Математически анализ 2

Exonaut

 $24\ {
m Mapt}\ 2021\ {
m \Gamma}.$

Съдържание

1	Лен	кция 1: Пространството \mathbb{R}^m	3										
	1.1 Няколко важни неравенства												
	1.2	Видове крайно мерни пространства	4										
		1.2.1 Линейно(Векторно) пространство	4										
		1.2.2 Евклидово пространство	4										
		1.2.3 Метрично пространство	4										
		1.2.4 Нормирано пространство	5										
	1.3	Пространството \mathbb{R}^m - дефиниция и основни свойства	5										
		1.3.1 Скаларно произведение	5										
		1.3.2 Норма и метрика	6										
		1.3.3 Скаларен квадрат	6										
		1.3.4 Неравенство на Коши-Шварц, чрез скаларен квадрат	6										
		1.3.5 Неравенство на Минковски, чрез скаларен квадрат.	6										
	1.4	Точки и множества в \mathbb{R}^m	6										
		1.4.1 Паралелепипед	6										
		1.4.2 Сфера и кълбо	7										
	1.5	Редици от точки в \mathbb{R}^m	9										
2	Лекция 2: Функция на няколко променливи. Граница и												
	непрекъснатост												
	2.1	Дефниция на функция на няколко променливи	11										
	2.2 Граница на функция на няколко променливи												
		r paninga na 47 migini na minasina npanamanan	11										
	2.3	Непрекъснатост на функция на няколко променливи	12										
	2.3	Непрекъснатост на функция на няколко променливи											
3	2.3 2.4	Непрекъснатост на функция на няколко променливи Равномерна непрекъснатост на функция на няколко променливи	12 13										
3	2.3 2.4 Лен	Непрекъснатост на функция на няколко променливи Равномерна непрекъснатост на функция на няколко променливи	12 13										
3	2.3 2.4 Лен	Непрекъснатост на функция на няколко променливи Равномерна непрекъснатост на функция на няколко променливи	12 13										
3	2.3 2.4 Лен кци	Непрекъснатост на функция на няколко променливи Равномерна непрекъснатост на функция на няколко променливи	12 13 14										
3	2.3 2.4 Лен кци 3.1	Непрекъснатост на функция на няколко променливи Равномерна непрекъснатост на функция на няколко променливи	12 13 14 14										
	2.3 2.4 Лек кци 3.1 3.2 3.3	Непрекъснатост на функция на няколко променливи Равномерна непрекъснатост на функция на няколко променливи	12 13 14 14 15										
3	2.3 2.4 Лек кци 3.1 3.2 3.3	Непрекъснатост на функция на няколко променливи Равномерна непрекъснатост на функция на няколко променливи	12 13 14 14 15										
	2.3 2.4 Лек кци 3.1 3.2 3.3	Непрекъснатост на функция на няколко променливи Равномерна непрекъснатост на функция на няколко променливи	12 13 14 14 15										

		Производн Допирател																	
5	Лекция 5: Неявни функции. Съществуване и диференци- ране												и-	23					
	5.1	Неявни фу	ункци	и.				•						 •	•	٠	•		23
6	Лек	кция 6																	28
7	Упр	ажения																	29
	7.1	Лекция 1																	29
	7.2	Лекция 2																	30
	7.3	Лекция 3																	35
	7.4	Лекция 4																	40
	7.5	Лекция 5																	45

1 Лекция 1: Пространството \mathbb{R}^m

1.1 Няколко важни неравенства

Нека a_k и $b_k(k=1,2,...,m)$ са реални числа и $m\in\mathbb{N}$

Теорема 1.1.1 (Неравенство на Коши-Шварц) В сила е следното неравенство:

$$\left(\sum_{k=1}^{m} a_k b_k\right)^2 \le \left(\sum_{k=1}^{m} a_k\right) \left(\sum_{k=1}^{m} b_k\right)$$

Равенство се достига само когато a_k и b_k са пропорционални:

$$(\exists \lambda_0 : b_k = \lambda_0 a_k)$$

Равенството може да се запише:

$$\left| \sum_{k=1}^{m} a_k b_k \right| \le \sqrt{\left(\sum_{k=1}^{m} a_k\right)} \sqrt{\left(\sum_{k=1}^{m} b_k\right)}$$

Теорема 1.1.2 (**Неравенство на Минковски**) *В сила е следното неравенство:*

$$\sqrt{\sum_{k=1}^{m} (a_k + b_k)^2} \le \sqrt{\sum_{k=1}^{m} a_k^2} + \sqrt{\sum_{k=1}^{m} b_k^2}$$

Равенство се достига само когато a_k и b_k са пропорционални. Общ случай на неравенството на Минковски:

$$\left(\sum_{k=1}^{m} |a_k + b_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{m} |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{m} |b_k|^p\right)^{\frac{1}{p}} (p \ge 1)$$

Теорема 1.1.3 В сила е следното неравенство:

$$|a_k + b_k| \le \sqrt{\sum_{k=1}^m (a_k + b_k)^2} \le \sum_{k=1}^m |a_k - b_k|$$

1.2 Видове крайно мерни пространства

1.2.1 Линейно(Векторно) пространство

Дефиниция 1.2.1 Нека L е линейно (векторно) пространство над полето R. B него има въведени две операции: събиране и умножение на вектор c число.

1.
$$x, y \in L \implies z = x + y \in L$$

$$2. \ x \in L, \lambda \in \mathbb{R} \implies z = \lambda x \in L$$

1.2.2 Евклидово пространство

Дефиниция 1.2.2 Крайномерното пространство L се нарича евклидово, ако в него е въведено скаларно произведение, т.е за всеки два елемента $x,y \in L$ може да се съпостави реално число (x,y), удовлетворяващо свойствата за линейност, симетричност и положителна определеност.

1.
$$x, y, z \in L, \lambda \in \mathbb{R} \implies (x + y, z) = (x, z) + (y, z); (\lambda x, y) = \lambda(x, y)$$

$$2. \ x, y \in L \implies (x, y) = (y, x)$$

$$3. \ x \in L, x \neq 0 \implies (x, x) > 0$$

1.2.3 Метрично пространство

Дефиниция 1.2.3 Крайномерното пространство L се нарича метрично, ако в него е въведено разстояние (метрика) ρ , т.е за два елемента $x,y\in L$ може да се съпостави неотрицателно число $\rho\geq 0$ със следните свойства

1.
$$\rho(x,x) = 0; \rho(x,y) > 0, x \neq y$$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x,z) \le \rho(x,y) + \rho(y,z) . \forall x,y,z \in L$$

Метрично пространство L с метрика ρ се означава (L, ρ)

1.2.4 Нормирано пространство

Дефиниция 1.2.4 Пространството се нарича нормирано, ако в него е въведена норма $\|.\|, m.e \|.\|: L \to \mathbb{R}_0^+$ със свойства

1.
$$x = 0 \implies ||x|| = 0, x \neq 0 \implies ||x|| > 0$$

2.
$$x \in L, \lambda \in \mathbb{R} \implies ||\lambda x|| = |\lambda|||x||$$

3.
$$x, y \in L \implies ||x + y|| \le |x| + |y|$$

Теорема 1.2.1 Ако L е нормирано пространство с дадена норма $\|.\|$, то L е метрично пространство, т.е равенството $\rho(x,y) = \|x-y\|$ дефинира разстоянието в L

1.3 Пространството \mathbb{R}^m - дефиниция и основни свойства

Дефиниция 1.3.1 Множесството от наредени т-торки $a=(a_1,a_2,...,a_m)$ от реални числа. Числата $a_1,a_2,...,a_m$ се наричат съответно първа, втора, ..., т-та кордината на a.

Ако имаме $a = (a_1, a_2, ..., a_m), b = (b_1, b_2, ..., b_m), ; \lambda \in \mathbb{R}$ то

1.
$$a+b=(a_1,a_2,...,a_m)+(b_1,b_2,...,b_m)=(a_1+b_1,a_2+b_2,...,a_m+b_m)\in \mathbb{R}^m$$

2.
$$\lambda a = (\lambda a_1, \lambda a_2, ..., \lambda a_m) \in \mathbb{R}^m$$

1.3.1 Скаларно произведение

Скаларно произведение се дефинира:

$$(a,b) = \left(\sum_{k=1}^{m} a_k b_k\right)$$

С така въведено скаларно произведение пространството R^m се превръща в евклидово.

1.3.2 Норма и метрика

С равенството:

$$||a|| := \sqrt{\sum_{k=1}^{m} (a_k)^2}$$

се въвежда норма в \mathbb{R}^m .

Нормата генерира метрика в \mathbb{R}^m с формула:

$$\rho(a,b) := ||a-b|| = \sqrt{\sum_{k=1}^{m} (a_k - b_k)^2}$$

1.3.3 Скаларен квадрат

Скаларен квадрат: $a^2 = (a, a) = \sum_{k=1}^{m} a_k^2$

1.3.4 Неравенство на Коши-Шварц, чрез скаларен квадрат

Коши-Шварц чрез скаларен квадрат: $(a,b)^2 \le a^2b^2$ и $|(a,b)| \le ||a|| ||b||$

1.3.5 Неравенство на Минковски, чрез скаларен квадрат

Неравенство на Минковски чрез скаларен квадрат: $\|a+b\| \leq \|a\| + \|b\|$

1.4 Точки и множества в \mathbb{R}^m

1.4.1 Паралелепипед

Дефиниция 1.4.1 Множеството

$$\Pi(a; \delta_1, \delta_2, ..., \delta_m) = \{x \in \mathbb{R}^m : -\delta_k < x_k - a_k < \delta_k\}$$

се нарича отворен паралелепипед в \mathbb{R}^m с център точката а.

Множеството

$$\widetilde{\Pi}(a; \delta_1, \delta_2, ..., \delta_m) = \{x \in \mathbb{R}^m : -\delta_k \le x_k - a_k \le \delta_k\}$$

се нарича затворен паралелепипед в R^m с център точката а.

Ако $\delta_1 = \delta_2 = ... = \delta_m = \delta$, получените множества $\Pi(a; \delta)$ и $\widetilde{\Pi}(a; \delta)$ се наричат съответно отворен и затворен куб в \mathbb{R}^m с център a.

