АВТОМАТИЧНО ОБОБЩАВАНЕ НА ТЕКСТОВЕ НА БЪЛГАРСКИ ЕЗИК

ДИМИТЪР ХРИСТОВ ХРИСТОВ

МАГИСТЪРСКА ПРОГРАМА "КОМПЮТЪРНА ЛИНГВИСТИКА"

ФАКУЛТЕТЕН НОМЕР: М-24904

РЪКОВОДИТЕЛ

ПРОФ. Д-Р СВЕТЛА ПЕНЕВА КОЕВА

ИНСТИТУТ ЗА БЪЛГАРСКИ ЕЗИК "ПРОФ. ЛЮБОМИР АНДРЕЙЧИН"

АВТОМАТИЧНО ОБОБЩАВАНЕ НА ТЕКСТ

- 16 ZB дигитална информация
- I30 трилиона страници в Интернет
- Един или много документи
- Методология
 - Екстрактно
 - Абстрактно
 - Абстрактно ориентирано

Екстрактно обобщаване

- + Позволява статистически методи и езиково независими механизми
- Възможност за несвързан текст
- Абстрактно обобщаване
 - + Свързан текст с фокус върху понятия
 - Малко разработки с променлив резултат и силно езиково зависими инструменти

СЪСТАВЯНЕ НА ОБОБЩЕНИЕ ЧРЕЗ LEXRANK

- Създаване на векторно представяне на изреченията
- Оценяване на семантичната близост между изреченията
- Съставяне на граф от изречения
- Изчисляване на относителната важност на изреченията PageRank
- Избиране на изреченията с най-висока оценка за относителна важност
- Съставяне на обобщение от избраните изречения, подредени в реда им в документа

ВЕКТОРНО ПРЕДСТАВЯНЕ НА ИЗРЕЧЕНИЯТА

- $T = \{t_1, t_2, ..., t_{|T|}\}$ множество на термовете
 - $lacktriangledown t_1, ..., t_{|T|}$ термове
- ullet $D = \{s_1, s_2, ..., s_{|D|}\}$ обобщаваният документ
 - $s_1, ..., s_{|D|}$ изречения

$$\begin{split} \operatorname{isf}(t) &= \log \left(\frac{|D|+1}{|\{s \in D | t \in s\}|} \right) \\ \vec{s} &= \left[\operatorname{tf}_{s}(t_{1}) \times \operatorname{isf}(t_{1}) \quad \operatorname{tf}_{s}(t_{2}) \times \operatorname{isf}(t_{2}) \quad \dots \quad \operatorname{tf}_{s}(t_{|T|}) \times \operatorname{isf}(t_{|T|}) \right] \end{split}$$

МЯРКА ЗА СЕМАНТИЧНА БЛИЗОСТ – КОСИНУСОВО РАЗСТОЯНИЕ

■ Нормализирано скаларно произведение на вектори

$$sim(x, y) = cos(\vec{x}, \vec{y}) = \frac{\sum_{i=1}^{|T|} tf_x(t_i) \times tf_y(t_i) \times isf^2(t_i)}{\sqrt{\sum_{i=1}^{|T|} tf_x^2(t_i) \times isf^2(t_i)} \sqrt{\sum_{i=1}^{|T|} tf_y^2(t_i) \times isf^2(t_i)}}$$

ИЗЧИСЛЯВАНЕ НА ОТНОСИТЕЛНА ВАЖНОСТ НА ИЗРЕЧЕНИЕ

- PageRank случайна разходка из мрежата
- LexRank гласуване за семантично близките изречения
 - Важните изречения са семантично близки до важни изречения

$$p(u) = \frac{d}{N} + (1 - d) \sum_{v \in \text{adj}(u)} \frac{p(v)}{\deg(v)}$$

ИЗЧИСЛЯВАНЕ НА ОТНОСИТЕЛНА ВАЖНОСТ НА ИЗРЕЧЕНИЕ

- PageRank случайна разходка из мрежата
- LexRank гласуване за семантично близките изречения
 - Важните изречения са семантично близки до важни изречения

$$p_{\text{cont}}(u) = \frac{d}{N} + (1 - d) \sum_{v \in D} \frac{p_{\text{cont}}(v) \times \text{sim}(u, v)}{\sum_{w \in D} \text{sim}(w, v)}$$

