SOSC 5340: Overview of Statistical Inference and Prediction

Han Zhang

Outline

Logistics

Probability

Statistics

Estimation

Inference

Prediction

Summary

Instructors

Instructor: ZHANG, Han

Office: 2379

Email: zhangh@ust.hk

Office Hour: Mon 10-11AM

In office

Zoom: https://hkust.zoom.us/j/6522716568

Teaching Assistant: Li, Jingchen

Office: 3001

Email: jlieg@connect.ust.hk

Office Hour: TBD

Self Introduction

Components

- Second course in SOSC's statistics sequence for research graduate students (after SOSC 5090);
- Three core goals of social sciences:
 - 1. Description: describing one variable
 - 2. Prediction: correlation between two social phenomena.
 - 3. Explanation: are the correlation causal?
- Three set of knowledge/skills
 - 1. Statistical estimation and inference
 - 2. Applied regression modeling
 - 3. Causal inference (second half of the semester)

Grading

Attendance	10%
Assignments	10% 30%
Presentation of a published research (15 min)	10%
Presentation of your final paper (20 min)	15%
Write-up of your final paper	35%

Assignments

- Homework assignment: short coding homework to make sure that you know how to run models we covered in the lectures.
 - 3-4 times
- Our TA will hold tutorial sections to teach you
 - how to run these models before assignments.
 - discuss solutions of previous assignment
 - 3-4 times

Presentation of an academic article

- As a researcher, you will need to present your own research at academic conferences.
- This exercise prepares you with relevant skills
- A list of academic publications will be distributed later
- These publications apply what we have learned in the class to real social science problems, or discuss methodological pitfalls in current applied research
- You are required to select on article, and present it to the entire class (15 minutes)

Final Paper

- As a researcher, you will need to apply what you have learnt to a real social science problem, and write an academic article.
- It is very important to write and present your own work.
- You need to
 - Present your own final paper to the class (15%)
 - Write it down (35%)
- Treat this as a real paper that has the potential to be published at academic journals/presented at academic conferences.

Materials

- Some textbooks that inspired the slides
 - Scott Cunningham. Causal Inference: the Mixtape. Yale
 University, 2021. My weekly schedule is most similar to this
 book. It can be freely viewed at
 https://mixtape.scunning.com/index.html
 - Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (more mathematical; mostly used for the first half of the class).
 - Joshua D. Angrist and Jorn-Steffen Pischke. Mostly Harmless Econometrics: An Empiricists Companion. Princeton University Press, 2009. (more applied; mostly used for the second half of the class).
 - Hansen, Bruce. Econometrics, 2020. Free at the author's website
 - https://www.ssc.wisc.edu/~bhansen/econometrics/

Coding

- We will use R for lectures and tutorials
- If you prefer Stata, that is okay
- Scott Cunningham. Causal Inference: the Mixtape has both R and Stata codes.

Three types of social science questions

- 1. Description: describing one variable
- 2. Prediction: correlation between two social phenomena.
- 3. Explanation: are the correlation causal?
- Today's lecture focuses on the first two
- How do we use statistics to do description and prediction

Random variables

- Random variable: abstraction of some concept we care about.
- Examples:
 - define random variable X as gender; it can take several values from male, female, transgender,...
 - define random variable X as height; it can take numeric values.

Probability distribution

- Descriptive problem: measure the probability distribution of a random variable
- Probability density function (PDF): f(x)
 - How likely does random variable X take a particular value x
 - f(x) = P(X = x)
- Cumulative distribution function (CDF): $F(X) = P(X \le x)$
 - The probability that a random variable X takes a value equal to or less than x?

Joint and Conditional Probability

- Predictive/correlation problem can be addressed by the joint/conditional probabilities of random variables
- Joint probability density function: f(X = x, Y = y)
 - Probability that X takes value x and Y takes value y
- Conditional probability density function
 - Probability that Y takes value y, give that X takes value x.

Probability (exercise)

Two treatments for kidney stones

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- X is whether the patient is cured (1) or not (0)
- What is the conditional probability of being cured, given treatment A and B?
 - P(X = 1 | treatment = A)
 - P(X = 1 | treatment = B)
- P(X = 1 | treatment = A) = 273/350 = 78%
- P(X = 1 | treatment = B) = 289/350 = 83%
- treatment B is more effective in the entire population

Probability (exercise)

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%
 - P(X = 1 | treatment = B, size = small) = 234/270 = 87%
- Large Kidney Stone:
 - P(X = 1 | treatment = A, size = large) = 192/263 = 73%
 - P(X = 1 | treatment = B, size = large) = 55/80 = 69%
- B is more effective in the entire population, but A is more effect for both patients with small and large kidney stones.
- This is known as the Simpson's Paradox. Why?

