Statistical Foundations of Learning

Debarghya Ghoshdastidar

School of Computation, Information and Technology Technical University of Munich Vapnik-Chervonenkis (VC) dimension

Outline

- Previously: Uniform convergence bound for infinite \mathcal{H} using growth function $\tau_{\mathcal{H}}(\cdot)$ (worst case $\tau_{\mathcal{H}}(m) \leq 2^m$, bound is useless)
- This lecture: VC dimension of \mathcal{H}
 - Quantifies complexity of hypothesis class
- Sauer's lemma
 - Bound $\tau_{\mathcal{H}}(\cdot)$ in terms of VC dimension
 - If $VCdim(\mathcal{H}) = d < \infty$, then $\tau_{\mathcal{H}}(m) = O(m^d) \ll 2^m$ (for large m)
- Examples: VC dimension and generalisation error bound for linear classifier, 1-NN, neural networks

Shattering of a set

Shattering of a set

Let $\mathcal{H} \subseteq \{\pm 1\}^{\mathcal{X}}$ and $C = \{x_1, \dots, x_m\} \in \mathcal{X}^m$. We say C is shattered by \mathcal{H} if $|\mathcal{H}_{|C}| = 2^m$.

Equivalently,

for every possible labelling $s \in \{\pm 1\}^m$ of instances in C, there is a $h_s \in \mathcal{H}$ such that that $h_s(x_i) = s_i$ for $i = 1, \ldots, m$.

Vapnik Chervonenkis (VC) dimension

VC dimension

VC dimension of a non-empty $\mathcal{H} \subseteq \{\pm 1\}^{\mathcal{X}}$ is the cardinality of the largest possible subset of \mathcal{X} that can be shattered by \mathcal{H} , that is,

$$VCdim(\mathcal{H}) = \max\{m \in \mathbb{N} : \tau_{\mathcal{H}}(m) = 2^m\}.$$

If \mathcal{H} can shatter arbitrarily large sets, then $VCdim(\mathcal{H}) = \infty$.

- Alternative view: $VCdim(\mathcal{H}) = d \leq \infty$ if
 - there exists some set $C \in \mathcal{X}^d$ that can be shattered by \mathcal{H}
 - no set of cardinality d+1 can be shattered by \mathcal{H}

VC dimension for finite \mathcal{H}

- State an upper bound on $VCdim(\mathcal{H})$ in terms of $|\mathcal{H}|$
 - Answer: $VCdim(\mathcal{H}) \leq \log_2(|\mathcal{H}|)$
 - Recall $\tau_{\mathcal{H}}(m) \leq |\mathcal{H}|$
 - From definition, $VCdim(\mathcal{H}) = d$ satisfies $2^d = \tau_{\mathcal{H}}(d) \leq |\mathcal{H}|$
- Is above bound tight? Is it equality in some case?
 - Yes
 - Let $\mathcal{H} = \{h_1(x) = \text{sign}(x), h_2(x) = -\text{sign}(x)\} \subset \{\pm 1\}^{\mathbb{R}}$
 - Verify that \mathcal{H} can shatter only one point $\implies VCdim(\mathcal{H}) = 1 = \log_2(|\mathcal{H}|)$

VC dimension for decision stump

$$\bullet \mathcal{H}_{ds-1} = \left\{ h(x) = b \cdot \operatorname{sign}(x - t) : b \in \{\pm 1\}, t \in \mathbb{R} \right\}$$

- Compute $VCdim(\mathcal{H}_{ds-1})$
- Approach 1 (using definition):
 - Recall from previous lecture: $\tau_{\mathcal{H}_{ds-1}}(m) = 2m$
 - $\tau_{\mathcal{H}_{ds-1}}(2) = 4 = 2^2$, but $\tau_{\mathcal{H}_{ds-1}}(3) = 6 < 2^3$
 - So $VCdim(\mathcal{H}_{ds-1}) = 2$

VC dimension for decision stump

- Approach 2 (using alternative view):
 - Take any $x_1 < x_2$. There are 4 possible labellings

