

Image Filtering

Image Filtering

 We will briefly look at methods to reduce noise and enhance images

- Topics
 - Gray level (point transforms)
 - Spatial (neighborhood) transforms

Gray Level Transformations

- Point operations
 - s = f(r)
 - Map input pixel value r to output value s
- Examples

Example

input

output

Image Histograms

- A plot of the count of the number of pixels with each value
- Since image values are usually in the range 0..255, we will have 256 bins

image

histogram

Computing the histogram

Use OpenCV's "calcHist"* or Numpy's "histogram"

```
import cv2
import numpy as np
import urllib.request
from matplotlib import pyplot as plt
def main():
   # Download an image from the web and save it to a file.
   url = "https://live.staticflickr.com/6033/5893276634 692ed33989 b.jpg"
   urllib.request.urlretrieve(url, "myimage.jpg")
    img = cv2.imread("myimage.jpg", cv2.IMREAD_GRAYSCALE)
    img height = img.shape[0]
                                                                             Read in image as
    img width = img.shape[1]
                                                                             grayscale, so we have one
   win name = "My image"
                                                                             histogram instead of 3
   cv2.imshow(win name, img)
   cv2.waitKev(0)
   hist, bins = np.histogram(img.ravel(), 256, [0, 256])
   plt.plot(hist)
   plt.xlim([0, 256])
   plt.show()
if name == ' main ':
   main()
```

tutroals.readthedocs.io/en/latest/py tutorials/py imgproc/py histograms/py histogram begins/py histogram begins.html

^{*}For an example, see https://opencv-python-

Low contrast image

https://farm66.static.flickr.com/65535/48322636587 a5ae136d80 b.jpg

Note the uneven distribution of intensities

Histogram Equalization

- Think of the histogram H(r) as the (scaled) probability distribution of the input image values
- For good contrast, we want the histogram of the output image to be flat: p(s) = const

 This stretches contrast where the original image had many pixels with a certain range of gray levels and compresses contrast elsewhere

Mapping Function

 The desired mapping function is just the cumulative probability distribution function of the input image

$$P(r) = \int_0^r p_r(w) \, dw$$

10

Example

- OpenCV histogram equalization
 - equalizeHist()

Histogram is flat (or, it would be if the bins were larger)

Adaptive Histogram Equalization

- Instead of using a single mapping function for the whole image, we use a different mapping function for each local neighborhood
- OpenCV

```
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
adapt_img = clahe.apply(img)
```


Spatial Filtering

- Filter or mask w, size m x n
- Apply to image f, size M x N
- Sum of products of mask coeffs with corresponding pixels under mask

- Slide mask over image, apply at each point
- Also called "cross-correlation"

$$g(x, y) = \sum_{s=-m/2}^{m/2} \sum_{t=-n/2}^{n/2} w(s, t) f(x+s, y+t)$$

= $w(x, y) \otimes f(x, y)$

w(x, y)						
1	1	1				
1	1	1				

Example – box (or averaging) filter

$$g(x, y) = w(x, y) \otimes f(x, y)$$

Region around a corner

blurred corner

w(x, y)						
1	1	1				
1	1	1				
1	1	1				

$$g(x, y) = w(x, y) \otimes f(x, y)$$

0	0	0	0	0	0
0	10	20	30	30	30
0	20	40	60	60	60
0	30	60	90	90	90
0	30	60	90	90	90
0	30	60	90	90	90

blurred corner

```
# Create an averaging filter by hand.
kernel = np.ones((15,15),np.float32)/225
```

OpenCV example

Apply it.
dst = cv2.filter2D(img, ddepth=cv2.CV_8U, kernel=kernel)

- This is the "depth" of the destination image
- CV_8U means 8-bit unsigned

You can also apply a box filter directly like this:

cv2.blur(img,(15,15))

