Probabilités discrètes – Résumé – version 0.1

Michaël Guedj

"Probabilités discrètes – Résumé" de Michaël Guedj est mis à disposition selon les termes de la licence Creative Commons Attribution 4.0 International.

1 Loi de probabilité

Définition (Loi de probabilité). Une loi de probabilité (ou probabilité) \Pr , sur 2^{Ω} , est une application vérifiant :

- 1. Masse unitaire : $Pr(\Omega) = 1$;
- 2. Positivité : $\Pr: 2^{\Omega} \to [0,1]$;
- 3. Additivité : $\forall A, B \in 2^{\Omega}$,

$$A \cap B = \emptyset \Rightarrow \Pr(A \cup B) = \Pr(A) + \Pr(B)$$

Dans ce qui suit Pr est une probabilité sur Ω .

Théorème. $\forall A \in 2^{\Omega}$,

$$\Pr(A) = 1 - \Pr(\bar{A})$$

Théorème. $\forall A, B \in 2^{\Omega}$,

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

2 Probabilité conditionnelle

Définition (Probabilité conditionnelle). Une probabilité conditionnelle est la probabilité d'un événement sachant qu'un autre événement a eu lieu. Soient deux événements A et B (i.e. $A, B \in 2^{\Omega}$), si $\Pr(A) \neq 0$, alors la probabilité conditionnelle de B conditionnée par A (aussi appelée probabilité de B sachant A) est définie par :

$$\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}$$

Exemple. Soit une classe de lycée. Nous considérons les événements suivants :

- F: "un élève est une fille";

- A : "un élève étudie l'allemand".

La classe vérifie :

	F	$\neg F$
A	10	7
$\neg A$	4	9

Quelle est la probabilité qu'un élève étudie l'allemand, sachant que cet élève est une fille (i.e. Pr(A|F))? On a par définition :

$$\Pr(A|F) = \frac{\Pr(A \wedge F)}{\Pr(F)}$$

Ici:

$$\Pr(A|F) = \frac{\text{Nombre de filles \'etudiant l'allemand}}{\text{Nombre de filles}}$$

Soit:

$$\Pr(A|F) = \frac{10}{14} = \frac{5}{7}$$

Théorème. $\forall A, B \in 2^{\Omega}, \Pr(A) \neq 0$,

$$Pr(A \cap B) = Pr(B|A). Pr(A)$$

3 Théorème des probabilités totales

Théorème (Théorème des probabilités totales). Soit A un évènement. Si $(B_i)_{i\in I}$ est une partition de Ω , alors :

$$\Pr(A) = \sum_{i \in I} \Pr(A|B_i) \Pr(B_i)$$

4 Théorème de Bayes

Théorème (Théorème de Bayes). Soient A et B deux événements de probabilités non nulles. Alors :

$$\Pr(B|A) = \frac{\Pr(A|B)\Pr(B)}{\Pr(A)}$$

5 Variable aléatoire – Espérance

Exemple (Fil rouge). On lance deux pièces.

$$\Omega = \{FF, PF, FP, PP\}$$

La variable aléatoire X quantifie le nombre de pile :

$$X(\Omega) = \{0, 1, 2\}$$

On a:

$$\Pr(X = 0) = \frac{\#\{FF\}}{4} = \frac{1}{4}$$
$$\Pr(X = 1) = \frac{\#\{PF, FP\}}{4} = \frac{1}{2}$$
$$\Pr(X = 2) = \frac{\#\{PP\}}{4} = \frac{1}{4}$$

Exemple (Fil rouge).

$$\mathcal{L}_X = \{ 0 \to \frac{1}{4}; 1 \to \frac{1}{2}; 2 \to \frac{1}{4} \}$$

Définition (Espérance).

$$E(X) := \sum_{i} x_i. \Pr(X = x_i)$$

Exemple (Fil rouge).

$$E(X) = 0. \Pr(X = 0) + 1. \Pr(X = 1) + 2. \Pr(X = 2)$$

$$E(X) = 0.\frac{1}{4} + 1.\frac{1}{2} + 2.\frac{1}{4} = \frac{1}{2} + \frac{1}{2}$$

$$E(X) = 1$$

Autrement dit, pour chaque lancé de 2 pièces, on peut "espérer" avoir 1 pile. En pratique, cela signifie que si on effectue n lancés de 2 pièces, alors : si n est "grand", le nombre de piles est "proche" de n.