P1. Le bleu du ciel

/42 P1 Le bleu du ciel

Thomson a proposé un modèle d'atome dans lequel chaque électron (M) est élastiquement lié à son noyau (O): il est soumis à une force de rappel \overrightarrow{F}_R passant par le centre de l'atome. Dans tout l'exercice, on admettra que l'on peut se ramener à un problème selon une unique direction $(0, \overrightarrow{e_x})$, c'est-à-dire que $\overrightarrow{F}_R = -kx \overrightarrow{e_x}$, où x est la distance entre l'électron et l'atome.

Nous supposerons que cet électron est freiné par une force de frottement de type fluide proportionnel à sa vitesse $\overrightarrow{F}_f = -h \overrightarrow{v} = -h \frac{\mathrm{d}x}{\mathrm{d}t} \overrightarrow{e_x}$ et que le centre O de l'atome est fixe dans le référentiel d'étude supposé galiléen.

On admet qu'une onde lumineuse provenant du Soleil impose sur un électron de l'atmosphère, une force $\vec{F}_E = -eE_0\cos(\omega t)\,\vec{e_x}$.

Données. masse d'une électron : $m=9.1\times 10^{-31}\,\mathrm{kg}$, charge élémentaire : $e=1.6\times 10^{-19}\,\mathrm{C}$, célérité de la lumière dans le vide : $c=3.00\times 10^8\,\mathrm{m\cdot s^{-1}}$, $k=500\,\mathrm{SI}$, $h=1\times 10^{-20}\,\mathrm{SI}$.

 $\sqrt{4 \ \ 1}$ Quelles sont les dimensions des grandeurs k et h? En quelles unités du système international les exprime-t-on?

——— Réponse -

Par analyse dimensionnelle :

$$\dim(k) = \frac{\text{force}}{\text{longueur}} = \frac{MLT^{-2}}{L} = \boxed{MT^{-2}} \quad ; \quad \dim(h) = \frac{\text{force}}{\text{vitesse}} = \frac{MLT^{-2}}{LT^{-1}} = \boxed{MT^{-1}}$$

Leurs unités en système international sont donc :

$$k \text{ en } \boxed{\text{kg} \cdot \text{s}^{-2}} \quad \overset{\text{\scriptsize (1)}}{\text{ou}} \quad \boxed{\text{N} \cdot \text{m}^{-1}} \qquad ; \qquad h \text{ en } \boxed{\text{kg} \cdot \text{s}^{-1}} \boxed{1}$$

/2 $\boxed{2}$ En utilisant le PFD, donner l'équation différentielle vérifiée par la position de l'électron x(t).

– Réponse –

D'après le PFD appliqué à l'électron dans le référentiel de l'atome considéré comme galiléen :

$$m\,\overrightarrow{a} = \overrightarrow{F}_R + \overrightarrow{F}_f + \overrightarrow{F}_E$$

En projetant cette relation sur l'axe $(O, \vec{e_x})$, on obtient :

$$m\ddot{x} = -kx - h\dot{x} - eE_0\cos(\omega t)$$

/4 | 3 | Montrer qu'on peut l'exprimer sous la forme :

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x(t) = -\frac{e}{m} E_0 \cos(\omega t)$$

On donnera les expressions de ω_0 et Q en fonction des données.

- Réponse

Sous forme canonique, cette équation est :

$$\ddot{x} + \frac{h}{m}\dot{x} + \frac{k}{m}\dot{x} = -\frac{eE_0}{m}\cos(\omega t)$$

On en déduit que : $\frac{\omega_0}{Q} = \frac{h}{m} \quad \stackrel{\text{\scriptsize (1)}}{\text{et}} \quad \omega_0^2 = \frac{k}{m}$

On trouve alors : $\boxed{\omega_0 \stackrel{\frown}{=} \sqrt{\frac{k}{m}}} \quad \text{et} \quad Q = \frac{m\omega_0}{h} \Leftrightarrow \boxed{Q \stackrel{\frown}{=} \frac{\sqrt{mk}}{h}}$

 $\sqrt{2}$ A Calculer Q. Que peut-on en déduire sur le régime transitoire?

