## Universidade de São Paulo Instituto de Matemática e Estatística Bacharelado em Matemática Aplicada

# Redes Neurais aplicadas às Séries Temporais

Eduardo Galvani Massino

## Monografia Final map2010 — Trabalho de Formatura

Orientador: José Coelho de Pina Junior

Coorientador: Alberto Ueda

São Paulo Fevereiro de 2021

Dedico esse trabalho à minha família, minha mãe e irmã, e em especial à minha futura esposa Camila, que me ajudou em muitos momentos difíceis neste ano, sobretudo durante a escrita desse texto. Por fim dedico esse trabalho a todos os andróides e robôs da ficção científica que sempre me inspiraram e me puseram no mundo da ciência e da computação desde criança.

Lieutenant Commander Data is a machine. Do we deny that? No, because it is not relevant: we, too, are machines, just machines of a different type.

— Captain Picard

Is Data a machine? Yes. Is he the property of Starfleet? No. We've all been dancing around the basic issue: does Data have a soul? I don't know that he has. I don't know that I have! But I have got to give him the freedom to explore that question himself. It is the ruling of this court that Lieutenant Commander Data has the freedom to choose.

— Captain Louvois em "The Measure Of A Man", episódio da série Star Trek The Next Generation

#### Resumo

Eduardo Galvani Massino. **Redes Neurais aplicadas às Séries Temporais**. Monografia (Bacharelado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2021.

Este trabalho possui dois objetivos, servir como um guia inicial de estudos sobre redes neurais no contexto de aprendizado de máquina, apresentando uma implementação didática do algoritmo de treinamento da rede *Perceptron*, e testar se redes neurais possuem o potencial para prever séries temporais financeiras com um desempenho similar ou superior em comparação aos modelos paramétricos tradicionalmente usados, como o *ARIMA*. Após uma série de comparações dos modelos, conclui-se que o resultado é dependente da quantidade de dados disponíveis para o treinamento, de forma que poucos dados disponíveis favorecem os modelos paramétricos, e quanto mais dados mais potencial há nas redes neurais, tanto em maior ou igual qualidade das previsões quanto em menor tempo relativo de processamento.

Palavras-chave: aprendizado-de-máquina. redes-neurais. perceptron. ARIMA. séries-temporais.

#### **Abstract**

Eduardo Galvani Massino. **Redes Neurais aplicadas às Séries Temporais**. Capstone Project Report (Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2021.

This work has two objectives, to serve as an initial guide for studies on neural networks in the context of machine learning, presenting a didactic implementation of the *Perceptron* network training algorithm, and to test whether neural networks have the potential to predict financial time series with similar or better performance compared to parametric models traditionally used, such as *ARIMA*. After a set of comparisons of the models, it is concluded that the result is dependent on the amount of data available for training, so that few data available favor the parametric models, and the more data the more potential there is in neural networks, both in greater or equal quality of forecasts as in less relative processing time.

Keywords: machine-learning. neural-nets. perceptron. ARIMA. temporal-series.

# Lista de Figuras

| 1.1  | Diagrama de Venn relacionando os três aspectos inerentes à ciência de dados. | 2  |
|------|------------------------------------------------------------------------------|----|
| 2.1  | Tarefa de classificação de fotos de animais. As duas primeiras colunas       |    |
|      | ilustram o treinamento, e as duas últimas a previsão, de valores discretos,  |    |
|      | ou seja, "classes"                                                           | 6  |
| 2.2  | Tarefa de regressão, mostrando novamente as fases de treinamento de de       |    |
|      | previsão, lidando com quantidades contínuas.                                 | 7  |
| 2.3  | Tarefa de clusterização. Não há uma distinção entre etapas de treinamento    |    |
|      | e de previsão. O algoritmo agrupa os dados a ele fornecidos e dá a resposta  |    |
|      | diretamente                                                                  | 7  |
| 2.4  | Sobreajuste num modelo de classificação                                      | 9  |
| 2.5  | Modelo de regressão, ajuste linear                                           | 9  |
| 2.6  | Modelo de regressão, polinômio de grau m                                     | 10 |
| 2.7  | Modelo de regressão, polinômio de grau $N.$                                  | 10 |
| 2.8  | Árvore de decisão classificando famílias de plantas                          | 14 |
| 2.9  | Representação de um neurônio biológico                                       | 18 |
| 2.10 | Rede neural simples, o <i>perceptron</i> de camada única                     | 19 |
| 2.11 | Rede neural mais simples, apenas um neurônio oculto.                         | 19 |
| 2.12 | Representação de um neurônio artificial                                      | 19 |
| 2.13 | As redes neurais recorrentes: perceptron, feedforward e deep feedforward.    | 21 |
| 2.14 | As redes neurais recorrentes                                                 | 22 |
| 2.15 | As redes neurais convolucionais                                              | 22 |
| 2.16 | Redes neurais extremas                                                       | 23 |
| 3.1  | Visão estrutural da rede perceptron. A linha tracejada destaca uma das       |    |
|      | camadas da rede                                                              | 29 |
| 3.2  | Comparação entre as funções de ativação do tipo escada e a sigmoide          | 31 |
| 3.3  | Gráficos da função sigmoide e sua derivada                                   | 32 |
| 3.4  | Gráficos da função tangente hiperbólico e sua derivada                       | 33 |

| 3.5  | Gráficos da função <i>RELU</i> e sua derivada                                  | 34 |
|------|--------------------------------------------------------------------------------|----|
| 3.6  | Gráficos da função <i>Leaky RELU</i> e sua derivada                            | 35 |
| 3.7  | Gráficos da função <i>ELU</i> e sua derivada                                   | 36 |
| 3.8  | Exemplos de fotos da base de dados MNIST de números manuscritos                | 49 |
| 3.9  | Matriz de confusão e acurácia do conjunto de treino da base MNIST $8\times 8$  |    |
|      | pixels                                                                         | 50 |
| 3.10 | Matriz de confusão e acurácia do conjunto de teste da base MNIST 8 × 8         |    |
|      | pixels                                                                         | 51 |
| 3.11 | As duas implementações da API Keras. Multibackend à esquerda e Tensor-         |    |
|      | Flow à direita                                                                 | 52 |
| 3.12 | Matriz de confusão, função de perda e acurácia do conjunto de teste da         |    |
|      | base MNIST 8 × 8 pixels, utilizando a API Keras                                | 54 |
| 3.13 | Matriz de confusão, função de perda e acurácia do conjunto de teste da         |    |
|      | base MNIST 28 × 28 pixels, utilizando a API Keras                              | 56 |
| 4.1  | Processo estocástico como uma família de trajetórias, isto é, de séries        |    |
|      | temporais                                                                      | 59 |
| 4.2  | Esquerda: Índices mensais do Ibovespa. Direita: Log-diferença do Ibovespa.     | 61 |
| 4.3  | Função de autocorrelação (fac) de um ruído branco                              | 63 |
| 4.4  | Na coluna esquerda as autocorrelações e na coluna direita as autocorrela-      |    |
|      | ções parciais calculadas de alguns modelos <i>ARIMA</i> , demonstrando seus    |    |
|      | comportamentos esperados. Na primeira linha temos o modelo $AR(1)$ , na        |    |
|      | segunda linha o modelo $MA(1)$ , e na terceira linha o modelo $ARMA(1, 1)$ .   | 73 |
| 5.1  | Cotações de venda do Dólar em Reais. Período: Jul/2016 - Dez/2017              | 77 |
| 5.2  | Previsões de 7 dias dos modelos ARIMA, Rede Neural Keras e Média-Móvel         |    |
|      | 30 dias das janelas de cotações do Dólar                                       | 81 |
| 5.3  | Previsões de 7 dias do modelo de rede <i>Perceptron</i> e de Média-Móvel de 7  |    |
|      | dias das janelas de cotações do Dólar                                          | 82 |
| 5.4  | Previsões de 7 dias do modelo ARIMA com o intervalo de 95% de confiança        |    |
|      | para cada previsão.                                                            | 82 |
| 5.5  | Distribuição dos parâmetros ótimos $(p, d, q)$ (da esquerda para a direita)    |    |
|      | encontrados com o grid search para o modelo ARIMA para as 30 janelas           |    |
|      | de dados                                                                       | 84 |
| 5.6  | Previsões de 30 dias dos modelos ARIMA, Rede Neural Keras e Média-             |    |
|      | Móvel 30 dias das janelas de cotações do Dólar                                 | 85 |
| 5.7  | Previsões de 30 dias do modelo de rede <i>Perceptron</i> e de Média-Móvel de 7 |    |
|      | dias das janelas de cotações do Dólar                                          | 86 |

| 5.8  | Previsões de 30 dias do modelo ARIMA com o intervalo de 95% de confiança          |     |
|------|-----------------------------------------------------------------------------------|-----|
|      | para cada previsão.                                                               | 86  |
| 5.9  | Período da série temporal das cotações do Dólar, especificando os conjuntos       |     |
|      | de treino (em azul) das redes neurais e o conjunto de teste (em vermelho)         |     |
|      | de todos os modelos.                                                              | 87  |
| 5.10 | Distribuição dos <i>lags</i> significativos máximos para as funções de autocorre- |     |
|      | lação (esquerda) e de autocorrelação parcial (direita).                           | 88  |
| 5.11 | Distribuição dos parâmetros ótimos $(p, d, q)$ (da esquerda para a direita)       |     |
|      | encontrados com o grid search para o modelo ARIMA para as 250 janelas             |     |
|      | de dados                                                                          | 88  |
| 5.12 | Previsões de um ano dos modelos ARIMA, Rede Neural Keras e Média-                 |     |
|      | Móvel 7 dias das janelas de cotações do Dólar                                     | 90  |
| 5.13 | Previsões de um ano do modelo de rede <i>Perceptron</i> e de Média-Móvel de       |     |
|      | 30 dias das janelas de cotações do Dólar.                                         | 91  |
| 5.14 | Previsões do modelo ARIMA com o intervalo de 95% de confiança para                |     |
|      | cada previsão                                                                     | 92  |
| A.1  | Visualização do método do gradiente descendente com taxa de aprendizado           |     |
|      | única. Os pontos azuis representam candidatos a ponto mínimo em cada              |     |
|      | iteração do algoritmo                                                             | 98  |
| A.2  | Visualização do método do gradiente descendente com taxa de aprendizado           |     |
|      | única. Ilustração do uso de um valor de taxa de aprendizado muito grande.         | 99  |
| A.3  | Visualização do método do gradiente descendente com taxa de aprendizado           |     |
|      | variável que vai diminuindo passo-a-passo do algoritmo.                           | 100 |
| A.4  | Comportamento de diferentes taxas de aprendizado nos valores candidatos           |     |
|      | a mínimo                                                                          | 100 |
| B.1  | Gráficos da amplitude por média de subconjuntos de $Z_t$ , com os correspon-      |     |
|      | dentes valores de $\lambda$                                                       | 102 |

## Lista de Tabelas

| 5.1  | Especificação dos dados de treino e de teste (7 dias)                     | 78 |
|------|---------------------------------------------------------------------------|----|
| 5.2  | Hiperparâmetros do modelo neural Keras.                                   | 79 |
| 5.3  | Hiperparâmetros do modelo neural <i>Perceptron</i>                        | 80 |
| 5.4  | Hiperparâmetros do modelo ARIMA (7 dias)                                  | 80 |
| 5.5  | Previsões para 7 dias e métricas dos modelos das janelas de cotações do   |    |
|      | Dólar                                                                     | 80 |
| 5.6  | Especificação dos dados de treino e de teste (30 dias).                   | 83 |
| 5.7  | Previsões para 30 dias e métricas dos modelos das janelas de cotações do  |    |
|      | Dólar                                                                     | 84 |
| 5.7  | Previsões para 30 dias e métricas dos modelos das janelas de cotações do  |    |
|      | Dólar                                                                     | 85 |
| 5.8  | Especificação dos dados de treino e de teste (1 ano)                      | 87 |
| 5.9  | Hiperparâmetros do modelo neural Keras para o terceiro teste              | 89 |
| 5.10 | Hiperparâmetros do modelo neural <i>Perceptron</i> para o terceiro teste  | 89 |
| 5.11 | Métricas das previsões para um ano dos modelos das janelas de cotações    |    |
|      | do Dólar                                                                  | 89 |
| 5.12 | Listagem das possibilidades de escolha dos hiperparâmetros da rede neural |    |
|      | convolucional utilizada                                                   | 91 |
| 5.13 | Tempo de processamento do treinamento dos modelos de previsão             | 92 |

# Lista de Programas

| 3.1  | Trecho da classe Neuron                               | 30 |
|------|-------------------------------------------------------|----|
| 3.2  | Trecho do script util.py                              | 31 |
| 3.3  | Trecho da classe <i>Layer</i>                         | 37 |
| 3.4  | Trecho da classe <i>Layer</i>                         | 38 |
| 3.5  | Trecho da classe <i>Layer</i>                         | 38 |
| 3.6  | Trecho da classe <i>Network</i>                       | 39 |
| 3.7  | Trecho da classe <i>Network</i>                       | 40 |
| 3.8  | Trecho da classe <i>Network</i>                       | 40 |
| 3.9  | Trecho da classe <i>Network</i>                       | 40 |
| 3.10 | Trecho da classe <i>Network</i>                       | 41 |
| 3.11 | Trecho da classe <i>Network</i>                       | 41 |
| 3.12 | Trecho da classe <i>Network</i>                       | 42 |
| 3.13 | Trecho da classe <i>Perceptron</i>                    | 43 |
| 3.14 | Trecho da classe <i>Perceptron</i>                    | 44 |
| 3.15 | Trecho da classe <i>Perceptron</i>                    | 45 |
| 3.16 | Trecho da classe <i>Perceptron</i>                    | 46 |
| 3.17 | Trecho da classe <i>Perceptron</i>                    | 46 |
| 3.18 | Trecho da classe <i>Perceptron</i>                    | 47 |
| 3.19 | Trecho da classe <i>Perceptron</i>                    | 47 |
| 3.20 | Trecho da classe <i>Perceptron</i>                    | 48 |
| 3.21 | Trecho do script mnist_test.py                        | 49 |
| 3.22 | Trecho do script mnist_test.py                        | 49 |
| 3.23 | Trecho do script mnist_keras.py                       | 52 |
| 3.24 | Trecho do script mnist_keras.py                       | 53 |
| 3.25 | Trecho do script mnist_keras.py                       | 53 |
| 3.26 | Trecho do script mnist_keras.py                       | 55 |
| 5.1  | Definição da arquitetura da rede neural convolucional | 78 |

## Sumário

| 1 | Intr | odução                                              |                                          | 1  |  |  |  |  |  |
|---|------|-----------------------------------------------------|------------------------------------------|----|--|--|--|--|--|
| 2 | Red  | Redes neurais no contexto de aprendizado de máquina |                                          |    |  |  |  |  |  |
|   | 2.1  | Tipos                                               | de aprendizagem                          | 5  |  |  |  |  |  |
|   |      | 2.1.1                                               | O problema do sobreajuste dos modelos    | 8  |  |  |  |  |  |
|   | 2.2  | Algori                                              | itmos básicos de aprendizagem            | 11 |  |  |  |  |  |
|   |      | 2.2.1                                               | Regressão Linear                         | 11 |  |  |  |  |  |
|   |      | 2.2.2                                               | Regressão Logística                      | 12 |  |  |  |  |  |
|   |      | 2.2.3                                               | Árvores de decisão                       | 14 |  |  |  |  |  |
|   |      | 2.2.4                                               | <i>K</i> -médias                         | 16 |  |  |  |  |  |
|   | 2.3  | As red                                              | les neurais e o <i>perceptron</i>        | 17 |  |  |  |  |  |
|   | 2.4  | Arqui                                               | teturas de redes neurais                 | 21 |  |  |  |  |  |
| 3 | Per  | ceptron                                             | n multi-camadas                          | 25 |  |  |  |  |  |
|   | 3.1  | Maten                                               | nática do algoritmo de retropropagação   | 25 |  |  |  |  |  |
|   | 3.2  | Imple                                               | mentação do algoritmo de retropropagação | 28 |  |  |  |  |  |
|   |      | 3.2.1                                               | O neurônio                               | 29 |  |  |  |  |  |
|   |      | 3.2.2                                               | A função de ativação                     | 30 |  |  |  |  |  |
|   |      | 3.2.3                                               | As camadas                               | 36 |  |  |  |  |  |
|   |      | 3.2.4                                               | A rede                                   | 39 |  |  |  |  |  |
|   |      | 3.2.5                                               | A classe Perceptron                      | 43 |  |  |  |  |  |
|   | 3.3  | Exemp                                               | plo de utilização do <i>perceptron</i>   | 48 |  |  |  |  |  |
|   | 3.4  | Utiliza                                             | ando a API Keras                         | 51 |  |  |  |  |  |
| 4 | Séri | es tem                                              | porais                                   | 57 |  |  |  |  |  |
|   | 4.1  | Proces                                              | ssos estocásticos                        | 58 |  |  |  |  |  |
|   |      | 4.1.1                                               | Definições                               | 59 |  |  |  |  |  |
|   |      | 4.1.2                                               | Processos estacionários                  | 60 |  |  |  |  |  |
|   |      | 4.1.3                                               | Função de autocorrelação                 | 61 |  |  |  |  |  |

|             |                                          | 4.1.4   | Exemplos de processos estocásticos                                | 62 |  |  |  |
|-------------|------------------------------------------|---------|-------------------------------------------------------------------|----|--|--|--|
|             | 4.2                                      | Os mo   | odelos ARIMA                                                      |    |  |  |  |
|             |                                          | 4.2.1   | Processo linear geral                                             | 65 |  |  |  |
|             |                                          | 4.2.2   | Modelos autorregressivos (AR)                                     | 67 |  |  |  |
|             |                                          | 4.2.3   | Modelos de médias móveis (MA)                                     | 68 |  |  |  |
|             |                                          | 4.2.4   | Modelos autorregressivos e de médias móveis (ARMA)                | 68 |  |  |  |
|             |                                          | 4.2.5   | Os modelos integrados não-estacionários (ARIMA)                   | 69 |  |  |  |
|             |                                          | 4.2.6   | Identificação dos modelos utilizando a função de autocorrelação . | 70 |  |  |  |
| 5           | Procedimentos de comparação e resultados |         |                                                                   |    |  |  |  |
|             | 5.1                                      | Mode    | lagem e procedimentos gerais                                      | 76 |  |  |  |
|             | 5.2                                      | Prime   | iro teste: Prevendo 7 dias                                        | 76 |  |  |  |
|             | 5.3                                      | Segun   | ido teste: Prevendo 30 dias                                       | 83 |  |  |  |
|             | 5.4 Terceiro teste: Prevendo 1 ano       |         |                                                                   |    |  |  |  |
|             | 5.5                                      | Temp    | os de processamento                                               | 92 |  |  |  |
| 6           | Con                                      | ıclusõe | s                                                                 | 93 |  |  |  |
| Aj          | pênd                                     | lices   |                                                                   |    |  |  |  |
| A           | A O gradiente descendente                |         |                                                                   |    |  |  |  |
| В           | Transformação de Box-Cox                 |         |                                                                   |    |  |  |  |
| C           | C Função de autocorrelação parcial       |         |                                                                   |    |  |  |  |
| Aı          | nexo                                     | os      |                                                                   |    |  |  |  |
|             |                                          |         |                                                                   |    |  |  |  |
| Referências |                                          |         |                                                                   |    |  |  |  |

## Capítulo 1

## Introdução

De tempos para cá, ler e ouvir falar de ciência de dados tornou-se muito comum, tanto nos meios profissionais e científicos quanto na mídia. Existem atualmente aplicações em praticamente todas as áreas do conhecimento humano, da agricultura à indústria e ao entretenimento.

Joel Grus (Grus, 2016) define genericamente **ciência de dados** como sendo a extração de conhecimento a partir de dados desorganizados. Os dados podem ser números, textos, áudio, vídeo, entre outros quaisquer que podem ser úteis na tomada de decisões de negócios.

Pedro A. Morettin e Julio M. Singer (MORETTIN e SINGER, 2020) afirmam que este termo, embora usado como se fosse um conceito novo, não está separado dos conceitos já históricos da *estatística*. Eles apontam que o trabalho dos *cientistas de dados* difere do trabalho dos *estatísticos* apenas quando eles usam dados multimídia como áudio, vídeo, ou textos. Mas que, uma vez que esses dados são processados e tornam-se números, as técnicas e conceitos utilizados por ambos passam a ser basicamente os mesmos.

Na verdade, Morettin e Singer (Morettin e Singer, 2020) citam que na década de 80 houve uma primeira tentativa de aplicar o rótulo *ciência de dados*, (*Data Science*), ao trabalho feito pelos estatísticos aplicados da época, como uma forma de dar-lhes mais visibilidade. Curiosamente, fato mencionado pelos autores, existem atualmente cursos específicos de ciência de dados em universidades ao redor do mundo, mas a maioria deles situada em institutos de áreas aplicadas como engenharia e economia, e raramente nos institutos de estatística propriamente ditos.

Para entender um pouco mais de seu escopo, David M. Blei e Padhraic Smyth (Blei e Smyth, 2017) discutem ciência de dados sob as visões estatística, computacional e humana. Eles argumentam que é a combinação desses três componentes que formam a essência do que ela é e, assim como, do conhecimento que ela é capaz de produzir.

Pode-se estender e observar essa ideia de uma visão em conjunto dos aspectos estatísticos, computacionais e humanos com um diagrama de Venn. Por exemplo, considere o diagrama criado por Andrew Silver (SILVER, 2018) e mostrado a seguir na Figura 1.1.

Dessa forma vemos que no aspecto estatístico, seja univariado ou multivariado, está a



**Figura 1.1:** Diagrama de Venn relacionando os três aspectos inerentes à ciência de dados.<sup>a</sup>

criação e validação dos modelos utilizados. No aspecto computacional estão as habilidades computacionais, de criação e de eficiência dos modelos. E que no aspecto humano, está a intuição e o domínio do assunto que está sendo estudado.

Além disso, podemos ver, nas intersecções entre os aspectos, as definições de outros conceitos-chave. O **aprendizado de máquina** está na intersecção entre a estatística e a computação, já que o objetivo é criar modelos *computacionais* a partir de modelos estatísticos.

Uma pesquisa tradicional utiliza o conhecimento de um profissional da área aliado com habilidades e ferramentas estatísticas. Um software tradicional, por sua vez, é criado por profissionais de tecnologia para o uso de profissionais de outras áreas.

A ciência de dados, portanto, é a junção desses aspectos, aliando modelagem estatística, automação computacional, validação, e intuição. As áreas perigosas (*Danger Zones*) mostradas na Figura 1.1, refletem o que pode ocorrer quando algum dos três aspectos é negligenciado numa empreitada de ciência de dados.

Algoritmos de *aprendizado de máquina* vêm sendo utilizados em grande parte dos modelos de ciência de dados. Mas o que é aprendizado de máquina? Ou então, o que significa dizer que o computador, neste caso a "máquina", está *aprendendo*?

Aurélien Géron (GÉRON, 2019) nos dá uma ideia geral lembrando que uma das primeiras aplicações de sucesso de aprendizado de máquina foi o filtro de *spam*, criado na década de 90. Uma das fases de seu desenvolvimento foi aquela em que os usuários assinalavam que certos e-mails eram *spams* e outros não eram. Hoje em dia, raramente temos que marcar ou desmarcar e-mails, pois a maioria dos filtros já "aprenderam" a fazer seu trabalho de forma muito eficiente, não temos mais nada a "ensiná-lo".

O conceito de aprendizado de máquina está intimamente ligado à ciência da computação. Porém, no contexto de ciência de dados, é definido por Grus (GRUS, 2016) como a "criação e o uso de modelos que são ajustados a partir dos dados". Seu objetivo é usar dados existentes

<sup>&</sup>lt;sup>a</sup>Extraído de (SILVER, 2018)

para desenvolver modelos que possamos usar para *prever* possíveis respostas à consultas. Exemplos, além do filtro de *spams* podem ser: detectar transações de crédito fraudulentas, calcular a chance de um cliente clicar em uma propaganda ou então prever qual time de futebol irá vencer o Campeonato Brasileiro.

Como ficará claro ao longo deste trabalho, o aprendizado consiste na utilização de dados já conhecidos para ajustar parâmetros de modelos. Uma vez ajustados os parâmetros, o algoritmo que descreve o modelo passa a ser usado para responder às consultas. Essa fase de ajuste de parâmetros é chamada de aprendizado ou treinamento.

Uma **rede neural artificial** é um exemplo de modelo preditivo de aprendizado de máquina que foi criado com inspiração no funcionamento do cérebro biológico. David Kopec (Kopec, 2019) explica que apesar desse modelo ter sido criado há várias décadas, ele vem ganhando nova importância recentemente, devido ao avanço computacional e à crescente disponibilidade de dados, o que criou um novo paradigma conhecido como **aprendizagem profunda**, que foi aplicado e se mostrou útil em diversas áreas, como a bioinformática, o reconhecimento de imagens e sons, etc.

Atualmente existem vários tipos de redes neurais, porém este trabalho tem como objetivo explicar principalmente aquele tipo que foi originalmente criado sob a inspiração do funcionamento do cérebro, chamado de **perceptron**, e que portanto tenta simular, de uma forma idealizada, o comportamento dos neurônios e suas conexões, aprendendo padrões a partir de dados existentes e tentando prever o comportamento de dados novos a partir do padrão aprendido.

Uma visão geral da arquitetura do aprendizado de máquina, situando a posição das redes neurais e do algoritmo *perceptron* em toda esta estrutura, assim como exemplos de aplicações em cada uma das suas ramificações, estão no Capítulo 2.

Neste trabalho é utilizada como base didática uma versão simples do algoritmo *perceptron* feita e explicada por Kopec (Kopec, 2019), e a partir desta base, foram criados novos métodos de treinamento e de validação com uma estratégia de otimização de erros, como uma tentativa de automatizar o processo de treinamento do algoritmo, que é comumente feito de forma heurística. Detalhes dessa implementação e da estratégia de otimização estão no Capítulo 3.

São apresentados os conceitos e usos das séries temporais de dados no Capítulo 4, assim como alguns exemplos de aplicações na área financeira. As técnicas tradicionais de análise e de previsão de séries temporais de dados serão brevemente apresentadas neste capítulo.

Para servir de validação e aplicação do algoritmo criado, no Capítulo 5 serão feitas comparações de desempenho entre o *perceptron* e os modelos tradicionais de previsões de séries temporais apresentados no capítulo anterior, como o ARIMA (*auto regressive integrated moving average*).

Ao final, os modelos de previsões aqui estudados são comparados, avaliando a qualidade e eficiência dos métodos estatísticos tradicionais e dos métodos de redes neurais, e deixando as dúvidas aqui levantadas como uma base de mais ideias para comparações e testes futuros.

## Capítulo 2

# Redes neurais no contexto de aprendizado de máquina

Neste capítulo são apresentados alguns conceitos básicos de ciência de dados e de aprendizado de máquina, alguns dentre os vários tipos e exemplos de algoritmos de aprendizagem, direcionando-os para aquele que é o foco do trabalho, ou seja, as redes neurais artificiais.

Neste texto os termos "algoritmo" e "técnica" serão usados livremente como sinônimos, pois uma técnica de aprendizado de máquina, no contexto atual, é um algoritmo executado no computador que tem por objetivo ajustar parâmetros de modelos estatísticos.

Analogamente à definição dada na Introdução, citamos outras duas. Prince Barpaga (BARPAGA, 2019) define aprendizado de máquina como sendo um ramo da inteligência artificial, em que computadores são treinados a partir de dados conhecidos para realizar alguma tarefa específica, ao invés de ser explicitamente programado para exibir uma resposta fixa.

Similarmente, Robbie Allen (ALLEN, 2020) descreve que um conjunto de dados é usado para ajustar um modelo estatístico de forma que, ao ser deparado com dados similares aos dados usados para o treino, saberá como tratá-los. Geralmente, conjuntos de dados e respostas ( $x_i$ 's e  $y_i$ 's) são usados como entradas para esses modelos, que a partir de novos dados ( $x_i$ 's), irão fornecer as predições de interesse ( $\hat{y}_i$ 's).

Concluindo, pode-se utilizar o grau de supervisão humana durante o aprendizado para separar os modelos em diferentes tipos, como é descrito por Géron (GÉRON, 2019). Durante o aprendizado podem ser fornecidos um conjunto de consultas e de respostas já conhecidas. Tais respostas foram dadas por humanos, ao menos neste momento, e daí o termo "supervisão humana".

## 2.1 Tipos de aprendizagem

Um algoritmo de **aprendizado supervisionado** é usado quando conhecemos características dos dados que estamos utilizando. De modo geral já temos de antemão as respostas

às consultas para os dados utilizados no treinamento. Por exemplo, se estamos classificando fotos de animais, possuímos um conjunto de fotos para as quais já sabemos quais são de gatos, cachorros, etc.

O ato de rotular previamente os dados que usamos no treinamento é o que designamos de supervisão humana. Uma vez *treinado*, o algoritmo recebe uma foto, ou seja, uma nova consulta e então fornece a resposta, neste caso se essa é a foto de um gato, ou cachorro, ou qualquer outra resposta dentre aquelas que foram dadas como exemplos durante o treinamento.

No escopo do aprendizado supervisionado citamos dois tipos principais de problemas. O primeiro é a **classificação**, que é usada para rotular ou dividir os dados em classes pré-determinadas, a partir de exemplos, que é exatamente o caso dos exemplos descritos nos parágrafos anteriores, e ilustrada na Figura 2.1.



**Figura 2.1:** Tarefa de classificação de fotos de animais. As duas primeiras colunas ilustram o treinamento, e as duas últimas a previsão, de valores discretos, ou seja, "classes".<sup>a</sup>

O segundo tipo de problema é a **regressão**, usada para prever valores, ou seja, fornecer respostas a consultas ainda inéditas, sejam dados do futuro ou valores de funções em pontos do domínio para os quais ainda não existem valores. Podemos entender a diferença, com a ajuda de Allen (Allen, 2020) se percebermos que na classificação as respostas são valores discretos, isto é, um 'cachorro' ou um 'gato'. Enquanto isso na regressão, as respostas são valores contínuos, um intervalo real de possibilidades. Como exemplo, Allen (Allen, 2020) ilustra na Figura 2.2, dado uma imagem radiológica, um modelo poderia prever em quantos anos uma pessoa poderia desenvolver alguma doença.

Por outro lado, no **aprendizado não-supervisionado** não sabemos os rótulos dos dados que estamos lidando, isto é, não sabemos previamente respostas aos dados conhecidos, assim o algoritmo deverá deduzir respostas de forma automática, como por exemplo agrupar dados em certo número a princípio desconhecido de classes, no caso de uma tarefa de classificação. Aqui, as consultas podem ser coisas como "quantos são os perfis dos clientes" ou "quantas cores existem nestas fotos", e assim por diante.

