1 Рандомизированный бенчмаркинг

Метод случайного тестирования (рандомизированного бенчмаркинга) состоит из следующих шагов:

- Систему из n кубитов приготавливают в определенном состоянии, описываемом матрицей плотности ρ .
- Выбирается некоторое множество операций, образующее группу, например, группу Клиффорда ${\bf Cl^n}$.
- Из этой группы выбирается последовательность операций длины l. Первые l-1 элементов последовательности V_i выбираются случайным образом. Последний элемент последовательности R это обратная операция, которая в идеальном случае превращает последовательность в тождественную:

$$RV_{l-1}...V_2V_1 = \mathbb{I} \tag{1}$$

Т. к. V_i - это элементы группы, то R также принадлежит этой группе. Таким образом, задача состоит в том, чтобы по известной случайной последовательности элементов группы $\mathbf{Cl^n}$ найти элемент из $\mathbf{Cl^n}$, соответствующий обратной операции.

• Генерируется новая последовательность, проделывается та же схема и так ещё некоторое число раз. В итоге, для группы $\mathbf{Cl^n}$ и длины l получается усреднённая по случайным последовательностям вероятность сохранить исходное состояние. Выполняя то же самое для других l, можно получить зависимость этой вероятности от l.

2 Случай одного кубита

Рассмотрим группу Клиффорда для одного кубита, обозначим её \mathbb{Cl}^1 . В качестве порождающего множества группы \mathbb{Cl}^1 можно выбрать два гейта - однокубитные вращения вокруг осей x и z на угол $\pi/2$. Соответствующие матрицы этих гейтов:

$$X_{\pi/2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix} \tag{2}$$

$$Z_{\pi/2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 - i & 0 \\ 0 & 1 + i \end{pmatrix} \tag{3}$$

Группу ${\bf Cl^1}$ можно разбить на четыре класса эквивалентности [1]:

- 1. класс $\mathbf{Cl^1}(G_1)$, элементы которого эквивалентны элементам группы Паули G_1 ;
- 2. класс $\mathbf{Cl^1}(\pi/2)$, элементы которого эквивалентны вращениям на угол $\pi/2$;
- 3. класс $\mathbf{Cl^1}(2\pi/3)$, элементы которого эквивалентны вращениям на угол $2\pi/3$;
- 4. класс $\mathbf{Cl^1}(H)$, элементы которого эквивалентны вентилю Адамара H.

Элементы каждого класса приведены в Таблице 1. Всего группа $\mathbf{Cl^1}$ содержит 24 элемента.

Таблица 1: Классификация элементов однокубитной группы Клиффорда.

V	n
Класс	Элементы
$\mathbf{Cl}^{1}(G_1)$	$\begin{bmatrix} X_{\pi/2}^2 \end{bmatrix}$
$\mathrm{Cl}^1(\pi/2)$	$ \begin{array}{c} X_{\pi/2}^2 Z_{\pi/2}^2 \\ Z_{\pi/2}^2 \\ \hline X_{\pi/2} \end{array} $
	$Z_{\pi/2}^3 X_{\pi/2} Z_{\pi/2}$
	$Z_{\pi/2}$
$Cl^{1}(2\pi/3)$	$\frac{Z_{\pi/2}^3}{X_{\pi/2}Z_{\pi/2}}$
	$Z_{\pi/2}X_{\pi/2}$
	$X_{\pi/2}Z_{\pi/2}^3$
	$Z_{\pi/2}X_{\pi/2}Z_{\pi/2}^{2}$ $Z_{\pi/2}^{2}X_{\pi/2}Z_{\pi/2}$
	$Z_{\pi/2}^3 X_{\pi/2}$
$\mathbf{Cl^1}(H)$	$\begin{array}{ c c c c c }\hline Z_{\pi/2}^3 X_{\pi/2} Z_{\pi/2}^2 \\ \hline X_{\pi/2}^2 Z_{\pi/2} \end{array}$
	$X_{\pi/2}Z_{\pi/2}^2$
	$Z_{\pi/2}X_{\pi/2}^2$
	$Z_{\pi/2}X_{\pi/2}Z_{\pi/2}$
	$Z_{\pi/2}^2 X_{\pi/2}$
	$Z_{\pi/2}^3 X_{\pi/2} Z_{\pi/2}^3$

