Package 'algaeClassify'

October 30, 2018

Title Determine phytoplankton functional groups based on functional traits

Version 0.1.2

Date 2018-10-11

Author Vijay Patil [aut,cre],Torsten Seltmann [aut], Nico Salmaso [aut], Orlane Anneville [aut], Marc Lajeunesse [aut], Dietmar Straile [aut]

URL http://github.com/vppatil/GEISHA_phytoplankton

BugReports https://github.com/vppatil/GEISHA_phytoplankton/issues

Description The algaeClassify package contains functions designed to facilitate the assignment of morpho-functional group (MFG) classifications to phytoplankton species based on a combination of taxonomy (Class,Order) and a suite of 7 binomial functional traits. Classifications can also be made using only a species list and a database of trait-derived classifications included in the package. MFG classifications are derived from Salmaso, Nico, Luigi Naselli-Flores, and Judit Padisak. "Functional classifications and their application in phytoplankton ecology." Freshwater Biology 60.4 (2015): 603-619, and this reference should be cited when using the package. The algaeClassify package is a product of the GEISHA (Global Evaluation of the Impacts

of Storms on freshwater Habitat and Structure of phytoplankton Assemblages), funded by CESAB (Centre for Synthesis and Analysis of Biodiversity) and the USGS John Wesley Powell Center, with data and other support provided by members of GLEON (Global Lake Ecology Observation Network). This software is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The software has not received final approval by the U.S. Geological Survey (USGS). No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. The software is provided on the condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the software.

Depends R (>= 3.4.0)

Imports lubridate

License GPL-2 | GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.0

2 accum

R topics documented:

Index		13
	traits_to_mfg_nosize	11
	traits_to_mfg_df_nosize	
	traits_to_mfg_df	
	traits_to_mfg	9
	species_phyto_convert	
	species.mfg.library	
	sampeff	
	phyto_ts_aggregate	
	phyto_convert_df	5
	mfg.csr	5
	lakegeneva	4
	genus_species_extract	4
	date_mat	3
	accum	- 2

accum

Split a dataframe column with binomial name into genus and species columns. Plots change in species richness over time, generates species accumulation curve, and compares SAC against simulated idealized curve assuming all unique taxa have equal probability of being sampled at any point in the time series. (author Dietmar Straile)

Description

Split a dataframe column with binomial name into genus and species columns. Plots change in species richness over time, generates species accumulation curve, and compares SAC against simulated idealized curve assuming all unique taxa have equal probability of being sampled at any point in the time series. (author Dietmar Straile)

Usage

```
accum(b_data, phyto_name = "phyto_name", column, n = 50,
    save.pdf = FALSE, lakename = "", datename = "date_dd_mm_yy",
    dateformat = "%d-%m-%y")
```

Arguments

b_data	Name of data.frame object
phyto_name	Character string: field containing phytoplankton id (species, genus, etc.)
column	column name or number for field containing abundance (biomass,biovol, etc.) can be NA for presence absence
n	number of simulations for randomized ideal species accumulation curve
save.pdf	TRUE/FALSE- should plots be displayed or saved to a pdf?
lakename	optional character string for adding lake name to pdf output
datename	character string name of b_data field containing date
dateformat	character string: posix format for datename column

date_mat 3

Value

a two panel plot with trends in richness on top, and cumulative richness vs. simulated accumulation curve on bottom

Examples

```
data(lakegeneva)
#example dataset with 50 rows
accum(b_data=lakegeneva,column=6,n=10,save.pdf=FALSE)
```

date_mat

Transform a phytoplankton timeseries into a matrix of abundances for ordination

Description

Transform a phytoplankton timeseries into a matrix of abundances for ordination

Usage

```
date_mat(phyto.df, abundance.var = "biovol_um3_ml",
  taxa.name = "phyto_name", date.name = "date_dd_mm_yy",
  format = "%d-%m-%y", time.agg = c("day", "month", "year",
   "monthyear"), fun = function(x) mean(x[!base::is.na(x)]))
```

Arguments

phyto.df Name of data.frame object

abundance .var Character string: field containing abundance data. NA for presence/absence

taxa.name Character string: field containing taxonomic identifiers

date.name Character string: field containing date.

format Character string: POSIX format string for formatting date column

time.agg Character string: time interval for aggregating abundance. default is day.

fun function for aggregation. default is mean, excluding NA's

Value

A matrix of phytoplankton abundance, with taxa in rows and time in columns. If time.agg = 'monthyear', returns a 3dimensional matrix (taxa,month,year). If abundance.var = NA, matrix cells will be 1 for present, 0 for absent

```
data(lakegeneva)
#example dataset with 50 rows
geneva.mat<-date_mat(lakegeneva,abundance.var=NA)
geneva.mat</pre>
```

4 lakegeneva

genus_species_extract Split a dataframe column with binomial name into genus and species columns.

Description

Split a dataframe column with binomial name into genus and species columns.

Usage

```
genus_species_extract(phyto.df, phyto.name)
```

Arguments

phyto.df Name of data.frame object

phyto.name Character string: field in phyto.df containing species name.

