Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

Candy Lin Cion Coi

TEST REPORT

Report Reference No.....: TRE1707013802 R/C.....: 97923

FCC ID.....: 2AFD9-DUAL

Applicant's name.....: MOVEON TECHNOLOGY LIMITED

Shenzhen, China

Manufacturer...... MOVEON TECHNOLOGY LIMITED

Address....... World Trade Plaza-A block#3201-3202 Fuhong Road, Futian,

Shenzhen, China

Test item description: smart mobile phone

Trade Mark KRONO

Model/Type reference...... DUAL

Listed Model(s)..... -

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample........... Jul. 19, 2017

Date of testing...... Jul. 20, 2017 - Jul.31, 2017

Date of issue...... Aug.03, 2017

Result...... PASS

Compiled by

(position+printedname+signature)...: File administrators Candy Liu

Supervised by

(position+printedname+signature)....: Project Engineer Lion Cai

Approved by

(position+printedname+signature)....: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No.: TRE1707013802 Page 2 of 35 Issued: 2017-08-03

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Applicable Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Equipments Used during the Test	8
4.4.	Environmental conditions	9
4.5.	Statement of the measurement uncertainty	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Antenna requirement	10
5.2.	Conducted Emission (AC Main)	11
5.3.	Conducted Peak Output Power	14
5.4.	Power Spectral Density	15
5.5.	6dB bandwidthand	18
5.6.	Restricted band	21
5.7.	Band edge and Spurious Emission (conducted)	24
5.8.	Spurious Emission (radiated)	28
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	34
7.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	35
<u></u>		

Report No.: TRE1707013802 Page 3 of 35 Issued: 2017-08-03

1. Test standards and Report version

1.1. Applicable Standards

The tests were performed according to following standards: FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

KDB 558074 D01 DTS Meas Guidance v03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under § 15.247

1.2. Report version

Version No.	Date of issue	Description
00	Aug.03, 2017	Original

Report No.: TRE1707013802 Page 4 of 35 Issued: 2017-08-03

2. Test Description

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
Line Conducted Emission (AC Main)	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Power Spectral Density	15.247 (e)	Pass
6dB Bandwidth	15.247 (a)(2)	Pass
Restricted band	15.247(d)/15.205	Pass
Spurious Emission	15.247(d)/15.209	Pass

Note: The measurement uncertainty is not included in the test result.

Report No.: TRE1707013802 Page 5 of 35 Issued: 2017-08-03

3. **Summary**

3.1. Client Information

Applicant:	MOVEON TECHNOLOGY LIMITED
Address:	World Trade Plaza-A block#3201-3202 Fuhong Road, Futian, Shenzhen,China
Manufacturer:	MOVEON TECHNOLOGY LIMITED
Address:	World Trade Plaza-A block#3201-3202 Fuhong Road, Futian, Shenzhen,China

3.2. Product Description

Name of EUT:	smart mobile phone			
Trade Mark:	KRONO			
Model No.:	DUAL			
Listed Model(s):	-			
IMEI 1:	3593480600001	114		
IMEI 2:	3593480600001	106		
Power supply:	DC 3.80V From	internal battery		
Adapter information:	Input: 100-240Va.c., 50/60Hz, 0.15A Output: 5Vd.c., 1000mA			
Hardware version:	V1.2			
Software version:	KRONO_H5507_Y8361_B2B5_8+1_6.0_V07			
WIFI				
Supported type:	⊠802.11b	⊠802.11g	⊠802.11n(H20)	-
Modulation:	DSSS for 802.11b OFDM for 802.11g/802.11n(H20)			
Operation frequency:	2412MHz~2462MHz for 802.11b/802.11g/802.11n(H20)			
Channel number:	11 for 802.11b/802.11g/802.11n(H20)			
Channel separation:	5MHz			
Antenna type:	Integral antenna			
Antenna gain:	0.58dBi			

