

API-driven Cloud-Edge Orchestration with PULCEO*

- A Proof of Concept -*Platform for Universal and Lightweight Cloud-Edge Orchestration

Sebastian Böhm · Guido Wirtz

GER

Frankfurt

HTTP

MQTT

Fig. 3. Combined Sample Cloud-Edge Topology. Directed edges imply the direc-

tion of latency and bandwidth measurement, shown by a list of pairs with <

(latency, bandwidth), ... >. Weights W show the available latency and bandwidth.

For example, w(cloud1, fog1) has a RTT of 83 ms and an available bandwidth

(upload) of 65 Mbps. Vice versa, w(fog1, cloud1) has a RTT of 82 ms and an

available bandwidth (upload) of 43 Mbps. Consequently, upload(w(cloud1, fog)) =

download(w(fog1, cloud1)). The capabilities of Nodes are described as 3-tuples with

(CPU, memory, storage). The right side of the figure shows a microservice Application,

modeled as a directed acyclic graph, that must be placed.

■ IoT device

HTTP

fog2

GER

Bamberg

GET /nodes/cloud1/cpu

PATCH /nodes/cloud1/cpu/allocatable

{ key: shares,

value: 3000 }

"uuid": "...", "nodeUUID": "...", "nodeName": "cloud1", cpuCapacity: {...}, "cpuAllocatable": { "modelName": "Intel(R) Xeon(R) CPU E5-2673 v4 @ 2.30GHz", "cores": 4, "threads": 4, "bogoMIPS": 4589.37, "minimalFrequency": 2294.685, "averageFrequency": 2294.685, "maximalFrequency": 2294.685, "shares": 3000,

"slots": 0.0, "mips": 4589.37, "gflop": 0.0 } }

Evaluation with cross-cutting support from all microservices

Fog Layer 1

Fog Layer 2

IoT Layer

Paris

<(33, 54)>

fog3

(2, 2, 27)

Asynchronous raw data export

⑤ Documentation

POST /metric-exports

"metricType": "CPU_UTIL" }

Response: { "metricExportUUID": "...", "metricType": "CPU_UTIL", "numberOfRecords": 100, "url": "https://pulceo.io/.../684-cpu-util.csv", "metricExportState": "PENDING" }

Orchestration reports

Contributions & Limitations

Topology, System and Application Monito-ring, Resources, Applications, Response times, Events, Charts

Table 3. ICMP round-trip time (ms) between nodes.

fog1-eis

			- ,					
$\overline{v_1}$	v_2	Min	Mean	Max	Med			
cloud1	$\log 1$	80.795	81.142	82.924	81.098			
cloud1	$\log 2$	86.709	88.896	91.149	89.038			
$\log 1$	cloud1	80.779	81.107	82.327	81.024			
$\log 2$	cloud1	86.460	87.802	88.819	87.960			
$\log 3$	$\log 1$	25.558	26.139	33.058	25.802			
$\log 3$	$\log 2$	13.077	15.402	24.150	14.709			

cloud1-eis

Source Application – Destination Application

edge-iot-simulator — pulceo-node-agent — traefik Table 4. TCP and UDP bandwidth (Mbps) between nodes.

22:00 22:00

Time

10:00

16:00

04:00

			TCP				UDP				
v_1	v_2	Min	Mean	Max	Med	$\overline{\mathrm{SD}}$	Min	Mean	Max	Med	SD
cloud1	fog1	65.000	65.000	65.000	65.000	0.000	63.800	63.942	64.000	63.900	0.058
cloud1	$\log 2$	65.000	65.000	65.000	65.000	0.000	63.800	63.875	63.900	63.900	0.044
$\log 1$	${\rm cloud} 1$	43.400	64.061	65.000	65.000	4.504	56.200	63.354	64.000	64.000	2.084
$\log 2$	${\rm cloud} 1$	39.400	63.887	65.000	65.000	5.338	55.300	63.517	63.900	63.900	1.751
$\log 3$	$\log 1$	53.500	64.392	65.000	65.000	2.385	64.400	64.443	64.600	64.400	0.066
$f \circ g 3$	$f \circ g = 2$	64.400	64.950	65.000	65.000	0.169	64.700	64.762	64.800	64.800	0.049

RESTful HTTP API for universal orchestration

Decoupled cloud-edge orchestration

Holistic cloud-edge orchestration with creation, monitoring, operation, evaluation, and documentation

Only one representational architecture implemented with stable network conditions

cloud1-eis

name: fog3-fog1, srcNodeId: fog3,

POST /nodes

{ name: fog3, provider: default ...,

pnaInitToken: ..., hostname: ...]

② Monitoring supported by PMS

POST /metric-requests

{ type: icmp-rtt, linkId: fog3-fog1,

recurrence: 3600, ... }

POST /metric-requests

{ type: cpu-util, nodeId: *,

recurrence: 60, ...

destNodeId: fog1, ...