• Mi a belso pont definicioja?

Legyen $\emptyset \neq A \subset \mathbb{R}$. Az $a \in A$ pont az A halmaz belso pontja, ha

$$\exists r > 0,$$
 hogy $K_r(a) = (a - r, a + r) \subset A.$

Jeloles: int $A := \{a \in A \mid a \text{ belso pontja A-nak}\}.$

• Mikor mondja azt, hogy egy $f \in \mathbb{R} \to \mathbb{R}$ fuggveny differencialhato valamely $a \in \text{int } D_f$ pontban? Az $f \in \mathbb{R} \to \mathbb{R}$ fuggveny az $a \in \text{int } D_f$ pontban differencialhato (vagy derivalhato) ha

$$\exists$$
 es veges a $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ hatarertek.

Ezt f'(a)-val jeloljuk, es az f fuggveny a pontbeli derivaltjanak (vagy differenciahanyadosanak) nevezzuk, azaz

$$f'(a) \coloneqq \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \in \mathbb{R}$$

jeloles: $f \in D\{a\}$

• Mi a kapcsolat a pontbeli differencialhatosag es folytonossag kozott?

TFH, $f \in \mathbb{R} \to \mathbb{R}$ es $a \in \text{int } D_f$. Ekkor

- 1. $f \in D\{a\} \Longrightarrow f \in C\{a\}$
- 2. az allitas megforditasa nem igaz.
- Adjon peldat olyan fuggvenyre, ami az $a \in \mathbb{R}$ pontban folytonos, de nem differencialhato!

$$f(x) = |x|$$

• Milyen tetelt ismer ket fuggveny szorzatanak valamely pontbeli differencialhatosagarol es a derivaltjarol?

TFH, $f, g \in D\{a\}$ valamilyen $a \in \text{int } (D_f \cap D_a)$ pontban. Ekkor

$$f \cdot g \in D\{a\}$$
 es $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$

 Milyen tetelt ismer ket fuggveny hanyadosanak valamely pontbeli differencialhatosagarol es a derivaltjarol?

TFH, $f, g \in D\{a\}$ valamilyen $a \in \text{int } (D_f \cap D_g)$ pontban, es $g(a) \neq 0$. Ekkor

$$\frac{f}{g} \in D\{a\}$$
 es $\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}$

• Milyen tetelt ismer ket fuggveny kompoziciojanak valamely pontbeli differencialhatosagarol es a derivaltjarol?

TFH, $f,g\in\mathbb{R}\to\mathbb{R}, R_g\subset D_f$ es egy $a\in \mathrm{int}\ D_g$ pontban $g\in D\{a\}$, tovabba $f\in D\{g(a)\}$. Ekkor $f\circ g\in D\{a\}$, es

$$(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$$

- Mi az exp, sin, cos fuggvenyek derivaltfuggvenye?

 - $\sin'(x) = \cos(x) \ (x \in \mathbb{R})$
 - $\cos'(x) = -\sin(x) \ (x \in \mathbb{R})$
- Milyen tetelt ismer hatvanysor osszegfuggvenyenek differencialhatosagarol es a derivaltjarol?

TFH, a $\sum_{n=0}\alpha_n(x-a)^n\ (x\in\mathbb{R})$ hatvanysor R konvergencia
sugara pozitiv, es legyen

$$f(x) \coloneqq \sum_{n=0}^{+\infty} \alpha_n (x-a)^n \qquad (x \in K_R(a)).$$

Ekkor minden $x \in K_R(a)$ pontban $f \in D\{x\}$ es

$$f'(x) \coloneqq \sum_{n=1}^{+\infty} n\alpha_n (x-a)^{n-1} \qquad (\forall x \in K_R(a)).$$