Introduction to Algorithms: Lecture 2

Xue Chen xuechen1989@ustc.edu.cn 2025 spring in

Homework 1

- 4 HW1 will be out this weekend and due on next Thursday.
- VERY challenging start it early!

Homework 1

- HW1 will be out this weekend and due on next Thursday.
- VERY challenging start it early!
- Grading policy: 75% correctness, 25% clarity:

证明/计算: 思路清晰, 组织明确, 说明关键步骤/性质, 语言精炼

- While you are encouraged to discuss it before writing, you must write it by yourself.
- 但关键想法的执行、以及作业文本的写作必须独立完成,并在作业中致谢(ACKNOWLEDGE)所有参与讨论的人
- 不允许其他任何形式的合作——尤其是与已经完成作业的同学"讨论"。
- 如果发现互相抄袭行为, 抄袭和被抄袭双方的成绩都将被取消。因此请主动防止自己的作业被他人抄袭。
- 禁止在网上求助,搜索答案,询问已修过的同学等行为。如有问题,可以来我和助教的答疑时间

Outline

- Introduction
- 2 Shellsort
- 3 Mergesort
- 4 Quicksort

Introduction

Sort

Given an array A of n numbers $A[1], \ldots, A[n]$, sort them in order.

Input:
$$n = 5$$
, $A = [5, 1, 2, 3, 0]$.

Output: A = [0, 1, 2, 3, 5].

Introduction

Sort

Given an array A of n numbers $A[1], \ldots, A[n]$, sort them in order.

Input:
$$n = 5$$
, $A = [5, 1, 2, 3, 0]$.
Output: $A = [0, 1, 2, 3, 5]$.

- Most fundamental problem in CS.
- A could be an array of strings, real numbers, graphs or anything as long as we could compare them.

Introduction

Sort

Given an array A of n numbers $A[1], \ldots, A[n]$, sort them in order.

Input:
$$n = 5$$
, $A = [5, 1, 2, 3, 0]$.
Output: $A = [0, 1, 2, 3, 5]$.

- Most fundamental problem in CS.
- A could be an array of strings, real numbers, graphs or anything as long as we could compare them.
- Oiscuss several sorting algorithms: Insertion-sort, ShellSort, Merge-sort and Quicksort.
- Many interesting ideas: number theory, divide & conquer, randomized algorithms, ...

The most basic sorting algorithm:

- Easy to implement.
- 2 Relative slow.

Basic idea: After sorting the first *j* elements,

Insertion sort
$$A[1] \le A[2] \le A[3] \le \cdots \le A[i] \le A[i+1] \le \cdots \le A[j], \quad \text{insert } A[j+1]?$$
 insert $A[j+1]$ into them.

The most basic sorting algorithm:

- 1 Easy to implement.
- 2 Relative slow.

Basic idea: After sorting the first *j* elements,

Insertion sort
$$A[1] \le A[2] \le A[3] \le \cdots \le A[i] \le A[i+1] \le \cdots \le A[j], \quad \text{insert } A[j+1]?$$

$$\text{insert } A[j+1] \text{ into them.}$$

Insertion sort
$$A[1] \le A[2] \le A[3] \le \cdots \le A[i] \le A[i+1] \le \cdots \le A[j], \quad \text{insert } A[j+1]?$$

Plan: In the 1st round, sort A[1] and A[2].

1st round:

compare A[1] and $A[2] \Rightarrow$

A = [5, 1, 2, 3, 0]

A = [1, 5, 2, 3, 0]

Plan: In the 1st round, sort A[1] and A[2]. In the 2nd round, insert A[3] into A[1] and A[2].

1st round:

compare A[1] and $A[2] \Rightarrow$

2nd round:

compare 2 and A[2]

A = [5, 1, 2, 3, 0]

A = [1, 5, 2, 3, 0]

Insert A[3] = 2

Plan: In the 1st round, sort A[1] and A[2]. In the 2nd round, insert A[3] into A[1] and A[2].

1st round: compare A[1] and $A[2] \Rightarrow$ 2nd round:

compare 2 and $A[2] \Rightarrow$ compare 2 and $A[1] \Rightarrow$

A = [5, 1, 2, 3, 0]

A = [1, 5, 2, 3, 0]

Insert A[3] = 2

A = [1, 2, 5, 3, 0]

A = [1, 2, 5, 3, 0]

Plan: In the 1st round, sort A[1] and A[2]. In the 2nd round, insert A[3] into A[1] and A[2]. In the 3rd round, insert A[4] into A[1], A[2], A[3];

1st round:

compare A[1] and $A[2] \Rightarrow$

2nd round:

compare 2 and $A[2] \Rightarrow$

compare 2 and $A[1] \Rightarrow$ 3rd round:

compare 3 and $A[3] \Rightarrow$

compare 3 and A[2]

