西安电子科技大学

微机系统综合实验	<u>2</u> 课程实验报告
实验名称 实验3	ī 存储器扩展实验
网络与信息安全学院 <u>2118021</u>	成绩
指导教师评语:	
	指导教师: 年月日

一、 实验要求

- 1. 使用两片 62256 扩充 RAM 空间为 00000H-0FFFFH。
- 2. 编制程序,将字符 1~8 循环写入 00000H-00FFFH 中,将 9 写入 01000H-02FFFH 中。将 01000H-02FFFH 中的内容搬移到 04000H-05FFFH 中。

二、实验目的

- 1. 学习 PROTEUS EDA 仿真工具的使用方法;
- 2. 学习8086最小系统中系统总线的形成方法;
- 3. 掌握内存扩充方法和外围接口方法,正确设计译码电路,按照要求的地址实现存储器芯片的连接。

三、 实验电路

四、 实验代码及实验结果

- 1. ASSUME CS:CODE;设置代码段地址为CODE
- START:
- 4. MOV AX,1000H;将1000H存入AX寄存器
- 5. MOV DS, AX;将 AX中的值存入 DS 寄存器,设置数据段地址
- 6.
- 7. MOV AL,1 ;将 1 存入 AL 寄存器
- 8. MOV BX,0000H;将 0000H 存入 BX 寄存器
- 9. MOV CX,1000H;将1000H存入CX寄存器,设置循环次数
- 10.
- **11**. **MOV** [BX], AL ; 将 AL 中的值存入 BX 指向的地址中
- 12. JMP M1;跳转到标签 M1 处
- 13.

```
14. ;1~8 循环写入 10000H-10FFFH
15. zero:
16. MOV AL,1 ;将1存入AL 寄存器
17.
18. M1:
19.
      MOV [BX], AL ;将 AL 中的值存入 BX 指向的地址中
20.
      INC BX ;递增 BX 指向的地址
21.
      INC AL ;递增 AL 寄存器中的值
22.
      CMP AL,8;比较 AL 中的值与8
23.
      JA ZERO;如果大于,则跳转到 ZERO 标签处
24.
25.
      LOOP M1;循环 M1标签处的代码,循环次数为 CX 中的值
26.
27.
      ;将9写入11000H-12FFFH
28.
      MOV AL,09H ;将 09H 存入 AL 寄存器
29.
      MOV CX,2000H;将2000H存入CX寄存器
30.
      MOV BX,1000H ;将 1000H 存入 BX 寄存器,设置偏移地址为 1000H
31.
32. M2:
33.
      MOV [BX],AL ;将 AL 中的值存入 BX 指向的地址中
34.
      INC BX;递增BX指向的地址
35.
      LOOP M2;循环 M2标签处的代码,循环次数为 CX中的值
36.
37.
      ;将 11000H-12FFFH 内容移到 14000H-15FFFH
38.
      MOV BX,1000H ;将 1000H 存入 BX 寄存器
39.
      MOV CX,2000H;将2000H存入CX寄存器
40.
41. TRANS:
42.
      MOV AL,[BX];读入 BX 指向的地址中的值,存入 AL 寄存器
43.
      ADD BX,3000H;将BX寄存器中的值加上3000H
44.
      MOV [BX], AL ;将 AL 寄存器中的值存入 BX 指向的地址中
45.
      SUB BX,3000H ;将 BX 寄存器中的值减去 3000H
46.
      INC BX ; 递增 BX 指向的地址
47.
      LOOP TRANS;循环 TRANS 标签处的代码,循环次数为 CX 中的值
48.
49.
      HLT ;停机指令
50.
51. CODE ENDS ;代码结束
      END START ;程序结束,开始执行 START 标签处的代码
```

实验结果:

偶地址:

奇地址:

迁移前:

09 09 09 09 09 09 09 09 09 09 09 09 09 0	09 09 09 09	09 09 09 09 09 09 09 09 09 09 09 09 09 0	09 00 09 00 00 00		09 09 09 09	09 (09 (09 (09 (09 (09 (09 (09 (09 09 09 09 09 09 09 09 09 09 09 09 09 0	09 09 09 09	09 (0 09 (0 09 (0 09 (0 09 (0 09 (0 09 (0 09 (0 09 (0	09 09 09 09	09 09 09 09	09 09 09 09 09 09 09 09 09 09 09 09 09 0	090909099099099099099099099099099
02 04 06 02 04 06 02 04 06 02 04 06 09 09 09 09 09 09	08 02 08 02 08 02 08 02 09 09 09 09		08 08 08 08 08 08 08 09 09 09 09 09 09 09 09 09 09 09 09 09	2 04 2 04 9 09 9 09 9 09 9 09 9 09 9 09 9 09 9	06 08 06 08 06 08 09 09 09 09	02 02 02 09 09 09 09 09 09 09 09 09 09	04 06 04 06 04 06 04 06 09 09 09 09	08 02 08 02 08 02 08 02 09 09 09 09	04 04 04 09 09 09 09 09 09 09 09 09 09 09	06 08 06 08 06 08 09 09 09 09 09 09 09 09 09 09 09 09 09	02 04 02 04 02 04 09 09 09 09	06 06 06 09 09 09 09 09 09 09 09 09 09 09 09	80 80 80 80 80 80 80 80 80 80 80 80 80 8

迁移后:

五、 实验总结

在本次实验中,我学习了如何使用 Proteus 设计 8086 最小模式下的系统总线,并深入理解了锁存器和驱动器的作用。通过实践,我成功地实现了将两片 62256 RAM 扩充并编写程序将字符 1~8 循环写入 00000H-00FFFH 中,将 9 写入 01000H-02FFFH 中,并将 01000H-02FFFH 中的内容搬移到 04000H-05FFFH 中。此外,我深刻认识到硬件与软件的密不可分,只有深入理解硬件的工作原理,才能编写出正确且高效的程序。同时,我也意识到在设计和实现系统时,需要考虑各个组件之间的协调与配合,以达到系统整体的最优性能。不仅提高了我的硬件设计和程序开发能力,也增强了我对计算机系统整体架构的认知。