Homework 9

Computer Science Theory for the Information Age

致远 12 级 ACM 班

刘爽

5112409048

June 30, 2013

1. Consider a random walk on the positive half line, that is the integers $1, 2, 3, \ldots$ At the origin, always move right one step. At all other integers move right with probability 2/3 and left with probability 1/3. What is the escape probability?

Solution:

Let us construct a electrical network. The current flow into the 1^{th} node, the resistance between the i^{th} node and the $(i+1)^{th}$ node is $\frac{1}{2^i}$.

Then the escape probability

$$P_{escape} = \frac{c_{eff}}{c_a} = \frac{1}{r_{eff}} = \frac{1}{2}$$

2. Using the Metropolis-Hasting Algorithm create a Markov chain whose stationary probability is that given in the following table.

x_1x_2									
Prob	1/16	1/8	1/16	1/8	1/4	1/8	1/16	1/8	1/16

Solution:

Since we have for $i \neq j$

$$p_{ij} = \frac{1}{r}\min(1, \frac{p_j}{p_i})$$

and

$$p_{ii} = 1 - \sum_{j \neq i} p_{ij}$$

We can construct the graph easily,

