10 Appendix D: Craig-Bampton Model Generation

10.1 Craig-Bampton Equations of Motion for Substructures

MYSTRAN has the capability to generate Craig-Bampton (CB) models via SOL 31 (or SOL GEN CB MODEL). This solution sequence calculates the fixed-base modes of a substructure and generates all of the matrices needed to couple the substructure to other CB models. This appendix describes the Craig-Bampton method and its implementation in MYSTRAN and includes an example problem to explain the input and output for SOL 31.

Craig and Bampton¹ are credited with the first unified approach to modal synthesis, or substructuring for dynamic analysis, using fixed interface flexible modes augmented by boundary constraint modes to describe each substructure. Their work was a simplification of earlier work by Hurty² who first introduced the concept for substructures with redundant boundary degrees of freedom (DOF's).

In order to explain the Craig-Bampton (CB) method, consider a structure represented by the picture below that is comprised of several (in this case 5) substructures connected at an arbitrary number of points:

Figure 10.1 - Overall Structure Composed of Several Substructures

Each substructure is joined to one or more other substructures at some number of interface, or boundary, DOF's (indicated by the hatched areas in the above picture. The complete structure, consisting of the connected substructures, may or may not be restrained from free body motion. For any one of the substructures (j = I, II, III, etc.) the G-set equations of motion (ignoring damping for the moment) are:

² Hurty, W.C. "Dynamic Analysis of Structural Systems Using Component Modes", AIAA Journal, Vol. 3, No. 4, April 1965, pp 678-685

228

¹ Craig, R.R. and Bampton, M.C.C. "Coupling of Substructures for Dynamic Analysis", AIAA Journal, Vol. 6, No. 7, July 1968, pp 1313-1319

$$M_{GG}^j \ddot{u}_G^j + K_{GG}^j u_G^j = P_G^j + Q_G^j$$

where

$$Q_{G}^{j} \! = \! Q_{G}^{m^{j}} \! + \! Q_{G}^{s^{j}} \! + \! Q_{G}^{rj}$$

$$u_{G}^{j} = \begin{cases} u_{A}^{j} \\ u_{O}^{j} \\ u_{S}^{j} \\ u_{M}^{j} \end{cases} = \begin{cases} \text{analysis DOF's} \\ \text{omitted DOF's} \\ \text{SPC'd DOF's} \\ \text{MPC'd DOF's} \end{cases}$$

and 10-1

 P_G^j = applied loads on the G-set

 $\mathbf{Q}_{\mathbf{G}}^{\mathbf{m}^{\mathbf{j}}}=$ constraint forces due to multi-point constraints (MPC's)

 $Q_{G}^{s^{j}}=$ constraint forces due to single point constraints (SPC's)

 $Q_G^{r^J}$ = interface forces at boundaries between substructures

In MYSTRAN nomenclature, the G-set is reduced to the A-set by the elimination of the M-set multipoint constraints, the S-set single point constraints and the O-set omitted DOF's (using OMIT's or ASET's). The A-set DOF's for this substructure must contain all DOF's that will be connected to other substructures The resulting A-set equations of motion (dropping the j superscript notation for each substructure) are:

$$M_{AA}\ddot{u}_A + K_{AA}u_A = P_A + Q_A^r$$
 10-2

where the A set matrices are mathematical reductions from the G-set (see Appendix B for details)

Partition 2 into the R-set and L-set, where, the R-set represents the boundary DOF's in which this substructure connects with other substructures and the L-set are all free interior DOF's in this substructure

$$\begin{bmatrix} M_{RR} & M_{LR}^T \\ M_{LR} & M_{LL} \end{bmatrix} \begin{Bmatrix} \ddot{u}_R \\ \ddot{u}_L \end{Bmatrix} + \begin{bmatrix} K_{RR} & K_{LR}^T \\ K_{LR} & K_{LL} \end{bmatrix} \begin{Bmatrix} u_R \\ u_L \end{Bmatrix} = \begin{Bmatrix} P_R \\ P_L \end{Bmatrix} + \begin{Bmatrix} Q_R^r \\ o \end{Bmatrix}$$
10-3

Notice at this point that there remain forces of constraint only at the substructure attach points as the L-set represents all free DOF's for this substructure.

At this point we can introduce the transformation from the physical displacements in equation (3) to what are known as the CB DOF's; namely the flexible mode DOF's and the boundary (R-set) DOF's. In order to show that this is not any further approximation to equation 3, consider the following argument:

1) the $u_A = \begin{cases} u_R \\ u_L \end{cases}$ DOF's are clearly a complete set of DOF's for the substructure in that,

once they are known, the complete g-set DOF's for this substructure can be determined.

2) similarly, a new set of DOF's for the substructure,

$$\mathbf{u}_{\mathsf{X}} = \begin{cases} \mathbf{u}_{\mathsf{R}} \\ \boldsymbol{\xi}_{\mathsf{N}} \end{cases}$$
 10-4

are a complete set of DOF's if $\,\xi_{\text{N}}\,$ are the generalized DOF's for $\,$ flexible modes when $\,u_{\text{R}}=0\,$

3) Thus we can take \mathbf{U}_{L} to be a linear combination of \mathbf{U}_{R} and $\boldsymbol{\xi}_{N}$ or:

$$u_1 = D_{1R}u_R + \Phi_{1N}\xi_N$$
 10-5

if we insist that:

- a) Φ_{LN} are shapes when $u_R=0$ and ξ_N are modal DOF's. That is, the columns of Φ_{LN} are the flexible modes, ϕ_L^i , when the boundary is fixed. The i-th column of the modal matrix Φ_{LN} is ϕ_L^i .
- b) D_{LR} are shapes when $\xi_N=0$. That is, the columns of D_{LR} are the L-set shapes for unit motions of the R-set when the flexible mode DOF's are zero.

The ϕ_L^i are easy to understand. They are the eigenvectors resulting from solving an eigenvalue problem from equations 3 with $u_R=0$. This eigenvalue problem would be:

$$(K_{LL} - \omega^2 M_{LL}) \varphi_L = 0$$
 10-6

This requires that the determinant of the coefficient matrix on the left side of equation 6 be zero:

$$\left|K_{LL} - \omega^2 M_{LL}\right| = 0$$
 which yields N eigenvalues $\omega_1^2, \omega_2^2 \dots, \omega_N^2 > 0$ 10-7

The i-th eigenvector, $\boldsymbol{\phi}_{l}^{i}$, is then determined by solving the equation:

Solution of equation 8 requires that one element of ϕ_L^i be arbitrarily set (the ϕ_L^i are shapes and their amplitude does not matter). Once equation 8 is solved, the modal matrix is:

$$\Phi_{LN} = \begin{bmatrix} \phi_l^1 & \phi_l^2 & \cdots & \phi_L^N \end{bmatrix}$$
 10-9

The D_{LR} can also be explained easily. As stated above, the D_{LR} are shapes when the flexible mode response is zero. We can see from equation 5 that a column of D_{LR} represents the displacements at the L-set DOF's due to motion at one of the R-set DOF's while all other R-set DOF's are zero (as well

as all $\xi_N=0$). We can therefore solve for D_{LR} from equation 3 by taking all applied forces and accelerations equal to zero and solving the statics problem:

$$\begin{bmatrix} K_{RR} & K_{LR}^T \\ K_{LR} & K_{LL} \end{bmatrix} \begin{pmatrix} u_R \\ u_L^s \end{pmatrix} = \begin{Bmatrix} Q_R^r \\ o \end{Bmatrix}$$
 10-10

where u_L^s are static displacements of the L-set. From the second row of equation 10, solve for u_L^s in terms of u_R^s :

$$u_L^s = -K_{LL}^{-1}K_{LR}u_R = D_{LR}u_R$$
 or
$$D_{LR} = -K_{LL}^{-1}K_{LR}$$

Thus, the CB DOF's are contained in U_X (equation 4) and the transformation between U_X and U_A is:

$$\begin{cases} u_{R} \\ u_{L} \end{cases} = \begin{bmatrix} I & 0 \\ D_{LR} & \Phi_{LN} \end{bmatrix} \begin{Bmatrix} u_{R} \\ \xi_{N} \end{Bmatrix}$$
 10-12

where I is an R x R identity matrix. Equation 12 can be written as:

$$\begin{aligned} u_{\text{A}} &= \Psi_{\text{AX}} u_{\text{X}} \\ \text{where} & & & \\ \Psi_{\text{AX}} &= \begin{bmatrix} I & 0 \\ D_{\text{LR}} & \Phi_{\text{LN}} \end{bmatrix}, \quad u_{\text{A}} &= \begin{bmatrix} u_{\text{R}} \\ u_{\text{L}} \end{bmatrix}, \quad u_{\text{X}} &= \begin{bmatrix} u_{\text{R}} \\ \xi_{\text{N}} \end{bmatrix} \end{aligned}$$

 Ψ_{AX} is the CB transformation matrix and is of A-set size. In MYSTRAN this is called matrix PHIXA. When expanded to G-set size, PHIXA becomes matrix PHIXG:

$$\begin{aligned} \textbf{u}_{\text{G}} &= \Psi_{\text{GX}} \textbf{u}_{\text{X}} \\ \Psi_{\text{GX}} &= \text{matrix data block PHIXG} \\ \text{PHIXG} &= \text{PHIXA expanded to G-set} \end{aligned}$$

Note that when all flexible modes of the substructure are used in \mathbf{u}_{X} equation 13 is exact. In practice, all modes are never used since this would defeat the purpose of making the transformation (which is to find a smaller set of DOF's which are nonetheless an accurate representation of the Aset). Substituting equation 13 into equation 2 and premultiplying the result by the transpose of Ψ_{AX} yields:

$$\mathbf{M}_{\mathbf{X}\mathbf{X}}\ddot{\mathbf{u}}_{\mathbf{X}} + \mathbf{K}_{\mathbf{X}\mathbf{X}}\mathbf{u}_{\mathbf{X}} = \mathbf{P}_{\mathbf{X}} + \mathbf{Q}_{\mathbf{X}}^{\mathbf{r}}$$
 10-15

where:

$$\boldsymbol{M}_{XX} = \boldsymbol{\Psi}_{AX}^{\mathsf{T}} \boldsymbol{M}_{AA} \boldsymbol{\Psi}_{AX} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{D}_{LR}^{\mathsf{T}} \\ \boldsymbol{0} & \boldsymbol{\Phi}_{LN}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \boldsymbol{M}_{RR} & \boldsymbol{M}_{LR}^{\mathsf{T}} \\ \boldsymbol{M}_{LR} & \boldsymbol{M}_{LL} \end{bmatrix} \begin{bmatrix} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{D}_{LR} & \boldsymbol{\Phi}_{LN} \end{bmatrix} = \begin{bmatrix} \boldsymbol{m}_{RR} & \boldsymbol{m}_{NR}^{\mathsf{T}} \\ \boldsymbol{m}_{NR} & \boldsymbol{m}_{NN} \end{bmatrix}$$

$$\boldsymbol{K}_{XX} = \boldsymbol{\Psi}_{AX}^{\mathsf{T}} \boldsymbol{K}_{AA} \boldsymbol{\Psi}_{AX} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{D}_{LR}^{\mathsf{T}} \\ \boldsymbol{0} & \boldsymbol{\Phi}_{LN}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \boldsymbol{K}_{RR} & \boldsymbol{K}_{LR}^{\mathsf{T}} \\ \boldsymbol{K}_{LR} & \boldsymbol{K}_{LL} \end{bmatrix} \begin{bmatrix} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{D}_{LR} & \boldsymbol{\Phi}_{LN} \end{bmatrix} = \begin{bmatrix} \boldsymbol{k}_{RR} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{k}_{NN} \end{bmatrix}$$

