889 889 889 899 899 899 899 999

G	
Configuration management	
Source	
Preprocessing	
On change	
Provisioning, Scheduling	
Multihost support	
Scheduling	
Cluster definition	
Scaling	
Multi tenancy	
Failover	
Network	
Intraservice network	
DNS	
Service discovery	
Data locality	
Availability of the ports	

"Talk is cheap. Show me the code"

Linus Torvalds

RAFT library for Java

https://flokkr.github.io

Marton Elek elek@apache.org

Apache Hadoop

Ozone

Dockerfile

```
FROM frolvlad/alpine-oraclejdk8
ADD hadoop-3.2.0.tar.gz /opt
WORKDIR /opt/hadoop
```

C>	
D	
E	
F	
G	
Configuration management	
Source	
Preprocessing	
On change	
Provisioning, Scheduling	
Multihost support	
Scheduling	
Cluster definition	
Scaling	
Multi tenancy	
Failover	
Network	
Intraservice network	
DNS	
Service discovery	
Data locality	
Availability of the ports	

```
<configuration>
  property>
      <name>dfs.namenode.rpc-address</name>
      <value>namenode:9000</value>
   </property>
  property>
      <name>dfs.datanode.plugins</name>
      <value>org.apache.hadoop.ozone.HddsDatanodeService</value>
   </property>
   property>
      <name>rpc.metrics.percentiles.intervals</name>
      <value>60,300</value>
   </property>
  property>
      <name>dfs.namenode.name.dir
      <value>/data/namenode</value>
  </property>
  property>
      <name>rpc.metrics.quantile.enable
      <value>true</value>
   </property>
</configuration>
```

```
version: "3"
services:
   service1:
      image: apache/imagename
      hostname: namenode
      ports:
         - 9870:9870
      environment:
          CONFIGURATION1: value
          DFS DIR: /dfs
          THREAD NUMBER: 1
```

How to handle configuration?

Create a simple **launcher** script to

- Create config file from environment variables
- Start the application

Dockerfile

```
FROM frolvlad/alpine-oraclejdk8
ADD hadoop-3.2.0.tar.gz /opt
WORKDIR /opt/hadoop
ENTRYPOINT ["/opt/starter.sh"]
```

starter.sh

```
if [ -n "$SLEEP SECONDS" ]; then
   echo "Sleeping for $SLEEP_SECONDS seconds"
   sleep $SLEEP SECONDS
fi
if [ -n "$ENSURE NAMENODE DIR" ]; then
  #...
fi
if [ -n "$ENSURE_SCM_INITIALIZED" ]; then
  #...
fi
if [ -n "$ENSURE KSM INITIALIZED" ]; then
 # ...
fi
if [ -n "$KERBEROS ENABLED" ]; then
  # ...
fi
$DIR/envtoconf.py --destination /opt/hadoop/etc/hadoop
$@
```

starter.sh

```
if [ -n "$SLEEP SECONDS" ]; then
   echo "Sleeping for $SLEEP SECONDS seconds"
   sleep $SLEEP SECONDS
fi
if [ -n "$ENSURE NAMENODE DIR" ]; then
   #...
fi
if [ -n "$ENSURE SCM INITIALIZED" ]; then
   #...
fi
if [ -n "$ENSURE KSM INITIALIZED" ]; then
  # ...
fi
if [ -n "$KERBEROS ENABLED" ]; then
   # ...
fi
$DIR/envtoconf.py --destination /opt/hadoop/etc/hadoop
```

docker run -it flokkr/hadoop hdfs namenode

Launcher script

- Wait for the dependency (TCP check)
- Download additional optional component
- Prepare HDFS (format namenode, ...)
- Retrieve kerberos/SSL secrets
- Enable prometheus monitoring (Java agent)
- Show network traffic (Instrumentation with Java agent)
- Create config files from ENV

```
namenode:
   image: flokkr/hadoop
   hostname: namenode
   command: ["hdfs", "namenode"]
  ports:
      - 9870:9870
   environment:
      ENSURE_NAMENODE_DIR: "/tmp/hadoop-root/dfs/name"
      CORE-SITE.XML fs.defaultFS: "hdfs://namenode:9000"
      HDFS-SITE.XML dfs.namenode.rpc-address: "namenode:9000"
      HDFS-SITE.XML dfs.replication: "1"
datanode:
   image: flokkr/hadoop
   command: ["hdfs", "datanode"]
   environment:
      CORE-SITE.XML_fs.defaultFS: "hdfs://namenode:9000"
      HDFS-SITE.XML dfs.namenode.rpc-address: "namenode:9000"
      HDFS-SITE.XML dfs.replication: "1"
      LOG4J.PROPERTIES log4j.rootLogger: "INFO, stdout"
     LOG4J.PROPERTIES log4j.appender.stdout: "org.apache.log4j.ConsoleAppender"
     LOG4J.PROPERTIES log4j.appender.stdout.layout: "org.apache.log4j.PatternLayout"
     LOG4J.PROPERTIES log4j.appender.stdout.layout.ConversionPattern: "%d{yyyy-MM-dd HH:mm:ss} %-5p
```