Réponse

On trouve:

$$Q^{\underbrace{1}}_{2,1} \times 10^6 > \frac{1}{2}$$

On en déduit que le régime transitoire est **pseudo-périodique**. ①

/9 $\boxed{5}$ Montrer que le temps caractéristique du régime transitoire est $\tau = 2Q/\omega_0$, et donnez l'expression de la pseudopulsation Ω . Au bout de combien de temps peut-on considérer le régime transitoire comme terminé? Calculer τ . Peut-on considérer que l'électron est en régime permanent?

Réponse

Le régime transitoire correspond à la solution homogène $x_h(t)$ telle que

$$\ddot{x} + \frac{\omega_0}{Q}\dot{x} + {\omega_0}^2 x = 0$$

d'équation caractéristique

$$r^2 + \frac{\omega_0}{Q}r + {\omega_0}^2 \stackrel{\text{1}}{=} 0$$
 avec $\Delta \stackrel{\text{1}}{=} \frac{{\omega_0}^2}{Q^2} (1 - 4Q^2)$

Comme le régime est pseudo-périodique, on sait que les racines sont complexes, et on aura

$$r_{\pm} \stackrel{\textcircled{2}}{=} - \frac{\omega_0}{2Q} \pm j \frac{\omega_0}{2Q} \sqrt{4Q^2 - 1}$$

On a donc

$$\boxed{\tau^{\underbrace{1}} \frac{2Q}{\omega_0}} \quad \text{et} \quad \boxed{\Omega^{\underbrace{1}} \frac{\omega_0}{2Q} \sqrt{4Q^2 - 1}}$$

Au bout de quelques τ , on peut considérer que le régime transitoire est nul. (1)

Par A.N., on trouve

$$\boxed{\tau \stackrel{\textcircled{1}}{=} 1.8 \times 10^{-10} \,\mathrm{s}}$$

On suppose donc que l'électron est en régime permanent. (1)

Pourquoi peut-on alors dire que $x(t) \approx X_m \cos(\omega t + \varphi)$?

 $\chi(t) \sim \Lambda_m \cos(\omega t + \varphi)$:

Réponse -

On a

$$x(t) = x_h(t) + x_p(t)$$

avec x_h une solution homogène et x_p la solution particulière, de même fréquence ① de l'excitation. Ainsi, pour des durées supérieures à quelques τ , donc supérieures à 10^{-9} s, on peut considérer que $x_h(t) = 0$, soit $x_h(t) \approx x_p(t)$.

- Réponse -

En notations complexes, on définit la représentation complexe $\underline{x}(t) = X_m e^{j(\omega t + \varphi)}$ et l'amplitude complexe $\underline{X}_m = X_m e^{j\varphi}$. On peut alors écrire :

$$(\mathrm{j}\omega)^2 \underline{X_m} + \frac{(\mathrm{j}\omega)\omega_0}{Q} \underline{X_m} + \omega_0^2 \underline{X_m} \stackrel{\textcircled{1}}{=} \frac{-eE_0}{m} \Leftrightarrow \underline{X_m} \stackrel{\textcircled{1}}{=} \frac{\frac{-eE_0}{m}}{\omega_0^2 - \omega^2 + \frac{(\mathrm{j}\omega)\omega_0}{Q}}$$

$$\Leftrightarrow \boxed{\underline{X_m} \stackrel{\textcircled{1}}{=} \frac{-eE_0}{m\omega_0^2} \frac{1}{1 - \left(\frac{\omega}{\omega_0}\right)^2 + \mathrm{j}\frac{\omega}{Q\omega_0}}$$

On a alors:

$$X_m = \left| \underline{X_m} \right| = \stackrel{\text{1}}{=} \frac{eE_0}{m\omega_0^2} \frac{1}{\sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \frac{\omega^2}{Q^2\omega_0^2}}}$$

/3 8 Exprimer $\tan \varphi$ en fonction de ω_0 et de Q.

