EXHIBIT 34

U.S. Patent No. 8,273,308 Infringement Chart

Claim	Claim Language	Infringement Evidence	
1(a)	A system, comprising:	To the extent the preamble is limiting, the accused instruments are a system. *NeuMoDx** Molecular Systems, NeuMoDx, http://www.neumodx.com/our-products/ ,	
		last visited June 5, 2019 (Exhibit 12)	
		NeuMoDx molecular NeuMoDx molecular	
		#500200 NeuMoDx [™] 96 Molecular System NeuMoDx [™] 288 Molecular System	
		NeuMoDx TM Molecular Systems, NEuMoDx, http://www.neumodx.com/ , last visited	

Claim	Claim Language	Infringement Evidence
		May 31, 2019 (Exhibit 10)
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result."
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11)
		"NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY
		MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"
		platform offers market-leading ease of use, true continuous random-access and
		rapid turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		• "The NeuMoDx™ Molecular Systems are a family of scalable platforms
		that fully integrate the entire molecular diagnostic process from "sample to
		result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems
		are fully automated, continuous random-access analyzers that utilize our
		proprietary NeuDry™ reagent technology, which integrates magnetic
		particle affinity capture and real time Polymerase Chain Reaction (PCR)
		chemistry in a multi-sample microfluidic cartridge. This technology,
		combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by
		eliminating the waste associated with technologies that required reconstitution
		of lyophilized reagents.
		• "The NeuMoDx TM 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of

Claim	Claim Language	Infringement Evidence
		the instrument with touchscreen computer, accessories, and reagents and consumables." • "NeuMoDx TM Molecular Systems are versatile; in addition to IVD tests, our system can also be used as an open system to process Laboratory Developed Tests (LDTs) that have been created and validated by your lab."
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/dr-steven-young-video-testimonial/ , last visited May 31, 2019, hyperlink at https://youtu.be/vukP6gbLBYE . (Exhibit 32)
		• "There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint."
1(b)	a microfluidic device	The accused system comprises a microfluidic device. NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) • Describing "microfluidic cartridges capable of performing independent
		sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) ■ "NeuMoDx™ 288 and NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real
		 time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge." NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 24, 2019 (Exhibit 11) "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from 'sample to result'. The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-

Claim	Claim Language	Infringement Evidence
		sample microfluidic cartridge . This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents."
		0600101_Rev-D-IFU-NeuMoDx-RELEASE-Solution-US-ONLY-FINAL-25Oct2018.pdf (Exhibit 20) • "NeuMoDx™ RELEASE Solution INSTRUCTIONS FOR USE The NeuMoDx Systems mix the released nucleic acid with assay specific primers and probe(s) and the dried Master Mix contained in a NeuMoDx test strip. The System then dispenses the prepared RT-PCR-ready mixture into the NeuMoDx Cartridge where Real-Time PCR occurs."
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."

Claim	Claim Language	Infringement Evidence
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59
		"Patents", http://www.neumodx.com/patents/ , demonstrating that NeuMoDx marks its products with US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165 9,452,430; 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; 10,010,888; 9,382,532; 9,540,636; 9,499,896; 9,539,576; 9,637,775; and 10,093,963. (Exhibit 15)

Claim	Claim Language	Infringement Evi	dence
		PATENTS	S
		Product	Patents
		CARTRIDGE	US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; and 9,452,430. AU Patent No. 2013221701, JP Patent No. 6061313.
		P02 (overall system and method)	US Patent Nos. 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; and 10,010,888. CN Patent No. ZL 2013 8 00092863.
		EXTRACTION PLATE	US Patent Nos. 9,382,532; and 9,540,636.
		XPCR MODULE	US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963.
	platform the configured a liquid has vertically a nozzle of the heater, the first operate system is contridge reconstruction.	sample, the molecular diagnostic system comprising: a cartridge nat supports the cartridge and comprising a magnet receiving slot I to be aligned with the cartridge in a first operation mode; a nozzle of indling subsystem; an optical subsystem; a cartridge heater; a magnet aligned with the magnet receiving slot; and an actuator coupled to the he liquid handling subsystem, the optical subsystem, and the cartridge actuator configured to vertically displace the cartridge platform in the tion mode to a position wherein: the nozzle of the liquid handling coupled to a fluid port of the cartridge, wherein the fluid port of the ecceives fluids for processing the biological sample, the magnet passes the magnet receiving slot of the cartridge platform and interfaces with a	

Claim	Claim Language	Infringement Evidence
		 Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater.
1(c)	a computer-controlled heat source; and	The accused system comprises a computer-controlled heat source. *NeuMoDx*** Molecular Systems*, NeuModx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) *NeuModx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." *The NeuModx*** Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuModx*** 288 and the NeuModx*** 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary

Claim	Claim Language	Infringement Evidence
		NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multisample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. • "The NeuMoDx TM 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx TM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx TM 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		 NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		US9539576 (Exhibit 29) • Claim 1. A system for thermocycling biological samples within detection

Claim	Claim Language	Infringement Evidence
Ciaim	Claim Language	chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies with the set of detection chambers; and a set of wire bonds, including a wire bond coupled between the connection point of at least one of the set of heater-sensor dies and one of the set of substrate connection points.
		 US9499896 (Exhibit 28) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating

Claim	Claim Language	Infringement Evidence
		layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of
		 U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. IA and IB, an embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heater-sensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160

Claim	Claim Language	Infringement Evidence
		configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.") • U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller 165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3 microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply configured to supply voltage to the resistance-to-voltage conversion circuit. In the specific example, the controller 165 comprises a resistance-to-voltage conversion circuit because the UT750 PID controller requires voltage as an input for PID control.") • U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. IA and IB, the system 100 can further comprise a controller 165, which functions to automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected temperatures) sensed at the sensing element(s) 115 of the system 100."
1(d)	a detector;	The accused system comprises a detector. NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/product/neumodx-288/ , last visited June 3, 2019 (Exhibit 13) • "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification." NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/product/neumodx-96/ , last visited June 3, 2019 • "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of

Claim	Claim Language	Infringement Evidence		
		products of ampli	fication."	
		JFO_2018-10-25_8009-Re	ev-B_NeuMoDx-96-S	Spec-Sheet (Exhibit 21)
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1	470	510
		2	530	555
		3	585	610
		4	625	660
1		5	680	715 long pass
		NeuMoDx_288_Spec_She	eet_R2.pdf (Exhibit 22 Excitation (nm)	2) Emission (nm)
				•
		t	470	510
		2	530	555
		3	585	610
İ		4	625	660
		5	680	715 long pass
		sample within a car sample, the molecu supports the cartrid aligned with the ca subsystem; an opti aligned with the ma the liquid handling the actuator config	rtridge and separate a alar diagnostic system lge and comprising a rtridge in a first opera ical subsystem; a car agnet receiving slot; a subsystem, the optical ured to vertically disp	a configured to process a biological a nucleic acid volume from the biological a comprising: a cartridge platform that magnet receiving slot configured to be ation mode; a nozzle of a liquid handling tridge heater; a magnet vertically and an actuator coupled to the nozzle of al subsystem, and the cartridge heater, place the cartridge platform in the first the nozzle of the liquid handling system is

Claim	Claim Language	Infringement Evidence
		coupled to a fluid port of the cartridge, wherein the fluid port of the cartridge receives fluids for processing the biological sample, the magnet passes through the magnet receiving slot of the cartridge platform and interfaces with a first portion of the cartridge, the optical subsystem interfaces with a second portion of the cartridge, wherein the second portion of the cartridge receives a processed derivative of the nucleic acid volume, and a third region of the cartridge is compressed between the cartridge heater and the cartridge platform. • Claim 8. The system of claim 1, wherein the optical subsystem comprises at least one unit including an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the biological sample, and to transmit emitted light from the biological sample, through the emission filter, and toward the photodetector.
		 Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater.

Claim	Claim Language	Infringement Evidence
		 Claim 11. The system of claim 1, wherein the molecular diagnostic module further comprises an optical subsystem comprising a first unit and a second unit, wherein each of the first unit and the second unit includes a set of excitation filters, a set of emission filters, a set of photodetectors aligned with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of excitation filters toward one of a set of nucleic acid-reagent mixtures at the cartridge, and to transmit emitted light from one of the set of nucleic acid-reagent mixtures, through at least one of the set of emission filters, and toward at least one of the set of photodetectors. Claim 12. The system of claim 11, wherein the molecular diagnostic module further includes a set of detection chamber heaters configured to heat a set of detection chambers through the second surface of the cartridge, and wherein the optical subsystem is configured to receive light, emitted from the set of nucleic acid-reagent mixtures at the set of detection chambers, from the first surface of the cartridge.
1(e)	wherein the microfluidic device comprises: an upstream channel;	The accused system comprises a microfluidic device comprising an upstream channel. *NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		A Romand Strong
		 Claim 1. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer, defining a sample port, a reagent port, a fluid port, and a detection chamber; an elastomeric layer; an intermediate substrate coupled to the first layer, such that the elastomeric layer is situated between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the reagent port, the fluid port, and the detection chamber.

Claim Language	Infringement Evidence
Claim Language	 U.S. Patent No. 9,738,887 at Abstract ("A microfluidic cartridge, configured to facilitate processing and detection of nucleic acids, comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample port-reagent port pairs, a shared fluid port, a vent region, a heating region, and a set of Detection chambers; an intermediate substrate, coupled to the top layer comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate; and a set of fluidic pathways, each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a Detection chamber, comprises a turnabout portion passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste chamber, and to pass through the vent region") U.S. Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to a detection chamber for analysis, which may include amplification and/or detection.") U.S. Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection chamber 117 with a reduced quantity of gas bubbles, and the segment running away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 117.") U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspi
	Claim Language

Claim	Claim Language	Infringement Evidence
		sixth occlusion position 147 may be reversed, and the fluidic pathway 165
		may be occluded at the first occlusion position 142 to form an eighth
		truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular
		diagnostic reagent with the released nucleic acid sample is complete and well
		mixed, the reconstituted mixture may then be dispensed through the
		reagent port 115, through the eighth truncated pathway, and to the
		detection chamber 117, by using a fluid handling system to push the
		seventh occlusion position [148] (normally closed) open. The detection
		chamber 117 is completely filled with the mixed reagent-nucleic acid
		sample, after which the fluidic pathway 165 is occluded at the third, sixth,
		seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth
		truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic
		pathways 165 may be similarly configured to receive a reagent-nucleic acid
		mixture. An external molecular diagnostic system and/or module may then
		perform additional processes, such as thermocycling and detection, on the
		volume of fluid within the detection chamber 117.")
		• U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		• U.S. Patent No. 9,738,887 at 23:36-41 ("Each detection chamber 117 of the specific embodiment is identical and comprised of three interconnected channels, configured in a circular arrangement, with each of the interconnected channels approximately 0.4 mm deep and 1.6 mm wide at its widest point, resulting in a total volume of -10 mL for each detection chamber 117.")
1(f)	[the microfluidic device comprises] a DNA manipulation module located downstream from the upstream channel;	The accused system comprises a microfluidic device comprising a DNA manipulation module located downstream from the upstream channel. *NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the

Claim	Claim Language	Infringement Evidence
		cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		A Tomorra Strong
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."

the PCR-ready solution through the s and the amplification process A microfluidic cartridge, configured aucleic acids, comprising: a top layer lentations, a set of sample port-reagent on, a heating region, and a set of strate, coupled to the top layer eric layer, partially situated on the ce pathways, each formed by at least a the elastomeric layer, wherein each a sample port-reagent port pair, the
1

Claim	Claim Language	Infringement Evidence
		• U.S. Patent No. 9,738,887 at 2:36-3:5. ("As shown in FIGS. 1A-IC, an
		embodiment of a microfluidic cartridge 100 for processing and detecting
		nucleic acids comprises: a top layer 110 comprising a set of sample port-
		reagent port pairs 112 and a set of detection chambers 116; an intermediate
		substrate 120, coupled to the top layer 110 and partially separated from the top
		layer by a film layer 125, configured to form a waste chamber 130; an
		elastomeric layer 140 partially situated on the intermediate substrate 120; a
		magnet housing region 150 accessible by a magnet 152 providing a magnetic
		field 156; and a set of fluidic pathways 160, each formed by at least a portion of
		the top layer 110, a portion of the film layer 125, and a portion of the
		elastomeric layer 140 In a specific application, the microfluidic cartridge
		100 can be used to facilitate a PCR procedure for analysis of a sample
		containing nucleic acids.")
		• U.S. Patent No. 9,738,887 at 13:7-18. ("The top layer 110 of an embodiment
		of the microfluidic cartridge 100 functions to accommodate elements
		involved in performing a molecular diagnostic procedure (e.g. PCR), such
		that a sample containing nucleic acids, passing through the cartridge, can be manipulated by the elements involved in performing the molecular diagnostic
		procedure. The top layer 110 is preferably composed of a structurally rigid/stiff
		material with low autofluorescence, such that the top layer 110 does not
		interfere with sample detection by fluorescence or chemiluminescence
		techniques, and an appropriate glass transition temperature and chemical
		compatibility for PCR or other amplification techniques.")
		• U.S. Patent No. 9,738,887 at 13:35-42. ("The set of fluidic pathways 160 of
		the microfluidic cartridge 100 functions to provide a fluid network into which
		volumes of sample fluids, reagents, buffers and/or gases used in a molecular
		diagnostics protocol may be delivered, out of which waste fluids may be
		eliminated, and by which processed nucleic acid samples may be delivered to
		a detection chamber for analysis, which may include amplification and/or
		detection.")
		• U.S. Patent No. 9,738,887 at 15:29-39 ("The segments may be arranged in at
		least one of several configurations to facilitate isolation, processing, and

Claim	Claim Language	Infringement Evidence
		 amplification of a nucleic acid sample"). U.S. Patent No. 9,738,887 at 23:20-24 ("The top layer 110 of the specific embodiment of the microfluidic cartridge 100 functions preferably as described in Section 1.1, and is composed of polypropylene with low autofluorescence and a glass transition temperature suitable for PCR.") U.S. Patent No. 9,738,887 at 23:36-41 ("Each detection chamber 117 of the specific embodiment is identical and comprised of three interconnected channels, configured in a circular arrangement, with each of the interconnected channels approximately 0.4 mm deep and 1.6 mm wide at its widest point, resulting in a total volume of -10 mL for each detection chamber 117.") U.S. Patent No. 9,738,887 at 24:1-11 ("In the specific embodiment, the intermediate substrate 120 is composed of a polypropylene material to minimize cost and simplify assembly, and in the orientation shown in FIG. 11B, the top of the intermediate substrate 120 is 1.5 mm thick. The film layer 125, partially separating the intermediate substrate 120 from the top layer 110 is a polypropylene film with a nominal thickness of 50 microns. The film layer 125 is able to withstand temperatures of up to 95° C. encountered during fabrication and during an intended PCR procedure, while being thermally bondable to the top layer 110.")
1(g)	[the microfluidic device comprises] a DNA manipulation zone within the DNA manipulation module and configured to perform PCR amplification of a sample;	The accused system comprises a microfluidic device comprising a DNA manipulation zone within the DNA manipulation module and configured to perform PCR amplification of a sample. *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) *NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." *"The NeuMoDx*** Molecular Systems are a family of scalable platforms that

Claim	Claim Language	Infringement Evidence
		fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge ."
		 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		Powerful. Simple. Diagnostics.** NeuModa particles 734 477(0)11 Us 734 477(0)50 13250 Elsenhower Piace Ann Arbor, MI 48108 www.neumoda.com CARTRIDGE Last House Ann Arbor Ann Ar
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19)
		• "NeuMoDx TM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the
		independent processing of up to 12 samples once housed appropriately in
		the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis,

Claim	Claim Language	Infringement Evidence
		nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		 NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." Id. at 0:00-0:18 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59
		 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process

Claim	Claim Language	Infringement Evidence
		begins . During a series of independent heat on-heat off sequences , an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate.
		Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first

Claim	Claim Language	Infringement Evidence
		sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port. • Claim 11. The cartridge of claim 10, further comprising 1) a heating region defined as a recessed region of the first layer that is parallel to the set of voids of the corrugated surface, and 2) a vent region, such that the first fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the first detection chamber, and the second fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the second detection chamber.
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid-reagent mixture from the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, aphotodetector aligned with the excitation filter cour

Claim	Claim Language	Infringement Evidence
		 wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:49-65 ("The cartridge heater 153 functions to

Claim	Claim Language	Infringement Evidence
		transfer heat to a heating region 224 of a microfluidic cartridge 210, for inducing a pH shift to release bound nucleic acids from magnetic beads within the heating region 224 The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") • U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple heaters are provided, each heater is preferably independent to allow independent control of heating time and temperature for each sample.")
1(h)	[the microfluidic device comprises] a first valve disposed within the DNA manipulation module upstream of the DNA manipulation zone;	The accused system comprises a microfluidic device comprising a first valve disposed within the DNA manipulation module upstream of the DNA manipulation zone. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		A Romanda Sintal
		PCR First valve
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve

Claim	Claim Language	Infringement Evidence
		guides, wherein the intermediate substrate defines a chamber with a corrugated
		surface directly opposing the first layer, wherein the corrugated surface defines
		a set of voids external to the chamber and accessible from a direction
		perpendicular to a broad surface of the first layer, and wherein at least a portion
		of the corrugated surface defines the set of valve guides with a set of openings
		that provide access to the elastomeric layer; and a fluidic pathway, formed by at
		least a portion of the first layer and a portion of the elastomeric layer, wherein
		the fluidic pathway is fluidically coupled to the sample port and the detection
		chamber and comprises a first and second branch extending downstream from a
		junction, and is configured to be occluded at a set of occlusion positions upon
		manipulation of the elastomeric layer through the set of valve guides, wherein a
		first occlusion position of the set of occlusion positions is positioned along the
		fluidic pathway downstream of the junction and upstream of the first branch and
		a second occlusion position of the set of occlusion positions is positioned along
		the fluidic pathway downstream of the junction and upstream of the second
		branch, wherein the set of occlusion positions comprises a normally open
		position and a normally closed position, wherein the normally open position
		comprises a first surface of the fluidic pathway at the first layer and a second
		surface of the fluidic pathway at the elastomeric layer, wherein a void defined
		between the first surface and the second surface is configured to transition to a
		closed state upon occlusion by an occluding object applied to the elastomeric
		layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the
		elastomeric layer in preventing fluid bypass at the region; wherein a first
		truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of the fluidic
		pathway at the first and second occlusion positions, and wherein a second
		truncated pathway, including the normally closed position and the second
		branch and excluding the first branch, to the detection chamber is defined
		upon manipulation of the fluidic pathway at the first and second occlusion
		positions.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as

Claim	Claim Language	Infringement Evidence
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.")at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
1(i)	[the microfluidic device comprises] a second valve disposed within the DNA manipulation module	The accused system comprises a microfluidic device comprising a second valve disposed within the DNA manipulation module downstream of the DNA manipulation zone.

Claim	Claim Language	Infringement Evidence
	downstream of the DNA	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
	manipulation zone; and	2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the
		cartridge into three thin PCR chambers and the amplif ication process begins." <i>Id.</i> at 3:58-4:08
		A B Concerns Strong
		C
		Second valve PCR

Claim	Claim Language	Infringement Evidence
		 Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, including the normally open position and the first branch and excluding the second bran

Claim	Claim Language	Infringement Evidence
		truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection
		chamber 117.")at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
1(j)	[the microfluidic device comprises] a vent disposed within the DNA manipulation module and separated from the	The accused system comprises a microfluidic device comprising a vent disposed within the DNA manipulation module and separated from the upstream channel by the first and second valves.

Claim	Claim Language	Infringement Evidence
Claim	Claim Language upstream channel by the first and second valves;	Infringement Evidence NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16)
		On information and belief, the accused cartridge comprises a vent disposed within the DNA manipulation module and separated from the upstream channel by the first and second valves. • Id. at 2:10

Claim	Claim Language	Infringement Evidence
		Vents October 1980 Control of the c
		 Claim 10. A cartridge, configured to facilitate processing and detecting of nucleic acids, comprising: a first layer and an intermediate substrate, coupled to the first layer, wherein the intermediate substrate defines a waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids spanning a majority of a width of the intermediate substrate and external to the waste chamber, wherein the set of voids is accessible from a direction perpendicular to a broad surface of the first layer; a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and the second fluidic pathway are each superior to the intermediate substrate, are each at least partially separated from the corrugated surface of the intermediate substrate by an elastomeric layer and are each configured to transfer waste to the waste chamber through a set of openings of the intermediate substrate. Claim 11. The cartridge of claim 10, wherein the first layer is a unitary

Claim	Claim Language	Infringement Evidence
		construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port. • Claim 13. The cartridge of claim 11, further comprising a heating region as a recessed region of the first layer that is parallel to the set of parallel voids of the corrugated surface, and a vent region, such that the first fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the first detection chamber, and the second fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the second detection chamber. • Claim 15. The cartridge of claim 13, wherein at least of the first fluidic pathway and the second fluidic pathway is coupled to an end vent configured to provide fine metering of fluid flow.
		 US9738887 (Exhibit 31) Claim 1. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer, defining a sample port, a reagent port, a fluid port, and a detection chamber; an elastomeric layer; an intermediate substrate coupled to the first layer, such that the elastomeric layer is situated between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the reagent

Claim	Claim Language	Infringement Evidence
		port, the fluid port, and the detection chamber.
		• Claim 10. The cartridge of claim 1, wherein a terminal portion of the fluidic
		pathway is coupled to an end vent , configured to provide fine metering of fluid flow.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with
		the mixed reagent-nucleic acid sample, after which the fluidic pathway 165
		is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as
		thermocycling and detection, on the volume of fluid within the detection chamber 117.")
		 U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 8,738,887 at 15:4-6 ("A fluidic pathway 165 may also further comprise an end vent 199, which functions to prevent any fluid from escaping the microfluidic channel.")
1(k)	a controller programmed to close the first and second valves to prevent gas and liquid from flowing into or out of the DNA	The accused system comprises a controller programmed to close the first and second valves to prevent gas and liquid from flowing into or out of the DNA manipulation zone when amplification of the sample occurs.
	manipulation zone when amplification of the sample	NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11)
	occurs,	 "NeuMoDxTM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that

Claim	Claim Language	Infringement Evidence
		fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. • "The NeuMoDx™ 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 98 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		• "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		US9339812 (Exhibit 26)
		 Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway passing through a magnetic field for controlling a flow through the fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to
		facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic
		reagents to produce a nucleic acid-reagent sample; occlu ding the fluidic

Claim	Claim Language	Infringement Evidence
		pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		 U.S. Patent No. 9,339,812 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") U.S. Patent No. 9,339,812 at 3:41-46 ("The detection chamber heaters 157, optical subsystem 180 and valve actuation subsystem 170 of the molecular diagnostic module 130 then facilitate analysis of the set of nucleic acid-reagent mixtures by a processor configured to display information on a user interface.") U.S. Patent No. 9,339,812 at 26:25-32 ("In a variation wherein the controller 272 is coupled to the molecular diagnostic module 130, the controller 272 preferably functions to automate reception of a microfluidic cartridge, heating of biological samples within the molecular diagnostic module 130 and the detection chambers 213, occlusion of fluidic pathways 220 by the valve actuation subsystem 180.")
		• U.S. Patent No. 9,339,812 at 33:3-39 ("Embodiments of the method 400 and

Claim	Claim Language	Infringement Evidence
		variations thereof can be embodied and/or implemented at least in part by
		a machine configured to receive a computer-readable medium storing
		computer-readable instructions. The instructions are preferably executed
		by computer-executable components preferably integrated with the system
		100 and one or more portions of the processor 273 and/or the controller
		272 . The computer-readable medium can be stored on any suitable computer-
		readable media such as RAMs, ROMs, flash memory, EEPROMs, optical
		devices (CD or DVD), hard drives, floppy drives, or any suitable device. The
		computer-executable component is preferably a general or application specific
		processor, but any suitable dedicated hardware or hardware/firmware
		combination device can alternatively or additionally execute the instructions.
		The FIGURES illustrate the architecture, functionality and operation of possible
		implementations of systems, methods and computer program products according
		to preferred embodiments, example configurations, and variations thereof. In
		this regard, each block in the flowchart or block diagrams may represent a
		module, segment, or portion of code, which comprises one or more executable
		instructions for implementing the specified logical function(s). It should also be
		noted that, in some alternative implementations, the functions noted in the block
		can occur out of the order noted in the FIGURES. For example, two blocks
		shown in succession may, in fact, be executed substantially concurrently, or the
		blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block
		diagrams and/or flowchart illustration, and combinations of blocks in the block
		diagrams and/or flowchart illustration, can be implemented by special purpose
		hardware-based systems that perform the specified functions or acts, or
		combinations of special purpose hardware and computer instructions.")
		comomations of special purpose natural and computer instructions.
		US9738887 (Exhibit 31)
		Claim 12. A cartridge, configured to facilitate processing and detecting of a
		nucleic acid, comprising: a first layer comprising a sample port and a detection
		chamber; an elastomeric layer; an intermediate substrate including a set of valve
		guides, wherein the intermediate substrate defines a chamber with a corrugated

Claim	Claim Language	Infringement Evidence
		surface directly opposing the first layer, wherein the corrugated surface defines
		a set of voids external to the chamber and accessible from a direction
		perpendicular to a broad surface of the first layer, and wherein at least a portion
		of the corrugated surface defines the set of valve guides with a set of openings
		that provide access to the elastomeric layer; and a fluidic pathway, formed by at
		least a portion of the first layer and a portion of the elastomeric layer, wherein
		the fluidic pathway is fluidically coupled to the sample port and the detection
		chamber and comprises a first and second branch extending downstream from a
		junction, and is configured to be occluded at a set of occlusion positions upon
		manipulation of the elastomeric layer through the set of valve guides, wherein a
		first occlusion position of the set of occlusion positions is positioned along the
		fluidic pathway downstream of the junction and upstream of the first branch and
		a second occlusion position of the set of occlusion positions is positioned along
		the fluidic pathway downstream of the junction and upstream of the second
		branch, wherein the set of occlusion positions comprises a normally open
		position and a normally closed position, wherein the normally open position
		comprises a first surface of the fluidic pathway at the first layer and a second
		surface of the fluidic pathway at the elastomeric layer, wherein a void defined
		between the first surface and the second surface is configured to transition to a
		closed state upon occlusion by an occluding object applied to the elastomeric
		layer during operation; wherein the normally closed position is defined by a
		region of the fluidic pathway, at the first layer that extends toward and abuts the
		elastomeric layer in preventing fluid bypass at the region; wherein a first
		truncated pathway, including the normally open position and the first branch and
		excluding the second branch, is defined upon manipulation of the fluidic
		pathway at the first and second occlusion positions, and wherein a second
		truncated pathway, including the normally closed position and the second
		branch and excluding the first branch, to the detection chamber is defined
		upon manipulation of the fluidic pathway at the first and second occlusion
		positions.
		• US Patent No. 9,738,887 at 12:11-19 ("When not in operation, however, the
		normally closed position 43 is configured to prevent leakage and/or fluid

Claim	Claim Language	Infringement Evidence
		bypass. The normally closed position may also be held closed by an
		occluding object, to prevent leakage even under pressure provided by a
		fluid delivery system, or under pressure experienced during a high
		temperature step (e.g., thermocycling) to prevent evaporation of a sample
		undergoing thermocycling.")
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142,
		144 may be reversed, defining a seventh truncated pathway, and the entire
		released nucleic acid sample (e.g20 microliters) may be aspirated out of the
		microfluidic cartridge through the reagent port 115. This released nucleic acid
		sample is then used to reconstitute a molecular diagnostic reagent stored off of
		the microfluidic cartridge 100. During the reconstitution, the occlusion at the
		sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may
		be occluded at the first occlusion position 142 to form an eighth truncated
		pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic
		reagent with the released nucleic acid sample is complete and well mixed, the
		reconstituted mixture may then be dispensed through the reagent port 115,
		through the eighth truncated pathway, and to the detection chamber 117, by
		using a fluid handling system to push the seventh occlusion position [148]
		(normally closed) open. The detection chamber 117 is completely filled with
		the mixed reagent-nucleic acid sample, after which the fluidic pathway 165
		is occluded at the third, sixth, seventh and eighth occlusion positions 144,
		147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as
		thermocycling and detect ion, on the volume of fluid within the detect ion
		chamber 117.")
		 US Patent No. 9,738,887 at Figs. 1J and 1K:
		• 05 1 atom No. 9,/30,00 / at 11gs. 13 and 1K.

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
1(1)	wherein the only ingress to and egress from the DNA manipulation zone is through the first and second valves, and	In the accused system, the only ingress to and egress from the DNA manipulation zone is through the first and second valves. NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,

Claim	Claim Language	Infringement Evidence
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the
		cartridge into three thin PCR chambers and the amplification process
		begins." <i>Id.</i> at 3:58-4:08
		A Romanti Siriole C D
		Second valve PCR First valve

Claim	Claim Language	Infringement Evidence
		 Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway passing through a magnetic field for controlling a flow through the fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer to occlude the pluidic pathway are acids bound to magnetic beads. Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathwa

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	US9738887 (Exhibit 31) • Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at

Claim	Claim Language	Infringement Evidence
		pathway at the first and second occlusion positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as
		thermocycling and detection, on the volume of fluid within the detection chamber 117.")at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
1(m)	wherein the computer-controlled heat source is in thermal contact with the DNA manipulation	In the accused system, the computer-controlled heat source is in thermal contact with the DNA manipulation zone.

Claim	Claim Language	Infringement Evidence
	zone; and	NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/,
		last visited May 31, 2019 (Exhibit 11)
		"NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR
		DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers
		market-leading ease of use, true continuous random-access and rapid
		turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result".
		The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully
		automated, continuous random-access analyzers that utilize our proprietary
		NeuDry TM reagent technology, which integrates magnetic particle affinity
		capture and real time Polymerase Chain Reaction (PCR) chemistry in a
		multi-sample microfluidic cartridge. This technology, combined with a
		platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the
		waste associated with technologies that required reconstitution of lyophilized
		reagents.
		 "The NeuMoDxTM 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,

Claim	Claim Language	Infringement Evidence
		 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDxTM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		 NeuMoDxTM Molecular Systems, NEUMoDx, https://www.neumodx.com/dr-steven-young-video-testimonial/, last visited May 31, 2019, hyperlink at https://youtu.be/vukP6gbLBYE. (Exhibit 32) "There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint." "The NeuMoDxTM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." "The NeuMoDxTM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first

Claim	Claim Language	Infringement Evidence
		substrate surface, wherein the electronics substrate comprises a set of substrate
		connection points at least at one of the first substrate surface, an aperture surface
		defined within at least one of the set of apertures, and the second substrate
		surface, and wherein the electronics substrate couples the heating element
		and the sensing element of each of the set of heater-sensor dies to a
		controller ; a set of heat-sink supports coupled to at least one of 1) the set of
		heater-sensor dies, through the set of apertures, and 2) the second substrate
		surface of the electronics substrate and configured to dissipate heat generated by
		the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of
		the set of heat-sink supports is coupled to an elastic element that transmits a
		biasing force through the electronics substrate, thereby maintaining thermal
		communication between the set of heater-sensor dies and a set of detection
		chambers upon alignment of the set of heater-sensor dies with the set of
		detection chambers; and a set of wire bonds, including a wire bond coupled
		between the connection point of at least one of the set of heater-sensor dies and
		one of the set of substrate connection points.
		US9499896 (Exhibit 28)
		Claim 1. A system for thermocycling biological samples within detection
		chambers comprising: a set of heater-sensor dies, each heater-sensor die in the
		set of heater-sensor dies comprising: an assembly including a first insulating
		layer, a heating region comprising an adhesion material layer coupled to the first
		insulating layer and a noble material layer coupled to the adhesion material
		layer, and a second insulating layer coupled to the heating region and to the first
		insulating layer through a pattern of voids in the heating region, wherein the
		pattern of voids in the heating region defines a coarse pattern, comprising a
		global morphology at a first scale and associated with a heating element of the
		heating region, and a fine pattern, comprising a local morphology at a second
		scale smaller than the first scale, integrated into the coarse pattern and
	<u> </u>	associated with a sensing element of the heating region; an electronics

Claim	Claim Language	Infringement Evidence
		substrate configured to couple heating elements and sensing elements of the
		set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		 U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. IA and IB, an embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heater-sensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160 configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.") U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller 165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3 microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply

Claim	Claim Language	Infringement Evidence
		 configured to supply voltage to the resistance-to-voltage conversion circuit. In the specific example, the controller 165 comprises a resistance-to-voltage conversion circuit because the UT750 PID controller requires voltage as an input for PID control.") U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. 1A and 1B, the system 100 can further comprise a controller 165, which functions to automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected temperatures) sensed at the sensing element(s) 115 of the system 100."
1(n)	wherein the detector is configured to identify one or more polynucleotides within the DNA manipulation zone.	The accused system comprises a detector configured to identify one or more polynucleotides within the DNA manipulation zone. *NeuMoDx*** Molecular Systems, NeuMoDx, http://www.neumodx.com/product/neumodx-288/, last visited June 3, 2019 (Exhibit 13) ** "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification." *NeuMoDx*** Molecular Systems, NeuMoDx, http://www.neumodx.com/product/neumodx-96/, last visited June 3, 2019 (Exhibit 14) ** "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification."
		JFO_2018-10-25_8009-Rev-B_NeuMoDx-96-Spec-Sheet (Exhibit 21)

Claim	Claim Language	Infringement Evidence		
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		NeuMoDx_288_Spec_She	et_R2.pdf (Exhibit 2	2)
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		sample within a car sample, the molecu supports the cartrid aligned with the ca subsystem; an opti aligned with the ma the liquid handling the actuator config operation mode to coupled to a fluid p receives fluids for	rtridge and separate a dar diagnostic system lge and comprising a rtridge in a first opera cal subsystem; a car agnet receiving slot; subsystem, the optic ured to vertically disp a position wherein: the port of the cartridge, we processing the biolog	a configured to process a biological a nucleic acid volume from the biological a comprising: a cartridge platform that magnet receiving slot configured to be ation mode; a nozzle of a liquid handling tridge heater; a magnet vertically and an actuator coupled to the nozzle of al subsystem, and the cartridge heater, place the cartridge platform in the first he nozzle of the liquid handling system is wherein the fluid port of the cartridge pical sample, the magnet passes through
			-	e platform and interfaces with a first ystem interfaces with a second portion

	of the cartridge, wherein the second portion of the cartridge receives a processed derivative of the nucleic acid volume, and a third region of the cartridge is compressed between the cartridge heater and the cartridge platform. • Claim 8. The system of claim 1, wherein the optical subsystem comprises at least one writing on excitation filter on emission filter.
	least one unit including an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the biological sample, and to transmit emitted light from the biological sample, through the emission filter, and toward the photodetector.
	US9604213 (Exhibit 30)
	 Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater. Claim 11. The system of claim 1, wherein the molecular diagnostic module further comprises an optical subsystem comprising a first unit and a second unit, wherein each of the first unit and the second unit includes a set of

Claim	Claim Language	Infringement Evidence
		with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of excitation filters toward one of a set of nucleic acid-reagent mixtures at the cartridge, and to transmit emitted light from one of the set of nucleic acid-reagent mixtures, through at least one of the set of emission filters, and toward at least one of the set of photodetectors. • Claim 12. The system of claim 11, wherein the molecular diagnostic module further includes a set of detection chamber heaters configured to heat a set of detection chambers through the second surface of the cartridge, and wherein the optical subsystem is configured to receive light, emitted from the set of nucleic acid-reagent mixtures at the set of detection chambers, from the first surface of the cartridge.
18(a)	A device, comprising:	To the extent the preamble is limiting, the accused instrument is a device.
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-products/ , last visited June 5, 2019 (Exhibit 12)

Claim	Claim Language	Infringement Evidence	
		NeuMoDx molecular	NeuMoDx molecular
		#500200 NeuMoDx 96 Molecular System	#500100 NeuMoDx 288 Molecular System
		May 31, 2019 (Exhibit 10) • "The NeuMoDx TM Molecular Sy	ODX, http://www.neumodx.com/ , last visited vstems are a family of scalable platforms that lar diagnostic process from "sample to result."
		last visited May 31, 2019 (Exhibit 11) • "NeuMoDx TM MOLECULAR S	ODX, http://www.neumodx.com/our-solutions/ , SYSTEMS REVOLUTIONARY SOLUTION Our patented, "sample to result"

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." • "The NeuMoDx TM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. • "The NeuMoDx TM 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx TM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx TM 288 Molecular System is designed for the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		 "NeuMoDxTM Molecular Systems are versatile; in addition to IVD tests, our system can also be used as an open system to process Laboratory Developed Tests (LDTs) that have been created and validated by your lab."
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/dr-steven-young-video-testimonial/ , last visited May 31, 2019, hyperlink at

Claim	Claim Language	Infringement Evidence
		https://youtu.be/vukP6gbLBYE. (Exhibit 32)
		• "There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint."
18(b)	a microfluidic process module;	The accused device comprises a microfluidic process module
		 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		Powerful. Simple. Diagnostics. Office 734 A77.0111 Var 734 A77.0130 1 1250 Elsenhouse Piace Ann Arber, MI 48108 www.neumode.com
		NeuMoDx TM Molecular Systems, NEuMoDx, http://www.neumodx.com/ , last visited May 31, 2019 (Exhibit 10)
		• "NeuMoDx TM 288 and NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic

Claim	Claim Language	Infringement Evidence
		cartridge."
		 NeuMoDxTM Molecular Systems, NeuMoDx, http://www.neumodx.com/our-solutions/, last visited May 24, 2019 (Exhibit 11) "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from 'sample to result'. The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multisample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDxTM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		0600101_Rev-D-IFU-NeuMoDx-RELEASE-Solution-US-ONLY-FINAL- 25Oct2018.pdf (Exhibit 20) • "NeuMoDx™ RELEASE Solution INSTRUCTIONS FOR USE The NeuMoDx Systems mix the released nucleic acid with assay specific primers and probe(s) and the dried Master Mix contained in a NeuMoDx test strip. The System then dispenses the prepared RT-PCR-ready mixture into the NeuMoDx

Claim	Claim Language	Infringement Evidence
		Cartridge where Real-Time PCR occurs."
SUMMARY ASSAY AND INSTRUMENT Control and target DNA sequences occur in PC		 "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber." NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
		 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDxTM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." <i>Id.</i> at 1:49-1:59

Claim	Claim Language	Infringement Evidence
Ciaini	Chain Banguage	 US9604213 (Exhibit 30) Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater.
18(c)	a computer-controlled heat source; and	The accused device comprises a computer-controlled heat source. *NeuMoDx** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) *NeuMoDx** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." *The NeuMoDx** Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result".

Claim	Claim Language	Infringement Evidence
		The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully
		 automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multisample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. "The NeuMoDxTM 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDxTM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." "The NeuMoDxTM 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDxTM 288 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and consumables." NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		 (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		US9539576 (Exhibit 29)

Claim	Claim Language	Infringement Evidence
Ciaiiii	Claim Language	• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate comprises a set of substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies with the set of detection chambers; and a set of wire bonds, including a wire bond coupled between the connection point of at least one of the set of heater-sensor dies and
		one of the set of substrate connection points.
		US9499896 (Exhibit 28)
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating

Claim	Claim Language	Infringement Evidence
		layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of
		 U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. IA and IB, an embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heater-sensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160

Claim	Claim Language	Infringement Evidence
		configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.") • U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller 165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3 microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply configured to supply voltage to the resistance-to-voltage conversion circuit. In the specific example, the controller 165 comprises a resistance-to-voltage conversion circuit because the UT750 PID controller requires voltage as an input for PID control.") • U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. IA and IB, the system 100 can further comprise a controller 165, which functions to automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected temperatures) sensed at the sensing element(s) 115 of the system 100."
18(d)	a detector;	The accused device comprises a detector. *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/product/neumodx-288/, last visited June 3, 2019 (Exhibit 13) • "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification." *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/product/neumodx-96/, last visited June 3, 2019 (Exhibit 14) • "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of

Claim	Claim Language	Infringement Evidence		
		products of ampli	fication."	
		JFO_2018-10-25_8009-Re	ev-B_NeuMoDx-96-S	Spec-Sheet (Exhibit 21)
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		t	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		NeuMoDx 288 Spec She		
		t	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		sample within a car sample, the molecu supports the cartrid aligned with the ca	lar diagnostic system tridge and separate a lar diagnostic system lge and comprising a rtridge in a first opera	configured to process a biological nucleic acid volume from the biological comprising: a cartridge platform that magnet receiving slot configured to be ation mode; a nozzle of a liquid handling
		subsystem; an opti aligned with the ma the liquid handling the actuator config	cal subsystem; a car agnet receiving slot; a subsystem, the optic ured to vertically disp	tridge heater; a magnet vertically and an actuator coupled to the nozzle of al subsystem, and the cartridge heater, place the cartridge platform in the first he nozzle of the liquid handling system

Claim	Claim Language	Infringement Evidence
		coupled to a fluid port of the cartridge, wherein the fluid port of the cartridge receives fluids for processing the biological sample, the magnet passes through the magnet receiving slot of the cartridge platform and interfaces with a first portion of the cartridge, the optical subsystem interfaces with a second portion of the cartridge, wherein the second portion of the cartridge receives a processed derivative of the nucleic acid volume, and a third region of the cartridge is compressed between the cartridge heater and the cartridge platform. • Claim 8. The system of claim 1, wherein the optical subsystem comprises at least one unit including an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the biological sample, and to transmit emitted light from the biological sample, through the emission filter, and toward the photodetector.
		 Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater.

Claim	Claim Language	Infringement Evidence
		 Claim 11. The system of claim 1, wherein the molecular diagnostic module further comprises an optical subsystem comprising a first unit and a second unit, wherein each of the first unit and the second unit includes a set of excitation filters, a set of emission filters, a set of photodetectors aligned with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of excitation filters toward one of a set of nucleic acid-reagent mixtures at the cartridge, and to transmit emitted light from one of the set of nucleic acid-reagent mixtures, through at least one of the set of emission filters, and toward at least one of the set of photodetectors. Claim 12. The system of claim 11, wherein the molecular diagnostic module further includes a set of detection chamber heaters configured to heat a set of detection chambers through the second surface of the cartridge, and wherein the optical subsystem is configured to receive light, emitted from the set of nucleic acid-reagent mixtures at the set of detection chambers, from the first surface of the cartridge.
18(e)	wherein the microfluidic process module comprises: a zone configured to receive a sample and perform amplification of the sample;	The accused device comprises a microfluidic process module comprising a zone configured to receive a sample and perform amplification of the sample. *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) *NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." *The NeuMoDx*** Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx*** 288 and the NeuMoDx*** 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry*** reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a

Claim	Claim Language	Infringement Evidence
		multi-sample microfluidic cartridge."
		 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		Powerful. Simple. Diagnostics.
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6,

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." Id. at 0:00-0:18 • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59 • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the

Claim	Claim Language	Infringement Evidence
		 second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port. Claim 11. The cartridge of claim 10, further comprising 1) a heating region defined as a recessed region of the first layer that is parallel to the set of voids of the corrugated surface, and 2) a vent region, such that the first fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the first detection chamber, and the second fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the second detection chamber.
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-
		reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the

Claim	Claim Language	Infringement Evidence
		waste chamber, and to be occluded upon deformation of the elastomeric layer.
		Claim 16. A system for processing and detecting nucleic acids, comprising: a
		capture plate comprising at least one well containing a set of magnetic beads
		configured to be combined with a biological sample to produce a magnetic
		bead-sample; an assay strip comprising at least one well containing a molecular
		diagnostic reagent configured to be combined with a nucleic acid volume to
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,
		configured to process the magnetic bead-sample from the capture plate, separate
		the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam
		card, and a set of pins contacting the cam card, wherein movement of the cam
		card displaces a subset of the set of pins through a subset of the set of parallel
		slots to define at least one pathway configured to receive the magnetic bead-
		sample; and a liquid handling system configured to transfer the magnetic bead-
		sample from the capture plate to the molecular diagnostic module, transfer the
		nucleic acid volume from the molecular diagnostic module to the assay strip,
		and transfer the nucleic acid-reagent mixture from the assay strip to the
		molecular diagnostic module.
		• Claim 18. The system of claim 16, wherein the molecular diagnostic module
		comprises an optical subsystem comprising at least one unit, wherein each unit
		includes an excitation filter, an emission filter, a photodetector aligned with the
		emission filter, and a dichroic mirror configured to reflect light from the
		excitation filter toward the nucleic acid-reagent mixture, and to transmit light
		from the nucleic acid reagent mixture, through the emission filter, and toward
		the photodetector wherein each unit of the optical subsystem further comprises
		an LED aligned with the excitation filter, wherein the LED provides multiple
		wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter.
		• Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the
		heater is configured to heat the magnetic bead-sample, and wherein the
		neater is configured to heat the magnetic beau-sample, and wherein the

Claim	Claim Language	Infringement Evidence
	8 3	detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:49-65 ("The cartridge heater 153 functions to transfer heat to a heating region 224 of a microfluidic cartridge 210, for inducing a pH shift to release bound nucleic acids from magnetic beads within the heating region 224 The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for s

Claim	Claim Language	Infringement Evidence
		 U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple heaters are provided, each heater is preferably independent to allow independent control of heating time and temperature for each sample.")
18(f)	[the microfluidic process module comprises] a first valve upstream of the zone;	The accused device comprises a microfluidic process module comprising a first valve upstream of the zone. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx MoRKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		A Robertal Strate C Robertal St
		PCR First valve
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve

Claim	Claim Language	Infringement Evidence
		guides, wherein the intermediate substrate defines a chamber with a corrugated
		surface directly opposing the first layer, wherein the corrugated surface defines
		a set of voids external to the chamber and accessible from a direction
		perpendicular to a broad surface of the first layer, and wherein at least a portion
		of the corrugated surface defines the set of valve guides with a set of openings
		that provide access to the elastomeric layer; and a fluidic pathway, formed by at
		least a portion of the first layer and a portion of the elastomeric layer, wherein
		the fluidic pathway is fluidically coupled to the sample port and the detection
		chamber and comprises a first and second branch extending downstream from a
		junction, and is configured to be occluded at a set of occlusion positions upon
		manipulation of the elastomeric layer through the set of valve guides, wherein a
		first occlusion position of the set of occlusion positions is positioned along the
		fluidic pathway downstream of the junction and upstream of the first branch and
		a second occlusion position of the set of occlusion positions is positioned along
		the fluidic pathway downstream of the junction and upstream of the second
		branch, wherein the set of occlusion positions comprises a normally open
		position and a normally closed position, wherein the normally open position
		comprises a first surface of the fluidic pathway at the first layer and a second
		surface of the fluidic pathway at the elastomeric layer, wherein a void defined
		between the first surface and the second surface is configured to transition to a
		closed state upon occlusion by an occluding object applied to the elastomeric
		layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the
		elastomeric layer in preventing fluid bypass at the region; wherein a first
		truncated pathway, including the normally open position and the first branch and
		excluding the second branch, is defined upon manipulation of the fluidic
		pathway at the first and second occlusion positions, and wherein a second
		truncated pathway, including the normally closed position and the second
		branch and excluding the first branch, to the detection chamber is defined
		upon manipulation of the fluidic pathway at the first and second occlusion
		positions.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as

Claim	Claim Language	Infringement Evidence
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.")

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
18(g)	[the microfluidic process module comprises] a second valve downstream of the zone; and	The accused device comprises a microfluidic process module comprising a second valve downstream of the zone.

Claim	Claim Language	Infringement Evidence
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the
		cartridge into three thin PCR chambers and the amplification process
		begins." Id. at 3:58-4:08
		A Somerius Sirrole
		Second valve PCR

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of t

Claim	Claim Language	Infringement Evidence
		truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as
		thermocycling and detect ion, on the volume of fluid within the detect ion chamber 117.")
		 U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
18(h)	[the microfluidic process module comprises] a vent separated from the first valve by the second valve;	The accused device comprises a microfluidic process module comprising a vent separated from the first valve by the second valve. NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	Infringement Evidence 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) On information and belief, the accused cartridge comprises a vent disposed within the DNA manipulation module and separated from the upstream channel by the first and second valves. • Id. at 2:10

Claim	Claim Language	Infringement Evidence
		Vents One of the second of th
		 Claim 10. A cartridge, configured to facilitate processing and detecting of nucleic acids, comprising: a first layer and an intermediate substrate, coupled to the first layer, wherein the intermediate substrate defines a waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids spanning a majority of a width of the intermediate substrate and external to the waste chamber, wherein the set of voids is accessible from a direction perpendicular to a broad surface of the first layer; a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway, formed by at least a portion of the first layer, wherein the first fluidic pathway and the second fluidic pathway are each superior to the intermediate substrate, are each at least partially separated from the corrugated surface of the intermediate substrate by an elastomeric layer and are each configured to transfer waste to the waste chamber through a set of openings of the intermediate substrate. Claim 11. The cartridge of claim 10, wherein the first layer is a unitary

Claim	Claim Language	Infringement Evidence
		construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port. • Claim 13. The cartridge of claim 11, further comprising a heating region as a recessed region of the first layer that is parallel to the set of parallel voids of the corrugated surface, and a vent region, such that the first fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the first detection chamber, and the second fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the second detection chamber. • Claim 15. The cartridge of claim 13, wherein at least of the first fluidic pathway and the second fluidic pathway is coupled to an end vent configured to provide fine metering of fluid flow.
		 US9738887 (Exhibit 31) Claim 1. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer, defining a sample port, a reagent port, a fluid port, and a detection chamber; an elastomeric layer; an intermediate substrate coupled to the first layer, such that the elastomeric layer is situated between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the reagent

Claim	Claim Language	Infringement Evidence
		port, the fluid port, and the detection chamber.
		• Claim 10. The cartridge of claim 1, wherein a terminal portion of the fluidic
		pathway is coupled to an end vent , configured to provide fine metering of fluid flow.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with
		the mixed reagent-nucleic acid sample, after which the fluidic pathway 165
		is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as
		thermocycling and detection, on the volume of fluid within the detection
		chamber 117.")
		• U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 8,738,887 at 15:4-6 ("A fluidic pathway 165 may also further comprise an end vent 199, which functions to prevent any fluid from escaping the microfluidic channel.")
18(i)	a controller programmed to close the first and second valves to prevent gas and liquid from flowing into or out of the zone	The accused device comprises a controller programmed to close the first and second valves to prevent gas and liquid from flowing into or out of the zone when amplification of the sample occurs in the zone
	when amplification of the sample occurs in the zone,	NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) • "NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access
		and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." • "The NeuMoDx TM Molecular Systems are a family of scalable platforms that

Claim	Claim Language	Infringement Evidence
		fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multisample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. • "The NeuMoDx™ 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		• "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		 US9339812 (Exhibit 26) Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway passing through a magnetic field for controlling a flow through the fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the flui

Claim	Claim Language	Infringement Evidence
		pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		 U.S. Patent No. 9,339,812 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") U.S. Patent No. 9,339,812 at 3:41-46 ("The detection chamber heaters 157, optical subsystem 180 and valve actuation subsystem 170 of the molecular diagnostic module 130 then facilitate analysis of the set of nucleic acid-reagent mixtures by a processor configured to display information on a user interface.") U.S. Patent No. 9,339,812 at 26:25-32 ("In a variation wherein the controller 272 is coupled to the molecular diagnostic module 130, the controller 272 preferably functions to automate reception of a microfluidic cartridge, heating of biological samples within the molecular diagnostic module 130 and the detection chambers 213, occlusion of fluidic pathways 220 by the valve actuation subsystem 180.")
		• U.S. Patent No. 9,339,812 at 33:3-39 ("Embodiments of the method 400 and

Claim	Claim Language	Infringement Evidence
		variations thereof can be embodied and/or implemented at least in part by
		a machine configured to receive a computer-readable medium storing
		computer-readable instructions. The instructions are preferably executed
		by computer-executable components preferably integrated with the system
		100 and one or more portions of the processor 273 and/or the controller
		272 . The computer-readable medium can be stored on any suitable computer-
		readable media such as RAMs, ROMs, flash memory, EEPROMs, optical
		devices (CD or DVD), hard drives, floppy drives, or any suitable device. The
		computer-executable component is preferably a general or application specific
		processor, but any suitable dedicated hardware or hardware/firmware
		combination device can alternatively or additionally execute the instructions.
		The FIGURES illustrate the architecture, functionality and operation of possible
		implementations of systems, methods and computer program products according
		to preferred embodiments, example configurations, and variations thereof. In
		this regard, each block in the flowchart or block diagrams may represent a
		module, segment, or portion of code, which comprises one or more executable
		instructions for implementing the specified logical function(s). It should also be
		noted that, in some alternative implementations, the functions noted in the block
		can occur out of the order noted in the FIGURES. For example, two blocks
		shown in succession may, in fact, be executed substantially concurrently, or the
		blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block
		diagrams and/or flowchart illustration, and combinations of blocks in the block
		diagrams and/or flowchart illustration, can be implemented by special purpose
		hardware-based systems that perform the specified functions or acts, or
		combinations of special purpose hardware and computer instructions.")
		comomations of special purpose natural and computer instructions.
		US9738887 (Exhibit 31)
		Claim 12. A cartridge, configured to facilitate processing and detecting of a
		nucleic acid, comprising: a first layer comprising a sample port and a detection
		chamber; an elastomeric layer; an intermediate substrate including a set of valve
		guides, wherein the intermediate substrate defines a chamber with a corrugated

Claim	Claim Language	Infringement Evidence
		surface directly opposing the first layer, wherein the corrugated surface defines
		a set of voids external to the chamber and accessible from a direction
		perpendicular to a broad surface of the first layer, and wherein at least a portion
		of the corrugated surface defines the set of valve guides with a set of openings
		that provide access to the elastomeric layer; and a fluidic pathway, formed by at
		least a portion of the first layer and a portion of the elastomeric layer, wherein
		the fluidic pathway is fluidically coupled to the sample port and the detection
		chamber and comprises a first and second branch extending downstream from a
		junction, and is configured to be occluded at a set of occlusion positions upon
		manipulation of the elastomeric layer through the set of valve guides, wherein a
		first occlusion position of the set of occlusion positions is positioned along the
		fluidic pathway downstream of the junction and upstream of the first branch and
		a second occlusion position of the set of occlusion positions is positioned along
		the fluidic pathway downstream of the junction and upstream of the second
		branch, wherein the set of occlusion positions comprises a normally open
		position and a normally closed position, wherein the normally open position
		comprises a first surface of the fluidic pathway at the first layer and a second
		surface of the fluidic pathway at the elastomeric layer, wherein a void defined
		between the first surface and the second surface is configured to transition to a
		closed state upon occlusion by an occluding object applied to the elastomeric
		layer during operation; wherein the normally closed position is defined by a
		region of the fluidic pathway, at the first layer that extends toward and abuts the
		elastomeric layer in preventing fluid bypass at the region; wherein a first
		truncated pathway, including the normally open position and the first branch and
		excluding the second branch, is defined upon manipulation of the fluidic
		pathway at the first and second occlusion positions, and wherein a second
		truncated pathway, including the normally closed position and the second
		branch and excluding the first branch, to the detection chamber is defined
		upon manipulation of the fluidic pathway at the first and second occlusion
		positions.
		• US Patent No. 9,738,887 at 12:11-19 ("When not in operation, however, the
		normally closed position 43 is configured to prevent leakage and/or fluid

Claim	Claim Language	Infringement Evidence
		bypass. The normally closed position may also be held closed by an
		occluding object, to prevent leakage even under pressure provided by a
		fluid delivery system, or under pressure experienced during a high
		temperature step (e.g., thermocycling) to prevent evaporation of a sample
		undergoing thermocycling.")
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142,
		144 may be reversed, defining a seventh truncated pathway, and the entire
		released nucleic acid sample (e.g20 microliters) may be aspirated out of the
		microfluidic cartridge through the reagent port 115. This released nucleic acid
		sample is then used to reconstitute a molecular diagnostic reagent stored off of
		the microfluidic cartridge 100. During the reconstitution, the occlusion at the
		sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may
		be occluded at the first occlusion position 142 to form an eighth truncated
		pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic
		reagent with the released nucleic acid sample is complete and well mixed, the
		reconstituted mixture may then be dispensed through the reagent port 115,
		through the eighth truncated pathway, and to the detection chamber 117, by
		using a fluid handling system to push the seventh occlusion position [148]
		(normally closed) open. The detection chamber 117 is completely filled with
		the mixed reagent-nucleic acid sample, after which the fluidic pathway 165
		is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as
		thermocycling and detect ion, on the volume of fluid within the detect ion
		chamber 117.")
		/
		• US Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
18(j)	wherein the only ingress to and egress from the zone is through the first and second valves;	In the accused device, the only ingress to and egress from the zone is through the first and second valves NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,

Claim	Claim Language	Infringement Evidence
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the
		cartridge into three thin PCR chambers and the amplification process
		begins." <i>Id.</i> at 3:58-4:08
		A Romanti Siriole C D
		Second valve PCR First valve

Claim	Claim Language	Infringement Evidence
		 Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway passing through a magnetic field for controlling a flow through the fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer to occlude the pluidic pathway are acids bound to magnetic beads. Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidi

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	US9738887 (Exhibit 31) • Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at

Claim	Claim Language	Infringement Evidence
		pathway at the first and second occlusion positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.")
		• U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
18(k)	wherein the computer-controlled heat source is in thermal contact with the zone; and	In the accused device, the computer-controlled heat source is in thermal contact with the zone. *NeuMoDx** Molecular Systems*, NEUMoDx, http://www.neumodx.com/our-solutions/ ,

Claim	Claim Language	Infringement Evidence
		last visited May 31, 2019 (Exhibit 11)
		"NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR
		DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers
		market-leading ease of use, true continuous random-access and rapid
		turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result".
		The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully
		automated, continuous random-access analyzers that utilize our proprietary
		NeuDry™ reagent technology, which integrates magnetic particle affinity
		capture and real time Polymerase Chain Reaction (PCR) chemistry in a
		multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher
		throughput, improved performance and increased efficiency by eliminating the
		waste associated with technologies that required reconstitution of lyophilized
		reagents.
		• "The NeuMoDx TM 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and consumables."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO

Claim	Claim Language	Infringement Evidence
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		 NeuMoDxTM Molecular Systems, NEUMoDx, https://www.neumodx.com/dr-steven-young-video-testimonial/, last visited May 31, 2019, hyperlink at https://youtu.be/vukP6gbLBYE. (Exhibit 32) "There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint." "The NeuMoDxTM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." "The NeuMoDxTM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		 US9539576 (Exhibit 29) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate

Claim	Claim Language	Infringement Evidence
		connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies with the set of detection chambers; and a set of wire bonds, including a wire bond coupled between the connection point of at least one of the set of heater-sensor dies and one of the set of substrate connection points.
		 US9499896 (Exhibit 28) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the

Claim	Claim Language	Infringement Evidence
		set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		 U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. 1A and 1B, an embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heater-sensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160 configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.") U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller
		165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3 microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply configured to supply voltage to the resistance-to-voltage conversion circuit.

Claim	Claim Language	Infringement Evidence
		 In the specific example, the controller 165 comprises a resistance-to-voltage conversion circuit because the UT750 PID controller requires voltage as an input for PID control.") U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. IA and IB, the system 100 can further comprise a controller 165, which functions to automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected temperatures) sensed at the sensing element(s) 115 of the system 100."
18(1)	wherein the detector is configured to identify one or more polynucleotides within the zone.	In the accused device, the detector is configured to identify one or more polynucleotides within the zone. *NeuMoDx** Molecular Systems*, NeuMoDx*, http://www.neumodx.com/product/neumodx-288/ , last visited June 3, 2019 (Exhibit 13) • "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification."
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/product/neumodx-96/, last visited June 3, 2019 (Exhibit 14) "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification." JFO_2018-10-25_8009-Rev-B_NeuMoDx-96-Spec-Sheet (Exhibit 21)

	Infringement Evidence		
	Optical Wavelengths	Excitation (nm)	Emission (nm)
	1	470	510
	2	530	555
	3	585	610
	4	625	660
	5	680	715 long pass
	NeuMoDx_288_Spec_She	et_R2.pdf (Exhibit 2	2)
	Optical Wavelengths	Excitation (nm)	Emission (nm)
	1	470	510
	2	530	555
	3	585	610
	4	625	660
	5	680	715 long pass
	sample within a car sample, the molecu supports the cartrid aligned with the car subsystem; an opti aligned with the ma the liquid handling the actuator configu operation mode to a coupled to a fluid p receives fluids for p	tridge and separate a lar diagnostic system ge and comprising a rtridge in a first opera cal subsystem; a car agnet receiving slot; a subsystem, the optical ared to vertically disp a position wherein: the cort of the cartridge, verocessing the biolog	nucleic acid volume from the biological a comprising: a cartridge platform that magnet receiving slot configured to be ation mode; a nozzle of a liquid handling tridge heater; a magnet vertically and an actuator coupled to the nozzle of al subsystem, and the cartridge heater, place the cartridge platform in the first ne nozzle of the liquid handling system is wherein the fluid port of the cartridge ical sample, the magnet passes through
_		NeuMoDx_288_Spec_She Optical Wavelengths 1 2 3 4 5 US10041062 (Exhibit 33) Claim 1. A molecus ample within a carsample, the molecus supports the cartridaligned with the carsubsystem; an optical aligned with the matheliquid handling the actuator configured poperation mode to a coupled to a fluid preceives fluids for put the magnet receivir	NeuMoDx_288_Spec_Sheet_R2.pdf (Exhibit 2 Optical Wavelengths Excitation (nm) 1 470 2 530 3 585 4 625 5 680 US10041062 (Exhibit 33) • Claim 1. A molecular diagnostic system sample within a cartridge and separate a sample, the molecular diagnostic system supports the cartridge and comprising a aligned with the cartridge in a first opera subsystem; an optical subsystem; a car aligned with the magnet receiving slot; a the liquid handling subsystem, the optical the actuator configured to vertically disp

Claim	Claim Language	Infringement Evidence
		 of the cartridge, wherein the second portion of the cartridge receives a processed derivative of the nucleic acid volume, and a third region of the cartridge is compressed between the cartridge heater and the cartridge platform. Claim 8. The system of claim 1, wherein the optical subsystem comprises at least one unit including an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the biological sample, and to transmit emitted light from the biological sample, through the emission filter, and toward the photodetector.
		 Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater. Claim 11. The system of claim 1, wherein the molecular diagnostic module further comprises an optical subsystem comprising a first unit and a second
		unit, wherein each of the first unit and the second unit includes a set of excitation filters, a set of emission filters, a set of photodetectors aligned

Claim	Claim Language	Infringement Evidence
		with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of excitation filters toward one of a set of nucleic acid-reagent mixtures at the cartridge, and to transmit emitted light from one of the set of nucleic acid-reagent mixtures, through at least one of the set of emission filters, and toward at least one of the set of photodetectors. • Claim 12. The system of claim 11, wherein the molecular diagnostic module further includes a set of detection chamber heaters configured to heat a set of detection chambers through the second surface of the cartridge, and wherein the optical subsystem is configured to receive light, emitted from the set of nucleic acid-reagent mixtures at the set of detection chambers, from the first surface of the cartridge.
19(a)	A system, comprising:	To the extent the preamble is limiting, the accused instruments are a system.
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-products/ , last visited June 5, 2019 (Exhibit 12)

Claim	Claim Language	Infringement Evidence	
		NeuMoDx molecular	NeuMoDx molecular
		#500200 NeuMoDx 96 Molecular System	#500100 NeuMoDx 288 Molecular System
		May 31, 2019 (Exhibit 10) • "The NeuMoDx TM Molecular Sy	ODX, http://www.neumodx.com/ , last visited vstems are a family of scalable platforms that lar diagnostic process from "sample to result."
		last visited May 31, 2019 (Exhibit 11) • "NeuMoDx TM MOLECULAR S	ODX, http://www.neumodx.com/our-solutions/ , SYSTEMS REVOLUTIONARY SOLUTION Our patented, "sample to result"

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." • "The NeuMoDx™ Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. • "The NeuMoDx™ 96 Molecular System is designed for the automated amplification and detection of target nucleic acids sequences by fluorescence-based PCR. The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 288 Molecular System is designed for the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ Molecular Systems are versatile; in addition to IVD tests, our system can also be used as an open system to process Laboratory Developed Tests (LDTs) that have been created and validated by your lab." NeuMoDx™ Molecular Systems, NeuMoDx, http://www.neumodx.com/dr-steven-
		young-video-testimonial/, last visited May 31, 2019, hyperlink at

Claim	Claim Language	Infringement Evidence
		https://youtu.be/vukP6gbLBYE. (Exhibit 32)
		• "There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint."
19(b)	a microfluidic device;	The accused system comprises a microfluidic device.
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) • Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR." Powerful. Simple. Diagnostics. NeuMoDx NeuMoDx CARTRIDGE CARTRIDGE CARTRIDGE CARTRIDGE
		N. M. D. TM M. L. L. C. (NEW Mo Day 144 of American Amer
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/ , last visited May 31, 2019 (Exhibit 10)
		• "NeuMoDx TM 288 and NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic

Claim	Claim Language	Infringement Evidence
		cartridge."
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 24, 2019 (Exhibit 11) "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from 'sample to result'. The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multisample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		0600101_Rev-D-IFU-NeuMoDx-RELEASE-Solution-US-ONLY-FINAL-25Oct2018.pdf (Exhibit 20) • "NeuMoDx™ RELEASE Solution INSTRUCTIONS FOR USE The NeuMoDx Systems mix the released nucleic acid with assay specific primers and probe(s) and the dried Master Mix contained in a NeuMoDx test strip. The System then dispenses the prepared RT-PCR-ready mixture into the NeuMoDx

Claim	Claim Language	Infringement Evidence	
		Cartridge where Real-Time PCR occurs."	
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber." NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 	
		 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDxTM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." <i>Id.</i> at 1:49-1:59 	

Claim	Claim Language	Infringement Evidence
		 Claim 1. A molecular diagnostic system configured to process a biological sample within a cartridge and separate a nucleic acid volume from the biological sample, the molecular diagnostic system comprising: a cartridge platform that supports the cartridge and comprising a magnet receiving slot configured to be aligned with the cartridge in a first operation mode; a nozzle of a liquid handling subsystem; an optical subsystem; a cartridge heater; a magnet vertically aligned with the magnet receiving slot; and an actuator coupled to the nozzle of the liquid handling subsystem, the optical subsystem, and the cartridge heater, the actuator configured to vertically displace the cartridge platform in the first operation mode to a position wherein: the nozzle of the liquid handling system is coupled to a fluid port of the cartridge, wherein the fluid port of the cartridge receives fluids for processing the biological sample, the magnet passes through the magnet receiving slot of the cartridge platform and interfaces with a first portion of the cartridge, the optical subsystem interfaces with a second portion of the cartridge, wherein the second portion of the cartridge receives a processed derivative of the nucleic acid volume, and a third region of the cartridge platform.
		 Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a

Claim	Claim Language	Infringement Evidence
		magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater.
19(c)	a computer-controlled heat source; and	The accused system comprises a computer-controlled heat source. **NeuMoDx*** Molecular Systems*, NeuModd, https://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) **NeuModd, Molecular Systems Revolutionary Molecular Diagnostic Solution Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." **The NeuModd, Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuModd, continuous random-access analyzers that utilize our proprietary NeuDry* reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multisample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. **The NeuModx** 96 Molecular System is designed for the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuModx** 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and

Claim	Claim Language	Infringement Evidence
		 "The NeuMoDxTM 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDxTM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		 NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the

Claim Language	Infringement Evidence
	second substrate surface, and wherein the electronics substrate couples the
	heating element and the sensing element of each of the set of heater-sensor
	dies to a controller; a set of heat-sink supports coupled to at least one of 1) the
	set of heater-sensor dies, through the set of apertures, and 2) the second
	substrate surface of the electronics substrate and configured to dissipate heat
	generated by the set of heater-sensor dies, wherein at least one of the set of heat-
	sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that
	transmits a biasing force through the electronics substrate, thereby maintaining
	thermal communication between the set of heater-sensor dies and a set of
	detection chambers upon alignment of the set of heater-sensor dies with the set
	of detection chambers; and a set of wire bonds, including a wire bond coupled
	between the connection point of at least one of the set of heater-sensor dies and
	one of the set of substrate connection points.
	US9499896 (Exhibit 28)
	Claim 1. A system for thermocycling biological samples within detection
	chambers comprising: a set of heater-sensor dies, each heater-sensor die in the
	set of heater-sensor dies comprising: an assembly including a first insulating
	layer, a heating region comprising an adhesion material layer coupled to the first
	insulating layer and a noble material layer coupled to the adhesion material
	layer, and a second insulating layer coupled to the heating region and to the first
	insulating layer through a pattern of voids in the heating region, wherein the
	pattern of voids in the heating region defines a coarse pattern, comprising a
	global morphology at a first scale and associated with a heating element of the
	heating region, and a fine pattern, comprising a local morphology at a second
	scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics
	substrate configured to couple heating elements and sensing elements of the
	set of heater-sensor dies to a controller; and a set of elastic elements coupled
	to a second substrate surface of the electronics substrate opposing a first
	Claim Language

Claim	Claim Language	Infringement Evidence
		substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		 U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. IA and IB, an embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heater-sensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160 configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.") U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller
		165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3 microcontroller configured to cycle the UT750 through temperature stages
		and to control temperature holding, a resistance-to-voltage conversion circuit, and two power supplies-a first power supply configured to supply
		power to the set of heater-sensor dies 110 and a second power supply
		configured to supply voltage to the resistance-to-voltage conversion circuit. In the specific example, the controller 165 comprises a resistance-to-voltage
		conversion circuit because the UT750 PID controller requires voltage as an

Claim	Claim Language	Infringement Evidence			
		U.S. Patent No. 9,4 system 100 can fur automate and/or or sensor dies 110. To parameter output correceive communications sensed at the sensing sensed	input for PID control.")		
19(d)	a detector;	NeuMoDx TM Molecular Sy http://www.neumodx.com/ • "FEATURES ANI enabling multiplex products of ampli NeuMoDx TM Molecular Sy http://www.neumodx.com/ • "FEATURES ANI enabling multiplex products of ampli	The accused system comprises a detector NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/product/neumodx-288/ , last visited June 3, 2019 (Exhibit 13)		
		JFO_2018-10-25_8009-Reconstruction	Excitation (nm)	Emission (nm)	
		1	1 470 510		
		2 530 555		555	
3			585	610	
		4	625	660	
		5 680 715 long pass		715 long pass	

Claim	Claim Language	Infringement Evidence		
		NeuMoDx_288_Spec_She	et_R2.pdf (Exhibit 2	2)
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		sample within a car sample, the molecus supports the cartridaligned with the car subsystem; an opticaligned with the matheliquid handling the actuator configuoperation mode to a coupled to a fluid preceives fluids for put the magnet receiving portion of the cartridge, who derivative of the nucleon compressed between the compressed between the cartridge, who derivative of the nucleon compressed between the cartridge, who compressed between the cartridge, who compressed between the cartridge of the nucleon compressed between the cartridge of the nucleon compressed between the cartridge of the cartridge of the nucleon compressed between the cartridge of the nucleon compressed between the cartridge of the nucleon compressed between the cartridge of the cartridge of the nucleon compressed between the cartridge of the cartridge of the nucleon compressed between the cartridge of the cartridge of the cartridge of the nucleon compressed between the cartridge of the cartridge of the cartridge of the cartridge of the nucleon compressed between the cartridge of the cartrid	rtridge and separate and ardiagnostic system and comprising a rtridge in a first operation in a first operation in a subsystem; a carriagnet receiving slot; a subsystem, the optical ured to vertically disparate a position wherein: the port of the cartridge, wherein the cartridge, the optical subsystem in the cartridge in the cartridge in the cartridge heater and claim 1, wherein uding an excitation in the cartridge with the emission of the cartridge heater and claim 1, wherein uding an excitation in the cartridge heater and the cartridge he	configured to process a biological nucleic acid volume from the biological nucleic acid volume from the biological comprising: a cartridge platform that magnet receiving slot configured to be ation mode; a nozzle of a liquid handling tridge heater; a magnet vertically and an actuator coupled to the nozzle of all subsystem, and the cartridge heater, place the cartridge platform in the first me nozzle of the liquid handling system is wherein the fluid port of the cartridge ical sample, the magnet passes through the platform and interfaces with a first system interfaces with a second portion tion of the cartridge receives a processed and a third region of the cartridge is and the cartridge platform. The optical subsystem comprises at filter, an emission filter, a on filter, and a dichroic mirror citation filter toward the biological from the biological sample, through

Claim	Claim Language	Infringement Evidence
		the emission filter, and toward the photodetector.
		 the emission filter, and toward the photodetector. US9604213 (Exhibit 30) Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater. Claim 11. The system of claim 1, wherein the molecular diagnostic module further comprises an optical subsystem comprising a first unit and a second unit, wherein each of the first unit and the second unit includes a set of excitation filters, a set of emission filters, as set of photodetectors aligned with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of emission filters, and toward at least one of the set of photodetectors. Claim 12. The system of claim 11, wherein the molecular diagnostic module further includes a set of detection chamber heaters configured to heat a set of detection chambers through the second surf

Claim	Claim Language	Infringement Evidence
		optical subsystem is configured to receive light, emitted from the set of nucleic acid-reagent mixtures at the set of detection chambers, from the
		first surface of the cartridge.
19(e)	wherein the microfluidic device comprises: an upstream channel;	The accused system comprises a microfluidic device comprising an upstream channel **NeuMoDx Molecular N96 and N288 Overview and Animation*, NEUMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) * "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." *Id.** at 3:58-4:08 **A STATE OF THE NEW OF THE N
		U.S. Patent No. 9,738,887 at Abstract ("A microfluidic cartridge, configured to

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	facilitate processing and detection of nucleic acids, comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample port-reagent port pairs, a shared fluid port, a vent region, a heating region, and a set of Detection chambers; an intermediate substrate, coupled to the top layer comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate; and a set of fluidic pathways, each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a Detection chamber, comprises a turnabout portion passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste chamber, and to pass through the vent region") • U.S. Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to a detection chamber for analysis, which may include amplification and/or detection.") • U.S. Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection chamber 113 functions to deliver a processed sample fluid to the detection chamber 117 with a reduced quantity of gas bubbles, and the segment running away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 117.") • U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through

Claim	Claim Language	Infringement Evidence
		may be occluded at the first occlusion position 142 to form an eighth
		truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular
		diagnostic reagent with the released nucleic acid sample is complete and well
		mixed, the reconstituted mixture may then be dispensed through the
		reagent port 115, through the eighth truncated pathway, and to the
		detection chamber 117, by using a fluid handling system to push the
		seventh occlusion position [148] (normally closed) open. The detection
		chamber 117 is completely filled with the mixed reagent-nucleic acid
		sample, after which the fluidic pathway 165 is occluded at the third, sixth,
		seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth
		truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic
		pathways 165 may be similarly configured to receive a reagent-nucleic acid
		mixture. An external molecular diagnostic system and/or module may then
		perform additional processes, such as thermocycling and detection, on the
		volume of fluid within the detection chamber 117.")
		• U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		• U.S. Patent No. 9,738,887 at 23:36-41 ("Each detection chamber 117 of the specific embodiment is identical and comprised of three interconnected channels, configured in a circular arrangement, with each of the interconnected channels approximately 0.4 mm deep and 1.6 mm wide at its widest point, resulting in a total volume of -10 mL for each detection chamber 117.")
19(f)	[the microfluidic device comprises] a DNA manipulation zone located downstream from the upstream channel and configured to perform PCR amplification of a sample;	The accused system comprises a microfluidic device comprising a DNA manipulation zone located downstream from the upstream channel and configured to perform PCR amplification of a sample *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	** "A scries of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08 A

Claim	Claim Language	Infringement Evidence
Claim	Ciaim Language	
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		• U.S. Patent No. 9,738,887 at Abstract ("A microfluidic cartridge, configured to facilitate processing and detection of nucleic acids, comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample port-reagent port pairs, a shared fluid port, a vent region, a heating region, and a set of Detection chambers; an intermediate substrate, coupled to the top layer comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate; and a set of fluidic pathways, each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a detection chamber, comprises a turnabout portion passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste chamber, and to pass through the vent region.")

Claim	Claim Language	Infringement Evidence
		• U.S. Patent No. 9,738,887 at 2:36-3:5. ("As shown in FIGS. 1A-lC, an
		embodiment of a microfluidic cartridge 100 for processing and detecting
		nucleic acids comprises: a top layer 110 comprising a set of sample port-
		reagent port pairs 112 and a set of detection chambers 116; an intermediate
		substrate 120, coupled to the top layer 110 and partially separated from the top
		layer by a film layer 125, configured to form a waste chamber 130; an
		elastomeric layer 140 partially situated on the intermediate substrate 120; a
		magnet housing region 150 accessible by a magnet 152 providing a magnetic
		field 156; and a set of fluidic pathways 160, each formed by at least a portion of
		the top layer 110, a portion of the film layer 125, and a portion of the
		elastomeric layer 140 In a specific application, the microfluidic cartridge
		100 can be used to facilitate a PCR procedure for analysis of a sample containing nucleic acids.")
		 U.S. Patent No. 9,738,887 at 13:7-18. ("The top layer 110 of an embodiment
		of the microfluidic cartridge 100 functions to accommodate elements
		involved in performing a molecular diagnostic procedure (e.g. PCR), such
		that a sample containing nucleic acids, passing through the cartridge, can
		be manipulated by the elements involved in performing the molecular diagnostic
		procedure. The top layer 110 is preferably composed of a structurally rigid/stiff
		material with low autofluorescence, such that the top layer 110 does not
		interfere with sample detection by fluorescence or chemiluminescence
		techniques, and an appropriate glass transition temperature and chemical
		compatibility for PCR or other amplification techniques.")
		• U.S. Patent No. 9,738,887 at 13:35-42. ("The set of fluidic pathways 160 of
		the microfluidic cartridge 100 functions to provide a fluid network into which
		volumes of sample fluids, reagents, buffers and/or gases used in a molecular
		diagnostics protocol may be delivered, out of which waste fluids may be
		eliminated, and by which processed nucleic acid samples may be delivered to
		a detection chamber for analysis, which may include amplification and/or
		detection.")
		• U.S. Patent No. 9,738,887 at 15:29-39 ("The segments may be arranged in at
		least one of several configurations to facilitate isolation, processing, and

Claim	Claim Language	Infringement Evidence
		amplification of a nucleic acid sample").
		• U.S. Patent No. 9,738,887 at 23:20-24 ("The top layer 110 of the specific
		embodiment of the microfluidic cartridge 100 functions preferably as described in Section 1.1, and is composed of polypropylene with low autofluorescence and a glass transition temperature suitable for PCR .")
		 U.S. Patent No. 9,738,887 at 23:36-41 ("Each detection chamber 117 of the specific embodiment is identical and comprised of three interconnected channels, configured in a circular arrangement, with each of the interconnected channels approximately 0.4 mm deep and 1.6 mm wide at its widest point, resulting in a total volume of -10 mL for each detection chamber 117.") U.S. Patent No. 9,738,887 at 24:1-11 ("In the specific embodiment, the intermediate substrate 120 is composed of a polypropylene material to minimize cost and simplify assembly, and in the orientation shown in FIG. 11B, the top of the intermediate substrate 120 is 1.5 mm thick. The film layer 125, partially separating the intermediate substrate 120 from the top layer 110 is a polypropylene film with a nominal thickness of 50 microns. The film layer 125 is able to withstand temperatures of up to 95° C. encountered during fabrication and during an intended PCR procedure, while being thermally bondable to the top layer 110.")
19(g)	[the microfluidic device comprises] a first valve disposed upstream of the DNA	The accused system comprises a microfluidic device comprising a first valve disposed upstream of the DNA manipulation zone
	manipulation zone; and	NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		A Robertal Strate C Robertal St
		PCR First valve
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve

Claim	Claim Language	Infringement Evidence
		guides, wherein the intermediate substrate defines a chamber with a corrugated
		surface directly opposing the first layer, wherein the corrugated surface defines
		a set of voids external to the chamber and accessible from a direction
		perpendicular to a broad surface of the first layer, and wherein at least a portion
		of the corrugated surface defines the set of valve guides with a set of openings
		that provide access to the elastomeric layer; and a fluidic pathway, formed by at
		least a portion of the first layer and a portion of the elastomeric layer, wherein
		the fluidic pathway is fluidically coupled to the sample port and the detection
		chamber and comprises a first and second branch extending downstream from a
		junction, and is configured to be occluded at a set of occlusion positions upon
		manipulation of the elastomeric layer through the set of valve guides, wherein a
		first occlusion position of the set of occlusion positions is positioned along the
		fluidic pathway downstream of the junction and upstream of the first branch and
		a second occlusion position of the set of occlusion positions is positioned along
		the fluidic pathway downstream of the junction and upstream of the second
		branch, wherein the set of occlusion positions comprises a normally open
		position and a normally closed position, wherein the normally open position
		comprises a first surface of the fluidic pathway at the first layer and a second
		surface of the fluidic pathway at the elastomeric layer, wherein a void defined
		between the first surface and the second surface is configured to transition to a
		closed state upon occlusion by an occluding object applied to the elastomeric
		layer during operation; wherein the normally closed position is defined by a
		region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first
		truncated pathway, including the normally open position and the first branch and
		excluding the second branch, is defined upon manipulation of the fluidic
		pathway at the first and second occlusion positions, and wherein a second
		truncated pathway, including the normally closed position and the second
		branch and excluding the first branch, to the detection chamber is defined
		upon manipulation of the fluidic pathway at the first and second occlusion
		positions.
		 U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as
		• U.S. ratefit No. 9,750,007 at 17:27-49 (Thereafter in the first embodiment, as

Claim	Claim Language	Infringement Evidence
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.")at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
19(h)	[the microfluidic device comprises] a second valve disposed downstream of the DNA manipulation zone;	The accused system comprises a microfluidic device comprising a second valve disposed downstream of the DNA manipulation zone NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,

Claim	Claim Language	Infringement Evidence
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process
		begins." <i>Id.</i> at 3:58-4:08
		A B Content of the second of t
		Second valve PCR

Claim	Claim Language	Infringement Evidence
		US9738887 (Exhibit 31)
Claim	Claim Language	 Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a
		closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a
		region of the fluidic pathway, at the first layer that extends toward and abuts the
		elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and
		excluding the second branch, is defined upon manipulation of the fluidic
		pathway at the first and second occlusion positions, and wherein a second
		truncated pathway, including the normally closed position and the second

Claim	Claim Language	Infringement Evidence
		branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as thermocycling and detect ion, on the volume of fluid within the detect ion chamber 117.")
		• U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
19(i)	a controller programmed to close the first and second valves to prevent gas and liquid from	The accused system comprises a controller programmed to close the first and second valves to prevent gas and liquid from flowing into or out of the DNA manipulation zone and to isolate and confine the sample to a region between the first and second valves

Claim Language	Infringement Evidence
flowing into or out of the DNA	accessible to the detector.
	TM
1	NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ ,
1 -	last visited May 31, 2019 (Exhibit 11)
	• "NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY
detector,	MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"
	platform offers market-leading ease of use, true continuous random-access
	and rapid turnaround time while achieveing [sic] optimal operational and
	clinical performance for our customers and their patients."
	• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
	fully integrate the entire molecular diagnostic process from "sample to result".
	The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully
	automated, continuous random-access analyzers that utilize our proprietary
	NeuDry TM reagent technology, which integrates magnetic particle affinity
	capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-
	sample microfluidic cartridge. This technology, combined with a platform,
	uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the
	waste associated with technologies that required reconstitution of lyophilized
	reagents.
	 "The NeuMoDxTM 96 Molecular System is designed for the automated
	extraction and isolation of nucleic acids, as well as the automated
	amplification and detection of target nucleic acid sequences by
	fluorescence-based PCR. The NeuMoDx TM 96 Molecular System consists of
	the instrument with touchscreen computer, accessories, and reagents and
	consumables."
	• "The NeuMoDx TM 288 Molecular System is designed for the automated
	extraction and isolation of nucleic acids, as well as the automated
	amplification and detection of target nucleic acid sequences by
	fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of
	the instrument with touchscreen computer, accessories, and reagents and
	consumables."
	<u> </u>

Claim	Claim Language	Infringement Evidence
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 24, 2019 (Exhibit 11) "The NeuMoDxTM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." "The NeuMoDxTM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		 NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		 US9339812 (Exhibit 26) Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway passing through a magnetic field for controlling a flow through the fluidic pathway;

Claim	Claim Language	Infringement Evidence
		capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. • Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		U.S. Patent No. 9,339,812 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.")

Infringement Evidence
 U.S. Patent No. 9,339,812 at 3:41-46 ("The detection chamber heaters 157, optical subsystem 180 and valve actuation subsystem 170 of the molecular diagnostic module 130 then facilitate analysis of the set of nucleic acidreagent mixtures by a processor configured to display information on a user interface.") U.S. Patent No. 9,339,812 at 26:25-32 ("In a variation wherein the controller 272 is coupled to the molecular diagnostic module 130, the controller 272 preferably functions to automate reception of a microfluidic cartridge, heating of biological samples within the molecular diagnostic module 130 and the detection chambers 213, occlusion of fluidic pathways 220 by the valve actuation subsystem 170, and analysis of a set of nucleic acid-reagent mixtures by the optical subsystem 180.") U.S. Patent No. 9,339,812 at 33:3-39 ("Embodiments of the method 400 and variations thereof can be embodied and/or implemented at least in part by a machine configured to receive a computer-readable medium storing computer-executable components preferably integrated with the system 100 and one or more portions of the processor 273 and/or the controller 272. The computer-executable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (CD or DVD), hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a general or application specific processor, but any suitable dedicated hardware or hardware/firmware combination device can alternatively or additionally execute the instructions. The FIGURES illustrate the architecture, functionality and operation of possible implementations of systems, methods and computer program products according to preferred embodiments, example configurations, and variations thereof. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementi

Claim	Claim Language	Infringement Evidence
		shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.")
		 Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined

Claim	Claim Language	Infringement Evidence
		between the first surface and the second surface is configured to transition to a
		closed state upon occlusion by an occluding object applied to the elastomeric
		layer during operation; wherein the normally closed position is defined by a
		region of the fluidic pathway, at the first layer that extends toward and abuts the
		elastomeric layer in preventing fluid bypass at the region; wherein a first
		truncated pathway, including the normally open position and the first branch and
		excluding the second branch, is defined upon manipulation of the fluidic
		pathway at the first and second occlusion positions, and wherein a second
		truncated pathway, including the normally closed position and the second
		branch and excluding the first branch, to the detection chamber is defined
		upon manipulation of the fluidic pathway at the first and second occlusion
		positions.
		• US Patent No. 9,738,887 at 12:11-19 ("When not in operation, however, the
		normally closed position 43 is configured to prevent leakage and/or fluid
		bypass. The normally closed position may also be held closed by an
		occluding object, to prevent leakage even under pressure provided by a fluid delivery system, or under pressure experienced during a high
		temperature step (e.g., thermocycling) to prevent evaporation of a sample
		undergoing thermocycling.")
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142,
		144 may be reversed, defining a seventh truncated pathway, and the entire
		released nucleic acid sample (e.g20 microliters) may be aspirated out of the
		microfluidic cartridge through the reagent port 115. This released nucleic acid
		sample is then used to reconstitute a molecular diagnostic reagent stored off of
		the microfluidic cartridge 100. During the reconstitution, the occlusion at the
		sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may
		be occluded at the first occlusion position 142 to form an eighth truncated
		pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic
		reagent with the released nucleic acid sample is complete and well mixed, the
		reconstituted mixture may then be dispensed through the reagent port 115,
		through the eighth truncated pathway, and to the detection chamber 117, by

Claim	Claim Language	Infringement Evidence
		using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection
		chamber 117.")
		• US Patent No. 9,738,887 at Figs. 1J and 1K:
		119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117
		174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection

Claim	Claim Language	Infringement Evidence
		chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
19(j)	wherein the only ingress to and egress from the region accessible to the detector is through the first and second valves; and	In the accused system, the only ingress to and egress from the region accessible to the detector is through the first and second valves. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the contribute into those this PCR above have and the contribution was a series of microfluidic valves guides."

Claim	Claim Language	Infringement Evidence
		A B B Company Strategy B
		Second valve PCR First valve
		 US9339812 (Exhibit 26) Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module,

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	Infringement Evidence the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway passing through a magnetic field for controlling a flow through the fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. • Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve

guides, wherein the intermediate substrate defines a surface directly opposing the first layer, wherein the a set of voids external to the chamber and accessible perpendicular to a broad surface of the first layer, a of the corrugated surface defines the set of valve guithat provide access to the elastomeric layer; and a first layer.	e corrugated surface defines le from a direction
least a portion of the first layer and a portion of the the fluidic pathway is fluidically coupled to the san chamber and comprises a first and second branch e junction, and is configured to be occluded at a set of manipulation of the elastomeric layer through the set first occlusion position of the set of occlusion position and up a second occlusion position of the set of occlusion the fluidic pathway downstream of the junction and branch, wherein the set of occlusion position and a normally closed position, wherein the comprises a first surface of the fluidic pathway at the surface of the fluidic pathway at the elastomeric lay between the first surface and the second surface is closed state upon occlusion by an occluding object layer during operation; wherein the normally closed region of the fluidic pathway, at the first layer that elastomeric layer in preventing fluid bypass at the truncated pathway, including the normally open po excluding the second occlusion positions, truncated pathway, including the normally closed p branch and excluding the first branch, to the detect upon manipulation of the fluidic pathway at the positions.	luidic pathway, formed by at elastomeric layer, wherein apple port and the detection attending downstream from a confocclusion positions upon et of valve guides, wherein a sions is positioned along the stream of the first branch and positions is positioned along dupstream of the second prises a normally open see normally open position the first layer and a second configured to transition to a applied to the elastomeric diposition is defined by a extends toward and abuts the region; wherein a first sition and the first branch and pulation of the fluidic, and wherein a second toosition and the second toosition and the second too chamber is defined

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured
		(normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147 146177 199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
19(k)	wherein the computer-controlled heat source is in thermal contact with the DNA manipulation zone and	The accused system comprises a computer-controlled heat source in thermal contact with the DNA manipulation zone. *NeuMoDx** Molecular Systems*, NEUMoDx, http://www.neumodx.com/our-solutions/ ,

Claim	Claim Language	Infringement Evidence
		last visited May 31, 2019 (Exhibit 11)
		"NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR
		DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers
		market-leading ease of use, true continuous random-access and rapid
		turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result".
		The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully
		automated, continuous random-access analyzers that utilize our proprietary
		NeuDry™ reagent technology, which integrates magnetic particle affinity
		capture and real time Polymerase Chain Reaction (PCR) chemistry in a
		multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher
		throughput, improved performance and increased efficiency by eliminating the
		waste associated with technologies that required reconstitution of lyophilized
		reagents.
		• "The NeuMoDx TM 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and consumables."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO

Claim	Claim Language	Infringement Evidence
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/dr-steven-young-video-testimonial/, last visited May 31, 2019, hyperlink at https://youtu.be/vukP6gbLBYE. (Exhibit 32) "There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint." "The NeuMoDxTM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." "The NeuMoDxTM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate

Claim Language	Infringement Evidence
	connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element
	and the sensing element of each of the set of heater-sensor dies to a
	controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies with the set of detection chambers; and a set of wire bonds, including a wire bond coupled between the connection point of at least one of the set of heater-sensor dies and one of the set of substrate connection points.
	US9499896 (Exhibit 28)
	• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled

Claim	Claim Language	Infringement Evidence
		to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		 U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. 1A and 1B, an embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heater-sensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160 configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.") U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller 165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3 microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion
		circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply configured to supply voltage to the resistance-to-voltage conversion circuit. In the specific example, the controller 165 comprises a resistance-to-voltage

Claim	Claim Language	Infringement Evidence
		 conversion circuit because the UT750 PID controller requires voltage as an input for PID control.") U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. IA and IB, the system 100 can further comprise a controller 165, which functions to automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected temperatures) sensed at the sensing element(s) 115 of the system 100."
19(1)	wherein the detector is configured to identify one or more polynucleotides within the DNA manipulation zone.	The accused system comprises a detector configured to identify one or more polynucleotides within the DNA manipulation zone. *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/product/neumodx-288/, last visited June 3, 2019 (Exhibit 13) ** "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification." *NeuMoDx*** Molecular Systems*, NeuMoDx*, http://www.neumodx.com/product/neumodx-96/, last visited June 3, 2019 (Exhibit 14) ** "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification."
		JFO_2018-10-25_8009-Rev-B_NeuMoDx-96-Spec-Sheet (Exhibit 21)

Claim	Claim Language	Infringement Evidence		
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		NeuMoDx_288_Spec_She		
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		sample within a car sample, the molecusupports the cartridaligned with the car subsystem; an opticaligned with the mather liquid handling the actuator configuration mode to a coupled to a fluid preceives fluids for preceives.	rtridge and separate a dar diagnostic system lge and comprising a rtridge in a first opera cal subsystem; a car agnet receiving slot; a subsystem, the optic ured to vertically disp a position wherein: the port of the cartridge, we processing the biolog	a configured to process a biological a nucleic acid volume from the biological a comprising: a cartridge platform that magnet receiving slot configured to be ation mode; a nozzle of a liquid handling tridge heater; a magnet vertically and an actuator coupled to the nozzle of al subsystem, and the cartridge heater, place the cartridge platform in the first ne nozzle of the liquid handling system is wherein the fluid port of the cartridge gical sample, the magnet passes through the platform and interfaces with a first
				ystem interfaces with a second portion

	of the cartridge, wherein the second portion of the cartridge receives a processed derivative of the nucleic acid volume, and a third region of the cartridge is compressed between the cartridge heater and the cartridge platform. • Claim 8. The system of claim 1, wherein the optical subsystem comprises at least one writing on excitation filter on emission filter.
	least one unit including an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the biological sample, and to transmit emitted light from the biological sample, through the emission filter, and toward the photodetector.
	US9604213 (Exhibit 30)
	 Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater. Claim 11. The system of claim 1, wherein the molecular diagnostic module further comprises an optical subsystem comprising a first unit and a second unit, wherein each of the first unit and the second unit includes a set of

Claim	Claim Language	Infringement Evidence
		with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of excitation filters toward one of a set of nucleic acid-reagent mixtures at the cartridge, and to transmit emitted light from one of the set of nucleic acid-reagent mixtures, through at least one of the set of emission filters, and toward at least one of the set of photodetectors. • Claim 12. The system of claim 11, wherein the molecular diagnostic module further includes a set of detection chamber heaters configured to heat a set of detection chambers through the second surface of the cartridge, and wherein the optical subsystem is configured to receive light, emitted from the set of nucleic acid-reagent mixtures at the set of detection chambers, from the first surface of the cartridge.

Exhibit 35

U.S. Patent No. 8,703,069 Infringement Chart

Claim	Claim Language	Infringement Evidence
Claim 1(a)	Claim Language 1. A method of amplifying a nucleic acid-containing sample within a microfluidic device, the method comprising:	Infringement Evidence To the extent the preamble is limiting, the accused workflow is a method of amplifying a nucleic acid-containing sample within a microfluidic device. NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) • Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge." "The NeuMoDxTM 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDxTM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." "The NeuMoDxTM 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/product/neumodx-288/, last visited June 3, 2019 (Exhibit 13) • "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification." NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/product/neumodx-96/, last visited June 3, 2019 (Exhibit 14) • "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of

Claim	Claim Language	Infringement Evidence
		products of amplification."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		0600101_Rev-D-IFU-NeuMoDx-RELEASE-Solution-US-ONLY-FINAL-25Oct2018.pdf (Exhibit 20) • "NeuMoDx™ RELEASE Solution INSTRUCTIONS FOR USE The NeuMoDx Systems mix the released nucleic acid with assay specific primers and probe(s) and the dried Master Mix contained in a NeuMoDx test strip. The System then dispenses the prepared RT-PCR-ready mixture into the NeuMoDx Cartridge where Real-Time PCR occurs."
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26 	Claim	Claim Language	Infringement Evidence
 cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for 	Claim	Claim Language	• "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples
			 cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for

Claim	Claim Language	Infringement Evidence
		substrate coupled to the first layer, such that the elastomeric layer is situated between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the reagent port, the fluid port, and the detection chamber . • Claim 11. The cartridge of claim 1, wherein the detection chamber comprises a first, a second, and a third detection chamber segment wherein each of the first, the second, and the third detection chamber segment is a broad chamber of which a projection onto a plane is substantially rectangular, wherein a first end of the second detection chamber segment is connected to the first detection chamber segment by a first narrow fluidic channel, and wherein a second end of the second detection chamber segment is connected to the third detection chamber segment by a second narrow fluidic channel.
		• U.S. Patent No. 9,738,887 at FIG. 1A:

Claim	Claim Language	Infringement Evidence
		116
		165 160 160 190 190 190 190 190 190 190 190 190 19
		118
		112
		FIG. 1A
		• U.S. Patent No. 9,738,887 at Abstract ("A microfluidic cartridge, configured to facilitate processing and detection of nucleic acids, comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample port-reagent port pairs, a shared fluid port, a vent region, a heating region, and a set of detection chambers; an intermediate substrate, coupled to the top layer comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate; and a set of fluidic pathways, each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a Detection chamber, comprises a turnabout portion passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste chamber, and to pass through the vent region.")
		• US Patent No. 9,738,887 at 2:36-3:5. ("As shown in FIGS. 1A-IC, an
		embodiment of a microfluidic cartridge 100 for processing and detecting nucleic acids comprises: a top layer 110 comprising a set of sample port-

Claim	Claim Language	Infringement Evidence
		reagent port pairs 112 and a set of detection chambers 116; an intermediate
		substrate 120, coupled to the top layer 110 and partially separated from the top
		layer by a film layer 125, configured to form a waste chamber 130; an
		elastomeric layer 140 partially situated on the intermediate substrate 120; a
		magnet housing region 150 accessible by a magnet 152 providing a magnetic
		field 156; and a set of fluidic pathways 160, each formed by at least a portion of
		the top layer 110, a portion of the film layer 125, and a portion of the
		elastomeric layer 140 In a specific application, the microfluidic cartridge
		100 can be used to facilitate a PCR procedure for analysis of a sample
		containing nucleic acids.")
		• US Patent No. 9,738,887 at 13:7-18. ("The top layer 110 of an embodiment of
		the microfluidic cartridge 100 functions to accommodate elements involved
		in performing a molecular diagnostic procedure (e.g. PCR), such that a
		sample containing nucleic acids, passing through the cartridge, can be
		manipulated by the elements involved in performing the molecular diagnostic
		procedure. The top layer 110 is preferably composed of a structurally rigid/stiff
		material with low autofluorescence, such that the top layer 110 does not
		interfere with sample detection by fluorescence or chemiluminescence
		techniques, and an appropriate glass transition temperature and chemical
		compatibility for PCR or other amplification techniques.")
		• US Patent No. 9,738,887 at 13:35-42. ("The set of fluidic pathways 160 of the
		microfluidic cartridge 100 functions to provide a fluid network into which
		volumes of sample fluids, reagents, buffers and/or gases used in a molecular
		diagnostics protocol may be delivered, out of which waste fluids may be
		eliminated, and by which processed nucleic acid samples may be delivered to
		a detection chamber for analysis, which may include amplification and/or
		detection.")
		• US Patent No. 9,738,887 at 15:29-39 ("The segments may be arranged in at
		least one of several configurations to facilitate isolation, processing, and
		amplification of a nucleic acid sample").
		• US Patent No. 9,738,887 at 23:20-24 ("The top layer 110 of the specific
		embodiment of the microfluidic cartridge 100 functions preferably as described

Claim	Claim Language	Infringement Evidence
		in Section 1.1, and is composed of polypropylene with low autofluorescence and a glass transition temperature suitable for PCR .")
1(b)	moving the sample from an upstream channel of the microfluidic device into a DNA manipulation module located downstream of the upstream channel,	The accused workflow includes moving the sample from an upstream channel of the microfluidic device into a DNA manipulation module located downstream of the upstream channel. **NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx M WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . **(Exhibit 16) **A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." *Id.* at 3:58-4:08* **A series of microfluidic valves guides the process and the amplification process begins." *Id.* at 3:58-4:08* **A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." *Id.* at 3:58-4:08* **A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." *Id.* at 3:58-4:08* **A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." *Id.* at 3:58-4:08* **A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." *Id.* at 3:58-4:08* **A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." *Id.* at 3:58-4:08* **A series of microfluidic valves guides the PCR ready solution through the cartridge into three thin PCR chambers and the amplification process begins." *Id.* at 3:58-4:08* **A series of microfluidic valves guides the PCR ready solution through the cartridge into three thin PCR ready solution through the cartridge into three thin PCR ready solution th

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending
		wherein the fluidic pathway is fluidically coupled to the sample port and
		elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlu sion by an occlu ding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of the fluidic pathway at the first and second occlus ion

positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detect ion chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions. • US Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the
microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to a detection chamber for analysis, which may include amplification and/or detection.") • US Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection chamber 163 functions to deliver a processed sample fluid to the detection chamber 117 with a reduced quantity of gas bubbles, and the segment running away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 117.") • US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid

Claim	Claim Language	Infringement Evidence
		sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • US Patent No. 9,738,887 at Figs. 1J and 1K: 165 179 115 144 145 142 176 147146177199 149 164 117 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
1(c)	the DNA manipulation module including a DNA manipulation zone configured to perform amplification of the sample,	The accused workflow includes a DNA manipulation module including a DNA manipulation zone configured to perform amplification of the sample. *NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		A B B Conserva Strate
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 24, 2019 (Exhibit 11) • "The NeuMoDx TM Molecular Systems are a family of scalable platforms that

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	fully integrate the entire molecular diagnostic process from 'sample to result'. The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents." • "The NeuMoDx TM 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR." 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx TM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR." 0600101_Rev-D-IFU-NeuMoDx-RELEASE-Solution-US-ONLY-FINAL-25Oct2018.pdf (Exhibit 20) • "NeuMoDx TM RELEASE Solution INSTRUCTIONS FOR USE The NeuMoDx Systems mix the released nucleic acid with assay specific primers and probe(s) and the dried Master Mix contained in a NeuMoDx test strip. The System then dispenses the prepared RT-PCR-ready mixture into the NeuMoDx Cartridge where Real-Time PCR occurs."

Claim	Claim Language	Infringement Evidence
		K173725.pdf (Exhibit 23)
		 "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION
		SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE
		Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx
		System dispenses the prepared PCR-ready mixture into one PCR chamber (per
		specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		control and target DIVA sequences occur in PCR chamber.
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936.
		(Exhibit 16)
		• "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge
		contains 12 independent lanes which allows for processing of up to 12
		samples simultaneously." Id. at 1:49-1:59
		그 의 의 의 의 등에 등에 가지 않는데 가지 않는데 가지 않는데 가지 않는데 가지 않는데 가지 않는데 가지 되었다.
		Ho
		الراء
		"A series of microfluidic valves guides the PCR-ready solution through the
		cartridge into three thin PCR chambers and the amplification process begins."

Claim	Claim Language	Infringement Evidence
		<i>Id.</i> at 3:58-4:08
		 U.S. Patent No. 9,738,887 Claim 1. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer, defining a sample port, a reagent port, a fluid port, and a detection chamber; an elastomeric layer; an intermediate substrate coupled to the first layer, such that the elastomeric layer is situated between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the reagent port, the fluid port, and the detection chamber.
		 U.S. Patent No. 9,738,887 at Abstract ("A microfluidic cartridge, configured to facilitate processing and detection of nucleic acids, comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample port-reagent port pairs, a shared fluid port, a vent region, a heating region, and a set of detection chambers; an intermediate substrate, coupled to the top layer comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate; and a set of fluidic pathways, each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a Detection chamber, comprises a turnabout portion passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste chamber, and to pass through the vent region") U.S. Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which

volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered a detection chamber for analysis, which may include amplification and/odetection.")	
U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, shown in FIG. 11, the occlusions at the first and third occlusion positions 14 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115 An external molecular diagnostic system and/or module may then perform additional processe such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") U.S. Patent No. 9,738,887 at Figs. 1J and 1K: 165 165 165 165 165 165 165 16	ment, as ons 142, ntire at of the nolecular occases,

Claim Language	Infringement Evidence
a first valve disposed upstream of the DNA manipulation zone,	The accused workflow includes a first valve disposed upstream of the DNA manipulation zone.
	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
	 (Exhibit 16) "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
	A B Somerry Strong
	a first valve disposed upstream

Claim	Claim Language	Infringement Evidence
		PCR PCR
		US9738887 (Exhibit 31)
		• Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second

Claim	Claim Language	Infringement Evidence
		surface of the fluidic pathway at the elastomeric layer, wherein a void defined
		between the first surface and the second surface is configured to transition to a
		closed state upon occlusion by an occluding object applied to the elastomeric
		layer during operation; wherein the normally closed position is defined by a
		region of the fluidic pathway, at the first layer that extends toward and abuts the
		elastomeric layer in preventing fluid bypass at the region; wherein a first
		truncated pathway, including the normally open position and the first branch and
		excluding the second branch, is defined upon manipulation of the fluidic
		pathway at the first and second occlusion positions, and wherein a second
		truncated pathway, including the normally closed position and the second
		branch and excluding the first branch, to the detection chamber is defined
		upon manipulation of the fluidic pathway at the first and second occlusion
		positions.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142,
		144 may be reversed, defining a seventh truncated pathway, and the entire
		released nucleic acid sample (e.g20 microliters) may be aspirated out of the
		microfluidic cartridge through the reagent port 115. This released nucleic acid
		sample is then used to reconstitute a molecular diagnostic reagent stored off of
		the microfluidic cartridge 100. During the reconstitution, the occlusion at the
		sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated
		pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic
		reagent with the released nucleic acid sample is complete and well mixed, the
		reconstituted mixture may then be dispensed through the reagent port 115,
		through the eighth truncated pathway, and to the detect ion chamber 117, by
		using a fluid handling system to push the seventh occlusion position [148]
		(normally closed) open. The detection chamber 117 is completely filled with
		the mixed reagent-nucleic acid sample, after which the fluidic pathway 165
		is occluded at the third, sixth, seventh and eighth occlusion positions 144,
		147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured
		The pairways of the set of frame pairways 103 may be similarly configured

Claim	Claim Language	Infringement Evidence
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.")at Figs. 1J and 1K:
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")

Claim	Claim Language	Infringement Evidence
1(e)	and a second valve disposed downstream of the DNA manipulation zone,	The accused workflow includes a second valve disposed downstream of the DNA manipulation zone.
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08 A B B B B B B B B B B B B B B B B B B

Claim	Claim Language	Infringement Evidence
		Second valve PCR
		US9738887 (Exhibit 31)
		• Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a

Claim	Claim Language	Infringement Evidence
		closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of the fluidic pathway at the first and second occlusion positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic

Claim	Claim Language	Infringement Evidence
		system and/or module may then perform additional processes, such as thermocycling and detect ion, on the volume of fluid within the detect ion chamber 117.")at Figs. 1J and 1K: 165 119 115 144 145 142 176 147146177199 149 164 117
		174 114 175 143 166 179 148 163 178 <u>FIG. 1J</u>
		119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
1(f)	the only ingress to and egress	In the accused workflow, the only ingress to and egress from the DNA manipulation

Claim Language	Infringement Evidence
from the DNA manipulation	zone being through the first valve and the second valve.
zone being through the first valve and the second valve;	NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08 A B B B B B B B B B B B B B B B B B B
	from the DNA manipulation zone being through the first

Claim	Claim Language	Infringement Evidence
		Second valve PCR First valve
		US9339812 (Exhibit 26)
		• Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads.
		Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to

Claim	Claim Language	Infringement Evidence
		facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		US9738887 (Exhibit 31)
		• Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second

Claim	Claim Language	Infringement Evidence
		surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of the fluidic pathway at the first and second occlusion positions, and wherein a second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144,

Claim	Claim Language	Infringement Evidence
		147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as
		thermocycling and detection, on the volume of fluid within the detection
		chamber 117.")at Figs. 1J and 1K:
		165
		119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 FIG. 1J
		165
		119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and
		eighth occlusions positions 145, 148, 149 are normally closed positions 43, as

Claim	Claim Language	Infringement Evidence
		shown in FIG. 1C.")
1(g)	receiving the sample in the DNA manipulation zone;	The accused workflow includes receiving the sample in the DNA manipulation zone. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		A Robertal Striple C D
		US9738887 (Exhibit 31)
		Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection

Claim	Claim Language	Infringement Evidence
Ciaim	Claim Language	chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings
		that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the
		detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of the fluidic pathway at the first and second occlusion positions, and wherein a second truncated pathway, including the normally
		closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.

Claim	Claim Language	Infringement Evidence
		 US Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to a detection chamber for analysis, which may include amplification and/or detection.") US Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection chamber 163 functions to deliver a processed sample fluid to the detection chamber 117 with a reduced quantity of gas bubbles, and the segment running away from the detection chamber 117.") US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microfliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth oc

Claim	Claim Language	Infringement Evidence
		pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • US Patent No. 9,738,887 at Figs. 1J and 1K: 165 119 115 144 145 142 176 147146177199 149 164 117 FIG. 1J 165 119 115 144 145 142 176 147146177199 149 164 117 FIG. 1J 165 179 148 163 FIG. 1K OCCLUDED
1(h)	closing the first valve and the second valve such that gas and liquid are prevented from flowing into or out of the DNA manipulation zone; and	The accused workflow includes closing the first valve and the second valve such that gas and liquid are prevented from flowing into or out of the DNA manipulation zone. *NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx MoRKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process

Claim	Claim Language	Infringement Evidence
		begins." <i>Id.</i> at 3:58-4:08
		A Powerful Simple C D
		Second valve PCR First valve
		US9738887 (Exhibit 31) • Claim 12 A contridge configured to facilitate processing and detecting of a
		Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection

chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated
surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of the fluidic pathway at the first and second occlusion positions, and wherein a

Claim	Claim Language	Infringement Evidence
		• US Patent No. 9,738,887 at 12:11-19 ("When not in operation, however, the
		normally closed position 43 is configured to prevent leakage and/or fluid
		bypass. The normally closed position may also be held closed by an
		occluding object, to prevent leakage even under pressure provided by a
		fluid delivery system, or under pressure experienced during a high
		temperature step (e.g., thermocycling) to prevent evaporation of a sample
		undergoing thermocycling.")
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142,
		144 may be reversed, defining a seventh truncated pathway, and the entire
		released nucleic acid sample (e.g20 microliters) may be aspirated out of the
		microfluidic cartridge through the reagent port 115. This released nucleic acid
		sample is then used to reconstitute a molecular diagnostic reagent stored off of
		the microfluidic cartridge 100. During the reconstitution, the occlusion at the
		sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may
		be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic
		reagent with the released nucleic acid sample is complete and well mixed, the
		reconstituted mixture may then be dispensed through the reagent port 115,
		through the eighth truncated pathway, and to the detection chamber 117, by
		using a fluid handling system to push the seventh occlusion position [148]
		(normally closed) open. The detection chamber 117 is completely filled with
		the mixed reagent-nucleic acid sample, after which the fluidic pathway 165
		is occluded at the third, sixth, seventh and eighth occlusion positions 144,
		147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as
		thermocycling and detection, on the volume of fluid within the detection
		chamber 117.")
		• US Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
1(i)	thermal cycling the sample in the DNA manipulation zone.	The accused workflow includes thermal cycling the sample in the DNA manipulation zone.
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6,

Claim	Claim Language	Infringement Evidence
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the
		cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		• "During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26
		NeuMoDx TM Molecular Systems, NEuMoDx, http://www.neumodx.com/ , last visited May 31, 2019 (Exhibit 10)
		• "NeuMoDx TM 288 and NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real
		time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 24, 2019 (Exhibit 11)

Claim	Claim Language	Infringement Evidence
		• "The NeuMoDx™ 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		0600101_Rev-D-IFU-NeuMoDx-RELEASE-Solution-US-ONLY-FINAL- 25Oct2018.pdf (Exhibit 20) • "NeuMoDx™ RELEASE Solution INSTRUCTIONS FOR USE The NeuMoDx Systems mix the released nucleic acid with assay specific primers and probe(s) and the dried Master Mix contained in a NeuMoDx test strip. The System then dispenses the prepared RT-PCR-ready mixture into the NeuMoDx Cartridge where Real-Time PCR occurs."
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		US9499896 (Exhibit 28) • A system for thermocycling biological samples within detection chambers

Claim	Claim Language	Infringement Evidence
		comprising: a set of heater-sensor dies, each heater-sensor die in the set of
		heater-sensor dies comprising: an assembly including a first insulating layer, a
		heating region comprising an adhesion material layer coupled to the first
		insulating layer and a noble material layer coupled to the adhesion material
		layer, and a second insulating layer coupled to the heating region and to the first
		insulating layer through a pattern of voids in the heating region, wherein the
		pattern of voids in the heating region defines a coarse pattern, comprising a
		global morphology at a first scale and associated with a heating element of the
		heating region, and a fine pattern, comprising a local morphology at a second
		scale smaller than the first scale, integrated into the coarse pattern and
		associated with a sensing element of the heating region; an electronics
		substrate configured to couple heating elements and sensing elements of the
		set of heater-sensor dies to a controller; and a set of elastic elements coupled
		to a second substrate surface of the electronics substrate opposing a first
		substrate surface of the electronics substrate interfacing with the assemblies of
		the set of heater-sensor dies and configured to bias each of the set of heater-
		sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		heater-sensor dies is in thermal communication with a set of detection chambers.
		US9101930 (Exhibit 25)
		• Claim 10. A cartridge, configured to facilitate processing and detecting of
		nucleic acids, comprising: a first layer and an intermediate substrate, coupled to
		the first layer, wherein the intermediate substrate defines a waste chamber with a
		corrugated surface directly opposing the first layer, wherein the corrugated
		surface defines a set of parallel voids spanning a majority of a width of the
		intermediate substrate and external to the waste chamber, wherein the set of
		voids is accessible from a direction perpendicular to a broad surface of the first
		layer; a first fluidic pathway, formed by at least a portion of the first layer; and a
		second fluidic pathway in parallel with the first fluidic pathway, formed by at
		least a portion of the first layer, wherein the first fluidic pathway and the second
		fluidic pathway are each superior to the intermediate substrate, are each at least
		partially separated from the corrugated surface of the intermediate substrate by

Claim	Claim Language	Infringement Evidence
		an elastomeric layer and are each configured to transfer waste to the waste
		chamber through a set of openings of the intermediate substrate.
		• Claim 11. The cartridge of claim 10, wherein the first layer is a unitary
		construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port. • Claim 22. The cartridge of claim 11, wherein at least one of the first detection chamber and the second detection chamber is configured to be optimized for volumetric capacity, thermocycling rates, optical detection, and filling in a manner that limits bubble generation.
		US9604213 (Exhibit 30)
		• Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during

Claim	Claim Language	Infringement Evidence
		 operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater. Claim 11. The system of claim 1, wherein the molecular diagnostic module further comprises an optical subsystem comprising a first unit and a second unit, wherein each of the first unit and the second unit includes a set of excitation filters, a set of emission filters, a set of photodetectors aligned with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of excitation filters toward one of a set of nucleic acid-reagent mixtures at the cartridge, and to transmit emitted light from one of the set of nucleic acid-reagent mixtures, through at least one of the set of emission filters, and toward at least one of the set of photodetectors. Claim 12. The system of claim 11, wherein the molecular diagnostic module further includes a set of detection chamber heaters configured to heat a set of detection chambers through the second surface of the cartridge, and wherein the optical subsystem is configured to receive light, emitted from the set of nucleic acid-reagent mixtures at the set of detection chambers, from the first surface of the cartridge.

EXHIBIT 36

U.S. Patent No. 7,998,708 Infringement Chart

Claim	Claim Language	Infringement Evidence
1(a)	An apparatus, comprising:	To the extent the preamble is limiting, the accused instruments are an apparatus. *NeuMoDx** Molecular Systems*, NEUMoDx, http://www.neumodx.com/our-products/ , last visited June 5, 2019 (Exhibit 12)
		NeuMoDx molecular
		#500200 NeuMoDx 96 Molecular System #500100 NeuMoDx 288 Molecular System
		NeuMoDx TM Molecular Systems, NEuMoDx, http://www.neumodx.com/ , last visited

Claim	Claim Language	Infringement Evidence
		May 31, 2019 (Exhibit 10)
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result."
		TM
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ ,
		last visited May 31, 2019 (Exhibit 11)
		• "NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY
		MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"
		platform offers market-leading ease of use, true continuous random-access and
		rapid turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		• "The NeuMoDx™ Molecular Systems are a family of scalable platforms
		that fully integrate the entire molecular diagnostic process from "sample to
		result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems
		are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic
		particle affinity capture and real time Polymerase Chain Reaction (PCR)
		chemistry in a multi-sample microfluidic cartridge. This technology,
		combined with a platform, uniquely incorporates robotics and microfluidics that
		result in higher throughput, improved performance and increased efficiency by
		eliminating the waste associated with technologies that required reconstitution
		of lyophilized reagents.
		• "The NeuMoDx TM 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of

Claim	Claim Language	Infringement Evidence
		the instrument with touchscreen computer, accessories, and reagents and consumables."
		 NeuMoDxTM Molecular Systems, NEUMoDx, https://www.neumodx.com/dr-steven-young-video-testimonial/, hyperlink at https://youtu.be/vukP6gbLBYE. (Exhibit 32) At 2:58-3:18 ("There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint.")
1(b)	a multi-lane microfluidic cartridge, each lane comprising a PCR reaction zone;	The accused system comprises a multi-lane microfluidic cartridge, each lane comprising a PCR reaction zone. NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18)
		Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		NeuMoDx™ Molecular Systems, NeuMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) • "NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." • "The NeuMoDx™ Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized

Claim	Claim Language	Infringement Evidence
		reagents.
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		"This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." <i>Id.</i> at 1:49-1:59 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08 "Patents", http://www.neumodx.com/patents/ , demonstrating that NeuMoDx marks its products with US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; 9,452,430; 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; 10,010,888; 9,382,532; 9,540,636; 9,499,896; 9,539,576; 9,637,775; and 10,093,963 (Exhibit 15)

Claim	Claim Language	Infringement Evi	idence	
		PATENT:	S	
		Product	Patents	
		CARTRIDGE	US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; and 9,452,430. AU Patent No. 2013221701, JP Patent No. 6061313.	
		P02 (overall system and method)	US Patent Nos. 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; and 10,010,888. CN Patent No. ZL 2013 8 00092863.	
		EXTRACTION PLATE	US Patent Nos. 9,382,532; and 9,540,636.	
		XPCR MODULE	US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963.	
		separated to is configure opposing to voids extern least a por with the findic pathway are elastomeri of the same intermedian open open open open open open open ope	an intermediate substrate coupled to the first layer and par from the first layer by a film layer, wherein the intermedia- red to form a sealed waste chamber with a corrugated surf- the first layer, wherein the corrugated surface defines a set rnal to the waste chamber; and a first fluidic pathway, for rtion of the first layer; and a second fluidic pathway in irst fluidic pathway and formed by at least a portion of thway, wherein the first fluidic pathway and the second fluidic pathway and the second fluidic pathway is configured to transfer ple into the waste chamber through a set of openings of the attention of claim 8, wherein the first layer is a unitar concomprising a first sample port-reagent port pair including tr, a second sample port-reagent port pair including a second and port, a first detection chamber, and a second detection the first fluidic pathway is coupled to the first sample p and the first detection chamber, wherein the second fluidic pathway is coupled to the first sample p	ate substrate face directly t of parallel prmed by at a parallel f the second luidic rface by an r waste fluid ne ry ing a first ond sample on chamber, oort-reagent

Claim	Claim Language	Infringement Evidence
		pathway is coupled to the second sample port-reagent port pair and the
		second detection chamber, and wherein at least one of the first fluidic
		pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a biological sample to pro

Claim	Claim Language	Infringement Evidence
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,
		configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the
		 Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter.
		• Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a

Claim	Claim Language	Infringement Evidence
		capture plate and a capture plate module configured to facilitate binding of
		nucleic acids within the set of biological samples to magnetic beads; a molecular
		diagnostic module configured to receive nucleic acids bound to magnetic beads,
		isolate nucleic acids, and analyze nucleic acids, comprising a cartridge
		receiving module, a heating/cooling subsystem and a magnet configured to
		facilitate isolation of nucleic acids, a valve actuation subsystem configured to
		control fluid flow through a microfluidic cartridge for processing nucleic acids,
		and an optical subsystem for analysis of nucleic acids; a fluid handling system
		configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to
		combine nucleic acid samples with molecular diagnostic reagents for analysis of
		nucleic acids.")
		 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions
		to move a nozzle 149 coupled to the liquid handling system 250, in order to
		couple the liquid handling system 250 to a fluid port 222 of the microfluidic
		cartridge 210 The vertical displacement also allows the microfluidic cartridge
		210 to receive a magnet 160, which provides a magnetic field to facilitate a
		subset of a molecular diagnostic protocol, and detection chamber heaters 157,
		which allows amplification of nucleic acids for molecular diagnostic
		protocols requiring heating and cooling of the nucleic acid (e.g. PCR).")
		• U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
		independent control of 12 independent channels, corresponding to 12
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of
		the set of nucleic acid-reagent mixtures, through the corresponding fluidic
		pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent
		mixtures to an isolated detection chamber for further processing and analysis.
		Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent
	1	1 reletably, an nucleic acid-reagent mixtures in the set of nucleic acid-reagent

Claim	Claim Language	Infringement Evidence
		mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
1(c)	a receiving bay configured to receive the microfluidic cartridge;	The accused system comprises a receiving bay configured to receive the microfluidic cartridge. **NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." *Id.** at 0:00-0:18 **NeuMoDx Molecular N96 and N288 Overview and Animation*, http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM **TECHNOLOGY" hyperlink at https://player.vimeo.com/video/281470603 . (Exhibit 17) • at 4:55-5:00

Claim Language	Infringement Evidence
	configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample.
	 U.S. Patent No. 9,050,594 at 2:6-7 ("FIG. 8 depicts an embodiment of a microfluidic cartridge and an embodiment of a cartridge platform.") U.S. Patent No. 9,050,594 at Fig. 8
	• U.S. Patent No. 9,050,594 at 7:53-8:35 "As shown in FIG. 9A, the cartridge
	receiving module 140 of the molecular diagnostic module 130 comprises a cartridge platform 141 including a cartridge loading guiderail 142, a cartridge
	Claim Language

Claim	Claim Language	Infringement Evidence
		stop 143, a magnet receiving slot 144, and a set of valve actuation slots 145; a
		linear actuator 146 configured to displace a microfluidic cartridge 210 resting on
		the cartridge platform 141, and a set of springs 148 coupled to the cartridge
		platform 141. The cartridge receiving module 140 thus functions to receive,
		align, and compress a microfluidic cartridge 210 for processing of a
		biological sample according to a molecular diagnostic assay protocol The
		cartridge platform 141 includes a cartridge loading guiderail 142, a cartridge
		stop 143, a magnet receiving slot 144, and a set of valve actuation slots 145, and
		functions to receive and align a microfluidic cartridge 210, while providing
		access to the microfluidic cartridge 210 by a magnet 160 and a valve actuation
		subsystem 170. As shown in FIG. 8, an embodiment of the cartridge
		platform 141 includes a pair of parallel cartridge loading guiderails 142,
		initiating at a pair of inwardly tapering protrusions configured to guide a
		microfluidic cartridge toward the pair of parallel cartridge loading
		guiderails 142, and spanning two short edges of the cartridge platform 141.
		The embodiment of the cartridge platform 141 also includes a cartridge stop 143
		comprising a vertical tab oriented perpendicular to the cartridge loading
		guiderails 142, and spanning a long edge of the cartridge platform. Preferably,
		the cartridge loading guiderails 142 and the cartridge stop 143 are configured
		such that a microfluidic cartridge 210 slides between the cartridge loading
		guiderails 142 and hits the cartridge stop 143 to signal proper alignment."
1(d)	each PCR reaction zone	The accused system comprises a multi-lane microfluidic cartridge, each lane comprising
	comprising a separately	a PCR reaction zone and each PCR reaction zone comprising a separately controllable
	controllable heat source	heat source thermally coupled thereto, wherein the heat source maintains a substantially
	thermally coupled thereto,	uniform temperature throughout the PCR reaction zone and thermal cycles the PCR
	wherein the heat source	reaction zone to carry out PCR on a polynucleotide-containing sample in the PCR
	maintains a substantially	reaction zone.
	uniform temperature throughout	
	the PCR reaction zone and	
	thermal cycles the PCR reaction	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
	zone to carry out PCR on a	2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
	polynucleotide-containing	NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .

Infringement Evidence
 (Exhibit 16) "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26
"A series of microfluidic valves guides the PCR-ready solution through cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an opt scanner measures the level of fluorescence emitted, and converts it into the

Claim	Claim Language	Infringement Evidence
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays."
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet

Claim	Claim Language	Infringement Evidence
	Claim Language	receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to transfer the magnetic bead-sample; and a

Claim	Claim Language	Infringement Evidence
	Claim Danguage	comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater. • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic
		 cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic

Claim	Claim Language	Infringement Evidence
		pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		• U.S. Patent No. 9,499,896 at 2:33-48 "The system 100 functions to enable

Claim	Claim Language	Infringement Evidence
		rapid thermal cycling of samples while providing uniform heating and
		preventing signal drift. In specific applications, the system 100 can be used to
		rapidly and controllably thermocycle nucleic acid samples during performance
		of molecular diagnostic amplification techniques (e.g., PCR, RT-PCR),
		signal amplification techniques (e.g., bDNA, hybrid capture), and analytical
		techniques (e.g., gel electrophoresis, mass spectrometry). The system 100 can
		also provide rapid thermocycling without significant power requirements, ensure
		a closer correlation between the actual heating temperature and the temperature
		set-point by implementing an integrated heater-sensor die, and controllably and
		individually heat small sample volumes (e.g., picoliters, nanoliters) based upon a microfabrication technique that also enables mass production of the system
		100.")
		 U.S. Patent No. 9,499,896 at 2:61-3:3 ("The set of heater-sensor dies 110
		functions to controllably heat individual sample volumes. Preferably, each
		heater sensor die 111 is a thin-film die that can be deposited onto another
		substrate (e.g., silicon, glass substrate) that can be packaged onto an electronics
		substrate 140 (e.g., printed circuit board, PCB); however, each heater-sensor
		die 111 can alternatively comprise any suitable geometry and/or
		configuration that enables controlled, uniform, and rapid heating of a
		detection chamber in thermal communication with the heater-sensor die
		111.")
		• U.S. Patent No. 9,499,896 at 3:23-27 ("Preferably, each heater-sensor die 111 in
		the set of heater sensor dies 110 comprises an assembly including: a first
		insulating layer 112a that functions to provide an insulating barrier to isolate the
		heaters and sensors and a heating region 113 that functions to provide uniform
		sample heating.") LUS Potent No. 0.400 806 at 12:15-20 ("Furthermore the controller 165 con
		• U.S. Patent No. 9,499,896 at 12:15-20 ("Furthermore, the controller 165 can be configured to control individual heater-sensor dies 111 in order to provide
		unique heating parameters for individual detection chambers and/or can be
		configured to provide common heating parameters for all heater-sensor dies 111
		in the set of heater-sensor dies 110.")

Claim	Claim Language	Infringement Evidence
		US9539576 (Exhibit 29)
		Claim 1. A system for thermocycling biological samples within detection
		chambers comprising: a set of heater-sensor dies, each heater-sensor die in the
		set of heater-sensor dies comprising a heating surface configured to interface
		with a detection chamber and an inferior surface, inferior to the heating surface,
		including a connection point, wherein each of the set of heater-sensor dies
		includes a heating element and a sensing element; an electronics substrate,
		comprising a first substrate surface coupled to the inferior surface of each of the
		set of heater-sensor dies, a set of apertures longitudinally spaced across the
		electronics substrate and providing access through the electronics substrate to
		the set of heater-sensor dies, and a second substrate surface inferior to the first
		substrate surface, wherein the electronics substrate comprises a set of substrate
		connection points at least at one of the first substrate surface, an aperture surface
		defined within at least one of the set of apertures, and the second substrate
		surface, and wherein the electronics substrate couples the heating element and
		the sensing element of each of the set of heater-sensor dies to a controller; a set
		of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the
		electronics substrate and configured to dissipate heat generated by the set of
		heater-sensor dies, wherein at least one of the set of heat-sink supports includes
		an integrated cooling element, and wherein a base surface of each of the set of
		heat-sink supports is coupled to an elastic element that transmits a biasing force
		through the electronics substrate, thereby maintaining thermal communication
		between the set of heater-sensor dies and a set of detection chambers upon
		alignment of the set of heater-sensor dies with the set of detection chambers; and
		a set of wire bonds, including a wire bond coupled between the connection point
		of at least one of the set of heater-sensor dies and one of the set of substrate
		connection points.
		• U.S. Patent No. 9,539,576 at 9:8-12 ("Furthermore, the controller 165 can be
		configured to control individual heater-sensor dies 111 in order to provide
		unique heating parameters for individual detection chambers and/or can be
		configured to provide common heating parameters for all heater-sensor

Claim	Claim Language	Infringement Evidence
		 dies 111 in the set of heater-sensor dies no.") U.S. Patent No. 9,539,576 at 12:59-64 ("Upon completion of Block S240, individual heater-sensor dies of the set of heater-sensor dies can be coupled to one or multiple electronics substrates in order to provide uniform heating of individual sample containers with independent control of heating parameters provided at each of the set of heater-sensor dies.")
1(e)	a detector configured to detect the presence of an amplification product in the respective PCR reaction zone; and	The accused system comprises a detector configured to detect the presence of an amplification product in the respective PCR reaction zone. *NeuMoDx*** Molecular Systems*, NeuMoDx, https://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) * "NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." * "The NeuMoDx*** Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx*** 288 and the NeuMoDx*** 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry*** reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. * "The NeuMoDx*** 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by

Claim	Claim Language	Infringement Evidence		
Claim	Claim Language	fluorescence-based the instrument with consumables." • "The NeuMoDxTM extraction and iso amplification and fluorescence-based the instrument with consumables." NeuMoDxTM Molecular Synttp://www.neumodx.com/enabling multiplexed of amplification." NeuMoDxTM Molecular Synttp://www.neumodx.com/enabling."	288 Molecular Systellation of nucleic acids detection of target nucleic detection detectio	m is designed for the automated s, as well as the automated acleic acid sequences by a 288 Molecular System consists of r, accessories, and reagents and securification. Real-time detection of products of secure detection at five wavelengths ons Real-time detection of products ons Real-time detection of products ons Real-time detection of products
		JFO_2018-10-25_8009-Re		
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass

Claim	Claim Language	Infringement Evidence		
		NeuMoDx_288_Spec_Sheet_R2.pdf (Exhibit 22)		
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		layer and an interm separated from the is configured to for opposing the first I voids external to the least a portion of with the first fluid fluidic pathway, we pathway are each a elastomeric layer, a of the sample into intermediate substruction compassion of the sample port, a secon port, a fluid port, a wherein the first is port pair and the first pathway is coupled detection chambe	first layer by a film layer a sealed waste charayer, wherein the corne waste chamber; and the first layer; and a lic pathway and format least partially separated each fluidic pathway and each fluidic pathway and sample porton and sample porton ample porton characterist detection characteristics.	mple, the cartridge comprising: a first alled to the first layer and partially ayer, wherein the intermediate substrate mber with a corrugated surface directly rugated surface defines a set of parallel d a first fluidic pathway, formed by at a second fluidic pathway in parallel med by at least a portion of the second c pathway and the second fluidic ated from the corrugated surface by an way is configured to transfer waste fluid rough a set of openings of the rein the first layer is a unitary ort-reagent port pair including a first and port pair including a second sample aber, and a second detection chamber, upled to the first sample port-reagent er, wherein the second fluidic le port-reagent port pair and the second to one of the first fluidic pathway and the fluid port.