Alguns métodos não-supervisionados de aprendizado foram enumerados por Géron (GÉRON, 2019). Em especial o **agrupamento** (*clustering*) de dados similares de acordo com

<sup>&</sup>lt;sup>a</sup>Extraído de (Allen, 2020)



**Figura 2.2:** Tarefa de regressão, mostrando novamente as fases de treinamento de de previsão, lidando com quantidades contínuas.<sup>a</sup>

suas distâncias num determinado espaço, onde utiliza-se algoritmos como k-vizinhos, k-means, k-medians, etc. Exemplos de aplicações são a organização de produtos nas prateleiras dos supermercados, interesses comuns de clientes em sites de conteúdo digital, etc.

Para ilustrar, Allen (Allen, 2020) sugere que imaginemos um conjunto de artigos de texto que gostaríamos de organizar. Alguns poderiam ser sobre esportes, outros sobre história, outros sobre arte, etc. O objetivo seria identificar e classificar automaticamente os textos dentre alguns assuntos possíveis. Imaginando cada assunto provável como uma figura geométrica diferente, a tarefa seria realizada idealmente como na Figura 2.3.<sup>1</sup>



**Figura 2.3:** Tarefa de clusterização. Não há uma distinção entre etapas de treinamento e de previsão. O algoritmo agrupa os dados a ele fornecidos e dá a resposta diretamente.<sup>a</sup>

Outra técnica do aprendizado não-supervisionado é a **detecção de anomalias**, cujo objetivo é ter uma descrição de como os dados considerados "normais" se parecem, e usa-se esse agrupamento para detectar se novos dados estariam "fora" desse padrão. Um exemplo é a detecção de fraudes.

<sup>&</sup>lt;sup>a</sup>Extraído de (Allen, 2020)

<sup>&</sup>lt;sup>a</sup>Extraído de (Allen, 2020)

<sup>&</sup>lt;sup>1</sup>Vale ressaltar que não sabemos *a priori* os rótulos aqui representados a favor do entendimento.

Por último, pode-se citar a técnica de **estimação de densidades**, que tem como objetivo a estimação da função densidade de probabilidade de um conjunto de dados gerados por algum processo aleatório.

Existe também o **aprendizado semi-supervisionado** em que combinam-se vantagens de ambos os tipos anteriores. Um modelo utiliza dados sem rótulos para descobrir uma estrutura geral dos dados, enquanto usa alguns poucos rótulos conhecidos para ajudar na organização inicial dessa estrutura, o que auxilia no agrupamento, que é um exemplo de problema não-supervisionado.

Essa técnica é também conhecida por *aprendizagem fraca*, e conforme aponta Allen (Allen, 2020) possui a vantagem de precisar de menor quantidade de dados rotulados para que se alcance um bom resultado em termos de qualidade do modelo, já que aprende parte do padrão dos dados a partir dos dados sem rótulos. Na prática, pode-se e deve-se testar várias abordagens, e a escolha é mais baseada nos resultados do que na teoria de que uma técnica ou outra irá se sair melhor para um problema específico.

Uma técnica já bem diferente das anteriores, é a **aprendizado por reforço** (reinforcement learning). Allen (Allen, 2020) nos explica o conceito principal dessa abordagem, que consiste na existência de um "agente" que interage executando ações num "ambiente", que dá um retorno (feedback) a esse agente, usualmente na forma de uma "recompensa". Tal recompensa pode ser entendida especificamente como um contador.

O objetivo do agente é maximizar esse contador. Nenhuma informação é dita ao agente sobre como ele aumenta esse contador, ou porquê ele conseguiu aumentar, ele irá definir suas ações de acordo com as respostas dadas pelo ambiente. Assim, tudo que ele sabe é se houve a recompensa ou não, e irá preferir as ações que fizeram o contador aumentar e preterir aquelas que fizeram ele diminuir, sem nunca existir rótulos ou respostas conhecidas.

### 2.1.1 O problema do sobreajuste dos modelos

O sobreajuste (*overfitting*) é o primeiro desafio que deve ser enfrentado quando realizados uma tarefa de aprendizado de máquina. Um modelo de aprendizado de máquina só é considerado válido ou útil, quando está treinado de forma que sofre de pouquíssimo, ou, idealmente, nenhum sobreajuste.

O sobreajuste ocorre quando um modelo foi treinado exageradamente para o conjunto de dados conhecidos, ou seja, o conjunto utilizado para o treino. De forma que, ao se deparar com dados novos, desconhecidos, perde a capacidade de saber o que fazer, ou seja, erra muito nas previsões ao mesmo tempo que está com um desempenho quase perfeito no conjunto de treino.

Isto pode ocorrer em qualquer tarefa de aprendizado supervisionado, tanto nas de classificação, quanto nas de regressão. Utilizando o exemplo dado por Allen (Allen, 2020), imaginemos um modelo de classificação de fotos de animais. Um modelo 100% sobreajustado irá *decorar* as cores de cada um dos pixels dessa imagem, de forma que todos eles serão necessários para ele identificar se tal foto é um gato, ou um cachorro, etc.

Mudando apenas a cor ou a posição de um dos pixels de uma das imagens, e supondo

que essa imagem modificada não fazia parte do conjunto de imagens do treinamento, o modelo não será capaz de fornecer uma resposta válida ou confiável. A Figura 2.4 ilustra esse exemplo.



Figura 2.4: Sobreajuste num modelo de classificação.<sup>a</sup>

Ou seja, o modelo fica perfeito para os dados de treino, mas fica totalmente cego para os dados do mundo real, desconhecidos. O problema do sobreajuste também está presente nos modelos de regressão. Consideremos o exemplo dado por Allen (Allen, 2020).

Considere um gráfico que relaciona a metragem ao quadrado de terrenos, no eixo X com o valor pago por eventuais compradores, no eixo Y. Um problema típico de regressão é o da determinação do valor da compra ou venda de um terreno em termos de sua metragem.

O modelo mais simples seria o de uma regressão linear, explicado em detalhes na próxima seção, em que basicamente, traçamos uma reta do tipo y = bx + a, cujo valor y irá servir de valor esperado para nosso modelo, para qualquer outro x. Uma ilustração desse modelo hipotético está na Figura 2.5.



**Figura 2.5:** *Modelo de regressão, ajuste linear.*<sup>a</sup>

<sup>&</sup>lt;sup>a</sup>Extraído de (Allen, 2020)

<sup>&</sup>lt;sup>a</sup>Extraído de (Allen, 2020)

Podemos não ficar satisfeitos com esse ajuste linear, já que praticamente nenhum ponto está contido perfeitamente na reta ajustada. E assim, supomos um novo modelo, dessa vez de um polinômio de grau m < N (N é o número de pontos), isto é, um modelo do tipo  $y = a_m x^m + a_{m-1} x^{m-1} + ... + a_1 x + a_0$ . A diferença é que antes tínhamos 2 parâmetros, e agora temos m+1 parâmetros para estimar. Um ajuste possível, é ilustrado na Figura 2.6.



**Figura 2.6:** Modelo de regressão, polinômio de grau m.<sup>a</sup>

Aparentemente, esse modelo é melhor do que o anterior, pois a função está melhor ajustada aos dados conhecidos. Poderíamos pensar que quanto mais parâmetros, isto é, quanto maior o grau do polinômio a ser ajustado, mais adequado o modelo estará aos dados.

Isso pode chegar até o extremo em que, possuindo N+1 dados, ajustamos um polinômio de grau N aos dados. Tal ajuste está ilustrado na Figura 2.7.



Figura 2.7: Modelo de regressão, polinômio de grau N.ª

Com isso, teremos o caso extremo de um modelo de regressão totalmente sobreajustado. Ele está perfeitamente ajustado aos dados conhecidos, mas retornará resultados

<sup>&</sup>lt;sup>a</sup>Extraído de (Allen, 2020)

<sup>&</sup>lt;sup>a</sup>Extraído de (Allen, 2020)

 $<sup>^2 \</sup>rm \acute{E}$  importante mencionar que, em outros contextos, o número de parâmetros livres de um modelo é conhecido como o número de graus de liberdade desse modelo.

espúrios para qualquer outro x que não pertença a esse conjunto, perdendo a capacidade de *generalização*, conforme explicado por Allen (ALLEN, 2020).

O objetivo dessa discussão é apontar que devemos ser parcimoniosos na escolha do nosso modelo, tentando buscar aquele com o menor número possível de parâmetros a serem ajustados, de modo a buscar ao mesmo tempo um bom desempenho no conjunto de treinamento (mas não perfeito), e também uma capacidade igualmente boa de generalização para os dados cuja resposta é desconhecida.

Outras técnicas também podem ser utilizadas quando estamos lidando com o sobreajuste de modelos. Daniil Korbut (Korbut, 2017) citam as técnicas de regularização, que são úteis para se evitar o sobreajuste nos modelos de aprendizado.

## 2.2 Algoritmos básicos de aprendizagem

Conhecendo os tipos mais comuns de aprendizagem, o próximo passo nesse caminho da ciência de dados é conhecer os diferentes algoritmos de aprendizagem, alguns sendo mais usados em tarefas supervisionadas, outros em tarefas não-supervisionadas e alguns podendo ser utilizados em ambos os tipos de tarefas.

É importante também conhecer para quais tarefas eles foram concebidos, pois essa etapa é muito importante, dentro do contexto humano da ciência de dados, para se adquirir intuição e auxiliar na escolha do algoritmo ou dos algoritmos mais úteis que possam modelar algum novo problema.

#### 2.2.1 Regressão Linear

Regressão linear é um dos problemas pioneiros e mais simples de aprendizagem de máquina supervisionada. Desenvolvido em *estatística*, este problema possui soluções com fórmulas bem definidas como o método dos mínimos quadrados.

O uso de técnicas computacionais iterativas é muito bem-vinda, se estamos lidando com volumes de dados muito grandes, e que exigem operações sobre matrizes, como multiplicação, inversão, diagonalização, etc.

Formalmente, supomos um modelo de regressão linear múltipla, associando um conjunto de variáveis independentes  $X_1, X_2, \dots, X_p$ , a uma variável dependente Y, que representa a resposta esperada. Juntos eles representam os dados, e dessa forma escrevemos o seguinte modelo.

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon , \qquad (2.1)$$

onde  $\epsilon$  é um erro aleatório, para o qual assume-se uma distribuição normal de média 0.

Temos portanto p+1 parâmetros a serem ajustados em nosso modelo. Uma solução conhecida para o caso univariado, retirada de Magalhães e Lima (Magalhães e Lima, 2002) (páginas 332–336), e que pode ser generalizada, é dada pelo método dos mínimos quadrados.

Se possuímos n observações disponíveis, tanto das variáveis independentes  $X_i$  quanto das variáveis dependentes  $Y_i$ , e denotando da seguinte maneira:

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}, X = \begin{bmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix}, \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}, \epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

Usando essa notação, podemos reescrever a equação (2.1), para *n* observações:

$$Y = X\beta + \epsilon . (2.2)$$

Esse problema possui uma solução algébrica dada pelo método dos mínimos quadrados, que nos fornece a estimativa  $\hat{\beta}$  do vetor  $\beta$ , dada por:

$$\hat{\beta} = (X'X)^{-1}X'Y \,, \tag{2.3}$$

onde X' é a matriz X transposta, e que assume uma definição baseada na minimização da função de erro quadrático, feita de forma algébrica.

As técnicas de aprendizado de máquina entram em jogo se queremos utilizar uma outra função de erro, ou se queremos uma outra abordagem para a minimização da função de erro escolhida, como por exemplo o método do gradiente descendente, explicado em detalhes no Apêndice A.

A utilização do gradiente descendente ou de outro método de otimização qualquer é motivada pela maior eficiência computacional desses métodos em comparação com a inversão de matrizes de ordem  $p \times p$  necessária no cálculo direto de (2.3). A justificativa é facilmente verificada em problemas do mundo real, onde, na maioria dos casos, p é um número grande.

As técnicas de regularização, já citadas anteriormente, tem um papel importante no ajuste de modelos de regressão. A ideia é adicionar parâmetros sem importância prática às somas dos quadrados na função de erro quadrático, com o objetivo de minimizar os valores dos parâmetros de interesse. Explicações mais detalhadas podem ser encontradas em Géron (Géron, 2019) (páginas 196–205).

É possível utilizar a abordagem puramente estatística, lidando diretamente com as Equações (2.2) e (2.3); entretanto, a vantagem de se utilizar técnicas computacionais eficientes permanece imprescindível quando o número de parâmetros (p) é grande.

#### 2.2.2 Regressão Logística

Suponhamos agora que queremos prever a probabilidade de que algo ocorra. Por exemplo, queremos decidir, a partir de uma base de dados de características de clientes conhecidos e de suas compras, se um novo cliente, dadas apenas suas características, irá comprar um certo produto.

Se assumirmos que estamos usando características independentes, nada nos impediria de aplicarmos a modelagem da regressão linear vista anteriormente. O resultado seria uma função que dada a lista de características de um cliente novo, retornaria um número real. Esse número porém, sofreria de problemas de interpretação.

Poderíamos supor que se o número retornado fosse grande, então haveria alta probabilidade do cliente comprar, ou se o número retornado fosse muito pequeno, ou até mesmo negativo, que ele teria baixa probabilidade de comprar o produto. Mas essa linha de decisão seria ruim, pois, o que nos garantiria que essa interpretação representaria a realidade?

Uma alternativa é modelarmos em termos de probabilidades reais, ou seja, um modelo cuja resposta fosse um número entre 0 e 1, de forma que a interpretação probabilística fosse muito mais natural. Esta é a motivação do modelo de regressão logística.

Por causa da natureza da previsão, que irá retornar basicamente, sim ou não, este pode ser considerado um algoritmo de classificação, apesar do nome e do funcionamento interno caracterizarem-no como uma regressão. Além disso, é um algoritmo supervisionado, já que nosso modelo é construído utilizando dados já observados de compras de clientes.

Para o caso em que a variável dependente ( $Y_i$ ) assumir apenas dois possíveis estados (1 ou 0) o modelo é dado, para cada observação ( $X_i$ ,  $Y_i$ ), por:

$$P(Y_i = 1) = \frac{1}{1 + e^{-f(X_i)}}$$
 (2.4)

em que  $f(X_i)$  é, como na expressão da regressão linear, dado por:

$$f(X_i) = X_i \beta + \epsilon_i$$
.

O que queremos fazer é maximizar a probabilidade de que os dados com valores conhecidos assumam os valores esperados de  $Y_i$ . Esta probabilidade é definida, em Grus (GRUS, 2016), por:

$$P(Y_i = y_i | X_i = x_i, \beta) = f(x_i \beta)^{y_i} (1 - f(x_i \beta))^{1 - y_i}$$
(2.5)

em que,  $y_i = 1$  ou  $y_i = 0$ , para toda observação indexada por i.

Nesse modelo o parâmetro a ser estimado é  $\beta$ , que será o mesmo para todas as observações. Fazendo o produto de todas as observações, onde para cada uma usamos a mesma expressão (2.5), teremos a *verossimilhança* da amostra. Assim, desejamos um algoritmo que irá maximizar a verossimilhança, ou ainda a log-verossimilhança de nossa amostra, e irá retornar a estimativa  $\hat{\beta}$ .

Novamente, no contexto de aprendizado de máquina, o mais eficiente será utilizar algum algoritmo de gradiente descendente estocástico, para realizar esse trabalho, motivo pelo qual é tratado como um algoritmo de aprendizagem, em oposição ao procedimento do cálculo direto de  $\hat{\beta}$ .

A seguir, com o  $\hat{\beta}$  em mãos, poderemos classificar novos clientes, aplicando suas características de volta na expressão (2.4), com o  $\hat{\beta}$  ajustado. A resposta será um número no

intervalo [0, 1], para o qual poderemos definir um *corte*, sendo o mais simples definir que, se esse número for maior ou igual a 0.5 diremos que o cliente irá comprar, caso contrário, não irá comprar.

Alternativamente, podemos ter como resposta direta o número calculado, para então gerarmos estratégias distintas para clientes com *alta*, *média* ou *baixa* probabilidade de compra de certo produto, por exemplo.

#### 2.2.3 Árvores de decisão

Uma **árvore de decisão** é um outro exemplo de algoritmo supervisionado usado principalmente para classificação, mas que também pode ser usada para regressão. É definida por Grus (GRUS, 2016) como sendo uma estrutura que representa um número de possíveis caminhos de decisão e um resultado para cada caminho.

Apesar dessa vaga definição, um exemplo muito útil é o da classificação das famílias pertencentes ao reino vegetal, na Figura 2.8, sem nos preocuparmos com os detalhes biológicos.



Figura 2.8: Árvore de decisão classificando famílias de plantas.

Pode-se notar a natureza didática das árvores de decisão, pois elas são de fato intuitivas. Dada uma planta, fizemos perguntas simples e diretas sobre suas características, que estão representadas pelos quadros de fundo branco de onde saem flechinhas indicando as respostas negativas e positivas; estes quadros são os **nós de decisão**.

Seguir as flechas, ou seja, as decisões de cada pergunta ou característica, nos permitirá classificar uma planta em alguma das famílias representadas pelos quadros de fundo cinza, de onde não saem mais flechinhas. Estes são os **nós-folhas**, que são as respostas dadas por essa árvore de classificação.

Isto nos leva ao funcionamento do algoritmo de uma árvore de decisão. Segundo Grus (Grus, 2016), para construir uma árvore de decisão, precisamos decidir quais perguntas fazer e em qual ordem. Cada pergunta irá separar as possibilidades restantes de acordo com as respostas.

Outro aspecto importante é decidir os *cortes* de cada pergunta, ou seja, se estamos lidando com valores contínuos (por exemplo, o tamanho do caule), então será preciso definir, como no caso da regressão logística, um valor que será o limiar entre uma resposta negativa e positiva para essa pergunta (por exemplo, *o caule é grande?*).

De acordo com Grus (GRUS, 2016), seria útil escolher perguntas cujas respostas darão muita informação sobre o que a árvore deverá prever. Esta informação pode ser mensurada com o conceito de **entropia**, que neste contexto, representa a incerteza associada aos dados.

Seja um conjunto de dados S, para os quais podemos rotular uma dentre n classes,  $C_1, \ldots, C_n$ . Se todos os dados de S possuírem a mesma classe, a entropia H de S será zero. Se os pontos estiverem igualmente espalhados entre as classes, então a entropia será a máxima possível.

De modo geral, se  $p_i$  é a proporção de dados que pertencem à classe  $C_i$ , então a entropia de S será:

$$H(S) = -p_1 \log_2 p_1 - \dots - p_n \log_2 p_n , \qquad (2.6)$$

sendo que Grus (Grus, 2016) utiliza a convenção:  $0 \log 0 = 0$ .

Se analisarmos rapidamente cada termo, como uma função  $f(p) = -p \log p$ , estendida com a convenção acima, vemos que é uma função que se aproxima de 0 quando p se aproxima de 0 ou de 1, e se afasta de 0, caso contrário, isto é, tem uma concavidade negativa, cruzando o eixo nos pontos p = 0 ou p = 1.

Assim, a entropia de *S* será maior quando os dados estiverem mais espalhados, o que significa que há maior incerteza na base, enquanto que será menor quando os dados estiverem mais concentrados em poucas classes, o que indicaria menor incerteza, o que configura o comportamento que gostaríamos de obter.

Sabendo calcular a entropia do conjunto total S que representa uma *árvore*, o próximo passo é calcular a entropia de *ramos* da árvore, que serão obtidas a partir de perguntas que irão separar o conjunto S em dois ou mais subconjuntos.

Se estamos lidando com características categóricas, cada valor assumido por essa característica é uma das respostas possíveis, gerando um ramo para cada, ou seja, uma seta de decisão. Se uma característica é numérica e contínua, daí há uma liberdade na escolha da pergunta, podendo ser usada por exemplo a média ou a mediana para separar os dados abaixo ou acima desse corte.

Generalizando a mesma definição anterior, se dividirmos os dados de S em subconjuntos  $S_1, \ldots, S_m$ , para uma característica com m valores distintos possíveis, cada um contendo proporções  $q_1, \ldots, q_m$  respectivamente, então a entropia da árvore será a soma ponderada das entropias de cada ramo:

$$H(S) = q_1 H(S_1) + ... + q_m H(S_m),$$
 (2.7)

em que cada termo  $H(S_i)$  é obtido normalmente por (2.6).

A partir dessa definição, já podemos construir um primeiro algoritmo de árvore de

decisão. De acordo com Grus (Grus, 2016), um algoritmo ganancioso, pode ser construído como se segue. Dadas as características presentes em S, ou seja, as variáveis explicativas, calculamos para cada uma o valor H dado por (2.7).

Escolhemos como nosso primeiro nó de decisão, a característica que nos der o menor valor de entropia H. Com isso, sabemos que essa característica é a que melhor separa as classes, que serão os nós folhas (as respostas), ao menos nesse momento.

Assim obtemos 2 ramos, e em cada um deles podemos repetir esse mesmo procedimento. Se fizermos isso para todas as características, então cada ramo de nossa árvore poderá eventualmente conter apenas uma das classes possíveis, o que seria perfeito para o conjunto de treino, mas seria péssimo para dados novos, pois nossa árvore estaria completamente sobreajustada.

É por isso que para um modelo de árvore de decisão, existem comumente 2 **hiperpa-**râmetros³ muito importantes segundo Korbut (Korbut, 2017), que são o número máximo de nós de decisão, ou seja, o número de perguntas e o número mínimo de nós folhas, ou seja, de classes por ramo.

Ajustando esses parâmetros, podemos garantir que uma árvore não-perfeita mas boa o suficiente para o conjunto de treino seja igualmente boa para o conjunto de teste, e dessa forma, para dados desconhecidos, para que ela seja útil para a tarefa de classificação proposta.

Por fim, vale citar a ressalva de Korbut (Korbut, 2017) de que um modelo utilizando apenas uma árvore é raramente usado. Mas combinando várias árvores criamos os algoritmos chamados de *florestas aleatórias* (*random forests*), que estão dentre os mais versáteis e utilizados para tarefas de classificação.

#### 2.2.4 K-médias

O *k*-médias (*k*-*means*) é o ponto central de todas as tarefas de aprendizado nãosupervisionadas conhecidas como **agrupamento**. A ideia é agrupar os dados de acordo com um conceito de *distância* e com a suposição de que *proximidade* implica *similaridade* no espaço em que calculamos essas distâncias.

O procedimento geral é agrupar os dados em k agrupamentos, em que, cada grupo terá uma m'edia que irá caracterizar esse grupo, daí o nome do algoritmo. Segundo Korbut (Korbut, 2017), podemos partir de k pontos escolhidos aleatoriamente e nomeá-los como os centros (ou médias) de cada grupo.

A seguir, calculamos as distâncias de cada ponto aos centros, e incluímos em cada grupo aqueles pontos que estão mais próximos de algum dos centros. Isto é, dado um ponto, incluímos ele no grupo que possui o centro que está mais próximo dele.

Então, o centro real de cada grupo é calculado (a média, por exemplo), e o processo acima se repete. Esse ciclo é repetido, idealmente, até que haja convergência, ou seja,

<sup>&</sup>lt;sup>3</sup>Parâmetros inerentes ao modelo e não aos dados, e que devem ser escolhidos durante a parte prática do treinamento do algoritmo.

calcular a média dos grupos não altera a pertinência de mais nenhum ponto dentre os k grupos.

O grande desafio é, justamente, a escolha de k, que é a princípio desconhecido. Khyati Mahendru (Mahendru, 2019) explica dois métodos que podem ser úteis na escolha do melhor k: o método do cotovelo (Elbow method), e o método da silhueta (Silhouette method). Ela explica que ambos os métodos são ferramentas complementares, isto é, não alternativas entre si, sendo utilizadas em conjunto para uma escolha mais confiável de k.

Além disso, para k pontos iniciais escolhidos, pode haver uma convergência local dos agrupamentos, e não global, análogo ao problema de maximização/minimização global de funções.

## 2.3 As redes neurais e o perceptron

De acordo com Géron (GÉRON, 2019), as primeiras redes neurais foram introduzidas em 1943 pelo neurofisiologista Warren McCulloch e o matemático Walter Pits através de um modelagem computacional do funcionamento conjunto de neurônios no cérebro de animais, enquanto realizam complexos cálculos lógicos. Esta foi a primeira **arquitetura** de uma rede neural artificial.

Esse começo promissor levou as pessoas a acreditarem que logo haveriam máquinas realmente inteligentes, o que ficou registrado na cultura da época, principalmente em séries televisivas de ficção científica como *Star Trek* e outras, mas conforme aponta Géron (GÉRON, 2019), essa promessa logo se mostrou inalcançável, ao menos era o que parecia ao final dos anos 60.

A partir dos anos 80, surgiram novas arquiteturas e melhores técnicas de aprendizagem, embora sua evolução fosse lenta devido ao poder computacional limitado da época. Atualmente, no entanto, isto mudou: há poder computacional em casa e na nuvem, há a internet e fóruns de compartilhamento de códigos e conhecimentos em programação e ciência de dados, em resumo o mundo atual está consolidado numa era digital.

Por essa razão Géron (GÉRON, 2019) nos diz que estamos numa nova onda de entusiasmo sobre as redes neurais, sendo que esse entusiasmo leva o nome de **Deep Learning**, ou aprendizado profundo, e o uso desse adjetivo ajuda a descrever as redes neurais, constituídas de milhares de neurônios, que são utilizadas em várias aplicações de nosso dia-a-dia na internet.

Podemos citar a classificação de bilhões de imagens realizadas pelo  $Google^4$ , reconhecimento de fala realizado pela Siri da  $Apple^5$ , o sistema de recomendações de vídeos em plataformas de streaming, como Youtube e  $Netflix^6$ , e até mesmo os jogadores artificiais de xadrez<sup>7</sup>. As redes neurais estão vivas em nosso mundo. Mas como funcionam na prática, por detrás dessa aparência de ficção científica?

<sup>&</sup>lt;sup>4</sup>https://developers.google.com/earth-engine

<sup>&</sup>lt;sup>5</sup>https://machinelearning.apple.com/research/siri-voices

<sup>&</sup>lt;sup>6</sup>https://towardsdatascience.com/deep-dive-into-netflixs-recommender-system-341806ae3b48

<sup>&</sup>lt;sup>7</sup>https://www.nytimes.com/2018/12/26/science/chess-artificial-intelligence.html

Uma definição para uma rede neural dada por Rosangela Ballini (BALLINI, 2000) é a de um sistema de processamento paralelo e distribuído construído em um formato e com funcionalidade que se parece com o arranjo de um sistema nervoso biológico, sendo compostos por elementos computacionais chamados neurônios, que são organizados e interligados em padrões semelhantes aos neurônios biológicos.

Na Figura 2.9 está uma representação de um neurônio biológico. Ele recebe impulsos elétricos de entrada através dos dendritos, que são transmitidos ou não através do núcleo, caso sejam ativados por ele, para os terminais de saída dos axônios. Os neurônios se comunicam através de sinapses, que são ligações entre os dendritos de um e os axônios de outro que realizam a transmissão dos sinais.



Figura 2.9: Representação de um neurônio biológico.<sup>a</sup>

Dá-se o nome de *perceptron* de camada única (*single-layer perceptron*) ou simplesmente *perceptron* a uma das mais simples arquiteturas de rede neural, criada em 1957 por Frank Rosenblatt (Rosenblatt, 1958). Uma ilustração conceitual dela está na Figura 2.10. Existem atualmente diversas outras arquiteturas de redes neurais, mas a extensão mais imediata que podemos citar de um *perceptron* constituído de uma camada de neurônios são as redes *perceptron* multi-camadas (*multi-layer perceptron*).

Os neurônios são representados por círculos, dentro deles há um valor numérico que intuitivamente podemos atribuir ao nível ou grau de ativação do neurônio, mesmo que no caso biológico se restrinja aos valores 0 e 1, ou seja, ativado ou não. Cada coluna de neurônios representa uma camada, nesse caso, da esquerda para a direita temos a camada de entrada, a camada oculta e a camada de saída. As linhas representam as ligações entre os neurônios, sendo que cada neurônio de uma camada está ligado a todos da camada anterior.

O perceptron de camada única consiste de uma camada de neurônios de entrada, uma camada oculta de neurônios usados na otimização, e uma camada de saída, que irá conter os dados previstos, ou ainda as probabilidades do dado pertencer a alguma das classes na qual a rede poderá classificá-lo. E é o fato de haver uma camada oculta nesta rede que a define como sendo de "camada única". Caso houvessem mais do que uma camada oculta, ela seria do tipo "multi-camadas" mencionado acima.

De modo a entendermos as bases matemáticas do algoritmo, podemos começar com uma rede ainda mais básica, a partir de um *perceptron* que seja constituído de apenas 1 neurônio na única camada oculta. Esta rede super simplificada, que está na Figura 2.11,

<sup>&</sup>lt;sup>a</sup>Extraído de https://cs231n.github.io/neural-networks-1/



Figura 2.10: Rede neural simples, o perceptron de camada única.

pode ser útil para para o entendimento uma vez que neste caso será possível acompanhar graficamente o resultado da execução do algoritmo.



Figura 2.11: Rede neural mais simples, apenas um neurônio oculto.

Esta rede possui 2 neurônios na camada de entrada, que são os números reais  $x_1$  e  $x_2$ , 1 neurônio na camada oculta, no qual está a sua função de ativação  $f(x_1w_1 + x_2w_2 + b)$ , e 1 neurônio na camada de saída, que neste caso é um número real  $y_1$ . Pode-se notar a semelhança dessa rede neural artificial com a sua inspiração biológica com a ajuda da Figura 2.12.



Figura 2.12: Representação de um neurônio artificial.<sup>a</sup>

Temos os sinais de entrada ( $x_1$  e  $x_2$ ) representando os sinais recebidos dos axônios de outros neurônios. Eles entram pela camada de entrada da rede, ou dendritos do neurônio.

<sup>&</sup>lt;sup>a</sup>Extraído de https://cs231n.github.io/neural-networks-1/

A camada oculta processa as entradas com os pesos, definindo o formato final do sinal através de sua função de ativação, que aqui pode ser uma função real qualquer, mas com funcionalidade similar ao do núcleo do neurônio que ativa/transmite ou não o sinal recebido por ele. Por fim o sinal é enviado à camada de saída, ou aos axônios do neurônio, concluindo o processamento.

A partir desta analogia podemos compreender o funcionamento básico da rede neural *perceptron*. Ela recebe uma lista de valores como entrada, que podemos representar por um vetor real x. O neurônio oculto representa uma transformação linear neste vetor, que podemos escrever como o produto escalar por um outro vetor real, o vetor de **pesos** w, ou seja,  $\langle wx \rangle$ , que é o produto escalar usual dos números reais. A seguir, somamos um outro número real b que é chamado de **viés**, que possui o mesmo papel que a constante de interceptação da reta com o eixo vertical de um ajuste linear.

