

Network Management

Prof. T.A. Gonsalves
TeNeT Group
Dept of CSE, IIT-Madras

Promise of Telecom

Powered by TeNet

Basic infrastructure that provides:

- voice + FAX + InternetThat promises:
- Widespread access to knowledge
- reduce have/have-not divide by leapfrogging
- ⇒ must be affordable and reliable

Network "Storms"

Powered by TeNet

 Rapid escalation of cascading failures Example:

Noise on a link

- ⇒ packet loss
 - ⇒ link-level ARQ
 - ⇒ queue buildup
 - ⇒ source retransmits
 - ⇒ congestion on other links

- Trunk line fails
 - alarms at TX1 and TX2
 - Call failure rate exceeds threshold at several LEs
 - alarms at many LEs

- ⇒ alarms at many LEs
 - LE operator ignores alarms
 - network operator sees long list of alarms, important ones may be missed
- ⇒ need integrated network management system
 - only relevant alarms to the right person

Affordability

Powered by TeNet

Cost of bandwidth increases with distance => install minimal required capacity including growth factor

Network Management

Powered by TeNet

Why?

Manage — monitor and control— heterogeneous, graphically-distributed elements

What?

Configuration identify and control managed objects

Faults detect, isolate, repair

Accounting charges for resource usage

limits on resource usage

Security protect access to objects

authentication, manage keys,

logs

Performance gather statistics

analyze and plan

FCAPS

Basics

- Standards
 - Standards organizations
 - Protocol standards of transport layers
 - Protocol standards of management (application) layer
- Management Models
- Language

Table 3.1 Network Management Standards

		NMSWorks	
Standard	Salient Points		
OSI/CMIP	■ International standard (ISO / OSI)	Powered by TeNet	
	Management of data communications network - LAN and WAN		
	■ Deals with all 7 layers		
	■ Most complete		
	Object oriented		
	■ Well structured and layered		
	■ Consumes large resource in implementation		
SNMP / Internet	■ Industry standard (IETF)		
	 Originally intended for management of Internet components, currently adopted for WAN and telecommunication systems 		
	■ Easy to implement		
	■ Most widely implemented		
TMN	■ International standard (ITU-T)		
	■ Management of telecommunications network		
	■ Based on OSI network management framework		
	Addresses both network and administrative aspects of management		
IEEE	■ IEEE standards adopted internationally		
	Addresses LAN and MAN management		
	Adopts OSI standards significantly		
	■ Deals with first two layers of OSIRM		
W eb-based Management	■ Web-Based Enterprise Management (WBEM)		
	Java Management Extensions (JM X)		

Figure 3.1 OSI Network Management Model

OSI Network Management Model

- Organization
 - Network management components
 - Functions of components
 - Relationships
- Information
 - Structure of management information (SMI)
 - Syntax and semantics
 - Management information base (MIB)
 - Organization of management information
 - Object-oriented

OSI Network Management Model

Powered by TeNet

NMSWorks

- Communication
 - Transfer syntax with bi-directional messages
 - Transfer structure (PDU)
- Functions
 - Application functions
 - Configure components
 - Monitor components
 - Measure performance
 - Secure information
 - Usage accounting

Protocol

messages (PDUs) for operations and notifications wered by TeNet

Data representation

ASN.1:

encodes as a sequence of bytes machine-independent

Standards

SNMP

simple network management protocol

widely used in IP networks

CMIP

common management information protocol

- based on OSI stack
- used in TMN (telecom management network)

SNMP Network Management Model

- Organization
 - Same as OSI model
- Information
 - Same as OSI, but scalar
- Communication
 - Messages less complex than OSI
 - Transfer structure (PDU)
- Functions
 - Application functions
 - Operations
 - Administration
 - Security

TMN Architecture

- Addresses management of telecommunication networks
- Based on OSI model
- Superstructure on OSI network
- Addresses network, service, and business management

Object

- attributes name, uptime, load,...
- operations create/delete, get, set, actions. (reboot,...)
- notifications unusual events (load > threshold,...)
- behaviour how it reacts to operations

MIB or MOL = collection of managed objects management information base managed object library

Managed device

Two-Tier Model

- Agent built into network element
 Example: Managed hub, managed router
- An agent can manage multiple elements
 Example: Switched hub, ATM switch
- MDB is a physical database
- Unmanaged objects are network elements that are not managed - both physical (unmanaged hub) and logical (passive elements)

Figure 3.3 Three-Tier Network Mangement Organization Model

Three-Tier Model

- Middle layer plays the dual role
 - Agent to the top-level manager
 - Manager to the managed objects
- Example of middle level: Remote monitoring agent (RMON)

Figure 3.4 Network Mangement Organization Model with MoM

Manager of Managers

- Agent NMS manages the domain
- MoM presents integrated view of domains
- Domain may be geographical, administrative, vendor-specific products, etc.

