Forecasting Economic and Financial Time Series Week4: Cycles: AR, MA and ARIMA Models

Ron Smith MSc/PGCE Option, EMS Birkbeck

Spring 2019, Revised version. New slides 14,18-20,55-57,60-63.

Cycles

- Cycles are thought of as the dynamics not captured by the trend and seasonal component, which can take on the form of a irregular up and down type movement, more varied and less rigid in form.
- Less regular than seasonal patterns.
- All we require is that they have some form of dynamics, some persistence, which in some way links the present with the past and future the present - where cycles are present in most series
- However, unlike the type of trend and seasonality considered, cycles are more complicated, because of their wide variety of cyclical patterns: so as outlined in Diebold, we need break down the approach into tools/methods for modelling time series, specific models which characterise univariate representations and then how we might use these models to forecast

MSc/PGCE Option. () Forecasting Week 4 /6

Stationary Time Series

- A **realisation** of a time series is an ordered set, $\{..., y_{t-2}, y_{t-1}, y_t, y_{t+1}, y_{t+2}, ...\}$.
- In theory a time series realisation goes into the infinite future and past, but in practice is defined by a sample - but nonetheless the theoretical notion proves useful
- For forecasting models you need to assume that the probabilistic structure of the series is constant over time, otherwise we could not predict the future on the basis of the past, since the future process would differ
- A strongly stationary series has $f_t(y_t) = f(y_t)$: distribution is constant through time (after removing any deterministic elements like trend and seasonal).
- A weakly (covariance/2nd order) stationary series has constant means, variances and covariances between current and past values, again after removing deterministic elements.

MSc/PGCE Option. () Forecasting Week 4 /6

Covariance Stationary Time Series

 Mean of series is covariance stationary if it is constant over time, so without any need for a time subscript:

$$E(y_t) = \mu$$

• The covariance structure needs to be stable, where we use the **autocovariance function**, which is just the covariance between y_t and $y_{t-\tau}$, which may depend on both t and τ :

$$\gamma(t,\tau) = cov(y_t, y_{t-\tau}) = E(y_t - \mu)(y_{t-\tau} - \mu)$$

 If the structure is stationary over time, then the autocovariances depend only on displacement, τ, not on time and therefore:

$$\gamma(t, \tau) = \gamma(\tau)$$

for all t - symmetric, so $\gamma(au) = \gamma(- au)$

• We examine the autocovariance structure to examine the dynamic behaviour. We also require that the variance of the series - the autocovariance at displacement 0, $\gamma(0)$, be finite.

Autocorrelation function 1

• Note we typically use the **autocorrelation function**, which acts like a correlation coefficient in that it normalises by dividing $\gamma(\tau)$ by the variance: $\gamma(0)$:

$$ho(au)=rac{\gamma(au)}{\gamma(0)}, \qquad au=0,1,2,....$$

- So $\rho(0)=1$, where we focus on autocorrelations beyond displacement 0.
- Also look at the partial autocorrelation function, $p(\tau)$, which is just the coefficient of $y_{t-\tau}$ in the regression of y_t on $y_{t-1}, ..., y_{t-\tau}$
- Autocorrelation are just regular correlations between y_t and $y_{t-\tau}$ whereas the partial autocorrelation is between y_t and $y_{t-\tau}$ after controlling for earlier lags

Autocorrelation function 2

- We graph autocorrelations and partial autocorrelations (like regression coefficients) against τ and examine their qualitative shape, in order that we learn something about what model best represent our data, which in turn, given covariance stationarity will form the best forecasting model.
- Many series are not covariance stationary, but is often possible to remove nonstationary components such as trend and seasonality, so that the cyclical component left over is likely to be covariance stationary
- Alternatively, simple transformations can transform a non-stationary series to covariance stationarity. Most usual here being a series non-stationary in levels may well be stationary in first differences.
- Below EViews AC and PAC for Columbian Coca production, (original and after removing quadratic trend?) and stock market volume.

MSc/PGCE Option. () Forecasting Week 4

Coca Series

Date: 10/24/15 Time: 17:52 Sample: 1994Q1 2005Q3 Included observations: 47

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Pro
		1 2 3 4 5 6 7 8 9	0.289 0.562 0.775 0.394 0.070 0.273 0.428 0.102	-0.14 0.734 0.213 -0.42 -0.35 -0.20 0.016 0.099	18.939 23.217 39.744 71.906 80.403 80.681 84.969 95.778 96.402 98.741	0.00 0.00 0.00 0.00 0.00 0.00 0.00

Detrended Coca series

Date: 01/18/16 Time: 11:18 Sample: 1994Q1 2005Q3 Included observations: 47

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		3 4 5 6 7 8	-0.53 0.079 0.735 0.031 -0.64 -0.08 0.492 -0.07	-0.61 0.672 0.228 -0.47 0.035 -0.21 -0.10 0.048	2.3617 17.091 17.418 46.382 46.436 69.593 70.019 84.310 84.632 111.33	0.00 0.00 0.00 0.00 0.00

/ 63

Volume Series

Date: 11/24/15 Time: 16:34 Sample: 1/01/1947 7/01/2013 Included observations: 1747

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		3 4 5	0.873 0.870 0.874 0.872 0.851 0.830	0.266 0.282 0.232 0.159 -0.00	1448.1 2783.6 4110.8 5451.3 6786.6 8058.8 9267.3	0.00 0.00 0.00 0.00 0.00
1	Ψ	8	0.830	0.068	10479.	0.00

White Noise Processes 1

The simplest process is a white noise process, which forms the basis
of the other processes. Suppose that:

$$egin{array}{lcl} y_t &=& arepsilon_t \ E(arepsilon_t) &=& 0, \ E(arepsilon_t^2) &=& \sigma^2 \ E(arepsilon_t arepsilon_{t-i}) &=& 0; \ i
eq 0. \end{array}$$

so the "shock", ε_t , is uncorrelated overtime. Therefore ε_t and hence y_t are **serially uncorrelated.**

• Assuming $\sigma^2 < \infty$, such a process - with zero mean, constant variance and no serial correlation - is called **zero-mean white noise**, or simply **white noise**, such that we write:

$$\varepsilon_t \sim WN(0, \sigma^2)$$

 $y_t \sim WN(0, \sigma^2)$

White Noise Processes 2

 Serially uncorrelated, does not necessarily imply serially independent, unless they are normally distributed. If they are serially independent and normally distributed, then we say that y is normal/ Gaussian white noise:

$$y_t \stackrel{iid}{\sim} N(0, \sigma^2)$$

y is independently and identically distributed as normal, with zero mean and constant variance.

