CURSO BÁSICO DE FÍSICA TEÓRICA

Volumen 1: Mecánica Clásica

E.F. Lavia

versión 0.1

7 de julio de 2019

Contenidos

1	Con	ceptos de mecánica newtoniana	1
	1.1	Leyes de conservación	1
		1.1.1 Momento lineal	1
		1.1.2 Momento angular	3
		1.1.3 Trabajo y energía	7
	1.2	Introducción a la formulación de Lagrange	15
	1.3	Grados de libertad y vínculos	16
		1.3.1 Clasificación de los vínculos	18
	1.4	Velocidad y aceleración en coordenadas cilíndricas y esféricas .	20
		1.4.1 Coordenadas cilíndricas	21
		1.4.2 Coordenadas esféricas	22
	1.5	Transformación entre sistemas en rotación	23
2	Mec	ánica lagrangiana	27
	2.1	Principio de los trabajos virtuales	27
		2.1.1 Comentario vínculos	29
	2.2	Construcción del lagrangiano	29
		2.2.1 Algunos ejemplos del lagrangiano	34
	2.3	Invariancia del lagrangiano ante adición de una derivada total .	37
	2.4	Momentos conjugados y coordenadas cíclicas	39
	2.5	Momentos canónicamente conjugados y traslaciones rígidas	40
	2.6	Momentos canónicamente conjugados y rotaciones rígidas	42
	2.7	Energía cinética de un sistema	44
	2.8	Energía cinética de un sistema de partículas	46
	2.9	Trabajo en un sistema de partículas	47
	2.10	Lagrangiano cíclico en el tiempo	47
	2.11	Energía cinética y el hamiltoniano	49
	2.12	Principio de acción mínima	50
	2.13	Aplicaciones del principio de acción mínima	58
		2.13.1 Billares [otro título?]	59
		2.13.2 Minimización del camino entre dos puntos	60

		2.13.3 Acción mínima ejemplos 62
	2.14	Multiplicadores de Lagrange 65
		2.14.1 Soluciones aproximadas
		2.14.2 Oscilador armónico
	2.15	Potenciales dependientes de la velocidad
	2.16	Cambio de gauge en potenciales
3	Simo	etrías 80
	3.1	Constantes de movimiento y simetrías 80
		3.1.1 Simetrías en el lagrangiano 83
		3.1.2 Rotación en 3D infinitesimal 83
	3.2	El teorema de Noether
		3.2.1 Rotación infinitesimal 85
		3.2.2 Rotación en 3D infinitesimal
4	Fuer	rzas centrales 90
	4.1	Fuerzas centrales
	4.2	Solución a partir de las ecuaciones de Euler-Lagrange 92
	4.3	Velocidad areolar
	4.4	Las fuerzas centrales y las leyes de Kepler
	4.5	Vector de Runge-Lenz
	4.6	Orbitas de potenciales centrales
	4.7	Reducción del problema de dos cuerpos a uno equivalente 100
	4.8	Dispersión
	4.9	Dispersión por dos cuerpos
	4.10	Scattering
	4.11	Dispersión por potenciales infinitos
5	Pequ	ueñas oscilaciones 113
	5.1	Oscilaciones viscosas
6	Cue	rpos rígidos 118
	6.1	Cuerpos rígidos
		6.1.1 Grados de libertad de un cuerpo rígido
		6.1.2 Velocidad de un cuerpo rígido
		6.1.3 Unicidad de la velocidad de rotación
		6.1.4 Eje instantáneo de rotación
	6.2	Ángulos de Euler
	6.3	Energía cinética del cuerpo rígido
	6.4	La peonza simétrica
	6.5	Teorema de Steiner
	6.6	Sistemas no inerciales

Α	Rota	ación en el plano	154
	9.4	Potencial electromagnético	153
	9.3	Transformación canónica infinitesimal	152
	9.2	Variables ángulo-acción	
	9.1	Preservación del volumen en una transformación canónica	
9	Ecua	aciones de Hamilton-Jacobi	147
	8.2	Corchetes de Poisson	146
	8.1	Funciones generatrices	
8	Trar		l 45
	7.1	Transformación canónica del hamiltoniano	144
7	Ecua	aciones de Hamilton	l 43
	6.10	Movimiento de un cuerpo asimétrico	139
	6.9	El tensor de inercia	136
	6.8	Sistemas rotantes	133
		6.7.1 Lagrangiano en un sistema rotante	
	0.7	Lagrangiano de un sistema no mercial que se traslada	

Prefacio

Al momento de escribir este volumen tomo conciencia de la lejanía que me separa de aquel que fui yo al tomar las notas originales del curso de mecánica clásica que dictase el profesor Alejandro Fendrik en 2005.

En cierto sentido creo que esa distancia fue beneficiosa porque me situó casi en la perspectiva de un extranjero que por primera vez tuviera que recorrer esas tierras.

La mecánica clásica forma la estructura basal sobre la cual se construye todo el resto de la física teórica. En ella uno empieza a manipular ecuaciones más
complicadas y aprende formalismos nuevos que le permitirán atacar viejos y
nuevos problemas con otra mirada. Mucho de lo que aquí se ve se utiliza después en física menos intuitiva y más abstracta, como por ejemplo la mecánica
cuántica y la relatividad general, donde es más difícil lograr una intuición física
y pensar las cosas en términos de modelos mecánicos. Si esta intuición puede
ser ganada aquí, en mecánica clásica, ello redundará en un mejor soporte mental para los próximos pasos.

Capítulo 1

Conceptos de mecánica newtoniana

Tal vez sea una simplificación, pero no una muy terrible, decir que el curso de mecánica clásica busca reemplazar la mecánica basada en las ecuaciones de Newton.

$$F = ma$$

por un *formalismo* más poderoso y que se podrá aplicar luego a otros campos. Este formalismo constituye el corazón de la mecánica clásica.

El contenido de este capítulo forma un núcleo básico de los resultados de le mecánica newtoniana que necesitaremos tener a mano para lo subsiguiente (leyes de conservación del momento lineal, momento angular y energía) así como ciertos rudimentos mínimos de la matemática usual en la resolución de los problemas.

1.1 Leyes de conservación

Repasaremos a continuación las leyes de conservación fundamentales de la mecánica para sistemas de partículas.

1.1.1 Momento lineal

La segunda ley de Newton se podía escribir en función del momento lineal de una partícula de masa m como

$$\frac{d\boldsymbol{p}}{dt} = \boldsymbol{F}$$

siendo p = mv el momento de la partícula y F la fuerza total que actuaba sobre la misma. Si el resultado de las fuerzas sobre la partícula era nulo entonces se tiene que p = cte. (el momento lineal es una constante de movimiento).

En el caso de un sistema de N partículas como el mostrado en la Figura 1.1 el momento total del sistema es la suma de los momentos individuales, es decir

$$\boldsymbol{P} = \sum_{i=1}^{N} \boldsymbol{p}_i = \sum_{i=1}^{N} m_i \boldsymbol{v}_i = \sum_{i=1}^{N} m_i \frac{d\boldsymbol{x}_i}{dt}$$

luego la segunda ley para el sistema serán las N ecuaciones

$$\frac{d\mathbf{P}}{dt} = \sum_{i=1}^{N} m_i \frac{d^2 \mathbf{x}_i}{dt^2} = \sum_{i=1}^{N} \mathbf{F}_i$$

donde \boldsymbol{F}_i es la fuerza total sobre la partícula i-ésima que puede descomponerse según

$$oldsymbol{F}_i = oldsymbol{F}_i^{ ext{ext}} + \sum_{j
eq i}^N oldsymbol{F}_{ij}$$
 (1.1)

siendo F_i^{ext} las fuerzas debidas a agentes externos y F_{ij} la fuerza sobre la partícula i debido a la partícula j.

 $\textbf{Figura 1.1} \quad \text{Sistema de partículas de masas } m_i \text{ con sus correspondientes vectores} \\ \text{de posición } \boldsymbol{x}_i. \text{ La partícula } m_1 \text{ tiene además indicado su vector velocidad } \boldsymbol{v}_1.$

Entonces

$$\frac{d\boldsymbol{P}}{dt} = \sum_{i=1}^{N} m_i \frac{d^2 \boldsymbol{x}_i}{dt^2} = \sum_{i=1}^{N} \boldsymbol{F}_i^{\text{ext}} + \sum_{i=1}^{N} \sum_{j \neq i}^{N} \boldsymbol{F}_{ij}$$

pero el último término del RHS es nulo puesto que por cada sumando F_{ij} también aparece el sumando F_{ji} y por acción y reacción estas fuerzas tienen la

misma dirección y sentido opuesto, i.e.

$$F_{ij} = -F_{ji}$$
.

De esta forma la ley de conservación para el sistema es

$$\frac{d\mathbf{P}}{dt} = \sum_{i=1}^{N} \mathbf{F}_{i}^{\text{ext}} = \mathbf{F}_{\text{total}}^{\text{ext}}$$

y el momento P del sistema se conserva si la resultante de todas las fuerzas externas es nula.

Definiendo el vector de posición del centro de masa como

$$\boldsymbol{x}_{\mathrm{cm}} = \frac{\sum_{i} m_{i} \boldsymbol{x}_{i}}{\sum_{i} m_{i}} = \frac{\sum_{i} m_{i} \boldsymbol{x}_{i}}{M}$$

donde M es la masa del sistema, se tiene el resultado clásico de que

$$\frac{d}{dt}(M\boldsymbol{x}_{\rm cm}) = \sum_{i=1}^{N} m_i \boldsymbol{v}_i = M\boldsymbol{v}_{\rm cm} = \boldsymbol{P},$$

el sistema como un todo tiene un momento total que puede asociársele al de una única partícula *centro de masa* de masa M y que se mueve con velocidad $v_{\rm cm}$.

Si P se conserva, entonces $v_{\rm cm}$ es una constante, el sistema posee un punto (el centro de masas) que se mueve con velocidad constante sin importar qué tan complejo sea el movimiento del conjunto total.