Claim	Claim Language	Infringement Evidence
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a molecular diagnostic reagent configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising

Claim	Claim Language	Infringement Evidence
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission
		 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12

Claim	Claim Language	Infringement Evidence
		 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
1(f)	a processor coupled to the detector and the heat source, configured to control heating of one or more PCR reaction zones by the heat sources.	The accused system comprises a processor coupled to the detector and the heat source, configured to control heating of one or more PCR reaction zones by the heat sources. *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) *NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." *"The NeuMoDx*** Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx*** 288 and the NeuMoDx*** 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry** reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a

Claim	Claim Language	Infringement Evidence
		platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. • "The NeuMoDx™ 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		 NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." Id. at 0:00-0:18 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		footprint.")
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heater-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heater-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers; and a set of wire bonds, including a wire bond coupled between the connection point of at leas

Claim	Claim Language	Infringement Evidence
		US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-
		 e U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. IA and IB, an embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") e U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heatersensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160 configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.") • U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller 165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3 microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply configured to supply voltage to the resistance-to-voltage conversion circuit. In the specific example, the controller 165 comprises a resistance-to-voltage conversion circuit because the UT750 PID controller requires voltage as an input for PID control.")U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. 1A and 1B, the system 100 can further comprise a controller 165, which functions to automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected
		temperatures) sensed at the sensing element(s) 115 of the system 100."
33(a)	A method of carrying out PCR on a plurality of samples, the method comprising:	To the extent the preamble is limiting, the accused workflow is a method of carrying out PCR on a plurality of samples. NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18)
		 Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		NeuMoDx™ Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) • "NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." • "The NeuMoDx™ Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized

Claim	Claim Language	Infringement Evidence
		reagents.
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		• "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." <i>Id.</i> at 1:49-1:59
		begins." <i>Id.</i> at 3:58-4:08
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic

Claim	Claim Language	Infringement Evidence
		 pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste

Claim	Claim Language	Infringement Evidence
		chamber, an elastomeric layer, and a set of fluidic pathways, wherein each
		fluidic pathway of the set of fluidic pathways is coupled to a sample port-
		reagent port pair, the fluid port, and a detection chamber, comprises a segment
		configured to cross the magnet, and is configured to transfer a waste fluid to the
		waste chamber, and to be occluded upon deformation of the elastomeric layer.
		• Claim 16. A system for processing and detecting nucleic acids, comprising: a
		capture plate comprising at least one well containing a set of magnetic beads
		configured to be combined with a biological sample to produce a magnetic
		bead-sample; an assay strip comprising at least one well containing a molecular
		diagnostic reagent configured to be combined with a nucleic acid volume to
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,
		configured to process the magnetic bead-sample from the capture plate, separate
		the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic
		module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam
		card displaces a subset of the set of pins through a subset of the set of parallel
		slots to define at least one pathway configured to receive the magnetic bead-
		sample; and a liquid handling system configured to transfer the magnetic bead-
		sample from the capture plate to the molecular diagnostic module, transfer the
		nucleic acid volume from the molecular diagnostic module to the assay strip,
		and transfer the nucleic acid-reagent mixture from the assay strip to the
		molecular diagnostic module.
		• Claim 18. The system of claim 16, wherein the molecular diagnostic module
		comprises an optical subsystem comprising at least one unit, wherein each unit
		includes an excitation filter, an emission filter, a photodetector aligned with the
		emission filter, and a dichroic mirror configured to reflect light from the
		excitation filter toward the nucleic acid-reagent mixture, and to transmit light
		from the nucleic acid reagent mixture, through the emission filter, and toward
		the photodetector wherein each unit of the optical subsystem further comprises
		an LED aligned with the excitation filter, wherein the LED provides multiple
		wavelengths of light corresponding to at least one of the excitation filter, the

Claim	Claim Language	Infringement Evidence
		dichroic mirror, and the emission filter.
		• Claim 19. The system of claim 16, wherein the molecular diagnostic module
		further comprises a heater and a detection chamber heater, wherein the heater
		is configured to heat the magnetic bead-sample, and wherein the detection
		chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a continuo plate and a continuo plate module configured to facilitate hinding of
		capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads,
		isolate nucleic acids, and analyze nucleic acids , comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to
		facilitate isolation of nucleic acids, a valve actuation subsystem configured to
		control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system
		configured to deliver samples and reagents to components of the system to
		facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.")
		• U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions
		to move a nozzle 149 coupled to the liquid handling system 250, in order to
		couple the liquid handling system 250 to a fluid port 222 of the microfluidic
		cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a
		subset of a molecular diagnostic protocol, and detection chamber heaters 157,
		which allows amplification of nucleic acids for molecular diagnostic
		protocols requiring heating and cooling of the nucleic acid (e.g. PCR).")
		• U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
		independent control of 12 independent channels, corresponding to 12

Claim	Claim Language	Infringement Evidence
		 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
33(b)	introducing the plurality of samples into a multi-lane microfluidic cartridge, wherein each lane comprises a PCR reaction zone configured to permit thermal cycling of a sample independently of the other samples;	The accused workflow includes introducing the plurality of samples into a multi-lane microfluidic cartridge, wherein each lane comprises a PCR reaction zone configured to permit thermal cycling of a sample independently of the other samples. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) "The liquid handling robot aspirates the PCR-ready solution and transfers it back to the cartridge where it dispenses into the same P-port from which the sample was aspirated." Id. at 3:47-3:57

Claim	Claim Language	Infringement Evidence

Claim	Claim Language	Infringement Evidence
		Powerful Simple
		US9101930 (Exhibit 25)
		• Claim 10. A cartridge, configured to facilitate processing and detecting of nucleic acids, comprising: a first layer and an intermediate substrate, coupled to the first layer, wherein the intermediate substrate defines a waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids spanning a majority of a width of the intermediate substrate and external to the waste chamber, wherein the set of voids is accessible from a direction perpendicular to a broad surface of the first layer; a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway, formed by at least a portion of the first layer, wherein the first fluidic pathway and the second fluidic pathway are each superior to the intermediate substrate, are each at least partially separated from the corrugated surface of the

Claim	Claim Language	Infringement Evidence
		intermediate substrate by an elastomeric layer and are each configured to transfer waste to the waste chamber through a set of openings of the intermediate substrate.
		• Claim 11. The cartridge of claim 10, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate.
		• Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second

Claim	Claim Language	Infringement Evidence
		sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		 Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module, transfer the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward

Claim	Claim Language	Infringement Evidence
		the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.")
		U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.") US9499896 (Exhibit 28) • Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the
		heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		• U.S. Patent No. 9,499,896 at 12:15-20 ("Furthermore, the controller 165 can be configured to control individual heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be configured to provide common heating parameters for all heater-sensor dies 111 in the set of heater-sensor dies 110.") US9539576 (Exhibit 29)
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies with the set of detection chambers; and a set of wire bonds, including a wire bond coupled between the connection point of at least one of the set of heater-sensor dies and one of the set of substrate connection points. • U.S. Patent No. 9,539,576 at 9:8-12 ("Furthermore, the controller 165 can be configured to control individual heater-sensor dies 111 in order to provide unique heating paramete
		• U.S. Patent No. 9,539,576 at 12:59-64 ("Upon completion of Block S240, individual heater-sensor dies of the set of heater-sensor dies can be coupled to one or multiple electronics substrates in order to provide uniform heating of

Claim	Claim Language	Infringement Evidence
		individual sample containers with independent control of heating parameters
		provided at each of the set of heater-sensor dies.")
33(c)	moving the plurality of samples	The accused workflow includes moving the plurality of samples into the respective
	into the respective plurality of PCR reaction zones; and	plurality of PCR reaction zones.
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the
		cartridge into three thin PCR chambers and the amplification process
		begins." <i>Id.</i> at 3:58-4:08
		A Powerty Strong
		US9738887 (Exhibit 31)

Claim	Claim Language	Infringement Evidence
		• Claim 12. A cartridge, configured to facilitate processing and detecting of a
		nucleic acid, comprising: a first layer comprising a sample port and a detection
		chamber; an elastomeric layer; an intermediate substrate including a set of valve
		guides, wherein the intermediate substrate defines a chamber with a corrugated
		surface directly opposing the first layer, wherein the corrugated surface defines
		a set of voids external to the chamber and accessible from a direction
		perpendicular to a broad surface of the first layer, and wherein at least a portion
		of the corrugated surface defines the set of valve guides with a set of openings
		that provide access to the elastomeric layer; and a fluidic pathway, formed by at
		least a portion of the first layer and a portion of the elastomeric layer, wherein
		the fluidic pathway is fluidically coupled to the sample port and the
		detection chamber and comprises a first and second branch extending
		downstream from a junction, and is configured to be occluded at a set of
		occlusion positions upon manipulation of the elastomeric layer through the set
		of valve guides, wherein a first occlusion position of the set of occlusion
		positions is positioned along the fluidic pathway downstream of the junction and
		upstream of the first branch and a second occlusion position of the set of
		occlusion positions is positioned along the fluidic pathway downstream of the
		junction and upstream of the second branch, wherein the set of occlusion
		positions comprises a normally open position and a normally closed position,
		wherein the normally open position comprises a first surface of the fluidic
		pathway at the first layer and a second surface of the fluidic pathway at the
		elastomeric layer, wherein a void defined between the first surface and the
		second surface is configured to transition to a closed state upon occlusion by an
		occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the
		first layer that extends toward and abuts the elastomeric layer in preventing fluid
		bypass at the region; wherein a first truncated pathway, including the normally
		open position and the first branch and excluding the second branch, is defined
		upon manipulation of the fluidic pathway at the first and second occlusion
		positions, and wherein a second truncated pathway, including the normally
		closed position and the second branch and excluding the first branch, to the
		Liosca position and the second orange and excluding the first orange, to the

Claim	Claim Language	Infringement Evidence
		detection chamber is defined upon manipulation of the fluidic pathway at the
		first and second occlusion positions.
		• US Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the
		microfluidic cartridge 100 functions to provide a fluid network into which
		volumes of sample fluids, reagents, buffers and/or gases used in a molecular
		diagnostics protocol may be delivered, out of which waste fluids may be
		eliminated, and by which processed nucleic acid samples may be delivered to
		a detection chamber for analysis, which may include amplification and/or
		detection.")
		• US Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection
		chamber 163 functions to deliver a processed sample fluid to the detection
		chamber 117 with a reduced quantity of gas bubbles, and the segment
		running away from the detect ion chamber 164 functions to deliver a fluid away
		from the detect ion chamber 117.")
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142,
		144 may be reversed, defining a seventh truncated pathway, and the entire
		released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid
		sample is then used to reconstitute a molecular diagnostic reagent stored off of
		the microfluidic cartridge 100. During the reconstitution, the occlusion at the
		sixth occlusion position 147 may be reversed, and the fluidic pathway 165
		may be occluded at the first occlusion position 142 to form an eighth
		truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular
		diagnostic reagent with the released nucleic acid sample is complete and well
		mixed, the reconstituted mixture may then be dispensed through the
		reagent port 115, through the eighth truncated pathway, and to the
		detection chamber 117, by using a fluid handling system to push the
		seventh occlusion position [148] (normally closed) open. The detection
		chamber 117 is completely filled with the mixed reagent-nucleic acid
		sample, after which the fluidic pathway 165 is occluded at the third, sixth,
		seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth

Claim	Claim Language	Infringement Evidence
Claim	Cum Danguage	truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • US Patent No. 9,738,887 at Figs. 1J and 1K: 165 119 115 144 145 142 176 147146177199 149 164 117 FIG. 1J 165 119 115 144 145 142 176 147146177199 149 164 117
33(d)	amplifying polynucleotides contained with the plurality of samples in the PCR reaction	The accused workflow includes amplifying polynucleotides contained with the plurality of samples in the PCR reaction zones while thermal cycling the PCR reaction zones, at least one PCR reaction zone separately thermally controllable from another PCR
	zones while thermal cycling the PCR reaction zones, at least one PCR reaction zone separately thermally controllable from another PCR reaction zone.	reaction zone. *NeuMoDx*** Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) • "NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers

Claim	Claim Language	Infringement Evidence
		 market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR." Powerful. Simple. Diognostics. NeuMoDx Powerful. Simple. Diognostics. NeuMoDx CARTRIDGE CA
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx

Claim	Claim Language	Infringement Evidence
		Cartridge contains 12 independent microfluidic circuits that enable the
		independent processing of up to 12 samples once housed appropriately in
		the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		• "The NeuMoDx Molecular N96 and N288 are fully automated sample to
		result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		• "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." <i>Id.</i> at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the second detection chamber, wherein the second fluidic pathway is coupled to the first fluidic pathway and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module

Claim	Claim Language	Infringement Evidence
Ciami		comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subs

Claim	Claim Language	Infringement Evidence
		and transfer the nucleic acid-reagent mixture from the assay strip to the
		molecular diagnostic module.
		• Claim 18. The system of claim 16, wherein the molecular diagnostic module
		comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		• U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of

Claim	Claim Language	Infringement Evidence
		 nucleic acids.") U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.")
		 U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")US9539576 (Exhibit 29) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate,

Claim	Claim Language	Infringement Evidence
		comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to
		the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication
		 between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies with the set of detection chambers; and a set of wire bonds, including a wire bond coupled between the connection point of at least one of the set of heater-sensor dies and one of the set of substrate connection points. U.S. Patent No. 9,539,576 at 9:8-12 ("Furthermore, the controller 165 can be configured to control individual heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be
		 configured to provide common heating parameters for all heater-sensor dies 111 in the set of heater-sensor dies no.") U.S. Patent No. 9,539,576 at 12:59-64 ("Upon completion of Block S240, individual heater-sensor dies of the set of heater-sensor dies can be coupled to one or multiple electronics substrates in order to provide uniform heating of individual sample containers with independent control of heating parameters provided at each of the set of heater-sensor dies.")

EXHIBIT 37

U.S. Patent No. 8,323,900 Infringement Chart

Claim	Claim Language	Infringement Evidence
1(a)	An apparatus, comprising:	To the extent the preamble is limiting, the accused instrument is an apparatus. *NeuMoDx** Molecular Systems*, NEUMoDx, http://www.neumodx.com/our-products/ , last visited June 5, 2019 (Exhibit 12)
		NeuMoDx molecular NeuMoDx molecular
		#500200 NeuMoDx [™] 96 Molecular System #500100 NeuMoDx 288 Molecular System
		NeuMoDx TM Molecular Systems, NEuMoDx, http://www.neumodx.com/ , last visited

Claim	Claim Language	Infringement Evidence
		May 31, 2019 (Exhibit 10)
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result."
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ ,
		last visited May 31, 2019 (Exhibit 11)
		"NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION OF THE PROPERTY OF THE PROPER
		MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"
		platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		 "The NeuMoDxTM Molecular Systems are a family of scalable platforms
		that fully integrate the entire molecular diagnostic process from "sample to
		result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems
		are fully automated, continuous random-access analyzers that utilize our
		proprietary NeuDry TM reagent technology, which integrates magnetic
		particle affinity capture and real time Polymerase Chain Reaction (PCR)
		chemistry in a multi-sample microfluidic cartridge. This technology,
		combined with a platform, uniquely incorporates robotics and microfluidics that
		result in higher throughput, improved performance and increased efficiency by
		eliminating the waste associated with technologies that required reconstitution
		of lyophilized reagents.
		• "The NeuMoDx TM 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of

Claim	Claim Language	Infringement Evidence
	Omin Danguage	the instrument with touchscreen computer, accessories, and reagents and consumables." • "NeuMoDx TM Molecular Systems are versatile; in addition to IVD tests, our system can also be used as an open system to process Laboratory Developed Tests (LDTs) that have been created and validated by your lab." **NeuMoDx*** Molecular Systems**, NEUMoDx, https://www.neumodx.com/dr-steven-young-video-testimonial/ , hyperlink at https://youtu.be/vukP6gbLBYE . (Exhibit 32) • At 2:58-3:18 ("There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96,
		which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint.")
1(b)	a plurality of multi-lane microfluidic cartridges, each lane comprising a PCR reaction	The accused apparatus comprises a plurality of multi-lane microfluidic cartridges, each lane comprising a PCR reaction zone.
	zone;	NeuMoDx Molecular N96 and N288 Overview and Animation, http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM TECHNOLOGY" hyperlink at https://player.vimeo.com/video/281470603 . (Exhibit 17) • at 4:55-5:00 (showing a plurality of multi-lane cartridges in the accused apparatus)

Claim	Claim Language	Infringement Evidence
		Curringor Curringor Curringor
		Receiving Bay Receiving Bay
		 NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08 NewMoDx. Ovant. HCV. CVS. 2018 pdf (Exhibit 18)
		 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		NeuMoDx™ Molecular Systems, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) • "NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." • "The NeuMoDx™ Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized

Claim	Claim Language	Infringement Evidence
		reagents.
		 NeuMoDxTM Molecular Systems, NeuMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		"Patents", http://www.neumodx.com/patents/ , demonstrating that NeuMoDx marks its products with US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; 9,452,430; 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; 10,010,888; 9,382,532; 9,540,636; 9,499,896; 9,539,576; 9,637,775; and 10,093,963 (Exhibit 15)

Claim	Claim Language	Infringement Evi	idence	
		PATENTS	PATENTS	
		Product	Patents	
		CARTRIDGE	US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; and 9,452,430. AU Patent No. 2013221701, JP Patent No. 6061313.	
		P02 (overall system and method)	US Patent Nos. 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; and 10,010,888. CN Patent No. ZL 2013 8 00092863.	
		EXTRACTION PLATE	US Patent Nos. 9,382,532; and 9,540,636.	
		XPCR MODULE	US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963.	
		 Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, 	tly el at ond n uid	

Claim	Claim Language	Infringement Evidence
		port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the
		second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		• Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set
		 of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each
		fluidic pathway of the set of fluidic pathways is coupled to a sample port- reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer.
		Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured
		U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing

Claim	Claim Language	Infringement Evidence
		and detecting nucleic acids from a set of biological samples, comprising: a
		capture plate and a capture plate module configured to facilitate binding of
		nucleic acids within the set of biological samples to magnetic beads; a molecular
		diagnostic module configured to receive nucleic acids bound to magnetic beads,
		isolate nucleic acids, and analyze nucleic acids, comprising a cartridge
		receiving module, a heating/cooling subsystem and a magnet configured to
		facilitate isolation of nucleic acids, a valve actuation subsystem configured to
		control fluid flow through a microfluidic cartridge for processing nucleic acids,
		and an optical subsystem for analysis of nucleic acids; a fluid handling system
		configured to deliver samples and reagents to components of the system to
		facilitate molecular diagnostic protocols; and an assay strip configured to
		combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.")
		/
		• U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to
		couple the liquid handling system 250 to a fluid port 222 of the microfluidic
		cartridge 210 The vertical displacement also allows the microfluidic cartridge
		210 to receive a magnet 160, which provides a magnetic field to facilitate a
		subset of a molecular diagnostic protocol, and detection chamber heaters 157,
		which allows amplification of nucleic acids for molecular diagnostic
		protocols requiring heating and cooling of the nucleic acid (e.g. PCR).")
		• U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
		independent control of 12 independent channels, corresponding to 12
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of
		the set of nucleic acid-reagent mixtures, through the corresponding fluidic
		pathway of the set of fluidic pathways, to a detection chamber of a set of
		detection chambers, which functions to deliver the set of nucleic acid-reagent
		mixtures to an isolated detection chamber for further processing and analysis.

Claim	Claim Language	Infringement Evidence	
		Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")	
1(c)	a plurality of receiving bays, each receiving bay configured to receive one of the plurality of microfluidic cartridges;	The accused apparatus comprises a plurality of receiving bays, each receiving bay configured to receive one of the plurality of microfluidic cartridges. **NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." *Id.** at 0:00-0:18 **NeuMoDx Molecular N96 and N288 Overview and Animation*, http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM TECHNOLOGY" hyperlink at https://player.vimeo.com/video/281470603 . (Exhibit 17) • at 4:55-5:00	

Claim Language	Infringement Evidence
	configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample.
	 U.S. Patent No. 9,050,594 at 2:6-7 ("FIG. 8 depicts an embodiment of a microfluidic cartridge and an embodiment of a cartridge platform.") U.S. Patent No. 9,050,594 at Fig. 8
	• U.S. Patent No. 9,050,594 at 7:53-8:35 "As shown in FIG. 9A, the cartridge
	receiving module 140 of the molecular diagnostic module 130 comprises a cartridge platform 141 including a cartridge loading guiderail 142, a cartridge
	Claim Language

Claim	Claim Language	Infringement Evidence	
		stop 143, a magnet receiving slot 144, and a set of valve actuation slots 145; a	
		linear actuator 146 configured to displace a microfluidic cartridge 210 resting on	
		the cartridge platform 141, and a set of springs 148 coupled to the cartridge	
		platform 141. The cartridge receiving module 140 thus functions to receive,	
		align, and compress a microfluidic cartridge 210 for processing of a	
		biological sample according to a molecular diagnostic assay protocol The	
		cartridge platform 141 includes a cartridge loading guiderail 142, a cartridge	
		stop 143, a magnet receiving slot 144, and a set of valve actuation slots 145, and	
		functions to receive and align a microfluidic cartridge 210, while providing	
		access to the microfluidic cartridge 210 by a magnet 160 and a valve actuation	
		subsystem 170. As shown in FIG. 8, an embodiment of the cartridge	
		platform 141 includes a pair of parallel cartridge loading guiderails 142,	
		initiating at a pair of inwardly tapering protrusions configured to guide a	
		microfluidic cartridge toward the pair of parallel cartridge loading	
		guiderails 142, and spanning two short edges of the cartridge platform 141.	
		The embodiment of the cartridge platform 141 also includes a cartridge stop 143	
		comprising a vertical tab oriented perpendicular to the cartridge loading	
		guiderails 142, and spanning a long edge of the cartridge platform. Preferably,	
		the cartridge loading guiderails 142 and the cartridge stop 143 are configured	
		such that a microfluidic cartridge 210 slides between the cartridge loading	
		guiderails 142 and hits the cartridge stop 143 to signal proper alignment."	
1(d)	each PCR reaction zone	In the accused apparatus, each PCR reaction zone comprises a separately controllable	
	comprising a separately	heat source thermally coupled thereto.	
	controllable heat source		
	thermally coupled thereto,	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,	
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO	
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .	
		(Exhibit 16)	
		• "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge	
		contains 12 independent lanes which allows for processing of up to 12	
		samples simultaneously." <i>Id.</i> at 1:49-1:59	

Claim	Claim Language	Infringement Evidence
Ciaini	Claim Language	Harring the Harring to the Harring t
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays."
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic

Claim	Claim Language	Infringement Evidence
		bead-sample; and a molecular diagnostic module, configured to process at
		least one magnetic bead-sample obtained from the capture plate, and separate
		nucleic acids from magnetic beads, wherein the molecular diagnostic module
		comprises: a cartridge platform comprising a magnet receiving slot, an actuator
		configured to displace the cartridge platform, a magnet, wherein an extended
		configuration of the actuator allows the magnet to pass through the magnet
		receiving slot to facilitate separation of the at least one nucleic acid volume, and
		a cam card contacting a set of pins, wherein the extended configuration of the
		actuator combined with movement of the cam card displaces a subset of the set
		of pins through a set of slots of the cartridge platform, to define at least one
		distinct pathway configured to receive at least one magnetic bead-sample.
		• Claim 13. The system of claim 1, wherein the molecular diagnostic module is
		configured receive and align a microfluidic cartridge comprising a set of sample
		port-reagent port pairs, a fluid port, a set of detection chambers, a waste
		chamber, an elastomeric layer, and a set of fluidic pathways, wherein each
		fluidic pathway of the set of fluidic pathways is coupled to a sample port- reagent port pair, the fluid port, and a detection chamber, comprises a segment
		configured to cross the magnet, and is configured to transfer a waste fluid to the
		waste chamber, and to be occluded upon deformation of the elastomeric layer.
		Claim 16. A system for processing and detecting nucleic acids, comprising: a
		capture plate comprising at least one well containing a set of magnetic beads
		configured to be combined with a biological sample to produce a magnetic
		bead-sample; an assay strip comprising at least one well containing a molecular
		diagnostic reagent configured to be combined with a nucleic acid volume to
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,
		configured to process the magnetic bead-sample from the capture plate, separate
		the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic
		module comprises a cartridge platform including a set of parallel slots, a cam
		card, and a set of pins contacting the cam card, wherein movement of the cam
		card displaces a subset of the set of pins through a subset of the set of parallel
		slots to define at least one pathway configured to receive the magnetic bead-

Claim	Claim Language	Infringement Evidence
Ciailli	Claim Language	sample; and a liquid handling system configured to transfer the magnetic beadsample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater. • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to
		couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12

Claim	Claim Language	Infringement Evidence
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of

Claim	Claim Language	Infringement Evidence
		the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers. U.S. Patent No. 9,499,896 at 12:15-20 ("Furthermore, the controller 165 can be configured to control individual heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be configured to provide common heating parameters for all heater-sensor dies 111 in the set of heater-sensor dies 110.")
1(e)	wherein the heat source thermal cycles the PCR reaction zone to carry out PCR on a polynucleotide-containing sample in the PCR reaction zone and	In the accused apparatus, each PCR reaction zone comprises a separately controllable heat source thermally coupled thereto wherein the heat source thermal cycles the PCR reaction zone to carry out PCR on a polynucleotide-containing sample in the PCR reaction zone. *NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx "WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12

Claim Language	Infringement Evidence
Claim Language	NeuMoDx [™] Molecular Systems, NeuMoDx, http://www.neumodx.com/ , last visited May 31, 2019 (Exhibit 10) • "NeuMoDx™ Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features
	Claim Language

Claim	Claim Language	Infringement Evidence
		bead-sample; and a molecular diagnostic module, configured to process at
		least one magnetic bead-sample obtained from the capture plate, and separate
		nucleic acids from magnetic beads, wherein the molecular diagnostic module
		comprises: a cartridge platform comprising a magnet receiving slot, an actuator
		configured to displace the cartridge platform, a magnet, wherein an extended
		configuration of the actuator allows the magnet to pass through the magnet
		receiving slot to facilitate separation of the at least one nucleic acid volume, and
		a cam card contacting a set of pins, wherein the extended configuration of the
		actuator combined with movement of the cam card displaces a subset of the set
		of pins through a set of slots of the cartridge platform, to define at least one
		distinct pathway configured to receive at least one magnetic bead-sample.
		• Claim 13. The system of claim 1, wherein the molecular diagnostic module is
		configured receive and align a microfluidic cartridge comprising a set of sample
		port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each
		fluidic pathway of the set of fluidic pathways is coupled to a sample port-
		reagent port pair, the fluid port, and a detection chamber, comprises a segment
		configured to cross the magnet, and is configured to transfer a waste fluid to the
		waste chamber, and to be occluded upon deformation of the elastomeric layer.
		Claim 16. A system for processing and detecting nucleic acids, comprising: a
		capture plate comprising at least one well containing a set of magnetic beads
		configured to be combined with a biological sample to produce a magnetic
		bead-sample; an assay strip comprising at least one well containing a molecular
		diagnostic reagent configured to be combined with a nucleic acid volume to
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,
		configured to process the magnetic bead-sample from the capture plate, separate
		the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic
		module comprises a cartridge platform including a set of parallel slots, a cam
		card, and a set of pins contacting the cam card, wherein movement of the cam
		card displaces a subset of the set of pins through a subset of the set of parallel
		slots to define at least one pathway configured to receive the magnetic bead-

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	sample; and a liquid handling system configured to transfer the magnetic beadsample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater. • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protoc

Claim	Claim Language	Infringement Evidence
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of

Claim	Claim Language	Infringement Evidence
		the electronics substrate interfacing with the assemblies of the set of heater- sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
1(f)	maintains a substantially uniform temperature throughout the PCR reaction zone during each cycle;	In the accused apparatus, each PCR reaction zone comprises a separately controllable heat source thermally coupled thereto wherein the heat source thermal cycles the PCR reaction zone to carry out PCR on a polynucleotide-containing sample in the PCR reaction zone and maintains a substantially uniform temperature throughout the PCR reaction zone during each cycle.
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays."
		US9050594 (Exhibit 24)
		• Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module , configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet

receiving slot to facilitate separation of the at least one nucleic act a cam card contacting a set of pins, wherein the extended configuration actuator combined with movement of the cam card displaces a sul of pins through a set of slots of the cartridge platform, to define at distinct pathway configured to receive at least one magnetic bead. Claim 13. The system of claim 1, wherein the molecular diagnost configured receive and align a microfluidic cartridge comprising a port-reagent port pairs, a fluid port, a set of detection chambers, a
chamber, an elastomeric layer, and a set of fluidic pathways, wh fluidic pathway of the set of fluidic pathways is coupled to a se reagent port pair, the fluid port, and a detection chamber, comprongured to cross the magnet, and is configured to transfer a water waste chamber, and to be occluded upon deformation of the elast of Claim 16. A system for processing and detecting nucleic acids, configured to be combined with a biological sample to produce a bead-sample; an assay strip comprising at least one well containing diagnostic reagent configured to be combined with a nucleic acid produce a nucleic acid-reagent mixture; a molecular diagnostic meagent configured to process the magnetic bead-sample, and analy acid-reagent mixture from the magnetic bead-sample, and analy acid-reagent mixture from the assay strip, wherein the molecular module comprises a cartridge platform including a set of parallel card, and a set of pins contacting the came card, wherein movement card displaces a subset of the set of pins through a subset of the set slots to define at least one pathway configured to transfer the meagent sample; and a liquid handling system configured to transfer the meagent acid volume from the molecular diagnostic module nucleic acid volume from the molecular diagnostic module nucleic acid volume from the molecular diagnostic module to the and transfer the nucleic acid-reagent mixture from the assay strip molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module.

Claim	Claim Language	Infringement Evidence
		comprises an optical subsystem comprising at least one unit, wherein each unit
		includes an excitation filter, an emission filter, a photodetector aligned with the
		emission filter, and a dichroic mirror configured to reflect light from the
		excitation filter toward the nucleic acid-reagent mixture, and to transmit light
		from the nucleic acid reagent mixture, through the emission filter, and toward
		the photodetector wherein each unit of the optical subsystem further comprises
		an LED aligned with the excitation filter, wherein the LED provides multiple
		wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter.
		 Claim 19. The system of claim 16, wherein the molecular diagnostic module
		further comprises a heater and a detection chamber heater, wherein the
		heater is configured to heat the magnetic bead-sample, and wherein the
		detection chamber heater is configured to individually heat the nucleic
		acid-reagent mixture, and wherein at least one of the heater and the
		detection chamber heater is a Peltier heater.
		• U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions
		to move a nozzle 149 coupled to the liquid handling system 250, in order to
		couple the liquid handling system 250 to a fluid port 222 of the microfluidic
		cartridge 210 The vertical displacement also allows the microfluidic cartridge
		210 to receive a magnet 160, which provides a magnetic field to facilitate a
		subset of a molecular diagnostic protocol, and detection chamber heaters 157,
		which allows amplification of nucleic acids for molecular diagnostic
		protocols requiring heating and cooling of the nucleic acid (e.g. PCR).")
		• U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12
		independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.")
		 U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of
		the set of nucleic acid-reagent mixtures, through the corresponding fluidic

Claim	Claim Language	Infringement Evidence
		pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		• U.S. Patent No. 9,499,896 at 2:33-48 "The system 100 functions to enable

Claim	Claim Language	Infringement Evidence
Ciaiii	Claim Language	rapid thermal cycling of samples while providing uniform heating and preventing signal drift. In specific applications, the system 100 can be used to rapidly and controllably thermocycle nucleic acid samples during performance of molecular diagnostic amplification techniques (e.g., PCR, RT-PCR), signal amplification techniques (e.g., bDNA, hybrid capture), and analytical techniques (e.g., gel electrophoresis, mass spectrometry). The system 100 can also provide rapid thermocycling without significant power requirements, ensure a closer correlation between the actual heating temperature and the temperature set-point by implementing an integrated heater-sensor die, and controllably and individually heat small sample volumes (e.g., picoliters, nanoliters) based upon a microfabrication technique that also enables mass production of the system 100.") • U.S. Patent No. 9,499,896 at 2:61-3:3 ("The set of heater-sensor dies 110 functions to controllably heat individual sample volumes. Preferably, each heater sensor die 111 is a thin-film die that can be deposited onto another substrate (e.g., silicon, glass substrate) that can be packaged onto an electronics substrate 140 (e.g., printed circuit board, PCB); however, each heater-sensor die 111 can alternatively comprise any suitable geometry and/or configuration that enables controlled, uniform, and rapid heating of a detection chamber in thermal communication with the heater-sensor die 111.") • U.S. Patent No. 9,499,896 at 3:23-27 ("Preferably, each heater-sensor die 111 in the set of heater sensor dies 110 comprises an assembly including: a first insulating layer 112a that functions to provide an insulating barrier to isolate the heaters and sensors and a heating region 113 that functions to provide uniform sample heating.")
1(g)	a detector configured to detect the presence of an amplification product in one or more PCR reaction zones; and	The accused apparatus comprises a detector configured to detect the presence of an amplification product in one or more PCR reaction zones. NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6,
	reaction zones, and	2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO

Claim	Claim Language	Infringement Evidence
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		• "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge
		contains 12 independent lanes which allows for processing of up to 12
		samples simultaneously." Id. at 1:49-1:59
		US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the

Claim	Claim Language	Infringement Evidence
		heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		 U.S. Patent No. 9,499,896 at 2:33-48 "The system 100 functions to enable rapid thermal cycling of samples while providing uniform heating and preventing signal drift. In specific applications, the system 100 can be used to rapidly and controllably thermocycle nucleic acid samples during performance of molecular diagnostic amplification techniques (e.g., PCR, RT-PCR), signal amplification techniques (e.g., bDNA, hybrid capture), and analytical techniques (e.g., gel electrophoresis, mass spectrometry). The system 100 can also provide rapid thermocycling without significant power requirements, ensure a closer correlation between the actual heating temperature and the temperature set-point by implementing an integrated heater-sensor die, and controllably and individually heat small sample volumes (e.g., picoliters, nanoliters) based upon a microfabrication technique that also enables mass production of the system 100.") U.S. Patent No. 9,499,896 at 2:61-3:3 ("The set of heater-sensor dies 110 functions to controllably heat individual sample volumes. Preferably, each heater sensor die 111 is a thin-film die that can be deposited onto another substrate (e.g., silicon, glass substrate) that can be packaged onto an electronics substrate 140 (e.g., printed circuit board, PCB); however, each heater-sensor die 111 can alternatively comprise any suitable geometry and/or configuration that enables controlled, uniform, and rapid heating of a detection chamber in thermal communication with the heater-sensor die

Claim	Claim Language	Infringement Evidence
		 U.S. Patent No. 9,499,896 at 3:23-27 ("Preferably, each heater-sensor die 111 in the set of heater sensor dies 110 comprises an assembly including: a first insulating layer 112a that functions to provide an insulating barrier to isolate the heaters and sensors and a heating region 113 that functions to provide uniform sample heating.")
		180 180 183 182 181 FIG. 12A
1(h)	a processor coupled to the detector and the heat sources, configured to control heating of one or more PCR reaction zones by the heat sources.	The accused apparatus comprises a processor coupled to the detector and the heat sources, configured to control heating of one or more PCR reaction zones by the heat sources. *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) * "NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." * "The NeuMoDx*** Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx*** 288 and the NeuMoDx*** 96 Molecular Systems are fully

Claim	Claim Language	Infringement Evidence
		automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. • "The NeuMoDx™ 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx™ WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to cight hours." Id. at 0:00-0:18
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/dr-steven-

Claim	Claim Language	Infringement Evidence
		 young-video-testimonial/, hyperlink at https://youtu.be/vukP6gbLBYE. (Exhibit 32) At 2:58-3:18 ("There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint.")
		 US9539576 (Exhibit 29) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate
		surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies with the set of

Claim	Claim Language	Infringement Evidence
		detection chambers; and a set of wire bonds, including a wire bond coupled between the connection point of at least one of the set of heater-sensor dies and one of the set of substrate connection points.
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies is in thermal communication with a set of detection chambers. U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. IA and IB, an
		embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the

Claim	Claim Language	Infringement Evidence
Ciaini		electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") • U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heater-sensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160 configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.") • U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller 165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3 microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply configured to supply voltage to the resistance-to-voltage conversion circuit. In the specific example, the controller 165 comprises a resistance-to-voltage conversion circuit because the UT750 PID controller requires voltage as an input for PID control.") • U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. IA and IB, the system 100 can further comprise a controller 165, which functions to automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected temperatures) sensed at the sensing element(s) 115 of the system 100."
7(a)	A device for carrying out PCR on a plurality of samples, the	To the extent the preamble is limiting, the accused instrument is a device.

Claim	Claim Language	Infringement Evidence
	device comprising:	NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-products/, last visited June 5, 2019 (Exhibit 12)
		NeuMoDx molecular NeuMoDx molecular
		#500200 NeuMoDx 96 Molecular System #500100 NeuMoDx 288 Molecular System
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result."
		NeuMoDx TM Molecular Systems, NEuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11)

Claim	Claim Language	Infringement Evidence
		• "NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY
		MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"
		platform offers market-leading ease of use, true continuous random-access and
		rapid turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms
		that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems
		are fully automated, continuous random-access analyzers that utilize our
		proprietary NeuDry™ reagent technology, which integrates magnetic
		particle affinity capture and real time Polymerase Chain Reaction (PCR)
		chemistry in a multi-sample microfluidic cartridge. This technology,
		combined with a platform, uniquely incorporates robotics and microfluidics that
		result in higher throughput, improved performance and increased efficiency by
		eliminating the waste associated with technologies that required reconstitution
		of lyophilized reagents.
		• "The NeuMoDx TM 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and consumables."
		• "NeuMoDx™ Molecular Systems are versatile; in addition to IVD tests, our
		system can also be used as an open system to process Laboratory Developed
		Tests (LDTs) that have been created and validated by your lab."

Claim	Claim Language	Infringement Evidence
		 NeuMoDxTM Molecular Systems, NEUMoDx, https://www.neumodx.com/dr-steven-young-video-testimonial/, hyperlink at https://youtu.be/vukP6gbLBYE. (Exhibit 32) At 2:58-3:18 ("There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint.")
7(b)	a plurality of multi-lane microfluidic cartridges, each lane comprising a PCR reaction zone;	The accused device comprises a plurality of multi-lane microfluidic cartridges, each lane comprising a PCR reaction zone. *NeuMoDx Molecular N96 and N288 Overview and Animation, http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx** TECHNOLOGY" hyperlink at https://player.vimeo.com/video/281470603. (Exhibit 17) • at 4:55-5:00 (showing a plurality of multi-lane cartridges in the accused apparatus)

Claim	Claim Language	Infringement Evidence
		Receiving Bay Receiving Bay
		 NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		Powerful. Simple. Diagnostics. NeuMode John Arton Maria 1914 Art (0) 30 1 1250 Elsenhower Piece Ann Arbon, Mil 48108 www.naumode.com CARTRIDGE CARTRIDGE Last State 1940 (0) 1450 (1) 1
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11)
		 "NeuMoDxTM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result".

Claim	Claim Language	Infringement Evidence
		The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge . This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents.
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		K173725.pdf (Exhibit 23) • "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx

Claim	Claim Language	Infringement Evidence
		System dispenses the prepared PCR-ready mixture into one PCR chamber
		(per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		US9403165 (Exhibit 27)
		 Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the second fluidic pathway is coupled to the second fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		• Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic

Claim	Claim Language	Infringement Evidence
		bead-sample; and a molecular diagnostic module, configured to process at
		least one magnetic bead-sample obtained from the capture plate, and separate
		nucleic acids from magnetic beads, wherein the molecular diagnostic module
		comprises: a cartridge platform comprising a magnet receiving slot, an actuator
		configured to displace the cartridge platform, a magnet, wherein an extended
		configuration of the actuator allows the magnet to pass through the magnet
		receiving slot to facilitate separation of the at least one nucleic acid volume, and
		a cam card contacting a set of pins, wherein the extended configuration of the
		actuator combined with movement of the cam card displaces a subset of the set
		of pins through a set of slots of the cartridge platform, to define at least one
		distinct pathway configured to receive at least one magnetic bead-sample.
		• Claim 13. The system of claim 1, wherein the molecular diagnostic module is
		configured receive and align a microfluidic cartridge comprising a set of sample
		port-reagent port pairs, a fluid port, a set of detection chambers, a waste
		chamber, an elastomeric layer, and a set of fluidic pathways, wherein each
		fluidic pathway of the set of fluidic pathways is coupled to a sample port-
		reagent port pair, the fluid port, and a detection chamber, comprises a segment
		configured to cross the magnet, and is configured to transfer a waste fluid to the
		waste chamber, and to be occluded upon deformation of the elastomeric layer.
		• Claim 16. A system for processing and detecting nucleic acids, comprising: a
		capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic
		bead-sample; an assay strip comprising at least one well containing a molecular
		diagnostic reagent configured to be combined with a nucleic acid volume to
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,
		configured to process the magnetic bead-sample from the capture plate, separate
		the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic
		module comprises a cartridge platform including a set of parallel slots, a cam
		card, and a set of pins contacting the cam card, wherein movement of the cam
		card displaces a subset of the set of pins through a subset of the set of parallel
		slots to define at least one pathway configured to receive the magnetic bead-

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater. U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing)
		• U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system

Claim	Claim Language	Infringement Evidence
Ciaini	Ciailii Language	configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") • U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid-reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
7(c)	a plurality of receiving bays, each receiving bay configured to	The accused device comprises a plurality of receiving bays, each receiving bay configured to receive one of the plurality of microfluidic cartridges.

Claim	Claim Language	Infringement Evidence
	receive one of the plurality of microfluidic cartridges;	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." Id. at 0:00-0:18 NeuMoDx Molecular N96 and N288 Overview and Animation, http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM TECHNOLOGY" hyperlink at https://player.vimeo.com/video/281470603 . (Exhibit 17) • at 4:55-5:00

Claim	Claim Language	Infringement Evidence
		Receiving Bay Receiving Bay
		US9050594 (Exhibit 24)
		• Claim 1. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample.
		• U.S. Patent No. 9,050,594 at 2:6-7 ("FIG. 8 depicts an embodiment of a microfluidic cartridge and an embodiment of a cartridge platform.")
		• U.S. Patent No. 9,050,594 at Fig. 8

U.S. Patent No. 9,050,594 at 7:53-8:35 "As shown in FIG. 9A, the cartridge receiving module 140 of the molecular diagnostic module 130 comprises a cartridge platform 141 including a cartridge loading guiderail 142, a cartridge stop 143, a magnet receiving slot 144, and a set of valve actuation slots 145; a linear actuator 146 configured to displace a microfluidic cartridge 210 resting on the cartridge platform 141, and a set of springs 148 coupled to the cartridge platform 141 and a set of springs 148 coupled to the cartridge platform 141 includes a cartridge 210 for processing of a biological sample according to a molecular diagnostic assay protocol The cartridge platform 141 includes a cartridge loading guiderail 142, a cartridge stop 143, a magnet receiving slot 144, and a set of valve actuation slots 145, and functions to receive and align a microfluidic cartridge 210, while providing access to the microfluidic cartridge 210 by a magnet 160 and a valve actuation

Claim	Claim Language	Infringement Evidence
		platform 141 includes a pair of parallel cartridge loading guiderails 142,
		initiating at a pair of inwardly tapering protrusions configured to guide a
		microfluidic cartridge toward the pair of parallel cartridge loading
		guiderails 142, and spanning two short edges of the cartridge platform 141.
		The embodiment of the cartridge platform 141 also includes a cartridge stop 143
		comprising a vertical tab oriented perpendicular to the cartridge loading
		guiderails 142, and spanning a long edge of the cartridge platform. Preferably,
		the cartridge loading guiderails 142 and the cartridge stop 143 are configured
		such that a microfluidic cartridge 210 slides between the cartridge loading
		guiderails 142 and hits the cartridge stop 143 to signal proper alignment."
7(d)	a separately controllable heat	The accused device comprises a separately controllable heat source thermally coupled
	source thermally coupled to	to each PCR reaction zone.
	each PCR reaction zone,	N M D M L L WOO LWOO O L L L L N M D OY (
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		• "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge
		contains 12 independent lanes which allows for processing of up to 12
		samples simultaneously." <i>Id.</i> at 1:49-1:59

Claim Language	Infringement Evidence
Claim Language	NeuMoDx [™] Molecular Systems, NeuMoDx, http://www.neumodx.com/ , last visited May 31, 2019 (Exhibit 10) • "NeuMoDx™ Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features
	Claim Language

Claim	Claim Language	Infringement Evidence
		bead-sample; and a molecular diagnostic module, configured to process at
		least one magnetic bead-sample obtained from the capture plate, and separate
		nucleic acids from magnetic beads, wherein the molecular diagnostic module
		comprises: a cartridge platform comprising a magnet receiving slot, an actuator
		configured to displace the cartridge platform, a magnet, wherein an extended
		configuration of the actuator allows the magnet to pass through the magnet
		receiving slot to facilitate separation of the at least one nucleic acid volume, and
		a cam card contacting a set of pins, wherein the extended configuration of the
		actuator combined with movement of the cam card displaces a subset of the set
		of pins through a set of slots of the cartridge platform, to define at least one
		distinct pathway configured to receive at least one magnetic bead-sample.
		• Claim 13. The system of claim 1, wherein the molecular diagnostic module is
		configured receive and align a microfluidic cartridge comprising a set of sample
		port-reagent port pairs, a fluid port, a set of detection chambers, a waste
		chamber, an elastomeric layer, and a set of fluidic pathways, wherein each
		fluidic pathway of the set of fluidic pathways is coupled to a sample port- reagent port pair, the fluid port, and a detection chamber, comprises a segment
		configured to cross the magnet, and is configured to transfer a waste fluid to the
		waste chamber, and to be occluded upon deformation of the elastomeric layer.
		Claim 16. A system for processing and detecting nucleic acids, comprising: a
		capture plate comprising at least one well containing a set of magnetic beads
		configured to be combined with a biological sample to produce a magnetic
		bead-sample; an assay strip comprising at least one well containing a molecular
		diagnostic reagent configured to be combined with a nucleic acid volume to
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,
		configured to process the magnetic bead-sample from the capture plate, separate
		the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic
		module comprises a cartridge platform including a set of parallel slots, a cam
		card, and a set of pins contacting the cam card, wherein movement of the cam
		card displaces a subset of the set of pins through a subset of the set of parallel
		slots to define at least one pathway configured to receive the magnetic bead-

Claim	Claim Language	Infringement Evidence
		sample; and a liquid handling system configured to transfer the magnetic beadsample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater. • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to
		couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12

Claim	Claim Language	Infringement Evidence
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of

Claim	Claim Language	Infringement Evidence
		the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers. U.S. Patent No. 9,499,896 at 12:15-20 ("Furthermore, the controller 165 can be configured to control individual heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be configured to provide common heating parameters for all heater-sensor dies 111 in the set of heater-sensor dies 110.")
7(e)	wherein the heat source is configured to thermal cycle the PCR reaction zone to carry out PCR on a polynucleotide-containing sample in the PCR reaction zone and	In the accused device, the heat source is configured to thermal cycle the PCR reaction zone to carry out PCR on a polynucleotide-containing sample in the PCR reaction zone *NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim Language	Infringement Evidence
Claim Language	 NeuMoDx™ Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDx™ Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features
	 independent lanes allowing for simultaneous processing of sample types and varying assays." US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic
	Claim Language

Claim	Claim Language	Infringement Evidence
		bead-sample; and a molecular diagnostic module, configured to process at
		least one magnetic bead-sample obtained from the capture plate, and separate
		nucleic acids from magnetic beads, wherein the molecular diagnostic module
		comprises: a cartridge platform comprising a magnet receiving slot, an actuator
		configured to displace the cartridge platform, a magnet, wherein an extended
		configuration of the actuator allows the magnet to pass through the magnet
		receiving slot to facilitate separation of the at least one nucleic acid volume, and
		a cam card contacting a set of pins, wherein the extended configuration of the
		actuator combined with movement of the cam card displaces a subset of the set
		of pins through a set of slots of the cartridge platform, to define at least one
		distinct pathway configured to receive at least one magnetic bead-sample.
		• Claim 13. The system of claim 1, wherein the molecular diagnostic module is
		configured receive and align a microfluidic cartridge comprising a set of sample
		port-reagent port pairs, a fluid port, a set of detection chambers, a waste
		chamber, an elastomeric layer, and a set of fluidic pathways, wherein each
		fluidic pathway of the set of fluidic pathways is coupled to a sample port-
		reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the
		waste chamber, and to be occluded upon deformation of the elastomeric layer.
		Claim 16. A system for processing and detecting nucleic acids, comprising: a
		capture plate comprising at least one well containing a set of magnetic beads
		configured to be combined with a biological sample to produce a magnetic
		bead-sample; an assay strip comprising at least one well containing a molecular
		diagnostic reagent configured to be combined with a nucleic acid volume to
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,
		configured to process the magnetic bead-sample from the capture plate, separate
		the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic
		module comprises a cartridge platform including a set of parallel slots, a cam
		card, and a set of pins contacting the cam card, wherein movement of the cam
		card displaces a subset of the set of pins through a subset of the set of parallel
		slots to define at least one pathway configured to receive the magnetic bead-

Claim	Claim Language	Infringement Evidence
Ciailii	Ciam Danguage	sample; and a liquid handling system configured to transfer the magnetic beadsample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater. • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to
		couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12

Claim	Claim Language	Infringement Evidence
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of

Claim	Claim Language	Infringement Evidence
		the electronics substrate interfacing with the assemblies of the set of heater- sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
7(f)	to maintain a substantially uniform temperature throughout the PCR reaction zone during each cycle;	In the accused device, the heat source is configured to thermal cycle the PCR reaction zone to carry out PCR on a polynucleotide-containing sample in the PCR reaction zone and to maintain a substantially uniform temperature throughout the PCR reaction zone during each cycle NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays."

Claim	Claim Language	Infringement Evidence
		US9050594 (Exhibit 24)
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-
		reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater. U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling sys

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis.
		Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.") US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and

Claim	Claim Language	Infringement Evidence
		associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		• U.S. Patent No. 9,499,896 at 2:33-48 "The system 100 functions to enable rapid thermal cycling of samples while providing uniform heating and preventing signal drift. In specific applications, the system 100 can be used to rapidly and controllably thermocycle nucleic acid samples during performance of molecular diagnostic amplification techniques (e.g., PCR, RT-PCR), signal amplification techniques (e.g., bDNA, hybrid capture), and analytical techniques (e.g., gel electrophoresis, mass spectrometry). The system 100 can also provide rapid thermocycling without significant power requirements, ensure a closer correlation between the actual heating temperature and the temperature set-point by implementing an integrated heater-sensor die, and controllably and individually heat small sample volumes (e.g., picoliters, nanoliters) based upon a microfabrication technique that also enables mass production of the system 100.")
		 U.S. Patent No. 9,499,896 at 2:61-3:3 ("The set of heater-sensor dies 110 functions to controllably heat individual sample volumes. Preferably, each heater sensor die 111 is a thin-film die that can be deposited onto another substrate (e.g., silicon, glass substrate) that can be packaged onto an electronics substrate 140 (e.g., printed circuit board, PCB); however, each heater-sensor die 111 can alternatively comprise any suitable geometry and/or configuration that enables controlled, uniform, and rapid heating of a detection chamber in thermal communication with the heater-sensor die 111.") U.S. Patent No. 9,499,896 at 3:23-27 ("Preferably, each heater-sensor die 111 in

Claim	Claim Language	Infringement Evidence
		the set of heater sensor dies 110 comprises an assembly including: a first insulating layer 112a that functions to provide an insulating barrier to isolate the heaters and sensors and a heating region 113 that functions to provide uniform sample heating.")
7(g)	a detector configured to detect the presence of an amplification product in one or more PCR reaction zones;	The accused device comprises a detector configured to detect the presence of an amplification product in one or more PCR reaction zones. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx** WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection
		chambers comprising: a set of heater-sensor dies, each heater-sensor die in
		the set of heater-sensor dies comprising: an assembly including a first insulating
		layer, a heating region comprising an adhesion material layer coupled to the
		first insulating layer and a noble material layer coupled to the adhesion material
		layer, and a second insulating layer coupled to the heating region and to the first
		insulating layer through a pattern of voids in the heating region, wherein the
		pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the
		heating region, and a fine pattern, comprising a local morphology at a second
		scale smaller than the first scale, integrated into the coarse pattern and
		associated with a sensing element of the heating region; an electronics substrate
		configured to couple heating elements and sensing elements of the set of heater-
		sensor dies to a controller; and a set of elastic elements coupled to a second
		substrate surface of the electronics substrate opposing a first substrate surface of
		the electronics substrate interfacing with the assemblies of the set of heater-
		sensor dies and configured to bias each of the set of heater-sensor dies against a
		detection chamber in a configuration wherein the set of heater-sensor dies is in
		thermal communication with a set of detection chambers.
		VIG D VI . 0.400.006 0.20.40 (/TV
		• U.S. Patent No. 9,499,896 at 2:33-48 "The system 100 functions to enable
		rapid thermal cycling of samples while providing uniform heating and preventing signal drift. In specific applications, the system 100 can be used to
		rapidly and controllably thermocycle nucleic acid samples during performance
		of molecular diagnostic amplification techniques (e.g., PCR, RT-PCR),
		signal amplification techniques (e.g., bDNA, hybrid capture), and analytical
		techniques (e.g., gel electrophoresis, mass spectrometry). The system 100 can
		also provide rapid thermocycling without significant power requirements, ensure
		a closer correlation between the actual heating temperature and the temperature
		set-point by implementing an integrated heater-sensor die, and controllably and
		individually heat small sample volumes (e.g., picoliters, nanoliters) based upon

Claim	Claim Language	Infringement Evidence
		 a microfabrication technique that also enables mass production of the system 100.") U.S. Patent No. 9,499,896 at 2:61-3:3 ("The set of heater-sensor dies 110 functions to controllably heat individual sample volumes. Preferably, each heater sensor die 111 is a thin-film die that can be deposited onto another substrate (e.g., silicon, glass substrate) that can be packaged onto an electronics substrate 140 (e.g., printed circuit board, PCB); however, each heater-sensor die 111 can alternatively comprise any suitable geometry and/or configuration that enables controlled, uniform, and rapid heating of a detection chamber in thermal communication with the heater-sensor die 111.") U.S. Patent No. 9,499,896 at 3:23-27 ("Preferably, each heater-sensor die 111 in the set of heater sensor dies 110 comprises an assembly including: a first insulating layer 112a that functions to provide an insulating barrier to isolate the heaters and sensors and a heating region 113 that functions to provide uniform sample heating.")
		187 186 183 182 181 FIG. 12A
7(h)	a processor coupled to the detector	The accused device comprises a processor coupled to the detector.
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/ , last visited

Claim	Claim Language	Infringement Evidence
		May 31, 2019 (Exhibit 10)
		• "NeuMoDx TM Molecular Systems provide the industry's first true continuous
		random-access solution and is scalable to meet the needs of the modern clinical
		laboratory. The ability to load samples and testing consumables on the fly offers
		up to 8 hours of operator walkaway capability. Room temperature stable
		reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic
		technologies. Our proprietary and unitized microfluidic cartridge features
		independent lanes allowing for simultaneous processing of sample types and
		varying assays."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the
		cartridge into three thin PCR chambers and the amplification process begins.
		During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the
		qualitative or quantitative results which are displayed as amplification
		curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		 "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	Infringement Evidence processing with initial results in one hour and operator walk away time of up to eight hours." Id. at 0:00-0:18 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical
		scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/ , last visited May 31, 2019 (Exhibit 10) • "NeuMoDx™ 288 and NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
7(i)	and a plurality of the separately controllable heat sources, configured to control heating of one or more PCR reaction zones by one or more of the plurality of separately controllable heat sources; and	The accused device comprises a plurality of the separately controllable heat sources, configured to control heating of one or more PCR reaction zones by one or more of the plurality of separately controllable heat sources. *NeuMoDx_Quant_HCV_CVS_2018.pdf* (Exhibit 18) • Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
Ciaiiii	Claim Language	40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR." **NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx™ WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936.
		(Exhibit 16)

Claim	Claim Language	Infringement Evidence
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to p

acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module, to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection
 chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater. U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.")
		pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent
		mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent
		mixtures may be transferred to a corresponding fluidic pathway independently

Claim	Claim Language	Infringement Evidence
		of the other nucleic acid reagent mixtures.") •
7(j)	an input device coupled to the processor and configured to permit concurrent or consecutive control of the plurality of multilane microfluidic cartridges	The accused device comprises an input device coupled to the processor and configured to permit concurrent or consecutive control of the plurality of multi-lane microfluidic cartridges. **NeuMoDx™** Molecular Systems**, NEUMoDx**, http://www.neumodx.com/our-solutions/*, last visited May 31, 2019 (Exhibit 11) **NeuMoDx™** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." **The NeuMoDx™** Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™** 288 and the NeuMoDx™** 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™* reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. **The NeuMoDx™** 96 Molecular System is designed for the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™** 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." **The NeuMoDx™** 288 Molecular System is designed for the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™** 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."

Claim	Claim Language	Infringement Eviden	ice
		amplification fluorescence- the instrument consumables." • "NeuMoDx TM system can al Tests (LDTs)	d isolation of nucleic acids, as well as the automated and detection of target nucleic acid sequences by based PCR. The NeuMoDx TM 288 Molecular System consists of with touchscreen computer, accessories, and reagents and Molecular Systems are versatile; in addition to IVD tests, our so be used as an open system to process Laboratory Developed that have been created and validated by your lab." 19-Rev-B_NeuMoDx-96-Spec-Sheet.pdf (Exhibit 21)
		Sample capacity	96 initial load; Continuous, Random-Access Thereafter
		Reagent capacity	320 initial load; Continuous, Random-Access Thereafter
		Operational flexibility	Continuous Random-Access Perform LDT Qualitative and Quantitative assays simultaneously on demand* Onboard inventory management Simultaneous use of multiple tube types and sizes Flexible specimen tube compatibility • Diameter: 11 mm - 18 mm • Height: 60 mm - 120 mm
		http://www.neumodx. • "The NeuMoI (IVD) use in p laboratories. T extraction and as the automat fluorescence-benable laboratories. NeuMoDx TM - • Instrument Inc.	com/product/neumodx-288/, last visited June 4, 2019 (Exhibit 13) Dx TM 288 Molecular System is intended for in vitro diagnostic erforming NeuMoDx TM validated nucleic acid testing in clinical the NeuMoDx TM 288 Molecular System is capable of automated isolation of nucleic acids from multiple specimen types, as well ed amplification and detection of target nucleic acid sequences by based PCR. The system is capable of providing functionality to pries to develop qualitative and quantitative tests, which use provided consumables and reagents.

Claim	Claim Language	Infringement Evidence
		 Handheld barcode scanner
		 Keyboard and mouse
		o NeuMoDx™ Biohazard Waste Container
		o Carriers
		o Test Strip Carrier (6)
		o Buffer Carrier (2)
		o 32-tube Specimen Tube Carrier (9)
		o Tip, Extraction and Filter Carrier (2)
		o Cartridge Carrier (2)"
		N. M. D. TM M. L. G. C. N. M. D.
		NeuMoDx TM Molecular Systems, NEUMoDx,
		http://www.neumodx.com/product/neumodx-96/, last visited June 4, 2019 (Exhibit 14)
		• "The NeuMoDx TM 96 Molecular System is intended for in vitro diagnostic
		(IVD) use in performing NeuMoDxTM validated nucleic acid testing in clinical
		laboratories. The NeuMoDx TM 96 Molecular System is capable of automated
		extraction and isolation of nucleic acids from multiple specimen types, as well
		as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The system is capable of providing functionality to
		enable laboratories to develop qualitative and quantitative tests, which use
		NeuMoDx TM provided consumables and reagents.
		Instrument Includes:
		O Uninterruptible power supply (UPS)
		o Handheld barcode scanner
		Keyboard and mouse
		o Biohazard Waste Bin
		o Biohazard Tip Waste Bin
		o Biohazard Waste Container
		o Carriers
		o Test Strip Carrier (4)
		o Buffer Carrier (1)
		o 32-tube Specimen Tube Carrier (3)
		 Tip, Extraction and Filter Carrier (1)

Claim	Claim Language	Infringement Evidence	
		o Cartridge Carrier (1)"	
20(a)	A method of carrying out PCR on a plurality of samples, the method comprising:	To the extent the preamble is limiting, the accused workflow is a method of carrying out PCR on a plurality of samples. *NeuMoDx** Molecular Systems, NEUMoDx, http://www.neumodx.com/our-products/ , last visited June 5, 2019 (Exhibit 12) *NeuMoDx** molecular Systems NeuMoDx** molecular NeuMoDx**	
		#500200 NeuMoDx 96 Molecular System #500100 NeuMoDx 288 Molecular System NeuMoDx Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited	

Claim	Claim Language	Infringement Evidence
		May 31, 2019 (Exhibit 10)
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result."
		TM
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ ,
		last visited May 31, 2019 (Exhibit 11)
		"NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY "NeuFight A Property of the Color of the C
		MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"
		platform offers market-leading ease of use, true continuous random-access and
		rapid turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to
		result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems
		are fully automated, continuous random-access analyzers that utilize our
		proprietary NeuDry TM reagent technology, which integrates magnetic
		particle affinity capture and real time Polymerase Chain Reaction (PCR)
		chemistry in a multi-sample microfluidic cartridge. This technology,
		combined with a platform, uniquely incorporates robotics and microfluidics that
		result in higher throughput, improved performance and increased efficiency by
		eliminating the waste associated with technologies that required reconstitution
		of lyophilized reagents.
		• "The NeuMoDx™ 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR . The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR . The NeuMoDx TM 288 Molecular System consists of

Claim	Claim Language	Infringement Evidence
		the instrument with touchscreen computer, accessories, and reagents and consumables." • "NeuMoDx TM Molecular Systems are versatile; in addition to IVD tests, our system can also be used as an open system to process Laboratory Developed Tests (LDTs) that have been created and validated by your lab." **NeuMoDx*** Molecular Systems**, NeuMoDx, https://www.neumodx.com/dr-steven-young-video-testimonial/ , hyperlink at https://youtu.be/vukP6gbLBYE . (Exhibit 32) • At 2:58-3:18 ("There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint.")
20(b)	introducing the plurality of samples into a plurality of multilane microfluidic cartridges, wherein each lane comprises a PCR reaction zone configured to permit thermal cycling of a sample independently of the other samples;	The accused workflow comprises introducing the plurality of samples into a plurality of multi-lane microfluidic cartridges, wherein each lane comprises a PCR reaction zone configured to permit thermal cycling of a sample independently of the other samples *NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx *M* WORKFLOW** hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The liquid handling robot aspirates the PCR-ready solution and transfers it back to the cartridge where it dispenses into the same P-port from which the sample was aspirated." *Id. at 3:47-3:57

Claim	Claim Language	Infringement Evidence

Claim	Claim Language	Infringement Evidence
		Somorful, Simple
		US9101930 (Exhibit 25)
		• Claim 10. A cartridge, configured to facilitate processing and detecting of nucleic acids, comprising: a first layer and an intermediate substrate, coupled to the first layer, wherein the intermediate substrate defines a waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids spanning a majority of a width of the intermediate substrate and external to the waste chamber, wherein the set of voids is accessible from a direction perpendicular to a broad surface of the first layer; and a second fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway, formed by at least a portion of the first layer, wherein the first fluidic pathway and the second fluidic pathway are each superior to the intermediate substrate, are each at least partially separated from the corrugated surface of the

Claim	Claim Language	Infringement Evidence
		 intermediate substrate by an elastomeric layer and are each configured to transfer waste to the waste chamber through a set of openings of the intermediate substrate. Claim 11. The cartridge of claim 10, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second

Claim	Claim Language	Infringement Evidence
		sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		 Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward

Claim	Claim Language	Infringement Evidence
		the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.")
		 U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but

Claim	Claim Language	Infringement Evidence
		alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
20(c)	moving the plurality of samples into the respective plurality of PCR reaction zones; and	The accused workflow comprises moving the plurality of samples into the respective plurality of PCR reaction zones. **NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), https://pwww.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx **M WORKFLOW** hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the el

positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions. • US9738887 (Exhibit 31) at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered a detection chamber for analysis, which may include amplification and/or detection.") • US9738887 (Exhibit 31) at 15:31-35 ("The segment running to a detection chamber 163 functions to deliver a processed sample fluid to the detection chamber 117 with a reduced quantity of gas bubbles, and the segment running away from the detection chamber 164 functions to deliver a fluid awa from the detection chamber 117.") • US9738887 (Exhibit 31) at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the
microfluidic cartridge through the reagent port 115. This released nucleic aci sample is then used to reconstitute a molecular diagnostic reagent stored off o the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecu diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seven occlusion position [148] (normally closed) open. The detection chamber 1

Claim	Claim Language	Infringement Evidence
		the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • US9738887 (Exhibit 31) at Figs. 1J and 1K: 165 119 115 144 145 142 176 147146177199 149 164 117 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
20(d)	amplifying polynucleotides contained with the plurality of samples in the plurality of PCR reaction zones while thermal cycling the PCR reaction zones	The accused workflow comprises amplifying polynucleotides contained with the plurality of samples in the plurality of PCR reaction zones while thermal cycling the PCR reaction zones. *NeuMoDx** Molecular Systems*, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11)

Claim	Claim Language	Infringement Evidence
		 "NeuMoDxTM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR." Powerful Simple Diagnostics NeuMoDx NeuMo

Claim	Claim Language	Infringement Evidence
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19)
		• "NeuMoDx TM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx
		Cartridge contains 12 independent microfluidic circuits that enable the
		independent processing of up to 12 samples once housed appropriately in
		the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a
		combination of heat and proprietary extraction reagents to perform cell lysis,
		nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed
		clinical specimens prior to presenting the extracted nucleic acid for detection by
		Real-Time PCR."
		 NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		• "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." <i>Id.</i> at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the first fluidic pathway is coupled to the first fluidic pathway and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and an analyze the nucleic acid reagent mixture from the assay strip, wherein the molecular diagnostic module, transfer the nucleic acid volume from the capture plate to the molecular diagnostic modu

Claim	Claim Language	Infringement Evidence
		and transfer the nucleic acid-reagent mixture from the assay strip to the
		molecular diagnostic module.
		• Claim 18. The system of claim 16, wherein the molecular diagnostic module
		comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		• U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of

Claim	Claim Language	Infringement Evidence
		nucleic acids.") • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") • U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
20(e)	and maintaining a substantially uniform temperature throughout each PCR reaction zone during each cycle,	The accused workflow comprises amplifying polynucleotides contained with the plurality of samples in the plurality of PCR reaction zones while thermal cycling the PCR reaction zones and maintaining a substantially uniform temperature throughout each PCR reaction zone during each cycle

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	Infringement Evidence NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59 • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDx™ Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays."
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended

Claim	Claim Language	Infringement Evidence
Claim		configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define a

Claim	Claim Language	Infringement Evidence
		Claim 18. The system of claim 16, wherein the molecular diagnostic module
		comprises an optical subsystem comprising at least one unit, wherein each unit
		includes an excitation filter, an emission filter, a photodetector aligned with the
		emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light
		from the nucleic acid reagent mixture, through the emission filter, and toward
		the photodetector wherein each unit of the optical subsystem further comprises
		an LED aligned with the excitation filter, wherein the LED provides multiple
		wavelengths of light corresponding to at least one of the excitation filter, the
		dichroic mirror, and the emission filter.
		• Claim 19. The system of claim 16, wherein the molecular diagnostic module
		further comprises a heater and a detection chamber heater, wherein the
		heater is configured to heat the magnetic bead-sample, and wherein the
		detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the
		detection chamber heater is a Peltier heater.
		• U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions
		to move a nozzle 149 coupled to the liquid handling system 250, in order to
		couple the liquid handling system 250 to a fluid port 222 of the microfluidic
		cartridge 210 The vertical displacement also allows the microfluidic cartridge
		210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157,
		which allows amplification of nucleic acids for molecular diagnostic
		protocols requiring heating and cooling of the nucleic acid (e.g. PCR).")
		• U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows"
		independent control of 12 independent channels, corresponding to 12
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of

Claim	Claim Language	Infringement Evidence
		the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.

Claim	Claim Language	Infringement Evidence
		 U.S. Patent No. 9,499,896 at 2:33-48 "The system 100 functions to enable rapid thermal cycling of samples while providing uniform heating and preventing signal drift. In specific applications, the system 100 can be used to rapidly and controllably thermocycle nucleic acid samples during performance of molecular diagnostic amplification techniques (e.g., PCR, RT-PCR), signal amplification techniques (e.g., bDNA, hybrid capture), and analytical techniques (e.g., gel electrophoresis, mass spectrometry). The system 100 can also provide rapid thermocycling without significant power requirements, ensure a closer correlation between the actual heating temperature and the temperature set-point by implementing an integrated heater-sensor die, and controllably and individually heat small sample volumes (e.g., picoliters, nanoliters) based upon a microfabrication technique that also enables mass production of the system 100.") U.S. Patent No. 9,499,896 at 2:61-3:3 ("The set of heater-sensor dies 110 functions to controllably heat individual sample volumes. Preferably, each heater sensor die 111 is a thin-film die that can be deposited onto another substrate (e.g., silicon, glass substrate) that can be packaged onto an electronics substrate 140 (e.g., printed circuit board, PCB); however, each heater-sensor die 111 can alternatively comprise any suitable geometry and/or configuration that enables controlled, uniform, and rapid heating of a detection chamber in thermal communication with the heater-sensor die 111 in the set of heater sensor dies 110 comprises an assembly including: a first insulating layer 112a that functions to provide an insulating barrier to isolate the heaters and sensors and a heating region 113 that functions to provide uniform sample heating.")
20(f)	at least one PCR reaction zone separately thermally controllable from another PCR reaction zone.	The accused workflow comprises at least one PCR reaction zone separately thermally controllable from another PCR reaction zone. *NeuMoDx** Molecular Systems*, NeuMoDx*, http://www.neumodx.com/our-solutions/ ,

Claim	Claim Language	Infringement Evidence
Ciaim	Claim Language	last visited May 31, 2019 (Exhibit 11) ■ "NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." ■ "The NeuMoDx™ Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR." **NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random
		access processing with initial results in one hour and operator walk away time of

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	Infringement Evidence up to eight hours." Id. at 0:00-0:18 • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the

Claim Language	Infringement Evidence
	second detection chamber, and wherein at least one of the first fluidic
	pathway and the second fluidic pathway is coupled to the fluid port.
	Claim Language

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 Infringement Evidence configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater; wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is a Peltier heater. U
		capture plate and a capture plate module configured to facilitate binding of

Infringement Evidence
Infringement Evidence nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-rea

Claim	Claim Language	Infringement Evidence
		alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent
		mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		, ,

Exhibit 38

U.S. Patent No. 8,415,103 Infringement Chart

Claim	Claim Language	Infringement Evidence
1(a)	A method of carrying out amplification independently on a plurality of polynucleotide-	To the extent the preamble is limiting, the accused workflow includes carrying out amplification independently on a plurality of polynucleotide-containing samples.
	containing samples, the method comprising:	NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-products/ , last visited June 5, 2019 (Exhibit 12)
		NeuMoDx molecular NeuMoDx molecular
		#500200 NeuMoDx [™] 96 Molecular System #500100 NeuMoDx [™] 288 Molecular System

Claim	Claim Language	Infringement Evidence
		 NeuMoDx™ Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDx™ Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays." NeuMoDx™ Molecular Systems, NeuMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "NeuMoDx™ Molecular Systems, NeuMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "NeuMoDx™ Molecular Systems REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDx™ Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) • Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
Ciaini	Claim Danguage	40600094 D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx TM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR." NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random
		access processing with initial results in one hour and operator walk away time of

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	up to eight hours." Id. at 0:00-0:18 • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26

Claim	Claim Language	Infringement Ev	idence
		products with US 9,050,594; 9,339,	www.neumodx.com/patents/, demonstrating that NeuMoDx marks its Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; 9,452,430; 812; 9,441,219; 10,041,062; 9,604,213; 10,010,888; 9,382,532; 896; 9,539,576; 9,637,775; and 10,093,963 (Exhibit 15)
		Product	Patents
		CARTRIDGE	US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; and 9,452,430. AU Patent No. 2013221701, JP Patent No. 6061313.
		P02 (overall system and method)	US Patent Nos. 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; and 10,010,888. CN Patent No. ZL 2013 8 00092863.
		EXTRACTION PLATE	US Patent Nos. 9,382,532; and 9,540,636.
		XPCR MODULE	US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963.
		layer and a	ibit 27) A cartridge for processing a sample, the cartridge comprising: a first an intermediate substrate coupled to the first layer and partially from the first layer by a film layer, wherein the intermediate substrate

Claim	Claim Language	Infringement Evidence
Ciaiii	Claim Language	is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. • Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the
		 second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port. US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the

actuator combined with movement of the cam card displaces a subset of pins through a set of slots of the cartridge platform, to define at lea distinct pathway configured to receive at least one magnetic bead-sam • Claim 13. The system of claim 1, wherein the molecular diagnostic a configured receive and align a microfluidic cartridge comprising a set port-reagent port pairs, a fluid port, a set of detection chambers, a was chamber, an elastomeric layer, and a set of fluidic pathways, wherein fluidic pathway of the set of fluidic pathways is coupled to a sample reagent port pair, the fluid port, and a detection chamber, comprises a configured to gross the magnet, and is configured to transfer a wester.
configured to cross the magnet, and is configured to transfer a waste of waste chamber, and to be occluded upon deformation of the elastome Claim 16. A system for processing and detecting nucleic acids, compicapture plate comprising at least one well containing a set of magnetic configured to be combined with a biological sample to produce a mag bead-sample; an assay strip comprising at least one well containing a diagnostic reagent configured to be combined with a nucleic acid volup produce a nucleic acid-reagent mixture; a molecular diagnostic mod configured to process the magnetic bead-sample from the capture plat the nucleic acid volume from the magnetic bead-sample, and analyze acid-reagent mixture from the assay strip, wherein the molecular diagnodule comprises a cartridge platform including a set of parallel slo card, and a set of pins contacting the cam card, wherein movement of card displaces a subset of the set of pins through a subset of the set of slots to define at least one pathway configured to receive the magnetic sample; and a liquid handling system configured to transfer the magnetic sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module to the assa and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic comprises an optical subsystem comprising at least one unit, wherein

Claim	Claim Language	Infringement Evidence
		 emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater
		 U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions
		to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge

Claim	Claim Language	Infringement Evidence
		 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple heaters are provided, each heater is preferably independent to allow independent control of heating time and temperature for each sample.")
1(b)	introducing the plurality of samples separately into a microfluidic cartridge;	The accused workflow includes introducing the plurality of samples separately into a microfluidic cartridge. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) "The liquid handling robot aspirates the PCR-ready solution and transfers it back to the cartridge where it dispenses into the same P-port from which the sample was aspirated." Id. at 3:47-3:57

Claim	Claim Language	Infringement Evidence

Claim	Claim Language	Infringement Evidence
		Power Foll Simple
		 Claim 10. A cartridge, configured to facilitate processing and detecting of nucleic acids, comprising: a first layer and an intermediate substrate, coupled to the first layer, wherein the intermediate substrate defines a waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids spanning a majority of a width of the intermediate substrate and external to the waste chamber, wherein the set of voids is accessible from a direction perpendicular to a broad surface of the first layer; a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway, formed by at least a portion of the first layer, wherein the first fluidic pathway and the second fluidic pathway are each superior to the intermediate substrate, are each at least partially separated from the corrugated surface of the

Claim	Claim Language	Infringement Evidence
		intermediate substrate by an elastomeric layer and are each configured to transfer waste to the waste chamber through a set of openings of the intermediate substrate.
		• Claim 11. The cartridge of claim 10, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary
		construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second

Claim	Claim Language	Infringement Evidence
		sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer.

Claim	Claim Language	Infringement Evidence
1(c)	isolating the samples in the microfluidic cartridge;	The accused workflow includes isolating the samples in the microfluidic cartridge. **NeuMoDx Molecular N96 and N288 Overview and Animation*, NEUMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) **A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." *Id.* at 3:58-4:08* **A **A **A **A **A **A **A **A **A *

Claim	Claim Language	Infringement Evidence
		Second valve PCR First valve
		US9339812 (Exhibit 26)
		• Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads.
		Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to

Claim	Claim Language	Infringement Evidence
		facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		 Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined

Claim	Claim Language	Infringement Evidence
		between the first surface and the second surface is configured to transition to a
		closed state upon occlusion by an occluding object applied to the elastomeric
		layer during operation; wherein the normally closed position is defined by a
		region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first
		truncated pathway, including the normally open position and the first branch and
		excluding the second branch, is defined upon manipulation of the fluidic
		pathway at the first and second occlusion positions, and wherein a second
		truncated pathway, including the normally closed position and the second
		branch and excluding the first branch, to the detection chamber is defined
		upon manipulation of the fluidic pathway at the first and second occlusion
		positions.
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic
		reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115,
		through the eighth truncated pathway, and to the detection chamber 117, by
		using a fluid handling system to push the seventh occlusion position [148]
		(normally closed) open. The detection chamber 117 is completely filled with
		the mixed reagent-nucleic acid sample, after which the fluidic pathway 165
		is occluded at the third, sixth, seventh and eighth occlusion positions 144,
		147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured

Claim	Claim Language	Infringement Evidence
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • US Patent No. 9,738,887 at Figs. 1J and 1K: 165 119 115 144 145 142 176 147146177199 149 164 117 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")

Claim	Claim Language	Infringement Evidence
cartrid	placing the microfluidic cartridge in thermal communication with an array of independent heaters; and	The accused workflow includes placing the microfluidic cartridge in thermal communication with an array of independent heaters. NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		Powerful. Simple. Diagnostics. NeuMoDX Institute T34 A77,011 1sx 734 A77,015 0 1250 Elsenhower Place Ann Arbor, MI 48108 www.neumodx.com
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."

Claim	Claim Language	Infringement Evidence
Claim		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDxTM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment

Claim	Claim Language	Infringement Evidence
		configured to cross the magnet, and is configured to transfer a waste fluid to the
		waste chamber, and to be occluded upon deformation of the elastomeric layer.
		• Claim 16. A system for processing and detecting nucleic acids, comprising: a
		capture plate comprising at least one well containing a set of magnetic beads
		configured to be combined with a biological sample to produce a magnetic
		bead-sample; an assay strip comprising at least one well containing a molecular
		diagnostic reagent configured to be combined with a nucleic acid volume to
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,
		configured to process the magnetic bead-sample from the capture plate, separate
		the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic
		module comprises a cartridge platform including a set of parallel slots, a cam
		card, and a set of pins contacting the cam card, wherein movement of the cam
		card displaces a subset of the set of pins through a subset of the set of parallel
		slots to define at least one pathway configured to receive the magnetic bead- sample; and a liquid handling system configured to transfer the magnetic bead-
		sample, and a figure flate to the molecular diagnostic module, transfer the
		nucleic acid volume from the molecular diagnostic module to the assay strip,
		and transfer the nucleic acid-reagent mixture from the assay strip to the
		molecular diagnostic module.
		• Claim 18. The system of claim 16, wherein the molecular diagnostic module
		comprises an optical subsystem comprising at least one unit, wherein each unit
		includes an excitation filter, an emission filter, a photodetector aligned with the
		emission filter, and a dichroic mirror configured to reflect light from the
		excitation filter toward the nucleic acid-reagent mixture, and to transmit light
		from the nucleic acid reagent mixture, through the emission filter, and toward
		the photodetector wherein each unit of the optical subsystem further comprises
		an LED aligned with the excitation filter, wherein the LED provides multiple
		wavelengths of light corresponding to at least one of the excitation filter, the
		dichroic mirror, and the emission filter.
		• Claim 19. The system of claim 16, wherein the molecular diagnostic module
		further comprises a heater and a detection chamber heater, wherein the heater

Claim	Claim Language	Infringement Evidence
		is configured to heat the magnetic bead-sample, and wherein the detection
		chamber heater is configured to individually heat the nucleic acid-reagent
		mixture, and wherein at least one of the heater and the detection chamber heater
		is a Peltier heater.
		 U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
		independent control of 12 independent channels, corresponding to 12
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection

Claim	Claim Language	Infringement Evidence
		 chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple heaters are provided, each heater is preferably independent to allow independent control of heating time and temperature for each sample.")
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers. U.S. Patent No. 9,499,896 at 12:15-20 ("Furthermore, the controller 165 can be configured to control individual heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be configured to provide common heating parameters for all heater-sensor dies 111 in the set of heater-sensor dies 110.")
1(e)	amplifying polynucleotides in the plurality of samples by	The accused workflow includes amplifying polynucleotides in the plurality of samples by independent application of successive temperature cycles to each sample.

Claim	Claim Language	Infringement Evidence
Claim	independent application of successive temperature cycles to each sample.	NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) • "NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers
		 market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) ■ Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		"The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 Infringement Evidence up to eight hours." Id. at 0:00-0:18 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the

Language Infr	ingement Evidence
	second detection chamber, and wherein at least one of the first fluidic
	pathway and the second fluidic pathway is coupled to the fluid port.
US9	
	US9

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	Infringement Evidence configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber he
		and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of

Claim	Claim Language	Infringement Evidence	
		individual sample containers with inde provided at each of the set of heater-se	ependent control of heating parameters ensor dies.")
15(a)	A method of carrying out amplification independently on a plurality of polynucleotide-containing samples, the method comprising:	To the extent the preamble is limiting, the acc amplification independently on a plurality of present the preamble is limiting, the acc amplification independently on a plurality of present the preamble is limiting, the acc amplification independently on a plurality of present the preamble is limiting, the acc amplification independently on a plurality of present the preamble is limiting, the acc amplification independently on a plurality of present the preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, the acc amplification independently on a plurality of preamble is limiting, and a plurality of preamble is limiting. The preamble is limiting, and a plurality of preamble is limiting, and a plurality of preamble is	polynucleotide-containing samples.
		#500200 NeuMoDx 96 Molecular System	#500100 NeuMoDx [™] 288 Molecular System

Claim	Claim Language	Infringement Evidence
		 NeuMoDx™ Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDx™ Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays." NeuMoDx™ Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "NeuMoDx™ Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "NeuMoDx™ Molecular Systems REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDx™ Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) ● Describing "microfluidic cartridges capable of performing independent

Claim	Claim Language	Infringement Evidence
		sample processing and real-time PCR."
		Powerful. Simple. Diagnostics. NeuModx Differ 734 477.0111 13x 734 477.0130 1250 Etsenhower Place Ann Arbor, MI 48108 www.neumodx.com CARTRIDGE [Earl Heiserg goodcodal 2018-12-31]
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDxTM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random

Claim	Claim Language	Infringement Evidence
		 access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." <i>Id.</i> at 1:49-1:59 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the

Claim	Claim Language	Infringement Evidence
		second detection chamber, and wherein at least one of the first fluidic
		pathway and the second fluidic pathway is coupled to the fluid port.
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads
		configured to be combined with a biological sample to produce a magnetic
		bead-sample; an assay strip comprising at least one well containing a molecular
		diagnostic reagent configured to be combined with a nucleic acid volume to
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module.
		 Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of

Claim	Claim Language	Infringement Evidence
		nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.")
15(b)	introducing the plurality of samples in to a microfluidic cartridge,	The accused workflow includes introducing the plurality of samples in to a microfluidic cartridge.

NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The liquid handling robot aspirates the PCR-ready solution and transfers it back to the cartridge where it dispenses into the same P-port from which the sample was aspirated." Id. at 3:47-3:57

Claim	Claim Language	Infringement Evidence
		Power Foll Simple
		 Claim 10. A cartridge, configured to facilitate processing and detecting of nucleic acids, comprising: a first layer and an intermediate substrate, coupled to the first layer, wherein the intermediate substrate defines a waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids spanning a majority of a width of the intermediate substrate and external to the waste chamber, wherein the set of voids is accessible from a direction perpendicular to a broad surface of the first layer; a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway, formed by at least a portion of the first layer, wherein the first fluidic pathway and the second fluidic pathway are each superior to the intermediate substrate, are each at least partially separated from the corrugated surface of the

Claim	Claim Language	Infringement Evidence
		intermediate substrate by an elastomeric layer and are each configured to transfer waste to the waste chamber through a set of openings of the intermediate substrate.
		• Claim 11. The cartridge of claim 10, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The certridge of claim 8, wherein the first layer is a unitary.
		• Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second

Claim	Claim Language	Infringement Evidence
		sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer.

Claim	Claim Language	Infringement Evidence
15(c)	wherein the cartridge has a plurality of reaction chambers configured to permit thermal cycling of the plurality of samples independently of one another;	In the accused workflow, the cartridge has a plurality of reaction chambers configured to permit thermal cycling of the plurality of samples independently of one another. *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) * "NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." * "The NeuMoDx*** Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx*** 288 and the NeuMoDx*** 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry*** reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) ■ Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		"The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of

Claim	Claim Language	Infringement Evidence
		 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the

Claim	Claim Language	Infringement Evidence
		second detection chamber, and wherein at least one of the first fluidic
		pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecul

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module.
		 Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater
		 U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of

Claim	Claim Language	Infringement Evidence
		nucleic acids within the set of biological samples to magnetic beads; a molecular
		diagnostic module configured to receive nucleic acids bound to magnetic beads,
		isolate nucleic acids, and analyze nucleic acids, comprising a cartridge
		receiving module, a heating/cooling subsystem and a magnet configured to
		facilitate isolation of nucleic acids, a valve actuation subsystem configured to
		control fluid flow through a microfluidic cartridge for processing nucleic acids,
		and an optical subsystem for analysis of nucleic acids; a fluid handling system
		configured to deliver samples and reagents to components of the system to
		facilitate molecular diagnostic protocols; and an assay strip configured to
		combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.")
		• U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions
		to move a nozzle 149 coupled to the liquid handling system 250, in order to
		couple the liquid handling system 250 to a fluid port 222 of the microfluidic
		cartridge 210 The vertical displacement also allows the microfluidic cartridge
		210 to receive a magnet 160, which provides a magnetic field to facilitate a
		subset of a molecular diagnostic protocol, and detection chamber heaters 157,
		which allows amplification of nucleic acids for molecular diagnostic
		protocols requiring heating and cooling of the nucleic acid (e.g. PCR).")
		• U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
		independent control of 12 independent channels, corresponding to 12
		 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple
		heaters are provided, each heater is preferably independent to allow
		independent control of heating time and temperature for each sample.")
		US9539576 (Exhibit 29)
		Claim 1. A system for thermocycling biological samples within detection
		chambers comprising: a set of heater-sensor dies , each heater-sensor die in the
		set of heater-sensor dies comprising a heating surface configured to interface

Claim	Claim Language	Infringement Evidence
		with a detection chamber and an inferior surface, inferior to the heating surface,
		including a connection point, wherein each of the set of heater-sensor dies
		includes a heating element and a sensing element; an electronics substrate,
		comprising a first substrate surface coupled to the inferior surface of each of the
		set of heater-sensor dies, a set of apertures longitudinally spaced across the
		electronics substrate and providing access through the electronics substrate to
		the set of heater-sensor dies, and a second substrate surface inferior to the first
		substrate surface, wherein the electronics substrate comprises a set of substrate
		connection points at least at one of the first substrate surface, an aperture surface
		defined within at least one of the set of apertures, and the second substrate
		surface, and wherein the electronics substrate couples the heating element and
		the sensing element of each of the set of heater-sensor dies to a controller; a set
		of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies,
		through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of
		heater-sensor dies, wherein at least one of the set of heat-sink supports includes
		an integrated cooling element, and wherein a base surface of each of the set of
		heat-sink supports is coupled to an elastic element that transmits a biasing force
		through the electronics substrate, thereby maintaining thermal communication
		between the set of heater-sensor dies and a set of detection chambers upon
		alignment of the set of heater-sensor dies with the set of detection chambers; and
		a set of wire bonds, including a wire bond coupled between the connection point
		of at least one of the set of heater-sensor dies and one of the set of substrate
		connection points.
		• U.S. Patent No. 9,539,576 at 9:8-12 ("Furthermore, the controller 165 can be
		configured to control individual heater-sensor dies 111 in order to provide
		unique heating parameters for individual detection chambers and/or can be
		configured to provide common heating parameters for all heater-sensor
		dies 111 in the set of heater-sensor dies no.")
		• U.S. Patent No. 9,539,576 at 12:59-64 ("Upon completion of Block S240,
		individual heater-sensor dies of the set of heater-sensor dies can be coupled to
		one or multiple electronics substrates in order to provide uniform heating of

Claim	Claim Language	Infringement Evidence
		individual sample containers with independent control of heating parameters provided at each of the set of heater-sensor dies.")
15(d)	moving the plurality of samples independently of one another into the respective plurality of reaction chambers;	The accused workflow includes moving the plurality of samples independently of one another into the respective plurality of reaction chambers. **NeuMoDx Molecular N96 and N288 Overview and Animation**, NEUMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		US9738887 (Exhibit 31)
Claim	Claim Language	
		between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a
		region of the fluidic pathway, at the first layer that extends toward and abuts the
		elastomeric layer in preventing fluid bypass at the region; wherein a first
		truncated pathway, including the normally open position and the first branch and
		excluding the second branch, is defined upon manipulation of the fluidic pathway at the first and second occlusion positions, and wherein a second
		truncated pathway, including the normally closed position and the second
		truncated pathway, including the normany closed position and the second

Claim Language	Infringement Evidence
	branch and excluding the first branch, to the detection chamber is defined upon
	manipulation of the fluidic pathway at the first and second occlusion positions.
	• US Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the
	microfluidic cartridge 100 functions to provide a fluid network into which
	volumes of sample fluids, reagents, buffers and/or gases used in a molecular
	diagnostics protocol may be delivered, out of which waste fluids may be
	eliminated, and by which processed nucleic acid samples may be delivered to
	a detection chamber for analysis, which may include amplification and/or
	detection.")
	• US Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection
	chamber 163 functions to deliver a processed sample fluid to the detection
	chamber 117 with a reduced quantity of gas bubbles, and the segment
	running away from the detect ion chamber 164 functions to deliver a fluid away
	from the detect ion chamber 117.")
	• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as
	shown in FIG. 11, the occlusions at the first and third occlusion positions 142,
	144 may be reversed, defining a seventh truncated pathway, and the entire
	released nucleic acid sample (e.g20 microliters) may be aspirated out of the
	microfluidic cartridge through the reagent port 115. This released nucleic acid
	sample is then used to reconstitute a molecular diagnostic reagent stored off of
	the microfluidic cartridge 100. During the reconstitution, the occlusion at the
	sixth occlusion position 147 may be reversed, and the fluidic pathway 165
	may be occluded at the first occlusion position 142 to form an eighth
	truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular
	diagnostic reagent with the released nucleic acid sample is complete and well
	mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the
	detection chamber 117, by using a fluid handling system to push the
	seventh occlusion position [148] (normally closed) open. The detection
	chamber 117 is completely filled with the mixed reagent-nucleic acid
	sample, after which the fluidic pathway 165 is occluded at the third, sixth,
	seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth

Claim	Claim Language	Infringement Evidence
Ciaiiii	Ciaim Language	truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • US Patent No. 9,738,887 at Figs. 1J and 1K: 165 119 115 144 145 142 176 147146177199 149 164 117 FIG. 1J 165 119 115 144 145 142 176 147146177199 149 164 117
		174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
15(e)	isolating the samples within the plurality of reaction chambers;	The accused workflow includes isolating the samples within the plurality of reaction chambers.
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the

Claim	Claim Language	Infringement Evidence
		cartridge into three thin PCR chambers and the amplification process
		begins." <i>Id.</i> at 3:58-4:08
		US9339812 (Exhibit 26) (Exhibit 26)
		• Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions

Claim	Claim Language	Infringement Evidence
		defined by an elastomeric layer of the cartridge, the method comprising:
		aligning the cartridge at a cartridge platform of a molecular diagnostic module,
		the cartridge platform having a set of slots, and the molecular diagnostic module
		having a cam module contacting a set of pins aligned with the set of slots and an
		actuator that provides relative displacement between the cartridge platform and
		the set of pins; moving the cam module by transitioning the actuator into an
		extended configuration, thereby displacing a first subset of the set of pins
		through the set of slots of the cartridge platform, and thereby manipulating the
		elastomeric layer to occlude the fluidic pathway at a first subset of the set of
		occlusion positions, thus defining a first truncated fluidic pathway passing
		through a magnetic field for controlling a flow through the fluidic pathway;
		capturing a sample of nucleic acids bound to magnetic beads within the first
		truncated fluidic pathway, by the magnetic field; and moving the cam module,
		thereby displacing a second subset of the set of pins through the set of slots of
		the cartridge platform, and thereby manipulating the elastomeric layer to
		occlude the fluidic pathway, through the elastomeric layer, at a second subset of
		the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads.
		• Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to
		facilitate production of a volume of nucleic acids delivering the volume of
		nucleic acids through a reagent port coupled to the fluidic pathway; receiving
		the volume of nucleic acids combined with a volume of molecular diagnostic
		reagents to produce a nucleic acid-reagent sample; occlu ding the fluidic
		pathway at a third subset of the set of occlu sion positions, thus defining a third
		truncated fluidic pathway coupled to a detection chamber; and delivering
		the nucleic acid-reagent sample, through the third truncated fluidic
		pathway, to the detection chamber.
		r
		US9738887 (Exhibit 31)
		Claim 12. A cartridge, configured to facilitate processing and detecting of a
		nucleic acid, comprising: a first layer comprising a sample port and a detection

Claim	Claim Language	Infringement Evidence
		chamber; an elastomeric layer; an intermediate substrate including a set of valve
		guides, wherein the intermediate substrate defines a chamber with a corrugated
		surface directly opposing the first layer, wherein the corrugated surface defines
		a set of voids external to the chamber and accessible from a direction
		perpendicular to a broad surface of the first layer, and wherein at least a portion
		of the corrugated surface defines the set of valve guides with a set of openings
		that provide access to the elastomeric layer; and a fluidic pathway, formed by at
		least a portion of the first layer and a portion of the elastomeric layer, wherein
		the fluidic pathway is fluidically coupled to the sample port and the detection
		chamber and comprises a first and second branch extending downstream from a
		junction, and is configured to be occluded at a set of occlusion positions upon
		manipulation of the elastomeric layer through the set of valve guides, wherein a
		first occlusion position of the set of occlusion positions is positioned along the
		fluidic pathway downstream of the junction and upstream of the first branch and
		a second occlusion position of the set of occlusion positions is positioned along
		the fluidic pathway downstream of the junction and upstream of the second
		branch, wherein the set of occlusion positions comprises a normally open
		position and a normally closed position, wherein the normally open position
		comprises a first surface of the fluidic pathway at the first layer and a second
		surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a
		closed state upon occlusion by an occluding object applied to the elastomeric
		layer during operation; wherein the normally closed position is defined by a
		region of the fluidic pathway, at the first layer that extends toward and abuts the
		elastomeric layer in preventing fluid bypass at the region; wherein a first
		truncated pathway, including the normally open position and the first branch and
		excluding the second branch, is defined upon manipulation of the fluidic
		pathway at the first and second occlusion positions, and wherein a second
		truncated pathway, including the normally closed position and the second
		branch and excluding the first branch, to the detection chamber is defined
		upon manipulation of the fluidic pathway at the first and second occlusion
		positions.

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.")at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
15(f)	placing the microfluidic cartridge in thermal communication with an array of independent heaters; and	The accused workflow includes placing the microfluidic cartridge in thermal communication with an array of independent heaters. NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18)

Claim	Claim Language	Infringement Evidence
		Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		Powerful. Simple. Diagnostics. NeuMore Total ATT (0) 1 1250 Elenhower Place Ann Arbor, MI 48108 www.neumodx.com CARTRIDGE Last Teasts And Teasts
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to p

Claim	Claim Language	Infringement Evidence
Ciaim	Ciaim Language	acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads,

Claim	Claim Language	Infringement Evidence
		isolate nucleic acids, and analyze nucleic acids, comprising a cartridge
		receiving module, a heating/cooling subsystem and a magnet configured to
		facilitate isolation of nucleic acids, a valve actuation subsystem configured to
		control fluid flow through a microfluidic cartridge for processing nucleic acids,
		and an optical subsystem for analysis of nucleic acids; a fluid handling system
		configured to deliver samples and reagents to components of the system to
		facilitate molecular diagnostic protocols; and an assay strip configured to
		combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.")
		• U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions
		to move a nozzle 149 coupled to the liquid handling system 250, in order to
		couple the liquid handling system 250 to a fluid port 222 of the microfluidic
		cartridge 210 The vertical displacement also allows the microfluidic cartridge
		210 to receive a magnet 160, which provides a magnetic field to facilitate a
		subset of a molecular diagnostic protocol, and detection chamber heaters 157,
		which allows amplification of nucleic acids for molecular diagnostic
		protocols requiring heating and cooling of the nucleic acid (e.g. PCR).")
		• U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
		independent control of 12 independent channels, corresponding to 12
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.")
		 U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple
		heaters are provided, each heater is preferably independent to allow
		independent control of heating time and temperature for each sample.")
		independent control of heating time and temperature for each sample.
		US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection
		chambers comprising: a set of heater-sensor dies, each heater-sensor die in the
		set of heater-sensor dies comprising: an assembly including a first insulating
		layer, a heating region comprising an adhesion material layer coupled to the first

Claim	Claim Language	Infringement Evidence
		insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers. • U.S. Patent No. 9,499,896 at 12:15-20 ("Furthermore, the controller 165 can be configured to control individual heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be configured to provide common heating parameters for all heater-sensor dies 111 in the set of heater-sensor dies 110.")
15(g)	amplifying polynucleotides contained within the plurality of samples, by application of successive temperature cycles independently to the reaction chambers.	The accused workflow includes amplifying polynucleotides contained within the plurality of samples, by application of successive temperature cycles independently to the reaction chambers. *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) • "NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients."

Claim	Claim Language	Infringement Evidence
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge ."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) ■ Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		Powerful. Simple. Diagnostics.* NeuModo Prince 754 477/0111 Tax 734 477(0)30 1250 Etenhower Place Ann Arbor, MI 48108 www.neumodx.com CARTRIDGE CARTRIDGE Powerful. Simple. Diagnostics.* NeuModo Prince 1000 (No. 10
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a

Claim	Claim Language	Infringement Evidence
		combination of heat and proprietary extraction reagents to perform cell lysis,
		nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed
		clinical specimens prior to presenting the extracted nucleic acid for detection by
		Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		• "The NeuMoDx Molecular N96 and N288 are fully automated sample to
		result molecular diagnostics platforms. They provide continuous random
		access processing with initial results in one hour and operator walk away time of
		 up to eight hours." <i>Id.</i> at 0:00-0:18 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge
		contains 12 independent lanes which allows for processing of up to 12
		samples simultaneously." Id. at 1:49-1:59
		그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
		n n n n n man
		Ha
		40.00
		• "A series of microfluidic valves guides the PCR-ready solution through the

Claim	Claim Language	Infringement Evidence
		cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an
		elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. • Claim 10. The cartridge of claim 8, wherein the first layer is a unitary

Claim	Claim Language	Infringement Evidence
		construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24) • Claim 1: A system for processing and detecting nucleic acids, comprising: a
		capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample.
		• Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste
		chamber, an elastomeric layer, and a set of fluidic pathways , wherein each
		fluidic pathway of the set of fluidic pathways is coupled to a sample port- reagent port pair, the fluid port, and a detection chamber, comprises a segment
		configured to cross the magnet, and is configured to transfer a waste fluid to the
		waste chamber, and to be occluded upon deformation of the elastomeric layer.

• Claim 16. A system for processing and detecting nucleic acids, concapture plate comprising at least one well containing a set of magnetic configured to be combined with a biological sample to produce a respect to be combined with a nucleic acid produce a nucleic acid-reagent mixture; a molecular diagnostic magnetic to process the magnetic bead-sample from the capture the nucleic acid volume from the magnetic bead-sample, and analy acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel and a set of pins contacting the same and wherein movements.	Infringemen	
card, and a set of pins contacting the cam card, wherein movement card displaces a subset of the set of pins through a subset of the set slots to define at least one pathway configured to receive the magr sample; and a liquid handling system configured to transfer the magnample; and a liquid handling system configured to transfer the magnample; and transfer the nucleic acid-reagent mixture from the assay strip to molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnost comprises an optical subsystem comprising at least one unit, where includes an excitation filter, an emission filter, a photodetector alignemission filter, and a dichroic mirror configured to reflect light from the nucleic acid reagent mixture, and to transfer the nucleic acid reagent mixture, through the emission filter, the photodetector wherein each unit of the optical subsystem furth an LED aligned with the excitation filter, wherein the LED provid wavelengths of light corresponding to at least one of the excitation dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnost further comprises a heater and a detection chamber heater, whe is configured to heat the magnetic bead-sample, and wherein the	Clair capture confirms beadding produce of the nuclear and the mole of the card slots sampure nuclear and the mole of the card slots sampure nuclear and the mole of the card slots sampure nuclear and the mole of the card slots sampure nuclear and the mole of the card slots sampure nuclear and the mole of the card slots of the card sl	at least one well containing a set of magnetic beads and with a biological sample to produce a magnetic rip comprising at least one well containing a molecular ured to be combined with a nucleic acid volume to agent mixture; a molecular diagnostic module, magnetic bead-sample from the capture plate, separate from the magnetic bead-sample, and analyze the nucleic in the assay strip, wherein the molecular diagnostic ridge platform including a set of parallel slots, a cam near that the cam card, wherein movement of the cam are the set of pins through a subset of the set of parallel expathway configured to receive the magnetic bead-blate to the molecular diagnostic module, transfer the at the molecular diagnostic module to the assay strip, and the molecular diagnostic module to the assay strip, and the colaim 16, wherein the molecular diagnostic module by stem comprising at least one unit, wherein each unit er, an emission filter, a photodetector aligned with the aroic mirror configured to reflect light from the mucleic acid-reagent mixture, and to transmit light gent mixture, through the emission filter, and toward in each unit of the optical subsystem further comprises excitation filter, wherein the LED provides multiple esponding to at least one of the excitation filter, the emission filter. Claim 16, wherein the molecular diagnostic module the rand a detection chamber heater, wherein the heater and a detection chamber heater, wherein the heater.

Claim	Claim Language	Infringement Evidence
		mixture, and wherein at least one of the heater and the detection chamber heater
		is a Peltier heater.
		 U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
		independent control of 12 independent channels, corresponding to 12
		different pathways for sample processing.")
		 U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple

Claim	Claim Language	Infringement Evidence
		heaters are provided, each heater is preferably independent to allow
		independent control of heating time and temperature for each sample.")
		 independent control of heating time and temperature for each sample.") US9539576 (Exhibit 29) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate
		surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies with the set of detection chambers; and a set of wire bonds, including a wire bond coupled between the connection point of at least one of the set of heater-sensor dies and one of the set of substrate connection points.
		• U.S. Patent No. 9,539,576 at 9:8-12 ("Furthermore, the controller 165 can be

Claim	Claim Language	Infringement Evidence
		 configured to control individual heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be configured to provide common heating parameters for all heater-sensor dies 111 in the set of heater-sensor dies no.") U.S. Patent No. 9,539,576 at 12:59-64 ("Upon completion of Block S240, individual heater-sensor dies of the set of heater-sensor dies can be coupled to one or multiple electronics substrates in order to provide uniform heating of individual sample containers with independent control of heating parameters provided at each of the set of heater-sensor dies.")

EXHIBIT 39

U.S. Patent No. 8,709,787 Infringement Chart

Claim	Claim Language	Infringement Evidence
10(a)	A microfluidic substrate, comprising:	To the extent the preamble is limiting, the accused product is a microfluidic substrate.
		 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		Powerful. Simple. Diagnostics.
		NeuMoDx TM Molecular Systems, NEuMoDx, http://www.neumodx.com/ , last visited May 31, 2019 (Exhibit 10)
		 "NeuMoDx™ 288 and NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample

Claim	Claim Language	Infringement Evidence
		microfluidic cartridge."
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge." "The NeuMoDxTM 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDxTM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." "The NeuMoDxTM 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDxTM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/product/neumodx-288/, last visited June 3, 2019 (Exhibit 13) "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification."
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/product/neumodx-96/ , last visited June 3, 2019 (Exhibit 14)

Claim	Claim Language	Infringement Evidence
		 "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification."
		• "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		0600101_Rev-D-IFU-NeuMoDx-RELEASE-Solution-US-ONLY-FINAL-25Oct2018.pdf (Exhibit 20) • "NeuMoDx™ RELEASE Solution INSTRUCTIONS FOR USE The NeuMoDx Systems mix the released nucleic acid with assay specific primers and probe(s) and the dried Master Mix contained in a NeuMoDx test strip. The System then dispenses the prepared RT-PCR-ready mixture into the NeuMoDx Cartridge where Real-Time PCR occurs."
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." <i>Id.</i> at 1:49-1:59
		"A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		"Patents", http://www.neumodx.com/patents/ , demonstrating that NeuMoDx marks its products with US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; 9,452,430; 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; 10,010,888; 9,382,532; 9,540,636; 9,499,896; 9,539,576; 9,637,775; and 10,093,963. (Exhibit 15)

Claim	Claim Language	Infringement Evi	idence
		PATENTS	S
		Product	Patents
		CARTRIDGE	US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; and 9,452,430. AU Patent No. 2013221701, JP Patent No. 6061313.
		P02 (overall system and method)	US Patent Nos. 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; and 10,010,888. CN Patent No. ZL 2013 8 00092863.
		EXTRACTION PLATE	US Patent Nos. 9,382,532; and 9,540,636.
		XPCR MODULE	US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963.
		fluid port, substrate of between the substrate of layer, when chamber at first layer, of opening wherein the port, the fluid of the second which a proof the second substrate of between the second which a proof the second substrate of the second s	id, comprising: a first layer, defining a sample port, a reagent port, a and a detection chamber ; an elastomeric layer; an intermediate coupled to the first layer, such that the elastomeric layer is situated be intermediate substrate and the first layer, wherein the intermediate lefines a chamber with a corrugated surface directly opposing the firm the corrugated surface defines a set of voids external to the and accessible from a direction perpendicular to a broad surface of the and wherein at least a portion of the corrugated surface includes a set of the sample port, the reagent port, and the detection chamber . The cartridge of claim 1, wherein the detection chamber comprise and a third detection chamber segment wherein each of the first, and the third detection chamber segment is a broad chamber of rojection onto a plane is substantially rectangular, wherein a first end of the detection chamber segment by a first narrow fluidic channel, and wherein a second end

Claim	Claim Language	Infringement Evidence
		chamber segment by a second narrow fluidic channel.
		• U.S. Patent No. 9,738,887 at FIG. 1A:
		165 (160 (160 (160 (160 (160 (160 (160 (160
		118
		113 FIG. 1A
		• U.S. Patent No. 9,738,887 at Abstract ("A microfluidic cartridge, configured to facilitate processing and detection of nucleic acids, comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample port-reagent port pairs, a shared fluid port, a vent region, a heating region, and a set of detection chambers; an intermediate substrate, coupled to the top layer
		comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate; and a set of fluidic pathways, each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each
		fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a Detection chamber , comprises a turnabout portion
		passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste

Claim	Claim Language	Infringement Evidence
		chamber, and to pass through the vent region.")
		• US Patent No. 9,738,887 at 2:36-3:5. ("As shown in FIGS. 1A-IC, an
		embodiment of a microfluidic cartridge 100 for processing and detecting
		nucleic acids comprises: a top layer 110 comprising a set of sample port-
		reagent port pairs 112 and a set of detection chambers 116; an intermediate
		substrate 120, coupled to the top layer 110 and partially separated from the top
		layer by a film layer 125, configured to form a waste chamber 130; an
		elastomeric layer 140 partially situated on the intermediate substrate 120; a
		magnet housing region 150 accessible by a magnet 152 providing a magnetic
		field 156; and a set of fluidic pathways 160, each formed by at least a portion of
		the top layer 110, a portion of the film layer 125, and a portion of the
		elastomeric layer 140 In a specific application, the microfluidic cartridge
		100 can be used to facilitate a PCR procedure for analysis of a sample
		containing nucleic acids.")
		• US Patent No. 9,738,887 at 13:7-18. ("The top layer 110 of an embodiment of the microfluidic cartridge 100 functions to accommodate elements involved
		in performing a molecular diagnostic procedure (e.g. PCR), such that a
		sample containing nucleic acids, passing through the cartridge, can be
		manipulated by the elements involved in performing the molecular diagnostic
		procedure. The top layer 110 is preferably composed of a structurally rigid/stiff
		material with low autofluorescence, such that the top layer 110 does not
		interfere with sample detection by fluorescence or chemiluminescence
		techniques, and an appropriate glass transition temperature and chemical
		compatibility for PCR or other amplification techniques.")
		• US Patent No. 9,738,887 at 13:35-42. ("The set of fluidic pathways 160 of the
		microfluidic cartridge 100 functions to provide a fluid network into which
		volumes of sample fluids, reagents, buffers and/or gases used in a molecular
		diagnostics protocol may be delivered, out of which waste fluids may be
		eliminated, and by which processed nucleic acid samples may be delivered to
		a detection chamber for analysis, which may include amplification and/or
		detection.")
		• US Patent No. 9,738,887 at 15:29-39 ("The segments may be arranged in at

Claim	Claim Language	Infringement Evidence
		 least one of several configurations to facilitate isolation, processing, and amplification of a nucleic acid sample"). US Patent No. 9,738,887 at 23:20-24 ("The top layer 110 of the specific embodiment of the microfluidic cartridge 100 functions preferably as described in Section 1.1, and is composed of polypropylene with low autofluorescence and a glass transition temperature suitable for PCR.")
10(b)	a plurality of sample lanes,	The accused microfluidic substrate comprises a plurality of sample lanes, NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) • Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) • "NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." • "The NeuMoDx TM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge . This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. **NeuMoDx*** Molecular Systems**, NeuMoDx**, http://www.neumodx.com/ , last visited
		 May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."

Claim	Claim Language	Infringement Evidence
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		 NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59
		• "A series of microfluidic valves guides the PCR-ready solution through the

Claim	Claim Language	Infringement Evidence
		cartridge into three thin PCR chambers and the amplification process
		begins ." <i>Id</i> . at 3:58-4:08
		US9403165 (Exhibit 27)
		 Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the second detection chamber, wherein the second fluidic pathway is coupled to the second fluidic pathway is coupled to the second fluidic
		pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		• Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic
		bead-sample; and a molecular diagnostic module, configured to process at

Claim Language	Infringement Evidence
	least one magnetic bead-sample obtained from the capture plate, and separate
	nucleic acids from magnetic beads, wherein the molecular diagnostic module
	comprises: a cartridge platform comprising a magnet receiving slot, an actuator
	configured to displace the cartridge platform, a magnet, wherein an extended
	configuration of the actuator allows the magnet to pass through the magnet
	receiving slot to facilitate separation of the at least one nucleic acid volume, and
	a cam card contacting a set of pins, wherein the extended configuration of the
	actuator combined with movement of the cam card displaces a subset of the set
	of pins through a set of slots of the cartridge platform, to define at least one
	distinct pathway configured to receive at least one magnetic bead-sample.
	• Claim 13. The system of claim 1, wherein the molecular diagnostic module is
	configured receive and align a microfluidic cartridge comprising a set of sample
	port-reagent port pairs, a fluid port, a set of detection chambers, a waste
	chamber, an elastomeric layer, and a set of fluidic pathways, wherein each
	fluidic pathway of the set of fluidic pathways is coupled to a sample port-
	reagent port pair, the fluid port, and a detection chamber, comprises a segment
	configured to cross the magnet, and is configured to transfer a waste fluid to the
	waste chamber, and to be occluded upon deformation of the elastomeric layer.
	• Claim 16. A system for processing and detecting nucleic acids, comprising: a
	capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic
	bead-sample; an assay strip comprising at least one well containing a molecular
	diagnostic reagent configured to be combined with a nucleic acid volume to
	produce a nucleic acid-reagent mixture; a molecular diagnostic module,
	configured to process the magnetic bead-sample from the capture plate, separate
	the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic
	acid-reagent mixture from the assay strip, wherein the molecular diagnostic
	module comprises a cartridge platform including a set of parallel slots, a cam
	card, and a set of pins contacting the cam card, wherein movement of the cam
	card displaces a subset of the set of pins through a subset of the set of parallel
	slots to define at least one pathway configured to receive the magnetic bead-
	sample; and a liquid handling system configured to transfer the magnetic bead-
	Claim Language

Claim	Claim Language	Infringement Evidence
		 sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		• U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to

Claim	Claim Language	Infringement Evidence
		facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") • U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid-reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
10(c)	wherein each of the plurality of sample lanes comprises a microfluidic network having, in	In the accused microfluidic substrate, each of the plurality of sample lanes comprises a microfluidic network having, in fluid communication with one another, an inlet.

Claim	Claim Language	Infringement Evidence
Ciaiii	fluid communication with one another: an inlet;	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx "WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59
		• "The liquid handling robot aspirates the PCR-ready solution and transfers it back to the cartridge where it dispenses into the same P-port from which the sample was aspirated." <i>Id.</i> at 3:47-3:57

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		A Powerty Strong
		U.S. Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to
		a detection chamber for analysis, which may include amplification and/or detection.")
		• U.S. Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection chamber 163 functions to deliver a processed sample fluid to the detection chamber 117 with a reduced quantity of gas bubbles, and the segment running away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 117.")
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142,

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • U.S. Patent No. 9,738,887 at Figs. 1J and 1K:
		0.5.1 atom 110. 7,750,007 at 11gs. 13 and 11c.

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
10(d)	a first valve and a second valve;	In the accused microfluidic substrate, each of the plurality of sample lanes comprises a microfluidic network having, in fluid communication with one another, a first valve and a second valve. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." *Id.* at 1:49-1:59*

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08 (see below, with elements of the accused product marked for reference)

Claim	Claim Language	Infringement Evidence
		A B B B B B B B B B B B B B B B B B B B
		Second valve PCR First valve
		US9339812 (Exhibit 26)
		• Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module,

Claim	Claim Language	Infringement Evidence
		the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway passing through a magnetic field for controlling a flow through the fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. • Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve

guides, wherein the intermediate substrate defines a chamber with a corresurface directly opposing the first layer, wherein the corrugated surface of a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a of the corrugated surface defines the set of valve guides with a set of ope that provide access to the elastomeric layer; and a fluidic pathway, forme least a portion of the first layer and a portion of the elastomeric layer, where the fluidic pathway is fluidically coupled to the sample port and the detect chamber and comprises a first and second branch extending downstream junction, and is configured to be occluded at a set of occlusion positions manipulation of the elastomeric layer through the set of valve guides, where the second occlusion position of the set of occlusion positions is positioned alough fluidic pathway downstream of the junction and upstream of the first branch a second occlusion position of the set of occlusion positions is positioned the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position and a normally closed position, wherein the normally open position and upstream of the second position and a normally closed position, wherein the normally open position and upstream of the second position and upstream
comprises a first surface of the fluidic pathway at the first layer and a sec surface of the fluidic pathway at the elastomeric layer, wherein a void de between the first surface and the second surface is configured to transitic closed state upon occlusion by an occluding object applied to the elastom layer during operation; wherein the normally closed position is defined be region of the fluidic pathway, at the first layer that extends toward and all elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first bra excluding the second branch, is defined upon manipulation of the fluidic pathway at the first and second occlusion positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defin upon manipulation of the fluidic pathway at the first and second occupsitions.

Claim	Claim Language	Infringement Evidence
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.")at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
10(e)	a first channel leading from the inlet, via the first valve, to a reaction chamber; and	The accused microfluidic substrate comprises a first channel leading from the inlet, via the first valve, to a reaction chamber.

Claim	Claim Language	Infringement Evidence
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the
		cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		A Powerty Stroke Stroke Tyles Stroke Remarks
		US9738887 (Exhibit 31)
		• Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated
		surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction

Claim Language	Infringement Evidence
	perpendicular to a broad surface of the first layer, and wherein at least a portion
	of the corrugated surface defines the set of valve guides with a set of openings
	that provide access to the elastomeric layer; and a fluidic pathway, formed by
	at least a portion of the first layer and a portion of the elastomeric layer,
	wherein the fluidic pathway is fluidically coupled to the sample port and
	the detection chamber and comprises a first and second branch extending
	downstream from a junction, and is configured to be occluded at a set of
	occlusion positions upon manipulation of the elastomeric layer through the set
	of valve guides, wherein a first occlusion position of the set of occlusion
	positions is positioned along the fluidic pathway downstream of the junction and
	upstream of the first branch and a second occlusion position of the set of
	occlusion positions is positioned along the fluidic pathway downstream of the
	junction and upstream of the second branch, wherein the set of occlusion
	positions comprises a normally open position and a normally closed position,
	wherein the normally open position comprises a first surface of the fluidic
	pathway at the first layer and a second surface of the fluidic pathway at the
	elastomeric layer, wherein a void defined between the first surface and the
	second surface is configured to transition to a closed state upon occlus ion by an
	occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the
	first layer that extends toward and abuts the elastomeric layer in preventing fluid
	bypass at the region; wherein a first truncated pathway, including the normally
	open position and the first branch and excluding the second branch, is defined
	upon manipulation of the fluidic pathway at the first and second occlu sion
	positions, and wherein a second truncated pathway, including the normally
	closed position and the second branch and excluding the first branch, to the
	detection chamber is defined upon manipulation of the fluidic pathway at the
	first and second occlusion positions.
	 US Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the
	microfluidic cartridge 100 functions to provide a fluid network into which
	volumes of sample fluids, reagents, buffers and/or gases used in a molecular
	diagnostics protocol may be delivered, out of which waste fluids may be

Claim	Claim Language	Infringement Evidence
		eliminated, and by which processed nucleic acid samples may be delivered to
		a detection chamber for analysis, which may include amplification and/or
		detection.")
		• US Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection
		chamber 163 functions to deliver a processed sample fluid to the detection
		chamber 117 with a reduced quantity of gas bubbles, and the segment
		running away from the detect ion chamber 164 functions to deliver a fluid away
		from the detect ion chamber 117.")
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142,
		144 may be reversed, defining a seventh truncated pathway, and the entire
		released nucleic acid sample (e.g20 microliters) may be aspirated out of the
		microfluidic cartridge through the reagent port 115. This released nucleic acid
		sample is then used to reconstitute a molecular diagnostic reagent stored off of
		the microfluidic cartridge 100. During the reconstitution, the occlusion at the
		sixth occlusion position 147 may be reversed, and the fluidic pathway 165
		may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular
		diagnostic reagent with the released nucleic acid sample is complete and well
		mixed, the reconstituted mixture may then be dispensed through the
		reagent port 115, through the eighth truncated pathway, and to the
		detection chamber 117, by using a fluid handling system to push the
		seventh occlusion position [148] (normally closed) open. The detection
		chamber 117 is completely filled with the mixed reagent-nucleic acid
		sample, after which the fluidic pathway 165 is occluded at the third, sixth,
		seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth
		truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic
		pathways 165 may be similarly configured to receive a reagent-nucleic acid
		mixture. An external molecular diagnostic system and/or module may then
		perform additional processes, such as thermocycling and detection, on the
		volume of fluid within the detection chamber 117.")
		• US Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
10(f)	a second channel leading from the reaction chamber, via the second valve, to a vent,	In the accused microfluidic substrate, each of the plurality of sample lanes comprises a microfluidic network having, in fluid communication with one another, a second channel leading from the reaction chamber, via the second valve, to a vent.
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		On information and belief, in the accused microfluidic substrate, each of the plurality of sample lanes comprises a microfluidic network having, in fluid communication with one another, a second channel leading from the reaction chamber, via the second valve, to a vent. • Id. at 2:10

Claim	Claim Language	Infringement Evidence
		Vents
		 Claim 10. A cartridge, configured to facilitate processing and detecting of nucleic acids, comprising: a first layer and an intermediate substrate, coupled to the first layer, wherein the intermediate substrate defines a waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids spanning a majority of a width of the intermediate substrate and external to the waste chamber, wherein the set of voids is accessible from a direction perpendicular to a broad surface of the first layer; a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway, formed by at least a portion of the first layer, wherein the first fluidic pathway and the second fluidic pathway are each superior to the intermediate substrate, are each at least partially separated from the corrugated surface of the intermediate substrate by an elastomeric layer and are each configured to transfer waste to the waste chamber through a set of openings of the intermediate substrate. Claim 11. The cartridge of claim 10, wherein the first layer is a unitary

Claim	Claim Language	Infringement Evidence
		construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port. • Claim 13. The cartridge of claim 11, further comprising a heating region as a recessed region of the first layer that is parallel to the set of parallel voids of the corrugated surface, and a vent region, such that the first fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the first detection chamber, and the second fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the second detection chamber. • Claim 15. The cartridge of claim 13, wherein at least of the first fluidic pathway and the second fluidic pathway is coupled to an end vent configured to provide fine metering of fluid flow.
		 US9738887 (Exhibit 31) Claim 1. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer, defining a sample port, a reagent port, a fluid port, and a detection chamber; an elastomeric layer; an intermediate substrate coupled to the first layer, such that the elastomeric layer is situated between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the reagent

Claim	Claim Language	Infringement Evidence
		port, the fluid port, and the detection chamber.
		• Claim 10. The cartridge of claim 1, wherein a terminal portion of the fluidic
		pathway is coupled to an end vent , configured to provide fine metering of fluid flow.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with
		the mixed reagent-nucleic acid sample, after which the fluidic pathway 165
		is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as
		thermocycling and detection, on the volume of fluid within the detection
		chamber 117.")
		• U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
Crami	Claim Language	165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 FIG. 1J 165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 FIG. 1K OCCLUDED • U.S. Patent No. 8,738,887 at 15:4-6 ("A fluidic pathway 165 may also further
10(g)	wherein the first valve and the second valve are configured to isolate the reaction chamber from the inlet and the vent to prevent movement of fluid into or out of the reaction chamber,	comprise an end vent 199, which functions to prevent any fluid from escaping the microfluidic channel.") In the accused microfluidic substrate, the first valve and the second valve are configured to isolate the reaction chamber from the inlet and the vent to prevent movement of fluid into or out of the reaction chamber. **NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx "M WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		A B B Company Strategy B
		Second valve PCR First valve
		 US9339812 (Exhibit 26) Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module,

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway passing through a magnetic field for controlling a flow through the fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. • Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve

guides, wherein the intermediate substrate defines surface directly opposing the first layer, wherein the a set of voids external to the chamber and accessible perpendicular to a broad surface of the first layer, a of the corrugated surface defines the set of valve guides that provide access to the elastomeric layer; and a surface defines the set of valve guides access to the elastomeric layer; and a surface defines the set of valve guides.	ne corrugated surface defines le from a direction and wherein at least a portion
least a portion of the first layer and a portion of the the fluidic pathway is fluidically coupled to the sar chamber and comprises a first and second branch e junction, and is configured to be occluded at a set manipulation of the elastomeric layer through the set first occlusion position of the set of occlusion position position of the set of occlusion position the fluidic pathway downstream of the junction and up a second occlusion position of the set of occlusion the fluidic pathway downstream of the junction and branch, wherein the set of occlusion positions com position and a normally closed position, wherein the comprises a first surface of the fluidic pathway at the surface of the fluidic pathway at the elastomeric labetween the first surface and the second surface is closed state upon occlusion by an occluding object layer during operation; wherein the normally close region of the fluidic pathway, at the first layer that elastomeric layer in preventing fluid bypass at the truncated pathway, including the normally open poexcluding the second branch, is defined upon manipathway at the first and second occlusion positions truncated pathway, including the normally closed pranch and excluding the first branch, to the detection manipulation of the fluidic pathway at the positions.	fluidic pathway, formed by at a elastomeric layer, wherein imple port and the detection extending downstream from a of occlusion positions upon set of valve guides, wherein a tions is positioned along the estream of the first branch and positions is positioned along dupstream of the second aprises a normally open ne normally open position the first layer and a second yer, wherein a void defined configured to transition to a tapplied to the elastomeric and position is defined by a extends toward and abuts the region; wherein a first position and the first branch and ipulation of the fluidic so, and wherein a second position and the second extends toward in the second extends to the seco

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
10(h)	wherein the first valve is spatially separated from the inlet and the second valve is spatially	In the accused microfluidic substrate, the first valve is spatially separated from the inlet and the second valve is spatially separated from the vent.

Claim	Claim Language	Infringement Evidence
	separated from the vent,	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		• "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." <i>Id.</i> at 1:49-1:59
		Second Channel
		Inlet First Channel Vent First Valve Second valve
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		A B B Company Strategy B
		Second valve PCR First valve
		 US9339812 (Exhibit 26) Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module,

Claim	Claim Language	Infringement Evidence
		the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway passing through a magnetic field for controlling a flow through the fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. • Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve

guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first bran

Claim	Claim Language	Infringement Evidence
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142,
		144 may be reversed, defining a seventh truncated pathway, and the entire
		released nucleic acid sample (e.g20 microliters) may be aspirated out of the
		microfluidic cartridge through the reagent port 115. This released nucleic acid
		sample is then used to reconstitute a molecular diagnostic reagent stored off of
		the microfluidic cartridge 100. During the reconstitution, the occlusion at the
		sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may
		be occluded at the first occlusion position 142 to form an eighth truncated
		pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic
		reagent with the released nucleic acid sample is complete and well mixed, the
		reconstituted mixture may then be dispensed through the reagent port 115,
		through the eighth truncated pathway, and to the detection chamber 117, by
		using a fluid handling system to push the seventh occlusion position [148]
		(normally closed) open. The detection chamber 117 is completely filled with
		the mixed reagent-nucleic acid sample, after which the fluidic pathway 165
		is occluded at the third, sixth, seventh and eighth occlusion positions 144,
		147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as
		thermocycling and detection, on the volume of fluid within the detection
		chamber 117.")
		• US Patent No. 9,738,887 at at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
10(i)	wherein the reaction chamber, the first channel, and the second channel are formed in a first side of the microfluidic substrate,	On information and belief, in the accused microfluidic substrate, the reaction chamber, the first channel, and the second channel are formed in a first side of the microfluidic substrate.

Claim	Claim Language	Infringement Evidence
		US9738887 (Exhibit 31)
		 Claim 1. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer, defining a sample port, a reagent port, a fluid port, and a detection chamber; an elastomeric layer; an intermediate substrate coupled to the first layer, such that the elastomeric layer is situated between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the reagent port, the fluid port, and the detection chamber. U.S. Patent No. 9,738,887 at Fig 1B
		113 110 195 125 190 117 198 140 136 130 127 135 120 170 137 152 FIG. 1B
		 U.S. Patent No. 9,738,887 at 13:65-14:2. ("A fluidic pathway 165 of the set of fluidic pathways 160 may comprise portions (i.e. microfluidic channels) that are located on both sides of the top layer 110, but is preferably located primarily on the bottom side of the top layer (in the orientation shown in FIG. 1B).") U.S. Patent No. 9,738,887 at 14:19-14:28. ("In one variation, in the orientation of the microfluidic cartridge 100 shown in FIG. 11B, a fluidic pathway 165 is preferably located primarily on the bottom side of the top layer 110, comprising a segment running to a vent region 190 on the top side of the top

Claim	Claim Language	Infringement Evidence
		layer 110. All other segments of the fluidic pathway 165 are preferably located on the bottom side of the top layer 110, allowing the fluidic pathway 165 to be sealed by the film layer 125 without requiring a separate film layer to seal channels located on the top of the top layer 110.") • U.S. Patent No. 9,738,887 at 2:37-49. ("As shown in FIGS. 1A-1C, an embodiment of a microfluidic cartridge 100 for processing and detecting nucleic acids comprises: a top layer 110 comprising a set of sample port-reagent port pairs 112 and a set of detection chambers 116; an intermediate substrate 120, coupled to the top layer 110 and partially separated from the top layer by a film layer 125, configured to form a waste chamber 130; an elastomeric layer 140 partially situated on the intermediate substrate 120; a magnet housing region 150 accessible by a magnet 152 providing a magnetic field 156; and a set of fluidic pathways 160, each formed by at least a portion of the top layer 110, a portion of the film layer 125, and a portion of the elastomeric layer 140.") • U.S. Patent No. 9,738,887 at 3:26-31. ("As shown in FIGS. 1B and 1C, the top layer 110 preferably comprises a set of sample port-reagent port pairs 112, a fluid port 118, a vent region 190, a heating region 195 crossing a capture segment 166 of a fluidic pathway 165, and a set of detection chambers 116.") • U.S. Patent No. 9,738,887 at 5:66-6:17 ("In a first variation, as shown in FIGS. 1A and 11B, each detection chamber 117 in the set of detection chambers comprises a serpentine-shaped channel 16 for facilitating analysis of a solution of nucleic acids mixed with reagents In a specific example of the first variation, each serpentine-shaped channel 16 is injected molded into the top layer 110 of the microfluidic cartridge 100, and the three interconnected portions of the serpentine-shaped channel 16 are each 1600 μm wide by 400 μm deep.")
10(j)	wherein the inlet and the vent are formed in a second side of	On information and belief, in the accused microfluidic substrate, the inlet and the vent are formed in a second side of the microfluidic substrate opposite the first side

Claim	Claim Language	Infringement Evidence
	the microfluidic substrate	
	opposite the first side, and	
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the
		cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		A Roberty Single
		US9738887 (Exhibit 31)
		• Claim 1. A cartridge, configured to facilitate processing and detecting of a
		nucleic acid, comprising: a first layer, defining a sample port, a reagent port,
		a fluid port, and a detection chamber ; an elastomeric layer; an intermediate
		substrate coupled to the first layer, such that the elastomeric layer is situated
		between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first
		layer, wherein the corrugated surface defines a set of voids external to the
		chamber and accessible from a direction perpendicular to a broad surface of the
		first layer, and wherein at least a portion of the corrugated surface includes a set
		of openings that provide access to the elastomeric layer; and a fluidic pathway,
		wherein the fluidic pathway is fluidically coupled to the sample port, the
		reagent port, the fluid port, and the detection chamber.
		• Claim 2. The cartridge of claim 1 wherein the fluidic pathway is formed by at

Claim	Claim Language	Infringement Evidence
		least a portion of the first layer and a portion of the elastomeric layer, is
		configured to be occlu ded upon manipulation of the elastomeric layer through
		the set of openings of the corrugated surface, and is configured to transfer a
		waste fluid to the chamber.
		• Claim 4. The cartridge of claim 2, wherein the chamber of the corrugated
		surface includes a waste inlet coupled to the fluidic pathway and a waste vent
		situated at a first side of the fluidic pathway, and wherein the cartridge further
		comprises a vent region directly opposed to the waste vent at a second side of
		the fluidic pathway.
		• U.S. Patent No. 9,738,887 at Fig 1B
		Sample port- reagent port Top layer Vent region Detection pair (113) (110) (190) chamber (117)
		113 110 195 125 190 117 140 136 130 127 135 120 170 137 150 137 137 137
		• U.S. Patent No. 9,738,887 at Abstract ("A microfluidic cartridge, configured to facilitate processing and detection of nucleic acids, comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample port-
		reagent port pairs, a shared fluid port, a vent region, a heating region, and a set
		of Detection chambers; an intermediate substrate, coupled to the top layer
		comprising a waste chamber; an elastomeric layer, partially situated on the
		intermediate substrate; and a set of fluidic pathways, each formed by at least a
		portion of the top layer and a portion of the elastomeric layer, wherein each
		fluidic pathway is fluidically coupled to a sample port-reagent port pair, the
		shared fluid port, and a Detection chamber, comprises a turnabout portion
		passing through the heating region, and is configured to be occluded upon
		deformation of the elastomeric layer, to transfer a waste fluid to the waste

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	chamber, and to pass through the vent region") U.S. Patent No. 9,738,887 at 14:19-14:28. ("In one variation, in the orientation of the microfluidic cartridge 100 shown in FIG. 11B, a fluidic pathway 165 is preferably located primarily on the bottom side of the top layer 110, comprising a segment running to a vent region 190 on the top side of the top layer 110. All other segments of the fluidic pathway 165 are preferably located on the bottom side of the top layer 110, allowing the fluidic pathway 165 to be sealed by the film layer 125 without requiring a separate film layer to seal channels located on the top of the top layer 110.") U.S. Patent No. 9,738,887 at 14:35-42. ("In this variation, the fluidic pathway 165 thus crosses the thickness of the top layer 110 upstream of the first segment running to the detection chamber 163, and crosses the thickness of the top layer 110 downstream of the segment running away from the detection chamber 164, and crosses the thickness of the top layer 110 to couple to a sample port 114 and a reagent port 115 on the top side of the top layer 110.") U.S. Patent No. 9,738,887 at 23:52-60 ("The injection molding process also defines the shared fluid port 118 of the top layer 110, and the vent region 190, which is recessed 0.5 mm into the top surface of the top layer 110 (in the orientation shown in FIG. 11B), and is covered with a polytetrafluoroethylene membrane, which is hydrophobic, gas permeable, and liquid impermeable. A paper label is bonded with adhesive to the top layer 110 over the vent region
		190, which serves to identify the cartridge and protect the vent region 190, as shown in FIGS. 11A and 11B.")
10(k)	wherein the first valve in each of the plurality of sample lanes is operated independently of any	In the accused microfluidic substrate, the first valve in each of the plurality of sample lanes is operated independently of any other first valve.
	other first valve.	 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		Powerful. Simple. Diagnostics. NeuMon Artifice 734-477.0111 fax 734-477.0130 1250 Elsenhower Place Ann Arber, MI 48108 www.neumoda.com CARTRIDGE Let 1 103272 neer 90000004 2010-12-31
		 NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		NeuMoDx™ Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) • "NeuMoDx™ Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays." NeuMoDx™ Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) • "NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY
		MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"

Claim	Claim Language	Infringement Evidence
		platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients."
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms
		that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents.
		40600094 D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19)
		• "NeuMoDx TM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the
		independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		US9339812 (Exhibit 26)
		• Claim 15. A method for processing and detect ing nucleic acids from a set of biological samples with a cartridge having a set of fluidic pathways defined by an elastomeric layer, the method comprising: combining each biological sample of the set of biological samples with a quantity of magnetic beads to produce a set of nucleic acid-magnetic bead samples; aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set

Claim	Claim Language	Infringement Evidence
		of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots; transferring substantially all of each nucleic acid-magnetic bead sample of the set of nucleic acid-magnetic bead samples to a corresponding fluidic pathway of a set of fluidic pathways ; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude at least one fluidic pathway of the set of fluidic pathways at a subset of occlus ion positions for controlling a flow through the fluidic pathway; and detect ing nucleic acids using a set of detect ion chambers coupled to the set of fluidic pathways . • U.S. Patent No. 9,339,812 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.")