A = [5, 1, 2, 3, 0]

A = [1, 5, 2, 3, 0]

Insert A[3] = 2

A = [1, 2, 5, 3, 0]

A = [1, 2, 5, 3, 0]

Insert A[4] = 3

A = [1, 2, 3, 5, 0]

```
Plan: In the 1st round, sort A[1] and A[2].
In the 2nd round, insert A[3] into A[1] and A[2].
In the 3rd round, insert A[4] into A[1], A[2], A[3];
```

1st round:	A = [5, 1, 2, 3, 0]
compare $A[1]$ and $A[2] \Rightarrow$	A = [1, 5, 2, 3, 0]
2nd round:	Insert $A[3] = 2$
compare 2 and $A[2] \Rightarrow$	A = [1, 2, 5, 3, 0]
compare 2 and $A[1] \Rightarrow$	A = [1, 2, 5, 3, 0]
3rd round:	Insert $A[4] = 3$
compare 3 and $A[3] \Rightarrow$	A = [1, 2, 3, 5, 0]
compare 3 and $A[2] \Rightarrow$	A = [1, 2, 3, 5, 0]
Stop this round:	No need to compare 3 and $A[1]!$
4th round:	Insert $A[5] = 0$
	A = [0, 1, 2, 3, 5]

```
Plan: In the 1st round, sort A[1] and A[2].
In the 2nd round, insert A[3] into A[1] and A[2].
In the 3rd round, insert A[4] into A[1], A[2], A[3];
```

1st round:	A = [5, 1, 2, 3, 0]
compare $A[1]$ and $A[2] \Rightarrow$	A = [1, 5, 2, 3, 0]
2nd round:	Insert $A[3] = 2$
compare 2 and $A[2] \Rightarrow$	A = [1, 2, 5, 3, 0]
compare 2 and $A[1] \Rightarrow$	A = [1, 2, 5, 3, 0]
3rd round:	Insert $A[4] = 3$
compare 3 and $A[3] \Rightarrow$	A = [1, 2, 3, 5, 0]
compare 3 and $A[2] \Rightarrow$	A = [1, 2, 3, 5, 0]
Stop this round:	No need to compare 3 and $A[1]!$
4th round:	Insert $A[5] = 0$
	A = [0, 1, 2, 3, 5]

Plan: In the 1st round, sort A[1] and A[2].

In the 2nd round, insert A[3] into A[1] and A[2].

In the 3rd round, insert A[4] into A[1], A[2], A[3]; and so on.

1st round:	A = [5, 1, 2, 3, 0]
compare $A[1]$ and $A[2] \Rightarrow$	A = [1, 5, 2, 3, 0]
2nd round:	Insert $A[3] = 2$
compare 2 and $A[2] \Rightarrow$	A = [1, 2, 5, 3, 0]
compare 2 and $A[1] \Rightarrow$	A = [1, 2, 5, 3, 0]
3rd round:	Insert $A[4] = 3$
compare 3 and $A[3] \Rightarrow$	A = [1, 2, 3, 5, 0]
compare 3 and $A[2] \Rightarrow$	A = [1, 2, 3, 5, 0]
Stop this round:	No need to compare 3 and $A[1]!$
4th round:	Insert $A[5] = 0$
	A = [0, 1, 2, 3, 5]

Pseudo-code

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1 ... j - 1].

4 i = j - 1

5 while i > 0 and A[i] > key

6 A[i + 1] = A[i]

7 i = i - 1

8 A[i + 1] = key
```

On Page 18 of [CLRS]

Pseudo-code

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key
```

On Page 18 of [CLRS]

Two questions

- (1) Correctness?
- (2) Running time of sorting *n* numbers?

```
INSERTION-SORT (A)

1 for j = 2 to A. length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j - 1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i - 1

8 A[i+1] = key
```

Prove that A is sorted after the loop?

Prove that *A* is sorted after the loop?

Induction on loop j

Hypothesis: After every iteration of j, A[1], ..., A[j] are in sorted order.

Prove that A is sorted after the loop?

Induction on loop j

Hypothesis: After every iteration of j, $A[1], \ldots, A[j]$ are in sorted order.

① Base case: j = 1, A[1] is sorted.

```
INSERTION-SORT (A)

1 for j = 2 to A. length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j - 1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i - 1

8 A[i+1] = key
```

Prove that *A* is sorted after the loop?

Induction on loop j

Hypothesis: After every iteration of j, A[1], ..., A[j] are in sorted order.

- ① Base case: j = 1, A[1] is sorted.
- 2 Induction step: Suppose A[1], ..., A[k] are sorted. Consider A[1], ..., A[k+1] after the iteration of j = k+1.

