

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Segundo Semestre de 2018

Tarea 9

Teoría de Números - MAT 2225 Fecha de Entrega: 2018/11/06

> Integrantes del grupo: Nicholas Mc-Donnell, Camilo Sánchez Felipe Guzmán, Fernanda Cares

Problema 1 (2 pts. c/u). Los siguientes $f \in \mathbb{C}[y_1, y_2]$ determinan un conjunto algebraico $X = \mathbb{V}(f)$ en la carta afín $U_0 \simeq \mathbb{A}^2$ de \mathbb{P}^2 . En cada caso, calcule los puntos al infinito de la clausura proyectiva de X:

- 1. $y_1^3 y_2^3$
- $2. \ y_1^2 y_2 2y_1 y_1^2 + y_1 y_2 3$
- 3. $y_1^n + y_2^n + 1$ con n entero positivo

Solución problema 1:

1. $H = x_1^3 - x_2^2 x_0$ homogeneización de f. Luego, $\mathbb{V}_{u_0}(f) = \mathbb{V}_{12}(H)$. Queremos puntos en $\mathbb{V}_{12}(H) \setminus \mathbb{V}(f)$.

Como vemos $\mathbb{V}(f)$ en $u_0 \to \text{tomemos } p = [0:a:b] \notin u_0$.

Además, $a^3 - b^2 \cdot 0 = 0 \Rightarrow a = 0$. Luego, [0:0:1] es punto al infinito de la clausura.

2. $H = x_1^2 x_2 - 2x_1 x_2^2 + x_1 x_2 x_0 - 3x_0^3$. Tomemos $p = [0:a:b] \not\in u_0, \, p \in H$. Luego,

$$a^{2}b - 2ab^{2} + 0 - 0 = 0 \Rightarrow ab(a - 2b^{2}) = 0.$$

Si a = 0, tenemos que $p_1 = [0:0:1]$ es punto al infinito. Análogamente, $p_2 = [0:1:0]$ es punto al infinito. Si a - 2b = 0, entonces a = 2b. Luego, $p_3 = [0:2:1]$ es un punto al infinito.

Con esto, tenemos que p_1, p_2 y p_3 son todos los puntos al infinito.

3. $H = x_1^2 + x_2^n + x_0^n = 0$. Tomemos p = [0:a:b] con $p \in H$. Luego, $a^n + b^n = 0$. Si a = 0, entonces b = 0, pero $[0:0:0] \notin \mathbb{P}^3$, $\rightarrow \leftarrow$. Análogamente, b = 0 no nos da puntos. Si $a, b \neq 0$, entonces p = [0:1:c] implica que $c^n = -1$. Si n es par, no hay puntos. Si n es impar, entonces tenemos $C_n = -\text{cis } (2\pi n/k)$, con $k \in \{0, \dots, n-1\}$. Luego, tenemos $p_n = [0:1:C_n]$ puntos al infinito.

Problema 2 (3 pts. c/u). Sea $0 \neq f \in \mathbb{C}[x_0, x_1, x_2]$ un polinomio homogéneo de grado $m \geq 1$.

1. Muestre que

$$x_0 \frac{\partial f}{\partial x_0} + x_1 \frac{\partial f}{\partial x_1} + x_2 \frac{\partial f}{\partial x_2} = m \cdot f$$

2. Muestre que si las tres derivadas parciales de f no tienen ceros comunes en \mathbb{P}^2 entonces $\mathbb{V}(f) \subseteq \mathbb{P}^2$ es suave.

Solución problema 2:

1. Tenemos que

$$f = \sum_{\substack{i,j,k \ge 0 \\ i+j+k=m}} \alpha_{i,j,k} x_0^i x_1^j x_2^k$$

Luego, tenemos que $\frac{\partial f}{\partial x_0} + \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2}$ es igual a

$$\begin{split} x_0 \sum_{i} i \cdot \alpha_{i,j,k} x_0^{i-1} x_1^j x_2^k + x_1 \sum_{j} j \cdot \alpha_{i,j,k} x_0^i x_1^{j-1} x_2^k + \sum_{j} k \cdot \alpha_{i,j,k} x_0^i x_1^j x_2^{k-1} \\ = \sum_{j} i \cdot \alpha_{i,j,k} x_0^i x_1^j x_2^k + \sum_{j} j \cdot \alpha_{i,j,k} x_0^i x_1^j x_2^k + \sum_{j} k \cdot \alpha_{i,j,k} x_0^i x_1^j x_2^k \\ = \sum_{j} (i+j+k) \cdot \alpha_{i,j,k} x_0^i x_1^j x_2^k \\ = m \cdot f, \end{split}$$

que es lo que se quería demostrar.

2. Intersectaremos con u_0, u_1 y u_2 y veremos que define curvas afines suaves. Viendo $\mathbb{V}(f)\backslash u_0$, tenemos que $f_1(x,y)=f(x_0,x_1,x_2)$ con $(x_0,x_1,x_2)=(1,x,y)$. Luego,

$$\frac{\partial f_1}{\partial x}(x,y) = \frac{\partial f}{\partial x_0}(1,x,y) \cdot \underbrace{\frac{\partial x_0}{\partial x}}_{0} + \underbrace{\frac{\partial f}{\partial x_1}(1,x,y)}_{1} \cdot \underbrace{\frac{\partial x_1}{\partial x}}_{1} + \underbrace{\frac{\partial f}{\partial x_2}(1,x,y)}_{1} \cdot \underbrace{\frac{\partial x_2}{\partial x}}_{0} = \underbrace{\frac{\partial f}{\partial x_1}(1,x,y)}_{0}$$

