02	6.024E-05	2,117E-02	0.24180%	0,58085%	
6,066	5,575	50,010		2,2012 02		2,22,2 02			
5,802	5,804	33,684	5,804E-03	1,939E-02	5,726E-05	1,935E-02	0,24186%	0,22255%	
5,799	5,550+	55,004	5,0042 05	1,5052 02	5,7202 05	1,5552 02	0,2410070	0,2223370	
5,584	5,588	31,223	5,588E-03	1,783E-02	5,429E-05	1,794E-02	0,24191%	0,61365%	
5,584	3,366							0,0130370	
5,331	5 226	5,336 28,473	5,336E-03	1,635E-02	5,132E-05	1.636E-02	0,24197%	0,06727%	
5,331	5,330	20,473	J,330E-03	1,033E-02	J,132E-03	1,030E-02	0,2413770		
4,225	4,228	17,878 4,228E-03		1,021E-02	3,654E-05	05 1,027E-02	0,24240%	0,60661%	
4,224	4,220	17,070	+,220L-U3	1,0211-02	3,0341-03	1,0271-02	0,24240/0	0,0000170	

Tolela 7 - Volores medidos e colculados no princios porto de experiência

- Algunos coisos a votor: - Os volores de dy e de correspondem à distância do centro de massa dos massa so esco de sinterior do sistemo. Assim, todos os volores de de/de acrecentarios metade do confrimento dos mossos (que medinos como sendo respetivomente en rentido divito e inverso, utilizando o photogote mo modo pendulo, pour que housesse monor incotezar quitro - Os volores de T corresponden à média dos de volores de período medidos, z en cada sentido. Assim, por propozoco de incertezo obteve-se que $u(\tau) = \left(\frac{\partial T}{\partial T \lambda_1} u(T \lambda_1)\right)^2 + \left(\frac{\partial T}{\partial T \lambda_2} u(T \lambda_2)\right)^2 + \left(\frac{\partial T}{\partial T_{i,1}} u(T_{i,1})\right)^{\frac{1}{2}}$ Assim, u(T) é constante, dependendo apenas da incenteza de Tda, Tdz, Taz e Tez. - Pestos forma, tombém por 7° re utilizar propagogo NO DESCRIPTION $u(\tau^2) = \sqrt{\left(\frac{\partial (\tau^2)}{\partial \tau} u(\tau)\right)^2} = \sqrt{2 \times T \times u(\tau)}$ - O volor de I' fois colculado utilizando a formula teórico I'= m, d, 2 + m 2 d 2 + m valeta luneta 2 Assim, nor monogação de incertazos se 12 obite se que u(I') = (DI' u(my)) + (DI' u(mz)) + (DI' u(dy)) + (DI' u(dy)) + (DI' u(dy)) + (DI' u(munt)) +

d (±0,0005)m	$\overline{d_1}$ (± 0,0005) (m)	$\overline{d_2}$ (± 0,0005) (m)	T _D (±0,001) (s)	T _I (±0,001) (s)	(T±0,0007) (s)	T ² (s ²)	u(T ²) (s ²)	I zz' (E) (kg m²)	u(I zz'(E)) (kg m ²)	I zz' (S) (kg m²)	Erro (%)
0,0305	0,2960	0,2350	7,6030	7,5950	7,5990	57,7448	0,0106	0,0332	8,03E-05	0,0345	3,75%
0,0455	0,3110	0,2200	7,5610	7,5520	7,5565	57,1007	0,0106	0,0328	7,94E-05	0,0351	6,54%
0,0555	0,3210	0,2100	7,5370	7,5310	7,5340	56,7612	0,0105	0,0326	7,89E-05	0,0357	8,56%
0,0655	0,3310	0,2000	7,5410	7,5300	7,5355	56,7838	0,0105	0,0326	7,89E-05	0,0363	10,22%
0,0755	0,3410	0,1900	7,5440	7,5320	7,5380	56,8214	0,0106	0,0326	7,90E-05	0,0371	12,05%
0,0855	0,3510	0,1800	7,5460	7,5240	7,5350	56,7762	0,0105	0,0326	7,89E-05	0,0380	14,19%
0,0955	0,3610	0,1700	7,5860	7,5460	7,5660	57,2444	0,0106	0,0329	7,96E-05	0,0390	15,71%

