Video Games Sales Dataset

PROJECT REPORT

Submitted by

Ankit Singh- 201020407 Priyank Singh- 201020442

Dr. Shyama Prasad Mukherjee International Institute of Information Technology, Naya Raipur

February-2022

1. INTRODUCTION

Video games sales Analysis dataset is a detailed analysis of different video games sales in different regions across the globe. The objective of the dataset is to help different video games companies to better understand their market region and customers and makes it easier for them to modify their products according to the specific needs, behaviors, and concerns of different types of customers. The dataset consists of several predictor variables like NA_Sales, EU_Sales, JP_Sales, Other_Sales, Global_Sales, etc. but for prediction, we have taken NA_Sales and EU_Sales as they are highly correlated.

1.1 Regression Analysis

Regression analysis is a solid technique for recognizing which factors affect a subject of revenue. The method involved with playing out a relapse permits you to unquestionably figure out which variables make the biggest difference, which elements can be overlooked, and the way that these elements impact one another.

Dependent Variable: This is the fundamental component so that we are having only one dependent variable in the dataset.

Independent Variables: These are the elements that we theorize affect our reliant variable. We are having 20 independent variables in the dataset.

1.2 Dataset

The objective of the Video Games Sales dataset is to help different video games companies to better understand their market region and customers and makes it easier for them to modify their products according to the specific needs, behaviors, and concerns of different types of customers.

For example, instead of spending money to market a new product to every customer in the company's database, a company can analyse which customer segment is most likely to buy the product and then market the product only on that particular segment.

