Dernière mise	e à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>	
30/05/20	23	8 – Tris	INT – Sujet	
Note Tr		Tris	Nom:	
Exercice 1: 7	Tri inserti	on en place	Prénom :	
		ts, décrire la méthode	du tri proposé	
				٦
				1-1
				_
Question 2: Con	npléter l'algo	rithme suivant afin qu	'il réalise ce tri stable	
def tri :	insertio	on (L):		
		nge(len(L)):		1.3
		i-1 >= 0)		1-2
	L[i]],L[i-1] = L	[i-1],L[i]	
				_
Question 3: Pré	ciser la cond	ition à respecter pour	que ce tri soit stable ?	
				٦
E	crire ci-dessous	la condition du code ci-de	ssus pour que le tri soit	
	Stable		Non stable	1-3
Question 4: Con	npléter le tak	oleau ci-dessous à prop	oos de l'algorithme proposé	
	Me	eilleur des cas	Pire des cas]
Spécificités de L				1-4
Complexité en				
temps pour n				
tormos				1

termes

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
30/05/2023	8 – Tris	INT – Sujet

Exercice 2: Tri sélection en place

Question 1: En quelques mots, décrire la méthode du tri proposé

Question 2: Compléter l'algorithme suivant afin qu'il réalise ce tri

```
def tri_selection(L):
N = len(L)
for i in range(N-1):
    im = i

    for j in range(im+1,N):
        if L[j] < Min:
        im = j</pre>
```

Question 3: Compléter le tableau ci-dessous à propos de la stabilité de ce tri

Ecrire ci-dessous la condition du code ci-dessus pour que le tri soit		
Stable Non stable		
Obtenir la stabilité revient à sélectionner le minimum		

Question 4: Préciser, détaillant précisément le calcul, la complexité en temps de cet algorithme pour une liste de n termes

Calcul réalisé	Complexité

2-2

2-3

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
30/05/2023	8 – Tris	INT – Sujet

Exercice 3: Tri rapide avec listes auxiliaires

Question 1: En quelques mots, décrire la méthode du tri proposé

```
3-1
```

Question 2: Compléter l'algorithme suivant afin qu'il réalise ce tri stable

```
def tri rapide(L):
if
else:
    L1, LP, L2 = [], [L[0]], []
    for i in range(1,len(L)):
         if
             L1.append(L[i])
         else:
             L2.append(L[i])
    return
```

Question 3: Préciser la condition à respecter pour que ce tri soit stable ?

Ecrire ci-dessous la condition du c	code ci-dessus pour que le tri soit	
Stable	Non stable	3-3
Obtenir la stabilité revient à mettre l	es exæquo au pivot dans	

Question 4: Compléter le tableau ci-dessous à propos de l'algorithme proposé

	Meilleur des cas	Pire des cas
Spécificités du pivot à chaque étape		
Complexité en temps pour n termes		

3-4

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
30/05/2023	8 – Tris	INT – Sujet

Exercice 4: Tri fusion avec listes auxiliaires

Question 1: En quelques mots, décrire la méthode du tri proposé

Question 2: Compléter l'algorithme suivant afin qu'il réalise la fusion ordonnée « stable »

```
def fusion_ordonnee(L1,L2):
Fusion = []
i1 = i2 = 0
while i1 < len(L1) and i2 < len(L2):
    if
        Fusion.append(L1[i1])
        i1 += 1
    else:
        Fusion.append(L2[i2])
        i2 += 1
    Fusion +=
    return Fusion</pre>
```

Question 3: Compléter l'algorithme suivant afin qu'il réalise ce tri

```
def tri_fusion(L):
if len(L) <= 1:
    return L
else:
    Im = len(L)//2
    L1 = L[0:Im]
    L2 = L[Im:len(L)]</pre>
```

Question 4: Préciser la condition à respecter pour que ce tri soit stable ?

Ecrire ci-dessous la condition du co	ode ci-dessus pour que le tri soit	
Stable	Non stable	4-4
Obtenir la stabilité revient à mett	tre les exæquo dans	

Préciser la complexité en temps de cet algorithme pour une liste de n termes

4-5

4-1

4-2

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
30/05/2023	8 – Tris	INT – Sujet

Exercice 5: Tri par comptage

On se limite à une liste de n entiers positifs.

Question 1: En quelques mots, décrire la méthode du tri proposé

```
5-1
```

Question 2: Compléter l'algorithme suivant afin qu'il réalise ce tri

```
def tri_comptage(L):
Res = []
if len(L) >= 1:
    m = L[0]
    for t in L:
        if t > m:

    LP =
    for i in range(len(L)):
        LP[L[i]] += 1
    for i in range(len(LP)):
        Res +=
return Res
```

```
Remarque : >>> 0*[3]
```

Question 3: Préciser, en justifiant brièvement la réponse, la complexité en temps de cet algorithme pour une liste de n termes de maximum m

5-3

