TECHNIQUES & MÉTHODES S04

NB: cette fiche reprend les techniques nécessaires minimales; elle ne constitue donc pas un objectif, mais un prérequis!

CALCULS DE DÉRIVÉES

Théorème.— Soit $u, v : I \to \mathbf{R}$ des fonctions dérivables sur I. Alors

Fonction	Dérivée	Conditions
u+v	u' + v'	
$\lambda \cdot u$	$\lambda \cdot u'$	$\lambda \in \mathbf{R}$
$u \times v$	$u' \times v + u \times v'$	
u^n	$n u^{n-1} \times u'$	$n \in \mathbf{Z}^{\star}$, avec u inversible si $n < 0$
$\frac{u}{v}$	$\frac{u' \times v - u \times v'}{v^2}$	avec v inversible
$v \circ u$	$(v' \circ u) \times u'$	$si\ v\circ u\ est\ bien\ définie$
u^{-1}	$\frac{1}{u' \circ u^{-1}}$	si u est bijective et u' ne s'annule pas
e^u	$u' \times e^u$	
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$	$si \ u > 0$
ln(u)	$\frac{u'}{u}$	$si \ u > 0$