IC153: Calculus 1 (Lecture 14)

by

Anurag Singh IIT Bhilai

January 04, 2022

Recap of the previous lecture

- Riemann Integration: Motivation
- Partition of interval and their refinement
- Lower sum and upper sum of a function
- Riemann integrable functions
- Example of bounded non-integrable function

$$\sup_{\rho} L(\rho, f) = \inf_{\rho} U(\rho, f)$$

$$\int_{0}^{b} f dx = \int_{a}^{\overline{b}} f dx$$

Riemann's criterion for integrability

Theorem

Let f be a bounded function on [a,b]. Then, f is integrable on [a,b] if and only if for every $\epsilon>0$ there exists a partition P such that $U(P,f)-L(P,f)<\epsilon$.

Proof:
$$(\begin{align*}{c}\begin{picture}(0,0) \put(0,0) \put(0,0$$

$$= \exists P_1 \text{ S.t.} \qquad \int_a^b f dx - L(P_1, f) < \frac{\epsilon}{2}$$
Similarly $\exists P_2 \text{ S.t.} \qquad U(P_2, f) - \int_a^b f dx < \frac{\epsilon}{2}$

$$\text{Take } P = P_1 \cup P_2 \qquad U(P_2, f) - L(P_1, f) \qquad = U(P_2, f) - L(P_1, f) \qquad = U(P_2, f) - \int_a^b f dx + \int_a^b f dx - L(P_1, f) \qquad < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

$$\text{Recall: If } Q_1 \text{ is Nefinement of } Q_2 \text{ then } U(Q_1, f) \leq U(Q_2, f) - L(Q_1, f) \geq L(Q_2, f)$$
Anurag Singh (IIT Bhilai)
$$\text{Calculus 1-Lecture 14}$$

By definition $\int_a^b dx = \int_a^b f dx = \sup_{p} L(P, f)$

 (\Rightarrow) . f is integrable. Let $\epsilon>0$

Corollary

Let $f:[a,b] \longrightarrow \mathbb{R}$ be a bounded function. If there is a sequence (P_n) of partitions of [a,b] such that $U(P_n,f)-L(P_n,f) \longrightarrow 0$, then f is integrable.

Proof:
$$U(P_n,f) - L(P_n,f) \xrightarrow{} 0$$

for any $f > 0$ $\exists n_0 \quad g.f.$
 $U(P_n,f) - L(P_n,f) < f \quad \forall n \ge n_0$

$$U(P_{n_0},f)-L(P_{n_0},f)<\epsilon$$

Uniform continuity

Recall: Let $f:D\longrightarrow \mathbb{R}$ be a continuous function. Then for each $x_0\in D$ and for given $\epsilon>0$ there exists $\delta(x_0,\epsilon)>0$ such that

$$|x-x_0|<\delta\Longrightarrow |f(x)-f(x_0)|<\epsilon.$$

Definition

A function $f:D\longrightarrow \mathbb{R}$ is said to be uniform continuous on D if for each $\epsilon>0$ there exists $\delta>0$ such that

$$|x - y| < \delta \Longrightarrow |f(x) - f(y)| < \epsilon \text{ for all } x, y \in D.$$

Theorem

Uniform continuity \Longrightarrow *continuity.*

Example

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $f(x) = x^2$.

For $\epsilon=2$ and $x_0=1$, $\delta=\frac{1}{2}$ does the job. However $\delta=\frac{1}{2}$ does not work for $\epsilon=2$ and $x_0=10$.

$$|\chi_{-1}| < \frac{1}{2}$$
, then $\frac{1}{\lambda} < \chi < \frac{3}{2}$.

$$\Rightarrow -\frac{3}{4} < x^2 - 1 < \frac{5}{4} \Rightarrow |f(x) - f(x)| < 2$$

Therefore

$$|\chi_{-1}| < \frac{1}{2} \Rightarrow |f(x) - f(i)| < 2$$

$$\exists \ \ \delta = \frac{1}{2} \ \ \text{works}$$
.

We have
$$f(x) - f(x_0) = x^2 - 100$$
.

If
$$x = x_0 + \frac{1}{4}$$
 then $|x - x_0| < \frac{1}{2} \Rightarrow x \in (x_0 - \frac{1}{2}, x_0 + \frac{1}{2})$
but $|f(x) - f(x_0)| = |f(|0 + \frac{1}{4}|) - f(|0|)|$
 $= |(|0 + \frac{1}{4}|)^2 - |0^2| = |5 + \frac{1}{16}| > 2 = 6$

=) for
$$\ell=2$$
, $S=\frac{1}{2}$ works for $\chi_0=1$ but not for $\chi_0=10$.