Observation

After the while loop, $A[i] \leq key < A[i+1]$.

To sort *n* numbers, the worst running time is

To sort *n* numbers, the worst running time is

$$\sum_{j=2}^{n} \left(O(1) + \sum_{i} O(1) \right)$$

```
 \begin{aligned} &\text{INSERTION-SORT}(A) \\ &1 & \text{ for } j = 2 \text{ to } A.length \\ &2 & key = A[j] \\ &3 & \text{ // Insert } A[j] \text{ into the sorted sequence } A[1\mathinner{\ldotp\ldotp} j-1]. \\ &4 & i=j-1 \\ &5 & \text{ while } i>0 \text{ and } A[i]>key \\ &6 & A[i+1]=A[i] \\ &7 & i=i-1 \\ &8 & A[i+1]=key \end{aligned}
```

To sort *n* numbers, the worst running time is

$$\sum_{j=2}^{n} \left(O(1) + \sum_{i} O(1) \right) \leqslant O(n) + \sum_{j=2}^{n} \sum_{i=j-1}^{0} O(1)$$

$$= O(n) + \sum_{j=2}^{n} O(j)$$

$$= O(n^{2})$$

To sort *n* numbers, the worst running time is

$$\sum_{j=2}^{n} \left(O(1) + \sum_{i} O(1) \right) \leqslant O(n) + \sum_{j=2}^{n} \sum_{i=j-1}^{0} O(1)$$

$$= O(n) + \sum_{j=2}^{n} O(j)$$

$$= O(n^{2})$$

Question: How about average-case running time?

Discussion

While Insertion-sort is easy to implement, the running time is slow.

Bottleneck

For each new element key = A[j], it enumerates i to find the position

$$A[i] \leqslant key < A[i+1].$$

Two ideas to improve it:

Discussion

While Insertion-sort is easy to implement, the running time is slow.

Bottleneck

For each new element key = A[j], it enumerates i to find the position

$$A[i] \leqslant key < A[i+1].$$

Two ideas to improve it:

① Any sorting algorithm that only swaps adjacent elements requires $\Omega(n^2)$ time — Move A[j] further with each swap (called Shellsort).

$$A[1] \le A[2] \le A[3] \le \cdots \le A[i] \le A[i+1] \le \cdots \le A[j], \quad \text{insert } A[j+1]?$$

$$Shell sort$$

Discussion

While Insertion-sort is easy to implement, the running time is slow.

Bottleneck

For each new element key = A[j], it enumerates i to find the position

$$A[i] \leqslant key < A[i+1].$$

Two ideas to improve it:

① Any sorting algorithm that only swaps adjacent elements requires $\Omega(n^2)$ time — Move A[j] further with each swap (called Shellsort).

② Find the position of A[j] more efficiently (either in amortized time or by data structures).

Outline

- Introduction
- 2 Shellsort
- 3 Mergesort
- 4 Quicksort

Idea

Basic idea: Apply Insertion-sort multiple times with different increments h, like inserting A[j] into A[j-h], A[j-2h], A[j-3h], . . .

Idea

Basic idea: Apply Insertion-sort multiple times with different increments h, like inserting A[j] into A[j-h], A[j-2h], A[j-3h], . . .

Question: How to guarantee the correctness?

Idea

Basic idea: Apply Insertion-sort multiple times with different increments h, like inserting A[j] into A[j-h], A[j-2h], A[j-3h], . . .

$$A[1] \le A[2] \le A[3] \le \cdots \le A[i] \le A[i+1] \le \cdots \le A[j], \quad \text{insert } A[j+1]?$$

$$Shell sort \qquad \downarrow \leftarrow h \rightarrow 1$$

Question: How to guarantee the correctness? Solution: Set the last increment h = 1.

```
procedure InsertionSort(h)
   for j = h + 1, ..., n do
      key = A[i]
      i = i - h
      while i > 0 and A[i] > key do
         A[i+h]=A[i]
         i = i - h
      A[i + h] = key
procedure MAIN(H)
   for each h \in H (from the largest to 1) do
      INSERTIONSORT(h)
```

Description

```
procedure InsertionSort(h)
   for j = h + 1, ..., n do
      key = A[i]
      i = i - h
      while i > 0 and A[i] > key do
         A[i+h]=A[i]
         i = i - h
      A[i+h]=kev
procedure MAIN(H)
   for each h \in H (from the largest to 1) do
      INSERTIONSORT(h)
```

Next

- (1) Correctness?
- (2) Running time?

Analysis

Since $1 \in H$, its correctness follows from the previous proof.

Question

How to choose *H* to minimize the running time?

