# Chapter 8: Channel coding

#### Chapter 8

- 8.1. Introduction
- 8.2. Shannon second theorem
- 8.3. Decoding rules
- 8.4. Majority logic decoding
- 8.5. Hamming distance
- 8.6. Bound of length of the codeword
- 8.7. Detection/correction code construction
- 8.8. Parity code
- 8.9. Hamming code
- 8.10. Cyclic code

#### Remind

- Previous lesson:
  - What is the purpose of source coding?
  - → Find methods to represent message with the minimum number of code symbols
  - Source coding is normally used for noiseless channel (information rate < channel capacity)
- If (information rate > channel capacity) → a part of information cannot be conveyed through the channel
  - → need to have another coding for noisy channel
    - Channel coding

#### 8.1. Introduction

- Channel converts input signal into output signal with the affect of noise
  - Output = Input + Noise
  - Noise is considered as Gaussian random variable



#### 8.1. Introduction (Cont.)

• Noisy communication system:



- Channel encoder:
  - Its input is output of source encoder
    - Two ways to do:
      - Put directly the source encoder outputs on channel encoder
        - Called Continuous code
      - Divide the sequence of the source encoder outputs into blocks called L-symbol message of Channel encoder (L is length of block or number of code symbols of block)
        - In case of binary code → L-bit message
        - Called Block code
  - Output of channel encoder:
    - In case of continuous code: continuous code symbols come out
    - In case of block code: N-symbol codeword of channel encoder (codeword) (N>L)
      - In case of binary code → N-bit codeword

#### 8.1. Introduction (cont.)

- Channel coder:
  - Traditionally, block code is used to present the theory of channel coding
  - Tasks of channel coding is to ensure reliable communication in noisy channel (prevent errors occur in the channel)
    - Error detection code
    - Error correction code
  - When information rate is greater than channel capacity, to prevent the information loss → add "dummy symbol" to the output of source coder

#### 8.1. Introduction (cont.)

- Set of L-symbols message is denoted by M=  $\{m_1, m_2, ..., m_{r^L}\}$  while
  - r: base of code
  - $r^L$  is number of combinations of L-symbols message
  - Each  $m_i$  is L-symbols message to be input of channel encoder
    - $m_i$  is also called as combination for carrying information
    - In source coding chapter, each symbol of source code has maximum amount of information  $\rightarrow$  the symbols of  $m_i$  have identical probability  $\rightarrow$  all  $m_i$  have identical probability
  - In this chapter, L-symbols message is shortly called as message
- Channel coding converts L-symbols message into N-symbols codeword (denoted code (N,L))
  - Number of codeword = number of message =  $r^L$
  - · All codewords have similar probability
- Added symbols are called "check symbol" or "redundancy symbol"
  - Number of "check symbol" denote by  $R_N = N-L$
- Code rate (R): the ratio between the number of code symbols that need to be transmitted and the number of code symbols that must be transmitted through encoding
  - In channel coding,  $R = \frac{L}{N}$
  - · Are also ratio between number of symbols of input message and the number of symbols of codeword

#### 8.1. Introduction (cont.)

- Number of available combination of channel coding =  $r^N$ 
  - Channel coding always has "don't care combination"
    - Number of "don't care combinations" =  $r^N r^L$  (number of available combination minus number of codeword)
    - Number of "don't care combinations" > 0
    - Set of all "don't care combinations" is denoted by  $B_N$
- Set of N-symbols codeword is denoted by A =  $\{a_1, a_2,...,a_{rL}\}$ 
  - Each  $a_i$  is a N-symbols codeword at the output of channel encoder
    - Denoted by  $a_i = \{a_{i1} \ a_{i2} \ ... \ a_{iN} \}$ , each  $a_{ij}$  is a code symbol
    - Each  $a_i$  is a codeword that encodes a  $m_i$
    - Each codeword  $a_i$  becomes input of the channel
  - In this chapter, N-symbols codeword is shortly called as codeword
- A combination received at the channel output is denoted by  $b_i$ 
  - $b_j = \{b_{j1} \ b_{j2} \ \dots b_{jN} \}$ , each  $b_{ij}$  is a code symbol
  - $b_i = a_i + e$
  - $e = \{e_1 \ e_2 \ ... \ e_N\}$ : error combination that represents noise
    - $e_i$ =0, no error at  $i^{th}$  position
    - $e_i=1/.../r-1$ , error at  $i^{th}$  position
- When  $b_j$  is a codeword  $a_i$ , set of all  $b_j$  is denoted by  $B_M$
- When  $b_j$  is not a codeword, set of all  $b_j$  is denoted by  $B_M^C$

#### 8.2. Shannon second theorem

- Let a discrete channel have the capacity C and a discrete source the information rate R.
  - If R ≤ C there exists a coding system such that the output of the source can be transmitted over the channel with an arbitrarily small frequency of errors
- Role of Shannon second theorem in channel coding?
- → Permission to use coding for reliable communication in noisy channel
- How?

