Universidad Nacional Autónoma de Honduras Geometría II Ejercicios de Repaso para el Parcial I

Profesor: Dr. Fredy Vides

- 1 Dado un ET X. Probar que la relación \sim definida en $X \times X$ por $x \sim y$ ssi $\exists \gamma \in C([0,1],X)$ t.q. $\gamma(0) = x$ y $\gamma(1) = y$, es una relación de equivalencia. El conjunto X/\sim recibe el normbre de componentes de travectorias de X.
- 2 Suponer que $(\alpha*\beta)*\gamma = \alpha*(\beta*\gamma)$ para cualesquiera tres trayectorias α, β, γ en X para las que el producto está definido. Probar que cada componente de trayectorias de X consta de un solo punto.
- 3 Sea X conexo por trayectorias y sea $b \in X$. Probar que toda trayectoria en X es homotópica con puntos extremos fijos a una trayectoria que pasa por b.
- 4 Sea $D \subseteq \mathbb{R}^n$ abierto, sea α una trayectoria en D de x a y, y definamos

$$d := \inf\{d_E(\alpha(s) - w) | w \in \partial D, 0 \le s \le 1\},\$$

donde d_E denota la distancia Ecuclídea en \mathbb{R}^n . Probar que si β es cualquier trayectoria en D de x a y tal que $d_E(\beta(s) - \alpha(s)) < d$, $0 \le s \le 1$, then β es homotópico a α con puntos extremos fijos.

- 5 Sea \mathbb{D}^2 la bola cerrada de radio unidad en \mathbb{R}^2 con círculo frontera $\mathbb{S}^1 = \partial \mathbb{D}^2$. Probar que $[\partial \mathbb{D}^2] = [\star]$ para cualquier punto $\star \in \mathbb{D}^2$.
- 6 Probar que si $X \subseteq \mathbb{R}^n$ es convexo, $\pi_1(X, b) \simeq \{0\}$.
- 7 Probar que $[\mathbb{D}^2 \times \mathbb{S}^1] = [\mathbb{S}^1]$.
- 8 Un espacio X es contractible a un punto $x_0 \in X$ manteniendo x_0 fijo si existe un mapa $F: X \times [0,1] \to X$ tal que

$$F(x,0) = x_0, x \in X,$$

 $F(x,1) = x, x \in X,$
 $F(x_0,t) = x_0, 0 \le t \le 1.$

Probar que tal espacio es simplemente conexo.

- 9 Sean (X, x_0) y (Y, y_0) EP. Probar que $\pi_1(X \times Y, (x_0, y_0)) \simeq \pi_1(X, x_0) \times \pi_1(Y, y_0)$.
- 10 Probar que el producto de espacios simplemente conexos es simplemente conexo.
- 11 Sea X un ET conexo por trayectorias y sean $a, b \in X$. Probar que los siguientes son equivalentes.
 - a X es simplemente conexo.
 - b Cualesquiera dos trayectorias de a a b son homotópicas con extremos fijos.

- c Todo mapa $f: \mathbb{S}^1 \to X$ se extiende a un mapa $F: \mathbb{D}^2 \to X$.
- 12 Probar que si $n \geq 3$, entonces $\mathbb{R}^n \setminus \{0\}$ es simplemente conexo.
- 13 Un subespacio A de un ET X es una retracto de X si existe un mapa $f: X \to A$ tal que f(y) = y para todo $y \in A$. El mapa f es llamado una retracción de X sobre A. Probar que la esfera unitaria \mathbb{S}^n en \mathbb{R}^{n+1} es un retracto de $\mathbb{R}^{n+1} \setminus \{0\}$.