Expected Value

- Expectation (expected value) E(X):
 - The average value of a random variable X
- Categorical variable's expectation:
 - Let X be a random variable with a finite number of finite outcomes x_1, x_2, \ldots, x_k occurring with probabilities p_1, p_2, \ldots, p_k
 - E(X) is the weighted average of X, with probability as weights
 - $E[X] = x_1p_1 + x_2p_2 + \cdots + x_kp_k = \sum_{i=1}^k x_i p_i$
- Continuous variable's expectation

$$E(X) = \int x \cdot f(x) dx$$

Expected Value (exercise)

• What is the E(X) of the random variable X?

Χ	P(X)
0	0.8
1	0.1
2	0.06
3	0.03
4	0.04

Expected Value

- Useful formula of expected values
 - 1. Linearity of expectation:

$$E(aX + bY + c) = aE(X) + bE(Y) + c$$

2. Constant's expectation is constant: E(c) = c

Conditional Expectation

- Conditional expectation E(Y|X=x):
 - What is the average value of a random variable Y, when we already know that random variable X takes a fixed value x
- Useful formula 3: Law of Iterated Expectation (Law of Total Expectation)

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \begin{cases} \sum_{x} \mathbb{E}[Y|X = x]P(X = x) & \text{discrete } X \\ \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x]f(x)dx & \text{continuous } X \end{cases}$$
(1)

- Basically, this theorem says that:
 - if we have knowledge about one variable X(P(X))
 - and how X relates to Y (through P(Y|X))
 - we can calculate the average of another variable Y.

Variance

- The variance measures the dispersion or the "spread" of a probability distribution.
- The variance of a random variable X, denoted V(Y), is the expected value of the square of the deviation of Y from its mean:
- $V(X) = E[(X E(X))^2]$
- Standard deviation: $\sigma = \sqrt{V(X)}$

Variance

Definition (Alternative Formula for Variance)

$$V(X) = E[X^2] - E[X]^2$$

Proof.

$$V(X) = E\left[\left(X - E(X)\right)^{2}\right] \tag{2}$$

$$= E[X^2 - 2XE(X) + E(X)^2]$$
 (3)

$$= E(X^{2}) - 2E[XE(X)] + E[E(X)^{2}]$$
 (4)

$$= E(X^{2}) - 2E(X)E(X) + E(X)^{2}$$
 (5)

$$= E(X^2) - E(X)^2 (6)$$

Probability and Statistics

- Probability is defined on population
- Probability of population is often very hard to obtain;
 - We need to have information of every unit in the population
 - But it's often unrealistic
- Statistics (or sample statistics) is an quantity computed from samples

I.I.D. random variables

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height; high cost and population changes
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .
- This process continues 100 times, we get $(X_1, X_2, \cdots, X_{100})$
- $(X_1, X_2, \dots, X_{100})$ are independent and identically distributed (I.I.D.)
 - independent: our *i* th draw does not depend on the *j* th draw;
 - in math: $P(X_i, X_j) = P(X_i)P(X_j)$
 - identically distributed: they all come from the same probability distribution: HKer's height.
 - They are not coming from a different distribution, say, heights of desks

I.I.D. random variables (exercise)

- When the independent assumption may be violated?
 - e.g., samples are not random, but HKUST students.
- When the identically distributed assumption may be violated?
 - e.g., population changes during the sampling process.

Sample Mean of I.I.D. random variables

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X
- We do not know E(X) and we want to estimate it using samples

Definition (Sample Mean)

The sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Theorem (The Expected Value of the Sample Mean is the Population Mean)

$$E(\bar{X}) = E(X)$$

- Implication:
 - Expectation of the sample mean equals population mean
 - We cannot directly obtain population mean
 - But mean of sample mean is something easier to obtain

Sample Mean of I.I.D. random variables

The Expected Value of the Sample Mean is the Population Mean.

$$E(\bar{X}) = E(\frac{1}{n}(X_1 + \dots + X_n)) \tag{7}$$

$$= \frac{1}{n}E(X_1 + \dots + X_n)$$
(8)
= $\frac{1}{n}[E(X_1) + \dots + E(X_n)]$ (9)

$$=\frac{1}{n}[E(X_1)+\cdots+E(X_n)] \tag{9}$$

$$=\frac{1}{n}[E(X)+\cdots E(X)] \tag{10}$$

$$=E(X) \tag{11}$$

Mean of sample mean

- \bullet Mean of sample mean \to suggests that you need to take all possible surveys, calculate the mean from each survey, and take the averages
- Basically it's the average of an average
- In real life, we only have one survey (i.e., one \bar{X}), so we still cannot calculate $E(\bar{X})$, which means that we also do not know the value of E(X)
- How is the one sample mean \bar{X} associates with the population mean E(X)?

