CRPL-F64

Library, N. W. Bldg.

Reference book and to be taken from the Ellipary.

IONOSPHERIC DATA

ISSUED
DECEMBER 1949

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

IONOSPHERIC DATA

CONTENTS

	Page
Symbols and Terminology; Conventions for Determining Median Values	, 2
Monthly Average and Median Values of World- Wide Ionospheric Data	. 4
Ionospheric Data for Every Day and Hour at Washington, D. C	. 6
Ionosphere Disturbances	7
Solar Coronal Intensities Observed at Climax, Colorado	. 8
American and Zürich Provisional Relative Sunspot Numbers	9
Preliminary Mean K-Indices, Preliminary International Character Figures, Magnetically Selected Days	9
Erratum	, 10
Index of Ionospheric Data Published in 1949 (CRPI-F53 through F64)	. 10
Tables of Ionospheric Data	. 13
Graphs of Ionospheric Data	. 47
Index of Tables and Graphs of Ionospheric Data in CRPI-F64	64

SYMBOLS AND TERMINOLOGY; CONVENTIONS FOR DETERMINING MEDIAN VALUES

Beginning with data reported for January 1949, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Fifth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Stockholm, 1948, and given in detail on pages 2 to 10 of the report CRPL-F53. "Ionospheric Data." issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Conference, Washington, 17 April to 5 May, 1944," previous issues of the F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1948) conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendixes 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristics:

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count. See CRPL-F38, page 9.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

Values missing because of W are counted:

- 1. For foF2, as equal to or less than the median when it is apparent that h'F2 is unusually high; otherwise, values missing because of W are omitted from the median count.
- 2. For h'F2, as equal to or greater than the median.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of G (no Es reflections observed, the equipment functioning normally otherwise) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

MONTHLY AVERAGE AND MEDIAN VALUES OF WORLD-WIDE IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 34 and figures 1 to 68 were assembled by the Central Padio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

British Department of Scientific and Industrial Research, Radio Research Board: Lindau/Harz, Germany

Radio Wave Research Laboratory, Central Droadcasting Administration: Chungking, China Lanchow, China

French Ministry of Maval Armaments (Section for Scientific Research):
Dakar, French West Africa
Fribourg, Germany

All India Radio (Government of India), New Delhi, India: Bombay, India Delhi, India Hadras, India Tiruchirapalli, India

Indian Council of Scientific and Industrial Research, Radio Research Committee: Calcutta, India

Electrical Communications Laboratory, Ministry of Communications:
Fukaura, Japan
Shibata, Japan
Tokyo (Kokubunji), Japan
Wakkanai, Japan
Yamakawa, Japan

Norwegian Defense Research Establishment, Kjeller per Lillestrom, Norway: Oslo. Horway

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa National Bureau of Standards (Central Radio Propagation Laboratory):

Baton Rouge, Louisiana (Louisiana State University)

Boston, Massachusetts (Harvard University)

Guam I.

Huancayo, Peru (Instituto Geofisico de Huancayo)

Maui, Hawaii

Balanca T.

Palmyra I.
San Francisco, California (Stanford University)
San Juan, Puerto Rico (University of Puerto Rico)
Trinidad, British West Indies
Washington, D. C.
White Sands. New Mexico

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.
- c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month		Predic	ted Suns	pot No.	
	1949	1948	1947	1946	1945
December November	112	114	126 124	85 83	38 36
October September	114	116	119	81 79	23 22
August	111	123	122	77	20
July June	108	125 129	116 112	73 67	
May April	108 109	130 133	109 107	67 62	
March February	111 113	133 133	105 90	51 46	
January	112	130	88	42	

IONOSPHERIC DATA FOR EVERY DAY AND HOUR AT WASHINGTON, D. C.

The data given in tables 35 to 46 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols and Terminology; Conventions for Determining Median Values." Beginning with September 1949, the data are taken at a new location, Ft. Belvoir, Virginia.

Table 47 presents ionosphere character figures for Washington, D. C., during November 1949, as determined by the criteria presented in the report IRPI-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

Table 48 lists for the stations whose locations are given the sudden ionosphere disturbances observed on the continuous field intensity recordings made at the Sterling Radio Propagation Laboratory and at Ft. Belvoir, Virginia, during November 1949. The taking of SID records at Sterling, Virginia, was discontinued on November 14, 1949, at 1350 GCT. Any SID reported after November 14, 1949, were observed at Ft. Belvoir, Virginia.

Table 49 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Brentwood and Somerton, England, receiving stations of Cable and Wireless, Ltd., for various days in October and November 1949.

Table 50 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Platanos, Argentina, receiving station of the International Telephone and Telegraph Corporation for various days in September, October, and November 1949.

Table 51 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Riverhead, New York, receiving station of RCA Communications, Inc., for November 19, 1949.

Table 52 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Point Reyes, California, receiving station of RCA Communications, Inc., for November 6-7, 1949.

Table 53 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for 01 to 12 and 13 to 24 GCT, October 1949, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner basically the same as that described in RPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued February 1, 1946. The scale conversions for each report are revised for use with the data beginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IRPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal of the departure from linearity. The half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause. conditions may be reported as disturbed because of seasonal characteristics such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all the disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with solar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

SOLAR CORONAL INTENSITIES OBSERVED AT CLIMAX, COLORADO

In tables 54a and 54b are listed the intensities of the green (5303A) line of the emission spectrum of the solar corona as observed during November 1949 by the High Altitude Observatory of Harvard University and the University of Colorado at Climax, Colorado, for east and west limbs, respectively, at 5-degree intervals of position angle north and south of the solar equator at the limb. Beginning January 11, 1949, the actual measurements are on solar rotation coordinates rather than astronomical coordinates; thus values of the correction P given in previous coronal tables are omitted. The time of observation is given to the nearest tenth of a day, GCT. The tables of coronal observations in CRPI-F29 to F41 listed the data on astronomical coordinates; the present format on solar rotation coordinates is in conformity with the tables of CRPI-1-4, "Observations of the Solar Corona at Climax, 1944-46."

Tables 55a and 55b give similarly the intensities of the first red (6374A) coronal line; tables 56a and 56b list the intensities of the second red (6704A) coronal line. The following symbols are used in tables 54, 55, and 56: a, observation of low weight; -, corona not visible; and x, position angle not included in plate estimates.

AMERICAN AND ZÜRICH PROVISIONAL RELATIVE SUNSPOT NUMBERS

Table 57 presents the daily American relative sunspot number. RA. computed from observations communicated to CRPL by observers in America and abroad. Beginning with the observations for January 1948. a new method of reduction of observations is employed such that each observer is assigned a scale-determining "observatory coefficient," ultimately referred to Zurich observations in a standard period, December 1944 to September 1945, and a statistical weight, the reciprocal of the variance of the observatory coefficient. The daily numbers listed in the table are the weighted means of all observations received for each day. Details of the procedure are given in the Publication of the Astronomical Society of the Pacific, issued February 1949, in an article entitled "Reduction of Sunspot-Number Observations." The American relative sunspot number computed in this way is designated RA. It is noted that a number of observatories abroad, including the Zurich observatory, are included in RA. The scale of RA was referred specifically to that of the Zurich relative sunspot numbers in the standard comparison period; since that time, RA is influenced by the Zurich observations only in that Zurich proves to be a consistent observer and receives a high statistical weight. In addition, this table lists the daily provisional Zurich sunspot numbers, Rz.

PRELIMINARY MEAN K-INDICES, PRELIMINARY INTERNATIONAL CHARACTER FIGURES, MAGNETICALLY SELECTED DAYS

Table 58 gives preliminary mean K-indices for January through September 1949 from magnetic observatories widely distributed over the Earth's surface.

Table 59 gives preliminary C-figures for January through September 1949 from many world observatories.

Table 60 gives the quiet and disturbed days preferentially selected by the four magnetic criteria: C-figures, sums of the eight daily mean K-indices, the greatest daily K-index, and the sums of the squares of the eight daily mean K-indices.

These three tables have been furnished by the courtesy of the Committee on Characteristics of Magnetic Disturbance, Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. The majority of the world's magnetic observatories have cooperated in supplying the data, and the Meteorological Office, De Bilt, Holland, has efficiently assembled and compiled the summary tables.

ERRATUM

CRPI-F63, p. 57, fig. 65: The upper curve of critical frequency at 14, 15, and 16 hours should be labeled "F2" instead of "Es."

INDEX OF IONOSPHERIC DATA PUBLISHED IN 1949

(CRPL-F53 THROUGH F64)

The following index of tables and graphs of ionospheric data published in the CRPL-F series in 1949 is divided into three parts. Part I is an index of data observed in 1948 and 1949. Part II is an index of data observed prior to 1948. Part III is an index of errata published in 1949 concerning tables and graphs of data from ionosphere stations.

Both table and graph for the given station for a given month appear in the same issue.

Indexes of ionospheric data published prior to 1949 are in IRPI-F17, CRPI-F28, F40, and F52.

PART I

Index of Tables and Graphs of Ionospheric Data Observed in 1940 and 1949 and Published in 1949 (CRPI-F53 through F64)

	1						1948												1949					
Station	J	F	И	A	M	J		A	S	0	N	D	J	F	H	A	M		JY	A	S	0	11	D
Bagneux , France Baton Rouge, Louisiana Bombay, India Boston, Massachusetts Brisbane, Australia					5 3÷	¥ 56*	56* 54	54	57 ⁻ . 54 53		59 53 54 53 55	54 57 5/, 56	55 57 55 58	56 50 56 59	60 57	58 61 50 60	62 59	63 60	61 64 61 63		63 63			
Calcutta, India Canberra, Australia Capetown, Union of S. Africa Christchurch, New Zealand Chungking, China	62	62	62	62	62	62	62	62	57 53	57 54 53 54 54	59 55 54 54 54	59 56 55 55 56	60 58 56 56 56	50 59 57 58 53	59 58 59	62 60 59 60 59	61 60 61	63 62 62	63 62 63 64	64 63 64				
Dakar, French West Africa Delhi, India Falkland Is. Fraserburgh, Scotland Fribourg, Germany Fukaura, Japan				53	53	53 53	54 53 53 59	57 53	54. 56 57 59	56 56	56 59 56 58 55	57* 59 59 58 56	57 60 59 61 61	58 60 61 61	61	61 64 60	62	64	64	64				
Guam I. Hobart, Tasmania Huancayo, Peru Johannesburg, Union of S. Africa									54	54 53	53 56 53 54	56 54 55	59 55 56	59 56 57	57		59	63* 60 61	61 63 61 62		63 64			
Lanchov, China Lindau/Harz, Germany Madras, India Maui, Hawaii Nanking, China							54	54	54	54 53 55 54	56 54 56 53 56	56 54 57 54 56	58 56 57 55	60 57 58 56	58 60	60 58 61 58	59 62	62 63	62 64 61		64 63	64,		
Okinawa I. Oslo, Norway Palmyra I. Peiping, China Poitiers, France							56*	- 57	*57	54 *57*	53 54	54** 54 59*	55	56* 56 61*	57	58	61 59	61	61 61 61	62 62	63 64	64		
Rarotonga I. San Francisco, California San Juan, Puerto Rico Shibata, Japan Singapore, British Malaya								53		54 54	55 53 53 55	56 54 54 56 59*	58 55 55 61 59*	59 56 56 61	60 57 57	60 58 58	63 59 59	60 60	63 61 61 63		63 63			
Slough, England							53	53	57	56	56	59	59	60										
Tiruchirapalli, India Tokyo, Japan Trinidad, British West Indies Wakkanai, Japan										54 54	55 53 55	56 54 56	61 55 61	58 61 56 61	60 57	*61 60 58 60	61 59	62 60	64 63 61 63	64 62 64	63	64		
Washington, D. C. Watheroo, West Australia White Sands, New Mexico Wuchang, China Yamakawa, Japan									55	54 54	54 53 53 55	53 56 54 55 56	54 56 55 55 61	55 58 56 56 61	58 57 57	60	60 59	62 60	60 63 61 63	63	63		64	

^{*}See part III for index to errata on these data.

PART II

Index of Tables and Graphs of Ionospheric Data Observed Prior to 1948

and Published in 1949 (CRPI-F53 through F64)

Station	Month and year of data	F issue
Calcutta, India	January 1947 through September 1947 November 1947 and December 1947	62 62

PART III

Index of Errate Published in 1949* Concerning Tables and Graphs of Data

from Ionosphere Stations

Station	Month and year of data	F issue	Page	Erratum No.
Bagneux, France	March 1947 through October 1948 (not complete)	58	9	2
Delhi, India	December 1948	58 64 58	9	1
Hobart, Tasmania	June 1949	64	10	1 2
Okinawa I.	October 1948 through March 1949	58	9	2
Poitiers, France	July 1948 through April 1949	61	9	2
Singapore, British	November 1948	58	9	2
Lalaya	December 1948	60	9	
, and and	January 1949	60	9	1 2
Tiruchirapalli, India	March 1949	61	9	1

^{*}An individual erratum may refer to issues prior to CRPL-F53.

TABLES OF IONOSPHERIC DATA

17a obda	11.	ovember 1949						
Time	ton. D.	foF2	h'Fl	foFl	h¹ E	foE	fEs	(M3000)F2
00	260	5.7						2.8
01	265	(5.5)						(2.8)
02	260	5.4						2.8
03	270	5.2						2.8
04	260	(4.7)						(2.8)
05	270	4.4						2.8
06	260	4.2						2.8
07	230	7.2			120	1.8		3.1
08	220	10.0			110	2.4		3.3
09	220	11.8			100	2.9		3.2
10	220	12.0			100	3.1		3.1
11	230	13.0	-		110	3.4		3.0
12	220	13.1			110	3.4		2.9
12 13 14 15 16	230	13.0			110	3.4		2.9
14	230	13.0	-		110	3.2		2.9
15	230	12.9		~~	110	2.9		2.9
	220	12.4	****		110	2.2		3.0
17	210	11.4			(100)			3.0
18	220	10.1						2.9
19	220	8.8						3.0
20	230	7.2						3.0
21	240	(6.6)						(2.9)
22	250	(6.3)						(2.9)
_23	250	(6.0)						(2.9)

Time: 75.00%. Sweep: 1.0 Mc to 25.0 Mc in 15 occords.

			_	Ta	ble 3			
Boeton,	Massach	meette	(42,4°H,	71.2°V)			001	tober 1949
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	275	5.9						2.6
01	892	5.4						2.6
02	275	5,3						2.6
03	282	4.8						2.6
04	300	4.4						2.5
05	290	4.2						2.6
06	280	5.2						2.8
07	260	9.0						3.0
08	255	9.7						3.1
09	268	10.8						3.0
10	275	11.2						3.0
11	268	11.5						3.0
12	260	11.7						3.0
13	260	11.7						2.9
14	275	11.4						2.9
15	265	11.0						2.9
16	260	11.4						3.0
17	260	10.6						3.0
18	250	9.9						2.9
19	262	9.2						2.8
20	265	7.6						2.8
21	275	7.2						2.7
22	280	6.8						2.6
23	295	8.3						2.6

Time: 75.0°W. Sweep: 0.8 Me to 14.0 Me in 1 minute.

Table 5 White Sands, New Mexico (32.3°F, 106.5°V) October 1949											
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2			
00	290	6.1					3,1	2,6			
01	290	5.0					3.2	2.6			
02	300	5.0					3,3	2,6			
03	280	4.7					3.0	2.6			
04	380	4.8					2,6	2.6			
05	290	4.7					2.6	3.6			
06	270	5.5			120	(1.7)	2.8	2.7			
07	240	9.0			110	(2.4)	3.8	3.1			
80	230	10.8			110	2.8	4.0	3,1			
09	230	11.9	330		110	3.2	4.3	2.9			
10	230	12.5	530	4.5	110	3,5	4.1	2.8			
11	230	13.1	320	4.4	110	3.6	4.1	2.8			
12	230	13.3	220		110	3.7	4.2	2.8			
13	230	12.4	230		110	3.7	4.8	2.8			
14	240	13.3	230	-	110	3.8	4.6	2.7			
15	240	13.1	240		110	3,3	4.2	2.8			
16	240	12.6			110	2.7	4.0	2.8			
17	240	12.0			110	(2.2)	3.6	2.9			
18	220	10.5					3.1	2.9			
19	550	8.2					3,1	2.8			
20	240	6.6					3.3	2.8			
SJ	260	5.4					2.6	2.6			
35	270	5,2					3.1	2.6			
22	280	5.2					2.7	2.6			

Time: 105.0°W. Sweep: 0.8 Me to 14.0 Me in 2 minutes.

				Table	2			
Oalo, h	Morway (6	0.0°N, 1	1.0°E)				Oot	ober 1949
T1me	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	350	3.2						(2,4)
01	350	3.4						(2.4)
02	350	2.0					2.4	(2.5)
03	350	2.9					2,4	(2.5)
04	340	2.8						(2.5)
05	310	3.2						(2.6)
06	285	3.9						(2,6)
07	260	5.0			150	2.0		2.9
08	240	7.0			120	2.3	2.0	2.0
09	240	7.8			115	2.6		2.9
10	240	>8.5	-		115	2.8		2.8
11	240	>8.7	255		110	2.9		2.8
13	240	>9.0	260		110	3.0		2.8
13	240	78.0			110	3.0		(2.8)
14	240	>9.0	****	-	110	2,9		(8.8)
15	240	>9.0			118	2.6		(2.9)
16	240	>9.0			122	2.4		(2.9)
17	240	>8.5			140	2.1		(3.0)
18	240	>8.0				3		(3.0)
19	240	6.0						2.8
20	245	5.0						(8,8)
SI	270	4.0						(2.6)
22	310	3.8						2.6
23	320	3.6						(2,6)

Time: 15,0°E, Sweep: 1,6 Mc to 10.0 Mc in 5 minutes, automatic operation.

	A eldeT											
San Fra	ncisco,	Californ	1a (37.4	°N. 122.	30 M)		Qc.	tober 1949				
Time	h¹F2	foF2	h'Fl	foFl	h [†] E	foE	fEs	(M3000)F2				
00	300	4.4					2.7	2.6				
01	310	4.4					3.0	2.6				
02	320	4.6					2.0	2.6				
03	300	4.4					2.9	2.6				
04	300	4.5					3.0	2.7				
05	300	4.4					2.9	2.6				
06	280	5.0			110	1.6	2.9	2.8				
07	235	7.6			120	2.4	2.2	3.1				
08	230	10.0	240		110	2.8	4.7	2.1				
09	230	11.2	550		110		4.4	3.0				
10	240	12.0	550		110	3.6		3.0				
11	240	13.1	550	4.6	110	3.7	4.1	2.9				
12	250	13.2	230	-	110	3.7 -		2.9				
13		13.4	230		110			2,8				
14	240	13.4	240		110			2.8				
15	240	13.1	240		110	3.2		2.9				
16	240	12.4	240	*****	110	2.8	2.4	3.0				
17	230	11.6			100	2.2	3,1	3.0				
18	550	9.8					2,9	3.0				
19	220	7.6					2.0	3.0				
30	230	6.0					3.0	3.0				
21	250	5.1					2.7	3.0				
22	265	4.8					2.9	2.9				
23	280	4.6					2.6	2.8				

23 280 4.6

Time: 120,0°M,
Sweep: 1.2 Mc to 18.0 Mc in 4 minutes.

Baton I	Rouge, L	ouisiana	(30.5°M,	91.20W)			00	tober 1949
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000) F2
00	320	5,6						2,8
01	315	5.6						2.8
02	300	5.6						2.8
03	300	5.2						2.8
04	310	5.1						2.7
05	320	4.7						2.8
06	590	6.0						2.9
07	270	9.1	245		-			3.0
08	270	10.9	250		120	3.0		3,1
09	290	11.6	230		130	3,3		3.0
10	300	12.2	230	-	120	(3,5)		2.9
11	310	12,5	240	-	110	(3.6)		2,9
12	320	12.8	240		120	3,7		2,9
13	320	12.7	250		120	(3.6)		2.8
14	310	(12.6)	250	-	120	3.5		2.9
15	210	12.5	260	-	120	(3,4)		2.9
15	300	12.2	260		130	2.9		2.9
17	280	11.6	250		130			3.0
18	250	(10.2)						3.0
19	260	8.4						2.9
20	270	7.1						3.0
21	290	6.2						2.9
22	310	5.7						2.8
23	310	5.7						2.7

Time: 90.0°W. Sweep: 2.12 Me to 14.1 Me in 5 minutes, automatic operation,

				Table	7			
Mau1, E	iawali	(20.8 N.	156.5°W)		_		0e	tober 1949
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	270	9.1						2.9
01	250	. 7.6					1.1	3.0
02	240	6.0						3.0
03	250	4.8						2.8
04	300	3.9						2.6
05	310	4.0						2.5
06	350	4.5						2.5
07	280	8.3			130	2.3		3.0
08	260	11.3	260		130	2.9		3.0
09	280	12.5	250		120	3.3		2.9
10	310	(14.2)	240		120	3.6		(2.9)
11	310	(14.6)	240		120	3.7		(2.9)
12	350	(15.0)	230	6.9	120	3.8		(2.8)
13	360	(15.4)	240	7.0	120	3.8	4.0	(8.8)
14	340	(16.0)	250	7.0	115	3.6	4.2	(2.9)
15	320	(15.9)	240	6.9	110	3.4	4.0	(2.8)
16	300	15.1	260		115	3.1	4.2	(2.9)
17	270	14.5			120		4.5	(8.9)
18	250	14.2					4.8	(2.9)
19	250	13.6					5.6	(2.9)
20	260	13.5					4.6	(2.8)
21	260	12.9					4.3	(2.9)
22	260	11.2					2.8	(2.9)
23	260	9.9					2.6	2.9

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconds.

