

1548
PATENT#17

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Houtzager et al.

Serial No.: 09/882,621

Filed: June 15, 2001

For: CHIMAERIC PHAGES

Confirmation No.: 8472

Examiner: M. Hill

Group Art Unit: 1648

Attorney Docket No.: 2578-4957US

NOTICE OF EXPRESS MAILING

Express Mail Mailing Label Number: EV325784625US

Date of Deposit with USPS: September 15, 2003

Person making Deposit: Chris Haughton

SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

In compliance with the duty to disclose information material to patentability pursuant to 37 C.F.R. § 1.56, it is respectfully requested that this Supplemental Information Disclosure Statement be entered and the documents listed on attached Form PTO-1449 or PTO/SB/08 be considered by the Examiner and made of record. Copies of the listed documents are enclosed pursuant to 37 C.F.R. § 1.98(a).

In accordance with 37 C.F.R. § 1.97(g) and (h), filing of this Supplemental Information Disclosure Statement is not to be construed as a representation that a search has been made or an admission that the information cited herein is, or is considered to be, material to patentability as defined in 37 C.F.R. § 1.56(b). Further, no representation is made by Applicants herein that no other possible material information as defined in 37 C.F.R. § 1.56 (b) exists.

09/17/2003 SFELEKE1 00000076 09882621

01 FC:1806

180.00 DP

Foreign Patent Documents

<u>Document No.</u> EP 1 266 963 A1	Publication Date 12-18-2002	<u>Patentee</u> Crucell Holland B.V.

Other Documents

BALINT et al., Antibody engineering by parsimonious mutagenesis, Gene, 1993, pp. 109-18, Vol. 137.

BARBAS III et al., In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity, Proc. Natl. Acad. Sci., April 1994, pp. 3809-13, Vol. 91, USA.

BASS et al., Hormone Phage: An Enrichment Method for Variant Proteins With Altered Binding Properties, Proteins: Structure, Function, and Genetics, 1990, pp. 309-14, Vol. 8.

BEEKWILDER et al., A phagemid vector using the E. coli phage shock promoter facilitates phage display of toxic proteins, Gene, 1999, pp. 23-31, Vol. 228.

BEREK et al., Mutation Drift and Repertoire Shift in the Maturation of the Immune Response, Immunological Reviews, 1987, pp. 23-41, No. 96.

BURTON et al., Human Antibodies from Combinatorial Libraries, Advances in Immunology, pp. 191-280, Vol. 57.

CHATELLIER et al., Interdomain interactions within the gene 3 protein of filamentous phage, FEBS Letters, 1999, pp. 371-74, Vol. 463.

CRISSMAN et al., Gene-III Protein of Filamentous Phages: Evidence for a Carboxyl-Terminal Domain with a Role in Morphogenesis, Virology, 1984, pp. 445-55, Vol. 132.

CWIRLA et al., Peptides on phage: A vast library of peptides for identifying ligands, Proc. Natl. Acad. Sci., August 1990, pp. 6378-82, Vol. 87.

DE KRUIF et al., Selection and Application of Human Single Chain Fv Antibody Fragments from a Semi-synthetic Phage Antibody Display Library with Designed CDR3 Regions, J. Mol. Biol., 1995, pp. 97-105, Vol. 248.

DE KRUIF et al., Rapid selection of cell subpopulation-specific human monoclonal antibodies from a synthetic phage antibody library, Proc. Natl. Acad. Sci., April 1995, pp. 3938-42, Vol. 92, USA.

DENG et al., Interaction of the Globular Domains of pIII Protein of Filamentous Bacteriophage fd with the F-Pilus of Escherichia coli, Virology, 1999, pp. 271-77, Vol. 253.

DEVLIN et al., Random Peptide Libraries: A Source of Specific Protein Binding Molecules, Science, July 27, 1990, pp. 404-06, Vol. 249.

DUENAS et al., Clonal Selection and Amplification of Phage Displayed Antibodies by Linking Antigen Recognition and Phage Replication, Bio/Technology, October 1994, pp. 999-1002, Vol. 12.