- So \mathcal{H}_{ds-1} can shatter $\{x_1, x_2\}$
- Take any $x_1 < x_2 < x_3$ (if they are not distinct we cannot shatter them)
- 8 possible labelling, but we cannot correctly label following configurations:
 - + + +
- Any set of size 3 cannot be shattered by \mathcal{H}_{ds-1} . So $VCdim(\mathcal{H}_{ds-1})=2$

VC dimension of axis parallel rectangles in \mathbb{R}^2

 \bullet $\mathcal{X} = \mathbb{R}^2$, and \mathcal{H} class of all axis parallel rectangles of form

$$h_{a,b,c,d}\left(x^{(1)},x^{(2)}\right) = \begin{cases} +1 & \text{if } a \leq x^{(1)} \leq b \text{ and } c \leq x^{(2)} \leq d, \\ -1 & \text{otherwise.} \end{cases}$$

+1

- Show that $VCdim(\mathcal{H}) = 4$
 - Can shatter 4 points shown on right (need only one such set to exist)
 - There can be 4 points that are not shattered
 - For any 5 points, there are 4 points that define an axis-parallel rectangle containing all points
 - Cannot label the 4 points as +1, and 5^{th} as -1

Convex polygons in \mathbb{R}^2

• For any convex polygon C in \mathbb{R}^2 , define $h_C = \begin{cases} +1 & \text{if } x \in C \\ -1 & \text{otherwise.} \end{cases}$

$$C = \text{square}$$
 +1

- $\mathcal{H} = \{h_C : C \text{ is a convex polygon}\}\$ Show that $VCdim(\mathcal{H}) = \infty$
 - Take m distinct points on a circle
 - Can be shattered for any m
- What happens if we restrict the number of sides of polygon?

Further examples

- Try out other examples by yourself:
 - Signed axis parallel rectangles (allow -1 inside)
 - \bullet Convex polygons with at most k edges
 - In some cases, you may only find upper bounds
- Later in this section
 - VC dimension of linear classifiers
 - VC dimension of 2-layer neural networks (simplified)
 - Hypothesis class for nearest neighbour, and its VC dimension

Bound on growth function in terms of VC dimension

Theorem VC.1 (Sauer's lemma)

Let $\mathcal{H} \subseteq \{\pm 1\}^{\mathcal{X}}$ be non-empty with $VCdim(\mathcal{H}) = d < \infty$. For all $m \in \mathbb{N}$,

$$\tau_{\mathcal{H}}(m) \le \sum_{i=0}^{d} \binom{m}{i}$$

A simpler bound which holds for all $m \geq d \geq 1$

$$\tau_{\mathcal{H}}(m) \le \left(\frac{em}{d}\right)^d$$

Use above inequality to derive generalisation error bound for ERM

- Proof is by induction on m and d.
- Two base cases: $d = 0, m \ge 1$ and $m = 1, d \ge 1$

•
$$d = 0 \implies |\mathcal{H}| = 1 \text{ and } \tau_{\mathcal{H}}(m) = 1 = {m \choose 0}$$

- $d \ge 1, m = 1$:
 - $d \ge 1 \implies |\mathcal{H}| \ge 2 \implies$ there is $x \in \mathcal{X}$ such that $|\mathcal{H}_{|\{x\}}| = 2$
 - $\tau_{\mathcal{H}}(m) = 2 = {m \choose 0} + {m \choose 1}$ for m = 1

- Induction for m > 1 and d > 0
- From inductive hypothesis:

•
$$\tau_{\mathcal{H}}(m') \leq \sum_{i=0}^{d'} {m' \choose i}$$
 holds for

$$(m', d') = (m - 1, d - 1)$$
 and $(m', d') = (m - 1, d)$

- Let $C = (x_1, x_2, ..., x_m)$ and denote $C' = (x_2, ..., x_m)$
- For every $(y_2, \ldots, y_m) \in \mathcal{H}_{|C|}$ there can be only two possibilities:
 - both $(-1, y_2, \ldots, y_m)$ and $(+1, y_2, \ldots, y_m)$ are in $\mathcal{H}_{|C|}$
 - either $(-1, y_2, ..., y_m) \in \mathcal{H}_{|C|}$ or $(+1, y_2, ..., y_m) \in \mathcal{H}_{|C|}$
- Let $Y = \{(y_2, \dots, y_m) \in \mathcal{H}_{|C'} : (-1, y_2, \dots, y_m), (+1, y_2, \dots, y_m) \in \mathcal{H}_{|C}\}.$ $|\mathcal{H}_{|C'}| = |\mathcal{H}_{|C'}| + |Y|$

