Aerospace Propulsion

Lecture 3

Combustion: Part I

Combustion: Part I

- Stoichiometry
- Thermochemistry
- Adiabatic Flame Temperature

- Total Mass and Moles
 - Total Mass: $M = \sum M_i$ (where M_i is the mass of species i)
 - Total Moles: $N = \sum N_i$ (where N_i is the moles of species i)
- Density and Concentration
 - Density: $\rho = \frac{M}{V}$, $\rho_i = \frac{M_i}{V}$
 - Concentration: $C = \frac{N}{V}$, $C_i = \frac{N_i}{V}$

- Mass Fractions and Mole Fractions
 - Mass Fraction: $Y_i = \frac{M_i}{M} = \frac{\rho_i}{\rho}$
 - $\sum Y_i = \frac{\sum M_i}{M} = 1$
 - Mole Fraction: $X_i = \frac{N_i}{N} = \frac{C_i}{C}$
 - $\sum X_i = \frac{\sum N_i}{N} = 1$
 - Mixture Energy, Enthalpy, Entropy
 - $u = \sum Y_i u_i$ $\bar{u} = \sum X_i \bar{u}_i$
 - $h = \sum Y_i h_i$ $\bar{h} = \sum X_i \bar{h}_i$
 - $s = \sum Y_i s_i$ $\bar{s} = \sum X_i \bar{s}_i$

- Component Molar Mass: \overline{M}_i
 - Average mass of one mole of gas i
 - Molecular gas: sum average molar masses of constituent elements

•
$$\overline{M}_{H} = 1.008 \frac{g}{mol}$$
 $\overline{M}_{C} = 12.01 \frac{g}{mol}$ $\overline{M}_{N} = 14.01 \frac{g}{mol}$ $\overline{M}_{O} = 16.00 \frac{g}{mol}$

• Example: $\overline{M}_{H_2O} = 18.016 \frac{g}{mol}$

- Mixture Molar Mass: M̄
 - Average mass of one mole of gas mixture

•
$$\overline{M} = \sum X_i \overline{M}_i$$
 $\overline{M} = \frac{M}{N} = \frac{\sum M}{N} = \sum \frac{M}{N} = \sum \frac{M}{N} \frac$

•
$$\overline{M} = \frac{1}{\sum_{\overline{M}_i}^{Y_i}}$$
 $\frac{1}{\overline{M}} = \frac{N}{M}$

Converting between mass and mole fractions

•
$$Y_i = X_i \left(\frac{\overline{M}_i}{\overline{M}}\right)$$
 $Y_i = \frac{M_i}{M} = \left(\frac{M_i}{N_i}\right)\left(\frac{N_i}{N}\right)\left(\frac{N_i}{N}\right) = \frac{1}{M_i} \times \frac{1}{M_i}$

•
$$X_i = Y_i \left(\frac{\overline{M}}{\overline{M}_i}\right)$$

- Partial Pressure
 - Pressure of component i of the mixture if it were isolated at same T, V

$$P_{i} = X_{i}p$$

Complete Combustion

Cally

- All fuel is fully converted to <u>major</u> products (e.g., CO₂ and H₂O)
- In general, complete combustion of fuel (containing C, H and, O) and air:

$$C_x H_y O_z + i(O_2 + 3.76N_2) \rightarrow aCO_2 + bH_2O + cN_2 + dO_2$$
Fuel Oxidizer (Air)

Reactants Products

- x, y, z specify the specific fuel being burned
- i specifies the molar ratio between fuel and air
- a, b, c, d are solved for through element conservation

• Example reaction: 1 mole of methane with 3 "moles of air"

$$CH_4 + 3(O_2 + 3.76N_2) \rightarrow aCO_2 + bH_2O + cN_2 + dO_2$$

$$C: 1 = \alpha \qquad \alpha = 1$$

$$H: 4 = 2b \qquad b = 2$$

$$O: 2(3) = 2a + b + 21 \rightarrow d = 1$$

$$N: 3(3.96)2 = 2c \rightarrow C = (1.29)$$

$$CH_4 + 3(O_2 + 3.76N_2) \rightarrow CO_2 + 2H_2O + 11.28N_2 + O_2$$

$$X_{R,CHY} = N_{R,CHY}$$
 N_{R}
 $X_{R,CHY} = 1$
 $1 + 2 + 7.52$

- Stoichiometric Combustion
 - Subcase of complete combustion
 - XR.CH4= 0.0947 Exactly enough oxidizer to react with all fuel

