Citation Networks Evolution using Dynamic Network Embeddings

Supervision: Prof. Zeev (Vladimir) Volkovich & Dr. Renata Avros

Students: Avishay Bar & Shay Bistrizky

Research Problem

The influence of scientific papers varies over time in non-uniform and dynamic ways. This temporal behaviour complicates the task of paper characterization when using static models. A time-aware representation is necessary to capture the evolving citation patterns and structural changes within the network.

Model Overview

Node Classification

Emerging Nodes

Nodes with recently increasing citations.

Rising Stars

Emerging nodes with significant growth.

Steady Nodes

Nodes with consistent citation activity.

Falling Stars

Nodes with declining citation activity.

Node Identification

All graphs show the temporal evolution of different nodes in terms of velocity and drift, alongside global thresholds (2σ for velocity and 0.5σ for drift). These thresholds help identify distinct behavioural patterns.

$$\Delta \mathbf{v}_i = \parallel \mathbf{v}_i(t + \Delta t) - \mathbf{v}_i(t) \parallel$$

$$\mathbf{v}_i^{\text{center}}(t) = \frac{1}{N} \sum_{j \in \text{cluster}} \mathbf{v}_j(t)$$

$$\operatorname{gra} vit y_i(t) = \operatorname{v}_i^{\operatorname{center}}(t) - \operatorname{v}_i(t)$$

Results