version: "3" services:

G	docker	
Less efficient	OOCKEI	
Configuration management		
Source	ENV (script)	
Preprocessing	n'/a ' ´	
On change	n/a	
Provisioning, Scheduling		
Multihost support		
Scheduling		
Cluster definition		
Scaling		
Multi tenancy		
Failover		
Network		
Intraservice network		
DNS		
Service discovery		
Data locality		

flokkr/all-in-one

Container is the **unit** of packaging

the **launcher** script

The power comes from

Docker usage in Hadoop

For end-users

- Try out new features
- Understand setup/configuration

For developers:

- Create pseudo-clusters
- Review patches

Call for contributions: HADOOP-14898

```
datanode 1
             _____
datanode 1
             *** Launching "hdfs datanode"
            Formatting using clusterid: CID-51b1d36b-356a-4c2a-9570-57b6300ccd5d
            ==== Plugin is activated BYTEMAN =====
            Connecting to kv.anzix.net (176.9.127.13:443)
            byteman.jar
                                 14% |****
                                                                        112k 0:00:06 ETA
                                 100% |******************
                                                                        791k 0:00:00 ETA
            byteman.jar
            Connecting to gist.githubusercontent.com (151.101.36.133:443)
                                100% | ******************
                                                                       710
namenode 1
            bvteman.btm
                                                                             0:00:00 ETA
            Process is instrumented with setting JAVA OPTS to -javaagent:/opt/byteman/byteman.jar=script:/tmp/byteman.btm
            Standard output is replaced with btrace output
             _____
             *** Launching "hdfs namenode"
            --> RPC message request: VersionRequestProto from 172.23.0.3:52480
            --> RPC message response: VersionRequestProto to 172.23.0.3:52480
namenode 1
            info {
              buildVersion: "16b70619a24cdcf5d3b0fcf4b58ca77238ccbe6d"
              unused: 0
              blockPoolID: "BP-1294221783-172.23.0.2-1528791611084"
              storageInfo {
                layoutVersion: 4294967232
                namespceID: 2129242657
                clusterID: "CID-51b1d36b-356a-4c2a-9570-57b6300ccd5d"
                cTime: 1528791611084
              softwareVersion: "3.1.0"
              capabilities: 1
namenode 1
              state: ACTIVE
namenode 1
namenode 1
             --> RPC message request: RegisterDatanodeRequestProto from 172.23.0.3:52480
            registration {
              datanodeID {
                ipAddr: "0.0.0.0"
                hostName: "8d6011399538"
                datanodeUuid: "92926bb4-04b5-4e9c-8f85-694a2d7c61ec"
namenode 1
namenode 1
                xferPort: 9866
                infoPort: 9864
namenode 1
namenode 1
                ipcPort: 9867
                infoSecurePort: 0
```

	gocker
Configuration management Source Preprocessing On change	ENV no no
Provisioning, Scheduling Multihost support Scheduling Cluster definition Scaling Multi tenancy Failover	no compose compose yes n/a (yes) no
Network Intraservice network DNS Service discovery Data locality Availability of the ports	docker brdg yes hostname no docker ports

Hashicorp stack

"do it yourself"