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.set style("darkgrid")
df=pd.read csv(r"C:\Users\ankit\Downloads\video games sales.csv")
print(df.head())
                   Name Platform Year_of_Release
                                                   Genre Publisher
0
                                                  Sports Nintendo
              Wii Sports Wii 2006.0
                                       1985.0
                          NES
        Super Mario Bros.
                                                Platform Nintendo
                                       2008.0
2009.0
                                                 Racing Nintendo
                          Wii
          Mario Kart Wii
                           Wii
GB
        Wii Sports Resort
                                                   Sports Nintendo
 Pokemon Red/Pokemon Blue
                                       1996.0 Role-Playing Nintendo
  NA_Sales EU_Sales JP_Sales Other_Sales Global_Sales Critic_Score
                                 8.45
0
     41.36 28.96 3.77
                                            82.53
1
    29.08
             3.58
                      6.81
                                 0.77
                                            40.24
                                                          NaN
2
    15.68
            12.76
                     3.79
                                 3.29
                                            35.52
                                                         82.0
3
    15.61
            10.93
                     3.28
                                 2.95
                                            32.77
                                                         80.0
    11.27
             8.89
                    10.22
                                 1.00
                                            31.37
                                                          NaN
  Critic Count User Score User Count Developer Rating
0
         51.0 8 322.0 Nintendo
1
         NaN
                  NaN
                            NaN
                                           NaN
         73.0
73.0
NaN
2
                  8.3
                           709.0 Nintendo E
3
                   8
                                            E
                           192.0 Nintendo
                   NaN
                            NaN
                                     NaN
                                           NaN
df.shape
```

(16719, 16)

2. LITERATURE

In this project, we used machine learning methods like Linear Regression, Multiple Regression, Polynomial Regression, Gradient Descent method, Regularization. In Regularization, there are two methods. They are Ridge and Lasso. These are the methods that we used in this project.

2.1 Linear Regression

In statistics, linear regression is a straight methodology for displaying the connection between a scalar reaction and at least one informative factor (otherwise called reliant and free factors). The instance of one informative variable is called simple linear regression. This term is unmistakable from multivariate direct relapse, where numerous related ward factors are anticipated, rather than a solitary scalar variable. The model assumes a linear relationship between the input variables (x) and the single output variable (y). This is all about linear regression.

2.2 Multiple Regression

In statistics, linear regression is a straight methodology for displaying the connection between a scalar reaction and at least one informative factor for multiple, the interaction is called multiple linear regression. This term is unmistakable from multivariate direct relapse, where numerous related ward factors are anticipated, rather than a solitary scalar variable. The relationship between a single dependent variable and several independent variables. This is about multiple regression.

2.3 Polynomial Regression

In statistics, polynomial regression is a type of regression examination wherein the connection between the autonomous variable x and the reliant variable y is demonstrated as a most extreme limit polynomial in x. Polynomial regression fits a nonlinear connection between the worth of x and the comparing contingent mean of y, indicated $E(y \mid x)$. Albeit polynomial regression fits a nonlinear model to the information, as a measurable assessment issue it is straight, as in the relapse work $E(y \mid x)$ is direct in the obscure boundaries that are assessed from the information.