ПРОМЕНИ НА АЛГОРИТЪМА **LEXRANK** С ЦЕЛ ПОДОБРЯВАНЕ НА НЕГОВИЯ РЕЗУЛТАТ

- Промяна на мярката за семантична близост на изречения
 - Максимално дълга обща подредица
 - Максимално значима обща подредица

МЯРКА ЗА СЕМАНТИЧНА БЛИЗОСТ – МАКСИМАЛНО ДЪЛГА ОБЩА ПОДРЕДИЦА

lacksquare Максимално дълга обща подредица $u_{f max}$ на изреченията s_1 и s_2

$$u_{\max} \subseteq s_1 \land u_{\max} \subseteq s_2$$

 $\forall u : u \subseteq s_1 \land u \subseteq s_2 \Rightarrow |u| \leq |u_{\max}|$

МЯРКА ЗА СЕМАНТИЧНА БЛИЗОСТ – МАКСИМАЛНО ДЪЛГА ОБЩА ПОДРЕДИЦА

$$\operatorname{sim}_{\mathsf{LCS}}(x,y) = H\left(\frac{|\mathsf{LCS}(x,y)|}{|x|}, \frac{|\mathsf{LCS}(x,y)|}{|y|}\right) = \frac{2 \times |\mathsf{LCS}(x,y)|}{|x| + |y|}$$

МЯРКА ЗА СЕМАНТИЧНА БЛИЗОСТ – МАКСИМАЛНО ЗНАЧИМА ОБЩА ПОДРЕДИЦА

lacktriangle Максимално значима обща подредица на изреченията x и y

$$isf-LCS(x,y) = \underset{u:u \subseteq x \land u \subseteq y}{argmax} |u|_{isf}$$
$$|u|_{isf} = \sum_{t \in u} isf(t)$$

МЯРКА ЗА СЕМАНТИЧНА БЛИЗОСТ – МАКСИМАЛНО ЗНАЧИМА ОБЩА ПОДРЕДИЦА

$$\operatorname{sim}_{\mathsf{isf-LCS}}(x,y) = H\left(\frac{|\operatorname{isf-LCS}(x,y)|_{\mathsf{isf}}}{|x|_{\mathsf{isf}}}, \frac{|\operatorname{isf-LCS}(x,y)|_{\mathsf{isf}}}{|y|_{\mathsf{isf}}}\right) = \frac{2 \times |\operatorname{isf-LCS}(x,y)|_{\mathsf{isf}}}{|x|_{\mathsf{isf}} + |y|_{\mathsf{isf}}}$$

ПРОМЕНИ НА АЛГОРИТЪМА **LEXRANK** С ЦЕЛ ПОДОБРЯВАНЕ НА НЕГОВИЯ РЕЗУЛ<u>ТАТ</u>

- Предварителна лингвистична обработка
 - Премахване на стоп думи
 - Филтриране по части на речта
 - Лематизация

ROUGE – ИНСТРУМЕНТ ЗА АВТОМАТИЧНО ОЦЕНЯВАНЕ НА ОБОБЩЕНИЯ

- Последна версия ROUGE 1.5.5 (Lin, 2004)
- Адаптиране на инструмента за работа с български език
 - Добавяне на поддръжка на българска кирилица ROUGE 1.5.6

ROUGE – ИНСТРУМЕНТ ЗА АВТОМАТИЧНО ОЦЕНЯВАНЕ НА ОБОБЩЕНИЯ

- ROUGE-N общи п-грами
- ROUGE-L максимално дълга обща подредица
- ROUGE-W претеглена максимално дълга обща подредица
- ROUGE-S общи пропускащи биграми
 - ROUGE-SU общи пропускащи биграми и униграми

ROUGE – ИНСТРУМЕНТ ЗА АВТОМАТИЧНО ОЦЕНЯВАНЕ НА ОБОБЩЕНИЯ

■ F мярка – претеглено средно хармонично:

$$F_{\beta} = \frac{\left(1 + \beta^2\right) \times P \times R}{\beta^2 \times P + R}$$

КОРПУС

- Български корпус с обобщения (БКО)
 - Корпус с обобщения на новини
 - Ръчно анотиран за целта на дипломната работа и ползите на Института за български език
- Данни от Мултилинг
 - Корпус с обобщения на статии от Уикипедия
 - 38 езика, сред които и български

БЪЛГАРСКИ КОРПУС С ОБОБЩЕНИЯ (БКО)

 Ръчно анотиран от Виктория Петрова, специализант към Секцията по компютърна лингвистика в периода I.5.2017 г. − 31.8.2017 г.

