C++ Korea 자료구조 스터디

1주차: 시간/공간 복잡도 개념

옥찬호

utilForever@gmail.com

강의자소개

- 옥찬호 (Chris Ohk)
 - (현) Momenti Engine Engineer
 - (전) Nexon Korea Game Programmer
 - Microsoft Developer Technologies MVP
 - C++ Korea Founder & Administrator
 - Reinforcement Learning KR Administrator
 - IT 전문서 집필 및 번역 다수
 - 게임샐러드로 코드 한 줄 없이 게임 만들기 (2013)
 - 유니티 Shader와 Effect 제작 (2014)
 - 2D 게임 프로그래밍 (2014), 러스트 핵심 노트 (2017)
 - 모던 C++ 입문 (2017), C++ 최적화 (2019)

utilForever@gmail.com

utilForever

프로그램 복잡도

- 프로그램 복잡도에는 크게 두 종류가 있음
 - 공간 복잡도(Space Complexity) : 프로그램을 수행하는데 필요한 메모리량
 - 시간 복잡도(Time Complexity): 프로그램을 수행하는데 필요한 시간
- 성능 평가 단계
 - 성능 분석(Performance Analysis) : 사전 예측
 - 성능 측정(Performance Measurement): 사후 검사

공간 복잡도

- 고정 부분 : 프로그램의 입출력 특성과 관계 없음
 - 명령어 공간, 단순 변수, 일정 크기의 변수, 상수들을 위한 공간 등
- 가변 부분 : 문제의 인스턴스를 통해 크기가 결정됨
 - 인스턴스를 통해 크기가 결정되는 변수, 재귀 함수를 위한 공간 등
- $\bullet \quad S(P) = c + S_p(n)$
 - S(P): 프로그램 P에서 필요한 공간
 - c: 상수
 - n:인스턴스 특성 (예:입출력 크기, 숫자 등)

공간 복잡도: ABC 함수

```
float ABC(float a, float b, float c)
{
    return a + b + b * c + (a + b - c) / (a + b) + 4.0;
}
```

- 함수 ABC에 필요한 공간은?
 - a, b, c, -1 리고 반환값이 필요
 - 따라서, ABC에 필요한 공간은 4 워드

공간 복잡도 : Sum 함수

```
float Sum(float* a, const int n)
{
    float s = 0;
    for (int i = 0; i < n; i++)
        s += a[i];
    return s;
}</pre>
```

- 함수 Sum에 필요한 공간은?
 - *n*이 값에 의한 전달로 복사됨: 1 워드
 - a는 a[0]의 주소:1워드
 - 그러므로 함수에 필요한 공간은 n에 무관함 : $S_p(n) = 0$
 - $s, i, \text{ the Line of Sum에 필요한 공간은 5 워드$

공간 복잡도: RSum 함수

```
float Rsum(float* a, const int n)
{
    if (n <= 0) return 0;
    else return (Rsum(a, n - 1) + a[n - 1]);
}</pre>
```

- 함수 Rsum에 필요한 공간은?
 - n이 입력되었을 때, 재귀 함수의 깊이는 n + 1 (0 ~ n)
 - 함수를 호출할 때마다 n, a, 반환값, 반환 주소가 필요함 → 4개의 워드 필요
 - 따라서 Rsum에 필요한 공간은 4(n+1) 워드

시간복잡도

- $\bullet \quad T(P) = c + T_p(n)$
 - T(P): 프로그램 P를 수행하는데 걸리는 시간
 - *c*: 컴파일 시간
 - T_p : 실행시간
 - n:인스턴스 특성 (예:입출력 크기, 숫자 등)

- 정확하지는 않지만 인스턴스 특성에 독립적인 실행 시간을 갖는 세그먼트
 - 실행 시간은 인스턴스 특성과 무관함
 - 프로그램 명령문의 단계 수는 명령문의 특성에 의존함

- 주석: 0 (비실행 명령문)
- 선언문: 0
 - 변수나 상수를 정의하는 모든 명령문
 - int, long, short, char, float, double, const, enum, signed, unsigned, static, extern
 - 사용자 정의 데이터 타입을 정의하는 모든 명령문
 - class, struct, union, template
 - 접근을 결정하는 모든 명령문
 - private, public, protected, friend
 - 함수의 타입을 결정하는 모든 명령문
 - void, virtual

• 산술식 및 지정문

- 대부분의 산술식은 1, 다만 함수 호출을 포함하는 산술식은 예외
- 지정문 <variable> = <expr>은 <variable>의 크기가 인스턴스 특성의 함수가 아니라면 <expr>의 단계 수와 같고, 인스턴스 특성의 함수라면 <expr>의 단계 수에 <variable>의 크기를 더한 값이 됨