EXHIBIT 40

(12) United States Patent

Williams et al.

(10) Patent No.: US 10,625,261 B2 (45) Date of Patent: *Apr. 21, 2020

(54) INTEGRATED APPARATUS FOR PERFORMING NUCLEIC ACID EXTRACTION AND DIAGNOSTIC TESTING ON MULTIPLE BIOLOGICAL SAMPLES

(71) Applicant: **HANDYLAB, INC.**, Franklin Lakes, NJ (US)

(72) Inventors: **Jeff Williams**, Chelsea, MI (US); **Kerry Wilson**, Elkhart, IN (US); **Kalyan Handique**, Ypsilanti, MI (US)

(73) Assignee: **HandyLab, Inc.**, Franklin Lakes, NJ (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 16/697,995

(22) Filed: Nov. 27, 2019

(65) Prior Publication Data

US 2020/0094253 A1 Mar. 26, 2020

Related U.S. Application Data

- (63) Continuation of application No. 16/124,672, filed on Sep. 7, 2018, which is a continuation of application (Continued)
- (51) **Int. Cl. B01L 3/00** (2006.01) **B01L 7/00** (2006.01)

 (Continued)
- (52) **U.S. Cl.**CPC *B01L 3/502761* (2013.01); *B01L 3/0275* (2013.01); *B01L 3/5027* (2013.01); (Continued)

(58) **Field of Classification Search**CPC B01L 3/502761; B01L 3/0275; B01L 3/5027; B01L 3/52; B01L 7/52; (Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

D189,404 S 3,050,239 A 12/1960 Nicolle 8/1962 Williams (Continued)

FOREIGN PATENT DOCUMENTS

AU 1357102 3/2002 AU 3557502 7/2002 (Continued)

OTHER PUBLICATIONS

Allemand et al., "pH-Dependent Specific Binding and Combing of DNA", Biophys J. (1997) 73(4): 2064-2070.

(Continued)

Primary Examiner — Robert J Eom (74) Attorney, Agent, or Firm — Knobbe Martens Olson & Bear LLP

(57) ABSTRACT

The technology described herein generally relates to systems for extracting polynucleotides from multiple samples, particularly from biological samples, and additionally to systems that subsequently amplify and detect the extracted polynucleotides. The technology more particularly relates to microfluidic systems that carry out PCR on multiple samples of nucleotides of interest within microfluidic channels, and detect those nucleotides.

30 Claims, 121 Drawing Sheets

Page 2

Related U.S. Application Data D261,033 S 9/1981 Armbruster D261,173 S 10/1981 Armbruster No. 14/941,087, filed on Nov. 13, 2015, now Pat. No. 4,301,412 A 11/1981 Hill et al. 4,439,526 A 3/1984 10,071,376, which is a continuation of application Columbus 4,457,329 A 7/1984 Werley et al. No. 12/218,498, filed on Jul. 14, 2008, now Pat. No. 4,466,740 A 8/1984 Kano et al. 9,186,677, which is a continuation-in-part of appli-9/1984 4.472.357 A Levy et al. cation No. 11/985,577, filed on Nov. 14, 2007, now 4,504,582 A 3/1985 Swann Pat. No. 7,998,708. 4.522,786 6/1985 Ebersole D279,817 7/1985 Chen et al. (60) Provisional application No. 60/959,437, filed on Jul. D282,208 S 1/1986 Lowry 4.599,315 A 7/1986 Terasaki et al. 13, 2007. 4,612,873 9/1986 Eberle 4,612,959 9/1986 Costello (51) **Int. Cl.** D288,478 S 2/1987 Carlson et al. B01L 9/00 (2006.01)4.647,432 A 3/1987 Wakatake F16K 99/00 (2006.01)4,654,127 3/1987 Baker et al B01L 3/02 (2006.01)4,673,657 6/1987 Christian 4,678,752 7/1987 Thorne et al. B01L 9/06 (2006.01)4,683,195 A 7/1987 Mullis et al. G01N 35/02 (2006.01)4,683,202 A 7/1987 Mullis G01N 35/00 (2006.01)4,698,302 10/1987 Whitehead et al. G01N 35/04 (2006.01)D292,735 11/1987 Lovborg Ramachandran 4.720.374 A 1/1988 (52) U.S. Cl. 2/1988 4,724,207 Hou et al. CPC *B01L 3/52* (2013.01); 4.798.693 A 1/1989 Mase et al. B01L 7/52 (2013.01); B01L 9/06 (2013.01); 4,800,022 A 1/1989 Leonard B01L 9/527 (2013.01); F16K 99/0001 4,827,944 A 5/1989 Nugent 4,841,786 A 6/1989 Schulz (2013.01); F16K 99/003 (2013.01); F16K D302,294 S 7/1989 Hillman 99/0032 (2013.01); F16K 99/0044 (2013.01); 4,855,110 A 8/1989 Marker et al. F16K 99/0061 (2013.01); B01L 2200/027 4,871,779 10/1989 Killat et al. (2013.01); B01L 2200/10 (2013.01); B01L 4.895.650 A 1/1990 Wang 4/1990 Gates et al. 4.919.829 A 2200/147 (2013.01); B01L 2200/148 4,921,809 A 5/1990 Schiff et al (2013.01); B01L 2200/16 (2013.01); B01L 4,935,342 A 6/1990 Seligson et al. 2300/021 (2013.01); B01L 2300/045 4,946,562 A 8/1990 Guruswamy (2013.01); B01L 2300/06 (2013.01); B01L 8/1990 Rando et al 4,949,742 A 2300/0627 (2013.01); B01L 2300/0681 D310,413 S 9/1990 Bigler et al. 4,963,498 A 10/1990 Hillman (2013.01); B01L 2300/087 (2013.01); B01L 4,967,950 A D312,692 S 11/1990 2300/0816 (2013.01); B01L 2300/0832 Legg et al. 12/1990 Bradley (2013.01); B01L 2300/0867 (2013.01); B01L 12/1990 4,978,502 A Dole et al. 2300/0887 (2013.01); B01L 2300/18 4,978,622 A 12/1990 Mishell et al. (2013.01); B01L 2300/1822 (2013.01); B01L 4,989,626 A 2/1991 Takagi et al. 5,001,417 A 3/1991 Pumphrey et al. 2300/1827 (2013.01); B01L 2300/1861 5,004,583 A 4/1991 Guruswamy et al. (2013.01); B01L 2400/0442 (2013.01); B01L 5.048.554 A 9/1991 Kremer 2400/0481 (2013.01); B01L 2400/0487 5,053,199 A 10/1991 Keiser et al (2013.01); B01L 2400/0611 (2013.01); B01L 10/1991 5,060,823 A Perlman 2400/0677 (2013.01); B01L 2400/0683 5,061,336 A 10/1991 Soane (2013.01); F16K 2099/0084 (2013.01); G01N 5,064,618 A 11/1991 Baker et al. 5,071,531 A 12/1991 Soane 35/026 (2013.01); G01N 2035/00881 5,091,328 A 2/1992 Miller (2013.01); G01N 2035/0425 (2013.01); G01N D324,426 S 3/1992 Fan et al. 2035/0436 (2013.01) 5,096,669 A 3/1992 Lauks et al. D325,638 S 4/1992 Sloat et al. (58) Field of Classification Search 5,126,002 A 6/1992 Iwata et al. CPC B01L 9/06; B01L 9/527; F16K 99/0001; 6/1992 5,126,022 A D328,135 S Soane et al F16K 99/003; F16K 99/0032; F16K 7/1992 Fan et al. 99/0044; F16K 99/0061 D328,794 S 8/1992 Frenkel et al. 5,135,627 A 8/1992 See application file for complete search history. Soane 5,135,872 A 8/1992 Pouletty et al. 5,147,606 A 9/1992 Charlton et al. (56)**References Cited** 5,169,512 12/1992 Wiedenmann et al. D333,522 2/1993 Gianino U.S. PATENT DOCUMENTS 2/1993 5,186,339 A Heissler 5,192,507 A 3/1993 Taylor et al. 3,905,772 A 9/1975 Hartnett et al. 5,208,163 A 5/1993 Charlton et al. 3,985,649 A 10/1976 Eddelman 5,217,694 A 6/1993 Gibler et al. 4/1977 4,018,089 A Dzula et al. 5,223,226 A 6/1993 Wittmer et al. 4,018,652 A 4/1977 Lanham et al. 5.229.297 A 7/1993 Schnipelsky et al. 4,038,192 A 7/1977 Serur D338,275 S 8/1993 Fischer et al. 4,055,395 A 10/1977 Honkawa et al. 5,250,263 A 10/1993 D249,706 S 9/1978 Manz Adamski 10/1993 Barrett et al. 5,252,743 A 4.139.005 A 2/1979 Dickey 5,256,376 A 10/1993 Callan et al. D252,157 S 6/1979 Kronish et al. 5,273,716 A 12/1993 Northrup et al. D252,341 S 7/1979 Thomas 5,275,787 A 1/1994 Yuguchi et al. D254,687 S 4/1980 Fadler et al. 4,212,744 A 7/1980 Oota 5,282,950 A 2/1994 Dietze et al.

(56)		Referen	ces Cited	5,652,141		Henco et al.
	1101	DATENIT	DOCUMENTS	5,652,149 D382,346		
	0.5. 1	ALLINI	DOCUMENTS	D382,647	S 8/1997	Staples et al.
5,296,37			Kricka et al.	5,654,141		Mariani et al. Lee et al.
5,304,47 5,304,48			Nagoh et al. Wilding et al.	5,658,515 <i>x</i> 5,667,976 <i>x</i>		
D347,47			Pinkney	5,671,303		
5,311,89			Kaartinen et al.	5,674,394 <i>x</i> 5,674,742 <i>x</i>		
5,311,99 5,316,72			Duffy et al. Suzuki et al.	5,681,484		Zanzucchi et al.
5,327,03	88 A	7/1994	Culp	5,681,529		
5,339,48 D351,47		8/1994 10/1994	Persic, Jr. Gerber	5,683,657 <i>x</i> 5,683,659 <i>x</i>		Hovatter
D351,91		10/1994	Hieb et al.	5,699,157		
5,364,59			Green et al. Cusak et al.	5,700,637 <i>x</i> 5,705,813 <i>x</i>		
5,372,94 5,374,39			Robinson	5,721,136	A 2/1998	Finney et al.
5,389,33			Petschek et al.	5,725,831 <i>5</i> ,726,026 <i>1</i>		Reichler et al. Wilding et al.
D356,23 5,397,70		3/1995 3/1995	Armstrong et al. Berndt	5,726,404		Brody
5,401,46		3/1995	Smethers et al.	5,726,944		Pelley et al.
5,411,70 5,414,24			Moscetta et al. Hackleman	5,731,212 <i>x</i> 5,744,366 <i>x</i>		Gavin et al. Kricka et al.
5,415,83			Zaun et al.	5,746,978	A 5/1998	Bienhaus et al.
5,416,00			Allen et al.	5,747,666 5,750,015		
5,422,27 5,422,28		6/1995	Chen et al.	5,755,942		
5,427,94	16 A	6/1995	Kricka et al.	5,762,874		
5,443,79 5,474,79		8/1995 12/1995	Cathcart et al.	5,763,262 <i>b</i> 5,770,029 <i>b</i>		Wong et al. Nelson et al.
5,475,48		12/1995	Mariella, Jr. et al.	5,770,388	A 6/1998	
D366,11			Biskupski	5,772,966 5,779,868		Maracas et al. Parce et al.
5,486,33 5,494,63			Wilding et al. Grzegorzewski	5,783,148	4 7/1998	Cottingham et al.
5,498,39	2 A	3/1996	Wilding et al.	5,787,032 <i>x</i> 5,788,814 <i>x</i>		Heller et al. Sun et al.
5,503,80 5,516,41		4/1996 5/1996	Brown Schneider et al.	5,800,600		Lima-Marques et al.
5,519,63		5/1996	Miyake et al.	5,800,690	A 9/1998	Chow et al.
5,529,67 5,559,43		6/1996 9/1996	Schneider et al.	5,804,436 D399,959 S		3 Okun et al. 3 Prokop et al.
5,565,17			Dovichi et al.	5,819,749	A 10/1998	Lee et al.
5,569,36			Hooper et al.	5,827,481 <i>x</i> 5,842,106 <i>x</i>		
5,578,27 5,578,81			Reichler et al. Kain et al.	5,842,787		
5,579,92	28 A		Anukwuem	5,846,396		3 Zanzucchi et al. 3 Bankier et al.
5,580,52 5,582,88		12/1996	Bard Ball et al.	5,846,493 <i>x</i> 5,849,208 <i>x</i>		
5,582,98	88 A	12/1996	Backus et al.	5,849,486		
5,585,06 5,585,08		12/1996 12/1996	Zanucchi et al. Oueen et al.	5,849,489 5,849,598		
5,585,24		12/1996	Bouma et al.	5,852,495	A 12/1998	Parce
5,587,12 5,589,13		12/1996	Wilding et al. Northrup et al.	5,856,174 5,858,187		Lipshutz et al. Ramsey et al.
5,593,83 5,593,83			Zanzucchi et al.	5,858,188	A 1/1999	Soane et al.
5,595,70	8 A	1/1997	Berndt	5,863,502 b 5,863,708 b		
5,599,43 5,599,50			Manz et al. Manz et al.	5,863,801		
5,599,66	57 A	2/1997	Arnold, Jr. et al.	5,866,345		
5,601,72 5,603,35			Bormann et al. Cherukuri et al.	5,869,004 <i>5</i> ,869,244 <i>5</i>		
5,605,66			Heller et al.	5,872,010	A 2/1999	Karger et al.
5,609,91			Hackleman	5,872,623 <i>x</i> 5,874,046 <i>x</i>		
D378,78 5,628,89			LaBarbera et al. Carter et al.	5,876,675	A 3/1999	Kennedy
5,630,92			Friese et al.	5,880,071 5,882,465 d		
5,631,33 5,632,87			Sassi et al. Zanzucchi et al.	5,883,211	A 3/1999	
5,632,95	57 A	5/1997	Heller et al.	5,885,432		
5,635,35 5,637,46			Wilding et al. Wilding et al.	5,885,470 <i>x</i> 5,895,762 <i>x</i>		
5,639,42			Northrup et al.	5,900,130	A 5/1999	Benvegnu et al.
5,639,42			Cottingĥam	5,911,737		Lee et al.
5,643,73 5,645,80			Zanzucchi et al. Bouma et al.	5,912,124 <i>x</i> 5,912,134 <i>x</i>		
5,646,03	9 A	7/1997	Northrup et al.	5,914,229	A 6/1999	Loewy
5,646,04		7/1997		5,916,522		
5,647,99 5,651,83		7/1997	Tuunanen et al. Rauf	5,916,776 <i>x</i> 5,919,646 <i>x</i>		Kumar Okun et al.
2,031,02		1001		-,,0 10 1	,,,,,,	- anvena - 46 6641

(56)		Referen	ces Cited	6,074,725 A		Kennedy
	U.S. I	PATENT	DOCUMENTS	6,074,827 A D428,497 S		Nelson et al. Lapeus et al.
				6,086,740 A		Kennedy
	919,711 A 922,591 A		Boyd et al. Anderson et al.	6,096,509 A 6,100,541 A		Okun et al. Nagle et al.
	927,547 A	7/1999	Papen et al.	6,102,897 A	8/2000	-
	928,161 A	7/1999	Krulevitch et al.	6,103,537 A 6,106,685 A		Ullman et al. McBride et al.
	928,880 A 929,208 A		Wilding et al. Heller et al.	6,110,343 A	8/2000	Ramsey et al.
D^2	413,391 S	8/1999	Lapeus et al.	6,117,398 A 6,123,205 A		Bienhaus et al. Dumitrescu et al.
	932,799 A 935,401 A	8/1999 8/1999		6,123,798 A		Gandhi et al.
5,9	939,291 A	8/1999	Loewy et al.	6,130,098 A		Handique et al.
	939,312 A 942,443 A		Baier et al. Parce et al.	6,132,580 A 6,132,684 A	10/2000	Mathies et al.
	942,443 A 944,717 A		Lee et al.	6,133,436 A	10/2000	Koster et al.
	413,677 S		Dumitrescu et al.	D433,759 S 6,143,250 A	11/2000 11/2000	Mathis et al.
	414,271 S 948,227 A		Mendoza Dubrow	6,143,547 A	11/2000	
5,9	948,363 A	9/1999	Gaillard	6,149,787 A		Chow et al. Mack et al.
	948,673 A 955,028 A	9/1999 9/1999	Chow	6,149,872 A 6,156,199 A	12/2000	
5,9	955,029 A		Wilding et al.	6,158,269 A		Dorenkott et al.
	957,579 A		Kopf-Sill et al.	6,167,910 B1 6,168,948 B1	1/2001 1/2001	Chow Anderson et al.
	958,203 A 958,349 A		Parce et al. Petersen et al.	6,171,850 B1	1/2001	Nagle et al.
5,9	958,694 A		Nikiforov	6,174,675 B1 6,180,950 B1	1/2001 1/2001	Chow et al.
	959,221 A 959,291 A	9/1999	Boyd et al. Jensen	D438,311 S		Yamanishi et al.
5,9	935,522 A	10/1999	Swerdlow et al.	6,190,619 B1		Kilcoin et al.
	964,995 A 964,997 A		Nikiforov et al. McBride	6,194,563 B1 D438,632 S	3/2001	Cruickshank Miller
	965,001 A		Chow et al.	D438,633 S	3/2001	
	965,410 A		Chow et al.	D439,673 S 6,197,595 B1		Brophy et al. Anderson et al.
	965,886 A 968,745 A		Sauer et al. Thorp et al.	6,211,989 B1	4/2001	Wulf et al.
5,9	972,187 A	10/1999	Parce et al.	6,213,151 B1		Jacobson et al.
	973,138 A 417,009 S	10/1999 11/1999		6,221,600 B1 6,228,635 B1		MacLeod et al. Armstrong et al.
5,9	976,336 A	11/1999	Dubrow et al.	6,232,072 B1	5/2001	
	980,704 A 980,719 A		Cherukuri et al. Cherukuri et al.	6,235,175 B1 6,235,313 B1		Dubrow et al. Mathiowitz et al.
	981,735 A		Thatcher et al.	6,235,471 B1	5/2001	Knapp et al.
	985,651 A		Hunicke-Smith	6,236,456 B1 6,236,581 B1		Giebeler et al. Foss et al.
	989,402 A 992,820 A		Chow et al. Fare et al.	6,238,626 B1	5/2001	Higuchi et al.
5,9	993,611 A		Moroney, III et al.	6,251,343 B1 6,254,826 B1		Dubrow et al. Acosta et al.
	993,750 A 997,708 A	11/1999	Ghosh et al.	6,259,635 B1		Khouri et al.
6,0	001,229 A	12/1999	Ramsey	6,261,431 B1		Mathies et al. Parce et al.
	001,231 A 001,307 A		Kopf-Sill Naka et al.	6,267,858 B1 D446,306 S		Ochi et al.
	004,450 A		Northrup et al.	6,271,021 B1		Burns et al.
	004,515 A 007,690 A		Parce et al. Nelson et al.	6,274,089 B1 6,280,967 B1		Chow et al. Ransom et al.
	010,607 A		Ramsey	6,281,008 B1		Komai et al.
	010,608 A		Ramsey	6,284,113 B1 6,284,470 B1		Bjornson et al. Bitner et al.
	010,627 A 012,902 A	1/2000	Hood, III Parce	6,287,254 B1	9/2001	Dodds
\dot{D}^2	420,747 S	2/2000	Dumitrescu et al.	6,287,774 B1 6,291,248 B1		Nikiforov Haj-Ahmad
D4	421,130 S 024,920 A		Cohen et al. Cunanan	6,294,063 B1		Becker et al.
D^{2}	421,653 S	3/2000	Purcell	6,300,124 B1		Blumenfeld et al.
	033,546 A 033,880 A		Ramsey Haff et al.	6,302,134 B1 6,302,304 B1		Kellogg et al. Spencer
	043,080 A		Lipshutz et al.	6,303,343 B1	10/2001	Kopf-sill
	046,056 A		Parce et al.	6,306,273 B1 6,306,590 B1		Wainright et al. Mehta et al.
	048,734 A 054,034 A		Burns et al. Soane et al.	6,310,199 B1	10/2001	Smith et al.
6,0	054,277 A	4/2000	Furcht et al.	6,316,774 B1		Giebeler et al.
	056,860 A 057,149 A		Amigo et al. Burns et al.	6,319,469 B1 6,319,474 B1		Mian et al. Krulevitch et al.
6,0	062,261 A	5/2000	Jacobson et al.	6,322,683 B1	11/2001	Wolk et al.
	063,341 A		Fassbind et al.	6,326,083 B1		Yang et al.
	063,589 A 068,751 A		Kellogg et al. Neukermans	6,326,147 B1 6,326,211 B1		Oldham et al. Anderson et al.
6,0	068,752 A	5/2000	Dubrow et al.	6,334,980 B1	1/2002	Hayes et al.
6,0	071,478 A	6/2000	Chow	6,337,435 B1	1/2002	Chu et al.

(56)	Referer	ices Cited	D474,280 S		Niedbala et al.
U.S	. PATENT	DOCUMENTS	6,558,916 E 6,558,945 E	5/2003	
			6,565,815 E		Chang et al.
6,353,475 B1		Jensen et al.	6,569,607 E 6,572,830 E		McReynolds Burdon et al.
6,358,387 B1	3/2002 4/2002	Kopf-sill et al.	6,575,188 E		Parunak
6,366,924 B1 6,368,561 B1		Rutishauser et al.	6,576,459 E		Miles et al.
6,368,871 B1		Christel et al.	6,579,453 E		Bächler et al.
6,370,206 B1		Schenk	6,589,729 E 6,592,821 E		Chan et al. Wada et al.
6,375,185 B1 6,375,901 B1	4/2002	Lın Robotti et al.	6,597,450 E		Andrews et al.
6,379,884 B2		Wada et al.	6,602,474 E	8/2003	Tajima
6,379,929 B1		Burns et al.	6,613,211 E		Mccormick et al.
6,379,974 B1		Parce et al.	6,613,512 E 6,613,580 E		Kopf-sill et al. Chow et al.
6,382,254 B1 6,391,541 B1		Yang et al. Petersen et al.	6,613,581 E		Wada et al.
6,391,623 B1		Besemer et al.	6,614,030 E		Maher et al.
6,395,161 B1		Schneider et al.	6,620,625 E		Wolk et al. Hu et al.
6,398,956 B1 6,399,025 B1		Coville et al. Chow	6,623,860 E 6,627,406 E		Singh et al.
6,399,389 B1		Parce et al.	D480,814 S		Lafferty et al.
6,399,952 B1		Maher et al.	6,632,655 E		Mehta et al.
6,401,552 B1		Elkins	6,633,785 E D482,796 S		Kasahara et al. Ovama et al.
6,403,338 B1 6,408,878 B2		Knapp et al. Unger et al.	6,640,981 E		Lafond et al.
6,413,401 B1		Chow et al.	6,649,358 E	31 11/2003	Parce et al.
6,416,642 B1	7/2002	Alajoki et al.	6,664,104 E		Pourahmadi et al.
6,420,143 B1		Kopf-sill	6,669,831 E 6,670,153 E		Chow et al.
6,425,972 B1 D461,906 S		McReynolds Pham	D484,989 S		Gebrian
6,428,987 B2		Franzen	6,672,458 E		Hansen et al.
6,430,512 B1		Gallagher	6,681,616 E 6,681,788 E		Spaid et al. Parce et al.
6,432,366 B2 6,440,725 B1		Ruediger et al. Pourahmadi et al.	6,685,813 E		Williams et al.
D463,031 S		Slomski et al.	6,692,700 E	32 2/2004	Handique
6,444,461 B1	9/2002	Knapp et al.	6,695,009 E		Chien et al.
6,447,661 B1		Chow et al.	6,699,713 E 6,706,519 E		Benett et al. Kellogg et al.
6,447,727 B1 6,448,064 B1		Parce et al. Vo-Dinh et al.	6,720,148 E		Nikiforov
6,453,928 B1		Kaplan et al.	6,730,206 E	32 5/2004	Ricco et al.
6,458,259 B1		Parce et al.	6,733,645 E 6,734,401 E		Chow Bedingham et al.
6,461,570 B2 6,465,257 B1		Ishihara et al. Parce et al.	6,737,026 E		Bergh et al.
6,468,761 B2		Yang et al.	6,740,518 E		Duong et al.
6,472,141 B2	10/2002	Nikiforov	D491,272 S		Alden et al.
D466,219 S		Wynschenk et al.	D491,273 S D491,276 S		Biegler et al. Langille
6,475,364 B1 D467,348 S		Dubrow et al. McMichael et al.	6,750,661 E		Brooks et al.
D467,349 S		Niedbala et al.	6,752,966 E		
6,488,897 B2		Dubrow et al.	6,756,019 E 6,762,049 E		Dubrow et al. Zou et al.
6,495,104 B1 6,498,497 B1		Unno et al. Chow et al.	6,764,859 E		Kreuwel et al.
6,500,323 B1		Chow et al.	6,766,817 E		Dias da Silva
6,500,390 B1	12/2002	Boulton et al.	6,773,567 E		
D468,437 S		McMenamy et al.	6,777,184 E 6,783,962 E		Nikiforov et al. Olander et al.
6,506,609 B1 6,509,186 B1		Wada et al. Zou et al.	D495,805 S		Lea et al.
6,509,193 B1	1/2003	Tajima	6,787,015 E		Lackritz et al.
6,511,853 B1		Kopf-sill et al.	6,787,016 E 6,787,111 E		Tan et al. Roach et al.
D470,595 S 6,515,753 B2		Crisanti et al. Maher	6,790,328 E		Jacobson et al.
6,517,783 B2		Horner et al.	6,790,330 E		Gascoyne et al.
6,520,197 B2		Deshmukh et al.	6,811,668 E 6,818,113 E		Berndt et al. Williams et al.
6,521,181 B1 6,521,188 B1		Northrup et al. Webster	6,819,027 E		
6,524,456 B1		Ramsev et al.	6,824,663 E	11/2004	Boone
6,524,532 B1		Northrup	D499,813 S		
6,524,790 B1		Kopf-sill et al.	D500,142 S D500,363 S		Crisanti et al. Fanning et al.
D472,324 S 6,534,295 B2		Rumore et al. Tai et al.	6,827,831 E		
6,537,432 B1		Schneider et al.	6,827,906 E	12/2004	Bjornson et al.
6,537,771 B1		Farinas et al.	6,838,156 E		Neyer et al.
6,540,896 B1		Manz et al.	6,838,680 E		Maher et al.
6,544,734 B1 6,547,942 B1		Briscoe et al. Parce et al.	6,852,287 E 6,858,185 E		Ganesan Kopf-sill et al.
6,555,389 B1		Ullman et al.	6,859,698 E	32 2/2005	Schmeisser
6,556,923 B2	4/2003	Gallagher et al.	6,861,035 E	3/2005	Pham et al.
D474,279 S	5/2003	Mayer et al.	6,878,540 E	32 4/2005	Pourahmadi et al.

(56)		Referen	ces Cited	7,270,786 D554,069			Parunak et al. Bolotin et al.
	U.S.	PATENT	DOCUMENTS	D554,070	\mathbf{S}	10/2007	Bolotin et al.
				7,276,208			Sevigny et al.
6,878,7			Singh et al. Hubbell et al.	7,276,330 7,288,228			Chow et al. Lefebvre
6,884,6 6,887,6			McMillan et al.	7,297,313	B1	11/2007	Northrup et al.
6,893,8	79 B2	5/2005	Petersen et al.	D556,914			Okamoto et al.
6,900,8			Bjornson et al.	7,303,727 D559,995			Dubrow et al. Handique et al.
6,905,5 6,905,6			Wainright et al. Dorian et al.	7,315,376		1/2008	Bickmore et al.
6,906,7			Kao et al.	7,323,140			Handique et al.
6,908,5			Schaevitz et al.	7,332,130 7,338,760		3/2008	Handique Gong et al.
6,911,1 6,914,1		7/2005	Handique et al. Baker	D566,291		4/2008	Parunak et al.
6,915,6			Chien et al.	7,351,377			Chazan et al.
6,918,4			Dias da Silva	D569,526 7,374,949			Duffy et al. Kuriger
D508,9 6,939,4			Fanning et al. Zhao et al.	7,390,460			Osawa et al.
6,940,5	98 B2	9/2005	Christel et al.	7,419,784			Dubrow et al.
6,942,7			Kayyem	7,422,669 7,440,684		10/2008	Jacobson et al. Spaid et al.
6,951,6 6,958,3			Unger et al. Fomovskaia et al.	7,476,313			Siddiqi
D512,1		11/2005	Matsumoto	7,480,042			Phillips et al.
6,964,7			Banerjee et al.	7,494,577 7,494,770			Williams et al. Wilding et al.
6,977,1 6,979,4		12/2005	Northrup et al.	7,514,046			Kechagia et al.
6,984,5			Briscoe et al.	7,518,726			Rulison et al.
D515,7			Sinohara et al.	7,521,186 7,527,769		4/2009 5/2009	Burd Mehta Bunch et al.
D516,2 7,001,8			Wohlstadter et al. Brown et al.	D595,423			Johansson et al.
7,004,1			Handique et al.	7,553,671		6/2009	
D517,5			Yanagisawa et al.	D596,312 D598,566		7/2009 8/2009	Giraud et al. Allaer
7,010,3 7,023,0			Handique et al. Gallagher	7,578,976			Northrup et al.
7,024,2		4/2006		D599,234		9/2009	Ito
7,036,6			Greenstein et al.	7,595,197 7,604,938		9/2009 10/2009	Brasseur Takahashi et al.
7,037,4 7,038,4		5/2006	Parce et al.	7,622,296		11/2009	Joseph et al.
7,039,5	27 B2	5/2006	Tripathi et al.	7,628,902			Knowlton et al.
7,040,1			Spaid et al.	7,633,606 7,635,588		12/2009	Northrup et al. King et al.
7,049,5 D523,1			Baer et al. Akashi et al.	7,645,581			Knapp et al.
7,055,6	95 B2	6/2006	Greenstein et al.	7,670,559			Chien et al.
7,060,1			Nikiforov et al.	7,674,431 7,689,022			Ganesan Weiner et al.
7,066,5 7,069,9			Dias da Silva McReynolds et al.	7,704,735			Facer et al.
7,072,0	36 B2	7/2006	Jones et al.	7,705,739			Northrup et al.
7,099,7 D528,2		8/2006	Chien Malmsater	7,723,123 D618,820			Murphy et al. Wilson et al.
7,101,4		9/2006		7,727,371	B2	6/2010	Kennedy et al.
7,105,3	04 B1	9/2006	Nikiforov et al.	7,727,477		6/2010 6/2010	Boronkay et al.
D531,3 7,118,9			Godfrey et al. Unger et al.	7,744,817 D621,060			Handique
7,118,9			Hsieh et al.	7,785,868	B2	8/2010	Yuan et al.
7,135,1			Christel et al.	D628,305 7,829,025			Gorrec et al. Ganesan et al.
7,138,0 D534,2			Gandhi et al. Gomm et al.	7,829,023			Northrup et al.
7,150,8			Parce et al.	7,867,776	B2		Kennedy et al.
7,150,9		12/2006		D632,799 7,892,819			Canner et al. Wilding et al.
D535,4 7,160,4			Isozaki et al. Chien et al.	D637,737			Wilson et al.
7,161,3		1/2007		7,955,864			Cox et al.
7,169,2			Ausserer et al.	7,987,022 7,998,708			Handique et al. Handique et al.
7,169,6 7,169,6		1/2007	Northrup et al. Skold	8,053,214			Northrup
D537,9	51 S		Okamoto et al.	8,071,056			Burns et al.
D538,4			Patadia et al.	8,088,616 8,105,783			Handique Handique
7,188,0 7,192,5			Young et al. Wu et al.	8,110,158		2/2012	Handique
7,195,9	86 B1	3/2007	Bousse et al.	8,133,671			Williams et al.
7,205,1			Corson	8,182,763 8,246,919			Duffy et al. Herchenbach et al.
7,208,1 7,235,4		4/2007 6/2007	Woudenberg et al.	8,246,919			Handique et al.
7,247,2		7/2007		D669,597		10/2012	Cavada et al.
D548,8			Brownell et al.	8,287,820			Williams et al.
D549,8 7,252,9			Maeno et al. Hafeman et al.	8,323,584 8,323,900			Ganesan Handique et al.
7,252,9			Chang et al.	8,324,372			Brahmasandra et al.
, ,-			-	*			

(56)		Referen	ces Cited	2002/0014443		2/2002 2/2002	Hansen et al.
	U.S.	PATENT	DOCUMENTS	2002/0015667 2002/0021983	A1	2/2002	Comte et al.
				2002/0022261 2002/0037499		2/2002 3/2002	Anderson et al.
8,415,103 8,420,015			Handique Ganesan et al.	2002/0037499			Quake et al. McMillan et al.
8,440,149			Handique	2002/0047003			Bedingham et al.
8,470,586		6/2013	Wu et al.	2002/0053399			Soane et al.
8,473,104			Handique et al.	2002/0054835 2002/0055167			Robotti et al. Pourahmadi et al.
D686,749 D687,567		7/2013 8/2013	Trump Jungheim et al.	2002/0058332			Quake et al.
D692,162			Lentz et al.	2002/0060156			Mathies et al.
8,592,157			Petersen et al.	2002/0068357 2002/0068821			Mathies et al. Gundling
8,679,831 D702,854			Handique et al. Nakahana et al.	2002/0090320			Burow et al.
8,685,341		4/2014	Ganesan	2002/0092767			Bjornson et al.
8,703,069			Handique et al.	2002/0094303 2002/0131903			Yamamoto et al. Ingenhoven et al.
8,709,787 8,710,211			Handique Brahmasandra et al.	2002/0131903			Parunak et al.
8,734,733			Handique	2002/0143297			Francavilla et al.
D710,024		7/2014		2002/0155010 2002/0155477		10/2002 10/2002	Karp et al.
8,765,076 8,765,454			Handique et al. Zhou et al.	2002/0169518			Luoma et al.
8,768,517			Handique et al.	2002/0173032	A1	11/2002	Zou et al.
8,852,862	2 B2	10/2014	Wu et al.	2002/0187557 2002/0192808			Hobbs et al.
8,883,490			Handique et al. Ganesan et al.	2002/0192808			Gambini et al. Enzelberger et al.
8,894,947 8,895,311			Handique et al.	2003/0019522			Parunak
D729,404			Teich et al.	2003/0022392		1/2003	
9,028,773			Ganesan	2003/0049833 2003/0059823		3/2003	Chen et al. Matsunaga et al.
9,040,288 9,051,604			Handique et al. Handique	2003/0064507		4/2003	
9,080,207			Handique et al.	2003/0072683		4/2003	Stewart et al.
D742,027			Lentz et al.	2003/0073106 2003/0083686			Johansen et al. Freeman et al.
9,186,677 9,217,143			Williams et al. Brahmasandra et al.	2003/0087300			Knapp et al.
9,222,954			Lentz et al.	2003/0096310		5/2003	Hansen et al.
9,234,236			Thomas et al.	2003/0099954 2003/0127327		5/2003 7/2003	Miltenyi et al.
9,238,223 9,259,734			Handique Williams et al.	2003/012/32/			Bohn et al.
9,259,735			Handique et al.	2003/0156991			Halas et al.
9,347,586			Williams et al.	2003/0180192 2003/0186295		9/2003 10/2003	A, A
9,480,983 9,528,142			Lentz et al. Handique	2003/0190608		10/2003	
9,618,139			Handique	2003/0199081			Wilding et al.
D787,087			Duffy et al.	2003/0211517 2004/0014202			Carulli et al. King et al.
9,670,528 9,677,121			Handique et al. Ganesan et al.	2004/0014238			Krug et al.
9,701,957			Wilson et al.	2004/0018116		1/2004	
9,745,623		8/2017		2004/0018119 2004/0022689			Massaro Wulf et al.
9,765,389 9,789,481			Gubatayao et al. Petersen et al.	2004/0022089			Heaney et al.
9,802,199			Handique et al.	2004/0029260			Hansen et al.
9,815,057			Handique	2004/0037739 2004/0043479			McNeely et al. Briscoe et al.
9,958,466 10,065,185			Dalbert et al. Handique	2004/0053290			Terbrueggen et al.
10,071,376			Williams et al.	2004/0063217		4/2004	Webster et al.
10,076,754			Lentz et al.	2004/0065655 2004/0072278		4/2004 4/2004	
10,100,302 10,139,012			Brahmasandra et al. Handique	2004/0072375		4/2004	Gjerde et al.
10,179,910			Duffy et al.	2004/0076996		4/2004	Kondo et al.
10,234,474	1 B2		Williams et al.	2004/0086427 2004/0086956		5/2004 5/2004	Childers et al. Bachur
10,351,901 10,364,456			Ganesan et al. Wu et al.	2004/0030930		7/2004	Scurati et al.
10,443,088			Wu et al.	2004/0141887		7/2004	Mainquist et al.
10,494,663			Wu et al.	2004/0151629 2004/0157220		8/2004 8/2004	Pease et al. Kurnool et al.
2001/0005489 2001/0012492			Roach et al. Acosta et al.	2004/0157220		8/2004	Chen et al.
2001/0012492			Osawa et al.	2004/0189311	A1	9/2004	Glezer et al.
2001/0021355	5 A1		Baugh et al.	2004/0197810		10/2004	Takenaka et al.
2001/0023848 2001/0038450			Gjerde et al. McCaffrey et al.	2004/0200909 2004/0209331		10/2004 10/2004	McMillan et al. Ririe
2001/0038430			Kopf-Sill et al.	2004/0209354		10/2004	Mathies et al.
2001/0046702	2 A1	11/2001	Schembri	2004/0224317	A1	11/2004	Kordunsky et al.
2001/0048899			Marouiss et al.	2004/0235154		11/2004	Oh et al.
2001/0055765 2002/0001848			O'Keefe et al. Bedingham et al.	2004/0240097 2005/0009174		1/2004	Evans Nikiforov et al.
2002/0001848			Hansen et al.	2005/0013737		1/2005	
2002/0009015			Laugharn, Jr. et al.	2005/0019902		1/2005	Mathies et al.

(56)	Ref	eren	ces Cited	2007/0196238 2007/0199821		8/2007 8/2007	Kennedy et al.
	U.S. PATI	ENT	DOCUMENTS	2007/0199821			Kreuwel et al.
				2007/0218459			Miller et al.
2005/0037471			Liu et al.	2007/0231213			Prabhu et al.
2005/0041525 2005/0042639			Pugia et al. Knapp et al.	2007/0243626 2007/0248958			Windeyer et al. Jovanovich et al.
2005/0048540			Inami et al.	2007/0248938		11/2007	
2005/0058574			Bysouth et al.	2007/0269861			Williams et al.
2005/0058577 2005/0064535			Micklash et al. Favuzzi et al.	2008/0000774			Park et al.
2005/0069898			Moon et al.	2008/0003649 2008/0017306			Maltezos et al. Liu et al.
2005/0106066			Saltsman et al.	2008/0017300			Dale et al.
2005/0112754			Yoon et al.	2008/0069729			McNeely
2005/0121324 2005/0129580			Park et al. Swinehart et al.	2008/0090244	A1		Knapp et al.
2005/0133370	A1 6/2	2005	Park et al.	2008/0095673		4/2008	
2005/0135655			Kopf-sill et al.	2008/0118987 2008/0124723			Eastwood et al. Dale et al.
2005/0142036 2005/0158781			Kim et al. Woudenberg et al.	2008/0124723			Owen et al.
2005/0170362			Wada et al.	2008/0192254			Kim et al.
2005/0186585			Juncosa et al.	2008/0226502			Jonsmann et al.
2005/0196321			Huang	2008/0240898			Manz et al.
2005/0202470 2005/0202489			Sundberg et al. Cho et al.	2008/0247914 2008/0257882		10/2008	Edens et al.
2005/0202504			Anderson et al.	2008/0237882			Chen et al.
2005/0208676			Kahatt	2008/0308500			Brassard
2005/0214172 2005/0220675			Burgisser Reed et al.	2009/0047180			Kawahara
2005/0227269			Llovd et al.	2009/0066339		3/2009	Glezer et al.
2005/0233370	A1 10/2	2005	Ammann et al.	2009/0136385 2009/0148933			Handique et al. Battrell et al.
2005/0238545			Parce et al.	2009/0148933		7/2009	Bedingham et al.
2005/0276728 2006/0002817			Muller-Cohn et al. Bohm et al.	2009/0223925		9/2009	
2006/0041058			Yin et al.	2009/0325164			Vossenaar et al.
2006/0057039			Morse et al.	2009/0325276			Battrell et al.
2006/0057629			Kim	2010/0009351 2010/0120129			Brahmasandra et al. Amshey et al.
2006/0062696 2006/0094004			Chow et al. Nakajima et al.	2010/0120129			Holenstein et al.
2006/0094108			Yoder et al.	2011/0008825			Ingber et al.
2006/0113190			Kurnik	2011/0027151	A1	2/2011	Handique et al.
2006/0133965 2006/0134790			Tajima et al. Tanaka et al.	2011/0097493			Kerr et al.
2006/0134750			Fauzzi et al.	2011/0127292		6/2011	
2006/0165558			Witty et al.	2011/0158865 2011/0287447			Miller et al. Norderhaug
2006/0165559		2006 2006	Greenstein et al. Tomalia et al.	2011/028/44/		12/2011	_
2006/0177376 2006/0177855			Utermohlen et al.	2012/0122231		5/2012	
2006/0183216	A1 8/2	2006	Handique	2012/0160826	A1		Handique
2006/0201887			Siddiqi	2012/0171678	A1	7/2012	Maltezos et al.
2006/0205085 2006/0207944			Handique Siddiqi	2012/0258463			Duffy et al.
2006/0210435	A1 9/2	2006	Alavie et al.	2013/0183769			Tajima
2006/0223169			Bedingham et al.	2013/0217013 2013/0315800			Steel et al. Yin et al.
2006/0228734 2006/0246493			Vann et al. Jensen et al.	2014/0030798			Wu et al.
2006/0246533			Fathollahi et al.	2014/0227710			Handique et al.
2006/0269641	A1 11/2	2006	Atwood et al.	2014/0329301	A1	11/2014	Handique et al.
2006/0269961			Fukushima et al.	2015/0045234			Stone et al.
2007/0004028 2007/0009386			Lair et al. Padmanabhan et al.	2015/0064702			Handique et al.
2007/0020699			Carpenter et al.	2015/0142186 2015/0174579			Handique et al. Iten et al.
2007/0020764			Miller	2015/0315631			Handique et al.
2007/0026421 2007/0042441		2007 2007	~ · · · · · · · · · · · · · · · · · · ·	2015/0328638			Handique et al.
2007/0042441			Bigus	2016/0038942			Roberts
2007/0054413			Aviles et al.	2017/0275702	A1	9/2017	Dahiya et al.
2007/0077648		2007		2018/0112252			Handique
2007/0092901 2007/0098600			Ligler et al. Kayyem et al.	2018/0135102			Gubatayao et al.
2007/0098000		2007		2018/0154364			Handique et al.
2007/0104617	A1 5/2	2007	Coulling et al.	2018/0333722 2019/0054467			Handique Handique
2007/0116613			Elsener	2019/0054471			Williams et al.
2007/0154895 2007/0177147		2007 2007	Spaid et al. Parce	2019/0106692			Brahmasandra et al.
2007/0177147			Prober et al.	2019/0144849		5/2019	Duffy et al.
2007/0184463	A1 8/2	2007	Molho et al.	2019/0145546			Handique
2007/0184547			Handique et al.	2019/0151854		5/2019	Baum et al.
2007/0196237	A1 8/2	2007	Neuzil et al.	2019/0154719	Al	5/2019	LaChance et al.

(56)	Referen	ces Cited	JP		2002-215241		7/2002	
	IIS DATENT	DOCUMENTS	JP JP		2002-540382 2002-544476		11/2002 12/2002	
	U.S. TATENT	DOCOMENTS	JP		2003-500674		1/2003	
		Wu et al.	JP		2003-047839		2/2003	
2019/03	24050 A1 10/2019	Williams et al.	JP JP		2003-047840 2003-516125	А	2/2003 5/2003	
	EODEIGN DATEN	NT DOCUMENTS	JР		2003-164279		6/2003	
	FOREIGN PALE	NI DOCUMENTS	JP		2003-185584		7/2003	
$\mathbf{A}\mathbf{U}$	4437602	7/2002	JP JP		2003-299485 2003-329693		10/2003 11/2003	
AU	4437702	7/2002	JР		2003-329696		11/2003	
AU CA	764319 B2 2574107	8/2003 9/1998	JP		2003-532382	A	11/2003	
CA	2294819	1/1999	JP JP		2004-003989 2004-506179	Δ	1/2004 2/2004	
CN	1312287 C	4/2007	JP		2004-150797		5/2004	
CN CN	1942590 A 1968754 A	4/2007 5/2007	JP		2004-531360		10/2004	
CN	101466848	6/2009	JP JP		2004-533838 2004-361421		11/2004 12/2004	
CN	101522909	9/2009	JP		2004-536291		12/2004	
CN DE	103540518 19929734	1/2014 12/1999	JP		2004-536689	A	12/2004	
DE	19833293 C1	1/2000	JP JP		2005-009870 2005-010179		1/2005 1/2005	
EP	0365828 A2	5/1990	JP		2005-511264		4/2005	
EP EP	0483620 A2 0688602 A2	5/1992 12/1995	JP		2005-514718		5/2005	
EP	0766256	4/1997	JP JP		2005-518825 2005-176613	Α	6/2005 7/2005	
EP	0772494 B1	5/1997	JP		2005-192439		7/2005	
EP EP	0810030 A1 1059458 A2	12/1997 12/2000	JP JP		2005-192554		7/2005	
EP	1064090 A1	1/2001	JP JP		2005-519751 2005-204661		7/2005 8/2005	
EP EP	1077086 A2	2/2001	JP		2005-525816		9/2005	
EP EP	1346772 A2 1541237 A2	9/2003 6/2005	JP JP		2005-291954 2005-532043		10/2005 10/2005	
EP	1574586 A2	9/2005	JР		2005-323519		11/2005	
EP EP	1745153 1780290 A2	1/2007 5/2007	JP		2005-533652		11/2005	
EP EP	1780290 A2 1792656 A1	6/2007	JP JP		2005-535904 2006-021156		11/2005 1/2006	
EP	2372367 A1	10/2011	JP		2006-055837		3/2006	
FR FR	2672301 2795426	8/1992 12/2000	JP		2006-094866	A	4/2006	
GB	2453432 A	4/2009	JP JP		2006-145458 2006-167569		6/2006 6/2006	
JР	S50-100881	8/1975	JР		2006-284409		10/2006	
JP JP	58212921 A S62-119460	12/1983 5/1987	JP		2007-024742	A	2/2007	
JР	H01-502319	8/1989	JP JP		2007-074960 2007-097477		3/2007 4/2007	
JP	H03181853	8/1991	JP		2007-101364		4/2007	
JP JP	04-053555 U 06-064156 U	5/1992 9/1994	JP		2007-510518		4/2007	
JP	07-020010	1/1995	JP JP		2007-514405 2007-178328	А	6/2007 7/2007	
JP JP	H07-290706 H08-122336	11/1995 5/1996	JP		2007-535933		12/2007	
JP	H08-173194	7/1996	JP JP		2009-515140 2009-542207		4/2009 12/2009	
JP	H08-211071	8/1996	JP		3193848		10/2014	
JP JP	H08-285859 H08-337116	11/1996 12/1996	RU		2418633	C2	5/2011	
JP	H09-325151	12/1997	Wo Wo) 1988/006633) 1990/012350		9/1988 10/1990	
JP	2001-502790	1/1998	We		1992/005443		4/1992	
JP JP	H01-219669 H10-327515	9/1998 12/1998	Wo) 1994/011103		5/1994	
JP	H11-009258	1/1999	We We) 1996/004547) 1996/018731		2/1996 6/1996	
JР	H11-501504	2/1999	W) WC	1996/039547		12/1996	
JP JP	H11-503315 2000-514928	3/1999 4/1999	We We) 1997/005492) 1997/021090		2/1997 6/1997	
JP	H11-156231	6/1999	W		1998/000231		1/1998	
JP JP	H11-316226 H11-515106	11/1999 12/1999	W	O WC	1998/022625		5/1998	
JР	2000-180455	6/2000	We We		O 1998/35013		8/1998	
JP	2000-266760	9/2000	W) 1998/049548) 1998/050147		11/1998 11/1998	
JP JP	2000-275255 2001-502319	10/2000 2/2001	W	O WC	1998/053311		11/1998	
JP JP	2001-302319	7/2001	Wo		1999/001688		1/1999	
JP	2001-509437	7/2001	Wo) 1999/009042) 1999/012016		2/1999 3/1999	
JP JP	3191150 B2 2001-515216	7/2001 9/2001	W		1999/017093		4/1999	
JР	2001-513210	11/2001	Wo		1999/029703		6/1999	
JP	2001-527220	12/2001	We) 1999/033559) 2000/022436		7/1999 4/2000	
JP JP	2002-503331 2002-085961	1/2002 3/2002	W		2000/022436		1/2001	
JP	2002-517735	6/2002	We		2001/014931		3/2001	

Page 10

(56)	Refer	ences Cited	Brahmasandra et al., On-chip DNA detection in mi
	FOREIGN PAT	ENT DOCUMENTS	separation systems, SPIE Conference on Microfluidic
	TORLIGIVIAI	ENT BOCOMENTS	Systems, 1998, vol. 3515, pp. 242-251, Santa Clara, Breadmore, M.C. et al., "Microchip-Based Purificat
WO	WO 2001/027614	4/2001	from Biological Samples", Anal. Chem., vol. 75 (200
WO	WO 2001/028684	4/2001	1886.
WO	WO 2001/030995	5/2001	
WO	WO 2001/041931	6/2001	Brody, et al., Diffusion-Based Extraction in a Mi
WO	WO 2001/046474	6/2001	Device, Sensors and Actuators Elsevier, 1997, vol. A5
WO	WO 2001/054813	8/2001	13-18.
WO WO	WO 2001/089681	11/2001	Broyles et al., "Sample Filtration, Concentration, an
WO	WO 2002/048164 WO 2002/072264	6/2002 9/2002	Integrated on Microfluidic Devices" Analytical Chem
WO	WO 2002/072204 WO 2002/078845	10/2002	can Chemical Society), (2003) 75(11): 2761-2767.
wo	WO 2002/086454	10/2002	Burns et al., "An Integrated Nanoliter DNA Analy
WO	WO 2003/007677	1/2003	Science 282:484-487 (1998).
WO	WO 2003/012325	2/2003	Carlen et al., "Paraffin Actuated Surface Micromachin
WO	WO 2003/012406	2/2003	IEEE MEMS 2000 Conference, Miyazaki, Japan, (Ja
WO	WO 2003/048295	6/2003	381-385.
WO	WO 2003/055605	7/2003	Chaudhari et al., "Transient Liquid Crystal Ther
WO WO	WO 2003/076661 WO 2003/078065	9/2003 9/2003	Microfabricated PCR Vessel Arrays", J Microelectro
WO	WO 2003/078003 WO 2003/087410	10/2003	7(4):345-355.
wo	WO 2004/007081	1/2004	Chang-Yen et al., "Design, fabrication, and packaging
WO	WO 2004/010760	2/2004	multianalyte-capable optical biosensor," J Microlith Micro
WO	WO 2004/048545	6/2004	(2006) 5(2):021105 in 8 pages.
WO	WO 2004/055522	7/2004	Chen et al., "Total nucleic acid analysis integrated on
WO	WO 2004/056485	7/2004	devices," Lab on a Chip. (2007) 7:1413-1423.
WO	WO 2004/074848	9/2004	Chung, Y. et al., "Microfluidic chip for high effi-
WO WO	WO 2004/094986 WO 2005/008255	11/2004 1/2005	extraction", Miniaturisation for Chemistry, Biology &
WO	WO 2005/008255 WO 2005/011867	2/2005	ing, vol. 4, No. 2 (Apr. 2004), pp. 141-147.
wo	WO 2005/030984	4/2005	Cooley et al., "Applications of Ink-Jet Printing To
WO	WO 2005/072353	8/2005	BioMEMS and Microfluidic Systems", Proceedings, S
WO	WO 2005/094981	10/2005	ence on Microfluids and BioMEMS, (Oct. 2001), 12
WO	WO 2005/107947	11/2005	Cui et al., "Design and Experiment of Silicon PCR (
WO	WO 2005/108571	11/2005	SPIE 4755, Design, Test, Integration, and Packaging MOEMS 2002, (Apr. 19, 2002) pp. 71-76.
WO WO	WO 2005/108620 WO 2005/116202	11/2005 12/2005	Edwards, "Silicon (Si)," in "Handbook of Optical
WO	WO 2005/110202 WO 2005/118867	12/2005	Solids" (Ghosh & Palik eds., 1997) in 24 pages.
WO	WO 2005/120710	12/2005	Goldmeyer et al., "Identification of Staphylococcus
WO	WO 2006/010584	2/2006	Determination of Methicillin Resistance Directly fi
WO	WO 2006/032044	3/2006	Blood Cultures by Isothermal Amplification and a
WO	WO 2006/035800	4/2006	Detection Device", J Clin Microbiol. (Apr. 2008) 46(4)
WO	WO 2006/043642	4/2006	Grunenwald H., "Optimization of Polymerase Chain F
WO WO	WO 2006/066001	6/2006 7/2006	Methods in Molecular Biology, PCR Protocols., Secon
WO	WO 2006/079082 WO 2006/081995	8/2006	Bartlett et al. [Eds.] Humana Press (2003) vol. 226,
wo	WO 2006/113198	10/2006	Hale et al., "Optical constants of Water in the 200-n
WO	WO 2006/119280	11/2006	Wavelength Region", Applied Optics, 12(3): 555-563
WO	WO 2007/044917	4/2007	Handal et al., "DNA mutation detection and analysis
WO	WO 2007/050327	5/2007	turized microfluidic systems", Expert Rev Mol D
WO	WO 2007/064117	6/2007	6(1):29-38.
WO	WO 2007/075919	7/2007	Handique et al, "Microfluidic flow control using sele
WO WO	WO 2007/091530	8/2007 10/2007	phobic patterning", SPIE, (1997) 3224: 185-194.
WO	WO 2007/112114 WO 2008/005321	1/2008	Handique et al., "On-Chip Thermopneumatic Pressure
WO	WO 2008/003321 WO 2008/030914	3/2008	Drop Pumping", Anal. Chem., (2001) 73(8):1831-183
wo	WO 2008/060604	5/2008	Handique et al., "Nanoliter-volume discrete drop i
WO	WO 2008/149282	12/2008	pumping in microfabricated chemical analysis systems
WO	WO 2009/012185	1/2009	Sensor and Actuator Workshop (Hilton Head, South C
WO	WO 2009/054870	4/2009	8-11, 1998) pp. 346-349.
WO	WO 2010/118541	10/2010	Handique et al., "Mathematical Modeling of Drop
WO	WO 2010/130310	11/2010	Slit-Type Microchannel", J. Micromech. Microeng.
WO	WO 2010/140680	12/2010	(2001).
WO	WO 2011/101467	8/2011	Handique et al., "Nanoliter Liquid Metering in M

OTHER PUBLICATIONS

Becker H., "Hype, hope and hubris: the quest for the killer application in microfluidics", Lab on a Chip, The Royal Society of Chemistry (2009) 9:2119-2122.

Becker H., "Collective Wisdom", Lab on a Chip, The Royal Society of Chemistry (2010) 10:1351-1354.

Bollet, C. et al., "A simple method for the isolation of chromosomal DNA from Gram positive or acid-fast bacteria", Nucleic Acids Research, vol. 19, No. 8 (1991), p. 1955.

nicrofabricated ic Devices and , CA.

ation of DNA 003), pp. 1880-

Aicrofabricated 158, No. 1, pp.

and Separation mistry (Ameri-

lysis Device",

ined Valve," in Jan. 2000) pp.

ermometry of o Sys., (1998)

g of a practical rofab Microsyst.

on microfluidic

fficiency DNA & Bioengineer-

Technology to SPIE Confer-2 pages.

Chips," Proc. ng of MEMS/

Constants of

us aureus and from Positive a Disposable 4): 1534-1536. Reactions," in ond Edition by pp. 89-99.

nm to 200-µm 53 (1973).

is using minia-Diagn. (2006)

elective hydro-

re for Discrete 838.

injection and s". Solid-State Carolina, Jun.

p Mixing in a g., 11:548-554

Microchannels Using Hydrophobic Patterns", Anal. Chem., 72(17):4100-4109 (2000). Harding et al., "DNA isolation using Methidium-Spermine-Sepharose", Meth Enzymol. (1992) 216: 29-39.

Harding et al., "Rapid isolation of DNA from complex biological samples using a novel capture reagent-methidium-sperminesepharose", Nucl Acids Res. (1989) 17(17): 6947-6958.

He, et al., Microfabricated Filters for Microfluidic Analytical Systems, Analytical Chemistry, American Chemical Society, 1999, vol. 71, No. 7, pp. 1464-1468.

Ibrahim, et al., Real-Time Microchip PCR for Detecting Single-Base Differences in Viral and Human DNA, Analytical Chemistry, American Chemical Society, 1998, 70(9): 2013-2017.

Page 11

(56) References Cited

OTHER PUBLICATIONS

International Preliminary Report on Patentability and Written Opinion dated Jan. 19, 2010 for Application No. PCT/US2008/008640, filed Jul. 14, 2008.

International Search Report and Written Opinion dated Apr. 4, 2008 for PCT/US2007/007513, filed Mar. 26, 2007.

International Search Report and Written Opinion dated Jan. 5, 2009 for PCT/US2007/024022, filed Nov. 14, 2007.

International Search Report dated Jun. 17, 2009 for Application No. PCT/US2008/008640, filed Jul. 14, 2008.

Irawan et al., "Cross-Talk Problem on a Fluorescence Multi-Channel Microfluidic Chip System," Biomed Micro. (2005) 7(3):205-211.

Khandurina et al., Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis, Analytical Chemistry American Chemical Society, 1999, 71(9): 1815-1819.

Khandurina et al., "Bioanalysis in microfluidic devices," J Chromatography A, (2002) 943:159-183.

Kim et al., "Electrohydrodynamic Generation and Delivery of Monodisperse Picoliter Droplets Using a Poly(dimethylsiloxane) Microchip", Anal Chem. (2006) 78: 8011-8019.

Kopp et al., Chemical Amplification: Continuous-Flow PCR on a Chip, www.sciencemag.org, 1998, vol. 280, pp. 1046-1048.

Kuo et al., "Remnant cationic dendrimers block RNA migration in electrophoresis after monophasic lysis", J Biotech. (2007) 129: 383-390.

Kutter et al., Solid Phase Extraction on Microfluidic Devices, J. Microcolumn Separations, John Wiley & Sons, Inc., 2000, 12(2): 93-97.

Labchem; Sodium Hydroxide, 0,5N (0.5M); Safety Data Sheet, 2015; 8 pages.

Lagally et al., Single-Molecule DNA Amplification and Analysis in an Integrated Microfluidic Device, Analytical Chemistry, American Chemical Society, 2001, 73(3): 565-570.

Liao et al., "Miniature RT-PCR system for diagnosis of RNA-based viruses," Nucl Acids Res. (2005) 33(18):e156 in 7 pages.

Lin et al., "Thermal Uniformity of 12-in Silicon Wafer During Rapid Thermal Processing by Inverse Heat Transfer Method," IEEE Transactions on Semiconductor Manufacturing, (2000) 13(4):448-456.

Livache et al., "Polypyrrole DNA chip on a Silicon Device: Example of Hepatitis C Virus Genotyping", Analytical Biochemistry, (1998) 255: 188-194.

Malitson, "Interspecimen Comparison of the Refractive Index of Fused Silica," J Optical Society of America, 55:1205-1209 (1965). Manz et al., "Miniaturized Total Chemical Analysis Systems: a Novel Concept for Chemical Sensing," Sensors and Actuators B1, (1990) 244-248.

Mastrangelo et al., Microfabricated Devices for Genetic Diagnostics. Proceedings of the IEEE (1998) 86(8):1769-1787.

Mascini et al., "DNA electrochemical biosensors", Fresenius J. Anal. Chem., 369: 15-22, (2001).

Meyers, R.A., Molecular Biology and Biotechnology: A Comprehensive Desk Reference; VCH Publishers, Inc. New York, NY; (1995) pp. 418-419.

Minco, "Conductive Heating Technologies for Medical Diagnostic Equipment," (2006) in 13 pages.

Nakagawa et al., Fabrication of amino silane-coated microchip for DNA extraction from whole blood, J of Biotechnology, Mar. 2, 2005, 116: 105-111.

Northrup et al., A Miniature Analytical Instrument for Nucleic Acids Based on Micromachined Silicon Reaction Chambers, Analytical Chemistry, American Chemical Society, 1998, 70(5): 918-922.

Oh K.W. et al., "A Review of Microvalves", J Micromech Microeng. (2006) 16:R13-R39.

Oleschuk et al., Trapping of Bead-Based Reagents within Microfluidic Systems: On-Chip Solid-Phase Extraction and Electrochromatography, Analytical Chemistry, American Chemical Society, 2000, 72(3): 585-590.

Pal et al., "Phase Change Microvalve for Integrated Devices", Anal Chem. (2004) 76: 3740-3748.

Palina et al., "Laser Assisted Boron Doping of Silicon Wafer Solar Cells Using Nanosecond and Picosecond Laser Pulses," 2011 37th IEEE Photovoltaic Specialists Conference, pp. 002193-002197, IEEE (2011).

Paulson et al., "Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping," Nature, Scientific Reports 8:9358 (2018) published at www.nature.com/scientificreports, Jun. 19, 2018. Picard et al., Laboratory Detection of Group B *Streptococcus* for Prevention of Perinatal Disease, Eur. J. Clin. Microbiol. Infect. Dis., Jul. 16, 2004, 23: 665-671.

Plambeck et al., "Electrochemical Studies of Antitumor Antibiotics", J. Electrochem Soc.: Electrochemical Science and Technology (1984), 131(11): 2556-2563.

Rohsenow et al. [Eds.], Handbook of Heat Transfer, 3rd Edition McGraw-Hill Publishers (1998) Chapters 1 & 3; pp. 108.

Roche et al. "Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells" Faseb J (2005) 19: 1341-1343.

Ross et al., Analysis of DNA Fragments from Conventional and Microfabricated PCR Devices Using Delayed Extraction MALDITOF Mass Spectrometry, Analytical Chemistry, American Chemical Society, 1998, 70(10): 2067-2073.

Sanchez et al., "Linear-After-The-Exponential (LATE)-PCR: An advanced method of asymmetric PCR and its uses in quantitative real-time analysis", PNAS (2004) 101(7): 1933-1938.

Sarma, K.S., "Liquid Crystal Displays", Chapter 32 in Electrical Measurement, Signal Processing, Displays, Jul. 15, 2003, ISBN: 978-0-8493-1733-0, Retrieved from the Internet: URL: http://http://197.14.51.10:81/pmb/ELECTRONIQUE/Electrical Measurement Signal Processing and Displays/Book/1733ch32.pdf; 21 pages.

Shen et al., "A microchip-based PCR device using flexible printed circuit technology," Sensors and Actuators B (2005), 105:251-258. Shoffner et al., Chip PCR.I. Surface Passivation of Microfabricated Silicon-Glass Chips for PCR, Nucleic Acids Research, Oxford University Press, (1996) 24(2): 375-379.

Smith, K. et al., "Comparison of Commercial DNA Extraction Kits for Extraction of Bacterial Genomic DNA from Whole-Blood Samples", Journal of Clinical Microbiology, vol. 41, No. 6 (Jun. 2003), pp. 2440-2443.

Spitzack et al., "Polymerase Chain Reaction in Miniaturized Systems: Big Progress in Little Devices", in Methods in Molecular Biology—Microfluidic Techniques, Minteer S.D. [Ed.] Humana Press (2006), pp. 97-129.

Squires et al., "Microfluidics: Fluid physics at the nanoliter scale", Rev Modern Phys. (2005) 77:977-1026.

Tanaka et al., "Modification of DNA extraction from maize using polyamidoamine-dendrimer modified magnetic particles", Proceedings of the 74th Annual Meeting of the Electrochemical Society of Japan, Mar. 29, 2007; Faculty of Engineering, Science University of Tokyo; 2 pages.

Velten et al., "Packaging of Bio-MEMS: Strategies, Technologies, and Applications," IEEE Transactions on Advanced Packaging, (2005) 28(4):533-546.

Wang, "Survey and Summary, from DNA Biosensors to Gene Chips", Nucleic Acids Research, 28(16):3011-3016, (2000).

Waters et al., Microchip Device for Cell Lysis, Multiplex PCR Amplification, and Electrophoretic Sizing, Analytical Chemistry, American Chemical Society, 1998, 70(1): 158-162.

Weigl, et al., Microfluidic Diffusion-Based Separation and Detection, www.sciencemag.org, 1999, vol. 283, pp. 346-347.

Wu et al., "Polycationic dendrimers interact with RNA molecules: polyamine dendrimers inhibit the catalytic activity of Candida ribozymes", Chem Commun. (2005) 3: 313-315.

Yoza et al., "Fully Automated DNA Extraction from Blood Using Magnetic Particles Modified with a Hyperbranched Polyamidoamine Dendrimer", J Biosci Bioeng, 2003, 95(1): 21-26.

Yoza et al., DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer, J Biotechnol., Mar. 20, 2003, 101(3): 219-228.

Zhang et al., "PCR Microfluidic Devices for DNA Amplification," Biotechnology Advances, 24:243-284 (2006).

Page 12

(56) References Cited

OTHER PUBLICATIONS

Zhang et al., "Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends," Nucl Acids Res., (2007) 35(13):4223-4237.

Zhou et al., "Cooperative binding and self-assembling behavior of cationic low molecular-weight dendrons with RNA molecules", Org Biomol Chem. (2006) 4(3): 581-585.

Zhou et al., "PAMAM dendrimers for efficient siRNA delivery and potent gene silencing", Chem Comm.(Camb.) (2006) 22: 2362-2364.

Zou et al., "A Micromachined Integratable Thermal Reactor," technical digest from International Electron Devices Meeting, IEEE, Washington, D.C., Dec. 2-5, 2001 (6 pages).

Petition for Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper 1 in IPR2019-00488) dated Dec. 20, 2018 (94 pages).

Declaration of Bruce K. Gale, Ph.D. (Exhibit 1001 in IPR2019-00488 and IPR2019-00490) dated Dec. 20, 2018 (235 pages).

Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Papers 5 and 6 in IPR2019-00488) dated Apr. 18, 2019 (79 pages).

Decision instituting Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper 8 in IPR2019-00488) dated Jul. 16, 2019 (20 pages).

Petition for Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper 1 in IPR2019E00490) dated Dec. 20, 2018 (85 pages).

Declaration of Michael G. Mauk, Ph.D. in Support of Patent Owner Preliminary Responses in IPR2019-00488 and IPR2019-00490 dated Apr. 18, 2019 (43 pages).

Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Papers 5 and 6 in IPR2019-00490) dated Apr. 18, 2019 (73 pages).

Decision instituting Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper 8 in IPR2019-00490) dated Jul. 16, 2019 (23 pages).

Patent Owner's Response in Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Paper 25 in IPR2019-00490) dated Oct. 16, 2019 (80 pages).

Patent Owner's Response in Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Paper 25 in IPR 2019-00488) dated Oct. 16, 2019 (93 pages).

Transcript of Deposition of Bruce K. Gale, Ph.D., in Support of Patent Owner's Responses (Exhibit 2012 in IPR2019-00488 and IPR2019-00490), taken Sep. 24, 2019 (124 pages).

Declaration of M. Allen Northrup, Ph.D. In Support of Patent Owner's Responses (Exhibit 2036 in IPR2019-00488 and IPR2019-00490) dated Oct. 16, 2019 (365 pages).

Complaint filed by Becton, *Dickinson et al.*, v. *NeuModx Molecular, Inc.* on Jun. 18, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS, Infringement Action involving U.S. Pat. No. 7,998,708; 8,273,308; 8,323,900; 8,415,103; 8,703,069; and 8,709,787 (29 pages).

Answer to Complaint filed by NeuModx Molecular, Inc. on Aug. 9, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (24 pages).

Amended Answer to Complaint filed by NeuModx Molecular, Inc. on Oct. 4, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (31 pages).

Altet et al., [Eds.] "Thermal Transfer and Thermal Coupling in IC's", Thermal Testing of Integrated Circuits; Chapter 2 (2002) Springer Science pp. 23-51.

Ateya et al., "The good, the bad, and the tiny: a review of microflow cytometry", Anal Bioanal Chem. (2008) 391(5):1485-1498.

Auroux et al., "Miniaturised nucleic acid analysis", Lab Chip. (2004) 4(6):534-546.

Baechi et al., "High-density microvalve arrays for sample processing in PCR chips", Biomed Microdevices. (2001) 3(3):183-190.

Baker M., "Clever PCR: more genotyping, smaller volumes." Nature Methods (May 2010) 70(5):351-356.

Becker H. "Fabrication of Polymer Microfluidic Devices", in Biochip Technology (2001), Chapter 4, pp. 63-96.

Becker H., "Microfluidic Devices Fabricated by Polymer Hot Embossing," in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002), Chapter 13, 32 pages.

Becker H., "Microfluidics: A Technology Coming of Age", Med Device Technol. (2008) 19(3):21-24.

Becker et al., "Portable CE system with contactless conductivity detection in an injection molded polymer chip for on-site food analysis", SPIE Proceedings MOEMS-MEMS 2008 Micro and Nanofabrication (2008) vol. 6886 in 8 pages.

Belgrader et al., "Rapid PCR for Identity Testing Using a Battery-Powered Miniature Thermal Cycler", J Forensic Sci. (1998) 43(2):315-319

Belgrader et al., "A minisonicator to rapidly disrupt bacterial spores for DNA analysis.", Anal Chem. (1999) 71(19):4232-4236.

Belgrader et al., "Real-time PCR Analysis on Nucleic Acids Purified from Plasma Using a Silicon Chip", Micro Total Analysis Systems 2000 (pp. 525-528). Springer, Dordrecht.

Belgrader et al., "A microfluidic cartridge to prepare spores for PCR analysis", Biosens Bioelectron. (2000) 14(10-11):849-852.

Belgrader et al., "A Battery-Powered Notebook Thermal Cycler for Rapid Multiplex Real-Time PCR Analysis", Anal Chem. (2001) 73(2):286-289.

Belgrader et al., "Rapid and Automated Cartridge-based Extraction of Leukocytes from Whole Blood for Microsatellite DNA Analysis by Capillary Electrophoresis", Clin Chem. (2001) 47(10):1917-1933.

Belgrader et al., "A Rapid, Flow-through, DNA Extraction Module for Integration into Microfluidic Systems", Micro Total Analysis Systems (2002) pp. 697-699). Springer, Dordrecht.

Belgrader et al., "Development of a Battery-Powered Portable Instrumentation for Rapid PCR Analysis", in Integrated Microfabicated Devices, (2002) Ch. 8, pp. 183-206, CRC Press.

Bell M., "Integrated Microsystems in Clinical Chemistry", in Integrated Microfabicated Devices, (2002) Ch. 16, pp. 415-435, CRC Press.

Berthier et al., "Managing evaporation for more robust microscale assays Part 1. Volume loss in high throughput assays", Lab Chip (2008) 8(6):852-859.

Berthier et al., "Managing evaporation for more robust microscale assays Part 2. Characterization of convection and diffusion for cell biology", Lab Chip (2008) 8(6):860-864.

Berthier et al., "Microdrops," in Microfluidics for Biotechnology (2006), Chapter 2, pp. 51-88.

Biomerieux Press Release: "bioMerieux—2018 Financial Results," dated Feb. 27, 2019, accessed at www.biomerieux.com, pp. 13.

Blanchard et al., "Micro structure mechanical failure characterization using rotating Couette flow in a small gap", J Micromech Microengin. (2005) 15(4):792-801.

Blanchard et al., "Single-disk and double-disk viscous micropumps", Sensors and Actuators A (2005) 122:149-158.

Blanchard et al., "Performance and Development of a Miniature Rotary Shaft Pump", J Fluids Eng. (2005) 127(4):752-760.

Blanchard et al., "Single-disk and double-disk viscous micropump", ASME 2004 Inter'l Mechanical Engineering Congress & Exposition, Nov. 13-20,2004, Anaheim, CA, IMECE2004-61705:411-417. Blanchard et al., "Miniature Single-Disk Viscous Pump (Single-DVP), Performance Characterization", J Fluids Eng. (2006) 128(3):602-610.

Brahmasandra et al., "Microfabricated Devices for Integrated DNA Analysis", in Biochip Technology by Cheng et al., [Eds.] (2001) pp. 229-250.

Bu et al., "Design and theoretical evaluation of a novel microfluidic device to be used for PCR", J Micromech Microengin. (2003) 13(4):S125-S130.

Cady et al., "Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform", Sensors Actuat B. (2005) 107:332-341.

Carles et al., "Polymerase Chain Reaction on Microchips" in Methods in Molecular Biology—Microfluidic Techniques, Reviews & Protocols by Minteer S.D. [Ed.] Humana Press (2006), vol. 321; Chapter 11, pp. 131-140.

Page 13

(56) References Cited

OTHER PUBLICATIONS

Chang-Yen et al., "A novel integrated optical dissolved oxygen sensor for cell culture and micro total analysis systems", IEEE Technical Digest Mems International Conference Jan. 24, 2002, 4 pages.

Chang-Yen et al., "A PDMS microfluidic spotter for fabrication of lipid microarrays", IEEE 3rd EMBS Special Topic Conference May 12-15, 2005; 2 pages.

Chang-Yen et al., "Design and fabrication of a multianalyte-capable optical biosensor using a multiphysics approach", IEEE 3rd EMBS Special Topic Conference May 12-15, 2005; 2 pages.

Chang-Yen et al., "A Novel PDMS Microfluidic Spotter for Fabrication of Protein Chips and Microarrays", IEEE J of Microelectromech Sys. (2006) 15(5): 1145-1151.

Chang-Yen et al., "Spin-assembled nanofilms for gaseous oxygen sensing." Sens Actuators B: Chemical (2007), 120(2):426-433.

Chen P-C., "Accelerating micro-scale PCR (polymerase chain reactor) for modular lab-on-a-chip system", LSU Master's Theses—Digital Commons, (2006) 111 pages.

Cheng et al., "Biochip-Based Portable Laboratory", Biochip Tech. (2001):296-289.

Cho et al., "A facility for characterizing the steady-state and dynamic thermal performance of microelectromechanical system thermal switches", Rev Sci Instrum. (2008) 79(3):034901-1 to -8. Chong et al., "Disposable Polydimethylsioxane Package for 'Bio~Microfluidic System", IEEE Proceedings Electonic Components and Technology (2005); 5 pages.

Chou et al., "A miniaturized cyclic PCR device—modeling and experiments", Microelec Eng. (2002) 61-62:921-925.

Christel et al., "Nucleic Acid Concentration and PCR for Diagnostic Applications", in Micro Total Analysis Systems. (1998) D.J. Harrison et al. [Eds.] pp. 277-280.

Christel et al., "Rapid, Automated Nucleic Acid Probe Assays Using Silicon Microstructures for Nucleic Acid Concentration", J Biomech Eng. (1999) 121(1):22-27.

Christensen et al., "Characterization of interconnects used in PDMS microfluidic systems", J Micromech Microeng. (2005) 15:928 in 8 pages.

Crews et al, "Rapid Prototyping of a Continuous-Flow PCR Microchip", Proceedings of the AiChE Annual Meeting(Nov. 15, 2006) (335a) 3 pages.

Crews et al., Thermal gradient PCR in a continuous-flow microchip. In Microfluidics, BioMEMS, and Medical Microsystems V; Jan. 2007; vol. 6465, p. 646504; 12 pages.

Crews et al., "Continuous-flow thermal gradient PCR", Biomed Microdevices. (2008) 10(2):187-195.

Cui et al., "Electrothermal modeling of silicon PCR chips", In MEMS Design, Fabrication, Characterization, and Packaging, (Apr. 2001) (vol. 4407, pp. 275-280.

Danaher Press Release: "Danaher to Acquire Cepheid for \$53.00 per share, or approximately \$4 Billion," dated Sep. 6, 2016, accessed at www.danaher.com, pp. 3.

Demchenko A.P., "The problem of self-calibration of fluorescence signal in microscale sensor systems", Lab Chip. (2005) 5(11):1210-1223.

Dineva et al., "Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings", Analyst. (2007) 132(12):1193-1199.

Dishinger et al., "Multiplexed Detection and Applications for Separations on Parallel Microchips", Electophoresis. (2008) 29(16):3296-3305.

Dittrich et al., "Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in muTAS?", Anal Bioanal Chem. (2005) 382(8):1771-1782.

Dittrich et al., "Lab-on-a-chip: microfluidics in drug discovery", Nat Rev Drug Discov. (2006) 5(3):210-208.

Dunnington et al., "Approaches to Miniaturized High-Throughput Screening of Chemical Libraries", in Integrated Microfabicated Devices, (2002) Ch. 15, pp. 371-414, CRC Press.

Eddings et al., "A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices", J Micromech Microengin. (2006) 16(11).

Edwards et al., "Micro Scale Purification Systems for Biological Sample Preparation", Biomed Microdevices (2001) 3(3):211-218. Edwards et al., "A microfabricated thermal field-flow fractionation system", Anal Chem. (2002) 74(6):1211-1216.

Ehrlich et al., "Microfluidic devices for DNA analysis", Trends Biotechnol. (1999) 17(8):315-319.

El-Ali et al., "Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor", Sens Actuators A: Physical (2004) 110(1-3):3-10.

Erickson et al., "Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems", Lab Chip (2003) 3(3):141-149.

Erickson et al., "Integrated Microfluidic Devices", Analytica Chim Acta. (2004) 507:11-26.

Erill et al., "Development of a CMOS-compatible PCR chip: comparison of design and system strategies", J Micromech Microengin. (2004) 14(11):1-11.

Fair R.B., Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics Nanofluid. (2007) 3:245-281.

Fan et al., "Integrated Plastic Microfluidic Devices for Bacterial Detection", in Integrated Biochips for DNA Analysis by Liu et al. [Eds], (2007) Chapter 6, pp. 78-89.

Fiorini et al., "Disposable microfluidic devices: fabrication, function, and application", Biotechniques (2005) 38(3):429-446.

Frazier et al., "Integrated micromachined components for biological analysis systems", J Micromech. (2000) 1(1):67-83.

Gale et al., "Micromachined electrical field-flow fractionation (mu-EFFF) system", IEEE Trans Biomed Eng. (1998) 45(12):1459-1469.

Gale et al., "Geometric scaling effects in electrical field flow fractionation. 1. Theoretical analysis", Anal Chem. (2001) 73(10):2345-2352.

Gale et al., "BioMEMS Education at Louisiana Tech University", Biomed Microdevices, (2002) 4:223-230.

Gale et al., "Geometric scaling effects in electrical field flow fractionation. 2. Experimental results", Anal Chem. (2002) 74(5):1024-1030

Gale et al., "Cyclical electrical field flow fractionation", Electrophoresis. (2005) 26(9):1623-1632.

Gale et al., "Low-Cost MEMS Technologies", Elsevier B.V. (2008), Chapter 1.12; pp. 342-372.

Garst et al., "Fabrication of Multilayered Microfluidic 3D Polymer Packages", IEEE Proceedings Electronic Components & Tech, Conference May/Jun. 2005, pp. 603-610.

Gärtner et al., "Methods and instruments for continuous-flow PCR on a chip", Proc. SPIE 6465, Microfluidics, BioMEMS, and Medical Microsystems V, (2007) 646502; 8 pages.

Giordano et al., "Toward an Integrated Electrophoretic Microdevice for Clinical Diagnostics", in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002) Chapter 1; pp. 1-34.

Graff et al., "Nanoparticle Separations Using Miniaturized Field-flow Fractionation Systems", Proc. Nanotechnology Conference and Trade Show (NSTI) (2005); pp. 8-12.

Greer et al., "Comparison of glass etching to xurography prototyping of microfluidic channels for DNA melting analysis", J Micromech Microengin. (2007) 17(12):2407-2413.

Guijt et al., "Chemical and physical processes for integrated temperature control in microfluidic devices", Lab Chip. (2003) 3(1):1-

Gulliksen A., "Microchips for Isothermal Amplification of RNA", Doctorial Thesis (2007); Department of Mol. Biosciences—University of Oslo; 94 pages.

Guttenberg et al., "Planar chip device for PCR and hybridization with surface acoustic wave pump", Lab Chip. (2005) 5(3):308-317. Haeberle et al., "Microfluidic platforms for lab-on-a-chip applications", Lab Chip. (2007) 7(9):1094-1110.

Hansen et al., "Microfluidics in structural biology: smaller, faster . . . better", Curr Opin Struct Biol. (2003) 13(5):538-544. Heid et al., "Genome Methods—Real Time Quantitative PCR", Genome Res. (1996) 6(10):986-994.

Page 14

(56) References Cited

OTHER PUBLICATIONS

Henry C.S. [Ed], "Microchip Capillary electrophoresis", Methods in Molecular Biology, Humana Press 339 (2006) Parts I-IV in 250 pages.

Herr et al., "Investigation of a miniaturized capillary isoelectric focusing (cIEF) system using a full-field detection approach", Solid State Sensor and Actuator Workshop, Hilton Head Island (2000), pp. 4-8

Herr et al., "Miniaturized Isoelectric Focusing (µIEF) as a Component of a Multi-Dimensional Microfluidic System", Micro Total Analysis Systems (2001) pp. 51-53.

Herr et al., Miniaturized Capillary Isoelectric Focusing (cIEF): Towards a Portable High-Speed Separation Method. In Micro Total Analysis Systems (2000) Springer, Dordrecht; pp. 367-370.

Holland et al., "Point-of-care molecular diagnostic systems—past, present and future", Curr Opin Microbiol. (2005) 8(5):504-509.

Hong et al., "Integrated nanoliter systems", Nat Biotechnol. (2003) 21(10):1179-1183.

Hong et al., "Molecular biology on a microfluidic chip", J Phys.: Condens Matter (2006) 18(18):5691-5701.

Hong et al., "Integrated Nucleic Acid Analysis in Parallel Matrix Architecture", in Integrated Biochips for DNA Analysis by Liu et al. [Eds], (2007) Chapter 8, pp. 107-116.

Horsman et al., "Forensic DNA Analysis on Microfluidic Devices: A Review", J Forensic Sci. (2007) 52(4):784-799.

Hsieh et al., "Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction", Sens Actuators B: Chemical. (2008) 130(2):848-856.

Huang et al., "Temperature Uniformity and DNA Amplification Efficiency in Micromachined Glass PCR Chip", TechConnect Briefs; Tech Proc. of the 2005 NSTI Nanotechnology Conference and Trade Show. (2005) vol. 1:452-455.

Huebner et al., "Microdroplets: A sea of applications?", Lab Chip. (2008) 8(8):1244-1254.

Iordanov et al., "PCT Array on Chip—Thermal Characterization", IEEE Sensors (2003) Conference Oct. 22-24, 2003; pp. 1045-1048. Ji et al., "DNA Purification Silicon Chip", Sensors and Actuators A: Physical (2007) 139(12):139-144.

Jia et al., "A low-cost, disposable card for rapid polymerase chain reaction", Colloids Surfaces B: Biointerfaces (2007) 58:52-60.

Kaigala et al., "An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electophoresis", The Analyst (2008) 133(3):331-338.

Kajiyama et al., "Genotyping on a Thermal Gradient DNA Chip", Genome Res. (2003) 13(3):467-475.

Kang et al., "Simulation and Optimization of a Flow-Through Micro PCR Chip", NSTI—Nanotech (2006) vol. 2, pp. 585-588. Kantak et al., "Microfluidic platelet function analyzer for shear-induced platelet activation studies", 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Med and Biol. (May 2002) 5 pages.

Kantak et al., "Microfabricated cyclical electrical field flow fractionation", 7th International Conference on Miniaturized Chomical and Biochem Analysis Sys. (2003) pp. 1199-1202.

Kantak et al., "Platelet function analyzer: Shear activation of platelets in microchannels", Biomedical Microdevices (2003) 5(3):207-215

Kantak et al., "Characterization of a microscale cyclical electrical field flow fractionation system", Lab Chip. (2006) 6(5):645-654. Kantak et al., "Effect of carrier ionic strength in microscale cyclical electrical field-flow fractionation", Anal Chem. (2006) 78(8):2557-2564.

Kantak et al., "Improved theory of cyclical electrical field flow fractions", Electrophoresis (2006) 27(14):2833-2843.

Karunasiri et al., "Extraction of thermal parameters of microbolometer infrared detectors using electrical measurement", SPIE's Inter'l Symposium on Optical Science, Engineering, and Instrumentation, Proceedings (1998) vol. 3436, Infrared Technology and Applications XXIV; (1998) 8 pages.

Kelly et al., "Microfluidic Systems for Integrated, High-Throughput DNA Analysis," Analytical Chemistry, (2005), 97A-102A, Mar. 1, 2005, in 7 pages.

Kim et al., "Reduction of Microfluidic End Effects in Micro-Field Flow Fractionation Channels", Proc. MicroTAS 2003, pp. 5-9.

Kim et al., "Multi-DNA extraction chip based on an aluminum oxide membrane integrated into a PDMS microfluidic structure", 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Med and Biol. (May 2005).

Kim et al., "Geometric optimization of a thin film ITO heater to generate a uniform temperature distribution", (2006), Tokyo, Japan; pp. 293-295; Abstract.

Kim et al., "Micro-Raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip", J Micromech Microeng. (2006) 16(3):526-530.

Kim et al., "Patterning of a Nanoporous Membrane for Multisample DNA Extraction", J Micromech Microeng. (2006) 16:33-39. Kim et al., "Performance evaluation of thermal cyclers for PCR in a rapid cycling condition", Biotechniques. (2008) 44(4):495-501.

Kim et al., "Quantitative and qualitative analysis of a microfluidic DNA extraction system using a nanoporous AIO(x) membrane", Lab Chip. (2008) 8(9):1516-1523.

Kogi et al., "Microinjection-microspectroscopy of single oil droplets in water: an application to liquid/liquid extraction under solutionflow conditions", Anal Chim Acta. (2000) 418(2):129-135.

Kopf-Sill et al., "Creating a Lab-on-a-Chip with Microfluidic Technologies", in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002) Chapter 2; pp. 35-54.

Kricka L.J., "Microchips, Bioelectronic Chips, and Gene Chips—Microanalyzers for the Next Century", in Biochip Technology by Cheng et al. [Eds]; (2006) Chapter 1, pp. 1-16.

Krishnan et al., "Polymerase chain reaction in high surface-to-volume ratio SiO2 microstructures", Anal Chem. (2004) 76(22):6588-6593.

Kuswandi et al., "Optical sensing systems for microfluidic devices: a review", Anal Chim Acta. (2007) 601(2):141-155.

Lagally et al., "Genetic Analysis Using Portable PCR-CE Microsystem", Proceedings 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems (2003) pp. 1283-1286.

Lagally et al., "Integrated portable genetic analysis microsystem for pathogen/infectious disease detection", Anal Chem. (2004) 76(11):3152-3170.

Lauerman L.H., "Advances in PCR technology", Anim Health Res Rev. (2004) 5(2):247-248.

Lawyer et al., "High-level Expression, Purification, and Enzymatic Characterization of Full-length Therm us aquaticus DNA Polymerase and a Truncated Form Deficient in 5'To 3'Exonuclease Activity." Genome research (1993) 2(4):275-287.

Lee et al., "Submicroliter-volume PCR chip with fast thermal response and very power consumption", 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, (2003) pp. 187-190.

Lee et al., "Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption", Lab Chip. (2004) 4(4):401-407.

Lewin et al., "Use of Real-Time PCR and Molecular Beacons to Detect Virus Replication in Human Immunodeficiency Virus Type 1-infected Individuals on Prolonged Effective Antiretroviral Therapy". J Virol. (1999) 73(7), 6099-6103.

Li et al., "Effect of high-aspect-ratio microstructures on cell growth and attachment", 1st Annual Inter'l IEEE-EMBS Special Topic Conference on Microtechnologies in Med and Biol. Proceedings Cat. No. 00EX451; (Oct. 2000) Poster 66, pp. 531-536. Li PCH., "Micromachining Methods et al." in Microfluidic Lab-

Li PCH., "Micromachining Methods et al." in Microfluidic Labon-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 2-3 to 2-5; pp. 10-49.

Li PCH., "Microfluidic Flow" in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 3, pp. 55-99.

Li PCH., "Detection Methods" in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 7, pp. 187-249.

Page 15

(56) References Cited

OTHER PUBLICATIONS

Li PCH., "Applications to Nucleic Acids Analysis" in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 9; pp. 293-325.

Li et al., "A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control", J Microelectromech Syst. (2006) 15(1):223-236.

Lien et al., "Integrated reverse transcription polymerase chain reaction systems for virus detection", Biosens Bioelectron. (2007) 22(8):1739-1748.

Lien et al., "Microfluidic Systems Integrated with a Sample Pretreatment Device for Fast Nucleic-Acid Amplification", J Microelectro Sys. (2008) 17(2):288-301.

Lifesciences et al., "Microfluidics in commercial applications; an industry perspective." Lab Chip (2006) 6:1118-1121.

Lin et al., "Simulation and experimental validation of micro polymerase chain reaction chips", Sens Actuators B: Chemical. (2000) 71(1-2):127-133.

Linder et al., "Microfluidics at the Crossroad with Point-of-care Diagnostics", Analyst (2007) 132:1186-1192.

Liu et al., "Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing", Anal Chem. (2007) 79(5):1881-1889.

Liu et al. [Eds], Integrated Biochips for DNA Analysis—Biotechnology Intelligence Unit; Springer/Landes Bioscience (2007) ISBN:978-0-387-76758-1; 216 pages.

Locascio et al., "ANYL 67 Award Address—Microfluidics as a tool to enable research and discovery in the life sciences", Abstract; The 236th ACS National Meeting (Aug. 2008); 2 pages.

Mahjoob et al., "Rapid microfluidic thermal cycler for polymerase chain reaction nucleic acid amplification", Inter'l J Heat Mass Transfer. (2008) 51(9-10):2109-2122.

Marcus et al., "Parallel picoliter rt-PCR assays using microfluidics", Anal Chem. (2006) 78(3):956-958.

Mariella R.P. Jr., "Microtechnology", Thrust Area Report FY 96 UCRL-ID-125472; Lawrence Livermore National Lab., CA (Feb. 1997) Chapter 3 in 44 pages.

Mariella R., "Sample preparation: the weak link in microfluidics-based biodetection", Biomed Microdevices. (2008) 10(6):777-784. McMillan et al., "Application of advanced microfluidics and rapid PCR to analysis of microbial targets", In Proceedings of the 8th international symposium on microbial ecology (1999), in 13 pages. Melin et al., "Microfluidic large-scale integration: the evolution of design rules for biological automation", Annu Rev Biophys Biomol Struct. (2007) 36:213-231.

Merugu et al., "High Throughput Separations Using a Microfabricated Serial Electric Split Ssystem" (2003), Proceedings of μTAS 2003, 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Oct. 5-9, 2003, Squaw Valley, California; 1191-1194, in 3 pages.

Miao et al., "Low cost micro-PCR array and micro-fluidic integration on single silicon chip", Int'l J Comput Eng Science (2003) 4(2):231-234.

Miao et al., "Flip-Chip packaged micro-plate for low cost thermal multiplexing", Int'l J Comput Eng Science. (2003) 4(2):235-238. Micheletti et al., "Microscale Bioprocess Optimisation", Curr Opin Biotech. (2006) 17:611-618.

MicroTAS 2005., "Micro Total Analysis Systems", Proceedings 9th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Boston, MA in Oct. 10-12, 2005 in 1667 pages.

MicroTAS 2007., "Micro Total Analysis Systems", Proceedings 11th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Paris, France in Oct. 7-11, 2007 in 1948 pages.

MicroTAS 2007., "Micro Total Analysis Systems", Advance Program for the Proceedings 11th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Paris, France in Oct. 7-11, 2007 in 42 pages.

Mitchell et al., "Modeling and validation of a molded polycarbonate continuous-flow polymerase chain reaction device," Microfluidics, BioMEMS, and Medical Microsystems, Proc. SPIE (2003) 4982:83-98.

Myers et al., "Innovations in optical microfluidic technologies for poin-of-care diagnostics", Lab Chip (2008) 8:2015-2031.

Namasivayam et al., "Advances in on-chip photodetection for applications in miniaturized genetic analysis systems", J Micromech Microeng. (2004) 14:81-90.

Narayanan et al., "A microfabricated electrical SPLITT system," Lab Chip, (2006) 6:105-114.

Neuzil et al., "Disposable real-time microPCR device: lab-on-a-chip at a low cost," Mol. Biosyst., (2006) 2:292-298.

Neuzil et al., "Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes," Nucleic Acids Research, (2006) 34(11)e77, in 9 pages.

Nguyen et al. [Eds], "Microfluidics for Internal Flow Control: Microfluidics" in Fundamentals and Applications of Microfluidics; 2nd Edition (2006) Introduction Chapter 1, pp. 1-9.

Nguyen et al. [Eds], "Microfluidics for Internal Flow Control: Microvalves" in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 6, pp. 211-254.

Nguyen et al. [Eds], "Microfluidics for Internal Flow Control: Micropumps" in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 7, pp. 255-309.

Nguyen et al. [Eds], "Microfluidics for Life Sciences and Chemistry: Microdispensers" in Fundamentals and Applications of Microfluidics; (2006), Chapter 11, pp. 395-418.

Nguyen et al. [Eds], "Microfluidics for Life Sciences and Chemistry: Microreactors" in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 13, pp. 443-477.

Ning et al., "Microfabrication Processes for Silicon and Glass Chips", in Biochip Technology, CRC-Press (2006) Chapter 2, pp. 17-38.

Northrup et al., "A MEMs-based Miiniature DNA Analysis System," Lawrence Livermore National Laboratory, (1995), submitted to Transducers '95, Stockholm, Sweden, Jun. 25-29, 1995, in 7 pages. Northrup et al., "Advantages Afforded by Miniaturization and Integration of DNA Analysis Instrumentation," Microreaction Technology, (1998) 278-288.

Northrup et al., "A New Generation of PCR Instruments and Nucleic Acid Concentration Systems," in PCR Applications: Protocols for Functional Genomics, (1999), Chapter 8, pp. 105-125.

Northrup, "MICROFLUIDICS, a few good tricks," Nature materials (2004), 3:282-283.

Northrup et al., "Microfluidics-based integrated airborne pathogen detection systems," Abstract, Proceedings of the SPIE, (2006), vol. 6398, Abstract in 2 pages.

Oh et al., "World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays," Lab Chip, (2005), 5:845-850.

Ohno et al., "Microfluidics: Applications for analytical purposes in chemistry and biochemistry," Electrophoresis (2008), 29:4443-4453.

Pal et al., "Phase Change Microvalve for Integrated Devices," Anal. Chem. (2004), 76(13):3740-3748, Jul. 1, 2004, in 9 pages.

Pal et al., "An integrated microfluidic for influenza and other genetic analyses," Lab Chip, (2005), 5:1024-1032, in 9 pages.

Pamme, "Continuous flow separations in microfluidic devices," Lab Chip, (2007), 7:1644-1659.

Pang et al., "A novel single-chip fabrication technique for three-dimensional MEMS structures," Institute of Microelectronics, Tsinghua University, Beijing, P.R. China, (1998), IEEE, 936-938.

Pang et al., "The Study of Single-Chip Integrated Microfluidic System," Tsinghua University, Beijing, P.R. China, (1998), IEEE, 895-898.

Papautsky et al., "Effects of rectangular microchannel aspect ratio on laminar friction constant", in Nucrofluidic Devices and Systems II (1999) 3877:147-158.

Petersen, Kurt E., "Silicon as a Mechanical Material." Proceedings of the IEEE, (May 1982) 70(5):420-457.

Page 16

(56) References Cited

OTHER PUBLICATIONS

Petersen et al., "Toward Next Generation Clinical Diagnostic Instruments: Scaling and New Processing Paradigms," Biomedical Microdevices (1998) 1(1):71-79.

Poser et al., "Chip elements for fast thermocycling," Sensors and Actuators A, (1997), 62:672-675.

Pourahmadi et al., "Toward a Rapid, Integrated, and Fully Automated DNA Diagnostic Assay for Chlamydia trachomatis and Neisseria gonorrhoeae," Clinical Chemistry, (2000), 46(9):1511-1513.

Pourahmadi et al., "Versatile, Adaptable and Programmable Microfluidic Platforms for DNA Diagnostics and Drug Discovery Assays," Micro Total Analysis Systems, (2000), 243-248.

Raisi et al., "Microchip isoelectric focusing using a miniature scanning detection system," Electrophoresis, (2001), 22:2291-2295. Raja et al., "Technology for Automated, Rapid, and Quantitative PCR or Reverse Transcriptin—PCR Clinical Testing," Clinical Chemistry, (2005), 51(5):882-890.

Reyes et al., "Micro Total Analysis Systems. 1. Introduction, Theory, and Technology", Anal Chem (2002) 74:2623-2636.

Rodriguez et al., "Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis," Electrophoresis, (2003), 24:172-178.

Roper et al., "Advances in Polymer Chain Reaction on Microfluidic Chips," Anal. Chem., (2005), 77:3887-3894.

Ross et al., "Scanning Temperature Gradient Focusing for Simultaneous Concentration and Separation of Complex Samples," Micro Total Analysis Systems 2005, vol. 2, (2005), Proceedings of μTAS 2005, Ninth International Conference on Miniaturized Systems for Chemistry and Life Sciences, Oct. 9-13, 2005, Boston, Massachusetts: 1022-1024.

Ross et al., "Simple Device for Multiplexed Electrophoretic Separations Using Gradient Elution Moving Boundary Electrophoresis with Channel Current Detection," Anal. Chem., (2008), 80(24):9467-9474.

Sadler et al., "Thermal Management of BioMEMS: Temperature Control for Ceramic-Based PCR and DNA Detection Devices," IEEE Transactions on Components and Packaging Technologies, (2003) 26(2):309-316.

Sant et al., "An Integrated Optical Detector for Microfabricated Electrical Field Flow Fractionation System," Proceedings of μ TAS 2003, 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Oct. 5-9, 2003, Squaw Valley, California; pp. 1259-1262.

Sant et al., "Geometric scaling effects on instrumental plate height in field flow fractionation", J Chromatography A (2006) 1104:282-290.

Sant H.J., "Reduction of End Effect-Induced Zone Broadening in Field-Flow Fractionation Channels", Anl Chem. (2006) 78:7978-7985.

Sant et al., "Microscale Field-Flow Fractionation: Theory and Practice", in Microfluidic Technologies for Miniaturized Analysis Systems. (2007) Chapter 12, pp. 4710521.

Schäferling et al., "Optical technologies for the read out and quality control of DNA and protein microarrays," Anal Bioanal Chem, (2006), 385: 500-517.

Serpengüzel et al., "Microdroplet identification and size measurement in sprays with lasing images", Optics express (2002) 10(20):1118-1132

Shackman et al., "Gradient Elution Moving Boundary Electrophoresis for High-Throughput Multiplexed Microfluidic Devices," Anal. Chem. (2007), 79(2), 565-571.

Shackman et al., "Temperature gradient focusing for microchannel separations," Anal Bioanal Chem, (2007), 387:155-158.

Shadpour et al., "Multichannel Microchip Electrophoresis Device Fabricated in Polycarbonate with an Integrated Contact Conductivity Sensor Array," Anal Chem., (2007), 79(3), 870-878.

Sia et al., "Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies," Electrophoresis, (2003), 24:3563-3576.

Sigurdson M., "AC Electrokinetic Enhancement for Assay Enhancement", ProQuest LLC (2008) Doctoral Thesis UMI Microform 3319791 in 24 pages.

Singh et al., "PCR thermal management in an integrated Lab on Chip," Journal of Physics: Conference Series, (2006), 34:222-227. Situma et al., "Merging microfluidics with microarray-based bioassays", Biomol Engin. (2006) 23:213-231.

Smith et al., "(576d) Micropatterned fluid lipid bilayers created using a continuous flow microspotter for multi-analyte assays," (2007), Biosensors II, 2007 AIChE Annual Meeting, Nov. 8,2007, Abstract in 2 pages.

Sommer et al., "Introduction to Microfluidics", in Microfluidics for Biological Applications by Tian et al. [Eds] (2008) Chapter 1, pp. 1-34.

Squires et al., "Microfluidics: Fluid physics at the nanoliter scale," Reviews of Modern Physics, (2005), 77(3):977-1026.

Sundberg et al., "Solution-phase DNA mutation scanning and SNP genotyping by nanoliter melting analysis," Biomed Microdevices, (2007), 9:159-166, in 8 pages.

Tabeling, P. [Ed.], "Physics at the micrometric scale," in Introduction to Microfluidics (2005) Chapter 1, pp. 24-69.

Tabeling, P. [Ed.], "Hydrodynamics of Microfluidic Systems", in Introduction to Microfluidics; (2005) Chapter 2, pp. 70-129.

Tabeling, P. [Ed.], Introduction to Microfluidics; (2005) Chapters 5-7, pp. 216-297.

Taylor et al., Fully Automated Sample Preparation for Pathogen Detection Performed in a Microfluidic Cassette, in Micro Total Analysis Systems, Springer (2001), pp. 670-672.

Taylor et al., "Lysing Bacterial Spores by Sonication through a Flexible Interface in a Microfluidic System," Anal. Chem., (2001), 73(3):492-496.

Taylor et al., "Microfluidic Bioanalysis Cartridge with Interchangeable Microchannel Separation Components," (2001), the 11th International Conference on Solid-State Sensors and Actuators, Jun. 10-14, 2001, Munich, Germany; 1214-1247.

Taylor et al., "Disrupting Bacterial Spores and Cells using Ultrasound Applied through a Solid Interface," (2002), 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, May 2-4, 2002, Madison, Wisconsin; 551-555.

Thorsen et al., "Microfluidic Large-scale integration," Science, (2002), 298:580-584.

Toriello et al., "Multichannel Reverse Transcription-Polymerase Chain Reaction Microdevice for Rapid Gene Expression and Biomarker Analysis," Anal. Chem., (2006) 78(23):7997-8003.

Ugaz et al., "Microfabricated electrophoresis systems for DNA sequencing and genotyping applications," Phil. Trans. R. Soc. Lond. A, (2004), 362:1105-1129.

Ugaz et al., "PCR in Integrated Microfluidic Systems", in Integrated Biochips for DNA Analysis by Liu et al. [Eds]; (2007) Chapter 7, pp. 90-106.

Ullman et al., "Luminescent oxygen channeling assay (LOCITM): sensitive, broadly applicable homogeneous immunoassay method". Clin Chem. (1996) 42(9), 1518-1526.

Vinet et al., "Microarrays and microfluidic devices: miniaturized systems for biological analysis," Microelectronic Engineering, (2002), 61-62:41-47.

Wang et al., "From biochips to laboratory-on-a-chip system", in Genomic Signal Processing and Statistics by Dougherty et al. [Eds]; (2005) Chapter 5, pp. 163-200.

Wang et al., "A disposable microfluidic cassette for DNA amplification and detection", Lab on a Chip (2006) 6(1):46-53.

Wang et al., "Micromachined Flow-through Polimerase Chain Reaction Chip Utilizing Multiple Membrane-activated Micropumps," (2006), MEMS 2006, Jan. 22-26, 2006, Istanbul, Turkey; 374-377. Woolley A.T., "Integrating Sample Processing and Detection with Microchip Capillary Electrophoresis of DNA", in Integrated Biochips for DNA Analysis by Liu et al. [Eds]; (2007) Chapter 5, pp. 68-77. Xiang et al., "Real Time PCR on Disposable PDMS Chip with a Miniaturized Thermal Cycler," Biomedical Microdevices, (2005), 7(4):273-279.

Xuan, "Joule heating in electrokinetic flow," Electrophoresis, (2008), 298:33-43.

Page 17

(56) References Cited

OTHER PUBLICATIONS

Yang et al., "High sensitivity PCR assay in plastic micro reactors," Lab Chip, (2002), 2:179-187.

Yang et al., "An independent, temperature controllable-microelectrode array," Anal. Chem., (2004), 76(5):1537-1543.

Yang et al., "Cost-effective thermal isolation techniques for use on microfabricated DNA amplification and analysis devices," J Micromech Microeng, (2005), 15:221-230.

Yobas et al., Microfluidic Chips for Viral RNA Extraction & Detection, (2005), 2005 IEEE, 49-52.

Yobas et al., "Nucleic Acid Extraction, Amplification, and Detection on Si-Based Microfluidic Platforms," IEEE Journal of Solid-State Circuits, (2007), 42(8):1803-1813.

Yoon et al., "Precise temperature control and rapid thermal cycling in a micromachined DNA polymer chain reaction chip," J. Micromech. Microeng., (2002), 12:813-823.

Zhang et al, "Temperature analysis of continuous-flow micro-PCR based on FEA," Sensors and Actuators B, (2002), 82:75-81.

Zhang et al, "Continuous □Flow PCR Microfluidics for Rapid DNA Amplification Using Thin Film Heater with Low Thermal Mass," Analytical Letters, (2007), 40:1672-1685, in 15 pages.

Zhang et al, "Direct Adsorption and Detection of Proteins, Including Ferritin, onto Microlens Array Patterned Bioarrays," J Am Chem Soc., (2007), 129:9252-9253.

Zhang et al, "Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trens," Biotechnology Advances, (2007), 25:483-514.

Zhao et al, "Heat properties of an integrated micro PCR vessel," Proceedings of SPIE, (2001), International Conference on Sensor Technology, 4414:31-34.

Zou et al., "Micro-assembled multi-chamber thermal cycler for low-cost reaction chip thermal multiplexing," Sensors and Actuators A, (2002), 102:114-121.

Zou et al., "Miniaturized Independently Controllable Multichamber Thermal Cycler," IEEE Sensors Journal, (2003), 3(6):774-780.

Petitioner's Reply to Patent Owner's Response to Petition in Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Paper 32 in IPR 2019-00488) dated Jan. 31, 2020 (34 pages).

Petitioner's Reply to Patent Owner's Response to Petition in Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Paper 32 in IPR 2019-00490) dated Jan. 31, 2020 (35 pages).

Second Declaration of Bruce K. Gale, Ph.D. (Exhibit 1026 in IPR2019-00488 and IPR2019-00490) dated Jan. 31, 2020 (91 pages).

Transcript of Deposition of M. Allen Northrup, Ph.D., (Exhibit 1027 in IPR2019-00488 and IPR2019-00490), taken Dec. 19, 2019 (109 pages).

U.S. Patent

Apr. 21, 2020

Sheet 1 of 121

US 10,625,261 B2

U.S. Patent

Apr. 21, 2020

Sheet 2 of 121

US 10,625,261 B2

U.S. Patent

Apr. 21, 2020

Sheet 3 of 121

US 10,625,261 B2

Apr. 21, 2020

Sheet 4 of 121

Apr. 21, 2020

Sheet 5 of 121

Apr. 21, 2020

Sheet 6 of 121

U.S. Patent Apr. 21, 2020 Sheet 7 of 121 US 10,625,261 B2

Apr. 21, 2020

Sheet 8 of 121

U.S. Patent US 10,625,261 B2 Apr. 21, 2020 **Sheet 9 of 121** First Locations Second Locations 806 802 805 803 809 804 Sensor Actuator 817 Lanes Tight Tolerance Peg Lanes

Apr. 21, 2020

Sheet 10 of 121

Apr. 21, 2020

Sheet 11 of 121

US 10,625,261 B2

FIG. 8B

Apr. 21, 2020

Sheet 12 of 121

U.S. Patent Apr. 21, 2020 Sheet 13 of 121 US 10,625,261 B2

U.S. Patent Apr. 21, 2020

2020 Sheet 14 of 121

US 10,625,261 B2

FIG. 8E

Apr. 21, 2020

Sheet 15 of 121

US 10,625,261 B2

FIG. 8F

Apr. 21, 2020

Sheet 16 of 121

US 10,625,261 B2

FIG. 80

U.S. Patent Apr. 21, 2020

Sheet 17 of 121

U.S. Patent Apr. 21, 2020 Sheet 18 of 121 US 10,625,261 B2

Apr. 21, 2020

Sheet 19 of 121

U.S. Patent Apr. 21, 2020 Sheet 20 of 121 US 10,625,261 B2

Apr. 21, 2020

Sheet 21 of 121

Apr. 21, 2020

Sheet 22 of 121

FIG. 10A

U.S. Patent Apr. 21, 2020 Sheet 23 of 121 US 10,625,261 B2

FIG. 10B

Apr. 21, 2020

Sheet 24 of 121

FIG. 11

U.S. Patent

Apr. 21, 2020

Sheet 25 of 121

US 10,625,261 B2

Apr. 21, 2020

Sheet 26 of 121

FIG. 12C

U.S. Patent Apr. 21, 2020

Sheet 27 of 121

US 10,625,261 B2

U.S. Patent US 10,625,261 B2 Apr. 21, 2020 **Sheet 28 of 121** ଠା 띠 Ш \Box + \circ മ്വ ~2200 ∢i

Apr. 21, 2020

Sheet 30 of 121

Apr. 21, 2020

Sheet 31 of 121

FIG. 17A

Apr. 21, 2020

Sheet 32 of 121

FIG. 17B

Apr. 21, 2020

Sheet 33 of 121

Apr. 21, 2020

Sheet 34 of 121

FIG. 17D

Apr. 21, 2020

Sheet 35 of 121

Apr. 21, 2020

Sheet 36 of 121

Apr. 21, 2020

Sheet 37 of 121

Apr. 21, 2020

Sheet 38 of 121

Apr. 21, 2020

Sheet 39 of 121

FIG. 22

Apr. 21, 2020 Sheet 40 of 121

Apr. 21, 2020

Sheet 41 of 121

Apr. 21, 2020

Sheet 42 of 121

Apr. 21, 2020

Sheet 43 of 121

FIG. 25B

U.S. Patent

Apr. 21, 2020

Sheet 44 of 121

US 10,625,261 B2

Apr. 21, 2020

Sheet 45 of 121

Apr. 21, 2020

Sheet 46 of 121

U.S. Patent Apr. 21, 2020 Sheet 47 of 121

FIG. 29

Apr. 21, 2020

Sheet 48 of 121

U.S. Patent

Apr. 21, 2020

Sheet 49 of 121

US 10,625,261 B2

U.S. Patent Apr. 21, 2020 Sheet 50 of 121 US 10,625,261 B2

Apr. 21, 2020 Sheet 51 of 121

FIG. 33

U.S. Patent

Apr. 21, 2020

Sheet 52 of 121

US 10,625,261 B2

Apr. 21, 2020

Sheet 53 of 121

FIG. 35

Apr. 21, 2020

Sheet 54 of 121

U.S. Patent Apr. 21, 2020 Sheet 55 of 121 US 10,625,261 B2

Apr. 21, 2020

Sheet 56 of 121 US 10,625,261 B2

Apr. 21, 2020

Sheet 57 of 121

Apr. 21, 2020

Sheet 58 of 121

Apr. 21, 2020

Sheet 59 of 121

FIG. 39B

Apr. 21, 2020

Sheet 60 of 121

U.S. Patent Apr. 21, 2020 Sheet 61 of 121 US 10,625,261 B2

FIG. 40C

Apr. 21, 2020

Sheet 62 of 121

Apr. 21, 2020

Sheet 63 of 121

US 10,625,261 B2

FIG 42

U.S. Patent Apr. 21, 2020 Sheet 64 of 121

Apr. 21, 2020

Sheet 65 of 121

Apr. 21, 2020

Sheet 66 of 121

Apr. 21, 2020

Sheet 67 of 121

Apr. 21, 2020

Sheet 68 of 121

U.S. Patent Ap

Apr. 21, 2020

Sheet 69 of 121

Apr. 21, 2020

Sheet 70 of 121

FIG. 47C

U.S. Patent

Apr. 21, 2020

Sheet 71 of 121

US 10,625,261 B2

U.S. Patent Apr. 21, 2020 Sheet 72 of 121 US 10,625,261 B2

Apr. 21, 2020

Sheet 73 of 121

U.S. Patent Apr. 21, 2020 US 10,625,261 B2 **Sheet 74 of 121** \bigcirc $\widehat{\mathbb{E}}$ (B) 0

Apr. 21, 2020

Sheet 75 of 121

Apr. 21, 2020

Sheet 76 of 121

US 10,625,261 B2

FIG. 51B

Apr. 21, 2020

Sheet 77 of 121

FIG. 51C

U.S. Patent

Apr. 21, 2020

Sheet 78 of 121

FIG. 53

Apr. 21, 2020

Sheet 80 of 121

FIG. 54A

U.S. Patent Apr. 21, 2020

Sheet 81 of 121

FIG. 54B

Apr. 21, 2020

Sheet 82 of 121

US 10,625,261 B2

FIG. 55A

Capillary action of controlled volume of wax causes it to fill up the Wax up to the right interface without blocking the liquid flowable microchannel

FIG. 55B

Apr. 21, 2020

Sheet 83 of 121

US 10,625,261 B2

FIG 56

Apr. 21, 2020

Sheet 84 of 121

FIG. 57

Apr. 21, 2020

Sheet 85 of 121

U.S. Patent Apr. 21, 2020 Sheet 86 of 121 US 10,625,261 B2

Apr. 21, 2020

Sheet 87 of 121

FIG. 60

U.S. Patent

Apr. 21, 2020

Sheet 88 of 121

US 10,625,261 B2

U.S. Patent

Apr. 21, 2020

Sheet 89 of 121

US 10,625,261 B2

Apr. 21, 2020

Sheet 90 of 121

U.S. Patent Apr. 21, 2020 US 10,625,261 B2 Sheet 91 of 121 1403 FIG. 64 Motorized Shaft 1403

U.S. Patent

Apr. 21, 2020

Sheet 92 of 121

FIG. 65A

FIG. 65B

Apr. 21, 2020

Sheet 93 of 121

Apr. 21, 2020

Sheet 94 of 121

Apr. 21, 2020

Sheet 95 of 121

Apr. 21, 2020 Sheet 96 of 121

US 10,625,261 B2

FIG. 69

Apr. 21, 2020

Sheet 97 of 121

U.S. Patent Apr. 21, 2020 Sheet 98 of 121

FIG. 71

U.S. Patent Apr. 21, 2020 Sheet 99 of 121 US 10,625,261 B2

U.S. Patent Apr. 21, 2020 Sheet 100 of 121 US 10,625,261 B2

Apr. 21, 2020

Sheet 101 of 121

FIG. 73

Apr. 21, 2020

Sheet 102 of 121

Apr. 21, 2020

Sheet 103 of 121

Apr. 21, 2020

Sheet 104 of 121

FIG. 76

U.S. Patent Apr. 21, 2020 Sheet 105 of 121 US 10,625,261 B2

FIG. 77

U.S. Patent

Apr. 21, 2020

Sheet 106 of 121

US 10,625,261 B2

Apr. 21, 2020

Sheet 107 of 121

FIG. 79A

Apr. 21, 2020

Sheet 108 of 121

U.S. Patent Apr. 21, 2020 Sheet 109 of 121 US 10,625,261 B2

U.S. Patent Apr. 21, 2020 Sheet 110 of 121 US 10,625,261 B2

U.S. Patent Apr. 21, 2020

Sheet 111 of 121

US 10,625,261 B2

U.S. Patent Apr. 21, 2020 Sheet 112 of 121 US 10,625,261 B2

FIG. 83

U.S. Patent

Apr. 21, 2020

Sheet 113 of 121

US 10,625,261 B2

U.S. Patent

Apr. 21, 2020

Sheet 114 of 121

US 10,625,261 B2

FIG. 85A

U.S. Patent

Apr. 21, 2020

Sheet 115 of 121

US 10,625,261 B2

Lysis Prep	<u>50</u> 10	₹0 30 50	20 40	Ŏ9	08 07	06	ŏŏi	061	<u> </u>	ŎŦĹ	160 150 140 130	ŎŽĮ	061 081 071	500 160	210	550	5 <u>40</u> 530	<u>097</u>	090	087 072	067	906 310	350		330	<u>0</u> 58	098	1088	00t 068 088 028 098 098		150	<u>QE</u>	ŎÞİ	09t
Pick up tips &aspirate samples 1-4		///	<u> </u>		 			_	4		 	1	}				+-		,	#-			+	}			Ή	╬	4			7	7	7
Move to EM/AB, dispense & Mix		anya			-			 	\vdash		╂		 	 		 	-			\vdash			+	╀			+	-	 	士	╁			T
Move to lysis tube and dispense 1-4		1		11	11			\vdash	\vdash		╂—		\vdash	ļ		†	╂			╫	 	T	╫	╄		†	╁	╁	 		╫	 		T
Mix 1-4 and drop tips 1-4					_						 		-	<u> </u>		<u> </u>	┼			╂		<u> </u>	\vdash					+			 			1
Pick up tips &aspirate samples 5-8											///		///			 				 			-	<u> </u>			ļ	 	ļ		<u> </u>			Ι
Move to EM/AB, dispense & Mix								-									-			├			┼─	ļ		†	\vdash	┼─			+	<u> </u>		T
Move to lysis tube and dispense 5-8											 		 		77	1							├	<u> </u>		T	├	-	<u> </u>		╂	<u> </u>		Τ
Mix 5-8 and drop tips 5-8											 		 	ļ		-							-	ļ		 	┼	┼			╂	<u> </u>		Т
Pick up tips &aspirate samples 5-8													 			<u> </u>						7//	1	1/	Ĺ,,	 	┢	 			├			T
Move to EM/AB, dispense & Mix																						 	_				<u> </u>	ļ					 	$\overline{}$
Move to lysis tube and dispense 5-8			\dashv	士	\dashv	二					-															7.	4							<u> </u>
Mix 5-8 and drop tips 5-8															***************************************	************																		

FIG. 85B

U.S. Patent

Apr. 21, 2020

Sheet 116 of 121

US 10,625,261 B2

Sample Removal	<u> </u> 	50 12 10	<u>92</u>	<u>Š</u> Š	32	017	20 42	99	09	0 <u>7</u> 99	97	08	<u>58</u>	96 06	011 901 001 96	ŠÓĹ	011	150 112	961	130	140 132	971	120 142	991 991	991 091	041	971	<u>Š</u> Šį 081	061	961	500	512 012 502 002	313	07.7	525	
Pick up tips and aspirate sample waste 1-4					*								-	 				ļ	.[-					<u> </u>	,	}	+	-		<u>-</u>	<u>;</u>	<u>'</u>	7	
Dispense into waste				<u> </u>	I make the												<u> </u>	<u> </u>		<u> </u>	 			+	<u> </u>			 	-						T	
Remove sample foam from 1-4 into waste			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ļ				/////	/////	***************************************	<u> </u>	ļ			<u> </u>								 			 	-						T	
Pick up tips and aspirate sample waste 5-8													1		10.13 (1.1			<u> </u>		 					1	ļ						 				
Dispense into waste																	5.384.332											 							T	
Remove sample foam from 5-8 into waste																				 	ļ	/////	/////	 	ļ			ļ	<u> </u>			1			T	
Pick up tips and aspirate sample waste 9-12																									5, 1 ;	•	; ' • ; ;		ļ., , , , ,			 			T	
Dispense into waste																,																			1	
Remove sample foam from 9-12 into waste																																		/////	V/////	

FIG. 85C

U.S. Patent

Apr. 21, 2020

Sheet 117 of 121

US 10,625,261 B2

FIG. 86 Electronics Block Diagram

U.S. Patent

Apr. 21, 2020

Sheet 118 of 121

US 10,625,261 B2

FIG. 87 Processor Base Board Block Diagram

U.S. Patent

Apr. 21, 2020

Sheet 120 of 121

US 10,625,261 B2

U.S. Patent Apr. 21, 2020 Sheet 121 of 121 US 10,625,261 B2

FIG. 90 Micro-Heater Board Block Diagram

FIG. 91 Motor Control Board Block Diagram

1

INTEGRATED APPARATUS FOR PERFORMING NUCLEIC ACID EXTRACTION AND DIAGNOSTIC TESTING ON MULTIPLE BIOLOGICAL SAMPLES

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/124,672, filed Sep. 7, 2018, which is a continuation of U.S. patent application Ser. No. 14/941,087, filed Nov. 13, 2015 and issued as U.S. Pat. No. 10,071,376 on Sep. 11, 2018, which is a continuation of U.S. patent application Ser. No. 12/218,498, filed Jul. 14, 2008 and issued as U.S. Pat. No. 9,186,677 on Nov. 17, 2015, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/959,437, filed Jul. 13, 2007, and is a continuation-in-part of U.S. patent application Ser. No. 11/985,577, filed Nov. 14, 2007 and issued on Aug. 20 16, 2011 as U.S. Pat. No. 7,998,708. The disclosures of all of the above-referenced prior applications, publications, and patents are considered part of the disclosure of this application, and are incorporated by reference herein in their entirety.

TECHNICAL FIELD

The technology described herein generally relates to systems for extracting polynucleotides from multiple ³⁰ samples, particularly from biological samples, and additionally to systems that subsequently amplify and detect the extracted polynucleotides. The technology more particularly relates to microfluidic systems that carry out PCR on multiple samples of nucleotides of interest within microfluidic ³⁵ channels, and detect those nucleotides.

BACKGROUND

The medical diagnostics industry is a critical element of 40 today's healthcare infrastructure. At present, however, in vitro diagnostic analyses no matter how routine have become a bottleneck in patient care. There are several reasons for this. First, many diagnostic analyses can only be done with highly specialist equipment that is both expensive 45 and only operable by trained clinicians. Such equipment is found in only a few locations—often just one in any given urban area. This means that most hospitals are required to send out samples for analyses to these locations, thereby incurring shipping costs and transportation delays, and pos- 50 sibly even sample loss or mishandling. Second, the equipment in question is typically not available 'on-demand' but instead runs in batches, thereby delaying the processing time for many samples because they must wait for a machine to fill up before they can be run.

Understanding that sample flow breaks down into several key steps, it would be desirable to consider ways to automate as many of these as possible. For example, a biological sample, once extracted from a patient, must be put in a form suitable for a processing regime that typically involves using 60 PCR to amplify a vector (such as a nucleotide) of interest. Once amplified, the presence of a nucleotide of interest from the sample needs to be determined unambiguously. Preparing samples for PCR is currently a time-consuming and labor intensive step, though not one requiring specialist 65 skills, and could usefully be automated. By contrast, steps such as PCR and nucleotide detection (or 'nucleic acid

2

testing') have customarily only been within the compass of specially trained individuals having access to specialist equipment.

There is a need for a method and apparatus of carrying out sample preparations on samples in parallel, with or without PCR and detection on the prepared biological samples, and preferably with high throughput, but in a manner that can be done routinely at the point of care, or without needing the sample to be sent out to a specialized facility.

The discussion of the background herein is included to explain the context of the inventions described herein. This is not to be taken as an admission that any of the material referred to was published, known, or part of the common general knowledge as at the priority date of any of the claims.

Throughout the description and claims of the specification the word "comprise" and variations thereof, such as "comprising" and "comprises", is not intended to exclude other additives, components, integers or steps.

SUMMARY

A diagnostic apparatus, comprising: a first module configured to extract nucleic acid simultaneously from a plu-25 rality of nucleic-acid containing samples, wherein the first module comprises: one or more racks, each configured to accept a number of samples and a corresponding number of holders, wherein each holder comprises a process chamber, a waste chamber, one or more pipette tips, and one or more receptacles, wherein the one or more receptacles contain respectively sufficient quantities of one or more reagents for carrying out extraction of nucleic acid from a sample; a magnetic separator configured to move relative to the process chambers of each holder; a heater assembly configured to independently heat each of the process chambers; and a liquid dispenser configured to carry out fluid transfer operations on two or more holders simultaneously; and a second module configured to simultaneously amplify the nucleic acid extracted from the plurality of samples, wherein the second module comprises: one or more bays, each configured to receive a microfluidic cartridge, wherein the cartridge is configured to separately accept and to separately amplify the nucleic acid extracted from multiple samples; and one or more detection systems.

A diagnostic apparatus comprising: one or more racks, on each of which is mounted a number of nucleic acid containing samples and a corresponding number of holders, wherein each holder comprises a process chamber, a waste chamber, one or more pipette tips, and one or more receptacles, wherein the one or more receptacles contain, respectively, sufficient quantities of one or more reagents for carrying out extraction of nucleic acid from a sample; a magnetic separator movable from a first position to a second position adjacent to the process chamber of each of the one or more holders; a heater assembly comprising a number of heater units, each of which is in thermal contact with one of the process chambers; one or more bays, each bay having a shape complementary to a shape of a microfluidic cartridge, wherein the cartridge comprises a number of inlets each of which is in fluid communication with one of a number of channels in which nucleic acid extracted from one of the number of samples is amplified, and wherein the cartridge further comprises one or more windows that permit detection of amplified nucleic acid; a liquid dispenser having one or more dispensing heads, wherein the liquid dispenser is movable from a first position above a first holder to a second position above a second holder, and is movable from the first

position above the first holder to a different position above the first holder, and is further movable from a position above one of the holders to a position above one of the number of inlets; and one or more detection systems positioned in proximity to the one or more windows.

A diagnostic instrument comprising: a liquid handling unit that extracts nucleic acid from a sample in a unitized reagent strip; a microfluidic cartridge that, in conjunction with a heater element, carriers out real-time PCR on nucleic acid extracted from the sample; and a detector that provides 10 a user with a diagnosis of whether the sample contains a nucleotide of interest.

Also described herein are methods of using the diagnostic apparatus, including a method of diagnosing a number of samples in parallel, using the apparatus.

A unitized reagent holder, comprising: a strip, to which is attached: a single process tube; one or more receptacles, each of which holding a reagent selected from the group consisting of: a sample preparation reagent, PCR reagents for a first analyte, and one or more liquid reagents; a waste 20 tube; one or more sockets configured to hold one or more pipette tips; and a pipette tip sheath configured to surround the one or more pipette tips.

A liquid dispenser, comprising: one or more sensors; a manifold; one or more pumps in fluid communication with 25 extracting nucleic acid from multiple samples in parallel, the manifold; one or more dispense heads in fluid communication with the manifold; a gantry that provides freedom of translational motion in three dimensions; and electrical connections that accept electrical signals from an external controller, wherein the liquid dispenser has no inlet or outlet 30 for fluids, other than through the one or more pumps.

A separator for magnetic particles, comprising: one or more magnets aligned linearly; a motorized shaft upon which the one or more magnets can rise or fall in such a manner that the one or more magnets attains close proximity 35 apparatus. to one or more receptacles containing magnetic particles; and control circuitry to control motion of the motorized

An integrated separator and heater, comprising: a heater assembly, wherein the heater assembly comprises a plurality 40 conjunction with a heater unit. of independently controllable heater units, each of which is configured to accept and to heat a process chamber; one or more magnets aligned linearly; a motorized shaft upon which the one or more magnets can rise or fall in such a manner that the one or more magnets attains close proximity 45 a rack of FIG. 7. to one or more of the process chambers; and control circuitry to control motion of the motorized shaft and heating of the heater units.

A preparatory apparatus comprising: a first module configured to extract nucleic acid simultaneously from a number 50 of nucleic-acid containing samples, wherein the first module comprises: one or more racks, each configured to accept the number of samples and a corresponding number of holders, wherein each holder comprises a process chamber, a waste chamber, one or more pipette tips, and one or more recep- 55 tacles, wherein the one or more receptacles contain, respectively, sufficient quantities of one or more reagents for carrying out extraction of nucleic acid from a sample; a magnetic separator configured to move relative to the process chambers of each holder; a heater assembly configured 60 to independently heat each of the process chambers; and a liquid dispenser configured to carry out fluid transfer operations on two or more holders simultaneously; and a second module configured to receive and to store the nucleic acid extracted from the number of samples.

A preparatory apparatus comprising: one or more racks, on each of which is mounted a number of nucleic acid

containing samples and a corresponding number of holders, wherein each holder comprises a process chamber, a waste chamber, one or more pipette tips, and one or more receptacles, wherein the one or more receptacles contain, respectively, sufficient quantities of one or more reagents for carrying out extraction of nucleic acid from a sample; a magnetic separator movable from a first position to a second position adjacent to the process chambers of each holder; a heater assembly comprising a number of heater units, each of which is in contact with process chamber; a liquid dispenser movable from a first position above a first holder to a second position above a second holder; and a storage compartment having a number of compartments, wherein each compartment stores the nucleic acid extracted from one of the number of samples.

A unitized reagent holder, comprising: a strip, to which is attached: a single process tube; one or more receptacles, each of which holding a reagent selected from the group consisting of: a sample preparation reagent, and one or more liquid reagents; a waste tube; one or more sockets configured to hold one or more pipette tips; and a pipette tip sheath configured to surround the one or more pipette tips.

The present technology additionally includes a process for using the apparatus as described herein.

BRIEF DESCRIPTION OF SELECTED **DRAWINGS**

FIG. 1A show a schematic of a preparatory apparatus; FIG. 1B shows a schematic of a diagnostic apparatus.

FIG. 2 shows a schematic of control circuitry.

FIGS. 3A and 3B show exterior views of an exemplary

FIG. 4 shows an exemplary interior view of an apparatus. FIG. 5 shows perspective views of an exemplary rack for sample holders.

FIG. 6 shows perspective views of the rack of FIG. 5 in

FIG. 7 shows a perspective view of an exemplary rack for sample holders.

FIGS. 8A-8K show various views of the rack of FIG. 7. FIG. 9 shows an area of an apparatus configured to accept

FIGS. 10A and 10B show an first exemplary embodiment of a reagent holder having pipette sheath, in perspective view (FIG. 10A) and underside view (FIG. 10B).

FIG. 11 shows an exemplary embodiment of a reagent holder not having a pipette sheath, in perspective view.

FIGS. 12A-12C show a second exemplary embodiment of a reagent holder having a pipette sheath, in perspective view (FIG. 12A) and cross-sectional view (FIG. 12B), and exploded view (FIG. 12C).

FIGS. 13A and 13B show a stellated feature on the interior of a reagent tube, in cross-sectional (FIG. 13A) and plan (FIG. 13B) view.

FIG. 14 shows a sequence of pipetting operations in conjunction with a reagent tube having a stellated feature.

FIG. 15 shows embodiments of a laminated layer.

FIG. 16 shows a sequence of pipetting operations in conjunction with a laminated layer.

FIGS. 17A-17D show an exemplary kit containing holders and reagents.

FIG. 18 shows a liquid dispense head.

FIGS. 19A-19C show a liquid dispense head.

FIG. 20 shows an exemplary distribution manifold.

50

5

- FIG. 21 shows a scanning read-head attached to a liquid dispense head.
 - FIG. 22 shows a barcode scanner in cross-sectional view.
- FIG. 23 shows a barcode reader positioned above a microfluidic cartridge.
 - FIG. 24 shows pipette tip sensors.
- FIGS. 25A and 25B show an exemplary device for stripping pipette tip.
- FIG. 26 shows a heater unit in perspective and crosssectional view.
- FIG. 27 shows an integrated heater and separator unit in cross-sectional view.
 - FIG. 28 shows a cartridge auto-loader.
 - FIG. 29 shows a cartridge stacker.
- FIG. 30 shows a cartridge stacker in position to deliver a cartridge to an auto-loader.
 - FIG. 31 shows a cartridge loading system.
 - FIG. 32 shows a disposal unit for used cartridges.
- FIG. 33 shows a cartridge stacker in full and empty 20 diagnostic apparatus. configurations. FIG. 69 shows law
- FIG. 34 shows a microfluidic cartridge, a read-head, and a cartridge tray.
- FIG. 35 shows a cross-section of a pipetting head and a cartridge in position in a microfluidic apparatus.
- FIG. 36 shows an exemplary microfluidic cartridge having a 3-layer construction.
- FIG. 37 shows a plan of microfluidic circuitry and inlets in an exemplary multi-lane cartridge.
 - FIG. 38A shows an exemplary multi-lane cartridge.
- FIG. 38B shows a portion of an exemplary multi-layer cartridge.
- FIGS. **39**A, **39**B show an exemplary microfluidic network in a lane of a multi-lane cartridge;
- FIGS. **40**A-**40**C show diagrams of exemplary microfluidic valves. FIG. **40**A additionally shows the valve in an open state, and the valve in a closed state.
 - FIG. 41 shows a vent.
- FIG. **42** shows an exemplary highly-multiplexed microfluidic cartridge;
- FIGS. 43-46 show various aspects of exemplary highly multiplexed microfluidic cartridges; and
- FIGS. 47A-C show various aspects of a radially configured highly multiplexed microfluidic cartridge.
- FIG. **48** shows a view in cross-section of a microfluidic 45 cartridge.
- FIGS. **49**A, **49**B show a PCR reaction chamber and associated heaters.
- FIG. 50 shows thermal images of heater circuitry in operation.
- FIGS. 51A-51C shows various cut-away sections that can be used to improve cooling rates during PCR thermal cycling
- FIG. **52** shows a plot of temperature against time during a PCR process, as performed on a microfluidic cartridge as 55 described herein.
- FIG. 53 shows an assembly process for a cartridge as further described herein.
- FIGS. **54**A and **54**B show exemplary apparatus for carrying out wax deposition.
- FIGS. 55A and 55B show exemplary deposition of wax droplets into microfluidic valves.
- FIG. **56** shows an overlay of an array of heater elements on an exemplary multi-lane microfluidic cartridge, wherein various microfluidic networks are visible.
- FIG. 57 shows a cross-sectional view of an exemplary detector.

