A GRADUATE COURSE IN OPTIMIZATION

A GRADUATE COURSE

IN

OPTIMIZATION

CIE6010 Notebook

Prof. Yin Zhang

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	ix
Notati	ions	xi
1	Week1	1
1.1	Monday	1
1.1.1	Introduction to Optimizaiton	1
1.2	Wednesday	2
1.2.1	Reviewing for Linear Algebra	2
1.2.2	Reviewing for Calculus	2
1.2.3	Introduction to Optimization	3
2	Week2	7
2.1	Monday	7
2.1.1	Reviewing and Announments	7
2.1.2	Quadratic Function Case Study	8
2.2	Wednesday	11
2.2.1	Convex Analysis	11
3	Week3	17
3.1	Wednesday	17
3.1.1	Convex Analysis	17
3.1.2	Iterative Method	18
3.2	Thursday	22
3.2.1	Announcement	22
3.2.2	Sparse Large Scale Optimization	22

4	Week4	27
4.1	Wednesday	27
4.1.1	Comments for MATLAB Project	27
4.1.2	Local Convergence Rate	28
4.1.3	Newton's Method	29
4.1.4	Tutorial: Introduction to Convexity	30
5	Week5	33
5.1	Monday	33
5.1.1	Review	33
5.1.2	Existence of solution to Quadratic Programming	36
5.2	Wednesday	39
5.2.1	Comments about Newton's Method	39
5.2.2	Constant Step-Size Analysis	40
6	Week6	45
6.1	Monday	45
6.1.1	Announcement	45
6.1.2	Introduction to Quasi-Newton Method	45
6.1.3	Constrainted Optimization Problem	46
6.1.4	Announcement on Assignment	47
6.1.5	Introduction to Stochastic optimization	49
6.2	Tutorial: Monday	49
6.2.1	LP Problem	49
6.2.2	Gauss-Newton Method	50
6.2.3	Introduction to KKT and CQ	51
6.3	Wednesday	52
6.3.1	Review	52
632	Dual-Primal of LP	53

1	Week7	57
7.1	Monday	57
7.1.1	Announcement	57
7.1.2	Recap about linear programming	57
7.1.3	Optimization over convex set	60
7.2	Wednesday	62
7.2.1	Motivation	62
7.2.2	Convex Projections	63
7.2.3	Feasible diection method	65
8	Week8	69
8.1	Monday	69
8.1.1	Constraint optimization	70
8.1.2	Inequality Constraint Problem	71
8.2	Monday Tutorial: Review for CIE6010	71
9	Week9	79
9.1	Monday	79
9.1.1	Reviewing for KKT	79
9.2	Monday Tutorial: Reviewing for Mid-term	82
10	Week10	83
10.1	Monday	83
10.1.1	Duality Theory	83
10.1.2	Penalty Algorithms	86
10.2	Wednesday	89
10.2.1	Introduction to penalty algorithms	89
10.2.2	Convergence Analysis	90

11	Week11 93
11.1	Monday 93
11.1.1	Equality Constraint Problem
11.1.2	ADMM96
11.2	Wednesday 97
11.2.1	Comments on Assignment 6
11.2.2	Inequality Constraint Problem
11.2.3	Non-smooth unconstraint problem
12	Week12
12.1	Monday 101
12.1.1	Comments on Final Project
12.1.2	Trust Region Method
12.2	Monday Tutorial 103
12.2.1	Sub-gradient 104
12.3	Wednesday 107
12.3.1	Gradient Projection

Acknowledgments

This book is from the CIE6010 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