10-16

$$P_{X} = \Psi_{AX}^{T} P_{A} = \begin{bmatrix} I & D_{LR}^{T} \\ 0 & \Phi_{LN}^{T} \end{bmatrix} \begin{Bmatrix} P_{R} \\ P_{L} \end{Bmatrix} = \begin{Bmatrix} P_{R}' \\ \Xi_{N} \end{Bmatrix}, \quad P_{R}' = P_{R} + D_{LR}^{T} P_{L}, \quad \Xi_{N} = \Phi_{LN}^{T} P_{L}$$

$$\mathbf{Q}_{\mathbf{X}}^{r} = \mathbf{\Psi}_{\mathsf{AX}}^{\mathsf{T}} \mathbf{Q}_{\mathsf{A}}^{r} = \begin{bmatrix} \mathsf{I} & \mathsf{D}_{\mathsf{LR}}^{\mathsf{T}} \\ \mathsf{0} & \Phi_{\mathsf{LN}}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \mathsf{Q}_{\mathsf{R}}^{r} \\ \mathsf{o} \end{bmatrix} = \begin{bmatrix} \mathsf{Q}_{\mathsf{R}}^{r} \\ \mathsf{0} \end{bmatrix}$$

and:

$$\begin{split} \boldsymbol{m}_{RR} &= \boldsymbol{M}_{RR} + \boldsymbol{M}_{LR}^T \boldsymbol{D}_{LR} + (\boldsymbol{M}_{LR}^T \boldsymbol{D}_{LR})^T + \boldsymbol{D}_{LR}^T \boldsymbol{M}_{LL} \boldsymbol{D}_{LR} \\ \boldsymbol{m}_{NR} &= \boldsymbol{\Phi}_{LN}^T (\boldsymbol{M}_{LR} + \boldsymbol{M}_{LL} \boldsymbol{D}_{LR}) \\ \boldsymbol{m}_{NN} &= \boldsymbol{\Phi}_{LN}^T \boldsymbol{M}_{LL} \boldsymbol{\Phi}_{LN} \\ \boldsymbol{k}_{RR} &= \boldsymbol{K}_{RR} + \boldsymbol{K}_{LR}^T \boldsymbol{D}_{LR} \\ \boldsymbol{k}_{NN} &= \boldsymbol{\Phi}_{LN}^T \boldsymbol{K}_{LL} \boldsymbol{\Phi}_{LN} \end{split}$$

 m_{NN} , k_{NN} are diagonal matrices of generalized maesses and stiffnesses, respectively.

Equations 15 for the i-th substructure can be written as:

$$\begin{bmatrix} m_{RR} & m_{NR}^T \\ m_{NR} & m_{NN} \end{bmatrix} \begin{pmatrix} \ddot{u}_R \\ \ddot{\xi}_N \end{pmatrix} + \begin{bmatrix} k_{RR} & 0 \\ 0 & k_{NN} \end{bmatrix} \begin{pmatrix} u_R \\ \xi_N \end{pmatrix} = \begin{Bmatrix} P_R' \\ \Xi_N \end{Bmatrix} + \begin{Bmatrix} Q_R^r \\ 0 \end{Bmatrix}$$
10-18

The off-diagonal terms in the above stiffness matrix are zero due to the definition of D_{LR} in equation 11. In addition, matrix k_{RR} in equation 18 is null if the boundary is a determinant interface. Equations 14 and 18 are the Craig-Bampton equations of motion for the i-th substructure. The P_R' are due to applied loads on the R and L-set DOF's (see equation 16) and the Q_R^r are the interface forces where substructures connect. Once the equations are developed for all substructures, the individual substructures can be connected and the resulting equations solved for the combined R-set and N-set DOF's u_R and ξ_N for all substructures. Once this is done, the forces of inter-connection, or substructure interface forces, (that is, the Q_R^r) can be solved from the individual substructure

equations in the top row of equation 18. Equation 14 is used to obtain displacements for all G-set DOF's.

Each organization that is developing a substructure in CB format would deliver the above coefficient matrices in equations 14 and 18 to the organization that is doing the combined structure analysis. In addition, Displacement and Load Transformation Matrices (DTM's and LTM's) collectively known as Output Transformation Matrices, (OTM's), described below, are also delivered as part of the CB model.

10.2 Development of Displ Output Transformation Matrices (Displ OTM's)

Typically, a set of displacement output transformation matrices (displ OTM's, or DTM's for short), is delivered with a Craig-Bampton model to the organization that will couple all substructures and solve for the primary unknowns (\mathbf{u}_R and $\boldsymbol{\xi}_N$ and \mathbf{Q}_R^r) in order that desired displacements at some of the substructure G-set DOF's may be obtained along with the coupled solution.

Once the combined structure has been solved for the primary variables, the original u_L physical DOF's could be determined from equation 5 and then element forces and stresses could be determined from the u_R and u_L displacements . This is called recovery of the u_L DOF's and element forces and stresses using the Modal Displacement Method (MDM). However, as is often the case, equations 18 are solved using a severely truncated set of modes for each substructure. While this may not compromise the accuracy of the solutions for u_R and ξ_N , it could compromise the accuracy of element forces and stresses calculated using displacements determined from equation 5 with the truncated set of modes. In order to avoid this problem, the u_L DOF's can be found using the Modal Acceleration Method (MAM), described below. It should be noted that the MAM described below *ignores* damping forces so that it is only useful when the damping is small (e.g. less than 10% or so).

From the bottom row of equation 3, solve for \mathbf{u}_{L} in terms of the other variables in the equation:

$$\begin{split} u_{L} &= -K_{LL}^{-1}(M_{LR}\ddot{u}_{R} + M_{LL}\ddot{u}_{L}) - K_{LL}^{-1}K_{LR}u_{R} + K_{LL}^{-1}P_{L} \\ &= -K_{LL}^{-1}(M_{LR}\ddot{u}_{R} + M_{LL}\ddot{u}_{L}) + D_{LR}u_{R} + K_{LL}^{-1}P_{L} \end{split}$$

Differentiate equation 5 twice and use the result for $\ddot{\mathbf{u}}_{l}$ in equation 19, to get:

$$u_{L} = \left[-K_{LL}^{-1} (M_{LR} + M_{LL} D_{LR}) \mid -K_{LL}^{-1} M_{LL} \Phi_{LN} \mid D_{LR} \right] \begin{Bmatrix} \ddot{u}_{R} \\ \ddot{\xi}_{N} \\ u_{R} \end{Bmatrix} + K_{LL}^{-1} P$$
10-20

The term $K_{LL}^{-1}M_{LL}\Phi_{LN}$ in equation 20. can be written in a form more convenient for calculation. From equation 8 it can be seen that:

$$K_{LL}^{-1}M_{LL}\varphi_L^i = \frac{1}{\omega_i^2}\varphi_L^i$$

so that

$$\begin{aligned} & \boldsymbol{\mathsf{K}}_{\mathsf{LL}}^{-1} \boldsymbol{\mathsf{M}}_{\mathsf{LL}} \left[\boldsymbol{\phi}_{\mathsf{I}}^{\mathsf{1}} \quad \boldsymbol{\phi}_{\mathsf{I}}^{\mathsf{2}} \quad \cdots \quad \boldsymbol{\phi}_{\mathsf{L}}^{\mathsf{N}} \right] \! = \! \left[\boldsymbol{\phi}_{\mathsf{I}}^{\mathsf{1}} \quad \boldsymbol{\phi}_{\mathsf{I}}^{\mathsf{2}} \quad \cdots \quad \boldsymbol{\phi}_{\mathsf{L}}^{\mathsf{N}} \right] \! \begin{bmatrix} \boldsymbol{\omega}_{\mathsf{I}}^{-2} \\ & \boldsymbol{\omega}_{\mathsf{2}}^{-2} \\ & & \ddots \\ & & \boldsymbol{\omega}_{\mathsf{N}}^{-2} \end{bmatrix} \! \\ & & & \ddots \\ & & & & \boldsymbol{\omega}_{\mathsf{N}}^{-2} \end{aligned}$$

or

$$K_{11}^{-1}M_{11}\Phi_{1N} = \Phi_{1N}\Omega_{NN}^{-2}$$
 10-21

where

$$\Omega_{NN}^{-2} = \begin{bmatrix} \omega_1^{-2} & & & & \\ & \omega_2^{-2} & & & \\ & & \ddots & & \\ & & & \omega_N^{-2} \end{bmatrix}$$
 10-22

substitute equation 21 into equation 20 to get:

$$\mathbf{u}_{L} = \left[-K_{LL}^{-1} \left(\mathbf{M}_{LR} + \mathbf{M}_{LL} \mathbf{D}_{LR} \right) \, \middle| \, -\Phi_{LN} \Omega_{NN}^{-2} \, \middle| \, \mathbf{D}_{LR} \right] \left\{ \begin{matrix} \ddot{\mathbf{u}}_{R} \\ \ddot{\boldsymbol{\xi}}_{N} \\ \mathbf{u}_{R} \end{matrix} \right\} + K_{LL}^{-1} \mathbf{P}_{L}$$
 10-23

The various terms in the coefficient matrices in equation 23 are known as Displacement Transformation Matrices (DTM's). Equation 23 can be written as:

$$\mathbf{u}_{L} = \left[\mathsf{DTM1}_{LR} \mid \mathsf{DTM2}_{LN} \mid \mathsf{DTM3}_{LR} \right] \begin{Bmatrix} \ddot{\mathbf{u}}_{R} \\ \ddot{\xi}_{N} \\ \mathbf{u}_{R} \end{Bmatrix} + \mathsf{DTM4}_{LL} \mathbf{P}_{I}$$
 10-24

where

$$\begin{split} DTM1_{LR} &= -K_{LL}^{-1} \big(M_{LR} + M_{LL} D_{LT} \big) \\ DTM2_{LN} &= -\Phi_{LN} \Omega_{NN}^{-2} \\ DTM3_{LR} &= D_{LR} \\ DTM4_{LL} &= K_{LL}^{-1} \end{split}$$

Equations 24 and 25 represent the MAM for recovering displacements for the L-set, for the i-th substructure, once the assembled substructure equations have been solved for the \mathbf{u}_{R} and \mathbf{q}_{N} DOF's. Once the L-set displacements have been found, recovery of the remaining displacements in

the G-set is accomplished through the transformation matrices used in their elimination from equation 1 (for details see Appendix B). At the G-set level, equation 24 is:

$$\begin{split} u_G &= \left[\text{DTM1}_{\text{GR}} \ \middle| \ \text{DTM2}_{\text{GN}} \ \middle| \ \text{DTM3}_{\text{GR}} \right] \begin{cases} \ddot{u}_R \\ \ddot{\xi}_N \\ u_R \end{cases} + \text{DTM4}_{\text{GL}} P_L \\ \end{split}$$
 or
$$u_G &= \Gamma_{\text{GZ}} u_Z + \text{DTM4}_{\text{GL}} P_L \\ \text{where} \\ \Gamma_{\text{GZ}} &= \left[\text{DTM1}_{\text{GR}} \ \middle| \ \text{DTM2}_{\text{GN}} \ \middle| \ \text{DTM3}_{\text{GR}} \right] = \text{DTM}_{\text{GZ}} \\ \text{and} \\ u_Z &= \begin{cases} \ddot{u}_R \\ \ddot{\xi}_N \\ u_R \end{cases} \quad \text{,} \quad \text{where } u_Z \text{ are the Craig-Bampton Degrees of freedom (CB_DOF's)} \end{split}$$

