Slide03 必做题

Exercise 3.1.1 写出下列语言的正规表达式:

- b) 从右端数第 10 个位置是 1 的所有 0, 1 字符串的集合.
- c) 最多包含两个相继的 1 的所有 0, 1 字符串的集合.

参考解答:

- b) (0+1)* 1 (0+1) (0+1) (0+1) (0+1) (0+1) (0+1) (0+1) (0+1) 或 (0+1)* 1 (0+1)⁹
- c) 对不包含相继的 1的所有 0, 1 字符串的集合,正规表达式可以为:

$$(\epsilon + 1) (0+01) *;$$

包含一对相继的 1, 正规表达式可以为:

(0+10) *11 (0+01) *;

所以,结果正规表达式可以为:

$$(\epsilon+1)(0+01)^* + (0+10)^*11(0+01)^*$$

Exercise 3.1.2 写出下列语言的正规表达式:

b) 0 的个数能够被 5 整除的所有 0, 1 字符串的集合.

参考解答:

正规表达式可以为:

!! Exercise 3.1.3(a)

参考解答:

0* (11*000*) *1*0* 或改写为 0* (1*000*) *1*0*

(设计思路容易想出来)

!! Exercise 3.1.3(b)

参考解答:

(01+10)*

(设计思路:可以从满足条件的 0, 1 串,如 ϵ , 01, 10,…,归纳生成所有长度为 2k 的串,从归纳构造过程可联想到这个结果。) 若严格证明的话,需要从两个方面进行归纳证明:一方面,归纳于满足条件的串的长度,证明这些串属于(01+10)* 定义的语言;另一方面,归纳于 (01+10)*=(01+10)^0 \cup (01+10)^1 \cup (01+10)^2 \cup … \cup (01+10) \in \cup (01+10) \in (01+10) \in \cup (01+10) \in (01+10) \in

*!Exercise 3.1.5

参考解答: 从"课程文件"中下载网页文件, 从中找到参考解答

Exercise 3.4.1 验证下列包含正规表达式的等式

- c) (RS) T = R(ST)
- g) $(\varepsilon + R)^* = R^*$.

参考解答:

- c) 将两个表达式具体化,将 R 替换为 a, 将 S 替换为 b. (RS)T 具体化为 (ab)a, R(ST)具体化为 a(ba), 而 L((ab)a)=L(a(ba))={abc}, 所以原等式成立;
 - g) 将两个表达式具体化,将 R 替换为 a.

 $(\varepsilon+R)$ *具体化为 $(\varepsilon+a)$ *, R*具体化为 a*, 而 $L((\varepsilon+a)^*)=L(a^*)=\{\varepsilon,a,aa,aaa,...\}$, (注: 若严格证明 $L((\varepsilon+a)^*)=L(a^*)$,可以在归纳证明: 对任意 k>=0, $\{\varepsilon,a\}^k=\{a\}^k$ 的基础上进行),所以原等式成立;

Exercise 3.4.2 证明或否证下列关于正规表达式的命题

- b) (RS+R)*R = R (SR+R)*
- d) (R+S)*S = (R*S)*.

参考解答:

b) 将两个表达式具体化,将 R 替换为 a, 将 S 替换为 b. (RS+R)*R 具体化为(ab+a)*a, R (SR+R)*具体化为 a(ba+a)*, 可以证明 L((ab+a)*a)=L(a(ba+a)*)

(注: 同上, 可以先归纳证明:

对任意 k>=0, $\{ab, a\}^k\{a\}=\{a\}\{ba, a\}^k$,而由连接运算对①运算的分配律,可知 $L((ab+a)^*a)=\cup_{k=0,1,2,...}(\{ab, a\}^k\{a\}), L(a(ba+a)^*)=\cup_{k=0,1,2,...}(\{a\}\{ba, a\}^k),$ 由此证得 $L((ab+a)^*a)=L(a(ba+a)^*)$),

所以原等式成立;

d) 将两个表达式具体化,将 R替换为 a,将 S替换为 b. (R+S)*S 具体化为(a+b)*b,(R*S)*具体化为(a*b)*,由于 $\varepsilon \in L((a*b)*)$,而 $\varepsilon \notin L((a*b)*)$,所以原等式不成立.

