CAPSTONE 1: LOAN ANALYSIS

Vy Nguyen

Challenges

- Small and medium enterprises (SMEs) are one of the strongest drivers of economic development, innovation and employment.
- The access to finance is recognized as the greatest obstacle to the growth of SMEs.
- Lenders who can address this matter have great growing potential.
- Challenges: how to manage loan risk efficiently and make accurate decisions.

Goal and Data

- Goal: Using Machine Learning models to predict whether a company is able to make payments on time.
- Data: The dataset is taken from the South African digital lender.

Data Exploratory

- The dataset consists of 1346 rows representing 1346 companies who are Lulalend's customers and 49 columns.
- The target variable is 'bad' which is binary variable containing the history payment of these companies.
- This data set has continuous and categorical data along with the missing values.

<class 'pandas.core.frame.dataframe'=""></class>	
Int64Index: 1346 entries, 0 to 1345	
Data columns (total 49 columns):	
AssessmentRunId	1346 non-null int64
province	1346 non-null object
AdvanceId	1346 non-null int64
bad	1346 non-null int64
outstanding_capital	1346 non-null float64
balance	1346 non-null float64
overdraft_limit_exceeds	391 non-null float64
recent_long_term_consumer_liability	764 non-null float64
minimum_latest_bank_statements	820 non-null float64
minimum_consumer_assets	820 non-null float64
minimum_tax_activity	820 non-null float64
other_funding	1247 non-null float64
minimum_other_funding	1248 non-null float64
unpaids	1247 non-null float64
minimum_unpaids	1248 non-null float64
minimum_source_of_income	1248 non-null float64
minimum_decreasing_overdraft	1248 non-null float64
source_of_income	1247 non-null float64
overdraft	1247 non-null float64
liquidity	1247 non-null float64
minimum_current_arrears	1248 non-null float64
minimum_codix_outcome	1191 non-null float64
<pre>previous_funding_repayment</pre>	1286 non-null float64
minimum_bank_statements	1346 non-null int64
minimum_balance_based_affordability	1346 non-null int64
minimum_requirements	1346 non-null int64
business_health	98 non-null float64
self_published_time_in_business	1345 non-null float64
home_ownership_status	1345 non-null float64
time_at_personal_residence	1345 non-null float64
business_social_media_presence	1345 non-null float64
business_industry	1345 non-null float64
business_linked_to_affiliate	1345 non-null float64
business_linked_to_partner	1345 non-null float64
h	1245 man mull flootC4

Variables Selection

- Not all variables (features) is going to have an impact on the target 'bad'.
- There are 16

 variables that have
 the absolute value
 of correlation with
 the target 'bad'
 more than 0.03

Variables Selection

- We will look at the correlations between these 16 variables to find out the one are highly correlated.
- Three pairs of variables having high correlation:
 - Minimum other funding & other funding
 - Minimum unpaids & Unpaids
 - Minimum requirements & Minimum tax activities

Dimension Reduction PCA

- We use PCA (Principal Component Analysis) to rotate and project data along the direction of increasing variance.
- The first principal component explains 12.7% of the variances, the second principal component explains 11% of the variances.

bad	minimum_tax_activity	
0.120773	1.0	1
0.088670	0.0	0

•	Group minimum_tax_activity = 1 is more
	likely to miss payments.

V2-	minimum_other_funding	bad
1	1.0	0.117816
0	0.0	0.078431

•	Group minimun	n_other_	_funding	= 1 is
	more likely to m	niss pay	ments.	

884	minimum_unpaids	bad
0	0.0	0.161677
1	1.0	0.103608

 Group minimum_unpaids = 0 is more likely to miss payments.

- The group home_ownership_status =
 1 has the lowest rate of missing
 payments. It means the directors who
 own 100% their house are less likely
 to miss payments.
- The longer the director live in his home, the higher the rate of missing payments.

hom	e_ownership_status	bad
1	0.25	0.131034
2	0.50	0.121053
0	0.00	0.114600
3	1.00	0.076503

time_at_person	al_residence	bad
4	1.00	0.128866
3	0.75	0.126437
2	0.50	0.106061
0	0.00	0.095238
1	0.25	0.083333

- The group minimum_tax_activity = 1 is more likely to miss payments.
- The group business_has_website = 1 tend to miss payments more but the difference is very slight.
- The group business_account_linked = 1 tend to miss payments more.

	business_linked_to_partner	bad
1	1.0	0.177215
0	0.0	0.109005

80	business_has_website	bad
1	1.0	0.123306
0	0.0	0.100494

0	business_account_linked	bad
1	1.0	0.131653
0	0.0	0.091918

- The group getting the loan for bridging_loan purpose is less likely to miss the payments.
- The group getting the loan for inventory purpose is less likely to miss the payments.

	reason_bridging_loan	bad
0	0	0.126136
1	1	0.087983

	reason_inventory_purchase	bad	
0	0	0.124844	
1	1	0.095413	

Observations in the group of missing data are more likely to have positive 'balance'.

Which makes sense here since company with arrears tend to miss payments more.

In the group of not missing payments, 49.6% submitted tax return('minimum_tax_activity' = 1).

While in the group of missing payments, 58% submitted tax return.

The group of missing data is more likely to submit tax return

In the group of not missing payments, 35.59% get the loan for bridging reason.