Since $1 \in H$, its correctness follows from the previous proof.

Question

How to choose *H* to minimize the running time?

Toy example:
$$H = \{\sqrt{n}, 1\}$$
. So time = time $\Big(\text{INSERTIONSORT}(h_1) \Big) + \text{time} \Big(\text{INSERTIONSORT}(h_2) \Big)$

Since $1 \in H$, its correctness follows from the previous proof.

Question

How to choose *H* to minimize the running time?

Toy example:
$$H = \{\sqrt{n}, 1\}$$
. So time = time $\Big(\text{INSERTIONSORT}(h_1) \Big) + \text{time} \Big(\text{INSERTIONSORT}(h_2) \Big)$

① For $h_2 = \sqrt{n}$, INSERTIONSORT(h_2) takes at most n^2/h_2 times.

Since $1 \in H$, its correctness follows from the previous proof.

Question

How to choose *H* to minimize the running time?

Toy example:
$$H = \{\sqrt{n}, 1\}$$
. So time = time $\Big(\text{INSERTIONSORT}(h_1) \Big) + \text{time} \Big(\text{INSERTIONSORT}(h_2) \Big)$

- ① For $h_2 = \sqrt{n}$, INSERTIONSORT(h_2) takes at most n^2/h_2 times.
- ② For $h_1 = 1$, we expect each A[j] will be moved within $O(h_2)$ steps.

Since $1 \in H$, its correctness follows from the previous proof.

Question

How to choose *H* to minimize the running time?

Toy example:
$$H = \{\sqrt{n}, 1\}$$
. So time = time $\Big(\text{INSERTIONSORT}(h_1) \Big) + \text{time} \Big(\text{INSERTIONSORT}(h_2) \Big)$

- ① For $h_2 = \sqrt{n}$, INSERTIONSORT(h_2) takes at most n^2/h_2 times.
- ② For $h_1 = 1$, we expect each A[j] will be moved within $O(h_2)$ steps. So the ideal running time is $O(n^2/h_2 + n \cdot h_2) = O(n^{1.5})$

- Question: Will this always happen?

Since $1 \in H$, its correctness follows from the previous proof.

Question

How to choose *H* to minimize the running time?

Toy example:
$$H = \{\sqrt{n}, 1\}$$
. So time = time $\Big(\text{INSERTIONSORT}(h_1) \Big) + \text{time} \Big(\text{INSERTIONSORT}(h_2) \Big)$

- ① For $h_2 = \sqrt{n}$, INSERTIONSORT(h_2) takes at most n^2/h_2 times.
- ② For $h_1 = 1$, we expect each A[j] will be moved within $O(h_2)$ steps. So the ideal running time is $O(n^2/h_2 + n \cdot h_2) = O(n^{1.5})$

— Question: Will this always happen?

Next slide \odot : Proving the running time is $o(n^2)$ rigorously is quite involved!

Formal Result

Theorem (1)

For $H = \{2^k - 1 | k = \log_2 n, ..., 1\}$, the running time is $O(n^{3/2})$.

Proof: InsertionSort(h) takes $\leq n^2/h$ time — Only need to consider InsertionSort($2^{\lfloor \log_2 \sqrt{n} \rfloor} - 1$), ..., InsertionSort(3), InsertionSort(1).

Formal Result

Theorem (1)

For $H = \{2^k - 1 | k = \log_2 n, ..., 1\}$, the running time is $O(n^{3/2})$.

Proof: InsertionSort(h) takes $\leq n^2/h$ time — Only need to consider InsertionSort($2^{\lceil \log_2 \sqrt{n} \rceil} - 1$), ..., InsertionSort(3), InsertionSort(1).

Lemma (1)

If we have applied INSERTIONSORT (h_{t+1}) and INSERTIONSORT (h_t) to A, then the time of INSERTIONSORT (h_{t-1}) is $O(\frac{n \cdot h_{t+1} \cdot h_t}{h_{t-1}})$.

Proof of Lemma (1)

Lemma (1)

If we have applied INSERTIONSORT (h_{t+1}) and INSERTIONSORT (h_t) to A, then the time of INSERTIONSORT (h_{t-1}) is $O(\frac{n \cdot h_{t+1} \cdot h_t}{h_{t-1}})$.

Proof of Lemma (1)

Lemma (1)

If we have applied InsertionSort (h_{t+1}) and InsertionSort (h_t) to A, then the time of InsertionSort (h_{t-1}) is $O(\frac{n \cdot h_{t+1} \cdot h_t}{h_{t-1}})$.

OBS 1: If we have applied INSERTIONSORT(h), then A is always sorted with increments h in the future.

