随机过程及其应用

(第2版)

陆大绘 张 颢 编著

清华大学出版社 北 京

内容简介

本书是在1986年版《随机过程及其应用》的基础上修改而成的,总结了二十多年来多位教师在清华大学电子工程系讲授"随机过程"课程的教学经验,以及历届学生对课程教学的反馈与建议,是集体智慧的结晶。

本书的内容大体可以分为三个部分: Gauss过程和Poisson过程作为最基本最典型的随机过程,分别给予了独立章节进行讨论;二阶矩过程对于理解电子系统中的随机信号及其特性是本质的,书中分别从时域、频域以及统计处理三个方面进行了分析; Markov过程近年来在电子信息领域的重要性正日益显现,书中对离散状态Markov过程(Markov链)分离散时间和连续时间两部分进行了讨论。考虑到多数读者对确定性函数的分析方法较为熟悉,因此本书尽可能强调随机分析与确定性分析的平行性。同时,本书对研究随机变量的基本工具,例如条件期望、特征函数和母函数等,给予了充分重视,尽量使用它们进行分析和讨论。

为方便读者自学,本书配备了一定数量的习题供读者选做。随机过程的分析处理方法有其自身的特点,读者需要通过练习才能对其理论及方法有较为深入的认识。

本书可供高等院校相关专业大学高年级本科及研究生作为教材使用、也可供工程技术人员参考。

本书封面贴有清华大学出版社防伪标签,无标签者不得销售。

版权所有,侵权必究。侵权举报电话: 01062782989 13701121933

图书在版编目 (CIP) 数据

随机过程及其应用/陆大绘,张颢编著.—2版.—北京:清华大学出版社,2012.11 ISBN 978-7-302-24275-8

I. ① 随… Ⅱ. ① 陆… ②张… Ⅲ. 随机过程 Ⅳ. ① O211.6 中国版本图书馆 CIP 数据核字 (2010) 第 251680 号

责任编辑:王一玲

封面设计: 焦丽丽

责任校对: 责任印制:

出版发行: 清华大学出版社

M 址: http://www.tup.com.cn

地 址:北京清华大学学研大厦 A 座 邮 编:100084

社 总 机: 010-62770175 邮 购: 010-62786544

投稿与读者服务: 010-62776969, c-service@tup.tsinghua.edu.cn

质量反馈: 010-62772015, zhiliang@tup.tsinghua.edu.cn

课件下载: http://www.tup.com.cn,010-62795954

印刷者: 装订者:

经 销:全国新华书店

开 本: 185×260 印 张: 19.25 字 数: 469 千字

版 次: 2012年10月第2版 印 次: 2012年10月第1次印刷

印数:

定 价: 0.00 元

前 言

本书是在 1986 年版《随机过程及其应用》的基础上修改而成的,总结了二十多年来多位教师在清华大学电子工程系讲授"随机过程"课程的教学经验,以及历届学生对课程教学的反馈与建议,是集体智慧的结晶。

随机过程理论已经在物理、生物、化学、社会科学、经济、工程技术科学等领域得到了广泛应用。其重要程度、应用的深度和广度正随着科学技术的日新月异不断得到发展。本书作为工程技术科学类专业使用的随机过程入门教材,不涉及测度论知识,侧重于讲述随机过程的基本概念和基本方法,突出与电子工程实践的结合,尽量使用电子与信息工程中常见的模型作为实例加以讨论。本书的内容大体可以分为三个部分: Gauss 过程和 Poisson 过程作为最基本最典型的随机过程,分别给予了独立章节进行讨论;二阶矩过程对于理解电子系统中的随机信号及其特性是本质的,书中分别从时域、频域以及统计处理三个方面进行了分析; Markov 过程近年来在电子信息领域的重要性正日益显现,书中对离散状态 Markov 过程(Markov 链)分离散时间和连续时间两部分进行了讨论。考虑到多数读者对确定性函数的分析方法较为熟悉,因此本书尽可能强调随机分析与确定性分析的平行性。例如以读者熟悉的"距离"概念为基础来建立均方意义下的随机微积分,从确定性信号谱分析的基本结论出发去研究随机信号的谱分析等。同时,本书对研究随机变量的基本工具,例如条件期望、特征函数和母函数等,给予了充分重视,尽量使用它们进行分析和讨论。为方便读者自学,本书配备了一定数量的习题供读者选做。随机过程的分析处理方法有其自身的特点,读者需要通过练习才能对其理论及方法有较为深入的认识。

阅读本书的先修知识包括微积分、线性代数、基础概率论以及信号与系统。本书尽量使用具备先修知识的读者熟悉的方法和技巧进行分析论述,这一方面可以复习巩固以往所学,另一方面可以在新学科的学习中增强灵活运用已有知识的能力。书中力求使用严密和系统的计算来强化读者对基本概念的理解。这对于培养读者运用数学工具解决问题的能力有积极作用。但同时本书又针对工程学科读者的特点,不拘泥于数学的严格性,对于涉及到测度以及实分析的一些内容只给出结论,不做详细讨论。

本书可供相关专业大学高年级本科以及研究生作为教材使用,也可供工程技术人员参考。由于本书篇幅稍大,所以读者在使用时应根据自身需要进行材料的取舍。

限于水平,本书难免有不足和不确切之处,恳请读者批评指正。

作 者 2011 年 8 月于清华园

符号表

因本书符号繁多,为方便阅读,特说明如下:

一维确定性常数
多维确定性向量
一维随机变量
多维随机向量
一维随机过程
多维随机过程
确定性矩阵

目 录

第1章	引言	1
1.1	随机过程的概念和分类	
1.2	基本研究方法和章节介绍 · · · · · · · · · · · · · · · · · · ·	3
习题	页	•••••4
第2章	相关理论与二阶矩过程 (I)—— 时域分析 · · · · · · · · · · · · · · · · · · ·	F
第 2 卓	基本定义与性质	
$\frac{2.1}{2.2}$	宽平稳随机过程	
2.2	正交增量过程	
_	随机过程的均方微积分	
2.4		
	14 N 4m 11	
2.5	2.4.4 均方积分····································	
$\frac{2.5}{2.6}$	Marhunan-Loeve 展开 ···································	
	Manuman-Loeve 成分	
刁尼	<u>v</u>	
第 3 章	Gauss 过程·····	40
3.1	Gauss 过程的基本定义	40
	3.1.1 多元 Gauss 分布的定义······	40
	3.1.2 多元 Gauss 分布的特征函数 · · · · · · · · · · · · · · · · · · ·	41
	$3.1.3$ 协方差阵 Σ 不满秩的情况 · · · · · · · · · · · · · · · · · · ·	$\cdots \cdots 42$
3.2	43	
	3.2.1 边缘分布 · · · · · · · · · · · · · · · · · · ·	$\cdots \cdots 43$
	3.2.2 独立性 · · · · · · · · · · · · · · · · · · ·	$\cdots \cdots 43$
	3.2.3 高阶矩 · · · · · · · · · · · · · · · · · · ·	$\cdots \cdots 45$
	3.2.4 线性变换 · · · · · · · · · · · · · · · · · · ·	46
	3.2.5 条件分布 · · · · · · · · · · · · · · · · · · ·	48
3.3	Gauss-Markov 性·····	49
3.4	Gauss 过程通过非线性系统·····	53
	3.4.1 理想限幅器 · · · · · · · · · · · · · · · · · · ·	
	3.4.2 全波线性检波 · · · · · · · · · · · · · · · · · · ·	55
	3.4.3 半波线性检波 · · · · · · · · · · · · · · · · · · ·	57
	3.4.4 平方律柃波 · · · · · · · · · · · · · · · · · · ·	58

		3.4.5 Price 定理 —— 统一的处理手段······58
	3.5	窄带 Gauss 过程······62
		3.5.1 Rayleigh 分布和 Rician 分布 · · · · · · 62
		3.5.2 零均值窄带 Gauss 过程······63
		3.5.3 均值不为零的情形 · · · · · · · · · · · · · · · · · · ·
	3.6	Brown 运动 · · · · · · · 70
	习题	$5 \cdots \cdots 74$
第	4 章	Poisson 过程 · · · · · · · · · · · · · · · · · ·
	4.1	Poisson 过程的定义
	4.2	N(t) 概率分布的计算 · · · · · · · · · · · · · · · · · · ·
	4.3	Poisson 过程的基本性质 · · · · · · · 79
		4.3.1 非宽平稳性 · · · · · · · · · · · · · · · · · · 79
		4.3.2 事件间隔与等待时间 · · · · · · · · · · · · · · · · · · ·
		4.3.3 事件到达时刻的条件分布 · · · · · 81
	4.4	顺序统计量简介 · · · · · · 82
	4.5	Poisson 过程的各种拓广 84
		4.5.1 非齐次 Poisson 过程······84
		4.5.2 复合 Poisson 过程······86
		4.5.3 随机参数 Poisson 过程······89
		4.5.4 过滤 Poisson 过程······91
	4.6	更新过程 · · · · · · 94
		4.6.1 $N(t)$ 的分布与期望····································
		4.6.2 N(t) 的变化速率 · · · · · 96
	习题	99
第	5 章	相关理论与二阶矩过程 (II)—— Fourier 谱分析 ··················101
	5.1	确定性信号 Fourier 分析回顾 · · · · · · · · · · · · · · · · · · ·
	5.2	相关函数的谱表示104
	5.3	联合平稳随机过程的互相关函数及互功率谱密度112
	5.4	宽平稳过程的谱表示114
	5.5	随机过程通过线性系统120
	5.6	随机信号的频域表示 128
		5.6.1 基带信号表示・・・・・・・・128
		5.6.2 带通信号表示 · · · · · · · 132
	习题	137
笋	6 章	相关理论与二阶矩过程 (III)—— 统计估值与预测·············140
ᄻ		均方意义下的最优估计
	6.1	均万高入 151 現 151 日 151

目 录 vii

	6.2	正交性原理和最优线性估计 · · · · · · · · · · · · · · · · · · ·	143
	6.3	随机过程的可预测性和 Wold 分解	147
		6.3.1 新息过程·····	147
		6.3.2 预测的奇异性和正则性 · · · · · · · · · · · · · · · · · · ·	149
		6.3.3 Wold 分解······	151
	6.4	可预测性的进一步讨论 · · · · · · · · · · · · · · · · · · ·	152
	6.5	随机过程的谱因式分解 · · · · · · · · · · · · · · · · · · ·	158
	6.6	线性预测滤波器的具体形式 · · · · · · · · · · · · · · · · · · ·	163
		6.6.1 Wiener 滤波器·····	163
		6.6.2 Kalman 滤波器······	167
	6.7	匹配滤波器	170
	习题	<u> </u>	172
第	7 章	离散时间 Markov 链······	176
	7.1	离散时间 Markov 链的定义······	176
	7.2	Markov 链的迭代表示方法	178
	7.3	Chapman-Kolmogorov 方程······	183
	7.4	状态的分类	186
	7.5	状态的常返性	190
		7.5.1 常返性的定义 · · · · · · · · · · · · · · · · · · ·	190
		7.5.2 常返性的判据 · · · · · · · · · · · · · · · · · · ·	191
		7.5.3 常返态的特性 · · · · · · · · · · · · · · · · · · ·	195
		7.5.4 正常返和平均返回时间 · · · · · · · · · · · · · · · · · · ·	196
	7.6	转移概率的极限行为 · · · · · · · · · · · · · · · · · · ·	198
	7.7	非负矩阵和有限状态 Markov 链 · · · · · · · · · · · · · · · · · ·	202
	7.8	平稳分布	205
	7.9	停时与强 Markov 性······	···· 212
	7.10	可逆的 Markov 链······	···· 217
	7.11	Markov 链的应用 —— 模拟退火算法	222
	7.12	Markov 链的应用 —— 分支过程 · · · · · · · · · · · · · · · · · · ·	226
	7.13	非常返状态的简要分析	····229
		7.13.1 单步递推方法	229
		7.13.2 矩阵方法	····233
	习题	<u> </u>	238
第	8 章	连续时间 Markov 链·······	243
	8.1	基本定义	
		Q 矩阵和 Kolmogorov 前进 – 后退方程····································	
		8.2.1 <i>Q</i> 矩阵····································	

