Grammaires: TD1

December 3, 2020

< 1/8 >

Feuille 1 – exercice 1

Donner des grammaires hors-contexte engendrant les langages suivants :

- **1** $\{a^nb^p \mid n \ge p \ge 0\}$
- $a^n b^p \mid n \neq p$
- **③** { $a^n b^p | 2p ≥ n ≥ p$ }

Rappel de la grammaire « a^nb^n » (engendrant $\{a^nb^n \mid n \ge 0\}$):

$$S o aSb \mid \varepsilon$$

Donner des grammaires hors-contexte engendrant les langages suivants:

1 { $a^nb^p | n ≥ p ≥ 0$ }

- **①** $\{a^nb^p \mid n \ge p \ge 0\}$
 - $S \rightarrow aS \mid aSb \mid \varepsilon$

- **①** $\{a^nb^p \mid n \ge p \ge 0\}$
 - $S \rightarrow aS \mid aSb \mid \varepsilon$
 - $S \rightarrow aS \mid A \mid A \rightarrow aAb \mid \varepsilon$

- **①** $\{a^nb^p \mid n \ge p \ge 0\}$
 - $S \rightarrow aS \mid aSb \mid \varepsilon$
 - $S o aS \mid A \qquad A o aAb \mid \varepsilon$
 - $S \rightarrow aSb \mid A \qquad A \rightarrow aA \mid \varepsilon$

- **1** $\{a^nb^p \mid n \ge p \ge 0\}$
 - $S \rightarrow aS \mid aSb \mid \varepsilon$
 - $S o aS \mid A \qquad A o aAb \mid \varepsilon$
 - $S \rightarrow aSb \mid A \qquad A \rightarrow aA \mid \varepsilon$

- **1** $\{a^nb^p \mid n \ge p \ge 0\}$
 - $S \rightarrow aS \mid aSb \mid \varepsilon$
 - $S \rightarrow aS \mid A \qquad A \rightarrow aAb \mid \varepsilon$
 - $S \rightarrow aSb \mid A \qquad A \rightarrow aA \mid \varepsilon$

- **①** $\{a^n b^p \mid n \ge p \ge 0\}$
 - $S \rightarrow aS \mid aSb \mid \varepsilon$
 - $S \rightarrow aS \mid A \qquad A \rightarrow aAb \mid \varepsilon$
 - $S \rightarrow aSb \mid A \qquad A \rightarrow aA \mid \varepsilon$
- - $\bullet \ S \rightarrow S_1 \ | \ S_2 \qquad S_1 \rightarrow aS_1 \ | \ aS_1b \ | \ a \qquad S_2 \rightarrow S_2b \ | \ aS_2b \ | \ b$

- **①** $\{a^n b^p \mid n \ge p \ge 0\}$
 - $S \rightarrow aS \mid aSb \mid \varepsilon$
 - $S \rightarrow aS \mid A \qquad A \rightarrow aAb \mid \varepsilon$
 - $S \rightarrow aSb \mid A \qquad A \rightarrow aA \mid \varepsilon$
- - $S \rightarrow S_1 \mid S_2 \qquad S_1 \rightarrow aS_1 \mid aS_1b \mid a \qquad S_2 \rightarrow S_2b \mid aS_2b \mid b$

- **①** $\{a^n b^p \mid n \ge p \ge 0\}$
 - $S \rightarrow aS \mid aSb \mid \varepsilon$
 - $S \rightarrow aS \mid A \qquad A \rightarrow aAb \mid \varepsilon$
 - $S \rightarrow aSb \mid A \qquad A \rightarrow aA \mid \varepsilon$
- - $S \rightarrow S_1 \mid S_2 \qquad S_1 \rightarrow aS_1 \mid aS_1b \mid a \qquad S_2 \rightarrow S_2b \mid aS_2b \mid b$
- - $S o aaSb \mid aSb \mid \varepsilon$