Proof of Lemma (1)

Lemma (1)

If we have applied InsertionSort (h_{t+1}) and InsertionSort (h_t) to A, then the time of InsertionSort (h_{t-1}) is $O(\frac{n \cdot h_{t+1} \cdot h_t}{h_{t-1}})$.

- ① OBS 1: If we have applied INSERTIONSORT(h), then A is always sorted with increments h in the future.
- ② 2nd step: In INSERTIONSORT(h_{t-1}), each element will be moved by at most $h_{t+1} \cdot h_t / h_{t-1}$ steps when h_{t+1} and h_t are co-prime.

Summary

Simple modifications improve the performance significantly — if one is not enough, try more!.

2 Deep math in short codes.

Summary

- Simple modifications improve the performance significantly if one is not enough, try more!.
- ② Deep math in short codes.
- 3 The running time of ShellSort can be improved to $O(n \log^2 n)$ by choosing more complicated H try it in Experiment 1
- Advantage: (1) Extremely easy to implement;
 (2) Saving space O(1) extra bytes.
- ⑤ Disadvantage: Not the fastest in theory.

Discussion

Another bottleneck of INSERTIONSORT is that they did fully utilize the fact that $A[1], \ldots, A[j-1]$ have been sorted before inserting A[j].

$$A[1] \le A[2] \le A[3] \le \cdots \le A[i] \le A[i+1] \le \cdots \le A[j], \quad \text{insert } A[j+1]?$$

$$A[1] \le A[2] \le A[3] \le \cdots \le A[j+1] \le \cdots \le A[i] \le A[i+1] \le \cdots \le A[j]$$

Two ideas

Discussion

Another bottleneck of INSERTIONSORT is that they did fully utilize the fact that $A[1], \ldots, A[j-1]$ have been sorted before inserting A[j].

$$A[1] \le A[2] \le A[3] \le \cdots \le A[i] \le A[i+1] \le \cdots \le A[j], \quad \text{insert } A[j+1]?$$

$$A[1] \le A[2] \le A[3] \le \cdots \le A[j+1] \le \cdots \le A[i] \le A[i+1] \le \cdots \le A[j]$$

Two ideas

① Maintain a data structure to find the position and shift A quickly \Rightarrow called heap

Discussion

Another bottleneck of INSERTIONSORT is that they did fully utilize the fact that $A[1], \ldots, A[j-1]$ have been sorted before inserting A[j].

$$A[1] \le A[2] \le A[3] \le \cdots \le A[i] \le A[i+1] \le \cdots \le A[j], \quad \text{insert } A[j+1]?$$

$$A[1] \le A[2] \le A[3] \le \cdots \le A[j+1] \le \cdots \le A[i] \le A[i+1] \le \cdots \le A[j]$$

Two ideas

- ① Maintain a data structure to find the position and shift A quickly \Rightarrow called heap
- 2 Reduce the insertion time by considering amortized time of multiple insertions.

Outline

- Introduction
- 2 Shellsort
- 3 Mergesort
- 4 Quicksort

Overview

Try 2nd idea

Reduce the insertion time by considering amortized time of multiple insertions.

Consider the insertion of A[j], A[j+1], ..., A[k].

Example: $(A_1, \ldots, A[j-1]) = (1, 4, 7)$ and $(A[j], \ldots, A[k]) = (2, 3, 8)$.

Overview

Try 2nd idea

Reduce the insertion time by considering amortized time of multiple insertions.

Consider the insertion of A[j], A[j+1], ..., A[k].

Example: $(A_1, ..., A[j-1]) = (1, 4, 7)$ and (A[j], ..., A[k]) = (2, 3, 8).

Observation

After inserting A[j] between A_1 and A_2 , A[j+1] = 3 must be inserted behind A[j] = 2.

Overview

Try 2nd idea

Reduce the insertion time by considering amortized time of multiple insertions.

Consider the insertion of A[j], A[j+1], ..., A[k].

Example: $(A_1, ..., A[j-1]) = (1, 4, 7)$ and (A[j], ..., A[k]) = (2, 3, 8).

Observation

After inserting A[j] between A_1 and A_2 , A[j+1]=3 must be inserted behind A[j]=2.

We can implement it either as multiple insertions or merge.