1.1.2 Momento angular

El momento angular de una partícula con momento lineal $m{p}$ es

$$\boldsymbol{l} = \boldsymbol{x} \times \boldsymbol{p} = m \ \boldsymbol{x} \times \boldsymbol{v}.$$

En la Figura 1.2 se ilustra sobre la trayectoria de una partícula el vector momento angular. La variación temporal del momento angular,

$$\frac{d\boldsymbol{l}}{dt} = \frac{d\boldsymbol{x}}{dt} \times \boldsymbol{p} + \boldsymbol{x} \times \frac{d\boldsymbol{p}}{dt}$$

se reduce al segundo término, puesto que dx/dt = v es paralela a p, y se tiene finalmente el resultado conocido

$$\frac{d\mathbf{l}}{dt} = \mathbf{x} \times \frac{d\mathbf{p}}{dt} = \mathbf{x} \times \mathbf{F} = \mathbf{\tau}$$
 (1.2)

Figura 1.2 Una partícula de masa m se desplaza en una trayectoria. En un punto \boldsymbol{x} de la misma se indican su velocidad \boldsymbol{v} , su momento angular \boldsymbol{l} y la fuerza \boldsymbol{F} a la que está sometida y el torque resultante $\boldsymbol{\tau}$ por esa fuerza. El momento angular es perpendicular al plano (en marrón) definido por los vectores \boldsymbol{x} y \boldsymbol{v} mientras que el torque lo es al plano (en gris) definido por \boldsymbol{x} y \boldsymbol{F} .

de que la variación del momento angular es el torque au causado por la fuerza $m{F}$ que actúa sobre la partícula.

Dado que la definición de \boldsymbol{l} y de $\boldsymbol{\tau}$ implica el vector de posición \boldsymbol{x} se sigue que ambas magnitudes dependen de la elección del origen del sistema de coordenadas. Es decir que una determinación de \boldsymbol{l} y $\boldsymbol{\tau}$ tiene sentido únicamente con respecto a un cierto origen de coordenadas.

De la ecuación (1.2) se deduce que si la fuerza es siempre paralela al vector de posición de una partícula ($F \parallel x$) entonces el momento angular l se conserva puesto que el torque es $\tau=0$ en ese caso. Es lo que se llama una fuerza central.

Cambiar en el dibujo f por F. Igualmente habría que ser consistente con qué quiero decir para las mayúsculas y qué para las minúsculas.

Habría que destacar lo de fuerza central con un dibujo. Es importante.

Momento angular para un sistema de partículas

Si ahora tenemos un sistema de N partículas el momento angular correspondiente (con respecto a un dado origen de coordenadas) será

$$oldsymbol{L} = \sum_{i=1}^{N} \, oldsymbol{x}_i imes oldsymbol{p}_i$$

De manera equivalente, la variación temporal es

$$\frac{d\boldsymbol{L}}{dt} = \sum_{i=1}^{N} \boldsymbol{x}_i \times \boldsymbol{F}_i$$

y si utilizamos la descomposición (1.1) para la fuerza F_i resulta

$$rac{doldsymbol{L}}{dt} = \sum_{i=1}^{N} oldsymbol{x}_i imes oldsymbol{F}_i^{ ext{ext}} + \sum_{i=1}^{N} \sum_{j
eq i}^{N} oldsymbol{x}_i imes oldsymbol{F}_{ij}$$

Es claro¹ que el segundo término puede expresarse de manera equivalente como

$$\sum_{i=1}^{N} \sum_{j \neq i}^{N} \boldsymbol{x}_{i} \times \boldsymbol{F}_{ij} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j \neq i}^{N} \left[\boldsymbol{x}_{i} \times \boldsymbol{F}_{ij} + \boldsymbol{x}_{j} \times \boldsymbol{F}_{ji} \right]$$

y aceptando que las fuerzas internas son pares acción-reacción se tiene

$$\sum_{i=1}^{N}\sum_{j \neq i}^{N}oldsymbol{x}_{i} imes oldsymbol{F}_{ij} = rac{1}{2}\sum_{i=1}^{N}\sum_{j
eq i}^{N}\left[oldsymbol{x}_{i} - oldsymbol{x}_{j}
ight] imes oldsymbol{F}_{ij},$$

de manera que la derivada del momento angular total es

$$\frac{d\boldsymbol{L}}{dt} = \sum_{i=1}^{N} \boldsymbol{x}_{i} \times \boldsymbol{F}_{i}^{\text{ext}} + \frac{1}{2} \sum_{i=1}^{N} \sum_{j\neq i}^{N} \left[\boldsymbol{x}_{i} - \boldsymbol{x}_{j} \right] \times \boldsymbol{F}_{ij}$$
(1.3)

La conservación de L,

$$\frac{d\mathbf{L}}{dt} = 0$$

requiere entonces que las fuerzas externas sean centrales, lo cual anula el primer término en (1.3), y que se verifique

$$F_{ij} \parallel (\boldsymbol{x}_i - \boldsymbol{x}_j),$$

es decir que la fuerza sobre i ejercida por la partícula j tenga la dirección del vector que une las dos partículas, para anular el segundo término de (1.3).

Esto establece lo que se llama un "principio de acción y reacción fuerte"; las fuerzas son iguales y opuestas (de esto se trata el principio de acción y reacción), pero además colineales. Dadas dos partículas del sistema cualesquiera con posiciones $\boldsymbol{x}_i, \boldsymbol{x}_j$ y de masas m_i, m_j , como se muestra en la Figura 1.3, la fuerza \boldsymbol{F}_{ij} sobre i debido a j debe estar contenida en la dirección del vector $\boldsymbol{x}_i - \boldsymbol{x}_j$ lo cual le otorga las dos posibilidades indicadas por las flechas rojas gruesas. Para la fuerza \boldsymbol{F}_{ji} el razonamiento es, por supuesto, idéntico.

La existencia de un principio de acción y reacción fuerte sobreviene [es una consecuencia?] de la naturaleza puntual de los cuerpos. De no ser puntuales se tendrá principio de acción y reacción a secas.

Acá hay más para extraer: poner un gráfico con lo que no puede pasar. Poner un código de colores para las flechas, puesto que si son iguales y opuestas las fuerzas están hermanadas las externas por un lado y las internas por el otro.

¹Nota 1.5

Figura 1.3 Principio de acción y reacción fuerte para dos partículas de masas m_i y m_j .

Existe otra descomposición interesante para el momento angular ${\pmb L}$ de un sistema de N partículas en términos de sus distancias al centro de masas.

Para cada partícula i-ésima con posición \boldsymbol{x}_i y velocidad \boldsymbol{v}_i definimos una coordenada \boldsymbol{x}_i' y una velocidad \boldsymbol{v}_i' en términos de la posición \boldsymbol{X} y velocidad \boldsymbol{V} del centro de masa, ver Figura 1.4, de acuerdo a

$$oldsymbol{x}_i = oldsymbol{X} + oldsymbol{x}_i' \qquad oldsymbol{v}_i = oldsymbol{V} + oldsymbol{v}_i',$$

es decir que consideramos coordenadas respecto al centro de masa.

Figura 1.4

En términos de estas nuevas variables primadas el momento angular es

$$\boldsymbol{L}_O = \sum_{i=1}^N \boldsymbol{x}_i \times \boldsymbol{p}_i = \sum_{i=1}^N (\boldsymbol{X} + \boldsymbol{x}_i') \times m_i (\boldsymbol{V} + \boldsymbol{v}_i')$$

Actualizar el X_{cm} en el gráfico y poner el origen O.

$$\boldsymbol{L}_O = \sum_{i=1}^N (\boldsymbol{X} \times m_i \boldsymbol{V} + \boldsymbol{X} \times m_i \boldsymbol{v}_i' + \boldsymbol{x}_i' \times m_i \boldsymbol{V} + \boldsymbol{x}_i' \times m_i \boldsymbol{v}_i')$$

Como la posición del centro de masa es

$$\boldsymbol{X} = \frac{1}{M} \sum_{i=1}^{N} m_i \boldsymbol{x}_i \tag{1.4}$$

se tendrá

$$M\boldsymbol{X} = \sum_{i=1}^{N} m_i \boldsymbol{x}_i = \sum_{i=1}^{N} m_i (\boldsymbol{X} + \boldsymbol{x}_i') = \boldsymbol{X} \sum_{i=1}^{N} m_i + \sum_{i=1}^{N} m_i \boldsymbol{x}_i'$$

pero el primer término del RHS es $M\boldsymbol{X}$ de manera que

$$\sum_{i=1}^{N} m_i \mathbf{x}_i' = 0. {(1.5)}$$

La velocidad del centro de masa es la derivada temporal de (1.4), i.e.

$$V = \frac{1}{M} \sum_{i=1}^{N} m_i \frac{dx_i}{dt} = \frac{1}{M} \sum_{i=1}^{N} m_i v_i$$
 (1.6)

Con estos resultados volvemos a la expresión del momento que resulta

$$\boldsymbol{L}_O = \boldsymbol{X} \times M\boldsymbol{V} + \boldsymbol{X} \times \left(\sum_{i=1}^N m_i \boldsymbol{v}_i'\right) + \left(\sum_{i=1}^N m_i \boldsymbol{x}_i'\right) \times \boldsymbol{V} + \sum_{i=1}^N \boldsymbol{x}_i' \times m_i \boldsymbol{v}_i',$$

pero debido a (1.5) y a su derivada temporal (que resulta nula) el segundo y tercer sumando de la expresión anterior son nulos y entonces

$$\boldsymbol{L}_O = (\boldsymbol{X} \times M\boldsymbol{V}) + \sum_{i=1}^N (\boldsymbol{x}_i' \times m_i \boldsymbol{v}_i')$$

siendo el primer término del RHS el momento angular orbital y el segundo el momento angular de spin.

1.1.3 Trabajo y energía

Consideremos una partícula de masa m que se mueve sobre una cierta trayectoria suave $\boldsymbol{x}(t)$, ver Figura 1.5, debido a la acción de una fuerza \boldsymbol{F} . Su velocidad \boldsymbol{v} es en todo momento tangente a la trayectoria y define de esta forma

Figura 1.5 Partícula de masa m que se mueve sobre una trayectoria $\boldsymbol{x}(t)$ bajo la acción de una fuerza \boldsymbol{F} (izquierda). En el detalle de la derecha se muestra la descomposición del movimiento en direcciones tangencial \hat{t} y normal \hat{n} .

un versor \hat{t} colineal con la misma. Esto define un plano, mostrado en la parte derecha de la figura, para el cual todo vector perteneciente al mismo es normal a la trayectoria. Elegimos un versor \hat{n} que está en la dirección de la proyección de \boldsymbol{F} sobre dicho plano.

