Komplexe Analysis Zusammenfassung, ETH, D-INFK

Miles Strässle, Prof. A. Iozzi

13. August 2020

Teil I

Zusammenfassung

1 Komplexe Zahlen und Funktionen

1.1 Komplexe Zahlen - Grundlagen

- $i = \sqrt{-1}$
- $z = x + iy = r(\cos(\varphi) + i\sin(\varphi)) = re^{i\varphi}$
- $r = |z| = \sqrt{x^2 + y^2}$
- $arg(z) = \varphi = arctan(\frac{y}{x})$ (je nach Quadrant)
- $x = r \cos(\varphi)$
- $y = r \sin(\varphi)$
- $zw = (re^{i\varphi}) \cdot (se^{i\psi}) = rse^{i(\varphi+\psi)}$
- $e^{i(\frac{\pi}{2}+2\pi k)} = i$, $e^{i\pi} = 1$, $e^{-i\pi} = -1$

1.2 Rechenregeln

- $x = \text{Re } z = \frac{z + \overline{z}}{2}$ $y = \text{Im } z = \frac{z \overline{z}}{2i}$ $z \in \mathbb{R} \iff z = \overline{z}$
- $\bullet \ \overline{\overline{z}} = z$
- $\overline{\left(\frac{1}{z}\right)} = \frac{1}{(\overline{z})}$
- $\bullet \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
- $\bullet \ (a,b)\cdot (c,d) = (ac\!-\!bd,ad\!+\!bc)$
- $|zw|^2 = (zw) \cdot \overline{(zw)} = |z|^2 |w|^2$
- $i^2 = (-i)^2 = -1$ und

• $z = x + iy \text{ mit } z \in \mathbb{C}$

- z + z' = (x + x') + i(y + y')• $z \cdot z' = xx' yy' + i(x'y + y'x)$
- $\alpha z = \alpha x + i\alpha y$
- $\overline{z} = x iy = \overline{r \cdot e^{i\varphi}} = r \cdot e^{-i\varphi}$
- $\bullet \ e^z = e^{x+iy} = e^x(\cos(y) +$
- $z^n = (r \cdot e^{i\varphi})^n = r^n \cdot e^{i\varphi n}$

1.3 Betrag

- $|z| = \sqrt{z \cdot \overline{z}} = \sqrt{x^2 + y^2}$ und somit auch $|z|^2 = z \cdot \overline{z} = x^2 + y^2$
- $|z \cdot z'| = |z| \cdot |z'|$ (im komplexen!)
- $z \in \mathbb{R} \implies |z|_{\mathbb{C}} = |z|_{\mathbb{R}}$
- $|\operatorname{Re} z| \leq |z|$, $|\operatorname{Im} z| \leq |z|$
- $|z + z'| \le |z| + |z'|$ (Dreiecksungleichung)
- $|e^z| = e^{\operatorname{Re} z}$
- $z^2 \overline{z}^2 = 4i \operatorname{Re}(z) \operatorname{Im}(z)$

Der Körper \mathbb{C} ist nicht geordnet und eine **Ungleichung** wie $z_1 < z_2$ macht keinen Sinn!

1.4 Norm

$$||f(t)||^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)|^2 dt$$

1.5 Mitternacht

$$az^{2} + bz + c = 0 \Leftrightarrow z_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

1.6 Polardarstellung

Form

$$z = re^{i\varphi} = r(\cos\varphi + i\sin\varphi)$$
 mit $r \in \mathbb{R}^+ (r \ge 0)$

kartesisch→polar

$$r = |z| = \sqrt{x^2 + y^2}$$

$$arg(z) = arg(x, y) = \{\varphi + 2k\pi | k \in \mathbb{Z}\} \implies \boxed{\varphi \in arg z}$$
 (Menge)

Innerhalb $[-\pi, \pi]$ lässt sich φ so berechnen:

$$\rho = \begin{cases}
\arctan \frac{y}{x} & \text{für } x > 0 \\
\arctan \frac{y}{x} + \pi & \text{für } x < 0, y \ge 0 \\
\arctan \frac{y}{x} - \pi & \text{für } x < 0, y < 0 \\
+\pi/2 & \text{für } x = 0, y > 0 \\
-\pi/2 & \text{für } x = 0, y < 0 \\
undef. & \text{für } x = 0, y = 0
\end{cases}$$

polar→kartesisch

 $x = r \cos \varphi$

 $y = r \sin \varphi$

komplexe Multiplikation

$$z_1 \cdot z_2 = r_1 \cdot r_2 e^{i(\varphi_1 + \varphi_2)} \ z^n = r^n \cdot e^{in\varphi}$$

 \mathbf{n} -te Wurzel \implies genau n Lösungen!

$$\sqrt[n]{z} = w_k = |z|^{\frac{1}{n}} e^{i(\frac{\varphi}{n} + \frac{2k\pi}{n})}$$
 mit $k = 0, 1, \dots, n-1$

Hauptwert des Arguments (eindeutig!)

- $-\pi < \varphi < \pi$, mit $\varphi = \text{Arg}(z) \implies | \text{Arg } \overline{z} = -\text{Arg } z$
- z liegt auf der positiven reellen Achse: \iff Arg z=0
- z auf negativen reellen Achse \iff Arg-Funktion kann z nicht abbliden

1.7 Gamma-Funktion

1.8 Dirac-Delta Funktion

$$\Gamma(\alpha) := \int_0^\infty x^{\alpha-1} e - x dx$$

$$\delta(t) = \begin{cases} \infty, & falls \quad t = \\ 0, & falls \quad t \neq 0 \end{cases}$$

Was gilt:

- $\Gamma(\alpha + 1) = \alpha \cdot \Gamma(\alpha)$
- $\Gamma(n) = (n-1)!, \forall n \in \mathbb{N}$
- $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
- $\Gamma(\alpha) \cdot \Gamma(1-\alpha) = \frac{\pi}{\sin(\pi \cdot \alpha)}, \alpha \in$

Komplexwertige Funktionen

Begriffe aus der Topologie

Umgebung: (Beliebig kleine) Kreisscheibe um einen Punkt z.

innerer Punkt: Der Punkt z befindet sich in einer Menge und berührt den Rand nicht (Umgebung um z existiert in Menge).

Randpunkt: z befindet sich auf dem Rand einer Menge.

Berührungspunkt: z sitzt in oder auf dem Rand einer Menge.

offene Teilmenge: Teilmenge ohne Rand / nur innere Punkte

abgeschlossene Teilmenge: Teilmenge mit Rand / alle Berührungspunkte

beschränkte Teilmenge: Für jeden Punkt z einer Teilmenge S gilt: |z| ist kleiner als eine Konstante M.

kompakte Teilmenge: abgeschlossen und beschränkt.

zusammenhängende Teilmenge: Jeder Punkt der Teilmenge kann mit jedem anderen Punkt der Menge nur über andere Punkte der Menge verbunden werden (keine Inseln).

Gebiet: zusammenhängende offene Teilmenge.

Komplexe Funktionen

 $f: \mathbb{R} \to \mathbb{C} \text{ oder } f: \mathbb{C} \to \mathbb{C}$

f(z) ist das **Bild** von z und z ist das **Urbild** (nicht immer eindeutig) von w = f(z).

Hauptwert der *n*-ten Wurzel (principal value, kurz: pv):

pv
$$\sqrt[n]{w}$$
: $\mathbb{C}^{-*} \to S = \{z \in \mathbb{C}^* | -\frac{\pi}{n} < \text{Arg } z < \frac{\pi}{n} \}$

$$w \mapsto \sqrt[n]{|w|} e^{i\frac{\text{Arg } w}{n}}$$

Komplexe Exponentialfunktion

$$= \exp : \mathbb{C} \to \mathbb{C} , z \mapsto w = \exp z = \sum_{k=0}^{\infty} \frac{1}{k!} z^k$$

Es gelten folgende Umformungen:

$$\begin{split} &\exp(z+z')=\exp\,z\cdot\exp\,z'\;\mathrm{mit}\;z,z'\in\mathbb{C}\\ &e^z=\exp\,z\\ &e^{i\varphi}=\cos\varphi+i\sin\varphi\;\mathrm{fiir}\;\mathrm{reelle}\;\varphi\\ &Aus\;letzterem\;folgt\;ins be sondere:\\ &e^{2\pi i}=1\;\mathrm{und}\\ &\exp(z+2\pi i)=\exp\,z\cdot\exp(2\pi i)=\exp\,z \end{split}$$

$$z^{\alpha} = e^{\alpha log(z)}$$
Logarithmus

Da die Exponentialfunktion im komplexen periodisch ist, ist der komplexe Logarithmus als Menge definiert:

$$\log w = \{z \in \mathbb{C} \mid e^z = w\} \subseteq \mathbb{C}$$

$$\log(w) = \ln|w| + i\arg(w)$$

Auch hier will man mit einem konkreten Wert rechnen können. Deshalb ist der Hauptwert des Logarithmus wie folgt definiert:

$$\text{Log }: \mathbb{C}^{-*} \to \mathbb{C} \text{ , } w \mapsto \ln|w| + i \text{ Arg } w$$

Hier ist Log nun injektiv und der eindeutig bestimmte Repräsentant von log w im Streifen $S = \{z = x + iy | -\pi < y < \pi\} = \{z \in \mathbb{C} | |\text{Im } z| < \pi\}$

Für alle $a \in \mathbb{C}^{-*}$ (nur für diese!) ist der **Hauptwert der Potenz**:

$$\boxed{ \text{pv } a^z = \exp(z \text{Log } a) \text{ und es gilt: } \boxed{ \textbf{pv } a^{z+z'} = \textbf{pv } a^z \cdot \textbf{pv } a^{z'} }$$

3 Die Cauchy-Riemannschen Differentialgleichungen

Im folgenden untersuchen wir Real- und Imaginärteil von analytischen Funktionen $(f: \Omega \to \mathbb{C})$:

$$f = u(x, y) + iv(x, y) (x + iy \in \Omega)$$

Obige Funktion hat stetige partielle Ableitungen nach x und y zwischen denen die Cauchy-Riemannschen Differentialgleichungen gelten:

$$\begin{array}{c} u_x(x,y) = v_y(x,y) \\ v_x(x,y) = -u_y(x,y) \end{array} (x+iy \in \Omega))$$

Anwendung der CR-Differentialgleichungen

Die CR-Differentialgleichungen in Polarkoordinaten sind:

 $y = r \sin \varphi$

$$u_r = \frac{1}{r} v_{\varphi}$$

$$v_r = \frac{-1}{r} u_{\varphi}$$

Zur Info: $holomorphie \Longrightarrow alattheit$

 $x = r \cos \varphi$

$$u_x, u_y$$
 und v_x, v_y existieren und erfüllen die CR -Differentialgleichungen \iff
$$f(x+iy) = u(x,y) + iv(x,y) \text{ analytisch}$$
 bzw. holomorph auf Ω \iff
$$f' = f_x = u_x + iv_x$$

$$f' = -if_y = v_y - iu_y$$

$$\iff$$

$$f \text{ komplex differenzierbar}$$

$$\iff$$

$$f \infty\text{-mal komplex differenzierbar}$$

Beispiele

- $f(z) = \overline{z}$ ist nicht differenzierbar, da die CR-Gleichungen nicht erfüllt
- $|f(z)| = |z|^2$ ist **keine analytische Funktion** im Ursprung . (Die Ableitung von f existiert nur im Ursprung.) Eine Funktion heisst analytisch in z_0 , falls sie in einer ganzen Umgebung von z_0 analytisch ist.
- Log $z = \ln |z| + i \operatorname{Arg} z$ $(z \in \mathbb{C}^{-*})$ ist analytisch auf \mathbb{C}^{-*} .