1.4.2 Сфера и кълбо

Дефиниция 1.4.2 Нека числото r > 0. Множеството

$$B(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) < r\} = \{x | x \in \mathbb{R}^m, ||x - a|| < r\}$$

се нарича отворено кълбо в \mathbb{R}^m с център а и радиус r, множеството

$$\widetilde{B}(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) \le r\} = \{x | x \in \mathbb{R}^m, ||x-a|| \le r\}$$

се нарича затворено кълбо в \mathbb{R}^m с център а и радиус r, а множеството

$$S(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) = r\} = \{x | x \in \mathbb{R}^m, ||x - a|| = r\}$$

се нарича сфера в \mathbb{R}^m с център а и радиус r, а множеството

Дефиниция 1.4.3 Точката а се нарича

- ullet вътрешна за множеството A, ако съществува отворено кълбо $B(a,arepsilon):B(a,arepsilon)\subset A$
- ullet външна за A, ако съществува $B(a,\varepsilon):B(a,\varepsilon)\subset\mathbb{R}^m\setminus A$
- контурна за A, ако за всяко $\varepsilon > 0$: $B(a, \varepsilon) \cap A \neq \emptyset$ u $B(a, \varepsilon) \cap (\mathbb{R}^m \setminus A) \neq \emptyset$
- изолирана ако съществува $\varepsilon > 0 : B(a, \varepsilon) \cap A = \{a\}$

Дефиниция 1.4.4 Множеството $A \subset \mathbb{R}^m$ се нарича

- отворено, ако всяка негова точка е вътрешна
- ullet затворено, ако неговото допълнение $\mathbb{R}^m \setminus A$ е отворено

Дефиниция 1.4.5 Околност на дадена точка $a \in \mathbb{R}^m$ се нарича всяко отворено множество, което я съдържа. Означава се с U_a .

Дефиниция 1.4.6 Точка а се нарича точка на сетстяване на множеството $A \subset \mathbb{R}^m$, ако всяка нейна околност U_a съдържа поне една точка на A, различна от a, т.е $U_a \cap (A \setminus \{a\} \neq \varnothing)$

Дефиниция 1.4.7 Величината

$$d = d(A) = \sup_{a', a'' \in A} \rho(a'; a'')$$

се нарича диаметър на множеството $A \subset \mathbb{R}^m$.

Дефиниция 1.4.8 Множеството $A \subset \mathbb{R}^m$ се нарича ограничено, ако съществува кълбо(с краен радиус), което го съдържа.

Дефиниция 1.4.9 Множеството $A \subset \mathbb{R}^m$ се нарича компактно, ако A е затворено и ограничено.

Дефиниция 1.4.10 Множеството $x = (x_1, x_2, ..., x_m) \in \mathbb{R}^m$, чийто кординати са непрекъснати функции $x_k = x_k(t)(k = 1, 2, ..., m)$, дефинирани върху даден интервал [a,b] се нарича непрекъсната крива в R^m . t се нарича параметър на кривата.

Точките $x(a) = (x_1(a), x_2(a), ..., x_m(a))$ и $x(b) = (x_1(b), x_2(b), ..., x_m(b))$ се наричат начало и край на дадената крива. Ако x(a) = x(b) кривата е затворена

Дефиниция 1.4.11 Нека $x^0 = (x_1^0, x_2^0, ..., x_m^0) \in \mathbb{R}^m$ и $\alpha_1, \alpha_2, ..., \alpha_m$ са фиксирани числа за които $\sum_{k=1}^m \alpha_k > 0$. Множеството от точки $x = (x_1, x_2, ..., x_m)$ чиито кординати се представят във вида

$$x_k = x_k^0 + \alpha_k t, k = 1, 2, ..., m, -\infty < t < \infty$$

се нарича права линия в пространството R^m , минаваща през точка x^0 по направление $(\alpha_1,\alpha_2,...,\alpha_m)$.

Дефиниция 1.4.12 Множесството $A \subset \mathbb{R}^m$ се нарича свързано, ако за всеки две негови точки съществува непрекъсната крива γ , която ги свързва и $\gamma \subset A$.

Дефиниция 1.4.13 Множеството $A \subset \mathbb{R}^m$ се нарича област, ако е отворено и свързано. Ако е и затворено, то се нарича затворена област.

Дефиниция 1.4.14 Област, всеки две точки на която могат да се съединят с отсечка, изияло лежаща в нея, се нарича изпъкнала област.

Дефиниция 1.4.15 Областа $A \subset \mathbb{R}^m$ се нарича звездообразна област, отностно точката $x^0 \in A$, ако за вскяка точка $x \in A$ отсечката $[x^0, x]$ лежи изияло в A.

1.5 Редици от точки в \mathbb{R}^m

Дефиниция 1.5.1 Редицата $\{x^{(n)}\}_{n=1}^{\infty}=\{x_1^{(n)},x_2^{(n)},...,x_m^{(n)}\}$ се нарича редица от точки в \mathbb{R}^m , а редицата $\{x_k^{(n)}\}_{n=1}^{\infty}(k=1\div m)$ - к-та кординатна редица. За по кратко редицата $\{x^{(n)}\}_{n=1}^{\infty}$ се означава $\{x^{(n)}\}$

Дефиниция 1.5.2 Редицата $\{y^{(l)}\}_{l=1}^{\infty}$ се нарича поредица на редицата $\{x^{(n)}\}$ и се означава:

 $\{x^{(n_l)}\}, l = 1, 2, ..., unu \{x^{(n_l)}\}_{l=1}^{\infty}$

ако за всяко l съществува такова n_l , че $y^{(l)} = x^{(n_l)}$, при това, ако l' < l'', то $n_{l'} < n_{l''}$.

Дефиниция 1.5.3 Редицата $\{x^{(n)}\}$ се нарича сходяща към точка $a \in \mathbb{R}^m$ (граница на редицата), ако за всяко $\varepsilon > 0$ съществува такова $N_0 > 0$, че за всяко $n > N_0$ е изпълено неравенството $\rho(x^{(n)};a) = \|x^{(n)} - a\| < \varepsilon$. Ако редицата няма граница, се нарича разходяща.

Дефиниция 1.5.4 Точката $a \in R^m$ се нарича точка на състяване на редицата $\{x^{(n)}\}$, ако всяка нейна околност съдържа безброй много членове на редицата.

Теорема 1.5.1 *Нека* $x^{(n)} \in \mathbb{R}^m$ за $n \in \mathbb{N}$ и точката $a \in \mathbb{R}^m$. Тогава

$$(\lbrace x^{(n)}\rbrace \to a) \iff (x_k^{(n)} \to a_k, k = 1 \div m)$$

T.e редицата има граница точката a, тогава и само тогава когато всяка от кординатите на редици $\{x_k^{(n)}\}$ има граница съответната кордината a_k на точката a

Теорема 1.5.2 (Критерий на Коши) $Heka\ x^{(n)} \in \mathbb{R}^m$ за $n \in \mathbb{N}$. $Peduyama\ x^{(n)}$ е сходяща тогава и само тогава когато за всяко $\varepsilon > 0$ съществува такова число $N_0 > 0$, че при всяко $n \in \mathbb{N}$, $n > N_0$ и всяко $p \in \mathbb{N}$ е изпълено $\rho(x^{(n+p)}, x^{(n)}) = \|x^{(n+p)} - x^{(n)}\| < \varepsilon$

Дефиниция 1.5.5 Редицата $\{x^{(n)}\}$ се нарича ограничена, ако съществува кълбо (с краен радиус), което съдържа всичките ѝ членове.

Теорема 1.5.3 (Болцано-Вайерщрас) От всяка ограничена редица в пространството R^m може да се избере сходяща подредица.

Дефиниция 1.5.6 Всяко множество $A \subset \mathbb{R}^m$ се нарича компактно, ако от всяка редица $\{x^{(n)}\}, x^{(n)} \in A$, може да се избере сходяща подредица $\{x_k^{(n)}\}$ с граница принадлежаща на A

2 Лекция 2: Функция на няколко променливи. Граница и непрекъснатост

2.1 Дефниция на функция на няколко променливи

Дефиниция 2.1.1 Казва се че дадена функция с дефиниционна област (дефиниционно множество) D, ако на всяка точка $x=(x_1,x_2,...,x_m)$ от множеството D е съпоставено реално число $f(x)=f(x_1,x_2,...,x_m)$, т.е на всяко $x \in D$ съществува единствено число $y=f(x) \in \mathbb{R}$. Понякога за кратко се записва.

$$f:D\to\mathbb{R}$$

 $B \mathbb{R}^2$ се използва (x,y) за означение, а в \mathbb{R}^3 - (x,y,z).

2.2 Граница на функция на няколко променливи

Дефиниция 2.2.1 (Коши) Нека $f: D \to \mathbb{R}, a \in \mathbb{R}^m$, а е точка на сгъстяване за D. Казва се че f(x) има граница L при $x \to a$ със стойностти $x \neq a$ ако за всяко $\varepsilon > 0$ съществува $\delta > 0$, че за всяко x от множеството $D \setminus \{a\}$, за което $\rho(x;a) = \|x - a\| < \delta$ е изпълнено $|f(x) - L| < \varepsilon$. Записва се

$$\lim_{x \to a} f(x) = L$$

Дефиниция 2.2.2 (Хайне) Нека $f: D \to \mathbb{R}, a \in \mathbb{R}^m$, а е точка на съсстяване за D. Казва се че f(x) има граница L при $x \to a$ със стойностти $x \neq a$ ако за всяка редица $\{x^{(n)}\}, x^{(n)} \in D, x^{(n)} \neq a$ сходяща към a, числовата редица $\{f(x^{(n)})\}$ има граница L.

Теорема 2.2.1 Дефинициите 2.2.1 и 2.2.2 на Коши и Хайне за граница на функция са еквивалентни.

Дефиниция 2.2.3 Нека $f: D \to \mathbb{R}, a \in \mathbb{R}^m$, а е точка на сгъстяване за D. Казва се че f(x) дивергира към ∞ (стответно към $-\infty$) при $x \to a$ със стойностти $x \neq a$, ако за всяко $A \in \mathbb{R}$ съществува такова $\delta > 0$, че за всяко x от множеството $D \setminus \{a\}$, за което $\rho(x;a) = \|x - a\| < \delta$ е изпълнено f(x) > A (стответно f(x) < A). Записва се

$$\lim_{x \to a} f(x) = \infty(-\infty)$$

Дефиниция 2.2.4 (Повторна граница) $Heka\ D \subset \mathbb{R}^2, a = (a_1, a_2) \in \mathbb{R}^2$ е точка на сгостяване за D и функция $f: D \to \mathbb{R}$. Нека съществува такава околност $U_{a_2} \subset \mathbb{R}$ на точката $_2$, че за всички стойностти $y \in U_{a_2}$ да съществува $\lim_{x\to a_1} f(x,y) = \varphi(y)$. Ако освен това съществува $\lim_{y\to a_2} \varphi(y) = A$, A се нарича повторна граница и се означава както следва

$$A = A_{1,2} = \lim_{y \to a_2} (\lim_{x \to a_1} f(x, y))$$

Аналогично се съвежда и другата повторна граница

$$A_{2,1} = \lim_{x \to a_1} (\lim_{y \to a_2} f(x, y))$$

Теорема 2.2.2 *Нека* $D \subset \mathbb{R}^2$, $a = (a_1, a_2) \in \mathbb{R}^2$ е точка на сетстяване за D и функция $f : D \to \mathbb{R}$. Нека

- 1. Съществува такава околност $U_{a_2} \subset \mathbb{R}$ на точката a_2 , че за всички стойностти $y \in U_{a_2}$ да съществува $\lim_{x \to a_1} f(x,y) = \varphi(y)$.
- 2. Съществува границата $\lim_{(x,y)\to(a_1,a_2)} f(x,y) = L.$

Тогава съществува граница $\lim_{y\to a_2}\varphi(y)$ и освен това е в сила равенствотот $\lim_{y\to a_2}\varphi(y)=L$

2.3 Непрекъснатост на функция на няколко променливи

Дефиниция 2.3.1 Казва се че функцията $f: D \to \mathbb{R}$ е непрекъсната в точка $a \in D$ ако $\lim_{x \to a} f(x) = f(a)$.