Law of Large Numbers

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Theorem (Weak Law of Large Numbers, Jacob Bernoulli, 1713)

The sample mean \bar{X} converges in probability to the population mean E(X), as $n \to \infty$.

- Convergence in probability:
 - If a and b convergence in probability, it is very likely that their difference will be very small.
 - $\lim_{n\to\infty} P(|a-b| \le \epsilon) = 1$, for all $\epsilon > 0$.
- Implication of the Weak Law of Large Numbers:
 - We can use one sample mean to estimate population mean

Variance of the Sample Mean

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite variance V(X)

Theorem (Sampling Variance of the Sample Mean)

The variance of the sample mean is $V(\bar{X}) = \frac{V(X)}{n}$

• That is, variance of the same mean decreases, as *n* increases.

Estimator

- Estimation: use (sample) statistics to infer population quantities
- Let X_1, \dots, X_n be i.i.d. random samples of random variable X
- We care about some population quantity of interest θ (e.g., mean, variance, median, etc)

Definition (Estimate and Estimator)

Estimator of a population quantity θ is a function of the samples, $\hat{\theta} = h(X_1, \dots, X_n)$; $\hat{\theta}$ is the estimate of θ .

- In a nutshell, statistics uses estimator to provide estimate of population quantity
- Example: an estimator of population mean E(X) is sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Estimators

- There are usually many different estimators of the same quantity.
 - E.g., X_1 is also an estimator of E(X). But intuitively it is not as good as the sample mean \bar{X}
 - How can we say one estimator is better than the other?
 - What properties should good estimators have?

Desirable Property: Unbiasedness

• For an estimator $\hat{\theta}$, its bias is defined as $E(\hat{\theta}) - \theta$

Definition (Unbiased Estimator)

An estimator $\hat{\theta}$ of θ is an unbiased estimator if $E(\hat{\theta}) = \theta$ or bias is 0

- Question: sample mean \bar{X} is an unbiased estimator of population mean E(X). Why?
- Answer: because the expectation of sample mean equals to population mean $(E(\bar{X}) = E(X))$

Desirable property: Consistency

Definition (Consistent Estimator)

An estimator $\hat{\theta}$ is an consistent estimator if $\hat{\theta}$ converges in probability to θ , as $n \to \infty$.

- Question: sample mean is an consistent estimator of population mean. Why?
- Answer: because of the Law of Large Numbers.

Estimation basics

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X with variance V(X)
- We see that sample mean \bar{X} is an unbiased and consistent estimator of population mean E(X)
- It is tempting to extend this method to other population quantities, by:
 - 1. express some more complex population quantity as the combinations of estimable simple quantities (i.g., E(X))
 - 2. plug-in the sample estimator.
- This is called plug-in principle.

Application: plug-in estimator for population variance

- We want to apply the plug-in principle to estimate population variance V(X).
- Step 1: express $V(X) = E[X^2] E[X]^2$
 - we already know how to estimate E(X): \bar{X}
- Step 2: plug-in \bar{X} in place of E(X)

Definition (Plug-in Variance Estimator)

$$\hat{V}(X) = \overline{X^2} - \overline{X}^2$$

- Is this plug-in variance estimator a good estimator?
 - As we have learned, an good estimator should have two good properties
 - unbiased?
 - consistent?

