Unidad 6

Transformadas integrales 9° CLASE

Cintia Perrone – PS 2023

6.10 Aplicación a ecuaciones integrodiferenciales

Transformada de la derivada primera de una función:

Sea f(t) continua para $t \ge 0$, de orden exponencial σ para $t \to \infty$ y f'(t) seccionalmente continua para $t \ge 0$. Si $\mathcal{L}\{f(t)\} = F(s)$ entonces para $Re(s) > \sigma$:

$$\mathcal{L}{f'(t)} = sF(s) - f(0)$$

Demostración:

Calcularemos por definición la transformada de Laplace de f'(t):

$$\mathcal{L}{f'(t)} = \int_0^\infty f'(t)e^{-ts} dt$$

Integramos por partes:

$$\mathcal{L}\{f'(t)\} = \lim_{b \to \infty} \int_0^b f'(t)e^{-ts} dt = e^{-ts}f(t)\Big|_0^b - \lim_{b \to \infty} \int_0^b f(t)(-s)e^{-ts} dt$$

$$\mathcal{L}\lbrace f'(t)\rbrace = \lim_{b \to \infty} \left(e^{-tb} f(b) \right) - f(0) - \lim_{b \to \infty} \int_0^b f(t) (-s) e^{-ts} dt$$

Vamos a trabajar sobre el término $e^{-tb}f(b)$:

Para cumplir las condiciones de la existencia de Laplace, la función f(t) tiene que ser de orden exponencial: Existen T y M constantes no negativas tales que:

$$|f(t)| \le Me^{\sigma t}$$
 para todo $t \ge T$

Entonces supongamos un $b \ge T$:

$$|f(b)| \le Me^{\sigma b}$$

Multiplicamos a ambos lados por: $\left|e^{-sb}\right| = e^{-Re(s)b}$: $|f(b)|e^{-Re(s)b} \le Me^{\sigma b}e^{-Re(s)b}$ $|f(b)e^{-Re(s)b}| \le Me^{b(\sigma - Re(s))}$

$$0 \le \left| f(b)e^{-Re(s)b} \right| \le Me^{b(\sigma - Re(s))}$$

Y tenemos que
$$\lim_{b\to\infty} Me^{b(\sigma-Re(s))} = 0$$
 si $\sigma-Re(s) \le 0$

Por el teorema de intercalación:

$$\lim_{b \to \infty} |f(b)e^{-Re(s)b}| = 0 \quad si \quad Re(s) \ge \sigma$$

O equivalentemente:

$$\lim_{b \to \infty} f(b)e^{-Re(s)b} = 0 \quad si \quad Re(s) \ge \sigma$$

$$\mathcal{L}\lbrace f'(t)\rbrace = \lim_{b \to \infty} \left(e^{-tb} f(b) \right) - f(0) - \lim_{b \to \infty} \int_0^b f(t) (-s) e^{-ts} dt$$

Queda:

$$\mathcal{L}\lbrace f'(t)\rbrace = -f(0) - \lim_{b \to \infty} \int_0^b f(t)(-s)e^{-ts} dt \quad si \quad Re(s) \ge \sigma$$

$$\mathcal{L}\lbrace f'(t)\rbrace = s \int_0^\infty f(t)e^{-ts} dt - f(0) \quad si \quad Re(s) \ge \sigma$$

$$\mathcal{L}\lbrace f'(t)\rbrace = sF(s) - f(0) \quad si \quad Re(s) \ge \sigma$$

(Ejemplos pizarrón 9.A)

Transformada de la derivada segunda de una función:

Sea f(t) y f'(t) continuas para $t \geq 0$, de orden exponencial σ para $t \to \infty$ y f''(t) seccionalmente continua para $t \geq 0$. Si $\mathcal{L}\{f(t)\} = F(s)$ entonces para $Re(s) > \sigma$:

$$\mathcal{L}\{f''(t)\} = s^2 F(s) - sf(0) - f'(0)$$

 π

Demostración:

Calcularemos utilizando la ecuación para la transformada de la derivada primera:

$$f''(t) = [f'(t)]' = [g(t)]'$$
 con $g(t) = f'(t)$
 $\mathcal{L}\{f''(t)\} = \mathcal{L}\{g(t)'\} = sG(s) - g(0)$ (I)

