Листок 4

Задача 1. Пусть F(x,u,p) – непрерывная функция на \mathbb{R}^3 . Докажите, что вязкостное решение $u \in C^1((0,1))$ уравнения u'' = F(x,u,u') на интервале (0,1) принадлежит $C^2(0,1)$ и является классическим решением.

Задача 2. Пусть u является вязкостным решением уравнения F(x,u,u',u'')=0 на $\mathbb R$ и дан гладкий возрастающий диффеоморфизм $f\colon \mathbb R\to \mathbb R$. Положим $h=f^{-1}$. Докажите, что v(y)=u(f(y)) является вязкостным решением уравнения

$$F(f(y), v, h'(v)v', h''(v)(v')^{2} + h'(v)v'') = 0.$$

Задача 3. Пусть u является вязкостным решением уравнения F(x,u,u',u'')=0 на \mathbb{R} и дан гладкий диффеоморфизм $f\colon \mathbb{R}\to \mathbb{R}$. Для какого уравнения функция v=f(u) является вязкостным решением?

Задача 4. Докажите принцип сравнения для вязкостных решений уравнения

$$\lambda u + H(x, Du) = 0$$

на ограниченной области Ω , если $\lambda>0,\,H$ — непрерывная функция и $H(x,p)\to +\infty$ при $|p|\to +\infty$ равномерно по $x\in\overline{\Omega}$.

Задача 5. Уравнение

$$u + \frac{1}{2}|u'|^2 = 0$$

имеет классические решения $u \equiv 0$ и $u_s(x) = -\frac{1}{2}(x-s)^2$, где $s \in \mathbb{R}$. Докажите, что в классе ограниченных функций $u \equiv 0$ является единственным вязкостным решением.

Задача 6. Пусть симметричные матрицы X и Y таковы, что

$$\left(\begin{array}{cc} X & 0 \\ 0 & -Y \end{array}\right) \leq 3\alpha \left(\begin{array}{cc} I & -I \\ -I & I \end{array}\right).$$

Докажите, что для любых матриц B и C верно неравенство

$$\operatorname{tr}(BB^tX - CC^tY) \le 3\alpha|B - C|^2,$$

где $|Z|^2 = \operatorname{tr}(ZZ^t)$.

Задача 7. Предположим, что F(x, u, p, X) удовлетворяет условию:

$$\left(\begin{array}{cc} X & 0 \\ 0 & -Y \end{array} \right) \leq 3\alpha \left(\begin{array}{cc} I & -I \\ -I & I \end{array} \right) \Rightarrow F(y,u,\alpha(x-y),Y) - F(x,u,\alpha(x-y),X) \leq \omega \left(|x-y|(1+\alpha|x-y|) \right)$$

для всех $\alpha > 1$. Здесь ω — неубывающая непрерывная функция, причем $\omega(0) = 0$. Докажите, что F удовлетворяет условию эллиптичности.

1