- 1. Determine la notación de Landau de las siguientes funciones.
 - a) $\frac{1}{n^2}$.

b) $\cos(n)$.

c) $\sin\left(\frac{x}{n}\right)$.

- d) $\sqrt{n+1}-\sqrt{n}$.
- 2. La pérdida de cifras significativas se puede evitar reordenando los cálculos. Determine en los siguientes casos una forma equivalente que evite la pérdida de cifras significativas para valores indicados de x.
 - a) $\ln(x+1) \ln(x)$. b) $\sqrt{x^2+1} x$. c) $1 \cos(x)$. d) $\sin(x) x$.

3. Sea $f: \mathbb{R}^n \to \mathbb{R}$ definida por

a)
$$f(x) = \frac{x}{4}$$
, $n = 1$.

)
$$f(x) = \sqrt{x}, \ n = 1.$$

b)
$$f(x) = \sqrt{x}$$
, $n = 1$. c) $f(x_1, x_2) = x_1 \cdot x_2$, $n = 2$.

Determine el número de condición.

- 4. En un aparcamiento hay 55 vehículos entre coches y motos. Si el total de ruedas es de 170. Determine
 - a) Modele el problema.
 - b) Determine la norma matricial de A.

- c) Determine el número de condicionamiento de
- d) Indique si está bien o mal condicionado.

5.	Un fabricante de bombillas gana $0,3$ dólares por cada bombilla que sale de la fábrica, pero pierde
	$0,4$ dolares por cada una que sale defectuosa. Un día en el que fabricó $2100\ \mathrm{bombillas}$ obtuvo un
	beneficio de $484,4$ dólares. Determine el número de bombillas buenas y defectuosa según el
	requerimiento siguiente.

- a) Modele el problema.
- b) Determine la norma matricial de A.

- c) Determine el número de condicionamiento de A.
- d) Indique si está bien o mal condicionado.
- 6. Sean dos números tales que la suma de un tercio del primero más un quinto del segundo sea igual a 13 y que si se multiplica el primero por 5 y el segundo por 7 se obtiene 247 como suma de los dos productos. Determine los números según el requerimiento siguiente.
 - a) Modele el problema.
 - b) Determine la norma matricial de A y A^{-1} .
 - c) Determine el condicionamiento de A.

- d) Resolver el sistema usando eliminación de Gauß.
- 7. El perímetro de un rectángulo es 64 cm y la diferencia entre las medidas de la base y la altura es 6 cm. Determine las dimensiones de dicho rectángulo según el requerimiento siguiente.
 - a) Modele el problema.
 - b) Determine la norma matricial de A y A^{-1} .
 - c) Determine el condicionamiento de ${\cal A}.$

 d) Resolver el sistema usando eliminación de Gauß.

8.	Dos kilos de plátanos y tres de peras cuestan $8,80$ soles. Cinco kilos de plátanos y cuatro de peras
	cuestan $16,40$ soles. Determine el costo de kilo del plátano y de la pera según el requerimiento
	siguiente.

- a) Modele el problema.
- b) Determine la norma matricial de A y A^{-1} .
- c) Determine el condicionamiento de ${\cal A}.$

- d) Resolver el sistema usando eliminación de Gauß con pivoteo.
- 9. La edad de Manuel es el doble de la edad de su hija Ana. Hace diez años, la suma de las edades de ambos era igual a la edad actual de Manuel. Determine la edad de ambos según el requerimiento siguiente.
 - a) Modele el problema. b) Determine la norma matricial de $A \vee A^{-1}$.
 - c) Determine el condicionamiento de A.

- d) Resolver el sistema usando eliminación de Gauß-Jordan.
- 10. José dice a Eva: mi colección de discos compactos es mejor que la tuya ya que si te cedo 10 tendríamos la misma cantidad. Eva le responde: reconozco que tienes razón. Solo te faltan 10 para doblarme en número. Determine la cantidad de discos que tiene cada uno según el requerimiento siguiente.
 - a) Modele el problema.
 - b) Determine la norma matricial de A y A^{-1} .
 - c) Determine el condicionamiento de ${\cal A}.$

d) Resolver el sistema usando eliminación de Gauß-Jordan.

11. Dada la sucesión
$$u_{n+1} = 2003 - \frac{6002}{u_n} + \frac{4000}{u_n u_{n-1}}$$
.

- a) Opcional Muestre, brevemente, que la solución general es de la forma $v_n = \frac{\alpha + \beta 2^{n+1} + \gamma 2000^{n+1}}{\alpha + \beta 2^n + \gamma 2^n}$
- b) Verifique que $\gamma=0$ para $u_0=\frac{3}{2}$ y $u_1=\frac{5}{3}.$
- c) Realice su código en python y verifique que u_n converge computacionalmente hacia 2000, verifique si esto es correcto con el límite teórico.
- d) Analice la propagación de errores y clasifique el tipo de error.
- 12. Dada la sucesión de Fibonacci F_n definida por $F_0 = F_1 = 1$ y su regla $F_{n+1} = F_n + F_{n-1}$.
 - a) Analice la propagación de errores y clasifique el tipo de error.
- 13. Construir las siguientes matrices de $N \times N$