Дефиниция 2.3.2 (непрекъснатост по Коши) Казва се, че функцията $f: D \to \mathbb{R}$ е непрекъсната в точка $a \in D$, ако за всяко $\varepsilon > 0$ съществува $\delta > 0$, че за всяко x от множеството D, за което $\rho(x; a) = \|x - a\| < \delta$ е изпълнено $|f(x) - f(a)| < \varepsilon$.

Дефиниция 2.3.3 (непрекъснатост по Хайне) Казва се, че функцията $f: D \to \mathbb{R}$ е непрекъсната в точка $a \in D$ ако за всяка редица $\{x^{(n)}\}$ (с $x^{(n)} \in D$ за $n \in \mathbb{N}$) сходяща към а, числовата редица $\{f(x^{(n)})\}$ има граница f(a).

Дефиниция 2.3.4 (за съставна функция) Нека $A \subset \mathbb{R}^m$ е отворено множеество, $f: \to \mathbb{R}$ и $x_k: (\alpha, \beta) \to \mathbb{R}, k=1 \div m$. Полагайки $x(t)=(x_1(t),x_2(t),...,x_m(t)) \in A$ за всяко $t \in (\alpha,\beta)$ съставната функция $F(t)=f\circ x(t)=f(x(t))$ се дефинира по формулата

$$F(t) = f \circ x(t) = f(x(t)) = f(x_1(t), x_2(t), ..., x_m(t))$$

Теорема 2.3.1 Нека $A \subset \mathbb{R}^m$ е отворено множество $u \ f : \to \mathbb{R}$ интервальт $(\alpha, \beta) \subset \mathbb{R}$, $x_k : (\alpha, \beta) \to \mathbb{R}$ за $k = 1 \div m$. Нека освен това $x(t) = (x_1(t), x_2(t), ..., x_m(t)) \in A$ за $\forall t \in (\alpha, \beta)$ $u \ x_k$ са непрекъснати в точката $t_0 \in (\alpha, \beta)$ за $k = 1 \div m$, а f е непрекъсната в $x^0 = x(t_0)$. Тогава функцията $F(t) = f \circ x(t) = f(x(t)) = f(x_1(t), x_2(t), ..., x_m(t))$ е непрекъсната в точката t_0

2.4 Равномерна непрекъснатост на функция на няколко променливи

Дефиниция 2.4.1 Нека $A \subset \mathbb{R}^m$ е отворено множество $u \ f : A \to \mathbb{R}$. Функцията се нарича равномерно непрекъсната в A, ако за всяко $\varepsilon > 0$ съществува $\delta = \delta(\epsilon)$, че за всеки две точки $x', x'' \in A$ за които разстоянието $\rho(x'; x'') = \|x' - x''\| < \delta$, да следва, че $|f(x') - f(x'')| < \varepsilon$.

Теорема 2.4.1 (на Вайерщрас) Нека множеството $K \subset \mathbb{R}^m$ е компактно и функцията $f: K \to \mathbb{R}$ е непрекосната върху K. Тогава

- 1. f е ограничена в K, m.е същестуват $m, M \in \mathbb{R}$ такива че за всички $x \in K$ е изпълнено неравенството $m \leq f(x) \leq M$
- 2. f достифа най малката и най-голямата си стойност в K, m.e съществуват точки $x^0, y^0 \in K$, такива че

$$f(x^0) = \inf_{x \in K} f(x); f(y^0) = \sup_{y \in K} f(x)$$

Теорема 2.4.2 (на Кантор) Нека множеството $K \subset \mathbb{R}^m$ е компактно и функцията $f: K \to \mathbb{R}$ е непрекъсната върху K. Тогава f е равномерно непрекъсната върху K.

3 Лекция 3: Частни производни. Диференцируемост на функция на две и повече променливи

3.1 Дефиниция на частна производна

Ще дефинираме елементи които ще се използват.

- $D \subset \mathbb{R}^m$ отворено множество
- $x^0 = (x_1^0, x_2^0, ..., x_m^0)$ точка, принадлежаща на D
- $U_{x^0} \subset D$ околност на x^0
- $U_{x_i^0}\subset D$ околност на x_i^0 (i = 1, 2, ..., m)
- точката $(x_1^0,x_2^0,...,x_{i-1}^0,x_i^0,x_{i+1}^i,...,x_m^0)\in U_{x^0},$ за всички стойности на $x_i\in U_{x_i^0}$
- f и g функции, дефинирани съответно в D и $U_{x_i^0}$. т.е $f:D\to\mathbb{R},g:U_{x_i^0}\to\mathbb{R}$ и $g(x_i)=f(x_1^0,x_2^0,...,x_{i-1}^0,x_i^0,x_{i+1}^i,...,x_m^0)$

Дефиниция 3.1.1 Производната, ако съществува на функцията g в точката x_i^0 се нарича частна производна на функцията f(n) по променлива x_i^0) в точката x_i^0 . Използва се означението $\frac{\partial f(x^0)}{\partial x_i}$ или $f'_{x_i}(x^0)$. Частната производна на функцията f отностно променливата x_i е равна на границата на функцията $\varphi(h_i) = \frac{g(x_i^0 + h_i) - g(x_i^0)}{h_i}$ при $h_i \to 0$ (ако съществува) т.е

$$\lim_{h_{i} \to 0} \varphi(h_{i}) = \lim_{h_{i} \to 0} \frac{g(x_{i}^{0} + h_{i}) - g(x_{i}^{0})}{h_{i}} = \frac{\partial f(x^{0})}{\partial x_{i}}$$

Пример 3.1.1

$$f(x,y) = x^2 + 9xy^2$$

$$f'_x(x,y) = (x^2)'_x + (9xy^2)'_x = 2x + 9y^2$$

$$f'_y(x,y) = (x^2)'_y + (9xy^2)'_y = 0 + 9x \cdot 2 \cdot y = 18xy$$

3.2 Частни производни от по-висок ред

Дефиниция 3.2.1 Частната производна на частната производна от n-1 ред, n=1,2,... (ако съществува), се нарича частична производна от n-ти ред. Частните производни, получени при диференциране по различни променливи се наричат смесени производни, а получените при диференциране само по една и съща променлива се наричат чисти производни.

Пример 3.2.1

$$\begin{split} f(x,y) &= x^3 \sin(6y) + x^2 y^3 + 2222, f_{x,y}'' =?, f_{y,x}'' =? \\ f_{x,y}'' &= (f_x'(x,y))_y' \\ f_x'(x,y) &= (x^3 \sin(6y))_x' + (x^2 y^3)_x' + (2222)_x' = 3x^2 \sin(6y) + 2xy^3 + 0 \\ f_{x,y}'' &= (3x^2 \sin(6y) + 2xy^3)_y' \\ f_{x,y}'' &= (3x^2 \sin(6y))_y' + (2xy^3)_y' = 3x^2 \cos(6y).6 + 2.3xy^2 = 18x^2 \cos(6y) + 6xy^2 \\ f_{y,x}'' &= (f_y'(x,y))_x' \\ f_y'(x,y) &= (x^3 \sin(6y))_y' + (x^2 y^3)_y' + (2222)_y' \\ f_y'(x,y) &= x^3 \cos(6y).6 + x^2.3y^2 + 0 = 6x^3 \cos(6y) + 3x^2y^2 \\ f_{y,x}'' &= (6x^3 \cos(6y) + 3x^2y^2)_y' = (6x^3 \cos(6y))_y + (3x^2y^2)_y' \\ f_{y,x}'' &= 6.3.x^2 \cos(6y) + 3.2.xy^2 = 18x^2 \cos(6y) + 6xy^2 \end{split}$$

Теорема 3.2.1 (за равенство на смесени производни) Нека точката $(x_0, y_0) \in \mathbb{R}^2$ и нека функцията f е дефинирана в отвореното множество $U = U_{(x_0, y_0)} \subset \mathbb{R}^2$, което е нейната област т.е $f: U \to \mathbb{R}$. Нека освен това съществуват частните производни $f'_x, f'_y, f''_{x,y}, f''_{y,x}$ за всички $(x, y) \in U$ и $f''_{x,y}, f''_{y,x}$ са непрекъснати в точката (x_0, y_0) . Тогава е изпълнено равенството

$$f_{x,y}''(x_0, y_0) = f_{y,x}''(x_0, y_0)$$

3.3 Диференцируемост на функция

Ще дефинираме елементи които ще се използват.

- $x^0 \in \mathbb{R}^m$
- $U \subset \mathbb{R}^m$ отворено множество, което е околност на x^0 . Без ограничение на общността може да се счита че U е δ -околност на x^0 т.е U е отворено кълбо $B(x^0;\delta)$ с център x^0 и радиус δ
- $f: U \to \mathbb{R}$ функция дефинирана в $U = B(x^0; \delta)$

Дефиниция 3.3.1 Функцията f се нарича диференцируема в точка x^0 ако съществуват числа $A_1, A_2, ..., A_m$ и функция $\varepsilon(x^0, x-x^0)$, дефинирана за всички допустими стойности на $x \in U$ и $x-x^0=(x_1-x_1^0, x_2-x_2^0, ... x_m-x_m^0)$, като при това

$$f(x) - f(x^{0}) = \sum_{k=1}^{m} A_{k}(x_{k} + x_{k}^{0}) + \varepsilon(x^{0}, x - x^{0}) ||x - x^{0}||$$

$$u \lim_{\|x-x^0\|\to 0} \varepsilon(x^0, x-x^0) = 0$$

Дефиниция 3.3.2 Функцията f се нарича диференцируема в отвореното множество U, ако тя е диференцируема във всяка негова точка.

