ANAII ABLE COPY

BEST AVAILABLE COPY

DOCKET NO.: 278432US0PCT

JC20 Rec'd PETAPTO 2 2 SEP 2005

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Naohiko HIROTA, et al.

SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

INTERNATIONAL APPLICATION NO.: PCT/JP04/04217

INTERNATIONAL FILING DATE: March 25, 2004

FOR: BARLEY LIPOXYGENASE 1 GENE, METHOD OF SELECTING BARLEY VARIETY, MATERIAL OF MALT ALCOHOLIC DRINKS AND PROCESS FOR PRODUCING MALT

ALCOHOLIC DRINK

REQUEST FOR PRIORITY UNDER 35 U.S.C. 119 AND THE INTERNATIONAL CONVENTION

Commissioner for Patents Alexandria, Virginia 22313

Sir:

In the matter of the above-identified application for patent, notice is hereby given that the applicant claims as priority:

COUNTRY

APPLICATION NO

DAY/MONTH/YEAR 25 March 2003

Japan

2003-083924

Certified copies of the corresponding Convention application(s) were submitted to the International Bureau in PCT Application No. PCT/JP04/04217. Receipt of the certified copy(s) by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.

Respectfully submitted, OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Customer Number 22850

(703) 413-3000 Fax No. (703) 413-2220 (OSMMN 08/03) Norman F. Oblon Attorney of Record Registration No. 24,618

Surinder Sachar

Registration No. 34,423

日本国特許庁 JAPAN PATENT OFFICE

25. 3. 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 3月25日

出 願 番 号 Application Number:

特願2003-083924

[ST. 10/C]:

[JP2003-083924]

出 願 人 Applicant(s):

サッポロホールディングス株式会社

REC'D 2 1 MAY 2004

WIPO PCT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 4月28日

今井康

ページ: 1/

【書類名】 特許願

【整理番号】 510-1378

【提出日】 平成15年 3月25日

【あて先】 特許庁長官殿

【国際特許分類】 C12C 1/00

【発明者】

【住所又は居所】 群馬県新田郡新田町木崎37-1 サッポロビール株式

会社 植物工学研究所内

【氏名】 廣田 直彦

【発明者】

【住所又は居所】 群馬県新田郡新田町木崎37-1 サッポロビール株式

会社 植物工学研究所内

【氏名】 金子 隆史

【発明者】

【住所又は居所】 静岡県焼津市岡当目10 サッポロビール株式会社 価

値創造フロンティア研究所内

【氏名】 黒田 久夫

【発明者】

【住所又は居所】 静岡県焼津市岡当目10 サッポロビール株式会社 価

値創造フロンティア研究所内

【氏名】 金田 弘挙

【発明者】

【住所又は居所】 静岡県焼津市岡当目10 サッポロビール株式会社 商

品技術開発センター内

【氏名】 蛸井 潔

【発明者】

【住所又は居所】 岡山県倉敷市有城1169-171

【氏名】 武田 和義

ページ: 2/E

【特許出願人】

【識別番号】

000002196

【氏名又は名称】 サッポロビール株式会社

【代理人】

【識別番号】

100088155

【弁理士】

【氏名又は名称】 長谷川 芳樹

【選任した代理人】

【識別番号】 100089978

【弁理士】

【氏名又は名称】 塩田 辰也

【選任した代理人】

【識別番号】 100092657

【弁理士】

【氏名又は名称】 寺崎 史朗

【選任した代理人】

【識別番号】

100107191

【弁理士】

【氏名又は名称】 長濱 範明

【手数料の表示】

【予納台帳番号】

014708

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 大麦リポキシゲナーゼー1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法

【特許請求の範囲】

【請求項1】 大麦リポキシゲナーゼー1遺伝子第5イントロンのスプライシング供与部位(5'-GT-3')のグアニンが他の塩基に変異していることを特徴とする大麦リポキシゲナーゼー1変異遺伝子。

【請求項2】 前記他の塩基がアデニンであることを特徴とする請求項1に 記載の大麦リポキシゲナーゼー1変異遺伝子。

【請求項3】 大麦リポキシゲナーゼー1遺伝子第5イントロンのスプライシング供与部位のグアニンが他の塩基に変異しているか否かにより大麦リポキシゲナーゼー1欠失大麦を判別することを特徴とする大麦リポキシゲナーゼー1欠失大麦の選抜方法。

【請求項4】 前記他の塩基がアデニンであることを特徴とする請求項3に 記載の大麦リポキシゲナーゼ-1欠失大麦の選抜方法。

【請求項5】 被検対象である大麦からゲノムDNAを抽出するゲノムDN A抽出工程と、

抽出したゲノムDNAから大麦リポキシゲナーゼー1遺伝子第5イントロンのスプライシング供与部位を含むDNA断片を増幅するDNA断片増幅工程と、

前記DNA断片増幅工程で増幅された大麦リポキシゲナーゼー1遺伝子第5イントロンのスプライシング供与部位を含むDNA断片を制限酵素で切断して所定の塩基数のDNA断片を検出し、スプライシング供与部位のグアニンが他の塩基に変異しているか否かにより大麦リポキシゲナーゼー1欠失大麦を判別するDNA断片検出工程と、

を含むことを特徴とする請求項3または4に記載の大麦リポキシゲナーゼー1欠 失大麦の選抜方法。

【請求項6】 前記DNA断片検出工程において使用する制限酵素が塩基配列5'-GTAC-3'を認識するAfaIおよび/またはRsaIであることを特徴とする請求項5に記載の大麦リポキシゲナーゼ-1欠失大麦の選抜方法。

【請求項7】 請求項1または2に記載の大麦リポキシゲナーゼー1変異遺伝子を持つ大麦のみに由来する種子、麦芽、モルトエキス、大麦分解物または大麦加工物であることを特徴とする麦芽アルコール飲料用原料。

【請求項8】 請求項3~6のうちのいずれか1項に記載の選抜方法により 選抜された大麦のみに由来する種子、麦芽、モルトエキス、大麦分解物または大 麦加工物であることを特徴とする麦芽アルコール飲料用原料。

【請求項9】 請求項7または8に記載の麦芽アルコール飲料用原料を用いることを特徴とする麦芽アルコール飲料の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、大麦リポキシゲナーゼー1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法に関する。

[0002]

【従来の技術】

麦芽に含まれる酵素である大麦リポキシゲナーゼー1(以下、「LOX-1」という)は、麦芽アルコール飲料を製造する際の仕込工程において麦芽由来のリノール酸を酸化し9ーヒドロペルオキシオクタデカジエン酸を生成する(非特許文献1)。そして、9ーヒドロペルオキシオクタデカジエン酸はさらにペルオキシゲナーゼ様活性によりトリヒドロキシオクタデセン酸(THOD)へと変換される(非特許文献2)。このTHODは、ビールの泡もちを低下させ、また収斂味を与えたり、切れを悪くすることが知られ(非特許文献3、4)、麦芽アルコール飲料の品質の低下を招くことが知られている。また、9ーヒドロペルオキシオクタデカジエン酸は、老化した麦芽アルコール飲料のカードボード臭の原因物質とされるトランスー2ーノネナールにも変換されることが知られている(非特許文献5)。

[0003]

麦芽アルコール飲料の香味耐久性及び泡持ちを改善するため、THODやトランス-2-ノネナールの生成を抑える技術として、LOX-1活性の低い麦芽を

[0004]

また、Doumaらは大麦に変異原(薬剤)処理を施すことにより誘発突然変異を起こし、LOX-1活性が対照の9%に低下した誘発突然変異系統を作出し、それを用いて麦芽アルコール飲料の製造を試みている(特許文献1)。

[0005]

しかし、そのような大麦を用いても、得られる麦芽アルコール飲料のトランス -2-ノネナール濃度の低減は不十分なものであり、香味耐久性が十分改善され ていない。また、THOD量の低減や泡持ちの改善に関しては何等明らかにされ ていない。

[0006]

【特許文献1】

国際公開第02/053721号パンフレット

[0007]

【非特許文献1】

Kobayashi, N. et al., J. Ferment. Bioeng., 76, 371-375, 1993

[0008]

【非特許文献2】

Kuroda, H., et al., J. Biosci. Bioeng., 93, 73-77, 2002

[0009]

【非特許文献3】

Kobyashi, N., J. Am. Soc. Brew. Chem. 60: 37-41. 2002

[0010]

【非特許文献4】

Kaneda, H. et al., J. Biosci. Bioeng., 92, 221-226. 2001

[0011]

【非特許文献 5】

安井 醸造協会誌 96:94-99(2001)

[0012]

【非特許文献6】

Drost, J. Am. Soc. Brew. Chem. 48:124-131 (1990)

[0013]

【発明が解決しようとする課題】

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、遺伝子操作することなく、香味耐久性や泡持ちを改善された麦芽アルコール飲料を製造するために有用な、LOX-1変異遺伝子と、LOX-1欠失大麦の選抜方法と、選抜によって得られた大麦に由来する麦芽アルコール飲料用原料と、前記麦芽アルコール飲料用原料を用いた麦芽アルコール飲料の製造方法と、を提供することを目的とする。