Por fim, é aplicada uma função de ativação não-linear sobre esta transformação, o que configura a saída deste neurônio:  $f(\langle wx \rangle + b)$ , que é transmitida ao neurônio de saída, que pode aplicar uma transformação semelhante ou outra qualquer, dependendo da função de ativação utilizada em cada camada da rede. Mostramos uma rede bem simples, mas na prática podem haver muito mais camadas ocultas, e cada uma delas, assim como a camada de saída, muitos neurônios cada.

Este processo de entrada, processamento e saída da rede é chamado de **feedforward**, e consiste no nível mais fundamental do *perceptron*. A partir daí, a forma como a rede será treinada, é o que define se ela será utilizada para um aprendizado supervisionado ou não-supervisionado.

Uma vez que estamos lidando com o aprendizado supervisionado, deve ser utilizado um algoritmo de treinamento que forneça à rede pares conhecidos de vetores de entradas e saídas esperadas, e um **critério de avaliação** de quão boa é a performance da rede para aproximar as suas saídas às saídas esperadas.

Este critério é uma função que fornece uma medida da distância entre as saídas obtidas pela rede e as saídas esperadas, que é genericamente chamada de função de custo (cost function). Se denotarmos por y uma saída conhecida, e por  $a^{(L)}$  uma saída obtida pela última camada, exemplos comumente usados são as normas usuais como a distância euclidiana  $(a^{(L)^2} + y^2)^{1/2}$ , a função de erro absoluto  $|a^{(L)} - y|$ , e a função de erro quadrático  $(a^{(L)} - y)^2$ , que é a usada no algoritmo descrito por Kopec (KOPEC, 2019) e que será usada neste trabalho.

Um dos algoritmos de treinamento que minimizam uma função de custo é o gradiente descendente (*gradient descent*), que segundo Géron (GÉRON, 2019) é um algoritmo que serve para encontrar soluções ótimas para uma grande variedade de problemas de otimização. Detalhes de seu funcionamento podem ser vistos no Apêndice A.

## 2.4 Arquiteturas de redes neurais

Existem dezenas de arquiteturas de redes neurais artificiais, como pode ser observado examinando-se a quantidade de arquiteturas listadas no website *The neural network zoo*<sup>8</sup>, o que demonstra que esse assunto é levado muito a sério. A representação gráfica ali criada é útil para o entendimento das características das diversas arquiteturas, graças aos padrões de cores e de formas geométricas utilizadas.

A primeira estrutura é o *perceptron* simples, de apenas um neurônio, que processa n entradas através de uma transformação linear seguida de uma função de ativação. É exibido no canto superior esquerdo da Figura 2.13.



Figura 2.13: As redes neurais recorrentes: perceptron, feedforward e deep feedforward.<sup>a</sup>

No canto superior direito está a versão *feedforward*, possuindo uma camada oculta representada pelos círculos verdes, e embaixo está a versão *deep feedforward*, que possui múltiplas camadas ocultas, e número variado de neurônios em todas as camadas, e é de fato a versão que foi implementada nesse trabalho.

As características em comum das arquiteturas derivadas da rede *perceptron*, chamadas de **redes neurais sequenciais**, são: a conexão que existe entre cada neurônio de uma camada com todos os neurônios da camada anterior, e a forma que a informação é transmitida da rede, num sentido único, da camada de entrada, os círculos amarelos, para a camada de saída, os círculos vermelhos.

A próxima arquitetura em destaque define o que são as **redes neurais recorrentes**, ilustrada na Figura 2.14. Nesse tipo de rede a informação pode ir para frente e para trás, além disso pode passar pelo mesmo neurônio oculto mais de uma vez, o que determina o nome recorrente. Esses neurônios são representados pela cor azul na Figura.

<sup>&</sup>lt;sup>a</sup>Extraído de https://www.asimovinstitute.org/neural-network-zoo/

<sup>&</sup>lt;sup>8</sup>https://www.asimovinstitute.org/neural-network-zoo/



Figura 2.14: As redes neurais recorrentes.<sup>a</sup>

Esse tipo de rede, segundo Kopec (KOPEC, 2019) é a mais usada em problemas em que os dados utilizados possuem uma dependência da ordem em que são obtidos e possuem entradas contínuas. Por exemplo, os dados de uma série temporal de dados, em que a previsão de um dado, que representaria o futuro, depende da ordem em que estão os dados já conhecidos, o que representaria os dados do passado.

Outra arquitetura muito utilizada em séries temporais é o das **redes neurais convolucionais**, ilustradas na Figura 2.15. Segundo Kopec (Kopec, 2019) essas redes foram projetadas e usadas com sucesso para classificação de imagens de dimensões grandes, como fotos de galáxias obtidas em telescópios.



**Figura 2.15:** As redes neurais convolucionais.<sup>a</sup>

Em resumo, são redes em que os neurônios de entrada não são conectados totalmente com a primeira camada oculta, mas o que acontece é que vários conjuntos distintos de neurônios da camada de entrada são conectados a várias camadas ocultas separadamente.

A seguir a união dessas camadas ocultas, exibidas como círculos rosas, conectam-se em cascata, perdendo conexões progressivamente até que um número reduzido se conecta a outras camadas, dessa vez camadas ocultas simples, que são os círculos verdes, que

<sup>&</sup>lt;sup>a</sup>Extraído de https://www.asimovinstitute.org/neural-network-zoo/

<sup>&</sup>lt;sup>a</sup>Extraído de https://www.asimovinstitute.org/neural-network-zoo/

conectam-se em formato feedforward até o final da rede com a camada de saída.

Existem ainda outras dezenas de arquiteturas, algumas bem alternativas no formato e nas conexões entre as camadas, fica aqui um único exemplo dentre elas, que é a arquitetura de **redes neurais extremas**. Está ilustrada na Figura 2.16.

#### Extreme Learning Machine (ELM)



Figura 2.16: Redes neurais extremas.<sup>a</sup>

As conexões ocorrem de forma não-sequencial, e até mesmo aleatória entre as camadas ocultas, configurando um exemplo curioso de arquitetura, e discussões mais detalhadas sobre essas outras arquiteturas não serão discutidas neste trabalho.

Este trabalho irá lidar principalmente com duas arquiteturas. Primeiramente com as redes sequenciais (ou *perceptron*), numa abordagem didática, em que seu funcionamento será detalhado através de uma implementação completa dessa arquitetura no Capítulo 3. E a seguir, numa abordagem prática, serão utilizadas as redes convolucionais, durante os experimentos de previsões de séries temporais, no Capítulo 5.

<sup>&</sup>lt;sup>a</sup>Extraído de https://www.asimovinstitute.org/neural-network-zoo/

# Capítulo 3

# Perceptron multi-camadas

Neste capítulo é descrita a implementação e funcionamento de uma versão do algoritmo *perceptron*, feita a partir de um núcleo básico disponibilizado no livro de Kopec (KOPEC, 2019), e a partir do qual modificações e criados novos métodos de treinamento, validação e avaliação do treinamento.

O perceptron aqui implementado tem o objetivo de ser utilizado muito mais para fins didáticos do que práticos. Poderá ser usado para tarefas de aprendizagem contanto que sejam problemas que envolvam bases de dados de tamanho pequeno ou mediano. Neste capítulo, é apresentado um exemplo de sua utilização para um famoso problema de classificação de números escritos à mão¹.

Na última parte desse capítulo é exibida uma biblioteca de *machine learning* utilizada nas aplicações reais de *deep learning* de redes neurais, mais avançada, com outros recursos que vão além do escopo que esta versão simples do *perceptron* é capaz de lidar. Esta biblioteca será utilizada nas partes práticas deste trabalho em conjunto com o *perceptron* implementado.

### 3.1 Matemática do algoritmo de retropropagação

Para a aprendizagem supervisionada foi utilizado o algoritmo de retropropagação (retropropagation), que consiste na minimização de uma função de custos, a partir do gradiente descendente, ou seja, de derivadas desta função de custos, neste caso o erro quadrático médio (MSE), que é definido para um par de valores, x e y, por:

$$MSE(x, y) = (x - y)^2$$

De acordo com Kopec (KOPEC, 2019), explicando em linhas mais gerais nesse momento, o *perceptron* consiste de uma rede na qual os dados se propagam em uma só direção, da camada de entrada para a camada de saída, passando pelas camadas ocultas uma a uma, e por isso recebe o nome de rede *feedforward*.

<sup>&</sup>lt;sup>1</sup>A base de dados MNIST, descrita na seção (3.3).

Por sua vez, o erro que determinamos na camada de saída propaga-se no caminho inverso, sendo distribuídas correções que vão da saída para a entrada, afetando aqueles neurônios que foram mais responsáveis pelo erro total. Daí vem o nome do algoritmo, a **retropropagação** (das correções para a função de erro).

Estendendo as definições já usadas no capítulo anterior, segue a derivação matemática do algoritmo de retropropagação. Como ficará claro mais à frente, podemos derivar as contas para apenas um neurônio por camada sem perda de generalidade. Dessa forma, se temos uma rede com L camadas, o erro quadrático para um neurônio da camada de saída (a camada L) será:

$$C_0 = (a^{(L)} - y)^2 (3.1)$$

em que y é a saída observada, e  $a^{(L)}$  é a saída de um neurônio da camada de saída.

Temos que  $C_0$  é uma função de  $a^{(L)}$ , uma vez que y é um valor fixo conhecido. Por sua vez, temos que de modo geral a saída de um neurônio é uma função do tipo:

$$a^{(L)} = \sigma(w^{(L)} \ a^{(L-1)} + b^{(L)}) \tag{3.2}$$

em que  $a^{(L-1)}$  é a saída do neurônio da camada anterior,  $w^{(L)}$  é o **peso** atribuído a essa saída, que pode ser visto na Figura 2.11, e  $b^{(L)}$  é o **viés** desse neurônio, análogo ao parâmetro linear de uma reta. Por fim temos a **função de ativação** que denotamos como  $\sigma$  que é aplicada à essa equação linear.

Nota-se que internamente à função de ativação, um neurônio se comporta como uma transformação linear dos neurônios da camada anterior. Caso tivéssemos n neurônios na camada anterior à de saída, teríamos então n pesos, denotados com índice i dessa forma:  $\{w_i^{(L)}\}_{i=1}^n$ . Cabe assim à função de ativação, dar o comportamento não-linear à rede perceptron.

Como o objetivo é minimizar  $C_0$ , temos que calcular a influência dos pesos e dos vieses nesse custo. Já sabemos que isso será obtido com o gradiente, isto é, as derivadas parciais dessa função em relação a esses parâmetros, já que são exatamente eles que iremos otimizar.

De forma mais clara, temos que no início do treinamento da rede, atribuímos valores aleatórios aos pesos e aos vieses, e então executamos o *feedforward*, de forma que a rede irá calcular sequencialmente os valores de saída em todas as suas camadas, obtidos a partir dos dados de entrada, que serão fixos, e desses parâmetros inicialmente aleatórios. A partir daí, poderemos otimizar esses parâmetros.

O cálculo dessas derivadas é feito segundo a regra da cadeia, e adicionalmente iremos denotar a transformação linear interna à função de ativação por  $z^{(L)} = w^{(L)} a^{(L-1)} + b^{(L)}$ , de forma que  $a^{(L)} = \sigma(z^{(L)})$ . Assim, ficamos com as derivadas para a camada de saída:

$$\frac{\partial C_0}{\partial w^{(L)}} = \frac{\partial z^{(L)}}{\partial w^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C_0}{\partial a^{(L)}}$$
(3.3)

$$\frac{\partial C_0}{\partial b^{(L)}} = \frac{\partial z^{(L)}}{\partial b^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C_0}{\partial a^{(L)}}$$
(3.4)

Podemos calcular diretamente cada um dos termos do lado direito das equações (3.3) e (3.4):

$$\frac{\partial C_0}{\partial a^{(L)}} = 2(a^{(L)} - y) \propto (a^{(L)} - y)$$
 (3.5)

$$\frac{\partial a^{(L)}}{\partial z^{(L)}} = \sigma'(z^{(L)}) \tag{3.6}$$

$$\frac{\partial z^{(L)}}{\partial w^{(L)}} = a^{(L-1)} \tag{3.7}$$

$$\frac{\partial z^{(L)}}{\partial h^{(L)}} = 1 \tag{3.8}$$

O que resulta, fazendo todas as substituições, em:

$$\frac{\partial C_0}{\partial w^{(L)}} \propto a^{(L-1)} \sigma'(z^{(L)}) (a^{(L)} - y) \tag{3.9}$$

$$\frac{\partial C_0}{\partial b^{(L)}} \propto \sigma'(z^{(L)}) (a^{(L)} - y) \tag{3.10}$$

Na equação (3.5) suprimimos o termo constante "2", o que propaga a relação de proporção para as equações (3.9) e (3.10). Essa proporcionalidade tornar-se-á implícita na implementação do algoritmo com a utilização do fator  $\eta$ , a **taxa de aprendizagem**. A sua motivação e utilização são explicadas em detalhes no Apêndice A.

O que é importante dizer nesse ponto é que temos expressões conhecidas para calcular as derivadas da função de custo na camada de saída, que serão multiplicadas por  $\eta$ , que em geral pertence ao intervalo (0, 1), por razões computacionais. Analogamente, podemos pensar numa forma de obter expressões para as derivadas do custo das camadas ocultas. A princípio, podemos calcular:

$$\frac{\partial C_0}{\partial a^{(L-1)}} = \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C_0}{\partial a^{(L)}}, \qquad (3.11)$$

usando o fato de que:

$$\frac{\partial z^{(L)}}{\partial a^{(L-1)}} = w^{(L)} . \tag{3.12}$$

Agora, seja a i-ésima camada oculta tal que 1 < i < L. Se observarmos (3.11), e fizermos i = L - 1, usando (3.12), ficamos com:

$$\frac{\partial C_0}{\partial a^{(i)}} = w^{(i+1)} \frac{\partial a^{(i+1)}}{\partial z^{(i+1)}} \frac{\partial C_0}{\partial a^{(i+1)}}.$$
(3.13)

Podemos observar que há um mesmo termo duplo que aparece tanto em (3.3) e (3.4) quanto em (3.13), de forma que apenas o índice da camada é diferente. Podemos generalizálo como o termo *delta da camada i*:

$$\Delta^{(i)} = \frac{\partial a^{(i)}}{\partial z^{(i)}} \frac{\partial C_0}{\partial a^{(i)}} . \tag{3.14}$$

Simplificando todas as demais expressões usando essa definição, ficamos com:

$$\frac{\partial C_0}{\partial w^{(i)}} = a^{(i-1)} \Delta^{(i)} \tag{3.15}$$

e

$$\frac{\partial C_0}{\partial b^{(i)}} = \Delta^{(i)} \ . \tag{3.16}$$

Como vemos, todas as derivadas que precisamos dependem de  $\Delta^{(i)}$ , que por sua vez depende do termo  $\frac{\partial C_0}{\partial a^{(i)}}$  que será calculado de 2 formas distintas:

$$\frac{\partial C_0}{\partial a^{(i)}} = w^{(i+1)} \Delta^{(i+1)} \implies \\ \Delta^{(i)} = \sigma'(z^{(i)}) w^{(i+1)} \Delta^{(i+1)}$$
(3.17)

para as camadas ocultas, e

$$\frac{\partial C_0}{\partial a^{(L)}} = (y - a^{(L)}) \implies$$

$$\Delta^{(L)} = \sigma'(z^{(L)}) (y - a^{(L)}) \qquad (3.18)$$

para a camada de saída.

Percebe-se a natureza recursiva do algoritmo, onde o caso base é calculado na camada de saída, e que o cálculo vai propagando-se para as camadas ocultas, em direção à camada de entrada. Assim, a retropropagação é calculada sucessivamente, camada a camada, até a primeira camada oculta, já que não se pode alterar a camada de entrada. Este processo é repetido para cada par entrada e saída observada.

Outro fato útil é que a expressão interna do neurônio é uma transformação linear, assim as contas podem ser facilmente ajustadas para o caso geral em que há  $n_i$  neurônios em dada camada i da rede, conforme já explicado, e que será detalhado diretamente nos trechos de código que serão mostrados a seguir, na implementação propriamente dita.

# 3.2 Implementação do algoritmo de retropropagação

A princípio damos uma representação visual da rede *perceptron*, que pode ser vista na Figura 3.1. Cada círculo representa um neurônio, cada coluna vertical de neurônios é uma camada da rede, sendo a camada oculta a que está destacada em roxo. As setas representam

as conexões entre as camadas de neurônios, cada neurônio de uma camada está ligado a todos os neurônios da camada anterior, o sentido dessa conexão é da esquerda para a direita, o que indica o processo de *feedforward* da rede.



**Figura 3.1:** Visão estrutural da rede perceptron. A linha tracejada destaca uma das camadas da rede.

A implementação do *perceptron* deste trabalho teve como base a implementação feita por Kopec (Kopec, 2019), a partir da qual foram adicionados outros recursos, como o viés dos neurônios, não presente na implementação de Kopec, que desempenha um papel análogo ao do coeficiente linear de uma reta, e o uso da biblioteca *Numpy* para o uso de seus métodos mais eficientes para lidar com listas de números de ponto flutuante.

Além dessa base, formada pelas classes *Neuron*, *Layer* e *Network*, que serão mostradas nas seções seguintes, também foi implementada a classe *Perceptron*, explicada mais adiante na seção 3.2.5.

#### 3.2.1 O neurônio

O primeiro passo é implementar a classe *Neuron* para representar cada neurônio. Esta é uma classe de entidade, contendo apenas um construtor e o método *output*, que recebe os valores de entrada para esse neurônio, e calcula a saída com os pesos o viés e a função de ativação usada neste neurônio, de acordo com a equação (3.2). O Programa 3.1 abaixo mostra este método, em conjunto com o construtor da classe.

```
class Neuron:

def __init__(self, weights, bias, learning_rate, ativacao, der_ativacao):

"''(list[float], float, float, Callable, Callable) -> None'''

...

def output(self, inputs):

"''(list[float]) -> float'''

self.output_cache = np.dot(inputs, self.weights) + self.bias

return self.ativacao(self.output_cache)
```

Programa 3.1: Trecho da classe Neuron

A função *np.dot* da biblioteca *Numpy* é utilizada para calcular o produto escalar entre os valores de entrada e os pesos desse neurônio. O valor da transformação linear é armazenado num atributo de classe antes da aplicação da função de ativação, pois será utilizado mais à frente durante o treinamento da rede.

#### 3.2.2 A função de ativação

A função de ativação possui o papel de ativar ou não a saída de um neurônio, conforme visto no capítulo anterior. A forma com que essa ativação ocorre é definida pela função utilizada. Aqui o termo *ativar* significa que a função irá retornar um valor mais próximo de 1 enquanto que uma não-ativação retornará um valor mais próximo de 0. Essa é uma restrição para a função de ativação para a camada de saída, que será sempre da forma:

$$f: \mathbb{R} \to [0,1]$$
.

No caso do neurônio biológico, quando dizemos que ele ativa/transmite ou não o sinal elétrico que chegou até ele, é como se ele *retornasse* apenas 0 ou 1. De fato, poderíamos até usar uma função similar a essa em alguma camada de nossa rede artificial, e este tipo de *função escada* teria a seguinte definição:

$$f(x) = \begin{cases} 1 & \text{se } x \ge 0; \\ 0 & \text{se } x < 0. \end{cases}$$

A utilização dessa função de ativação, conforme nos diz Grus (Grus, 2016), faria com que um neurônio fizesse simplesmente a distinção entre espaços separados pelo hiperplano de pontos tal que < w.x > +b = 0, ou seja, o hiperplano definido pelos pontos de entrada cuja transformação linear resultasse em zero.

Esta função é claramente não contínua e portanto não diferenciável, e precisamos de uma função de ativação que o seja, uma vez que algumas das equações da otimização que calculamos anteriormente, dependem da expressão de sua derivada. É por essa razão, que passou-se a considerar uma aproximação suave da função escada, como a função sigmoide:

$$\sigma(x) = \frac{1}{1 + e^{-x}} .$$

Ela retorna valores somente no intervalo [0, 1], igualmente à função escada, sua inspiração. A sua derivada pode ser facilmente calculada, simplificando-se na seguinte expressão:

$$\sigma'(x) = \sigma(x)(1 - \sigma(x)).$$

Podemos comparar o comportamento dessas funções de ativação no gráfico presente na Figura 3.2 abaixo. A seguir, encontra-se o Programa 3.2, destacando um trecho do script util.py com a implementação da função *sigmoide* e de sua derivada.



**Figura 3.2:** *Comparação entre as funções de ativação do tipo escada e a sigmoide.* 

```
1 def sigmoide(x):
2 '''(float) -> float'''
3 return 1.0 / (1.0 + np.exp(-x))
4
5 def der_sigmoide(x):
6 '''(float) -> float'''
7 sig = sigmoide(x)
8 return sig * (1 - sig)
```

**Programa 3.2:** Trecho do script util.py

Com a popularização das redes neurais, várias outras funções de ativação foram criadas para ativar as camadas ocultas do treinamento, devido aos problemas que podem acontecer ao se utilizar função sigmoide. Podemos identificar um desses problemas analisando seu gráfico. Vemos que ela se aproxima de 1, que é a ativação máxima, rapidamente a partir de x > 4, e aproxima-se simetricamente de zero com valores a partir de x < -4.

Como o método do gradiente tenta ajustar os valores dos pesos a partir dos valores de saída e esses ajustes dependem da derivada da função de ativação, temos que levar em conta o comportamento da derivada da função *sigmoide*, o qual podemos observar a partir de seu gráfico na Figura 3.3.



Figura 3.3: Gráficos da função sigmoide e sua derivada.

Por construção, a derivada retorna valores sempre menores do que 1/4, e além disso aproxima-se de 0 tão rapidamente quanto a *sigmoide* aproxima-se de 1. Isso faz com que atualizações baseadas na derivada para valores de erro que já estão muito altos não sejam efetivas para diminuí-los, pois justamente nessa região a derivada está muito próxima de 0. Essa é a principal desvantagem da função *sigmoide*.

Um problema relacionado a este é que se a regra da cadeia em (3.3) e (3.4), com as derivadas da função de ativação dadas em (3.6) multiplicadas através das várias camadas, pode resultar em: i) num número muito grande, se todas as derivadas resultarem em valores maiores do que zero; ou: ii) num número muito próximo de zero se todas as derivadas forem menores do que zero. Isto faz com que atualizações dadas pelo gradiente sejam instáveis. Este problema é descrito por Matheus Facure (FACURE, 2017a) e denominado "problema do gradiente explodindo/desvanecendo" (vanishing gradient problem).

Assim, conforme nos diz Facure (Facure, 2017b), a utilização da função *sigmoide* não é mais recomendada em problemas que envolvam redes neurais maiores, sendo bem comum o problema do gradiente explodindo, já que a derivada é sempre maior do que 0. Porém, o uso da função *sigmoide* é desejável (ou até mesmo necessário) em casos como: i) modelos probabilísticos de variáveis binárias, ii) modelagem de problemas biológicos onde ela é uma aproximação mais plausível da ativação elétrica-biológica, e iii) alguns modelos de redes com aprendizagem não supervisionada.

A próxima função de ativação é o *tangente hiperbólico* (**tanh**), que é similar à função *sigmoide* e pode ser escrita em função dela. Ela retorna valores no intervalo [-1, 1] mas sua derivada retorna valores mais próximos de 1, chegando ao valor máximo de 1 quando x = 0. A sua expressão em termos da função *sigmoide* e a sua derivada são dadas por:

$$tanh(x) = 2\sigma(2x) - 1$$
 e  $tanh'(x) = 1 - tanh^2(x)$ .

Na Figura 3.4 podemos ver o gráfico da função e de sua derivada, a partir do que podemos notar como a derivada da *tanh* retorna valores maiores do que a derivada da função *sigmoide*.



Figura 3.4: Gráficos da função tangente hiperbólico e sua derivada.

O próximo avanço é conseguido com a função de ativação linear retificada (**RELU**). Essa função é quase a função identidade, exceto que na região negativa do domínio ela é identicamente igual a 0. Ela não é derivável no ponto x=0, mas podemos estender a definição fixando seu valor em 1 nesse ponto. Sua definição e de sua derivada estendida é dada por:

$$ReLU(x) = max\{0, x\}$$
 e  $ReLU'(x) = \begin{cases} 1, & \text{se } x \ge 0 ; \\ 0, & \text{c.c.} . \end{cases}$ 

Podemos ver seus gráficos na Figura 3.5, a seguir. Usar essa função de ativação torna até mesmo a execução do código mais rápida, uma vez que não há cálculos matemáticos a serem feitos, apenas uma função de máximo que é trivial. Além disso, podemos notar que a derivada se mantém com o valor 1 constante enquanto o neurônio é ativado, sendo essa

uma forma de tentar resolver o problema do gradiente explodindo/desvanecendo, além de agilizar o processo de treinamento.



Figura 3.5: Gráficos da função RELU e sua derivada.

Essa é a razão, conforme explica Facure (FACURE, 2017b), dessa função ter contribuído para o recente aumento de popularidade das redes neurais. Adicionalmente, Bing Xu (Xu et al., 2015) ressalta que outra vantagem das funções do tipo *RELU*, além de resolver o problema do gradiente explodindo/desvanecendo, é a de aumentar a velocidade da convergência do algoritmo de treinamento rumo a um mínimo da função de custos.

Uma desvantagem da função *RELU* é a chance de um neurônio ser desativado permanentemente, já que uma vez que ele zera, a função de ativação e sua derivada são ambas iguais a 0, de forma que ele nunca mais irá aumentar durante o treinamento, tornando-se um neurônio *morto*. Todavia, assim como no caso da *sigmoide*, há casos em que esse comportamento é desejado, por exemplo, na camada de saída de redes de classificação.

O próximo desenvolvimento foi dado pela função conhecida como *Leaky RELU*. Quase idêntica à *RELU*, exceto que na parte negativa do domínio ao invés de 0 a função retorna  $x/\alpha$ , com  $\alpha \in (0, \infty)$ . Isso corrige imediatamente o problema dos neurônios desativados. A definição da função e de sua derivada, dada por Xu (Xu *et al.*, 2015), é:

$$LeakyReLU(x,\alpha) = \begin{cases} x, & \text{se } x \ge 0 ; \\ x/\alpha, & \text{c.c.}, \end{cases} \quad \text{e} \quad LeakyReLU'(x,\alpha) = \begin{cases} 1, & \text{se } x \ge 0 ; \\ 1/\alpha, & \text{c.c.}. \end{cases}$$

A partir dos resultados dos estudos feitos por Xu (XU et~al., 2015), a função Leaky~RELU, e suas variações, se mostraram consistentemente melhores do que a RELU para bases de

dados de pequeno e médio portes. Os melhores resultados, encontrados empiricamente pelos autores, foram obtidos com  $\alpha$  = 5.5. Este parâmetro é conhecido como **vazamento**, que dá o nome à função. Podemos ver o seu comportamento no gráfico da Figura 3.6.



Figura 3.6: Gráficos da função Leaky RELU e sua derivada.

Por fim, temos a função de unidade linear exponencial *ELU*, proposta por Djork-Arné Clevert (CLEVERT *et al.*, 2015), que é definida, com  $\alpha > 0$ , por:

$$ELU(x,\alpha) = \begin{cases} x, & \text{se } x \ge 0 \ . \\ \alpha(e^x - 1), & \text{c.c.} \end{cases} \quad \text{e} \quad ELU'(x,\alpha) = \begin{cases} 1, & \text{se } x \ge 0 \ ; \\ \alpha e^x, & \text{c.c.} \ . \end{cases}$$

Em seu artigo, Clevert (CLEVERT et~al., 2015) utiliza o valor  $\alpha=1$ , e com a função ELU conseguiu performances melhores, tanto de resultados mais corretos, quanto de velocidade de treinamento, em relação às funções RELU e Leaky RELU para as mesmas bases de dados avaliadas por XU (XU et~al., 2015), mesmo com o uso da função exponencial em sua definição, o que em teoria deveria diminuir a performance do treinamento. Podemos observar o comportamento dessa função e de sua derivada, com  $\alpha=1$  no gráfico mostrado na Figura 3.7.

Testes feitos em condições similares por Facure (Facure, 2017b), mostram que essa diferença não é tão significativa em relação à *Leaky RELU*, mas que ambas, *Leaky RELU* e a *ELU* são melhores do que a original *RELU*, o que é consistente com o fato delas resolverem teoricamente as desvantagens. São todas melhores escolhas, para camadas ocultas, do que a função *sigmoide*, em todos os estudos acima citados.

Na prática, podemos testar qual função de ativação irá apresentar melhor performance



Figura 3.7: Gráficos da função ELU e sua derivada.

para o problema que queremos resolver. A abordagem mais comum, conforme descrita por Facure (Facure, 2017b) é utilizar a função *Leaky RELU* nas camadas ocultas, sendo o modo mais simples de obtermos bons resultados graças ao seu comportamento. Podemos avaliar a utilização das outras funções de acordo com o problema em questão, dado que algumas funções podem se sair melhor em alguns contextos específicos, como utilizar a *RELU* nas camadas de saída, ou a *sigmoide* se queremos simular neurônios biológicos, etc.

#### 3.2.3 As camadas

A classe *Layer* representa uma camada de neurônios. Cada camada conecta-se com a sua camada anterior, com exceção da camada de entrada. A rede *perceptron* possui um sentido único de conexão, que vai da entrada para a saída, passando por cada camada oculta. A classe é constituída de uma lista de objetos da classe *Neuron*, uma referência à camada anterior e uma lista para armazenar as saídas dos seus neurônios.

O construtor de *Layer* é responsável por inicializar seus neurônios. Nessa implementação todos os neurônios de uma camada irão usar a mesma função de ativação ( $\sigma$ ) e a mesma taxa de aprendizagem ( $\eta$ ). Além de receber esses parâmetros, o número de neurônios dessa camada, e a referência da camada anterior, o construtor inicializa os pesos de cada neurônio, lembrando que cada neurônio de uma camada possui a mesma quantidade de pesos do que a quantidade de neurônios da camada anterior, e também inicializa o viés de cada neurônio.

No Programa 3.3 está o trecho do construtor que inicializa os pesos dos neurônios. Se a camada que estamos inicializando é a camada de entrada, então não criamos pesos e vieses, pois os valores de entrada serão utilizados diretamente como a saída dessa camada, este é

o teste presente na linha 11 do Programa, pois a camada de entrada não possui referência a uma camada anterior já que ela é a primeira camada da rede.

