## Test a Perceptual Phenomenon - Analysis Report

Date:01/10/2017

Author: Mamadou Diallo

Email: mams.diallo@gmail.com

## Experiment

In a Stroop task, participants are presented with a list of words, with each word displayed in a color of ink. The participant's task is to say out loud the color of the ink in which the word is printed. The task has two conditions: a congruent words condition, and an incongruent words condition. In the congruent words condition, the words being displayed are color words whose names match the colors in which they are printed: for example RED, BLUE. In the incongruent words condition, the words displayed are color words whose names do not match the colors in which they are printed: for example PURPLE, ORANGE. In each case, we measure the time it takes to name the ink colors in equally-sized lists. Each participant will go through and record a time from each condition.

Online Experiment: https://faculty.washington.edu/chudler/java/ready.html

#### Approach

We do not know the population parameters.

The same subjects are tested.

We have here two dependant samples with 2 conditions:

- congruent words condition
- and incongruent words condition

Use of dependant t-test for paired samples is applicable. The recommended approach is to compute the difference.

After performing the online experiment, the intuition is that the reaction time is increasing with incongruent words condition.

#### Variables

Our dependant variable is 'Reaction Time' expressed in seconds Our independent variable is the type of condition:

- either the congruent word condition,
- or the incongruent word condition.

#### Hypotheses

The hypotheses in terms of statistical symbols:

- H<sub>0</sub>:μ<sub>1</sub>=μ<sub>C</sub>
- Ha:μI≠μC

#### where:

- Ho is the null hypothesis
- Ha is the alternate hypothesis
- µC is the population mean of 'Reaction Time' under the congruent condition,
- µI is the population mean of 'Reaction Time' under the incongruent condition,

The null hypothesis (H0) states that the population mean of the reaction time of the task under the incongruent words condition ( $\mu$ I) is equal to population mean of the reaction time of the task under the congruent words condition ( $\mu$ C).

The alternate hypothesis  $(H_a)$  states that the population mean of the task under the incongruent condition  $(\mu I)$  is different from the population mean of the task under the congruent condition  $(\mu C)$ .

Based on the alternate hypothesis, we will use a two-tailed t-test

## Descriptive statistics

The statistics are computed and extracted from the coding part. See Coding in § Data Summary

|            | 1         |             |            |
|------------|-----------|-------------|------------|
| Statistics | Congurent | Incongruent | Difference |
| count      | 24        | 24          | 24         |
| mean       | 14.051125 | 22.015917   | 7.964792   |
| s td       | 3.559358  | 4.797057    | 4.864827   |
| min        | 8.630000  | 15.687000   | 1.950000   |
| 25%        | 11.895250 | 18.716750   | 3.645500   |
| 50%        | 14.356500 | 21.017500   | 7.666500   |
| 75%        | 16.200750 | 24.051500   | 10.258500  |
| max        | 22.328000 | 35.255000   | 21.919000  |

## Data visualization



We can see that the mean of the incongruent condition is greater than the mean of the congruent condition.

In the case of Incongruent, we have outliers



The Incongruent distribution is left-skewed.

The spread of the Incongruent condition is greater than the Congruent condition (based on sigma or IQR)

# Statistical test and findings

The sample size is n=24. The degree of freedom is DoF = n-1=23. The critical value for  $\alpha = .05$  (two-tailed) is: tc=2.069 from the t-table

Table entry for p and C is the point  $t^*$  with probability p lying above it and probability C lying between  $-t^*$  and  $t^*$ .