.

where each of the G-set DTM's in equation 26 is obtained from the L-set DTM's in equation 25 through the normal recovery operations to build back up to the G-set from the L-set. The coefficient matrix in equation 26 that has DTM's 1 - 3 in it is called matrix PHIZG. The table below explains the meaning of each of the DTM's in equation 26:

Table 10.1

i-th col of:	Represents:
DTM1 _{GR}	displ's of G-set due to a unit accel of the i-th interface DOF (all other R, N set DOF's zero)
(-1)	displ's of G-set due to a unit accel of the i-th_flex mode DOF (all other R, N set DOF's zero)
$DTM3_{GR}$	displ's of G-set due to a unit displ of the i-th interface DOF (all other R, N set DOF's zero)
DTM4 _{GL}	displ's of G-set due to a unit force on the i-th L-set DOF (all other L-set forces zero)

10.3 Development of Load Output Transformation Matrices (Load OTM's)

Once the G-set displacements have been found, substructure element forces and stresses, as well as grid point forces, can be recovered and assembled into a Loads Output Transformation Matrix, or Load OTM (more commonly referred to as LTM). There are several types of quantities one may desire in an LTM. Equations are developed, below, for several types of LTM quantities typically used in CB analyses.

10.3.1 LTM Terms for Substructure Interface Forces

From the top row of equation 18, the interface forces can be determined once the substructures have been coupled and the U_R and ξ_N solved. The interface forces are:

$$\begin{split} Q_R^r &= m_{RR} \ddot{u}_R + m_{NR}^T \ddot{\xi}_N + k_{RR} u_R - P_R' \\ \text{or} \\ Q_R^r &= \left[\begin{matrix} m_{RR} & m_{NR}^T & k_{RR} \end{matrix} \right] \begin{cases} \ddot{u}_R \\ \ddot{\xi}_N \\ u_R \end{cases} - I_{RR} P_R' \end{split}$$

where I_{RR} is an RxR identity matrix. Equation 27 can be written as:

$$\begin{split} Q_{R}^{r} = & \left[LTM21_{RR} \quad LTM22_{RN} \quad LTM23_{RR} \right] \begin{cases} \ddot{u}_{R} \\ \ddot{\xi}_{N} \\ u_{R} \end{cases} - LTM24_{RR}P_{R}^{r} \\ \text{or} \\ Q_{R}^{r} = & J_{RZ}U_{Z} - I_{RR}P_{R} \\ \text{where} \\ J_{RZ} = & \left[LTM21_{RR} \quad LTM22_{RN} \quad LTM23_{RR} \right] = LTM2_{RZ} \\ LTM21_{RR} = & m_{RR} \\ LTM22_{RN} = & m_{NR}^{T} \\ LTM23_{RR} = & k_{RR} \\ LTM24_{RR} = & l_{RR} \\ LTM24_{RR} = & l_{RR$$

10.3.2 LTM Terms for Net cg Loads

Terms can also be included in the overall LTM that will recover what are known as "net" accelerations at the center of gravity (cg) of the CB model. These are termed Net Load factors (NLF's) and represent rigid body accelerations of the cg due to the reaction (or interface) forces, Q_R^r . The development below demonstrates how these are determined.

Define:

 $\mathbf{U}_{\mathrm{cq}} = 6\ \mathrm{x}\ 1$ matrix of rigid body displacements of the cg of the substructure

 $\mathbf{U}_{R_{+}} = r \times 1$ vector of rigid body displacements at the r DOF

$$T_{R6} = r \times 6$$
 matrix where each column represents rigid body displacements of

the r DOF due to a unit motion in one DOF at the cg

 $\mathbf{Q}_{ca} = 6 \text{ x 1}$ vector of forces at the cg that are static equivalents of \mathbf{Q}_{r}^{r}

Then:

$$u_{R_{rb}} = T_{R6} u_{cg}$$
 and
$$Q_{cg} = T_{R6}^{\mathsf{T}} Q_{R}^{r}$$

Substitute equation 27 into 30 for Q_R^r :

$$Q_{cq} = T_{R6}^{T} (m_{RR} \ddot{u}_{R} + m_{NR}^{T} \ddot{\xi}_{N} + k_{RR} u_{R} - P_{R}')$$
10-31

For rigid body motion:

$$Q_{cg} = m_{cg} \ddot{u}_{cg}$$
 10-32

where $\, m_{_{CQ}} \,$ is the 6 x 6 $\,$ rigid body mass matrix relative to the cg and is equal to:

$$\mathbf{m}_{cg} = \mathbf{T}_{R6}^{\mathsf{T}} \mathbf{m}_{RR} \mathbf{T}_{R6} \tag{10-33}$$

and m_{RR} is given in equation 17. From equations 31 through 33 we can write the cg acceleration net load factors (NLF's) as:

$$\ddot{u}_{cg} = m_{cg}^{-1} Q_{cg} = m_{cg}^{-1} T_{R6}^{T} \left[m_{RR} \quad m_{NR}^{T} \quad k_{RR} \right] \begin{Bmatrix} \ddot{u}_{R} \\ \ddot{\xi}_{N} \\ u_{R} \end{Bmatrix} - m_{cg}^{-1} T_{R6}^{T} P_{R}'$$
10-34

However, $T_{R6}^{T}k_{RR}=0$ since the columns of T_{R6} are rigid body modes. Therefore:

$$\ddot{u}_{cg} = m_{cg}^{-1} Q_{cg} = m_{cg}^{-1} T_{R6}^{T} \Big[m_{RR} \quad m_{NR}^{T} \quad 0 \Big] \begin{cases} \ddot{u}_{R} \\ \ddot{\xi}_{N} \\ u_{R} \end{cases} - m_{cg}^{-1} T_{R6}^{T} P_{R}'$$
 10-35

which can be written as:

$$\begin{split} \ddot{u}_{cg} = & \left[\text{LTM11}_{6R} \quad \text{LTM12}_{6N} \quad 0_{\,6R} \right] \begin{cases} \ddot{u}_{R} \\ \ddot{\xi}_{N} \\ u_{R} \end{cases} - \left[\text{LTM14}_{6R} \right] P_{R}' \\ \text{where} \\ \text{LTM11}_{6R} = & m_{cg}^{-1} T_{R6}^{T} m_{RR} \\ \text{LTM12}_{6N} = & m_{cg}^{-1} T_{R6}^{T} m_{NR}^{T} \\ \text{LTM14}_{6R} = & m_{cg}^{-1} T_{R6}^{T} \\ \text{LTM14}_{6R} = & m_{cg}^{-1} T_{R6}^{T} \\ \text{LTM14}_{6Z} = & \left[\text{LTM11}_{6R} \quad \text{LTM12}_{6N} \quad 0 \right] \end{split}$$

10.3.3 LTM Terms for Element Forces and Stresses

In MYSTRAN, element forces and stresses are obtained from the G-set displacement vector and the individual element stiffness matrices. Equation 26 is the G-set displacement vector:

$$\boldsymbol{u}_{\text{G}} = \left[\text{DTM1}_{\text{GR}} \ \middle| \ \text{DTM2}_{\text{GN}} \ \middle| \ \text{DTM3}_{\text{GR}} \right] \left\{ \begin{matrix} \ddot{\boldsymbol{u}}_{\text{R}} \\ \ddot{\boldsymbol{\xi}}_{\text{N}} \\ \boldsymbol{u}_{\text{R}} \end{matrix} \right\} + \text{DTM4}_{\text{GL}} \boldsymbol{P}_{\text{L}} = \boldsymbol{\Gamma}_{\text{GZ}} \boldsymbol{u}_{\text{Z}} + \text{DTM4}_{\text{GL}} \boldsymbol{P}_{\text{L}}$$

Thus the columns of each of the DTM's represents G-set displacements per unit value of one of the variables \ddot{u}_R , $\ddot{\xi}_N$, u_R , P_L as described in Table 10.1. Therefore, each of the DTM's can be used as if they were a matrix of displacements in calculating element forces and stresses to give:

$$f_{e} = \left[\text{LTM31}_{eR} \mid \text{LTM32}_{eN} \mid \text{LTM33}_{eR}\right] \begin{cases} \ddot{u}_{R} \\ \ddot{\xi}_{N} \\ u_{R} \end{cases} + \text{LTM34}_{eL} P_{L}$$
 where
$$f_{e} = \text{vector of element forces and stresses (e = number of finite elements)}$$

$$\text{LTM31}_{eR} = \text{matrix of element forces and stresses due to G-set displ's DTM1}_{GR}$$

$$\text{LTM32}_{eN} = \text{matrix of element forces and stresses due to G-set displ's DTM2}_{GN}$$

$$\text{LTM33}_{eR} = \text{matrix of element forces and stresses due to G-set displ's DTM3}_{GR}$$

$$\text{LTM34}_{eL} = \text{matrix of element forces and stresses due to G-set displ's DTM4}_{GL}$$

$$\text{LTM34}_{eL} = \text{matrix of element forces and stresses due to G-set displ's DTM4}_{GL}$$

$$\text{LTM34}_{eL} = \text{matrix of element forces and stresses due to G-set displ's DTM4}_{GL}$$

$$\text{LTM34}_{eL} = \text{LTM31}_{eR} \mid \text{LTM32}_{eN} \mid \text{LTM33}_{eR} \right]$$

10.3.4 LTM Terms for Grid Point Forces due to multi-point constraints (MPC's)

There are cases in CB analyses in which the forces due to MPC's are of interest. As an example, if a user wishes to determine a load in a bolt at an interface between components, it is common to model the bolt as an MPC where two coincident grids are constrained to have the same displacements. This section develops the equations for determining an LTM for grid point MPC forces.

Equation 1 for the i-th substructure (dropping the superscript-j notation):

$$M_{GG}\ddot{u}_{G} + K_{GG}u_{G} = P_{G} + Q_{G}^{s} + Q_{G}^{m} + Q_{G}^{r}$$
 10-38

As described in section 10.1 the Q constraint forces on the right side of equation 38 are the constraint forces on the S-set SPC DOF's, the M-set MPC DOF's and on the R-set boundary DOF's respectively. Since all of the boundary DOF's are contained in the R-set there should be no constraint forces on the S-set. That is, all S-set DOF's should be the result of removing singularities and not the result of grounding the model³. With this assumption, as well as the assumption that there are no applied loads on the M-st degrees of freedom the following equation is valid for the MPC forces on the M-set grids:

$$Q_{G}^{m} = M_{GG}\ddot{u}_{G} + K_{GG}u_{G} - Q_{G}^{r}$$
 10-39

We want to get 39 in a form like the other LTM'; that is, in terms of U_7 .