- - $S \rightarrow aS \mid aSb \mid \varepsilon$
 - $S \rightarrow aS \mid A \qquad A \rightarrow aAb \mid \varepsilon$
 - $S \rightarrow aSb \mid A \qquad A \rightarrow aA \mid \varepsilon$
- - $S \rightarrow S_1 \mid S_2 \qquad S_1 \rightarrow aS_1 \mid aS_1b \mid a \qquad S_2 \rightarrow S_2b \mid aS_2b \mid b$
- - $S o aaSb \mid aSb \mid \varepsilon$

- - $S \rightarrow aS \mid aSb \mid \varepsilon$
 - $S \rightarrow aS \mid A \qquad A \rightarrow aAb \mid \varepsilon$
 - $S \rightarrow aSb \mid A \qquad A \rightarrow aA \mid \varepsilon$
- - $S \rightarrow S_1 \mid S_2 \qquad S_1 \rightarrow aS_1 \mid aS_1b \mid a \qquad S_2 \rightarrow S_2b \mid aS_2b \mid b$
- - $S o aaSb \mid aSb \mid \varepsilon$

- - $S \rightarrow aS \mid aSb \mid \varepsilon$
 - $S \rightarrow aS \mid A \qquad A \rightarrow aAb \mid \varepsilon$
 - $S \rightarrow aSb \mid A \qquad A \rightarrow aA \mid \varepsilon$
- - $S \rightarrow S_1 \mid S_2 \qquad S_1 \rightarrow aS_1 \mid aS_1b \mid a \qquad S_2 \rightarrow S_2b \mid aS_2b \mid b$
- - $S o aaSb \mid aSb \mid \varepsilon$
- - $S o aSc \mid B \qquad B o bBc \mid \varepsilon$

Feuille 1 – exercice 2

Soient $G_1 = (V_T, V_{N_1}, S_1, R_1)$ et $G_2 = (V_T, V_{N_2}, S_2, R_2)$ deux grammaires.

On supposera sans perte de généralité que $V_{N_1} \cap V_{N_2} = \emptyset$.

- ① Donner une grammaire G telle que $L(G) = L(G_1) \cup L(G_2)$. Comment prouver que cette grammaire est correcte ?
- ② Même question pour les langages $L(G_1)$. $L(G_2)$ et $L(G_1)^*$.
- En supposant que G₁ et G₂ soient de type T (régulière, hors-contexte, sous-contexte) que peut-on dire des grammaires proposées aux questions précédentes ?

Correction - question 1

Soient $G_1 = (V_T, V_{N_1}, S_1, R_1)$ et $G_2 = (V_T, V_{N_2}, S_2, R_2)$ deux grammaires.

On supposera sans perte de généralité que $V_{N_1} \cap V_{N_2} = \emptyset$.

1 Donner une grammaire G telle que $L(G) = L(G_1) \cup L(G_2)$. Comment prouver que cette grammaire est correcte ?

Correction – question 1

Soient $G_1 = (V_T, V_{N_1}, S_1, R_1)$ et $G_2 = (V_T, V_{N_2}, S_2, R_2)$ deux grammaires.

On supposera sans perte de généralité que $V_{N_1} \cap V_{N_2} = \emptyset$.

1 Donner une grammaire G telle que $L(G) = L(G_1) \cup L(G_2)$. Comment prouver que cette grammaire est correcte ?

$$G = (V_T, V_{N_1} \cup V_{N_2} \cup \{S\}, S, R_1 \cup R_2 \cup \{S \to S_1, S \to S_2\})$$
 avec $S \notin V_{N_1} \cup V_{N_2}$.

Correction - question 1

Soient $G_1 = (V_T, V_{N_1}, S_1, R_1)$ et $G_2 = (V_T, V_{N_2}, S_2, R_2)$ deux grammaires.

On supposera sans perte de généralité que $V_{N_1} \cap V_{N_2} = \emptyset$.

1 Donner une grammaire G telle que $L(G) = L(G_1) \cup L(G_2)$. Comment prouver que cette grammaire est correcte ?

$$G = (V_T, V_{N_1} \cup V_{N_2} \cup \{S\}, S, R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$$

avec $S \notin V_{N_1} \cup V_{N_2}$.