Table B t distribution critical values

| Tail probability p |       |       |       |                |                         |                |                |             |                         |       |       |                |
|--------------------|-------|-------|-------|----------------|-------------------------|----------------|----------------|-------------|-------------------------|-------|-------|----------------|
| df                 | .25   | .20   | .15   | .10            | .05                     | .025           | .02            | .01         | .005                    | .0025 | .001  | .0005          |
| 1                  | 1.000 | 1.376 | 1.963 | 3.078          | 6.314                   | 12.71          | 15.89          | 31.82       | 63.66                   | 127.3 | 318.3 | 636.6          |
| 2                  | .816  | 1.061 | 1.386 | 1.886          | 2.920                   | 4,303          | 4.849          | 6.965       | 9.925                   | 14.09 | 22.33 | 31.60          |
| 3                  | .765  | .978  | 1.250 | 1.638          | 2.353                   | 3.182          | 3.482          | 4.541       | 5.841                   | 7.453 | 10.21 | 12.92          |
| 4                  | .741  | .941  | 1.190 | 1.533          | 2.132                   | 2,776          | 2.999          | 3,747       | 4,604                   | 5.598 | 7.173 | 8,610          |
| 5                  | .727  | .920  | 1.156 | 1.476          | 2.015                   | 2.571          | 2.757          | 3.365       | 4.032                   | 4.773 | 5.893 | 6,869          |
| 6.                 | .718  | .906  | 1.134 | 1.440          | 1.943                   | 2.447          | 2.612          | 3.143       | 3,707                   | 4.317 | 5,208 | 5.959          |
| 7                  | .711  | .896  | 1.119 | 1.415          | 1.895                   | 2.365          | 2.517          | 2.998       | 3.499                   | 4.029 | 4.785 | 5.408          |
| 8                  | .706  | .889  | 1.108 | 1.397          | 1.860                   | 2.306<br>2.262 | 2.449          | 2.896       | 3,355<br>3,250          | 3.833 | 4.501 | 5.041          |
| 9                  | .703  | .883  | 1.100 | 1.383          | 1.833                   | 2.262          | 2.398          | 2.821       | 3.250                   | 3.690 | 4.297 | 4.781          |
| 10                 | .700  | .879  | 1.093 | 1.372          | 1.812                   | 2.228          | 2.359          | 2.764       | 3.169                   | 3.581 | 4.144 | 4.587          |
| 11                 | .697  | .876  | 1.088 | 1.363          | 1.796                   | 2.201          | 2.328          | 2.718       | 3.106                   | 3,497 | 4.025 | 4.437          |
| 12                 | .695  | .873  | 1.083 | 1.356          | 1.782                   | 2.179          | 2.303          | 2.681       | 3.055                   | 3.428 | 3.930 | 4.318          |
| 13                 | .694  | .870  | 1.079 | 1.350          | 1.771                   | 2.160          | 2.282          | 2.650       | 3.012                   | 3.372 | 3.852 | 4.221          |
| 14                 | .692  | .868  | 1.076 | 1.345          | 1.761<br>1.753          | 2.145          | 2.254          | 2.624       | 2,977                   | 3.326 | 3,787 | 4.140          |
| 15                 | .691  | .866  | 1.074 | 1.341          | 1.753                   | 2.131          | 2.249          | 2.602       | 2.947                   | 3.286 | 3,733 | 4.073          |
| 16                 | .690  | .865  | 1.071 | 1.337          | 1.746                   | 2.120          | 2.235          | 2.583       | 2.921                   | 3.252 | 3,686 | 4.015          |
| 17                 | .689  | .863  | 1.069 | 1.333          | 1.740                   | 2.110          | 2.224<br>2.214 | 2.567       | 2.898                   | 3.222 | 3.646 | 3,965          |
| 18                 | .688  | .862  | 1.067 | 1.330          | 1.734                   | 2.101          | 2.214          | 2.552       | 2.878                   | 3.197 | 3.611 | 3.922          |
| 19                 | .688  | .861  | 1.066 | 1.328          | 1.729                   | 2.093          | 2.205          | 2.539       | 2.861                   | 3.174 | 3.579 | 3.883          |
| 20                 | .687  | .860  | 1.064 | 1.325          | 1.725<br>1.721<br>1.717 | 2.086          | 2.197          | 2.528       | 2.845                   | 3.153 | 3,552 | 3.850          |
| 21                 | .686  | .859  | 1.063 | 1.323<br>1.321 | 1.721                   | 2.080<br>2.074 | 2.189          | 2.518       | 2.831<br>2.819          | 3.135 | 3,527 | 3.819          |
| 22                 | .686  | .858  | 1.061 | 1.321          | 1.717                   | 2.074          | 2.183          | 2,508       | 2.819                   | 3.119 | 3,505 | 3.792          |
| 23                 | .685  | .858  | 1.060 | 1.319          | 1.714                   | 2.069          | 2.177          | 2.500       | 2.807                   | 3.104 | 3.485 | 3.768          |
| 23<br>24           | .685  | .857  | 1.059 | 1.318          | 1.711                   | 2.064          | 2.172          | 2.492       | 2.797                   | 3.091 | 3.467 | 3,745          |
| 25                 | .684  | .856  | 1.058 | 1.316          | 1.708                   | 2.064<br>2.060 | 2.167          | 2.485       | 2.797<br>2.787          | 3.078 | 3,450 | 3.745<br>3.725 |
| 26                 | .684  | .856  | 1.058 | 1.315          | 1.706                   | 2.056          | 2.162          | 2.479       | 2.779                   | 3.067 | 3,435 | 3,707          |
| 26<br>27           | .684  | .855  | 1.057 | 1.314          | 1.703                   | 2.052          | 2.158          | 2.473       | 2.771<br>2.763          | 3.057 | 3,421 | 3,690          |
| 28                 | .683  | .855  | 1.056 | 1.313          | 1.701                   | 2.048          | 2.154          | 2,467       | 2.763                   | 3,047 | 3,408 | 3,674          |
|                    | .683  | .854  | 1.055 | 1.311          | 1.699                   | 2.045          | 2.150          | 2.462       | 2.756                   | 3.038 | 3.396 | 3,659          |
| 29<br>30           | .683  | .854  | 1.055 | 1.310          | 1.697                   | 2.042          | 2.147          | 2.462 2.457 | 2.750                   | 3,030 | 3.385 | 3.646          |
| 40                 | .681  | .851  | 1.050 | 1.303          | 1.684                   | 2.021          | 2.123          | 2.423       | 2.756<br>2.750<br>2.704 | 2.971 | 3.307 | 3.551          |
| 50                 | .679  | .849  | 1.047 | 1.299          | 1.676                   | 2.009          | 2.109          | 2,403       | 2.678                   | 2.937 | 3.261 | 3,496          |
| 60                 | .679  | .848  | 1.045 | 1.296          | 1.671                   | 2.000          | 2.099          | 2.390       | 2.660                   | 2.915 | 3,232 | 3,460          |
| 80                 | .678  | .846  | 1.043 | 1.292          | 1.664                   | 1,990          | 2.088          | 2.374       | 2,639                   | 2.887 | 3,195 | 3.416          |
| 100                | .677  | .845  | 1.042 | 1.290          | 1,660                   | 1.984          | 2.081          | 2.364       | 2.626                   | 2.871 | 3.174 | 3.390          |
| 1000               | .675  | .842  | 1.037 | 1.282          | 1.646                   | 1.962          | 2.056          | 2.330       | 2.581                   | 2.813 | 3.098 | 3,300          |
| 36                 | .674  | .841  | 1.036 | 1.282          | 1.645                   | 1.960          | 2.054          | 2.326       | 2.576                   | 2.807 | 3.091 | 3.291          |
|                    | 50%   | 60%   | 70%   | 80%            | 90%                     | 95%            | 96%            | 98%         | 99%                     | 99.5% | 99,8% | 99.9%          |

