66.70 Estructura del Computador

Memoria

- Memoria volátil y no volátil
- RAM
- ROM
- Disco rígido
- Pendrive
- CD-ROM, DVD-ROM
- Cinta

Clasificación por su modo de acceso

- RAM: M. de Acceso Aleatorio

 El tiempo y procedimiento para el acceso es independiente de la dirección accedida
 - Lectura/Escritura (RWM, en gral. referida como RAM)
 - ROM: Sólo Lectura
- CAM: M. Direccionable por Contenido (o Asociativa)
- SAM: M. de Acceso Secuencial Cinta, Reg. de desplazamiento serie-serie, Stack,
- DAM: M. de Acceso Directo o Semi-Aleatorio Disco rígido: acc. aleatorio a la pista y secuencial dentro de esta

Memoria de lectura/escritura Celda de 1 bit

Memoria de lectura/escritura de 2^m posiciones de w bits

Memoria de 2^m posiciones de w bits <u>a partir de celdas de 1 bit</u>

- Se ve como 2^m registros
- Direcciona un registro por vez
- Selecciona lectura/escritura

Chip RAM

0

Direccionando cada registro

Organización "2-D"

Módulo de 4 posiciones de 4 bits

¿Qué limitaciones aparecen con este tipo de organización? p.e. con $128M \times 8$ bits

Direccionando cada registro

Organización "2-1/2 D"

Módulo de 64 posiciones de 1 bit

- n bits de address => n/2 bits en filas y n/2 bits en columnas
- Direccionar 1 bit => (a) Seleccionar fila (b) Seleccionar columna
- Sólo n/2 bits de Address multiplexados en el tiempo y fila latcheada
- ✓ Menor número de pines
- ✓ Menor tiempo de acceso
 - de palabras sucesivas (decodifica sólo columna)

Memorias "grandes" a partir de memorias "pequeñas"

Casos:

- Cantidad de bits por palabra
 - Memoria de 256 Mbytes con 8 módulos de 256 Mbits
- Cantidad de palabras direccionables
 - Memoria 128 Mbits con 4 módulos de 32 Mbits
 - Memoria 512 Mbytes con 8 módulos de 64 Mbytes

Ambos

Memoria de 256 Mbytes con 32 módulos de 64 Mbits

Construcción de memoria de 4x8bits con módulos 4x4bits

Cantidad de bits por palabra

Los dos chips son simultáneamente:

- Seleccionados con el Chip Select
- Direccionados internamente con las mismas líneas de Address

Construcción de memorias de 8x4bits a partir de módulos de 4x4bits

Cantidad de palabras direccionables

- ✓ Bits adicionales para poder direccionar mayor rango de memoria
- ✓ Lógica combinacional para elegir el chip correspondiente
- Decoders vs. Compuertas

- Decoder selecciona uno u otro chip por medio del CS
- Los bits de direcc. menos significativos direccionan internamente el chip seleccionado

Módulos de memoria comerciales

- Señales RAS y CAS
- La memoria no puede ser leída durante el refresh

¿Cómo direcciona cada posición de memoria?

Módulos de memoria comerciales

- **✓** DRAM
- **✓ DIMM 168 pines**
- **√** 16 chips de 16 Mbytes
- **✓** Organizada en palabras de 64 bits
- **√**DQ₀...DQ₆₃: 8 bytes leídos en paralelo
- \checkmark A₀...A₁₂: direccionamiento
- **✓** WE: habilita escritura
- ✓ 16 pines con V_{SS} y 16 pines con V_{DD}