A linha 12 do Programa 3.3 inicializa os pesos dos neurônios da camada. Para fazer isso é utilizada uma função que está definida no script util.py, que sorteia números aleatórios para esses pesos seguindo uma distribuição normal de média 0 e desvio-padrão 0.3 e *truncada* no intervalo [-1, 1], para que nenhum peso esteja fora desse domínio e para que em média esse valor seja 0. O viés é inicializado com um valor constante, próximo de zero, nesse caso com 0.01.

```
1 class Layer:
       def __init__(self, previous_layer, num_neurons, learning_rate,
2
                     ativacao=None, der_ativacao=None):
           "(Layer, int, float, Callable, Callable) -> None
           Construtor da Camada de Neurônios
5
           for i in range(num_neurons):
                pesos = None
10
                bias = None
                if previous layer is not None:
                    pesos = normal t.rvs(len(previous layer.neurons))
12
                    bias = 0.01
13
14
15
                neuron = Neuron(pesos, bias, learning_rate, ativacao, der_ativacao)
                self.neurons = np.append(self.neurons, neuron)
16
```

**Programa 3.3:** *Trecho da classe* Layer

Este procedimento é usado para tentar mitigar dois problemas que podem acontecer, conforme explicado por James Dellinger (Dellinger, 2019). Se inicializarmos os pesos com muitos números não tão próximos de 0, numa rede como muitos neurônios e muitas camadas, esses pesos podem somar-se rapidamente através das camadas, resultando em números com valores absolutos muito grandes na camada de saída o que pode prejudicar o treinamento e aprendizado da rede.

Se pelo contrário, inicializarmos todos os pesos com números muito próximos de 0, ocorre o problema oposto, os neurônios tem seus valores zerados, tornando-se *neurônios desativados*, que se tornam inúteis para o aprendizado já que serão ignorados durante o restante do treinamento.

Dellinger (Dellinger, 2019) discute esses problemas no contexto de redes bem grandes, com mais de 100 camadas, e exibe sua solução heurística que é utilizar uma distribuição normal (não-truncada) com média 0 e com desvio-padrão  $\sqrt{2/n}$ , sendo n o número de neurônios da camada anterior.

Para nossos fins didáticos, foram testados alguns desvios-padrão como 1, 0.3 e 0.1, em um dos exemplos que serão mostrados ainda nesse capítulo, e dentre eles, o valor 0.3 se saiu melhor sendo o suficiente para não explodir e nem desativar os neurônios da única camada oculta que foi usada na aplicação-exemplo em questão.

O desvio-padrão de 0.3 auxilia na tarefa de restringir os valores no intervalo [-1, 1], sem que precisemos truncar muitos valores, o que poderia aumentar a massa de probabilidade dos extremos -1 e 1, já que valores mais distantes da média do que 3 vezes o desvio-padrão são raramente obtidos de uma distribuição normal.

Após inicializar cada neurônio, o salvamos na lista de neurônios dessa camada, que é um dos atributos de classe discutidos no primeiro parágrafo. A próxima tarefa de uma camada é processar as entradas recebidas e retornar as saídas. Podemos observar esse comportamento no Programa 3.4.

```
def outputs(self, inputs):

""(list[float]) -> list[float]

Armazena em cache as saidas dos neuronios e a retornam

Se for uma camada de entrada, usa elas diretamente

""

if self.previous_layer is None:
 self.output_cache = inputs

else:
 self.output_cache = np.array([n.output(inputs) for n in self.neurons])

return self.output_cache
```

Programa 3.4: Trecho da classe Layer

A camada de entrada não processa os dados, usando-os diretamente. As demais camadas devem processar cada neurônio, usando seu próprio método de processamento, aplicando a transformação linear e em seguida a função de ativação. O resultado é armazenado numa lista *numpy* que é o atributo de classe output\_cache, que armazena as saídas dessa camada para uso posterior; por fim, a lista das saídas da camada é retornada.

A última tarefa da classe Layer é calcular os termos  $\Delta$  definidos em (3.17) e (3.18), que definem respectivamente o cálculo que é feito se estamos calculando as derivadas para as camadas ocultas e o cálculo feito para a camada de saída. As duas versões são exibidas no Programa 3.5 abaixo.

```
1 def calcular_delta_camada_de_saida(self, expected):
           "'(list[float]) -> None"
2
           for i, neuron in np.ndenumerate(self.neurons):
                der\_cost = expected[i[0]] - self.output\_cache[i]
                neuron.delta = neuron.der_ativacao(neuron.output_cache) * der_cost
       def calcular_delta_camada_oculta(self, next_layer):
            '''(Layer) -> None'''
           for i, neuron in np.ndenumerate(self.neurons):
                next_weights = np.array([n.weights[i[0]] for n in next_layer.neurons])
10
                next deltas = np.array([n.delta for n in next layer.neurons])
11
                der_cost = np.dot(next_weights, next_deltas)
12
                neuron.delta = neuron.der_ativacao(neuron.output_cache) * der_cost
13
```

**Programa 3.5:** *Trecho da classe* Layer

Os algoritmos são as traduções quase literais de (3.17) e (3.18). Podemos ver a natureza recursiva da regra da cadeia nas 2 linhas finais, onde usamos os deltas calculados da próxima camada para calcular os deltas da camada atual. O caso base é a função que calcula o delta da camada de saída. A lógica que orquestra essa recursão está implementada na próxima classe.

#### 3.2.4 A rede

A classe *Network* representa a rede neural como um todo. Ela armazena uma lista de camadas, ou seja, objetos do tipo *Layer*, a partir dos parâmetros que recebe em seu construtor, que são a estrutura da rede que será criada, que é um vetor de inteiros que representam as quantidades de neurônios para cada camada. Além disso, recebe a taxa de aprendizado que será utilizada em toda a rede, nessa versão, e quais as funções de ativação que serão utilizadas nas camadas ocultas e na camada de saída.

O Programa 3.6 exibe o trecho do construtor que cria cada camada e insere na lista de camadas do objeto da classe atual. A camada de entrada não possui camada anterior, nem função de ativação. Além disso, a camada de saída pode utilizar uma função de ativação diferente daquela utilizada pelas camadas ocultas, que usarão a mesma.

```
1 class Network:
       def __init__(self, layer_structure, taxa, ativacoes):
2
            "(list[int], float, Tuple[Callable]) -> None
3
            self.layers = np.array([], dtype=np.float64)
            self.estrutura = layer_structure
            # camada de entrada
            input_layer = Layer(None, self.estrutura[0], taxa)
            self.layers = np.append(self.layers, input_layer)
10
11
            # camadas oculta(s)
12
            for previous, qtd_neurons in np.ndenumerate(self.estrutura[1::l]):
13
                next_layer = Layer(self.layers[previous[0]], qtd_neurons, taxa,
14
                                      ativacoes[0], ativacoes[1])
15
                self.layers = np.append(self.layers, next_layer)
16
17
            # camada de saída
18
            output_layer = Layer(self.layers[-1], self.estrutura[-1], taxa,
19
                                      ativacoes[2], ativacoes[3])
            self.layers = np.append(self.layers, output_layer)
21
```

**Programa 3.6:** *Trecho da classe* Network

A primeira tarefa da classe Network é o de processar entradas, fazendo elas atravessarem a rede, camada a camada, até a camada de saída, e retornar as saídas obtidas. É o processo de *feedforward* explicado no início do capítulo. Sua implementação mesmo para o caso geral de multi-camadas é bem simples, conforme exibido no Programa 3.7 abaixo.

```
def feedforward(self, entrada):
    ""(list[float]) -> list[float]""
    ...
    saida = self.layers[0].outputs(entrada)
    for i in range(1, len(self.layers)):
        saida = self.layers[i].outputs(saida)
    return saida
```

**Programa 3.7:** *Trecho da classe* Network

A próxima tarefa é treinar a rede, passando uma lista de entradas e saídas observadas, realizando o procedimento *backpropagation* para atualizar os pesos e vieses dos neurônios de cada camada, tudo isso em sequência, para cada entrada fornecida. É o que está literalmente implementado no Programa 3.8 abaixo.

```
def train(self, entradas, saidas_reais):
    '''(list[list[floats]], list[list[floats]]) -> None'''
    ...
    for i, xs in enumerate(entradas):
        ys = saidas_reais[i]
        _ = self.feedforward(xs)
        self.backpropagate(ys)
        self.update_weights()
        self.update_bias()
    return saida
```

Programa 3.8: Trecho da classe Network

Cada chamada à função *train* significa que o procedimento de treinamento sendo executado uma única vez. Cada vez que a rede é treinada dizemos que ela avançou em uma **época** de treinamento. O treinamento consiste em primeiramente executar o *feedforward* para uma entrada, para que as camadas possam armazenar as saídas correspondentes aos valores atuais de seus parâmetros, os pesos e os vieses, assim como as saídas em seus atributos *output\_cache*, que serão usados pelo método *backpropagation* a seguir, de acordo com as equações que derivamos para o processo de treinamento.

O funcionamento do método *backpropagation* pode ser visto no Programa 3.9 a seguir. Tudo o que ele faz aqui é calcular os deltas das camadas, na ordem correta, começando pela camada de saída, e depois percorrendo as demais camadas do final para o início da rede, fazendo a chamada para cada objeto da classe *Layer* que constitui a rede.

```
def backpropagate(self, saidas_reais):

'''(list[float]) -> None'''

# calcula deltas da camada de saída

last_layer = len(self.layers) - 1

self.layers[last_layer].calcular_delta_camada_de_saida(saidas_reais)

# calcula deltas das camadas ocultas

for l in range(last_layer - 1, 0, -1):

self.layers[l].calcular_delta_camada_oculta(self.layers[l + 1])
```

Programa 3.9: Trecho da classe Network

A seguir, atualiza-se os pesos e os vieses com os métodos correspondentes, que podem ser visualizados no Programa 3.10. Como os valores são todos armazenados nos atributos de estado dos neurônios e das camadas, implementamos diretamente as contas das equações que obtemos para o método do gradiente e da regra da cadeia da retropropagação. Dessa forma, o que fazemos na classe *Network* é basicamente traduzir a matemática para a sintaxe da linguagem Python.

```
1 def update weights(self):
       "(None) -> None"
2
       for layer in self.layers[1:]: # pula a camada de entrada
           for neuron in layer.neurons:
                for w in range(len(neuron.weights)):
                    neuron.weights[w,] = neuron.weights[w,] + (neuron.learning_rate
8
                          * (layer.previous_layer.output_cache[w]) * neuron.delta)
9
10 def update_bias(self):
        '''(None) -> None'''
11
12
       for layer in self.layers[1:]: # pula a camada de entrada
13
           for neuron in layer.neurons:
14
                neuron.bias = neuron.bias + neuron.learning_rate * neuron.delta
```

**Programa 3.10:** *Trecho da classe* Network

A próxima tarefa da classe *Network*, uma vez que já foi treinada, é fazer a previsão de classes de novos dados de entrada. Isto é feito pelo método mostrado no Programa 3.11. Isto significa simplesmente processar as entradas fornecidas pelo método *feedforward*, que usará os parâmetros que foram ajustados anteriormente para fazer os cálculos.

Programa 3.11: Trecho da classe Network

Ao final, os dados da última camada são uma lista, isto é, um vetor de valores reais, que são interpretados por uma função que é passada por parâmetro que identifica a qual classe, previamente definida, pertence esse vetor de saída. A lógica dessa interpretação é externa à classe *Network* e será vista mais adiante. A lista de classes preditas em formato *numpy* é retornada.

A última função dessa classe é calcular uma métrica de avaliação para esta rede, que irá servir de avaliação do quão boa a rede é para classificar os dados utilizados. A métrica mais simples a ser utilizada é a **acurácia** da previsão. Ela basicamente mede a proporção de classificações corretas dentre todas as classificações realizadas para um conjunto de

dados. Essa lógica bem simples é implementada no Programa 3.12 abaixo.

Programa 3.12: Trecho da classe Network

Nota-se que ela utiliza as previsões salvas no atributo de classe que é atualizado toda vez que executamos o método *predict*, acima. As classes conhecidas são passadas como parâmetro, uma vez que estamos lidando no *perceptron* com uma aprendizagem supervisionada. Dessa forma, ao treinarmos a rede utilizamos um conjunto de dados para os quais já sabemos as classes, e ainda dividimos esse conjunto em duas partes, as quais chamamos de **conjunto de treino** e de **conjunto de teste ou validação**.

Treinamos a rede com o conjunto de treino, que deve sempre ser a maior parte de nossa partição, uma vez que é a partir dele que iremos usar o *backpropagation* para aproximar as saídas da rede às saídas observadas contidas no conjunto. Géron (Géron, 2019) cita que tipicamente escolhemos aleatoriamente 20% dos dados como nosso conjunto de teste, ficando o restante como o conjunto de treino. A seguir, podemos calcular a acurácia da classificação do conjunto de treino, e a seguir prever e medir a acurácia do conjunto de teste para comparar os resultados.

Naturalmente a acurácia para o conjunto de teste tende a ser menor, mas não pode ser muito menor, senão dizemos que nossa rede sofre de um problema de classificação conhecido como **overfitting**, ou sobreajuste, o que significa que ela está boa para lidar com o conjunto com o qual foi treinado, o que era esperado dado que foi construída para isso, mas sofre para classificar dados novos, com os quais não foi treinada, e não é isso o que queremos.

O que queremos é justamente o contrário, que nossa rede, ou seja, nosso algoritmo de aprendizagem seja bom em **generalizar** os dados de entrada que fornecemos a ele. Anas Al-Masri (Al-Masri, 2019) define o termo generalização como a habilidade do modelo para fornecer saídas sensíveis para conjuntos de entradas que ele nunca viu antes. Uma tentativa para melhorar a generalização/prevenir o *overfitting* é a inicialização dos pesos dos neurônios segundo uma distribuição normal de média zero, procedimento explicado anteriormente e que foi implementado na classe *Layer*.

De modo geral, define-se como uma técnica de **regularização** qualquer uma que seja utilizada para reduzir o erro do conjunto de teste às custas do aumento do erro do conjunto de treino. Um exemplo, explicado em detalhes por Yash Upadhyay (UPADHYAY, 2019), é a adição de termos de penalização (*Parameter Norm Penalties*), à função de custo. Estes termos são expressões que envolvem os pesos e multiplicadas por hiperparâmetros que podem ser ajustados empiricamente dando maior ou menor peso à regularização. Esta

função pode ser definida de formas diferentes, sendo as mais comuns as regularizações L1 e L2.

Um outro exemplo de técnica é o **dropout**, descrita por Amar Budhiraja (Budhiraja, 2016), que consiste em ignorar aleatoriamente alguns neurônios durante o treinamento da rede, isto é, não calculamos deltas durante uma execução do *backpropagation* e nem usamos seu valor em consideração quando processamos uma entrada na rede com o *feedforward*. É como se alguns neurônios fossem "desativados" durante a fase de treinamento, o que irá prevenir que os neurônios se tornem dependentes uns dos outros em suas contribuições para diminuir o erro total da rede, de acordo com a interpretação do autor, e dessa forma esse procedimento irá diminuir o sobreajuste aos dados de treino.

Em nosso *perceptron* didático optamos por não implementar nem o *dropout* tampouco as regularizações, já que o objetivo dessa versão aqui demonstrada não é fornecer um modelo que seja utilizado em problemas reais, mas apenas didáticos. Em contrapartida essas técnicas estão presentes e podem ser utilizadas nas bibliotecas de redes neurais que usaremos na parte prática do trabalho.

#### 3.2.5 A classe Perceptron

A última classe implementada, não foi baseada em um exemplo, mas criada a partir da necessidade de simplificar a criação da rede, para facilitar os testes do seu funcionamento que iremos realizar. Já discutimos sobre as diferentes taxas de aprendizagem para o gradiente descendente, discutimos sobre as diferentes funções de ativação que podem ser utilizadas nas redes neurais, assim como a sua topologia no que se refere apenas à quantidade de neurônios e a quantidade de camadas de neurônios.

Esses são basicamente os atributos que teremos que ajustar de acordo com a necessidade que os dados utilizados em nosso aprendizado irão criar. Dessa forma criamos a classe *Perceptron* que possui um construtor que irá lidar com a seleção dessas opções. Por enquanto, está no Programa 3.13 apenas a definição de seu construtor e a documentação explicativa.

```
1 class Perceptron():
       def __init__(self, N=[1], M=50, ativacao="l_relu", taxa=0.001, debug=0):
2
         ""(None, str, list[int], int, float, float, str, float) -> None
3
         Construtor da minha classe Perceptron
         Parâmetros da classe:
           *N: quantidade de neurônios da camada oculta, podendo ser especificada um vetor de
                várias camadas ocultas ou apenas uma.
           *M: quantidade de treinamentos desejada, denominado de número de "épocas" da rede,
                o valor padrão é50.
           *ativacao: escolha de uma das funções de ativação disponíveis para a(s) camada(s)
8
           *taxa: taxa de aprendizagem, padrão de 0.001.
           *debug: flag para exibição de parâmetros durante o treinamento'''
10
11
```

**Programa 3.13:** *Trecho da classe* Perceptron

No construtor é feita uma seleção dentre as funções de ativação existentes no script *util.py*, de forma que só precisamos passar um texto com o nome da função, que o construtor irá selecionar a função e sua derivada para posteriormente informá-las à classe *Network*. Deixamos por padrão a escolha da função de ativação *Leaky RELU*, de acordo com a orientação geral dada por Facure (FACURE, 2017b).

O parâmetro M define a quantidade inicial padrão de **épocas** que serão treinadas. Uma época corresponde a uma passagem do conjunto de treino pelo *feedforward* e a seguir pelo *backpropagation*, ou seja, configura um único ajuste dos parâmetros através de nosso algoritmo de treinamento.

A arquitetura de camadas padrão definida pelo parâmetro N (N = [1]) serve para uma validação existente no construtor, para não permitir a passagem de uma quantidade negativa ou nula de camadas ou de neurônios. Se quiséssemos uma arquitetura de 3 camadas com 4, 5, e 6 neurônios cada, por exemplo, então o parâmetro passado durante a criação de um objeto *Perceptron* deveria ser N = [4, 5, 6].

Outra tarefa do construtor é criar um objeto da classe *OneHotEncoder*<sup>2</sup> da biblioteca *scikit-learn*<sup>3</sup>. Essa é uma das mais famosas e mais utilizadas bibliotecas da linguagem Python para tarefas de aprendizado de máquina. É a biblioteca utilizada pela maioria dos autores dos livros-textos da área de ciência de dados, como por exemplo Géron (GÉRON, 2019) e Grus (GRUS, 2016).

Esse objeto codificador (encoder) é salvo como um atributo de classe: self.\_enc, e será utilizado no método de treinamento para criar automaticamente as classes numéricas a partir das classes fornecidas pelos conjuntos de treinamento e validação. Essas classes numéricas representam cada classe no formato de um vetor com todos os componentes zerados exceto um, o que identifica unicamente as classes.

Suponha, por exemplo, que estamos treinando um conjunto de fotos que possuem as classes *cachorro*, *gato* e *rato*. A função codificadora poderá transformar a palavra *cachorro* no vetor [1, 0, 0], *gato* no vetor [0, 1, 0] e *rato* no vetor [0, 0, 1]. Dessa forma, estes serão os valores esperados para os 3 neurônios de saída que nossa rede obrigatoriamente deverá ter (número de classes = número de neurônios de saída). A ordem dessa codificação é irrelevante, sendo gerenciada internamente pela classe *OneHotEncoder*.

A seguir, no método utilizado para treinar a rede, que recebe os dados de entrada e as classes conhecidas correspondentes a cada entrada, o primeiro passo é fazer essa codificação. O primeiro trecho do método treinar está no Programa 3.14.

```
def treinar(self, x_train, y_train, M=0):

""(np.array, np.array, int) -> None

Processo de treinamento da rede neural
""

# onehotencoder extrai as classes únicas já ordenadas alfabeticamente
y_encoded = self._enc.fit_transform(y_train)
classes = self._enc.categories_[0]
```

**Programa 3.14:** *Trecho da classe* Perceptron

 $<sup>{\</sup>color{blue}^{2}} https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing. One Hot Encoder.html.org/stable/modules/generated/sklearn.preprocessing. One Hot Encoder.html.org/stable/modules/generated/sklearn.preprocessing.$ 

<sup>&</sup>lt;sup>3</sup>https://scikit-learn.org/stable/index.html

Nessa classe e nos exemplos subsequentes neste trabalho, sempre nomeia-se o conjunto dos dados de treino de x\_train e y\_train, e o conjunto de teste de x\_test e y\_test. A letra x indica que é o conjunto de dados de entrada e y indica as classes conhecidas de classificação. No trecho acima utiliza-se a classe *OneHotEncoder* para transformar quaisquer formatos que as classes forem informadas nos vetores numéricos que serão os valores esperados da saída da rede.

O próximo trecho de código irá se encarregar de criar a estrutura geral da rede, ao final criando um objeto da classe *Network* e salvando-o como um atributo de classe. É o que está presente no Programa 3.15. Os dados de entrada são esperados no formato de lista do tipo *numpy*, dessa forma a primeira linha do trecho obtém a quantidade de características (*features*) dos dados de entrada, ou seja, das variáveis explicativas do modelo, através do método shape(1) do tipo *numpy*, essa será a quantidade de neurônios da camada de entrada da rede, um para cada característica.

Usando o exemplo das fotos de animais, os pixels da foto seriam as variáveis explicativas para um modelo de classificação, assumindo que todas as fotos possuem a mesma quantidade de pixels e que cada pixel possui apenas um valor de intensidade de cinza, ou outra cor única qualquer. Se utilizássemos fotos coloridas, com por exemplo, as intensidades de 3 cores diferentes por pixel, então o número de variáveis explicativas de nosso modelo seria 3*n*, sendo *n* o número de pixels da foto.

```
1 neurons_in = x_train.shape[1]
2
3 if self.network is None:
       neurons_out = len(self.classes)
       for i in range(len(self.N)):
5
            if len(self.N) == 1 and self.N[0] < neurons_out:</pre>
                self.N[0] = min(int(np.ceil(neurons_in*2/3 + neurons_out)), neurons_in)
       rede = []
9
       rede.append(neurons_in)
10
11
       for hidden in self.N:
            rede.append(hidden)
12
       rede.append(neurons_out)
13
14
       ativacoes = (self.ativacao, self.der_ativacao,
15
                      self.ativacao_saida, self.der_ativacao_saida)
16
17
       self.network = Network(np.array(rede), self.taxa, ativacoes)
18
```

**Programa 3.15:** *Trecho da classe* Perceptron

A seguir, o método irá criar a estrutura da rede, se essa é a primeira vez que o objeto estiver sendo utilizado para o treinamento, do contrário ele irá realizar outras M épocas de treinamento, a partir dos dados existentes na rede.

Obtém-se a quantidade de neurônios para a camada de saída a partir da quantidade de classes identificadas. A seguir ele utiliza as quantidades de neurônios para as camadas ocultas se estas foram previamente informadas manualmente durante a criação da classe, ou

então, é feito um cálculo, para que seja utilizada uma quantidade apropriada de neurônios para a primeira camada oculta, que pode ser a única camada oculta por padrão.

Essa quantidade apropriada é definida por Jeff Heaton (Heaton, 2017) como sendo 2/3 da quantidade de neurônios de entrada mais a quantidade de neurônios de saída. Esta é uma das 'regras de ouro' que ele descobriu empiricamente para garantir o bom funcionamento da rede. Outra boa prática que ele encontrou, mais geral mas que satisfaz a primeira, é que a quantidade de neurônios de uma camada oculta única deve ser tal que seja menor que a quantidade de neurônios de entrada mas maior que a quantidade de neurônios de saída.

Naturalmente o treinamento aceita qualquer quantidade de camadas ocultas e de neurônios em cada camada, apenas não há garantias de que o treinamento irá suceder sem ocorrer o problema do gradiente explodindo/desaparecendo. Mesmo a utilização das regras de Heaton (Heaton, 2017) não assegura o sucesso do treinamento, apenas testes com outras quantidades de neurônios e camadas, e com outras funções de ativação e taxas de aprendizado que poderão resultar eventualmente num treinamento bem sucedido, caso essas opções-padrão não sejam suficientes.

Essa é uma dificuldade inerente das redes neurais, ainda mais quando tenta lidar com conjuntos de dados muito grandes e com um grande número de variáveis explicativas. Essa é uma das razões principais para ser preferível a utilização de uma biblioteca já consolidada e com muitos anos de desenvolvimento e ajustes por muitos desenvolvedores e cientistas de dados ao redor do mundo.

O próximo trecho, no Programa 3.16 é o trecho principal deste método, é o treinamento backpropagation feito um número M de épocas. São passados como parâmetros os dados de entrada, e as classes conhecidas já codificadas. Ao final desse treinamento, a rede está salva no atributo de classe self.network com os parâmetros já ajustados e prontos para serem utilizados para validação e previsão de novos dados.

```
1 for _ in range(self.M):
2 self.network.train(x_train, y_encoded)
```

**Programa 3.16:** *Trecho da classe* Perceptron

O próximo método realiza a previsão das classes a partir dos dados informados, simplesmente utilizando a função da classe *Network* criada para isso. É o que está no Programa 3.17, abaixo.

Programa 3.17: Trecho da classe Perceptron

Por padrão a função que irá interpretar os neurônios de saída, convertendo-os em uma classe, foi criada da forma como será mostrada no Programa 3.18, a seguir.

```
def reinterpretar_saidas(self, saidas):
    ""(array) -> np.array
    ""

    maximo = max(saidas)
    saida = np.array([int(x == maximo) for x in saidas])
    return self._enc.inverse_transform(saida.reshape(1, -1))
```

**Programa 3.18:** *Trecho da classe* Perceptron

Essa função realiza a interpretação padrão dos neurônios de saída, primeiramente eles são convertidos em vetores com identificação única, ou seja, no formato [0, ..., 0, 1, 0, ..., 0], sendo que a posição que irá receber 1 é aquela que tiver originalmente o valor máximo, ou seja, mais distante de 0, e o restante será convertido em zeros. Dessa forma, basta utilizarmos a decodificação inversa do objeto *OneHotEncoder*, que está salvo no atributo de classe, e daí obtemos qual a classe mais provável à qual pertence o dado de entrada que foi processado pela rede.

Isto nos mostra que uma possível interpretação dos neurônios de saída é que cada um possui uma probabilidade de que o dado pertença àquela classe indexada na mesma posição a qual esse neurônio está na camada de saída. Se usarmos como exemplo nosso modelo fictício dos animais, ao processar uma foto, a rede iria devolver os valores dos neurônios de saída, por exemplo, como o seguinte vetor: [0.002, 0.976, 0.013]. Pode-se dizer que há uma probabilidade maior de que essa foto pertença à segunda classe, que digamos ser a classe *Gatos*, por exemplo.

O que a função reinterpretar\_saidas faz é converter esse vetor de saídas da rede no vetor [0, 1, 0], que agora está no formato das classes numéricas geradas por nosso objeto codificador. Dessa forma, executar uma decodificação com esse mesmo objeto, que havia originalmente codificado a palavra *Gato* no vetor [0, 1, 0], irá fazer a operação inversa, retornando a palavra *Gato* como sendo a classe mais provável para a foto processada.

Alternativamente podemos utilizar outra função de interpretação dos dados de saída, devendo ser informada diretamente por referência para o método prever.

Por razões didáticas, se quisermos observar diretamente os valores calculados pela rede sem interpretação, criamos um método que realiza apenas o *feedforward* para uma lista de entradas fornecidas como parâmetro. É o que vemos no Programa 3.19, a seguir.

```
def processar(self, X):
    ""(np.array) -> np.array"'
    ...
    saidas = []
    for x in X:
        saidas.append(self.network.feedforward(x))
    return np.array(saidas)
```

Programa 3.19: Trecho da classe Perceptron

Por fim, podemos querer observar qual o erro, ou custo, que nossa rede está produzindo para um dado par de conjuntos de entrada e saídas observadas. Para isso criamos o método funcao\_erro exibido no Programa 3.20, a seguir.

```
1 def funcao_erro(self, X, Y):
2     '''(np.array, np.array) -> float'''
3     ...
4     y_encoded = self._enc.fit_transform(Y)
5     return self.network.mse(X, y_encoded)
```

Programa 3.20: Trecho da classe Perceptron

Ele utiliza a função de erro que está implementada na classe *Network*, que é a função de custo que utilizamos como base para a criação de nosso algoritmo de otimização, o erro quadrático médio (MSE), também conhecido como a norma euclidiana do vetor distância entre os vetores das saídas observadas e o das saídas obtidas pela rede.

Em todos os trechos da classe *Perceptron* acima, várias linhas estão ocultas sob o símbolo de reticências, são linhas que fazem verificações dos dados utilizados e do estado atual do objeto, se ele pode ser usado para previsão por exemplo, ou seja, se já foi treinado previamente, entre outras verificações gerais para um bom funcionamento.

## 3.3 Exemplo de utilização do perceptron

Para demonstrar a utilização da versão aqui implementada da rede *perceptron*, utilizaremos aquela que é considerada a base de dados de entrada no mundo da ciência de dados, a base MNIST (*Modified National Institute of Standards and Technology*) de números escritos à mão, compilada originalmente pela Universidade de Nova York<sup>4</sup>.

A versão oficial da base de dados consiste de 60 mil imagens de dimensões  $28 \times 28$  pixels. Cada imagem é uma foto de um dígito manuscrito entre 0 e 9, sendo que a proporção de cada dígito é aproximadamente de um décimo, além disso a base contém a informação dos valores nominais de cada número, o que torna essa base de dados muito útil para validar modelos de aprendizado supervisionado, antes que sejam utilizados em casos reais. Exemplos de fotos estão na Figura 3.8.

Para nosso teste, o primeiro passo foi obter uma versão mais *leve* da base de dados, com as fotos redimensionadas para  $8 \times 8$  pixels, o que implica em 64 variáveis explicativas e mesmo número de neurônios de entrada. Além disso essa base possui apenas 1.800 fotos etiquetadas. A base original de  $28^2 = 784$  pixels já se mostrou grande demais para essa implementação conseguir lidar em tempo hábil.<sup>5</sup>

A base foi importada através da biblioteca *sklearn*, que já possui opções para fazer download automático para o programa em execução de várias versões da base MNIST. O código do Programa 3.21 mostra a importação e também o próximo passo, que é separar a

<sup>&</sup>lt;sup>4</sup>Disponível originalmente em http://yann.lecun.com/exdb/mnist/.

<sup>&</sup>lt;sup>5</sup>Em tentativas que fiz com a base original, meu computador ficou calculando deltas por quase 2 horas sem completar uma só época de treinamento.