X

Set

```
\inf X \subseteq \mathbb{R} Infimum over the set X
\mathbb{R}^{m \times n}
                  set of all m \times n real-valued matrices
\mathbb{C}^{m \times n}
                  set of all m \times n complex-valued matrices
                  ith entry of column vector \boldsymbol{x}
x_i
                  (i,j)th entry of matrix \boldsymbol{A}
a_{ij}
                  ith column of matrix A
\boldsymbol{a}_i
\boldsymbol{a}_{i}^{\mathrm{T}}
                  ith row of matrix A
                  set of all n \times n real symmetric matrices, i.e., \mathbf{A} \in \mathbb{R}^{n \times n} and a_{ij} = a_{ji}
\mathbb{S}^n
                  for all i, j
                  set of all n \times n complex Hermitian matrices, i.e., \mathbf{A} \in \mathbb{C}^{n \times n} and
\mathbb{H}^n
                  \bar{a}_{ij} = a_{ji} for all i, j
\boldsymbol{A}^{\mathrm{T}}
                  transpose of \boldsymbol{A}, i.e, \boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}} means b_{ji} = a_{ij} for all i,j
                  Hermitian transpose of \boldsymbol{A}, i.e, \boldsymbol{B} = \boldsymbol{A}^{H} means b_{ji} = \bar{a}_{ij} for all i,j
A^{H}
trace(A)
                  sum of diagonal entries of square matrix A
1
                  A vector with all 1 entries
0
                  either a vector of all zeros, or a matrix of all zeros
                  a unit vector with the nonzero element at the ith entry
e_i
C(A)
                  the column space of \boldsymbol{A}
\mathcal{R}(\boldsymbol{A})
                  the row space of \boldsymbol{A}
\mathcal{N}(\boldsymbol{A})
                  the null space of \boldsymbol{A}
\operatorname{Proj}_{\mathcal{M}}(\mathbf{A}) the projection of \mathbf{A} onto the set \mathcal{M}
```

12.3. Wednesday

Given the unconstraint problem min $f(\mathbf{x})$, at \mathbf{x}^k ,

min
$$m_k(\mathbf{p}) = f(\mathbf{x}^k) + \nabla^{\mathrm{T}} f(\mathbf{x}^k) \mathbf{p} + \frac{1}{2} \mathbf{p}^{\mathrm{T}} \mathbf{B}_k \mathbf{p}$$
 such that $\|\mathbf{p}\| \leq \Delta$

In our project we need to slove it very accurately.

Trust Region sub-problem.

min
$$\frac{1}{2} \mathbf{p}^{\mathrm{T}} \mathbf{B} \mathbf{p} + \mathbf{g}^{\mathrm{T}} \mathbf{p}$$
 such that $\|\mathbf{p}\| \leq \Delta$

Necessary condition: p^* is a local minimum implies that (KKT condition)

$$(\mathbf{B} + \lambda \mathbf{I})\mathbf{p}^* = -\mathbf{g} \tag{12.8a}$$

$$\lambda \ge 0 \tag{12.8b}$$

$$\lambda(\Delta - \|\boldsymbol{p}\|) = 0 \tag{12.8c}$$

$$\|\boldsymbol{p}\| \le \Delta \tag{12.8d}$$

The second order necessary condition is

$$\boldsymbol{v}^{\mathrm{T}}(\boldsymbol{B} + \lambda \boldsymbol{I})\boldsymbol{v} \geq 0, \forall \boldsymbol{v} \perp \boldsymbol{p}^{*}$$

In addition, we replace the 2nd order condition with a little bit stronger condition.

Proposition 12.2 $\mathbf{B} + \lambda \mathbf{I} \succeq 0$ together with KKT condition are iff for p^* to be a global minimum.

Proof. Assume all the condition holds. Then (12.8a) implies that p^* is a global minimum of

$$\hat{m}(\boldsymbol{p}) = m(\boldsymbol{p}) + \frac{\lambda}{2} \boldsymbol{p}^{\mathrm{T}} \boldsymbol{p}$$

since

$$\nabla^2 \hat{m}(\mathbf{p}) = \mathbf{B} + \lambda \mathbf{I} \succeq 0$$

and

$$\nabla \hat{m}(\mathbf{p}) = (\mathbf{B} + \lambda \mathbf{I})p^* + \mathbf{g} = 0$$

which implies that $\hat{m}(p^*) \leq \hat{m}(p)$, i.e.,

$$\begin{split} m(\boldsymbol{p}^*) &\leq m(\boldsymbol{p}) + \frac{\lambda}{2} (\boldsymbol{p}^{\mathrm{T}} \boldsymbol{p} - (\boldsymbol{p}^*)^{\mathrm{T}} (\boldsymbol{p}^*)) \\ &= m(\boldsymbol{p}) + \frac{\lambda}{2} (\boldsymbol{p}^{\mathrm{T}} \boldsymbol{p} - \Delta^2 + \Delta^2 - (\boldsymbol{p}^*)^{\mathrm{T}} (\boldsymbol{p}^*)) \\ &= m(\boldsymbol{p}) + \frac{\lambda}{2} (\boldsymbol{p}^{\mathrm{T}} \boldsymbol{p} - \Delta^2) \\ &= m(\boldsymbol{p}), \quad \forall \text{feasible } \boldsymbol{p}. \end{split}$$