6

- FIG. **58** shows a perspective view of a detector in a read-head
- FIG. **59** shows a cutaway view of an exemplary detector in a read-head.
- FIG. **60** shows an exterior view of an exemplary multiplexed read-head with an array of detectors therein.
 - FIG. 61 shows an cutaway view of an exemplary multiplexed read-head with an array of detectors therein.
- FIG. **62** shows a block diagram of exemplary electronic circuitry in conjunction with a detector as described herein.
 - FIG. 63 shows an exemplary liquid dispensing system.
 - FIG. 64 shows an exemplary heater/separator.
- FIGS. **65**A and **65**B show exemplary aspects of a computer-based user interface.
- FIG. 66 shows schematically layout of components of a preparatory apparatus.
 - FIG. **67** shows layout of components of an exemplary preparatory apparatus.
 - FIG. **68** shows schematically layout of components of a diagnostic apparatus.
- FIG. **69** shows layout of components of an exemplary diagnostic apparatus.
- FIGS. **70** and **71** show exterior and interior of an exemplary diagnostic apparatus.
- FIGS. **72**A and **728** show a thermocycling unit configured to accept a microfluidic cartridge.
- FIG. 73 shows schematically a layout of components of a high-efficiency diagnostic apparatus.
- FIG. **74** shows layout of components of an exemplary ³⁰ high-efficiency diagnostic apparatus.
 - FIG. **75** shows a plan view of a 24-lane microfluidic cartridge
 - FIG. **76** shows a perspective view of the cartridge of FIG. **75**
 - FIG. 77 shows an exploded view of the cartridge of FIG.
 - FIG. 78 shows an exemplary detection unit.
 - FIGS. 79A, 79B show cutaway portions of the detection unit of FIG. 78.
 - FIGS. **80**, and **81** show alignment of the detection unit with a microfluidic cartridge.
 - FIGS. 82 and 83 show exterior and cutaways, respectively, of an optics block.
 - FIG. 84 shows a Scorpion reaction, schematically.
 - FIGS. **85**A-**85**C show, schematically, pipette head usage during various preparatory processes.
 - FIGS. **86-91** show exemplary layouts of electronics control circuitry.

DETAILED DESCRIPTION

Nucleic acid testing (NAT) as used herein is a general term that encompasses both DNA (Deoxyribonucleic acid) and RNA (Ribonucleic acid) testing. Exemplary protocols that are specific to RNA and to DNA are described herein. It is to be understood that generalized descriptions where not specific to RNA or to DNA either apply to each equally or can be readily adapted to either with minor variations of the description herein as amenable to one of ordinary skill in the art. It is also to be understood that the terms nucleic acid and polynucleotide may be used interchangeably herein.

The apparatuses as described herein therefore find application to analyzing any nucleic acid containing sample for any purpose, including but not limited to genetic testing, and clinical testing for various infectious diseases in humans. Targets for which clinical assays currently exist, and that may be tested for using the apparatus and methods herein

question.

may be bacterial or viral, and include, but are not limited to: Chlamydia Trachomatis (CT); Neisseria Gonorrhea (GC); Group B Streptococcus; HSV; HSV Typing; CMV; Influenza A & B; MRSA; RSV; TB; Trichomonas; Adenovirus; Bordatella; BK; JC; HHV6; EBV; Enterovirus; and *M. pneu-smoniae*.

The apparatus herein can be configured to run on a laboratory benchtop, or similar environment, and can test approximately 45 samples per hour when run continuously throughout a normal working day. This number can be 10 increased, according to the number of tests that can be accommodated in a single batch, as will become clear from the description herein. Results from individual raw samples are typically available in less than 1 hour.

Where used herein, the term "module" should be taken to 15 mean an assembly of components, each of which may have separate, distinct and/or independent functions, but which are configured to operate together to produce a desired result or results. It is not required that a every component within a module be directly connected or in direct communication 20 with every other. Furthermore, connectivity amongst the various components may be achieved with the aid of a component, such as a processor, that is external to the module.

Apparatus Overview

An apparatus having various components as further described herein can be configured into at least two formats, preparatory and diagnostic, as shown respectively in FIGS. 1A and 1B. A schematic overview of a preparatory apparatus 981 for carrying out sample preparation as further described 30 herein is shown in FIG. 1A. An overview of a diagnostic apparatus 971 is shown in FIG. 1B. The geometric arrangement of the components of system 971, 981 shown in FIGS. 1A and 1B is exemplary and not intended to be limiting.

A processor 980, such as a microprocessor, is configured 35 to control functions of various components of the system as shown, and is thereby in communication with each such component requiring control. It is to be understood that many such control functions can optionally be carried out manually, and not under control of the processor. Further- 40 more, the order in which the various functions are described, in the following, is not limiting upon the order in which the processor executes instructions when the apparatus is operating. Thus, processor 980 can be configured to receive data about a sample to be analyzed, e.g., from a sample reader 45 990, which may be a barcode reader, an optical character reader, or an RFID scanner (radio frequency tag reader). It is also to be understood that, although a single processor 980 is shown as controlling all operations of apparatus 971 and 981, such operations may be distributed, as convenient, over 50 more than one processor.

Processor 980 can be configured to accept user instructions from an input 984, where such instructions may include instructions to start analyzing the sample, and choices of operating conditions. Although not shown in 55 FIGS. 1A and 1B, in various embodiments, input 984 can include one or more input devices selected from the group consisting of: a keyboard, a touch-sensitive surface, a microphone, a track-pad, a retinal scanner, a holographic projection of an input device, and a mouse. A suitable input device 60 may further comprise a reader of formatted electronic media, such as, but not limited to, a flash memory card, memory stick, USB-stick, CD, or floppy diskette. An input device may further comprise a security feature such as a fingerprint reader, retinal scanner, magnetic strip reader, or bar-code 65 reader, for ensuring that a user of the system is in fact authorized to do so, according to pre-loaded identifying

characteristics of authorized users. An input device may additionally—and simultaneously—function as an output device for writing data in connection with sample analysis. For example, if an input device is a reader of formatted electronic media, it may also be a writer of such media. Data that may be written to such media by such a device include, but is not limited to, environmental information, such as temperature or humidity, pertaining to an analysis, as well as a diagnostic result, and identifying data for the sample in

8

Processor 980 can be also configured to communicate with a display 982, so that, for example, information about an analysis is transmitted to the display and thereby communicated to a user of the system. Such information includes but is not limited to: the current status of the apparatus; progress of PCR thermocycling; and a warning message in case of malfunction of either system or cartridge. Additionally, processor 980 may transmit one or more questions to be displayed on display 982 that prompt a user to provide input in response thereto. Thus, in certain embodiments, input 984 and display 982 are integrated with one another.

Processor **980** can be optionally further configured to transmit results of an analysis to an output device such as a printer, a visual display, a display that utilizes a holographic projection, or a speaker, or a combination thereof.

Processor 980 can be still further optionally connected via a communication interface such as a network interface to a computer network 988. The communication interface can be one or more interfaces selected from the group consisting of: a serial connections, a parallel connection, a wireless network connection, a USB connection, and a wired network connection. Thereby, when the system is suitably addressed on the network, a remote user may access the processor and transmit instructions, input data, or retrieve data, such as may be stored in a memory (not shown) associated with the processor, or on some other computer-readable medium that is in communication with the processor. The interface may also thereby permit extraction of data to a remote location, such as a personal computer, personal digital assistant, or network storage device such as computer server or disk farm. The apparatus may further be configured to permit a user to e-mail results of an analysis directly to some other party, such as a healthcare provider, or a diagnostic facility, or a patient.

Additionally, in various embodiments, the apparatus can further comprise a data storage medium configured to receive data from one or more of the processor, an input device, and a communication interface, the data storage medium being one or more media selected from the group consisting of: a hard disk drive, an optical disk drive, a flash card, and a CD-Rom.

Processor 980 can be further configured to control various aspects of sample preparation and diagnosis, as follows in overview, and as further described in detail herein. In FIGS. 1A and 1B, the apparatus 981 (or 971) is configured to operate in conjunction with a complementary rack 970. The rack is itself configured, as further described herein, to receive a number of biological samples 996 in a form suitable for work-up and diagnostic analysis, and a number of holders 972 that are equipped with various reagents, pipette tips and receptacles. The rack is configured so that, during sample work-up, samples are processed in the respective holders, the processing including being subjected, individually, to heating and cooling via heater assembly 977. The heating functions of the heater assembly can be controlled by the processor 980. Heater assembly 977 operates in conjunction with a separator 978, such as a magnetic

separator, that also can be controlled by processor 980 to move into and out of close proximity to one or more processing chambers associated with the holders 972, wherein particles such as magnetic particles are present.

9

Liquid dispenser 97, which similarly can be controlled by 5 processor 980, is configured to carry out various suck and dispense operations on respective sample, fluids and reagents in the holders 972, to achieve extraction of nucleic acid from the samples. Liquid dispenser 976 can carry out such operations on multiple holders simultaneously. Sample 10 reader 990 is configured to transmit identifying indicia about the sample, and in some instances the holder, to processor 980. In some embodiments a sample reader is attached to the liquid dispenser and can thereby read indicia about a sample above which the liquid dispenser is situated. In other 15 embodiments the sample reader is not attached to the liquid dispenser and is independently movable, under control of the processor. Liquid dispenser 976 is also configured to take aliquots of fluid containing nucleic acid extracted from one or more samples and direct them to storage area 974, which 20 may be a cooler. Area 974 contains, for example, a PCR tube corresponding to each sample. In other embodiments, there is not a separate Area 974, but a cooler can be configured to cool the one or more holders 972 so that extracted nucleic acid is cooled and stored in situ rather than being transferred 25 to a separate location.

FIG. 1B shows a schematic embodiment of a diagnostic apparatus 971, having elements in common with apparatus 981 FIG. 1A but, in place of a storage area 974, having a receiving bay 992 in which a cartridge 994 is received. The 30 receiving bay is in communication with a heater 998 that itself can be controlled by processor 980 in such a way that specific regions of the cartridge are heated at specific times during analysis. Liquid dispenser 976 is thus configured to take aliquots of fluid containing nucleic acid extracted from 35 one or more samples and direct them to respective inlets in cartridge 994. Cartridge 994 is configured to amplify, such as by carrying out PCR, on the respective nucleic acids. The processor is also configured to control a detector 999 that receives an indication of a diagnosis from the cartridge 994. 40 The diagnosis can be transmitted to the output device 986 and/or the display 982, as described hereinabove.

A suitable processor **980** can be designed and manufactured according to, respectively, design principles and semi-conductor processing methods known in the art.

Embodiments of the apparatuses shown in outline in FIGS. 1A and 1B, as with other exemplary embodiments described herein, is advantageous because they do not require locations within the apparatus suitably configured for storage of reagents. Neither do embodiments of the 50 system, or other exemplary embodiments herein, require inlet or outlet parts that are configured to receive reagents from, e.g., externally stored containers such as bottles, canisters, or reservoirs. Therefore, the apparatuses in FIGS. 1A and 1B are self-contained and operate in conjunction 55 with holders 972, wherein the holders are pre-packaged with reagents, such as in locations within it dedicated to reagent storage.

The apparatuses of FIGS. 1A and 1B may be configured to carry out operation in a single location, such as a 60 laboratory setting, or may be portable so that they can accompany, e.g., a physician, or other healthcare professional, who may visit patients at different locations. The apparatuses are typically provided with a power-cord so that they can accept AC power from a mains supply or generator. 65 An optional transformer (not shown) built into each apparatus, or situated externally between a power socket and the

10

system, transforms AC input power into a DC output for use by the apparatus. The apparatus may also be configured to operate by using one or more batteries and therefore is also typically equipped with a battery recharging system, and various warning devices that alert a user if battery power is becoming too low to reliably initiate or complete a diagnostic analysis.

The apparatuses of FIGS. 1A and 1B may further be configured, in other embodiments, for multiplexed sample analysis and/or analysis of multiple batches of samples, where, e.g., a single rack holds a single batch of samples. In one such configuration, instances of a system, as outlined in FIG. 1B, accept and to process multiple microfluidic cartridges 994. Each component shown in FIGS. 1A and 1B may therefore be present as many times as there are batches of samples, though the various components may be configured in a common housing.

In still another configuration, a system is configured to accept and to process multiple cartridges, but one or more components in FIGS. 1A and 1B is common to multiple cartridges. For example, a single apparatus may be configured with multiple cartridge receiving bays, but a common processor, detector, and user interface suitably configured to permit concurrent, consecutive, or simultaneous, control of the various cartridges. It is further possible that such an embodiment, also utilizes a single sample reader, and a single output device.

In still another configuration, a system as shown in FIG. 1B is configured to accept a single cartridge, wherein the single cartridge is configured to process more than 1, for example, 2, 3, 4, 5, or 6, samples in parallel, and independently of one another. Exemplary technology for creating cartridges that can handle multiple samples is described elsewhere, e.g., in U.S. application Ser. No. 60/859,284, incorporated herein by reference.

It is further consistent with the present technology that a cartridge can be tagged, e.g., with a molecular bar-code indicative of the sample, to facilitate sample tracking, and to minimize risk of sample mix-up. Methods for such tagging are described elsewhere, e.g., in U.S. patent application Ser. No. 10/360,854, incorporated herein by reference.

Control electronics 840 implemented into apparatus 971 or 981, shown schematically in the block diagram in FIG. 2, can include one or more functions in various embodiments, for example, for main control 900, multiplexing 902, display control 904, detector control 906, and the like. The main control function may serve as the hub of control electronics 840 in the apparatuses of FIGS. 1A and 1B, and can manage communication and control of the various electronic functions. The main control function can also support electrical and communications interface 908 with a user or an output device such as a printer 920, as well as optional diagnostic and safety functions. In conjunction with main control function 900, multiplexer function 902 and control sensor data 914 and output current 916 to help control heater assembly 977. The display control function 904 can control output to and, if applicable, interpret input from touch screen LCD **846**, which can thereby provide a graphical interface to the user in certain embodiments. The detector function 906 can be implemented in control electronics 840 using typical control and processing circuitry to collect, digitize, filter, and/or transmit the data from a detector 999 such as one or more fluorescence detectors. Additional functions, not shown in FIG. 2, include but are not limited to control functions for controlling elements in FIGS. 1A and 1B such as a liquid dispense head, a separator, a cooler, and to accept data from a sample reader.

11

An exemplary apparatus, having functions according to FIGS. 1A or 1B, is shown in FIGS. 3A and 3B. The exemplary apparatus in FIGS. 3A and 3B has a housing 985, and a cover 987, shown in a closed position in FIG. 3A, and in an open position in FIG. 3B to reveal interior features 995. Cover 987 optionally has a handle 989, shown as oval and raised from the surface of the cover, but which may be other shapes such as square, rectangular, or circular, and which may be recessed in, or flush with, the surface of the cover. Cover 987 is shown as having a hinge, though other configurations such as a sliding cover are possible. Bumper 991 serves to prevent the cover from falling too far backwards and/or provides a point that holds cover 987 steady in an open position. Housing 985 is additionally shown as having one or more communications ports 983, and one or more power ports 993, which may be positioned elsewhere, such as on the rear of the instrument.

The apparatus of FIGS. 1A and 1B may optionally comprise one or more stabilizing feet that cause the body of the 20 device to be elevated above a surface on which system 100 is disposed, thereby permitting ventilation underneath system 100, and also providing a user with an improved ability to lift system 100. There may be 2, 3, 4, 5, or 6, or more feet, depending upon the size of system 100. Such feet are 25 preferably made of rubber, or plastic, or metal, and in some embodiments may elevate the body of system 10 by from about 2 to about 10 mm above a surface on which it is situated.

FIG. 4 shows an exemplary configuration of a portion of an interior of an exemplary apparatus, such as that shown in FIGS. 3A and 3B. In FIG. 4 are shown a rack 970, containing a number of reagent holders 972 and patient samples 996, as well as, in close proximity thereto, a receiving bay 992 having a cartridge 994, for performing PCR on polynucleotides extracted from the sample.

The apparatus further comprises one or more racks configured to be insertable into, and removable from, the 40 apparatus, each of the racks being further configured to receive a plurality of reagent holders, and to receive a plurality of sample tubes, wherein the reagent holders are in one-to-one correspondence with the sample tubes, and wherein the reagent holders each contain sufficient reagents 45 to extract polynucleotides from a sample and place the polynucleotides into a PCR-ready form. Exemplary reagent holders are further described elsewhere herein.

An apparatus may comprise 1, 2, 3, 4, or 6 racks, and each rack may accept 2, 4, 6, 8, 10, 12, 16, or 20 samples such as 50 in sample tubes **802**, and a corresponding number of holders **804**, each at least having one or more pipette tips, and one or more containers for reagents.

A rack is typically configured to accept a number of reagent holders **804**, such as those further described herein, 55 the rack being configured to hold one or more such holders, either permitting access on a laboratory benchtop to reagents stored in the holders, or situated in a dedicated region of the apparatus permitting the holders to be accessed by one or more other functions of the apparatus, such as automated 60 pipetting, heating of the process tubes, and magnetic separating of affinity beads.

Two perspective views of an exemplary rack **800**, configured to accept 12 sample tubes and 12 corresponding reagent holders, in 12 lanes, are shown in FIG. **5**. A lane, as 65 used herein in the context of a rack, is a dedicated region of the rack designed to receive a sample tube and correspond-

12

ing reagent holder. Two perspective views of the same exemplary rack, in conjunction with a heater unit, are shown in FIG. 6.

Various views of a second exemplary rack 800, also configured to accept 12 sample tubs and 12 reagent holders, are shown in FIG. 7, and FIGS. 8A-8C. Thus, the following views are shown: side plan (FIG. 8A); front plan, showing sample tubes (FIG. 8B); rear plan, showing reagent holders (FIG. 8C); rear elevation, showing reagent holders (FIG. 8D); front elevation, showing sample tubes (FIG. 8E); top, showing insertion of a reagent holder (FIGS. 8F and 8G); top showing slot for inserting a reagent holder (FIG. 8H); top view showing registration of reagent holder (FIG. 8I); close up of rack in state of partial insertion/removal from apparatus (FIG. 8J); and rack held by handle, removed from apparatus (FIG. 8K). A recessed area in a diagnostic or preparatory apparatus, as further described herein, for accepting the exemplary removable rack of FIG. 7 is shown in FIG. 9. Other suitably configured recessed areas for receiving other racks differing in shape, appearance, and form, rather than function, are consistent with the description herein.

The two exemplary racks shown in the figures being non-limiting, general features of racks contemplated herein are now described using the two exemplary racks as illustrated thereof. For example, the embodiments shown here, at least the first lane and the second lane are parallel to one another, a configuration that increases pipetting efficiency. Typically, when parallel to one another, pairs of adjacent sample lanes are separated by 24 mm at their respective midpoints. (Other distances are possible, such as 18 mm apart, or 27 mm apart. The distance between the midpoints is dependent on the pitch of the nozzles in the liquid dispensing head, as further described herein. Keeping the spacing in multiples of 9 mm enables easy loading from the rack into a 96 well plate (where typically wells are spaced apart by 9 mm). Typically, also, the rack is such that plurality of reagent holders in the plurality of lanes are maintained at the same height relative to one another.

The rack is configured to accept a reagent holder in such a way that the reagent holder snaps or locks reversibly into place, and remains steady while reagents are accessed in it, and while the rack is being carried from one place to another or is being inserted into, or removed from, the apparatus. In each embodiment, each of the second locations comprises a mechanical key configured to accept the reagent holder in a single orientation. In FIG. 5, it is shown that the reagent holder(s) slide horizontally into vertically oriented slots, one per holder, located in the rack. In such an embodiment, the edge of a connecting member on the holder engages with a complementary groove in the upper portion of a slot. In FIGS. 8F, 8G, and 8I, it is shown that the reagent holder(s) can engage with the rack via a mechanical key that keeps the holders steady and in place. For example, the mechanical key can comprise a raised or recessed portion that, when engaging with a complementary portion of the reagent holder, permits the reagent holder to snap into the second location. It can also be seen in the embodiments shown that the reagent holder has a first end and a second end, and the mechanical key comprises a first feature configured to engage with the first end, and a second feature configured to engage with the second end in such a away that a reagent holder cannot be inserted the wrong way around.

In certain embodiments the reagent holders each lock into place in the rack, such as with a cam locking mechanism that is recognized as locked audibly and/or physically, or such as with a mechanical key. The rack can be configured so that

13 the holders, when positioned in it, are aligned for proper pipette tip pick-up using a liquid dispenser as further

described herein. Furthermore, the second location of each lane can be deep enough to accommodate one or more pipette tips, such as contained in a pipette tip sheath.

In certain embodiments, the rack is configured to accept the samples in individual sample tubes 802, each mounted adjacent to a corresponding holder 804, for example on one side of rack 800. The sample tubes can be accessible to a sample identification verifier such as a bar code reader, as 10 further described herein. In FIG. 5, a sample tube is held at its bottom by a cylindrical receiving member. In FIG. 7, it is shown that a sample tube can be held at both its top and bottom, such as by a recessed portion 803 configured to receive a bottom of a sample tube, and an aperture 805 configured to hold an upper portion of the sample tube. The aperture can be a ring or an open loop, or a hole in a metal sheet. The recessed portion can be as in FIG. 7, wherein it is an angled sheet of metal housing having a hole large enough to accommodate a sample tube.

The rack can be designed so that it can be easily removed from the apparatus and carried to and from the laboratory environment external to the apparatus, such as a bench, and the apparatus, for example, to permit easy loading of the sample tube(s) and the reagent holder(s) into the rack. In 25 certain embodiments, the rack is designed to be stable on a horizontal surface, and not easily toppled over during carriage, and, to this end, the rack has one or more (such as 2, 3, 4, 6, 8) feet 809. In certain embodiments, the rack has a handle **806** to ease lifting and moving, and as shown in FIG. 30 5, the handle can be locked into a vertical position, during carriage, also to reduce risk of the rack being toppled over. The handle can optionally have a soft grip 808 in its middle. In the embodiment of FIG. 7, the carrying handle is positioned about an axis displaced from an axis passing through 35 the center of gravity of the rack when loaded, and is free to fall to a position flush with an upper surface of the rack, under its own weight.

The embodiment of FIG. 5 has a metallic base member when inserting the rack into the dedicated portion of the apparatus. The handle is attached to the base member. The portion of the rack 812 that accepts the samples and holders can be made of plastic, and comprises 12 slots, and may be disposable.

In the embodiment of FIG. 7, the rack comprises a housing, a plurality of lanes in the housing, and wherein each lane of the plurality of lanes comprises: a first location configured to accept a sample tube; and a second location, configured to accept a reagent holder; and a registration 50 member complementary to a receiving bay of a diagnostic apparatus. Typically, the housing is made of a metal, such as aluminum, that is both light but also can be machined to high tolerance and is sturdy enough to ensure that the rack remains stable when located in the diagnostic apparatus. The 55 registration member in FIG. 7 comprises four (4) tight tolerance pegs 815, located one per corner of the rack. Such pegs are such that they fit snugly and tightly into complementary holes in the receiving bay of the apparatus and thereby stabilize the rack. Other embodiments having, for 60 example, 2, or 3, or greater than 4 such pegs are consistent with the embodiments herein.

In particular, the housing in the embodiment of FIG. 7 comprises a horizontal member 821, and two or more vertical members 822 connected to the horizontal member, 65 and is such that the second location of each respective lane is a recessed portion within the horizontal member. The two

14

or more vertical members 809 in the embodiment of FIG. 7 are configured to permit the rack to free stand thereon. The housing may further comprise two or more feet or runners, attached symmetrically to the first and second vertical members and giving the rack additional stability when positioned on a laboratory bench top.

Furthermore, in the embodiment of FIG. 7, the housing further comprises a plurality of spacer members 825, each of which is disposed between a pair of adjacent lanes. Optionally, such spacer members may be disposed vertically between the lanes.

Although not shown in the FIGs., a rack can further comprise a lane identifier associated with each lane. A lane identifier may be a permanent or temporary marking such as a unique number or letter, or can be an RFID, or bar-code, or may be a colored tag unique to a particular lane.

A rack is configured so that it can be easily placed at the appropriate location in the instrument and gives the user positive feedback, such as audibly or physically, that it is 20 placed correctly. In certain embodiments, the rack can be locked into position. It is desirable that the rack be positioned correctly, and not permitted to move thereafter, so that movement of the liquid dispenser will not be compromised during liquid handling operations. The rack therefore has a registration member to ensure proper positioning. In the embodiment of FIG. 7, the registration member comprises two or more positioning pins configured to ensure that the rack can only be placed in the diagnostic apparatus in a single orientation; and provide stability for the rack when placed in the diagnostic apparatus. The embodiment of FIG. 7 has, optionally, a sensor actuator 817 configured to indicate proper placement of the rack in the diagnostic apparatus. Such a sensor may communicate with a processor 980 to provide the user with a warning, such as an audible warning, or a visual warning communicated via an interface, if the rack is not seated correctly. It may also be configured to prevent a sample preparation process from initiating or continuing if a seating error is detected.

In certain embodiments, the interior of the rack around the 810 having 4 feet 811 that also serve as position locations 40 location of process tubes in the various holders is configured to have clearance for a heater assembly and/or a magnetic separator as further described herein. For example, the rack is configured so the process chambers on the individual holders are accepted by heater units in a heater assembly as further described herein.

> Having a removable rack enables a user to keep a next rack loaded with samples and in line while a previous rack of samples is being prepared by the apparatus, so that the apparatus usage time is maximized.

> The rack can also be conveniently cleaned outside of the instrument in case of any sample spills over it or just as a routine maintenance of laboratory wares.

> In certain embodiments the racks have one or more disposable parts.

> FIGS. 10A and 10B show views of an exemplary holder 501 as further described herein. FIG. 11 shows a plan view of another exemplary holder 502, as further described herein. FIG. 12A shows an exemplary holder 503 in perspective view, and FIG. 12B shows the same holder in cross-sectional view. FIG. 12C shows an exploded view of the same holder as in FIGS. 12A and 12B. All of these exemplary holders, as well as others consistent with the written description herein though not shown as specific embodiments, are now described.

> The exemplary holders shown in FIGS. 10A, 10B, 11, 12A, 12B, and 12C can each be referred to as a "unitized

15

disposable strip", or a "unitized strip", because they are intended to be used as a single unit that is configured to hold all of the reagents and receptacles necessary to perform a sample preparation, and because they are laid out in a strip format. It is consistent with the description herein, though, that other geometric arrangements of the various receptacles are contemplated, so that the description is not limited to a linear, or strip, arrangement, but can include a circular or grid arrangement.

Some of the reagents contained in the holder are provided as liquids, and others may be provided as solids. In some embodiments, a different type of container or tube is used to store liquids from those that store the solids.

The holder can be disposable, such as intended for a 15 single use, following which it is discarded.

The holder is typically made of a plastic such as polypropylene. The plastic is such that is has some flexibility to facilitate placement into a rack, as further described herein. The plastic is typically rigid, however, so that the holder will 20 not significantly sag or flex under tis own weight and will not easily deform during routine handling and transport, and thus will not permit reagents to leak out from it.

The holder comprises a connecting member 510 having one or more characteristics as follows. Connecting member 25 510 serves to connect various components of the holder together. Connecting member 510 has an upper side 512 and, opposed to the upper side, an underside 514. In FIG. 10B, a view of underside 514 is shown, having various struts 597 connecting a rim of the connecting member with 30 variously the sockets, process tube, and reagent tubs. Struts 597 are optional, and may be omitted all or in part, or may be substituted by, in all or in part, other pieces that keep the holder together.

The holder is configured to comprise: a process tube **520** affixed to the connecting member and having an aperture **522** located in the connecting member; at least one socket **530**, located in the connecting member, the socket configured to accept a disposable pipette tip **580**; two or more reagent tubes **540** disposed on the underside of the connecting member, each of the reagent tubes having an inlet aperture **542** located in the connecting member; and one or more receptacles **550**, located in the connecting member, wherein the one or more receptacles are each configured to receive a complementary container such as a reagent tube 45 (not shown) inserted from the upper side **512** of the connecting member.

The holder is typically such that the connecting member, process tube, and the two or more reagent tubes are made from a single piece, such as a piece of polypropylene.

The holder is also typically such that at least the process tube, and the two or more reagent tubes are translucent.

The one or more receptacles **550** are configured to accept reagent tubes that contain, respectively, sufficient quantities of one or more reagents typically in solid form, such as in 55 lyophilized form, for carrying out extraction of nucleic acid from a sample that is associated with the holder. The receptacles can be all of the same size and shape, or may be of different sizes and shapes from one another. Receptacles **550** are shown as having open bottoms, but are not limited to such topologies, and may be closed other than the inlet **552** in the upper side of connecting member **510**. Preferably the receptacles **550** are configured to accept commonly used containers in the field of laboratory analysis, or containers suitably configured for use with the holder herein. The 65 containers are typically stored separately from the holders to facilitate sample handling, since solid reagents normally

16

require different storage conditions from liquid reagents. In particular many solid reagents may be extremely moisture sensitive

The snapped-in reagent tubes containing different reagents may be of different colors, or color-coded for easy identification by the user. For example they may be made of different color material, such as tinted plastic, or may have some kind of identifying tag on them, such as a color stripe or dot. They may also have a label printed on the side, and/or may have an identifier such as a barcode on the sealing layer on the top.

The containers 554 received by the receptacles 550 may alternatively be an integrated part of the holder and may be the same type of container as the waste chamber and/or the reagent tube(s), or may be different therefrom.

In one embodiment, the containers 554 containing lyophilized reagents, disposed in the receptacles 550 (shown, e.g., in FIGS. 12A and 12C), are 0.3 ml tubes that have been further configured to have a star pattern (see FIGS. 13A and 13B) on their respective bottom interior surfaces. This is so that when a fluid has been added to the lyophilized reagents (which are dry in the initial package), a pipette tip can be bottomed out in the tube and still be able to withdraw almost the entire fluid from the tube, as shown in FIG. 14, during the process of nucleic acid extraction. The design of the star-pattern is further described elsewhere herein.

The reagent tubes, such as containing the lyophilized reagents, can be sealed across their tops by a metal foil, such as an aluminum foil, with no plastic lining layer, as further described herein.

The embodiments 501, 502, and 503 are shown configured with a waste chamber 560, having an inlet aperture 562 in the upper side of the connecting member. Waste chamber 560 is optional and, in embodiments where it is present, is configured to receive spent liquid reagents. In other embodiments, where it is not present, spent liquid reagents can be transferred to and disposed of at a location outside of the holder, such as, for example, a sample tube that contained the original sample whose contents are being analyzed. Waste chamber 560 is shown as part of an assembly comprising additionally two or more reagent tubes 540. It would be understood that such an arrangement is done for convenience, e.g., of manufacture; other locations of the waste chamber are possible, as are embodiments in which the waste chamber is adjacent a reagent tube, but not connected to it other than via the connecting member.

The holder is typically such that the connecting member, process tube, the two or more reagent tubes, and the waste 50 chamber (if present) are made from a single piece, made from a material such as polypropylene.

The embodiments 501 and 503 are shown having a pipette sheath 570. This is an optional component of the holders described herein. It may be permanently or removably affixed to connecting member 510, or may be formed, e.g., moulded, as a part of a single piece assembly for the holder. For example, exploded view of holder 503 in FIG. 12C shows lug-like attachments 574 on the upper surface of a removable pipette sheath 570 that engage with complementary recessed portions or holes in the underside 514 of connecting member 510. Other configurations of attachment are possible. Pipette sheath 570 is typically configured to surround the at least one socket and a tip and lower portion of a pipette tip when the pipette tip is stationed in the at least one socket. In some embodiments, the at least one socket comprises four sockets. In some embodiments the at least one socket comprises two, three, five, or six sockets.

17

Pipette sheath 570 typically is configured to have a bottom 576 and a walled portion 578 disposed between the bottom and the connecting member. Pipette sheath 570 may additionally and optionally have one or more cut-out portions 572 in the wall 578, or in the bottom 576. Such cutouts provide ventilation for the pipette tips and also reduce the total amount of material used in manufacture of the holder. Embodiment 503 has a pipette sheath with no such cutouts. In embodiment 501, such as cutout is shown as an isosceles triangle in the upper portion of the sheath; a similar shaped cutout may be found at a corresponding position in the opposite side of the sheath, obscured from view in FIG. 10A. Other cutouts could have other triangular forms, circular, oval, square, rectangular, or other polygonal or irregular shapes, and be several, such as many, in number. The wall 15 578 of pipette sheath 570 may also have a mesh or frame like structure having fenestrations or interstices. In embodiments having a pipette sheath, a purpose of the sheath is to catch drips from used pipette tips, and thereby to prevent crosssample contamination, from use of one holder to another in 20 a similar location, and/or to any supporting rack in which the holder is situated. Typically, then, the bottom 576 is solid and bowl-shaped (concave) so that drips are retained within it. An embodiment such as 502, having no pipette sheath, could utilize, e.g., a drip tray or a drainage outlet, suitably 25 placed beneath pipette tips located in the one or more sockets, for the same purpose. In addition to catching drips, the pipette tip sheath prevents or inhibits the tips of other reagent holders—such as those that are situated adjacent to the one in question in a rack as further described hereinfrom touching each other when the tips are picked up and/or dropped off before or after some liquid processing step. Contact between tips in adjacent holders is generally not intended by, for example, an automated dispensing head that controls sample processing on holders in parallel, but the 35 pipette tips being long can easily touch a tip in a nearby strip if the angle when dropping off of the tip deviates slightly from vertical.

The holders of embodiments 501, 502, and 503, all have a connecting member that is configured so that the at least 40 one socket, the one or more receptacles, and the respective apertures of the process tube, and the two or more reagent tubes, are all arranged linearly with respect to one another (i.e., their midpoints lie on the same axis). However, the holders herein are not limited to particular configurations of 45 receptacles, waster chamber, process tube, sockets, and reagent tubes. For example, a holder may be made shorter, if some apertures are staggered with respect to one another and occupy 'off-axis' positions.. The various receptacles, etc., also do not need to occupy the same positions with 50 respect to one another as is shown in FIGS. 12A and 12B, wherein the process tube is disposed approximately near the middle of the holder, liquid reagents are stored in receptacles mounted on one side of the process tube, and receptacles holding solid reagents are mounted on the other side of the 55 process tube. Thus, in FIGS. 10A, 10B, and 11, the process tube is on one end of the connecting member, and the pipette sheath is at the other end, adjacent to, in an interior position, a waster chamber and two or more reagent tubes. Still other dispositions are possible, such as mounting the process tube 60 on one end of the holder, mounting the process tube adjacent the pipette tips and pipette tip sheath (as further described herein), and mounting the waste tube adjacent the process tube. It would be understood that alternative configurations of the various parts of the holder give rise only to variations 65 of form and can be accommodated within other variations of the apparatus as described, including but not limited to

18

alternative instruction sets for a liquid dispensing pipette head, heater assembly, end magnetic separator, as further described herein.

Process tube **520** can also be a snap-in tube, rather than being part of an integrated piece. Process tube **520** is typically used for various mixing and reacting processes that occur during sample preparation. For example, cell lysis can occur in process tube **520**, as can extraction of nucleic acids. Process tube **520** is then advantageously positioned in a location that minimizes, overall, pipette head moving operations involved with transferring liquids to process tube **520**.

Regent tubes **540** are typically configured to hold liquid reagents, one per tube. For example, in embodiments **501**, **502**, and **503**, three reagent tubes are shown, containing respectively wash buffer, release buffer, and neutralization buffer, each of which is used in a sample preparation protocol.

Reagent tubes **540** that hold liquids or liquid reagents can be sealed with a laminate structure **598**. The laminate structure typically has a heat seal layer, a plastic layer such as a layer of polypropylene, and a layer of metal such as aluminum foil, wherein the heat seal layer is adjacent the one or more reagent tubes. The additional plastic film that is used in a laminate for receptacles that contain liquid reagents is typically to prevent liquid from contacting the aluminum.

Two embodiments of a laminate structure, differing in their layer structures, are shown in FIG. 15. In both embodiments, the heat seal layer 602, for example made of a laquer or other such polymer with a low melting point, is at the bottom, adjacent to the top of the holder, when so applied. The plastic layer **604** is typically on top of the heat seal layer, and is typically made of polypropylene, having a thickness in the range 10-50 microns. The metal layer 608 is typically on top of the plastic layer and may be a layer of Al foil bended to the plastic layer with a layer of adhesive 606, as in the first embodiment in FIG. 15, or may be a layer of metal that is evaporated or sputtered into place directly on to the plastic layer. Exemplary thicknesses for the respective layers are shown in FIG. 15, wherein it is to be understood that variations of up to a factor of 2 in thickness are consistent with the technology herein. In particular, the aluminum foil is 0.1-15 micros thick, and the polymer layer is 15-25 microns thick in one embodiment. In another embodiment, the aluminum is 0.1-1 microns thick, and the polymer layer is 25-30 microns thick.

The laminates deployed herein make longer term storage easier because the holder includes the presence of sealed lyophilized reagents as well as liquids sealed in close proximity, which is normally hard to achieve.

In one embodiment, the tops of the reagent tubes have beveled edges so that when an aluminum foil is heat bonded to the top, the plastic melt does not extend beyond the rim of the tube. This is advantageous because, if the plastic melt reduces the inner diameter of the tube, it will cause interference with the pipette top during operation. In other embodiments, a raised flat portion 599 facilitates application and removal of laminate 598. Raised surface 599, on the upper side of the connecting member, and surrounding the inlet apertures to the reagent tubes and, optionally, the waste chamber, is an optional feature of the holder.

The manner in which liquid is pipetted out is such that a pipette tip piercing through the foil rips through without creating a seal around the pipette tip, as in FIG. 16. Such as seal around the tip during pipetting would be disadvantageous because a certain amount of air flow is desirable for the pipetting operation. In this instance, a seal is not created

because the laminate structure causes the pierced foil to stay in the position initially adopted when it is pierced. The upper five panels in FIG. 16 illustrate the pipetting of a reagent out from a reagent tub sealed with a laminate as further described herein. At A, the pipette tip is positioned approximately centrally above the reagent tube that contains reagent 707. At B, the pipette tip is lowered, usually controllably lowered, into the reagent tube, and in so doing pierces the foil **598**. The exploded view of this area shows the edge of the pierced laminate to be in contact with the pipette tip at 10 the widest portion at which is penetrates the reagent tube. At C, the pipette tip is withdrawn slightly, maintaining the tip within the bulk of the reagent 707. The exploded view shows that the pierced foil has retained the configuration that it adopted when it was pierced and the pipette tip descended to 15

19

The materials of the various tubes and chambers may be 20 configured to have at least an interior surface smoothness and surface coating to reduce binding of DNA and other macromolecules thereto. Binding of DNA is unwanted because of the reduced sensitivity that is likely to result in subsequent detection and analysis of the DNA that is not 25 trapped on the surface of the holder.

its deepest position within the reagent tube. At D, the pipette

tip sucks up reagent 707, possibly altering its height as more

and more older people undergo such tests. At E, the pipette

tip is removed entirely from the reagent tube.

The process tube also may have a low binding surface, and allows magnetic beads to slide up and down the inside wall easily without sticking to it. Moreover, it has a hydrophobic surface coating enabling low suction of fluid and 30 hence low binding of nucleic acids and other molecules.

In some embodiments, the holder comprises a registration member such as a mechanical key. Typically such a key is part of the connecting member 510. A mechanical key ensures that the holder is accepted by a complementary 35 member in, for example, a supporting rack or a receiving bay of an apparatus that controls pipetting operations on reagents in the holder. A mechanical key is normally a particularshaped cut-out that matches a corresponding cutout or has a mechanical key 592 that comprises a pair of rectangular-shaped cut-outs on one end of the connecting member. This feature as shown additionally provides for a tab by which a user may gain a suitable purchase when inserting and removing the holder into a rack or another apparatus. 45 Embodiments 501 and 502 also have a mechanical key 590 at the other end of connecting member 510. Key 590 is an angled cutout that eases insertion of the holder into a rack, as well as ensures a good registration therein when abutting a complementary angled cut out in a recessed area config- 50 ured to receive the holder. Other variations of a mechanical key are, of course, consistent with the description herein, for example, curved cutouts, or various combinations of notches or protrusions all would facilitate secure registration of the

In some embodiments, not shown in FIGS. 10A, 10B, 11, or 12A-C, the holder further comprises an identifier affixed to the connecting member. The identifier may be a label, such as a writable label, a bar-code, a 2-dimensional barcode, or an RFID tag. The identifier can be, e.g., for the 60 purpose of revealing quickly what combination of reagents is present in the holder and, thus, for what type of sample preparation protocol it is intended. The identifier may also indicate the batch from which the holder was made, for quality control or record-keeping purposes. The identifier 65 may also permit a user to match a particular holder with a particular sample.

20

It should also be considered consistent with the description herein that a holder additionally can be configured to accept a sample, such as in a sample tube. Thus, in embodiments described elsewhere herein, a rack accepts a number of sample tubes and a number of corresponding holders in such a manner that the sample tubes and holders can be separately and independently loaded from one another. Nevertheless, in other embodiments, a holder can be configured to also accept a sample, for example in a sample tube. And thus, a complementary rack is configured to accept a number of holders, wherein each holder has a sample as well as reagents and other items. In such an embodiment, the holder is configured so that the sample is accessible to a sample identification verifier.

The holder described herein may be provided in a sealed pouch, to reduce the chance of air and moisture coming into contact with the reagents in the holder. Such a sealed pouch may contain one or more of the holders described herein, such as 2, 4, 6, 8, 10, 12, 16, 20, or 24 holders.

The holder may also be provided as part of a kit for carrying out sample preparation, wherein the kit comprises a first pouch containing one or more of the holders described herein, each of the holders configured with liquid reagents for , e.g., lysis, wash, and release, and a second pouch, having an inert atmosphere inside, and one or more reagent tubes containing lyophilized PCR reagents, as shown in FIG. 17. Such a kit may also be configured to provide for analysis of multiple samples, and contain sufficient PCR reagents (or other amplification reagents, such as for RT-PCR, transcription mediated amplification, strand displacement amplification, NASBA, helicase dependent amplification, and other familiar to one of ordinary skill in the art, and others described herein) to process such samples, and a number of individual holders such as 2, 4, 6, 8, 10, 12, 16, 20, or 24 holders.

Reagent Tubes

As referenced elsewhere herein, the containers 554 that protrusion in a receiving apparatus. Thus, embodiment 501 40 contain lyophilized reagents are 0.3 ml tubes that have been further configured to have a star-shaped—or stellated pattern (see FIGS. 13A and 13B) on their respective bottom interior surfaces. Still other tubes for use herein, as well as for other uses not herein described, can be similarly configured. Thus, for example, the benefits afforded by the star-shaped pattern also accrue to reagent tubes that contain liquid samples that are directly pipetted out of the tubes (as well as to those tubes that initially hold solids that are constituted into liquid form prior to pipetting). Other size tubes that would benefit from such a star-shaped pattern have sizes in the range 0.1 ml to 0.65 ml, for example,

The star-shaped pattern ensures that when a fluid is withdrawn from the tube, a pipette tip can be bottomed out in the tube and still be able to withdraw the entire, or almost the entire fluid from the tube, as shown in FIG. 14. This is important because, when working with such small volumes, and when target DNA can be present in very few copies, sample loss due to imperfections of pipetting is to be minimized to every extent possible.

The design of the star shaped pattern is important, especially when using for recovery of DNA/RNA present in very small numbers in the clinical sample. The stellated pattern should enable pipetting of most of the liquid (residual volume<1 microliter) when used with a pipette bottomed out with the bottom of the tube. Additionally, the stellated pattern should be designed to minimize surface area as well as dead-end grooves that tend to have two undesirable

21 effects—to trap liquid as well as to increase undesirable retention of polynucleotides by adsorption.

FIG. 14 is now described, as follows. FIG. 14 has a number of panels, A-G, each representing, in sequence, a stage in a pipetting operation. At A, a pipette tip 2210, containing a liquid 2211 (such as a buffer solution), is positioned directly or approximately above the center of reagent tube 2200. The tube contains a number of lyophilized pellets 2212, and is sealed by a layer 2214, such as of foil. The foil may be heat-sealed on to the top of the tube. Although a laminate layer, as further described herein, can be placed on the reagent tube, typically a layer of aluminum foil is adequate, where the tube contents are solid, e.g., lyophilized, reagents. In some embodiments, the to of the reagent tube has chamfer edges to reduce expansion of the top rim of the tube during heat sealing of a foil on the top of the tube. The tube may further comprise an identifiable code, such as a 1-D or a 2-D bar-code on the top. Such a code is useful for identifying the composition of the reagents 20 stored within, and/or a batch number for the preparation thereof, and/or an expiry date. The code may be printed on with, for example, an inkjet or transfer printer.

Stellated pattern 2203 on the bottom interior surface of piercing seal 2214, and brought into a position above the particles 2212. At C the liquid 2211 is discharged from the pipette tip on to the particles, dissolving the same, as shown at D. After the particles are fully dissolved, forming a solution 2218, the pipette tip is lowered to a position where 30 it is in contact with the stellated pattern 2203. A E, the pipette tip is caused to suck up the solution 2218, and at F, the tip may optionally discharge the solution back into the tube. Steps E and F may be repeated, as desired, to facilitate dissolution and mixing of the lyophilized components into 35 solution. At step G, after sucking up as much of the solution 2218 as is practicable into the pipette tip, the pipette tip is withdrawn from the tube. Ideally, 100% by volume of the solution 2218 is drawn up into the pipette tip at G. In other embodiments, and depending upon the nature of solution 40 **2218**, at least 99% by volume of the solution is drawn up. In still other embodiments, at least 98%, at least 97%, at least 96%, at least 95%, and at least 90% by volume of the solution is drawn up.

The design of the stellated or star-shaped pattern can be 45 optimized to maximize the flow rate of liquid through the gaps in-between a bottomed out pipette, such as a p1000 pipette, and the star pattern, and is further described in U.S. provisional patent application Ser. No. 60/959,437, filed Jul. 13, 2007, incorporated herein by reference. It would be 50 understood that, although the description herein pertains to pipettes and pipette tips typically used in sample preparation of biological samples, the principles and detailed aspects of the design are as applicable to other types of pipette and pipette tip, and may be so-adapted.

FIG. 13A shows a cross sectional perspective view of a reagent tube 2200 having side wall 2201 and bottom 2202. Interior surface 2204 of the bottom is visible. A star-shaped cutout 2203 is shown in part, as three apical grooves.

Typically the star-shaped pattern is present as a raised 60 portion on the lower interior surface of the tube. Thus, during manufacture of a reagent tube, such as by injection moulding, an outer portion of the mould is a cavity defining the exterior shape of the tube. An interior shape of the tube is formed by a mould positioned concentrically with the 65 outer portion mould, and having a star-shaped structure milled out of its tip. Thus, when liquid plastic is injected into

22 the space between the two portions of the mould, the

star-shaped is formed as a raised portion on the bottom interior surface of the tube.

The exemplary star pattern 2203 shown in FIG. 13B in plan view resembles a "ship's wheel" and comprises a center 2209, a circular ring 2207 centered on center 2209, and 8 radial segments configured as radial grooves 2205. Each groove meets the other grooves at center 2209, and has a radial end, also referred to as an apex or vertex. Star pattern 2203 has 8 grooves, such as 3, 4, 6, 10, or 12, would be consistent with the design herein. The number of grooves of the star should be minimum consistent with effective liquid pipetting and also spaced apart enough not to trap the tip of any of the pipette tips to be used in the liquid handling applications.

Center 2209 is typically positioned coincidentally with the geometric center of the bottom of reagent tube 2200. The tube is typically circular in cross-section, so identifying its center (e.g., as a crossing point of two diameters) is normally straightforward. Center 2209 may be larger than shown in FIG. 13B, such as may be a circular cutout or raised portion that exceeds in diameter of the region formed by the meeting point of grooves 2205.

Ring 2207 is an optional feature of star-shaped pattern the tube 2200 is shown. At B, the pipette tip is lowered, 25 2203. Typically ring 2207 is centered about center 2209, and typically it also has a dimension that corresponds to the lower surface of a pipette tip. Thus, when a pipette tip 'bottoms out' in the bottom of reagent tube 2200, the bottom of the pipette tip rests in contact with ring 2207. Ring 2207 is thus preferably a cut-out or recessed feature that can accommodate the pipette tip and assist in guiding its positioning centrally at the bottom of the tube. In other embodiments more than one, such as 2, 3, or 4 concentric rings 2207 are present.

> The star pattern is configured to have dimensions that give an optimal flow-rate of liquid out of the reagent tube into a suitably positioned pipette tip. The star pattern is shown in FIG. 13B as being significantly smaller in diameter than the diameter of the tube at its widest point. The star pattern may have, in various embodiments, a diameter (measured from center 2209 at apex of a groove 2208) from 5-20% of the diameter of the reagent tube, or from 10-25% of the diameter of the reagent tube, or from 15-30% of the diameter of the reagent tube, or from 20-40% of the diameter of the reagent tube, or from 25-50% of the diameter of the reagent tube, or from 30-50% the diameter of the reagent tube, or from 40-60% the distance of the reagent tube, or from 50-75% the diameter of the reagent tube, or from 65-90% the diameter of the reagent tube.

> The grooves 2205 are thus separated by ridges (occupying the space in between adjacent grooves). In the embodiment shown, the grooves are narrower (occupy a smaller radial angle) than the gaps between them. In other embodiments, the grooves may be proportionately wider than the gaps between them. In such embodiments, it may be more appropriate to describe them as having ridges instead of grooves. In other embodiments, the grooves and ridges that separate them are of equal widths at each radial distance from the

> The grooves that form the apices of the star may be rounded in their lower surfaces, such as semi-circular in cross section, but are typically V-shaped. They may also be trapezoid in cross-section, such as having a wider upper portion than the bottom, which is flat, the upper portion and the bottom being connected by sloping walls.

> In some embodiments, for ease of manufacture, the grooves end on the same level in the bottom of the tube.

23

Thus the radial ends are all disposed on the circumference of a circle. In other embodiments, the grooves do not all end on the same level. For example, grooves may alternately end on different levels, and thus the ends are alternately disposed on the respective circumferences of two circles that occupy 5 different planes in space from one another.

Grooves 2205 are shown in FIG. 13B as having equal lengths (as measured from center 2209 to apex). This need not be so. In alternative embodiments, grooves may have different lengths from one another, for example, as alternating lengths on alternating grooves, where there are an even number of grooves. Furthermore, apices may be rounded, rather than pointed.

Typically the grooves taper uniformly in width and depth from center 2209 to each respective apex. Still other configurations are possible, such as a groove that follows a constant width, or depth, out to a particular radial extent, such as 30-60% of its length, and then narrows or becomes shallower towards its apex. Alternatively, a groove may start narrow at center 2209, widen to a widest region near its 20 midpoint of length, and then narrow towards its apex. Still other possibilities, not described herein, are consistent with the stellated pattern.

In a 0.3 ml tube, the width of each groove **2205** at its widest point is typically around 50 microns, and the width 25 typically tapers uniformly from a widest point, closest to or at center **2209**, to the apex.

In a 0.3 ml tube, the depth of a groove at the deepest point is typically around 25-50 microns and the depth typically tapers uniformly from a deepest point, closed to or at center 30 **2209**, at an apex.

In a 0.3 ml tube, the radius of the star formed from the grooves, measured as the shortest distance from center **2209** to apex, is typically around 0.5 mm, but may be from 0.1-1 mm, or from 0.3-2 mm.

In another embodiment, in a 0.3 ml tube, the grooves should be rounded off and less than 100 microns deep, or less than 50 microns deep, or less than 25 microns deep.

The stellated pattern typically has a rotation axis of symmetry, the axis disposed perpendicular to the bottom of 40 the tube and through center **2209**, so that the grooves are disposed symmetrically about the rotation axis. By this is meant that, for n grooves, a rotation of $2\pi/n$ about the central (rotational) axis can bring each groove into coincidence with the groove adjacent to it.

The stellated shape shown in FIG. 13B is not limiting in that it comprises a number of radially disposed grooves 2205, and an optional circular ring 2207. Other star-shaped geometries may be used, and, depending upon ease of manufacture, may be preferred. For example, a star can be 50 created simply be superimposing two or more polygons having a common center, but offset rotationally with respect to one another about the central axis. (See, for example "star polygons" described at the Internet site mathworld.wplfram.com/StarPolygon.html.) Such alternative manners of creating star-shaped patterns are utilizable herein. Liquid Dispenser

In various embodiments, preparation of a PCR-ready sample for use in subsequent diagnosis using the apparatus as further described herein, can include one or more of the 60 following steps: contacting a neutralized polynucleotide sample with a PCR reagent mixture comprising a polymerase enzyme and a plurality of nucleotides (in some embodiments, the PCR reagent mixture can further include a positive control plasmid and a fluorogenic hybridization 65 probe selective for at least a portion of the plasmid); in some embodiments, the PCR reagent mixture can be in the form

24

of one or more lyophilized pellets, as stored in a receptacle on a holder, and the method can further include reconstituting the PCR pellet with liquid to create a PCR reagent mixture solution. Various, such as one or more, of the liquid transfer operations associated with the foregoing steps can be accomplished by an automated pipette head.

A suitable liquid dispenser for use with the apparatus herein comprises one or more sensors; a manifold; one or more pumps in fluid communication with the manifold; one or ore dispense heads in fluid communication with the manifold; and electrical connections that accept electrical signals from an external controller, wherein the liquid dispenser has no inlet or outlet for fluids, other than through the one or more pumps.

A cross-sectional view of an exemplary liquid dispenser is shown in FIG. 18. The liquid dispenser is configured to carry out fluid transfer operations on two or more holders simultaneously. As shown in FIG. 18, liquid dispenser 2105 can be mounted on a gantry having three degrees of translational freedom. Further embodiments can comprise a gantry having fewer than three degrees of translational freedom. The manner of mounting can be by a mechanical fastening such as one or more screws, as shown on the left hand side of FIG. 18. A suitable gantry comprises three axes of belt-driven slides actuated by encoded stepper motors. The gantry slides can be mounted on a framework of structural angle aluminum or other equivalent material, particularly a metal or metal alloy. Slides aligned in x- and y-directions (directed out of and in the plane of FIG. 18 respectively) facilitate motion of the gantry across an array of holders, and in a direction along a given holder, respectively.

The z-axis of the gantry can be associated with a variable force sensor which can be configured to control the extent of vertical motion of the head during tip pick-up and fluid 35 dispensing operations. Shown in FIG. 18, for example, a pipette head 1803 can be mounted such that a force acting upwardly against the head can be sensed through a relative motion between the head and a force sensor. For example, when pipette head 1803 forces against a disposable pipette in the rack below it, an upward force is transmitted causing head 1803 to torque around pivot point 2102, causing set screw 2104 to press against a force sensor. In turn, the force sensor is in communication with a processor or controller that controls at least the vertical motion of the liquid dispenser so that, thereby, the processor or controller can send instructions to arrest the vertical motion of the liquid dispenser upon receiving an appropriate signal from the force sensor. An exemplary force sensor suitable for use herein is available from Honeywell; its specification is shown in an appendix hereto. The force sensor mechanism shown in FIG. 18 is exemplary and one of many possible mechanisms capable of commanding the head during up pick-up and fluid dispensing operations. For example, as an alternative to a force sensor, a stall sensor that senses interruption in vertical motion of the one or more dispense heads upon contact with a sample tube or reagent holder may be used. Accordingly, as would be understood by one of ordinary skill in the art, the liquid dispenser as described herein is not limited to the specific mechanism shown in FIG. 18.

The liquid dispenser further comprises a number of individually sprung heads 1803, wherein each head is configured to accept a pipette tip from the one or more pipette tips in a holder. The liquid dispenser can be further configured such that no two heads accept pipette tips from the same holder. FIGS. 19A-C, for example, depicts four individually sprung heads 1803, but it is to be understood that the

dispenser is not limited to this number. For example, other number include 2, 3, 5, 6, 8, 10, or 12. Furthermore, the individually sprung heads **1803** are shown arranged in parallel to one another, but may be configured in other

25

arrangements. 5
The liquid dispenser can further comprise computer-controlled pump 2100 connected to distribution manifold 1802 with related computer controlled valving. Distribution manifold 1802 can comprise a number of valves, such as solenoid valves 1801 configured to control the flow of air 10 through the pipette tips in an exemplary embodiment, there are two valves for each pipette, and one additional valve to vent the pump. Thus, for a liquid dispenser having four pipette heads, there are nine valves. In another embodiment there is only one valve for each pipette, and one additional 15 valve to vent the pump. However, the distribution manifold

The liquid dispenser is further configured to aspirate or dispense fluid in connection with analysis or preparation of solutions of two or more samples. The liquid dispense is also 20 configured to dispense liquid into a microfluidic cartridge. Additionally, the liquid dispenser is configured to accept or dispense, in a single operation, an amount of 1.0 ml of fluid or less, such as an amount of fluid in the range 10 nl-1 ml.

is not limited to comprising exactly nine solenoid valves.

The liquid dispenser is configured such that pump 2100 25 pumps air in and out of the distribution manifold. The distribution manifold comprises a microfluidic network that distributes air evenly amongst the one or more valves. Thus, by controlling flow of air through the manifold and various valves, pressure above the pipette heads can be varied so that 30 liquid is drawn up into or expelled from a pipette tip attached to the respective pipette heads. In this way it is not necessary to supply compressed air via an air hose to the liquid dispenser. Neither is it necessary to provide liquid lines to the dispense head. Furthermore, no liquid reagents or liquid 35 samples from the holders enters any part of the liquid dispenser, including the manifold. This aspect reduced complications from introducing air bubbles into samples or liquid reagents. An exemplary configuration of a distribution manifold is shown in FIG. 20.

As shown in the various figures, the entire liquid dispenser that moves up and down the z-axis is a self-contained unit having only electrical connections to a processor or controller, and mechanical connections to the gantry. The translational motions in three dimensions of the liquid 45 dispenser can be controlled by a microprocessor, such as processor 980. No fluid handling lines are associated with the dispenser. This design enables simplification of assembly of the instrument, minimizes contamination of the instrument and cross-contamination of samples between 50 different instances of operation of the apparatus, increases efficiency of pumping (minimal dead volume) and enable easy maintenance and repair of the device. This arrangement also enable easy upgrading of features in the dispensing device, such as individual and independent pump control for 55 each dispenser, individual pipette attachment or removal, ability to control the pitch of the pipettes, etc.

Another aspect of the apparatus relates to a sample identification verifier configured to check the identity of each of the number of nucleic-acid containing samples. Such 60 sample identification verifiers can be optical character readers, bard code readers, or radio frequency tag readers, or other suitable readers, as available to one of ordinary skill in the art. A sample identification verifier can be mounted on the gantry, or attached to the liquid dispenser so that it moves 65 in concert with the liquid dispenser. Alternatively, the sample identification verifier can be separately mounted and

26

can move independently of the liquid dispenser. In FIGS. 21 and 22, for example, sample identification verifier 1701 is a bar-code reader attached to the liquid dispenser. The field of view of barcode scanner 1701 is non-linear, enabling it to detect light reflected by mirror 2300 from the barcoded clinical sample tube 2301 in disposable rack 2302. The barcode scanner reads the barcode on the clinical sample tube thus identifying the presence and specifics of the sample tube. Because of use of a mirror, the scanner is configured either to read a bar-code printed in mirror image form (that is thus reflected into normal form), or to read a mirror image of a normal bar-code and to convert the mirror image to unreflected form via a computer algorithm.

Sample identification verifier is configured to communicate details of labels that it has detected o read to a processor or controller in the apparatus, thereby permitting sample identifying information to be associated with diagnostic results and other information relating to sample preparation, and extraction and amplification of nucleic acid therein.

In FIG. 23, the sample identification verifier is positioned to rad indicia from a microfluidic cartridge.

In certain embodiments, the liquid dispenser can also comprise one or more sensors 2001 (e.g., infra-red sensors) each of which detects the presence of a pipette tip in a rack. In FIG. 24, for example, an infra-red sensor 2001 can have an infra-red emitter placed opposed to it, and the presence of disposable pipette tip 2000 obstructs the line of sight between the emitter and the detector, thus enabling determination of the presence or absence of the pipette tip. The disposal pipettes are configured perpendicular to pipette stripper-alignment plate 2003 as further described herein.

The liquid dispenser can also operate in conjunction with a motorized plate configured to strip the pipettes and align the pipettes during dispensing of fluid into a microfluidic cartridge, as further described herein.

FIGS. 25A and 25B show an exemplary device for stripping pipette tips from a liquid dispenser as further described herein. The pipette tips are aligned, all at the same pitch, above respective sockets (over a pipette tip sheath) in a holder. A metal plate having elongated holes lies over the sockets. The pipette tips are inserted part way down into the sheath through the elongated holes, and the metal plate is moved along in such a manner that the pipette tips are clamped by the elongated portion of the holes. When the liquid dispenser is moved up, the pipette tips become detached from their respective heads. When the metal plate is subsequently moved back to its initial position, the pipette tips remain in place in their respective sockets.

Heather Assembly & Magnetic Separator

A cross-sectional view of a heater unit of an exemplary heater assembly 1401 is shown in FIG. 18 (right hand panel). The heater assembly comprises one or more independently controllable heater units, each of which comprises a heat block. In certain embodiments there are 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 25, 30, 32, 36, 40, 48, or 50 heater units in a heater assembly. Still other numbers of heater units, such as any number between 6 and 100 are consistent with the description herein. The one or more heat blocks may be fashioned from a single piece of metal or other material, or may be made separately from one another and mounted independently of one another or connected to one another in some way. Thus, the term heater assembly connotes a collection of heater units but does not require the heater units or their respective heat blocks to be attached directly or indirectly to one another. The heater assembly can be configured so that each heater unit independently heats each of the one or more process tubes 1402, for example by

permitting each of the one or more heat blocks to be independently controllable, as further described herein. In the configuration of FIG. 26, the heater assembly comprises one or more heat blocks 1403 each of which is configured to align with and to deliver heat to a process tube 1402. Each 5 heat block 1403 can be optionally secured and connected to

27

heat block 1403 can be optionally secured and connected to the rest of the apparatus using a strip 1408 and one or more screws 1407 or other adhesive device. This securing mechanism is not limited to such as configuration.

Although a cross-sectional view of one heat block **1403** is shown in FIG. 26, it should be understood that this is consistent with having multiple heat blocks aligned in parallel to one another and such that their geometric midpoints all lie on a single linear axis, though it is not so limited in configuration. Thus, the one or more heat blocks may be positioned at different heights from one another, in groups or, alternately, individually, or may be staggered with respect to one another from left to right in FIG. 26 (right hand panel), in groups or alternately, or individually. Addi- 20 tionally, and in other embodiments, the heat blocks are not aligned parallel to one another but are disposed at angles relative to one another, the angles being other than 180°. Furthermore, although the heat block shown in FIG. 26 may be one of several that are identical in size, it is consistent 25 with the technology herein that one or more heat blocks may be configured to accept and to heat process tubes of different

The exemplary heat block 1403 in FIG. 26 (right hand pane) is configured to have an internal cavity that partially 30 surrounds a lower portion of process tube 1402. In the heat block of FIG. 26, the internal cavity surrounds the lower portion of process tube 1402 on two sides but not the front side (facing away from magnet 1404) and not the rear side (adjacent to magnet 1404). In other embodiments, heat block 35 1403 is configured to surround the bottom of process tube 1402 on three sides, including the front side. Still other configurations of heat block 1403 are possible, consistent with the goals of achieving rapid and uniform heating of the contents of process tube 1402. In certain embodiments, the 40 heat block is shaped to conform closely to the shape of process tube 1402 so as to increase the surface area of the heat block that is in contact with the process tube during heating of the process tube. Thus, although exemplary heat block 1403 is shown having a conical, curve-bottomed 45 cavity in which a complementary process tube is seated, other embodiments of the heat block 1403 have, for example, a cylindrical cavity with a flat bottom. Still other embodiments of heat block 1403 may have a rectilinear internal cavity such as would accommodate a cuvette.

Moreover, although heat block 1403 is shown as an L-shape in FIG. 26, which aids in the transmittal of heat from heating element 1501 and in securing the one or more heat blocks to the rest of the apparatus, it need not be so, as further described herein. For example, in some embodiments 55 heating element 1501 may be positioned directly underneath process tube 1402.

Each heat block 1403 is configured to have a low thermal mass while still maintaining high structural integrity and allowing a magnet to slide past the heat blocks and the 60 process tubes with ease. A low thermal mass is advantageous because it allows heat to be delivered or dissipated rapidly, thus increasing the heating and cooling efficiency of the apparatus in which the heater assembly is situated. Factors that contribute to a low thermal mass include the material 65 from which a heat block is made, and the shape that it adopts. The heat blocks 1403 can therefore be made of such

28

materials as aluminum, silver, gold, and copper, and alloys thereof, but are not so limited.

In one embodiment, the heat block 1403 has a mass of \sim 10 grams and is configured to heat up liquid samples having volumes between 1.2 ml and 10 μl. Heating from room temperature to 65° C. for a 1 ml biological sample can be achieved in less than 3 minutes, and 10 µl of an aqueous liquid such as a release buffer up to 85° C. (from 50° C.) in less than 2 minutes. The heat block 1403 can cool down to 50° C. from 85° C. in less than 3 minutes. The heat block 1403 can be configured to have a temperature uniformity of 65±4° C. for heating up 1 ml of sample and 85±3° C. for heating up 10 µl of release buffer. These ranges are typical, but the heat block can be suitably scaled to heat other volumes of liquid at rates that are slower and faster than those described. This aspect of the technology is one aspect that contributes to achieving rapid nucleic acid extraction of multipole samples by combination of liquid processing steps, rapid heating for lysis, DNA capture and release and magnetic separation, as further described herein.

Not shown in FIG. 26, the heater assembly 1401 can also optionally be contained in an enclosure that surrounds the heat blocks 1403. The enclosure can be configured to enable sufficient air flow around the process tubes and so as not to significantly inhibit rate of cooling. The enclosure can have a gap between it and the heat blocks to facilitate cooling. The enclosure can be made of plastic, but is not so limited. The enclosure is typically configured to appear aesthetic to a user

As shown in FIG. 26, the heater assembly 1401 can also comprise one or more heating elements (e.g., a power resistor) 1501 each of which is configured to thermally interface to a heat block 1403 and dissipate heat to it. For example, in one embodiment, a power resistor can dissipate up to 25 Watts of power. A power resistor is advantageous because it is typically a low-cost alternative to a heating element. Other off-the-shelf electronic components such as power transistors may also be used to both sense temperature and heat. Although the heating element 1501 is shown placed at the bottom of the heat block 1403, it would be understood that other configurations are consistent with the assembly described herein: for example, the heating element 1501 might be placed at the top or side of each heat block 1403, or directly underneath process tube 1402. In other embodiments, the heating element has other shapes and is not rectangular in cross section but may be curved, such as spherical or ellipsoidal. Additionally, the heating element may be moulded or shaped so that is conforms closely or approximately to the shape of the bottom of the process tube. Not shown in FIG. 26, the heater assembly can also comprise an interface material (e.g., Berquist q-pad, or thermal grease) between the heating element 1501 and the heat block 1403 to enable good thermal contact between the element and the heat block.

In the embodiment shown in FIG. 26, the heater assembly further comprises one or more temperature sensors 1502, such as resistive temperature detectors, to sense the respective temperature of each heat block 1403. Although a temperature sensor 1502 is shown placed at the bottom of the heat block 1403, it would be understood that other configurations are consistent with the assembly described herein: for example, the temperature sensor might be placed at the top or side of each heat block 1403, or closer to the bottom of process tube 1402 but not so close as to impede uniform heating thereof. As shown in the embodiment of FIG. 26, the heater assembly can further comprise an interface material (e.g., Berquist q-pad) 1503 configured to

enable good thermal contact between the sensor 1502 and the heat block 1403, to thereby ensure an accurate reading.

Certain embodiments of the diagnostic or preparatory apparatus herein have more than one heater assembly as further described herein. For example, a single heater assem- 5 bly may be configured to independently heat 6 or 12 process tubes, and an apparatus may be configured with two or four such heater assemblies.

29

The disclosure herein further comprises a magnetic separator, configured to separate magnetic particles, the separator comprising: one or more magnets affixed to a supporting member; a motorized mechanism configured to move the supporting member in such a manner that the one or more magnets move backwards and forwards along a fixed axis, and during at least a portion of the motion, the one or more 15 magnets maintain close proximity to one or more receptacles which contain the magnetic particles in solution; and control circuity to control the motorized mechanism.

The disclosure herein still further includes an integrated magnetic separator and heater, comprising: a heater assem- 20 bly, wherein the heater assembly comprises a plurality of independently controllable heater units, each of which is configured to accept and to heat one of a plurality of process tubes; one or more magnets affixed to a supporting member; a motorized mechanism configured to move the supporting 25 the magnets between a first position, situated away from the member in such a manner that the one or more magnets move backwards and forwards along a fixed axis, and during at least a portion of the motion the one or more magnets maintain close proximity to one or more of the process tubes in the heater assembly, wherein the one or more process 30 tubes contain magnetic particles; and control circuitry to control the motorized mechanism and to control heating of the heater units.

Typically, each of the one or more receptacles is a process tube, such as for carrying out biological reactions. In some 35 embodiments, close proximity can be defined as a magnet having a face less than 2 mm away from the exterior surface of a process tube without being in contact with the tube. It can still further be defined to be less than 1 mm away without being in contact with the tube, or between 1 and 2 40 mm away.

Typically the magnetic particles are microparticles, beads, or microspheres capable of binding one or more biomolecules, such as polynuleotides. Separating the particles, while in solution, typically comprises collecting and con- 45 centrating, or gathering, the particles into one location in the inside of the one or more receptacles.

An exemplary magnetic separator 1400 is shown in FIG. 27, configured to operate in conjunction with heater assembly 1401. The magnetic separator 1400 is configured to 50 move one or more magnets relative to the one or more process tubes 1402. While the magnet 1404 shown in FIG. 27 is shown as a rectangular block, it is not so limited in shape. Moreover, the configuration of FIG. 27 is consistent with either having a single magnet that extends across all 55 heat blocks 1403 or having multiple magnets operating in concert and aligned to span a subset of the heat blocks, for example, aligned collinearly on the supporting member. The magnet 1404 can be made of neodymium (e.g., from K & J Magnetics, Inc.) and can have a magnetic strength of 5,000- 60 15,000 Gauss (Brmax). The poles of the magnets 1404 can be arranged such that one pole faces the heat blocks 1403 and the other faces away from the heat blocks.

Further, in the embodiment shown in FIG. 27, the magnet 1404 is mounted on a supporting member 1505 that can be 65 raised up and down long a fixed axis using a motorized shaft 1405. The fixed axis can be vertical. In the embodiment

30

shown in FIG. 27, a geared arrangement 1406 enables the motor 1601 to be placed perpendicular to the shaft 1405, thereby saving space in the apparatus in which magnetic separator 1400 is situated. In other embodiments, the motor is placed underneath shaft 1405. It would be understood that other configurations are consistent with the movement of the magnet relative to the process tubes, including, but not limited to, moving the magnet from side-to-side, or bringing the magnet down from above. The motor can be computer controlled to run at a particular speed; for example at a rotational speed that leads to vertical motion of the magnet in the range 1-20 mm/s. The magnetic separator can thus be configured to move repetitively, e.g., up an down, from side to side, or backwards and forwards, along the same axis several times. In some embodiments there is more than one shaft that operates under motorized control. The presence of at least a second shaft has the effect of making the motion of the separator more smooth. In some embodiments, the supporting member rides on one more guiding members to ensure that the supporting member does not, for example, tip, twist, or yaw, or undergo other internal motions while moving (other than that of controlled motion along the axis) and thereby reduce efficacy of the separation.

The supporting member can also be configured to move one or more receptacles, and a second position situated in close proximity to the one or more receptacles, and is further configured to move at an amplitude about the second position where the amplitude is smaller than a distance between the first position and the second position as measured along the shaft.

Shown in FIGS. 26 and 27, the heater assembly 1401 and the magnetic separator 1400 can be controlled by electronic circuitry such as on printed circuit board 1409. The electronic circuitry 1409 can be configured to cause the heater assembly 1401 to apply heat independently to the process tubes 1402 to minimize the cost of heating and sensing. It can also be configured to cause the magnetic separator 1400 to move repetitively relative to the process tubes 1402. The electronic circuitry 1409 cab be integrated into a single printed circuit board (PCB). During assembly, a plastic guide piece can help maintain certain spacing between individual heat blocks 1403. This design can benefit from use off-the-shelf electronics to control a custom arrangement of heat blocks 1403.

Not shown in FIGS. 26 and 27, an enclosure can cover the magnetic separator 1400 and the heater assembly 1401 for protection of sub-assemblies below and aesthetics. The enclosure can also be designed to keep the heat blocks 1403 spaced apart from one another to ensure efficiency of heating and cooling. The magnetic separator and heater assembly can, alternatively, be enclosed by separate enclosures. The one or more enclosures can be made of plastic.

Advantageously, the heater assembly and magnetic separator operate together to permit successive heating and separation operations to be performed on liquid materials in the one or more process tubes without transporting either the liquid materials or the process tubes to different locations to perform either heating or separation. Such operation is also advantageous because it means that the functions of heating and separation which, although independent of one another, are both utilized in sample preparation may be performed with a compact and efficient apparatus.

Cartridge Autoloader

Ab exemplary embodiment of a PCR amplification-detection system 2900 for use with a microfluidic cartridge is shown in FIG. 28. The system 2900 performs and automates 31

the process of PCR on multiple nucleic-acid containing samples in parallel. The system 2900 comprises a depository 2907 for unused microfluidic cartridges, a cartridge autoloader, a receiving bay for a microfluidic cartridge, a detector, and a waster tray 2903 configured to receive used 5 microfluidic cartridges. In one embodiment, the cartridge autoloader comprises a cartridge pack 2901, and a cartridge pusher 2904.

The system 2900, for illustration purposes, is configured so that a microfluidic cartridge moves in a plane and in a 10 linear manner from the depository to the receiving bay, to the waste bin, but it need not be so arranged. For example, the waste cartridge bin 2903 can be aligned orthogonally, or any angle thereof, to the receiving bay, such as disposed behind it. Alternatively, each element (cartridge autoloader 15 2901, receiving bay 2902, and waste cartridge bin 2903) can be configured in a step-wise manner where the cartridge pack 2901 is on the same, higher or lower level than the microfluidic PCR amplification-detection system 2902 and the microfluidic PCR amplification-detection system **2902** is 20 on the same, higher or lower level than the waste cartridge bin 2903. Another configuration could be that each of the three elements is not arranged linearly but at an angle to one another, although within the same plane.

FIG. 28 illustrates the cartridge pack 2901 and the waste 25 cartridge bin 2903 below the plane of the receiving bay, and a detection system **2908** above the plane. This configuration is exemplary and it would be understood that these elements may be positioned above or below the plane in other embodiments.

FIG. 29 illustrates a depository for unused microfluidic cartridges. The depository can be configured to accept a number of individually stacked and individually loaded cartridges, or can be configured to accept a pack of cartridges. An exemplary cartridge pack has 24 cartridges. The 35 depository may consist of a cage 2910 of any material that may or may not be transparent. For example it may be made of metal or plastic. The cartridge pack 2901 is not limited to twenty-four cartridges 106 per pack but may contain any number from 2 to 100. For example, other numbers such as 40 2, 4, 8, 10, 12, 16, 20, 30, 36, 40, 48, 50, or 64 are possible numbers of cartridges 106 per pack. Similarly, the depository may be configured to accept those numbers of cartridges, when individually stacked. In one embodiment, as in FIG. 29, each cartridge 2906, individually stacked, rests on 45 ledges 2911 that protrude from the cage 2910. However, other configurations are possible. For example, a cartridge 2906 may rest on recessed grooves made within the interior surfaces of cage 2910. Furthermore, the cartridge pack 2901 may not need to be placed in a cage 2910. The cartridge pack 50 2901 may itself include the necessary connections to bind securely to the apparatus to load the cartridges 2906.

FIG. 30 is an illustration of an exemplary initial loading position of a cartridge pack 2901 in a depository when 30 shows the cartridge pack 2901 below a plane that contains a cartridge pusher. In other embodiments, the cartridge pack 2901 may be above the plane of a cartridge pusher where the pusher pushes the lowest cartridge out from the holder; or partly above and partly below in a holder 60 2920 where a cartridge pusher pushes a cartridge from the middle of the cartridge pack 2901. In the embodiment shown, a topmost cartridge 106 is pushed along two guide rails 2905. Alternatively, there may be more or fewer guide rails (such as one or three) or no guide rails at all so long as 65 a cartridge 2906 can be caused to move to other required positions.

32

An exemplary cartridge pusher 2904 is shown in FIG. 31. The cartridge pusher 2904 pushes a cartridge 2906 along guide rails 2905, which allows a cartridge 2906 to travel to pre-calibrated positions by the mechanism of a stepper motor 2930. However, it would be understood that the mechanism of transporting the cartridge 2906 is not limited to a stepper motor 2930 and thus other mechanisms are also consistent with the cartridge pusher 2904 as described herein.

FIG. 32 shows a used cartridge 2906 that has been pushed by the cartridge pusher 2904 into the waste cartridge bin 2903 after a PCR process has been completed. The embodiment shows a lipped handle 2940 that facilitates easy handling, such as emptying, of the bin 2903. However, it would be understood that the handle 2904 is not limited to the style and shape shown.

An exemplary cartridge pack 2901, before and after multiple PCR processes are completed are shown in FIG. 33. After the cartridge pusher 2904 pushes a cartridge 2906 out of the cartridge pack 2901, a spring 2950 at the bottom of the cartridge pack pushes against the lower surface of the stack of cartridges and causes the topmost cartridge to be made available for sample injection. The spring 2950 is not limited in number or type. Thus although a single helical or coiled spring is shown, it is consistent with the description herein that more than one helical or coiled springs could be used, such as 2, 3, or 4, and the alternatively a sprung metal strip, or several strips, could be used. Alternatively another mechanism for forcing the cartridges upwards could be deployed, such as pneumatic, hydraulic, or inflatable pressurized container, could be utilized.

It is to be noted that microfluidic cartridges, as further described herein, that have a raised lip along their edges to permit ease of stacking and/or storage in a pack or an auto-loader are particularly advantageous because the raised lips also introduce a stiffness into the cartridges and assist in keeping the fluid inlets on one cartridge away from those on another cartridge during storage and transport. The raised regions, which need not only be lip along each edge of a cartridge, also help minimize friction between the lower surface of one cartridge and the upper surface of another. Cartridge Receiving Bay

The present technology relates to an apparatus and related methods for amplifying, and carrying out diagnostic analyses on, nucleotides from biological samples. The apparatus is configured to act on a disposable microfluidic cartridge containing multiple sample lanes in parallel, and comprises a reusable instrument platform that can actuate on-cartridge operations, can detect and analyze the products of the PCR amplification in each of the lanes separately, in all simultaneously, or in groups simultaneously, and, optionally, can display the results on a graphical user interface.

FIG. 34 shows a perspective view of an exemplary samples are loaded in the topmost cartridge in the pack. FIG. 55 cartridge 200 that contains multiple samples lanes, and exemplary read head 300 that contains detection apparatus for reading signals from cartridge 200. Also shown in FIG. 34 is a tray 110 that, optionally, can accommodate cartridge 200 prior to insertion of the cartridge in a receiving bay. The apparatus described herein is able to carry out real-time PCR on a number of samples in cartridge 200 simultaneously. Preferably the number of samples is 12 samples, as illustrated with exemplary cartridge 200, though other numbers of samples such as 4, 8, 10, 16, 20, 24, 25, 30, 32, 36, 40, and 48 are within the scope of the present description. In preferred operation of the apparatus, a PCR-ready solution containing the sample, and, optionally, one or more analyte-

specific reagents (ASR's) using other components of the apparatus, as further described herein, prior to introduction into cartridge 200.

In some embodiments, an apparatus includes a bay configured to selectively receive a microfluidic cartridge; at 5 least one heat source thermally coupled to the bay; and coupled to a processor as further described herein, wherein the heat source is configured to heat individual sample lanes in the cartridge, and the processor is configured to control application of heat of the individual sample lanes, separately, in all simultaneously, or in groups simultaneously.

In some embodiments, an apparatus further includes at least one detector configured to detect a polynucleotide (nucleic acid) in a sample in one or more of the individual samples lanes, separately or simultaneously; wherein the 15 processor is coupled to the detector to control the detector and to receive signals from the detector.

The bay can be a portion of the apparatus that is configured to selectively receive the microfluidic cartridge. For example, the bay and the microfluidic cartridge can be 20 complementary in shape so that the microfluidic cartridge is selectively received in, e.g., a single orientation. For example, the microfluidic cartridge can have a registration member that fits into a complementary feature of the bay. The registration member can be, for example, a cut-out on 25 an edge of the cartridge, such as a corner that is cut-off, or one or more notches that are made on one or more of the side. By selectively receiving the cartridge, the bay can help a user to place the cartridge so that the apparatus can properly operate on the cartridge. In this way, error-free 30 alignment of cartridges can be achieved. Moreover, the cartridge can be designed to be slightly smaller than the receiving bay by approximately 200-300 micron for easy placement and removal of the cartridge. The apparatus can further include a sensor configured to sense whether the 35 microfluidic cartridge is selectively received.

The bay can also be configured so that various components of the apparatus that can operate on the microfluidic cartridge (heat sources, detectors, force members, and the like) are positioned to properly operate on the microfluidic 40 cartridge. For example, a contact heat source can be positioned in the bay such that it can be thermally coupled to a distinct location at a microfluidic cartridge that is selectively received in the receiving bay.

Alternatively, in connection with alignment of microheaters in the heater module with corresponding heat-requiring microcomponents (such as valves, pumps, gates, reaction chambers, etc.), the microheaters can be designed to be slightly bigger than the heat requiring microfluidic components so that even though the cartridge may be off-centered from the heater, the individual components can still function effectively.

The detector 300 can be, for example, an optical detector, as further described herein. For example, the detector can include a light source that selectively emits light in an 55 absorption band of a fluorescent dye, and a light detector that selectively detects light in an emission band of the fluorescent dye, wherein the fluorescent dye corresponds to a fluorescent polynucleotide probe or a fragment thereof. Alternatively, for example, the optical detector can include 60 a bandpass-filtered diode that selectively emits light in the absorption band of the fluorescent dye and a bandpass filtered photodiode that selectively detects light in the emission band of the fluorescent dye; or for example, the optical detector can be configured to independently detect a plurality of fluorescent dyes having different fluorescent emission spectra, wherein each fluorescent dye corresponds to a

34

fluorescent polynucleotide probe or a fragment thereof; or for example, the optical detector can be configured to independently detect a plurality of fluorescent dyes at a plurality of different locations on a microfluidic cartridge, wherein each fluorescent dye corresponds to a fluorescent polynucleotide probe or a fragment thereof in a different sample.

The heat source can be, for example, a heat source such as a resistive heater or network of resistive heaters, a reversible heat source such as a liquid-filled heat transfer circuit or a thermoelectric element, a radiative heat source such as a xenon lamp, and the like.

In preferred embodiments, the at least one heat source can be a contact heat source selected from a resistive heater (or network thereof), a radiator, a fluidic heat exchanger and a Peltier device. The contact heat source can be configured at the receiving bay to be thermally coupled to one or more distinct locations of a microfluidic cartridge received in the bay, whereby the distinct locations are selectively heated. At least one additional contact heat source can be included, wherein the contact heat sources are each configured at the bay to be independently thermally coupled to a different distinct location in a microfluidic cartridge received in the bay, whereby the distinct locations are independently heated. The contact heat source can be configured to be in direct physical contact with a distinct location of a microfluidic cartridge received in the bay. In various embodiments, each contact source heater can be configured to heat a distinct location having an average diameter in 2 dimensions from about 1 millimeter (mm) to about 15 mm (typically about 1 mm to about 10 mm), or a distinct location having a surface area of between about 1 mm² about 225 mm² (typically between about 1 mm² and about 100 mm², or in some embodiments between about 5 mm² and about 50 mm²).

In various embodiments, at least one heat source can be a radiative heat source configured to direct heat to a distinct location of a microfluidic cartridge received in the receiving bay.

In various embodiments, the apparatus includes one or more force members that are configured to apply force to thermally couple that at least one heat source to at least a portion of the microfluidic cartridge received in the bay. The one or more force members can be configured to operate a mechanical member at the microfluidic cartridge. At least one force member can be manually operated. At least one force member can be mechanically coupled to a lid at the receiving bay, whereby operation of the lid operates the force member.

In various embodiments, the force applied by the one or more force members can result in an average pressure at an interface between a portion of the receiving bay and a portion of the microfluidic cartridge of about 1 psi. The application of force is important to ensure consistent thermal contact between the heater wafer and the PCR reactor and microvalves in the microfluidic cartridge.

In various embodiments, the apparatus can further include a lid at the receiving bay, the lid being operable to at least partially exclude ambient light from the bay. The lid can be, for example, a sliding lid. The lid can include the optical detector. A major face of the lid at the bay can vary from planarity by less than about 100 micrometers, for example, less than about 25 micrometers. The lid can be configured to be removable from the apparatus. The lid can include a latching member that ensures that the lid is securely closed before amplification reactions are applied to the samples in the cartridge.

35

FIG. 35 shows a schematic cross-sectional view of a part of an apparatus as described herein, showing input of sample into a cartridge 200 via a pipette tip 10 (such as a disposable pipette) attached to an automated dispensing head, and an inlet 202. Although not shown, there are as many inlets 202 5 as samples to be input into cartridge 200. Inlet 202 is preferably configured to receive a pipette or the bottom end of a PCR tube and thereby accept sample for analysis with minimum waste, and with minimum introduction of air. Cartridge 200 is disposed on top of and in contact with a 10 heater substrate 400. Read head 300 is positioned above cartridge 200 and a cover for optics 310 restricts the amount of ambient light that can be detected by the read head.

In various embodiments, a system as described herein can include both a microfluidic cartridge and the diagnostic 15 apparatus.

Microfluidic Cartridge

One aspect of the present technology relates to a microfluidic cartridge including a first, second, and third, layers that together define a plurality of microfluidic networks, 20 each network having various components configured to carry out PCR on a sample having one or more polynucleotides whose presence is to be determined. The cartridge includes one or more sample lanes in parallel, wherein each land is independently associated with a given sample for 25 simultaneous processing, and each lane contains an independently configured microfluidic network. An exemplary cartridge having such a construction is shown in FIG. 36. Such a cartridge is simple to manufacture, and permits PCR in a concentrated reaction volume (~4 µl) and enables rapid 30 thermocycling, at ~20 seconds per cycle.

Although other layers may be found in cartridges having comparable performance and ease of manufacture, the cartridge herein includes embodiments having only three layers in their construction: a substrate having an upper side and an 35 opposed lower side, wherein the substrate comprises a microfluidic network having a plurality of sample lanes; a laminate attached to the lower side to seal the components of the microfluidic network, and provide an effective thermal components in the microfluidic network; and a label, attached to the upper side that also covers and seals holes that are used in the manufacturing process to load microfluidic components such as valves. Thus, embodiments herein include microfluidic cartridges consisting of three 45 layers, a substrate, a laminate, and a label, though other, additional, features other than layers may be consistent with such characterizations. Embodiments herein further include microfluidic cartridges consisting essentially of three layers, a substrate, laminate, and a label, though other, additional, 50 features other than layers may be consistent with such characterizations. Furthermore, embodiments herein still further include microfluidic cartridges comprising three layers, a substrate, a laminate, and a label.

A microfluidic network can include, in fluidic communi- 55 cation, one or more components selected from the group consisting of: gates, valves such as thermally actuated valves, channels, vents, and reaction chambers. Particular components of exemplary microfluidic networks are further described elsewhere herein. The cartridge typically pro- 60 cesses the sample by increasing the concentration of a polynucleotide to be determined.

A sample lane is a set of elements, controllable independently of those in another sample lane, by which a sample can be accepted and analyzed, according to methods 65 described herein. A land comprises at least a sample inlet, and a microfluidic component, as further described herein in

connection with a microfluidic cartridge. In some embodiments, each microfluidic network additionally comprises an overflow reservoir to contain extra liquid dispensed into the

36

In various embodiments, a lane can include a sample inlet port, a first thermally actuated valve, a second thermally actuated valve, a PCR reaction chamber, and channels connecting the inlet port to the PCR reaction chamber via the first valve, and channels connecting the PCR reaction chamber to an exit vent via the second valve. The sample inlet valve can be configured to accept a quantity of sample at a pressure differential compared to ambient pressure of between about 100 to 5000 Pa. It should be noted that the lower the loading pressure, the higher the fill time for a aliquot of reaction mix to fill the microfluidic network. Applying more pressure will reduce the fill time, but if the time for which the pressure is applied is not determined correctly, the sample could be blown out through the microfluidic cartridge (if an end hydrophobic vent is not present). Therefore the time for which the pressure is applied should to be properly determined, such as by methods available to one of ordinary skill in the art, to prevent underfill or overfill. In general, the fill time is inversely proportional to the viscosity of the solution. For example, FIG. 37 shows a microfluidic cartridge containing twelve independent sample lanes capable of independent (simultaneous or successive) processing of samples.

The microfluidic network in each lane is typically configured to carry out PCR on a PCR-ready sample, such as one containing nucleic acid (DNA or RNA) extracted from a raw biological sample using other aspects of the apparatus as further described herein. A PCR-ready sample in thus typically a mixture comprising the PCR reagent(s) and the neutralized polynucleotide sample, suitable for subjecting to thermal cycling conditions that create PCR amplicons from the neutralized polynucleotide sample. For example, a PCRready sample can include a PCR reagent mixture comparing transfer layer between a dedicated heating element and 40 a polymerase enzyme, a positive control plasmid, a fluorogenic hybridization probe selective for at least a portion of the plasmid and a plurality of nucleotides, and at least one probe that is selective for a polynucleotide sequence.

> Typically, the microfluidic network is configured so that the time required for a microdroplet of sample to pass from the inlet to the second valve is less than 50% of the time required for the sample to travel up to the exit vent. Typically, the microfluidic network is designed to have an increased flow resistance downstream of the two valves without increasing the total volume of the microfluidic network in comparison to the amount required to fill from the first valve to the end vent of the network.

> FIG. 38A shows a perspective view of a portion of an exemplary microfluidic cartridge 200 according to the present technology. The cartridge may be referred to as a multi-lane PCR cartridge with dedicated pipette inlets 202. Shown in FIG. 38A are various representative components of cartridge 200. For example, sample inlet 202 is configured to accept a syringe, a pipette, or a PCR tube containing a PCR ready sample. More than one inlet 202 is shown, wherein one inlet operates in conjunction with a single lane. Various components of microfluidic circuitry in each lane are also visible. For example, microvalves 204, and 206, and vents 208, which, as further described herein, is a microfluidic channel that is long enough to permit PCR to occur in a sample. Above PCR reactor 210 is a window 212 that permits optical detection, such as detection of fluorescence

from a fluorescent substance, such as a fluorogenic hybridization probe, in PCR reactor 210 when a detector is situated above window 212.

A multi-lane cartridge is configured to accept a number of samples, in particular embodiments 12 samples, wherein the 5 samples include at least a first sample and a second sample, wherein the first sample and the second sample each contain one or more polynucleotides in a form suitable for amplification. The polynucleotides in question may be the same as, or different from one another, in different lanes of a 10 cartridge. The multi-sample cartridge comprises at least a first microfluidic network and a second microfluidic network, adjacent to one another, wherein each of the first microfluidic network and the second microfluidic network is as elsewhere descried herein, and wherein the first microfluidic network accepts the first sample, and wherein the second microfluidic network accepts the second sample.

The sample inlets of adjacent lanes are reasonably spaced apart from one another to prevent any contamination of one sample inlet from another sample when a user introduces a 20 sample into any one cartridge. In some embodiments, the sample inlets are configured so as to prevent subsequent inadvertent introduction of sample into a given lane after a sample has already been introduced into that lane.

In some embodiments, the multi-sample cartridge has a 25 size substantially the same as that of a 96-well plate as is customarily used in the art. Advantageously, then, the cartridge may be used with plate handlers used elsewhere in the art. Still more preferably, however, the multi-sample cartridge is designed so that a spacing between the centroids of 30 sample inlets is 9 mm, which is an industry-recognized standard. This means that, in certain embodiments the center-to-center distance between inlet holes in the cartridge that accept samples from PCR tubes, as further described herein, is 9 mm. The inlet holes are manufactured frusto- 35 conical in shape with an appropriate conical angle so that industry-standard pipette tips (2 µl, 20 µl, 200 µl, volumes, etc.) fit snugly, entering from the widest point of the inlet. Thus, in certain embodiments, an inlet comprises an inverted frustoconical structure of at least 1 mm height, and having 40 a diameter at tis widest point that accepts entry of a pipette tip, of from 1-5 mm. The apparatus herein may be adapted to suit other, later-arising, industry standards for pipette tips not otherwise described herein. Typically the volume of sample accepted via an inlet into a microfluidic network in 45 a sample lane is from 1-20 μl, and may be from 3-5 μl. The inlet hole can be designed to fit a pipette tip snugly and to create a good seal around the pipette tip, within the cone of the inlet hole. However, the cone is designed such that the sealing is reversible because it is undesirable if the seal is so 50 tight that the cartridge can be pulled away from its tray, or location in the receiving bay, when the pipette tips are lifted after the dispensing operations.

FIG. 37 shows a plan view of an exemplary microfluidic cartridge having 12 lanes. The inlet ports have a 6 mm 55 spacing, so that, when used in conjunction with an automated sample loader having 4 heads, spaced equidistantly at 9 mm apart, the inlets can be loaded in three batches of 4 inlets: e.g., inlets 1, 4, 7, and 10 together, followed by 2, 5, 8, and 11, then finally 3, 6, 9, and 12, wherein the 12 inlets are numbered consecutively from one side of the cartridge to the other.

FIG. 39A shows a plan view of a representative microfluidic circuit found in one lane of a multi-lane cartridge such as shown in FIGS 38A and 38B. FIG. 38B shows 65 another plan view (left panel) of another representative microfluidic circuit found in one lane of a multi-lane car-

38

tridge such as shown in FIG. 36, and shows how the circuit is visible through the cartridge construction (right panel). Other configurations of microfluidic network would be consistent with the function of the cartridges and apparatus described herein. In sequence, sample is introduced through liquid inlet 202, and optionally flows into a bubble removal vent channel 208 (which permits adventitious air bubbles introduced into the sample during entry, to escape), and continues along a channel 216. Typically, when using a robotic dispenser of liquid sample, the volume is dispensed accurately enough that formation of bubbles is not a significant problem, and the presence of vent channel 208 is not necessary.

Throughout the operation of cartridge 200 the fluid is manipulated as a microdroplet (not shown in FIGS. 39A,B). Valves 204 and 206 are shown in FIG. 39A as double-valves, having a source of thermally responsive material (also referred to as a temperature responsive substance) on either side of the channel where they are situated. However, valves 204 and 206 may either or both be single valves that have a source of thermally responsive material on only one side of the respective channels. Valves 204 and 206 are initially open, so that a microdroplet of sample-containing fluid can be pumped into PCR reactor 210 from inlet hole 202. Upon initiating of processing, the detector present on top of the PCR reactor checks for the presence of liquid in the PCR reactor, and then closes valves 204 and 206 to isolate the PCR reaction mix from the channels on either side.

The PCR reactor 210 is a microfluidic channel that is heated through a series of cycles to carry out amplification of nucleotides in the sample, as further described herein. Typically the PCR reactor has a volume of 3-5 µl, in particular, 4 µl. The inside walls of the channel in the PCR reactor are made very smooth and polished to a shiny finish (for example, using a polish selected from SPI A1, SPI A2, SPI A3, SPI b1, or SPI B2) during manufacture. This is in order to minimize any microscopic air trapping in the surface of the PCR reactor, which would causing bubbling during the thermocycling steps. The presence of bubbles especially in the detection region of the PCR reactor might cause a false reading for the PCR reaction. Furthermore, the PCR reactor 210 is made shallow such that the temperature gradient across the depth of the channel is minimized. The region of the cartridge 212 above PCR reactor 210 permits a detector to monitor progress of the reaction and also to detect fluorescence from a probe that binds to a quantity of amplified nucleotide. The region 212 is made of thinner material than the rest of the cartridge so as to permit the PCR reactor to be more responsive to a heating cycle (for example, to rapidly heat and cool between temperatures appropriate for denaturing and annealing steps), and so as to reduce glare, autofluorescence, and undue absorption of fluorescence. Both valves 204 and 206 are closed prior to thermocycling to prevent any evaporation of liquid, bubble generation, or movement of fluid from the PCR reactor.

End vent 214 prevents a user from introducing any excess amount of liquid into the microfluidic cartridge, as well as playing a role of containing any sample from spilling over to unintended parts of the cartridge. A user may input sample volumes as small as an amount to fill from the bubble removal vent to the middle of the PCR reactor, or up to valve 204 or beyond valve 204. The use of microvalves prevents both loss of liquid or vapor thereby enabling even a partially filled reactor to successfully complete a PCR thermocycling reaction. The application of pressure (such as ~1 psi) to contact the cartridge to the heater of the instrument assists in achieving better thermal contact between the heater and the

39

heat-receivable parts of the cartridge, and also prevents the bottom laminate structure from expanding, as would happen if the PCR channel was partially filled with liquid and the entrapped air would be thermally expanded during thermocycling.

In various embodiments, the microfluidic network can optionally include at least one hydrophobic vent additional to the end vent.

After PCR has been carried out on a sample, and presence or absence of a polynucleotide of interest has been determined, it is preferred that the amplified sample remains on the cartridge and that the cartridge is either used again (if one or more lanes remain open), or disposed of. Should a user wish to run a post amplification analysis, such as gel electrophoresis, the user may pierce a hole through the 15 laminate of the cartridge, and recover an amount—typically about 1.5 microliter—of PCR products. The user may also place the individual PCR lane on a special narrow heated plate, maintained at a temperature to melt the wax in the valve, and the aspirate the reacted sample from the inlet hole 20 of that PCR lane.

In various embodiments, the microfluidic network can optionally include at least one reservoir configured to contain waste.

In various embodiments, the microfluidic cartridge can 25 further include a label, such as a computer-readable or scannable label. For example, the label can be a bar code, a radio frequency tag, or one or more computer-readable, or optionally scannable, characters. The label can be positioned such that it can be read by a sample identification verifier as 30 further described herein.

In various embodiments, during transport and storage, the microfluidic cartridge can be further surrounded by a sealed pouch. The microfluidic cartridge can be sealed in the pouch with an inert gas. The microfluidic cartridge can be disposable.

Microfluidic cartridge 200 can be fabricated as desired. Typically, the microfluidic cartridge layer includes a layer of polypropylene or other plastic label with pressure sensitive adhesive (typically between about 50 and 150 microns thick) configured to seal the wax loading holes of the valves, tap air used for valve actuation, and serve as a location for operator markings. This layer can be in two separate pieces, though it would be understood by one of ordinary skill in the art that in many embodiments a singe piece layer would be appropriate.

Operation

Pump Used

Pump Design

Pump Design

Mixing

Expancel Pump

Same as above

Same as above

Thermopneumatic 1 µl of trapped air Heat trapped air to wax plugs

Pump Design

Pump Actuation

To propriate as above of same as above of same as above of the valves, the pump of

The microfluidic substrate layer, is typically injection molded out of a plastic, preferably a zeonor plastic (cyclic olefin polymer), having a PCR channel and valve channels on a first side, and vent channels and various inlet holes, 50 including wax loading holes and liquid inlet holes, on a second side (disposed toward the label). Typically, all of the microfluidic networks together, including the PCR reactors, the inlet holes and the valves for isolating the PCR reaction chambers, are defined in a single substrate. The substrate is 55 made of a material that confers rigidity on the substrate and cartridge, and is impervious to air or liquid, so that entry or exit of air or liquid during operation of the cartridge is only possible through the inlet or the vent.

Channels of a microfluidic network in a lane of cartridge 60 **200** typically have at least one sub-millimeter cross-sectional dimension. For example, channels of such a network may have a width and/or a depth of about 1 mm or less (e.g., about 750 microns or less, about 500 microns, or less, about 250 microns or less).

The cartridge can further include a heat sealable laminate layer 222 (typically between about 100 and about 125

40

microns thick) attached to the bottom surface of the microfluidic substrate using, for example, heat bonding, pressure bonding, or a combination thereof. The laminate layer 222 may also be made from a material that has an adhesive coating on one side only, the side being the side that contacts the underside of the microfluidic substrate. This layer may be made from a single coated tape having a layer of Adhesive 420, made by 3M. Exemplary tapes include single-sided variants of double sided tapes having produce nos. 9783, 9795, and 9795B, and available from 3M. Other acceptable layers may include tapes based on micro-capsule based adhesives.

In use, cartridge 200 is typically thermally associated with an array of heat sources configured to operate the components (e.g., valves, gates, and processing region 210) of the device. In some embodiments, the heat sources are operated by an operating system, which operates the device during use. The operating system includes a processor (e.g., a computer) configured to actuate the heat sources according to a desired protocol. Processors configured to operate microfluidic devices are described in, e.g., U.S. application Ser. No. 09/819,105, filed Mar. 28, 2001, which application is incorporated herein by reference.

Table 1 outlines volumes, pumping pressures, and operation times associated with various components of a microfluidic cartridge.

TABLE 1

Operation	Pumping Pressure	Displacement Volume	Time of Operation
Mixing displacements	~2 psi	10-25 μl	1-2 minutes
Moving valve wax plugs	~1-2 psi	< 1 µl	5-15 seconds
Operation	Pump Used	Pump Design	Pump Actuation
Mixing displacements	Expancel Pump	Same as above	Same as above
Moving valve wax plugs	Thermopneumatic pump	1 μl of trapped air	Heat trapped air to ~70-90° C.

In some embodiments, a microfluidic cartridge further comprises a registration member that ensures that the cartridge is received by a complementary diagnostic apparatus in a single orientation, for example, in a receiving bay of the apparatus. The registration member may be a simple cut-out from an edge or a corner of the cartridge (as shown in FIG. **38A**), or may be a series of notches, or some other configuration of shapes that require a unique orientation of placement in the apparatus.

In some embodiments, the microfluidic cartridge comprises two or more positioning elements, or fiducials, for use when filling the valves with thermally responsive material. The positioning elements may be located on the substrate, typically the upper face thereof.

The microfluidic cartridge may also be stackable, such as for easy storage or transport, or may be configured to be received by a loading device, as further described herein, that holds a plurality of cartridges in close proximity to one another, but without being in contact. In order to accomplish either or both of these characteristics, the substrate may comprise two ridges, one of each situated along each of two opposite edges of the cartridge, the ridge disposed on the upper side of the substrate. Thus, where a cartridge has a rectangular aspect (ignoring any registration member or

41

mechanical key), the two ridges may be situated along the long side, or along the short side, of the cartridge. Valves

A valve is a microfluidic component that has a normally open state allowing material to pass along a channel from a 5 position on one side of the valve (e.g., upstream of the valve) to a position on the other side of the valve (e.g., downstream of the valve). An exemplary double valve is shown in FIG. 40A. A double valve has two channels, one on either side of the channel whose flow it regulates, whereas a single valve 10 hast just one channel, disposed on one side of the channel whose flow it regulates.

Upon actuation, e.g., by application of heat, the valve transitions to a closed state that prevents material, such as a microdroplet of PCR-ready sample, from passing along the 15 channel from one side of the valve to the other. For example, a valve includes one or more masses of a thermally responsive substance (TRS) that is relatively immobile at a first temperature and more mobile at a second temperature. A mass of TRS can be an essentially solid mass or an agglom- 20 eration of smaller particles that cooperate to obstruct the passage upon actuation. Examples of TRS's include a eutectic alloy (e.g., a solder), wax (e.g., an olefin), polymers, plastics, and combinations thereof. The first and second temperatures are insufficiently high to damage materials, 25 such as polymer layers of a microfluidic cartridge in which the valve is situated. Generally, the second temperature is less than about 90° C. and the first temperature is less than the second temperature (e.g., about 70° C. or less).

For each mass associated with a valve, a chamber is in 30 gaseous communication with the mass. Upon heating gas (e.g., air) in the chamber(s) and heating the one or more masses of TRS to the second temperature, gas pressure within a chamber moves the corresponding mass into the channel obstructing material from passing therealong. Other 35 valves of the network have the same structure and operate in the same fashion as the valves described herein.

In order to make the valve sealing very robust and reliable, the flow channel at the valve junction is made narrow ($150\,\mu m$ wide and $150\,\mu m$ deep or narrower) and the 40 constricted channel is made at least 0.5 or 1 mm long such that the wax seals up a long narrow channel thereby reducing any leakage through the walls of the channel. In the case of a bad seal, there is leakage of fluid around the walls of the channel, past the wax. So the flow channel is narrowed as 45 much as possible, and made longer, e.g., as long as ~ 1 mm. The valve operates by heating air in the wax-loading port, which forces the wax forwards in a manner so that it does not come back to its original position. In this way, both air and wax are heated during operation of the valve.

In various embodiments, the microfluidic network can include a bent valve as shown in FIG. 32B (as a single valve) to reduce the footprint of the valve on the cartridge and hence reduce cost per part for manufacturing highly dense microfluidic substrates. In the valve of FIG. 40B, the loading 55 hole for TRS is in the center of the valve; the structures at either end are an inlet and an outlet and are shown for illustrative purposes only. Single valve shown.

In various embodiments, the network can include a curved valve as shown in FIG. **40**C, also as a single valve, 60 in order to reduce the effective cross-section of the microvalve, enabling manufacture of cheaper dense microfluidic devices.

Vents

A hydrophobic vent (e.g., a vent in FIG. **41**) is a structure 65 that permits gas to exit a channel while limiting (e.g., preventing) liquid from exiting the channel. Typically,

42

hydrophobic vents include a layer of porous hydrophobic material (e.g., a porous filter such as a porous hydrophobic membrane from Osmonics) that defines a wall of the channel. As discussed herein, hydrophobic vents can be used to position a microdroplet of sample at a desired location within a microfluidic network.

The hydrophobic vents of the cartridge are preferably constructed so that the amount of air that escapes through them is maximized while minimizing the volume of the channel below the vent surface. Accordingly, it is preferable that the vent is constructed so as to have a hydrophobic membrane of large surface area and a shallow cross section of the microchannel below the vent surface.

Bubble removal hydrophobic vents typically have a length of at least about 2.5 mm (e.g., at least about 5 mm, at least about 7.5 mm) along a channel. The length of the hydrophobic vent is typically at least about 5 times (e.g., at least about 10 times, at least about 20 times) larger than a depth of the channel within the hydrophobic vent. For example, in some embodiments, the channel depth within the hydrophobic vent is about 300 microns or less (e.g., about 250 microns or less, about 250 microns or less). Bubble vents are optional in the microfluidic networks of the microfluidic cartridges descried herein.

The depth of the channel within the hydrophobic vent is typically about 75% or less (e.g., about 65% or less, about 60% or less) of than the depth of the channel upstream and downstream of the hydrophobic vent. For example, in some embodiments the channel depth within the hydrophobic vent is about 150 microns and the channel depth upstream and downstream of the hydrophobic vent is about 250 microns.

A width of the channel within the hydrophobic vent is typically at least about 25% wider (e.g., at least about 50% wider) than a width of the channel upstream from the vent and downstream from the vent. For example, in an exemplary embodiment, the width of the channel within the hydrophobic vent is about 400 microns and the width of the channel upstream and downstream from the vent is about 250 microns.

Highly Multiplexed Embodiments

Embodiments of the apparatus and cartridge described herein may be constructed that have high-density microfluidic circuitry on a single cartridge that thereby permit processing of multiple samples in parallel, or in sequence, on a single cartridge. Preferred numbers of such multiple samples include 36, 40, 48, 50, 64, 72, 80, 96, and 100, but it would be understood that still other numbers are consistent with the apparatus and cartridge herein, where deemed convenient and practical.

Accordingly, different configurations of lanes, sample inlets, and associated heater networks are contemplated that can facilitate processing such numbers of samples on a single cartridge are within the scope of the instant disclosure. Similarly, alternative configurations of detectors for use in conjunction with such as highly multiplexed cartridge are also within the scope of the description herein.

In an exemplary embodiments, a highly multiplexed cartridge has 48 PCR channels, and has independent control of each valve in the channel, with 2 banks of thermocycling protocol per channel, as shown in FIG. 43. In the embodiment of FIG. 43, the heaters are arranged in three arrays. Heaters in two separate glass regions only apply heat to valves in the microfluidic networks in each lane. Because of the low thermal conductivity of glass, the individual valves may be heated separately from one another. This permits samples to be loaded into the cartridge at different times, and

43

passed to the PCR reaction chambers independently of one another. The PCR heaters are mounted on a silicon substrate—and are not readily heated individually, but thereby permit batch processing of PCR samples, where multiple samples from different lanes are amplified by the same set of 5 heating/cooling cycles. It is preferably for the PCR heaters to be arranged in 2 banks (the heater arrays on the left and right are not in electrical communication with one another), thereby permitting a separate degree of sample control.

FIG. 42 shows a representative cartridge, revealing an 10 inlet configuration for a 48-sample cartridge. The inlet configuration is compatible with an automatic pipetting machine that has dispensing heads situated at a 9 mm spacing. For example, such a machine having 4 heads can load 4 inlets at once, in 12 discrete steps, for the cartridge of 15 FIG. 42.

FIG. **44** shows, in close, up an exemplary spacing of valves and lanes in adjacent lanes of a multi-sample microfluidic cartridge.

FIGS. **45** and **46** show close-ups of, respectively, heater 20 arrays, and inlets, of the exemplary cartridge shown in FIG. **44**

FIGS. 47A-47C show various views of an embodiment of a radially-configured highly-multiplexed cartridge, having a number of inlets, microfluidic lanes, and PCR reaction 25 zones.

The various embodiments shown in FIGS. **42-47**C are compatible with liquid dispensers, receiving bays, and detectors that are configured differently from the specific examples described herein.

In another preferred embodiment (not shown in the FIGs.), a cartridge and apparatus is configured so that the read-head does not cover the sample inlets, thereby permitting loading of separate samples while other samples are undergoing PCR thermocycling.

Heater Configurations to Ensure Uniform Heating of a Region

Another aspect of the apparatus described herein relates to a method and apparatus for uniformly controlling the heating of a region of a microfluidic network that includes but is 40 not limited to one or more microfluidic components. In an exemplary embodiment, multiple heaters can be configured to simultaneously and uniformly heat a region, such as the PCR reaction zone, of the microfluidic cartridge.

In preferred embodiments, a microfluidic cartridge having a microfluidic network comprising one or more microfluidic components is brought into contact with a heat source, within a suitably configured apparatus. The heat source is configured so that particular heating elements are situated to heat specific components of the microfluidic network of the 50 cartridge.

FIG. 48 shows a cross-sectional view of an exemplary microfluidic cartridge to show relative location of PCR channel in relation to the heaters when the cartridge is placed in the instrument. The view in FIG. 48 is also referred to as 55 a sectional-isometric view of the cartridge lying over the heater wafer. A window 903 above the PCR channel in the cartridge is shown in perspective view. PCR channel 901 (for example, 150 μ deep×700 μ wide), is shown in an upper layer of the cartridge. A laminate layer 905 of the cartridge 60 (for example, 125 μ thick) is directly under the PCR channel 901. A further layer of thermal interface laminate 907 on the cartridge (for example, 125 \mu thick) lies directly under the laminate layer 905. Heaters are situated in a further layer 913 directly under the thermal interface laminate. The 65 heaters are photolithograhically defined and etched metal layers of gold (typically about 3,000 Å thick). Layers of 400

44

Å of TiW are deposited on top and bottom of the gold layer to serve as an adhesion layer. The substrate used in glass, fused silica or quartz wafer having a thickness of $0.4\,\mathrm{mm}$, $0.5\,\mathrm{mm}$ or $0.7\,\mathrm{mm}$ or $1\,\mathrm{mm}$. A thin electrically-insulative layer of 2 $\mu\mathrm{m}$ silicon oxide serves as an insulative layer on top of the metal layer. Additional thin electrically insulative layers such a 2-4 $\mu\mathrm{m}$ of Parylene may also be deposited on top of the Silicon oxide surface. Two long heaters 909 and 911, as further described herein, are also shown.

Referring to FIGS. 49A and 49B, the PCR reaction zone 1001, typically having a volume ~1.6 μl, is configured with a long side and a short side, each with an associated heating element. The apparatus therefor preferably includes four heaters disposed along the sides of, and configured to heat, the PCR reaction zone, as shown in the exemplary embodiment of FIG. 38A: long top heater 1005, long bottom heater 1003, short left heater 1007, and short right heater 1009. The small gap between long top heater 1005 and long bottom heater 1003 results in a negligible temperature gradient (less than 1° C. across the width of the PCR channel at any point along the length of the PCR reaction zone) and therefore an effectively uniform temperature throughout the PCR reaction zone. The heaters on the short edges of the PCR reactor provide heat to counteract the gradient created by the two long heaters from the center of the reactor to the edge of the reactor. It would be understood by one of ordinary skill in the art that still other configurations of one or more heater(s) situated about a PCR reaction zone are consistent with the methods and apparatus described herein. For example, a 'long' side of the reaction zone can be configured to be heated by two or more heaters. Specific orientations and configurations of heaters are used to create uniform zones of heating even on substrates having poor thermal conductivity because the poor thermal conductivity of glass, or quartz, or fused silica substrates is utilized to help in the independent operation of various microfluidic components such as valves and independent operation of the various PCR lanes.

In preferred embodiments, each heater has an associated temperature sensor. In the embodiment of FIG. 49A, a single temperature sensor 1011 is used for both long heaters. A temperature sensor 1013 for short left heater, and a temperature sensor 1015 for short right heater are also shown. The temperature sensor in the middle of the reactor is used to provide feedback and control the amount of power supplied to the two long haters, whereas each of the short heaters has a dedicated temperature sensor placed adjacent to it in order to control it. As further described herein, temperature sensors are preferably configured to transmit information about temperature in their vicinity to the processor at such times as the heaters are not receiving current that causes them to heat. This can be achieved with appropriate control of current cycles.

In order to reduce the number of sensor or heater elements required to control a PCR heater, we may use the heaters to sense as well as heat, and thereby obviate the need to have a separate dedicated sensor for each heater. In another embodiment, each of the four heaters may be designed to have an appropriate wattage, and connect the four heaters in series or in parallel to reduce the number of electronically-controllable elements from 4 to just 1, thereby reducing the burden on the electronics.

FIG. **49**B shows expanded views of heaters and temperature sensors used in conjunction with a PCR reaction zone of FIG. **49**A. Temperature sensors **1001** and **1013** are designed to have a room temperature resistance of approximately 200-300 ohms. This value of resistance is determined by controlling the thickness of the metal layer deposited

45

(e.g., a sandwich of 400 Å TiW/3000 Å Au/400Å TiW), and etching the winding metal line to have a width of approximately 10-25 μm and 20-40 mm length. The use of metal in this layer gives it a temperature coefficient of resistivity of the order of 0.5-20° C./ohms, preferably in the range of 5 1.5-3° C./ohms. Measuring the resistance at higher temperatures will enable determination of the exact temperature of the location of these sensors.

The configuration for uniform heating, shown in FIG. **49**A for a single PCR reaction zone, can be applied to a 10 multi-lane PCR cartridge in which multiple independent PCR reactions occur.

Each heater can be independently controlled by a processor and/or control circuitry used in conjunction with the apparatus described herein. FIG. **50** shows thermal images, 15 from the top surface of a microfluidic cartridge having heaters configured as in FIGS. **49**A and **49**B, when each heater in turn is activated, as follows: (A): Long Top only; (B) Long Bottom only; (C) Short Left only; (D) Short Right only; and (E) All Four Heaters on. Panel (F) show a view of 20 the reaction zone and heaters on the same scale as the other image panels in FIG. **50**. Also shown in the figure is a temperature bar.

Use of Cutaways in Cartridge Substrate to Improve Rate of Cooling During PCR Cycling

During a PCR amplification of a nucleotide sample, a number of thermal cycles are carried out. For improved efficiency, the cooling between each application of heat is preferably as rapid as possible. Improved rate of cooling can be achieved with various modifications to the heating substrate, as shown in FIGS. **51A-51**C.

One way to achieve rapid cooling is to cutaway portions of the microfluidic cartridge substrate, as shown in FIG. 51A. The upper panel of FIG. 51A is a cross-section of an exemplary microfluidic cartridge taken along the dashed line 35 A-A' as marked on the lower panel of FIG. 51A. PCR reaction zone 901, and representative heaters 1003 are shown. Also shown are two cutaway portions, one of which labeled 1201, that are situated alongside the heaters that are situated along the long side of the PCR reaction zone. 40 Cutaway portions such as 1201 reduce the thermal mass of the cartridge, and also permit air to circulate within the cutaway portions. Both of these aspects permit heat to be conducted away quickly from the immediate vicinity of the PCR reaction zone. Other configurations of cutouts, such as 45 in shape, position, and number, are consistent with the present technology.

Another way to achieve rapid cooling is to cutaway portions of the heater substrate, as shown in FIG. 51B. The lower panel of FIG. 51B is a cross-section of an exemplary 50 microfluidic cartridge and heater substrate taken along the dashed line A-A' as marked on the upper panel of FIG. 51B, PCR reaction zone 901, and representative heaters 1003 are shown. Also shown are four cutaway portions, one of which labeled 1205, that are situated alongside the heaters that are 55 situated along the long side of the PCR reaction zone. Cutaway portions such as 1205 reduce the thermal mass of the heater substrate, and also permit air to circulate within the cutaway portions. Both of these aspects permit heat to be conducted away quickly from the immediate vicinity of the 60 PCR reaction zone. Four separate cutaway portions are shown in FIG. 51B so that control circuitry to the various heaters is not disrupted. Other configurations of cutouts, such as in shape, position, and number, are consistent with the present technology. These cutouts may be created by a 65 method selected from: selective etching using wet etching processes, deep reactive ion etching, selective etching using

46

CO₂ laser or femtosecond laser (to prevent surface cracks or stress near the surface), selective mechanical drilling, selective ultrasonic drilling, or selective abrasive particle blasting. Care has to be taken to maintain mechanically integrity of the heater while reducing as much material as possible.

FIG. 51C shows a combination of cutouts and use of ambient air cooling to increase the cooling rate during the cooling stage of thermocycling. A substantial amount of cooling happens by convective loss from the bottom surface of the heater surface to ambient air. The driving force for this convective loss is the differential in temperatures between the glass surface and the air temperature. By decreasing the ambient air temperature by use of, for example, a peltier cooler, the rate of cooling can be increased. The convective heat loss may also be increased by keeping the air at a velocity higher than zero.

An example of thermal cycling performance obtained with a configuration as described herein, is shown in FIG. **52** for a protocol that is set to heat up to 92° C., and stay here for 1 second, then cool to 62° C., and stay for 10 seconds. Cycle time is about 29 seconds, with 8 seconds required to heat from 62° C. and stabilize at 92° C., and 10 seconds required to cool from 92° C., and stabilize at 62° C. Manufacturing Process for Cartridge

FIG. 53 shows a flow-chart 2800 for an assembly process for an exemplary cartridge as further described herein. It would be understood by one of ordinary skill in the art, both that various steps may be performed in a different order from that set forth in FIG. 53, and additionally that any given step may be carried out by alternative methods to those set forth in the figure. It would also be understood that, where separate steps are illustrated for carrying out two or more functions, such functions may be performed synchronously and combined into single steps and be consistent with the overall process described herein.

At 2802, a laminate layer is applied to a microfluidic substrate that has previously been engineered to have a microfluidic network constructed in it; edges are trimmed from the laminate where they spill over the bounds of the substrate.

At **2804**, wax is dispensed and loaded into the microvalves of the microfluidic network in the microfluidic substrate. An exemplary process for carrying this out is further described herein.

At 2806, the cartridge is inspected to ensure that wax from step 2804 is loaded properly and that the laminate from step 2802 adheres properly to the microfluidic substrate. If a substrate does not satisfy either or both of these tests, it is discarded. If substrates repeatedly fail either or both of these tests, then the wax dispensing, or laminate application steps, as applicable, are reviewed.

At **2808**, a hydrophobic vent membrane is applied to, and heat bonded to, the top of the microfluidic substrate over the wax valves, and on the opposite face of the substrate from the laminate. Edges of the membrane that are in excess of the boundary of the substrate are trimmed.

At 2810, the assembly is inspected to ensure that the hydrophobic vent membrane is bonded well to the microfluidic substrate without heat-clogging the microfluidic channels. If any of the channels is blocked, or if the bond between the membrane and the substrate is imperfect, the assembly is discarded, and, in the case of repeated discard events, the foregoing process step is reviewed.

At **2812**, a thermally conductive pad layer is applied to the bottom laminate of the cartridge.

At 2814, two label strips are applied to the top of the microfluidic substrate, one to cover the valves, and a second

to protect the vent membranes. It would be understood that a single label strip may be devised to fulfill both of these

At **2816**, additional labels are printed or applied to show identifying characteristics, such as a barcode #, lot # and 5 expiry date on the cartridge. Preferably one or more of these labels has a space and a writable surface that permits a user to make an identifying annotation on the label, by hand.

At **2818**, to facilitate transport and delivery to a customer, assembled and labeled cartridges are stacked and pack ¹⁰ cartridges in groups, such as groups of 25, or groups of 10, or groups of 20, or groups of 50. Preferably the packaging is via an insert and/or moisture-free medium.

Exemplary Wax-Deposition Process

Deposition of wax in valves of the microfluidic network, 15 as at step 2804 may be carried out with the exemplary equipment shown in FIGS. 54A and 54B. The DispenseJet Series DJ-9000 (FIGS. 54A and 54B) is a non-contact dispenser that provides high-speed delivery and exceptional volumetric control for various fluids, including surface 20 mount adhesive, underfill, encapsulants, conformal coating, UV adhesives, and silver epoxy. The DJ-9000 jets in tight spaces as small as 200 micrometers and crates fillet wet-out widths as small as 300 micrometers on the dispensed side of a substrate such as a die. It dispenses fluid either as discrete 25 dots or a raped succession of dots to from a 100-micron (4 mil) diameter stream of fluid from the nozzle. It is fully compatible with other commercially available systems such as the Asymtek Century C-718/C-720, Millennium M-2000, and Axiom X-1000 Series Dispensing Systems.

A DJ-9000 is manufactured by Asymtek under manufacturing quality control standards aim to provide precise and reliable performance. Representative specifications of the apparatus are as follows.

Characteristic	Specification
Size	Width: 35 mm
	Height: 110 mm
	Depth: 100 mm
Weight	400 grams - dry
Feed Tube Assembly	Nylon - Fitting
	Polyurethane - Tube
Fluid Chamber	Type 303 Stainless Steel
Seat and Nozzle	300/400 Seriers S/S, Carbide
Needle Assembly	52100 Bearing Steel - Shaft
	Hard Chrome Plate
	Carbide - Tip
Fluid Seal	PEEK/Stainless Steel
Fluid Chamber 0-Ring	Ethylene Propylene
Jet Body	6061-T6 Aluminum
	Nickel Plated
Needle Assembly Bearings	PEEK
Thermal Control Body	6061-T6 Aluminum
	Nickel Plated
Reservoir Holder	Acetyl
Reservoir Size	5, 10, or 30 cc (0.17, 0.34, or 1.0 oz)
Feed Tube Assembly Fitting	Femail Luer per ANSI/HIMA MD70.1-
W : 6 L F	1983
Maximum Cycle Frequency	200 Hz.
Minimum Valve Air Pressure	5.5 bar (80psi)
Operating Noise Level	70 db*
Solenoid The served Heaten	24 VDC, 12.7 Watts
Thermal Control Heater	24 VDC, 14.7 Watts, 40 ohms
Thermal Control RTD	100 ohm, platinum
Maximum Heater Set Point	80° C.

^{*}At Maximum Cycle Rate

An exploded view of this apparatus is shown in FIG. **54**B. Theory of Operation of DJ-9000

The DJ-9000 has a normally closed, air-actuated, springreturn mechanism, which uses momentum transfer prin48

ciples to expel precise volumes of material. Pressurized air is regulated by a high-speed solenoid to retract a needle assembly from the seat. Fluid, fed into the fluid chamber, flows over the seat. When the air is exhausted, the needle travels rapidly to the closed position, displacing fluid through the seat and nozzle in the form of a droplet. Multiple droplets fired in succession can be used to form larger dispense volumes and lines when combined with the motion of a dispenser robot.

The equipment has various adjustable features: The following features affect performance of the DJ-9000 and are typically adjusted to fit specific process conditions.

Fluid Pressure should be set so that fluid fills to the set, but should not be influential in pushing the fluid through the seat and nozzle. In general, higher fluid pressure results in a larger volume of material jetted.

The Stroke Adjustment controls the travel distance of the Needle Assembly. The control is turned counterclockwise to increase needle assembly travel, or turned clockwise to decrease travel. An increase of travel distance will often result in a larger volume of material jetted.

The Solenoid Valve controls the valve operation. When energized, it allows air in the jet air chamber to compress a spring and thereby raise the Needle Assembly. When deenergized, the air is released and the spring forces the piston down so that the needle tip contacts the seat.

The seat and nozzle geometry are typically the main factors controlling dispensed material volume. The seat and nozzle size are determined based on the application and fluid properties. Other parameters are adjusted in accordance with seat and nozzle choices. Available seat and nozzle sizes are listed in the table hereinbelow.

Thermal Control Assembly: Fluid temperature often influences fluid viscosity and flow characteristics. The DJ-9000 is equipped with a Thermal Control Assembly that assures a constant fluid temperature.

Dot and Line Parameters: In addition to the DJ-9000 hardware configuration and settings, Dot and Line Parameters are set in a software program (referred to as FmNT) to control the size and quality of dots and line dispensed. Wax Loading in Valves

FIGS. 55A and 55B show how a combination of controlled hot drop dispensing into a heated microchannel 45 device of the right dimensions and geometry is used to accurately load wax into a microchannel of a microfluidic cartridge to form a valve. The heated dispenser head can be accurately position over an inlet hole of the microchannel in the microfluidic device, and can dispense molten wax drops 50 in volumes as small as 75 nanoliters with an accuracy of 20%. The inlet hole of the microchannel device is dimensioned in such as way that the droplet of 75 nl can be accurately shot to the bottom of the inlet hole using, for example, compressed air, or in a manner similar to an inkjet 55 printing method. The microchannel device is maintained at a temperature above the melting point of the wax thereby permitting the wax to stay in a molten state immediately after it is dispensed. After the drop falls to the bottom of the inlet hole, the molten wax is drawn into the narrow channel by capillary action. The volume of the narrow section is designed to be approximately equal to a maximum typical amount that is dispensed into the inlet hole.

Heater Multiplexing (Under Software Control)

Another aspect of the apparatus described herein, relates to a method for controlling the heat within the system and its components, as illustrated in FIG. **56**. The method leads to a greater energy efficiency of the apparatus described herein,

49

because not all heaters are heating at the same time, and a given heater is receiving current for only part of the time.

Generally, the hating of microfluidic components, such as a PCR reaction zone, is controlled by passing currents through suitably configured microfabricated heaters. The heating can be further controlled by periodically turning the current on and off with varying pulse width modulation (PWM), wherein pulse width modulation refers to the ontime/off-time ratio for the current. The current can be supplied by connecting a microfabricated heater to a high voltage source (for example, 30V), which can be gated by the PWM signal. In some embodiments, the device includes 48 PWM signal generators. Operation of a PWM generator includes generating a signal with a chose, programmable 15 period (the end count) and granularity. For instance, the signal can be 4000 µs (micro-seconds) with a granularity of 1 μs, in which case the PWM generator can maintain a counter beginning at zero and advancing in increments of 1 μ s until it reaches 4000 μ s, when it returns to zero. Thus, the 20 amount of heat produced can be adjusted by adjusting the end count. A high end count corresponds to a greater length of time during which the microfabricated heater receives current and therefore a greater amount of heat produced.

In various embodiments, the operation of a PWM generator can also include a programmable start count in addition to the aforementioned end count and granularity. In such embodiments, multiple PWM generators can produce signals that can be selectively non-overlapping (e.g., by 30 multiplexing the on-time of the various heaters) such that the current capacity of the high voltage power is not exceeded. Multiple heaters can be controlled by different PWM signal generators with varying start and end counts. The heaters can be divided into banks, whereby a bank defines a group of heaters of the same start count. For example, 36 PWM generators can be grouped into six different banks, each corresponding to a certain portion of the PWM cycle (500 ms for this example). The end count for each PWM generator can be selectively programmed such that not more than six heaters will be on at any given time. A portion of a PWM cycle can be selected as dead time (count 3000 to 4000 for this example) during which no heating takes place and sensitive temperature sensing circuits can use this time to sense the temperature. The table below represents a PWM cycle for the foregoing example:

	Start Count	End Count	Max End count
	Bank	1	
PWM generator#1	0	150	500
PWM generator#2	0	220	500
PWM generator#6	0	376	500
	Bank	2	
PWM generator#7	500	704	1000
PWM generator#8	500	676	1000
PWM generator#12	500	780	1000
	Bank	3	
PWM generator#13	1000	1240	1500
PWM generator#14	1000	1101	1500
PWM generator#18	1000	1409	1500

50 -continued

	Start Count	End Count	Max End count
	Bank	4	
PWM generator#13	1500	1679	2000
PWM generator#14	1500	1989	2000
PWM generator#18	1500	1502	2000
	Bank	5	
PWM generator#25	2000	2090	2500
PWM generator#26	2000	2499	2500
PWM generator#30	2000	2301	2500
	Bank	6	
PWM generator#31 PWM generator#32	2500 2500	2569 2790	3000 3000
PWM generator#36	2500	2679	3000

Use of Detection System to Measure/Detect Fluid in PCR Chamber

The apparatus optionally has a very sensitive fluorescence detector that is able to collect fluorescence light from the PCR chamber 210 of a microfluidic cartridge. This detector is used to detect the presence of liquid in the chamber, a measurement that determines whether or not to carry out a PCR cycle. A background reading is taken prior to filling the chamber with liquid. Another reading is taken after microfluidic operations have been performed that should result in filling the PCR chamber with liquid. The presence of liquid alters the fluorescence reading from the chamber. A programmable threshold value is used to tune an algorithm programmed into the processor (for example, the second reading has to exceed the first reading by 20%). If the two readings do not differ beyond the programmed margin, the liquid is deemed to not have entered the chamber, and a PCR cycle is not initiated for that chamber. Instead, a warning is issued to a user.

O Computer Program Product

In various embodiments, a computer program product for use with the apparatus herein includes computer readable instructions thereon for operating the apparatus.

In various embodiments, the computer program product can include one or more instructions to cause the system to: output an indicator of the placement of the microfluidic cartridge in the bay; read a sample label on a microfluidic cartridge label; output directions for a user to input a sample identifier; output directions for a user to load a sample 50 transfer member with the PCR-ready sample; output directions for a user to introduce the PCR-ready sample into the microfluidic cartridge; output directions for a user to place the microfluidic cartridge in the receiving bay; output directions for a user to close the lid to operate the force member; 55 output directions for a user to pressurize the PCR-ready sample in the microfluidic cartridge by injecting the PCRready sample with a volume of air between about 0.5 mL and about 5 mL; and output status information for sample progress from one or more lanes of the cartridge.

In various embodiments, the computer program product can include one or more instructions to cause the system to: heat the PCR ready-sample under thermal cycling conditions suitable for creating PCR amplicons from the neutralized polynucleotide; contact the neutralized polynucleotide sample or a PCR amplicon thereof with at least one probe that is selective for a polynucleotide sequence; independently contact each of the neutralized polynucleotide sample

and a negative control polynucleotide with the PCR reagent mixture under thermal cycling conditions suitable for independently creating PCR amplicons of the neutralized polynucleotide sample and PCR amplicons of the negative control polynucleotide; contact the neutralized polynucleotide sample or a PCR amplicon thereof and the negative control polynucleotide or a PCR amplicon thereof with at least one probe that is selective for a polynucleotide sequence; output a determination of the presence of a polynucleotide sequence corresponding to the probe, if the probe is detected in the neutralized polynucleotide sample or a PCR amplicon thereof; and/or output a determination of a contaminated result if the probe is detected in the negative control polynucleotide or a PCR amplicon thereof.

51

In various embodiments, the computer program product can include one or more instructions to cause the system to automatically conduct one or more of the steps of the method.

In various embodiments, the microfluidic cartridge comprises two or more sample lanes, each including a sample inlet valve, a bubble removal vent, a thermally actuated pump, a thermally actuated valve, and a PCR reaction zone, wherein the computer readable instructions are configured to independently operate one or more components of each said 25 lane in the system, independently of one another, and for causing a detector to measure fluorescence from the PCR reaction zone.

