

National University of Computer & Emerging Sciences, Karachi

Fall-2019 CS-Department CS211-Discrete Structures

Practice Assignment-II

Note:

- 1- This is hand written assignment.
- 2- Just write the question number instead of writing the whole question.
- 3- You can only use A4 size paper for solving the assignment.

Submission date: On the day of Mid-II Exam.

1.	Let R be the f	following	relation	defined	on '	the set	{a,	b, c,	ď	}
----	----------------	-----------	----------	---------	------	---------	-----	-------	---	---

 $R = \{(a, a), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, b), (c, c), (d, b), (d, d)\}.$

Determine whether R is:

- (a) Reflexive
- (b) Symmetric
- (c) Antisymmetric

- (d) Transitive
- (e) Irreflexive
- (f) Asymmetric

2. Let *R* be the following relation on the set of real numbers:

 $aRb \leftrightarrow |a| = |b|$, where |x| is the floor of x.

Determine whether R is:

- (a) Reflexive
- (b) Symmetric
- (c) Antisymmetric

- (d) Transitive
- (e) Irreflexive
- (f) Asymmetric

3. List the ordered pairs in the relation R from A = $\{0, 1, 2, 3, 4\}$ to B = $\{0, 1, 2, 3\}$, where $(a, b) \in R$ if and only if

- a) a = b.
- b) a + b = 4.

c) a > b.

- d) a | b.
- e) gcd(a, b) = 1.
- f) lcm(a, b) = 2.

5. For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.

- a) {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}
- b) {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}

c) {(2, 4), (4, 2)}

d) {(1, 2), (2, 3), (3, 4)}

e) {(1, 1), (2, 2), (3, 3), (4, 4)}

f) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}

6. Determine whether the relation R on the set of all people is reflexive, symmetric, antisymmetric, Asymmetric, irreflexive and/or transitive, where (a, b) ∈ R if and only if:

a) a is taller than b.

- b) a and b were born on the same day.
- c) a has the same first name as b.
- d) a and b have a common grandparent.
- 7. Give an example of a relation on a set that is
 - a) both symmetric and antisymmetric.
- b) neither symmetric nor antisymmetric.

8. Consider these relations on the set of real numbers:

R1 = $\{(a, b) \in \mathbb{R}^2 \mid a > b\}$, the "greater than" relation,

R2 = $\{(a, b) \in R^2 \mid a \ge b\}$, the "greater than or equal to "relation,

 $R3 = \{(a, b) \in R^2 \mid a < b\}, \text{ the "less than" relation,}$

R4 = $\{(a, b) \in \mathbb{R}^2 \mid a \le b\}$, the "less than or equal to "relation,

 $R5 = \{(a, b) \in R^2 \mid a = b\}, \text{ the "equal to" relation,}$

R6 = $\{(a, b) \in \mathbb{R}^2 \mid a \neq b\}$, the "unequal to" relation.

Find:

- a) R2 ∪ R4.
- b) R3 ∪ R6.
- c) R3 ∩ R6.
- d) R4 ∩ R6.

- e) R3 R6.
- f) R6 R3.
- g) R2 ⊕ R6.
- h) R3 ⊕ R5.

- i) R2 ∘ R1.
- j) R6 ∘ R6.

9. (a)

Represent each of these relations on $\{1, 2, 3\}$ with a matrix (with the elements of this set listed in increasing order).

- a) $\{(1, 1), (1, 2), (1, 3)\}$
- **b)** {(1, 2), (2, 1), (2, 2), (3, 3)}
- c) $\{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$
- **d)** {(1, 3), (3, 1)}
- (b)

List the ordered pairs in the relations on {1, 2, 3} corresponding to these matrices (where the rows and columns correspond to the integers listed in increasing order).

a)
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
c)
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{b)} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

- 10. (a) Suppose that R is the relation on the set of strings of English letters such that aRb if and only if l(a) = l(b), where l(x) is the length of the string x. Is R an equivalence relation?
 - (b) Let m be an integer with m > 1. Show that the relation $R = \{(a,b) \mid a \equiv b \pmod{m}\}$ is an equivalence relation on the set of integers.
- 11. What are the quotient and remainder when:
 - a) 19 is divided by 7?

- b) -111 is divided by 11?
- c) 789 is divided by 23?
- d) 1001 is divided by 13?
- e) 10 is divided by 19?
- f) 3 is divided by 5?

g) -1 is divided by 3?

- h) 4 is divided by 1?
- 12. Let m be a positive integer. Show that $a \equiv b \pmod{m}$ if a mod $m = b \pmod{m}$.
- 13. Find a div m and a mod m when
 - a) a = -111, m = 99.

b) a = -9999, m = 101.

c) a = 10299, m = 999.

