SEQUENCE LISTING

<110> I	Knutz	on,	Debbie			V		
<120>	POLY	UNSA	TURATED	FATTY ACID	S IN PLANTS			
<130>	мосо	.156	.00US					
<140> <141>	09/3 1999							
<150> <151>	60/0 1998	•						
<160>	22					,		
<170>	Pate	entIr	n versio	on 3.0				
<210><211><212><213>	1 1391 DNA Caen		abditis	elegans				
<400> caagtt	1 tgag	gtat	ggtege	tcattcctca	gaagggttat	ccgccacggc	teeggteace	60
ggcgga	gatg	ttct	tggttga	tgctcgtgca	tctcttgaag	aaaaggaggc	tccacgtgat	120
gtgaat	gcaa	acad	ctaaaca	ggccaccact	gaagagccac	gcatccaatt	accaactgtg	180
gatgct	ttcc	gtc	gtgcaat	tccagcacac	tgtttcgaaa	gagatctcgt	taaatcaatc	240
agatat	ttgg	tgca	aagactt	tgcggcactc	acaattctct	actttgctct	tccagctttt	300
gagtac	tttg	gati	tgtttgg	ttacttggtt	tggaacattt	ttatgggagt	ttttggattc	360
gcgttg	ttcg	tcg	ttggaca	cgattgtctt	catggatcat	tctctgataa	tcagaatctc	420
aatgat	ttca	ttg	gacatat	cgccttctca	ccactcttct	ctccatactt	cccatggcag	480
aaaagt	caca	agc	ttcacca	tgctttcacc	aaccacattg	acaaagatca	tggacacgtg	540
tggatt	cagg	ata	aggattg	ggaagcaatg	ccatcatgga	aaagatggtt	caatccaatt	600
ccatto	tctg	gat	ggcttaa	atggttccca	gtgtacactt	tattcggttt	ctgtgatgga	660
tctcac	ttct	ggc	catactc	ttcactttt	gttcgtaact	ctgaccgtgt	tcaatgtgta	720
atctct	.ggaa	tct	gttgctg	tgtgtgtgca	tatattgctc	taacaattgc	tggatcatat	780
tccaat	tggt	tct	ggtacta	. ttgggttcca	ctttcttct	tcggattgat	gctcgtcatt	840
gttacc	tatt	tgc	aacatgt	. cgatgatgtc	gctgaggtgt	acgaggctga	tgaatggagc	900
ttcgtc	cgtg	gac	aaaccca	aaccatcgat	cgttactatg	gactcggatt	ggacacaacg	960
atgçad	cata	tca	cagacgg	acacgttgcc	catcacttct	tcaacaaaat	cccacattac	1020

catctcatcg	aagcaaccga	aggtgtcaaa	aaggtcttgg	agccgttgtc	cgacacccaa	1080
tacgggtaca	aatctcaagt	gaactacgat	ttctttgccc	gtttcctgtg	gttcaactac	1140
aagctcgact	atctcgttca	caagaccgcc	ggaatcatgc	aattccgaac	aactctcgag	1200
gagaaggcaa	aggccaagta	aaagaatatc	ccgtgccgtt	ctagagtaca	acaacaactt	1260
ctgcgttttc	accggttttg	ctctaattgc	aatttttctt	tgttctatat	atatttttt	1320
gctttttaat	tttattctct	ctaaaaaact	tctacttttc	agtgcgttga	atgcataaag	1380
ccataactct	t					1391

