

BY8191 双线圈汽车转速表电路

一、 概述

BY8191 为专用四象限双线圈汽车转速表集成电路,直接驱动十字表头线圈,用以检测汽车发动机转速的大小。其特点为:

- 工作电压范围宽;
- 工作温度范围宽;
- 电路输出负载能力强;
- 指针不需调零,断电自动逆时针归零;
- 低频下指针抖动小且抖动频度区间窄;
- 在 305°的偏转角度内, 表头线性度优于 2%;
- 具有过压和输出短路两种故障保护功能。

BY8191 可与 CS8191 等同类电路互换使用。

图 1 封装形式及引脚排列

二、引脚功能说明

管脚	功能	管脚	功能
1	Vcc	9	信号整形输出端
2	基准电压 V _{REG}	10	正弦函数输出(SINE+)
3	参考电压 V _{BIAS}	11	余弦函数输出(COS+)
4	地	12	地
5	地	13	地
6	余弦函数输出(COS-)	14	诺顿放大器反相输入端
7	正弦函数输出(SINE-)	15	诺顿放大器同相输入端
8	信号输入端	16	频率电压转换输出端

三、 主要技术指标 (所有值在 Vcc=13.1V $T_a=25$ $^{\circ}$ 工作情况下 ,除非另有说明)

参数	符号	测试条件	规	范	值	单位	
罗奴			最小	典型	最大	干世	
电源电压	V_{cc}	-	8.0	13. 1	23. 0	V	

电源电流	${ m I}_{ m cc}$	Vcc=16V, 无负载	-	-	125	mA
基准电压	$V_{\rm reg}$	-	6. 50	7. 00	7. 50	V
基准电压 负载调整	$\Delta~V_{\rm reg/Load}$	0~10mA	ı	ı	50	mV
基准电压 线性调整	$\Delta V_{\rm reg/Line}$	8. 0≤V _{cc} ≤16V	ı	ı	150	mV
基准电压 纹波抑制比	S_{rip}	V _{CC} =13. 1V, 1. 0V _{P-P} , 1. 0KHz	34	-	-	dB
参考电压	$V_{\scriptscriptstyle \mathrm{BIAS}}$	-	1.5	2. 0	2. 5	V
输入门坎电压	$V_{\scriptscriptstyle \mathrm{INOP}}$	-	2. 0	2. 4	3. 0	V
输入比较器 回差	$V_{\scriptscriptstyle \mathrm{INHYS}}$	-	200	400	1000	mV
最大输出 电压摆幅	$\Delta \; V_{out/p_p}$	$f_{\text{in}} = 0 \sim 350 \text{Hz}$	±7.5	±8.0	±8.5	V
	Δ θ 1	$\theta = 0 \sim 305^{\circ}$	-3.0	1	3. 0	deg
表头线性度	Δ θ $_2$	9. 0V≤V _{cc} ≤16V	-4.0	-	4. 0	deg
误差	Δ θ 3	$-40^{\circ}\text{C} \leqslant \text{T}_{\text{A}} \leqslant 85^{\circ}\text{C}$ $\theta = 0 \sim 305^{\circ}$	-4. 0	-	4. 0	deg

四、 电路原理框图

图 2 电路原理框图

低通滤波后的输入频率信号由 $FREQ_{IN}$ 端输入,经输入比较器电路整形后,由诺顿放大器和积分电路进行频率电压转换,频率电压转换电路输出端 F/Vout 输出与输入信号频率成正比的 V_{pin16} 直流电压信号, V_{pin16} 与输入信号频率 f_{in} 的关系式为:

与输入信号频率成正比的 Vpinle 直流电压,经函数发生器电路转换为近似正弦函数和近

地址: 江苏省苏州市高新区龙山路 89 号 **邮编:** 215163

 电话:
 (0512)66917795
 66917797
 传真:
 (0512)66917792

 网址:
 www.nostm.com
 邮箱:
 support@nostm.com

似余弦函数的电压信号,再经正、余弦驱动电路驱动输出,分别驱动十字表头线圈,十字线圈形成的合力方向,指向与输入信号频率相对应的转速表刻度盘,刻度盘的读数即为转速表的转速。

图 3 fin 与 Vpin16、Vpin16与正、余弦输出关系曲线示意图

图 4 正、余弦驱动输出电压与输出角度关系曲线示意图

输出角度 θ 与正、余弦驱动输出电压关系式为:

$$\theta = \arctan \left[\frac{V(\sin +) - V(\sin -)}{V(\cos +) - V(\cos -)} \right]$$
 (2)

五、 典型应用图(用于 4 缸发动机 6000RPM 下偏转 270°)

地址: 江苏省苏州市高新区龙山路 89 号 **邮编:** 215163

 电话: (0512) 66917795
 66917797
 传真: (0512) 66917792

 网址: www.nostm.com
 邮箱: support@nostm.com

图 5 12V 蓄电池典型应用图

图 6 24V 蓄电池典型应用图

六、 使用注意事项

- 1. 指针的偏转角度正比于 f_{in} 、 R_{r} 和 C_{CP} ,视 f_{in} 的大小可选择合适大小阻值的电位器 R_{r} , C_{CP} 则保持典型应用图的容值不变。
- 2. 抖动幅度反比于 C4,响应时间正比于 C4,C4 大小可由公式 3 进行选择。

地址: 江苏省苏州市高新区龙山路 89 号 **邮编:** 215163

电话: (0512)66917795 66917797 **传真**: (0512)66917792 **网址**: www.nostm.com **邮箱**: support@nostm.com

- C4=C_{CP}(V_{REG}-0.7V)/△Vmax(3)
 其中,△Vmax 为频率电压转换电路最大允许纹波输出电压。
- 4. R5 的阻值视 Vin 的输出幅度进行调整,以满足输入比较器电路的门坎电压要求。
- 5. C3 的容值视 Vin 的输出频率大小进行调整,以达到抗干扰的目的。

七、封装规格

说明:

- 1. 标示尺寸和公差按照 ANSI Y14.5M, 1982 标准
- 2. 标示单位: 英寸

标	英寸		毫米		
注	最小	最大	最小	最大	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100 BSC		2.54 BSC		
Н	0.050 BSC		1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0°	10°	0°	10°	
S	0.020	0.040	0.51	1.01	

地址: 江苏省苏州市高新区龙山路 89 号

电话: (0512)66917795 66917797

网址: www.nostm.com

邮编: 215163

传真: (0512)66917792 邮箱: support@nostm.com

5-5