		8.2.2	2 Kolmogorov 前进 – 后退方程······250)
	8.3	转移	5概率的极限行为 ······ 252	2
	8.4	瞬时	†分布的求解 · · · · · · · · · · · · · 255	5
		8.4.1	· · · · 纯生过程 · · · · · · · · · · · · · · · · · · ·	5
		8.4.2		
		8.4.3		
	8.5	0		
			、和服务问题·······26	
	0.0	8.6.1		
			• •	
		8.6.2		
		8.6.3	1011176	
			4 M/G/1·······277	
	习题			2
附录				3
	附录	1	向量空间286	3
	附录	2	交换积分与求极限次序 287	7
	附录	3	随机变量的收敛 · · · · · · · · · · · · 288	3
	附录		特征函数与母函数29	
	111/1/	1	14 ELM 4.4 ELM	
糸 耂	古計			7
25	ᆺᄦ		Δy	

录

第1章 引 言

1.1 随机过程的概念和分类

什么是随机过程? 随机过程是一组依赖于实参数 t 的随机变量。参数 t 可以取离散整数值,此时称该过程为离散参数随机过程,记作 $\{X_n, n \in \mathbb{N}\}$; 参数 t 也可以取连续值,则称该过程为连续参数随机过程,记作 $\{X(t), t \in \mathbb{R}\}$ 。由于许多应用中参数 t 具有时间的含义,所以习惯上就把 t 称为时间。

根据概率基础知识,给定概率空间 (Ω, \mathcal{F}, P) ,随机变量 $X(\omega)$ 是定义在样本空间 Ω 上,取值于 \mathbb{R} 的可测函数。随机过程 X(t) 作为以参数 t 为指标的一组随机变量,可看作二元函数 $\{X(t,\omega),(t,\omega)\in\mathbb{R}\times\Omega\}$ 。如果固定 ω ,将得到一个以 t 为自变量的函数,这是随机过程 X(t) 在一次实验中的"实现",称该函数为随机过程 X(t) 的一条样本轨道 (sample path)。另一方面,如果固定 t,那么将得到一个依赖于 t 的随机变量,设该随机变量的分布为 $F_{X(t)}(x)$,称这个分布为随机过程 X(t) 的一维分布。随机过程的一维分布和 t 有关,通常不同的 t 所对应随机变量有不同的分布。更进一步, $\forall n\in\mathbb{N}$,固定 n 个时刻 t_1,\cdots,t_n ,得到 n 维随机向量

$$\boldsymbol{X} = (X(t_1), \cdots, X(t_n)) \tag{1-1}$$

其联合分布为 $F_{X(t_1),\cdots,X(t_n)}(x_1,\cdots,x_n)$,也可以表示为 $F_{X(t)}(x_1,\cdots,x_n;t_1,\cdots,t_n)$ 。一般情况下,随机向量,即式 (1-1) 的各个分量间并不独立,n 维联合分布不能由一维分布简单导出。所以对于了解随机过程的统计性质而言,一维分布和任意维联合分布都很重要。把这些分布合在一起称为随机过程的有限维分布族 (finite-dimensional distributions)。有限维分布族中包含了随机过程的大量信息,但是并不能确定过程。换句话说,两个随机过程的有限维分布族完全相同,并不意味着这两个过程本身相同 (读者请举例)。

概率论中的零概率事件通常被忽略,所以这里所说的两个随机过程 X(t) 和 Y(t) 相同,通常指的是

$$P(X(t)\neq Y(t)) = 0, \quad \forall t \tag{1-2}$$

称满足式 (1-2) 的随机过程 X(t) 和 Y(t) 为等价的 (stochastically equivalent)。等价的随机过程拥有相同的有限维分布族,反之则不然。但等价的随机过程可能有不同的样本轨道。

例 1.1 (等价过程) 考虑随机过程 X(t) 和 Y(t), $t \in [0,1]$, τ 为 [0,1] 上连续分布的随机变量, 定义

$$X(t) \equiv 0,$$
 $Y(t) = \begin{cases} 1 & t = \tau \\ 0 & t \neq \tau \end{cases}$

由于

$$P(X(t) \neq Y(t)) = P(t = \tau) = 0$$

所以 X(t) 和 Y(t) 是等价的。但是 X(t) 的样本轨道恒为 0,而 Y(t) 的样本轨道在 τ 处有间断。

随机过程可以依照取值 (有时也称为状态) 和参数的连续或者离散进行分类。这里通过例子分别说明。

例 1.2 (离散参数离散状态之例 —— Bernoulli 过程) 随机过程 $\{X_n\}_{n=0}^{\infty}$, X_k 服从两点分布

$$\begin{array}{c|c|c} X_k & 0 & 1 \\ \hline P_k & q & p \end{array}$$

其中

$$p + q = 1, \quad \forall k$$

且对于 $n \neq m$, X_n 和 X_m 独立,则称该过程为 Bernoulli 过程。该过程是多次统计实验的简单模型。

例 1.3 (离散参数连续状态之例 —— $\mathbf{AR}(1)$ 过程) 由下列递推方程决定的随机过程 $\{X_n\}_{n=0}^{\infty}$

$$X_n = \alpha X_{n-1} + Z_n, \quad n \geqslant 1$$

其中 α 为确定性常数, $\{Z_n, n \in \mathbb{N}\}$ 为相互独立的零均值连续随机变量,称该过程为一阶自回归过程,简记为 AR(1)。该类过程在时间序列建模中有重要作用。

