

Olimpiada Națională de Matematică Etapa Naţională, Sibiu, 8 aprilie 2014

SOLUŢII ŞI BAREME ORIENTATIVE, CLASA a XII-a

Problema 1. Fie $(A, +, \cdot)$ un inel. Pentru $a \in A$ definim funcțiile $s_a : A \to A$ și $d_a : A \to A$ prin $s_a(x) = ax$, $d_a(x) = xa$, oricare ar fi $x \in A$.

- a) Presupunem că A este mulțime finită. Să se arate că: pentru orice $a \in A$, s_a este injectivă dacă și numai dacă d_a este injectivă.
- b) Dați exemplu de inel care conține un element a pentru care exact una dintre funcțiile s_a și d_a este injectivă.

Soluție. a) Să presupunem că s_a este injectivă. Deoarece A este finită s_a este bijectivă, deci

Astfel, dacă $d_a(x) = d_a(y)$, atunci (x - y)a = 0, de unde (x - y)ab = 0, adică x - y = 0,

Implicația inversă se demonstrează asemănător.

b) Pentru un exemplu putem considera mulțimea $S = \{(x_n)_{n \in \mathbb{N}} \mid x_n \in \mathbb{R}\}$ și inelul funcțiilor aditive $f: S \to S$, cu operațiile de adunare și compunere a funcțiilor. Ca element a se poate lua funcția dată prin $a((x_n)_n) = (x_{n+1})_n$. Deoarece a este surjectivă, d_a este injectivă; pe de

Problema 2. Fie I, J două intervale, fie $\varphi: J \to \mathbb{R}$ o funcție continuă care nu se anulează în niciun punct din J şi fie $f, g: I \to J$ două funcții derivabile astfel încât $f' = \varphi \circ f$ şi $g' = \varphi \circ g$. Să se arate că, dacă există $x_0 \in I$ astfel încât $f(x_0) = g(x_0)$, atunci funcțiile f și g coincid.

Soluție. Deoarece φ nu se anulează și este continuă, funcția $\frac{1}{\varphi}$ este corect definită și are o

Ipoteza devine $(F \circ f)'(x) = 1, \forall x \in I,$ deci există $a \in \mathbb{R}$ astfel încât F(f(x)) = x + a, $\forall x \in I$, analog există $b \in \mathbb{R}$ astfel încât $F(g(x)) = x + b, \forall x \in I \dots 2p$

Deducem $x_0 + a = F(f(x_0)) = F(g(x_0)) = x_0 + b$, deci a = b. Rezultă F(f(x)) = F(g(x)), $\forall x \in J \quad (*) \quad \dots \quad 2\mathbf{p}$

Pe de altă parte, din $F'(x) \neq 0$, $\forall x \in J$ rezultă că F' are semn constant pe J, deci este strict monotonă. Astfel F este injectivă, iar din (*) reiese $f = g \dots 2p$

Problema 3. Fie $f:[1,+\infty)\to(0,+\infty)$ o funcție continuă, având proprietățile:

- (i) funcția $g:[1,+\infty)\to (0,+\infty)$ dată de $g(x)=\frac{f(x)}{x}$ are limită la $+\infty;$ (ii) funcția $h:[1,+\infty)\to (0,+\infty)$ dată de $h(x)=\frac{1}{x}\int_{1}^{x}f(t)\,\mathrm{d}t$ are limită finită la $+\infty.$
- a) Să se arate că $\lim_{x \to +\infty} g(x) = 0$.
- b) Să se arate că $\lim_{x \to +\infty} \frac{1}{x^2} \int_1^x f^2(t) dt = 0.$