2.4 Gradient Descent method

Gradient descent is an iterative improvement calculation for tracking down the nearby least of a capacity. To observe the nearby least of a capacity utilizing slope plummet, we should make strides relative to the negative of the angle (create some distance from the inclination) of the capacity at the current point.

2.5 Regularization

In math, measurements, finance, software engineering, especially in machine learning and backward issues, regularization is the method involved with adding data to tackle a poorly presented issue or to forestall overfitting. Regularization can be applied to genuine capacities in badly presented improvement issues.

2.5.1 Ridge

Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where linearly independent variables are highly correlated. The coefficients of numerous relapse models in situations where straight autonomous factors are profoundly related.

2.5.2 Lasso

Lasso was initially figured out for linear regression models. This basic case uncovers a significant sum about the assessor. These incorporate its relationship to edge relapse and best subset determination and the associations between tether coefficient gauges thus called delicate thresholding. It likewise uncovers that (like linear regression) the coefficient gauges shouldn't be extraordinary assuming covariates are collinear.

3. Methodology

3.1 Data Preprocessing

Data preprocessing is the process of transforming raw data into an understandable format. It is also an important step in data mining as we cannot work with raw data. The quality of the data should be checked before applying machine learning or data mining algorithms.

Heatmap:

Different preprocessing techniques are:

• Data Imputation

Imputation is the process of replacing missing data with substituted values We start with handling missing values in the dataset.

Encoding

Encoding is the process of converting data into a format required for a number of information processing needs, including: Program compiling and execution. Data transmission, storage and compression/decompression. Application data processing, such as file conversion.

• Data Discretization

Data discretization is defined as a process of converting continuous data attribute values into a finite set of intervals and associating with each interval some specific data value.

Outlier Handling

Outlier trimming refers to simply removing the outliers beyond a certain threshold value. One of the main advantages of outlier trimming is it is extremely quick and doesn't distort the data. There are several ways to find the thresholds for outlier trimming.

• Feature Selection

Feature selection is also known as Variable selection or Attribute selection. Feature selection is a process where you automatically select those features in your data that contribute most to the prediction variable or output in which you are interested.

NOTE: As our dataset was clean and does not have more null values. So, we don't have to apply Data preprocessing techniques in our dataset.

3.2 Techniques

3.2.1 Linear Regression

→ ASSUMPTIONS

• Linearity: The relationship between the features and target.

• Homoscedasticity: The error term has a constant variance.

• **Multicollinearity:** There is no multicollinearity between the features.

• Independence: Observations are independent of each other.

• Normality: The error(residuals) follows a normal distribution.

→ ALGORITHM

Linear Regression is a supervised machine learning algorithm where the predicted output is continuous and has a constant slope. It's used to predict values within a continuous range, (e.g. sales, price) rather than trying to classify them into categories (e.g. cat, dog).

3.2.2 Multiple Regression

→ ASSUMPTIONS

• Linearity: The relationship between the features and target.

- **Homoscedasticity:** The error term has a constant variance.
- Multicollinearity: There is no multicollinearity between the features.
- Independence: Observations are independent of each other.