Элементы группы Cl^1 определяем в модуле gates.py.

```
"""Группа Клиффорда для одного кубита"""
33
34
     #Группа Паули
35
     c[0] = I
36
     c[1] = X @ X
37
     c[2] = X @ X @ Z @ Z
38
     c[3] = Z @ Z
39
40
     #Вращения на рі/2
41
     c[4] = X
     c[5] = Z @ Z @ X @ Z @ Z
42
43
     c[6] = Z @ X @ Z @ Z @ Z
44
     c[7] = Z @ Z @ Z @ X @ Z
45
     c[8] = Z
     c[9] = Z@Z@Z
46
47
     #Вращения на 2*рі/3
48
49
     c[10] = X @ Z
50
     c[11] = Z @ X
     c[12] = X @ Z @ Z @ Z
51
     c[13] = Z @ X @ Z @ Z
52
     c[14] = Z @ Z @ X @ Z
53
54
     c[15] = Z @ Z @ Z @ X
     c[16] = Z @ Z @ X @ Z @ Z @ Z
55
56
     c[17] = Z @ Z @ Z @ X @ Z @ Z
57
58
     #Адамары
     c[18] = X @ X @ Z
59
     c[19] = X @ Z @ Z
60
     c[20] = Z @ X @ X
     c[21] = Z @ X @ Z
     c[22] = Z @ Z @ X
     c[23] = Z @ Z @ Z @ X @ Z @ Z @ Z
```

Из элементов группы ${\bf Cl^1}$ составляем последовательность операций длины l. Первые l-1 элементов последовательности V_i выбираются случайным образом. За генерацию случайной последовательности операций отвечает функция random_sequence_1 в модуле main.py.

```
7
     def random_sequence_1(1):
         """Генерация случайной последовательности длины 1-1 для одного кубита"""
8
9
         r = random.randint(0, 23)
10
         V = c[r]
         for k in range(1-1):
11
             i = random.randint(0, 23)
12
13
             V = c[i] @ V
14
         return V
```

Пусть R_1 - это обратная операция, которая превращает последовательность в тождественную:

$$R_1 V_{l-1} \dots V_2 V_1 = \mathbb{I} \tag{4}$$

Необходимо выразить операцию R_1 через гейты $X_{\pi/2}$ и $Z_{\pi/2}$. Для этого определим матрицу F_i размера 4×2 . В первую строку матрицы F_i запишем по порядку матричные элементы іго оператора однокубитной группы Клиффорда c_i . Во вторую строку матрицы F_i запишем по

порядку элементы матрицы R_1 .

$$F_{i} = \begin{pmatrix} c_{i}^{11} & c_{i}^{12} & c_{i}^{21} & c_{i}^{22} \\ R_{1}^{11} & R_{1}^{12} & R_{1}^{21} & R_{1}^{22} \end{pmatrix}$$
 (5)

Если ранг матрицы F_i равен единице, то матрица R_1 равна матрице $c_i \in \mathbf{Cl^1}$ с точностью до постоянного множителя. Матрица c_i , в свою очередь, выражается известным образом через $X_{\pi/2}$ и $Z_{\pi/2}$. Перебирая все элементы $\mathbf{Cl^1}$, находим номер i, при котором выполнено условие $\mathrm{rg}F_i=1$. Таким образом, найдено представление R_1 через гейты $X_{\pi/2}$ и $Z_{\pi/2}$.

