Proyecto 1: ISI Free Nyquist Pulses Simulation

Ariel Núñez Lobos EL7041-Comunicaciones Digitales Avanzadas

Cronograma

- 1. Introducción
- 2. Marco Teórico
- 3. Resultados
- 4. Conclusiones

Introducción

- Las comunicaciones digitales son susceptibles a errores por interferencia intersimbólica (ISI) e interferencia co-canal (CCI).
- Pulsos de Nyquist se presentan como una herramienta para reducir sus efectos y mejorar el rendimiento de transmisión.

Marco Teórico: primer criterio de Nyquist

$$h(kT) = \begin{cases} 1, k = 0 \\ 0, k = \pm 1, \pm 2, \pm 3 \pm 4, \dots \end{cases}$$

$$h(t)_{BTRC} = \frac{\sin(\pi\tau)}{\pi\tau} \cdot \frac{4\beta\pi t \sin(\pi\alpha\tau) + 2\beta^2 \cos(\pi\alpha\tau) - \beta^2}{4\pi^2 t^2 + \beta^2}$$

$$h(t)_{\text{ELP}} = e^{-\pi(\beta/2)(\tau)^2} \cdot \frac{\sin(\pi\tau)}{(\pi\tau)} \cdot \frac{\sin(\pi\alpha\tau)}{(\pi\alpha\tau)} \qquad h(t)_{RC} = \frac{\sin(\pi\tau)}{\pi\tau} \times \frac{\cos(\pi\alpha\tau)}{1 - 4\alpha^2\tau^2}$$

$$h(t)_{IPLCP} = \exp\left(-\varepsilon \pi^2(\tau)^2\right)$$
$$\cdot \left[\frac{\sin(\pi\tau)}{\pi\tau} \cdot \frac{4(1-\mu)\sin^2(\pi\alpha\tau/2) + \pi\alpha\mu\tau\sin(\pi\alpha\tau)}{\pi^2\alpha^2\tau^2}\right]^{\gamma}$$

Marco Teórico: Cálculo de Bit Error Rate

$$\mathbb{P}_{e} = \frac{1}{2} - \frac{2}{\pi} \sum_{\substack{m=1 \\ m \text{ odd}}}^{M} \left\{ \frac{\exp(-m^{2}\omega^{2}/2)\sin(m\omega g_{o})}{m} \right\} \prod_{\substack{k=N_{1} \\ k\neq 0}}^{N_{2}} \cos(m\omega g_{k})$$

$$\mathbb{P}_{e} = \frac{1}{2} - \frac{2}{\pi} \sum_{m=1}^{M} \frac{\exp(-m^{2}w^{2}/2)\sin(mw g_{o})}{m} \prod_{i=1}^{L} J_{0}(mw r_{i})$$

$$\mathbb{P}_{e} = \frac{1}{2} - \frac{2}{\pi} \sum_{m=1}^{M} \left\{ \frac{\exp(-m^{2}\omega^{2}/2)\sin(m\omega g_{o})}{m} \right\} \prod_{k=N_{1}}^{N_{2}} \cos(m\omega g_{k}) \prod_{i=1}^{L} J_{0}(mw r_{i})$$

$$\mathbb{P}_{e} = \frac{1}{2} - \frac{2}{\pi} \sum_{m=1}^{M} \left\{ \frac{\exp(-m^{2}\omega^{2}/2)\sin(m\omega g_{o})}{m} \right\} \prod_{k=N_{1}}^{N_{2}} \cos(m\omega g_{k}) \prod_{i=1}^{L} J_{0}(mw r_{i})$$

Resultados

Simulaciones en MATLAB a partir de código base en Material Docente.

Parámetro	Valor
N (número de símbolos)	10^{5}
fs (Frecuencia de muestreo)	10[Hz]
Canal	AWGN
Tipo de Modulación	BPSK
α (roll-off factor)	0.22,0.50

Parámetro	Valor
N (símbolos interferentes)	2^{10}
M	100
ω	0.1 [Hz]
Offsets, t/T	$\pm 0.05, 0.10, 0.20, 0.25$
α (roll-off factor)	0.22, 0.35, 0.5
L_{CCI} (interferencias de canal)	2, 6
$L_{ISI+CCI}$	6
SNR_{ISI}	10, 20 [dB]
SNR_{CCI}	15 [dB]
$SNR_{ISI+CCI}$	15 [dB]
SIR_{CCI}	10, 20 [dB]
$SIR_{ISI+CCI}$	15 [dB]

Resultados: Respuesta al impulso

Resultados: Respuesta en Frecuencia

Tabla 3: Probabilidades de error por bit en distintos intervalos de Jitter considerando ISI para SNR=10[db] con distintos valores de α .

