What is Neural Network?

What is Neural Network?

- Simulating Human Neurons to make Artificial Brain
- Each Inputs have A Weight
- Each Neurons have A Bias

$$(x_1 \times w_1) + (x_2 \times w_2) + (x_3 \times w_3) + b$$

= wx+b

f(wx+b) // f(x) = activation function

COMMONLY USED ON NEURAL NETWORK!

2) Step Function

Benefits when USE Relu Function

이러한 ReLu가 가지는 이점은 다음과 같다.

- 1. Sparse activation: 0이하의 입력에 대해 0을 출력함으로 부분적으로 활성화 시킬수 있다.
- 2. Efficient gradient propagtion : gradient의 vanishing이 없으며 gradient가 exploding 되지 않는다.
- 3. Efficient computation : 선형함수이므로 미분 계산이 매우 간단하다.
- 4. Scale-invariant:

$$\max(0, ax) = a \max(0, x)$$

http://mongxmongx2.tistory.com/25

Neural Network Layer

- There Are **SEVERAL** Neural Network Layer.

- http://jaeseung172.blog.me/220931561891

[Calculate Multilayers...]

- http://jaeseung172.blog.me/220931561891

이미지 인식을 위한 Convolutional Neural Network

원리

Steps

STEP 01

수	수	수	수	수
수	수	수	수	 수
<u>수</u>	수	수	수	<u></u> 수
수	수	수	수	수 수
수	수	수	수	<u></u> 수

[MATRIX]

[5 x 5 x 1] 1 = <u>GrayScale</u>

STEP 02

[MATRIX]

[Transfer 0 & 1] Cause It's GrayScale!

STEP 03

1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1	1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1	1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1
10010 01000 01110 01110 1000	1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1	10010 01000 01110 01110
1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1	1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 0 1 1	1 0 0 1 0 0 1 D D 1 0 1 1 1 0 1 D 0 0 0 1 1 0 1 1

100 10	1 0 0 1 0	1 0 0 1 0
01001	0 1 0 0 1	0 1 0 0 1
01110	0 1 1 1 0	0 1 1 1 0
10000	1 0 0 0 0	1 0 0 0 0
11001	1 1 0 1 1	1 1 0 1 1
1 0 0 1 0	1 0 0 1 0	1 0 0 1 0
0 1 0 0 1	0 1 0 0 1	0 1 0 0 1
0 1 1 1 0	0 1 1 1 0	0 1 1 1 0
1 0 0 0 0	1 0 0 0 0	1 0 0 0 0
1 1 0 1 1	1 1 0 1 1	1 1 0 1 1
1001001 01000 10000 11001	1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1	1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1

https://docs.gimp.org/en/plug-in-convmatrix.html

ReLU를 사용한 필터링

4	3	6	4	3	6
g	9	8	g	9	8
J	5	2	J	5	2
			-		
4	3	6	4	3	6
4	3 9	8	4 00	3	8

최대값을 뽑아서 4*4로 뽑아서, 4구역으로 만들기

[최대값을 뽑아서 4*4 로 만들기]

Forward
Back
Propagation
Process

일단 학습

Forward Propagation

Back Propagation

돌아가면서 오류를 학습

출처

- 처음~CNN 전까지, 위키피디아
- CNN~Propagation Process: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
- BackPropagation: http://newsight.tistory.com/70