• 함수 호출

- 호출이 인스턴스 특성에 의존하는 인자를 포함하지 않으면 1, 포함하면 인자 크기의 합이 됨
- 호출되는 함수가 재귀 함수라면 호출되는 함수에서 지역 변수도 고려해야 함
 인스턴스에 관련된 지역 변수의 크기는 단계 수에 합쳐짐

반복문

- for (<init-stmt>; <expr1>; <expr2>)
 - <init-stmt>, <expr1>, <expr2>가 인스턴스 특성의 함수가 아니라면 1
 - 인스턴스 특성의 함수라면, for 명령문의 첫번째 실행은 <init-stmt>와 <expr1>의 단계 수의 합과 같고, 그 다음 실행 단계 수는 <expr1>과 <expr2>의 단계 수의 합과 같음
- while <expr> do
 - <expr>에 할당된 단계 수와 같음
- do ... while <expr>
 - <expr>에 할당된 단계 수와 같음

• switch문

```
switch (<expr>) {
    case cond1: <statement1>
    case cond2: <statement>
    ...
    default: <statement>
}
```

- switch (<expr>)의 비용은 <expr>에 할당된 비용과 같음
- 각 조건의 비용은 자신의 비용 + 앞에서 나온 모든 조건의 비용

- if-else문
 - if (<expr>) <statement1>;else <statement2>;
 - <expr>, <statement1>, <statement2>에 따라 각 단계 수가 할당됨
 - 만약 else문이 없다면 해당하는 비용은 없음
 - 메모리 관리 명령문
 - new object, delete, sizeof를 포함하며, 각 명령문은 1
 - 묵시적으로 new와 delete가 호출되는 경우 함수 호출과 같은 방법으로 계산됨

- 함수 명령문: 0 (비용이 이미 호출문에 할당됨)
- 분기 명령문
 - continue, break, goto, return, return <expr>을 포함
 - return <expr>을 제외하면 모두 1
 - return <expr>에서도 <expr>의 단계 수가 인스턴스 특성의 함수가 아니라면 1
 - 인스턴스 특성의 함수라면 <expr>의 비용과 같음

프로그램 단계 : Sum 함수

```
float Sum(float* a, const int n)

{
    float s = 0;
    for (int i = 0; i < n; i++)
        s += a[i];
    return s;
}</pre>
```

행 번호 s/e 빈도 단겨	수
1 0 0 0	
2 1 1 1	
$3 \qquad 1 \qquad n+1 \qquad n+$	- 1
4 1 n	ı
5 1 1 1	
6 0 1 0	
총 단계 수 2 <i>n</i> -	- 3

프로그램 단계: Rsum 함수

```
float Rsum(float* a, const int n)

{
2     if (n <= 0) return 0;
3     else return (Rsum(a, n - 1) + a[n - 1]);
4 }</pre>
```

행 번호	s/e	빈	도		단계 수
8 건오	5/E	n = 0	n > 0	n = 0	n > 0
1	0	1	1	0	0
2(a)	1	1	1	1	1
2(b)	1	1	0	1	0
3	$1 + t_{Rsum}(n-1)$	0	1	0	$1 + t_{Rsum}(n-1)$
4	Ο	1	1	0	0
	총 단계 수			2	$2 + t_{Rsum}(n-1)$

프로그램 단계: Rsum 함수

$$t_{\text{rsum}}(n) = 2 + t_{\text{rsum}}(n-1)$$

= $2 + 2 + t_{\text{rsum}}(n-2)$
= $2 * 2 + t_{\text{rsum}}(n-2)$
= \cdots
= $2n + t_{\text{rsum}}(0)$
= $2n + 2$

프로그램 단계: Add 함수

```
void Add(int** a, int** b, int** c, int m, int n)
1 {
2    for (int i = 0; i < m; i++)
3        for (int j = 0; j < n; j++)
4        c[i][j] = a[i][j] + b[i][j];
5 }</pre>
```

행 번호	s/e	빈도	단계 수
1	0	0	0
2	1	m + 1	m+1
3	1	m(n + 1)	mn + m
4	1	mn	mn
5	0	1	0
	총 [<u></u>	2mn + 2m + 1

단계 수의 세 종류

- 최상의 경우 (Best Case)
 - 주어진 매개변수에 대해 실행될 수 있는 단계 수가 최소인 경우
- 최악의 경우 (Worst Case)
 - 주어진 매개변수에 대해 실행될 수 있는 단계 수가 최대인 경우
- 평균 (Average Case)
 - 주어진 매개변수에 대해 인스턴스가 실행되는 평균 단계 수