Figura 3.8: Exemplos de fotos da base de dados MNIST de números manuscritos.<sup>a</sup>

base nos conjuntos de treino, com 85% dos dados, e de validação com os 15% restantes.

```
# obtendo o conjunto de imagens de numeros escritos
from sklearn.datasets import load_digits
mnist = load_digits()

# dividindo a base nos conjuntos de treino e de teste
N = int(mnist.data.shape[0]*0.8)
x_train, y_train = mnist.data[:N], mnist.target[:N].astype(np.uint8)
x_test, y_test = mnist.data[N:], mnist.target[N:].astype(np.uint8)
```

**Programa 3.21:** *Trecho do script* mnist\_test.py

Dada a arquitetura escolhida durante a implementação, para a tarefa de treinar a classificação dos números digitados, não precisamos de mais de meia dúzia de linhas de código, mostradas no Programa 3.22.

```
perceptron = Perceptron(taxa=0.001, ativacao="elu", N=[48, 24])
perceptron.treinar(x_train, y_train, M=20)

y_train_pred = perceptron.prever(x_train)
score = Scores(y_train, y_train_pred)
score.exibir_grafico("Dados de treino")

y_test_pred = perceptron.prever(x_test)
score = Scores(y_test, y_test_pred)
score.exibir_grafico("Dados de teste")
```

Programa 3.22: Trecho do script mnist\_test.py

Basicamente, uma rede é criada com a estrutura de uma camada de entrada com 64 neurônios, quantidade obtida automaticamente pela classe a partir das dimensões da lista

<sup>&</sup>lt;sup>a</sup>Extraído de https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2019/02/Plot-of-a-Subset-of-Images-from-the-MNIST-Dataset-1024x768.png

de dados informada (*y\_train*), duas camadas ocultas com 48 e 24 neurônios cada, com taxa de aprendizado 0.001 e a função de ativação *ELU*, sendo este o conjunto de parâmetros que obteve o melhor desempenho. A segunda linha realiza o treinamento com 20 épocas, informando a lista de imagens e a lista das classificações conhecidas.

As duas últimas linhas desso Programa fazem a comparação dos valores previstos com os valores já conhecidos da classificação, para conhecermos a acurácia de nosso modelo de aprendizado. Abaixo, nas Figuras 3.9 e 3.10, está uma exibição gráfica com a função de erro MSE, a acurácia e a **matriz de confusão**, a partir da qual podemos calcular a acurácia de nossa rede neural.

A matriz de confusão permite relacionar as classes conhecidas com as classes previstas de um conjunto de dados utilizados num algoritmo de aprendizagem supervisionada como é o caso do *perceptron*. Ela mostra as contagens dessas relações, e dessa forma, a diagonal dessa matriz possui as classificações corretamente obtidas pelo algoritmo, e o restante da matriz a contagem das classificações incorretas.



**Figura 3.9:** *Matriz de confusão e acurácia do conjunto de treino da base MNIST* 8 × 8 *pixels.* 

Como os pesos da rede são inicializados aleatoriamente, cada treinamento pode obter resultados levemente diferentes, embora no geral os resultados irão depender mais dos parâmetros utilizados, como a função de ativação, quantidade de camadas, de neurônios e de épocas de treinamento.

Podemos notar que o conjunto de treino possui uma boa performance, obtendo mais de 93.9% de acurácia, ou seja, de classificações corretas. Por outro lado, o conjunto de teste obteve pouco mais de 83.6%, o que indica o problema de *overfitting* em nossa rede, quando a classificação do treino está boa, o que é esperado dado que é a base utilizada para o ajuste dos parâmetros internos, mas quando a rede treinada tenta lidar com dados inéditos, o que é o papel do conjunto de teste, se sai consideravelmente pior.



**Figura 3.10:** *Matriz de confusão e acurácia do conjunto de teste da base MNIST* 8 × 8 *pixels.* 

Podemos melhorar o desempenho do classificador com a utilização de alguma implementação mais robusta, e refinada com anos de contribuições da comunidade de programadores e cientistas de dados ao redor do planeta. E uma delas, é a API Keras, que veremos na próxima seção, e que será utilizada no restante desse trabalho.

#### 3.4 Utilizando a API Keras

De acordo com seu site oficial<sup>6</sup>, *Keras* é uma API (Interface de Programação de Aplicativos) de *deep learning* escrita em Python, e que roda sobre a plataforma de *deep learning* chamada de *TensorFlow*<sup>7</sup> que é de fato a biblioteca que devemos instalar em nosso ambiente Python, para podermos utilizar as redes neurais ali implementadas e quaisquer outros recursos da API *Keras* em nosso projeto de aprendizado.

Keras implementa quase todas as arquiteturas de redes neurais, segundo Géron (GÉRON, 2019), sua popularidade é devido à sua facilidade de uso e flexibilidade aliadas a um design de software bem construído. Existem algumas implementações da API, como a TensorFlow, que é a principal, a Microsoft Cognitive Toolkit, a Apache MXNet, a Apple's Core ML, etc.

Todas essas implementações podem ser utilizadas em conjunto, na biblioteca conhecida como *multibackend Keras*, sendo que a escolha entre as implementações ocorre de forma transparente para o cientista de dados. Alternativamente, utilizar a versão própria presente na biblioteca *TensorFlow* traz benefícios, como alguns recursos exclusivos dela. O funcionamento das duas implementações está na Figura 3.11, a seguir.

<sup>&</sup>lt;sup>6</sup>https://keras.io/about/

<sup>&</sup>lt;sup>7</sup>Criada pelo Google e disponível em: https://www.tensorflow.org/



**Figura 3.11:** *As duas implementações da API Keras.* Multibackend à esquerda e TensorFlow à direita.<sup>a</sup>

Para entender o funcionamento e uso do Keras, criamos uma rede com a mesma estrutura do *perceptron* aqui implementada, mas com algumas melhorias já inerentes à API, com objetivo de classificar o mesmo conjunto de dados MNIST, para comparar a eficiência. O primeiro passo é importar a base de dados, sendo a mesma que usamos anteriormente, então reutilizamos o mesmo trecho de código mostrado no Programa 3.21.

O próximo passo é criar a rede utilizando a API Keras, o que vemos no Programa 3.23. A primeira linha cria uma rede sequencial, isto é, uma rede *feedforward*. A seguir, são adicionadas as camadas, a primeira camada é definida como *Flatten* pois é a camada de entrada, então ela não aplica nenhuma transformação nos dados.

```
1 model = tf.keras.Sequential()
2 layers = tf.keras.layers
3 model.add(layers.Flatten())
4 model.add(layers.Dense(48, activation='elu'))
5 model.add(layers.Dense(24, activation='elu'))
6 model.add(layers.Dense(10, activation='softmax'))
```

**Programa 3.23:** *Trecho do script* mnist\_keras.py

As próximas camadas são adicionadas com o tipo *Dense*, o que significa uma conexão de todos os neurônios de uma camada com todos da próxima, dessa forma estamos criando um *perceptron* exatamente como aquele implementado.

As camadas ocultas utilizam a função de ativação *ELU*, e a camada de saída utiliza a função *softmax*, o que na API Keras significa que estamos classificando os dados de acordo com o valor máximo dos neurônios de saída, o que em nossa implementação foi papel da função reinterpretar\_saidas, que foi definida no Programa 3.18.

<sup>&</sup>lt;sup>a</sup>Extraído de: Aurélien Géron, 'Hands-on Machine Learning with Scikit-Learn, Keras, and Tensor-Flow', O'Reilly 2.a edição 2019, página 385.

```
1 model.compile(optimizer=keras.optimizers.SGD(lr=0.001),
2 loss='sparse_categorical_crossentropy', metrics=['accuracy'])
```

Programa 3.24: Trecho do script mnist\_keras.py

No Programa 3.24, definimos os parâmetros finais da rede. Define-se a função de otimização sGD (Stocastic Gradient Descent), quase idêntica à implementação do gradiente descendente implementada, mas ao invés de utilizar todas as imagens de treino numa época de treinamento, algumas são escolhidas aleatoriamente, e isso é feito um certo número de vezes, e os deltas são escolhidos para o conjunto aleatório que tenha se saído melhor, de acordo com a função de perda e métrica utilizadas.

A função de perda é escolhida com a opção *sparse\_categorical\_crossentropy*, pois é a opção padrão do Keras para tarefas de classificação, não sendo possível utilizar a função MSE como antes, por limitações de projeto da API, o que significa que ela irá tratar as categorias de dados da forma que ela foi obtida, com as 10 classes de 0 a 9, onde cada imagem pertence a apenas uma dessas classes.

Esse parâmetro seria diferente se fosse criada uma rede para classificação binária, por exemplo, ou então se nossos vetores y\_train e y\_test tivessem sido codificados em vetores do tipo [0, ..., 1, 0, ...] da forma que foi feita na nossa implementação.

Por fim a acurácia é escolhida como a métrica para avaliação da rede, e que será utilizada pelo gradiente estocástico para definir o melhor sub-conjunto de treino durante uma dada época de treinamento. Basta treinar a rede como o método *fit*, especificando o número de épocas de treinamento desejado, neste caso 20 foram suficientes, o que é mostrado no Programa 3.25.

```
1 model.fit(x_train, y_train, epochs=20)
2
3 # avaliando dados de treinamento
4 model.evaluate(x_train, y_train, verbose=2)
5 # avaliando os dados de teste
6 model.evaluate(x_test, y_test, verbose=2)
7
8 # prevendo a partir dos dados de teste
9 y_train_pred = np.argmax(model.predict(x_train), axis=-1)
10 y_test_pred = np.argmax(model.predict(x_test), axis=-1)
11
12 # usando a minha classe de validação que mostra a matriz de confusão
13 score_test = Scores(y_test, y_test_pred)
14 score_test.exibir_grafico("Dados de teste")
```

**Programa 3.25:** *Trecho do script* mnist\_keras.py

Nesse Programa também está a avaliação da rede, para o conjunto de treino e para o conjunto de teste. Os resultados obtidos após 20 épocas de treinamento foram 99.0% de acurácia para o conjunto de treino e 89.7% para o conjunto de teste.

<sup>8</sup>https://keras.io/api/optimizers/

<sup>&</sup>lt;sup>9</sup>https://keras.io/api/optimizers/sgd/

Por fim podemos fazer previsões com a rede treinada, nesse caso a API possui o método *predict* que irá retornar os valores da camada de saída, ou seja, as probabilidades de cada imagem pertencer à uma das 10 classes informadas durante o treinamento.

Nas últimas linhas do Programa 3.25, está a lógica de obter a classificação predita para o conjunto de teste; utiliza a função *argmax* para obter a classe que obteve a probabilidade máxima. E por fim exibe a matriz de confusão dessa predição, o que está na Figura 3.12.



**Figura 3.12:** *Matriz de confusão, função de perda e acurácia do conjunto de teste da base MNIST* 8 × 8 *pixels, utilizando a API Keras.* 

Vemos que a API produz melhores resultados, levando em conta a mesma base de dados, a mesma arquitetura de rede e o mesmo algoritmo de treinamento. A diferença será possivelmente devida a alguma estratégia interna de implementação, a princípio oculta aos usuários, que faz com que os resultados sejam melhores.

Mesmo assim, como não utilizamos diretamente outros recursos de melhoria disponíveis, ainda é possível notar o *overfitting*, dado que a acurácia no conjunto de teste permanece menor que a acurácia no conjunto de treino.

A seguir, testamos com a versão oficial da base de dados, de dimensão maior de pixels  $(28 \times 28)$ , o que é possível já que a biblioteca está implementada com muita eficiência e funciona bem para bases maiores mesmo num ambiente pessoal de computação. O código está na íntegra no Programa 3.26.

```
1 # obter os dados
2 mnist = fetch_openml('mnist_784', version=1) # versao 28x28
3 # definição do modelo
4 model = tf.keras.Sequential()
5 layers = tf.keras.layers
6 model.add(layers.Flatten(input_shape=(28, 28)))
7 model.add(layers.Dense(512, activation='elu'))
8 model.add(layers.Dense(256, activation='elu'))
9 model.add(layers.Dense(128, activation='elu'))
10 model.add(layers.Dense(10, activation='softmax'))
11 # gerar o modelo
12 model.compile(optimizer=keras.optimizers.SGD(lr=0.001),
                  loss='sparse_categorical_crossentropy', metrics=['accuracy'])
14 # treinar e prever
15 model.fit(x_train, y_train, epochs=15)
16 model.evaluate(x_train, y_train, verbose=2)
17 model.evaluate(x_test, y_test, verbose=2)
18 y_pred = np.argmax(model.predict(x), axis=-1)
19 # validar e medir desempenho
20 score = Scores(y_test, y_pred)
21 score.exibir_grafico("Dados de teste")
```

**Programa 3.26:** *Trecho do script* mnist\_keras.py

A importação da base é feita agora usando outra função da biblioteca *sklearn*. A seguir, os dados são divididos entre os conjuntos de treino e de teste, com as listas x\_train, x\_test e y\_train, y\_test contendo os pixels e as classificações respectivamente, como antes.

Dessa vez, a rede é criada de acordo com o tamanho da base utilizada, como a camada de entrada é bem maior, já que são  $28 \times 28 = 784$  pixels. Criamos 3 camadas ocultas, com os valores progressivamente menores, mas usando ainda a mesma estrutura densa e com a camada final novamente com 10 neurônios representando os diferentes algarismos.

Por fim, obtemos da mesma forma que no caso anterior, a classificação predita para o conjunto de teste. Dessa vez os resultados são 99.9% de acurácia no conjunto de treino e 96.4% de acurácia no conjunto de teste, conforme pode ser visto na Figura 3.13, junto com a matriz de confusão.

É notável a eficiência da API em comparação à nossa implementação simples. A rede é treinada em menos de 2 minutos, mesmo sendo utilizada a base MNIST original que possui muito mais pixels e também muito mais imagens, 60 mil em comparação às 2 mil da base menor utilizada anteriormente.

Além disso a acurácia final do conjunto de treino é praticamente perfeita, e a acurácia do conjunto de treino, apesar de muito melhor em relação ao *perceptron* implementado, ainda está relativamente menor do que a acurácia do treino. Isto indica que mesmo na versão *Keras* do *perceptron* existe o problema de *overfitting*, ainda que em menor intensidade.

A estratégia utilizada no contexto de *deep-learning* é sobretudo de tentativa e erro, e conforme um cientista de dados vai fazendo isso muitas vezes vai construindo conhecimentos sobre qual arquitetura usar para um problema e qual otimização funciona melhor,



**Figura 3.13:** *Matriz de confusão, função de perda e acurácia do conjunto de teste da base MNIST* 28 × 28 *pixels, utilizando a API Keras.* 

uma vez que isso irá sempre variar de acordo com a base de dados utilizada, seja para classificação seja para regressão.

Uma tentativa recente de melhora nessa estratégia foi a criação de uma biblioteca cujo objetivo é o de justamente testar entre diversas arquiteturas e demais parâmetros de criação de uma rede neural, qual a que se sairá melhor para um dado conjunto de dados e objetivo de aprendizagem. Essa biblioteca é chamada de *AutoKeras* e pertence à essa nova vertente de *deep-learning* conhecida como AutoML (*Automated Machine Learning*).

Os objetivos da AutoML, segundo Andre Ye (YE, 2020), são tornar o *deep-learning* mais acessível para o aprendizado de todos os entusiastas, e acelerar o desenvolvimento de pesquisas nessa área, para tornar a criação de conhecimentos mais sólidos e gerar mais compreensão e interpretabilidade para modelos de redes neurais.

Em seu artigo, Andre Ye (YE, 2020) demostra como instalar e utilizar o *AutoKeras*. Resumidamente, o que fazemos é fornecer uma base de dados, e ela irá fazer todo o trabalho de escolha da arquitetura e a otimização dos parâmetros, e ao final retornará um objeto da API Keras, que poderá ser usado tanto para tarefas de classificação quanto de regressão. Uma desvantagem a ser considerada é o tempo de processamento da biblioteca *AutoKeras*, que pode ser longo, dado a quantidade de arquiteturas disponíveis e o conjunto de parâmetros de cada uma.

Dessa forma, para problemas de menor escala, tanto de quantidade de dados utilizada quanto de poder computacional disponível, o que inclui o que iremos fazer a seguir na previsão de séries temporais, é mais viável testar dentre alguns poucos parâmetros previamente escolhidos a partir da experiência de outros cientistas de dados, o que implica num tempo consideravelmente menor de processamento.

# Capítulo 4

### Séries temporais

O segundo objetivo deste trabalho é testar a utilização das redes neurais na previsão de séries temporais financeiras, e para isso são apresentados neste capítulo os conceitos básicos de séries temporais. Também são discutidos brevemente os modelos tradicionais de análise e descrição das séries, ou de previsões de valores futuros, de acordo com o objetivo do estudo. Tais modelos são, por exemplo, baseados em médias móveis, tendências e sazonalidades presentes nos dados.

De acordo com Pedro A. Morettin e Clélia M C. Toloi (MORETTIN e TOLOI, 2019), uma série temporal é qualquer conjunto de observações ordenadas no tempo. São exemplos: valores diários de poluição de uma cidade, valores mensais de temperatura, índices diários da bolsa de valores, número médio anual de manchas solares e registro de marés em portos e estuários.

A análise e predição de cotações de moedas estrangeiras, índices de ações, entre outros dados econômicos, constituem uma área essencial da economia e que exige a avaliação de um número enorme de fatores, muitos dos quais de características humanas e portanto imprevisíveis em sua exatidão, sendo descritos como exemplos de fenômenos *estocásticos*, isto é, aleatórios.

As séries temporais podem ser **contínuas** em função do tempo, como é o exemplo de registros de marés, ou **discretas** como são todos os outros exemplos citados, ou seja, os valores são tomados a N intervalos regulares de um período T considerado, tal que  $N = T/\Delta t$ . Na prática, para o uso em modelos, segundo explica Morettin e Toloi (MORETTIN e Toloi, 2019), as séries contínuas devem ser discretizadas em intervalos, uma vez que é esse tipo de dado que poderá ser processado num computador.

Pode-se classificar a análise das séries temporais de acordo com os objetivos do estudo. Morettin e Toloi (Morettin e Toloi, 2019) listam alguns objetivos principais:

- Investigar o mecanismo gerador da série temporal, procurando descrevê-la a partir de uma função teórica.
- Fazer previsões de valores futuros da série, seja tanto a curto quanto a longo prazo.
- Descrição da série, em termos de tendências, variações sazonais, ou então análises

descritivas por meio de histogramas, médias móveis, etc.

 Procurar por periodicidades relevantes nos dados, quando não fazemos suposições de periodicidades comuns como semanais, mensais ou anuais, por exemplo.

Neste contexto, Morettin e Toloi (Morettin e Toloi, 2019) definem que um modelo é uma descrição probabilística de uma série temporal, cabendo ao cientista de dados decidir a melhor utilização desse modelo segundo seus objetivos.

Além disso eles afirmam que qualquer tarefa de previsão, sendo este o objetivo, será baseada em algum procedimento computacional que calcula uma estimativa do futuro baseada na otimização de uma função de perda calculada sobre combinações lineares de valores do passado. É a união de um modelo probabilístico com a otimização de uma função de perda que define um **método de previsão**.

Há dois tipos básicos de modelos que lidam com séries temporais, de acordo com Morettin e Toloi (Morettin e Toloi, 2019), que são os modelos **paramétricos**, onde a análise é feita no *domínio temporal* com suposições e parâmetros a serem estimados, e os modelos **não-paramétricos**, em que a análise é feita no *domínio das frequências* com um enfoque mais descritivo e sem muitas suposições.

Dentre os modelos paramétricos, destacam-se os modelos *ARIMA* (autorregressivos integrados de médias móveis), disponíveis como bibliotecas das linguagens *Python* e *R*, enquanto que entre os modelos não-paramétricos destaca-se a análise espectral, também denominada de análise de Fourier, já que as ferramentas utilizadas são as transformadas de Fourier e suas variações.

#### 4.1 Processos estocásticos

De acordo com Morettin e Toloi (Morettin e Toloi, 2019), um **processo estocástico** é uma família  $Z = \{Z(t), t \in \mathcal{T}\}$ , em que o conjunto  $\mathcal{T}$  é normalmente tomado como  $\mathcal{T} = \mathbb{Z}$  ou  $\mathcal{T} = \mathbb{R}$ , tal que, para cada  $t \in \mathcal{T}$ , Z(t) é uma variável aleatória (v.a.).

Portanto, um processo estocástico é uma família de variáveis aleatórias reais  $Z(t), t \in \mathcal{T}$ , definidas num mesmo espaço de probabilidades  $(\Omega, \mathcal{A}, \mathcal{P})$ , e portanto Z(t) é uma função de dois argumentos, isto é,  $Z(t, \omega), t \in \mathcal{T}, \omega \in \Omega$ .

Para cada  $t \in \mathcal{T}$  fixado,  $Z(t, \omega)$  será uma v.a. com uma distribuição de probabilidades. Pode haver uma função de densidade de probabilidade diferente para cada  $t \in \mathcal{T}$ , mas normalmente assume-se a mesma, conforme anotado por Morettin e Toloi (MORETTIN e TOLOI, 2019).

Por outro lado, para cada  $\omega_i \in \Omega$  fixado, denotamos  $Z(t, \omega_i)$  por  $Z^{(i)}(t)$  como uma função de t, denominada de **trajetória** do processo, ou simplesmente de *série temporal*. Isto define uma série temporal como uma trajetória ou realização de um processo estocástico, o que pode ser melhor ilustrado pela Figura 4.1, abaixo.

Estaremos interessados em processos univariados tanto em  $\mathcal{T}$  quanto em  $\Omega$ , isto é, séries temporais de apenas um argumento temporal, e com um evento  $\omega \in \Omega$  fixado e



Figura 4.1: Processo estocástico como uma família de trajetórias, isto é, de séries temporais.ª

portanto omitido, o que simplifica a notação de  $\{Z^{(i)}(t), t \in \mathcal{T}\}$  para  $\{Z(t), t \in \mathcal{T}\}$ . Estes conjuntos são o que denominamos de *séries temporais univariadas*.

Além disso, para as séries e modelos aqui tratados iremos restringir  $\mathcal{T}=\mathbb{Z}$ , assim omitiremos a definição de um domínio geral e fixaremos a notação como sendo  $\{Z(t), t \in \mathbb{Z}\}$  ou ainda  $\{Z_t, t \in \mathbb{Z}\}$ , para denotar as séries temporais discretas univariadas, que também são equidistantes no domínio temporal. A partir de agora, serão chamadas simplesmente de **séries temporais**, pois são os únicos processos estocásticos de interesse neste trabalho.

#### 4.1.1 Definições

Seguem algumas definições que nos levarão a classes específicas de processos estocásticos, com as quais lidaremos daqui para frente. Sejam  $t_1, \ldots, t_n$  elementos quaisquer de  $\mathcal{T}$ , daí se conhecermos as **distribuições finito-dimensionais** de Z dadas por:

$$F(z_1, \dots, z_n; t_1, \dots, t_n) = P\{Z_{t_1} \le z_1, \dots, Z_{t_n} \le z_n\}, \qquad (4.1)$$

teremos então que o processo estocástico  $Z = \{Z_t, t \in \mathcal{T}\}$  estará especificado, para todo  $n \ge 1$ . Tais funções de distribuição devem, de acordo com Morettin e Toloi (MORETTIN e Toloi, 2019) satisfazer as seguintes condições:

(i) (Simetria) Para qualquer permutação  $j_1, \dots, j_n$  dos índices  $1, \dots, n$ :

$$F(z_{i_1}, \ldots, z_{i_n}; t_{i_1}, \ldots, t_{i_n}) = F(z_1, \ldots, z_n; t_1, \ldots, t_n)$$
.

(ii) (Compatibilidade) Para m < n:

$$z_{m+1} \longrightarrow \infty, \ldots, z_n \longrightarrow \infty F(z_1, \ldots, z_m, z_{m+1}, \ldots, z_n; t_1, \ldots, t_n) = F(z_1, \ldots, z_m; t_1, \ldots, t_m).$$

Segundo Morettin e Toloi (Morettin e Toloi, 2019), pode-se demonstrar que qualquer

 $<sup>^</sup>a$ de (Morettin e Toloi, 2019), pág 27.

conjunto de funções de distribuição da forma (4.1) satisfazendo as duas condições acima define um processo estocástico Z sobre  $\mathcal{T}$ .

Em termos práticos, não se conhecem as funções de distribuição finito-dimensionais de um processo Z sobre  $\mathcal{T}$ . Assim a abordagem mais utilizada, conforme Morettin e Toloi (Morettin e Toloi, 2019) é tentar determinar os momentos, principalmente os de primeira e segunda ordem, das v.a.'s  $Z_{t_1}, \ldots, Z_{t_n}$ .

O momento de primeira ordem, isto é, a **média** de Z é definida por:

$$\mu(1;t) = \mu(t) = E\{Z(t)\} = \int_{-\infty}^{\infty} z f(z;t) dz, t \in \mathcal{T}.$$
 (4.2)

Define-se, a partir dos momentos de primeira ordem, a **função de autocovariância** (*facv*) de *Z*:

$$\gamma(t_1, t_2) = \mu(1, 1; t_1, t_2) - \mu(1; t_1)\mu(1; t_2) = \text{Cov}\{Z(t_1), Z(t_2)\}, t_1, t_2 \in \mathcal{T}.$$
(4.3)

Em particular, quando  $t = t_1 = t_2$ , define-se a função de **variância** de Z, configurando um momento de segunda ordem, por:

$$\gamma(t,t) = \text{Var}\{Z(t)\} = \text{E}\{Z^2(t)\} - \text{E}^2\{Z(t)\}, t \in \mathcal{T} . \tag{4.4}$$

#### 4.1.2 Processos estacionários

Um processo  $Z = \{Z(t), t \in \mathcal{T}\}$  é dito **estacionário** se suas características para qualquer tempo  $t \in \mathcal{T}$  não dependem da escolha da origem do domínio temporal, isto é, as características de  $Z(t+\tau)$  para todo  $\tau$ , são as mesmas de Z(t). Morettin e Toloi (Morettin e Toloi, 2019) nomeia o parâmetro  $\tau$  de "lag", e dá como exemplo de processo estacionário as medidas de vibrações de um avião em regime estável de vôo.

Formalmente, um processo estocástico  $Z = \{Z(t), t \in \mathcal{T}\}$  é **fracamente estacionário** ou estacionário de segunda ordem, se e somente se:

- (i)  $E\{Z(t)\} = \mu(t) = \mu, \quad \forall \ t \in \mathcal{T};$
- (ii)  $E\{Z^2(t)\}<\infty$ ,  $\forall t\in \mathcal{T}$ ;
- (iii)  $\gamma(t_1, t_2) = \text{Cov}\{Z(t_1), Z(t_2)\}$  é uma função de  $|t_1 t_2|$ ,  $\forall t_1, t_2 \in \mathcal{T}$ .

Dessa forma, podemos dizer que processos estacionários de segunda ordem desenvolvem-se em torno de uma média constante, ou seja, ao redor de uma mesma reta horizontal. É possível citar dois tipos de não-estacionariedade.

Existem os processos *homogêneos*, que apresentam uma estacionariedade inicial mas que depois sofrem uma mudança de tendência e então tornam-se estacionárias novamente, mas não necessariamente ao redor da mesma média inicial, e que segundo Morettin e

<sup>&</sup>lt;sup>1</sup>jargão em inglês que em português pode significar latência ou atraso.

Toloi (MORETTIN e TOLOI, 2019) podem se tornar estacionários se tomarmos diferenças sucessivas da série original.

Tomar diferenças de uma série Z(t) corresponde a criar uma nova série a partir da original. A primeira diferença de Z(t) é definida por:

$$\Delta Z(t) = Z(t) - Z(t-1). \tag{4.5}$$

Recursivamente, a partir dessa primeira definição, podemos escrever a n-ésima diferença de Z(t) como sendo:

$$\Delta^{n} Z(t) = \Delta[\Delta^{n-1} Z(t)]. \tag{4.6}$$

Adicionalmente, aplicar a transformação não-linear  $\log Z(t)$  também pode ser útil para transformar uma série não-estacionária em estacionária. De acordo com Morettin e Toloi (Morettin e Toloi, 2019), a transformação logarítmica é muito usada em séries econômicas e será apropriada se a variância da série for proporcional à média.

Para exemplificar esses conceitos, considere a Figura 4.2. Temos à esquerda uma série temporal que é uma realização de um processo não-estacionário homogêneo, a saber, índices mensais da bolsa de valores Ibovespa. À direita, foi aplicado o logaritmo da primeira diferença da série, o que gerou uma série estacionária.



**Figura 4.2:** Esquerda: Índices mensais do Ibovespa. Direita: Log-diferença do Ibovespa. <sup>a</sup>

O segundo tipo de não-estacionariedade é chamada de *explosiva*. Um exemplo de um processo não-estacionário explosivo é uma série temporal que descreve o crescimento de uma população de bactérias. Não trataremos de processos deste tipo neste trabalho.

#### 4.1.3 Função de autocorrelação

Seja  $\{X_t, t \in \mathbb{Z}\}$  um processo estacionário real com tempo discreto, de média  $\mu = 0$  e  $facv \ \gamma_\tau = \mathbb{E}\{X_t, X_{t+\tau}\}$ . Sob essas condições, Morettin e Toloi (MORETTIN e TOLOI, 2019) demonstram que a  $facv \ \gamma_\tau$  satisfaz as seguintes propriedades:

<sup>&</sup>lt;sup>a</sup>Extraído de (Morettin e Toloi, 2019), pág 7.

- (i)  $\gamma_0 > 0$ ,
- (ii)  $\gamma_{-\tau} = \gamma_{\tau}$ ,
- (iii)  $|\gamma_{\tau}| \leq \gamma_0$ ,
- (iv)  $\sum_{j=1}^n \sum_{k=1}^n a_j a_k \gamma_{\tau_j \tau_k} \ge 0 \quad \forall a_1, \dots, a_n \in \mathbb{R} \text{ e } \tau_1, \dots, \tau_n \in \mathbb{Z},$
- (v)  $\lim_{|\tau|\to\infty} \gamma_{\tau} = 0$ .

Define-se a **função de autocorrelação** (*fac*) de um processo estocástico por:

$$\rho_{\tau} = \frac{\gamma_{\tau}}{\gamma_0} \ . \tag{4.7}$$

A fac de um processo estacionário possui todas as propriedades da facv acima listadas e, em particular,  $\rho_0 = 1$ . O mais interessante é a ressalva de Morettin e Toloi (MORETTIN e TOLOI, 2019) de que a recíproca é verdadeira, isto é, dado um processo cuja fac ou facv possuem essas propriedades, então ele é estacionário. Dessa forma, temos um arcabouço teórico que nos permite investigar a existência da propriedade de estacionariedade de uma dada série temporal.

#### 4.1.4 Exemplos de processos estocásticos

O exemplo mais simples é o de uma sequência aleatória. Uma sequência de v.a. definidas num mesmo espaço amostral  $\Omega$  dada por  $\{X_n, n = 1, 2, ...\}$  é um processo estocástico com parâmetro discreto, ou seja,  $\mathcal{T} = \{1, 2, ...\}$ . Para todo  $n \ge 1$  temos que:

$$P\{X_1 = a_1, \dots, X_n = a_n\} = P\{X_1 = a_1\} \times P\{X_2 = a_2 | X_1 = a_1\}$$
$$\times \dots \times P\{X_n = a_n | X_1 = a_1, \dots, X_{n-1} = a_{n-1}\}.$$

Se simplificarmos esse caso geral para o caso de uma sequência  $\{X_n, n \ge 1\}$  de v.a.'s mutuamente independentes então:

$$P\{X_1 = a_1, ..., X_n = a_n\} = P\{X_1 = a_1\} \times ... \times P\{X_n = a_n\}$$
.