- Since there are no patterns to this type of data due to the independence over time - you cannot forecast the future of the process. Understanding and identifying white noise is important:
 - Richer processes are constructed from white noise
 - 1-step-ahead forecast errors from good models under some loss functions should be white noise - if they are not then they are serially correlated which means they are predictable, which may mean the model can be improved. Therefore we need to be able to recognise white noise.

MSc/PGCE Option. () Forecasting Week 4 /6

White Noise Processes 3

• White noise has unconditional mean and variance:

$$egin{array}{lcl} y_t &=& arepsilon_t \ E(y_t) &=& 0 \ var(y_t) &=& \sigma^2 \end{array}$$

- These are constant, as a requirement of covariance stationary processes, where constant unconditional variance imply autocovariances are a function of displacement only and not time
- The variance is the autocovariance at displacement 0, but because white noise is uncorrelated overtime, then the autocovariances and hence autocorrelations are zero beyond displacement zero. Same for the partial autocorrelation function.

Unconditional/conditional 1

- We distinguish conditional and unconditional means (expected values) and variances.
- Means and variances may be unconditional $E(y_t)$, $V(y_t)$, or conditional on some information for instance
 - $E(y|X) = X\beta$, $V(y|X) = \sigma^2 I$ in traditional linear regression or
 - $E(y_t|\Omega_{t-1})$ and $V(y_t|\Omega_{t-1})$ in forecasting, where Ω_{t-1} is information at time t-1.
- For white noise which are unpredictable, the conditional and unconditional means and variances are the same 0 and σ^2

$$E(y_t) = E(y_t|\Omega_{t-1}) = 0$$

$$V(y_t) = V(y_t|\Omega_{t-1}) = E((y_t - E(y_t|\Omega_{t-1}))^2|\Omega_{t-1})$$

$$= \sigma^2$$

MSc/PGCE Option. () Forecasting Week 4 / 63

Unconditional/conditional 2

For stationary AR1

$$y_t = \alpha + \rho y_{t-1} + \varepsilon_t$$

Conditional moments

$$E(y_t|\Omega_{t-1}) = \alpha + \rho y_{t-1}$$

$$V(y_t|\Omega_{t-1}) = \sigma^2$$

Unconditional moments

$$E(y_t) = \frac{\alpha}{1-\rho}$$

$$V(y_t) = \frac{\sigma^2}{1-\rho^2}$$

MSc/PGCE Option. ()

The Lag Operator

We use lag operator extensively, defined by:

$$Ly_t = y_{t-1},$$
 $L^2y_t = L(L(y_t)) = Ly_{t-1} = y_{t-2}$

Typically operate on a series with a finite polynomial lag operator:

$$B(L) = b_0 + b_1 L + b_2 L^2 + \dots + b_m L^m$$

Or infinite

$$B(L) = b_0 + b_1 L + b_2 L^2 + \dots = \sum_{i=0}^{\infty} b_i L^i$$

Simple examples:

$$L^m = y_{t-m}, \qquad \Delta y_t = (1-L)y_t = y_t - y_{t-1}$$

Infinite distributed lag of current and past shocks:

$$B(L)\varepsilon_t = b_0\varepsilon_t + b_1\varepsilon_{t-1} + b_2\varepsilon_{t-2} + \dots = \sum_{i=0}^{\infty} b_i\varepsilon_{t-i}$$

MSc/PGCE Option. () Forecasting Week 4 / 63

Wold Representation E&T135

- Call any deterministic part (e.g. intercept and trend), μ_t . The Wold representation theorem says any covariance stationary process, $\{y_t\}$, can be represented as a linear combination of serially uncorrelated white noise terms and a linearly deterministic component.
- Let $b_0=1$ and $\sum_{i=0}^{\infty}b_i^2<\infty$ then :

$$y_t = B(L)\varepsilon_t = \sum_{i=0}^{\infty} b_i \varepsilon_{t-i} + \mu_t$$

 $\varepsilon_t \sim WN(0, \sigma^2)$

 Any covariance stationary series can be modelled as some infinite distributed lag of white noise errors.

◆□▶ ◆御▶ ◆恵▶ ◆恵▶ ・恵・夕९で

Wold Representation, continued

- The innovations, ε_t , correspond to 1-step-ahead forecast errors: the part of the evolution that is linearly unpredictable on the basis of the past and will be uncorrelated but not necessarily independent only if Gaussian
- It is a general linear process: general because any covariance stationary series can be written this way and linear because it is expressed as a linear function of ε_t .

In practice we approximate the infinite MA by a parsimonious combination of finite AR and MA terms, after differencing enough to make it stationary

$$y_t = B(L)\varepsilon_t \approx \frac{C(L)}{A(L)}\varepsilon_t$$

 $A(L)y_t = C(L)\varepsilon_t$.

Wold Representation ARMA(1,1)

Consider the infinite moving average associated with an $\mathsf{ARMA}(1,1)$

$$y_{t} = \rho y_{t-1} + \varepsilon_{t} + \mu \varepsilon_{t-1}$$

$$A(L)y_{t} = C(L)\varepsilon_{t}$$

$$(1 - \rho L)y_{t} = (1 + \mu L)\varepsilon_{t}$$

$$y_{t} = \frac{(1 + \mu L)}{(1 - \rho L)}\varepsilon_{t}$$

$$y_{t} = \frac{C(L)}{A(L)}\varepsilon_{t}$$

$$y(t) = B(L)\varepsilon_{t}$$

MSc/PGCE Option. ()

