36-705 Intermediate Statistics Homework #1 Solutions

September 1, 2016

Problem 1: Wasserman 1.3

Let Ω be a sample space and let A_1, A_2, \ldots be events. Define $B_n = \bigcup_{i=n}^{\infty} A_i$ and $C_n = \bigcap_{i=n}^{\infty} A_i$.

(a) Show that $B_1 \supset B_2 \supset \cdots$ and that $C_1 \subset C_2 \subset \cdots$.

Proof. (By Induction)

Base.

$$B_1 = \bigcup_{i=1}^{\infty} A_i = A_1 \cup \bigcup_{i=2}^{\infty} A_i = A_1 \bigcup B_2 \implies B_1 \supset B_2 \checkmark$$

Now for any $k \in \mathbb{N}$,

$$B_k = \bigcup_{i=k}^{\infty} A_i = A_k \cup \bigcup_{i=k+1}^{\infty} A_i = A_k \bigcup B_{k+1} \implies B_k \supset B_{k+1}. \blacksquare$$

Proof. (By Induction)

Base.

$$C_1 = \bigcap_{i=1}^{\infty} A_i = A_1 \cap \bigcap_{i=2}^{\infty} A_i = A_1 \cap C_2 \implies C_1 \subset C_2 \checkmark$$

Now for any $k \in \mathbb{N}$,

$$C_k = \bigcap_{i=k}^{\infty} A_i = A_k \cap \bigcap_{i=k+1}^{\infty} A_i = A_k \cap C_{k+1} \implies C_k \subset C_{k+1}. \blacksquare$$

(b) Show that $\omega \in \bigcap_{n=1}^{\infty} B_n$ if and only if ω belongs to an infinite number of the events A_1, A_2, \ldots

Proof.

"\insightarrow" Suppose ω belongs to an infinite number of the events A_1, A_2, \ldots but $\omega \notin \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i$. Then there exists a j such that $\omega \notin \bigcup_{i=j}^{\infty} A_i$. But this implies ω can be in at most j-1 of the A_i , a contradiction. Therefore, $\omega \in \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i$.

" \Longrightarrow " Assume $\omega \in \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i$. If ω does not belong to an infinite number of the events A_1, A_2, \ldots , then pick the last (according to the index) A_i which contains ω and call it A_T . Then $\omega \notin A_k$, $\forall k > T$. Hence, $\omega \notin \bigcap_{n=1}^{\infty} B_n$, a contradiction. Therefore, ω belongs to an infinite number of the events A_1, A_2, \ldots

(c) Show that $\omega \in \bigcup_{n=1}^{\infty} C_n$ if and only if ω belongs to all the events A_1, A_2, \ldots except possibly a finite number of those events.

Proof.

"\instruments Suppose that ω belongs to all the events A_1, A_2, \ldots except possibly a finite number of those events. Pick the last A_i that ω is not in and call the next one A_{n_0} . $\omega \in A_n$, $\forall n \geq n_0$ so clearly $\omega \in \bigcap_{i=n_0}^{\infty} A_i$. Since this set is part of the union $\bigcup_{n=1}^{\infty} C_n$, we've shown $\omega \in \bigcup_{n=1}^{\infty} C_n$.

" \Longrightarrow " Suppose $\omega \in \bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} A_i$. Suppose further that no matter how high we run our index, we can always find an A_i such that $\omega \notin A_i$. More precisely, for any $k \in \mathbb{N}$, $\exists j > k$ such that $\omega \notin A_j$. This of course implies $\omega \notin \bigcap_{i=n}^{\infty} A_i$ for any n. That is, $\omega \notin \bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} A_i$, a contradiction. Therefore, ω belongs to all the events A_1, A_2, \ldots except possibly a finite number of those events.

Problem 2: Wasserman 1.8

Suppose that $\mathbb{P}(A_i) = 1$ for each i. Prove that

$$\mathbb{P}\bigg(\bigcap_{i=1}^{\infty}A_i\bigg)=1.$$

Proof. We will prove the equivalent proposition:

$$\mathbb{P}\bigg(\bigcup_{i=1}^{\infty} A_i^c\bigg) = 0.$$

In order to show this note that:

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i^c\right) \le \sum_{i=1}^{\infty} \mathbb{P}(A_i^c) = \sum_{i=1}^{\infty} 0 = 0. \blacksquare$$

Problem 3: Wasserman 1.13

Suppose that a fair coin is tossed repeatedly until both a head and tail have appeared at least once.