[0014]

【課題を解決するための手段】

本発明者らは、上記目的を達成すべき鋭意研究を重ねた結果、LOX-1活性を全く欠いた在来大麦品種を見出すとともに、当該大麦品種から新規なLOX-1変異遺伝子を見出し、本発明を完成するに至った。

[0015]

すなわち、本発明のLOX-1変異遺伝子は、既知のLOX-1遺伝子の第5 イントロンのスプライシング供与部位(5'-GT-3')のグアニンが他の塩 基に変異していることを特徴とする。ここで、前記他の塩基がアデニンであるこ とが好ましい。

[0016]

また、本発明のLOX-1欠失大麦の選抜方法は、LOX-1遺伝子第5イントロンのスプライシング供与部位のグアニンが他の塩基に変異しているか否かにより大麦LOX-1欠失大麦を判別することを特徴とする。ここで、前記他の塩基がアデニンであることが好ましい。

[0017]

さらに、本発明のLOX-1欠失大麦の選抜方法は、被検対象である大麦から ゲノムDNAを抽出するゲノムDNA抽出工程と、抽出したゲノムDNAからL OX-1遺伝子第5イントロンのスプライシング供与部位を含むDNA断片を増 幅するDNA断片増幅工程と、前記DNA断片増幅工程で増幅されたLOX-1 遺伝子第5イントロンのスプライシング供与部位を含むDNA断片を制限酵素で 切断して所定の塩基数のDNA断片を検出し、スプライシング供与部位のグアニ ンが他の塩基に変異しているか否かにより大麦LOX-1欠失大麦を判別するD NA断片検出工程と、を含むことを特徴とする。

[0018]

ここで、前記DNA断片検出工程において使用する制限酵素が塩基配列 5'-GTAC-3' を認識するAfaIおよび/またはRsaIであることが好ましい。

[0019]

上記発明によれば、LOX-1遺伝子第5イントロンのスプライシング供与部位のグアニンの変異の有無に基づき、LOX-1活性欠失形質を有する大麦品種であるか否かを選別することが可能となる。

[0020]

その結果、LOX-1活性を直接測定しなくとも遺伝子レベルの解析で容易に LOX-1活性を欠いた大麦品種を選別することができる。特に、酵素活性は直 物個体の生育段階、環境などに影響され正確な測定が困難な場合があるが、この 方法によれば酵素測定と異なり環境などに影響されることなくLOX-1活性が 欠失した大麦品種を選抜することができる。さらに、酵素活性を測定するには種 子が実るまで行うことができないが、DNA判別は開花前に行えるため早期に活 性欠失形質か否かの判定ができ、また連続戻し交配などに有効である。

[0021]

また、本発明の麦芽アルコール飲料用原料は、本発明のLOX-1変異遺伝子を持つ大麦のみに由来する種子、麦芽、モルトエキス、大麦分解物または大麦加工物であることを特徴とする。

[0022]

また、本発明の麦芽アルコール飲料用原料は、本発明のLOX-1欠失大麦の 選抜方法により選抜された大麦のみに由来する種子、麦芽、モルトエキス、大麦 分解物または大麦加工物であることを特徴とする。

[0023]

さらに、本発明の麦芽アルコール飲料の製造方法は、本発明の麦芽アルコール 飲料用原料を用いることを特徴とする。

[0024]

上記本発明によれば、原料中にLOX-1を含まないため、麦芽アルコール飲料の製造工程においてリノール酸から9ーヒドロペルオキシオクタデカジエン酸が生成し難くなり、したがってTHODやトランス-2ーノネナールも生成し難くなるため、香味耐久性と泡持ちが向上した麦芽アルコール飲料を得ることができる。

[0025]

【発明の実施の形態】

以下、本発明の好適な実施形態について詳細に説明する。

[0026]

まず、本発明にかかるLOX-1変異遺伝子について説明する。

[0027]

本発明にかかるLOX-1変異遺伝子は、本発明者らによって見出された新規遺伝子であり、既知のLOX-1遺伝子(配列番号1)と比較してLOX-1遺伝子第5イントロンの60番目の塩基GがAに置換されていることを特徴とする(配列番号2)。LOX-1遺伝子第5イントロンの60-61番目はスプライシング供与部位(5'-GT-3')であるため、この塩基の置換によりLOX-1はスプライシングに異常をきたし、活性のあるLOX-1を発現できなくなる。

[0028]

なお、配列表の配列番号1には既知のLOX-1遺伝子の第5イントロン領域 の塩基配列を、配列番号2には本発明のLOX-1変異遺伝子のLOX-1遺伝 子の第5イントロン領域に相当する部分の塩基配列を示した。

[0029]

次に、本発明のLOX-1欠失大麦の選抜方法について説明する。

[0030]

本発明のLOX-1欠失大麦の選抜方法は、LOX-1遺伝子の第5イントロ ンのスプライシング供与部位のグアニンが他の塩基に変異しているか否かにより 大麦LOX-1欠失大麦を判別することを特徴とする。

[0031]

上記の塩基の変異を利用してLOX-1欠失大麦を選抜する方法としては、例 えば、プライマー配列の3′末端、あるいはプライマー配列内部に上記変異部位 を含むプライマーを用いてDNAの増幅を行い、増幅の有無や増幅効率で塩基の 変異を検出し、LOX-1欠失大麦を選抜する方法や上記変異部位を含むDNA 断片を増幅し、塩基配列を決定することによっても塩基の変異を検出し、LOX - 1 欠失大麦を選抜する方法などを用いることが可能である。

[0032]

これら塩基の変異の検出には、DNA断片が検出可能であれば特に制限は無い が、アガロースゲル電気泳動やポリアクリルアミドゲル電気泳動を用いれば良い 。また、増幅の有無や増幅効率でDNA変異を検出する場合には、上記電気泳動 のほか、TAQMAN法など定量的PCR法も用いることができる。

[0033]

また、本発明のLOX-1欠失大麦の選抜方法は、好ましくは、

被検対象である大麦からゲノムDNAを抽出するゲノムDNA抽出工程と、

抽出したゲノムDNAからLOX-1遺伝子第5イントロンのスプライシング 供与部位を含むDNA断片を増幅するDNA断片増幅工程と、

前記DNA断片増幅工程で増幅されたLOX-1遺伝子第5イントロンのスプ ライシング供与部位を含むDNA断片を制限酵素で切断して所定の塩基数のDN A断片を検出し、スプライシング供与部位のグアニンが他の塩基に変異している か否かにより大麦LOX-1欠失大麦を判別するDNA断片検出工程と、 を含むことを特徴とする。

[0034]

まず、本発明にかかるゲノムDNA抽出工程について説明する。

[0035]

被検対象である大麦からゲノムDNAを抽出する方法としては特に制限はなく

、公知の方法によって行うことができるが、具体的には例えば、CTAB法(Mu rray et al., 1980, Nucleic Acids Res. 8:4321-4325) やEthidium bromide法 (Varadarajan and Prakash 1991, Plant Mol. Biol. Rep. 9: 6-12) によって抽出することができる。ここで、ゲノムDNAを抽出する組織は 大麦種子のみならず、葉、茎、根等を用いることも可能である。例えば、葉を用 いることで、戻し交配世代途中の多数の個体選抜に利用することが可能となる。

[0036]

次に本発明にかかるDNA断片増幅工程について説明する。

[0037]

DNA断片を増幅する方法としては特に制限されないが、例えば、PCR法(Polymerase Chain Reaction Method) によっ て行うことができる。ここで、PCR法において用いられるプライマーは、LO X-1遺伝子第5イントロンのスプライシング供与部位を含むDNA断片を増幅 することができる領域に設定されているものであれば、塩基配列は特に制限され ないが、具体的には例えば、LOX-1遺伝子において塩基数が10~60個の 連続した塩基であることが好ましく、15~30個の連続した塩基であることが より好ましい。また、一般的には、プライマーの塩基配列におけるGC含量が4 0~60%であることが好ましい。さらに、PCR法に用いる二つのプライマー のプライマー間のTm値に差がないまたは少ないことが好ましい。また、プライ マー内で2次構造を取らないことが好ましい。

[0038]

次に本発明にかかるDNA断片検出工程について説明する。

[0039]

本発明にかかるLOX-1変異遺伝子は、上述したように既知のLOX-1と 塩基配列に相違が見られるため、当該相違部分を認識するまたは切断する制限酵 素を用いて増幅産物を切断すれば、得られるDNA断片のサイズに相違が見られ る。本発明にかかる制限酵素としては、このように前記相違部分を認識するまた は切断するものであれば特に制限はないが、既にこのような作用を有することが 判明している制限酵素AfaIおよび/またはRsaIであることが好ましい。

[0.040]

