Sets 28-29 Guide: Inference on the Difference of Two Means $(\mu_1 - \mu_2)$

General Requirements:

▶ Random samples

> The two populations are *independent* (No paired data, before/after data, etc).

For all four of the cases, the hypotheses have the same form:

Right-Tailed:	Left-Tailed:	Two-Tailed:
$H_0: \mu_1 - \mu_2 = (\mu_1 - \mu_2)_0$	$H_0: \mu_1 - \mu_2 = (\mu_1 - \mu_2)_0$	$H_0: \mu_1 - \mu_2 = (\mu_1 - \mu_2)_0$
or $H_0: \mu_1 - \mu_2 \le (\mu_1 - \mu_2)_0$	or $H_0: \mu_1 - \mu_2 \ge (\mu_1 - \mu_2)_0$	or $H_0: \mu_1 - \mu_2 = (\mu_1 - \mu_2)_0$
$H_1: \mu_1 - \mu_2 > (\mu_1 - \mu_2)_0$	$H_1: \mu_1 - \mu_2 < (\mu_1 - \mu_2)_0$	$H_1: \mu_1 - \mu_2 \neq (\mu_1 - \mu_2)_0$

\star Cases 1 and 2: (Using the Z-distribution)

(i) Requirements:

> Random samples from two independent populations.

 \triangleright Case 1: σ_1 and σ_2 are known, and both populations are normally distributed.

 \triangleright Case 2: n_1 and $n_2 \ge 30$.

(ii) Standard Error and Estimated Standard Error:

se:
$$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$
 ese: $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

(iii) Confidence Interval for $\mu_1 - \mu_2$:

$$(\bar{x}_1 - \bar{x}_2) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$
 or $(\bar{x}_1 - \bar{x}_2) \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

(iv) Hypothesis Testings:

 \triangleright **Test statistic** for testing $H_0: \mu_1 - \mu_2 = (\mu_1 - \mu_2)_0$:

$$z_{obs} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \qquad \text{or} \qquad z_{obs} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Test statistic is approximately normally distributed when H_0 is true.

\triangleright *p*-values:

Right-tailed Test: $p-value = P(Z > z_{obs})$ Left-tailed Test: $p-value = P(Z < z_{obs})$ Two-tailed Test: $p-value = 2P(Z < -|z_{obs}|)$

\bigstar Case 3: Small samples with equal variances $(\sigma_1^2 = \sigma_2^2)$ - Pooled Two-Sample T-test

(i) Requirements:

> Random sample from two independent populations, that are (near) normally distributed.

ightharpoonup Equal Variances $(\sigma_1^2 = \sigma_2^2)$:

Rule of Thumb: $\frac{\text{larger standard deviation}}{\text{smaller standard deviation}} \leq 1.4$

(ii) Estimated Standard Error:

ese:
$$\sqrt{\left(\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}\right)\left(\frac{1}{n_1}+\frac{1}{n_2}\right)}$$

(iii) Confidence Interval for $\mu_1 - \mu_2$:

$$(\bar{x}_1 - \bar{x}_2) \pm t_{\nu,\alpha/2} \sqrt{\left(\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}\right) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

with degrees of freedom $\nu = n_1 + n_2 - 2$.

(iv) Hypothesis Testings:

 \triangleright **Test statistic** for testing $H_0: \mu_1 - \mu_2 = (\mu_1 - \mu_2)_0$:

$$t_{obs} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\left(\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Test statistic has a T_{ν} -distribution with $\nu = n_1 + n_2 - 2$ degrees of freedom when H_0 is true.

\triangleright p-values

Right-tailed Test: p-value = $P(T_{\nu} > t_{obs})$ Left-tailed Test: p-value = $P(T_{\nu} < t_{obs})$ Two-tailed Test: p-value = $2P(T_{\nu} > |t_{obs}|)$

★ Case 4: Small samples with unequal variances $(\sigma_1^2 \neq \sigma_2^2)$ - Unpooled Two-Sample T-test

(i) Requirements:

> Random sample from two independent populations, that are (near) normally distributed.

 \triangleright Unequal Variances $(\sigma_1^2 \neq \sigma_2^2)$:

Rule of Thumb:
$$\frac{\text{larger standard deviation}}{\text{smaller standard deviation}} > 1.4$$

(ii) Confidence Interval for $\mu_1 - \mu_2$:

$$(\bar{x}_1 - \bar{x}_2) \pm t_{\nu,\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

with degrees of freedom ν :

$$\nu = \text{ the integer part of } \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}$$

(iii) Hypothesis Testings:

• Test statistic for testing $H_0: \mu_1 - \mu_2 = (\mu_1 - \mu_2)_0$:

$$t_{obs} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Test statistic has a T_{ν} distribution with ν as in the CI, when H_0 is true.

• p-values : as in Case 3

Sample Size for Estimating $\mu_1 - \mu_2$

The common $(n = n_1 = n_2)$ sample size needed to construct a $(1 - \alpha)100\%$ confidence interval within margin of error d (with length 2d) for $\mu_1 - \mu_2$ is given by

$$d = z_{\alpha/2} \sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{n}}$$
 \Rightarrow $n = \left(\frac{z_{\alpha/2}}{d}\right)^2 (s_1^2 + s_2^2)$