If $A[p], \ldots, A[j-1]$ and $A[j], \ldots, A[k]$ are sorted, we can merge them in linear time O(k-p) — the amortized time of inserting $A[j], \ldots, A[k]$ is O(1) if $k-j \approx j-p$.

```
procedure MERGE(p, j, k)
   n_1 = i - p, n_2 = k - i + 1

    lengths of two sequences

   Let L[1, \ldots, n_1 + 1] and R[1, \ldots, n_2 + 1] be new arrays to avoid shift
   L[i] = A[p+i-1] for i \leq n_1 and L[n_1+1] = +\infty
   R[i] = A[i + i - 1] for i \le n_2 and R[n_2 + 1] = +\infty
   i_{\ell} = 1, i_{r} = 1
                                                       — two pointers on L and R separately
   for i = p, \ldots, k do
       if L[i_{\ell}] < R[i_{r}] then
           A[i] = L[i_{\ell}]
            i_{\ell}=i_{\ell}+1
        else
            A[i] = R[i_r]
            i_r = i_r + 1
```

If $A[p], \ldots, A[j-1]$ and $A[j], \ldots, A[k]$ are sorted, we can merge them in linear time O(k-p) — the amortized time of inserting $A[j], \ldots, A[k]$ is O(1) if $k-j \approx j-p$.

```
procedure MERGE(p, j, k)
   n_1 = i - p, n_2 = k - i + 1

    lengths of two sequences

   Let L[1, \ldots, n_1 + 1] and R[1, \ldots, n_2 + 1] be new arrays to avoid shift
   L[i] = A[p+i-1] for i \leq n_1 and L[n_1+1] = +\infty
   R[i] = A[i + i - 1] for i \le n_2 and R[n_2 + 1] = +\infty
   i_{\ell} = 1, i_{r} = 1
                                                       — two pointers on L and R separately
   for i = p, \ldots, k do
       if L[i_{\ell}] < R[i_{r}] then
           A[i] = L[i_{\ell}]
            i_{\ell}=i_{\ell}+1
        else
            A[i] = R[i_r]
            i_r = i_r + 1
```

Question: How to satisfy the above assumptions?

Main idea: Recursively sort $A[p], \ldots, A[j-1]$ and $A[j], \ldots, A[k]$ instead of applying INSERTIONSORT.

```
procedure SORT(p, r)

if p < r then

q = [(p+r)/2]

SORT(p, q)

SORT(q+1, r)

MERGE(p, q+1, r)
```

Main idea: Recursively sort $A[p], \ldots, A[j-1]$ and $A[j], \ldots, A[k]$ instead of applying INSERTIONSORT.

```
procedure SORT(p, r)

if p < r then

q = [(p + r)/2]

SORT(p, q)

SORT(q + 1, r)

MERGE(p, q + 1, r)
```

Analysis

Correctness: The correctness of SORT follows from the correctness of MERGE. One can apply induction (on loop i) to prove the later one. Running time: How much does it improve upon INSERTIONSORT of $O(n^2)$?

Running Time

- 1 1st Fact: The running time of MERGE(p, j, k) is O(k p).
- To sort n elements, it recursively splits the sequence into log₂ n levels.
- The running time of all MERGE in one level is O(n)
 ⇒ the total running time is O(n log₂ n).
- This technique is called Divide & Conquer.

Outline

- Introduction
- 2 Shellsort
- 3 Mergesort
- 4 Quicksort

While the running time of MERGESORT is $O(n \log n)$, the constant is quite big — bottleneck: creating two arrays L and R.

While the running time of MERGESORT is $O(n \log n)$, the constant is quite big — bottleneck: creating two arrays L and R.

New idea

Similar to MERGESORT, split the sequence into two. However, instead of dividing them equally, we pick a pivot to separate them.

While the running time of MERGESORT is $O(n \log n)$, the constant is quite big — bottleneck: creating two arrays L and R.

New idea

Similar to MERGESORT, split the sequence into two. However, instead of dividing them equally, we pick a pivot to separate them.

Example:
$$A = (3, 0, 7, 6, 5, 4, 1, 8, 2)$$
.

Choose x = 5 as the pivot to separate them

While the running time of MERGESORT is $O(n \log n)$, the constant is quite big — bottleneck: creating two arrays L and R.

New idea

Similar to MERGESORT, split the sequence into two. However, instead of dividing them equally, we pick a pivot to separate them.

Example:
$$A = (3, 0, 7, 6, 5, 4, 1, 8, 2)$$
.

Choose x = 5 as the pivot to separate them

Question: While we could apply the same subroutine to sort the sub-sequences, how to choose *x*?

Randomized Algorithms

If it chooses x deterministically, $\exists A$ s.t. its running time is n^2 .

Randomized Algorithms

If it chooses x deterministically, $\exists A$ s.t. its running time is n^2 .

Example

If it sets x = A[3] as 1st pivot, adversary chooses A[3] to be the smallest (largest) element in A such that one sub-sequence is empty.

How to avoid adversarial inputs .?

Randomized Algorithms

If it chooses x deterministically, $\exists A$ s.t. its running time is n^2 .

Example

If it sets x = A[3] as 1st pivot, adversary chooses A[3] to be the smallest (largest) element in A such that one sub-sequence is empty.