#### 8.3. Decoding rules

- Rule to determine what is the transmitted codeword when a received combination (word) appears in output of the channel
- Let  $a_i$  be  $i^{th}$  N-symbol codeword that is transmitted through the channel
- Let b be the corresponding N-symbol word produced at the output of the channel
  - N-symbol word is a N-symbol combination that maybe a codeword or not
- The channel decoder has to apply a decoding rule on the received word b to decide which codeword  $a_i$  was transmitted
- The decision rule is denoted by D(.)
  - Correct decision  $a_i = D(b)$
- Let  $P_N(b|a_i)$  be the probability of receiving b given  $a_i$  was transmitted
- For a discrete memoryless channel this probability can be expressed in terms of the channel probabilities as follows:

$$P_N(\mathbf{b}|\mathbf{a}_i) = \prod_{t=1}^N P(b_t|a_{it})$$

### 8.3. Decoding rules (Cont.)

According to Bayes rule:

$$P_N(\mathbf{a}_i|\mathbf{b}) = \frac{P_N(\mathbf{b}|\mathbf{a}_i)P_N(\mathbf{a}_i)}{P_N(\mathbf{b})}$$

- If the decoder decodes b into the codeword  $a_i$  (correct decoding) then
  - Correct probability is  $P_N(a_i|b)$
  - Wrong probability is 1-  $P_N(a_i|b)$
- To minimize the error, the codeword  $a_i$  should be chosen so as to maximize  $P_N(a_i|b)$ .

### 8.3. Decoding rules (Cont.)

- Minimum-error decoding rule:
  - To minimum wrong probability 1-  $P_N(a_i|b) \rightarrow$  maximize  $P_N(a_i|b)$
  - Apply the Bayes rule:

$$P_{N}(a_{i}|b) = \frac{P_{N}(b|a_{i}) P_{N}(a_{i})}{P_{N}(b)}$$

$$P_{N}(a_{j}|b) = \frac{P_{N}(b|a_{j}) P_{N}(a_{j})}{P_{N}(b)}$$

$$\text{maximize } P_{N}(a_{i}|b) \rightarrow \text{maximize } P_{N}(b|a_{i}) P_{N}(a_{i})$$

$$\text{choose } a_{i} \text{ if } P_{N}(b|a_{i}) P_{N}(a_{i}) \geq P_{N}(b|a_{j}) P_{N}(a_{j}) \text{ for all } a_{j}$$

Maximum-likelihood decoding rule:

choose 
$$a_i$$
 if  $P_N(b|a_i) \ge P_N(b|a_j)$  for all  $a_j$  if  $P_N(a_i)$  is identical for all  $i$ 

### 8.3. Decoding rules (Cont.)

#### For example:

• BSC channel has channel matrix P, L=2, N=3. The codewords and its probabilities are shown in the above table. Output of the channel b=111

$$\mathbf{P} = \begin{bmatrix} 0.6 \ 0.4 \\ 0.4 \ 0.6 \end{bmatrix}$$

| Code word              | $P_N(\mathbf{a}_i)$ |
|------------------------|---------------------|
| $\mathbf{a}_1 = (000)$ | 0.4                 |
| $\mathbf{a}_2 = (011)$ | 0.2                 |
| $\mathbf{a}_3 = (101)$ | 0.1                 |
| $\mathbf{a}_4 = (110)$ | 0.3                 |

Minimum-error decoding rule?

### 8.4. Majority logic decoding

- Repetition code is the code that each message symbol is repeated in the codeword
  - Denoted by (n,m) where n is repetition time of one symbol, m is number of symbols of message
- Majority logic decoding is a method to decode repetition codes
  - Assumption that the largest number of occurrences of a symbol was the transmitted symbol
    - → The most appearing symbol in the received combination is the transmitted symbol
- if a (n,1) binary repetition code is used, then each input bit is mapped to the codeword as a string of n-replicated input bits. Generally n=2t+1, an odd number. (t is arbitrary integer)

### 8.4. Majority logic decoding

- The repetition codes can detect up to t = (n-1)/2 transmission errors.
- Decoding algorithm
  - The codeword is (n,1), where n=2t+1, an odd number.
  - Calculate the  $d_H$  Hamming weight of the received repetition code.
    - ullet d $_H$  Hamming weight is the number of positions has non-zero values in the codeword
  - if  $d_H \le t$ , decoded codeword to be all 0's
  - If  $d_H > t$ , decoded codeword to be all 1's
- Example
  - In a (n,1) code, if received word R=1 0 1 1 0, then it would be decoded as n=5,t=2,  $d_H$  =3, so codeword =1 1 1 1 1
  - Hence the transmitted message bit was 1.