4 Die Integralformel von Cauchy

4.1 Theorie Übung

Integral reeller Variablen ("dx" ist hier reell)

$$\int\limits_a^b g(x) \ \mathrm{d}x = \text{``Wie im reellen''} = \int\limits_a^b \mathrm{Re}(g(x)) \ \mathrm{d}x + i \int\limits_a^b \mathrm{Im}(g(x)) \ \mathrm{d}x$$

$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} |f(x)| \, dx \text{ und } \int_{a}^{\overline{b}} f(x) \, dx = \int_{a}^{\overline{b}} \overline{f(x)} \, dx$$

Eine Kurve / ein Weg

 $\gamma: [a,b] \to \mathbb{C}$ stetig und stückweise glatt

Spur von γ : sp(γ) = {Menge aller Bildpunkte von γ }

Länge der Kurve: $= \int |\dot{\gamma}(t)| dt$

$$= \int_{a}^{b} |\dot{\gamma}(t)| \, \mathrm{d}t$$

Komplexes Linienintegral der Funktion f über der Kurve γ

 $: \mathbb{C} \to \mathbb{C}$, Parametrisierung $\gamma : [a, b] \to \mathbb{C}$; dann gilt:

$$\int\limits_{\gamma} f(z) \ \mathrm{d}z = \int\limits_{a}^{b} f(\gamma(t)) \cdot \dot{\gamma}(t) \ \mathrm{d}t \quad \text{wobei } \mathrm{d}t \text{ wieder reell ist.}$$

Es gilt:
$$\int_{-\gamma} f(z) dz = -\int_{\gamma} f(z) dz$$

Parametrisierungen

(können auch AUFGETEILT werden: $\gamma = \gamma_1 + \gamma_2$)

Gerader / direkter Weg von a nach b:

$$\gamma(t) = a(1-t) + bt = a + t(b-a) \quad 0 \le t < 1 \quad \dot{\gamma}(t) = b - a$$

Kreis gegen den Uhrzeigersinn mit Radius r um Mittelpunkt a:

$$\gamma(t) = a + re^{it}$$
 $0 \leqslant t < 2\pi$ $\dot{\gamma}(t) = ire^{it}$

Einheitskreis **im** Uhrzeigersinn um den Ursprung (a = 0):

$$\gamma(t) = 1 \cdot e^{-it}$$
 $0 \leqslant t < 2\pi$ $\dot{\gamma}(t) = -ie^{-it}$

Funktion
$$y = f(x)$$
:
$$\gamma(t) = f(t)$$

Satz von Cauchy

Sei Ω ein einfach zusammenhängendes Gebiet (= offen, keine Löcher) und f: $\Omega \to \mathbb{C}$ analytisch. Dann gilt für jede geschlossene Kurve ("Zyklus")" γ mit

$$a = b$$
:
$$\oint_{\gamma} f(z) \, \mathrm{d}z = 0$$

und deshalb folgt für alle Kurven γ_1 und γ_2 mit demselben Anfangspunkt a und Endpunkt b:

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$$

⇒ Der Wert des Integrals ist WEGUNABHÄNGIG!

Integralsatz von Cauchy

 $f:\Omega\to\mathbb{C}$ analytisch, Ω einfach zusammenhängend, γ ein beliebiger Zyklus welcher den Punkt $a \in \Omega \setminus p(\gamma)$ $n(\gamma, a)$ -mal gegen den Uhrzeigersinn umläuft:

$$\int_{\gamma} \frac{f(z)}{z-a} dz = 2\pi i \cdot n(\gamma, a) \cdot f(a)$$

Integralsatz von Cauchy für höhere Ableitungen

Sei f analytisch auf ganz Ω und K eine Kreisscheibe innerhalb von Ω mit Rand ∂K (hier wird im Gegenuhrzeigersinn darüber integriert!). Dann gilt für alle

$$f^{(n)}(a) \cdot n(\gamma, a) = \frac{n!}{2\pi i} \int_{\partial K} \frac{f(z)}{(z - a)^{n+1}} dz$$

$$\frac{2\pi i}{n!} f^{(n)}(a) \cdot n(\gamma, a) = \int_{\partial K} \frac{f(z)}{(z - a)^{n+1}} dz$$

4.2 Mittelwertsatz

Seien $U \subset \mathbb{C}$ eine offene Menge und $f: U \to \mathbb{C}$ eine holomorphe Funktion. Seien $z_0 \in U$ und r > 0 so dass $B(z_0, r) \subseteq U$. Dann gilt:

$$f(z_0) = \int_{0}^{1} f(z_0 + rexp(2\pi it))dt$$

d.h. $f(z_0)$ ist der Mittelwert von f auf dem Kreis mit Zentrum z_0 und Radius r

4.3 Maximum Modulus Prinzip

Sei f holomorph und nicht konstant auf einer wegzusammenhangenden Menge U. Dann besitzt |f(z)| kein Maximum auf U. Anders gesagt, gibt es keinen Punkt $z_0 \in U$ mit $|f(z)| \leq |f(z_0)|$.

Reihen

5.1 Gewöhnliche Reihen und Potenzreihen

Gewöhnliche Reihe Potenzreihe (mit Entwicklungspunkt z_0)

$$\sum_{k=0}^{\infty} a_k$$

$$\sum_{k=0}^{\infty} b_k (z - z_0)^k$$

Überführen der beiden verschiedenen Reihen

Wir können immer $z_0 = 0$ annehmen oder $w = z - z_0$ substituieren und erhalten dann:

$$\sum_{k=0}^{\infty} a_k = \sum_{k=0}^{\infty} b_k z^k \quad \text{mit } a_k = b_k z^k$$

5.2 Konvergenzradius (für alle Reihen)

Der Index (k = ...) ist für den Konvergenzradius nicht relevant! (Kann z.B. auch k=2 sein.)

Quotient enkriterium:

$$\begin{split} &\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q \in \mathbb{C} \\ &\Longrightarrow \begin{cases} \sum_{n=0}^\infty a_n \text{konvergiert absolut, falls } |q| < 1 \\ \sum_{n=0}^\infty a_n \text{divergiert, falls } |q| > 1 \end{cases} \end{split}$$

Wurzelkriterium:

$$q = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

und die Reihe konvergiert für q < 1 und divergiert für q > 1.

5.3 Potenzreihen

Ableitung

$$f^{(n)}(z) = \sum_{k=n}^{\infty} k(k-1)\cdots(k-n+1) \cdot a_k(z-z_0)^{k-n}$$

5.4 Konvergenzradius (Potenzreihen)

Potenzreihen konvergieren auf Kreisscheiben mit Konvergenzradius ρ :

Quotientenkriterium Wurzelkriterium

$$\rho = \lim_{k \to \infty} \frac{|a_k|}{|a_{k+1}|}$$

$$\rho = \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|a_k|}}$$

Am Rand der Konvergenzkreisscheibe verhalten sich die Reihen unterschiedlich

5.5 isolierte Singularität (z_0)

1. z_0 ist hebbar: $\lim_{z \to \infty} f(z) = \lambda \neq \pm \infty$

 \rightarrow Hauptteil der Laurentreihe $um\ z_0$ ist null.

(f analytisch fortsetzbar)

falls f(z) beschränkt in $\Omega \Rightarrow z$ ist eine hebb. Sing.

2. z_0 ist Polstelle k-ter Ordnung:

$$\lim_{z\to z_0}(z-z_0)^kf(z)=\lambda\neq\pm\infty\ \mathrm{und}\ \neq0\Longleftrightarrow k\geq\mathrm{Ordnung}\ \mathrm{des}\ \mathrm{Pols}.$$

→ Hauptteil der zugehörigen Laurentreihe ist endlich lang

k ist zu hoch gewählt, falls der Grenzwert = 0 ist und zu niedrig, falls der Grenzwert unendlich ist oder nicht existiert. Die tiefste Ordnung des Hauptteils entspricht k.

Trick zur Bestimmung der Ordnung: Die Ordnung ist gleich dem ersten k für das gilt: $f^{(k)}(z_0) \neq 0$.

Falls $\lim_{z\to z_0} |f(z)| = \infty \Rightarrow z_0$ ist eine Polstelle

3. z₀ ist eine wesentliche Singularität:

 $\lim_{z \to z_0} (z - z_0)^k f(z)$ existiert für kein k. Funktion verhält sich chaotisch im Punkt z_0 . Der Hauptteil der Laurentreihe um z_0 hat unendlich viele Elemente. Bsp.: $\sum_{k=-\infty}^{-1} a_k (z-z_0)^k$

5.6 nicht isolierte Singularität

Hat keinen Typ. Bsp: $z_0 = 0$ bei $\frac{1}{\sin(\frac{1}{z})}$

6 Der Residuensatz

6.1 Residuensatz

Sei $U\subseteq\mathbb{C}$ eine offene wegzusammenhängende Teilmenge und sei $\gamma:[0,1]\to U$ eine positiv orientierte einfache geschlossene Kurve.

Seien $z_1,...,z_n$ im Innere von $\stackrel{-}{\gamma}$ enthalten und sei $f:U\setminus\{z_1,...,z_n\}\to\mathbb{C}$ holomorph. Dann gilt:

$$\oint_{\partial\Omega} f(z)dz = 2\pi i \sum_{z_i \in \Omega} \text{Res}(f|z_i) \cdot n(\gamma(t), z_i)
(n(\gamma(t), z_i) \text{ normalerweise} = \pm 1)$$

6.2 Residuenberechnung

1.
$$\operatorname{Res}(f|z_0) = \lim_{z \to z_0} (z - z_0) f(z)$$

falls z_0 ein Pol erster Ordnung ist.

2.
$$\operatorname{Res}(f|z_0) = \lim_{z \to z_0} \frac{1}{(m-1)!} \left(\frac{d}{dz}\right)^{m-1} \left[(z-z_0)^m f(z) \right]$$

falls z_0 Pol m-ter Ordnung

3.
$$\operatorname{Res}(f|z_0) = \frac{p(z_0)}{q'(z_0)} \quad \text{falls } f(z) = \frac{p(z)}{q(z)}$$

und q(z) in z_0 eine einfache Nullstelle hat.

(p(z) und q(z) analytisch, aber nicht unbedingt Polynome!)

- 4. Res $(f|z_0)$ = Koeffizienten von z^{-1} der innersten Laurentreihe um den Punkt $z_0.~(=a_{-1})$
- 5. Res $(f|z_0) = \frac{1}{2\pi i} \oint_{\partial B} f(z) dz$ mit $\partial B = \partial B(z_0, r)$
- Res(f|z₀) = 0 falls z₀ = 0 und f(z) gerade (Laurentreihe hat nur gerade Koeff.)

6.3 Integralabschätzungen

$$\lim_{R \to \infty} \left(\left| \int\limits_{S_R} f(z) dz \right| \right) \leqslant \lim_{R \to \infty} \pi \cdot R \cdot \max \left(\left| f(z) \right| \right)$$
 wobei $S_R =$ Halbkreis, $R \to \infty$

$$\lim_{\varepsilon \to 0} \int_{|z-z_0|=\varepsilon, \operatorname{Im}(z)>0} f(z) dz = \pi \cdot i \cdot \operatorname{Res} \bigl(f \big| z_0\bigr)$$
 (Halbkreis um Singularität)

6.4 Gängster-Lemma

Sei $\gamma_R(t):=Re^{\mathrm{i}t}$ für $t\in[0,\pi].$ Seien p
 und q Polynome mit der folgenden Eigenschaften:

- 1. $deg(p) \le deg(q) 2;$
- 2. q(x) besitzt keine Nullstellen auf der x-Achse.