- d) a = 123456, m = 1001.
- 14. Decide whether each of these integers is congruent to 5 modulo 17.
 - a) 80

- b) 103
- c) -29
- d) -122

15.	Determi	15. Determine whether the integers in each of these sets are pairwise relatively prime.								
		a) 11, 15, 19	b) 14 , 1	15, 21	c) 12, 17, 3	1, 37	d) 7, 8, 9, 11			
16.	Find the	prime factorizat	tion of each of th	ese integers						
		a) 88	b) 126	c) 729	d) 1001	e) 1111	f) 909			
17.	Use the	extended Euclid	ean algorithm to	express gcd	(144, 89) and gcd	d (1001, 10000	1) as a linear combination.			
18.	Solve ea	ach of these con	gruences using	the modular	inverses.					
		a) 55x ≡ 34 (mod	d 89)	b) 89x ≡ 2 (mod 232)					
19.	of cong	ruences.	·			m to find all s	olutions to the system			
	i) $x \equiv 1 \pmod{5}$, $x \equiv 2 \pmod{6}$, and $x \equiv 3 \pmod{7}$. ii) $x \equiv 1 \pmod{2}$, $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, and $x \equiv 4 \pmod{11}$.									
	rider of rememl left. Wh out sev	fers to pay for to ber the exact notes ten he took the ten at a time, the	the damages ar umber, but whe m six at a time, ere was only o	nd asks him n he had tal there were ne orange v	how many oran ken them out fiv also three oran	ges he had b ve at a time, t ges left, whe en he had ta	e oranges. The camel brought. He does not there were 3 oranges on he had taken them ken them out eleven have had?			
20.		inverse of a mod a) a = 2, m = 17 c) a = 144, m = 2		of these pairs b) a = 34, m d) a = 200,		ne integers.				
21.	encrypti		l then translating	the number	slating the letters s back into letter f (p) = (p + 21) mo	S.	rs, applying the given			
		ypt these messa i) CEBBOXNOB			t cipher. f (բ LO WI PBSOXN	o) = (p + 10) m	nod 26.			
22.	Use Fer	mat's little theor	em to compute 5	i ²⁰⁰³ mod 7, 5	²⁰⁰³ mod 11, and	5 ²⁰⁰³ mod 13.				
23.		•			ATICS by transla then translating t	•				
		ypt these messa i) PLG WZR DVV	ges encrypted u /LJQPHQW	•	sar Cipher. IDVW QXFHV XQ	LYHUVLWB				
24.	insuran	ce company cus	tomers with thes	e Social Sec	•	•				
		i) 034567981	II) 183	211232	iii) 2201957	44	iv) 987255335			
		•	ions are assigne tomers with thes	•	•) = k mod 101	to the records of			
	i) 10457	•	ii) 432222187		372201919	iv) 5013	338753			

- 25. What sequence of pseudorandom numbers is generated using the linear congruential generator? $x_n+1=(4x_n+1) \mod 7$ with seed $x_0=3$?
- 26. (a) Determine the check digit for the UPCs that have these initial 11 digits.
 - i) 73232184434
- ii) 63623991346
- (b) Determine whether each of the strings of 12 digits is a valid UPC code.
 - i) 036000291452
- ii) 012345678903
- 27. (a) The first nine digits of the ISBN-10 of the European version of the fifth edition of this book are 0-07-119881. What is the check digit for that book?
 - (b) The ISBN-10 of the sixth edition of Elementary Number Theory and Its Applications is 0-321-500Q1-8, where Q is a digit. Find the value of Q.
- 28. Encrypt the message ATTACK using the RSA system with $n = 43 \cdot 59$ and e = 13, translating each letter into integers and grouping together pairs of integers.
- 29. Find which of the following graphs are bipartite. Redraw the bipartite graphs so that their bipartite nature is evident.

a)

b)

c)

30. Determine whether given two sets of graphs are isomorphic.

a)

 f_1 f_2 f_3 f_4 f_6

b)

31. Find the length of a shortest path between a and z in the given weighted graph by using Dijkstra's algorithm.

a)

b)

- 32. a) In a group of 15 people, is it possible for each person to have exactly 3 friends? Explain. (Assume that friendship is a symmetric relationship: If x is a friend of y, then y is a friend of x.)
 - b) In a group of 4 people, is it possible for each person to have exactly 3 friends? Why?
- 33. Imagine that the drawing below is a map showing four cities and the distances in kilometers between them. Suppose that a salesman must travel to each city exactly once, starting and ending in city A. Which route from city to city will minimize the total distance that must be traveled?

34. The following is a floor plan of a house. Is it possible to enter the house in room A, travel through every interior doorway of the house exactly once, and exit out of room E? If so, how can this be done?

35. Find Hamiltonian circuits AND Path for those graphs that have them. Explain why the other graphs do not.
a)
b)

36. a) Determine which of the graphs have Euler circuits. If the graph does not have an Euler circuit, explain why not. If it does have an Euler circuit, describe one.

i) ii)

b) Determine whether there is an Euler path from u to w. If there is, find such a path.

i)

ii)

37. Use Kruskal's and Prim's algorithm to find a minimum spanning tree for each of the graphs. Indicate the order in which edges are added to form each tree.

a)

b)

38. Use an incidence matrix to represent the graph shown below.

a)

b)

39. Draw a graph using below given incidence matrix.

a)

b)

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$