Por la transformada de la derivada primera tenemos:

$$\mathcal{L}{g(t)} = \mathcal{L}{f'(t)} = sF(s) - f(0)$$

Reemplazando en (I):

$$\mathcal{L}\{f''(t)\} = \mathcal{L}\{g(t)'\} = s[sF(s) - f(0)] - f'(0)$$

$$\mathcal{L}\{f''(t)\} = s^2F(s) - sf(0) - f'(0)$$

(Ejemplos pizarrón 9.B)

Teorema 6.10.4:

Transformada de la derivada de orden $n \ge 1$ de una función.

Sean $f(t), f'(t), f^{(2)}(t) \dots f^{(n-1)}(t)$ continuas para $t \ge 0$, de orden exponencial σ para $t \to \infty$ y $f^{(n)}(t)$ seccionalmente continua para $t \ge 0$. Si $\mathcal{L}\{f(t)\} = F(s)$ entonces para $Re(s) > \sigma$:

$$\mathcal{L}\left\{f^{(n)}(t)\right\} = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$$

Convolución de funciones.

El producto de convolución de dos funciones f(t) y g(t) se definía como:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$

Si f(t) = g(t) = 0 para t < 0 tenemos:

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau)d\tau$$

Demostración:

Si f(t) = g(t) = 0 para t < 0:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$

$$= \int_{-\infty}^{0} f(\tau)g(t-\tau)d\tau + \int_{0}^{t} f(\tau)g(t-\tau)d\tau + \int_{t}^{\infty} f(\tau)g(t-\tau)d\tau =$$

La primera y última integral se anulan ya que $f(\tau)=0$ para $\tau<0$ y $g(t-\tau)=0$ para $t-\tau<0$. Así:

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau)d\tau$$

Teorema 6.10.6: Transformada de la convolución de funciones.

Sean f(t), g(t) con $t \ge 0$. Si $\mathcal{L}\{f(t)\} = F(s)$ y $\mathcal{L}\{g(t)\} = G(s)$ para

 $Re(s) > \sigma$ entonces:

$$\mathcal{L}{f(t) * g(t)} = \mathcal{L}{f(t)}\mathcal{L}{g(t)} = F(s)G(s)$$
 para $Re(s) > \sigma$

(Ejemplos pizarrón 9.C)

Teorema 6.10.7: Transformada de la integral de una función.

Si $\mathcal{L}{f(t)} = F(s)$ para $Re(s) > \sigma$ entonces:

$$\mathcal{L}\left\{\int_0^t f(\tau) d\tau\right\} = \frac{F(s)}{s} \quad \text{para} \quad Re(s) > \sigma$$

Demostración:

$$\int_0^t f(\tau) \, d\tau = \int_0^t f(\tau) \cdot 1 \, d\tau = f(t) * 1$$

Calculamos la transformada y aplicamos el teorema de la transformada de una convolución de funciones:

$$\mathcal{L}\left\{\int_0^t f(\tau) d\tau\right\} = \mathcal{L}\left\{f(t) * 1\right\} = \mathcal{L}\left\{f(t)\right\}\mathcal{L}\left\{1\right\} = F(s)\frac{1}{s}$$

(Ejemplos pizarrón 9.D)

Derivada de la transformada de Laplace

Teorema 6.10.14: Derivada de la transformada de una función

Sea f(t) seccionalmente continua para $t \ge 0$, de orden exponencial σ para $t \to \infty$. Si $\mathcal{L}\{f(t)\} = F(s)$ y $n \in \mathbb{N}$, entonces:

$$\mathcal{L}\lbrace t^n f(t)\rbrace = (-1)^n F^{(n)}(s)$$
 para $Re(s) > \sigma$

Es decir, si conocemos la transformada de una función, podemos obtener también, la de la función multiplicada por un polinomio.

Además:

$$\mathcal{L}^{-1}\{F^{(n)}(s)\} = (-1)^n t^n f(t) \text{ para } t \ge 0$$

(Ejemplos pizarrón 9.E)