Sample

In various embodiments, the sample can include a PCR 30 reagent mixture comprising a polymerase enzyme and a plurality of nucleotides. The PCR reagent mixture can be in the form of one or more lyophilized pellets and the steps by which the PCR-ready sample is prepared can involve contacting the PCR pellet with liquid to create a PCR reagent 35 mixture solution. In yet another embodiment, each of the PCR lanes may have dried down or lyophilized ASR reagents preloaded such that the user only need to input prepared polynucleotide sample into the PCR. In another embodiment, the PCR lanes may have only the application-specific probes and primers premeasured and preloaded, and the user inputs a sample mixed with the PCR reagents.

In various embodiments, the microfluidic network can be configured to couple heat from an external heat source to a sample mixture comprising PCR reagent and neutralized 45 polynucleotide sample under thermal cycling conditions suitable for creating PCR amplicons from the neutralized polynucleotide sample.

In various embodiments, the PCR ready sample can further include a positive control plasmid and a fluorogenic 50 hybridization probe selective for at least a portion of the plasmid. In various embodiments, the PCR-ready sample further includes a sample buffer, and at least one probe that is selective for a polynucleotide sequence, e.g., the polynucleotide sequence that is characteristic of a pathogen 55 selected from the group consisting of gram positive bacteria, gram negative bacteria, yeast, fungi, protozoa, and viruses.

In various embodiments, the microfluidic cartridge can accommodate a negative control polynucleotide, wherein the microfluidic network can be configured to independently 60 carry out PCR on each of a neutralized polynucleotide sample and a negative control polynucleotide with the PCR reagent mixture under thermal cycling conditions suitable for independently creating PCR amplicons of the neutralized polynucleotide sample and PCR amplicons of the negative 65 control polynucleotide. Each lane of a multi-lane cartridge as described herein can perform two reactions because of the

presence of two fluorescence detection systems per lane. A variety of combinations of reactions can be performed in the cartridge, such as two sample reactions in one lane, a positive control and a negative control in two other lanes; or a sample reaction and an internal control in one lane and a

52

negative control in a separate lane.

In various embodiments, the sample can include at least one probe that can be selective for a polynucleotide sequence, wherein the steps by which the PCR-ready sample is prepared involve contacting the neutralized polynucleotide sample or a PCR amplicon thereof with the probe. The probe can be a fluorogenic hybridization probe the fluorogenic hybridization probe can include a polynucleotide sequence coupled to a fluorescent reporter dye and a fluorescence quencher dye. The PCR reagent mixture can further include a positive control plasmid and a plasmid fluorogenic hybridization probe selective for at least a portion of the plasmid and the microfluidic cartridge can be configured to allow independent optical detection of the fluorogenic hybridization probe and the plasmid fluorogenic hybridization probe.

In various embodiments, the probe can be selective for a polynucleotide sequence that is characteristic of an organism, for example any organism that employs deoxyribonucleic acid or ribonucleic acid polynucleotides. Thus, the probe can be selective for any organism. Suitable organisms include mammals (including humans), birds, reptiles, amphibians, fish, domesticated animals, wild animals, extinct organisms, bacteria, fungi, viruses, plants, and the like. The probe can also be selective for components of organisms that employ their own polynucleotides, for example mitochondria. In some embodiments, the probe is selective for microorganisms, for example, organisms used in food production (for example, yeasts employed in fermented products, molds or bacteria employed in cheeses, and the like) or pathogens (e.g., of humans, domesticated or wild mammals, domesticated or wild birds, and the like). In some embodiments, the probe is selective for organisms selected from the group consisting of gram positive bacteria, gram negative bacteria, yeast, fungi, protozoa, and viruses.

In various embodiments, the probe can be selective for a polynucleotide sequence that is characteristic of an organism selected from the group consisting of Staphylococcus spp., e.g., S. epidermidis, S. aureus, Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Staphylococcus; Streptococcus (e.g., α , β or γ -hemolytic, Group A, B, C, D or G) such as S. pyogenes, S. agalactiae; E. faecalis, E. durans, and E. faecium (formerly S. faecalis, S. durans, S. faecium); nonenterococcal group D streptococci, e.g., S. bovis and S. equines; Streptococci viridans, e.g., S. mutans, S. sanguis, S. salivarius, S. mitior, A. milleri, S. constellatus, S. intermedius, and S. anginosus; S. iniae; S. pneumoniae; Neisseria, e.g., N. meningliides, N. gonorrhoeae, saprophytic Neisseria sp; Erysipelothrix, e.g., E. rhusiopathiae; Listeria spp., e.g., L. monocytogenes, rarely L. ivanovii and L. seeligeri; Bacillus, e.g., B. Anthracis, B. cercus, B. subtilis, B. subtilus niger, b. thuringiensisL Nocardia asteroids; Legionella, e.g., L. pneumonophilia, Pneumocystis, e.g., P. Carinii; Enterobacteriacene such as Salmonella, Shigella, Escherichia (e.g., E. coli, E. coli O157:H7); Klebsiella, Enterobacter, Serratia, Proteus, Morganella, Providencia, Yersinia, and the like, e.g., Salmonella, e.g., S. typhi S. paratyphi A, B (S. schottmuellen), and C (S. hirschfeldii), S. dublin S. choleraesuis, S. enteritidia, S. typhimurium, S. heidelberg, S. newport, S. infantis, S. agona, S. momevideo, and S. saint-paul; Shigella e.g., subgroups: A, B, C, and D, such as S. flexneri, S. sonnei, S. boydii, S. dysenteriae;

53

Proteus (P. mirabilis, P. vulgaris, and P. myxofaciens), Morganella (M. morganii); Providencia (P. rettgeri, P. alcalifaciens, and P. stuartii); Yersinia, e.g., Y. pestis, Y. enterocolitia; Haemophilus, e.g., H. influenzae, H. parainfluenzae H. aphrophilus, H. ducreyi; Brucella, e.g., B. abor- 5 tus, B. melitensis, B. suis, B. canis; Francisella, e.g., F. tularensis; Pseudomonas, e.g., P. acrugimosa, P. paucimobilis, P. putida, P. fluorescens, P. acidovorans, Burkholderia (Pseudomonas) pseudomallei, Burkholderai mallie, Burkholderia cepacia and Stenotrophomonas maltophilia; 10 Campylobacter, e.g., C. fetus fetus, C. jejuni, C. pylori (Helicobacter pylori); Vibrio, e.g., V. cholerae, V. parahaemolyticus, V. mimicus, V. alginolyticus, V. hollisae, V. vulnificus, and the nonagglutinable vibrios; Clostridia, e.g., C. perfringens, C. tetani, C. difficile, C. botulinum; Aetinomy- 15 ces, e.g., A. israelii, Bacteroides, e.g., B. fragilis, B. thetaiotaomicron, B. distasonis, B. vulgatus, B. ovatus, B. caccae, and B. merdae; Prevotella, e.g., P. melaninogenica; genus Fusobacterium; Treponema, e.g. T. pallidum subspecies endemicum, T. pallidum subspecies pertenue, T. carateum, 20 and T. pallidum subspecies pallidum; genus Borrelia, e.g., B burgdorferi; genus Leptospira; Streptobacillus, e.g., S. $monili formis; Spirillum, e.g., S.\ minus; Mycobacterium, e.g.,$ M. tuberculosis, M. bovis, M. africanum, M. avium M. intracellulare, M. kansasii, M. xenopi, M. marimum, M. 25 ulcerans, the M. fortuitum complex (M. fortuitum and M. chelonei), M. leprae, M. asiaticum, M. chelonei subsp. abscessus, M. fallax, M. fortuitum, M. malmoense, M. shimoidei, M. simliae, M. szulgai, M. xenopi; Mycoplasma, e.g., M. hominis, M. orale, M. salivarium, M. fermentans, M. 30 pneumoniae, M. bovis, M. avium, M. leprae; Mycoplasma, e.g., M. genitalium; Ureaplasma, e.g., U. urealyticum; Trichomonas, e.g., T. vaginalis; Cryptococcus, e.g., C. neoformans; Histoplasma, e.g., H. capsulatum; Candida, e.g., C. albicans; Aspergillus sp; Coccidioides, e.g., C. immitis; 35 Blastomyces, e.g. B. dermatitidis; Paracoccidioides, e.g., P. brasiliensis; Penicillium, e.g., P. marneffei; Sporothrix, e.g., S. schenckii; Rhizopus, Rhizomucor, Absidia, and Basidiobolus; diseases caused by Bipolaris, Cladophialophora, Cladosporium, Drechslera, Exophiala, Fonsecaea, Phialo- 40 phora, Xylohypha, Ochroconis, Rhinocladiella, Scolecobasidium, and Wangiella; Trichosporon, e.g., T. beigelii; Blastoschizomyces, e.g., B. capitatus; Plasmodium, e.g., P. falciparum, P. vivax, P. ovale, and P. malariae; Babesia sp; protozoa of the genus Trypanosoma, e.g., T. cruzi; Leish- 45 mania, e.g., L. donovai; L. major L. tropica, L. mexicana, L. braziliensis, L. viannia braziliensis; Toxoplasma, e.g., T. gondii; Amoebas of the genera Naegloria or Acanthamoeba; Entamoeba histolytica; Giardia lamblia; genus Cryptosporidium, e.g., C. parvum; Isospora belli; Cyclospora cayet- 50 anensis; Ascaris lumbricoides; Trichuris trichiura; Ancylostoma duodenale or Necatro americanus; Strongyloides stercorais Toxocara, e.g., T. canis, T. cati; Baylisascaris, e.g., B. procyonis; Trichinella, e.g., T. spiralis; Dracunculus, e.g., D. medinensis; genus Filarioidea; Wuchereria 55 bancrofti; Brugia, e.g., B. malayi, or B. timori; Onchocerca volvulus; Loa loa; Dirofilaria immitis; genus Schistosoma, e.g., S. japonicum, S. mansoni, S. mekongi, S. intercalatum, S. haematobium; Paragonimus, e.g., P. Westermani, P. Skriabini; Clonorchis sinensis; Fasciola hepatica; Opist- 60 horchis sp; Fasciolopsis buski; Diphyllobothrium latum; Taenia, e.g., T. saginata, T. solium; Echinococcus, e.g., E. granulosus, E. multilocularis; Picornaviruses, rhinoviruses echoviruses, coxsackieviruses, influenza virus; paramyxoviruses, e.g., types 1, 2, 3, and 4; adnoviruses; Herpesvi- 65 ruses, e.g., HSV-1 and HSV-2; varicella-zoster virus; human T-lymphotrophic virus (type I and type II); Arboviruses and

54

Arenaviruses; Togaviridae, Flaviviridae, Bunyaviridae, Reoviridae; Flavivirus; Hantavirus; Viral encephalitis (alphaviruses [e.g., Venezuelan equine encephalitis, eastern equine encephalitis, western equine encephalitis]); Viral hemorrhagic fevers (filoviruses [e.g., Ebola, Marburg] and arenaviruses [e.g., Lassa, Machupo]); Smallpox (variola); retroviruses e.g., human immunodeficiency viruses 1 and 2; human papillomavirus [HPV] types 6, 11, 16, 18, 31, 33, and

In various embodiments, the probe can be selective for a polynucleotide sequence that is characteristic of an organisms selected from the group consisting of Pseudomonas aeruginasu, Proteus mirabilis, Klebsiella oxytoca, Klebsiella pneumoniae, Escherichia coli, Acinetobacter Baumannii, Serratia marcescens,, Enterobacter aerogenes, Enterococcus faecium, vancomycin-resistant enterococcus (VRE), Straphylococcus aureus, methecillin-resistant Staphylococcus aureus (MRSA), Streptococcus viridans, Listeria mocytogenes, Enterococcus spp., Streptococcus Group B. Streptococcus Group C. Streptococcus Group D. Streptococcus Group F, Enterococcus faecalis, Streptococcus pneumoniae, Staphylococcus epidermidis, Gardenerella vaginalis, Micrococcus sps., Haemophilus influenzae, Neisseria gonorrhoeee, Moraxella catarrahlis, Salmonella sps., Chlamydia trachomatis, Peptostreptococcus productus, Peptostreptococcus anaerobius, Lactobacillus fermentum, Eubacterium lentum, Candida glabrata, Candida albicans, Chlamydia spp., Camplobacter spp., Salmonella spp., smallpox (variola major), Yersina Pestis, Herpes Simplex Virus I (HSV I), and Herpes Simplex Virus II (HSV II).

In various embodiments, the probe can be selective for a polynucleotide sequence that is characteristic of Group B *Streptococcus*.

Carrying out PCR on a PCR-ready sample can include heating the PCR reagent mixture and the neutralized polynucleotide sample under thermal cycling conditions suitable for creating PCR amplicons from the neutralized polynucleotide sample; contacting the neutralized polynucleotide sample or a PCR amplicon thereof with at least one probe that is selective for a polynucleotide sequence; independently contacting each of the neutralized polynucleotide sample and a negative control polynucleotide with the PCR reagent mixture under thermal cycling conditions suitable for independently creating PCR amplicons of the neutralized polynucleotide sample and PCR amplicons of the negative control polynucleotide; and/or contacting the neutralized polynucleotide sample or a PCR amplicon thereof and the negative control polynucleotide or a PCR amplicon thereof with at least one probe that is selective for a polynucleotide sequence.

In various embodiments, a method of carrying out PCR on a sample can further include one or more of the following steps: heating the biological sample in the microfluidic cartridge; pressurizing the biological sample in the microfluidic cartridge at a pressure differential compared to ambient pressure of between about 20 kilopascals and 200 kilopascals, or in some embodiments between about 70 kilopascals and 110 kilopascals.

In various embodiments, a method of using the apparatus described herein can further include one or more of the following steps: determining the presence of a polynucle-otide sequence in the biological sample, the polynucleotide sequence corresponding to the probe, if the probe is detected in the neutralized polynucleotide sample or a PCR amplicon thereof; determining a contaminated result if the probe is detected in the negative control polynucleotide or a PCR amplicon thereof; and/or in some embodiments, wherein the

PCR reagent mixture further comprises a positive control plasmid and a plasmid probe selective for at least a portion of the plasmid, the method further including determining a PCR reaction has occurred if the plasmid probe is detected. Fluorescence Detection System, Including Lenses and Fil-5 ters, and Multiple Parallel Detection for a Multi-Lane Car-

55

tridge
A miniaturized, highly sensitive fluorescence detection system can be incorporate for monitoring fluorescence from the biochemical reactions that are the basis of nucleic acid 10 amplification methods such as PCR.

Accordingly, another aspect of the apparatus includes a system for monitoring fluorescence from biochemical reactions. The system can be, for example, an optical detector having a light source (for example an LED) that selectively 15 emits light in an absorption band of a fluorescent dye, lenses for focusing the light, and a light detector (for example a photodiode) that selectively detects light in an emission band of the fluorescent dye, wherein the fluorescent dye corresponds to a fluorescent polynucleotide probe or a 20 fragment thereof. Alternatively, the optical detector can include a bandpass-filtered diode that selectively emits light in the absorption band of the fluorescent dye (a fluorogenic probe) and a bandpass filtered photodiode that selectively detects light in the emission band of the fluorescent dye. For 25 example, the optical detector can be configured to independently detect a plurality of fluorescent dyes having different fluorescent emission spectra, wherein each fluorescent dye corresponds to a fluorescent polynucleotide probe or a fragment thereof. For example, the optical detector can be 30 configured to independently detect a plurality of fluorescent dyes at a plurality of different locations of, for example, a microfluidic cartridge, wherein each fluorescent dye corresponds to a fluorescent polynucleotide probe or a fragment thereof.

In some embodiments, a given detector for use with the apparatus described herein is capable of detecting a fluorescence signal from nanoliter scale PCR reactions. Advantageously, the detector is formed from inexpensive components, having no moving parts. The detector is also 40 configured to mate with a microfluidic cartridge as further described herein, and is also preferably part of a pressure application system, such as sliding lid, that keeps the cartridge in place. The detector further has potential for 2 or 3 color detection and is controlled by software, preferably 45 custom software, configured to sample information from the detector.

FIGS. **57-59** depict an embodiment of a highly sensitive fluorescence detection system including light emitting diodes (LED's), photodiodes, and filters/lenses for monitoring, in real-time, one or more fluorescent signals emanating from the microfluidic cartridge. The embodiment in FIGS. **57-59** has a two-color detection system having a modular design that mates with a single lane microfluidic cartridge. The detector comprises two LED's (blue and red, respectively) and two photodiodes. The two LED's are configured to transmit a beam of focused light on to a particular region of the cartridge. The two photodiodes are configured to receive light that is emitted from the region of the cartridge. One photodiode is configured to detect emitted red light, and the other photodiode is configured to detect emitted blue light.

FIGS. **60** and **61** show an exemplary read-head comprising a multiplexed 2 color detection system, such as multiple instances of a detection system shown in FIGS. **57-59**, that 65 is configured to mate with a multi-lane microfluidic cartridge. FIG. **60** shows a view of the exterior of a multiplexed

read-head. FIG. **61** is an exploded view that shows how

various detectors are configured within an exemplary multiplexed read head, and in communication with an electronic circuit board.

56

The module in FIGS. **60** and **61** is configured to detect fluorescence from each lane of a 12-lane cartridge, and therefore comprises 24 independently controllable detectors, arranged as 12 pairs of identical detection elements. Each pair of elements is then capable of dual-color detection of a pre-determined set of fluorescent probes. It would be understood by one of ordinary skill in the art that other numbers of pairs of detectors are consistent with the apparatus described herein. For example, 4, 6, 8, 10, 16, 20, 24, 25, 30, 32, 36, 40, and 48 pairs are also consistent and can be configured according to methods and criteria understood by one of ordinary skill in the art.

Exemplary Optics Assembly

In an exemplary embodiment, the optical chassis/pressure assembly is housed in an enclosure (made of plastic in certain embodiments) that can be positioned to cover a multi-lane microfluidic cartridge. The enclosure can optionally have a handle that can be easily grasped by a user, and is guided for smooth and easy pushing and pulling. The handle may also serves as a pressure-locking device. The enclosure's horizontal position is sensed in both the all-open and in the all-forward position, and reported to controlling software. The enclosure and optical chassis pressure assembly registers with a heater cassette module positioned underneath a microfluidic cartridge to within 0.010". A close fit is important for proper heater/cartridge interface connections. The enclosure assembly doe not degrade in performance over a life of 10,000 cycles, where a cycle is defined as: beginning with the slider in the back position, and sliding forward then locking the handle down on a cartridge, unlocking the handle and returning it to the original back position. All optical path parts should be non-reflective (anodized, painted, molded, etc.) and do not lose this feature for 10,000 cycles. The optics unit is unaffected by a light intensity of <=9,000 foot-candles from a source placed 12" from the instrument at angles where light penetration is most likely to occur. No degradation of performance is measured at the photo-detector after 10,000 cycles.

When fabricating a detector assembly, a single channel is made that houses two LED sources (blue and amber) and two additional channels that house one photodiode detector each (four total bored holes). The two paired channels (source and detector) are oriented 43° from each other, measured from the optical axis and are in-line with the other paired channels that are at the same 43° orientation. The holes bored in the optical chassis contain filters and lenses with appropriate spacers, the specification of which are further described herein. The LED's are held in place to prevent movement as the mechanical alignment is important for good source illumination. The LED's are preferably twisted until the two "hot spots" are aligned with the reading channels on the cartridge. This position must be maintained until the LED's cannot be moved. The optical chassis can be made of aluminum and be black anodized. The bottom pressure surface of the optical chassis is flat to ±0.001" across the entire surface. The optical chassis is centerbalanced such that the center of the optical chassis force is close to the center of the reagent cartridge. The pressure assembly (bottom of the optical chassis) provides uniform pressure of a minimum of 1 psi across all heater sections of the reagent cartridge. The optical assembly can be moved away from the reagent cartridge area for cartridge removal

and placement. Appropriate grounding of the optical chassis is preferred to prevent spurious signals to emanate to the optic PCR

57

The LED light sources (amber and blue) are incident on a microfluidic cartridge through a band pass filter and a 5 focusing lens. These LED light sources have a minimum output of 2800 millicandles (blue) and 5600 millicandles (Green), and the center wavelengths are 470 (blue) and 575 (amber) nanometers, with a half band width of no more than 75 nanometers.

The LED light excites at least one fluorescent molecule (initially attached to an oligonucleotide probe) in a single chamber on a cartridge, causing it to fluoresce. This fluorescence will normally be efficiently blocked by a closely spaced quencher molecule. DNA amplification via TAQ 15 enzyme will separate the fluorescent and quenching molecules from the oligonucleotide probe, disabling the quenching. DNA amplification will only occur if the probe's target molecule (a DNA sequence) is present in the sample chamber. Fluorescence occurs when a certain wavelength strikes 20 the target molecule. The emitted light is not the same as the incident light. Blue incident light is blocked from the detector by the green only emission filter. Green incident light similarly is blocked from the detector by the yellow emission filter. The fluorescent light is captured and travels 25 via a pathway into a focusing lens, through a filter and onto a very sensitive photodiode. The amount of light detected increases as the amount of the DNA amplification increases. The signal will vary with fluorescent dye used, but background noise should be less than 1 mV peak-to-peak. The 30 photo-detector, which can be permanently mounted to the optical chassis in a fixed position, should be stable for 5 years or 10,000 cycles, and should be sensitive to extremely low light levels, and have a dark value of no more than 60 mV. Additionally, the photo-detector must be commercially 35 available for at least 10 years. The lenses are Plano-convex (6 mm detector, and 12 mm source focal length) with the flat side toward the test cartridge on both lenses. The filters should remain stable over normal operating humidity and temperature ranges.

The filters, e.g., suppled by Omega Optical (Brauleboro, Vt. 05301), are a substrate of optical glass with a surface quality of F/F per Mil-C-48497A. The individual filters have a diameter of 6.0±0.1 mm, a thickness of 6.0±0.1 mm, and the AOI and ½ cone AOI is 0 degrees and ±8 degrees, 45 respectively. The clear aperture is >/=4 mm diameter and the edge treatment is blackened prior to mounting in a black. anodized metal ring. The FITC exciter filters is supplied by, e.g., Omega Optical (PN 481AF30-RED-EXC). They have a cut-off frequency of 466±4 nm and a cut-on frequency of 50 496±4 nm. Transmission is >/=65% peak and blocking is: >/=OD8 in theory from 503 to 580 nm, >/=OD5 from 501-650 nm, >/=OD4 avg. over 651-1000 nm, and >/=OD4 UV-439 nm. The FITC emitter filters is supplied by, e.g., Omega Optical (PN 534AF40-RED-EM). They will have a 55 cut-off frequency of 514±2 nm and a cut-on frequency of 554±4 nm. Transmission is >/=70% peak and blocking is: >/=OD8 in theory from 400 to 504 nm, >/=OD5 UV-507 nm, and >/=OD4 avg. 593-765 nm. The amber exciter filters are supplied by, e.g., Omega Optical (PN 582AF25-RED-EXC). 60 They have a cut-off frequency of 594≡5 nm and a cut-on frequency of 569±5 nm. Transmission is >/=70% peak and blocking is: >=OD8 in theory from 600 to 700 nm, >/=OD5 600-900 nm, and >/=OD4 UV-548 nm. The amber emitter filters are supplied by, e.g., Omega Optical (PN 627AF30- 65 RED-EM). They have a cut-off frequency of 642±5 nm and a cut-on frequency of 612±5 nm. Transmission is >/=70%

58

peak and blocking is: >/=OD8 in theory from 550 to 600 nm, >/=OD5 UV-605 nm, and >/=OD5 avg. 667-900 nm. The spacers should be inert and temperature stable throughout the entire operating range and should maintain the filters in strict position and alignment. The epoxy used should have optically black and opaque material and dry solid with no tacky residue. Additionally, it should have temperature and moisture stability, exert no pressure on the held components, and should mount the PCB in such a way that it is fixed and stale with no chances of rotation or vertical height changes. 50% of illumination shall fall on the sample plane within an area 0.1" (2.5 mm) wide by 0.3" (7.5 mm) along axis of the detection channel. Fluorescence of the control chip should not change more than 0.5% of the measured signal per 0.001" of height though a region ± 0.010 from the nominal height of the control chip.

An exemplary optics board is shown in FIG. 62, and is used to detect and amplify the fluorescent signature of a successful chemical reaction on a micro-fluidic cartridge, and controls the intensity of LED's using pulse-width modulation (PWM) to illuminate the cartridge sample over up to four channels, each with two color options. Additionally, it receives instructions and sends results data back over an LVDS (low-voltage differential signaling) SPI (serial peripheral interface). The power board systems include: a +12V input, and +3.3V, +3.6V, +5V, and -5V outputs, configured as follows: the +3.3V output contains a linear regulator, is used to power the LVDS interface, should maintain a $\pm -5\%$ accuracy, and supply an output current of 0.35 A; the +3.6V output contains a linear regulator, is used to power the MSP430, should maintain a +/-5% accuracy, and supply an output current of 0.35 A; the +5V output contains a linear regulator, is used to power the plus rail for op-amps, should maintain a +/-5% accuracy, and supply an output current of 0.35 A; the -5V output receives its power from the +5V supply, is used to power the minus rail for op-amps and for the photo-detector bias, should maintain a +/-1% voltage accuracy, and supply an output current of 40 6.25 mA+/-10%. Additionally, the power board has an 80 ohm source resistance, and the main board software can enable/disable the regulator outputs.

The main board interface uses a single channel of the LVDS standard to communicate between boards. This takes place using SPI signaling over the LVDS interface which is connected to the main SPI port of the control processor. The interface also contains a serial port for in-system programming.

The exemplary optical detection system of FIG. 62 consists of a control processor, LED drivers, and a photodetection system. In the exemplary embodiment, the control processor is a TI MSP430F1611 consisting of a dual SPI (one for main board interface and one for ADC interface) and extended SRAM for data storage. It has the functions of power monitoring, PWM LED control, and SPI linking to the ADC and main board. The LED drivers contain NPN transistor switches, are connected to the PWM outputs of the control processor, can sink 10 mA@ 12V per LED (80 mA total), and are single channel with 2 LEDs (one of each color) connected to each. The photo-detection system has two channels and consists of a photo-detector, high-sensitivity photo-diode detector, high gain current to voltage converter, unity gain voltage inverting amplifier, and an ADC. Additionally it contains a 16 channel Sigma-delta (only utilizing the first 8 channels) which is connected to the second SPI port of the control processor. It would be understood by one of ordinary skill in the art that other

59

choices and combinations of elements can be brought together to make a functioning detection system consistent with the description herein.

Additional Advantages and Features of the Technology Herein

The use of a disposable process chamber, having surface coating and material properties to allow low volume, and open tube heated release to maximize sample concentration in lowest volume possible.

The integrated magnetic heat separator that allows multiple samples to be heated independently but separated using a single moveable magnet platform.

A reader/tray design that allows easy placement of microfluidic cartridge and multiple sample pipetting of liquid using a robotic dispenser in one position; relative displacement to another location and pressure application for subsequent rapid heat incubation steps and optical detection. The bottom surface of the cartridge mates with the heating surface. Furthermore, it is typically easier to move a cartridge and heater in and out of position than a detector.

A moveable readhead design for fluorescence detection from microfluidic PCR channels.

Aspects of the holder, such as a unitized disposable strip, that include the presence of sealed lyophilized reagents as 25 well as liquids sealed in close proximity, which is normally hard to achieve. The laminates deployed herein make storage easier.

The holder permits snapping of multiple ASR tubes, and associated liquid dispensing processes that minimizes cross-sample contamination but multiple PCR preparations to be performed from a single clinical sample.

Software features allow a user to either get results from all 24 samples as quickly as possible or the first 12 samples as quickly as possible and the next 12 later.

The preparatory and diagnostic instruments described herein enables different sample types (such as blood, urine, swab, etc.) to be all processed at the same time even though each may require different temperatures, times or chemical reagents. This is achieved in part by using individualized but 40 compatible holders.

Automatic feeding of microfluidic cartridges into a PCR reader via a cartridge autoloader saves a user time and leads to increased efficiency of overall operation.

Piercing through foil over a liquid tube and reliable way 45 of picking up liquid.

A moveable read-head that has the pumps, sensors (pipette detection, force sensing), sample identification verifier, etc., moving with it, and therefore minimizes the number of control lines that move across the instrument during use.

Accurate and rapid alignment of pipette tips with cartridge inlet holes using a motorized alignment plate.

EXAMPLES

Example 1: Reagent Holder

An exemplary reagent holder consistent with the description herein has the following dimensions and capacities:

180 mm long×22 mm wide×100 mm tall;

Made from Polypropylene.

One snapped-in low binding 1.7 ml tube that functions as a process tube.

60

3 built-in tubes that function as receptacles for reagents, as follows:

One tube containing 200-1000 μ l of wash buffer (0.1 mM Tris, pH 8).

60

One tube containing 200-1000 μ l of release solution (40 mM NaOH).

One tube containing 200-1000 µl of neutralization solution (330 mM Tris, pH 8.0).

- One built-in tube that functions as a waster chamber (will hold ~4 ml of liquid waste).
- 3 receptacles to accept containers for solid reagents. Snap-in 0.3 ml or 0.65 ml PCR tubes (which are typically stored separately from the reagent holder) are placed in each of these locations, and contain, respectively:

lyophilized sample preparation reagents (lysis enzyme mix and magnetic affinity beads).

First lyophilized PCR master mix, probes and primers for a first target analyte detection.

Second lyophilized PCR master mix, probes and primers for a second target analyte detection (only offered in select cases, such as detection of Chlamydia and Gonorrhea from urine).

4 pipette tips located in 4 respective sockets.

Pipette tip Sheath: The pipette tips have a sheath/drip tray underneath to help capture any drip from the pipette tips after being used, and also to prevent unwanted contamination of the instrument.

Handle and Flex-Lock allows easy insertion, removal, and positive location of strip in rack.

One or more labels: positioned upward facing to facilitate ease of reading by eye and/or, e.g., a bar-code reader, the one or more labels containing human and machine readable information pertaining to the analysis to be performed.

It is to be understood that these dimension are exemplary. However, it is particularly desirable to ensure that a holder does not exceed these dimensions so that a rack and an apparatus that accommodates the reagent holder(s) does not become inconveniently large, and can be suitably situated in a laboratory, e.g., on a bench-top.

Example 2: Disposable Reagent Holder Manufacturing

Simple fixtures can be designed and machined to enable handling and processing of multiple strips. These are five steps that can be performed to produce this component. The disposable reagent holder will be placed in a fixture and filled with liquids using manual/electric-multiple pipetting. Immediately after dispensing all liquids into the strip, foil will be heat sealed to the plastic using exemplary heat seal equipment (Hix FH-3000-D Flat Head Press) and the foil trimmed as required. After heat sealing liquids on board, all pellets in tubes can be snapped into the strip, pipette tips can be inserted in their respective sockets, and a barcode label can be affixed. Desiccant packs can be placed into the blow molded or thermoformed rack designed to house 12 holders. Twelve disposable strips will be loaded into the rack and then sealed with foil. The sealed bag will be placed into a carton and labeled for shipping.

Example 3: Foil-Sealing of Buffer Containing Reagent Tubes

Tubes containing buffers have to be sealed with high moisture vapor barrier materials in order to retain the liquid over a long period of time. Disposable holders may need to have a shelf life of 1-2 years, and as such, they should not lose more than say 10-15% of the liquid volume over the time period, to maintain required volume of liquid, and to

20

45

50

61

maintain the concentration of various molecules present in the solution. Moreover, the materials used for construction of the tube as well as the sealing laminate should not react with the liquid buffer. Special plastic laminates may provide the moisture barrier but they may have to be very thick (more than 300 µm thick), causing the piercing force to go up tremendously, or of special, expensive polymer (such as Aclar). Aluminum foils, even a thin foil of a few hundred angstrom provides an effective moisture barrier but bare aluminum reacts with some liquid buffers, such as sodium hydroxide, even an aluminum foil with a sprayed coating of a non-reactive polymer may not be able to withstand the corrosive vapors over a long time. They may react through tiny pin holes present in the coating and may fail as a barrier over time.

For these reasons, aluminum foils with a laminate structure have been identified as a suitable barrier, exemplary properties of which are described below:

1. Sealing

Heat seals to unitized polypropylene strip (sealing temp \sim 170-180° C.)

No wrinkling, cracking and crazing of the foil after sealing

- 2. Moisture Vapor Transmission Rate (MVTR)
- Loss of less than 10% liquid (20 microliters from a volume of 200 microliter) for a period of 1 year stored at ambient temperature and pressure (effective aria of transport is ~63 mm²); Approximate MVTR ~0.8 cc/m²/day
- 3. Chemistry
- Ability to not react with 40 mM Sodium Hydroxide (pH<12.6): foil should have a plastic laminate at least 15 microns thick closer to the sealed fluid.

Ability to not react with other buffers containing mild ³⁵ as follows: detergents 1. Pierce

- 4. Puncture
- Ability to puncture using a p1000 pipette with a force less
- Before puncturing, a fully supported membrane 8 mm in 40 diameter will not stretch more than 5 mm in the orthogonal direction
- After puncturing, the foil should not seal the pipette tip around the circumference of the pipette.
- 5. Other Features

Pin-hole free

No bubbles in case of multi-laminate structures.

Example 4: Mechanism of Piercing through a Plasticized Laminate and Withdrawing Liquid Buffer

The aluminum laminate containing a plastic film described elsewhere herein serves well for not reacting with corrosive reagents such as buffers containing NaOH, and 55 having the favorable properties of pierceability and acting as a moisture barrier. However, it presents some additional difficulties during piercing. The aluminum foil tends to burst into an irregular polygonal pattern bigger than the diameter of the pipette, whereas the plastic film tends to wrap around 60 the pipette tip with minimal gap between the pipette and the plastic film. The diameter of the hole in the plastic film is similar to the maximum diameter of the pipette that has crossed through the laminate. This wrapping of the pipette causes difficulty in dispensing and pipetting operations 65 unless there is a vent hole allowing pressures to equilibrate between outside of the tube and the air inside of the tube.

62

A strategy for successful pipetting of fluid is as follows:

- 1. Pierce through the laminate structure and have the pipette go close to the bottom of the reagent tube so that the hole created in the laminate is almost as big as the maximum diameter of the pipette (e.g., ~6 mm for a p1000 pipette)
- 2. Withdraw the pipette up a short distance so that a small annular vent hole is left between the pipette and the laminate. The p1000 pipette has a smallest outer diameter of 1 mm and maximum outer diameter of 6 mm and the conical section of the pipette is about 28 mm long. A vent hole thickness of a hundred microns is enough to create a reliable vent hole. This corresponds to the pipette inserted to diameter of 5.8 mm, leaving an annulus of 0.1 mm around it.
- 3. Withdraw fluid from the tube. Note that the tube is designed to hold more fluid than is necessary to withdraw from it for a sample preparation procedure.

Example 5: Foil Piercing and Dissolution of Lyophilized Reagents

The containers of lyophilized reagents provided in conjunction with a holder as described herein are typically sealed by a non-plasticized aluminum foil (i.e., not a laminate as is used to seal the reagent tubes). Aluminum foil bursts into an irregular polygonal pattern when pierced through a pipette and leaves an air vent even though the pipette is moved to the bottom of the tube. In order to save on reagents, it is desirable to dissolve the reagents and maximize the amount withdrawn from the tube. To accomplish this, a star-ridged (stellated) pattern is placed at the bottom of the container to maximize liquid volume withdrawn, and flow velocity in between the ridges.

Exemplary steps for dissolving and withdrawing fluid are as follows:

- Pierce through the pipette and dispense the fluid away from the lyophilized material. If the pipette goes below the level of the lyophilized material, it will go into the pipette and may cause jamming of the liquid flow out of the pipette.
- 2. Let the lyophilized material dissolve for a few seconds.
- 3. Move pipette down touching the ridged-bottom of the tube
- 4. Perform an adequate number of suck and spit operations (4-10) to thoroughly mix the reagents with the liquid buffer.
- 5. Withdraw all the reagents and move pipette to dispense it into the next processing tube.

Example 6: Material and Surface Property of the Lysis Tube

The material, surface properties, surface finish has a profound impact on the sensitivity of the assay performed. In clinical applications, DNA/RNA as low as 50 copies/sample (~1 ml volume) need to be positively detected in a background of billions of other molecules, some of which strongly inhibit PCR. In order to achieve these high level of sensitivities, the surface of the reaction tube as well as the material of the surface has to be chosen to have minimal binding of polynucleotides. During the creation of the injection molding tool to create these plastic tubes, the inherent surfaces created by machining may have large surface area due to cutting marks as large as tens of microns of peaks and valleys. These surfaces have to be polished to SPI A1/A2 finish (mirror finish) to remove the microscopic surface irregularities. Moreover, the presence of these microscopic

63

valleys will trap magnetic heads (0.5-2 μ) at unintended places and cause irregular performance. In addition to actual surface roughness, the surface hydrophobicity/surface molecules present may cause polynucleotides to stick at unintended places and reduce sensitivity of the overall test. In 5 addition to the base material uses, such as homogenous polupropylene and other polymers, specific materials used during the molding of these tubes, such as mold release compounds or any additives to aid in the fabrication can have a profound impact on the performance of the reactions.

Example 7: Liquid Dispensing Head

Referring to FIGS. 18, 19A-C, and 63, an exemplary liquid dispenser is attached to a gantry, and receives instructions via electrical cable 1702. Barcode scanner 1701 is mounted on one face of the liquid dispenser. The gantry is mounted on a horizontal rail 1700 to provide movement in the x-direction. Not shown is an orthogonally disposed rail to provide movement in the y-direction. The liquid dispenser $\ ^{20}$ comprises a computer controlled motorized pump 1800 connected to fluid distribution manifold 1802 with related computer controlled valving 1801 and a 4-up pipetter with individually sprung heads 1803. The fluid distribution manifold has nine Lee Co. solenoid valves 1801 that control the 25 flow of air through the pipette tips: two valves for each pipette, and an additional valve to vent the pump. Barcode reader 1701 enables positive detection of sample tubes, reagent disposables and microfluidic cartridges. The scanner is mounted to the z-axis so that it can be positioned to read 30 the sample tube, strip, and cartridge barcodes.

Example 8: Integrated Heater/Separator

In FIG. 64 an exemplary integrated magnetic separator 35 and heater assembly are shown. Magnetic separator 1400 and heater assembly 1401 were fabricated comprising twelve heat blocks aligned parallel to one another. Each heat block 1403 is made from aluminum, and has an L-shaped configuration having a U-shaped inlet for accepting a pro- 40 cess chamber 1402. Each heat block 1403 is secured and connected by a metal strip 1408 and screws 1407. Magnet 1404 is a rectangular block Neodymium (or other permanent rare earth materials, K & J Magnetics, Forcefield Magnetics) supporting member. Gears 1406 communicate rotational energy from a motor (not shown) to cause the motorized shaft 1405 to raise and lower magnet 1404 relative to each heat block. The motor is computer-controlled to move the magnet at speeds of 1-20 mm/s. The device further com- 50 prises a printed circuit board (PCB) 1409 configured to cause the heater assembly to apply heat independently to each process chamber 1402 upon receipt of appropriate instructions. In the exemplary embodiment, the device also comprises a temperature sensor and a power resistor in 55 conjunction with each heater block.

Example 9: Exemplary Software

Exemplary software accompanying use of the apparatus 60 herein can include two broad parts—user interface and device firmware. The user interface software can allow for aspects of interaction with the user such as-entering patient/sample information, monitoring test progress, error warnings, printing test results, uploading of results to data- 65 bases and updating software. The device firmware can be the low level software that actually runs the test. The firmware

64

can have a generic portion that can be test independent and a portion specific to the test being performed. The test specific portion ("protocol") can specify the microfluidic operations and their order to accomplish the test.

FIGS. 64A and 65B shows screen captures from the programming interface and real time heat sensor and optical detector monitoring. This real time device performance monitoring is for testing purposes; not visible to the user in the final configuration.

User Interface:

A medical grade LCD and touch screen assembly can serve as the user interface via graphical user interface providing easy operating and minor troubleshooting instructions. The LCD and touch screen have been specified to ensure compatibility of all surfaces with common cleaning agents. A barcode scanner integrated with the analyzer can be configured to scan the barcode off the cartridge (specifying cartridge type, lot #, expiry date) and if available the patient and user ID from one or more sample tubes.

Example 10: Exemplary Preparatory Apparatus

This product is an instrument that enables 24 clinical samples to be automatically processed to produce purified nucleic acid (DNA or RNA) in about half an hour (FIG. 66). Purified nucleic acid may be processed in a separate amplification-detection machine to detect the presence of certain target nucleic acids. Samples are processed in a unitized disposable strip, preloaded with sample preparation chemistries and final purified nucleic acids are dispensed into PCR tubes. Fluid handing is enabled by a pipetting head moved by a xyz gantry. (FIG. 67)

The System has the following sub-systems:

Two sample processing racks, each rack processes up to 12 clinical samples in unitized disposable strips

Magnetic separator-cum-tube heater assembly (24 heating stations)

A four-probe liquid dispensing head

3-axis gantry to move the pipette head

Peltier-cooled per-tube holding station to receive the purified DNA/RNA

Control electronics

Barcode reader

Operation: The user will get a work list for each sample, disposed behind each heat block 1403 and mounted on a 45 whether they want to extract DNA or RNA for each clinical sample. The sample tubes are placed on the rack and for each sample type (DNA or RNA), the user slides in a unitized reagent disposable (DNA or RNA processing) into corresponding lane of the rack. The unitized disposable (holder) will have all the sample prep reagents, process tubes as well as disposable pipettes already prepackaged in it. Once all disposables are loaded into the rack, the rack is placed in its location on the instrument. Open per tubes are placed in the peltier cooled tube holder where the final purified nucleic acid will be dispensed. The user then closes the door of the instrument and then starts the sample processing using the GUI (Graphical User Interface).

The instrument checks functionality of all subsystems and then reads the barcode of the sample tubes and the unitized reagent disposable. Any mismatch with a pre-existing work list is determined and errors are flagged, if necessary. The instrument then goes through a series of liquid processing, heating, magnetic separations to complete the sample preparation steps for the each of the clinical sample and outputs the purified nucleic acid into the PCR tube. The basic steps involved in each sample processing are sample lysis, nucleic acid capture into magnetic affinity beads, washing of the

65

magnetic beads to remove impurities, releasing the nucleic acid from the magnetic beads, neutralizing the released DNA and the dispensing into the final PCR tube. These tubes are maintained at 4° C. until all samples are processed and user takes away the tube for downstream processing of the buckers are maintained at 4° C. until all samples are processed and user takes away the tube for downstream processing of the buckers are processed and user takes away the tube for downstream processing of the buckers.

Example 11: Exemplary Diagnostic Apparatus

The apparatus, in combination with the associated consumables, automatically performs all aspects of nucleic acid testing, including sample preparation, amplification, and detection for up to 48 samples per hour with the first 24 results available in less than an hour. The system is easy to use. An operator simply aliquots a portion of the patient sample into a dedicated tube that contains pre-packaged buffer. The operator places the dedicated tubes into positions on a sample rack. The operator then loads a disposable plastic reagent strip for the appropriate test in the rack. The $_{20}$ only other consumable used in the apparatus are microfluidic PCR cartridges for conducting amplification and detection; each cartridge is capable of performing up to twelve PCR tests and two cartridges can be loaded into the analyzer at once. Should the apparatus require a new PCR cartridge, the 25 analyzer will prompt the operator to load the cartridge. The analyzer will then prompt the operator to close the lid to initiate testing. All consumables and sample tubes are barcoded for positive sample identification.

Sample lysis and DNA preparation, which will require approximately half an hour for a full run of 24 samples, is automatically performed by the analyzer's robotic and liquid handling components using protocols and reagents located in unitized, disposable plastic strips. The apparatus then automatically mixes the samples and PCR reagents, and injects the mixture into a cartridge that will be automatically processed by an integrated PCR machine. Rapid, real time PCR and detection requires less than 20 minutes. Results, which will be automatically available upon completion of PCR, are displayed on the instruments touch screen, printed or sent to the hospital information system, as specified by the user (or the user's supervisor).

Each instrument can process up to 24 samples at a time with a total throughput of 48 samples per hour after the first 45 run. The analyzer is slightly less than 1 m wide ad fits easily on a standard lab bench. All operations of the unit can be directed using the included barcode wand and touch screen. The analyzer can be interfaced with lab information systems, hospital networks, PCs, printers or keyboards through four 50 USB interfaces and an Ethernet port.

The apparatus has the following characteristics:

Sensitivity: the apparatus will have a limit of detection of ~50 copies of DNA or RNA. (and may have a limit of detection as low as 25-30 copies of DNA/RNA).

Cost per Test: Due to the miniaturized, simplified nature of HandyLab reagents, cartridge and other consumables, the cost of goods per test will be relatively low and very competitive.

Automation: By contrast with current "automated" NAT 60 systems, which all require some degree of reasonably extensive technologist interaction with the system, through the use of unitized tests and full integration of sample extraction, preparation, amplification and detection, the apparatus herein will offer a higher level of automation, and corresponding reduction in technologist time and required skill level, thereby favorably impacting overall labor costs.

66

Throughput: Throughput is defined as how many tests a system can conduct in a given amount of time. The apparatus will be capable of running 45 tests per hour, on average.

Time to First Result: In a hospital environment, time to first result is an especially important consideration. The apparatus will produce the first 24 results in less than an hour and an additional 24 results every half hour thereafter.

Random Access and STAT: Random access is the ability to run a variety of tests together in a single run and place samples in unassigned locations on the analyzer. Also, with chemistry and immunoassay systems, it is desirable to be able to add test after a run has started. This is often referred to as "true random access" since the user is provided complete flexibility with regard to what tests can be run where on an analyzer and when a new sample can be added to a run. A STAT is a sample that requires as rapid a result as possible, and therefore is given priority in the testing cue on the analyzer. Today, essentially all chemistry and immunoassay analyzers are true random access and offer STAT capabilities. For NAT, however, very few systems offer any random access or STAT capabilities. The instrument herein will provide random access and STAT capabilities.

Menu: The number and type of tests available for the analyzer is a very important factor in choosing systems. The apparatus herein deploys a launch menu strategy that involves a mix of high volume, "standard" nucleic acid tests combined with novel, high value tests.

The apparatus enables 24 clinical samples to be automatically processed to purify nucleic acid, mix the purified DNA/RNA with PCR reagents and perform real-time PCR in microfluidic cartridge to provide sample to results in an hour. The exemplary apparatus has two PCR readers, each capable of running a 12 lane microfluidic cartridge using an optical system that has dedicated two-color optical detection system. FIG. **68**, FIG. **69**.

The apparatus has the following sub-systems:

Two sample processing rack, each rack processes up to 12 clinical samples in unitized disposable strips.

Magnetic separator-cum-tube heater assembly (24 heating stations)

A four-probe liquid dispensing head

3-axis gantry to move the pipette head

Two PCR amplification-detection station, each capable of running a 12-lane microfluidic cartridge and dedicated 2-color optical detection system for each PCR lane.

Control electronics

Barcode reader

Pictures of exterior (face on) and interior are at FIGS. 70, 71, respectively.

Operation: The user will get a work list for each sample, whether they want to detect certain target analyte (such as GBS, Chlamydia, Gonnorrhoea, HSV) for each clinical sample. The sample tubes are placed on the rack and for each sample, the user slides in a unitized reagent disposable (analyte specific) into corresponding lane of the rack. The unitized disposable will have all the sample prep reagents, PCR reagents, process tubes as well as disposable pipettes already prepackaged in it. Once all disposables are loaded into the rack, the rack is placed in its location on the instrument. The user then places two 12-lane microfluidic PCR cartridges in the two trays of the PCR reader. The user then closes the door of the instrument and then starts the sample processing using the GUI (Graphical User Interface).

The instrument checks functionality of all subsystems and then reads the barcode of the sample tubes, the unitized reagent disposables and the microfluidic cartridges. Any mismatch with a pre-existing work list is determined and

67

errors are flagged, if necessary. The instrument than goes through a series of liquid processing, heating, magnetic separation to complete the sample preparation steps for the each of the clinical sample, mixes the purified nucleic acid with PCR reagents and dispenses the final mix into a lane of 5 the microfluidic cartridges. After a microfluidic cartridge is loaded with the final PCR mix, the cartridge tray moves and aligns the cartridge in the reader and the optical detection system presses the cartridge against a microfluidic PCR heater surface. On-chip valves are actuated to close the 10 reaction mix and then thermocycling is started to initiate the PCR reaction. At each cycle of PCR (up to 45 cycles), fluorescence from each PCR lane is detected by the optical detection system (2-colors per PCR lane) and final result is determined based on the threshold cycle (Ct).

The sample preparation steps for 24 samples are performed in about 40 minutes and the PCR reaction in about 20 minutes.

Sample Reader:

The Reader performs function testing of up to twelve 20 properly prepared patient samples by PCR process (real-time PCR) when used in conjunction with HandyLab microfluidic (test) cartridges. Each unit will employ two Reader Modules for a total of up to twenty four tests. (FIGS. 72A and 72B) Operation of the Reader is designed for minimal 25 customer interaction, requiring the loading and unloading of test cartridges only. During the "Load Disposables" sequence, the Reader will present a motor actuated tray for installation of the disposable cartridge. Sliding a small knob located in the front of the tray, a spring loaded protective 30 cover will raise allowing the test cartridge to be nested properly in place. The cover is then lowered until the knob self-locks into the tray frame, securing the cartridge and preventing movement during the sample loading sequence.

Once the prepared samples have been dispensed via 35 pipettes into the test cartridge, the tray will retract into the Reader, accurately positioning the test cartridge beneath the chassis of the optical assembly. The optical assembly will then be lowered by a captured screw driven stepper motor until contact is made with the test cartridge. At this point the 40 test cartridge is located 1/8" above the target location on the heater assembly. As downward motion continues the test cartridge and its holder within the tray compress springs on the tray frame (these are used later to return the cartridge to it's normal position and able to clear the encapsulated wire 45 bonds located on the heater assembly during tray operation). Movement of the test cartridge and optical assembly is complete once contact with the heater assembly is made and a minimum of 2 psi is obtained across the two-thirds of the cartridge area about the PCR channels and their controlling 50 gates. At this point the testing of the cartridge is performed using the heater assembly, measured with onboard optics, and controlled via software and electronics much in the same manner as currently operated on similar HandyLab

Once the functional testing is complete the main motor raises the optic assembly, releasing pressure on the test cartridge to return to it's normal position. When commanded, the tray motor operating in a rack-and-pinion manner, presents the tray to the customer for cartridge 60 removal and disposal. when the tray is in the extended position it is suspended above a support block located on the apparatus chassis. This block prevents the cartridge from sliding though the holder in the tray during loading and acts as a support while samples are pipetted into the disposable 65 cartridge. Also provided in this support block is an assist lever to lift and grasp the disposable cartridge during

68

Microfluidic PCR Heater Module:

removal. All components of the tray as well as support block and cartridge lift assist are removable by the customer, without tools, for cleaning and reinstalled easily.

The microfluidic PCR heater module comprises a glass wafer with photolithographically defined microheaters and sensors to accurately provide heat for actuation of valves and performing thermocycling required to perform a realtime PCR reaction. The wafer surface has dedicated individually controlled heating zones for each of the PCR lanes in the microfluidic cartridge. For a 12-up cartridge, there are 12 PCR zones and the 24-up cartridge, there are 24 PCR heating zones. The individual heaters and sensors are electrically connected to a Printed circuit board using gold or aluminum wire bonds. A thermally compliant encapsulant provides physical protection the wirebonds. While the present device is made on glass wafer, heaters can be fabricated on Si-on-Glass wafers and other polymeric substrates. Each substrate can have provide specific advantages related to its thermal and mechanical properties, besides using photolithography process, such heating substrates can also be assembled using off-the-shelf electronic components such as power resistors, peltiers, transistors, maintaining the upper heating surface of each of the component to be at the same level to provide heating to a microfluidic cartridge. Temperature calibration values for each temperature sensor may be stored in a EEPROM or other memory devices co-located in the heater PCBoard.

12-Lane Cartridge:

This 12 channel cartridge is the same basic design that is described in U.S. provisional patent application Ser. No. 60/859,284, filed Nov. 14, 2006, with the following modifications: increase the PCR volume from 2 μ l to 4.5 μ l, leading to an increase in the input volume from 4 μ l to 6 μ l. The inlet holes are moved a few millimeters away from the edge of the cartridge to allow room for a 2 mm alignment ledge in the cartridge. A similar alignment ledge is also included on the other edge of the cartridge. (FIGS. 31A, 31B)

o Enclosure:

The design of the apparatus enclosure must satisfy requirements: for customer safety during operation; provide access to power and communication interfaces; provide air entry, exit, and filtering; provide one-handed operation to open for installation and removal of materials; incorporate marketable aesthetics.

Cooling:

The cooling for the apparatus will be designed in conjunction with the enclosure and overall system to ensure all assemblies requiring air are within the flow path or receive diverted air.

The current concept is for the air inlet to be located on the bottom of the lower front panel. The air will then pass through a clearable filter before entering the apparatus. Sheet metal components will direct the air to both the disposable racks and the main power supply. The air will then be directed through the card cages, around the readers and will exit through slots provided in the top of the enclosure. Base Plate

The XYZ stage and frame are mounted to the bae plate in a way where there will be no misalignment between the stage, cartridge and the disposable. the enclosure is mounted to the base plate. Final design of the enclosure determines the bolt hole pattern for mounting. the backplane board mounts to the base plate with standoffs. All other boards mounts to the backplane board. The disposable mounts on a rack which will be removable from the brackets mounted to

69

the base plate. the reader brackets bolt to the bae plate. Final design of the reader brackets determines the bolt hole pattern. The power supply mounts to the base plate. The base plate extends width and lengthwise under the entire instrument.

Example 12: Exemplary High-Efficiency Diagnostic Apparatus

A more highly multiplexed embodiment, also enables 24 10 clinical samples to be automatically processed to purify nucleic acids, mix the purified DNA/RNA with PCR reagents and perform real-time PCR in a microfluidic cartridge. This produce has a single PCR reader, with a scanning read-head, capable of reading up to 4 different colors 15 from each of the PCR lane. The cartridge has 24 PCR channels enabling a single cartridge to run all 24 clinical samples. In addition, this product has a cartridge autoloader, whereby the instrument automatically feeds the PCR reader from a pack of cartridges into the instrument and discard 20 used cartridge into a waste tray. Diagrams are shown in FIGS. 73, and 74.

The apparatus has the following sub-systems:

Two sample processing racks, each rack processes up to 12 clinical sample sin unitized disposable strips

Magnetic separator-cum-tube heater assembly (24 heating stations)

A four-probe liquid dispensing head

3-axis gantry to move the pipette head

A single PCR amplification-detection station capable of 30 running a 24-lane microfluidic cartridge and a scanner unit to detect up to 4 colors from each PCR lane.

An autoloader unit to feed 24-lane microfluidic cartridges from a box into the PCR detection unit.

Control electronics

Barcode reader

Operation: The user will get a work list for each sample, whether they want to detect certain target analyte (such as GBS, Chlamydia, Gonnorrhoea, HSV) for each clinical sample. The sample tubes are placed on the rack and for each 40 sample, the user slides in a unitized reagent disposable (analyte specific) into corresponding lane of the rack. The unitized disposable will have all the sample prep reagents, PCR reagents, process tubes as well as disposable pipettes already prepackaged in it. Once all disposables are loaded 45 into the rack, the rack is placed in its location on the instrument. The user then closes the door of the instrument and then starts the sample processing using the GUI (Graphical User Interface).

The instrument checks functionality of all subsystems and 50 then reads the barcode of the sample tubes, the unitized reagent disposables and presence of a 24-lane microfluidic cartridge. Any mismatch with a pre-existing work list is determined and errors are flagged, if necessary. The instrument than goes through a series of liquid processing, heat- 55 ing, magnetic separation to complete the sample preparation steps for the each of the clinical sample, mixes the purified nucleic acid with PCR reagents and dispenses the final mix into a lane of a 24-lane microfluidic cartridge. After the microfluidic cartridge is loaded with the final PCR mix, the 60 cartridge is moved and aligned by an automated motorized pusher in the PCR reader. The optical detection system, then presses the cartridge against a microfluidic PCR heater surface. On-chip valves are actuated to close the reaction mix and then thermo-cycling is started to initiate the PCR 65 reaction. At each cycle of PCR (up to 45 cycles), fluorescence from each PCR lane is detected by the optical detec70

tion system (2-colors per PCR lane) and final result is determined based on the threshold cycle (Ct). The used cartridge is then pushed out automatically into a waste cartridge bin.

Microfluidic cartridges are stored in a cartridge pack (maximum 24 cartridges) and the instrument alerts the user to replace the cartridge pack and empty out the waste cartridge bin once all cartridges from the pack are used up. 24-Lane Cartridge

The 24-lane cartridge has two rows of 12 PCR lanes. Various views are shown in FIGS. **75-77**. The cartridge has 3 layers, a laminate, a substrate, and a label. The label is shown in two pieces. Each Lane has a liquid inlet port, that interfaces with a disposable pipette; a 4 microliter PCR reaction chamber (1.5 mm wide, 300 microns deep and approximately 10 mm long), two microvalves on either side of the PCR reactor and outlet vent. Microvalves are normally open and close the channel on actuation. The outlet holes enables extra liquid (~1 μl) to be contained in the fluidic channel incase more than 6 μl of fluid is dispensed into the cartridge.

The inlet holes of the cartridge are made conical in shape and have a diameter of 3-6 mm at the top to ensure pipettes can be easily landed by the fluid dispensing head with the conical hole. Once the pipette lands within the cone, the conical shape guides the pipette and mechanically seals to provide error free dispensing or withdrawal of fluid into the cartridge. The bigger the holes, the better it is to align with the pipette, however, we need to maximize the number of inlet ports within the width of the cartridge as well as maintain the pitch between holes compatible with the interpipette distance. In this particular design, the inter-pipette distance is 18 mm and the distance between the loading holes in the cartridge is 8 mm. So lanes 1, 4, 7, 11 are pipetted into during one dispensing operation; lanes 2, 5, 8 and 12 in the next, and so on and so forth.

The height of the conical holes is kept lower than the height of the ledges in the cartridge to ensure the cartridges can be stacked on the ledges. The ledges on the two long edges of the cartridge enable stacking of the cartridges with minimal surface contact between two stacked cartridges and also help guide the cartridge into the reader from cartridge pack (cf. FIGS. **28-33**).

Cartridge Autoloader

The Cartridge autoloader consists of a place for positively locking a pack of 24 microfluidic cartridges, pre-stacked in a spring-loaded box (e.g., FIG. 33). The box has structural elements on the sides to enable unidirectional positioning and locking of the box in the autoloader (FIG. 33). To load a new box, the user moves a sliding element to the left of the autoloader, places and pushed the box in the slot and released the sliding lock to retain the box in its right location. Springs loaded at the bottom of the box helps push the box up when it needs to be replaced. The spiral spring present a the bottom of the cartridge pack pushed against the cartridges and is able to continually push the cartridge with a force of from 4 to 20 pounds.

The presence or absence of cartridges is detected by reading the barcode on top of the cartridge, if present.

To start a PCR run, the pipette head dispenses PCR reaction mix into the required number of lanes in the top cartridge in the autoloader (e.g., FIG. 28). The pusher pushes the top cartridge from the autoloader box into the two rails that guide the cartridge into the PCR reader. The cartridge is pushed to the calibrated location under the reader and then the optics block is moved down using a stepper motor to push the cartridge against the microheater surface. the

71

bottom of the optics block (aperture plate) has projections on the sides to enable the cartridge to be accurately aligned against the apertures. The stepper motor pushed the cartridge to a pre-calibrated position (e.g., FIG. 30) which provides a minimum contact pressure of 1 psi on the heating surface of 5 the microfluidic cartridge.

After the PCR reaction is complete, the stepper motor moves up 5-10 mm away from the cartridge, relieves the contact pressure and enables to cartridge to travel in its guide rails. The pusher is activated and it pushes the cartridge out to the cartridge waste bin (e.g., FIG. 32). After this step, the pusher travels back to its home position. During its back travel, the pusher is able to rise above the top of the cartridge in the cartridge pack because it has a angular degree of freedom (see figure). A torsion spring ensures the pusher comes back to a horizontal position to enable it to push against the next cartridge in queue. The pusher is mechanically attached to a timing belt. The timing belt can be moved in either direction by turning a geared motor. The pusher is mounted to a slider arrangement to constrain it to move in 20 only one axis (see, e.g., FIG. 31).

The cartridge pushing mechanism can also be made to not only push the cartridge from the autoloader box to the detection position, but also be used to move it back to the autoloading position. This will enable unused lanes in the 25 microfluidic cartridge to be used in the next PCR run.

The cartridge autoloading box is also designed so that once all the cartridges are used, the box can be easily recycled or new cartridges added to it. This reduces the cost to the customer and the manufacturer.

Reader

The reader consists of an optical detection unit that can be pressed against a 24-lane microfluidic cartridge to optically interface with the PCR lanes as well as press the cartridge against a microfluidic heater substrate (FIG. 78). The bottom of the optics block has 24 apertures (two rows of 12 apertures) that is similar in dimension of the PCR reactors closest to the cartridge. The aperture plate is made of low fluorescent material, such as anodized black aluminum and during operation, minimized the total background fluorescence while maximizing the collection of fluorescent only from the PCR reactor (FIGS. 79A and 79B). The bottom of the aperture plate has two beveled edges that help align two edges of the cartridges appropriately such that the apertures line up with the PCR reactors. (FIGS. 80, 81)

The optical detection units (total of 8 detection unit) are assembled and mounted onto a sliding rail inside the optical box so that the optical units can be scanned over the apertures (FIG. **82**). Each unit is able to excite and focus a certain wavelength of light onto the PCR reactor and collect of emitted fluorescence of particular wavelength into a photodetector. By using 4 different colors on the top 4 channels and repeating the 4 colors in the bottom channels, the entire scanner can scan up to 4 colors from each of the PCR lanes.

The optics block can be machined out of aluminum and 55 anodized or injection molded using low fluorescence black plastic (FIG. **83**). Injection molding can dramatically reduce the cost per unit and also make the assembly of optics easier. The designed units can be stacked back-to-back.

Example 13: Exemplary Electronics for Use with Preparatory and Diagnostic Apparatuses as Described Herein

There are multiple independent software modules running 65 on dedicated hardware: Described herein are exemplary specifications for the electronics used in the diagnostic

72

(PCR) system. Additional information related to the PCR System is described elsewhere herein. In some embodiments, the PCR system includes eighteen printed circuit boards (PCBs) of nine different types. Referring to FIG. 86, the system can contain three multiplex (MUX) boards 100a-c, two of which (micro-heater MUX boards 100a-b), can each be used to run a micro-heater board 110a-b and the third (lysis heater MUX board 100c) can run one or more lysis heater boards 116 and 117. Each of the three MUX boards 100a-c can be controlled by a PC processor board via an Ethernet port. The two micro-heater boards 110a-b, each controlled by one of the MUX boards 100a-b, heat microzones on the microfluidic cartridge. In some embodiments, the system includes the two lysis heater boards 116 and 117, controlled by the lysis heater MUX board 100c, that heat lysis tubes in each of the two 12 samples racks.

Still referring to the PCBs included in the PCR system, the system can include two 12-channel optical detection boards 130a-b that can each detect optical fluorescence emitted by microfluidic cartridge chemistry. The optical detection boards can be controlled by one or more of the MUX boards 100a-c, using SPI, over a RS-422 interface. The system can include three motor control board 140a-c, where one board (e.g., motor control boards 140c) can control two magnetic separation motors (not shown), and the remaining two motor control boards (e.g., motor control boards 140a-b) can each run one reader tray motor (not shown) and one reader pressure motor (not shown). The motor control board running the magnetic separation motors (e.g., motor control board 140c) can be controlled via RS-485 interface from the lysis heater MUX board 100c and the two motor control boards 140a-b, each running one reader tray motor and one reader pressure motor, can be controlled via RS-485 interface by the micro-heater MUX boards 100a-b. The system can also include one PC processor boards 150, which directs the overall sequencing of the system and can be controlled via external Ethernet and USB interfaces, and one PC processor base board 160, which provides internal interfaces for the PC processor board 150 to the remainder of the system and external interfaces. The system can include one main backplane 180 that interconnects all system boards, one motor control backplane 190 that interconnects the motor control boards 140a-c to the main backplane 180 and gantry (not shown), and two door sensor boards (not shown). One door sensor board provides an interconnect between the front door solenoid locks and the PC processor base board 160 and the other door sensor board provides an interconnect between the position sensors and the PC processor base board 160.

In some embodiments, the PCR system can include the off-the-shelf PC processor board **150**. The PC processor board **150** can be an ETX form factor board that includes one 10/100 BASE-T Ethernet port, four USB ports, one analog VGA display port, two UART ports, one real-time clock, one parallel port, one PS2 keyboard port, and PS2 mouse port, stereo audio output, one IDE interface, and one 12C interface.

Referring to FIG. 87, the system can also include the PC processor base board 160 that includes a five port 10/100 BASE-T Ethernet bridge 161 for internal communication, one of which can be connected to the 10/100 BASE-T Ethernet port of the PC Processor board 150, another of which can be for diagnostic use (with a connector inside system cover), and three of which can communicate with the three MUX boards 100a-c (one port for each MUX board 100a-c) through the backplane 180. The PC processor base board 160 can also include on USB to 10/100 BASE-T

73

Ethernet port 162 for external Ethernet connections, one four port USB hub 163 for external connections, one external VGA connector 164, one internal PS2 Mouse connector 165 (with a connector inside the system cover), and one internal PS2 Keyboard connector 166 (with a connector inside the 5 system cover. The PC processor base board 160 can also include one internal stereo audio output 167 to on board speakers 168, one internal CompactFlash connector 169 from an IDE port (with a connector inside the system cover), and one internal RS-232 interface 170 from a UART port 10 (with a connector inside the system cover). Additional components included in the PC processor base board can include one internal RS-485 interface 171 from a UAT port (with a connector inside the system cover), one internal temperature sensor 172 connected to the 12C interface, a 15 battery for the real-time clock, and one parallel port 173. The parallel port 173, with connectors inside the system cover, can be internally connected as follows: one bit can be used to drive a high current low side switch for the two door solenoids, one bit can be used to generate a processor 20 interrupt when either door sensor indicates that a door is opened, three bits can be used to program the EEPROM for configuring the Ethernet bridge 161, and two bits can be connected to the Ethernet bridge management interface (not shown). The remaining bits can remain unassigned, with 25 optional pull-up and pull-down resistors, and be brought out to a 10 pin Phoenix contact header.

Referring now to FIG. 88, in some embodiments, the system can include the three MUX boards 100a-c. While FIG. 88 depicts exemplary MUX board 100a, each of the 30 three MUX boards 100a-c can include one or more of the features described below. The MUX board 100a can include 96 pulse width modulated (PWM) controlled heating channels with heaters (about 33 ohm to about 150 ohm) heaters, that can support 20 or 24 volt (voltage externally provided) 35 drives with a maximum current of about 800 mA. Each PWMs can be 12-bit with programmable start and stop points, can have 1 microsecond resolution, and can have a maximum duty cycle of about 75%. Each PWM period is programmable and is preferably set to 4 ms. The MUX 40 boards can include a 4-wire RTD/heater connection with precision 1 mA sense current that can accommodate about 50 ohm to about 2500 ohm resistive temperature devices and have a measurement accuracy of ± -0.5 ohms. The thermal measurement sample period of the MUX boards is 32 ms 45 including 8x PWM periods where 12 16-bit ADCs 101a sample 8 successive channels each. The MUX address can be tagged to the ADC data.

Still referring to the MUX board **100***a* depicted in FIG. **88**, as RS-422 optics board interface **102***a* that interconnects 50 over the backplane **180** and transfers data over a 4 wire SPI interface using local handshake signals and interrupts can be included on the MUX board **100***a*. The MUX board **100***a* can also include a 10/100 BASE-T Ethernet interface **103***a* that interconnects to the system over the backplane **180** and 55 an RS-485 interface **104***a* that interconnects to the motor controller **140***a* over the backplane **180**.

Referring now to FIG. **89**, in some embodiments, the system can include the optical detection boards **130***a-b*. While FIG. **89** depicts exemplary optical detection board 60 **130***a*, each of the optical detection boards **130***a-b* can include one or more of the features described below. The optical detection board **130***a* can include a 12-channel optics board design modified to use an RS-422 interface **131***a*. The optical detection board **130***a* can include 12—3 Watt, blue 65 LEDs **132***a* drives with about 6 V at about a 625 mA maximum. An exemplary LED used in the detection board

74

130a is the Luxeon K2 emitter producing blue light at a wavelength of about 470 nm using about 27 mW @ 700 mA. The optical detection board 130a can also include 12—3 Watt, amber LEDs 133a driven with about 6 V at about a 625 mA maximum. An exemplary LED used in the detection board 130a in the Luxeon K2 emitter producing amber light at a wavelength of about 590 nm using about 60 mW @ 700 mA. The detection board 130a can include 24 lensed silicon photodiode detectors 134a, an example of which is the Hamamatsu S2386-18L. These photodiode detectors 134a are designed in a common TO-18 package. The detection board 130a can also include an MSP430 processor 135a with two PWM channels, one for the blue channel and one for the amber channel. The board 130a can include individual LED enables 136a and 137a for each of the 12 color pairs set over the local SPI bus.

The PCR system can include a lysis heater board that provides and monitors heating to the lysis tubes. The heater board can include 12—70 Watt TO-247 power resistors (provide heat to the lysis tubes) designed to be fed 24V from one or more of the MUX boards 100a-c (e.g., MUX board 100c) and 12—2000 ohm Resistive Temperature Devices (RTD) to monitor the temperature of the lysis tubes. Optional resistors can be included to modify the full scale range of the RTDs. Included on the lysis heater board is a serial EEPROM that may hold a board serial number and can be used to identify the board type and revision level to software.

Referring now to FIG. 90, in some embodiments, the system can include the micro-heater boards 110a-b. While FIG. 90 depicts exemplary micro-heater board 110a, each of the micro-heater boards 110a-b can include one or more of the features described below. In some embodiments, the system can include the micro-heater board 110a that includes a serial EEPROM and two optical interrupts. The serial EEPROM may hold a board serial number, can hold RTD calibration data, and can be used to identify the board type and revision level to software. The optical interrupters can be used to sense the reader tray position for the motor control board 140a and sends the information to the Blue Cobra (motor controllers), which processes the information on the positions of the reader trays and accordingly controls the power to the emitters supplied by the motor control board 140a. The micro-heater board 110a can provide connections to the 96 channel micro-heater plate and control the 96 multiplexed heater/RTD devices to control cartridge feature temperature. The heater/RTD devices can be between about 50 ohms to about 500 ohms. The microheater board 110a can bridge the RS-422 interface from, for example, the MUX board 100a to the optical detection board 130a. The connection from the micro-heater board 110a to the MUX board 110a is over the backplane 180, while the connection to the optics board 130a is over a 40 pin FFC cable.

Referring now to FIG. 91, in some embodiments, the system can include the motor control broads 140a-c. While FIG. 91 depicts exemplary motor control board 140a, each of the motor control boards 140a-c can include one or more of the features described below. In some embodiments, the system can include the motor control board 140a that can control two micro-stepping motors 141a and can be connected to the backplane 180 via a RS-485 interface. The output to the motors can be up to 24 V supplied externally through the backplane 180. The output current can be jumper selectable. Exemplary output currents that can be selected via jumper settings can include about 700 mA, about 1.0 A, or 2.3 A. The motor control board 140a includes

75

open collector TTL interrupt output to the MUX board 100a and flag inputs. The flag inputs can provide 1.5 V power output to the sensors and can be switched on and off by

Limit switches are placed on the extreme locations of 5 each axis, e.g., x-minimum and x-maximum, that turns off the power to the motor driving that axis in case of a malfunction happens and the pipette head moves out of the designed working distance. Optional pull-up and pull-down are used with the output of the optical interruptors.)

In some embodiments, the system can include one or more interconnection boards, such as the main backplane 180. The main backplane 180 can interconnect other PCBs, such as the MUX boards 100a-c, PC processor base board **160**, and heater Interconnect boards. The main backplane 180 can cable to the motor control backplane 190 and to two lysis heater boards. The main backplane 180 can distribute power and signaling, implement 10/100 BASE-T Ethernet and RS-485 over the backplane 180, and supplies voltages from an external connector. Exemplary voltages supplied 20 include +3.3 V, +5.0 V, +12.0 V, -12.0 V, +20.0 V, and +24.0

The system can include the motor control backplane 190 that can distribute power and signaling for all of the motor control boards 140a-c. The motor control backplane 190 can 25 supply +5.0 V and 24.0 V from an external connector. The motor control backplane 190 can include 1 slot for the RS-485 signaling from each of the two MUX boards 100a-b (total of 2 slots), 6 slots for the RS-485 signaling from the lysis heater controlling MUX board 100c, and one connector 30 that provides RS-485 signaling and power to the gantry. The motor control backplane 190 can provide pull-up and pulldown resistors to handle floating buses.

In some embodiments, the system can include a heater interconnect board and a door sensor board. The heater 35 interconnect board can connect the micro-heater boards 110a-b to the main backplane 180 using a physical interconnect only (e.g., no active circuits). the door sensor board can provide a cable interface and mixing logic fro the optical interrupters, which sense the door is open, and provide a 40 mounting and cabling interface to the door lock solenoid.

Example 14: Exemplary Software for Use with Preparatory and Diagnostic Apparatuses as Described Herein

There are multiple independent software modules running on dedicated hardware:

Reader (2);

Sample-Prep (1);

User Interface (1);

Detector (2);

Motor control (8)

Inter-module communication among is via an internal Ethernet bus, communication with the user interface is via a 55 high speed SPI bus and communication with motor control via a RS485 serial bus.

The Reader and Sample-Prep software run on identical hardware and are as such identical incorporating the following functions:

Script Engine (a parametrized form of a protocol) Protocol Engine

Temperature Control (Microfluidics, lysis, release)

Motor control (via external motor control modules).

Salient features of the motor control software are:

Command/reply in ASCII and addressing capability to allow daisy chaining of communication link.

76

Detection (via external detector modules) Detector module controls the LED illumination and photo detector digitization.

The user interface is implemented as a program running under Linux operating system on an embedded x86 compatible PC. The following functions are addressed:

Graphical User Interface

Test control and monitor

Test result storage and retrieval Network connectivity via Ethernet (to lab information systems)

USB interface

Printer

Scanner (Internal and external)

Keyboard

Mouse

Door lock and sense

Example 15: Exemplary Chemistry and Processes of Use

Chemistry Overview:

The chemistry process centers around the detection and identification of organisms in a clinical specimen, by virtue of detecting nucleic acids from the organism in question. This involves isolation of nucleic acids from target organisms that are contained in a clinical specimen, followed by a process that will detect the presence of specific nucleic acid sequences. In addition to target detection, an internal positive control nucleic acid will be added to the collection buffer, and will e taken through the entire extraction and detection process along with target nucleic acids. This control will monitor the effectiveness of the entire process and will minimize the risk of having false negative results. Nucleic Acid Extraction and Purification:

Nucleic acid extraction procedures begin with the addition of a clinical specimen to a prepared specimen collection solution. This can be done either at a specimen collection site, or at the testing site. Two collection solution formats will be available: one for body fluids, and one for swab specimens. Collection solutions used at collection sites will serve as specimen transport solutions, and therefore, this 45 solution must maintain specimen and analyte integrity.

The extraction and purification procedure, which is entirely automated, proceeds as follows:

Target organisms are lysed by heating the detergentcontaining collection solution.

Magnetic beads, added to the specimen/collection solution mix, non-specifically bind all DNA that is released into the solution.

Magnetic beads are isolated and are washed to eliminate contaminants

DNA is released from the beads using high pH and heat. DNA containing solution is removed and neutralized with a buffer

60 Nucleic Acid Amplification:

50

Nucleic acids that have been captured by magnetic beads, washed, released in high pH, and neutralized with buffer, are added to a mixture of buffers, salts, and enzymes that have been lyophilized in a tube. The mixture is rapidly rehydrated, and then a portion of the solution is loaded onto a microfluidic cartridge. The cartridge is then loaded into the amplification instrument module, which consists of a heat-

77

ing unit capable of thermal cycling, and an optical detection system. Detection of target nucleic acids proceeds as fol-

The liquid in sealed in a reaction chamber.

Rapid thermal cycling is used to potentiate the Poly- 5 merase Chain Reaction (PCR), which is used to amplify specific target DNA.

Amplified DNA fluoresces, and can be detected by optical sensors.

A fluorescent probe "tail" is incorporated into each ampli- 10 fied piece of DNA

At a specific temperature, the probe adopts a conformation that produces fluorescence (this is termed a "scorpion" reaction, see FIG. 84).

Fluorescence is detected and monitored throughput the 15 reaction.

Extraction and Amplification/Detection Process:

Extensive bench-scale testing has been performed to optimize the nucleic acid extraction chemistry, including the collection buffer, the wash buffer formulation, the release 20 solution formulation, and the PCR reagent mixes. The fully automated method of extraction, followed by 12-up PCR, was able to provide very high sensitivity consistently at 150 copies/sample.

Examples: Chlamydia in Urine (50/50); Gonrorrhoea in 25 Urine; GBS in Plasma.

Various detection chemistries such as Taqman, Scorpion, SYBRg Green work reliably in the microfluidic cartridge. Reagent Manufacturing

Feasibility studies were conducted in order to determine 30 whether PCR reagents could be lyophilized in PCR tubes besides the use of 2 µl lyophilized pellets. The studies have indicated that sensitivity of reactions performed using tubelyophilized reagents is equivalent to that of wet reagents or 2 μl pellet reagents, so feasibility has been proven. Stability 35 studies for this format indicate similar stability data. We have seen 2 microliter lyophilized PCR pellets to be stable to up to 2 years at room temperature, once sealed in nitrogen atmosphere.

Manufacturing Overview: Manufacturing the components 40 of the system can be accomplished at HandyLab, Inc., Ann Arbor, Mich. The manufacturing task has been split into five areas that consist of: chemistry manufacture, disposable strip, collection kit, cartridge and analyzer.

Chemistry Manufacturing: There are currently seven indi- 45 vidual, blended chemistry components identified for potential use with the system described herein. Mixing, blending and processing reagents/chemicals can be performed at HandyLab, Inc., with existing equipment already in place. Additional tooling and fixtures will be necessary as the 50 product matures and we ramp to high volume production, but initial costs will be minimal.

Collection buffer, wash, release & neutralization liquids are simple recipes with very low risk, and can be made in large batches to keep labor costs of mixing/blending at or 55 Cartridge Manufacturing: below targeted projections. They will be mixed and placed into intermediate containers for stock, and then issued to Disposable Strip Manufacturing for dispensing. Mature SOP's are in place from prior project activity.

Affinity Beads (AB) have good potential to be stored and 60 used as a liquid in the strip, but design contingencies for using a lyophilized pellet are in place as a back up. It is critical to keep the beads suspended in solution during dispense. Dispense equipment (e.g., manufactured by Innovadyne) that provides agitation for continuous suspension 65 during dispense has been identified for purchases once stability has been proven for liquid AB storage in the stip.

78

The process to manufacture and magnetize the Affinity Beads spans a 9 hour cycle time to produce a batch of 2,000 aliquots, but that same time period can be used for sealed up recipe batches once we ramp into high volume production. This item has the highest labor content of all chemistry manufacture that is currently required for the apparatus.

PCR reagents/enzymes will be freeze-dried in our existing lyophilizing chamber (Virtis Genesis) but will not require spherical pellet formation. Instead, the mixture is being dispensed into, and then lyophilized, inside the end-use tube. First the chemistries are mixed per established SOPs, and then the following steps are performed to accomplish lyophilization: Individual tubes are placed into a rack/ fixture, and the solution is dispensed into each, using existing equipment (EFD Ultra Dispense Station.) The filled rack will be placed inside a stainless steel airtight box (modified to accept stoppers in the lid,) and then placed into the lyophilization chamber and the drying cycle commences unattended. During lyophilization, the stoppers are in a raised position allowing air/nitrogen to circulate into, and moisture to exit the stainless box holding racks of vials. At the end of the cycle, the shelves of our lyophilization chamber lower to seat the stoppers into the lid, forming a seal while still inside the closed chamber, in a moisture free nitrogen atmosphere. The steel boxes are then removed from the chamber, and each rack inside shall be processed in a single operation to seal all vials in that rack. Immediately after sealing, the vials will be die cut from the full in one operation, allowing individual vials to be forwarded to the Disposable Manufacturing area for placement into a stip. Internal Control will either be added to an existing solution, or will be dispensed into its own cavity in the manner of the collection buffer, wash, neutralization, and release solutions. If lyophilization is required, it will be accomplished in the same manner as the PCR chemistry, and later snapped into the strip. Shelf life stability studies are underway.

Collection Kit Manufacturing

The collection kit will be processed manually in house for initial quantities. Initial quantities will not require capital expenditures as we have all equipment necessary to enable use to meet projections through 2008. We will be using our existing equipment (EFD 754-SS Aseptic Valve & Valvemate 7000 Digital Controller,) to fill the collection vial. The vials have a twist-on top that will be torqued, and the vial will have a proprietary ID barcode on each vial. 24 vials will be placed into a reclosable plastic bag and placed into a carton for shipping.

Place vials into rack.

Dispense solution into vials.

Install and torque caps.

Label vials.

Bag vials and label bag.

Place vial bag and instructions/insert into carton, close and label.

Existing semi-automatic equipment for laminating & waxing (Think & Tinker DF-4200, & Asymtek Axiom Heated Jet Platform, respectively,) will be utilized to meet all cartridge manufacture requirements. The footprint of the 12-up disposable is the same as the RTa10 cartridge, so additional fixtures are not necessary.

Laminate micro substrate & trim excess.

Fill valves with hot wax & inspect.

Apply label & barcode.

Band 24 pieces together.

Bag & seal banded cartridges, label bag.

Place bag & insert(s) into carton, seal and label.

10

79

This portion of the product is relatively simple, although there is a difference between the automated (as used herein) and the stand-alone 12-up cartridge. Venting will not be required on the cartridge, which eliminates the most time consuming process for cartridge manufacture, along with the highest risk and highest cost for fully integrated automation. Over 1,000 pieces of the 12-up with venting have been successfully produced.

Example 16: Exemplary Chemistry Processes

Sample Pre-Processing

For Urine Sample: Take 0.5 ml of urine and mix it with 0.5 ml of HandyLab collection buffer. Filter the sample through HandyLab Inc.'s pre-filter (contains two membranes of 10 micron and 3 micron pore size). Place the sample tube in the position specified for the external sample tube in the 12-up rack.

For Plasma Sample: Take 0.5 ml of plasma and mix it with $_{20}$ 0.5 ml of HandyLab collection buffer. Place the sample tube in the position specified for the external sample tube in the 12-up rack.

For GBS swab samples: Take the swab sample and dip it in 1 ml of HandyLab collection buffer. Place the sample tube in the position specified for the external sample tube in the 12-up rack.

The HandyLab sample collection buffer contains 50 mM Tris pH 7, 1% Triton X-100, 20 mM Citrate, 20 mM borate, 100 mM EDTA, plus 1000 copies of positive control DNA. 30 Loading the Instrument and Starting Sample Processing

- 1. Load PCR tube containing PCR master mix in one of the specified snap-in location of the unitized dispos-
- 2. Load PCR tube containing PCR probe and primers for 35 the target analyte under consideration in the specified location of the unitized disposable.
- 3. In case of two analyte test, local PCR tube containing probes and primers for second analyte in the specified location of the unitized disposable.
- 4. Load the unitized disposable in the 12-up rack in the same lane as the sample tube under consideration.
- 5. Prepare and load unitized reagent strips for other samples in consideration.
- 6. Load the 12-up rack in one of the locations in the 45 instrument.
- 7. Load 12-up cartridge in the cartridge tray loading position.
- 8. Start operation.

Liquid Processing Steps

- 1. Using Pipette tip #1, the robot transfers the clinical sample from the external sample tube to the lysis tube of the unitized disposable strip.
- 2. Using the same pipette tip, the robot takes about 100 μl beads, transfers the reagents to the lysis tube. Mixing is performed in the lysis tube by 5 suck and dispense operations.
- 3. The robot places pipette tip #1 as its designated location in the unitized disposable strip.
- 4. Heat the lysis tube to 60 C and maintain if for 10 minutes.
- 5. After 5 minute of lysis, the robot picks up pipette tip #1 and mixes the contents by 3 suck and dispense opera-
- 6. The robot places pipette tip #1 at its designated location in the unitized disposable strip.

80

- 7. After 10 minutes of lysis, a magnet is moved up the side of the lysis tube to a middle height of the sample and held at that position for a minute to capture all the magnetic beads against the wall the tube.
- 8. the magnet is brought down slowly to slide the captured beads close to the bottom (but not the bottom) of the
- 9. Using pipette tip #2, aspirate all the liquid and dump it into the waste tube.
- 10. Aspirate a second time to remove as much liquid as possible from the lysis tube.
- 11. Using the same pipette tip #2, withdraw 100 µl of wash buffer and dispense it in the lysis tube. During this dispense, the magnet is moved downwards, away from the lysis tube.
- 12. Perform 15 mix steps to thoroughly mix the magnetic beads with the wash buffer.
- Wait for 30 seconds.
- 14. Move magnet up to capture the beads to the side and hold for 15 seconds.
- 15. Using pipette tip #2, aspirate wash buffer twice to remove as much liquid as possible and dump it back in the wash tube.
- 16. Move magnet down away from the lysis tube.
- 17. Place pipette tip ·2 in its specified location of the unitized disposable strip.
- 18. Pick up a new pipette tip (tip #3) and withdraw 8-10 µl of release buffer and dispense it over the beads in the lysis tube.
- 19. Wait for 1 minute and then perform 45 mixes.
- 20. heat the release solution to 15° C. and maintain temperature for 5 minutes.
- 21. Place pipette tip #3 in its specified location of the unitized disposable strip.
- 22. Bring magnet up the tube, capture all the beads against the tube wall and move it up and away from the bottom of the tube.
- 23. Pick up a new pipette tip (tip #4) and withdraw all the release buffer from the lysis tube and then withdraw 3-10 µl of neutralization buffer, mix it in the pipette tip and dispense it in the PCR tube. (In case of two analyte detections, dispense half of the neutralized DNA solution into first PCR tube and the rest of the solution in the second PCR tube.
- 24. Using pipette tip #4, mix the neutralized DNA with the lyophilized reagents by 4-5 such and dispense operations and withdraw the entire solution in the pipette tip.
- 25. Using pipette tip #4, load 6 μl of the final PCR solution in a lane of the 12-up cartridge.

The usage of pipette heads during various processes is shown schematically in FIGS. 85A-C.

Real-Time PCR

After all the appropriate PCR lanes of the PCR cartridge of sample, mixes that lyophilized enzyme and affinity 55 is loaded with final PCR solution, the tray containing the cartridge moves it in the PCR Analyzer. The Cartridge is pressed by the Optical detection read-head against the PCR heater. Heaters activate valves to close either ends of the PCR reactor and real-time thermocycling process starts. 60 After completing appropriate PCR cycles (~45 cycles), the analyzer make a call whether the sample has the target DNA based on the output fluorescence data. Pipette Detection

> The pipette head has 4 infrared sensor for detecting the presence of pipettes. This is essential to ensure the computer positively knows that a pipette is present or missing. Since pipettes are picked up using mechanical forcing against the

20

pipette and also dispensed using mechanical motion of a stripper plate, pipette sensing helps preventing errors that otherwise may happen.

81

Force Sensing of the Pipette Head

The multi-pipette head is assembled in such a way and a 5 force sensor interfaced with it so that any time the pipette head seats against the disposable pipette(s) or the picked pipettes are forced through the laminate in the reagent disposable or the pipette is forced against the bottom of the tubes in the reagent disposable, an upward force acts on the pipette head through the pipette holding nozzle or the pipettes itself. The entire head is pivoted, as shown in Figure and any force acting on the head causes a set-screw on the upper part of the head to press against a force sensor. This force sensor is calibrated for vertical displacement of the head against a non-moving surface. Using this calibration, it can be determined when to stop moving the head in the z-direction to detect whether pipettes are properly seated or if pipettes hit tube bottoms.

Alignment of Pipette Tips While Loading PCR Reagents Into the Microfluidic Cartridge

The pipettes used in the apparatus can have volumes as small as 10 µl to as large as 1 ml. Larger volume pipettes can tips are sprung from the head, even a 1° misalignment during seating can cause the tip to be off-center by 1.7 mm. As it is impossible to have perfect alignment of the tip both at the top where it is interfaced with the tip holder and the bottom, it becomes necessary to mechanically constrain all the tips at another location closer to the bottom. We have used the stripper plate, having a defined hole structure to use it to align all the tips. The stripper plate hole clears all the 4 pipette tips when they are picked up. After the tips are properly seated, the stripper plate is moved in the x-axis 35 mechanical design of the PCR system. In some embodiusing a motor to move all the pipettes against the notch provided in the stripper plate (see FIG. 46b). Now all the pipettes land on the cartridge inlet holes with ease. Sample Preparation Extensions

The current technology described details of processing 40 clinical samples to extract polynucleotides (DNA/RNA). The same product platform can be extended to process samples to extract proteins and other macromolecules by changing the affinity molecules present in the magnetic beads. The amplification-detection platform can also be used 45 to perform other enzymatic reactions, such as immunoPCR, Reverse-transcriptase PCR, TMA, SDA, NASBA, LAMP, LCR, sequencing reactions etc. The sample preparation can also be used to prepare samples for highly multiplexed microarray detections as well.

Example 16: Exemplary Material for RNA-Affinity Matrix

An exemplary polynucleotide capture material preferen- 55 tially retains polynucleotides such as RNA on its surface when placed in contact with a liquid medium that contains polynucleotides mixed with other species such as proteins and peptides that might inhibit subsequent detection or amplification of the polynucleotides.

The exemplary polynucleotide capture material is: Polyamidoamine (PAMAM) Generation 0, available from the Sigma-Aldrich Chemical Company ("Sigma-Aldrich"), produce number 412368. PAMAM is a dendrimer whose molecules contain a mixture of primary and tertiary amine 65 groups. PAMAM (Generation 0) has the structure shown herein.

82

The PAMAM, during use, is immobilized on a solid support such as carboxylated beads, or magnetic beads. The polynucleotide capture material comprises polycationic molecules during an operation of polynucleotide capture. Affinity between the material and polynucleotides is high because polynucleotides such as DNA and RNA typically comprise polyanions in solution.

After polynucleotide molecules are captured on a surface of the material, and remaining inhibitors and other compounds in solution have been flushed away with an alkaline buffer solution, such as sequence 0.1 mM Tris (pH 8.0), the polynucleotides may themselves be released from the surface of the material by, for example, washing the material with a second, more alkaline, buffer, such as Tris having a pH of 9.0.

Exemplary protocols for using PAMAM in nucleic acid testing are found in U.S. patent application Ser. No. 12/172, 214 filed Jul. 11, 2008, incorporated herein by reference.

Example 17: Exemplary Material for DNA-Affinity Matrix

The exemplary polynucleotide capture material is: Polybe as long as 95 mm (p1000 pipette). When 4 long pipette 25 ethyleneimine (PEI), available from the Sigma-Aldrich Chemical Company ("Sigma-Aldrich"), product number

> Exemplary protocols for using PEI in nucleic acid testing are found in U.S. patent application Ser. No. 12/172,208 filed Jul. 11, 2008, incorporated herein by reference.

Example 18: Exemplary Apparatus

Described herein are exemplary specifications for the ments, the system can be about 28.5 inches deep, or less, and about 43 incudes wide, or less, and weight about 250 pounds or less. The system can be designed with a useful life of about 5 years (e.g., assuming 16,000 tests per year) and can be designed such that the sound level for this instrument (during operation) does not exceed 50 dB as measured 12 inches from the instrument in all ordinate directions. In some embodiments, the exterior of the system can be white with

Referring to the overall system, in some embodiments, critical components of the system can remain orthogonal or parallel (as appropriate) to within 0.04 degrees. Exemplary critical components can include motion rails, pipettes, nozzles (e.g., axially as individual nozzles, linearly as an array of four nozzle centroids, or the like), lysis heaters, major edges of the installed cartridge holder in the reader drawer, the front face of the separation magnets, and the like. In the following descriptions, the X-axis (or X direction) refers to the axis extending from left to right when facing the front of the system, the Y-axis (or Y direction) refers to the axis extending from back to front when facing the front of the system, and the Z-axis (or Z direction) refers to the axis extending up from the bottom when facing the front of the system. As viewed from the top of the instrument, the 60 centroid of the leftmost pipette nozzle on the Z-payload (as viewed from the front of the instrument) can be capable of unobstructed travel in the X direction from a point 80 mm from the outermost left baseplate edge to a point 608 mm from the outermost left baseplate edge and can be capable of unobstructed travel in the Y direction from a point 60 mm from the outermost front baseplate edge to a point 410 mm from the outermost front baseplate edge.

83

Still referring to the system, as viewed from the front of the instrument, the bottom-most face of the pipette nozzles on the Z-payload can be capable of unobstructed travel in the Y direction from a point 156 mm above the top surface of the baseplate to a point 256 mm above the top surface of the baseplate. The 1 ml pipette tips can be capable of penetrating the foil covers included on disposable reagent strips. This penetration may not create contamination, affect the associated chemistries, or damage the pipette tips. Motions can be executed in such a manner as to eliminate mechanical 10 hysteresis, as needed. Gantry motions can be optimized to prevent cross lane contamination and carryover. The rack can align the reagent strips to a tolerance of +/-0.010 inches in the X and Y directions.

Referring now to the gantry, in some embodiments, the 15 gantry can consist of a stepper-motor actuated, belt/screwdriven cartesian robotic system. The gantry can be free to move, with or without attachments, above the modules that are forward of the rear facade and below the bottom-most horizontal face on the Z head, so long as the Z-payload is 20 fully retracted. The gantry can be capable of travel speeds up to about 500 mm/sec in the X and Y directions and up to about 100 mm/sec in the Z direction. The accuracy and precision of the axis motions (e.g., with respect to the X, Y, and Z home sensors) can be 25 mm or better for each axis, 25 and can be retained throughout the maintenance period. The axis drive belts may not leave residue in areas where PCR and samples are processed. The gantry can contain previsions for routing its own and all Z-payload wire harnesses back to the instrument. Belt tension on the X and Y axes can 30 be set at 41.5 + /-3.5 pounds.

Referring now to the Z-payload, the fluid head can have 4 pipette attachment nozzles located on 24 mm centers. Exemplary pipette tips that the pipette nozzles can capture without leakage include Biorobotix tips PN23500048 (50 35 μ L), PN23500049 (1.75 μ L), and PN23500046 (1 ml). The Z payload can incorporate a stepper actuated stripper plate capable of removing pipetted tips (e.g., the pipette tips described above). The system can include a pump and manifold system that includes software controlled aspira- 40 tion, dispensing, and venting of individual fluid volumes within each of the four individual tips and simultaneous dispensing and venting on all tips. The pump and manifold system can have an accuracy and precision of about +/-2 μL per tip for volumes that are less than 20 µL and about 45 +/-10% for volumes greater than or equal to 20 μ L (e.g., when aspirating or dispensing in individual tips). The total pump stroke volume can be greater than about 8 µL and less than about 1250 μL. The minimum aspirate and dispense speed an be about 10 µL/sec to about 300 µL/sec. The 50 centroid of the bottom-most face of each pipette tip can be axially aligned with the nozzle centroid of the pipette nozzles within 0.2 mm. The bottom-most pipette tip faces can be co-planar within 0.2 mm. The Z-payload can incorporate a Z axis force sensor capable of feedback to software 55 for applied forces of between about 0 and 4 lbs. The Z-payload can incorporate a downward facing barcode reader capable of reading the system barcode as described elsewhere herein.

Referring now to racks included in the system, disposable 60 reagent strips (e.g., oriented orthogonally to the front of the instrument) can be contained in 2, 12-lane racks. The 12 reagent strips in a given rack can register and lock into the rack upon insertion by a user. The rack can contain an area for 12 sample lysis tubes (e.g., PN 23500043) and hold the 65 tube bottoms co-planar, allowing the user to orient the bar code to face the rear of the instrument. Certain features,

including those listed above, can allow the racks to be inserted and oriented in the instrument by a minimally trained user. Proper rack placement can be confirmed by feedback to the software. In some embodiments, the racks can be black and color first (e.g., the color may not appreciably degrade with use or washing with a 10% bleach solution) and the rack material can be dimensionally stable within 0.1 mm over the operating temperature range of the system. The rack can be designed with provisions to allow the rack can be carried to and from the instrument and to minimize or eliminate the likelihood that the tubes held by the rack will spill when placed on a flat surface.

Referring now to the reader and PCR heater included in the system, the reader can allow for cartridge insertion and removal by, for example, a minimally trained user. The cartridge can remain seated in the reader during system operation. In some embodiments, the cartridge barcode may not be read properly by the barcode scanner if the cartridge is inserted incorrectly (e.g., upside down or backwards), thus the system can instruct a user to correctly reinsert the cartridge into the reader tray when the cartridge is inserted incorrectly. The reader drawer can repeatably locate the cartridge, for loading by the pipette tips, within 0.5 mm. The reader can deliver the cartridge from the loading position into a react and detect position by means of an automated drawer mechanism under software control. The PCR lanes of the cartridge can be aligned, with both the optical system and heater, by the reader tray and drawer mechanism. The cartridge can contact the heaters evenly with about a 1 psi, or greater, average pressure in the areas of the PCR channels and the wax valves. Heater wire bonds can be protected from damage so as not t interfere with system motion. Registration from heater to cartridge and from cartridge to optical path centers can be within ± -0.010 inches. The reader can mechanically cycle a minimum of about 80,000 motions without failure.

Referring not to the one or more lysis heaters included in the system, the heaters for each of the 24 lysis stations can be individually software controlled. The lysis ramp times (e.g., the time that it takes for the water in a lysis tube to rise from a temperature of approximately 2.5° C. to a given temperature) can be less than 120 seconds for a rise to 50° C. and less than 300 seconds for a rise to 75° C. The lysis temperature (e.g., as measured in the water contained in a lysis tube) can be maintained, by the lysis heaters, within \pm -3° C. of the desired temperature. The accessible lysis temperature range can be from about 40° C. to about 82° C. Each of the lysis heaters may draw about 16 Watts or more of power when in operation. The lysis heater can designed to maximize the thermal transfer to the lysis tube and also accommodate the tolerances of the parts. The lysis heaters can permit the lysis tubes to be in direct contact with the magnets (described in more detail herein). The lysis heaters may be adjustable in the horizontal plane during assembly and may not interface with the installed covers of the system.

Referring now to magnets included in the system, the lysis and magnet related mechanisms can fit beneath the rack and may not interface with rack insertion or registration. The magnets may be high-flux magnets (e.g., have about a 1,000 gauss, or greater, flux as measured within a given lysis tube) and be able to move a distance sufficient to achieve magnetic bead separation in one or more of the lysis tubes filled to a volume of 900 µL. The magnets can be software-controllable at movement rates from about 1 mm/sec to about 25 mm/sec. The wiring, included as part of the heater and controller assemblies, can be contained and protected from

potential spills (e.g., spills of the lysis tubes). The magnets can be located about 1.25 inches or greater from the bottom of the lysis tube when not in use and can be retained in such a manner as to maximize contact with the lysis tube while also preventing jamming.

85

In some embodiments, the system enclosure includes a semi-transparent lid (e.g., with opaque fixtures and/or hardware) in the front of the instrument to allow users to view instrument functions. The lid can include a company and/or product logo and a graspable handle (e.g., enabling the user 10 to raise the lid). When closed, the lid can have an opening force no greater than 15 pounds (e.g., when measured tangential to door rotation at the center of the bottom edge of the handle) and can lock in the open (e.g., "up") position such that no more than about 5 lbs. of force (e.g., applied at 15 the handle and tangential to door rotation) is required to overcome the handle lock and return the lid to the closed position. The lid can include two safety lid locks that are normally locked when power is not applied and can allow the system to monitor the state (e.g., open or closed) of the 20 lid. The lid can be designed such the lid does not fall when between the open and closed positions. the enclosure can include a power switch located on the right side of the instrument. A power cord can protrude from the enclosure in such a way that positioning the instrument does not damage 25 the cords or cause accidental disconnection. The enclosure can prevent the user from coming in contact with, for example, moving part, high magnetic fields, live electrical connections, and the like. The enclosure can include four supporting feet, located on the underside of the enclosure, to 30 provide a clearance of about 0.75 inches or more between the underside of the enclosure and the table top. The enclose can include a recessed area with access to external accessory connections such as the display port, the Ethernet port, the 4 USB ports, and the like.

Referring now to the cooling sub-system included in the PCR system, an air intake can be provided in the front of the unit and an air exhaust can be provided in the rear portion of the top of the unit. Intake air can pass through the air washable filter element). The cooling sub-system can maintain an interior air temperature (e.g., the temperature as is measured at the surface of the reagent strips, such as the reagent strips numbered 1, 12, and 24, at the surface of the PCR cartridges, and the like) about 10° C. higher, or less, 45 than the ambient air temperature. The cooling subsystem can maintain the internal air temperature at or below about 32° C. One or more cooling fans included as part of the cooling subsystem may require about 5.7 Watts, or less, of power per fan.

In some embodiments, the system can include covers on internal subassemblies (with the exception of the gantry). The covers can be cleanable with a 10% bleach solution applied with a soft cloth without significant degradation. The covers can supply a safety barrier between a user and the 55 electronic and moving mechanical assemblies included in the system. The covers on the internal subassemblies can be designed to maximize cooling of the internal subassemblies by maximizing airflow under the covers and minimizing airflow above the covers. The covers can be removable by a 60 service technician and can match the color and texture of the enclosures.

In some embodiments, the system can be designed to operate within a temperature range of about 15° C. to about 30° C. and in a non-condensing relative humidity range 65 (e.g., about 15% to about 80% relative humidity). The analyzer can be designed to perform without damage after

86

exposure to storage at no less than -20° C. for 24 hours or less, storage at no greater than 60° C. for 24 hours or less, and/or storage at about 50,000 feet or less (e.g., 3.4 inches of Hg) for 24 hours or less. The system can be designed with provisions to prevent motions that could damage the instrument during shipping. It can conform to the shipping standards set forth in ASTM D 4169-05, DC 12 and can be designed to allow the baseplate to be securely mounted to a shipping pallet. The racks and the enclosure of the instrument are designed not to degrade or be damaged by daily cleaning with a 10% beach solution. The power to subassemblies of the system can be supplied by internal power supplies. Exemplary power supplies can receive, as input, about 1590 watts at about 90 to about 264 Vac at between about 47 and about 63 Hz and supply about 1250 watts of output to the subassemblies.

In some embodiments, the system can include a power switch (e.g., a rocker-type switch), located on the right side of the instrument, one or more interface components, and/or one or more interface ports. For example, the system can include an LCD display monitor that is 15 inches, has 1280×1024 pixel resolution and 16-bit color. The system can also include other display monitors such as ones with increased size, resolution, and/or color depth. The LCD display can be connected to the system via a VGA connection. The system can include a white, 2 button USB mouse, a white USB keyboard, a black SIT power cable, and an un-interruptible power supply, with feedback through USB. The system can also include a USB color printer, 2 USB cables (e.g., one for the printer and one for the UPS). The system can include exemplary interface ports, such as, 4 USB ports (e.g., to connect to a pointing device, printer, keyboard, UPS, LIS), 1 VGA port (e.g., for connection to the 35 LCD display), and 1 Ethernet port (e.g., for PC connectivity) located on the left side of the enclosure. An IEC/EN 60320-11C14 power port can be included n the right side of the enclosure.

In some embodiments, the system can include features intake and through a filter element (e.g., a removable and 40 directed at increasing the safety of a user. For example, door interlocks can be included to prevent user access while the gantry is in motion and/or while other non-interruptible processes are underway. The system can be designed to minimize or eliminate the presence of user-accessible dangerous corners and/or edges on the instrument and designed such that metal parts are properly electrically grounded. Sheet metal or plastic covers can be included over mechanical and electrical components as necessary to protect a user from moving parts and/or live electrical parts and to protect the electronics and motors included in the system from, for example, spills.

Example 19: Exemplary Optics

Described herein are exemplary specifications related to the design of optics used in a PCR Analyzer and/or System. Additional information related to the PCR System is described elsewhere herein. The optical detection system included in the PCR System can be a 12-lane two-color detection system for monitoring real-time PCR fluorescence from a 12-lane microfluidic PCR cartridge. The system can include excitation lights (e.g., blue and amber LED light sources), one or more band pass filters, and one or more focusing lenses. The emitted fluorescence light from the PCR reactor (e.g., included in the microfluidic cartridge) is captured through a pathway into a focusing lens, through a filter, and onto a photodiode. Included in the system, for

87
each PCR lane, are dedicated, fixed individual optical elements for each of the two colors interrogated.

In some embodiments, the limit of detection is 20 DNA copies per reaction of input PCR reaction mix with a minimum signal to base value of 1.15. The 2 color fluores- 5 cence system can be used with, for example, FAM (or equivalent) and Cal Red (or equivalent). The system can have the ability to collect fluorescence data in about 100 ms to about 600 ms at the maximum rate of one data point every about two seconds. When collecting data from a PCR lane, 10 LEDs in adjacent lanes increase the signal in the lane being sampled by less than about 1% (e.g., 0.5%). The noise of the detection can be less than about 1% of the maximum signal. The lane-to-lane fluorescence variability with a fluorescence standard (e.g., part @14000009) can be within Cv of 30% for both FAM and Cal Red, when measured using the dark-current-corrected-fluorescence-slope. The average dark current-corrected-fluorescence-slope for the optical block with 12 lanes can be between about 30 mV to about 90 mV/(% blue LED power) for FAM using the fluorescence 20 standard (Part #14000009). The average dark current-corrected-fluorescence-slope for the optical block with 12 lanes should be between about 75 mV to about 300 mV/(% amber LED power) for Cal Red using the standard fluorescence cartridge (Part #14000009). The storage excitation power 25 for each channel can be independently varied by software from about 5% to about 100%. There may be no source of light activated inside the reader to affect the fluorescence reading. In some embodiments, turning room lights on or off does not affect the optical readings.

In some embodiments, the system can include an optical block with 12 repeats of 2-color fluorescence detection units at a pitch of about 8 mm. The optical detection block can be positioned on top of the microfluidic cartridge, with excitation and emission travelling through the PCR windows of 35 the microfluidic cartridge. The apertures of the optical block can align with the PCR reactor within about +/-200 microns. An optical electronics board containing the LEDs and Photodetectors can be mated flush with the top of the optics block with each of the photodetectors recessed into the bores of its corresponding optical lane. When the microfluidic cartridge is installed in the system, the optical block can be used to deliver a force of about 20 to about 30 lbs. over the active area of the microfluidic cartridge with an average pressure of at least about 1 psi.

The optical block can be made of aluminum and surfaces present in the optical path lengths can be anodized black, for example, to minimize auto-fluorescence as well as light scattering. An aperture plate having 12 slits, each slit about 10 mm in length and 1 mm wide, can be used, for example, 50 to limit the size of the excitation light spots as well as reduce background fluorescence. The thickness of the optics block can be about 1.135±/-0.005 inches. The bottom surface of the optics block can be planar within +/-1 mil to provide uniform pressure over the micro fluidic cartridge. The apertures should be kept clean and free of debris during manufacturing of the optics block and assembly of the optics block into the system.

In some embodiments, the system can include excitation optics with an angle of excitation path equal to 55+/-0.5 60 inches with respect to normal of the PCR cartridge surface. One exemplary arrangement of optical elements in the excitation path, in order, is LED, lens, filter, aperture, and PCR sample. The system can use a Plano-convex excitation lens (e.g., PCX, 6×9, MgF2TS) oriented with the flat side 65 toward the PCR sample. Included in the optics are one or more excitation paths with tapers that can be designed such

88

that the lens and filter can be placed inside the bore to provide a light spot bigger than the aperture plate. The location of the LED and the sample can be fixed as the design can include a fixed available optical block thickness. The location of the lens and the filter can be determined to provide a excitation spot size of about 6 mm along the length of a PCR lane. The excitation optics can include an LED such as Luxeon Part # LXK2-PB 14-NO0 (e.g., for FAM excitation) that includes a center wavelength of about 470 nm (blue) with a half band width of about 75 nanometers, or less (e.g., for FAM excitation). The excitation optics can also include an LED such as Luxeon Part # LXK2-PL12-Q00 (e.g., for Cal red excitation) that includes a center wavelength of 575 nm (amber) with a half band width of about 75 nanometers, or less (e.g., for Cal Red excitation). The LEDs used in the excitation optics can remain stable for about 5 years or more or about 10,000 cycles.

The system can include emission optics with an angle of emission path equal to about 15+/-0.5 inches with respect to normal of the PCR cartridge surface. One exemplary arrangement of optical elements in the emission path, in order, is PCR sample, aperture, filter, lens, and photodetector. The emission lens can be plano-convex (e.g., PCX, 6×6 MgF2TS) with the flat side toward the photodetectors. The emission optics can include one or more bores, for the emission path, with tapers that can be designed so as to maximize detected light while enabling snug placement of the filters and lenses. The location of the photodetectors with respect to the sample can be fixed as the design can include a fixed available optical block thickness. The location of the lens and the filter can be determined so as to provide an emission spot size of 6 mm along the length of a PCR lane. An exemplary photodetector that can be used in the emission optics is the Hamamatsu Silicon Photodetector with Lens, S2386-18L.

In some embodiments, the system can include one or more filters with diameters of about 6.0+/-0.1 mm, thicknesses of about 6.0+/-0.1 mm, clear apertures with diameters of less than or equal to about 4 mm. The filters can include a blackened edge treatment performed prior to placement in a mounting ring. If present, the mounting ring can be metal and anodized black. The filters can be manufactured from optical glass with a surface quality that complies with F/F per Mil-C-48497A, and AOI of about 0 deg, a ½ cone AOI of about +8 deg, and can be humidity and temperatures stable within the recommend operating range of the system. An exemplary filter can be obtained from Omega Optical Brattleboro, Vt. 05301.

The system can include one or ore FITC Exciter Filters (e.g., PN 14000001) with an Omega part number 481AF30-RED-EXC (e.g., drawing #2006662) used, for example, in FAM excitation. These filters can have a cut-on wavelength of about 466+/-4 nm and a cut-off wavelength of about 496+0/-4 nm. The transmission of filters of this type can be greater than or equal to about 65% of peak. These filters can have a blocking efficiency of greater than or equal to OD4 for wavelengths of ultraviolet to about 439 nm, of greater than or equal to OD4 for wavelengths of about 651 nm to about 1000 nm, of greater than or equal to OD5 for wavelengths of about 501 nm to about 650 nm, and of greater than or equal to OD8, in theory, for wavelengths of about 503 nm to about 580 nm.

The system can include one or more Amber Exciter Filters (e.g., PN 14000002) with a part number 582AF25-RED-EXC (e.g., drawing #2006664) used, for example, in Ca Red excitation. These filters can have a cut-on wavelength of about 569+.-5 nm and a cut-off wavelength of about 594+

0/-5 nm. The transmission of filters of this type can be

89

greater than or equal to about 70% of peak. These filters can have a blocking efficiency of greater than or equal to OD8, in theory, for wavelengths of about 600 nm to about 700 nm.

The system can include one or more FITC Emitter Filters 5 (e.g., PN 14000005) with a part number 534AF40-RED-EM (e.g., drawing #2006663) used, for example, in FAM emission. These filters can have a cut-on wavelength of 514+/-2 nm and a cut-off wavelength of 554+/-5 nm. The transmission of filters of this type an be greater than or equal to about 10 70A% of peak. These filters can have a blocking efficiency of greater than or equal to OD5 for wavelengths from ultraviolet to about 507 nm, of greater than or equal to OD8, in theory, from about 400 nm to about 504 nm, and of greater than or equal to OD4 avg. from about 593 nm to about 765 15

The system can include one or more Amber Emitter Filters (e.g., PN 14000006) with a part number 627AF30-RED-EM (e.g., drawing #2006665) used, for example, in Cal Red emission. These filters can have a cut-on wave- 20 length of 612+5/-0 nm and a cut-off wavelength of 642+/-5nm. The transmission of filters of this type can be greater than or equal to about 70% of peak. These filters can have a blocking efficiency of greater than or equal to OD5 for wavelengths from ultraviolet to about 605 nm, of greater 25 than or equal to OD8, in theory, from about 550 nm to about 600 nm, and of greater than or equal to OD5 avg. from about 667 nm to about 900 nm.

Example 20: Exemplary 3-Layer Cartridge

Described herein are exemplary specifications used to design and assemble the microfluidic cartridge as well as exemplary instructions on the use of the cartridge in, for example, the system described herein. In some embodi- 35 ments, the cartridge can have a maximum limit of detection equal to 20 copies per reaction volume (e.g., 20 copies/4 µ), with a target detection of 10 copies per reaction volume. The cartridge can perform 45 reactive cycles in 40 minutes or less (e.g., 45 cycles in 40 minutes, 45 cycles in 20 minutes, 40 45 cycles in 15 minutes, or the like). The cartridge can utilize two color detection using, for example, the FAM (or equivalent) and CAL RED (or equivalent) fluorescent dyes. Results obtained using the cartridge have been compared with the results obtained using standard real-time PCR instruments. 45

In some embodiments, the Cartridge can be a one-time use, disposable cartridge that can be disposed of according to typical laboratory procedures. The cartridge can be 4.375 inches long and 2.800 inches wide, with a thickness of 0.094+/-0.005 inches. The cartridge can include features 50 that allow the cartridge to interface with, for example, the system described herein. Exemplary interfacing features include PCR channel walls and the top of the microsubstrate over the PCR channel that are well polished (SPI A1/A2/A3), enabling easy transfer of excitation and emis- 55 sion light between the PCR reactor (e.g., contained in the cartridge) and the detection system (e.g., the analyzer). The cartridge can include a thermal interface, located on the bottom of the cartridge, for interfacing with the analyzer. The thermal interface can have a thin laminate (e.g., less 60 than 150 microns thick, 100 microns thick, or the like) to encourage heat transfer from the heater wafer to, for example, the PCR channels of the cartridge.

The cartridge can include one or more mechanical interface with, for example, the analyzer. For example, the 65 cartridge can have a notch in one or more of the corners that can mate with a corresponding shape on the heater module

90

of the analyzer. The notch and corresponding shape can enable the cartridge to be placed only one way in the tray of, for example, the system described herein. In some embodiments, the cartridge has a single notch in one of the corners, with the remaining three corners have a minimum radius of 1 mm to facilitate placement of the cartridge in the analyzer. During use (e.g., when placed in a system described herein and performing a function such as PCR), the cartridge can be pressed, on one side, by the optics block, against the heater wafer (positioned against the opposite side), with a pressure of about 1 psi or greater (e.g., 0.99 psi, 1.2 psi, or the like). When located in the tray of the analyzer, the cartridge can have an alignment slop of +/-200 microns to enable a user to easily place and remove the cartridge from the analyzer tray. The cartridge can have two ledges, that are each 1 mm wide and located along the two long edges of the cartridge, to enable the heating surface to extend below the datum of the tray.

In some embodiments, the cartridge can have the following functional specifications. The cartridge can include an inlet hole that is, for example, cone-shaped with a height of 1 mm from the top surface of the cartridge. The cone can have an inner diameter of 3 mm at the top of the cone and can taper down to a diameter that matches the width of a microchannel (e.g., an inlet channel) that the inlet cone is fluidly connected to. the inlet channel can fluidly connect the inlet hole to a PCR reactor that has an interior volume of, for example, about 4.25 μl to 4.75 μl (e.g., 4.22 $\mu l,$ 4.5 $\mu l,$ 4.75 ul, or the like). An outlet microfluidic channel can fluidly 30 connect the PCR reactor to an overflow chamber. The cartridge can also include an outlet vent hole.

The input PCR sample (e.g., a reaction mixture) can be between about 6.0 and 7.0 µl per PCR lane (e.g., 5.9 µl per lane, 6.4 µl per lane, 7.1 µl per lane, or the like) and can be introduced into the cartridge through the inlet hole by, for example, a pipette. The reaction mixture can be transported, via the inlet channel, to the PCR reactor where the reaction mixture can be isolated (e.g., sealed off by valves) to prevent evaporation or movement of the reaction mixture during thermocycling. Once the mixture is sealed inside the chamber, the analyzer can initiate multiplexed real-time PCR on some or all of the reaction mixture (e.g., 4.5 µl, an amount of fluid equal to the inner volume of the reaction chamber,

The microfluidic substrate of the cartridge can include one or more of the following specifications. The material of the microsubstrate can be optically clear (e.g., have about 90% or greater optical transmission, be 3 mm thick, comply with ASTMD1003, and the like), have auto-fluorescence that is less than that emitted by 2 mm thick ZEONOR 1420R, and have a refractive index of about 1.53 (ASTM D542). The material of the microsubstrate can be amenable to the injection molding of features required for the microfluidic network of the cartridge. The material is preferably compatible with all PCR gents and can withstand temperatures of up to about 130° C. for about 5 minutes or more without yielding or melting. The cartridge can include fiducials, recognizable by HandyLab manufacturing equipment, located in one or more (preferably two) of the corners of the substrate. The cartridge can include fluidic components (e.g. microchannels, valves, end vents, reagent inlet holes, reaction chambers, and the like) necessary to perform the functions of the cartridge (e.g., PCR).

Additional features of the substrate material can include one or more of the following: Minimum clearances of about 1 mm can be designed between functional features to ensure sealing success (e.g., to the analyzer), and to allow simpli-

fied fixturing during assembly. The cartridge can include dogbones under small fluid path ends to, for example, increase mold life. The bottom of the micro tool surface can

91

be roughened (e.g., by vapor hone, EDM, or the like). The substrate material can be capable of adhesion by a label.

In some embodiments, the sealing tape used in the cartridge can include one or more of the following specification: Laminate can be easily applied to the bottom of the microfluidic substrate. Material of the laminate is preferably pin-hole free. The material and adhesive is preferably compatible with the PCR reaction chemistries. The laminate material and glue used should not auto-fluoresce. The material can withstand up to 130° C. for 5 minutes without losing adhesion, yielding, melting, or causing undue stresses on the cartridge. Bubbles should not form in the adhesive layer 15 upon heating (e.g., to 130° C. for 5 minutes) after application to the microsubstrate. The laminate should be less than 5 mills thick to, for example, enable rapid heat transfer.

The high temperature wax included in the cartridge can have the following characteristics. The wax should have a 20 melt point of about 90+-3° C. (e.g., 87° C., 90° C., 93.1° C., or the like), be biocompatible with PCR reactions, have wettability with microsubstrate material, and have a melt viscosity range, for example, of about Viscosity at 100° C.=20 mm²/s and Hardness at 25° C.=8 dmm. The main 25 label of the cartridge can have the following characteristics. It can have a thickness of 2-4 mils, have suitable bondability to micro features and seal around the valves, include cuts for one or more PCR windows, and a ta (free from adhesive) for aiding in removal of the cartridge from the analyzer. The 30 main label can also have abrasion resistance on the top surface, and be printable. The main label can have an upper and lower alignment pattern for the label to completely cover the valve holes for proper operation of the valves.

The cartridge can include a barcode label applied to the 35 top of the cartridge that is readable by a barcode reader (e.g., the barcode reader included in the analyzer) while the cartridge is installed in the analyzer. The barcode label can include the produce name, lot #, expiration date, bar code (2D) and may be printed on. In addition, or in the alternative, 40 a barcode may be applied directly to the main cartridge label using a laser or inkjet type printer.

The packaging that the cartridge is included in can include one or more of the following: package label, carton, carton label, and/or operating instructions. The packaging can be 45 printed on or label attachable, placed inside of a plastic bag, shrink/stretch wrap bag, or the like, and can be stacked in groups of 24. The cartridge bagging without a critical seal should be kept free from dust contamination.

The cartridge can include one or more valves (e.g., 50 temperature controlled, wax-containing valves) for starting, stopping, and/or controlling the flow of material inside the cartridge. The wax contained in the valves can be free of trapped air bubbles that have a diameter greater than half the width of the valve channel. The valve channel can have an 55 air pocket. The wax may not intrude into the fluid path prior to activation. The wax can be filled to the start of the flare to the fluid path.

The cartridge can include micro channels and holes such that the holes are of a size and shape to enable easy, leak-free 60 interfacing with a 175 µl pipette tip. In some examples, the holes size is between about 200 μm and about 4000 μm in diameter, the microchannels can be between about 50 µm and about 1500 µm wide and between about 50 µm and 1000 μm high.

The cartridge can include valves for controlling the flow of fluid within the cartridge (e.g., through the microchan92

nels, reactor chambers, and the like). The valve edges, steps, and general geometry can be designed to encourage exact flow and/or stoppage required during wax load. The valve geometry can be designed to accommodate limitations of wax dispensing equipment (e.g., =/-25% of 75 nL volume). In some embodiments, step down air chambers on the valves are funnel shaped to aid wax loading and the remaining geometry diminishes from the bottom of the funnel to the end point where the wax stops. The path where the valves are to flow into and block, during use, can be narrow enough (e.g., 150-200 microns wide and deep) and have enough length to effectively seal when the valves are activated during use. The valve wax temperature can be about 90° C. When in use to block a portion of a microchannel, the valves can seal to prevent evaporation of fluid and/or physical migration of fluid from the PCR reactor during thermocy-

The cartridge can include one or more PCR regions for performing PCR on a sample. The channel in the PCR region (e.g., PCR reactor) can be designed such that the temperature of the contents of the channel remain uniformly within about 1° C. of the anneal temperature. The channel walls can have a polish of SPI A1/A2/A3.

In some embodiments, the cartridge is designed to be able to perform diagnostic tests within a temperature range of about 59° F. to about 86° F. (about 15° C. to about 30° C.) and a humidity range of about 15% relative humidity to about 80% relative humidity. The cartridge is designed to be safe and functional when used indoors, used at an altitude of 2000 m or less, and used under non-condensing humidity conditions (e.g., maximum relative humidity of 80% for temperatures up to 31° C. decreasing linearly to 50% relative humidity at 40° C.).

In use, PCR product produced in the cartridge can remain in the used cartridge to, for example, minimize the likelihood of cross contamination. The cartridge can be designed such that a 4 foot drop of the cartridge, while in its packaging, will not damage the cartridge. The cartridge is designed to perform without damage after exposure to the following conditions. The cartridge should be stored at 4° C. to 40° C. for the rated shelf life. Exposure to temperatures between -20° C. and 4° C. or 40° C. and 60° C. should occur for no longer than 24 hours. The cartridge can withstand air pressure changes typical of air transport.

The cartridge can be labeled with the following information (e.g., to identify the cartridge, comply with regulations, and the like). The label can contain a "Research Use Only" label, if applicable, and a CE mark, if applicable. The label can contain the company name and logo (e.g., Handylab®), a part number (e.g., 55000009), a part name (12x Cartridgenonvented), a lot number (e.g., LOT 123456), an expiation data (e.g., Jun. 6, 2015), space for writing, a barcode according to barcode specifications (described elsewhere), and/or "Handylab, Inc., Ann Arbor, Mich. 48108 USA".

The cartridge can be include in a carton that can contain information such as, a part number (e.g., 55000009), a part name (12x Cartridge-nonvented), a quantity (e.g., 24), a lot number (e.g., LOT 123456), an expiration date (e.g., June 2015), an optional UPC code, "Manufactured by Handylab, Inc., Ann Arbor, Mich. 48108 USA", a carton label to state storage limits, a CE mark (if applicable), and/or an AR name and address.

The cartridge packaging can include paper wrap to secure multiple cartridges together and clean package fill to prevent damage, for example, from vibration. The cartridge shipping carton can include features such as, compliance to ASTM 6159, carton may be stored in any direction, refrigeration or

93

fragile labeling of the carton may not be required, and additional cold packs may not be required. The shelf life of the cartridge is 12 months or more.

The cartridge can comply with IEC 61010 (NRTL tested) and an FDA listing may be required for clinical distribution. 5 Cartridges used in a clinical lab device may meet all quality system requirements. Cartridges used for research only in a commercial device may meet all HandyLab quality system requirements. Cartridges for research use only (Alpha or Beta testing) may be design/manufacturing traceable to a 10 DHR (manufacturing record).

The foregoing description is intended to illustrate various aspects of the present inventions. It is not intended that the examples presented herein limit the scope of the present inventions. The technology now being fully described, it 15 will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the appended claims.

What is claimed is:

- 1. A system for processing a plurality of nucleic acid- 20 containing samples, the system comprising:
 - a first module configured to extract nucleic acids from the plurality of nucleic acid-containing samples,
 - a second module configured to amplify the nucleic acid extracted from the plurality of nucleic acid-containing 25 samples, the first and second modules comprising:
 - a bay configured to removably receive a housing comprising a plurality of process chambers that are maintained at a same height relative to one another when the housing is received in the bay, the plurality of process chambers aligned along a first axis when the housing is received in the bay, the bay comprising one or more complementary registration members configured to receive the housing in a single orientation when the housing is received in the bay, 35
 - the first module further comprising a magnetic separator positioned to apply a magnetic force to a first side of the plurality of process chambers when the housing is received in the bay, the magnetic separator comprising one or more magnets aligned along a 40 second axis parallel to the first axis when the housing is received in the bay, the one or more complementary registration members further configured to align the plurality of process chambers with the magnetic separator when the housing is received in the bay, 45 and
 - the first module further comprising a heating assembly positioned adjacent to a second side of the plurality of process chambers opposite the first side when the housing is received in the bay, the heater assembly comprising one or more heaters aligned along a third axis parallel to the first axis when the housing is received in the bay, the heating assembly configured to heat a solution in the plurality of process chambers to between 50° C. and 85° C., the one or more 55 complementary registration members configured to align the plurality of process chambers with the heater assembly when the housing is received in the bay; and
 - a liquid dispenser configured to move between a first 60 location and a second location when the housing is received in the bay, the liquid dispenser configured to dispense at least a portion of the plurality of nucleic acid-containing samples and a plurality of magnetic binding particles when the housing is received in the 65 bay and the liquid dispenser is in the first location, the liquid dispenser further configured to dispense

94

the nucleic acid extracted from the plurality of nucleic-acid containing samples when the liquid dispenser is in the second location.

- 2. The system of claim 1, wherein a sample of the plurality of nucleic acid-containing samples corresponds with a process chamber of the plurality of process chambers when the housing is received in the bay.
- 3. The system of claim 1, wherein the liquid dispenser comprises one or more dispense heads configured to accept a pipette tip.
- 4. The system of claim 3, wherein the liquid dispenser comprises four dispense heads and the housing comprises twelve process chambers, each dispense head configured to dispense a plurality of magnetic binding particles and at least a portion of one sample of the plurality of nucleic acid-containing samples into one of the twelve process chambers when the housing is received in the bay.
- 5. The system of claim 1, further comprising a sample identification verifier configured to check an identity of each sample of the plurality of nucleic acid-containing samples, wherein the sample identification verifier is selected from the group consisting of an optical character reader, a bar code reader, and a radio frequency tag reader.
- **6**. The system of claim **1**, further comprising electronic circuitry configured to control operation of the magnetic separator, the heater assembly, and the liquid dispenser.
- 7. The system of claim 6, wherein the electronic circuitry is configured to cause the magnetic separator to apply a magnetic force to the plurality of process chambers when the housing is received in the bay.
- 8. The system of claim 6, wherein the electronic circuitry is configured to cause the heater assembly to apply heat to the plurality of process chambers when the housing is received in the bay.
- **9**. The system of claim **6**, wherein the electronic circuitry is configured to control motion of the liquid dispenser when the housing is received in the bay.
- 10. The system of claim 1, further comprising one or more processors and at least one input device coupled to the one or more processors, the at least one input device selected from the group consisting of: a keyboard, a touch-sensitive surface configured to accept input from a stylus or a user's finger, a microphone, a track-pad, a retinal scanner, a fingerprint reader, a holographically projected interface, and a mouse.
- 11. The system of claim 10, further comprising a communication interface coupled to the one or more processors, the communication interface being selected from the group consisting of: a serial connection, a parallel connection, a wireless network connection, a wired network connection, and one or more USB ports.
- 12. The system of claim 11, further comprising a data storage medium configured to receive data from the one or more processors, the at least one input device, and the communication interface, the storage medium being selected from the group consisting of: a hard disk drive, an optical disk drive, a flash-card, a USB-drive, and a CD-Rom.
- 13. The system of claim 12, further comprising at least one output device coupled to the one or more processors, the at least one output device being selected from a visual display, a printer, a holographic projection, and a speaker.
- **14**. The system of claim **1**, further comprising more than one bay, each bay configured to removably receive a housing comprising a plurality of process chambers.
- 15. The system of claim 1, wherein the number of nucleic acid-containing samples is twelve.

95

- 16. The system of claim 1, further comprising an optical detection system configured to independently detect a plurality of fluorescent dyes at a plurality of different locations, wherein each fluorescent dye binds to a fluorescent polynucleotide probe or a fragment thereof.
- 17. The system of claim 16, wherein the optical detection system selectively emits light in an absorption band of the plurality of fluorescent dyes and selectively detects light in an emission band of the plurality of fluorescent dyes.
- **18**. The system of claim **16**, configured to carry out 10 extraction, amplification, and detection of the plurality of nucleic acid-containing samples in less than an hour.
- 19. The system of claim 1, further comprising a heater substrate comprising at least one heat source configured to apply heat at one or more selected times in order to apply 15 thermocycling operations sufficient to amplify the nucleic acid extracted from the plurality of nucleic acid-containing samples.
- 20. The system of claim 19, wherein the at least one heat source is configured to maintain a negligible temperature 20 gradient across a reaction zone during the thermocycling operations, the reaction zone configured to receive the nucleic acid extracted from one of the plurality of nucleic acid-containing samples.
- 21. The system of claim 20, wherein the at least one heat 25 source is configured to maintain a negligible temperature gradient across each of a plurality of reaction zones during the thermocycling operations, each reaction zone configured to receive the nucleic acid extracted from one of the plurality of nucleic acid-containing samples.
- **22.** A system for processing a plurality of nucleic acid-containing samples, the system comprising:
 - a first module configured to extract nucleic acids from the plurality of nucleic acid-containing samples, the first module comprising:
 - a bay configured to removably receive a housing comprising a plurality of process chambers that are maintained at a same height relative to one another when the housing is received in the bay, the plurality of process chambers aligned along a first axis when 40 the housing is received in the bay, the bay comprising one or more complementary registration members configured to receive the housing in a single orientation when the housing is received in the bay,
 - a magnetic separator positioned to apply a magnetic 45 force to a first side of the plurality of process chambers when the housing is received in the bay, the magnetic separator comprising one or more magnets aligned along a second axis parallel to the first axis when the housing is received in the bay, the one or more complementary registration members further configured to align the plurality of process chambers with the magnetic separator when the housing is received in the bay, and
 - a heating assembly positioned adjacent to a second side 55 of the plurality of process chambers opposite the first side when the housing is received in the bay, the heater assembly comprising one or more heaters aligned along a third axis parallel to the first axis when the housing is received in the bay, the heating

96

- assembly configured to heat a solution in the plurality of process chambers to between 50° C. and 85° C., the one or more complementary registration members configured to align the plurality of process chambers with the heater assembly when the housing is received in the bay;
- a second module configured to amplify the nucleic acid extracted from the plurality of nucleic acid-containing samples; and
- a liquid dispenser configured to move between a first location and a second location when the housing is received in the bay, the liquid dispenser configured to dispense at least a portion of the plurality of nucleic acid-containing samples and a plurality of magnetic binding particles when the housing is received in the bay and the liquid dispenser is in the first location, the liquid dispenser further configured to dispense the nucleic acid extracted from the plurality of nucleic-acid containing samples into the second module when the liquid dispenser is in the second location.
- 23. The system of claim 22, wherein the liquid dispenser comprises one or more dispense heads configured to accept a pipette tip.
- 24. The system of claim 23, wherein the liquid dispenser comprises four dispense heads and the housing comprises twelve process chambers, each dispense head configured to dispense a plurality of magnetic binding particles and at least a portion of one sample of the plurality of nucleic acid-containing samples into one of the twelve process chambers when the housing is received in the bay.
- 25. The system of claim 22, further comprising electronic circuitry configured to control operation of the magnetic separator, the heater assembly, and the liquid dispenser.
- 26. The system of claim 22, further comprising one or more processors and at least one input device coupled to the one or more processors, the at least one input device selected from the group consisting of: a keyboard, a touch-sensitive surface configured to accept input from a stylus or a user's finger, a microphone, a track-pad, a retinal scanner, a fingerprint reader, a holographically projected interface, and a mouse.
- 27. The system of claim 22, wherein the first module comprises more than one bay, each bay configured to removably receive a housing comprising a plurality of process chambers.
- 28. The system of claim 22, wherein the number of nucleic acid-containing samples is twelve.
- 29. The system of claim 22, further comprising an optical detection system configured to independently detect a plurality of fluorescent dyes at a plurality of different locations, wherein each fluorescent dye binds to a fluorescent polynucleotide probe or a fragment thereof.
- **30**. The system of claim **22**, further comprising a heater substrate comprising at least one heat source configured to apply heat at one or more selected times in order to apply thermocycling operations sufficient to amplify the nucleic acid extracted from the plurality of nucleic acid-containing samples.

* * * * *

EXHIBIT 41

(12) United States Patent

Williams et al.