Correction: On doit montrer $L(G) = L(G_1) \cup L(G_2)$.

Correction - question 1

Soient $G_1 = (V_T, V_{N_1}, S_1, R_1)$ et $G_2 = (V_T, V_{N_2}, S_2, R_2)$ deux grammaires.

On supposera sans perte de généralité que $V_{N_1} \cap V_{N_2} = \emptyset$.

① Donner une grammaire G telle que $L(G) = L(G_1) \cup L(G_2)$. Comment prouver que cette grammaire est correcte ?

$$G = (V_T, V_{N_1} \cup V_{N_2} \cup \{S\}, S, R_1 \cup R_2 \cup \{S \to S_1, S \to S_2\})$$

avec $S \notin V_{N_1} \cup V_{N_2}$.

Correction: On doit montrer $L(G) = L(G_1) \cup L(G_2)$.

$$L(G) = \{ w \in V_T^* \mid S \Longrightarrow^* w \}$$

$$= \{ w \in V_T^* \mid S_1 \Longrightarrow^* w \text{ ou } S_2 \Longrightarrow^* w \}$$

$$= \{ w \in V_T^* \mid S_1 \Longrightarrow^* w \} \cup \{ w \in V_T^* \mid S_2 \Longrightarrow^* w \}$$

$$= L(G_1) \cup L(G_2)$$

Soient $G_1 = (V_T, V_{N_1}, S_1, R_1)$ et $G_2 = (V_T, V_{N_2}, S_2, R_2)$ deux grammaires.

On supposera sans perte de généralité que $V_{N_1} \cap V_{N_2} = \emptyset$.

② Même question pour les langages $L(G_1)$. $L(G_2)$ et $L(G_1)^*$.

Soient $G_1 = (V_T, V_{N_1}, S_1, R_1)$ et $G_2 = (V_T, V_{N_2}, S_2, R_2)$ deux grammaires.

On supposera sans perte de généralité que $V_{N_1} \cap V_{N_2} = \emptyset$.

② Même question pour les langages $L(G_1)$. $L(G_2)$ et $L(G_1)^*$.

$$G' = (V_T, V_{N_1} \cup V_{N_2} \cup \{S\}, S, R_1 \cup R_2 \cup \{S \to S_1 S_2\})$$
 avec $S \notin V_{N_1} \cup V_{N_2}$.

Soient $G_1 = (V_T, V_{N_1}, S_1, R_1)$ et $G_2 = (V_T, V_{N_2}, S_2, R_2)$ deux grammaires.

On supposera sans perte de généralité que $V_{N_1} \cap V_{N_2} = \emptyset$.

② Même question pour les langages $L(G_1)$. $L(G_2)$ et $L(G_1)^*$.

$$G' = (V_T, V_{N_1} \cup V_{N_2} \cup \{S\}, S, R_1 \cup R_2 \cup \{S \to S_1 S_2\})$$
 avec $S \notin V_{N_1} \cup V_{N_2}$.

$$\textit{G}'' = (\textit{V}_\textit{T}, \textit{V}_\textit{N}_1 \cup \{\textit{S}\}, \textit{S}, \textit{R}_1 \cup \{\textit{S} \rightarrow \textit{S}_1 \textit{S} \ | \ \epsilon\})$$

avec $S \notin V_{N_1}$.

Soient $G_1 = (V_T, V_{N_1}, S_1, R_1)$ et $G_2 = (V_T, V_{N_2}, S_2, R_2)$ deux grammaires.

On supposera sans perte de généralité que $V_{N_1} \cap V_{N_2} = \emptyset$.

