

Análise Experimental de Tensões

Laboratório de Mecânica dos Sólidos

Nome:	RA:
	 · · · · · · · · · · · · · · · · · · ·

Experimento 1C – Análise analítica, experimental e numérica de uma barra sob tração simples

- Visão geral do procedimento:
 - Fixação da estrutura no dispositivo.
 - Carregar a estrutura.
 - Ler e registrar a deformação específica obtida experimentalmente.
 - Calcular a deformação específica analiticamente e comparar o erro.
 - Simular a deformação específica numericamente por elementos finitos e comparar o erro.

Análise Experimental:

Barra bi articulada sob tração – Esquema de ¼ de ponte com 3 fios:

> Análise de deformações específicas

✓ Etapa 1: Procedimentos de aquisição de dados no laboratório: Corpo de Prova 3 (CP3) – Chapa com redução brusca de seção transversal.

Análise Experimental de Tensões

- Dados preliminares para coletar:

Estrutura:
Barra bi apoiada
Material da peça:
Liga de Aço Estrutural A36
Extensômetro (SG):
PA-XX-250BA-120Ĺ.
Indicador de deformações:
P3 (Micro-Measurements).
Relógio comparador:
Mitutoyo centesimal

$L = \frac{1}{2}$	
<i>l</i> =	
b =	
<i>b</i>	

- Adotar:

$$g = 9.81 \text{ m/s}^2$$
 $E = 200.000 \text{ N/mm}^2$ $v = 0.30$ $\sigma_{\lim} = \sigma_{esc} = 250 \text{ N/mm}^2$ $\mu d = 10^{-6} d$

- ✓ Etapa 2: Procedimento de medição
- Aplicar as cargas P_1 , P_2 e P_3 no parafuso e medir as deformações específicas de referência (célula de carga).
- Medir as deformações específicas nas posições 1, 2 e 3 na região da borda do raio (3 mm).

Deformação de referência $\epsilon_{\rm ref}$ [μ d]	Carga aplicada P [N]	Deformação lado esquerdo ε _e [μd]	Deformação lado direito ε _d [μd]
$\varepsilon_{ref1} = 163,5$	$P_1 = 2943$	$\mathcal{E}_{e1} =$	$\varepsilon_{d1} = 174$
$\varepsilon_{ref2} = 152,5$	P ₂ = 2747	<i>E</i> _{e2} =	$\mathcal{E}_{d2} =$
$\varepsilon_{ref3} = 82,0$	<i>P</i> ₃ = 1470	$\mathcal{E}_{\Theta 3} =$	$\mathcal{E}_{d3} =$

- ✓ Etapa 3: Análise experimental a partir das leituras dos extensômetros:
 - \succ Tensão normal experimental σ no ponto de fixação do extensômetro a partir da deformação (Lei de *Hooke*).

$$\sigma = \varepsilon \cdot E$$

Tensão lado esquerdo σ _e [MPa]	Tensão lado direito σ _d [MPa]
$\sigma_{e1} =$	<i>σ</i> _{d1} =
σ_{e2} =	<i>σ</i> _{d2} =
σ_{e3} =	<i>σ</i> _d 3 =

Análise Experimental de Tensões

Laboratório de Mecânica dos Sólidos

Parte 3: Análise teórica a partir da carga externa P:

- ✓ Etapa 1: Características geométricas da seção: Área A
- \checkmark **Etapa 2**: Tensão normal nominal σ_{nom} na borda do raio
- ✓ **Etapa 3**: Efeito do fator de concentração de tensões K_T
- \checkmark **Etapa 4**: Tensão normal máxima $\sigma_{ ext{max}}$ na borda do raio.

Método Analítico de solução:

$$\begin{split} & \sigma_{nom} = \frac{P}{A} = \frac{P}{d \cdot h} \\ & K_T = f((D / d), (r / d)) - gráfico \\ & \sigma_{max} = K_T \cdot \sigma_{nom} \\ & \varepsilon = \frac{\sigma}{E} \end{split}$$

Parte 4: Comparação dos resultados experimentais com os resultados simulados (MEF)

> Resultados dos erros calculados: posição do SG (3,0 mm da borda)

Tensão Experimental σ [MPa]	Tensão Numérica σ [MPa]	Erro [%]
$\sigma_1 = 34,80$	$\sigma_1 = 34,59$	
$\sigma_2 =$	$\sigma_2 = 32,28$	
$\sigma_3 =$	$\sigma_3 = 17,25$	

Parte 5: Comparação dos resultados analíticos com os resultados simulados (MEF)

Resultados dos erros calculados: borda do raio

Tensão Analítica σ [MPa]	Tensão Numérica σ [MPa]	Erro [%]
$\sigma_1 = 52,30$	$\sigma_1 = 52,23$	
$\sigma_2 =$	$\sigma_2 = 48,91$	
σ_3 =	$\sigma_3 = 26,03$	