

Veri Madenciliği

Yrd. Doç. Dr. Mustafa Gökçe Baydoğan

mustafa.baydogan@boun.edu.tr www.mustafabaydogan.com blog.mustafabaydogan.com

İçerik

- Veri Madenciliği nedir?
 - Bir örnek
 - Boğaziçi Üniversitesi 2014 yılı ders kayıt zamanı atılan tweetlerin incelenmesi
 - Veri madenciliğinde örnek problemler ve uygulamalar

Veri madenciliği nedir?

Veri madenciliği

Büyük miktarda veri içinden üstü kapalı, çok net olmayan, önceden bilinmeyen ancak potansiyel olarak kullanışlı bilgi ve örüntülerin çıkarılması olarak tanımlanmaktadır.

Veri madenciliği nedir? Bir örnek

- Boğaziçi Üniversitesi 2014 Bahar dönemi kayıt zamanı olan Şubat 10-14, 2014 tarihleri arası atılan tweetlerin incelenmesi
 - Analiz için R (http://www.r-project.org/)
 kullanıldı.
 - R paketlerden oluşur
 - twitteR ve tm paketleri kullanıldı
 - twitteR: twitterdan veri alabilmek için
 - tm: metin verisi işleme için
 - Sadece 10-20 satır R kodu

#boun hashtagli tweetler aranır

```
tweets<- searchTwitter('#boun',since='2014-02-10', until='2014-02-14')
tweet_texts<- sapply(tweets, function(x) x$getText())</pre>
```

Veri manipulasyonu

```
text_corpus <- Corpus(VectorSource(tweet_texts))
text_corpus <- tm_map(text_corpus, tolower)
text_corpus <- tm_map(text_corpus, removePunctuation)
wordcloud(text_corpus)</pre>
```


- Kelime bulutu sadece görünme sayısını vermekte
 - Söylenenler ne anlam ifade ediyor?
- Metni sayıya çevirme

Döküman-terim matrisi oluşturma ve az geçen kelimeleri atma

dtm=TermDocumentMatrix(text_corpus)
dtm=removeSparseTerms(dtm,sparse=0.95)

- Bir tür kümeleme yapalım*
 - Burada hiyerarşik kümeleme kullanıldı

□ Özet

- Büyük bir twitter verisi içinden alakalı olabilecek kısmı seçip, bir takım veri manipülasyonu ve kümele algoritmaları kullanarak ortaya bilgi çıkarıldı.
 - Kayıt en popüler konu
 - mavibouncuk kayıt zamanı öncesi Boğaziçi Üni. öğrencilerini çekmeye çalışan bir sosyal medya platformu
 - https://twitter.com/mavibouncuk
 - Kayıt sistemi ile ilgili problemler var

Neden Veri Madenciliği?

- Veri patlaması veya seli
 - Mağazalardaki satış/alış işlemleri
 - Banka ve Kredi kartı işlemleri
 - Bir çok sektördeki veri ve işlemler
 - Web verileri
- Teknolojinin ucuzlaması
- Rekabetin artması
 - Veri analizi sonucunda alınan kararların etkinliği birçok alanda ispatlanmıştır

Neden Veri Madenciliği?

- Büyük verilerde klasik yaklaşımlarla ortaya çıkarması zor olan 'gizli' bilgiler vardır.
- Anlamlı bilginin bulunması haftalarca sürebilir.
- Eldeki verinin büyük bir kısmı hala tamamen analiz edilmemiştir.

The Data Management Gap

Veri madenciliği sihir değildir

1. Amaç tanımlama:

- Ürünler arasında bağıntı ?
- Yeni pazar segmentleri veya potansiyel müşteriler?
- Zaman içindeki satın alma örüntüleri veya ürün satım eğrileri?
- Müşterileri guruplamak, sınıflandırmak ?

2. Veri hazırlama

- Veriyi birleştir, seç ve önişle
 (Eğer veri ambarı varsa zaten yapılmıştır)
- Var olan verinin dışında, amaç için kullanılabilecek ek bilgi var mı?

- Veri hazırlama devam
 (En önemli adımlardan biridir)
 - Veri seçimi: Önemli değişkenlerin saptanması
 - Veri temizleme: Hata, tutarsızlık, tekrar ve eksik verilerin ayıklanması/düzeltilmesi
 - Veri fırçalama: Gruplama, dönüşümler
 - Görsel inceleme: Veri dağılımı, yapısı, istisnalar, değişkenler arasında bağıntılar
 - Değişken analizi: Gruplama

3. Yöntem seçme

- Amaç sınıfının tanımlanması
 Gruplama (Clustering/Segmentation), Regresyon Analizi (Regression), Sınıflandırma (Classification), Bağıntı kurma (Association), Zaman içinde örüntü bulma/tahmin yapma (Pattern detection/Prediction in time)
- Çözüm sınıfınının tanımlanması
 Açıklama (Karar ağaçları, kurallar) vs Kara kutu (sinir ağı)
- Model değerlendirme, geçerleme ve karşılaştırma
 k-kat çapraz geçerleme, istatistiksel testler
- Modellerin birleştirilmesi

