Ермолаева Екатерина Александровна, 14 группа, лабораторная №3, 2 вариант

РСЛОС №1	РСЛОС №2	РСЛОС №3			
(5)	(7)	(8)			
$ \begin{array}{c} 01001 \\ x^5 + x^3 + x^2 + x + 1 \end{array} $	$0011100 \\ x^7 + x^5 + x^2 + x + 1$	$\begin{vmatrix} 10001011 \\ x^8 + x^4 + x^3 + x^2 + 1 \end{vmatrix}$			

1)РСЛОС

Описание работы:

РСЛОС

(LFSR — linear feedback shift register)

- состояние $S_t \in \mathcal{S} = \mathbb{F}_2^n$ (вектор-строка),
- функция перехода: $S_t = \varphi(S_{t-1}) = S_{t-1}M,$ где M матрица порядка n над полем \mathbb{F}_2 вида

$$M = \begin{pmatrix} 0 & 0 & \dots & 0 & a_0 \\ 1 & 0 & \dots & 0 & a_1 \\ 0 & 1 & \dots & 0 & a_2 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & a_{n-1} \end{pmatrix}, \quad a_i \in \mathbb{F}_2,$$

- выходной алфавит $\mathbb{F}_2 = \{0, 1\};$
- функция выхода: $s_t = \pi(S_t) = S_{t,1}$ (первая координата вектора S_t).

Выходная последовательность (s_t) РСЛОС может

быть задана следующим соотношением:

$$s_{t+n} = a_{n-1}s_{t+n-1} + \ldots + a_1s_{t+1} + a_0s_t, \quad t = 1, 2, \ldots,$$

Период первой последовательности - 31

Период второй последовательности - 127

Период третьей последовательности - 255

2)Генератор Геффе

Определение:

Генератор Геффе (d = 3)
$$g(x_1, x_2, x_3) = x_1x_2 + (x_1 + 1)x_3$$

Выходной символ первого регистра управляет выбором между выходными символами второго и третьего регистров.

Пусть длины первого, второго и третьего РСЛОС равны ${\rm m_1,\,m_2,\,m_3}$ соответсвенно и взаимнопростые.

Тогда период данного генератора равен

$$(2^{m_1}-1)(2^{m_2}-1)(2^{m_3}-1)$$
 12/18

Количество нулей - 4975

Количество единиц - 5025

$$r_1 = -57$$
 $r_2 = 34$
 $r_3 = 125$
 $r_4 = -16$
 $r_5 = 27$

Количества единиц и нулей примерно равны.

Значения автокорреляционной функции не близки к нулю (значит, последовательность недостаточно случайная).

Бонусное задание 1)Результат тестирования последовательности:

C1	C2	С3	C4	C5	C6	С7	C8	С9	C10	P-VALUE	PROPORTION	STATISTICAL TEST
1	0	0	0	0	0	0	0	0	0		0/1	Frequency
0	0	0	0	0	0	0	0	0	1		1/1	BlockFrequency
1	0	0	0	0	0	0	0	0	0		0/1	CumulativeSums
1	0	0	0	0	0	0	0	0	0		0/1	CumulativeSums
1	0	0	0	0	0	0	0	0	0		0/1	Runs
1	0	0	0	0	0	0	0	0	0		0/1	LongestRun
1	0	0	0	0	0	0	0	0	0		1/1	Rank
1	0	0	0	0	0	0	0	0	0		0/1	FFT
0	0	0	0	1	0	0	0	0	0		1/1	NonOverlappingTemplate
1	0	0	0	0	0	0	0	0	0		0/1	NonOverlappingTemplate
0	0	1	0	0	0	0	0	0	0		1/1	NonOverlappingTemplate
1	0	0	0	0	0	0	0	0	0		0/1	NonOverlappingTemplate
1	0	0	0	0	0	0	0	0	0		0/1	NonOverlappingTemplate
0	0	0	0	0	0	0	0	0	1		1/1	NonOverlappingTemplate
0	1	0	0	0	0	0	0	0	0		1/1	NonOverlappingTemplate
1	0	0	0	0	0	0	0	0	0		0/1	NonOverlappingTemplate
1	0	0	0	0	0	0	0	0	0		0/1	NonOverlappingTemplate
1	0	0	0	0	0	0	0	0	0		0/1	NonOverlappingTemplate
1	0	0	0	0	0	0	0	0	0		0/1	NonOverlappingTemplate
0	0	0	0	0	0	1	0	0	0		1/1	NonOverlappingTemplate
0	0	1	0	0	0	0	0	0	0		1/1	NonOverlappingTemplate
1	0	0	0	0	0	0	0	0	0		1/1	NonOverlappingTemplate
1	0	0	0	0	0	0	0	0	0		0/1	NonOverlappingTemplate
0	0	0	0	0	0	1	0	0	0		1/1	NonOverlappingTemplate
1	0	0	0	0	0	0	0	0	0		0/1	NonOverlappingTemplate
1	0	0	0	0	0	0	0	0	0		0/1	NonOverlappingTemplate
1	0	0	0	0	0	0	0	0	0		0/1	NonOverlappingTemplate
0	0	1	0	0	0	0	0	0	0		1/1	NonOverlappingTemplate

