Mecanică Generală

II. Axiomatica corpurilor deformabile și a solidului rigid

Liviu Marin^{1,†}

¹Facultatea de Matematică și Informatică, Universitatea din București, România

†E-mail: marin.liviu@gmail.com

8 & 15 octombrie 2013

4□ > 4□ > 4□ > 4□ > 4□ > 900

II. Axiomatica corpurilor deformabile

Mecanică Generală

Spatii afine

De ce spatii afine?

- Spațiile afine oferă un cadru f. bun pentru geometrie.
- In spaţiile afine, se pot studia, d.p.d.v. geometric, puncte, curbe, suprafețe etc. într-o manieră intrinsecă, i.e. independent de alegerea unui sistem de referință/coordonate.
- Spațiile afine oferă cadrul constitutiv adecvat pentru studiul mișcării, al traiectoriei și al forțelor.
- In consecintă, geometria afină este crucială pentru prezentarea riguroasă și coerentă a cinematicii și dinamicii.

4日 → 4日 → 4 目 → 4目 → 990

Spatii vectoriale

Definitie

Fie $\mathbb{K} = \mathbb{R}$ sau $\mathbb{K} = \mathbb{C}$. Se numeste spatiu vectorial peste corpul \mathbb{K} tripletul $(\mathcal{V}, +, \cdot)$ format din: (i) multimea vectorilor, $\mathcal{V} \neq \emptyset$, (ii) operatia de adunare a vectorilor, $+: \mathcal{V} \times \mathcal{V} \longrightarrow \mathcal{V}, (\vec{\mathbf{u}}, \vec{\mathbf{v}}) \longmapsto \vec{\mathbf{u}} + \vec{\mathbf{v}}; \, si$

- (iii) operația de înmulțire cu scalari, $\cdot : \mathbb{K} \times \mathcal{V} \longrightarrow \mathcal{V}$, $(\alpha, \vec{\mathbf{v}}) \longmapsto \alpha \vec{\mathbf{v}}$, a.i.:
- (V_1) $(\vec{\mathbf{u}} + \vec{\mathbf{v}}) + \vec{\mathbf{w}} = \vec{\mathbf{u}} + (\vec{\mathbf{v}} + \vec{\mathbf{w}}), \quad \forall \ \vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}} \in \mathcal{V}$:
- $(\bigvee_2) \exists ! \vec{0} \in \mathcal{V} : \vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}. \forall \vec{u} \in \mathcal{V}:$
- $(V_3) \ \forall \ \vec{\mathbf{u}} \in \mathcal{V}, \exists ! \ (-\vec{\mathbf{u}}) \in \mathcal{V} : \ \vec{\mathbf{u}} + (-\vec{\mathbf{u}}) = (-\vec{\mathbf{u}}) + \vec{\mathbf{u}} = \vec{\mathbf{0}};$
- (V_4) $\vec{\mathbf{u}} + \vec{\mathbf{v}} = \vec{\mathbf{v}} + \vec{\mathbf{u}}$. $\forall \vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathcal{V}$:
- (V_5) $\alpha(\vec{\mathbf{u}} + \vec{\mathbf{v}}) = \alpha \vec{\mathbf{u}} + \alpha \vec{\mathbf{v}}, \quad \forall \alpha \in \mathbb{K}, \quad \forall \vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathcal{V}$:
- (V_6) $(\alpha + \beta)\vec{\mathbf{u}} = \alpha\vec{\mathbf{u}} + \beta\vec{\mathbf{u}}, \quad \forall \ \alpha, \beta \in \mathbb{K}, \quad \forall \ \vec{\mathbf{u}} \in \mathcal{V}$:
- (V_7) $\alpha(\beta \vec{\mathbf{u}}) = (\alpha \beta) \vec{\mathbf{u}}, \quad \forall \alpha, \beta \in \mathbb{K}, \quad \forall \vec{\mathbf{u}} \in \mathcal{V}$:
- (\bigvee_{\aleph}) $1_{\mathbb{K}}\vec{\mathbf{u}} = \vec{\mathbf{u}}, \forall \vec{\mathbf{u}} \in \mathcal{V}.$

II. Axiomatica corpurilor deformabile Mecanică Generală

Definiție (spațiu afin)

Un spațiu afin este fie spațiul degenerat redus la mulțimea vidă, fie tripletul $(\mathcal{E}, \mathcal{V}, +)$ format din:

- (i) multimea punctelor, $\mathcal{E} \neq \emptyset$;
- (ii) spațiul vectorial al translațiilor (spațiul vectorial al vectorilor liberi), $\mathcal{V} \neq \emptyset$:
- (iii) aplicatia

$$+: \mathcal{E} \times \mathcal{V} \longrightarrow \mathcal{E}, \quad (\mathbf{x}, \vec{\mathbf{u}}) \in \mathcal{E} \times \mathcal{V} \longmapsto \mathbf{x} + \vec{\mathbf{u}} \in \mathcal{E};$$

care satisfac următoarele proprietăți:

- $(A_1) \mathbf{x} + \vec{\mathbf{0}} = \mathbf{x}, \quad \forall \mathbf{x} \in \mathcal{E}$
- (A_2) $(\mathbf{x} + \vec{\mathbf{u}}) + \vec{\mathbf{v}} = \mathbf{x} + (\vec{\mathbf{u}} + \vec{\mathbf{v}}), \quad \forall \ \mathbf{x} \in \mathcal{E}, \quad \forall \ \vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathcal{V};$
- $(A_3) \ \forall \ \mathbf{x}, \mathbf{y} \in \mathcal{E}, \quad \exists ! \ \vec{\mathbf{u}} \in \mathcal{V} : \quad \mathbf{x} + \vec{\mathbf{u}} = \mathbf{y}.$

Spațiul afin, \mathcal{E} .

Spatiul vectorial, \mathcal{V} .

Unicul vector $\vec{\mathbf{u}} \in \mathcal{V}$, a.i. $\mathbf{x} + \vec{\mathbf{u}} = \mathbf{y}$, se notează cu $\overrightarrow{\mathbf{x}}$ sau $\mathbf{y} - \mathbf{x}$. In consecintă, $\mathbf{y} = \mathbf{x} + \overrightarrow{\mathbf{x}} \mathbf{y}$ sau $\mathbf{y} = \mathbf{x} + (\mathbf{y} - \mathbf{x})$.

