VACACIONES DIVERTIÚTILES

ASOCIACIÓN EDUCATIVA SACO OLIVEROS

ALGEBRA

Chapter 1

1st secondary

LEYES DE EXPONENTES I

ALGEBRA

indice

01. MotivatingStrategy 🕥

 \bigcirc

02. HelicoTheory

03. HelicoPractice

04. HelicoWorshop

 \bigcirc

M

Ayúdame a descifrar el año (codificada) de nacimiento del Célebre Matemático George Cantor.

Rpta. 1845

MOTIVATING STRATEGY

Resumen

HELICO THEORY

POTENCIACIÓN

Definición

$$a^n = P$$

Donde:

a: Base

n: Exponente

P: Potencia

 $a \in \mathbb{R}$, $n \in \mathbb{Z}$, $P \in \mathbb{R}$

EXPONENTE NATURAL

$$a^n = \underbrace{a.a.a.a..a}_{n \text{ veces}}$$

 $n \in \mathbb{N}$; $a \in \mathbb{R}$

Ejemplos:

$$\rightarrow$$
 3² = 3.3 = 9

$$\rightarrow$$
 4³ = 4.4.4 = 64

Anotación:

Para bases $(-)^{par} = +$ negativas $(-)^{impar} = -$

Ejemplos:

$$(-5)^2 = 25$$

$$(-2)^3 = -8$$

2

EXPONENTE CERO

$$a^0 = 1$$

 $a \neq 0$

Ejemplos:

$$> 5^0 = 1$$

$$(-7)^0 = 1$$

Anotación:

 $0^0 \xrightarrow{NO} DEFINIDO$

EXPONENTE UNO

$$a^1 = a$$

Ejemplos:

- \rightarrow 4¹ = 4
- $(-7)^1 = -7$

Observación:

Si el exponente de un número es uno, entonces se puede obviar

EXPONENTE NEGATIVO

$$a^{-n} = \frac{1}{a^n} \quad \bigg|_{a \neq 0}$$

Ejemplos:

$$\rightarrow$$
 4⁻¹ = $\frac{1}{4}$

$$> 5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$

También:

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

 $a; b \neq 0$

Ejemplos:

$$\qquad \qquad \left(\frac{1}{3}\right)^{-2} = \left(\frac{3}{1}\right)^2 = 9$$

Problema 01

 \bigcirc

Problema 02

 \bigcirc

Problema 03

 \bigcirc

Problema 04

Problema 05

HELICO PRACTICE

Halle el valor de

$$M = 7^0 - 2^1 + (-5)^0$$

Recordemos

$$a^{0} = 1$$

$$a^1 = a$$

$$M = 7^0 - 2^1 + (-5)^0$$

$$M = 1 - 2 + 1$$

$$M = 0$$

Respuesta

M = 0

Efectúe

$$H = (-9)^2 + (-4)^3 + (-7)^2$$

Recordemos

$$(-)^{par} = +$$

$$(-)^{impar} = -$$

$$H = (-9)^2 + (-4)^3 + (-7)^2$$

$$H = 81 + (-64) + 49$$

$$H = 81 -64 +49$$

$$H = 66$$

Respuesta .: H = 66

Halle el valor de:

$$R = \left(\frac{5}{9}\right)^{-1} + \left(\frac{7}{8}\right)^{-1} + \left(\frac{5}{6}\right)^{-1} + \left(\frac{7}{13}\right)^{-1}$$

Recordemos

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

$$R = \left(\frac{5}{9}\right)^{-1} + \left(\frac{7}{8}\right)^{-1} + \left(\frac{5}{6}\right)^{-1} + \left(\frac{7}{13}\right)^{-1}$$

$$R = \frac{9}{5} + \frac{8}{7} + \frac{6}{5} + \frac{13}{7}$$

acomodamos los términos

$$R = \frac{9}{5} + \frac{6}{5} + \frac{8}{7} + \frac{13}{7}$$

$$R = \frac{15}{5} + \frac{21}{7}$$

$$R = 3 + 3 = 6$$

Respuesta

∴R=6

Miriam está muy entusiasmada porque va empezar sus clases de verano en el Colegio Saco Oliveros, por tal motivo fue a una librería a comprar algunos útiles que le faltaba. Miriam gasta $\left(\frac{1}{\alpha}\right)^{-1}$ soles por la compra de un cuaderno y $\left(\frac{1}{5}\right)^{-1}$ soles por un juego de reglas. Si ella fue a la librería $con(\frac{1}{25})^{-1}$ soles, ¿cuánto dinero le sobró a Miriam después de comprar sus útiles?

Miriam:

tenía

Gasta

$$\left(\frac{1}{25}\right)^{-1} - \left(\left(\frac{1}{8}\right)^{-1} + \left(\frac{1}{5}\right)^{-1}\right)$$

Respuesta

.: A Miriam le sobro s/12

Jorge en sus ratos libres le gusta hacer videos y publicarlos en su cuenta de TikTok, en el último fin de semana su video llamado "Mis vacaciones" tuvo el siguiente número de visualizaciones: el día viernes 26 ,el sábado 53 y el domingo 3⁴ . ¿Cuántas visualizaciones en total obtuvo "Mis vacaciones" el último fin de semana?

Por dato:

2⁶ Viernes:

5³ Sábado:

3⁴ **Domingo:**

Total =
$$2^6 + 5^3 + 3^4$$

= $64 + 125 + 81$

Respuesta .: 270 visualizaciones

 \bigcirc

Problema 06

Problema 07

Problema 08

Problema 09

Problema 10

Problema 07

Problema 08

Halle el valor de:

$$M = (-3)^3 + (-4)^2 - (-5)^0$$

Halle el valor de:

$$P = (-1)^{2015} + (-8)^2 + (-1)^{2014}$$

Halle el valor de :

Halle el valor de:

$$P = (-1)^{2015} + (-8)^2 + (-1)^{2014}$$
 $R = \left(\frac{8}{3}\right)^{-1} + \left(\frac{5}{7}\right)^{-1} + \left(\frac{8}{13}\right)^{-1} + \left(\frac{5}{3}\right)^{-1}$

Problema 09

Problema 10

Luchito fue al mercado con $\left(\frac{1}{30}\right)^{-1}$ soles para comprar arroz y azúcar. Gastó en arroz $\left(\frac{1}{12}\right)^{-1}$ soles y en azúcar $\left(\frac{1}{9}\right)^{-1}$ soles. ¿Cuánto dinero le sobró a Luchito después de realizar la compra?

Carlos adquiere su álbum de "La Copa Mundial de FIFA Qatar 2022", para llenar este álbum se requiere 8³ figuritas, hasta al momento Carlos ha adquirido 3⁴ figuritas de las cuales 5⁰ son repetidas. ¿Cuántas figuritas le faltan a Carlos para completar su álbum?

