NOMBRES RÉELS

Nombres algébriques, nombres de Liouville

1. 1) Une propriété d'approximation diophantienne. Soit α un nombre algébrique réel non rationnel, racine d'un polynôme irréductible à coefficients entiers P, de degré d.

a) Montrer que, pour tout nombre rationnel $x = \frac{p}{a}$ on a $|P(x)| \ge \frac{1}{a^d}$.

- b) Montrer qu'il existe un réel C>0, ne dépendant que de α , tel que, pour tout nombre rationnel $x=\frac{p}{q}$ on ait $|x-\alpha|\geq \frac{C}{q^d}$. (Se ramener au cas où $x\in [\alpha-1,\alpha+1]$, et utiliser l'inégalité des accroissements finis pour $P(x)-P(\alpha)$.)
- 2) Soit $\varepsilon = (\varepsilon_n)$, $n \ge 1$, une suite à valeurs dans $\{-1,1\}$. Montrer que le nombre

$$x_{\varepsilon} = \sum_{n=1}^{+\infty} \frac{\varepsilon_n}{2^{n!}}$$

est transcendant. Retrouver le fait que le cardinal de l'ensemble des nombres transcendants est celui de ${\bf R}$.

Fractions continues

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres entiers strictement positifs. A celle-ci, on associe la suite de fractions définie récursivement par

$$[a_0,\ldots,a_n]=a_0+\frac{1}{[a_1,\ldots,a_n]}.$$

Il s'agit en premier lieu de bien comprendre le sens de cette écriture : on définit ici par récurrence une suite de fonctions sur \mathbf{N}^{*n} . La même définition donne une suite de fonctions sur $]0,+\infty[^n]$ que l'on note usuellement sous la forme parlante :

$$[a_0, \dots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}.$$

Cette notation imagée ne doit pas faire croire qu'une relation comme $(1)[a_0,\ldots,a_n]=[a_0,\ldots,a_{n-1}+\frac{1}{a_n}]$ est immédiate, tant s'en faut.

- 1) Prouver la relation (1) en s'appuyant sur la définition, à l'exclusion de tout autre argument.
- 2) Montrer que, pour tout $n \ge 2$, les suites définies; par la donnnée de $p_0 = a_0$, $q_0 = 1$, $p_1 = a_0 a_1 + 1$, $q_1 = a_1$ et les relations de récurrence

$$p_n = a_n p_{n-1} + p_{n-2}, \quad q_n = a_n q_{n-1} + q_{n-2}$$

$$\forall n \in \mathbb{N}, \quad [a_0, \ldots, a_n] = \frac{p_n}{q_n}.$$

3) Dans cette question, on note r_n le nombre rationnel $r_n = [a_0, \ldots, a_n]$ et l'on écrit $r_n = \frac{p_n}{q_n}$, où p_n et q_n sont deux entiers positifs donnés par les relations ci-dessus. Montrer que, pour tout $n \in \mathbb{N}$,

$$p_n q_{n+1} - p_{n+1} q_n = (-1)^{n+1}.$$

Suite de fractions continues attachée à un nombre irrationnel θ .

4) Soit θ un nombre irrationnel > 1 et $a_0 = \lfloor \theta \rfloor$ (partie entière de θ). On définit correctement par récurrence deux suites (a_n) , (θ_n) en écrivant : $\theta_0 = \theta$, $\theta = a_0 + \frac{1}{\theta_1}$, $a_1 = \lfloor \theta_1 \rfloor$ et plus généralement $\lfloor \theta_n \rfloor = a_n$ et $\theta_n = a_n + \frac{1}{\theta_{n+1}}$. La suite r_n de fractions continues attachée à (a_n) (cf 2) ci-avant) est appelée traditionnellement suite des réduites de θ .

a) Prouver que, pour tout $n \in \mathbb{N}$, $\theta = [a_0, \dots, a_n, \theta_{n+1}]$.

b) En déduire que θ est toujours compris entre r_n et r_{n+1} , préciser ce résultat suivant la parité de n.

c) Montrer que, pour tout $n \in \mathbb{N}$,

$$|\theta - r_n| < \frac{1}{q_n q_{n+1}} < \frac{1}{q_n^2}$$

Application. Montrer que $\theta N - N$ est dense dans R.

- d) Prouver que la suite $q_n|\theta-r_n|$ décroît.
- 5) a) Les notations restent celle de la question 4). Montrer que, parmi trois réduites consécutives de θ , l'une au moins vérifie

$$|\theta - \frac{p}{q}| < \frac{1}{\sqrt{5}q^2}.$$

(Notant $r_{n+i} = \frac{p_{n+i}}{q_{n+i}}$ les réduites en question, i=0,1,2, prouver en raisonnant par l'absurde que $\lambda = \frac{q_{n+1}}{q_n}$ et $\mu = \frac{q_{n+2}}{q_{n+1}}$ sont strictement inférieurs à $(1+\sqrt{5})/2$ et aboutir à une contradiction grâce à la relation de récurrence.)

Vérifier que $\sqrt{5}$ est la meilleure constante possible.

$$|q_{m}\theta - P_{m}| - |q_{m}\theta - P_{m+1}|$$

 $|q_{m}\theta - P_{m}| - |0_{m+1}q_{m}| + |P_{m}\theta - 0_{m+1}q_{m} - q_{m-1}|$
 $|q_{m}\theta - P_{m}| - |0_{m+1}q_{m}| + |P_{m}\theta - q_{m}| + |P_{m}\theta - q_{m}|$