Report No.: TRE1707013802 Page 6 of 35 Issued: 2017-08-03

3.3. Operation state

> Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

oname nero ociona to persona are test, produce oce are according to testing				
802.11b/g/n(H20)				
Channel	Frequency (MHz)			
01	2412			
02	2417			
03	2422			
04	2427			
05	2432			
06	2437			
07	2442			
08	2447			
09	2452			
10	2457			
11	2462			

> Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For RF test axis

EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

- supplied by the lab

Length (m):	1
Shield:	1
Detachable:	1
Manufacturer:	1
Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No.: TRE1707013802 Page 7 of 35 Issued: 2017-08-03

4. Test Environment

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235

IC-Registration No.: 5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: TRE1707013802 Page 8 of 35 Issued: 2017-08-03

4.3. Equipments Used during the Test

Condu	Conducted Emission (AC Main)				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2016/11/13
2	EMI Test Receiver	Rohde&Schwarz	ESCI3	100038	2016/11/13
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2016/11/13
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A

Radia	adiated Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13
2	EMI TEST RECEIVER	Rohde&Schwarz	ESI 26	100009	2016/11/13
3	EMI TEST Software	Audix	E3	N/A	N/A
4	TURNTABLE	ETS	2088	2149	N/A
5	ANTENNA MAST	ETS	2075	2346	N/A
6	EMI TEST Software	Rohde&Schwarz	ESK1	N/A	N/A
7	HORNANTENNA	ShwarzBeck	9120D	1011	2016/11/13
8	Amplifer	Sonoma	310N	E009-13	2016/11/13
9	JS amplifer	Rohde&Schwarz	JS4-00101800- 28-5A	F201504	2016/11/13
10	High pass filter	Compliance Direction systems	BSU-6	34202	2016/11/13
11	HORNANTENNA	ShwarzBeck	9120D	1012	2016/11/13
12	Amplifer	Compliance Direction systems	PAP1-4060	120	2016/11/13
13	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2016/11/13
14	TURNTABLE	MATURO	TT2.0		N/A
15	ANTENNA MAST	MATURO	TAM-4.0-P		N/A
16	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2016/11/13
17	ULTRA-BROADBAND ANTENNA	Rohde&Schwarz	HL562	100015	2016/11/13

	Maximum Peak Output Power / Power Spectral Density / 6dB Bandwidth / Band Edge Compliance of RF Emission / Spurious RF Conducted Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Spectrum Analyzer	Rohde&Schwarz	FSP	1164.4391.40	2016/11/13
2	Power Meter	Anritsu	ML2480B	100798	2016/11/13
3	Power Sensor	Anritsu	MA2411B	100258	2016/11/13

The Cal.Interval was one year.

Report No.: TRE1707013802 Page 9 of 35 Issued: 2017-08-03

4.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
lative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	MeasurementUncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9 kHz-40 GHz	1.60 dB	(1)
Radiated spurious emission 9 kHz -40 GHz	2.20 dB	(1)
Conducted Emission 9 kHz -30 MHz	3.39 dB	(1)
Radiated Emission 30~1000 MHz	4.24 dB	(1)
Radiated Emissio 1~18 GHz	5.16 dB	(1)
Radiated Emissio 18-40 GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: TRE1707013802 Page 10 of 35 Issued: 2017-08-03

5. Test Conditions and Results

5.1. Antenna requirement

REQUIREMENT:

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

TEST RESULTS

□ Passed	☐ Not Applicable

The antenna is integral antenna, the best case gain of the antenna is 0.58dBi, please refer to the below antenna photo.

Report No.: TRE1707013802 Page 11 of 35 Issued: 2017-08-03

5.2. Conducted Emission (AC Main)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

Froguency range (MHz)	Limit (dBuV')				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for themeasuring equipment.
- 4. The peripheral devices are also connected to the main power through aLISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were foldedback and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

□ Passed □ Not Applicable

Note:

- 1) Transd= Cable lose + Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit Level

MEASUREMENT RESULT: "GM1708015009_fin"