すなわち、本発明のLOX-1変異遺伝子は、スプライシング供与部位のグアニンが他の塩基に変異していることにより、既知のLOX-1遺伝子に存在していた制限酵素AfaIおよびRsaIの切断部位(5'-GTAC-3':第5イントロン60-63番目)が消失している。その結果、この切断部位を含む遺伝子増幅産物をAfaIおよび/またはRsaIで切断した際の切断パターンが既知のLOX-1遺伝子の場合と異なるため、LOX-1変異遺伝子か否かを判別することが可能である。

[0041]

また、所定の塩基数のDNA断片とは、前記相違部分が存在することにより、 増幅産物を制限酵素で切断して得られるDNA断片のサイズに相違が見られるよ うなDNA断片であれば、その塩基数は特に制限されない。

[0042]

また、本工程にかかる検出とは、制限酵素によって切断されたDNA断片が検 出可能な方法であれば特に制限されないが、具体的には例えば、アガロースゲル 電気泳動、ポリアクリルアミドゲル電気泳動によって検出すればよい。

[0043]

次に、本発明の麦芽アルコール飲料用原料について説明する。

[0044]

本発明の麦芽アルコール飲料用原料は、本発明のLOX-1変異遺伝子を持つ 大麦のみに由来する種子、麦芽、モルトエキス、大麦分解物または大麦加工物で あることを特徴とし、また、本発明の大麦の選抜方法によって選抜された大麦の みに由来する種子、麦芽、モルトエキス、大麦分解物または大麦加工物であるこ とを特徴とする。

[0045]

ここで、モルトエキスとは麦芽の抽出物を指し、例えば麦芽中の糖成分やタンパク質成分の抽出物等が挙げられる。大麦分解物とは大麦を酵素等で分解処理したものを指し、大麦糖化液等がこれに該当する。大麦加工物とはビール・発泡酒の副原料として使用される大麦粉砕物などがこれに該当する。

本発明の麦芽アルコール飲料用原料はLOX-1を含まないため、麦芽アルコール飲料の製造工程においてリノール酸から9-ヒドロペルオキシオクタデカジエン酸が生成し難くなり、したがってTHODやトランス-2-ノネナールも生成抑制が期待され、香味耐久性と泡持ちが向上した麦芽アルコール飲料を得ることが期待できる。

[0046]

最後に、本発明の麦芽アルコール飲料の製造方法について説明する。

[0047]

本発明の麦芽アルコール飲料の製造方法は、本発明の麦芽アルコール飲料用原料を用いることを特徴とする。

[0048]

まず、本発明にかかる製麦工程について説明する。

[0049]

本発明にかかる製麦工程は、LOX-1欠失大麦を用いることを特徴とした麦芽を得る工程であり、製麦の方法としては特に制限されず公知の方法で行えば良い。具体的には、例えば、浸麦度が40%~45%に達するまで浸麦後、10~20℃で3~6日間発芽させ、焙燥して麦芽を得ることができる。

[0050]

次に、本発明にかかる仕込工程について説明する。

[0051]

本発明にかかる仕込工程は、前記麦芽を糖化させて麦汁を得る工程である。具体的には、さらに以下の第1~第4の工程に分けられる。

[0052]

すなわち、第1の工程は、前記麦芽を含む原料と仕込用水とを混合し、得られた混合物を加温することにより麦芽を糖化させ、前記糖化された麦芽から麦汁を採取する仕込み工程である。

[0053]

本工程において用いられる麦芽は、大麦に水分と空気を与えて発芽させ、乾燥 して幼根を取り除いたものであることが望ましい。麦芽は麦汁製造に必要な酵素 源であると同時に糖化の原料として主要なデンプン源となる。また、麦芽アルコール飲料特有の香味と色素を与えるため発芽させた麦芽を焙燥したものを麦汁製造に用いる。また、さらに原料として、上記麦芽以外に、本発明にかかるLOXー1欠失大麦あるいは一般大麦、コーンスターチ、コーングリッツ、米、糖類等の副原料を添加しても良い。

[0054]

また、前記麦汁の製造工程において、本発明にかかるLOX-1欠失大麦あるいは一般大麦より調製されたモルトエキスあるいは大麦分解物、大麦加工物を仕込み用水と混合し、必要に応じて前記副原料を添加し麦汁を得ることもできる。

[0055]

前記麦芽は仕込み用水に添加した後、混合される。前記副原料を添加する場合には、ここで混合すればよい。糖類の場合は、後述の煮沸の前に添加してもよい。また、前記仕込み用水は特に制限されず、製造する麦芽アルコール飲料に応じて好適な水を用いればよい。糖化は基本的に既知の条件で行えばよい。こうして得られた麦芽糖化液をろ過した後、ホップあるいはハーブなど、香り、苦味などを付与できる原料を添加して煮沸を行ない、それを冷却することにより冷麦汁が得られる。

[0056]

また、第2の工程は、前記冷麦汁に酵母を添加して発酵させ麦芽アルコール飲料中間品を得る工程である。

[0057]

ここで、用いられる酵母は、前記麦芽の糖化によって得られた麦汁内の糖分を 代謝してアルコールや炭酸ガス等を産生する、いわゆるアルコール発酵を行う酒 類酵母であればいずれでもよく、具体的には、例えば、サッカロミセス・セレビ シェ、サッカロミセス・ウバルム等が挙げられる。

[0058]

発酵は、上記仕込み工程で得られた麦汁を冷却し、ここに前記酵母を添加して行う。発酵条件については基本的に既知の条件と変わらず、例えば発酵温度が通常15℃以下、好ましくは8~10℃であり、発酵時間が好ましくは8~10日

である。

[0059]

さらに、第3の工程は、前記発酵工程で得られた麦芽アルコール飲料中間品を 貯蔵する貯酒工程である。

[0060]

本工程では、アルコール発酵が終了した発酵液が密閉タンクに移され、貯蔵される。貯蔵条件については基本的に既知の条件と変わらず、例えば貯蔵温度は0~2℃が好ましく、貯蔵時間が20~90日間であることが好ましい。発酵終了液を貯蔵することにより残存エキスの再発酵と熟成が行われる。

[0061]

そして、第4の工程は、前記貯酒工程で得られた麦芽アルコール飲料中間品を ろ過し麦芽アルコール飲料を得るろ過工程である

る過条件については基本的には既知の条件と変わらず、例えばろ過助材として 珪藻土、PVPP(ポリビニルポリピロリドン)、シリカゲル、セルロースパウ ダー等が用いられ、温度は0±1℃で行われる。

[0062]

こうして麦芽アルコール飲料が得られる。ろ過された麦芽アルコール飲料はそのまま、または無菌ろ過や加熱処理を行った後、タンク詰め、樽詰め、ビン詰めまたは缶詰めされ市場に出荷される。

[0063]

なお、麦芽アルコール飲料は、その製造に用いられる麦芽の使用比率の多少は特に制限されず、麦芽を原料として製造されるアルコール飲料であればよい。具体的には例えば、ビールや発泡酒が挙げられる。また、いわゆるノンアルコールビールやノンアルコール発泡酒も、ビール等の麦芽アルコール飲料と同様の製法を用いることから、麦芽アルコール飲料である。

[0064]

上記本発明によれば、原料中にLOX-1を含まないため、麦芽アルコール飲料の製造工程においてリノール酸から9-ヒドロペルオキシオクタデカジエン酸が生成し難くなり、したがってTHODやトランス-2-ノネナールも生成抑制

が期待され、香味耐久性と泡持ちが向上した麦芽アルコール飲料を得ることが期 待できる。

[0065]

【実施例】

以下、実施例により本発明の内容をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。

[0066]

探索試験1

(LOX-1酵素活性測定によるLOX-1欠失大麦の探索)

以下の方法によりLOX-1酵素活性測定を行い、大麦遺伝資源の中からLO X-1欠失大麦の探索を行った。

[0067]

まず、以下の方法により大麦種子より粗酵素液を抽出した。完熟大麦種子 1 粒をハンマーで破砕し、 500μ Lの抽出バッファー(0.1M 酢酸ナトリウム緩衝液(pH5.5))を用いて、4 \mathbb{C} で 30 分間振とうして抽出した。得られた抽出液を 15000 r p m で 10 分間遠心分離した後、上清を粗酵素液とした

[0068]

次に、粗酵素液10μLに5μLの基質液(40mMリノール酸、1.0%(W /V)Tween20水溶液)及び85μLの抽出バッファーを加え混和した後、24℃で5分間反応させた。反応の停止は、100μLの反応停止液(80m M 2,6ージー t ーブチルー p ークレゾール メタノール溶液)を添加し混和することで行った。反応液を一20℃で30分間静置した後、3000rpmで20分間遠心分離し、上清を次の発色反応に用いた。得られた上清20μLに、200μLの発色液(4mM2,6ージー t ーブチルー p ークレゾール、25 m M硫酸、0.25 m M硫酸、0.25 m M硫酸、0.25 m M硫酸、100 m M キシレノールオレンジ、90%メタノール水溶液)を添加し、30分間静置後、波長550mの吸光度を測定した。なお、陰性対照としては、粗酵素液を100℃で5分間熱処理し、LOX−1を失活させたものを同様に反応させたものを用い、陽