From equation 26 with applied loads zero:

$$u_{G} = \Gamma_{GZ} u_{Z}, \quad u_{Z} = \begin{cases} \ddot{u}_{R} \\ \ddot{\xi}_{N} \\ u_{R} \end{cases}$$
 10-40

The g-set DOF vector can also be written using equation 14:

$$u_{G} = \Psi_{GX} u_{X}, \quad u_{X} = \begin{cases} u_{R} \\ \xi_{N} \end{cases}$$
 10-41

Differentiating twice:

$$\ddot{u}_{_G}=\Psi_{_{GX}}\ddot{u}_{_X}$$

This can also be written as:

$$\ddot{\mathbf{u}}_{\mathsf{G}} = \begin{bmatrix} \Psi_{\mathsf{GX}} & \mathbf{0} \end{bmatrix} \begin{Bmatrix} \ddot{\mathbf{u}}_{\mathsf{X}} \\ \mathbf{u}_{\mathsf{R}} \end{Bmatrix}$$
 10-42

Partition the x DOF's into R and N as in equation 13. This will require partitioning Ψ_{GX} into submatrices for the R and N also, so that equation 42 can be written as:

³ This should be verified by the user by inspection of the forces of single point constraint in the output from the analysis

$$\begin{split} \ddot{u}_{\text{G}} = & \left[\Psi_{\text{GR}} \quad \Psi_{\text{GN}} \quad 0 \right] \begin{cases} \ddot{u}_{\text{R}} \\ \ddot{\xi}_{\text{N}} \\ u_{\text{R}} \end{cases} = \Psi'_{\text{GZ}} u_{\text{Z}} \end{split}$$
 where
$$\Psi'_{\text{GZ}} = & \left[\Psi_{\text{GR}} \quad \Psi_{\text{GN}} \quad 0 \right] = \left[\Psi_{\text{GX}} \quad 0 \right]$$

.

Substitute equations 40 and 43 into 39 for $\,{\rm u}_{\rm G}\,$ and $\,\ddot{\rm u}_{\rm G}\,$ respectively to get:

$$Q_{G}^{m} = M_{GG} \Psi_{GZ}' u_{Z} + K_{GG} \Gamma_{GZ} u_{Z} - Q_{G}^{r}$$
10-44

We need to express the boundary constraint forces in equation 44 in terms of the u_Z vector as we did for the inertia and stiffness terms. From 28:

$$Q_{R}^{r} = J_{RZ}u_{Z} - I_{RR}P_{R}$$
 10-45

The Q_R^r boundary forces on the R-set can be expanded from the R-set to the G-set Q_G^r by adding zero rows to 45 for the M, S, O-sets (all of the G-set but the R degrees of freedom) to give

$$Q_G^r = J_{GZ}u_Z - I_{GR}P_R$$
 10-46

where J_{GZ} is J_{RZ} expanded to G-set size by addition of zero rows for M, S, O-sets and I_{GR} is expanded from I_{RR} in the same fashion (recall I_{RR} is an R size identity matrix). Substituting 46 into 44 we get::

$$\begin{split} Q_{G}^{m} &= \big(M_{GG}\Psi_{GZ}' + K_{GG}\Gamma_{GZ} - J_{GZ}\big)u_{Z} \\ \text{or} \\ Q_{G}^{m} &= LTM4_{GZ}u_{Z} \\ \text{where} \\ LTM4_{GZ} &= \big(M_{GG}\Psi_{GZ}' + K_{GG}\Gamma_{GZ} - J_{GZ}\big) \end{split}$$

 $LTM4_{\mbox{\scriptsize GZ}}$ is the LTM for MPC forces at grids that have no applied load

10.4 Development of Acceleration Output Transfer Matrices (Accel OTM)

In addition to the displacement and load output transformation matrices (DTM's and LTM's) it is common to supply acceleration output transformation matrices (accel OTM's or ATM's for short). From equation 10-12 and differentiating twice we obtain:

$$\begin{cases} \ddot{u}_R \\ \ddot{u}_L \end{cases} = \begin{bmatrix} \mathsf{ATM} \end{bmatrix} \begin{cases} \ddot{u}_R \\ \ddot{\xi}_N \end{cases}$$
 where
$$\mathsf{ATM} = \begin{bmatrix} \mathsf{I} & \mathsf{0} \\ \mathsf{D}_{\mathsf{LR}} & \Phi_{\mathsf{LN}} \end{bmatrix}$$

ATM is the acceleration transfer matrix. Notice that the "degrees of freedom" for the ATM are the accelerations of the boundary and modal degrees of freedom whereas all of the other OTM's have as degrees of freedom: boundary accelerations, modal accelerations and boundary displacements. This is due to the use of the modal acceleration method for recovery of displacements and element forces.

10.5 Correspondence between matrix names and CB Equation Variables

The table below shows the correspondence between variables introduced in the above equations and matrix data block names in the DMAP program in Section 10.5. Any of these may be output in a MYSTRAN CB model generation analysis using the Executive Control entry OUTPUT4.

Table 10-2
Matrices that can be written to OUTPUT4 files

	MYSTRAN Matrix Name (OUTPUT4 matrices)	NASTRAN DMAP Name	CB equation variable in Appendix D (where applicable)	Matrix size ¹	Partition rows and/or cols
1	CG_LTM		[LTM11 _{6r} LTM12 _{6N} 0]	6x(2R+N)	
2	DLR	DM	D_LR	LxR	rows and cols
3	EIGEN_VAL	LAMA	$\Omega_{ m NN}^2$	NxN	
4	EIGEN_VEC	PHIG	$\Phi_{\rm GN}$, $~~(\Phi_{\rm LN}$ with rows expanded to G-set)	GxN	rows
5	GEN_MASS	MI	m _{NN}	Nx1 vector of diag. terms	
6	IF_LTM		$\begin{bmatrix} LTM21_{RR} & LTM22_{RN} & LTM23_{RR} \end{bmatrix}$	Rx(2R+N)	rows
7	KAA	KAA	K _{AA}	AxA	rows and cols
8	KGG	KGG	K_{GG}	GxG	rows and cols
9	KLL	KLL	K_{\scriptscriptstyleLL}	LxL	rows and cols
10	KRL	KLR(t)	K_{LR}	LxR	rows and cols
11	KRR	KRR	K_RR	RxR	rows and cols
12	KRRcb	KBB	$\mathbf{k}_{RR} = \mathbf{K}_{RR} + \mathbf{K}_{LR}^T \mathbf{D}_{LR}$	RxR	rows and cols
13	KXX	KRRGN	K_{xx}	(R+N)x(R+N)	
14	LTM	LTM	CG_LTM and IF_LTM merged	(6+R)x(2R+N)	
15	MCG	RBMCG	m_{cg}	6x6	
16	MEFFMASS		Modal effective mass	Nx6	
17	MPFACTOR		Modal participation factors	Nx6 or NxR	
18	MAA		M_{AA}	AxA	rows and cols
19	MGG		M_{GG}	GxG	rows and cols
20	MLL	MLL	M_{LL}	LxL	rows and cols
21	MRL	MRL	M_RL	RxL	rows and cols
22	MRN		$\mathbf{m}_{RN} = \mathbf{m}_{NR}^{T}$	RxN	rows
23	MRR	MRR	M_{RR}	RxR	rows and cols

Table 10-2 (con't)

	MYSTRAN Matrix Name (OUTPUT4 matrices)	NASTRAN DMAP Name	CB equation variable in Appendix D (where applicable)	Matrix size ⁴	Partition rows and/or cols
24	MRRcb	MBB	$m_{RR} = M_{RR} + M_{LR}^{T} D_{LR} + (M_{LR}^{T} D_{LR})^{T} + D_{LR}^{T} M_{LL} D_{LR}$	RxR	rows and cols
25	MXX	MRRGN	$\mathbf{M}_{XX} = \begin{bmatrix} \mathbf{m}_{RR} & \mathbf{m}_{NR}^{T} \\ \mathbf{m}_{NR} & \mathbf{m}_{NN} \end{bmatrix}$	(R+N)x(R+N)	
26	PA		(A-set static reduced loads - only used in statics)		Rows
27	PG		(G-set static loads - only used in statics)		Rows
28	PL		(L-set static reduced loads - only used in statics)		rows
29	PHIXG	PHIXG	$\Psi_{\rm AX}$, $(\Psi_{\rm AX}$ with rows expanded to G-set)	Gx(R+N)	rows
30	PHIZG		The G-set displacement transformation matrix is written out in the F06 file under "CBDISPLACEMENT OTM"	Gx(2R+N)	rows
31	RBM0		Rigid body mass matrix relative to the basic origin	6x6	
32	TR6_0	RBR	T _{R6} : rigid body displacement matrix for R-set relative to the model basic coordinate system	Rx6	rows
33	TR6_CG	RBRCG	T _{R6} : rigid body displacement matrix for R-set relative to the model CG	Rx6	rows

Notes:

- a. (t) indicates matrix transposition
- Matrix m_{RR} will be singular if there are rotational DOF's but no rotational inertia in the R-set, in which case small rotational inertias may have to be added at these DOF's.
- c. Matrix \mathbf{k}_{RR} is null if the boundary is a determinant set of DOF's.
- d. Matrix \mathbf{m}_{RR} is the rigid body mass matrix if the boundary is a determinant set of DOF's

⁴ Matrix size given in rows x columns where R means the size of the R-set, L is the size of the L-set, A is the size of the A-set, G is the size of the G-set and N is the number of eigenvectors. See section 3.6 for definition of the complete displacement set notation

10.6 Craig-Bampton model generation example problem

The figure below shows a small example problem that is a frame made of CBAR's that is a substructure assumed to be attached to some other structure in DOF's 1,2,3 at grids 11 and 13 and in DOF's 2,3 at grid 12. The example problem F06 file (with the input echo'd) is shown on the following pages. This section will discuss the input and output in an effort to explain the Craig-Bampton model generation process.

Equation 10.26 defines the Craig-Bampton degrees of freedom (CB-DOF's) as U_z which, for this example, consists of the 18 DOF's:

- 8 boundary acceleration DOF's, Ü_R
- 2 modal acceleration DOF's, $\ddot{\xi}_N$ (see EIGRL request for 2 modes to be extracted)
- 8 boundary displacement DOF's, U_R

Figure 10.2 – Example CB model: CB-EXAMPLE-12b.DAT

Notes on section 10.6.1: CB-EXAMPLE-12b.F06

The echo of the input shows the following salient points for a CB model generation (much like a SOL 3 eigenvalue analysis in terms of input data):

Executive Control:

- SOL 31 indicates CB model generation
- The OUTPUT4 commands show the matrices that will be written in a format the same as NASTRAN OUTPUT4 files. These matrix data blocks are ones that are listed on Table 10.2 as allowable OUTPUT4 matrices. Notice that several are written to unit 21 while others are written to unit 22. As explained in section 5.1 of the MYSTRAN Users Reference Manual, unit numbers 21 through 27 are valid for writing OUTPUT4 matrices.

