TP1 - BCC 362

O Middleware

• Graphx | Apache Spark

 É um componente para computação paralela de grafos. Trata-se de uma estrutura de processamento de grafos distribuídos que roda sobre o Spark.

Redes sociais

Web graphs

Relação item-usuário

ALGORITMOS PARA GRAFOS

ALGORITMOS PARA GRAFOS

PageRank

ALGORITMOS PARA GRAFOS

Triangle Counting

DESAFIOS

Vértices com grau alto

ARMAZENAMENTO: como armazenar grafos quando todos seus nós não cabem em uma máquina só?

API: como expor vértices vizinhos ao paralelismo?

DESAFIOS

Pipelines complexos

SOLUÇÃO

Incorporar um sistema orientado a tabelas (SPARK) ao processamento de grafos

ARMAZENAMENTO: como armazenar grafos como tabelas?

COMPUTAÇÃO: como expressar operações em grafos como operações em tabelas (map, reduce, join, etc)?

API: como apresentar essas abordagens ao usuário?

SPARK

RESILIENT DISTRIBUTED DATASETS (RDDs)

RDDs E DFS

SETUP BÁSICO

Distributed Storage

- HDFS
- Cassandra
- · S3
- Other cloud storage vendors

Cluster Manager

- Standalone
- YARN
- Mesos

FUNCIONAMENTO BÁSICO

FUNCIONAMENTO BÁSICO

GRAPHX

PROPERTY GRAPHS

PROPERTY GRAPHS

PROPERTY GRAPHS

PROS / CONS

Vantagens

 Trata a estrutura de dados tanto como grafos comuns, quanto como conjuntos separados de arestas e vértices que podem ter operações feitas de forma paralela (map, join, transform).

• Lida bem com property graphs.

Desvantagens

Latência alta

Alto consumo de memória

 Não é eficiente quando há um grande número de iterações, pois pode haver sobrecarga de RDDs (<u>Fonte</u>).

DAG (DIRECTED ACYCLIC GRAPH)

Onde é usado

- Netflix recomendação (junto com machine learning)
- https://pt.slideshare.net/SessionsEvents/ehtsham-elahi-seniorresearch-engineer-personalization-science-and-engineering-grou p-at-netflix-at-mlconf-sea-50115

A API

Graphx

Related Docs: object Graph | package graphs

abstract class Graph[VD, ED] extends Serializable

The Graph abstractly represents a graph with arbitrary objects associated with vertices and edges. The graph provides basic operations to access and manipulate the data associated with vertices and edges as well as the underlying structure. Like Spark RDDs, the graph is a functional data-structure in which mutating operations return new graphs.

VD the vertex attribute type

ED the edge attribute type

- Property graph: multi grafo direcionado com objetos anexados a cada vértice e aresta.
- São imutáveis, distribuídos e tolerante a falhas.
- Cada partição do grafo pode ser recriada em uma máquina diferente caso haja falha.

Graphx


```
class Graph[VD, ED] {
   val vertices: VertexRDD[VD]
   var edges: EdgeRDD[ED]
}
```

Graphx - exemplificando

Property Graph

Vertex Table

ld	Property (V)	
3	(rxin, student)	
7	(jgonzal, postdoc)	
5	(franklin, professor)	
2	(istoica, professor)	

Edge Table

SrcId	Dstld	Property (E)
3	7	Collaborator
5	3	Advisor
2	5	Colleague
5	7	PI

Graphx - exemplificando

Vertex Table

ld	Property (V)	
3	(rxin, student)	
7	(jgonzal, postdoc)	
5	(franklin, professor)	
2	(istoica, professor)	