α	Pulso	$t/T = \pm 0.05$	$t/T = \pm 0.10$	$t/T = \pm 0.20$	$t/T = \pm 0.25$
	RC	0.0011	0.0024	0.0146	0.0312
0.22	BTRC	0.0010	0.0021	0.0118	0.0256
0.22	IPLCP	0.0009	0.0012	0.0039	0.0086
	ELP	0.0010	0.0017	0.0083	0.0181
	RC	0.0010	0.0020	0.0110	0.0239
0.35	BTRC	0.0010	0.0017	0.0080	0.0175
0.55	IPLCP	0.0009	0.0012	0.0037	0.0082
	ELP	0.0009	0.0015	0.0066	0.0144
	RC	0.0010	0.0017	0.0081	0.0176
0.5	BTRC	0.0009	0.0014	0.0054	0.0119
0.5	IPLCP	0.0009	0.0012	0.0036	0.0078
	ELP	0.0009	0.0013	0.0050	0.0110

Tabla 4: Probabilidades de error por bit en distintos intervalos de Jitter considerando ISI para SNR = 20[db] con distintos valores de α .

α	Pulso	$t/T = \pm 0.05$	$t/T = \pm 0.10$	$t/T = \pm 0.20$	$t/T = \pm 0.25$
	RC	0.0000	0.0000	0.0000	0.0017
0.22	BTRC	0.0000E-03	0.0000E-03	0.0008E-03	0.1948E-03
0.22	IPLCP	0.0000E-10	0.0000E-10	0.0001E-10	0.1372E-10
	ELP	0.0000E-5	0.0000E-5	0.0002E-5	0.1613E-5
	RC	0.0000E-4	0.0000E-4	0.0021E-4	0.7461E-4
0.35	BTRC	0.0000E-5	0.0000E-5	0.0002E-5	0.1369E-5
0.55	IPLCP	0.0000E-11	0.0000E-11	0.0004E-11	0.5159E-11
	ELP	0.0000E-7	0.0000E-7	0.0006E-7	0.5141E-7
	RC	0.0000E-6	0.0000E-6	0.0013E-6	0.9140E-6
0.5	BTRC	0.0000E-8	0.0000E-8	0.0010E-8	0.8939E-8
	IPLCP	0.0000E-11	0.0000E-11	0.0001E-11	0.1355E-11
	ELP	0.0000E-9	0.0000E-9	0.0007E-9	0.7341E-9

Tabla 5: Probabilidades de error por bit considerando CCI para SNR=15[db], SIR=10[db], L=2 con distintos valores de α .

α	Pulso	$t/T = \pm 0.05$	$t/T = \pm 0.10$	$t/T = \pm 0.20$	$t/T = \pm 0.25$
	RC	0.0379E-03	0.0489E-03	0.1270E-03	0.2444E-03
0.22	BTRC	0.0380E-03	0.0493E-03	0.1313E-03	0.2564E-03
0.22	IPLCP	0.0399E-03	0.0599E-03	0.2541E-03	0.6394E-03
	ELP	0.0383E-03	0.0507E-03	0.1449E-03	0.2948E-03
	RC	0.0380E-03	0.0495E-03	0.1332E-03	0.2617E-03
0.35	BTRC	0.0383E-03	0.0507E-03	0.1450E-03	0.2951E-03
0.55	IPLCP	0.0403E-03	0.0617E-03	0.2808E-03	0.7312E-03
	ELP	0.0385E-03	0.0520E-03	0.1575E-03	0.3314E-03
	RC	0.0382E-03	0.0507E-03	0.1447E-03	0.2940E-03
0.5	BTRC	0.0387E-03	0.0532E-03	0.1715E-03	0.3737E-03
0.0	IPLCP	0.0408E-03	0.0650E-03	0.3324E-03	0.9156E-03
	ELP	0.0389E-03	0.0541E-03	0.1814E-03	0.4036E-03

Tabla 6: Probabilidades de error por bit considerando CCI para SNR = 15[db], SIR = 10[db], L = 6 con distintos valores de α .