② Même question pour les langages $L(G_1)$. $L(G_2)$ et $L(G_1)^*$.

$$G' = (V_T, V_{N_1} \cup V_{N_2} \cup \{S\}, S, R_1 \cup R_2 \cup \{S \to S_1 S_2\})$$
 avec $S \notin V_{N_1} \cup V_{N_2}$.

$$G'' = (V_T, V_{N_1} \cup \{S\}, S, R_1 \cup \{S \rightarrow S_1 S \mid \varepsilon\})$$

avec $S \notin V_{N_1}$.

Sen supposant que G₁ et G₂ soient de type T (régulière, hors-contexte, sous-contexte) que peut-on dire des grammaires proposées aux questions précédentes?

Soit la grammaire $G = (\{a, b, c\}, \{S, B, C\}, S, R)$ avec R l'ensemble des règles suivantes :

- (1) $S \rightarrow abc$ (2) $S \rightarrow aSBc$ (3) $cB \rightarrow Bc$ (4) $bB \rightarrow bb$
- a) Justifier le type de cette grammaire.
- b) Construire une dérivation de la chaîne aabbcc.
- c) Soit un mot quelconque de la forme $a^nb^nc^n$ avec n > 0. Donner une méthode générale permettant de produire ce mot à partir de la grammaire précédente.

Soit la grammaire $G = (\{a, b, c\}, \{S, B, C\}, S, R)$ avec R l'ensemble des règles suivantes :

- (1) $S \rightarrow abc$ (2) $S \rightarrow aSBc$ (3) $cB \rightarrow Bc$ (4) $bB \rightarrow bb$
- a) Justifier le type de cette grammaire. sous-contexte
- b) Construire une dérivation de la chaîne aabbcc.
- c) Soit un mot quelconque de la forme $a^nb^nc^n$ avec n > 0. Donner une méthode générale permettant de produire ce mot à partir de la grammaire précédente.

Soit la grammaire $G = (\{a, b, c\}, \{S, B, C\}, S, R)$ avec R l'ensemble des règles suivantes :

- a) Justifier le type de cette grammaire. sous-contexte
- b) Construire une dérivation de la chaîne aabbcc.

$$\underline{S} \Longrightarrow_2 \underline{aSBc} \Longrightarrow_1 \underline{aabcB}c \Longrightarrow_3 \underline{aabBcc} \Longrightarrow_4 \underline{aabbcc}$$

c) Soit un mot quelconque de la forme $a^n b^n c^n$ avec n > 0. Donner une méthode générale permettant de produire ce mot à partir de la grammaire précédente.

Soit la grammaire $G = (\{a, b, c\}, \{S, B, C\}, S, R)$ avec R l'ensemble des règles suivantes :

(1) $S \rightarrow abc$

- (2) $S \rightarrow aSBc$
- $(3) \quad cB \quad \rightarrow \quad Bc \qquad \qquad (4) \quad bB \quad \rightarrow \quad bb$
 - (4) $DB \rightarrow DD$
- a) Justifier le type de cette grammaire.

sous-contexte

b) Construire une dérivation de la chaîne *aabbcc*.

$$\underline{S} \Longrightarrow_2 \underline{aSBc} \Longrightarrow_1 \underline{aabcB}cc \Longrightarrow_3 \underline{aabB}cc \Longrightarrow_4 \underline{aabbcc}$$

c) Soit un mot quelconque de la forme $a^nb^nc^n$ avec n > 0. Donner une méthode générale permettant de produire ce mot à partir de la grammaire précédente.

$$S \Longrightarrow_{2}^{n-1} a^{n-1} S(Bc)^{n-1}$$

Soit la grammaire $G = (\{a, b, c\}, \{S, B, C\}, S, R)$ avec R l'ensemble des règles suivantes :

(1)
$$S \rightarrow abc$$

(2)
$$S \rightarrow aSBc$$

$$(3) \quad cB \quad \rightarrow \quad Bc \qquad \qquad (4) \quad bB \quad \rightarrow \quad bb$$

$$(4) \quad \textit{DB} \quad \rightarrow \quad \textit{DD}$$

a) Justifier le type de cette grammaire.

sous-contexte

b) Construire une dérivation de la chaîne *aabbcc*.