<210> 2

<211> 402

<212> PRT

<213> Caenorhabditis elegans

<400> 2

Met Val Ala His Ser Ser Glu Gly Leu Ser Ala Thr Ala Pro Val Thr
1 5 10 15

Gly Gly Asp Val Leu Val Asp Ala Arg Ala Ser Leu Glu Glu Lys Glu 20 25 30

Ala Pro Arg Asp Val Asn Ala Asn Thr Lys Gln Ala Thr Thr Glu Glu 35 40 45

Pro Arg Ile Gln Leu Pro Thr Val Asp Ala Phe Arg Arg Ala Ile Pro 50 55 60

Ala His Cys Phe Glu Arg Asp Leu Val Lys Ser Ile Arg Tyr Leu Val 65 70 75 80

Gln Asp Phe Ala Ala Leu Thr Ile Leu Tyr Phe Ala Leu Pro Ala Phe 85 90 95

Glu Tyr Phe Gly Leu Phe Gly Tyr Leu Val Trp Asn Ile Phe Met Gly 100 105 110

Val Phe Gly Phe Ala Leu Phe Val Val Gly His Asp Cys Leu His Gly 115 120 125

Ser Phe Ser Asp Asn Gln Asn Leu Asn Asp Phe Ile Gly His Ile Ala 130 135 140

Phe Ser Pro Leu Phe Ser Pro Tyr Phe Pro Trp Gln Lys Ser His Lys 145 150 155 160

Leu His His Ala Phe Thr Asn His Ile Asp Lys Asp His Gly His Val

Trp Ile Gln Asp Lys Asp Trp Glu Ala Met Pro Ser Trp Lys Arg Trp

			180					185					190		
Phe	Asn	Pro 195	Ile	Pro	Phe	Ser	Gly 200	Trp	Leu	Lys	Trp	Phe 205	Pro	Val	Tyr
Thr	Leu 210	Phe	Gly	Phe	Cys	Asp 215	Gly	Ser	His	Phe	Trp 220	Pro	Tyr	Ser	Ser
Leu 225	Phe	Val	Ārg	Asn	Ser 230	Asp	Arg	Val	Gln	Cys 235	Val	Ile	Ser	Gly	Ile 240
Cys	Суѕ	Cys	Val	Cys 245	Ala	Tyr	Ile	Ala	Leu 250	Thr	Ile	Ala	Gly	Ser 255	Tyr
Ser	Asn	Trp	Phe 260	Trp	Tyr	Tyr	Trp	Val 265	Pro	Leu	Ser	Phe	Phe 270	Gly	Leu
Met	Leu	Val 275	Ile	Val	Thr	Tyr	Leu 280	Gln	His	Val	Asp	Asp 285	Val	Ala	Glu
Val	Tyr 290	Glu	Ala	Asp	Glu	Trp 295	Ser	Phe	.Val	Arg	Gly 300	Gln	Thr	Gln	Thr
Ile 305	Asp	Arg	Tyr	Tyr	Gly 310	Leu	Gly	Leu	Asp	Thr 315	Thr	Met	His	His.	Ile 320
Thr	Asp	Gly	His	Val 325	Ala	His	His	Phe	Phe 330	Asn	Lys	Ile	Pro	His 335	Tyr
His	Leu	Ile	Glu 340	Ala	Thr	Glu	Gly	Val 345	Lys	Lys	Val	Leu	Glu 350	Pro	Leu
Ser	Asp	Thr 355	Gln	Tyr	Gly	Tyr	Lys 360	Ser	Gln	Val	Asn	Tyr 365	Asp	Phe	Phe
Ala	Arg 370	Phe	Leu	Trp	Phe	Asn 375	Tyr	Lys	Leu	Asp	Tyr 380	Leu	Val	His	Lys
Thr 385		Gly		Met		Phe	Arg	Thr	Thr	Leu 395	Glu	Glu	Lys	Ala	Lys 400
Ala	Lys														
<21 <21 <21 <21	1> 2>	3 41 DNA synt	heti	c pr	imer										

<210> 4 <211> 38 <212> DNA <213> synthetic primer

cuacuacuac uactgcagac aatggtcgct cattcctcag a

41

<400> caucauc	4 cauc a	augeggeege t	tacttggcc t	ttgcctt			38
<210><211><211><212><213>	5 32 DNA syntl	netic polyl:	inker				
<400> tcgacct	5 tgca :	ggaagettge g	ggccgcggat (cc			32
<210><211><211><212><213>	6 32 DNA synt	hetic polyl	inker				
<400> tcgagg	6 atcc	geggeegeaa	gcttcctgca	aa			32
<210><211><212><212><213>		sica napus			,		
<400>	7 itcaa	acctttattc	accacatttc	actgaaaggc	cacacatcta	gagagagaaa	60
					ggaccagcgc		120
					aagcgcacaa		180
					ggtgaagagt		240
					tctggccatg		300
					ccaaggaacc		360
					ctcagacatt		420
					tccttaccat		480
					aaacgacgag		540
					tcggatgctc		600
					cagaagteet		660
					cgagaggaag		72
					ttatctatcg		78
						atgtggttgg	84
atcca	arcac	agttctcaaa	. quotatyycy	, LLCCLLacat	, caccergey		

