# **Security and Privacy**

Password Agreed Key Exchanges (PAKE)

12.03.2019



## Introduction

#### Introduction

- In Homework 2 you will be implementing the Secure Remote Passoword protocol (SRP), a Password Agreed Key Exchanges (PAKE)
- A PAKE allows to
  - verify the password of a remote party and
  - exchange a key (e.g. for encryption)
- We saw in TLS, that the server can sign its half of the Diffie Hellman key exchange to prove possession of the private key of the certificate, thus proving its identity
- PAKE is similar, but authentication is based on a symmetric key, the password.
- To help with the homework, here is a short explanation of SRP





#### **SRP Overview**

- SRP is like Diffie Hellman with some additional elements that depend on the password
- It uses exponentiations of a generator g (e.g.  $g^k$ ) and a modulo N
- For each user, the server stores three elements:
  - 1. the username U
  - 2. a salt s
  - 3. the password verifier v (the exponentiation of a salted hash of the password p):

$$x = h(s|h(U)|" : "|p)$$
$$v = g^x \mod N$$

- lacktriangle The server adds v to its part of the Diffie-Hellman exchange
  - it contributes to the calculation of the key
- lacktriangle The client will need to know the salt to calculate x, so it first asks for this.





### SRP Exchange



They both get  $K = g^{b(a+ux)} \mod N$ 





#### **SRP Conclusions**

- lacksquare Alice and Bob have only exchanged public values:  $g^a$  and  $g^b+g^x$
- Eavesdroppers can not learn anything from these values
- The resulting key depends on a, b and x (x depends on the password)
- Before continuing, they can send each other an encrypted message or a MAC to prove that they succeeded in calculating the key