How to avoid adversarial inputs 4?

Solution

Pick a random element in A as the pivot.

```
procedure Partition(p, r)
   Randomly pick k \sim [p, \ldots, r]
   x = A[k] and i = p - 1
   Exchange A[k] and A[r]
   for j = p, ..., r - 1 do
      if A[i] \leq x then
          i = i + 1
          Exchange A[i] and A[i]
   Exchange A[i + 1] and A[r]
   Return i + 1
procedure QUICKSORT(p, r)
   if p < r then
      q=PARTITION(p, r)
      QUICKSORT(p, q - 1)
      QUICKSORT(q + 1, r)
```

Questions

(1) How procedure PARTITION separates elements into two subsequences $\leq x$ and $\geq x$? (2) Formal proof?

Questions

(1) How procedure Partition separates elements into two subsequences $\leq x$ and $\geq x$? (2) Formal proof?

• OBS 1: In the *j*-loop, $A[p], \ldots, A[i]$ are always $\leq x$.

Questions

(1) How procedure Partition separates elements into two subsequences $\leq x$ and $\geq x$? (2) Formal proof?

- OBS 1: In the *j*-loop, $A[p], \ldots, A[i]$ are always $\leq x$.
- OBS 2: In the *j*-loop, $A[i+1], \ldots, A[j]$ are always $\geq x$.

Analysis

Questions

(1) How procedure Partition separates elements into two subsequences $\leq x$ and $\geq x$? (2) Formal proof?

- OBS 1: In the *j*-loop, $A[p], \ldots, A[i]$ are always $\leq x$.
- OBS 2: In the *j*-loop, $A[i+1], \ldots, A[j]$ are always $\ge x$.
- Formal proof: Apply induction on *j* with the above 2 hypotheses.

Running Time

We will bound the expected running time (over random pivots).

```
procedure Partition(p, r)
   Randomly pick k \sim [p, \ldots, r]
   x = A[k] and i = p - 1
   Exchange A[k] and A[r]
   for j = p, ..., r - 1 do
      if A[i] \leq x then
          i = i + 1
          Exchange A[i] and A[i]
   Exchange A[i + 1] and A[r]
   Return i + 1
procedure QUICKSORT(p, r)
   if p < r then
      q=PARTITION(p, r)
      QUICKSORT(p, q-1)
      QUICKSORT(q + 1, r)
```

Expected Running Time

- ① Running time T(n) is O(# comparisons) + O(n): In PARTITION, j-loop compares each element in [p, r-1] with pivot x.
- 2 Each pair get compared at most once: future calls won't compare the pivot x = A[k] any more.

Expected Running Time

- ① Running time T(n) is O(# comparisons) + O(n): In PARTITION, j-loop compares each element in [p, r-1] with pivot x.
- ② Each pair get compared at most once: future calls won't compare the pivot x = A[k] any more.

Fact

Let $z_1 < z_2 < \ldots < z_n$ be sorted order of A and R.V. $X_{i,j} \in \{0, 1\}$ indicates whether QUICKSORT compares (z_i, z_i) or not.

From (1) and (2),
$$\mathbb{E}[T(n)] = O(\mathbb{E}[\# \text{ comparisons}]) = O\left(\mathbb{E}\left[\sum_{i < j} X_{i,j}\right]\right)$$
.

Expected Running Time

- 1 Running time T(n) is O(# comparisons) + O(n): In Partition, j-loop compares each element in [p, r-1] with pivot x.
- **2** Each pair get compared at most once: future calls won't compare the pivot x = A[k] any more.

Fact

Let $z_1 < z_2 < \ldots < z_n$ be sorted order of A and R.V. $X_{i,j} \in \{0, 1\}$ indicates whether QUICKSORT compares (z_i, z_i) or not.

From (1) and (2),
$$\mathbb{E}[T(n)] = O(\mathbb{E}[\# \text{ comparisons}]) = O\left(\mathbb{E}\left[\sum_{i < j} X_{i,j}\right]\right)$$
.

$$\mathbb{E}\left[\sum_{i < j} X_{i,j}\right] = \sum_{i < j} \mathbb{E}\left[X_{i,j}\right] \qquad \text{(linearity of expectation)}$$

$$= \sum_{i < j} \Pr\left[z_i \text{ and } z_j \text{ get compared}\right].$$

To calculate $\Pr\left[z_i \text{ and } z_j \text{ get compared}\right]$, consider all random pivots chosen in QUICKSORT.

Question

What happens on those random pivots s.t. z_i and z_i get compared?

To calculate $\Pr\left[z_i \text{ and } z_j \text{ get compared}\right]$, consider all random pivots chosen in QUICKSORT.