4. Yorumlama

- Sonuçlar (açıklamalar/tahminler) doğru mu, dikkate değer mi?
- Uzmana danışma

Veri madenciliği yöntemleri

Genel olarak veri madenciliği yöntemleri iki sınıfa ayrılabilir:

- Tanımlayıcı Yöntemler (Descriptive)
 - Veriyi tanımlayan yorumlanabilir örüntülerin bulunması

 Öngörü amacı ile var olan verilerden yorum çıkarılması

Veri madenciliği yöntemleri

Veri

Veri, çok boyutlu değişkenler tablosudur

	Ad	Gelir	Birikim	Medeni hali	Default
	Ali	25,000 \$	50,000 \$	Evli	 Hayır
/	Veli	18,000 \$	10,000 \$	Evli	Evet
		*			
Örnek	(instance)				

Ornek (instance) Kayıt (record)

Nesne (object)

Değişken (variable) Öznitelik (feature)

Veri

Verinin nasıl ifade edildiği uygulamaya bağlı olarak değişir ve çok önemlidir.

Sınıflandırma

Sınıflamanın temel kuralları:

- □ Öğrenme eğiticilidir (supervised).
- Veri setinde bulunan her örneğin bir dizi özniteliği vardır ve bu niteliklerden biri de sınıf bilgisidir.
- Hangi sınıfa ait olduğu bilinen nesneler (öğrenme kümesi- training set) ile bir model oluşturulur
- Oluşturulan model öğrenme kümesinde yer almayan nesneler (deneme kümesi- test set) ile denenerek başarısı ölçülür.

Sınıflandırma Örnek

Sınıflandırma Örnek çözüm

KURAL: EĞER yıllık gelir> θ_1 VE birikim> θ_2 İSE OK DEĞİLSE DEFAULT

Regresyon

(Eğri Uydurma, Fonksiyon Yakınsama)

- Sürekli değişkenlerin öngörüsü regresyon (eğri uydurma) olarak adlandırılan bir istatistiksel yöntemle tespit edilebilir.
- Regresyon analizinin amacı değişik girdi değişkenlerini çıktı değişkeni ile ilişkilendirecek en iyi modelin çıkarılmasıdır.

Kümeleme

- Kümeleme bir eğiticisiz öğrenme ile gerçekleştirilir (unsupervised)
- Küme: Birbirine benzeyen nesnelerden oluşan gruptur.
 - Aynı kümedeki örnekler birbirine daha çok benzer
 - Farklı kümedeki örnekler birbirine daha az benzer
- Benzerlik ölçütü?

Kümeleme Örnek

Birliktelik analizi

- Birliktelik analizi büyük veri kümeleri arasında birliktelik ilişkilerini bulur.
 - Belirli bir veri kümesinde yüksek sıklıkta birlikte görülen öznitelik değerlerine ait ilişkisel kuralların keşfidir.
- Sonuçlar birliktelik kuralları (A →B) olarak sunulur.
- □ Birliktelik kurallarının kullanıldığı en yaygın örnek market sepeti uygulamasıdır.
 - Market sepet analizi, müşterilerin yaptıkları alışverişlerdeki ürünler arasındaki birliktelikleri bularak müşterilerin satın alma alışkanlıklarını belirlemeye çalışır.

Marketlerde birliktelik kuralı keşfi

Örnek

TID	Ürünler
1	Ekmek, Kola, Süt
2	Bira, Ekmek
3	Bira, Kola, Çocuk Bezi, Süt
4	Bira, Ekmek, Çoçuk Bezi, süt
5	Kola, Çocuk Bezi, Süt

```
Bulunan kurallar:

{Süt} --> {Kola}

{Çocuk Bezi, Süt} --> {Bira}
```

Sıralı örüntü madenciliği

Bir nesne kümesinde her nesnenin kendine ait bir zaman çizelgesi olduğu durumda (örnek: t zamanında, A olayı gerçekleşti), farklı olaylar arası güçlü sıralı birliktelik kuralları çıkarmaktır.

"İlk üç taksidinden iki veya daha fazlasını geç ödemiş olan müşteriler %60 olasılıkla krediyi geriye ödeyemiyor." (Behavioral scoring, Churning)

İstisna Analizi

- Normal davranışlardan ve eğilimlerden çok farklı sapmaları belirlemede kullanılır.
- Uygulamalar:
 - Kredi Kartı Yolsuzluğu Tesbiti

Ağ Saldırı (Intrusion) Tesbiti

Veri Madenciliğinde Yaşanan Zorluklar

- Veri Boyutu ve Ölçeklenebilirlik
- Karmaşık ve Heterojen Veri
- Veri Kalitesi
- Verinin Sahipleri ve Dağıtılması
- Gizlilik Koruması
- Sürekli Güncellenen Veri (Streaming Data)