Slide04 必做题

*!Exercise 2.2.2

参考解答:从"课程文件"中下载网页文件,从中找到参考解答

Exercise 2.2.4 (b)

参考解答:取初态为 q_0 , q_1 代表前一个输入字符为 0, q_2 代表前两个输入字符为子串 00, q_3 代表输入字符串中至少包含一个 000字串,即 q_3 为终态。用转移表或转移图给出结果均可。

	0	1		
\rightarrow q_0	q 1	q o		
q 1	q_2	q o		
q 2	q 3	q o		
* q 3	q 3	q 3		
Start q_0 q_1 q_1 q_2 q_3 q_4 q_2 q_4				

Exercise 2.2.4 (c)

参考解答:取初态为 q_0 , q_1 代表前一个输入字符为 0, q_2 代表前两个输入字符为子串 01, q_3 代表输入字符串中至少包含一个 011字串,即 q_3 为终态。用转移表或转移图给出结果均可。

	0	1
\rightarrow q_0	q 1	q o
q 1	q 1	q 2
q 2	q 1	q 3
* q 3	q 3	q 3

! Exercise 2.2.5(d)

参考解答: 取每个状态为 $q_{i,j}$ 的形式,这里 i,j 满足: $0 \le i \le 4$, $0 \le j \le 2$ 。 $q_{i,j}$ 的含义: 已扫描的输入串中 0 的个数被 5 除余 i, 1 的个数被 3 除余 j。初态为 $q_{0,0}$,终态集只包含状态 $q_{0,0}$ 。

由于状态数目为15,较多,所以只给出转移表:

	0	1
→ * q 0,0	q 1,0	q 0,1
q 0,1	q 1,1	q 0,2
q 0,2	q 1,2	q 0,0
q 1,0	q 2,0	q 1,1
q 1,1	q 2,1	q 1,2
q 1,2	q 2,2	q 1,0
q 2,0	q 3,0	q 2,1
q 2,1	q 3,1	q 2,2
q 2,2	q 3,2	q 2,3
q 3,0	Q 4,0	q 3,1
q 3,1	Q 4,1	q 3,2
q 3,2	Q 4,2	q 3,0
q 4,0	q 0,0	Q 4,1
Q 4,1	q 0,1	q 4,2
Q 4,2	q 0,2	q 4,0

Exercise 2.2.7 Let A be a DFA and q a particular state of A, such that $\delta(q,a) = q$ for all input symbols a. Show by induction on the length of

the input that for all input strings w, $\delta'(q, w) = q$.

参考解答 归纳于 w 的长度.

- 1 设|w| = 0, 即 $w = \varepsilon$. 由定义, $\delta'(q,\varepsilon) = q$
- 2 设| w| = n+1, 且 w = xa, 其中 a 为一个输入符号. 显然,|x| = n. 由归纳假设, $\delta'(q,x)$ = q. 所以, $\delta'(q,w)$ = $\delta'(q,xa)$ = $\delta(\delta'(q,x),a)$ = $\delta(q,a)$ = q.

*!Exercise 2.2.9

参考解答:从"课程文件"中下载网页文件,从中找到参考解答

Exercise 2.3.2

参考解答:注意:对于该题目,不要遗漏了状态 Φ .

		0	1
-	{ p }	{q,s}	{q}
*	{ q }	{r}	{q,r}
*	{q,s}	{r}	{p,q,r}
*	{q,r}	{r,s}	{p,q,r}
	{r}	{s}	{p}
*	{p,q,r}	{q,r,s}	{p,q,r}
*	{r,s}	{s}	{p}
*	{s}	φ	{p}
*	{q,r,s}	{r,s}	{p,q,r}
	ϕ	φ	φ

Exercise 2.3.4 (b)

参考解答:大部分同学没有困难,注意不要遗漏单个字符的情形.如下是一种解法:

$$Q=\{q_s, q_0, q_1, ..., q_9, q_f\}, \sum = \{0, 1, ..., 9\},$$
 初态 q_s ,
终态集 $\{q_f\},$
 $\delta(q_s, a) = \{q_k | k \neq a\} \cup \{q_f\};$
 $\delta(q_k, a) = \{q_k\}, \quad \text{if} \quad k \neq a;$

 $\delta(q_k,a)=\{q_f\},$ if k=a. 其中,k=0,1,...,9.

Exercise 2.3.4 (c)

参考解答:题目要求被接受的字符串中存在两个 0,它们之间的字符数目为 0,4,8,12,...,即 4的倍数。,如下状态图代表一种解法

