In [1]:

```
# Libraries
import pandas as pd
import os
```

In [2]:

```
# importing dataset

cos.chdir('/Users/tomisin/Dropbox/My Mac (Tomisins-MacBook-Pro.local)/Documents/I
```

In [4]:

```
1 # importing dataset
2 df = pd.read_csv('winequality-red.csv')
```

In [5]:

1 df

Out[5]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcc
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	1
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	1
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	1
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	1
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	1

1599 rows × 12 columns

```
In [6]:
```

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

	00100001 11 001	· ,	•		
#	Column	Non-l	Null Count	Dtype	
0	fixed acidity	1599	non-null	float64	
1	volatile acidity	1599	non-null	float64	
2	citric acid	1599	non-null	float64	
3	residual sugar	1599	non-null	float64	
4	chlorides	1599	non-null	float64	
5	free sulfur dioxide	1599	non-null	float64	
6	total sulfur dioxide	1599	non-null	float64	
7	density	1599	non-null	float64	
8	рН	1599	non-null	float64	
9	sulphates	1599	non-null	float64	
10	alcohol	1599	non-null	float64	
11	quality	1599	non-null	int64	
d+3704	ac. float64(11) int64	(1)			

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [8]:

df.isna().sum() #shows columns with their number of missing values

Out[8]:

fixed acidity 0 volatile acidity 0 citric acid 0 residual sugar 0 chlorides 0 free sulfur dioxide 0 total sulfur dioxide 0 density 0 0 рН sulphates 0 alcohol 0 0 quality dtype: int64

```
In [9]:
```

```
1 df.describe()
```

Out[9]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total su diox
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.0000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.0000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.0000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.0000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.0000

In [10]:

```
1 df.columns
```

Out[10]:

Making plots

In [11]:

```
df['fixed acidity'].plot(kind='density')
```

Out[11]:

<AxesSubplot:ylabel='Density'>

OUTLIERS

In [12]:

```
import matplotlib.pyplot as plt
import seaborn as sns
3
```

In [13]:

```
import matplotlib.pyplot as plt
import seaborn as sns

# Checking for outliers
plt.figure(figsize = (20, 15))
for i in range (len(df.columns)):
    plt.subplot(6, 2, i+1)
    sns.boxplot(x = df.iloc[:, i])
plt.xlabel(df.columns[i], size = 12)
```



```
In [14]:

1 df['citric acid'].plot(kind='density')
```

Out[14]:

<AxesSubplot:ylabel='Density'>

In [15]:

```
1 df['density'].plot(kind='density')
```

Out[15]:

<AxesSubplot:ylabel='Density'>

In [16]:

```
1 df.columns[0]
```

Out[16]:

'fixed acidity'

Removing outliers

```
In [17]:
```

```
1
2
   def Outliers(data, feature):
3
       IQ1 = data[feature].quantile(0.25)
4
       IQ3 = data[feature].quantile(0.75)
5
       IQR = IQ3 - IQ1
6
7
       lower bound = IQ1 - 1.5 * IQR
8
       upper_bound = IQ3 + 1.5 * IQR
9
10
       index = data.index[ (data[feature] < lower bound) | (data[feature] > upper b
       return index
11
```

Getting index of all the outliers

```
In [18]:
```

```
index = []
for i in df.columns:
    index.extend(Outliers(df, i))
index = set(index)
print("Total number of outliers are {}".format(len(index)))

# Dropping all the outliers
df.drop(index, inplace = True, axis = 0)
df.shape
```

```
Total number of outliers are 420
```

```
Out[18]:
```

(1179, 12)

In [19]:

```
1 sns.boxplot(x = df.iloc[:, 2])
```

Out[19]:

<AxesSubplot:xlabel='citric acid'>

Removing outliers

```
In [20]:
```

```
2
   def Outliers(data, feature):
3
       IQ1 = data[feature].quantile(0.25)
       IQ3 = data[feature].quantile(0.75)
4
5
       IQR = IQ3 - IQ1
6
7
       lower_bound = IQ1 - 1.5 * IQR
       upper bound = IQ3 + 1.5 * IQR
8
9
       index = data.index[ (data[feature] < lower_bound) | (data[feature] > upper_t
10
11
       return index
```

In [21]:

```
1 max(df.quality)
2
```

Out[21]:

7

In [22]:

```
import matplotlib.pyplot as plt
import seaborn as sns

# Checking for outliers
plt.figure(figsize = (20, 15))
for i in range (len(df.columns)):
   plt.subplot(6, 2, i+1)
   sns.boxplot(x = df.iloc[:, i])
   plt.xlabel(df.columns[i], size = 12)
```


Removing outliers and getting index of all the outliers

In [35]:

```
# Removing outliers
2
   def Outliers(data, feature):
3
       IQ1 = data[feature].quantile(0.25)
4
       IQ3 = data[feature].quantile(0.75)
5
       IQR = IQ3 - IQ1
 6
7
       lower bound = IQ1 - 1.5 * IQR
8
       upper_bound = IQ3 + 1.5 * IQR
9
       index = data.index[ (data[feature] < lower bound) | (data[feature] > upper b
10
       return index
11
12
13
14
15 # Getting index of all the outliers
16 | index = []
   for i in df.columns:
17
18
       index.extend(Outliers(df, i))
19
20 index = set(index)
21 print("Total number of outliers are {}".format(len(index)))
22
23 # Dropping all the outliers
24
   df.drop(index, inplace = True, axis = 0)
   df.shape
```

```
Total number of outliers are 2
Out[35]:
(923, 12)
```