Plug-in estimator for population variance

- Unbiased estimator means $E(\hat{\theta}) \theta = 0$
- Our variance estimator of V(X) is $\hat{V}(X) = \overline{X^2} \overline{X}^2$
- Unbiasedness:

$$E(\hat{V}(X)) = E\left[\overline{X^2} - \bar{X}^2\right] = E[\overline{X^2}] - E\left[\bar{X}^2\right]$$
(12)

$$= \mathrm{E}\left[X^2\right] - \left(\mathrm{E}[X]^2 + \mathrm{V}[\bar{X}]\right) \qquad (13)$$

$$= \left(\operatorname{E}\left[X^2 \right] - \operatorname{E}[X]^2 \right) - \frac{\operatorname{V}[X]}{n} \quad (14)$$

$$= V[X] - \frac{V[X]}{n} \tag{15}$$

$$=\frac{n-1}{n}V[X] \tag{16}$$

Unbiased Estimator for Population Variance

- Plug-in population variance estimator $\hat{V}(X) = \overline{X^2} \overline{X}^2$ is biased
- Plug-in population variance estimator $\hat{V}(X) = \overline{X^2} \overline{X}^2$ is consistent (as $n \to \infty$, $\frac{n-1}{n}$ goes to 1)
- In general, plug-in estimator is consistent, but may be biased (advanced topic).

Theorem (Unbiased Estimator of Population Variance)

 $\hat{V}(X) = \frac{n}{n-1}(\overline{X^2} - \overline{X}^2)$ is an unbiased and consistent estimator of population variance V(X)

Inference vs Estimation

- Estimation is about getting the (point) estimate $\hat{\theta}$ of quantity of interest θ
 - With unbiased estimator, $\hat{\theta}$ on average equals to θ
 - With consistent estimator, $\hat{\theta}$ converges to θ with more and more sample data
 - But in reality, we have only one $\hat{ heta}$
- Inference is about how certain we are about the estimate $\hat{ heta}$
 - The first information is the variance of the estimate $\hat{ heta}$
 - lower variance -> more certain

Example: Variance of the sample mean

- What's the variance of sample mean (as an estimate)?
- Try plug-in estimator
 - Step 1: express the quantity of interest $V(\bar{X}) = \frac{V(X)}{n}$
 - Step 2: plug-in (since we just shown how to estimate V(X) in the previous slide)

Theorem (Estimator of the Sampling Variance of the Sample Mean)

$$\hat{V}(\bar{X}) = \frac{\hat{V}(X)}{n}$$

- Plug-in estimator is an unbiased and consistent estimator this time (proof omitted)
- $\sqrt{\hat{V}(\bar{X})}$ is called standard error.

Central Limit Theorem

- Sample mean as an estimator has another good property: distribution of sample mean is always a normal distribution,
- Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite $E(X) = \mu$ and $V(X) = \sigma^2 > 0$
- Standardized Sample Mean $Z = \frac{\sqrt{n}(X-\mu)}{\sigma}$
 - E(Z) = 0; $V(Z) = \sigma(Z) = 1$; hence the name standardized sample mean.

Theorem (Central Limit Theorem)

- The distribution of Z converges to a standard normal distribution ($Z \sim N(0,1)$), as $n \to \infty$.
- Or equivalently, $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$, as $n \to \infty$

Central Limit Theorem (CLT)

- Distribution of sample mean is always a normal distribution,
 - even when the population distribution is not distributed normally;
- $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$
- Implications:
 - $\bar{X} = \mu = E(X)$; therefore, CLT automatically implies the Law of Large Numbers
 - Variance of the sample mean equals the variance of this normal distribution
- Central limit theorem provides a general way for us to infer the uncertainty around our estimate of sample mean

Central Limit Theorem

Desirable Property: asymptotically normal

- Central Limit Theorem means that sampling distribution of the sample mean will tend to be approximately normal
- Some other estimators also have this good property:

Definition (Asymptotic Normal Estimator)

An estimator $\hat{\theta}$ is an asymptotically normal estimator, if $\sqrt{n}(\hat{\theta}-\theta)\sim N(0,\phi^2)$ for finite $\phi>0$, as $n\to\infty$.

- Many estimators you will learn in this course is asymptotically normal
 - But not all estimators have this good property
- The good thing about asymptotically normal estimator is that we can obtain confidence interval easily

Confidence Interval

Definition (Confidence interval)

A α confidence interval for quantity of interest θ is an estimated interval that covers the true value of θ with at least α probability

- Example: in social sciences, we often uses $\alpha=95\%$ confidence interval that looks like $[\theta_{min},\theta_{max}]$. The probability that the true θ falls between $[\theta_{min},\theta_{max}]$ is at least 95%.
- Note 1: wide confidence intervals are valid, but not useful
 - e.g., θ is the average height of HKers; [0, 2.5] is a valid confidence interval but it is not very useful.
- Note 2: confidence interval does not need to be symmetric

Normal Approximation-based Confidence Interval

Definition (Estimating Normal Approximation-based Confidence Interval)