DUENAS et al., Novel helper phage design: intergenic region affects the assembly of bacteriophages and the size of antibody libraries, FEMS Microbiology Letters, 1995, pp. 317-22, Vol. 125.

FELICI et al., Mimicking of discontinuous epitopes by phage-displayed peptides, II. Selection of clones recognized by a protective monoclonal antibody against the Bordetella pertussis toxin from phage peptide libraries, Gene, 1993, pp. 21-27, Vol. 128.

HAWKINS et al., Selection of Phage Antibodies by Binding Affinity, Mimicking Affinity Maturation, J. Mol. Biol., 1992, pp. 889-96, Vol. 226.

HOLLIGER et al., A conserved infection pathway for filamentous bacteriophages is suggested by the structure of the membrane penetration domain of the minor coat protein g3p from phage fd, Structure, 1997, pp. 265-75, Vol. 5, No. 2.

HOOGENBOOM et al., Designing and optimizing library selection strategies for generating high-affinity antibodies, TIB Tech, February 1997, pp. 62-70, Vol. 15.

KREBBER et al., Co-selection of cognate antibody--antigen pairs by selectively-infective phages, FEBS Letters, 1995, pp. 227-31, Vol. 377.

KREBBER et al., Selectively-infective Phage (SIP): A Mechanistic Dissection of a Novel in vivo Selection for Protein-ligand Interactions, J. Mol. Biol. 1997, pp. 607-18, Vol. 268.

KRISTENSEN et al., Proteolytic selection for protein folding using filamentous bacteriophages, Folding & Design, pp. 321-28, Vol. 3, No. 5.

LOW et al., Mimicking Somatic Hypermutation: Affinity Maturation of Antibodies Displayed on Bacteriophage Using a Bacterial Mutator Strain, J. Mol. Biol., 1996, pp. 359-68, Vol. 260.

LUBKOWSKI et al., The structural basis of phage display elucidated by the crystal structure of the N-terminal domains of g3p, Nature Structural Biology, February 1998, pp. 140-47, Vol. 5, No. 2.

LUBKOWSKI et al., Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA, Structure, 1999, pp. 711-22, Vol. 7, No. 6.

LUZZAGO et al., Mimicking of discontinuous epitopes by phage-displayed peptides, I. Epitope mapping of human H ferritin using a phage library of constrained peptides, Gene, 1993, pp. 51-57, Vol. 128.

LOPEZ et al., Morphogenesis of Filamentous Bacteriophage f1: Orientation of Extrusion and Production of Polyphage, Virology, 1983, pp. 177-93, Vol. 127.

MODEL et al., The Escherichia coli phage-shock-protein (psp) operon, Molecular Microbiology, 1997, pp. 255-61, Vol. 24, No. 2.

NELSON et al., Filamentous Phage DNA Cloning Vectors: A Noninfective Mutant with a Nonpolar Deletion in Gene III, Virology, 1981, pp. 338-50, Vol. 108.

NILSSON et al., The Phage Infection Process: a Functional Role for the Distal Linker Region of Bacteriophage Protein 3, Journal of Virology, May 2000, pp. 4229-35, Vol. 74.

PRATT et al., Conditional Lethal Mutants of the Small Filamentous Coliphage M13. II. Two Genes for Coat Proteins, Virology, 1969, pp. 42-53, Vol. 39.

RAKONJAC et al., Filamentous phage infection-mediated gene expression: construction and propagation of the gIII delection mutant helper phage R408d3, Gene, 1997, pp. 99-103, Vol. 198.

RAKONJAC et al., Roles of pIII in Filamentous Phage Assembly, J. Mol. Biol. 1998, pp. 25-41, Vol. 282.

RIECHMANN et al., The C-Terminal Domain of TolA Is the Coreceptor of Filamentous Phage Infection of E. coli, Cell, July 25, 1997, pp. 351-60, Vol. 90.

RONDOT et al., A helper phage to improve single-chain antibody presentation in phage display, Nature Biotech, pp. 75-78, Vol. 19.

RUSSEL et al., Genetic Analysis of the Filamentous Bacteriophage Packaging Signal and of the Proteins That Interact with It, Journal of Virology, Aug. 1989, pp. 3284-95, Vol. 63, No. 8.