Sample Differences:

μD=7.96 Sample mean of the differences

σD=4.86 Sample standard deviation of the differences

The paired sample t-statistics is (see Coding § T-Test):

 $t_s = 8.021$ 

Our sample mean falls within the critical region.

The two-tailed P-value is less than .0001 (use of tool [Find p-value]).

Coding § T-Test) gives p = .00000004

By conventional criteria ( $\alpha$ =.05), this difference is considered extremely statistically significant.

The probability of obtaining the sample mean is less than the alpha  $(p<\alpha)$ 

Therefore, we reject the null

#### Conclusion:

The test performed is a two-tailed t-test with  $(1 - \alpha) = 95\%$  confidence level.

The reaction time of the task under the incongruent words condition is significantly longer than that of the congruent words condition.

The results match up with my expectations.

#### Documentation/References

Here is the list of references - including Web sites, books, blog posts - used for my submission:

[Wikipedia] Wikipedia article - Stroop effect wikipedia

[Experiment] Original experiment of Stroop effect experiment

[Online Experiment] https://faculty.washington.edu/chudler/words.html#seffect

[repo] https://github.com/thrabchak/Udacity-Data-Analysis/tree/master/P1%20Stroop%20Effect

[t-table] t table: https://s3.amazonaws.com/udacity-hosted-downloads/t-table.jpg

[Find p-value] http://www.graphpad.com/quickcalcs/

[dataset] https://drive.google.com/file/d/0B9Yf01UaIbUgQXpYb2NhZ29yX1U/view