Curso de Métodos Numéricos DEMAT, Universidad de Guanajuato

Clase 12: Cálculo de eigenvectores y eigenvalores

- Introducción.
- Círculos de Gershgorin.
- Método de la potencia.

MAT-251 Dr. Joaquín Peña Acevedo CIMAT A.C.

e-mail: joaquin@ cimat.mx

Eigenvalores y eigenvectores de una matriz

Sea $\mathbf{A} \in \mathbb{R}^{n \times n}$.

Definición

El polinomio $p(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I})$ es llamado el polinomio característico de \mathbf{A} . Las raíces $p(\lambda) = 0$ del polinomio son los eigenvalores de \mathbf{A} .

Definición

Un vector $\mathbf{v} \neq \mathbf{0}$ que satisface $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ es un *eigenvector* de \mathbf{A} . Al par ordenado (λ, \mathbf{v}) se le llama *eigenpar*.

Observaciones:

Eigenvalores y eigenvectores de una matriz

Sea $\mathbf{A} \in \mathbb{R}^{n \times n}$.

Definición

El polinomio $p(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I})$ es llamado el polinomio característico de \mathbf{A} . Las raíces $p(\lambda) = 0$ del polinomio son los eigenvalores de \mathbf{A} .

Definición

Un vector $\mathbf{v} \neq \mathbf{0}$ que satisface $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ es un *eigenvector* de \mathbf{A} . Al par ordenado (λ, \mathbf{v}) se le llama *eigenpar*.

Observaciones:

 Como el grado del polinomio característico es n, entonces hay n eigenvalores asociados a A.

Eigenvalores y eigenvectores de una matriz

Sea $\mathbf{A} \in \mathbb{R}^{n \times n}$.

Definición

El polinomio $p(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I})$ es llamado el polinomio característico de \mathbf{A} . Las raíces $p(\lambda) = 0$ del polinomio son los eigenvalores de \mathbf{A} .

Definición

Un vector $\mathbf{v} \neq \mathbf{0}$ que satisface $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ es un *eigenvector* de \mathbf{A} . Al par ordenado (λ, \mathbf{v}) se le llama *eigenpar*.

Observaciones:

- Como el grado del polinomio característico es n, entonces hay n eigenvalores asociados a A.
- Para cada eigenvalor λ , puesto que $\det(\mathbf{A} \lambda \mathbf{I}) = 0$, la matriz $\mathbf{A} \lambda \mathbf{I}$ es singular, por lo que podemos hallar un vector $\mathbf{v} \neq \mathbf{0}$ tal que $(\mathbf{A} \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$.

Observaciones

Supongamos que (λ, \mathbf{v}) es un eigenpar de \mathbf{A} .

Dado $\delta \in \mathbb{R}$, ¿Cuáles son los eigenvalores de $\mathbf{A} + \delta \mathbf{I}$?

Observaciones

Supongamos que (λ, \mathbf{v}) es un eigenpar de \mathbf{A} .

Dado $\delta \in \mathbb{R}$, ¿Cuáles son los eigenvalores de $\mathbf{A} + \delta \mathbf{I}$?

$$(\mathbf{A} + \delta \mathbf{I})\mathbf{v} = \mathbf{A}\mathbf{v} + \delta \mathbf{v} = \lambda \mathbf{v} + \delta \mathbf{v} = (\lambda + \delta)\mathbf{v}$$

Entonces $(\lambda + \delta, \mathbf{v})$ es un eigenpar de $\mathbf{A} + \delta \mathbf{I}$.

¿Cuáles son los eigenvalores de A^{-1} ?

Observaciones

Supongamos que (λ, \mathbf{v}) es un eigenpar de \mathbf{A} .

Dado $\delta \in \mathbb{R}$, ¿Cuáles son los eigenvalores de $\mathbf{A} + \delta \mathbf{I}$?

$$(\mathbf{A} + \delta \mathbf{I})\mathbf{v} = \mathbf{A}\mathbf{v} + \delta \mathbf{v} = \lambda \mathbf{v} + \delta \mathbf{v} = (\lambda + \delta)\mathbf{v}$$

Entonces $(\lambda + \delta, \mathbf{v})$ es un eigenpar de $\mathbf{A} + \delta \mathbf{I}$.

¿Cuáles son los eigenvalores de A^{-1} ?

