BUBBLEYE Coding Test

Chi-Chieh Huang

Exploratory Data Analysis

Descriptive Statistics

- Campaign: 50 unique
- Publisher: 288 unique
 - Campaign + Publisher: 3,419 unique
- Date:
 - Start: 2023-05-01
 - End: 2023-07-10

Campaign + Publisher

 It is evident that certain campaigns exclusively utilize specific publishers, and these publishers predominantly associate with those particular campaigns.

Campaign + installs

- Most Campaign install numbers are not high
- · Higher installs all appear after a certain point in time

Model Building

Data Preprocessing

- Goal: My definition of the problem is straightforward: I am solely focused on predicting 'd90_arpu' and do not involve any of the other 'dXX_arpu' variables
- Remove NULL: Delete rows with empty value in 'd90_arpu' column
- Feature Engineering:
 - Dayofweek
 - Month
 - Dayofyear
 - dayofmonth

campaign	publisher	date	installs	d90_arpu	dayofweek	month	dayofyear	dayofmonth
731591	1	2023/5/30	333	6.327	1	5	150	30
731591	1	2023/5/31	287	3.354	2	5	151	31
731591	1	2023/6/1	267	5.127	3	6	152	1
731591	1	2023/6/2	562	4.249	4	6	153	2
731591	1	2023/6/3	652	3.127	5	6	154	3

Modeling

- Validation: Backtesting Expanding Window
 - Fold: 3
 - Days: 10
- Hyperparameter Tuning: 240 combinations
 - Grid search + Backtesting: Use the hyperparameter with the lowest average MAPE in backtesting
 - Iterations
 - learning_rate
 - depth

• Algorithm: Catboost

- Given the abundance of category information and the sparse data within each group, individual modeling becomes challenging.
- Hence, I opt for CatBoost, as it can directly handle categorical data without encountering the curse of dimensionality.

Explain

Feature Importance

Tree-based Feature Importance

 Equal to PredictionValuesChange for non-ranking metrics and LossFunctionChange for ranking metrics

SHAP Global bar plot:

- In this plot, the global importance of each feature is determined as the average absolute value of that feature across all provided samples.
- Both assess feature importance metrics, and while there are minor distinctions, they concur that the campaign, publisher, and dayofyear columns are the top three in terms of significance.

SHAP value

Beeswarm Plot:

- Absolute values of the categorical features don't matter, because it's hashes.
- On the x-axis of the plot, each dot represents the SHAP value of an individual data point, offering essential insights into feature influence.
- A broader distribution or increased density of dots signifies greater variability or a more pronounced effect on the model's predictions.

Decision Plot Features:

- Select 50 data points
- installs is a very important deciding factor in these data points

Improvement

Optimization

Goal:

 Not enough understanding of the data, such as why null values occur. This can also explore whether information from other 'dXX_arpu' can be borrowed

Modeling optimization:

- multi-step time series forecasting
- · auto-tuning for each campaign-publisher level
- Bayesian optimization for hyperparameter searching

• Algorithm:

Algorithm selection and optimization remain to be discussed

黄 CHICHIEH 琪 婕 , HUANG

**** +886 956101395

cch.chichieh@gmail.com

wsxqaza12

♀ 台北,台灣