• Parameters:

- \triangleright Output Current I_0
 - As per specification
- \triangleright Output Resistance R_0
 - $R_0 = \Delta V_0 / \Delta I_0 = dV_0 / dI_0 = v_0 / i_0 (ac)$
 - As large as possible ideally infinite
- ➤ Minimum Allowed Output Voltage V_{0,min}
 - As small as possible ideally zero
 - Dictated by:
 - ***** For BJT: $V_{CE}(min) = V_{CE}(SS) = 0.2 \text{ V}$
 - ***** For MOSFET: $V_{DS}(min) = V_{GT}(min) = 80 \text{ mV}$

- \succ I_0 should be independent of power supply and temperature
 - Temperature and Supply Independent Biasing
- > Should use minimum number of circuit elements
 - Economization of space
- > Should not affect frequency response
- It is almost impossible to satisfy all these constraints simultaneously
 - > Look for optimization

Current Sources/Sinks

- Also known as *Current Mirrors* (CM)
- Can be used for biasing as well as load elements (known as active load)
- Designed based on required specifications
- Two sources of errors:
 - > Systematic: Even when devices are matched
 - > Random: When there is a random mismatch between devices

• Simple npn CM:

- \triangleright Q₁ has its **B** and **C** shorted
 - Can never saturate $(V_{BC} = 0)$
 - Known as diode-connectedBJT
- \triangleright Q₁ and Q₂ have *same* V_{BE}
- $I_{REF} = Reference Current$ $= (V_{CC} V_{BE})/R$
- $ightharpoonup I_0 = Output \ Current = I_{C2}$
- $> V_0 = Output Voltage$
 - Variable, depends on the load connected to it

> General Analysis:

$$I_{REF} = I_{C1} + I_{B1} + I_{B2} = I_{C1} \left(1 + \frac{1}{\beta_1} \right) + \frac{I_{C2}}{\beta_2}$$

> Now:

$$V_{BE} = V_{T} \ln \left(\frac{I_{C2}}{I_{S2}} \right) = V_{T} \ln \left(\frac{I_{C1}}{I_{S1}} \right)$$

$$\Rightarrow$$
 $I_{C2} = KI_{C1} \quad (K = I_{S2}/I_{S1})$

> Thus:

$$I_{REF} = I_{C2} \left[\frac{1}{\beta_2} + \frac{1}{K} \left(1 + \frac{1}{\beta_1} \right) \right]$$