$$CH_4 + i(O_2 + 3.76N_2) \rightarrow aCO_2 + bH_2O + cN_2$$
 $C: 1 = a$
 $f: Y = 2b$
 $c: 2i = 2a + b$
 $c: 4 = 3.76N_2 \rightarrow cO_2 + 2H_2O + 7.52N_2$
 $X_{p, Heo} = 0.19$
 $X_{p, Heo} = 0.19$

- Stoichiometric combustion
 - Exactly enough air to react with all fuel
 - The stoichiometric condition is the dividing line between "lean" and "rich" combustion
- Lean combustion (or fuel-lean combustion)
 - Excess oxidizer (products include oxygen)
- Rich combustion (or fuel-rich combustion)
 - Excess fuel (incomplete combustion)

Complete combustion (in the ideal case)

Incomplete combustion

- Incomplete Combustion
 - Not all fuel is fully converted to major products

- Rich combustion products are more than CO_2 and H_2O (+ O_2/N_2)
 - Primarily includes CO and H_2 , but also many other species
 - More information next lecture
- In practice, is combustion ever actually complete?

No, entropy plays a role

- Fuel-to-Air Ratio
 - Mass ratio of fuel to air: $\frac{M_f}{M_a}$
 - Example for stoichiometric methane-air: 0.058
- Equivalence Ratio ϕ
 - Measure of fuel-to-air ratio relative to stoichiometric mixture

•
$$\phi = \frac{\left(\frac{M_f}{M_a}\right)_{actual}}{\left(\frac{M_f}{M_a}\right)_{stoich}}$$

$$\phi < 1$$
, lean $\phi = 1$, stoichiometric $\phi > 1$, rich

General Reaction Equation

- 1. Start with the stoichiometric equation and compute i_{st} : $C_x H_y O_z + i_{st} (O_2 + 3.76 N_2) \rightarrow aCO_2 + bH_2O + cN_2$ 2. If problem is sto chiometric, compute a, b, c and you are done.
- 3. Otherwise, write a reaction with expected products and your equivalence ratio. For example, for lean combustion:

$$\phi C_x H_y O_z + i_{st} (O_2 + 3.76N_2) \rightarrow aCO_2 + bH_2O + cN_2 + dO_2$$

- 4. Use i_{st} computed above and given ϕ . Compute a, b, c, d.
- 5. For rich combustion, LHS is the same as in 3. but products on RHS will differ (next lecture).

Thermochemistry

- Enthalpy (and Internal Energy)
 - For pure substances, we previously needed to define a reference temperature to define enthalpy

$$h = \int_{T_{ref}}^{T} c_p dT' + h(T_{ref})$$

- Since we only ever care about *relative* enthalpies, we can conveniently set the enthalpy at reference temperature to zero for **pure substances**
- For a gas mixture with composition changes, reference enthalpy matters
 - Not all species have the same reference enthalpy

Thermochemistry

- Enthalpy (and Internal Energy)
 - Therefore, also define a reference relative to some reference species
 - Reference temperature usually chosen as 298K
 - References species usually chosen as $H_2, N_2, O_2, C(s)$
 - Not every table uses the same references!!!
 - For any other non-reference species, enthalpy at reference temperature is relative to these four reference molecules.
 - Enthalpy of formation of species i: h_{fi}

$$h_i(T) = \int_{T_{ref}}^T c_{p,i} dT' + h_{fi} (T_{ref}) = \left[h_i(T) - h_i(T_{ref})\right] + h_{fi} (T_{ref})$$
Sensible Enthalpy of Enthalpy of Formation

Note: We will always work with gaseous water!