Guam I.	tober 1949							
Time	h¹F2	foF2	h'Fl	foFl	h E	foE	fEs	(M3000)F2
00	240	(12.1)					3.8	3.0
01	240	11.8					3.4	3.1
02	550	10.3					3.0	3.2
03	230	8.0					2.9	3.0
04	240	7.5					3.9	3.0
05	240	6.2					4.6	3.0
06	250	6.2					4.6	3.0
07	250	9.8			120	3.3	5.4	3.0
08	240	12.0			110	3.2	4.6	2.9
09	250	(12.4)	230		100		5.4	(2.6)
10	245	(12.8)	210		100	3.8	6.9	(2.4)
11	270	(11.6)	210		100	4.0	5.9	
12	270	(11.9)	210		110	4.0	5,2	(2.4)
13	280	(13.4)	220		100		6.0	(2.4)
14	260		550		100		6.2	
15	240		230		110		5.0	
16	250		240		110	3.2	4.5	
17	260				120	3.6	5.4	
18	290						5.2	
19	350						2.3	
20	320						3.4	
21	290						3.4	me purpo
22	260	~					3.7	
23	250	10.6					3.8	(29)

Time: 150.0°E.
Sweep: 1.0 Mc to 25.0 Mc in 15 aeconds.

Huanca	00	tober 1949						
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	240	11.2						3.8
01	240	9.4						2.8
0.8	250	8.6						2.9
03	240	8.2						3.9
04	240	6.4						3.0
05	240	4.9						3.0
06	260	8.6				2.2		3.1
07	245	11.8				3.0		3.0
80	230	13.3				3.5	10.4	2.8
09	270	14.4	550	5.5		3.8	12.0	3.5
10	270	14.3	550	5.5		4.0	12.0	2.2
11	(275)	13.2	210	5.4		4.1	11.2	2.2
12		12.1	210			4.2	11.6	2.2
13		12.2	210			4.0	11.7	3.2
14		12.2	210			3.9	11.7	2.1
15	550	12.3				3.6	11.7	2.2
16	240	12.2				3.2	10.8	2.1
17	270	12.4				3.4	7.4	3.2
18	320	12.0				1.2		3.2
19	420	11.2						2.0
20	400	12.0						2.2
31	320	11.7						2.4
22	300	11.7						2.6
23	260	11.6						2.7

Time: 75.0°W. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Table 8									
San Jus	n, Puert	o Rico (18.4°N,	66.1°W)	_		0 c	tober 1949	
Time	h¹F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2	
00	260	8.7						2.9	
01	250	8.0						2.9	
02	230	7.0						3.0	
03	240	5.6						3.9	
04		4.7						2.8	
05		4.5						2.8	
06	260	5.4						2.9	
07	230	9.6		3.5		E		3.1	
08	240	11.0				3.0		3.1	
09	260	12.5				3.5		3.0	
10	275	(13.0)				3.7		2.9	
11	280	(13.0)				3.8		2.8	
12	300	(13.0)						2.6	
13	300	(13.0)						(2.7)	
14	300	(13.0)						2.6	
15	290	13.0				3.6		2.7	
16	285	13.0				3.3		2.7	
17	260	12.1				E	3.8	2.8	
18	250	11.4						8.8	
19	250	10.3						2.8	
20	250	9.5						2.8	
21	255	8.9						2.7	
55	270	8.7						2.8	
23	270	8.6						2.8	

Time: 60.0°N.

Sweep: 2.8 Mc to 13.0 Mc in 9 minutes, autometic operation; supplemented by manual operation.

				Ta	ble 10			
Trinid	ad, Brit.	West ln	dies (10	.6°N, 61	,2°W)		0c	tobar 1949
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	230	10.2						3.2
01	220	8.8						3.2
02	220	6.6						3.2
03	250	5.2						3.1
04	250	4.6						3.0
05	250	4.6						3.0
06	240	6.8					2.4	3,2
07	550	10.2			100	2.7	3.5	3,3
06	220	12.7	210		100	3.4	4.0	3,3
09	240	13.7	550	5.2	100	3.7	4.2	3.2
10	240	13.8	210	5.2	100	4.0	4.4	3.1
11	250	13.8	200	5.4	100	4.1	4.6	3.0
12	250	14.4	210	5.4	100	4.1	4.6	2.9
13	250	14.3	210	5.2	100	4.1	4.6	2.9
14	250	13.8	550	5.2	100	3.9	4.8	2.8
15	250	13.8	220	5.1	100	3.6	4.8	2.8
16	250	13.3	550	5.2	100	3.2	4.6	2.8
17	240	13.2	22 0		100	2.3	4.)	2.9
18	250	13.0					4.4	2.9
19	250	12.5					3.5	3.0
30	230	12.0					2.9	3.0
21	230	11.0					2.7	2.9
22	250	10.6						2.9
23	240	10.6						3.1

23 | 240 | 10.6 Time: 60.0°W. Sweep: 1.5 Mc to 18.0 Mc, manual operation.

Lindau,	Harz, Ge	rmany (5	1.6°N. 1	0.1°E)			Septe	mber 1949
Time	h'F2	foF2	h'Fl	foFl	h E	foE	fEs	(M3000)F2
00	300	5.4					2.8	
01	300	5.0					2.8	
02	300	4.8					2.0	
03	300	4.5					2.2	
04	300	4.5					2.3	
05	290	4.1					2.2	
06	260	5.1			110	1.5	2.1	
07	240	6.3	240	3.7	110	2.3		
08	230	7.2	230	4.2	100	2.8	3.4	
09	250	8.4	230	4.5	100	3.0	4.4	
10	250	8.7	220	4.7	100	3.2	4.5	
11	280	8.9	210	4.8	100	3.3	4.5	
12	270	9.1	200	4.9	100	3.4	4.7	
13	280	9.2	210	4.8	100	3.3	4.8	
14	250	9.0	230	5.1	100	3.3	4.8	
15	240	9.1	230	4.8	100	3.2	4.2	
16	250	8.9	230	4.6	100	2.9	3.2	
17	250	9.1			100	2.5	3.4	
18	250	9.3			100	2.0	3.2	
19	240	9.0					3.0	
20	240	8.2					3.1	
21	250	7.0					3.2	
22	260	6.2					3.1	
23	290	5.7					2.4	

Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Mc in 8 minutes.

Palmyra I. (5.9°N, 160.1°W) Table 13								ember 1949
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	250	>13:0					2.0	(2.9)
01	240	11.7						3.0
02	235	10.2						3.0
03	240	8.9					1.7	3.0
04	250	7.0					2.0	3.0
05	250	5.7					2.0	3.0
06	290	5.5			140	1.4		8.8
07	260	8.3			120	2.6		2.8
08	250	10.0			120	3.3		2.5
09	250	10.8			130	3.7		2.4
10	270	11.5	220		120			2.3
11	300	12.2			120			2.3
12	300	12.7	~=-		120			2.3
13	300	13.2			120			2.3
14	325	13.5	250		120			2.4
15	325	13.8	240		120	3.8		2.3
16	250	13.4	240		120	3.5		2.4
17	250	13.4	250		120	3.0		2.3
18	280	12.8			115	2.1	2.6	2.3
19	360	11.6					2.6	2.2
20	380	10.6						(2.2)
21	305	11.7					1.8	2.4
22	270	13.2					2.1	2.6
23	260	13.2					2.0	(2.7)

Time: 157.50%. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 36 seconds, automatic operation; 13.0 Mc to 18.0 Mc, manual operation.

Table 15										
Wakkana	i, Jepan	(45.4°N,	141.70	E)			Au	miat 1949		
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2		
00	300	6.2					3.4	2.6		
01	300	6.1					3.6	2.6		
02	300	6.2					3.0	2.7		
03	300	5.9					3,3	2.7		
04	300	5,6					3.2	2.7		
05	285	5.8			100	2.0	3.2	2.9		
06	285	6.3	230		100	2.5	3.8	2.9		
07	280	6.8	220	4.4	100	2.9	4.5	3.1		
08	300	7.2	240	4.5	100	3.3	4.9	3.1		
09	300	7.3	230	4.7	100	~	6.0	3.0		
10	300	6.9	550	5.0	100		5.5	(3.0)		
11	310	6.8	, SS0	5.0	100	3.6	5.0	2.8		
12	310	7.0	210	5.0	100	3.7	4.8	2.9		
13	315	7.2	200	4.8	100		4.9	(3.0)		
14	310	7.0	220	4.8	100	3.6	4.0	(3.0)		
15	315	6.8	240	4.8	100	3.4	4.1	3.0		
16	300	7.2	230	4.5	100	3.2	4.2	3.0		
17	295	6.9	240		100	2.7	5.8	3.1		
18	280	6.7	250		100	2.0	3.7	(3.0)		
19	270	7.0					3.6	(2.9)		
20	290	6.9					5.6	2.8		
21	295	6.8					5.0	2.8		
22	285	6.5					4.0	2.8		
23	300	6.4					3.8	2.7		

Time: 135.0°E.
Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

		_		Table	17			
Shibata	a, Japan	(37.9°H,	139.3°E)		_		بناه	gust 1949
T'me	h1F2	foF2	h'Fl	foFl	h¹E	foE	fE5	(M3000)F2
00	580	6.8					3,8	3.9
01	280	6.4					3.5	2.9
SO	270	6.4					3.2	2.9
03	255	5.9					3.0	2.9
04	260	5.8					3.1	2.9
05	270	6.0	245			1.7	3.2	3.0
06	230	7.2	220		100	2.3	4 1	3.1
07	240	7.9	550		100	3.0	4.6	3.2
08	260	8.2	210	4.6	100	3.3	5.6	3.2
09	300	8.3	200	4.9	100	3.5	5.9	3.0
10	300	8.1	200	5.2	100	3.5	5.8	3.0
11	300	8.2	200	5.2	100	3.8	5.4	2.9
12	300	8.6	200	5.2	100		5.9	2.9
13	305	9.0	200	5.2	100	3.7	5.8	2,9
14	300	9.2	200	5.2	100	3.6	5.6	3.0
15	300	8.9	210	5.0	100	3.5	4.9	3.0
16	275	8.7	550	4.5	100	3.3	5.4	3.1
17	260	8.4	550		100	2.9	4.7	3.2
18	240	8.6	230		100	2.1	3,9	3.1
19	230	7.6					3.8	3.1
20	240	7.2					3.9	3.0
21	270	7.1					3.9	2.9
22	280	7.0					3.6	2.9
23	280	6.6					4.3	2.9

23 280 6.6 4.3
Time: 135.0°E.
Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

				Table	14			
Euancay	ro, Peru I	12.0°5.	75.3%)				Sept	embor 1949
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
Ot.	230	9.4						2.9
01	240	8.2						3.0
0.2	230	7.4						3.0
03	240	6.4						3.0
04	240	5.8						3.0
05	240	5.6						3.1
06	280	7.3				1.9	3.0	3.0
07	245	10.0				2.8		3.0
68	230	12.0				3.4	10.7	2.7
09	290	12.7	220	5.5		3.8	11.4	2.5
10	290	12.0	\$50	5.5		4.0	11.8	2.4
11	(280)	12.0	210	5.4		4.1	12.2	2.2
12	280	12.0	210	5.4		4.2	12.2	2.2
13	280	11.8	21C	5.3		4.1	12.2	2.2
14		11.6	210			3.9	12.2	2.2
15	550	11.5				3.7	11.9	2.2
16	240	11.4				3.2	10.8	2.2
17	260	11.4				2.5	5.6	5.5
18	320	10.6				1.2		5.5
19	425	9.1						2.1
20	410	8.9						5.5
21	310	9.0						2,5
SS	250	8.8						2.7
23	2.30	8.7						2.9

Time: 75.0°W.
Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

				Table	16			
i's raure	a. Japan	(40.6°%.	139.9°E)				* 1	- ₹8t 1949
Time	h¹F2	foF2	h¹Fl	foFl	h1E	PoE	fEs	(M3000)F2
00	300	6.8					3.1	2.7
01	290	6.4					3.2	2.7
(3	300	6.5					3.0	2,7
63	290	6.5					2.4	2.7
04	300	6.2					2.9	2.8
O5	285	6.2	250			E	3.0	2.8
06	260	7.2	230		110	2.4	3.4	3.0
07	270	8.2	230		110	3.0	4.2	3.0
08	290	8.1	230	4.6	110	3.2	4,4	3.0
09	300	7.9	215	5.2	110		5.8	2,9
10	330	7.9	200			~~~	5.6	2.9
11	330	8.0		5,2	110	~ ~ ~	5.7	2.8
12	330	8.4	270	(5.4)			5.1	2.8
13	330	8.5	240	5.3	-		5.2	8.8
14	320	8.5	225	5.1	110		5.4	2.9
15	310	8.4	220	5.0	110	~~~~	5.0	2.9
16	300	8.3	245	4.6	110	3.3	5.0	2.9
17	290	8.3	250		120	2.8	4.8	3.0
18	280	8.0	255		310	2.2	4.2	3.0
19	270	8.0	000m pr			E	3,5	3.0
20	265	7.4					3.6	2.8
21	280	7.2					4.2	2.7
22	290	7.0					4.8	2.7
23	300	7.0					3.5	2.7

Time: 135.0°E, sweep: 1.0 Me to 17.0 Me in 15 minutes, Salual , Arition,

	Table 12								
Tokyo,	Japan (3	5.7°N, 1	39.5°E)				Á	uguet 1949	
Time	h¹F2	foF2.	h'Fl	foFl	h ¹ E	fo∃	fEs	(M3000)F2	
00	270	6.9					3.9	3.0	
01	260	õ.8					3.6	2.9	
50	260	6.7					3.2	2.9	
C3	250	6.5					3,2	3.0	
64	250	5.8					2.3	3.0	
05	250	6.2			100	1.8	3.0	3.1	
06	230	7.1	215		100	2.5	3.7	3.2	
07	230	8.3	220		100	2.9	4.6	3.3	
08	240	8.4	200	4.9	100	3.5	4.7	3.3	
09	250	8.4	200	5.1	100	3.6	6.2	3.0	
10	290	9.2	200	5.4	100		6.0	3.0	
11	300	9.2	190	5.3	100	3.9	6.0	3.0	
12	300	9.7	190	5.4	100		5.8	3.0	
13	290	10.0	200	5.2	100	3.9	5.6	3.0	
14	290	9.8	210	5.2	100	3.7	5.2	3.0	
15	280	9.6	210	5.0	100	3.5	5.8	3.1	
16	260	9.1	215	4.9	100	3.4	5.4	3.2	
17	250	8.8	210	4.4	100	2.9	4.6	3.2	
18	230	8.7	210		100	2.2	4.1	3.3	
19	220	8.1		**			4.2	3.2	
20	240	7.5					3.5	2.9	
21	260	7.0					4.0	3.0	
22	260	7.4					4.6	3.0	
23	270	6.8					4.2	2.9	

Time: 135,0°E.
Sweep: 1.9 Me to 17.0 Me in 15 minutes, manual operation.

				Table	_12			
Yanakev	a, Javan	(31,2°N,	130,6°I	2)			Au	gust 1949
Time	h	foF2	hiFl	foFl	h¹E	foE	fEs	(M3000)F2
	5/10	7.1					3.0	2.7
	2-5	7.3					3.2	2.7
1 44	180	7.0					2.8	2.8
	270	6.8					2.5	2.8
04	260	6.2					2.6	8.9
U5	275	5.9					3.1	8.8
116	265	6.6	250			5.0	2.8	3.0
07	250	8.2	225		310	2.7	3.6	3.3
08	250	8.2	220	****	100	3.2	4.4	3.2
09	290	8.2	550	4.7	110	3.4	4.6	3.0
10	300	8.5	215	5.2	110	(3.7)	5.0	2.9
11	:"30	6.5	210	5.6			5.0	2.8
12	.760	10.1	220	5.7	100		5.4	2.7
13	350	10.6	225	5.6	100		5.1	2.8
1.1	740	10.6	S50	5.4	110		5.0	2.8
15	770	10.8	230	5.4	100		4.8	2.8
16	724	10.7	240	5.2	110	3.6	4.8	2.8
17	300	10.4	245	5.0	100	3.2	5.1	3.0
18	270	9.8	230		100	2.5	4.4	3.0
19	260	9.4					4.0	3.0
20	260	8.2					1.2	2.9
21	580	8.0					4.4	2.8
2.5	280	7.4					3.8	8.8
23	300	7.2					3.8	2.8

23 200 7.2 3.8
Time: 135.0°E.
Sweep: 1.2 Mc to 18.5 Mc in 15 minutes, manual operation.

Capeton	Table 21 Capetown, Union of S. Africa (34.2°S, 18.3°E) August 1949								
Time	11 F2	foF2	h'Fl	foFl	h E	foE	fEs	(1:3000)F2	
00		2.8						2.8	
01	(260)	3.0						2.8	
0.2		3.1						2.9	
03		3.1						2.9	
0.4	(240)	3.2						3.0	
05	(250)	3.1						3.0	
06	(240)	3.2						3.0	
07	(2.0)	3.0						3.0	
08	230	(6.1)				2.1		3,3	
09	240	(8.0)	550			2.7		(3.3)	
10	250	(9.2)	210		110			(3.2)	
11	260	9.3	\$00		110			3.1	
12	270	9.4			110	-		3.0	
13	270	9.6			110			3.0	
14	280	9.9			110			2.9	
15	530	(10.2)		-	110		3.5	(3.0)	
16	560	10.4	550		(110)	(3.0)		3.0	
17	240	10.2				2.5		3.1	
18	230	9.4				(1.7)		3.2	
19	210	6.8						(3.2)	
SO	550	5.6						3,2	
21	220	4.0						3.2	
55	(550)	3.0						3.1	
53	(240)	8.8						2.9	

Time: 30.0° E. Sweep: 1.0 Mg to 15.0 Mg in 7 seconds.

Delni,	India (2	8.6°N, 7	7.1°±)	Table	42			July 1949	
Time	•	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2	
00	415	8.2						2.5	
01	4.30	8.0							
03									
03									
04								2.6	
0.5	380	7.4							
06	360	7.7							
07	360	3.6							
08	400	8.6						2.7	
09	400	9.5							
10	440	9.8							
11	450	10.8							
12	440	11.3						2.5	
13	(440)	(11.5)							
14	440	(12.0)							
15	(420)	(12.0)							
16	(410)	(11.6)						2.5	
17	(410)	(11.5)							
18	400	(11.1)							
19	400	(10.6)							
20	400	(9.6)						2.5	
21	400	9.0							
23	400 420	8.6 8.3						2.3	

Time: Local, Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation, "Height at 0.83 foF2. "Naverage values; other columns, median values.

				Table	- 20			
Chungic	ing, Chin	a (29.4°	N. 106.8	(E)			A	ugust 1949
Time	h¹F2	foF2	h'Fl	forl	h1E	foE	fEs	(63c10)F2
00	260	9.6					3.2	2.5
01	260	8.6					3.2	2.6
02	230	7.9					2.6	2.7
03	240	7.2						2,7
04	240	6.4						2.7
05	260	5.4					2.8	2.7
06	240	7.2			~		3.6	3.0
07	240	8.4	220				4.2	3.2
08	260	9.0	550				5.4	3.0
09	300	8.7	210	5.4			5.4	2,7
10	320	9.6	210	5.4			5.5	2,5
11	360	11.0	200	5.8			6.0	2.5
12	340	12.2	500	5.7	90	4.4	6.2	2.6
13	3.30	13.3	500	5.5	90	4.4	6.6	2.7
14	330	14.2	200	5.4			5.9	2.7
15	300	14.4	500	5.2		~	6.2	2.8
16	280	14.0	500	4.9	80	3.4	5.4	8.8
17	270	13.0	230		85	3.2	5.0	8.8
18	240	12.4	215				4.2	2.8
19	550	11.8					3.9	8.8
20	\$50	9.9					4.2	2.7
21	270	9.3					3.8	2.6
22	280	8.8					4.2	2.5
23	260	8.8					4.3	2.5

23 260 8.8 4.3

Timo: 105,0°E.
Sweep: 1.5 Mo to 20.0 Mc in 15 minutes, manual operation.

Table 22								
Chungk	ing, Chine	a (29.4°	N, 106.8	°E)				July 1949
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	270	9.1					5.1	2.7
01	240	8.4					5.3	2,7
02	550	8.0					4.5	2.7
03	220	7.0					3.8	2.8
04	260	6.8					4.0	2.7
05	260	6.4					3.6	2.7
06	240	7.8					4.8	2.9
07	250	8.6	\$50				6.1	2.9
08	285	8.6	220				7.4	2.8
09	305	8.8	210	5.4			8.6	2.7
10	320	9.6	195	5.4			8.9	2.6
11	350	10.4	200	5.7			8.2	2.6
12	360	11.3	195	5.4	90	4.3	7.8	2,5
13	350	12.0	200	5.6			6.8	2.6
14	350	12.5	500	5.4			6.3	2.6
15	290	14.0	500	5.3	80	4.0	6.4	2.8
16	280	13.6	200	5.0	80	3.5	6.4	2.9
17	280	12.0	500	4.6	80	3.1	5.4	2.9
18	260	12.4	230				5.6	2.8
19	\$50	12.0					5.0	2.8
20	250	10.2					4.5	2.7
21	260	9.2					3.8	2.6
22	280	9.0					4.1	2.6
23	280	9.0					4.5	2.6

Time: 105.0°E.
Sweep: 1.5 Mc to 20.0 Mc in 15 minutes, manual operation.

Bombay.	India (19.0°N.	73.0°E)	Table	July 1949			
Time	•	foF2	h'Fl	foFl	h¹ E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07	390	7.9						
08								
09	480	9.7						
10	510	10.4						
11	600	11.6						
12	(600)	(12.2)						2.4
13								
14		(13.2)						
15		(13.5)						
16		(13.4)						s.3
17		(13.5)						
18	600	(12.9)						
19	585	11.4						
20	540	10.8						2,7
21	525	10.1						
22	510	9.2						3.0
23	(390)	8.2						

73 (390) 8.2

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

"Height at 0.83 for?.

"A-range values; other columns, median values.

