

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD

CONVOCATORIA DE SEPTIEMBRE DE 2019

EJERCICIO DE: MATEMÁTICAS APLICADAS A LAS CC.SS. II

TIEMPO DISPONIBLE: 1 hora 30 minutos

PUNTUACIÓN QUE SE OTORGARÁ A ESTE EJERCICIO: (véanse las distintas partes del examen)

Elija una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

OPCIÓN A

1. (3,25 puntos) Un restaurante compra la fruta a una tienda ecológica. Esta tienda vende dos tipos de lotes, A y B. El lote A incluye 1 kilo de manzanas, 5 kilos de naranjas y 1 kilo de peras, mientras que el lote B incluye 4 kilos de manzanas, 2 kilos de naranjas y 1 kilo de peras. Cada lote de tipo A cuesta 8 euros y cada lote de tipo B cuesta 10 euros. Sabiendo que para mañana el restaurante quiere tener, al menos, 24 kilos de manzanas, 30 kilos de naranjas y 12 kilos de peras, plantear y resolver un problema de programación lineal para determinar cuántos lotes de cada tipo debe comprar para minimizar el coste. ¿Cuál será el valor del coste en ese caso?

SOLUCIÓN.

Se trata de un problema de programación lineal. Organicemos los datos en una tabla:

Lotes	Número	Manzanas (kg.)	Naranjas (kg.)	Peras (kg.)	Coste	
Α	х	х	5x	x	8x	
В	У	4y	2y	У	10y	
	$x \ge 0$, $y \ge 0$	$x+4y\geq 24$	$5x + 2y \ge 30$	$x+y \ge 12$	F(x, y) = 8x + 10y	

Así pues, la función objetivo es F(x,y)=8x+10y que debe ser mínima y las restricciones son el conjunto de desigualdades $\{x\geq 0 \ , \ y\geq 0 \ , \ x+4y\geq 24 \ , \ 5x+2y\geq 30 \ , \ x+y\geq 12 \ \}$.

Obtengamos, gráficamente, la región factible (solución del conjunto de restricciones):

- La recta x = 0 es el eje de ordenadas. La solución de la inecuación $x \ge 0$ es el semiplano de la derecha (en blanco).
- La recta y=0 es el eje de abscisas. La solución de la inecuación $y \ge 0$ es el semiplano superior.
- La recta x + 4y = 24 pasa por los puntos (0,6) y (24,0). La inecuación $x + 4y \ge 24$ tiene por solución el semiplano que no contiene al origen de coordenadas.
- La recta 5x+2y=30 pasa por los puntos (6,0) y (2,10). La solución de la inecuación $5x+2y \ge 30$ es el semiplano al que no pertenece el origen de coordenadas.
- La recta x+y=12 pasa por los puntos (0,12)y (12,0). La solución de la inecuación $x+y\ge 12$ es el semiplano al que no pertenece

el origen de coordenadas.

La región factible es entonces una región abierta cuyos vértices son los puntos A, B, C y D. Como la función objetivo se optimiza en alguno de sus vértices, obtengamos las coordenadas de los mismos y el valor de la función objetivo en cada uno de ellos:

■ Vértice A :
$$\begin{cases} x = 0 \\ 5x + 2y = 30 \end{cases} \Rightarrow y = 15 \Rightarrow A(0,15) \Rightarrow F(0,15) = 8 \cdot 0 + 10 \cdot 15 = 150 \in$$

■ Vértice B:

$$\begin{cases} 5x + 2y = 30 \\ x + y = 12 \end{cases} \Rightarrow \begin{cases} 5x + 2y = 30 \\ -2x - 2y = -24 \end{cases} \Rightarrow 3x = 6 \Rightarrow x = 2 \text{ , } y = 10 \Rightarrow A\left(2,10\right) \Rightarrow F\left(2,10\right) = 16 + 100 = 116 \text{ }$$

■ Vértice C:
$$\begin{cases} x+y=12 \\ x+4y=24 \end{cases} \Rightarrow 3y=12 \Rightarrow y=4, x=8 \Rightarrow C(8,4) \Rightarrow F(8,4)=64+40=104€$$

• Vértice D: $D(24,0) \Rightarrow F(24,0)=192$ €

Por lo tanto, para minimizar el coste debe comprar 8 lotes del tipo A y 4 lotes del tipo B. El coste será de 104 €.