PIN		PIN		PIN		PIN	
NO.	NAME	NO.	NAME	NO.	NAME	NO.	NAME
. 1	V _{ss}	43	V _{SS}	85	V _{SS}	127	V _{ss}
2	DQ0	44	OE2	86	DQ32	128	NC
3	DQ1	45	RAS2	87	DQ33	129	RAS3
4	DQ2	46	CAS2	88	DQ34	130	CAS6
5	DQ3	47	CAS3	89	DQ35	131	CAS7
6	V _{pp}	48	WE2	90	V _{DD}	132	.NC
7	DQ4	49	V _{DD}	91	DQ36	133	V _{DD}
8	DQ5	50	NC	92	DQ37	134	NC
9	DQ6	51	NC	93	DQ38	135	NC
10	DQ7	52	NC	94	DQ39	136	NC
11	DQ8	53	NC	95	DQ40	137	NC
12	V _{SS}	54	V _{ss}	96	V _{SS}	138	V _{ss}
13	DQ9	55	DQ16	97	DQ41	139	DQ48
14	DQ10	56	DQ17	98	DQ42	140	DQ49
15	DQ11	57	DQ18	99	DQ43	141	DQ50
16	DQ12	58	DQ19	100	DQ44	142	DQ51
17	DQ13	59	V _{DD}	101	DQ45	143	V _{DD}
18	V _{DD}	60	DQ20	102	V _{DO}	144	DQ52
19	DQ14	61	NC	103	DQ46	145	NC
20	DQ15	62	NC	104	DQ47	146	NC
21	NC	63	NC_	105	NC	147	NC
22	NC	64	V _{ss}	106	NC	148	Vss
23	V _{SS}	65	DQ21	107	V _{SS}	149	DQ53
24	NC	66	DQ22	108	NC.	150	DQ54
25	NC	67	DQ23	109	NC	151	DQ55
26	Von	68	V _{SS}	110	V _{DD}	152	V _{ss}
27	WE0	69	DQ24	111	NC	153	DQ56
28	CAS0	70	DQ25	112	CAS4	154	DQ57
29	CAS1	71	DQ26	113	CAS5	155	DQ58
30	RAS0	72	DQ27	114	RAST	156	DQ59
31	OE0	73	V _{DD}	115	NC	157	V _{DD}
32	V _{SS}	74	DQ28	116	V _{SS}	158	DQ60
33	_ A0	75	DQ29	117	A1	159	DQ61
34	A2	76	DQ30	118	A3	160	DQ62
35	A4	77	DQ31	119	A5	161	DQ63
36	A6	78	V _{SS}	120	A7	162	V _{SS}
37	A8	79	NC	121	A9	163	NC
38	A10	80	NC	122	A11	164	NC
39	A12	81	NC	123	NC	165	SA0
40	V _{DD}	82	SDA	124	V _{DD}	166	SA1
41	NC	83	SCL	125	NC	167	SA2
42	NC	84	V _{DD}	126	NC	168	V _{DD}

Reduciendo los tiempos de acceso

- ✓ Mayor velocidad del clock (bus de memoria sincrónico)
 - Problemas a resolver:
 - Mayor consumo de potencia
 - Proclive a errores de almacenamiento de bits
- ✓ Mayor cantidad de bits leídos en paralelo (ancho del bus)
 - Problemas a resolver
 - Espacio ocupado por la mayor cantidad de pines
- ✓ Bancos entrelazados
 - Accede a un banco mientras en el otro se refresca la información
 - Enmascara el tiempo de refresco
 - Mejora rendimiento si pos. sucesivas están en bancos diferentes

La RAM dinámica es relativamente similar en todas las tecnologías, las principales diferencias están en su conexionado, direccionamiento y mejoras con circuitos adicionales on-chip

Memoria de sólo-lectura (ROM)

- Sin Flip-Flops ni capacitores
- Es un circuito combinacional

Location	Stored word		
00	101		
01	011		
10	110		
11	000		

ROM de 4x3bits

Memoria de sólo-lectura (ROM)

- Sin Flip-Flops ni capacitores
- Es un circuito combinacional

Tipos de memoria no volátil

- ROM (Grabadas en fabrica, sólo grandes cantidades)
- PROM (Programables por el usuario con dispositivo especial, sólo 1 escritura)
- EPROM (Regrabable, borrado por UV)
- EPROM (Regrabable, borrado por potencial eléctrico)

Organización de la memoria

Tiempos de acceso de los distintos tipos

Capacidad vs. Velocidad

- Menor tiempo de acceso => mayor costo por bit
- Mayor capacidad => menor costo por bit
- Mayor capacidad => mayor tiempo de acceso

una computadora ...

...requiere de <u>mucha</u> memoria y de memoria muy <u>rápida</u>

Organización de la memoria

Tiempos de acceso

Organizar el funcionamiento de los distintos tipos de memoria (SRAM, DRAM, HD)

Rendimiento del sistema: como si tuviera mucha memoria y sólo memoria rápida

Organización en jerarquías

Organización en jerarquías

Memory type	Access time	Cost/MB	Typical amount used	Typical cost
Registers	0.5 ns	High	2 KB	-
Cache	5-20 ns	\$80	2 MB	\$160
Main memory	40-80ns	\$0.40	512 MB	\$205
Disk memory	5 ms	\$0.005	40 GB	\$200

Organización en jerarquías

El porqué de la Memoria Cache

90% del tiempo de ejecución corresponde al 10% del código

"Principio de localidad"

- Localidad temporal
 Si accedo a una dirección, en poco tiempo volveré a accederla
- Localidad espacial
 Si accedo a una dirección, las direcciones cercanas tienen mayor probabilidad de ser accedidas

El porqué de la Memoria Cache

90% del tiempo de ejecución corresponde al 10% del código

"Principio de localidad"