Tenemos que $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$. Entonces

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{v} = \lambda \mathbf{A}^{-1}\mathbf{v} \implies \frac{1}{\lambda}\mathbf{v} = \mathbf{A}^{-1}\mathbf{v}$$

Así, $(1/\lambda, \mathbf{v})$ es un eigenpar de \mathbf{A}^{-1} .

Matrices simétricas

Proposición

Sea **A** una matriz simétrica de tamaño n. Entonces, contando multiplicidades, **A** tiene n eigenvalores reales λ_i , i=1,...,n, y

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i, \quad \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j = 0 \quad i \neq j.$$

Si todos los eigenvalores son distintos, los eigenvectores son únicos, excepto por un factor de escala.

La proposición anterior garantiza la descomposición

$$A = VDV^{\top}$$
.

donde $\mathbf{V} = [\mathbf{v}_1 \cdots \mathbf{v}_n]$ es una matriz unitaria, con los eigenvectores como columnas, y $\mathbf{D} = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ una matriz diagonal con los eigenvalores correspondientes.

Esta es la descomposición espectral de la matriz simétrica A.

Matrices simétricas

Solución de Ax = b con una matriz simétrica A

Dada la descomposición espectral de una matriz A simétrica,

$$\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{\mathsf{T}}$$

si los eigenvalores son dierentes de cero, ${\bf D}$ es invertible y se puede resolver el sistema ${\bf A}{\bf x}={\bf b}$ mediante

$$VDV^{T}x = b \implies x = VD^{-1}V^{T}b$$

Proposición 1

Sea ${\bf A}$ una matriz simétrica. Si todos los eigenvalores son positivos, la matriz ${\bf A}$ es definida positiva.

Solución de Ax = b con una matriz simétrica A

Dada la descomposición espectral de una matriz A simétrica,

$$A = VDV^{\top}$$
,

si los eigenvalores son dierentes de cero, ${\bf D}$ es invertible y se puede resolver el sistema ${\bf A}{\bf x}={\bf b}$ mediante

$$VDV^{T}x = b \implies x = VD^{-1}V^{T}b$$

Proposición 1

Sea ${\bf A}$ una matriz simétrica. Si todos los eigenvalores son positivos, la matriz ${\bf A}$ es definida positiva.

Entonces en el caso mínimos cuadrados lineales, la solución se obtiene resolviendo el sistema $\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$. Si se tiene la descomposición espectral de $\mathbf{A}^{\mathsf{T}}\mathbf{A}$, se puede resolver el sistema y determinar si la matriz es definida positiva.

Radio espectral de la matriz

El conjunto $\sigma(\mathbf{A})$ de todos los eigenvalores distintos de \mathbf{A} se llama el espectro de \mathbf{A} .

El *radio espectral* $\rho(\mathbf{A})$ de una matriz \mathbf{A} se define como

$$\rho(\mathbf{A}) = \max_{\lambda \in \sigma(A)} |\lambda|.$$

Proposición

Sea **A** una matriz $n \times n$. Entonces $\rho(\mathbf{A}) \leq \|\mathbf{A}\|$ para cualquier norma natural.

Radio espectral de la matriz

El conjunto $\sigma(\mathbf{A})$ de todos los eigenvalores distintos de \mathbf{A} se llama el espectro de \mathbf{A} .

El *radio espectral* $\rho(\mathbf{A})$ de una matriz \mathbf{A} se define como

$$\rho(\mathbf{A}) = \max_{\lambda \in \sigma(A)} |\lambda|.$$

Proposición

Sea **A** una matriz $n \times n$. Entonces $\rho(\mathbf{A}) \leq ||\mathbf{A}||$ para cualquier norma natural.

Para todo eigenpar (λ, \mathbf{v}) de \mathbf{A} , con $\|\mathbf{v}\| = 1$, tenemos

$$|\lambda| = |\lambda| ||\boldsymbol{\nu}|| = ||\boldsymbol{A}\boldsymbol{\nu}|| \le ||\boldsymbol{A}||$$

En particular se cumple para $\rho(\mathbf{A})$.

De esta forma, todos los eigenvalores están dentro de una vecindad del origen de radio $\|A\|$.

Círculos de Gershgorin

Círculo de Gershgorin

Si λ es un eigenvalor de una matriz $\mathbf{A} = [a_{ij}]$ de tamaño n, hay un entero $i \in \{1, 2, ..., n\}$ tal que $|\lambda - a_{ii}| \le \sum_{i \neq i}^{n} |a_{ij}|$.