Peer NMSs

Figure 3.5 Dual Role of Management Process

- Dual role of both NMSs
- Network management system acts as peers
- Dumbbell architecture discussed in Chapter 1
- Notice that the manager and agent functions are processes and not systems

Structure of Management Information (SMI)

Powered by TeNet

- SMI defines for a managed object
 - Syntax
 - Semantics
 - plus additional information such as status
- Example

sysDescr: { system 1 }

Syntax: OCTET STRING

Definition: "A textual description of the entity."

Access: read-only

Status: mandatory

Structure of Management Information (SMI) yered by TeNet

Agent names:

DNS — domain naming system e.g. lantana.tenet.res.in cordect53.hfcl.co.in

Object names:

Hierachical naming tree globally unique

Management Information Base (MIB)

- Information base contains information about objects
- Organized by grouping of related objects
- Defines relationship between objects
- It is NOT a physical database. It is a *virtual* database that is compiled into management module

MIB View and Access of an Object

- A managed object has many attributes its information base
- There are several operations that can be performed on the objects
- A user (manager) can view and perform only certain operations on the object by invoking the management agent
- The view of the object attributes that the agent perceives is the MIB view
- The operation that a user can perform is the MIB access

Managed objects

MDB Management Database
MIB Management Information Base

Agent process

Management Data Base / Information Base Powered by TeNet

- Distinction between MDB and MIB
 - MDB physical database; e.g., Oracle, Sybase
 - MIB virtual database; schema compiled into management software
- An NMS can automatically discover a managed object, such as a hub, when added to the network
- The NMS can identify the new object as hub only after the MIB schema of the hub is compiled into NMS software

Managed Object

- Managed objects can be
 - Network elements (hardware, system)
 - hubs, bridges, routers, transmission facilities
 - Software (non-physical)
 - programs, algorithms
 - Administrative information
 - contact person, name of group of objects (IP group)

OSI Management Information Tree

Figure 3.8 OSI Management Information Tree

Characteristics	Example
Object type	PktCounter
Syntax	Counter Powered by TeNe
Access	Read-only
Status	Mandatory
Description	Counts number of packets

Figure 3.10(a) Internet Perspective

Characteristics	Example	
Object class	Packet Counter	
Attributes	Single-valued	
Operations	get, set	
Behavior	Retrieves or resets values	
Notifications	Generates notifications on new value	

Figure 3.10 (b) OSI Perspective

Figure 3.10 Packet Counter As Example of Managed Object

NMSWorks

ASN.1

Powered by TeNet

Abstract Syntax Notation 1 ISO 8824, X.208

Abstract syntax = language for describing information objects

ASN.1= language for describing abstract syntaxes

BER= basic encoding rules for transfer of information objects ISO 8825, X.209

ASN.1— Basic Encoding Rules (BER) wered by TeNet

Example: 28510

M/c X: 0000 0001, 0001 1101

M/c Y: 1011 1000, 1000 0000, 0000 0000, 0000 0000

ASN.1: 0000 0001, 0000 0010, 0000 0001, 0001 1101

Integer Len = 2 $1 \times 2561 + 29 \times 2560$

Identifier:

Class | p/c | Tag p=primitive, c=constructed

Human-readable names:

{iso.reg.org.dod.internet.mgmt.mib.system.sysUpti

{mib 1,3}

me}

Used in PDUs: {1,3,6,1,2,1,1,3}

- Sub-tree of the registration hierarchy:
 MIB view/group/module
- Standard MIB views:

MIB-II: all network elements

Ethernet MIB: all Ethernet devices

FDDI MIB: all FDDI devices

RMON MIB: remote network monitoring

Object Types:

IP Address

Time Ticks

Gauge 32-bit counter, no wraparound

Counter 0..232-1, with wraparound

Opaque any octet string

MIB-II Groups

Powered by TeNet

system: overall information about the system

interfaces: about each of the interfaces from the system to a subnetwork

ip, icmp, tcp, udp, egp, snmp: related to the implementation and execution of each protocol on this system

dot3: information about the transmission schemes and access protocols at each system interface

system Group (mib-2 1)

Powered by TeNet

- sysDescr (1)
 - -- descriptive text
- sysObjectID (2)
- -- vendor's id for this mgmt subsystem

- sysUpTime
- (3) -- in 10 ms ticks
- sysContact (4)
- -- administrative contact person
- sysName (5)
- -- name of the managed node
- sysLocation (6) -- physical location of this node
- sysServices (7) -- 7-bit integer indicating the OSI layers of this node's primary

services

Legend: INDEX in bold

Figure 4.28 Interfaces Group

Example: Interface table (RFC 1213)

Powered by TeNet

```
ifTable OBJECT-TYPE
```

SYNTAX SEQUENCE OF ifEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION "A list of interfaces...."

::= { interfaces 2}

ifEntry OBJECT-TYPE

SYNTAX IfEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION "Details of one

interface..."

INDEX { ifIndex }

::= {ifTable 1 }


```
IfEntry ::= ---- a type
SEQUENCE {
    ifIndex INTEGER,
    ifDescr DisplayString,
    ifType INTEGER,
    :
    :
    }
```



```
ifIndex OBJECT-TYPE
           SYNTAX INTEGER
           ACCESS read-only
           STATUS mandatory
           DESCRIPTION "....."
           ::= {ifEntry 1}
ifDescr OBJECT-TYPE
           SYNTAX DisplayString (SIZE (-0.....255))
           ACCESS read-only
           STATUS mandatory
           DESCRIPTION "...."
           ::= {ifEntry 2}
```


Powered by TeNet

interfaces 2

SNMP

Powered by TeNet

```
Versions
```

V1: simple, most widely-used

drawbacks esp. security

V2: improved security, other features

more complex, not yet widely-used

"v2c": V2 with community-based security

"v3": full V2

SNMP objects

attributes

operations: get, set

notifications "traps"

behaviours

Uses UDP/IP

- Maximum PDU size = 468 bytes
- Get, set port161
- Traps port162

Messages

	Agent	<u>Manager</u>	<u>Manager</u>
	Get, GetNe	xt	
V1	Set		
	GetRespons	e	
	Trap		
V2	GetBulk		InformReq
			<u> </u>

PDU Formats

Version 0, 1	Community "public"	PDU Type	Request Id	Error Status	
		0 = Get 1 = GetNe 2 = GetRe 3 = Set 4 = Trap	ext 1	= noError = tooBig = noSuchNar	me

Error Index	Name 1	Value 1	N2	V2	N3	V3	
	1	1					

Trap PDU (V1)

Powered by TeNet

/					J
}	Enterprise	Agent Address	Generic	Trap	ſ
I ———	Type of object	0 = 1 =	warmStart	3 = linkUp 4 = auth. f 5 = enterp	

	Specific Trap	Time Stamp	N1 V1	N2 V2	N3 V3	•••
لے	Specific Trup			1 12 12		

Uptime in 10 ms ticks

Related variables

V2 Trap PDU same format as other messages

SNMP GetRequest

Powered by TeNet

Atomic: all values returned, or none In case of error, errorIndex indicates which variable binding has errorStatus

SNMP GetNextRequest

```
Given varible name N, returns the value of the lexicographically next variable in MIB view GetNext(system) ⇒system.sysDescr.0 = "Linux ..." GetNext(system.sysDescr) ⇒ system.sysDescr.0 = "Linux ..." GetNext(system.sysDescr.0) ⇒ system.sysObjectID.0 = OID: ...ucdSnmpAgent.linux Traverse a sub-tree without knowing names GetNext(icmp.27.0) ⇒ tcp.tcpRtoAlgorithm.0 = other(1) Get(icmp.27.0) ⇒ Error: (noSuchName) icmp.27
```


