Лабораторная работа 1.2.3

Определение моментов инерции твердых тел с помощью трифилярного подвеса

Дербенев Никита Максимович

26 октября 2023

Цель работы: Измерение момента инерции ряда тел и сравнение результатов с расчетами по теоретическим формулам; проверка аддитивности моментов инерции и справедливости формулы Гюйгенса-Штейнера.

В работе используются:

- 1. Трифилярный подвес
- 2. Штангенциркуль
- 3. Линейка
- 4. Счетчик числа колебаний и периода
- 5. Набор тел

Ход работы:

1. Проверим, достаточно хорошо ли выполняется соотношение $T\gg \tau$. Измерим для пустой платформы τ время уменьшения амплитуды колебаний в 2 раза для угла $30^\circ, 15^\circ$ и приблизительный период колебаний (табл. 1):

Таблица 1: Измерения τ, T

,	1		
$ au_{30}, c$	$ au_{15}, c$	T, c	
335	379	4.4	

Видно, что результаты отличатся более, чем в 70 раз, следовательно делаем вывод, что соотношение выполняется хорошо и потери в системе достаточно маленькие.

2. Найдем рабочий диапазон амптитуд колебаний. Для этого будем уменьшать амплитуду колебаний до тех пор, пока период колебаний не перестанет зависеть от амплитуды. Измерим период и занесем в табл. 2:

Таблица 2: Измерения амплитуды

φ	30°	15°	10°	7°	5°
T, c	4.48	4.39	4.37	4.36	4.36

Как видим, период колебаний перестает изменяться при $\varphi=7^\circ$, значит можно использовать его для дальнейших измерений. Использовать меньший угол не имеет смысла, так как точность измерений от этого не увеличивается, а сложность измерений возрастает.

3. Определим необходимое количество колебаний для измерений периода с точностью $\varepsilon_T = 0.5\%$.

$$N = \frac{\sigma_T}{T\varepsilon_T} < 1$$

Для надежности возьмем N=5, так как кроме систематической, измерения могут содержать случайную погрешность (особенности счетчика).

Таблица 3: Параметры установки

	Величина	σ	ε			
l, mm	2154.0	2	0.0009			
z_0 , MM	2151.0	2	0.0009			
r, MM	30.5	0.3	0.0098			
R, mm	114.6	0.5	0.0004			
m , Γ	934.7	0.5	0.0005			

4. Измерим параметры установки $l,\,R$ и $r,\,m$ их погрешности (табл.3). Найдем z_0 по формуле:

$$z_0 = \sqrt{l^2 - R^2} = \sqrt{2154^2 - 114.6^2} = (2151 \pm 2) \text{ mm}$$

Вычислим константу k для данной установки и ее погрешность:

$$k = \frac{gRr}{4\pi^2 z_0} \approx 0.404 \cdot 10^{-3} \frac{\text{M}^2}{c^2}$$

$$\varepsilon_k = \varepsilon_g + \varepsilon_R + \varepsilon_r + \varepsilon_{z_0} \approx 0.0111$$

$$\sigma_k = k\varepsilon_k \approx 0.037 \cdot 10^{-3} \frac{\text{M}^2}{c^2}$$

$$k = (0.40 \pm 0.04) \cdot 10^{-3} \frac{\text{M}^2}{c^2}$$

5. Опрелелим момент инерции ненагруженной платформы I_0 :

$$I_0 = kmT^2 \approx 7.11 \cdot 10^{-3} \text{ кг} \cdot \text{м}^2$$

$$\varepsilon_{I_0} = \varepsilon_k + \varepsilon_m + 2\varepsilon_T \approx 0.0216$$

$$\sigma_{I_0} = I_0 \varepsilon_{I_0} \approx 0.154 \cdot 10^{-3} \text{ кг} \cdot \text{м}^2$$

$$I_0 = (7.11 \pm 0.15) \cdot 10^{-3} \text{ кг} \cdot \text{м}^2$$

6. Измерим параметры имеющихся тел:

Таблица 4: Параметры тел

таолица 4. параметры тел						
Nº	Схема	Параметры	Т, с	$I + I_0, 10^{-3} \text{ кг} \cdot \text{м}^2$	$I, 10^{-3}$ кг · м ²	$I_{\rm reop}, 10^{-3} \ {\rm kg \cdot m^2}$
1		$h = (55.4 \pm 0.1) \; { m MM}$ $d = (3.9 \pm 0.1) \; { m MM}$ $D = (158.5 \pm 0.1) \; { m MM}$ $m = 748.0 \; { m \Gamma}$	4.150	11.59	4.48 ± 0.25	4.58
2	c	$a = (26.9 \pm 0.1) \; ext{mm}$ $b = (26.9 \pm 0.1) \; ext{mm}$ $c = (208.5 \pm 0.1) \; ext{mm}$ $m = 1177.5 \; ext{f}$	3.69	11.56	4.45 ± 0.25	4.33
3	D W W	$d = (20.0 \pm 0.1) \text{ mm}$ $D = (158.5 \pm 0.1) \text{ mm}$ $h = (7.0 \pm 0.1) \text{ mm}$ $H = (30.5 \pm 0.1) \text{ mm}$ m = 1122.9 g	3.584	10.57	3.46 ± 0.23	3.30
1 + 3		${ m m}=1870.9\ { m r}$	3.664	15.07	7.96 ± 0.33	7.88

