4- Regular Expressions

Regular expressions are another type of language-defining notation. Regular expressions define exactly the same languages that the various forms of finite automata describe: the regular languages.

Regular expression is a declarative way to express the strings. Thus they serve as input language for many systems that process strings. Examples are

- 1. Search commands such as UNIX grep.
- 2. Lexical-analyzer generators such as Lex or Flex.

4.1 Operations on Languages

Union: Union of two languages L and M, denoted L U M, is the set of strings in L or M, or both. For example if L = {0, 11, 001, 101} and M = {ε, 1, 10, 111, 1101}, then

```
L U M = \{\epsilon, 0, 1, 10, 11, 001, 101, 111, 1101\}.
```

Concatenation: Concatenation of two languages L and M, denoted LM, is the set of strings formed by taking any string in L and concatenating any string in M. If L = {0, 01, 110} and M = {1, 10, 100} then

```
LM = {01, 010, 0100, 011, 0110, 01100, 1101, 11010, 110100}
```

3. The Closure (or star or Kleene closure): The closure of a language L, denoted L*, represents the set of those strings formed by taking any number of strings from L, possibly with repetitions and concatenating all of them. For example if L = {0, 1} then L* is the set of all possible strings of 0's and 1's including ε.

4.2 Building Regular Expressions

- Expressions start with some elementary expressions.
- More expressions are constructed by applying set of operators on elementary and previously constructed expressions.
- Parentheses are used to group operators with their operands.
- Operators for the operations union (U or +), concatenation (dot) and closure (*)
 are used.

4.2.1 Recursive Definition of Regular expressions

If E is a regular expression then L (E) denotes the language of E.

Basis: The basis consists of three parts:

- 1. The constant ε is a regular expression, denoting the language $\{\varepsilon\}$ i.e., L (ε) = $\{\varepsilon\}$
- 2. The constant ε is a regular expressions, denoting the language \emptyset i.e., L (\emptyset) = \emptyset .
- 3. If $a \in \Sigma$, then **a** is a regular expression. The language of **a**, i.e., L (**a**) = {a}.

Induction: If E and F are regular expressions then

- 1. E + F is a regular expression and L (E+F) = L (E) U L (F).
- 2. EF is a regular expression and L (EF) = L (E) L (F).
- 3. E^* is a regular expression and $L(E^*) = (L(E))^*$
- 4. (E) is a regular expression and L(E) = L(E).

4.2.2 Precedence of regular expression operators

The following is the order of precedence for the operators:

- 1. The star operator is of highest precedence. It applies only to the smallest sequence of symbols to its left which is a well formed regular expression.
- 2. Next precedence is for the concatenation or dot operator.
- 3. Finally all unions (+) are grouped with their operands.

Example 1: The expression 01* + 1 is grouped as

1. The elementary expressions are **0** and **1**.

$$L(\mathbf{0}) = \{0\} \text{ and } L(\mathbf{1}) = \{1\}$$

2. The star operator is grouped first. It is applied to **1**, as it is the smallest sequence of symbols to its left and a well formed regular expression giving **1***.

$$L(1^*) = (L(1))^* = (\{1\})^* = \{\epsilon, 1, 11, 111, \dots\} \text{ i.e., zero or more 1's.}$$

3. Next we group the concatenation between $\bf 0$ and $\bf (1*)$ giving $\bf (0(1*))$.

$$L(\mathbf{0(1)^*}) = L(\mathbf{0})L(\mathbf{1^*}) = \{0\} \{\epsilon, 1, 11, 111, \dots\} = \{0, 01, 011, 0111, \dots\} \text{ i.e., zero }$$
 followed by zero or more 1's.

4. Finally the union operator + connects (0(1*)) and 1 i.e., (0(1*)) + 1

$$L((0(1^*)) + 1) = L(0(1)^*) \cup L(1)$$

= {0, 01, 011, 0111,...} U {1}
= {1, 01, 011, 0111,...} i.e., 1 or 0 followed by zero or more 1's.