· Case Control:

- METHOD = 1 is to be used for a normal eigenvalue analysis (same as if SOL were 3)
- Outputs (ACCE, DISP, ELFORCE, STRESS) are for Output Transformation Matrices (OTM's) for the specified sets. These will be written to the text F06 file. In addition they will be written to binary files (same name, CB-EXAMPLE-12b) with extension OP8 for the element related OTM;s (ELFORCE, STRESS in this case and OP9 for the grid related OTM's (ACCE, DISP in this case)

Bulk Data:

- Shows the model for this example (notice it has mostly CBAR's but there is also a RBE2)
- Degrees of freedom at the boundary where this substructure attaches to other substructures are defined with the SUPORT Bulk Data entry. This is the same procedure that is used in CB analyses by the NASTRAN DMAP (Direct Matrix Abstraction Program) method familiar to NASTRAN CB analysts.
- Eigenvalue extraction, EIGRL requesting 2 modes to be extracted

The delineated F06 output begins on the page following the input model echo and shows the following:

- Eigenvalues extracted
- Messages on the matrices requested to be written to OUTPUT4 files
- For the first 3 of the 18 CB_DOF's in this example the following output (requested in Case Control) is shown (other 15 were left out for clarity):
 - Displacement OTM for the requested grids (see Case Control command DISP = 102)
 - Element engineering force OTM (see Case Control command ELFORCE = 201)
 - Element stress OTM (see Case Control command STRESS = 202)
- Acceleration OTM. As shown in equation 10.48 the acceleration OTM has columns for \ddot{u}_R and $\ddot{\xi}_N$ but not u_R . For this example, there are 10 columns in the acceleration OTM (8 boundary acceleration DOF's and 2 modal acceleration DOF's)

Notes on section 10.6.2; OUTPUT4 matrices written to CB-EXAMPLE-12b.OP1 and OP2

As shown in the Executive Control section of the F06 file in section 10.6.1, there were 3 matrices requested to be written to unit 21 and 4 to unit 22. These binary files, translated to text, are shown in section 10.6.2. The number of actual columns for each matrix is indicated in Table 10.2 but only the first 5 of the columns are shown here for the sake of brevity. These are several of the important CB matrices needed to couple this CB substructure to other substructures in a combined analysis. The binary OUTPUT4 files are written in the same format as the NASTRAN OUTPUT4 binary files.

Notes on section 10.6.3: Displ and elem force/stress OTM's written to CB-EXAMPLE-12b.OP1, OP2

Any output requests in Case Control for grid related outputs (e.g. DISPL, ACCEL) and element force/stress outputs (e.g. ELFORCE, STRESS) are written to the text F06 file and also written to OUTPUT4 binary files (automatically; that is, no formal OUTPUT4 request is needed). The element related OTM's are always written to a file with the same filename as the F06 file but with extension OP8. The grid related OTM's are written to a file with extension OP9.

The first page of section 10.6.3 is a text translation of the element related OTM's written to file CB-EXAMPLE-12b.OP8. The values are the same as was written to the F06 file for element forces and stresses but are also written to binary files in OUTPUT4 format to be used in analyses that couple the CB substructures. In order to explain the contents of the binary OP8 file, a text file with extension OT8 is also automatically written (provided any Case Control requests are included for element forces/stresses) describing the contents of the OP8 binary file. This OT8 text file gives an overview of the OP8 binary file and then goes on to describe each row written to the OP8 file.

The next several pages show the same type of information on the grid related OTM's written to binary file with extension OP9 (with text description in OT9). Again, this is the grid related outputs requested in Case Control and also written to the F06 text file.

246

10.6.1 CB-EXAMPLE-12-b.F06

(delineated – some output not included here for the sake of clarity)

1030180330

```
MYSTRAN Version 3.00 Oct 20 2006 by Dr Bill Case (this TRIAL edition is SP protected)
>> MYSTRAN BEGIN : 10/30/2006 at 18: 3:30.640 The input file is CB-EXAMPLE-12-b.DAT
>> LINK 1 BEGIN
SOL 31
$
OUTPUT4
         CG_LTM
                 , IF_LTM
                                                    //-1/21 $
         KRRGN
                  , RBMCG
                                             , RBRCG //-1/22 $
OUTPUT4
                            , MRRGN ,
OUTPUT4 MR
                                                    //-1/21 $
CEND
TITLE = TEST OF CRAIG-BAMPTON SOLUTION
SUBTI = FRAME USING CBAR's
SPC
     = 1
METHOD = 1
ECHO
       = UNSORT
$
SET 101 = 32
SET 102 = 22, 32
SET 201 = 211, 212
SET 202 = 201
ACCE
       = 101
     = 102
DISP
ELFORCE = 201
STRESS = 202
MEFFMASS = ALL
MPFACTOR = ALL
$
BEGIN BULK
$
                              2
                                     2
EIGRL 1
                                             DPB
                                                     -1.
                                                            MASS
$
EIGR
       2
                MGIV
                                     1
                                             24
                                                                    +E1
+E1
       MASS
GRID
       11
                      0.
                              0.
                                     0.
GRID
       12
                      100.
                              0.
                                     0.
GRID
       13
                      50.
                              0.
                                     50.
GRID
       21
                      0.
                              100.
                                     0.
GRID
       22
                      100.
                              100.
                                     0.
GRID
                      50.
                              50.
                                     0.
       31
GRID
       32
                      50.
                              50.
                                     0.
$
RBE2
       401
              31 123456 32
```

```
$
$ Frame support bars
$
       101
CBAR
               1
                       13
                               21
                                       0.0
                                               0.5
                                                      1.0
                                                                      +C1
+C1
       56
               456
CBAR
       102
               1
                       13
                               22
                                       0.0
                                               0.5
                                                      1.0
                                                                      +C2
               456
+C2
       56
$
$ Edge bars
$
CBAR
       201
               2
                               21
                                       0.0
                                               0.0
                                                      1.0
                       11
CBAR
       202
               2
                       12
                               22
                                       0.0
                                               0.0
                                                      1.0
CBAR
       203
               2
                       11
                               12
                                       0.0
                                               0.0
                                                      1.0
               2
                       21
                               22
CBAR
       204
                                       0.0
                                               0.0
                                                      1.0
$
$ Diag bars
$
                                                      1.0
CBAR
       211
               3
                       11
                               31
                                       0.0
                                               0.0
CBAR
       212
               3
                       12
                               31
                                       0.0
                                               0.0
                                                      1.0
CBAR
       213
               3
                       21
                               31
                                       0.0
                                               0.0
                                                      1.0
       214
               3
                       22
                               31
CBAR
                                       0.0
                                               0.0
                                                      1.0
$
                       0.36
                               0.09
                                       0.09
                                               0.18
PBAR
       1
               1
       2
               1
                       0.10
                               10.0
                                       10.0
                                               20.0
PBAR
PBAR
       3
               1
                       6.0
                               6.0
                                       6.0
                                              12.0
$
                               0.3
                                       0.1
MAT1
       1
               10.+6
*INFORMATION: MAT1 ENTRY
                               1 HAD FIELD FOR G BLANK. MYSTRAN CALCULATED G = 3.846154E+06
$
CONM2
       901
               11
                               150.0
                                       0.0
                                               0.0
                                                      -5.0
CONM2
       902
               12
                               150.0
                                       0.0
                                               0.0
                                                      -5.0
                               150.0
                                                      -5.0
CONM2
       903
               21
                                       0.0
                                               0.0
CONM2
       904
               22
                               150.0
                                       0.0
                                               0.0
                                                      -5.0
                                                      -5.0
CONM2
       905
               32
                               150.0
                                      0.0
                                               0.0
$
       1
               456
                       13
SPC1
$
$ BOUNDARY DOF'S
$
SUPORT 11
               123
                       12
                               23
                                      13
                                              123
$
PARAM WTMASS
               .002591
$
ENDDATA
```

EIGENVALUE ANALYSIS SUMMARY (LANCZOS Mode 2 DPB Shift eigen = -1.00E+00)

LARGEST OFF-DIAGONAL GENERALIZED MASS TERM -2.7E-13 (Vecs renormed to 1.0 for gen masses)

. . . 2

NUMBER OF OFF DIAGONAL GENERALIZED MASS

TERMS FAILING CRITERION OF 1.0E-04. 0

REAL EIGENVALUES

MODE	EXTRACTION	EIGENVALUE	RADIANS	CYCLES	GENERALIZED	GENERALIZED
NUMBER	ORDER				MASS	STIFFNESS
1	1	3.895211E+03	6.241163E+01	9.933119E+00	1.000000E+00	3.895211E+03
2	2	7.011163E+03	8.373269E+01	1.332647E+01	1.000000E+00	7.011163E+03

>> LINK 4 END

>> LINK 6 BEGIN

OUTPUT4 file on unit (1) CG_LTM (2) IF_LTM (3) MR	21 has been : : : :	6 rows and 18 rows and 1	8 cols This 8 cols This	will contain the matrices: is MYSTRAN matrix CG_LTM is MYSTRAN matrix IF_LTM is MYSTRAN matrix MRRcb
OUTPUT4 file on unit	22 has been	created as: CB-EXAMPLE	-12-b.OP2 and	will contain the matrices:
(1) KRRGN	:	10 rows and 1	0 cols This	is MYSTRAN matrix KXX
(2) RBMCG	:	6 rows and	6 cols This	is MYSTRAN matrix MCG
(3) MRRGN	:	10 rows and 1	0 cols This	is MYSTRAN matrix MXX
(4) RBRCG	:	8 rows and	6 cols This	is MYSTRAN matrix TR6

>> LINK 6 END

>> LINK 5 BEGIN

>> LINK 5 END

>> LINK 9 BEGIN

		S D -1.412939E-05 D 1.051041E-05 C B	(in glo T2 1.622140E-05 -9.465944E-06 E L E M E N '	8.242222E-05 -3.182887E-06	e system at ead R1 5.883709E-07 -1.086181E-07 E E R I N G	eh grid) R2 -1.667433E-06 -9.450720E-07		
Element		oment End A	Bend-Mor Plane 1	ment End B	- She		Axial	Torque
ID 211	Plane 1 2.091876E-01	7.894539E-01				Plane 2	Force 6.266800E-01	9.672846E-03
		-1.008960E-02						
	C B E L E M	ENTSTR		IN LOCA	Y P E B A R	ENT COO	RDINATE	SYSTEM
Element TD	SA1	SA2	SA3	SA4	Axial	SA-Max	SA-Min	M.ST
ID	SB1	SB2	SB3	SB4	Stress	SB-Max	SB-Min	M.SC
201		0.000000E+00 0.000000E+00				-2.748670E+00 -2.748670E+00		
OUTPUT FO	OR CRAIG-BAMPTO	ON DOF 2	OF 18					
			СВ		CEMENT			
	an in an	- m1			e system at eac		7.2	
	GRID COOF		T2	Т3	R1	R2	R3	
		O -7.600290E-05 O -5.990878E-05						
		СВ	ELEMEN' FOR	r engin: Element		FORCE O AR	т м	
Element		oment End A		ment End B	- She		Axial	Torque
ID 211	Plane 1	Plane 2 -2.875040E+00	Plane 1			Plane 2		E 22202EE 02
		2.992877E+00						
	C B E L E M	ENT STR			AL ELEMI YPE BAR	ENT COO	RDINATE	SYSTEM
Element	SA1	SA2	SA3	SA4	Axial	SA-Max	SA-Min	M.ST
ID	SB1	SB2	SB3	SB4	Stress	SB-Max	SB-Min	M.SC
201		0.000000E+00 0.000000E+00			7.582667E+00		7.582667E+00 7.582667E+00	