2. (3,25 puntos) Dada la función

$$f(x) = \frac{4x^2 + 4x + 5}{2x + 1}$$

Calcular:

- a) (0,25 puntos) Dominio de f.
- **b)** (0,75 puntos) ¿Para qué valores de x se cumple f(x) = 5?
- c) (1 punto) Asíntotas verticales, horizontales y oblicuas.
- d) (1,25 puntos) Intervalos de crecimiento y decrecimiento.

SOLUCIÓN.

a) Se trata de una función racional cuyo dominio es $\mathbb R$ menos los valores de x que anulen el denominador. Es decir:

$$Dom(f) = \mathbb{R} - \left\{ -\frac{1}{2} \right\}$$

b)
$$f(x) = 5 \implies \frac{4x^2 + 4x + 5}{2x + 1} = 5 \implies 4x^2 + 4x + 5 = 10x + 5 \implies 4x^2 - 6x = 0 \implies 2x(2x - 3) = 0 \implies x = 0$$
, $x = \frac{3}{2}$

c) • Asíntotas verticales:
$$x = -\frac{1}{2}$$
 pues $\lim_{x \to -\frac{1}{2}} \frac{4x^2 + 4x + 5}{2x + 1} = \infty$

■ Asíntotas horizontales: no tiene, porque
$$\lim_{x\to\infty} \frac{4x^2 + 4x + 5}{2x + 1} = \infty$$

Asíntotas oblicuas
$$y = mx + n$$
: $m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{4x^2 + 4x + 5}{2x^2 + x} = \frac{4}{2} = 2$

$$n = \lim_{x \to \infty} \left[f(x) - mx \right] = \lim_{x \to \infty} \left[\frac{4x^2 + 4x + 5}{2x + 1} - 2x \right] = \lim_{x \to \infty} \frac{4x^2 + 4x + 5 - 4x^2 - 2x}{2x + 1} = \lim_{x \to \infty} \frac{2x + 5}{2x + 1} = 1 \quad \Rightarrow \quad y = 2x + 1$$

d) El crecimiento o decrecimiento de una función depende del signo de su primera derivada:

$$f'(x) = \frac{\left(8x+4\right)\left(2x+1\right)-2\left(4x^2+4x+5\right)}{\left(2x+1\right)^2} = \frac{16x^2+8x+8x+4-8x^2-8x-10}{\left(2x+1\right)^2} = \frac{8x^2+8x-6}{\left(2x+1\right)^2} = \frac{2\left(4x^2+4x-3\right)}{\left(2x+1\right)^2} = 0 \quad \Rightarrow \quad x = \frac{16x^2+8x+4-8x^2-8x-10}{\left(2x+1\right)^2} = \frac{16x^2+8x+4-8x+10}{\left(2x+1\right)^2} = \frac{16x^2+8x+10}{\left(2x+1\right)^2} = \frac{16x^2+10}{\left(2x+1\right)^2} =$$

$$\Rightarrow 4x^{2} + 4x - 3 = 0 \Rightarrow x = \frac{-4 \pm \sqrt{16 + 48}}{8} = \frac{-4 \pm 8}{8} = \frac{-\frac{12}{8}}{\frac{4}{8} = \frac{1}{2}}$$

El signo de la primera derivada depende del signo del polinomio $4x^2 + 4x - 3$ que se anula en $x = -\frac{3}{2}$ y en $x = \frac{1}{2}$. Hay que tener en cuenta también $x = -\frac{1}{2}$ donde la función tiene una discontinuidad con asíntota vertical. Se tiene:

En el intervalo $\left(-\infty, -\frac{3}{2}\right)$: f' > 0 (basta comprobar el signo en x=-2, por ejemplo).