A normal approximation-based confidence interval for $\boldsymbol{\theta}$ can be estimated by:

$$\left(\hat{ heta}-q_{rac{1+lpha}{2}}\sqrt{\hat{V}(\hat{ heta})},\hat{ heta}+q_{rac{1+lpha}{2}}\sqrt{\hat{V}(\hat{ heta})}
ight)$$

- q is the quantile function of a standard normal distribution
 - $\alpha = 0.95$; $q_{0.975} = 1.96$
 - $\alpha = 0.99$; $q_{0.995} = 2.58$
- Normal Approximation-based Confidence Interval is valid for asymptotically normal estimators

Illustration

Steps to empirically estimate confidence interval

- Steps to estimate the Normal Approximation-based
 Confidence Interval for sample mean in a given sample
- Step 1: calculate sample mean \bar{X} and sampling variance of the sample mean $\hat{V}(\bar{X})$
- Step 2: construct confidence interval as

$$\left(ar{X} - q_{rac{1+lpha}{2}}\sqrt{\hat{V}(ar{X})}, ar{X} + q_{rac{1+lpha}{2}}\sqrt{\hat{V}(ar{X})}
ight)$$

• E.g., for 95% confidence interval

$$\left(ar{X}-1.96\sqrt{\hat{V}(ar{X})},ar{X}+1.96\sqrt{\hat{V}(ar{X})}
ight)$$

Bootstrap

- Normal Approximation is not the only way to construct valid confidence intervals
 - it only works for asymptotic normal estimator
- The Bootstrap is more general method to construct confidence intervals; one of the most important modern statistical concept (Efron, 1979)
 - Drawback of Bootstrap: it's a data-driven method; slow; no analytical solutions.

Bootstrap procedures

Assume we already have X_1, \dots, X_n be i.i.d. random samples of random variable X). We are interested in estimating a α confidence interval for a population quantity θ

- 1. Take a with replacement sample of size n from X_1, \dots, X_n
- 2. Calculate the sample analog of θ
- 3. Repeat 1 and 2 for m times. We end up having m estimates of θ , $(\hat{\theta}_1, \dots, \hat{\theta}_m)$
- 4. Take the $\frac{1-\alpha}{2}$ and $\frac{1+\alpha}{2}$ quantile of the values $(\hat{\theta}_1, \cdots, \hat{\theta}_m)$. These two quantiles give us the bootstrap confidence intervals.

Confidence Interval: Interpretations

- Interpretating confidence intervals carefully
- a 95% confidence interval $[\theta_{min}, \theta_{max}]$ contains the population quantity θ with at least 95% probability.
- In reality, we are estimating confidence intervals $[\theta_{min}, \theta_{max}]$.
- How should we interpret 95% estimated confidence interval $[\hat{\theta}_{min}, \hat{\theta}_{max}]$ then?
 - Through repeated samples (each time we sample n units), 95% of estimated confidence intervals would contain the population quantity θ
 - If we know $[\theta_{min}, \theta_{max}]$, we do not need repeated sampling
 - note that in reality we only have one sample (of n units)

Prediction

- Now let us move on to two variable setting
- Given two variables Y and X, and we observed X takes the value x.
- A prediction of Y given X is a function g(X) that approximate Y
- For instance, E(Y|X) is a prediction of Y given X
- Again, there are tons of ways to predict Y given X (e.g., median of Y given X)

Prediction (example)

• Predicting son's height with father's height

Using Conditional Expectation as Prediction

- If g(X) = E(Y|X), that is, we use the conditional expectation as the prediction
- The prediction error is $\epsilon = Y E(Y|X)$
- This prediction error has some good properties

Property 1: $E(\epsilon) = 0$.

$$E(\epsilon) = E[Y - E(Y|X)] \tag{17}$$

$$= E(Y) - E[E(Y|X)] \tag{18}$$

$$= E(Y) - E(Y)$$
, (Law of Iterated Expectation) (19)

$$=0 (20)$$

Conditional Expectation as Prediction (cont'd)

Property 2: $E(\epsilon|X) = 0$.

$$E(\epsilon|X) = E[Y - E(Y|X)|X]$$
(21)
= $E(Y|X) - E[E(Y|X)|X]$ (22)
= $E(Y|X) - E(Y|X)$, (Law of Iterated Expectation) (23)
= 0 (24)

Using Conditional Expectation as Prediction

- Property 2 means that on conditional on X, the mean of prediction error is 0
- This property is also called mean independent because $E(\epsilon|X) = E(\epsilon) = 0$
 - That is, we only assume that on average X and error are independent
 - Recall independence means that $P(\epsilon|X) = P(\epsilon)$

Independent, mean independent, and uncorrelated

- Independent: P(XY) = P(X)P(Y)
- Mean independent: E(Y|X) = E(Y)
- Uncorrelated: E(XY) = E(X)E(Y)
- In general, we have the following relationship (the reverse is not true):

X, Y are independent $\implies X, Y$ are mean independent $\implies X, Y$ are uncorrelated.

