Applications of order based GAs (1)

- Sorting (easy)
- N-queens (not very difficult)
- Routing (tough)
- Scheduling (tough)
- · Graph colouring (tough)

Evolutionary Computing

GAs - part 2

Applications of order based GAs (2)

Precedence constrained job shop scheduling problem

- · J is a set of jobs.
- O_j ($j \in J$) is a set of operations ($O = \cup O_j$)
- M is a set of machines
- $\textit{Able} \subseteq O \times M$ defines which machines can perform which operations,
- $\textit{Pre} \subseteq \mathsf{O} \times \mathsf{O}$ defines which operation should precede which
- $Dur : \subseteq O \times M \to IR$ defines the duration of $o \in O$ on $m \in M$

The goal is now to find a schedule such that:

- · All jobs are scheduled
- All conditions defined by Able and Pre are satisfied
- The total duration of the schedule is minimal

Applications of order based GAs (2)

Precedence constrained job shop scheduling GA

- individuals are permutations of operations
- permutations are decoded to schedules by a decoding procedure
 - take the first (next) operation from the individual
 - look up its machine
 - assign the earliest possible starting time on this machine, subject to
 - machine occupation
 precedence relations holding for this operation in the schedule created so far
- · fitness of a permutation is the duration of the corresponding schedule (to be minimized)
- use any ob-mutation and any ob-crossover
- use roulette wheel selection on inverse fitness
- use random initialization

Evolutionary Computing

GAs - part 2

Performance of order based crossovers (3)

Conclusions:

- · Different operators can perform differently on the same problem.
- · The same operator can perform differently on different problems.

Corollary (bad news):

There is no generally good advise on the best operator.

Evolutionary Computing

GAs - part 2

GAs - part 2 1

Selection (1)

Fitness proportional selection (FPS):

Expected number of times f_i is selected for mating is: $\frac{f_i}{f}$

Disadvantages:

- 1 Outstanding individuals take over the entire population very quickly \Rightarrow danger for premature convergence.
- 2 Low selection pressure when fitness values are near each
- 3 Behaves differently on transposed versions of the same function.

Evolutionary Computing

Selection (5)

A cure for FPS: fitness scaling

Procedure:

- 1 Start with the raw fitness function f.
- 2 Standardise to ensure:
 - Lower fitness is better fitness.
 - Optimal fitness equals 0.
- 3 Adjust to ensure:
 - Fitness values range from 0 to 1.
- 4 Normalise to ensure:
 - The sum of the fitness values equals 1.

Evolutionary Computing

GAs - part 2

Selection (6)

A cure for FPS: fitness scaling (continued)

Details of procedure:

- Let P_t be the population at time t.
- · Standardisation yields

if f is to be minimized

 $f_t^s(x) = \begin{cases} f(x) - \min_t(f) \\ \max_{s} (f) - f(s) \end{cases}$ • Adjusting yields f_s^a

if f is to be maximized

 $f_t^s(x)$ $f_t^s(x)$ $f_{t}^{a}(x) = \frac{J_{t}(x)}{\max_{t}(f_{t}^{s}) - \min_{t}(f_{t}^{s})} = \frac{J_{t}(x)}{\max_{t}(f_{t}^{s})}$

By standardisation

Evolutionary Computing GAs - part 2 12

GAs - part 2 2

11

Selection (7)

• Normalisation yields :

$$f_t^n(x) = \frac{f_t^a(x)}{\sum_{x \in P_t} f_t^a(x)}$$

Note: \max_t and \min_t are taken over P_t

Evolutionary Computing

GAs - part 2

Selection (8)

Ranking selection

- Rank individuals according to their fitness
- Use the ranks, rather than the fitness values, to determine the probability of selection
- Mapping from ranks to selection probabilities is arbitrary, for instance

Evolutionary Computing

GAs - part 2

Selection (8)

Ranking selection example

3 individuals A, B, C and linear mapping for maximization problem:

- Fitness: f (A) = 1, f (B) = 4, f (C) = 5.
- Ranking: r(A) = 1, r(B) = 2, r(C) = 3.
- Linear function:

$$h(x) = \min + (\max - \min) \times \frac{(r(x) - 1)}{n - 1}$$

h(A) = 1, h(B) = 3, h(C) = 5

- selection probabilities proportional to h values: h(x)/9
- $$\begin{split} &p_{\text{rank}}(A) \approx 11\%, \, p_{\text{rank}}\left(B\right) \approx 33\%, \, p_{\text{rank}}\left(C\right) = 56\%. \\ &\text{selection probabilities with roulette wheel proportional to f values: } f(x)/10 \end{split}$$
 $p_{rw}(A) = 10\%, p_{rw}(B) = 40\%, p_{rw}(C) = 50\%.$

Evolutionary Computing

GAs - part 2

15

Selection (9)

Tournament selection:

- 1 Pick k individuals randomly, without replacement
- 2 Select the best of these k comparing their fitness values

k is called the size of the tournament

selection is repeated as many times as necessary

Evolutionary Computing

GAs - part 2

16

GAs - part 2 3