En el intervalo $\left(-\frac{3}{2}, -\frac{1}{2}\right)$: f' < 0 (basta comprobarlo sustituyendo x por -1, por ejemplo).

En el intervalo $\left(-\frac{1}{2}, \frac{1}{2}\right)$: f' < 0 (basta sustituir x por 0, por ejemplo).

En el intervalo $\left(\frac{1}{2}, \infty\right)$: f' > 0 (basta sustituir x por 1, por ejemplo).

Así pues, tenemos:

La función es creciente en
$$\left(-\infty, -\frac{3}{2}\right) \cup \left(\frac{1}{2}, +\infty\right)$$

$$-3/2 \qquad -1/2 \qquad 1/2$$
La función es decreciente en $\left(-\frac{3}{2}, -\frac{1}{2}\right) \cup \left(-\frac{1}{2}, \frac{1}{2}\right)$

- 3. (3,5 puntos) Se sabe que el peso de las manzanas de un agricultor tiene distribución normal con desviación típica igual a 20 g. Queremos construir un intervalo de confianza para la media del peso de las manzanas del agricultor.
 - a) (2 puntos) Determinar el tamaño de la muestra para que el intervalo de confianza del 93% tenga una amplitud menor o igual que 8 g.
 - **b)** (1,5 puntos) Decidimos tomar una muestra de tamaño 12. Pesamos las manzanas y obtenemos los siguientes resultados (en gramos)

178, 221, 196, 231, 210, 168, 203, 186, 196, 214, 230, 224

Calcular un intervalo de confianza al 93% para la media del peso de las manzanas del agricultor.

Jai	cuiai t	all lillervalo	de corme	iliza al Jo	70 Para is	i iliedia di	ei peso ue	las man	Zarias uci	agricuito	<u> </u>			
[k	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09			
[0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359			
ı	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753			
- 1	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141			
- 1	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517			
- 1	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879			
- 1	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224			
- 1	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549			
- 1	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852			
- 1	0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133			
- 1	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389			
- 1	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621			
- 1	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830			
- 1	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015			
- 1	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177			
- 1	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319			
- 1	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441			
- 1	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545			
- 1	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633			
- 1	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706			
- 1	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767			
- 1	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817			
- 1	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857			
- [2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890			
- 1	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916			
I	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936			
- 1	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952			
- 1	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964			
- 1	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974			
- 1	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981			
- 1	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986			
- 1	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990			
- 1	3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993			
- 1	3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995			
I	3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997			
- 1	3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998			
- 1	3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998			
Į	3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999			
IOT	A = 1 1	11 6 1	1 0/	7 - 1 \		1.1								

NOTA: En la tabla figuran los valores de P(Z ≤ k) para una distribución normal de media 0 y desviación típica 1. Si no encuentra el valor en la tabla, elija el más próximo y en el caso de que los valores por exceso y por defecto sean iguales considere la media aritmética de los valores correspondientes.

SOLUCIÓN.

a) Si la amplitud del intervalo de confianza debe tener una amplitud igual o menor que 8 g., el error máximo admisible debe ser E=4.

Recordemos que
$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \implies \sqrt{n} = z_{\alpha/2} \cdot \frac{\sigma}{E} \implies n = \left(z_{\alpha/2} \cdot \frac{\sigma}{E}\right)^2$$
.

Obtengamos el valor crítico correspondiente a un nivel de confianza del 93%:

$$1-\alpha = 0.93 \implies \alpha = 1-0.93 = 0.07 \implies \frac{\alpha}{2} = 0.035 \implies 1-\frac{\alpha}{2} = 0.965$$

Buscamos en la tabla el valor más próximo (resulta ser 0,9649) que corresponde a un valor crítico $z_{\alpha/2} = 1,81$.