Теорема 3.3.1 Ако функцията $f: U \to \mathbb{R}$ е диференцируема в точката $x^0 \in U$, то тя е непрекосната.

Дефиниция 3.3.3 B случай на диференцируемост в точката x^0 на функцията $f: U \to \mathbb{R}$, изразът

$$df(x^0) \circ (h) = A_1 h_1 + A_2 h_2 + \dots + A_m h_m$$

 $(unu\ df,df(x^0))$ се нарича пълен диференциал на f(x) в точката x^0

Теорема 3.3.2 Ако функцията $f: U \to \mathbb{R}$ е диференцируема в точката $x^0 \in U$, то съществуват частните производни $\frac{\partial f(x^0)}{\partial x_k}$ в точката x^0 и освен това $A_k(x^0) = \frac{\partial f(x^0)}{\partial x_k}$, $k = 1 \div m$.

Дефиниция 3.3.4 Ако функцията $f:U\to\mathbb{R}$ е диференцируема в точката $x^0\in U$, то със следната формула се изразява нейната производна в точката x^0

$$f'(x^0) = (f'_{x_1}(x^0), f'_{x_2}(x^0), ..., f'_{x_m}(x^0))$$

Теорема 3.3.3 Ако функцията $f: U \to \mathbb{R}$ притежава частни производни $\frac{\partial f(x^0)}{\partial x_k}, k = 1 \div m$ в отвореното множество U и освен това са непрекъснати в точката $x^0 \in U$, то f е диференцируема в точката x^0 .

Дефиниция 3.3.5 Ако функцията $f: U \to \mathbb{R}$ притежава частни производни в U и тези частични производни са непрекъснати в точката $x^0 \in U$, то функцията се нарича непрекъснато диференцируема в точката x^0 . Ако тези производни са непрекъснати в U, то функцията се нарича непрекъсанот диференцируема в това множество.

Дефиниция 3.3.6 Диференциалът на диференциала от n-1 ред (n=2, 3, ...) от функцията f(aко съществува) се нарича диференциал от n-ти ред(n-ти диференциал) на тази функция и се бележи $d^n f$

Ако f е два пъти непрекъсната и диференцируема в $x^0 \in U$ тогава втория диференциал получава по следния резултат

$$d^{2}f(x^{0}) = \sum_{i=1}^{m} \sum_{j=1}^{m} f_{x_{i}x_{j}}''(x^{0}) dx_{i} dx_{j} = \left(\frac{\partial}{\partial x_{1}} dx_{1} + \dots + \frac{\partial}{\partial x_{m}} dx_{m}\right)^{2} f(x^{0})$$

което е симетрична квадратична форма на $dx_i (i=1 \div m)$.

Аналогично ако f е n пъти непрекъсната и диференцируема в $x^0 \in U$, то $d^n f(x^0)$ съществува и се дава със следната формула

$$d^{n} f(x^{0}) = \left(\frac{\partial}{\partial x_{1}} dx_{1} + \dots + \frac{\partial}{\partial x_{m}} dx_{m}\right)^{n} f(x^{0})$$

4 Лекция 4: Диференциране на съставна функция. Производна по посока. Градиент. Допирателна. Нормална права

4.1 Диференциране на съставна функция

 $x^{0} \in \mathbb{R}^{m}$ и отворено множество $U \subset \mathbb{R}^{m}$ е околност на точката x^{0} (Без ограничение на общността може да се счита че U е δ -околност на x^{0} т.е U е отворено кълбо $B(x^{0};\delta)$ с център x^{0} и радиус δ). $t_{0} \in (\alpha,\beta) \subset R$

Теорема 4.1.1 Нека функцията f е дефинирана в U, а φ_k - в интервала (α, β) , m.e

 $f: U \to \mathbb{R} \ u \ \varphi_k : (\alpha, \beta) \to \mathbb{R} \ (k = 1 \div m)$ като при това $x_k = \varphi_k(t)$ за $k = 1 \div m$, $\varphi_1(t), \varphi_2(t), ..., \varphi_m(t) \in U$ за всички стойности на $t \in (\alpha, \beta)$. Нека f е диференцируема в U, f'_k са непрекоснати в x^0 за $k = 1 \div m$, φ_k са диференцируеми в t_0 и $F: (\alpha, \beta) \to \mathbb{R}$ е дефинирана с равенствово.

$$F(t) = f(\varphi_1(t), \varphi_2(t), ..., \varphi_m(t)), t \in (\alpha, \beta)$$

Tогава функцията F е диференцируема в t_0 и в сила е следното равенство

$$F'(t_0) = \sum_{k=1}^{m} f'_{x_k}(x^0) \varphi'_k(t_0)$$

 $3a \ m = 2:$ $\varphi_1(t) = \varphi(t), \varphi_2(t) = \psi(t)$

$$F'(t_0) = f'_x(x_0, y_0)\varphi'(t_0) + f'_y(x_0, y_0)\psi'(t_0)$$

Пример 4.1.1 f(x,y) - дефинирана и диференцируема в $U_{(1,2)} \subset \mathbb{R}^2$. Непрекъснати частни производни f_x', f_y' в точката (1,2). Намерете производната F'(0) на съставната фунция F, зададена с ра-

венството
$$F(t) = f(1+3t, 2+4t).$$

$$t_0 = 0$$

$$x = \varphi(t) = 1 + 3t$$

$$y = \psi(t) = 2 + 4t$$

$$x_0 = \varphi(0) = 1$$

$$y_0 = \psi(0) = 2$$

$$\varphi'(t) = 3$$

$$\psi'(t) = 4$$

$$F'(t_0) = f'_x(x_0, y_0)\varphi'(t_0) + f'_y(x_0, y_0)\psi'(t_0) \implies F'(0) = 3f'_x(1, 2) + 4f'_y(1, 2)$$

4.2 Производна по посока. Градиент

Нека $x^0 \in \mathbb{R}^m$ и лъчът l е дефиниран, както следва:

$$l: x = x^0 + t\nu, t > 0$$

Функцията f е дефинирана върху този лъч, а

$$\varphi(t) := f(x(t)) = f(x^0 + t\nu), t > 0$$

Дефиниция 4.2.1 Границата(ако съществува)

$$\lim_{t \to 0, t > 0} \frac{\varphi(t) - \varphi(0)}{t} = \lim_{t \to 0, t > 0} \frac{\varphi(x^0 + t\nu) - \varphi(x^0)}{t}$$

се нарича производна на f в точката x^0 по посока на вектора ν и се означава $\frac{\partial f(x^0)}{\partial \nu},$ т.е

$$\frac{\partial f(x^0)}{\partial \nu} = \lim_{t \to 0, t > 0} \frac{\varphi(t) - \varphi(0)}{t} = \lim_{t \to 0, t > 0} \frac{\varphi(x^0 + t\nu) - \varphi(x^0)}{t}$$

ако същестува границата.

Ако частните производни съществуват, са производни "по посока на кординатните оси".

Aко f e deфинирана u duференцируема e околността U_{x^0} на точката

в x^0 и f'_{x_k} са непрекъснати в x_0 , то съществува производната ѝ по посока на вектора $\nu=(\nu_1,\nu_2,...,\nu_m)$ и

$$\frac{\partial f(x^0)}{\partial \nu} = \sum_{k=1}^m \nu_k \frac{\partial f(x^0)}{\partial x_k}$$

Дефиниция 4.2.2 Векторът с кординати $f'_{x_1}(x^0), f'_{x_2}(x^0), ..., f'_{x_m}(x^0)$ се нарича градиент на f в точката x^0 и се означава

$$grad f(x^0) = (f'_{x_1}(x^0), f'_{x_2}(x^0), ..., f'_{x_m}(x^0))$$

Предвид тази дефиниция, формулата за производна по посока на вектор u се записва по кратко във вида

$$\frac{\partial f(x^0)}{\partial \nu} = grad(f(x^0), \nu)$$

Теорема 4.2.1 Ако функцията f е дефинирана и диференцируема в околността U_{x^0} на точката в x^0 и f'_{x_k} са непрекъснати в x_0 , то съществува производната на f по посока на произволен вектора $\nu = (\nu_1, \nu_2, ..., \nu_m)$ и тя се дава с формула: $\frac{\partial f(x^0)}{\partial \nu} = \operatorname{grad} f(x^0)$

Ако, ν е единичен вектор, т.е $\|\nu\|=1$. Тогава е в сила неравнестово $\left|\frac{\partial f(x^0)}{\partial \nu}\right| \leq \|grad\, f(x^0)\|$, което следва от неравенство на Коши.

$$\left| \frac{\partial f(x^0)}{\partial \nu} \right| = \left| \operatorname{grad} \left(f(x^0), \nu \right) \right| \le \left\| \operatorname{grad} f(x^0) \right\| \left\| \nu \right\| = \left\| \operatorname{grad} f(x^0) \right\|$$

Равенство се достига само когато ν и $f(x^0)$ са колинеарни (еднопосочни или успоредни). тогава

$$\left| \frac{\partial f(x^0)}{\partial \nu} \right| = \|grad f(x^0)\|$$

Ако вектора ν е колинеарен с градиента, тогава векторът $\nu = \frac{grad\,f(x^0)}{\|grad\,f(x^0)\|}$ и тогава

$$\frac{\partial f(x^0)}{\partial \nu} = \left(\operatorname{grad} f(x^0), \frac{\operatorname{grad} f(x^0)}{\|\operatorname{grad} f(x^0)\|} \right) = \|\operatorname{grad} f(x^0)\|$$

Ако $\operatorname{grad} f(x^0) \neq 0$ то производната достига най голяма стойност единствено, ако диференцирането се извършва по посока на градиента. С други думи, посоката на градиента е посоката на най бързо нарастване на функцията, а големината му е равна на производната по тази посока.

Ако $\nu = (\cos \alpha_1, \cos \alpha_2, ..., \cos \alpha_m)$, то производната по посока ν става

$$\frac{\partial f(x^0)}{\partial \nu} = f'_{x_1}(x^0) \cos \alpha_1 + f'_{x_2}(x^0) \cos \alpha_2 + \dots + f'_{x_m}(x^0) \cos \alpha_m.$$

4.3 Допирателна равнина. Нормална права

- $(x_0,y_0)\in\mathbb{R}^2$ точка в \mathbb{R}^2
- $M_0(x_0, y_0, z_0) \in \mathbb{R}^3$ точка в \mathbb{R}^3
- $U = U_{(x_0,y_0)} \subset \mathbb{R}^2 =$ околност на (x_0,y_0)
- \bullet $f:U \to \mathbb{R}$ функция
- $\bullet \ z_0 = f(x,y)$
- $S: z = f(x,y) \Leftrightarrow S: f(x,y) z = 0$ уравнение на равнина
- f_x', f_y' първи частни производни за всички $(x,y) \in U, f_x', f_y'$ са непрекъснати в точката (x_0,y_0)

Дефиниция 4.3.1 Равнината $\tau(\tau \not\parallel Oz)$, зададена с уравнение

$$\tau: z - z_0 = f_x'(x_0, y_0)(x - x_0) + f_y'(x_0, y_0)(y - y_0)$$

се нарича допирателна (тангенциална) равнина в точкат M_0 към повърхнината S и представлява графиката на f(x,y).