4□ > 4□ > 4□ > 4□ > 4□ > 900

II. Axiomatica corpurilor deformabile

Mecanică Generală

Spații vectoriale. Spații afine Teorema de unicitate (W. Noll, 1964)

Formal, se definesc următoarele aplicații:

$$\forall \mathbf{x} \in \mathcal{E}$$
 arbitrar, fixat: $\forall \mathbf{\vec{u}} \in \mathcal{V}, \quad \mathcal{V} \longrightarrow \mathcal{E}, \quad \mathbf{\vec{u}} \longmapsto \mathbf{x} + \mathbf{\vec{u}}$ (1)

Spatiul vectorial, \mathcal{V} .

Spațiul afin, \mathcal{E} .

4日 → 4日 → 4 目 → 4目 → 990

Interpretare intuitivă

Spațiul afin, \mathcal{E} , și spațiul vectorial, \mathcal{V} , sunt două moduri de a privi același object.

- (i) Spatiul afin, \mathcal{E} , este privit ca o multime de puncte, făcând abstractie că perechea de puncte (x, y) determină, în mod unic, vectorul $\overrightarrow{xy} \in \mathcal{V}$, cf. axiomei (A₃).
- (ii) Spațiul vectorial, V, este privit ca o mulțime de vectori $\vec{\mathbf{u}}$, făcând abstracție de existența punctelor din spațiul afin, \mathcal{E} .
- (iii) Prin fixarea unui punct $\mathbf{x} \in \mathcal{E}$, care este privit drept origine, spațiul afin \mathcal{E} poate fi regândit ca mulțimea translațiilor originii $\mathbf{x} \in \mathcal{E}$ prin spatiul vectorial \mathcal{V}

$$\mathcal{E} = \{\mathbf{x} + \vec{\mathbf{u}} \mid \vec{\mathbf{u}} \in \mathcal{V}\} = \{\mathbf{x}\} + \mathcal{V}.$$

(iv) Spatiul afin, \mathcal{E} , trebuie gândit ca multimea de puncte (particule) ale spatiului fizic. Spatiul vectorial, \mathcal{V} , trebuie gândit ca multimea vectorilor (forțelor) ce acționează pe \mathcal{E} .

II. Axiomatica corpurilor deformabile Mecanică Generală

 $\forall \mathbf{x} \in \mathcal{E}$ arbitrar, fixat: $\forall \mathbf{y} \in \mathcal{E}, \quad \mathcal{E} \longrightarrow \mathcal{V}, \quad \mathbf{y} \longmapsto \overrightarrow{\mathbf{x}} \overrightarrow{\mathbf{y}}$ (2)

Spațiul afin, \mathcal{E} .

Spaţiul vectorial, \mathcal{V} .

Considerăm compunerile acestor funcții, i.e. (1) cu (2) și, respectiv, (2) cu (1), definite astfel (\forall $\mathbf{x} \in \mathcal{E}$ arbitrar, fixat):

$$\forall \vec{\mathbf{u}} \in \mathcal{V}, \quad \mathcal{V} \longrightarrow \mathcal{E} \longrightarrow \mathcal{V}, \quad \vec{\mathbf{u}} \longmapsto \mathbf{x} + \vec{\mathbf{u}} \longmapsto \overline{\mathbf{x} (\mathbf{x} + \vec{\mathbf{u}})}$$
 (3)

$$\forall \mathbf{y} \in \mathcal{E}, \quad \mathcal{E} \longrightarrow \mathcal{V} \longrightarrow \mathcal{E}, \quad \mathbf{y} \longmapsto \overrightarrow{\mathbf{x}} \overrightarrow{\mathbf{y}} \longmapsto \mathbf{x} + \overrightarrow{\mathbf{x}} \overrightarrow{\mathbf{y}}$$
 (4)

Observații

- (i) Compunerile de funcții definite de ecuațiile (3) și (4) sunt, de fapt, funcția identitate pe V. id_V , respectiv funcția identitate pe \mathcal{E} . $id_{\mathcal{E}}$.
- (ii) Funcțiile definite de ecuațiile (1) și (2) sunt, in consecință, bijecții, deci inversabile, fiecare dintre acestea fiind inversa celeilalte.

Definiție

Dimensiunea spaţiului afin $(\mathcal{E}, \mathcal{V}, +)$ este dată de dimensiunea spaţiului vectorial \mathcal{V} , i.e. dim \mathcal{V} , și se notează prin dim \mathcal{E} , i.e. dim \mathcal{E} = dim \mathcal{V} .

II. Axiomatica corpurilor deformabile

Mecanică Generală

Spații vectoriale. Spații afine Teorema de unicitate (W. Noll, 1964)

In cazul Mecanicii, avem:

- $\mathcal{E} = \mathbb{R}^3$ spaţiul euclidian punctual (spaţiul afin) tridimensional;
- V spațiul vectorial al translațiilor lui \mathcal{E} , dim V=3.
- Fie $\{\vec{\mathbf{e}}_i\}_{1 \le i \le 3} \subset \mathcal{V}$ o bază ortonormată a lui \mathcal{V} , i.e.

$$\vec{\mathbf{e}}_i \cdot \vec{\mathbf{e}}_i = \delta_{ii}, \quad 1 \le i, j \le 3. \tag{5}$$

Atunci

$$\forall \ \vec{\mathbf{u}} \in \mathcal{V}, \quad \exists! \ (u_i)_{1 \le i \le 3} \subset \mathbb{R} : \quad \vec{\mathbf{u}} = \sum_{i=1}^3 u_i \vec{\mathbf{e}}_i, \tag{6}$$

unde $u_i \in \mathbb{R}, \ 1 \leq i \leq 3$, sunt componentele vectorului $\vec{\bf u}$ în baza $\{\vec{\bf e}_i\}_{1 < i < 3}$.

• Mai mult, componentele vectorului $\vec{\mathbf{u}}$ în baza $\{\vec{\mathbf{e}}_i\}_{1 \leq i \leq 3}$ sunt proiecțiile vectorului $\vec{\mathbf{u}}$ pe direcțiile $\vec{\mathbf{e}}_i$, $1 \leq i \leq 3$:

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{e}}_k = \left(\sum_{i=1}^3 u_i \vec{\mathbf{e}}_i\right) \cdot \vec{\mathbf{e}}_k = \sum_{i=1}^3 u_i \left(\vec{\mathbf{e}}_i \cdot \vec{\mathbf{e}}_k\right) = \sum_{i=1}^3 u_i \delta_{ik} = u_k. \tag{7}$$

II. Axiomatica corpurilor deformabile

Mecanică Genera

Spaţii vectoriale. Spaţii afin Teorema de unicitate (W. Noll, 1964 Axiomele corpurilor și mass

Definitie

Fie $(\mathcal{E}, \mathcal{V}, +)$ un spațiu afin n-dimensional, i.e. dim $\mathcal{E} = \dim \mathcal{V} = n$. Se numește sistem de referință perechea $(\mathbf{0}, \{\vec{\mathbf{e}}_i\}_{1 \le i \le n})$, unde:

- (i) $\mathbf{0} \in \mathcal{E}$ este un punct numit originea sistemului de referință;
- (ii) $\{\vec{\mathbf{e}}_i\}_{1 \leq i \leq n} \subset \mathcal{V}$ sunt vectori ce formează o bază.

$$\mathbf{x} = (x_1, x_2, \dots, x_n) \Longrightarrow \vec{\mathbf{x}} = \mathbf{x} - \mathbf{0};$$

$$\mathbf{y} = (y_1, y_2, \dots, y_n) \Longrightarrow \vec{\mathbf{y}} = \mathbf{y} - \mathbf{0};$$

$$\mathbf{y} - \mathbf{x} = (y_1, y_2, \dots, y_n) - (x_1, x_2, \dots, x_n)$$

$$= (y_1 - x_1, y_2 - x_2, \dots, y_n - x_n) \Longrightarrow$$

$$\vec{\mathbf{u}} = \mathbf{y} - \mathbf{x} = (\mathbf{y} - \mathbf{0}) - (\mathbf{x} - \mathbf{0})$$

II. Axiomatica corpurilor deformabile

Mecanică Genera

Spații vectoriale. Spații afi Teorema de unicitate (W. Noll, 196 Axiomele corpurilor și ma

• Fie $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathcal{V}$ ale căror reprezentări în baza $\{\vec{\mathbf{e}}_i\}_{1 \leq i \leq 3}$ sunt date de:

$$\vec{\mathbf{u}} = \sum_{i=1}^{3} u_i \vec{\mathbf{e}}_i, \qquad \vec{\mathbf{v}} = \sum_{j=1}^{3} v_j \vec{\mathbf{e}}_j. \tag{8}$$

Atunci produsul scalar al vectorilor \vec{u} si \vec{v} este dat de formula:

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \left(\sum_{i=1}^{3} u_i \vec{\mathbf{e}}_i\right) \cdot \left(\sum_{j=1}^{3} v_j \vec{\mathbf{e}}_j\right) = \sum_{i=1}^{3} \sum_{j=1}^{3} u_i v_j \underbrace{\left(\vec{\mathbf{e}}_i \cdot \vec{\mathbf{e}}_j\right)}_{=\delta_{ij}} = \sum_{i=1}^{3} u_i v_i.$$
(9)

• Produsul scalar al vectorilor $\vec{\bf u}$ și $\vec{\bf v}$ se mai poate introduce și în forma următoare:

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = |\vec{\mathbf{u}}| \, |\vec{\mathbf{v}}| \, \cos \theta, \tag{10}$$

unde $\theta \in [0, \pi]$ este unghiul dintre vectorii $\vec{\mathbf{u}}$ și $\vec{\mathbf{v}}$.

• Vectorii $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathcal{V}$ se numesc perpendiculari dacă $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$.

II. Axiomatica corpurilor deformabile

Mecanică Genera

$$\vec{\mathbf{u}} \times \vec{\mathbf{v}} = (|\vec{\mathbf{u}}| \, |\vec{\mathbf{v}}| \, \sin \theta) \vec{\mathbf{e}},\tag{11}$$

unde $\theta \in [0, \pi]$ este unghiul dintre vectorii $\vec{\mathbf{u}}$ si $\vec{\mathbf{v}}$, iar $\vec{\mathbf{e}} \in \mathcal{V}$ este vectorul unitar, perpendicular pe planul determinat de $\vec{\mathbf{u}}$ și $\vec{\mathbf{v}}$, obținut prin aplicarea regulii mâinii drepte (regula burghiului.)

- Vectorii $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathcal{V}$ se numesc paraleli daca $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \vec{\mathbf{0}}$.
- Fie $\vec{\mathbf{e}} \in \mathcal{V}$ un vector unitar. Atunci

$$\forall \ \vec{\mathbf{v}} \in \mathcal{V} : \quad \vec{\mathbf{v}} = \vec{\mathbf{v}}_{\mathbf{e}} + \vec{\mathbf{v}}_{\mathbf{e}}^{\perp}, \tag{12}$$

unde

$$\vec{\mathbf{v}}_{\mathbf{e}} \times \vec{\mathbf{e}} = \vec{\mathbf{0}}, \qquad \vec{\mathbf{v}}_{\mathbf{e}}^{\perp} \cdot \vec{\mathbf{e}} = 0.$$
 (13)

Vectorul $\vec{v}_e = (\vec{v} \cdot \vec{e})\vec{e}$ se numește proiecția lui \vec{v} pe \vec{e} . Vectorul $\vec{v}_e^\perp = \vec{v} - \vec{v}_e$ se numește componenta ortogonală a lui \vec{v} în raport cu \vec{e} .

II. Axiomatica corpurilor deformabile

Mecanică Generală

Spații vectoriale. Spații afine Teorema de unicitate (W. Noll, 1964)

Definitie

- (i) $\operatorname{Lin}(\mathcal{V},\mathcal{V}) \equiv \left\{ \mathbf{T}: \mathcal{V} \longrightarrow \mathcal{V} \;\middle|\; \mathbf{T} \text{ liniară} \right\}$ se numește mulțimea tensorilor de ordinul 2 pe \mathcal{V} .
- (ii) $\mathsf{InvLin}(\mathcal{V},\mathcal{V}) \equiv \left\{ \mathbf{T} \in \mathsf{Lin}(\mathcal{V},\mathcal{V}) \;\middle|\; \mathbf{T} \;\mathsf{inversabil} \mathsf{a} \right\}$ se numește multimea tensorilor de ordinul 2 inversabili pe $\hat{\mathcal{V}}$.
- (iii) $\mathsf{Bilin}(\mathcal{V} \times \mathcal{V}, \mathbb{R}) \equiv \left\{ \mathbf{A} : \mathcal{V} \times \mathcal{V} \longrightarrow \mathbb{R} \;\middle|\; \mathbf{A} \;\mathsf{biliniar} \mathsf{a} \right\}$ se numește multimea aplicatiilor biliniare pe $\mathcal{V} \times \dot{\mathcal{V}}$.

Proprietăți

- (i) $\vec{\mathbf{u}} \otimes \vec{\mathbf{v}} \in \text{Lin}(\mathcal{V}, \mathcal{V}), \quad \forall \ \vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathcal{V}.$
- (ii) $[(\vec{\mathbf{u}} \otimes \vec{\mathbf{v}})\vec{\mathbf{z}}] \cdot \vec{\mathbf{w}} = (\vec{\mathbf{v}} \cdot \vec{\mathbf{z}})(\vec{\mathbf{u}} \cdot \vec{\mathbf{w}}), \quad \forall \ \vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}, \vec{\mathbf{z}} \in \mathcal{V}.$

Demonstrație: Exercițiu!