Расчитаем теоретические значения моментов инерции тел и запишем в табл. 4:

$$I_1 = \frac{1}{2}m\left(r_1^2 + r_2^2\right) = \frac{1}{2}m\left(\left(\frac{D-d}{2}\right)^2 + \left(\frac{D}{2}\right)^2\right) = 4.58 \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$$

$$I_2 = \frac{1}{12}m\left(a^2 + c^2\right) = 4.33 \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$$

$$\begin{split} m_1 &= m \frac{V_1}{V} = m \frac{d^2 H}{d^2 H + D^2 h} \\ m_2 &= m \frac{V_2}{V} = m \frac{D^2 h}{d^2 H + D^2 h} \\ I_3 &= \frac{1}{8} m_1 d^2 + \frac{1}{8} m_2 D^2 = \frac{1}{8} m \frac{d^4 H + D^4 h}{d^2 H + D^2 h} = 3.30 \cdot 10^{-3} \ \text{kg s}^2 \cdot \text{m}^2 \end{split}$$

7. Измерим моменты инерций всех тел и запишем в табл. 4. Момент инерции и его погрешность расчитаем по формуле:

$$I = k(m_0 + m)T^2 - I_0$$

$$\sigma_I = \sigma_{I_0} + \sigma_I = \varepsilon_{I_0}I_0 + \varepsilon_{I_0}I = \varepsilon_{I_0}(I_0 + I)$$

Как видим, все измеренные моменты инерции I_i не выходят за пределы погрешности σ_{I_i} .

8. Измерим момент инерции тел 1 и 3 вместе, результаты запишем в табл. 4. Как видно из таблицы, аддитивность моментов инерции соблюдается, значение лежит в пределе допустимой погрешности:

$$I_{1+3} = (7.96 \pm 0.33) \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$$

 $I_1 + I_3 = (7.94 \pm 0.48) \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$

9. Поместим на платформу диск, разрезанный по диаметру, горизонтально. Постепенно раздвигая половинки диска так, чтобы их общий центр масс все время оставался на оси вращения платформы, снимем зависимость момента инерции системы I от расстояния h каждой из половинок до центра платформы. Масса грузиков m=1.336 кг. Расчитаем моменты инерции по формуле и запишем в табл. 5:

$$I = k(m+m_0)T^2 - I_0$$

Таблица 5: Слвиг половинок цилиндра

таолица о. Сдвиг половинок цилиндра							
$N_{\overline{0}}$	h, mm	T, c	$I, 10^{-3}$ кг · м ²	T, c	$I, 10^{-3}$ кг · м ²		
1	0	3.094	1.58	3.012	1.13		
2	5	3.098	1.61	3.020	1.17		
3	10	3.116	1.71	3.040	1.29		
4	15	3.142	1.86	3.068	1.44		
5	20	3.188	2.12	3.104	1.64		
6	25	3.226	2.34	3.164	1.98		
7	30	3.294	2.75	3.222	2.32		
8	35	3.370	3.21	3.298	2.77		
9	40	3.444	3.66	3.382	3.28		
10	45	3.550	4.34	3.466	3.80		
11	50	3.634	4.88	3.562	4.41		

Построим график зависимости $I(h^2)$. По графику видно, что он представляет собой линейную зависимость $I = kh^2 + b$.

По формуле Гюйгенса-Штейнера:

$$I(h) = I + mh^2$$

Найдем коэффициенты по МНК:

$$I=b=(1.565\pm0.009)\cdot10^{-3}\ \mathrm{kf\cdot m}^2$$
 $m=k=(1.335\pm0.011)\ \mathrm{kf}$

10. Повторим измерения для вертикального положения половинок, запишем в табл. 5. Найдем коэффициенты по МНК:

$$I=b=(1.142\pm0.005)\cdot10^{-3}\ {
m kg\cdot m}^2$$
 $m=k=(1.336\pm0.006)\ {
m kg}$

Как видно из эксперимента, формула Гюйгенса-Штейнера работает, а массы цилиндра, вычисленные по МНК, лежат в пределах допустимой погрешности.

Рис. 1: Графики зависимостей $I(h^2)$ для разных положений половинок

Вывод С помощью трифилярного подвеса можно определять момент инерции с достаточно большой точностью $\varepsilon_{I_0}\approx 2.2\%$. Такая точность обусловлена малой погрешностью измерения времени и условиями, при которых колебания подвеса можно считать слабозатухающими.

Мы экспериментально доказали аддитивность моментов инерции с помощью различных тел.

Полученная зависимость $I(h^2)$ аппроксимируется линейной зависимостью, что подвтерждает формулу Гюйгенса-Штейнера ($I=I_c+Mh^2$, где I — момент инерции тела, I_c —момент инерции тела относительно центра, M — масса тела, а h — расстояние между двумя осями, в нашем случае — между осью вращения и половинками диска).