				Table	25			
Madras,	lndia	(13.0°N.	80.2°E)					July_1949
Time		foF2	h¹Fl	foFl	h¹E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07	360	7.6						
08	420	9.0						2.7
09	480	9.5						
10	480	9.8						
11	480	9.8						
12	540	9.8						2.4
13 14	540	9.7						
15	540 540	10.0						
16	540	10.4						0.0
17	540	11.0						2.2
18	540	10.9						
19	540	10.9						
20	480	10.0						2.4
21	480	(9.2)						6.4
55	480	(9.0)						
23		,5,0)						

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation,
"Height at 0.83 foF2.
"*Average values: other columns, median values.

Table 27								
Fribour	g, Germa	ny (48.1	°11, 7.8°	E)				June 1949
Time	h¹F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	290	7.4					2.2	2.7
01	290	7.1					2,1	2.6
02	295	6.7						2.7
03	290	6.6					1.8	2.7
04	295	6.5	302					2.8
05	300	7.0	260	3.6	120	2.1	3.2	2.8
06	315	7.3	250	4.1	110	2.6	4.0	2.8
07	342	7.8	240	4.6	107	3.0	4.5	3.0
80	340	7.8	225	4.9	105	3,3	4.8	2,8
09	332	7.9	215	5.3	103	3.5	5.2	2.8
10	350	7.7	225	5.4	105	3.6	5.4	2,7
11	355	8.0	230	5.5	103	3.7	4, 5	a.e
12	370	7.8	210	5.4	103	3.7	4.9	2.7
13	360	8.0	220	5.4	105	3.8	5.0	2.8
14	375	7.6	225	5.4	105	3.7	4.4	2.8
15	355	7.6	225	5.2	107	3.5	5,2	2.8
16	345	7.6	S30	5.0	109	3.4	4.2	8.8
17	345	7.5	250	4.8	109	3.1	4.6	2.8
18	315	8.0	250	4.2	113	2.6	4.8	(2.9)
19	275	8.0			121	2.1	4.5	2.8
50	270	8.3					3.6	2.9
21	260	8.3					3.2	(8.8)
SS	270	7.8					2.7	2.8
23	278	7.7					2.3	2.7

Time: Local.
Sweep: 1.6 Mc to 17.6 Mc in 10 minutes, automatic operation.

Calcutta, India (22.6°N. 88.4°E) Table 29								
Calcut	ta, India	(SS'60N'	88.4°E)					June 1949
T1me	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	270	8.8				1,2	(3.0)	(2.9)
01		7.9				1.8	, - , - ,	(2007)
02		7.6				1.1	(3.0)	
03		7.4				1.0	1	
04		7.2				1.0		
05		7.8				1.2	(4.0)	
06	240	8.0				2.3	(3.2)	(2.9)
07	1	9.7				3.0	(4,5)	(-00)
08		10.4				3.6	5.0	
09	300	10.7				4.0	5.6	2.7
10		11.1				4.2	5.0	
11	1	11.8				4.1		
12		12.6						
13		12.6						
14		12.6						
15		12.6						
16		12.6				3.9		
17		12,6				3.4	(4.8)	
18	300	12.5				3.1	(4.9)	(2.7)
19	270	12.9				3.0	(4.5)	
50		11.9				2.0	4.1	
21	-	9.9				1.8	(3.8)	2.8
SS		9.2				1.5	(3.6)	
23	i	8.8				1.3	(3.1)	

Time: Local.

				Table	26			
Tiruch:	irapalli,	India (12.8°H.	78.8°E)				July 1949
Time	0	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00								
01								
0.2								
03								
04	i							
05	_							
06	360	7.0						
07	360	8.0						
08	420	9.5						
09	470	9.7						
10	480	9.8						
11	510	9.5						
12	540	9.7						
13	570	9.8						
14	540	9.5						
15	495	9.9						
16	500	10.2						
17	510	10.8						
18	480	11.0						
19	480	10.5						
50	480	9.5						
21	480	9.6						
22	620	(9.3)						
27								

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
"Height at 0.83 for2.

	Table 28							
Lanchow	. China	(36.1°N,	103.8°E)				Jì	ne 1949
Time	h¹F2	foF2	h!Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	360	8.0					3.9	2,3
01	380	7.9					4.0	2,3
02	380	7.7					4.2	2.3
03	360	7,7					4.1	2.4
04	360	7.8					4.1	2.2
05	360	7.6					3.9	2.3
06	340	8.2					4,5	2.4
07	360	9,8	320		150	3,2	4,9	2.4
08	380	10.0	320				4.5	2.4
09	400	11.0	340		150	3,6	5.0	2.4
10	380	11.0	350				4.8	2.4
11	400	11.5	330				5.0	2.3
12	400	12.0	350				5.0	2.3
13	400	12.0	340				5.0	2.4
14	400	12.0	340	~-~			4.8	2.4
15	400	11.5	320				4.8	2.4
16	400	11.5	320				4.8	2.4
17	400	11.0	300		160	3.6	5.0	2.4
18	40∪	10.5	320		150	3.1	5.0	2.4
19	320	10.2					4.6	2.5
50	300	9.5					4.5	2.4
21	(320)	(8.4)					(4.3)	(2.4)
22	340	8.4					4.2	2.3
23	360	8.0					4.0	2.4

Time: 105.0°E. Sweep: 2.4 Mo to 16.0 Mc in 15 minutes, manual operation.

Dakar,	French W	est Afric	ca (14.6		le 30			June 1949
Time	h'F2	foF2	h'Fl	foFl	h t E	foE	fEs	(M3000)F2
00	(380)	(5.0)					3,0	
01	370	(4.4)					4.2	
02	(340)	(4.6)					3.8	
03	(360)	(4.4)						
04	(360)	(4.2)						
05	(325)	(4.2)						
06	(260)	6.9					4.6	
07	(250)	8.2					5.4	
08	(250)	8.6			120		8.7	
09		9.0				3.9	8.2	
10	~	10.3		5.3		4.1	6.4	
11	(390)	11.2	230	5.6	118	4.2	4.3	
12	(410)	12.0	225	5.8	110	4.2	5.8	
13	(425)	13.1	240	5.9	110	4.2		
14	(405)	13.4	222	5,4	110	4.0	6.4	
15	(390)	(13.6)	245	5.3			5.4	
16	(350)	(13.7)	240		120		4.4	
17	(310)	13.2	240		120		4.8	
18	(285)	(12.2)			125		4.3	
19		(10.4)					5.3	
50	(400)	8.6					4.8	
21	(430)	7.8					5.2	
22	(410)	(6.8)					5.3	
23	(400)	(5.8)					4.1	

Time: Local, Sweep: 1.25 Mc to 20.0 Mc in 10 minutee, automatic operation.

Pribous	rg. Germa	ny (48.1	°N, 7.8°	E)				May 1949	
Time	h¹F2	foF2	h'Fl	foFl	h ¹ E	foE	fEs	(#3000)F2	
00	300	7.4						2.6	
01	300	7.2					1.9	8.6	
02	300	7.0						2.7	
03	300	6.5						2.6	
04	290	6.4						2.7	
05	260	7.0	258		128	1.9	2.0	2.9	
06	272	7.5	240	4.2	109	2.5	3,3	2.9	
07	295	8.0	232	4.7	106	2.9	3.7	2.9	
98	320	8.2	225	5.2	105	3,3	4.2	2.9	
09	320	8.4	220	5.3	108	3.5	4.4	2.9	
10	350	8.8	220	6.4	106	3.6	4.6	2.8	
11	350	9.0	216	6.7	105	3.7	5,1	8,5	
12	348	9.3	220	6.7	107	3.8	4.6	2.8	
13	340	9.3	220	6.8	108	3.6	4.7	2.8	
14	340	9.2	\$26	6.6	109	3.7	4.0	2.8	
16	340	9.0	330	6.4	110	3.6	3.9	8.8	
16	325	8.8	240	5.1	109	3,3	4.7	(8.8)	
17	298	(9.0)	240	(4.7)	111	3.0	3.6	2.9	
13	266	(9.2)	245		111	2.4	3.8	(2.9)	
19	260	(0.0)			123		3.2	(2.9)	
20	260	(8.8)					3.2	(2.9)	
21	260	8.4					3.2	(2.8)	
22	272	7.8					2.6	(2.8)	
53	280	7.6					2 2	(2.6)	

Tire: Local.
Sweep: 1.6 Mc to 17.6 He in 10 minutes, automatic operation.

Daham	Warran Mark As	N. 1. 124 .	Tal	le 33			
	French West At						May 1949
Time	h'F2 fcF2	h F1	foFl	h¹E	foE	fEs	(M3000)F2
00	7.8	3				4.4	
01	7.7	7				4.0	
0\$	7.4	1					
03	7.2	3					
04	7.0						
06	6.8	2					
06	7.6	5				4.7	
07	9.0)				6.4	
08	9.7	,			3.4	8.6	
09	10.8	1			3.8	6.7	
10	11.7	•	(5,5)		4.1	6.6	
11	13.2	3	(5.6)		4.2	6.4	
13	(13.7	')	(5,7)		4.3	5.8	
13	(13.7	")	(5.6)		4.2		
14	(14.2	?)	(5.3)		4.0	4.9	
16	(13.7	')	(5.7)		3.7	6.0	
16	(13.8	:)			Ann 10-100	5.8	
17	(13.7	')			-	6.0	
18	(13.7)				4.9	
19	(11.7)				4.2	
20	(10.3					3.7	
31	(8.9)				4.8	
22	(0.7						

22 (8.3)
23 (8.2)

**Time! Local.

Sweep: 1.25 Mc to 20.0 Mc in 10 minutee, automatic operation.

				Table	32			
Calcutt	a, lndia	(22.8°N,	88.4°E)					Nay 1949
Time	h¹F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	(225)	10.5				1.1		3.0
01		10.0				1.1		-,,
02	1	8.8				1.0		
03	(240)	(8.2)				1.0		(3.0)
04		(8.3)				1.0		1-000
06	1	(9.0)				1.1		
06								
07		(10.8)				3.4		
08	l	10.8				3.3		
09	(270)	11.6				3.6		(2.7)
10		12.3				3.8		
11	1	12.5				3.5		
12		12.8						(2.6)
13	1	12.6						
14	i	12.7						
15		12.8						
18		12.				4.0		*
17		12 6				3.3		
18	255	12 4				2.8		2.6
19		12.7				2.3		
50	l	(12.6)				1.4		
31	255	12.6				1.3		8.8
SS		12.2				1.3		
23		11.0				1.3		

Time: Local.

Patha		many (48.	037 77 0		· 34			
Time	h'F2	foF2	h'F1	foFl	h¹E	foE	fEs	(M3000)Fa
00	290	7.7						8,6
C1	292	7.3						2.6
os	300	7.1						2.6
03	300	8.8						3.6
04	300	6.4						2.6
05	265	6.8			-			2.6
06	240	7.3			120	2.0		3.0
07	235	(8.2)	235		110	2.6		(3,1)
08	228	9.4	252	6.0	105	3.1		(3.0)
09	238	10.0	550	(6.4)	104	3.4	3.6	2.9
10	260	10.6	550		104	3.6	4.0	2.8
11	290	11.0	220	6.0	106	3.7	4.1	2.8
12	308	11.4	210	6.2	108	3.7	3.9	2.8
13	326	11.6	220	6.0	109	3.6		8.8
14	320	11.4	556	6.0	109	3.6		2.8
15	250	11.4	226	6.0	108	3.6		3.8
16	240	11.3	230		106	3.2		2.0
17	240	11.0			110	2.7		(2.9)
18	246	11.0			128	2.0	2.2	3.9
19	246	(10.4)					2.0	(3.0)
20	240	(9.2)						(8.9)
21	250	(8.5)						(2.8)
33	260	8.1						2.7
23	280	7.8						(2,7)

23 280 7.8 (

Timo: Local.
Sweep: 1.6 Mc to 17.8 Mc in 10 minutes, automatic operation.

230 730

Median Count

¢°,

Central Radio Propagation Laboratary, National Bureau of Standards, Washington 25, D.C.

ONOSPHERIC DATA

Mean Time

75°W (3 3 0/K

=

0 5

ō

Day

Lot 38.7°N , Lang 77.1°W

Observed of Washington, D. C.

November 1949

National Bureau of Standards R.E.C. J.E.L Scaled by: B.E.B., J.D. B.E.B.

2 70

o

[280]

290.

ر-

J

U

J

J

J

J

2 %

Ξ

2.50

Þ

orm adopted June 1946

(240)3 (250) 5301A (230) (0 5 20) (230) [290] [3/0] Ö [220] 210] 280 K (230)

(280)

e)

[230]

(230)3

(240)

240 240

J

U

e

U

ζ,

J

(330)

270 240

(230)

(220)

[260]

[240]

U

U

(220)

 27 K

2.90

[220]

350 1

270,

Sweep 1.0 Mc ta 25.0 Mc in 0.25 min

Manual

Autamatic

Manual

Form adopted June 1945

National Bureau of Standards

J.E.L

(Institution)

œ

œί

Scaled by:

Central Radio Propagation Laboratory, National Bureau of Standords, Washington 25, D C IONOSPHERIC DATA

November 1949

Mc (Unit)

foF2

Washington, D.C.

Observed at

R.E.C. 8(69) (6.1)3 6(0.9) 5(44) (47) 5(5.2) (3.6) 5 (5.7) 3 (6.0) 2(2.9) 6.6 KK (6.8) 5 K(5.0) 5 (5.1) (62) 0.9 5.2 (2. E) 20 (6.0) -65 ور 6.5 23 7.0 7.0 3 ふん 53 55 28 m 676 15.175 (6.2) (+ +) S (49)8 (6.0) (6.3) (5.1)3 (68) (8.8) (51)3 47 4 (7.5) (99) -4.9 (7.1) 3 (6.3)5 (6.0)5 (6.3) (7:4) 6.9 00 70 نیا 8 9 ص و 22 ത് 4 to 9 (6.1.5) (5.9) 5(2.2) 6 (8.9) (6 3) K(5,1) 3 (585) (6.7) (1.8)5 (7.4) 8.0) (4.3)8 (5.4)8 (7.0) (5.2)3 (9.9) 65 00 7 5.9 5.2 6.9 7.0 0 7.9 % 9 -2 39 [6.8] [6.1]5 (63)8 (6 6)3 (6 5)5 (7.1)3 (7.0)3 3(1.9) K(60) F 18.7) 7.4 K (8.1) 5 K (6.8)5 00 Calculated by 7.0 9 7.5 20 ر ص 00 7.7 2.9 100 7.3 200 00 8 J 7.2 39 x 6.9 (8.5)5 (8.5) (89)3 19 0) (60) (2.8)5 82 * 3(8.8) 3(8.8) 5[8.8] (9.8) 9.3 60 (6.8)5 (7.1)3 00/ 5.6 90 9.3 0 06 <u>00</u> 4.6 8 9.5 00 7.9 9 9.5 00 <u>o</u> 39 J (10.1)3 8.5K (9.0)5 (92)\$ (9.5)3 7801) 10.5 (10.1) 10.4 201 (6.6) 9.3 1.01 2(6.01) (2.2) 107 103 90/ 6:11 4.6 13.0 00 4.6 10.5 9 1:1 92 6.7 30 (9.11) (10675 × /× (12.5) (11.9)3 (11.3)\$ 2(4.01) (9:01) 2(6:11) ().() (6.01) (112) (10.3)3 4.01 7.3 5. 7.5 700 12.7 12.6 13.0 13.2 107 107 +:// 1:1 12.6 10.6 1.1 8./ 30 _ 2(2,61) 8(1.11) [109] (10.8)5 8.5× (11.35 (12.3)5 (/1.5) 125 12.4 12.8 123 124 13.5 135 13.7 e n (13.8) 11.4 12.4 11:4 12.6 11.0 124 12.6 17 200 126 130 13.0 4:11 30 9 3(8/1) (121)3 [127]c (12.2) 5 (116)5 0(9://) 023) (25) 12.6 12.8 132 3 130 128 13.2 130 0 +1 138 124 (13.1) (134) 130 126 13.2 13.1 13.5 11.7 11.4 12.9 131 141 13.7 11.1 9.2 2 30 [12.2] (134) 12.6 (132) 12.6 (12.4) 774 (126)8 (129)5 105 K 106 K (10.1) F 13.4 7 13.5 /30 (14.1) (144) 8 13.5 13.1 139 147 140 13.3 13.0 130 130 129 13.2 71.4 12.7 120 13.4 140 14 30 4 12.6 12.6m (133)5 13.0 (/3.8) (14.2)3 13.8 13.2 12.9 12.6 13.3 140 14.0 13.1 13.0 6.11 12.7 /3.6 13.4 13.6 14.4 13.0 10 13.0 13.9 30 9.11 13.0 [12.8] (141) (14.0)5 133 5(141) (12.1)3 3(611) (14.1)5 14.0 130 12.4 12.2 12.2 13.7 7.8 13.3 13.0 13.1 137 13.1 13.8 132 140 13.1 13.0 126 13.1 13.4 13.1 30 75°W 2 (10.8)3 (12.2)5 96 % 12.0 (12.4)5 (12.1) (46)3 (114)2 13.0 13.0 142 811 130 134 130 13.2 13.1 13.0 12.9 12.8 12.8 12.4 8// 11.7 13.0 134 /3.3 13.1 143 13.9 13.4 13.2 12.7 30 12.8 = [136]m 7.1 92 13.0 13.3 13.8 13.4 13.8 12.5 11.9 1.5 11.2 17.6 120 13.3 12.3 14.3 8.11 12.0 128 134 124 11.7 8:11 11.5 11.3 61 J 39 0 (111)5 (105) 102 126 4.01 10.3 12.4 8:01 6:01 811 10.2 10.4 12.7 13.0 106 12.5 12.3 132 6:11 11.1 12.0 13. 10.8 711 9.2 72 11.8 611 11.8 12.4 29 J 5(5.6) (93)3 (9.2) (8.9)5 (81) 6.0 (79)3 10.0 11.0 1/0.4) 10.0 901 10.7 107 401 10.3 9.2 90 100 10.5 104 11.2 9.5 6.01 9.0 11.0 9.5 113 8.9 66 J 50 08 (7.0)5 (7.1)3 15(1.5) (5,7) 5 444 (2.2) (7.5) (7.3) 5.4 1 (6.1)5 u /5 (70)5 (8.3) 7.3 50 7.5 7.4 9 7 6.5 7.7 73 8.1 7.1 79 8 7.5 9 IJ 90 S 07 (5.5) (8.4) 1 (6.1) F 2(0.4) (40) 3.2)5 (3 5)\$ (41)F (3.7) 424 356 (43)3 (4.0) 5.0 3.6 % 42 4.5 5.2 46 5.5 <u>م</u> 3.7 47 5.4 47 4.8 5.2 3.8 J J 90 8 (47)8 [3.6]\$ (4.0) 3 (39)3 42F (4.1)5 s (4 4) (4.7) (47)3 (6.4) 5 (5.8)3 5 (44) (3.2)F (4.5) 5 (3.7) 5 3.9 F (5.5) 4.6 7.6 5.3 09 7.7 25 49 49 3.9 3.8 44 0.5 J 27 J (3.7)\$ (4.7) (51/5) (4.5) 5 (3.9)\$ (3.1) F (4.7)5 (6.0) (42)3 (5.6) 8 (4.0) J (4.0) 4.15 5.2 (44) 5.0 50 67 4.5 5 49 5,2 Lat 38.7°N Long 77.1°W 64 5.7 0 4.5 27 U J (54)5 (5.6) 5(0.4) 5.46 (4.7) 5 (5.5) (5.1) (5.6) 8 (48)3 (29)F (50)5 (4.2] s (4.2) g (46)3 (5.7) 465 20 7 (3.8) \$ (4.1) \$ 47 5,2 5.0 9.9 03 4.8 5.7 5.3 60 9 5.2 0 5.7 80 J J 50 F (5.5) (3.4) 8(9.5) (5.4)5 (5.0) \$ (5.2)3 (59)3 4(5.9) (5.4) (5.0) (5.5) 5.7 7 5.0 484 9 52 5.7 9.9 9 49 5.4 5.0 40 60 5.4 U 7 02 U (5.5) 3(8/1) (3.8) (5.0) 2(6.5) (6.0)3 (5 5)3 (5.7) 3 (5.7) (2.0) 4, 6 h (6.7) 5 (6.5) 2(8.5) (4.2)5 4:5 (3.5) 5.3 0.0 5.3 4.2 6.5 50 5.7 S, S 5.7 200 ۲ ō J 6.9 J ч (5.1) 5 (5.5) (6.8)5 4 80 (57) \$ (5.8) (57)5 (5.6) (49)5 $(5.7)^{3}$ (54) 2 (6.2)3 و و 65 5.5 6.0 0 5 9 7.0 5.7 4.5 57 U 5.9 29 Medion Count 4 20 2 9 7 00 0 0 = 2 -4 5 9 7 60 6 2 22 23 24 25 56 27 28 59 30 5

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

Manual

Automatic

Manual

(3.1)

(5.0) 8/K(4.2)3

(59)

(8.0)

9.2

10.7)

(11.5)

11.6

11.7

12.1

12.0

123

(9.2)

(88)

4.9

3.7

(34)

(3.1)

(3.1)

(3.9)

(5.7)

4.3

(8.4) (20)

5.6

5.7

59 30

(11.7)

12.8

(121)

11.9 11.3 11.3

11.0

19.7)

(8.2)

(4.2)3

(3.8)

(3.9) 5

(4.0)

(3.9) 3

2 (0.4)

28

(7.7)

(4.2)3

15(1.4)

3.9

(4.2)

5(8.4)

(5.4)3

J(8.7)

3.0

(87)

(5.2) 3 (5.0) \$ (4.6) S

(128)5

12.7 (120)

12.4

71.4 75.6

11.6

(121)

(+·1) (12.6)

(11.9)

12.0

7.8

3.9

(3.8)

(x, t)

5.7

1.6

105

(11.7)

12.6

128

1.8

86

(92)

6.0

4.2

7

رم ض

(2)

(6.5)

(6.7)

(8.0)

92

6.01

120

128

3.0

13.0

13/

13.2

12.7

11.9 30

8.01

00

2.4

(4.7)

4.6

(20)

(6.3)

5.5

(2.5)

Median Count

29

3

00

47

73

27

27

23

ş

37

23

53

8

29

3

30

30

30

30

30

30

30

30

 $\begin{tabular}{ll} $TABLE & 37 \\ $\tt Central Radia Prapagatian Labaratary, National Sureou of Standords, Washington 25, D.C. \\ \end{tabular}$

IONOSPHERIC

DATA

(13.4)

143

12.9

6.01

(6.6)

J

(133) 12.9 13.7 13.4

13.7

132

123 12.4

131

(13.8)

128

11.3 0.01 11.7 9.01

8.5

(5.9)

(35)

(1+)

2 (84)

(52) 5

(5.2)

4.9

(55) G(1.4) 500)

6.4

(5.1)

3.6

X [8:01]

10.6 x

10.2 13.7

00 0.