• Will bound the size of each of the two sets

- Bounding $|\mathcal{H}_{|C'}|$:
 - $VCdim(\mathcal{H}) = d$ and |C'| = m 1
 - $|\mathcal{H}_{|C'}| \le \tau_{\mathcal{H}}(m-1) \le \sum_{i=0}^{d} {m-1 \choose i}$ (by induction hypothesis)
- Bounding |Y|:
 - View $Y \subset \{\pm 1\}^{C'}$ as a hypothesis class, and show $\operatorname{VCdim}(Y) \leq d-1$
 - Proof by contradiction. If VCdim(Y) = d, then Y shatters a set $C'' \subset C$ of size d
 - So $C'' \cup \{x_1\}$ is shattered by $\mathcal{H} \implies \mathrm{VCdim}(\mathcal{H}) \geq d+1$ (contradiction)
 - $\operatorname{VCdim}(Y) \le d 1 \implies |Y| \le \sum_{i=0}^{d-1} {m-1 \choose i}$

• Bounding $|\mathcal{H}_{|C}| = |\mathcal{H}_{|C'}| + |Y|$:

$$|\mathcal{H}_{|C}| \le \sum_{i=0}^{d} {m-1 \choose i} + \sum_{i=0}^{d-1} {m-1 \choose i}$$

$$= {m-1 \choose 0} + \sum_{i=1}^{d} \left({m-1 \choose i} + {m-1 \choose i-1} \right) = \sum_{i=0}^{d} {m \choose i} \quad \text{as } {m \choose i} = {m-1 \choose i} + {m-1 \choose i-1}$$

• Above is true for every $C \in \mathcal{X}^m \implies$ bound holds for $\tau_{\mathcal{H}}(m)$

Derivation of simpler bound:

$$\tau_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} {m \choose i} \leq \sum_{i=0}^{d} {m \choose i} \left(\frac{m}{d}\right)^{d-i}$$

$$= \left(\frac{m}{d}\right)^{d} \sum_{i=0}^{d} {m \choose i} \left(\frac{d}{m}\right)^{i} 1^{d-i}$$

$$\leq \left(\frac{m}{d}\right)^{d} \left(1 + \frac{d}{m}\right)^{m}$$

$$\leq \left(\frac{em}{d}\right)^{d}$$

we assume $m \geq d$

since
$$\left(1 + \frac{x}{n}\right)^n \le e^x$$

VC dimension of linear classifiers in \mathbb{R}^p

• Class of linear classifiers over $\mathcal{X} = \mathbb{R}^p$

$$\mathcal{H}_{lin} = \{ \operatorname{sign}(\langle w, x \rangle + b) : w \in \mathbb{R}^p, b \in \mathbb{R} \} \qquad \dots \langle w, x \rangle = w^T x$$

- ERM over \mathcal{H}_{lin} related to SVMs, perceptron
- $VCdim(\mathcal{H}_{lin}) = p + 1$
- Generalisation error bound for ERM over \mathcal{H}_{lin} :

w.p. $1 - \delta$

$$L_{\mathcal{D}}(\widehat{h}) \leq L_{\mathcal{D}}(\mathcal{H}_{lin}) + 2\sqrt{\frac{8}{m} \left(\ln \left(\left(\frac{2em}{p+1} \right)^{p+1} \right) + \ln \left(\frac{4}{\delta} \right) \right)} \leq L_{\mathcal{D}}(\mathcal{H}_{lin}) + O\left(\sqrt{\frac{p \ln m}{m}} \right)$$

$$\mathcal{H}_{lin}$$
 shatters $p+1$ points

- Verify that \mathcal{H} some set of shatters p+1 points:
- Take the set $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_p, \mathbf{0}\}$