E se, além disso, todas as v.a. dessa sequência tiverem a mesma distribuição de probabilidades, elas serão independentes e identicamente distribuídas (i.i.d.), o que configura  $X_n = \{X_n, n \ge 1\}$ , uma sequência de v.a. i.i.d., como um processo estocástico estacionário.

Definindo  $E\{X_n\} = \mu$ ,  $Var\{X_n\} = \sigma^2$ , para todo  $n \ge 1$ , teremos que a facv de  $X_n$  será dada por:

$$\gamma_{\tau} = \operatorname{Cov}\{X_n, X_{n+\tau}\} = \begin{cases} \sigma^2, & \text{se } \tau = 0; \\ 0, & \text{se } \tau \neq 0. \end{cases}$$
(4.8)

E, a *fac* de  $X_n$ , será tal que:

$$\rho_{\tau} = \begin{cases}
1, & \text{se } \tau = 0; \\
0, & \text{se } \tau \neq 0.
\end{cases}$$
(4.9)

Um segundo exemplo de processo estocástico, e muito mais útil para os estudos de séries temporais, é o de **ruído branco**. Morettin e Toloi (MORETTIN e TOLOI, 2019) definem que a sequência  $\{\epsilon_t, t \in \mathbb{Z}\}$  é um *ruído branco discreto* se as v.a.  $\epsilon_t$  não são correlacionadas, ou seja,  $\text{Cov}\{\epsilon_t, \epsilon_s\} = 0, t \neq s$ .

Esse processo será estacionário se  $E\{\epsilon_t\} = \mu_\epsilon$  e  $Var\{\epsilon_t\} = \sigma_\epsilon^2$ , para todo  $t \in \mathbb{Z}$ . Dessa forma, as *facv* e *fac* de um ruído branco serão dadas, respectivamente e analogamente, por (4.8) e (4.9). Tipicamente representa-se o gráfico de uma função de autocorrelação conforme o exemplo do *fac* de um ruído branco, dado na Figura 4.3.



**Figura 4.3:** Função de autocorrelação (fac) de um ruído branco.<sup>a</sup>

Normalmente, é dito por Morettin e Toloi (MORETTIN e TOLOI, 2019) que, sem perda de generalidade, podemos assumir que a média de um ruído branco é zero. E, assim, escrevemos:

$$\epsilon_t, t \in \mathbb{Z} \sim RB(0, \sigma_{\epsilon}^2)$$
.

Se, as v.a.'s de  $\epsilon_t$  forem independentes, então é um resultado de probabilidade conhecido e citado por Morettin e Toloi (Morettin e Toloi, 2019) que serão também não correlacionados. Um ruído branco, como definido acima, e com a propriedade adicional da independência, é um terceiro exemplo de um processo estocástico, chamado de *processo puramente aleatório*. Nesse caso, escrevemos:

$$\epsilon_t, t \in \mathbb{Z} \sim i.i.d.(0, \sigma_{\epsilon}^2)$$
.

Um exemplo de processo estocástico que podemos citar, menor formal e mais físico, é o *passeio aleatório*, que fazem por exemplo, a modelagem de um sistema de partículas

<sup>&</sup>lt;sup>a</sup>Extraído de (Morettin e Toloi, 2019), pág 35.

livres, como as moléculas de um gás ideal. E, outro exemplo, análogo, é o do *movimento browniano*, que modela, por exemplo, como partículas de poeira movimentam-se num fluído visto como um conjunto de muitas moléculas ligadas entre si, como a água no estado líquido.

#### 4.2 Os modelos ARIMA

Já foi citado acima que existem os modelos paramétricos, que lidam com as séries no domínio temporal, e os modelos não-paramétricos que lidam com o **espectro** da série, isto é, o conjunto das frequências da série, onde as componentes desse espaço de frequências são ortogonais entre si, o que garante a não correlação entre as frequências, diferindo dos valores sob o domínio temporal que quase sempre são correlacionados entre si, conforme explicado por Morettin e Toloi (MORETTIN e TOLOI, 2019).

Se temos uma série temporal discreta  $Z = \{Z_t, t \in \mathbb{Z}\}$ , que assumimos ser um processo estacionário, assumindo também que as autocovariâncias  $\gamma_\tau$  são tais que  $\sum_{\tau=-\infty}^{\infty} |\gamma_\tau| < \infty$ , então o espectro de Z, isto é, a **transformada de Fourier** de Z será:

$$f(\omega) = \frac{1}{2\pi} \sum_{\tau = -\infty}^{\infty} \gamma_{\tau} e^{-i\omega\tau}, \quad -\pi \le \omega \le \pi . \tag{4.10}$$

Ora, isto permite uma definição alternativa para a função de autocovariância (facv), como sendo a *anti-transformada* de Z, pois:

$$\gamma_{\tau} = \int_{-\pi}^{\pi} e^{i\omega\tau} f(\omega) d\omega, \quad \tau \in \mathbb{Z} . \tag{4.11}$$

Embora úteis para a construção de modelos de engenharia e física, Morettin e Toloi (Morettin e Toloi, 2019) ressaltam que usar o espectro ou a *facv* para modelar uma série temporal é mais factível no contexto de processos industriais, e que o objetivo de seu uso em outros contextos, como o de séries financeiras, é o de auxiliar na estimação dos parâmetros de modelos como o ARIMA. Isto vem do fato de que os modelos paramétricos têm comportamentos esperados, com valores de *facv* muito bem definidos em alguns casos e que podem ser testados e usados como uma validação do modelo que se pretende utilizar para estimar a série temporal de estudo.

Os modelos ARIMA correspondem a um conjunto de modelos, alguns mais básicos e outros que são formados pelo agrupamento de 2 ou 3 dos modelos básicos. A metodologia mais usada, inclusive por Morettin e Toloi (MORETTIN e TOLOI, 2019), para a análise desses modelos paramétricos é aquela conhecida como abordagem de Box e Jenkins (Box, Jenkins et al., 2016).

Essa metodologia é análoga àquela utilizada no contexto de aprendizado de máquina, seguindo um ciclo iterativo composto de quatro estágios. O primeiro estágio é a *especificação* de uma classe de modelos, neste caso, os modelos ARIMA.

O segundo estágio é a identificação de um modelo específico, o que será feito após

análise da função de autocorrelação e de outros critérios. O terceiro estágio consiste na estimação dos parâmetros do modelo escolhido.

Ao final do ciclo temos a *verificação* do modelo ajustado, por meio de uma análise de resíduos, de forma a avaliar se este é de fato um modelo adequado para os objetivos do estudo, como por exemplo, a previsão de valores futuros da série.

Seguem algumas definições úteis para os modelos que serão descritos a seguir. Temos o operador *translação para o passado B*, que será definido como:

$$BZ_t = Z_{t-1}, \quad B^m Z_t = Z_{t-m}.$$

A seguir, o operador *translação para o futuro F*, definido por:

$$FZ_t = Z_{t+1}, \quad F^m Z_t = Z_{t+m}.$$

O operador *diferença*, denotado por  $\Delta$  e definido por:

$$\Delta Z_t = Z_t - Z_{t-1} = (1 - B)Z_t . {(4.12)}$$

E o operador *soma*, denotado por *S* e definido por:

$$SZ_t = Z_t + Z_{t-1} + Z_{t-2} + \dots = (1 + B + B^2 + \dots)Z_t$$
.

Combinando as expressões acima, resulta que:

$$S = \Lambda^{-1}$$
.

#### 4.2.1 Processo linear geral

O modelo mais básico, assume que a série temporal é gerada por um sistema linear, que possui como entradas ruídos brancos, já caracterizados acima como processos estocásticos. Uma série  $Z_t$  é dita um **processo linear** se for definida como:

$$Z_t = \mu + a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \dots = \mu + \psi(B) a_t , \qquad (4.13)$$

em que  $a_t \sim RB(0, \sigma_a^2)$ , ou seja, são ruídos brancos,  $\mu$  é um parâmetro que define o nível da série e  $\psi$  é a função de transferência definida por:

$$\psi(B) = 1 + \psi_1 B + \psi_2 B^2 + \dots$$

Escrevendo  $\tilde{Z}_t$  =  $Z_t$  –  $\mu$ , simplifica-se a notação para:

$$\tilde{Z}_t = \psi(B)a_t . (4.14)$$

A função de transferência é composta de uma sequência de *pesos*,  $\{\psi_j, j \ge 1\}$ , que, se convergir a um número real, dizemos que a função é estável, o que nos leva à seguinte **proposição** feita por Morettin e Toloi (Morettin e Toloi, 2019) e demonstrada por Box e Jenkins (Box, Jenkins *et al.*, 2016):

Um processo linear será estacionário  $\iff$  a série  $\psi(B)$  convergir quando  $|B| \le 1$ . (4.15)

Com isto define-se o conceito de raízes de equações envolvendo operadores (como  $\psi(B)$ ) dentro ou fora do *círculo unitário*, abstraindo a condição acima para  $B^p$ , com  $p \ge 1$ . Pode-se observar a validade dessa proposição tomando a esperança da expressão (4.13):

$$E(Z_t) = \mu + E\left(a_t + \sum_{j=1}^{\infty} \psi_j a_{t-j}\right).$$

Se a série dos pesos acima convergir, segue o resultado descrito acima, já que  $E(a_t) = 0$  para todo t já que os termos  $a_t$  são ruídos brancos, e assim  $E[\tilde{Z}_t] = 0$ . Neste caso, o parâmetro  $\mu$  será a média do processo. Caso contrário,  $\mu$  não terá significado específico e apenas representará o nível da série em algum intervalo de tempo observado.

Uma forma alternativa de escrever (4.13), definida por Morettin e Toloi (MORETTIN e Toloi, 2019), é como uma soma ponderada de valores passados, já utilizando a notação simplificada (4.14):

$$\tilde{Z}_t = \sum_{j=1}^{\infty} \phi_j \tilde{Z}_{t-j} + a_t . \tag{4.16}$$

Assim, nessa notação temos um outro conjunto de pesos, denotados por  $\phi_j$ , com os quais pode-se definir o operador:

$$\phi(B) = 1 - \sum_{j=1}^{\infty} \phi_j B^j . \tag{4.17}$$

A partir do qual, pode-se simplificar a notação de (4.16) para:

$$\phi(B)\tilde{Z}_t = a_t . {4.18}$$

Assim, combinando (4.18) e (4.14), obtemos uma relação entre os operadores definidos para as duas notações de um processo linear geral:

$$\phi(B) = \psi^{-1}(B) . \tag{4.19}$$

Esse tipo de modelo é um ponto de partida, do qual complicações são adicionadas para criar os outros modelos, mas que já serve para modelar, por exemplo, passeios aleatórios. Morettin e Toloi (Morettin e Toloi, 2019) definem alguns conceitos adicionais como a

estacionariedade e a invertibilidade desses processos, mas que configuram detalhes que fogem do escopo deste trabalho.

#### 4.2.2 Modelos autorregressivos (AR)

Tomando  $\phi_j = 0$  para j > p em (4.16), obtém-se um *processo autorregressivo de ordem p*, denotado por AR(p) e escrito por:

$$\tilde{Z}_{t} = \phi_{1}\tilde{Z}_{t-1} + \phi_{2}\tilde{Z}_{t-2} + \dots + \phi_{p}\tilde{Z}_{t-p} + a_{t} . \tag{4.20}$$

Definindo o operador autorregressivo de ordem *p* por:

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p ,$$

pode-se escrever (4.20) como:<sup>2</sup>

$$\phi(B)\tilde{Z}_t = a_t . {(4.21)}$$

Tomando o exemplo mais simples possível de um modelo AR, poderemos investigar a estacionariedade desse modelo. Quando  $\tilde{Z}_t \sim AR(1)$ :

$$\tilde{Z}_t = \phi \tilde{Z}_{t-1} + a_t , \qquad (4.22)$$

ou, usando a notação de (4.21), nesse caso:

$$(1-\phi B)\tilde{Z}_t=a_t\;.$$

o que nos diz que nesse modelo, um valor da série num tempo t depende apenas do valor da série e de um ruído no tempo anterior.

Substituindo recursivamente  $\tilde{Z}_{t-1}$ ,  $\tilde{Z}_{t-2}$ , ... em (4.22), e lembrando da definição da função de transferência em (4.13), obtemos:

$$\tilde{Z}_t = \sum_{j=0}^{\infty} \phi^j a_{t-j} = \psi(B) a_t.$$

Por (4.19) e (4.22) chegamos em:

$$\psi(B) = [\phi(B)]^{-1} = (1 - \phi B)^{-1}$$
.

De acordo com a Proposição em (4.15),  $Z_t$  será estacionária se a série presente na definição de  $\psi(B)$  em (4.17) convergir a um número real quando  $|B| \le 1$ . Pela expressão anterior, deveremos ter também  $|\phi| < 1$ . Isto significa dizer que a raiz da equação  $\phi(\hat{B}) = 0$  estará *fora do círculo unitário*, pois  $\hat{B} = \phi^{-1} > 1$ .

<sup>&</sup>lt;sup>2</sup>Neste caso, o operador  $\phi(B)$  é finito

#### 4.2.3 Modelos de médias móveis (MA)

Considerando o processo linear em (4.13), e supondo que  $\psi_j = 0$  quando j > q, obtemos um *processo de médias móveis de ordem q*, denotado por MA(q), e que, usando a notação  $\theta_j := -\psi_j$ ,  $\forall j > 0$ , pode ser escrito da forma:

$$\tilde{Z}_t = a_t - \theta_1 a_{t-1} - \dots - \theta_q a_{t-q} = (1 - \theta_1 B - \dots - \theta_q B^q) a_t. \tag{4.23}$$

Ou seja, definindo o operador de médias móveis de ordem q, MA(q) por:

$$\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q ,$$

escrevemos (4.23) simplificadamente como:

$$\tilde{Z}_t = \theta(B)a_t . (4.24)$$

Considerando o modelo mais simples, ou seja, MA(1), uma série assim modelada seria escrita:

$$\tilde{Z}_t = a_t - \theta_1 a_{t-1} = (1 - \theta_1 B) a_t.$$

Novamente, temos que esta é uma série cujo valor em qualquer tempo só depende do valor no tempo anterior e de um ruído. Aplicando o mesmo raciocínio que foi utilizado no modelo AR(1), utilizando a proposição (4.15), a série  $Z_t$  será estacionária quando as raízes da equação  $\theta(\hat{B}) = 0$  se encontrarem fora do círculo unitário.

#### 4.2.4 Modelos autorregressivos e de médias móveis (ARMA)

Como o nome já indica, podemos combinar os dois modelos num só, assumindo que uma série seja escrita como a soma das componentes autorregressivas com as de médias móveis, resultando num modelo ARMA(p, q):

$$\tilde{Z}_{t} = \phi_{1} \tilde{Z}_{t-1} + \dots + \phi_{p} \tilde{Z}_{t-p} + a_{t} - \theta_{1} a_{t-1} - \dots - \theta_{q} a_{t-q} . \tag{4.25}$$

Utilizando os operadores já respectivamente definidos, simplifica-se para:

$$\phi(B)\tilde{Z}_t = \theta(B)a_t . (4.26)$$

Analisando o modelo simples definido por ARMA(1, 1), a série em (4.25) é escrita:

$$\tilde{Z}_t = \phi_1 \tilde{Z}_{t-1} + a_t - \theta_1 a_{t-1} . {(4.27)}$$

Substituindo-se recursivamente  $\tilde{Z}_{t-1}, \tilde{Z}_{t-2}, \dots$  nessa expressão, a série será escrita na forma de um processo linear, ou seja, um modelo de médias móveis de ordem infinita:

$$\tilde{Z}_t = \psi(B)a_t$$
.

Assim, Morettin e Toloi (Morettin e Toloi, 2019) mostram que, da mesma forma que no modelo AR(1), a série ARMA(1,1) será estacionária se a raíz da equação  $\phi(\hat{B})=0$  estiver fora do círculo unitário. Inclusive, vale a generalização para os modelos AR(p) e ARMA(p,q), que serão processos estacionários se as p raízes do polinômio autorregressivo estiverem todas fora do círculo unitário.

Essa generalização é bem útil quando temos que decidir se uma série dada é ou não estacionária. Há testes estatísticos específicos que testam, para uma série real, a hipótese nula que é a existência de raízes no círculo unitário, o que a configura como uma série não estacionária, contra a hipótese alternativa da não-existência de raízes unitárias, caracterizando-a então como uma série estacionária.

Dentre os testes de estacionariedade existentes, Morettin e Toloi (MORETTIN e TOLOI, 2019) apresentam-nos o teste de *Dickey e Fuller*, que utiliza uma estatística de teste com distribuição tabelada, e que será utilizado na parte prática do trabalho, a partir de bibliotecas disponíveis na linguagem *python*, durante a estimação dos modelos paramétricos para as séries temporais aqui estudadas.

#### 4.2.5 Os modelos integrados não-estacionários (ARIMA)

Todos os modelos até agora vistos são úteis para modelar séries estacionárias. Morettin e Toloi (MORETTIN e TOLOI, 2019) nos lembram que várias séries econômicas e financeiras não são estacionárias, mas tornam-se estacionárias após operações de diferenças, já definidas em (4.12).

Já vimos que as séries não-estacionárias podem ser do tipo homogêneas ou do tipo explosivas. Seja  $Z_t$  uma série representada por um modelo AR(1):

$$(1 - \phi B)\tilde{Z}_t = a_t .$$

A condição de estacionarie dade é  $|\phi|<1$ . Se  $\phi=1$  então a série é não-estacionária homogênea. Note que nesse caso:

$$(1-B)\tilde{Z}_t = \Delta \tilde{Z}_t = a_t ,$$

pela própria definição do operador diferença em (4.12), e assim torna-se estacionária.

Se, por outro lado,  $|\phi| > 1$ , é fácil ver pela expressão acima que a série será do tipo *explosivo*, já que cada termo será aumentado numa taxa maior do que 1, caracterizando um crescimento exponencial do valor da série.

Dessa forma, séries  $Z_t$  que, sendo diferenciadas d vezes tornam-se estacionárias, isto é, séries tais que  $\Delta^d \tilde{Z}_t = a_t$ , são chamadas de não estacionárias homogêneas, ou também de integradas de ordem d.

Se temos uma série  $W_t = \Delta^d Z_t$  estacionária³, então  $W_t$  pode ser ajustada por um modelo ARMA(p,q), isto é:

$$\phi(B)W_t = \theta(B)a_t.$$

Sendo  $W_t$  uma diferença de  $Z_t$ , isto torna  $Z_t$  uma integral de  $W_t$ . Dizemos, neste caso, que  $Z_t$  segue um modelo autorregressivo, integrado e de médias móveis ou ARIMA(p, d, q), escrito como:

$$\phi(B)\Delta^d Z_t = \theta(B)a_t . (4.28)$$

Assim, o operador  $\phi(B)\Delta^d$  é chamado de autorregressivo não-estacionário, de ordem p+d, onde d raízes são iguais a 1, isto é, sobre o círculo unitário, e as demais p raízes estarão fora do círculo unitário. Temos que a d-ésima diferença de  $Z_t$  pode ser representada por um modelo ARMA(p,q), estacionário.

# 4.2.6 Identificação dos modelos utilizando a função de autocorrelação

Com uma série real em mãos, queremos representá-la com algum dos modelos ARIMA vistos. Mas como determinar os parâmetros p, d e q? Morettin e Toloi (MORETTIN e TOLOI, 2019) consideram um procedimento em três passos.

O **primeiro passo** é verificar se há a necessidade de aplicar uma transformação nãolinear à série original, com o objetivo de estabilizar a sua variância, uma vez que, de acordo com Morettin e Toloi (Morettin e Toloi, 2019), é comum que em séries econômicas e financeiras existam tendências que causem um aumento da variância em função do tempo.

Uma das transformações mais usadas, nesse caso, é a logarítmica, ou uma versão geral dela, conhecida como *transformação de Box-Cox*. Os detalhes da transformação e o procedimento de como utilizá-la para estabilizar a variância de uma série temporal estão presentes no Apêndice B.

O **segundo passo**, é tomar diferenças da série, já transformada (se houver necessidade), o número de vezes que for necessário para torná-la estacionária. Este número de vezes será o parâmetro d do modelo ARIMA, de forma que a nova série,  $\Delta^d Z_t$  poderá ser dada por um modelo ARMA(p,q).

A escolha apropriada de d será feita com a ajuda do operador de diferenças, conforme explicado na seção anterior, de forma iterativa. Assim, aplicando na série original uma diferença, e se não identificarmos a presença de raízes unitárias, escolhemos d=1. Caso contrário, sabemos que a série diferenciada ainda não é estacionária, e portanto d>1.

Dessa forma tomamos outra diferença na série e verificamos a existência de raízes unitárias novamente. Se ele ainda apontar a existência de alguma raiz unitária, tomamos

<sup>&</sup>lt;sup>3</sup>Perceba que  $\Delta^d \tilde{Z}_t = \Delta^d Z_t$ 

nova diferença. Repetimos até que não haja mais evidência da presença de raízes unitárias. Isto é, tomamos d como a quantidade de diferenças que aplicamos na série de forma a torná-la estacionária.

Este é um procedimento delicado e de natureza estocástica, assim pode ser útil o uso de outra verificação conforme as diferenças vão sendo tomadas da série. Morettin e Toloi (MORETTIN e TOLOI, 2019) sugerem avaliarmos a variância da série diferenciada.

Quando a série é corretamente diferenciada, a variância irá diminuir, porém, um excesso de diferenças fará com que a variância volte a aumentar. Assim, um monitoramento do comportamento da variância pode ser útil para verificarmos quando devemos parar e assim definir o parâmetro *d* mais adequado.

Por fim, o **terceiro passo**, é estimar os parâmetros autorregressivos e de médias móveis, respectivamente *p* e *q*. Isto pode ser feito pela análise de estimativas da função de autocorrelação, e de uma versão alternativa desta, chamada de *autocorrelação parcial*, que será definida a seguir. É a análise do comportamentos dessas funções aplicadas à série de estudo, e a comparação com o comportamento das funções aplicadas aos modelos teóricos, que serão os guias para a escolha dos parâmetros do modelo.

O comportamento das funções de autocorrelação dos modelos AR(p), MA(q) e ARMA(p,q) são listados por Morettin e Toloi (MORETTIN e TOLOI, 2019) como segue:

- (i) A fac de um modelo AR(p) decai exponencialmente, ou de acordo com senoides amortecidas, possuindo uma extensão infinita de valores não-nulos.
- (ii) A fac de um modelo MA(q) é finita, no sentido que seu valor é zerado após o  $lag^4$  temporal de ordem q.
- (iii) A fac de um modelo ARMA(p, q) é infinita em extensão, e decai exponencialmente após o lag q-p.

Como pode ser complicada a análise de apenas a função de autocorrelação, Box e Jenkins (Box, Jenkins  $et\ al.$ , 2016) derivaram a **função de autocorrelação parcial** (facp) a partir da fac de um modelo AR(k), da seguinte maneira:

$$\varphi(k) = \frac{|\mathbf{P}_k^*|}{|\mathbf{P}_k|} \,, \tag{4.29}$$

em que  $\mathbf{P}_k$  é a matriz de autocorrelações do modelo AR(k), e  $\mathbf{P}_k^*$  é a mesma matriz mas com a última coluna substituída pelo vetor de autocorrelações do modelo. As definições detalhadas de ambos, e a derivação de (4.29) podem ser vistas no Apêndice C.

Dessa forma, a facp, dada pela quantidade  $\varphi(k)$  é uma função do parâmetro k, que será o lag, e para a qual é demonstrada em Box e Jenkins (Box, Jenkins et~al., 2016) o seguinte comportamento:

(i) A facp de um modelo AR(p) é tal que  $\varphi(k) \neq 0$ , para  $k \leq p$  e  $\varphi(k) = 0$ , para lags k > p.

<sup>&</sup>lt;sup>4</sup>Lembramos que o *lag* de ordem  $\tau$ , é um deslocamento temporal da série, isto é,  $Z_{t+\tau}$ , a partir do qual as funções de autocovariância/autocorrelação são calculadas.

- (ii) A facp de um modelo MA(q) tem comportamento análogo ao da fac de um modelo AR(p), ou seja, com decaimento exponencial ou por senoides amortecidas e infinita em extensão.
- (iii) A facp de um modelo ARMA(p, q) tem um comportamento similar ao comportamento da facp de um modelo MA(q).

Pode ser bem complicada a análise de modelos com parâmetros p, q ou d muito grandes. Para uma tentativa de ilustração, temos na Figura 4.4 abaixo, exemplos de fac (na coluna esquerda) e facp (na coluna direita) dos modelos AR(1), MA(1) e ARMA(1, 1).

O gráfico da fac do modelo AR(1) mostra como a autocorrelação começa em 1 e vai decaindo lentamente, enquanto que a sua facp só tem valores significativos até o lag 1, o que está de acordo com a seu parâmetro (p = 1), e demonstra que para o modelo AR(p) a facp pode ser mais útil para a identificação do parâmetro p.

Já gráfico da fac do modelo MA(1) também mostra o comportamento esperado, com valores significativos até o lag 1, enquanto a facp decai com uma senoide amortecida sem tender a zero, assim, no caso do modelo MA(q) a fac seria mais útil para a identificação do parâmetro q.

Por fim, tanto o gráfico da fac quanto o da facp do modelo ARMA(1,1) tem um comportamento mais parecido com aqueles do modelo AR(1), exceto talvez por um valor significativo no lag 2 da facp, o que demonstra que num caso real pode ser difícil escolher entre um modelo AR e um modelo ARMA para representar a série temporal, apenas visualizando esses gráficos.

Esta é uma clara desvantagem dos modelos paramétricos de aprendizagem, já que dependem de parâmetros que devem ser definidos *a priori*, e os procedimentos para estimálos, como neste caso, podem ser inexatos e até mesmo inconclusivos, dada a natureza complicada das funções de autocorrelação.

A recomendação dada por Morettin e Toloi (MORETTIN e TOLOI, 2019) é a mais comum, no âmbito de aprendizado de máquina, e consiste em testar vários parâmetros que se mostrem razoáveis após as análises feitas, e verificar qual série modelada é a mais adequada à série real de interesse, de acordo com alguma métrica de erro.



**Figura 4.4:** Na coluna esquerda as autocorrelações e na coluna direita as autocorrelações parciais calculadas de alguns modelos ARIMA, demonstrando seus comportamentos esperados. Na primeira linha temos o modelo AR(1), na segunda linha o modelo MA(1), e na terceira linha o modelo ARMA(1, 1).

# Capítulo 5

# Procedimentos de comparação e resultados

Neste capítulo serão definidos procedimentos de modelagem às séries temporais financeiras de taxas de câmbio. Um dos modelos que será utilizado é o modelo paramétrico *ARIMA*, estudado no Capítulo 4.

O outro será um modelo não-paramétrico criado com redes neurais, estudadas no Capítulo 3, sendo utilizado um modelo sequencial de redes neurais convolucionais, numa abordagem que é utilizada na documentação do *TensorFlow*<sup>1</sup> para a previsão de séries temporais. Mais detalhes do modelo utilizado serão dados mais adiante.

A seguir, serão feitas comparações entre os modelos preditivos de séries temporais, através de medidas de desempenho comuns como as funções de erros RMSE (raiz do erro quadrático médio) e MAE (erro absoluto médio) e o coeficiente de correlação de *Pearson* entre os valores previstos e conhecidos do conjunto de teste.

Sejam n observações reais de uma série temporal Z, sendo a i-ésima denotada por  $z_i$ , e sejam n estimações de um modelo  $\hat{Z}$  para cada uma das observações, denotadas por  $\hat{z}_i$ . Dessa forma, o erro RMSE desse modelo será:

$$RMSE(\hat{Z}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{z}_i - z_i)^2}$$
 (5.1)

Nas mesmas condições, o erro MAE do modelo  $\hat{Z}$  será dado por:

$$MAE(\hat{Z}) = \frac{1}{n} \sum_{i=1}^{n} |\hat{z}_i - z_i|$$
 (5.2)

E, nas mesmas condições, define-se o coeficiente de correlação de *Pearson* ( $\rho$ ) por:

<sup>&</sup>lt;sup>1</sup>https://www.tensorflow.org/tutorials/structured\_data/time\_series

$$\rho(\hat{Z}, Z) = \frac{\text{Cov}(\hat{Z}, Z)}{\sqrt{\text{Var}(\hat{Z})\text{Var}(Z)}}$$
(5.3)

#### 5.1 Modelagem e procedimentos gerais

A princípio, foi escolhido um período com os valores em Reais de cotações de venda do Dólar. Esse período de dados foi dividido em *janelas de dados* móveis e de tamanho fixo. Considere o seguinte exemplo.

Seja a sequência de números de 0 a 9: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Suponha que queremos criar janelas de dados de tamanho 6, elas seriam uma sequência de sequências:

$$((0, 1, 2, 3, 4, 5), (1, 2, 3, 4, 5, 6), (2, 3, 4, 5, 6, 7), (3, 4, 5, 6, 7, 8), (4, 5, 6, 7, 8, 9))$$

Perceba que criamos, a partir da sequência de 10 números original, 5 janelas com 6 números cada, o tamanho de cada uma. Generalizando, se temos N dados, podemos criar N-M+1 janelas de dados de tamanho M.

A ideia geral é usar essas janelas de dados para treinar modelos que descrevam a série de cotações. Numa série temporal financeira, temos os valores passados, e podemos querer prever valores futuros apenas com as informações que temos do passado.

Os dados de cotação de venda do Dólar utilizados nesse trabalho foram obtidos via download de arquivo CSV disponível no site do Banco Central do Brasil², sendo que optei por baixar dados de cotações desde o ano de 2010 até a data atual em que isso foi feito, para depois pudesse escolher os períodos que julgasse necessário.

Para utilização do modelo paramétrico ARIMA, é necessário listar as hipóteses utilizadas por ele, e verificar, de alguma forma, se os dados que estamos utilizando seguem essas hipóteses. A principal hipótese para utilização do modelo ARIMA é que o conjunto de dados utilizados devem ser um processo estocástico, conceito já explicado no capítulo anterior, e também sabemos que as séries financeiras não-explosivas são desse tipo.

Uma vez que isto é satisfeito sabemos por qualquer uma das equações 4.13, 4.20, 4.23, 4.25 e 4.28 que o termo  $a_t$  presente em todos os modelos ARIMA estudados, seguem uma distribuição normal padrão, o que permite a construção de intervalos de confiança para as previsões do modelo.

#### 5.2 Primeiro teste: Prevendo 7 dias

Neste primeiro teste filtrei os dados para um período específico, que vai de Julho/2016 até Dezembro/2017, ou seja, totalizando 18 meses de dados. Essa série temporal é mostrada na Figura 5.1, abaixo.