B(L) for ARMA(1,1)

$$y_{t} = \rho y_{t-1} + \varepsilon_{t} + \mu \varepsilon_{t-1}$$

$$= \rho(\rho y_{t-2} + \varepsilon_{t-1} + \mu \varepsilon_{t-2}) + \varepsilon_{t} + \mu \varepsilon_{t-1}$$

$$= \rho^{2} y_{t-2} + \rho \mu \varepsilon_{t-2} + \varepsilon_{t} + (\rho + \mu) \varepsilon_{t-1}$$

$$= \rho^{2} (\rho y_{t-3} + \varepsilon_{t-2} + \mu \varepsilon_{t-3}) + \rho \mu \varepsilon_{t-2} + \varepsilon_{t} + (\rho + \mu) \varepsilon_{t-1}$$

$$= \rho^{3} y_{t-3} + \rho^{2} \mu \varepsilon_{t-3} + \varepsilon_{t} + (\rho + \mu) \varepsilon_{t-1} + \rho (\rho + \mu) \varepsilon_{t-2}$$

$$= \rho^{3} (\rho y_{t-4} + \varepsilon_{t-3} + \mu \varepsilon_{t-4}) + \rho^{2} \mu \varepsilon_{t-3} + \varepsilon_{t} + (\rho + \mu) \varepsilon_{t-1} + \rho (\rho + \mu) \varepsilon_{t-2}$$

$$= \rho^{4} y_{t-4} + \rho^{3} \mu \varepsilon_{t-4} + \varepsilon_{t} + (\rho + \mu) \varepsilon_{t-1} + \rho (\rho + \mu) \varepsilon_{t-2} + \rho^{2} (\rho + \mu) \varepsilon_{t-3}$$

MSc/PGCE Option. ()

Continuing the sequence

We see how a simple low order ARMA can give a a complicated Wold representation as an infinite moving average:

$$y_{t} = \varepsilon_{t} + (\rho + \mu)\varepsilon_{t-1} + \rho(\rho + \mu)\varepsilon_{t-2} + \rho^{2}(\rho + \mu)\varepsilon_{t-3} + \rho^{3}(\rho + \mu)\varepsilon_{t-4} + \dots$$

$$y_{t} = (1 + (\rho + \mu)L + \rho(\rho + \mu)L^{2} + \rho^{2}(\rho + \mu)L^{3} + \rho^{3}(\rho + \mu)L^{4} + \dots)\varepsilon_{t}$$

$$y_{t} = \sum_{i=0}^{\infty} b_{i}L^{i}\varepsilon_{t}$$

$$b_{0} = 1; b_{i} = \rho^{i-1}(\rho + \mu), i \geq 1$$

General Linear Process: Unconditional Moments

For the general linear structure, taking the means and variances we obtain the unconditional moments:

$$E(y_t) = E\left(\sum_{i=0}^{\infty} b_i \varepsilon_{t-i}\right) = \sum_{i=0}^{\infty} b_i E(\varepsilon_{t-i}) = \sum_{i=0}^{\infty} b_i \times 0 = 0$$

$$var(y_t) = var\left(\sum_{i=0}^{\infty} b_i \varepsilon_{t-i}\right) = \sum_{i=0}^{\infty} b_i^2 var(\varepsilon_{t-i})$$

$$= \sum_{i=0}^{\infty} b_i^2 \sigma^2 = \sigma^2 \sum_{i=0}^{\infty} b_i^2$$

MSc/PGCE Option. ()

General Linear Process: conditional moments

For information set $\Omega_{t-1} = \{\varepsilon_{t-1}, \varepsilon_{t-2}, ...\}$, the conditional mean moves in response to the evolving information set:

$$E(y_t|\Omega_{t-1}) = E(\varepsilon_t|\Omega_{t-1}) + b_1 E(\varepsilon_{t-1}|\Omega_{t-1})$$

$$+b_2 E(\varepsilon_{t-2}|\Omega_{t-1}) + \dots$$

$$= 0 + b_1 \varepsilon_{t-1} + b_1 \varepsilon_{t-2} + \dots$$

$$= \sum_{i=1}^{\infty} b_i \varepsilon_{t-i}$$

The conditional variance: like the unconditional variance, is constant overtime.

$$\begin{array}{lcl} \mathit{Var}(y_t|\Omega_{t-1}) & = & \mathit{E}((y_t - \mathit{E}(y_t|\Omega_{t-1}))^2|\Omega_{t-1}) \\ & = & \mathit{E}(\varepsilon_t^2|\Omega_{t-1}) = \mathit{E}(\varepsilon_t^2) = \sigma^2 \end{array}$$

MSc/PGCE Option. () Forecasting Week 4

- A finite-order moving average process is a natural and obvious approximation to the Wold representation, which is an infinite moving average process
- The fact that all time series are, in various ways, driven by shocks of various sorts suggest the possibility of modeling time series as distributed lags of current and past shocks.
- ullet The first-order moving average process, or MA(1) process, is:

$$y_t = \varepsilon_t + \theta \varepsilon_{t-1} = (1 + \theta L) \varepsilon_t$$

 $\varepsilon_t \sim WN(0, \sigma^2)$

which defines y_t as a function of unobservable shocks

• The unconditional mean and variance are:

$$\begin{array}{lcl} \textit{E}(\textit{y}_t) & = & \textit{E}(\varepsilon_t) + \theta \textit{E}(\varepsilon_{t-1}) = 0 \\ \textit{Var}(\textit{y}_t) & = & \textit{Var}(\varepsilon_t) + \theta^2 \textit{Var}(\varepsilon_{t-1}) = \sigma^2 + \theta^2 \sigma^2 = \sigma^2 (1 + \theta^2) \end{array}$$

• The conditional mean and variance, given information set $\Omega_{t-1} = \{\varepsilon_{t-1}, \varepsilon_{t-2}, ...\}$ are

$$E(y_t|\Omega_{t-1}) = E(\varepsilon_t + \theta\varepsilon_{t-1}|\Omega_{t-1})$$

$$= E(\varepsilon_t|\Omega_{t-1}) + \theta E(\varepsilon_{t-1}|\Omega_{t-1}) = \theta\varepsilon_{t-1}$$

$$Var(y_t|\Omega_{t-1}) = E((y_t - E(y_t|\Omega_{t-1}))^2|\Omega_{t-1})$$

$$= E(\varepsilon_t^2|\Omega_{t-1}) = E(\varepsilon_t^2) = \sigma^2$$

 The conditional mean adapts to the evolving information set, unlike the constant unconditional mean. In an MA(1) only the first lag of the shock enters the conditional mean - more distant shocks have no effect: a short memory.

MSc/PGCE Option. () Forecasting Week 4 / 63

• The autocovariance function is:

$$\begin{array}{lcl} \gamma(\tau) & = & E(y_t y_{t-\tau}) = E((\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-\tau} + \theta \varepsilon_{t-\tau-1})) \\ & = & \{ \frac{\theta \sigma^2}{0}, & \tau = 1 \\ 0, & \tau > 1 \end{array}$$

 The autocorrelation function, is the autocovariance function scaled by the variance:

$$ho(au)=rac{\gamma(au)}{\gamma(0)}=\{rac{ heta}{1+ heta^2}, \quad au=1 \ 0, \quad au>1$$

• We could estimate θ from $\rho(1)$.