Descomponiendo la fuerza y la velocidad en estas dos direcciones, se tiene

$$\mathbf{F} = F^t \, \hat{t} + F^n \, \hat{n} \qquad \qquad \mathbf{v} = v \, \hat{t}$$

de manera que la segunda ley de Newton,

$$m\,\frac{d\boldsymbol{v}}{dt}=\boldsymbol{F},$$

para la componente \hat{t} resulta

$$m\frac{dv}{dt} = F^t$$

Involucrando al diferencial de arco ds = |dx| a lo largo de la trayectoria, la ecuación anterior se puede escribir como

Notemos que el versor desplazamiento ds camina por la trayectoria.

$$m dv \frac{ds}{dt} = m v dv = F^t ds = \mathbf{F} \cdot d\mathbf{x}, \tag{1.7}$$

donde la última igualdad es posible en virtud de que $F^n \perp d x$ por construcción.

Podemos integrar ambos miembros de (1.7) entre ${m x}(t_0)\equiv {m x}_0$ y su correspondiente velocidad $v(t_0)\equiv v_0$ hasta ${m x}_1,{m v}_1$,

$$m\int_{v_0}^{v_1} v \, dv = \int_{oldsymbol{x}_0}^{oldsymbol{x}_1} oldsymbol{F} \cdot doldsymbol{x}$$

obteniendo

$$\frac{1}{2}mv^2\Big|_{v_0}^{v_1} = W_{\boldsymbol{x}_0 \to \boldsymbol{x}_1}$$

que es el llamado teorema de las fuerzas vivas para una partícula de masa m y nos dice que la variación de energía cinética en la trayectoria es igual al trabajo de todas las fuerzas que actúan sobre la misma, i.e.

$$T_1 - T_0 = \Delta T_{\boldsymbol{x}_0 \to \boldsymbol{x}_1} = W_{\boldsymbol{x}_0 \to \boldsymbol{x}_1}. \tag{1.8}$$

En el caso particular en que la fuerza sea normal a la trayectoria en todo el intervalo $[t_0,t_1]$ se tendrá $\Delta T=0$, es decir que se conserva la energía cinética a lo largo de toda la trayectoria. Sólo las componentes tangenciales de la fuerza producen trabajo y esto es solamente debido a que este proviene de un producto escalar (una proyección); las componentes normales no hacen trabajo.

Si la fuerza proviene de un potencial², se tiene

$$\mathbf{F} = -\nabla V \tag{1.9}$$

y podemos expresar en coordenadas cartesianas esta equivalencia (1.9)

$$\boldsymbol{F} = -\left(\frac{\partial V}{\partial x_1}, \frac{\partial V}{\partial x_2}, \frac{\partial V}{\partial x_3}\right)$$

y evaluar la integral del trabajo para obtener

$$W = \int_{\boldsymbol{x}_0}^{\boldsymbol{x}_1} \boldsymbol{F} \cdot d\boldsymbol{x} = \int_{t_0}^{t_1} \boldsymbol{F}(\boldsymbol{x}[t]) \cdot \dot{\boldsymbol{x}} \, dt = -\int_{t_0}^{t_1} \sum_{i=1}^3 \left[\frac{\partial V}{\partial x_i} \frac{dx_i}{dt} \right] \, dt = V_0 - V_1$$

donde la última igualdad se obtiene por integración de un gradiente. Esto significa que la integral es independiente de la trayectoria $x_0 \to x_1$.

Entonces, volviendo a (1.8)

$$\overbrace{T_1-T_0}^{\text{Vale siempre}} = \underbrace{W_{0\rightarrow 1}}_{\text{Si F proviene de potencial}} = V_0 - V_1$$

y pasando de miembros se tiene

$$(T_1 + V_1) = (T_0 + V_0)$$

que viene a significar que la cantidad E=T+V (la energía mecánica) se conserva si la fuerza \boldsymbol{F} proviene de un potencial V. Por dicha razón, las fuerzas

Falta meter lo de

$$m\frac{v^2}{\rho} = F_n$$

²El menos delante del gradiente es una convención, como se verá a continuación.

para las cuales se verifica (1.9) se llaman fuerzas conservativas. En una dimensión, cualquier F(x) se puede hacer provenir de un potencial si verifica ser integrable, es decir si podemos definir

$$V(x) = \int F(x) dx. \tag{1.10}$$

Para tres dimensiones no cualquier F(x) es conservativa.

El signo negativo en (1.9) hace que la cantidad conservada sea T+V en lugar de T-V. Tiene más sentido físico que se conserve una suma de energías antes que una resta de las mismas.

Trabajo y energía para un sistema de partículas

Para un sistema de N partículas la energía cinética simplemente es la suma de las energías cinéticas de cada partícula,

$$T = \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2.$$

Utilizando la expresión en función del centro de masa, $oldsymbol{v}_i = oldsymbol{V} + oldsymbol{v}_i'$ en la energía se llega a

$$T = \frac{1}{2}MV^2 + \frac{1}{2}\sum_{i=1}^{N} m_i {v'_i}^2,$$

donde el primer término es la energía cinética de traslación del centro de masa y el segundo término (la sumatoria) es la energía cinética interna. En el caso de dos cuerpos la anterior expresión se reduce a

$$T = \frac{1}{2}MV^2 + \frac{1}{2}\mu v_r^2$$

donde μ es la masa reducida y v_r es la velocidad relativa.

La definición del trabajo, en cambio, es un poco más complicada. Entre dos instantes de tiempo t y $t+\Delta t$ el sistema está caracterizado por las N posiciones $\{\boldsymbol{x}_i\}$ de todos sus integrantes y cada partícula experimenta un desplazamiento $\Delta \boldsymbol{x}_i$ asociado con la fuerza que actúa sobre ella.

En principio la fuerza sobre cada partícula puede dividirse en interna (debida a las otras partículas del sistema) y externa (debida a agentes exteriores al sistema), lo cual permite escribir

$$\boldsymbol{F} = \boldsymbol{F}^{\mathrm{int}} + \boldsymbol{F}^{\mathrm{ext}}$$

y consecuentemente

$$W = W^{\rm int} + W^{\rm ext}$$

Las conservaciones de las cosas permiten reducir la cantidad de integraciones necesarias. El W entre dos instantes de tiempo t_0 y t_1 corresponde ahora a la integral entre la configuración del sistema a t_0 dada por $\{x_i(t_0)\}$ hasta la configuración $\{x_i(t_1)\}$, las cuales etiquetaremos como 0 y 1 respectivamente.

Entonces el trabajo externo es

$$W^{ ext{ext}} = \sum_{i=1}^N \int_0^1 oldsymbol{F}_i^{ ext{ext}} \cdot doldsymbol{x}_i$$

siendo ${m F}_i^{
m ext}$ la fuerza externa sobre la partícula i. Para que valga la conservatividad es necesario que

- La fuerza sobre i dependa solamente de las coordenadas ${\pmb x}_i$ de esa partícula. Es decir:

$$F_i = F_i(x_i)$$

• Se verifique para cada F_i

$$\nabla \times \mathbf{F}_i = 0$$
,

donde el operador ∇ se toma con respecto a las coordenadas de la partícula i en cuestión.

 Figura 1.6 Elementos implicados en la evaluación del trabajo interno $W^{\rm int}$ para un sistema de partículas.

Estas condiciones permiten escribir la fuerza como el gradiente de un potencial y entonces el trabajo externo es la suma de las diferencias entre las energías potenciales de las partículas entre las configuraciones 0 y 1, o bien

$$W^{ ext{ext}} = -\sum_{i=1}^{N} \left. \Delta V_i(oldsymbol{x}_i)
ight|_0^1$$

El rozamiento depende de la velocidad, entonces no es conservativo.

Arreglar flechas en este gráfico.

El trabajo interno corresponde a la suma sobre cada partícula i de la fuerza ejercida por todas las otras partículas $j \neq i$ del sistema, es decir

$$W^{ ext{int}} = \sum_{i=1}^{N} \sum_{j \neq i}^{N} \int_{0}^{1} \boldsymbol{F}_{ij} \cdot d\boldsymbol{x}_{i}$$
 (1.11)

donde \mathbf{F}_{ij} es la fuerza sobre i ejercida por j. La restricción en la sumatoria sobre j descarta la suma de autofuerzas. Es claro que la expresión (1.11) se puede escribir equivalentemente como

$$\frac{1}{2}\sum_{i=1}^{N}\sum_{j\neq i}^{N}\int_{0}^{1}\left(\boldsymbol{F}_{ij}\cdot d\boldsymbol{x}_{i}+\boldsymbol{F}_{ji}\cdot d\boldsymbol{x}_{j}\right)$$

y si ahora aceptamos que vale el principio de acción y reacción

¿nota final con la justificación de que se puede escribir así?

$$\frac{1}{2} \sum_{i=1}^{N} \sum_{j \neq i}^{N} \int_{0}^{1} \boldsymbol{F}_{ij} \cdot \left(d\boldsymbol{x}_{i} - d\boldsymbol{x}_{j} \right).$$

Definiendo luego un vector de separación relativa $r_{ij} = x_i - x_j$ se tiene que las integrales son de la forma

$$\int m{F}_{ij} \cdot dm{r}_{ij}$$

y sabemos, por analogía con lo anterior, que si F_{ij} depende del vector de separación r_{ij} y es de rotor nulo entonces las fuerzas internas son conservativas. Entonces.

$$\label{eq:fij} \boldsymbol{F}_{ij} = -\boldsymbol{\nabla}_i V(\boldsymbol{r}_{ij}) \qquad \boldsymbol{F}_{ji} = -\boldsymbol{\nabla}_j V(\boldsymbol{r}_{ij})$$

y como vale acción y reacción $F_{ij} = -F_{ji}$ esto lleva a que $\nabla_i = \nabla_j$.

