

Figure B34. Material Flow Data of Analysis Example for EG23.

Table B58. Reactor and Fuel Information of Analysis Example for EG23.

Technology category	Parameter		Stage Number		
	Stage		1	1	
wei	NPPT Technol	ogy Identifier	SI	FR	
· Po nt/ nuta PT)	Core Configura	ation	SFF	R-Pu	
clear Pov Plant/ nsmutat (NPPT)	Core Thermal I	Power, MWth	10	00	
Nuclear Power Plant/ Transmutation (NPPT)	Net Thermal E	fficiency, %	4	0	
	Electrical Ener	gy Generation Sharing, %	100		
	Fuel Type		1.1	1.2	
	Fuel Technolog	gy Identifier	SFR-Metallic	SFR-Metallic	
el	Purpose		Driver	Blanket	
Fu	Average Disch	Average Discharge Burnup, GWd/t		23.5	
Nuclear Fuel		Initial Nuclear Material(s)	Pu/RU	NU	
lucl	Fuel	(U-235+ U-233)/Total U, %	~0	0.71	
Z	Composition	Th/Total HM, %			
			1 = 0 a)		
		TRU/Total HM, %	15.3 ^{a)}	0	

a) Average TRU content in driver fuel, including axial blanket.

Table B59. Mass Flow Data of Analysis Example for EG23.

Stage			Sum b)		
Technology		Fuel	NPPT	Rep/Sep	Sum
Electricity, (GWe-yr		100		100
Feed or prod	luct of nuclear r	naterials (me	etric ton) ^{a)}		
Natural	NU	- 110.6			- 110.6
resource	Th				-
	DU				
Products	U	+ 1,095.2	- 1,095.2		0.0
from fuel or NPPT	Pu	c) + 162.2	- 162.2		0.0
technology	MA				0.0
	DF		+ 1,257.4	- 1,257.4	0.0
Products	RU	- 987.1		+ 987.1	+ 0.0
from	Pu	c) - 162.2		+ 163.1	$^{\rm d)} + 0.9$
Rep/Sep	MA			+ 1.5	+ 1.5
technology	FP			+ 93.1	+ 93.1
Loss		+ 2.5		+ 12.6	+ 15.1

- a) Mass flow in metric ton was developed to produce 100.0 GWe-year from whole nuclear fleet and the signs (-) and (+) indicate the feed and production to or from each technology category, respectively.
- b) Summation of each row indicates the required resource (-) or produced nuclear materials (+) per year to generate electricity of 100 GWe-yr.
- c) Pu, including its decay daughters.
- d) Not zero because Pu breeding ratio is slightly higher than break-even. The extra Pu was treated as HLW.

Figure B35. Material Flow Data of Analysis Example for EG24.

Table B60. Reactor and Fuel Information of Analysis Example for EG24.

Technology category	Parameter	Stage Number		
	Stage		1	
wei	NPPT Technology Id	entifier	SFR	
· Po nt/ nuta PT)	Core Configuration		SFR with U-TRU-Zr	
Nuclear Power Plant/ Transmutation (NPPT)	Core Thermal Power,	MWth	1000	
Nuc.	Net Thermal Efficien	40		
	Electrical Energy Generation Sharing, %			
	Fuel Type	1.1		
	Fuel Technology Idea	SFR-Metallic		
-	Purpose	Driver		
Nuclear Fuel	Average Discharge B	73		
ear		Initial Nuclear Material(s)	TRU/RU/NU	
lucl	Fuel Composition	(U-235+ U-233)/Total U, %	~0	
Z	Fuel Composition	Th/Total HM, %	0	
		TRU/Total HM, %	13.9	
	Fuel Residence Time	3.6		

Table B61. Mass Flow Data of Analysis Example for EG24.

Stage			Sum b)		
Technology		Fuel	NPPT	Rep/Sep	Sulli
Electricity,	GWe-yr		100.0		100
Feed or prod	duct of nuclear r	naterials (me	etric ton) ^{a)}		
Natural	NU	-113.2			-113.2
resource	Th				
Products	U	+1,078.7	-1,078.7		0.0
from fuel	TRU	+172.5	-172.5		0.0
or NPPT technology	DF		+1,251.2	-1,251.2	0.0
Products	RU	-967.7		+967.7	0.0
from	TRU	-172.9		+172.9	0.0
Rep/Sep technology	FP			+98.1	+98.1
Loss		+2.5		+12.5	+15.0

a) Mass flow in metric ton was developed to produce 100.0 GWe-year from whole nuclear fleet and the signs (-) and (+) indicate the feed and production to or from each technology category, respectively.

b) Summation of each row indicates the required resource (-) or produced nuclear materials (+) per year to generate electricity of 100 GWe-yr.

c) Uranium includes recovered uranium (RU) and natural uranium (NU).

Figure B40. Material Flow Data of Analysis Example for EG29.

Table B70. Reactor and Fuel Information of Analysis Example for EG29.