Thermochemistry

Water (I	H ₂ O)				$H_2O_1(g)$			
Enthalpy	Reference T	Cemperature =	$= T_{\rm r} = 298.15 {\rm K}$		Standard State Pressure = $p^{\circ} = 0.1 \text{ MPa}$			
		J⋅K ⁻¹ r	nol ⁻¹		$kJ \cdot mol^{-1}$			
<i>T</i> /K	C_p°	S °	$-[G^{\circ}-H^{\circ}(T_{\mathbf{r}})]/T$	$H-H^{\circ}(T_{\mathrm{r}})$	$\triangle_{\mathbf{f}}H$	$\triangle_{\mathbf{f}}G^{\circ}$	log K _f	
0	0.	0.	INFINITE	-9.904	-238.921	-238.921	INFINITE	
100	33.299	152.388	218.534	-6.615	-240.083	-236.584	123.579	
200	33.349	175.485	191.896	-3.282	-240.900	-232.766	60.792	
298.15	33.590	188.834	188.834	0.	-241.826	-228.582	40.047	

- Enthalpy of Formation (h_{fi})
 - For this class, our source will be the JANAF tables (janaf.nist.gov)
 - Enthalpy of formation is the energy to make/break chemical bonds
 - Corresponds to energy required to form molecules from reference molecules at T_{ref}

- Always evaluate this quantity at $T_{ref}!!!$
- Example: Look up enthalpy of formation of H_2O

Thermochemistry

Water (I	Water (H ₂ O) H ₂ O ₁ (g)													
Enthalpy Reference Temperature = T_r = 298.15 K Standard State Pressure = p° = 0.1 M														
		J·K ⁻¹ 1	kJ·mol ⁻¹											
T/\mathbf{K}	C_p°	S°	$-[G^{\circ}-H^{\circ}(T_{\mathbf{r}})]/T$	$H-H^{\circ}(T_{\mathbf{r}})$	$ riangle_{\mathbf{f}} \! m{H}^{\! \circ}$	$\triangle_{\mathbf{f}} G^{\circ}$	$\log K_f$							
0	0.	0.	INFINITE	-9.904	-238.921	-238.921	INFINITE							
100	33.299	152.388	218.534	-6.615	-240.083	-236.584	123.579							
200	33.349	175.485	191.896	-3.282	-240.900	-232.766	60.792							
298.15	33.590	188.834	188.834	0.	-241.826	-228.582	40.047							

- Entropy
 - Evaluate component entropy with partial pressure

$$S_i(T) = S_i(T_{ref}, p_{ref}) + \int_{T_{ref}}^T c_{p,i} \frac{dT'}{T'} - R_i \ln \frac{p_i}{p_{ref}}$$
(astla)

- No need for reference composition for entropy
 - Entropy for all species is zero at entropy reference T and p (T=0 K and P=1 atm)

$$\bullet \ s_i(T_{ref}, p_{ref}) = 0$$

Notation most useful for table lookup:

$$s_{i}(T) = \int_{0K}^{T} c_{p,i} \frac{dT'}{T'} - R_{i} \ln \frac{p_{i}}{p_{ref}} = s_{i}^{0}(T) - R_{i} \ln \frac{p_{i}}{p_{ref}}$$

Adiabatic Flame Temperature

- The adiabatic flame temperature is the theoretical maximum temperature for complete, adiabatic combustion at constant volume or pressure
 - Would we ever actually reach this temperature?

- Recall the first law for an adiabatic system
 - Generally: du = -pdv and dh = vdp
 - Constant volume: du = 0
 - Constant pressure: dh = 0

What burns hotter, a flame at constant pressure or constant volume?

Adiabatic Flame Temperature

- Computing the adiabatic flame temperature (isobaric example)
 - $CH_4 + 2(O_2 + 3.76N_2) \rightarrow CO_2 + 2H_2O + 7.52N_2$ (methane-air, $\phi = 1$)
 - Reactants are at T_0 , while products have been heated to T_{ad}

Adiabatic Flame Temperature

- Computing the adiabatic flame temperature this way is the most accurate, but is an iterative process
 - 1. Guess T_{ad}
 - 2. Look up enthalpies at T_{ad}
 - 3. Compute enthalpy/energy balance
 - 4. Repeat 1-3 until equation is successfully balanced

- What if we assume constant specific heats?
 - $\Delta h_{s,i}(T) = c_p \Delta T$ and AFT can be computed directly