ページ: 14/

性対照として大麦品種Kendallの種子の粗酵素液を用いた。

[0069]

遺伝資源の探索の結果、図1に示すように、SV73(岡山大学保存OUI003)の種子には有意なLOX-1活性が認められないことが判明した。このSV73は在来種であることから、突然変異誘発を施した系統ではなく自然突然変異体である。

[0070]

証明試験1

(SV73粗酵素液にLOX-1阻害活性のないことの確認)

次に、SV73粗酵素液のLOX-1阻害活性の有無について調べた。

.[0071]

LOX-1活性を示す粗酵素液(陽性対照:PC)にSV73の粗酵素液($10\mu L$ 、 $20\mu L$ 、 $50\mu L$)を添加してLOX-1活性の変化を調べたところ、SV73の粗酵素液の添加によってもLOX-1活性は変化せず、SV73相酵素液にLOX-1阻害活性は認められなかった(図2)。このことから、SV73のLOX-1活性欠失の原因はLOX活性阻害物質によるものではないと考えられる。

[0072]

証明試験2

(SV73種子中のLOX-1タンパク質発現量の確認)

次に、抗LOX-1抗体を用いて、SV73の種子にLOX-1タンパク質が 発現しているか否かを調べた。

[0073]

まず、抗LOX-1抗体の作成を行った。抗原として用いたLOX-1タンパク質は、大腸菌で発現させたLOX-1タンパク質を精製することで得た(Kuroda et. al. (2002) J. Bioscience and Bioengineering 93:73-77)。精製したタンパク質をウサギに免疫し、LOX-1抗体を作製した。本抗体は、LOX-1およびLOX-2を認識する。

[0074]

次に、以下の方法でウェスタンブロッティングを行い、SV73の種子におけ るLOX-1タンパク質の発現について調べた。SV73から0.1M 酢酸ナ トリウム緩衝液(pH5. 5)を用いて抽出した全可溶性タンパク質 3 μ g を、 SDSポリアクリルアミド電気泳動(SDS-PAGE)により分画後、PVD Fメンブレン(ミリポア社)にブロッティングした。このメンブレンをTTBS (20mM Tris-HCl(pH7.5)、0.15M 塩化ナトリウム、 0.05% (w/v) Tween20、0.05% (w/v) アジ化ナトリ ウム))で洗浄後、LOX-1抗体液(1000倍希釈/TTBS)で30分間 反応させた。メンブレンのTTBS洗浄を5分3回行った後、アルカリフォスフ ァターゼ標識ヤギ抗ウサギIgG抗体液(Santa Cruz社製、1000 倍希釈TTBS溶液)で30分間反応させた。メンブレンをTTBSで5分間× 2回洗浄を行い、さらにAP9.5(10mM Tris-HCl(pH9.5)、0.1M 塩化ナトリウム、5 mM 塩化マグネシウム)で5分×1回洗浄 を行った後、アルカリフォスファターゼ基質液(1mg/ml ニトロブルーテ トラゾリウム、0.5mg/ml BCIP、 AP9.5溶液)と反応させ発 色させた。その結果、対照品種(Kendall)では約95Kdの分子量を持 つ強いバンドが得られたのに対して、SV73系統種子では約95Kdおよび約 57Kdの分子量領域に非常に薄いバンドが検出された(図3A)。

[0075]

また、この抽出サンプルを、PhastSystem(Amersham Pharmacia社製)を用いて、等電点電気泳動(IEF、pI3-9)を行った後、同様にウェスタン解析した。その結果、SV73では、LOX-2のpIの位置にバンドが検出されたが、LOX-1のpIの位置には明瞭なバンドは認められなかった(図3B)。このことから、SV73の種子抽出タンパク質で認められた約95 Kdのバンドは、LOX-2タンパク質であると考えられる。

[0076]

以上の結果から、SV73の種子には、LOX-1タンパク質がほとんど発現していないことが確認された。

[0077]

証明試験3

(SV73の種子のLOX-1RNAの解析)

SV73の登熟約4週間目の種子および発芽3日目の種子から抽出した全RNAを鋳型としてRT-PCRを行った。反応は市販のキット(ロシュダイアグノスティック社製、パーキンエルマー社製)を用いて、キットのマニュアルに従い行った。プライマーは既報の配列(DNAデータバンク:アクセッションL35931)をもとに、5'-GGAGAGGCCAAGAACAAGATG-3'(配列番号3)及び5'-GGTTGCCGATGGCTTAGAT-3'(配列番号4)に設計した。PCRは、94℃2分を1回、94℃1分、60℃2分、72℃4分の反応を31回繰り返した後、72℃で7分の伸長反応を行った。

[0078]

増幅されたDNAを電気泳動したところ、対照(品種Kendall)よりは若干増幅量が少ないものの、登熟中および発芽中のRNAに対して、約2.5 Kbのバンドの増幅が検出された(図4)。このことは、LOX-1遺伝子が正常に転写されていることを示している。

[0079]

以上、SV73の種子において、(1)LOX-1活性が認められなかったこと、(2)LOX-1抗体に反応する抗原タンパク質が微量にしか存在しなかったこと、(3)約57Kdの分子量のタンパク質の存在が認められたこと、(4)LOX-1のmRNAが認められたことなどから、SV73のLOX-1活性が欠失しているメカニズムは、転写以降の異常によると考えられる。

[0080]

証明試験4

(SV73のLOX-1遺伝子イントロン領域の構造解析)

LOX-1遺伝子のイントロンおよびエクソン領域の構造を解析するため、全エクソンを含む領域のゲノムDNAを単離した。鋳型にはSV73の全DNAを用いた。プライマーは既報の配列(DNAデータバンク:アクセッション U8

3904, L35931) をもとに、設計した(5'-CACGTCGCCGT CCGATCCATC-3'(配列表配列番号5)、5'-GGTTGCCGA TGGCTTAGAT-3'(配列表配列番号4))。PCRは、94℃1分、65℃2分、72℃3分の反応を31回繰り返した後、72℃で7分の伸長反応を行った。得られたDNA断片をpCR2.1にクローニングし(pGLXAB AL1)、構造解析の鋳型とした。構造解析はABI社のシーケンサーを用い、シークエンス反応はダイターミネーター法を用いた。

[0081]

配列表の配列番号 1 は、既報のLOX-1 遺伝子の塩基配列(WO-0205 3721)のうち、第5 イントロンがある領域の構造を示した。スプライシングの供与部位は60-61番目の塩基配列 5 '-GT-3 'である。

[0082]

一方、解析の結果から分かったSV73の対応する領域の塩基配列を配列番号 2に示した。SV73では、スプライシング供与部位である60番目のグアニン がアデニンに変異していることが明らかになった。

[0083]

また、配列番号2の60番目の塩基がアデニンに置換されていることにより、 終止コドンが新たに形成され(配列表配列番号2の58-60番目の塩基配列5 '-TGA-3')、スプライシング部位の5'上流への変化が生じていない場合にはLOX-1タンパク質の翻訳はここで終了すると考えられる(図5)。

[0084]

第5イントロンの近傍のエクソン領域は、植物LOXの活性中心であることが知られており(Shibata and Axelrod (1995) J. Lipid Mediaters and Cell Signaling 12:213-228)、上記スプライシング異常は、LOX-1酵素活性に大きな影響を及ぼすと考えられる。

[0085]

証明試験5

(第5イントロンにおけるスプライシングの解析)

第5イントロンにおいて実際にスプライシング異常が起こっていることを確認 するためにRT-PCRによる解析を行った。

[0086]

発芽中のSV73およびKendallから全RNAを抽出し、市販のキット(ロシュダイアグノスティック社製)を用いてcDNAを合成し鋳型DNAとした。ゲノムDNAにおいて、増幅断片が第3イントロン(106bp)、第4イントロン(132bp)および第5イントロン(79bp)を含むように設計した2種のプライマー(5'-CCATCACGCAGGGCATCCTG-3'(配列表配列番号6),5'-GCGTTGATGAGCGTCTGCCG-3'(配列表配列番号7))を用いてPCRを行った。PCRは、94℃1分、65℃2分、72℃3分の反応を31回繰り返した後、72℃で7分の伸長反応を行った。増幅したDNA断片をアガロースゲル電気泳動したところ、SV73の増幅断片は、Kendallの増幅断片より約80bp塩基数が大きかった(図6A)。なお、SV73のゲノムDNAに対しては約1.2Kbの断片が増幅されており、上記RT-PCRの結果は、発現しているRNAに対する結果であると考えられる。

[0087]

[0088]

証明試験6

(第5イントロン変異を用いた大麦交配系統のマッピングと選抜)