8/1/2017 1:29	PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.411000	39.10	10.2	58	18.5	QP	L1	GND
0.465000	43.10	10.2	57	13.5	QP	L1	GND
0.564000	36.50	10.2	56	19.5	QP	L1	GND
0.591000	23.90	10.2	56	32.1	QP	L1	GND
0.672000	36.80	10.2	56	19.2	QP	L1	GND
0.771000	37.40	10.2	56	18.6	QP	L1	GND
0.829500	37.10	10.2	56	18.9	QP	L1	GND

MEASUREMENT RESULT: "GM1708015009_fin2"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.465000	33.50	10.2	47	13.1	AV	L1	GND
0.564000	28.10	10.2	46	17.9	AV	L1	GND
0.618000	28.30	10.2	46	17.7	AV	L1	GND
0.672000	27.60	10.2	46	18.4	AV	L1	GND
0.775500	26.90	10.2	46	19.1	AV	L1	GND
0.820500	26.70	10.2	46	19.3	AV	L1	GND
0.973500	24.60	10.2	46	21.4	AV	L1	GND

Report No.: TRE1707013802 Page 14 of 35 Issued: 2017-08-03

5.3. Conducted Peak Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm:

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was tested according to ANSI C63.10: 2013 and KDB 558074 D01 for compliance to FCC 47 CFR 15.247 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector
- 4. Record the measurement data.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Туре	Channel	Output power (dBm)	Limit (dBm)	Result	
	01	13.65			
802.11b	06	14.24	30.00	Pass	
	11	14.62			
	01	15.40			
802.11g	06	15.55	30.00	Pass	
	11	15.23			
	01	15.05			
802.11n(H20)	06	15.67	30.00	Pass	
	11	15.72			

Report No.: TRE1707013802 Page 15 of 35 Issued: 2017-08-03

5.4. Power Spectral Density

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- 2. Configurethe spectrum analyzer as shown below:

Center frequency=DTS channel center frequency

Span =1.5 times the DTS bandwidth

. RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW

Sweep time = auto couple

Detector = peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Туре	Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result	
	01	-11.18			
802.11b	06	-11.47	8.00	Pass	
	11	-11.64			
	01	-16.37			
802.11g	06 -15.50		8.00	Pass	
	11	-17.55			
	01	-16.65			
802.11n(H20)	06	-17.30	8.00	Pass	
	11	-14.68			

Issued: 2017-08-03

Report No.: TRE1707013802 Page 18 of 35 Issued: 2017-08-03

5.5. 6dB bandwidthand

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output andthe spectrum analyzer).

Center Frequency =DTS channel center frequency

Span=2 x DTS bandwidth

RBW = 100 kHz, VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, andrecord the pertinent measurements.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Туре	Channel	6dB Bandwidth (MHz)	Limit (kHz)	Result	
	01	10.06		Pass	
802.11b	06	10.06	≥500		
	11	10.02			
	01	16.44			
802.11g	06	16.38	≥500	Pass	
	11	16.44			
	01	17.66			
802.11n(H20)	06	17.66 ≥500		Pass	
	11	17.66			

Test plot as follows:

Issued: 2017-08-03

Issued: 2017-08-03

Report No.: TRE1707013802 Page 21 of 35 Issued: 2017-08-03

5.6. Restricted band

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2) The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3) The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4) The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz for Peak value RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

1) Final level= Read level + Antenna Factor + Cable Loss - Preamp Factor

802.11b					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
2310.00	13.39	28.05	6.62	0.00	48.06	74.00	-25.94	Vertical	Peak
2390.00	14.11	27.65	6.75	0.00	48.51	74.00	-25.49	Vertical	reak
2310.00	10.76	28.05	6.62	0.00	45.43	54.00	-8.57	Vertical	Average
2390.00	10.61	27.65	6.75	0.00	45.01	54.00	-8.99	Vertical	Average
2310.00	13.79	28.05	6.62	0.00	48.46	74.00	-25.54	Horizontal	Dook
2390.00	13.65	27.65	6.75	0.00	48.05	74.00	-25.95	Horizontal	Peak
2310.00	10.75	28.05	6.62	0.00	45.42	54.00	-8.58	Horizontal	Average
2390.00	10.28	27.65	6.75	0.00	44.68	54.00	-9.32	Horizontal	Average