(10) Patent No.: US 10,625,262 B2

(45) **Date of Patent:**

*Apr. 21, 2020

(54) INTEGRATED APPARATUS FOR PERFORMING NUCLEIC ACID EXTRACTION AND DIAGNOSTIC TESTING ON MULTIPLE BIOLOGICAL SAMPLES

(71) Applicant: **HANDYLAB, INC.**, Franklin Lakes,

NJ (US)

(72) Inventors: **Jeff Williams**, Chelsea, MI (US); **Kerry Wilson**, Elkhart, IN (US);

Kalyan Handique, Ypsilanti, MI (US)

(73) Assignee: **HandyLab, Inc.**, Franklin Lakes, NJ

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 16/698,022

(22) Filed: Nov. 27, 2019

(65) Prior Publication Data

US 2020/0094254 A1 Mar. 26, 2020

Related U.S. Application Data

- (63) Continuation of application No. 16/124,672, filed on Sep. 7, 2018, which is a continuation of application (Continued)
- (51) **Int. Cl. B01L 3/00** (2006.01) **B01L 7/00** (2006.01)

 (Continued)
- (52) **U.S. Cl.**CPC *B01L 3/502761* (2013.01); *B01L 3/0275* (2013.01); *B01L 3/5027* (2013.01); (Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

D189,404 S 3,050,239 A 12/1960 Nicolle 8/1962 Williams (Continued)

FOREIGN PATENT DOCUMENTS

AU 1357102 3/2002 AU 3557502 7/2002 (Continued)

OTHER PUBLICATIONS

Allemand et al., "pH-Dependent Specific Binding and Combing of DNA", Biophys J. (1997) 73(4): 2064-2070.

(Continued)

Primary Examiner — Robert J Eom (74) Attorney, Agent, or Firm — Knobbe Martens Olson & Bear LLP

(57) ABSTRACT

The technology described herein generally relates to systems for extracting polynucleotides from multiple samples, particularly from biological samples, and additionally to systems that subsequently amplify and detect the extracted polynucleotides. The technology more particularly relates to microfluidic systems that carry out PCR on multiple samples of nucleotides of interest within microfluidic channels, and detect those nucleotides.

24 Claims, 121 Drawing Sheets

Page 2

10/1981 Armbruster Related U.S. Application Data D261,173 S 4,301,412 A 11/1981 Hill et al. No. 14/941,087, filed on Nov. 13, 2015, now Pat. No. 4,439,526 A 3/1984 Columbus 4,457,329 A 7/1984 Werley et al. 10,071,376, which is a continuation of application 4,466,740 A 8/1984 Kano et al. No. 12/218,498, filed on Jul. 14, 2008, now Pat. No. Levy et al. 4.472.357 A 9/1984 9,186,677, which is a continuation-in-part of appli-4,504,582 A 3/1985 Swann cation No. 11/985,577, filed on Nov. 14, 2007, now 4.522,786 A 6/1985 Ebersole Pat. No. 7,998,708. D279,817 S 7/1985 Chen et al. D282,208 S 1/1986 Lowry 4,599,315 A 7/1986 Terasaki et al. (60) Provisional application No. 60/959,437, filed on Jul. 4,612,873 A 9/1986 Eberle 13, 2007. 4,612,959 9/1986 Costello D288,478 S 2/1987 Carlson et al. (51) Int. Cl. 4,647,432 A 3/1987 Wakatake B01L 9/00 (2006.01)4,654,127 3/1987 Baker et al 4,673,657 A 6/1987 Christian B01L 3/02 (2006.01)4,678,752 A 7/1987 Thorne et al. B01L 9/06 (2006.01)4,683,195 7/1987 Mullis et al. G01N 35/02 (2006.01)4,683,202 A 7/1987 Mullis G01N 35/00 (2006.01)4,698,302 A 10/1987 Whitehead et al. D292,735 G01N 35/04 (2006.01)11/1987 Lovborg Ramachandran 4,720,374 A 1/1988 F16K 99/00 (2006.01)4.724.207 A 2/1988 Hou et al. (52) U.S. Cl. 1/1989 4,798,693 A Mase et al. CPC B01L 3/52 (2013.01); B01L 7/52 4,800,022 A 1/1989 Leonard (2013.01); B01L 9/06 (2013.01); B01L 9/527 4,827,944 A 5/1989 Nugent 4,841,786 A 6/1989 Schulz (2013.01); F16K 99/0001 (2013.01); F16K D302,294 S 7/1989 Hillman 99/003 (2013.01); F16K 99/0032 (2013.01); 4,855,110 A 8/1989 Marker et al. F16K 99/0044 (2013.01); F16K 99/0061 4,871,779 10/1989 Killat et al. (2013.01); B01L 2200/027 (2013.01); B01L 4.895.650 A 1/1990 Wang 4/1990 2200/10 (2013.01); B01L 2200/147 (2013.01); 4,919,829 A Gates et al. 5/1990 4,921,809 A Schiff et al. B01L 2200/148 (2013.01); B01L 2200/16 4.935.342 A 6/1990 Seligson et al. (2013.01); B01L 2300/021 (2013.01); B01L 4,946,562 A 8/1990 Guruswamy 2300/045 (2013.01); B01L 2300/06 (2013.01); 4,949,742 A 8/1990 Rando et al 9/1990 B01L 2300/0627 (2013.01); B01L 2300/0681 D310,413 S Bigler et al. 4,963,498 A 10/1990 Hillman (2013.01); B01L 2300/087 (2013.01); B01L 4.967.950 A 11/1990 Legg et al. 2300/0816 (2013.01); B01L 2300/0832 D312,692 S 4,978,502 A 12/1990 Bradlev (2013.01); B01L 2300/0867 (2013.01); B01L 12/1990 Dole et al. 2300/0887 (2013.01); B01L 2300/18 4,978,622 A 12/1990 Mishell et al. (2013.01); B01L 2300/1822 (2013.01); B01L 4,989,626 A 2/1991 Takagi et al. 5,001,417 A 3/1991 Pumphrey et al. 2300/1827 (2013.01); B01L 2300/1861 5,004,583 A 4/1991 Guruswamy et al. (2013.01); B01L 2400/0442 (2013.01); B01L 5,048,554 A 9/1991 Kremer 2400/0481 (2013.01); B01L 2400/0487 5.053.199 A 10/1991 Keiser et al (2013.01); B01L 2400/0611 (2013.01); B01L 5,060,823 A 10/1991 Perlman 10/1991 2400/0677 (2013.01); B01L 2400/0683 5,061,336 A Soane 5,064,618 A 11/1991 Baker et al (2013.01); F16K 2099/0084 (2013.01); G01N 5,071,531 A 12/1991 Soane 35/026 (2013.01); G01N 2035/00881 5,091,328 2/1992 Miller (2013.01); G01N 2035/0425 (2013.01); G01N D324,426 S 3/1992 Fan et al. 2035/0436 (2013.01) 5,096,669 A 3/1992 Lauks et al. D325,638 S 4/1992 Sloat et al. Field of Classification Search 5,126,002 A 6/1992 Iwata et al. CPC B01L 9/06; B01L 9/527; F16K 99/0001; 5,126,022 6/1992 Soane et al. F16K 99/003; F16K 99/0032; F16K D328,135 S 7/1992 Fan et al. 99/0044; F16K 99/0061 D328,794 S 8/1992 Frenkel et al. See application file for complete search history. 5,135,627 8/1992 Soane 5,135,872 A 8/1992 Pouletty et al. 5,147,606 A 9/1992 Charlton et al. **References Cited** (56)5,169,512 A 12/1992 Wiedenmann et al. D333,522 2/1993 Gianino U.S. PATENT DOCUMENTS 5,186,339 A 2/1993 Heissler 5.192,507 A 3/1993 Taylor et al. 3,905,772 A 9/1975 Hartnett et al. 5,208,163 A 5/1993 Charlton et al. 3,985,649 A 10/1976 Eddelman 5,217,694 A 6/1993 Gibler et al. 4/1977 4,018,089 A Dzula et al. 5,223,226 A 6/1993 Wittmer et al. 4,018,652 A 4/1977 Lanham et al. 5,229,297 A 7/1993 Schnipelsky et al. 4,038,192 A 7/1977 Serur D338.275 S 8/1993 Fischer et al. 4,055,395 A 10/1977 Honkawa et al. 5,250,263 A 10/1993 Manz D249,706 S 9/1978 Adamski 5,252,743 A 10/1993 Barrett et al. 4,139,005 A 2/1979 Dickey D252,157 S 5,256,376 A 10/1993 Callan et al. 6/1979 Kronish et al. 5,273,716 A 12/1993 Northrup et al. 7/1979 D252.341 S Thomas 5,275,787 A 1/1994 Yuguchi et al. D254,687 S 4/1980 Fadler et al. 5,282,950 A 2/1994 Dietze et al. 4,212,744 A 7/1980 Oota D261,033 S 9/1981 Armbruster 5,296,375 A 3/1994 Kricka et al.

(56)		Referen	ces Cited	5,652,149	A	7/1997	Mileaf et al.
, ,	11.0	DATEDATE	DOCKE CENTED	D382,346		8/1997	Buhler et al.
	U.S.	PATENT	DOCUMENTS	D382,647 5,654,141		8/1997 8/1997	Staples et al. Mariani et al.
5,304,4	177 A	4/1994	Nagoh et al.	5,658,515			Lee et al.
5,304,4			Wilding et al.	5,667,976	A		Van Ness et al.
D347,4	78 S	5/1994	Pinkney	5,671,303		9/1997	Shieh et al.
5,311,8			Kaartinen et al.	5,674,394 5,674,742		10/1997	Whitmore Northrup et al.
5,311,9 5,316,7			Duffy et al. Suzuki et al.	5,681,484		10/1997	Zanzucchi et al.
5,327,0		7/1994		5,681,529		10/1997	Taguchi et al.
5,339,4			Persic, Jr.	5,683,657 5,683,659		11/1997	Mian Hovatter
D351,4 D351,9		10/1994	Gerber Hieb et al.	5,699,157			Parce et al.
5,364,5			Green et al.	5,700,637		12/1997	Southern
5,372,9			Cusak et al.	5,705,813		1/1998	Apffel et al.
5,374,3	95 A		Robinson	5,721,136 5,725,831		2/1998 3/1998	Finney et al. Reichler et al.
5,389,3 D356,2			Petschek et al. Armstrong et al.	5,726,026			Wilding et al.
5,397,7		3/1995		5,726,404	A	3/1998	Brody
5,401,4	65 A		Smethers et al.	5,726,944		3/1998	Pelley et al.
5,411,7			Moscetta et al.	5,731,212 5,744,366		3/1998 4/1998	Gavin et al. Kricka et al.
5,414,2 5,415,8			Hackleman Zaun et al.	5,746,978		5/1998	Bienhaus et al.
5,416,0			Allen et al.	5,747,666		5/1998	Willis
5,422,2			Chen et al.	5,750,015 5,755,942		5/1998	Soane et al. Zanzucchi et al.
5,422,2 5,427,9		6/1995	Lau Kricka et al.	5,762,874		6/1998	Seaton et al.
5,443,7			Cathcart et al.	5,763,262	A	6/1998	Wong et al.
5,474,7	'96 A	12/1995		5,770,029		6/1998	Nelson et al.
5,475,4			Mariella, Jr. et al.	5,770,388 5,772,966		6/1998 6/1998	Vorpahl Maracas et al.
D366,1 5,486,3			Biskupski Wilding et al.	5,779,868		7/1998	Parce et al.
5,494,6		2/1996	Grzegorzewski	5,783,148		7/1998	Cottingham et al.
5,498,3			Wilding et al.	5,787,032 5,788,814		7/1998 8/1998	Heller et al. Sun et al.
5,503,8 5,516,4		4/1996 5/1996	Schneider et al.	5,800,600		9/1998	Lima-Marques et al.
5,519,6			Miyake et al.	5,800,690	A		Chow et al.
5,529,6	77 A	6/1996	Schneider et al.	5,804,436			Okun et al.
5,559,4		9/1996	Logue Dovichi et al.	D399,959 5,819,749		10/1998 10/1998	Prokop et al. Lee et al.
5,565,1 5,569,3			Hooper et al.	5,827,481		10/1998	Bente et al.
5,578,2			Reichler et al.	5,842,106		11/1998	Thaler et al.
5,578,8			Kain et al.	5,842,787 5,846,396		12/1998 12/1998	Kopf-Sill et al. Zanzucchi et al.
5,579,9 5,580,5		12/1996	Anukwuem Bard	5,846,493			Bankier et al.
5,582,8			Ball et al.	5,849,208		12/1998	Hayes et al.
5,582,9			Backus et al.	5,849,486 5,849,489		12/1998 12/1998	Heller et al. Heller
5,585,0 5,585,0			Zanucchi et al. Queen et al.	5,849,598		12/1998	Wilson et al.
5,585,2			Bouma et al.	5,852,495	A	12/1998	Parce
5,587,1	28 A	12/1996	Wilding et al.	5,856,174		1/1999	Lipshutz et al.
5,589,1			Northrup et al. Zanzucchi et al.	5,858,187 5,858,188		1/1999	Ramsey et al. Soane et al.
5,593,8 5,595,7		1/1997		5,863,502	A	1/1999	Southgate et al.
5,599,4	32 A	2/1997	Manz et al.	5,863,708		1/1999	Zanzucchi et al.
5,599,5			Manz et al.	5,863,801 5,866,345		1/1999 2/1999	Southgate et al. Wilding et al.
5,599,6 5,601,7			Arnold, Jr. et al. Bormann et al.	5,869,004		2/1999	Parce et al.
5,603,3			Cherukuri et al.	5,869,244		2/1999	Martin et al.
5,605,6			Heller et al.	5,872,010 5,872,623		2/1999 2/1999	Karger et al. Stabile et al.
5,609,9 D378,7			Hackleman LaBarbera et al.	5,874,046		2/1999	Megerle
5,628,8			Carter et al.	5,876,675		3/1999	Kennedy
5,630,9			Friese et al.	5,880,071 5,882,465		3/1999 3/1999	Parce et al. McReynolds
5,631,3 5,632,8			Sassi et al. Zanzucchi et al.	5,883,211		3/1999	Sassi et al.
5,632,8 5,632,9			Heller et al.	5,885,432	A	3/1999	Hooper et al.
5,635,3	58 A	6/1997	Wilding et al.	5,885,470		3/1999	Parce et al.
5,637,4			Wilding et al.	5,895,762 5,900,130		4/1999 5/1999	Greenfield et al. Benvegnu et al.
5,639,4 5,639,4			Northrup et al. Cottingham	5,911,737			Lee et al.
5,643,7			Zanzucchi et al.	5,912,124		6/1999	
5,645,8	01 A		Bouma et al.	5,912,134		6/1999	Shartle
5,646,0			Northrup et al.	5,914,229		6/1999	
5,646,0 5,647,9		7/1997 7/1997	Tayi Tuunanen et al.	5,916,522 5,916,776		6/1999 6/1999	Boyd et al. Kumar
5,651,8		7/1997		5,919,646		7/1999	Okun et al.
5,652,1			Henco et al.	5,919,711		7/1999	Boyd et al.

(56)	Referen	ices Cited	6,074,827 A		Nelson et al.
1	U.S. PATENT	DOCUMENTS	D428,497 S 6,086,740 A	7/2000	Lapeus et al. Kennedy
			6,096,509 A		Okun et al.
5,922,591		Anderson et al.	6,100,541 A 6,102,897 A	8/2000	Nagle et al.
5,927,547 5,928,161		Papen et al. Krulevitch et al.	6,103,537 A		Ullman et al.
5,928,880		Wilding et al.	6,106,685 A		McBride et al.
5,929,208		Heller et al.	6,110,343 A		Ramsey et al. Bienhaus et al.
D413,391		Lapeus et al.	6,117,398 A 6,123,205 A		Dumitrescu et al.
5,932,799 5,935,401		Amigo	6,123,798 A		Gandhi et al.
5,939,291	A 8/1999	Loewy et al.	6,130,098 A		Handique et al.
5,939,312		Baier et al.	6,132,580 A 6,132,684 A	10/2000	Mathies et al.
5,942,443 5,944,717		Parce et al. Lee et al.	6,133,436 A		Koster et al.
D413,677		Dumitrescu et al.	D433,759 S		Mathis et al.
D414,271		Mendoza	6,143,250 A	11/2000	
5,948,227		Dubrow	6,143,547 A 6,149,787 A	11/2000	Chow et al.
5,948,363 5,948,673		Gaillard Cottingham	6,149,872 A		Mack et al.
5,955,028			6,156,199 A	12/2000	
5,955,029		Wilding et al.	6,158,269 A 6,167,910 B1	12/2000 1/2001	Dorenkott et al.
5,957,579 5,958,203		Kopf-Sill et al. Parce et al.	6,168,948 B1		Anderson et al.
5,958,349		Petersen et al.	6,171,850 B1		Nagle et al.
5,958,694	A 9/1999	Nikiforov	6,174,675 B1		Chow et al.
5,959,221		Boyd et al.	6,180,950 B1 D438,311 S	1/2001 2/2001	Yamanishi et al.
5,959,291 5,935,522		Jensen Swerdlow et al.	6,190,619 B1		Kilcoin et al.
5,964,995		Nikiforov et al.	6,194,563 B1		Cruickshank
5,964,997	A 10/1999	McBride	D438,632 S D438,633 S	3/2001 3/2001	
5,965,001 5,965,410		Chow et al. Chow et al.	D439,673 S		Brophy et al.
5,965,886		Sauer et al.	6,197,595 B1		Anderson et al.
5,968,745		Thorp et al.	6,211,989 B1		Wulf et al.
5,972,187		Parce et al.	6,213,151 B1 6,221,600 B1		Jacobson et al. MacLeod et al.
5,973,138 D417,009			6,228,635 B1		Armstrong et al.
5,976,336		Dubrow et al.	6,232,072 B1	5/2001	
5,980,704		Cherukuri et al.	6,235,175 B1 6,235,313 B1		Dubrow et al. Mathiowitz et al.
5,980,719 5,981,735		Cherukuri et al. Thatcher et al.	6,235,471 B1		Knapp et al.
5,985,651		Hunicke-Smith	6,236,456 B1		Giebeler et al.
5,989,402	A 11/1999	Chow et al.	6,236,581 B1		Foss et al.
5,992,820		Fare et al.	6,238,626 B1 6,251,343 B1		Higuchi et al. Dubrow et al.
5,993,611 5,993,750		Moroney, III et al. Ghosh et al.	6,254,826 B1		Acosta et al.
5,997,708			6,259,635 B1		Khouri et al.
6,001,229			6,261,431 B1 6,267,858 B1		Mathies et al. Parce et al.
6,001,231 6,001,307		Kopf-Sill Naka et al.	D446,306 S		Ochi et al.
6,004,450		Northrup et al.	6,271,021 B1		Burns et al.
6,004,515		Parce et al.	6,274,089 B1		Chow et al.
6,007,690 6,010,607		Nelson et al. Ramsey	6,280,967 B1 6,281,008 B1		Ransom et al. Komai et al.
6,010,608		Ramsey	6,284,113 B1	9/2001	Bjornson et al.
6,010,627	A 1/2000	Hood, III	6,284,470 B1		Bitner et al.
6,012,902			6,287,254 B1 6,287,774 B1	9/2001 9/2001	Dodds Nikiforov
D420,747 D421,130		Dumitrescu et al. Cohen et al.	6,291,248 B1		Haj-Ahmad
6,024,920		Cunanan	6,294,063 B1		Becker et al.
D421,653		Purcell	6,300,124 B1 6,302,134 B1		Blumenfeld et al. Kellogg et al.
6,033,546 6,033,880		Ramsey Haff et al.	6,302,304 B1	10/2001	Spencer
6,043,080		Lipshutz et al.	6,303,343 B1	10/2001	Kopf-Sill
6,046,056	A 4/2000	Parce et al.	6,306,273 B1		Wainright et al.
6,048,734		Burns et al.	6,306,590 B1 6,310,199 B1	10/2001 10/2001	Mehta et al. Smith et al.
6,054,034 6,054,277		Soane et al. Furcht et al.	6,316,774 B1		Giebeler et al.
6,056,860	A 5/2000	Amigo et al.	6,319,469 B1	11/2001	Mian et al.
6,057,149	A 5/2000	Burns et al.	6,319,474 B1		Krulevitch et al.
6,062,261		Jacobson et al.	6,322,683 B1		Wolk et al. Yang et al.
6,063,341 6,063,589		Fassbind et al. Kellogg et al.	6,326,083 B1 6,326,147 B1		Yang et al. Oldham et al.
6,068,751		Neukermans	6,326,211 B1		Anderson et al.
6,068,752	A 5/2000	Dubrow et al.	6,334,980 B1	1/2002	Hayes et al.
6,071,478			6,337,435 B1		Chu et al.
6,074,725	A 6/2000	Kennedy	6,353,475 B1	3/2002	Jensen et al.

(56)	References Cited	6,558,916 B2		Veerapandian et al.
U.S.	PATENT DOCUMENTS	6,558,945 B1 6,565,815 B1	5/2003 5/2003	Chang et al.
		6,569,607 B2		McReynolds
6,358,387 B1	3/2002 Kopf-Sill et al.	6,572,830 B1		Burdon et al. Parunak
6,366,924 B1	4/2002 Parce 4/2002 Rutishauser et al.	6,575,188 B2 6,576,459 B2		Miles et al.
6,368,561 B1 6,368,871 B1	4/2002 Rutishauser et al. 4/2002 Christel et al.	6,579,453 B1		Bächler et al.
6,370,206 B1	4/2002 Schenk	6,589,729 B2		Chan et al.
6,375,185 B1	4/2002 Lin	6,592,821 B1 6,597,450 B1		Wada et al. Andrews et al.
6,375,901 B1 6,379,884 B2	4/2002 Robotti et al. 4/2002 Wada et al.	6,602,474 B1	8/2003	
6,379,929 B1	4/2002 Burns et al.	6,613,211 B1		Mccormick et al.
6,379,974 B1	4/2002 Parce et al.	6,613,512 B1 6,613,580 B1		Kopf-sill et al. Chow et al.
6,382,254 B1 6,391,541 B1	5/2002 Yang et al. 5/2002 Petersen et al.	6,613,581 B1		Wada et al.
6,391,623 B1	5/2002 Besemer et al.	6,614,030 B2		Maher et al.
6,395,161 B1	5/2002 Schneider et al.	6,620,625 B2 6,623,860 B2		Wolk et al. Hu et al.
6,398,956 B1 6,399,025 B1	6/2002 Coville et al. 6/2002 Chow	6,627,406 B1		Singh et al.
6,399,389 B1	6/2002 Parce et al.	D480,814 S	10/2003	Lafferty et al.
6,399,952 B1	6/2002 Maher et al.	6,632,655 B1		Mehta et al.
6,401,552 B1	6/2002 Elkins	6,633,785 B1 D482,796 S		Kasahara et al. Oyama et al.
6,403,338 B1 6,408,878 B2	6/2002 Knapp et al. 6/2002 Unger et al.	6,640,981 B2		Lafond et al.
6,413,401 B1	7/2002 Chow et al.	6,649,358 B1		Parce et al.
6,416,642 B1	7/2002 Alajoki et al.	6,664,104 B2 6,669,831 B2		Pourahmadi et al. Chow et al.
6,420,143 B1 6,425,972 B1	7/2002 Kopf-sill 7/2002 McReynolds	6,670,153 B2	12/2003	
D461,906 S	8/2002 Pham	D484,989 S		Gebrian
6,428,987 B2	8/2002 Franzen	6,672,458 B2 6,681,616 B2		Hansen et al. Spaid et al.
6,430,512 B1 6,432,366 B2	8/2002 Gallagher 8/2002 Ruediger et al.	6,681,788 B2		Parce et al.
6,440,725 B1	8/2002 Ruediger et al.	6,685,813 B2		Williams et al.
D463,031 S	9/2002 Slomski et al.	6,692,700 B2		Handique
6,444,461 B1	9/2002 Knapp et al.	6,695,009 B2 6,699,713 B2		Chien et al. Benett et al.
6,447,661 B1 6,447,727 B1	9/2002 Chow et al. 9/2002 Parce et al.	6,706,519 B1		Kellogg et al.
6,448,064 B1	9/2002 Vo-Dinh et al.	6,720,148 B1		Nikiforov
6,453,928 B1	9/2002 Kaplan et al.	6,730,206 B2 6,733,645 B1	5/2004 5/2004	Ricco et al.
6,458,259 B1 6,461,570 B2	10/2002 Parce et al. 10/2002 Ishihara et al.	6,734,401 B2		Bedingham et al.
6,465,257 B1	10/2002 Parce et al.	6,737,026 B1		Bergh et al.
6,468,761 B2	10/2002 Yang et al.	6,740,518 B1 D491,272 S		Duong et al. Alden et al.
6,472,141 B2 D466,219 S	10/2002 Nikiforov 11/2002 Wynschenk et al.	D491,273 S		Biegler et al.
6,475,364 B1	11/2002 Oubrow et al.	D491,276 S		Langille
D467,348 S	12/2002 McMichael et al.	6,750,661 B2 6,752,966 B1		Brooks et al. Chazan
D467,349 S 6,488,897 B2	12/2002 Niedbala et al. 12/2002 Dubrow et al.	6,756,019 B1		Dubrow et al.
6,495,104 B1	12/2002 Unno et al.	6,762,049 B2		Zou et al.
6,498,497 B1	12/2002 Chow et al.	6,764,859 B1 6,766,817 B2		Kreuwel et al.
6,500,323 B1 6,500,390 B1	12/2002 Chow et al.	6,773,567 B1	8/2004	Dias da Silva Wolk
D468,437 S	12/2002 Boulton et al. 1/2003 McMenamy et al.	6,777,184 B2	8/2004	Nikiforov et al.
6,506,609 B1	1/2003 Wada et al.	6,783,962 B1		Olander et al. Lea et al.
6,509,186 B1 6,509,193 B1	1/2003 Zou et al. 1/2003 Tajima	D495,805 S 6,787,015 B2		Lackritz et al.
6,511,853 B1	1/2003 Tajinia 1/2003 Kopf-sill et al.	6,787,016 B2	9/2004	Tan et al.
D470,595 S	2/2003 Crisanti et al.	6,787,111 B2		Roach et al.
6,515,753 B2	2/2003 Maher 2/2003 Horner et al.	6,790,328 B2 6,790,330 B2		Jacobson et al. Gascoyne et al.
6,517,783 B2 6,520,197 B2	2/2003 Horner et al. 2/2003 Deshmukh et al.	6,811,668 B1		Berndt et al.
6,521,181 B1	2/2003 Northrup et al.	6,818,113 B2		Williams et al.
6,521,188 B1	2/2003 Webster	6,819,027 B2 6,824,663 B1	11/2004 11/2004	
6,524,456 B1 6,524,532 B1	2/2003 Ramsey et al. 2/2003 Northrup	D499,813 S	12/2004	
6,524,790 B1	2/2003 Kopf-sill et al.	D500,142 S		Crisanti et al.
D472,324 S	3/2003 Rumore et al.	D500,363 S 6,827,831 B1		Fanning et al. Chow et al.
6,534,295 B2 6,537,432 B1	3/2003 Tai et al. 3/2003 Schneider et al.	6,827,906 B1		Bjornson et al.
6,537,771 B1	3/2003 Scimenter et al.	6,838,156 B1		Neyer et al.
6,540,896 B1	4/2003 Manz et al.	6,838,680 B2		Maher et al.
6,544,734 B1	4/2003 Briscoe et al.	6,852,287 B2		Ganesan
6,547,942 B1 6,555,389 B1	4/2003 Parce et al. 4/2003 Ullman et al.	6,858,185 B1 6,859,698 B2	2/2005	Kopf-sill et al. Schmeisser
6,556,923 B2	4/2003 Gallagher et al.	6,861,035 B2		Pham et al.
D474,279 S	5/2003 Mayer et al.	6,878,540 B2		Pourahmadi et al.
D474,280 S	5/2003 Niedbala et al.	6,878,755 B2	4/2005	Singh et al.

(56)		Referen	ces Cited	D554,069			Bolotin et al.
	U.S.	PATENT	DOCUMENTS	D554,070 7,276,208	B2	10/2007	Bolotin et al. Sevigny et al.
6,884,628	B2	4/2005	Hubbell et al.	7,276,330 7,288,228	B2		Chow et al. Lefebvre
6,887,693	B2	5/2005	McMillan et al.	7,297,313			Northrup et al.
6,893,879 6,900,889			Petersen et al. Bjornson et al.	D556,914 7,303,727			Okamoto et al. Dubrow et al.
6,905,583			Wainright et al.	D559,995	\mathbf{S}	1/2008	Handique et al.
6,905,612			Dorian et al.	7,315,376 7,323,140			Bickmore et al. Handique et al.
6,906,797 6,908,594			Kao et al. Schaevitz et al.	7,332,130	B2	2/2008	Handique
6,911,183	B1	6/2005	Handique et al.	7,338,760 D566,291			Gong et al. Parunak et al.
6,914,137 6,915,679		7/2005 7/2005	Baker Chien et al.	7,351,377			Chazan et al.
6,918,404	B2		Dias da Silva	D569,526			Duffy et al.
D508,999			Fanning et al. Zhao et al.	7,374,949 7,390,460			Kuriger Osawa et al.
6,939,451 6,940,598			Christel et al.	7,419,784	B2	9/2008	Dubrow et al.
6,942,771	B1		Kayyem	7,422,669 7,440,684			Jacobson et al. Spaid et al.
6,951,632 6,958,392			Unger et al. Fomovskaia et al.	7,476,313			Siddiqi
D512,155	5 S	11/2005	Matsumoto	7,480,042			Phillips et al.
6,964,747 6,977,163		11/2005 12/2005	Banerjee et al.	7,494,577 7,494,770		2/2009	Williams et al. Wilding et al.
6,979,424			Northrup et al.	7,514,046	B2	4/2009	Kechagia et al.
6,984,516	B2		Briscoe et al.	7,518,726 7,521,186		4/2009 4/2009	Rulison et al. Burd Mehta
D515,707 D516,221			Sinohara et al. Wohlstadter et al.	7,527,769		5/2009	
7,001,853	B1	2/2006	Brown et al.	D595,423 7,553,671		6/2009	
7,004,184 D517,554			Handique et al. Yanagisawa et al.	D596,312		7/2009	Sinclair et al. Giraud et al.
7,010,391			Handique et al.	D598,566	S	8/2009	
7,023,007			Gallagher	7,578,976 D599,234		8/2009 9/2009	
7,024,281 7,036,667		4/2006 5/2006	Greenstein et al.	7,595,197	B2	9/2009	Brasseur
7,037,416	B2	5/2006	Parce et al.	7,604,938 7,622,296		10/2009 11/2009	Takahashi et al. Joseph et al.
7,038,472 7,039,527		5/2006 5/2006	Chien Tripathi et al.	7,628,902			Knowlton et al.
7,040,144	B2	5/2006	Spaid et al.	7,633,606		12/2009	
7,049,558 D523,153			Baer et al. Akashi et al.	7,635,588 7,645,581			King et al. Knapp et al.
7,055,695			Greenstein et al.	7,670,559	B2	3/2010	Chien et al.
7,060,171			Nikiforov et al.	7,674,431 7,689,022			Ganesan Weiner et al.
7,066,586 7,069,952			Dias da Silva McReynolds et al.	7,704,735			Facer et al.
7,072,036	B2	7/2006	Jones et al.	7,705,739 7,723,123			Northrup et al. Murphy et al.
7,099,778 D528,215		8/2006 9/2006	Chien Malmsater	D618,820			Wilson et al.
7,101,467		9/2006		7,727,371	B2	6/2010	Kennedy et al.
7,105,304			Nikiforov et al. Godfrey et al.	7,727,477 7,744,817		6/2010	Boronkay et al. Bui
D531,321 7,118,910			Unger et al.	D621,060	S	8/2010	Handique
7,122,799	B2	10/2006	Hsieh et al.	7,785,868 D628,305			Yuan et al. Gorrec et al.
7,135,144 7,138,032			Christel et al. Gandhi et al.	7,829,025	B2		Ganesan et al.
D534,280) S	12/2006	Gomm et al.	7,858,366			Northrup et al. Kennedy et al.
7,150,814 7,150,999		12/2006 12/2006	Parce et al.	7,867,776 D632,799			Canner et al.
D535,403			Isozaki et al.	7,892,819			Wilding et al.
7,160,423			Chien et al.	D637,737 7,955,864			Wilson et al. Cox et al.
7,161,356 7,169,277		1/2007 1/2007	Ausserer et al.	7,987,022	B2	7/2011	Handique et al.
7,169,601	B1		Northrup et al.	7,998,708 8,053,214			Handique et al. Northrup
7,169,618 D537,951		1/2007 3/2007	Okamoto et al.	8,071,056	B2		Burns et al.
D538,436	5 S	3/2007	Patadia et al.	8,088,616			Handique
7,188,001 7,192,557			Young et al. Wu et al.	8,105,783 8,110,158			Handique Handique
7,195,986	5 B1	3/2007	Bousse et al.	8,133,671	B2	3/2012	Williams et al.
7,205,154 7,208,125		4/2007 4/2007		8,182,763 8,246,919			Duffy et al. Herchenbach et al.
7,208,125		6/2007	Woudenberg et al.	8,273,308			Handique et al.
7,247,274	B1	7/2007	Chow	D669,597	S	10/2012	Cavada et al.
D548,841 D549,827			Brownell et al. Maeno et al.	8,287,820 8,323,584			Williams et al. Ganesan
7,252,928			Hafeman et al.	8,323,900			Handique et al.
7,255,833	B2	8/2007	Chang et al.	8,324,372	B2	12/2012	Brahmasandra et al.
7,270,786	В2	9/2007	Parunak et al.	8,415,103	B 2	4/2013	Handique

(56)	Referen	ces Cited	2002/0015667		2/2002	
211	PATENT	DOCUMENTS	2002/0021983 2002/0022261			Comte et al. Anderson et al.
0.3	. FAILINI	DOCUMENTS	2002/0037499			Quake et al.
8,420,015 B2	4/2013	Ganesan et al.	2002/0039783	A1	4/2002	McMillan et al.
8,440,149 B2		Handique	2002/0047003			Bedingham et al.
8,470,586 B2		Wu et al.	2002/0053399 2002/0054835			Soane et al. Robotti et al.
8,473,104 B2		Handique et al.	2002/0034833			Pourahmadi et al.
D686,749 S D687,567 S		Trump Jungheim et al.	2002/0058332			Quake et al.
D692,162 S		Lentz et al.	2002/0060156			Mathies et al.
8,592,157 B2		Petersen et al.	2002/0068357			Mathies et al.
8,679,831 B2		Handique et al.	2002/0068821 2002/0090320			Gundling Burow et al.
D702,854 S 8,685,341 B2		Nakahana et al. Ganesan	2002/0092767			Bjornson et al.
8,703,069 B2		Handique et al.	2002/0094303	A1		Yamamoto et al.
8,709,787 B2		Handique	2002/0131903			Ingenhoven et al.
8,710,211 B2		Brahmasandra et al.	2002/0141903 2002/0143297			Parunak et al. Francavilla et al.
8,734,733 B2	5/2014 7/2014	Handique Gua	2002/0143297			Karp et al.
D710,024 S 8,765,076 B2		Handique et al.	2002/0155477		10/2002	
8,765,454 B2		Zhou et al.	2002/0169518			Luoma et al.
8,768,517 B2		Handique et al.	2002/0173032			Zou et al. Hobbs et al.
8,852,862 B2		Wu et al.	2002/0187557 2002/0192808			Gambini et al.
8,883,490 B2 8,894,947 B2		Handique et al. Ganesan et al.	2003/0008308			Enzelberger et al.
8,895,311 B1		Handique et al.	2003/0019522	Al	1/2003	Parunak
D729,404 S	5/2015	Teich et al.	2003/0022392		1/2003	
9,028,773 B2		Ganesan	2003/0049833 2003/0059823			Chen et al. Matsunaga et al.
9,040,288 B2 9,051,604 B2		Handique et al. Handique	2003/0064507			Gallagher et al.
9,031,004 B2 9,080,207 B2		Handique et al.	2003/0072683			Stewart et al.
D742,027 S		Lentz et al.	2003/0073106			Johansen et al.
9,186,677 B2		Williams et al.	2003/0083686			Freeman et al.
9,217,143 B2		Brahmasandra et al.	2003/0087300 2003/0096310			Knapp et al. Hansen et al.
9,222,954 B2 9,234,236 B2		Lentz et al. Thomas et al.	2003/0099954			Miltenyi et al.
9,238,223 B2		Handique	2003/0127327		7/2003	
9,259,734 B2		Williams et al.	2003/0136679			Bohn et al.
9,259,735 B2		Handique et al.	2003/0156991 2003/0180192			Halas et al. Seippel
9,347,586 B2 9,480,983 B2		Williams et al. Lentz et al.	2003/0186295			Colin et al.
9,528,142 B2		Handique	2003/0190608		10/2003	Blackburn et al.
9,618,139 B2		Handique	2003/0199081			Wilding et al.
D787,087 S	6/2017	Duffy et al.	2003/0211517 2004/0014202			Carulli et al. King et al.
9,670,528 B2 9,677,121 B2		Handique et al. Ganesan et al.	2004/0014238			Krug et al.
9,701,957 B2		Wilson et al.	2004/0018116			Desmond et al.
9,745,623 B2	8/2017		2004/0018119		1/2004	
9,765,389 B2	9/2017		2004/0022689 2004/0029258		2/2004	Wulf et al. Heaney et al.
9,789,481 B2 9,802,199 B2		Petersen et al. Handique et al.	2004/0029238			Hansen et al.
9,815,057 B2		Handique et al.	2004/0037739			McNeely et al.
9,958,466 B2		Dalbert et al.	2004/0043479			Briscoe et al.
10,065,185 B2		Handique	2004/0053290 2004/0063217		3/2004 4/2004	Terbrueggen et al. Webster et al.
10,071,376 B2		Williams et al. Lentz et al.	2004/0065655		4/2004	
10,076,754 B2 10,100,302 B2		Brahmasandra et al.	2004/0072278	A1	4/2004	Chou et al.
10,139,012 B2		Handique	2004/0072375		4/2004	
10,179,910 B2		Duffy et al.	2004/0076996			Kondo et al.
10,234,474 B2		Williams et al. Ganesan et al.	2004/0086427 2004/0086956		5/2004 5/2004	Childers et al. Bachur
10,351,901 B2 10,364,456 B2		Wu et al.	2004/0132059			Scurati et al.
10,443,088 B1		Wu et al.	2004/0141887			Mainquist et al.
10,494,663 B1		Wu et al.	2004/0151629			Pease et al.
2001/0005489 A1		Roach et al.	2004/0157220 2004/0161788			Kurnool et al. Chen et al.
2001/0012492 A1 2001/0016358 A1		Acosta et al. Osawa et al.	2004/0189311			Glezer et al.
2001/0010338 A1 2001/0021355 A1		Baugh et al.	2004/0197810	A1	10/2004	Takenaka et al.
2001/0023848 A1	9/2001	Gjerde et al.	2004/0200909		10/2004	
2001/0038450 A1		McCaffrey et al.	2004/0209331		10/2004	
2001/0045358 A1 2001/0046702 A1		Kopf-Sill et al. Schembri	2004/0209354 2004/0224317		10/2004 11/2004	Mathies et al. Kordunsky et al.
2001/0048702 A1 2001/0048899 A1		Marouiss et al.	2004/0224317			Oh et al.
2001/0045699 A1 2001/0055765 A1		O'Keefe et al.	2004/0240097		12/2004	
2002/0001848 A1	1/2002	Bedingham et al.	2005/0009174	A1	1/2005	Nikiforov et al.
2002/0008053 A1		Hansen et al.	2005/0013737			Chow et al.
2002/0009015 A1		Laugharn, Jr. et al.	2005/0019902			Mathies et al.
2002/0014443 A1	2/2002	Hansen et al.	2005/0037471	ΑI	2/2005	Liu et al.

(56)	References Cited	2007/0199821 A1	8/2007	
ZII	PATENT DOCUMENTS	2007/0215554 A1 2007/0218459 A1		Kreuwel et al. Miller et al.
0.5	THEN BOCOMENTS	2007/0231213 A1		Prabhu et al.
2005/0041525 A1	2/2005 Pugia et al.	2007/0243626 A1		Windeyer et al.
2005/0042639 A1	2/2005 Knapp et al.	2007/0248958 A1 2007/0261479 A1		Jovanovich et al. Spaid et al.
2005/0048540 A1 2005/0058574 A1	3/2005 Inami et al. 3/2005 Bysouth et al.	2007/0261479 A1 2007/0269861 A1		Williams et al.
2005/0058574 AT	3/2005 Bysouth et al. 3/2005 Micklash et al.	2008/0000774 A1		Park et al.
2005/0064535 A1	3/2005 Favuzzi et al.	2008/0003649 A1		Maltezos et al.
2005/0069898 A1	3/2005 Moon et al.	2008/0017306 A1 2008/0056948 A1		Liu et al. Dale et al.
2005/0106066 A1	5/2005 Saltsman et al.	2008/0050948 A1 2008/0069729 A1		McNeely
2005/0112754 A1 2005/0121324 A1	5/2005 Yoon et al. 6/2005 Park et al.	2008/0090244 A1		Knapp et al.
2005/0129580 A1	6/2005 Swinehart et al.	2008/0095673 A1	4/2008	
2005/0133370 A1	6/2005 Park et al.	2008/0118987 A1 2008/0124723 A1		Eastwood et al. Dale et al.
2005/0135655 A1 2005/0142036 A1	6/2005 Kopf-sill et al. 6/2005 Kim et al.	2008/0124723 A1 2008/0176230 A1		Owen et al.
2005/0158781 A1	7/2005 Woudenberg et al.	2008/0192254 A1	8/2008	Kim et al.
2005/0170362 A1	8/2005 Wada et al.	2008/0226502 A1		Jonsmann et al.
2005/0186585 A1	8/2005 Juncosa et al.	2008/0240898 A1 2008/0247914 A1		Manz et al. Edens et al.
2005/0196321 A1	9/2005 Huang	2008/0247914 A1 2008/0257882 A1	10/2008	
2005/0202470 A1 2005/0202489 A1	9/2005 Sundberg et al. 9/2005 Cho et al.	2008/0280285 A1		Chen et al.
2005/0202504 A1	9/2005 Anderson et al.	2008/0308500 A1		Brassard
2005/0208676 A1	9/2005 Kahatt	2009/0047180 A1 2009/0066339 A1		Kawahara Glezer et al.
2005/0214172 A1	9/2005 Burgisser 10/2005 Reed et al.	2009/0000339 A1 2009/0136385 A1		Handique et al.
2005/0220675 A1 2005/0227269 A1	10/2005 Reed et al. 10/2005 Lloyd et al.	2009/0148933 A1		Battrell et al.
2005/0233370 A1	10/2005 Ammann et al.	2009/0189089 A1		Bedingham et al.
2005/0238545 A1	10/2005 Parce et al.	2009/0223925 A1		Morse et al.
2005/0276728 A1	12/2005 Muller-Cohn et al.	2009/0325164 A1 2009/0325276 A1		Vossenaar et al. Battrell et al.
2006/0002817 A1 2006/0041058 A1	1/2006 Bohm et al. 2/2006 Yin et al.	2010/0009351 A1		Brahmasandra et al.
2006/0057039 A1	3/2006 Morse et al.	2010/0120129 A1	5/2010	Amshey et al.
2006/0057629 A1	3/2006 Kim	2010/0284864 A1		Holenstein et al.
2006/0062696 A1	3/2006 Chow et al.	2011/0008825 A1 2011/0027151 A1		Ingber et al. Handique et al.
2006/0094004 A1 2006/0094108 A1	5/2006 Nakajima et al. 5/2006 Yoder et al.	2011/0097493 A1		Kerr et al.
2006/0004108 A1 2006/0113190 A1	6/2006 Kurnik	2011/0127292 A1		Sarofim et al.
2006/0133965 A1	6/2006 Tajima et al.	2011/0158865 A1		Miller et al.
2006/0134790 A1	6/2006 Tanaka et al.	2011/0287447 A1 2011/0300033 A1	12/2011	Norderhaug Battisti
2006/0148063 A1 2006/0165558 A1	7/2006 Fauzzi et al. 7/2006 Witty et al.	2012/0122231 A1		Tajima
2006/0165559 A1	7/2006 Witty et al.	2012/0160826 A1	6/2012	Handique
2006/0177376 A1	8/2006 Tomalia et al.	2012/0171678 A1		Maltezos et al.
2006/0177855 A1	8/2006 Utermohlen et al.	2012/0258463 A1 2013/0183769 A1	7/2013	Duffy et al. Tajima
2006/0183216 A1 2006/0201887 A1	8/2006 Handique 9/2006 Siddiqi	2013/0217013 A1		Steel et al.
2006/0205085 A1	9/2006 Handique	2013/0315800 A1		Yin et al.
2006/0207944 A1	9/2006 Siddiqi	2014/0030798 A1		Wu et al.
2006/0210435 A1	9/2006 Alavie et al.	2014/0227710 A1 2014/0329301 A1		Handique et al. Handique et al.
2006/0223169 A1 2006/0228734 A1	10/2006 Bedingham et al. 10/2006 Vann et al.	2015/0045234 A1		Stone et al.
2006/0246493 A1	11/2006 Jensen et al.	2015/0064702 A1		Handique et al.
2006/0246533 A1	11/2006 Fathollahi et al.	2015/0142186 A1		Handique et al. Iten et al.
2006/0269641 A1	11/2006 Atwood et al.	2015/0174579 A1 2015/0315631 A1		Handique et al.
2006/0269961 A1 2007/0004028 A1	11/2006 Fukushima et al. 1/2007 Lair et al.	2015/0328638 A1		Handique et al.
2007/0009386 A1	1/2007 Padmanabhan et al.	2016/0038942 A1		Roberts
2007/0020699 A1	1/2007 Carpenter et al.	2017/0275702 A1		Dahiya et al.
2007/0020764 A1 2007/0026421 A1	1/2007 Miller	2018/0112252 A1 2018/0135102 A1		Handique Gubatayao et al.
2007/0020421 A1 2007/0042441 A1	2/2007 Sundberg et al. 2/2007 Masters et al.	2018/0154364 A1		Handique et al.
2007/0048188 A1	3/2007 Bigus	2018/0333722 A1		Handique
2007/0054413 A1	3/2007 Aviles et al.	2019/0054467 A1		Handique
2007/0077648 A1	4/2007 Okamoto et al.	2019/0054471 A1 2019/0106692 A1		Williams et al. Brahmasandra et al.
2007/0092901 A1 2007/0098600 A1	4/2007 Ligler et al. 5/2007 Kayyem et al.	2019/0144849 A1		Duffy et al.
2007/0099200 A1	5/2007 Chow et al.	2019/0145546 A1		Handique
2007/0104617 A1	5/2007 Coulling et al.	2019/0151854 A1		Baum et al.
2007/0116613 A1	5/2007 Elsener	2019/0154719 A1		LaChance et al.
2007/0154895 A1 2007/0177147 A1	7/2007 Spaid et al. 8/2007 Parce	2019/0284606 A1 2019/0324050 A1		Wu et al. Williams et al.
2007/0177147 A1 2007/0178607 A1	8/2007 Prober et al.	2017/0324030 AI	10/2017	
2007/0184463 A1	8/2007 Molho et al.	FOREI	GN PATE	NT DOCUMENTS
2007/0184547 A1	8/2007 Handique et al.			
2007/0196237 A1	8/2007 Neuzil et al.		37602	7/2002
2007/0196238 A1	8/2007 Kennedy et al.	AU 443	37702	7/2002

(56)	References Cited	JP	2003-164279	6/2003
,		JP	2003-185584	7/2003
	FOREIGN PATENT DOCUMENTS	JP JP	2003-299485 2003-329693	10/2003
ATT	764319 B2 8/2003	JР	2003-329696	11/2003 11/2003
AU CA	764319 B2 8/2003 2574107 9/1998	JP	2003-532382 A	11/2003
CA	2294819 1/1999	JP	2004-003989	1/2004
CN	1312287 C 4/2007	JP	2004-506179 A	2/2004
CN	1942590 A 4/2007	JP JP	2004-150797 A 2004-531360 A	5/2004 10/2004
CN CN	1968754 A 5/2007 101466848 6/2009	JP	2004-531800 A 2004-533838	11/2004
CN CN	101522909 9/2009	JP	2004-361421	12/2004
CN	103540518 1/2014	JP	2004-536291	12/2004
DE	19929734 12/1999	JP	2004-536689 A	12/2004
DE	19833293 C1 1/2000	JP JP	2005-009870 2005-010179	1/2005 1/2005
EP EP	0365828 A2 5/1990 0483620 A2 5/1992	JP	2005-511264	4/2005
EP	0688602 A2 12/1995	JP	2005-514718	5/2005
EP	0766256 4/1997	JP	2005-518825	6/2005
EP	0772494 B1 5/1997	JP JP	2005-176613 A 2005-192439	7/2005 7/2005
EP EP	0810030 A1 12/1997 1059458 A2 12/2000	JP JP	2005-192439	7/2005
EP EP	1059458 A2 12/2000 1064090 A1 1/2001	JP	2005-519751	7/2005
EP	1077086 A2 2/2001	JP	2005-204661	8/2005
EP	1346772 A2 9/2003	JP	2005-525816	9/2005
EP	1541237 A2 6/2005	JP JP	2005-291954 A 2005-532043	10/2005 10/2005
EP EP	1574586 A2 9/2005 1745153 1/2007	JP	2005-332043	11/2005
EP EP	1743133 1/2007 1780290 A2 5/2007	JP	2005-533652	11/2005
EP	1792656 A1 6/2007	JP	2005-535904	11/2005
EP	2372367 A1 10/2011	JP	2006-021156 A	1/2006
FR	2672301 8/1992 2705426 12/2000	JP JP	2006-055837 A 2006-094866 A	3/2006 4/2006
FR GB	2795426 12/2000 2453432 A 4/2009	JP	2006-145458	6/2006
JР	S50-100881 8/1975	JP	2006-167569	6/2006
JР	58212921 A 12/1983	JP	2006-284409	10/2006
JP	S62-119460 5/1987	JP JP	2007-024742 A 2007-074960	2/2007 3/2007
JP JP	H01-502319 8/1989 H 03181853 8/1991	JP	2007-074900	4/2007
JP JP	04-053555 U 5/1992	JP	2007-101364	4/2007
JР	06-064156 U 9/1994	JP	2007-510518	4/2007
JР	07-020010 1/1995	$_{\rm JP}^{\rm JP}$	2007-514405 A	6/2007
JP	H07-290706 11/1995	JР	2007-178328 2007-535933	7/2007 12/2007
JP JP	H08-122336 5/1996 H08-173194 7/1996	JP	2009-515140	4/2009
JР	H08-211071 8/1996	JP	2009-542207	12/2009
JP	H08-285859 11/1996	JP	3193848 U	10/2014
JР	H08-337116 12/1996	RU WO	2418633 C2 WO 1988/006633	5/2011 9/1988
JP JP	H09-325151 12/1997 2001-502790 1/1998	wo	WO 1990/012350	10/1990
JР	H01-219669 9/1998	WO	WO 1992/005443	4/1992
JР	H10-327515 12/1998	WO	WO 1994/011103	5/1994
JP	H11-009258 1/1999	WO WO	WO 1996/004547 WO 1996/018731	2/1996 6/1996
JP	H11-501504 2/1999	wo	WO 1996/039547	12/1996
JP JP	H11-503315 3/1999 2000-514928 4/1999	wo	WO 1997/005492	2/1997
JР	H11-156231 6/1999	WO	WO 1997/021090	6/1997
JP	H11-316226 11/1999	WO	WO 1998/000231	1/1998
JР	H11-515106 12/1999	WO WO	WO 1998/022625 WO 1998/35013	5/1998 8/1998
JP JP	2000-180455 6/2000 2000-266760 9/2000	wo	WO 1998/049548	11/1998
JP	2000-200700 9/2000	WO	WO 1998/050147	11/1998
JР	2001-502319 2/2001	WO	WO 1998/053311	11/1998
JP	2001-204462 7/2001	WO	WO 1999/001688	1/1999 2/1999
JP JP	2001-509437 7/2001	WO WO	WO 1999/009042 WO 1999/012016	3/1999
JP JP	3191150 B2 7/2001 2001-515216 9/2001	wo	WO 1999/017093	4/1999
JP	2001-523812 9/2001	WO	WO 1999/029703	6/1999
JP	2001-527220 12/2001	WO	WO 1999/033559	7/1999
JP	2002-503331 1/2002	WO	WO 2000/022436	4/2000
JP JP	2002-085961 3/2002 2002-517735 6/2002	WO WO	WO 2001/005510 WO 2001/014931	1/2001 3/2001
JP JP	2002-517735 6/2002 2002-215241 7/2002	WO	WO 2001/014931 WO 2001/027614	4/2001
JP	2002-540382 11/2002	wo	WO 2001/027614 WO 2001/028684	4/2001
JP	2002-544476 12/2002	WO	WO 2001/030995	5/2001
JP	2003-500674 1/2003	WO	WO 2001/041931	6/2001
JP	2003-047839 A 2/2003	WO	WO 2001/046474	6/2001
JP ID	2003-047840 A 2/2003 2003-516125 5/2003	WO	WO 2001/054813	8/2001
JP	2003-516125 5/2003	WO	WO 2001/089681	11/2001

Page 10

(56)		ences Cited ENT DOCUMENTS	Brody, et al., Diffusion-Based Extraction Device, Sensors and Actuators Elsevier, 199
	FOREIGN PAI	ENI DOCUMENTS	13-18.
WO	WO 2002/048164	6/2002	Broyles et al., "Sample Filtration, Concent
WO	WO 2002/072264	9/2002	Integrated on Microfluidic Devices" Analytic
wo	WO 2002/078845	10/2002	can Chemical Society), (2003) 75(11):2761-
wo	WO 2002/078845 WO 2002/086454	10/2002	Burns et al., "An Integrated Nanoliter Di
wo	WO 2002/080434 WO 2003/007677	1/2003	Science 282:484-487 (1998).
WO	WO 2003/007077 WO 2003/012325	2/2003	Carlen et al., "Paraffin Actuated Surface Mic
WO	WO 2003/012323 WO 2003/012406	2/2003	IEEE MEMS 2000 Conference, Miyazaki,
wo	WO 2003/012400 WO 2003/048295	6/2003	381-385.
WO	WO 2003/055605	7/2003	Chaudhari et al., "Transient Liquid Cry
WO	WO 2003/076661	9/2003	Microfabricated PCR Vessel Arrays", J Mic
WO	WO 2003/078065	9/2003	7(4):345-355.
WO	WO 2003/087410	10/2003	Chang-Yen et al., "Design, fabrication, and p
WO	WO 2004/007081	1/2004	multianalyte-capable optical biosensor," J Micro
WO	WO 2004/010760	2/2004	(2006) 5(2):021105 in 8 pages.
WO	WO 2004/048545	6/2004	
WO	WO 2004/055522	7/2004	Chen et al., "Total nucleic acid analysis inte
WO	WO 2004/056485	7/2004	devices," Lab on a Chip. (2007) 7:1413-142
WO	WO 2004/074848	9/2004	Chung, Y. et al., "Microfluidic chip for
WO	WO 2004/094986	11/2004	extraction", Miniaturisation for Chemistry, B
WO	WO 2005/008255	1/2005	ing, vol. 4, No. 2 (Apr. 2004), pp. 141-147.
WO	WO 2005/011867	2/2005	Cooley et al., "Applications of Ink-Jet Pr
WO	WO 2005/030984	4/2005	BioMEMS and Microfluidic Systems", Proc
WO	WO 2005/072353	8/2005	ence on Microfluids and BioMEMS, (Oct. 2
WO	WO 2005/094981	10/2005	Cui et al., "Design and Experiment of Silic
WO	WO 2005/107947	11/2005	SPIE 4755, Design, Test, Integration, and
WO	WO 2005/108571	11/2005	MOEMS 2002, (Apr. 19, 2002) pp. 71-76.
WO	WO 2005/108620	11/2005	Edwards, "Silicon (Si)," in "Handbook of
WO	WO 2005/116202	12/2005	Solids" (Ghosh & Palik eds., 1997) in 24 pa
WO	WO 2005/118867	12/2005	Goldmeyer et al., "Identification of Staph
WO	WO 2005/120710	12/2005	Determination of Methicillin Resistance D
WO	WO 2006/010584	2/2006	Blood Cultures by Isothermal Amplification
WO	WO 2006/032044	3/2006	
WO	WO 2006/035800	4/2006	Detection Device", J Clin Microbiol. (Apr. 20
WO	WO 2006/043642	4/2006	Grunenwald H., "Optimization of Polymeras
WO	WO 2006/066001	6/2006	Methods in Molecular Biology, PCR Protoco
WO	WO 2006/079082	7/2006	Bartlett et al. [Eds.] Humana Press (2003) v
WO	WO 2006/081995	8/2006	Hale et al., "Optical constants of Water in t
WO	WO 2006/113198	10/2006	Wavelength Region", Applied Optics, 12(3):
WO	WO 2006/119280	11/2006	Handal et al., "DNA mutation detection and
WO	WO 2007/044917	4/2007	turized microfluidic systems", Expert Rev
WO WO	WO 2007/050327	5/2007 6/2007	6(1):29-38.
WO	WO 2007/064117 WO 2007/075919	6/2007 7/2007	Handique et al, "Microfluidic flow control
WO	WO 2007/073919 WO 2007/091530	8/2007	phobic patterning", SPIE, (1997) 3224: 185-
wo	WO 2007/112114	10/2007	Handique et al., "On-Chip Thermopneumation
wo	WO 2008/005321	1/2008	Drop Pumping", Anal. Chem., (2001) 73(8)
WO	WO 2008/003321 WO 2008/030914	3/2008	Handique et al., "Nanoliter-volume discret
wo	WO 2008/060604	5/2008	pumping in microfabricated chemical analysi
WO	WO 2008/149282	12/2008	
WO	WO 2009/012185	1/2009	Sensor and Actuator Workshop (Hilton Head
WO	WO 2009/012183 WO 2009/054870	4/2009	8-11, 1998) pp. 346-349.
wo	WO 2009/034870 WO 2010/118541	10/2010	Handique et al., "Mathematical Modeling
wo	WO 2010/118341 WO 2010/130310	11/2010	Slit-Type Microchannel", J. Micromech. M
WO	WO 2010/130310 WO 2010/140680	12/2010	(2001).
			Handique et al., "Nanoliter Liquid Meter
WO	WO 2011/101467	8/2011	Using Hydrophobic Patterns", Anal. Chem., 72

OTHER PUBLICATIONS

Becker H., "Hype, hope and hubris: the quest for the killer application in microfluidics", Lab on a Chip, The Royal Society of Chemistry (2009) 9:2119-2122.

Becker H., "Collective Wisdom", Lab on a Chip, The Royal Society of Chemistry (2010) 10:1351-1354.

Bollet, C. et al., "A simple method for the isolation of chromosomal DNA from Gram positive or acid-fast bacteria", Nucleic Acids Research, vol. 19, No. 8 (1991), p. 1955.

Brahmasandra et al., On-chip DNA detection in microfabricated separation systems, SPIE Conference on Microfluidic Devices and Systems, 1998, vol. 3515, pp. 242-251, Santa Clara, CA.

Breadmore, M.C. et al., "Microchip-Based Purification of DNA from Biological Samples", Anal. Chem., vol. 75 (2003), pp. 1880-1886.

n in a Microfabricated 97, vol. A58, No. 1, pp.

tration, and Separation tical Chemistry (Ameri--2767.

NA Analysis Device",

cromachined Valve," in Japan, (Jan. 2000) pp.

ystal Thermometry of icroelectro Sys., (1998)

packaging of a practical olith Microfab Microsyst.

egrated on microfluidic 423.

high efficiency DNA Biology & Bioengineer-

Printing Technology to ceedings, SPIE Confer-2001), 12 pages.

con PCR Chips," Proc. Packaging of MEMS/

of Optical Constants of pages.

hylococcus aureus and Directly from Positive tion and a Disposable 2008) 46(4): 1534-1536. ase Chain Reactions," in cols., Second Edition by vol. 226, pp. 89-99.

the 200-nm to 200-µm): 555-563 (1973).

nd analysis using miniaev Mol Diagn. (2006)

using selective hydro-5-194.

ic Pressure for Discrete 3):1831-1838.

ete drop injection and sis systems", Solid-State ad, South Carolina, Jun.

of Drop Mixing in a Microeng., 11:548-554

ering in Microchannels Using Hydrophobic Patterns", Anal. Chem., 72(17):4100-4109 (2000). Harding et al., "DNA isolation using Methidium-Spermine-Sepharose", Meth Enzymol. (1992) 216: 29-39.

Harding et al., "Rapid isolation of DNA from complex biological samples using a novel capture reagent-methidium-sperminesepharose", Nucl Acids Res. (1989) 17(17): 6947-6958.

He, et al., Microfabricated Filters for Microfluidic Analytical Systems, Analytical Chemistry, American Chemical Society, 1999, vol. 71, No. 7, pp. 1464-1468.

Ibrahim, et al., Real-Time Microchip PCR for Detecting Single-Base Differences in Viral and Human DNA, Analytical Chemistry, American Chemical Society, 1998, 70(9): 2013-2017

International Preliminary Report on Patentability and Written Opinion dated Jan. 19, 2010 for Application No. PCT/US2008/008640, filed Jul. 14, 2008.

International Search Report and Written Opinion dated Apr. 4, 2008 for PCT/US2007/007513, filed Mar. 26, 2007.

International Search Report and Written Opinion dated Jan. 5, 2009 for PCT/US2007/024022, filed Nov. 14, 2007.

Page 11

(56) References Cited

OTHER PUBLICATIONS

International Search Report dated Jun. 17, 2009 for Application No. PCT/US2008/008640, filed Jul. 14, 2008.

Irawan et al., "Cross-Talk Problem on a Fluorescence Multi-Channel Microfluidic Chip System," Biomed Micro. (2005) 7(3):205-211

Khandurina et al., Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis, Analytical Chemistry American Chemical Society, 1999, 71(9): 1815-1819.

Khandurina et al., "Bioanalysis in microfluidic devices," J Chromatography A, (2002) 943:159-183.

Kim et al., "Electrohydrodynamic Generation and Delivery of Monodisperse Picoliter Droplets Using a Poly(dimethylsiloxane) Microchip", Anal Chem. (2006) 78: 8011-8019.

Kopp et al., Chemical Amplification: Continuous-Flow PCR on a Chip, www.sciencemag.org, 1998, vol. 280, pp. 1046-1048.

Kuo et al., "Remnant cationic dendrimers block RNA migration in electrophoresis after monophasic lysis", J Biotech. (2007) 129: 383-390.

Kutter et al., Solid Phase Extraction on Microfluidic Devices, J. Microcolumn Separations, John Wiley & Sons, Inc., 2000, 12(2): 93-97.

LABCHEM; Sodium Hydroxide, 0,5N (0.5M); Safety Data Sheet, 2015; 8 pages.

Lagally et al., Single-Molecule DNA Amplification and Analysis in an Integrated Microfluidic Device, Analytical Chemistry, American Chemical Society, 2001, 73(3): 565-570.

Liao et al., "Miniature RT-PCR system for diagnosis of RNA-based viruses," Nucl Acids Res. (2005) 33(18):e156 in 7 pages.

Lin et al., "Thermal Uniformity of 12-in Silicon Wafer During Rapid Thermal Processing by Inverse Heat Transfer Method," IEEE Transactions on Semiconductor Manufacturing, (2000) 13(4):448-456.

Livache et al., "Polypyrrole DNA chip on a Silicon Device: Example of Hepatitis C Virus Genotyping", Analytical Biochemistry, (1998) 255: 188-194

Malitson, "Interspecimen Comparison of the Refractive Index of Fused Silica," J Optical Society of America, 55:1205-1209 (1965). Manz et al., "Miniaturized Total Chemical Analysis Systems: a Novel Concept for Chemical Sensing," Sensors and Actuators B1, (1990) 244-248.

Mastrangelo et al., Microfabricated Devices for Genetic Diagnostics. Proceedings of the IEEE (1998) 86(8):1769-1787.

Mascini et al., "DNA electrochemical biosensors", Fresenius J. Anal. Chem., 369: 15-22, (2001).

Meyers, R.A., Molecular Biology and Biotechnology: A Comprehensive Desk Reference; VCH Publishers, Inc. New York, NY; (1995) pp. 418-419.

Minco, "Conductive Heating Technologies for Medical Diagnostic Equipment," (2006) in 13 pages.

Nakagawa et al., Fabrication of amino silane-coated microchip for DNA extraction from whole blood, J of Biotechnology, Mar. 2, 2005, 116: 105-111.

Northrup et al., A Miniature Analytical Instrument for Nucleic Acids Based on Micromachined Silicon Reaction Chambers, Analytical Chemistry, American Chemical Society, 1998, 70(5): 918-922.

Oh K.W. et al., "A Review of Microvalves", J Micromech Microeng. (2006) 16:R13-R39.

Oleschuk et al., Trapping of Bead-Based Reagents within Microfluidic Systems: On-Chip Solid-Phase Extraction and Electrochromatography, Analytical Chemistry, American Chemical Society, 2000, 72(3): 585-590

Pal et al., "Phase Change Microvalve for Integrated Devices", Anal Chem. (2004) 76: 3740-3748.

Palina et al., "Laser Assisted Boron Doping of Silicon Wafer Solar Cells Using Nanosecond and Picosecond Laser Pulses," 2011 37th IEEE Photovoltaic Specialists Conference, pp. 002193-002197, IEEE (2011).

Paulson et al., "Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping," Nature, Scientific Reports 8:9358 (2018) published at www.nature.com/scientificreports, Jun. 19, 2018. Picard et al., Laboratory Detection of Group B *Streptococcus* for Prevention of Perinatal Disease, Eur. J. Clin. Microbiol. Infect. Dis., Jul. 16, 2004, 23: 665-671.

Plambeck et al., "Electrochemical Studies of Antitumor Antibiotics", J. Electrochem Soc.: Electrochemical Science and Technology (1984), 131(11): 2556-2563.

Rohsenow et al. [Eds.], Handbook of Heat Transfer, 3rd Edition McGraw-Hill Publishers (1998) Chapters 1 & 3; pp. 108.

Roche et al. "Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells" Faseb J (2005) 19: 1341-1343.

Ross et al., Analysis of DNA Fragments from Conventional and Microfabricated PCR Devices Using Delayed Extraction MALDI-TOF Mass Spectrometry, Analytical Chemistry, American Chemical Society, 1998, 70(10): 2067-2073.

Sanchez et al., "Linear-After-The-Exponential (LATE)-PCR: An advanced method of asymmetric PCR and its uses in quantitative real-time analysis", PNAS (2004) 101(7): 1933-1938.

Sarma, K.S., "Liquid Crystal Displays", Chapter 32 in Electrical Measurement, Signal Processing, Displays, Jul. 15, 2003, ISBN: 978-0-8493-1733-0, Retrieved from the Internet: URL: http://http://197.14.51.10:81/pmb/ELECTRONIQUE/Electrical Measurement Signal Processing and Displays/Book/1733ch32.pdf; 21 pages.

Shen et al., "A microchip-based PCR device using flexible printed circuit technology," Sensors and Actuators B (2005), 105:251-258. Shoffner et al., Chip PCR.I. Surface Passivation of Microfabricated Silicon-Glass Chips for PCR, Nucleic Acids Research, Oxford University Press, (1996) 24(2): 375-379.

Smith, K. et al., "Comparison of Commercial DNA Extraction Kits for Extraction of Bacterial Genomic DNA from Whole-Blood Samples", Journal of Clinical Microbiology, vol. 41, No. 6 (Jun. 2003), pp. 2440-2443.

Spitzack et al., "Polymerase Chain Reaction in Miniaturized Systems: Big Progress in Little Devices", in Methods in Molecular Biology—Microfluidic Techniques, Minteer S.D. [Ed.] Humana Press (2006), pp. 97-129.

Squires et al., "Microfluidics: Fluid physics at the nanoliter scale", Rev Modern Phys. (2005) 77:977-1026.

Tanaka et al., "Modification of DNA extraction from maize using polyamidoamine-dendrimer modified magnetic particles", Proceedings of the 74th Annual Meeting of the Electrochemical Society of Japan, Mar. 29, 2007; Faculty of Engineering, Science University of Tokyo; 2 pages.

Velten et al., "Packaging of Bio-MEMS: Strategies, Technologies, and Applications," IEEE Transactions on Advanced Packaging, (2005) 28(4):533-546.

Wang, "Survey and Summary, from DNA Biosensors to Gene Chips", Nucleic Acids Research, 28(16):3011-3016, (2000).

Waters et al., Microchip Device for Cell Lysis, Multiplex PCR Amplification, and Electrophoretic Sizing, Analytical Chemistry, American Chemical Society, 1998, 70(1): 158-162.

Weigl, et al., Microfluidic Diffusion-Based Separation and Detection, www.sciencemag.org, 1999, vol. 283, pp. 346-347.

Wu et al., "Polycationic dendrimers interact with RNA molecules: polyamine dendrimers inhibit the catalytic activity of Candida ribozymes", Chem Commun. (2005) 3: 313-315.

Yoza et al., "Fully Automated DNA Extraction from Blood Using Magnetic Particles Modified with a Hyperbranched Polyamidoamine Dendrimer", J Biosci Bioeng, 2003, 95(1): 21-26.

Yoza et al., DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer, J Biotechnol., Mar. 20, 2003, 101(3): 219-228.

Zhang et al., "PCR Microfluidic Devices for DNA Amplification," Biotechnology Advances, 24:243-284 (2006).

Zhang et al., "Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends," Nucl Acids Res., (2007) 35(13):4223-4237.

Zhou et al., "Cooperative binding and self-assembling behavior of cationic low molecular-weight dendrons with RNA molecules", Org Biomol Chem. (2006) 4(3): 581-585.

Page 12

(56) References Cited

OTHER PUBLICATIONS

Zhou et al., "PAMAM dendrimers for efficient siRNA delivery and potent gene silencing", Chem Comm.(Camb.) (2006) 22: 2362-2364.

Zou et al., "A Micromachined Integratable Thermal Reactor," technical digest from International Electron Devices Meeting, IEEE, Washington, D.C., Dec. 2-5, 2001 (6 pages).

Petition for Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper 1 in IPR2019-00488) dated Dec. 20, 2018 (94 pages).

Declaration of Bruce K. Gale, Ph.D. (Exhibit 1001 in IPR2019-00488 and IPR2019-00490) dated Dec. 20, 2018 (235 pages).

Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Papers 5 and 6 in IPR2019-00488) dated Apr. 18, 2019 (79 pages).

Decision instituting Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper 8 in IPR2019-00488) dated Jul. 16, 2019 (20 pages).

Petition for Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper 1 in IPR2019 00490) dated Dec. 20, 2018 (85 pages).

Declaration of Michael G. Mauk, Ph.D. In Support of Patent Owner Preliminary Responses in IPR2019-00488 and IPR2019-00490 dated Apr. 18, 2019 (43 pages).

Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Papers 5 and 6 in IPR2019-00490) dated Apr. 18, 2019 (73 pages).

Decision instituting Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper 8 in IPR2019-00490) dated Jul. 16, 2019 (23 pages).

Patent Owner's Response in Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Paper 25 in IPR2019-00490) dated Oct. 16, 2019 (80 pages).

Patent Owner's Response in Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Paper 25 in IPR 2019-00488) dated Oct. 16, 2019 (93 pages).

Transcript of Deposition of Bruce K. Gale, Ph.D., in Support of Patent Owner's Responses (Exhibit 2012 in IPR2019-00488 and IPR2019-00490), taken Sep. 24, 2019 (124 pages).

Declaration of M. Allen Northrup, Ph.D. In Support of Patent Owner's Responses (Exhibit 2036 in IPR2019-00488 and IPR2019-00490) dated Oct. 16, 2019 (365 pages).

Complaint filed by Becton, *Dickinson et al.*, v. *NeuModx Molecular, Inc.* on Jun. 18, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS, Infringement Action involving U.S. Pat. No. 7,998,708; U.S. Pat. No. 8,273,308; U.S. Pat. No. 8,323,900; U.S. Pat. No. 8,415,103; U.S. Pat. No. 8,703,069; and U.S. Pat. No. 8,709,787 (29 pages).

Answer to Complaint filed by NeuModx Molecular, Inc. on Aug. 9, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (24 pages).

Amended Answer to Complaint filed by NeuModx Molecular, Inc. on Oct. 4, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (31 pages).

Altet et al., [Eds.] "Thermal Transfer and Thermal Coupling in IC's", Thermal Testing of Integrated Circuits; Chapter 2 (2002) Springer Science pp. 23-51.

Ateya et al., "The good, the bad, and the tiny: a review of microflow cytometry", Anal Bioanal Chem. (2008) 391(5):1485-1498.

Auroux et al., "Miniaturised nucleic acid analysis", Lab Chip. (2004) 4(6):534-546.

Baechi et al., "High-density microvalve arrays for sample processing in PCR chips", Biomed Microdevices. (2001) 3(3):183-190. Baker M., "Clever PCR: more genotyping, smaller volumes."

Becker H. "Fabrication of Polymer Microfluidic Devices", in Biochip Technology (2001), Chapter 4, pp. 63-96.

Nature Methods (May 2010) 70(5):351-356.

Becker H., "Microfluidic Devices Fabricated by Polymer Hot Embossing," in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002), Chapter 13, 32 pages.

Becker H., "Microfluidics: A Technology Coming of Age", Med Device Technol. (2008) 19(3):21-24.

Becker et al., "Portable CE system with contactless conductivity detection in an injection molded polymer chip for on-site food analysis", SPIE Proceedings MOEMS-MEMS 2008 Micro and Nanofabrication (2008) vol. 6886 in 8 pages.

Belgrader et al., "Rapid PCR for Identity Testing Using a Battery-Powered Miniature Thermal Cycler", J Forensic Sci. (1998) 43(2):315-310

Belgrader et al., "A minisonicator to rapidly disrupt bacterial spores for DNA analysis.", Anal Chem. (1999) 71(19):4232-4236.

Belgrader et al., "Real-time PCR Analysis on Nucleic Acids Purified from Plasma Using a Silicon Chip", Micro Total Analysis Systems 2000 (pp. 525-528). Springer, Dordrecht.

Belgrader et al., "A microfluidic cartridge to prepare spores for PCR analysis", Biosens Bioelectron. (2000) 14(10-11):849-852.

Belgrader et al., "A Battery-Powered Notebook Thermal Cycler for Rapid Multiplex Real-Time PCR Analysis", Anal Chem. (2001) 73(2):286-289.

Belgrader et al., "Rapid and Automated Cartridge-based Extraction of Leukocytes from Whole Blood for Microsatellite DNA Analysis by Capillary Electrophoresis", Clin Chem. (2001) 47(10):1917-1933.

Belgrader et al., "A Rapid, Flow-through, DNA Extraction Module for Integration into Microfluidic Systems", Micro Total Analysis Systems (2002) pp. 697-699). Springer, Dordrecht.

Belgrader et al., "Development of a Battery-Powered Portable Instrumentation for Rapid PCR Analysis", in Integrated Microfabicated Devices, (2002) Ch. 8, pp. 183-206, CRC Press.

Bell M., "Integrated Microsystems in Clinical Chemistry", in Integrated Microfabicated Devices, (2002) Ch. 16, pp. 415-435, CRC Press.

Berthier et al., "Managing evaporation for more robust microscale assays Part 1. Volume loss in high throughput assays", Lab Chip (2008) 8(6):852-859.

Berthier et al., "Managing evaporation for more robust microscale assays Part 2. Characterization of convection and diffusion for cell biology", Lab Chip (2008) 8(6):860-864.

Berthier et al., "Microdrops," in Microfluidics for Biotechnology (2006), Chapter 2, pp. 51-88.

Biomerieux Press Release: "bioMérieux—2018 Financial Results," dated Feb. 27, 2019, accessed at www.biomerieux.com, pp. 13.

Blanchard et al., "Micro structure mechanical failure characterization using rotating Couette flow in a small gap", J Micromech Microengin. (2005) 15(4):792-801.

Blanchard et al., "Single-disk and double-disk viscous micropumps", Sensors and Actuators A (2005) 122:149-158.

Blanchard et al., "Performance and Development of a Miniature Rotary Shaft Pump", J Fluids Eng. (2005) 127(4):752-760.

Blanchard et al., "Single-disk and double-disk viscous micropump", ASME 2004 Inter'l Mechanical Engineering Congress & Exposition, Nov. 13-20, 2004, Anaheim, CA, IMECE2004-61705:411-417.

Blanchard et al., "Miniature Single-Disk Viscous Pump (Single-DVP), Performance Characterization", J Fluids Eng. (2006) 128(3):602-610.

Brahmasandra et al., "Microfabricated Devices for Integrated DNA Analysis", in Biochip Technology by Cheng et al., [Eds.] (2001) pp. 229-250.

Bu et al., "Design and theoretical evaluation of a novel microfluidic device to be used for PCR", J Micromech Microengin. (2003) 13(4):S125-S130.

Cady et al., "Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform", Sensors Actuat B. (2005) 107:332-341.

Carles et al., "Polymerase Chain Reaction on Microchips" in Methods in Molecular Biology—Microfluidic Techniques, Reviews & Protocols by Minteer S.D. [Ed.] Humana Press (2006), vol. 321; Chapter 11, pp. 131-140.

Chang-Yen et al., "A novel integrated optical dissolved oxygen sensor for cell culture and micro total analysis systems", IEEE Technical Digest MEMS International Conference Jan. 24, 2002, 4 pages.

Page 13

(56) References Cited

OTHER PUBLICATIONS

Chang-Yen et al., "A PDMS microfluidic spotter for fabrication of lipid microarrays", IEEE 3rd EMBS Special Topic Conference May 12-15, 2005; 2 pages.

Chang-Yen et al., "Design and fabrication of a multianalyte-capable optical biosensor using a multiphysics approach", IEEE 3rd EMBS Special Topic Conference May 12-15, 2005; 2 pages.

Chang-Yen et al., "A Novel PDMS Microfluidic Spotter for Fabrication of Protein Chips and Microarrays", IEEE J of Microelectromech Sys. (2006) 15(5): 1145-1151.

Chang-Yen et al., "Spin-assembled nanofilms for gaseous oxygen sensing." Sens Actuators B: Chemical (2007), 120(2):426-433.

Chen P-C., "Accelerating micro-scale PCR (polymerase chain reactor) for modular lab-on-a-chip system", LSU Master's Theses—Digital Commons, (2006) 111 pages.

Cheng et al., "Biochip-Based Portable Laboratory", Biochip Tech. (2001):296-289.

Cho et al., "A facility for characterizing the steady-state and dynamic thermal performance of microelectromechanical system thermal switches", Rev Sci Instrum. (2008) 79(3):034901-1 to -8. Chong et al., "Disposable Polydimethylsioxane Package for 'Bio~Microfluidic System'", IEEE Proceedings Electonic Components and Technology (2005); 5 pages.

Chou et al., "A miniaturized cyclic PCR device—modeling and experiments", Microelec Eng. (2002) 61-62:921-925.

Christel et al., "Nucleic Acid Concentration and PCR for Diagnostic Applications", in Micro Total Analysis Systems. (1998) D.J. Harrison et al. [Eds.] pp. 277-280.

Christel et al., "Rapid, Automated Nucleic Acid Probe Assays Using Silicon Microstructures for Nucleic Acid Concentration", J Biomech Eng. (1999) 121(1):22-27.

Christensen et al., "Characterization of interconnects used in PDMS microfluidic systems", J Micromech Microeng. (2005) 15:928 in 8 pages.

Crews et al, "Rapid Prototyping of a Continuous-Flow PCR Microchip", Proceedings of the AiChE Annual Meeting(Nov. 15, 2006) (335a) 3 pages.

Crews et al., Thermal gradient PCR in a continuous-flow microchip. In Microfluidics, BioMEMS, and Medical Microsystems V; Jan. 2007; vol. 6465, p. 646504; 12 pages.

Crews et al., "Continuous-flow thermal gradient PCR", Biomed Microdevices. (2008) 10(2):187-195.

Cui et al., "Electrothermal modeling of silicon PCR chips", In MEMS Design, Fabrication, Characterization, and Packaging, (Apr. 2001) (vol. 4407, pp. 275-280.

Danaher Press Release: "Danaher to Acquire Cepheid for \$53.00 per share, or approximately \$4 Billion," dated Sep. 6, 2016, accessed at www.danaher.com, pp. 3.

Demchenko A.P., "The problem of self-calibration of fluorescence signal in microscale sensor systems", Lab Chip. (2005) 5(11):1210-1223.

Dineva et al., "Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings", Analyst. (2007) 132(12):1193-1199.

Dishinger et al., "Multiplexed Detection and Applications for Separations on Parallel Microchips", Electophoresis. (2008) 29(16):3296-3305.

Dittrich et al., "Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in muTAS?", Anal Bioanal Chem. (2005) 382(8):1771-1782.

Dittrich et al., "Lab-on-a-chip: microfluidics in drug discovery", Nat Rev Drug Discov. (2006) 5(3):210-208.

Dunnington et al., "Approaches to Miniaturized High-Throughput Screening of Chemical Libraries", in Integrated Microfabicated Devices, (2002) Ch. 15, pp. 371-414, CRC Press.

Eddings et al., "A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices", J Micromech Microengin. (2006) 16(11):2396.

Edwards et al., "Micro Scale Purification Systems for Biological Sample Preparation", Biomed Microdevices (2001) 3(3):211-218.

Edwards et al., "A microfabricated thermal field-flow fractionation system", Anal Chem. (2002) 74(6):1211-1216.

Ehrlich et al., "Microfluidic devices for DNA analysis", Trends Biotechnol. (1999) 17(8):315-319.

El-Ali et al., "Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor", Sens Actuators A: Physical (2004) 110(1-3):3-10.

Erickson et al., "Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems", Lab Chip (2003) 3(3):141-149.

Erickson et al., "Integrated Microfluidic Devices", Analytica Chim Acta. (2004) 507:11-26.

Erill et al., "Development of a CMOS-compatible PCR chip: comparison of design and system strategies", J Micromech Microengin. (2004) 14(11):1-11.

Fair R.B., Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics Nanofluid. (2007) 3:245-281.

Fan et al., "Integrated Plastic Microfluidic Devices for Bacterial Detection", in Integrated Biochips for DNA Analysis by Liu et al. [Eds], (2007) Chapter 6, pp. 78-89.

Fiorini et al., "Disposable microfluidic devices: fabrication, function, and application", Biotechniques (2005) 38(3):429-446.

Frazier et al., "Integrated micromachined components for biological analysis systems", J Micromech. (2000) 1(1):67-83.

Gale et al., "Micromachined electrical field-flow fractionation (mu-EFFF) system", IEEE Trans Biomed Eng. (1998) 45(12):1459-1469.

Gale et al., "Geometric scaling effects in electrical field flow fractionation. 1. Theoretical analysis", Anal Chem. (2001) 73(10):2345-2352.

Gale et al., "BioMEMS Education at Louisiana Tech University", Biomed Microdevices, (2002) 4:223-230.

Gale et al., "Geometric scaling effects in electrical field flow fractionation. 2. Experimental results", Anal Chem. (2002) 74(5):1024-1030.

Gale et al., "Cyclical electrical field flow fractionation", Electrophoresis. (2005) 26(9):1623-1632.

Gale et al., "Low-Cost MEMS Technologies", Elsevier B.V. (2008), Chapter 1.12; pp. 342-372.

Garst et al., "Fabrication of Multilayered Microfluidic 3D Polymer Packages", IEEE Proceedings Electronic Components & Tech, Conference May/Jun. 2005, pp. 603-610.

Gärtner et al., "Methods and instruments for continuous-flow PCR on a chip", Proc. SPIE 6465, Microfluidics, BioMEMS, and Medical Microsystems V, (2007) 646502; 8 pages.

Giordano et al., "Toward an Integrated Electrophoretic Microdevice for Clinical Diagnostics", in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002) Chapter 1; pp. 1-34.

Graff et al., "Nanoparticle Separations Using Miniaturized Field-flow Fractionation Systems", Proc. Nanotechnology Conference and Trade Show (NSTI) (2005); pp. 8-12.

Greer et al., "Comparison of glass etching to xurography prototyping of microfluidic channels for DNA melting analysis", J Micromech Microengin. (2007) 17(12):2407-2413.

Guijt et al., "Chemical and physical processes for integrated temperature control in microfluidic devices", Lab Chip. (2003) 3(1):1-

Gulliksen A., "Microchips for Isothermal Amplification of RNA", Doctorial Thesis (2007); Department of Mol. Biosciences—University of Oslo; 94 pages.

Guttenberg et al., "Planar chip device for PCR and hybridization with surface acoustic wave pump", Lab Chip. (2005) 5(3):308-317. Haeberle et al., "Microfluidic platforms for lab-on-a-chip applications", Lab Chip. (2007) 7(9):1094-1110.

Hansen et al., "Microfluidics in structural biology: smaller, faster . . . better", Curr Opin Struct Biol. (2003) 13(5):538-544. Heid et al., "Genome Methods—Real Time Quantitative PCR", Genome Res. (1996) 6(10):986-994.

Henry C.S. [Ed], "Microchip Capillary electrophoresis", Methods in Molecular Biology, Humana Press 339 (2006) Parts I-IV in 250 pages.

Page 14

(56) References Cited

OTHER PUBLICATIONS

Herr et al., "Investigation of a miniaturized capillary isoelectric focusing (cIEF) system using a full-field detection approach", Solid State Sensor and Actuator Workshop, Hilton Head Island (2000), pp. 4.8

Herr et al., "Miniaturized Isoelectric Focusing (μ IEF) as a Component of a Multi-Dimensional Microfluidic System", Micro Total Analysis Systems (2001) pp. 51-53.

Herr et al., Miniaturized Capillary Isoelectric Focusing (cIEF): Towards a Portable High-Speed Separation Method. In Micro Total Analysis Systems (2000) Springer, Dordrecht; pp. 367-370.

Holland et al., "Point-of-care molecular diagnostic systems—past, present and future", Curr Opin Microbiol. (2005) 8(5):504-509. Hong et al., "Integrated nanoliter systems", Nat Biotechnol. (2003) 21(10):1179-1183.

Hong et al., "Molecular biology on a microfluidic chip", J Phys.: Condens Matter (2006) 18(18):S691-S701.

Hong et al., "Integrated Nucleic Acid Analysis in Parallel Matrix Architecture", in Integrated Biochips for DNA Analysis by Liu et al. [Eds], (2007) Chapter 8, pp. 107-116.

Horsman et al., "Forensic DNA Analysis on Microfluidic Devices: A Review", J Forensic Sci. (2007) 52(4):784-799.

Hsieh et al., "Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction", Sens Actuators B: Chemical. (2008) 130(2):848-856.

Huang et al., "Temperature Uniformity and DNA Amplification Efficiency in Micromachined Glass PCR Chip", TechConnect Briefs; Tech Proc. of the 2005 NSTI Nanotechnology Conference and Trade Show. (2005) vol. 1:452-455.

Huebner et al., "Microdroplets: A sea of applications?", Lab Chip. (2008) 8(8):1244-1254.

Iordanov et al., "PCT Array on Chip—Thermal Characterization", IEEE Sensors (2003) Conference Oct. 22-24, 2003; pp. 1045-1048. Ji et al., "DNA Purification Silicon Chip", Sensors and Actuators A: Physical (2007) 139(12):139-144.

Jia et al., "A low-cost, disposable card for rapid polymerase chain reaction", Colloids Surfaces B: Biointerfaces (2007) 58:52-60.

Kaigala et al., "An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electophoresis", The Analyst (2008) 133(3):331-338.

Kajiyama et al., "Genotyping on a Thermal Gradient DNA Chip", Genome Res. (2003) 13(3):467-475.

Kang et al., "Simulation and Optimization of a Flow-Through Micro PCR Chip", NSTI-Nanotech (2006) vol. 2, pp. 585-588.

Kantak et al., "Microfluidic platelet function analyzer for shear-induced platelet activation studies", 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Med and Biol. (May 2002) 5 pages.

Kantak et al., "Microfabricated cyclical electrical field flow fractionation", 7th International Conference on Miniaturized Chomical and Biochem Analysis Sys. (2003) pp. 1199-1202.

Kantak et al., "Platelet function analyzer: Shear activation of platelets in microchannels", Biomedical Microdevices (2003) 5(3):207-

Kantak et al., "Characterization of a microscale cyclical electrical field flow fractionation system", Lab Chip. (2006) 6(5):645-654. Kantak et al., "Effect of carrier ionic strength in microscale cyclical electrical field-flow fractionation", Anal Chem. (2006) 78(8):2557-2564.

Kantak et al., "Improved theory of cyclical electrical field flow fractions", Electrophoresis (2006) 27(14):2833-2843.

Karunasiri et al., "Extraction of thermal parameters of microbolometer infrared detectors using electrical measurement", SPIE's Inter'l Symposium on Optical Science, Engineering, and Instrumentation; Proceedings (1998) vol. 3436, Infrared Technology and Applications XXIV; (1998) 8 pages.

Kelly et al., "Microfluidic Systems for Integrated, High-Throughput DNA Analysis," Analytical Chemistry, (2005), 97A-102A, Mar. 1, 2005, in 7 pages.

Kim et al., "Reduction of Microfluidic End Effects in Micro-Field Flow Fractionation Channels", Proc. MicroTAS 2003, pp. 5-9.

Kim et al., "Multi-DNA extraction chip based on an aluminum oxide membrane integrated into a PDMS microfluidic structure", 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Med and Biol. (May 2005).

Kim et al., "Geometric optimization of a thin film ITO heater to generate a uniform temperature distribution", (2006), Tokyo, Japan; pp. 293-295; Abstract.

Kim et al., "Micro-Raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip", J Micromech Microeng. (2006) 16(3):526-530.

Kim et al., "Patterning of a Nanoporous Membrane for Multisample DNA Extraction", J Micromech Microeng. (2006) 16:33-39. Kim et al., "Performance evaluation of thermal cyclers for PCR in a rapid cycling condition", Biotechniques. (2008) 44(4):495-505. Kim et al., "Quantitative and qualitative analysis of a microfluidic DNA extraction system using a nanoporous AIO(x) membrane", Lab Chip. (2008) 8(9):1516-1523.

Kogi et al., "Microinjection-microspectroscopy of single oil droplets in water: an application to liquid/liquid extraction under solutionflow conditions", Anal Chim Acta. (2000) 418(2):129-135.

Kopf-Sill et al., "Creating a Lab-on-a-Chip with Microfluidic Technologies", in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002) Chapter 2; pp. 35-54.

Kricka L.J., "Microchips, Bioelectronic Chips, and Gene Chips—Microanalyzers for the Next Century", in Biochip Technology by Cheng et al. [Eds]; (2006) Chapter 1, pp. 1-16.

Krishnan et al., "Polymerase chain reaction in high surface-to-volume ratio SiO2 microstructures", Anal Chem. (2004) 76(22):6588-6593

Kuswandi et al., "Optical sensing systems for microfluidic devices: a review", Anal Chim Acta. (2007) 601(2):141-155.

Lagally et al., "Genetic Analysis Using Portable PCR-CE Microsystem", Proceedings 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems (2003) pp. 1283-1286.

Lagally et al., "Integrated portable genetic analysis microsystem for pathogen/infectious disease detection", Anal Chem. (2004) 76(11):3152-3170.

Lauerman L.H., "Advances in PCR technology", Anim Health Res Rev. (2004) 5(2):247-248.

Lawyer et al., "High-level Expression, Purification, and Enzymatic Characterization of Full-length Thermus aquaticus DNA Polymerase and a Truncated Form Deficient in 5'to 3'Exonuclease Activity." Genome research (1993) 2(4):275-287.

Lee et al., "Submicroliter-volume PCR chip with fast thermal response and very power consumption", 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, (2003) pp. 187-190.

Lee et al., "Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption", Lab Chip. (2004) 4(4):401-407.

Lewin et al., "Use of Real-Time PCR and Molecular Beacons to Detect Virus Replication in Human Immunodeficiency Virus Type 1-infected Individuals on Prolonged Effective Antiretroviral Therapy". J Virol. (1999) 73(7), 6099-6103.

Li et al., "Effect of high-aspect-ratio microstructures on cell growth and attachment", 1st Annual Inter'l IEEE-EMBS Special Topic Conference on Microtechnologies in Med and Biol. Proceedings Cat. No. 00EX451; (Oct. 2000) Poster 66, pp. 531-536.

Li PCH., "Micromachining Methods et al." in Microfluidic Labon-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 2-3 to 2-5; pp. 10-49.

Li PCH., "Microfluidic Flow" in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 3, pp. 55-99.

Li PCH., "Detection Methods" in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 7, pp. 187-249.

Li PCH., "Applications to Nucleic Acids Analysis" in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 9; pp. 293-325.

Page 15

(56) References Cited

OTHER PUBLICATIONS

Li et al., "A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control", J Microelectromech Syst. (2006) 15(1):223-236.

Lien et al., "Integrated reverse transcription polymerase chain reaction systems for virus detection", Biosens Bioelectron. (2007) 22(8):1739-1748.

Lien et al., "Microfluidic Systems Integrated with a Sample Pretreatment Device for Fast Nucleic-Acid Amplification", J Microelectro Sys. (2008) 17(2):288-301.

Lifesciences et al., "Microfluidics in commercial applications; an industry perspective." Lab Chip (2006) 6:1118-1121.

Lin et al., "Simulation and experimental validation of micro polymerase chain reaction chips", Sens Actuators B: Chemical. (2000) 71(1-2):127-133.

Linder et al., "Microfluidics at the Crossroad with Point-of-care Diagnostics", Analyst (2007) 132:1186-1192.

Liu et al., "Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing", Anal Chem. (2007) 79(5):1881-1889.

Liu et al. [Eds], Integrated Biochips for DNA Analysis—Biotechnology Intelligence Unit; Springer/Landes Bioscience (2007) ISBN:978-0-387-76758-1; 216 pages.

Locascio et al., "ANYL 67 Award Address—Microfluidics as a tool to enable research and discovery in the life sciences", Abstract; The 236th ACS National Meeting (Aug. 2008); 2 pages.

Mahjoob et al., "Rapid microfluidic thermal cycler for polymerase chain reaction nucleic acid amplification", Intel J Heat Mass Transfer. (2008) 51(9-10):2109-2122.

Marcus et al., "Parallel picoliter rt-PCR assays using microfluidics", Anal Chem. (2006) 78(3):956-958.

Mariella R.P. Jr., "Microtechnology", Thrust Area Report FY 96 UCRL-ID-125472; Lawrence Livermore National Lab., CA (Feb. 1997) Chapter 3 in 44 pages.

Mariella R., "Sample preparation: the weak link in microfluidics-based biodetection", Biomed Microdevices. (2008) 10(6):777-784. McMillan et al., "Application of advanced microfluidics and rapid PCR to analysis of microbial targets", In Proceedings of the 8th international symposium on microbial ecology (1999), in 13 pages. Melin et al., "Microfluidic large-scale integration: the evolution of design rules for biological automation", Annu Rev Biophys Biomol Struct. (2007) 36:213-231.

Merugu et al., "High Throughput Separations Using a Microfabricated Serial Electric Split Ssystem" (2003), Proceedings of μ TAS 2003, 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Oct. 5-9, 2003, Squaw Valley, California; 1191-1194, in 3 pages.

Miao et al., "Low cost micro-PCR array and micro-fluidic integration on single silicon chip", Int'l J Comput Eng Science (2003) 4(2):231-234.

Miao et al., "Flip-Chip packaged micro-plate for low cost thermal multiplexing", Int'l J Comput Eng Science. (2003) 4(2):235-238. Micheletti et al., "Microscale Bioprocess Optimisation", Curr Opin Biotech. (2006) 17:611-618.

MicroTAS 2005., "Micro Total Analysis Systems", Proceedings 9th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Boston, MA in Oct. 10-12, 2005 in 1667 pages.

MicroTAS 2007., "Micro Total Analysis Systems", Proceedings 11th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Paris, France in Oct. 7-11, 2007 in 1948 pages.

MicroTAS 2007., "Micro Total Analysis Systems", Advance Program for the Proceedings 11th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Paris, France in Oct. 7-11, 2007 in 42 pages.

Mitchell et al., "Modeling and validation of a molded polycarbonate continuous-flow polymerase chain reaction device," Microfluidics, BioMEMS, and Medical Microsystems, Proc. SPIE (2003) 4982:83-98.

Myers et al., "Innovations in optical microfluidic technologies for poin-of-care diagnostics", Lab Chip (2008) 8:2015-2031.

Namasivayam et al., "Advances in on-chip photodetection for applications in miniaturized genetic analysis systems", J Micromech Microeng. (2004) 14:81-90.

Narayanan et al., "A microfabricated electrical SPLITT system," Lab Chip, (2006) 6:105-114.

Neuzil et al., "Disposable real-time microPCR device: lab-on-a-chip at a low cost," Mol. Biosyst., (2006) 2:292-298.

Neuzil et al., "Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes," Nucleic Acids Research, (2006) 34(11)e77, in 9 pages.

Nguyen et al. [Eds], "Microfluidics for Internal Flow Control: Microfluidics" in Fundamentals and Applications of Microfluidics; 2nd Edition (2006) Introduction Chapter 1, pp. 1-9.

Nguyen et al. [Eds], "Microfluidics for Internal Flow Control: Microvalves" in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 6, pp. 211-254.

Nguyen et al. [Eds], "Microfluidics for Internal Flow Control: Micropumps" in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 7, pp. 255-309.

Nguyen et al. [Eds], "Microfluidics for Life Sciences and Chemistry: Microdispensers" in Fundamentals and Applications of Microfluidics; (2006), Chapter 11, pp. 395-418.

Nguyen et al. [Eds], "Microfluidics for Life Sciences and Chemistry: Microreactors" in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 13, pp. 443-477.

Ning et al., "Microfabrication Processes for Silicon and Glass Chips", in Biochip Technology, CRC-Press (2006) Chapter 2, pp. 17-38.

Northrup et al., "A MEMs-based Miiniature DNA Analysis System," Lawrence Livermore National Laboratory, (1995), submitted to Transducers '95, Stockholm, Sweden, Jun. 25-29, 1995, in 7 pages. Northrup et al., "Advantages Afforded by Miniaturization and Integration of DNA Analysis Instrumentation," Microreaction Technology, (1998) 278-288.

Northrup et al., "A New Generation of PCR Instruments and Nucleic Acid Concentration Systems," in PCR Applications: Protocols for Functional Genomics, (1999), Chapter 8, pp. 105-125.

Northrup, "MICROFLUIDICS, A few good tricks," Nature materials (2004), 3:282-283.

Northrup et al., "Microfluidics-based integrated airborne pathogen detection systems," Abstract, Proceedings of the SPIE, (2006), vol. 6398, Abstract in 2 pages.

Oh et al., "World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays," Lab Chip, (2005), 5:845-850.

Ohno et al., "Microfluidics: Applications for analytical purposes in chemistry and biochemistry," Electrophoresis (2008), 29:4443-4453.

Pal et al., "Phase Change Microvalve for Integrated Devices," Anal. Chem. (2004), 76(13):3740-3748, Jul. 1, 2004, in 9 pages.

Pal et al., "An integrated microfluidic for influenza and other genetic analyses," Lab Chip, (2005), 5:1024-1032, in 9 pages.

Pamme, "Continuous flow separations in microfluidic devices," Lab Chip, (2007), 7:1644-1659.

Pang et al., "A novel single-chip fabrication technique for three-dimensional MEMS structures," Institute of Microelectronics, Tsinghua University, Beijing, P.R. China, (1998), IEEE, 936-938.

Pang et al., "The Study of Single-Chip Integrated Microfluidic System," Tsinghua University, Beijing, P.R. China, (1998), IEEE, 895-898.

Papautsky et al., "Effects of rectangular microchannel aspect ratio on laminar friction constant", in Nucrofluidic Devices and Systems II (1999) 3877:147-158.

Petersen, Kurt E., "Silicon as a Mechanical Material." Proceedings of the IEEE, (May 1982) 70(5):420-457.

Page 16

(56) References Cited

OTHER PUBLICATIONS

Petersen et al., "Toward Next Generation Clinical Diagnostic Instruments: Scaling and New Processing Paradigms," Biomedical Microdevices (1998) 1(1):71-79.

Poser et al., "Chip elements for fast thermocycling," Sensors and Actuators A, (1997), 62:672-675.

Pourahmadi et al., "Toward a Rapid, Integrated, and Fully Automated DNA Diagnostic Assay for Chlamydia trachomatis and Neisseria gonorrhoeae," Clinical Chemistry, (2000), 46(9):1511-1513.

Pourahmadi et al., "Versatile, Adaptable and Programmable Microfluidic Platforms for DNA Diagnostics and Drug Discovery Assays," Micro Total Analysis Systems, (2000), 243-248.

Raisi et al., "Microchip isoelectric focusing using a miniature scanning detection system," Electrophoresis, (2001), 22:2291-2295. Raja et al., "Technology for Automated, Rapid, and Quantitative PCR or Reverse Transcriptin-PCR Clinical Testing," Clinical Chemistry, (2005), 51(5):882-890.

Reyes et al., "Micro Total Analysis Systems. 1. Introduction, Theory, and Technology", Anal Chem (2002) 74:2623-2636.

Rodriguez et al., "Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis," Electrophoresis, (2003), 24:172-178.

Roper et al., "Advances in Polymer Chain Reaction on Microfluidic Chips," Anal. Chem., (2005), 77:3887-3894.

Ross et al., "Scanning Temperature Gradient Focusing for Simultaneous Concentration and Separation of Complex Samples," Micro Total Analysis Systems 2005, vol. 2, (2005), Proceedings of μTAS 2005, Ninth International Conference on Miniaturized Systems for Chemistry and Life Sciences, Oct. 9-13, 2005, Boston, Massachusetts: 1022-1024.

Ross et al., "Simple Device for Multiplexed Electrophoretic Separations Using Gradient Elution Moving Boundary Electrophoresis with Channel Current Detection," Anal. Chem., (2008), 80(24):9467-9474.

Sadler et al., "Thermal Management of BioMEMS: Temperature Control for Ceramic-Based PCR and DNA Detection Devices," IEEE Transactions on Components and Packaging Technologies, (2003) 26(2):309-316.

Sant et al., "An Integrated Optical Detector for Microfabricated Electrical Field Flow Fractionation System," Proceedings of μ TAS 2003, 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Oct. 5-9, 2003, Squaw Valley, California; pp. 1259-1262.

Sant et al., "Geometric scaling effects on instrumental plate height in field flow fractionation", J Chromatography A (2006) 1104:282-290.

Sant H.J., "Reduction of End Effect-Induced Zone Broadening in Field-Flow Fractionation Channels", Anl Chem. (2006) 78:7978-7985.

Sant et al., "Microscale Field-Flow Fractionation: Theory and Practice", in Microfluidic Technologies for Miniaturized Analysis Systems. (2007) Chapter 12, pp. 4710521.

Schäferling et al., "Optical technologies for the read out and quality control of DNA and protein microarrays," Anal Bioanal Chem, (2006), 385: 500-517.

Serpengüzel et al., "Microdroplet identification and size measurement in sprays with lasing images", Optics express (2002) 10(20):1118-1132

Shackman et al., "Gradient Elution Moving Boundary Electrophoresis for High-Throughput Multiplexed Microfluidic Devices," Anal. Chem. (2007), 79(2), 565-571.

Shackman et al., "Temperature gradient focusing for microchannel separations," Anal Bioanal Chem, (2007), 387:155-158.

Shadpour et al., "Multichannel Microchip Electrophoresis Device Fabricated in Polycarbonate with an Integrated Contact Conductivity Sensor Array," Anal Chem., (2007), 79(3), 870-878.

Sia et al., "Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies," Electrophoresis, (2003), 24:3563-3576.

Sigurdson M., "AC Electrokinetic Enhancement for Assay Enhancement", ProQuest LLC (2008) Doctoral Thesis UMI Microform 3319791 in 24 pages.

Singh et al., "PCR thermal management in an integrated Lab on Chip," Journal of Physics: Conference Series, (2006), 34:222-227. Situma et al., "Merging microfluidics with microarray-based bioassays", Biomol Engin. (2006) 23:213-231.

Smith et al., "(576d) Micropatterned fluid lipid bilayers created using a continuous flow microspotter for multi-analyte assays," (2007), Biosensors II, 2007 AIChE Annual Meeting, Nov. 8, 2007, Abstract in 2 pages.

Sommer et al., "Introduction to Microfluidics", in Microfluidics for Biological Applications by Tian et al. [Eds] (2008) Chapter 1, pp. 1-34.

Squires et al., "Microfluidics: Fluid physics at the nanoliter scale," Reviews of Modern Physics, (2005), 77(3):977-1026.

Sundberg et al., "Solution-phase DNA mutation scanning and SNP genotyping by nanoliter melting analysis," Biomed Microdevices, (2007), 9:159-166, in 8 pages.

Tabeling, P. [Ed.], "Physics at the micrometric scale," in Introduction to Microfluidics (2005) Chapter 1, pp. 24-69.

Tabeling, P. [Ed.], "Hydrodynamics of Microfluidic Systems", in Introduction to Microfluidics; (2005) Chapter 2, pp. 70-129.

Tabeling, P. [Ed.], Introduction to Microfluidics; (2005) Chapters 5-7, pp. 216-297.

Taylor et al., Fully Automated Sample Preparation for Pathogen Detection Performed in a Microfluidic Cassette, in Micro Total Analysis Systems, Springer (2001), pp. 670-672.

Taylor et al., "Lysing Bacterial Spores by Sonication through a Flexible Interface in a Microfluidic System," Anal. Chem., (2001), 73(3):492-496.

Taylor et al., "Microfluidic Bioanalysis Cartridge with Interchangeable Microchannel Separation Components," (2001), The 11th International Conference on Solid-State Sensors and Actuators, Jun. 10-14, 2001, Munich, Germany; 1214-1247.

Taylor et al., "Disrupting Bacterial Spores and Cells using Ultrasound Applied through a Solid Interface," (2002), 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, May 2-4, 2002, Madison, Wisconsin; 551-555.

Thorsen et al., "Microfluidic Large-scale integration," Science, (2002), 298:580-584.

Toriello et al., "Multichannel Reverse Transcription-Polymerase Chain Reaction Microdevice for Rapid Gene Expression and Biomarker Analysis," Anal. Chem., (2006) 78(23):7997-8003.

Ugaz et al., "Microfabricated electrophoresis systems for DNA sequencing and genotyping applications," Phil. Trans. R. Soc. Lond. A, (2004), 362:1105-1129.

Ugaz et al., "PCR in Integrated Microfluidic Systems", in Integrated Biochips for DNA Analysis by Liu et al. [Eds]; (2007) Chapter 7, pp. 90-106.

Ullman et al., "Luminescent oxygen channeling assay (LOCITM): sensitive, broadly applicable homogeneous immunoassay method". Clin Chem. (1996) 42(9), 1518-1526.

Vinet et al., "Microarrays and microfluidic devices: miniaturized systems for biological analysis," Microelectronic Engineering, (2002), 61-62:41-47.

Wang et al., "From biochips to laboratory-on-a-chip system", in Genomic Signal Processing and Statistics by Dougherty et al. [Eds]; (2005) Chapter 5, pp. 163-200.

Wang et al., "A disposable microfluidic cassette for DNA amplification and detection", Lab on a Chip (2006) 6(1):46-53.

Wang et al., "Micromachined Flow-through Polimerase Chain Reaction Chip Utilizing Multiple Membrane-activated Micropumps," (2006), MEMS 2006, Jan. 22-26, 2006, Istanbul, Turkey; 374-377. Woolley A.T., "Integrating Sample Processing and Detection with Microchip Capillary Electrophoresis of DNA", in Integrated Biochips for DNA Analysis by Liu et al. [Eds]; (2007) Chapter 5, pp. 68-77. Xiang et al., "Real Time PCR on Disposable PDMS Chip with a Miniaturized Thermal Cycler," Biomedical Microdevices, (2005), 7(4):273-279.

Xuan, "Joule heating in electrokinetic flow," Electrophoresis, (2008), 298:33-43.

Page 17

(56) References Cited

OTHER PUBLICATIONS

Yang et al., "High sensitivity PCR assay in plastic micro reactors," Lab Chip, (2002), 2:179-187.

Yang et al., "An independent, temperature controllable-microelectrode array," Anal. Chem., (2004), 76(5):1537-1543.

Yang et al., "Cost-effective thermal isolation techniques for use on microfabricated DNA amplification and analysis devices," J Micromech Microeng, (2005), 15:221-230.

Yobas et al., Microfluidic Chips for Viral RNA Extraction & Detection, (2005), 2005 IEEE, 49-52.

Yobas et al., "Nucleic Acid Extraction, Amplification, and Detection on Si-Based Microfluidic Platforms," IEEE Journal of Solid-State Circuits, (2007), 42(8):1803-1813.

Yoon et al., "Precise temperature control and rapid thermal cycling in a micromachined DNA polymer chain reaction chip," J. Micromech. Microeng., (2002), 12:813-823.

Zhang et al, "Temperature analysis of continuous-flow micro-PCR based on FEA," Sensors and Actuators B, (2002), 82:75-81.

Zhang et al, "Continuous Flow PCR Microfluidics for Rapid DNA Amplification Using Thin Film Heater with Low Thermal Mass," Analytical Letters, (2007), 40:1672-1685, in 15 pages.

Zhang et al, "Direct Adsorption and Detection of Proteins, Including Ferritin, onto Microlens Array Patterned Bioarrays," J Am Chem Soc., (2007), 129:9252-9253.

Zhang et al, "Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trens," Biotechnology Advances, (2007), 25:483-514.

Zhao et al, "Heat properties of an integrated micro PCR vessel," Proceedings of SPIE, (2001), International Conference on Sensor Technology, 4414:31-34.

Zou et al., "Micro-assembled multi-chamber thermal cycler for low-cost reaction chip thermal multiplexing," Sensors and Actuators A, (2002), 102:114-121.

Zou et al., "Miniaturized Independently Controllable Multichamber Thermal Cycler," IEEE Sensors Journal, (2003), 3(6):774-780.

Petitioner's Reply to Patent Owner's Response to Petition in Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Paper 32 in IPR 2019-00488) dated Jan. 31, 2020 (34 pages).

Petitioner's Reply to Patent Owner's Response to Petition in Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Paper 32 in IPR 2019-00490) dated Jan. 31, 2020 (35 pages).

Second Declaration of Bruce K. Gale, Ph.D. (Exhibit 1026 in IPR2019-00488 and IPR2019-00490) dated Jan. 31, 2020 (91 pages).

Transcript of Deposition of M. Allen Northrup, Ph.D., (Exhibit 1027 in IPR2019-00488 and IPR2019-00490), taken Dec. 19, 2019 (109 pages).

Apr. 21, 2020

Sheet 1 of 121

U.S. Patent

Apr. 21, 2020

Sheet 2 of 121

US 10,625,262 B2

U.S. Patent

Apr. 21, 2020

Sheet 3 of 121

US 10,625,262 B2

Apr. 21, 2020

Sheet 4 of 121

Apr. 21, 2020

Sheet 5 of 121

Apr. 21, 2020

Sheet 6 of 121

U.S. Patent Apr. 21, 2020 Sheet 7 of 121 US 10,625,262 B2

Apr. 21, 2020

Sheet 8 of 121

FIG. 6

U.S. Patent Apr. 21, 2020 US 10,625,262 B2 **Sheet 9 of 121** First Locations Second Locations 806 802 805 803 809 804 Sensor Actuator 817 Lanes Tight Tolerance Peg Lanes

Apr. 21, 2020

Sheet 10 of 121

Apr. 21, 2020

Sheet 11 of 121

US 10,625,262 B2

FIG. 8B

Apr. 21, 2020

Sheet 12 of 121

U.S. Patent Apr. 21, 2020 Sheet 13 of 121 US 10,625,262 B2

U.S. Patent

Apr. 21, 2020

Sheet 14 of 121

US 10,625,262 B2

FIG. 8E

Apr. 21, 2020

Sheet 15 of 121

US 10,625,262 B2

FIG. 8F

Apr. 21, 2020

Sheet 16 of 121

US 10,625,262 B2

FIG. 80

U.S. Patent Apr. 21, 2020

Sheet 17 of 121

U.S. Patent Apr. 21, 2020 Sheet 18 of 121 US 10,625,262 B2

Apr. 21, 2020

Sheet 19 of 121

U.S. Patent Apr. 21, 2020 Sheet 20 of 121 US 10,625,262 B2

Apr. 21, 2020

Sheet 21 of 121

Apr. 21, 2020

Sheet 22 of 121

FIG. 10A

U.S. Patent Apr. 21, 2020 Sheet 23 of 121 US 10,625,262 B2

FIG. 10B

Apr. 21, 2020

Sheet 24 of 121

FIG. 11

U.S. Patent

Apr. 21, 2020

Sheet 25 of 121

US 10,625,262 B2

Apr. 21, 2020

Sheet 26 of 121

FIG. 12C

U.S. Patent Apr. 21, 2020 Sheet 27 of 121 US 10,625,262 B2

Apr. 21, 2020

Sheet 30 of 121

Apr. 21, 2020

Sheet 31 of 121

FIG. 17A

U.S. Patent Apr. 21, 2020

Sheet 32 of 121

FIG. 17B

Apr. 21, 2020

Sheet 33 of 121

Apr. 21, 2020

Sheet 34 of 121

FIG. 17D

Apr. 21, 2020

Sheet 35 of 121

Apr. 21, 2020

Sheet 36 of 121

Apr. 21, 2020

Sheet 37 of 121

Apr. 21, 2020

Sheet 38 of 121

Apr. 21, 2020

Sheet 39 of 121

FIG. 22

Apr. 21, 2020 Sheet 40 of 121

Apr. 21, 2020

Sheet 41 of 121

Apr. 21, 2020

Sheet 42 of 121

Apr. 21, 2020

Sheet 43 of 121

FIG. 25B

Apr. 21, 2020

Sheet 44 of 121

Apr. 21, 2020

Sheet 45 of 121

Apr. 21, 2020

Sheet 46 of 121

U.S. Patent Apr. 21, 2020 Sheet 47 of 121

FIG. 29

Apr. 21, 2020

Sheet 48 of 121

Apr. 21, 2020

Sheet 49 of 121

U.S. Patent Apr. 21, 2020 Sheet 50 of 121 US 10,625,262 B2

Apr. 21, 2020 Sheet 51 of 121

FIG. 33

Apr. 21, 2020

Sheet 52 of 121

US 10,625,262 B2

FIG. 34

Apr. 21, 2020

Sheet 53 of 121

FIG. 35

Apr. 21, 2020

Sheet 54 of 121

U.S. Patent Apr. 21, 2020 Sheet 55 of 121 US 10,625,262 B2

Apr. 21, 2020

Sheet 56 of 121 US 10,625,262 B2

Apr. 21, 2020

Sheet 57 of 121

Apr. 21, 2020

Sheet 58 of 121

Apr. 21, 2020

Sheet 59 of 121

FIG. 39B

Apr. 21, 2020

Sheet 60 of 121

U.S. Patent Apr. 21, 2020 Sheet 61 of 121 US 10,625,262 B2

FIG. 40C

Apr. 21, 2020

Sheet 62 of 121

Apr. 21, 2020

Sheet 63 of 121

FIG. 42

U.S. Patent Apr. 21, 2020 Sheet 64 of 121

Apr. 21, 2020

Sheet 65 of 121

Apr. 21, 2020

Sheet 66 of 121

Apr. 21, 2020

Sheet 67 of 121

Apr. 21, 2020

Sheet 68 of 121

Apr. 21, 2020

Sheet 69 of 121

Apr. 21, 2020

Sheet 70 of 121

FIG. 47C

U.S. Patent

Apr. 21, 2020

Sheet 71 of 121

US 10,625,262 B2

U.S. Patent Apr. 21, 2020 Sheet 72 of 121 US 10,625,262 B2

Apr. 21, 2020

Sheet 73 of 121

U.S. Patent Apr. 21, 2020 Sheet 74 of 121 US 10,625,262 B2

Apr. 21, 2020

Sheet 75 of 121

Apr. 21, 2020

Sheet 76 of 121

US 10,625,262 B2

FIG. 51B

Apr. 21, 2020

Sheet 77 of 121

FIG. 51C

Apr. 21, 2020

Sheet 78 of 121

FIG. 53

U.S. Patent Apr. 21, 2020 Sheet 80 of 121 US 10,625,262 B2

FIG. 54A

U.S. Patent Apr. 21, 2020 Sheet 81 of 121 US 10,625,262 B2

FIG. 54B

Apr. 21, 2020

Sheet 82 of 121

US 10,625,262 B2

FIG. 55A

Capillary action of controlled volume of wax causes it to fill up the Wax up to the right interface without blocking the liquid flowable microchannel

FIG. 55B

Apr. 21, 2020

Sheet 83 of 121

US 10,625,262 B2

FIG. 56

U.S. Patent Apr. 21, 2020

Sheet 84 of 121

FIG. 57

Apr. 21, 2020

Sheet 85 of 121

U.S. Patent Apr. 21, 2020 Sheet 86 of 121 US 10,625,262 B2

Apr. 21, 2020

Sheet 87 of 121

FIG. 60

U.S. Patent

Apr. 21, 2020

Sheet 88 of 121

US 10,625,262 B2

U.S. Patent

Apr. 21, 2020

Sheet 89 of 121

US 10,625,262 B2

Apr. 21, 2020

Sheet 90 of 121

U.S. Patent Apr. 21, 2020 US 10,625,262 B2 Sheet 91 of 121 1403 FIG. 64 Motorized Shaft 1403

Apr. 21, 2020

Sheet 92 of 121

FIG. 65A

FIG. 65B

Apr. 21, 2020

Sheet 93 of 121

Apr. 21, 2020

Sheet 94 of 121

Apr. 21, 2020

Sheet 95 of 121

Apr. 21, 2020 Sheet 96 of 121

Apr. 21, 2020

Sheet 97 of 121

U.S. Patent Apr. 21, 2020 Sheet 98 of 121 US 10,625,262 B2

FIG. 71

U.S. Patent Apr. 21, 2020 Sheet 99 of 121 US 10,625,262 B2

U.S. Patent Apr. 21, 2020 Sheet 100 of 121 US 10,625,262 B2

Apr. 21, 2020

Sheet 101 of 121

FIG. 73

Apr. 21, 2020

Sheet 102 of 121

Apr. 21, 2020

Sheet 103 of 121

Apr. 21, 2020

Sheet 104 of 121

FIG. 76

Apr. 21, 2020

Sheet 105 of 121

FIG. 77

U.S. Patent

Apr. 21, 2020

Sheet 106 of 121

US 10,625,262 B2

Apr. 21, 2020

Sheet 107 of 121

FIG. 79A

Apr. 21, 2020

Sheet 108 of 121

Apr. 21, 2020

Sheet 109 of 121

U.S. Patent Apr. 21, 2020 Sheet 110 of 121 US 10,625,262 B2

U.S. Patent Apr. 21, 2020

Sheet 111 of 121

U.S. Patent Apr. 21, 2020 Sheet 112 of 121 US 10,625,262 B2

FIG. 83

Apr. 21, 2020

Sheet 113 of 121

U.S. Patent

Apr. 21, 2020

Sheet 114 of 121

US 10,625,262 B2

FIG. 85A

U.S. Patent

Apr. 21, 2020

Sheet 115 of 121

US 10,625,262 B2

Lysis Prep	30 50 10	20 40 30	09	ŎŽ	08 06	<u>oŏī</u>	ĬĬŎ	150	120 140 130	ŎŠĺ	021 091	<u>081</u>	061	200 210	<u> </u>	ሀኒሪ	240	250 250 240	075	280 280 210	300 580	330 350 310 300	350	ŎÉĔ	340	330 340 350 370 370	380 320 320 320	<u> 088</u>	400 390	017	dŠÕ	440 430	097	
Pick up tips &aspirate samples 1-4					 			 	ļ		-					l		 	T		 					\vdash			\vdash	<u> </u>		-	<u> </u>	
Move to EM/AB, dispense & Mix			Q88808		<u> </u>			\vdash	_		 				<u> </u>							 			 	-	<u> </u>		 	-		├	├	
Move to lysis tube and dispense 1-4			77	11							\vdash			-				\vdash			 	<u> </u>			 	├—	_			<u> </u>			 	
Mix 1-4 and drop tips 1-4					-						 			 	 			\vdash			-	<u> </u>			\vdash	├	<u> </u>			 		H	<u> </u>	
Pick up tips &aspirate samples 5-8																		 			 	<u> </u>			\vdash	<u> </u>			 			 	<u> </u>	
Move to EM/AB, dispense & Mix																									 	 							<u> </u>	
Move to lysis tube and dispense 5-8														777	4										 	<u> </u>								
Mix 5-8 and drop tips 5-8															_							1, 1, 1,			 	<u> </u>				<u> </u>			<u> </u>	
Pick up tips &aspirate samples 5-8																						///	///		 -									
Move to EM/AB, dispense & Mix																								en Militer										
Move to lysis tube and dispense 5-8		-																								777	11							
Mix 5-8 and drop tips 5-8		-			\dashv									-																				

FIG. 85B

U.S. Patent

Apr. 21, 2020

Sheet 116 of 121

US 10,625,262 B2

		Ş				7	Š	(S	7	(Ŏ	90	C	9	0	9 9 9 9 9 9	9	Š	<u> </u>	Q.	<u> </u>	Š	0	n	0 9	Ğ	G
3	<u>计</u> 9	之 江	15:1	31	di	<u>;G</u>)G	9999)/	iL) <u>8</u>)h	ĬĹ		LI.		Et	7	91 61	ğį	9 <u> </u>	4	81 21	8 į 8 į	61 61 81	<u>\$</u> 6	20 20 20	55 54	<u> </u>
Pick up tips and aspirate sample waste 1-4				\$\$ 4,\$. \$ s										1										1				
Dispense into waste													<u> </u>					<u> </u>				<u> </u>		 	 	 		
Remove sample foam from 1-4 into waste								/////	/////								<u> </u>											
Pick up tips and aspirate sample waste 5-8								1					*1.5													 		-
Dispense into waste																				<u> </u>				<u> </u>				
Remove sample foam from 5-8 into waste																	/////	<i>\////</i>				 	<u> </u>		 			
Pick up tips and aspirate sample waste 9-12																		 		;			,	 		<u> </u>		ļ
Dispense into waste																							Lagram na					
Remove sample foam from 9-12 into waste																											/////	

FIG. 85C

Apr. 21, 2020

Sheet 117 of 121

FIG. 86 Electronics Block Diagram

Apr. 21, 2020

Sheet 118 of 121

FIG. 87 Processor Base Board Block Diagram

U.S. Patent

Apr. 21, 2020

Sheet 120 of 121

US 10,625,262 B2

U.S. Patent Apr. 21, 2020 Sheet 121 of 121 US 10,625,262 B2

FIG. 90 Micro-Heater Board Block Diagram

FIG. 91 Motor Control Board Block Diagram

1

INTEGRATED APPARATUS FOR PERFORMING NUCLEIC ACID EXTRACTION AND DIAGNOSTIC TESTING ON MULTIPLE BIOLOGICAL SAMPLES

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/124,672, filed Sep. 7, 2018, which is a continuation of U.S. patent application Ser. No. 14/941,087, filed Nov. 13, 2015 and issued as U.S. Pat. No. 10,071,376 on Sep. 11, 2018, which is a continuation of U.S. patent application Ser. No. 12/218,498, filed Jul. 14, 2008 and issued as U.S. Pat. No. 9,186,677 on Nov. 17, 2015, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/959,437, filed Jul. 13, 2007, and is a continuation-in-part of U.S. patent application Ser. No. 11/985,577, filed Nov. 14, 2007 and issued on Aug. 20 16, 2011 as U.S. Pat. No. 7,998,708. The disclosures of all of the above-referenced prior applications, publications, and patents are considered part of the disclosure of this application, and are incorporated by reference herein in their entirety.

TECHNICAL FIELD

The technology described herein generally relates to systems for extracting polynucleotides from multiple ³⁰ samples, particularly from biological samples, and additionally to systems that subsequently amplify and detect the extracted polynucleotides. The technology more particularly relates to microfluidic systems that carry out PCR on multiple samples of nucleotides of interest within microfluidic ³⁵ channels, and detect those nucleotides.

BACKGROUND

The medical diagnostics industry is a critical element of 40 today's healthcare infrastructure. At present, however, in vitro diagnostic analyses no matter how routine have become a bottleneck in patient care. There are several reasons for this. First, many diagnostic analyses can only be done with highly specialist equipment that is both expensive 45 and only operable by trained clinicians. Such equipment is found in only a few locations—often just one in any given urban area. This means that most hospitals are required to send out samples for analyses to these locations, thereby incurring shipping costs and transportation delays, and pos- 50 sibly even sample loss or mishandling. Second, the equipment in question is typically not available 'on-demand' but instead runs in batches, thereby delaying the processing time for many samples because they must wait for a machine to fill up before they can be run.

Understanding that sample flow breaks down into several key steps, it would be desirable to consider ways to automate as many of these as possible. For example, a biological sample, once extracted from a patient, must be put in a form suitable for a processing regime that typically involves using 60 PCR to amplify a vector (such as a nucleotide) of interest. Once amplified, the presence of a nucleotide of interest from the sample needs to be determined unambiguously. Preparing samples for PCR is currently a time-consuming and labor intensive step, though not one requiring specialist 65 skills, and could usefully be automated. By contrast, steps such as PCR and nucleotide detection (or 'nucleic acid

2

testing') have customarily only been within the compass of specially trained individuals having access to specialist equipment.

There is a need for a method and apparatus of carrying out sample preparation on samples in parallel, with or without PCR and detection on the prepared biological samples, and preferably with high throughput, but in a manner that can be done routinely at the point of care, or without needing the sample to be sent out to a specialized facility.

The discussion of the background herein is included to explain the context of the inventions described herein. This is not to be taken as an admission that any of the material referred to was published, known, or part of the common general knowledge as at the priority date of any of the claims.

Throughout the description and claims of the specification the word "comprise" and variations thereof, such as "comprising" and "comprises", is not intended to exclude other additives, components, integers or steps.

SUMMARY

A diagnostic apparatus, comprising: a first module configured to extract nucleic acid simultaneously from a plu-25 rality of nucleic-acid containing samples, wherein the first module comprises: one or more racks, each configured to accept a number of samples and a corresponding number of holders, wherein each holder comprises a process chamber, a waste chamber, one or more pipette tips, and one or more receptacles, wherein the one or more receptacles contain respectively sufficient quantities of one or more reagents for carrying out extraction of nucleic acid from a sample; a magnetic separator configured to move relative to the process chambers of each holder; a heater assembly configured to independently heat each of the process chambers; and a liquid dispenser configured to carry out fluid transfer operations on two or more holders simultaneously; and a second module configured to simultaneously amplify the nucleic acid extracted from the plurality of samples, wherein the second module comprises: one or more bays, each configured to receive a microfluidic cartridge, wherein the cartridge is configured to separately accept and to separately amplify the nucleic acid extracted from multiple samples; and one or more detection systems.

A diagnostic apparatus comprising: one or more racks, on each of which is mounted a number of nucleic acid containing samples and a corresponding number of holders, wherein each holder comprises a process chamber, a waste chamber, one or more pipette tips, and one or more receptacles, wherein the one or more receptacles contain, respectively, sufficient quantities of one or more reagents for carrying out extraction of nucleic acid from a sample; a magnetic separator movable from a first position to a second position adjacent to the process chamber of each of the one or more holders; a heater assembly comprising a number of heater units, each of which is in thermal contact with one of the process chambers; one or more bays, each bay having a shape complementary to a shape of a micro fluidic cartridge, wherein the cartridge comprises a number of inlets each of which is in fluid communication with one of a number of channels in which nucleic acid extracted from one of the number of samples is amplified, and wherein the cartridge further comprises one or more windows that permit detection of amplified nucleic acid; a liquid dispenser having one or more dispensing heads, wherein the liquid dispenser is movable from a first position above a first holder to a second position above a second holder, and is movable from the first

position above the first holder to a different position above the first holder, and is further movable from a position above one of the holders to a position above one of the number of inlets; and one or more detection systems positioned in proximity to the one or more windows.

A diagnostic instrument comprising: a liquid handling unit that extracts nucleic acid from a sample in a unitized reagent strip; a microfluidic cartridge that, in conjunction with a heater element, carries out real-time PCR on nucleic acid extracted from the sample; and a detector that provides 10 a user with a diagnosis of whether the sample contains a nucleotide of interest.

Also described herein are methods of using the diagnostic apparatus, including a method of diagnosing a number of samples in parallel, using the apparatus.

A unitized reagent holder, comprising: a strip, to which is attached: a single process tube; one or more receptacles, each of which holding a reagent selected from the group consisting of: a sample preparation reagent, PCR reagents for a first analyte, and one or more liquid reagents; a waste 20 tube; one or more sockets configured to hold one or more pipette tips; and a pipette tip sheath configured to surround the one or more pipette tips.

A liquid dispenser, comprising: one or more sensors; a manifold; one or more pumps in fluid communication with 25 extracting nucleic acid from multiple samples in parallel, the manifold; one or more dispense heads in fluid communication with the manifold; a gantry that provides freedom of translational motion in three dimensions; and electrical connections that accept electrical signals from an external controller, wherein the liquid dispenser has no inlet or outlet 30 for fluids, other than through the one or more pumps.

A separator for magnetic particles, comprising: one or more magnets aligned linearly; a motorized shaft upon which the one or more magnets can rise or fall in such a manner that the one or more magnets attains close proximity 35 apparatus. to one or more receptacles containing magnetic particles; and control circuitry to control motion of the motorized

An integrated separator and heater, comprising: a heater assembly, wherein the heater assembly comprises a plurality 40 conjunction with a heater unit. of independently controllable heater units, each of which is configured to accept and to heat a process chamber; one or more magnets aligned linearly; a motorized shaft upon which the one or more magnets can rise or fall in such a manner that the one or more magnets attains close proximity 45 a rack of FIG. 7. to one or more of the process chambers; and control circuitry to control motion of the motorized shaft and heating of the heater units.

A preparatory apparatus comprising: a first module configured to extract nucleic acid simultaneously from a number 50 of nucleic-acid containing samples, wherein the first module comprises: one or more racks, each configured to accept the number of samples and a corresponding number of holders, wherein each holder comprises a process chamber, a waste chamber, one or more pipette tips, and one or more recep- 55 tacles, wherein the one or more receptacles contain, respectively, sufficient quantities of one or more reagents for carrying out extraction of nucleic acid from a sample; a magnetic separator configured to move relative to the process chambers of each holder; a heater assembly configured 60 to independently heat each of the process chambers; and a liquid dispenser configured to carry out fluid transfer operations on two or more holders simultaneously; and a second module configured to receive and to store the nucleic acid extracted from the number of samples.

A preparatory apparatus comprising: one or more racks, on each of which is mounted a number of nucleic acid

containing samples and a corresponding number of holders, wherein each holder comprises a process chamber, a waste chamber, one or more pipette tips, and one or more receptacles, wherein the one or more receptacles contain, respectively, sufficient quantities of one or more reagents for carrying out extraction of nucleic acid from a sample; a magnetic separator movable from a first position to a second position adjacent to the process chambers of each holder; a heater assembly comprising a number of heater units, each of which is in contact with a process chamber; a liquid dispenser movable from a first position above a first holder to a second position above a second holder; and a storage compartment having a number of compartments, wherein each compartment stores the nucleic acid extracted from one of the number of samples.

A unitized reagent holder, comprising: a strip, to which is attached: a single process tube; one or more receptacles, each of which holding a reagent selected from the group consisting of: a sample preparation reagent, and one or more liquid reagents; a waste tube; one or more sockets configured to hold one or more pipette tips; and a pipette tip sheath configured to surround the one or more pipette tips.

The present technology additionally includes a process for using the apparatus as described herein.

BRIEF DESCRIPTION OF SELECTED **DRAWINGS**

FIG. 1A shows a schematic of a preparatory apparatus; FIG. 1B shows a schematic of a diagnostic apparatus.

FIG. 2 shows a schematic of control circuitry.

FIGS. 3A and 3B show exterior views of an exemplary

FIG. 4 shows an exemplary interior view of an apparatus. FIG. 5 shows perspective views of an exemplary rack for sample holders.

FIG. 6 shows perspective views of the rack of FIG. 5 in

FIG. 7 shows a perspective view of an exemplary rack for sample holders.

FIGS. 8A-8K show various views of the rack of FIG. 7. FIG. 9 shows an area of an apparatus configured to accept

FIGS. 10A and 10B show an first exemplary embodiment of a reagent holder having a pipette sheath, in perspective view (FIG. 10A) and underside view (FIG. 10B).

FIG. 11 shows an exemplary embodiment of a reagent holder not having a pipette sheath, in perspective view.

FIGS. 12A-12C show a second exemplary embodiment of a reagent holder having a pipette sheath, in perspective view (FIG. 12A) and cross-sectional view (FIG. 12B), and exploded view (FIG. 12C).

FIGS. 13A and 13B show a stellated feature on the interior of a reagent tube, in cross-sectional (FIG. 13A) and plan (FIG. 13B) view.

FIG. 14 shows a sequence of pipetting operations in conjunction with a reagent tube having a stellated feature.

FIG. 15 shows embodiments of a laminated layer.

FIG. 16 shows a sequence of pipetting operations in conjunction with a laminated layer.

FIGS. 17A-17D show an exemplary kit containing holders and reagents.

FIG. 18 shows a liquid dispense head.

FIGS. 19A-19C show a liquid dispense head.