Technology category	Parameter		Stage Number			
73	Stage		-	1	2	
lant n	NPPT Technol	ogy Identifier	SFR-E	Breeder	PWR	
Nuclear Power Plant/ Transmutation (NPPT)	Core Configura	ation	SFR with (UPu) metal fuel		PWR with (UPu)O2, i.e. MOX	
ear ran	Core Thermal 1	Power, MWth	10	000	3000	
ucl	Net Thermal E	fficiency, %	40		33	
Z	Electrical Energy Generation Sharing, %			61.1		
	Fuel Type		1.1	1.2	2.1	
	Fuel Technolog	gy Identifier	SFR-Metal	SFR-Metal	PWR-MOX	
5	Purpose		Driver	Blanket	Driver	
Nuclear Fuel	Average Discharge Burnup, GWd/t		96.8	20.7	50	
ear		Initial Nuclear Material(s)	Pu/RU/NU	RU/NU	Pu/RU	
lucl	Fuel	(U-235+ U-233)/Total U, %	~0.2	~0.2	~0.2	
Z	Composition	Th/Total HM, %	0	0	0	
		TRU/Total HM, %	21.4	0	9.11	
	Fuel Residence	Time in Reactor, EFPY	4.75	9.5	3.9	

Table B71. Mass Flow Data of Analysis Example for EG29.

Stage Technology			1		2			Sum b)
		Fuel	NPPT	Rep/Sep	Fuel	NPPT	Rep/Sep	Sum
Electricity, G	We-yr		61.08			38.92		100
Feed or prod	uct of nuclear	materials (m	etric ton) ^{a)}					
Natural	NU	-133.4 c)						-133.4
resource	Th							
	DU							
Products	U	+1,121.8	-1,121.8		+782.9	-782.9		
from fuel or	Th							
NPPT	Pu	+85.1	-85.1		+78.5	-78.5		
technology	MA							
	DF		+1,206.9 d)	-1,206.9		+861.4	-861.4	
Products	RU	-990.7		+1,028.1	-784.5		+747.1	
from	Pu	-85.2		+108.9	-78.6		+54.9	
Rep/Sep	MA			+1.5			+7.5	+9.0
technology	FP			+56.3			+43.3	+99.6
Loss		+2.4		+12.1	+1.7		8.6	24.8

a) Mass flow in metric ton was developed to produce 100.0 GWe-year from whole nuclear fleet and the signs (-) and (+) indicate the feed and production to or from each technology category, respectively.

b) Summation of each row indicates the required resource (-) or produced nuclear materials (+) per year to generate electricity of 100 GWe-yr.

c) The use of NU is only necessary when the legacy DU has been fully utilized, i.e. if DU is available it can be used.

d) About 1/3 is driver fuel and 2/3 is blanket.

Figure B41. Material Flow Data of Analysis Example for EG30.

Table B72. Reactor and Fuel Information of Analysis Example for EG30.

Technology category	Parameter		Stage Number			
٠. ٦	Stage		1	1	2	
Nuclear Power Plant/ Transmutation (NPPT)	NPPT Technol	ogy Identifier	SI	FR	PWR	
dear Por Plant/ nsmutati (NPPT)	Core Configura	ation	SFR wit	h UPuZr	PWR with MOX	
lear Pla nsm	Core Thermal	Power, MWth	10	00	3000	
Nuc [rai	Net Thermal E	fficiency, %	4	0	33	
I	Electrical Ener	gy Generation Sharing, %	87	7.0	13.0	
	Fuel Type		1.1	1.2	2.1	
	Fuel Technolog	gy Identifier	SFR-Metallic	SFR-Metallic	PWR-MOX	
	Purpose		Driver	Blanket	Driver	
iel	Average Disch	arge Burnup, GWd/t	107	23	50	
Nuclear Fuel		Initial Nuclear Material(s)	TRU/RU/NU	RU/NU	TRU/RU/NU	
Nucl	Fuel Composition	(U-235+ U-233)/Total U, %	0.19	0.15	0.04	
		Th/Total HM, %	0	0	0	
		TRU/Total HM, %	24.4	0.0	10.4	
	Fuel Residence	Time in Reactor, EFPY	4.9	4.9	4.1	

Table B73. Mass Flow Data of Analysis Example for EG30.

Stage Technology		1		2			Sum b)	
		Fuel	NPPT	Rep/Sep	Fuel	NPPT	Rep/Sep	Sum
Electricity,	GWe-yr		87.0			13.0		100
Feed or pro	duct of nuclear 1	naterials (me	tric ton) ^{a)}					
Natural	NU	-109.9			-3.0			-112.9
resource	Th							-
	DU							-
Products	U	+1,076.3	-1,076.3		+257.3	-257.3		0.0
from fuel or NPPT	Pu	+129.9	-129.9		+29.6	-29.6		0.0
technology	MA	+12.1	-12.1		+0.1	-0.1		0.0
ee e miere gy	DF		+1,218.3	-1,218.3		+287.0	-287.0	0.0
Products	RU	-968.5		+977.1	-254.8		+246.2	0.0
from	Pu	-130.2		+138.7	-29.7		+21.2	0.0
Rep/Sep	MA	-12.1		+9.9	-0.1		+2.3	0.0
technology	FP			+80.4			+14.4	+94.8
Loss		+2.4		+12.2	+0.6		+2.9	+18.1

a) Mass flow in metric ton was developed to produce 100.0 GWe-year from whole nuclear fleet and the signs (-) and (+) indicate the feed and production to or from each technology category, respectively.

b) Summation of each row indicates the required resource (-) or produced nuclear materials (+) per year to generate electricity of 100 GWe-yr.