Question

What happens on those random pivots s.t. z_i and z_i get compared?

Answer: Iff the 1st pivot in z_i, \ldots, z_i is z_i or z_i .

To calculate $\Pr\left[z_i \text{ and } z_j \text{ get compared}\right]$, consider all random pivots chosen in QUICKSORT.

Question

What happens on those random pivots s.t. z_i and z_i get compared?

Answer: Iff the 1st pivot in z_i, \ldots, z_i is z_i or z_i .

- ① \exists one pivot in $z_i, z_{i+1}, \ldots, z_j$. Otherwise we can not separate z_i and z_j .
- ② Consider 1st pivot in $z_i, z_{i+1}, ..., z_j$: If it is not z_i or z_j , QUICKSORT separates z_i and z_j into two branches.

To calculate $\Pr\left[z_i \text{ and } z_j \text{ get compared}\right]$, consider all random pivots chosen in QUICKSORT.

Question

What happens on those random pivots s.t. z_i and z_i get compared?

Answer: Iff the 1st pivot in z_i, \ldots, z_i is z_i or z_i .

- ① \exists one pivot in $z_i, z_{i+1}, \ldots, z_j$. Otherwise we can not separate z_i and z_j .
- ② Consider 1st pivot in $z_i, z_{i+1}, ..., z_j$: If it is not z_i or z_j , QUICKSORT separates z_i and z_i into two branches.
- 3 Otherwise the 1st pivot is z_i or z_i they got compared.

To calculate $\Pr\left[z_i \text{ and } z_j \text{ get compared}\right]$, consider all random pivots chosen in QUICKSORT.

Question

What happens on those random pivots s.t. z_i and z_i get compared?

Answer: Iff the 1st pivot in z_i, \ldots, z_j is z_i or z_j .

- ① \exists one pivot in $z_i, z_{i+1}, \ldots, z_j$. Otherwise we can not separate z_i and z_j .
- ② Consider 1st pivot in $z_i, z_{i+1}, ..., z_j$: If it is not z_i or z_j , QUICKSORT separates z_i and z_i into two branches.
- ③ Otherwise the 1st pivot is z_i or z_j they got compared.

So the probability is $\frac{2}{i-i+1}$!

Wrap up

Running time T(n) has an expectation in the order of

$$\mathbb{E}[\text{\# of comparisons}] = \sum_{i < j} \Pr[\text{it compares } z_i \text{ and } z_j]$$

$$= \sum_{i < j} \frac{2}{j - i + 1} = O(n \ln n).$$

Wrap up

Running time T(n) has an expectation in the order of

$$\mathbb{E}[\text{\# of comparisons}] = \sum_{i < j} \Pr[\text{it compares } z_i \text{ and } z_j]$$

$$= \sum_{i < j} \frac{2}{j - i + 1} = O(n \ln n).$$

While this implies $\mathbb{E}[T(n)] \leqslant Cn \log n$ for C = O(1),

① Markov's inequality implies $Pr\left[T(n) \geqslant 100Cn \log n\right] \leqslant 0.01$

Wrap up

Running time T(n) has an expectation in the order of

$$\mathbb{E}[\# \text{ of comparisons}] = \sum_{i < j} \Pr[\text{it compares } z_i \text{ and } z_j]$$

$$= \sum_{i < j} \frac{2}{j - i + 1} = O(n \ln n).$$

While this implies $\mathbb{E}[T(n)] \leqslant Cn \log n$ for C = O(1),

- 1 Markov's inequality implies $Pr\left[T(n) \geqslant 100Cn \log n\right] \leqslant 0.01$
- 2 $\operatorname{Var}(T(n)) = \Theta(n^2) \Rightarrow \Pr\left[T(n) \geqslant 2Cn \log n\right] = O\left(\frac{1}{\log^2 n}\right)$
- Sharp concentration:

$$\Pr\left[T(n)\geqslant (C+\delta)n\log n\right]=n^{-\Theta(\delta\log\log n)}$$

See lecture note from Berkeley: https://people.eecs.berkeley.edu/~sinclair/cs271/n20.pdf

Summary

4 sorting algorithms:

- ① INSERTIONSORT is simple and easy to implement, but $O(n^2)$ time.
- ② SHELLSORT improves INSERTIONSORT to $o(n^2)$ tricky to analyze.

Summary

4 sorting algorithms:

- ① INSERTIONSORT is simple and easy to implement, but $O(n^2)$ time.
- ② SHELLSORT improves INSERTIONSORT to $o(n^2)$ tricky to analyze.
- **3** MERGESORT improves the time to $O(n \log n)$.
- QUICKSORT has a better constant factor and more benefits (a) save space by sorting in order (b) extensions like FINDMEDIAN.

Questions?