FIG. 20 shows an exemplary distribution manifold.

50

5

- FIG. 21 shows a scanning read-head attached to a liquid dispense head.
 - FIG. 22 shows a barcode scanner in cross-sectional view.
- FIG. 23 shows a barcode reader positioned above a microfluidic cartridge.
 - FIG. 24 shows pipette tip sensors.
- FIGS. 25A and 25B show an exemplary device for stripping pipette tip.
- FIG. 26 shows a heater unit in perspective and crosssectional view.
- FIG. 27 shows an integrated heater and separator unit in cross-sectional view.
 - FIG. 28 shows a cartridge auto-loader.
 - FIG. 29 shows a cartridge stacker.
- FIG. 30 shows a cartridge stacker in position to deliver a cartridge to an auto-loader.
 - FIG. 31 shows a cartridge loading system.
 - FIG. 32 shows a disposal unit for used cartridges.
- FIG. 33 shows a cartridge stacker in full and empty 20 diagnostic apparatus. configurations. FIG. 69 shows law
- FIG. 34 shows a microfluidic cartridge, a read-head, and a cartridge tray.
- FIG. 35 shows a cross-section of a pipetting head and a cartridge in position in a microfluidic apparatus.
- FIG. 36 shows an exemplary microfluidic cartridge having a 3-layer construction.
- FIG. 37 shows a plan of microfluidic circuitry and inlets in an exemplary multi-lane cartridge.
 - FIG. 38A shows an exemplary multi-lane cartridge.
- FIG. **38**B shows a portion of an exemplary multi-lane cartridge.
- FIGS. **39**A, **39**B show an exemplary microfluidic network in a lane of a multi-lane cartridge;
- FIGS. **40**A-**40**C show diagrams of exemplary microfluidic valves. FIG. **40**A additionally shows the valve in an open state, and the valve in a closed state.
 - FIG. 41 shows a vent.
- FIG. **42** shows an exemplary highly-multiplexed microfluidic cartridge;
- FIGS. 43-46 show various aspects of exemplary highly multiplexed microfluidic cartridges; and
- FIGS. 47A-C show various aspects of a radially configured highly multiplexed microfluidic cartridge.
- FIG. **48** shows a view in cross-section of a microfluidic 45 cartridge.
- FIGS. **49**A, **49**B show a PCR reaction chamber and associated heaters.
- FIG. 50 shows thermal images of heater circuitry in operation.
- FIGS. 51A-51C shows various cut-away sections that can be used to improve cooling rates during PCR thermal cycling.
- FIG. **52** shows a plot of temperature against time during a PCR process, as performed on a microfluidic cartridge as 55 described herein.
- FIG. 53 shows an assembly process for a cartridge as further described herein.
- FIGS. **54**A and **54**B show exemplary apparatus for carrying out wax deposition.
- FIGS. **55**A and **55**B show exemplary deposition of wax droplets into microfluidic valves.
- FIG. **56** shows an overlay of an array of heater elements on an exemplary multi-lane microfluidic cartridge, wherein various microfluidic networks are visible.
- FIG. 57 shows a cross-sectional view of an exemplary detector.

6

- FIG. **58** shows a perspective view of a detector in a read-head
- FIG. **59** shows a cutaway view of an exemplary detector in a read-head.
- FIG. **60** shows an exterior view of an exemplary multiplexed read-head with an array of detectors therein.
- FIG. 61 shows an cutaway view of an exemplary multiplexed read-head with an array of detectors therein.
- FIG. **62** shows a block diagram of exemplary electronic circuitry in conjunction with a detector as described herein.
 - FIG. 63 shows an exemplary liquid dispensing system.
 - FIG. 64 shows an exemplary heater/separator.
- FIGS. **65**A and **65**B show exemplary aspects of a computer-based user interface.
- FIG. **66** shows schematically layout of components of a preparatory apparatus.
 - FIG. 67 shows layout of components of an exemplary preparatory apparatus.
- FIG. **68** shows schematically layout of components of a diagnostic apparatus.
- FIG. **69** shows layout of components of an exemplary diagnostic apparatus.
- FIGS. **70** and **71** show exterior and interior of an exemplary diagnostic apparatus.
- FIGS. 72A and 72B show a thermocycling unit configured to accept a microfluidic cartridge.
- FIG. 73 shows schematically a layout of components of a high-efficiency diagnostic apparatus.
- FIG. **74** shows layout of components of an exemplary ³⁰ high-efficiency diagnostic apparatus.
 - FIG. **75** shows a plan view of a 24-lane microfluidic cartridge.
 - FIG. **76** shows a perspective view of the cartridge of FIG. **75**
 - FIG. 77 shows an exploded view of the cartridge of FIG.
 - FIG. 78 shows an exemplary detection unit.
 - FIGS. 79A, 79B show cutaway portions of the detection unit of FIG. 78.
 - FIGS. **80**, and **81** show alignment of the detection unit with a microfluidic cartridge.
 - FIGS. 82 and 83 show exterior and cutaways, respectively, of an optics block.
 - FIG. 84 shows a Scorpion reaction, schematically.
 - FIGS. **85**A-**85**C show, schematically, pipette head usage during various preparatory processes.
 - FIGS. **86-91** show exemplary layouts of electronics control circuitry.

DETAILED DESCRIPTION

Nucleic acid testing (NAT) as used herein is a general term that encompasses both DNA (Deoxyribonucleic acid) and RNA (Ribonucleic acid) testing. Exemplary protocols that are specific to RNA and to DNA are described herein. It is to be understood that generalized descriptions where not specific to RNA or to DNA either apply to each equally or can be readily adapted to either with minor variations of the description herein as amenable to one of ordinary skill in the art. It is also to be understood that the terms nucleic acid and polynucleotide may be used interchangeably herein.

The apparatuses as described herein therefore find application to analyzing any nucleic acid containing sample for any purpose, including but not limited to genetic testing, and clinical testing for various infectious diseases in humans. Targets for which clinical assays currently exist, and that may be tested for using the apparatus and methods herein

may be bacterial or viral, and include, but are not limited to: *Chlamydia trachomatis* (CT); *Neisseria gonorrhea* (GC); Group B *Streptococcus*; HSV; HSV Typing; CMV; Influenza A & B; MRSA; RSV; TB; *Trichomonas*; Adenovirus; Bordatella; BK; JC; HHV6; EBV; Enterovirus; and *M. pneu-smoniae*.

The apparatus herein can be configured to run on a laboratory benchtop, or similar environment, and can test approximately 45 samples per hour when run continuously throughout a normal working day. This number can be 10 increased, according to the number of tests that can be accommodated in a single batch, as will become clear from the description herein. Results from individual raw samples are typically available in less than 1 hour.

Where used herein, the term "module" should be taken to 15 mean an assembly of components, each of which may have separate, distinct and/or independent functions, but which are configured to operate together to produce a desired result or results. It is not required that every component within a module be directly connected or in direct communication 20 with every other. Furthermore, connectivity amongst the various components may be achieved with the aid of a component, such as a processor, that is external to the module.

Apparatus Overview

An apparatus having various components as further described herein can be configured into at least two formats, preparatory and diagnostic, as shown respectively in FIGS. 1A and 1B. A schematic overview of a preparatory apparatus 981 for carrying out sample preparation as further described 30 herein is shown in FIG. 1A. An overview of a diagnostic apparatus 971 is shown in FIG. 18. The geometric arrangement of the components of systems 971, 981 shown in FIGS. 1A and 1B is exemplary and not intended to be limiting.

A processor 980, such as a microprocessor, is configured 35 to control functions of various components of the system as shown, and is thereby in communication with each such component requiring control. It is to be understood that many such control functions can optionally be carried out manually, and not under control of the processor. Further- 40 more, the order in which the various functions are described, in the following, is not limiting upon the order in which the processor executes instructions when the apparatus is operating. Thus, processor 980 can be configured to receive data about a sample to be analyzed, e.g., from a sample reader 45 990, which may be a barcode reader, an optical character reader, or an RFID scanner (radio frequency tag reader). It is also to be understood that, although a single processor 980 is shown as controlling all operations of apparatus 971 and 981, such operations may be distributed, as convenient, over 50 more than one processor.

Processor 980 can be configured to accept user instructions from an input 984, where such instructions may include instructions to start analyzing the sample, and choices of operating conditions. Although not shown in 55 FIGS. 1A and 1B, in various embodiments, input 984 can include one or more input devices selected from the group consisting of: a keyboard, a touch-sensitive surface, a microphone, a track-pad, a retinal scanner, a holographic projection of an input device, and a mouse. A suitable input device 60 may further comprise a reader of formatted electronic media, such as, but not limited to, a flash memory card, memory stick, USB-stick, CD, or floppy diskette. An input device may further comprise a security feature such as a fingerprint reader, retinal scanner, magnetic strip reader, or bar-code 65 reader, for ensuring that a user of the system is in fact authorized to do so, according to pre-loaded identifying

characteristics of authorized users. An input device may additionally—and simultaneously—function as an output device for writing data in connection with sample analysis. For example, if an input device is a reader of formatted electronic media, it may also be a writer of such media. Data that may be written to such media by such a device includes, but is not limited to, environmental information, such as temperature or humidity, pertaining to an analysis, as well as a diagnostic result, and identifying data for the sample in question.

8

Processor 980 can be also configured to communicate with a display 982, so that, for example, information about an analysis is transmitted to the display and thereby communicated to a user of the system. Such information includes but is not limited to: the current status of the apparatus; progress of PCR thermocycling; and a warning message in case of malfunction of either system or cartridge. Additionally, processor 980 may transmit one or more questions to be displayed on display 982 that prompt a user to provide input in response thereto. Thus, in certain embodiments, input 984 and display 982 are integrated with one another.

Processor **980** can be optionally further configured to transmit results of an analysis to an output device such as a printer, a visual display, a display that utilizes a holographic projection, or a speaker, or a combination thereof.

Processor 980 can be still further optionally connected via a communication interface such as a network interface to a computer network 988. The communication interface can be one or more interfaces selected from the group consisting of: a serial connection, a parallel connection, a wireless network connection, a USB connection, and a wired network connection. Thereby, when the system is suitably addressed on the network, a remote user may access the processor and transmit instructions, input data, or retrieve data, such as may be stored in a memory (not shown) associated with the processor, or on some other computer-readable medium that is in communication with the processor. The interface may also thereby permit extraction of data to a remote location, such as a personal computer, personal digital assistant, or network storage device such as computer server or disk farm. The apparatus may further be configured to permit a user to e-mail results of an analysis directly to some other party, such as a healthcare provider, or a diagnostic facility, or a patient.

Additionally, in various embodiments, the apparatus can further comprise a data storage medium configured to receive data from one or more of the processor, an input device, and a communication interface, the data storage medium being one or more media selected from the group consisting of: a hard disk drive, an optical disk drive, a flash card, and a CD-Rom.

Processor 980 can be further configured to control various aspects of sample preparation and diagnosis, as follows in overview, and as further described in detail herein. In FIGS. 1A and 1B, the apparatus 981 (or 971) is configured to operate in conjunction with a complementary rack 970. The rack is itself configured, as further described herein, to receive a number of biological samples 996 in a form suitable for work-up and diagnostic analysis, and a number of holders 972 that are equipped with various reagents, pipette tips and receptacles. The rack is configured so that, during sample work-up, samples are processed in the respective holders, the processing including being subjected, individually, to heating and cooling via heater assembly 977. The heating functions of the heater assembly can be controlled by the processor 980. Heater assembly 977 operates in conjunction with a separator 978, such as a magnetic

separator, that also can be controlled by processor 980 to move into and out of close proximity to one or more processing chambers associated with the holders 972, wherein particles such as magnetic particles are present.

9

Liquid dispenser 976, which similarly can be controlled 5 by processor 980, is configured to carry out various suck and dispense operations on respective sample, fluids and reagents in the holders 972, to achieve extraction of nucleic acid from the samples. Liquid dispenser 976 can carry out such operations on multiple holders simultaneously. Sample 10 reader 990 is configured to transmit identifying indicia about the sample, and in some instances the holder, to processor 980. In some embodiments a sample reader is attached to the liquid dispenser and can thereby read indicia about a sample above which the liquid dispenser is situated. In other 15 embodiments the sample reader is not attached to the liquid dispenser and is independently movable, under control of the processor. Liquid dispenser 976 is also configured to take aliquots of fluid containing nucleic acid extracted from one or more samples and direct them to storage area 974, which 20 may be a cooler. Area 974 contains, for example, a PCR tube corresponding to each sample. In other embodiments, there is not a separate Area 974, but a cooler can be configured to cool the one or more holders 972 so that extracted nucleic acid is cooled and stored in situ rather than being transferred 25 to a separate location.

FIG. 1B shows a schematic embodiment of a diagnostic apparatus 971, having elements in common with apparatus 981 FIG. 1A but, in place of a storage area 974, having a receiving bay 992 in which a cartridge 994 is received. The 30 receiving bay is in communication with a heater 998 that itself can be controlled by processor 980 in such a way that specific regions of the cartridge are heated at specific times during analysis. Liquid dispenser 976 is thus configured to take aliquots of fluid containing nucleic acid extracted from 35 one or more samples and direct them to respective inlets in cartridge 994. Cartridge 994 is configured to amplify, such as by carrying out PCR, on the respective nucleic acids. The processor is also configured to control a detector 999 that receives an indication of a diagnosis from the cartridge 994. 40 The diagnosis can be transmitted to the output device 986 and/or the display 982, as described hereinabove.

A suitable processor **980** can be designed and manufactured according to, respectively, design principles and semi-conductor processing methods known in the art.

Embodiments of the apparatuses shown in outline in FIGS. 1A and 1B, as with other exemplary embodiments described herein, is advantageous because they do not require locations within the apparatus suitably configured for storage of reagents. Neither do embodiments of the 50 system, or other exemplary embodiments herein, require inlet or outlet ports that are configured to receive reagents from, e.g., externally stored containers such as bottles, canisters, or reservoirs. Therefore, the apparatuses in FIGS. 1A and 1B are self-contained and operate in conjunction 55 with holders 972, wherein the holders are pre-packaged with reagents, such as in locations within it dedicated to reagent storage.

The apparatuses of FIGS. 1A and 1B may be configured to carry out operation in a single location, such as a 60 laboratory setting, or may be portable so that they can accompany, e.g., a physician, or other healthcare professional, who may visit patients at different locations. The apparatuses are typically provided with a power-cord so that they can accept AC power from a mains supply or generator. 65 An optional transformer (not shown) built into each apparatus, or situated externally between a power socket and the

10

system, transforms AC input power into a DC output for use by the apparatus. The apparatus may also be configured to operate by using one or more batteries and therefore is also typically equipped with a battery recharging system, and various warning devices that alert a user if battery power is becoming too low to reliably initiate or complete a diagnostic analysis.

The apparatuses of FIGS. 1A and 1B may further be configured, in other embodiments, for multiplexed sample analysis and/or analysis of multiple batches of samples, where, e.g., a single rack holds a single batch of samples. In one such configuration, instances of a system, as outlined in FIG. 1B, accept and to process multiple microfluidic cartridges 994. Each component shown in FIGS. 1A and 1B may therefore be present as many times as there are batches of samples, though the various components may be configured in a common housing.

In still another configuration, a system is configured to accept and to process multiple cartridges, but one or more components in FIGS. 1A and 1B is common to multiple cartridges. For example, a single apparatus may be configured with multiple cartridge receiving bays, but a common processor, detector, and user interface suitably configured to permit concurrent, consecutive, or simultaneous, control of the various cartridges. It is further possible that such an embodiment, also utilizes a single sample reader, and a single output device.

In still another configuration, a system as shown in FIG. 1B is configured to accept a single cartridge, wherein the single cartridge is configured to process more than 1, for example, 2, 3, 4, 5, or 6, samples in parallel, and independently of one another. Exemplary technology for creating cartridges that can handle multiple samples is described elsewhere, e.g., in U.S. application Ser. No. 60/859,284, incorporated herein by reference.

It is further consistent with the present technology that a cartridge can be tagged, e.g., with a molecular bar-code indicative of the sample, to facilitate sample tracking, and to minimize risk of sample mix-up. Methods for such tagging are described elsewhere, e.g., in U.S. patent application Ser. No. 10/360,854, incorporated herein by reference.

Control electronics 840 implemented into apparatus 971 or 981, shown schematically in the block diagram in FIG. 2, can include one or more functions in various embodiments, for example, for main control 900, multiplexing 902, display control 904, detector control 906, and the like. The main control function may serve as the hub of control electronics 840 in the apparatuses of FIGS. 1A and 1B, and can manage communication and control of the various electronic functions. The main control function can also support electrical and communications interface 908 with a user or an output device such as a printer 920, as well as optional diagnostic and safety functions. In conjunction with main control function 900, multiplexer function 902 can control sensor data 914 and output current 916 to help control heater assembly 977. The display control function 904 can control output to and, if applicable, interpret input from touch screen LCD **846**, which can thereby provide a graphical interface to the user in certain embodiments. The detector function 906 can be implemented in control electronics 840 using typical control and processing circuitry to collect, digitize, filter, and/or transmit the data from a detector 999 such as one or more fluorescence detectors. Additional functions, not shown in FIG. 2, include but are not limited to control functions for controlling elements in FIGS. 1A and 1B such as a liquid dispense head, a separator, a cooler, and to accept data from a sample reader.

11

An exemplary apparatus, having functions according to FIG. 1A or 1B, is shown in FIGS. 3A and 3B. The exemplary apparatus in FIGS. 3A and 3B has a housing 985, and a cover 987, shown in a closed position in FIG. 3A, and in an open position in FIG. 3B to reveal interior features 995. Cover 987 optionally has a handle 989, shown as oval and raised from the surface of the cover, but which may be other shapes such as square, rectangular, or circular, and which may be recessed in, or flush with, the surface of the cover. Cover 987 is shown as having a hinge, though other configurations such as a sliding cover are possible. Bumper 991 serves to prevent the cover from falling too far backwards and/or provides a point that holds cover 987 steady in an open position. Housing 985 is additionally shown as having one or more 15 communications ports 983, and one or more power ports 993, which may be positioned elsewhere, such as on the rear of the instrument.

The apparatus of FIGS. 1A and 1B may optionally comprise one or more stabilizing feet that cause the body of the 20 device to be elevated above a surface on which system 100 is disposed, thereby permitting ventilation underneath system 100, and also providing a user with an improved ability to lift system 100. There may be 2, 3, 4, 5, or 6, or more feet, depending upon the size of system 100. Such feet are 25 preferably made of rubber, or plastic, or metal, and in some embodiments may elevate the body of system 10 by from about 2 to about 10 mm above a surface on which it is situated.

FIG. 4 shows an exemplary configuration of a portion of an interior of an exemplary apparatus, such as that shown in FIGS. 3A and 3B. In FIG. 4 are shown a rack 970, containing a number of reagent holders 972 and patient samples 996, as well as, in close proximity thereto, a receiving bay 992 having a cartridge 994, for performing PCR on polynucleotides extracted from the samples.

The apparatus further comprises one or more racks configured to be insertable into, and removable from, the 40 apparatus, each of the racks being further configured to receive a plurality of reagent holders, and to receive a plurality of sample tubes, wherein the reagent holders are in one-to-one correspondence with the sample tubes, and wherein the reagent holders each contain sufficient reagents 45 to extract polynucleotides from a sample and place the polynucleotides into a PCR-ready form. Exemplary reagent holders are further described elsewhere herein.

An apparatus may comprise 1, 2, 3, 4, or 6 racks, and each rack may accept 2, 4, 6, 8, 10, 12, 16, or 20 samples such as 50 in sample tubes **802**, and a corresponding number of holders **804**, each at least having one or more pipette tips, and one or more containers for reagents.

A rack is typically configured to accept a number of reagent holders **804**, such as those further described herein, 55 the rack being configured to hold one or more such holders, either permitting access on a laboratory benchtop to reagents stored in the holders, or situated in a dedicated region of the apparatus permitting the holders to be accessed by one or more other functions of the apparatus, such as automated 60 pipetting, heating of the process tubes, and magnetic separating of affinity beads.

Two perspective views of an exemplary rack **800**, configured to accept 12 sample tubes and 12 corresponding reagent holders, in 12 lanes, are shown in FIG. **5**. A lane, as 65 used herein in the context of a rack, is a dedicated region of the rack designed to receive a sample tube and correspond-

12

ing reagent holder. Two perspective views of the same exemplary rack, in conjunction with a heater unit, are shown in FIG. 6

Various views of a second exemplary rack 800, also configured to accept 12 sample tubes and 12 reagent holders, are shown in FIG. 7, and FIGS. 8A-8K. Thus, the following views are shown: side plan (FIG. 8A); front plan, showing sample tubes (FIG. 8B); rear plan, showing reagent holders (FIG. 8C); rear elevation, showing reagent holders (FIG. 8D); front elevation, showing sample tubes (FIG. 8E); top, showing insertion of a reagent holder (FIGS. 8F and 8G); top showing slot for inserting a reagent holder (FIG. 8H); top view showing registration of reagent holder (FIG. 8I); close up of rack in state of partial insertion/removal from apparatus (FIG. 8J); and rack held by handle, removed from apparatus (FIG. 8K). A recessed area in a diagnostic or preparatory apparatus, as further described herein, for accepting the exemplary removable rack of FIG. 7 is shown in FIG. 9. Other suitably configured recessed areas for receiving other racks differing in shape, appearance, and form, rather than function, are consistent with the description herein.

The two exemplary racks shown in the figures being non-limiting, general features of racks contemplated herein are now described using the two exemplary racks as illustrative thereof. For example, the embodiments shown here, at least the first lane and the second lane are parallel to one another, a configuration that increases pipetting efficiency. Typically, when parallel to one another, pairs of adjacent sample lanes are separated by 24 mm at their respective midpoints. (Other distances are possible, such as 18 mm apart, or 27 mm apart. The distance between the midpoints in dependent on the pitch of the nozzles in the liquid dispensing head, as further described herein. Keeping the spacing in multiples of 9 mm enables easy loading from the rack into a 96 well plate (where typically wells are spaced apart by 9 mm). Typically, also, the rack is such that plurality of reagent holders in the plurality of lanes are maintained at the same height relative to one another.

The rack is configured to accept a reagent holder in such a way that the reagent holder snaps or locks reversibly into place, and remains steady while reagents are accessed in it, and while the rack is being carried from one place to another or is being inserted into, or removed from, the apparatus. In each embodiment, each of the second locations comprises a mechanical key configured to accept the reagent holder in a single orientation. In FIG. 5, it is shown that the reagent holder(s) slide horizontally into vertically oriented slots, one per holder, located in the rack. In such an embodiment, the edge of a connecting member on the holder engages with a complementary groove in the upper portion of a slot. In FIGS. 8F, 8G, and 8I, it is shown that the reagent holder(s) can engage with the rack via a mechanical key that keeps the holders steady and in place. For example, the mechanical key can comprise a raised or recessed portion that, when engaging with a complementary portion of the reagent holder, permits the reagent holder to snap into the second location. It can also be seen in the embodiments shown that the reagent holder has a first end and a second end, and the mechanical key comprises a first feature configured to engage with the first end, and a second feature configured to engage with the second end in such a way that a reagent holder cannot be inserted the wrong way around.

In certain embodiments the reagent holders each lock into place in the rack, such as with a cam locking mechanism that is recognized as locked audibly and/or physically, or such as with a mechanical key. The rack can be configured so that

the holders, when positioned in it, are aligned for proper pipette tip pick-up using a liquid dispenser as further described herein. Furthermore, the second location of each

13

lane can be deep enough to accommodate one or more pipette tips, such as contained in a pipette tip sheath.

In certain embodiments, the rack is configured to accept the samples in individual sample tubes 802, each mounted adjacent to a corresponding holder 804, for example on one side of rack 800. The sample tubes can be accessible to a sample identification verifier such as a bar code reader, as 10 further described herein. In FIG. 5, a sample tube is held at its bottom by a cylindrical receiving member. In FIG. 7, it is shown that a sample tube can be held at both its top and bottom, such as by a recessed portion 803 configured to receive a bottom of a sample tube, and an aperture 805 configured to hold an upper portion of the sample tube. The aperture can be a ring or an open loop, or a hole in a metal sheet. The recessed portion can be as in FIG. 7, wherein it is an angled sheet of metal housing having a hole large enough to accommodate a sample tube.

The rack can be designed so that it can be easily removed from the apparatus and carried to and from the laboratory environment external to the apparatus, such as a bench, and the apparatus, for example, to permit easy loading of the sample tube(s) and the reagent holder(s) into the rack. In 25 certain embodiments, the rack is designed to be stable on a horizontal surface, and not easily toppled over during carriage, and, to this end, the rack has one or more (such as 2, 3, 4, 6, 8) feet 809. In certain embodiments, the rack has a handle **806** to ease lifting and moving, and as shown in FIG. 30 5, the handle can be locked into a vertical position, during carriage, also to reduce risk of the rack being toppled over. The handle can optionally have a soft grip 808 in its middle. In the embodiment of FIG. 7, the carrying handle is positioned about an axis displaced from an axis passing through 35 the center of gravity of the rack when loaded, and is free to fall to a position flush with an upper surface of the rack, under its own weight.

The embodiment of FIG. 5 has a metallic base member when inserting the rack into the dedicated portion of the apparatus. The handle is attached to the base member. The portion of the rack 812 that accepts the samples and holders can be made of plastic, and comprises 12 slots, and may be disposable.

In the embodiment of FIG. 7, the rack comprises a housing, a plurality of lanes in the housing, and wherein each lane of the plurality of lanes comprises: a first location configured to accept a sample tube; and a second location, configured to accept a reagent holder; and a registration 50 member complementary to a receiving bay of a diagnostic apparatus. Typically, the housing is made of a metal, such as aluminum, that is both light but also can be machined to high tolerance and is sturdy enough to ensure that the rack remains stable when located in the diagnostic apparatus. The 55 registration member in FIG. 7 comprises four (4) tight tolerance pegs 815, located one per corner of the rack. Such pegs are such that they fit snugly and tightly into complementary holes in the receiving bay of the apparatus and thereby stabilize the rack. Other embodiments having, for 60 example, 2, or 3, or greater than 4 such pegs are consistent with the embodiments herein.

In particular, the housing in the embodiment of FIG. 7 comprises a horizontal member 821, and two or more vertical members 822 connected to the horizontal member, 65 and is such that the second location of each respective lane is a recessed portion within the horizontal member. The two

14

or more vertical members 809 in the embodiment of FIG. 7 are configured to permit the rack to free stand thereon. The housing may further comprise two or more feet or runners, attached symmetrically to the first and second vertical members and giving the rack additional stability when positioned on a laboratory bench top.

Furthermore, in the embodiment of FIG. 7, the housing further comprises a plurality of spacer members 825, each of which is disposed between a pair of adjacent lanes. Optionally, such spacer members may be disposed vertically between the lanes.

Although not shown in the FIGs., a rack can further comprise a lane identifier associated with each lane. A lane identifier may be a permanent or temporary marking such as a unique number or letter, or can be an RFID, or bar-code, or may be a colored tag unique to a particular lane.

A rack is configured so that it can be easily placed at the appropriate location in the instrument and gives the user positive feedback, such as audibly or physically, that it is 20 placed correctly. In certain embodiments, the rack can be locked into position. It is desirable that the rack be positioned correctly, and not permitted to move thereafter, so that movement of the liquid dispenser will not be compromised during liquid handling operations. The rack therefore has a registration member to ensure proper positioning. In the embodiment of FIG. 7, the registration member comprises two or more positioning pins configured to ensure that the rack can only be placed in the diagnostic apparatus in a single orientation; and provide stability for the rack when placed in the diagnostic apparatus. The embodiment of FIG. 7 has, optionally, a sensor actuator 817 configured to indicate proper placement of the rack in the diagnostic apparatus. Such a sensor may communicate with a processor 980 to provide the user with a warning, such as an audible warning, or a visual warning communicated via an interface, if the rack is not seated correctly. It may also be configured to prevent a sample preparation process from initiating or continuing if a seating error is detected.

In certain embodiments, the interior of the rack around the 810 having 4 feet 811 that also serve as position locators 40 location of process tubes in the various holders is configured to have clearance for a heater assembly and/or a magnetic separator as further described herein. For example, the rack is configured so that process chambers on the individual holders are accepted by heater units in a heater assembly as further described herein.

> Having a removable rack enables a user to keep a next rack loaded with samples and in line while a previous rack of samples is being prepared by the apparatus, so that the apparatus usage time is maximized.

> The rack can also be conveniently cleaned outside of the instrument in case of any sample spills over it or just as a routine maintenance of laboratory wares.

> In certain embodiments the racks have one or more disposable parts.

> FIGS. 10A and 10B show views of an exemplary holder 501 as further described herein. FIG. 11 shows a plan view of another exemplary holder 502, as further described herein. FIG. 12A shows an exemplary holder 503 in perspective view, and FIG. 12B shows the same holder in cross-sectional view. FIG. 12C shows an exploded view of the same holder as in FIGS. 12A and 12B. All of these exemplary holders, as well as others consistent with the written description herein though not shown as specific embodiments, are now described.

> The exemplary holders shown in FIGS. 10A, 10B, 11, 12A, 12B, and 12C can each be referred to as a "unitized

15

disposable strip", or a "unitized strip", because they are intended to be used as a single unit that is configured to hold all of the reagents and receptacles necessary to perform a sample preparation, and because they are laid out in a strip format. It is consistent with the description herein, though, that other geometric arrangements of the various receptacles are contemplated, so that the description is not limited to a linear, or strip, arrangement, but can include a circular or grid arrangement.

Some of the reagents contained in the holder are provided as liquids, and others may be provided as solids. In some embodiments, a different type of container or tube is used to store liquids from those that store the solids.

The holder can be disposable, such as intended for a 15 single use, following which it is discarded.

The holder is typically made of a plastic such as polypropylene. The plastic is such that it has some flexibility to facilitate placement into a rack, as further described herein. The plastic is typically rigid, however, so that the holder will 20 not significantly sag or flex under its own weight and will not easily deform during routine handling and transport, and thus will not permit reagents to leak out from it.

The holder comprises a connecting member 510 having one or more characteristics as follows. Connecting member 25 510 serves to connect various components of the holder together. Connecting member 510 has an upper side 512 and, opposed to the upper side, an underside 514. In FIG. 10B, a view of underside 514 is shown, having various struts 597 connecting a rim of the connecting member with 30 variously the sockets, process tube, and reagent tubes. Struts 597 are optional, and may be omitted all or in part, or may be substituted by, in all or in part, other pieces that keep the holder together.

The holder is configured to comprise: a process tube **520** affixed to the connecting member and having an aperture **522** located in the connecting member; at least one socket **530**, located in the connecting member, the socket configured to accept a disposable pipette tip **580**; two or more reagent tubes **540** disposed on the underside of the connecting member, each of the reagent tubes having an inlet aperture **542** located in the connecting member; and one or more receptacles **550**, located in the connecting member, wherein the one or more receptacles are each configured to receive a complementary container such as a reagent tube 45 (not shown) inserted from the upper side **512** of the connecting member.

The holder is typically such that the connecting member, process tube, and the two or more reagent tubes are made from a single piece, such as a piece of polypropylene.

The holder is also typically such that at least the process tube, and the two or more reagent tubes are translucent.

The one or more receptacles **550** are configured to accept reagent tubes that contain, respectively, sufficient quantities of one or more reagents typically in solid form, such as in 1 lyophilized form, for carrying out extraction of nucleic acid from a sample that is associated with the holder. The receptacles can be all of the same size and shape, or may be of different sizes and shapes from one another. Receptacles 550 are shown as having open bottoms, but are not limited to such topologies, and may be closed other than the inlet 552 in the upper side of connecting member 510. Preferably the receptacles 550 are configured to accept commonly used containers in the field of laboratory analysis, or containers suitably configured for use with the holder herein. The 65 containers are typically stored separately from the holders to facilitate sample handling, since solid reagents normally

16

require different storage conditions from liquid reagents. In particular many solid reagents may be extremely moisture sensitive

The snapped-in reagent tubes containing different reagents may be of different colors, or color-coded for easy identification by the user. For example they may be made of different color material, such as tinted plastic, or may have some kind of identifying tag on them, such as a color stripe or dot. They may also have a label printed on the side, and/or may have an identifier such as a barcode on the sealing layer on the top.

The containers 554 received by the receptacles 550 may alternatively be an integrated part of the holder and may be the same type of container as the waste chamber and/or the reagent tube(s), or may be different therefrom.

In one embodiment, the containers 554 containing lyophilized reagents, disposed in the receptacles 550 (shown, e.g., in FIGS. 12A and 12C), are 0.3 ml tubes that have been further configured to have a star pattern (see FIGS. 13A and 13B) on their respective bottom interior surfaces. This is so that when a fluid has been added to the lyophilized reagents (which are dry in the initial package), a pipette tip can be bottomed out in the tube and still be able to withdraw almost the entire fluid from the tube, as shown in FIG. 14, during the process of nucleic acid extraction. The design of the star-pattern is further described elsewhere herein.

The reagent tubes, such as containing the lyophilized reagents, can be sealed across their tops by a metal foil, such as an aluminum foil, with no plastic lining layer, as further described herein.

The embodiments 501, 502, and 503 are shown configured with a waste chamber 560, having an inlet aperture 562 in the upper side of the connecting member. Waste chamber 560 is optional and, in embodiments where it is present, is configured to receive spent liquid reagents. In other embodiments, where it is not present, spent liquid reagents can be transferred to and disposed of at a location outside of the holder, such as, for example, a sample tube that contained the original sample whose contents are being analyzed. Waste chamber 560 is shown as part of an assembly comprising additionally two or more reagent tubes 540. It would be understood that such an arrangement is done for convenience, e.g., of manufacture; other locations of the waste chamber are possible, as are embodiments in which the waste chamber is adjacent a reagent tube, but not connected to it other than via the connecting member.

The holder is typically such that the connecting member, process tube, the two or more reagent tubes, and the waste 50 chamber (if present) are made from a single piece, made from a material such as polypropylene.

The embodiments 501 and 503 are shown having a pipette sheath 570. This is an optional component of the holders described herein. It may be permanently or removably affixed to connecting member 510, or may be formed, e.g., moulded, as a part of a single piece assembly for the holder. For example, exploded view of holder 503 in FIG. 12C shows lug-like attachments 574 on the upper surface of a removable pipette sheath 570 that engage with complementary recessed portions or holes in the underside 514 of connecting member 510. Other configurations of attachment are possible. Pipette sheath 570 is typically configured to surround the at least one socket and a tip and lower portion of a pipette tip when the pipette tip is stationed in the at least one socket. In some embodiments, the at least one socket comprises four sockets. In some embodiments the at least one socket comprises two, three, five, or six sockets.

17

Pipette sheath 570 typically is configured to have a bottom 576 and a walled portion 578 disposed between the bottom and the connecting member. Pipette sheath 570 may additionally and optionally have one or more cut-out portions 572 in the wall 578, or in the bottom 576. Such cutouts provide ventilation for the pipette lips and also reduce the total amount of material used in manufacture of the holder. Embodiment 503 has a pipette sheath with no such cutouts. In embodiment 501, such a cutout is shown as an isosceles triangle in the upper portion of the sheath; a similar shaped cutout may be found at a corresponding position in the opposite side of the sheath, obscured from view in FIG. 10A. Other cutouts could have other triangular forms, circular, oval, square, rectangular, or other polygonal or irregular shapes, and be several, such as many, in number. The wall 15 578 of pipette sheath 570 may also have a mesh or frame like structure having fenestrations or interstices. In embodiments having a pipette sheath, a purpose of the sheath is to catch drips from used pipette tips, and thereby to prevent crosssample contamination, from use of one holder to another in 20 a similar location, and/or to any supporting rack in which the holder is situated. Typically, then, the bottom 576 is solid and bowl-shaped (concave) so that drips are retained within it. An embodiment such as 502, having no pipette sheath, could utilize, e.g., a drip tray or a drainage outlet, suitably 25 placed beneath pipette tips located in the one or more sockets, for the same purpose. In addition to catching drips, the pipette tip sheath prevents or inhibits the tips of other reagent holders—such as those that are situated adjacent to the one in question in a rack as further described hereinfrom touching each other when the tips are picked up and/or dropped off before or after some liquid processing step. Contact between tips in adjacent holders is generally not intended by, for example, an automated dispensing head that controls sample processing on holders in parallel, but the 35 pipette tips being long can easily touch a tip in a nearby strip if the angle when dropping off of the tip deviates slightly from vertical.

The holders of embodiments 501, 502, and 503, all have a connecting member that is configured so that the at least 40 one socket, the one or more receptacles, and the respective apertures of the process tube, and the two or more reagent tubes, are all arranged linearly with respect to one another (i.e., their midpoints lie on the same axis). However, the holders herein are not limited to particular configurations of 45 receptacles, waste chamber, process tube, sockets, and reagent tubes. For example, a holder may be made shorter, if some apertures are staggered with respect to one another and occupy 'off-axis' positions. The various receptacles, etc., also do not need to occupy the same positions with 50 respect to one another as is shown in FIGS. 12A and 12B, wherein the process tube is disposed approximately near the middle of the holder, liquid reagents are stored in receptacles mounted on one side of the process tube, and receptacles holding solid reagents are mounted on the other side of the 55 process tube. Thus, in FIGS. 10A, 10B, and 11, the process tube is on one end of the connecting member, and the pipette sheath is at the other end, adjacent to, in an interior position, a waste chamber and two or more reagent tubes. Still other dispositions are possible, such as mounting the process tube 60 on one end of the holder, mounting the process tube adjacent the pipette tips and pipette tip sheath (as further described herein), and mounting the waste tube adjacent the process tube. It would be understood that alternative configurations of the various parts of the holder give rise only to variations 65 of form and can be accommodated within other variations of the apparatus as described, including but not limited to

18

alternative instruction sets for a liquid dispensing pipette head, heater assembly, and magnetic separator, as further described herein.

Process tube **520** can also be a snap-in tube, rather than being part of an integrated piece. Process tube **520** is typically used for various mixing and reacting processes that occur during sample preparation. For example, cell lysis can occur in process tube **520**, as can extraction of nucleic acids. Process tube **520** is then advantageously positioned in a location that minimizes, overall, pipette head moving operations involved with transferring liquids to process tube **520**.

Reagent tubes **540** are typically configured to hold liquid reagents, one per tube. For example, in embodiments **501**, **502**, and **503**, three reagent tubes are shown, containing respectively wash buffer, release buffer, and neutralization buffer, each of which is used in a sample preparation protocol.

Reagent tubes **540** that hold liquids or liquid reagents can be sealed with a laminate structure **598**. The laminate structure typically has a heat seal layer, a plastic layer such as a layer of polypropylene, and a layer of metal such as aluminum foil, wherein the heat seal layer is adjacent the one or more reagent tubes. The additional plastic film that is used in a laminate for receptacles that contain liquid reagents is typically to prevent liquid from contacting the aluminum.

Two embodiments of a laminate structure, differing in their layer structures, are shown in FIG. 15. In both embodiments, the heat seal layer 602, for example made of a laquer or other such polymer with a low melting point, is at the bottom, adjacent to the top of the holder, when so applied. The plastic layer **604** is typically on top of the heat seal layer, and is typically made of polypropylene, having a thickness in the range 10-50 microns. The metal layer 608 is typically on top of the plastic layer and may be a layer of Al foil bonded to the plastic layer with a layer of adhesive 606, as in the first embodiment in FIG. 15, or may be a layer of metal that is evaporated or sputtered into place directly on to the plastic layer. Exemplary thicknesses for the respective layers are shown in FIG. 15, where it is to be understood that variations of up to a factor of 2 in thickness are consistent with the technology herein. In particular, the aluminum foil is 0.1-15 microns thick, and the polymer layer is 15-25 microns thick in one embodiment. In another embodiment, the aluminum is 0.1-1 microns thick, and the polymer layer is 25-30 microns thick.

The laminates deployed herein make longer term storage easier because the holder includes the presence of sealed lyophilized reagents as well as liquids sealed in close proximity, which is normally hard to achieve.

In one embodiment, the tops of the reagent tubes have beveled edges so that when an aluminum foil is heat bonded to the top, the plastic melt does not extend beyond the rim of the tube. This is advantageous because, if the plastic melt reduces the inner diameter of the tube, it will cause interference with the pipette tip during operation. In other embodiments, a raised flat portion 599 facilitates application and removal of laminate 598. Raised surface 599, on the upper side of the connecting member, and surrounding the inlet apertures to the reagent tubes and, optionally, the waste chamber, is an optional feature of the holder.

The manner in which liquid is pipetted out is such that a pipette tip piercing through the foil rips through without creating a seal around the pipette tip, as in FIG. 16. Such a seal around the tip during pipetting would be disadvantageous because a certain amount of air flow is desirable for the pipetting operation. In this instance, a seal is not created

because the laminate structure causes the pierced foil to stay in the position initially adopted when it is pierced. The upper five panels in FIG. 16 illustrate the pipetting of a reagent out from a reagent tube sealed with a laminate as further described herein. At A, the pipette tip is positioned approximately centrally above the reagent tube that contains reagent 707. At B, the pipette tip is lowered, usually controllably lowered, into the reagent tube, and in so doing pierces the foil **598**. The exploded view of this area shows the edge of the pierced laminate to be in contact with the pipette tip at 10 the widest portion at which it penetrates the reagent tube. At C, the pipette tip is withdrawn slightly, maintaining the tip within the bulk of the reagent 707. The exploded view shows that the pierced foil has retained the configuration that it adopted when it was pierced and the pipette tip descended to 15 its deepest position within the reagent tube. At D, the pipette tip sucks up reagent 707, possibly altering its height as more

19

The materials of the various tubes and chambers may be 20 configured to have at least an interior surface smoothness and surface coating to reduce binding of DNA and other macromolecules thereto. Binding of DNA is unwanted because of the reduced sensitivity that is likely to result in subsequent detection and analysis of the DNA that is not 25 trapped on the surface of the holder.

and more older people undergo such tests. At E, the pipette

tip is removed entirely from the reagent tube.

The process tube also may have a low binding surface, and allows magnetic beads to slide up and down the inside wall easily without sticking to it. Moreover, it has a hydrophobic surface coating enabling low stiction of fluid and 30 hence low binding of nucleic acids and other molecules.

In some embodiments, the holder comprises a registration member such as a mechanical key. Typically such a key is part of the connecting member 510. A mechanical key ensures that the holder is accepted by a complementary 35 member in, for example, a supporting rack or a receiving bay of an apparatus that controls pipetting operations on reagents in the holder. A mechanical key is normally a particularshaped cut-out that matches a corresponding cutout or has a mechanical key 592 that comprises a pair of rectangular-shaped cut-outs on one end of the connecting member. This feature as shown additionally provides for a tab by which a user may gain a suitable purchase when inserting and removing the holder into a rack or another apparatus. 45 Embodiments 501 and 502 also have a mechanical key 590 at the other end of connecting member 510. Key 590 is an angled cutout that eases insertion of the holder into a rack, as well as ensures a good registration therein when abutting a complementary angled cut out in a recessed area config- 50 ured to receive the holder. Other variations of a mechanical key are, of course, consistent with the description herein: for example, curved cutouts, or various combinations of notches or protrusions all would facilitate secure registration of the

In some embodiments, not shown in FIG. 10A, 10B, 11, or 12A-C, the holder further comprises an identifier affixed to the connecting member. The identifier may be a label, such as a writable label, a bar-code, a 2-dimensional barcode, or an RFID tag. The identifier can be, e.g., for the 60 purpose of revealing quickly what combination of reagents is present in the holder and, thus, for what type of sample preparation protocol it is intended. The identifier may also indicate the batch from which the holder was made, for quality control or record-keeping purposes. The identifier 65 may also permit a user to match a particular holder with a particular sample.

20

It should also be considered consistent with the description herein that a holder additionally can be configured to accept a sample, such as in a sample tube. Thus, in embodiments described elsewhere herein, a rack accepts a number of sample tubes and a number of corresponding holders in such a manner that the sample tubes and holders can be separately and independently loaded from one another. Nevertheless, in other embodiments, a holder can be configured to also accept a sample, for example in a sample tube. And thus, a complementary rack is configured to accept a number of holders, wherein each holder has a sample as well as reagents and other items. In such an embodiment, the holder is configured so that the sample is accessible to a sample identification verifier.

The holder described herein may be provided in a sealed pouch, to reduce the chance of air and moisture coming into contact with the reagents in the holder. Such a sealed pouch may contain one or more of the holders described herein, such as 2, 4, 6, 8, 10, 12, 16, 20, or 24 holders.

The holder may also be provided as part of a kit for carrying out sample preparation, wherein the kit comprises a first pouch containing one or more of the holders described herein, each of the holders configured with liquid reagents for, e.g., lysis, wash, and release, and a second pouch, having an inert atmosphere inside, and one or more reagent tubes containing lyophilized PCR reagents, as shown in FIG. 17. Such a kit may also be configured to provide for analysis of multiple samples, and contain sufficient PCR reagents (or other amplification reagents, such as for RT-PCR, transcription mediated amplification, strand displacement amplification, NASBA, helicase dependent amplification, and other familiar to one of ordinary skill in the art, and others described herein) to process such samples, and a number of individual holders such as 2, 4, 6, 8, 10, 12, 16, 20, or 24 holders.

Reagent Tubes

As referenced elsewhere herein, the containers 554 that protrusion in a receiving apparatus. Thus, embodiment 501 40 contain lyophilized reagents are 0.3 ml tubes that have been further configured to have a star-shaped—or stellated pattern (see FIGS. 13A and 13B) on their respective bottom interior surfaces. Still other tubes for use herein, as well as for other uses not herein described, can be similarly configured. Thus, for example, the benefits afforded by the star-shaped pattern also accrue to reagent tubes that contain liquid samples that are directly pipetted out of the tubes (as well as to those tubes that initially hold solids that are constituted into liquid form prior to pipetting). Other size tubes that would benefit from such a star-shaped pattern have sizes in the range 0.1 ml to 0.65 ml. for example.

> The star-shaped pattern ensures that when a fluid is withdrawn from the tube, a pipette tip can be bottomed out in the tube and still be able to withdraw the entire, or almost the entire fluid from the tube, as shown in FIG. 14. This is important because, when working with such small volumes, and when target DNA can be present in very few copies, sample loss due to imperfections of pipetting is to be minimized to every extent possible.

The design of the star shaped pattern is important, especially when using for recovery of DNA/RNA present in very small numbers in the clinical sample. The stellated pattern should enable pipetting of most of the liquid (residual volume<1 microliter) when used with a pipette bottomed out with the bottom of the tube. Additionally, the stellated pattern should be designed to minimize surface area as well as dead-end grooves that tend to have two undesirable

effects—to trap liquid as well as to increase undesirable retention of polynucleotides by adsorption.

FIG. 14 is now described, as follows. FIG. 14 has a number of panels, A-G, each representing, in sequence, a stage in a pipetting operation. At A, a pipette tip 2210, containing a liquid 2211 (such as a buffer solution), is positioned directly or approximately above the center of reagent tube 2200. The tube contains a number of lyophilized pellets 2212, and is sealed by a layer 2214, such as of foil. The foil may be heat-sealed on to the top of the tube. Although a laminate layer, as further described herein, can be placed on the reagent tube, typically a layer of aluminum foil is adequate, where the tube contents are solid, e.g., lyophilized, reagents. In some embodiments, the top of the reagent tube has chamfer edges to reduce expansion of the top rim of the tube during heal sealing of a foil on the top of the tube. The tube may further comprise an identifiable code, such as a 1-D or a 2-D bar-code on the top. Such a code is useful for identifying the composition of the reagents 20 stored within, and/or a batch number for the preparation thereof, and/or an expiry date. The code may be printed on with, for example, an inkjet or transfer printer.

Stellated pattern 2203 on the bottom interior surface of the tube **2200** is shown. At B, the pipette tip is lowered, 25 piercing seal 2214, and brought into a position above the particles 2212. At C the liquid 2211 is discharged from the pipette tip on to the particles, dissolving the same, as shown at D. After the particles are fully dissolved, forming a solution 2218, the pipette tip is lowered to a position where 30 it is in contact with the stellated pattern 2203, A E, the pipette tip is caused to suck up the solution 2218, and at F, the tip may optionally discharge the solution back into the tube. Steps E and F may be repeated, as desired, to facilitate dissolution and mixing of the lyophilized components into 35 solution. At step G, after sucking up as much of the solution 2218 as is practicable into the pipette tip, the pipette tip is withdrawn from the tube. Ideally, 100% by volume of the solution 2218 is drawn up into the pipette tip at G. In other embodiments, and depending upon the nature of solution 40 **2218**, at least 99% by volume of the solution is drawn up. In still other embodiments, at least 98%, at least 97%, at least 96%, at least 95%, and at least 90% by volume of the solution is drawn up.

The design of the stellated or star-shaped pattern can be 45 optimized to maximize the flow rate of liquid through the gaps in-between a bottomed out pipette, such as a p1000 pipette, and the star pattern, and is further described in U.S. provisional patent application Ser. No. 60/959,437, filed Jul. 13, 2007, incorporated herein by reference. It would be 50 understood that, although the description herein pertains to pipettes and pipette tips typically used in sample preparation of biological samples, the principles and detailed aspects of the design are as applicable to other types of pipette and pipette tip, and may be so-adapted.

FIG. 13A shows a cross sectional perspective view of a reagent tube 2200 having side wall 2201 and bottom 2202. Interior surface 2204 of the bottom is visible. A star-shaped cutout 2203 is shown in part, as three apical grooves.

Typically the star-shaped pattern is present as a raised 60 portion on the lower interior surface of the tube. Thus, during manufacture of a reagent tube, such as by injection moulding, an outer portion of the mould is a cavity defining the exterior shape of the tube. An interior shape of the tube is formed by a mould positioned concentrically with the 65 outer portion mould, and having a star-shaped structure milled out of its tip. Thus, when liquid plastic is injected into

22

the space between the two portions of the mould, the star-shape is formed as a raised portion on the bottom interior surface of the tube.

The exemplary star pattern 2203 shown in FIG. 13B in plan view resembles a "ship's wheel" and comprises a center 2209, a circular ring 2207 centered on center 2209, and 8 radial segments configured as radial grooves 2205. Each groove meets the other grooves at center 2209, and has a radial end, also referred to as an apex or vertex. Star pattern 2203 has 8 grooves, but it would be understood that a star pattern having fewer or a greater number of grooves, such as 3, 4, 6, 10, or 12, would be consistent with the design herein. The number of grooves of the star should be minimum consistent with effective liquid pipetting and also spaced apart enough not to trap the tip of any of the pipette tips to be used in the liquid handling applications.

Center **2209** is typically positioned coincidentally with the geometric center of the bottom of reagent tube **2200**. The tube is typically circular in cross-section, so identifying its center (e.g., at a crossing point of two diameters) is normally straightforward. Center **2209** may be larger than shown in FIG. **13B**, such as may be a circular cutout or raised portion that exceeds in diameter of the region formed by the meeting point of grooves **2205**.

Ring 2207 is an optional feature of star-shaped pattern 2203. Typically ring 2207 is centered about center 2209, and typically it also has a dimension that corresponds to the lower surface of a pipette tip. Thus, when a pipette tip 'bottoms out' in the bottom of reagent tube 2200, the bottom of the pipette tip rests in contact with ring 2207. Ring 2207 is thus preferably a cut-our or recessed feature that can accommodate the pipette tip and assist in guiding its positioning centrally at the bottom of the tube. In other embodiments more than one, such as 2, 3, or 4 concentric rings 2207 are present.

The star pattern is configured to have dimensions that give an optimal flow-rate of liquid out of the reagent tube into a suitably positioned pipette tip. The star pattern is shown in FIG. 13B as being significantly smaller in diameter than the diameter of the tube at its widest point. The star pattern may have, in various embodiments, a diameter (measured from center 2209 to apex of a groove 2205) from 5-20% of the diameter of the reagent tube, or from 10-25% of the diameter of the reagent tube, or from 20-40% of the diameter of the reagent tube, or from 30-50% the diameter of the reagent tube, or from 40-60% the diameter of the reagent tube, or from 50-75% the diameter of the reagent tube, or from 50-75% the diameter of the reagent tube, or from 65-90% the diameter of the reagent tube, or from 65-90% the diameter of the reagent tube.

The grooves 2205 are thus separated by ridges (occupying the space in between adjacent grooves). In the embodiment shown, the grooves are narrower (occupy a smaller radial angle) than the gaps between them. In other embodiments, the grooves may be proportionately wider than the gaps between them. In such embodiments, it may be more appropriate to describe them as having ridges instead of grooves. In other embodiments, the grooves and ridges that separate them are of equal widths at each radial distance from the center.

The grooves that form the apices of the star may be rounded in their lower surfaces, such as semi-circular in cross section, but are typically V-shaped. They may also be trapezoid in cross-section, such as having a wider upper portion than the bottom, which is flat, the upper portion and the bottom being connected by sloping walls.

23

In some embodiments, for ease of manufacture, the grooves end on the same level in the bottom of the tube. Thus the radial ends are all disposed on the circumference of a circle. In other embodiments, the grooves do not all end on the same level. For example, grooves may alternately end on 5 different levels, and thus the ends are alternately disposed on the respective circumferences of two circles that occupy different planes in space from one another.

Grooves 2205 are shown in FIG. 13B as having equal lengths (as measured from center 2209 to apex). This need 10 not be so. In alternative embodiments, grooves may have different lengths from one another, for example, as alternating lengths on alternating grooves, where there are an even number of grooves. Furthermore, apices may be rounded, rather than pointed.

Typically the grooves taper uniformly in width and depth from center 2209 to each respective apex. Still other configurations are possible, such as a groove that follows a constant width, or depth, out to a particular radial extent, such as 30-60% of its length, and then narrows or becomes 20 shallower towards its apex. Alternatively, a groove may start narrow at center 2209, widen to a widest region near its midpoint of length, and then narrow towards its apex. Still other possibilities, not described herein, are consistent with the stellated pattern.

In a 0.3 ml tube, the width of each groove 2205 at its widest point is typically around 50 microns, and the width typically tapers uniformly from a widest point, closest to or at center 2209, to the apex.

In a 0.3 ml tube, the depth of a groove at the deepest point 30 is typically around 25-50 microns and the depth typically tapers uniformly from a deepest point, closest to or at center 2209, to an apex.

In a 0.3 ml tube, the radius of the star formed from the grooves, measured as the shortest distance from center 2209 35 to apex, is typically around 0.5 mm, but may be from 0.1-1 mm, or from 0.3-2 mm.

In another embodiment, in a 0.3 ml tube, the grooves should be rounded off and less than 100 microns deep, or less than 50 microns deep, or less than 25 microns deep.

The stellated pattern typically has a rotation axis of symmetry, the axis disposed perpendicular to the bottom of the tube and through center 2209, so that the grooves are disposed symmetrically about the rotation axis. By this is meant that, for n grooves, a rotation of $2\pi/n$ about the central 45 (rotational) axis can bring each groove into coincidence with the groove adjacent to it.

The stellated shape shown in FIG. 13B is not limiting in that it comprises a number of radially disposed grooves 2205, and an optional circular ring 2207. Other star-shaped 50 geometries may be used, and, depending upon case of manufacture, may be preferred. For example, a star can be created simply be superimposing two or more polygons having a common center, but offset rotationally with respect to one another about the central axis. (See, for example "star 55 polygons" described at the Internet site mathworld.wolfram. com/StarPolygon.html.) Such alternative manners of creating star-shaped patterns are utilizable herein.

Liquid Dispenser

In various embodiments, preparation of a PCR-ready 60 sample for use in subsequent diagnosis using the apparatus as further described herein, can include one or more of the following steps: contacting a neutralized polynucleotide sample with a PCR reagent mixture comprising a polymerase enzyme and a plurality of nucleotides (in some 65 embodiments, the PCR reagent mixture can further include a positive control plasmid and a fluorogenic hybridization

24

probe selective for at least a portion of the plasmid); in some embodiments, the PCR reagent mixture can be in the form of one or more lyophilized pellets, as stored in a receptacle on a holder, and the method can further include reconstituting the PCR pellet with liquid to create a PCR reagent mixture solution. Various, such as one or more, of the liquid transfer operations associated with the foregoing steps can be accomplished by an automated pipette head.

A suitable liquid dispenser for use with the apparatus herein comprises one or more sensors; a manifold; one or more pumps in fluid communication with the manifold; one or more dispense heads in fluid communication with the manifold; and electrical connections that accept electrical signals from an external controller, wherein the liquid dispenser has no inlet or outlet for fluids, other than through the one or more pumps.

A cross-sectional view of an exemplary liquid dispenser is shown in FIG. 18. The liquid dispenser is configured to carry out fluid transfer operations on two or more holders simultaneously. As shown in FIG. 18, liquid dispenser 2105 can be mounted on a gantry having three degrees of translational freedom. Further embodiments can comprise a gantry having fewer than three degrees of translational freedom. The manner of mounting can be by a mechanical fastening such as one or more screws, as shown on the left hand side of FIG. 18. A suitable gantry comprises three axes of belt-driven slides actuated by encoded stepper motors. The gantry slides can be mounted on a framework of structural angle aluminum or other equivalent material, particularly a metal or metal alloy. Slides aligned in x- and y-directions (directed out of and in the plane of FIG. 18 respectively) facilitate motion of the gantry across an array of holders, and in a direction along a given holder, respectively.

The z-axis of the gantry can be associated with a variable force sensor which can be configured to control the extent of vertical motion of the head during tip pick-up and fluid dispensing operations. Shown in FIG. 18, for example, a pipette head 1803 can be mounted such that a force acting upwardly against the head can be sensed through a relative motion between the head and a force sensor. For example, when pipette head 1803 forces against a disposable pipette in the rack below it, an upward force is transmitted causing head 1803 to torque around pivot point 2102, causing set screw 2104 to press against a force sensor. In turn, the force sensor is in communication with a processor or controller that controls at least the vertical motion of the liquid dispenser so that, thereby, the processor or controller can send instructions to arrest the vertical motion of the liquid dispenser upon receiving an appropriate signal from the force sensor. An exemplary force sensor suitable for use herein is available from Honeywell; its specification is shown in an appendix hereto. The force sensor mechanism shown in FIG. 18 is exemplary and one of many possible mechanisms capable of commanding the head during up pick-up and fluid dispensing operations. For example, as an alternative to a force sensor, a stall sensor that senses interruption in vertical motion of the one or more dispense heads upon contact with a sample tube or reagent holder may be used. Accordingly, as would be understood by one of ordinary skill in the art, the liquid dispenser as described herein is not limited to the specific mechanism shown in FIG. 18.

The liquid dispenser further comprises a number of individually sprung heads 1803, wherein each head is configured to accept a pipette tip from the one or more pipette tips in a holder. The liquid dispenser can be further configured such that no two heads accept pipette tips from the same 25

holder. FIGS. **19**A-C, for example, depicts four individually sprung heads **1803**, but it is to be understood that the dispenser is not limited to this number. For example, other numbers include 2, 3, 5, 6, 8, 10, or 12. Furthermore, the individually sprung heads **1803** are shown arranged in 5 parallel to one another, but may be configured in other arrangements.

The liquid dispenser can further comprise computer-controlled pump 2100 connected to distribution manifold 1802 with related computer controlled valving. Distribution 10 manifold 1802 can comprise a number of valves, such as solenoid valves 1801 configured to control the flow of air through the pipette tips: in an exemplary embodiment, there are two valves for each pipette, and one additional valve to vent the pump. Thus, for a liquid dispenser having four 15 pipette heads, there are nine valves. In another embodiment there is only one valve for each pipette, and one additional valve to vent the pump. However, the distribution manifold is not limited to comprising exactly nine solenoid valves.

The liquid dispenser is further configured to aspirate or 20 dispense fluid in connection with analysis or preparation of solutions of two or more samples. The liquid dispense is also configured to dispense liquid into a microfluidic cartridge. Additionally, the liquid dispenser is configured to accept or dispense, in a single operation, an amount of 1.0 ml of fluid 25 or less, such as an amount of fluid in the range 10 nl-1 ml.

The liquid dispenser is configured such that pump 2100 pumps air in and out of the distribution manifold. The distribution manifold comprises a microfluidic network that distributes air evenly amongst the one or more valves. Thus, 30 by controlling flow of air through the manifold and various valves, pressure above the pipette heads can be varied so that liquid is drawn up into or expelled from a pipette tip attached to the respective pipette heads. In this way it is not necessary to supply compressed air via an air hose to the liquid 35 dispenser. Neither is it necessary to provide liquid lines to the dispense head. Furthermore, no liquid reagents or liquid samples from the holders enters any part of the liquid dispenser, including the manifold. This aspect reduces complications from introducing air bubbles into samples or 40 liquid reagents. An exemplary configuration of a distribution manifold is shown in FIG. 20.

As shown in the various figures, the entire liquid dispenser that moves up and down the z-axis is a self-contained unit having only electrical connections to a processor or 45 controller, and mechanical connections to the gantry. The translational motions in three dimensions of the liquid dispenser can be controlled by a microprocessor, such as processor 980. No fluid handling lines are associated with the dispenser. This design enables simplification of assem- 50 bly of the instrument, minimizes contamination of the instrument and cross-contamination of samples between different instances of operation of the apparatus, increases efficiency of pumping (minimal dead volume) and enables easy maintenance and repair of the device. This arrangement 55 also enables easy upgrading of features in the dispensing device, such as individual and independent pump control for each dispenser, individual pipette attachment or removal, ability to control the pitch of the pipettes, etc.

Another aspect of the apparatus relates to a sample 60 identification verifier configured to check the identity of each of the number of nucleic-acid containing samples. Such sample identification verifiers can be optical character readers, bar code readers, or radio frequency tag readers, or other suitable readers, as available to one of ordinary skill in the 65 art. A sample identification verifier can be mounted on the gantry, or attached to the liquid dispenser so that it moves in

26

concert with the liquid dispenser. Alternatively, the sample identification verifier can be separately mounted and can move independently of the liquid dispenser. In FIGS. 21 and 22, for example, sample identification verifier 1701 is a bar-code reader attached to the liquid dispenser. The field of view of barcode scanner 1701 is non-linear, enabling it to detect light reflected by mirror 2300 from the barcoded clinical sample tube 2301 in disposable rack 2302. The barcode scanner reads the barcode on the clinical sample tube thus identifying the presence and specifics of the sample tube. Because of use of a mirror, the scanner is configured either to read a bar-code printed in mirror image form (that is thus reflected into normal form), or to read a mirror image of a normal bar-code and to convert the mirror image to unreflected form via a computer algorithm.

Sample identification verifier is configured to communicate details of labels that it has detected or read to a processor or controller in the apparatus, thereby permitting sample identifying information to be associated with diagnostic results and other information relating to sample preparation, and extraction and amplification of nucleic acid therein.

In FIG. 23, the sample identification verifier is positioned to read indicia from a microfluidic cartridge.

In certain embodiments, the liquid dispenser can also comprise one or more sensors 2001 (e.g., infra-red sensors) each of which detects the presence of a pipette tip in a rack. In FIG. 24, for example, an infra-red sensor 2001 can have an infra-red emitter placed opposed to it, and the presence of disposable pipette tip 2000 obstructs the line of sight between the emitter and the detector, thus enabling determination of the presence or absence of the pipette tip. The disposal pipettes are configured perpendicular to pipette stripper-alignment plate 2003 as further described herein.

The liquid dispenser can also operate in conjunction with a motorized plate configured to strip the pipettes and align the pipettes during dispensing of fluid into a microfluidic cartridge, as further described herein.

FIGS. 25A and 25B show an exemplary device for stripping pipette tips from a liquid dispenser as further described herein. The pipette tips are aligned, all at the same pitch, above respective sockets (over a pipette tip sheath) in a holder. A metal plate having elongated holes lies over the sockets. The pipette tips are inserted part way down into the sheath through the elongated holes, and the metal plate is moved along in such a manner that the pipette tips are clamped by the elongated portion of the holes. When the liquid dispenser is moved up, the pipette tips become detached from their respective heads. When the metal plate is subsequently moved back to its initial position, the pipette tips remain in place in their respective sockets. Heater Assembly & Magnetic Separator

heater assembly **1401** is shown in FIG. **18** (right hand panel). The heater assembly comprises one or more independently controllable heater units, each of which comprises a heat block. In certain embodiments there are 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 25, 30, 32, 36, 40, 48, or 50 heater units in a heater assembly. Still other numbers of heater units, such as any number between 6 and 100 are consistent with the description herein. The one or more heat blocks may be fashioned from a single piece of metal or other material, or may be made separately from one another and mounted independently of one another or connected to one another in some way. Thus, the term heater assembly connotes a collection of heater units but does not require the heater units

or their respective heat blocks to be attached directly or

A cross-sectional view of a heater unit of an exemplary

indirectly to one another. The heater assembly can be configured so that each heater unit independently heats each of the one or more process tubes 1402, for example by permitting each of the one or more heat blocks to be independently controllable, as further described herein. In 5 the configuration of FIG. 26, the heater assembly comprises one or more heat blocks 1403 each of which is configured to align with and to deliver heat to a process tube 1402. Each heat block 1403 can be optionally secured and connected to the rest of the apparatus using a strip 1408 and one or more 10 screws 1407 or other adhesive device. This securing mechanism is not limited to such a configuration.

27

Although a cross-sectional view of one heat block 1403 is shown in FIG. 26, it should be understood that this is consistent with having multiple heat blocks aligned in 15 parallel to one another and such that their geometric midpoints all lie on a single linear axis, though it is not so limited in configuration. Thus, the one or more heat blocks may be positioned at different heights from one another, in groups or, alternately, individually, or may be staggered with 20 respect to one another from left to right in FIG. 26 (right hand panel), in groups or alternately, or individually. Additionally, and in other embodiments, the heat blocks are not aligned parallel to one another but are disposed at angles relative to one another, the angles being other than 180°. 25 Furthermore, although the heat block shown in FIG. 26 may be one of several that are identical in size, it is consistent with the technology herein that one or more heat blocks may be configured to accept and to heat process tubes of different

The exemplary heat block 1403 in FIG. 26 (right hand panel) is configured to have an internal cavity that partially surrounds a lower portion of process tube 1402. In the heat block of FIG. 26, the internal cavity surrounds the lower portion of process tube 1402 on two sides but not the front 35 side (facing away from magnet 1404) and not the rear side (adjacent to magnet 1404). In other embodiments, heat block 1403 is configured to surround the bottom of process tube 1402 on three sides, including the front side. Still other configurations of heat block 1403 are possible, consistent 40 with the goals of achieving rapid and uniform heating of the contents of process tube 1402. In certain embodiments, the heat block is shaped to conform closely to the shape of process tube 1402 so as to increase the surface area of the heat block that is in contact with the process tube during 45 heating of the process tube. Thus, although exemplary heat block 1403 is shown having a conical, curve-bottomed cavity in which a complementary process tube is seated, other embodiments of heat block 1403 have, for example, a cylindrical cavity with a flat bottom. Still other embodi- 50 ments of heat block 1403 may have a rectilinear internal cavity such as would accommodate a cuvette.

Moreover, although heat block 1403 is shown as an L-shape in FIG. 26, which aids in the transmittal of heat from heating element 1501 and in securing the one or more 55 heat blocks to the rest of the apparatus, it need not be so, as further described herein. For example, in some embodiments heating element 1501 may be positioned directly underneath process tube 1402.

Each heat block **1403** is configured to have a low thermal 60 mass while still maintaining high structural integrity and allowing a magnet to slide past the heat blocks and the process tubes with ease. A low thermal mass is advantageous because it allows heat to be delivered or dissipated rapidly, thus increasing the heating and cooling efficiency of the 65 apparatus in which the heater assembly is situated. Factors that contribute to a low thermal mass include the material

from which a heat block is made, and the shape that it adopts. The heat blocks **1403** can therefore be made of such materials as aluminum, silver, gold, and copper, and alloys

28

thereof, but are not so limited. In one embodiment, the heat block 1403 has a mass of ~ 10 grams and is configured to heat up liquid samples having volumes between 1.2 ml and 10 μl. Heating from room temperature to 65° C. for a 1 ml biological sample can be achieved in less than 3 minutes, and 10 µl of an aqueous liquid such as a release buffer up to 85° C. (from 50° C.) in less than 2 minutes. The heat block 1403 can cool down to 50° C. from 85° C. in less than 3 minutes. The heat block 1403 can be configured to have a temperature uniformity of 65±4° C. for heating up 1 ml of sample and 85±3° C. for heating up 10 µl of release buffer. These ranges are typical, but the heat block can be suitably scaled to heat other volumes of liquid at rates that are slower and faster than those described. This aspect of the technology is one aspect that contributes to achieving rapid nucleic acid extraction of multiple samples by combination of liquid processing steps. rapid heating for lysis, DNA capture and release and mag-

Not shown in FIG. 26, the heater assembly 1401 can also optionally be contained in an enclosure that surrounds the heat blocks 1403. The enclosure can be configured to enable sufficient air flow around the process tubes and so as not to significantly inhibit rate of cooling. The enclosure can have a gap between it and the heat blocks to facilitate cooling. The enclosure can be made of plastic, but is not so limited. The enclosure is typically configured to appear aesthetic to a user.

netic separation, as further described herein.

As shown in FIG. 26, the heater assembly 1401 can also comprise one or more heating elements (e.g., a power resistor) 1501 each of which is configured to thermally interface to a heat block 1403 and dissipate heat to it. For example, in one embodiment, a power resistor can dissipate up to 25 Watts of power. A power resistor is advantageous because it is typically a low-cost alternative to a heating element. Other off-the-shelf electronic components such as power transistors may also be used to both sense temperature and heat. Although the heating element 1501 is shown placed at the bottom of the heat block 1403, it would be understood that other configurations are consistent with the assembly described herein: for example, the heating element 1501 might be placed at the top or side of each heat block 1403, or directly underneath process tube 1402. In other embodiments, the heating element has other shapes and is not rectangular in cross section but may be curved, such as spherical or ellipsoidal. Additionally, the heating element may be moulded or shaped so that it conforms closely or approximately to the shape of the bottom of the process tube. Not shown in FIG. 26, the heater assembly can also comprise an interface material (e.g., Berquist q-pad, or thermal grease) between the heating element 1501 and the heat block 1403 to enable good thermal contact between the element and the heat block.

In the embodiment shown in FIG. 26, the heater assembly further comprises one or more temperature sensors 1502, such as resistive temperature detectors, to sense the respective temperatures of each heat block 1403. Although a temperature sensor 1502 is shown placed at the bottom of the heat block 1403, it would be understood that other configurations are consistent with the assembly described herein: for example, the temperature sensor might be placed at the top or side of each heat block 1403, or closer to the bottom of process tube 1402 but not so close as to impede uniform heating thereof. As shown in the embodiment of

29

FIG. 26, the heater assembly can further comprise an interface material (e.g., Berquist q-pad) 1503 configured to enable good thermal contact between the sensor 1502 and the heat block 1403, to thereby ensure an accurate reading.

Certain embodiments of the diagnostic or preparatory 5 apparatus herein have more than one heater assembly as further described herein. For example, a single heater assembly may be configured to independently heat 6 or 12 process tubes, and an apparatus may be configured with two or four such heater assemblies.

The disclosure herein further comprises a magnetic separator, configured to separate magnetic particles, the separator comprising: one or more magnets affixed to a supporting member; a motorized mechanism configured to move the supporting member in such a manner that the one or more magnets move backwards and forwards along a fixed axis, and during at least a portion of the motion, the one or more magnets maintain close proximity to one or more receptacles which contain the magnetic particles in solution; and control circuitry to control the motorized mechanism.

The disclosure herein still further includes an integrated magnetic separator and heater, comprising: a heater assembly, wherein the heater assembly comprises a plurality of independently controllable heater units, each of which is configured to accept and to heat one of a plurality of process 25 tubes; one or more magnets affixed to a supporting member; a motorized mechanism configured to move the supporting member in such a manner that the one or more magnets move backwards and forwards along a fixed axis, and during at least a portion of the motion the one or more magnets so maintain close proximity to one or more of the process tubes in the heater assembly, wherein the one or more process tubes contain magnetic particles; and control circuitry to control the motorized mechanism and to control heating of the heater units.

Typically, each of the one or more receptacles is a process tube, such as for carrying out biological reactions. In some embodiments, close proximity can be defined as a magnet having a face less than 2 mm away from the exterior surface of a process tube without being in contact with the tube. It 40 can still further be defined to be less than 1 mm away without being in contact with the tube, or between 1 and 2 mm away.

Typically the magnetic particles are microparticles, beads, or microspheres capable of binding one or more biomol-45 ecules, such as polynucleotides. Separating the particles, while in solution, typically comprises collecting and concentrating, or gathering, the particles into one location in the inside of the one or more receptacles.

An exemplary magnetic separator 1400 is shown in FIG. 50 27, configured to operate in conjunction with heater assembly 1401. The magnetic separator 1400 is configured to move one or more magnets relative to the one or more process tubes 1402. While the magnet 1404 shown in FIG. 27 is shown as a rectangular block, it is not so limited in 55 shape. Moreover, the configuration of FIG. 27 is consistent with either having a single magnet that extends across all heat blocks 1403 or having multiple magnets operating in concert and aligned to span a subset of the heat blocks, for example, aligned collinearly on the supporting member. The 60 magnet 1404 can be made of neodymium (e.g., from K &J Magnetics, Inc.) and can have a magnetic strength of 5,000-15,000 Gauss (Brmax). The poles of the magnets **1404** can be arranged such that one pole faces the heat blocks 1403 and the other faces away from the heat blocks.

Further, in the embodiment shown in FIG. 27, the magnet 1404 is mounted on a supporting member 1505 that can be

30

raised up and down along a fixed axis using a motorized shaft 1405. The fixed axis can be vertical. In the embodiment shown in FIG. 27, a geared arrangement 1406 enables the motor 1601 to be placed perpendicular to the shaft 1405, thereby saving space in the apparatus in which magnetic separator 1400 is situated. In other embodiments, the motor is placed underneath shaft 1405. It would be understood that other configurations are consistent with the movement of the magnet relative to the process tubes, including, but not limited to, moving the magnet from side-to-side, or bringing the magnet down from above. The motor can be computer controlled to run at a particular speed; for example at a rotational speed that leads to vertical motion of the magnet in the range 1-20 mm/s. The magnetic separator can thus be configured to move repetitively, e.g., up an down, from side to side, or backwards and forwards, along the same axis several times. In some embodiments there is more than one shaft that operates under motorized control. The presence of 20 at least a second shaft has the effect of making the motion of the separator more smooth. In some embodiments, the supporting member rides on one more guiding members to ensure that the supporting member does not, for example, tip, twist, or yaw, or undergo other internal motions while moving (other than that of controlled motion along the axis) and thereby reduce efficacy of the separation.

The supporting member can also be configured to move the magnets between a first position, situated away from the one or more receptacles, and a second position situated in close proximity to the one or more receptacles, and is further configured to move at an amplitude about the second position where the amplitude is smaller than a distance between the first position and the second position as measured along the shaft.

Shown in FIGS. 26 and 27, the heater assembly 1401 and the magnetic separator 1400 can be controlled by electronic circuitry such as on printed circuit board 1409. The electronic circuitry 1409 can be configured to cause the heater assembly 1401 to apply heat independently to the process tubes 1402 to minimize the cost of heating and sensing. It can also be configured to cause the magnetic separator 1400 to move repetitively relative to the process tubes 1402. The electronic circuitry 1409 can be integrated into a single printed circuit board (PCB). During assembly, a plastic guide piece can help maintain certain spacing between individual heat blocks 1403. This design can benefit from use off-the-shelf electronics to control a custom arrangement of heat blocks 1403.

Not shown in FIGS. 26 and 27, an enclosure can cover the magnetic separator 1400 and the heater assembly 1401 for protection of sub-assemblies below and aesthetics. The enclosure can also be designed to keep the heat blocks 1403 spaced apart from one another to ensure efficiency of heating and cooling. The magnetic separator and heater assembly can, alternatively, be enclosed by separate enclosures. The one or more enclosures can be made of plastic.

Advantageously, the heater assembly and magnetic separator operate together to permit successive heating and separation operations to be performed on liquid materials in the one or more process tubes without transporting either the liquid materials or the process tubes to different locations to perform either heating or separation. Such operation is also advantageous because it means that the functions of heating and separation which, although independent of one another, are both utilized in sample preparation may be performed with a compact and efficient apparatus.

Cartridge Autoloader

An exemplary embodiment of a PCR amplification-detection system 2900 for use with a microfluidic cartridge is shown in FIG. 28. The system 2900 performs and automates the process of PCR on multiple nucleic-acid containing samples in parallel. The system 2900 comprises a depository 2907 for unused microfluidic cartridges, a cartridge autoloader, a receiving bay for a microfluidic cartridge, a detector, and a waste tray 2903 configured to receive used microfluidic cartridges. In one embodiment, the cartridge autoloader comprises a cartridge pack 2901, and a cartridge pusher 2904.

31

The system 2900, for illustration purposes, is configured so that a microfluidic cartridge moves in a plane and in a linear manner from the depository to the receiving bay, to 15 the waste bin, but it need not be so arranged. For example, the waste cartridge bin 2903 can be aligned orthogonally, or any angle thereof, to the receiving bay, such as disposed behind it. Alternatively, each element (cartridge autoloader 2901, receiving bay 2902, and waste cartridge bin 2903) can 20 be configured in a step-wise manner where the cartridge pack 2901 is on the same, higher or lower level than the microfluidic PCR amplification-detection system 2902 and the microfluidic PCR amplification-detection system 2902 is on the same, higher or lower level than the waste cartridge 25 bin 2903. Another configuration could be that each of the three elements is not arranged linearly but at an angle to one another, although within the same plane.

FIG. 28 illustrates the cartridge pack 2901 and the waste cartridge bin 2903 below the plane of the receiving bay, and 30 a detection system 2908 above the plane. This configuration is exemplary and it would be understood that these elements may be positioned above or below the plane in other embodiments.

FIG. 29 illustrates a depository for unused microfluidic 35 cartridges. The depository can be configured to accept a number of individually stacked and individually loaded cartridges, or can be configured to accept a pack of cartridges. An exemplary cartridge pack has 24 cartridges. The depository may consist of a cage 2910 of any material that 40 may or may not be transparent. For example it may be made of metal or plastic. The cartridge pack 2901 is not limited to twenty-four cartridges 106 per pack but may contain any number from 2 to 100. For example, other numbers such as 2, 4, 8, 10, 12, 16, 20, 30, 36, 40, 48, 50, or 64 are possible 45 numbers of cartridges 106 per pack. Similarly, the depository may be configured to accept those numbers of cartridges, when individually stacked. In one embodiment, as in FIG. 29, each cartridge 2906, individually stacked, rests on ledges 2911 that protrude from the cage 2910. However, 50 other configurations are possible. For example, a cartridge **2906** may rest on recessed grooves made within the interior surfaces of cage 2910. Furthermore, the cartridge pack 2901 may not need to be placed in a cage 2910. The cartridge pack 2901 may itself include the necessary connections to bind 55 securely to the apparatus to load the cartridges 2906.

FIG. 30 is an illustration of an exemplary initial loading position of a cartridge pack 2901 in a depository when samples are loaded in the topmost cartridge in the pack. FIG. 30 shows the cartridge pack 2901 below a plane that 60 contains a cartridge pusher. In other embodiments, the cartridge pack 2901 may be above the plane of a cartridge pusher where the pusher pushes the lowest cartridge out from the holder; or partly above and partly below in a holder 2920 where a cartridge pusher pushes a cartridge from the 65 middle of the cartridge pack 2901. In the embodiment shown, a topmost cartridge 106 is pushed along two guide

32

rails 2905. Alternatively, there may be more or fewer guide rails (such as one or three) or no guide rails at all so long as a cartridge 2906 can be caused to move to other required positions.

An exemplary cartridge pusher 2904 is shown in FIG. 31. The cartridge pusher 2904 pushes a cartridge 2906 along guide rails 2905, which allows a cartridge 2906 to travel to pre-calibrated positions by the mechanism of a stepper motor 2930. However, it would be understood that the mechanism of transporting the cartridge 2906 is not limited to a stepper motor 2930 and thus other mechanisms are also consistent with the cartridge pusher 2904 as described boroin

FIG. 32 shows a used cartridge 2906 that has been pushed by the cartridge pusher 2904 into the waste cartridge bin 2903 after a PCR process has been completed. The embodiment shows a lipped handle 2940 that facilitates easy handling, such as emptying, of the bin 2903. However, it would be understood that the handle 2904 is not limited to the style and shape shown.

An exemplary cartridge pack 2901, before and after multiple PCR processes are completed are shown in FIG. 33. After the cartridge pusher 2904 pushes a cartridge 2906 out of the cartridge pack 2901, a spring 2950 at the bottom of the cartridge pack pushes against the lower surface of the stack of cartridges and causes the topmost cartridge to be made available for sample injection. The spring 2950 is not limited in number or type. Thus although a single helical or coiled spring is shown, it is consistent with the description herein that more than one helical or coiled springs could be used, such as 2, 3, or 4, and that alternatively a sprung metal strip, or several strips, could be used. Alternatively another mechanism for forcing the cartridges upwards could be deployed, such as a pneumatic, hydraulic, or inflatable pressurized container, could be utilized.

It is to be noted that microfluidic cartridges, as further described herein, that have a raised lip along their edges to permit ease of stacking and/or storage in a pack or an auto-loader are particularly advantageous because the raised lips also introduce a stiffness into the cartridges and assist in keeping the fluid inlets on one cartridge away from those on another cartridge during storage and transport. The raised regions, which need not only be lips along each edge of a cartridge, also help minimize friction between the lower surface of one cartridge and the upper surface of another. Cartridge Receiving Bay

The present technology relates to an apparatus and related methods for amplifying, and carrying out diagnostic analyses on, nucleotides from biological samples. The apparatus is configured to act on a disposable microfluidic cartridge containing multiple sample lanes in parallel, and comprises a reusable instrument platform that can actuate on-cartridge operations, can detect and analyze the products of the PCR amplification in each of the lanes separately, in all simultaneously, or in groups simultaneously, and, optionally, can display the results on a graphical user interface.

FIG. 34 shows a perspective view of an exemplary cartridge 200 that contains multiple sample lanes, and exemplary read head 300 that contains detection apparatus for reading signals from cartridge 200. Also shown in FIG. 34 is a tray 110 that, optionally, can accommodate cartridge 200 prior to insertion of the cartridge in a receiving bay. The apparatus described herein is able to carry out real-time PCR on a number of samples in cartridge 200 simultaneously. Preferably the number of samples is 12 samples, as illustrated with exemplary cartridge 200, though other numbers of samples such as 4, 8, 10, 16, 20, 24, 25, 30, 32, 36, 40,

and 48 are within the scope of the present description. In preferred operation of the apparatus, a PCR-ready solution containing the sample, and, optionally, one or more analyte-specific reagents (ASR's) using other components of the apparatus, as further described herein, prior to introduction 5

into cartridge 200.

33

In some embodiments, an apparatus includes a bay configured to selectively receive a microfluidic cartridge; at least one heat source thermally coupled to the bay; and coupled to a processor as further described herein, wherein 10 the heat source is configured to heat individual sample lanes in the cartridge, and the processor is configured to control application of heat to the individual sample lanes, separately, in all simultaneously, or in groups simultaneously.

In some embodiments, an apparatus further includes at 15 least one detector configured to detect a polynucleotide (nucleic acid) in a sample in one or more of the individual sample lanes, separately or simultaneously; wherein the processor is coupled to the detector to control the detector and to receive signals from the detector.

The bay can be a portion of the apparatus that is configured to selectively receive the microfluidic cartridge. For example, the bay and the microfluidic cartridge can be complementary in shape so that the microfluidic cartridge is selectively received in, e.g., a single orientation. For 25 example, the microfluidic cartridge can have a registration member that fits into a complementary feature of the bay. The registration member can be, for example, a cut-out on an edge of the cartridge, such as a corner that is cut-off, or one or more notches that are made on one or more of the 30 sides. By selectively receiving the cartridge, the bay can help a user to place the cartridge so that the apparatus can properly operate on the cartridge. In this way, error-free alignment of cartridges can be achieved. Moreover, the cartridge can be designed to be slightly smaller than the 35 receiving bay by approximately 200-300 micron for easy placement and removal of the cartridge. The apparatus can further include a sensor configured to sense whether the microfluidic cartridge is selectively received

The bay can also be configured so that various components of the apparatus that can operate on the microfluidic cartridge (heat sources, detectors, force members, and the like) are positioned to properly operate on the microfluidic cartridge. For example, a contact heat source can be positioned in the bay such that it can be thermally coupled to a 45 distinct location at a microfluidic cartridge that is selectively received in the receiving bay.

Alternatively, in connection with alignment of microheaters in the heater module with corresponding heat-requiring microcomponents (such as valves, pumps, gates, reaction 50 chambers, etc.), the microheaters can be designed to be slightly bigger than the heat requiring microfluidic components so that even though the cartridge may be off-centered from the heater, the individual components can still function effectively.

The detector 300 can be, for example, an optical detector, as further described herein. For example, the detector can include a light source that selectively emits light in an absorption band of a fluorescent dye, and a light detector that selectively detects light in an emission band of the fluorescent dye, wherein the fluorescent dye corresponds to a fluorescent polynucleotide probe or a fragment thereof. Alternatively, for example, the optical detector can include a bandpass-filtered diode that selectively emits light in the absorption band of the fluorescent dye and a bandpass 65 filtered photodiode that selectively detects light in the emission band of the fluorescent dye; or for example, the optical

34

detector can be configured to independently detect a plurality of fluorescent dyes having different fluorescent emission spectra, wherein each fluorescent dye corresponds to a fluorescent polynucleotide probe or a fragment thereof; or for example, the optical detector can be configured to independently detect a plurality of fluorescent dyes at a plurality of different locations on a microfluidic cartridge, wherein each fluorescent dye corresponds to a fluorescent polynucleotide probe or a fragment thereof in a different sample.

The heat source can be, for example, a heat source such as a resistive heater or network of resistive heaters, a reversible heat source such as a liquid-filled heat transfer circuit or a thermoelectric element, a radiative heat source such as a xenon lamp, and the like.

In preferred embodiments, the at least one heat source can be a contact heat source selected from a resistive heater (or network thereof), a radiator, a fluidic heat exchanger and a 20 Peltier device. The contact heat source can be configured at the receiving bay to be thermally coupled to one or more distinct locations of a microfluidic cartridge received in the bay, whereby the distinct locations are selectively heated. At least one additional contact heat source can be included, wherein the contact heat sources are each configured at the bay to be independently thermally coupled to a different distinct location in a microfluidic cartridge received in the bay, whereby the distinct locations are independently heated. The contact heat source can be configured to be in direct physical contact with a distinct location of a microfluidic cartridge received in the bay. In various embodiments, each contact source heater can be configured to heat a distinct location having an average diameter in 2 dimensions from about 1 millimeter (mm) to about 15 mm (typically about 1 mm to about 10 mm), or a distinct location having a surface area of between about 1 mm² about 225 mm² (typically between about 1 mm² and about 100 mm², or in some embodiments between about 5 mm² and about 50 mm²).

In various embodiments, at least one heat source can be a radiative heat source configured to direct heat to a distinct location of a microfluidic cartridge received in the receiving tridge (heat sources, detectors, force members, and the

In various embodiments, the apparatus includes one or more force members that are configured to apply force to thermally couple the at least one heat source to at least a portion of the microfluidic cartridge received in the bay. The one or more force members can be configured to operate a mechanical member at the microfluidic cartridge. At least one force member can be manually operated. At least one force member can be mechanically coupled to a lid at the receiving bay, whereby operation of the lid operates the force member.

In various embodiments, the force applied by the one or more force members can result in an average pressure at an interface between a portion of the receiving bay and a portion of the microfluidic cartridge of about 1 psi. The application of force is important to ensure consistent thermal contact between the heater wafer and the PCR reactor and microvalves in the microfluidic cartridge.

In various embodiments, the apparatus can further include a lid at the receiving bay, the lid being operable to at least partially exclude ambient light from the bay. The lid can be, for example, a sliding lid. The lid can include the optical detector. A major face of the lid at the bay can vary from planarity by less than about 100 micrometers, for example, less than about 25 micrometers. The lid can be configured to be removable from the apparatus. The lid can include a

35 latching member that ensures that the lid is securely closed before amplification reactions are applied to the samples in

FIG. 35 shows a schematic cross-sectional view of a part of an apparatus as described herein, showing input of sample 5 into a cartridge 200 via a pipette tip 10 (such as a disposable pipette) attached to an automated dispensing head, and an inlet 202. Although not shown, there are as many inlets 202 as samples to be input into cartridge 200. Inlet 202 is preferably configured to receive a pipette or the bottom end of a PCR tube and thereby accept sample for analysis with minimum waste, and with minimum introduction of air. Cartridge 200 is disposed on top of and in contact with a heater substrate 400. Read head 300 is positioned above cartridge 200 and a cover for optics 310 restricts the amount 15 of ambient light that can be detected by the read head.

In various embodiments, a system as described herein can include both a microfluidic cartridge and the diagnostic apparatus.

Microfluidic Cartridge

One aspect of the present technology relates to a microfluidic cartridge including a first, second, and third, layers that together define a plurality of microfluidic networks, each network having various components configured to carry out PCR on a sample having one or more polynucle- 25 otides whose presence is to be determined. The cartridge includes one or more sample lanes in parallel, wherein each lane is independently associated with a given sample for simultaneous processing, and each lane contains an independently configured microfluidic network. An exemplary 30 cartridge having such a construction is shown in FIG. 36. Such a cartridge is simple to manufacture, and permits PCR in a concentrated reaction volume (~4 µl) and enables rapid thermocycling, at ~20 seconds per cycle.

Although other layers may be found in cartridges having 35 comparable performance and ease of manufacture, the cartridge herein includes embodiments having only three layers in their construction: a substrate having an upper side and an opposed lower side, wherein the substrate comprises a microfluidic network having a plurality of sample lanes; a 40 laminate attached to the lower side to seal the components of the microfluidic network, and provide an effective thermal transfer layer between a dedicated heating element and components in the microfluidic network; and a label, attached to the upper side that also covers and seals holes 45 that are used in the manufacturing process to load microfluidic components such as valves. Thus, embodiments herein include microfluidic cartridges consisting of three layers, a substrate, a laminate, and a label, though other, additional, features other than layers may be consistent with 50 such characterizations. Embodiments herein further include microfluidic cartridges consisting essentially of three layers, a substrate, a laminate, and a label, though other, additional, features other than layers may be consistent with such further include microfluidic cartridges comprising three layers, a substrate, a laminate, and a label.

A microfluidic network can include, in fluidic communication, one or more components selected from the group consisting of: gates, valves such as thermally actuated 60 valves, channels, vents, and reaction chambers. Particular components of exemplary microfluidic networks are further described elsewhere herein. The cartridge typically processes the sample by increasing the concentration of a polynucleotide to be determined.

A sample lane is a set of elements, controllable independently of those in another sample lane, by which a sample 36

can be accepted and analyzed, according to methods described herein. A lane comprises at least a sample inlet, and a microfluidic component, as further described herein in connection with a microfluidic cartridge. In some embodiments, each microfluidic network additionally comprises an overflow reservoir to contain extra liquid dispensed into the cartridge.

In various embodiments, a lane can include a sample inlet port, a first thermally actuated valve, a second thermally actuated valve, a PCR reaction chamber, and channels connecting the inlet port to the PCR reaction chamber via the first valve, and channels connecting the PCR reaction chamber to an exit vent via the second valve. The sample inlet valve can be configured to accept a quantity of sample at a pressure differential compared to ambient pressure of between about 100 to 5000 Pa. It should be noted that the lower the loading pressure, the higher the fill time for a aliquot of reaction mix to fill the microfluidic network. Applying more pressure will reduce the fill time, but if the 20 time for which the pressure is applied is not determined correctly, the sample could be blown out through the microfluidic cartridge (if an end hydrophobic vent is not present). Therefore the time for which the pressure is applied should to be properly determined, such as by methods available to one of ordinary skill in the art, to prevent underfill or overfill. In general, the fill time is inversely proportional to the viscosity of the solution. For example, FIG. 37 shows a microfluidic cartridge containing twelve independent sample lanes capable of independent (simultaneous or successive) processing of samples.

The microfluidic network in each lane is typically configured to carry out PCR on a PCR-ready sample, such as one containing nucleic acid (DNA or RNA) extracted from a raw biological sample using other aspects of the apparatus as further described herein. A PCR-ready sample is thus typically a mixture comprising the PCR reagent(s) and the neutralized polynucleotide sample, suitable for subjecting to thermal cycling conditions that create PCR amplicons from the neutralized polynucleotide sample. For example, a PCRready sample can include a PCR reagent mixture comprising a polymerase enzyme, a positive control plasmid, a fluorogenic hybridization probe selective for at least a portion of the plasmid and a plurality of nucleotides, and at least one probe that is selective for a polynucleotide sequence.

Typically, the microfluidic network is configured so that the time required for a microdroplet of sample to pass from the inlet to the second valve is less than 50% of the time required for the sample to travel up to the exit vent. Typically, the microfluidic network is designed to have an increased flow resistance downstream of the two valves without increasing the total volume of the microfluidic network in comparison to the amount required to fill from the first valve to the end vent of the network.

FIG. 38A shows a perspective view of a portion of an characterizations. Furthermore, embodiments herein still 55 exemplary microfluidic cartridge 200 according to the present technology. The cartridge may be referred to as a multi-lane PCR cartridge with dedicated pipette inlets 202. Shown in FIG. 38A are various representative components of cartridge 200. For example, sample inlet 202 is configured to accept a syringe, a pipette, or a PCR tube containing a PCR ready sample. More than one inlet 202 is shown, wherein one inlet operates in conjunction with a single lane. Various components of microfluidic circuitry in each lane are also visible. For example, microvalves 204, and 206, and vents 208, are parts of microfluidic circuitry in a given lane. Also shown is an ultrafast PCR reactor 210, which, as further described herein, is a microfluidic channel that is

long enough to permit PCR to occur in a sample. Above PCR reactor 210 is a window 212 that permits optical detection, such as detection of fluorescence from a fluorescent substance, such as a fluorogenic hybridization probe, in PCR reactor 210 when a detector is situated above window 212. 5

37

A multi-lane cartridge is configured to accept a number of samples, in particular embodiments 12 samples, wherein the samples include at least a first sample and a second sample, wherein the first sample and the second sample each contain one or more polynucleotides in a form suitable for amplification. The polynucleotides in question may be the same as, or different from one another, in different lanes of a cartridge. The multi-sample cartridge comprises at least a first microfluidic network and a second microfluidic network, adjacent to one another, wherein each of the first microfluidic network and the second microfluidic network is as elsewhere described herein, and wherein the first microfluidic network accepts the first sample, and wherein the second microfluidic network accepts the second sample.

The sample inlets of adjacent lanes are reasonably spaced 20 apart from one another to prevent any contamination of one sample inlet from another sample when a user introduces a sample into any one cartridge. In some embodiments, the sample inlets are configured so as to prevent subsequent inadvertent introduction of sample into a given lane after a 25 sample has already been introduced into that lane.

In some embodiments, the multi-sample cartridge has a size substantially the same as that of a 96-well plate as is customarily used in the art. Advantageously, then, the cartridge may be used with plate handlers used elsewhere in the 30 art. Still more preferably, however, the multi-sample cartridge is designed so that a spacing between the centroids of sample inlets is 9 mm, which is an industry-recognized standard. This means that, in certain embodiments the center-to-center distance between inlet holes in the cartridge 35 that accept samples from PCR tubes, as further described herein, is 9 mm. The inlet holes are manufactured frustoconical in shape with an appropriate conical angle so that industry-standard pipette tips (2 μl, 20 μl, 200 μl, volumes, etc.) fit snugly, entering from the widest point of the inlet. 40 Thus, in certain embodiments, an inlet comprises an inverted frustoconical structure of at least 1 mm height, and having a diameter at its widest point that accepts entry of a pipette tip, of from 1-5 mm. The apparatus herein may be adapted to suit other, later-arising, industry standards for pipette tips 45 not otherwise described herein. Typically the volume of sample accepted via an inlet into a microfluidic network in a sample lane is from 1-20 μl, and may be from 3-5 μl. The inlet hole can be designed to fit a pipette tip snugly and to create a good seal around the pipette tip, within the cone of 50 the inlet hole. However, the cone is designed such that the sealing is reversible because it is undesirable if the seal is so tight that the cartridge can be pulled away from its tray, or location in the receiving bay, when the pipette tips are lifted after the dispensing operations.

FIG. 37 shows a plan view of an exemplary microfluidic cartridge having 12 lanes. The inlet ports have a 6 mm spacing, so that, when used in conjunction with an automated sample loader having 4 heads, spaced equidistantly at 9 mm apart, the inlets can be loaded in three batches of 4 60 inlets: e.g., inlets 1, 4, 7, and 10 together, followed by 2, 5, 8, and 11, then finally 3, 6, 9, and 12, wherein the 12 inlets are numbered consecutively from one side of the cartridge to the other.

FIG. **39**A shows a plan view of a representative micro-65 fluidic circuit found in one lane of a multi-lane cartridge such as shown in FIGS. **38**A and **38**B. FIG. **39**B shows

38

another plan view (left panel) of another representative microfluidic circuit found in one lane of a multi-lane cartridge such as shown in FIG. 36, and shows how the circuit is visible through the cartridge construction (right panel). Other configurations of microfluidic network would be consistent with the function of the cartridges and apparatus described herein. In sequence, sample is introduced through liquid inlet 202, and optionally flows into a bubble removal vent channel 208 (which permits adventitious air bubbles introduced into the sample during entry, to escape), and continues along a channel 216. Typically, when using a robotic dispenser of liquid sample, the volume is dispensed accurately enough that formation of bubbles is not a significant problem, and the presence of vent channel 208 is not necessary.

Throughout the operation of cartridge 200 the fluid is manipulated as a microdroplet (not shown in FIGS. 39A,B). Valves 204 and 206 are shown in FIG. 39A as double-valves, having a source of thermally responsive material (also referred to as a temperature responsive substance) on either side of the channel where they are situated. However, valves 204 and 206 may either or both be single valves that have a source of thermally responsive material on only one side of the respective channels. Valves 204 and 206 are initially open, so that a microdroplet of sample-containing fluid can be pumped into PCR reactor 210 from inlet hole 202. Upon initiating of processing, the detector present on top of the PCR reactor checks for the presence of liquid in the PCR reactor, and then closes valves 204 and 206 to isolate the PCR reaction mix from the channels on either side.

The PCR reactor 210 is a microfluidic channel that is heated through a series of cycles to carry out amplification of nucleotides in the sample, as further described herein. Typically the PCR reactor has a volume of 3-5 µl, in particular, 4 µl. The inside walls of the channel in the PCR reactor are made very smooth and polished to a shiny finish (for example, using a polish selected from SPI A1, SPI A2, SPI A3, SPI b1, or SPI B2) during manufacture. This is in order to minimize any microscopic air trapping in the surface of the PCR reactor, which would causing bubbling during the thermocycling steps. The presence of bubbles especially in the detection region of the PCR reactor might cause a false reading for the PCR reaction. Furthermore, the PCR reactor 210 is made shallow such that the temperature gradient across the depth of the channel is minimized. The region of the cartridge 212 above PCR reactor 210 permits a detector to monitor progress of the reaction and also to detect fluorescence from a probe that binds to a quantity of amplified nucleotide. The region 212 is made of thinner material than the rest of the cartridge so as to permit the PCR reactor to be more responsive to a heating cycle (for example, to rapidly heat and cool between temperatures appropriate for denaturing and annealing steps), and so as to reduce glare, autofluorescence, and undue absorption of 55 fluorescence. Both valves 204 and 206 are closed prior to thermocycling to prevent any evaporation of liquid, bubble generation, or movement of fluid from the PCR reactor.

End vent 214 prevents a user from introducing any excess amount of liquid into the microfluidic cartridge, as well as playing a role of containing any sample from spilling over to unintended parts of the cartridge. A user may input sample volumes as small as an amount to fill from the bubble removal vent to the middle of the PCR reactor, or up to valve 204 or beyond valve 204. The use of microvalves prevents both loss of liquid or vapor thereby enabling even a partially filled reactor to successfully complete a PCR thermocycling reaction. The application of pressure (such as ~1 psi) to

39

contact the cartridge to the heater of the instrument assists in achieving better thermal contact between the heater and the heat-receivable parts of the cartridge, and also prevents the bottom laminate structure from expanding, as would happen if the PCR channel was partially filled with liquid and the entrapped air would be thermally expanded during thermocycling.

In various embodiments, the microfluidic network can optionally include at least one hydrophobic vent additional to the end vent.

After PCR has been carried out on a sample, and presence or absence of a polynucleotide of interest has been determined, it is preferred that the amplified sample remains on the cartridge and that the cartridge is either used again (if one or more lanes remain open), or disposed of. Should a 15 user wish to run a post amplification analysis, such as gel electrophoresis, the user may pierce a hole through the laminate of the cartridge, and recover an amount—typically about 1.5 microliter—of PCR product. The user may also place the individual PCR lane on a special narrow heated 20 plate, maintained at a temperature to melt the wax in the valve, and then aspirate the reacted sample from the inlet hole of that PCR lane.

In various embodiments, the microfluidic network can optionally include at least one reservoir configured to contain waste.

In various embodiments, the microfluidic cartridge can further include a label, such as a computer-readable or scannable label. For example, the label can be a bar code, a radio frequency tag, or one or more computer-readable, or 30 optically scannable, characters. The label can be positioned such that it can be read by a sample identification verifier as further described herein.

In various embodiments, during transport and storage, the microfluidic cartridge can be further surrounded by a sealed 35 pouch. The microfluidic cartridge can be sealed in the pouch with an inert gas. The microfluidic cartridge can be disposable.

Microfluidic cartridge **200** can be fabricated as desired. Typically, the microfluidic cartridge layer includes a layer of 40 polypropylene or other plastic label with pressure sensitive adhesive (typically between about 50 and 150 microns thick)

40

second side (disposed toward the label). Typically, all of the microfluidic networks together, including the PCI reactors, the inlet holes and the valves for isolating the PCR reaction chambers, are defined in a single substrate. The substrate is made of a material that confers rigidity on the substrate and cartridge, and is impervious to air or liquid, so that entry or exit of air or liquid during operation of the cartridge is only possible through the inlet or the vent.

Channels of a microfluidic network in a lane of cartridge **200** typically have at least one sub-millimeter cross-sectional dimension. For example, channels of such a network may have a width and/or a depth of about 1 mm or less (e.g., about 750 microns or less, about 500 microns, or less, about 250 microns or less).

The cartridge can further include a heat sealable laminate layer 222 (typically between about 100 and about 125 microns thick) attached to the bottom surface of the microfluidic substrate using, for example, heat bonding, pressure bonding, or a combination thereof. The laminate layer 222 may also be made from a material that has an adhesive coating on one side only, that side being the side that contacts the underside of the microfluidic substrate. This layer may be made from a single coated tape having a layer of Adhesive 420, made by 3M. Exemplary tapes include single-sided variants of double sided tapes having product nos. 9783, 9795, and 97951, and available from 3M. Other acceptable layers may include tapes based on micro-capsule based adhesives.

In use, cartridge 200 is typically thermally associated with an array of heat sources configured to operate the components (e.g., valves, gates, and processing region 210) of the device. In some embodiments, the heat sources are operated by an operating system, which operates the device during use. The operating system includes a processor (e.g., a computer) configured to actuate the heat sources according to a desired protocol. Processors configured to operate microfluidic devices are described in, e.g., U.S. application Ser. No. 09/819,105, filed Mar. 28, 2001, which application is incorporated herein by reference.

Table 1 outlines volumes, pumping pressures, and operation times associated with various components of a microfluidic cartridge.

TABLE 1

Operation	Pumping Pressure	Displacement Volume	Time of Operation
Mixing displacements Moving valve wax plugs	~2 psi ~1-2 psi	10-25 µl <1 µl	1-2 minutes 5-15 seconds
Operation	Pump Used	Pump Design	Pump Actuation
Mixing displacements Moving valve wax plugs	Expancel Pump Thermopneumatic pump	Same as above 1 µl of trapped air	Same as above Heat trapped air to ~70-90 C.

55

configured to seal the wax loading holes of the valves, trap air used for valve actuation, and serve as a location for operator markings. This layer can be in two separate pieces, though it would be understood by one of ordinary skill in the art that in many embodiments a single piece layer would be appropriate.

The microfluidic substrate layer, is typically injection molded opt of a plastic, preferably a zeonor plastic (cyclic olefin polymer), having a PCR channel and valve channels 65 on a first side, and vent channels and various inlet holes, including wax loading holes and liquid inlet holes, on a

In some embodiments, a microfluidic cartridge further comprises a registration member that ensures that the cartridge is received by a complementary diagnostic apparatus in a single orientation, for example, in a receiving bay of the apparatus. The registration member may be a simple cut-out from an edge or a corner of the cartridge (as shown in FIG. 38A), or may be a series of notches, or some other configuration of shapes that require a unique orientation of placement in the apparatus.

In some embodiments, the microfluidic cartridge comprises two or more positioning elements, or fiducials, for use

when filling the valves with thermally responsive material. The positioning elements may be located on the substrate,

typically the upper face thereof.

The microfluidic cartridges may also be stackable, such as for easy storage or transport, or may be configured to be 5 received by a loading device, as further described herein, that holds a plurality of cartridges in close proximity to one another, but without being in contact. In order to accomplish either or both of these characteristics, the substrate may comprise two ridges, one of each situated along each of two opposite edges of the cartridge, the ridges disposed on the upper side of the substrate. Thus, where a cartridge has a rectangular aspect (ignoring any registration member or mechanical key), the two ridges may be situated along the long side, or along the short side, of the cartridge.

A valve is a microfluidic component that has a normally open state allowing material to pass along a channel from a position on one side of the valve (e.g., upstream of the valve) to a position on the other side of the valve (e.g., downstream of the valve). An exemplary double valve is shown in FIG. 40A. A double valve has two channels, one on either side of the channel whose flow it regulates, whereas a single valve has just one channel, disposed on one side of the channel whose flow it regulates.

Valves

Upon actuation, e.g., by application of heat, the valve transitions to a closed state that prevents material, such as a microdroplet of PCR-ready sample, from passing along the channel from one side of the valve to the other. For example, a valve includes one or more masses of a thermally responsive substance (TRS) that is relatively immobile at a first temperature and more mobile at a second temperature. A mass of TRS can be an essentially solid mass or an agglomeration of smaller particles that cooperate to obstruct the passage upon actuation. Examples of TRS's include a eutec- 35 tic alloy (e.g., a solder), wax (e.g., an olefin), polymers, plastics, and combinations thereof. The first and second temperatures are insufficiently high to damage materials, such as polymer layers of a microfluidic cartridge in which the valve is situated. Generally, the second temperature is 40 less than about 90° C. and the first temperature is less than the second temperature (e.g., about 70° C. or less).

For each mass associated with a valve, a chamber is in gaseous communication with the mass. Upon heating gas (e.g., air) in the chamber(s) and heating the one or more 45 masses of TRS to the second temperature, gas pressure within a chamber moves the corresponding mass into the channel obstructing material from passing therealong. Other valves of the network have the same structure and operate in the same fashion as the valves described herein.

In order to make the valve sealing very robust and reliable, the flow channel at the valve junction is made narrow (150 μ m wide and 150 μ m deep or narrower) and the constricted channel is made at least 0.5 or 1 mm long such that the wax seals up a long narrow channel thereby reducing 55 any leakage through the walls of the channel. In the case of a bad seal, there is leakage of fluid around the walls of the channel, past the wax. So the flow channel is narrowed as much as possible, and made longer, e.g., as long as \sim 1 mm. The valve operates by heating air in the wax-loading port, 60 which forces the wax forwards in a manner so that it does not come back to its original position. In this way, both air and wax are heated during operation of the valve.

In various embodiments, the microfluidic network can include a bent valve as shown in FIG. **32**B (as a single valve) 65 to reduce the footprint of the valve on the cartridge and hence reduce cost per part for manufacturing highly dense

42

microfluidic substrates. In the valve of FIG. 40B, the loading hole for TRS is in the center of the valve; the structures at either end are an inlet and an outlet and are shown for illustrative purposes only. Single valve shown.

In various embodiments, the network can include a curved valve as shown in FIG. 40C, also as a single valve, in order to reduce the effective cross-section of the microvalve, enabling manufacture of cheaper dense microfluidic devices.

Vents

A hydrophobic vent (e.g., a vent in FIG. 41) is a structure that permits gas to exit a channel while limiting (e.g., preventing) liquid from exiting the channel. Typically, hydrophobic vents include a layer of porous hydrophobic material (e.g., a porous filter such as a porous hydrophobic membrane from Osmonics) that defines a wall of the channel. As discussed herein, hydrophobic vents can be used to position a microdroplet of sample at a desired location within a microfluidic network.

The hydrophobic vents of the cartridge are preferably constructed so that the amount of air that escapes through them is maximized while minimizing the volume of the channel below the vent surface. Accordingly, it is preferable that the vent is constructed so as to have a hydrophobic membrane of large surface area and a shallow cross section of the microchannel below the vent surface.

Bubble removal hydrophobic vents typically have a length of at least about 2.5 mm (e.g., at least about 5 mm, at least about 7.5 mm) along a channel. The length of the hydrophobic vent is typically at least about 5 times (e.g., at least about 10 times, at least about 20 times) larger than a depth of the channel within the hydrophobic vent. For example, in some embodiments, the channel depth within the hydrophobic vent is about 300 microns or less (e.g., about 250 microns or less, about 200 microns or less, about 150 microns or less). Bubble vents are optional in the microfluidic networks of the microfluidic cartridges described herein.

The depth of the channel within the hydrophobic vent is typically about 75% or less (e.g., about 65% or less, about 60% or less) of than the depth of the channel upstream and downstream of the hydrophobic vent. For example, in some embodiments the channel depth within the hydrophobic vent is about 150 microns and the channel depth upstream and downstream of the hydrophobic vent is about 250 microns.

A width of the channel within the hydrophobic vent is typically at least about 25% wider (e.g., at least about 50% wider) than a width of the channel upstream from the vent and downstream from the vent. For example, in an exemplary embodiment, the width of the channel within the hydrophobic vent is about 400 microns and the width of the channel upstream and downstream from the vent is about 250 microns.

Highly Multiplexed Embodiment

Embodiments of the apparatus and cartridge described herein may be constructed that have high-density microfluidic circuitry on a single cartridge that thereby permit processing of multiple samples in parallel, or in sequence, on a single cartridge. Preferred numbers of such multiple samples include 36, 40, 48, 50, 64, 72, 80, 96, and 100, but it would be understood that still other numbers are consistent with the apparatus and cartridge herein, where deemed convenient and practical.

Accordingly, different configurations of lanes, sample inlets, and associated heater networks are contemplated that can facilitate processing such numbers of samples on a single cartridge are within the scope of the instant disclo-

43

sure. Similarly, alternative configurations of detectors for use in conjunction with such a highly multiplexed cartridge are also within the scope of the description herein.

In an exemplary embodiment, a highly multiplexed cartridge has 48 PCR channels, and has independent control of 5 each valve in the channel, with 2 banks of thermocycling protocol per channel, as shown in FIG. 43. In the embodiment in FIG. 43, the heaters are arranged in three arrays. Heaters in two separate glass regions only apply heat to valves in the microfluidic networks in each lane. Because of the low thermal conductivity of glass, the individual valves may be heated separately from one another. This permits samples to be loaded into the cartridge at different times, and passed to the PCR reaction chambers independently of one another. The PCR heaters are mounted on a silicon sub- 15 strate—and are not readily heated individually, but thereby permit batch processing of PCR samples, where multiple samples from different lanes are amplified by the same set of heating/cooling cycles. It is preferable for the PCR heaters to be arranged in 2 banks (the heater arrays on the left and 20 right are not in electrical communication with one another), thereby permitting a separate degree of sample control.

FIG. 42 shows a representative cartridge, revealing an inlet configuration for a 48-sample cartridge. The inlet configuration is compatible with an automatic pipetting 25 machine that has dispensing heads situated at a 9 mm spacing. For example, such a machine having 4 heads can load 4 inlets at once, in 12 discrete steps, for the cartridge of FIG. 42.

FIG. 44 shows, in close, up an exemplary spacing of 30 valves and lanes in adjacent lanes of a multi-sample microfluidic cartridge.

FIGS. **45** and **46** show close-ups of, respectively, heater arrays, and inlets, of the exemplary cartridge shown in FIG. **44**.

FIGS. 47A-47C show various views of an embodiment of a radially-configured highly-multiplexed cartridge, having a number of inlets, microfluidic lanes, and PCR reaction zones.

The various embodiments shown in FIGS. **42-47**C are 40 compatible with liquid dispensers, receiving bays, and detectors that are configured differently from the specific examples described herein.

In another preferred embodiment (not shown in the FIGs.), a cartridge and apparatus is configured so that the 45 read-head does not cover the sample inlets, thereby permitting loading of separate samples while other samples are undergoing PCR thermocycling.

Heater Configurations to Ensure Uniform Heating of a Region

Another aspect of the apparatus described herein relates to a method and apparatus for uniformly controlling the heating of a region of a microfluidic network that includes but is not limited to one or more microfluidic components. In an exemplary embodiment, multiple heaters can be configured 55 to simultaneously and uniformly heat a region, such as the PCR reaction zone, of the microfluidic cartridge.

In preferred embodiments, a microfluidic cartridge having a microfluidic network comprising one or more micro fluidic components is brought into contact with a heat source, 60 within a suitably configured apparatus. The heat source is configured so that particular heating elements are situated to heat specific components of the microfluidic network of the cartridge.

FIG. **48** shows a cross-sectional view of an exemplary 65 microfluidic cartridge to show relative location of PCR channel in relation to the heaters when the cartridge is placed

44

in the instrument. The view in FIG. 48 is also referred to as a sectional-isometric view of the cartridge lying over the heater wafer. A window 903 above the PCR channel in the cartridge is shown in perspective view. PCR channel 901 (for example, 150μ deep×700μ wide), is shown in an upper layer of the cartridge. A laminate layer 905 of the cartridge (for example, 125µ thick) is directly under the PCR channel 901. A further layer of thermal interface laminate 907 on the cartridge (for example, 125µ thick) lies directly under the laminate layer 905. Heaters are situated in a further layer 913 directly under the thermal interface laminate. The heaters are photolithographically defined and etched metal layers of gold (typically about 3,000 Å thick). Layers of 400 Å of TiW are deposited on top and bottom of the gold layer to serve as an adhesion layer. The substrate used is glass, fused silica or quartz wafer having a thickness of 0.4 mm, 0.5 mm or 0.7 mm or 1 mm. A thin electrically-insulative layer of 2 µm silicon oxide serves as an insulative layer on top of the metal layer. Additional thin electrically insulative layers such as 2-4 um of Parvlene may also be deposited on top of the Silicon oxide surface. Two long heaters 909 and **911**, as further described herein, are also shown.

Referring to FIGS. 49A and 49B, the PCR reaction zone 1001, typically having a volume \sim 1.6 μ l, is configured with a long side and a short side, each with an associated heating element. The apparatus therefore preferably includes four heaters disposed along the sides of, and configured to heat, the PCR reaction zone, as shown in the exemplary embodiment of FIG. 38A: long top heater 1005, long bottom heater 1003, short left heater 1007, and short right heater 1009. The small gap between long top heater 1005 and long bottom heater 1003 results in a negligible temperature gradient (less than 1° C. across the width of the PCR channel at any point along the length of the PCR reaction zone) and therefore an effectively uniform temperature throughout the PCR reaction zone. The heaters on the short edges of the PCR reactor provide heat to counteract the gradient created by the two long heaters from the center of the reactor to the edge of the reactor. It would be understood by one of ordinary skill in the art that still other configurations of one or more heater(s) situated about a PCR reaction zone are consistent with the methods and apparatus described herein. For example, a 'long' side of the reaction zone can be configured to be heated by two or more heaters. Specific orientations and configurations of heaters are used to create uniform zones of heating even on substrates having poor thermal conductivity because the poor thermal conductivity of glass, or quartz, or fused silica substrates is utilized to help in the independent operation of various microfluidic components such as valves 50 and independent operation of the various PCR lanes.

In preferred embodiments, each heater has an associated temperature sensor. In the embodiment of FIG. 49A, a single temperature sensor 1011 is used for both long heaters. A temperature sensor 1013 for short left heater, and a temperature sensor 1015 for short right heater are also shown. The temperature sensor in the middle of the reactor is used to provide feedback and control the amount of power supplied to the two long heaters, whereas each of the short heaters has a dedicated temperature sensor placed adjacent to it in order to control it. As further described herein, temperature sensors are preferably configured to transmit information about temperature in their vicinity to the processor at such times as the heaters are not receiving current that causes them to heat. This can be achieved with appropriate control of current cycles.

In order to reduce the number of sensor or heater elements required to control a PCR heater, we may use the heaters to 45

sense as well as heat, and thereby obviate the need to have a separate dedicated sensor for each heater. In another embodiment, each of the four heaters may be designed to have an appropriate wattage, and connect the four heaters in series or in parallel to reduce the number of electronically- 5 controllable elements from 4 to just 1, thereby reducing the burden on the electronics.

FIG. 49B shows expanded views of heaters and temperature sensors used in conjunction with a PCR reaction zone of FIG. 49A. Temperature sensors 1001 and 1013 are 10 designed to have a room temperature resistance of approximately 200-300 ohms. This value of resistance is determined by controlling the thickness of the metal layer deposited (e.g., a sandwich of 400 Å TiW/3000 Å Au/400 Å TiW), and etching the winding metal line to have a width of approxi- 15 mately 10-25 µm and 20-40 mm length. The use of metal in this layer gives it a temperature coefficient of resistivity of the order of 0.5-20° C./ohms, preferably in the range of 1.5-3° C./ohms. Measuring the resistance at higher temperathe location of these sensors.

The configuration for uniform heating, shown in FIG. 49A for a single PCR reaction zone, can be applied to a multi-lane PCR cartridge in which multiple independent PCR reactions occur.

Each heater can be independently controlled by a processor and/or control circuitry used in conjunction with the apparatus described herein. FIG. 50 shows thermal images, from the top surface of a microfluidic cartridge having heaters configured as in FIGS. 49A and 49B, when each 30 heater in turn is activated, as follows: (A): Long Top only; (B) Long Bottom only; (C) Short Left only; (D) Short Right only; and (E) All Four Heaters on. Panel (F) shows a view of the reaction zone and heaters on the same scale as the other image panels in FIG. 50. Also shown in the figure is 35 a temperature bar.

Use of Cutaways in Cartridge Substrate to Improve Rate of Cooling During PCR Cycling

During a PCR amplification of a nucleotide sample, a number of thermal cycles are carried out. For improved 40 efficiency, the cooling between each application of heat is preferably as rapid as possible. Improved rate of cooling can be achieved with various modifications to the heating substrate, as shown in FIGS. 51A-51C.

One way to achieve rapid cooling is to cutaway portions 45 of the microfluidic cartridge substrate, as shown in FIG. 51A. The upper panel of FIG. 51A is a cross-section of an exemplary microfluidic cartridge taken along the dashed line A-A' as marked on the lower panel of FIG. 51A. PCR reaction zone 901, and representative heaters 1003 are 50 shown. Also shown are two cutaway portions, one of which labeled 1201, that are situated alongside the heaters that are situated along the long side of the PCR reaction zone. Cutaway portions such as 1201 reduce the thermal mass of the cartridge, and also permit air to circulate within the 55 alves of the microfluidic network in the microfluidic subcutaway portions. Both of these aspects permit heat to be conducted away quickly from the immediate vicinity of the PCR reaction zone. Other configurations of cutouts, such as in shape, position, and number, are consistent with the present technology.

Another way to achieve rapid cooling is to cutaway portions of the heater substrate, as shown in FIG. 51B. The lower panel of FIG. 51B is a cross-section of an exemplary microfluidic cartridge and heater substrate taken along the dashed line A-A' as marked on the upper panel of FIG. 51B. 65 PCR reaction zone 901, and representative heaters 1003 are shown. Also shown are four cutaway portions, one of which

46

labeled 1205, that are situated alongside the heaters that are situated along the long side of the PCR reaction zone. Cutaway portions such as 1205 reduce the thermal mass of the heater substrate, and also permit air to circulate within the cutaway portions. Both of these aspects permit heat to be conducted away quickly from the immediate vicinity of the PCR reaction zone. Four separate cutaway portions are shown in FIG. 51B so that control circuitry to the various heaters is not disrupted. Other configurations of cutouts, such as in shape, position, and number, are consistent with the present technology. These cutouts may be created by a method selected from: selective etching using wet etching processes, deep reactive ion etching, selective etching using CO₂ laser or femtosecond laser (to prevent surface cracks or stress near the surface), selective mechanical drilling, selective ultrasonic drilling, or selective abrasive particle blasting. Care has to be taken to maintain mechanically intergrity of the heater while reducing as much material as possible.

FIG. 51C shows a combination of cutouts and use of tures will enable determination of the exact temperature of 20 ambient air cooling to increase the cooling rate during the cooling stage of thermocycling. A substantial amount of cooling happens by convective loss from the bottom surface of the heater surface to ambient air. The driving force for this convective loss is the differential in temperatures between the glass surface and the air temperature. By decreasing the ambient air temperature by use of, for example, a peltier cooler, the rate of cooling can be increased. The convective heat loss may also be increased by keeping the air at a velocity higher than zero.

> An example of thermal cycling performance obtained with a configuration as described herein, is shown in FIG. 52 for a protocol that is set to heat up to 92° C., and stay there for 1 second, then cool to 62° C., and stay for 10 seconds. Cycle time is about 29 seconds, with 8 seconds required to heat from 62° C. and stabilize at 92° C., and 10 seconds required to cool from 92° C., and stabilize at 62° C. Manufacturing Process for Cartridge

> FIG. 53 shows a flow-chart 2800 for an assembly process for an exemplary cartridge as further described herein. It would be understood by one of ordinary skill in the art, both that various steps may be performed in a different order from that set forth in FIG. 53, and additionally that any given step may be carried out by alternative methods to those set forth in the figure. It would also be understood that, where separate steps are illustrated for carrying out two or more functions, such functions may be performed synchronously and combined into single steps and be consistent with the overall process described herein.

> At 2802, a laminate layer is applied to a microfluidic substrate that has previously been engineered to have a microfluidic network constructed in it; edges are trimmed from the laminate where they spill over the bounds of the

> At 2804, wax is dispensed and loaded into the microvstrate. An exemplary process for carrying this out is further described herein.

At **2806**, the cartridge is inspected to ensure that wax from step 2804 is loaded properly and that the laminate from step 60 2802 adheres properly to the microfluidic substrate. If a substrate does not satisfy either or both of these tests, it is discarded. If substrates repeatedly fail either or both of these tests, then the wax dispensing, or laminate application steps, as applicable, are reviewed.

At 2808, a hydrophobic vent membrane is applied to, and heat bonded to, the top of the microfluidic substrate over the wax valves, and on the opposite face of the substrate from

47

the laminate. Edges of the membrane that are in excess of the boundary of the substrate are trimmed.

At 2810, the assembly is inspected to ensure that the hydrophobic vent membrane is bonded well to the microfluidic substrate without heat-clogging the microfluidic channels. If any of the channels is blocked, or if the bond between the membrane and the substrate is imperfect, the assembly is discarded, and, in the case of repeated discard events, the foregoing process step is reviewed.

At **2812**, a thermally conductive pad layer is applied to the bottom laminate of the cartridge.

At **2814**, two label strips are applied to the top of the microfluidic substrate, one to cover the valves, and a second to protect the vent membranes. It would be understood that a single label strip may be devised to fulfill both of these roles

At **2816**, additional labels are printed or applied to show identifying characteristics, such as a barcode #, lot # and expiry date on the cartridge. Preferably one or more of these 20 labels has a space and a writable surface that permits a user to make an identifying annotation on the label, by hand.

At **2818**, to facilitate transport and delivery to a customer, assembled and labeled cartridges are stacked and pack cartridges in groups, such as groups of 25, or groups of 10, 25 or groups of 20, or groups of 50. Preferably the packaging is via an inert and/or moisture-free medium.

Exemplary Wax-Deposition Process

Deposition of wax in valves of the microfluidic network, as at step 2804 may be carried out with the exemplary 30 equipment shown in FIGS. 54A and 54B. The DispenseJet Series DJ-9000 (FIGS. 54A and 54B) is a non-contact dispenser that provides high-speed delivery and exceptional volumetric control for various fluids, including surface mount adhesive, underfill, encapsulants, conformal coating, 35 UV adhesives, and silver epoxy. The DJ-9000 jets in tight spaces as small as 200 micrometers and creates fillet wet-out widths as small as 300 micrometers on the dispensed side of a substrate such as a die. It dispenses fluid either as discrete dots or a rapid succession of dots to form a 100-micron (4 40 mil) diameter stream of fluid from the nozzle. It is fully compatible with other commercially available systems such as the Asymtek Century C-718/C-720. Millennium M-2000, and Axiom X-1000 Series Dispensing Systems.

A DJ-9000 is manufactured by Asymtek under manufacturing quality control standards aim to provide precise and reliable performance. Representative specifications of the apparatus are as follows.

Characteristic	Specification	
Size	Width: 35 mm	
	Height: 110 mm	
	Depth: 100 mm	
Weight	400 grams - dry	
Feed Tube Assembly	Nylon - Fitting	
	Polyurethane - Tube	
Fluid Chamber	Type 303 Stainless Steel	
Seat and Nozzle	300/400 Series S/S, Carbide	
Needle Assembly	52100 Bearing Steel - Shaft	
	Hard Chrome Plate	
	Carbide - Tip	
Fluid Seal	PEEK/Stainless Steel	
Fluid Chamber 0-Ring	Ethylene Propylene	
Jet Body	6061-T6 Aluminum	
	Nickel Plated	
Needle Assembly Bearings	PEEK	
Thermal Control Body	6061-T6 Aluminum	
	Nickel Plated	

48 -continued

	Characteristic	Specification
_	Reservoir Holder	Acetyl
5	Reservoir Size	5, 10, or 30 cc (0.17, 0.34, or 1.0 oz)
	Feed Tube Assembly Fitting	Female Luer per
		ANSI/HIMA MD70.1-1983
	Maximum Cycle Frequency	200 Hz.
	Minimum Valve Air Pressure	5.5 bar (80 psi)
	Operating Noise Level	70 db*
10	Solenoid	24 VDC, 12.7 Watts
	Thermal Control Heater	24 VDC, 14.7 Watts, 40 ohms
	Thermal Control RTD	100 ohm, platinum
	Maximum Heater Set Point	80 C

*At Maximum Cycle Rate

An exploded view of this apparatus is shown in FIG. **54**B. Theory of Operation of DJ-9000

The DJ-9000 has a normally closed, air-actuated, springreturn mechanism, which uses momentum transfer principles to expel precise volumes of material. Pressurized air is regulated by a high-speed solenoid to retract a needle assembly from the seat. Fluid, fed into the fluid chamber, flows over the seat. When the air is exhausted, the needle travels rapidly to the closed position, displacing fluid through the seat and nozzle in the form of a droplet. Multiple droplets fired in succession can be used to form larger dispense volumes and lines when combined with the motion of a dispenser robot.

The equipment has various adjustable features: The following features affect performance of the DJ-9000 and are typically adjusted to fit specific process conditions.

Fluid Pressure should be set so that fluid fills to the seat, but should not be influential in pushing the fluid through the seat and nozzle. In general, higher fluid pressure results in a larger volume of material jetted.

The Stroke Adjustment controls the travel distance of the Needle Assembly. The control is turned counterclockwise to increase needle assembly travel, or turned clockwise to decrease travel. An increase of travel distance will often result in a larger volume of material jetted.

The Solenoid Valve controls the valve operation. When energized, it allows air in the jet air chamber to compress a spring and thereby raise the Needle Assembly. When deenergized, the air is released and the spring forces the piston down so that the needle tip contacts the seat.

The seat and nozzle geometry are typically the main factors controlling dispensed material volume. The seat and nozzle size are determined based on the application and fluid properties. Other parameters are adjusted in accordance with seat and nozzle choices. Available seat and nozzle sizes are listed in the table hereinbelow.

Thermal Control Assembly: Fluid temperature often influences fluid viscosity and flow characteristics. The DJ-9000 is equipped with a Thermal Control Assembly that assures a constant fluid temperature.

Dot and Line Parameters: In addition to the DJ-9000 hardware configuration and settings, Dot and Line Parameters are set in a software program (referred to as FmNT) to control the size and quality of dots and lines dispensed. Wax Loading in Valves

FIGS. **55**A and **55**B show how a combination of controlled hot drop dispensing into a heated microchannel device of the right dimensions and geometry is used to accurately load wax into a microchannel of a microfluidic cartridge to form a valve. The heated dispenser head can be accurately position over an inlet hole of the microchannel in the microfluidic device, and can dispense molten wax drops in volumes as small as 75 nanoliters with an accuracy of

49

20%. The inlet hole of the microchannel device is dimensioned in such a way that the droplet of 75 nl can be accurately shot to the bottom of the inlet hole using, for example, compressed air, or in a manner similar to an inkjet printing method. The microchannel device is maintained at a temperature above the melting point of the wax thereby permitting the wax to stay in a molten state immediately after it is dispensed. After the drop falls to the bottom of the inlet hole, the molten wax is drawn into the narrow channel by capillary action. The volume of the narrow section is designed to be approximately equal to a maximum typical amount that is dispensed into the inlet hole.

Heater Multiplexing (Under Software Control)

Another aspect of the apparatus described herein, relates to a method for controlling the heat within the system and its components, as illustrated in FIG. **56**. The method leads to a greater energy efficiency of the apparatus described herein, because not all heaters are heating at the same time, and a given heater is receiving current for only pan of the time.

Generally, the heating of microfluidic components, such as a PCR reaction zone, is controlled by passing currents through suitably configured microfabricated heaters. The heating can be further controlled by periodically turning the current on and off with varying pulse width modulation 2 (PWM), wherein pulse width modulation refers to the ontime/off-time ratio for the current. The current can be supplied by connecting a microfabricated heater to a high voltage source (for example, 30V), which can be gated by the PWM signal. In some embodiments, the device includes 48 PWM signal generators. Operation of a PWM generator includes generating a signal with a chosen, programmable period (the end count) and granularity. For instance, the signal can be 4000 µs (micro-seconds) with a granularity of 1 us, in which case the PWM generator can maintain a counter beginning at zero and advancing in increments of 1 μs until it reaches 4000 μs, when it returns to zero. Thus, the amount of heat produced can be adjusted by adjusting the end count. A high end count corresponds to a greater length 40 of time during which the microfabricated heater receives current and therefore a greater amount of heat produced.

In various embodiments, the operation of a PWM generator can also include a programmable start count in addition to the aforementioned end count and granularity. In such embodiments, multiple PWM generators can produce signals that can be selectively non-overlapping (e.g., by multiplexing the on-time of the various heaters) such that the current capacity of the high voltage power is not exceeded. 50 Multiple heaters can be controlled by different PWM signal generators with varying start and end counts. The heaters can be divided into banks, whereby a bank defines a group of heaters of the same start count. For example, 36 PWM 55 generators can be grouped into six different banks, each corresponding to a certain portion of the PWM cycle (500 ms for this example). The end count for each PWM generator can be selectively programmed such that not more than six heaters will be on at any given time. A portion of a PWM cycle can be selected as dead time (count 3000 to 4000 for this example) during which no heating takes place and sensitive temperature sensing circuits can use this time to sense the temperature. The table below represents a PWM cycle for the foregoing example:

50

	Start Count	End Count	Max End count
	Bank	1	
PWM generator#1 PWM generator#2	0 0	150 220	500 500
PWM generator#6	 0 Bank 1	376 2	500
PWM generator#7 PWM generator#8	500 500	704 676	1000 1000
PWM generator#12	 500 Bank 1	780 780	1000
PWM generator#13 PWM generator#14	1000 1000	1240 1101	1500 1500
PWM generator#18	 1000 Bank 4	 1409 4	1500
PWM generator#19 PWM generator#20	1500 1500	1679 1989	2000 2000
PWM generator#24	 1500 Bank :	1502 5	2000
PWM generator#25 PWM generator#26	2000 2000	2090 2499	2500 2500
PWM generator#30	2000 Bank (2301 5	2500
PWM generator#31 PWM generator#32	2500 2500	2569 2790	3000 3000
PWM generator#36	2500	2678	3000

Use of Detection System to Measure/Detect Fluid in PCR 35 Chamber

The apparatus optionally has a very sensitive fluorescence detector that is able to collect fluorescence light from the PCR chamber 210 of a microfluidic cartridge. This detector is used to detect the presence of liquid in the chamber, a measurement that determines whether or not to carry out a PCR cycle. A background reading is taken prior to filling the chamber with liquid. Another reading is taken after microfluidic operations have been performed that should result in filling the PCR chamber with liquid. The presence of liquid alters the fluorescence reading from the chamber. A programmable threshold value is used to tune an algorithm programmed into the processor (for example, the second reading has to exceed the first reading by 20%). If the two readings do not differ beyond the programmed margin, the liquid is deemed to not have entered the chamber, and a PCR cycle is not initiated for that chamber. Instead, a warning is issued to a user.

Computer Program Product

In various embodiments, a computer program product for use with the apparatus herein includes computer readable instructions thereon for operating the apparatus.