Service Discovery and Configuration Made Easy

Service Discovery and Configuration Made Easy

A Tool for Managing Secrets

Service Discovery and Configuration Made Easy

A Tool for Managing Secrets

Easily Deploy Applications at Any Scale

Docker network

Host network

Preprocessing	
On change	
Provisioning, Scheduling	
Multihost support	yes
Scheduling	nomad
Cluster definition	.nomad
Scaling	
Multi tenancy	no
Failover	
Network	
Intraservice network	docker host
DNS	host dns
Service discovery	
Data locality	YES
Availability of the ports	

```
property>
     <name>dfs.namenode.rpc-address
     <value>namenode:9000</value>
  </property>
  property>
     <name>dfs.datanode.plugins</name>
     <value>org.apache.hadoop.ozone.HddsDatanodeService</value>
  </property>
  property>
     <name>rpc.metrics.percentiles.intervals</name>
     <value>60,300</value>
  </property>
  property>
     <name>dfs.namenode.name.dir
     <value>/data/namenode</value>
  </property>
  property>
     <name>rpc.metrics.quantile.enable
     <value>true</value>
  </property>
</configuration>
```

<configuration>

DIY

2018-06-04 21:24:04 INFO DataNode:422 - Successfully sent block report 0x763c45c65afe8d18, containing 1 storage rep ort(s), of which we sent 1. The reports had 0 total blocks and used 1 RPC(s). This took 12 msec to generate and 75 ms ecs for RPC and NN processing. Got back one command: FinalizeCommand/5. 2018-06-04 21:24:04 INFO DataNode:759 - Got finalize command for block pool BP-643505683-127.0.0.1-1528147013324

2018-06-04 21:24:01 INFO DataNode:422 - Successfully sent block report 0x900e6d4b9e81dbal, containing 1 storage re port(s), of which we sent 1. The reports had 0 total blocks and used 1 RPC(s). This took 7 msec to generate and 49 m secs for RPC and NN processing. Got back one command: FinalizeCommand/5. 2018-06-04 21:24:01 INFO DataNode:759 - Got finalize command for block pool BP-643505683-127.0.0.1-1528147013324

Configuration management	
Source	Consul
Preprocessing	Yes (script)
On change	Restart
Provisioning, Scheduling	
Multihost support	host netw
Scheduling	Nomad
Cluster definition	.nomad
Scaling	redeploy
Multi tenancy	no
Failover	yes
Network	
Intraservice network	host netw
DNS	yes
Service discovery	consul
Data locality	yes
Availability of the ports	host

Kubernetes

"out of the box"

DaemonSet

ReplicaSet

192.168.0.1

192.168.0.2

192.168.0.3

192.168.0.3

192.168.0.5

DaemonSet

Benefits of Hadoop + k8s?

Benefits of Hadoop + k8s?

Ecosystem Flexibility

Example:

Monitor Hadoop with Prometheus

Remove Grap

Add Graph

```
# HELP jmx_config_reload_failure_total Number of times configuration have failed to be reloaded.
# TYPE jmx_config_reload_failure_total counter
jmx_config_reload_failure_total 0.0
# HELP jvm_memory_bytes_used Used bytes of a given JVM memory area.
# TYPE jvm_memory_bytes_used gauge
jvm_memory_bytes_used{area="heap",} 1.0089396E8
jvm_memory_bytes_used{area="nonheap",} 5.006836E7
# HELP jvm_memory_bytes_committed Committed (bytes) of a given JVM memory area.
# TYPE jvm_memory_bytes_committed gauge
```

jvm_memory_bytes_committed{area="heap",} 4.3515904E8
jvm_memory_bytes_committed{area="nonheap",} 5.2191232E7

jvm_memory_pool_bytes_used{pool="Code Cache",} 7052160.0
jvm_memory_pool_bytes_used{pool="Metaspace",} 3.8301712E7

jvm_memory_pool_bytes_used{pool="PS Eden Space",} 8.5294744E7
jvm_memory_pool_bytes_used{pool="PS Survivor Space",} 0.0
jvm memory pool bytes used{pool="PS Old Gen",} 1.5599216E7

jvm_memory_pool_bytes_committed{pool="Code Cache",} 7929856.0
jvm_memory_pool_bytes_committed{pool="Metaspace",} 3.928064E7

jvm memory bytes max{area="heap",} 3.71195904E9

jvm memory bytes max{area="nonheap",} -1.0

TYPE jvm memory pool bytes committed gauge

TYPE jvm memory pool bytes used gauge

TYPE jvm memory bytes max gauge

HELP jvm memory bytes max Max (bytes) of a given JVM memory area.