MSc/PGCE Option. ()

ullet To compute the autoregressive representation rewrite the MA(1) as:

$$\varepsilon_t = y_t - \theta \varepsilon_{t-1}$$

• By lagging successively:

$$\varepsilon_{t-1} = y_{t-1} - \theta \varepsilon_{t-2}$$

$$\varepsilon_{t-2} = y_{t-2} - \theta \varepsilon_{t-3}$$

$$\varepsilon_{t-3} = y_{t-3} - \theta \varepsilon_{t-4}$$

ullet Substituting back into the MA(1) expression $y_t = arepsilon_t + heta arepsilon_{t-1}$ yields:

$$y_t = \varepsilon_t + \theta y_{t-1} - \theta^2 y_{t-2} + \theta^3 y_{t-3} - \dots$$

• In lag operator notation:

$$\frac{1}{1+\theta L}y_t = \varepsilon_t$$

◆ロト ◆御 ト ◆ 差 ト ◆ 差 ト り へ で ...

- To represent the MA process as an AR process, it must be invertible, the roots must lie outside the unit circle..
- Polynomials of degree m has m roots, Therefore, the MA(1) lag operator polynomial has one root, which is the solution to $(1+\theta L)=0$, which is $L=-1/\theta$, so the inverse will be less than 1 in absolute value if $|\theta<1|$
- Autoregressive representations are real world in the sense that they link present observables to the past history of observables based on present and past observables. Moving averages have this form if they can be inverted, which is why if we start with a MA process we restrict ourselves to invertible processes.
- Partial autocorrelation function of an MA(1) oscillates, from positive to negative, and declines to zero this follows directly from the autoregressive representation derived.

The MA(q) Process

General finite-order process of order q or MA(q):

$$y_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q} = \Theta(L) \varepsilon_t$$

$$\varepsilon_t \sim WN(0, \sigma^2)$$

where $\Theta(L) = 1 + \theta_1 L + \dots + \theta_q L^q$, is a *q*-th order lag operator polynomial.

- ullet MA(q) is covariance stationary for any value of its parameters.
- In an MA(q), only q shocks enter the conditional mean.and autocorrelations greater than q are zero.

AR(1)

A stationary AR1 takes the form:

$$y_t = \alpha + \rho y_{t-1} + \varepsilon_t,$$

 $y_t(1 - \rho L) = \varepsilon_t,$

with $\mid
ho \mid < 1$ and $E(y_t) = lpha/(1ho)$.,

• If it is stationary and repeated substitution, gives an $MA(\infty)$:

$$y_t = \alpha/(1-\rho) + \varepsilon_t + \rho \varepsilon_{t-1} + \rho^2 \varepsilon_{t-2} + \rho^3 \varepsilon_{t-3}...$$
(1)
$$y_t = \alpha/(1-\rho) + (1-\rho L)^{-1} \varepsilon_t,$$

- $Var(y_t) = E(y_t E(y_t))^2 = E(y_t \alpha/(1-\rho))^2 = \sigma^2/(1-\rho^2)$ and the correlations between y_t and y_{t-i} , $r_i = \rho^i$, so decline exponentially.
- If stationary, the parameters can be estimated consistently by OLS, though the estimates will not be unbiased (y_{t-1}) is uncorrelated with ε_t but not independent since it is correlated with ε_{t-1}); the estimate of ρ will be biased downwards.

MSc/PGCE Option. () Forecasting Week 4 / 63

AR(p)

• An AR(p) takes the form:

$$\begin{split} y_t &= \rho_1 y_{t-1} + \rho_2 y_{t-2} + \dots + \rho_p y_{t-p} + \varepsilon_t \\ y_t &- \rho_1 y_{t-1} - \rho_2 y_{t-2} - \dots - \rho_p y_{t-p} = \varepsilon_t \\ (1 - \rho_1 L - \rho_2 L^2 - \dots - \rho_p L^p) y_t &= \varepsilon_t; \\ A^p(L) y_t &= \varepsilon_t. \end{split}$$

• $A^p(L)$ is a polynomial in the lag operator.

Stationarity

- The process is stationary if all the roots (solutions), z_i , of $1-\rho_1z-\rho_2z^2-\ldots-\rho_pz^p=0$ lie outside the unit circle (are greater than one in absolute value).
- The condition is sometimes expressed in terms of the inverse roots, which must lie inside the unit circle.
- ullet Usually we just check that $-1 < \sum
 ho_i < 1$ for stationarity.
- For an AR1 process, for stability, the solution to $(1-\rho z)=0$, must be greater than unity in absolute value, since this implies $z=1/\rho$ this requires $-1<\rho<1$.
- For an AR2 the real parts of solution to the two solutions to the quadratic $(1-\rho_1z-\rho_2z^2)$ must be greater than unity.

Random Walk and I(1)

- If a root lies on the unit circle, some $z_i = 1$, the process is said to exhibit a unit root.; stationary after being differenced once I(1)
- A special case of an I(1) variable is a random walk (with drift) where $\rho=1$ in the AR1:

$$y_t = y_{t-1} + \alpha + \varepsilon_t$$
;

 Substituting back shocks have permanent effects and there is both a deterministic and stochastic trend

$$y_t = \alpha t + \sum_{i=0}^{t-1} \varepsilon_{t-i} + y_0;$$

• Δy_t is stationary, I(0), but y_t is non-stationary, I(1). If there is no drift the expected value of y_t will be constant at zero, if $y_0 = 0$, but the variance will increase with t. If there is a drift term the expected value of y_t , as well as the variance, will increase with t.