Un ejemplo numérico aclarará esta relación. Sea un potencial que depende de la distancia entre dos partículas, $r=|{m r}_{ij}|$, es decir que si i=2 y j=1 se tendrá

$$r = \sqrt{(x_2 - x_1)^2 + (z_2 - z_1)^2 + (z_2 - z_1)^2},$$

luego,

$$\begin{split} \boldsymbol{F}_{21} &= -\boldsymbol{\nabla}_2 V = -\frac{\partial V}{\partial r} \left(\frac{\partial r}{\partial x_2} \hat{\boldsymbol{x}} + \frac{\partial r}{\partial y_2} \hat{\boldsymbol{y}} + \frac{\partial r}{\partial z_2} \hat{\boldsymbol{z}} \right) = \\ &\qquad -\frac{\partial V}{\partial r} \frac{1}{r} \left((x_2 - x_1) \hat{\boldsymbol{x}} + (y_2 - y_1) \hat{\boldsymbol{y}} + (z_2 - z_1) \hat{\boldsymbol{z}} \right) \end{split}$$

Un potencial que depende solo de la distancia entre dos partículas $|r_{ij}|$ cumple PAR

y, en cambio,

$$\begin{split} \boldsymbol{F}_{12} &= -\boldsymbol{\nabla}_1 V = -\frac{\partial V}{\partial r} \left(\frac{\partial r}{\partial x_1} \hat{\boldsymbol{x}} + \frac{\partial r}{\partial y_1} \hat{\boldsymbol{y}} + \frac{\partial r}{\partial z_1} \hat{\boldsymbol{z}} \right) = \\ &\qquad -\frac{\partial V}{\partial r} \frac{1}{r} \left(-(x_2 - x_1) \hat{\boldsymbol{x}} - (y_2 - y_1) \hat{\boldsymbol{y}} - (z_2 - z_1) \hat{\boldsymbol{z}} \right) \end{split}$$

de manera que $\boldsymbol{F}_{21} = -\boldsymbol{F}_{12}$.

En estos casos, en presencia de fuerzas conservativas

$$E = T + V^{e}(\boldsymbol{x}_{1},...,\boldsymbol{x}_{N}) + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} V_{ij}$$

donde V^e es el trabajo externo. Luego, la variación de energía ΔE será

$$\Delta E = \sum_{i=1}^N (\Delta T_i - \Delta V_i) + \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \Delta V_{ij}. \label{eq:delta_E}$$

Revisar la escritura de la energía y de la variación, qué pienso con respecto a T, V?

EJEMPLO 1.1 Análisis energético de un potencial

Dada una fuerza 1D

$$F(x) = -kx + \frac{a}{r^3}, \qquad a > 0$$

se realiza un análisis del potencial resultante y de la energía.

A partir de esta fuerza, que es la del oscilador armónico 1D sumada a una perturbación controlada por el parámetro a, procedemos a calcular el potencial, a través de la relación (1.10) de modo que (a menos de una constante aditiva que no interesa aquí) se obtiene

 $V(x) = \frac{k}{2}x^2 + \frac{a}{2x^2}$

siendo la energía total

$$E = T + V(x),$$

la cual es una cantidad conservada.

Para analizar el movimiento bajo este potencial dividimos ambos miembros sobre a y se define $v \equiv V/a$ para considerar tres casos representativos k/a = 5, 20, 100. Este potencial v es una especie de potencial por unidad de a. Consecuentemente, tendremos una energía reescalada e = t + v.

Para el caso k/a=100 la Figura 1.7 muestra la gráfica de v junto con la de cada uno de los términos que componen este potencial; el término $k/(2a)x^2$ (cuadrático) y $1/(2x^2)$ (una ley de potencias de exponente -2). En la zona de x pequeña domina la ley de potencias mientras que para x grande domina la cuadrática.

También está indicada una línea de e constante que define la energía total t+v. Dada la restricción e=t+v, la energía cinética t está representada por la distancia vertical entre e y v para todo x comprendido entre los puntos indicados por cuadrados azules. Estos son aquellos puntos para los cuales t=0 (la velocidad es nula) y definen por ende un punto de cambio de

La fuerza -kx es una fuerza restitutiva mientras que a/x^3 es una

fuerza repulsiva pués a > 0.

Figura 1.7 Gráfico del potencial v = V(x)/a y energía e = E/a escalados para el ejemplo del oscilador perturbado (k/a=100).

movimiento; son los llamados $turning\ points$ (puntos de retroceso). En la figura se indica con una doble flecha vertical la magnitud de t para x=0.4.

Las regiones por fuera de los puntos de retroceso están prohibidas puesto que t<0 allí. El movimiento posible para este potencial es entonces acotado y se halla dentro del intervalo definido por dichos puntos.

La línea vertical punteada x=0.31622 indica el mínimo del potencial (que sale desde dV(x)/dx=0 y es equivalente por ello a la condición F(x)=0). Ese punto es, debido a la forma particular de F, donde son iguales los aportes del oscilador (término cuadrático) y de su perturbación (ley de potencias).

A medida que a es más importante (k/a disminuye) la parte $1/x^2$ del potencial actúa hasta valores de x mayores, como puede verse en la Figura XXX donde aparecen graficado v para los casos k/a=100,20,5.

Para una partícula que se mueva bajo este potencial la energía cinética

$$T = \frac{1}{2}m\dot{x}^2 = E - \frac{k}{2}x^2 - \frac{a}{2x^2},$$

permite llegar a la integral de la trayectoria

$$\sqrt{m} \int \frac{1}{[2E - kx^2 - a/x^2]^{1/2}} dx = \int dt.$$

La existencia de solución cerrada para esta integral dependerá, por supuesto, de la forma del potencial V(x). En este caso particular el reemplazo $u=x^2$ permite escribir el argumento de la raíz como una diferencia de cuadrados merced a un nuevo reemplazo y=u-E/k. Si se integra entre $x_0=x(t=0)$ y x=x(t) se obtiene

$$\frac{1}{2} \sqrt{\frac{m}{k}} \int_{x_0^2 - E/k}^{x^2 - E/k} \frac{1}{\sqrt{C^2 - y^2}} \ dy = t - t_0$$

donde la constante es $C = \sqrt{E^2 - ka}/k$.

La solución de esta integral es del tipo $\arcsin(y/|C|)$ de manera que obtenemos

$$x^2 = \frac{\sqrt{E^2 - ak}}{k}\, \sin\left[\sqrt{4k/m}(t-t_0) + \arcsin((kx_0^2 - E)/\sqrt{E^2 - ak})\right] + \frac{E}{k}. \label{eq:x2}$$

Poner la cuenta genérica en las notas. Why not?. FALTA un gráfico.

Si se supone ahora que $\dot{x}_0=0$ (la cinética es nula en el instante t=0) resulta $\arcsin(1)=\pi/2$ y entonces

$$x^2 = \frac{\sqrt{E^2 - ak}}{k} \, \cos\left[\sqrt{4k/m}(t-t_0)\right] + \frac{E}{k}, \label{eq:x2}$$

o bien

$$x = \sqrt{\frac{E}{k}} \left(1 + \sqrt{1 - ak/E^2} \, \cos\left[2\sqrt{k/m}(t-t_0)\right]\right)^{1/2} \label{eq:x}$$

donde hemos tomado el valor positivo de la raíz porque en este problema es x>0 .

El caso límite a=0 recupera el oscilador armónico usual, como era de esperarse, pues en este caso se tiene

$$\underset{(a=0)}{x} = \sqrt{\frac{2E}{k}} \left(\cos \left[\sqrt{\frac{k}{m}} (t-t_0) \right] \right),$$

donde se ha utilizado la fórmula trigonométrica para el semiángulo.

Completar esta solución. Ver en práctica?. Lo de E=E(a) no lo entendí.

1.2 Introducción a la formulación de Lagrange

Permite automatizar la resolución de problemas. Surge de la observación de una característica de las fuerzas de vínculo. El vínculo representa una restricción.

La fuerza de vínculo se *acomoda* en todo momento, cambiando sus características, para satisfacer el vínculo en todo instante. Son de una naturaleza diferente a las fuerzas tradicionales, que no se acomodan.

Figura 2.8

Las fuerzas de vínculo están asociadas a ecuaciones de vínculo y dependen de ellas. Las ecuaciones, además, *dependizan* las coordenadas de un problema. Examinemos un problema sencillo con vínculos.

EJEMPLO 2.1 Problema con fuerza de vínculo

Considerese el problema esquematizado en la figura donde dos bloques se mueven en un campo gravitatorio. La segunda ley de Newton para cada bloque resultan en

Figura 2.9

$$\begin{split} m_1\ddot{x}_1 &= 2T\\ m_2\ddot{x}_2 &= m_2g - T \end{split}$$

Pero la cuerda que une los dos cuerpos, suponiendo que se mantiene tensa en todo momento, vincula sus posiciones de manera que se debe cumplir

$$2(d-x_1) + d_2 + x_2 = L$$

Derivando dos veces esta relación se llega a

$$-2\ddot{x}_1 + \ddot{x}_2 = 0,$$

que al reemplazar en las ecuaciones de Newton permite, eliminando la tensión T, obtener

$$\ddot{x}_1 = \frac{2m_2}{4m_2+1} \; g = \frac{1}{2+1/(2m_2)} \; g,$$

y

$$\ddot{x}_2 = \frac{4m_2}{4m_2+1} \; g = \frac{1}{1+1/(4m_2)} \; g.$$

Esto último nos dice que el bloque m_2 se moverá con aceleración g en el límite de $m_2 \to \infty$ y el bloque m_1 con aceleración g/2 bajo el mismo límite.

El enfoque de Lagrange debiera permitir llegar a este mismo resultado por supuesto.

Si el vínculo es f(x) = 0 entonces el trabajo virtual de las fuerzas es necesariamente nulo.