Sei $f(z):=\frac{p(z)}{q(z)}\cdot h(z)$, wobei |h(z)| auf der Menge $\{z\in\mathbb{C}:Im(z)\geq 0\}$ beschränkt ist. Dann gilt: $\lim_{R\to\infty}\int_{\gamma_R}f(z)dz=0$

6.5 Einige Anwendungen des Residuensatzes

1.
$$\int_{0}^{2\pi} f(\cos(\varphi), \sin(\varphi)) d\varphi = \frac{1}{i} \int_{|z|=1}^{\pi} \frac{1}{z} f\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right) dz$$
$$= 2\pi \sum_{z_{i} \in \partial B(0,1)} \operatorname{Res}\left(\frac{1}{z} f\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right) \middle| z_{i}\right)$$

$$2. \int_{-\infty}^{\infty} f(x)dx = \begin{cases} 2\pi i \sum_{z_i \in H^+} \operatorname{Res}(f|z_i) + \pi i \sum_{z_i \in \mathbb{R}} \operatorname{Res}(f|z_i) \\ -2\pi i \sum_{z_i \in H^-} \operatorname{Res}(f|z_i) - \pi i \sum_{z_i \in \mathbb{R}} \operatorname{Res}(f|z_i) \end{cases}$$

falls
$$f(z) = \frac{p(z)}{q(z)}$$
 und $deg(p) \le deg(q) - 2$

3.
$$\int_{-\infty}^{\infty} f(x)e^{i\alpha x}dx = \begin{cases} 2\pi i \sum_{z_i \in H^+} \operatorname{Res}(f(z)e^{i\alpha z}|z_i) & \alpha \geqslant 0\\ -2\pi i \sum_{z_i \in H^-} \operatorname{Res}(f(z)e^{i\alpha z}|z_i) & \alpha \leqslant 0 \end{cases}$$

falls
$$f(z) = \frac{p(z)}{q(z)}$$
 und $q(z) \neq 0 \ \forall z \in \mathbb{R}$ und $\deg(p) \leqslant \deg(q) - 2$

$$4. \int_{-\infty}^{\infty} f(x) \cos(\alpha x) dx = \begin{cases} -2\pi \cdot \operatorname{Im} \left(\sum_{z_i \in H^+} \operatorname{Res} (f(z) e^{i\alpha z} | z_i) \right) & \alpha \geqslant 0 \\ 2\pi \cdot \operatorname{Im} \left(\sum_{z_i \in H^-} \operatorname{Res} (f(z) e^{i\alpha z} | z_i) \right) & \alpha \leqslant 0 \end{cases}$$

 \rightarrow gleiche Bedingungen wie bei 3.

$$5. \int_{-\infty}^{\infty} f(x) \sin(\alpha x) dx = \begin{cases} 2\pi \cdot \operatorname{Re} \left(\sum_{z_i \in H^+} \operatorname{Res} \left(f(z) e^{i\alpha z} \middle| z_i \right) \right) & \alpha \geqslant 0 \\ -2\pi \cdot \operatorname{Re} \left(\sum_{z_i \in H^-} \operatorname{Res} \left(f(z) e^{i\alpha z} \middle| z_i \right) \right) & \alpha \leqslant 0 \end{cases}$$

 \rightarrow gleiche Bedingungen wie bei 3.

Dabei ist mit H^+ die obere Halbebene, und mit H^- die untere Halbebene gemeint. Also folgt:

- $z \in H^+$: Singularitäten liegen auf der oberen Halbebene
- $z \in H^- :$ Singularitäten liegen auf der unteren Halbebene
- $z \in \mathbb{R}$: Singularitäten liegen auf der reellen Achse

7 Taylorreihe

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k \quad \forall z \in B(z_0, \rho)$$

7.1 Wichtige Potenzreihen

qeometrische Reihe:

$$\frac{1}{1 - \left(\frac{z}{c}\right)^d} = \sum_{k=0}^{\infty} \left(\frac{z}{c}\right)^{d \cdot k} \iff \left|\frac{z}{c}\right| < 1 \quad \text{mit } \rho = 1$$

$$\frac{1}{c\left(1 - \frac{z}{c}\right)^2} = \sum_{k=1}^{\infty} \frac{k}{c} \left(\frac{z}{c}\right)^{k-1} \iff \left|\frac{z}{c}\right| < 1 \quad \text{mit } \rho$$

Wichtige Umformung für geom. Reihe:

$$\frac{1}{2-z} = \frac{1}{2-z+1-1} = \frac{1}{1-(z-1)} = \sum_{k=0}^{\infty} (z-1)^k \text{ für } |z-1| < 1$$

$$e^z = \exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!} = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24}$$
 mit $\rho = \infty$

$$Log(z) = Log(z_0) - \sum_{k=1}^{\infty} \frac{(-1)^k (z - z_0)^k}{k \cdot z_0^k}$$

$$\sin(z) = \sum_{k=0}^{\infty} \frac{(-1)^k \cdot z^{2k+1}}{(2k+1)!} = z - \frac{z^3}{6} + \frac{z^5}{120} - \frac{z^7}{5400} + -\dots$$

$$\cos(z) = \sum_{k=0}^{\infty} \frac{(-1)^k \cdot z^{2k}}{(2k)!} = 1 - \frac{z^2}{2} + \frac{z^4}{24} - \frac{z^6}{720} + \dots$$

$$e^{iz} = \exp(iz) = \cos(z) + i\sin(z) = 1 + ix + \frac{(ix)^2}{2} + \frac{(ix)^3}{6} + \frac{(ix)^4}{24} + \dots$$

$$= 1 + ix - \frac{x^2}{2} - \frac{ix^3}{6} + \frac{x^4}{24} + \frac{ix^5}{120} \mp \dots$$

$$= 1 - \frac{x^2}{2} + \frac{x^4}{24} \mp \dots + i\left(x - \frac{x^3}{6} + \frac{x^5}{120} \mp \dots\right)$$

7.2 Umrechnung

$$\frac{1}{z+a} = \frac{1}{a+z_0} \frac{1}{1 - \left(-\left(\frac{z-z_0}{a+z_0}\right)\right)} = \frac{1}{a+z_0} \sum_{k=0}^{\infty} \left(-\frac{z-z_0}{a+z_0}\right)^k$$

Wenn
$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
 für $|z - z_0| < \rho$

Dann
$$f(z) = -\sum_{k=-\infty}^{-1} a_k (z - z_0)^k$$
 für $|z - z_0| > \rho$

(Begründung hinschreiben!)

8 Laurentreihen

Entwicklung möglich \iff **KEINE Singularität** im Kreisring!

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z-z_0)^k \iff f(z) \text{ analytisch auf einem Kreisring } a < |z-z_0| < b$$

Hauptteil Nebenteil

$$\sum_{k=0}^{-1} a_k (z - z_0)^k \quad \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

Koeffizienten (wobei gilt: $\partial B = \partial B(z_0, r)!$)

$$a_k = \frac{1}{2\pi i} \oint_{\Omega R} \frac{f(z)}{(z - z_0)^{k+1}} dz$$

4 eigentlich NIE so berechnen, ist nur nützlich für Residuensatz und um Integrale zu bestimmen!

9 Fourierreihe

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{k\frac{2\pi i}{T}t} = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(k\frac{2\pi}{T}t\right) + b_k \sin\left(k\frac{2\pi}{T}t\right)$$

 $\operatorname{mit} c_k \in \mathbb{C} \text{ und } a_k, b_k \in \mathbb{R}$

9.1 Fourierkoeffizienten

$$a_k = \frac{2}{T} \int_{T_0}^{T_0+T} f(t) \cos\left(k\frac{2\pi}{T}t\right) dt$$

$$b_k = \frac{2}{T} \int_{T_0}^{T_0+T} f(t) \sin\left(k\frac{2\pi}{T}t\right) dt$$

$$c_k = \frac{1}{T} \int_{T_0}^{T_0+T} f(t) e^{-k\frac{2\pi i}{T}t} dt$$

 $Sonderf\"{a}lle$

•
$$f$$
 gerade: $f(t) = f(-t)$
 $b_k = 0$ bzw. $c_k = c_{-k} \ \forall k$

$$a_k = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos\left(k\frac{2\pi}{T}t\right) dt$$

• f ungerade:
$$f(t) = -f(-t)$$

 $a_k = 0$ bzw. $c_k = -c_{-k} \ \forall k$

$$b_k = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin\left(k\frac{2\pi}{T}t\right) dt$$

Legende

 T_0 : Beliebiger Startzeitpunkt, meistens = 0

T: Fundamentalperiode (kleinst mögliche Periode)

 $\frac{a_0}{2}$: arithmetisches Mittel von f(t)

 $ACHTUNG \colon c_0$ und a_0 müssen **einzeln** berechnet werden für k=0!

9.2 Koeffizientenumrechnung

$$c_k = \begin{cases} \frac{1}{2}(a_{(-k)} + ib_{(-k)}) & k < 0 \\ \frac{1}{2}(a_k - ib_k) & k > 0 \\ \frac{a_0}{2} & k = 0 \end{cases} \quad a_0 = 2 \cdot c_0$$

$$a_k = c_k + c_{(-k)}$$

$$b_k = i(c_k - c_{(-k)})$$

9.3 Fundamentalintegrale

$$\int\limits_{0}^{2\pi}\sin(kt)\;\mathrm{d}t=0\quad \text{ für }\quad k\in\mathbb{Z}$$

$$\int\limits_{0}^{2\pi}\cos(kt)\;\mathrm{d}t=0\quad \text{ für }\quad k\neq0\;\mathrm{und}\;k\in\mathbb{Z}$$

$$\int\limits_{0}^{2\pi}e^{ikt}\;\mathrm{d}t=0\quad \text{ für }\quad k\neq0\;\mathrm{und}\;k\in\mathbb{Z}$$

$$\int\limits_{|z|=r}^{2}z^{k}\;\mathrm{d}z=0\quad \text{ für }\quad k\neq-1\;\mathrm{und}\;k\in\mathbb{Z}$$

9.4 Wichtige Fourierintegrale

$$\int \sin(\omega t) \cdot \sin(\omega kt) dt = \frac{k \cdot \sin(\omega t) \cdot \cos(\omega kt) - \cos(\omega t) \cdot \sin(\omega kt)}{\omega - k^2 \omega} + C$$

$$\int \sin(\omega t) \cdot \cos(\omega kt) dt = \frac{k \cdot \sin(\omega t) \cdot \sin(\omega kt) + \cos(\omega t) \cdot \cos(\omega kt)}{(k^2 - 1) \cdot \omega} + C$$

$$\int \cos(\omega t) \cdot \cos(\omega kt) dt = \frac{k \cdot \sin(\omega t) \cdot \cos(\omega kt) - k \cdot \cos(\omega t) \sin(\omega kt)}{\omega - k^2 \omega} + C$$

$$\int \cos(\omega t) \cdot \sin(\omega kt) dt = \frac{\sin(\omega t) \cdot \sin(\omega kt) + k \cdot \cos(\omega t) \cdot \cos(\omega kt)}{\omega - k^2 \omega} + C$$

9.5 Satz von Parseval

$$||f||_2 = \frac{1}{T} \int_{T_0}^{T_0+T} |f(t)|^2 dt = \sum_{k=-\infty}^{\infty} |c_k|^2 = \frac{a_0^2}{4} + \frac{1}{2} \sum_{k=1}^{\infty} |a_k|^2 + |b_k|^2$$

9.6 Satz von Plancherel

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} |\hat{f}(s)|^2 ds$$

9.7 Skalarprodukt

$$\begin{split} \langle f,g \rangle &= \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} f(t) \overline{g(t)} \; \mathrm{d}t \quad \text{falls } f,g \; 2\pi\text{-periodisch} \\ \langle f,g \rangle &= \int\limits_{-\pi}^{\infty} f(t) \overline{g(t)} dt \qquad \text{sonst} \end{split}$$

9.8 Faltung

$$(f*g)(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\tau)g(t-\tau) d\tau \quad \text{falls } f, g \text{ } 2\pi\text{-periodisch}$$
$$(f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau \quad \text{ sonst}$$

10 Fouriertransformation

$$\widehat{f}(\omega) = \mathcal{F}\{f(x)\}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt \quad \text{falls } \int_{-\infty}^{\infty} |f(t)| dt < \infty$$

Rücktransformation

$$f(t) = \mathcal{F}\{\widehat{f}(\omega)\}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(w)e^{i\omega t} dw \quad \text{falls } \int_{-\infty}^{\infty} |\widehat{f}(w)| dw < \infty$$

Sonderfälle

$$f$$
 gerade: $f(t) = f(-t) \implies \widehat{f}(\omega) = \widehat{f}(-\omega)$
 f ungerade: $f(t) = -f(-t) \implies \widehat{f}(\omega) = -\widehat{f}(-\omega)$

Beispiele

$$f(x) = \begin{cases} 1 & -a \leqslant x \leqslant a \\ 0 & sonst \end{cases} \iff \hat{f}(\omega) = \frac{2\sin(\omega a)}{\omega}$$

$$f(x) = e^{-ax^2}$$
 $a > 0 \iff \hat{f}(\omega) = \sqrt{\frac{\pi}{a}}e^{-\frac{\omega^2}{4a}}$

$$f(x) = \frac{1}{k^2 + x^2}$$
 $k > 0 \iff \hat{f}(\omega) = \frac{\pi}{k} e^{-k|\omega|}$