In [25]:

```
print(df['quality'].value_counts())
plt.figure(figsize = (8, 5))
sns.countplot(x = df['quality'])
plt.xlabel('Quality', size = 12)
plt.ylabel("Count", size = 12)
plt.title("Distribution in target variable", size = 12)
```

```
5   449
6   448
7   124
4   30
Name: quality, dtype: int64
```

Out[25]:

Text(0.5, 1.0, 'Distribution in target variable')

In [2]:

l !pip install lightgbm

Requirement already satisfied: lightgbm in /Users/tomisin/opt/anaconda 3/lib/python3.9/site-packages (3.3.3)

Requirement already satisfied: numpy in /Users/tomisin/opt/anaconda3/lib/python3.9/site-packages (from lightgbm) (1.20.3)

Requirement already satisfied: scikit-learn!=0.22.0 in /Users/tomisin/opt/anaconda3/lib/python3.9/site-packages (from lightgbm) (0.24.2)

Requirement already satisfied: wheel in /Users/tomisin/opt/anaconda3/lib/python3.9/site-packages (from lightgbm) (0.37.0)

Requirement already satisfied: scipy in /Users/tomisin/opt/anaconda3/lib/python3.9/site-packages (from lightgbm) (1.7.1)

Requirement already satisfied: threadpoolctl>=2.0.0 in /Users/tomisin/opt/anaconda3/lib/python3.9/site-packages (from scikit-learn!=0.22.0-> lightgbm) (2.2.0)

Requirement already satisfied: joblib>=0.11 in /Users/tomisin/opt/anac onda3/lib/python3.9/site-packages (from scikit-learn!=0.22.0->lightgb m) (1.1.0)

In [3]:

!pip install xgboost

Requirement already satisfied: xgboost in /Users/tomisin/opt/anaconda 3/lib/python3.9/site-packages (1.7.2)

Requirement already satisfied: numpy in /Users/tomisin/opt/anaconda3/lib/python3.9/site-packages (from xgboost) (1.20.3)

Requirement already satisfied: scipy in /Users/tomisin/opt/anaconda3/lib/python3.9/site-packages (from xgboost) (1.7.1)

```
In [4]:
```

!pip install catboost Requirement already satisfied: catboost in /Users/tomisin/opt/anaconda 3/lib/python3.9/site-packages (1.1.1) Requirement already satisfied: six in /Users/tomisin/opt/anaconda3/li b/python3.9/site-packages (from catboost) (1.16.0) Requirement already satisfied: scipy in /Users/tomisin/opt/anaconda3/1 ib/python3.9/site-packages (from catboost) (1.7.1) Requirement already satisfied: matplotlib in /Users/tomisin/opt/anacon da3/lib/python3.9/site-packages (from catboost) (3.4.3) Requirement already satisfied: graphviz in /Users/tomisin/opt/anaconda 3/lib/python3.9/site-packages (from catboost) (0.20.1) Requirement already satisfied: pandas>=0.24.0 in /Users/tomisin/opt/an aconda3/lib/python3.9/site-packages (from catboost) (1.3.4) Requirement already satisfied: numpy>=1.16.0 in /Users/tomisin/opt/ana conda3/lib/python3.9/site-packages (from catboost) (1.20.3) Requirement already satisfied: plotly in /Users/tomisin/opt/anaconda3/ lib/python3.9/site-packages (from catboost) (5.11.0) Requirement already satisfied: python-dateutil>=2.7.3 in /Users/tomisi n/opt/anaconda3/lib/python3.9/site-packages (from pandas>=0.24.0->catb oost) (2.8.2) Requirement already satisfied: pytz>=2017.3 in /Users/tomisin/opt/anac onda3/lib/python3.9/site-packages (from pandas>=0.24.0->catboost) (202 1.3) Requirement already satisfied: cycler>=0.10 in /Users/tomisin/opt/anac onda3/lib/python3.9/site-packages (from matplotlib->catboost) (0.10.0) Requirement already satisfied: pyparsing>=2.2.1 in /Users/tomisin/opt/ anaconda3/lib/python3.9/site-packages (from matplotlib->catboost) (3. Requirement already satisfied: kiwisolver>=1.0.1 in /Users/tomisin/op t/anaconda3/lib/python3.9/site-packages (from matplotlib->catboost) (1.3.1)Requirement already satisfied: pillow>=6.2.0 in /Users/tomisin/opt/ana conda3/lib/python3.9/site-packages (from matplotlib->catboost) (8.4.0)

Requirement already satisfied: tenacity>=6.2.0 in /Users/tomisin/opt/a naconda3/lib/python3.9/site-packages (from plotly->catboost) (8.1.0)

In [8]:

```
import matplotlib.pyplot as plt
2
   import seaborn as sns
3
   import warnings
  warnings.filterwarnings('ignore')
   from sklearn.ensemble import RandomForestClassifier
5
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.linear model import LogisticRegression
7
   from sklearn.naive bayes import GaussianNB
   from sklearn.neighbors import KNeighborsClassifier
9
10
   from sklearn.svm import SVC
   from sklearn.model selection import train test split
11
   from sklearn.preprocessing import LabelEncoder, StandardScaler
12
13
   from sklearn.metrics import accuracy score, auc, roc curve, roc auc score, mean
```

In [41]:

```
1 data = df
```

In [42]:

```
cor = data.corr()
plt.figure(figsize = (10,8))
sns.heatmap(cor, annot = True)
```

Out[42]:

<AxesSubplot:>

In [43]:

```
1 x = data.iloc[:, :-1]
2 x.head()
```

Out[43]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4

```
In [44]:
1 y = data.iloc[:, -1]
 2 y.head()
Out[44]:
0
   5
1
    5
2
    5
3
Name: quality, dtype: int64
In [ ]:
1
In [ ]:
 1
In [ ]:
In [ ]:
 1
In [ ]:
 1
```