Soluție. a) Fie $\ell=\lim_{x\to+\infty}g(x)$. Dacă $\ell\in(0,+\infty)$, atunci există a>0 astfel încât $g(x)>\ell/2$ pentru $x\geq a$, de unde

$$h(x) = \frac{1}{x} \left(\int_1^a f(t) \, \mathrm{d}t + \int_a^x f(t) \, \mathrm{d}t \right) \ge \frac{1}{x} \int_1^a f(t) \, \mathrm{d}t + \frac{\ell}{2x} \int_a^x t \, \mathrm{d}t = \frac{1}{x} \int_1^a f(t) \, \mathrm{d}t + \frac{\ell(x^2 - a^2)}{4x} \underset{x \to +\infty}{\longrightarrow} +\infty,$$

ceea ce contrazice (ii). La fel arătăm că presupunerea $\ell=+\infty$ contrazice (ii), deci $\ell=0\dots\mathbf{2p}$ b) Observăm că $\int_1^x f(t)\,\mathrm{d}t>0,\,\forall x>1,\,$ deci

$$\lim_{x\to +\infty}\frac{1}{x^2}\int_1^x f^2(t)\,\mathrm{d}t = \lim_{x\to +\infty}\left(\frac{\int_1^x f^2(t)\,\mathrm{d}t}{x\int_1^x f(t)\,\mathrm{d}t}\cdot\frac{\int_1^x f(t)\,\mathrm{d}t}{x}\right) = \lambda\lim_{x\to +\infty}\frac{\int_1^x f^2(t)\,\mathrm{d}t}{x\int_1^x f(t)\,\mathrm{d}t} = \lambda\lim_{x\to +\infty}\frac{u(x)}{v(x)},$$

unde
$$\lambda = \lim_{x \to +\infty} h(x), \ u(x) = \int_1^x f^2(t) \, dt, \ v(x) = x \int_1^x f(t) \, dt \dots 1$$

$$v'(x) = \int_{1}^{x} f(t) dt + x f(x) \neq 0, \forall x \geq 1.$$

$$\text{iar } \frac{u'(x)}{v'(x)} = \frac{f^{2}(x)}{x f(x) + \int_{1}^{x} f(t) dt} = g(x) \cdot \frac{f(x)}{f(x) + h(x)} \in (0, g(x)) \text{ si } \lim_{x \to +\infty} g(x) = 0 \text{ implică}$$

$$\lim_{x \to +\infty} \frac{u'(x)}{v'(x)} = 0, \text{ deci } \lim_{x \to +\infty} \frac{u(x)}{v(x)} = 0, \text{ de unde concluzia.}$$
 2**p**

Problema 4. Fie (G, \cdot) un grup finit cu elementul neutru notat e. Presupunem că există $a \in G \setminus \{e\}$ și un număr prim p cu proprietatea $x^{p+1} = a^{-1}xa$, oricare ar fi $x \in G$.

- a) Să se arate că există $k \in \mathbb{N}^*$ astfel încât $\operatorname{ord}(G) = p^k$.
- b) Să se arate că mulțimea $\{x \in G \mid x^p = e\}$ este un subgrup H al lui G și $(\operatorname{ord}(H))^2 > \operatorname{ord}(G)$.

Pentru x=a obţinem din ipoteză $a^p=e$ deci, folosind relaţia precedentă, $(ya)^p=y^p$. Prin înmulţire cu ya la stânga reiese $yay^p=(ya)^{p+1}=y^{p+1}a$, deci $ay^p=y^pa$, $\forall y\in G$ **1p**

Considerăm funcția $f: G \to G$, $f(x) = x^p$. Cum $e = x^{p^2} = (x^p)^p$, deducem că imaginea funcției este inclusă în H. În plus, $x,y \in G$ și f(x) = f(y) implică $x^p(y^{-1})^p = e$, deci $(y^{-1}x)^p = e$, adică $y^{-1}x \in H$, de unde $x \in Hy$. Reiese astfel că, pentru orice element din $\mathrm{Im} f$, numărul preimaginilor sale din G este chiar $\mathrm{ord}(H)$, deci $|\mathrm{Im} f| = \frac{\mathrm{ord}(G)}{\mathrm{ord}(H)}$ 1p