Rechenregeln

$\overline{Funktion}$	$Fourier\hbox{-} Transformier te$	$Erkl\"{a}rung$
f(x)	$\hat{f}(\omega)$	Transformation
$a \cdot f(x) + b \cdot g(x)$	$a \cdot \hat{f}(\omega) + b \cdot \hat{g}(\omega)$	Linearität
f(x-a)	$e^{-i\omega a}\hat{f}(\omega)$	Verschiebung im Zeitbereich
f(ax)	$\frac{1}{ a }\hat{f}(\frac{\omega}{a})$ $\hat{f}(\omega - b)$	Streckung im Zeitbereich
$e^{ibx}f(x)$	$\hat{f}(\omega-b)$	Verschiebung im Frequenzbereich
$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n f(x)$	$(i\omega)^n \hat{f}(\omega)$	Zeitliche Ableitung
$x^n f(x)$	$i^{n} \left(\frac{\mathrm{d}}{\mathrm{d}\omega}\right)^{n} \hat{f}(\omega)$ $\hat{f}(\omega) \cdot \hat{g}(\omega)$ $\frac{1}{2\pi} (\hat{f} * \hat{g})(\omega)$ $2\pi f(-\omega)$	Ableitung im Frequenzbereich
(f*g)(x)	$\hat{f}(\omega)\cdot\hat{g}(\omega)$	Faltung im Zeitbereich
$f(x) \cdot g(x)$	$\frac{1}{2\pi}(\hat{f}*\hat{g})(\omega)$	Faltung im Frequenzbereich
$\hat{f}(x)$	$2\pi f(-\omega)$	Dualität

10.1 Dualität der Fouriertransformation

Die folgenden Korrespondenzen sind äquivalent.

$$x(t)$$
 \longrightarrow $\hat{x}(f)$

$$\hat{x}(t)$$
 \circ $x(-f)$

$$\hat{x}(-t)$$
 \circ $x(f)$

11 Laplacetransformation

$$F(s) = \int_{0}^{\infty} f(t)e^{-st}dt \quad \text{mit } f(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} F(s)e^{st} ds$$

Wobei $s = \sigma + i\omega$ und σ so gewählt werden muss, dass die Integrale konvergieren.

Hier (KomA) wird bei der Laplacetrafo f(t) immer = 0 gesetzt, wenn t < 0!

Dies geschieht mit Hilfe der

Heavyside Sprungfunktion

$$H(T) = \begin{cases} 1 & t \geqslant 0 \\ 0 & t < 0 \end{cases}$$

 $\overline{H(T)}$ wird auch $\overline{\mathcal{U}(T)}$ geschrieben

11.1 DGl mit Laplace lösen

- DGL Laplace transformieren (rechte und linke Seite) mit Hilfe der Tabel-
- Anfangswerte in transformierte DGL einsetzen.
- DGL nach Y(s) auflösen.
- Ergebnis wieder mit Tabellen rücktransformieren (ev. mit Partialbruchzerlegung, ...).

11.2 Wichtigste Identitäten
$$(f*g)(t) = \int_0^t f(t-\tau)g(\tau) \, \mathrm{d}\tau \quad \circ \longrightarrow \quad F(s)G(s)$$

$$f(at) \qquad \circ \longrightarrow \quad \frac{1}{|a|}F(\frac{s}{a})$$

$$f(t)e^{at} \qquad \circ \longrightarrow \quad F(s-a)$$

$$f'(t) \qquad \circ \longrightarrow \quad sF(s)-f(0^+)$$

$$f'''(t) \qquad \circ \longrightarrow \quad s^2F(s)-sf(0^+)-f'(0^+)$$

$$f''''(t) \qquad \circ \longrightarrow \quad s^3F(s)-s^2f(0^+)-sf'(0^+)-f''(0^+)$$

$$f(t-a) \qquad \circ \longrightarrow \quad e^{-as}F(s)$$

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^n f(t) \qquad \circ \longrightarrow \quad s^nF(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\ldots$$

$$-sf^{(n-2)}(0)-f^{(n-1)}(0)$$

$$\int_0^t f(\tau) \, \mathrm{d}\tau \qquad \circ \longrightarrow \quad \frac{1}{s}F(s)$$

$$t^nf(t) \qquad \circ \longrightarrow \quad (-1)^n \left(\frac{\mathrm{d}}{\mathrm{d}s}\right)^n F(s)$$

$$\int_0^\infty F(u) \, \mathrm{d}u$$

$$f(t+T)=f(t) \qquad \circ \longrightarrow \quad \frac{1}{1-e^{-sT}} \int_0^T f(t)e^{-st} \, \mathrm{d}t$$

 $= \frac{1}{1 - e^{-sT}} \mathcal{L}\{f(t)H(T-t)\}(s)$

$$f(t)$$
 $\mathcal{L}[f(t)] = F(s)$

$$\frac{1}{2}$$
 (1)

$$\frac{ae^{at} - be^{bt}}{a - b}$$

f(t)

 $t^n e^{at}$

$$\frac{s}{(19)}$$

(21)

 $\mathcal{L}[f(t)] = F(s)$

$$e^{at}f(t) F(s-a) (2)$$

1

 $\mathcal{U}(t-a)$

 $\cos kt$

$$c$$
-as

$$te^{at} \qquad \frac{1}{(s-a)^2} \tag{20}$$

$$f(t-a)\mathcal{U}(t-a) \qquad e^{-as}F(s) \tag{4}$$

$$\delta(t) \qquad 1 \qquad (5) \qquad e^{at} \sin kt \qquad \frac{k}{(s-a)^2 + k^2} \qquad (22)$$

(3)

$$\delta(t - t_0)$$
 e^{-st_0} (6) $e^{at} \cos kt$ $\frac{s - a}{(s - a)^2 + k^2}$ (23)

$$t^{n}f(t)$$
 $(-1)^{n}\frac{d^{n}F(s)}{ds^{n}}$ (7)
$$e^{at}\sinh kt \qquad \frac{k}{(s-a)^{2}-k^{2}}$$
 (24)

$$f^{n}(t)$$
 $s^{n}F(s) - s^{(n-1)}f(0) - e^{at}\cosh kt$ $\frac{s-a}{(s-a)^{2}-k^{2}}$ (25)

$$\cdots - f^{(n-1)}(0)$$
 (9) $t \sin kt$ $\frac{2ks}{(s^2 + k^2)^2}$ (26)

$$\int_{0}^{t} f(x)g(t-x)dx \qquad F(s)G(s) \tag{10}$$

$$t\cos kt \qquad \frac{s^{2}-k^{2}}{(s^{2}+k^{2})^{2}} \tag{27}$$

$$t^{n} \ (n = 0, 1, 2, \dots)$$
 $\frac{n!}{s^{n+1}}$ (11)
$$t \sinh kt \qquad \frac{2ks}{(s^{2} - k^{2})^{2}}$$
 (28)

$$t^{x} (x \ge -1 \in \mathbb{R}) \qquad \frac{\Gamma(x+1)}{s^{x+1}}$$

$$t \cosh kt \qquad \frac{s^{2} - k^{2}}{(2s-1)^{2}}$$

$$(29)$$

$$\frac{sin kt}{s^2 + k^2} \qquad (13)$$

$$\frac{sin at}{t} \qquad \arctan \frac{a}{s} \qquad (30)$$

$$e^{at} \qquad \frac{1}{s-a} \qquad (15) \qquad \frac{1}{\sqrt{\pi t}} e^{-a^2/4t} \qquad \frac{e^{-a\sqrt{s}}}{\sqrt{s}} \qquad (31)$$

$$\frac{k}{2\sqrt{\pi t^3}}e^{-a^2/4t} \qquad e^{-a\sqrt{s}} \tag{32}$$

$$\frac{s}{s^2 - k^2} \qquad (17) \qquad \operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right) \qquad \frac{e^{-a\sqrt{s}}}{s} \qquad (33)$$

$$\frac{e^{at} - e^{bt}}{a - b} \qquad \frac{1}{(s - a)(s - b)} \tag{18}$$

Teil II

Trigonometrie

1 Trigonometrische Definitionen & Sätze

1.1 Definitionen

$$sin(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \dots$$

$$cos(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \frac{x^0}{0!} - \frac{x^2}{2!} + \frac{x^4}{4!} \mp \dots$$

$$exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!} = \lim_{n \to \infty} \left(1 + \frac{x^n}{n}\right)^n$$

$$\arctan(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = \frac{x}{1} - \frac{x^3}{3} + \frac{x^5}{5} \mp \dots$$

Hinweis: Für einfache Approximation genügt es die ersten paar Glieder der arctan(x) - Reihe zu berechnen.

Falls: $x \notin [0,1]$, gibt es eine Vereinfachung: $arctan(x) = \frac{sgn(x)*\pi}{2} - arctan(\frac{1}{x})$

1.1.1 Definition Taylorreihe

Eine Funktion f(x) wird an einer Stelle x_0 angenähert durch $Tf(x;x_0) =$ $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = f(x_0)$

1.1.2 Definitionen csc(x), sec(x), cot(x)

$$csc(x) := \frac{1}{sin(x)}$$
 $sec(x) := \frac{1}{cos(x)}$

$$sec(x) := \frac{1}{cos(x)}$$

$$cot(x) := \frac{1}{tan(x)} = \frac{cos(x)}{sin(x)}$$

1.2 Periodizitäten

- $1 \cdot e^{2\pi i k} = 1$ für alle $k \in \mathbb{Z}$
- $e^{\frac{\pi}{2}ik} = i$
- $\bullet \ e^{-\frac{\pi}{2}ik} = -i$
- $e^{-2\pi ik} = 1$

- $e^{\pi i k} = (-1)^k$
- $e^{-\pi i k} = (-1)^k$

- $\cosh(z + 2\pi i) = \cosh(z)$
- $\bullet \sin(z \pi) = -\sin(z)$

• $\sin(z+2\pi) = \sin(z)$

• $\cos(z + 2\pi) = \cos(z)$

• $\sinh(z + 2\pi i) = \sinh(z)$

- $\cos(z-\frac{\pi}{2})=\sin(z)$

1.3 Winkel

φ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$
Grad	0°	30°	45°	60°	90°	120°	135°	150°
$\sin(\varphi)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
$\cos(\varphi)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$
$tan(\varphi)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$\pm \infty$	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$

φ	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$
Grad	180°	210°	225°	240°	270°	300°	315°
$\sin(\varphi)$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{2}}$
$\cos(\varphi)$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$
$tan(\varphi)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$\pm \infty$	$-\sqrt{3}$	-1

1.4 Sinusssatz

Abbildung 1: Quelle: https://de.wikipedia.org/

1.5 Cosinusssatz

$$a^2 + b^2 - 2ab * cos(\gamma) = c^2$$

1.6 Standardintegrale

$$\begin{array}{ll} \frac{d}{dx}arcsin(x) = \frac{1}{\sqrt{1-x^2}} & \frac{d}{dx}arsinh(x) = \frac{1}{\sqrt{x^2+1}} \\ \frac{d}{dx}arccos(x) = \frac{-1}{\sqrt{1-x^2}} & \frac{d}{dx}arcosh(x) = \frac{1}{\sqrt{x^2-1}}, \text{wenn } x > 1 \\ \frac{d}{dx}arctan(x) = \frac{1}{x^2+1} & \frac{d}{dx}artanh(x) = \frac{1}{1-x^2}, \text{wenn } |x| < 1 \end{array}$$

1.7 Euler Formel

$$\begin{aligned} \exp(i\varphi) &= \cos(\varphi) + i\sin(\varphi) \\ \exp(-i\varphi) &= \cos(-\varphi) + i\sin(-\varphi) \Longleftrightarrow \exp(-i\varphi) = \cos(\varphi) - i\sin(\varphi) \end{aligned}$$

Daraus kann nun sin, sinh, cos und cosh in Termen von exp(x) ausgedrückt werden.

$$\frac{\exp(i\varphi) + \exp(-i\varphi)}{2} = \cos(\varphi)$$
$$\frac{\exp(i\varphi) - \exp(-i\varphi)}{2i} = \sin(\varphi)$$

$$\frac{exp(i\varphi) - exp(-i\varphi)}{2i} = sin(\varphi)$$

Ignoriere alle i, dann folgt...

$$exp(\varphi) + exp(-\varphi) = cosh(\varphi)$$

$$\frac{exp(\varphi) + exp(-\varphi)}{2} = cosh(\varphi)$$
$$\frac{exp(\varphi) - exp(-\varphi)}{2} = sinh(\varphi)$$