既報のLOX-1塩基配列においては、第5イントロンのスプライシング供与 部位を含む配列は(配列表配列番号1の60-63番目:5'-GTAC-3') 、GTAC配列を認識する制限酵素AfaI(RsaI)で消化できる。一方、 SV73系統では、この領域の配列に変異があり(配列表配列番号2の60-6 3番目:5'-ATAC-3')、AfaIおよび/あるいはRsaIで消化でき なくなっていること(図5)を利用して、LOX-1欠失遺伝子のマッピングを 行った。大麦品種KendallとSV73の雑種第2世代(F2)144個体 の葉からDNAを抽出し、増幅断片がこのAfaI部位を含むように設計した2 種のプライマー(5'-CCATCACGCAGGGCATCCTG-3'(配列 表配列番号6).5'-GCGTTGATGAGCGTCTGCCG-3'(配列 表配列番号7))を用いて、PCRを行った。PCRは、94℃1分、65℃2 分、72℃3分の反応を31回繰り返した後、72℃で7分の伸長反応を行った 。増幅された断片をAfaIで切断し、2.5%アガロースゲル電気泳動で分析 した(以上をAfal法と呼ぶ)。その結果、SV73型、Kendall型、 およびヘテロ型を容易に見分けることが出来た(図7)。AfaI法多型調査に 加え、LOX-1遺伝子が座上している大麦4H染色体のLOXA遺伝子座近傍 のDNAマーカー(JBC970)についても、各系統の多型調査を行った(図 8)。

[0089]

次に、このF2個体に実った種子を用いて、種子LOX活性を調査した。LOX活性が認められない系統については、さらに複数種子($4\sim7$ 粒)の活性測定を行った(図8)。

[0090]

以上のF2世代のAfaI法多型調査とF3種子のLOX活性測定の結果、SV73のLOX-1欠失形質の分離は上記AfaI法多型の分離と完全に一致した。すなわち、SV73のLOX-1欠失遺伝子がLOXA遺伝子座にあることが、これら一連の遺伝学的調査から明らかとなった。

[0091]

また、この結果は、DNA変異を利用した大麦選抜法の1 例であるAfaI法を用いれば、LOX-1欠失の交配系統を大麦成育初期の葉の段階で選抜でき、種子が実るのを待つ必要はないことを示している。

[0092]

実施例1

(他の大麦品種のAfaI多型調査)

一般的な大麦品種/系統を用いて、Afal法多型調査を行った。用いた品種は、ミカモゴールデン、ゴールデンメロン、はるな二条、みょうぎ二条、さきたま二条、ワセドリ二条、あぐりもち、ハルピン二条、りょうふう、北育33号、北育35号、Prior、Schooner、Sloop、Lofty Nijo、Franklin、Betzes、Harrington、Manley、B1251、CDC Kendall、CDC Stratus、CDC Copeland、Hanna、Merit、AC Metcalfe、TR145、Chariot、Stirling、Proctor、Koral、Heartland、計32品種/系統である。Afal法多型調査の結果、供試したこれらの品種はSV73型ではなく、第5イントロンのスプライシング供与配列を含む制限酵素Afal部位(配列表配列番号1の60-63番目:5'-GTAC-3')が消化されていた(図9)。このことは、これら育成系統において、Afal部位(配列表配列番号1の60-63番目:5'-GTAC-3')にDNA変異が認められないことを示すものであり、交配系統のLOX-1欠失遺伝子の選抜に、このAfal法が有効に利用できる。

[0093]

実施例2

(遺伝資源の探索)

岡山大学保存の世界の遺伝資源(在来種)についてAfaI法による調査を行った。その結果、新たな5系統において、第5イントロンのスプライシング供与配列を含む制限酵素AfaI部位(配列表配列番号1の60-63番目:5'-GTAC-3')が消化されない系統を見出した(岡山大学保存OUI001(インド),OUJ095(台湾)、OUJ695(台湾)、OUN345(ネパ

ール)、OUN347 (ネパール)) (図10)。

[0094]

次に、これらの系統の種子のLOX-1活性を探索試験1に記載の方法で測定した。なお、OUN345およびOUN347につては活性測定を反応5分で行い(図11A)、OUI001、OUJ095、OUJ695についてはより活性の有無を明確にできるよう反応時間を90分にのばして活性測定した(図11B)。その結果、これらの全ての系統において有意な活性は認められなかった(図11)。

[0095]

このことから、SV73、OUIOO1(インド),OUJO95(台湾)、OUJ695(台湾)、OUN345(ネパール)、OUN347(ネパール)(SV73型LOX-1欠失大麦)はLOX-1欠失大麦であることが明らかとなった。これらの系統はいずれも、在来種であり、変異誘発を行った系統ではないことから、LOX-1遺伝子に関して自然突然変異体である。

[0096]

以上の結果から、DNA変異を利用した大麦選抜法の1例であるAfaI法は、LOX-1欠失大麦交配後代系統の選抜のみならず、大麦遺伝資源からでも効率的にLOX-1欠失大麦の選抜を可能にする技術であることが明らかとなった

[0097]

実施例3

(試験醸造用大麦の育成)

大麦品種大正麦とSV73を交配し、得られた雑種第1代(F1)を自殖して得られるF2世代において、上記実施例1に記載のLOX-1酵素活性測定法および上記実施例7に記載の上記AfaI法によりLOX-1欠失形質を確認し、LOX-1欠失系統6個体、LOX-1保有系統10個体を集団として、以降の種子増殖に供試した。

[0098]

種子増殖は各系統(集団)ごとに行い、F4種子が得られるまで均一な畑ある

いは温室を用いて行った。F4種子についてLOX-1酵素活性を測定したところ、F2個体で判別されたLOX-1活性の有無を維持しており、この結果からLOX-1欠失形質は安定して後代に伝達されることが明らかになった。

[0099]

以降の麦芽製造試験および麦芽アルコール飲料製造試験には、このF4種子を 供試した。

[0100]

実施例 4

(試験醸造用麦芽の製造)

上記大正麦×SV73の交配に由来する、LOX-1活性を有しない大麦種子からなるLOX-1欠失大麦F4集団(LOX-F4)と、LOX-1を有する大麦種子からLOX活性保有大麦F4集団(LOX+F4)をつくり、製麦に用いた。

[0101]

製麦は、Automatic Micromalting System (Phenix Systems社製)を用いて、浸麦16℃合計82時間(5時間WET/7時間DRYサイクル)、発芽15℃139時間、焙燥29時間(55℃13.5時間、65℃8時間、75℃3.5時間、83℃4時間)の条件で行った。

[0102]

実施例 5

(麦芽及び麦汁の分析)

麦芽の分析は、EBC標準法(European Brewery Convention編、Analytica EBC (4^{th} Ed)、1987)に従い行った。その結果、LOX-F4とLOX+F4を用いた麦芽には大きな差がなく、LOX-1活性の有無を比較する目的の麦芽アルコール飲料醸造に問題なく使用できることが明らかになった(図12)。

[0103]

次に、麦芽50gを用いて、コングレス法(European Brewery Convention編、Analytica EBC (4th Ed)、1987)により麦汁を作製し、麦汁中の脂質酸化物を

[0104]

まず、麦汁中のトランスー2ーノネナール量を以下の方法で測定した。麦汁サンプル8mLにバイアルに入れ、3gのNaClを添加しキャップをした。次にスペルコ製ポリジメチルシロキサンSPMEファイバーを挿入し、40℃で15分間インキュベートした後、ガスクロマトグラフィーに供試した。

[0105]

ガスクロマトグラフィー・マススペクトロメトリーは、キャピラリーカラムとしてJ&W社製DB-1(30m X 0.25mm, フィルム厚 1μ m)を、キャリアガスとしてへリウム(1mL/分)を用い、オーブン条件は60 ℃から225 ℃(5 ℃/分)とし、セレクトイオンモード(m/z:70)でトランス-2-ノネナールの定量を行った。なお、定量には、シグマ社製トランス-2-ノネナールを標準品とした標準添加法を用いた。

[0106]

その結果、LOX-F4、LOX+F4を用いて作製した麦汁のトランス-2 -ノネナール濃度はそれぞれ0.36ppbと3.85ppbであった。したがって、本発明にかかる麦芽を使用して麦汁を製造すれば、従来の麦芽をした場合に比べて、トランス-2-ノネナール生成量を1/10以下に抑制できることが明らかとなった。

[0107]

また、麦汁ノネナールポテンシャルは以下の方法で測定した。まず、Drostらの方法(Drost, B. W., van den Berg, R., Freijee, F. J.M., van der Velde, E. G., and Hollemans, M., J. Am. Soc. Brew. Chem., 48, 124–131, 1990)により麦汁を2時間煮沸した。その後、上記トランス-2-ノネナールの測定方法に従いサンプル中のトランス-2-ノネナールの量を測定し、麦汁中のノネナールポテンシャルを算出した。

[0108]

その結果、LOX-F4、LOX+F4を用いて作製した麦汁のノネナールポテンシャルは、それぞれ2.74ppbと11.9ppbであった。ノネナール

ポテンシャルは製品老化を予測できる指標として知られることから(Drost, B. W., et al., J. Am. Soc. Brew. Chem., 48, 124-131, 1990、Uedaet. al. (2001) EBC-proceedings 55:p3 28th Congress)、本発明にかかる大麦から作製した麦芽を利用し、麦芽飲料を醸造すれば、麦芽アルコール飲料の香味耐久性を大きく改善する事が出来る。