점근표기법

- 프로그램의 정확한 단계 수를 결정하는 작업은 매우 어려움
 - 단계 수를 정확하게 결정하는 개념 자체가 부정확하기 때문
- 점근 표기법은 어떤 함수의 증가 양상을 다른 함수와의 비교로 표현하는 수론과 해석학의 방법 → 알고리즘의 복잡도를 단순화할 때 사용
 - 대문자 O 표기법, 소문자 o 표기법
 - 대문자 Ω 표기법, 소문자 ω 표기법
 - 대문자 Θ 표기법

O 표기법

- 모든 $n, n \ge n_0$ 에 대해 $f(n) \le cg(n)$ 인 조건을 만족시키는 두 양의 상수 c와 n_0 가 존재하면 f(n) = O(g(n))
 - $n \ge 2$ 일 때, $3n + 2 \le 4n$ 이므로 3n + 2 = O(n)
 - $n \ge 5$ 일 때, $10n^2 + 4n \le 11n^2$ 이므로 $10n^2 + 4n = O(n^2)$
 - $n \ge 2$ 일 때, $10n^2 + 4n \le 10n^4$ 이므로 $10n^2 + 4n = O(n^4)$
- 모든 n에 대해 g(n)의 값은 f(n)의 상한값 (Upper Bound)
 - 의미가 있으려면 g(n)이 가능한 작아야 함
 - 3n + 2 = O(n)이라고 하지만 $3n + 2 = O(n^2)$ 이라고 하지는 않음
 - 물론 후자가 틀린 것은 아님

Ω 표기법

- 모든 $n, n \ge n_0$ 에 대해 $f(n) \ge cg(n)$ 인 조건을 만족시키는 두 양의 상수 c와 n_0 가 존재하면 $f(n) = \Omega(g(n))$
 - $n \ge 1$ 일 때, $3n + 2 \ge 3n$ 이므로 $3n + 2 = \Omega(n)$
 - $n \ge 1$ 일때, $10n^2 + 4n \ge n^2$ 이므로 $10n^2 + 4n = \Omega(n^2)$
 - $n \ge 1$ 일 때, $10n^2 + 4n \ge 1$ 이므로 $10n^2 + 4n = \Omega(1)$
- 모든 n에 대해 g(n)의 값은 f(n)의 하한값 (Lower Bound)
 - 의미가 있으려면 g(n)이 가능한 커야 함
 - $3n + 2 = \Omega(n)$ 이라고 하지만 $3n + 2 = \Omega(1)$ 이라고 하지는 않음
 - 물론 후자가 틀린 것은 아님

田田

- 모든 $n, n \ge n_0$ 에 대해 $c_1g(n) \le f(n) \le c_2g(n)$ 인 조건을 만족시키는 세 양의 상수 c_1, c_2 와 n_0 가 존재하면 $f(n) = \Theta(g(n))$
 - $n \ge 2$ 일때, $3n + 2 \ge 3n$ 이고 $3n + 2 \le 4n$ 이므로 $3n + 2 = \Theta(n)$
- 모든 n에 대해 g(n)의 값은 f(n)의 상한값이자 하한값

점근표기법: Sum 함수

```
float Sum(float* a, const int n)

{
    float s = 0;
    for (int i = 0; i < n; i++)
        s += a[i];
    return s;
}</pre>
```

행 번호	s/e	빈도	단계 수			
1	0	0	$\Theta(0)$			
2	1	1	$\Theta(1)$			
3	1	n+1	$\Theta(n)$			
4	1	n	$\Theta(n)$			
5	1	1	$\Theta(1)$			
6	0	1	$\Theta(0)$			
$t_{Sum}(n) = \Theta(\max_{1 \le i \le 6} \{g_i(n)\}) = \Theta(n)$						

점근표기법: Rsum 함수

```
float Rsum(float* a, const int n)

{
2          if (n <= 0) return 0;
3          else return (Rsum(a, n - 1) + a[n - 1]);
4     }</pre>
```

행 번호 s/e		I	빈도		단계 수		
· 한 근모	3/ C	n = 0	n > 0	n = 0	n > 0		
1	0	1	1	0	$\Theta(0)$		
2(a)	1	1	1	1	$\Theta(1)$		
2(b)	1	1	0	1	$\Theta(0)$		
3	$1 + t_{Rsum}(n-1)$	0	1	0	$\Theta\big(1+t_{Rsum}(n-1)\big)$		
4	0	1	1	0	$\Theta(0)$		
		1	$t_{Rsum}(n) =$	2	$2 + t_{Rsum}(n-1)$		