Réponse -

On a:

$$\underline{X_m} = \frac{eE_0}{m\omega_0^2} \frac{1}{\left(\frac{\omega}{\omega_0}\right)^2 - 1 - j\frac{\omega}{Q\omega_0}}$$

$$\Rightarrow \varphi = \arg\left(\underline{X_m}\right) = \arg\left(\frac{eE_0}{m\omega_0^2}\right) - \arg\left(\left(\frac{\omega}{\omega_0}\right)^2 - 1 - j\frac{\omega}{Q\omega_0}\right)$$

$$\Rightarrow \tan(\varphi) = \frac{-\frac{\omega}{Q\omega_0}}{\left(\frac{\omega}{\omega_0}\right)^2 - 1} \Leftrightarrow \tan(\varphi) = \frac{\omega\omega_0}{Q(\omega_0^2 - \omega^2)}$$

Les longueurs d'ondes λ du Soleil sont principalement incluses dans le domaine du visible, ainsi on considère que $\lambda \in [\lambda_b, \lambda_r]$, où λ_b (resp. λ_r) est la longueur d'onde du rayonnement bleu (resp. rouge).

 \Diamond

/1 $\boxed{9}$ Que valent λ_b et λ_r ?

— Réponse -

$$\lambda_b = 400 \,\mathrm{nm}$$
 et $\lambda_r = 800 \,\mathrm{nm}$

/2 10 En déduire que $\omega \in [\omega_r, \omega_b]$. On donnera les valeurs littérales de ω_r et ω_b et on effectuera les applications numériques.

- Réponse -

Le lien entre pulsation et longueur d'onde est :

$$\omega = \frac{2\pi c}{\lambda}$$

Ainsi:

$$\omega \in [\omega_r, \omega_b]$$
 avec $\omega_r = \frac{2\pi c}{\lambda_r} = 2.36 \times 10^{15} \,\mathrm{rad \cdot s^{-1}}$ et $\omega_b = \frac{2\pi c}{\lambda_b} = 4.71 \times 10^{15} \,\mathrm{rad \cdot s^{-1}}$

/1 11 Calculer ω_0 .

- Réponse ·

On trouve

$$\omega_0 \stackrel{\text{1}}{=} 2{,}34 \times 10^{16} \, \text{rad} \cdot \text{s}^{-1}$$

/2 12 En déduire que :

$$X_m \approx \frac{eE_0}{m\omega_0^2}$$

Réponse

En comparant ω et ω_0 , on peut considérer que $\omega_0 \gg \omega$ (il y a au moins un facteur 5 entre les 2, c'est un peu juste). De plus, $Q \gg 1$. Ainsi on peut simplifier le dénominateur du X_m car

$$\frac{\omega\omega_0}{Q}\ll\omega^2\ll\omega_0^2\quad \ \ \, (1)$$

Dans ce cas,

$$X_m \approx \frac{eE_0}{m\omega_0^2}$$

Un électron diffuse dans toutes les directions un rayonnement dont la puissance moyenne \mathcal{P} est proportionnelle au carré de l'amplitude de son accélération.

/2 13 Montrer que :

$$P = K \left(\frac{eE_0 \omega^2}{m\omega_0^2} \right)^2$$

où K est une constante que l'on ne cherchera pas à exprimer.

— Réponse

En amplitude complexe, l'accélération est :

$$\underline{A_m} \stackrel{\textcircled{1}}{=} (\mathrm{j}\omega)^2 \underline{X_m} \quad \Rightarrow \quad A_m \stackrel{\textcircled{1}}{=} \frac{eE_0\omega^2}{m\omega_0^2}$$

D'après le sujet, la puissance est proportionnelle au carré de l'amplitude de l'accélération, donc

$$P = KA_m^2 = K\left(\frac{eE_0\omega^2}{m\omega_0^2}\right)^2$$

/2 14 Expliquer alors pourquoi le ciel est bleu.

– Réponse -

- 🔷

On peut comparer la puissance diffusée pour un rayonnement bleu avec un rayonnement rouge :

$$\frac{P_b \underbrace{1}_{p_r} \underline{\omega}_b^2 \underline{1}_4}{P_r}$$

La puissance diffusée pour les rayonnements bleus est 4 fois plus importante que celle pour un rayonnement rouge, d'où la couleur du ciel!

Pourquoi le ciel est-il rouge quand le Soleil se couche?

------ Réponse ------

Le Soleil rasant parcourt une plus grand couche d'atmosphère ① par rapport au zénith : tout le rayonnement bleu a déjà été diffusé, et il ne reste que le rouge. ①