Using Conditional Expectation as Prediction

• Property 3 says g(X) and error is uncorrelated; it can be derived from Property 2 (mean independence) and Property 1 $(E(\epsilon)=0)$

Property 3: $E(g(X)\epsilon) = 0$, for any g(X).

$$E[g(X)\epsilon] = E[g(X)(Y - E(Y|X))]$$
(25)

$$= E[g(X)Y - g(X)E(Y|X)]$$
(26)

$$= E[g(X)Y] - E[g(X)E(Y|X)]$$
(27)

$$= E[g(X)Y] - E[E(g(X)Y|X)], (g(X) \text{ is a constant given } X)$$
(28)

$$= E[g(X)Y] - E[g(X)Y], (\text{Law of Iterated Expectation})$$
(29)

$$= 0$$
(30)

Evaluating Predictions

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0
 - Property 2: error and prediction g(X) is mean independent
 - Property 3: error and prediction g(X) is uncorrelated
- But mean error $E(\epsilon) = E(Y g(X))$ has one drawback: sensitive to the sign of error
- e.g., Y = 0; our guesses g(X) are -100, 100, -100, 100
 - Intuitively these guesses are not good
 - But *E*(*ϵ*) = 0

MAE and MSE

- Mean Absolute Error (MAE): E[|Y g(X)|]
- Mean Square Error (MSE): $E[(Y g(X))^2]$
- MSE make sure that you get penalized more, if the absolute error is large.
 - MSE is perhaps the most widely used error metric
- Both MAE and MSE ≥ 0; a good estimation thus should minimize MAE or MSE

Conditional Expectation As the Best Predictor

• There are some even better properties of E(Y|X) that make it the best predictor, given Mean Squared Error

Theorem (Conditional Expectation as the Best Predictor)

Conditional Expectation Function E(Y|X) is the best predictor of Y because it minimizes Mean Squared Error

- Proof sketch: we have two predictions for Y, E(Y|X) and any other $g(X) \neq E(Y|X)$
- We want to show that the MSE of any other g(X) is not smaller than the MSE of E(Y|X)
- In math term: $E[(Y g(X))^2] \ge E[(Y E(Y|X))^2]$
- Hint: use the conditional expectation error $\epsilon = Y E(Y|X)$

Conditional Expectation As the Best Predictor

Conditional Expectation as the Best Predictor.

$$E[(Y - g(X))^{2}] = E[(\epsilon + E(Y|X) - g(X))^{2}]$$
(31)

$$= E[\epsilon^{2} + 2\epsilon(E(Y|X) - g(X)) + (E(Y|X) - g(X))^{2}]$$
(32)

$$= E[\epsilon^{2}] + 2E[\epsilon(E(Y|X) - g(X))] + E[(E(Y|X) - g(X))^{2}$$
(33)

$$= E[\epsilon^{2}] + E[(E(Y|X) - g(X))^{2}], (Property 3)$$
(34)

$$\geq E[\epsilon^{2}]$$
(35)

$$= E[(Y - E(Y|X))^{2}]$$
(36)

Conditional Expectation As the Best Predictor (implications)

- Note that this says that the conditional expectation gives an upper bound on how well we can make a guess of Y based on X, if we want to minimize MSE
 - If the conditional expectation itself is not a very good predictor, we can still make lots of errors
 - But in this case, other predictions can only be worse
- E(Y|X) is the best predictor of Y, if the criterion is to minimize MSE
 - There are other criteria to evaluation predictions
- Our next half semester is devoted onto understanding how to estimate E(Y|X)

Today's summary

- Population/sample
- What is estimator; three good properties of estimator
- Inference; confidence interval; normal approximation vs. Bootstrap
- Conditional expectation is the best predictor in terms of minimizing MSE

Today's readings

- Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (Chapter 2 - 4)
- Joshua D. Angrist and Jorn-Steffen Pischke. Mostly Harmless Econometrics: An Empiricists Companion. Princeton University Press, 2009.
 - Discuss Conditional expectation is the best predictor (Chapter 3.1)
 - Motivated differently from Aronow and Miller