Covariance - Sum of random variable

1 Covariance

1. Let X denote the number of times a certain numerical control machine will malfunction: 1, 2, or 3 times on any given day. Let Y denote the number of times a technician is called on an emergency call. Their joint probability distribution is given as

Find the covariance and the correlation coefficient of X and Y.

2. The fraction X of male runners and the fraction Y of female runners who compete in marathon races are described by the joint density function

$$f(x,y) = \begin{cases} 8xy, & 0 \le y \le x \le 1 \\ 0, & otherwise \end{cases}.$$

Find the covariance and the correlation coefficient of X and Y.

3. Random variables X and Y follow a joint distribution

$$f(x,y) = \begin{cases} 2, & 0 \le x \le y \le 1 \\ 0, & otherwise \end{cases}.$$

Find the covariance and the correlation coefficient of X and Y.

- 4. Show that Cov(aX, bY) = abCov(X, Y).
- 5. Suppose that X and Y are random variables with the same variance. Show that X Y and X + Y are uncorrelated.
- 6. Suppose that a random variable X satisfies

$$E(X)=0,\,E(X^2)=1,\,E(X^3)=0,\,E(X^4)=3$$

and

$$Y = a + bX + cX^2$$

Find Cov(X, Y).

2 Sum of RVs

- 1. Let T_n be the sum of numbers from n fair 6 -sided dice. Find $E(T_n)$.
- 2. Suppose a system has n components, and that at a particular time the jth component is working with probability P_j , j = 1, ..., n. Let X be the number of components working at that time. Find E(X).
- 3. Suppose $E(X^2) = 3$, $E(Y^2) = 4$, E(XY) = 2. Find $E[(X + Y)^2]$.
- 4. Let X and Y be two independent Bernoulli random variables with parameters p and r respective ly. Find $E(X-Y)^2$.
- 5. Suppose $E(X^2) = 3$, $E(Y^2) = 4$, E(XY) = 2. Find $E[(X + Y)^2]$.