#### Exploratory Data Analysis

#### Reading and cleaning data

First, we input our stock data.

Our stock data consists of the following indices between 2000 and 2021:

- S&P500
- NASDAQ
- NYSE100

```
setwd("..")
sp<-read.csv("Data/sp500.csv")</pre>
ny<-read.csv("Data/nyse.csv")</pre>
nas<-read.csv("Data/nasdaq.csv")</pre>
```

Now we will change the 'caldt' column to the Date format in order to plot the time series for each index:

```
sp$caldt<-as.Date(sp$caldt, format="%d/%m/%Y")</pre>
ny$caldt<-as.Date(ny$caldt, format="%d/%m/%Y")
nas$caldt<-as.Date(nas$caldt, format="%d/%m/%Y")</pre>
str(sp)
## 'data.frame':
                    5032 obs. of 2 variables:
## $ caldt : Date, format: "2001-01-02" "2001-01-03" ...
## $ spindx: num 1283 1348 1333 1298 1296 ...
str(ny)
## 'data.frame':
                    5284 obs. of 2 variables:
## $ caldt : Date, format: "2000-01-03" "2000-01-04" ...
## $ spindx: num 1455 1399 1402 1403 1441 ...
str(nas)
## 'data.frame':
                    5284 obs. of 2 variables:
## $ caldt : Date, format: "2000-01-03" "2000-01-04" ...
   $ ncindx: num 4131 3902 3878 3727 3883 ...
```

#### **Initial Plots**

We will start off by plotting a basic time series for each index to get an idea of what our data looks like:

plot(sp, type='l')



plot(ny, type='l')



plot(nas, type='1')



They all follow the same basic pattern, which is what we would expect, with the iconic fall in stock-price during the 2008-2009 period of the 'Great Recession'.

However, the stock price directly does not give us much information. Instead, we will take at the  $\mathbf{daily}$   $\mathbf{log}$   $\mathbf{stock}$   $\mathbf{returns}$ .

```
sp_logret <- diff(log(sp$spindx))
ny_logret <- diff(log(ny$spindx))
nas_logret <- diff(log(nas$ncindx))

plot(sp$caldt[-length(sp$caldt)],sp_logret,type='l')</pre>
```



plot(ny\$caldt[-length(ny\$caldt)],ny\_logret, type='l')



plot(nas\$caldt[-length(nas\$caldt)],nas\_logret, type='l')



We can see that the returns average around 0% with very high variability during 2008-2009 (caused by the Great Recession) and during 2020 (caused by COVID-19).

Let us now plot the density of the returns to try to understand the distribution which will be helpful when we will try to model the returns later one:

plot(density(sp\_logret))

### density.default(x = sp\_logret)



plot(density(ny\_logret))

### density.default(x = ny\_logret)



plot(density(nas\_logret))

## density.default(x = nas\_logret)



The returns look like they follow a normal distribution. So, we will make qq-plots to further confirm this:

```
qqnorm(sp_logret)
qqline(sp_logret,col='red')
```

#### Normal Q-Q Plot



```
qqnorm(ny_logret)
qqline(ny_logret,col='red')
```

#### Normal Q-Q Plot



```
qqnorm(nas_logret)
qqline(nas_logret,col='red')
```

#### Normal Q-Q Plot



The log-returns have much heavier tails than the normal distribution, which suggests that it might follow a Student's t-distribution. Let's explore this further:

acf(sp\_logret)

## Series sp\_logret



acf(ny\_logret)

## Series ny\_logret



acf(nas\_logret)

## Series nas\_logret



acf(sp\_logret^2)

# Series sp\_logret^2



acf(ny\_logret^2)

# Series ny\_logret^2



acf(nas\_logret^2)

# Series nas\_logret^2



pacf(sp\_logret)

# Series sp\_logret



pacf(ny\_logret)

# Series ny\_logret



pacf(nas\_logret)

# Series nas\_logret

