Ejercicios 3.2

1.	En la columna de la izquierda hay una lista de proposiciones. Para cada una de ellas, indicar si la corres-
	pondiente proposición a la derecha es o no su negación. Si no lo es, escribir correctamente la negación.

- a) El dado arrojó un número par.
- b) 4 es múltiplo de 8.
- c) La ecuación $x^2 9 = 0$ no tiene solución
- d) La ecuación 2x + 3 = 0 no tiene solución
- e) m es múltiplo de n.

- a) El dado arrojó 3. 💢
- b) 4 no es múltiplo de 8. √
- c) La ecuación $x^2 9 = 0$ tiene dos soluciones
- d) La ecuación 2x + 3 = 0 tiene al menos una solución real. \checkmark ?
- e) n es múltiplo de m. 🔀

a) El dado no arrojó un número par

- c) La ecuación tiene solución real
- e) m no es multiplo de n
 - 2. En la columna de la izquierda hay una lista de proposiciones. Para cada una de ellas, indicar si la correspondiente proposición a la derecha es o no equivalente a su negación.

a)
$$a \le b \stackrel{\checkmark}{\longrightarrow} =$$

b)
$$a \ge b$$

c)
$$a < b \le c$$

d)
$$a < b \le c$$

- e) h es divisible por 2 y por 3.
- f) 2 y 3 dividen al número f.

b)
$$a \le b < X$$

c)
$$a > b \ge c$$

d)
$$a \ge b \circ b > c$$

- e) h no es divisible por 2 ni por 3. \checkmark
- f) 2 no divide a f o 3 no divide a f.

h no es divisible por 2 o por 3

: 2 divide al número f
$$\neg (\rho \lor \varphi) \equiv \neg \rho \land \neg \varphi$$

3. Evaluar cada proposición para el caso en que p es F, q es V y r es F.

a)
$$p \vee q$$

c)
$$\neg p \lor q$$

e)
$$\neg (p \lor q) \land (\neg p \lor r)$$

b)
$$\neg p \lor \neg q$$

d)
$$p \vee \neg (q \wedge r)$$

f)
$$\neg p \land (q \lor r)$$

4. Comprobar a través de las tablas de verdad, la propiedad asociativa de la disyunción, la distributiva de la conjunción respecto a la disyunción, y las leyes de De Morgan.

P	q	7 (P14)	7PV74
V	<	7 V → F	FyF - F
\ \	F		FVV ~ V
[\ \	7F -> V	V _V F — V
			V _∨ V

ρ	4	٢	P1 (4vr)	(P19) V (P17)
			V 1 V - V	$(V \wedge V) \vee (V \wedge V) \rightarrow V \vee V \rightarrow V$
٧				(V) V (V) - V V F - V
ν				(V V E) N (N V N) -> EN N -> N
				(VAF) V (VAF) FVF - F
				(FAV) V (FAV) FVF→F
				(FAV) V (FAF) FVF→F
			FNV -F	(F1F) V (F1V) FVF→F
				(FAF) V (FAF) FVF -F

4	_							
1.	Sean	p, a, r	· las	prop	DOSIC	iones	SIPL	uientes:
		1 , 1,		F - I				

- p: "está lloviendo"
- q: "el sol está brillando"
- r: "hay nubes en el cielo".

Traducir lo siguiente a notación lógica, utilizando p, q, r y conectivos lógicos.

- a) Está lloviendo y el sol está brillando.
- b) Si está lloviendo, entonces hay nubes en el cielo.
- c) Si no está lloviendo, entonces el sol no está brillando y hay nubes en el cielo.
- d) El sol está brillando si y sólo si no está lloviendo.
- e) Si no hay nubes en el cielo, entonces el sol está brillando.

a)
$$p \wedge q$$

c)
$$\neg p \Rightarrow \neg q \wedge r$$

e)
$$\neg r \Rightarrow q$$

b)
$$p \Rightarrow q$$

d)
$$q \Leftrightarrow \neg p$$

2. Sean p, q y r como en el ejercicio anterior. Traducir lo siguiente a oraciones en español.

a)
$$(p \land q) \Rightarrow r$$

c)
$$(p \Rightarrow r) \Rightarrow q$$

e)
$$\neg (p \lor q) \land r$$

b)
$$\neg p \Leftrightarrow (q \lor r)$$

d)
$$\neg (p \Leftrightarrow (q \lor r))$$

$$f) \neg (p \Rightarrow q)$$

- q: "el sol está brillando"
- r: "hay nubes en el cielo".