Дефиниция 4.3.2 $Beкторите n_1, n_2$

$$n_1(-f'_x(x_0, y_0), -f'_y(x_0, y_0), 1)$$
 $n_2(f'_x(x_0, y_0), f'_y(x_0, y_0), -1),$

които са нормални вектори на тангенциалната равнина, се наричат нормални вектори и за повърхнината S.

 $n_1 = -n_2$ Това позволява да се използват за ориентация на повърхината S.

Горната страна се дефинира с вектора n_1 за който ъгъл $\measuredangle(n_1,k)$ е остър.

Дефиниция 4.3.3 Правата п, зададена с уравнение

$$n: \frac{x - x_0}{-f_x'(x_0, y_0)} = \frac{y - y_0}{-f_y'(x_0, y_0)} = \frac{z - z_0}{1}$$

се нарича нормала към повърхнината S към точка M_0

Ако прекараме две равнини през $_0$ съответно $lpha: x=x_0$ и $eta: y=y_0$ всяка от тях пресича повърхнината в крива линия съответно

$$C_1: x = x_0, y = y, z = f(x_0, y)$$
 $C_2: x = x, y = y_0, z = f(x, y_0)$

 t_1 е направляващ вектор на допирателната права на кривата C_1 в точката $_{0}$, а с t_{2} - направляващ вектор на допирателната права на кривата C_{1} в същата точката, то

$$t_1(0, 1, f_y'(x_0, y_0), t_2(1, 0, f_x'(x_0, y_0))$$

Равнината au е компланарна с векторите t_1, t_2 то нейния нормален вектор може да се получи от векторното им произведение

$$n_1 = t_2 \times t_1 \qquad n_2 = t_1 \times t_2$$

Пример 4.3.1 За повърхнина S, зададена c уранение $S: z = x^2 + y^2 + 3$, да се напишат:

- 1) допирателната равнина $\tau z M_0(0,0,3)$
- 2) нормалните вектори на τ в т. M_0 .
- 3) нормалата на повърхнината S в m. M_0 .

Решение:

$$\begin{split} z_x' &= 2x \; ; z_y' = 2y \; ; M_0(0,0,3) = M_0(x_0,y_0,z_0) \\ z_x'(x_0,y_0) &= z_x'(0,0) = 0 \; ; z_y'(x_0,y_0) = z_y'(0,0) = 0 \\ 1)\tau : z - z_0 &= z_x'(x_0,y_0)(x-x_0) + z_y'(x_0,y_0)(y-y_0) \\ \tau : z - 3 &= 0x + 0y \Leftrightarrow \tau : z = 3 \\ 2)\vec{n_1} &= (-f_x'(x_0,y_0), -f_y'(x_0,y_0), 1) = (0,0,1) \\ \vec{n_2} &= (f_x'(x_0,y_0), f_y'(x_0,y_0), -1) = (0,0,-1) \\ 3)n : \frac{x-x_0}{-f_x'(x_0,y_0)} &= \frac{y-y_0}{-f_y'(x_0,y_0)} = \frac{z-z_0}{1} \\ n : \frac{x-0}{0} &= \frac{y-0}{0} = \frac{z-3}{1} = \lambda \\ n(0,0,\lambda+3), \lambda \in \mathbb{R} \end{split}$$

5 Лекция 5: Неявни функции. Съществуване и диференциране

5.1 Неявни функции

Нека имаме уравнението F(x,y)=0 и да се реши спрямо у. Решението трябва да зависи и от другата променлива. Нека y=f(x) и заместваме в началното уравнение.

$$F(x, f(x)) = 0$$

Дефиниция 5.1.1 $A \kappa o \phi y + \kappa u u s ma f(x) y do влетворява равенството$

$$F(x, f(x)) = 0$$

за всяко x от дефиниционното си множество, то тя се нарича неявна функция, дефинирана от уравнението F(x;y)=0.

Ако диференцираме равенството F(x, f(x)) = 0 по x с теоремата за съставни функции получаваме

$$F'_x(x, f(x)) + f'(x)F'_y(x, f(x)) = 0 \implies f'(x) - \frac{F'_x(x, f(x))}{F'_y(x, f(x))}$$

Където $F_y'(x, f(x)) \neq 0$

Пример 5.1.1 $F(x,y) = x^2 + y^2 - 5$

$$F(x,y) = 0 \Leftrightarrow y^2 = 5 - x^2$$

 $y_{1,2} = \pm \sqrt{5 - x^2}$

Нека $M_0(x_0, y_0)$ точка в \mathbb{R}^2 , отвореното множество $U = U_{M_0} \subset \mathbb{R}^2$ е нейна околност и нека $F \to \mathbb{R}$.

Теорема 5.1.1 (Съществуване на неявна функция) Нека $M_0(x_0, y_0)$ точка в \mathbb{R}^2 , отвореното множество $U = U_{M_0} \subset \mathbb{R}^2$ е нейна околност и функцията $F: U \to \mathbb{R}$ удовлетворява следните условия

- 1. F е непрекосната в U
- 2. $F(x_0, y_0) = 0$

- 3. За всяка точка $(x,y) \in U \, \exists F_{y}'(x,y)$
- 4. F_y' е непрекъсната в M_0
- 5. $F'_{y}(x_0, y_0) \neq 0$

Тогава съществуват околности

$$X = \{x : |x - x_0| < a\}(a > 0)$$
 $Y = \{y : |y - y_0| < b\}(b > 0)$

такива че правотелника $\Pi = X \times Y \subset U$ и съществува единствена функция $y = f(x), f: X \to Y$, f - непрекъсната в X, $f(x_0) = y_0$ и $\forall x \in X: F(x, f(x)) = 0$

Дефиниция 5.1.2 Фунцкията y = f(x) се нарича неявна функция, дефинирана от уравнението F(x, y) = 0, в околност на точката (x_0, y_0)

Теорема 5.1.2 (Добавка към **5.1.1**) Ако освен това F'_x, F'_y са дефинирани в U и непрекъснати в (x_0, y_0) то f(x) е диференцируема в точката x_0 и $f'(x_0)$ се изразява

$$f'(x_0) = -\frac{F_x'(x_0, f(x_0))}{F_y'(x_0, f(x_0))} = -\frac{F_x'(x_0, y_0)}{F_y'(x_0, y_0)}$$

Ако F'_x, F'_y са непрекъснати в $U = U_{M_0}$, то f' е непрекъсната в X. Прилагайки формулата за производна в произволна точка в $x \in X$ получаваме

$$y' = f'(x) = -\frac{F'_x(x, f(x))}{F'_y(x, f(x))} = -\frac{F'_x(x, y)}{F'_y(x, y)}$$
(1)

Аналогично се формулира теоремата за неявна функция от уравнението F(x,y)=0, за $x(x_1,x_2,...,x_m)\in\mathbb{R}^m\ (m>2)$ и $y\in R$ т.е $F(x_1,x_2,...,x_m,y)=0$

Теорема 5.1.3 (Съществуване на неявна функция) Hека mочкаmа $x^0 = (x_1^0, x_2^0, ..., x_m^0) \in \mathbb{R}^m, M_0(x^0, y_0) \in \mathbb{R}^{m+1}$ и $U = U_{M_0} \subset \mathbb{R}^{m+1}$ е околност на M_0 и функцията $F: U \to \mathbb{R}$ удовлетворява следните условия

 $1. \; F \; e \; непрекъсната \; в \; U$

2.
$$F(x^0, y_0) = 0$$

- 3. За всяка точка $(x,y) \in U \exists F'_{y}(x,y)$
- 4. F_u' е непрекосната в M_0

5.
$$F'_{u}(x^{0}, y_{0}) \neq 0$$

Тогава съществуват околности:

$$X = \{x : |x - x_k^0| < a_k\} (a_k > 0) \ k = 1 \div m; \qquad Y = \{y : |y - y_0| < b\} (b > 0)$$

такива че правотеглника $\Pi = X \times Y \subset U, X = X_1 \times X_2 \times ... \times X_m$ и освен това съществува единствена функция $y = f(x), f: X \to Y$, f непрекъсната в X, $f(x^0) = y_0$ и $\forall x \in X: F(x; f(x)) = 0$ Ако освен това $F'_{x_k}, k = 1 \div m$ и F'_y са дефинирани в U и непрекъснати в (x^0, y_0) , то f(x) е диференцируема в точката x^0 и $f'(x_k^0)$ се изразява с формулата

$$f'(x_k^0) = -\frac{F'_{x_k}(x^0, f(x_0))}{F'_{y}(x^0, f(x_0))} = -\frac{F'_{x_k}(x^0, y_0)}{F'_{y}(x^0, y_0)}$$

Пример 5.1.2 $F(x,y) = x^2 + y^2 - 5$. Да се определи дали съществува единствена функция y = f(x) определена от неявно от уравнението F(x,y) = 0 в околността (1,2). Ако съществува да се пресметне f'(1).

$$F'_{y} = 2y; \quad F'_{y}(1,2) = 4 \neq 0$$

Съществува единствена неявна функция y = f(x) определена с уравнението F(x,y)

$$f'(x_0) = -\frac{F'_x(x_0, y_0)}{F'_y(x_0, y_0)}$$

$$F'_x = 2x, \quad F'_x(1, 2) = 4, \quad F'_y = 2y; \quad F'_y(1, 2) = 4$$

$$f'(1) = -\frac{2}{4} = -\frac{1}{2}$$

Пример 5.1.3 $F(x,y) = x^2 + y^2 - 3z^2 - 13$. Да се определи дали съществува единствена функция z = f(x,y) определена от неявно от уравнението F(x,y,z) = 0 в околността (0,1,2). Ако съществува да се

пресметне $z'_x(0,1), z'_y(0,1)$.

