Arreglos Unidimensionales

ING. EDGAR GERARDO SALINAS GURRIÓN

¿Qué es un arreglo?

- ► Es una simple secuencia de objetos o datos primitivos que son todos del mismo tipo.
 - Están empaquetados juntos bajo un mismo identificador.

Declaración de un arreglo

Para declarar un arreglo se debe de especificar primero el tipo de datos que almacenará seguido de corchetes vacíos y luego el identificador.

Ejemplos:

Creación de Arreglos

- Como todos los objetos para crearlos es necesario llamar a un constructor, la manera de hacerlo es:
 - new tipoDeDato[tamaño];
- Ejemplos:

Tamaño del arreglo

```
int [] numeros = new int [6];
numeros;
```

Creación e Inicialización de Arreglos

- Existe otra manera de crear un arreglo y además inicializarlo con valores definidos
 - Para hacerlo simplemente se pasa una lista de elementos entre llaves y separado cada elemento con comas, entonces se creará un arreglo de tamaño igual al numero de elementos que se pasaron en la lista
 - Ejemplo:

```
int [] numeros = {8,2,6,4,9,5};
numeros;

Lista de
elementos
```

Acceder al arreglo

Para acceder a un elemento de los contenidos en el arreglo es necesario indicar la posición que queremos acceder, siendo 0 la posición del primer elemento:

```
int [] numeros = {8,2,6,4,9,5};
numeros[3]=10;
```

▶ El arreglo quedaría así:

```
{8,2,6,10,9,5}
```

Arreglos como parámetros

- Para definir que una función va a recibir un arreglo como parámetro solo es necesario indicar el tipo de datos que va a contener el arreglo seguido de corchetes y luego el identificador
- ▶ Ejemplo:

```
public void hola(int[] numeros) {
    System.out.printIn(numeros[0]);
}
```

▶ Se imprimirá el primer elemento del arreglo.

Regresar un arreglo

Si queremos que un método regrese un arreglo entonces se debe de especificar el tipo de dato que contiene el arreglo y luego los corchetes vacíos.

▶ Este método regresa un arreglo de Strings.

Excepcion

- ▶ Si tenemos un arreglo de tamaño n, la posición máxima a la que podemos acceder es n-1.
- Por lo tanto si intentamos acceder a cualquier posición mayor o igual a n, la instrucción arrojara la excepción ArrayIndexOutOfBoundsException

Recorrer un arreglo

Comúnmente se utiliza el siguiente código para recorrer un arreglo:

```
for(int i = 0; i< arreglo.lenght|; i++) {
    arreglo[i]; //Poner la operacion a realizar
}</pre>
```

Arreglos Multidimencionales

ING. EDGAR GERARDO SALINAS GURRIÓN

Arreglo multidimesional

Java no soporta los arreglos multidimensionales pero en su lugar soporta los arreglos de arreglos lo que en la practica nos sirve para lo mismo.

	Column 0	Column 1	Column 2	Column 3
Row 0	a[0][0]	a[0][1]	a[0][2]	a[0][3]
Row 1	a[1][0]	a[1][1]	a[1][2]	a[1][3]
Row 2	a[2][0]	a[2][1]	a[2][2]	a[2][3]

Arreglos Bidimensionales

- Los arreglos bidimensionales comúnmente son utilizados para representar tablas que están compuestos por filas y columnas.
- ► El primer identificador es para las filas y el segundo para las columnas.

arreglo[fila][columna];

Inicialización

Al igual que los arreglos unidimensionales los arreglos multidimensionales pueden inicializarse en la declaración de manera que se anidan los arreglos.

▶ Ejemplo:

	[][0]	[][1]
[0][]	1	2
[1][]	3	4

Diferente longitud de filas

La manera en que Java representa los arreglos multidimensionales es muy flexible, lo que permite tener filas de diferentes longitudes.

int[][] b ={ $\{1,2\},\{3,4,5\}\}$;

1	2	
3	4	5

Creación con new

Al igual que los arreglos unidimensionales es posible definir la longitud del arreglo sin tener que poner cuales son los elementos que van a ir en el arreglo.

Ejemplos

► Ejemplo 1:

```
int[][] b;
b= new int[2][3];
```


► Ejemplo 2:

```
int[][] c;
c=new int[2][];
c[0]=new int[5];
c[1]=new int[3];
```


Acceder a un elemento del arreglo

```
int[][] c;
c=new int[2][];

c[0]=new int[5];
c[1]=new int[3];
c[0][2]=9;
```


Recorrer un arreglo bidimensional

```
for(int i=0; i<arreglo.length; i++) {
    for(int j=0; j<arreglo[ i ].length; j++) {
        arreglo[ i ][ j ];
    }
}</pre>
```

Actividad

Implementar los siguientes métodos en la clase PruebaArreglos:

- int suma(int[] arreglo)
- int maximo(int[] arreglo)
- int minimo(int[] arreglo)
- double promedio(int[] arreglo)
- Hacer un método llamado imprime que reciba un arreglo bidimensional de Strings y que imprima en pantalla los elementos del arreglo.

"cat"	"dog"	"lizard"
"bear"	"shark"	"snake"

cat dog lizard bear shark snake

Actividad

- Escribir el método main el cual va a recibir parámetros de la línea de comandos.
- Los 2 primeros parámetros van a indicar el numero de filas y columnas y los demás parámetros van a indicar las palabras que contendrá el arreglo.

```
d:\>java EjemploArreglos 23 ABCDEF
ABC
DEF
d:\>
```