P3 Assignment Solution

Assignment 1.

- 1. (a) $(-\infty, -\frac{1}{5}] \cup [1, \infty)$
 - (b) $\left(-\frac{3}{4}, -\frac{1}{2}\right)$
- 2. 3 or $\frac{-1-\sqrt{41}}{2}$.
- 3. (a) $a = \frac{5}{3}, b = -\frac{2}{3}$ (b) $\frac{8}{3}x + \frac{16}{3}$
- 4. (a) k = -15
 - (b) $(-\infty, 1) \cup (2, \infty)$
- 5. The region is as follows:

Assignment 2.

1.
$$1 - \frac{3}{8}x - \frac{37}{128}x^2 + \frac{57}{1024}x^3 \cdots$$

- 2. (a) omit
 - (b) $\frac{1}{2} + \frac{1}{16}x^2 + \frac{7}{256}x^4 + \cdots$
- 3. (a) a = 2
 - (b) $-\frac{105}{64}$
- 4. (a) $f(x) = \frac{\frac{1}{4}}{x+1} + \frac{\frac{3}{4}}{x-1} + \frac{\frac{1}{2}}{(x-1)^2}$
- 5. $\frac{27}{16}$, no terms in the expansion of $\left(1+\frac{1}{3}x\right)^{\frac{1}{2}}$ has the term $x^{-\frac{5}{2}}$

${\bf Assignment}\ 3.$

1.
$$x > \log_{0.8} 0.5 = 3.11$$

$$2. \ \frac{x}{y} = \frac{\ln 2.5}{\ln 1.25} = 4.11$$

3.
$$z = \frac{y+2}{y^2}$$

4. Min=
$$\frac{3}{4}$$
, max= 57.

5. (a)
$$x = \frac{\ln 2}{\ln 4 - \ln 3} = 2.409$$
.

(b)
$$x = 0.802$$

(c)
$$x = \pm 1.585$$

6. Domain:
$$x \in \mathbb{R}$$
, range: $-1 < y < 1$.

Assignment 4.

1.
$$x = -49.1^{\circ} \text{ or } 130.9^{\circ}.$$

3.
$$x = 48.2^{\circ}$$
 or 311.8° or 120° or 240°

4. (a)
$$R = 13, \alpha = 22.6.2^{\circ}$$

(b)
$$17.1^{\circ}$$
 or 297.7°

(b)
$$x = \frac{\pi}{8} \text{ or } \frac{5}{8}\pi$$

Bonus question:

1. (a)
$$0.894$$
, 0.0599 or -0.835

(b)
$$\pm \frac{11}{2}$$
.

$$2. \ 4:5:6$$

Assignment 5.

1.
$$e^{-1}$$

2.
$$y - e^2 = 3e(x - e)$$

3.
$$y = -\frac{1}{\pi}(x - \frac{\pi}{2})$$

4.
$$x = \frac{\pi}{4}$$

5. (a)
$$2^{-\frac{3}{2}}$$

(b)
$$-2^{-\frac{3}{2}}$$

(c)
$$-\frac{4\sqrt{5}}{25}$$

6.
$$x^x(\ln x + 1)$$

Assignment 6.

1.
$$y-2=x-1$$

2.
$$y-1=-2(x-1)$$

3.
$$(1,0)$$
 and $(4,12e^{-4})$

4. Max:
$$(\frac{\pi}{4}, 3)$$
, $(\frac{3}{4}\pi, -1)$; Min $(\frac{11}{12}\pi, -\frac{3}{2})$, $(\frac{7}{12}\pi, -\frac{3}{2})$

(b)
$$x^4 + y^2 = 1$$

(c)
$$(\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}), (\frac{\sqrt{2}}{2}, -\frac{\sqrt{3}}{2})$$

Assignment 7.

1.
$$[x \ln 2x - x]_1^a = a \ln 2a - a - \ln 2 + 1$$

2. (a)
$$u = \tan x$$
, then $\frac{du}{dx} = \sec^2 x$, then it equals to $\int_0^1 u^n du = \frac{1}{n}$

(b) i.
$$= \int_0^{\frac{1}{4}\pi} \sec^2 x (\sec^2 x - 1) \, dx = \int_0^{\frac{1}{4}\pi} (1 + \tan^2 x) \tan^2 x \, dx = \int_0^{\frac{1}{4}\pi} \tan^2 x + \tan^4 x \, dx = \frac{1}{3}$$
 ii. Split into $t^9 + t^7 + 4(t^7 + t^5) + t^5 + t^3$, final answer $\frac{25}{24}$

(b)
$$\frac{8}{15}$$

4.
$$\ln(\frac{16}{9})$$

Assignment 8.

(b)
$$\frac{10u}{(3-u)(2+u)} = \frac{6}{3-u} + \frac{-4}{2+u}$$

2. (a)
$$f(x) = \frac{3}{3x+2} + \frac{-x+3}{x^2+4}$$

(b)
$$\frac{3}{2} \ln 2 + \frac{3}{8} \pi$$
.

3. (a)
$$y = x - 1$$

(b)
$$\frac{1}{4}(e^2 - 1)\pi$$

4.
$$\frac{x}{\sqrt{x^2+1}} \ln x - \ln \left| x + \sqrt{1+x^2} \right| + C.$$

Assignment 9.

- 1. (a) Omit
 - (b) Let $f(x) = \frac{x}{3} + 2 e^{-x}$, then f(-1) = -1.05 < 0, and f(0) = 1 > 0, so there is $x \in (-1, 0)$ such that f(x) = 0, it follows that $\frac{x}{3} + 2 = e^{-x}$ has a root lies between -1 and 0.
 - (c) Suppose $x_n \to \alpha$, then $x_{n+1} \to \alpha$, hence $\alpha = \ln 3 \ln(\alpha + 6)$, then $e^{\alpha} = \frac{3}{\alpha + 6}$, it follows $e^{-\alpha} = \frac{\alpha + 6}{3}$, which implies that $\frac{\alpha}{3} + 2 = e^{\alpha}$.
 - (d) -0.59.
- 2. (a) Omit
 - (b) Omit
 - (c) 5.64
- 3. (a) $1 + x^3 \frac{1}{2}x^6$
 - (b) 1.00
 - (c) Omit
 - (d) -0.5 < x < 0, $\frac{d^2 y}{dx^2} < 0$, for 0 < x < 0.5, $\frac{d^2 y}{dx^2} > 0$
- 4. (a) Omit
 - (b) $\frac{26}{3}$
 - (c) 8.61
 - (d) greater.

Assignment 10.

- 1. $\tan y = \frac{1}{2}x + \frac{1}{4}\sin 2x + C$.
- 2. $y = e^{x \ln x x}$. $y = \frac{1}{e}$.
- 3. $y = \frac{(1+x^2)^3}{4} 1$.
- 4. (a) $P = \frac{KP_0e^{rt}}{K P_0 + P_0e^{rt}}$.
 - (b) $P \to K$.
- 5. (a) Omit
 - (b) $V = 18 18e^{-\frac{t}{2}}$.
 - (c) $t = 2 \ln 2$.