$$F'_z = 6z \implies F'_z(0, 1, 2) = 6 \cdot 2 = 12 \neq 0$$

Същесвува единствена неявна функция z=f(x,y) определена от неявно от уравне

$$\begin{split} F_x' &= 2x \implies F_x'(0,1,2) = 2 \cdot 0 = 0 \\ F_y' &= 2y \implies F_y'(0,1,2) = 2 \cdot 1 = 2 \\ z_x'(x_0,y_0) &= -\frac{F_x'(x_0,y_0,z_0)}{F_z'(x_0,y_0,z_0)} = -\frac{0}{6} = 0 \\ z_y'(x_0,y_0) &= -\frac{F_x'(x_0,y_0,z_0)}{F_y'(x_0,y_0,z_0)} = -\frac{2}{6} = -\frac{1}{3} \end{split}$$

Ако F'_{x_k}, F'_{y_k} са непрекъснати в $U = U_{M_0}$, то f'_{x_k} е непрекъсната в X. Прилагайки формулата за производна в произволна точка в $x \in X$ получаваме

$$y'_{x_k} = f'_{x_k}(x) = -\frac{F'_{x_k}(x, f(x))}{F'_{y}(x, f(x))} = -\frac{F'_{x_k}(x, y)}{F'_{y}(x, y)}$$
(2)

Ако F има непрекъснати частни производни от втори ред, то изразите от дясната страна на (1) (съответно (2)) могат да се диференцират още веднъж по променлива $x(x_j, j = 1 \div m)$, при което се получават вторите производни на f. Така се получават формулите

$$f''(x) = -\frac{F''_{xx}(x,y) + 2F''_{xy}y' + F''_{yy}(x,y)y'^2}{F'_{yy}(x,y)}$$

респективно, изпускайки за удобство променливите получаваме

$$f_{x_k x_k}^{"}(x) = f_{x_k^2}^{"}(x) = -\frac{F_{x_k^2}^{"} + 2F_{x_k y}^{"} y_{x_k}^{"} + F_{yy}^{"} y_{x_k}^{"}}{F_y^{"}}$$

и за $k \neq j$

$$f_{x_k x_j}^{"}(x) = -\frac{F_{x_k x_j}^{"} + F_{x_k y}^{"} y_{x_j}^{"} + F_{x_j y}^{"} y_{x_k}^{"} + F_{yy}^{"} y_{x_k}^{"} y_{x_j}^{"}}{F_y^{"}}$$

Пример 5.1.4 Да се намери y', y'' на неявната функция y = f(x), дефинирана от уравнението

$$x^2 - 2xy + 5y^2 + 4y = 2x + 9$$

Да се пресметнат y'(0), y''(0), ако y(0) = 1Решение:

$$\begin{split} F(x,y) &= x^2 - 2xy + 5y^2 + 4y = 2x + 9 \\ F'_y &= -2x + 10y + 4 \neq 0 \\ F'_x(x,y) &= 2x - 2y - 2 \\ F'_y(0,1) &= -2 \cdot 0 + 10 \cdot 1 + 4 \neq 0 \\ y'(x) &= -\frac{F'_x(x,y)}{F'_y(x,y)} = -\frac{2x - 2y - 2}{-2x + 10y + 4} = -\frac{x - y - 1}{-x + 5y + 2} \\ y'(0) &= -\frac{0 - 1 - 1}{-0 + 5 \cdot 1 + 2} = -\frac{2}{7} = \frac{2}{7} \\ y''(x) &= -\frac{F''_{xx}(x,y) + 2F''_{xy}y' + F''_{yy}(x,y)y'^2}{F'_y(x,y)} \\ F''_{xx} &= 2, \quad F''_{yy} &= 10, \quad F''_{xy} &= -2 \\ F''_{xx}(0,1) &= 2, \quad F''_{yy}(0,1) &= 10, \quad F''_{xy}(0,1) &= -2 \\ y''(x) &= -\frac{2 + 2 \cdot (-2)y' + 10y'^2}{-2x + 10y + 4} \\ y''(x) &= -\frac{2 + -4y' + 10y'^2}{-2x + 10y + 4} \\ y''(0) &= -\frac{2 + -4 \cdot \frac{2}{7} + 10 \cdot \left(\frac{2}{7}\right)^2}{-2 \cdot 0 + 10 \cdot 1 + 4} \\ y''(0) &= -\frac{98 - 56 + 40}{\frac{49}{14}} = -\frac{82}{\frac{49}{14}} = \frac{82}{49} \cdot \frac{1}{14} = \frac{41}{343} \end{split}$$

6 Лекция 6

7 Упражения

7.1 Лекция 1

Задача 7.1 Да се покаже дали посочените редици $\{X_n\} = \{x_n, y_n\}$ са сходящи или разходящи. За сходящите да се намери границите им.

1.
$$x_n = 1 + \frac{1}{n}, y_n = 2 + \frac{\sin n}{n}$$

2.
$$x_n = \left(1 + \frac{1}{n}\right)^n, y_n = 2 + n$$

3.
$$x_n = (-1)^n, y_n = n$$

4.
$$x_n = (-1)^n, y_n = \frac{1}{n}$$

5.
$$x_n = \sin \frac{n\pi}{2}, y_n = (-1)^n$$

6.
$$x_n = \sin n, y_n = \frac{(-1)^n}{n}$$

Решение:

1.
$$\lim_{n\to\infty}\frac{1}{n}=0, \frac{|\sin n|}{n}\in\left[0,\frac{1}{n}\right]\implies\lim_{n\to\infty}x_n=1, \lim_{n\to\infty}y_n=2\implies$$
 редицата е сходяща; точката (1,2) е нейна граница

2.
$$\lim_{n \to \infty} x_n = e, \lim_{n \to \infty} y_n = \infty \implies$$
разходяща редица

- 3. $\lim_{n\to\infty} x_n$ не съществува, защото има две точки на сгъстяване., $\lim_{n\to\infty} y_n = \infty \implies pазходяща редица$
- 4. $\lim_{n\to\infty} x_n$ не съществува, защото има две точки на сгъстяване., $\lim_{n\to\infty} y_n=0 \Longrightarrow p$ азходяща редица

5.
$$\lim_{n\to\infty} x_n$$
не съществува, $\lim_{n\to\infty} y_n = \infty \implies pазходяща редица$

6.
$$\lim_{n \to \infty} x_n$$
не съществува, $\lim_{n \to \infty} y_n = 0 \implies p$ азходяща редица

7.2 Лекция 2

Задача 7.2 Нека $D \subset \mathbb{R}^m$ и са разгледани няколко функции. Да се напишат дефиниционните им множества и да се даде пояснение.

1.
$$z(x,y) = x^2 + y^2$$

2.
$$z(x,y) = \sqrt{y^2 - 2x}$$

3.
$$z(x,y) = \ln \sqrt{y^2 - 2x}$$

4.
$$z(x,y) = \frac{1}{\sqrt{-y^2 + 2x + 1}}$$

5.
$$w(x, y, z) = \arccos(x^2 + y^2 + z^2)$$

6.
$$f(n) = \begin{cases} 1, & x \in \mathbb{Q}^m \\ 0, & x \in \frac{\mathbb{R}^m}{\mathbb{Q}^m} \end{cases}$$

Решение:

1.
$$z(x,y) = x^2 + y^2$$

 $D = \mathbb{R}^2$

2.
$$z(x,y) = \sqrt{y^2 - 2x}$$

 $D = \{(x,y) : y^2 - 2x \ge 0\} \subset \mathbb{R}^2, x \le \frac{y^2}{2}$

3.
$$z(x,y) = \ln \sqrt{y^2 - 2x}$$

$$D = \{(x,y) : y^2 - 2x > 0\} \subset \mathbb{R}^2, x < \frac{y^2}{2}$$

4.
$$z(x,y) = \frac{1}{\sqrt{-y^2 + 2x + 1}}$$

$$D = \{(x,y) : -y^2 + 2x + 1 > 0\} \subset \mathbb{R}^2, x > \frac{y^2 - 1}{2}$$

5.
$$w(x, y, z) = \arccos(x^2 + y^2 + z^2)$$

 $D = \{(x, y, z) : x^2 + y^2 + z^2 \le \pi\} \subset \mathbb{R}^3,$
Графиката е кълбо с център $(0, 0, 0)$ и радиус $\sqrt{\pi}$

6. $D \subset \mathbb{R}^m$

Задача 7.3 Разгледаните по - долу функциите са дефинирани в $D = \mathbb{R}^2 \setminus \{(0,0)\}$. Кои от границите същестуват и колко са

$$A = \lim_{(x,y)\to(0,0)} f(x,y) \quad A_{1,2} = \lim_{y\to 0} \left(\lim_{x\to 0} f(x,y) \right) \quad A_{2,1} = \lim_{x\to 0} \left(\lim_{y\to 0} f(x,y) \right)$$

$$1. \ f(x,y) = \frac{x-y}{x+y}$$

2.
$$f(x,y) = \frac{x^2 + y^2}{x^2y^2 + (x-y)^2}$$

3.
$$f(x,y) = \frac{xy^2}{x^2 + y^4}$$

4.
$$f(x,y) = (x+y)\sin\frac{1}{x}\cos\frac{1}{y}$$

5.
$$f(x,y) = \frac{x^4 + y^4}{x^2 + y^2}$$

Решение:

$$\begin{split} f(x,y) &= \frac{x-y}{x+y} \\ \lim_{x\to 0} f(x,y) &= \frac{-y}{y} = -1 \qquad \lim_{y\to 0} f(x,y) = \frac{x}{x} = 1 \\ A_{1,2} &= \lim_{y\to 0} \left(\lim_{x\to 0} f(x,y)\right) = \lim_{y\to 0} (-1) = -1 \\ A_{2,1} &= \lim_{x\to 0} \left(\lim_{y\to 0} f(x,y)\right) = \lim_{x\to 0} (1) = 1 \\ A &= \lim_{(x,y)\to(0,0)} f(x,y) \text{ He cowecmeyba, sawomo mpsiba } A_{1,2} = A_{2,1} \end{split}$$

$$f(x,y) = \frac{x^2 + y^2}{x^2y^2 + (x - y)^2}$$

$$\lim_{x \to 0} f(x,y) = \frac{y^2}{(-y)^2} = 1 \qquad \lim_{y \to 0} f(x,y) = \frac{x^2}{x^2} = 1$$

$$\implies A_{1,2} = A_{2,1} = 1 \implies \exists A = \lim_{(x,y) \to (0,0)} f(x,y)$$

$$Peduya: (x_n, y_n) = (\frac{1}{n}, \frac{1}{n}) \to (0,0), f(x_n, y_n) = 1 \to 1$$

$$Peduya: (x'_n, y'_n) = (\frac{1}{n}, \frac{-1}{n}) \to (0,0), f(x'_n, y'_n) = \frac{2n^2}{1 + 4n^2} \to \frac{1}{2} \neq 1$$

$$\implies f(x,y) \text{ ияма граница при } (x,y) \to (0,0)$$

3.

$$f(x,y) = \frac{xy^2}{x^2 + y^4}$$

$$\lim_{x \to 0} f(x,y) = \frac{0}{y^4} = 0 \qquad \lim_{y \to 0} f(x,y) = \frac{0}{x^2} = 0$$

$$A_{1,2} = A_{2,1} = 0 \implies \exists A = \lim_{(x,y) \to (0,0)} f(x,y)$$

$$Peduua: (x_n, y_n) = (\frac{1}{n^2}, \frac{1}{n}) \to (0,0), f(x_n, y_n) = \frac{1}{2} \to \frac{1}{2} \neq 0$$

$$\implies f(x,y) \text{ ияма граница при } (x,y) \to (0,0)$$

4.

$$\begin{split} f(x,y) &= (x+y)\sin\frac{1}{x}\cos\frac{1}{y}\\ 0 &\leq |f(x,y)| \leq |x+y| \leq |x|+|y|\ u\ |x|+|y| \to 0\\ A &= 0\\ \lim_{x\to 0}\sin\frac{1}{x} - ne\ come come yea\\ \lim_{x\to 0}f(x,y) &= y\cos\frac{1}{y}\lim_{x\to 0}\sin\frac{1}{x} \end{split}$$

Аналогично и другата вътрешна граница не съществува. Но тогава и повторните граници $A_{1,2},\,A_{2,1}$ не съществуват.