HELP jvm_memory_pool_bytes_used Used bytes of a given JVM memory pool.

jvm memory pool bytes committed{pool="Compressed Class Space",} 4980736.0

jvm_memory_pool_bytes_committed{pool="PS_Eden_Space",} 2.64241152E8

HELP jvm memory pool bytes committed Committed bytes of a given JVM memory pool.

jvm memory pool bytes used{pool="Compressed Class Space",} 4714488.0

jvm_memory_pool_bytes_committed{pool="PS Old Gen",} 1.60432128E8
HELP jvm_memory_pool_bytes_max Max bytes of a given JVM memory pool.
TYPE jvm_memory_pool_bytes_max gauge
jvm_memory_pool_bytes_max{pool="Code Cache",} 2.5165824E8
jvm_memory_pool_bytes_max{pool="Metaspace",} -1.0
jvm_memory_pool_bytes_max{pool="Compressed Class Space",} 1.073741824E9
jvm_memory_pool_bytes_max{pool="PS Eden Space",} 1.368915968E9
jvm_memory_pool_bytes_max{pool="PS Survivor Space",} 1.048576E7
jvm_memory_pool_bytes_max{pool="PS Old Gen",} 2.78396928E9


```
apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
  name: ozone-hdfs-namenode
spec:
  serviceName: ozone2-hdfs-namenode
  replicas: 1
  template:
    metadata:
      labels:
        app: ozone
    spec:
      containers:
        - name: hdfs-namenode
          image: flokkr/ozone:2.1.0
          args: ["hdfs", "namenode"]
```

```
apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
  name: ozone-hdfs-namenode
spec:
  serviceName: ozone2-hdfs-namenode
  replicas: 1
  template:
    metadata:
      labels:
        app: ozone
      annotations:
        prometheus.io/scrape: "true"
        prometheus.io/port: "28942"
    spec:
      containers:
        - name: hdfs-namenode
          image: flokkr/ozone:2.1.0
          args: ["hdfs", "namenode"]
```


EcosystemFlexibility

Sidecar pattern

Sidecar pattern

Sidecar pattern


```
apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
  name: ozone-hdfs-namenode
spec:
  serviceName: ozone2-hdfs-namenode
  replicas: 1
  template:
    metadata:
      labels:
        app: ozone
      annotations:
        prometheus.io/scrape: "true"
        prometheus.io/port: "28942"
    spec:
      shareProcessNamespace: true
      containers:
        - name: hdfs-namenode
          image: flokkr/ozone:2.1.0
          args: ["hdfs", "namenode"]
        - name: jmxpromo
          image: flokkr/jmxpromo-sidecar
```

```
apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
  name: ozone-hdfs-namenode
spec:
  serviceName: ozone2-hdfs-namenode
  replicas: 1
  template:
    metadata:
      labels:
        app: ozone
      annotations:
        prometheus.io/scrape: "true"
        prometheus.io/port: "28942"
    spec:
      shareProcessNamespace: true
      containers:
        - name: hdfs-namenode
          image: flokkr/ozone:2.1.0
          args: ["hdfs", "namenode"]
        - name: jmxpromo
          image: flokkr/jmxpromo-sidecar
```

https://github.com/flokkr/jmxpromo-sidecar

Ecosystem Flexibility

<u> </u>	4747
Less efficient	74
Configuration management	
Source	configmap
Preprocessing	helm
On change	n/a
Provisioning, Scheduling	
Multihost support	CNI
Scheduling	kubernetes
Cluster definition	helm, yaml
Scaling	yes
Multi tenancy	namespaces
Failover	yes
Network	
Intraservice network	CNI
DNS	statefuset
Service discovery	DNS
Data locality	no
Availability of the ports	service/ingres

Hadoop W Kubernetes

Kubernetes Hadoop

Apache Hadoop Ozone http://hadoop.ozone.apache.org

File -> BlockId[]

BlockId -> DatanodeId[]

Namenode

Block[]

Datanode

Block[]

Block[]

Block[]

Datanode

de Datanode

Datanode

Don't buy without checking the label

Don't buy without checking the label

Hadoop is first class citizen of cloud-native/containerized environments

Kubernetes

Hadoop Ozone

Don't buy without checking the label

Containerization can help a lot to manage our *Bigdata* clusters

Hadoop is first class citizen of cloud-native/containerized environments

Kubernetes

Hadoop Ozone

Q&A

Márton Elek @anzix

https://flokkr.github.io (bigdata + containers project)

https://github.com/flokkr (source)

elek@apache.org