COLLEGE of TECHNOLOGY

Modular R.O.V for Sub-Sea Operations

OLUYEMI FARAYIBI

JUAN GOMEZ

GUSTAV GUIJT

DAVID MARTINEZ

VICTOR ORTIZ

FALL SEMESTER CONCLUSION 12/07/2015

COLLEGE of TECHNOLOGY

ROV Presentation Outline

- ▶ Team Objective
- **▶** CFD Analysis
- ▶ Frame Selection
- Control System
- **▶** Propulsion System
- ► Arm Module
- **▶** Buoyancy
- ▶ Tether Management System

- ▶ Project Budget
- Semester Gantt Chart
- ▶ The Final Design

Team Objective

► Team HydroBurst's primary objective is to design, test, and construct a modular underwater remotely operated vehicle (ROV) to compete in the 2016 National and International MATE Competitions.

COLLEGE of TECHNOLOGY

Stess Analysis Design 5

40 feet Underwater

100 feet Underwater

COLLEGE of TECHNOLOGY

Stess Analysis Design 6

▶ 40 feet Underwater

100 feet Underwater

COLLEGE of TECHNOLOGY

CFD Analysis

▶ Design 05

▶ Design 06

Frame	5	6
Coefficient of Drag	0.685	1.661
Coefficient of Lift	49.565	3015.476
Pressure Drop (Pa)	8.366	6.872

Simulations created by Gustav Guijt

Frame Selection

Based on the Results of the Stress Analysis and CFD Analysis, we decided to continue with the Frame 5 design for our final product:

Control System

Propulsion System

▶ BlueRobotics T100 Thruster

▶ Price: \$119.00 - \$199.00 each

► Motor Type: High efficiency brushless

► Weight in air = 0.93 lb.

► Maximum Power = 130W

► Operating Voltage = 12 volts

▶ Maximum Thrust:

▶ 5.2 lbf Forward

▶ 4 lbf Reverse

COLLEGE of TECHNOLOGY

Propulsion System Thruster Layout

- ► 2x Up/Down Thrusters:
 - ▶ Helps compensate for the weight of extended arms.
- 2x Forward/Backward Thrusters:
 - ► Turning and forwards motion.
- ▶ 1x Rotation Thruster:
 - Rotation on spot, and reduces turning circle.

Arm Module

Buoyancy

13

Tether Management System

- ► MATE Competition:
 - ► Tether is included in the total weight of the ROV, and needs to be able to reach a depth of 40 feet.
- ▶ Team Decisions:
 - ► Minimize the number of cables in Tether to reduce weight.
 - ▶ Need 100 foot tether.
- ▶ Cable Design:
 - ► Necessary Cables:
 - ▶ 100ft Power
 - ▶ 100ft Ethernet
 - ► Cable Management:
 - ▶ Mesh Sleeve

COLLEGE of TECHNOLOGY

14

The Final Design

► Introducing Team HydroBurst's ROV, The

Project Budget

- ▶ Current Cash Flow:
 - **Expenditures:**
 - ► CPVC components (\$86.35)
 - ▶ Income:
 - ▶ No Sponsors as of 12/07

Estimated Project Budget								
Expenditures:	Cost:							
Prototyping	\$700							
Frame	\$300							
Propulsion System	\$1100							
Control System	\$600							
Arm System	\$800							
Tether Management System	\$300							
Competition	\$200							
Total:	\$4,000							

Semester Gantt Chart

ACTIVITY	COMPLETE		PERIODS														
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		Date:	31-Aug	7-Sep	14-Sep	21-Sep	28-Sep	5-Oct	12-Oct	19-Oct	26-Oct	2-Nov	9-Nov	16-Nov	23-Nov	30-Nov	7-De
Chapters 1-3 of Textbook	100%																
Research Basic R.O.V Designs	100%																
Find Sponsers	0%																
Chapters 4-6 of Textbook	100%																
Design / Research Motors	100%																
Auto-CAD Designs	100%																
Stress Analysis of Designs	100%																
Update CAD Designs	100%																
Design Arm	60%																
CFD Analysis of Designs	100%																
Update CAD Designs	10%																

COLLEGE of TECHNOLOGY

Thank You for Listening!

