RWorkSheet_Porras#4b

Porras, Christian

2023-11-08

```
#2
for (c in 1:5){
cat(paste0("\"", rep("*",c),"\""),"\n")
## "*"
## "*" "*"
## "*" "*" "*"
## "*" "*" "*" "*"
## "*" "*" "*" "*"
userInput <- as.integer(readline("Enter starting number for Fibonacci sequence: "))</pre>
## Enter starting number for Fibonacci sequence:
if(is.na(userInput | | userInput < 0)) {</pre>
  cat("Please Enter Something")
} else {
x <- userInput
y <- 0
cat("Fibonacci sequence starting from", userinpuT, ":\n")
repeat {
 next_num <- x + y</pre>
  if (next_num > 500){
    break
  cat(next_num, " ")
  x <- y
 y <- next_num
}
}
## Please Enter Something
```

HouseHold <- data.frame(</pre>

```
 \text{Height} = \texttt{c}(66.0, 68.0, 64.5, 65.0, 70.0, 64.0, 70.0, 71.0, 72.0, 64.0, 74.5, 67.0, 71.0, 71.0, 77.0, 72.0, 59.0, 62.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0, 70.0
      )
write.csv(HouseHold, file = "HouseHold.csv", row.names = FALSE)
#4.a
print(HouseHold[1:6,])
             ShoeSize Height Gender
## 1
                           6.5
                                          66.0
## 2
                           9.0
                                           68.0
                                                                        F
## 3
                                          64.5
                                                                        F
                           8.5
                                                                        F
## 4
                           8.5
                                          65.0
## 5
                         10.5
                                          70.0
                                                                        Μ
## 6
                           7.0
                                          64.0
                                                                        F
prevData <- read.csv("HouseHold.csv")</pre>
head(prevData)
              ShoeSize Height Gender
##
## 1
                           6.5
                                          66.0
                                                                        F
## 2
                            9.0
                                            68.0
                                                                        F
## 3
                           8.5
                                         64.5
                                                                        F
                                                                        F
## 4
                           8.5
                                         65.0
## 5
                         10.5
                                           70.0
                                                                        Μ
## 6
                           7.0
                                           64.0
                                                                        F
males <- prevData[prevData$Gender == "M",]</pre>
males
##
                ShoeSize Height Gender
## 5
                            10.5
                                              70.0
## 9
                            13.0
                                              72.0
                                                                           Μ
## 11
                           10.5
                                              74.5
                                                                           Μ
## 13
                           12.0
                                           71.0
                                                                           М
## 14
                           10.5
                                              71.0
                                                                           М
                           13.0
                                              77.0
## 15
                                                                           М
## 16
                           11.5
                                              72.0
                                                                           Μ
                           10.0
## 19
                                             72.0
                                                                           М
## 22
                            8.5
                                               67.0
                                                                           М
## 23
                            10.5
                                               73.0
                                                                           М
## 25
                           10.5
                                              72.0
                                                                           М
## 26
                            11.0
                                              70.0
                                                                           Μ
## 27
                             9.0
                                               69.0
                                                                           Μ
                            13.0
                                               70.0
## 28
                                                                           М
females <- prevData[prevData$Gender == "F",]</pre>
females
##
                 ShoeSize Height Gender
## 1
                                               66.0
                              6.5
                                                                           F
## 2
                              9.0
                                               68.0
                                                                           F
## 3
                              8.5
                                               64.5
                                                                           F
## 4
                              8.5
                                               65.0
                                                                           F
```

```
7.0
                  64.0
## 6
                  70.0
## 7
            9.5
                             F
            9.0
                  71.0
## 8
## 10
            7.5
                  64.0
                             F
## 12
            8.5
                  67.0
                             F
## 17
            8.5
                  59.0
                             F
## 18
            5.0
                  62.0
## 20
            6.5
                  66.0
## 21
            7.5
                  64.0
## 24
            8.5
                  69.0
numofMale <- nrow(males)</pre>
numofMale
## [1] 14
numofFem <- nrow(females)</pre>
numofFem
```

[1] 14

Number of Males and Females


```
#5. The monthly income of Dela Cruz family was spent on the following:
# A. Create a piechart that will include labels in percentage.Add some colors and title of the chart. W

spending_data <- data.frame(
   Category = c("Food", "Electricity", "Savings", "Miscellaneous"),
   Value = c(60, 10, 5, 25)
)

spending_data$Percentage <- spending_data$Value / sum(spending_data$Value) * 100

colors <- c("blue", "lightgreen", "red", "orange")

pie(spending_data$Value,
   labels = paste(spending_data$Category, "(",spending_data$Percentage,"%)"),
   col = colors,
   main = "Monthly Income Spending of Dela Cruz Family")

legend("topright", spending_data$Category, fill = colors)</pre>
```

