Some slides referred from a lecture note of CUHK (Bei Yu, CMSC 5743)

ML Coding Practice Lecture 03-1 Knowledge Distillation

Prof. Jongwon Choi Chung-Ang University Fall 2022

Today's Lecture

What's Knowledge Distillation?

NIPSW – Knowledge Distillation

Knowledge Modeling

Distillation Method

Knowledge Distillation Scenarios

Cost

• BERT_{large}

- Contains 24 transformer layers with 344 million parameters
- 16 Cloud TPU | 4 days
- 12000 dollars

• **GPT-2**

- Contains 48 transformer layers with 1.5 billion parameters
- 64 Cloud TPU v3 | one week
- 43000 dollars

XLNet

- 128 Cloud TPU v3 | Two and a half days
- 61000 dollars

Trade-off

- Resource-restricted systems such as mobile devices.
- They may be inapplicable in realtime systems either, because of low

Deeper models that greatly improve state of the art on more tasks

Knowledge Distillation

Knowledge distillation is a process of distilling or transferring the knowledge from a (set of) large, cumbersome model(s) to a lighter, easier-to-deploy single model, without significant loss in performance.

Hot Topic

ensembles. Model ensembles are a pretty much guaranteed way to gain 2% of accuracy on anything. If you can't afford the computation at test time look into distilling your ensemble into a network using dark knowledge.

Andrej Karpathy
A Recipe for Training Neural Networks
http://karpathy.github.io/2019/04/25/recipe/

Distilling the Knowledge in a Neural Network

Hinton

NIPS 2014 Deep Learning Workshop

Model Compression

Ensemble model

Cumbersome and may be too computationally expensive

Solution

- The knowledge acquired by a large ensemble of models can be transferred to a single small model.
- We call "distillation" to transfer the knowledge from the cumbersome model to a small model that is more suitable for deployment.

What is Knowledge? - 1

What is Knowledge? - 2

A more abstract view of the knowledge, that frees it from any **particular instantiation**, is that it is a learned mapping from input vectors to output vectors.

Knowledge Distillation

Softmax with Temperature

Softmax with Temperature

Softmax with Temperature

Supervisory Signals

Soft target

- **One-hot**
- 2 is similar to 3 and 7 ——— 2 independent of 3 and 7.
- Contiguous distribution
 Discrete distribution
- Inter-Class variance ✓ Inter-Class variance
- Between-Class distance ✓→ Between-Class distance

Soft targets have high entropy !

Data Augmentation

Reduce Modes

NMT: Real translation data has many modes.

 MLE training tends to use a single-mode model to cover multiple modes.

Soft Targets

- 1. Supervisory signals
- 2. Data augmentation
- 3. Reduce Modes

How to Use Unlabeled Data?

Loss Function

• Transfer set = Unlabeled data + original training set

Knowledge Distillation

Distilling Task-Specific Knolwedge from BERT into Simple Neural Networks

University of Waterloo arxiv

Overview

 Distill knowledge from BERT, a state-of-the-art language representation model, into a single-layer BiLSTM

Task

- 1. Binary sentiment classification
- 2. Multi-genre Natural Language Inference
- 3. Quora Question Pairs redundancy classification
- Achieve comparable results with ELMo, while using roughly 100 times fewer parameters and 15 times less inference time.

Teacher Model

• Teacher Model: $BERT_{large}$

Student Model

• **Student Model :** Single-layer Bi-LSTM with a non-linear classifier

Data Augmentation for Distillation

 In the distillation approach, a small dataset may not suffice for the teacher model to fully express its knowledge. Augment the training set with a large, unlabeled dataset, with pseudo-labels provided by the teacher

Method

- Masking. With probability pmask, we randomly replace a word with [MASK],
- POS-guided word replacement. With probability ppos, we replace a word with another of the same POS tag.
- **n-gram sampling.** With probability png, we randomly sample an n-gram from the example, where n is randomly selected from $\{1, 2, \dots, 5\}$.

Distillation Objective

- Mean-squared-error (MSE) loss between the student network's logits against the teacher's logits.
- MSE to perform slightly better.

$$egin{aligned} \mathcal{L} &= lpha \cdot \mathcal{L}_{ ext{CE}} + (1 - lpha) \cdot \mathcal{L}_{ ext{distill}} \ &= -lpha \sum_i t_i \log y_i^{(S)} - (1 - lpha) ||oldsymbol{z}^{(B)} - oldsymbol{z}^{(S)}||_2^2 \end{aligned}$$

Result

#	Model	SST-2	QQP	MNLI-m	MNLI-mm
		Acc	F ₁ /Acc	Acc	Acc
1	BERT _{LARGE} (Devlin et al., 2018)	94.9	72.1/89.3	86.7	85.9
2	BERT _{BASE} (Devlin et al., 2018)	93.5	71.2/89.2	84.6	83.4
3	OpenAI GPT (Radford et al., 2018)	91.3	70.3/88.5	82.1	81.4
4	BERT ELMo baseline (Devlin et al., 2018)	90.4	64.8/84.7	76.4	76.1
5	GLUE ELMo baseline (Wang et al., 2018)	90.4	63.1/84.3	74.1	74.5
6	Distilled BiLSTM _{SOFT}	90.7	68.2/88.1	73.0	72.6
7	BiLSTM (our implementation)	86.7	63.7/86.2	68.7	68.3
8	BiLSTM (reported by GLUE)	85.9	61.4/81.7	70.3	70.8
9	BiLSTM (reported by other papers)	87.6^{\dagger}	- /82.6 [‡]	66.9*	66.9*

Today's Lecture

What's Knowledge Distillation?

NIPSW – Knowledge Distillation

Knowledge Modeling

Distillation Method

Knowledge Distillation Scenarios