Graphx - exemplificando

Edge Table

SrcId	Dstld	Property (E)
3	7	Collaborator
5	3	Advisor
2	5	Colleague
5	7	PI

PROPERTY GRAPHS - otimizações

PROPERTY GRAPHS - otimizações

PROPERTY GRAPHS - otimizações

	rg.apache.spark.graphx PartitionStrategy	Companion <u>trait PartitionStrategy</u>	
object Part	titionStrategy extends Serializable		
Collection of buil	ilt-in <u>PartitionStrategy</u> implementations.		
Source	<u>PartitionStrategy.scala</u>		
Linear Supert	yypes		
Filter all mem	ibers		
Value Memb	bers		
	def fromString (s: String): <u>PartitionStr</u> Returns the PartitionStrategy with the specifi		
	object <u>CanonicalRandomVertexCut</u> extends <u>PartitionStrategy</u> with Product with Serializable Assigns edges to partitions by hashing the source and destination vertex IDs in a canonical direction, resulting in a random vertex cut that colocates all edges between two vertices, regardless of direction.		
	object <u>EdgePartition1D</u> extends <u>PartitionStrategy</u> with Product with Serializable Assigns edges to partitions using only the source vertex ID, colocating edges with the same source.		
	object <u>EdgePartition2D</u> extends <u>PartitionSt</u> Assigns edges to partitions using a 2D partiti sqrt(numParts) bound on vertex replication	oning of the sparse edge adjacency matrix, guaranteeing a 2 *	
	object <u>RandomVertexCut</u> extends <u>PartitionSi</u> Assigns edges to partitions by hashing the so colocates all same-direction edges between t	urce and destination vertex IDs, resulting in a random vertex cut that	

FRAMEWORKS RELACIONADOS

Pregel

- Sistema da Google, alternativo ao Spark GraphX, para processamento de grafos de larga escala;
- Escalável e tolerante a falhas;
- Alimenta o PageRank da ferramenta de pesquisa;
- Inspiração para o Apache Giraph, que o Facebook usa para analisar seu grafo de rede social;

Apache Giraph

- Usado no Facebook para analisar o grafo de rede social formado pelos usuários e suas conexões;
- Giraph se originou como a contraparte open-source para o Pregel;
- Adiciona vários recursos além do modelo Pregel básico, incluindo computação mestre, agregadores fragmentados, entrada de conjunto de arestas, computação fora do núcleo;

- Expõem API específicas para simplificar programação em grafos
- Se baseiam no padrão em que a computação depende apenas dos vizinhos
- Expressam os jobs como grafos de operadores de alto nível
 - O sistema escolhe como dividir cada operador em tarefas e onde executar cada tarefa
 - Executam partes para recuperação de falhas duas vezes
- GraphX roda o modelo do Pregel por trás de suas tabelas de vértices e arestas

Pregel Data Flow

PageRank in Pregel

FUNCIONAMENTO

Funcionamento

debora_barbosa@graphx-cluster-m: /usr/lib/spark/data/graphx/bcc362 - Google Chro —		×
ssh.cloud.google.com/projects/gcp-graphx-sd/zones/southamerica-east1-b/inst	ances/grap	ph
debora_barbosa@graphx-cluster-m:/usr/lib/spark/data/graphx/bcc362\$ l README.md cit-HepTh-abstracts.tar.gz cit-HepTh.txt debora_barbosa@graphx-cluster-m:/usr/lib/spark/data/graphx/bcc362\$ h cit-HepTh.txt bcc362 debora_barbosa@graphx-cluster-m:/usr/lib/spark/data/graphx/bcc362\$ h cc362	dfs dfs	(10)6
Found 1 items -rw-rr 2 debora_barbosa hadoop 5576648 2021-02-22 22:44 bcc.txt debora_barbosa@graphx-cluster-m:/usr/lib/spark/data/graphx/bcc362\$		-HepTh

Showing 1 to 10 of 10 entries

Previous

número de iterações	tempo de execução
1	26s
10	50s
50	6.7min
100	10min

Referências

Michael Malak, Robin East - Spark GraphX in Action (2016, Manning Publications) - libgen.lc

https://www.youtube.com/watch?v=Y7hq5MudV9M GraphX: Graph Analytics in Spark - Ankur
Dave (UC Berkeley)

Ankur Dave: ankus is a third-year phd student advised by ion stoica in the UC Berkeley AMPLab. He's a Spark commiter and a maintainer for GraphX

https://spark.apache.org/docs/latest/graphx-programming-guide.html#vertexrdds - graphx programming-guide
guide

Referências

https://stanford.edu/~rezab/classes/cme323/S16/notes/Lecture16/Pregel Gr aphX.pdf - pregel

https://blog.acolyer.org/2015/05/26/pregel-a-system-for-large-scale-grap h-processing/

https://www.waitingforcode.com/graphx/iterative-algorithms-pregel-apache
-spark-graphx/read

https://www.doc.ic.ac.uk/~nuric/sysadmin/how-does-google-pregel-work.htm
l#pregel