Monthly Income Spending of Dela Cruz Family


```
data(iris)
```

#A. Check for the structure of the dataset using the str() function. Describe what you have seen in the str(iris)

```
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 1 ...
```

-The dataset provides information on 150 different iris flowers, including their sepal and petal length

 ${\it \# B. Create \ an \ R \ object \ that \ will \ contain \ the \ mean \ of \ the \ sepal.length, \ sepal.width, petal.length, and \ petal.length, \ peta$

```
meanOfFlowerS <- colMeans(iris[,1:4])
meanOfFlowerS

## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 5.843333 3.057333 3.758000 1.199333

# C. Create a pie chart for the Species distribution. Add title, legends, and colors. Write the R scrip

specieS <- table(iris$Species)
nameOfspecieS <- c("Setosa", "Versicolor", "Virginica")

pie(specieS,
    labels = nameOfspecieS,
    col = c("red", "white", "cyan"),
    main = "Species Distribution In Iris Dataset")

legend("topleft", legend = levels(iris$Species), fill = c("red", "white", "cyan"),)</pre>
```

Species Distribution In Iris Dataset

#D. Subset the species into setosa, versicolor, and virginica. Write the R scripts and show the last si iris

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa

	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
##	36	5.0	3.2	1.2	0.2	setosa
##	37	5.5	3.5	1.3	0.2	setosa
##	38	4.9	3.6	1.4	0.1	setosa
##	39	4.4	3.0	1.3	0.2	setosa
##	40	5.1	3.4	1.5	0.2	setosa
##	41	5.0	3.5	1.3	0.3	setosa
##	42	4.5	2.3	1.3	0.3	setosa
##	43	4.4	3.2	1.3	0.2	setosa
##	44	5.0	3.5	1.6	0.6	setosa
##	45	5.1	3.8	1.9	0.4	setosa
##	46	4.8	3.0	1.4	0.3	setosa
##	47	5.1	3.8	1.6	0.2	setosa
##	48	4.6	3.2	1.4	0.2	setosa
##	49	5.3	3.7	1.5	0.2	setosa
##	50	5.0	3.3	1.4	0.2	setosa
##		7.0	3.2	4.7	1.4 vers	
##		6.4	3.2	4.5	1.5 vers	
##		6.9	3.1	4.9	1.5 vers	
	54	5.5	2.3	4.0	1.3 vers	
	55	6.5	2.8	4.6	1.5 vers	
	56	5.7	2.8	4.5	1.3 vers	
	57	6.3	3.3	4.7	1.6 vers	
	58	4.9	2.4	3.3	1.0 vers	
	59	6.6	2.9	4.6	1.3 vers	
##	60	5.2	2.7	3.9	1.4 vers	
##	61	5.0	2.0	3.5	1.4 vers	
##	62	5.9	3.0	4.2	1.5 vers	
##	63	6.0	2.2	4.2	1.0 vers	
##	64	6.1	2.9		1.0 vers	
		5.6		4.7		
	65 66	6.7	2.9	3.6	1.3 vers 1.4 vers	
			3.1	4.4		
	67	5.6	3.0	4.5	1.5 vers	
##	UO	5.8	2.7	4.1	1.0 vers	SICOIOL

