

Pycom Workshop 1

Micropython, LoRa, LoPy Rob Braggaar

Micropython

- Lean and efficient implementation of Python 3
- Designed with IoT in mind
- 256k of code and 16k of RAM
- As compatible with Python as possible
- 10x faster development than C

Micropython

Pycom microcontrollers (e.g. Lopy)

Pycom microcontrollers (e.g. Lopy)

- ESP32 based
- Very low power usage
- 100% MicroPython (Python v3)
- Interpreted vs compiled (Arduino/Marvin)
- Multi-network capability
- Lots of GPIOs, interfaces and peripherals
- Small form factor
- Prototype and OEM versions

Difference with Arduino-like microcontrollers

- Ability to directly/interactively run your code
- Small file system, works like standard python modules

```
MicroPython v1.8.6-593-g8e4ed0fa on 2017-04-12; LoPy with ESP32

Type "help()" for more information.

>>> print('hello world')

hello world

>>>
```


Sensors

Connections

- I2C (Inter-Integrated Circuit, "I squared C")
- Analog
- UART (Universal Asynchronous Receiver Transmitter)
- SPI (Serial Peripheral Interface)
- Onewire

Network technologies

- LoRa
- WLAN
- BLE
- 3G / 4G

Comparison

LoRa architecture

LoRa characteristics

Spreading factor (at 125 kHz)	Bitrate	Range (indicative value, depending on propagation conditions)	Time on Air (ms) For 10 Bytes app payload				
SF7	5470 bps	2 km	56 ms				
SF8	3125 bps	4 km	100 ms				
SF9	1760 bps	6 km	200 ms				
SF10	980 bps	8 km	370 ms				
SF11	440 bps	11 km	740 ms				
SF12	290 bps	14 km	1400 ms				
	(with coding rate 4/5; bandwidth 125Khz; Packet Error Rate (PER): 1%)						

LoRa device classes

Class name	Intended usage			
(« all »)	Battery powered sensors, or actuators with no latency constraint Most energy efficient communication class. Must be supported by all devices			
B (« beacon »)	Battery powered actuators Energy efficient communication class for latency controlled downlink. Based on slotted communication synchronized with a network beacon.			
C (« continuous »)	Mains powered actuators Devices which can afford to listen continuously. No latency for downlink communication.			

LoRa

LoRa nano gateway = 1 channel (e.g. Lopy)

8 parallel channels = 8 devices

At 50% duty cycle = 16 devices

At 1% duty cycle = 800 devices

Feature	LoRaWAN	Narrow-Band	LTE Cat-1	LTE Cat-M	NB-LTE
Modulation	SS Chirp	UNB/GSK/BPSK	OFDMA	OFDMA	OFDMA
Rx bandwidth	500-125 kHz	100 Hz	20 MHz	20-1.4 MHz	200 KHz
Data Rate	290 bps – 50 Kbps	100 bit/sec 12 / 8 bytes max	10 Mbps	200 kbps – 1 Mbps	20 Kbps
Max output power	20 dBm	20 dBm	23 - 46 dBm	23/30 dBm	20 dBm
Battery lifetime - 2000 mAh	105 months (~9 years)	90 months (7.5 years)		18 months (1.5 years)	
Link budget	154 dB	151 dB	130 dB+	146 dB	150 dB
Security	Yes	No	Yes	Yes	Yes

LoRa

MQTT: IoT friendly protocol

 Ideal for sending small messages on unreliable networks

MQTT

MQTT (MQ Telemetry Transport) is a machine-tomachine or "Internet of Things" connectivity protocol on top of TCP/IP. It allows extremely lightweight publish/subscribe messaging transport.

- Topic: address for messages
- /root_topic/subtopic
- QoS: 3 different levels
- Messages

Bits and bytes

$$1 + 8 + 16 + 64 + 128 = 217$$

Computer Bit

Computer Byte

http://www.computerhope.com

What you need today

- Development board (Lopy)
- 5V power supply (micro-usb or breadboard)
- Expansion board

Software preparation

Download the following programs:

- Atom
 - Ctrl + shift + p -> install packages
 - Install PyMakr plugin
- Putty (Windows only)
- FileZilla ftp client
 - Setup as a passive, plain connection, limit 1 conn.
- Github Desktop

Handle with care

- Expansion board usb connector
- Electrostatic shocks can damage the device
- Pins and other connectors are fragile

Before we get started

Update the firmware

Latest version V1.6.12.b1

Github examples:

https://github.com/rbraggaar/sensor-city-delft

The filesystem

- boot.py (required)
- main.py (required)
- 512 Kb internal memory available for storage
- Other folders and files can be created, like drivers below: You need to add those folders to the module search path: e.g. sys.path.append('/flash/drivers')

Reset filesystem

import os
os.mkfs('/flash')

```
Remote site: /flash

Filename Filesize Filetype Last modifi... Permissi... Owner/G...

Empty directory listing
```


Example 1: onboard led

import pycom

pycom.heartbeat(False)
pycm.rgbled(0xff0000)

Example 2: light sensor

https://github.com/rbraggaar/sensor-city-delft/tree/master/light_sensor

```
4 192.168.4.1 - PuTTY
MicroPython v1.8.6-607-q9c8a0e9e on 2017-05-01; LoPy with ESP32
Login as: micro
Password:
Login succeeded!
Type "help()" for more information.
4.369882
4.369882
4.369882
0.8930631
13.64974
550.788
269.9535
4.085806
8.286217
3.994685
```


For now

Start experimenting yourself and ask questions

Next time:

- electronic components and diagrams
- how to validate sensor data
- parsing GPS data

