МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ИНСТИТУТ «ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ПРИКЛАДНАЯ МАТЕМАТИКА»

Кафедра: 806 «Вычислительная математика и программирование» Дисциплина: «Искусственный интеллект»

ЛАБОРАТОРНАЯ РАБОТА №0

VI семестр

Студент:		Калиі	нина А.В.
Группа:		M8C)-3 08Б-19
Преподаватель:		Сам	ир Ахмед
Подпись:			
Оценка:			
Дата сдачи:	«	>>	22г.
Дата проверки:	‹ ‹	>>	22г.

1. Постановка задачи

Требуется определить задачу и найти под нее необходимые данные. Выбранный датасет проанализировать, визуализировать зависимости, показать распределения данных. Подготовить отчет с результатами лабораторной работы.

2. Описание

Для выполнения лабораторной работы была поставлена задача бинарной классификации оттока клиентов телефонной компании: перестанет абонент пользоваться услугами или нет. Датасет содержит:

- 1. Churn целевая переменная, перестанет клиент пользоваться услугами или нет
- 2. ID индекс
- 3. AccountWeeks количество недель, при которых у пользователя активный аккаунт
- 4. ContractRenewal 1, если клиент продлял недавно договор, иначе 0
- 5. DataPlan 1, если у клиента есть тарифный план, 0, если нет
- 6. DataUsage ежемесячное количество гигабайт
- 7. CustServCalls количество обращений в службу поддержки
- 8. DayMins среднее время в минутах за месяц
- 9. DayCalls среднее количество звонков в месяц
- 10. MonthlyCharge средний счет за месяц
- 11. OverageFree самая большая плата за перерасход за последний год

3. Ход работы

Датасет содержит 11 показателей.

Data	columns (total 1	.1 columns):	
#	Column	Non-Null Count	Dtype
0	Churn	3333 non-null	int64
1	AccountWeeks	3333 non-null	int64
2	ContractRenewal	3333 non-null	int64
3	DataPlan	3333 non-null	int64
4	DataUsage	3333 non-null	float64
5	CustServCalls	3333 non-null	int64
6	DayMins	3333 non-null	float64
7	DayCalls	3333 non-null	int64
8	MonthlyCharge	3333 non-null	float64
9	OverageFee	3333 non-null	float64
10	RoamMins	3333 non-null	float64
dtype	es: float64(5), i	nt64(6)	

Заметим, что признаки являются числовыми. Датасет не содержит пропущенных значений.

Посмотрим на распределение признаков, визуализировав их в виде гистограммы:

Из анализа гистограмм видно аномальные распределения признаков отсутствуют.

Посчитаем коэффициенты корреляции между целевым признаком, а так же выведем тепловую карту:

Churn 1.000000 CustServCalls 0.208750

DayMins	0.205151
OverageFee	0.092812
MonthlyCharge	0.072313
RoamMins	0.068239
DayCalls	0.018459
AccountWeeks	0.016541
DataUsage	-0.087195
DataPlan	-0.102148
ContractRenewal	-0.259852

Сделаем некоторые выводы исходя из анализа матрицы корреляции:

- Наиболее сильная корреляция целевой переменной наблюдается с CustServCall, DayMins и ContractRenewal.
- Меньше целевой признак коррелирует с MonthlyCharge

Проверим соотношение классов

Классы являются несбалансированными. Необходимо изменить соотношение классов для корректного обучения модели в дальнейшем.

Новое соотношение классов:

4. Выводы

В ходе выполнения лабораторной работы был проведен анализ данных, для их дальнейшего использования при обучении линейной модели. Так же произведены визуализация распределения данных и корреляционной матрицы с целью изучения зависимостей между ними. Выяснилось, что целевой признак churn зависит от имеющихся данных, что позволит получить хорошую модель в дальнейшем.