acgctgtcac	gtacttgcat	catcatggtc	acgatgagaa	gttgccttgg	tacagaggca	900
aggaatggag	ttatttacgt	ggaggattaa	caactattga	tagagattac	ggaatcttca	960
acaacatcca	tcacgacatt	ggaactcacg	tgatccatca	tcttttccca	caaatccctc	1020
actatcactt	ggtcgatgcc	acgagagcag	ctaaacatgt	gttaggaaga	tactacagag	1080
agccgaagac	gtcaggagca	ataccgattc	acttggtgga	gagtttggtc	gcaagtatta	1140
aaaaagatca	ttacgtcagt	gacactggtg	atattgtctt	ctacgagaca	gatccagatc	1200
tctacgttta	tgcttctgac	aaatctaaaa	tcaattaact	tttcttccta	gctctattag	1260
gaataaacac	tccttctctt	ttacttattt	gtttctgctt	taagtttaaa	atgtactcgt	1320
gaaacctttt	ttttattaat	gtatttacgt	tac			1353

<210> 8

<211> 383

<212> PRT

<213> Brassica napus

<400> 8

Met Val Val Ala Met Asp Gln Arg Ser Asn Val Asn Gly Asp Ser Gly
1 5 10 15

Ala Arg Lys Glu Glu Gly Phe Asp Pro Ser Ala Gln Pro Pro Phe Lys 20 25 30

Ile Gly Asp Ile Arg Ala Ala Ile Pro Lys His Cys Trp Val Lys Ser 35 40 45

Pro Leu Arg Ser Met Ser Tyr Val Thr Arg Asp Ile Phe Ala Val Ala 50 55 60

Ala Leu Ala Met Ala Ala Val Tyr Phe Asp Ser Trp Phe Leu Trp Pro 65 70 75 80

Leu Tyr Trp Val Ala Gln Gly Thr Leu Phe Trp Ala Ile Phe Val Leu 85 90 95

Gly His Asp Cys Gly His Gly Ser Phe Ser Asp Ile Pro Leu Leu Asn 100 105 110

Ser Val Val Gly His Ile Leu His Ser Phe Ile Leu Val Pro Tyr His 115 120 125

Gly Trp Arg Ile Ser His Arg Thr His His Gln Asn His Gly His Val 130 135 140

Glu Asn Asp Glu Ser Trp Val Pro Leu Pro Glu Lys Leu Tyr Lys Asn 145 150 155 160

Leu Pro His Ser Thr Arg Met Leu Arg Tyr Thr Val Pro Leu Pro Met

1	7	r
	. /	L

165

Leu Ala Tyr Pro Ile Tyr Leu Trp Tyr Arg Ser Pro Gly Lys Glu Gly 180 185 190

175

Ser His Phe Asn Pro Tyr Ser Ser Leu Phe Ala Pro Ser Glu Arg Lys 195 200 205

Leu Ile Ala Thr Ser Thr Thr Cys Trp Ser Ile Met Leu Ala Thr Leu 210 215 220

Val Tyr Leu Ser Phe Leu Val Asp Pro Val Thr Val Leu Lys Val Tyr 225 230 235 240

Gly Val Pro Tyr Ile Ile Phe Val Met Trp Leu Asp Ala Val Thr Tyr 245 250 255

Leu His His Gly His Asp Glu Lys Leu Pro Trp Tyr Arg Gly Lys 260 265 270

Glu Trp Ser Tyr Leu Arg Gly Gly Leu Thr Thr Ile Asp Arg Asp Tyr 275 280 285

Gly Ile Phe Asn Asn Ile His His Asp Ile Gly Thr His Val Ile His 290 295 300

His Leu Phe Pro Gln Ile Pro His Tyr His Leu Val Asp Ala Thr Arg 305 310 315 320

Ala Ala Lys His Val Leu Gly Arg Tyr Tyr Arg Glu Pro Lys Thr Ser .325 330 335

Gly Ala Ile Pro Ile His Leu Val Glu Ser Leu Val Ala Ser Ile Lys 340 345 350

Lys Asp His Tyr Val Ser Asp Thr Gly Asp Ile Val Phe Tyr Glu Thr 355 360 365

Asp Pro Asp Leu Tyr Val Tyr Ala Ser Asp Lys Ser Lys Ile Asn 370 375 380

<210> 9

<211> 40

<212> DNA

<213> synthetic primer

<400> 9

cuacuacuac uagageteag egatggttgt tgetatggae

40

<210> 10

<211> 37

<212> DNA

<213> synthetic primer

<400> 10

caucaucauc augaattett aattgatttt agatttg

<210> 11 <211> 1482

<212> DNA

<213> Mortierella alpina