- Normality: The error(residuals) follows a normal distribution.

→ ALGORITHM

Multiple Linear Regression is one of the important regression algorithms which models the linear relationship between a single dependent continuous variable and more than one independent variable.

3.2.3 Polynomial Regression

→ ASSUMPTIONS

The relationship between the dependent variable and any independent variable is linear or curvilinear (specifically polynomial). The independent variables are independent of each other. The errors are independent, normally distributed with mean zero and a constant variance (OLS).

→ ALGORITHM

Polynomial Regression is a regression algorithm that models the relationship between a dependent(y) and independent variable(x) as nth degree polynomial.

3.2.4 Gradient Descent method

→ ASSUMPTIONS

Stochastic gradient descent is based on the assumption that the errors at each point in the parameter space are additive. The error at point one can be added to the error at point two which can be added to the error at point three, and so on for all of the points.

→ ALGORITHM

Gradient descent is an iterative optimization algorithm for finding the local minimum of a function. To find the local minimum of a function using gradient descent, we must take steps proportional to the negative of the gradient (move away from the gradient) of the function at the current point.

3.2.5 Regularization

3.2.5.1 Ridge

→ ASSUMPTIONS

The assumptions are the same as those used in regular multiple regression: linearity, constant variance (no outliers), and independence. Since ridge regression does not provide confidence limits, normality need not be assumed.

→ ALGORITHM

Ridge regression is a model tuning method that is used to analyse any data that suffers from multicollinearity. This method performs L2 regularization. When the issue of multicollinearity occurs, least-squares are unbiased, and variances are large, this results in predicted values being far away from the actual values.

3.2.5.2 Lasso

→ ASSUMPTIONS

LASSO is not a type of model. It is a method for selecting variables and shrinking coefficients to adjust for complexity. The assumptions are those of the type of model it is applied to, which could be ordinary least squares regression, logistic regression, Cox proportional hazards, or other types of regression, each with their own assumptions.

→ ALGORITHM

The goal of lasso regression is to obtain the subset of predictors that minimizes prediction error for a quantitative response variable. The lasso does this by imposing a constraint on the model parameters that causes regression coefficients for some variables to shrink toward zero.

4.Experimentation and result

4.1 Linear Regression

4.1.1 Independent Variable: NA_Sales Dependent Variable: Global_Sales

	Without Split	Train:Test 80:20	Train:Test 70:30	Train:Test 50:50
Coefficient	1.79053279	1.72171555	1.71170151	1.65720968
Intercept	0.06204106	0.07751573	0.07804729	0.09390077
R2 Score	0.8855007503 060843	0.860	0.862	0.856
MSE	0.2743356033 079391	0.2874924044 611133	0.2614275389 0283615	0.2616075567 0132924
RMSE	0.5237705636 134385	0.5361831818 148657	0.5112998522 421419	0.5114758613 08556
MAE	0.1974585940 4243615	0.2025194943 758726	0.1993162015 463381	0.2004740479 4672466
R2 Adjusted	0.885	0.860	0.862	0.856
AIC	2.583e+04	2.069e+04	1.856e+04	1.395e+04
BIC	2.584e+04	2.071e+04	1.857e+04	1.397e+04

Graph for Without Split

4.1.2 Independent Variable: EU_Sales Dependent Variable: Global_Sales

	Without Split	Train:Test 80:20	Train:Test 70:30	Train:Test 50:50
Coefficient	2.77191603	2.74859053	2.75628759	2.74528463
Intercept	0.13154605	0.13494423	0.13558062	0.13558035
R2 Score	0.812	0.752	0.746	0.727
MSE	0.4498865239 9731854	0.2994551669 1401924	0.2778709534 2730367	0.3094763286 7764374
RMSE	0.6707358078 985485	0.5472249691 982441	0.5271346634 658962	0.5563059667 823488
MAE	0.2453265244 9885314	0.2401978507 261	0.2383332585 3770335	0.2394616582 6050744
R2 Adjusted	0.812	0.752	0.746	0.727
AIC	3.410e+04	2.836e+04	2.565e+04	1.932e+04
BIC	3.411e+04	2.837e+04	2.566e+04	1.934e+04

Graph for Without Split

4.2 Multiple Regression

4.2.1 Independent Variable: NA_Sales, EU_Sales Dependent Variable: Global_Sales

	Train:Test 80:20	Train:Test 70:30	Train:Test 50:50
Coefficient	1.14045928	1.17421485	1.16350508