COORD T1

GRID

(; B	D	Τ	S	Р	ш	Α	C,	E	M	E	N	Τ.	O	Τ.	M	
(in	alob:	a l	CC	201	h-d	ina	a t e	, د	SVS	: t e	m	at		ach	ar	(bir	

(in global coordinate system at each grid)

R1 R2

R3

	SYS	
22	0	$.800145 \pm -05 -4.121798 \pm -05 -1.564393 \pm -04 -9.626456 \pm -07 -1.110028 \pm -06 -6.460267 \pm -08 -1.000000000000000000000000000000000000$
3.2	Ω	995439E-05 -3 154308E-05 -1 612090E-04 -1 821681E-06 -2 452135E-07 -1 609306E-08

T2 T3

CB ELEMENT ENGINEERING FORCE OTM

FOR ELEMENT TYPE BAR

Element	Bend-Mo	ment End A	Bend-Mc	ment End B	- Si	near -	Axial	Torque
ID	Plane 1	Plane 2	Plane 1	Plane 2	Plane 1	Plane 2	Force	
211 -	-1.820317E+00	1.437520E+00	3.876039E+00	-2.243264E+00	-8.055864E-02	5.205414E-02	-9.532175E-01	2.666968E-03
212 -	-1 894852E+00	-1 496438E+00	3 030538E+00	2 356742E+00	-6 965554E-02	-5 449220E-02	-9 040385E-01	-2 666968E-03

CB ELEMENT STRESS OTM IN LOCAL ELEMENT COORDINATE SYSTEM FOR ELEMENT TYPE BAR

Element	SA1	SA2	SA3	SA4	Axial	SA-Max	SA-Min	M.ST
ID	SB1	SB2	SB3	SB4	Stress	SB-Max	SB-Min	M.SC

201 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 -3.791334E+00 -3.791334E+00 -3.791334E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 -3.791334E+00 -3.791334E+00

(output for the $4^{th} - 18^{th}$ CB DOF deleted)

TPUT FOR CE	RAIG-BAMP	TON 2	ACCEL OTM COL	1 OF	10			
				СВ	ACCELE	RATION	ОТМ	
					bal coordinate	-		
GR	RID C	OORD	Т1	T2	T3	R1	R2	R3
GI.	_	SYS		1.2	13	1(1	102	113
	32	0	2.199853E-02	-2.028331E-02	-1.681579E-02	-3.363157E-04	8.006145E-03	5.254334E-04
JTPUT FOR C	RAIG-BAM	PTON	ACCEL OTM CO	L 2 OF	10			
				СВ	ACCELE	RATION	ОТМ	
				(in glo	bal coordinate	e system at eac	ch grid)	
GR	RID C	OORD	T1	T2	Т3	R1	R2	R3
		SYS						
	32	0	0.00000E+00	0.00000E+00	-1.000000E+00	-2.000000E-02	0.000000E+00	0.00000E+0
				C B (in glo	A C C E L E	RATION system at eac	OTM	
GR		OORD	T1	T2	Т3	R1	R2	R3
		SYS						
	32	0	0.00000E+00	0.000000E+00	5.000000E-01	1.000000E-02	0.00000E+00	0.000000E+00
						•		
						•		
						•		
						•		
						•		
						•		
				(outnut	for the 4 th – 10 th A	Accel OTM colum	ns deleted)	

$\begin{smallmatrix} M \end{smallmatrix} O \begin{smallmatrix} D \end{smallmatrix} A \begin{smallmatrix} L \end{smallmatrix} \quad \begin{smallmatrix} P \end{smallmatrix} A \begin{smallmatrix} R \end{smallmatrix} T \begin{smallmatrix} I \end{smallmatrix} C \begin{smallmatrix} I \end{smallmatrix} P \begin{smallmatrix} A \end{smallmatrix} T \begin{smallmatrix} I \end{smallmatrix} O \begin{smallmatrix} N \end{smallmatrix} \quad \begin{smallmatrix} F \end{smallmatrix} A \end{smallmatrix} C \begin{smallmatrix} T \end{smallmatrix} O \end{smallmatrix} R \begin{smallmatrix} S \end{smallmatrix}$

(dimensionless, in coordinate sys 0)

MODE T1 T2 T3 R1 R2 R3

1 1.227574E-01 -1.758352E+00 8.791759E-01 1.259087E+00 6.535370E-02 -5.341716E-01 6.061630E-01 1.829524E-01 -9.147622E-02 -4.910542E-01 -1.366914E-01 -4.626569E-01

EFFECTIVE MODAL MASSES OR WEIGHTS

(in coordinate system 0)

Units are same as units for mass input in the Bulk Data Deck

MODE T1 T2 T3 R1 R2 R3 NUM

1 6.532677E+01 4.179096E+01 4.694259E+02 3.836785E+05 3.287406E+04 3.611917E+02 2 7.948285E+00 9.016521E-01 1.363070E+01 1.674257E+00 6.082279E+05 4.781873E+05

Sum all modes: 7.327506E+01 4.269261E+01 4.830566E+02 3.836801E+05 6.411019E+05 4.785485E+05
Total model mass: 9.325238E+02 9.325238E+02 4.105260E+06 4.094237E+06 8.139951E+06
Modes % of total mass*: 7.86 4.58 51.80 9.35 15.66 5.88

>> LINK 9 END

>> MYSTRAN END : 10/30/2006 at 18: 3:31.562

^{*}If all modes are calculated the % of total mass should be 100% of the free mass (i.e. not counting mass at constrained DOF's).

Percentages are only printed for components that have finite model mass.

10.6.2 OUTPUT4 matrices written to CB-EXAMPLE-12-b.OP1 and OP2

(OUTPUT4 matrices requested in Exec Control)

OUTPUT4 matrices requested in Exec Control to be written to file CB-EXAMPLE-12-b.OP1 (on unit 21)

(note: only 1st 5 columns written here for the sake of clarity)

	CG_LTM	NCOLS =	18	NROWS =	6	FORM =	2	PREC	=	2	
	1	2		3			4		5		
1	-6.65821789802521E-05	1.295621596	12018E-17	-6.478107980	60089E-18	-1.2954999	999999E-03	6.4776	687219	93621E-05	
2	-2.99785601343913E-05	-1.961355534	18977E-04	1.041930522	13477E-04	1.3935677	7670951E-03	-6.7085	806173	39371E-05	
3	-4.35697030582909E-05	-2.591000000	00000E-03	1.307750551	00798E-03	1.2955000	0000001E-03	6.1983	3987296	56866E-04	
4	-3.33844454038618E-04	-2.000000000	00000E-02	9.807436728	54175E-03	1.0000000	0000000E-02	-5.0706	405912	29018E-03	
5	8.13687816036514E-03	1.478851763	27023E-16	-7.394258816	35114E-17	-7.7845715	9844592E-17	-5.9315	609198	81744E-03	
6	5.63393757592496E-04	8.551305822	30051E-17	-4.275652911	15026E-17	9.9999999	9999996E-03	2.8169	687879	96245E-04	
	IF_LTM	NCOLS =	18	NROWS =	8	FORM =	2	PREC	=	2	
	1	2		3			4		5		
1	6.02957424769077E-01	7.320390594		-3.660195297			6170908E-02			19424E-02	
2	7.32039059471623E-02	4.254691072		-2.121633571			7113459E+00			28050E-01	
3	-3.66019529735811E-02	-2.121633571	13457E+00	1.072240715	82968E+00	1.1093980	3556729E+00	5.5332	2916064	40251E-02	
4	3.35492666170908E-02	-2.218796071	13459E+00	1.109398035	56729E+00	3.2641846	4157067E+00	1.7536	650859	93570E-02	
5	-7.19015457719424E-02	-1.106658321	28050E-01	5.533291606	40251E-02	1.7536650	8593570E-02	4.9648	3181209	94837E-01	
6	-6.65046890695409E-01	-7.320390594	71504E-02	3.660195297	35752E-02	-1.2416338	3728600E+00	1.3230	73476	77584E-01	
7	-1.34708893096271E-01	-2.218796071	13459E+00	1.109398035	56729E+00	2.5414653	5101691E-01	3.0570	071002	26811E-02	
8	6.78737140960850E-02	-1.838697380	75211E-01	9.193486903	76054E-02	8.1149884	2422746E-02	2.6200	699719	96796E-02	
	100	37G07 G	0	ATD OLIG	0	7071	1	2226		0	
	MR	NCOLS =	8	NROWS =	8	FORM =	1	PREC	=	2	
1	I 6 000574047600777 01	7 200200504	716000 00	3 660105007	250115 00	2 2540266	4 :6170000E 00	7 1001	5	104045 00	
Ţ	6.02957424769077E-01	7.320390594		-3.660195297			6170908E-02			19424E-02	• • • • • • •
2	7.32039059471623E-02	4.254691072		-2.121633571			7113459E+00			28050E-01	• • • • • •
3	-3.66019529735811E-02	-2.121633571		1.072240715			3556729E+00			40251E-02	• • • • • • •
4	3.35492666170908E-02	-2.218796071		1.109398035			4157067E+00			93570E-02	• • • • • • •
5	-7.19015457719424E-02	-1.106658321		5.533291606			8593570E-02			94837E-01	• • • • • • •
6	-6.65046890695409E-01	-7.320390594		3.660195297			3728600E+00			77584E-01	• • • • • • •
7	-1.34708893096271E-01	-2.218796071		1.109398035			5101691E-01			26811E-02	• • • • • • •
8	6.78737140960850E-02	-1.838697380	75211E-01	9.193486903	76054E-02	8.1149884	2422746E-02	2.6200	699719	96796E-02	

OUTPUT4 matrices requested in Exec Control to be written to file CB-EXAMPLE-12-b.OP2 (on unit 22)

(note: only 1st 5 columns written here the sake of clarity)