1.8 Ableitungen, Integrale

1.9 Ableitungen

$$\frac{d}{dx}sin(x) = cos(x)$$

$$\frac{d}{dx}cos(x) = -sin(x)$$

$$\frac{d}{dx}tan(x) = \frac{d}{dx}\frac{sin(x)}{cos(x)} = \frac{cos(x)cos(x) - sin(x)sin(x)}{cos^2(x)} = 1 - \frac{sin^2(x)}{cos^2(x)} = 1 - tan^2(x) = \frac{1}{2}$$

$$\frac{d}{dx}\frac{1}{\sin(x)} = \frac{0*\sin(x)-1*\cos(x)}{\sin^2(x)} = \frac{-\cos(x)}{\sin^2(x)}$$

$$\frac{d}{dx}\frac{1}{\cos(x)} = \frac{0*\cos(x) - 1*(-\sin(x))}{\cos^2(x)} = \frac{\sin(x)}{\cos^2(x)}$$

$$\frac{d}{dx}\sin^2(x) = \sin(x) * \cos(x) + \cos(x) * \sin(x) = 2 * \sin(x) * \cos(x)$$

$$\frac{d}{dx}cos^{2}(x) = cos(x) * (-sin)(x) + (-sin(x)) * cos(x) = -2 * sin(x) * cos(x)$$

1.10 Rechenregeln

Additionstheoreme

$$sin^{2}(x) + cos^{2}(x) = 1$$

$$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y) \quad (\#umgekehrteAbleitungsregel)$$

$$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$$

$$tan(x \pm y) = \frac{tan(x)\pm tan(y)}{1\mp tan(x)tan(y)} = \frac{sin(x\pm y)}{cos(x\pm y)}$$

1.12 Doppelwinkel

$$\begin{split} \sin(2x) &= 2sin(x)cos(x) = \frac{2tan(x)}{1+tan^2(x)} \\ \cos(2x) &= \cos^2(x) - sin^2(x) = 1 - 2sin^2(x) = 2cos^2(x) - 1 = \frac{1-tan^2(x)}{1+tan^2(x)} \\ \tan(2x) &= \frac{2tan(x)}{1-tan^2(x)} = \frac{2}{cot(x)-tan(x)} \\ \cot(2x) &= \frac{cot^2(x)-1}{2cot(x)} = \frac{cot(x)-tan(x)}{2} \end{split}$$

Beweis mit Additionstheorem

1.13 Produkt-zu-Summen-Formel

$$\begin{split} \sin(x)*\sin(y) &= \tfrac{1}{2}(\cos(x-y)-\cos(x+y))\\ \cos(x)*\cos(y) &= \tfrac{1}{2}(\cos(x-y)+\cos(x+y))\\ \sin(x)*\cos(y) &= \tfrac{1}{2}(\sin(x-y)+\sin(x+y)) \end{split}$$

1.14 Hyperbolische Funktionen

$$\begin{aligned} & sinh(z) := \frac{e^z - e^{-z}}{2} = z + \frac{z^3}{3!} + \frac{z^5}{7!} + \frac{z^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!} \\ & cosh(z) := \frac{e^z + e^{-z}}{2} = 1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \frac{z^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!} \\ & sin(z) = Im(e^{iz}) = \frac{1}{2i}(e^{iz} - e^{-iz}) \\ & cos(z) = \text{Re}(e^{iz}) = \frac{1}{2}(e^{iz} + e^{-iz}) \end{aligned}$$

$$\begin{aligned} & \sinh(\pm iz) = \pm i \cdot \sin(z) \\ & \cosh(\pm iz) = \cos(z) \\ & \sin(iz) = i \cdot \sinh(z) \\ & \cos(iz) = \cosh(z) \end{aligned}$$

$$\begin{split} &\sin(-z) = -\sin(z) \\ &\tan(-z) = -\tan(z) \\ &\cos(-z) = \cos(z) \\ &\arctan(-z) = -\arctan(z) \\ &\sin(z) = \sin(x)\cosh(y) + i\cos(x)\sinh(y) \\ &\cos(z) = \cos(x)\cosh(y) - i\sin(x)\sinh(y) \\ &e^z = e^x\cos(y) + ie^x\sin(y) \\ &\sinh(z) = \cos(y)\sinh(x) + i\sin(y)\cosh(x) \\ &\cosh(z) = \cos(y)\cosh(x) + i\sin(y)\sinh(x) \end{split}$$

•
$$\int \sinh(ax+b) dx = \frac{\cosh(ax+b)}{a}$$
; $\int \sinh(x) dx = \cosh(x)$

•
$$\int \cosh(ax+b) dx = \frac{\sinh(ax+b)}{a}$$
; $\int \cosh(x) dx = \sinh(x)$

•
$$\int \tan(ax+b) dx = \frac{\log(\cosh(ax+b))}{a}; \int \tan(x) dx = \log(\cosh(x))$$

1.15 Additions theoreme

$$sinh(z_1 \pm z_2) = sinh(z_1) \cdot cosh(z_2) \pm sinh(z_2) \cdot cosh(z_1)$$

 $cosh(z_1 \pm z_2) = cosh(z_1) \cdot cosh(z_2) \pm sinh(z_1) \cdot sinh(z_2)$
 $tanh(z_1 \pm z_2) = \frac{tanh(z_1) \pm tanh(z_2)}{1 \pm tanh(z_1) \cdot tanh(z_2)}$

1.15.1 Zusammenhänge

$$\cosh^2(z) - \sinh^2(z) = 1 \qquad \cosh(z) + \sinh(z) = e^z \qquad \cosh(z) - \sinh(z) = e^{-z}$$

1.16 Ableitungen

$$\tfrac{d}{dz}sinh(z) = cosh(z) \ \ \tfrac{d}{dz}cosh(z) = sinh(z) \ \ \tfrac{d}{dz}tanh(z) = 1 - tanh^2(z) = \tfrac{1}{cosh^2(x)}$$

2 Plots Trigonometrischer Funktionen

Teil III

Differenzialrechnung

1 Differentialgleichungen

1.1 Grundbegriffe

Ordnung: höchste vorkommende Ableitung

linear: alle y-abhängigen Terme kommen linear vor (keine Terme

wie zum Beispiel y^2 , $(y'')^3$, $\sin(y)$, $e^{y'}$

homogen: Gleichung ohne Störfunktionen

Störfunktion: Term, der rein von der Funktionsvariablen x abhängt

1.2 Methoden

	Problem	Anforderungen
Trennung der	$y' = \frac{dy}{dx} = h(x) \cdot g(y)$	1. Ordnung
Variablen		
Variation der	$y' = \frac{dy}{dx} = h(x)y + b(x)$	1. Ordnung
Konstanten		inhomogen
Euler-Ansatz	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = 0$	n. Ordnung
		linear
		homogen
Direkter An-	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = b(x)$	n. Ordnung
satz		linear
		inhomogen

1.2.1 Trennung der Variable

$$y' + x \tan y = 0, \ y(0) = \frac{\pi}{2}$$

umformen
$$\frac{dy}{dx} = -x \tan y$$

konstante Lösungen $y(x) \equiv 0$ erfüllt jedoch $y(0) \equiv \frac{\pi}{2}$ nicht

Trennung
$$\frac{dy}{\tan y} = -xdx$$

integrieren
$$\int \frac{\cos y}{\sin y} dy = -\int x dx \Rightarrow \log|\sin y| = -\frac{x^2}{2} + C$$
$$\Rightarrow |\sin y| = e^C e^{\frac{-x^2}{2}} \Rightarrow \sin y = \pm e^C e^{\frac{-x^2}{2}} = Ce^{\frac{-x}{2}}$$

Anfangsbedingung gebrauchen $\sin(y(0)) = \sin(\frac{\pi}{2}) = 1 \Rightarrow C = 1$

Lösung
$$y(x) = \arcsin(e^{\frac{-x^2}{2}})$$

1.2.2 Variation der Konstanten

Grundsatz:
$$y(x) = y_h(x) + y_p(x)$$

$$y'(x+1) + y = x^3, \ y(0) = \sqrt{5}$$

Trennung
$$\frac{y'}{y} = \frac{-1}{x+1}$$

konstante Lösungen $y(x) \equiv 0$ erfüllt jedoch $y(0) \equiv \sqrt{5}$ nicht

integrieren
$$\int \frac{dy}{y} = -\int \frac{dx}{x+1}$$
$$\Rightarrow \ln|y| = -\ln|x+1| + C$$

$$\begin{aligned} \textbf{Homogene L\"osung} \quad y_h(x) &= \frac{C}{x+1}, \text{ mit } C = \pm e^C \in \mathbb{R} \backslash 0 \\ \text{partikul\"arer Ansatz} \quad y_p(x) &= \frac{C(x)}{x+1} \\ \text{einsetzen} \quad &(\frac{C'(x)}{x+1} - \frac{C(x)}{(x+1)^2})(x+1) + \frac{C(x)}{x+1} = x^3 \\ & C'(x) &= x^3 \\ & C(x) &= \frac{x^4}{4} \end{aligned}$$

partkuläre Lösung
$$y_p(x) = \frac{x^4}{4(x+1)}$$

allgemeine Lösung
$$y(x) = y_h(x) + y_p(x) = \frac{C}{x+1} + \frac{x^4}{4(x+1)}$$

Anfangsbedingung benutzen
$$y(0) = \sqrt{5} \Rightarrow C = \sqrt{5}$$

Lösung
$$y(x) = \frac{\sqrt{5}}{x+1} + \frac{x^4}{4(x+1)}$$

1.2.3 Euler-Ansatz

$$y'' - 2y' - 8y = 0, \ y(1) = 1, y'(1) = 0$$

Euler-Ansatz
$$y(x) = e^{\lambda x}$$

einsetzen
$$\lambda^2 e^{\lambda x} - 2\lambda e^{\lambda x} - 8e^{\lambda x} = 0$$

charakt. Polynom
$$\lambda^2 - 2\lambda - 8 = (\lambda - 4)(\lambda + 2) = 0$$

Nullstellen
$$4, -2$$

allgemeine Lösung
$$y(x) = Ae^{4x} + Be^{-2x}$$

Anfangsbedingung gebrauchen
$$y(1) = Ae^4 + Be^{-2} = 1$$
,

$$y'(1) = 4Ae^4 - 2Be^{-2} = 0$$

$$\Rightarrow A = \frac{1}{3}e^{-4}, B = \frac{2}{3}e^{2}$$

Lösung
$$y(x) = \frac{1}{3}e^{4x-4} + \frac{2}{3}e^{2-2x}$$

Bemerkung: Zu einer m-fachen Nullstelle λ gehören die mlinear unabhängigen Lösungen $e^{\lambda x},\,x\cdot e^{\lambda x},\,\ldots,\,x^{m-1}\cdot e^{\lambda x}.$ Zur m-fachen Nullstelle $\lambda=0$ gehören die Lösungen $1,\,x,\,\ldots,\,x^{m-1}.$

Komplexe Nullstellen:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ein komplexes Nullstellenpaar der Form $\alpha \pm \beta i$ liefert folgende homogene Lösung:

$$y(x) = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x))$$

1.2.4 Direkter Ansatz

Grundsatz:
$$y(x) = y_{\text{homo}}(x) + y_p(x)$$

Inhomogener Term $b(x)$	Ansatz für $y_p(x)$	zu bestimmen
Polynom	$Ax^2 + Bx + C$	A, B, C
ce^{kx}	Ae^{kx}	A
$c\sin(kx)$ oder $c\cos(kx)$	$A\sin(kx) + B\cos(kx)$	A, B

Bemerkung: Kommt der gewählte Ansatz schon in der homogenen Lösung vor, so multipliziert man den Ansatz einfach mit x.

$$y''-y'+\frac{1}{4}y=\cos(x)$$
 homogener Ansatz
$$y''+y'+\frac{1}{4}y=0$$
 Euler-Ansatz anwenden
$$\lambda^2+\lambda+\frac{1}{4}=(\lambda+\frac{1}{2})^2=0$$
 homogene Lösung
$$\Rightarrow y_{\text{homo}}(x)=Ae^{-\frac{x}{2}}+Bx\cdot e^{-\frac{x}{2}}$$
 partikulärer Ansatz wählen
$$y_p(x)=a\cos(x)+b\sin(x)$$

$$\Rightarrow y_p'(x) = -a\sin(x) + b\cos(x), \ y_p''(x) =$$

$$= -a\cos(x) - b\sin(x)$$

Einsetzen
$$(-a+b+\frac{a}{4})\cos(x) + (-b-a+\frac{1}{4}b)\sin(x)$$

= $\cos(x)$

Koeffizientenvergleich
$$-\frac{3}{4}a+b=1, -a-\frac{3}{4}b=0$$

partikuläre Lösung
$$y_p(x) = -\frac{12}{25}\cos(x) + \frac{16}{25}\sin(x)$$

Lösung $y(x) = Ae^{-\frac{x}{2}} + Bx \cdot e^{-\frac{x}{2}} - \frac{12}{25}\cos(x) + \frac{16}{25}\sin(x)$