...SNMP GetNextRequest

Powered by TeNet

• Read a table without knowing the size of the table

GetNext Parameter	Returned value
interfaces.ifTable	if Table $.1.1.1 = 1$ index
interfaces.ifTable.1.1.1	ifTable.1.1.2 = 2
interfaces.ifTable.1.1.2	if Table $.1.2.1 = "loo"$ descr
interfaces.ifTable.1.2.1	ifTable.1.2.2 = "eth0"
interfaces.ifTable.1.2.2	ifTable.1.3.1 = softwareLoopback
interfaces.ifTable.1.3.1	ifTable.1.3.2 = ethernet-csmacd
	type

• Table is read column-wise

	index(1)	descr(2)	type(3) ifSpecific(22)
1	1	lo0	softwareLoopback
2	2	eth0	ethernet-csmacd

SNMP SetRequest

- Atomic: all values set and returned, or none
- In case of error, errorIndex indicates which variable binding has errorStatus

SNMP Trap

- From agent to manager
- Manager registers with agent for traps of interest
- No response to guarantee receipt, agent must periodically retransmit until manager takes action

SNMP v2

Powered by TeNet

Key Concepts

- revised OBJECT definitions
 - counter64 type
- improved tables
 - unambiguous row selection
 - procedures for creation and deletion of rows
 - augmenting of tables
- Notification definition
- Manager-manager communication

GetBulk

With Get and GetNext:

- one OID per message ⇒ inefficient
- OR
- many OIDs per message ⇒ manager must use trial-anderror to fit into a PDU
- GetBulk: Repeated GetNext in one message
- Example:
- GetBulk(1, 6, sysUptime, ifOperStatus, ifInOctets, ifOutOctets)
- Response(sysUptime=345923, ifOperStatus.1=1, ifInOctets.1=54678, ifOutOctets.1=345239, ifOperStatus.2=1, ifInOctets.2=345, ifOutOctets.2=9324, ...)

... GetBulk

Powered by TeNet

GetBulk(N, M, v1, ..., vN, vN+1, ..., vL)

1 value each

M values

each

Order in PDU:

1st successor for all variables,

---,

Mth successor for all variables

⇒ if variables are columns PDU contains values row-

wise

If response too big, puts as much as possible in PDU

⇒ simplifies managers task

InformRequest

- Manager-manager
- A→B
 InformRequest(reqID, n1, v1, n2, v2, ...)
- B→A
 Response(reqID, n1, v1, n2, v2, ...)

SNMP Utilities

- snmpbulkwalk, snmpdelta, snmpget, snmpgetnext, snmpnetstat, snmpset, snmpstatus, snmptable, snmptest, snmptranslate, snmptrap, snmpwalk
- snmpget localhost public system.sysDescr.0 system.sysDescr.0 = "Linux oriole.ooty.tenet.res.in"
- snmpgetnext localhost public system.sysDescr.0
 system.sysObjectID.0 = OID:
 enterprises.ucdavis.ucdSnmpAgent.linux
- snmpset localhost public system.sysLocation.0 s "Ooty" system.sysLocation.0 = "Ooty" Hex: 4F 6F 74 79
- snmpget localhost public system.sysLocation.0 system.sysLocation.0 = "Ooty" Hex: 4F 6F 74 79

SNMP Utilities

```
snmpwalk localhost public system
system.sysDescr.0 = "Linux oriole.ooty.tenet.res.in"
system.sysObjectID.0 = OID:
enterprises.ucdavis.ucdSnmpAgent.linux
system.sysUpTime.0 = Timeticks: (272328)
0:45:23.28
system.sysContact.0 = "Root <root@localhost>"
system.sysName.0 = "oriole.ooty.tenet.res.in"
system.sysLocation.0 = "Unknown"
system.sysServices.0 = 72
```

- OID: for a simple variable, end with .0
 for a table variable, end with index (>0)
- Full form: initial "." E.g. ".1.3.6.1.2.1.1.3.0" or "system.sysUptime.0"

Summary

- Manager-Agent model for NMS
- Data transfer ASN.1 basic encoding
- Object definition ASN.1 macros
- MIB hierachical collection of objects
- SNMP get, getnext, set, trap
- SNMPv2
 - GetBulk for efficiency
 - InformRequest for manager-manager