Value

A data.frame with new character fields 'genus' and 'species'

Examples

```
data(lakegeneva)
#example dataset with 50 rows
head(lakegeneva) #need to split the phyto_name column
new.lakegeneva=genus_species_extract(lakegeneva,'phyto_name')
head(new.lakegeneva)
```

lakegeneva

example dataset from lake Geneva, Switzerland

Description

example dataset from lake Geneva, Switzerland

Usage

```
data(lakegeneva)
```

Format

A data frame with columns:

```
lake lake name

phyto_name phytoplankton species name

month month of sampling

year year of sampling

date_dd_mm_yy date of sampling

biovol_um3_ml biovolume
```

mfg.csr 5

mfg.csr	MFG-CSR correspondence based on CSR-trait relationships in Reynolds et al. 1988 and MFG-trait relationships in Salmaso et al.
	2015

Description

MFG-CSR correspondence based on CSR-trait relationships in Reynolds et al. 1988 and MFG-trait relationships in Salmaso et al. 2015

Usage

```
data(mfg.csr)
```

Format

A data frame with columns:

MFG.number shortened MFG designation

MFG full MFG name from Salmaso et al. 2015

CSR CSR classification including intermediate classes

Description

Wrapper function to apply species_phyto_convert() across a data.frame

Usage

```
phyto_convert_df(phyto.df, flag = 1)
```

Arguments

phyto.df Name of data.frame. Must have character fields named 'genus' and 'species' flag Resolve ambiguous MFG: 1 = return(NA), 2 = manual selection

Value

a single MFG classification as character string

```
data(lakegeneva)
#example dataset with 50 rows

new.lakegeneva <- genus_species_extract(lakegeneva,'phyto_name')
new.lakegeneva <- phyto_convert_df(new.lakegeneva)
head(new.lakegeneva)</pre>
```

6 phyto_ts_aggregate

gregate phytoplankton timeseries based on abundance. Up to 3
ouping variables can be given: e.g. genus, species, stationid, pth range. If no abundance var is given, will aggregate to presce/absence of grouping vars.

Description

Aggregate phytoplankton timeseries based on abundance. Up to 3 grouping variables can be given: e.g. genus, species, stationid, depth range. If no abundance var is given, will aggregate to presence/absence of grouping vars.

Usage

```
phyto_ts_aggregate(phyto.data, DateVar = "date_dd_mm_yy",
   AbundanceVar = "biovol_um3_ml", GroupingVar1 = "phyto_name",
   GroupingVar2 = NA, GroupingVar3 = NA, remove.rare = F, fun = sum,
   format = "%d-%m-%y")
```

Arguments

phyto.data	data.frame
DateVar	character string: field name for date variable. character or POSIX data.
AbundanceVar	character string with field name containing abundance data
GroupingVar1	character string: field name for first grouping variable. defaults to spp.
GroupingVar2	character string: name of additional grouping var field
GroupingVar3	character string: name of additional grouping var field
remove.rare	TRUE/FALSE. If TRUE, removes all instances of Grouping Var1 that occur < 5 of time periods.
fun	function used to aggregate abundance based on grouping variables
format	character string: format for DateVar POSIXct conversion

Value

a data.frame with grouping vars, date_dd_mm_yy, and abundance or presence/absence

See Also

```
http://www.algaebase.org for up-to-date phytoplankton taxonomy, https://powellcenter.usgs.gov/geisha for project information
```

```
data(lakegeneva)
lakegeneva<-genus_species_extract(lakegeneva,'phyto_name')
lakegeneva.common.genera=phyto_ts_aggregate(lakegeneva,AbundanceVar=NA,GroupingVar1='genus')
head(lakegeneva.common.genera)</pre>
```

sampeff 7

sampeff	Visually assess change in sampling effort over time (author: Dietmar Straile)

Description

Visually assess change in sampling effort over time (author: Dietmar Straile)

Usage

```
sampeff(b_data, column, save.pdf = F, lakename = "",
  datecolumn = "date_dd_mm_yy", dateformat = "%d-%m-%y")
```

Arguments

b_data	Name of data.frame object
column	column name or number for field containing abundance (biomass,biovol, etc.) can be NA for presence absence
save.pdf	TRUE/FALSE Should the output plot be saved to a file? defaults to FALSE
lakename	Character string for labelling output plot
datecolumn	Character String or number specifying dataframe field with date information
dateformat	Character string specifying POSIX data format

Value

a time-series plot of minimum relative abundance over time. This should change systematically with counting effort.