<400> 11 getteeteea gtteateete catttegeea eetgeattet ttaegaeegt taageaagat 60 gggaacggac caaggaaaaa ccttcacctg ggaagagctg gcggcccata acaccaagga 120 cgacctactc ttggccatcc gcggcagggt gtacgatgtc acaaagttct tgagccgcca 180 tectggtgga gtggacaete tectgetegg agetggeega gatgttaete eggtetttga 240 gatgtatcac gcgtttgggg ctgcagatgc cattatgaag aagtactatg tcggtacact 300 ggtctcgaat gagctgccca tcttcccgga gccaacggtg ttccacaaaa ccatcaagac 360 gagagtegag ggetaettta eggateggaa eattgateee aagaatagae eagagatetg 420 gggacgatac gctcttatct ttggatcctt gatcgcttcc tactacgcgc agctctttgt 480 gcctttcgtt gtcgaacgca catggcttca ggtggtgttt gcaatcatca tgggatttgc 540 gtgcgcacaa gtcggactca accetettca tgatgcgtct cacttttcag tgacccacaa 600 660 ccccactgtc tggaagattc tgggagccac gcacgacttt ttcaacggag catcgtacct ggtgtggatg taccaacata tgctcggcca tcacccctac accaacattg ctggagcaga 720 780 tecegaegtg tegaegtetg agecegatgt tegtegtate aageceaace aaaagtggtt tgtcaaccac atcaaccage acatgtttgt teettteetg taeggaetge tggegtteaa 840 900 ggtgcgcatt caggacatca acattttgta ctttgtcaag accaatgacg ctattcgtgt 960 caatcccatc tcgacatggc acactgtgat gttctggggc ggcaaggctt tctttgtctg gtatcgcctg attgttcccc tgcagtatct gcccctgggc aaggtgctgc tcttgttcac 1020 ggtcgcggac atggtgtcgt cttactggct ggcgctgacc ttccaggcga accacgttgt 1080 tgaggaagtt cagtggccgt tgcctgacga gaacgggatc atccaaaagg actgggcagc 1140 tatgcaggtc gagactacgc aggattacgc acacgattcg cacctctgga ccagcatcac 1200 tggcagcttg aactaccagg ctgtgcacca tctgttcccc aacgtgtcgc agcaccatta 1260 tecegatatt etggeeatea teaagaaeae etgeagegag tacaaggtte eatacettgt 1320 caaggatacg ttttggcaag catttgcttc acatttggag cacttgcgtg ttcttggact 1380 ccgtcccaag gaagagtaga agaaaaaaag cgccgaatga agtattgccc cctttttctc 1440 1482 caagaatggc aaaaggagat caagtggaca ttctctatga ag

<210 <211 <212 <213	> 4 > 1	l2 146 PRT Morti	erel	la a	lpin	<i>.</i> a									
<400	l> :	12													
Met 1	Gly	Thr	Asp	Gln 5	Gly	Lys	Thr	Phe	Thr 10	Trp	Glu	Glu	Leu	Ala 15	Ala
His	Asn	Thr	Lys 20	Asp	Asp	Leu	Leu	Leu 25	Ala	Ile	Arg	Gly	Arg 30	Val	Tyr
Asp	Val	Thr 35	Lys	Phe	Leu	Ser	Arg 40	His	Pro	Gly	Gly	Val 45	Asp	Thr	Leu
Leu	Leu 50	Gly	Ala	Gly	Arg	Asp 55	Val	Thr	Pro	Val	Phe 60	Glu	Met	Tyr	His
Ala 65	Phe	Gly	Ala	Ala	Asp 70	Ala	Ile	Met	Lys	Lys 75	Tyr	Tyr	Val	Gly	Thr 80
Leu	Val	Ser	Asn	Glu 85	Leu	Pro	Ile	Phe	Pro 90	Glu	Pro	Thr	Val	Phe 95	His
Lys	Thr	lle	Lys 100	Thr	Arg	Val	Glu	Gly 105		Phe	Thr	Asp	Arg 110	Asn	Ile
Asp	Pro	Lys 115		Arg	Pro	Glu	Ile 120	Trp	Gly	Arg	Tyr	Ala 125	Leu	Ile	Phe
Gly	Se1		Ile	Ala	Ser	Tyr 135		Ala	Gln	Leu	Phe 140	Val	Pro	Phe	Val
Val 145		ı Arg	Thr	Trp	Leu 150	Gln	. Val	Val	. Phe	Ala 155	Ile	lle	. Met	Gly	Phe 160
Ala	Су	s Ala	Gln	Val 165		Leu	Asn	Pro	170		. Asp	Ala	a Ser	His	Phe
Ser	· Va	l Thi	His 180		n Pro	Thr	· Val	. Trp		s Ile	e Leu	ı Gly	/ Ala 190	a Thr	His
Asp	Ph:	e Phe 19		ı Gly	⁄ Ala	Ser	Tyr 200		ı Val	L Trp) Met	туз 209	r Glr 5	n His	Met
Lev	ı Gl 21		s His	s Pro	туг	Thi 215		n Ile	e Ala	a Gly	y Ala 220	a Asp	o Pro	a Asp	y Val
Se:		r Se	r Gli	ı Pro	230		l Arg	g Ar	g Il	e Ly:		o Ası	n Gl	n Lys	240
Phe	e Va	l As	n Hi	s Ile 24!		ı Glı	n Hi	s Me	t Ph 25	e Va 0	l Pr	o Ph	e Le	u Ty: 25	r Gly 5

