4 Занятие 22/09/2020: мера Лебега, борелевские множества, конструкции мер

Задачи

- (1) Обозначим через μ меру Лебега на отрезке [0,1] и введем на пространстве измеримых по Лебегу подмножеств отрезка [0,1] отношение эквивалентности: полагаем $A \sim B$ если $\mu(A \triangle B) = 0$. Доказать, что множество классов эквивалентности имеет мощность континуума.
- (2) Пусть A_n последовательность измеримых по Лебегу множеств на прямой. Являются ли измеримымы по Лебегу верхний и нижний пределы последовательности A_n ?
- (3) Пусть A_n последовательность измеримых множеств и $\sum_{n=1}^{\infty} \mu(A_n) < \infty$. Докажите, что $\mu(\overline{\lim}_{n\to\infty}A_n)=0$.
- (4) Пусть μ мера на S. Покажите, что следующие условия эквивалентны, если S кольцо, и могут быть неэквивалентны если S полукольцо:
 - (a) Счетная аддитивность: $\mu\left(\bigsqcup_{k=1}^{\infty}A_{k}\right)=\sum_{k=1}^{\infty}A_{k};$
 - (b) Полунепрерывность сверху: если $A_1 \supset A_2 \supset \dots$ и $A = \bigcap_{k=1}^{\infty} A_k$, то $\mu(A) = \lim_{k \to \infty} \mu(A_k)$;
 - (c) Полунепрерывность снизу: если $A_1 \subset A_2 \subset \dots$ и $A = \bigcup_{k=1}^{\infty} A_k$, то $\mu(A) = \lim_{k \to \infty} \mu(A_k)$;
 - (d) Непрерывность: $\mu(\lim_{k\to\infty} A_k) = \lim_{k\to\infty} \mu(A_k)$.
- (5) Доказать, что всякое измеримое по Лебегу множество на прямой является объединением борелевского множества и множества меры нуль.
- (6) Пусть мера μ задана на полукольце X с единицей и μ^* соответствующая ей внешняя мера. Множество $A\subset X$ называется **измеримым по Каратеодори**, если для любого $B\subset A$ выполнено $\mu^*(B)=\mu^*(A\cap B)+\mu^*(B\setminus A)$.

Докажите, что множество измеримо по Лебегу тогда и только тогда когда оно измеримо по Каратеодори.

- (7) Пусть $m-\sigma$ -аддитивная мера на полукольце. Множество A называется **множеством** σ -однозначности для меры m, если
 - (a) Существует определенное на A σ -аддитивное продолжение λ меры m;
 - (b) Для любых двух таких σ -аддитивных продолжений λ_1, λ_2 выполнено $\lambda_1(A) = \lambda_2(A)$.

Докажите, что любое измеримое по Лебегу множество A является множеством σ -однозначности для меры m.

- (8) В терминах задачи (5) докажите, что систтема измеримых по Лебегу множеств исчерпывает всю системы множеств σ -однозначности для меры m.
- (9) Построить пример неизмеримого по Лебегу множества на прямой.
- (10) Построить пример измеримого по Лебегу множества на плоскости, проекции которого на координатные оси незмеримы.