- ullet Vectorii $\{ec{\mathbf{e}}_i\}_{1\leq i\leq 3}\subset\mathcal{V}$ formează o bază ortonormată orientată a lui

 - (i) $\vec{\mathbf{e}}_i \cdot \vec{\mathbf{e}}_j = \delta_{ij}, \quad \forall \ i,j \in \{1,2,3\};$ (ii) $\vec{\mathbf{e}}_i \times \vec{\mathbf{e}}_j = \vec{\mathbf{e}}_k, \quad \forall \ (i,j,k) \text{ permutare pară a lui } (1,2,3).$
- Se numeste produs tensorial al vectorilor $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathcal{V}$ aplicatia

$$\vec{\mathbf{u}} \otimes \vec{\mathbf{v}} : \mathcal{V} \longrightarrow \mathcal{V}, \qquad (\vec{\mathbf{u}} \otimes \vec{\mathbf{v}}) \vec{\mathbf{w}} = \vec{\mathbf{u}} (\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}), \quad \forall \vec{\mathbf{w}} \in \mathcal{V}.$$
 (14)

II. Axiomatica corpurilor deformabile

Mecanică Generală

Teoremă (Riesz)

Fie $f: \mathcal{V} \longrightarrow \mathbb{R}$ o aplicație liniară. Atunci

$$\exists \vec{\mathbf{a}}_f \in \mathcal{V} \text{ a.i. } f(\vec{\mathbf{v}}) = \vec{\mathbf{a}}_f \cdot \vec{\mathbf{v}}, \quad \forall \vec{\mathbf{v}} \in \mathcal{V}. \tag{15}$$

Teoremă

 $\mathsf{Lin}(\mathcal{V},\mathcal{V}) \equiv \left\{ \mathbf{T}: \mathcal{V} \longrightarrow \mathcal{V} \;\middle|\; \mathbf{T} \;\mathsf{liniara} \right\}$ este izomorf cu

$$\mathsf{Bilin}(\mathcal{V}\times\mathcal{V},\mathbb{R})\equiv\left\{\mathbf{A}:\mathcal{V}\times\mathcal{V}\longrightarrow\mathbb{R}\;\middle|\;\mathbf{A}\;\mathsf{biliniar}\breve{a}\right\}\;\mathsf{prin}\;\mathsf{relația}\;\mathsf{urm}\breve{a}\mathsf{toare}:$$

$$\mathbf{T}\vec{\mathbf{u}}\cdot\vec{\mathbf{v}} = \mathbf{A}(\vec{\mathbf{u}},\vec{\mathbf{v}}), \quad \forall \ \vec{\mathbf{u}},\vec{\mathbf{v}} \in \mathcal{V}.$$
 (16)

Definiție (metrică)

O metrică pe mulțimea $\mathcal{E} \neq \varnothing$ este dată de funcția

$$d(\cdot,\cdot): \mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$

cu următoarele proprietăți:

- (M_1) $d(x, y) \ge 0$, $\forall x, y \in \mathcal{E}$ (separabilitate);
- (M_2) $d(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$ (coincidență);
- (M_3) $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x}), \quad \forall \ \mathbf{x}, \mathbf{y} \in \mathcal{E}$ (simetrie);
- (M₄) $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}), \quad \forall \ \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{E}$ (inegalitatea triunghiului).

Observații

- (i) $(M_1) \& (M_2)$ i.e. d este pozitiv definită.
- (ii) (M_2) – $(M_4) \Longrightarrow (M_1)$. Exercițiu!

II. Axiomatica corpurilor deformabile

Mecanică Generală

Teorema de unicitate (W. Noll, 1964)
Axiomele corpurilor și masei

Observații

Dacă axiomele (E_1) – (E_4) sunt îndeplinite, atunci:

- (i) d induce o structură de spațiu euclidian pe \mathcal{E} .
- (ii) \mathcal{V} este spațiul translațiilor asociat lui \mathcal{E} .

Observații

Fie ${\mathcal E}$ spațiul euclidian, ${\mathcal V}$ spațiul translațiilor asociat. Atunci:

- (i) $\vec{\mathbf{u}} + \vec{\mathbf{v}}$ este gândită în locul $u \circ v$;
- (ii) $\vec{\mathbf{0}} \in \mathcal{V} \Longrightarrow \vec{\mathbf{0}} \equiv id_{\mathcal{E}}$;
- (iii) $\vec{\mathbf{v}} \in \mathcal{V} \Longrightarrow -\vec{\mathbf{v}} \in \mathcal{V}$;
- (iv) $\mathbf{x} \in \mathcal{E}, \vec{\mathbf{u}} \in \mathcal{V} \Longrightarrow u(\mathbf{x}) \equiv \mathbf{x} + \vec{\mathbf{u}} \in \mathcal{E};$
- (v) $\mathbf{x}, \mathbf{y} \in \mathcal{E} \Longrightarrow \exists ! \ \vec{\mathbf{u}} \in \mathcal{V} \ \text{a.i} \ \vec{\mathbf{u}} = \mathbf{y} \mathbf{x}.$

II. Axiomatica corpurilor deformabile

Teorema de unicitate (W. Noll, 1964)

Există cel mult un spațiu vectorial cu produs scalar care satisface axiomele (E_1) – (E_4) .

101

Mecanică Generală

Spații vectoriale. Spații afine Teorema de unicitate (W. Noll, 1964)

Fie mulţimea $\mathcal{E} \neq \emptyset$ înzestrată cu metrica $d(\cdot, \cdot) : \mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$. Considerăm grupul izometriilor pe mulţimea \mathcal{E} , i.e.

$$\mathcal{I} = \left\{\alpha: \mathcal{E} \longrightarrow \mathcal{E} \middle| \alpha \text{ bijecție; } \forall \ \mathbf{x}, \mathbf{y} \in \mathcal{E}, \ d\left(\alpha(\mathbf{x}), \alpha(\mathbf{y})\right) = d(\mathbf{x}, \mathbf{y}) \right\}$$

Definiție ("axioma euclidiană")

 $d(\cdot,\cdot):\mathcal{E} imes\mathcal{E}\longrightarrow\mathbb{R}_+$ se numește metrică euclidiană dacă $\exists~\mathcal{V}\subseteq\mathcal{I}$ subgrup a.i.

