BSM206 Mantiksal Devre Tasarımı

Hafta – Fonksiyon İfade Şekilleri ve Diğer Lojik İşlemler

Dr. Öğr. Üyesi Onur ÇAKIRGÖZ onurcakirgoz@bartin.edu.tr

ANAHAT

- Kanonik ve Standart Biçimler
 - Kanonik Biçimde Gösterim
 - Minterimlerin Toplamı
 - Maksterimlerin Çarpımı
 - Kanonik Yapılar Arasında Dönüşüm
 - Standart Biçimde Gösterim
 - Çarpımların Toplamı
 - Toplamların Çarpımı
- Standart Olmayan Biçim
- Diğer Lojik İşlemler

- İkili değişkenler, örneğin x, normal (x) veya tümleyen formunda (x') bulunurlar.
- VE işlemiyle birleştirilmiş x ve y ikili değişkenlerini düşünelim. Her bir değişken iki formda da bulunabileceğinden, olası dört kombinasyon vardır:
 - x'y'
 - x'y
 - xy'
 - xy
- Bu dört <u>VE terimi</u> minterim veya standart çarpım diye adlandırılır.
- Benzer şekilde, n adet değişken birleştirilerek 2ⁿ sayıda minterim elde edilebilir.

- Aşağıda 3 değişken için Minterim ve Maksterim tablosu yer almaktadır. Burada, 3 değişken altında, 0'dan 7'ye (0'dan 2ⁿ – 1'e kadar) ikili sayılar listelenmiştir.
- Tablodaki her bir minterim bu 3 değişkene VE işlemi uygulanarak elde edilir.

			М	interms	Maxte	erms
X	y	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

- Her bir minterimin belirli bir değişkene karşı düşen ikili biti
 0 ise değişken üs işareti alır, 1 ise üs işareti almaz.
- Her bir minterim için m_j şeklinde bir sembol kullanılmaktadır. Burada j, belirli bir minterime karşı düşen ikili sayının onlu eşdeğeridir.
- Benzer şekilde, üslü veya üssüz değişkenlere VEYA işlemi uygulanmasıyla maksterim veya standart toplam elde edilir.
- Her bir maksterimin belirli bir değişkene karşı düşen ikili biti 0 ise değişken üssüz, 1 ise üslü olur.
- Her bir maksterim için M_j şeklinde bir sembol kullanılmaktadır.

- Bir Boole fonksiyonu, verilen bir doğruluk tablosundan, <u>fonksiyonun 1 olduğu minterimlere VEYA</u> işlemi uygulanarak elde edilir.
- Örneğin, aşağıdaki tabloda f₁ fonksiyonunun 1 olduğu satırlar bulunur. 001, 100 ve 111 kombinasyonlarına karşılık düşen minterimler sırasıyla x'y'z, xy'z' ve xyz şeklindedir. Dolayısıyla,
- f₁ boole fonksiyonu:

$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$$

X	y	Z	Function f ₁
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- Boole cebrinin 1. önemli özelliği: Her boole fonksiyonu minterimlerin toplamı olarak ifade edilebilir. (toplam'la kastedilen terimlerin VEYA'lanmasıdır.)
- Şimdi bir boole fonksiyonunun <u>tümleyenini</u> göz önüne alalım. Bu amaçla, doğruluk tablosunda fonksiyonunun 0 olduğu her bir kombinasyona ilişkin <u>minterimler</u> VEYA'lanır:

$$f_1' = x'y'z' + x'yz' + x'yz + xy'z + xyz' -$$

f₁' fonksiyonunun tümleyeni alınırsa
 f₁ fonksiyonu elde edilir:

$$f_1 = (x + y + z)(x + y' + z)(x' + y + z')(x' + y' + z)$$

= $M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$

X	y	Z	Function f ₁
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- Boole cebrinin 2. önemli özelliği: Her boole fonksiyonu maksterimlerin çarpımı olarak ifade edilebilir. (çarpım'la kastedilen terimlerin VE'lenmesidir.)
- Maksterim çarpımlarının doğruluk tablosundan doğrudan elde edilme yöntemi: Doğruluk tablosunda fonksiyonunun 0 olduğu her bir kombinasyona ilişkin maksterimler VE'lenir.
- Kanonik Biçimde Gösterim: Boole fonksiyonlarının minterimlerin toplamı veya maksterimlerin çarpımı olarak ifade edilmesidir.
- Bir önceki örnekte:

$$f_1 = m_1 + m_4 + m_7 = M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$$

Minterimlerin Toplamı

- Her boole fonksiyonu minterimlerin toplamı olarak ifade edilebilir.
- Bazı durumlarda boole fonksiyonlarını minterimlerin toplamı şeklinde ifade etmek uygundur.
- Eğer fonksiyon bu formda değilse ifadeyi bu biçime getirmek için eksik olan terimler eklenerek fonksiyon minterimlerin toplamı biçimine getirilir.
- Bunu yapmak için terimlerin her birinin tüm değişkenleri içerip içermediğine bakılır.
- Değişkenlerden biri veya daha fazlası eksikse, örneğin x eksik bir değişken olsun, eksik olan terim (x + x') ile VE'lenir.