802.11b					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
2483.50	13.91	27.26	6.83	0.00	48.00	74.00	-26.00	Vertical	Peak
2500.00	13.51	27.20	6.84	0.00	47.55	74.00	-26.45	Vertical	reak
2483.50	10.32	27.26	6.83	0.00	44.41	54.00	-9.59	Vertical	Averege
2500.00	10.27	27.20	6.84	0.00	44.31	54.00	-9.69	Vertical	Average
2483.50	11.48	27.26	6.83	0.00	45.57	74.00	-28.43	Horizontal	Peak
2500.00	13.60	27.20	6.84	0.00	47.64	74.00	-26.36	Horizontal	reak
2483.50	10.40	27.26	6.83	0.00	44.49	54.00	-9.51	Horizontal	Average
2500.00	10.26	27.20	6.84	0.00	44.30	54.00	-9.70	Horizontal	Average

802.11g					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
2310.00	14.31	28.05	6.62	0.00	48.98	74.00	-25.02	Vertical	Dook
2390.00	14.54	27.65	6.75	0.00	48.94	74.00	-25.06	Vertical	Peak
2310.00	10.77	28.05	6.62	0.00	45.44	54.00	-8.56	Vertical	Avorago
2390.00	11.45	27.65	6.75	0.00	45.85	54.00	-8.15	Vertical	Average
2310.00	12.98	28.05	6.62	0.00	47.65	74.00	-26.35	Horizontal	Dook
2390.00	14.34	27.65	6.75	0.00	48.74	74.00	-25.26	Horizontal	Peak
2310.00	10.78	28.05	6.62	0.00	45.45	54.00	-8.55	Horizontal	Average
2390.00	10.44	27.65	6.75	0.00	44.84	54.00	-9.16	Horizontal	Average

802.11g					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
2483.49	14.60	27.26	6.83	0.00	48.69	74.00	-25.31	Vertical	Peak
2500.00	12.96	27.20	6.84	0.00	47.00	74.00	-27.00	Vertical	Peak
2483.49	11.57	27.26	6.83	0.00	45.66	54.00	-8.34	Vertical	Average
2500.00	10.29	27.20	6.84	0.00	44.33	54.00	-9.67	Vertical	Average
2483.49	12.34	27.26	6.83	0.00	46.43	74.00	-27.57	Horizontal	Dook
2500.00	12.95	27.20	6.84	0.00	46.99	74.00	-27.01	Horizontal	Peak
2483.49	10.54	27.26	6.83	0.00	44.63	54.00	-9.37	Horizontal	Average
2500.00	10.29	27.20	6.84	0.00	44.33	54.00	-9.67	Horizontal	Average

802.11n(H2	0)				CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
2310.00	13.26	28.05	6.62	0.00	47.93	74.00	-26.07	Vertical	Peak
2390.01	14.01	27.65	6.75	0.00	48.41	74.00	-25.59	Vertical	reak
2310.00	10.74	28.05	6.62	0.00	45.41	54.00	-8.59	Vertical	Averege
2390.01	11.03	27.65	6.75	0.00	45.43	54.00	-8.57	Vertical	Average
2310.00	13.76	28.05	6.62	0.00	48.43	74.00	-25.57	Horizontal	Peak
2390.01	15.27	27.65	6.75	0.00	49.67	74.00	-24.33	Horizontal	reak
2310.00	10.79	28.05	6.62	0.00	45.46	54.00	-8.54	Horizontal	Average
2390.01	10.52	27.65	6.75	0.00	44.92	54.00	-9.08	Horizontal	Average

802.11n(H2	0)				CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
2483.49	14.12	27.26	6.83	0.00	48.21	74.00	-25.79	Vertical	Dook
2500.00	15.37	27.20	6.84	0.00	49.41	74.00	-24.59	Vertical	Peak
2483.49	12.78	27.26	6.83	0.00	46.87	54.00	-7.13	Vertical	Average
2500.00	10.59	27.20	6.84	0.00	44.63	54.00	-9.37	Vertical	Average
2483.49	13.44	27.26	6.83	0.00	47.53	74.00	-26.47	Horizontal	Dook
2500.00	12.44	27.20	6.84	0.00	46.48	74.00	-27.52	Horizontal	Peak
2483.49	10.81	27.26	6.83	0.00	44.90	54.00	-9.10	Horizontal	Average
2500.00	10.38	27.20	6.84	0.00	44.42	54.00	-9.58	Horizontal	Average

