UFRJ – IM - DCC

Sistemas Operacionais I

Unidade I
Fundamentos
de
Hardware e de Software

ORGANIZAÇÃO DA UNIDADE

- Introdução
- Fundamentos de Hardware e Software
 - Organização e Componentes de um SC
 - Organização Física e Funcional do Processador
 - Estrutura de Armazenamento
 - Estrutura de E/S
 - Linguagens, Programas e Instruções
- Estruturas de Sistemas Operacionais

Analógico x Digital

- Circuito Analógico
 - Trabalha com o sinal na forma contínua
 - Construído com base em componentes eletrônicos discretos: resistores, capacitores, indutores, válvulas e transistores
- Circuito Digital
 - Trabalha com o sinal na forma digital
 - Construído com base em portas lógicas, que implementam a lógica booleana

Portas Lógicas Básicas

Portas E, Ou, Não E, Não Ou, Ou Exclusivo

Α	В	Е	Ou	Não E	Não Ou	XOR
0	0	0	0	1	1	0
0	1	0	1	1	0	1
1	0	0	1	1	0	1
1	1	1	1	0	0	0

UFRJ – IM – DCC Profa. Valeria M. Bastos

Tipos de Circuitos Digitais

Combinacionais

 Implementam a lógica digital sem memória – a saída no instante "t" depende apenas das entradas em "t"

Sequenciais

- Implementam a lógica digital com memória a saída no instante "t" depende da entrada e do estado em "t-1"
- Contadores, buffers, registradores, memória, ...

Hardware x Software

- Com os circuitos sequenciais surgiu o conceito de memória
- Com a memória surgiu a possibilidade de armazenar sequências de valores binários
- Com os valores binários armazenados aplicados sobre circuitos combinacionais e sequenciais, surge o conceito de programa internamente armazenado
- A adição de lógica (desvios no fluxo de execução) no programa armazenado, dá uma sintaxe e uma semântica às unidades de operação (instruções), e surge o conceito de software.

Computador

Surge da uni\(\tilde{a}\) de Hardware e Software para uso genérico

Organização e Componentes

Barramento

- É o meio de comunicação entre os diferentes componentes de um Sistema de Computação
- É o caminho por onde transitam:
 - dados,
 - endereços e
 - sinais de controle.

Barramentos

Barramento Síncrono

- Tem por base um relógio temporizador que define a frequência de operação do mesmo (ciclo de barramento).
- Toda operação de transferência é sincronizada com a frequência do barramento.
- Toda operação consome um número inteiro e conhecido de ciclos.

Barramento Assíncrono

- Não existe temporizador
- Os ciclos duram o tempo que for requerido pela operação
- Uma mesma operação pode ter ciclos variáveis
- Faz uso de um processo de sinalização (handshake)

Barramento

Barramento Síncrono

Barramentos

Barramento Assíncrono

Barramentos

Síncrono

- Mais fácil de ser construído
- Maior velocidade de operação

Assíncrono

13

- Maior flexibilidade de uso
- Oferecem vantagens para atendimento a um conjunto heterogêneo de dispositivos (lentos e rápidos)

A maioria dos barramentos é Síncrono

Organização do processador

CPU 8086

CPU Pentium Superescalar

Componentes internos de trabalho da CPU, constituem uma área de armazenamento de acesso mais rápido porém de menor capacidade que a memória principal.

```
Tipos: 

Registradores Visíveis : 

Registradores de dados

Registradores de endereço

Códigos de condição

Registradores de Controle e Status
```

UFRJ – IM – DCC Profa. Valeria M. Bastos 17

Registradores Visíveis:

- Armazenamento temporário de dados durante o processamento
- Acessíveis via linguagem de máquina.

Registradores de Controle e Status:

- Controlam o funcionamento do processador e a execução dos programas
- •Quando acessíveis por software, o são somente por rotinas privilegiadas.

Registradores Visíveis: Dados

- Podem ser usados pelo usuário para manipular dados e executar funções
- O programador/compilador determina a sua função

Exemplo:

- Acumulador (AC)
 - Registrador que armazena uma das entradas da ULA
- Registrador Temporário (TR)
- Registradores de uso genérico

Registradores Visíveis: Endereço

- Contêm endereços de memória dos dados e das instruções
- Podem conter uma parte de um endereço que será usado para calcular o endereço completo.

