Příklad (12.1)

Determinant reálné matice

$$A = \begin{pmatrix} 2 & 1 & x & -2x \\ -3x & 3 & x & 2 \\ 4 & \pi & x & 5 \\ e & x & 2 & 1 \end{pmatrix}$$

je polynom v proměnné x. Přímo z definice determinantu najděte koeficienty tohoto polynomu u x^4 a x^3 (tj. nesmíte např. vypočítat celý determinant nějakou jinou metodou a pak se podívat na koeficienty).

Řešení

Definice determinantu říká, že determinant je součet součinů všech čtveřic prvků, které nejsou ve stejném řádku / sloupci. Jelikož ve všech kromě třetího sloupce je x právě jednou, vyšší mocnina není nikde. Tedy jediný člen s x^4 bude $\pm a_{21} \cdot a_{42} \cdot a_{33} \cdot a_{14}$. Tedy znaménko je znaménko permutace (124)(3), která nemá žádný sudý cyklus, tedy znaménko je +1. Tudíž člen je $+(-3x) \cdot x \cdot x \cdot (-2x) = 6x^4$, takže koeficient je 6.

Obdobně vezmeme všechny členy (s) součtu v definici determinantu, které mají x^3 , což znamená, že jeden z činitelů (a_{ij}) tvořících s má x v nulté mocnině. Pokud by tento činitel byl v prvním (druhém, čtvrtém) řádku, byl by zřejmě další činitel s x^0 v čtvrtém (prvním, druhém) sloupci. Tedy činitel x^0 musí být ve třetím řádku. V posledním (4.) řádku máme jen jedno x, tedy další činitel bude a_{42} . Další dva podle výběru členu ze třetího, tedy členy s x^3 budou $\pm a_{14} \cdot a_{23} \cdot a_{31} \cdot a_{42}$ a $\pm a_{13} \cdot a_{21} \cdot a_{34} \cdot a_{42}$. Znaménka budou znaménka permutací (1423) a (1342), tedy obě -1 (obsahují jeden sudý cyklus), tj. koeficient je $-(-2) \cdot 1 \cdot 4 \cdot 1 - 1 \cdot (-3) \cdot 5 \cdot 1 = 23$.

Příklad (12.2)

Permutace $\alpha, \beta \in S_9$ jsou dány redukovaným cyklickým zápisem.

$$\alpha = (3126)(495), \qquad \beta = (5138)(267)$$

- a Dokažte, že pro libovolnou permutaci $\pi \in S_9$ je redukovaný cyklický zápis permutace $\pi \alpha \pi^{-1}$ tvaru $(x_1 x_2 x_3 x_4)(x_5 x_6 x_7)$.
- b Určete počet permutací $\pi \in S_9$, pro které platí $\pi \alpha \pi^{-1} = \beta$.

Důkaz (a)

Můžeme si všimnout, že pokud zobrazíme $\pi(i)$ permutací $\pi \alpha \pi^{-1}$, tak nejdříve zobrazíme π^{-1} na $\pi^{-1}(\pi(i)) = i$, následně zobrazíme pomocí α a nakonec pomocí π , tedy prvek $\pi(i)$ se zobrazí na $\pi(\alpha(i))$. Tedy $x_1 = \pi(3)$ se zobrazí na $x_2 = \pi(1)$, to na $x_3 = \pi(2)$, to na $x_4 = \pi(6)$ a to nakonec na $x_1 = \pi(3)$. Obdobně $x_5 = \pi(4)$ na $x_6 = \pi(9)$, to na $x_7 = \pi(5)$ a to na $x_5 = \pi(4)$. Pro zbytek prvků je α identita, takže se zobrazí sami na sebe. Tedy pro libovolnou π je redukovaný cyklický zápis $\pi \alpha \pi^{-1}$ opravdu jako v zadání.

Řešení (b)

Ukázali jsme, že $\pi \alpha \pi^{-1} = (\pi(3)\pi(1)\pi(2)\pi(6))(\pi(4)\pi(9)\pi(5))$. Cyklus můžeme pootáčet, takže (5138) odpovídá 3 dalším cyklům. Stejně tak (267) odpovídá dalším 2 cyklům. Navíc zbylé dva prvky můžeme propermutovat, takže dohromady (jelikož jiné úpravy tohoto zápisu permutace nemůžeme dělat) $4 \cdot 3 \cdot (2!) = 24$ různých permutací $\pi \in S_9$ tak, že $\pi \alpha \pi^{-1} = \beta$.

Příklad (12.*) TODO