Análogamente, $\frac{\partial f_1}{\partial y}(x,y) = \frac{\partial f}{\partial x_2}(1,x,y)$. Supongamos que (a,b) es cero común. Luego,

$$\frac{\partial f_1}{\partial x}(a,b) = 0 \qquad \Rightarrow \qquad \frac{\partial f}{\partial x_1}(1,a,b) = 0$$

$$\frac{\partial f_1}{\partial y}(a,b) = 0 \qquad \Rightarrow \qquad \frac{\partial f}{\partial x_2}(1,a,b) = 0$$

$$f_1(a,b) = 0 \qquad \Rightarrow \qquad f(1,a,b) = 0$$

Por la parte i), tenemos que

$$1 \cdot \frac{\partial f}{\partial x_0}(1, a, b) + a \cdot \underbrace{\frac{\partial f}{\partial x_1}(1, a, b)}_{0} + b \cdot \underbrace{\frac{\partial f}{\partial x_2}(1, a, b)}_{0} = m \cdot \underbrace{f(1, a, b)}_{0}$$

Luego, $\frac{\partial f}{\partial x_0} f(1, a, b) = 0$. Luego, (1, a, b) es un cero común de las tres derivadas parciales, $\rightarrow \leftarrow$.

Así, no hay ceros comunes y $\mathbb{V}(f) \cap u_0$ es curva afín suave.

Problema 3 (2 pts. c/u). Dado un entero positivo n, la curva de Fermat $X_n \subseteq \mathbb{P}^2$ es la curva plana proyectiva definida por el polinomio homogéneo

$$x_0^n + y_0^n + z_0^n$$

- 1. Muestre que X_N es suave chequeando que su intersección con las cartas afines U_0, U_1, U_2 define curvas afines suaves.
- 2. Muestre que X_n es suave cheque ando directamente en \mathbb{P}^2 , usando el Problema 2.

Solución problema 3:

1. Tenemos $x_0^n + y_0^n + z_0^n = X$, $n \neq 0$.

 $X \cap U_0$: Tenemos que $1 + \alpha^n + \beta^n = 0, n \cdot \alpha^{n-1} = n \cdot \beta^{n-1} = 0$. Esto implica que $\alpha = \beta = 0$, pero en este caso $1 + \alpha^n + \beta^n = 1, \rightarrow \leftarrow$.

 $X \cap U_1$: Tenemos que $\alpha^n + 1 + \beta^n = 0, n \cdot \alpha^{n-1} = n \cdot \beta^{n-1} = 0$. Esto implica que $\alpha = \beta = 0$, pero en este caso $\alpha^n + 1 + \beta^n = 1, \rightarrow \leftarrow$.

 $X \cap U_2$: Tenemos que $\alpha^n + \beta^n + 1 = 0, n \cdot \alpha^{n-1} = n \cdot \beta^{n-1} = 0$. Esto implica que $\alpha = \beta = 0$, pero en este caso $\alpha^n + \beta^n + 1 = 1, \rightarrow \leftarrow$.

Así, se tiene lo pedido.

2. Por la pregunta 2, basta que las derivadas parciales no tengan ceros comunes en \mathbb{P}^2 . Si n=1, entonces la derivada parcial da $1 \neq 0$, por lo que no hay ceros comunes. Si n>1, entonces la derivada parcial en la primera variable da $n \cdot x_0^{n-1}$. Luego, para que sea $0, x_0=0$. Análogamente, $y_0=z_0=0$. Pero $[0:0:0] \notin \mathbb{P}^3, \to \leftarrow$. Por lo tanto, no hay ceros comunes y la curva es suave.

Problema 4 (4 pts.). Sean $A, B \in \mathbb{C}$. Considere la curva plana afín dada por

$$y^2 = x^3 + Ax + B$$

Sea $X \subseteq \mathbb{P}^2$ su clausura proyectiva (considerando la curva afín en $U_0 \subseteq \mathbb{P}^2$). Demuestre que si $4A^3 + 27B^2 \neq 0$ entonces X es suave.

Solución problema 4: Por teorema de clases, $\overline{\mathbb{V}_{U_0}(f)} = \mathbb{V}_{\mathbb{P}_2}(H)$, donde $H = -x_2^2 x_0 + x_1^3 + Ax_1x_0^2 + Bx_0^3$. Por la pregunta 2, basta buscar ceros comunes:

$$\frac{\partial f}{\partial x_0} = -x_2^2 + 2Ax_1x_0 + 3Bx_0^2 \tag{1}$$

$$\frac{\partial f}{\partial x_1} = 3x_1^2 + Ax_0^2 \tag{2}$$

$$\frac{\partial f}{\partial x_2} = -2x_2 x_0 \tag{3}$$

Desde (3), tenemos dos opciones. Si $x_0 = 0$, entonces desde (2) tenemos $x_1 = 0$, y desde (1) tendríamos $x_2 = 0$, $\rightarrow \leftarrow$.

Luego, $x_0 \neq 0$ y $x_2 = 0$. Luego, podemos reescribir (1) como

$$2Ax_1 + 3Bx_0 \tag{4}$$

Desde (4) se llega a $2Ax_1 = -3Bx_0$. Si A = 0, entonces B = 0, por lo que $4A^3 + 27B^2 = 0$. Luego, asumamos $A \neq 0$. Esto dice que $x_1 = \frac{-3Bx_0}{2A}$. Reemplazando en (2), se llega a

$$3 \cdot \left(\frac{-3Bx_0}{2A}\right)^2 + Ax_0^2 = 0$$

Como $4A^2 \neq 0$, desarrollando la expresión llegamos a

$$27B^2x_0^2 + 4A^3x_0^2 = 0$$

Como $x_0 \neq 0$, al simplificar queda $27B^2 + 4A^3 = 0$. Por lo tanto, si $27B^2 + 4A^3 \neq 0$, no hay ceros comunes y la curva es suave.