1.3 Grados de libertad y vínculos

El número de grados de libertad es el número de coordenadas independientes para resolver el problema. La interpretación lagrangiana encuentra las ecuaciones para las coordenadas independientes. Dado un sistema con N coordenadas y k vínculos,

g. l. =
$$N - k \equiv \{q_i\}$$
 coordenadas generalizadas

Consideremos el caso de una bola ensartada en un aro plano,

la cual puede moverse únicamente por el aro. Claramente la coordenada generalizada es φ , la cual describe completamente el movimiento de la misma; el vínculo es r=a y el trabajo realizado por las fuerzas de vínculo $W_{F_v}=0$ porque $F_v\perp\delta\varphi$. La fuerza de vínculo (en dirección radial) es perpendicular al desplazamiento compatible con el vínculo. En este caso el vínculo expresa las coordenadas del espacio real.

Las fuerzas de vínculo ${\bf F}^v$ se acomodan en todo momento para satisfacer las ligaduras. Entonces las ${\bf F}^v$ son perpendiculares a los desplazamientos compatibles con los vínculos de manera que

$$W_{F^v} = 0,$$

es decir que el trabajo virtual de las fuerzas de vínculo es nulo. Este trabajo puede no ser nulo si el tiempo varía (si no se considera un desplazamiento virtual).

Figura 3.10

Un sistema 3D con dos vínculos resulta en un movimiento 1D; el sistema puede pensarse que se mueve sobre un *alambre*.

Para el caso de los bloques (o masas deslizantes), al tener dos coordenadas, el sistema se mueve en una recta del espacio de coordenadas. La fuerza de vínculo es perpendicular al desplazamiento posible. El vínculo expresa aquí las coordenadas donde se mueven las masas y el perpendicular al desplazamiento virtual pero no al desplazamiento real.

$$F_{v} = (2T - T)$$

$$V_{vy} = -\frac{1}{2}F_{vx}(F_{vx}, -\frac{1}{2}F_{vx})$$

El trabajo virtual de las fuerzas de vínculo es nulo.

Entender este gráfico mejor!

EJEMPLO 3.1 Aro acelerado en un plano

Un aro que se mueve hacia la derecha con aceleración constante a.

Tiene una ecuación de vínculo dada por

$$(x-x_c)^2 + (y-y_c)^2 = R_0^2$$

y donde

$$x_c = x_0 + \frac{1}{2}at^2, \ y_c = y_0$$

1.3.1 Clasificación de los vínculos

Los vínculos se clasifican en

$$\label{eq:holonomos} \left\{ \begin{array}{ll} f(r_i,t) = 0 & \text{re\'onomos} \\ f(r_i) = 0 & \text{escler\'onomos} \end{array} \right\}$$

los cuales cumplen que $W^{F^v}_{virtual}=0$, y

no holónomos
$$\left\{ \begin{aligned} &f(r_i,t) \geq 0 \\ &f(r_i) \geq cte. & f(\dot{r}_i) = 0 \end{aligned} \right\}$$

los cuales no cumplen, en general, que ${m F}^v$ perpendicular al desplazamiento posible. donde un desplazamiento virtual es un desplazamiento a t_0 fijo compatible con los vínculos, mientras que un desplazamiento real es un desplazamiento en δt durante el cual varían fuerzas y ligaduras.

Figura 3.11

A tiempo fijo el desplazamiento es en $\hat{r} \perp F^v$.

$$f(x_i,t) = cte. \Longrightarrow \sum_i^N \frac{\partial f}{\partial x_i} \delta x_i + \frac{\partial f}{\partial t} \delta t = 0$$

o bien

$$\nabla f \cdot \boldsymbol{\delta r} = 0$$

Si las fuerzas de vínculo se pueden escribir como

$$f_{n}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, ..., \boldsymbol{x}_{N}) = K,$$

donde Kes una constante, luego (derivando implícitamente la ecuación) cumplirán

$$\sum_{i=1}^{N} \frac{\partial f_{v}}{\partial \boldsymbol{x}_{i}} \, \delta \boldsymbol{x}_{i} = 0$$

Entonces la fuerza de vínculo es proporcional al gradiente de la ecuación de vínculo,

$$\mathbf{F}_v = \lambda \nabla f$$

En un caso 3D tendríamos

$$\frac{\partial f}{\partial x}\delta x + \frac{\partial f}{\partial y}\delta y + \frac{\partial f}{\partial z}\delta z = 0$$

Los vínculos que dependen de la velocidad o aquellos dados en términos de desigualdades (no de ecuaciones) no cumplen, en general, que el trabajo de las fuerzas de vínculo sea perpendicular al desplazamiento.

La dependencia de las fuerzas de vínculo puede depender del tiempo. Supongamos ahora un problema parecido al anterior; una bola engarzada en una varilla que rota con velocidad angular constante ω .

Esto contrapone a lo posterior. Tal vez estos desplazamientos no son virtuales después de todo. Esta sección hay que depurarla bien.

La bola se mueve sobre la varilla; la coordenada angular φ forma parte de la ecuación de vínculo

$$\varphi - \omega t = 0$$

En un dado instante de tiempo fijo el único desplazamiento posible, que es en \hat{r} , es perpendicular a la fuerza de vínculo. No hay trabajo a tiempo fijo. En estos casos la ecuación de vínculo será

$$f_v(x_1, x_2, ..., x_N, t) = K,$$

pero como a tiempo fijo es $\Delta t = 0$, se tiene

$$\sum_{i=1}^{N} \frac{\partial f_v}{\partial \boldsymbol{x}_i} \, \delta \boldsymbol{x}_i = 0$$

donde no aparece al tiempo t. Esto es un desplazamiento virtual; un desplazamiento a tiempo fijo compatible con los vínculos.

1.4 Velocidad y aceleración en coordenadas cilíndricas y esféricas

En la resolución de los problemas dinámicos que surgen de las ecuaciones de Newton la igualdad vectorial involucrada debe, en general, escribirse en algún sistema de coordenadas apropiado. Esto implica para la aceleración la doble derivada con respecto al tiempo del vector de posición $\boldsymbol{x}(t)$ en las coordenadas en las cuales se halle escrito.

Obviando el sistema cartesiano rectangular usual (x,y,z), los dos sistemas de coordenadas más sencillos son el de coordenadas cilíndricas (r,φ,z) y el de coordenadas esféricas (r,θ,φ) . Los problemas más sencillos de la dinámica implican geometrías donde estos sistemas son apropiados. Asimismo, muchas geometrías más complejas pueden quizás en primera aproximación modelarse con estas coordenadas.

Así, por ejemplo, un vector genérico en términos de la base de versores cilíndricos $(\hat{r},\hat{\varphi},\hat{z})$ será

$$\boldsymbol{V}(t) = r\hat{r} + \varphi\hat{\varphi} + z\hat{z},$$

de manera que su derivada con respecto al tiempo implica la derivación de cada coordenada y cada versor.

La gran ventaja de las coordenadas cartesianas es que los versores $\hat{x}, \hat{y}, \hat{z}$ tienen su orientación constante para cualquier punto del espacio, razón por la cual no varían con el tiempo. Entonces, en general, resulta conveniente evaluar las derivadas de los versores que sí varían con el tiempo (como por ejemplo \hat{r}) en términos de su descomposición en cartesianas, puesto que sólo hay que derivar el coeficiente que lo acompaña.

Para coordenadas cartesianas, las fórmulas de velocidad y aceleración son triviales. A partir del vector de posición

$$\boldsymbol{x}(t) = x\hat{x} + y\hat{y} + z\hat{z},$$

se tienen

$$\mathbf{v}(t) \equiv \frac{d\mathbf{x}}{dt}(t) = \dot{\mathbf{x}}(t) = \dot{x}\hat{x} + \dot{y}\hat{y} + \dot{z}\hat{z},$$

$$\boldsymbol{a}(t) \equiv \frac{d^2 \boldsymbol{x}}{dt^2}(t) = \ddot{\boldsymbol{x}}(t) = \ddot{x}\hat{x} + \ddot{y}\hat{y} + \ddot{z}\hat{z},$$

donde con el objeto de no sobrecargar la notación no se ha explicitado la dependencia temporal en las coordenadas.

A continuación se deducen las fórmulas de velocidad y aceleración para las coordenadas cilíndricas y esféricas a partir de un vector de posición $\boldsymbol{x}(t)$ del origen³.

1.4.1 Coordenadas cilíndricas

Un vector de posición del origen es

$$\boldsymbol{x}(t) = r\,\hat{r} + z\,\hat{z},$$

y la derivada temporal se hace con la regla de Leibniz en el caso del primer término de la derecha,

$$\frac{d\mathbf{x}}{dt} = \frac{dr}{dt}\,\hat{r} + r\,\frac{d\hat{r}}{dt} + \frac{dz}{dt}\hat{z}$$

y para evaluar la derivada temporal del versor consideramos la descomposición

$$\hat{r} = \cos\varphi \,\hat{x} + \sin\varphi \,\hat{y}$$

$$\hat{\varphi} = -\sin\varphi \,\hat{x} + \cos\varphi \,\hat{y}$$

³Un vector del origen tiene su base anclada en el origen del sistema de coordenadas lo que causa que no tenga componentes angulares en los sistemas cilíndrico y esférico. Esta simplificación es importante y en realidad si no fuera aplicable la utilización de estos sistemas tal vez pierda su razón de ser.

que lleva a

$$\frac{d\hat{r}}{dt} = -\sin\varphi \,\dot{\varphi} \,\hat{x} + \cos\varphi \,\dot{\varphi} \,\hat{y} = \dot{\varphi} \,\hat{\varphi}$$

y entonces

$$\frac{d\mathbf{x}}{dt} = \dot{r}\,\hat{r} + r\,\dot{\varphi}\,\hat{\varphi} + \dot{z}\,\hat{z}.$$

Para la aceleración hay que derivar la velocidad con respecto al tiempo

$$\ddot{\pmb{x}} = \frac{d}{dt}(\dot{r}\; \hat{r} + r\dot{\varphi}\; \hat{\varphi} + \dot{z}\; \hat{z})$$

$$\ddot{\boldsymbol{x}} = \ddot{r}\,\hat{r} + \dot{r}\,\frac{d\hat{r}}{dt} + \dot{r}\,\dot{\varphi}\,\hat{\varphi} + r\left(\ddot{\varphi}\,\hat{\varphi} + \dot{\varphi}\,\frac{d\hat{\varphi}}{dt}\right) + \ddot{z}\,\hat{z}$$

y utilizando

$$\frac{d\hat{\varphi}}{dt} = -\dot{\varphi}(\cos\varphi \,\hat{x} + \sin\varphi \,\hat{y}) = -\dot{\varphi}\,\hat{r}$$

finalmente se arriba a

$$\ddot{\mathbf{x}} = (\ddot{r} - r\dot{\varphi}^2)\,\hat{r} + (r\ddot{\varphi} + 2\dot{r}\dot{\varphi})\,\hat{\varphi} + \ddot{z}\,\hat{z}.$$

Para problemas de dos dimensiones suele utilizarse un sistema coordenado, conocido como coordenadas polares, que es el de cilíndricas con $z\equiv 0$. Las expresiones de velocidad y aceleración polares correspondientes serán las obtenidas en esta sección luego de *borrar* la coordenada z.