DGL: Ansätze zur Bestimmung einer partikulären Lösung

Störfunktion K(t)	Spektralbedingung	Ansatz für $y_p(t)$
const.		const.
t ^r	0 ∉ spec L	$A_0 + A_1 t + \dots + A_r t^r$
ı	$0 \in spec\ L, m$ -fach	$(A_0 + A_1t + \cdots + A_rt^r)t^m$
$b_0 + b_1 t + \dots + b_r t^r, b_i \in \mathbb{R}$	$0 \notin spec L$	$A_0 + A_1 t + \dots + A_r t^r$
	λ∉ spec L	$Ae^{\lambda t}$
$e^{\lambda t}$	$\lambda \in spec\ L, m$ -fach	$At^m e^{\lambda t}$
$t^2e^{\lambda t}$	λ∉ spec L	$(A_0 + A_1t + A_2t^2)e^{-t}$
$t^n e^{\lambda t}$		$(At^{n+1} + Bt^n)e^{\lambda t}$
$P(x)e^{\lambda t}$		Q(x)e ^{\lambdat}
$\cos(\omega t)$ $\sin(\omega t)$	±iω ∉ spec L	$A\cos(\omega t) + B\sin(\omega t)$
$\sin(\omega t) + \cos(\omega t)$	$\pm i\omega \in spec\ L$, einfach	$t(A\cos(\omega t) + B\sin(\omega t))$
$\cosh(\omega t)$	±iω ∉ spec L	$A \cos h(\omega t) + B \sinh(\omega t)$
$\sinh(\omega t)$ $\sinh(\omega t) + \cosh(\omega t)$	$\pm i\omega \in spec\ L$, einfach	$t(A\cos h(\omega t) + B\sinh(\omega t))$
$e^{\lambda t}\cos(\omega t)$	±iω ∉ spec L	$e^{\lambda t}(A\cos(\omega t) + B\sin(\omega t))$
$e^{\lambda t} \sin(\omega t)$ $e^{\lambda t} (\sin(\omega t) + \cos(\omega t))$	$\pm i\omega \in spec\ L$, einfach	$te^{\lambda t}(A\cos(\omega t) + B\sin(\omega t))$
$P(x)\cos(\omega t)$	±iω ∉ spec L	$Q(x)\cos(\omega t) + R(x)\sin(\omega t)$
$P(x)\sin(\omega t) P(x)(\sin(\omega t) + \cos(\omega t))$	$\pm i\omega \in spec\ L$, einfach	$t(Q(x)\cos(\omega t) + R(x)\sin(\omega t))$

Ist **λ** ∈ spec (Nullstelle des charakteristischen Polynoms), dann ist der entsprechende Ansatz noch mit **t** zu multiplizieren (ist in der Tabelle schon erledigt)

Liegt eine Linearkombination der Störfunktionen vor. so hat man auch als Ansatz eine entsprechende

Teil IV

Tables

1.3 Elementare Integrale

Substitutionen

$\int f(ax+b)$	u = ax + b	dx = du/a
$\int f(g(x) \cdot g'(x))$	u = g(x)	dx = du/g'(x)
$\int f\left(x,\sqrt{ax^2+bx+x}\right)$	$x = \alpha u + \beta$	$dx = \alpha du$
$\int f(x,\sqrt{1-x^2})$	$x = \sin(u)$	$dx = du\sqrt{1 - x^2}$
$\int f(x,\sqrt{1+x^2})$	$x = \sinh(u)$	$dx = du\sqrt{1 + x^2}$
$\int f(x, \sqrt{x^2-1})$	$x = \cosh(u)$	$dx = du\sqrt{x^2 - 1}$
$\int f(e^x, \sinh(x), \cosh(x))$	$u = e^x$	$dx = e^x dx$
$\int f(\sin(x),\cos(x))$	$u = \tan\left(\frac{x}{2}\right)$	$dx = 2\cos^2\left(\frac{x}{2}\right)du$
$\int f\left(\frac{1}{\sqrt{a^2-x^2}}\right)$	$u = \frac{x}{a}$	dx = a du
$\int f\left(\sqrt{1+\frac{1}{x^2}}\right)$	$u = \sqrt{x^2 - 1}$	$dx = \frac{\sqrt{x^2 - 1}}{x} du$, PBZ

f'(x)	f(x)	F(x)
$\frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$	$\frac{f(x)}{g(x)}$	
0	c	cx
$r \cdot x^{r-1}$	x^r	$\frac{x^{r+1}}{r+1}$
$-\frac{1}{x^2} = -x^{-2}$	$\frac{\frac{1}{x} = x^{-1}}{\sqrt{x} = x^{\frac{1}{2}}}$	$\ln x $
$\frac{-\frac{1}{x^2} = -x^{-2}}{\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}}}$	$\sqrt{x} = x^{\frac{1}{2}}$	$\frac{2}{3}x^{\frac{3}{2}}$
$\cos(x)$	$\sin(x)$	$-\cos(x)$
$-\sin(x)$	$\cos(x)$	$\sin(x)$
$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	tan(x)	$-\ln \cos(x) $
e^x	e^x	e^x
$c \cdot e^{cx}$	e^{cx}	$\frac{1}{c} \cdot e^{cx}$
$\ln(c) \cdot c^x$	c^x	$\frac{c^x}{\ln(c)}$
$\frac{1}{x}$	$\ln x $	$x(\ln x -1)$
$\frac{1}{\ln(a)\cdot x}$	$\log_a x $	$\frac{x}{\ln(a)}(\ln x -1)$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$	$x \cdot \arcsin(x) + \sqrt{1 - x^2}$
$-\frac{1}{\sqrt{1-x^2}}$	$\arccos(x)$	$x \cdot \arccos(x) - \sqrt{1 - x^2}$
$ \begin{array}{r} -\frac{1}{\sqrt{1-x^2}} \\ \frac{1}{1+x^2} \end{array} $	$\arctan(x)$	$x \cdot \arctan(x) - \frac{1}{2}\ln(1+x^2)$
$\cosh(x)$	$\sinh(x) = \frac{e^x - e^{-x}}{2}$	$\cosh(x)$
$\sinh(x)$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$	$\sinh(x)$
$\frac{1}{\cosh^2(x)}$	tanh(x)	$\log(\cosh(x))$

1.4 Wichtige Grenzwerte

$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x \qquad \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \qquad \lim_{x \to 0} \frac{\log_a(1 + x)}{x} = \frac{1}{\ln a}$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0 \qquad \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1 \qquad \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0 \qquad \lim_{n \to \infty} \frac{e^n - 1}{n} = 1$$

$$\lim_{n \to \infty} \sqrt[n]{n!} = \infty \qquad \lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$\lim_{n \to \infty} \ln(n) = \infty \qquad \lim_{n \to \infty} \frac{\log_a(1 + x)}{x} = \frac{1}{\ln a}$$

Formeltafel

2.1 Binomialkoeffizient

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} \quad \text{für } 0 \le k \le n$$

2.2 Ableitungen

2.2.1 Regeln

- (Summerregel) (f+q)'(x) = f'(x) + g'(x)
- (Produktregel) (fg)'(x) = f'(x)g(x) + f(x)g'(x)
- (Quotientenregel) $(\frac{f}{g})'(x) = \frac{f'(x)g(x) f(x)g'(x)}{a^2(x)}$
- (Kettenregel) $(q \circ f)'(x) = (q(f(x)))' = q'(f(x))f'(x)$
- (Umkehrfunktion) $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = (f^{-1})'(f(x)) = \frac{1}{f'(x)}$

2.3 Integrale

Integralregeln

Es gelte: $\int f(x) dx = F(x)$

- $\int u' \cdot v dx = uv \int u \cdot v' dx$
- $\int f(x)dx = \int f(q(t)) \cdot g'(t)dt, \ x = g(t), dx = g'(t)dt$
- $\int f(a+x) dx = F(a+x)$
- $\int f(a-x) dx = -F(a-x)$
- $\int f(-x) dx = -F(-x)$
- $\int f(\alpha x) dx = \frac{1}{\alpha} F(\alpha x)$
- $\int \frac{g'(x)}{g(x)} dx = \ln |g(x)|$
- $\int g(x)g'(x) dx = \frac{1}{2}g(x)^2$
- $|\int f(x)| \le \int |f(x)|$ (wenn f, Riemann-Integrable ist)

trionometrische Funktionen

- $\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$
- $\int \cos(ax) dx = \frac{1}{a} \sin(ax)$
- $\bullet \int \sin(ax)^2 dx = \frac{x}{2} \frac{\sin(2ax)}{4a}$ $\bullet \int \frac{1}{\sin^2 x} dx = -\cot x$
- $\bullet \int_{x \sin(ax)}^{\sin(ax)} dx = \frac{\sin(ax)}{a^2}$

- $\int \arcsin(x) dx = x \arcsin(x) + \sqrt{1-x^2}$
- $\int \arccos(x) dx = x \arccos(x) \sqrt{1-x^2}$
- $\bullet \int \cos^2(ax) dx = \frac{x}{2} + \frac{\sin(2ax)}{4a}$ $\bullet \int \frac{1}{\cos^2(x)} dx = \tan x$
- $\int \arctan(x) dx = x \arctan(x) \frac{1}{2} \ln(1+x^2)$

Exponentialfunktion

- $\int e^{ax} dx = \frac{1}{a} e^{ax}$ $\int x e^{ax} dx = e^{ax} \cdot \left(\frac{ax-1}{a^2}\right)$
- $\oint x \ln(x) dx = \frac{1}{2}x^2(\ln(x) \frac{1}{2})$ $\oint \int_{-\infty}^{\infty} e^{-\frac{1}{a}x^2} dx = \sqrt{a\pi}$

2.4 Reihen

- $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert ("harmonische Reihe")
- $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = \ln \frac{1}{2}$
- $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ konvergiert für $\alpha > 1$, divergiert für $\alpha < 1$
- $\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$ für |q| < 1 ("geometrische Reihe")
- $\sum_{n=0}^{\infty} (-1)^n q^n = \frac{1}{1-a}$ für |q| < 1 ("geometrische Reihe")

•
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

•
$$\sum_{n=1}^{m} n = \frac{m(m+1)}{2}$$

•
$$\sum_{n=0}^{m} q^n = \frac{1-q^{m+1}}{1-q}$$

•
$$\sum_{n=0}^{m} n^2 = \frac{1}{6}m(m+1)(2m+1)$$

•
$$\sum_{n=0}^{m} n^3 = \frac{1}{4}m^2(m+1)^2$$

2.5 Reihenentwicklung

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots$$

•
$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{(n+1)} \frac{x^n}{n}$$

•
$$-\ln(1-x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$

•
$$\ln x = \sum_{n=0}^{\infty} \frac{2}{2n+1} \cdot \left(\frac{x-1}{x+1}\right)^{2n}$$

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 für $|x| < 1$ (Geom. Reihe)

•
$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} nx^{(n-1)}$$

•
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$

•
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \dots$$

•
$$\sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

•
$$\cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

•
$$\arcsin x = \sum_{k=0}^{\infty} {2k \choose k} \frac{x^{2k+1}}{4^k (2k+1)}$$

•
$$\arccos x = \frac{\pi}{2} - \arcsin x$$

•
$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n+1)}}{2n+1}$$
 für $|x| < 1$

2.6 Linienintegral

• 2. Art:
$$\int_{\gamma} \vec{f}(\vec{x}) d\vec{x} := \int_{a}^{b} \left\langle \vec{f}(\gamma(t)), \gamma(t)' \right\rangle dt$$

• 1. Art:
$$\int_{\gamma} f ds := \int_{a}^{b} f(\gamma(t)) \|\gamma(t)'\|_{2} dt$$

