Análisis Cola M/M/1/k/INF NetLogo

Elaborado por:

Santiago Alejandro Cespedes Daza

David Andres Castellanos Angulo

Diana Katerine Acosta Viasús

Universidad Sergio Arboleda

Bogotá, Colombia 2024

Análisis de cola

1. Análisis matemático de la cola

Fórmulas

$$p = \frac{\lambda}{\mu}$$

$$Ns = \frac{p}{1-p}$$

$$Nq = \frac{p^2}{1-p}$$

$$Ts = \frac{1}{\mu(1-p)}$$

$$Tq = \frac{p}{\mu(1-p)}$$

Procedimiento

$$\lambda > \mu$$

$$\lambda = 0.6$$

$$\mu = 0.5$$

$$p = 1.2$$

$$Ns = \frac{1.2}{1 - 1.2} = -6$$

$$Ts = \frac{1}{0.5(1 - 1.2)} = -10$$

$$Tq = \frac{1.2}{0.5(1 - 1.2)} = -12$$

$$Nq = \frac{1.2^2}{1 - 1.2} = -7.2$$

$$\lambda < \mu$$

$$\lambda = 0.2$$

$$\mu = 0.25$$

$$p = 0.8$$

$$Ns = \frac{0.8}{1 - 0.8} = 4$$

$$Ts = \frac{1}{0.25(1 - 0.8)} = 20$$

$$Tq = \frac{0.8}{0.25(1 - 0.8)} = 16$$

$$Nq = \frac{0.8^2}{1 - 0.8} = 3.2$$

$$\lambda = \mu$$

$$\lambda = 0.5$$

$$\mu = 0.5$$

$$p = 1$$

$$Ns = \lim_{p \to 1^{+}} \frac{p}{1 - p} = -\infty$$

$$Ns = \lim_{p \to 1^{-}} \frac{p}{1 - p} = \infty$$

$$Nq = \lim_{p \to 1^{+}} \frac{p^{2}}{1 - p} = -\infty$$

$$Nq = \lim_{p \to 1^{-}} \frac{p^{2}}{1 - p} = \infty$$

$$Ts = \lim_{p \to 1} \frac{1}{0.5(1 - p)} = \infty$$

$$Tq = \lim_{p \to 1} \frac{p}{0.5(1 - p)} = \infty$$

2. Con el modelo del Net Logo realizar la comparación cuando:

Nº Prueba	Nq	Tq	Ts
1	455,255	772,415	774,249
2	510,067	819,106	820,898
3	562,073	957,79	959,649
4	493,347	835,776	837,622
5	459,916	749,735	751,537
6	544,083	884,7	886,526
7	480,589	801,156	802,995
8	427,629	723,333	725,17
9	480,28	800,85	802,662
10	448,277	732,663	734,463
Promedio	445,806	741,812	743,475

Nº Prueba	Nq	Tq	Ts
1	2,702	13,74	17,787
2	3,101	15,756	19,666
3	2,984	14,963	19,079
4	2,454	12,857	16,921
5	3,457	16,621	20,611
6	2,608	13,061	17,002
7	3,004	15,356	19,418
8	4,095	20,42	24,376
9	2,673	13,265	17,159
10	2,839	14,317	18,226
Promedio	2,992	15,036	19,025

Nº Prueba	Nq	Tq	Ts
1	81,364	162,979	165
2	85,67	171,491	173,512
3	34,147	69,529	71,509
4	26,355	53,763	55,801
5	17,202	35,688	37,698
6	52,085	104,325	106,324
7	28,265	56,94	58,933
8	30,51	62,055	64,067
9	60,237	119,805	121,802
10	74,635	148,879	150,871
Promedio	423,299	851,463	860,733

3. Comparación del modelo matemático de la cola Cola M/M/1/INF/INF con los resultados simulados

$$\lambda > \mu$$

Datos	Prueba Net logo promedios	Prueba Net Logo final	Análisis matemático
Nq	445,806	N/A	-7.2
Tq	741,812	N/A	-12
Ts	743,475	N/A	-10
Ns	-6	-6	-6

Cuando la utilización (p) es 1 o mayor como en este caso que es 1.2, la cola es infinita, es decir, no se pueden calcular el resto de los valores exactamente, solo podemos calcular un promedio y al compararlo con la parte matemática no tendrá coincidencias.

$$\lambda < \mu$$

Datos	Prueba Net Logo promedio	Prueba Net Logo final	Análisis matemático
Nq	2.992	3.2	3.2
Tq	15,036	16	16
Ts	19,025	20	20
Ns	4	4	4

Primeramente, tenemos los promedios con el valor final de cada variable, coincidiendo totalmente con la parte matemática, esto debido a que la utilización es menor de 1 (en este caso 0.8), siendo así totalmente posible utilizar las fórmulas de manera correcta sin ningún problema, como lo es en los demás casos.

$$\lambda = \mu$$

Datos	Prueba Net logo	Prueba Net Logo	Análisis
	promedios	final	matemático
Nq	423,299	N/A	Indeterminado
Tq	851,463	N/A	8
Ts	860,733	N/A	∞
Ns	Indeterminado	Indeterminado	Indeterminado

Al igual que en el primer caso donde $\lambda > \mu$, la utilización es igual a 1, siendo así imposible tener la oportunidad de hallar los valores correspondientes en la parte matemática a menos que utilicemos limites, dandonos cuenta de la que en variables como Ns y Nq el límite no existe y en Ts y Tq nos da infinito, como habíamos dicho anteriormente.

4. Conclusiones

Por último, podemos decir que para hallar el número de usuarios en el sistema es necesario que la utilización sea menor que 1 y podamos calcular el número final del número de usuarios en cola, el tiempo en cola y el tiempo en el sistema.

Cuando la tasa de arriba es menor a la tasa de servicio hay mejor eficiencia en el programa, ya que cada que un usuario va llegando se atiende rápidamente sin dejar acumular la cantidad de usuarios en cola, disminuyendo también tanto el tiempo en el sistema y como en cola.