In various embodiments, the computer program product can include one or more instructions to cause the system to: output an indicator of the placement of the microfluidic cartridge in the bay; read a sample label or a microfluidic cartridge label; output directions for a user to input a sample identifier; output directions for a user to load a sample transfer member with the PCR-ready sample; output directions for a user to introduce the PCR-ready sample into the microfluidic cartridge; output directions for a user to place the microfluidic cartridge in the receiving bay; output directions

tions for a user to close the lid to operate the force member; output directions for a user to pressurize the PCR-ready sample in the microfluidic cartridge by injecting the PCR-ready sample with a volume of air between about 0.5 ml. and

51

about 5 mL; and output status information for sample 5 progress from one or more lanes of the cartridge.

In various embodiments, the computer program product can include one or more instructions to cause the system to: heat the PCR ready-sample under thermal cycling conditions suitable for creating PCR amplicons from the neutralized 10 polynucleotide; contact the neutralized polynucleotide sample or a PCR amplicon thereof with at least one probe that is selective for a polynucleotide sequence; independently contact each of the neutralized polynucleotide sample and a negative control polynucleotide with the PCR reagent 15 mixture under thermal cycling conditions suitable for independently creating PCR amplicons of the neutralized polynucleotide sample and PCR amplicons of the negative control polynucleotide; contact the neutralized polynucleotide sample or a PCR amplicon thereof and the negative 20 control polynucleotide or a PCR amplicon thereof with at least one probe that is selective for a polynucleotide sequence; output a determination of the presence of a polynucleotide sequence in the biological sample, the polynucleotide sequence corresponding to the probe, if the probe 25 is detected in the neutralized polynucleotide sample or a PCR amplicon thereof; and/or output a determination of a contaminated result if the probe is detected in the negative control polynucleotide or a PCR amplicon thereof.

In various embodiments, the computer program product 30 can include one or more instructions to cause the system to automatically conduct one or more of the steps of the method.

In various embodiments, the microfluidic cartridge comprises two or more sample lanes, each including a sample 35 inlet valve, a bubble removal vent, a thermally actuated pump, a thermally actuated valve, and a PCR reaction zone, wherein the computer readable instructions are configured to independently operate one or more components of each said lane in the system, independently of one another, and for 40 causing a detector to measure fluorescence from the PCR reaction zones.

Sample

In various embodiments, the sample can include a PCR reagent mixture comprising a polymerase enzyme and a 45 plurality of nucleotides. The PCR reagent mixture can be in the form of one or more lyophilized pellets and the steps by which the PCR-ready sample is prepared can involve contacting the PCR pellet with liquid to create a PCR reagent mixture solution. In yet another embodiment, each of the 50 PCR lanes may have dried down or lyophilized ASR reagents preloaded such that the user only needs to input prepared polynucleotide sample into the PCR. In another embodiment, the PCR lanes may have only the application-specific probes and primers premeasured and preloaded, and 55 the user inputs a sample mixed with the PCR reagents.

In various embodiments, the microfluidic network can be configured to couple heat from an external heat source to a sample mixture comprising PCR reagent and neutralized polynucleotide sample under thermal cycling conditions 60 suitable for creating PCR amplicons from the neutralized polynucleotide sample.

In various embodiments, the PCR ready sample can further include a positive control plasmid and a fluorogenic hybridization probe selective for at least a portion of the 65 plasmid. In various embodiments, the PCR-ready sample further includes a sample buffer, and at least one probe that

52

is selective for a polynucleotide sequence, e.g., the polynucleotide sequence that is characteristic of a pathogen selected from the group consisting of gram positive bacteria, gram negative bacteria, yeast, fungi, protozoa, and viruses.

In various embodiments, the microfluidic cartridge can accommodate a negative control polynucleotide, wherein the microfluidic network can be configured to independently carry out PCR on each of a neutralized polynucleotide sample and a negative control polynucleotide with the PCR reagent mixture under thermal cycling conditions suitable for independently creating PCR amplicons of the neutralized polynucleotide sample and PCR amplicons of the negative control polynucleotide. Each lane of a multi-lane cartridge as described herein can perform two reactions because of the presence of two fluorescence detection systems per lane. A variety of combinations of reactions can be performed in the cartridge, such as two sample reactions in one lane, a positive control and a negative control in two other lanes; or a sample reaction and an internal control in one lane and a negative control in a separate lane.

In various embodiments, the sample can include at least one probe that can be selective for a polynucleotide sequence, wherein the steps by which the PCR-ready sample is prepared involve contacting the neutralized polynucleotide sample or a PCR amplicon thereof with the probe. The probe can be a fluorogenic hybridization probe. The fluorogenic hybridization probe can include a polynucleotide sequence coupled to a fluorescent reporter dye and a fluorescence quencher dye. The PCR reagent mixture can further include a positive control plasmid and a plasmid fluorogenic hybridization probe selective for at least a portion of the plasmid and the microfluidic cartridge can be configured to allow independent optical detection of the fluorogenic hybridization probe and the plasmid fluorogenic hybridization probe.

In various embodiments, the probe can be selective for a polynucleotide sequence that is characteristic of an organism, for example any organism that employs deoxyribonucleic acid or ribonucleic acid polynucleotides. Thus, the probe can be selective for any organism. Suitable organisms include mammals (including humans), birds, reptiles, amphibians, fish, domesticated animals, wild animals, extinct organisms, bacteria, fungi, viruses, plants, and the like. The probe can also be selective for components of organisms that employ their own polynucleotides, for example mitochondria. In some embodiments, the probe is selective for microorganisms, for example, organisms used in food production (for example, yeasts employed in fermented products, molds or bacteria employed in cheeses, and the like) or pathogens (e.g., of humans, domesticated or wild mammals, domesticated or wild birds, and the like). In some embodiments, the probe is selective for organisms selected from the group consisting of gram positive bacteria, gram negative bacteria, yeast, fungi, protozoa, and viruses.

In various embodiments, the probe can be selective for a polynucleotide sequence that is characteristic of an organism selected from the group consisting of *Staphylococcus* spp., e.g., *S. epidermidis*, *S. aureus*, Methicillin-resistant *Staphylococcus aureus* (MRSA), Vancomycin-resistant *Staphylococcus*; *Streptococcus* (e.g., α, β or γ-hemolytic, Group A, B, C, D or G) such as *S. pyogenes*, *S. agalactiae*; *E. faecalis*, *E. durans*, and *E. faecium* (formerly *S. faecalis*, *S. durans*, *S. faecium*); nonenterococcal group D streptococci, e.g., *S. bovis* and *S. equines*; Streptococci *viridans*, e.g., *S. mutans*, *S. sanguis*, *S. salivarius*, *S. mitior*, *A. milleri*, *S. constellatus*, *S. intermedius*, and *S. anginosus*; *S. iniae*; *S. pneumoniae*; *Neisseria*, e.g., *N. meningitides*, *N. gonorrhoeae*, sapro-

53

phytic Neisseria sp; Erysipclothrix, e.g., E. rhusiopathiae; Listeria spp., e.g., L. monocytogenes, rarely L. ivanovii and L. seeligeri; Bacillus, e.g., B. anthracis, B. cereus, B. subtilis, B. subtilus niger, B. thuringiensis; Nocardia asteroids; Legionella, e.g., L. pneumonophilia, Pneumocystis, 5 e.g., P. carinii; Enterobacteriaceae such as Salmonella, Shigella, Escherichia (e.g., E. coli, E. coliO157:H7); Klebsiella, Enterobacter, Serratia, Proteus, Morganella, Providencia, Yersinia, and the like, e.g., Salmonella, e.g., S. typhi S. paratyphi A, B (S. schottmuelleri), and C (S. hirschfeldii), 10 S. dublin S. choleraesuis, S. enteritidis, S. typhimurium, S. heidelberg, S. newport, S. infantis, S. agona, S. montevideo, and S. saint-paul; Shigella e.g., subgroups: A, B, C, and D, such as S. flexneri, S. sonnei, S. boydii, S. dysenteriae; Proteus (P. mirabilis, P. vulgaris, and P. myxofaciens), 15 Morganella (M. morganii); Providencia (P. rettgeri, P. alcalifaciens, and P. stuartii); Yersinia, e.g., Y. pestis, Y. enterocolitica; Haemophilus, e.g., H. influenzae, H. parainfluenzae H. aphrophilus, H. ducreyi; Brucella, e.g., B. abortus, B. melitensis, B. suis, B. canis: Francisella, e.g., F. 20 tularensis; Pseudomonas, e.g., P. aeruginosa, P. paucimobilis, P. putida, P. fluorescens, P. acidovorans, Burkholderia (Pseudomonas) pseudomallei, Burkholderia mallei, Burkholderia cepacia and Stenotrophomonas maltophilia; Campylobacter, e.g., C. fetus fetus, C. jejuni, C. pylori 25 (Helicobacter pylori); Vibrio, e.g., V. cholerae, V. parahaemolyticus, V. mimicus, V. alginolyticus, V. hollisae, V. vulnificus, and the nonagglutinable vibrios; Clostridia, e.g., C. perfringens, C. tetani, C. difficile, C. botulinum; Actinomyces, e.g., A. israelii; Bacteroides, e.g., B. fragilis, B. thetaio- 30 taomicron, B. distasonis, B. vulgatus, B. ovatus, B. caccae, and B. merdae; Prevotella, e.g., P. melaninogenica; genus Fusobacterium; Treponema, e.g. T. pallidum subspecies endemicum, T. pallidum subspecies pertenue, T. carateum, and T. pallidum subspecies pallidum; genus Borrelia, e.g., B 35 burgdorferi; genus Leptospira; Streptobacillus, e.g., S. moniliformis; Spirillum, e.g., S. minus; Mycobacterium, e.g., M. tuberculosis, M. bovis, M. africanum, M. avium M. intracellulare, M. kansasii, M. xenopi, M. marinum, M. ulcerans, the M. fortuitum complex (M. fortuitum and M. 40 chelonei), M. leprae, M. asiaticum, M. chelonei subsp. abscessus, M. fallax, M. fortuitum, M. malmoense, M. shimoidei, M. simiae, M. szulgai, M. xenopi; Mycoplasma, e.g., M. hominis, M. orale, M. salivarium, M. fermentans, M. pneumoniae, M. bovis, M. tuberculosis, M. avium, M. lep- 45 rae; Mycoplasma, e.g., M. genitalium; Ureaplasma, e.g., Ū. urealyticum; Trichomonas, e.g., T. vaginalis; Cryptococcus, e.g., C. neoformans; Histoplasma, e.g., H. capsulatum; Candida, e.g., C. albicans; Aspergillus sp; Coccidioides, e.g., C. immitis; Blastomyces, e.g. B. dermatitidis; Paraco- 50 ceidioides, e.g., P. brasiliensis; Penicillium, e.g., P. marneffei; Sporothrix. e.g., S. schenckii; Rhizopus, Rhizomucor, Absidia, and Basidiobolus; diseases caused by Bipolaris, Cladophialophora, Cladosporium, Drechslera, Exophiala, Fonsecaca, Phialophora, Xylohypha, Ochroconis, Rhin- 55 ocladiella, Scolecobasidium, and Wangiella; Trichosporon, e.g., T. beigelii; Blastoschizomyces, e.g., B. capitatus; Plasmodium, e.g., P. falciparum, P. vivax, P. ovale, and P. malariae; Babesia sp; protozoa of the genus Trypanosoma, e.g., T. cruzi; Leishmania. e.g., L. donovani, L. major L. 60 tropica, L. mexicana, L. braziliensis, L. viannia braziliensis; Toxoplasma, e.g., T. gondii; Amoebas of the genera Naegleria or Acanthamoeba; Entamoeba histolylica; Giardia lamblia; genus Cryptosporidium, e.g., C. parvum; Isospora belli; Cyclospora cayetanensis; Ascaris lumbricoides; Tri- 65 churis trichiura; Ancylostoma duodenale or Necator americanus; Strongyloides stercoralis Toxocara, e.g., T. canis, T.

54

cati; Baylisascaris, e.g., B. procyonis; Trichinella, e.g., T. spiralis; Dracunculus, e.g., D. medinensis; genus Filarioidea; Wuchercria bancrofti; Brugia, e.g., B. malayi, or B. timori; Onchocerca volvulus; Loa loa; Dirofilaria immitis; genus Schistosoma, e.g., S. japonicum, S. mansoni, S. mekongi, S. intercalatum, S. haematobium; Paragonimus, e.g., P. westermani, P. skriabini; Clonorchis sinensis; Fasciola hepalica; Opisthorchis sp; Fasciolopsis buski; Diphyllobothrium latum; Taenia, e.g., T. saginata, T. solium; Echinococcus, e.g., E. granulosus, E. multilocularis; Picornaviruses, rhinoviruses echoviruses, coxsackieviruses, influenza virus; paramyxoviruscs, e.g., types 1, 2, 3, and 4; adnoviruses; Herpesviruscs, e.g., HSV-1 and HSV-2; varicella-zoster virus; human T-lymphotrophic virus (type I and type II); Arboviruses and Arcnaviruses; Togaviridae, Flaviviridae, Bunyaviridae, Reoviridad; Flavivirus; Hantavirus; Viral encephalitis (alphaviruses [e.g., Venezuelan equine encephalitis, eastern equine encephalitis, western equine encephalitis]); Viral hemorrhagic fevers (filoviruses [e.g., Ebola, Marburg] and arenaviruses [e.g., Lassa, Machupo]); Smallpox (variola); retroviruses e.g., human immunodeficiency viruses 1 and 2; human papillomavirus [HPV] types 6, 11, 16, 18, 31, 33, and 35.

In various embodiments, the probe can be selective for a polynucleotide sequence that is characteristic of an organisms selected from the group consisting of Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella oxytoca, Klebsiella pneumoniae, Escherichia coli, Acinetobacter Baumannii, Serratia marcescens, Enterobacter aerogenes, Enterococcus fuecium, vancomycin-resistant enterococcus (VRE), Staphylococcus aureus, methecillin-resistant Staphylococcus aureus(MRSA), Streptococcus viridans, Listeria monocyngenes, Enterococcus spp., Streptococcus Group B, Streptococcus Group C, Streptococcus Group G, Streptococcus Group F, Enterococcus faecalis, Streptococcus pneumoniae, Staphylococcus epidermidis, Gardenerella vaginalis, Micrococcus sps., Haemophilus influenzae, Neisseria gonorrhoeae, Moraxella catarrahlis, Salmonella sps., Chlamydia trachomatis, Peptostreptococcus productus. Peptostrepococcus anaerobius, Lactobacillus fermentum, Eubacterium lentum, Candida glabrata, Candida albicans, Chlamydia spp., Camplobacter spp., Salmonella spp., smallpox (variola major), Yersina pestis, Herpes Simplex Virus I (HSV I), and Herpes Simplex Virus II (HSV II).

In various embodiments, the probe can be selective for a polynucleotide sequence that is characteristic of Group B *Streptococcus*.

Carrying out PCR on a PCR-ready sample can include heating the PCR reagent mixture and the neutralized polynucleotide sample under thermal cycling conditions suitable for creating PCR amplicons from the neutralized polynucleotide sample; contacting the neutralized polynucleotide sample or a PCR amplicon thereof with at least one probe that is selective for a polynucleotide sequence; independently contacting each of the neutralized polynucleotide sample and a negative control polynucleotide with the PCR reagent mixture under thermal cycling conditions suitable for independently creating PCR amplicons of the neutralized polynucleotide sample and PCR amplicons of the negative control polynucleotide; and/or contacting the neutralized polynucleotide sample or a PCR amplicon thereof and the negative control polynucleotide or a PCR amplicon thereof with at least one probe that is selective for a polynucleotide sequence.

In various embodiments, a method of carrying out PCR on a sample can further include one or more of the following steps: heating the biological sample in the microfluidic

cartridge; pressurizing the biological sample in the microfluidic cartridge at a pressure differential compared to ambient pressure of between about 20 kilopascals and 200 kilopascals, or in some embodiments between about 70 kilopascals and 110 kilopascals.

55

In various embodiments, a method of using the apparatus described herein can further include one or more of the following steps: determining the presence of a polynucleotide sequence in the biological sample, the polynucleotide sequence corresponding to the probe, if the probe is detected 10 in the neutralized polynucleotide sample or a PCR amplicon thereof; determining a contaminated result if the probe is detected in the negative control polynucleotide or a PCR amplicon thereof; and/or in some embodiments, wherein the PCR reagent mixture further comprises a positive control 15 plasmid and a plasmid probe selective for at least a portion of the plasmid, the method further including determining a PCR reaction has occurred if the plasmid probe is detected. Fluorescence Detection System, Including Lenses and Filters, and Multiple Parallel Detection for a Multi-Lane Car-20 tridge

A miniaturized, highly sensitive fluorescence detection system can be incorporated for monitoring fluorescence from the biochemical reactions that are the basis of nucleic acid amplification methods such as PCR.

Accordingly, another aspect of the apparatus includes a system for monitoring fluorescence from biochemical reactions. The system can be, for example, an optical detector having a light source (for example an LED) that selectively emits light in an absorption band of a fluorescent dye, lenses 30 for focusing the light, and a light detector (for example a photodiode) that selectively detects light in an emission band of the fluorescent dye, wherein the fluorescent dye corresponds to a fluorescent polynucleotide probe or a fragment thereof. Alternatively, the optical detector can 35 include a bandpass-filtered diode that selectively emits light in the absorption band of the fluorescent dye (a fluorogenic probe) and a bandpass filtered photodiode that selectively detects light in the emission band of the fluorescent dye. For example, the optical detector can be configured to indepen- 40 dently detect a plurality of fluorescent dyes having different fluorescent emission spectra, wherein each fluorescent dye corresponds to a fluorescent polynucleotide probe or a fragment thereof. For example, the optical detector can be configured to independently detect a plurality of fluorescent 45 dyes at a plurality of different locations of, for example, a microfluidic cartridge, wherein each fluorescent dve corresponds to a fluorescent polynucleotide probe or a fragment thereof.

In some embodiments, a given detector for use with the 50 apparatus described herein is capable of detecting a fluorescence signal from nanoliter scale PCR reactions. Advantageously, the detector is formed from inexpensive components, having no moving parts. The detector is also configured to mate with a microfluidic cartridge as further 55 described herein, and is also preferably part of a pressure application system, such as a sliding lid, that keeps the cartridge in place. The detector further has potential for 2 or 3 color detection and is controlled by software, preferably custom software, configured to sample information from the 60 detector.

FIGS. **57-59** depict an embodiment of a highly sensitive fluorescence detection system including light emitting diodes (LED's), photodiodes, and filters/lenses for monitoring, in real-time, one or more fluorescent signals emanating 65 from the microfluidic cartridge. The embodiment in FIGS. **57-59** has a two-color detection system having a modular

56

design that mates with a single lane microfluidic cartridge. The detector comprises two LED's (blue and red, respectively) and two photodiodes. The two LED's are configured to transmit a beam of focused light on to a particular region of the cartridge. The two photodiodes are configured to receive light that is emitted from the region of the cartridge. One photodiode is configured to detect emitted red light, and the other photodiode is configured to detect emitted blue light.

FIGS. **60** and **61** show an exemplary read-head comprising a multiplexed 2 color detection system, such as multiple instances of a detection system shown in FIGS. **57-59**, that is configured to mate with a multi-lane microfluidic cartridge. FIG. **60** shows a view of the exterior of a multiplexed read-head. FIG. **61** is an exploded view that shows how various detectors are configured within an exemplary multiplexed read head, and in communication with an electronic circuit board.

The module in FIGS. **60** and **61** is configured to detect fluorescence from each lane of a 12-lane cartridge, and therefore comprises 24 independently controllable detectors, arranged as 12 pairs of identical detection elements. Each pair of elements is then capable of dual-color detection of a pre-determined set of fluorescent probes. It would be understood by one of ordinary skill in the art that other numbers of pairs of detectors are consistent with the apparatus described herein. For example, 4, 6, 8, 10, 16, 20, 24, 25, 30, 32, 36, 40, and 48 pairs are also consistent and can be configured according to methods and criteria understood by one of ordinary skill in the art.

Exemplary Optics Assembly

In an exemplary embodiment, the optical chassis/pressure assembly is housed in an enclosure (made of plastic in certain embodiments) that can be positioned to cover a multi-lane microfluidic cartridge. The enclosure can optionally have a handle that can be easily grasped by a user, and is guided for smooth and easy pushing and pulling. The handle may also serves as a pressure-locking device. The enclosure's horizontal position is sensed in both the all-open and in the all-forward position, and reported to controlling software. The enclosure and optical chassis pressure assembly registers with a heater cassette module positioned underneath a microfluidic cartridge to within 0.010". A close fit is important for proper heater/cartridge interface connections. The enclosure assembly does not degrade in performance over a life of 10,000 cycles, where a cycle is defined as: beginning with the slider in the back position, and sliding forward then locking the handle down on a cartridge, unlocking the handle and returning it to the original back position. All optical path parts should be non-reflective (anodized, painted, molded, etc.) and do not lose this feature for 10,000 cycles. The optics unit is unaffected by a light intensity of <=9,000 foot-candles from a source placed 12" from the instrument at angles where light penetration is most likely to occur. No degradation of performance is measured at the photo-detector after 10,000 cycles.

When fabricating a detector assembly, a single channel is made that houses two LED sources (blue and amber) and two additional channels that house one photodiode detector each (Four total bored holes). The two paired channels (source and detector) are oriented 43° from each other, measured from the optical axis and are in-line with the other paired channels that are at the same 43° orientation. The holes bored in the optical chassis contain filters and lenses with appropriate spacers, the specifications of which are further described herein. The LED's are held in place to prevent movement as the mechanical alignment is important

57

for good source illumination. The LED's are preferably twisted until the two "hot spots" are aligned with the reading channels on the cartridge. This position must be maintained until the LED's cannot be moved. The optical chassis can be made of aluminum and be black anodized. The bottom 5 pressure surface of the optical chassis is flat to ±0.001" across the entire surface. The optical chassis is centerbalanced such that the center of the optical chassis force is close to the center of the reagent cartridge. The pressure assembly (bottom of the optical chassis) provides uniform 10 pressure of a minimum of 1 psi across all heater sections of the reagent cartridge. The optical assembly can be moved away from the reagent cartridge area for cartridge removal and placement Appropriate grounding of the optical chassis is preferred to prevent spurious signals to emanate to the 15 optic PCB.

The LED light sources (amber and blue) are incident on a microfluidic cartridge through a band pass filter and a focusing lens. These LED light sources have a minimum output of 2800 millicandles (blue) and 5600 millicandles 20 (Green), and the center wavelengths are 470 (blue) and 575 (amber) nanometers, with a half band width of no more than 75 nanometers.

The LED light excites at least one fluorescent molecule (initially attached to an oligonucleotide probe) in a single 25 chamber on a cartridge, causing it to fluoresce. This fluorescence will normally be efficiently blocked by a closely spaced quencher molecule. DNA amplification via TAQ enzyme will separate the fluorescent and quenching molecules from the oligonucleotide probe, disabling the quenching. DNA amplification will only occur if the probe's target molecule (a DNA sequence) is present in the sample chamber. Fluorescence occurs when a certain wavelength strikes the target molecule. The emitted light is not the same as the incident light. Blue incident light is blocked from the 35 detector by the green only emission filter. Green incident light similarly is blocked from the detector by the yellow emission filter. The fluorescent light is captured and travels via a pathway into a focusing lens, through a filter and onto a very sensitive photodiode. The amount of light detected 40 increases as the amount of the DNA amplification increases. The signal will vary with fluorescent dye used, but background noise should be less than 1 mV peak-to-peak. The photo-detector, which can be permanently mounted to the optical chassis in a fixed position, should be stable for 5 45 years or 10,000 cycles, and should be sensitive to extremely low light levels, and have a dark value of no more than 60 mV. Additionally, the photo-detector must be commercially available for at least 10 years. The lenses are Plano-convex (6 mm detector, and 12 mm source focal length) with the flat 50 side toward the test cartridge on both lenses. The filters should remain stable over normal operating humidity and

The filters, e.g., supplied by Omega Optical (Brattleboro, Vt. 05301), are a substrate of optical glass with a surface 55 quality of F/F per Mil-C-48497A. The individual filters have a diameter of 6.0±0.1 mm, a thickness of 6.0±0.1 mm, and the AOI and ½ cone AOI is 0 degrees and +8 degrees, respectively. The clear aperture is >/=4 mm diameter and the edge treatment is blackened prior to mounting in a black, 60 anodized metal ring. The FITC exciter filters is supplied by, e.g., Omega Optical (PN 481 AF30-RED-EXC). They have a cut-off frequency of 466±4 nm and a cut-on frequency of 496±4 nm. Transmission is >/=65% peak and blocking is: >/=OD8 in theory from 503 to 580 nm, >/=OD5 from 65 501-650 nm, >/=OD4 avg. over 651-1000 nm, and >/=OD4 UV-439 nm. The FITC emitter filters is supplied by, e.g.,

58

Omega Optical (PN 534AF40-RED-EM). They will have a cut-off frequency of 514±2 nm and a cut-on frequency of 554±4 nm. Transmission is >/=70% peak and blocking is: >1=OD8 in theory from 400 to 504 nm, >/=OD5 UV-507 nm, and >/=OD4 avg. 593-765 nm. The amber exciter filters are supplied by, e.g., Omega Optical (PN 582AF25-RED-EXC). They have a cut-off frequency of 594±5 nm and a cut-on frequency of 569±5 nm. Transmission is >/=70% peak and blocking is: >1=OD8 in theory from 600 to 700 nm, >/=OD5 600-900 nm, and >/=OD4 UV-548 nm. The amber emitter filters are supplied by, e.g., Omega Optical (PN 627AF30-RED-EM). They have a cut-off frequency of 642±5 nm and a cut-on frequency of 612±5 nm. Transmission is >/=70% peak and blocking is: >/=OD8 in theory from 550 to 600 nm, >/=OD5 UV-605 nm, and >/=OD5 avg. 667-900 nm. The spacers should be inert and temperature stable throughout the entire operating range and should maintain the filters in strict position and alignment. The epoxy used should have optically black and opaque material and dry solid with no tacky residue. Additionally, it should have temperature and moisture stability, exert no pressure on the held components, and should mount the PCB in such a way that it is fixed and stable with no chances of rotation or vertical height changes. 50% of illumination shall fall on the sample plane within an area 0.1" (2.5 mm) wide by 0.3" (7.5 mm) along axis of the detection channel. Fluorescence of the control chip should not change more than 0.5% of the measured signal per 0.001" of height though a region±0.010 from the nominal height of the control chip.

An exemplary optics board is shown in FIG. 62, and is used to detect and amplify the fluorescent signature of a successful chemical reaction on a micro-fluidic cartridge, and controls the intensity of LED's using pulse-width modulation (PWM) to illuminate the cartridge sample over up to four channels, each with two color options. Additionally, it receives instructions and sends results data back over an LVDS (low-voltage differential signaling) SPI (serial peripheral interface). The power board systems include: a +12V input; and +3.3V, +3.6V, +5V, and -5V outputs, configured as follows: the +3.3V output contains a linear regulator, is used to power the LVDS interface, should maintain a +/-5% accuracy, and supply an output current of 0.35 A; the +3.6V output contains a linear regulator, is used to power the MSP430, should maintain a +/-5% accuracy, and supply an output current of 0.35 A; the +5V output contains a linear regulator, is used to power the plus rail for op-amps, should maintain a $\pm -5\%$ accuracy, and supply an output current of 0.35 A; the -5V output receives its power from the +5V supply, is used to power the minus rail for op-amps and for the photo-detector bias, should maintain a +/-1% voltage accuracy, and supply an output current of 6.25 mA+/-10%, Additionally, the power board has an 80 ohm source resistance, and the main board software can enable/disable the regulator outputs.

The main board interface uses a single channel of the LVDS standard to communicate between boards. This takes place using SPI signaling over the LVDS interface which is connected to the main SPI port of the control processor. The interface also contains a serial port for in-system programming.

The exemplary optical detection system of FIG. 62 consists of a control processor, LED drivers, and a photo-detection system. In the exemplary embodiment, the control processor is a T1 MSP430F1611 consisting of a dual SPI (one for main board interface and one for ADC interface) and extended SRAM for data storage. It has the functions of power monitoring, PWM LED control, and SPI linking to

59

the ADC and main board. The LED drivers contain NPN transistor switches, are connected to the PWM outputs of the control processor, can sink 10 mA@12V per LED (80 mA total), and are single channel with 2 LEDs (one of each color) connected to each. The photo-detection system has two channels and consists of a photo-detector, high-sensitivity photo-diode detector, high gain current to voltage converter, unity gain voltage inverting amplifier, and an ADC. Additionally it contains a 16 channel Sigma-delta (only utilizing the first 8 channels) which is connected to the second SPI port of the control processor. It would be understood by one of ordinary skill in the art that other choices and combinations of elements can be brought together to make a functioning detection system consistent with the description herein.

Additional Advantages and Features of the Technology Herein

The use of a disposable process chamber, having surface coating and material properties to allow low volume, and open tube heated release to maximize sample concentration in lowest volume possible.

The integrated magnetic heat separator that allows multiple samples to be heated independently but separated using a single moveable magnet platform.

A reader/tray design that allows easy placement of microfluidic cartridge and multiple sample pipetting of liquid using a robotic dispenser in one position; relative displacement to another location and pressure application for subsequent rapid heat incubation steps and optical detection. The bottom surface of the cartridge mates with the heating surface. Furthermore, it is typically easier to move a cartridge and heater in and out of position than a detector.

A moveable readhead design for fluorescence detection $_{35}$ from microfluidic PCR channels.

Aspects of the holder, such as a unitized disposable strip, that include the presence of sealed lyophilized reagents as well as liquids sealed in close proximity, which is normally hard to achieve. The laminates deployed herein make storage easier.

The holder permits snapping of multiple ASR tubes, and associated liquid dispensing processes that minimizes cross-sample contamination but multiple PCR preparations to be performed from a single clinical sample.

Software features allow a user to either get results from all 24 samples as quickly as possible or the first 12 samples as quickly as possible and the next 12 later.

The preparatory and diagnostic instruments described 50 herein enables different sample types (such as blood, urine, swab, etc.) to be all processed at the same time even though each may require different temperatures, times or chemical reagents. This is achieved in part by using individualized but compatible holders.

Automatic feeding of microfluidic cartridges into a PCR reader via a cartridge autoloader saves a user time and leads to increased efficiency of overall operation.

Piercing through foil over a liquid tube and reliable way of picking up liquid.

A moveable read-head that has the pumps, sensors (pipette detection, force sensing), sample identification verifier, etc., moving with it, and therefore minimizes the number of control lines that move across the instrument during use.

Accurate and rapid alignment of pipette tips with cartridge inlet holes using a motorized alignment plate.

60

EXAMPLES

Example 1: Reagent Holder

An exemplary reagent holder consistent with the description herein has the following dimensions and capacities:

180 mm long×22 mm wide×100 mm tall;

Made from Polypropylene. One snapped-in low binding 1.7 ml tube that functions as a process tube.

3 built-in tubes that function as receptacles for reagents, as follows:

One tube containing 200-1000 μl of wash buffer (0.1 mM Tris, pH 8).

One tube containing 200-1000 µl of release solution (40 mM NaOH).

One tube containing 200-1000 μ l of neutralization solution (330 mM Tris, pH 8.0).

One built-in tube that functions as a waste chamber (will hold ~4 ml of liquid waste).

3 receptacles to accept containers for solid reagents. Snap-in 0.3 ml or 0.65 ml PCR tubes (which are typically stored separately from the reagent holder) are placed in each of these locations, and contain, respectively:

lyophilized sample preparation reagents (lysis enzyme mix and magnetic affinity beads).

First lyophilized PCR master mix, probes and primers for a first target analyte detection.

Second lyophilized PCR master mix, probes and primers for a second target analyte detection (only offered in select cases, such as detection of *Chlamydia* and Gonorrhea from urine).

4 pipette tips located in 4 respective sockets.

Pipette tip Sheath: The pipette tips have a sheath/drip tray underneath to help capture any drip from the pipette tips after being used, and also to prevent unwanted contamination of the instrument.

Handle and Flex-Lock allows easy insertion, removal, and positive location of strip in rack.

One or more labels: positioned upward facing to facilitate ease of reading by eye and/or, e.g., a bar-code reader, the one or more labels containing human and machine readable information pertaining to the analysis to be performed.

It is to be understood that these dimensions are exemplary. However, it is particularly desirable to ensure that a holder does not exceed these dimensions so that a rack and an apparatus that accommodates the reagent holder(s) does not become inconveniently large, and can be suitably situated in a laboratory, e.g., on a bench-top.

Example 2: Disposable Reagent Holder Manufacturing

Simple fixtures can be designed and machined to enable handling and processing of multiple strips. There are five steps that can be performed to produce this component. The disposable reagent holder will be placed in a fixture and filled with liquids using manual/electric-multiple pipetting. Immediately after dispensing all liquids into the strip, foil will be heat scaled to the plastic using exemplary heat seal equipment (Hix FH-3000-D Flat Head Press) and the foil trimmed as required. After heat sealing liquids on board, all pellets in tubes can be snapped into the strip, pipette tips can be inserted in their respective sockets, and a barcode label can be affixed. Desiccant packs can be placed into the blow molded or thermoformed rack designed to house 12 holders. Twelve disposable strips will be loaded into the rack and then sealed with foil. The sealed bag will be placed into a carton and labeled for shipping.

Example 3: Foil-Sealing of Buffer Containing

Reagent Tubes

61

Tubes containing buffers have to be sealed with high moisture vapor barrier materials in order to retain the liquid 5 over a long period of time. Disposable holders may need to have a shelf life of 1-2 years, and as such, they should not lose more than say 10-15% of the liquid volume over the time period, to maintain required volume of liquid, and to maintain the concentration of various molecules present in 10 the solution. Moreover, the materials used for construction of the tube as well as the sealing laminate should not react with the liquid buffer. Special plastic laminates may provide the moisture barrier but they may have to be very thick (more than 300 μm thick), causing the piercing force to go 15 up tremendously, or of special, expensive polymer (such as Aclar). Aluminum foils, even a thin foil of a few hundred angstrom provides an effective moisture barrier but bare aluminum reacts with some liquid buffers, such as sodium hydroxide, even an aluminum foil with a sprayed coating of 20 a non-reactive polymer may not be able to withstand the corrosive vapors over a long time. They may react through tiny pin holes present in the coating and may fail as a barrier over time.

For these reasons, aluminum foils with a laminate struc- 25 ture have been identified as a suitable barrier, exemplary properties of which are described below:

1. Sealing

Heat seals to unitized polypropylene strip (sealing temp ~170-180° C.)

No wrinkling, cracking and crazing of the foil after

- 2. Moisture Vapor Transmission Rate (MVTR)
- Loss of less than 10% liquid (20 microliters from a volume of 200 microliter) for a period of 1 year stored 35 at ambient temperature and pressure. (effective area of transport is ~63 mm²); Approximate MVTR ~0.8 cc/m²/day
- 3. Chemistry
- Ability to not react with 40 mM Sodium Hydroxide 40 (pH<12.6): foil should have a plastic laminate at least 15 microns thick closer to the sealed fluid.
- Ability to not react with other buffers containing mild detergents
- 4. Puncture
- Ability to puncture using a p1000 pipette with a force less than 3 lb
- Before puncturing, a fully supported membrane 8 mm in diameter will not stretch more than 5 mm in the orthogonal direction
- After puncturing, the foil should not seal the pipette tip around the circumference of the pipette.
- 5. Other Features

Pin-hole free

No bubbles in case of multi-laminate structures.

Example 4: Mechanism of Piercing Through a Plasticized Laminate and Withdrawing Liquid Buffer

The aluminum laminate containing a plastic film described elsewhere herein serves well for not reacting with corrosive reagents such as buffers containing NaOH, and having the favorable properties of pierceability and acting as a moisture barrier. However, it presents some additional 65 difficulties during piercing. The aluminum foil tends to burst into an irregular polygonal pattern bigger than the diameter

62

of the pipette, whereas the plastic film tends to wrap around the pipette tip with minimal gap between the pipette and the plastic film. The diameter of the hole in the plastic film is similar to the maximum diameter of the pipette that had crossed through the laminate. This wrapping of the pipette causes difficulty in dispensing and pipetting operations unless there is a vent hole allowing pressures to equilibrate between outside of the tube and the air inside of the tube.

A strategy for successful pipetting of fluid is as follows:

- 1. Pierce through the laminate structure and have the pipette go close to the bottom of the reagent tube so that the hole created in the laminate is almost as big as the maximum diameter of the pipette (e.g., ~6 mm for a p1000 pipette)
- 2. Withdraw the pipette up a short distance so that a small annular vent hole is left between the pipette and the laminate. The p1000 pipette has a smallest outer diameter of 1 mm and maximum outer diameter of 6 mm and the conical section of the pipette is about 28 mm long. A vent hole thickness of a hundred microns is enough to create a reliable vent hole. This corresponds to the pipette inserted to a diameter of 5.8 mm, leaving an annulus of 0.1 mm around it.
- 3. Withdraw fluid from the tube. Note that the tube is designed to hold more fluid than is necessary to withdraw from it for a sample preparation procedure.

Example 5: Foil Piercing and Dissolution of Lyophilized Reagents

The containers of lyophilized reagents provided in conjunction with a holder as described herein are typically scaled by a non-plasticized aluminum foil (i.e., not a laminate as is used to seal the reagent tubes). Aluminum foil bursts into an irregular polygonal pattern when pierced through a pipette and leaves an air vent even though the pipette is moved to the bottom of the tube. In order to save on reagents, it is desirable to dissolve the reagents and maximize the amount withdrawn from the tube. To accomplish this, a star-ridged (stellated) pattern is placed at the bottom of the container to maximize liquid volume withdrawn, and flow velocity in between the ridges.

Exemplary steps for dissolving and withdrawing fluid are as follows:

- 1. Pierce through the pipette and dispense the fluid away from the lyophilized material. If the pipette goes below the level of the lyophilized material, it will go into the pipette and may cause jamming of the liquid flow out of the pipette.
- 2. Let the lyophilized material dissolve for a few seconds.
- 3. Move pipette down touching the ridged-bottom of the
- 4. Perform an adequate number of suck and spit operations (4-10) to thoroughly mix the reagents with the liquid buffer.
- 5. Withdraw all the reagents and move pipette to dispense it into the next processing tube.

Example 6: Material and Surface Property of the Lysis Tube

60

The material, surface properties, surface finish has a profound impact on the sensitivity of the assay performed. In clinical applications, DNA/RNA as low as 50 copies/ sample (~1 ml volume) need to be positively detected in a background of billions of other molecules, some of which strongly inhibit PCR. In order to achieve these high level of

63

sensitivities, the surface of the reaction tube as well as the material of the surface has to be chosen to have minimal binding of polynucleotides. During the creation of the injection molding tool to create these plastic tubes, the inherent surfaces created by machining may have large surface area due to cutting marks as large as tens of microns of peaks and valleys. These surfaces have to be polished to SPI A1/A2 finish (mirror finish) to remove the microscopic surface irregularities. Moreover, the presence of these microscopic valleys will trap magnetic beads (0.5-2µ) at unintended places and cause irregular performance. In addition to actual surface roughness, the surface hydrophobicity/surface molecules present may cause polynucleotides to stick at unintended places and reduce sensitivity of the overall test. In addition to the base material uses, such as homogenous polypropylene and other polymers, specific materials used during the molding of these tubes, such as mold release compounds or any additives to aid in the fabrication can have a profound impact on the performance of the reactions.

Example 7: Liquid Dispensing Head

Referring to FIGS. 18, 19A-C, and 63, an exemplary liquid dispenser is attached to a gantry, and receives instructions via electrical cable 1702. Barcode scanner 1701 is mounted on one face of the liquid dispenser. The gantry is mounted on a horizontal rail 1700 to provide movement in the x-direction. Not shown is an orthogonally disposed rail to provide movement in the y-direction. The liquid dispenser comprises a computer controlled motorized pump 1800 connected to fluid distribution manifold 1802 with related computer controlled valving 1801 and a 4-up pipetter with individually sprung heads 1803. The fluid distribution manifold has nine Lee Co. solenoid valves 1801 that control the flow of air through the pipette tips: two valves for each pipette, and an additional valve to vent the pump. Barcode reader 1701 enables positive detection of sample tubes, 35 reagent disposables and microfluidic cartridges. The scanner is mounted to the z-axis so that it can be positioned to read the sample tube, strip, and cartridge barcodes.

Example 8: Integrated Heater/Separator

In FIG. 64 an exemplary integrated magnetic separator and heater assembly are shown. Magnetic separator 1400 and heater assembly 1401 were fabricated comprising twelve heat blocks aligned parallel to one another. Each heat block 1403 is made from aluminum, and has an L-shaped configuration having a U-shaped inlet for accepting a process chamber 1402. Each heat block 1403 is secured and connected by a metal strip 1408 and screws 1407. Magnet 1404 is a rectangular block Neodymium (or other permanent rare earth materials, K & J Magnetics, Forcefield Magnetics) 50 disposed behind each heat block 1403 and mounted on a supporting member Gears 1406 communicate rotational energy from a motor (not shown) to cause the motorized shaft 1405 to raise and lower magnet 1404 relative to each heat block. The motor is computer-controlled to move the 55 magnet at speeds of 1-20 mm/s. The device further comprises a printed circuit board (PCB) 1409 configured to cause the heater assembly to apply heat independently to each process chamber 1402 upon receipt of appropriate instructions. In the exemplary embodiment, the device also 60 comprises a temperature sensor and a power resistor in conjunction with each heater block.

Example 9: Exemplary Software

Exemplary software accompanying use of the apparatus herein can include two broad parts—user interface and 64

device firmware. The user interface software can allow for aspects of interaction with the user such as—entering patient/sample information, monitoring test progress, error warnings, printing test results, uploading of results to databases and updating software. The device firmware can be the low level software that actually runs the test. The firmware can have a generic portion that can be test independent and a portion specific to the test being performed. The test specific portion ("protocol") can specify the microfluidic operations and their order to accomplish the test.

FIGS. **65**A and **65**B shows screen captures from the programming interface and real time heat sensor and optical detector monitoring. This real time device performance monitoring is for testing purposes; not visible to the user in the final configuration.

User Interface:

A medical grade LCD and touch screen assembly can serve as the user interface via a graphical user interface providing easy operating and minor troubleshooting instructions. The LCD and touch screen have been specified to ensure compatibility of all surfaces with common cleaning agents. A barcode scanner integrated with the analyzer can be configured to scan the barcode off the cartridge (specifying cartridge type, lot #, expiry date) and if available the patient and user ID from one or more sample tubes.

Example 10: Exemplary Preparatory Apparatus

This product is an instrument that enables 24 clinical samples to be automatically processed to produce purified nucleic acid (DNA or RNA) in about half an hour (FIG. 66). Purified nucleic acid may be processed in a separate amplification-detection machine to detect the presence of certain target nucleic acids. Samples are processed in a unitized disposable strip, preloaded with sample preparation chemistries and final purified nucleic acids are dispensed into PCR tubes. Fluid handling is enabled by a pipetting head moved by a xyz gantry. (FIG. 67)

The System has the following sub-systems:

Two sample processing racks, each rack processes up to 12 clinical samples in unitized disposable strips Magnetic separator-cum-tube heater assembly (24 heating stations)

A four-probe liquid dispensing head

3-axis gantry to move the pipette head

Peltier-cooled per-tube holding station to receive the purified DNA/RNA

Control electronics

Barcode reader

Operation: The user will get a work list for each sample, whether they want to extract DNA or RNA for each clinical sample. The sample tubes are placed on the rack and for each sample type (DNA or RNA), the user slides in a unitized reagent disposable (DNA or RNA) processing) into corresponding lane of the rack. The unitized disposable (holder) will have all the sample prep reagents, process tubes as well as disposable pipettes already prepackaged in it. Once all disposables are loaded into the rack, the rack is placed in its location on the instrument. Open per tubes are placed in the peltier cooled tube holder where the final purified nucleic acid will be dispensed. The user then closes the door of the instrument and then starts the sample processing using the GUI (Graphical User Interface).

The instrument checks functionality of all subsystems and then reads the barcode of the sample tubes and the unitized reagent disposable. Any mismatch with a pre-existing work list is determined and errors are flagged, if necessary. The

65

instrument then goes through a series of liquid processing, heating, magnetic separations to complete the sample preparation steps for the each of the clinical sample and outputs the purified nucleic acid into the PCR tube. The basic steps involved in each sample processing are sample lysis, nucleic acid capture into magnetic affinity beads, washing of the magnetic beads to remove impurities, releasing the nucleic acid from the magnetic beads, neutralizing the released DNA and the dispensing into the final PCR tube. These tubes are maintained at 4° C. until all samples are processed and user takes away the tube for downstream processing of the nucleic acids.

Example 11: Exemplary Diagnostic Apparatus

The apparatus, in combination with the associated consumables, automatically performs all aspects of nucleic acid testing, including sample preparation, amplification, and detection for up to 48 samples per hour with the first 24 results available in less than an hour. The system is easy to 20 use. An operator simply aliquots a portion of the patient sample into a dedicated tube that contains pre-packaged buffer. The operator places the dedicated tubes into positions on a sample rack. The operator then loads a disposable plastic reagent strip for the appropriate test in the rack. The 25 only other consumable used in the apparatus are microfluidic PCR cartridges for conducting amplification and detection; each cartridge is capable of performing up to twelve PCR tests and two cartridges can be loaded into the analyzer at once. Should the apparatus require a new PCR cartridge, the 30 analyzer will prompt the operator to load the cartridge. The analyzer will then prompt the operator to close the lid to initiate testing. All consumables and sample tubes are barcoded for positive sample identification.

Sample lysis and DNA preparation, which will require 35 approximately half an hour for a full run of 24 samples, is automatically performed by the analyzer's robotic and liquid handling components using protocols and reagents located in unitized, disposable plastic strips. The apparatus then automatically mixes the sample and PCR reagents, and 40 injects the mixture into a cartridge that will be automatically processed by an integrated PCR machine. Rapid, real time PCR and detection requires less than 20 minutes. Results, which will be automatically available upon completion of PCR, are displayed on the instruments touch screen, printed 45 or sent to the hospital information system, as specified by the user (or the user's supervisor).

Each instrument can process up to 24 samples at a time with a total throughput of 48 samples per hour after the first run. The analyzer is slightly less than 1 m wide and fits 50 easily on a standard lab bench. All operations of the unit can be directed using the included barcode wand and touch screen. The analyzer can be interfaced with lab information systems, hospital networks, PCs, printers or keyboards through four USB interfaces and an Ethernet port.

The apparatus has the following characteristics.

Sensitivity: the apparatus will have a limit of detection of ~50 copies of DNA or RNA. (and may have a limit of detection as low as 25-30 copies of DNA/RNA).

Cost per Test: Due to the miniaturized, simplified nature 60 of HandyLab reagents, cartridge and other consumables, the cost of goods per test will be relatively low and very competitive.

Automation: By contrast with current "automated" NAT systems, which all require some degree of reasonably extensive technologist interaction with the system, through the use of unitized tests and full integration of sample extrac-

66

tion, preparation, amplification and detection, the apparatus herein will offer a higher level of automation, and corresponding reduction in technologist time and required skill level, thereby favorably impacting overall labor costs.

Throughput: Throughput is defined as how many tests a system can conduct in a given amount of time. The apparatus will be capable of running 45 tests per hour, on average.

Time to First Result: In a hospital environment, time to first result is an especially important consideration. The apparatus will produce the first 24 results in less than an hour and an additional 24 results every half hour thereafter.

Random Access and STAT: Random access is the ability to run a variety of tests together in a single run and place samples in unassigned locations on the analyzer. Also, with chemistry and immunoassay systems, it is desirable to be able to add tests after a run has started. This is often referred to as "true random access" since the user is provided complete flexibility with regard to what tests can be run where on an analyzer and when a new sample can be added to a run. A STAT is a sample that requires as rapid a result as possible, and therefore is given priority in the testing cue on the analyzer. Today, essentially all chemistry and immunoassay analyzers are true random access and offer STAT capabilities. For NAT, however, very few systems offer any random access or STAT capabilities. The instrument herein will provide random access and STAT capabilities.

Menu: The number and type of tests available for the analyzer is a very important factor in choosing systems. The apparatus herein deploys a launch menu strategy that involves a mix of high volume. "standard" nucleic acid tests combined with novel, high value tests.

The apparatus enables 24 clinical samples to be automatically processed to purify nucleic acid, mix the purified DNA/RNA with PCR reagents and perform real-time PCR in microfluidic cartridge to provide sample to results in an hour. The exemplary apparatus has two PCR readers, each capable of running a 12 lane microfluidic cartridge using an optical system that has dedicated two-color optical detection system. FIG. **68**, FIG. **69**.

The apparatus has the following sub-systems:

Two sample processing racks, each rack processes up to 12 clinical samples in unitized disposable strips

Magnetic separator-cum-tube heater assembly (24 heating stations)

A four-probe liquid dispensing head

3-axis gantry to move the pipette head

Two PCR amplification-detection station, each capable of running a 12-lane microfluidic cartridge and dedicated 2-color optical detection system for each PCR lane.

Control electronics

Barcode reader

Pictures of exterior (face on) and interior are at FIGS. 70, 71, respectively.

Operation: The user will get a work list for each sample, whether they want to detect certain target analyte (such as GBS, *Chlamydia*, Gonnorrhoea, HSV) for each clinical sample. The sample tubes are placed on the rack and for each sample, the user slides in a unitized reagent disposable (analyte specific) into corresponding lane of the rack. The unitized disposable will have all the sample prep reagents, PCR reagents, process tubes as well as disposable pipettes already prepackaged in it. Once all disposables are loaded into the rack, the rack is placed in its location on the instrument. The user then places two 12-lane microfluidic PCR cartridges in the two trays of the PCR reader. The user then closes the door of the instrument and then starts the sample processing using the GUI (Graphical User Interface).

67

The instrument checks functionality of all subsystems and then reads the barcode of the sample tubes, the unitized reagent disposables and the microfluidic cartridges. Any mismatch with a pre-existing work list is determined and errors are flagged, if necessary. The instrument than goes 5 through a series of liquid processing, heating, magnetic separation to complete the sample preparation steps for the each of the clinical sample, mixes the purified nucleic acid with PCR reagents and dispenses the final mix into a lane of the microfluidic cartridges. After a microfluidic cartridge is 10 loaded with the final PCR mix, the cartridge tray moves and aligns the cartridge in the reader and the optical detection system presses the cartridge against a microfluidic PCR heater surface. On-chip valves are actuated to close the reaction mix and then thermocycling is started to initiate the 15 PCR reaction. At each cycle of PCR (up to 45 cycles), fluorescence from each PCR lane is detected by the optical detection system (2-colors per PCR lane) and final result is determined based on the threshold cycle (Ct).

The sample preparation steps for 24 samples are per- 20 formed in about 40 minutes and the PCR reaction in about 20 minutes.

Sample Reader:

The Reader performs function testing of up to twelve properly prepared patient samples by PCR process (realtime PCR) when used in conjunction with HandyLab microfluidic (test) cartridges. Each unit will employ two Reader Modules for a total of up to twenty four tests. (FIGS. 72A and 72B) Operation of the Reader is designed for minimal customer interaction, requiring the loading and unloading of 30 test cartridges only. During the "Load Disposables" sequence, the Reader will present a motor actuated tray for installation of the disposable cartridge. Sliding a small knob located in the front of the tray, a spring loaded protective cover will raise allowing the test cartridge to be nested 35 properly in place. The cover is then lowered until the knob self-locks into the tray frame, securing the cartridge and preventing movement during the sample loading sequence.

Once the prepared samples have been dispensed via pipettes into the test cartridge, the tray will retract into the 40 Reader, accurately positioning the test cartridge beneath the chassis of the optical assembly. The optical assembly will then be lowered by a captured screw driven stepper motor until contact is made with the test cartridge. At this point the test cartridge is located 1/8" above the target location on the 45 heater assembly. As downward motion continues the test cartridge and its holder within the tray compress springs on the tray frame (these are used later to return the cartridge to it's normal position and able to clear the encapsulated wire bonds located on the heater assembly during tray operation). 50 Movement of the test cartridge and optical assembly is complete once contact with the heater assembly is made and a minimum of 2 psi is obtained across the two-thirds of the cartridge area about the PCR channels and their controlling gates. At this point the testing of the cartridge is performed 55 using the heater assembly, measured with onboard optics, and controlled via software and electronics much in the same manner as currently operated on similar HandyLab instruments.

Once the functional testing is complete the main motor 60 raises the optic assembly, releasing pressure on the test cartridge to return to it's normal position. When commanded, the tray motor operating in a rack-and-pinion manner, presents the tray to the customer for cartridge removal and disposal. When the tray is in the extended 65 position it is suspended above a support block located on the apparatus chassis. This block prevents the cartridge from

sliding trough the holder in the tray during loading and acts as a support while samples are pipetted into the disposable cartridge. Also provided in this support block is an assist lever to lift and grasp the disposable cartridge during removal. All components of the tray as well as support block and cartridge lift assist are removable by the customer, without tools, for cleaning and reinstalled easily.

Microfluidic PCR Heater Module:

The microfluidic PCR heater module comprises a glass wafer with photolithographically defined microheaters and sensors to accurately provide heat for actuation of valves and performing thermocycling required to perform a realtime PCR reaction. The wafer surface has dedicated individually controlled heating zones for each of the PCR lanes in the microfluidic cartridge. For a 12-up cartridge, there are 12 PCR zones and the 24-up cartridge, there are 24 PCR heating zones. The individual heaters and sensors are electrically connected to a Printed circuit board using gold or aluminum wire bonds. A thermally compliant encapsulant provides physical protection the wirebonds. While the present device is made on glass wafer, heaters can be fabricated on Si-on-Glass wafers and other polymeric substrates. Each substrate can have provide specific advantages related to its thermal and mechanical properties. Besides using photolithography process, such heating substates can also be assembled using off-the-shelf electronic components such as power resistors, peltiers, transistors, maintaining the upper heating surface of each of the component to be at the same level to provide heating to a microfluidic cartridge. Temperature calibration values for each temperature sensor may be stored in a EEPROM or other memory devices co-located in the heater PCBoard.

12-Lane Cartridge:

This 12 channel cartridge is the same basic design that is described in U.S. provisional patent application Ser. No. 60/859,284, filed Nov. 14, 2006, with the following modifications: increase the PCR volume from 2 μ l to 4.5 μ l, leading to an increase in the input volume from 4 μ l to 6 μ l. The inlet holes are moved a few millimeters away from the edge of the cartridge to allow room for a 2 mm alignment ledge in the cartridge. A similar alignment ledge is also included on the other edge of the cartridge. (FIGS. 31A, 31B)

Enclosure:

The design of the apparatus enclosure must satisfy requirements: for customer safety during operation; provide access to power and communication interfaces; provide air entry, exit, and filtering; provide one-handed operation to open for installation and removal of materials; incorporate marketable aesthetics.

Cooling:

The cooling for the apparatus will be designed in conjunction with the enclosure and overall system to ensure all assemblies requiring air are within the flow path or receive diverted air.

The current concept is for the air inlet to be located on the bottom of the lower front panel. The air will then pass through a cleanable filter before entering the apparatus. Sheet metal components will direct the air to both the disposable racks and the main power supply. The air will then be directed through the card cages, around the readers and will exit through slots provided in the top of the enclosure.

Base Plate

The XYZ stage and frame are mounted to the base plate in a way where there will be no misalignment between the stage, cartridge and the disposable. The enclosure is

69

mounted to the base plate. Final design of the enclosure determines the bolt hole pattern for mounting. The backplane board mounts to the base plate with standoffs. All other boards mount to the backplane board. The disposable mounts on a rack which will be removable from the brackets mounted to the base plate. The reader brackets bolt to the base plate. Final design of the reader brackets determines the bolt hole pattern. The power supply mounts to the base plate. The base plate extends width and lengthwise under the entire instrument.

Example 12: Exemplary High-Efficiency Diagnostic Apparatus

A more highly multiplexed embodiment, also enables 24 clinical samples to be automatically processed to purify nucleic acids, mix the purified DNA/RNA with PCR reagents and perform real-time PCR in a microfluidic cartridge. This product has a single PCR reader, with a scanning read-head, capable of reading up to 4 different colors from 20 each of the PCR lane. The cartridge has 24 PCR channels enabling a single cartridge to run all 24 clinical samples. In addition, this product has a cartridge autoloader, whereby the instrument automatically feeds the PCR reader from a pack of cartridges into the instrument and discard used 25 cartridge into a waste tray. Diagrams are shown in FIGS. 73, and 74.

The apparatus has the following sub-systems:

Two sample processing racks, each rack processes up to 12 clinical samples in unitized disposable strips

Magnetic separator-cum-tube heater assembly (24 heating stations)

A four-probe liquid dispensing head

3-axis gantry to move the pipette head

A single PCR amplification-detection station capable of 35 running a 24-lane microfluidic cartridge and a scanner unit to detect up to 4 colors from each PCR lane.

An autoloader unit to feed 24-lane microfluidic cartridge from a box into the PCR detection unit.

Control electronics

Barcode reader

Operation: The user will get a work list for each sample, whether they want to detect certain target analyte (such as GBS, *Chlamydia*, Gononrrhoea, HSV) for each clinical sample. The sample tubes are placed on the rack and for each 45 sample, the user slides in a unitized reagent disposable (analyte specific) into corresponding lane of the rack. The unitized disposable will have all the sample prep reagents, PCR reagents, process tubes as well as disposable pipettes already prepackaged in it. Once all disposables are loaded 50 into the rack, the rack is placed in its location on the instrument. The user then closes the door of the instrument and then starts the sample processing using the GUI (Graphical User Interface).

The instrument checks functionality of all subsystems and 55 then reads the barcode of the sample tubes, the unitized reagent disposables and presence of a 24-lane microfluidic cartridge. Any mismatch with a pre-existing work list is determined and errors are flagged, if necessary. The instrument than goes through a series of liquid processing, heating, magnetic separation to complete the sample preparation steps for the each of the clinical sample, mixes the purified nucleic acid with PCR reagents and dispenses the final mix into a lane of a 24-lane microfluidic cartridge. After the microfluidic cartridge is loaded with the final PCR mix, the 65 cartridge is moved and aligned by an automated motorized pusher in the PCR reader. The optical detection system, then

70

presses the cartridge against a microfluidic PCR heater surface. On-chip valves are actuated to close the reaction mix and then thermo-cycling is started to initiate the PCR reaction. At each cycle of PCR (up to 45 cycles), fluorescence from each PCR lane is detected by the optical detection system (2-colors per PCR lane) and final result is determined based on the threshold cycle (Ct). The used cartridge is then pushed out automatically into a waste cartridge bin.

Microfluidic cartridges are stored in a cartridge pack (maximum 24 cartridges) and the instrument alerts the user to replace the cartridge pack and empty out the waste cartridge bin once all cartridges from the pack are used up. 24-Lane Cartridge

The 24-lane cartridge has two rows of 12 PCR lanes. Various views are shown in FIGS. 75-77. The cartridge has 3 layers, a laminate, a substrate, and a label. The label is shown in two pieces. Each Lane has a liquid inlet port, that interfaces with a disposable pipette; a 4 microliter PCR reaction chamber (1.5 mm wide, 300 microns deep and approximately 10 mm long), two microvalves on either side of the PCR reactor and outlet vent. Microvalves are normally open and close the channel on actuation. The outlet holes enables extra liquid (~1 μl) to be contained in the fluidic channel incase more than 6 μl of fluid is dispensed into the cartridge.

The inlet holes of the cartridge are made conical in shape and have a diameter of 3-6 mm at the top to ensure pipettes can be easily landed by the fluid dispensing head within the conical hole. Once the pipette lands within the cone, the concial shape guides the pipette and mechanically seals to provide error free dispensing or withdrawal of fluid into the cartridge. The bigger the holes, the better it is to align with the pipette, however, we need to maximize the number of inlet ports within the width of the cartridge as well as maintain the pitch between holes compatible with the interpipette distance. In this particular design, the inter-pipette distance is 18 mm and the distance between the loading holes in the cartridge is 8 mm. So lanes 1, 4, 7, 11 are pipetted into during one dispensing operation; lanes 2, 5, 8 and 12 in the next, and so on and so forth.

The height of the conical holes is kept lower than the height of the ledges in the cartridge to ensure the cartridges can be stacked on the ledges. The ledges on the two long edges of the cartridge enable stacking of the cartridges with minimal surface contact between two stacked cartridges and also help guide the cartridge into the reader from cartridge pack (cf. FIGS. 28-33).

Cartridge Autoloader

The Cartridge autoloader consists of a place for positively locking a pack of 24 microfluidic cartridges, pre-stacked in a spring-loaded box (e.g., FIG. 33). The box has structural elements on the sides to enable unidirectional positioning and locking of the box in the autoloader (FIG. 33). To load a new box, the user moves a sliding element to the left of the autoloader, places and pushes the box in the slot and releases the sliding lock to retain the box in its right location. Springs loaded at the bottom of the box helps push the box up when it needs to be replaced. The spiral spring present at the bottom of the cartridge pack pushed against the cartridges and is able to continually push the cartridge with a force of from 4 to 20 pounds.

The presence or absence of cartridges is detected by reading the barcode on top of the cartridge, if present.

To start a PCR run, the pipette head dispenses PCR reaction mix into the required number of lanes in the top cartridge in the autoloader (e.g., FIG. 28). The pusher pushes

71

the top cartridge from the autoloader box into the two rails that guide the cartridge into the PCR reader. The cartridge is pushed to the calibrated location under the reader and then the optics block is moved down using a stepper motor to push the cartridge against the micoheater surface. The bottom of the optics block (aperture plate) has projections on the sides to enable the cartridge to be accurately aligned against the apertures. The stepper motor pushes the cartridge to a pre-calibrated position (e.g., FIG. 30) which provides a minimum contact pressure of 1 psi on the heating surface of the micro fluidic cartridge.

After the PCR reaction is complete, the stepper motor moves up 5-10 mm away from the cartridge, relieves the contact pressure and enables to cartridge to travel in its guide rails. The pusher is activated and it pushes the cartridge out to the cartridge waste bin (e.g., FIG. 32). After this step, the pusher travels back to its home position. During its back travel, the pusher is able to rise above the top of the cartridge in the cartridge pack because it has a angular degree of 20 freedom (see figure). A torsion spring ensures the pusher comes back to a horizontal position to enable it to push against the next cartridge in queue. The pusher is mechanically attached to a timing belt. The timing belt can be moved in either direction by turning a geared motor. The pusher is 25 mounted to a slider arrangement to constrain it to move in only one axis (see, e.g., FIG. 31).

The cartridge pushing mechanism can also be made to not only push the cartridge from the autoloader box to the detection position, but also be used to move it back to the autoloading position. This will enable unused lanes in the microfluidic cartridge to be used in the next PCR run.

The cartridge autoloading box is also designed so that once all the cartridges are used, the box can be easily recycled or new cartridges added to it. This reduces the cost to the customer and the manufacturer.

Reader

The reader consists of an optical detection unit that can be pressed against a 24-lane microfluidic cartridge to optically interface with the PCR lanes as well as press the cartridge against a microfluidic heater substrate (FIG. **78**). The bottom of the optics block has 24 apertures (two rows of 12 apertures) that is similar in dimension of the PCR reactors closest to the cartridge. The aperture plate is made of low 45 fluorescent material, such as anodized black aluminum and during operation, minimized the total background fluorescence while maximizing the collection of fluorescent only from the PCR reactor (FIGS. **79A** and **79B**). The bottom of the aperture plate has two beveled edges that help align two edges of the cartridges appropriately such that the apertures line up with the PCR reactors. (FIGS. **80**, **81**)

The optical detection units (total of 8 detection units) are assembled and mounted onto a sliding rail inside the optical box so that the optical units can be scanned over the apertures (FIG. 82). Each unit is able to excite and focus a certain wavelength of light onto the PCR reactor and collect emitted fluorescence of particular wavelength into a photodetector. By using 4 different colors on the top 4 channels and repeating the 4 colors in the bottom channels, the entire scanner can scan up to 4 colors from each of the PCR lanes.

The optics block can be machined out of aluminum and anodized or injection molded using low fluorescence black plastic (FIG. 83). Injection molding can dramatically reduce 65 the cost per unit and also make the assembly of optics easier. The designed units can be stacked back-to-back.

72

Example 13: Exemplary Electronics for Use with Preparatory and Diagnostic Apparatuses as Described Herein

There are multiple independent software modules running on dedicated hardware: Described herein are exemplary specifications for the electronics used in the diagnostic (PCR) system. Additional information related to the PCR System is described elsewhere herein. In some embodiments, the PCR system includes eighteen printed circuit boards (PCBs) of nine different types. Referring to FIG. 86, the system can contain three multiplex (MUX) boards 100a-c, two of which (micro-heater MUX boards 100a-b), can each be used to run a micro-heater board 110a-b and the third (lysis heater MUX board 100c) can run one or more lysis heater boards 116 and 117. Each of the three MUX boards 100a-c can be controlled by a PC processor board via an Ethernet port. The two micro-heater boards 110a-b, each controlled by one of the MUX boards 100a-b, heat microzones on the microfluidic cartridge. In some embodiments, the system includes the two lysis heater boards 116 and 117, controlled by the lysis heater MUX board 100c, that heat lysis tubes in each of the two 12 sample racks.

Still referring to the PCBs included in the PCR system, the system can include two 12-channel optical detection boards 130a-b that can each detect optical fluorescence emitted by microfluidic cartridge chemistry. The optical detection boards can be controlled by one or more of the MUX boards 100a-c, using SPI, over a RS-422 interface. The system can include three motor control boards 140a-c, where one board (e.g., motor control board 140c) can control two magnetic separation motors (not shown), and the remaining two motor control boards (e.g., motor control boards 140a-b) can each run one reader tray motor (not shown) and one reader pressure motor (not shown). The motor control board running the magnetic separation motors (e.g., motor control board 140c) can be controlled via RS-485 interface from the lysis heater MUX board 100c and the two motor control boards 140a-b, each running one reader tray motor and one reader pressure motor, can be controlled via RS-485 interface by the micro-heater MUX boards 100a-b. The system can also include one PC processor board 150, which directs the overall sequencing of the system and can be controlled via external Ethernet and USB interfaces, and one PC processor base board 160, which provides internal interfaces for the PC processor board 150 to the remainder of the system and external interfaces. The system can include one main backplane 180 that interconnects all system boards, one motor control backplane 190 that interconnects the motor control boards 140a-c to the main backplane 180 and gantry (not shown), and two door sensor boards (not shown). One door sensor board provides an interconnect between the front door solenoid locks and the PC processor base board 160 and the other door sensor board provides an interconnect between the position sensors and the PC processor base board 160.

In some embodiments, the PCR system can include the off-the-shelf PC processor board **150**. The PC processor board **150** can be an ETX form factor board that includes one 10/100 BASE-T Ethernet port, four USB ports, one analog VGA display port, two UART ports, one real-time clock, one parallel port, one PS2 keyboard port, one PS2 mouse port, stereo audio output, one IDE interface, and one I2C interface.

Referring to FIG. **87**, the system can also include the PC processor base board **160** that includes a five port 10/100 BASE-T Ethernet bridge **161** for internal communication,

73

Ethernet port of the PC Processor board 150, another of which can be for diagnostic use (with a connector inside system cover), and three of which can communicate with the three MUX boards 100a-c (one port for each MUX board 5 100a-c) through the backplane 180. The PC processor base board 160 can also include one USB to 10/100 BASE-T Ethernet port 162 for external Ethernet connections, one four port USB hub 163 for external connections, one external VGA connector **164**, one internal PS2 Mouse connector **165** (with a connector inside the system cover), and one internal PS2 Keyboard connector 166 (with a connector inside the system cover. The PC processor base board 160 can also include one internal stereo audio output 167 to on board speakers 168, one internal CompactFlash connector 169 from an IDE port (with a connector inside the system cover), and one internal RS-232 interface 170 from a UART port (with a connector inside the system cover). Additional components included in the PC processor base board can include one internal RS-485 interface 171 from a UART port 20 (with a connector inside the system cover), one internal temperature sensor 172 connected to the I2C interface, a battery for the real-time clock, and one parallel port 173. The parallel port 173, with connectors inside the system cover, can be internally connected as follows: one bit can be used 25 to drive a high current low side switch for the two door solenoids, one bit can be used to generate a processor interrupt when either door sensor indicates that a door is opened, three bits can be used to program the EEPROM for configuring the Ethernet bridge 161, and two bits can be 30 connected to the Ethernet bridge management interface (not shown). The remaining bits can remain unassigned, with optional pull-up and pull-down resistors, and be brought out to a 10 pin Phoenix contact header.

one of which can be connected to the 10/100 BASE-T

Referring now to FIG. 88, in some embodiments, the 35 system can include the three MUX boards 100a-c. While FIG. 88 depicts exemplary MUX board 100a, each of the three MUX boards 100a-c can include one or more of the features described below. The MUX board 100a can include 96 pulse width modulated (PWM) controlled heating chan- 40 nels with heaters (about 33 ohm to about 150 ohm) heaters, that can support 20 or 24 volt (voltage externally provided) drives with a maximum current of about 800 mA. Each PWMs can be 12-bit with programmable start and stop points, can have 1 microsecond resolution, and can have a 45 maximum duty cycle of about 75%. Each PWM period is programmable and is preferably set to 4 ms. The MUX boards can include a 4-wire RTD/heater connection with precision 1 mA sense current that can accommodate about 50 ohm to about 2500 ohm resistive temperature devices and 50 have a measurement accuracy of ± -0.5 ohms. The thermal measurement sample period of the MUX boards is 32 ms including 8×PWM periods where 12 16-bit ADCs 101a sample 8 successive channels each. The MUX address can be tagged to the ADC data.

Still referring to the MUX board 100a depicted in FIG. 88, an RS-422 optics board interface 102a that interconnects over the backplane 180 and transfers data over a 4 wire SPI interface using local handshake signals and interrupts can be included on the MUX board 100a. The MUX board 100a 60 can also include a 10/100 BASE-T Ethernet interface 103a that interconnects to the system over the backplane 180 and an RS-485 interface 104a that interconnects to the motor controller 140a over the backplane 180.

Referring now to FIG. **89**, in some embodiments, the 65 system can include the optical detection boards **130***a-b*. While FIG. **89** depicts exemplary optical detection board

74

130a, each of the optical detection boards 130a-b can include one or more of the features described below. The optical detection board 130a can include a 12-channel optics board design modified to use an RS-422 interface 131a. The optical detection board 130a can include 12-3 Watt, blue LEDs 132a driven with about 6 V at about a 625 mA maximum. An exemplary LED used in the detection board 130a is the Luxeon K2 emitter producing blue light at a wavelength of about 470 nm using about 27 mW@700 mA. The optical detection board 130a can also include 12-3 Watt, amber LEDs 133a driven with about 6 V at about a 625 mA maximum. An exemplary LED used in the detection board 130a is the Luxcon K2 emitter producing amber light at a wavelength of about 590 nm using about 60 mW@700 mA. The detection board 130a can include 24 lensed silicon photodiode detectors 134a, an example of which is the Hamamatsu S2386-18L. These photodiode detectors 134a are designed in a common TO-18 package. The detection board 130a can also include an MSP430 processor 135a with two PWM channels, one for the blue channel and one for the amber channel. The board 130a can include individual LED enables 136a and 137a for each of the 12 color pairs set over the local SPI bus.

The PCR system can include a lysis heater board that provides and monitors heating to the lysis tubes. The heater board can include 12-70 Watt TO-247 power resistors (provide heat to the lysis tubes) designed to be fed 24V from one or more of the MUX boards 100a-c (e.g., MUX board 100c) and 12-2000 ohm Resistive Temperature Devices (RTD) to monitor the temperature of the lysis tubes. Optional resistors can be included to modify the full scale range of the RTDs, Included on the lysis heater board is a serial EEPROM that may hold a board serial number and can be used to identify the board type and revision level to software.

Referring now to FIG. 90, in some embodiments, the system can include the micro-heater boards 110a-b. While FIG. 90 depicts exemplary micro-heater board 110a, each of the micro-heater boards 110a-b can include one or more of the features described below. In some embodiments, the system can include the micro-heater board 110a that includes a serial EEPROM and two optical interrupters. The serial EEPROM may hold a board serial number, can hold RTD calibration data, and can be used to identify the board type and revision level to software. The optical interrupters can be used to sense the reader tray position for the motor control board 140a and sends the information to the Blue Cobra (motor controllers), which processes the information on the positions of the reader trays and accordingly controls the power to the emitters supplied by the motor control board 140a. The micro-heater board 110a can provide connections to the 96 channel micro-heater plate and control the 96 multiplexed heater/RTD devices to control cartridge feature temperature. The heater/RTD devices can be between about 50 ohms to about 500 ohms. The microheater board 110a can bridge the RS-422 interface from, for example, the MUX board 100a to the optical detection board 130a. The connection from the micro-heater board 110a to the MUX board 100a is over the backplane 180, while the connection to the optics board 130a is over a 40 pin FFC cable.

Referring now to FIG. 91, in some embodiments, the system can include the motor control boards 140a-c. While FIG. 91 depicts exemplary motor control board 140a, each of the motor control boards 140a-c can include one or more of the features described below. In some embodiments, the system can include the motor control board 140a that can control two micro-stepping motors 141a and can be con-

75

nected to the backplane 180 via a RS-485 interface. The output to the motors can be up to 24 V supplied externally through the backplane 180. The output current can be jumper selectable. Exemplary output currents that can be selected via jumper settings can include about 700 mA, about 1.0 A, or 2.3 A. The motor control board 140a includes open collector TTL interrupt output to the MUX board 100a and flag inputs. The flag inputs can provide 1.5 V power output to the sensors and can be switched on and off by software.

Limit switches are placed on the extreme locations of each axis, e.g., x-minimum and x-maximum, that turns off the power to the motor driving that axis incase of a malfunction happens and the pipette head moves out of the designed working distance. Optional pull-up and pull-down 15 are used with the output of the optical interruptors.)

In some embodiments, the system can include one or more interconnection boards, such as the main backplane **180**. The main backplane **180** can interconnect other PCBs, such as the MUX boards **100***a-c*, PC processor base board ²⁰**160**, and heater Interconnect boards. The main backplane **180** can cable to the motor control backplane **190** and to two lysis heater boards. The main backplane **180** can distribute power and signaling, implement 10/100 BASE-T Ethernet and RS-485 over the backplane **180**, and supplies voltages from an external connector. Exemplary voltages supplied include +3.3 V, +5.0 V, +12.0 V, -12.0 V, +20.0 V, and +24.0 V.

The system can include the motor control backplane 190 that can distribute power and signaling for all of the motor 30 control boards 140*a-c*. The motor control backplane 190 can supply +5.0 V and 24.0 V from an external connector. The motor control backplane 190 can include 1 slot for the RS-485 signaling from each of the two MUX boards 100*a-b* (total of 2 slots), 6 slots for the RS-485 signaling from the 35 lysis heater controlling MUX board 100*c*, and one connector that provides RS-485 signaling and power to the gantry. The motor control backplane 190 can provide pull-up and pull-down resistors to handle floating buses.

In some embodiments, the system can include a heater 40 interconnect board and a door sensor board. The heater interconnect board can connect the micro-heater boards 110a-b to the main backplane 180 using a physical interconnect only (e.g., no active circuits). The door sensor board can provide a cable interface and mixing logic from the 45 optical interrupters, which sense the door is open, and provide a mounting and cabling interface to the door lock solenoid.

Example 14: Exemplary Software for Use with Preparatory and Diagnostic Apparatuses as Described Herein

There are multiple independent software modules running on dedicated hardware:

Reader (2);

Sample-Prep (1);

User Interface (1);

Detector (2);

Motor control (8)

Inter-module communication among is via an internal Ethernet bus, communication with the user interface is via a high speed SPI bus and communication with motor control via a RS485 serial bus.

The Reader and Sample-Prep software run on identical 65 hardware and are as such identical incorporating the following functions:

76

Script Engine (a parameterized form of a protocol) Protocol Engine

Temperature Control (Microfluidics, lysis, release) Motor control (via external motor control modules). Salient features of the motor control software are:

Command/reply in ASCII and addressing capability to allow daisy chaining of communication link.

Detection (via external detector modules) Detector module controls the LED illumination and photo detector digitization.

The user interface is implemented as a program running under Linux operating system on an embedded x86 compatible PC. The following functions are addressed:

Graphical User Interface

Test control and monitor

Test result storage and retrieval Network connectivity via Ethernet (to lab information systems)

USB interface

Printer

Scanner (Internal and external)

Keyboard

Mouse

Door lock and sense

Example 15: Exemplary Chemistry and Processes of Use

Chemistry Overview

The chemistry process centers around the detection and identification of organisms in a clinical specimen, by virtue of detecting nucleic acids from the organism in question. This involves isolation of nucleic acids from target organisms that are contained in a clinical specimen, followed by a process that will detect the presence of specific nucleic acid sequences. In addition to target detection, an internal positive control nucleic acid will be added to the collection buffer, and will be taken through the entire extraction and detection process along with target nucleic acids. This control will monitor the effectiveness of the entire process and will minimize the risk of having false negative results. Nucleic Acid Extraction and Purification:

Nucleic acid extraction procedures begin with the addition of a clinical specimen to a prepared specimen collection solution. This can be done either at a specimen collection site, or at the testing site. Two collection solution formats will be available: one for body fluids, and one for swab specimens. Collection solutions used at collection sites will serve as specimen transport solutions, and therefore, this solution must maintain specimen and analyte integrity.

The extraction and purification procedure, which is entirely automated, proceeds as follows:

Target organisms are lysed by heating the detergentcontaining collection solution.

Magnetic beads, added to the specimen/collection solution mix, non-specifically bind all DNA that is released into the solution.

Magnetic beads are isolated and are washed to eliminate contaminants

DNA is released from the beads using high pH and heat. DNA containing solution is removed and neutralized with a buffer

Nucleic Acid Amplification:

Nucleic acids that have been captured by magnetic beads, washed, released in high pH, and neutralized with buffer, are added to a mixture of buffers, salts, and enzymes that have been lyophilized in a tube. The mixture is rapidly rehydrated, and then a portion of the solution is loaded onto a

77

microfluidic cartridge. The cartridge is then loaded into the amplification instrument module, which consists of a heating unit capable of thermal cycling, and an optical detection system. Detection of target nucleic acids proceeds as fol-

The liquid in sealed in a reaction chamber.

Rapid thermal cycling is used to potentiate the Polymerase Chain Reaction (PCR), which is used to amplify specific target DNA.

Amplified DNA fluoresces, and can be detected by optical 10 sensors.

A fluorescent probe "tail" is incorporated into each amplified piece of DNA

At a specific temperature, the probe adopts a conformation that produces fluorescence (this is termed a "scor- 15 pion" reaction, see FIG. 84).

Fluorescence is detected and monitored throughout the reaction.

Extraction and Amplification/Detection Process:

Extensive bench-scale testing has been performed to 20 optimize the nucleic acid extraction chemistry, including the collection buffer, the wash buffer formulation, the release solution formulation, and the PCR reagent mixes. The fully automated method of extraction, followed by 12-up PCR, was able to provide very high sensitivity consistently at 150 25 copies/sample.

Examples: Chlamydia in Urine (50/50); Gonrorrhoea in Urine; GBS in Plasma.

Various detection chemistries such as Tagman, Scorpion, SYBRg Green work reliably in the microfluidic cartridge. 30 Reagent Manufacturing

Feasibility studies were conducted in order to determine whether PCR reagents could be lyophilized in PCR tubes besides the use of 2 µl lyophilized pellets. The studies have indicated that sensitivity of reactions performed using tube- 35 lyophilized reagents is equivalent to that of wet reagents or 2 μl pellet reagents, so feasibility has been proven. Stability studies for this format indicate similar stability data. We have seen 2 microliter lyophilized PCR pellets to be stable to up to 2 years at room temperature, once sealed in nitrogen 40 atmosphere.

Manufacturing Overview: Manufacturing the components of the system can be accomplished at HandyLab, Inc., Ann Arbor, Mich. The manufacturing task has been split into five areas that consist of: chemistry manufacture, disposable 45 strip, collection kit, cartridge and analyzer.

Chemistry Manufacturing: There are currently seven individual, blended chemistry components identified for potential use with the system described herein. Mixing, blending and processing reagents/chemicals can be performed at 50 HandyLab, Inc., with existing equipment already in place. Additional tooling and fixtures will be necessary as the product matures and we ramp to high volume production, but initial costs will be minimal.

Collection buffer, wash, release & neutralization liquids 55 Cartridge Manufacturing: are simple recipes with very low risk, and can be made in large batches to keep labor costs of mixing/blending at or below targeted projections. They will be mixed and placed into intermediate containers for stock, and then issued to Disposable Strip Manufacturing for dispensing. Mature 60 SOP's are in place from prior project activity.

Affinity Beads (AB) have good potential to be stored and used as a liquid in the strip, but design contingencies for using a lyophilized pellet are in place as a back up. It is critical to keep the beads suspended in solution during dispense. Dispense equipment (e.g., manufactured by Innovadyne) that provides agitation for continuous suspension

78

during dispense has been identified for purchase once stability has been proven for liquid AB storage in the strip. The process to manufacture and magnetize the Affinity Beads spans a 9 hour cycle time to produce a batch of 2,000 aliquots, but that same time period can be used for scaled up recipe batches once we ramp into high volume production. This item has the highest labor content of all chemistry manufacture that is currently required for the apparatus.

PCR reagents/enzymes will be freeze-dried in our existing lyophilizing chamber (Virtis Genesis) but will not require spherical pellet formation. Instead, the mixture is being dispensed into, and then lyophilized, inside the end-use tube. First the chemistries are mixed per established SOPs, and then the following steps are performed to accomplish lyophilization: Individual tubes are placed into a rack/ fixture, and the solution is dispensed into each, using existing equipment (EFD Ultra Dispense Station.). The filled rack will be placed inside a stainless steel airtight box (modified to accept stoppers in the lid,) and then placed into the lyophilization chamber and the drying cycle commences unattended. During lyophilization, the stoppers are in a raised position allowing air/nitrogen to circulate into, and moisture to exit the stainless box holding racks of vials. At the end of the cycle, the shelves of our lyophilization chamber lower to seat the stoppers into the lid, forming a seal while still inside the closed chamber, in a moisture free nitrogen atmosphere. The steel boxes are then removed from the chamber, and each rack inside shall be processed in a single operation to seal all vials in that rack. Immediately after sealing, the vials will be die cut from the foil in one operation, allowing individual vials to be forwarded to the Disposable Manufacturing area for placement into a strip. Internal Control will either be added to an existing solution, or will be dispensed into its own cavity in the manner of the collection buffer, wash, neutralization, and release solutions. If lyophilization is required, it will be accomplished in the same manner as the PCR chemistry, and later snapped into the strip. Shelf life stability studies are underway.

Collection Kit Manufacturing

The collection kit will be processed manually in house for initial quantities. Initial quantities will not require capital expenditures as we have all equipment necessary to enable us to meet projections through 2008. We will be using our existing equipment (EFD 754-SS Aseptic Valve & Valvemate 7000 Digital Controller,) to fill the collection vial. The vials have a twist-on top that will be torqued, and the vial will have a proprietary 1D barcode on each vial. 24 vials will be placed into a reclosable plastic bag and placed into a carton for shipping.

Place vials into rack.

Dispense solution into vials.

Install and torque caps.

Label vials.

Bag vials and label bag.

Place vial bag and instructions/insert into carton, close and label.

Existing semi-automatic equipment for laminating & waxing (Think & Tinker DF-4200, & Asymtek Axiom Heated Jet Platform, respectively,) will be utilized to meet all cartridge manufacture requirements. The footprint of the 12-up disposable is the same as the RTa10 cartridge, so additional fixtures are not necessary.

Laminate micro substrate & trim excess.

Fill valves with hot wax & inspect.

Apply label & barcode.

Band 24 pieces together,

Bag & seal banded cartridges, label bag.

Place bag & insert(s) into carton, seal and label.

10

50

79

This portion of the product is relatively simple, although there is a difference between the automated (as used herein) and the stand-alone 12-up cartridge. Venting will not be required on the cartridge, which eliminates the most time consuming process for cartridge manufacture, along with the highest risk and highest cost for fully integrated automation. Over 1,000 pieces of the 12-up with venting have been successfully produced.

Example 16: Exemplary Chemistry Processes

Sample Pre-Processing

For Urine Sample: Take 0.5 ml of urine and mix it with 0.5 ml of HandyLab collection buffer. Filter the sample through HandyLab Inc.'s pre-filter (contains two membranes of 10 micron and 3 micron pore size). Place the sample tube in the position specified for the external sample tube in the 12-up rack.

For Plasma Sample: Take $0.5\,\mathrm{ml}$ of plasma and mix it with $_{20}$ $0.5\,\mathrm{ml}$ of Handylab collection buffer. Place the sample tube in the position specified for the external sample tube in the 12-up rack.

For GBS swab samples: Take the swab sample and dip it in 1 ml of HandyLab collection buffer. Place the sample tube 25 in the position specified for the external sample tube in the 12-up rack.

The HandyLab sample collection buffer contains 50 mM Tris pH 7, 1% Triton X-100, 20 mM Citrate, 20 mM Borate, 100 mM EDTA, plus 1000 copies of positive control DNA. ³⁰ Loading the Instrument and Starting Sample Processing

- Load PCR tube containing PCR master mix in one of the specified snap-in location of the unitized disposable.
- Load PCR tube containing PCR probes and primers for the target analyte under consideration in the specified location of the unitized disposable.
- In case of two analyte test, load PCR tube containing probes and primers for second analyte in the specified 40 location of the unitized disposable.
- 4. Load the unitized disposable in the 12-up rack in the same lane as the sample tube under consideration.
- 5. Prepare and load unitized reagent strips for other samples in consideration.
- Load the 12-up rack in one of the locations in the instrument.
- Load 12-up cartridge in the cartridge tray loading position.
- 8. Start operation.

Liquid Processing Steps

- 1. Using Pipette tip #1, the robot transfers the clinical sample from the external sample tube to the lysis tube of the unitized disposable strip.
- 2. Using the same pipette tip, the robot takes about $100 \,\mu l$ of sample, mixes the lyophilized enzyme and affinity beads, transfers the reagents to the lysis tube. Mixing is performed in the lysis tube by 5 suck and dispense operations.
- 3. The robot places pipette tip #1 at its designated location in the unitized disposable strip.
- 4. Heal the lysis tube to 60 C and maintain it for 10 minutes.
- 5. After 5 minute of lysis, the robot picks up pipette tip #1 65 and mixes the contents by 3 suck and dispense operations.

80

- 6. The robot places pipette tip #1 at its designated location in the unitized disposable strip.
- 7. After 10 minutes of lysis, a magnet is moved up the side of the lysis tube to a middle height of the sample and held at that position for a minute to capture all the magnetic beads against the wall the tube.
- 8. The magnet is brought down slowly to slide the captured beads close to the bottom (but not the bottom) of the tube.
- 9. Using pipette tip #2, aspirate all the liquid and dump it into the waste tube.
- 10. Aspirate a second time to remove as much liquid as possible from the lysis tube.
- 11. Using the same pipette tip #2, withdraw 100 μl of wash buffer and dispense it in the lysis tube. During this dispense, the magnet is moved downwards, away from the lysis tube.
- 12. Perform 15 mix steps to thoroughly mix the magnetic beads with the wash buffer.
- 13. Wait for 30 seconds.
- 14. Move magnet up to capture the beads to the side and hold for 15 seconds.
- 15. Using pipette tip #2, aspirate wash buffer twice to remove as much liquid as possible and dump it back in the wash tube.
- 16. Move magnet down away from the lysis tube.
- 17. Place pipette tip #2 in its specified location of the unitized disposable strip.
- 18. Pick up a new pipette tip (tip #3) and withdraw 8-10 µl of release buffer and dispense it over the beads in the lysis tube.
- 19. Wait for 1 minute and then perform 45 mixes.
- 20. Heat the release solution to 85° C. and maintain temperature for 5 minutes.
- 21. Place pipette tip #3 in its specified location of the unitized disposable strip.
- 22. Bring magnet up the tube, capture all the beads against the tube wall and move it up and away from the bottom of the tube.
- 23. Pick up a new pipette tip (tip #4) and withdraw all the release buffer from the lysis tube and then withdraw 3-10 μl of neutralization buffer, mix it in the pipette tip and dispense it in the PCR tube. (In case of two analyte detections, dispense half of the neutralized DNA solution into first PCR tube and the rest of the solution in the second PCR tube.
- 24. Using pipette tip #4, mix the neutralized DNA with the lyophilized reagents by 4-5 suck and dispense operations and withdraw the entire solution in the pipette tip.
- 25. Using pipette tip #4, load 6 μl of the final PCR solution in a lane of the 12-up cartridge.

The usage of pipette heads during various processes is shown schematically in FIGS. **85**A-C. Real-Time PCR

After all the appropriate PCR lanes of the PCR cartridge is loaded with final PCR solution, the tray containing the cartridge moves it in the PCR Analyzer. The Cartridge is pressed by the Optical detection read-head against the PCR heater. Heaters activate valves to close either ends of the PCR reactor and real-time thermocycling process starts. After completing appropriate PCR cycles (~45 cycles), the analyzer make a call whether the sample has the target DNA based on the output fluorescence data.

Pipette Detection

The pipette head has 4 infrared sensors for detecting the presence of pipettes. This is essential to ensure the computer positively knows that a pipette is present or missing. Since

20

pipettes are picked up using mechanical forcing against the pipette and also dispensed using mechanical motion of a stripper plate, pipette sensing helps preventing errors that

81

otherwise may happen.

Force Sensing of the Pipette Head

The multi-pipette head is assembled in such a way and a force sensor interfaced with it so that any time the pipette head seats against the disposable pipette(s) or the picked pipettes are forced through the laminate in the reagent disposable or the pipette is forced against the bottom of the 10 tubes in the reagent disposable, an upward force acts on the pipette head through the pipette holding nozzle or the pipettes itself. The entire head is pivoted, as shown in Figure and any force acting on the head causes a set-screw on the upper part of the head to press against a force sensor. This 15 force sensor is calibrated for vertical displacement of the head against a non-moving surface. Using this calibration, it can be determined when to stop moving the head in the z-direction to detect whether pipettes are properly seated or if pipettes hit tube bottoms.

Alignment of Pipette Tips while Loading PCR Reagents into the Microfluidic Cartridge

The pipettes used in the apparatus can have volumes as small as 10 µl to as large as 1 ml. Larger volume pipettes can tips are sprung from the head, even a 1° misalignment during seating can cause the tip to be off-center by 1.7 mm. As it is impossible to have perfect alignment of the tip both at the top where it is interfaced with the tip holder and the bottom, it becomes necessary to mechanically constrain all the tips at another location closer to the bottom. We have used the stripper plate, having a defined hole structure to use it to align all the tips. The stripper plate hole clears all the 4 pipette tips when they are picked up. After the tips are using a motor to move all the pipettes against the notch provided in the stripper plate (see FIG. 46b). Now all the pipettes land on the cartridge inlet holes with ease. Sample Preparation Extensions

The current technology describes details of processing 40 clinical samples to extract polynucleotides (DNA/RNA). The same product platform can be extended to process samples to extract proteins and other macromolecules by changing the affinity molecules present in the magnetic beads. The amplification-detection platform can also be used 45 to perform other enzymatic reactions, such as immunoPCR, Reverse-transcriptase PCR, TMA, SDA, NASBA, LAMP, LCR, sequencing reactions etc. The sample preparation can also be used to prepare samples for highly multiplexed microarray detections as well.

Example 16: Exemplary Material for RNA-Affinity Matrix

An exemplary polynucleotide capture material preferen- 55 tially retains polynucleotides such as RNA on its surface when placed in contact with a liquid medium that contains polynucleotides mixed with other species such as proteins and peptides that might inhibit subsequent detection or amplification of the polynucleotides.

The exemplary polynucleotide capture material is: Polyamidoamine (PAMAM) Generation 0, available from the Sigma-Aldrich Chemical Company ("Sigma-Aldrich"), product number 412368. PAMAM is a dendrimer whose molecules contain a mixture of primary and tertiary amine 65 groups. PAMAM (Generation 0) has the structure shown herein.

82

The PAMAM, during use, is immobilized on a solid support such as carboxylated beads, or magnetic beads. The polynucleotide capture material comprises polycationic molecules during an operation of polynucleotide capture. Affinity between the material and polynucleotides is high because polynucleotides such as DNA and RNA typically comprise polyanions in solution.

After polynucleotide molecules are captured on a surface of the material, and remaining inhibitors and other compounds in solution have been flushed away with an alkaline buffer solution, such as aqueous 0.1 mM Tris (pH 8.0), the polynucleotides may themselves be released from the surface of the material by, for example, washing the material with a second, more alkaline, buffer, such as Tris having a pH of 9.0.

Exemplary protocols for using PAMAM in nucleic acid testing are found in U.S. patent application Ser. No. 12/172, 214 filed Jul. 11, 2008, incorporated herein by reference.

Example 17: Exemplary Material for DNA-Affinity Matrix

The exemplary polynucleotide capture material is: Polybe as long as 95 mm (p1000 pipette). When 4 long pipette 25 ethyleneimine (PEI), available from the Sigma-Aldrich Chemical Company ("Sigma-Aldrich"), product number

> Exemplary protocols for using PEI in nucleic acid testing are found in U.S. patent application Ser. No. 12/172,208 filed Jul. 11, 2008, incorporated herein by reference.

Example 18: Exemplary Apparatus

Described herein are exemplary specifications for the properly seated, the stripper plate is moved in the x-axis 35 mechanical design of the PCR system. In some embodiments, the system can be about 28.5 inches deep, or less, and about 43 inches wide, or less, and weight about 250 pounds or less. The system can be designed with a useful life of about 5 years (e.g., assuming 16,000 tests per year) and can be designed such that the sound level for this instrument (during operation) does not exceed 50 dB as measured 12 inches from the instrument in all ordinate directions. In some embodiments, the exterior of the system can be white with

> Referring to the overall system, in some embodiments, critical components of the system can remain orthogonal or parallel (as appropriate) to within 0.04 degrees. Exemplary critical components can include motion rails, pipettes, nozzles (e.g., axially as individual nozzles, linearly as an array of four nozzle centroids, or the like), lysis heaters, major edges of the installed cartridge holder in the reader drawer, the front face of the separation magnets, and the like. In the following descriptions, the X-axis (or X direction) refers to the axis extending from left to right when facing the front of the system, the Y-axis (or Y direction) refers to the axis extending from back to front when facing the front of the system, and the Z-axis (or Z direction) refers to the axis extending up from the bottom when facing the front of the system. As viewed from the top of the instrument, the 60 centroid of the leftmost pipette nozzle on the Z-payload (as viewed from the front of the instrument) can be capable of unobstructed travel in the X direction from a point 80 mm from the outermost left baseplate edge to a point 608 mm from the outermost left baseplate edge and can be capable of unobstructed travel in the Y direction from a point 60 mm from the outermost front baseplate edge to a point 410 mm from the outermost front baseplate edge.

83

Still referring to the system, as viewed from the front of the instrument, the bottom-most face of the pipette nozzles on the Z-payload can be capable of unobstructed travel in the Y direction from a point 156 mm above the top surface of the baseplate to a point 256 mm above the top surface of the baseplate. The 1 ml pipette tips can be capable of penetrating the foil covers included on disposable reagent strips. This penetration may not create contamination, affect the associated chemistries, or damage the pipette tips. Motions can be executed in such a manner as to eliminate mechanical 10 hysteresis, as needed. Gantry motions can be optimized to prevent cross lane contamination and carryover. The rack can align the reagent strips to a tolerance of +/-0.010 inches in the X and Y directions.

Referring now to the gantry, in some embodiments, the 15 gantry can consist of a stepper-motor actuated, belt/screwdriven cartesian robotic system. The gantry can be free to move, with or without attachments, above the modules that are forward of the rear facade and below the bottom-most horizontal face on the Z head, so long as the Z-payload is 20 fully retracted. The gantry can be capable of travel speeds up to about 500 mm/sec in the X and Y directions and up to about 100 mm/sec in the Z direction. The accuracy and precision of the axis motions (e.g., with respect to the X, Y, and Z home sensors) can be 25 mm or better for each axis, 25 and can be retained throughout the maintenance period. The axis drive belts may not leave residue in areas where PCR and samples are processed. The gantry can contain provisions for routing its own and all Z-payload wire harnesses back to the instrument. Belt tension on the X and Y axes can 30 be set at 41.5 + /-3.5 pounds.

Referring now to the Z-payload, the fluid head can have 4 pipette attachment nozzles located on 24 mm centers. Exemplary pipette tips that the pipette nozzles can capture without leakage include Biorobotix tips PN23500048 (50 35 μ L), PN23500049 (1.75 μ L), and PN23500046 (1 ml). The Z payload can incorporate a stepper actuated stripper plate capable of removing pipette tips (e.g., the pipette tips described above). The system can include a pump and manifold system that includes software controlled aspira- 40 tion, dispensing, and venting of individual fluid volumes within each of the four individual tips and simultaneous dispensing and venting on all tips. The pump and manifold system can have an accuracy and precision of about +/-2 μL per tip for volumes that are less than 20 µL and about 45 +/-10% for volumes greater than or equal to 20 μ L (e.g., when aspirating or dispensing in individual tips). The total pump stroke volume can be greater than about 8 µL and less than about 1250 μL. The minimum aspirate and dispense speed can be about 10 µL/sec to about 300 µL/sec. The 50 centroid of the bottom-most face of each pipette tip can be axially aligned with the nozzle centroid of the pipette nozzles within 0.2 mm. The bottom-most pipette tip faces can be co-planar within 0.2 mm. The Z-payload can incorporate a Z axis force sensor capable of feedback to software 55 for applied forces of between about 0 and 4 lbs. The Z-payload can incorporate a downward facing barcode reader capable of reading the system barcodes as described elsewhere herein.

Referring now to racks included in the system, disposable 60 reagent strips (e.g., oriented orthogonally to the front of the instrument) can be contained in 2, 12-lane racks. The 12 reagent strips in a given rack can register and lock into the rack upon insertion by a user. The rack can contain an area for 12 sample lysis tubes (e.g., PN 23500043) and hold the 65 tube bottoms co-planar, allowing the user to orient the bar code to face the rear of the instrument. Certain features,

including those listed above, can allow the racks to be inserted and oriented in the instrument by a minimally trained user. Proper rack placement can be confirmed by feedback to the software. In some embodiments, the racks can be black and color fast (e.g., the color may not appreciably degrade with use or washing with a 10% bleach solution) and the rack material can be dimensionally stable within 0.1 mm over the operating temperature range of the system. The rack can be designed with provisions to allow the rack can be carried to and from the instrument and to minimize or eliminate the likelihood that the tubes held by the rack will spill when placed on a flat surface.

Referring now to the reader and PCR heater included in the system, the reader can allow for cartridge insertion and removal by, for example, a minimally trained user. The cartridge can remain seated in the reader during system operation. In some embodiments, the cartridge barcode may not be read properly by the barcode scanner if the cartridge is inserted incorrectly (e.g., upside down or backwards), thus the system can instruct a user to correctly reinsert the cartridge into the reader tray when the cartridge is inserted incorrectly. The reader drawer can repeatably locate the cartridge, for loading by the pipette tips, within 0.5 mm. The reader can deliver the cartridge from the loading position into a react and detect position by means of an automated drawer mechanism under software control. The PCR lanes of the cartridge can be aligned, with both the optical system and heater, by the reader tray and drawer mechanism. The cartridge can contact the heaters evenly with about a 1 psi, or greater, average pressure in the areas of the PCR channels and the wax valves. Heater wire bonds can be protected from damage so as not to interfere with system motion. Registration from heater to cartridge and from cartridge to optical path centers can be within ± -0.010 inches. The reader can mechanically cycle a minimum of about 80,000 motions without failure.

Referring now to the one or more lysis heaters included in the system, the heaters for each of the 24 lysis stations can be individually software controlled. The lysis ramp times (e.g., the time that it takes for the water in a lysis tube to rise from a temperature of approximately 2.5° C. to a given temperature) can be less than 120 seconds for a rise to 50° C. and less than 300 seconds for a rise to 75° C. The lysis temperature (e.g., as measured in the water contained in a lysis tube) can be maintained, by the lysis heaters, within \pm -3° C. of the desired temperature. The accessible lysis temperature range can be from about 40° C. to about 82° C. Each of the lysis heaters may draw about 16 Watts or more of power when in operation. The lysis heater can designed to maximize the thermal transfer to the lysis tube and also accommodate the tolerances of the parts. The lysis heaters can permit the lysis tubes to be in direct contact with the magnets (described in more detail herein). The lysis heaters may be adjustable in the horizontal plane during assembly and may not interfere with the installed covers of the system.

Referring now to magnets included in the system, the lysis and magnet related mechanisms can fit beneath the rack and may not interfere with rack insertion or registration. The magnets may be high-flux magnets (e.g., have about a 1,000 gauss, or greater, flux as measured within a given lysis tube) and be able to move a distance sufficient to achieve magnetic bead separation in one or more of the lysis tubes filled to a volume of 900 μL . The magnets can be software-controllable at movement rates from about 1 mm/sec to about 25 mm/sec. The wiring, included as part of the heater and controller assemblies, can be contained and protected from potential spills (e.g., spills of the lysis tubes). The magnets

can be located about 1.25 inches or greater from the bottom of the lysis tube when not in use and can be retained in such a manner as to maximize contact with the lysis tube while also preventing jamming.

85

In some embodiments, the system enclosure includes a 5 semi-transparent lid (e.g., with opaque fixtures and/or hardware) in the front of the instrument to allow users to view instrument functions. The lid can include a company and/or product logo and a graspable handle (e.g., enabling the user to raise the lid). When closed, the lid can have an opening 10 force no greater than 15 pounds (e.g., when measured tangential to door rotation at the center of the bottom edge of the handle) and can lock in the open (e.g., "up") position such that no more than about 5 lbs. of force (e.g., applied at the handle and tangential to door rotation) is required to 15 overcome the handle lock and return the lid to the closed position. The lid can include two safety lid locks that are normally locked when power is not applied and can allow the system to monitor the state (e.g., open or closed) of the lid. The lid can be designed such the lid does not fall when 20 between the open and closed positions. The enclosure can include a power switch located on the right side of the instrument. A power cord can protrude from the enclosure in such a way that positioning the instrument does not damage the cords or cause accidental disconnection. The enclosure 25 can prevent the user from coming in contact with, for example, moving parts, high magnetic fields, live electrical connections, and the like. The enclosure can include four supporting feet, located on the underside of the enclosure, to provide a clearance of about 0.75 inches or more between 30 the underside of the enclosure and the table top. The enclose can include a recessed area with access to external accessory connections such as the display port, the Ethernet port, the 4 USB ports, and the like.

Referring now to the cooling sub-system included in the PCR system, an air intake can be provided in the front of the unit and an air exhaust can be provided in the rear portion of the top of the unit. Intake air can pass through the air intake and through a filter element (e.g., a removable and washable filter element). The cooling sub-system can maintain an interior air temperature (e.g., the temperature as is measured at the surface of the reagent strips, such as the reagent strips numbered 1, 12, and 24, at the surface of the PCR cartridges, and the like) about 10° C. higher, or less, than the ambient air temperature. The cooling subsystem can maintain the internal air temperature at or below about 32° C. One or more cooling fans included as part of the cooling subsystem may require about 5.7 Watts, or less, of power per fan

In some embodiments, the system can include covers on 50 internal subassemblies (with the exception of the gantry). The covers can be cleanable with a 10% bleach solution applied with a soft cloth without significant degradation. The covers can supply a safety barrier between a user and the electronic and moving mechanical assemblies included in 55 the system. The covers on the internal subassemblies can be designed to maximize cooling of the internal subassemblies by maximizing airflow under the covers and minimizing airflow above the covers. The covers can be removable by a service technician and can match the color and texture of the 60 enclosures.

In some embodiments, the system can be designed to operate within a temperature range of about 15° C. to about 30° C. and in a non-condensing relative humidity range (e.g., about 15% to about 80% relative humidity). The 65 analyzer can be designed to perform without damage after exposure to storage at no less than -20° C. for 24 hours or

86

less, storage at no greater than 60° C. for 24 hours or less, and/or storage at about 50,000 feet or less (e.g., 3.4 inches of Hg) for 24 hours or less. The system can be designed with provisions to prevent motions that could damage the instrument during shipping. It can conform to the shipping standards set forth in ASTM D 4169-05, DC 12 and can be designed to allow the baseplate to be securely mounted to a shipping pallet. The racks and the enclosure of the instrument are designed not to degrade or be damaged by daily cleaning with a 10% bleach solution. The power to subassemblies of the system can be supplied by internal power supplies. Exemplary power supplies can receive, as input, about 1590 watts at about 90 to about 264 Vac at between about 47 and about 63 Hz and supply about 1250 watts of output to the subassemblies.

In some embodiments, the system can include a power switch (e.g., a rocker-type switch), located on the right side of the instrument, one or more interface components, and/or one or more interface ports. For example, the system can include an LCD display monitor that is 15 inches, has 1280×1024 pixel resolution and 16-bit color. The system can also include other display monitors such as ones with increased size, resolution, and/or color depth. The LCD display can be connected to the system via a VGA connection. The system can include a white, 2 button USB mouse, a white USB keyboard, a black SIT power cable, and an un-interruptible power supply, with feedback through USB. The system can also include a USB color printer, 2 USB cables (e.g., one for the printer and one for the UPS). The system can include exemplary interface ports, such as, 4 USB ports (e.g., to connect to a pointing device, printer, keyboard, UPS, LIS), 1 VGA port (e.g., for connection to the LCD display), and 1 Ethernet port (e.g., for PC connectivity) located on the left side of the enclosure. An IEC/EN 60320-11C14 power port can be included n the right side of the

In some embodiments, the system can include features directed at increasing the safety of a user. For example, door interlocks can be included to prevent user access while the gantry is in motion and/or while other non-interruptible processes are underway. The system can be designed to minimize or eliminate the presence of user-accessible dangerous corners and/or edges on the instrument and designed such that metal parts are properly electrically grounded. Sheet metal or plastic covers can be included over mechanical and electrical components as necessary to protect a user from moving parts and/or live electrical parts and to protect the electronics and motors included in the system from, for example, spills.

Example 19: Exemplary Optics

Described herein are exemplary specifications related to the design of optics used in a PCR Analyzer and/or System. Additional information related to the PCR System is described elsewhere herein. The optical detection system included in the PCR System can be a 12-lane two-color detection system for monitoring real-time PCR fluorescence from a 12-lane microfluidic PCR cartridge. The system can include excitation lights (e.g., blue and amber LED light sources), one or more band pass filters, and one or more focusing lenses. The emitted fluorescence light from the PCR reactor (e.g., included in the microfluidic cartridge) is captured through a pathway into a focusing lens, through a filter, and onto a photodiode. Included in the system, for each PCR lane, are dedicated, fixed individual optical elements for each of the two colors interrogated.

87

In some embodiments, the limit of detection is 20 DNA copies per reaction of input PCR reaction mix with a minimum signal to base value of 1.15. The 2 color fluorescence system can be used with, for example, FAM (or equivalent) and Cal Red (or equivalent). The system can 5 have the ability to collect fluorescence data in about 100 ms to about 600 ms at the maximum rate of one data point every about two seconds. When collecting data from a PCR lane, LEDs in adjacent lanes increase the signal in the lane being sampled by less than about 1% (e.g., 0.5%). The noise of the 10 detection can be less than about 1% of the maximum signal. The lane-to-lane fluorescence variability with a fluorescence standard (e.g., part #14000009) can be within Cv of 30% for both FAM and Cal Red, when measured using the darkcurrent-corrected-fluorescence-slope. The average dark cur- 15 rent-corrected-fluorescence-slope for the optical block with 12 lanes can be between about 30 mV to about 90 mV/(% blue LED power) for FAM using the fluorescence standard (Part #14000009). The average dark current-corrected-fluorescence-slope for the optical block with 12 lanes should be 20 between about 75 mV to about 300 mV/(% amber LED power) for Cal Red using the standard fluorescence cartridge (Part #14000009). The average excitation power for each channel can be independently varied by software from about 5% to about 100%. There may be no source of light activated 25 inside the reader to affect the fluorescence reading. In some embodiments, turning room lights on or off does not affect the optical readings.

In some embodiments, the system can include an optical block with 12 repeats of 2-color fluorescence detection units at a pitch of about 8 mm. The optical detection block can be positioned on top of the microfluidic cartridge, with excitation and emission travelling through the PCR windows of the microfluidic cartridge. The apertures of the optical block can align with the PCR reactor within about +/-200 microns. 35 An optical electronics board containing the LEDs and Photodetectors can be mated flush with the top of the optics block with each of the photodetectors recessed into the bores of its corresponding optical lane. When the microfluidic cartridge is installed in the system, the optical block can be used to deliver a force of about 20 to about 30 lbs. over the active area of the microfluidic cartridge with an average pressure of at least about 1 psi.

The optical block can be made of aluminum and surfaces present in the optical path lengths can be anodized black, for 45 example, to minimize auto-fluorescence as well as light scattering. An aperture plate having 12 slits, each slit about 10 mm in length and 1 mm wide, can be used, for example, to limit the size of the excitation light spots as well as reduce background fluorescence. The thickness of the optics block can be about 1.135+/-0.005 inches. The bottom surface of the optics block can be planar within +/-1 mil to provide uniform pressure over the micro fluidic cartridge. The apertures should be kept clean and free of debris during manufacturing of the optics block and assembly of the optics 55 block into the system.

In some embodiments, the system can include excitation optics with an angle of excitation path equal to 55+/-0.5 inches with respect to normal of the PCR cartridge surface. One exemplary arrangement of optical elements in the 60 excitation path, in order, is LED, lens, filter, aperture, and PCR sample. The system can use a Piano-convex excitation lens (e.g., PCX, 6×9, MgF2TS) oriented with the flat side toward the PCR sample. Included in the optics are one or more excitation paths with tapers that can be designed such 65 that the lens and filter can be placed inside the bore to provide a light spot bigger than the aperture plate. The

88

location of the LED and the sample can be fixed as the design can include a fixed available optical block thickness. The location of the lens and the filter can be determined to provide a excitation spot size of about 6 mm along the length of a PCR lane. The excitation optics can include an LED such as Luxeon Part # LXK2-PB 14-NO0 (e.g., for FAM excitation) that includes a center wavelength of about 470 nm (blue) with a half band width of about 75 nanometers, or less (e.g., for FAM excitation). The excitation optics can also include an LED such as Luxeon Part # LXK2-PL12-Q00 (e.g., for Cal Red excitation) that includes a center wavelength of 575 nm (amber) with a half band width of about 75 nanometers, or less (e.g., for Cal Red excitation). The LEDs used in the excitation optics can remain stable for about 5 years or more or about 10,000 cycles.

The system can include emission optics with an angle of emission path equal to about 15+/-0.5 inches with respect to normal of the PCR cartridge surface. One exemplary arrangement of optical elements in the emission path, in order, is PCR sample, aperture, filter, lens, and photodetector. The emission lens can be plano-convex (e.g., PCX, 6×6 MgF2TS) with the flat side toward the photodetectors. The emission optics can include one or more bores, for the emission path, with tapers that can be designed so as to maximize detected light while enabling snug placement of the filters and lenses. The location of the photodetectors with respect to the sample can be fixed as the design can include a fixed available optical block thickness. The location of the lens and the filter can be determined so as to provide an emission spot size of 6 mm along the length of a PCR lane. An exemplary photodetector that can be used in the emission optics is the Hamamatsu Silicon Photodetector with Lens, S2386-18L.

In some embodiments, the system can include one or more filters with diameters of about 6.0+/-0.1 mm, thicknesses of about 6.0+/-0.1 mm, clear apertures with diameters of less than or equal to about 4 mm. The filters can include a blackened edge treatment performed prior to placement in a mounting ring. If present, the mounting ring can be metal and anodized black. The filters can be manufactured from optical glass with a surface quality that complies with F/F per Mil-C-48497A, an AOI of about 0 deg, a ½ cone AOI of about +8 deg, and can be humidity and temperature stable within the recommend operating range of the system. An exemplary filter can be obtained from Omega Optical Brattleboro, Vt. 05301.

The system can include one or more FITC Exciter Filters (e.g., PN 14000001) with an Omega part number 481 AF30-RED-EXC (e.g., drawing #2006662) used, for example, in FAM excitation. These filters can have a cut-on wavelength of about 466+/-4 nm and a cut-off wavelength of about 496+0/-4 nm. The transmission of filters of this type can be greater than or equal to about 65% of peak. These filters can have a blocking efficiency of greater than or equal to OD4 for wavelengths of ultraviolet to about 439 nm, of greater than or equal to OD4 for wavelengths of about 651 nm to about 1000 nm, of greater than or equal to OD5 for wavelengths of about 501 nm to about 650 nm, and of greater than or equal to OD8, in theory, for wavelengths of about 503 nm to about 580 nm.

The system can include one or more Amber Exciter Filters (e.g., PN 14000002) with a part number 582AF25-RED-EXC (e.g., drawing #2006664) used, for example, in Cal Red excitation. These filters can have a cut-on wavelength of about 569+/-5 nm and a cut-off wavelength of about 594+0/-5 nm. The transmission of filters of this type can be greater than or equal to about 70% of peak. These filters can

89 have a blocking efficiency of greater than or equal to OD8, in theory, for wavelengths of about 600 nm to about 700 nm.

The system can include one or more FITC Emitter Filters (e.g., PN 14000005) with a part number 534AF40-RED-EM (e.g., drawing #2006663) used, for example, in FAM emission. These filters can have a cut-on wavelength of 514+/-2 nm and a cut-off wavelength of 554+/-5 nm. The transmission of filters of this type can be greater than or equal to about 70% of peak. These filters can have a blocking efficiency of greater than or equal to OD5 for wavelengths from ultraviolet to about 507 nm, of greater than or equal to OD8, in theory, from about 400 nm to about 504 nm, and of greater than or equal to OD4 avg. from about 593 nm to about 765 nm.

The system can include one or more Amber Emitter 15 Filters (e.g., PN 14000006) with a part number 627AF30-RED-EM (e.g., drawing #2006665) used, for example, in Cal Red emission. These filters can have a cut-on wavelength of 612+5/-0 nm and a cut-off wavelength of 642+/-5 nm. The transmission of filters of this type can be greater than or equal to about 70% of peak. These filters can have a blocking efficiency of greater than or equal to OD5 for wavelengths from ultraviolet to about 605 nm, of greater than or equal to OD8, in theory, from about 550 nm to about 600 nm, and of greater than or equal to OD5 avg. from about 25 667 nm to about 900 nm.

Example 20: Exemplary 3-Layer Cartridge

Described herein are exemplary specifications used to 30 design and assemble the microfluidic cartridge as well as exemplary instructions on the use of the cartridge in, for example, the system described herein. In some embodiments, the cartridge can have a maximum limit of detection equal to 20 copies per reaction volume (e.g., 20 copies/4µ), 35 with a target detection of 10 copies per reaction volume. The cartridge can perform 45 reaction cycles in 40 minutes or less (e.g., 45 cycles in 40 minutes, 45 cycles in 20 minutes, 45 cycles in 15 minutes, or the like). The cartridge can utilize two color detection using, for example, the FAM (or equivalent) and CAL. RED (or equivalent) fluorescent dyes. Results obtained using the cartridge have been compared with the results obtained using standard real-time PCR instruments.

In some embodiments, the Cartridge can be a one-time 45 use, disposable cartridge that can be disposed of according to typical laboratory procedures. The cartridge can be 4.375 inches long and 2.800 inches wide, with a thickness of 0.094+/-0.005 inches. The cartridge can include features that allow the cartridge to interface with, for example, the 50 system described herein. Exemplary interfacing features include PCR channel walls and the top of the microsubstrate over the PCR channel that are well polished (SPI A1/A2/A3), enabling easy transfer of excitation and emission light between the PCR reactor (e.g., contained in the 55 cartridge) and the detection system (e.g., the analyzer). The cartridge can include a thermal interface, located on the bottom of the cartridge, for interfacing with the analyzer. The thermal interface can have a thin laminate (e.g., less than 150 microns thick, 100 microns thick, or the like) to 60 encourage heat transfer from the heater wafer to, for example, the PCR channels of the cartridge.

The cartridge can include one or more mechanical interfaces with, for example, the analyzer. For example, the cartridge can have a notch in one or more of the corners that 65 can male with a corresponding shape on the heater module of the analyzer. The notch and corresponding shape can

90

enable the cartridge to be placed only one way in the tray of, for example, the system described herein. In some embodiments, the cartridge has a single notch in one of the corners, with the remaining three corners having a minimum radius of 1 mm to facilitate placement of the cartridge in the analyzer. During use (e.g., when placed in a system described herein and performing a function such as PCR), the cartridge can be pressed, on one side, by the optics block, against the heater wafer (positioned against the opposite side), with a pressure of about 1 psi or greater (e.g., 0.99 psi, 1.2 psi, or the like). When located in the tray of the analyzer, the cartridge can have an alignment slop of +/-200 microns to enable a user to easily place and remove the cartridge from the analyzer tray. The cartridge can have two ledges, that are each 1 mm wide and located along the two long edges of the cartridge, to enable the heating surface to extend below the datum of the tray.

In some embodiments, the cartridge can have the following functional specifications. The cartridge can include an inlet hole that is, for example, cone-shaped with a height of 1 mm from the top surface of the cartridge. The cone can have an inner diameter of 3 mm at the top of the cone and can taper down to a diameter that matches the width of a microchannel (e.g., an inlet channel) that the inlet cone is fluidly connected to. The inlet channel can fluidly connect the inlet hole to a PCR reactor that has an interior volume of, for example, about 4.25 μ l to 4.75 μ l (e.g., 4.22 μ l, 4.5 μ l, 4.75 μ l, or the like). An outlet microfluidic channel can fluidly connect the PCR reactor to an overflow chamber. The cartridge can also include an outlet vent hole.

The input PCR sample (e.g., a reaction mixture) can be between about 6.0 and 7.0 μ l per PCR lane (e.g., 5.9 μ l per lane, 6.4 μ l per lane, 7.1 μ l per lane, or the like) and can be introduced into the cartridge through the inlet hole by, for example, a pipette. The reaction mixture can be transported, via the inlet channel, to the PCR reactor where the reaction mixture can be isolated (e.g., sealed off by valves) to prevent evaporation or movement of the reaction mixture during thermocycling. Once the mixture is sealed inside the chamber, the analyzer can initiate multiplexed real-time PCR on some or all of the reaction mixture (e.g., 4.5 μ l, an amount of fluid equal to the inner volume of the reaction chamber, or the like).

The microfluidic substrate of the cartridge can include one or more of the following specifications. The material of the microsubstrate can be optically clear (e.g., have about 90% or greater optical transmission, be 3 mm thick, comply with ASTMD1003, and the like), have auto-fluorescence that is less than that emitted by 2 mm thick ZEONOR 1420R, and have a refractive index of about 1.53 (ASTM D542). The material of the microsubstrate can be amenable to the injection molding of features required for the microfluidic network of the cartridge. The material is preferably compatible with all PCR agents and can withstand temperatures of up to about 130° C. for about 5 minutes or more without yielding or melting. The cartridge can include fiducials, recognizable by HandyLab manufacturing equipment, located in one or more (preferably two) of the corners of the substrate. The cartridge can include fluidic components (e.g., microchannels, valves, end vents, reagent inlet holes, reaction chambers, and the like) necessary to perform the functions of the cartridge (e.g., PCR).

Additional features of the substrate material can include one or more of the following. Minimum clearances of about 1 mm can be designed between functional features to ensure sealing success (e.g., to the analyzer), and to allow simplified fixturing during assembly. The cartridge can include

dogbones under small fluid path ends to, for example, increase mold life. The bottom of the micro tool surface can be roughened (e.g., by vapor hone, EDM, or the like). The

substrate material can be capable of adhesion by a label.

91

In some embodiments, the sealing tape used in the cartridge can include one or more of the following specifications. Laminate can be easily applied to the bottom of the microfluidic substrate. Material of the laminate is preferably pin-hole free. The material and adhesive is preferably compatible with the PCR reaction chemistries. The laminate 10 material and glue used should not auto-fluoresce. The material can withstand up to 130° C. for 5 minutes without losing adhesion, yielding, melting, or causing undue stresses on the cartridge. Bubbles should not form in the adhesive layer upon heating (e.g., to 130° C. for 5 minutes) after application 15 to the microsubstrate. The laminate should be less than 5 mils thick to, for example, enable rapid heat transfer.

The high temperature wax included in the cartridge can have the following characteristics. The wax should have a melt point of about 90+/-3° C. (e.g., 87° C., 90° C., 93.1° 20 C., or the like), be biocompatible with PCR reactions, have wettability with microsubstrate material, and have a melt viscosity range, for example, of about Viscosity at 100° C.=20 mm²/s and Hardness at 25° C.=8 dmm. The main label of the cartridge can have the following characteristics. 25 It can have a thickness of 2-4 mils, have suitable bondability to micro features and seal around the valves, include cuts for one or more PCR windows, and a tab (free from adhesive) for aiding in removal of the cartridge from the analyzer. The main label can also have abrasion resistance on the top 30 surface, and be printable. The main label can have an upper and lower alignment pattern for the label to completely cover the valve holes for proper operation of the valves.

The cartridge can include a barcode label applied to the top of the cartridge that is readable by a barcode reader (e.g., 35 the barcode reader included in the analyzer) while the cartridge is installed in the analyzer. The barcode label can include the product name, lot #, expiration date, bar code (2D) and may be printed on. In addition, or in the alternative, a barcode may be applied directly to the main cartridge label 40 using a laser or inkjet type printer.

The packaging that the cartridge is included in can include one or more of the following: package label, carton, carton label, and/or operating instructions. The packaging can be printed on or label attachable, placed inside of a plastic bag, 45 shrink/stretch wrap bag, or the like, and can be slacked in groups of 24. The cartridge bagging without a critical seal should be kept free from dust contamination.

The cartridge can include one or more valves (e.g., temperature controlled, wax-containing valves) for starting, stopping, and/or controlling the flow of material inside the cartridge. The wax contained in the valves can be free of trapped air bubbles that have a diameter greater than half the width of the valve channel. The valve channel can have an air pocket. The wax may not intrude into the fluid path prior to activation. The wax can be filled to the start of the flare to the fluid path.

a part number (e.g., 55000009), a part name (12× Cartridgenovented), a lot number (e.g., LOT 123456), an expiration date (e.g., June 2015), space for writing, a barcode according to barcode specifications (described elsewhere), and/or "Handylab, Inc., Ann Arbor, Mich. 48108 USA".

The cartridge can be include in a carton that can contain information such as, a part number (e.g., 55000009), a part name (12× Cartridgenovented), a lot number (e.g., LOT 123456), an expiration date (e.g., June 2015), space for writing, a barcode according to barcode specifications (described elsewhere), and/or "Handylab, Inc., Ann Arbor, Mich. 48108 USA".

The cartridge-nonvented), a part name (12× Cartridge-nonvented), a part name (12× Cartridge-nonvented), a lot number (e.g., LOT 123456), an expiration date (e.g., June 2015), space for writing, a barcode according to barcode specifications (described elsewhere), and/or "Handylab, Inc., Ann Arbor, Mich. 48108 USA".

The cartridge-nonvented), a lot number (e.g., LOT 123456), an expiration date (e.g., LOT 123456), an expiration date (e.g., LOT 123456), an expiration date (e.g., LOT 123456), an expiration date (e.g., LOT 123456), an expiration date (e.g., LOT 123456), an expiration date (e.g., LOT 123456), an expiration date (e.g., LOT 123456), an expiration date (e.g., LOT 123456), an expiration date (e.g., LOT 123456), an expiration date (e.g., LOT 123456).

The cartridge can include micro channels and holes such that the holes are of a size and shape to enable easy, leak-free interfacing with a 175 μ l pipette tip. In some examples, the 60 holes size is between about 200 μ m and about 4000 μ m in diameter. The microchannels can be between about 50 μ m and about 1500 μ m wide and between about 50 μ m and 1000 μ m high.

The cartridge can include valves for controlling the flow 65 of fluid within the cartridge (e.g., through the microchannels, reactor chambers, and the like). The valve edges, steps,

92

and general geometry can be designed to encourage exact flow and/or stoppage required during wax load. The valve geometry can be designed to accommodate limitations of wax dispensing equipment (e.g., =/-25% of 75 nL volume). In some embodiments, step down air chambers on the valves are funnel shaped to aid wax loading and the remaining geometry diminishes from the bottom of the funnel to the end point where the wax stops. The path where the valves are to flow into and block, during use, can be narrow enough (e.g., 150-200 microns wide and deep) and have enough length to effectively seal when the valves are activated during use. The valve wax temperature can be about 90° C. When in use to block a portion of a microchannel, the valves can seal to prevent evaporation of fluid and/or physical migration of fluid from the PCR reactor during thermocycling.

The cartridge can include one or more PCR regions for performing PCR on a sample. The channel in the PCR region (e.g., PCR reactor) can be designed such that the temperature of the contents of the channel remain uniformly within about 1° C. of the anneal temperature. The channel walls can have a polish of SPI A1/A2/A3.

In some embodiments, the cartridge is designed to be able to perform diagnostic tests within a temperature range of about 59° F. to about 86° F. (about 15° C. to about 30° C.) and a humidity range of about 15% relative humidity to about 80% relative humidity. The cartridge is designed to be safe and functional when used indoors, used at an altitude of 2000 m or less, and used under non-condensing humidity conditions (e.g., maximum relative humidity of 80% for temperatures up to 31° C. decreasing linearly to 50% relative humidity at 40° C.).

In use, PCR product produced in the cartridge can remain in the used cartridge to, for example, minimize the likelihood of cross contamination. The cartridge can be designed such that a 4 foot drop of the cartridge, while in its packaging, will not damage the cartridge. The cartridge is designed to perform without damage after exposure to the following conditions. The cartridge should be stored at 4° C. to 40° C. for the rated shelf life. Exposure to temperatures between –20° C. and 4° C. or 40° C. and 60° C. should occur for no longer than 24 hours. The cartridge can withstand air pressure changes typical of air transport.

The cartridge can be labeled with the following information (e.g., to identify the cartridge, comply with regulations, and the like). The label can contain a "Research Use Only" label, if applicable, and a CE mark, if applicable. The label can contain the company name and logo (e.g., Handylab®), a part number (e.g., 55000009), a part name (12× Cartridgenonvented), a lot number (e.g., LOT 123456), an expiration date (e.g., June 2015), space for writing, a barcode according to barcode specifications (described elsewhere), and/or "Handylab, Inc., Ann Arbor, Mich. 48108 USA".

The cartridge can be include in a carton that can contain information such as, a part number (e.g., 55000009), a part name (12× Cartridge-nonvented), a quantity (e.g., 24), a lot number (e.g., LOT 123456), an expiration date (e.g., June 2015), an optional UPC code, "Manufactured by Handylab, Inc. Ann Arbor, Mich. 48108 USA", a carton label to state storage limits, a CE mark (if applicable), and/or an AR name and address.

The cartridge packaging can include paper wrap to secure multiple cartridges together and clean package fill to prevent damage, for example, from vibration. The cartridge shipping carton can include features such as, compliance to ASTM 6159, carton may be stored in any direction, refrigeration or fragile labeling of the carton may not be required, and

93

additional cold packs may not be required. The shelf life of the cartridge is 12 months or more.

The cartridge can comply with IEC 61010 (NRTL tested) and an FDA listing may be required for clinical distribution. Cartridges used in a clinical lab device may meet all quality system requirements. Cartridges used for research only in a commercial device may meet all HandyLab quality system requirements. Cartridges for research use only (Alpha or Beta testing) may be design/manufacturing traceable to a DHR (manufacturing record).

The foregoing description is intended to illustrate various aspects of the present inventions. It is not intended that the examples presented herein limit the scope of the present inventions. The technology now being fully described, it will be apparent to one of ordinary skill in the art that many 15 is configured to control motion of the liquid dispenser. changes and modifications can be made thereto without departing from the spirit or scope of the appended claims.

What is claimed is:

- 1. A system for processing a plurality of nucleic acidcontaining samples, the system comprising:
 - a first module configured to extract nucleic acids from the plurality of nucleic acid-containing samples, the first module comprising:
 - a plurality of sample tubes in the first module, each containing sample of the plurality of nucleic-acid containing samples,
 - a plurality of process chambers in the first module, wherein a process chamber of the plurality of process chambers is spatially separate from, and corresponds 30 to, a sample tube of the plurality of sample tubes, the plurality of process chambers maintained at a same height relative to one another in the first module,
 - a waste chamber in the first module, the waste chamber corresponding to a process chamber of the plurality 35 of process chambers in the first module,
 - a magnetic separator configured to apply a magnetic force to at least one process chamber of the plurality of process chambers in the first module;
 - a heater assembly configured to heat at least one 40 process chamber of the plurality of process chambers in the first module;
 - a second module configured to receive nucleic acids extracted from the plurality of nucleic acid-containing samples, the second module comprising:
 - a plurality of receptacles comprising PCR reagents, wherein a receptacle of the plurality of receptacles is configured to receive nucleic acid extracted from a sample of the plurality of nucleic acid-containing samples; and
 - a liquid dispenser configured to dispense or withdraw liquid from the plurality of sample tubes and dispense or withdraw liquid from the plurality of receptacles comprising PCR reagents.
- 2. The system of claim 1, wherein the liquid dispenser 55 nucleic acid-containing samples is twelve. comprises one or more dispense heads configured to accept
- 3. The system of claim 2, wherein the liquid dispenser comprises four dispense heads and the plurality of process chambers comprises twelve process chambers, each dis- 60 pense head configured to dispense a plurality of magnetic binding particles and at least a portion of a sample of the plurality of nucleic acid-containing samples into one of the twelve process chambers in the first module.
- 4. The system of claim 1, further comprising a sample 65 identification verifier configured to check an identity of each sample of the plurality of nucleic acid-containing samples,

94

wherein the sample identification verifier is selected from the group consisting of an optical character reader, a bar code reader, and a radio frequency tag reader.

- 5. The system of claim 1, further comprising electronic circuitry configured to control operation of the magnetic separator, the heater assembly, and the liquid dispenser.
- 6. The system of claim 5, wherein the electronic circuitry is configured to cause the magnetic separator to apply a magnetic force to the plurality of process chambers in the 10 first module.
 - 7. The system of claim 5, wherein the electronic circuitry is configured to cause the heater assembly to apply heat to the plurality of process chamber in the first module.
 - **8**. The system of claim **5**, wherein the electronic circuitry
- 9. The system of claim 1, further comprising one or more processors and at least one input device coupled to the one or more processors, the at least one input device selected from the group consisting of: a keyboard, a touch-sensitive 20 surface configured to accept input from a stylus or a user's finger, a microphone, a track-pad, a retinal scanner, a fingerprint reader, a holographically projected interface, and a
- 10. The system of claim 9, further comprising a commusample tube configured to accept a nucleic acid- 25 nication interface coupled to the one or more processors, the communication interface being selected from the group consisting of: a serial connection, a parallel connection, a wireless network connection, a wired network connection, and one or more USB ports.
 - 11. The system of claim 10, further comprising a data storage medium configured to receive data from the one or more processors, the at least one input device, and the communication interface, the storage medium being selected from the group consisting of: a hard disk drive, an optical disk drive, a flash-card, a USB-drive, and a CD-Rom.
 - 12. The system of claim 11, further comprising at least one output device coupled to the one or more processors, the at least one output device being selected from a visual display, a printer, a holographic projection, and a speaker.
 - 13. The system of claim 1, wherein the PCR reagents comprise a first lyophilized PCR reagent suitable for detecting a first analyte and a second lyophilized PCR reagent suitable for detecting a second analyte.
 - 14. The system of claim 1, wherein the second module has more than one area for receiving nucleic acids extracted from the plurality of nucleic acid-containing samples.
 - 15. The system of claim 14, wherein the one or more areas are cooled independently of one another.
 - 16. The system of claim 1, further comprising a second plurality of process chambers in the first module.
 - 17. The system of claim 1, further configured to simultaneously amplify the nucleic acid extracted from the plurality of nucleic acid-containing samples.
 - 18. The system of claim 17, wherein the number of
 - 19. The system of claim 17, further comprising an optical detection system configured to independently detect a plurality of fluorescent dyes at a plurality of different locations, wherein each fluorescent dye binds to a fluorescent polynucleotide probe or a fragment thereof.
 - 20. The system of claim 19, wherein the optical detection system selectively emits light in an absorption band of the plurality of fluorescent dyes and selectively detects light in an emission band of the plurality of fluorescent dyes.
 - 21. The system of claim 19, configured to carry out extraction, amplification, and detection of the plurality of nucleic acid-containing samples in less than an hour.

95

- 22. The system of claim 1, further comprising a heater substrate comprising at least one heat source configured to apply heat at one or more selected times in order to apply thermocycling operations sufficient to amplify the nucleic acid extracted from the plurality of nucleic acid-containing 5 samples.
- 23. The system of claim 22, wherein the at least one heat source is configured to maintain a negligible temperature gradient across a reaction zone during the thermocycling operations, the reaction zone configured to receive the 10 nucleic acid extracted from one of the plurality of nucleic acid-containing samples.
- 24. The system of claim 23, wherein the at least one heat source is configured to maintain a negligible temperature gradient across each of a plurality of reaction zones during 15 the thermocycling operations, each reaction zone configured to receive the nucleic acid extracted from one of the plurality of nucleic acid-containing samples.

* * * * *

96