CSC 224 Principles of OS

2. I/O Management and OS Processes

I/O System Management

- The module that keeps track of the status of devices is called the I/O traffic controller.
- Each I/O device has a device handler that resides in a separate process associated with that device.
- I/O is the communication between an information processing system and the outside world

The I/O subsystem consists of

- 1. A memory management component that includes buffering, caching and spooling.
- 2. A general device driver interface.

Assembler

- Input to an assembler is an assembly language program.
- Output is an object program plus information that enables the loader to prepare the object program for execution.

Compiler

 A compilers is a program that accepts a source program in a —high-level language and produces a corresponding object program.

Loader

 A loader is a routine that loads an object program and prepares it for execution.

OS Processes

- A process is a program in execution.
- A process is also defined as an entity which represents the basic unit of work to be implemented in the system.
- The execution of a process must progress in a sequential fashion.

Components of a Process

- 1. Object Program
- Code to be executed.

- 2. Data
- Data to be used for executing the program

- 3. Resources
- While executing the program, it may require some resources

4. Status

- Verifies the status of the process execution. A process can run to completion only when all requested resources have been allocated to the process.
- Two or more processes could be executing the same program, each using their own data and resources.

Process Vs Program

- A program by itself is not a process. It is a static entity made up of program statement while process is a dynamic entity. Program contains the instructions to be executed by processor.
- A program takes a space at single place in main memory and continues to stay there. A program does not perform any action by itself.

- A process is a sequence of information executions. Process exists in a limited span of time.
- Two or more processes could be executing the same program, each using their own data and resources

Process states

- As a process executes, it changes state.
- The state of a process is defined as the current activity of the process.
- Process can have one of the following five states at a time:
 - New
 - Ready
 - Running
 - Waiting
 - Terminated

Process state

1. New

The process is being created.

2. Ready

 The process is waiting to be assigned to a processor. Ready processes are waiting to have the processor allocated to them by the operating system so that they can run.

3. Running

 Process instructions are being executed (i.e. The process that is currently being executed).

4. Waiting

 The process is waiting for some event to occur (such as the completion of an I/O operation).

5. Terminated

The process has finished execution.

Diagram of a Process state

PCB

- Whenever processes changes state, the operating system reacts by placing the process PCB in the list that corresponds to its new state.
- Only one process can be running on any processor at any instant and many processes may be ready and waiting state.

Process Control Block

- Each process is represented in the operating system by a process control block (PCB) also called a task control block.
- PCB is the data structure used by the operating system.
- Operating system groups all information that needs about particular process.
- PCB contains many pieces of information associated with a specific process e.g.

1. Pointer

 Pointer points to another process control block. Pointer is used for maintaining the scheduling list.

2. Process State

 Process state may be new, ready, running, waiting and so on.

3. Program Counter

 Program Counter indicates the address of the next instruction to be executed for this process.

4. CPU registers

 CPU registers include general purpose register, stack pointers, index registers and accumulators etc. number of register and type of register totally depends upon the computer architecture.

5. Memory management information

- This information may include the value of base and limit registers, the page tables, or the segment tables depending on the memory system used by the operating system.
- This information is useful for deallocating the memory when the process terminates.

6. Accounting information

 This information includes the amount of CPU and real time used, time limits, job or process numbers, account numbers etc.

 PCB also includes the information about CPU scheduling, I/O resource management, file management information, priority and so on.

- Draw a diagram for process state
- Draw a PCB block

Suspended processes

- The following are characteristics of a suspended process:
- 1. It is not immediately available for execution.
- 2. It may or may not be waiting on an event.
- 3. For preventing the execution, process is suspend by OS, parent process, process itself and an agent.
- 4. Process may not be removed from the suspended state until the agent orders the removal.

Reasons for process suspension

1. Swapping: OS needs to release required main memory to bring in a process that is ready to execute.

2. Timing: Process may be suspended while waiting for the next time interval.

Reasons for process suspension

3. Interactive user request : Process may be suspended for debugging purpose by user.

4. Parent process request : To modify the suspended process or to coordinate the activity of various descendants.

Revision questions

- Differentiate between a Compiler and an Interpreter
- What is the distinction between buffering, caching and spooling?

Process Management/Scheduling