Supongamos que $\mathbf{v} = (v_1, ..., v_n)^{\mathsf{T}}$ es un eigenvector de \mathbf{A} , $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$, y que está escalado de modo que $1 = ||\mathbf{v}||_{\infty} = |v_i|$ para algún índice i. Sea \mathbf{e}_i el vector canónico i-ésimo.

Círculos de Gershgorin

Teorema de Gershgorin

Sea ${\bf A}$ una matriz cuadrada arbitraria. Los eigenvalores λ de ${\bf A}=[\alpha_{ij}]$ están localizados en la unión de n discos definidos por

$$|\lambda - a_{ii}| \le r_i$$
 donde $r_i = \sum_{\substack{j=1 \ j \ne i}}^n |a_{ij}|$ $i = 1, ..., n$.

Círculos de Gershgorin

Teorema de Gershgorin

Sea **A** una matriz cuadrada arbitraria. Los eigenvalores λ de **A** = $[a_{ij}]$ están localizados en la unión de n discos definidos por

$$|\lambda - a_{ii}| \le r_i$$
 donde $r_i = \sum_{\substack{j=1 \ j \ne i}}^n |a_{ij}|$ $i = 1, ..., n$.

Lo que nos dice el teorema es que todos los eigenvalores de \mathbf{A} están contenidos en la unión C_r de los n círculos con centro en a_{ii} y radio r_i .

Como $\sigma(\mathbf{A}^{\mathsf{T}}) = \sigma(\mathbf{A})$, entonces la unión C_c de los círculos definidos por

$$|\lambda - a_{jj}| \le c_j$$
 donde $c_j = \sum_{\substack{i=1 \ i \ne j}}^n |a_{ij}|$ $j = 1, ..., n$.

contienen a los eigenvalores de A.

En resumen, los eigenvalores de **A** están contenidos en $C_r \cap C_c$.

Ejemplo de los círculos de Gershgorin (I)

$$\mathbf{A} = \begin{bmatrix} 5 & 1 & -1 \\ 0 & 6 & 1 \\ 1 & 0 & -5 \end{bmatrix} \implies \|\mathbf{A}\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| = 7.$$

Como $|\lambda| \le \|\boldsymbol{A}\|_{\infty}$, entonces todos los eigenvalores de \boldsymbol{A} están contenidos en un círculo centrado en 0 y radio 7. Con los círculos, se tiene

Ejemplo de los círculos de Gershgorin (II)

Si calculamos la intersección, tenemos

Para la matriz dada se tiene que

$$\sigma(\mathbf{A}) = \{5, (1 \pm 5\sqrt{5})/2\} \approx \{5, 6.0902, -5.0902\}.$$

Método de la potencia

• Este método puede encontrar el eigenvalor más grande en valor absoluto y su correspondiente eigenvector.

El algoritmo es el siguiente:

Método de la potencia

Dado un vector inicial \mathbf{v}^0 y fijando k=0, repetimos hasta convergencia los siguientes pasos:

$$\mathbf{y}^{k+1} = \mathbf{A}\mathbf{v}^{k}$$

$$\mathbf{v}^{k+1} = \mathbf{y}^{k+1}/\|\mathbf{y}^{k+1}\|$$

$$\lambda_{k+1} = (\mathbf{v}^{k+1})^{\mathsf{T}}\mathbf{A}\mathbf{v}^{k+1}$$

$$k = k+1$$

El criterio de convergencia puede ser que el residual sea menor que una cierta tolerancia, $\|\mathbf{y}^k - \lambda_k \mathbf{v}^k\| < \epsilon$.

Ejemplo A

Usando la matriz **A** del ejemplo anterior e inicializando con

$$\mathbf{v}^0 = (1, 1, 1)^{\mathsf{T}}$$

se obtiene el valor 6.090170 en 103 iteraciones con $\|\mathbf{A}\mathbf{v} - \lambda\mathbf{v}\| \approx 6.28 \times 10^{-8}$.