<sup>&</sup>lt;sup>2</sup>https://olinda.bcb.gov.br/olinda/servico/PTAX/versao/v1/aplicacao



Figura 5.1: Cotações de venda do Dólar em Reais. Período: Jul/2016 - Dez/2017.

De forma a treinar os modelos de forma mais justa, foi definido que serão utilizadas janelas de 30 dias de valores de câmbios passados para prever o valor de câmbio do dia imediatamente a seguir. Por exemplo, suponha que tenhamos uma janela com valores dos 30 dias de Junho, essa janela será uma série temporal que será modelada e então cada modelo irá prever a taxa de câmbio do dia 1° de Julho.

A série escolhida não possui dados para cada dia do ano, apenas para dias úteis, pulando finais de semana e feriados. Na prática escolhi, para esse primeiro teste, prever os valores da série no período que vai de 16/08/2017 até 24/08/2017.

Dessa forma, utilizando as janelas de 30 dias passados, de acordo com os dias úteis disponíveis, criei as 7 janelas, sendo que a primeira tem seus 30 valores contidos no período de 05/07/2017 a 15/08/2017, e assim sucessivamente para as próximas janelas.

Realizei os procedimentos de treinamento, tanto para o modelo ARIMA, quanto para os modelos de redes neurais. Um deles utilizando o *Keras* e outro utilizando a minha implementação do *Perceptron*. Adicionalmente, foram incluídos dois simples modelos de referência (*baselines*), a partir da média móvel, isto é, a média de cada janela móvel de dias, uma com janelas de 7 dias e a outra com as janelas de 30 dias já definidas acima, como sendo a previsão para o dia seguinte à cada janela.

Cada modelo possui suas particularidades na fase de treinamento. Para listá-las e deixar claro as diferenças entre os modelos ARIMA e do Keras, foi construída a Tabela 5.1.

Tais previsões foram realizadas por modelos que foram treinados após a configuração dos hiperparâmetros de cada modelo. No caso do ARIMA é possível identificá-los utilizando a função de autocorrelação, já nos modelos de redes neurais é feito por tentativa-e-erro com algum conhecimento prévio do assunto. Neste caso foi utilizado um tutorial³ disponível num artigo sobre previsões de séries temporais na documentação do TensorFlow.

<sup>&</sup>lt;sup>3</sup>Tutorial completo disponível em: https://www.tensorflow.org/tutorials/structured\_data/time\_series

| Modelo           | ARIMA                                                             | Modelo Neural            |  |
|------------------|-------------------------------------------------------------------|--------------------------|--|
| Treino do modelo | - 30 dias de cada janela;                                         | - 253 janelas anteriores |  |
| Tremo do modelo  |                                                                   | de 30 dias cada e mais o |  |
|                  |                                                                   | próximo dia conhecido;   |  |
|                  | - Calibração automática dos                                       | - Calibração manual dos  |  |
|                  | parâmetros (autocorrela-                                          | parâmetros.              |  |
|                  | ção).                                                             |                          |  |
| Teste do modelo  | - Previsão dos 7 dias úteis futuros, de 16/08/2017 a 24/08/2017). |                          |  |

**Tabela 5.1:** Especificação dos dados de treino e de teste (7 dias).

Neste tutorial de referência foram testadas várias arquiteturas, desde modelos lineares, modelos de redes sequenciais (*Perceptron*), de redes recorrentes e de redes convolucionais. Além disso, camadas de vários tipos são combinadas, e após isso os hiperparâmetros são testados e escolhidos para o problema em questão, que no tutorial são dados meteorológicos. Os resultados foram comparados, e o modelo de redes convolucionais foi o que se saiu melhor, e por essa razão, optei por utilizar um modelo desse tipo.

Mesmo que cotações do Dólar e temperaturas sejam dados de tipos diferentes, ainda são séries temporais, e pelo visto no tutorial, a série meteorológica é estacionária, o que é um ponto de semelhança grande o suficiente para ser um bom ponto de partida, ao menos neste trabalho de cunho didático. Utilizando a arquitetura utilizada no tutorial como exemplo, criei uma similar, que é melhor explicada diretamente pelo código-fonte que a define, presente no Programa 5.1.

Programa 5.1: Definição da arquitetura da rede neural convolucional

Em primeiro lugar, o modelo é criado como sendo um objeto do tipo sequencial da biblioteca Keras. Isto é porque a rede convolucional é uma rede em que as informações são propagadas da camada de entrada para a camada de saída sequencialmente, analogamente à rede *Perceptron*.

A seguir, é adicionada a camada convolucional de entrada, com a classe keras.layers.Conv1D<sup>4</sup>. Ela possui vários hiperparâmetros que devem ser ajustados durante o treinamento do modelo, que após o ajuste (após algumas tentativas) foram listados na Tabela 5.2.

Uma camada convolucional é formada por um conjunto de camadas paralelas, isto é, que não interagem entre si, sendo a quantidade definida pelo parâmetro filters, onde

<sup>&</sup>lt;sup>4</sup>Documentação disponível em: https://keras.io/api/layers/convolution\_layers/convolution1d/.

| Hiperp<br>Neu                  | Valor                                  |        |
|--------------------------------|----------------------------------------|--------|
| filters                        | Qtde de filtros                        | 64     |
| kernel_size                    | Qtde de neurônios por filtro           | 3      |
| activation                     | Função de ativação                     | ʻelu'  |
| padding                        | padding Ordem dos dados                |        |
| input_shape                    | input_shape Formato de entrada e saída |        |
| pool_size                      | pool_size Unidades de votação          |        |
| optimizer Método de otimização |                                        | ʻadam' |
| loss Função de perda           |                                        | 'mse'  |
| epochs                         | Épocas de treinamento                  | 15     |

Tabela 5.2: Hiperparâmetros do modelo neural Keras.

cada uma recebe de forma aleatória uma amostra (com reposição) dos dados de entrada, com uma mesma quantidade de neurônios cada, definida pelo parâmetro kernel\_size. A seguir, define-se que a função de ativação dessa camada é a função *ELU*, e por fim definimos a dimensão dos dados de entrada, que é definida pelo tamanho da janela de dados, um vetor coluna de 30 linhas.

A seguir temos uma camada de votação, da classe keras.layers.MaxPooling1D<sup>5</sup>, cujo papel de cada neurônio é selecionar neurônios de cada uma das camadas convolucionais, num número definido pelo parâmetro pool\_size, e filtrar dentre eles o máximo valor encontrado que será o valor de saída deste neurônio. Esta camada também é paralela e definida automaticamente pelo tamanho da camada convolucional.

A próxima camada, do tipo keras.layers.Flatten()<sup>6</sup>, faz o produto cartesiano das camadas paralelas de votação, ou seja, lista todos os neurônios sequencialmente para a próxima camada, que por sua vez é uma camada do tipo keras.layers.Dense<sup>7</sup>, que tem esse nome por ser uma camada que é totalmente conectada à camada anterior (como já visto, configura o tipo *Perceptron*), com um parâmetro que define a quantidade de neurônios a ser ajustada no treinamento e outro parâmetro que é a função de ativação a ser utilizada.

Por fim, conectamos uma camada keras.layers.Dense de saída, com exatamente um neurônio que irá fornecer a previsão de um dia no futuro para a janela de dados fornecida na entrada. Na última linha da listagem 5.1 está a escolha do método de otimização, chamado de *Adam*<sup>8</sup> que é uma versão melhorada do SGD, e a função de perda que escolhemos para ser a MSE, que difere da RMSE apenas pela ausência da operação de raiz quadrada, irrelevante numa tarefa de minimização<sup>9</sup>.

Por sua vez, os hiperparâmetros que foram escolhidos durante o treinamento da rede *Perceptron* implementada, estão listados na Tabela 5.3.

<sup>&</sup>lt;sup>5</sup>https://keras.io/api/layers/pooling\_layers/max\_pooling1d/

<sup>&</sup>lt;sup>6</sup>https://keras.io/api/layers/reshaping\_layers/flatten/

https://keras.io/api/layers/core\_layers/dense/

<sup>&</sup>lt;sup>8</sup>Para mais detalhes: https://keras.io/api/optimizers/adam/

 $<sup>^9</sup>$ O  $x_0$  que minimiza f(x) é o mesmo  $x_0$  que minimiza  $\sqrt{f(x)}$ , já que a operação derivada é um limite e a função raiz quadrada é contínua e monótona.

| Hip<br>Modelo | Valor                 |             |
|---------------|-----------------------|-------------|
| taxa          | Taxa de aprendizado   | 0.001       |
| ativacao      | Função de ativação    | ʻelu'       |
| N             | Arquitetura da rede   | [20, 10, 1] |
| M             | Épocas de treinamento | 25          |

**Tabela 5.3:** *Hiperparâmetros do modelo neural* Perceptron.

Para ambos os modelos, ARIMA e de redes neurais, seria possível realizar uma busca exaustiva de parâmetros (*grid search*)<sup>10</sup> de forma que o melhor conjunto de parâmetros é escolhido automaticamente a partir de alguma métrica do treinamento, isto é, o conjunto que se sai melhor nessa métrica.

Esse procedimento foi realizado para o modelo ARIMA, e ele identificou os mesmos parâmetros que as funções de autocorrelação identificaram, e eles foram os mesmos para as 7 janelas de teste, e estão listados na Tabela 5.4.

|   | Valor                     |   |
|---|---------------------------|---|
| p | Componente autoregressiva | 2 |
| d | Componente de diferenças  | 0 |
| q | Componente de média-móvel | 0 |

Tabela 5.4: Hiperparâmetros do modelo ARIMA (7 dias).

Ao final dos treinamentos e previsões, listei na Tabela 5.5 os resultados de cada modelo, e nas últimas linhas as métricas de avaliação já definidas acima.

| Dia        | Cotação<br>Real | Média-Móvel<br>(7 dias) | Média-Móvel<br>(30 dias) | ARIMA | Rede Neural<br>(Keras) | Rede Neural<br>(Perceptron) |
|------------|-----------------|-------------------------|--------------------------|-------|------------------------|-----------------------------|
| 16/08/2017 | 3.167           | 3.305                   | 3.177                    | 3.204 | 3.177                  | 3.198                       |
| 17/08/2017 | 3.160           | 3.304                   | 3.172                    | 3.151 | 3.174                  | 3.465                       |
| 18/08/2017 | 3.165           | 3.306                   | 3.167                    | 3.158 | 3.169                  | 3.172                       |
| 21/08/2017 | 3.144           | 3.304                   | 3.163                    | 3.169 | 3.163                  | 3.154                       |
| 22/08/2017 | 3.154           | 3.302                   | 3.159                    | 3.137 | 3.159                  | 3.223                       |
| 23/08/2017 | 3.157           | 3.305                   | 3.156                    | 3.159 | 3.156                  | 3.154                       |
| 24/08/2017 | 3.140           | 3.308                   | 3.154                    | 3.158 | 3.153                  | 3.154                       |
| MAE        | -               | 0.150                   | 0.009                    | 0.016 | 0.009                  | 0.063                       |
| RMSE       | -               | 0.150                   | 0.011                    | 0.020 | 0.011                  | 0.119                       |
| Pearson    | -               | -0.202                  | 0.737                    | 0.320 | 0.759                  | 0.305                       |

**Tabela 5.5:** Previsões para 7 dias e métricas dos modelos das janelas de cotações do Dólar.

A partir dos resultados vimos que, para estas 7 janelas de treino, o modelo Keras foi o que se saiu melhor apesar de empatar com o modelo de Média-Móvel 30 dias nas métricas MAE e RMSE e ter sido quase que imperceptivelmente melhor na correlação, configurando assim um empate técnico.

<sup>&</sup>lt;sup>10</sup>https://scikit-learn.org/stable/modules/grid\_search.html

Enquanto isso, o modelo *Perceptron* foi o que se saiu pior em todas as métricas, o que era esperado já que não foi construído para tarefas de regressão, mas para tarefas de classificação, devido a restrições que foram implementadas na camada de saída, o que invalida a previsão de valores contínuos.

O ARIMA saiu-se melhor que o *Perceptron*, mas nem tão bom quanto o modelo neural convolucional, isto em todas as métricas. O modelo neural não utilizou pressupostos sobre os dados, apenas uma grande quantidade de dados de treinamento, o que é um dos requisitos para seu funcionamento e utilização.

Porém, o modelo de referência, a Média-Móvel 30 dias de cada janela, saiu-se tão bem quanto o modelo neural convolucional. Isto aparentemente nos diz que a rede neural não teve um desempenho tão bom quanto poderia ter, tenhamos isso em mente por enquanto e voltaremos a esse assunto ao final dos testes.

Já o modelo de Média-Móvel 7 dias foi o pior dentre todos os modelos, com seus valores previstos estando em outro patamar, por exemplo a única correlação negativa, sendo inclusive pior em média do que o *Perceptron*.

A seguir, na Figura 5.2, estão os gráficos dos modelos desses 7 dias de previsão para os modelos que se saíram melhores, ou seja, Rede Neural Keras, Média-Móvel 30 dias e ARIMA. Já na Figura 5.3 estão os gráficos dos modelos que não tiveram um bom desempenho, o Média-Móvel 7 dias e o Rede Neural *Perceptron*.



**Figura 5.2:** Previsões de 7 dias dos modelos ARIMA, Rede Neural Keras e Média-Móvel 30 dias das janelas de cotações do Dólar.

O modelo ARIMA é paramétrico, e de natureza estatística, dessa forma ele gera previsões que são estimativas contidas dentro de um intervalo de confiança. Uma vez que assumimos que os resíduos da série seguem uma distribuição normal padrão, esta é a distribuição utilizada para a geração do intervalo, além da variância amostral do conjunto de treino.



**Figura 5.3:** Previsões de 7 dias do modelo de rede Perceptron e de Média-Móvel de 7 dias das janelas de cotações do Dólar.

O intervalo é opcionalmente calculado no método de previsão<sup>11</sup>, do modelo ARIMA, com nível de 95% de confiança, e pode ser visto pelo sombreado ao redor do gráfico das previsões na Figura 5.4.



**Figura 5.4:** Previsões de 7 dias do modelo ARIMA com o intervalo de 95% de confiança para cada previsão.

<sup>&</sup>lt;sup>11</sup>Detalhes do intervalo de confiança da biblioteca utilizada: https://www.statsmodels.org/stable/generated/statsmodels.tsa.arima\_model.ARIMAResults.conf\_int.html

#### 5.3 Segundo teste: Prevendo 30 dias

Para investigar mais a fundo as relações entre tamanho do treino e do teste na avaliação dos modelos, um segundo teste foi realizado, agora com previsões para os próximos 30 dias úteis, também começando a partir do dia 16/08/2017, indo até o dia 27/09/2017.

Nesse teste é utilizada a mesma quantidade de dados de treinamento para os modelos neurais. Dessa vez, como estamos prevendo 30 dias no futuro, com a mesma quantidade de dias do passado para o treino, a proporção entre dados de teste / dados de treino subiu para aproximadamente 11%. Com isso, é esperado que a eficiência das redes neurais seja pior do que no teste anterior.

A tabela de especificação dos dados de treino e teste é também similar à do teste anterior, com algumas diferenças. Pode ser vista na Tabela 5.6.

| Modelo           | ARIMA                                                              | Modelo Neural              |  |
|------------------|--------------------------------------------------------------------|----------------------------|--|
| Treino do modelo | - 30 dias de cada janela;                                          | - 253 janelas anteriores   |  |
| Tremo do modelo  |                                                                    | de 30 dias cada e mais o   |  |
|                  |                                                                    | próximo dia conhecido;     |  |
|                  | - Calibração automática dos                                        | os - Calibração manual dos |  |
|                  | parâmetros (grid search).                                          | parâmetros.                |  |
| Teste do modelo  | - Previsão dos 30 dias úteis futuros, de 16/08/2017 a 27/09/2017). |                            |  |

**Tabela 5.6:** Especificação dos dados de treino e de teste (30 dias).

Sendo o mesmo conjunto de treino, não há necessidade novo treinamento das redes neurais, assim os hiperparâmetros são ainda os mesmos dados pelas Tabelas 5.2 e 5.3. A diferença será no modelo ARIMA, já que cada janela de previsão é ajustada separadamente.

Dessa vez, a melhor estratégia foi utilizar o *grid search*, que conforme descrito anteriormente, busca os melhores parâmetros de acordo com uma métrica do modelo *ARIMA*. Esta métrica é a **AIC** (*Akaike Information Criterion*), que mede o quão bem um modelo ajusta-se aos dados sem gerar *overfitting*.

Esta definição é utilizada por Sachin Date (DATE, 2019), que complementa dizendo que esta métrica não faz tanto sentido se analisada sozinha, mas é melhor utilizada na comparação entre modelos, de forma que o modelo (os parâmetros utilizados, em nosso modelo ARIMA) com o menor valor de *AIC* é o que terá o melhor balanço entre ajuste aos dados de treino e menor *overfitting* durante as previsões.

Já que a alternativa seria analisar 30 gráficos de autocorrelação e outros 30 gráficos de autocorrelação parcial, e a busca irá tentar otimizar os parâmetros com a métrica que minimiza o *overfitting*, não há desvantagens nessa estratégia, e os parâmetros ótimos encontrados de cada janela foram utilizados nas previsões.

Como há um número grande de parâmetros ótimos, 30 de cada um dos 3 parâmetros do modelo ARIMA, foram resumidos em *boxplot*'s, que podem ser visualizados na Figura 5.5.



**Figura 5.5:** Distribuição dos parâmetros ótimos (p, d, q) (da esquerda para a direita) encontrados com o grid search para o modelo ARIMA para as 30 janelas de dados.

Estão listados na Tabela 5.7 os resultados de cada modelo, e nas últimas linhas as métricas de avaliação previamente definidas.

| Dia        | Cotação | Média-Móvel | Média-Móvel | ARIMA      | Rede Neural | Rede Neural  |
|------------|---------|-------------|-------------|------------|-------------|--------------|
| Dia        | Real    | (7 dias)    | (30 dias)   | 711(11/12) | (Keras)     | (Perceptron) |
| 16/08/2017 | 3.167   | 3.271       | 3.177       | 3.211      | 3.177       | 3.198        |
| 17/08/2017 | 3.160   | 3.273       | 3.172       | 3.149      | 3.174       | 3.465        |
| 18/08/2017 | 3.165   | 3.274       | 3.167       | 3.158      | 3.169       | 3.172        |
| 21/08/2017 | 3.144   | 3.273       | 3.163       | 3.169      | 3.163       | 3.154        |
| 22/08/2017 | 3.154   | 3.265       | 3.159       | 3.137      | 3.159       | 3.223        |
| 23/08/2017 | 3.157   | 3.258       | 3.156       | 3.159      | 3.156       | 3.154        |
| 24/08/2017 | 3.140   | 3.249       | 3.154       | 3.153      | 3.153       | 3.154        |
| 25/08/2017 | 3.146   | 3.241       | 3.151       | 3.142      | 3.149       | 3.223        |
| 28/08/2017 | 3.156   | 3.234       | 3.150       | 3.150      | 3.143       | 3.223        |
| 29/08/2017 | 3.170   | 3.235       | 3.149       | 3.152      | 3.138       | 3.223        |
| 30/08/2017 | 3.164   | 3.236       | 3.149       | 3.172      | 3.135       | 3.221        |
| 31/08/2017 | 3.147   | 3.238       | 3.149       | 3.160      | 3.134       | 3.223        |
| 01/09/2017 | 3.133   | 3.238       | 3.150       | 3.143      | 3.136       | 3.221        |
| 04/09/2017 | 3.139   | 3.240       | 3.150       | 3.120      | 3.140       | 3.221        |
| 05/09/2017 | 3.120   | 3.249       | 3.150       | 3.150      | 3.143       | 3.221        |
| 06/09/2017 | 3.113   | 3.259       | 3.149       | 3.120      | 3.142       | 3.221        |
| 08/09/2017 | 3.091   | 3.262       | 3.147       | 3.125      | 3.142       | 3.221        |
| 11/09/2017 | 3.085   | 3.270       | 3.145       | 3.097      | 3.142       | 3.221        |
| 12/09/2017 | 3.114   | 3.277       | 3.143       | 3.090      | 3.139       | 3.223        |
| 13/09/2017 | 3.134   | 3.292       | 3.142       | 3.128      | 3.138       | 3.223        |
| 14/09/2017 | 3.135   | 3.304       | 3.143       | 3.143      | 3.137       | 3.223        |
| 15/09/2017 | 3.126   | 3.303       | 3.143       | 3.136      | 3.137       | 3.223        |
| 18/09/2017 | 3.124   | 3.304       | 3.143       | 3.125      | 3.136       | 3.223        |
| 19/09/2017 | 3.132   | 3.305       | 3.143       | 3.128      | 3.135       | 3.223        |
| 20/09/2017 | 3.128   | 3.304       | 3.144       | 3.137      | 3.135       | 3.297        |
| 21/09/2017 | 3.135   | 3.306       | 3.143       | 3.128      | 3.134       | 3.170        |
| 22/09/2017 | 3.128   | 3.304       | 3.143       | 3.140      | 3.138       | 3.170        |
| 25/09/2017 | 3.141   | 3.302       | 3.142       | 3.128      | 3.144       | 3.154        |
| 26/09/2017 | 3.167   | 3.305       | 3.141       | 3.142      | 3.144       | 3.172        |
|            | •       | •           | •           | •          | •           | continua     |

**Tabela 5.7:** Previsões para 30 dias e métricas dos modelos das janelas de cotações do Dólar.

| Dia        | Cotação<br>Real | Média-Móvel<br>(7 dias) | Média-Móvel<br>(30 dias) | ARIMA | Rede Neural<br>(Keras) | Rede Neural<br>(Perceptron) |
|------------|-----------------|-------------------------|--------------------------|-------|------------------------|-----------------------------|
| 27/09/2017 | 3.193           | 3.308                   | 3.141                    | 3.171 | 3.142                  | 3.223                       |
| MAE        | -               | 0.132                   | 0.018                    | 0.014 | 0.016                  | 0.076                       |
| RMSE       | -               | 0.137                   | 0.023                    | 0.017 | 0.022                  | 0.097                       |
| Pearson    | -               | -0.075                  | 0.366                    | 0.723 | 0.383                  | 0.008                       |

**Tabela 5.7:** Previsões para 30 dias e métricas dos modelos das janelas de cotações do Dólar.

Nota-se que a previsão de 30 dias no futuro, partindo do mesmo ponto que no teste anterior, colocou o modelo *ARIMA* em primeiro lugar, sendo que em segundo ficou a rede neural Keras praticamente empatado com a Média-Móvel 30 dias. Um destaque é a correlação entre o modelo ARIMA e os dados reais, que foi muito superior aos demais.

A seguir, na Figura 5.6, estão os gráficos dos modelos dos 30 dias de previsão, os quais se saíram melhores de acordo com as métricas na tabela acima. Na Figura 5.7, estão os gráficos dos demais modelos utilizados para previsão, que não tiveram desempenho tão bom quanto os anteriores.



**Figura 5.6:** Previsões de 30 dias dos modelos ARIMA, Rede Neural Keras e Média-Móvel 30 dias das janelas de cotações do Dólar.

Novamente é exibido, na Figura 5.8, o gráfico com o intervalo de 95% de confiança para cada uma das 30 previsões do modelo ARIMA.

Se observarmos na Figura 5.6, há um vale nos valores de cotação próximo ao dia 08/09/2017, e apenas as previsões do *ARIMA* acompanham esse vale, o que faz com que seus resultados médios sejam superiores aos demais modelos, nesse caso. Os demais modelos tiveram os mesmos resultados, na mesma ordenação que no teste anterior.



**Figura 5.7:** Previsões de 30 dias do modelo de rede Perceptron e de Média-Móvel de 7 dias das janelas de cotações do Dólar.



**Figura 5.8:** Previsões de 30 dias do modelo ARIMA com o intervalo de 95% de confiança para cada previsão.

#### 5.4 Terceiro teste: Prevendo 1 ano

Para este teste, um período maior de tempo foi utilizado, de forma a poder fornecer uma quantidade razoável de exemplos para o treino das redes neurais. O período de cotações do Dólar utilizado pode ser visto na Figura 5.9, e totaliza 3 anos e meio, de forma que 75% deste período é o conjunto de treino e o restante, totalizando 1 ano, será o período de teste de todos os modelos.



**Figura 5.9:** Período da série temporal das cotações do Dólar, especificando os conjuntos de treino (em azul) das redes neurais e o conjunto de teste (em vermelho) de todos os modelos.

O total de dias úteis que serão previstos e comparados com a curva vermelha no gráfico da Figura 5.9 é 250. Foram feitos novos treinamentos e procedimento para escolha dos melhores parâmetros de cada modelo.

A tabela de especificação dos dados de treino e teste foi feita nos moldes dos testes anteriores, com algumas diferenças importantes, e pode ser vista na Tabela 5.8.

| Modelo           | ARIMA                                                               | Modelo Neural            |  |
|------------------|---------------------------------------------------------------------|--------------------------|--|
| Treino do modelo | - 30 dias de cada janela;                                           | - 722 janelas anteriores |  |
| Tremo do modelo  |                                                                     | de 30 dias cada e mais o |  |
|                  |                                                                     | próximo dia conhecido;   |  |
|                  | - Calibração automática dos                                         | - Calibração manual dos  |  |
|                  | parâmetros (grid search).                                           | parâmetros.              |  |
| Teste do modelo  | - Previsão dos 250 dias úteis futuros, de 01/03/2017 a 01/03/2018). |                          |  |

Tabela 5.8: Especificação dos dados de treino e de teste (1 ano).

Dessa vez, para o ARIMA, também foi realizado o procedimento de *grid search*, e para se fazer um chute de qual ordem máxima de cada componente que seria utilizada na busca, apliquei as funções de autocorrelação e de autocorrelação parcial em cada uma das 250 janelas de previsão.

De forma a exibir de forma resumida os resultados, desenhei um *boxplot* para cada uma das funções, que irá mostrar a distribuição dos *lags* significativos <sup>12</sup> máximos que elas retornaram para as janelas, que podem ser vistos na Figura 5.10.

Pela Figura 5.10, analisando o *boxplot* da esquerda, podemos notar que em média um componente de autocorrelação *p* ideal estaria entre 1 e 3, com mais probabilidade nos

<sup>&</sup>lt;sup>12</sup>Cujo valor não está no intervalo de confiança que representa autocorrelação nula naquele lag.



**Figura 5.10:** Distribuição dos lags significativos máximos para as funções de autocorrelação (esquerda) e de autocorrelação parcial (direita).

valores menores, enquanto isso a função de autocorrelação parcial, na direita, não foi muito informativo, sendo basicamente constante igual a 1 para todas as janelas.

Realizando o *grid search*, o modelo otimizou sua métrica em cada janela, fornecendo a melhor escolha dos parâmetros (p, d, q), de acordo com sua métrica usual que envolve minimização de entropia, e de forma a resumir a escolha para as 250 janelas, foram construídos 3 *boxplot*'s, um para cada parâmetro, que podem ser vistos na Figura 5.11.



**Figura 5.11:** Distribuição dos parâmetros ótimos (p, d, q) (da esquerda para a direita) encontrados com o grid search para o modelo ARIMA para as 250 janelas de dados.

Nota-se que, exceto por alguns *outliers*, a componente autoregressiva de primeira ordem foi selecionada, i.e. p=1, na grande maioria das janelas. A componente de diferenciação foi nula, i.e. d=0. Para a componente de médias-móveis, houve uma distribuição entre os valores q=0,1,2, com maior concentração de zeros. Por se tratar da mesma série que os testes anteriores, são valores condizentes.

A seguir, os hiperparâmetros, ajustados manualmente após algumas tentativas, das

redes neurais Keras estão listados na Tabela 5.9, e da rede *Perceptron* implementada, estão listados na Tabela 5.10.

| Hi <sub>j</sub><br>Mod         | Valor                                  |        |
|--------------------------------|----------------------------------------|--------|
| filters                        | Qtde de filtros                        | 64     |
| kernel_size                    | Qtde de neurônios por filtro           | 10     |
| activation                     | activation Função de ativação          |        |
| padding                        | padding Ordem dos dados                |        |
| input_shape                    | input_shape Formato de entrada e saída |        |
| pool_size                      | pool_size Unidades de votação          |        |
| optimizer Método de otimização |                                        | 'adam' |
| loss Função de perda           |                                        | 'mse'  |
| epochs                         | Épocas de treinamento                  | 100    |

**Tabela 5.9:** Hiperparâmetros do modelo neural Keras para o terceiro teste.

| Hip<br>Modelo | Valor                 |             |
|---------------|-----------------------|-------------|
| taxa          | Taxa de aprendizado   | 0.001       |
| ativacao      | Função de ativação    | ʻelu'       |
| N             | Arquitetura da rede   | [20, 10, 1] |
| M             | Épocas de treinamento | 25          |

**Tabela 5.10:** *Hiperparâmetros do modelo neural* Perceptron *para o terceiro teste.* 

Estão listados na Tabela 5.11 os resultados de todos os modelos utilizados, com as métricas de avaliação utilizadas. A partir desses resultados podemos ver que o modelo ARIMA foi o melhor, seguido pelo modelo de Média-Móvel 7 dias, e em terceiro a Rede Neural Keras, com valores muito próximos entre esses dois últimos.

| Métrica | Média-Móvel<br>(7 dias) | Média-Móvel<br>(30 dias) | ARIMA | Rede Neural<br>(Keras) | Rede Neural<br>(Perceptron) |
|---------|-------------------------|--------------------------|-------|------------------------|-----------------------------|
| MAE     | 0.026                   | 0.045                    | 0.019 | 0.031                  | 0.068                       |
| RMSE    | 0.036                   | 0.057                    | 0.030 | 0.041                  | 0.082                       |
| Pearson | 0.857                   | 0.615                    | 0.906 | 0.850                  | 0.518                       |

**Tabela 5.11:** Métricas das previsões para um ano dos modelos das janelas de cotações do Dólar.

É importante lembrar que a otimização dos modelos ARIMA foi feita separadamente para cada janela de dados de teste, assim como as médias-móveis, por definição, capturam a tendência central de cada janela, enquanto que no caso das Redes Neurais, todo um período fixado do passado é utilizado como treinamento e as previsões foram feitas a partir destes parâmetros assim ajustados.

Novamente, os gráficos de todas as previsões foram analisadas, e figuras separadas foram criadas, uma com os modelos que tiveram um melhor desempenho nas métricas e

portanto se aproximaram mais também no visual dos gráficos ao gráfico dos valores reais das cotações. Eles estão na Figura 5.12.



**Figura 5.12:** Previsões de um ano dos modelos ARIMA, Rede Neural Keras e Média-Móvel 7 dias das janelas de cotações do Dólar.

À uma primeira vista o modelo neural parece inferior aos demais, e é comparável apenas ao modelo de referência utilizado. Mas afirmo que isso não pode ser tomado como uma conclusão definitiva e impeditiva de seu uso. É necessário lembrar que aqui foi testada apenas uma arquitetura dentre várias que existem e, nessa arquitetura escolhida, foram testadas poucas combinações de parâmetros dentre uma enorme quantidade possível.