SMITH, Filamentous Fusion Phage: Novel Expression Vectors That Display Cloned Antigens on the Virion Surface, Science, June 14, 1985, pp. 1315-17, Vol. 228.

SPADA et al., Selectively Infective Phages (SIP), Biol. Chem., June 1997, pp. 445-56, Vol. 378.

VAUGHAN et al., Human antibodies by design, Nature Biotechnology, June 1998, pp. 535-39, Vol. 16.

WINTER et al., Man-made antibodies, Nature, January 24, 1991, pp. 293-99, Vol. 349.

YANG et al., CDR Walking Mutagenesis for the Affinity Maturation of a Potent Human Anti-HIV-1 Antibody into the Picomolar Range, J. Mol. Biol., 1995, pp. 392-403.

PCT International Search Report, PCT/NL02/00391, dated November 25, 2002, 3 pages.

In compliance with the duty to disclose information material to patentability pursuant to 37 C.F.R. § 1.56, Applicants hereby identify the following listed copending applications naming common inventors:

Attorney Docket No.:

Serial No.:

2578-5016US 09/909,244

Filing Date:

7/19/2001

Title:

A SELECTIVELY-EXPRESSED EPITOPE ON THE HUMAN

CD38 MOLECULE DETECTED BY A PHAGE DISPLAY

LIBRARY-DERIVED HUMAN SCFV ANTIBODY FRAGMENT

Attorney Docket No.:

2578-4514.1US

Serial No.:

09/940,386

Filing Date:

8/27/2001

Title:

DIFFERENTIALLY EXPRESSED EPITOPES AND USES

THEREOF

Attorney Docket No.:

2183-5208US

Serial No.:

10/016,516

Filing Date:

12/10/2001

Title:

A STRUCTURE FOR PRESENTING DESIRED PEPTIDE

SEQUENCES

Attorney Docket No.:

2578-5420US 10/184,508

Serial No.: Filing Date:

6/27/2002

Title:

USE OF A NATIVE EPITOPE FOR SELECTING EVOLVED

BINDING MEMBERS FROM A LIBRARY OF MUTANTS OF A

PROTEIN CAPABLE OF BINDING TO SAID EPITOPE

Attorney Docket No.:

2578-5420.1US

Serial No.:

10/186,186

Filing Date:

6/28/2002

Title:

USE OF A NATIVE EPITOPE FOR SELECTING EVOLVED

BINDING MEMBERS FROM A LIBRARY OF MUTANTS OF A

PROTEIN CAPABLE OF BINDING TO SAID EPITOPE

Attorney Docket No.:

2183-5610US

Serial No.:

10/316,194

Filing Date:

12/10/2002

Title:

A STRUCTURE FOR PRESENTING DESIRED PEPTIDE

SEQUENCES

Attorney Docket No.:

2578-5808US

Serial No.:

10/382,361

Filing Date:

3/5/2003

Title:

HEAVY CHAIN LIBRARIES

Attorney Docket No.:

2578-4728.1US

Serial No.:

10/466,466

Filing Date:

7/15/2003

Title:

NOVEL FIBRONECTIN EPITOPES AND PROTEINACEOUS

MOLECULES CAPABLE OF BINDING SAID EPITOPES

Attorney Docket No.:

2183-5611US

Serial No.:

60/432,906

Filing Date:

12/10/2002

Title:

AFFINITY PROTEINS FOR CONTROLLED APPLICATION OF

COSMETIC SUBSTANCES

This Information Disclosure Statement is filed after the mailing date of the first Office Action on the merits.

The fee pursuant to 37 C.F.R. § 1.17(p) is enclosed.

Respectfully submitted,

Krista Weber Powell Registration No. 47,867

Attorney for Applicant(s)

TRASKBRITT, P.C.

Jupel

P.O. Box 2550

Salt Lake City, Utah 84110-2550

Telephone: 801-532-1922

Date: September 15, 2003

KWP/bv

Enclosures: Form PTO-1449 or PTO/SB/08

Copy of documents cited

Check in the amount of \$180.00

Document in ProLaw