1 Центральная предельная теорема

Теорема 1.1 (Линдеберга). Пусть $\{\xi_k\}_{k\geqslant 1}$ — независимые случайные величины, $\mathsf{E}\xi_k^2<+\infty\ \forall k.$ Обозначим $m_k=\mathsf{E}\xi_k,\,\sigma_k^2=\mathsf{D}\xi_k>0;\,S_n=\sum_{i=0}^n\xi_i;\,\mathsf{D}_n^2=\sum_{k=1}^n\sigma_k^2\ u\ F_k(x)$ — функция распределения ξ_k . Пусть выполнено условие Линдеберга:

$$\forall \varepsilon > 0 \quad \frac{1}{\mathsf{D}_n^2} \sum_{k=1}^n \int_{\{x: |x-m_k| > \varepsilon \mathsf{D}_n\}} (x - m_k)^2 \, dF_k(x) \xrightarrow[n \to \infty]{} 0.$$

$$Tor\partial a \xrightarrow{S_n - \mathsf{E} S_n} \longrightarrow \mathcal{N}(0,1), n \to \infty.$$

2 Гауссовские случайные векторы

Определение 1. Случайный вектор $\vec{\xi} \sim \mathcal{N}(m, \Sigma)$ — гауссовский, если его характеристическая функция $\varphi_{\xi}(\vec{t}) = \exp\left(i\left(\vec{m}, \vec{t}\right) - \frac{1}{2}\left(\Sigma \vec{t}, \vec{t}\right)\right)$, $\vec{m} \in \mathbb{R}^n$, Σ — симметричная неотрицательно определенная матрица.

Определение 2. Случайный вектор $\vec{\xi}$ — гауссовский, если он представляется в следующем виде: $\vec{\xi} = A\vec{\eta} + \vec{b}$, где $\vec{b} \in \mathbb{R}^n$, $A \in \mathrm{Mat}\,(m \times n)$ и $\eta = (\eta_1, \ldots, \eta_m)$ — независимые и распределенные $\mathcal{N}(0,1)$.

Определение 3. Случайный вектор $\vec{\xi}$ — гауссовский, если $\forall \lambda \in \mathbb{R}^n$ случайная величина $(\vec{\lambda}, \vec{\xi})$ имеет нормальное распределение.

Теорема 2.1 (Об эквивалентности определений гауссовских векторов). *Предыдущие три определения эквивалентны.*

3 Задачи по астрономии

Задача 3.1. Н II

Предположим, что за пределами солнечного круга кривая вращения Галактики плоская, параметр плато $v=240~{\rm km/c}$. Пусть известно, что диск нейтрального водорода простирается до галактоцентрического расстояния $R_{\rm max}=50~{\rm knk}$. Мы наблюдаем облако нейтрального водорода на галактической долготе $l=140^{\circ}$. Оцените минимально возможное значение лучевой скорости этого облака.

Задача 3.2. Бейрут

В какой момент по истинному солнечному времени 1 сентября Регул ($\alpha_1=10^{\rm h}\,9^{\rm m},\delta_1=11^{\circ}\,53'$) и Шератан ($\alpha_2=11^{\rm h}\,15^{\rm m},\delta_2=15^{\circ}\,20'$) находятся на одном альмукантрате в Бейруте ($\varphi=33^{\circ}53'$)?

Задача 3.3. Dark Matters

В некотором скоплении галактик содержится 70 спиральных и 30 элиптических галактик. Известно, что абсолютная звездная величина эллиптических галактик равна -20, соотношение масса-светимость составляет $15\mathfrak{M}_{\odot}/L_{\odot}$. У спиральных галактик в данном скоплении максимальная скорость вращения составляет $210~\mathrm{km/c}$, соотношение масса-светимость $-5\mathfrak{M}_{\odot}/L_{\odot}$.

Оцените долю темной материи внутри скопления, если масса межгалактического газа на порядок превышает массу галактик, а типичные скорости галактик в скоплении составляют $1000~{\rm km/c}$. Размер скопления составляет $7~{\rm Mnk}$. Абсолютная звёздная величина Млечного Пути — -20.9.

Задача 3.4. Антипланеты

Лупа и Пупа живут на антипланетах, обращающихся вокруг звезды с массой $M_* \simeq 10 M_\odot$ по эллиптической орбите с фокальным параметром p=0.3 а. е. и эксцентриситетом e=0.72. Как и полагается антипланетам, время от времени звезда находится точно между ними; в этот момент X истинная аномалия ν планеты Пупы составляет 237° .

Однажды кто-то опять все перепутал, и центральная звезда бесследно исчезла в момент X, уменьшив модули скоростей планет в 217 раз. Установите, с каким периодом T планеты бедных астрономов будут об-

ращаться в отсутствие звезды. Известно, что планеты относятся к классу горячих Юпитеров с массой $M \simeq M_{\uparrow \! \perp}.$

Задача 3.5. К Сатурну!

Космический корабль запустили с поверхности Земли к Сатурну по наиболее энергетически выгодной траектории. При движении по орбите корабль пролетел мимо астероида-троянца (624) Гектор.

Определите большую полуось и эксцентриситет полученной орбиты, скорость старта с поверхности Земли, а также угол между направлением на Солнце и на Сатурн в момент старта корабля. Орбиты планет считать круговыми. Оцените относительную скорость корабля и астероида в момент сближения.

4 Отзыв

- ✓ Полезные домашки, позволяющие разобраться с материалом и сразу использовать много показанных функций и тонкостей на лекции
- \times Многовато домашки за раз, возможно стоит давать меньшими порциями (касается конкретно этого задания)
- × Было вообще ничего не понятно про окружение и счетчики, было мало примеров на эту тему. Было бы хорошо показать, как это делать, на лекции (какой-нибудь аналог домашней работы)