16

Gaussian Smoothing Filter

- Gaussian filter usually preferable to box filter
- Attenuates high frequencies better

$$h(x, y) = \frac{1}{2\pi\sigma^2} e^{-(x^2 + y^2)/(2\sigma^2)}$$

15x15 Gaussian, σ =3 (scaled to 1)

0.01	0.02	0.03	0.06	0.08	0.11	0.13	0.14	0.13	0.11	0.08	0.06	0.03	0.02	0.01
0.02	0.03	0.06	0.10	0.15	0.20	0.24	0.25	0.24	0.20	0.15	0.10	0.06	0.03	0.02
0.03	0.06	0.10	0.17	0.25	0.33	0.39	0.41	0.39	0.33	0.25	0.17	0.10	0.06	0.03
0.04	0.08	0.15	0.25	0.37	0.49	0.57	0.61	0.57	0.49	0.37	0.25	0.15	0.08	0.04
0.05	0.11	0.20	0.33	0.49	0.64	0.76	0.80	0.76	0.64	0.49	0.33	0.20	0.11	0.05
0.06	0.13	0.24	0.39	0.57	0.76	0.89	0.95	0.89	0.76	0.57	0.39	0.24	0.13	0.06
0.07	0.14	0.25	0.41	0.61	0.80	0.95	1.00	0.95	0.80	0.61	0.41	0.25	0.14	0.07
0.06	0.13	0.24	0.39	0.57	0.76	0.89	0.95	0.89	0.76	0.57	0.39	0.24	0.13	0.06
0.05	0.11	0.20	0.33	0.49	0.64	0.76	0.80	0.76	0.64	0.49	0.33	0.20	0.11	0.05
0.04	0.08	0.15	0.25	0.37	0.49	0.57	0.61	0.57	0.49	0.37	0.25	0.15	0.08	0.04
0.03	0.06	0.10	0.17	0.25	0.33	0.39	0.41	0.39	0.33	0.25	0.17	0.10	0.06	0.03
0.02	0.03	0.06	0.10	0.15	0.20	0.24	0.25	0.24	0.20	0.15	0.10	0.06	0.03	0.02
0.01	0.02	0.03	0.06	0.08	0.11	0.13	0.14	0.13	0.11	0.08	0.06	0.03	0.02	0.01

OpenCV: blur = cv2.GaussianBlur(img,(15,15),sigmaX=3)

Sharpening Spatial Filters

• First derivative, numerical approximation

$$\frac{\partial f}{\partial x} \approx \frac{f(x+h) - f(x)}{h}$$

Can also do central difference

$$\frac{\partial f}{\partial x} \approx \frac{f(x+h) - f(x-h)}{2h}$$

Edge Operators for 2D Images

$$\frac{\partial}{\partial y} = \begin{bmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
+1 & +2 & +1
\end{bmatrix}$$

Sobel operators

- These effectively do a blurring followed by a derivative
 - Note that you would need to scale the results

w(x, y)

-1	0	1
-2	0	2
-1	0	1

Example

f(x, y)

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0

 $g(x, y) = w(x, y) \otimes f(x, y)$

w(x, y)

Example

-1	0	1
-2	0	2
-1	0	1

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0

$$g(x, y) = w(x, y) \otimes f(x, y)$$

0	0	0	4	S	2	0	6
0	-	_	0	0	1]	0
0	3	3	0	0	-3	-3	0
0	4	4	D	0	-4	-4	ρ
0	4	ゴ	0	9	-4	-4	0
		•	•				
			•				

OpenCV Example

Computer Vision

 Create Sobel mask in x direction, and apply it

```
sobelx_kernel = np.array([
   [-1, 0, 1],
   [-2, 0, 2],
   [-1, 0, 1],
])
# Apply mask to image. Output image can contain negative values,
# so make the depth of the output image CV_32F (ie., floating).
sobelx = cv2.filter2D(img, ddepth=cv2.CV_32F, kernel=sobelx_kernel)
```

