AdS/OFT > n	olography for negatively background.
Celestral CFT->	holography for asymptotic flat spacetimes (HFS)
Evidence: 1. the to	riangular egorilance in the ZR Nemony effect
	Fourier / Vactum transition
50 fb	theorem Asymptotic symmetry The Ward identity

	2.	Lor	eut	, 	gn	up	S	00	3,-	2)	^	- }	2D	gli	oba	e	con	for	mal		rove	12							
			,				9	·0(۲,	2)																			
	ż	ncl	wa	i no	9	gra	vot	MS															,					,	
			2	iver	nte	9n	rup	Ð,	> (enla	.CVC)	d 1	2D		ra	SVV Dela	() (de)	/ //	7	. (20) [/`~	100	SDY	00	lger	ora	
						O	1						0			2													

	Creading	terms:				
مك	M _{N+1} (Pi, g. svente transformation.	g-70 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	k Phi6 -2 Phi9 ingoing	QLPKE) Mn (Ri)	
	S Mn+1 (2)	2 0 out _	$\sum_{k}^{in} \lambda_{k}$	(n = 0)		

Soft gravitors. (8hG) (2 Eight Rulks) - End Phulks) Clading term.

End - Eight Aug)

Eight Aug) $\Rightarrow \sum_{k} P_{k} - \sum_{k} P_{k} = 0$

 $\lim_{g \to 0} M_{n+1}(P_{2}, g) = \left(S_{n}^{(\omega)} + S_{n}^{(1)} + O(g_{1}) M_{n} q_{n}^{(1)} \right)$ $\lim_{g \to 0} M_{n+1}(P_{2}, g_{1}) = \left(S_{n}^{(\omega)} + S_{n}^{(1)} + O(g_{1}) M_{n} q_{n}^{(1)} \right)$ $\lim_{g \to 0} M_{n+1}(P_{2}, g_{1}) = \left(S_{n}^{(\omega)} + S_{n}^{(1)} + O(g_{1}) M_{n} q_{n}^{(1)} \right)$ $\lim_{g \to 0} M_{n+1}(P_{2}, g_{1}) = \left(S_{n}^{(\omega)} + S_{n}^{(1)} + O(g_{1}) M_{n} q_{n}^{(1)} \right)$ $\lim_{g \to 0} M_{n+1}(P_{2}, g_{1}) = \left(S_{n}^{(\omega)} + S_{n}^{(1)} + O(g_{1}) M_{n} q_{n}^{(1)} \right)$ $\lim_{g \to 0} M_{n+1}(P_{2}, g_{1}) = \left(S_{n}^{(\omega)} + S_{n}^{(1)} + O(g_{1}) M_{n} q_{n}^{(1)} \right)$ $\lim_{g \to 0} M_{n+1}(P_{2}, g_{1}) = \left(S_{n}^{(\omega)} + S_{n}^{(1)} + O(g_{1}) M_{n} q_{n}^{(1)} \right)$ $\lim_{g \to 0} M_{n+1}(P_{2}, g_{1}) = \left(S_{n}^{(\omega)} + S_{n}^{(\omega)} + S_{n}^{(\omega)} + O(g_{1}) M_{n} q_{n}^{(1)} \right)$ $\lim_{g \to 0} M_{n+1}(P_{2}, g_{1}) = \left(S_{n}^{(\omega)} + S_{$ gravilors: $-\frac{ik}{2}\frac{\mathcal{E}}{kz_1}\frac{\mathcal{E}(2)P_k}{P_k\cdot 9}$ 2. $J_k\cdot \mathcal{E}(2)$ $\mathcal{E}^{n\nu} = \mathcal{E}^n\mathcal{E}^{\nu}$

Asymptotic symmetry group (ASG). ASG = allowed gauge symmetry Exivial gauge symmetry 2 RFS $dS^{2} = -du^{2} - z du dr + 2r^{2}/25 dz d\bar{z}$ (u, r, v, v, z) $+ \frac{z m_{B}}{r} du^{2} + r C_{zz} dz^{2} + r C_{z\bar{z}} d\bar{z}^{2} + 2 \int_{uz}^{z} du dz + 2 \int_{uz}^{z$

ASG: the extended 13MS group? Virasoro Y12) ~ Zn Pondaré + supertranslation + superrotation

