TEST AND EVALUATION PROCEDURES

1. TEST AND EVALUATION PROCEDURES - INLINE ELECTRICAL TESTS

1.1. PHASE RESISTANCE

1.1.1. PURPOSE

Confirm acceptable phase resistance on sub-assembly

1.1.2. EQUIPMENT

B&K Precision 891 LCR Meter B&K Precision 9115 80V 60A 1200W Power Supply NI cDAQ9188 chassis

cDAQ Modules:

NI 9229 AI +/- 60V 4CH

(2 ea) NI 9246 AI 20Arms, 4CH

NI 9361 SE/Diff counter input, 8CH

NI 9263 AO +/- 10V, 8 CH

NI 9375 DO/DI 24V sink/source, 32CH

Non conductive workbench

No metallic objects within 50cm of the DUT

TBD Gates provided hardware

1.1.3. PROCEDURE

- 1. Initialize LCR Meter
- 2. Prompt Operator to connect the U, V and W terminals to U, V, W connectors on fixture.
- 3. Set LCR Meter to read R-X in milliohms.
- 4. Zero the LCR Meter
- 5. Prompt Operator to Start Test.

- 6. Measure resistance across motor U & V terminals
 - a. Connect Relays U V (relays TBD)
 - b. Measure R and save data
 - c. Disconnect U V relays
- 7. Measure resistance across motor U & W
 - a. Select Relays U-W (TBD)
 - b. Measure R and save data
 - c. Disconnect U-W relays
- 8. Measure resistance across motor V & W
 - a. Select Relays V-W (TBD)
 - b. Measure R and save data
 - c. Disconnect V-W relays
- Resistance measurement data must meet the value on the applicable assembly drawing.
 - a. TBD: where are these values going to be saved? INI file? CSV?
- 10. The software shall indicate all values passed or failed. TBD: Failed units will abort test?
- 11. Compliant samples may proceed to the next production station. Failures shall be routed into the reject bin for examination. Failures may be retested if results or procedure seems questionable

1.2. DIFFERENCE IN PHASE RESISTANCE

1.2.1. PURPOSE

Calculate balance of phase resistances between the UV, UW and VW phases

- 1.2.2. PROCEDURE
 - 1. The software will calculate the phase resistances difference between UV UW and save data
 - 2. The software will calculate the phase resistances difference between UV VW and save data
 - 3. The software will calculate the phase resistances difference between UW UW and save data
- 3.2.2 The software shall indicate the test passed or failed. TBD: Failed units will abort test?

1.3. PHASE INDUCTANCE

- 1.3.1. PROCEDURE
 - 12. Initialize LCR Meter
 - 13. Set LCR Meter to read Ls-(TBD) in uH
 - 14. Zero the LCR Meter
 - 15. Prompt Operator to Start Test.
 - 16. Measure inductance across motor U & V terminals
 - a. Connect Relays U V (relays TBD)
 - b. Measure L and save data
 - c. Disconnect U V relays

17. Measure inductance across motor U & W

- a. Select Relays U-W (TBD)
- b. Measure L and save data
- c. Disconnect U-W relays

18. Measure inductance across motor V & W

- a. Select Relays V-W (TBD)
- b. Measure L and save data
- c. Disconnect V-W relays

3.4. DIFFERENCE IN PHASE INDUCTANCE

3.4.1. PURPOSE

Calculate balance of phase inductance between the UV, UW and VW phases

3.4.2. PROCEDURE

- 4. The software will calculate the phase inductance difference between UV UW and save data
- 5. The software will calculate the phase inductance difference between UV VW and save data
- 6. The software will calculate the phase inductance difference between UW VW and save data
- 3.4.3 The software shall indicate the test passed or failed. TBD: Failed units will abort test?

6.4. BACK EMF TBD: Needs clarification and documentation/wiring of Gates Hardware

6.4.1. PURPOSE

Verify acceptable BEMF levels at defined speeds

BACK EMF - POWERED ROTOR / PWM CONTROLLED

EQUIPMEMENT

- 1. Power supply capable of providing 20.0 ±0.1 VDC
- 2. cDAQ Analog In (TBD) precise to 2 or more decimal places
- 3. cDAQ PWM (TBD)

4.5.2.2. PROCEDURE

- 1. Zero the meter
- 2. Connect the 3 phase test leads from the controller to the housing sub-assembly
- 3. Apply 12.5 VDC power and appropriate command signal to the test stand control board
- 4. Begin the test on the computer by hitting button
- 5. the computer will send a PWM command to the controller to spin the rotor at preprogrammed speeds (shown on drawing)
- 6. Equipment will automatically increase speed to next test step and repeat step 5 until test is completed
- 7. BEMF measurement data must meet the value on the applicable assembly drawing
- 8. Disconnect leads from the U, V and W phases
- 9. BEMF data must meet the values on the applicable assembly drawing
- 10. Compliant samples may proceed to the next production station. Failures shall be routed into the reject bin for QC examination. Failures may be retested if results or procedure seems questionable.

4.6. DIFFERENCE IN BACK EMF

4.6.1. PURPOSE

Verify the balance of BEMF measurements across the 3 phases

4.6.2. EQUIPMENT

1. Computer will automatically calculate the differences between phases

6.5. TEST AND EVALUATION PROCEDURES – EOL MOTOR AND CONTROLLER TESTS TBD: Needs clarification and documentation/wiring of Gates Hardware

5.

5.1. MOTOR RESPONSE CHECK

5.1.1.1. PURPOSE

Check motor response to the software speed commanded by the controller board when the motor is not loaded

5.1.1.2. EQUIPMENT

- Power source capable of providing minimum 20.0 ±0.1 VDC
- PCB controller PWM input command
- PCB controller output PWM analyzer
- DMM capable of measuring voltage

5.1.1.3. PROCEDURE

- 1. Power the EWP with 13.5 VDC
- 2. Start test by pushing start button on computer screen
- 3. The computer will command the pump assembly to run at the lowest speed
- 4. Measure the pump controller PWM output (amplitude and frequency, input voltage and current.
- 5. Equipment will automatically increase speed to next test step and repeat step 4
- 6. Measurement data must meet the values on the applicable assembly drawing
- 7. Repeat steps 2-6 at 9.0VDC

- 8. Repeat steps 2-6 at 16.0VDC
- 9. Compliant samples proceed to the next production station. Failures shall be routed into the reject bin for QC examination. Failures may be retested if results or procedure seems questionable.

Document Revision History

Revision	Date	Revision Notes	Author
Α	14/1/2021	Initial Release	Paul Gaier