QUANTITATIVE ANALYSIS

RANDOM VARIABLES

A NEGATIVE BINOMIAL DISTRIBUTION

PROBLEM

- With the Poisson distribution, μ and σ^2 should be approximately equal.
- However, with many types of count data, σ^2 can be larger than μ . This is a condition known as *overdispersion*.
- use http://www.ats.ucla.edu/stat/stata/dae/nb_data, clear
- summarize daysabs

Variable	0bs	Mean	Std. Dev.	Min	Max
daysabs	314	5.955414	7 . 036958	0	35

display 7.036958^2

Example of Overdispersed Count Data

Days Absent from School

Data via UCLA ATS

DEFINITION

A sequence of independent trials with constant probability of success at each trial (p) where we are interested in the number of failures (k) required to produce a set number of successes (n).

$$P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$

- r is often used instead of n.
- Like the Poisson distribution, it is characterized by count data.
- Unlike the Poisson distribution, it is able to accommodate variances that differ from the mean.

Negative Binomial Distribution Probability Mass Functions Three Distributions Compared

Poisson Distribution Probability Mass Functions

λ=4.0

Lines between calculated probabilities included for visualization purposes only.

λ=1.0

Negative Binomial Distribution Probability Mass Functions

STATA FUNCTIONS

nbinomialp(n,k,p)	returns probability of observing k failures before the $n^{\rm th}$ success	P(x = k)
nbinomial(n,k,p)	returns probability of observing k or fewer failures before the n^{th} success	P(x ≤ <i>k</i>)
nbinomialtail(n,k,p)	returns probability of observing k or more failures before the <i>n</i> th success	P(x ≥ <i>k</i>)

- A social service agency determines that 20% of clients approached on a given day will enroll in an intervention program. What is the probability that the first enrollment comes on the fifth client after four clients refuse (fail) to enroll?
 - Is the negative binomial distribution appropriate?

- A social service agency determines that 20% of clients approached on a given day will enroll in an intervention program. What is the probability that the first enrollment comes on the fifth client after four clients refuse (fail) to enroll?
 - Is the negative binomial distribution appropriate?

- A social service agency determines that 20% of clients approached on a given day will enroll in an intervention program. What is the probability that the first enrollment comes on the fifth client after four clients refuse (fail) to enroll?
 - Is the negative binomial distribution appropriate?
 - What is the appropriate Stata function?

- A social service agency determines that 20% of clients approached on a given day will enroll in an intervention program. What is the probability that the first enrollment comes on the fifth client after four clients refuse (fail) to enroll?
 - Is the negative binomial distribution appropriate?
 - What is the appropriate Stata function?

STATA FUNCTIONS

nbinomialp(n,k,p)	returns probability of observing k failures before the $n^{\rm th}$ success	P(x = k)
nbinomial(n,k,p)	returns probability of observing k or fewer failures before the n^{th} success	P(x ≤ <i>k</i>)
nbinomialtail(n,k,p)	returns probability of observing k or more failures before the <i>n</i> th success	P(x ≥ <i>k</i>)

STATA FUNCTIONS

nbinomialp(n,k,p)	returns probability of observing k failures before the $n^{\rm th}$ success	P(x = k)
nbinomial(n,k,p)	returns probability of observing k or fewer failures before the <i>n</i> th	P(x ≤ <i>k</i>)
nbinomialtail(n,k,p)	returns probability of observing k or more failures before the <i>n</i> th success	P(x ≥ <i>k</i>)

- A social service agency determines that 20% of clients approached on a given day will enroll in an intervention program. What is the probability that the first enrollment comes on the fifth client after four clients refuse (fail) to enroll?
 - Is the negative binomial distribution appropriate?
 - What is the appropriate Stata function?
 - Mhat is n? What is k? What is p?

- A social service agency determines that 20% of clients approached on a given day will enroll in an intervention program. What is the probability that the first enrollment comes on the fifth client after four clients refuse (fail) to enroll?
 - Is the negative binomial distribution appropriate?
 - What is the appropriate Stata function?
 - What is n? What is k? What is p?
 - display nbinomialp(1,4,.20)
 - .08192

DOCUMENT DETAILS

Document produced by <u>Christopher Prener, Ph.D</u> for the Saint Louis University course SOC 5050: QUANTITATIVE ANALYSIS - APPLIED INFERENTIAL STATISTICS. See the <u>course wiki</u> and the repository <u>README.md</u> file for additional details.

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.