Anurag Singh (IIT Bhilai)

Theorem

Let $f : [a, b] \longrightarrow \mathbb{R}$ be continuous. Then f is uniformly continuous of [a, b].

Proof: Suppose f is not uniform continuous.

$$\Rightarrow \exists \quad \epsilon_{\circ} > \circ \quad \text{s.t.} \quad \underbrace{\text{NO } \mathcal{S} \text{ works}}_{\text{der} \quad \text{any}} \quad \exists \quad x,y \in [a,b] \quad \text{s.t.}$$

$$|x-y| < \varepsilon \quad \text{but} \quad |f(x)-f(y)| \geqslant \epsilon_{\circ}$$

$$\Rightarrow \text{ In particular } \exists \quad x_n, \ y_n \in [a,b] \quad \text{s.t.} \\ |x_n - y_n| < \frac{1}{N} \quad \text{but} \quad |f(x_n) - f(y_n)| \geqslant \ell_0$$

—(j)

Since $(x_n) \subseteq [a, b]$, (x_n) is bounded

=) (In) has a convergent subseq.

Let
$$\chi_{n_k} \longrightarrow \chi_{\delta}$$
.

$$| \chi_{\eta_K} - y_{\eta_K} | < \frac{1}{\eta_L} \longrightarrow 0$$

$$\Rightarrow$$
 $y_{\eta_k} \longrightarrow x_o$

Since f is cts, $x_{n_k} \longrightarrow x_0$, $y_{n_k} \longrightarrow x_0$ $f(x_{n_k}) \longrightarrow f(x_0)$ $f(y_{n_k}) \longrightarrow f(x_0)$

$$\Rightarrow |f(x_{n_k}) - f(y_{n_k})| \longrightarrow 0$$

This is a contradiction to eq (1).

Applications of Riemann's criterion for integrability

Theorem

If f is continuous on [a, b] then f is integrable.

Proof:
$$f: [a,b] \longrightarrow \mathbb{R}$$
 cts. $\Rightarrow f$ is unificats.

$$\Rightarrow \forall x \rightarrow 0, \exists x \rightarrow 0 \Leftrightarrow \exists x \rightarrow (x) - f(x) + f(x) < \xi$$

Recall: (Riemann's criterion) If for all E>0 \exists a partition P s.t. $U(P,f)-L(P,f)<\varepsilon$, then f is integrable.

Let
$$\rho$$
 be a partition $\{x_0, x_1, ..., x_n\}$ of $[a, b]$

Solve $x_i - x_{i-1} < \delta$ \forall i

$$=) |f(x) - f(y)| < \epsilon \quad \forall \quad x, y \in [x_{i-1}, x_i]$$

$$\Rightarrow |f(x) - f(y)| < \epsilon \quad \forall \quad i = 1, 2, ..., n$$

Aup $f(x)$ inf $f(x)$
 $x \in [x_{i-1}, x_i]$ $x \in [x_{i-1}, x_i]$

$$= \sum_{i=1}^{n} |f(x_i)|^2 |f$$

$\mathsf{Theorem}$

If $f:[a,b] \longrightarrow \mathbb{R}$ is a monotone function then f is integrable.

Proof: Let f be monotonically increasing.
Choose partition Pn of [9,5] s.t.

$$\chi_{i} - \chi_{i-1} = \frac{h}{h}$$

$$U(P_{n},f) - L(P_{n},f) = \sum_{i=1}^{n} M_{i}(x_{i}-x_{i-1}) - \sum_{i=1}^{n} M_{i}(x_{i}-x_{i-1})$$

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x_i)$$

$$= \frac{b-a}{b} \left(f(b) - f(a) \right)$$

$$= \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) (x_i - x_{i-1})$$

$$= \frac{b-q}{b} \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))$$

$$f(t(p)-t(\sigma))\longrightarrow 0$$

=) f is integrable.

Questions?

Additional discussion: Limit and integration

For $n \geq 1$, define $g_n : (0,1] \longrightarrow \mathbb{R}$ as follows.

$$g_n(x) = \begin{cases} n & \text{if } x \in (0, 1/n], \\ 0 & \text{if } x \in (1/n, 1]. \end{cases}$$

$$\lim_{N\to\infty} \int g_N(x) dx = 1 \quad g_2 = 0 \quad \text{on} \quad (\frac{1}{3}, \frac{1}{3})$$

$$\int_{n+\infty}^{\infty} g_n(x) dx = 0$$

Uniform continuous function preserves Cauchy sequences

Theorem

Let $f: D \longrightarrow \mathbb{R}$ be a uniform continuous function on D. If (a_n) is Cauchy sequence in D, then $(f(a_n))$ is a Cauchy sequence in \mathbb{R} .

Try to prove this at home.