Minterimlerin Toplamı - Örnek

- Örnek: F = A + B'C boole fonksiyonunu minterimlerin toplamı şeklinde ifade edin.
- Çözüm: Fonksiyonun A, B ve C gibi üç değişkeni vardır. Birinci terim A'da iki değişken eksiktir. Dolayısıyla,

$$A = A(B + B') = AB + AB'$$

Olur. Burada hala C değişkeni eksiktir.

$$A = AB(C + C') + AB'(C + C')$$
$$= ABC + ABC' + AB'C + AB'C'$$

Fonksiyonun ikinci teriminde bir değişken eksiktir.

$$B'C = B'C(A + A') = AB'C + A'B'C$$

Tüm terimler birleştirilerek alttaki fonksiyon elde edilir:

$$F = ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C$$

Minterimlerin Toplamı – Örnek(Devam)

- Ancak AB'C terimi 2 kere görünmektedir. Bunlardan biri silinebilir.
- Minterimler sıraya sokulur ve aşağıdaki fonksiyon elde edilir:

$$F = A'B'C + AB'C' + AB'C + ABC' + ABC'$$

= $m_1 + m_4 + m_5 + m_6 + m_7$

 (Minterimlerin toplamı) biçimindeki boole fonksiyonu aşağıdaki gibi kısa biçimde gösterilebilir:

$$F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$$

Minterimlerin Toplamı

- Verilen bir Boole fonksiyonunu minterimlerin toplamı şeklinde oluşturmanın daha basit yolu vardır:
- Fonksiyonun doğruluk tablosunu doğrudan cebirsel ifadeden oluşturup, tablodan minterimleri bulmak.
- Örnek: Önceki örneği ele alalım:

$$F = A + B'C$$

• Çözüm: Doğruluk tablosunda, A = 1 olan kombinasyonlar ile BC = 01 olan kombinasyonlar için F sütunundaki karşılıklarına 1 konulur. F=1 olan kombinasyonlar minterimleri (1, 4, 5, 6, 7) vermektedir.

A	В	c	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Maksterimlerin Çarpımı

- Her boole fonksiyonu maksterimlerin çarpımı olarak ifade edilebilir.
- Boole fonksiyonlarını maksterimlerin çarpımı olarak ifade edebilmek için bunlar öncelikle <u>VEYA'lı terimler</u> haline getirilmelidir.
- Bunun için aşağıdaki dağılma kuralı uygulanır:

$$x + yz = (x + y)(x + z)$$

 Bundan sonra, her VEYA terimindeki eksik bir değişken için, örneğin x eksik bir değişken olsun, ifade xx' ile VEYA'lanır.

Maksterimlerin Çarpımı - Örnek

- Örnek: F = xy + x'z boole fonksiyonunu maksterimlerin çarpımı şeklinde ifade edin.
- Çözüm: Öncelikle, fonksiyonu VEYA'lı terimler haline getirmeliyiz. Bunun için dağılma kuralı uygulanır:

$$F = xy + x'z = (xy + x')(xy + z)$$
$$= (x + x')(y + x')(x + z)(y + z)$$
$$= (x' + y)(x + z)(y + z)$$

Her bir VEYA teriminde bir değişken eksiktir. Dolayısıyla,

$$x' + y = x' + y + zz' = (x' + y + z)(x' + y + z')$$

 $x + z = x + z + yy' = (x + y + z)(x + y' + z)$
 $y + z = y + z + xx' = (x + y + z)(x' + y + z)$

Maksterimlerin Çarpımı – Örnek(Devam)