MSc/PGCE Option. () Forecasting Week 4

ARIMA

 Combining the AR and MA processes, gives the ARMA process. The first order ARMA(1,1) with intercept is

$$y_t = \alpha + \rho y_{t-1} + \varepsilon_t + \mu \varepsilon_{t-1}$$

 To make them stationary the data are differenced d times, then modelled as an ARMA process of order p and q. This gives the Autoregressive Integrated Moving Average, ARIMA(p,d,q) process:

$$A^p(L)\Delta^d y_t = \alpha + B^q(L)\varepsilon_t.$$

• The ARIMA(1,1,1) process is

$$\Delta y_t = \alpha + \rho \Delta y_{t-1} + \varepsilon_t + \mu \varepsilon_{t-1}$$

◆ロト ◆@ ト ◆ 差 ト ◆ 差 ・ 夕 Q ②

ML Estimation 1

- For the LRM with normal (Gaussian) errors the ML estimator has a closed form solution. For MA errors, this is not the case and an iterative procedure is required.
- Consider maximising a quadratic function of a vector of k parrameters θ , where \mathbf{C} is a positive definite matrix

$$F(\theta) = a + \mathbf{b}'\theta - \frac{1}{2}\theta'\mathbf{C}\theta$$

the first order conditions for a maximum and the closed form solution are

$$\frac{\partial F(\theta)}{\partial \theta} = \mathbf{b} - \mathbf{C}\theta = \mathbf{0}$$
$$\theta = \mathbf{C}^{-1}\mathbf{b}.$$

ML Estimation 2

• If $F(\theta)$ is the likelihood function, or GMM minimand, for a non-linear model, estimation is usually done using an interative algorithm, where starting from some initial guesses, θ_0 the estimates are updated as

$$\boldsymbol{\theta}_1 = \boldsymbol{\theta}_0 + \lambda_0 \boldsymbol{\Delta}_0 \tag{2}$$

$$\theta_{t+1} = \theta t + \lambda_t \Delta_t \tag{3}$$

 λ_t is the step size and Δ_t the direction. This continues until it stops once it has converged to a maximum.

 The most commonly used algorithms are gradient methods. Define the gradient and Hessian

$$\mathbf{g} = g(\theta) = \frac{\partial F(\theta)}{\partial \theta}; \ \mathbf{H} = \frac{\partial^2 F(\theta)}{\partial \theta \partial \theta'}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● 今○○

MSc/PGCE Option. ()

Gradient Methods

ullet The simplest gradient method is Newton's method based on a linear Taylor series expansion around $oldsymbol{ heta}_0$

$$\begin{array}{ccc} \frac{\partial F(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} & \simeq & \mathbf{g}_0 + \mathbf{H}_0(\boldsymbol{\theta} - \boldsymbol{\theta}_0) = 0 \\ \boldsymbol{\theta} & \simeq & \boldsymbol{\theta}_0 - \mathbf{H}_0^{-1} \mathbf{g}_0. \end{array}$$

In (2) this sets $\lambda_t=1$ and $\pmb{\Delta}_t=\pmb{\mathsf{H}}_t^{-1}\pmb{\mathsf{g}}_t.$

- Newton Method often works well, but may be improved by adjusting λ_t .
- It may be difficult to calculate \mathbf{H}_t^{-1} and it may not be positive definite.
- In ML examples the outer product gradient, OPG, method uses $\left[\sum_{t=1}^{T}\mathbf{g}_{t}\mathbf{g}_{t}'\right]^{-1}$ instead of $(-H)^{-1}$. This is always positive definite and only requires calculating first derivatives. It is the basis of BHHH, Berndt, Hall, Hall & Hausman.

Issues: where to start, how to climb, when to stop

- Start: Try to choose sensible initial values, θ_0 , e.g. based on linear approximations and try different values to check for local maxima.
- Climb depends on choice of λ_t and Δ_t , programs will often switch between procedures or give you a choice.
- Stop: convergence criteria: $\mathbf{g}_t < \varepsilon$, and $F(\theta)_t F(\theta_{t-1}) < \varepsilon$ are sensitive to scaling, the units the variables are measured in. $\mathbf{g}'\mathbf{H}^{-1}\mathbf{g}$ is less sensitive. Programs give you a choice over tolerances, ε , for the coefficients, log likelihood and Hessian scaled gradient.
- If in the linear case X'X is singular, it will be obvious, you get no estimates. This may not be so obvious in the non-linear case and the program may provide estimates even if the likelihood is quite flat.
- For less well behaved functions there are algorithms like simulated annealing and genetic algorithms.

《□ ト 〈□ ト 〈恵 ト 〈恵 ト 〈恵 ト 恵 ◆ 今久 (*)

MSc/PGCE Option. () Forecasting Work 4 / 63

Coca example

EViews estimation for Coca

- For estimation of an equation with quadratic trend plus ARMA(1,1)
 enter: LD C @trend @trend^2 AR(1) MA(1)
- In options box, you have a choice of
 - Method: ML, Conditional LS, GLS
 - Information Matrix: OPG, Hessian observed
 - Starting ARMA coefficient values
 - Optimisation method
 - Step method
 - Maximum iterations
 - Convergence tolerance

✓ EViews - [Equation: EQ02 Workfile: COLOMBIAATTACKS::Untitled\]

File Edit Object View Proc Quick Options Add-ins Window Help

Command

View Proc Object Print Name Freeze Estimate Forecast Stats Resids

Dependent Variable: LD Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 012/11/6 Time: 11:54 Sample: 1995Q2 2005Q3 Included observations: 42 Convergence achieved after 17 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	12.02174	0.255329	47.08330	0.0000
@TREND	0.037550	0.022483	1.670184	0.1041
@TREND*2	-0.000903	0.000412	-2.190490	0.0354
@SEAS(2)	0.181753	0.043377	4.190050	0.0002
@SEAS(4)	-0.217444	0.028539	-7.619200	0.0000
AR(1)	0.794253	0.219806	3.613428	0.0010
MA(1)	-0.140253	0.503474	-0.278571	0.7823
SIGMASQ	0.004387	0.001087	4.036928	0.0003
R-squared	0.929183	Mean depend	entvar	12.25090
Adjusted R-squared	0.914603	S.D. depende	ntvar	0.251919
S.E. of regression	0.073617	Akaike info cri		-2.191651
Sum squared resid	0.184264	Schwarz criter	ion	-1.860666
Log likelihood	54.02467	Hannan-Quin	n criter.	-2.070332
F-statistic	63.73046	Durbin-Watso	n stat	1.926742
Prob(F-statistic)	0.000000			
Inverted AR Roots	.79			
Inverted MA Roots	.14			

Coca Production

Going to consider a number of models on a common sample 1995Q2-2005Q3. Not fixing sample is a common mistake, all models should have 42 observations, to allow for LD(-4). Could have 47 observations for first model.