α	Pulso	$t/T = \pm 0.05$	$t/T = \pm 0.10$	$t/T = \pm 0.20$	$t/T = \pm 0.25$
	RC	0.1419E-03	0.1725E-03	0.3604E-03	0.5990E-03
0.22	BTRC	0.1421E-03	0.1738E-03	0.3699E-03	0.6217E-03
0.22	IPLCP	0.0001	0.0002	0.0006	0.0013
	ELP	0.1429E-03	0.1776E-03	0.3992E-03	0.6932E-03
	RC	0.1422E-03	0.1743E-03	0.3740E-03	0.6318E-03
0.35	BTRC	0.1429E-03	0.1776E-03	0.3994E-03	0.6937E-03
0.55	IPLCP	0.0001	0.0002	0.0007	0.0014
	ELP	0.1436E-03	0.1808E-03	0.4258E-03	0.7594E-03
	RC	0.1429E-03	0.1775E-03	0.3986E-03	0.6918E-03
0.5	BTRC	0.1443E-03	0.1843E-03	0.4549E-03	0.8341E-03
	IPLCP	0.0002	0.0002	0.0008	0.0017
	ELP	0.1448E-03	0.1866E-03	0.4751E-03	0.8861E-03

Tabla 7: Probabilidades de error por bit considerando CCI para SNR = 15[db], SIR = 20[db], L = 2 con distintos valores de α .

α	Pulso	$t/T = \pm 0.05$	$t/T = \pm 0.10$	$t/T = \pm 0.20$	$t/T = \pm 0.25$
	RC	0.0088E-0.5	0.0130E-0.5	0.0584E-0.5	0.1643E-0.5
0.22	BTRC	0.0089E-0.5	0.0140E-0.5	0.0747E-0.5	0.2340E-0.5
0.22	IPLCP	0.0096E-0.5	0.0186E-0.5	0.1969E-0.5	0.8981E-0.5
	ELP	0.0090E-0.5	0.0143E-0.5	0.0811E-0.5	0.2624E-0.5
	RC	0.0087E-0.5	0.0124E-0.5	0.0484E-0.5	0.1252E-0.5
0.35	BTRC	0.0087E-0.5	0.0125E-0.5	0.0508E-0.5	0.1343E-0.5
0.55	IPLCP	0.0093E-0.5	0.0165E-0.5	0.1326E-0.5	0.5218E-0.5
	ELP	0.0088E-0.5	0.0131E-0.5	0.0585E-0.5	0.1649E-0.5
	RC	0.0087E-0.5	0.0126E-0.5	0.0518E-0.5	0.1385E-0.5
0.5	BTRC	0.0088E-0.5	0.0131E-0.5	0.0586E-0.5	0.1651E-0.5
0.5	IPLCP	0.0094E-0.5	0.0172E-0.5	0.1535E-0.5	0.6386E-0.5
	ELP	0.0088E-0.5	0.0135E-0.5	0.0660E-0.5	0.1959E-0.5

Tabla 8: Probabilidades de error por bit considerando CCI para SNR = 15[dB], SIR = 20[dB], L = 6 con distintos valores de α .

α	Pulso	$t/T = \pm 0.05$	$t/T = \pm 0.10$	$t/T = \pm 0.20$	$t/T = \pm 0.25$
	RC	0.0087E-0.5	0.0124E-0.5	0.0484E-0.5	0.1252E-0.5
0.22	BTRC	0.0087E-0.5	0.0125E-0.5	0.0508E-0.5	0.1343E-0.5
0.22	IPLCP	0.0093E-0.5	0.0165E-0.5	0.1326E-0.5	0.5218E-0.5
	ELP	0.0088E-0.5	0.0131E-0.5	0.0585E-0.5	0.1649E-0.5
	RC	0.0087E-0.5	0.0126E-0.5	0.0518E-0.5	0.1385E-0.5
0.35	BTRC	0.0088E-0.5	0.0131E-0.5	0.0586E-0.5	0.1651E-0.5
0.55	IPLCP	0.0094E-0.5	0.0172E-0.5	0.1535E-0.5	0.6386E-0.5
	ELP	0.0088E-0.5	0.0135E-0.5	0.0660E-0.5	0.1959E-0.5
	RC	0.0088E-0.5	0.0130E-0.5	0.0584E-0.5	0.1643E-0.5
0.5	BTRC	0.0089E-0.5	0.0140E-0.5	0.0747E-0.5	0.2340E-0.5
0.0	IPLCP	0.0096E-0.5	0.0186E-0.5	0.1969E-0.5	0.8981E-0.5
	ELP	0.0090E-0.5	0.0143E-0.5	0.0811E-0.5	0.2624E-0.5

Tabla 9: Probabilidades de error por bit considerando ISI y CCI para SNR = 15[dB], SIR = 15[dB], L = 6 con distintos valores de α .