$$\underline{S} \Longrightarrow_2 \underline{aSBc} \Longrightarrow_1 \underline{aabcBc} \Longrightarrow_3 \underline{aabBcc} \Longrightarrow_4 \underline{aabbcc}$$

c) Soit un mot quelconque de la forme $a^nb^nc^n$ avec n > 0. Donner une méthode générale permettant de produire ce mot à partir de la grammaire précédente.

$$S \Longrightarrow_{2}^{n-1} a^{n-1} S(Bc)^{n-1}$$

$$\Longrightarrow_{1} a^{n-1} abc(Bc)^{n-1}$$

Soit la grammaire $G = (\{a, b, c\}, \{S, B, C\}, S, R)$ avec R l'ensemble des règles suivantes :

(1)
$$S \rightarrow abc$$

(2)
$$S \rightarrow aSBc$$

(3)
$$cB \rightarrow Bc$$
 (4) $bB \rightarrow bb$

$$(4) \quad bB \quad \rightarrow \quad bb$$

a) Justifier le type de cette grammaire.

sous-contexte

b) Construire une dérivation de la chaîne *aabbcc*.

$$\underline{S} \Longrightarrow_2 \underline{aSBc} \Longrightarrow_1 \underline{aabcBc} \Longrightarrow_3 \underline{aabBcc} \Longrightarrow_4 \underline{aabbcc}$$

c) Soit un mot quelconque de la forme $a^nb^nc^n$ avec n > 0. Donner une méthode générale permettant de produire ce mot à partir de la grammaire précédente.

$$S \Longrightarrow_{2}^{n-1} a^{n-1} S(Bc)^{n-1}$$

$$\Longrightarrow_{1} a^{n-1} abc(Bc)^{n-1}$$

$$= a^{n} b(cB)^{n-1} c$$

Soit la grammaire $G = (\{a, b, c\}, \{S, B, C\}, S, R)$ avec R l'ensemble des règles suivantes :

(1)
$$S \rightarrow abc$$

(2)
$$S \rightarrow aSBe$$

$$(3) \quad cB \quad \rightarrow \quad Bc$$

$$(4)$$
 $bB \rightarrow bb$

a) Justifier le type de cette grammaire.

sous-contexte

b) Construire une dérivation de la chaîne aabbcc.

$$\underline{S} \Longrightarrow_2 \underline{aSBc} \Longrightarrow_1 \underline{aabcB}cc \Longrightarrow_3 \underline{aabB}cc \Longrightarrow_4 \underline{aabbcc}$$

c) Soit un mot quelconque de la forme $a^nb^nc^n$ avec n>0. Donner une méthode générale permettant de produire ce mot à partir de la grammaire précédente. $\left(\frac{n(n-1)}{2} = \sum_{i=1}^{n-1} n - i\right)$

$$S \Longrightarrow_{2}^{n-1} a^{n-1} S(Bc)^{n-1} \\ \Longrightarrow_{1} a^{n-1} abc(Bc)^{n-1} \\ = a^{n} b(cB)^{n-1} c$$

$$a^{n} b(cB)^{n-1} c \Longrightarrow_{3}^{\frac{n(n-1)}{2}} a^{n} bB^{n-1} c^{n-1} c$$

Soit la grammaire $G = (\{a, b, c\}, \{S, B, C\}, S, R)$ avec R l'ensemble des règles suivantes :

(1)
$$S \rightarrow abc$$

(2)
$$S o aSBa$$

(3)
$$cB \rightarrow Bc$$
 (4) $bB \rightarrow bb$

$$(4) \quad DB \quad \rightarrow \quad DD$$

a) Justifier le type de cette grammaire.

sous-contexte

b) Construire une dérivation de la chaîne *aabbcc*.

$$\underline{S} \Longrightarrow_2 \underline{aSBc} \Longrightarrow_1 \underline{aabcB}cc \Longrightarrow_3 \underline{aabB}cc \Longrightarrow_4 \underline{aabbcc}$$

c) Soit un mot quelconque de la forme $a^nb^nc^n$ avec n>0. Donner une méthode générale permettant de produire ce mot à partir de la grammaire précédente.