Tobelaz-todos obtesos na za porto da tividado

Algunas notas sobre a tolela Z: - Como dito anterigemente, so notar a lesera medinos o volor de de dz. Assim, terros que du = 2x 26,55-Lz e que d = d1 - 21. - Tol como no porte do dividade orterios, medinos TI e To com a photogete no modo pendulo. - com T e aperos a medio de Z voleres, Tre To, a sua incerteza depende aperos de u(TI) e u(Ta) e é entro constante e é igual a 7.70-752 - Mais uma Very, a incentery de TZ e igual a u(TZ) = ZTu(T) e foi obtido por propagação de incertazas com o Dobleto anteriormente - A sin , wilizando o formula I = y 12 T 2 Voltisemos os Volores de Izz(E) (experimentais). Ora, estes são os volores do nomento de inércio do ristemo pora um certo volor de d tol que de 7 de 2, ou rejo, em que os eixos de sinstiso e rotoso nos concedem - Pora de soltes as incertezas de Izzi fizzenos prepagação de incrtezas de Izzi = 0 72 72: u (IZZ')[] - () [] ()] + () [] [(72) [- De reguido, aplicamos o teorena de Steiner pora obtes un volor teórico de Izz'(5) (teoremo de Steiner) 1 IZZ 19= IOO + Md rendo que M e a mossa tolol do sistema, de entre os escos de notação e de sinetria e Too o momento de inércia do sistemo o rodo em reu sixo de sinetria, obtido com a fornel Ico = m, 6, 2 mz bz - De reguiso, po determinamos os erros experimentais volores de IZZ (E) obtidos em relação aos volores de IZZ (5) obtilos com o teoremo de steines e que, portanto, consideramos como rendo volores de referência. Estes erros encontram-se no gomo de 3,75% - 75,71%. E'ainda evidente que o erro percentral aumentou consocrete do aumentou

Sólido	T _D (±0,0005) (s)	T ₁ (±0,0005) (s)	T (±0,0004) (s)	T^2 (s ²)	u(T ²) (s ²)	I _E (kg m ²)	u(I _E) (kg m ²)	I _T (kg m ²)	Erro %
	1,180	1,181							
Cilindro Oco	1,180	1,182	1,181	1,394	9,447E-04	8,010E-04	0,251%	8,634E-04	7,22%
	1,181	1,181							
	1,465	1,465							
Disco	1,464	1,464	1,465	2,145	1,172E-03	1,232E-03	0,247%	1,371E-03	10,09%
	1,464	1,466							

Tolalo 3- Podos oletidos no teterminação de I jora solidos

- Tol como nos primeiros 2 jortes do otividad, kimos que
Te operos uma media de volores, en e que portanto a
un incertira e constante de por progragação de incertas,
e igual o 4.70-4 s.

- Mais uma Very, colculamos u (T²) por propagação de
incertara, tol de que u (T²) = 2 Tu (T)

-Anin, com os dados do tolelo 3, determinamos I E (volor de I olitiso experimentolmente), for into usonos or formula I = 772 T2, com o volor de D sotido no primeiro joste da stividode. - Pero determinos a incentrajo de IE fizemos propozações de incertiz e obtisemos: $\mu(I_E) = \left(\frac{\partial I_E}{\partial D} \mu(D)\right)^2 + \left(\frac{\partial I_E}{\partial T^2} \mu(T^2)\right)$ - thom storpicertoyon, determinon-se or incertizar 1 relativos percentuais pera os volos de I E colculados. Estas são de cerca de 0,25% pera ambos os rolidos. - lor fin utilizando os formulas I = 2 M (nint + nont) poro o cilindro oco e I = 1 MRZ poro o dico obtwenos os volores de I, volor de I obtido com nétodos teóricos) pora caba solito. Determinou-se vinda os erros percentuses de It en relação a IT, que foram de 7,22% pora o cilindero oco e de 10,09% pora o disco. Conclusões - Na primeira porte do stevidade determinamos um volor A incertige dos volores de I obtidos (utilizando D) foi reduzida, ronfondo os 0,24%. Os idescios entre os volores de I e I' obtisos são loiscos, nuna possando 0,674%. Isto lesa concluir que I = # 12 P = I = mydy + mz dz + minute Lineta ambas formulas volidos poro seterminos o momento de inercia de um massos portuses - No regardo porte itilizar se o De os duas formulas referisos onteriormente poso verificos o teoremo de steines. Nito, o earo percentust oumentou com a. Como go foi explicade na onólise de dados, as principais fontes destes essos Terão rido: erros na diterminação de to e execciolmente, no medição dos periodos de escelsção no egendo porte do stividade. Ora, a maneira mois focil de tortor reduzion

ete erro terio sido redizor mois ensoios por codo volos de & (só redigenes 2 ensois pero codo d). - lor fin, no tercion porte do Lividode preter determinos o momento de intres de sem cilindro oco e de um disco. Espetitionente, obtivenes bros que la bro ite, utilizaros nois uma sez o formula I= \$\frac{1}{\pi T^2}, comin somo os formulas Jeorisos de I poro os 2 rolidos releciondos Assim, poro o cilindro Voletacimos cem erro percentes de 7,22% e, pro o stato erro de 10,09%. Ao colculor os incertizos dos I obtidos vinos quel estos rendom os 0 25 Obtidos vimos quel stos rondom os 0,25%. Arin, como a incestian percentul e muito menos que o erro percentual, concluiros que os volores obtidos são bostante precisos, mos não esotos. Esto pode dever-se a fros no coloulo de to ou a defectos mos rolidos utilizados. Mais concretamente, as limits exteriors das livres do disco estavam desgostados, rendo que este não lora um desão purfeito. Já o des culindro, não lora existemente oco, posque tenta umo leare, de modo a encaisos no suporte.