

АНАЛИЗ И РАЗРАБОТКА РАСПРЕДЕЛЁННОЙ АРХИТЕКТУРЫ ЭКСПЛУАТАЦИИ НЕЙРОННЫХ СЕТЕЙ

Дипломная работа

Ларин Егор Сергеевич

Белорусский государственный университет ФПМИ, КТС, 4 курс руководитель: старший преподаватель Шолтанюк С. В.

Минск, 2024

Микросервисы

- В последние годы микросервисная архитектура значительно приобретает популярность в области разработки ПО.
- Использование микросервисной помогает решить вопросы масштабируемости.

Микросервисный монолит

 Внедрение микросервисов порождает другие проблемы, которые необходимо решать с помощью современных инструментов.

Задача сервиса генерации изображений

- 1. Обработка входного запроса с параметрами генерации изображения
- 2. Обработка запросов о статусе генерации изображения
- 3. Обработка запроса отмены генерации
- 4. Обработка запроса получения сгенерированного изображения

Общий балансер и проксирование трафика

- Легче всего в реализации
- Плохо масштабируется и предоставляет слабые гарантии обработки сообщений

Брокер

сообщений и асинхронная обработка

- Устойчива к перегрузкам
- Гарантии обработки и порядка

Нативная реализация

- Минимальные тайминги и высокая надежность
- Требует дополнительной разработки для поддержки другой среды исполнения

HTTP сайдкар

- Самый простой подход в реализации
- Издержки на передачу данных по сети и сериализацию

UDS сайдкар

- Более высокая производительность по сравнению с НТТР
- Требует разработки и поддержки сетевого протокола

НТТР гейтвей

- Отдельный релизный цикл
- Инкапсуляция бизнес-логики

Заключение

- В ходе работы было рассмотрено понятие микросервисной архитектуры и произведен обзор имеющихся средств и методологий разработки, применяющихся для коммуникации веб-сервисов.
- Результатом работы стала разработка программного обеспечения для генерации изображений с помощью нейронной сети с сетевым интерфейсом.
- Рассмотрены подходы общения разных процессов и проанализированы достоинства и недостатки каждого из методов.

Источники

- 1. Микросервисы: паттерны разработки и рефакторинга / Крис Ричардсон. Санкт-Петербург [и др.] : Питер, Прогресс книга, 2020. 542 с. (Библиотека программиста).
- 2. Высоконагруженные приложения: программирование, масштабирование, поддержка: [перевод с английского] / Мартин Клеппман. Санкт-Петербург [и др.] : Питер, Прогресс книга, 2018. 637 с. (Бестселлеры O'Reilly).
- 3. Marek Bolanowski, Kamil Zak, Andrzej Paszkiewicz, Maria Ganzha, Marcin Paprzycki, Piotr Sowinski, Ignacio Lacalle, and Carlos E. Palau. Eficiency of REST and gRPC Realizing Communication Tasks in Microservice-Based Ecosystems. IOS Press, September 2022..

Справочная информация

Latency Comparison Numbers (~2012)

L1 cache reference	0.	5 ns			
Branch mispredict	5	ns			
L2 cache reference	7	ns			14x L1 cache
Mutex lock/unlock	25	ns			
Main memory reference	100	ns			20x L2 cache, 200x L1 cach
Compress 1K bytes with Zippy	3,000	ns	3 us		
Send 1K bytes over 1 Gbps network	10,000	ns	10 us		
Read 4K randomly from SSD*	150,000	ns	150 us		~1GB/sec SSD
Read 1 MB sequentially from memory	250,000	ns	250 us		
Round trip within same datacenter	500,000	ns	500 us		
Read 1 MB sequentially from SSD*	1,000,000	ns	1,000 us	1 ms	~1GB/sec SSD, 4X memory
Disk seek	10,000,000	ns	10,000 us	10 ms	20x datacenter roundtrip
Read 1 MB sequentially from disk	20,000,000	ns	20,000 us	20 ms	80x memory, 20X SSD
Send packet CA→Netherlands→CA	150,000,000	ns	150,000 us	150 ms	