[0109]

また、LOX-F4を用いて作製した麦汁のトランス-2-ノネナール濃度と ノネナールポテンシャルを、市販の麦芽を用いて作製した麦汁のそれらと比較し たのが図13である。図13に示した結果から明らかなように、本発明にかかる 麦汁は、従来の大麦では達成できなかった分析値を示した。

[0110]

以上の結果から、本発明にかかる大麦を利用すれば、従来品にはない品質を有する麦芽を製造する事が出来ることが明らかとなった。

[0111]

さらに、麦汁中のTHOD濃度を高速液体クロマトグラフィー質量分析にて測定した。高速液体クロマトグラフィーの条件は以下の通りである。移動相の流速 $0.3\,\mathrm{m\,L/}$ 分とし、移動相には $0.5\,\mathrm{\%}$ 酢酸(A液)とアセトニトリル(B液)の混合液を用い、A液:B液=35:65(0分)ーA液:B液=5:95(30分)のリニアグラジエントの条件で行った。また、カラムはウォーターズ社製Assymetry(No.106005; C18, $3.5\,\mu$ m: $2.1\mathrm{x}150\mathrm{nm}$)を用い、カラム温度は $5.0\,\mathrm{mm}$ とし、ヒュレットパッカード社製1100型高速液体クロマトグラフシステムを用いて、 $5\,\mu$ Lの麦汁またはビールサンプルを分離した。質量分析はウォーターズ $2.0\,\mathrm{mm}$ で質量 $3.2.9\,\mathrm{mm}$ をモニタリングした。なお、THODの標準液はビール抽出サンプルを利用した(Kobayshi,N.,et a $1.5\,\mathrm{mm}$ Biosci. Bioeng.,90, 69-73, 2000)。

[0112]

その結果、LOX-F4、LOX+F4を用いて作製した麦汁のTHOD濃度はそれぞれ6.5ppmと14.7ppmであり、本発明にかかる麦芽を使用して麦汁を製造すれば麦汁THOD濃度を1/2以下に抑制できることが明らかと

[0113]

前述したようにTHODは仕込工程において麦芽LOX-1と麦芽ペルオキシゲナーゼ様活性の働きによりリノール酸から変換されることにより生成するが、麦芽ペルオキシゲナーゼ様活性がTHOD生成の律速段階と考えられるため(Kuroda, H., et al., J. Biosci. Bioeng., 93, 73-77, 2002)、麦芽LOX-1活性を低下させた場合、THODの生成がどの程度抑制されるかは明らかではなかった。しかし、本実施例の結果からLOX-1活性のない大麦種子から製造される麦芽を使用すれば、麦汁中のTHOD量が減少する事が証明された。THODは酵母によって代謝されること無く最終製品に移行する事から(Kobayashi, N., et al., J. Inst. Brew., 106, 107-110(2000))、本発明にかかる大麦由来の麦芽を利用すれば、香味品質や泡品質の良い麦芽アルコール飲料の製造が可能となることが明らかとなった

<u>実施例 6</u>

(麦芽アルコール飲料試験醸造)

1. 冷麦汁の製造と分析

上記実施例11で得られたLOX-F4麦芽とLOX+F4麦芽の2点について、50Lスケール仕込設備により発泡酒仕様(麦芽使用率24%)での仕込を行なった。仕込条件は以下の通りである。

[0114]

各々の麦芽 1. 5 k g を単用で 15 L の仕込用水により 50 C 、 $20 \text{ 分} \rightarrow 65 \text{ C}$ 、 $30 \text{ 分} \rightarrow 75 \text{ C}$ 、 3 分 のダイアグラムに従って仕込み、ロイター設備により 麦汁ろ過を行ない、最終的に 35 L のろ過麦汁を得た。

[0115]

得られたろ過麦汁は液糖(糖分75%)5 k g と混合し、ホップペレット(苦味分析値87.0BU(EBC))13 g を添加して70分間煮沸し、10 C まで冷却し、加水によるエキス調整によりエキス含量 $11.6 \sim 11.8$ %の冷麦汁とした。

[0116]

[0117]

【表1】

表1.	冷麦	<u> </u>	<u>)分析</u>	<u>f値</u>

品種	LOX+F4	LOX-F4
比重	1.0475	1.0467
エキス(%)	11.78	11.6
真性非発酵エキス(%)	3.45	3.38
真性最終発酵度(%)	70.7	70.9
仮性非発酵エキス(%)	1.54	1.52
仮性最終発酵度(%)	86.9	86.9
pH	5.88	5.93
色度(°EBC)	2.1	2.1
BU	31.2	2 27.3
全窒素(mg/100ml)	24	22
ポリフェノール(mg/L)	44	48
FAN(mg/L)	40	5 51

[0118]

2. 麦芽アルコール飲料 (発泡酒) の製造

上記1で得られた冷麦汁を蒸気殺菌した30Lスケールのシリンドロコニカル型タンクに移し、初期濃度3000万cells/mLとなるように酵母を添加し、13Cにて主発酵を行なった。発酵液のエキスが2.5%まで切れた段階で同型のタンクに移し替え、貯酒工程を行った。貯酒工程は最初の6日間は13Cにて、その後の2週間は0Cにて行った。

[0119]

貯酒工程の終わった発酵液は、ビールろ過設備及び充填設備にて、ビールをろ 過し、壜への充填を行なった。

3. 発泡酒の分析

上記2で得られた発泡酒の分析を以下のように行った。

[0120]

まず、EBC標準法(European Brewery Convention編、Analytica EBC (4th

Ed)、1987)に従い分析を行ったところ、脂質酸化物分析値以外の一般分析値に関してはLOX-F4とLOX+F4の間で、明らかな差は認められなかった(表2)。

[0121]

【表2】

=-	# #				11 100 100
モソ	爱琴と)	レコーノ	し飲料の	四品	分和個

品種	LOX+F4	LOX-F4
比重	1.00562	1.00565
原麦汁エキス(%)	11.82	11.56
真性エキス(%)	3.43	3.38
真性発酵度(%)	71	70.7
仮性エキス(%)	1.44	1.45
仮性発酵度(%)	87.8	87.4
アルコール(vol %)	5.5	5.35
アルコール(w/w %)	4.33	4.21
pH	3.51	3.28
ガス圧(20℃) kg/cm2	2.35	2.55
色度(°EBC)	1.5	1.7
全窒素(mg/100ml)	16	19
BU(mg/L)	11.6	9.5
ポリフェノール(mg/L)	45	43
FAN(mg/L)	10	12

[0122]

次に以下の方法により上記2で得られた発泡酒の泡持ちについて分析を行った

[0123]

泡持ち分析は、NIBEM法を利用した。Haffmans社のFOAM STABILITY TESTE Rを使用し、泡持ちを分析したところ(表 3)、LOX-F4大麦はLOX+F4大麦に比べて、NIBEM値が21ポイント高く、高い泡持ちを有する事が明らかとなった。

[0124]

また、上記実施例12に記載した方法により、THOD濃度を測定した結果、 LOX-F4はLOX+F4に比べ半分以下に減少していた。

[0125]

以上の結果から、本発明の麦芽アルコール飲料製造方法により製造される麦芽 アルコール飲料は、THODの蓄積を抑制することができ、製品の泡持ちを改善

できたことが明らかとなった。

[0126]

【表3】

表3. 麦芽アルコール飲料のTHOD含量と泡もち

品種	LOX+F4	LOX-F4
NIBEM(補正)	239	260
THOD(mg/L)	3.6	1.7

[0127]

次に、以下のように13人のパネルによる官能検査を行い、上記2で得られた 発泡酒の香味耐久性を比較した。

[0128]

まず、LOX-F4及びLOX+F4の麦芽アルコール飲料を37℃で1週間保存した。次に、それを通常の飲用温度でコップに注いだものをパネルの官能検査に供し、老化臭、総合老化度(老化臭、老化味を加味して評価)の2項目について $0\sim4$ までの評点(老化が進むほど評点が高い)で評価した(表4A、B)。

[0129]

その結果、老化臭に関しては、13人中10人がLOX-F4の方に低い評点をつけており、LOX-F4はLOX+F4と比べて、低い評点(平均値)を示した。その差はt検定により5%の危険率で有意であると判定された(表4A)。

[0130]

また、総合老化度に関しては、13人中11人がLOX-F4の方に低い評点をつけており、LOX-F4はLOX+F4と比べて、低い評点(平均値)を示し、その差はt検定により5%の危険率で有意と判定された(表4B)。

[0131]

以上の官能検査と統計分析により、LOX-F4はLOX+F4と比べて、老 化臭が低減され、低い総合老化度を有することが明らかとなった。

[0132]

表4A. 官能評価(老化臭)

