EEE4117F: ONLINE QUIZ 4

ELECTRICAL MACHINES AND POWER ELECTRONICS

Prepared By:

Ronak Mehta - MHTRON001

Faculty of Engineering and the Built Environment

26th June **2020**

PART A – ELECTRICAL MACHINES

Question 1:

Question 2:

PAPER: Quartion 2

2.1) Synchronous speed:
$$120f = 120(60) = 1800 \text{ kp} = 188.496 \text{ rad/s}$$

For why-connected; $V_{ch} = \frac{V_{c}}{\sqrt{3}} = \frac{208}{\sqrt{3}} = 120.09 \text{ V}$
 $P_{ch} = P_{ch} = \sqrt{3} \text{ V. I. say} \ll \text{where cosp} = 1 \text{ due to unity pf} \gg$
 $3000 = \sqrt{3} (208)(1_5)$
 $\overline{1}_5 = 8.327A$
 $\overline{E} = 7 - \overline{1}_5(R_5 + j)X_3$
 $= 120.09 - j8.327(8 + 3)Z$
 $\overline{E} = 120.09 - j99.948$
 $\overline{E} = (233.15 L - 58.998')V$
 $|E_E = 233.15 V| \text{ of an angle of } -58.998'$
 $|P_{ch} = 3VE | Sin S$
 $|S_{ch} = 0.9572| \Rightarrow S = 59'$

PART B – POWER ELECTRONICS

Question 1:

	EEE4117f Quiz 4:	and the
	PART B: Question 1	
1.17	full-bridge inverter is advantageous in high power applications as Less	
/	paralleling of switches are required due to the output current	
	and switch currents of full-bridge being one-half when compared	
	to half-bridge inverters.	
	In half-bridge = P VAD	
	To full-bridge = P/2Vmo	
1.2)	(a) Space Vector pum generates less harmonic distortion in the	
	output compared to sinuspidal puim-	
	(b) Spen Vertor PWM provides mae sufficient use of supply vot	tag
- Continues	compared to sinuspidal PWM.	-
		di.

Question 2:

	PART B: Question 2	
2.1	Capacitor can be connected to the input side.	
183	the transferring a series which is the parameters of the configuration and	
2.2	$Ma = \frac{V_{control}}{V_{evianyle}} = \frac{8V}{10V} = \frac{0.8}{10V}$	
	I have egge gathered at the	
2-3>	$m_f = \frac{f_{SW}}{f_i} = \frac{1050 \text{Hz}}{50 \text{Hz}} = \frac{21}{}$	
2.4>	$V_1 = m_a V_{dc}$	
	V, = 0.8 (200) = 160V	
i gar	V = 160 V	
2.57	$T_1 = \frac{V_1}{Z} = \frac{V_1}{\sqrt{R^2 + \chi_L^2}}$	
	X_ = 2TCFL = 2T (50) (10mH) = 3.1415 = TO	
	$T_1 = 160 = 15.26 A$	
-	√10 + 10	
	I, = 15.26 A	
2.6	mf = 21, harmonics are @ n=21, 19 and 23	
	$V_{21} = M_a V_{00} = 0.82(200) = 164V$	
	$V_{19} = V_{23} = m_0 V_{00} = 0.22(200) = 44V$	