Exemplo: Stack Pointer (SP)

- Endereço do topo da pilha
- Segment Pointer (SX)
 - Endereço inicial de um segmento
 - Quando a memória é dividida em segmentos, ela é sempre referenciada pelo segmento e pelo deslocamento dentro do segmento (offset)
- Index Register / Offset
 - Índice a ser adicionado a uma base para se obter o endereço do dado.

Registradores Visíveis: Condições

- Contem bits e flags de condição do resultado de uma operação
- Os bits são setados pelo hardware em função do resultado de cada operação realizada
- Podem ser acessados por um programa, apenas no modo leitura.

Exemplo:

Flag de sinal
Resultado positivo / negativo

Flag de zero Resultado zero

Flag de overflow Resultado com estouro

Registradores Invisíveis : Controle e Status

- Program Counter (PC)
 - Contém o endereço da próxima instrução a ser executada
- Instruction Register (IR)
 - Contém a última instrução carregada da memória (corrente)
- Program Status Word (PSW)
 - É um registrador (ou um grupo de registradores) que contém:
 - códigos de condição e os bits de informação do status
 - bit de interrupção habilitado/desabilitado
 - bit de modo de operação supervisor/usuário

UFRJ – IM – DCC Profa. Valeria M. Bastos 22

Grupos de Registradores 8086

	Grupo	Descrição					
	Registradores de uso geral (RG)	Podem ser utilizados como um registrador de 16 bits ou em dois de 8 bits. São utilizados em operações lógicas e aritméticas					
Registradores de pilha (RP)		São utilizados para acessar dados no segmento de pilha, mas também podem ser utilizados em operações lógicas e aritméticas de 16 bits.					
	Registradores de Indexação (RI)	São utilizados para acesso aos dados, principalmente em operações com cadeias de caracteres (<i>string</i>).					
	Registradores de segmento (RS)	São utilizados como seletores de faixas de endereços. O endereço de um segmento é dado pelo conteúdo do registrador de segmento deslocado de 4 bits à esquerda.					
	Registrador de estado (PSW – Processor Status Word)	Retrata o estado do programa em execução No 8086, somente os 16 primeiros bits existem e os bits 12, 13, 14 e 15 são reservados.					

UFRJ – IM – DCC Profa. Valeria M. Bastos 23

Registradores 8086

	15	8	7		0	
AX	AH			AL		acumulador
BX	ВН			BL		base
CX	CH			CL		contador
DX	DH			DL		dado
			•			•
SP						ponteiro para pilha
BP						ponteiro base
SI						indice fonte
DI						índice destino
						•
ΙP						apontador de instruções
FLAGS						flags
						•
CS						segmento de código
DS						segmento de dados
SS						segmento de pilha
ES						segmento extra
						1

Formação de endereço

PSW do 8086

1	5	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
					O	D	I	T	S	Z		A		P		C

C - Vai Um

P - Paridade

A – Vai Um Aux

Z – Zero

S – Sinal

T – Trap

I – Interrupção

D – Direção

O – Overflow

Registradores de segmento 8086

Registradores de Segmento

CS

DS

SS

ES

Descrição

Designa o endereço base do segmento de código do programa. O registrador de deslocamento associado é o registrador IP.

Utilizado como referência para acesso ao segmento de dados, exceto para operações com a pilha e operações utilizando cadeia de caracteres

Referência para acesso à pilha, utilizando SP e BP como registradores de deslocamento.

Em conjunto com o registrador DI é utilizado para operações com cadeias de caracteres

Registradores do 80386

Registradores de uso geral

Registradores de ponteiros e Pilha

Registradores adicionais do 80386

Registradores de Controle

Os registradores de 32 bits CR0, CR1, CR2 e CR3 contêm informações importantes para utilização dos novos recursos. No registrador CR0 cada bit possui uma determinada função, como por exemplo o bit 0, PE (*protection enable*), responsável pela seleção entre modo real e modo protegido. O registrador CR1 é reservado enquanto CR2 armazena o endereço linear que provocou uma falha de página e CR3 armazena informações de controle de paginação como os bits 12 a 31 que contém o endereço base do diretório de páginas.