Клас	Брой думи	Общо документи	Филтрирани документи	Размер на обобщенията
lxxx	1000-1999	93	57	L — 40% (400-800 думи) M — 20% (200-400 думи) S — 10% (100-200 думи)
2xxx	2000-2999	54	6	L — 20% (400-600 думи) M — 10% (200-300 думи) S — 5% (100-150 думи)

МУЛТИЛИНГ ДАННИ

- 60 текста на български език статии от Уикипедия с едно обобщение за всяка
 - Метаданните и специфичните тагове са премахнати от статиите
- Отделно зададени размери за всяка статия

ИМПЛЕМЕНТАЦИЯ

- Езици: C++II и Bash 4.4.0 (Perl при ROUGE)
- Операционна система: Canonical Ubuntu 16.04
- Редактор: Visual Studio Code
- Билд система и компилатор: Cmake 3.5.1 и GNU GCC 5.4.0

ИМПЛЕМЕНТАЦИЯ – LCS И ISF-LCS

- Динамично програмиране
 - Сложност $O(m \times n)$
 - Операция s-k за изречение $s:|s| \ge k$

$$s = [t_1 ... t_n]$$

 $s - k = [t_1 ... t_{n-k}]$
 $|s - k| = n - k = |s| - k$

ИМПЛЕМЕНТАЦИЯ – LCS И ISF-LCS

```
for i := |x| \dots 0 do
       |(x-i,y-|y|)| := 0
done
for i := |v| \dots 0 do
       |(x-|x|,y-j)| := 0
done
for i := |x| - 1 \dots 0 do
       for j := |y| - 1 \dots 0 do
              if t_{|x|-i}^x = t_{|y|-i}^y then
                     |(x-i, y-i)| = \max(|(x-i-1, y-i)|.
                             |(x-i, y-i-1)|
                             |(x-i-1,y-j-1)|+1|
               else
                      |(x-i, y-j)| = \max(|(x-i-1, y-j)|,
                             |(x-i, y-j-1)|
                             |(x-i-1,y-j-1)|
               endif
       done
done
```

```
for i := |x| \dots 0 do
          |isf(x-i, y-|y|)|_{isf} = 0
done
for j := |y| \dots 0 do
          |isf-(x-|x|,y-j)|_{isf} := 0
done
for i := |x| - 1 \dots 0 do
          for j := |y| - 1 \dots 0 do
                     if t_{|x|-i}^x = t_{|y|-i}^y then
                                |\operatorname{isf-LCS}(x-i,y-j)|_{\operatorname{isf}} = \max(|\operatorname{isf-LCS}(x-i-1,y-j)|_{\operatorname{isf}})
                                           |isf-LCS(x-i, y-j-1)|_{isf}
                                           |\operatorname{isf-LCS}(x-i-1,y-j-1)|_{\operatorname{isf}} + \operatorname{isf}(t_{|x|-i}^x)
                      else
                                |\operatorname{isf-LCS}(x-i,y-j)|_{\operatorname{isf}} = \max(|\operatorname{isf-LCS}(x-i-1,y-j)|_{\operatorname{isf}})
                                           |isf-LCS(x-i, y-j-1)|_{isf}
                                           |isf-LCS(x-i-1,y-j-1)|_{isf}
                      endif
           done
done
```

РЕЗУЛТАТИ — ТЕСТОВА ГРУПА 2 - БКО, КЛАС IXXX, РАЗМЕР НА ОБОБЩЕНИЕТО М (20%)

