

INTRODUCTION TO 3D GRAPHICS

MUSL2361 - VR ADVENTURE

Teaching Crew

Dr. Martin Choy

Mr. Kenny Cheng

Stephen

Cyrus

and more...

Tentative Teaching Schedule

Aug 20	Getting Started with Three.js	Aug 27	Shader Programming
Aug 22	Lighting and Shading	Aug 29	Virtual Reality
Aug 24	Texture Mapping	Aug 31	Project Demo and Final Assessment

Expectation

- * The course duration is quite tight, honestly.
- * Probably you only got one week for the project development.
- * This limits the complexity and scale of your product.
- * Try to incorporate the skills learnt and produce some innovative prototypes.

Building 3D Application

- * There are many options in the market
 - * Unity or Unity3D
 - * Unreal Engine
 - * Three.js
 - * Open Source, lightweight, better web integration...

Three.js

- * Three.JS is a cross-browser JavaScript library/API which is used to create and animate 3D computer graphics to display in a web browser.
- * It includes features like effects, scenes, cameras, lights, sky, materials, meshes, shaders, animations, and 3D objects.
- * Three.js uses **WebGL** which is JavaScript API used for rendering interactive 3D and 2D graphics in web browsers **without using any plugins**.

Let's check out some demos

https://threejs.org

3D Objects

- * You saw many 3D objects in the demos.
- * Simple geometry (block, sphere) could be directly constructed with Three.js.
- * More complicated object models could be developed with software like Maya, 3ds Max, Blender or Google SketchUp.
- * You can find many free models on the web, e.g., https://free3d.com

What's in a model?

- * Basic representation of object starts with a collection of triangles
- * Each triangle is formed by three vertices.
- * Each vertex, obviously carries the (x, y, z) position values.
- * May carry other vertex attributes including color, normal vector and material information.

3D Coordinates

- * Same (x, y) coordinate system as Cartesian.
- * Positive z points towards you.

Object Transformation

- * Translation
- * Rotation
- * Scaling
 - * Reflection

http://davidscottlyons.com/threejs-intro/#slide-19

Materials

Shininess

Basic light-independent Lambert
Non-shinny objects
like wood, paper

Phong
Shinny objects
like metal and plastic

Normal Material?

- * Why normal material looks so abnormal?
- * In geometry, normal refers to the vector (or simply direction) which is perpendicular to a surface.

Vector

- * In mathematics, physics, and engineering, a vector is a geometric object that has magnitude (or length) and direction.
- * A vector is what is needed to "carry" the point A to the point B.
- * For example, in the 2D space as shown in the figure, the vector which "carries" point O to point A is (2, 3).

Normal Material

* At the pole, the green vector is pointing upward without any tilting in the x nor z directions. Therefore, this vector is (0, 1, 0).

- * Normal material simply uses this vector as the color vector, which defines the (red, green, blue) components.
- * Thus, the pole spot is purely green.

Normal Material and Sphere

- * On a sphere, every normal vector is different. They points to a different direction.
- * Thus, this gives a colorful result.
- * Vector is more often written "vertically".