For the reverse direction, assume p^* is global minimum. If $||p^*|| < \Delta$, then $\lambda = 0$. In this case, p^* is the global minimum for m(p) without constraint, then the quadratic m(p) must be convex, which implies $B \succeq 0$.

If $\|\boldsymbol{p}^*\| = \Delta$, it suffices to show

$$\frac{1}{2}(\boldsymbol{p}-\boldsymbol{p}^*)^{\mathrm{T}}(\boldsymbol{B}+\lambda\boldsymbol{I})(\boldsymbol{p}-\boldsymbol{p}^*)\geq 0,$$

for p, p^* on the ball. Check that

$$\frac{1}{2}(\mathbf{p} - \mathbf{p}^*)^{\mathrm{T}}(\mathbf{B} + \lambda \mathbf{I})(\mathbf{p} - \mathbf{p}^*) = \frac{1}{2}\mathbf{p}^{\mathrm{T}}(\mathbf{B} + \lambda \mathbf{I})\mathbf{p} + \frac{1}{2}(\mathbf{p}^*)^{\mathrm{T}}(\mathbf{B} + \lambda \mathbf{I})\mathbf{p} - \mathbf{p}^{\mathrm{T}}(\mathbf{B} + \lambda \mathbf{I})\mathbf{p}^* \\
= \frac{1}{2}\mathbf{p}^{\mathrm{T}}(\mathbf{B} + \lambda \mathbf{I})\mathbf{p} + \frac{1}{2}(\mathbf{p}^*)^{\mathrm{T}}(\mathbf{B} + \lambda \mathbf{I})\mathbf{p} + \mathbf{p}^{\mathrm{T}}\mathbf{g} \\
= \frac{1}{2}\mathbf{p}^{\mathrm{T}}(\mathbf{B} + \lambda \mathbf{I})\mathbf{p} + \frac{1}{2}(\mathbf{p}^*)^{\mathrm{T}}(\mathbf{B} + \lambda \mathbf{I})\mathbf{p} + \mathbf{p}^{\mathrm{T}}\mathbf{g} \\
- (\mathbf{p}^*)^{\mathrm{T}}(\mathbf{B} + \lambda \mathbf{I})\mathbf{p} - - (\mathbf{p}^*)^{\mathrm{T}}\mathbf{g} \\
= \hat{m}(\mathbf{p}) - \hat{m}(\mathbf{p}^*) \\
= m(\mathbf{p}) - m(\mathbf{p}^*) + \frac{\lambda}{2}(\mathbf{p}^{\mathrm{T}}\mathbf{p} - (\mathbf{p}^*)^{\mathrm{T}}\mathbf{p}^*) \\
= m(\mathbf{p}) - m(\mathbf{p}^*) \ge 0,$$

which implies that $\mathbf{B} + \lambda \mathbf{I} \succeq 0$.

Read chapter 4 for numerical optimization.

You may use the command *fmincon* to implement, but you can barely pass.

12.3.1. Gradient Projection

min
$$f(x)$$

such that $x \in X$

We have

$$\boldsymbol{x}^* = \operatorname{Proj}_X(\boldsymbol{x}^* - \alpha \nabla f(\boldsymbol{x}^*)), \quad \forall \alpha > 0$$

Thus we have the iteration

$$x^{r+1} = \operatorname{Proj}_{X}(x^{r} - \alpha_{r} \nabla f(x^{r}))$$

At x^r , do the proximal problem:

$$x^{r+1} = \arg\min_{x \in X} f(x) + \frac{1}{2c^k} ||x - x^k||^2$$