Registradores de depuração e testes

Os registradores de depuração, também de 32 bits, DR0...DR7, fornecem recursos para rastreamento dos programas através do armazenamento de pontos onde o programa deverá ser executado passo a passo, enquanto os de teste, TR6 e TR7, são utilizados basicamente na inicialização do sistema operacional.

Registradores de segmento de 32 bits

Os registradores de segmento foram mantidos com 16 bits, porém foram adicionados os registradores FS e GS, que em conjunto com DS e ES são utilizados para apontar os quatro segmentos de dados permitidos. O endereçamento através do conteúdo do registrador de segmento adicionado ao deslocamento dentro do segmento fica então restrito ao modo real. Em modo protegido é utilizado o endereçamento via descritores

UFRJ – IM – DCC Profa. Valeria M. Bastos 28

Registradores apontadores do 80386

Registradores apontadores de tabela para endereçamento em modo protegido

GDTR		End da GDT	Tam da GDT	
IDTR		End da IDT	Tam da IDT	
LDTR	descritor da LDT na GDT	End base da LDT da tarefa em execução	Tam da LDT	
TR	descritor da TSS na GDT	End base da TSS da tarefa em execução	Tam da TSS	
	63	47	15	

- GDTR → registrador que aponta para a base da tabela de descritores globais (GDT)
- LDTR → registrador que aponta para a base da tabela de descritores locais (LDT)
- IDTR → registrador que aponta para a base da tabela de interrupções (IDT)
- TR → registrador que aponta para a base do segmento de estado de uma tarefa (TSS)

Modo protegido do 80386

Acesso a memória em modo protegido

UFRJ – IM – DCC Profa. Valeria M. Bastos 30

Modo protegido do 80386

Descrição das tabelas

- Tabela de descritores globais (GDT)
 Criada e gerenciada pelo sistema operacional, armazena descritores de segmento para os segmentos que podem ser acessados por todas as tarefas.
- Tabela de descritores locais (LDT)
 Armazena descritores utilizados para cada tarefa ativa.
- Tabela de descritores de interrupção (IDT):
 Armazena as informações para desviar o controle para a rotina de tratamento adequada.
- Segmento de estado da tarefa (TSS)
 É criado pelo sistema operacional para cada tarefa em execução concorrente e armazena o conteúdo dos registradores que serão carregados nos registradores do processador quando uma tarefa for selecionada para execução.
- Diretório de páginas e tabela de páginas
 Utilizados na implementação de memória virtual.

Modo protegido do 80386

Obtenção do endereço linear

- 1. Obtém-se dos últimos 13 bits do seletor de segmento (CS, DS, ES, FS, GS ou SS) o índice para acesso a tabela de descritores GDT ou LTD, conforme o terceiro bit do mesmo seletor:
 - 0 para acesso a GDT
 - 1 para acesso a LDT.
- 2. Cada uma das tabelas pode possuir 8192 descritores, uma vez que 2¹³= 8192.
- 3. Os primeiros 32 bits da tabela na posição indicada pelo seletor corresponderá ao endereço do segmento.
- 4. Este endereço base é adicionado ao conteúdo do registrador de deslocamento resultando no endereço linear.

UFRJ – IM – DCC Profa. Valeria M. Bastos 32

PSW do 80386

Registrador de Status

Memória

- armazena dados e programas
- também conhecida como memória real ou primária
- volátil
- endereçável por célula

Conexão UCP X MP

Memória

Todas as células têm a mesma quantidade M de bits

N células

Armazenamento

- armazena de forma permanente dados e programas
- também conhecido como memória secundária
- não volátil

Jecundária

discos fremovíveis disquetes zip disks

Fixos - HDs

frolo cartucho cassete

Opticos CDRW DVD endereçável por setor

Entrada e Saída

- transportam dados entre o computador (CPU/memória) e seu ambiente externo (periféricos) como:
 - memória secundária (ex. disco rígido)
 - teclado, monitor, ...
 - dispositivos de comunicação

Requisitos:

- controladora
- driver

Estrutura de um Sistema de I/O

UFRJ – IM – DCC Profa. Valeria M. Bastos 37

Linguagens, programas e instruções

Linguagem

Vocabulário e conjunto de regras de sintaxe e semântica usados para a construção de programas.