## 69	6.2	2.2	4.5	1.5 versicolor
## 70	5.6	2.5	3.9	1.1 versicolor
## 71	5.9	3.2	4.8	1.8 versicolor
## 72	6.1	2.8	4.0	1.3 versicolor
## 73	6.3	2.5	4.9	1.5 versicolor
## 74	6.1	2.8	4.7	1.2 versicolor
## 75	6.4	2.9	4.3	1.3 versicolor
## 76	6.6	3.0	4.4	1.4 versicolor
## 77	6.8	2.8	4.8	1.4 versicolor
## 78	6.7	3.0	5.0	1.7 versicolor
## 79	6.0	2.9	4.5	1.5 versicolor
## 80	5.7	2.6	3.5	1.0 versicolor
## 81	5.5	2.4	3.8	1.1 versicolor
## 82	5.5	2.4	3.7	1.0 versicolor
## 83	5.8	2.7	3.9	1.2 versicolor
## 84	6.0	2.7	5.1	1.6 versicolor
## 85	5.4	3.0	4.5	1.5 versicolor
## 86	6.0	3.4	4.5	1.6 versicolor
## 87	6.7	3.1	4.7	1.5 versicolor
## 88	6.3	2.3	4.4	1.3 versicolor
## 89	5.6	3.0	4.1	1.3 versicolor
## 90	5.5	2.5	4.0	1.3 versicolor
## 91	5.5	2.6	4.4	1.2 versicolor
## 92	6.1	3.0	4.6	1.4 versicolor
## 93	5.8	2.6	4.0	1.2 versicolor
## 94	5.0	2.3	3.3	1.0 versicolor
## 95	5.6	2.7	4.2	1.3 versicolor
## 96	5.7	3.0	4.2	1.2 versicolor
## 97	5.7	2.9	4.2	1.3 versicolor
## 98	6.2	2.9	4.3	1.3 versicolor
## 99	5.1	2.5	3.0	1.1 versicolor
## 100	5.7	2.8	4.1	1.3 versicolor
## 101	6.3	3.3	6.0	2.5 virginica
## 102	5.8	2.7	5.1	1.9 virginica
## 103	7.1	3.0	5.9	2.1 virginica
## 104	6.3	2.9	5.6	1.8 virginica
## 105	6.5	3.0	5.8	2.2 virginica
## 106	7.6	3.0	6.6	2.1 virginica
## 107	4.9	2.5	4.5	1.7 virginica
## 108	7.3	2.9	6.3	1.8 virginica
## 109	6.7	2.5	5.8	1.8 virginica
## 110	7.2	3.6	6.1	2.5 virginica
## 111	6.5	3.2	5.1	2.0 virginica
## 112	6.4	2.7	5.3	1.9 virginica
## 113	6.8	3.0	5.5	2.1 virginica
## 114	5.7	2.5	5.0	2.0 virginica
## 115	5.8	2.8	5.1	2.4 virginica
## 116	6.4	3.2	5.3	2.3 virginica
## 117	6.5	3.0	5.5	1.8 virginica
## 118	7.7	3.8	6.7	2.2 virginica
## 119	7.7	2.6	6.9	2.3 virginica
## 119	6.0	2.2	5.0	1.5 virginica
## 120	6.9	3.2	5.7	2.3 virginica
## 121 ## 122	5.6	2.8	4.9	2.0 virginica
π π 144	5.0	2.0	7.3	2.0 VIIgIIIICa

```
## 123
               7.7
                           2.8
                                        6.7
                                                    2.0 virginica
## 124
               6.3
                           2.7
                                        4.9
                                                    1.8 virginica
## 125
               6.7
                           3.3
                                        5.7
                                                    2.1 virginica
## 126
                           3.2
               7.2
                                        6.0
                                                    1.8 virginica
## 127
               6.2
                           2.8
                                        4.8
                                                    1.8 virginica
## 128
               6.1
                           3.0
                                        4.9
                                                    1.8 virginica
## 129
               6.4
                           2.8
                                       5.6
                                                    2.1 virginica
## 130
               7.2
                                                    1.6 virginica
                           3.0
                                       5.8
## 131
               7.4
                           2.8
                                        6.1
                                                    1.9 virginica
## 132
               7.9
                           3.8
                                        6.4
                                                    2.0 virginica
## 133
               6.4
                           2.8
                                        5.6
                                                    2.2 virginica
## 134
               6.3
                           2.8
                                        5.1
                                                    1.5 virginica
## 135
               6.1
                           2.6
                                        5.6
                                                    1.4 virginica
## 136
               7.7
                           3.0
                                        6.1
                                                    2.3 virginica
## 137
               6.3
                           3.4
                                       5.6
                                                    2.4 virginica
## 138
               6.4
                           3.1
                                       5.5
                                                    1.8 virginica
## 139
               6.0
                           3.0
                                       4.8
                                                   1.8 virginica
## 140
               6.9
                           3.1
                                       5.4
                                                    2.1 virginica
## 141
               6.7
                           3.1
                                       5.6
                                                    2.4 virginica
## 142
               6.9
                           3.1
                                        5.1
                                                    2.3 virginica
## 143
               5.8
                           2.7
                                       5.1
                                                    1.9 virginica
## 144
               6.8
                           3.2
                                       5.9
                                                    2.3 virginica
                                       5.7
## 145
               6.7
                           3.3
                                                   2.5 virginica
## 146
               6.7
                           3.0
                                                   2.3 virginica
                                       5.2
## 147
               6.3
                           2.5
                                       5.0
                                                   1.9 virginica
                                                    2.0 virginica
## 148
               6.5
                           3.0
                                       5.2
## 149
               6.2
                           3.4
                                        5.4
                                                    2.3 virginica
## 150
               5.9
                           3.0
                                        5.1
                                                    1.8 virginica
SubseTSetosa <- iris[iris$Species == "Setosa",]</pre>
SubseTSetosa
## [1] Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <0 rows> (or 0-length row.names)
SubseTVersicolor <- iris[iris$Species == "Versicolor",]</pre>
SubseTVersicolor
## [1] Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <0 rows> (or 0-length row.names)
SubseTVirginica <- iris[iris$Species == "Virginica",]</pre>
SubseTVirginica
## [1] Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <0 rows> (or 0-length row.names)
tail(SubseTSetosa)
## [1] Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <0 rows> (or 0-length row.names)
tail(SubseTVersicolor)
## [1] Sepal.Length Sepal.Width Petal.Length Petal.Width Species
```