$$S \Longrightarrow_{2}^{n-1} a^{n-1} S(Bc)^{n-1} \\ \Longrightarrow_{1} a^{n-1} abc(Bc)^{n-1} \\ = a^{n} b(cB)^{n-1} c$$

$$\begin{vmatrix} a^{n} b(cB)^{n-1} c & \Longrightarrow_{3}^{\frac{n(n-1)}{2}} a^{n} bB^{n-1} c^{n-1} c \\ \Longrightarrow_{4}^{n-1} a^{n} bb^{n-1} c^{n-1} c \end{vmatrix}$$

Soit la grammaire $G = (\{a, b, c\}, \{S, B, C\}, S, R)$ avec R l'ensemble des règles suivantes :

(1)
$$S \rightarrow abc$$

(2)
$$S o aSBc$$

$$(3) \quad cB \quad \rightarrow \quad Bc \qquad \qquad (4) \quad bB \quad \rightarrow \quad bb$$

$$(4)$$
 $DB \rightarrow DD$

a) Justifier le type de cette grammaire.

sous-contexte

b) Construire une dérivation de la chaîne *aabbcc*.

$$\underline{S} \Longrightarrow_2 \underline{aSBc} \Longrightarrow_1 \underline{aabcB}cc \Longrightarrow_3 \underline{aabB}cc \Longrightarrow_4 \underline{aabbcc}$$

c) Soit un mot quelconque de la forme $a^nb^nc^n$ avec n>0. Donner une méthode générale permettant de produire ce mot à partir de la grammaire précédente.

$$S \Longrightarrow_{2}^{n-1} a^{n-1} S(Bc)^{n-1} \\ \Longrightarrow_{1} a^{n-1} abc(Bc)^{n-1} \\ = a^{n} b(cB)^{n-1} c$$

$$= a^{n} b(cB)^{n-1} c$$

$$= a^{n} b^{n-1} c^{n-1} c$$

$$= a^{n} b^{n-1} c^{n-1} c$$

$$= a^{n} b^{n-1} c^{n-1} c$$

Donner une grammaire sous-contexte engendrant les mots de la forme wcw avec $w \in \{a,b\}^*$. On pourra partir de la grammaire suivante, qui engendre les mots de la forme $wc\widetilde{w}$ avec \widetilde{w} l'image miroir de w:

$$S \rightarrow aSa \mid bSb \mid c$$

Donner une grammaire sous-contexte engendrant les mots de la forme wcw avec $w \in \{a, b\}^*$. On pourra partir de la grammaire suivante, qui engendre les mots de la forme $wc\widetilde{w}$ avec \widetilde{w} l'image miroir de w:

$$S \rightarrow aSa \mid bSb \mid c$$

1
$$S \rightarrow aSA \mid bSB \mid c \sim wc\widetilde{W} (W = w[a \mapsto A, b \mapsto B])$$

Donner une grammaire sous-contexte engendrant les mots de la forme wcw avec $w \in \{a, b\}^*$. On pourra partir de la grammaire suivante, qui engendre les mots de la forme $wc\widetilde{w}$ avec \widetilde{w} l'image miroir de w:

$$S \rightarrow aSa \mid bSb \mid c$$

1
$$S \rightarrow aSA \mid bSB \mid c$$
 $\sim wcW (W = w[a \mapsto A, b \mapsto B])$
2 $cA \rightarrow ca$ on passe en minuscule...
3 $cB \rightarrow cb$... la majuscule collée au c

Donner une grammaire sous-contexte engendrant les mots de la forme wcw avec $w \in \{a, b\}^*$. On pourra partir de la grammaire suivante, qui engendre les mots de la forme $wc\widetilde{w}$ avec \widetilde{w} l'image miroir de w:

$$S \rightarrow aSa \mid bSb \mid c$$