Example 2: The expression (01)* + 1 is grouped as

1. The elementary expressions are **0** and **1**.

$$L(\mathbf{0}) = \{0\} \text{ and } L(\mathbf{1}) = \{1\}$$

2. The dot (Concatenation) operator is grouped first, as it is enclosed within parentheses. It is applied to **0** and **1**, giving **01**.

$$L(01) = L(0) L(1) = \{0\} \{1\} i.e., 0 followed by 1.$$

3. The star operator is grouped next giving (01)*.

$$L((01))^*$$
) = $(L(01))^*$ = $\{\epsilon,01,0101,010101,\cdots\}$ i.e., the pattern 01 repeated zero or more times.

4. Finally the union operator + connects (01)* and 1 i.e., (01*) + 1

$$\begin{split} L(\textbf{(01*) + 1}) &= (L(\textbf{01)})^* \ U \ L(\textbf{1}) \\ &= \{\epsilon, \ 01, \ 0101, \ 010101, \ \cdots\} \ U \ \{1\} \\ &= \{\epsilon, \ 1, \ 01, \ 0101, \ 010101, \cdots\} \ i.e., \ \textit{1 or the pattern 01 repeated zero} \\ \textit{or times.} \end{split}$$

Example 3: Write regular expression to represent the following language.

L = {all possible strings on the alphabet $\Sigma = \{a, b\}$ }

Regular expression: (a + b)*

1. The elementary expressions are **a** and **b**.

$$L(a) = \{a\} \text{ and } L(b) = \{b\}$$

2. The + (Union) operator is grouped first, as it is enclosed within parentheses. It is applied to **a** and **b**, giving **a** + **b**.

$$L(a + b) = L(a) \cup L(b) = \{a, b\}.$$

3. The star operator is grouped next giving (a + b)*.

$$L((\mathbf{a} + \mathbf{b})^*) = (L(\mathbf{a} + \mathbf{b}))^* = \{a, b\}^*$$
 i.e., the set $\{a, b\}$ concatenated zero or more times.

$$\{a, b\}^0 = \{\epsilon\}.$$

$${a, b}^1 = {a, b}.$$

$${a, b}^2 = {a, b}{a, b} = {aa, ab, ba, bb}$$
 all strings of length 2.

 $\{a, b\}^3 = \{a, b\}\{a, b\}\{a, b\} = \{aaa, aab, aba, abb, baa, bab, bba, bbb \}$ all strings of length 3.

Example 4: Write regular expression to represent the following language.

L = {Strings on the alphabet Σ = {a, b} that end with ab}

Regular expression: (a + b)*ab

Example 5: Write regular expression to represent the following language.

L = {Strings on the alphabet Σ = {a, b} that start with ab}

Regular expression: ab(a + b)*

Example 6: Write regular expression to represent the following language.

L = {Strings on the alphabet Σ = {a, b} that start with a and end with b}

Regular expression: a(a + b)*b

Example 7: Write regular expression to represent the following language.

L = {Strings on the alphabet Σ = {0, 1} such that the second symbol is 1}

Regular expression:

First symbol can be 0 or 1, the regular expression is (0 + 1).

Second symbol must be 1, followed by any string on the alphabet {0, 1}.

 \therefore The regular expression is $(0 + 1)1(0 + 1)^*$.

Example 8: Write regular expression to represent the following language.

L = {Strings on the alphabet Σ = {a, b, c} that contain the substring abb}

Regular expression: (a + b + c)*abb(a + b + c)*.

Example 9: Regular expression to represent the strings with any number of a's followed by any number of b's followed by any number of c's.

Regular expression: a*b*c*.

Example 10: Regular expression to represent the strings with one or more a's followed by one or more b's followed by one or more c's.

Regular expression: aa*bb*cc* **OR** a*ab*bc*c.

Example 11: Regular expression to represent the following language

L = {Strings on the alphabet Σ = {0, 1} that end with 0 or 01}.

Regular expression: (0 + 1)*(0 + 01).

Example 12: Regular expression to represent strings with even number of a's followed by odd number of b's.