Tenemos entonces: $n = \left(z_{\alpha/2} \cdot \frac{\sigma}{E}\right)^2 = \left(1.81 \cdot \frac{20}{4}\right)^2 = 81.9 \implies \text{Ia muestra debe ser de 82 manzanas.}$

b) La media muestral es:
$$\overline{X} = \frac{178 + 221 + 196 + 231 + 210 + 168 + 203 + 186 + 196 + 214 + 230 + 224}{120 + 168 + 203 + 186 + 196 + 214 + 230 + 224} = 204,75 \text{ g}.$$

El intervalo de confianza de la media de todas las manzanas, con un nivel de confianza del 93%, tiene un error máximo

admisible:
$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} = 1.81 \cdot \frac{20}{\sqrt{12}} = 10.45 \text{ g.}$$

El intervalo de confianza es entonces: $(\bar{X}-E, \bar{X}+E)=(204,75-10,45, 204,75+10,45)=(194,3, 215,2)$

Es decir, la media del peso de las manzanas está entre 194,3 g. y 215,2 g. con un nivel de confianza del 93%.

OPCIÓN B

1. (3,25 puntos) Un hotel tiene habitaciones individuales (para una persona), dobles (para dos personas) y familiares (para cuatro personas). El hotel tiene un total de 144 habitaciones con una capacidad total de 312 personas; además, el número de habitaciones dobles es igual al triple de la suma de habitaciones individuales y familiares. Plantear y resolver un sistema de ecuaciones lineales para determinar el número de habitaciones de cada tipo que tiene el hotel.

SOLUCIÓN.

Sea "x" el número de habitaciones individuales, "y" el número de habitaciones dobles y "z" el número de habitaciones familiares. Se tiene el siguiente sistema de ecuaciones (lo resolveremos por el método de Gauss):

$$\begin{array}{c} x+y+z=144 \\ x+2y+4z=312 \\ y=3\left(x+z\right) \end{array} \right\} \begin{array}{c} x+y+z=144 \\ \Leftrightarrow x+2y+4z=312 \\ 3x-y+3z=0 \end{array} \right\} \begin{array}{c} \frac{E_2-E_1}{E_3-3E_1} & x+y+z=144 \\ \Leftrightarrow y+3z=168 \\ -4y=-432 \end{array} \right\} \begin{array}{c} x+y+z=144 \\ \Leftrightarrow y+3z=168 \\ 12z=240 \end{array} \right\} \\ \Rightarrow z=\frac{240}{12}=20 \\ \Rightarrow z=\frac{240}{12}=2$$

$$\Rightarrow$$
 y=168-3z=168-60=108 \Rightarrow x=144-y-z=144-108-20=16

Hay entonces 16 habitaciones individuales, 108 habitaciones dobles y 20 habitaciones familiares.

2. (3,25 puntos)

a) (2 puntos) Tenemos 4000 euros para invertir en dos fondos M y N. Sea x la cantidad, en miles de euros, que invertimos en el fondo M e y la cantidad, en miles de euros, que invertimos en el fondo N; así, se cumple x + y = 4. El beneficio que se obtiene, en euros, viene dado por

$$B = 10(2x + 1)^2 y$$

Determinar cuánto dinero tenemos que invertir en cada fondo para obtener el máximo beneficio y cuál será ese beneficio máximo.

b) (1,25 puntos) Calcular

$$\int_0^1 \left(\frac{5}{3x+1} - \frac{4}{\sqrt{3x+1}} \right) dx$$

SOLUCIÓN.

a) De
$$x+y=4$$
: $y=4-x \Rightarrow B=10(2x+1)^2(4-x)$

Estudiemos para qué valor de x la función beneficio tiene su máximo:

$$B'' = 10 \left[2 \left(-6x + 15 \right) + \left(2x + 1 \right) \left(-6 \right) \right] \ \Rightarrow \ B'' \left(\frac{5}{2} \right) = 10 \left[0 - 6 \cdot 6 \right] < 0 \ \Rightarrow \ x = \frac{5}{2} \ \text{es un máximo relativo de la función}$$

 $x = 2.5 \implies y = 1.5 \implies$ debemos invertir 2500 euros en el fondo M y 1500 euros en el fondo N para conseguir el máximo beneficio que será de $B = 10(2x+1)^2y = 10 \cdot 36 \cdot 1.5 = 540$ euros.