За нахождение обратной операции в случае одного кубита отвечает функция find_inverse_1 в модуле main.py.

```
27
     def find_inverse_1(V):
         """Нахождение обратной операции для одного кубита"""
28
         q = 0
29
         R1 = np.linalg.inv(V)
30
         for i in range (len(c)):
31
              F = np.array([[1j]*4, [1j]*4])
32
              p = 0
33
34
              for k in range(2):
                  for 1 in range(2):
35
                      F[0][p] = c[i][1][k]
36
                      F[1][p] = R1[1][k]
37
38
                      p = p + 1
              r = np.linalg.matrix_rank(F)
39
40
              if (r == 1):
                  show 1(i, V)
41
                  a = i
42
43
         return q
```

Примеры обратных операций к случайным последовательностям из 1000 гейтов, получаемых с помощью программы:

```
-1(Z \cdot Z \cdot Z \cdot X)

(Z \cdot Z \cdot X \cdot Z)

-1(X \cdot Z)
```

3 Случай двух кубитов

Рассмотрим группу Клиффорда для двух кубитов, обозначим её \mathbb{Cl}^2 . В качестве порождающего множества группы \mathbb{Cl}^2 можно выбрать три гейта - однокубитные вращения вокруг осей x и z на угол $\pi/2$ и гейт \mathbb{CZ} , матрица которого записывается следующим образом:

$$CZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \tag{6}$$

Элементы двухкубитной группы Клиффорда могут быть выражены с помощью группы $S = \{\mathbb{I}, S_1, S_2\}$, где S_1 - операция циклической перестановки координатных осей на сфере Блоха $(x, y, z) \to (z, x, y)$; $S_2 = S_1^2$.

Операцию S_1 можно выразить через оператор поворота на сфере Блоха вокруг оси \vec{k} :

$$R_{\vec{k}}(\alpha) = \exp\left(-i(\vec{k}, \vec{\sigma})\frac{\alpha}{2}\right) \tag{7}$$

$$S_1 = R_y \left(-\frac{\pi}{2} \right) R_x \left(-\frac{\pi}{2} \right) = \frac{1}{2} \begin{pmatrix} 1+i & 1+i \\ -1+i & 1-i \end{pmatrix}$$
 (8)

$$S_2 = S_1^2 \tag{9}$$

Заметим, что

$$S_1 = -Z_{\pi/2} X_{\pi/2} Z_{\pi/2} Z_{\pi/2}, \tag{10}$$

поэтому S_1 и S_2 принадлежат группе $\mathbf{Cl^1}$.

Группу Cl^2 можно разбить на четыре класса эквивалентности [2]:

1. Класс $\mathbf{Cl^2}(||)$, элементы которого представляют собой параллельно выполняемые гейты однокубитной группы Клиффорда $c_i \in \mathbf{Cl^1}$:

Рис. 1: Элемент класса $Cl^2(||)$

2. Класс $\mathbf{Cl^2}(CNOT)$, элементы которого представляют собой следющую комбинацию элементов $c_i \in \mathbf{Cl^1}$, $s_i \in \mathbf{S}$ с гейтом CNOT:

Рис. 2: Элемент класса $\mathbf{Cl^2}(CNOT)$

Элемент CNOT можно построить из элемента CZ и двух элементов Адамара:

Рис. 3: Элемент СПОТ

$$CNOT = (I \otimes H) \cdot CZ \cdot (I \otimes H) \tag{11}$$

Элемент Адамара можно выразить через $X_{\pi/2}$ и $Z_{\pi/2}$ следующим образом:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} = i \cdot Z_{\pi/2} \cdot X_{\pi/2} \cdot Z_{\pi/2} \in \mathbf{Cl}^{1}$$
 (12)

3. Класс $\mathbf{Cl^2}(SWAP)$, элементы которого представляют собой следющую комбинацию элементов $c_i \in \mathbf{Cl^1}$ с гейтом SWAP:

Рис. 4: Элемент класса $\mathbf{Cl^2}(SWAP)$

Элемент SWAP можно построить из трёх элементов CNOT:

Рис. 5: Элемент SWAP

Затем SWAP можно выразить через CZ и элементы Адамара:

$$SWAP = (H \otimes I) \cdot CZ \cdot (H \otimes H) \cdot CZ \cdot (H \otimes H) \cdot CZ \cdot (H \otimes I)$$
(13)

4. Класс $\mathbf{Cl^2}(iSWAP)$, элементы которого представляют собой следющую комбинацию элементов $c_i \in \mathbf{Cl^1}$, $s_i \in \mathbf{S}$ с гейтом iSWAP:

Рис. 6: Элемент класса $\mathbf{Cl^2}(iSWAP)$

Элемент iSWAP можно построить из элемента CNOT, двух элементов Адамара и двух фазовых гейтов Sph. Матрица гейта Sph:

$$Sph = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} = e^{i\pi/4} \cdot Z_{\pi/2} \tag{14}$$

Рис. 7: Элемент iSWAP

$$iSWAP = (I \otimes H) \cdot CNOT \cdot (I \otimes H) \cdot (Sph \otimes Sph) \cdot SWAP \tag{15}$$

Количество элементов в кажом классе двухкубитной группы Клиффорда ${\bf Cl^2}$ приведено в Таблице 2.

Таблица 2: Классификация элементов двухкубитной группы Клиффорда.

Класс	Количество элементов
$Cl^2()$	$24^2 = 576$
$Cl^1(CNOT)$	$24^2 \cdot 3^2 = 5184$
$Cl^2(SWAP)$	$24^2 = 576$
$Cl^2(iSWAP)$	$24^2 \cdot 3^2 = 5184$

Всего группа Клиффорда для двух кубитов содержит 11520 элементов. Элементы группы $\mathbf{Cl^2}$ определяем в модуле gates.py.

```
#Двухкубитные гейты
75
76
      CNOT = tens(I, H) @ CZ @ tens(I, H)
77
      SWAP = tens(H, I) @ CZ @ tens(H, H) @ CZ @ tens(H, H) @ CZ @ tens(H, I)
      iSWAP = tens(I, H) @ CNOT @ tens(I, H) @ tens(SPh, SPh) @ SWAP
78
79
      """Группа Клиффорда для двух кубитов"""
80
81
      g = []
82
      for i in range(24):
83
84
          for j in range(24):
85
              W1 = tens(c[i], c[j]) #класс Cl(||)
86
87
              g.append(W1)
88
89
              W2 = SWAP @ tens(c[i], c[j]) \#K\piacc Cl(SWAP)
              g.append(W2)
90
91
92
      for i in range(3):
93
          for j in range(3):
94
              for k in range(24):
95
                   for 1 in range(24):
96
                       U1 = tens(S[i], S[j]) @ CNOT @ tens(c[k], c[l]) #класс Cl(CNOT)
97
98
                       U2 = tens(S[i], S[j]) @ iSWAP @ tens(c[k], c[l]) #KJACC Cl(iSWAP)
100
101
                       g.append(U2)
```

Из элементов группы $\mathbb{C}l^2$ составляем последовательность операций длины l. Первые l-1 элементов последовательности W_i выбираются случайным образом. За генерацию случайной последовательности операций отвечает функция random sequence 2 в модуле main.py.

```
17
     def random_sequence_2(1):
         """Генерация случайной последовательности длины 1-1 для двух кубитов"""
18
         r = random.randint(0, 11519)
19
         W = g[r]
20
         for k in range(1-1):
21
             i = random.randint(0, 11519)
22
23
             W = g[i] @ W
24
         return W
```

Пусть R_2 - это обратная операция, которая превращает последовательность в тождественную:

$$R_2 W_{l-1} ... W_2 W_1 = \mathbb{I} (16)$$

Необходимо выразить операцию R_2 через гейты $X_{\pi/2}$ и $Z_{\pi/2}$. Для этого определим матрицу D_i размера 16×2 . В первую строку матрицы D_i запишем по порядку матричные элементы і-го оператора двухкубитной группы Клиффорда g_i . Во вторую строку матрицы D_i запишем по порядку элементы матрицы R_2 .