	1.37004663	1.3928549	1.44954647
Intercept	0.0335622267748	0.0229555362690	0.0176770147806
	32116	16585	52867
R2 Score	0.968	0.962	0.958
MSE	0.0949326759565	0.0970728832577	0.0921412941561
	501	9118	4845
RMSE	0.30811146677225	0.3115652150959	0.3035478449209
	454	5897	4233
MAE	0.1156985740884	0.1190464750889	0.11896611438897
	6232	3894	403
R2 Adjusted	0.968	0.962	0.958
AIC	4560.	3889.	3058.
BIC	4582.	3911.	3079.

4.3 Polynomial Regression

4.3.1 Independent Variable: NA_Sales, Degree = 2 Dependent Variable: Global_Sales

	Train:Test 80:20
Coefficient	1.8246
Intercept	0.055
R2 Score	0.891
MSE	0.246
RMSE	0.496
MAE	0.440
R2 Adjusted	0.891
AIC	2.092e+04
BIC	2.094e+04

4.3.2 Independent Variable: NA_Sales, Degree = 3
Dependent Variable: Global_Sales

	Train:Test 80:20
Coefficient	2.0165
Intercept	0.021
R2 Score	0.895
MSE	.258
RMSE	0.508
MAE	0.444
R2 Adjusted	0.895
AIC	2.032e+04
BIC	2.035e+04

4.3.3 Independent Variable: NA_Sales, Degree = 4
Dependent Variable: Global_Sales

	Train:Test 80:20
Coefficient	1.5381
Intercept	0.089
R2 Score	.913
MSE	0.234
RMSE	0.483
MAE	0.443
R2 Adjusted	.913
AIC	1.781e+04
BIC	1.785e+04

4.3.4 Independent Variable: NA_Sales, Degree = 5 Dependent Variable: Global_Sales

	Train:Test 80:20
Coefficient	1.5564
Intercept	0.087
R2 Score	.913
MSE	0.233
RMSE	0.483
MAE	0.443
R2 Adjusted	.913
AIC	1.781e+04
BIC	1.786e+04

4.3.5 Independent Variable: EU_Sales, Degree = 2 Dependent Variable: Global_Sales

	Train:Test 80:20
Coefficient	2.7663
Intercept	0.136
R2 Score	0.839
MSE	0.284
RMSE	0.533
MAE	0.491
R2 Adjusted	949.083
AIC	2.846e+04
BIC	2.848e+04

4.3.6 Independent Variable: EU_Sales, Degree = 3 Dependent Variable: Global_Sales

	Train:Test 80:20
Coefficient	2.8309
Intercept	0.130
R2 Score	0.838
MSE	0.285
RMSE	0.534
MAE	0.491
R2 Adjusted	952.541
AIC	2.845e+04
BIC	2.848e+04

4.3.7 Independent Variable: EU_Sales, Degree = 4 Dependent Variable: Global_Sales

	Train:Test 80:20
Coefficient	2.7214
Intercept	0.137
R2 Score	0.836
MSE	0.288
RMSE	0.536
MAE	0.491
R2 Adjusted	961.815
AIC	2.843e+04
BIC	2.847e+04

4.3.8 Independent Variable: EU_Sales, Degree = 5 Dependent Variable: Global_Sales

	Train:Test 80:20
Coefficient	2.5113
Intercept	0.148
R2 Score	0.834
MSE	0.291
RMSE	0.539
MAE	0.492
R2 Adjusted	973.162
AIC	2.840e+04
BIC	2.844e+04

4.4 Ridge Regression

4.4.1 Independent Variable: NA_Sales Dependent Variable: Global_Sales

	Train:Test 70:30	Train:Test 50:50
Coefficient	1.71303485	1.70422867
Intercept	0.084	0.086
R2 Score	0.887	0.895
MSE	0.2252666321959597	0.2398814557933692
RMSE	0.475	0.490
MAE	0.441	0.448
R2 Adjusted	0.887	0.895
AIC	1.896e+04	1.401e+04
BIC	1.897e+04	1.402e+04

4.4.2 Independent Variable: EU_Sales Dependent Variable: Global_Sales

	Train:Test 70:30	Train:Test 50:50
Coefficient	2.61826398	2.64285984
Intercept	0.154	0.150
R2 Score	0.827	0.835
MSE	0.4494745811546051	0.4091031474324704
RMSE	0.670	0.640
MAE	0.496	0.499
R2 Adjusted	0.827	0.835
AIC	2.397e+04	1.782e+04
BIC	2.398e+04	1.784e+04

4.5 Lasso Regression

4.5.1 Independent Variable: NA_Sales Dependent Variable: Global_Sales

	Train:Test 70:30	Train:Test 50:50	
Coefficient	0.	0.	
Intercept	0.538	0.540	
R2 Score	0.887	0.895	
MSE	1.8590657898994667	1.801	
RMSE	1.363	1.342	
MAE	0.762	0.765	
R2 Adjusted	0.887	0.895	
AIC	1.896e+04	1.401e+04	
BIC	1.897e+04	1.402e+04	

4.5.2 Independent Variable: EU_Sales Dependent Variable: Global_Sales

	Train:Test 70:30	Train:Test 50:50	
Coefficient	0.	0.	
Intercept	0.538	0.540	
R2 Score	0.827	0.835	
MSE	1.8590657898994667	1.801	
RMSE	1.363	1.342	
MAE	0.762	0.765	
R2 Adjusted	0.827	0.835	
AIC	2.397e+04	1.782e+04	
BIC	2.398e+04	1.784e+04	

4.6 Gradient Descent(Train:Test = 70:30) (Iterations = 100)

4.6.1 Independent Variable: NA_Sales Dependent Variable: Global_Sales

Learning Rate	0.1	0.001	0.5	0.05	1
Coefficient	1.58275299	1.87512098	1.01311339	1.73624256	0.77327016
Intercept	0.13617446	0.05189988	0.28272394	0.06739965	0.36028936
R2 Score	0.86065894	0.83493897	0.74553253	0.85460272	0.63110491
	89724527	69227513	27708984	68287029	45975234
MSE	0.28720916	0.34022305	0.52450723	0.29969222	0.76036493
	55457477	95545871	15907924	416658564	8193459
RMSE	535918991	0.58328643	0.72422871	0.54744152	0.87198906
	5889786	0113531	49725509	57966696	99965562
MAE	0.22049775	0.20027619	0.31825289	0.29969222	0.38762153