例 1.4 (连续参数离散状态之例 —— Poisson 过程) 整数值随机过程 X(t) 满足 X(0) = 0, $\forall t_1 < t_2 \le t_3 < t_4$, 都有 $X(t_4) - X(t_3)$ 和 $X(t_2) - X(t_1)$ 独立,且

$$P(X(t_2) - X(t_1) = k) = \frac{(\lambda(t_2 - t_1))^k}{k!} \exp(-\lambda(t_2 - t_1))$$

则称其为 Poisson 过程,该过程在离散事件建模中有非常广泛的应用。

例 1.5 (连续参数连续状态之例 —— Brown 运动) 实数值随机过程 X(t) 满足 X(0) = 0, $\forall t_1 < t_2 \le t_3 < t_4$, 都有 $X(t_4) - X(t_3)$ 和 $X(t_2) - X(t_1)$ 独立,且

$$[X(t_2) - X(t_1)] \sim N(0, \sigma^2(t_2 - t_1))$$

称它为 Brown 运动。该过程具有许多优良性质,无论在理论上还是在实际应用中都有重要价值。

利用物理概念和概率论知识来构建随机过程的一维和多维联合分布,是研究随机过程的重要手段。随机过程作为一种"过程",随时间的发展而演变的统计特性是研究的重要内容。特别是那种随时间发展而保持恒定统计特性的过程(即"不变性"),更是受到广泛的关注。平稳性就是一种典型的不变性。随机过程中有多种平稳性,其中的严平稳(strict-sense stationary) 定义如下: 对于随机过程 $\{X(t), t \in \mathbb{R}\}$,如果 $\forall n, \forall t_1, t_2, \cdots, t_n, \forall D$,都有

$$f_{X(t_1),\dots,X(t_n)}(x_1,\dots,x_n) = f_{X(t_1+D),\dots,X(t_n+D)}(x_1,\dots,x_n)$$
(1-3)

就称 X(t) 是严平稳的。换句话说,严平稳意味着随机过程的有限维分布族随时间的平移保持不变。如果式 (1-3) 仅对 n=1 成立,则称过程是一阶严平稳的;如果式 (1-3) 仅对 n=1 成立,则称过程是二阶严平稳的。依此类推可以得到严平稳的各种特定形式。如果把有限维分布族换成其他统计特性,还可以得到不同类型的平稳性。

1.2 基本研究方法和章节介绍

尽管随机过程种类繁多,其基本的研究方法却有规律可循。本书将着重介绍两种方法—— 相关方法和 Markov 方法。

前面提到,对于随机过程 X(t) 而言,取定时间 t,即可得到一个随机变量。换句话说,随机过程可以看作取值为随机变量的"函数"。既然是"函数",就可以借鉴函数研究中所使用过的分析方法来探讨随机过程的性质,主要包括随机变量的收敛概念,以及以收敛为核心的过程连续性、可微性、可积性等。这就是"随机微积分"的基本内容。和普通微积分有所不同的是,随机变量的收敛含义很多,不同的收敛含义将会引出不同的微积分。所以在讨论随机微积分的有关问题时,必须明确研究是在何种意义的收敛下进行的。本书的第 2 章将讨论均方收敛意义下的随机微积分。

分析方法的另一个关键是函数所处空间的结构和性质,随机过程的研究也不例外。在随机变量所构成的线性空间中,受到最多关注的是均方可积空间 $L^2(\Omega,\mathcal{F},P)$,其中元素满足 $E|X(t)|^2<\infty$ 。取值于该空间的随机过程 X(t) 称为二阶矩过程 (second order processes)。均方可积空间是内积空间。相关运算作为该空间的内积,在随机过程的研究中作用非常大。两个随机变量 X 和 Y 的相关定义为

$$\langle X, Y \rangle = E(X\overline{Y})$$

由此引出二阶矩过程 X(t) 相关函数的概念

$$R_X(t,s) = E(X(t)\overline{X(s)})$$

基于相关函数可以得到宽平稳 (wide-sense stationary, 也称为广义平稳) 的概念。如果随机过程 X(t) 的相关函数满足: $\forall t, s, \forall D, \Box$

$$R_X(t,s) = R_X(t+D,s+D) = R(t-s)$$
 (1-4)

则称该过程是宽平稳的。相关函数和宽平稳性是讨论随机过程的重要工具。本书第 2 章将利用它们讨论随机过程的二阶矩性质。

电子信息领域中,在研究信号与系统问题时,采用时域和频域两个方面进行分析将有助于从理论和物理意义两个方面深化对信号和系统的认识,这也使得作为分析方法的重要分支 —— Fourier 分析成为电子工程师的必备工具。从某种角度上讲,相关函数可看作是对随机过程二阶关联的时域描述,当过程为宽平稳时,其频域结构是 Fourier 分析在随机过程中的自然延伸。从而不仅可以得到相关函数的 Fourier 变换 —— 功率谱密度 (power spectral density)

$$S_X(\omega) = \int_{-\infty}^{\infty} R_X(\tau) \exp(-j\omega\tau) d\tau$$
 (1-5)

还可以通过确定性信号频谱的延伸得到随机过程的谱表示 (spectral representation)。确定性信号理论中的采样定理、Hilbert 变换、基带表示等在随机过程中也有对应的内容。随机过程的频域分析将在第 5 章进行讨论。