5.

$$f(x,y) = \frac{x^4 + y^4}{x^2 + y^2}$$

$$\lim_{x \to 0} f(x,y) = y^2 \qquad \lim_{y \to 0} f(x,y) = x^2$$

$$A_{1,2} = \lim_{y \to 0} \left(\lim_{x \to 0} f(x,y) \right) = \lim_{y \to 0} \left(y^2 \right) = 0$$

$$A_{2,1} = \lim_{x \to 0} \left(\lim_{y \to 0} f(x,y) \right) = \lim_{x \to 0} \left(x^2 \right) = 0$$

$$\implies A = A_{1,2} = A_{2,1} = 0$$

Задача 7.4 Нека A,B,C,D са подмножества на \mathbb{R}^2 дефинирани както следва

$$A = \{(x,y) : x \ge 0, y \le 1, y > x\}$$

$$B = \{(x,y) : x \le 1, y \ge 0, y < x\}$$

$$C = \{(x,y) : x = y, 0 \le x \le 1\}$$

$$D = A \cup B \cup C$$

и функцията $f:D o\mathbb{R}$ зададена по следния начин

$$f(x,y) = \begin{cases} \frac{1}{y^2}, & (x,y) \in A \\ 0, & x = y \\ -\frac{1}{x^2}, & (x,y) \in B \end{cases}$$

Да се изследва непрекъснатостта на тази функция.

Решение

Функцията f е непрекъсната в A, защото е частно на две функции със знаменател $y^2 \neq 0$, в A.

Аналогично е непрекъсната в B защото знаменателя е $x^2 \neq 0$.

Остана да се изследва поведението върху С.

 Φ ункцията е непрексъната в D, с изключение на точките от C, където е прекъсната.

7.3 Лекция 3

Задача 7.5 Да се намерят първите частни производни на следните функции

1.
$$f(x,y,z) = e^{4x+3y} + xy^2z^3 + 1111e^{\pi}$$
 за произволна точка $(x_0,y_0,z_0) \in \mathbb{R}^3$

2.
$$f(x,y) = |x + y|$$
 в точката $(0,0)$

3.
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 в равнината \mathbb{R}^2

Решение:

1.

$$f(x,y,z) = e^{4x+3y} + xy^2z^3 + 1111e^{\pi}$$

$$f(x,y_0,z_0) \implies f'_x(x_0,y_0,z_0) = 4e^{4x_0+3y_0} + y_0^2z_0^3$$

$$f(x_0,y,z_0) \implies f'_y(x_0,y_0,z_0) = 3e^{4x_0+3y_0} + 2x_0y_0z_0^3$$

$$f(x_0,y_0,z) \implies f'_z(x_0,y_0,z_0) = 3x_0y_0^2z_0^2$$

$$\begin{split} f(x,y) &= |x+y| \\ \frac{g(h) - g(0)}{h} &= \frac{f(0+h,0) - f(0,0)}{h} \\ \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} &= \lim_{h \to 0} \frac{|h|}{h} \text{ не съществува} \\ &\implies \nexists f_x'(0,0) (\text{Аналогично се получава за } f_y'(0,0)) \end{split}$$

3.

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$(x,y) \neq (0,0)$$

$$f'_x(x,y) = \frac{y(y^2 - x^2)}{(x^2 + y^2)^2}$$

$$f'_y(x,y) = \frac{x(x^2 - y^2)}{(x^2 + y^2)^2}$$

$$\lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = \lim_{h \to 0} = 0$$

$$\lim_{k \to 0} \frac{f(0,0+k) - f(0,0)}{k} = \lim_{k \to 0} \frac{0-0}{k} = \lim_{k \to 0} = 0$$

 $\implies arPhi$ ункцията има частни производни във всичко точки на равнината \mathbb{R}^2

Задача 7.6 $f(x,y) = x + (y-1) \arcsin \sqrt{\frac{x}{y}}$ $f'_x(x,1) = ?$

Решение:

$$f'_{x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h} (A\kappa o \ comecmeyea) \implies$$

$$f'_{x}(x,1) = \lim_{h \to 0} \frac{f(x+h,1) - f(x,1)}{h} (A\kappa o \ comecmeyea)$$

$$f(x+h,1) = x + h + (1-1) \arcsin \sqrt{\frac{x}{1}} = x + h + 0 \arcsin \sqrt{\frac{x}{1}} = x + h$$

$$f(x,1) = x + (1-1) \arcsin \sqrt{\frac{x}{1}} = x + 0 \arcsin \sqrt{\frac{x}{1}} = x \implies$$

$$\lim_{h \to 0} \frac{f(x+h,1) - f(x,1)}{h} = \lim_{h \to 0} \frac{x+h-x}{h} = \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} 1 \implies f'_{x}(x,1) = 1$$

Задача 7.7 Да се докаже че функцията $f(x,y) = \begin{cases} \frac{x^3y}{x^6 + y^2}, & (x,y) \neq (0,0) \\ 0, & x^2 + y^2 = (0,0) \end{cases}$ е прекъсната в точката (0,0) но има частни производни в тази точка.

Решение:

$$Peduya\ (x_n,y_n) = \left(\frac{1}{n},\frac{1}{n^3}\right)$$

$$f(x_n,y_n) = \frac{\left(\frac{1}{n}\right)^3 \cdot \frac{1}{n^3}}{\left(\frac{1}{n}\right)^6 + \left(\frac{1}{n^3}\right)^3} = \frac{\frac{1}{n^6}}{\frac{2}{n^6}} = \frac{1}{2} \qquad \lim_{n \to \infty} f(x_n,y_n) = \frac{1}{2} \implies \lim_{x \to 0, y \to 0} f(x,y) \neq f(0,0) = 0 \implies f(x,y) \ e \ nperschama \ e \ m. \ (0,0).$$

$$f'_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \frac{\frac{x^3 \cdot 0}{x^6 + 0} - 0}{x - 0} = 0$$
$$f'_y(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y - 0} = \frac{\frac{0^3 \cdot y}{0^6 + y^2} - 0}{y - 0} = 0$$

Задача 7.8 Да се намерят първите частни производни на следните функции:

1.
$$f(x,y) = \sin(2x+3) + 3e^{-x}e^{4y} - 11x^3 + 19e^{\pi}$$

2.
$$f(x,y) = \sqrt{x^2 + y^2} + \arctan \frac{y}{x}$$

3.
$$f(x, y, z) = (xy)^z$$

4.
$$\sqrt[3]{x^2+3y^2}e^{x^2-5y}$$

Решение:

$$f(x,y) = \sin(2x+3) + 3e^{-x}e^{4y} - 11x^3 + 19e^{\pi}$$

$$f'_x(x,y) = (\sin(2x+3))'_x + (3e^{-x}e^{4y})'_x - (11x^3)'_x + (19e^{\pi})'_x$$

$$f'_x(x,y) = \cos(2x+3) \cdot 2 + (-3e^{-x}e^{4y}) - (3 \cdot 11x^2) + 0$$

$$f'_x(x,y) = 2\cos(2x+3) - 3e^{-x}e^{4y} - 33x^2$$

$$f'_y(x,y) = (\sin(2x+3))'_y + (3e^{-x}e^{4y})'_y - (11x^3)'_y + (19e^{\pi})'_y$$

$$f'_y(x,y) = 0 + (3 \cdot 4e^{-x}e^{4y}) - 0 + 0 = 12e^{-x}e^{4y}$$

2.

$$f(x,y) = \sqrt{x^2 + y^2} + \arctan \frac{y}{x}$$

$$f'_x(x,y) = \frac{1}{2} (x^2)^{-\frac{1}{2}} \cdot 2x + \frac{1}{1 + \frac{y^2}{x^2}} \cdot y \cdot (-\frac{1}{x^2})$$

$$f'_x(x,y) = \frac{x}{\sqrt{x^2 + y^2}} - \frac{x^2 y}{x^2 + y^2} \cdot \frac{1}{x^2}$$

$$f'_x(x,y) = \frac{x}{\sqrt{x^2 + y^2}} - \frac{xy}{x^2 + y^2}$$

$$f'_y(x,y) = \frac{1}{2} (x^2)^{-\frac{1}{2}} \cdot 2y + \frac{1}{1 + \frac{y^2}{x^2}} \cdot \frac{1}{x}$$

$$f'_y(x,y) = \frac{y}{\sqrt{x^2 + y^2}} + \frac{x^2}{x^2 + y^2} \cdot \frac{1}{x}$$