双小、日配 们画(七10天)		
老化臭	LOX+F4	LOX-F4
パネル1	3	2
パネル2	1	2 2
パネル3	3	2
パネル4	2.5	2.5
パネル5	2	
パネル6	2.5	2
パネル7	2.5	1.5
パネル8	2.5	1
パネル9	1	0.5
パネル10	2.5	2
パネル11	2	1.5
パネル12	2.5	
パネル13	2	1.5
平均	2.2	1.7

表4B. 官能評価(総合老化度)

総合老化度	LOX+F4 L	OX-F4
パネル1	2.5	2
パネル2	1	2
パネル3	3	2
パネル4	3	2.5
パネル5	2.5	2
パネル6	2.5	2
パネル7	2.5	1.5
パネル8	2.5	1.5
パネル9	1	0.5
パネル10	2.5	2
パネル11	2	1.5
パネル12	2.5	2.5
パネル13	2	1.5
平均	2.3	1.8

[0133]

また、37 \mathbb{C} 、1 週間保存の前後で上記 2 で得られた発泡酒のトランス -2 -2 ノネナール濃度を測定した結果、LOX-F4 は、保存前でもトランス -2 -2 ネナール濃度がLOX+F4 に比べて低減し、保存後はLOX+F4 の約 1/3 に抑制できた事が明らかとなった(表 5)。

[0134]

【表5】

表5. 麦芽アルコール製品のトランス-2-ノネナール濃度

品種	LOX+F4	LOX-F4	
保存前		0.02	0.014
保存後		0.35	0.12
		(単位(pr	ob))

[0135]

以上、官能検査の結果と麦芽アルコール飲料中のトランスー2ーノネナール濃度の解析結果から、本発明の麦芽アルコール飲料の製造方法により麦芽アルコール飲料を製造すれば、香味耐久性が改善された麦芽アルコール飲料が得られることが明らかとなった。

[0136]

最後に、上記2で得られた発泡酒の濃醇さとキレに関して官能検査と脂質膜セ

[0137]

まず、13人のパネルによる官能検査を行い香味品質を比較した。LOX-F4及びLOX+F4の発泡酒を官能検査に供し、濃醇さとキレの2項目について 0 ~ 4 までの評点(濃醇さが強い、またはキレが良いほど評点が高い)で評価を行った(表 6)。

[0138]

濃醇さに関しては、LOX-F4とLOX+F4との間に有意差(5%の危険率)はみられなかった(表6A)。

[0139]

キレに関しては、13人中8人がLOX-F4の方に高い評点をつけた(表 6 B)。また、LOX-F4はLOX+F4に比べて高い評点(平均値)を示し、その差は t 検定により 5%の危険率で有意であると判定された。

[0140]

以上の結果から、LOX-F4を用いて麦芽アルコール飲料を醸造すると、濃醇さに影響を与えることなく、キレを改善できる事が明らかとなった。

[0141]

【表 6】

表6A. 官能評価(濃醇さ)

<u> </u>	表UA. 日 REST IM (ARCE)		
品種	LOX+F4 LOX-F4		
パネル1	. 2	1	
パネル2	3	2	
パネル3	3	2.5	
パネル4	3.5	3.5	
パネル5	3	3	
パネル6	2	2	
パネル7	2	2	
パネル8	3	2 2	
パネル9	3		
パネル10	2.5	2.5	
パネル11	3	2	
パネル12	2	3	
パネル13	2	3	
平均	2.6	2.3	

表6B. 官能評価(キレ)

品種	LOX+F4 LOX-F4	
パネル1	1	2
パネル2	1	3
パネル3	1.5	
パネル4	3	3
パネル5	1	1
パネル6	2	2
パネル7	2	3
パネル8	1.5	3
パネル9	1	2
パネル10	1.5	2
パネル11	2	3
パネル12	3	2
パネル13	3	2
平均	1.8	2.4

[0142]

[0143]

濃醇さは脂質膜への吸着性により評価されるが、その結果、LOX-F4とLOX+F4の吸着性の間に統計的有意差(危険率5%水準)が認められなかった(表7A)。

[0144]

一方、キレは脂質膜への残存性により評価(キレが劣るほど高い残存性を示す)されるが、LOX-F4はLOX+4に比べ約1/4の残存性を示し、危険率1%水準での有意差が認められた(表7B)。

[0145]

【表7】

表7A 脂質膜センサーによる濃醇さの評価

42/八・旧児/火ビン		
	吸着性	標準偏差
LOX+F4	189	4
LOX-F4	187	3

(単位はHz。危険率5%水準での有意差認められず。)

我70. 腊兔辰℃	残存性	標準偏差
LOX+F4	12	3
LOX-F4	3	3

(単位はHz。危険率1%水準での有意差有り)

[0146]

これまで、麦芽LOX-1活性と仕込工程におけるTHOD生成量には相関が見られず(Kobayshi, N. et al., (2000). J. Biosci. Bioeng. 90:69-73.)、麦芽LOX-1の抑制によりどの程度THOD生成が抑制されるのかは不明であった。また、抑制された結果、果たしてキレを改善できるかは従来技術では予想が付かなかった。しかし、本実施例の官能検査結果と脂質膜センサーを利用した製品の濃醇さとキレの解析結果より、本請求遺伝子を利用した麦芽を利用すれば、製品の濃醇さに影響を与える事無く、製品のキレを改善する事が初めて実証さ

れた。

[0147]

【発明の効果】

遺伝子操作することなく、香味耐久性や泡持ちを改善された麦芽アルコール飲料を製造するために有用な、LOX-1変異遺伝子と、LOX-1欠失大麦の選抜方法と、選抜によって得られた大麦に由来する麦芽アルコール飲料用原料と、前記麦芽アルコール飲料用原料を用いた麦芽アルコール飲料の製造方法と、を提供することが可能となる。

[0148]

【配列表】

SEQUENCE LISTING

<110> SAPPORO BREWERIES LTD.

<120> Barley lipoxygenase-1 gene, method of selecting barley variety, m aterials for malt alcoholic drink and manufacturing method of malt alcoholic drink

<130> 510-1378

<160> 7

<170> PatentIn version 3.1

<210> 1

<211> 240

<212> DNA

<213> Hordeum vulgare

<4	$\cap i$	٦.	-	1
< 4	W	.) >		ı

ctcgccaagg cctacgtcgc cgtcaatgac tccgggtggc accagctcgt cagccactgg 60
tacgttctcc acggtcgatg tgattcagtc agtcgatgca caacaactga tcgaaatatg 120
attgattgaa acgcgcaggc tgaacactca cgcggtgatg gagccgttcg tgatctcgac 180
gaaccggcac cttagcgtga cgcacccggt gcacaagctg ctgagcccgc actaccgcga 240

<210> 2

<211> 240

<212> DNA

<213> Hordeum vulgare

<400> 2

ctcgccaagg cctacgtcgc cgtcaatgac tccgggtggc accagctcgt cagccactga 60
tacgttctcc acggtcgatg tgattcagtc agtcgatgca caacaactga tcgaaatatg 120
attgattgaa acgcgcaggc tgaacactca cgcggtgatg gagccgttcg tgatctcgac 180
gaaccggcac cttagcgtga cgcacccggt gcacaagctg ctgagcccgc actaccgcga 240

<210> 3

<211> 24

<212> DNA

<213> Artificial

<220>	
<223>	Synthetic polynucleotide
<400>	3
ggagag	gagg ccaagaacaa gatg
<210>	4
<211>	19
<212>	DNA
<213>	Artificial
<220>	
<223>	Synthetic polynuleotide
<400>	4
ggttgo	ecgat ggcttagat

<400> 5

24 caagaacaa gatg icial etic polynuleotide 19 gcttagat <210> 5 ' <211> 21 <212> DNA <213> Artificial <220> <223> Synthetic polynucleotide

cacgtcgccg tccgatccat c

21

<210> 6

<211> 20

<212> DNA

<213> Artificial

<220>

<223> Synthetic polynucleotide

<400> 6

ccatcacgca gggcatcctg

20

<210> 7

<211> 20

<212> DNA

<213> Artificial

<220>

<223> Synthetic polynucleotide

<400> 7

gcgttgatga gcgtctgccg

20

【図面の簡単な説明】

【図1】

探索試験1におけるLOX-1活性の結果を示すグラフである。

【図2】

【図3】

証明試験2における大麦種子のLOXタンパク質のウェスタン解析の結果を示す電気泳動写真である。AはSDS-PAGE後のウェスタン解析の結果を示し、BはIEF後のウェスタン解析の結果を示す。

【図4】

証明試験3における大麦種子のRNAのRT-PCR解析の結果を示す電気泳動写真である。

【図5】

LOX-1遺伝子第5イントロンスプライシング供与部位の構造を示す図である。

【図6】

証明試験5におけるLOX-1変異遺伝子のスプライシングについて解析した 結果を示す電気泳動写真である。Aは第3イントロン〜第5イントロンを含む増 幅断片の電気泳動写真であり、BはAと同じ増幅断片をStuIで消化した後の 電気泳動写真である。