最优线性估计是随机过程相关理论的成功应用。利用均方可积空间以及内积运算,可以赋予最优线性估计明显的几何意义,可将它看作线性空间中元素在某一个子空间上的投影。这样就自然得到了正交化原理以及新息过程的概念,并在此基础上导出著名的 Wiener 滤波和 Kalman 滤波的解析表达式。第 6 章将重点研究相关理论的统计应用。

从另外一个角度出发,随机过程 $X(t,\omega)$ 可以看作一组随机变量 (当时间离散时尤其如此)。 这些随机变量之间存在依赖关系, 可以通过条件分布来描述这种依赖关系。 设 $(X(t_1),\cdots,X(t_n))$ 的联合分布为

$$F_{X(t_1),\cdots,X(t_n)}(x_1,\cdots,x_n)$$

那么由条件分布的定义,得

$$F_{X(t_1),\dots,X(t_n)}(x_1,\dots,x_n)$$

$$=F_{X(t_n)|X(t_{n-1}),\dots,X(t_1)}(x_n|x_{n-1},\dots,x_1)F_{X(t_1),\dots,X(t_{n-1})}(x_1,\dots,x_{n-1})$$

进而可得到

$$F_{X(t_1),\dots,X(t_n)}(x_1,\dots,x_n)$$

$$=F_{X(t_n)|X(t_{n-1}),\dots,X(t_1)}(x_n|x_{n-1},\dots,x_1)\dots F_{X(t_2)|X(t_1)}(x_2|x_1)F_{X(t_1)}(x_1)$$
(1-6)

可见,有限维联合分布可以由各阶条件分布表示出来。

式 (1-6) 中高阶条件分布所体现的依赖关系比较复杂,而实际应用当中有一大类过程的条件依赖关系可以简化。假定 $\forall n, \forall t_1, t_2, \dots, t_n$, 且

$$F_{X(t_n)|X(t_{n-1}),\cdots,X(t_1)}(x_n|x_{n-1},\cdots,x_1) = F_{X(t_n)|X(t_{n-1})}(x_n|x_{n-1})$$
(1-7)

则式 (1-6) 可以简化为

$$F_{X(t_1),\dots,X(t_n)}(x_1,\dots,x_n) = F_{X(t_n)|X(t_{n-1})}(x_n|x_{n-1})\dots F_{X(t_2)|X(t_1)}(x_2|x_1)F_{X(t_1)}(x_1)$$

所有的高阶依赖关系都简化成为二阶依赖,这使得模型的复杂程度大大降低。满足式 (1-7) 的随机过程称为 Markov 过程。Markov 性是随机过程的重要研究内容。本书的第 7 章和第 8 章将从离散时间和连续时间两个方面讨论状态离散的 Markov 过程 (也称为 Markov 链) 的基本性质。

习题

- 1. 设随机过程 $\xi(t)=V\sin\omega t$, 其中 ω 为常数, V 为服从 (0,a) 内均匀分布的随机变量。
- (1) 画出 $\xi(t)$ 的某一条样本轨道。
- (2) 求 $\xi(0)$, $\xi\left(\frac{\pi}{4\omega}\right)$, $\xi\left(\frac{\pi}{2\omega}\right)$, $\xi\left(\frac{5\pi}{4\omega}\right)$ 的概率密度。
- 2. 设有随机脉冲信号 $\xi(t)$,脉宽为确定值 T_0 ,不同脉冲的幅度为独立同分布的随机变量。脉冲信号 起始时间 U 为 $(0,T_0)$ 内均匀分布的随机变量,且与脉冲幅度相互独立。在下列两种情况下,求 $\xi(t_1)$ 和 $\xi(t_2)$ 的联合概率密度。
 - (1) 脉冲幅度服从均值为 0, 方差为 σ^2 的 Gaussian 分布。
 - (2) 脉冲幅度服从样本空间 {-2,-1,1,2} 的等概分布。

第2章 相关理论与二阶矩过程 (I) —— 时域分析

2.1 基本定义与性质

二阶矩过程 (second-order processes) 是电子技术与通信领域最为常见的一类随机过程。这类过程的主要特性可以通过其二阶矩的性质体现。因此,围绕着"相关"(correlation) 展开的一系列概念及处理方法在二阶矩过程的研究中起着非常重要的作用。现在首先给出二阶矩过程的定义。

定义 2.1 (二阶矩过程) 设有实 (复) 值随机过程 $X(t), t \in \mathbb{R}$,如果 $\forall t \in \mathbb{R}$,X(t) 的均值和方差都存在,则称该随机过程为二阶矩过程。

常见的随机相位正弦波、通信系统中各类调制信号、随机电报信号,以及前面讨论到的 Brown 运动、Poisson 过程都属于二阶矩过程。

研究二阶矩过程最重要的工具是自相关函数 (autocorrelation function),这是大家所熟悉的统计相关概念在随机过程中的延伸,它反映了随机过程在两个不同时刻所对应的随机变量之间的线性关联程度。

定义 2.2 (自相关函数) 设复随机过程 $X(t), t \in \mathbb{R}$ 为二阶矩过程,则其自相关函数 $R_X(t,s): \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ 为

$$R_X(t,s) = E(X(t)\overline{X(s)}) \tag{2-1}$$

类似地,可以定义自协方差函数 (autocovariance function)。

定义 2.3 (自协方差函数) 设复随机过程 $X(t), t \in \mathbb{R}$ 为二阶矩过程,则其自协方差函数 $C_X(t,s): \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ 为

$$C_X(t,s) = E((X(t) - EX(t))\overline{(X(s) - EX(s))})$$
(2-2)