- (E₁) $u \circ v = v \circ u$, $\forall u, v \in \mathcal{V}$ (\mathcal{V} comutativ);
- (E₂) $\forall \mathbf{x}, \mathbf{y} \in \mathcal{E}, \exists ! u \in \mathcal{V} \text{ a.i. } \mathbf{y} = u(\mathbf{x}) \ (\mathcal{V} \text{ tranzitiv});$
- (E₃) $\exists \ v \in \mathcal{V} \text{ a.i. } v(\mathbf{x}_0) = \mathbf{x}_0, \ \mathbf{x}_0 \in \mathcal{E} \Longrightarrow v(\mathbf{x}) = \mathbf{x}, \forall \ \mathbf{x} \in \mathcal{E}, \text{ i.e. } v \equiv id_{\mathcal{E}}$ (\mathcal{V} acționează liber);
- (E₄) (i) $\exists \cdot : \mathbb{R} \times \mathcal{V} \longrightarrow \mathcal{V}$ o operație (înmulțirea cu scalari) în raport cu care \mathcal{V} devine spațiu vectorial real ($\circ : \mathcal{V} \times \mathcal{V} \longrightarrow \mathcal{U}$ adunarea vectorilor, i.e. " \circ " \equiv "+");
 - (ii) $\exists \cdot : \mathcal{V} \times \mathcal{V} \longrightarrow \mathbb{R}$ produs scalar a.i. $\forall \mathbf{x}, \mathbf{y} \in \mathcal{E}$ a.i. $u(\mathbf{x}) = \mathbf{y} \Longrightarrow d(\mathbf{x}, \mathbf{y}) = (u \cdot u)^{1/2} = |u|$.

ロト・日か・日・・ヨ・・ヨ・・のの

II. Axiomatica corpurilor deformabile

Mecanică General

Spații vectoriale. Spații afine Teorema de unicitate (W. Noll, 1964)

Teorema de unicitate (W. Noll, 1964)

Există cel mult un spațiu vectorial cu produs scalar care satisface axiomele (E_1) – (E_4) .

Demonstrație:

Fie $V, W \subset \mathcal{I}$ două subgrupuri ce satisfac axiomele (E_1) – (E_4) .

Fie $\mathbf{q} \in \mathcal{E}$ fixat. Construim o funcție $f: \mathcal{V} \longrightarrow \mathcal{W}$ astfel:

$$\forall \ \vec{\mathbf{v}} \in \mathcal{V}, \quad \exists ! \ \mathbf{y} \in \mathcal{E} \quad \text{a.i.} \quad \mathbf{y} = \vec{\mathbf{v}}(\mathbf{q}) \ [\equiv \mathbf{q} + \vec{\mathbf{v}}];$$
 (17)

$$\exists ! \ \vec{\mathbf{w}} \in \mathcal{W} \quad \text{a.i.} \quad \mathbf{y} = \vec{\mathbf{w}}(\mathbf{q}) \ [\equiv \mathbf{q} + \vec{\mathbf{w}}] \quad \text{cf. axiomei} \ (\mathsf{E}_2).$$
 (18)

Definim funcția f prin

$$f: \mathcal{V} \longrightarrow \mathcal{W}, \qquad \vec{\mathbf{v}} \longmapsto f(\vec{\mathbf{v}}) := \vec{\mathbf{w}}.$$
 (19)

(i) f este bijectivă:

Fie $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2 \in \mathcal{V}$ a.i.

$$f(\vec{\mathbf{v}}_1) = f(\vec{\mathbf{v}}_2). \tag{20}$$

Din (20) și cf. definiției funcției f, rezultă

$$\vec{\mathbf{v}}_1(\mathbf{q}) = f(\vec{\mathbf{v}}_1)(\mathbf{q}) \quad [\mathbf{q} + \vec{\mathbf{v}}_1 = \mathbf{q} + f(\vec{\mathbf{v}}_1)]$$
 (21a)

şi

$$\vec{\mathbf{v}}_2(\mathbf{q}) = f(\vec{\mathbf{v}}_2)(\mathbf{q}) \quad [\mathbf{q} + \vec{\mathbf{v}}_2 = \mathbf{q} + f(\vec{\mathbf{v}}_2)].$$
 (21b)

Din (20), (21a) și (21b), obținem

$$\vec{\mathbf{v}}_1(\mathbf{q}) = \vec{\mathbf{v}}_2(\mathbf{q}) \quad [\mathbf{q} + \vec{\mathbf{v}}_1 = \mathbf{q} + \vec{\mathbf{v}}_2]. \tag{22}$$

Cum $\mathbf{q} \in \mathcal{E}$ arbitrar fixat, din (E₂) aplicată lui \mathcal{V} și relația (22), rezultă $\vec{\mathbf{v}}_1 = \vec{\mathbf{v}}_2$, i.e. f este injectivă.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

▶ \(\begin{array}{c} \Delta \quad \Qu

II. Axiomatica corpurilor deformabile

Mecanică Generală

Teorema de unicitate (W. Noll, 1964)
Axiomele corpurilor și masei

(ii) f conservă produsul scalar:

Fie $\mathbf{x},\mathbf{y}\in\mathcal{E}.$

Fie $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2 \in \mathcal{V}$ a.i.

$$\mathbf{x} = \vec{\mathbf{v}}_1(\mathbf{q}) \quad [\mathbf{x} = \mathbf{q} + \vec{\mathbf{v}}_1];$$
 (25a)

$$\mathbf{y} = \vec{\mathbf{v}}_2(\mathbf{q}) \quad [\mathbf{y} = \mathbf{q} + \vec{\mathbf{v}}_2].$$
 (25b)

Din relațiile (25a) și (25b), obținem

$$\mathbf{y} - \mathbf{x} = (\vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1)(\mathbf{q}) \quad [\mathbf{y} = \mathbf{x} + (\vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1)].$$
 (26)

Fie $\vec{\mathbf{w}}_1 = f(\vec{\mathbf{v}}_1), \vec{\mathbf{w}}_2 = f(\vec{\mathbf{v}}_2) \in \mathcal{W}$. Din definiția funcției f, rezultă urmatoarele relatii:

$$\mathbf{x} = \vec{\mathbf{w}}_1(\mathbf{q}) = f(\vec{\mathbf{v}}_1)(\mathbf{q}) \quad [\mathbf{x} = \mathbf{q} + \vec{\mathbf{w}}_1 = \mathbf{q} + f(\vec{\mathbf{v}}_1)];$$
 (27a)

$$\mathbf{y} = \vec{\mathbf{w}}_2(\mathbf{q}) = f(\vec{\mathbf{v}}_2)(\mathbf{q}) \quad [\mathbf{y} = \mathbf{q} + \vec{\mathbf{w}}_2 = \mathbf{q} + f(\vec{\mathbf{v}}_2)].$$
 (27b)