- A. Seasonals 2 and 4 plus quadratic trend (as in week 2)
- B. ARMA(1,1) with quadratic trend
- C. ARMA(1,1) with seasonals and quadratic trend (C1 by ML and C2 Conditional Least Squares)
- D. ARIMA(4,1,0) with seasonals S12=S1+S2
- E. ARMA(1-4,0,0) with constant and 3 seasonals

A: $S2+S4 + t+ t^2 OLS$

Dependent Variable: LD Method: Least Squares Date: 10/30/15 Time: 16:01

Sample: 1995Q2 2005Q3 Included observations: 42

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @SEAS(2) @SEAS(4) @TREND @TREND^2	12.00834 0.179869 -0.226602 0.042356 -0.001042	0.070160 0.036646 0.037832 0.006041 0.000116	171.1572 4.908346 -5.989694 7.011784 -8.993149	0.0000 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.862558 0.847699 0.098313 0.357622 40.48950 58.05115 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		12.25090 0.251919 -1.689976 -1.483111 -1.614152 0.599440

MSc/PGCE Option. () Forecasting Week 4 /6

B: ARIMA(1,0,1) + $t + t^2 ML$

Dependent Variable: LD

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 10/30/15 Time: 15:45

Sample: 1995Q2 2005Q3 Included observations: 42

Convergence achieved after 17 iterations

Coefficient covariance computed using outer product of gradients

-.71

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND @TREND^2 AR(1) MA(1)	12.04827 0.037515 -0.000945 -0.076041 0.712942	0.163253 0.014034 0.000265 0.372282 0.254481	73.80139 2.673241 -3.562633 -0.204256 2.801550	0.0000 0.0112 0.0011 0.8393 0.0081
SIGMAŚQ	0.020372	0.008504	2.395497	0.0219
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.671157 0.625485 0.154168 0.855644 21.86748 14.69498 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		12.25090 0.251919 -0.755594 -0.507356 -0.664605 2.029000
Inverted AR Roots	08			

C1: $ARIMA(1,0,1) + t + t^2 + S2 + S4 ML$

Dependent Variable: LD

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 01/21/16 Time: 11:54 Sample: 1995Q2 2005Q3 Included observations: 42

Convergence achieved after 17 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
	-	-		
С	12.02174	0.255329	47.08330	0.0000
@TREND	0.037550	0.022483	1.670184	0.1041
@TREND^2	-0.000903	0.000412	-2.190490	0.0354
@SEAS(2)	0.181753	0.043377	4.190050	0.0002
@SEAS(4)	-0.217444	0.028539	-7.619200	0.0000
AR(1)	0.794253	0.219806	3.613428	0.0010
MA(1)	-0.140253	0.503474	-0.278571	0.7823
SIGMASQ	0.004387	0.001087	4.036928	0.0003
R-squared	0.929183	Mean depend	dent var	12.25090
Adjusted R-squared	0.914603	S.D. depende		0.251919
S.E. of regression	0.073617	Akaike info cr		-2.191651
Sum squared resid	0.184264	Schwarz crite	rion	-1.860666
Log likelihood	54.02467	Hannan-Quin	ın criter.	-2.070332
F-statistic	63.73046	Durbin-Watson stat		1.926742
Prob(F-statistic)	0.000000			
Inverted AR Roots	.79			

C2: ARIMA(1,0,1) + t+ t^2+S2+S4, CLS, rho close to one

Dependent Variable: LD

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt

steps)

Date: 01/21/16 Time: 11:52 Sample: 1995Q2 2005Q3

Sample: 1995Q2 2005Q3 Included observations: 42

Failure to improve likelihood (non-zero gradients) after 128 iterations Coefficient covariance computed using outer product of gradients

MA Backcast: 1995Q1

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND @TREND^2 @SEAS(2) @SEAS(4) AR(1) MA(1)	57.79258 -0.813540 0.004762 0.182742 -0.218083 0.980376 -0.462778	796.3761 9.717920 0.039408 0.019753 0.020607 0.129864 0.221021	0.072569 -0.083715 0.120830 9.251273 -10.58272 7.549227 -2.093822	0.9426 0.9338 0.9045 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.932986 0.921498 0.070583 0.174370 55.57378 81.21308 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		12.25090 0.251919 -2.313037 -2.023426 -2.206883 1.830749

D: ARMA(4,0,0) with constant and S1+S2+ S3

Dependent Variable: LD Method: Least Squares Date: 10/30/15 Time: 16:50

Sample (adjusted): 1995Q2 2005Q3

Included observations: 42 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.798403	0.668797	1.193789	0.2411
LD(-1)	0.889572	0.140214	6.344368	0.0000
LD(-2)	0.035800	0.184509	0.194027	0.8473
LD(-3)	0.050633	0.186741	0.271138	0.7880
LD(-4)	0.568246	0.189046	3.005863	0.0050
LD(-5)	-0.617848	0.145874	-4.235490	0.0002
@SEAS(1)	0.154994	0.081184	1.909171	0.0650
@SEAS(2)	0.187649	0.108110	1.735729	0.0919
@SEAS(3)	0.061987	0.080263	0.772299	0.4454
R-squared	0.946172	Mean depend	ent var	12.25090
Adjusted R-squared	0.933122	S.D. depende	nt var	0.251919
S.E. of regression	0.065148	Akaike info cri	terion	-2.436900
Sum squared resid	0.140061	Schwarz criter	ion	-2.064542
Log likelihood	60.17489	Hannan-Quinn criter.		-2.300416
F-statistic Prob(F-statistic)	72.50737 0.000000	Durbin-Watso	n stat	2.264424

E: ARIMA(4,1,0) with S12=S1+S2

Dependent Variable: D(LD) Method: Least Squares Date: 10/30/15 Time: 15:53

Sample (adjusted): 1995Q2 2005Q3

Included observations: 42 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C D(LD(-4)) S12	-0.082782 0.604159 0.161225	0.029583 0.132136 0.055151	-2.798301 4.572242 2.923362	0.0079 0.0000 0.0057
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.919085 0.914936 0.062675 0.153197 58.29233 221.4939 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.004035 0.214891 -2.632968 -2.508849 -2.587474 2.372920

Schwarz criterion

- A:-1.48: Seasonals plus quadratic trend as before
- B:-0.51: ARIMA(1,0,1) with quadratic trend
- C:-1.86: ARIMA(1,0,1) with seasonals and quadratic trend
- D:-2.06: ARMA(1-4,0,0) with constant and 3 seasonals
- E:-2.51: ARIMA(4,1,0) with seasonals S12=S1+S2

Specification E developed from looking at D.