 $\dots \mathbf{e}_i = i^{th}$ standard basis vector

Linear classifiers cannot shatter p + 2 points

- Proof by contradiction. Assume $x_1, x_2, \ldots, x_{p+2} \in \mathbb{R}^p$ can be shattered.
- Consider the set of p+1 linear equations

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_{p+2} \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_{p+2} \end{pmatrix} = \mathbf{0}$$

- p+2 variables and p+1 equations \implies there is a solution $(a_1,\ldots,a_{p+2})\neq \mathbf{0}$
- Let $I_+ = \{i : a_i > 0\}$ and $I_- = \{i : a_i < 0\}$. Verify that

$$\sum_{i \in I_+} a_i = \sum_{i \in I_-} |a_i| \quad \text{and} \quad \sum_{i \in I_+} a_i x_i = \sum_{i \in I_-} |a_i| x_i$$

Linear classifiers cannot shatter p + 2 points

• Assuming points can be shattered, there is $w, b \in \mathcal{H}$ such that

$$\langle w, x_i \rangle + b \begin{cases} > 0 & \text{for } i \in I_+ \\ < 0 & \text{for } i \in I_- \end{cases}$$

• Hence

$$0 < \sum_{i \in I_+} a_i (\langle w, x_i \rangle + b) = \left\langle w, \sum_{i \in I_+} a_i x_i \right\rangle + b \sum_{i \in I_+} a_i$$
$$= \left\langle w, \sum_{i \in I_-} |a_i| x_i \right\rangle + b \sum_{i \in I_-} |a_i| = \sum_{i \in I_-} |a_i| (\langle w, x_i \rangle + b) < 0$$

• Contradiction $(0 < 0) \implies \mathcal{H}$ cannot shatter p + 2 points

VC dimension of 1-nearest neighbour

• Recall 1-NN predictor $\hat{h}_S(x) = y_{\pi_1(x)}$

 $\pi_1(x) = NN \text{ of } x \text{ in } S$

• Define hypothesis class of 1-NN as

$$\mathcal{H}_{1-NN} = \left\{ h_S(x) = y_{\pi_1(x)} \mid S \in (\mathcal{X} \times \mathcal{Y})^m, m \in \mathbb{N} \right\}$$

- Claim: $VCdim(\mathcal{H}_{1-NN}) = \infty$
 - To shatter any set C of size m, use predictors $h_{S_1}, \ldots, h_{S_{2^m}}$ where S_1, \ldots, S_{2^m} has features same as C and all the 2^m labellings
- No uniform convergence for 1-NN for finite m

VC dimension of 2-layers neural network

- Consider simplified 2-layer network
 - Input: $x \in \mathbb{R}^p$

• N units in the hidden layer, each corresponding to function

$$f_i(x) = \operatorname{sign}(\langle w_i, x \rangle + b_i), \qquad i = 1, \dots, N.$$

Define
$$f(x) = (f_1(x), \dots, f_N(x)) \in \{\pm 1\}^N$$

- Output: $h(x) = sign(\langle w, f(x) \rangle + b)$
- $\mathcal{H} = \{h(x) : \text{ parameterised by } w \in \mathbb{R}^N, \ w_1, \dots, w_N \in \mathbb{R}^p, \ b, b_1, \dots, b_N \in \mathbb{R}\}$

VC dimension of 2-layers neural network

- $VCdim(\mathcal{H}) = O(pN \log_2(pN))$
- Generalisation error bound for ERM over \mathcal{H} :

w.p. $1 - \delta$

$$L_{\mathcal{D}}(\widehat{h}) \leq L_{\mathcal{D}}(\mathcal{H}) + O\left(\sqrt{\frac{pN\ln(pN)\ln m + \ln\frac{1}{\delta}}{m}}\right)$$

- Key idea for computing $VCdim(\mathcal{H})$:
 - Neural network is combination of several linear classifiers
 - Need ways to compute growth function of combinations

