Universidad Nacional del Altiplano Facultad de Ingeniería Estadística e Informática

Docente: Fred Torres Cruz

Autor: Quispe Cruz Joel Antoni

Simulación Bioinspirada en Bibliometría Usando el Modelo de Banco de Peces (FSS)

Fecha: 28 de mayo de 2025

Resumen

Este proyecto presenta una aplicación interactiva desarrollada en R con Shiny que simula el comportamiento de investigadores científicos mediante un modelo bioinspirado: el *Fish School Search* (FSS) o Banco de Peces. Este enfoque imita la forma en que los peces se desplazan colectivamente en busca de alimento y lo aplica al análisis bibliométrico.

Los investigadores se representan como agentes que exploran un espacio temático en busca de un tema de alto impacto. A medida que se acercan al "tema ideal", su influencia o peso aumenta. La simulación permite visualizar estas dinámicas de manera interactiva y ofrece una herramienta útil para explorar patrones emergentes en la ciencia.

Modelo bioinspirado: Banco de Peces (FSS)

El modelo FSS se basa en tres principios fundamentales:

- Movimiento individual aleatorio: Cada pez (o investigador) explora el espacio temático mediante movimientos aleatorios.
- Evaluación del beneficio: Se mide qué tan cerca está un agente del tema ideal.
- Ajuste del peso: Si el agente mejora su posición, su influencia científica crece; si no, se reduce ligeramente.

Esta lógica simula cómo los científicos tienden a agruparse en torno a temas de mayor relevancia y cómo ajustan su comportamiento en función del éxito.

Aplicación desarrollada en Shiny

La aplicación incluye las siguientes funcionalidades:

- Definición del número de investigadores, pasos de simulación y límites del espacio temático.
- Configuración del tema ideal (mayor impacto).
- Visualización dinámica del movimiento de cada agente en el espacio temático.
- Evolución del peso (influencia científica) de los investigadores.

Los gráficos generados permiten comprender visualmente cómo evolucionan las decisiones colectivas hacia áreas de mayor relevancia.

Fragmento clave del código

Uno de los bloques más importantes de la lógica FSS es el siguiente:

```
beneficio <- -abs(nueva_pos - max_tema)
if (beneficio > -abs(posiciones[i] - max_tema)) {
   posiciones[i] <- nueva_pos
   pesos[i] <- pesos[i] + 0.5
}</pre>
```

Aquí, el agente evalúa si su nuevo movimiento lo acerca al tema ideal. Si el beneficio es mayor, su posición se actualiza y su peso (influencia) aumenta. Esta lógica representa un mecanismo de aprendizaje colectivo donde los investigadores ajustan su enfoque en función del éxito temático.

Visualización

(Reemplazar la ruta por la ubicación de tu imagen generada en la app Shiny.)

Conclusiones

El modelo de banco de peces aplicado al análisis bibliométrico permite observar patrones de exploración, concentración e influencia de los investigadores en torno a temas de alto impacto. La aplicación desarrollada en Shiny facilita el análisis visual y dinámico de estas conductas, sirviendo como una herramienta didáctica e investigativa.

Este enfoque puede escalarse a simulaciones más complejas con múltiples temas, redes de colaboración o integración con datos bibliométricos reales.

Figura 1: Movimiento de investigadores hacia el tema más relevante a lo largo del tiempo.

Repositorio del código

Puedes acceder al código fuente del proyecto desde el siguiente enlace: https://github.com/Joel-11-30/sistema-bi-logico-bioinspirado.git