

Recursive Algorithm

A recursive algorithm is an algorithm that solves a problem by breaking it down into smaller instances of the same problem, and then solving those smaller instances.

Direct Recursion	Indirect Recursion
Occurs when an algorithm calls itself	Occurs when a function calls another function
Example: Fact (n): if n==0: return 1 else: return n*Fact(n-1)	Example: A(n): if n % 3 == 0: return true else: return B(n - 1) B(n): if n % 3 == 1: return true else: return A(n - 1)

Properties of Recursive Function

<u>A recursive</u> function can go infinite like a loop. To avoid infinite running of recursive function, there are two properties that a recursive function must have —

Time Complexity

Time complexity is the amount of time it takes to run an algorithm.

It depends on number of iterations

It depends on number of iterations

It depends on number of times a recursive call

Space Complexity

Finding Complexity using TFC

We can find complexity of iteration algorithm using frequency count.

For example:

Then the complexity of algorithm is $O(n^2)$.

Why Recurrence Relation?

What is a Recurrence Relation?

These recursive formulas are referred to as recurrence relations which are solved by repeated substitutions method.

A recurrence relation, T(n), is a recursive function of an integer variable n.

Formula:
$$T(n) = \begin{cases} 1 & \text{if } n = 0 \\ 1 + T(n-1) & \text{for } n > 0 \end{cases}$$

The portion of the definition that does not contain T is called the base case of the recurrence relation.

The portion that contains T is called the recurrent or recursive case

Example 1: Factorial of Number

Fact (n)

$$T(n) = T(n-1) + 3 \text{ if mo}$$

$$T(0) = 1 \text{ if } n = 0$$

$$T(n) = T(n-1) + 3 \text{ Simplify the eq}$$

$$T(n) = T(n-2) + 6$$

Simplify the eq

$$T(n-2) + 6$$

$$T(n-2) + 6$$

$$T(n-2) + 6$$

$$T(n-3) + 9$$

$$T(n-3) + 3 \text{ constant as k}$$

$$T(n) \times n \Rightarrow O(n) \Rightarrow T(n) = T(n-n) + 3 \text{ k}$$

$$T(n) \times n \Rightarrow O(n) \Rightarrow T(n) = T(n-n) + 3 \text{ k}$$

$$T(n) \times n \Rightarrow O(n) \Rightarrow T(n) = T(n-n) + 3 \text{ k}$$

$$T(n) \times n \Rightarrow O(n) \Rightarrow T(n) = T(n-n) + 3 \text{ k}$$

$$T(n) \times n \Rightarrow O(n) \Rightarrow T(n) = T(n-n) + 3 \text{ k}$$

$$T(n) \times n \Rightarrow O(n) \Rightarrow T(n) = T(n-n) + 3 \text{ k}$$

$$T(n) \times n \Rightarrow O(n) \Rightarrow T(n) = T(n-n) + 3 \text{ k}$$

The time complexity is directly proportional to n, then we can take Big Oh O(n)

Example 2: Fibonacci Sequence

Fib (n)

Fibenacci Sequence
$$0,1,1,2,3,5,8...$$

Time taken to calculate n-2 is lesser than n-2

T(n) = T(n-1)+T(n-2)+y

T(o) = T(i) = 1

T(n-1) \approx T(n-2)

Simplify the Eq

Fibenacci Sequence $0,1,1,2,3,5,8...$

Time taken to calculate n-2 is lesser than n-2

Simplify the Eq

Find the expression from above

Find the expression from above

T(n) = 2^{K} T (n-2K) + (2^{K} -1) C

 $2^{N/2}$ T (n) + ($2^{N/2}$ -1) C

 $2^{N/2}$ T (o) + ($2^{N/2}$ -1) C

Lower Bound

T(n) $\propto 2^{N/2}$ (Lower bound)

Example 2: Fibonacci Sequence


```
1. Test (int n) {
        if (n>0){
            print (n);
            Test(n-1)
2. Test (int n)
        if (n>0){
            for (i=0; i<n; i++){
                    print(n)
            Test(n-1)
```

```
3. Test (int n)
{
    if (n>0){
        for (i=1; i<n; i=i*2){
            print(i)
        }
        Test(n-1)
    }
}</pre>
```

```
T(n)=T(n/2)+O(1)
```

```
4. Binary_search(arr, target, low, high):
    if low > high:
        return -1
    mid = (low + high) // 2
    if arr[mid] == target:
        return mid
    elif arr[mid] > target:
        return Binary_search(arr, target, low, mid - 1)
    else:
        return Binary_search(arr, target, mid + 1, high)
```

$$T(n)=2T(n-1)+O(1)$$

```
5. Tower_of_hanoi(n, source, target, auxiliary):
if n == 1:
    print("Move disk 1 from {source} to {target}")
    else:
        Tower_of_hanoi(n-1, source, auxiliary, target)
        print("Move disk {n} from {source} to {target}")
        Tower_of_hanoi(n-1, auxiliary, target, source)
```

Thank You