1430

1330

1230

1130

1030

0930

0830

0730

0630

0430 (4.4)

0330

0230 (5.0) 5

0130

0030

Day

3.2

5.3

Lat 38.7°N , Long 77.1°W

Washington, D. C.

Observed at ___

November, 19 49

00 16

(5.4)

(x 4) 0530

4.7

75°W

12.8

13.0

13.0

13.5

13.2 13.0 135

12.9

12.4

7.01

50 3.5 5.6

8: +

7.4 45 5.0 400 8.7

6.4

5.0

(5.3)

1.6 9.7

(4.7)

(5.3) 5.0 5.5 7.3 5.0

5

(5.7)

ω 0 0 = 2 5 4 5 9 1 <u></u> <u>6</u> 20

r, L)

9.

0.7

00 14

57

400

(5.0)

ہر رم 63

5.6 6.6 3.4 5.2 υģ 9

131

133

123

0 11

(133) 13.2

13.4

13.4 13.5

13.5 139

13.2

13.0 13.3

11.4

10.0

50

129

129

13.1

12.3

11.8

12.7 12.6

National Bureau of Standards

[Institution]

[Institution] R.E.C. B.E.B. Calculated by: Scaled by:

Form adapted June 1946

(58) 5 5(6.5) 2330 6 γ -3 5.2 6.3 59 (7.4) (7.7) (5.2) (5.2) 3 7.6 O (6.4).3 2230 2(4.9) (6.2) (7.4)3 (24) (7.0) (58) (6.9) (5.0) (0.9) 5 g (6 x) (6.6) (5.3) 2130 (7.3) (5.8) 5 2 (1 5) (5.7) (25) (2.0) 6.5 (38) (6.7) 00.3 (7.7) 7.0 (1.2) 50 (6.2) 5 (5 7) (5.4)3 2030 (5.7) (6 3) (6.3) 5 (6.9) 6.6 7.6 170 (7.8) 3 1930 (6.5) (6.9) (46) 00 (6.7) 7.7 8 (8.0) 7.1 (2.8) [4.6] (102) (12.0)5 1830 (6.7) 10.3 (84) (88) 101 101 10.7 10.3 6.6 (8.6) 6 8 (8.9) (2.0) 0 11.7 6 8 9 (11.8) 3 5(4.11) (11.3) P (11.5) 110.97 105 (10.2) 1730 601 12.5 11.0 12.6 601 11.7 11.0 12 (001) 9 6 4 11.11 11.3 (10.5) 12.4 (12) (11.2)3 1630 127 12.4 130 13.4 (12.1) (13.4) 12.6 12.6 (0:11) 6.01 11.2 (12.1) 11.9 611 801 10.8 11.3 (2.6) 122 (134) (11.6) (12.7) (135) 1530 (13.8) (129) 12.9 12.8 129 12.8 125 129 138 136 133 132 (677) 13.0 12.8 (116) (120) 13/ 12.9 (7.3) 6

(13.5)

13.4 12.5

13.6 13.0 130

13.0 [12.1]

7.11

8.01

0 00 . .

6.5

1.9

(5.6)

6.3 4.7

(6.5)

6.7 6.0 0

1.4.

13.8

14.0 13.4 12.6

13.8

13.0 13.4 13.4 12.6 13.0

13.3

11.7

(9.2) [5.9] (8.8)

(3 6)

(5.3)

67

(5.5)

(5.6) 3 (5.2)

(5.6) 3 54

1.4

(52)

(8.8)

(5.7)

(5.5)

(4.4)

4.7

(5.6)7

(5.6) 3

13.9

138 13.8 (13.7)

(13.9)

(135)

14.0

14.

#1

14.0

0 41

(13.3)5

11.0

14.0

14.0

(071) (13.4)

(141)

13.3)

(9.2)

(8.8)

(4.9) (4.4)

6.5

13.0

13.9

10.0

16.13

5(8.7)

(89) (6.2) (13.9)

12.8

6.7 0.6

(5.4)

6.4

5.0

5.4

2 (1.9)

(0.9 (5.5) (12.1)

12.6 13.8

13.1

12.5

(132)

(13.7)

(13.0)

127

128

[13.0]

12.6

12.0

(10.5)

12.9 11.0

12.0

0(8.8)

(13.1)

14.0

13.00

12.2

011

00

(5.2) (5.8)

487

(5.2) (5.9)

(5.5)7

5.6

(6.3)

ص و~

(8.9)

5.7

(6.7)

69:11

108

4.7

w 00

(4.0) 5.0

84

5.0

(11.9)

(12.7)

12.2

38 129

130 (127) (12.7)

12.4

11.7

(10.3)

7.7

(4.2)3

3.9

4.0

14.5)

8.7

55

(59)5

22 23 24 25 26 27

2

0 (5.5)

O

U

J

J

121

10.8

10:0

7.9 (4.2) 7 (8.0)

4.7

4.01

4.0 (5.0)

(j.4)

[4.0]

4.3 (3.4)

5.6 7

13.2

11.9

12.6

13.0 12.3 (122)5

12.73

(13.0)5

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

Monuol

Automatic

B

National Bureau of Standards

Unstite U.D.

B.E. 9

 $TABLE \ \ 38$ Central Radio Propagatian Labaratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

November 1949

Α̈́

(Characteristic)

J. E.L. J. J. S. 23 REC 22 Calculated by: B.E.B. 2 20 Scaled by: 6 8 7 1 9 B 1 gaaaaaaaaaaaaaaaaaaaaa (aaaaa ١ 210 210 300 adadadanda 75°W 2 aaaaa (aaaaaaa + 220 aaaaaaaaaaaaa;aaa 220 aaaaa 1 4 aaa = 200 (08 U aaaaaaaa 07 90 0.5 Lat 38.7°N Lang 77.1°W 04 03 Washington, D.C. 02 5 Observed at 00 12 Median σ <u>c - α </u> <u>ω</u> Count Day 41 61 2 М 2 9 4 8 25 4 _ 00 2 20 22 22 24 56 27 29 28 30 3

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manual [] Autamatic [8] $\begin{tabular}{lllll} $TABLE$ & 39 \\ \end{tabular} Centrol Rodio Propogotion Loborotory, Notional Bureou of Standards, Washington 25, D.C. \\ \end{tabular}$

Form adopted June 1946

				l														1						į											- Allinon			23
S	1	C., J.J.S																																				ICE 1946 G - 102519
National Bureau of Standards	J.E.L	R.E.	23	_																															_			T PRINTING OFF
u of S	(Institution)	E.B.	22 2																																			S GOVERNMEN
Burea	E. B.	9	21 2					,																_										-				2
ational	60	ed by:	20																	_	-														-			
Z	Scoled by:	Colculoted	61	_																				_		_									H			
			18						_																													
o. O			17																										-		_		-	-	-			
Rodio Propogotion Loborotory, Notional Bureou of Standards, Woshington 25, D. C			91	<u>.</u>	Ø	a	a	a	a	a	a	a	d	a	Q	a	a	a	Q	a	a	Œ	a	Ø	a	J	a	a	ø	a	a	a	Œ			l		
ards, Wosh	4		15	Вк	a	a	a	d	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	α	a	a	a	a	a	a	a	a			ı		
of Stando	DAIA	ıme	14	7 ×	Ø	a	a	a	a	7	a	a	a	a	a	a	a	a	a	a	a	a	a	ø	2	a	a	a	a	a	a	ø	a			1		2 25 min
ol Bureou		- Mean Time	13	ă	a	a	Q	a	a	a	a	à	a	α	a	a	α	a	a	a	Q	a	Ø	Ø	a	J	α	Z	a	Ø	a	a	J			1		_Mc to <u>25.0</u> Mc in <u>0.25</u> min uol □ Automotic ⊠
y, Notion	ONOSPHERIC	75°W	12	x 7	a,	a	Ø	a	a	a	Ø	7	a	Ø	a	a	a	7	α	a	a	a	a	a	a	J	a	Ø	5:9	a	a	a	a			1	`	Mc to 25.
Loboroto		7	=	7 Y	a	Ø	ø	7	a	a	a	a	a	a	a	α	α	a	a	Q	a	a	a	7	a	a	Ø	7	a	a	a	Ø	a			1		Sweep 1.0 Mc t Manuol
pogotion	2		0	, G	J	ø	a	1	a	a	a	a	a	a	a	a	Σ	Ø	J	d	Ø	a	α	a	Ø	a	a	Ø	a	a	a	a	a			1		S
Rodio Pro			60	ď	a	a	a	a	a	a	Ø	a	a	a	a	a	a	a	J	a	a	a	a	a	a	a	a	a	a	a	a	a	a					
Centrol			0.8	a	Ø	a	a	a	a	a	a	a	a	a	α	a	a	a	a	a	Ø	a	a	J	a	a	a	Q	a	a	a	a.	a					
			07																																			
			90																																			
949			0.5																																			
mber	(Month)	77.1°W	0.4																																L			
Nove	Ö.	Long.	03																																			
	Washington,	Lot 38.7°N	02																																			
	Wash	Lot.	Ю																																			
foFI	(Characteristic)		00								_																									-		
	اي و	6	Day	-	2	3	4	5	9	7	8	6	2	=	12	13	4	15	9	-1	8	61	50	21	22	23	24	25	26	27	28	29	30	3.		Median	Count	

Farm adopted June 1946

National Bureau of Standards

J.E.L.

Scaled by: B.E.B.

 $\begin{tabular}{lllll} $TABLE & 40 \\ \hline \end{tabular} Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C. \\ \hline \end{tabular}$

IONOSPHERIC DATA

Km November 1949

Washington, D.C.

REC (Institution) 23 B. E. B. 22 2 Calculated by: 50 6 8 (100) (100) 110 (100) W(001) W(001) (100) F100]8 (100)A (001) (100) S _ 9 B 5 0 (3) (100) (100) (12079 B 011 (001) (10)) (100) 011 011 011 100 011 100 120 011 0/1 011 0 0/ В 7 9 Ŋ 00 J 0 110 (100) (100) (1001) (100) (100) 4 (100) 4 (100) 110 × 110 × S X 011 011 00/ 100 (100) (100) 0// 100 011 011 001 100 011 011 011 110 11001/1 (100) 0 01 011 8(011) 011 8[01] 52 011 01 0// 0 110 5 8 B 3 S (100) (100)5 110 (110)5 [110]8 011 100 100 011 011 100 011 011 110 0// 011 011 011 75 4 В J Ø B Ø Ø _ Mean Time [110]5 (100)A (100)A 4(001) (100) 011 00/ [110]c [110]c 100 011 011 110 æ 0// 011 110 011 011 01 011 011 011 7 0 В B <u>10</u> Ź 8[011] 100/ 100 x 011 8/011) 011 110 100 120 100 0/ 011 110 011 01 011 100 0/ 011 0 // 110 110 5 Ø Q B 75°W 00 Ø (100]8 (100) A(001) (100)4 100 K 100 K 100 K 110 (100)4 (130)8 0// 100 (100)A [100] (100)A 001 130 120 011 011 011 001 011 011 011 0// 100 110 011 0/ 25 8 Ø Ø 8 O 8[011] [100]M 6(001) A(001) A(001) A(001) 1,001) 1,001) (110) (100)A (100)A (150)A P(001) P(001) 8[001] P(001) 100 [100]8 100 011 011 100 110 100) 4(00) 4(00) 110 011 100 (100]A (100)A 100 (100) [110]8 120 120 011 J 110 100 011 27 0 β 0 (100) (100)5 4(001) 110 011 100 100 011 110 120 100 100 01 100 100 011 30 110 60 J Ø a[0/1] 1001) V(001) M(001) 11074 110 120 A(00/) 130 130 120 011 0// 110 011 120 011 011 011 100 011 110 J 25 08 Q 8 (100)A 4(0/1) (110)4 100)A 100)4 130 120 120 160 150 120 150 120 160 170 120 20 9 J J J 90 U 05 Lot 38.7°N , Long 77.1°W 04 03 02 ō 8 Observed at __ 4 Count 15 8 N 6 22 25 Median Day m 4 2 9 _ œ 6 0 = 12 5 9 17 20 21 23 24 26 27 28 59 30

Sweep 1.0 Mc to 250 Mc in 0 25 min

Manual [] Automatic [3]

Manual [] Autamatic [8]

29

3

28

Median

Form adopted June 1946

National Bureau of Standards

Scaled by:___

IONOSPHERIC DATA

foE Mc November 1949 (Characteristic) (Munt) (Month) Observed at Washington, D. C.

Day

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lat.	Lat 38.7°N, Lang 77.1°W	Lang _	77.1°W							7.5	75°W	Mean Time	me					Calcul	Calculated by:_	80	В	82	R.E.C.	
7.8 [24]9 24* 31* 32* 34* (391) 531 58 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		02	03	0.4	0.5	90		90	60	10	=	12	13	14	15	16	17	8	61	20	21	22	23		
C B A C 35 34 (34) ³ (31) ³ 24 A 246 31 33 34 (34) ³ (34) ³ (34) (34) ⁴ (18) (18) 19								[2.4] 8	2.9 K		3.2 K		3.4 K	(3.3) \$											
1, 2, 6 31 3, 3 3, 4 (3,4) ³ (3, 4 3, 3 3, 4 (3,4) ³ (4, 6 4 4 4 4 4 4 4 4 4						J		В	V.	J	3.5	3.4	(3.4)0	[3.2]	2.9	¥									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								2.6	31	3.3		3.4]B	3.4	3.3	2.9	[2.4]s	8.7								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							1.9	2.7	3.1	3.3	3.4	3.6	3.4		(3.0)4	A	A								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							1.9	2.5	3.1	3.3	3.4		3.5	3.5	3.0	2.2									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1							2.6	3.1	4	8	8	3.6	3.4	2.9	7.4									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								(2.5)	3.1	3.4	3.5	3.6	3.5	3.4	3.2	2.4									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								[2.4]A	3.0	3.4	3.5	3.4	3.6	(3.3)0	3.1	K	₹								
2.0 2.4 2.4 3.4							(1.7)5		[2.9]4	3.2	A	A	(3.3)3	3.5	3.1	В	4								
1.8 $(3.5)^5$ $(2.8)^5$	1						2.0	2.4	2.9	[3.2]4	3.4	3.4	3.6	3.1	2.9	2.3									
1.8 2.4 3.0 $[3.2]^{6}$ $[3.4]^{6}$ $[3.3]^{6}$ <							1.8	5(5.2)	[2.8]5	3.1	8	0	В	(3.1)8	2.9	2.2									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							8.1	2.4	3.0	[3.2]8	_		(3.3)8	3.3	28	(4.4)5	S								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							А	4	æ	Æ		3,3)8	В	В	2.7	2.2									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							A	(2.5)5	2.8		l	12. P.S	[34] 5	3.3	3.0	S									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							K	A	∢	4	(3.3).A	A	₹.	Ą	₹	2.6	7								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								А	J	J	3.1	3.5	(3.3)5	3.2	2.9	B									
1.9 2.5 2.9 3.1 3.4 3.5 (3.5)° B B B B B B B B B							6.1	2.5	3.1	3.5	_	B(4.E)	3.5	(3.3)8	2.8	(2.6)8									
B B							6.1	2.5	2.8	2.1	3.4	3.5	(3.5)	8	B	B	B								
2.4 2.9 2.9 B A 3.3 (30)\$ 28 B C C A B 3.1 3.5 [3.2]* 3.1 2.6 2.2 A A B 3.0 3.0 3.3 3.2 C S 2.1 C (2.1)\$ 2.5 [2.8]\$ 3.1 B B B (2.5)\$ 2.2 C 2.4 2.8 2.1 B B B B (2.5)\$ 2.2 C 2.4 2.8 B B 5.5 (3.4)* 3.2 2.1 C 2.4 2.8 B B 5.5 (3.4)* 3.2 2.1 C 2.4 2.8 B B 5.5 (3.4)* 3.2 2.1 C 2.4 2.8 B B 5.5 (3.4)* 3.2 2.1 C 2.4 2.8 B B 5.5 (3.4)* 3.2 2.1 C 2.4 2.8 B B 5.5 (3.4)* 3.2 2.1 C 2.4 2.8 B B 5.5 (3.4)* 3.2 2.1 C 2.4 2.8 B B 5.5 (3.4)* 3.2 2.1 C 2.4 2.8 3.1 3.4 3.3 3.5 3.1 2.8 C 2.4 2.8 3.1 3.4 3.3 3.5 3.1 2.8 C 3.4 2.4 2.8 3.1 3.4 3.4 3.2 2.7 2.1 C 3.4 2.8 3.1 3.4 3.4 3.4 3.2 2.7 2.1 C 3.4 2.8 3.1 3.4 3.4 3.4 3.2 2.7 2.1 C 3.4 2.8 3.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.8 3.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.8 3.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.8 3.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.8 2.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.8 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.8 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 C 3.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1								В	0	В	В	В	8	В	В	8	B								
C C A B 3.1 3.3 [3.3]^4 3.1 3.4 2.5 3.2 A A B 3.0 3.3 3.3 2.2 C S 2.1 (2.1)^6 1.5 [2.8]^6 3.1 B B B (4.5)^5 C.2 2.4 2.7 2.7 2.7 3.5 3.4 M B 2.2 2.2 2.4 2.7 2.7 3.5 3.4 M B 2.7 2.1 2.4 2.7 2.7 3.5 3.4 M B 3.7 2.1 2.4 2.7 3.7 3.4 3.5 3.5 3.7 2.7 2.1 2.4 2.7 3.1 3.4 3.3 3.5 3.1 2.8 A 3.1 3.6 B <								2.4	2.9	2.9	В	А	3.3	(30)5	28	B									
A B 3.0 3.3 3.3 C S 3.1 (2.4)5 x.8 3.4 3.3 [3.2] [3.3] 3.1 (2.8) ³ C (2.1)8 x.5 [2.8]9 3.1 B B (2.5) ³ 2.2 x.4 x.7 x.7 3.5 3.4 M B 2.7 2.1 x.4 x.8 B B 5.5 (3.4) ⁹ 3.2 2.1 2.2 x.3 x.7 3.1 3.4 3.3 3.5 3.1 2.8 A x.4 x.7 3.1 3.4 3.3 3.2 3.1 3.8 A x.4 x.6 3.1 3.4 3.2 3.1 3.6 3.9 2.2 x.4 x.9 3.1 3.4 3.4 3.2 2.4 1.7						J	J	J	А	В	3.1	3.3	[3.2]A	3.1	2.6	2.2									
(2.4)8 3.8 3.2 3.3] [3.3] [3.4] 3.1 (2.8) ³ 2.2 (2.1)8 4.5 [2.8] 3.1 B B 6 (3.8) ³ 2.2 3.4 2.7 3.5 3.4 M B 3.7 2.1 2.2 3.4 3.7 3.4 3.3 3.5 3.1 2.8 2.1 (2.4) ^A 2.7 3.1 3.4 3.3 3.5 3.1 2.8 A (2.4) ^A 2.7 3.1 3.4 3.3 3.5 3.1 3.8 A (2.4) ^A 2.7 3.1 3.2 3.2 3.1 3.8 A 2.4 2.7 3.4 3.4 3.4 3.2 2.9 2.2 3.4 2.7 2.1 3.4 3.4 3.2 2.4 1.7							4	А	В	3.0	3.0	3.3	3.2	J	S	2.1									
(2.1)8 2.5 [2.8]9 3.1 B B (2.5) ⁵ 2.2 2.4 2.7 2.7 3.5 3.4 M B 2.7 2.2 2.4 2.7 2.7 3.5 3.4 3.2 2.7 2.1 2.2 2.3 2.3 2.7 B B B A 2.8 2.1 2.4 2.7 3.1 3.2 3.2 3.2 3.1 2.8 A 2.4 2.6 3.1 3.4 3.4 3.4 3.4 3.4 3.2 2.2 2.4 2.6 3.1 3.4 3.4 3.4 3.2 2.2 2.2 2.4 2.6 3.1 3.4 3.4 3.2 2.4 1.7								(2.4)8	3.8	3.2	3.3	[3.2]	[32]4		(2.8)3	J									
2.4 2.7 2.7 3.5 3.4 M 8 2.7 2.2 2.4 2.8 B B 5.5 (34)° 3.2 2.7 2.1 2.3 2.8 2.7 B B B A 2.8 2.1 (2.4)° 2.7 3.1 3.4 3.3 3.5 3.1 2.8 A 2.7 2.7 3.1 3.4 3.3 3.5 3.1 2.8 A 2.7 2.8 3.1 3.2 3.2 3.2 3.1 B B 2.7 2.8 B B [3.1]° 3.0 (3.0)° 2.2 2.4 2.6 3.1 3.4 3.4 3.4 3.2 2.4 1.7	- 1							(7.1)8	2.5	[2.8]0	3.1	В	В		(25)5	2.2	В								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l							7.4	2.7	2.7	3.5		Z	В	2.7	2.2									
1.3 2.8 2.7 8 B B A 2.8 2.1 (2.4) ^A 2.7 3.4 3.3 3.5 3.1 2.8 A 2.9 3.1 3.2 3.2 3.2 3.1 B B 2.1 2.6 3.1 3.2 3.2 3.1 B B 2.4 2.4 2.7 3.4 3.4 3.4 3.4 3.2 2.4 1.7 3.1 3.2 3.1 3.1 3.4 3.4 3.4 3.2 2.4 1.7								2.4	2.8	В	В	-	(34)6	3.2	2.7	2.1	S								
(24) ⁴ 2.7 3.1 3.4 3.3 3.5 3.1 2.8 A 2.9 3.1 3.2 3.2 3.2 3.1 B B 2.1 2.8 B [3.1] ⁴ 3.0 (3.0) ⁸ 2.2 2.4 2.9 3.1 3.4 3.4 3.4 3.2 2.9 2.2 2.4 2.9 3.1 2.4 3.4 3.4 3.2 2.9 2.2								7.3	2.8	2.7	Β	B	В	А	2.8	2.1	4								
2.9 3.1 3.2 3.2 3.1 B B B 2.2 x 4 2.9 3.1 x 8 B E [3.1] ⁴ 3.0 (3.0) ⁸ 2.2 x 4 2.9 x 3.1 x 3.1 x 3.2 x 4 x 3.1 x 3.1 x 3.2 x 4 x 1.1 x 3.2 x 3.1 x 3.2 x 4 x 1.1 x 3.2 x 3.1 x 3.2 x 4 x 1.1 x 3.2 x 3.1 x 3.2 x 4 x 1.1 x 3.2 x 3.2 x 4 x 1.1 x 3.2 x 3.								(2.4)A	2.7	3.1	3.4	3.3	3.5	3.1	3.8	A	А								
2,4 2,9 3,1 3,4 3,4 3,4 3,2 2,9 2,2 3,4 17									2.9	3.1		3.2		3.1	В	В	B								
2,4 2,9 3,1 3,4 3,4 3,4 3,2 2,9 2,2									2.7	4.8	В				(3.0)8	2.2									
2.4 2.9 3.1 3.4 3.4 3.4 3.2 2.9 2.2 xi	i																								
2.4 2.9 3.1 3.4 3.4 3.4 3.2 2.9 2.2 2.1 x1 x1 x2 x1 x1 x2 x2 x2 x4 17																									
21 23 22 24 21 21 23 22 24	- 1						8.1	7.4	2.9	3.1	3.4	3.4	3.4	3.2	2.9	2.2	,								
							12	17	23	77	- 1	7'	23	22	74	17	`								1000

6 02

22 23 23 24 24 25 26 26 27

5

9 7 8

8 6 0 - 5 5 4

Form adopted June 1946

National Bureau of Standards B.E.B., J.D., J.E.L.