(a) Describe the sample space Ω .

We can partition the sample space into two subsets

$$A = \{\omega : \underbrace{H \cdots H}_{n \text{ times}} T, \ n \ge 1\}$$
$$B = \{\omega : \underbrace{T \cdots T}_{n \text{ times}} H, \ n \ge 1\}$$

Then $\Omega = A \cup B$.

(b) What is the probability that three tosses will be required?

This can occur in two ways: HHT or TTH. Each has probability $\left(\frac{1}{2}\right)^3$ so

$$P(\text{three tosses}) = 2 \cdot \frac{1}{2^3} = \frac{1}{4}.$$

Problem 4: Wasserman 2.1

Show that

$$\mathbb{P}(X=x)=F(x^+)-F(x^-).$$

We have by right continuity of the CDF $F(x^+) = F(x) = \mathbb{P}(X \leq x)$. Also by continuity of probabilities

$$F(x^{-}) = \lim_{n \to \infty} F(x - 1/n) = \lim_{n \to \infty} \mathbb{P}(X \le x - 1/n) = \mathbb{P}(X < x).$$

And these observations together with the fact that $\mathbb{P}(X = x) = \mathbb{P}(X \le x) - \mathbb{P}(X < x)$ imply the desired result.

Problem 5: Wasserman 2.4

Let X have probability density function

$$f_X(x) = \begin{cases} 1/4 & 0 < x < 1 \\ 3/8 & 3 < x < 5 \\ 0 & \text{otherwise.} \end{cases}$$

(a) find the cumulative distribution function of X.

$$F_X(x) = \begin{cases} 0 & x < 0 \\ x/4 & 0 \le x < 1 \\ 1/4 & 1 \le x \le 3 \\ \frac{3x-7}{8} & 3 < x \le 5 \\ 1 & x > 5 \end{cases}.$$

(b) Let Y=1/X. Find the probability density function $f_Y(y)$ for Y. Hint: Consider three cases: $\frac{1}{5} \le y \le \frac{1}{3}, \ \frac{1}{3} \le y \le 1$, and $y \ge 1$.

3

Following the hint, let us first consider the case when $y = 1/x \ge 1$, which occurs exactly when $0 < x \le 1$. Keep in mind X takes values in the interval $(-\infty, 0]$ with probability 0. Now in this interval we have

$$f_X(x) = \frac{1}{4} \quad 0 < x < 1$$

and Y = g(X) = 1/X is indeed monotonic (therefore $h(y) = g^{-1} = 1/y$) so we can directly employ the transformation formula for p.d.f.'s. That is,

$$f_Y(y) = f_X(h(y)) \left| \frac{dh(y)}{dy} \right| = \frac{1}{4} \left| \frac{-1}{y^2} \right| = \frac{1}{4y^2}, \quad y \ge 1.$$

Using the same method, we first note that $\frac{1}{5} \le y \le \frac{1}{3}$ corresponds exactly with $3 \le x \le 5$ (we can drop the endpoints since we're dealing with continuous probability here). For this interval we have

$$f_X(x) = \frac{3}{8} \quad 1 < x < 3,$$

and therefore

$$f_Y(y) = f_X(h(y)) \left| \frac{dh(y)}{dy} \right| = \frac{3}{8} \left| \frac{-1}{y^2} \right| = \frac{3}{8y^2}, \quad \frac{1}{5} < y < \frac{1}{3}.$$

Now for the only remaining interval, $\frac{1}{3} < y < 1$, we need only note that this corresponds exactly to the interval 1 < x < 3 and that

$$P(X \in (1,3)) = 0.$$

Hence,

$$P(Y \in (1/3,1)) = 0.$$

So altogether,

$$f_Y(y) = \begin{cases} \frac{3}{8y^2} & \frac{1}{5} < y < \frac{1}{3} \\ \frac{1}{4y^2} & y > 1 \\ 0 & \text{otherwise.} \end{cases}$$

