Deep generative model/Advanced computer vision Quiz 2

Please submit answers no later than 4/26 5:00 PM.	
You can use either English or Korean for answers.	
to save your progress.	
*Required	
Student ID *	
Your answer	
Student Name *	
Your answer	
[1 point] In GAN, the aim of the generator G is:	
to maximize classification error for discriminator	→ 정압취 리
to minimize classification error for discriminator	
of to minimize log(1-D(G(z))) for random vector z	
to maximize log(D(G(z))) for random vector z	

[2 point] When a data point X is given, which model directly returns a probability
belongs to a specific class Y, P(Y X)?
Generative model
Discriminative model
O Both of them
Neither of them
[5 point] Which of the following is incorrect? (multiple choices, there would be the partial score)
Generative models can generate new data instances.
Given data X, it is easy to find the corresponding latent z vector for GANs, but not for VAEs.
Given a set of data instances X and label Y, generative models are learned to directly capture the P(Y X).
Discriminative models capture the joint probability P(X,Y) or P(X).
GANs and VAEs are representative deep generative models.
[2 point] Please discuss the role of the 1) adversarial loss and 2) L2 loss, respectively in the Context Encoder.
Youranswer 1) quality 2) Fit to context
[2 point] What do you think are the key advances of the CycleGAN compared to pix2pix?
Youranswer We can use uppaired data

con	volutional architecture? (select all)
d	Use LeakyReLU activation in the discriminator instead of ReLU.
	Use pooling layers in generator.
Ø	Use batch normalization layer in generator and discriminator.
[2 p	oints] What is the optimal discriminator that maximizes the GAN objective
	data: original image distribution, p_g: generated image distribution).
0	1
6	p_data / (p_g + p_data)
0	(p_g + p_data) / 2
0	0
0	None of the above
[2 p	oints] what is the global minimum of the GAN training criterion?
0	0.5
0	-lag4
0	log4
0	-0.5
[2 p	oint] Please describe the 'mode collapse' issue of the GAN network.

[1 point] If we classify measures into two groups: (Group 1: FID, inception score), (Group 2: MSE, PSNR, SSIM and LPIPS), what do you think is the criterion?

Your answer

Emp 1 is unsupervised measure; Grap 2 is supervised measure

[2.5	points] Please choose correct sentences (select all).
	Inception score measures the quality and diversity of generated images.
9	To calculate the inception score and Frechet inception distance (FID), we need to involve a pre-trained network.
	Mean square error (MSE), peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) always work in the similar tendency for given original and generated image pairs.
Q	MSE is not enough to consider the structural difference between original and generated images.
Ø	Learned perceptual image patch similarity (LPIPS) relatively provides better capability to mimic the human perception, compared to MSE, PSNR and SSIM.
[2.5	points] Please choose correct sentences (select all).
0	The original GAN objective uses the Jensen-Shannon divergence as the distance measure between original and generated data distribution.
D	Wasserstein GAN uses the Wasserstein distance as the distance measure between original and generated images.
Ø	Gradient penalty term in Wasserstein GAN is added to enforce the 1-Lipschitz condition.
	Clipping for weight scales is a way to meet the 1-Lipschitz condition in the Wasserstein GAN.
Ø	Wasserstein GAN provides gradients for discriminator even when the original GAN's gradient vanishes. This offers more stable GAN training.