Scaled by:___

IONOSPHERIC DATA

Es Mo, Km November , 1949 (Characteristic) (Unit)

Observed at Washington, D.C.

1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C G G G G G G G G G G G G G G G G G G G
6 6
G G
G G
G G
G G
G G
G G
G G
G G
G G G A7/00 A2/00 G A2/00 G G G G G G G G G G G G G G G G G G
G G
G G
G G
G G
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
27 30 29 28 29 30 29 29 30 29 29 29 29

43 TABLE

Form adopted June 1946

National Bureau of Standards

J.E.L.

J D

B.E.B.

Central Radia Prapagatian Labaratary, Natianal Bureau af Standards, Washingtan 25, D.C.

DATA ONOSPHERIC

November 19 49

(MI500)F2

(Characteristic

R.E.C. (1.7) \$ (1.7) \$ (1.7) \$ (1.7) \$ (1.7) \$ (1.7) \$ (1.7) \$ (1.7) \$ (1.7) \$ (1.7) \$ (1.9) 1.90 5(8.7) 20,00 2(6.1) 2(8.1) 20.6) (1.9) \$ (2.0)3 (1.7)P (1.7) 3 (1.7) 8 (1.6) 3 G(9.1) 3(0.5) (2.2) 8 (2.0) 8 (2.0) 8 2.0 3.3 1.7 (6.7) 6.1 6.1 6. (6.1) 23 38 (2.0) \$ (E(6.7) 1 9(6.1) 1.7 F 2(6.1) (1,9)3 (2.0)5 (1.7)3 (1.9)3 (1.8)3 8(1.50) (1.9) 2.0 8.0 6.1 67 0.6 6.1 1.7 22 30 S 27 8 (1.7) (2.0)5 0.9)5 1.6 F (1.9) 3 5(6.7) 9(6.1) (1.7)8 (8.7) 5(2.0) K (1.9)5 2.0 (2.0)8 (4.0) 3 (1.7) 3 (2.0) 3 (2.1)3 00 0.0 (6.1) 0.0 3.0 1.8 2.0 5.0 2 6.1 6.1 6.1 1.7 1.8 29 J (2.2) 1.9 M (2.0)= (4.1)5 (2.1)3 (1.7) S 2.1 Calculated by: 2.0 6.1 2.0 2.1 3.0 0.0 2.0 20 6.1 6.1 1.8 S 27 Scaled by: S S 1.8 K (2.0) (2.0)5 5(0.6) 5(6.1) 5(6.1) (2.1) S (2.2) S 1.9 X (2.0)s (2.2) E(0.5) E(0.5) 2.0 (2.0)3 2.0 2.0 30 2.3 30.0 0.0 2.0 6.1 6.1 2.0 2.0 2.0 2.0 6. 1.8 30 <u>6</u> O Ŋ 5(6.1) (2.0) 1.9× (1.7)x 1(67) (1.9) (1.9)3 (1.93 (2.1)8 (2.1)8 (2.1)8 (2.0)5 (2.2) 2.0 6(2.0) \$ (2.0) \$ (0.5) 0.0 000 2.0 6.1 3.0 0.0 6.1 0.0 1.9 1.9 0.00 (2.0) 2.0 6:1 6.1 6-1 S 39 (2.0) (2.0)5 1.8 X (1.9)3 (1.9)5 (1.9)3 (2.1)5 2.0 (2.0) 7 2.0 0.5 2.0 3 2.0 2.0 0.00 1.9 1.9 0 0.0 8.0 3.0 2.0 2.0 6.1 29 20 1.8 S 7 0(6.1) (2.0) 1.84 (2.1)g (2.0)5 2.0 2.0 0.8 2.0 2.0 2.1 2.0 1.8 2.0 2.0 00 2.0 6:1 7 6:1 6:1 6.1 6.1 2.1 39 9 િ (20)8 1.6 × (2.0) 9(6.1) (1.9)3 (2.0) (2.0) (1.8) (1.8) (0.0) (2.1) S (2.1) S 2.0 2.0 2.0 2,0 2.0 1.8 6.1-0.0 6.1 0.6 0.5 0.8 6.1 29 0 2.0 1.9 1.9 2.0 5.5 5 S (20)F (2.0)8 (1.9)3 1.9 5 11.73 30 20 6.1 2.0 2.0 0.0 6.1 2.0 2.0 2.0 2.0 0.0 6:1 2.0 0.0 4 0.5 1.8 0.5 0.0 6.1 1:00 O Mean Time (2.0) 5 (2.0)3 2.0 (1.9)5 1.8 6.7 0.6 6.1 6.1 2.0 0,0 2.0 2.0 2.0 2.0 7 6.7 20 2.0 2.1 2.0 27 6:1 2.1 5 v U 2.0 Z (20)5 (2.0) (2.0) 5(6.1) (2.03 18 (1.9) (2.1) 2.2 2.0 6.1 0.0 2.0 2.0 2.0 2.0 6 2.0 3.0 3.0 3.0 6.7 8.0 03.1 6.1 2.0 6.1 200 75°W J 2 (2.0) (2.0)5 (4.1) (2.1)\$ 1.8 K 2.0 2.0 8.0 20 30 2.0 2.0 2.0 30 2.0 20.0 2.0 2.1 30 7.0 2.0 2.0 80 3.0 2:1 2.1 = 200 6.1 (2.07 (1.9)3 1.9.K 2.0 2.0 7:7 2.2 2.2 2.2 2.2 2.1 2.0 2.2 2.0 2.1 2.1 1.8 3. 2.1 7.1 3. 3. 27 2.1 2.0 7.7 2 2.1 O 3 (2.3)5 (2.3)3 2.1 2.2 2.2 7.6 1:0 29 2.2 2.2 7.0 2.3 4.4 2.3 3 3.3 3 i 3.0 2.2 2.2 7.70 2.1 60 2.2 2.2 1.8 3. O (4.1) (2.3)6 (22) R (2.1)8 (2.3) 3 (2.0) 2.2 1.8 is is (2.2) 7.4 4.6 4 2.4 2.2 2.3 2.2 4.2 2.2 2.2 2.02 2.2 4.2 23 2.2 29 200 08 Ç 1.8 F (2.1)5 (3.1) 1.9 F (2.0)3 5(1.6) 5 (2.1) (2.1)5 (2.1) (2.2)5 23 F (2.0) 1.9 (2.0) (2.1) \$ (2.1)3 33 0.00 2,0 0.0 2.1 2.2 2.2 2.1 2.1 0.0 2.0 2.1 2.3 30 07 2.1 O (2.0) 4 1.7F (2.0) S (2.0) 1.7F 1.7F (1.7)5 (1.8)3 (1.6)3 (2.0) S (2.0) 5(9.1) (2.0) \$ (2.0) \$ (1.9)5 (1.9) = (8.7) 1.6 6.7 6.1 1.9 2,0 6:1 1.7 8.1 1.8 00; 1.7 90 00 6.7 00 O 0 1.7F 1.6 0 (1.9)3 (1.7) (1.8)3 (1.6)3 (8.1) (61) (1.8)2 (1.95 (1.7)K 7.6)5///6)3 1.9 1.8 8.1 6.7 6.1 1.8 1.6 00% 1.7 05 6.1 6.1 6.1 L 36 1.7 S 0 5(8.1) (8.7) 1.7 F 5(6.7) (2.0) (1.0k (2.1)5 (2.1)5 28.1) 1.7)5 2.0 (1.9)3 8.7 2.0 0 4 (% %) , Lang. 77.1° W 1:3 6:1 1.7 6.1 6.1 6:1 1.8 27 00 O 1.8 F 2(6.1) 5(6.1) (2.0) A 5(8.1) 1.7 F F(8.1) F(8.1) (1.9)3 (1.9) \$ (1.9) (1.8)3 (1.9)3 (1.8) 3 (1.7) 3 (1.7) 3 (1.7) 3 (1.8)3 B(0.5) B(0.1) 8-1 7(9.1) 7 (9.1) (2.0) = (2.1) 3 1.9) 9 (1.9) 1.00 6.3 9.1 1.8 6. 6.1 03 1.0 1.9 6.1 6.1 2.0 6.1 30 U O Washington, D. C. (1.5) (1.6) \$ 1.8 F 1.7 = (2.0) (1.8) Lot 38.7°N 1.9 (1.8)3 1.9 F 6.7 0.8 6.0 6.1 6.1 1.8 1.7 00 26 6./ 6:1 1.8 1.8 02 W J S (1.8)3 (1.7)5 (1.9) \$ (7.9)3 (2.0)3 (2.1) (2.0)E (8.7) (1.9) A (1.7)F (1.9)5 1.0x 1.8 1.9 (8./) 6.1 1.7 1.8 6:1 1.7 27 5 6:1 U (4.9) 2(6.1) (2.0)3 (2.0) \$ (8.7) 1.93 (1.8) S(8.1) 5(6.1) 9(6.1) 1.8 K 2.0 1.7 Observed at 1.7 6.9 1.7 1.8 6: 6.1 6.1 6.1 00 1.7 6: c) 29 Median Caunt М 4 Ŋ Doy 9 ~ 0 Ø Ø 6 = 2 ы 4 5 91 1 8 6 20 21 22 23 24 25 26 28 59 30 27

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manual [] Autamatic [8] Form adopted June 1946

National Bureau of Standards

101-1

ď

മ്

Scaled by:

TABLE 44

Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D C.

November 1949

(M3000)F2

(Characteristic)

Observed at __

(Month)

Washington, D.C.

DATA ONOSPHERIC

Ö (3.1) F (29)3 (30)5 (30)3 (26)3 (29) g (3.1) g (2.6) 5 (2.4)3 (30)3 (28)3 (30)5 27 K (28)3 K (29)3 (29) 6 (28) 5 3 (29) 2.9 (2.9) 2 2 23 S 2.7 2.9 70 (3.0) (2.9)3 (29)3 (29)5 (2.9°S (30)5 30 K (28)5 (26)5 (2.8)3 (29) 3.0 3.0 200 3.6 3.0 2.9 0 22 S υŋ U 27 a (29)3 (28)5 (33) \$ (2.9)5 (26)5 (2.6)3 (3/) } (2.5)3 (3.1) 5 K(2.8) 5 (30)5 30 (30)5 (2.9)5 (29)5 3.0 (30)3 (3.1)3 (26)3 (26)5 20 3.8 3.0 2 3.0 (2.9) 7 2.0 N 3.0 3.0 3.1 00 00 U 2 50 (2.6) (31)5 (3.0)3 (30)3 (3.3) 5 (3.1)3 (3.2)5 50 X Calculated by: 3.0 3.1 3.0 7 2.9 2 3.1 3 30 3.0 3.0 2.7 5. 50 2 30 U Ŋ (3.1)] (3.3)8 (3/)5 (29)5 (2.9) 3 (29)3 (30)3 (32) 2.9x 2 8x (30)5 30 29 30 29 3.0 30 (3.1)3 30 3 3.0 29 2.9 3 80 6 30 23 6 9 U 2.9 K (29)5 (3.2)5 (3.0)3 (2.9)3 2.8 K (26)5 (32)3 (2.9)5 (29)3 (28) 5 (3.2)5 3.0 (0.6) 3.0 79 (2.9) 3.0 0 0.0 3.0 50 30 2.9 3 4.9 30 0 2.9 30 2.9 4 N (2.9)5 (2.9)5 3.0 (3.1)5 (3.0)8 (3.0)3 (29)5 (31)5 (2.9) 8 (30)5 (2.9)5 (3.0) 2.9 3.0 30 3.0 (2.9) 3.0 30 3.0 2.9 3.0 2.9 0 2.0 3.0 9 3.0 2 30 v 29 2.9 2.7 K (2.9)3 (30)5 2.9 (3.2)\$ 30 (3.1)5 (29)5 2.9 (30) 8 0 30 30 3.0 3.0 0 3.1 2.9 3.0 0 20 30 3.1 3.1 3 3.0 9 2.9 5.9 U 29 (31) 5 (2.9)5 S (30) 5 (3.1)5 (31) \$ (31) \$ (2.8)5 (3.0) 3.0 3.0 0.0 2.9 29 2.9 3.0 (2.7) 5.0 00 2.9 29 2.9 8.0 3.1 2.9 2.9 5 S 2.0 200 29 2.9 3.0 29 (30) (3.1) \$ 28 KK(2.6)5 (2.8)F (3.1) 5 (2.1) 3.0 20 00 30 00 30 3.0 2.9 3.0 30 30 U 0 29 30 8 4 3 2.9 30 30 29 2.9 200 3.00 2.8 (2.9)5 (2.9)5 (2.9.3 (30)5 2.9 3.0 3. 3.0 0 2.9 2 2.7 0.0 3.0 3.1 3.0 8.0 8 2 30 4 3 رم م 200 30 4 5.9 2.9 27 U ξ U (2.9)5 (3.0)5 2.8 r (2.9)5 (2.9)5 (3.1)5 (31)3 2.9 2.9 2.9 2.9 2.9 2.9 3.0 2.9 30 30 2.9 3 50 30 2.9 3.1 30 3 3. 2.9 30 29 75°W U 27 K (30)5 (3.1) (30)7 20 3.0 3.0 0.0 3.0 (3.1)s 30 9.0 3.0 3.0 3.0 3.0 0 0 0 00 0 30 30 30 30 30 2.9 3. 3.1 3.1 30 = 20 X (3.0)3 (2.8) 3.2 3.0 30 3.2 3.1 3 3.0 3.0 3.2 3.2 3 3.0 3.1 3.0 3.1 3.3 3.0 32 30 3. 3.1 3.1 3.1 3. 3 0 U ξ 77 U (3.3)5 (3.4)5 32 X 34 3 3.2 32 31 32 5.3 3.0 3.2 32 3.1 ω. ω 3.2 32 32 6.3 32 83 3 3.1 32 3.1 3 3 3.1 29 3.1 3 1 60 V (3.3)\$ (31)8 (33)3 (32)5 (3.0) (3.3) 3.2 3.3 33 3.4 3.2 32 3 34 33 3.2 3.2 3.3 (J) 3.4 (33)8 3.3 32 3.3 34 32 3.0 3.3 3.2 3 29 08 U (3.2)5 (3.2)5 345 205 2.9 F (3.1)3 (2.9)5 (3.1)5 (3.1)5 (3.0) 3 3.0 (2.9) \$ (3.2)5 (3.0)5 (3.1)5 (30) (30)5 (3.1)3 (3.1)3 3.3 0.0 0 3.1 32 3.2 3.0 3.5 3.1 30 3.0 31 3.0 3.1 3.1 3 / 28 07 U U 265 (2.8)3 27F (2.5)3 (2 4)5 (30)5 (27) 3 (27) 3 (27) 5 3.0 (3.1) 5 27 5 5.0 2.0 2.9 9.8 2.9 5.5 2.7 9 200 20 3 8 3.5 90 27 8 U U (24)3 (2.8)5 (3.8) (2.9)3 2.4 2 (24)3 (29)5 (27)3 (3.0) \$ (2.8) \$ (30)5 (2.6) X 28 200 8 49 2.8 (28)3 9 5.9 49 10, 8 26 27 0 5 5.0 3 8 U U (25)5 (8.8) (3.6)5 (2.8)F (9 %) (3.0)5 (32)5 (2.7)3 (2.8) (3.0)5 (2.5) (3.8) 2.7 200 3.0 2.8 200 (3.2) 5 2.7 9 8 4.9 200 Long 77.1°W 3.00 04 3 27 U Ú (2.8) K 2.75 (2.8)3 (26)3 (29)3 (2.8) \$ (3.0) \$ (29)3 (3.1)\$ (26)3 (27)3 (2.5) g (2.8) g (28)5 (3.0)5 (2.8)5 (2.7)5 2.8 5 2.00 (28) 2.00 74 2.50 30 2.9 2.9 8 2.9 200 2.7 2.9 03 2.9 28 U (2.7)3 ((2.9)x 2.65 (2.9)8 Lat 38.7°N 28,87 2.7 5 (2.8)5 28F (2.8)3 (2 6)3 (2.3)5 (2.5)8 (3.0)5 (3.0) 5 2.9 2.9 50 8.8 6 28 8 2.9 30 27 5.0 200 70 02 U S U (27)F (2.8)3 (2.8)3 (28)5 (2.7)5 (3.0)5 (3.1)5 (28)F (3.0)5 2.8 X 2.9 (3.1)3 (30)5 (28) (2.6)5 3 200 8 ς 9 2. 300 50 3.1 ~ 27 27 5 V 4 (2.9)5 (2.8) 5 (2.8) (2.8)3 (2.9)F (2.9)5 (30)8 (2.9) 5 (29)3 (3.1)3 (2.7)3 2.8 K (2.9)5 2.9 3.6 2.7 3.00 30 2.00 8 7 3.6 2.9 2 3 3.0 4.7 2 23 U 00 Median Count 9 ω O Day 0 Ξ 2 2 4 5 9 7 8 6 20 2 22 23 24 25 26 27 28 29 30

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manual [] Automatic [3]

Manual

Automatic

Manual

Form adopted June 1946

TABLE 45Central Radia Prapagation Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

																										i												102519
ds		S.																																				OFFICE 1946 0 -
standar	on)	J.J.S	23						_													_													\vdash		1	
u of S	(Instituti	R.E.C.	22						_										-					_									_			+	-	U S GOVERNMENT PRINTING
Burea	8	E.B.,	=																									_									-	D
ational	by: B.E.B., J.D. J.E.L.	d by: B	20																								_									+	-	
ž	Scaled by:	Calculated by: B.	61														_		_							_	_		_						$\mid \cdot \mid$	-	-	
			18			_	_							_								_	_						-							-		
D. C.			17																																	-	-	
gton 25, 1			91	٦ ٪	Q	0	Q	0	0	Ø	a	0		a	3	0	0	0	8	a	8	0	2	0	B	U	B	9	a	a		a	a			1	-	
Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25,			15	ko ×	a	0	a	0	H		_		_	-	0	_	_	_	0			_		H			_	-	_		0	_	0		H		-	
Standard	DAIA		4	1 × 1	-				-	7					Q		Cd	a	-	0	a	~	7	~	C	~	a	a	a				7			1	1	um.
ureau of		Mean Time	13	Z .	-				H	Q				0		_			-	a		_		\vdash		_	B	-	a	_	a					,	-	Vic in 0.25
lotional 8	H Z S	- 1	12	x 7		_				a				a		0	_		-	a									8		a	_				1	-	Mc to 25.0 Mc in 0.25 min
aretory, h	IONOSPHERIO	75°W	=	×		a		7	L	Ø		_		_			_		-	a	Q			-	0	0		7	0	0	G	a	S S	_		1		
otion Lab			ō	Š		0	0	7		0				_			_		U			a a			D D			(d			C					1		Sweep_1.0
a Prapag			60	A.							a							-		a				-	0			-	-			0						
			08	Q	a	a (_	a			0			_		0	_		H		Q		8	-				Q	_		_			-		+		
Central			07 (9	J))	7))	\rightarrow \frac{1}{2})	7)	9))	7	7		_	~				_			_			_			+	1	
			90		_																													_		1	-	
ത്വ			05 (_														_	_				
Pr. 194		Α.	0 4 (_									
November 949	(Manth)	, Long. 77.1W	03					_									_		_					-				-	_						$\mid \cdot \mid$	1	-	
		1.1	02 (+	-	
	Washington,	Lot 38.7°N	ō																							_									H	+		
i.	stic)		00		-			-																														
(M30	(Characteristic)		Day	-	2	ю	4	2	9	7	80	6	01	=	12	13	4	15	91	17	8	6	20	21	22	23	24	25	26	27	28	29	30	31		Median	Cannt	
			-																									1							1	ž	ŏ	

Form adopted June 1946

Centrol Radio Prapogation Labarotory, National Bureou of Standards, Washington 25, D.C. TABLE 46

November 1949

(Unit) (M1500) E (Characteristic) Observed at

Washington, D.C.