Problem 6: Wasserman 2.7

Let X and Y be independent and suppose that each has a Uniform (0,1) distribution. Let $Z = \min\{X,Y\}$. Find the density $f_Z(z)$ for Z. Hint: It might be easier to first find $\mathbb{P}(Z > z)$.

$$F_Z(z) = \mathbb{P}(Z \le z) = 1 - \mathbb{P}(Z > z) = 1 - \mathbb{P}(X > z)\mathbb{P}(Y > z) = 1 - (1 - z)^2 = 2z - z^2.$$

$$f_Z(z) = F_Z'(z) = \begin{cases} 2 - 2z & 0 < z < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Problem 7: Wasserman 2.20

Let Z = X - Y. We can easily see that $Z \in [-1, 1]$. To calculate $F_Z(z)$ we first consider the case $-1 \le z \le 0$:

$$\int_0^{1+z} \int_{x-z}^1 1 \, \mathrm{d}y \, \mathrm{d}x = \frac{z^2}{2} + z + \frac{1}{2}$$

Now for $0 < z \le 1$, $F_Z(z)$ is given by:

$$1 - \int_{z}^{1} \int_{0}^{x-z} 1 dy dx = -\frac{z^{2}}{2} + z + \frac{1}{2}$$

So the density of Z is given by:

$$f_Z(z) = \begin{cases} 1+z & \text{if } -1 \le z \le 0\\ 1-z & \text{if } 0 < z \le 1\\ 0 & \text{otherwise} \end{cases}$$

which is known as *triangular* distribution.

Let W = X/Y, so that $W \in (0, \infty)$. We have:

$$\mathbb{P}(W \le w) = \mathbb{P}(X \le wY) = \int_0^1 \int_0^{\min(1, wy)} 1 dx dy = \int_0^1 \min(1, wy) dy$$

Consider now the case $w \le 1$, then the integral becomes:

$$\int_0^1 wy \mathrm{d}y = \frac{w}{2}$$

Similarly for w > 1 we get:

$$\int_0^{1/w} wy dy + \int_{1/w}^1 1 dy = 1 - \frac{1}{2w}$$

So the density of W is given by:

$$f_W(w) = \begin{cases} 1/2 & \text{if } 0 \le w \le 1\\ 1/2w^2 & \text{if } w > 1\\ 0 & \text{otherwise} \end{cases}$$

Problem 8: Wasserman 3.8

Theorem. Let X_1, \ldots, X_n be IID and let $\mu = \mathbb{E}(X_i)$, $\sigma^2 = \mathbb{V}(X_i)$. Then

$$\mathbb{E}(\overline{X}_n) = \mu$$
, $\mathbb{V}(\overline{X}_n) = \frac{\sigma^2}{n}$ and $\mathbb{E}(S_n^2) = \sigma^2$.

Proof.

$$\mathbb{E}(\overline{X}_n) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n X_i\right)$$
$$= \frac{1}{n}\sum_{i=1}^n \mathbb{E}(X_i)$$
$$= \mu.$$

$$\mathbb{V}(\overline{X}_n) = \mathbb{V}\left(\frac{1}{n}\sum_{i=1}^n X_i\right)$$
$$= \frac{1}{n^2}\sum_{i=1}^n \mathbb{V}(X_i)$$
$$= \frac{\sigma^2}{n}.$$

$$\mathbb{E}(S_n^2) = \mathbb{E}\left(\frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X}_n)^2\right)$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^n \mathbb{E}(X_i^2) - 2\mathbb{E}(\overline{X}_n \sum_{i=1}^n X_i) + \mathbb{E}(\sum_{i=1}^n \overline{X}_n^2)\right)$$

$$= \frac{1}{n-1} \left(n(\sigma^2 + \mu^2) - 2n\mathbb{E}(\overline{X}_n^2) + n\mathbb{E}(\overline{X}_n^2)\right)$$