Report No.: TRE1707013802 Page 24 of 35 Issued: 2017-08-03

5.7. Band edge and Spurious Emission (conducted)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Establish a reference level by using the following procedure Center frequency=DTS channel center frequency

The span = 1.5 times the DTS bandwidth.

RBW = 100 kHz, VBW ≥ 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum PSD level

Note: the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Set the center frequency and span to encompass frequency range to be measured

RBW = 100 kHz, VBW \geq 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum amplitude level.

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 5. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emissions relative to the limit.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Report No.: TRE1707013802 Page 28 of 35 Issued: 2017-08-03

5.8. Spurious Emission (radiated)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
ABOVE TOTIZ	74.00	Peak

TEST CONFIGURATION

> 30MHz ~ 1GHz

Above 1GHz

Report No.: TRE1707013802 Page 29 of 35 Issued: 2017-08-03

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna.
- 5. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz, RBW=120kHz, VBW=300kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the guasi-peak detector and reported.
 - (3) Above 1GHz, RBW=1MHz, VBW=3MHz for Peak value RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

- 1) Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.

➢ 9kHz ~ 30MHz

The EUT was pre-scanned the frequency band (9kHz~30MHz), found the radiated level lower than the limit, so don't show on the report.

> 30MHz ~1000MHz

Have pre-scan all modulation mode, found the 802.11g mode CH01 which it was worst case, so only the worst case's data on the test report.

Report No.: TRE1707013802 Page 30 of 35 Issued: 2017-08-03

> 30MHz ~ 1GHz

zation:				Horiz	zontal			
Level [dBµV/m]								
80								
80[
70	- + + +	- 		i -				
60	. i i i	- i i - i		i -		-ii	<u>i</u> i	
i i	1 1 1	111				i i	ii	
50				 -				
40				-		-ii	<u>i</u> i	
30	. i i i .			i_		_ii	ii	The same of the same
	1 1 1	1				diam's	war de la constitución de la con	71[-1]
20	- x×	 X			6			
10		~					!!	
i								
30M 40M 5	50M 60M 70M	100	М	200M	1	300M 400	M 500M 600	M 800M 1G
x x x MES GM1707	266072_red							
x x x MES GM1707	266072_red							
x x x MES GM1707:	-	"GM17	0726607	72_red"				
	RESULT:	"GM17	0726607	72_red"				
MEASUREMENT	RESULT:	" GM17 Transd	Limit	72_red" Margin	Det.	Height		Polarization
MEASUREMENT 7/26/2017 3:	RESULT:			-	Det.	Height cm	Azimuth deg	Polarization
MEASUREMENT 7/26/2017 3: Frequency	RESULT:	Transd	Limit	- Margin	Det.			Polarization HORIZONTAL
MEASUREMENT 7/26/2017 3: Frequency MHz	RESULT: 48PM Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB		cm	deg	
MEASUREMENT 7/26/2017 3: Frequency MHz 53.280000	RESULT: 48PM Level dBµV/m 21.10	Transd dB -9.0	Limit dBµV/m	Margin dB	QP	cm	deg 359.00	HORIZONTAL
MEASUREMENT 7/26/2017 3: Frequency MHz 53.280000 55.220000	######################################	Transd dB -9.0 -9.2	Limit dBµV/m 40.0 40.0	Margin dB 18.9 20.2	QP QP	100.0 300.0	deg 359.00 352.00	HORIZONTAL HORIZONTAL
MEASUREMENT 7/26/2017 3: Frequency MHz 53.280000 55.220000 101.780000	######################################	Transd dB -9.0 -9.2 -10.5	Limit dBµV/m 40.0 40.0 43.5	Margin dB 18.9 20.2 23.4	QP QP QP	100.0 300.0 300.0	deg 359.00 352.00 284.00	HORIZONTAL HORIZONTAL HORIZONTAL