$$A_1 = \begin{pmatrix} 2 & -1 & & & & 0 \\ -1 & 2 & -1 & & & 0 \\ & \ddots & \ddots & \ddots & & \\ & & -1 & 2 & -1 \\ 0 & & & & -1 & 2 \end{pmatrix}, A_2 = \begin{pmatrix} 16/3 & -8/3 & 0 & & 0 & & & & 0 \\ -8/3 & 14/3 & -8/3 & 1/3 & 0 & & & & \\ 0 & -8/3 & 16/3 & -8/3 & 0 & & & & \\ 0 & 1/3 & -8/3 & 14/3 & -8/3 & 1/3 & 0 & & & \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \\ 0 & & & 0 & -8/3 & 16/3 & -8/3 & 0 \\ 0 & & & & 0 & 1/3 & -8/3 & 14/3 & -8/3 \\ 0 & & & & & 0 & -8/3 & 16/3 \end{pmatrix},$$

- a) Determine el número de condición para N=8 para cada matriz.
- b) Determine el número de condición para N=12 para cada matriz.
- c) Determine el número de condición para ${\cal N}=14$ para cada matriz.

14. Dada la ecuación Ax = b:

$$\begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 32 \\ 23 \\ 33 \\ 31 \end{pmatrix}$$

- a) Determine la inversa de A, su determinante, y verifique si es simétrica y definida positiva, de manera similar determine su solución.
- b) Resuelva la ecuación matricial perturbando $b^T = (32, 122, 933, 130, 9)$.
- c) Resuelva ahora con la perturbación

$$\begin{pmatrix} 10 & 7 & 8, 1 & 7, 2 \\ 7, 08 & 5, 04 & 6 & 5 \\ 8 & 5, 98 & 9, 89 & 9 \\ 6, 99 & 4, 99 & 9 & 9, 98 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 32 \\ 23 \\ 33 \\ 31 \end{pmatrix}$$

- d) Explique claramente lo determinado en los ítemes anteriores.
- 15. Sea A una matriz cuadrada invertible y $\alpha \in \mathbb{R}$. Demuestre: $\kappa(A) = \kappa(\alpha A) = \kappa(A^{-1})$.
- 16. Denotamos por $\|A\|_2 = \sqrt{\rho(A^TA)}$ donde $\rho(B) = \max_{1 \le i \le n} |\lambda_i(B)|$ y $(\lambda_i(B))_{1 \le i \le n}$ es el conjunto de los valores propios de B. Con esta norma definimos el condicionamiento $\kappa_2 = \|A\|_2 \|A^{-1}\|_2$. Demostrar que:
 - a) $\kappa_2(A) = \kappa_2(A^T)$.

17. Sean $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ definida positiva y $\alpha,\beta\in\mathbb{R}^+$. Denotamos $\Delta=\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, definimos también $D=\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$. Mostrar que para cualquier elección de α y β tenemos:

a)
$$\kappa_2(D^{-1}A) \le \kappa_2(\Delta^{-1}A)$$
, b) $\kappa_2(D^{-1}A) \le \kappa_2(A)$, c) $\kappa_2(D) \le \kappa_2(A)$.

- 18. Sobre el método de Doolitle.
 - a) Implementar dicho método en python llamado doolitle.
 - b) Crear matrices L_n y U_n de orden $n \times n$ para $n = 3, 4, \ldots, 15$ como las mencionadas en el teorema 3 del tema factorización LU de la semana 3, luego almacenar $A_n = L_n U_n$.
 - c) Obtener la complejidad de dicho algoritmo de forma teórica.
 d) Del ítem b. Obtener una gráfica de tiempo que toma el método doolitle contra el orden de la matriz n
- 19. Sobre el método de Crout.
 - a) Implementar dicho método en python llamado crout.
 - b) Crear matrices L_n y U_n de orden $n \times n$ para $n = 3, 4, \dots, 15$ como las mencionadas en el teorema 2 del tema factorización LU de la semana 3, luego almacenar $A_n = L_n U_n$.
 - c) Obtener la complejidad de dicho algoritmo de forma teórica.
 - d) Del item b. Obtener una gráfica de tiempo que toma el método crout contra el orden de la matriz n.
- 20. Sobre el método de Cholesky.

s

- a) Implementar dicho método en python llamado cholesky.
- b) Crear una matriz L_n de orden $n \times n$ para $n = 3, 4, \ldots, 15$ como las mencionadas en el teorema 6 del tema factorización LU de la semana 3, luego almacenar $A_n = L_n L_n^T$.
 - c) Obtener la complejidad de dicho algoritmo de forma teórica.
 - d) Del ítem b. Obtener una gráfica de tiempo que toma el método cholesky contra el orden de la matriz n.