b) Calculemos una primitiva:

$$\int \left(\frac{5}{3x+1} - \frac{4}{\sqrt{3x+1}}\right) dx = 5 \int \frac{1}{3x+1} \, dx - 4 \int \frac{1}{\sqrt{3x+1}} \, dx = \frac{5}{3} \int \frac{3}{3x+1} \, dx - \frac{4 \cdot 2}{3} \int \frac{3}{2\sqrt{3x+1}} \, dx = \frac{5}{3} \ln(3x+1) - \frac{8}{3} \sqrt{3x+1} + \frac{1}{3} \ln(3x+1) - \frac{8}{3} \sqrt{3x+1} + \frac{1}{3} \ln(3x+1) - \frac{1}{3} \ln(3x+1) - \frac{1}{3} \ln(3x+1) + \frac{1}{3} \ln(3x+1) - \frac{1}{3} \ln(3x+1) + \frac{1}{$$

Tenemos entonces:
$$\int_0^1 \left(\frac{5}{3x+1} - \frac{4}{\sqrt{3x+1}} \right) dx = \left[\frac{5}{3} \ln(3x+1) - \frac{8}{3} \sqrt{3x+1} \right]_0^1 = \left(\frac{5}{3} \ln 4 - \frac{8}{3} \cdot 2 \right) - \left(\frac{5}{3} \cdot 0 - \frac{8}{3} \right) = \frac{5}{3} \ln 4 - \frac{8}{3} \cdot 2 = \frac{5}{3} \ln 4 - \frac{8}{3} + \frac{5}{3} \ln 4 - \frac$$

3. (3,5 puntos) Una empresa tiene 64 trabajadores repartidos en tres departamentos: Administración, Producción y Ventas. Se ha hecho un estudio sobre si los trabajadores saben inglés o no, con los siguientes resultados:

	Administración	Producción	Ventas
Sabe inglés	12	30	6
No sabe inglés	4	11	1

- a) (1 punto) Elegimos al azar un trabajador de la empresa, ¿cuál es la probabilidad de que sepa inglés?
- b) (1 punto) Elegimos al azar un trabajador de entre los que saben inglés, ¿cuál es la probabilidad de que sea del departamento de Ventas?
- c) (0,75 puntos) Elegimos al azar un trabajador de la empresa. Sea A el suceso "el trabajador es del departamento de Administración" y B el suceso "el trabajador sabe inglés". ¿Son los sucesos A y B independientes?
- **d)** (0,75 puntos) Elegimos al azar (sin reemplazamiento) tres trabajadores de la empresa. ¿Cuál es la probabilidad de que sean del mismo departamento?

SOLUCIÓN

Completemos la tabla de contingencia del enunciado con una nueva fila y una nueva columna donde se recojan los totales:

	Administración (A)	Producción (P)	Ventas (V)	Total
Sabe inglés (B)	12	30	6	48
No sabe inglés (B)	4	11	1	16
Total	16	41	7	64

- a) Entre los 64 trabajadores de la empresa hay 48 que saben inglés: $p(B) = \frac{48}{64} = 0.75$
- b) Elegimos ahora entre los 48 trabajadores que saben inglés de los que 6 son del departamento de ventas:

$$p(V/B) = \frac{6}{48} = 0,125$$

c) A y B son independientes si p(A/B) = p(A): $p(A/B) = \frac{12}{48} = 0.25$, $p(A) = \frac{16}{64} = 0.25 \Rightarrow$ son independientes.

d)
$$p[(A_1 \cap A_2 \cap A_3) \cup (P_1 \cap P_2 \cap P_3) \cup (V_1 \cap V_2 \cap V_3)] = \frac{16}{64} \cdot \frac{15}{63} \cdot \frac{14}{62} + \frac{41}{64} \cdot \frac{40}{63} \cdot \frac{39}{62} + \frac{7}{64} \cdot \frac{6}{63} \cdot \frac{5}{62} = \frac{1}{64} \cdot \frac$$

$$=\frac{16\cdot15\cdot14+41\cdot40\cdot39+7\cdot6\cdot5}{64\cdot63\cdot62}=\frac{67530}{249984}=0,27$$