Growth function of combined classes

Lemma VC.2 (Concatenating classifiers)

$$\mathcal{G}' \subseteq \mathcal{Y}'^{\mathcal{X}}$$
 and $\mathcal{G}'' \subseteq \mathcal{Y}''^{\mathcal{X}}$ be two classes. Define $\mathcal{G} = \mathcal{G}' \times \mathcal{G}'' \subseteq (\mathcal{Y}' \times \mathcal{Y}'')^{\mathcal{X}}$ as

$$\mathcal{G} = \{ (g'(\cdot), g''(\cdot)) : g' \in \mathcal{G}', g'' \in \mathcal{G}'' \}$$

Growth functions satisfy $\tau_{\mathcal{G}}(m) \leq \tau_{\mathcal{G}'}(m)\tau_{\mathcal{G}''}(m)$

Lemma VC.3 (Composition of classifiers)

$$\mathcal{G}' \subseteq \mathcal{Y}^{\mathcal{X}}$$
 and $\mathcal{G}'' \subseteq \mathcal{Z}^{\mathcal{Y}}$ be two classes. Define $\mathcal{G} = \mathcal{G}'' \circ \mathcal{G}' \subseteq \mathcal{Z}^{\mathcal{X}}$ as

$$\mathcal{G} = \{ g''(g'(\cdot)) : g' \in \mathcal{G}', g'' \in \mathcal{G}'' \}$$

Growth functions satisfy $\tau_{\mathcal{G}}(m) \leq \tau_{\mathcal{G}'}(m)\tau_{\mathcal{G}''}(m)$

Computing VC dimension of neural network

- Hypothesis class: $\mathcal{H} = \mathcal{H}' \circ (\mathcal{H}_1 \times \dots \mathcal{H}_N)$
 - $\mathcal{H}_i \subseteq \{\pm 1\}^{\mathbb{R}^p}$ hypothesis class corresponding to *i*-th hidden unit
 - $VCdim(\mathcal{H}_1) = \ldots = VCdim(\mathcal{H}_N) = p + 1$

$$\tau_{\mathcal{H}_i}(m) \le \left(\frac{em}{p+1}\right)^{p+1} < (me)^{p+1}$$

- $\mathcal{H}' \subseteq \{\pm 1\}^{\mathbb{R}^N}$ hypothesis class corresponding to output unit
- $VCdim(\mathcal{H}') = N + 1$

$$\tau_{\mathcal{H}'}(m) \le \left(\frac{em}{N+1}\right)^{N+1} < (me)^{N+1}$$

Computing VC dimension of neural network

• Using growth function bound for compositions

$$\tau_{\mathcal{H}}(m) \le \tau_{\mathcal{H}'}(m) \cdot \tau_{\mathcal{H}_1}(m) \cdot \ldots \cdot \tau_{\mathcal{H}_N}(m)$$

$$< (me)^{N(p+1)+N+1}$$

$$< m^{8pN} \qquad \text{for } m > e, p \ge 1$$

- Recall: $VCdim(\mathcal{H}) = d \implies 2^d = \tau_{\mathcal{H}}(d)$ and $\tau_{\mathcal{H}}(m) < 2^m$ for all m > d
 - Find m such that $\tau_{\mathcal{H}}(m) < 2^m \implies d < m$
- For c > 0, $x > \max\{2, 3c\}$ and $m = 3cx \log_2 x \implies 2^m > m^{cx}$ (try to verify this)
 - $\bullet \text{ Assume } x = Np > 24 \text{ (here, } c = 8):$ $\tau_{\mathcal{H}}(m) < m^{8pN} < 2^m \text{ for } m = 24Np\log_2(Np) \implies \text{VCdim}(\mathcal{H}) = O(pN\log_2(pN))$
 - For $Np \le 24$ (means Np = O(1)): $\tau_{\mathcal{H}}(m) < m^{8 \cdot 24} < 2^m$ for $m > \text{large enough constant} \implies \text{VCdim}(\mathcal{H}) = O(1)$