Leu	Leu	Ala	Phe 260	Lys	Val	Arg	Ile	Gln 265	Asp	Ile	Asn	Ile	Leu 270	Tyr	Phe	
Val	Lys	Thr 275	Asn	Asp	Ala	Ile	Arg 280	Val	Asn	Pro	Ile	Ser 285	Thr	Trp	His	
Thr	Val 290	Met	Phe	Trp	Gly	Gly 295	Lys	Ala	Phe	Phe	Val 300	Trp	Tyr	Arg	Leu	
Ile 305	Val	Pro	Leu	Gln	Tyr 310	Leu	Pro	Leu	Gly	Lys 315	Val	Leu	Leu	Leu	Phe 320	
Thr	Val	Ala	Asp	Met 325	Val	Ser	Ser	Tyr	Trp 330	Leu	Ala	Leu	Thr	Phe 335	Gln	
Ala	Asn	His	Val 340	Val	Glu	Glu	Val	Gln 345		Pro	Leu	Pro	Asp 350	Glu	Asn	
Gly	Ile	Ile 355	Gln	Lys	Asp	Trp	Ala 360		Met	Gln	Val	Glu 365	Thr	Thr	Gln	
Asp	Tyr 370	Ala	His	Asp	Ser	His 375	Leu	Trp	Thr	Ser	Ile 380		Gly	Ser	Leu	
Asn 385	Tyr	Gln	Ala	Val	His 390		Leu	Phe	Pro	Asn 395		Ser	Gln	His	His 400	
Tyr	Pro	Asp		Leu 405		Ile	Ile	. Lys	410		Cys	Ser	Glu	Tyr 415	Lys	
Val	Pro	Tyr	Leu 420		Lys	Asp	Thr	Phe 425		Gĺn	Ala	n Phe	Ala 430		His	
Leu	Glu	His 435		Arg	Val	Leu	Gl ₃ 440		ı Arg	Pro	Lys	445		l		
<21	0>	13														
<21	1>	39														
<21		DNA														
	.3>	synt	heti	.c pr	rimer											
			uact	cgaç	gca a	agato	ggga	ac g	gacca	aagg						39
	. 0 .	11														
	LO> L1>	14 39														
	L1> L2>	DNA														
			het	ic pi	rime	r										
				P		-										
	00>	14	211-	+ ac	aat :	anta	ttaa	tt a	aaac	naaa						39
cai	ucau	cauc	auci	ccga	gat (actc		uu y	3 9ac	33ª9					\	
	1.0 -	1 0														