Tüm terimler birleştirilip tekrarlayanlar çıkarılırsa:

$$F = (x + y + z)(x + y' + z)(x' + y + z)(x' + y + z')$$
$$= M_0 M_2 M_4 M_5$$

- Elde edilir.
- (Maksterimlerin Çarpımı) biçimindeki boole fonksiyonu aşağıdaki gibi kısa biçimde gösterilebilir:

$$F(x, y, z) = \prod (0, 2, 4, 5)$$

Kanonik Yapılar Arasında Dönüşüm

- Minterimlerin toplamı biçiminde ifade edilen bir fonksiyonun tümleyeni, orijinal fonksiyonda <u>bulunmayan</u> minterimlerin toplamına eşittir.
- Yani, boole fonksiyonu kendisini 1 yapan minterimlerin toplamı şeklinde ifade edilirken, fonksiyonun tümleyeni fonksiyonu 0 yapan minterimlerin toplamına eşittir.
- Örneğin, aşağıdaki fonksiyonu tümleyenini kullanarak kanonik olarak dönüştürün:

$$F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$$

Bu fonksiyonun tümleyeni şöyle bulunur:

$$F'(A, B, C) = \Sigma(0, 2, 3) = m_0 + m_2 + m_3$$

• F' nün tümleyenine DeMorgan kuralı uygulanırsa:

$$F = (m_0 + m_2 + m_3)' = m_0' \cdot m_2' \cdot m_3' = M_0 M_2 M_3 = \prod (0, 2, 3)$$

Kanonik Yapılar Arasında Dönüşüm

Önceki örnekteki son dönüştürme, aşağıdaki bağıntı sayesinde yapılmıştır:

$$m_j' = M_j$$

- Yani, j indisli maksterim aynı indisli minterimin tümleyenidir veya tam tersi de doğrudur.
- Kanonik Yapılar Arasında Genelleştirilmiş Dönüşüm Yöntemi:
 - Bir kanonik biçimden diğerine dönüşüm yapmak için önce Σ ve Π birbiriyle değiştirilir.
 - Yeni biçimde, orijinal biçimde olmayan sayılar yer alır.
- Eksik terimleri bulmak için; n, fonksiyondaki ikili değişken sayısı olmak üzere, toplam minterim ve maksterim sayısının 2ⁿ olduğu unutulmamalıdır.

Kanonik Yapılar Arasında Dönüşüm

- Boole fonksiyonları doğruluk tabloları ve kanonik dönüştürme yöntemleri kullanılarak cebirsel bir ifadeden => maksterimlerin çarpımına dönüştürülebilir.
- Örneğin, aşağıdaki boole fonksiyonunu ele alalım:

$$F = xy + x'z$$

- İlk olarak, doğruluk tablosu oluşturulur. F'nin 1 olması için,
 xy = 11 veya xz = 01 olmalıdır. Tüm bu kombinasyonlar
 bulunur ve F sütunundaki karşılıklarına 1 yazılır.
- Fonksiyonun minterimleri tablodan 1, 3, 6 ve 7 olarak bulunur: $F(x, y, z) = \Sigma(1, 3, 6, 7)$
- Geri kalanlar, yani F=0 olanlar ise maksterimlerdir. Dolayısıyla, F(x, y, z) = ∏(0, 2, 4, 5)

X	y	Z	F	
0	0	0	0	Minterms
0	0	1	1	
0	1	0	0	
0	1	1	1	X
1	0	0	0	X\\
1	0	1	0-//	
1	1	0	1 1/	Maxterms
1	1	1	1 1	

Standart Biçim (Standart Gösterim)

- Kanonik biçimlerde değişken sayısı eksik değildir.
- Çünkü, her minterim veya maksterim tanım gereği tümlenmiş veya tümlenmemiş bütün değişkenleri içerir.
- Boole fonksiyonlarını ifade etmenin bir diğer yolu standart biçimler'dir.
- Bu yapıda fonksiyonu oluşturan terimler 1, 2 veya daha çok sayıda değişken içerebilir. (Eksik değişken olabilir.)
- İki tür standart biçim vardır:
 - Çarpımların toplamı
 - Toplamların çarpımı

Standart Biçim (Standart Gösterim)

- Bir veya daha çok sayıdaki değişkenin VE'lenmesiyle oluşan Boole ifadeleri çarpım terimleri diye adlandırılır.
 Bu terimlerin VEYA'lanmasıyla Çarpımların Toplamı adı verilen yapı oluşur.
- Örnek bir fonksiyon (Çarpımların Toplamı):

$$F_1 = y' + xy + x'yz'$$

- F₁ fonksiyonu sırasıyla 1, 2 ve 3 değişkenden oluşan üç çarpım teriminin toplamından oluşur.
- Toplam bir VEYA işlemidir.
- İki-seviye gerçekleme:

Standart Biçim (Standart Gösterim)

- Bir veya daha çok sayıdaki değişkenin VEYA'lanmasıyla oluşan Boole ifadeleri toplam terimleri diye adlandırılır.
 Bu terimlerin VE'lenmesiyle toplamların çarpımı adı verilen yapı oluşur.
- Örnek bir fonksiyon (Toplamların Çarpımı):

$$F_2 = x(y' + z)(x' + y + z')$$

- F₂ fonksiyonu sırasıyla 1, 2 ve 3 değişkenden oluşan üç toplam teriminin çarpımından oluşur.
- Çarpım bir VE işlemidir.
- İki-seviye gerçekleme:

Standart Olmayan Biçim

- Boole fonksiyonları standart olmayan biçimde de ifade edilebilir.
- Örnek bir fonksiyon (Standart Olmayan Biçimde):

$$F_3 = (AB + CD)(A'B' + C'D')$$

- F₃ fonksiyonu ne çarpımların toplamı, ne de toplamların çarpımı biçimindedir.
- Ancak, dağılma kuralından yararlanarak parantezleri kaldırıp ifadeyi standart biçime dönüştürebiliriz:

$$F_3 = A'B'CD + ABC'D'$$

Standart Olmayan Biçim

- Üç-seviye ve İki-seviye gerçekleme örnekleri:
- Alttaki 2 boole fonksiyonu ve doğal olarak 2 devre diyagramı eşdeğerdir.
- Soldaki fonksiyon standart biçimde değildir. Sağdaki fonksiyon ise standart biçimde ifade edilmiştir.

Diğer Lojik İşlemler

- n tane ikili değişken için 2²ⁿ tane farklı fonksiyon elde edilir.
- Dolayısıyla, n = 2 için 16 tane Boole fonksiyonu vardır.
- İki tane ikili değişkenle elde edilen 16 fonksiyondan 2 tanesi VE ve VEYA fonsiyonlarıdır.
- Aşağıda, x ve y ikili değişkenleriyle elde edilebilecek 16 fonksiyona ilişkin doğruluk tabloları verilmiştir.
- Burada, F₁ fonsiyonu VE'ye, F₇ fonsiyonu ise VEYA'ya aittir.

X	y	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Diğer Lojik İşlemler (İki Değişkene İlişkin 16 Fonksiyonun Boole İfadeleri Tablosu)

Boole Fonksiyonları	İşlem Sembolü	İsim	Açıklama
$F_0 = 0$		Sıfır	İkili sabit 0
$F_1 = xy$	x . y	VE	x ve y
$F_2 = xy'$	x / y	Yasaklama	x fakat y değil
$F_3 = x$		İletim	X
$F_4 = x'y$	y / x	Yasaklama	y fakat x değil
$F_5 = y$		İletim	у
$F_6 = xy' + x'y$	х⊕у	Özel VEYA	x veya y fakat her ikisi birden değil
$F_7 = x + y$	x + y	VEYA	x veya y
$F_8 = (x + y)'$	$x \downarrow y$	VEYA DEĞİL	VEYA-Değil
$F_9 = xy + x'y'$	хОу	Eşdeğer	x eşit y
$F_{10} = y'$	y'	Tümleyen	y Değil
$F_{11} = x + y'$	$x \subset y$	İçerme	y, x'ten sonra ise
$F_{12} = x'$	x'	Tümleyen	x Değil
$F_{13} = x' + y$	$x \supset y$	İçerme	x, y'den sonra ise
$F_{14} = (xy)'$	$x \uparrow y$	VE DEĞİL	VE-Değil
$F_{15} = 1$		Bir	İkili sabit 1

Diğer Lojik İşlemler

- Her fonksiyon, VE, VEYA ve DEĞİL Boole işlemleri cinsinden ifade edilebilir. (Önceki tablo 1. sütun)
- Bazı fonksiyonları ifade etmek için özel işlem sembolleri kullanılabilir. (Önceki tablo 2. sütun)
- ⊕ (Özel VEYA) sembolü dışındaki sembollerin kullanımı pek yaygın değildir.
- Önceki tabloda belirtilen 16 fonksiyon üç kategoriye ayrılabilir:
 - 0 ve 1 sabitlerini veren iki fonksiyon (F₀ ve F₁₅)
 - Tümleyen ve transfer gibi <u>tek işlemli</u> olan dört fonksiyon (F₃, F₅, F₁₀ ve F₁₂)
 - Geri kalan on fonksiyon (8 farklı ikili işlem yer almaktadır.)

Diğer Lojik İşlemler

- İletim (Transfer): Giriş değişkenine eşit olan fonksiyonlara denir.
- Yasak ve İçerme ikili işlemleri bilgisayar lojiğinde çok nadiren kullanılır.
- Dijital devre tasarımında en çok kullanılan 8 fonksiyon:
 - 1. DEĞİL (Tek İşlemli Fonksiyon)
 - 2. Transfer (Tek İşlemli Fonksiyon)
 - 3. VE
 - 4. VEYA
 - 5. VEYADEĞİL (NOR)
 - 6. VEDEĞİL (NAND)
 - ÖZELVEYA (EXCLUSIVE-OR veya XOR)
 - 8. Eşdeğerlik