1	0	0	0	0	0	0	0	0	0	 0/1	NonOverlappingTemplate
1	0	0	0	0	0	0	0	0	0	 0/1	NonOverlappingTemplate
1	0	0	0	0	0	0	0	0	0	 0/1	OverlappingTemplate
1	0	0	0	0	0	0	0	0	0	 0/1	Universal
1	0	0	0	0	0	0	0	0	0	 0/1	ApproximateEntropy
0	0	0	0	0	0	0	0	0	0	 	RandomExcursions
0	0	0	0	0	0	0	0	0	0	 	RandomExcursions
0	0	0	0	0	0	0	0	0	0	 	RandomExcursions
0	0	0	0	0	0	0	0	0	0	 	RandomExcursions
0	0	0	0	0	0	0	0	0	0	 	RandomExcursions
0	0	0	0	0	0	0	0	0	0	 	RandomExcursions
0	0	0	0	0	0	0	0	0	0	 	RandomExcursions
0	0	0	0	0	0	0	0	0	0	 	RandomExcursions
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
0	0	0	0	0	0	0	0	0	0	 	RandomExcursionsVariant
1	0	0	0	0	0	0	0	0	0	 0/1	Serial
1	0	0	0	0	0	0	0	0	0	 0/1	Serial
0	1	0	0	0	0	0	0	0	0	 1/1	LinearComplexity

По значениям в столбце Proportion можно увидеть, какие тесты последовательность прошла (1/1), а какие провалила (0/1).

Бонусное задание 2) Алгоритм:

- ullet Задать требуемую последовательность битов s_0, s_1, \dots, s_{n-1} .
- ullet Создать массивы b,t,c длины n, задать начальные значения $b_0 \leftarrow 1,c_0 \leftarrow 1,N \leftarrow 0,L \leftarrow 0,m \leftarrow -1.$
- ullet Пока N < n:
 - 1. Вычислить $d \leftarrow s_N \oplus c_1 s_{N-1} \oplus c_2 s_{N-2} \oplus \ldots \oplus c_L s_{N-L}$.
 - 2. Если d=0, то текущая функция генерирует выбранный участок $s_{N-L}, s_{N-L+1}, \dots, s_N$ последовательности; оставить функцию прежней.
 - 3. Если $d \neq 0$:
 - ullet Сохранить копию массива c в t.
 - Вычислить новые значения $c_{N-m} \leftarrow c_{N-m} \oplus b_0, c_{N-m+1} \leftarrow c_{N-m+1} \oplus b_1, \ldots, c_{n-1} \leftarrow c_{n-1} \oplus b_{n-N+m-1}.$
 - ullet Если $2L\leqslant N$, установить значения $L\leftarrow N+1-L$, $m \leftarrow N$ и скопировать t в b.
 - 4. $N \leftarrow N + 1$.