- Localidad temporal
 Si accedo a una dirección, en poco tiempo volveré a accederla
- Localidad espacial

 Si accedo a una dirección, las direcciones cercanas tienen mayor probabilidad de ser accedidas

Datos almacenados en posiciones contiguas

Iteraciones, procedimientos recursivos

Memoria Cache

Evita el cuello de botella producido por la marcada diferencia entre la velocidad del CPU y la velocidad de memoria principal

Físicamente el cache es:

- Memoria muy rápida
- de poca capacidad
- "Cercana" al CPU

Cómo funciona:

- Memoria dividida en bloques
- Al acceder un dato de mem. principal: bajo bloque completo al cache
- En el próximo acceso verifico si la posición buscada esta en cache, si no cargo otro bloque

Agrega pasos al proceso de lectura/escritura pero:

Cache + Principio de localidad => Aumenta el rendimiento

Memoria Cache

- ✓ El cache es invisible al programador
- ✓ Porqué la mem. cache es más rápida que la mem. princ.?
 - Construida con electrónica más rápida (SRAM)
 - es más cara, ocupa más espacio y disipa más potencia
 - pero es escasa
 - Por ser escasa su árbol de decodificación es pequeño
 - Su cercanía al CPU es física y lógica, no se comunica por un bus compartido

Mapeo de Memoria Cache

Mapeo de Memoria Cache

Dirección del dato en memoria principal

Dirección dentro de la memoria cache

- Mapeo asociativo
- Mapeo directo
- Mapeo asociativo por conjuntos

Midiendo la performance del cache

Tasa de aciertos

$$Hit\ ratio = \frac{No.\ times\ referenced\ words\ are\ in\ cache}{Total\ number\ of\ memory\ accesses}$$

Tiempo de acceso efectivo

$$\textit{Eff. access time} = \frac{(\#\,hits)(\textit{Time per hit}) + (\#\,misses)(\textit{Time per miss})}{\textit{Total number of memory access}}$$

Estructuras del Cache

✓ Cache especializado

- Cache de datos
- Cache de instrucciones

Cache multinivel

- Cache más grandes son más lentos
- Cache grandes, mayor ind. de aciertos => varios niveles

Historia del cache en procesadores Intel

- **80386** sin caché on-chip.
- **80486** 8kB de caché unificada. Bloques de 16 bytes, asociativa de cuatro vías.
- Pentium 2 cachés on-chip. 8kB para datos y 8kB para instrucciones.
- Pentium II caché L2

Pentium 4

Caché L1: 8kBytes (4k+4k), bloques de 64 bytes, asociativa de 4 vías.

Caché L2 256kB, líneas de 128 Bytes, asociativa de 8 vías.

Caché L3

Core 2 duo

Cache L1 (32k + 32 k) L2 6 Mb

Core i7

Cache L1 (32k + 32 k) L2 256k L3 8Mb

Memoria virtual

"Cuando la RAM no alcanza...disco rígido"

El concepto de memoria virtual comenzó con Overlay

Memoria virtual

Memoria paginada

Mapeo de memoria virtual a memoria física

Administrado por la MMU (on-chip)

Tabla de páginas

Memoria paginada

Mejorar performance

Con Memoria virtual y sólo tabla de páginas:

- Acceso a memoria = Acceso a Tabla de Página + Acceso al dato
- Aún accediendo directamente a RAM es más lento!

Solución: Translation Lookaside Buffer (TLB)

Pequeña memoria asociativa (en CPU) guarda las traducciones más recientes de memoria virtual a memoria física

=> Disminuye tiempo de acceso

Valid	Virtual page number	Physical page number		
1	0 1 0 0 1	1 1 0 0] ,	
1	10111	1001		TLB de 8 entradas
0				Memoria virtual 32 palabras
0				·
1	0 1 1 1 0	0000		Memoria física 16 palabras
0				
1	0 0 1 1 0	0 1 1 1		
0				

Memoria asociativa o "Direccionable por contenido" (CAM)

Comparación con memoria RAM:

Address	Value			
0000A000	0F0F0000			
0000A004	186734F1			
0000A008	0F000000			
0000A00C	FE681022			
0000A010	3152467C			
0000A014	C3450917			
0000A018	00392B11			
0000A01C	10034561			
32 hits 32 hits				

Random access memory

RAM

Content addressable memory

CAM

Memoria asociativa o "Direccionable por contenido" (CAM)

Memoria asociativa o "Direccionable por contenido" (CAM)

- Es dificil implementar un diseño eficiente
- Muy costosa
- Muy utilizadas pero en pocos campos de aplicación:
 - Tag memory en memoria cache
 - Translation Lookaside Buffer en memoria paginada
 - Routers
 - Compresión de datos