#### 8.5. Hamming distance

- Consider the two N-symbol words  $a=a_1a_2...a_N$  and  $b=b_1b_2...b_N$
- The Hamming distance between a and b, d(a,b), is defined as the number of symbol positions in which a and b differ.
- The Hamming distance is a metric on the space of all symbol words of length N
- The Hamming distance obeys the following conditions:
  - 1.  $d(a,b) \ge 0$  with equality when a = b
  - 2. d(a,b) = d(b,a)
  - 3.  $d(a,b) + d(b,c) \ge d(a,c)$  (triangle inequality)

• Example: Let N = 8

$$\mathbf{a} = 11010001$$
 $\mathbf{b} = 00010010$ 
 $\mathbf{c} = 01010011$ 

- d(a,b) = 4, d(b,c) = 2, d(a,c) = 2
- $d(a,b) + d(b,c) = 4 + 2 \ge d(a,c) = 2$

- Hamming distance decoding rule
  - Let:
    - b is a received N-symbol word upon transmission one N-symbol  $a_i$
    - d(a,b) = t, channel has t-symbol error
    - a is N-symbol word that decoder decide when decoder receives b
  - If  $b = a_i$  then decide that  $a_i$  was sent
  - If  $b \neq a_i$  then, for any  $a_j$ , decide a was sent if  $d(a,b) < d(a_j,b)$  for any j (according to maximum-likelihood decoding rule)
    - If there is only one candidate a then
      - a was sent where t = d(a,b)
      - t-symbol error is corrected
    - If there is more than one candidate a, then
      - t-symbol error can only be detected (d(a,b)>0: error exist)

| Message $(L=2)$ | Code word $(N=3)$ |
|-----------------|-------------------|
| 00              | 000               |
| 01              | 001               |
| 10              | 011               |
| 11              | 111               |

- Example:
  - If received N-symbol word  $b = 000 \rightarrow correct decision a = 000$
  - If  $b \neq 000$  when t=1:

| $\mathbf{b} = b_1 b_2 b_3$ | Closest code word                                        | Action                |
|----------------------------|----------------------------------------------------------|-----------------------|
| 010                        | $000 (b_2 \text{ in error}), 011 (b_3 \text{ in error})$ | 1-bit error detected  |
| 100                        | $000 (b_1 \text{ in error})$                             | 1-bit error corrected |
| 101                        | $001$ ( $b_1$ in error), $111$ ( $b_2$ in error)         | 1-bit error detected  |
| 110                        | 111 ( $b_3$ in error)                                    | 1-bit error corrected |

- Minimum distance of a code: the minimum Hamming distance between any two codewords of this code
  - $d(K_N) = min(d(a,b))$  while a and b are N-symbol codewords of N-symbol code.  $K_N$  is a code with length of N symbols
  - Example:  $K_N$ :

```
11010001 \rightarrow d(K_N) = 2 01010011
```

- Error detection and correction using Hamming distance:
  - t-symbol detection:
    - Block code,  $K_N$ , detects up to t errors if and only if its minimum distance is greater than t:  $d(K_N) > t$  (8.1)
      - When the hamming distance between the two codewords is at least equal to t + 1, the wrong codeword turns into a non-codeword, so the error is detected.
      - (8.1): bound on the minimum distance of code of the detection code

- Error detection and correction using Hamming distance:
  - Diagram of t-symbol error detection for  $d(K_N) = t+1$ :

•  $a_i$ ,  $a_j$  are two N-symbol codewords. Each circle consists all words that have Hamming distance with codeword  $\leq$  (t+1). Channel has only t-error, the received combination (b) must be in this circle

 $\mathbf{a}_i$   $\mathbf{a}_j$   $\mathbf{b}$  t+1

- Error detection and correction using Hamming distance:
  - t-symbol correction:
    - Block code,  $K_N$ , correct up to t errors if and only if its minimum distance is greater than t:  $d(K_N) > 2t$  (8.2)
      - When the hamming distance between the two codewords is at least equal to 2t + 1, The combinations received when transmitting a code word are separated, so the error is corrected.
      - (8.2): bound on the minimum distance of code of the correction code
  - Diagram of t-symbol error correction for  $d(K_N) = 2t+1$ :
    - $a_i$ ,  $a_j$  are two N-symbol codewords. Each circle consists all words that have Hamming distance with codeword  $\leq$  t.



Example

| Message | Code word |
|---------|-----------|
| 00      | 000       |
| 01      | 011       |
| 10      | 101       |
| 11      | 110       |

$$d(K_N) = 2$$

 $\rightarrow$  detect only one error(t=1) because  $d(K_N) > t$ , not correct because  $d(K_N) < 2t$ 

• Example

| Message | Code word |
|---------|-----------|
| 0       | 000       |
| 1       | 111       |

•  $d(K_N) = 3 \rightarrow detect$  two errors, correct one error