定义 2.2 还可以延伸到两个随机过程的相互关系上, 导出互相关函数 (cross-correlation function)。

定义 2.4 (互相关函数) 设 X(t) 与 Y(t) 为两个二阶矩复随机过程,则其互相关函数 $R_{XY}(t,s): \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ 为

$$R_{XY}(t,s) = E(X(t)\overline{Y(s)}) \tag{2-3}$$

与自协方差函数相对应, 互协方差函数定义如下。

定义 2.5 (互协方差函数) 设 X(t) 与 Y(t) 为两个二阶矩复随机过程,则其互协方差函数 $C_{XY}(t,s): \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ 为

$$C_{XY}(t,s) = E((X(t) - EX(t))\overline{(Y(s) - EY(s))})$$
(2-4)

由于 $E((X(t) - EX(t))\overline{(X(s) - EX(s))}) = E(X(t)\overline{X(s)}) - EX(t)\overline{EX(s)}$, 因此自 (互) 相关函数与自 (互) 协方差函数之间仅仅相差一个均值的乘积,如果随机过程的均值为常数,

则两者仅相差一个常数,没有本质的区别。本书如不特别指出,通常假定二阶矩过程的均值为零,其自相关函数与自协方差函数可以不加区分。

自相关函数作为研究二阶矩过程的重要工具,其存在与否非常关键。对于一般的二阶矩过程,自相关函数总是存在的。事实上,由 Cauchy-Schwarz 不等式 (见附录),可得

$$|R_X(t,s)| = |E(X(t)\overline{X(s)})| \leqslant E|X(t)\overline{X(s)}| \leqslant (E(|X(t)|^2)E(|X(s)|^2))^{1/2}$$

$$= [(Var(X(t)) + |E(X(t))|^2)(Var(X(s)) + |E(X(s))|^2)]^{1/2}$$

$$< \infty$$

同样地,自协方差函数也存在。

二阶矩过程的自相关函数具有许多重要的性质。

定理 2.1 复二阶矩过程 X(t) 的自相关函数具有如下性质:

- (1) 共轭对称性;
- (2) 对于加法和乘法的封闭性;
- (3) 非负定性。

证明 (1) 由自相关函数的定义直接得到如下的共轭对称性

$$R_X(t,s) = \overline{R_X(s,t)} \tag{2-5}$$

如果 X(t) 是实过程,则为

$$R_X(t,s) = R_X(s,t) \tag{2-6}$$

由此直接得到推论: n 维实随机向量 $\boldsymbol{X} = (X_1, X_2, \cdots, X_n)^{\mathrm{T}}$ 的自相关矩阵 $R_{\boldsymbol{X}\boldsymbol{X}} = E(\boldsymbol{X}\boldsymbol{X}^{\mathrm{T}})$ 是对称矩阵,而复随机向量的自相关矩阵 $R_{\boldsymbol{X}\boldsymbol{X}} = E(\boldsymbol{X}\boldsymbol{X}^{\mathrm{H}})$ 是 Hermitian 矩阵。

(2) 如果 $R_1(t,s)$ 和 $R_2(t,s)$ 是两个自相关函数,则对加法的封闭性是指

$$R(t,s) = \alpha R_1(t,s) + \beta R_2(t,s), \quad \alpha > 0, \beta > 0$$
 (2-7)

仍然是某一随机过程的自相关函数,事实上,只要设 $R_1(t,s), R_2(t,s)$ 分别为两个独立的零均值二阶矩过程 X(t) 与 Y(t) 的相关函数,令 $Z(t) = \alpha^{1/2}X(t) + \beta^{1/2}Y(t)$,就可以得出 R(t,s) 恰为 Z(t) 的自相关函数。同样地,考虑 Z(t) = X(t)Y(t),立刻得到

$$R(t,s) = R_1(t,s)R_2(t,s)$$
(2-8)

仍然是自相关函数,即具有乘法的封闭性。

(3) 首先给出二元非负定函数的定义

定义 2.6 (二元非负定函数) 如果二元函数 $G(t,s): \mathbb{R} \times \mathbb{R} \to \mathbb{C}$, $\forall n, \forall t_1, t_2, \cdots, t_n \in \mathbb{R}, \forall z_1, z_2, \cdots, z_n \in \mathbb{C}$, 满足

$$\sum_{k=1}^{n} \sum_{m=1}^{n} G(t_k, t_m) z_k \overline{z_m} \geqslant 0$$
(2-9)

则称该二元函数是非负定的。

由此可以导出一元非负定函数的定义。

定义 2.7 (一元非负定函数) 如果一元函数 $G(t): \mathbb{R} \to \mathbb{C}$, $\forall n, \forall t_1, t_2, \cdots, t_n \in \mathbb{R}, \forall z_1, z_2, \cdots, z_n \in \mathbb{C}$ 时满足

$$\sum_{k=1}^{n} \sum_{m=1}^{n} G(t_k - t_m) z_k \overline{z_m} \geqslant 0$$
(2-10)

则称该一元函数是非负定的。

现证明自相关函数的非负定性。设有复二阶矩过程 $X(t), t \in \mathbb{R}, \forall n, \forall t_1, t_2, \cdots, t_n \in \mathbb{R}$, 令 $\mathbf{X} = (X(t_1), X(t_2), \cdots, X(t_n))^{\mathrm{T}}, \mathbf{Z} = (z_1, z_2, \cdots, z_n)^{\mathrm{T}}$, 有

$$\sum_{k=1}^{n} \sum_{m=1}^{n} R_{\boldsymbol{X}}(t_k, t_m) z_k \overline{z_m} = \boldsymbol{Z}^{\mathrm{T}} E(\boldsymbol{X} \boldsymbol{X}^{\mathrm{H}}) \overline{\boldsymbol{Z}} = E(\boldsymbol{Z}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{X}^{\mathrm{H}} \overline{\boldsymbol{Z}})$$
$$= E|\boldsymbol{Z}^{\mathrm{T}} \boldsymbol{X}|^2 \geqslant 0$$