Log Volume

MSc/PGCE Option. () Forecasting Week 4 / 63

Volume ARMA(1,1)+trend

Dependent Variable: LV

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 01/18/16 Time: 15:55 Sample: 1/02/2001 12/31/2007

Included observations: 1747

Convergence achieved after 23 iterations

Coefficient covariance computed using observed Hessian

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	7.376531	0.100814	73.16980	0.0000
@TREND	0.001679	8.38E-05	20.02995	0.0000
AR(1)	0.921293	0.015534	59.30896	0.0000
MA(1)	-0.596586	0.034126	-17.48181	0.0000
SIGMASQ	0.123055	0.004164	29.55499	0.0000
R-squared	0.867028	Mean dependent var		9.219225
Adjusted R-squared	0.866723	S.D. depende		0.962264
S.É. of regression	0.351295	Akaike info cr	iterion	0.748900
Sum squared resid	214.9776	Schwarz crite	rion	0.764543
Log likelihood	-649.1638	Hannan-Quin	n criter.	0.754683
F-statistic	2839.623	Durbin-Watso	on stat	1.802580
Prob(F-statistic)	0.000000			
Inverted AR Roots	.92	_	·	
Inverted MA Roots	.60			

MSc/PGCE Option. () Forecasting Week 4 / 63

ARMA(2,2) +trend and LDV

Dependent Variable: D(LV)

Method: ARMA Maximum Likelihood (BFGS)

Date: 01/18/16 Time: 16:33 Sample: 1/03/2001 12/31/2007

Included observations: 1746

Convergence achieved after 18 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.985202	0.128571	7.662697	0.0000
@TREND	0.000219	3.17E-05	6.897615	0.0000
LV(-1)	-0.132540	0.017548	-7.553067	0.0000
AR(1)	0.510996	0.092592	5.518810	0.0000
AR(2)	-0.463155	0.041198	-11.24208	0.0000
MA(1)	-0.928566	0.087923	-10.56117	0.0000
MA(2)	0.466813	0.072240	6.461988	0.0000
SIGMASQ	0.116660	0.002564	45.49260	0.0000
R-squared	0.288629	Mean depend	lent var	0.001356
Adjusted R-squared	0.285764	S.D. depende	nt var	0.405076
S.E. of regression	0.342340	Akaike info cr	iterion	0.698805
Sum squared resid	203.6878	Schwarz crite	rion	0.723846
Log likelihood	-602.0571	Hannan-Quin	n criter.	0.708063
F-statistic	100.7387	Durbin-Watso	on stat	2.044408
Prob(F-statistic)	0.000000			
Inverted AR Roots	.26+.63i	.2663i		
Inverted MA Roots	.4650i	.46+.50i		

ARIMA(1,1,1) worse

Dependent Variable: D(LV)

Method: ARMA Maximum Likelihood (BFGS)

Date: 01/18/16 Time: 16:09 Sample: 1/03/2001 12/31/2007 Included observations: 1746

Convergence achieved after 8 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.004666	0.003118	1.496414	0.1347
@TREND	-2.94E-06	2.59E-06	-1.134790	0.2566
AR(1)	0.326724	0.024708	13.22366	0.0000
MA(1)	-0.892794	0.012254	-72.85916	0.0000
SIGMASQ	0.120751	0.002581	46.78916	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.263682 0.261990 0.347991 210.8310 -632.4313 155.8669 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.001356 0.405076 0.730162 0.745812 0.735948 1.973592
Inverted AR Roots Inverted MA Roots	.33 .89			

ARIMA(1,1,2)+LDV+GARCH+t distribution for errors

Dependent Variable: D(LV)
Method: ML ARCH - Student's t distribution (BFGS / Marquardt steps)
Date: 01/18/16 Time: 16:15
Sample (adjusted): 1/03/2001 12/31/2007
Included observations: 1746 after adjustments
Convergence achieved after 81 iterations
Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)
GARCH = C(7) + C(8)*RESID(-1)*2 + C(9)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
С	0.317928	0.066564	4.776276	0.0000		
@TREND	6.39E-05	1.52E-05	4.206212	0.0000		
LV(-1)	-0.041417	0.008910	-4.648071	0.0000		
AR(1)	-0.038071	0.119159	-0.319495	0.7494		
MA(1)	-0.519126	0.118646	-4.375435	0.0000		
MA(2)	-0.234902	0.082894	-2.833761	0.0046		
Variance Equation						
С	0.028912	0.010230	2.826276	0.0047		
RESID(-1)^2	0.099170	0.030172	3.286862	0.0010		
GARCH(-1)	0.648830	0.106388	6.098719	0.0000		
T-DIST. DOF	6.650946	0.820755	8.103446	0.0000		
R-squared	0.274348	Mean depend	lent var	0.001356		
Adjusted R-squared	0.272263	S.D. depende		0.405076		
S.É. of regression	0.345561	Akaike info cri	iterion	0.611231		
Sum squared resid	207.7770	Schwarz crite	rion	0.642532		
Log likelihood	-523.6051	Hannan-Quinn criter.		0.622803		
Durbin-Watson stat	1.928213					
Inverted AR Roots	04					
Inverted MA Roots	.81	29				

ARIMA(2,1,2)+GARCH+ t Distrib

Dependent Variable: D(LV)
Method: ML ARCH - Student's t distribution (BFGS / Marquardt steps)
Date: 01/18/16 Time: 16:39
Sample (adjusted): 1/03/2001 12/31/2007
Included observations: 1746 after adjustments
Convergence achieved after 73 iterations
Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)
GARCH = C(8) + C(9)*RESID(-1)*2 + C(10)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
C @TREND	1.048226 0.000220	0.128224 2.95E-05	8.174972 7.453931	0.0000	
LV(-1) AR(1)	-0.138628 0.505295 -0.457146	0.017165 0.087280 0.040520	-8.075996 5.789364 -11.28203	0.0000	
AR(2) MA(1) MA(2)	-0.457146 -0.928034 0.439411	0.040520 0.085403 0.068911	-11.28203 -10.86657 6.376516	0.0000	
Variance Equation					
C RESID(-1)^2 GARCH(-1)	0.040666 0.133809 0.508729	0.011335 0.035273 0.115038	3.587547 3.793468 4.422250	0.0003 0.0001 0.0000	
T-DIST. DOF	6.732139	0.842945	7.986450	0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.285635 0.283170 0.342961 204.5452 -510.1270 2.015783	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.001356 0.405076 0.596938 0.631369 0.609667	
Inverted AR Roots Inverted MA Roots	.25+.63i .46+.47i	.2563i .4647i			