α	Pulso	$t/T = \pm 0.05$	$t/T = \pm 0.10$	$t/T = \pm 0.20$	$t/T = \pm 0.25$
	RC	0.0064	0.0099	0.0296	0.0494
0.22	BTRC	0.0063	0.0092	0.0263	0.0440
0.22	IPLCP	0.0058	0.0071	0.0150	0.0248
	ELP	0.0061	0.0084	0.0216	0.0362
	RC	0.0063	0.0091	0.0253	0.0424
0.35	BTRC	0.0061	0.0083	0.0212	0.0355
0.55	IPLCP	0.0058	0.0070	0.0147	0.0244
	ELP	0.0060	0.0079	0.0192	0.0320
	RC	0.0061	0.0083	0.0214	0.0357
0.5	BTRC	0.0059	0.0075	0.0173	0.0288
	IPLCP	0.0058	0.0070	0.0147	0.0242
	ELP	0.0059	0.0074	0.0167	0.0278

Resultados: Truncar Pulsos

Tabla 17: Probabilidades de error multiplicadas por 10^4 por bit considerando ISI y CCI, $SNR=15[{\rm\,dB}],\,SIR=15[{\rm\,dB}],\,L=6,$ para distintos valores de alfa, con pulsos truncados.

α	Pulso	$t/T = \pm 0.05$	$t/T = \pm 0.10$	$t/T = \pm 0.20$	$t/T = \pm 0.25$
		Trun	cado en $t/T = \pm$	5.0	
	RC	0.0533	0.5783	33.8166	135.2714
0.22	BTRC	0.0441	0.3715	19.0095	83.6244
0.22	IPLCP	0.0192	0.0469	0.8711	4.7713
	ELP	0.0334	0.1947	7.5796	36.2860
	RC	0.0419	0.3316	16.2875	73.0067
0.35	BTRC	0.0326	0.1830	6.8644	32.9334
0.55	IPLCP	0.0186	0.0422	0.7338	4.0973
	ELP	0.0283	0.1299	4.0951	20.1646
	RC	0.0329	0.1869	7.0539	33.8522
0.5	BTRC	0.0245	0.0918	2.4397	12.1868
0.5	IPLCP	0.0179	0.0374	0.5870	3.3573
	ELP	0.0232	0.0791	1.9090	9.6591

	10 3	Tr	uncado en $t/T =$	±10.0	10
	RC	0.0329	0.1869	7.0552	33.8582
0.22	BTRC	0.0245	0.0922	2.4582	12.2802
0.22	IPLCP	0.0179	0.0374	0.5870	3.3573
	ELP	0.0232	0.0791	1.9090	9.6591
	RC	0.0420	0.3318	16.3029	73.0655
0.95	BTRC	0.0327	0.1839	6.9204	33.1760
0.35	IPLCP	0.0186	0.0422	0.7338	4.0973
	ELP	0.0283	0.1299	4.0951	20.1646
	RC	0.0329	0.1869	7.0552	33.8582
0.5	BTRC	0.0245	0.0922	2.4582	12.2802
	IPLCP	0.0179	0.0374	0.5870	3.3573
	ELP	0.0232	0.0791	1.9090	9.6591

Conclusiones

 Se logró simular diversos pulsos de Nyquist y cómo afectan el envío de información digital.

 Se evidencia la importancia de los parámetros en la construcción de diversos pulsos de Nyquist y como cumplen el primer criterio.

 Se verifica como los pulsos afectan la probabilidad de error, a lo largo de distintos intervalos de tiempo, dependiendo de los parámetros de los pulsos.

Proyecto 1: ISI Free Nyquist Pulses Simulation

Ariel Núñez Lobos EL7041-Comunicaciones Digitales Avanzadas