Jeobal local Superrotation. $Q = Q_S + Q_H$ $\langle out | Qt \hat{S} - \hat{S}Q^{-} | in \rangle = 0$ $Q^{+} = Q^{-}$

$$Y' = F(e, \overline{e})Y + O(1)$$

$$U' = \frac{u}{T(e, \overline{e})} + O(\frac{e}{r})$$

$$Z' = \frac{a + b}{(e + d)} a d b c = 1$$

1. Confirmed primary wave functions. (Scalars) Satisfies Klein-Gooden equations. transforms as a scalar comformal primary operator under 2D wnformal transformation.	Celestic	L CFT
Satisfies Reconstant () transforms as a scalar comformal primary operator under 20 unformal transformation.	1. Confo	rmel primary were furctions. (Scalars)
2D wnformal transformation.	• S	cransforms as a scalar comformal primary operator under
		2D unformal transformation.

massive: $O(x) \sim \int ddy = O(x) = \int dx = \int dx$ $\lambda \in \mathbb{R}$

Celestial complitudes, Δ $\Delta(oi.\overline{z_i},\overline{z_i}) = \prod_{i=1}^{n} \int_{\mathbb{R}_2}^{d_{\widehat{z}}} G_{oi}(\widehat{f_i},\overline{z_i},\overline{z_i}) \prod_{i=1}^{n} \int_{0}^{\infty} d\omega_i \, \omega_i^{i-1} M(P_i)$ $M(P_i) = \int_{\mathbb{R}_2}^{n} d\chi \, \ell^{i} P^{N} M(N) \rightarrow \mathcal{U}^{T} \qquad \widehat{g}(\overline{z},\overline{z})$ $G_{o}(\widehat{f},\underline{g}) = \underline{\qquad \qquad } \widehat{g}(\overline{z},\overline{z})$ $(-P. 2)^{o}$

 A_2° coi, $\overline{z}', \overline{w}$) = $CS^{\circ}(z-w)$ Cout lin > Shadow 1 $(z-w)^{\circ}$ 1 $= \int ds (0,0,0) \sim (0,0,0)$ $\frac{1}{2} | \frac{3}{5} > \frac{2}{1} = 2$

2 massless and 1 massive scalars. (3 $M^{\circ}_{\text{CMP}}, \omega_{3}, \omega_{2}) = 95^{(4)} (\omega_{3}, \omega_{3}, \omega_{4})$ $A(oi, 7i, 7i) = \frac{C(o, 0, 0, 0)}{|7i-7i|^{O(1+0)}-0i|^{$

massless. translation. Pu M(Ewg) = Ewg M(Ewg) $\begin{array}{ll}
\widehat{P}_{k,u} \wedge (O_{i}, \overline{e}_{i}\overline{e}_{i}) - \widehat{T}(\int_{0}^{\infty} d\omega_{i} \, \omega_{i}^{O_{i-1}}) \in_{k} \widehat{\omega}_{k} \widehat{I}_{k} \wedge (g_{i}) \\
= \varepsilon_{k} \widehat{g}_{k} \wedge (O_{i}, \cdots \circ O_{k}+1, \cdots \circ O_{n}) \\
\widehat{Z} \in_{k} \widehat{g}_{k} \wedge (O_{i}, \cdots \circ O_{k}+1, \cdots \circ O_{n}) = 0
\end{array}$ 4pt. Poinearé symmetry implies that any celestral scalar 4-point function can be put onto the form: A4 = S(2-2) fhoting = TT = 1/3-hi-hi = 1/3-hi-hi
(2,2) TT = 2/3-hi-hi
Zij $Z = \frac{21.20}{2.234}$ $Z_{12}Z_{34}$ $Z_{12}Z_{34}$ $Z_{12}Z_{34}$ $Z_{12}Z_{34}$ $Z_{12}Z_{34}$ $Z_{12}Z_{34}$ $Z_{13}Z_{34}$ $Z_{14}Z_{15}$ $Z_{15}Z_{15}$ $Z_{15}Z_{15}$ $Z_{15}Z_{15}$

log So(3,2) ~ Endidean C77 $P_{z}=\omega_{z}(z,\overline{z})$ $So(2,2) ~ So(1,1) ~ Tight ray operator <math>p_{z}=\omega_{z}(z,\overline{z})$