In mod similar, din relațiile (27a) si (27b), obținem

$$\mathbf{y} - \mathbf{x} = (\vec{\mathbf{w}}_2 - \vec{\mathbf{w}}_1)(\mathbf{q}) = (f(\vec{\mathbf{v}}_2) - f(\vec{\mathbf{v}}_1))(\mathbf{q})$$
$$[\mathbf{y} = \mathbf{x} + (\vec{\mathbf{w}}_2 - \vec{\mathbf{w}}_1) = \mathbf{x} + (f(\vec{\mathbf{v}}_2) - f(\vec{\mathbf{v}}_1))].$$
 (28)

Fie $\vec{\mathbf{w}} \in \mathcal{W}$. Atunci

$$\exists ! \ \mathbf{y} \in \mathcal{E} \quad \text{a.i.} \quad \mathbf{y} = \vec{\mathbf{w}}(\mathbf{q}) \quad [\equiv \mathbf{q} + \vec{\mathbf{w}}].$$
 (23)

Cf. (E_2) , $\exists ! \vec{\mathbf{v}} \in \mathcal{V}$ a.i.

$$\mathbf{y} = \vec{\mathbf{v}}(\mathbf{q}) \quad [\equiv \mathbf{q} + \vec{\mathbf{v}}]. \tag{24}$$

Din (23) și (24), împreună cu definiția funcției f, i.e. relația (19), rezultă că $f(\vec{\mathbf{v}}) = \vec{\mathbf{w}}$, i.e. f este surjectivă.

Astfel, am arătat că f este bijectivă.

II. Axiomatica corpurilor deformabile

Mecanică General

Spații vectoriale. Spații afine Teorema de unicitate (W. Noll, 1964) Axiomele corpurilor și masei

Din ecuațiile (26) și (28) și axioma (E_4) , obținem

$$(\vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1) \cdot (\vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1) = d(\mathbf{x}, \mathbf{y})^2 =$$

$$= (f(\vec{\mathbf{v}}_2) - f(\vec{\mathbf{v}}_1)) \cdot (f(\vec{\mathbf{v}}_2) - f(\vec{\mathbf{v}}_1)), \quad \forall \ \vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2 \in \mathcal{V}.$$

$$(29)$$

Fie $\vec{\mathbf{v}}_1 \equiv \vec{\mathbf{0}}$ în ecuația (29). Atunci:

$$\vec{\mathbf{v}}_2 \cdot \vec{\mathbf{v}}_2 = d(\mathbf{x}, \mathbf{y})^2 = f(\vec{\mathbf{v}}_2) \cdot f(\vec{\mathbf{v}}_2), \quad \forall \ \vec{\mathbf{v}}_2 \in \mathcal{V}. \tag{30}$$

Pe de altă parte, au loc următoarele identități:

$$(f(\vec{\mathbf{v}}_2) - f(\vec{\mathbf{v}}_1)) \cdot (f(\vec{\mathbf{v}}_2) - f(\vec{\mathbf{v}}_1)) =$$

$$= f(\vec{\mathbf{v}}_2) \cdot f(\vec{\mathbf{v}}_2) - 2(f(\vec{\mathbf{v}}_2) \cdot f(\vec{\mathbf{v}}_1)) + f(\vec{\mathbf{v}}_1) \cdot f(\vec{\mathbf{v}}_1), \quad \forall \ \vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2 \in \mathcal{V}.$$
(31b)

Din ecuațiile (29)–(31), obținem

$$\vec{\mathbf{v}}_2 \cdot \vec{\mathbf{v}}_1 = f(\vec{\mathbf{v}}_2) \cdot f(\vec{\mathbf{v}}_1), \quad \forall \ \vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2 \in \mathcal{V}, \tag{32}$$

i.e. f conservă produsul scalar.

(iv) f este funcția identitate pe V, i.e. id_V : Exercițiu!

II. Axiomatica corpurilor deformabile

Mecanică Generală

Spații vectoriale. Spații afine Teorema de unicitate (W. Noll, 1964)

Fie $\mathcal{E} = \mathbb{R}^3$ spatiul euclidian punctual tridimensional; \mathcal{V} spatiul vectorial al translațiilor lui \mathcal{E} (dim $\mathcal{V}=3$); $\mathcal{D}\subset\mathcal{E}$ o mulțime deschisă, conexă.

Definitie

Aplicația $\varphi: \mathcal{D} \longrightarrow \mathbb{R}$ (câmp scalar) este diferențiabilă în $\mathbf{x} \in \mathcal{D}$ dacă

$$\exists \mathbf{D}\varphi(\mathbf{x}) \in \text{Lin}(\mathcal{V}, \mathbb{R}), \quad \exists \ \omega(\mathbf{x}, \cdot) : \mathcal{D} \longrightarrow \mathbb{R} \text{ a.i.}$$

$$\varphi(\mathbf{y}) = \varphi(\mathbf{x}) + \mathbf{D}\varphi(\mathbf{x})[\vec{\mathbf{v}}] + \omega(\mathbf{x}, \mathbf{y}),$$
(33)

unde

$$\vec{\mathbf{v}} = \mathbf{y} - \mathbf{x} \in \mathcal{V}, \quad \lim_{\mathbf{y} \to \mathbf{x}} \frac{\omega(\mathbf{x}, \mathbf{y})}{\|\mathbf{y} - \mathbf{x}\|} = 0.$$
 (34)

Observatie

Din Teorema lui Riesz, obtinem:

$$\exists \ \nabla \varphi(\mathbf{x}) \in \mathcal{V} \text{ a.i. } \mathbf{D}\varphi(\mathbf{x})[\vec{\mathbf{v}}] = \nabla \varphi(\mathbf{x}) \cdot \vec{\mathbf{v}}, \quad \forall \ \vec{\mathbf{v}} \in \mathcal{V}. \tag{35}$$

 $\nabla \varphi(\mathbf{x})$ se numește gradientul câmpului scalar φ .

Mecanică Generală

Axiomele corpurilor si masei

Modelul matematic al conceptului fizic de corp continuu deformabil si al celui de element material a fost elaborat de W. Noll:

W. Noll, A mathematical theory of the mechanical behavior of continuous media. Archives for Rational Mechanics and Analysis 2(1), 197-226 (1958).

Definiție (corp amorf)

Un corp \mathcal{B} este constituit dintr-o multime de puncte X, Y, \ldots , numite puncte materiale (particule), care are o structură dată de:

- (i) familia de aplicații $\mathscr{C}\equiv\left\{k:\mathcal{B}\longrightarrow\mathcal{E}\right\}$, numite configurații ale corpului \mathcal{B} (în spațiul \mathcal{E});
- (ii) o funcție $m: \mathscr{P}(\mathcal{B}) \longrightarrow \mathbb{R}_+$, numită masă, unde $\mathscr{P}(\mathcal{B})$ sunt părți ale corpului \mathcal{B} .

