ild B	DD (gg, 1) = Gq : 1 is output controlling value of AND gate
Bui	ldBDD (98-1) = R3 : 1 is output non-watrolling value of OR gate
⇒ (Nothers BDD (98, 1) = R3
>	A = Build BDD (g4, 1) = G4
	> Build800 (c,1) = C
	> Build 800 (g1) = G1
	⇒ Bnil & BDD (b, 1) = B
	⇒ BuildBDD (d,1) = D
	⇒ Construct BDD (B&D) = G,
	=> Construct BDD (C& G1) = 94
ラ	B = BuildBDD (g7,0) = R2
1	⇒ Witness BDD (37,0) = Rz
	=> A' = BuildBDD (96.0) = 96
	⇒ BuildBDD (g2,0) = R,
	⇒ Witnes>BDD (g2,0) = R1
	⇒ BrildBDD (e,o) = E
	⇒ Build BDD (~c,1) = ~C
	⇒ Restrict (E, ~ C) = R,
	⇒ BuildBDD (d,0) = ~D
	⇒ Confinit BPD (R, I~D) = G6
	⇒ B' = BuildBDD (93,1) = 63
	⇒ BuildBDD (a,1) = A
	=) BuildBOD (b,1) = B
	=) Construct BDD (A &B) = G3
	> Restrict BPD (G6, G3) = R2

⇒ BuildBDD (f, 1) = F

= Constraut BDD (R3 & F) = Gg

```
BddNode a(bm.getSupport(1));
BddNode b(bm.getSupport(2));
BddNode c(bm.getSupport(3));
BddNode d(bm.getSupport(4));
BddNode e(bm.getSupport(5));
BddNode f(bm.getSupport(6));
BddNode A = a;
BddNode B = b;
BddNode C = c;
BddNode D = d;
BddNode E = \sim e;
BddNode F = f;
BddNode C_bar = \simC;
BddNode D_bar = \simD;
BddNode\ G1 = B \& D;
BddNode G4 = C \& G1;
BddNode R1 = bm.restrict(E, C_bar);
BddNode G6 = R1 \mid D_bar;
BddNode G3 = A \& B;
BddNode R2 = bm.restrict(G6, G3);
BddNode R3 = bm.restrict(G4, R2);
BddNode G9 = R3 \& F;
cout << G9 << endl;</pre>
```

```
1 [6](+) 0x117dc90 (1)
2 [4](+) 0x117dba0 (3)
3 [3](+) 0x117db50 (1)
4 [2](+) 0x117d970 (5)
5 [0](+) 0x117c310 (19)
6 [0](-) 0x117c310 (19) (*)
7 [0](-) 0x117c310 (19) (*)
8 [0](-) 0x117c310 (19) (*)
9 [0](-) 0x117c310 (19) (*)
10
11 ==> Total #BddNodes : 5
12
```

difference: 5