由此可以得到 n 维随机向量 X 的自相关矩阵 R_{XX} 是非负定矩阵,自相关函数的这一性质对于二阶矩过程的应用具有重要意义。

应当指出,非负定性是自相关函数的一种特征性质。如果一个二元函数满足非负定性,则一定可以构造一个随机过程,使得其自相关函数恰为给定的二元函数。

2.2 宽平稳随机过程

平稳性是一类随机过程的重要性质,该性质很好地概括了许多物理现象不依赖于时间起点的内在禀性。所谓平稳 (stationary),是指随机过程的某种统计特性不随时间的推移而发生变化。由于人们所关注的统计特性各不相同,由此引出的平稳的定义也随之变化。这里首先研究最简单也是最常见的一种平稳性——宽平稳 (wide-sense stationary, WSS)。

定义 2.8 (宽平稳) 对于随机过程 $X(t), t \in T$, 如果 $\forall t, s \in T$, 都有

$$E(X(t)) = E(X(s))$$

$$R_X(t,s) = R_X(t+D,s+D), \quad \forall D \in T$$

则称随机过程 X(t) 具有宽平稳性,或称其为宽平稳随机过程。

可以看出,宽平稳过程的均值是常数,自相关函数只依赖于时间差 t-s,与绝对时间 t、s 无关,即 $R_X(t,s) = R_X(t-s)$ 。也就是说,宽平稳过程的均值和自相关函数不随时间的推移而发生变化。因此常常把宽平稳过程的自相关函数写成一元函数 $R_X(\tau)$,其中 $\tau = t-s$ 。

和宽平稳相对应,如果在各个时刻的联合分布上都具有平移不变性,就得到了另一种平稳——严平稳 (strict sense stationary, SSS)。

定义 2.9 (严平稳) 对于随机过程 $X(t), t \in T$, 如果 $\forall n, \forall t_1, t_2, \dots, t_n \in T$, $\forall D \in T$, 都有

$$F_{t_1,t_2,\dots,t_n}(x_1,x_2,\dots,x_n) = F_{t_1+D,t_2+D,\dots,t_n+D}(x_1,x_2,\dots,x_n)$$
(2-11)

则称随机过程 X(t) 具有严平稳性,或称其为严平稳随机过程。

这里 $F_{t_1,t_2,\dots,t_n}(x_1,x_2,\dots,x_n)$ 是指随机过程 X(t) 在 n 个时刻 t_1,t_2,\dots,t_n 取值 $(X(t_1),\dots,X(t_n))$ 的联合分布。很明显,严平稳的要求比宽平稳苛刻得多。在二阶矩存在的前提下,严平稳蕴含宽平稳;而一般来讲,宽平稳无法得到严平稳。

有时需要了解两个随机过程相互之间的关系,将自相关函数的时移不变性推广到互相关函数,得到联合宽平稳 (joint wide sense stationary)。

定义 2.10 (联合宽平稳) 对于两个宽平稳随机过程 X(t) 与 Y(t), 如果 $\forall t, s \in T$, 都

$$R_{XY}(t,s) = R_{XY}(t+D,s+D), \forall D \in T$$
(2-12)

则称随机过程 X(t) 和 Y(t) 具有联合宽平稳性。

结合二阶矩过程的一般特性,可以得到宽平稳过程的性质如下。

定理 2.2 (宽平稳过程的性质) 设 $R_X(\tau)$ 是复宽平稳随机过程 X(t) 的自相关函数, m_X 为该过程的均值,则下列性质成立:

- (1) $R_X(\tau) = \overline{R_X(-\tau)}$;
- (2) $R_X(0) \geqslant |m_X|^2$;
- (3) $|R_X(\tau)| \leq R_X(0)$;
- (4) $R_X(\tau)$ 是一元非负定函数。

上述性质请读者自行证明。

下面给出几个宽平稳随机过程的例子。

例 2.1 (随机相位信号) 考虑随机过程 $X(t) = A\cos(\omega t + \Theta), t \in \mathbb{R}$, 其中 A 和 Θ 是相互独立的随机变量, ω 是一个常数。求使得该过程具有平稳性的相位分布。

首先计算 X(t) 的均值 m(t)

$$m(t) = E(A\cos(\omega t + \Theta)) = E(A)E(\cos(\omega t + \Theta))$$
$$= E(A)[E(\cos \Theta)\cos \omega t - E(\sin \Theta)\sin \omega t]$$

注意到 m(t) 是 $\cos \omega t$ 和 $\sin \omega t$ 的线性组合,欲使均值不依赖于时间 t 的唯一选择是线性组合的系数为零,即

$$E(\cos\Theta) = E(\sin\Theta) = 0$$

然后计算 X(t) 的自相关函数 $R_X(t,s)$

$$R_X(t,s) = E(A^2)E(\cos(\omega t + \Theta)\cos(\omega s + \Theta))$$
$$= \frac{E(A^2)}{2}(\cos(\omega(t-s)) + E(\cos(\omega(t+s) + 2\Theta)))$$

可以看出,由于 t+s 取值的任意性,要让 $R_X(t,s)$ 只依赖于 t-s, $E(\cos(\omega(t+s)+2\Theta))$ 必须不依赖于 t+s。利用计算均值的方法,得到

$$E(\cos 2\Theta) = E(\sin 2\Theta) = 0$$

总结上面的结果,X(t) 为宽平稳过程的条件是

$$E(\cos 2\Theta) = E(\sin 2\Theta) = E(\cos \Theta) = E(\sin \Theta) = 0$$

满足上述条件的 Θ 的分布可以有多种选择,例如 $[0,2\pi]$ 间的均匀分布,取 $\left\{0,\frac{\pi}{2},\pi,\frac{3\pi}{2}\right\}$ 四个值的等概率离散分布等,其中就包括了通信技术中比较常见的随机相位调制信号以及相位噪声。