1.4.2 Coordenadas esféricas

Para el sistema esférico la deducción de la equivalencia cartesiana de los versores es un poco más trabajosa que en el sistema cilíndrico (donde en realidad estos versores viven en un plano z cte.) y el álgebra implicado es algo engorroso. La expresión de los versores es

$$\begin{split} \hat{r} &= \cos\varphi\sin\theta\; \hat{x} + \sin\varphi\sin\theta\; \hat{y} + \cos\theta\; \hat{z}, \\ \hat{\varphi} &= -\sin\varphi\; \hat{x} + \cos\varphi\; \hat{y}, \\ \hat{\theta} &= \cos\theta\cos\varphi\; \hat{x} + \cos\theta\sin\varphi\; \hat{y} - \sin\theta\; \hat{z}. \end{split}$$

Un vector de posición es simplemente

$$\boldsymbol{x} = r \, \hat{r}$$

Dado que este es un curso básico pero que se jacata de visual, tendriamos que poner ilustraciones del carajo de los vectores en esféricas y cilíndricas para que quede intuitivo sus dificultades cuando el problema en cuestión no tiene las simetrías explícitas de estos sistemas.

aunque en el \hat{r} está escondida la dependencia angular. Consignaremos a continuación solamente las expresiones finales para la velocidad y aceleración, que son respectivamente

$$\boldsymbol{v} = \dot{\boldsymbol{x}} = \dot{r}\,\hat{r} + r\dot{\theta}\,\hat{\theta} + r\dot{\varphi}\sin\theta\,\hat{\varphi}$$

$$\boldsymbol{a} = \ddot{\boldsymbol{x}} = (\ddot{r} - r\dot{\theta}^2 - r\dot{\varphi}^2 \sin^2 \theta) \,\hat{r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\varphi}^2 \sin \theta \cos \theta) \,\hat{\theta} + (r\ddot{\varphi} \sin \theta + 2\,\dot{r}\,\dot{\varphi} \sin \theta + 2\,r\,\dot{\theta}\,\dot{\varphi} \cos \theta) \,\hat{\varphi}$$

1.5 Transformación entre sistemas en rotación

Otro tipo de transformación común entre sistemas de coordenadas (en el plano) que comparten origen es la rotación.

Suponiendo un sistema de coordenadas (x,y) fijo (que llamaremos "inercial") de origen O y otro de coordenadas (x',y'), que está rotando en torno a ese origen (sistema "móvil"), interesa ver qué consecuencias tiene sobre la velocidad y aceleración de un vector de posición \boldsymbol{A} , el hecho de determinarlas desde uno u otro sistema. Si bien hablamos de un sistema fijo, en realidad ambos se hallan en rotación entre sí.

Como se ve en la FIGURA XXX la posición instantánea entre sistemas está determinada por el ángulo $\theta(t)$ y, dado que ambos sistemas comparten el origen, los mismos son coincidentes en $\theta=0$.

Dado que los sistemas no se hallan entre sí a velocidad constante 4 es patente que las ecuaciones de Newton se verán modificadas. Para un vector A constante con respecto al sistema inercial, cualitativamente esperaríamos observarlo desde el sistema móvil en alguna suerte de movimiento dado por el efecto dinámico de la rotación 5 . Veamos qué surge de la cuenta algebraica.

El mismo vector de acuerdo a los dos sistemas de coordenadas en el plano, es

$$A(t) = A_x \hat{x} + A_y \hat{y}$$
 $A'(t) = A'_x \hat{x}' + A'_y \hat{y}'$

donde las coordenadas primadas refieren al sistema móvil. Nótese que los versores asociados en ambos casos ($\hat{x},~\hat{y})$ y ($\hat{x}',~\hat{y}')$ son constantes, esto es, no dependen del tiempo. Que ambos sistemas se hallen en rotación entre sí no es intrínseco de alguno de ellos. Un observador del sistema primado ve a sus ejes fijos mientras que en las medidas que realiza sobre \boldsymbol{A} verá una dinámica particular.

 $^{^4}$ Aún en el caso de $\theta(t)=cte$. la velocidad no es constante como vector puesto que cambia de dirección todo el tiempo.

⁵Si estoy montado en el caballo de madera de una calesita veré a mi abuela, que me espera inmóvil a un lado, como dotada de movimiento.

Si consideramos la variación temporal de ${m A}$ ' pero como es vista desde el sistema inercial resulta

$$\frac{d\mathbf{A}}{dt}\bigg|_{\text{ingrain}} = \dot{A}_x' \, \hat{x}' + A_x' \, \dot{\hat{x}}' + \dot{A}_y' \, \hat{y}' + A_y' \, \dot{\hat{y}}',$$

porque para un observador en el sistema inercial se mueven las componentes del vector y los versores.

La variación temporal de los versores la conocemos porque es la misma situación geométrica que la encontrada para el caso de los versores cilíndricos $(\hat{r}, \hat{\varphi})$. Podemos hallar la equivalencia

$$\frac{d\hat{x}'}{dt} = \dot{\theta} \, \hat{y}' \qquad \qquad \frac{d\hat{y}'}{dt} = -\dot{\theta} \, \hat{x}'.$$

Desde el sistema móvil los versores son por supuesto constantes (el sistema móvil no es consciente de su movimiento) de modo que

$$\frac{d\mathbf{A}}{dt}\bigg|_{\mathbf{m},\mathbf{n},\mathbf{r},\mathbf{r},\mathbf{r}} = \dot{A}_x' \,\hat{x}' + \dot{A}_y' \,\hat{y}'$$

y entonces

$$\left. \frac{d\mathbf{A}}{dt} \right|_{\text{fijo}} = \left. \frac{d\mathbf{A}}{dt} \right|_{\text{m\'ovil}} + A_x' \dot{\theta} \, \hat{y}' - A_y' \dot{\theta} \, \hat{x}'.$$

Si definimos

$$\omega = \dot{\theta} \, \hat{z},$$

entonces resulta que

$$\boldsymbol{\omega} \times \boldsymbol{A}' = \dot{\theta} \, \hat{z} \times (A'_x \, \hat{x}' + A'_y \, \hat{y}') = A'_x \dot{\theta} \, \hat{y}' - A'_y \dot{\theta} \, \hat{x}'.$$

Volviendo a la derivada de A tenemos

$$\left. \frac{d\mathbf{A}}{dt} \right|_{\text{fijo}} = \left. \frac{d\mathbf{A}}{dt} \right|_{\text{m\'ovil}} + \boldsymbol{\omega} \times \mathbf{A}'$$

que nos da la variación temporal de un vector \boldsymbol{A} visto desde un sistema fijo en términos de lo que se mediría en un sistema (móvil) que está en rotación respecto al primero.

Si ahora la especializamos para un vector de posición \boldsymbol{x} , obtenemos la velocidad

$$\left. oldsymbol{v} \right|_{ ext{fijo}} = \left. oldsymbol{v} \right|_{ ext{m\'ovil}} + oldsymbol{\omega} imes oldsymbol{x}',$$

donde

$$\left. \boldsymbol{v} \right|_{\text{móvil}} = \dot{x}' \; \hat{x}' + \dot{y}' \; \hat{y}'$$

Esta notación es oscura, habría que ver una mejor manera de explicar esto.

Asimismo, la aceleración se obtiene aplicando la relación al vector $\boldsymbol{v} \equiv d\boldsymbol{x}/dt$, de manera que tendremos

$$egin{align*} \left. oldsymbol{a}
ight|_{ ext{fijo}} &= \left. rac{doldsymbol{v}}{dt}
ight|_{ ext{movil}} + oldsymbol{\omega} imes oldsymbol{v}' \ \left. oldsymbol{a}
ight|_{ ext{fijo}} &= \left. rac{d}{dt} \left[\left. rac{doldsymbol{x}}{dt}
ight]_{ ext{movil}} + oldsymbol{\omega} imes oldsymbol{x}'
ight] + oldsymbol{\omega} imes \left[\left. oldsymbol{v}
ight|_{ ext{movil}} + oldsymbol{\omega} imes oldsymbol{x}'
ight] \end{aligned}$$

Ahora procedemos a trabajar las expresiones dentro del primer corchete, empezando por la derivada temporal de la velocidad en el sistema móvil,

$$\left. \boldsymbol{a} \right|_{\text{m\'ovil}} \equiv \frac{d}{dt} \left. \left(\dot{x}' \ \hat{x}' + \dot{y}' \ \hat{y}' \right) \right|_{\text{m\'ovil}} = \ddot{x}' \ \hat{x}' + \ddot{y}' \ \hat{y}'$$

y continuando con el término

$$\boldsymbol{\omega} \times \boldsymbol{x}'|_{\text{mávil}} = \omega x' \ \hat{y}' - \omega y' \ \hat{x}',$$

cuya derivada es

$$\frac{d}{dt}\left.\boldsymbol{\omega}\times\boldsymbol{x}\right|_{\text{m\'ovil}}=-(\dot{\omega}y'+\omega\dot{y}')\hat{x}'+(\dot{\omega}x'+\omega\dot{x}')\hat{y}'=\left.\boldsymbol{\omega}\times\boldsymbol{v'}\right|_{\text{m\'ovil}}+\dot{\boldsymbol{\omega}}\times\boldsymbol{x'}\right|_{\text{m\'ovil}}$$

Juntando todo resulta

$$\left. \boldsymbol{a} \right|_{\rm fijo} = \left. \boldsymbol{a} \right|_{\rm m\acute{o}vil} + \left. \dot{\boldsymbol{\omega}} \times \boldsymbol{x}' \right|_{\rm m\acute{o}vil} + 2 \, \boldsymbol{\omega} \times \boldsymbol{v}' + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \boldsymbol{x}')$$

donde el tercero es la aceleración de Coriolis y el cuarto la aceleración centrípeta.

