Homework 3: Induction & Recursion

- 8. Let A = [1, 1; 1, 0], show that $A^n = [f_{n+1}, f_n; f_n, f_{n-1}]$ where f_n is nth Fibonacci number
 - a. Base Case: n = 1

i.
$$A^1 = [f_{1+1}, f_1; f_1, f_{1+1}] = [f_2, f_1; f_1, f_0] = [1, 1; 1, 0] = A$$

- b. Assume that for all integers k > 1, the matrix for A^k is valid.
- c. Prove that if A^k is valid, then A^{k+1} is valid and equals $[f_{k+1+1}, f_{k+1}; f_{k+1}, f_{k+1+1}]$.
 - i. $A^{k+1} = A * A^k$
 - ii. = $[1, 1; 1, 0] * [f_{k+1}, f_k; f_k, f_{k-1}]$
 - iii. = $[(f_{k+1} + f_k), (f_k + f_{k-1}); f_{k+1}, f_k]$
 - iv. = $[f_{k+2}, f_{k+1}; f_{k+1}, f_k]$
- d. The matrix returned by A^{k+1} is equal to the original matrix, so the proof is complete.
- 9. Recursive definition of the set of bit strings that are palindromes
 - a. Basis: A bit string consisting of 0 or 1 bits is a palindrome.
 - b. Recursive Rule: If a bit string S is a palindrome, then a new bit string S' can be formed by adding any bit B to the beginning and end of S to form the string BSB. Since S is a palindrome, BSB, and therefore S', is also a palindrome.
- 10. Full Binary Trees: I(T), number of leaves, is 1 more than i(T), number of internal vertices
 - a. Base Case: i = 1 (tree with a single vertex)
 - i. A tree with a single vertex has no branches, so the single vertex must act as a leaf. I(T) = 1 and I(T) = 0.
 - b. Assume that for all full binary trees T such that i < 1, I(T) = 1 + i(T).

i.
$$I(T_1) = 1 + i(T_1)$$
, and $I(T_2) = 1 + i(T_2)$

- c. Prove that $I(T_1 + T_2) = 1 + i(T_1 + T_2)$
 - i. T₁ and T₂ are connected with a root connected to the roots of the two individual trees.
 - ii. No new leaves are added, so number of leaves in the new tree is sum of leaves in two individual trees

1.
$$I(T_1 + T_2) = I(T_1) + I(T_2)$$

iii. One new vertex is added to connect the two roots, so number of vertices is the sum of the vertices of the original trees plus one.

1.
$$i(T_1 + T_2) = i(T_1) + i(T_2) + 1$$

iv. Substitute $I(T_1) = 1 + i(T_1)$ and $I(T_2) = 1 + i(T_2)$

1.
$$I(T_1 + T_2) = 1 + i(T_1) + 1 + i(T_2)$$

2.
$$I(T_1 + T_2) = (i(T_1) + i(T_2) + 1) + 1$$

3.
$$I(T_1 + T_2) = i(T_1 + T_2) + 1$$

d. Therefore, for any full binary tree T, I(T) = 1 + i(T).