$$D_i = \begin{pmatrix} g_i^{11} & g_i^{12} & g_i^{21} & g_i^{22} & \dots & g_i^{44} \\ R_2^{11} & R_2^{12} & R_2^{21} & R_2^{22} & \dots & R_2^{44} \end{pmatrix}$$
 (17)

Если ранг матрицы D_i равен единице, то матрица R_2 равна матрице $g_i \in \mathbf{Cl^2}$ с точностью до постоянного множителя. Матрица g_i , в свою очередь, выражается известным образом через $X_{\pi/2}$ и $Z_{\pi/2}$. Перебирая все элементы $\mathbf{Cl^2}$, находим номер i, при котором выполнено условие $\mathrm{rg}D_i=1$. Таким образом, найдено представление R_2 через гейты $X_{\pi/2}$ и $Z_{\pi/2}$.

За нахождение обратной операции в случае одного кубита отвечает функция find_inverse_1 в модуле main.py.

```
46
     def find inverse 2(W):
         """Нахождение обратной операции для двух кубитов"""
47
48
         R2 = np.linalg.inv(W)
49
50
         for i in range (len(g)):
              D = np.array([[1j]*16, [1j]*16])
51
              p = 0
52
              for k in range(4):
53
                  for l in range(4):
54
55
                      D[0][p] = g[i][1][k]
                      D[1][p] = R2[1][k]
56
57
                      p = p + 1
              r = np.linalg.matrix rank(D)
58
              if (r == 1):
                  show_2(i, W)
60
61
                  q = i
62
         return q
```

Примеры обратных операций к случайным последовательностям из 1000 гейтов, получаемых с помощью программы:

```
 (2^{(-1/2)})(1+i)[((-1)(Z \cdot X \cdot Z \cdot Z) \otimes I) \cdot (I \otimes i(Z \cdot X \cdot Z)) \cdot CZ \cdot (I \otimes i(Z \cdot X \cdot Z)) \cdot ((Z \cdot X \cdot Z \cdot Z) \otimes (Z \cdot X \cdot Z \cdot Z))]   -i[((Z \cdot X \cdot Z \cdot Z) \cdot (Z \cdot X \cdot Z \cdot Z) \otimes (Z \cdot X \cdot Z \cdot Z) \cdot (Z \cdot X \cdot Z \cdot Z)) \cdot (I \otimes i(Z \cdot X \cdot Z)) \cdot CZ \cdot (I \otimes i(Z \cdot X \cdot Z)) \cdot ((Z \cdot X \cdot Z \cdot Z \cdot Z) \otimes (Z \cdot X \cdot Z \cdot Z))]   -1[((-1)(Z \cdot X \cdot Z \cdot Z) \otimes I) \cdot (I \otimes i(Z \cdot X \cdot Z)) \cdot (I \otimes i(Z \cdot X \cdot Z)) \cdot (I \otimes i(Z \cdot X \cdot Z)) \cdot ((2^{(-1/2)})(1+i)Z \otimes (2^{(-1/2)})(1+i)Z) \cdot (i(Z \cdot X \cdot Z) \otimes I) \cdot CZ \cdot (i(Z \cdot X \cdot Z) \otimes I) \cdot CZ \cdot (i(Z \cdot X \cdot Z)))]
```

Подпрограмма output.py отвечает за вывод обратных операций в символьном виде.

Список литературы

- [1] Randomized Benchmarking of Two-Qubit Gates, Samuel Haberthur, Swiss Federal Institute of Technology Zurich, Department of Physics, Laboratory for Solid State Physics, Quantum Device Lab, August 28, 2015
- [2] Process verification of two qubit quantum gates by randomized benchmarking [Text] / A. D. Corcoles [et al.] // Physical Review A, Atomic, Molecular, and Optical Physics. 2013. Vol. 87, no. 3.