Lot, 38.7°N , Long 77.1°W

0

60

90

20

90

05

04

Day

IONOSPHERIC DATA

National Bureau of Standards J.E.L 0 Scaled by: B.E.B.

23

22

R.E.C. B.E.B. Colcutated by:

2 20 0 <u>@</u> 15.5 Q

_ 4.0 9 S P 4.4 43 (4.3) 4.4 2

4.02 4 77 Ø

41 " (43)" 4.2 Mean Time (43)8 10 43 40 4.3 75°W

40% 2 4.2 1/3 =

4.3 *γ*. ω 4.2 4.4 Ø 17.1 Ø

3.9 47 4.1 4.3 7.7 P 40 42 4.02 3.9 1.1 4.02 J Ø

44 D X / 4.2 3.9 4.02 42 4.2 4.2 43 Ø 4

(4.1) 43 4.3 4.3 85 69 (43) 20 2 Q 42 4.2 J

4.3 S

03 02 5 00

2

4 2 9 М 7 œ 0 0 Ξ 2 13 4

4.02 4.2 4.3 43 4.00 1,0 4.4 17 43 4.1 4. Ø Ø (4.0) 4.2 (4.3) (4:4) 4.2 (4.5) 4.2 4.2 4.4 4.0 4 4.4 Ø Ø Ø D (4.2) (4.2) 4.2 (4.4) 8 (4.3) 4.2 4:1 Ø Ø Ŋ ⋖ (4.4) (4.4)B 3.9 4.1 O d Ø P Q (4.1) (4.2) 403 43 4.1 1 Q 1:1 Ø ∢ Ø ξ 4.2 4:7 4.8 3.8 J Q d ⋖ Ø 4.2 4.2 4.1 0 4.1 J d T Ŋ (4.0) 43 (4.3) 4.2 4.1 d 4.1 0 Ø Œ (4.6) 3.6 4 3.5 3.3 00 3.4 3.3 3.7 ব d d

5

(4.0)

4.1

S

4.2 4.4 Q

Ø

4.3 4.2

4.3 3.9

5

Ø Ø

Ø

Ø Ø 4.7

(4.4)

d

4.4

Ø

Ø

39

0

Ø ٤

Ø

Ø

(45)

4.4

5

J

4.4

4.4 43 4.3

4.3

0

4.1

171

(41)3

U

d

4.4

4.2

Q

Ø

J D

S D (4.4) (4.3) 5 Ø

3.9

4.4 4.3

4.3

(4.1)

40

Ø

Q

44

44

Ø

4.2

40

4.3

4.7 44

> 3.4 4.2

4.3

P

Ø

Ø

4.6 1/22

40

3.9

Ø

Ø

4.0

(4.3)

7.3

O

0

44

4.3

43

4.3

3.9

Ø

4.2

4.3

43

4,2 43

3.9

4.3

(3.8)

8 9 1 6 20

Sweep 1.0 Mc to 25.0 Mc in 0.25 min 00/ 10 00

Monual [Automatic B

42

9/

7.5 4.3

ì

4.2 4.3

4.2

4.2 4.0

4.03 100

4.1

80 'n

Median Count

10

U S GOVERNMENT PRINTING OFFICE 1946 G - 702519

Table 47

Ionospheric Storminess at Washington, D. C.

November 1949

Day	· Ionospheric character* 00-12 GCT 12-24 GCT	Principal storms Beginning End GCT GCT	Geomagnetic character** 00-12 GCT 12-24 GCT
1 2 3 4 5 6 7 8 9 11 12 14 15 6 7 8 9 11 12 14 15 6 7 8 9 21 22 23 24 5 6 7 8 29 30 21 22 23 24 5 6 7 8 29 30 20 20 20 20 20 20 20 20 20 20 20 20 20	1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 1 2 1 2 1	2300 mmm 1100	2 4 3 2 1 3 1 1 0 2 3 2 3 1 2 2 1 1 3 4 2 2 1 2 0 1 2 2 1 3 4 2 4 3 3 2 2 3 0 1 3 4 2 1 2 2 1 0 3 2 4 4

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9. 9 representing the greatest disturbance.

O to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of O to 9, 9 representing the greatest disturbance.

***No readable record. Refer to table 36 for detailed explanation.

----Dashes indicate continuing storm.

Table 48
Sudden Ionosphere Disturbances Observed at Washington, D. C.

November 1949

1949 Day	GCT Beginning End	Location of transmitters	Relative intensity at minimum*	Other phenomena
Novemb	oer•			
1	1642 1720	Ohio, D. C., England	0.1.	Solar flare*** 1650
1	1824 1945	Ohio, New Brunswick	0.2	
1 5 5	11.51 1205	England	0.3	
5	1830 1905	Chio, D. C., England, New Brunswick	0.0	Terr mag.pulse** 1829-1850
6	14,51 ****	Ohio, D. C.	0.01	
6	1639 1700	Chio, D. C., Canal Zone	0.1	
11	1520 1600	Ohio, D. C., England, New Brunswick	0.01	
17	1131 1215	England	0.1	
18	1130 1150	England	0.3	
18	1606 1620	Ohio, England	0.1	
19	1032 1100	England	0.0	
20	1555 1615	Ohio, D. C., England	0.05	Terr.mag.pulse** 1550-1600
29	1939 ****	Ohio, D. C.	0.1	Solar flare***
29	2100 2150	Ohio, D. C.	0.2	1932

*Ratio of received field intensity during SID to average field intensity before and after, for station KQ2XAU (formerly N8XAL), 6080 kilocycles, 600 kilometers distant, for all SID except the following: Station GIH, 13525 kilocycles, received in New York, 5340 kilometers distant, was used for the SID on November 5 at 1151, on November 17 at 1131, on November 18 at 1130, and on November 19 at 1032.

**As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

Time of observation at McMath-Hulbert Observatory, Michigan. *Incomplete recovery of SID.

Table 49

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief,

Cable and Wireless, Ltd., as Observed in England

1949	GCI	?	Receiving	
Day	Beginnin	ng End	station	Location of transmitters
Octobe	ir			
15	1100	1150	Brentwood	Canary Is., Chile, Palestine, Southern Rhodesia, Spain, Uruguay, Yugoslavia, Zanzibar
22	1400	1445	Brentwood	Canary Is., Chile, Greece, Spain, Thailand, Uruguay, Venezuela
22 23	1400	1420 1130	Somerton Brentwood	Argentina, Brazil, Gold Coast, Union of S. Africa Afghanistan, Austria, Bahrein I., India, Iran, Palestine, Spain, Switzerland, Turkey, U.S.S.R., Yugoslavia
23 28	1112 0815	1155 0845	Somerton Brentwood	Union of S. Africa Belgian Congo, Canary Is., Eritrea, French Equatorial Africa, Greece, India, Iran, Kenya, Madagascar, Southern Rhodesia, Spain, Trans-Jordan, Zanzibar
28 29	0813 1058	0900 1120	Somerton Brentwood	Aden, Ceylon, India, Union of S. Africa Barbados, India, Kenya, Southern Rhodesia, Swit- zerland, Zanzibar
Novemb				and another another and another anothe
5	1158	1210	Brentwood	Austria, Belgian Congo, Bulgaria, Canary Is., Greece, Iran, Kenya, Madagascar, Malta, Palestine, Portugal, Southern Rhodesia, Spain, Switzerland, Syria, Zanzibar
17	0943	0955	Brentwood	Belgian Congo, Canary Is., Eritrea, Greece, India, Iran, Kenya, Palestine, Portugal, Southern Rho- desia, Spain, Switzerland, Syria, Thailand, Trans- Jordan, Zanzibar
17	0942	1010	Somerton	Aden, Argentina, Brazil, Ceylon, Gold Coast, India, Union of S. Africa
17	1135	1200	Brentwood	Afghanistan, Bahrein I., Barbados, Belgian Congo, Canary Is., Greece, India, Iran, Kenya, Madagascar, Malta, Palestine, Portugal, Southern Rhodesia, Spain, Switzerland, Syria, Trans-Jordan, Uruguay, U.S.S.R., Zanzibar
17	1133	1215	Somerton	Aden, Argentina, Brazil, Ceylon, Gold Coast, Union of S. Africa
19	1030	1115	Brentwood	Austria, Bahrein I., Barbados, Belgian Congo, Canary Is., Eritrea, Greece, India, Iran, Kenya, Malta, Portugal, Southern Rhodesia, Spain, Syria, Switzerland, Trans-Jordan, Turkey, U.S.S.R., Yugoslavia, Zanzibar
19	1030	1100	Somerton	Aden, Argentina, Australia, Brazil, Ceylon, China, Egypt, Gold Coast, India, New York, Union of S. Africa

Table 50

Sudden Ionosphere Disturbances Reported by International Telephone
and Telegraph Corporation. as Observed at Platanos. Argentina

1949	GC			Other
Day	Beginni	ng End	Location of transmitters	phenomena
Septer	nber			
5	1232	1250	Brazil, Denmark, Germany, Netherlands, New York	Terr.mag. pulse* 1231-1233
12	1315	1345	Bolivia, Brazil, Chile, Cuba, Denmark, England, Germany, New York, Peru, Switzer- land, Venezuela	Terr.mag. pulse* 1314-1320 Solar flare** 1330
12	1520	1545	Bolivia, Brazil, Chile, Cuba, Denmark, France, Germany, New York, Peru, Switzer-land. Venezuela	
13	1305	1350	Bolivia, Brazil, Chile, Cuba, Denmark, England, New York, Peru, Switzerland, Venezuela	Terr.mag. pulse* 1305-1330
15	1518	1540	Bolivia, Brazil, Chile, Cuba, Denmark, France, Germany, New York, Switzerland, Venezuela	
17	1722	1300	Bolivia, Brazil, Chile, Cuba, Denmark, England, France, Germany, Netherlands, New York, Peru, Spain, Venezuela	Terr.mag. pulse* 1718-1735 Solar flare*** 1717
Octobe	er			
1.	1715	1730	Bolivia, Brazil, Denmark, England, Germany, Netherlands, New York, Peru, Spain, Venezuela	Terr.mag. pulse* 1709-1725
2	1408	1435	Bolivia, Brazil, Chile, Colombia, Cuba, Eng- land, Germany, New York, Peru, Switzerland, Venezuela	Terr.mag. pulse* 1402-1425
8	1315	1345	Bolivia, Brazil, Chile, Guba, Germany, New York, Peru, Switzerland, Venezuela	, ,

Table 50 (continued)

1949 Day	GC. Beginni		Location of transmitters	Other phenomena
	1			<i>a</i>
Octobe	Pa			
11	1519	1630	Belgium, Bolivia, Prazil, Chile, Cuba, Den- mark, France, Germany, New York, Peru, Spain, Switzerland, Venezuela	
13	1158	1431	Belgium, Bolivia, Brazil, Chile, Colombia, Cuba, Denmark, Germany, Netherlands, New York, Peru, Venezuela	
15	1512	1625	Belgium, Bolivia, Brazil, Chile, Cuba, Dermark, France, Germany, Netherlands, New York, Peru, Spain, Switzerland, Venezuela	
15	1640	1 725	Belgium, Bolivia, Brazil, Chile, Cuba, Den- mark, England, Germany, Netherlands, New York, Peru, Spain, Venezuela	
22	1355	1445	Bolivia, Brazil, Chile, Cuba, Denmark, Germany, New York, Peru, Switzerland, Venezuela	
Novemb	er		1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
5	1833	1840	Bolivia, Brazil, Chile, Cuba, Denmark, Eng- land, France, Germany, Netherlands, New	Terr.mag. pulse* 1829-1850
17	1137	1220	York, Peru, Spain, Venezuela Belgium, Brazil, Cuba, Denmark, Germany, Netherlands, New York, Venezuela	1027-1070
19	1036	1105	Brazil, Denmark, Germany	

^{*}As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

^{**}Time of observation at Meudon Observatory, France.

***Time of observation at McMath-Hulbert Observatory, Michigan.

Table 51
Sudden Ionosphere Disturbances Reported by RCA Communications, Inc.,
as Observed at Riverhead, New York

1949 Day	GCT Beginning End	Location of transmitters
Novemb 19	er 1035 1100	Argentina, Canada, England, Italy, Morocco

Table 52

Sudden Ionosphere Disturbances Reported by RCA Communications. Inc.,
as Observed at Point Reyos, California

1949 Day	GC Beginniı	r ng End	Io	cation	of transi	mitters			
Novemb	e r 2348	0000	Australia,	China,	Hawaii,	Japan,	Java,	Philippine	Is.

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

Table 53

Provisional Radio Fropagation Quality Figuree (Including Comparisons with CRFL Warninge and CRPL Probable Dieturbed Period Forecasts) October 1949

		lorth Atlan				orth Paci	fic		
Day	Quality figurs	CRPL* Warning	CRPL Forecast of probable disturbed periods	Gso- mag- netic Kch	Quality figure		CRPL Forscast of probable dieturbed periode	Geo- mag- netic KCh	
	01-12 GCT 13-24 GCT	01-12 GCT 13-24 GCT		01-12 GCT 13-24 GCT	01-12 GCT 13-24 GCT	01-12 GCT 13-24 GCT		01-12 GCT 13-24 GCT	
1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 27 28 29 30	6 5 6 6 5 4) 5 6 5 6 6 6 7 7 6 6 6 6 5 5 5 6 6 6 6 7 7 6 6 6 6	X X X X X X X X X X X X X X X X X X X	X X X	2 2 1 1 3 3 2 3 5 5 3 2 2 1 3 6 6 6 3 2 1 2 3 1 0 1 4 2 2 2 1 1 4 6 6 6 3 2 2 2 2 2 2 3 2 2 1 2 4 2 2 2 3 1 2 4 2 2 2 3 1 2 4 2 2 2 3 1 2 4 2 2 2 3 1 2 4 2 2 2 3 1 2 4 2 2 2 3 1 2 4 2 2 2 3 1 2 4 2 2 2 3 1 2 4 2 2 2 3 1 2 4 2 2 2 3 1 2 4 2 2 2 3 1 2 4 2 2 2 3 1 2 4 2 2 2 3 1 2 4 2 2 2 3 1 2 3 1 2 4 2 2 2 3 1 2 3	6 6 7 7 5 5 5 5 7 7 7 7 7 5 5 5 5 6 5 6	X X X X X X X X X X X X X X X X X X X	X X X	2 2 1 1 3 3 2 3 5 3 2 2 3 1 3 6 6 3 2 1 2 3 1 0 1 4 2 2 2 1 4 6 6 6 3 2 2 2 2 2 2 2 2 2 2 1 2 3 2 2 1 2 4 3 2 2 3 1 0 1 4 4 2 2 2 2 2 2 2 3 2 1 2 4 3 2 2 3 1 0 1 4 4 2 2 2 2 2 2 2 3 2 2 2 3 2 1 2 4 3 2 2 3 1 0 1 4 4 2 2 2 2 2 2 3 3 2 2 1 2 4 3 2 2 3 1 0 1 4 4 2 2 2 2 2 3 3 2 2 3 2 2 3 3 2 3 2 3	
31 icore: H M G (S) S		6 0 22 3 0	4 2 24 0			2 0 22 4 3	2 0 26 2		

^{*}Broadcast on WWV, Washington, D.C. Times of warnings recorded to nearest half day as broadcast.

Quality Figure Scale:

- 1 Uselese 2 Very poor
- 2 very pool 3 Poor 4 Poor to fair 5 Fair
- 6 Fair to good

- 7 Good 8 Very good 9 Excellent
- Symbols: X Warning given or probable dieturbed date
 - H Quality 4 or worse on day or helf day of warning
- M Quality 4 or worse on day or half day of no warning
- G Quality 5 or better on day of no warn~ ing
- (S) Quality 5 on day of warning
- S Quality 6 or better on day of warning
- () Quality 4 or worse (disturbed)

Geomagnetic K_{Ch} on the etandard scale of O to 9, 9 representing the greatest disturbance.

Table 54a

Coronal observations at Climax, Golorado (5303A), east limb

Date				Deg	ree	98 1	or	th o	of 1	the	SO.	lar	eq.	uat	03°				100	,			De	gree	35	sout	ch o	30	the	sol	lar	equ	ato	T		
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85
1949																																				
lov. 1.7	-	-	_	-	2	2	3	5	10	10	11	12	14	29	35	33	23	20	20	22	SI	19	17	15	14	12	6	3	3	3	3	3	_	-	-	-
2.7	-	-	-	2	2	3	4	5	5	6	12	13	16	30	35	28	24	22	25	23	25	24	20	15	14	13	9	8	7	. 3	2	_	000	_	_	-
3.7	-	-	_	-	2	2	3	4	4	5	9	11	13	16	17	17	11	11	14	17	20	20	20	13	12	12	8	4	2	-	-	-	1739	_	100	_
3.7 4.6	-	-	_	-	_	-	_	2	2	2	3	10	13	14	15	15	10	9	13	15	15	Ιħ	14	13	9	9	g	7	4	-	_	400	_	$\overline{}$	_	-
5.8 6.7	-	-	-	_	_	_	2	2	2	2	2	10	15	14	14	13	11	10	10	13	17	17	14	11	9	H	3	2	_	-	om	-	-	-	_	-
6.7	-	-	-	_	-	_	-	-	-	5	5	10	13	16	16	18	12	10	15	13	13	14	13	12	10	8	14	3	2	-	-	-	-	_	_	_
7.6	-	-	-	-	2	2	2	2	3	3	3	3	9	13	24	25	55	27	34	34	30	27	26	5,4	25	11	5	2	2	-	_	-	-	665	Cap	_
8.7	-	-	-	-	_	***	-	_	-	2	2	5	7	8	11	15	20	19	15	17	17	13	14	12	8	2	-	_	-	-	-	-	***	-	_	-,
9.6	-	-	-	_	_	_	_	-	_	-	-	2	6	10	9	12	14	20	18	19	50	15	17	18	13	10	3	S	_	-	-	40	-	X	X	X
12.8	-	-	-	_	_	_	_	-		-	400	2	7						20					14	13	10	7	2	-	-	_	_	_	-	4.00	460
13.6	-	-	_	_	_	_	_	_	-	-	3	3	4	12	13	18	19	22	50	17	16	15	13	12	9	8	6	4	2	-	_	_	-	_	_	_
14.7	-	-	-	_	-	-	_	-	~	1	2	3	6	15	27	24	SS	22	25	18	15	10	9	9	8	7	14	3	2	2	2	2	-	600	-	_
15.9	-	-	-	-	-	-	-	-	_	3	3	3	5	10	13	18	15	12	13	16	12	8	8	6	4	-	-	-	_	_	-	\Rightarrow	-	-	_	_
1 6.9	-	-	_	_	_	-	-	-	_	_	3	14	- 5	9	11	12	10	10	10	11	12	8	7	8	- 5	3	2	-	_	_	-	_	-	-	X	X
17.8	-	_	-	-	-	_	_	2	3	5	- 5	6	7	8	13	14	15	14	14	15	16	11	11	10	14	_	-	_	_	-	_	-	\rightarrow	-	-	-
*19.7	-	-	-	_	_	-	_	-	3	7	10	10	15	17	20	19	19	21	21	15	17	17	14	14	13	9	7	7	5	4	14	8	9	9	3	600
20.7	-	-	-	_	-	_	_	1	2	5	6	7	14	17	26	23	22	25	24	15	19	15	13	13	14	14	7	5	14	1	3	6	7	7	6	con
21.7	-	-	-	-	-	-	_	-	3	3	ļ	5	9	14	15	18	18	16	16	15	13	12	10	10	10	9	3	2	2	1	2	4	7	g	3	_
22.8	-	_	-	4.00	_	_	_	2	3	4	7	10	14	14	23	28	28	28	17	15	13	13	10	9	9	6	2	2	2	2	3	3	10	14	620	-
25.7	-	-	-	_	_	-	_	-	1	9	11	22	30	26	23	22	25	18	14	7	5	4	8	9	6	g	g	34	4	4	3	3	3	600	-	400
25.7 26.8		-	-	-	-	-	-	-	2	3	10	17	17	16	17	17	17	Jjt	10	10	8	8	8	7	7	8	g	8	3	2	_	600	-	(0)	6130	60
27.7	-	~	-	~	-	-	-	-	-	3	11	13	15	14	15	15	14	13	12	10	10	9	7	6	3	-	-	-	400	-	-	600	-	413	-	
29.8	-	-	-	-	-	-	-	-	_	-	3	10	13	14	13	15	15	14	12	12	10	9	10	5	3	2	2	1003	-	-	-	*20	120	-	_	
30.7	-	-	-	-	-	-	-	-	-	_	1	5	11	13	15	14	12	12	12	12	12	13	13	12	11	8	7	6	4	2	1	1	100	1919	0	-60

 $\underline{\text{Table 55a}}$ Coronal observations at Climax, Colorado (6274A), east $\underline{\text{limb}}$