점근표기법: Add 함수

```
void Add(int** a, int** b, int** c, int m, int n)
1 {
2    for (int i = 0; i < m; i++)
3        for (int j = 0; j < n; j++)
4        c[i][j] = a[i][j] + b[i][j];
5 }</pre>
```

행 번호	s/e	빈도	단계 수
1	0	0	$\Theta(0)$
2	1	$\Theta(m)$	$\Theta(m)$
3	1	$\Theta(mn)$	$\Theta(mn)$
4	1	$\Theta(mn)$	$\Theta(mn)$
5	0	1	$\Theta(0)$
	총 단	$\Theta(mn)$	

```
int BinarySearch(int* a, const int x, const int n)
{ // Search the sorted array a[0], ..., a[n-1] for x.
    int left = 0, right = n - 1;
    while (left <= right)
    { // There are more elements
        int middle = (left + right) / 2;
        if (x < a[middle]) right = middle - 1;
        else if (x > a[middle]) left = middle + 1;
        else return middle;
    } // End of while
    return -1; // Not found
}
```


값이 정렬된 배열이 있을 때, Best Case는 찾는 값이 middle에 바로 있는 경우(9를 검색)

x = 9, a[middle] = a[2] = 9이므로 9가 있는 위치 2를 반환 이 때, 시간 복잡도는 <math>O(1)!

```
int BinarySearch(int* a, const int x, const int n)
{ // Search the sorted array a[0], ..., a[n-1] for x.
    int left = 0, right = n - 1;
    while (left <= right)
    { // There are more elements
        int middle = (left + right) / 2;
        if (x < a[middle]) right = middle - 1;
        else if (x > a[middle]) left = middle + 1;
        else return middle;
    } // End of while
    return -1; // Not found
}
```

Worst Case는 배열에 없는 값을 검색할 때 (24를 검색)

x = 24, a[middle] = a[2] = 9이므로 left를 3으로 바꾼 뒤 다시 수행

```
int BinarySearch(int* a, const int x, const int n)
{ // Search the sorted array a[0], ..., a[n-1] for x.
    int left = 0, right = n - 1;
    while (left <= right)
    { // There are more elements
        int middle = (left + right) / 2;
        if (x < a[middle]) right = middle - 1;
        else if (x > a[middle]) left = middle + 1;
        else return middle;
    } // End of while
    return -1; // Not found
}
```

Worst Case는 배열에 없는 값을 검색할 때 (24를 검색)

x = 24, a[middle] = a[4] = 15이므로 left를 5으로 바꾼 뒤 다시 수행

```
int BinarySearch(int* a, const int x, const int n)
{ // Search the sorted array a[0], ..., a[n-1] for x.
    int left = 0, right = n - 1;
    while (left <= right)
    { // There are more elements
        int middle = (left + right) / 2;
        if (x < a[middle]) right = middle - 1;
        else if (x > a[middle]) left = middle + 1;
        else return middle;
    } // End of while
    return -1; // Not found
}
```

Worst Case는 배열에 없는 값을 검색할 때 (24를 검색)

x = 24, a[middle] = a[5] = 18이므로 left를 6으로 바꾼 뒤 다시 수행

하지만 while (left <= right) 문에서 left = 6, right = 5이므로 while (false), while 문을 빠져나오게 되어 -1을 반환

이 때, 시간 복잡도는?

```
int BinarySearch(int* a, const int x, const int n)
{ // Search the sorted array a[0], ..., a[n-1] for x.
    int left = 0, right = n - 1;
    while (left <= right)
    { // There are more elements
        int middle = (left + right) / 2;
        if (x < a[middle]) right = middle - 1;
        else if (x > a[middle]) left = middle + 1;
        else return middle;
    } // End of while
    return -1; // Not found
}
```


시간 복잡도 계산의 핵심은 "while 문이 얼마나 반복되었는가?"

부분이 얼마나 많이 수행되었냐가 관건 부분은 상수 시간에 수행되므로 O(1)

따라서, 시간 복잡도는
$$T(n) = T\left(\frac{n}{2}\right) + O(1)!$$

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

$$= T\left(\frac{n}{2^2}\right) + 2O(1)$$

$$= \cdots$$

$$= T\left(\frac{n}{2^k}\right) + kO(1)$$

$$n = 2^k, T(1) = O(1)$$
라면

$$T(n) = T(1) + kO(1)$$

$$= (k+1)O(1)$$

$$n = 2^k 0$$
 | □ □ □ $k = \log_2 n$
∴ $T(n) = (\log_2 n + 1)O(1)$
 $= O(\log_2 n) = O(\log n)$

