Texas State University

MATH 3323: Differential Equations Instructor: Nestor Guillen

Problem Set 8

(1) For each matrix A bellow, compute e^{tA} . In each case you are given a basis of eigenvectors for A that you can use in your computation (the respective eigenvalues are not given, but those you can find easily given the eigenvectors!).

(a)
$$A = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$$
, $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$
(b) $A = \begin{pmatrix} 2 & -1 \\ 10 & 5 \end{pmatrix}$, $v_1 = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$
(c) $A = \begin{pmatrix} -2 & 8 \\ 2 & -2 \end{pmatrix}$, $v_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

(2) Find the general solution to $\dot{x} = Ax + b$ for each A and b given bellow (note you are explicitly given the exponential matrix e^{tA} for each case)

(3) Find the general solution to $\dot{x} = Ax + b$, where

$$A = \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} \text{ and } b = \begin{pmatrix} 2e^{-2t} \\ -e^{-2t} \end{pmatrix}$$

Hint: Remember that the general solution is a sum of the general solution to the homogeneous equation plus a particular solution to the inhomogeneous equation.

(4) (BONUS) Find a fundamental matrix $\Psi(t)$ (for example, e^{tA}) for the system $\dot{x} = Ax$ for each of the following A's.

(a)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ -8 & -5 & -3 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$

(5) (BONUS) Consider a linear second order differential equation

$$\ddot{x} + B\dot{x} + Cx = 0.$$

such that $B^2 - 4C < 0$. In this case the roots of the characteristic polynomial are not real numbers.

(a) Show that if the roots are $\lambda = \mu \pm i\omega$ then μ and ω are given by the formulas

$$\mu = -\frac{1}{2}B$$
 and $\omega = \frac{1}{2}\sqrt{4C - B^4}$

- (b) Write down a general formula for solutions x(t) using μ and ω .
- (c) Let x(t) be a real solution of the differential equation, using the formula obtained in part (b) show that the function x(t) will always take both positive and negative values as t varies, except if x is the trivial solution given by x(t) = 0 for all t.