需要进一步指出的是,当 Θ 服从 $[0,2\pi]$ 间的均匀分布时, $X(t) = A\cos(\omega t + \Theta)$ 不仅是宽平稳的,而且还具有严平稳性。从直观上看这非常自然,事实上,严平稳性要求对于任意的 D, X(t) 与 X(t+D) 具有相同的有限维分布,由于

$$X(t+D) = A\cos(\omega(t+D) + \Theta) = A\cos(\omega t + \widetilde{\Theta})$$

其中, $\widetilde{\Theta} = (\omega D + \Theta) \mod 2\pi$ 。

不难看出, 当 Θ 服从 $[0,2\pi]$ 间的均匀分布时, $(A,\tilde{\Theta})$ 和 (A,Θ) 具有相同的联合分布, 因此, $A\cos(\omega t + \tilde{\Theta})$ 与 $A\cos(\omega t + \Theta)$ 具有相同的有限维分布, 即 X(t) 是严平稳的。

例 2.2 (随机电报信号) 令 N(t) 为标准 Poisson 过程, 定义随机电报信号 X(t) 如下:

$$X(t) = X_0(-1)^{N(t)}$$

其中, X_0 为以等概率取 $\{-1,1\}$ 的随机变量, 且和 N(t) 相互独立。

首先计算均值。很明显, $E(X_0) = 0$, 所以

$$E(X(t)) = E(X_0)E((-1)^{N(t)}) = 0$$

其次计算自相关函数,不妨设 t > s,有

$$R_X(t,s) = E(X(t)X(s)) = P(X(t)X(s) = 1) - P(X(t)X(s) = -1)$$

由于

$$\begin{split} &P(X(t)X(s)=1) = \sum_{k=0}^{\infty} P(N(t)-N(s)=2k) \\ &= \sum_{k=0}^{\infty} \frac{(\lambda(t-s))^{2k}}{(2k)!} \exp(-\lambda(t-s)) \\ &= \frac{1}{2} \exp(-\lambda(t-s)) \left(\sum_{k=0}^{\infty} \frac{(\lambda(t-s))^k}{k!} + \sum_{k=0}^{\infty} \frac{(-\lambda(t-s))^k}{k!} \right) \\ &= \frac{1}{2} \exp(-\lambda(t-s)) (\exp(\lambda(t-s)) + \exp(-\lambda(t-s))) \\ &= \frac{1}{2} (1 + \exp(-2\lambda(t-s))) \end{split}$$

同理可得

$$P(X(t)X(s) = -1) = \frac{1}{2}(1 - \exp(-2\lambda(t - s)))$$

所以

$$R_X(t,s) = \exp(-2\lambda|t-s|) \tag{2-13}$$

可以看出,随机电报信号是宽平稳随机过程。

例 2.3 (滑动平均 (MA) 过程) 设 $\xi_n(n=0,\pm 1,\pm 2,\cdots)$ 为标准不相关的随机变量,即其均值为 0,方差为 1,且 $E(\xi_k\xi_i)=0(k\neq i)$; 又设 a_1,a_2,\cdots,a_n 为任意实数,定义 MA 过程 X_n 如下

$$X_n = a_1 \xi_n + a_2 \xi_{n-1} + \dots + a_m \xi_{n-m+1} = \sum_{k=1}^m a_k \xi_{n-k+1}$$

那么 X_n 的均值为 $E(X_n) = 0$, X_n 的自相关函数为

$$R_X(n, n+l) = E(X_n X_{n+l}) = E\left(\sum_{k=1}^m a_k \xi_{n-k+1} \sum_{i=1}^m a_i \xi_{n+l-i+1}\right)$$

$$= \sum_{k=1}^m \sum_{i=1}^m a_k a_i E(\xi_{n-k+1} \xi_{n+l-i+1})$$

$$= \sum_{1 \le k, k+l \le m} a_k a_{k+l}$$

自相关函数仅依赖于时延l,不依赖于n,所以 X_n 是宽平稳过程。

例 2.4 (谐波过程) 定义如下的随机过程 X(t)

$$X(t) = \sum_{k=1}^{\infty} (\xi_k \cos(\omega_k t) + \eta_k \sin(\omega_k t))$$

其中, $\{\xi_k\}$ 、 $\{\eta_k\}(k=1,2,\cdots)$ 为两组相互统计独立的随机变量,满足 $E(\xi_k)=E(\eta_k)=0$, $Var(\xi_k)=Var(\eta_k)=\sigma_k^2$, $\forall k\in\mathbb{N}$,且 $E(\xi_n\xi_m)=E(\eta_n\eta_m)=0, n\neq m$; ω_1,ω_2,\cdots 为互不相等的实数。于是

$$E(X(t)) = E\left(\sum_{k=1}^{\infty} (\xi_k \cos(\omega_k t) + \eta_k \sin(\omega_k t))\right)$$
$$= \sum_{k=1}^{\infty} (E(\xi_k) \cos(\omega_k t) + E(\eta_k) \sin(\omega_k t)) = 0$$

同时

$$R_X(t,s) = E(X(t)X(s))$$

$$= E\left(\sum_{k=1}^{\infty} (\xi_k \cos(\omega_k t) + \eta_k \sin(\omega_k t)) \sum_{i=1}^{\infty} (\xi_i \cos(\omega_i s) + \eta_i \sin(\omega_i s))\right)$$

$$= \sum_{k=1}^{\infty} E(\xi_k^2) \cos(\omega_k s) \cos(\omega_k t) + E(\eta_k^2) \sin(\omega_k s) \sin(\omega_k t)$$

$$= \sum_{k=1}^{\infty} \sigma_k^2 \cos(\omega_k (t-s))$$

很明显,X(t) 是宽平稳过程。

例 2.5 (宽平稳随机过程的时间平均) 设随机过程 X(t) 是宽平稳的, $T \in \mathbb{R}_+$, 定义

$$A = \frac{1}{2T} \int_{-T}^{T} X(t) dt$$