 Scale image to 0..1 so we can see the values

```
# Scale (for display purposes only).
# Min value is set to alpha, max value to beta.
result_display = cv2.normalize(
    src = sobelx, dst = None, alpha = 0, beta = 1,
    norm_type = cv2.NORM_MINMAX, dtype = cv2.CV_32F)
```

You can also just do

Instead of creating the kernel and doing filter2D, just do this. sobelx = cv2.Sobel(img, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=3)

Template Matching

Image Patch Features

- We often want to find distinctive points in the image
 - Could match these points to a 3D model, for object recognition
 - Or track them from one image to another, for motion or structure estimation
- A point can be described by the appearance of a small image "patch", or template, surrounding the point

Here, patches are 15x15 pixels

Sum of Squared Differences (SSD)

- Say we want to match a patch (template) from image I₀ to image I₁
 - We'll assume that intensities don't change, and there is only translational motion within the image
 - So we expect that

$$I_1(\mathbf{x}_i + \mathbf{u}) = I_0(\mathbf{x}_i)$$

- In practice we will have noise, so they won't be exactly equal
- But we can search for the displacement u=(x,y) that minimizes the sum of squared differences (SSD):

$$E(\mathbf{u}) = \sum_{i} w(\mathbf{x}_{i}) [I_{1}(\mathbf{x}_{i} + \mathbf{u}) - I_{0}(\mathbf{x}_{i})]^{2}$$

w(xi) is an optional weighting function, that weights the center of the patch higher than the periphery

SSD and Cross Correlation

Expanding the expression for SSD:

So, to minimize SSD, we maximize the cross-correlation score

Vector representation of correlation

 Correlation is a sum of products of corresponding terms

$$c(x, y) = \sum_{s=-m/2}^{m/2} \sum_{t=-n/2}^{n/2} w(s, t) f(x+s, y+t)$$

= $w(x, y) \otimes f(x, y)$

 We can think of correlation as a dot product of vectors w and f

$$c = w_1 f_1 + w_2 f_2 + \ldots + w_{mn} f_{mn} = \mathbf{w} \cdot \mathbf{f}$$

 If images w and f are similar, their vectors (in mn-dimensional space) are aligned

$$c = |\mathbf{w}| |\mathbf{f}| \cos \theta$$

Template Matching (continued)

 Since f is not constant everywhere, we need to normalize

$$c = \frac{\mathbf{w} \cdot \mathbf{f}}{|\mathbf{w}||\mathbf{f}|} = \cos \theta$$

 We can get better precision by subtracting off means

$$c(x,y) = \frac{\sum_{s,t} [w(s,t) - \overline{w}][f(x+s,y+t) - \overline{f}]}{\left\{\sum_{s,t} [w(s,t) - \overline{w}]^2 \sum_{s,t} [f(x+s,y+t) - \overline{f}]^2\right\}^{1/2}}$$

This is the normalized cross correlation coefficient

Perfectly Perfect match

Range: -1.0 ... +1.0

OpenCV

- C = cv2.matchTemplate(img,template,cv2. TM_CCOEFF_NORMED)
 - Does a normalized cross correlation
 - Inputs: template image T, and target image I
 - Output: correlation scores image C (values range from -1..+1)

Template T

Target image I

Template T

Source image 10

- To find the (single) highest and lowest value:
 min_val, max_val, min_loc,
 max_loc = cv2.minMaxLoc(scores)
- To find all matches greater than a threshold:
 np.where(C >= maxVal)

Target image I1

Scores image

Scores image

- The scores image is a little smaller than the input image! Why?
- The algorithm only outputs a score value wherever the template fits entirely within the image

- The scores image is smaller than the input image by half the template size, along each side and top and bottom
- You should add half the template size to the detected (x,y) coordinates from the scores image
- Namely, if the template size is (2*M+1)x(2*M+1), add M to the detected (x,y) coordinates

Maximum score = 0.851724 at (x,y) = (267,68)