2.7 Kreuzprodukt

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

2.8 Exponent

•
$$a^n a^m = a^{n+m}$$

• $(a^n)^m = a^{nm}$

•
$$(ab)^n = a^n b^n$$

• $(\frac{a}{b})^n = \frac{a^n}{b^n}$
• $a^{-n} = \frac{1}{a^n}$

$$\bullet \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\bullet a^{-n} = \frac{1}{a^n}$$

$$\bullet \ \left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

$$\bullet \ \left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)$$

•
$$a^{\frac{n}{m}} = (a^{\frac{1}{m}})^n = (a^n)^{\frac{1}{m}}$$

2.10 Ungleichungen

• $a < b \Rightarrow a + c < b + c$ und a - c < b - c

•
$$a < b \text{ und } c > 0 \Rightarrow \frac{a}{c} < \frac{b}{c}$$

•
$$a < b \text{ und } c < 0 \Rightarrow \frac{a}{c} > \frac{b}{c}$$

• Dreiecksungleichung für reelle Zahlen:
$$|a+b| \leq |a| + |b|$$

• Cauchy-Schwarz Ungleichung:
$$|x \cdot y| < ||x|| \cdot ||y||, \ x, y \in \mathbb{R}^n$$

2.9 Wurzel

2.11 Logarithmen

•
$$e^{-\infty} = 0$$

•
$$e^0 = 1$$

•
$$e^1 = e = 2.718281828$$

$$\bullet \ e^{\infty} = \infty$$

•
$$y = \log_a x \Leftrightarrow x = a^y$$

•
$$\log_a 1 = 0$$

•
$$\log_a a^x = x$$

- $a^{\log_a x} = x$
- $\log_a xy = \log_a x + \log_a y$
- $\log_a \frac{1}{x} = -\log_a x$

- $\log_a x^r = r \log_a x$
- $\log_a x = \frac{\log_b x}{\log_b a}$
- $\log_a x = \frac{\ln x}{\ln x}$
- $\log_a(x+y) = \log_a x + \log_a(1+\frac{y}{x})$
- $\log_a(x-y) = \log_a x + \log_a (1-\frac{y}{x})$ $e^{a+bi} = e^a(\cos(b) + i\sin(b))$ (Euler
- Identität)
- $e^{b \ln(a)} = a^b$
- $e^{-\ln(b)} = \frac{1}{r}$

Teil V

Beispiele

Aufgabe 2: Residuensatz [16 Punkte] Berechnen Sie das Integral

$$\int_{-\infty}^{\infty} \frac{1}{(x^2 - 6x + 10)^2} dx$$

mit Hilfe des Residuensatzes

Hinweis: Sollte ein Kurvenintegral gegen Null konvergieren in Ihrer Berechnung, so argumentieren Sie

Lösung. Wir betrachten die Wege $\gamma_R^{(0)}, \gamma_R^{(1)} : [0,1] \to \mathbb{C}$ gegeben durch

$$\gamma_R^{(0)}(t) = 2Rt - R, \quad \gamma_R^{(1)}(t) = Re^{\pi i t}, \quad t \in [0, 1]$$

Es gilt

$$\begin{split} \lim_{R \to \infty} \int_{\gamma_R^{(0)}} \frac{1}{(z^2 - 6z + 10)^2} \, \mathrm{d}z &= \lim_{R \to \infty} \int_0^1 \frac{2R}{((2Rt - R)^2 - 12Rt + 6R + 10)^2} \, \mathrm{d}t \\ &= \lim_{R \to \infty} \int_{-R}^R \frac{1}{(x^2 - 6x + 10)^2} \, \mathrm{d}x = \int_{-\infty}^\infty \frac{1}{(x^2 - 6x + 10)^2} \, \mathrm{d}x, \end{split}$$

mit der Substitution x = 2Rt - R. Ausserdem hatten wir in der Vorlesung gesehen, das

$$\lim_{R \to \infty} \int_{z^{(1)}} \frac{1}{(z^2 - 6z + 10)^2} dz = 0$$

gilt, da $(z^2-6z+10)^{-2}$ sich schreiben lässt als p(z)/q(z), mit p(z)=1 und $q(z)=(z^2-6z+10)^2$ zwei Polynomen, welche deg p+2=2<4 edg q erfüllen. Wir werden im Folgenden den Residuensatz anwenden. Ist $R > \sqrt{10}$, so hat

$$\frac{1}{(z^2 - 6z + 10)^2} = \frac{1}{(z - 3 - i)^2(z - 3 + i)^2}$$

innerhalb des Weges $\gamma_R^{(0)} * \gamma_R^{(1)}$ nur eine Singularität: Einen Pol zweiter Ordnung an der Stelle $z_0 = 3 + i$.

$$\operatorname{Res}\left(\frac{1}{(z^2 - 6z + 10)^2}, z_0\right) = \frac{d}{dz} \left| \frac{1}{(z - 3 + i)^2} = \frac{-2}{(2i)^3} = \frac{1}{4i} \right|$$

Damit gilt laut dem Residuensatz, dass

$$\int_{-\infty}^{\infty} \frac{1}{(x^2 - 6x + 10)^2} \, \mathrm{d}x = \lim_{R \to \infty} \int_{\gamma_R^{(0)} * \gamma_R^{(1)}} \frac{1}{(z^2 - 6z + 10)^2} \, \mathrm{d}z = 2\pi \mathrm{i} \cdot \mathrm{Res} \left(\frac{1}{(z^2 - 6z + 10)^2}, z_0 \right) = \frac{\pi}{2}.$$

Aufgabe 4: Laplacetransformation [16 Punkte] Lösen Sie folgende Differentialgleichung mit Hilfe der Laplacetransformation

$$\ddot{y}(t) + \dot{y}(t) - 2y(t) = 1 - t^2,$$
 $t > 0,$
 $\dot{y}(0) = -1,$ $y(0) = 1.$

Hinweis: Sind $n \in \mathbb{N}$ und $a \in \mathbb{R}$, so gilt

$$\mathcal{L}[t^n](s) = \frac{n!}{s^{n+1}},$$

für alle $s \in \mathbb{C}$, mit Re s > 0, und

$$\mathcal{L}[e^{at}](s) = \frac{1}{s-a}$$

für alle $s \in \mathbb{C}$, mit Re s > a.

Lösung. Sei $Y(s) := \mathcal{L}[y](s)$. Laut dem Differentiationssatz aus der Vorlesung gilt

$$\mathcal{L}[\dot{y}](s) = s\mathcal{L}[y](s) - y(0) = sY(s) - 1$$

$$\mathcal{L}[\ddot{y}](s) = s\mathcal{L}[\dot{y}](s) - \dot{y}(0) = s^2Y(s) - s + 1.$$

Mit diesen Berechnungen und mit Hilfe des Hinweises oben, berechnen wir

$$s^{2}Y(s) - s + 1 + sY(s) - 1 - 2Y(s) = \frac{1}{s} - \frac{2}{s^{3}} = \frac{s^{2} - 2}{s^{3}}$$

$$Y(s) = \frac{s^4 + s^2 - 2}{s^3(s^2 + s - 2)} = \frac{(s^2 - 1)(s^2 + 2)}{s^3(s - 1)(s + 2)} = \frac{(s + 1)(s^2 + 2)}{s^3(s + 2)} = \frac{s^3 + s^2 + 2s + 2}{s^3(s + 2)}$$

Wir benutzen nun die Partialbruchzerlege

$$\frac{s^3 + s^2 + 2s + 2}{s^3(s+2)} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s^3} + \frac{D}{s+2}$$

$$s^3 + s^2 + 2s + 2 = A(s^3 + 2s^2) + B(s^2 + 2s) + C(s + 2) + Ds^3$$

impliziert. Wir lösen das lineare Gleichungssystem $A+D=1,\,2A+B=1,\,2B+C=2,\,2C=2$ durch A = 1/4, B = 1/2, C = 1, D = 3/4. Damit folgt

$$Y(s) = \frac{1}{4s} + \frac{1}{2s^2} + \frac{1}{s^3} + \frac{3}{4(s+2)}$$
.

Wir benutzen nun den Hinweis ein weiteres Mal zusammen mit der Eindeutigkeit der Laplacetransformation (Satz von Lerch), um zu schliessen, dass

$$y(t) = \frac{1}{4} + \frac{1}{2}t + \frac{1}{2}t^2 + \frac{3}{4}e^{-2t}$$

Aufgabe 3: Fourierreihe [16 Punkte] Sei $f: \mathbb{R} \to \mathbb{R}$ die gerade 2π -periodische Funktion, die

$$f(t) = \sinh(t) = \frac{e^t - e^{-t}}{2}$$
,

für $t \in [0, \pi]$, gegeben ist

(3.a) [4 Punkte] Skizzieren Sie den Graphen der Funktion f

(3.b) [10 Punkte] Weisen Sie nach, dass die Koeffizienten an der reellen Fourierreihe

$$\frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos(nt) + b_n \sin(nt)$$

von f gegeben sind durch

$$a_n = \frac{2(-1)^n \cosh(\pi) - 2}{\pi(n^2 + 1)}, \quad n \ge 0.$$

Hinweis: Es gilt

$$\cosh(t) = \frac{e^t + e^{-t}}{2}, \quad t \in \mathbb{R}.$$

(3.c) [2 Punkte] Berechnen Sie nun auch die Koeffizienten bn

Lösung. (3.a) Wir zeichnen die Skizze in Abbildung 2

$$\begin{split} a_n &= \frac{2}{\pi} \cdot \int_0^\pi f(t) \cos(nt) \, \mathrm{d}t = \frac{2}{\pi} \cdot \int_0^\pi \sinh(t) \cos(nt) \, \mathrm{d}t = \frac{1}{2\pi} \cdot \int_0^\pi \left(\mathrm{e}^{t} - \mathrm{e}^{-t} \right) \left(\mathrm{e}^{\mathrm{i}nt} + \mathrm{e}^{-\mathrm{i}nt} \right) \, \mathrm{d}t \\ &= \frac{1}{2\pi} \cdot \int_0^\pi \left(\mathrm{e}^{t+\mathrm{i}nt} - \mathrm{e}^{-t+\mathrm{i}nt} + \mathrm{e}^{t-\mathrm{i}nt} - \mathrm{e}^{-t-\mathrm{i}nt} \right) \, \mathrm{d}t \\ &= \frac{1}{2\pi} \cdot \left(\frac{\mathrm{e}^{t+\mathrm{i}nt}}{1+\mathrm{i}n} \Big|_0^\pi + \frac{\mathrm{e}^{-t+\mathrm{i}nt}}{1-\mathrm{i}n} \Big|_0^\pi + \frac{\mathrm{e}^{t-\mathrm{i}nt}}{1+\mathrm{i}n} \Big|_0^\pi + \frac{\mathrm{e}^{-t-\mathrm{i}nt}}{1+\mathrm{i}n} \Big|_0^\pi \right) \\ &= \frac{1}{2\pi} \cdot \left(\frac{\mathrm{e}^{\pi+\pi\mathrm{i}n} - 1}{1+\mathrm{i}n} + \frac{\mathrm{e}^{-\pi+\pi\mathrm{i}n} - 1}{1-\mathrm{i}n} + \frac{\mathrm{e}^{\pi-\pi\mathrm{i}n} - 1}{1+\mathrm{i}n} + \frac{\mathrm{e}^{-\pi-\pi\mathrm{i}n} - 1}{1+\mathrm{i}n} \right) \\ &= \frac{1}{2\pi} \cdot \left(\frac{(-1)^n \mathrm{e}^\pi - 1}{1+\mathrm{i}n} + \frac{(-1)^n \mathrm{e}^{-\pi} - 1}{1-\mathrm{i}n} + \frac{(-1)^n \mathrm{e}^\pi - 1}{1+\mathrm{i}n} + \frac{(-1)^n \mathrm{e}^{-\pi} - 1}{1+\mathrm{i}n} \right) \\ &= \frac{1}{\pi} \cdot \left(\frac{(-1)^n \cosh(\pi) - 1}{1+\mathrm{i}n} + \frac{(-1)^n \cosh(\pi) - 1}{1-\mathrm{i}n} \right) = \frac{2(-1)^n \cosh(\pi) - 2}{\pi(1+n^2)}, \end{split}$$

(3.c) Da f gerade ist, folgt, dass $b_n = 0$, für $n \ge 1$.