Programa

Sequência de instruções organizadas de forma lógica para ao ser executado pelo computador (hardware) executa alguma função específica.

Instrução

Sequência de bits que são interpretados pela UC e que disparam operações lógicas ou aritméticas a serem executadas pelos circuitos do hardware. (dependente do hardware)

UFRJ – IM – DCC Profa. Valeria M. Bastos 38

Programas e Instruções

Sou o primeiro vírus excêntrico!

Como nós, os excêntricos, não temos experiência em programação em computadores, este vírus só funciona a base da confiança.

Por favor, apague TODOS os arquivos do seu computador manualmente e envie esta mensagem a todos os membros da sua lista de endereços de correio eletrônico.

Obrigado pela colaboração. Manuel

UFRJ – IM – DCC Profa. Valeria M. Bastos 39

40

Tradução de programas

41

Ciclo básico de instruções

O ciclo de instrução é uma máquina de estados em hardware:

• Estado 1: Busca da próxima instrução

• IR \leftarrow M[PC]; PC \leftarrow PC + 1;

• Estado 2: UC decodifica e executa IR

• Se fim → parada, senão volta estado 1

Tipos de instrução

- Acesso à memória
 - Transferência de dados entre o processador e a memória
- Entrada / saída
 - Transferência de dados entre o processador e o dispositivo
- Tratamento de dados
 - Operações aritméticas ou lógicas
- Controle (desvios)
 - Alteração da seqüência de execução de instruções

Formatos de Instrução: 0 / 1 / 2 / 3 endereços

Instruções do 80386

Modos de Endereçamento

■Imediato ADD CH,5F

Registrador
ADD BX,DX

Direto
ADD VAR,BX

Registrador indireto
ADD CX,[BX]

■Indexado (ou base) ADD [SI+6].AL

■Base indexado com deslocamento ADD [BX+DI+5].DX

Tipos de instrução

Acesso à memóriaMOV AX, [TOTAL]MOV [TOTAL] ,AX

Entrada / saída
IN AX, 72h
OUT DX, AX

Tratamento de dados XOR AX, BX ADD AX,BX

Controle (desvios)JNEJMP Label

Fundamentos

Fluxo de Execução

- Passo 1 Busca da Instrução a ser executada IR ← M[PC]
- Passo 2 Instrução corrente é decodificada
 UC decodifica IR
- Passo 3 Operandos são buscados Rx ← M[IR(end)]
- Passo 4 O conteúdo de PC é atualizado
 PC ← PC + D
- Passo 5 A instrução corrente é executada
 UC gera sinais de controle de acordo com o campo IR(Opcode)
- Passo 6 O resultado da operação é salvo
 M[?] ← resultado ou pode permanecer em registrador
- Passo 7 Verifica término do programa
 Se positivo troca contexto e volta para passo 1
- Passo 8 Verifica existência de interrupção pendente
 Se positivo trata interrupção, senão volta para passo 1

Passo 1

Fluxo de execução - Exemplo

Lista parcial dos códigos de operação

0001 = Carrega AC da memória

0010 = Armazena AC na memória

0101= Adiciona em AC o valor da memória

Formato da Instrução

Passo 2

Passo 3

Fluxo de execução - Exemplo

Lista parcial dos códigos de operação 0001 = Carrega AC da memória

0010 = Armazena AC na memória

0101= Adiciona em AC o valor da memória

Passo 5

Fluxo de execução - Exemplo

Lista parcial dos códigos de operação 0001 = Carrega AC da memória

0010 = Armazena AC na memória

0101= Adiciona em AC o valor da memória

Passo 6

Fundamentos de Hardware

Tendências de Hardware

- Processadores com
 - múltiplos núcleos família Core 2, Quad e I7
 - múltiplos pipelines
 - múltiplos níveis de cache
- Armazenamento
 - múltiplos discos em organização RAID
- Diversos
 - tela touchscreen
 - periféricos USB