Examples

data(lakegeneva)

```
#example dataset with 50 rows
sampeff(lakegeneva,column=6) #column 6 contains biovolume

species.mfg.library Trait-based MFG classifications for common Eurasion/North Ameri-
```

Description

Trait-based MFG classifications for common Eurasion/North American phytoplankton species. See accompanying manuscript for sources

can phytoplankton species. See accompanying manuscript for sources

Usage

```
data(species.mfg.library)
```

Format

A data frame with columns:

genus genus namespecies species name

MFG corresponding MFG classification based on Salmaso et al. 2015

MFG2 corresponding MFG classification based on Salmaso et al. 2015

Habitat corresponding MFG classification based on Salmaso et al. 2015

Note corresponding MFG classification based on Salmaso et al. 2015

species_phyto_convert Conversion of a single genus and species name to a single MFG. USes species.mfg.library

Description

Conversion of a single genus and species name to a single MFG. USes species.mfg.library

Usage

```
species_phyto_convert(genus, species, flag = 1)
```

Arguments

genus Character string: genus name

species Character string: species name

flag Resolve ambiguous mfg: 1 = return(NA), 2 = manual selection

Value

a single MFG classification as character string

```
species_phyto_convert('Scenedesmus','bijuga')
#returns "11a-NakeChlor"
```

traits_to_mfg

traits_to_mfg Assign MFG based on binary functional traits and taxonomy (Class and Order)

Description

Assign MFG based on binary functional traits and taxonomy (Class and Order)

Usage

```
traits_to_mfg(flagella = NA, size = NA, colonial = NA,
  filament = NA, centric = NA, gelatinous = NA, aerotopes = NA,
  class = NA, order = NA)
```

Arguments

flagella	1 if flagella are present, 0 if they are absent.
size	Character string: 'large' or 'small'. Classification criteria is left to the user.
colonial	1 if typically colonial growth form, 0 if typically unicellular.
filament	1 if dominant growth form is filamentous, 0 if not.
centric	1 if diatom with centric growth form, 0 if not. NA for non-diatoms.
gelatinous	1 mucilagenous sheath is typically present, 0 if not.
aerotopes	1 if aerotopes allowing buoyancy regulation are typically present, 0 if not.
class	Character string: The taxonomic class of the species
order	Character string: The taxonomic order of the species

Value

A character string of the species' morphofunctional group

See Also

```
http://www.algaebase.org for up-to-date phytoplankton taxonomy, https://powellcenter.usgs.gov/geisha for project information
```

traits_to_mfg_df

Assign morphofunctional groups to a dataframe of functional traits and higher taxonomy

Description

Assign morphofunctional groups to a dataframe of functional traits and higher taxonomy

Usage

```
traits_to_mfg_df(dframe, arg.names = c("flagella", "size", "colonial",
   "filament", "centric", "gelatinous", "aerotopes", "class", "order"))
```

Arguments

dframe An R dataframe containing functional trait information and higher taxonomy arg.names Character string of column names corresponding to arguments for traits_to_mfg()

Value

A character vector containing morpho-functional group (MFG) designations

Examples

```
traits_to_mfg_df_nosize
```

Assign morphofunctional groups to a dataframe of functional traits and higher taxonomy

Description

Assign morphofunctional groups to a dataframe of functional traits and higher taxonomy

Usage

```
traits_to_mfg_df_nosize(dframe, arg.names = c("flagella", "size",
   "colonial", "filament", "centric", "gelatinous", "aerotopes", "class",
   "order"))
```

traits_to_mfg_nosize 11

Arguments

dframe An R dataframe containing functional trait information and higher taxonomy arg.names Character string of column names corresponding to arguments for traits_to_mfg()

Value

A character vector containing morpho-functional group (MFG) designations

Examples

traits_to_mfg_nosize

Assign a MFG based on binary functional traits and taxonomy (Class, Order) Uses an abbreviated version of the MFG classification (Salmaso et al. 2015), that does not differentiate among MFGs based on size.

Description

Assign a MFG based on binary functional traits and taxonomy (Class, Order) Uses an abbreviated version of the MFG classification (Salmaso et al. 2015), that does not differentiate among MFGs based on size.

Usage

```
traits_to_mfg_nosize(flagella = NA, colonial = NA, filament = NA,
  centric = NA, gelatinous = NA, aerotopes = NA, class = NA,
  order = NA)
```

Arguments

flagella	1 if flagella are present, 0 if they are absent.
colonial	1 if typically colonial growth form, 0 if typically unicellular.
filament	1 if dominant growth form is filamentous, 0 if not.
centric	1 if diatom with centric growth form, 0 if not. NA for non-diatoms.
gelatinous	1 mucilagenous sheath is typically present, 0 if not.
aerotopes	1 if aerotopes allowing buoyancy regulation are typically present, 0 if not.
class	Character string: The taxonomic class of the species
order	Character string: The taxonomic order of the species

12 traits_to_mfg_nosize

Value

A character string of the species' morphofunctional group

See Also

http://www.algaebase.org for up-to-date phytoplankton taxonomy, https://powellcenter.
usgs.gov/geisha for project information

Index

```
*Topic datasets
    lakegeneva, 4
    mfg.csr, 5
    species.mfg.library, 7
accum, 2
date_mat, 3
genus_species_extract, 4
lakegeneva, 4
mfg.csr, 5
phyto_convert_df, 5
phyto\_ts\_aggregate, \\ 6
sampeff, 7
species.mfg.library, 7
{\tt species\_phyto\_convert}, 8
traits\_to\_mfg, 9
{\tt traits\_to\_mfg\_df}, {\tt 10}
{\tt traits\_to\_mfg\_df\_nosize, 10}
traits_to_mfg_nosize, 11
```