Мярка	Лем	ЧнР	Стоп	R-1	R-2	R-3	R-4	R-L	R-W	R-S	R-SU	Ср. г.
Косинус			X	0.49255	0.29717	0.26309	0.2468	0.49925	0.21022	0.25884	0.26064	0.339904
Косинус	X		X	0.48405	0.29124	0.25862	0.24468	0.48957	0.20449	0.24518	0.24702	0.331754
Косинус				0.47848	0.2714	0.23865	0.22615	0.47953	0.20088	0.243	0.24479	0.320957
Косинус	X			0.47744	0.26871	0.2343	0.22068	0.4786	0.20055	0.23713	0.23894	0.317156
Косинус		X		0.45838	0.25335	0.2211	0.20762	0.46138	0.18646	0.21424	0.2161	0.299016
Косинус		X	X	0.4558	0.25197	0.22122	0.20846	0.45931	0.1866	0.2126	0.21446	0.298167
Косинус	X	X		0.45627	0.25235	0.22048	0.2073	0.4605	0.18677	0.2126	0.21447	0.298073
Косинус	X	X	X	0.45468	0.24724	0.21597	0.20335	0.45598	0.18534	0.20957	0.21142	0.294449
Случайни	?	?	?	0.43878	0.22803	0.19245	0.17755	0.44338	0.17597	0.20447	0.20628	0.278642
(isf-)LCS	?	?	?	0.42827	0.21999	0.19057	0.17949	0.43314	0.1715	0.18292	0.1848	0.268625

РЕЗУЛТАТИ – ОБЩА ОЦЕНКА НА **LEXRANK** И ПРЕДЛОЖЕНИТЕ ПРОМЕНИ

вдействие

ID	Изречение
s_1	НАСА подготвя полет до най-скъпия астероид в историята.
s_2	Американското космическо ведомство подготвя полет до астероида Психея към 2022 година, който е изграден от ценни метали, пише сп. Нюзуик.
s_3	По думите на един от ръководителите на проекта, Пол Чодас, това ще бъде една от най-вълнуващите мисии през последните години.
S_4	Специалистите оценяват сумарната стойност на полезните изкопаеми на астероида на 10 квадрилиона долара.
S ₅	Небесното тяло е с дължина 250 километра и се състои от желязо, никел и злато.
s_6	Астероидът Психея е бил открит още в средата на XIX век и предизвиква и до ден днешен голям научен интерес.
s_7	Специалистите се интересуват от неговата структура, от траекторията на неговото движение и от химическия му състав.
s_8	Откривател на Психея е италианският астроном от Неапол Анибале де Гаспарис.
S 9	Огромният, почти изцяло съставен от метали астероид кръжи около Слънцето по изтеглена елиптична орбита между орбитите на Марс и Юпитер.

вдействие

Близс ст	s_1	<i>s</i> ₂	<i>s</i> ₃	s_4	s_5	s_6	s_7	s ₈	S 9
s_1	1.000	0.174	0.000	0.017	0.000	0.015	0.000	0.000	0.014
s_2	0.174	1.000	0.056	0.010	0.000	0.039	0.000	0.038	0.054
s_3	0.000	0.056	1.000	0.000	0.000	0.000	0.000	0.000	0.000
s_4	0.017	0.010	0.000	1.000	0.000	0.011	0.074	0.000	0.010
s_5	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000
s ₆	0.015	0.039	0.000	0.011	0.000	1.000	0.000	0.040	0.009
S ₇	0.000	0.000	0.000	0.074	0.000	0.000	1.000	0.000	0.000
s_8	0.000	0.038	0.000	0.000	0.000	0.040	0.000	1.000	0.000
S_9	0.014	0.054	0.000	0.010	0.000	0.009	0.000	0.000	1.000

В ДЕЙСТВИЕ

| Примериканското космическо ведомство подготвя полет до астероида Психея към 2022 година, който е изграден от ценни метали, пише сп. Нюзуик. | Специалистите оценяват сумарната стойност на полезните изкопаеми на астероида на 10 квадрилиона долара.

ЗАКЛЮЧЕНИЕ

- LexRank
 - Подходящ за обобщаване на текстове на български език
 - Подобрение на качеството на автоматичните обобщения при премахване на стоп думи.
 - Малка промяна на качеството на автоматичните обобщения при лематизация
 - **Влошаване** на качеството на автоматичните обобщения при филтриране по части на речта
- LCS и isf-LCS като мерки за семантична близост на изречения
 - Неподходящи поради по-свободния словоред на българския език.
- Бъдещи разработки
 - Брой на пропускащи биграми и униграми като мярка за семантична близост на изречения.
 - Абстрактно ориентирано обобщаване