$$= \frac{1}{n-1} \left(n(\sigma^2 + \mu^2) - n(\sigma^2/n + \mu^2)\right)$$

$$= \frac{n-1}{n-1} \cdot \sigma^2$$

$$= \sigma^2.$$

Problem 9: Wasserman 3.22

Let $X \sim \text{Uniform}(0,1)$. Let 0 < a < b < 1. Let

$$Y = \begin{cases} 1 & 0 < x < b \\ 0 & \text{otherwise} \end{cases}$$

and let

$$Z = \begin{cases} 1 & a < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

(a) Are Y and Z independent? Why/Why not? Notice

$$P(Y = 1, Z = 1) = P(X \in (a, b))$$
$$= \frac{b - a}{1 - 0}$$
$$= b - a$$

and

$$P(Y = 1)P(Z = 1) = \frac{b-0}{1-0} \cdot \frac{1-a}{1-0}$$
$$= b(1-a),$$

so Y and Z are not independent.

(b) Find $\mathbb{E}(Y|Z)$. Hint: What values z can Z take? Now find $\mathbb{E}(Y|Z=z)$.

$$\mathbb{E}(Y|Z=1) = 1 \cdot P(Y=1|Z=1) + 0 \cdot P(Y=0|Z=1)$$
$$= \frac{b-a}{1-a}.$$

$$\mathbb{E}(Y|Z=0) = 1 \cdot P(Y=1|Z=0) + 0 \cdot P(Y=0|Z=0)$$

= 1.

Problem 10: Wasserman 3.23

Find the moment generating function for the Poisson, Normal, and Gamma distributions.

Poisson

$$M_X(t) = \mathbb{E}[e^{tX}] = \sum_{x=0}^{\infty} e^{tx} \cdot \frac{\lambda^x}{x!} e^{-\lambda} = e^{-\lambda} \sum_{x=0}^{\infty} \frac{(e^t \lambda)^x}{x!} = e^{-\lambda + \lambda e^t}$$
$$M_X(t) = e^{\lambda(e^t - 1)}.$$

Gamma

$$M_X(t) = \mathbb{E}[e^{tX}] = \int_0^\infty e^{tx} \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} dx = \frac{\beta^\alpha}{\Gamma(\alpha)} \int_0^\infty x^{\alpha-1} e^{-x(\beta-t)} dx.$$

Now we use the property that a p.d.f. integrates to 1 to obtain the formula

$$\int_0^\infty \frac{b^a}{\Gamma(a)} x^{a-1} e^{-bx} dx = 1,$$

which rearranges to

$$\int_0^\infty x^{a-1} e^{-bx} dx = \frac{\Gamma(a)}{b^a}.$$

So our moment generating function is

$$M_X(t) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_0^{\infty} x^{\alpha - 1} e^{-x(\beta - t)} dx = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \cdot \frac{\Gamma(\alpha)}{(\beta - t)^{\alpha}}$$
$$= \left[\left(\frac{\beta}{\beta - t} \right)^{\alpha}, \ t < \beta \right].$$

Normal

First consider $X \sim N(0,1)$.

$$M_X(t) = \mathbb{E}[e^{tX}] = \int_{-\infty}^{\infty} \frac{e^{tx}}{\sqrt{2\pi}} e^{tx - \frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx - \frac{x^2}{2}} dx$$

(compl. the sq.)
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\frac{t^2}{2}} e^{-\frac{1}{2}(x-t)^2} dx = \frac{e^{t^2/2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-t)^2} dx \stackrel{\text{Let } u = x - t}{=} e^{\frac{t^2}{2}} \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} du.$$

And now the integral we are left with is a famous form the Gaussian integral and is equal to $\sqrt{2\pi}$. Therefore,

$$M_X(t) = e^{\frac{t^2}{2}}.$$

Now consider a random variable Y with distribution $N(\mu, \sigma^2)$. Using the Central Limit Theorem, we have the equation,

$$Y = \mu + \sigma X$$
.

We now compute the desired moment generating function.

$$M_Y(t) = \mathbb{E}[e^{Yt}] = \mathbb{E}[e^{(\mu+\sigma X)t}] = \mathbb{E}[e^{\mu t}e^{\sigma X}] = e^{\mu t}\mathbb{E}[e^{\sigma X}]$$
$$= e^{\mu t}M_X(\sigma t) = e^{\mu t}\mathbb{E}[e^{\mu t + \frac{1}{2}\sigma^2 t^2}].$$