<211> 47 <212> DNA

<pre><213> synthetic primer</pre>	
<400> 15 cuacuacuac uatetagaet egagaecatg getgetgete eagtgtg	47
<pre><210> 16 <211> 40 <212> DNA <213> synthetic primer</pre>	
<400> 16 caucaucauc auaggeeteg agttaetgeg eettaeeeat	40
<210> 17 <211> 1617 <212> DNA <213> Mortierella alpina	
<400> 17 cgacactcct tccttcttct cacccgtcct agtccccttc aacccccctc tttgacaaag	60
acaacaaacc atggctgctg ctcccagtgt gaggacgttt actcgggccg aggttttgaa	120
tgccgaggct ctgaatgagg gcaagaagga tgccgaggca cccttcttga tgatcatcga	180
caacaaggtg tacgatgtcc gcgagttcgt ccctgatcat cccggtggaa gtgtgattct	240
cacgcacgtt ggcaaggacg gcactgacgt ctttgacact tttcaccccg aggctgcttg	300
ggagactett gecaaetttt aegttggtga tattgaegag agegaeegeg atateaagaa	360
tgatgacttt gcggccgagg tccgcaagct gcgtaccttg ttccagtctc ttggttacta	420
cgattettee aaggeataet aegeetteaa ggtetegtte aacetetgea tetggggttt	480
gtcgacggtc attgtggcca agtggggcca gacctcgacc ctcgccaacg tgctctcggc	540
tgcgcttttg ggtctgttct ggcagcagtg cggatggttg gctcacgact ttttgcatca	600
ccaggtette caggacegtt tetggggtga tettttegge geettettgg gaggtgtetg	660
ccagggette tegteetegt ggtggaagga caageacaae aeteaceaeg eegeeecaa	720
cgtccacggc gaggatcccg acattgacac ccaccctctg ttgacctgga gtgagcatgc	780
gttggagatg ttctcggatg tcccagatga ggagctgacc cgcatgtggt cgcgtttcat	840
ggtcctgaac cagacctggt tttacttccc cattctctcg tttgcccgtc tctcctggtg	900
cctccagtcc attctctttg tgctgcctaa cggtcaggcc cacaagccct cgggcgcgcg	960
tgtgcccatc tcgttggtcg agcagctgtc gcttgcgatg cactggacct ggtacctcgc	1020
greentatic chartcatca aggatecegt caacatgetg gtgtactttt tggtgtegea	1080

ggcggtgtgc	ggaaacttgt	tggcgatcgt	gttctcgctc	aaccacaacg	gtatgcctgt	1140
gatctcgaag	gaggaggcgg	tcgatatgga	tttcttcacg	aagcagatca	tcacgggtcg	1200
tgatgtccac	ccgggtctat	ttgccaactg	gttcacgggt	ggattgaact	atcagatcga	1260
gcaccacttg	ttcccttcga	tgcctcgcca	caacttttca	aagatccagc	ctgctgtcga	1320
gaccctgtgc	aaaaagtaca	atgtccgata	ccacaccacc	ggtatgatcg	agggaactgc	1380
agaggtcttt	agccgtctga	acgaggtctc	caaggctgcc	tccaagatgg	gtaaggcgca	1440
gtaaaaaaaa	aaacaaggac	gtttttttc	gccagtgcct	gtgcctgtgc	ctgcttccct	1500
tgtcaagtcg	agcgtttctg	gaaaggatcg	ttcagtgcag	tatcatcatt	ctccttttac	1560
ccccgctca	tatctcattc	atttctctta	ttaaacaact	tgttcccccc	ttcaccg	1617