<0 rows> (or 0-length row.names)

Iris Dataset

#F. Interpret the result.

#The Scatterplot enables us to observe the variations in sepal length and width among various species of the set of

```
## # A tibble: 3,150 x 5
                                                                          feedback
##
                                                   verified reviews
     rating date
                                variation
##
      <dbl> <dttm>
                                <chr>
                                                    <chr>
                                                                             <dbl>
          5 2018-07-31 00:00:00 Charcoal Fabric
##
                                                    Love my Echo!
                                                                                 1
          5 2018-07-31 00:00:00 Charcoal Fabric
##
                                                   Loved it!
                                                                                 1
## 3
          4 2018-07-31 00:00:00 Walnut Finish Sometimes while play~
                                                                                 1
          5 2018-07-31 00:00:00 Charcoal Fabric
                                                   I have had a lot of ~
                                                                                 1
                                                  Music
          5 2018-07-31 00:00:00 Charcoal Fabric
## 5
                                                                                 1
## 6
          5 2018-07-31 00:00:00 Heather Gray Fabric I received the echo ~
                                                                                 1
## 7
          3 2018-07-31 00:00:00 Sandstone Fabric Without having a cel~
                                                                                 1
## 8
          5 2018-07-31 00:00:00 Charcoal Fabric
                                                    I think this is the ~
                                                                                 1
          5 2018-07-30 00:00:00 Heather Gray Fabric looks great
## 9
                                                                                 1
          5 2018-07-30 00:00:00 Heather Gray Fabric Love it! I've listen~
## 10
                                                                                 1
## # i 3,140 more rows
#A. Rename the white and black variants by using qsub() function.
Alexa_File$variation <- gsub("White Dot", "WhiteDot", Alexa_File$variation)
Alexa_File$variation <- gsub("White Plus", "WhitePlus", Alexa_File$variation)
Alexa_File$variation <- gsub("White Show", "WhiteShow", Alexa_File$variation)
Alexa_File$variation <- gsub("White Spot", "WhiteSpot", Alexa_File$variation)
Alexa File$variation <- gsub("Black Dot", "BlackDot", Alexa File$variation)
Alexa_File$variation <- gsub("Black Plus", "BlackPlus", Alexa_File$variation)
Alexa_File$variation <- gsub("Black Show", "BlackShow", Alexa_File$variation)
Alexa_File$variation <- gsub("Black Spot", "BlackSpot", Alexa_File$variation)
Alexa_File
## # A tibble: 3,150 x 5
                                                                          feedback
##
     rating date
                                variation
                                                    verified_reviews
##
      <dbl> <dttm>
                                <chr>
                                                    <chr>
                                                                             <dbl>
## 1
          5 2018-07-31 00:00:00 Charcoal Fabric
                                                    Love my Echo!
                                                                                 1
          5 2018-07-31 00:00:00 Charcoal Fabric
## 2
                                                                                 1
                                                    Loved it!
## 3
          4 2018-07-31 00:00:00 Walnut Finish
                                                    Sometimes while play~
                                                                                 1
## 4
          5 2018-07-31 00:00:00 Charcoal Fabric
                                                   I have had a lot of ~
                                                                                 1
          5 2018-07-31 00:00:00 Charcoal Fabric
## 5
                                                    Music
                                                                                 1
## 6
          5 2018-07-31 00:00:00 Heather Gray Fabric I received the echo \sim
                                                                                 1
## 7
          3 2018-07-31 00:00:00 Sandstone Fabric Without having a cel~
          5 2018-07-31 00:00:00 Charcoal Fabric
                                                    I think this is the \sim
## 8
                                                                                 1
          5 2018-07-30 00:00:00 Heather Gray Fabric looks great
                                                                                 1
          5 2018-07-30 00:00:00 Heather Gray Fabric Love it! I've listen~
## 10
                                                                                 1
## # i 3,140 more rows
#B. Get the total number of each variations and save it into another object. Save the object as variati
install.packages("dplyr")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
library("dplyr")
## Attaching package: 'dplyr'
```

```
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
variations_Total <- Alexa_File %>%
  count(Alexa_File$variation)
variations_Total
## # A tibble: 16 x 2
      `Alexa_File$variation`
##
                                       n
##
      <chr>
                                   <int>
## 1 Black
                                     261
## 2 BlackDot
                                     516
## 3 BlackPlus
                                     270
## 4 BlackShow
                                     265
## 5 BlackSpot
                                     241
## 6 Charcoal Fabric
                                     430
## 7 Configuration: Fire TV Stick
                                     350
## 8 Heather Gray Fabric
                                     157
## 9 Oak Finish
                                      14
## 10 Sandstone Fabric
                                      90
## 11 Walnut Finish
                                       9
## 12 White
                                      91
## 13 WhiteDot
                                     184
## 14 WhitePlus
                                      78
## 15 WhiteShow
                                      85
## 16 WhiteSpot
                                     109
save(variations_Total, file = "VariaTionS.RData")
# C. From the variations.RData, create a barplot(). Complete the details of the chart which include the
load ("VariaTionS.RData")
variations_Total
## # A tibble: 16 x 2
##
      `Alexa_File$variation`
                                       n
##
      <chr>>
                                   <int>
## 1 Black
                                     261
## 2 BlackDot
                                     516
## 3 BlackPlus
                                     270
## 4 BlackShow
                                     265
## 5 BlackSpot
                                     241
## 6 Charcoal Fabric
                                     430
## 7 Configuration: Fire TV Stick
                                     350
```