Date				Deg	ree	s n	ort	h (of 1	the	90	lar	eqi	uat	or				100				Deg	ree	8 8	out	h o	f t	he	so]	Lar	equ	ato	T ⁿ			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	-5	10	5	10			25 .											08	85	90
1949										•																											
Nov. 1.7	2	2	1	1	1	-	-	-	-	-	-	-	-	2	3	14	_	2	10	14	11	1	-	-	1	1	3	3	14	5	3	2	1	1	1	1	1
2.7	1	-	-	-	-	1	1	-	-	-	_	-	-	1	2	g	5	_	14	5	2	1	-	-	_	_	_	439	1	1	1	2	2	_	_	-	1
3.7	1	1	1	1	1	_	-	1	-	-	_	_	_	2	3	1	2	3	6	9	10	10	1	-	_	-	_	-	1	2	3	3	2	3	3	1	1
4.6	1	1	-	_	-	_	-	-	-	-	-	_	1	1	2	2	1	400	-	14	1	2	2	-	-	urb	con	-	_	400	-00	-	-	-	_	659	403
5.8	-	_	_	-	-	-	-	-	-	-	-	_	-		1	- 3	1	1	3	14	1	1	-	-	-	80	-	-	-	-	-	dile	_	-	-	-00	400
5.8 6.7	1	-	_	-	-	_	_	***	-	-	_	-	-	-	1	3	9	-	1	14	1	1	_	-	1	1	-	1	1	1	1	1	1	1	-	1	1
7.6	2	2	2	2	1	_	_	-	_	1	1	5	5	1	1	12	11	11	5	8	15	16	3	2	2	1	1	1	1	1	3	1	2	3	3	1	1
8.7	2	1	1	1	-	-	_	-	40	-	-	-	1	1	1	1	10	12	1	1	1	11	10	5	2	1	1	_	-	-	_	-	-	-	400	607	
9.6	1	1	1	1	1	1	-	1	1	1	1	1	1	on	_	5	7	13	1	1	10	8	8	14	1	1	1	_	_	-	6	_	-	X	X	X	X
12.8	1	1	1	1	1	2	3	3	3	3	3	5	6	4	- 7	13	11	11	-	8	8	_	-	1	_	1	1	1	1	1	1	1	1	1	1	1	1
13.6 14.7	2	2	2	2	2	3	3	3	2	2	2	-	_	-	9	11		14	10	8	g	1	-	2	2	1	1	1	1	1	1	1	1	1	1	1	1
14.7	3	3	3	2	5	7	g	2	1	1	1	1	1	6	11	10	15	15	13	12	11	9	2	-	_	1	1	1	1	1	1	1	2	2	5	2	2
15.9 16.9	3	3	3	14	4	14	žţ.	3	1	-	-	_	-	1	8	8	16	5	5	7	8	14	1	-	1	1	1	1	1	1	600	-000	600	-	_	_	630
16.9	-	-	-	-	1	2	2	-	-	_	-	_	2	- 5	10	8	2	2	1	1	3	2	1	-	-	-	_	_	*20	-	400	_	_	-	X	K	X
17.8	3	3	3	4	5	ŢŢ.	3	1	-	_	-	-	-	1	5	3	14	10	-	-	10	_	1	7	5	1	_		-	400	-	1	1	1	1	1	1
*19.7	1	1	2	3	3	3	2	2	1	-	4	- 3	6	2	5	16	13	5	1	1	2	2	1	1	1	5	entr	-	469	Sec. at	-	1	1	1	1	2	2
20.7	1	1	1	2	2	2	2	2	2	1	-	3	- 5	- 7	10	18	11	5	9	-	4	3	1	_	1	2	con-	-	-	600	600	600	1	1	1	1	1
21.7	1	1	1	2	2	2	1	2	2	2	2	_	3	11	8	13	13	10	11	6	5	3	-	_	-	3	1	-	-00	-	-	600	1	1	1	1	1
22.8	2	2	2	3	3	3	3	3	3	2	1	_	2	2	12	11	12	11	12	10	2	1	-	-	-	-	_	-	***	_	_	-	-	-	800	co .	60
25.7 26.8	1	J.	-	1	1	1	1	1	1	2	1	12	13	12	1	14	14	11	7	1	1	-	-	1	1	1	400	*20	-	1	1	S	2	2	2	1	1
	1	1	1	1)	1	1	1	1	1	1	10	8	9	9	9	12	2	1	-	-	-	-	-	-	_	des	===	-	63	-	-	-		-	em	
27.7	-	-	-	-	-	-	-	-	-	-	-	10	10	10	11	9	10	3	2	1	-	_	-	-	400	_	660	600	_	-	600	-	_	-	_	_	con
29.8	-	-	-	1	1	1	1	1	1	1	1	1	1	5	7	12	8	3	3	60	1	2	-	-	-	-	-00	-	-	_		600	00	_	==	63	, 00
30.7	3	2	1	1	1	1	-	2	3	λţ	5	2	2	9	9	12	1	3	1	1	2	S	1	-	-	-	1.39	-	-00	2	1	1	1	2	2	2	-

Table 546

Coronal observations at Climax, Colorado (5303A), west limb

ate				Deg	ree	8 8	out	h o	£ t	the	sol	ar	egi	uato	or o] _ (Deg	gree	98 E	ort	h	of 1	the	sol	er	equ	nto	nr.		
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	70	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85
1949															,					-						-										
ov. 1.7	-	-	-	-	-	-	2	2	2	3	5	7	10	11	12				20				13	10	3	3	2	_	_	_	-	_	con.	***	-	-
2.7	-	-	-	-	2	2	4	5	5	6	6	6	7	9	10	13			14				10	g	4	2	-	-	4:th	-	-	0.9	-	_	400	-0
3.7	-	-	-	-	2	2	3	3	3	3	2	2	-	2	5	7			11					10	8	9	7	3	-	600	-	_	-	-	-	=
4.6	-	-	_	-	_	2	2	2	3	3	2	-	-	4	9	11	16	15	14	14	14	15	13	12	10	11	g	2	-	-	-	-	_	-	-	-
5.8	-	-	-	-	2	3	3	2	2	2	4	4	4	- 5		10	14	14	14	13	13	11	11	10	9	7	3	3	2	-	mo	-	-	-	-	-
6.7	-	-	_	2	2	2	3	3	3	4	8	11	12	11	g				15							9	4	4	4	2	-	-	-	-	-	-
7.6 8.7	_	-	_	_	2	2	2	2	2	2	2	4	12	14	13				19								.7	4	3	3	2	2	-	-	476	-
9.6	T	Ŧ	Ţ	7	Ŧ	Ŧ	Y	- Y	7	7	7	2	7	TO	7	10		10	17	18	10	To		15 10	15	13	10	5	5	2	2	-	-	-	600	90
12.8	-	_	_	-	_	_	-	2	2	2	7	ĥ	5	A .	Ę	å	9	8						16		24	23	13	7	-	_	***	_	-	_	880
13.6	_	_	_	_	_	2	2	3	3	ŭ	Ĺ	7	g	10	12	11			13	114	17	17	10	27	25			10	2	Τ.	_	425	_	_	_	_
14.7	-	-	_	-	_	_	_	2	2	2	3	5	9	11	13		17	18	16	17	18	18	29	50	27	23	18		2	_	_	_	_	_	_	
15.9	_	-	-	-	_	-	_	2	2	3	5	ź	10	11	12	14	25	23	15	15	15	16	30	30	29	20	13	11	2	_		_	_	_	_	8.0
16.9a	X	X	X	X	X	-	-	_	-	3	4	5				14	14	15	12	īí	14	17	16	15	13	10	5	2	_	-	_	_	_	_		_
17.8	-	-	-	-	-	-	-	2	2	3	5		10						14								10	4	2	_	_	-	comp		-	
*19.7	-	-	-	-	-	-	-	2	2	3	5	9	10	12	15	17		21	20	22	22	21	22	31	25	21	2	3	3	3	2	2	1	1	1	1
20.7	-	-	-	-	-	-	-	-	2	3	4	6	11	10	16	15	25	22	22	26	25	25			14	9	ΣĻ	2	í	í	1	1	-	-	-	_
21.7	-	-	-	-	-	-	-	-	-	2	4	7	9						20			33			12	3	1	3	2	2	2	2	-	_	-	N/O
22.8	-	-	-	-	-	-	-	-	-	-	2		10	12					13					10	6	2	-	-	-	-	-	***	6.3	cm	629	610
25.7 26.8	-	-	-	-	-	-	-	-	-	-	3	5	10	11					20					9	3	***	-	-	-	\rightarrow	-	_	-	\rightarrow	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	3	5	10				15				-,	12	7	2	-	-	-	-	-	***	-	-	600	mdr
27.7	-	-	-	-	-	-	-	-	-	-	•	3	2	2			12	13	13		15	15	14	13	8	2	1		-	an	-	-	-	-	-	-
29.8a	-	_	_	_	_	_	1	-	1	-	2	7	-	3	5	6	36	7	1.7	8	8	8 B	8	7	5		-	_	_		-	-	-	0.00	600	***
30.7	_	_	-	-	-	-	1	1	1	T	2	3	2	10	12	16	TD	14	13	13	13	14	13	15	9	8	8	- 7	- 3	1	***	600	_	-	-	420

Table 55b

Coronal observations at Climax, Colorado (6374A), west limb

Date				Deg	TOC	8	Bout	h c	of t	he	so.	lar	901	19 to	מכי				100				Deg	ree	98 I	ort	h c	of t	he	sol	ar	equ	uto	T			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	-5	7 "	5	10	15				35									80	85	90
1949																				T																	
Nov. 1.7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	11	12	12	10	1.7	-	-	_	5	3	1	1	2	2	3	3	3	3	2	2	1	2
2.7	1	1	1	1	1	1	1	1	1	1	1	_	_	-	1	7	12	14	13	l i	1	_	1	4	5	1	1	1	2	3	14	4	3	2	2	1	1
3.7	1	1	1	1	1	1	2	1	1	1	1	1	_	2	3	3	3	14	14	3	3	3	1	1	í	1	1	_	2	2	4	5	6	5	3	2	1
4.6	-	-	-	-	-	-	_	-	_	-	-	-	1	3	5	-	ī	5	-	3	2	10	_	_	Mile.	1	1	1	2	2	2	ź	2	ź	2	1	1
5.8 6.7	-	-	-	-	-	-	-	-	-	-	-	-	_	í	4	4	2	3	-	8	6	7	7	1	_	_	1	1	1	2	3	3	5	5	-	_	(10)
6.7	1	-	-	-	-	-	-	_	-	-	-	_	2	2	- 3	10	5	4	3	9	8	ġ	ġ	10	6	1	-	_	160		2	3	3	2	1	1	3
7.6	1	1	1	1	1	-	-	1	1	_	-	-	_	-	_	1	3	6	9	9	9	11	13	13	g	1	1	1	1	1	3	4	4	4	3	2	2
8.7	_	-	-	-	_	-	-	_	-	40	-	-	-	1	1	1	1	2	3	14	5	5	4	4	6	15	÷.	600	100		Ton-	1	1	3	3	2	2
9.6	I	X	X	X	X	X	X	X	X	X	X	X	X	X	1	1	1	1	ĺ	1	2	í	1	1	14	_	-	-		-	_	3	3	3	2	2	1
12.8	1	1	1	1	1	1	1	2	2	.2	1	-	***	1	1	1	1	_	1	1	5	-	1	10	14	14	1	_	490	1	1	2	2	2	2	ī	1
13.6 14.7	1	1	1	1	2	2	2	2	3	4	2	1	2	2	1		_	4	14	5	- 5	2	3	13	14	13	11		-	1	1	· 2	2	2	2	2	2
14.7	2	2	2	3	3	3	4	g	g	9	2	3	2	1	1	2	11	12	14	13	10	8	12	14	4	6	1	À,	3	3	14	14	3	3	3	3	3
15.9 16.9a	-	-	-	-	1	1	1	1	1	1	-	-	_	-	1	1	10	12	11	10	12		9	10	12	10	3	2	3	3	4	3	3	2	2	2	3
16.9a	X	X	X	X	X	1	1	1	-	_	-	_	_	-	-	_	1	4	14	5	1	1	2	g	7	2	í	1	í	í	1	í	-	-	eate	_	40
17.8	1	1	1	1	1	1	1	2	2	2	1	1	1	-	-	1	1	1	2	-	-	1	2	5	5	5	1	-	-	2	3	3	2	2	2	3	3
•19.7	5	1	1	1	1	2	2	2	2	2	1	1	-	-	1	1	14	5	14	-	14		1	2	-	-	1	2	2	3	3	2	2	2	1	í	í
20.7	1	1	1	1	1	1	2	2	2	1	1	1	1	1	-	_	13	9	10	-	9	13	1	_	_	1	1	-	_	í	í	1	1	1	1	1	1
21.7	1	1	1	1	-	-	1	2	2	2	-	-	1	1	2	1	i	5	14	10	13	12	5	3	1	1	1	1	_	-	1	2	3	1	1	1	1
22.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10	5	-	14	10	15	14	10	4	1	-	_	_	_	-	905	2	3	3	2	1	2
25.7 26.8	1	1	1	1	1	1	1	3	3	2	2	1	_		3	14	-	-	10	2	10	9	10	9	13	7	3	5	2	1	1	1	i	ī	1	1	I
26.8	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	2	5	2	10	14	10	11	11	3	i	2	í	_	_	-	-	1	1	1	1	1
27.7	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4	3	10	10	9	í	-	_	_	_	-	-	_	-	ess	-	610	630
29.8a	-	-	-	-	-	-	-	-		-	-	-	-	***	-	-	-	-	-	-	_	1	2	2	_	-	con	-	-	40		can	-	-	63	_	c)
30.7	-	-	-	-	-	-	-	-	-	-	-	-	-	1	3	1	1	-	2	4	5	5	6	1	-	-	-	-	1	2	2	2	2	2	2	3	3
																																			-		

Date	90			Deg	gree	35 1	nor	th o	of :	the	80.	lar	eq	ato	æ				00				Deg	Tee	8 5	out	h c	of t	he	30	lar	9q1	uato	or			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1949																																					
Nov. 1.7	-	1	1	1	1	2	2	2	1	1	1	1	1	1	1	1	-	-	-	-	-	-	\rightarrow	-	-	-	-	-	-	6.00	-	-	-	-	-	-	-
2.7	-	-	-	-	-	-	-	_	-	1	1	2	2	2	3	2	2	2	1	1	1	1	1	2	1	1	1	1	1	٠	-	-	-	-	-	-	-
3.7 4.6	-	-	-	-	_	-	-	1	1	1	1	1	1	2	2	2	2	1	1	1	2	2	2	1	1	1	1	1	-	-	-	-	-	-	-	-	-
4.6	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	1	-	-	\rightarrow	-	-	-	-	-	-	-	-	-	-	-
5.8 6.7	-	-	_	-	_	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	_	-	-	-	-	-	-	-	-	-	-	-
6.7	-	-	-	-	-	-	1	1	1	1	-	-	1	2	2	2	2	2	2	2	2	2	2	1	1	1	-	-	-	-	-	-	-	-	-	-	-
7.6	-	-	-	-	-	-	-	_	-	-	-	-	-	1	1	2	2	3	3	3	3	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-
8.7 9.6	-	-	-	-	-	-	-	_	-	-	-	_	-	-	_	1	1	1	1	1	1	-		_	_	-	-	-	-	-	-	_	_	_	_	_	_
9.6	-	-	-	_	-	-		-	-	-	_	-	-	-	-	1	1	1	1	1	1	1	1	1	1	-	-	-	-	-	_	-	-	X	Х	X	X
12.8	_	-	-				-		-	_	-	-	-	-	-	1	1	2	2	1	1	1	1	_		-		-	-	-	-	-	_	40	-	-	-
13.6 14.7	_		_	_	-	-	-	-	-	_	-	_	-	_	_	1	1	1	1	1	1	Т	_	-	_	-	-	_	-	_	_	_	-	_	-	-	600
14.7	_	-	-	_	_	-	_	-	-	_	_	-	-	1	1	Ţ	1	1	1	1	Т	-	_	-	-	_	_	-	-	-	-	_	-	-	-	-	-
15.9 16.9	_	-	_	-	_	-	_	-	-	-	Τ	1	Ţ	Ţ	T	1	Τ	1	-	-	-	-	_	-	-	_	-	-	-	_	_	-		-	_	~	
10.7	_	-	_	_	_	-	_	_	_	_	-	-	_	-	_	-	-	-	-	-	-	-	_	-	-	-	7	-	-	-	-	_	-	-		Λ.	X
17.8 *19.7	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	4	1	1	1	1	1	1	1	1	- 1	1	4	-	-		-	_	-	-	_	626	-
20.7	_	_	_	1	1	1	1	1	1	_	_	_	_			Τ.	_ T	1	1	1	Τ.				_	_	_	_	_	_	_	_	_	_		_	-
21.7	_	_	_	_		1		1		_	_	_	_	1	1	1	1	1	3	1	1	1	1	1	_	_	_	_	_		_	_	_	_	_	_	-
22 8	_	_	_	_	_	_	_	_	_	_	_	_	1	1	2	2	2	2	i	1	1	1		1	_	_	_	_	_	_	_	_	_	_	_	_	_
25.7	_		_	_	_	_	_	_	_	_	1	1	1	1	1	1	1	7	1	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
22.8 25.7 26.8	_	_	_	_	_	_	_	_	_	_	1	1	1	1	1	1	1	1	_			_	_		_	_	_		_	_	_	_	_	_	_	_	_
27.7	_	_	_	_	_	_	_	_	_	_	_	1	1	1	1	1	1	i	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
27.7 29.8	_	_	_	_	_	_	-	_	_	_	_	1	1	1	i	1	i	i	1	1	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	
30.7	_	_	_	_	_	_	_	_	_	_	_	i	1	i	1	1	1	i	1	1	3	1	1	1	1	1	_	_	_	_	_	-	_	_	_	_	

Table 56b

Coronal observations at Climax, Colorado (6704A), west limb

Date				Des	gree	9 9	3 011	th o	of :	the	50	ar	803	19 t.	ייני								Deg	rea	9 7	ort:	h o	f t	he	Fas	ar	6011	ato	79			
GCT	90	25	80	75	70	65	60	55	50	7.5	70	35	30	25	20	75	10	5	00	5	70	75	20	25	30	35	10	15	50	55	60	65	70	75	80	65	00
1949		0)			,,,	-		11		47	40	22	20	~)	20	->	10		-	-	10	1)	20	~)	,,,		LJO .	4,7		-		0)	,,,	-			
Nov. 1.7			_		_	_	_	_	_	_	_	_	_	_	_	_	1	7	3	٦.	7	1	7	7	_	_	_		en	_	_	10	100	80	_	co	co co
	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	1	1	1	1	-	т.	_	_	_		_		_	_	_		50	con.	_		
2.7	_	_	_	_	_	_	_	_	_	-	_	_		_		_	1	1	1		-	_	_	_	_	_	_		_	_	_		-	_	_	_	43
3.7 4.6	-	_	_		_	_	_	_		_		_	_	_	1	-	1	7	1	1	1	1	1	_	_	_	_	_	_	_	_	~	_	cm			
4.0	_	-	-	_	_	_	_		_	_	_	_	_	_	1	1	T.	*	1	1	1	1	1	_	_	_	_	_	_	_	_	_			-	_	-
5.8 6.7	_	-	_	_	_	_	_	_	_	_	_	_	_	-	-	-	-	1	1	1	-	1	_	2		_	_		-70	_		-		80	on	CO.	155
7.6	_	_	_	_		_	_	_	_	_	_	_	1	1	7	1	1	1	1	1	1	7	7	3	1	7	1	_	_	_	_	-	-	_		_	63
7.6	-	_	_	-	_	_		_	_	_	_	_	1	1	-	1	T	1	1	1	-	1	3	1	1	1	1	7	_		_	-	_	-		100	
9.6	X	-	_	~	~	Y	~	X	v	_	v	7	X	X	-	1	1	1	1	1 7	1	1	1	1	1	_	_	7	_	_	_	_	_	170	-	93	
12.8	A	^	^	~	Λ.	A		Λ.	25	Δ.	~	А.	26	^-	1	1	T	1	1	1	1	, T	-	1	3	-	1	1	_	_	_	_	_		_	_	EDs.
17.6	_	_	_	_	_	_	_	_	_	_	_	_	_		_		1	1	-	7	1	1	1	1	1	1	1	-	_		-	-		_	-	-	100
13.6 14.7	_	_	_	_	_	Ξ	_	_	_	_	_	_	_	_	3	-	1	7	1	1	1	7	7	7	7	2	7	_		_		_	_	_	1530	60	100
15.0	_	_	_	_	_	_	_	_	_	_	_	_	_	7	1	1	1	1	1 1	1	7	2	2	2	2	7	-	_	_	600	_			479	cse	GD.	63
15.9 16.9a	x	×	Y	Y	Y	_	_	_	_	_	_	_	_	1	7	1	3	1	1	1	1	1	1	1	٩	1	-			60	800	59	6D	609	_	cos	60
17.8	_	_	_	_	_	_	_	_	_	_	_	_	1	1	3	7	i	1	1	1	1	1	i	3	7	9	_		_		-	ana .	co.	60	cae	- 00	020
•19.7	_	_	_	_	_	_	_	_	_	_	_	_	1	1	î	2	2	2	3	7	3	3	7	3	2	ï	_		_	80	-	-	cm	100	00	170	
20.7	_	_	_	_	_	_	_	-	_		_			-		C	7	1	1	2	9	í	1	í	7	- 10	_	_	1000	·	-	con	_	_	-	_	COS
21.7	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	ī	3	2	3	3	2	ī	7	_	can	-	cas .	43	-	450	458	_	eLo	000	600	440
22.8				_	_	_	_	_	_	_	_		_	_			1	2	2	2	2	7	1	7	1		_	_	-	-		-			_	_	CO.
25.0	_	_	Ξ	_	_	_	_	_	_	_	_	_	_	_	7	1	1	1	1	2	~	7	_			-	~	_			-	-	80	-	-	800	-
26.8	_	Ξ	_	_	_	_	_	_	_	_	_	_	_	_	_		-		1	_	_	-	_	_	_	_	-		_		600	co	G24	gp	00	co	GD.
25.7 26.8 27.7	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_		-	-	_	_	-				_		_	90	-		-		CID CID	-	600
29.8a	_	_	_	-			_	_	_	_	_	_	_	_		_	-				-	_	-	_		_	-	_	_		-	-		907	-	co	123
30.7	_	_	_	_	_	_	_	_	_	_	_	_	_	1	1	1	1	7	1	1	-	_	_	_		_	_		_	_	_	100	-	_	_	-	40
30. f	_	-	_	_	_	_	_	_	_	_	_	_	_	1	Т	7	1	7	1	1	as	-	_		-10	_	-	-	_		_			_			

^{*}Intensity of yellow line (5694A) on November 19.7, west limb: 1 at south 30° ; 1 at south 5° ; 1 at 0° ; 1 at north 5° ; not visible at other position angles.