Las leyes de Newton observadas desde el sistema fijo serán

$$F = ma = m |a|_{\text{mávil}} + m |\dot{\omega} \times r + 4 m |\omega \times v' + m |[\omega \times (\omega \times r)]|$$

que se pueden reacomodar como

$$m \left. \boldsymbol{a} \right|_{\mathrm{fiin}} = \boldsymbol{F} - m \left. \boldsymbol{a} \right|_{\mathrm{movil}} - m \left. \dot{\boldsymbol{\omega}} \times \boldsymbol{r} - 4 \, m \, \boldsymbol{\omega} \times \boldsymbol{v}' - m \left[\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \boldsymbol{r}) \right] \right.$$

donde ahora en el RHS tenemos la fuerza F que es la única que produce par de acción y reacción, y los términos de fuerza lineal, de Coriolis y centrífuga.

Si $\omega = cte$. entonces la fuerza lineal es nula.

NOTAS

5.1 Sumatoria de torques Una manera de convencerse de que esta escritura es posible es hacer un diagrama de los diferentes términos que aparecen en esta doble sumatoria. Es fácil de ver que con el añadido del término $\boldsymbol{x}_j \times \boldsymbol{F}_{ji}$ se está haciendo un doble conteo que justifica el 1/2 que aparece luego.

Está un poco inconsistente la notación utilizada, con lo de móvil y la prima. La carpeta tiene muchos typos. El 'Problema' de la hoja 5R no lo entiendo; en realidad parece estar vinculado a sólidos. Habría que decidir si ponerlo o no. En caso negativo, ¿qué otro se puede ubicar?

Una demostración más matemática puede lograrse escribiendo la sumatoria $j \neq i$ sin esta restricción, lo cual se puede hacer así:

$$\sum_{i=1}^{N}\sum_{j\neq i}^{N}\boldsymbol{x}_{i}\times\boldsymbol{F}_{ij}=\sum_{i=1}^{N}\sum_{j=1}^{N}\boldsymbol{x}_{i}\times\boldsymbol{F}_{ij}(1-\delta_{ij})$$

siendo δ_{ij} la delta de Kronecker. Es claro que podemos hacer un cambio de etiquetas en las sumatorias puesto que los índices sumados son mudos, i.e.

$$\sum_{i=1}^{N}\sum_{j=1}^{N}\boldsymbol{x}_{i}\times\boldsymbol{F}_{ij}(1-\boldsymbol{\delta}_{ij})=\sum_{j=1}^{N}\sum_{i=1}^{N}\boldsymbol{x}_{j}\times\boldsymbol{F}_{ji}(1-\boldsymbol{\delta}_{ij})$$

y dado que el orden de las sumatorias es irrelevante llegamos a

$$\sum_{i=1}^{N}\sum_{j\neq i}^{N}\boldsymbol{x}_{i}\times\boldsymbol{F}_{ij}=\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\left[\boldsymbol{x}_{i}\times\boldsymbol{F}_{ij}(1-\delta_{ij})+\boldsymbol{x}_{j}\times\boldsymbol{F}_{ji}(1-\delta_{ij})\right]$$

Regresando ahora a las sumatoria restringida obtenemos

$$\sum_{i=1}^{N}\sum_{j\neq i}^{N}\boldsymbol{x}_{i}\times\boldsymbol{F}_{ij}=\frac{1}{2}\sum_{i=1}^{N}\sum_{j\neq i}^{N}\left[\boldsymbol{x}_{i}\times\boldsymbol{F}_{ij}+\boldsymbol{x}_{j}\times\boldsymbol{F}_{ji}\right]$$

que es el resultado buscado.

Mecánica lagrangiana

2.1 Principio de los trabajos virtuales

En las ecuaciones de Newton para un sistema de N partículas, con 3N coordenadas,

$$m_i \boldsymbol{a}_i = \boldsymbol{F}_i,$$

se pueden separar las fuerzas que actúan sobre cada partícula en fuerzas externas aplicadas F_i^a y fuerzas de vínculo F_i^v . Es decir,

$$m_i \boldsymbol{a}_i = \boldsymbol{F}_i^a + \boldsymbol{F}_i^v,$$

o bien, expresando la aceleración en función de la derivada temporal del momento, resulta

$$\dot{\boldsymbol{p}}_i - \boldsymbol{F}_i^a - \boldsymbol{F}_i^v = 0,$$

y entonces, multiplicando cada término por un desplazamiento, en principio independiente, δx_i y sumando se tiene

$$\sum_{i}^{N} (\dot{\boldsymbol{p}}_{i} - \boldsymbol{F}_{i}^{a} - \boldsymbol{F}_{i}^{v}) \cdot \delta \boldsymbol{x}_{i} = 0.$$

Nótese que esta ecuación es válida por serlo para cada partícula i.

Supongamos ahora que estos desplazamientos son *compatibles* con los vínculos. Entonces

$$\sum_{i}^{N}\left(\dot{\boldsymbol{p}}_{i}-\boldsymbol{F}_{i}^{a}\right)\cdot\delta\boldsymbol{x}_{i}-\sum_{i}^{N}\boldsymbol{F}_{i}^{v}\cdot\delta\boldsymbol{x}_{i}=0$$

Esto es sumamente sketchi, debemos leer la carpeta de la cursada y luego la teoría.

Explicar qué es este principio y qué es un desplazamiento virtual.

pero el segundo término es nulo porque los δx_i son compatibles con los vínculos y como sabemos $F_i^v \perp \delta x_i$.

Entonces

$$\sum_{i}^{N} \left(\dot{\boldsymbol{p}}_{i} - \boldsymbol{F}_{i}^{a} \right) \cdot \delta \boldsymbol{x}_{i} = 0, \tag{1.1}$$

donde no se verifica, en general, que el primer vector en cada producto escalar sea nulo.

La expresión (1.1) es el llamado *Principio de los Trabajos Virtuales*, y dada la independencia admitida en los desplazamientos virtuales δx_i , se sigue que la sumatoria en (1.1) es nula porque cada término es nulo, es decir

$$\dot{\boldsymbol{p}}_i - \boldsymbol{F}_i^a = 0 \quad \forall i$$

EJEMPLO 1.1 Ejemplo de los bloques

Para el ejemplo de los bloques

$$(m_1\ddot{x}_1 - 2T)\delta x_1 + (m_2\ddot{x}_2 - m_2g + T)\delta x_2 = 0$$

pero en realidad $\delta x_1,\delta x_2$ no son independientes, están relacionados según $2\delta x_1=\delta x_2.$ Entonces

$$(m_1\ddot{x}_1+2m_2\ddot{x}_2-2m_2g)\delta x_1=0$$

donde ahora δx_1 es compatible con los vínculos pero es independiente y arbitrario para el problema. Entonces la ecuación anterior debe ser nula porque el paréntesis es nulo,

$$m_1\ddot{x}_1 + 2m_2\ddot{x}_2 - 2m_2g = m_1\ddot{x}_1 + 4m_2\ddot{x}_1 - 2m_2g = 0$$

y de la última

$$\ddot{x}_1 = \frac{2m_2g}{(m_1 + 4m_2)}.$$

Hemos llegado a la resolución en forma independiente de los vínculos.

EJEMPLO 1.2 Más de un grado de libertad

Si tenemos más de un grado de libertad, como en el caso de dos poleas sin masa.

Se tienen dos ecuaciones de vínculo

$$x_1 + x_p = \ell_1 \qquad \qquad (x_2 - x_p) + (x_3 - x_p) = \ell_2.$$

El problema tiene cuatro coordenadas y dos ecuaciones de vínculo, lo cual nos deja dos grados de libertad. La primer ecuación de vínculo permite liberarnos de x_p y quedarnos en principio con

Hay que dejar bien el claro el asunto de que las fuerzas de vínculos son siempre perp a los desplazamientos virtuales y que estos, ¿no son independientes?

los movimientos de las tres masas. Entonces, ¿el principio de los trabajos virtuales? sería en este caso

$$(m_1\ddot{x}_1 - m_1g)\delta x_1 + (m_2\ddot{x}_2 - m_2g)\delta x_2 + (m_3\ddot{x}_3 - m_3g)\delta x_3 = 0$$

y luego podemos utilizar la segunda ecuación de vínculo, combinándola con la primera para llegar

$$x_2 + x_3 + 2x_1 =$$
cte.

lo cual conduce a la relación

$$\delta x_1 = -\frac{\delta x_2 + \delta x_3}{2}.$$

Finalmente

$$(m_2\ddot{x}_2-m_2g-\frac{m_1}{2}\ddot{x}_1+\frac{m_1}{2}g)\delta x_2+(m_3\ddot{x}_3-m_3g-\frac{m_1}{2}\ddot{x}_1+\frac{m_1}{2}g)\delta x_3=0.$$

Relación vínculos y desplazamientos: El hecho de que la fuerza de vínculo sea perpendicular a los desplazamientos puede verse a partir de que la ecuación de vínculo en un sistema toma la forma

$$f(\boldsymbol{x}_i) - K = 0$$

luego, derivando implícitamante cada ecuación y sumando (si se nos permite un pequeño abuso de notación)

$$\sum_{i}^{N} \frac{\partial f}{\partial \boldsymbol{x}_{i}} d\boldsymbol{x}_{i} = 0$$

pero esto no es otra cosa que

$$\nabla f \cdot \delta x = 0$$

donde debemos entender al gradiente y al vector δx como N dimensionales.