Como verificação desse argumento, podemos recorrer à tabela 5.2, onde vemos que no caso de uma rede convolucional temos três parâmetros que são números inteiros, e se não queremos extrapolar exageradamente, digamos que pudéssemos testar intervalos desses parâmetros e ainda combiná-los com os demais parâmetros discretos, por exemplo com o grid search.

Como não há hipóteses sobre os dados, não há nenhum impeditivo numa abordagem desse tipo, que é testar todas as possibilidades até encontrar uma combinação que se saia um pouco melhor que as demais. Vejamos na Tabela 5.12 uma estimativa não exaustiva desses intervalos e uma listagem dos parâmetros discretos (apenas os que foram aqui mencionados, há muitos mais disponíveis na biblioteca *Keras*), para a seguir calcularmos a quantidade total de possibilidades.

Modelos de redes neurais dependem de poder computacional, o que fica claro nesse exercício mental, pois em nosso exemplo, se quiséssemos testar dentre os parâmetros já mencionados neste trabalho, somente levando em conta a arquitetura convolucional aqui utilizada, teríamos que testar dentre 200 milhões de possibilidades. Ressalto que esse fator limitante de 100, em alguns dos parâmetros, foi arbitrário e simplesmente ilustrativo.

Os demais modelos, que não tiveram bons desempenhos, o *Perceptron* e o modelo de Média-Móvel 30 dias, estão nos gráficos da Figura 5.13.

| Hiperparâmetros do Modelo<br>Neural Convolucional | Valores possíveis                                | Quantidade total |
|---------------------------------------------------|--------------------------------------------------|------------------|
| Qtde de filtros                                   | (1, 100)                                         | 100              |
| Qtde de neurônios por filtro                      | (1, 100)                                         | 100              |
| Função de ativação                                | {'elu', 'leaky-relu', 'relu', 'sigmoid', 'tanh'} | 5                |
| Unidades de votação                               | (1, 10)                                          | 10               |
| Método de otimização <sup>a</sup>                 | {'sgd', 'adam'}                                  | 2                |
| Função de perda <sup>b</sup>                      | {'mse', 'mae'}                                   | 2                |
| Qtde de neurônios na camada densa                 | (1, 100)                                         | 100              |
| Total de possibil                                 | 200.000.000                                      |                  |

**Tabela 5.12:** Listagem das possibilidades de escolha dos hiperparâmetros da rede neural convolucional utilizada.

<sup>&</sup>lt;sup>b</sup>Lista das funções de perda disponíveis: keras.io/api/losses/



**Figura 5.13:** Previsões de um ano do modelo de rede Perceptron e de Média-Móvel de 30 dias das janelas de cotações do Dólar.

Por fim, é novamente interessante mostrar o intervalo de confiança que é gerado para cada previsão, com nível de confiança de 95%, que pode ser visualizado na Figura 5.14.

Nota-se uma região do gráfico (entre Maio e Julho de 2017) em que o intervalo de confiança de cada previsão está grande em comparação ao restante do gráfico, já que no início dessa região (meados de Maio de 2017) há uma variação brusca do valor da cotação do Dólar, e uma vez que o intervalo de confiança calculado depende da variância dos dados, vemos a propagação desse efeito pelo mês seguinte.

<sup>&</sup>lt;sup>a</sup>Lista dos métodos de otimização disponíveis: keras.io/api/optimizers/



Figura 5.14: Previsões do modelo ARIMA com o intervalo de 95% de confiança para cada previsão.

#### 5.5 Tempos de processamento

Uma última medida importante a ser comparada, neste tipo de tarefa, diz respeito ao tempo de processamento dos algoritmos de treinamento. Todos os procedimentos foram feitos num ambiente *Jupyter notebook*, disponível online<sup>13</sup>, que possui comandos muito simples que podem ser utilizados para essa medição<sup>14</sup>.

A Tabela 5.13 contém o tempo de processamento do treinamento dos modelos principais aqui comparados, para cada um dos três testes realizados neste capítulo. Nesta tabela estão contabilizados o tempo do *grid search*, no caso do ARIMA, e das épocas de treinamento para os dois modelos de redes neurais.

| Teste<br>Modelo | 7 dias  | 30 dias  | 1 ano     |
|-----------------|---------|----------|-----------|
| Keras           | < 1 min | < 1 min  | < 1 min   |
| Perceptron      | ~ 2 min | ~ 2 min  | ~ 8 min   |
| ARIMA           | ~ 2 min | ~ 10 min | ~ 100 min |

Tabela 5.13: Tempo de processamento do treinamento dos modelos de previsão.

<sup>&</sup>lt;sup>13</sup>https://github.com/feanored/Perceptron/blob/master/Keras\_Arima\_Perceptron.ipynb

<sup>&</sup>lt;sup>14</sup>Foi utilizado o comando %%time

#### Capítulo 6

#### Conclusões

Este trabalho teve como primeiro objetivo servir de um guia de estudos sobre as redes neurais, e podemos afirmar que este objetivo foi alcançado no Capítulo 3, onde deduzimos as equações de um método de treinamento e a seguir uma implementação completa da rede *Perceptron*, que se mostrou funcional e eficiente para a tarefa-modelo de classificação da base de dados *MNIST*.

O segundo objetivo foi avaliar o potencial do uso de redes neurais para a tarefa de previsão de séries temporais financeiras, e os resultados obtidos não foram definitivos em demonstrar vantagens absolutas nem desvantagens impeditivas nesse intento.

À primeira vista, os resultados são controversos. No primeiro teste, que previu 7 dias do futuro, a rede neural recorrente do Keras se saiu melhor do que o modelo paramétrico ARIMA, e ambos muito melhores do que a rede neural Perceptron, que afinal de contas foi criada para tarefas de classificação e não para a previsão de um valor contínuo.

Já nos testes de previsão de um mês e de um ano, o vencedor foi o ARIMA, e a rede neural recorrente apenas empatou com um modelo de referência que não é nada mais do que uma simples média-móvel sendo utilizada como uma previsão do futuro.

Redes neurais são algoritmos que foram criados e são utilizados num contexto de grandes dados, ou *big data*, dessa forma são feitas teoricamente para funcionar melhor do que outros modelos quando há um grande volume de dados.

Se levarmos em conta as proporções entre conjunto de teste e conjunto de treino que foram utilizadas nos três testes aqui realizados, vemos que o desempenho da rede neural cresce conforme essa proporção diminui, ou seja, quando há mais dados disponíveis para treino em relação aos que serão previstos.

No extremo do primeiro teste, quando a rede neural ficou em primeiro lugar de desempenho, havia 99% de dados de treino para apenas 1% de dados de teste, especificamente os 7 dias que foram previstos. Em contrapartida, na previsão de um ano do futuro, este ano representava 25% do total de dados disponíveis, sendo portanto utilizados 75% de dados para o treinamento.

Assim, esta é uma clara desvantagem do modelo de redes neurais, há a necessidade de

haver muitos dados de treinamento para que seu desempenho seja comparável ou mesmo melhor do que os modelos paramétricos tradicionais, ou mesmo modelos simples como de uma média-móvel.

Pode-se pensar por outro lado, que esta torna-se uma *vantagem* quando há de fato muitos dados disponíveis, o que é o caso de problemas de previsão financeiras como essa. Existem décadas de dados financeiros disponíveis, assim isso não é um problema, mas essa vantagem só seria garantida se outro fator também entrar em jogo, a velocidade de processamento dos algoritmos.

A biblioteca de redes neurais que foi utilizada, Keras, já foi e ainda está sendo otimizada para obter o máximo desempenho de computação paralela, GPU's, etc. Então bastava fazer uma checagem desse desempenho, o que de fato foi feito no capítulo anterior.

A Tabela 5.13 demonstra que o tempo de processamento do treinamento de uma rede neural Keras foi quase que instantâneo para os três treinamentos, mesmo que no último teste tenha sido necessário mais de dez vezes o número de cálculos em relação ao primeiro, o tempo foi praticamente o mesmo, não levando mais de um minuto.

Enquanto isso, a busca pelos parâmetros ótimos do modelo paramétrico ARIMA teve um tempo de processamento que cresceu, com alguma ordem linear não calculada, mas ainda assim notável, já que enquanto levou menos de um minuto para prever 7 dias, levou mais de uma hora e meia para treinar os 250 dias úteis que representaram um ano de previsão do terceiro teste.

Mesmo a implementação didática do Perceptron crescendo de acordo com a quantidade de dados do treinamento, já que tem uma complexidade de ordem linear, que pode ser vista no código-fonte produzido e explicado no segundo capítulo, teve um crescimento de tempo que foi menor do que do modelo ARIMA, demonstrando que este último é mais pesado, apesar de mais acurado em sua tarefa.

Há ainda a questão da complexidade dos modelos. O modelo ARIMA é de natureza mais complexa, exige a verificação de propriedades como a estacionariedade, e a aplicação de transformações aos dados quando estes não são estacionários, o que exige mais estudo e uma implementação mais delicada. Assim é preciso se perguntar se a qualidade das previsões é tão melhor assim para compensar um maior tempo de implementação e de processamento.

A menos da especificação do tipo da rede utilizada, e de alguns poucos parâmetros que foram aqui escolhidos por tentativa e erro, o modelo neural Keras foi muito simples de ser construído e utilizado, e com seu rápido processamento gerou previsões próximas às previsões do ARIMA em todos os testes, ainda que piores do que ele, levando em consideração as métricas utilizadas.

Aqui não foram utilizados todos os recursos disponíveis às redes neurais, nem feita uma busca mais extensiva de hiperparâmetros que poderiam melhorar a qualidade das previsões, já que o objetivo era comparar de forma mais didática, e demonstrar que uma implementação rápida, sem quase nenhuma hipótese sobre os dados, é capaz de gerar previsões razoáveis.

Dessa forma, mesmo que com os resultados aqui obtidos não nos permita afirmar que

as redes neurais tem potencial para a previsão de séries temporais financeiras, lembramos que este potencial não pode ser totalmente explorado neste trabalho, e que esbarra na necessidade de existir um grande volume de dados do passado para treinamento, e de maior processamento para uma busca mais abrangente de hiperparâmetros adequados.

Portanto, uma segunda conclusão que decorre da primeira é que nos casos em que um grande volume de dados não está disponível, o modelo ARIMA será a melhor opção, já que irá gerar melhores resultados, sem levar tanto tempo de processamento, já que este irá aumentar e ser uma desvantagem justamente quando há muitos dados, onde as vantagens das redes neurais entram no jogo.

Não há dúvidas que objetivos futuros, não alcançados nesta monografia, seriam testar outras séries financeiras, isto é, de outras moedas; testar mais arquiteturas de redes neurais; e tomar o tempo de CPU necessário para uma busca de hiperparâmetros ótimos de cada arquitetura e de cada série. É o que se pode tentar para de fato dizer se as redes neurais poderão servir ou não como uma alternativa válida ao modelo ARIMA na previsão de séries temporais financeiras.

Assim, como toda tarefa de aprendizado de máquina, o importante é obter mais conhecimento sobre as vantagens e desvantagens de cada algoritmo de um certo contexto de ciência de dados. Isto ao menos, pode-se dizer que foi alcançado durante os estudos e testes realizados neste trabalho.

## Apêndice A

## O gradiente descendente

O gradiente descendente é um dos métodos de otimização de funções, no contexto de aprendizado máquina é geralmente utilizado para minimizar funções de custo. A ideia geral é ajustar parâmetros iterativamente para otimizar a função de custo gradativamente.

O seu funcionamento utiliza a ideia fundamental do Cálculo em que utilizamos a derivada de uma função de forma a encontrar seus pontos extremos. Dada uma função  $f: \mathbb{R}^n \to \mathbb{R}$ , temos que se um ponto  $x = \hat{x} \in \mathbb{R}$  é um ponto extremo de f então é condição necessária que cada derivada parcial de primeira ordem de f exista e seja igual a zero. Denotando  $x = (x_0, x_1, \dots, x_n)$  e  $\hat{x} = (\hat{x_0}, \hat{x_1}, \dots, \hat{x_n})$ , temos:

$$\frac{\partial f(\hat{x}_0)}{\partial x_0} = 0, \quad \frac{\partial f(\hat{x}_1)}{\partial x_1} = 0, \quad \dots, \quad \frac{\partial f(\hat{x}_n)}{\partial x_n} = 0 \tag{A.1}$$

Usando a notação de vetores, podemos simplificar a equação acima, uma vez que o conjunto das derivadas parciais de uma função de várias variáveis é o vetor gradiente desta função, assim, denotando  $\mathbf{0} \in \mathbb{R}^n = (0, ..., 0)$ , temos equivalentemente à equação A.1:

$$\nabla f(\hat{x}) = \mathbf{0} \tag{A.2}$$

onde  $\nabla : \mathbb{R}^n \to \mathbb{R}^n$  é a função que calcula o gradiente para um dado ponto de uma função.

Geometricamente é nos dada a intuição, por Luis Hamilton Guidorizzi (Guidorizzi, 1986), de que o vetor gradiente de um dado ponto de uma função nos dá a direção de maior aumento da função naquele ponto. Como nosso objetivo é minimizar a função de custo, fica explicado o nome do algoritmo como "gradiente descendente", de forma que devemos utilizar o sentido negativo do vetor gradiente.

Assim, podemos dizer que a direção de minimização da função está na direção do vetor gradiente, o que significa dar um passo (f(x + dx)) nessa direção no domínio da função, tal passo com tamanho que seja *proporcional* a cada componente do vetor gradiente. Dessa

<sup>&</sup>lt;sup>1</sup>Mais detalhes em Guidorizzi (Guidorizzi, 1986). Um curso de cálculo Vol. 2, pág. 894.

forma podemos escrever *dx* como sendo um passo na direção do mínimo da função de custo dessa forma:

$$dx = -\eta \nabla f(x) \tag{A.3}$$

onde  $\eta$  é a constante de proporcionalidade, que é conhecida como **taxa de aprendizado**, que tem por objetivo tornar a velocidade do treinamento ajustável durante a execução do algoritmo, sendo tarefa do cientista de dados testar e obter os valores que dão os melhores resultados caso-a-caso.

Podemos observar as diferenças de utilizar uma taxa de aprendizado fixa ou variável (que mude a cada iteração do treinamento, por exemplo), utilizando gráficos. Suponha que estamos querendo minimizar uma função quadrática do tipo  $f(x) = x^2$ , essa restrição é particularmente útil uma vez que a função de custo que será utilizada, a MSE, é uma função quadrática deste tipo.

Outra característica igualmente útil é que a segunda derivada deste tipo de função quadrática é sempre positiva<sup>2</sup>, o que implica que o ponto extremo encontrado será necessariamente um ponto de mínimo.

Inicialmente, sorteamos um ponto inicial e calculamos o valor da função e o valor do gradiente neste ponto. Se as componentes do gradiente não forem todas arbitrariamente próximas de zero, então quer dizer que não atingimos o mínimo, e dessa forma obtemos um novo ponto a partir deste somado com dx definido acima na equação A.3.

Repetimos este processo até que o gradiente do ponto atual seja arbitrariamente próximo do vetor nulo. Uma visualização deste processo, utilizando taxa de aprendizado fixada, está na Figura A.1.



**Figura A.1:** Visualização do método do gradiente descendente com taxa de aprendizado única. Os pontos azuis representam candidatos a ponto mínimo em cada iteração do algoritmo.

<sup>&</sup>lt;sup>2</sup>A segunda derivada de uma função de muitas variáveis é a matriz Hessiana, neste caso ela seria uma matriz definida positiva.

Podemos notar que as estimativas aproximam-se a uma velocidade constante do ponto de mínimo, que nesse caso ilustrativo é bem conhecido. Esse é o comportamento gerado por uma taxa de aprendizado fixa, e além disso com uma magnitude mediana.

O que poderia acontecer se utilizarmos uma taxa de aprendizado muito grande é que com um passo do algoritmo, o ponto estimado poderia ir para o outro lado do arco da função, e depois retornar, e assim por diante, nunca convergindo para o mínimo, uma ilustração disso está na Figura A.2.



**Figura A.2:** Visualização do método do gradiente descendente com taxa de aprendizado única. Ilustração do uso de um valor de taxa de aprendizado muito grande.

O caso oposto a este, ou seja, usar uma taxa muito pequena, claramente irá fazer com os passos dados sejam muito pequenos, e dessa forma o algoritmo demore muito a convergir, por isso é importante usar valores medianos que podem ser obtidos de forma heurística, embora na prática, conforme dito por Géron (GÉRON, 2019), utiliza-se  $\eta = 0.1$ , sendo este um valor consensualmente utilizado pelo menos como ponto de partida.

A outra abordagem é utilizar valores variáveis, sendo o caso mais comum utilizar uma taxa que começa até mesmo maior do que o valor comum de 0.1 mas que vai diminuindo a cada passo, numa tentativa de obter uma convergência mais rápida. Uma ilustração desse caso está na Figura A.3.

Qualquer que seja o tipo de taxa de aprendizado que venha a ser utilizado, permanece como melhor estratégia testar qual deles irá gerar o melhor resultado, analisando diretamente os valores candidatos a mínimo obtidos pelo algoritmo como função do número do passo, criando assim outro tipo de gráfico, no qual não precisamos saber o formato da função objetivo, o que é razoável uma vez que não precisaríamos de um método numérico para obter seu ponto de mínimo.

Podemos observar este comportamento genérico para os 4 casos acima mencionados, na Figura A.4 temos os gráficos de valores hipotéticos de candidatos a mínimo gerados por (a) taxa de aprendizado fixa e grande, (b) taxa de aprendizado fixa e pequena, (c) taxa de aprendizado fixa e mediana, (d) taxa de aprendizado decrescente.



**Figura A.3:** Visualização do método do gradiente descendente com taxa de aprendizado variável que vai diminuindo passo-a-passo do algoritmo.



Figura A.4: Comportamento de diferentes taxas de aprendizado nos valores candidatos a mínimo.

A partir deste comportamento geral, podemos testar nosso problema-alvo, verificar a qual comportamento ele mais se parece e assim decidir se devemos aumentar ou diminuir nossa taxa até obtermos um bom comportamento como aqueles vistos em (c) ou (d).

## Apêndice B

## Transformação de Box-Cox

De forma a estabilizar a variância de séries temporais financeiras, faz-se necessária a aplicação de transformações não-lineares à série original, de forma a modelar a série transformada com os modelos *ARIMA*, que assumem uma variância constante, mesmo quando a média possui algumas tendências que podem ser compensadas aplicando-se diferenças, conforme visto no Capítulo 4.

A transformação a seguir, criada por George Edward Pelham Box e David Roxbee Cox (Box e Cox, 1964), e conhecida por transformação de Box-Cox, é uma generalização da transformação logarítmica. Dada uma série temporal  $Z_t$ , a transformação é definida por:

$$Z_t^{(\lambda)} = \begin{cases} \frac{Z_t^{\lambda} - 1}{\lambda}, & \text{se } \lambda \neq 0\\ \log Z_t, & \text{se } \lambda = 0 \end{cases}$$
 (B.1)

Onde,  $\lambda$  é um parâmetro real que deve ser estimado. Para isso, Morettin e Toloi (MORETTIN e TOLOI, 2019) sugerem a análise de um gráfico que será construído a partir de dados da série temporal. No eixo das abcissas calculam-se médias de subconjuntos de observações, e no eixo das ordenadas, calculam-se as amplitudes de cada um desses subconjuntos.

Seja  $Z_1, \ldots, Z_k$  um subconjunto de k elementos da série temporal, definimos o par  $(\bar{Z}, w)$  que será um ponto no gráfico, pelas componentes:

$$\bar{Z} = \frac{1}{k} \sum_{i=1}^{k} Z_{t_i}$$

$$w = \max(Z_{t_i}) - \min(Z_{t_i})$$

Se, a partir desse gráfico, verificarmos que w independer de  $\bar{Z}$ , ou seja, se os pontos estiverem espalhados ao redor de uma reta paralela ao eixo das abcissas, não haverá necessidade de transformação, pois assim a variância da série é estável, de acordo com Box e Jenkins (Box, Jenkins  $et\ al.$ , 2016).

Se, por outro lado, w for diretamente proporcional a  $\bar{Z}$ , ou seja, correlacionadas com uma reta com inclinação próxima de 45 graus, então poderemos assumir que  $\lambda=0$ . Por se

tratar de um procedimento empírico, Box e Jenkins (Box, Jenkins et al., 2016) fornecem uma guia que pode ser utilizado para decidirmos por um valor adequado de  $\lambda$ .

Exibido na Figura B.1, são dados possíveis gráficos que poderemos obter com esse procedimento e qual o valor correspondente de  $\lambda$  que usaremos para aplicar a transformação B.1.



**Figura B.1:** Gráficos da amplitude por média de subconjuntos de  $Z_t$ , com os correspondentes valores de  $\lambda$ .<sup>a</sup>

 $<sup>^</sup>a\mathrm{Extraido}$  de Morettin e Toloi, 2019, pág 10.

## Apêndice C

# Função de autocorrelação parcial

A derivação da função de autocorrelação parcial mostrada abaixo, é extraída de Morettin e Toloi (MORETTIN e TOLOI, 2019), nas páginas 138-140.

Suponha um modelo AR(k) e seja  $\phi_{kj}$  o seu j-ésimo coeficiente. Sabe-se que:

$$\rho_{j} = \phi_{k1}\rho_{j-1} + \phi_{k2}\rho_{j-2} + \dots + \phi_{kk}\rho_{j-k} \; , \; \; j = 1,\dots,k$$

A partir dessas *k* expressões, obtemos as chamadas equações de Yule-Walker:

$$\begin{bmatrix} 1 & \rho_{1} & \rho_{2} & \dots & \rho_{k-1} \\ \rho_{1} & 1 & \rho_{1} & \dots & \rho_{k-2} \\ \vdots & & \ddots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \dots & 1 \end{bmatrix} \begin{bmatrix} \phi_{k1} \\ \phi_{k2} \\ \vdots \\ \phi_{kk} \end{bmatrix} = \begin{bmatrix} \rho_{1} \\ \rho_{2} \\ \vdots \\ \rho_{k} \end{bmatrix}$$
(C.1)

Resolvendo essas equações sucessivamente para k = 1, 2, ... obtemos:

$$\phi_{11} = \rho_{1}$$

$$\phi_{22} = \frac{\begin{vmatrix} 1 & \rho_{1} \\ \rho_{1} & \rho_{2} \end{vmatrix}}{\begin{vmatrix} 1 & \rho_{1} \\ \rho_{1} & 1 \end{vmatrix}}$$

$$\phi_{33} = \frac{\begin{vmatrix} 1 & \rho_{1} \\ \rho_{1} & 1 \end{vmatrix}}{\begin{vmatrix} \rho_{1} & \rho_{1} \\ \rho_{2} & \rho_{1} & \rho_{3} \end{vmatrix}}$$

$$\vdots$$

$$\vdots$$

De modo geral, pode-se escrever:

$$\varphi_k := \phi_{kk} = \frac{|\mathbf{P}_k^*|}{|\mathbf{P}_k|} \tag{C.2}$$

Onde nota-se que  $\mathbf{P}_k$  é a matriz de autocorrelações do modelo AR(k), e  $\mathbf{P}_k^*$  é a matriz  $\mathbf{P}_k$  com a última coluna substituída pelo vetor de autocorrelações, que é o termo à direita da igualdade das equações de Yule-Walker (C.1).

Dessa forma, a definição acima de  $\varphi_k$  é chamada de função de autocorrelação parcial do lag k, ou seja, de ordem autorregressiva k. Ela pode ser entendida como a correlação parcial entre as variáveis  $Z_t$  e  $Z_{t-k}$ , ajustadas às variáveis intermediárias  $Z_{t-1},\ldots,Z_{t-k+1}$ . Isto é, ela mede a correlação remanescente entre  $Z_t$  e  $Z_{t-k}$  depois de removida a influência de  $Z_{t-1},\ldots,Z_{t-k+1}$ .

#### Referências

- [Allen 2020] Robbie Allen. A Gentle Introduction to Machine Learning Concepts. https://medium.com/machine-learning-in-practice/a-gentle-introduction-to-machine-learning-concepts-cfe710910eb. Fev. de 2020 (citado nas pgs. 5–11).
- [Ballini 2000] Rosangela Ballini. "Análise e Previsão de Vazões Utilizando Modelos de Séries Temporais, Redes Neurais e Redes Neurais Nebulosas". Doutorado em Engenharia Elétrica. Faculdade de Engenharia Elétrica e de Computação da Universidade Estadual de Campinas, 2000 (citado na pg. 18).
- [BARPAGA 2019] Prince BARPAGA. A Gentle Introduction to Machine Learning. https://towardsdatascience.com/a-gentle-introduction-to-machine-learning-599210ec34ad. Jun. de 2019 (citado na pg. 5).
- [Blei e Smyth 2017] David M. Blei e Padhraic Smyth. "Science and data science". Em: *PNAS* 114.33 (ago. de 2017), pgs. 8689–8692 (citado na pg. 1).
- [Box e Cox 1964] George Edward Pelham Box e David Roxbee Cox. "An analysis of transformations". Em: *Journal of the Royal Statistical Society, Series B (Methodological)* 26.2 (1964), pgs. 211–252. URL: %5Curl%7Bhttps://www.jstor.org/stable/2984418%7D (citado na pg. 101).
- [Box, Jenkins *et al.* 2016] George Edward Pelham Box, Gwilym Meirion Jenkins, Gregory C. Reinsel e Greta M. Ljung. *Time Series Analysis Forecasting and Control.* 5°. John Wiley & Sons, 2016 (citado nas pgs. 64, 66, 71, 101, 102).
- [Budhiraja 2016] Amar Budhiraja. *Dropout in (Deep) Machine learning*. https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5. Dez. de 2016 (citado na pg. 43).
- [CLEVERT *et al.* 2015] Djork-Arné CLEVERT, Thomas UNTERTHINER e Sepp Hochreiter. "Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)". Em: *arXiv e-prints*, arXiv:1511.07289 (nov. de 2015), arXiv:1511.07289. arXiv: 1511.07289 [cs.LG] (citado na pg. 35).

- [DATE 2019] Sachin DATE. *The Akaike Information Criterion*. https://towardsdatascience.com/the-akaike-information-criterion-c20c8fd832f2. Set. de 2019 (citado na pg. 83).
- [Dellinger 2019] James Dellinger. Weight Initialization in Neural Networks: A Journey From the Basics to Kaiming. https://towardsdatascience.com/weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79. Abr. de 2019 (citado na pg. 37).
- [FACURE 2017a] Matheus FACURE. Dificuldades no Treinamento de Redes Neurais Examinando o problema de gradientes explodindo ou desvanecendo. https://matheusfacure.github.io/2017/07/10/problemas-treinamento/. Jul. de 2017 (citado na pg. 32).
- [FACURE 2017b] Matheus FACURE. Funções de Ativação Entendendo a importância da ativação correta nas redes neurais. https://matheusfacure.github.io/2017/07/12/activ-func/. Jul. de 2017 (citado nas pgs. 32, 34–36, 44).
- [GÉRON 2019] Aurélien GÉRON. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. 2°. O'Reilly, 2019 (citado nas pgs. 2, 5, 6, 12, 17, 20, 42, 44, 51, 99).
- [GRUS 2016] Joel GRUS. *Data Science do Zero: Primeiras regras com o Python.* 1°. O'Reilly, 2016 (citado nas pgs. 1, 2, 13–16, 30, 44).
- [GUIDORIZZI 1986] Hamilton Luiz GUIDORIZZI. *Um curso de cálculo.* v. 2. LTC, 1986. ISBN: 8521604254 (citado na pg. 97).
- [Heaton 2017] Jeff Heaton. *The Number of Hidden Layers*. https://www.heatonresearch.com/2017/06/01/hidden-layers.html. Jun. de 2017 (citado na pg. 46).
- [KOPEC 2019] David KOPEC. *Problemas Clássicos de Ciência da Computação com Python.* 1°. Novatec, 2019 (citado nas pgs. 3, 20, 22, 25, 29).
- [KORBUT 2017] Daniil KORBUT. *Machine Learning Algorithms: Which One to Choose for Your Problem.* https://blog.statsbot.co/machine-learning-algorithms-183cc73197c. Out. de 2017 (citado nas pgs. 11, 16).
- [Magalhães e Lima 2002] Marcos Nascimento Magalhães e Antonio Carlos Pedroso de Lima. *Noções de Probabilidade e Estatística*. 5°. Edusp, 2002 (citado na pg. 11).
- [Mahendru 2019] Khyati Mahendru. *How to Determine the Optimal K for K-Means?* https://medium.com/analytics-vidhya/how-to-determine-the-optimal-k-for-k-means-708505d204eb. Jun. de 2019 (citado na pg. 17).
- [AL-MASRI 2019] Anas AL-MASRI. What Are Overfitting and Underfitting in Machine Learning? https://towardsdatascience.com/what-are-overfitting-and-underfitting-in-machine-learning-a96b30864690. Jun. de 2019 (citado na pg. 42).

- [MORETTIN e SINGER 2020] Pedro Alberto MORETTIN e Julio SINGER. *Introdução à Ciência de Dados Fundamentos e Aplicações*. Departamento de Estatística. Universidade de São Paulo, 2020 (citado na pg. 1).
- [Morettin e Toloi 2019] Pedro Alberto Morettin e Clélia M. C. Toloi. *Análise de séries temporais, vol. 1: Modelos lineares univariados.* 3°. Edgard Blücher Ltda., 2019 (citado nas pgs. 57–64, 66, 69–72, 101, 103).
- [ROSENBLATT 1958] Frank ROSENBLATT. "The perceptron: a probabilistic model for information storage and organization in the brain". Em: *Psychological Review* 65.6 (1958), pgs. 386–408. URL: %5Curl %7Bhttps://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf%7D (citado na pg. 18).
- [SILVER 2018] Andrew SILVER. *The Essential Data Science Venn Diagram.* https://towardsdatascience.com/the-essential-data-science-venn-diagram-35800c3bef40. Set. de 2018 (citado nas pgs. 1, 2).
- [UPADHYAY 2019] Yash UPADHYAY. Regularization techniques for Neural Networks. https://towardsdatascience.com/regularization-techniques-for-neural-networks-e55f295f2866. Mar. de 2019 (citado na pg. 42).
- [Xu et al. 2015] Bing Xu, Naiyan Wang, Tianqi Chen e Mu Li. "Empirical Evaluation of Rectified Activations in Convolutional Network". Em: arXiv e-prints, arXiv:1505.00853 (mai. de 2015), arXiv:1505.00853. arXiv: 1505.00853 [cs.LG] (citado nas pgs. 34, 35).
- [YE 2020] Andre YE. AutoML: Creating Top-Performing Neural Networks Without Defining Architectures. https://towardsdatascience.com/automl-creating-top-performing-neural-networks-without-defining-architectures-c7d3b08cddc. Set. de 2020 (citado na pg. 56).