Regular expression: (aa)*(bb)*b

Example 13: Regular expression to represent the following language

 $L = \{w \mid w \in \{a, b\}^* \text{ and } n_a(w) \text{ mod } 3 = 0\}.$

Regular expression: (b*ab*ab*ab*)*

Example 14: Regular expression to represent the following language

 $L = \{w \mid w \in \{a, b\}^* \text{ and } n_a(w) \text{ mod } 3 \neq 0\}.$

Regular expression:

 $n_a(w) \mod 3 \neq 0 \text{ i.e., } n_a(w) \mod 3 = 1 \text{ OR } n_a(w) \mod 3 = 2$

Regular expression for $n_a(w) \mod 3 = 1$ is $(b^*ab^*)^*$

Regular expression for $n_a(w) \mod 3 = 2$ is $(b^*ab^*ab^*)^*$

Regular expression for $n_a(w) \mod 3 \neq 0$ is $(b^*ab^*)^* + (b^*ab^*ab^*)^*$

Example 15: Regular expression to represent the following language

 $L = \{w \mid w \in \{a, b\}^* \text{ and } w \text{ has at least one a} \}.$

Regular expression: (a + b)*a(a + b)*

Example 16: Regular expression to represent the following language

L = $\{w \mid w \in \{a, b\}^* \text{ and } w \text{ has exactly two a's}\}.$

Regular expression: b*ab*ab*

Example 17: Regular expression to represent the following language

L = $\{w \mid w \in \{a, b\}^* \text{ and } w \text{ has at most two a's} \}$ i.e., number of a's = 0 **OR** number of a's = 1 **OR** number of a's = 2.

Regular expressions for:

Number of a's = 0, regular expression is b*

Number of a's = 1, regular expression is b*ab*

Number of a's = 2, regular expression is b*ab*ab*

Regular expression for strings with at most two a's:

OR

$$b^*(a + \varepsilon)b^*(a + \varepsilon)b^*$$

Example 18: Regular expression to represent the strings on $\Sigma = \{a, b, c\}$ with at least one a and at least one b.

Regular expression:

- Regular expression for strings with one a and one b is ab or ba
 i.e., ab + ba.
- This may be surrounded by any string on the alphabet $\Sigma = \{a, b, c\}$.
- ∴ The regular expression is (a + b + c)*(ab + ba) (a + b + c)*.

Example 19: Regular expression to represent the strings on $\Sigma = \{0, 1\}$ with alternating sequence of 0's and 1's.

$$(3 + 0)(01)*(0 + E)$$

Example 20: Regular expression to represent the strings on $\Sigma = \{a, b\}$ such that the strings start with or end with ab.

$$ab(a + b)^* + (a + b)^*ab$$

Example 21: Regular expression to represent the strings on $\Sigma = \{a, b\}$ such that the string length is odd and ends with a.

$$((a + b) (a + b))*a$$

4.3 Algebraic Laws for Regular Expressions:

If R, S, T are regular expressions then

Commutative Law for Union: R + S = S + R

Associative Law:

• For Union: (R + S) + T = R + (S + T)

• For Concatenation: (RS)T = R(ST)

Identities:

(Note: Identity for an operator is a value such that when the operator is applied to the identity and some value x the result is x itself.

For example x + 0 = 0 + x = x zero is the identity for addition.

$$x * 1 = 1 * x = x$$
 one is the identity for multiplication.)

- \emptyset + R = R + \emptyset = R, \emptyset is the identity for union.
- ER = RE = R, E is the identity for concatenation.

Annihilators:

(Note: Annihilator for an operator is a value such that when the operator is applied to the annihilator and some value x the result is Annihilator itself.

For example x * 0 = 0 * x = 0, zero is the annihilator for multiplication.)

 $\emptyset R = R\emptyset = R$, \emptyset is the identity for concatenation.

Distributive Laws:

- R(S + T) = RS + RT Left distributive law of concatenation over union.
- (R + S)T = RT + ST Right distributive law of concatenation over union.

Idempotent Law:

$$R + R = R$$

Laws Involving Closures:

$$\bullet R^+ = RR^* = R^*R$$

$$\bullet R^* = R^+ + E$$

•
$$R$$
? = R + E = E + R