시간복잡도의종류

Name	Complexity class	Running time (T(n))
constant time		O(1)
inverse Ackermann time		O(α(n))
iterated logarithmic time		O(log* n)
log-logarithmic		O(log log n)
logarithmic time	DLOGTIME	O(log n)
polylogarithmic time		poly(log n)
fractional power		O(nc) where 0 < c < 1
linear time		O(n)
"n log star n" time		O(n log* n)
linearithmic time		O(n log n)
quadratic time		O(n ²)
cubic time		O(n ³)
polynomial time	Р	$2^{O(\log n)} = \text{poly}(n)$
quasi-polynomial time	QP	2 ^{poly(log n)}
sub-exponential time (first definition)	SUBEXP	$O(2^{n^{\epsilon}})$ for all $\epsilon > 0$
sub-exponential time (second definition)		2 ^{o(n)}
exponential time (with linear exponent)	E	2 ^{O(n)}
exponential time	EXPTIME	2 ^{poly(n)}
factorial time		O(n!)
double exponential time	2-EXPTIME	2 ^{2poly(n)}

자료구조 시간 복잡도

Data Structure	Time Comp	Time Complexity							Space Complexity
	Average				Worst		Worst		
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
Array	0(1)	0(n)	0(n)	0(n)	0(1)	0(n)	0(n)	0(n)	O(n)
Stack	0(n)	O(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	O(n)
Singly-Linked List	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	0(n)	O(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	O(n)
Skip List	O(log(n))	O(log(n))	0(log(n))	0(log(n))	0(n)	0(n)	0(n)	0(n)	O(n log(n))
Hash Table	-	0(1)	0(1)	0(1)	-	0(n)	0(n)	0(n)	O(n)
Binary Search Tree	0(log(n))	O(log(n))	0(log(n))	0(log(n))	0(n)	0(n)	0(n)	0(n)	O(n)
Cartesian Tree	-	O(log(n))	0(log(n))	0(log(n))	-	0(n)	0(n)	0(n)	0(n)
B-Tree	0(log(n))	O(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	O(n)
Red-Black Tree	0(log(n))	O(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
Splay Tree	-	O(log(n))	0(log(n))	0(log(n))	-	0(log(n))	0(log(n))	0(log(n))	0(n)
AVL Tree	0(log(n))	O(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)

정렬 알고리즘의 시간 복잡도

Algorithm	Time Complexity	Space Complexity		
	Best	Average	Worst	Worst
Quicksort	O(n log(n))	O(n log(n))	O(n^2)	0(log(n))
Mergesort	O(n log(n))	O(n log(n))	O(n log(n))	O(n)
Timsort	O(n)	O(n log(n))	O(n log(n))	O(n)
Heapsort	O(n log(n))	O(n log(n))	O(n log(n))	0(1)
Bubble Sort	O(n)	O(n^2)	O(n^2)	0(1)
Insertion Sort	O(n)	O(n^2)	O(n^2)	0(1)
Selection Sort	O(n^2)	O(n^2)	O(n^2)	0(1)
Shell Sort	O(n)	O((nlog(n))^2)	O((nlog(n))^2)	0(1)
Bucket Sort	O(n+k)	O(n+k)	O(n^2)	O(n)
Radix Sort	O(nk)	O(nk)	O(nk)	O(n+k)

그래프/힙의 시간 복잡도

Node / Edge Management	Storage	Add Vertex	Add Edge	Remove Vertex	Remove Edge	Query
Adjacency list	O(V + E)	0(1)	0(1)	O(V + E)	O(E)	0(v)
Incidence list	O(V + E)	0(1)	0(1)	O(E)	O(E)	O(E)
Adjacency matrix	0(V ^2)	0(V ^2)	0(1)	O(V ^2)	0(1)	0(1)
Incidence matrix	O(V · E)	O(V · E)	O(E)			

Туре	Time Complexity							
	Heapify	Find Max	Extract Max	Increase Key	Insert	Delete	Merge	
Linked List (sorted)	-	0(1)	0(1)	O(n)	O(n)	0(1)	O(m+n)	
Linked List (unsorted)	-	O(n)	O(n)	0(1)	0(1)	0(1)	0(1)	
Binary Heap	0(n)	0(1)	O(log(n))	0(log(n))	0(log(n))	0(log(n))	O(m+n)	
Binomial Heap	-	0(1)	O(log(n))	O(log(n))	0(1)	0(log(n))	O(log(n))	
Fibonacci Heap	-	0(1)	0(log(n))	0(1)	0(1)	0(log(n))	0(1)	

감사합니다.

utilForever@gmail.com

https://github.com/utilForever

Facebook, Twitter: @utilForever