【図7】

証明試験6におけるKendall×SV73の雑種第2世代におけるDNA 多型を示す電気泳動写真である。

【図8】

証明試験6におけるKendall×SV73の雑種第2世代におけるDNA 多型及び雑種第3世代におけるLOX活性をまとめた図である。

【図9】

実施例1における一般大麦品種/系統のAfaI法による解析の結果を示す電 気泳動写真である。

【図10】

実施例2におけるLOX-1欠失大麦のAfaI法による解析結果を示す電気 泳動写真である。

【図11】

実施例2におけるLOX-1欠失大麦の種子LOX活性の結果を示す図である。Aは酵素反応時間5分の結果、Bは酵素反応時間90分の結果を示す図である

【図12】

実施例 5 における LOX+F 4 集団および LOX-F 4 集団の種子の麦芽分析の結果を示す図である。

【図13】

実施例 5 における麦汁中のトランスー 2 ーネネナール濃度とノネナールポテンシャルを示す図である。

【書類名】 図面

【図1】

【図2】

【図3】

【図5】

TCCGGGTGGCACCACTCGTCACCACTGGTACGTTCTCCCACGGTCGATGTGATTCAGTC 紙5イントロソ LAプライシング供与部位 AfaI/Rsa SerGlyTrpHisGlnLeuValSerHis

AfaI/RsaI部位消失

TCCGGGTGGCACCACTCGTCACCTGATACGTTCTCCACGGTCGATGTGATTCAGTC

SerGlyTrpHisGlnLeuValSerHis***

終止コドン

LOX-1遺伝子第5イントロンスプライシング供与部位領域の塩基配列

【図6】

M:Marker,

KC: Kendall cDNA template SC: SV73 cDNA template

SG: SV73 genomicDNA template

【図7】

M:Marker F2:Kendall x SV73 F2 DNA AfaI法分析

【図8】

F2個体No.	LOX活性	Afal法	JBC970		F2個体No.	LOX活性	Afal法	JBC970
		CAPS	サザン				CAPS	サザン
1	+	KB	KB_		73	+	KB	KB
2	_ +	KK	KK		74	+	KB	KB KB
3	+	KB_	KB_		75	+	KK	KK
5		88 88	KB 88		76 77	+	KB	KB
6		88	88		78		KK BB	KK BB
7	+	KK	KK		79	+	KB	KB
8	+	KB	KB		BO		BB	BB
9	+	KB	KB		81	-	88	BB
10		BB	BB		82	+	KB	KB
11		BB	KB_		B3	+	KK	KK
12	+	KB	KB		84	+	KK	KK
13		BB	BB		85	_	88	<u> </u>
14 15	+ +	KB KB	KK KB		96		BB	BB
16	+	KB	KB		87 88	+	88 K8	BB KB
17	+	KK	KK		B9		88	BB
18	+	KB	KB		90		88	BB
19	+	KK	KK		91	+	KK	KK
20	+	KK	KK		92	+	KB	КВ
21		BB	KB		93	+	KB	КВ
22	+	KK	KK		94	+	KK	KK
23	+	KB	KB		95	+	KB	KB
24	+	KK	KK		96	+	KB	KB
25 26	+	KB KB	KB KB		97 98	+ +	KK KB	KK KB
27	+	KK	KK		99	+	KB	KB
28	+	KK	KK		100	+	KB	KB
29	+	KK	KK		101		BB	BB
30	+	KB	KB		102	+	KB	KK
31	+	KB_	KB		103	. +	KB	KB
32		BB	KB		104	+	KB_	KB_
33	+	KB	KB		105	+	KB	KB
34 35	+	KB KK	KB		106	+	KK	KK
36	+	KB	KB KB		107 108	+	KK KK	KK KK
37	+	KB	KB		109	+	KB	KB
38	+	KK	KK		110		88	BB
39	+	KB	_		111		88	88
40	_ +	KB			112	+	KB	KB
41		88	BB		113	+	KB	KB
42	+	KB_	KB		114	+	KB	KB
43	+ +	KK	KK		115	- -	BB	BB
44		KB BB	KB BB		116	+	KB	KB
46	+	KK	KK		117 118	- -	BB KK	BB KK
47		BB	BB		119	+	KB	KB
48	+	KK	KB		120	+	KK	KK
49	+	KB	KB		121	+	KB	KB
50		BB	88		122	+	KB	KB
51	+	KB	KB		123	+	KK	KK
52	+	KB	KB		124	+	KB	KB
53 54		KK BB	KK		125		BB	BB
55	+	BB KK	BB KK	<u> </u>	126 127	+ +	KK KB	KK KB
56		BB	BB		128	+	KB	88
57	+	KB	КВ		129	+	KB_	KB
58	+	KB	KB		130	+	KB	KB
59		BB	BB		131	+	KK	KB
60		BB	88		132	+	KK	KK
61	+	KK	KK	· ·	133		88	88
62	+	KK	KK		134		88	88
63 64	+	KK.	KK		135	+	KK	KK
65	+	KB KB	KB KB		136 137		KB KB	KB
66	+		KK		137	+	KB	KB
67	-	KB	KB		139	-	88	88
68	+	KK	KK		140	+	KK	KK
69	+ _	KB	KB		141	+	KB	KB
70		88	_88		142	+	KB	88
71	+	KB	KB		143		KK	KK
72		88	BB	L	144	+	KB	KB

M: Marker,

【図12】

品種	Lox+F4	Lox-F4
大麦水分(%)	10.9	11
大麦重量(g)	3000	3000
浸麦度(%)	44.8	44.5
浸麦時間(h)	82	82
麦芽収量(g)	2571.6	2572.2
麦芽収率(%ad)	85.7	85.7
麦芽収率(%db)	90.3	90.7
水分(%)	6.1	5.8
糖化時間(分)	9~15	9~15
ろ過速度(分)	8	17
透明度	2	2
色度(EBC)	2.1	2.2
煮沸色度(EBC)	3.2	3.3
風 乾ェキス(%)	67	69.3
無 水エキス(%)	71.4	73.5
TN(%)	2.49	2.291
SN(%)	0.648	0.645
粗蛋白質(%)	15.6	14.3
KZ	26	28.1
EVG(%)	78.8	79
DP(°WK)	348	377
DP(WK/TN)	140	165
粘度(mPa·s)	1.87	1.89
β -ケルカン(mg/l)	427	392
рН	5.97	6
エキス収量(%)	64.5	66.7

【要約】

【課題】 麦芽アルコール飲料の香味耐久性および泡持ちを向上させるべく、大 麦リポキシゲナーゼー1欠失大麦を選抜する方法を提供すること。

【解決手段】 大麦リポキシゲナーゼー1遺伝子第5イントロンのスプライシング供与部位のグアニンが他の塩基に変異しているか否かにより大麦リポキシゲナーゼー1欠失大麦を判別することを特徴とする大麦リポキシゲナーゼー1欠失大麦の選抜方法とこの選抜方法によって得られた大麦のみに由来する麦芽アルコール飲料用原料を用いた麦芽アルコール飲料の製造方法。

【選択図】 なし

特願2003-083924

出願人履歴情報

識別番号

[000002196]

1. 変更年月日 [変更理由] 1994年12月22日

住所変更

住 所 氏 名 東京都渋谷区恵比寿四丁目20番1号

サッポロビール株式会社

2. 変更年月日 [変更理由] 2003年 7月17日

名称変更

住 所 氏 名 東京都渋谷区恵比寿四丁目20番1号 サッポロホールディングス株式会社

> 出証特2004-3036643 出証番号

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

 IMAGE CUT OFF AT TOP, BOTTOM OR SIDES FADED TEXT OR DRAWING BLURRED OR ILLEGIBLE TEXT OR DRAWING SKEWED/SLANTED IMAGES COLOR OR BLACK AND WHITE PHOTOGRAPHS GRAY SCALE DOCUMENTS LINES OR MARKS ON ORIGINAL DOCUMENT REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY OTHER: 	BLACK BORDERS
 □ BLURRED OR ILLEGIBLE TEXT OR DRAWING □ SKEWED/SLANTED IMAGES □ COLOR OR BLACK AND WHITE PHOTOGRAPHS □ GRAY SCALE DOCUMENTS □ LINES OR MARKS ON ORIGINAL DOCUMENT □ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY 	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
 □ SKEWED/SLANTED IMAGES □ COLOR OR BLACK AND WHITE PHOTOGRAPHS □ GRAY SCALE DOCUMENTS □ LINES OR MARKS ON ORIGINAL DOCUMENT □ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY 	☐ FADED TEXT OR DRAWING
 □ COLOR OR BLACK AND WHITE PHOTOGRAPHS □ GRAY SCALE DOCUMENTS □ LINES OR MARKS ON ORIGINAL DOCUMENT □ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY 	BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ GRAY SCALE DOCUMENTS ☐ LINES OR MARKS ON ORIGINAL DOCUMENT ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	☐ SKEWED/SLANTED IMAGES
☐ LINES OR MARKS ON ORIGINAL DOCUMENT ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
OTHER:	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.