802.11b					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1746.25	39.01	25.29	5.86	37.03	33.13	74.00	-40.87	Vertical	
3616.45	42.37	29.30	8.29	38.27	41.69	74.00	-32.31	Vertical	
5718.40	34.27	31.69	10.46	35.54	40.88	74.00	-33.12	Vertical	
7245.81	33.30	36.25	11.91	35.02	46.44	74.00	-27.56	Vertical	Peak
1299.77	35.54	26.20	4.83	36.52	30.05	74.00	-43.95	Horizontal	reak
3607.26	44.55	29.30	8.28	38.27	43.86	74.00	-30.14	Horizontal	
5151.68	34.36	31.69	9.79	36.25	39.59	74.00	-34.41	Horizontal	
7245.81	32.15	36.25	11.91	35.02	45.29	74.00	-28.71	Horizontal	

802.11b					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1768.62	34.83	25.34	5.90	37.07	29.00	74.00	-45.00	Vertical	
3616.45	46.34	29.30	8.29	38.27	45.66	74.00	-28.34	Vertical	
4821.76	35.03	31.56	9.55	36.90	39.24	74.00	-34.76	Vertical	
7245.81	35.74	36.25	11.91	35.02	48.88	74.00	-25.12	Vertical	Dook
1719.78	37.24	25.24	5.80	36.97	31.31	74.00	-42.69	Horizontal	Peak
3616.45	46.64	29.30	8.29	38.27	45.96	74.00	-28.04	Horizontal	
4821.76	36.27	31.56	9.55	36.90	40.48	74.00	-33.52	Horizontal	
7245.81	35.22	36.25	11.91	35.02	48.36	74.00	-25.64	Horizontal	

802.11b					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1244.73	37.34	26.25	4.74	36.55	31.78	74.00	-42.22	Vertical	
3690.85	42.07	29.30	8.37	38.25	41.49	74.00	-32.51	Vertical	
5125.52	33.65	31.80	9.77	36.27	38.95	74.00	-35.05	Vertical	
7394.88	33.20	36.30	12.06	34.83	46.73	74.00	-27.27	Vertical	Dook
1809.61	36.27	25.39	5.97	37.15	30.48	74.00	-43.52	Horizontal	Peak
3690.85	38.45	29.30	8.37	38.25	37.87	74.00	-36.13	Horizontal	
4920.96	36.72	31.42	9.62	36.62	41.14	74.00	-32.86	Horizontal	
7981.72	32.43	37.03	12.39	34.58	47.27	74.00	-26.73	Horizontal	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1746.25	40.01	25.29	5.86	37.03	34.13	74.00	-39.87	Vertical	
4055.37	37.12	29.81	8.82	37.98	37.77	74.00	-36.23	Vertical	
5703.86	34.19	31.62	10.44	35.58	40.67	74.00	-33.33	Vertical	
7880.77	32.48	36.59	12.87	34.85	47.09	74.00	-26.91	Vertical	Peak
1746.25	36.78	25.29	5.86	37.03	30.90	74.00	-43.10	Horizontal	reak
3516.59	37.44	29.05	8.14	38.39	36.24	74.00	-37.76	Horizontal	
4664.81	34.89	31.10	9.49	37.14	38.34	74.00	-35.66	Horizontal	
6816.39	33.59	34.12	11.62	34.97	44.36	74.00	-29.64	Horizontal	

802.11g					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
2157.07	36.68	27.16	6.40	37.33	32.91	74.00	-41.09	Vertical	
3080.60	37.47	28.76	7.58	38.22	35.59	74.00	-38.41	Vertical	
4712.55	34.47	31.25	9.51	37.08	38.15	74.00	-35.85	Vertical	
5971.29	32.71	32.44	10.66	35.43	40.38	74.00	-33.62	Vertical	Dook
1746.25	36.22	25.29	5.86	37.03	30.34	74.00	-43.66	Horizontal	Peak
3200.50	37.58	28.80	7.72	38.20	35.90	74.00	-38.10	Horizontal	
5022.19	33.71	31.59	9.69	36.38	38.61	74.00	-35.39	Horizontal	
7394.88	32.56	36.30	12.06	34.83	46.09	74.00	-27.91	Horizontal	