157

14

90

9

91

184

8 Heather Gray Fabric

10 Sandstone Fabric

11 Walnut Finish

9 Oak Finish

12 White

13 WhiteDot

```
78
## 14 WhitePlus
## 15 WhiteShow
                                        85
## 16 WhiteSpot
                                       109
varNames <- variations_Total$'Alexa_File$variation'</pre>
totalPlot <- barplot(variations_Total$n,</pre>
                      names.arg = varNames,
                      main = "Total Number Of Each Variations",
                      xlab = "Name Of Variations",
                      ylab = "Total Of Each Variations",
                      col = 1:16,
                      space = 0.1,
                      cex.names = 0.5,
                      las = 2)
```

Total Number Of Each Variations


```
#D. Create a barplot() for the black and white variations. Plot it in 1 frame, side by side. Complete t
blackVars <- variations_Total[variations_Total$^Alexa_File$variation^ %in% c("Black", "BlackPlus" , "Bl
whiteVars <- variations_Total[variations_Total$^Alexa_File$variation^ %in% c("White", "WhiteDot", "Whit
par(mfrow = c(1,2))
blackVars
## # A tibble: 5 x 2</pre>
```

##

##

<chr>>

`Alexa_File\$variation`

<int>

```
## 1 Black
                               261
## 2 BlackDot
                               516
## 3 BlackPlus
                               270
## 4 BlackShow
                               265
## 5 BlackSpot
                               241
blackPlot <- barplot(height = blackVars$n,</pre>
        names.arg = blackVars$`Alexa_File$variation`,
        col = c("lightblue"),
        main = "Black Variations",
        xlab = "Variation",
        ylab = "Count",
        border = "red",
        space = 0.5,
        cex.names = 0.4)
whitePlot <- barplot(height = whiteVars$n,</pre>
        names.arg = whiteVars$`Alexa_File$variation`,
        col = c("blue"),
        main = "White Variations",
        xlab = "Variation",
        ylab = "Count",
        border = "red",
        space = 0.5,
        cex.names = 0.4)
```

Black Variations

White Variations