<210> 18

<211> 457

<212> PRT

<213> Mortierella alpina

<400> 18

Met Ala Ala Ala Pro Ser Val Arg Thr Phe Thr Arg Ala Glu Val Leu
1 10 15

Asn Ala Glu Ala Leu Asn Glu Gly Lys Lys Asp Ala Glu Ala Pro Phe

Leu Met Ile Ile Asp Asn Lys Val Tyr Asp Val Arg Glu Phe Val Pro

Asp His Pro Gly Gly Ser Val Ile Leu Thr His Val Gly Lys Asp Gly 50 55 60

Thr Asp Val Phe Asp Thr Phe His Pro Glu Ala Ala Trp Glu Thr Leu 70 75 80

Ala Asn Phe Tyr Val Gly Asp Ile Asp Glu Ser Asp Arg Asp Ile Lys

Asn Asp Asp Phe Ala Ala Glu Val Arg Lys Leu Arg Thr Leu Phe Gln 100 105 110

Ser Leu Gly Tyr Tyr Asp Ser Ser Lys Ala Tyr Tyr Ala Phe Lys Val 115 120 125

Ser Phe Asn Leu Cys Ile Trp Gly Leu Ser Thr Val Ile Val Ala Lys 130 135 140

Trp Gly Gln Thr Ser Thr Leu Ala Asn Val Leu Ser Ala Ala Leu Leu 145 150 155 160

Gly Leu Phe Trp Gln Gln Cys Gly Trp Leu Ala His Asp Phe Leu His

His Gln Val Phe Gln Asp Arg Phe Trp Gly Asp Leu Phe Gly Ala Phe 180 185 190

Leu Gly Gly Val Cys Gln Gly Phe Ser Ser Ser Trp Trp Lys Asp Lys
195 200 205

His Asn Thr His His Ala Ala Pro Asn Val His Gly Glu Asp Pro Asp 210 215 220

Ile Asp Thr His Pro Leu Leu Thr Trp Ser Glu His Ala Leu Glu Met 225 230 235 240

Phe Ser Asp Val Pro Asp Glu Glu Leu Thr Arg Met Trp Ser Arg Phe 245 250 255

Met Val Leu Asn Gln Thr Trp Phe Tyr Phe Pro Ile Leu Ser Phe Ala 260 265 270

Arg Leu Ser Trp Cys Leu Gln Ser Ile Leu Phe Val Leu Pro Asn Gly
275 280 285

Gln Ala His Lys Pro Ser Gly Ala Arg Val Pro Ile Ser Leu Val Glu 290 295 300

Gln Leu Ser Leu Ala Met His Trp Thr Trp Tyr Leu Ala Thr Met Phe 305 310 315 320

Leu Phe Ile Lys Asp Pro Val Asn Met Leu Val Tyr Phe Leu Val Ser 325 330 335

Gln Ala Val Cys Gly Asn Leu Leu Ala Ile Val Phe Ser Leu Asn His 340 345 350

Asn Gly Met Pro Val Ile Ser Lys Glu Glu Ala Val Asp Met Asp Phe 355 360 365

Phe Thr Lys Gln Ile Ile Thr Gly Arg Asp Val His Pro Gly Leu Phe 370 375 380

Ala Asn Trp Phe Thr Gly Gly Leu Asn Tyr Gln Ile Glu His His Leu 385 390 395 400

Phe Pro Ser Met Pro Arg His Asn Phe Ser Lys Ile Gln Pro Ala Val 405 410 415

Glu Thr Leu Cys Lys Lys Tyr Asn Val Arg Tyr His Thr Thr Gly Met
420 425 430

Ile Glu Gly Thr Ala Glu Val Phe Ser Arg Leu Asn Glu Val Ser Lys 435 440 445

Ala Ala Ser Lys Met Gly Lys Ala Gln 450 455

<210> 19

<211> 1488

<212> DNA

<213> Mortierella alpina

<400> 19 gtcccctgtc gctgtcggca caccccatcc tccctcgctc cctctgcgtt tgtccttggc 60 ccaccgtctc tcctccaccc tccgagacga ctgcaactgt aatcaggaac cgacaaatac 120 acgatttett tttactcage accaactcaa aateetcaae egcaaceett tttcaggatg 180 gcacctccca acactatcga tgccggtttg acccagcgtc atatcagcac ctcggcccca 240 aacteggeea ageetgeett egagegeaac taccagetee eegagtteae eateaaggag 300 360 atccgagagt gcatccctgc ccactgcttt gagcgctccg gtctccgtgg tctctgccac gttgccatcg atctgacttg ggcgtcgctc ttgttcctgg ctgcgaccca gatcgacaag 420 tttgagaatc ccttgatccg ctatttggcc tggcctgttt actggatcat gcagggtatt 480 gtctgcaccg gtgtctgggt gctggctcac gagtgtggtc atcagtcctt ctcgacctcc 540 aagaccetca acaacacagt tggttggate ttgcactega tgetettggt eccetaceae 600 660 tectggagaa tetegeacte gaageaceae aaggeeactg geeatatgae caaggaecag gtctttgtgc ccaagacccg ctcccaggtt ggcttgcctc ccaaggagaa cgctgctgct 720 gccgttcagg aggaggacat gtccgtgcac ctggatgagg aggctcccat tgtgactttg 780 840 ttctggatgg tgatccagtt cttgttcgga tggcccgcgt acctgattat gaacgcctct ggccaagact acggccgctg gacctcgcac ttccacacgt actcgcccat ctttgagccc 900 960 cgcaactttt tcgacattat tatctcggac ctcggtgtgt tggctgccct cggtgccctg atctatgeet ceatgeagtt gtegetettg accgteacea agtactatat tgteeectae 1020 ctctttgtca acttttggtt ggtcctgatc accttcttgc agcacaccga tcccaagctg 1080 ccccattacc gcgagggtgc ctggaatttc cagcgtggag ctctttgcac cgttgaccgc 1140 tegtttggca agttettgga ceatatgtte caeggeattg tecacaceca tgtggeecat 1200 cacttgttct cgcaaatgcc gttctaccat gctgaggaag ctacctatca tctcaagaaa 1260 1320 ctgctgggag agtactatgt gtacgaccca tccccgatcg tcgttgcggt ctggaggtcg 1380 ttccgtgagt gccgattcgt ggaggatcag ggagacgtgg tctttttcaa gaagtaaaaa aaaagacaat ggaccacaca caaccttgtc tctacagacc tacgtatcat gtagccatac 1440 cacttcataa aagaacatga getetagagg egtgteatte gegeetee 1488 <211> 399