II. Axiomatica corpurilor deformabile

Mecanică Generală

Axiomele corpurilor și masei

Definitie

Aplicatia $\vec{\mathbf{u}}: \mathcal{D} \longrightarrow \mathcal{V}$ (câmp vectorial) este diferentiabilă în $\mathbf{x} \in \mathcal{D}$ dacă

$$\exists \ \mathbf{D}\vec{\mathbf{u}}(\mathbf{x}) \in \operatorname{Lin}(\mathcal{V}, \mathcal{V}), \quad \exists \ \omega(\mathbf{x}, \cdot) : \mathcal{D} \longrightarrow \mathcal{V} \text{ a.i.}$$
$$\vec{\mathbf{u}}(\mathbf{y}) = \vec{\mathbf{u}}(\mathbf{x}) + \mathbf{D}\vec{\mathbf{u}}(\mathbf{x})[\vec{\mathbf{v}}] + \omega(\mathbf{x}, \mathbf{y}), \tag{36}$$

unde

$$\vec{\mathbf{v}} = \mathbf{y} - \mathbf{x} \in \mathcal{V}, \quad \lim_{\mathbf{y} \to \mathbf{x}} \frac{\omega(\mathbf{x}, \mathbf{y})}{\|\mathbf{y} - \mathbf{x}\|} = 0.$$
 (37)

Observatie

Din Teorema lui Riesz, obtinem:

$$\exists \nabla \vec{\mathbf{u}}(\mathbf{x}) \in \operatorname{Lin}(\mathcal{V}, \mathcal{V}) \cong \operatorname{Bilin}(\mathcal{V} \times \mathcal{V}, \mathbb{R}) \text{ a.i.}$$

$$\mathbf{D}\vec{\mathbf{u}}(\mathbf{x})[\vec{\mathbf{v}}] = \nabla \vec{\mathbf{u}}(\mathbf{x})\vec{\mathbf{v}}, \quad \forall \vec{\mathbf{v}} \in \mathcal{V}.$$
(38)

$$\nabla \vec{\mathbf{u}}(\mathbf{x}) = \sum_{i,i=1}^{3} \frac{\partial u_i}{\partial x_j} \vec{\mathbf{e}}_i \otimes \vec{\mathbf{e}}_j$$
 se numește gradientul câmpului vectorial $\vec{\mathbf{u}}$.

Definitie (corp continuu de clasă C^2)

Un corp \mathcal{B} se numeste corp continuu de clasă C^2 dacă multimea configuratiilor sale, \mathscr{C} , si functia masă, m, satisfac următoarele axiome:

- (C₁) Orice configuratie $k \in \mathcal{C}$ are proprietătile:
 - (i) k este injectivă:
 - (ii) $k(\mathcal{B}) \equiv \mathcal{B}_k \subset \mathcal{E}$ este o mulțime mărginită și deschisă.
- (C₂) Daca $k, \widetilde{k} \in \mathscr{C}$, atunci aplicatia $\lambda \equiv \widetilde{k} \circ k^{-1} : \mathcal{B}_k \longrightarrow \mathcal{B}_{\widetilde{k}}$ are proprietătile:
 - (i) $\lambda \in C^2(\mathcal{B}_k, \mathcal{B}_{\widetilde{\iota}}) \cap C^0(\overline{\mathcal{B}}_k, \overline{\mathcal{B}}_{\widetilde{\iota}});$
 - (ii) $\nabla \lambda(\mathbf{x}) \in \text{Inv Lin}(\mathcal{V}, \mathcal{V})$, unde $\mathbf{x} = k(\mathbf{X}), \forall \mathbf{X} \in \mathcal{B}$.

Aplicatia λ se numeste deformatie de clasă C^2 de la configuratia kla configuratia k.

 $(C_3) \ \forall \ k \in \mathscr{C}$ configuratie, $\forall \ \lambda : \mathcal{B}_k \longrightarrow \mathcal{E}$ deformatie de clasă C^2 , $\lambda \circ k \in \mathscr{C}$ configuratie. Aplicatia $k \equiv \lambda \circ k : \mathcal{B} \longrightarrow \mathcal{E}$ se numeste configuratie obtinută din configuratia k prin deformatia λ .

II. Axiomatica corpurilor deformabile

Mecanică Generală

Axiomele corpurilor si masei

Figure : Deformații și configurații ale corpului continuu de clasă C^2 , \mathcal{B} .

Definiție (masa)

Următoarele axiome caracterizează structura specifică a masei:

- (M_1) $m: \mathscr{P}(\mathcal{B}) \longrightarrow \mathbb{R}_+$ este o măsură;
- $(M_2) \ \forall \ k \in \mathscr{C}$ configurație, $k(\mathcal{B}) \equiv \mathcal{B}_k$ este măsurabilă Lebesgue și $m_k = m \circ k^{-1} : \mathscr{P}(\mathcal{B}_k) \longrightarrow \mathbb{R}_+$ este o măsură absolut continuă în raport cu măsura Lebesgue in $k(\mathcal{B}) \equiv \mathcal{B}_k$. In concluzie. $\exists \rho_{k} : \mathcal{B}_{k} \longrightarrow \mathbb{R}_{+}$ continuă a.i.

$$m_k(k(\mathcal{P})) \equiv m(\mathcal{P}) = \int_{k(\mathcal{P})} \rho_k(\mathbf{x}) \, dV(\mathbf{x}),$$
 (39)

 $\forall \mathcal{P} \in \mathscr{P}(\mathcal{B}) \text{ a.i. } k(\mathcal{P}) \text{ este măsurabilă în } k(\mathcal{B}) \equiv \mathcal{B}_k.$

 $(M_3) \ \forall \ k \in \mathscr{C}$ configuration, ρ_k este marginită.

Definiții

Funcția $\rho_k : \mathcal{B}_k \longrightarrow \mathbb{R}_+$ definește repartiția masei lui \mathcal{B} în configurația k. Valoarea acesteia în $\mathbf{x} = k(\mathbf{X})$, unde $\mathbf{X} \in \mathcal{B}$, i.e. $\rho_k(\mathbf{x})$, este densitatea de masă (masa specifică) în particula $X \in \mathcal{B}$, în configuratia k.