Ejemplo B

$$\mathbf{A} = \left[\begin{array}{cccccccc} 5.0 & -0.10 & 0.9 & 1.00 & 0.40 \\ -0.5 & 1.45 & -0.05 & 0.00 & 0.25 \\ 0.2 & 0.05 & 1.13 & 0.10 & 0.35 \\ 1.6 & -0.25 & 0.5 & 1.00 & 0.30 \\ 1.4 & 0.40 & 0.2 & 0.25 & -0.80 \end{array} \right]$$

$$\lambda = 5.547928$$

$$\lambda = 5.547928$$
, $||Av - \lambda v|| \approx 1.04 \times 10^{-8}$ en 15 iteraciones

Ejemplo C

$$\lambda = 5.0$$
, $\|\mathbf{A}\mathbf{v} - \lambda\mathbf{v}\| \approx 4.62 \times 10^{-8}$ en 949 iteraciones

Comparación de los ejemplos B y C

Ejemplo D (I)

$$\mathbf{A} = \left[\begin{array}{cccccccc} 4.5986464 & -0.6556048 & 2.7087409 & 0.1380393 & 0.3692491 \\ -0.3513251 & -5.0234452 & 0.0894931 & -1.2194504 & -1.2172484 \\ 1.1110924 & 0.0219267 & -4.3105139 & -0.3201127 & -1.4125578 \\ 0.6010043 & 2.3446976 & -2.5872029 & 4.6477059 & -0.1220816 \\ -0.0718948 & -1.8765426 & 0.7680468 & -0.1796849 & 4.4876068 \end{array} \right]$$

Para k > 1000 iteraciones tenemos que

Ejemplo D (II)

$$\lambda_k \approx \begin{cases} 0.023417 & k \text{ par} \\ 0.018916 & k \text{ impar} \end{cases}$$

$$\|\mathbf{A}\mathbf{v} - \lambda\mathbf{v}\|_2 \approx \begin{cases} 5.5630 & k \text{ par} \\ 4.4939 & k \text{ impar} \end{cases}$$

Ejemplo D (III)

Los eigenvalores de las matrices de los ejemplos anteriores se muestran en la siguiente tabla:

Ejemplo Eigenvalores:

```
B -0.9419583, 0.6370984, 1.0520125, 1.4849196, 5.5479279
C -4.9000000, -4.5000000, 4.4000000, 4.6000000, 5.0000000
D -5.0000000, -4.6000000, 4.4000000, 4.6000000, 5.0000000
```

Convergencia del método de la potencia (I)

Supongamos que $(\lambda_i, \mathbf{v}_i)$ es un eigenpar de $\mathbf{A} \in \mathbb{R}^{n \times n}$ con

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots |\lambda_n|$$
.

Dado ${m x}^0 \in \mathbb{R}^n$, se debe tener que ${m x}^0 = \sum_{i=1}^n \beta_i {m v}_i$. Así

$$\mathbf{A}^k \mathbf{x}^{(0)} = \sum_{i=1}^n \beta_i \lambda_i^k \mathbf{v}_i.$$

$$\frac{1}{\lambda_1^k} \mathbf{A}^k \mathbf{x}^{(0)} = \beta_1 \mathbf{v}_1 + \sum_{i=2}^n \beta_i \frac{\lambda_i^k}{\lambda_1^k} \mathbf{v}_i.$$

Como $|\lambda_1| > |\lambda_i|$ para i = 2, ..., n, tenemos que

$$\frac{\lambda_i^k}{\lambda_1^k} \longrightarrow 0 \quad \text{si} \quad k \longrightarrow \infty$$

Entonces

$$\frac{1}{\lambda_1^k} \mathbf{A}^k \mathbf{x}^{(0)} = \beta_1 \mathbf{v}_1 + \epsilon^{(k)} \quad \text{con } \quad \epsilon^{(k)} \longrightarrow 0 \quad \text{si} \quad k \longrightarrow \infty$$

Convergencia del método de la potencia (II)

Sea \boldsymbol{u} un vector tal que $\boldsymbol{u}^{\mathsf{T}}\boldsymbol{v}_1 \neq 0$. Entonces

$$\frac{\mathbf{u}^{\top} \mathbf{A}^{k+1} \mathbf{x}^{(0)}}{\mathbf{u}^{\top} \mathbf{A}^{k} \mathbf{x}^{(0)}} = \frac{\lambda_{1}^{k+1} (\beta_{1} \mathbf{u}^{\top} \mathbf{v}_{1} + \mathbf{u}^{\top} \boldsymbol{\epsilon}^{(k+1)})}{\lambda_{1}^{k} (\beta_{1} \mathbf{u}^{\top} \mathbf{v}_{1} + \mathbf{u}^{\top} \boldsymbol{\epsilon}^{(k)})} \longrightarrow \lambda_{1} \quad \text{si} \quad k \longrightarrow \infty$$