Aufgabe 1 [9 Punkte] Berechnen Sie das definite Integral

$$\int_{0}^{\infty} \frac{x}{x^4 + 1} \, \mathrm{d}x.$$

Begründen Sie dabei alle Rechenschritte.

Hinweis: Der Weg, welcher in Abbildung 1 gegeben ist, kann hilfreich sein.

Abbildung 1: Ein Integrationsweg.

Lösung: Wir betrachten die Wegstücke $\gamma_R^{(0)}:[0,R]\to\mathbb{C},\ \gamma_R^{(1)}:[0,1]\to\mathbb{C}$ und $\gamma_R^{(2)}:[0,R]\to\mathbb{C}$ gegeben durch

$$\gamma_R^{(0)}(t) := t$$
, $\gamma_R^{(1)}(t) := Re^{\frac{\pi i t}{2}}$ und $\gamma_R^{(2)}(t) := iR - it$.

Damit gilt

$$\lim_{R \to \infty} \int_{z^{(0)}} \frac{z}{z^4 + 1} \, \mathrm{d}z = \lim_{R \to \infty} \int_0^R \frac{t}{t^4 + 1} \, \mathrm{d}t = \int_0^\infty \frac{x}{x^4 + 1} \, \mathrm{d}x$$

$$\lim_{R \to \infty} \int_{z^{(2)}} \frac{z}{z^4 + 1} dz = \lim_{R \to \infty} \int_{0}^{R} \frac{(R - t)}{(R - t)^4 + 1} dt = \int_{0}^{\infty} \frac{x}{x^4 + 1} dx.$$

Ausserdem lässt sich leicht abschätzen, dass

$$\lim_{R\to\infty}\left|\int_{\gamma_R^{(1)}}\frac{z}{z^4+1}\,\mathrm{d}z\right|\leq \lim_{R\to\infty}\frac{\pi R}{2}\cdot\frac{R}{R^4-1}=0.$$

Laut dem Residuensatz gilt nun alse

$$2 \cdot \int_0^\infty \frac{x}{x^4 + 1} \, \mathrm{d}x = \lim_{R \to \infty} \int_{\gamma_{\mathcal{D}}^{(0)} * \gamma_{\mathcal{D}}^{(1)} * \gamma_{\mathcal{D}}^{(2)}} \frac{z}{z^4 + 1} \, \mathrm{d}z = 2\pi \mathrm{i} \cdot \sum_i \mathrm{Res} \left(\frac{z}{z^4 + 1}; z_i \right) \mathrm{d}z$$

wobei $\{z_i\}_i$ die Singularitäten der Funktion $z/(z^4+1)$ innerhalb des Integrationsgebietes beschreibt. Man sieht leicht, dass $z_0=\exp(\pi i/4)$ die einzige Nullstelle des Polynoms z^4+1 innerhalb des von $\gamma_R^{(0)}*\gamma_R^{(1)}*\gamma_R^{(2)}$ umrandeten Gebietes ist. Damit folgt also

$$\int_0^\infty \frac{x}{x^4 + 1} \, \mathrm{d}x = \pi \mathbf{i} \cdot \text{Res}\left(\frac{z}{z^4 + 1}; z_0\right) = \pi \mathbf{i} \cdot \lim_{z \to z_0} (z - z_0) \frac{z}{z^4 + 1} = \frac{\pi \mathbf{i}}{4z_0^2} = \frac{\pi}{4}$$

Aufgabe 4: Laplacetransformation [16 Punkte]

(4.a) [4 Punkte] Sei $a \in \mathbb{R}$. Berechnen Sie, dass

$$\mathcal{L}[e^{at}](s) = \frac{1}{s - a},$$

für alle $s \in \mathbb{C}$, mit Re s > a.

(4.b) [12 Punkte] Lösen Sie folgende Differentialgleichung mit Hilfe der Laplacetransformation:

$$\ddot{y}(t) + \dot{y}(t) - 2y(t) = e^{-t}, \quad t > 0,$$

 $\dot{y}(0) = 0, \quad y(0) = -1.$

Lösung. (4.a) Wir berechnen

$$\begin{split} \mathcal{L}[\mathbf{e}^{at}](s) &= \int_0^\infty \mathbf{e}^{at} \mathbf{e}^{-st} \, \mathrm{d}t = \lim_{R \to \infty} \int_0^R \mathbf{e}^{(a-s)t} \, \mathrm{d}t = \lim_{R \to \infty} \left. \frac{\mathbf{e}^{(a-s)t}}{a-s} \right|_0^R = \lim_{R \to \infty} \frac{\mathbf{e}^{(a-s)R} - 1}{a-s} \\ &= \frac{1}{s-a}, \end{split}$$

für $\operatorname{Re} s > \operatorname{Re} a$, da in diesem Falle

$$\lim_{R \to \infty} \left| e^{(a-s)R} \right| = \lim_{R \to \infty} e^{Re(a-s)R} = 0,$$

weil Re(a - s) = Re a - Re s < 0

(4.b) Sei $Y(s) := \mathcal{L}[y](s)$. Laut dem Differentiationssatz aus der Vorlesung gilt

$$\mathcal{L}[\dot{y}](s) = s\mathcal{L}[y](s) - y(0) = sY(s) + 1$$

und

$$\mathcal{L}[\ddot{y}](s) = s\mathcal{L}[\dot{y}](s) - \dot{y}(0) = s^2Y(s) + s$$

Mit diesen Berechnungen und mit der Aufgabestellung von Aufgabe (4.a), berechnen wir

$$s^{2}Y(s) + s + sY(s) + 1 - 2Y(s) = \frac{1}{s+1}$$

endage

$$Y(s) = \frac{1 - (s+1)^2}{(s+1)(s^2 + s - 2)} = \frac{-s^2 - 2s}{(s+1)(s-1)(s+2)} = \frac{-s}{(s+1)(s-1)}$$

Wir benutzen nun die Partialbruchzerlegung

$$\frac{-s}{(s+1)(s-1)} = \frac{A}{s+1} + \frac{B}{s-1},$$

welche

$$-s = A(s-1) + B(s+1)$$

impliziert. Wir lösen das lineare Gleichungssystem $A+B=-1,\,-A+B=0$ durch A=B=-1/2. Damit folgt

$$Y(s) = -\frac{1}{2} \cdot \frac{1}{s+1} - \frac{1}{2} \cdot \frac{1}{s-1}$$

Wir benutzen nun die Aufgabestellung von Aufgabe (4.a) ein weiteres Mal zusammen mit der Eindeutigkeit der Laplacetransformation (Satz von Lerch), um zu schliessen, dass

$$y(t) = -\frac{1}{2}e^{-t} - \frac{1}{2}e^{t} = -\cosh(t)$$

Aufgabe 10. Lösen Sie folgende Differentialgleichung mit Hilfe der Laplacetransformation:

$$\ddot{y}(t) + 9y(t) = t^2, t > 0,$$

 $\dot{y}(0) = 0, y(0) = 1.$

Lösung. Wir definieren $Y(s) := \mathcal{L}[y](s)$. Es gilt

$$\mathcal{L}[\ddot{y}](s) = s\mathcal{L}[\dot{y}] - \dot{y}(0) = s(s\mathcal{L}[y](s) - y(0)) - \dot{y}(0) = s^{2}Y(s) - s.$$

Ausserdem lesen wir in einer Laplacetransformationstabelle ab, dass

$$\mathcal{L}[t^{2}](s) = \frac{2}{s^{3}}$$

Damit erhalten wir

$$s^{2}Y(s) - s + 9Y(s) = \frac{2}{s^{3}}$$

und somit

$$Y(s) = \frac{2}{s^3(s^2 + 9)} + \frac{s}{s^2 + 9}$$

Wir benutzen eine Partialbruchzerlegung:

$$\frac{2}{s^3(s^2+9)} = \frac{As^2 + Bs + C}{s^3} + \frac{Ds + E}{s^2+9}$$

Wir erhalten damit

$$2 = As^{2}(s^{2} + 9) + Bs(s^{2} + 9) + C(s^{2} + 9) + Ds^{4} + Es^{3}$$

und deswegen

$$A+D=0, \qquad B+E=0, \qquad 9A+C=0, \qquad 9B=0, \qquad 9C=2.$$

Es folgt, dass $A=-2/81,\,B=0,\,C=2/9,\,D=2/81$ und E=0. Wir erhalten also

$$Y(s) = \frac{-2}{81s} + \frac{2}{9s^3} + \frac{2s}{81(s^2 + 9)} + \frac{s}{s^2 + 9} = \frac{-2}{81s} + \frac{2}{9s^3} + \frac{83s}{81(s^2 + 9)}$$

Ein weiterer Blick in die Laplacetransformationstabelle zeigt uns, dass

$$\mathcal{L}[1](s) = \frac{1}{s}, \qquad \mathcal{L}[\cos(3t)](s) = \frac{s}{s^2 + 9}$$

und deswegen

$$y(t) = \frac{-2}{81} + \frac{t^2}{9} + \frac{83}{81}\cos(3t), \qquad t > 0.$$

Residue

ii. Es gilt

$$\lim_{R \to \infty} \int_{\gamma_R^{(0)}} \frac{1}{1 + z^4} \, \mathrm{d}z = \lim_{R \to \infty} \int_0^1 \frac{1}{1 + (2Rt - R)^4} \cdot 2R \, \mathrm{d}t = \lim_{R \to \infty} \int_{-R}^R \frac{1}{1 + x^4} \, \mathrm{d}x$$
$$= \int_{-\infty}^\infty \frac{1}{1 + x^4} \, \mathrm{d}x$$

mit der Substitution x = 2Rt - R. Wenn wir bemerken, dass

$$\frac{1}{1 + x^4} = \frac{p(x)}{q(x)}$$

wobei p(x)=1 und $q(x)=1+x^4$ zwei Polynome mit deg $q=4>2=\deg p+2$ sind, daraus können wir schliessen, dass

$$\lim_{R \to \infty} \int_{\gamma_n^{(1)}} \frac{1}{1 + z^4} dz = \lim_{R \to \infty} \int_{\gamma_n^{(1)}} \frac{p(z)}{q(z)} dz = 0.$$

Damit folgt, dass

$$\int_{-\infty}^{\infty} \frac{1}{1+x^4} \, \mathrm{d}x = \lim_{R \to \infty} \int_{\gamma_R^{(0)} * \gamma_R^{(1)}} \frac{1}{1+z^4} \, \mathrm{d}z$$

und das Integral auf der rechten Seite kann mit Hilfe des Residuensatzes berechnet werden. Dazu bemerken wir, dass der Integrand isolierte Singularitäten an den Stellen $z_k = \exp(\pi i/4 + \pi i k/2)$ für $k = 0, \ldots, 3$, hat. Alle vier isolierte Singularitäten sind Pole erster Ordnung, aber lediglich die Singularitäten an z_0 und z_1 liegen im Integrationsgebiet. Wir berechnen

$$\operatorname{Res}\left(\frac{1}{1+z^4}, z_k\right) = \lim_{z \to z_k} \frac{z - z_k}{1+z^4} = \lim_{z \to z_k} \frac{1}{4z^3} = \frac{1}{4z_k^3}$$

mit Hilfe des Satzes von de l'Hospital. Es gilt damit, dass für R > 1

$$\begin{split} \int_{\gamma_{R}^{(0)}*\gamma_{R}^{(1)}} \frac{1}{(1+z^{2})^{2}} \, \mathrm{d}z &= 2\pi \mathrm{i} \cdot \left(\frac{1}{4\mathrm{e}^{3\pi \mathrm{i}/4}} + \frac{1}{4\mathrm{e}^{9\pi \mathrm{i}/4}}\right) = \pi \mathrm{i} \cdot \left(\frac{\mathrm{e}^{\pi \mathrm{i}/4} + \mathrm{e}^{3\pi \mathrm{i}/4}}{2\mathrm{e}^{\pi \mathrm{i}}}\right) &= \pi \mathrm{i} \cdot \left(\frac{\sqrt{2}\mathrm{i}}{-2}\right) \\ &= \frac{\pi}{\sqrt{2}}, \end{split}$$

so dass

$$\int_{-\infty}^{\infty} \frac{1}{1+x^4} \, \mathrm{d}x = \frac{\pi}{\sqrt{2}}.$$