II. Axiomatica corpurilor deformabile

Proprietăți

(P₁) Principiul de conservare a masei: $\forall k, \widetilde{k} \in \mathscr{C}$ configurații și $\mathcal{P} \in \mathscr{P}(\mathcal{B})$ a.i. $k(\mathcal{P})$ și $k(\mathcal{P})$ sunt măsurabile în $k(\mathcal{B}) \equiv \mathcal{B}_k$ și, respectiv, $k(\mathcal{B}) \equiv \mathcal{B}_{\widetilde{k}}$, avem:

$$m_k(k(\mathcal{P})) = m_{\widetilde{k}}(\widetilde{k}(\mathcal{P})).$$
 (40)

(P₂) Conservarea densității de masă: Dacă $k, k \in \mathscr{C}$ sunt două configurații și $\lambda: \mathcal{B}_k \longrightarrow \mathcal{B}_{\widetilde{k}}$ este o deformație de la k la \widetilde{k} , atunci:

$$\rho_k(\mathbf{x}) = \rho_{\widetilde{k}}(\widetilde{\mathbf{x}}) J, \tag{41}$$

unde $\widetilde{\mathbf{x}} = \lambda(\mathbf{x})$ si $J = |\det \nabla \lambda(\mathbf{x})|$.

Demonstratie:

 (P_1) : Din axioma (M_2) .

$$\int_{k(\mathcal{P})} \rho_k(\mathbf{x}) \, dV(\mathbf{x}) = \int_{\widetilde{k}(\mathcal{P})} \rho_{\widetilde{k}}(\widetilde{\mathbf{x}}) \, d\widetilde{V}(\widetilde{\mathbf{x}}), \quad \forall \, \mathcal{P} \in \mathscr{P}(\mathcal{B}). \tag{42}$$

Facem schimbarea de variabilă

$$\widetilde{\mathbf{x}} = \lambda(\mathbf{x}), \quad \mathbf{x} \in k(\mathcal{P})$$
 (43)

si obtinem

$$d\widetilde{\mathbf{x}} = \nabla \lambda(\mathbf{x}) \, d\mathbf{x} = \left[\frac{\partial \lambda_i}{\partial x_j}(\mathbf{x}) \right]_{1 \le i, j \le 3} \, d\mathbf{x}, \quad \forall \ \mathcal{P} \in \mathscr{P}(\mathcal{B}), \quad (44a)$$

$$d\widetilde{V}(\widetilde{\mathbf{x}}) = |\det \nabla \lambda(\mathbf{x})| \, dV(\mathbf{x}), \quad \forall \ \mathcal{P} \in \mathscr{P}(\mathcal{B}).$$
 (44b)

Din ecuatiile (42) si (44b), rezultă:

$$\int_{k(\mathcal{P})} \rho_k(\mathbf{x}) \, dV(\mathbf{x}) = \int_{k(\mathcal{P})} \rho_{\widetilde{k}}(\lambda(\mathbf{x})) \, |\det \nabla \lambda(\mathbf{x})| \, dV(\mathbf{x}), \quad \forall \, \mathcal{P} \in \mathscr{P}(\mathcal{B}),$$
(45)

și, aplicând Lema lui Lebesgue, obținem relația (41).

<**□ > < 巨 > < 巨 > 三 の < ○**

II. Axiomatica corpurilor deformabile

Spații vectoriale. Spații afine Teorema de unicitate (W. Noll, 1964)

Figure : Deformația corpului \mathcal{B} de la configurația k ($k(\mathcal{B}) \equiv \mathcal{B}_k$) la configurația \widetilde{k} $(\widetilde{k}(\mathcal{B}) \equiv \mathcal{B}_{\widetilde{k}})$.

Corp rigid

Definitie (corp rigid)

Corpul \mathcal{B} se numește corp rigid dacă $\forall k, \widetilde{k} \in \mathscr{C}, \forall \mathbf{x}_{k}^{0} \in k(\mathcal{B}),$ $\exists \ \mathbf{x}_{\widetilde{\iota}}^0 \in \widetilde{k}(\mathcal{B}), \ \exists \ \mathbf{Q} \in \mathsf{Ort} \ \mathsf{a.i.} \ \mathsf{deformația}$

$$\lambda \equiv \widetilde{k} \circ k^{-1} : k(\mathcal{B}) \longrightarrow \widetilde{k}(\mathcal{B}) \tag{46}$$

este dată de

$$\mathbf{x}_k \in k(\mathcal{B}) \longmapsto \mathbf{x}_{\widetilde{k}} \equiv \lambda(\mathbf{x}_k) = \mathbf{x}_{\widetilde{k}}^0 + \mathbf{Q} \left[\mathbf{x}_k - \mathbf{x}_k^0 \right] \in \widetilde{k}(\mathcal{B}),$$
 (47a)

i.e.

$$\mathbf{x}_{\widetilde{k}} - \mathbf{x}_{\widetilde{k}}^0 = \mathbf{Q} \left[\mathbf{x}_k - \mathbf{x}_k^0 \right]. \tag{47b}$$

Proprietăți (corp rigid)

 (R_1) Dacă \mathcal{B} este corp rigid, atunci

$$|\mathbf{x}_{\widetilde{k}} - \mathbf{x}_{\widetilde{k}}^0| = |\mathbf{x}_k - \mathbf{x}_k^0|, \quad \forall \ \mathbf{x}_k \in k(\mathcal{B}) \quad \text{a.i.} \quad \mathbf{x}_{\widetilde{k}} = \lambda(\mathbf{x}_k).$$
 (48)

(R₂) Dacă \mathcal{B} este corp rigid, $\mathbf{x}_k, \mathbf{x}_k' \in \mathcal{B}_k$ și $\mathbf{x}_{\widetilde{k}}, \mathbf{x}_{\widetilde{k}}' \in \mathcal{B}_{\widetilde{k}}$ a.i. $\mathbf{x}_{\widetilde{k}} = \lambda(\mathbf{x}_k)$ și $\mathbf{x}'_{\widetilde{k}} = \lambda(\mathbf{x}'_k)$, atunci

$$|\mathbf{x}_{\widetilde{k}} - \mathbf{x}_{\widetilde{k}}'| = |\mathbf{x}_k - \mathbf{x}_k'|. \tag{49}$$

(R₃) Dacă \mathcal{B} este corp rigid, $\mathbf{x}_k \in \mathcal{B}_k$ și $\mathbf{x}_{\widetilde{k}} \in \mathcal{B}_{\widetilde{k}}$ a.i. $\mathbf{x}_{\widetilde{k}} = \lambda(\mathbf{x}_k)$, atunci

$$\rho_k(\mathbf{x}_k) = \rho_{\widetilde{k}}(\mathbf{x}_{\widetilde{k}}). \tag{50}$$