

5.3 寄存器和读/写存储器 (Register and Random Access Memory)

- 5.3.1 寄存器的主要特点和分类
- 一、概念和特点
- 1. 概念

寄存: 把二进制数据或代码暂时存储起来。 并行

寄存器:具有寄存功能的电路。1 01 ... 0 输出

2. 特点 主要由触发 器构成,一般不 对存储内容进 行处理。

多位 D 型触发器

分类

1. 按功能分

基本寄存器 (并入并出) 移位寄存器(并入并出、并入串出、 串入并出、串入串出)

2. 按开关元件分

CMOS 寄存器 基本寄存器 (多位 D 型触发器) 移位寄存器 (同 TTL)

寄存器阵列

双向移位寄存器

(单向移位寄存器

5.3.2 基本寄存器

一个触发器可以存储 1 位二进制信号;寄存n 位二进制数码,需要n 个触发器。

一、4 边沿 D 触发器 (74175、74LS175)

并入并出,结构简单,抗干扰能力强。

二、双 4 位锁存器 (74116) Latch

(一) 引脚排列图和逻辑功能示意图

(二) 逻辑功能

清零
$$\overline{CR} = 0$$
 $Q_3Q_2Q_1Q_0 = 0000$

送数
$$\overline{CR} = 1$$
 $\overline{LE}_A + \overline{LE}_B = 0$ $Q_3Q_2Q_1Q_0 = d_3d_2d_1d_0$

保持
$$\overline{CR} = 1$$
 $\overline{LE}_A + \overline{LE}_B = 1$ $Q_3Q_2Q_1Q_0$ 不变

三、4×4寄存器阵列 (74170、74LS170)

(一) 引脚排列图和逻辑功能示意图

 A_{W0} 、 A_{W1} — 写入地址码 A_{R0} 、 A_{R1} — 读出地址码

 \overline{EN}_{W} — 写入时钟脉冲 \overline{EN}_{R} — 读出时钟脉冲

5.3.3 移位寄存器

一、单向移位寄存器

右移寄存器

时钟方程
$$CP_0 = CP_1 = CP_2 = CP_3 = CP$$

驱动方程
$$D_0 = D_i$$
、 $D_1 = Q_0^n$ 、 $D_2 = Q_1^n$ 、 $D_3 = Q_2^n$

状态方程
$$Q_0^{n+1} = D_i, Q_1^{n+1} = Q_0^n, Q_2^{n+1} = Q_1^n, Q_3^{n+1} = Q_2^n$$

驱动方程 $D_0 = Q_1^n$ 、 $D_1 = Q_2^n$ 、 $D_2 = Q_3^n$ 、 $D_3 = D_i$ 状态方程 $Q_0^{n+1} = Q_1^n$, $Q_1^{n+1} = Q_2^n$, $Q_2^{n+1} = Q_3^n$, $Q_3^{n+1} = D_i$ 主要特点:

- 1. 输入数码在 CP 控制下, 依次右移或左移;
- 2. 寄存n 位二进制数码。N 个CP完成串行输入,并可从 $Q_0\sim Q_3$ 端获得并行输出,再经n 个CP又获得串行输出。
 - 3. 若串行数据输入端为0,则n个CP后寄存器被清零。

- 二、双向移位寄存器(自学)
- 三、集成移位寄存器
- 1. 8 位单向移位寄存器 74164

2.4 位双向移位寄存器 74LS194(略)

5.3.4 移位寄存器型计数器

特点: 电路结构简单, 计数顺序一般为非自然态序, 用途极为广泛。

一、环形计数器

3. 能自启动的环型计数器

二、扭环形计数器

克服自启动电路: P360 图5.3.16

三、最大长度移位寄存器型计数器(略)

5.3.5 读/写存储器 — RAM

(Random Access Memory)

存储单元 — 存放一位二进制数的基本单元(即位)。存储容量 — 存储器含存储单元的总个(位)数。

存储容量 = 字数(word) × 位数(bit)

地址 — 存储器中每一个字的编号

256×1, 256×4 一共有 256 个字, 需要 256 个地址

1024×4, 1024×8 一共有 1024 个字, 需要 1024 个地址

地址译码 — 用译码器赋予每一个字一个地址

N个地址输入,能产生 2^N 个地址

- 一元地址译码(单向译码、基本译码、字译码)
- 二元地址译码(双向译码、位译码)—行译码、列译码

一、RAM 的结构

[例] 对 256×4 存储矩阵进行地址译码

缺点:

n 位地址输入的译码器,需要 2n 条输出线。

8位地址输入的地址译码器,只有32条输出线。

二、RAM的存储单元

1. 静态存储单元

基本工作原理: MOS管为 简化画法 R 导通

T₅、T₆— 门控管 控制触发器与位线的连通

T₇、T₈— 门控管 控制位线与数据线的连通

读操作时: D = Q D = Q

写操作时: D = Q $\overline{Q} = \overline{D}$

六管 CMOS 存储单元

2. 动态MOS存储单元

单管MOS存储单元

写操作:

字线为高电平 T_1 导通 若位线为高电平(1),则C充电 若位线为低电平(0),则 C_1 放电

读操作:

 C_B 字线为高电平 T_1 导通

若 U_1 = "1", 则 C_1 向 C_R 放电使 U_R = "1" 若*U*₁= "0",则*U*_R= "0"

因 $C_{\rm B}>>C_{\rm I}$,在完成读操作后, $U_{\rm R}=U_{\rm I}C_{\rm I}/(C_{\rm I}+C_{\rm R})$ 很小 需要高灵敏度读出器,每次读出后需进行"刷新"。

三、RAM 容量的扩展

1. 位扩展 地址线、读/写控制线、片选线并联 输入/ 输出线分开使用

如: 用 8 片 1024 × 1 位 RAM 扩展为 1024 × 8 位 RAM

2. 字扩展

四、RAM 芯片举例

		10			
输入					I/O
CS	ŌĒ	WE	$A_0 \sim A_{10}$	工作方式	$D_0 \sim D_7$
1	×	×	×	低功耗维持	高阻态
0	0	1	稳定	读	输出
0	×	0	稳定	写	输入