	KRRGN 1	NCOLS = 10	NROWS = 10	FORM = 1	PREC = 2
1 2 3 4 5 6 7 8 9	1.19504240447136E+03 -5.45696821063757E-12 2.72848410531878E-12 2.08011385893769E-11 5.97521202235677E+02 -1.19504240447137E+03 -2.98427949019242E-13 -5.97521202235677E+02 0.0000000000000000E+00 0.00000000000000	-3.63797880709171E-12 0.000000000000000E+00 0.000000000000000	1.81898940354586E-12 0.00000000000000E+00 0.00000000000000E+00 0.0000000000	1.54614099301398E-11 1.81898940354586E-12 -9.09494701772928E-13 -1.16415321826935E-10 -1.59161572810262E-12 -1.79397829924710E-10 -4.3178260966698E-10 1.36424205265939E-12 0.0000000000000000E+00 0.00000000000000	5.97521202235677E+02 0.000000000000000E+00 9.43778388773353E-12 2.98760601117838E+025.97521202235685E+022.76401124210679E-122.98760601117839E+02 0.000000000000000E+00 0.000000000000000E+00
	RBMCG	NCOLS = 6	NROWS = 6	FORM = 2	PREC = 2
1 2 3 4 5	1 2.41616914133782E+00 -3.30846461338297E-14 -6.52256026967279E-15 -1.35891298214119E-13 -3.92130772297605E-13 1.99662508748588E-12	2 -3.35287353436797E-14 2.41616914133786E+00 2.27734497926235E-14 7.81374964731185E-13 2.88435941797616E-13 4.26325641456060E-14	3 -6.52256026967279E-15 2.33146835171283E-14 2.41616914133783E+00 -1.24344978758018E-13 -6.75015598972095E-14 -3.62376795237651E-13	4 -1.34114941374719E-13 7.74491581978509E-13 -9.59232693276135E-14 4.56169135583651E+03 -4.09272615797818E-12 -1.36424205265939E-11	5 -3.97903932025656E-13 2.89102075612391E-137.10542735760100E-143.86535248253495E-12 4.53313153018053E+03 2.85598256559946E+01
	MRRGN	NCOLS = 10	NROWS = 10	FORM = 1	PREC = 2
1 2 3 4 5 6 7 8 9	1 6.02957424769077E-01 7.32039059471623E-02 -3.66019529735811E-02 3.35492666170908E-02 -7.19015457719424E-02 -6.65046890695409E-01 -1.34708893096271E-01 6.78737140960850E-02 1.22757372107055E-01 6.06162990294928E-01	2 7.32039059471622E-02 4.25469107253153E+00 -2.12163357113457E+00 -2.21879607113459E+00 -1.10665832128050E-01 -7.32039059471504E-02 -2.21879607113459E+00 -1.83869738075211E-01 -1.75835189695839E+00 1.82952442095713E-01	3 -3.66019529735811E-02 -2.12163357113457E+00 1.07224071582968E+00 1.10939803556729E+00 5.53329160640251E-02 3.66019529735752E-02 1.10939803556729E+00 9.19348690376054E-02 8.79175948479194E-01 -9.14762210478567E-02	4 3.35492666170908E-02 -2.21879607113459E+00 1.10939803556729E+00 3.26418464157067E+00 1.75366508593570E-02 -1.24163383728600E+00 2.54146535101691E-01 8.11498842422746E-02 1.25908689725916E+00 -4.91054200271590E-01	5 -7.19015457719424E-021.10665832128050E-01 5.53329160640251E-02 1.75366508593570E-02 4.96481812094837E-01 1.32307347677584E-01 3.05700710026811E-02 2.62006997196796E-02 6.53537005701318E-021.36691428775775E-01
1 2 3 4 5 6 7 8	RBRCG 1 1.000000000000000000000000000000000	NCOLS = 6 2 0.0000000000000000E+00 1.000000000000000E+00 0.000000000000000E+00 0.0000000000	NROWS = 8 0.0000000000000000E+00 0.0000000000000	FORM = 2 0.0000000000000000E+00 -5.37849392786371E+01 -5.000000000000000E+01 -3.78493927863709E+00 -5.000000000000000E+01 0.000000000000000E+00 -3.78493927863709E+00 -5.000000000000000E+01	PREC = 2 5 5.37849392786371E+01 0.000000000000000E+00 0.0000000000000000E+005.000000000000000E+01 3.78493927863709E+00 0.000000000000000E+01 5.000000000000000E+01

10.6.3 Displ and Element force/stress OTM's written to CB-EXAMPLE-12-b.OP8 and OP9

(OTM's requested in Case Control)

CB-EXAMPLE-12-b.OP8 binary file of element force/stress OTM's requested in Case Control

(note: only 1st 5 columns written here the sake of clarity)

	OTM_ELFE 1	NCOLS = 18	NROWS = 16	FORM = 2	PREC = 2
1	2.09187572390564E-01	3.64063384390388E+00	-1.82031692195194E+00	-1.84227921264778E+00	-9.14925412689932E-01
2	7.89453912890167E-01	-2.87503976462738E+00	1.43751988231369E+00	1.92080844772306E+00	-1.26234542491864E-01
3	1.51560714339846E+00	-7.75207867487571E+00	3.87603933743785E+00	3.62690741509324E+00	1.45527637571713E+00
4	-1.43934432738336E+00	4.48652751792572E+00	-2.24326375896286E+00	-2.73874759882899E+00	2.35906653084923E-01
5	-1.84755627546901E-02	1.61117285562758E-01	-8.05586427813792E-02	-7.73459790410093E-02	-3.35197151472623E-02
6	3.15199669918811E-02	-1.04108282913086E-01	5.20541414565432E-02	6.58960735567147E-02	-5.12144990278700E-03
7	6.26679968599842E-01	1.90643492900070E+00	-9.53217464500349E-01	-1.19040949990613E-01	-1.14791218537626E-01
8	9.67284596743351E-03	-5.33393540270422E-03	2.66696770135211E-03	-5.34876839175438E-02	8.35971431688627E-04
9	-1.13315069892136E-01	3.78970456518829E+00	-1.89485228259414E+00	-1.26147862482940E+00	-9.55864075040792E-01
10	-1.00896004659258E-02	2.99287680850590E+00	-1.49643840425295E+00	-4.03697533588189E+00	-1.41398274167766E-02
11	-1.72540058669802E+00	-6.06107677196644E+00	3.03053838598322E+00	2.53928832803047E+00	1.96715396237338E+00
12	-6.16614847670031E-02	-4.71348398353008E+00	2.35674199176504E+00	6.82365970711492E+00	3.39064169416761E-02
13	2.27983320157212E-02	1.39311085669760E-01	-6.96555428348799E-02	-5.37509617215390E-02	-4.13377175157231E-02
14	7.29336582157196E-04	1.08984399486375E-01	-5.44921997431877E-02	-1.53592573737906E-01	-6.79476503928156E-04
15	-2.95361107284698E-01	1.80807707871691E+00	-9.04038539358453E-01	-1.95832712226347E+00	3.00896480121837E-03
16	-4.72042770150405E-03	5.33393540270377E-03	-2.66696770135189E-03	-1.12160973347287E-01	-3.69369770142806E-03
	OFFICE CERTIFICATION OF THE CE	100	NID OLIG		
	OTM_STRE	NCOLS = 18	NROWS = 18	FORM = 2	PREC = 2
	1	2	3	4	5
1	1 0.0000000000000E+00	2 0.0000000000000E+00	3 0.000000000000E+00	4 0.0000000000000E+00	5 0.00000000000000E+00
2	1 0.000000000000000E+00 0.00000000000000E+00	2 0.00000000000000E+00 0.0000000000000E+00	3 0.000000000000000E+00 0.00000000000000E+00	4 0.00000000000000E+00 0.0000000000000E+00	5 0.000000000000000E+00 0.00000000000000E+00
2	1 0.000000000000000E+00 0.00000000000000E+00 0.0000000000	2 0.00000000000000E+00 0.00000000000000E+00 0.0000000000	3 0.000000000000000E+00 0.00000000000000E+00 0.0000000000	4 0.00000000000000E+00 0.00000000000000E+00 0.0000000000	5 0.00000000000000E+00 0.00000000000000E+00
2 3 4	1 0.00000000000000E+00 0.00000000000000E+00 0.0000000000	2 0.00000000000000E+00 0.00000000000000E+00 0.0000000000	3 0.00000000000000E+00 0.00000000000000E+00 0.0000000000	4 0.00000000000000E+00 0.00000000000000E+00 0.0000000000	5 0.000000000000000E+00 0.00000000000000E+00 0.00000000000000E+00
2 3 4 5	1 0.000000000000000E+00 0.000000000000000	2 0.0000000000000000000000000000 0.000000	3 0.000000000000000E+00 0.000000000000000	4 0.000000000000000E+00 0.000000000000000	5 0.00000000000000000000000000000000000
2 3 4 5 6	1 0.0000000000000000E+00 0.00000000000000	2 0.00000000000000000000000000000 0.000000	3 0.000000000000000E+00 0.000000000000000	4 0.0000000000000000000000000000 0.000000	5 0.00000000000000000000000000000000000
2 3 4 5 6 7	1 0.0000000000000000E+00 0.00000000000000	2 0.0000000000000000000000000000 0.000000	3 0.0000000000000000000000000000 0.000000	4 0.00000000000000000000000000000 0.000000	5 0.00000000000000000000000000000000000
2 3 4 5 6 7 8	1 0.00000000000000000000000000000000000	2 0.00000000000000000000000000000000000	3 0.00000000000000000000000000000000000	4 0.00000000000000000000000000000000000	5 0.00000000000000000000000000000000000
2 3 4 5 6 7 8 9	1 0.00000000000000000000000000000000000	2 0.00000000000000000000000000000000000	3 0.00000000000000000000000000000000000	4 0.00000000000000000000000000000000000	5 0.0000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00 4.30045958649968E-01 4.30045958649968E-011.0000000000000000E+00 0.0000000000000000E+00
2 3 4 5 6 7 8 9	1 0.00000000000000000000000000000000000	2 0.00000000000000000000000000000000000	3 0.00000000000000000000000000000000000	4 0.00000000000000000000000000000000000	5 0.00000000000000000000000000000000000
2 3 4 5 6 7 8 9	1 0.00000000000000000000000000000000000	2 0.00000000000000000000000000000000000	3 0.00000000000000000000000000000000000	4 0.00000000000000000000000000000000000	5 0.00000000000000000000000000000000000
2 3 4 5 6 7 8 9	1 0.00000000000000000000000000000000000	2 0.00000000000000000000000000000000000	3 0.00000000000000000000000000000000000	4 0.00000000000000000000000000000000000	5 0.00000000000000000000000000000000000
2 3 4 5 6 7 8 9 10 11 12 13	1 0.00000000000000000000000000000000000	2 0.00000000000000000000000000000000000	3 0.00000000000000000000000000000000000	4 0.00000000000000000000000000000000000	5 0.00000000000000000000000000000000000
2 3 4 5 6 7 8 9 10 11 12 13 14	1 0.00000000000000000000000000000000000	2 0.00000000000000000000000000000000000	3 0.00000000000000000000000000000000000	4 0.00000000000000000000000000000000000	5 0.00000000000000000000000000000000000
2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 0.00000000000000000000000000000000000	2 0.00000000000000000000000000000000000	3 0.00000000000000000000000000000000000	4 0.00000000000000000000000000000000000	5 0.00000000000000000000000000000000000
2 3 4 5 6 7 8 9 10 11 12 13 14	1 0.00000000000000000000000000000000000	2 0.00000000000000000000000000000000000	3 0.00000000000000000000000000000000000	4 0.00000000000000000000000000000000000	5 0.00000000000000000000000000000000000
2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 0.00000000000000000000000000000000000	2 0.00000000000000000000000000000000000	3 0.00000000000000000000000000000000000	4 0.00000000000000000000000000000000000	5 0.00000000000000000000000000000000000

CB-EXAMPLE-12-b.OT8 text file descriptor of rows in above binary file for element related OTM's

This text file describes the rows of the elem related OTM matrices written to unformatted file: CB-EXAMPLE-12-b.OP8

The description for each of the matrices has the headers:

ROW : row number in the individual OTM described

DESCRIPTION: what OTM is this
TYPE : element type
EID : element ID

Then, for the element nodal force OTM:

GRID : grid number of the element that the OTM is for

COMP : displacement component number (1,2,3 translations and 4,5,6 rotations)

and for element engineering force and element stress OTMs:

ITEM : element force or stress item (axial force, torque, etc)

The number of rows for each OTM depends on the output requests, by the user, in Case Control

The number of cols for each OTM depends on the number of support DOFs (NDOFR) and the number of eigenvecors (NVEC) where:

NDOFR = 8 NVEC = 2

This text file has descriptions for the following element related OTMs from CB-EXAMPLE-12-b.OP8

