

I. Situation de proportionnalité

Définitions

- Deux grandeurs sont en situation de proportionnalité lorsque les suites de nombres qui correspondent à leurs mesures sont proportionnelles.
- Dans un tableau, si les valeurs d'une lignes s'obtiennent en multipliant ou en divisant celles de l'autre ligne par un même nombre (noté k); alors les suites de nombres présentées dans ce tableau sont proportionnelles. k est le coefficient de proportionnalité.
- Lorsque les grandeurs proportionnelles sont présentées sous forme de **graphique**, les points correspondant à ces deux grandeurs sont alignés sur une droite qui passe par l'origine du repère.

Rappels

- Dans un repère orthogonal le plan est défini par deux axes perpendiculaires.
- L'axe horizontal est l'axe des abscisses.
- L'axe vertical est l'axe des ordonnées.
- Les coordonnées d'un point du plan sont constituées d'un couple de nombres (x; y) où x est une valeur sur l'axe des abscisses et y sur l'axe des ordonnées.
- Leur point d'intersection est l'origine du repère.

Exemple

Lorsqu'un automobiliste roule à une vitesse constante, par exemple 90 km/h, la distance qu'il parcourt est proportionnelle au temps (la durée du trajet).

Les deux grandeurs proportionnelles sont le temps en heure et la distance parcourue e kilomètre.

						0.0	100	070	0.00	
x 90	Temps (h)	1	2	3	4	$\frac{90}{-} =$	180 =	$=\frac{270}{}=$	$=\frac{360}{}=90$)
A30	Distance (km)	90	180	270	360	1	2	3	4	

On peut écrire Distance = $90 \times \text{temps}$, où 90 est le coefficient de proportionnalité.

Exemple (suite)

Les points de coordonnées (temps; distance) sont alignés avec l'origine du repère.

II. Recherche d'un quatrième proportionnelle

Méthode

L'égalité $\frac{a}{b} = \frac{c}{d}$ est une proportion.

La règle du produit en croix permet de calculer un des quatre nombres (a, b, c ou d) si les trois autres sont connus :

Si
$$\frac{a}{b} = \frac{c}{d}$$
 alors $a \times d = b \times c$

Exemple

Un catalogue de vente de fleurs propose 25 bulbes de glaïeuls pour $4,50 \in$. Combien coûterait l'achat de 350 bulbes de glaïeuls pour fleurir le parvis d'un hôtel de ville?

 $\overline{\cdots}$

Exemple (suite)

On peut établir le tableau de proportionnalité suivant où x représente la valeur cherchée.

Nombre de bulbes	25	350
Prix à payer (€)	4,5	x

En utilisant le produit en croix, on obtient :

$$\frac{25}{4,5} = \frac{350}{x}$$
 on a alors : $x = \frac{4,5 \times 350}{25} = 63$

On peut donc conclure que fleurir le parvis de l'hôtel de ville coûtera 63 €.

III. Pourcentages

1) Taux de pourcentage

Définition

Un taux de pourcentage t% correspond à une fraction du type $\frac{t}{100}$ où t est un nombre quelconque. Il peut également s'écrire sous la forme du nombre décimal obtenu en divisant t par 100.

2) Calculer un taux de pourcentage

Méthode

Pour calculer le taux de pourcentage que représente en e grandeur B par rapport à une grandeur A, on applique la formule :

$$Taux_{grandeurB/grandeurA} = \frac{grandeurB \times 100}{grandeurA}$$

3

Exemple

Pendant les soldes, un article valant 110 € bénéficie une réduction de 44 €.

Calcul du taux de réduction :
$$\frac{44 \times 100}{110} = 40$$

L'article bénéficie d'une réduction de $40\,\%$

3) Prendre un pourcentage d'une quantité

Méthode

Pour calculer t% d'une quantité, on multiplie cette quantité par $\frac{t}{100}$.

Exemple

Pendant les soldes, un autre article, valant 55 € bénéficie d'une réduction de 15 %. Calcul de 15 % de 55 : $55 \times \frac{15}{100} = 55 \times 0, 15 = 8, 25$.

Le montant de la réduction est 8,25 €.

4) Augmentation ou réduction

Méthode

- Pour appliquer une augmentation de t% à une quantité, on multiplie cette quantité par $1 + \frac{t}{100}$.
- Pour appliquer une réduction de t% à une quantité on multiplie cette quantité par $1 \frac{t}{100}$.

4

Exemples

Si le prix hors taxes d'un article est de 18 €, avec un taux de T.V.A. à 20 % son prix TTC s'élève à :

$$18 \times \left(1 + \frac{20}{100}\right) = 18 \times (1 + 0, 2) = 18 \times 1, 2 = 21, 6 \in.$$

2 Le prix après réduction de 15 % d'un article valant 55 € est de :

$$55 \times \left(1 - \frac{15}{100}\right) = 55 \times (1 - 0, 15) = 55 \times 0, 85 = 46, 75 \in$$