AR(1,4,5)+t GARCH

Dependent Variable: LV
Method: ML ARCH - Student's t distribution (BFGS / Marquardt steps)
Date: 02/14/19 Time: 14:49
Sample (adjusted): 1/09/2001 12/31/2007
Included observations: 1742 after adjustments
Convergence achieved after 61 iterations
Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)

 $GARCH = C(6) + C(7)*RESID(-1)^2 + C(8)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.			
C @TREND LV(-1) LV(-4) LV(-5)	1.797635 0.000371 0.401197 0.201800 0.160326	0.165345 3.97E-05 0.021946 0.021437 0.022225	10.87200 9.329573 18.28101 9.413672 7.213834	0.0000 0.0000 0.0000 0.0000 0.0000			
Variance Equation							
C RESID(-1)^2 GARCH(-1)	0.031763 0.131672 0.589996	0.008950 0.033413 0.094990	3.548874 3.940768 6.211125	0.0004 0.0001 0.0000			
T-DIST. DOF	6.196534	0.748680	8.276607	0.0000			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.870484 0.870186 0.343378 204.8071 -493.5662 1.944553	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		9.226750 0.953041 0.576999 0.605222 0.587435			

AR(1,4,5)+t OLS

Dependent Variable: LV Method: Least Squares Date: 02/14/19 Time: 14:51

Sample (adjusted): 1/09/2001 12/31/2007 Included observations: 1742 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND LV(-1) LV(-4) LV(-5)	1.672537 0.000366 0.445218 0.188124 0.142385	0.169893 4.20E-05 0.021235 0.023269 0.023822	9.844664 8.714920 20.96574 8.084621 5.976934	0.0000 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.871143 0.870846 0.342503 203.7649 -602.7799 2935.768 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		9.226750 0.953041 0.697796 0.713475 0.703593 2.040717

Schwarz criterion Volume

- A. 0.7645: ARMA(1,1)+trend
- B. 0.7238: ARMA(2,2) +trend and LDV
- C. 0.7458: ARIMA(1,1,1)
- D. 0.6425: ARIMA(1,1,2)+LDV+GARCH+t distribution for errors
- E. 0.6314: ARIMA(2,1,2)+GARCH+ t Distrib
- F. 0.60522: AR(1,4,5) +t+GARCH t distribution of errors
- G. 0.70359: AR(1,4,5) + t OLS

G fits a lot worse than F, but the coefficients in the mean equation are very similar so their point forecasts are likely to be very similar.

Comments

- Identification of ARIMA(p,d,q) models more art than science. Note identification is choice of pdq, not like econometric identification.
- There are a large number of computational issues and different programs or different estimation methods will give different results.
- The ultimate test is practical forecasting, but a well established process may change when you come to forecast.
- Models that look very different may give very similar forecasts.
- May be difficult to beat very "naive" models out of sample, so in-sample significance should not be give too much weight.

Revision & Exercises

• Hamilton alternative to HP: a regression of y_{t+h} on the four (for quarterly) most recent values as of date t provides a robust alternative to detrending that achieves the objectives sourght by HP users with none of its drawbacks. Corresponds to a Beveridge Nelson, long horizon, trend in some cases. Linear projection.

$$y_{t+h} = \alpha + \beta_0 y_t + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \beta_3 y_{t-3} + \beta_4 y_{t-4} + u_t$$

 Unbiased forecast, e.g. inthe case of the log transform. A prediction is unbiased if

$$E(y_{T+1}) = y_{T+1,T}$$

 $y_{T+1} = E(y_{T+1}) + u_{T+1} = y_{T+1,T} + u_{T+1}$

for white noise u_t , so, we require $\alpha=0$, and $\beta=1$ in a regression of actual on forecast

$$y_t = \alpha + \beta y_{T+1,T} + u_t$$

MSc/PGCE Option. () Forecasting Week 4 / 6

Holt Winters (Exponential) Smoothing, estimates a local mean

- Initialise at time $t = 1 : \bar{y}_1 = y_1$
- Update: $\bar{y}_t = \alpha y_t + (1 \alpha) \bar{y}_{t-1}$
- Forecast: $\bar{y}_{T+h,T} = \bar{y}_T$
- Note

$$\bar{y}_t = \sum_{j=0}^{t-1} \alpha (1-\alpha)^j y_{t-j}$$

• Choose $0 < \alpha < 1$ to reflect the relative importance of signal in y_t (large α) relative to noise (small α).

Holt Winters smoothing allowing for trend

- Initialise at time $t = 2 : \bar{y}_2 = y_2; F_2 = y_2 y_1$
- Update

$$\bar{y}_{t} = \alpha y_{t} + (1 - \alpha)(\bar{y}_{t-1} + F_{t-1})
F_{t} = \beta(\bar{y}_{t} - \bar{y}_{t-1}) + (1 - \beta)F_{t-1},
t = 3, 4, ..., T$$

• Forecast: $y_{T+h,T} = \bar{y}_T + hF_t$

Holt Winters smoothing allowing for seasonal

- Initialise at t = s: $\bar{y}_s = \sum_{t=1}^s y_t/s$; $F_s = 0$; $G_j = y_j \bar{y}_s$, j = 1, 2, ..., s
- Update for t = s + 1, ..., T

$$\bar{y}_{t} = \alpha(y_{t} - G_{t-s}) + (1 - \alpha)(\bar{y}_{t-1} + F_{t-1})
F_{t} = \beta(\bar{y}_{t} - \bar{y}_{t-1}) + (1 - \beta)F_{t-1},
G_{t} = \gamma(y_{t} - \bar{y}_{t}) + (1 - \gamma)G_{t-s}$$

Forecast

$$y_{T+h,T} = \bar{y}_T + hF_T + G_{T+h-s}; h = 1, 2, ..., s$$

 $y_{T+h,T} = \bar{y}_T + hF_T + G_{T+h-2s}; h = s+1, s+2, ..., 2s$

Exam Question

In Moodle there are a number of documents relevant to the Autumn 2018 Bank of England forecasts and Monetary Policy Committee decision and the OBR forecasts for the Budget decisions.

Some questions on the exam will require you to use information from these forecasting and decision processes to answer the questions.

Start by asking the basic questions for forecasters for each of the organisations.