American and Zurich Provisional Relative Sunspot Mumbers

November 1949

Date	R _A *	Rz**	Date	RAG	Rzow
1	137	120	17	204	167
2	136	130	18	216	172
3	153	97	19	214	147
4	166	120	20	191	124
5	179	135	21	184	161
6	193	116	SS	161	138
7	205	118	23	173	118
8	215	130	24	226	156
9	235	157	25	211	143
10	192	125	26	148	153
11	201	125	27	208	170
12	202	133	28	209	152
13	194	129	29	225	199
14	173	80	30	206	197
15	180	124			
16	190	133	Mean:	190.9	139.0

^{*}Combination of reports from 44 observers; see page 9.
**Dependent on observations at Zurich Observatory and 1ts
stations at Locarno and Arosa.

Table 58

Mean K-indices from 31 Observatories for January to Morch 1949

Values Kw

Sum	17.75.71 17.00.71	23.77	72000	2000 500 500 500 500 500 500 500 500 500	22 22 22 22 22 22 22 22 22 22 22 22 22	25. 42. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	350
	23.7 3.4 2.5 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	1.2 0.5 0.8 0.4 2.0 2.0 1.3 2.4 4.4 4.6 3.1 2.1 0.5 1.3 2.2 0.7	23.00 H 1 H 2 C C C C C C C C C C C C C C C C C C	23.25 4.75 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5	32,4 2,5 4,6 5,5 4,6 5,5 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6	2.9 2.2 1.8 0.8 1.5 2.5 5.5 3.0 3.5 3.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	30 2,43
Mar	1,9 1,4 1,7 3,4 3,4 2,5 5,5 5,5 5,5 5,5 5,5 5,5 5,5 5,5 5,5	0.8 0.5 0.7 1.0 1.4 0.5 1.0 1.8 2.9 2.6 1.5 1.1 0.7 0.6 0.5 0.1	0.7 0.5 1.1 1.0 3.7 2.9 2.8 3.1 1,4 3.8 3.2 3.9 3.6 1.6 1.9 3.6	2.8 1.5 1.4 1.5 5.6 3.0 0.6 1.4 1.5 5.8 3.4 3.4 3.0 1.8 1.5 1.6 5.0 1.1 1.1 2.4 2.0 1.1	25.7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.3 2.9 3.2 2.4 1.4 2.2 2.7 2.5 3.5 3.4 1.4 2.6 2.0 5.5 3.4 1.4 2.6 2.0 5.5 5.0 1.1 2.6 2.0 5.5 5.0 1.1 2.1 2.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	.35 2.13 2.17 2.42
Sum	121 m	20° th	22.9	14.6 27.5 24.3 11.8	17.1°8	100 H	2,16
Feb	2.5 1.7 4.1 4.4 2.5 2.5 1.5 0.7 1.0	3.8 4.3 4.5 5.8 2.1 1.2 1.5 7.8 0.8 2.5 0.7 0.4 1.5 0.7 0.5 0.5 0.9 1.8 2.6 2.6	2,3 2,0 3,2 2,0 2,2 2,1 1,6 1,6 1,8 3,3 3,5 5,5 5,5 5,5 5,5 5,5 5,5 5,5 5,5	1.9 0.6 0.9 2.9 2.9 2.1 3.6 3.4 2.4 2.5 3.4 2.6 3.4 2.5 2.5 3.4 2.5 3.4 2.5 3.4 3.6 3.4 3.6 3.4 3.6 3.6 3.4 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	2.68 4.7 3.3 4.3 3.03 1.42 3.8 3.7 3.01 1.7 2.2 1.5 0.9 0.9 0.6	1,4 2,8 1,0 2,9 2,1 1,2 1,8 2,8 0,8 1,2 1,8 1,2 1,8 1,2 1,8 1,2 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8	2,30 2,01
Şize	0.7 0.51.01.2 0.89 0.50 0.7 1.8 0.8 0.9 1.6 5.0 4.3 3.4 3.0 1.4 0.8 1.6 1.0	2.2 1.0 1.5 3.45 1.0 0.4 2.3 1.3 4 1.0 0.4 0.3 1.3 1.3 0.6 0.5 1.0 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	2 2 2 2 1 3 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.5 1.9 2.3 1.6 2.7 2.5 2.9 3.0 3.4 3.0 3.1 2.8 2.4 1.6 1.7 1.9 0.4 0.4 0.5 1.3	2.9 2.3 1.9 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	1.1 1.4 1.4 1.4 2.4 2.4 3.0 3.8 3.4 0.7 1.3 2.2 1.3	2,31 2,00
Sum	200.4 31.0 4.0 8.0 8.0	114.0	21.21.42 22.42.42 22.42.22	12.00 13.00 12.15 12.00 12.00 12.00	16.2 22.5 22.5 22.5 23.5 23.5 23.5 23.5 23		2.27
ปีลุก	0 2.1 2.7 2.7 3.5 2 4.6 3.3 2.6 2.5 4 0.5 0.5 2.0 1.4 9 1.8 1.1 1.0 0.8 5 0.8 0.7 0.9 1.7	0 1.0 1.9 1.4 3.5 6 0.6 1.6 2.4 3.8 5 2.2 3.3 2.9 2.7 8 3.0 2.9 3.9 2.9 0 2.8 3.1 2.7 4.1	4 2.3 1.5 3.1 3.9 7 1.3 3.6 4.3 3.8 5 1.9 1.1 2.5 1.3 1 1.3 1.0 2.9 2.3 7 1.5 0.7 0.6 2.4	2 2, 1, 8 2, 2 1, 5 0 2, 6 3, 4 3, 8 4, 0 3 2, 4 2, 3 2, 7 2, 5 7 2, 1 1, 8 1, 1 1, 3	2	1,5 2,6 3,7 3,6 1,5 2,6 3,7 3,6 1,5 2,6 3,7 3,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8 2	2,04 2,69 th 2,18 2,
	2,1 2,6 2,7 2,0 1,9 1,9 1,9 1,7 1,0 0,1 1,1 0,1 0,1 0,1 1,1 0,1 0,1 1,1 0,1 0	1.0 1.5 1.7 2.0 3.0 3.5 2.8 1.6 2.3 1.0 1.0 2.5 2.0 2.2 2.1 2.8 2.0 2.0 2.5 2.1 2.8	1.2 2.1 2.3 2.1 1.2 2.2 2.8 2.1 1.0 0.5 1.1 2.1 0.6 0.5 0.8 1.1	2,1 1,5 0.9 2,2 1,1 1,5 0.9 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,	1,5 2,4 1,8 1,9 2,8 2,5 3,0 2,7 0,8 0,9 0,8 1,9 2,5 2,1 1,2 1,1 7,9 6,7 5,2 3,7	7.1 6.3 5.5 4.7 1.9 3.5 5.0 1.9 2.0 1.9 2.0 1.9 2.0 1.9 2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	42 1.94 2.20 2.
Day	M FW N H	92007	12221	17	2	228828	d

Teble 58 (continued)

Mean K-indices from 33 Observatories for April and May, and 32 for June 1949

Values K.

Sum	118 117 322 34 34 35 40 34 34 35	22.9 18.9 12.7 15.8	29.12 12.5 20.7 20.7	2001 2001 2002 2003 2003 2003 2003 2003	11.01 1.01 1.00 1.00 1.00 1.00 1.00 1.0	15.7 15.7 15.3 15.3	2,19
	0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 2000 2000 2000 2000 2000 2000 200	3001 1001 1001 1001 1001 1001 1001 1001	1 でうしょ 0 5 0 0 1 1 5 0 0 1 1 5 0 0 1	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1.0.0.0	7 2,35
	40104 60004 40164	0 0 1 0 0 0 0 1 0 0	0,24,40,60 0,24,40,60	<i>™</i> ≈ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1000 h	v m r v o o o u o v u u r o v u	2.17
a a	90167 4077 10107	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	സ്ഷ് സ് റ്റ് ഹവച നയ പ്ഷ് സ് സ് സ്			8 47 47 8 8 47 47 8 8 6 6 6 6 7	2.23
ь	0,000 0,000 0,000	20,1	0.00.00	100 P	0, 0, 4, 0, W w, 0, 8, 4, W	-9.0.0.0	ή2°
	6 4 4 4 6 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6	20.00 1.88.00 0.00	000010	2000 2000 1000 1000 1000 1000 1000 1000	4444 990000	4,0,0,0	2.02
	ಗ್ರಗ್ರಗ್ಗೆ ಪ್ರಸ್ತಿಗಳಿಗೆ	8 8 4 4 4 8 6 7 6 9	0 0 0 0 0 0 0 0 0 0	00000	പ്പ്പ്പ് വച: ୭୭ ପସ	- 0 - 0 - - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	2
	200 mm	3 M H 0 0 M W 0 W 0	0 th 0 0 th 0 0 th 10	0 7 % 7 0 H H N N H	0010W	10 1 0 0 10 1 0 0	2,25
Sum	20 20 20 20 20 20 20 20 20 20 20 20 20 2	21.6 15.3 17.4 20.5 17.0	19.7 43.9 27.6 22.3 12.5	20°8 7°4 9°8	13.8 17.2 16.1 12.9	10.00 10.00	2.14
	4000H	00000 00000	0000 0000 0000	WOHOH WAMOO	2.1.0		2.13
	40,000	~ ~ ~ ~ ~ ~	0.04.00 0.04.04.00	0 0 5 5 6	44404 60004	37.00°E	2.12
	NWOWW HT & WW	0 0 m 2 0 0 0 0 0 0 0	200018	9200	0,01,40 1,01,01	0 4 0 4 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	2,45
h.	80 C 10 10 80	OMME	0.04.88	24044 04640	りきょるて	0,00H4W	75
M a	000000		8 1 8 0 8 0 8 0 8 0 1 8		സ്ത്മസ്പ് ഗുഗുഗുപ്ഗൂ	≈ round of the contraction of t	2 00
	00 H W W	0 1 1 1 1 1 1 1	0,00 H W H	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ω	400 P	\ \cdot
	0.6	2010 1001 1001	0,000,1 0,000,1	90000	2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2		1.86
	000344	7000 A	と こ ら 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。	8 8 8 6 H	0 0 H 0 0 0 W W W V	4000°°°	2,08
	3 00 00 m	พ. ๗ ๗ ๗ ๗ ๗ ๗ ๗ ๗	はよるできる。	10011	0 0 4 0 0 0 0 0 0 0 0	, c, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	2,16
Sum	11.1 10.7 15.0 11.0	22.0 38.5 16.7 28.0	27.0 24.0 26.8 22.9	20.7 19.1 13.5 12.7 9.9	9.00 17.00 17.00 12.00	1184 16671	2,08
	2.2 1.1 1.0 1.9	\$ 0 0 0 0 m	3 & 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	12.1	10000 10000	2,15
	0,1110 0,4000	トトユ マ マ マ マ	2222 2222 2222 2222 2222 2222 2222 2222 2222	20012	H H O H O R O R O O	44.04.0 40.04.0	2,11
Apr	00000	0 H T & 80	コピックド	W4404 W8 W 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	א פוש פו	53
	11001 1001 1001 1001	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0000 0000 0000 0000		^ର ମଷ୍ୟ ଓ ୭ ମ ମ ଓ ଲ ମଷ୍ୟ ମଣ୍ଡ	2.12
	111000 111000	2020 2020 2020 2020 2020 2020 2020 202	42.23.1	88 H H O	00 H N H 80 8 K K	10001 10001	2,11
	10001	40000 0000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10011 0000 0000	11.12.4 11.12.4	4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1,92
	000000000000000000000000000000000000000	E O O H M	コロコトラ	20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00 # 0.00	.89
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	นานาน อาหาน กับกับ เก	24 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1000 1000 1000 1000 1000	~000m	70 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	2,13
Day	U TWN	9 - 8 6 0	12545	161 19 19 19 19 19 19 19 19 19 19 19 19 19	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300000	Mean 2
,							Me

Table 58 (concluded)

Mean K-indices from 33 Observatories for July to September 1949

Values K

Sum	2005 2005 2005 2005 2005 2005 2005 2005			- 3 0 WZ	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20.04
Q. O	7.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	1.8 1.4 0.9 1.1 1.8 1.1 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		1.1 0.8 0.8 0.1 1.1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,18 1,99 1,98 2,09
	22.21.14.33.02.14.33.03.14.65.31.14.65.31.14.13.03.14.14.13.14.14.14.14.14.14.14.14.14.14.14.14.14.	1.8 1.5 2.3 3.0 0.6 1.2 1.9 1.8 1.8 1.1 2.0 3.4 3.0 1.4 1.2 1.6 0.2 0.4 0.5 0.6	6	3,0 2,7 1,6 1,6 1,6 1,6 1,5 1,0 0,6 1,9 1,9 1,0 0,5 1,9 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	1.6 1.3 1.7 2.4 1.0 1.4 1.2 1.5 1.1 1.6 1.8 1.4 1.3 3.8 2.3 3.4	23.23 23.23 23.23 23.23 24.03 25	2,02 2,05
Sum	11.2 22.5 34.9 35.7	10,24,24	200 12000 200000 200000	12000	200 KZ	www.sea	2,32
u &	200911 2000911	1.8 41.0 2 4 4.0 5.0 3.7 7.1 7.1 7.1 7.2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		1,7 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	1.6 1.8 2.2 2.3 0.8 0.7 0.4 0.5 0.8 0.8 0.4 0.5 0.7 0.7 0.5 0.5	20,6 2,2 2,4 1,2 2,0 6 2,2 2,4 1,2 2,4 1,5 2,4 1,5 2,4 1,5 2,5 3,1 1,5 2,5 2,5 3,1 1,2 2,5 2,5 3,1 1,2 2,5 2,5 3,1 1,5 2,5 3,5 3,5 3,5 3,5 3,5 3,5 3,5 3,5 3,5 3	2,34 1,95
A 1.	0.5 1.0 1.4 2.1 1.1 1.6 3.8 3.8 3.8 1.6 1.9 5.9 5.5 5.4 5.6 5.2 3.3 3.5 2.8 2.3 2.7	2.7 1.7 0.8 3.4 1.2 1.1 1.2 1.4 5.2 5.4 3.1 3.2 1.6 1.5 1.2 2.4 1.4 2.1 2.6 2.3	0.6 0.8 1.0 0.8 1.1 0.8 1.2 1.2 1.2 1.4 1.5 1.5 1.5 1.5 2.1 3.3 3.5 1.5 2.1 3.3 3.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	# # # # # # # # # # # # # # # # # # #	1.4 1.9 1.2 1.8 2.0 2.1 1.5 1.8 0.6 1.2 1.8 1.0 0.6 1.2 0.6 0.9 0.4 0.5 0.4 0.5	10.80,42 11.82,022 12.82,123 13.82 13.13,13 13.13,1	2,13 2,00
Sym	8 8 10 10 0 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5	2000 2000 2000 2000 2000 2000 2000 200	101 101 101 101 101 101 101 101 101 101	120 18 18 18 18 18 18 18 18 18 18 18 18 18	12.0 18.6 21.6 15.6	111,000	1.65
I n	1,0 1,1 1,5 1,6 0,6 0,8 0,8 0,8 0,8 0,8 0,0 0,0 0,9 1,4 2,0 1,2 0,8 0,9 1,6 0,5 0,5 1,3	1.7 0.5 1.3 1.2 0.8 1.6 5 3.3 1.2 0.8 1.9 1.2 0.7 0.1 1.4 1.3 1.5 0.7 0.1	2.5 2.5 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	3,4 3,5 4,2 3,3 2,4 3,5 1,2 1,3 2,7 3,1 3,0 2,8 3,0 2,6 1,8 2,0 1,9 1,9 0,9 1,0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00000000000000000000000000000000000000	1.95 1.73
4	1.9 1.9 1.7 2.1 1.6 1.6 1.1 0.5 0.7 0.8 0.6 0.9 0.9 0.6 0.7 0.5 0.0 1.1 1.0 1.5	0.7 1.4 0.8 0.8 2.5 1.1 1.2 1.7 1.6 1.6 1.5 2.1 1.3 1.8 3.1 3.1 0.7 1.0 0.7 0.9	0.5 1 k 0.7 1 k 0.5 0 k 0.5 0 k 0.5 0 6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 1.1 1.5 2.2 2.5 1.7 3.0 2.4 1.6 1.3 1.5 2.8 3.1 2.4 2.9 3.0 3.4 0.9 1.1 1.7	0.3 1.2 2.1 2.3 3.7 3.4 2.0 2.3 5.6 3.9 2.0 2.5 2.6 3.9 1.6 0.7	1,9 0 1,2 2,5 0,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	1,48 1,55 1,66
De.y	HOMAIN	6 6 8 9 9	112	16	2222	228822	Hean

Table 59

Preliminary International

Character-Figure C, 1949

Table 60 Selected Days, 1949

Day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	lan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
5	1.4	0.1	1.1	0.3	0.5	0.6	0.0	1.2	1.1	úng				Quie		-		
3 4 5	0.1	1.2	1.1 0.5 0.5	0.2	1.3	1.7	0.1	1.7	0,8	3 4 5 15	1 2 8 9		5 6 20 21	18 20 28	11	4 15	5H	10 19 20 21
6 7 8 9	0.8	1.1 0.1 0.0	0.0 0.1 0.3 1.2 0.1	1.8	0.5	0.7	0.7 0.7 0.7	0.8	0.3 0.8 0.4		25			29			25 26	23
11			0.1									Fi	re D	Lstui	rbed			
12 13 14 15	0.8	0.8	0.6 1.1 1.3 1.0	0.9	1.6	J.0 0.4	1.0 0.4	0.5	0.6		4 6 17 21	16 17			5	16 17		2 3 12 25
16 17 18 19 20	0.6 1.1 0.9	1.0	1.5 1.4 1.2 0.5 0.7	0.7	0.5	0.6 0.8	0.8	0.7 0.7 0.6	0.3 0.2 0.0	26	22			31	13			27
21			1.3										Ten	Quie	è \$			
22 23 24 25	0.8	0.7	1.8 1.3 0.2 0.5	0° ji	0.1	0.1	0.9	0.0	0.2	3 4 5	1 2 5 8	4678	1 2 4	1 15 18 19	8 10 11 14	3	11 12	7 10 17 18
26 27 28 29 30	0.8	0.9	0.6	0.7 0.3 0.9 0.1	0.0	0.3 0.4 0.7 0.4	0.1 0.5 0.2	0,6	1.2 0.8 0.4 1.0	15 20 28 29 30 31	9 10 19 25 26 28	10 11 24 27 30 31	5 20 21 22 25 30	20 24 26 27 28	20 21 23 24 27 30	56 10 11 15 27 28	21 22 23 24 25 26 28	19 20 21 22 23 29
Mean	0.70	0.7	0.7	5	0.6	7	0. H.	7	0.63	p-								

Index of Tables and Graphs of Ionospheric Data

in CRPL-F64

Table page	Figure page
Baton Rouge, Louisiana	
October 1949	49
Bombay, India	F.C.
July 1949	58
October 1949	48
Calcutta, India	40
June 1949 17	61
May 1949	62
Capetown, Union of S. Africa	~~
August 1949	57
Chungking, China	r.l.
August 1949	56 57
Dakar, French West Africa) (
June 1949	61
May 1949	63
Delhi, India	
July 1949 16	58
Fribourg, Germany	
June 1949	60
May 1949	62
April 1949	63
Fukaura, Japan	r 1
August 1949 15 Guam I.	54
October 1949	51
Huancayo, Peru	<i>)</i>
October 1949	52
September 1949	53
Lanchow, China	
June 1949 17	60
Lindau/Harz, Germany	
September 1949	52
Madras, India	70
July 1949	59
Maui, Hawaii October 1949 14	50
October 1949	50
October 1949	47
Palmyra I.	~+ 1
September 1949	53
San Francisco, California	
October 1949	48

Index (CRPL-F64, continued)

Table page	Figure page
San Juan, Puerto Rico October 1949	50
August 1949	55
Tiruchirapalli, India July 1949	59
August 1949 15	55
Trinidad, British West Indies October 1949	51
Waldanai, Japan August 1949	54
November 1949	47
White Sands, New Mexico October 1949	49
Yamakawa, Japan August 1949	56

CRPL and IRPL Reports

- [A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]
- Daily:
 Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.
- Weekly:
 CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).
- Semimonthly:
 - CRPL-Ja. Semimonthly Frequency Revision Factors for CRPL Basic Radio Propagation Prediction Reports.
- - CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC-13-1 (), monthly supplements to DNC-13-1.
 - CRPL-F. Ionospheric Data
- Quarterly:
 **IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.
 - *IRPL-H. Frequency Guide for Operating Personnel.
- Circulars of the National Bureau of Standards:
 NBS Circular 462. Ionospheric Radio Propagation.
 NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.
- Reports issued in past:

 IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.
 IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

 - IRPL-R. Nonscheduled reports:
 R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.
 - R5. Criteria for Ionospheric Storminess.
 - Experimental Studies of Ionospheric Propagation as Applied to the Loran System. R7.

 - Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System. An Automatic Instantaneous Indicator of Skip Distance and MUF. R9.

 - R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.
 R11. A Nomographic Method for Both Prediction and Observation Correlation of Ionosphere Characteristics.

 - R12. Short Time Variations in Ionospheric Characteristics.
 R14. A Graphical Method for Calculating Ground Reflection Coefficients.
 R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.

 - R17. Japanese Ionospheric Data—1943.
 R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.
 R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For
 - distances out to 4000 km.)

 - distances out to 4000 km.)

 R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.

 R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

 R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.

 R26. The Ionosphere as a Measure of Solar Activity.

 R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.

 R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.

 R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

 - R33. Ionospheric Data on File at IRPL.

 R34. The Interpretation of Recorded Values of fEs.

 R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.
 - IRPL-T. Reports on tropospheric propagation:
 - T1. Radar operation and weather. (Superseded by JANP 101.)
 T2. Radar coverage and weather. (Superseded by JANP 102.)
 - CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

^{*}Items bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC-14 series.