In the group of missing payments, 26.97% get the loan for bridging reason.

The group of not missing payments tend to get the loan for bridging purpose more.

In the group of not missing payments, 41.29% get the loan for inventory reason.

In the group of missing payments, 34.21% get the loan for inventory purchase reason.

The group of not missing payments tend to get the loan for inventory purchase purpose more.

Machine Learning

- Since the dataset is unbalanced (11.5% of the data labeled 1 and 88.5% labeled 0), we are going to apply the Machine Learning Algorithms on the original training set, oversampling training set and undersampling training set.
- Our problem is a classification problem. We are also performing a category of machine learning which is called supervised learning as we are training our model with a labeled dataset.
- We are using the following Machine Learning Models: K-Nearest Neighborhood, Logistic Regression, Support Vector Machine, Stochastic Gradient Descent, Random Forest, Decision Tree, Naive Bayes.
- The metrics to compare these models are: Accuracy, Precision, Recall, F1-score and area under ROC (receiver operating characteristic) curve.

K-Nearest Neighbor

	Accuracy	Precision	Recall	F1-Score	AUC
Original Data	0.93	0.93	0.93	0.91	0.7503
Oversampling	0.55	0.55	0.55	0.51	0.7000
o voloumpiing	0.84	0.86	0.84	0.85	0.6912
Undersampling	0.70	0.00	0.70	0.04	0.7004
	0.78	0.86	0.78	0.81	0.7234

K-Nearest Neighbor model works the best on original data with high accuracy, precision, recall, f1-score and AUC.

Logistic Regression

	Accuracy	Precision	Recall	F1-Score	AUC
Original Data	0.91	0.91	0.91	0.88	0.7325
Oversampling	0.92	0.91	0.92	0.91	0.7402
Undersampling	0.92	0.91	0.92	0.91	0.7601

Logistic Regression model works the best on undersampling data with high accuracy, precision, recall, f1-score and AUC.

Support Vector Machine

	Accuracy	Precision	Recall	F1-Score	AUC
Original Data	0.93	0.93	0.93	0.91	0.7698
Oversampling	0.87	0.88	0.87	0.87	0.7448
Undersampling	0.92	0.91	0.92	0.91	0.7422

Stochastic Gradient Descent

	Accuracy	Precision	Recall	F1-Score	AUC
Original Data	0.93	0.93	0.93	0.92	7.009
Oversampling	0.86	0.87	0.86	0.87	0.6997
Undersampling	0.55	0.85	0.55	0.63	0.6137

Stochastic Gradient Descent model works the best on original data with high accuracy, precision, recall, f1-score and AUC.

Decision Tree

	Accuracy	Precision	Recall	F1-Score	AUC
Original Data					
	0.94	0.94	0.94	0.92	0.7277
Oversampling					
	0.79	0.87	0.79	0.82	0.7567
Undersampling					
	0.74	0.85	0.74	0.78	0.6804

Decision Tree model works the best on original data with high accuracy, precision, recall, f1-score and AUC.

Random Forest

	Accuracy	Precision	Recall	F1-Score	AUC
Original Data	0.91	0.9	0.91	0.9	0.7403
Oversampling	0.87	0.87	0.87	0.87	0.7295
Undersampling	0.76	0.84	0.76	0.8	0.653

Random Forest model works the best on original data with high accuracy, precision, recall, f1-score and AUC.

Naive Bayes

	Accuracy	Precision	Recall	F1-Score	AUC
Original Data					
	0.88	0.79	0.88	0.83	0.7414
Oversampling					
	0.26	0.91	0.26	0.29	0.737
Undersampling					
	0.91	0.89	0.91	0.89	0.7257

Naive Bayes model works the best on original data with high accuracy, precision, recall, f1-score and AUC.

Result

	Accuracy	Precision	Recall	F1-Score	AUC
KNN Original Data	0.93	0.93	0.93	0.91	0.7503
Logistic Regression Undersampling	0.92	0.91	0.92	0.91	0.7601
SVC Undersampling	0.92	0.91	0.92	0.91	0.7422
SGD Original Data	0.93	0.93	0.93	0.92	7.009
Decision Tree Original Data	0.94	0.94	0.94	0.92	0.7277
Random Forest Original Data	0.91	0.9	0.91	0.9	0.7403
Naive Bayes Undersampling	0.91	0.89	0.91	0.89	0.7257

Disbursement & Threshold

- The Logistic Regression Model provides the probability that a company is going to miss payments. By default, the cut off is 0.5. If a company has more than 50% to miss payments, it is labeled 1 (target feature 'bad' is predicted to be 1).
- The disbursement amount requested by each company is given.
- Is 0.5 the best cut off for the lender?
- With interest rate = 12%, we are going to calculate the booksize, profit and margin at different threshold to figure out which threshold works the best for lender.

Disbursement & Threshold

- When the threshold is 0.4, the margin is 0.115 and the profit is 6,731,253.
- The margin at 0.4 is slightly less than the best one, but the profit is higher. The best cut off is 0.4.

Conclusion

- The lender can use the best model to find the probability of missing payments of a future customer.
- Using the probability of missing payments, disbursement amount and other factors, lender can make decision whether to fund or not.
- They also can find the best threshold at different interest rate.