$$f'_y(x,y) = \frac{y}{\sqrt{x^2 + y^2}} + \frac{x}{x^2 + y^2}$$

$$f(x, y, z) = (xy)^{z}$$

$$f'_{x}(x, y, z) = z(xy)^{z-1} \cdot (xy)'x = yz(xy)^{z-1}$$

$$f'_{y}(x, y, z) = z(xy)^{z-1} \cdot (xy)'y = xz(xy)^{z-1}$$

$$f'_{z}(x, y, z) = (xy)^{z} \ln(xy)$$

$$\begin{split} &\sqrt[3]{x^2 + 3y^2}e^{x^2 - 5y} \\ &f'_x(x,y) = \left[\sqrt[3]{x^2 + 3y^2}\right]'_x \cdot e^{x^2 - 5y} + \sqrt[3]{x^2 + 3y^2} \cdot (e^{x^2 - 5y})'_x \\ &f'_x(x,y) = \frac{1}{3}(x^2 + 3y^2)^{-\frac{2}{3}} \cdot 2x \cdot e^{x^2 - 5y} + \sqrt[3]{x^2 + 3y^2} \cdot 2x e^{x^2 - 5y} \\ &f'_x(x,y) = \frac{2x}{3} \cdot \frac{e^{x^2 - 5y}}{\sqrt[3]{(x^2 + 3y^2)^2}} + 2x\sqrt[3]{x^2 + 3y^2} \cdot e^{x^2 - 5y} \\ &f'_x(x,y) = \frac{2x}{3} \cdot \frac{e^{x^2 - 5y}}{\sqrt[3]{(x^2 + 3y^2)^2}} \left[1 + 3(x^2 + 3y^2) \right] \\ &f'_x(x,y) = \frac{2x}{3} \left(1 + 3x^2 + 9y^2 \right) \frac{e^{x^2 - 5y}}{\sqrt[3]{(x^2 + 3y^2)^2}} \\ &f'_y(x,y) = \left[\sqrt[3]{x^2 + 3y^2} \right]'_y \cdot e^{x^2 - 5y} + \sqrt[3]{x^2 + 3y^2} \cdot (e^{x^2 - 5y})'_y \\ &f'_y(x,y) = \frac{1}{3} (x^2 + 3y^2)^{-\frac{2}{3}} \cdot 6y \cdot e^{x^2 - 5y} + \sqrt[3]{x^2 + 3y^2} \cdot (-5e^{x^2 - 5y}) \\ &f'_y(x,y) = 2y \cdot \frac{1}{\sqrt[3]{(x^2 + 3y^2)^2}} \cdot e^{x^2 - 5y} - 5\sqrt[3]{x^2 + 3y^2} \cdot e^{x^2 - 5y} \\ &f'_y(x,y) = e^{x^2 - 5y} \cdot \sqrt[3]{(x^2 + 3y^2)^2} (2y - 5(x^2 + 3y^2)) \\ &f'_y(x,y) = (2y - 5x^2 - 15y^2) \frac{e^{x^2 - 5y}}{\sqrt[3]{(x^2 + 3y^2)^2}} \end{split}$$

7.4 Лекция 4

Задача 7.9 $f(x,y) = \sqrt[3]{xy}$

Изследвайте f(x,y) за диференцируемост в (0,0).

$$f'_x(0,0) = ?$$

$$f_y'(0,0) = ?$$

Решение:

$$f(x,0) - f(0,0) = \sqrt[3]{x0} - \sqrt[3]{0} \implies$$

$$\lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \lim_{x \to 0} \frac{0}{x} = 0 f'_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \lim_{x \to 0} \frac{0}{x} = 0$$

$$f(0,y) - f(0,0) = \sqrt[3]{0y} - \sqrt[3]{0} \implies$$

$$f'_y(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y - 0} = \lim_{y \to 0} \frac{0}{y} = 0$$

$$He \kappa a: \lim_{(x \to 0, y \to 0)} \varepsilon(x,y) \to 0, \rho(x,y) = \sqrt{x^2 + y^2}$$

Проверка за диференцируемост в (0,0):

$$f(x,y) - f(0,0) = f'_x(0,0)(x-0) + f'_y(0,0)(y-0) + \varepsilon(x,y)\rho(x,y)$$

$$\sqrt[3]{xy} - 0 = 0x + 0y + \varepsilon(x,y)\sqrt{x^2 + y^2} \implies$$

$$\varepsilon(x,y) = \frac{\sqrt[3]{xy}}{\sqrt{x^2 + y^2}} \to 0?$$

Разглеждаме редица с общ член $(x_n,y_n)=\left(\frac{1}{n^3},\frac{1}{n^3}\right)$ за която $(x_n,y_n)\to (0,0),$

$$\varepsilon(x_n, y_n) = \frac{\frac{1}{n^2}}{\frac{\sqrt{2}}{n^3}} = \frac{n}{\sqrt{2}} \implies \lim_{(x,y)\to(0,0)} \varepsilon(x_n, y_n) \not\to 0 \implies$$

f(x,y) не е диференцируема в m.(0,0)

Задача 7.10 $f(x,y) = \sqrt[3]{x^3 + y^3}$

Изследвайте f(x,y) за диференцируемост в (0,0).

Решение:

$$f(x,0) - f(0,0) = \sqrt[3]{x^3} - 0 = x \implies$$

$$\lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \lim_{x \to 0} \frac{x}{x} = 1 \implies \exists f'_x(0,0) = 1$$

$$f(0,y) - f(0,0) = \sqrt[3]{y^3} - 0 = y \implies$$

$$\lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y - 0} = \lim_{y \to 0} \frac{y}{y} = 1 \implies \exists f'_y(0,0) = 1$$

$$He\kappa a: \lim_{(x \to 0, y \to 0)} \varepsilon(x,y) \to 0, \rho(x,y) = \sqrt{x^2 + y^2}$$

Проверка за диференцируемост в (0,0):

$$f(x,y) - f(0,0) = f'_x(0,0)(x-0) + f'_y(0,0)(y-0) + \varepsilon(x,y)\rho(x,y)$$

$$\sqrt[3]{x^3 + y^3} = x + y + \varepsilon(x,y)\sqrt{x^2 + y^2}$$

$$\varepsilon(x,y) = \frac{\sqrt[3]{x^3 + y^3} - x - y}{\sqrt{x^2 + y^2}}$$

$$\lim_{(x \to 0, y \to 0)} \varepsilon(x,y) \to 0?$$

Разглеждаме редица с общ член $(x_n,y_n)=\left(\frac{1}{n},\frac{1}{n}\right)$ за която $(x_n,y_n)\to (0,0),$

$$\varepsilon(x_n, y_n) = \frac{\frac{\sqrt[3]{2}}{n} - \frac{2}{n}}{\frac{\sqrt{2}}{n}} = \frac{\sqrt[3]{2} - 2}{\sqrt{2}} \implies \lim_{(x \to 0, y \to 0)} \varepsilon(x, y) \not\to 0 \implies$$

f(x,y) не е диференцируема в m.(0,0)

Задача 7.11 Да се изследвай за диференцируемост в (0,0) функцията

$$f(x,y) = \begin{cases} e^{-\frac{1}{x^2 + y^2}}, & x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0 \end{cases}$$

Решение:

$$f(x,0) - f(0,0) = e^{-\frac{1}{x^2}} - 0 = e^{-\frac{1}{x^2}}$$

$$\lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x} = \lim_{x \to 0} \frac{1}{\frac{1}{x}} = \begin{bmatrix} \frac{\infty}{\infty} \end{bmatrix}$$

$$\left(\frac{1}{x}\right)' = -\frac{1}{x^2} \qquad \left(e^{\frac{1}{x^2}}\right)' = -\frac{2}{x^3}e^{\frac{1}{x^2}}$$

$$\lim_{x \to 0} \frac{-\frac{1}{x^2}}{-\frac{1}{x^3}e^{\frac{1}{x^2}}} = \lim_{x \to 0} \frac{x}{\frac{1}{2}e^{\frac{1}{x^2}}} = \frac{0}{\infty} = 0 \implies f'_x(0,0) = 0$$

$$\lim_{x \to 0} \frac{-\frac{1}{x^2}}{-\frac{1}{x^3}e^{\frac{1}{x^2}}} = \lim_{x \to 0} \frac{x}{2e^{\frac{1}{x^2}}} = \frac{0}{\infty} = 0 \implies f'_x(0,0) = 0$$

$$Hexa: \lim_{(x \to 0, y \to 0)} \varepsilon(x, y) \to 0, \rho(x, y) = \sqrt{x^2 + y^2}$$

$$\Pi poseepka \ 3a \ \partial u \phi epenuup yemocm \ 6 \ (0, 0):$$

$$f(x, y) - f(0, 0) = f'_x(0, 0)(x - 0) + f'_y(0, 0)(y - 0) + \varepsilon(x, y)\rho(x, y)$$

$$e^{-\frac{1}{x^2 + y^2}} - 0 = 0(x - 0) + 0(y - 0) + \varepsilon(x, y)\sqrt{x^2 + y^2}$$

$$e^{-\frac{1}{x^2 + y^2}} = \varepsilon(x, y)\sqrt{x^2 + y^2}$$

$$\lim_{(x \to 0, y \to 0)} \varepsilon(x, y) \to 0?$$

$$\begin{split} \rho(x,y) &= \sqrt{x^2 + y^2} \implies \lim_{(x \to 0, y \to 0)} \rho(x,y) \to 0 \\ &\lim_{(x \to 0, y \to 0)} \varepsilon(x,y) = \lim_{\rho \to 0} \frac{e^{-\frac{1}{\rho^2}}}{\rho} = \left[\frac{\infty}{\infty}\right] \\ &\left(\frac{1}{\rho}\right)' = -\frac{1}{\rho^2} \quad \left(e^{\frac{1}{\rho^2}}\right)' = -\frac{2}{\rho^3} e^{\frac{1}{\rho^2}} \\ &\lim_{\rho \to 0} \frac{\rho}{2e^{\frac{1}{\rho^2}}} = \frac{0}{\infty} = 0 \implies \\ &\lim_{(x \to 0, y \to 0)} \varepsilon(x,y) = \lim_{\rho \to 0} \frac{\frac{1}{\rho}}{e^{\frac{1}{\rho^2}}} = \lim_{\rho \to 0} \frac{\left(\frac{1}{\rho}\right)'}{\left(e^{\frac{1}{\rho^2}}\right)'} = 0 \implies \\ &\lim_{(x \to 0, y \to 0)} \varepsilon(x,y) = 0 \implies f(x,y) \ e \ \partial u \phi e p e n u u p y e ma \ e \ (0,0) \end{split}$$

Задача 7.12 $f(x,y)=x^2+3xy-8y^3+11$, df(0,1)=? $f(x,y,z)=x^2+3xy-8y^3-2e^{3z}x$, df(0,0,4)=? Решение:

$$df(x,y) = f'_x(x,y)dx + f'_y(x,y)dy$$

$$f'_x(x,y) = 2x + 3y f'_x(0,1) = 3$$

$$f'_y(x,y) = 3x - 24y^2 f'_y(0,1) = -24$$

$$df(x,y) = (2x + 3y)dx + (3x - 24y^2)dy$$

$$df(0,1) = 3dx - 24dy$$

 $d^2 f(1,0,0) = 30dx^2 + 2dy^2 - 14dxdy - 2dxdz$

7.5 Лекция 5

Задача 7.14

Задача 7.15

Задача 7.16