802.11g					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1728.56	36.39	25.26	5.82	36.99	30.48	74.00	-43.52	Vertical	
3644.18	37.03	29.30	8.32	38.26	36.39	74.00	-37.61	Vertical	
5747.59	33.55	31.84	10.51	35.46	40.44	74.00	-33.56	Vertical	
7547.01	32.31	36.15	12.55	34.94	46.07	74.00	-27.93	Vertical	Peak
1672.30	36.79	25.12	5.71	36.87	30.75	74.00	-43.25	Horizontal	reak
3480.97	37.44	28.85	8.09	38.44	35.94	74.00	-38.06	Horizontal	
5791.65	32.85	32.06	10.58	35.34	40.15	74.00	-33.85	Horizontal	
7394.88	31.95	36.30	12.06	34.83	45.48	74.00	-28.52	Horizontal	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(H2	0)				CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1719.78	37.67	25.24	5.80	36.97	31.74	74.00	-42.26	Vertical	
3616.45	46.07	29.30	8.29	38.27	45.39	74.00	-28.61	Vertical	
5086.52	34.69	31.85	9.74	36.31	39.97	74.00	-34.03	Vertical	
7227.39	35.59	36.23	11.89	35.04	48.67	74.00	-25.33	Vertical	Peak
1818.84	37.41	25.38	5.99	37.16	31.62	74.00	-42.38	Horizontal	reak
3616.45	47.18	29.30	8.29	38.27	46.50	74.00	-27.50	Horizontal	
4809.50	34.77	31.58	9.55	36.93	38.97	74.00	-35.03	Horizontal	
7245.81	34.56	36.25	11.91	35.02	47.70	74.00	-26.30	Horizontal	

802.11n(H2	0)				CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1280.07	36.37	26.22	4.80	36.53	30.86	74.00	-43.14	Vertical	
2151.59	35.84	27.12	6.40	37.33	32.03	74.00	-41.97	Vertical	
3653.46	43.43	29.30	8.33	38.26	42.80	74.00	-31.20	Vertical	
6527.71	31.70	34.06	11.23	35.34	41.65	74.00	-32.35	Vertical	Peak
1814.22	35.91	25.39	5.98	37.15	30.13	74.00	-43.87	Horizontal	reak
3653.46	44.81	29.30	8.33	38.26	44.18	74.00	-29.82	Horizontal	
5151.68	33.79	31.69	9.79	36.25	39.02	74.00	-34.98	Horizontal	
7319.96	33.62	36.30	11.99	34.92	46.99	74.00	-27.01	Horizontal	

802.11n(H2	0)				CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1273.57	36.41	26.23	4.79	36.53	30.90	74.00	-43.10	Vertical	
3033.91	37.82	28.67	7.52	38.22	35.79	74.00	-38.21	Vertical	
3690.85	40.72	29.30	8.37	38.25	40.14	74.00	-33.86	Vertical	
5151.68	34.90	31.69	9.79	36.25	40.13	74.00	-33.87	Vertical	Peak
1795.84	36.62	25.39	5.95	37.13	30.83	74.00	-43.17	Horizontal	reak
3690.85	45.61	29.30	8.37	38.25	45.03	74.00	-28.97	Horizontal	
4933.50	34.41	31.43	9.63	36.59	38.88	74.00	-35.12	Horizontal	
7451.57	32.49	36.20	12.24	34.86	46.07	74.00	-27.93	Horizontal	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: TRE1707013802 Page 34 of 35 Issued: 2017-08-03

6. Test Setup Photos of the EUT

Conducted Emission

Radiated Emission

7. External and Internal Photos of the EUT

Reference to Test Report No.: TRE1707013801.

.....End of Report.....