<212> PRT

<213> Mortierella alpina

<400> 20

Met Ala Pro Pro Asn Thr Ile Asp Ala Gly Leu Thr Gln Arg His Ile 1 5 10 15

Ser Thr Ser Ala Pro Asn Ser Ala Lys Pro Ala Phe Glu Arg Asn Tyr 20 25 30

Gln Leu Pro Glu Phe Thr Ile Lys Glu Ile Arg Glu Cys Ile Pro Ala . 35 40 45

His Cys Phe Glu Arg Ser Gly Leu Arg Gly Leu Cys His Val Ala Ile 50 55 60

Asp Leu Thr Trp Ala Ser Leu Leu Phe Leu Ala Ala Thr Gln Ile Asp 65 70 75 80

Lys Phe Glu Asn Pro Leu Ile Arg Tyr Leu Ala Trp Pro Val Tyr Trp 85 90 95

Ile Met Gln Gly Ile Val Cys Thr Gly Val Trp Val Leu Ala His Glu 100 105 110

Cys Gly His Gln Ser Phe Ser Thr Ser Lys Thr Leu Asn Asn Thr Val

Gly Trp Ile Leu His Ser Met Leu Leu Val Pro Tyr His Ser Trp Arg 130 135 140

Ile Ser His Ser Lys His His Lys Ala Thr Gly His Met Thr Lys Asp 145 150 155 160

Gln Val Phe Val Pro Lys Thr Arg Ser Gln Val Gly Leu Pro Pro Lys 165 170 175

Glu Asn Ala Ala Ala Val Gln Glu Glu Asp Met Ser Val His Leu 180 185 190

Asp Glu Glu Ala Pro Ile Val Thr Leu Phe Trp Met Val Ile Gln Phe
195 200 205

Leu Phe Gly Trp Pro Ala Tyr Leu Ile Met Asn Ala Ser Gly Gln Asp 210 215 220

Tyr Gly Arg Trp Thr Ser His Phe His Thr Tyr Ser Pro Ile Phe Glu 225 230 235 240

Pro Arg Asn Phe Phe Asp Ile Ile Ile Ser Asp Leu Gly Val Leu Ala 245 250 255

Ala Leu Gly Ala Leu Ile Tyr Ala Ser Met Gln Leu Ser Leu Leu Thr 260 265 270

Val Thr Lys Tyr Tyr Ile Val Pro Tyr Leu Phe Val Asn Phe Trp Leu 275 280 285	
Val Leu Ile Thr Phe Leu Gln His Thr Asp Pro Lys Leu Pro His Tyr 290 295 300	
Arg Glu Gly Ala Trp Asn Phe Gln Arg Gly Ala Leu Cys Thr Val Asp 305 310 315 320	
Arg Ser Phe Gly Lys Phe Leu Asp His Met Phe His Gly Ile Val His 325 330 335	
Thr His Val Ala His His Leu Phe Ser Gln Met Pro Phe Tyr His Ala 340 345 350	
Glu Glu Ala Thr Tyr His Leu Lys Lys Leu Leu Gly Glu Tyr Tyr Val 355 360 365	
Tyr Asp Pro Ser Pro Ile Val Val Ala Val Trp Arg Ser Phe Arg Glu 370 375 380	-
Cys Arg Phe Val Glu Asp Gln Gly Asp Val Val Phe Phe Lys Lys 385 390 395	
<210> 21 <211> 36	
<212> DNA <213> synthetic primer	
<400> 21 cuacuacuac uaggatecat ggeacetece aacaet	36
<210> 22 <211> 41 <212> DNA <213> synthetic primer	
<400> 22 caucaucauc auggtacete gagttactte ttgaaaaaga e	41