Puesto que $\mathbf{A}\mathbf{v}_1 = \lambda_1 \mathbf{v}_1$, entonces

$$\lambda_1 = \frac{\mathbf{v}_1^\mathsf{T} \mathbf{A} \mathbf{v}_1}{\mathbf{v}_1^\mathsf{T} \mathbf{v}_1},$$

una elección natural para el vector u es

$$\boldsymbol{u} = \boldsymbol{A}^k \boldsymbol{x}^{(0)}$$

De esta forma tenemos que

$$\frac{(\boldsymbol{A}^k \boldsymbol{x}^{(0)})^\top \boldsymbol{A}^{k+1} \boldsymbol{x}^{(0)}}{(\boldsymbol{A}^k \boldsymbol{x}^{(0)})^\top \boldsymbol{A}^k \boldsymbol{x}^{(0)}} = \frac{(\boldsymbol{y}^{(k)})^\top \boldsymbol{A} \boldsymbol{y}^{(k)}}{(\boldsymbol{y}^{(k)})^\top \boldsymbol{y}^{(k)}} = \frac{(\boldsymbol{y}^{(k)})^\top \boldsymbol{A} \boldsymbol{y}^{(k)}}{\|\boldsymbol{y}^{(k)}\|^2} = \left(\frac{\boldsymbol{y}^{(k)}}{\|\boldsymbol{y}^{(k)}\|}\right)^\top \boldsymbol{A} \frac{\boldsymbol{y}^{(k)}}{\|\boldsymbol{y}^{(k)}\|}$$

Convergencia del método de la potencia (III)

$$\frac{(\boldsymbol{A}^{k}\boldsymbol{x}^{(0)})^{\top}\boldsymbol{A}^{k+1}\boldsymbol{x}^{(0)}}{(\boldsymbol{A}^{k}\boldsymbol{x}^{(0)})^{\top}\boldsymbol{A}^{k}\boldsymbol{x}^{(0)}} = (\boldsymbol{v}^{(k)})^{\top}\boldsymbol{A}\boldsymbol{v}^{(k)}$$

Las suposiciones importantes para que método converja son

• Hay un eigenvalor dominante, es decir,

$$|\lambda_1| > |\lambda_i|$$
 para $i = 2, ..., n$.

• El vector inicial $\mathbf{x}^{(0)}$ no puede ser ortogonal a \mathbf{v}_1 .

Hay que notar otro aspecto importante para el método de la potencia, que se ilustra en el siguiente ejemplo.

Ejemplo E (I)

$$\mathbf{A} = \left[\begin{array}{ccccc} 0.3 & -0.2 & -0.5 & -0.7 & -0.3 \\ 0.1 & -0.3 & 0.4 & 0.4 & -0.3 \\ -2.9 & -0.6 & -1.1 & -0.9 & 1.0 \\ -1.4 & 0.0 & 0.6 & -0.5 & -0.3 \\ 0.8 & -1.5 & -0.6 & 1.2 & -0.7 \end{array} \right]$$

Ejemplo E (II)

$$\|\mathbf{A}\mathbf{v} - \lambda\mathbf{v}\| \approx 1.1$$
 en 1000 iteraciones

Los eigenvalores del matriz anterior son

$$1.317638$$
, $-1.047000 + 0.914528i$, $-1.047000 - 0.914528i$, -1.248337 , -0.275302

Ejemplo F (I)

Ejemplo F (II)

 $\lambda=1.817638, \qquad \|{\it Av}-\lambda{\it v}\|\approx 4.68\times 10^{-8} \quad {\rm en~37~iteraciones}$ Los eigenvalores del matriz anterior son

$$1.817638$$
, $-0.547000 + 0.914528i$, $-0.547000 + -0.914528i$
 -0.748337 , 0.224698

Ventajas y desventajas del método de la potencia (I)

- La principal ventaja del método es que sólo requiere productos matriz por vector para calcular el eigenpar $(\lambda_1, \mathbf{v}_1)$.
- La desventaja es que sólo permite estimar un eigenpar y sólo si $|\lambda_1| > |\lambda_2|$. Además, la velocidad de convergencia depende de que tan cerca está el valor $\left|\frac{\lambda_1}{\lambda_2}\right|$ de 1.