a) Si está lloviendo y el sol está brillando entonces hay nubes en el cielo

- b) No está lloviendo si y solo si el sol está brillando o hay nubes en el cielo
- c) Si está lloviendo implica que hay nubes en el cielo, entonces el sol está brillando
- d) No está lloviendo si y solo si el sol está brillando o hay nubes en el cielo No es cierto que está lloviendo si y solo si el sol está brillando o hay nubes en el cielo
- e) No stá lloviendo o el sol no está brillando y hay nubes en el cielo
- f)No está lloviendo, entonces el sol no está brillando

- 3. Supongamos que todos los días que llueve Juan usa paraguas. En base a esta única suposición, ¿cuáles de las siguientes proposiciones puedes asegurar que son verdaderas y cuáles no puedes asegurar?
 - a) Si Ilueve entonces Juan usa paraguas. V
 - b) Si Juan usa paraguas entonces llueve. F
 - c) Si Juan no usa paraguas entonces no llueve. 🐔
 - d) Si no llueve entonces Juan no usa paraguas. V
 - e) Si no llueve entonces Juan usa paraguas. 🗲

p: Está lloviendo, q: Juan usa paraguas

$$p \Rightarrow q$$

$$g q \Leftrightarrow p$$

- 4. Escribir la contrarrecíproca de cada una de las siguientes implicaciones:
 - a) Si 4 es par entonces 1 > 0.

c) Si 4 es impar entonces 1 > 0.

b) 2+3=5 si 1+1<3.

d) Si 1+1 < 3 entonces 2=4.

$$p \Rightarrow q \longrightarrow \neg q \Rightarrow \neg p$$

- a)Si 1 no es mayor a 0 entonces 4 no es par
- b) Si 1 + 1 no es menor a 3 entonces 2+3 no es igual a 5
- c) Si 1 no es mayor a 0 entonces 4 no es impar
- d) Si 2 no es igual a 4 entonces 1+1 no es menor a 3
- 5. Indicar para qué valores de verdad de p y q resulta verdadera la proposición compuesta

$$(p \Rightarrow q) \wedge (\neg q \Rightarrow p).$$

p	q	$p \Rightarrow q$	$\neg q \Rightarrow p$	$(p \Rightarrow q) \land (\neg q \Rightarrow p)$
V	V	V	F	F
V	F	\mathbf{F}	V	F
F	V	V	V	V
F	F	V	F	V

- 6. Suponiendo que $p\Rightarrow q$ es falso, indicar los valores de verdad para
 - a) $p \wedge q$

b) $p \lor q$

c) $q \Rightarrow p$

Si $p \Rightarrow q$ es falso, entonces p = V, q = F

- a) $V \wedge F \equiv F$
- b) $V \vee F \equiv V$
- c) $F \Rightarrow V \equiv V$
- 7. Sabiendo que la proposición compuesta $(\neg q) \lor (q \Rightarrow p)$ es falsa, indicar cuál es el valor de verdad de las proposiciones p y q.

Si $(\neg q) \lor (q \Rightarrow p)$ es falsa, quiere decir que ambos parentesis son falsos

por ende $(\neg q)$ es falsa, por lo tanto su valor debe de ser V

Y para que $(q \Rightarrow p)$ evalue a falso, teniendo en cuenta que q es V su valor debe de ser p = F

$$\mathbf{q} = V$$
 , $\mathbf{p} = F$

1	q	p	$\neg q$	$q \Rightarrow p$	$(\neg q) \lor (q \Rightarrow p)$
	V	V	F	V	V
_	\mathbf{F}	V	V	V	V
	\mathbf{V}	F	F	${ m F}$	F
	F	\mathbf{F}	V	V	V

Teniendo en cuenta la anterior tabla de verdad, se puede asumir que la expresion compuesta mencionada en la consigna es imposible que tenga como resultado el valor F

8. Utilizar tablas de verdad para comprobar la equivalencia lógica $p\Rightarrow q\equiv \neg\, p\lor q$.

p	q	$p \Rightarrow q$	$\neg p \lor q$
V	V	V	V
V	\mathbf{F}	F	\mathbf{F}
F	V	V	V
F	F	V	V

Dudas

Duuas
1. El teorema de Morgan hay que usarlo si o si, o existe otra forma?
ejemplo: h es divisible por 2 y por 3, su negación puede ser "h no es divisible por dos ni por 3" o
tiene que ser "h no es divisible por 2 o 3"
Es opcional
2. Para que la negación sea valida, que tan especifica tiene que ser?
Siempre que una sea verdadera, la otra tiene que ser falsa para que sea negacion
3. Porque si p implica q, p es F y q es F, se evalua a V?
Si p es falso el resultado siempre va a ser V en la implicación
4. Todos los dias que llueve Juan usa paraguas, es implicación o doble implicacion?
Es implicación porque que Juan hice paraguas no quiere decir que esté lloviendo, por ahí es bailarin de umbrella(?
·