Element engr force OTM (matrix OTM_ELFE) with 2*NDOFR + NVEC = 18 cols Element stress OTM (matrix OTM_STRE) with 2*NDOFR + NVEC = 18 cols

Explanation of rows of 16 row by 18 col matrix OTM_ELFE

ROW	DESCRIPTION		1	TYPE EID		ITEM			
1	Element	engineering	force	BAR	211	Mla: Mom Planel EndA			
2	Element	engineering	force	BAR	211	M1b: Mom Plane2 EndA			
3	Element	engineering	force	BAR	211	M2a: Mom Planel EndB			
4	Element	engineering	force	BAR	211	M2b: Mom Plane2 EndB			
5	Element	engineering	force	BAR	211	V1 : Shear Planel			
6	Element	engineering	force	BAR	211	V2 : Shear Plane2			
7	Element	engineering	force	BAR	211	FX : Axial force			
8	Element	engineering	force	BAR	211	T : Torque			
9	Element	engineering	force	BAR	212	Mla: Mom Planel EndA			
10	Element	engineering	force	BAR	212	M1b: Mom Plane2 EndA			
11	Element	engineering	force	BAR	212	M2a: Mom Plane1 EndB			
12	Element	engineering	force	BAR	212	M2b: Mom Plane2 EndB			
13	Element	engineering	force	BAR	212	V1 : Shear Plane1			
14	Element	engineering	force	BAR	212	V2 : Shear Plane2			
15	Element	engineering	force	BAR	212	FX : Axial force			
16	Element	engineering	force	BAR	212	T : Torque			

Explanation of rows of			18 row by	18 col matrix OTM_STRE		
ROW	OW DESCRIPTION		TYPE	EID	ITEM	
1	Element	stress	BAR	201	SA1: Stress Pt1 EndA	
2	Element	stress	BAR	201	SA2: Stress Pt2 EndA	
3	Element	stress	BAR	201	SA3: Stress Pt3 EndA	
4	Element	stress	BAR	201	SA4: Stress Pt4 EndA	
5	Element	stress	BAR	201	Axial Stress	
6	Element	stress	BAR	201	SA-Max	
7	Element	stress	BAR	201	SA-Min	
8	Element	stress	BAR	201	MS-Tension	
9	Element	stress	BAR	201	Torsional Stress	
10	Element	stress	BAR	201	SB1: Stress Pt1 EndB	
11	Element	stress	BAR	201	SB2: Stress Pt2 EndB	
12	Element	stress	BAR	201	SB3: Stress Pt3 EndB	
13	Element	stress	BAR	201	SB4: Stress Pt4 EndB	
14	Element	stress	BAR	201	Axial stress	
15	Element	stress	BAR	201	SB-Max	
16	Element	stress	BAR	201	SB-Min	
17	Element	stress	BAR	201	MS-Compression	
18	Element	stress	BAR	201	MS-Torsion	

CB-EXAMPLE-12-b.OP9 binary file of displacement OTM's requested in Case Control

(note: only 1st 5 columns written here the sake of clarity)

OTM_ACCE	NCOLS =	10	NROWS =	6	FORM =	2	PREC	=	2	
1	2		3			4		5		
2.19985250269592E-02	0.0000000000	00000E+00	0.000000000	00000E+00	-5.000000	00000004E-01	1.0999	9262513	34795E-02	
-2.02833087802606E-02	0.0000000000	00000E+00	0.000000000	00000E+00	5.000000	00000004E-01	-1.0143	1654390	01302E-02	
-1.68157865913898E-02	-1.0000000000	00000E+00	5.000000000	00000E-01	5.000000	00000005E-01	2.4159	9210670	04306E-01	
-3.36315731827796E-04	-2.0000000000	00000E-02	1.000000000	00000E-02	1.000000	00000001E-02	-5.1683	1578659	91390E-03	
8.00614495648658E-03	0.0000000000	00000E+00	0.000000000	00000E+00	0.000000	0000000E+00	-5.9969	9275217	75671E-03	
5.25433423070610E-04	0.0000000000	00000E+00	0.000000000	00000E+00	9.999999	99999992E-03	2.627	1671153	35305E-04	
OTM_DISP	NCOLS =	18	NROWS =	12	FORM =	2	PREC	=	2	
1	2		3			4		5		
-1.41293911043985E-05	-7.600290259	12968E-05	3.800145129	56484E-05	1.294926	35368416E-04	3.145	7159064	43487E-06	
1.62214021120513E-05	8.2435951963	33505E-05	-4.121797598	16752E-05	-1.301618	32591346E-04	-3.529	6323151	17632E-06	
8.24222187730972E-05	3.128786633	01563E-04	-1.564393316	50781E-04	-2.406343	84994669E-04	-1.6899	9361607	70736E-05	
5.88370868696758E-07	1.9252911998	83460E-06	-9.626455999	17302E-07	-2.070191	01770705E-06	1.8893	1653858	30397E-07	
-1.66743323917105E-06	2.220055011	68008E-06	-1.110027505	84004E-06	-1.149710	54599053E-06	-8.884	5414457	73320E-08	
5.12515138397389E-07	1.292053436	24621E-07	-6.460267181	23106E-08	-1.075891	30445167E-06	-9.6172	2093762	23318E-08	
1.05104109813473E-05	-5.990877622	60462E-05	2.995438811	30231E-05	6.532339	61326989E-05	-1.5783	1354001	l1406E-06	
-9.46594436701425E-06	6.308616777	43807E-05	-3.154308388	71904E-05	-6.552179	77160166E-05	1.3868	8167025	55135E-06	
-3.18288681491121E-06	3.224179256	11894E-04	-1.612089628	05947E-04	-1.960811	26486432E-04	-3.6162	2793126	53323E-05	
-1.08618067423320E-07	3.643362333	82231E-06	-1.821681166	91115E-06	-2.639867	85628832E-06	-3.2412	2641908	35498E-08	
-9.45071958677177E-07	4.904270176	53186E-07	-2.452135088	26593E-07	-2.214496	64764883E-07	1.3650	0229318	39118E-07	
2.10600905814006E-07	3.218612054	26993E-08	-1.609306027	13497E-08	-6.098526	83088454E-07	-3.8228	8558759	96693E-08	
	1 2.19985250269592E-02 -2.02833087802606E-02 -1.68157865913898E-02 -3.36315731827796E-04 8.00614495648658E-03 5.25433423070610E-04 OTM_DISP 1 -1.41293911043985E-05 1.62214021120513E-05 8.24222187730972E-05 5.88370868696758E-07 -1.66743323917105E-06 5.12515138397389E-07 1.05104109813473E-05 -9.46594436701425E-06 -3.18288681491121E-06 -1.08618067423320E-07 -9.45071958677177E-07	1 2 2.19985250269592E-02 0.0000000000000000000000000000000000	1 2 2.19985250269592E-02 0.00000000000000E+00 -2.02833087802606E-02 0.00000000000000E+00 -1.68157865913898E-02 -1.00000000000000E+00 -3.36315731827796E-04 -2.00000000000000E+00 8.00614495648658E-03 0.0000000000000E+00 5.25433423070610E-04 0.00000000000000E+00 OTM_DISP NCOLS = 18 1 2 -1.41293911043985E-05 7.60029025912968E-05 8.24222187730972E-05 8.24359519633505E-05 8.24222187730972E-05 3.12878663301563E-04 5.88370868696758E-07 1.92529119983460E-06 5.12515138397389E-07 1.29205343624621E-07 1.05104109813473E-05 -2.22005501168008E-06 5.12515138397389E-07 1.29205343624621E-07 1.05104109813473E-05 -5.99087762260462E-05 -9.46594436701425E-06 6.30861677743807E-05 -3.18288681491121E-06 3.22417925611894E-04 -1.08618067423320E-07 4.90427017653186E-07	1 2 3 2.19985250269592E-02 0.0000000000000E+00 0.000000000 -2.02833087802606E-02 0.0000000000000E+00 0.000000000 -1.68157865913898E-02 -1.0000000000000E+00 5.000000000 -3.36315731827796E-04 -2.0000000000000E+00 5.000000000 8.00614495648658E-03 0.00000000000E+00 0.000000000 5.25433423070610E-04 0.000000000000E+00 0.000000000 OTM_DISP NCOLS = 18 NROWS = 1 2 3 -1.41293911043985E-05 -7.60029025912968E-05 3.800145129 1.62214021120513E-05 8.24359519633505E-05 -4.121797598 8.24222187730972E-05 3.12878663301563E-04 -1.564393316 5.88370868696758E-07 1.92529119983460E-06 -9.626455999 -1.66743323917105E-06 2.22005501168008E-06 -1.110027505 5.12515138397389E-07 1.29205343624621E-07 -6.460267181 1.05104109813473E-05 -5.99087762260462E-05 2.995438811 -9.46594436701425E-06 6.30861677743807E-05 -3.154308388 -3.18288681491121E-06 3.22417925611894E-04 -1.612089628 -1.08618067423320E-07 3.64336233382231E-06 -1.821681166 -9.45071958677177E-07 4.90427017653186E-07 -2.452135088	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 2.19985250269592E-02 0.000000000000E+00 0.00000000000E+00 -5.000000000000E+01 1.09992625134795E-02 -2.02833087802606E-02 0.000000000000E+00 0.00000000000E+00 5.000000000000E+01 -1.01416543901302E-02 -1.68157865913898E-02 -1.0000000000000E+00 5.00000000000E+01 5.00000000000E+01 2.41592106704306E-01 -3.36315731827796E-04 -2.000000000000E+00 5.000000000000E+02 1.000000000000E+02 -5.16815786591390E-03 8.00614495648658E-03 0.000000000000E+00 0.00000000000E+00 0.0000000000

CB-EXAMPLE-12-b.OT9 text file descriptor of rows in above binary file for grid related OTM's

This text file describes the rows of the grid related OTM matrices written to unformatted file: CB-EXAMPLE-12-b.OP9

The description for each of the matrices has the headers:

ROW : row number in the individual OTM described

DESCRIPTION: what OTM is this

GRID : grid number for this row of the OTM

COMP : displacement component number (1,2,3 translations and 4,5,6 rotations)

The number of rows for each OTM depends on the output requests, by the user, in Case Control

The number of cols for each OTM depends on the number of support DOFs (NDOFR) and the number of eigenvecors (NVEC) where:

NDOFR = 8 NVEC = 2

This text file has descriptions for the following grid relatad OTMs from CB-EXAMPLE-12-b.OP9

Acceleration OTM (matrix OTM_ACCE) with NDOFR + NVEC = 10 cols Displacement OTM (matrix OTM_DISP) with 2*NDOFR + NVEC = 18 cols

Explanation of rows of 6 row by 10 col matrix OTM ACCE

ROW	DESCRIPTION	GRID	COMP
1	Acceleration	32	1
2	Acceleration	32	2
3	Acceleration	32	3
4	Acceleration	32	4
5	Acceleration	32	5
6	Acceleration	32	6

Explanation of rows of 12 row by 18 col matrix OTM_DISP

ROW	DESCRIPTION	GRID	COMP
1	Displacement	22	1
2	Displacement	22	2
3	Displacement	22	3
4	Displacement	22	4
5	Displacement	22	5
6	Displacement	22	6
7	Displacement	32	1
8	Displacement	32	2
9	Displacement	32	3
10	Displacement	32	4
11	Displacement	32	5
12	Displacement	32	6