	59868012	336453004	784301586	416658564	6563743

4.6.2 Independent Variable: EU_Sales Dependent Variable: Global_Sales

Learning Rate	0.1	0.001	0.5	0.05	1
Coefficient	2.07692312	2.76516476	0.7825022	2.41159935	0.39966067
Intercept	0.21177857	0.1272922	0.39341429	0.17025871	0.45644439
R2 Score	0.66498885	0.70539097	0.34628894	0.69585405	0.19138873
	47679437	24902898	41240369	83743504	50913719
MSE	0.69052350	0.60724684	1.34742637	0.62690428	1.66670600
	8765569	02479615	20678195	59534549	61100394
RMSE	0.83097744	0.77926044	1.16078696	0.79177287	1.29100968
	17910326	44266125	23956928	52321936	47468029
MAE	0.27949461	0.25034216	0.44179942	0.25997589	0.50896290
	28895307	57616041	65961159	249126574	79448483

4.7 Gradient Descent(Train:Test = 70:30) (Iterations = 500)

4.7.1 Independent Variable: NA_Sales Dependent Variable: Global_Sales

Learning Rate	0.1	0.001	0.5	0.05	1
Coefficient	1.7768936	1.91956011	0.89863659	1.62302559	0.68266089
Intercept	0.07670791	0.04222911	0.27306861	0.10146659	0.32778761
R2 Score	0.85008669	0.82591617	0.69609628	0.86085882	0.57846619
	9407895	32392442	60134436	18871382	98456682
MSE	0.30900064	0.35882082	0.62640500	0.28679718	0.86886362
	015417233	308308866	74021377	836731594	70421035
RMSE	0.55587826	0.59901654	0.79145752	0.53553448	0.93212854
	01920786	65853916	09081898	84947336	64151946
MAE	0.20207686	0.20120458	0.32358642	0.20352352	0.86886362
	849257395	16455104	856881364	553313574	70421035

4.7.2 Independent Variable: EU_Sales Dependent Variable: Global_Sales

Learning Rate	0.1	0.001	0.5	0.05	1
Coefficient	2.06497156	2.74037705	0.8706583	2.51735896	0.5504676
Intercept	0.22827036	0.13465723	0.39137537	0.20375051	0.4159554
R2 Score	0.66367402	0.70551641	0.37822493	0.70067362	0.25536312
	3998731	04453805	116042166	66740249	96897173
MSE	0.69323363	0.60698828	1.28160005	0.61697021	1.53484226
	22020917	80830132	5128481	28326302	3491558
RMSE	0.83260652	0.77909453	1.13207776	0.78547451	1.23888751
	90412342	09030305	0195156	44386482	04268176
MAE	0.28809738	0.25265675	0.43347799	0.28004733	0.47387133
	778024996	254196773	00395961	996649583	46308347

4.8 Gradient Descent(Train:Test = 70:30) (Iterations = 1000)

4.8.1 Independent Variable: NA_Sales Dependent Variable: Global_Sales

Learning Rate	0.1	0.001	0.5	0.05	1
Coefficient	1.48020095	1.9500298	1.1732985	1.69832335	0.92632475
Intercept	0.11609683	0.01951202	0.21466791	0.07340948	0.291613
R2 Score	0.85621763	0.81918524	.800314586	0.85764717	0.70898405
	38154301	5946646	4297885	23564176	98388555
MSE	0.29636358	0.37269458	0.41159070	0.29341702	0.59984078
	49416652	10086984	19520023	634716077	43046162
RMSE	0.54439285	0.61048716	0.64155335	0.54167981	0.77449388
	90105359	69484121	08228308	90325728	91331656
MAE	0.20794891	0.19752738	0.26871963	0.19438371	0.33126859
	301000595	811308876	9610496	53483185	652796303

4.8.2 Independent Variable: EU_Sales

Dependent Variable: Global Sales

Learning Rate	0.1	0.001	0.5	0.05	1
Coefficient	2.10822204	2.77871577	1.02573887	2.37532512	0.3603436
Intercept	0.2237972	0.12223024	0.38050151	0.19807471	0.43424344
R2 Score	0.66894813	0.70525785	0.43060258	0.69359710	0.17317662
	35053206	04614286	081854097	18449272	436576997
MSE	0.68236266	0.60752123	1.17363947	0.63155631	1.70424472
	0731631	07921913	25103552	48904302	9162249
RMSE	0.82605245	0.77943648	1.08334642	0.79470517	1.30546724
	64043321	28465443	31308263	48229844	5534046
MAE	0.28539445	0.24870382	0.41584575	0.27335010	0.50072196
	742634184	6019552	019144926	34108097	89037146

5. Conclusion

Hence, we can see that in this project we used various statistical learning techniques to make predictions from the given dataset which are better suited for machine learning models and for understanding the data in general and we have also presented variou model parameters along with their statistical scores to better choose which model to use.

6.Acknowledgement

Both of the group members thank everyone for their best wishes and helping us to make this project a success. We are very grateful to one's who dedicated their valuable time to guide us throughout this project. We would like to acknowledge IIIT-NR for providing the necessary resources and facilities to implement the project successfully.

7. References

https://www.kaggle.com/rush4ratio/video-game-sales-with-ratings