2.1.1 Comentario vínculos

El trabajo de la fuerza de vínculos es nulo si el desplazamiento es virtual.

$$f(x_1, x_2, ..., x_N, t) = 0$$

$$\frac{\partial f}{\partial x_1}\delta x_1+\ldots+\frac{\partial f}{\partial x_N}\delta x_N=0$$

Como es un desplazamiento virtual, el tiempo t está fijo (imagen fija = tiempo congelado)

2.2 Construcción del lagrangiano

Vamos a utilizar el principio de los trabajos virtuales para escribir las ecuaciones de la mecánica de otra manera [\dot{z} ?] sin preocuparnos por las fuerzas de vínculo, que en general pueden no ser conocidas o tener una naturaleza compleja. Consideremos un sistema de N partículas y k ecuaciones de vínculo

$$f_1(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n, t) = K_1$$

$$f_k(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_n, t) = K_k$$

¿Y esta magia? Hay que aclarar realmente que sea así como se dice que es.

Esto hay que consolidarlo todo. Volará.

Esta es la papa: las fuerzas de vínculo son difíciles de escribir si es esto posible del todo.

y por ende 3N-k grados de libertad (suponiendo que nos hallamos en 3 dimensiones).

Tenemos N relaciones del tipo

$$\mathbf{x}_{i} = \mathbf{x}_{i}(q_{1}, q_{2}, ..., q_{3N-k}, t) \tag{2.1}$$

que significa que la posición de la partícula i-ésima depende en principio de las 3N-k coordenadas generalizadas y del tiempo. Una variación de la misma tendrá la forma

$$\delta \boldsymbol{x}_i = \sum_{j=1}^{3N-k} \left(\frac{\partial \boldsymbol{x}_i}{\partial q_j}\right) \delta q_j + \frac{\partial \boldsymbol{x}_i}{\partial t} \delta t$$

y suponiéndola un desplazamiento virtual el último término se anula puesto que $\delta t=0$ en ese caso y entonces

$$\delta oldsymbol{x}_i = \sum_{j=1}^{3N-k} \left(rac{\partial oldsymbol{x}_i}{\partial q_j}
ight) \delta q_j.$$
 (2.2)

Por otro lado, del principio de los trabajos virtuales (1.1) es

$$\sum_{i}^{N} \dot{\boldsymbol{p}}_{i} \cdot \delta \boldsymbol{x}_{i} - \sum_{i}^{N} \boldsymbol{F}_{i}^{a} \cdot \delta \boldsymbol{x}_{i} = 0,$$

donde $m{F}_i^a$ es la fuerza aplicada externa que no incluye las fuerzas de vínculo. El primer término se puede reescribir como

$$\dot{\boldsymbol{p}}_i \cdot \delta \boldsymbol{x}_i = m_i \frac{d\boldsymbol{v}_i}{dt} \cdot \sum_{j=1}^{3N-k} \left(\frac{\partial \boldsymbol{x}_i}{\partial q_j} \right) \delta q_j,$$

resultando

$$\sum_{i}^{N} m_{i} \frac{d\mathbf{v}_{i}}{dt} \cdot \sum_{j=1}^{3N-k} \left(\frac{\partial \mathbf{x}_{i}}{\partial q_{j}} \right) \delta q_{j} - \sum_{i}^{N} \mathbf{F}_{i}^{a} \cdot \delta \mathbf{x}_{i} = 0$$
 (2.3)

Se ha pasado de una descripción en términos de δx_i (3N variables) a otra en términos de δq_i (3N -k coordenadas generalizadas).

La idea ahora es reescribir todo en términos más convenientes, para que aparezca un término multiplicado a una variación arbitraria. De esta manera quedará una sumatoria de un sumando multiplicado por una variación igualada a cero. No cabe otra posibilidad que el sumando sea nulo para cada índice de la suma.

Escrito muy mal este texto. La idea es clara, no obstante: hay que purificarla Consideremos en primer lugar la derivada total del producto siguiente

$$\frac{d}{dt}\left(m_i\boldsymbol{v}_i\cdot\frac{\partial\boldsymbol{x}_i}{\partial q_i}\right) = m_i\frac{d\boldsymbol{v}_i}{dt}\cdot\frac{\partial\boldsymbol{x}_i}{\partial q_j} + m_i\boldsymbol{v}_i\cdot\frac{d}{dt}\left(\frac{\partial\boldsymbol{x}_i}{\partial q_j}\right),$$

y en segundo lugar la velocidad de cada partícula, que proviene de la derivada total de cada ecuación (2.1) y resulta

$$\boldsymbol{v}_i = \frac{d\boldsymbol{x}_i}{dt} = \sum_{i=1}^{3N-k} \left(\frac{\partial \boldsymbol{x}_i}{\partial q_j}\right) \dot{q}_j + \frac{\partial \boldsymbol{x}_i}{\partial t}.$$

A partir de esta última es claro ver que la derivada de la velocidad de la partícula i-ésima respecto a la coordenada l-ésima es

$$\frac{\partial \mathbf{v}_i}{\partial \dot{q}_i} = \frac{\partial \mathbf{x}_i}{\partial q_i}.\tag{2.4}$$

La ecuación de la velocidad se puede derivar otra vez, con respecto a q_l , obteniéndose

$$\frac{\partial \boldsymbol{v}_i}{\partial q_l} = \frac{\partial}{\partial q_l} \left(\frac{d\boldsymbol{x}_i}{dt} \right) = \sum_{i=1}^{3N-k} \frac{\partial^2 \boldsymbol{x}_i}{\partial q_l \partial q_i} \dot{q}_j + \frac{\partial^2 \boldsymbol{x}_i}{\partial q_l \partial t},$$

y se puede ver que invirtiendo el orden de derivación, esto significa que

$$\frac{\partial \boldsymbol{v}_i}{\partial q_l} = \frac{d}{dt} \left(\frac{\partial \boldsymbol{x}_i}{\partial q_l} \right).$$

Volviendo ahora a (2.3) y usando los resultados recientes tenemos

$$\sum_{i}^{N}\sum_{j=1}^{3N-k}\left[\frac{d}{dt}\left(m_{i}\boldsymbol{v}_{i}\frac{\partial\boldsymbol{x}_{i}}{\partial\boldsymbol{q}_{j}}\right)-m_{i}\boldsymbol{v}_{i}\frac{d}{dt}\left(\frac{\partial\boldsymbol{x}_{i}}{\partial\boldsymbol{q}_{j}}\right)\right]\delta\boldsymbol{q}_{j}-\sum_{i}^{N}\boldsymbol{F}_{i}^{a}\cdot\delta\boldsymbol{x}_{i}=0$$

donde modificaremos el corchete expresando derivadas con respecto a la posición x en términos de derivadas con respecto a la velocidad v, de manera que

$$\left[\frac{d}{dt}\left(m_i \boldsymbol{v}_i \frac{\partial \boldsymbol{v}_i}{\partial \dot{q}_j}\right) - m_i \boldsymbol{v}_i \frac{\partial \boldsymbol{v}_i}{\partial q_j}\right]$$

y usando el trick usual

$$\boldsymbol{v}\frac{\partial \boldsymbol{v}}{\partial q} = \frac{1}{2} \frac{\partial \boldsymbol{v}^2}{\partial q}$$

resulta

$$\left\{\frac{d}{dt}\left[\frac{\partial}{\partial \dot{q}_j}\left(\frac{m_i}{2}\boldsymbol{v}_i^2\right)\right] - \frac{\partial}{\partial q_j}\left(\frac{m_i}{2}\boldsymbol{v}_i^2\right)\right\}$$

Una manera menmotécnica de recordar esto es con el siguiente esquema:

$$\frac{\partial \boldsymbol{v}_i}{\partial \dot{q}_l} = \frac{\partial \boldsymbol{x}_i/\partial t}{\partial q_l/\partial t} = \frac{\partial \boldsymbol{x}_i}{\partial q_l}.$$

El hecho de que se pueda sacar fuera la derivada temporal y pasar adentro la derivada con respecto a la coordenada generalizada q puede verse haciendo la cuenta de manera explícita.

Es hora ya de introducir la sumatoria en i hacia el interior del corchete, y la ecuación original es ahora

$$\sum_{j=1}^{3N-k} \left\{ \frac{d}{dt} \left[\frac{\partial}{\partial \dot{q}_j} \left(\sum_i^N \frac{m_i}{2} \boldsymbol{v}_i^2 \right) \right] - \frac{\partial}{\partial q_j} \left(\sum_i^N \frac{m_i}{2} \boldsymbol{v}_i^2 \right) \right\} \delta q_j - \sum_i^N \boldsymbol{F}_i^a \cdot \delta \boldsymbol{x}_i = 0$$

y dentro de los paréntesis ha aparecido la energía cinética T. La sumatoria en j no era otra cosa que la suma de las derivadas de los momentos, y entonces

$$\sum_{i}^{N} \dot{\boldsymbol{p}}_{i} \cdot \delta \boldsymbol{x}_{i} = \sum_{j=1}^{3N-k} \left\{ \frac{d}{dt} \left[\frac{\partial T}{\partial \dot{q}_{j}} \right] - \frac{\partial T}{\partial q_{j}} \right\} \delta q_{j} = \sum_{i}^{N} \boldsymbol{F}_{i}^{a} \cdot \delta \boldsymbol{x}_{i}.$$

Escribiendo la variación δx en términos de δq a través de (2.2) se llega a

$$\sum_{j=1}^{3N-k} \sum_{i}^{N} \left(\boldsymbol{F}_{i}^{a} \cdot \frac{\partial \boldsymbol{x}_{i}}{\partial q_{j}} \right) \; \delta q_{j} = \sum_{j=1}^{3N-k} Q_{j} \; \delta q_{j}$$

siendo

$$Q_j = \sum_i^N \left(\boldsymbol{F}_i^a \cdot \frac{\partial \boldsymbol{x}_i}{\partial q_j} \right)$$

la fuerza generalizada en el grado de libertad j. Entonces

$$\sum_{j=1}^{3N-k} \left\{ \frac{d}{dt} \left[\frac{\partial T}{\partial \dot{q}_j} \right] - \frac{\partial T}{\partial q_j} - Q_j \right\} \delta q_j = 0 \tag{2.5}$$

Si suponemos que las fuerzas son conservativas, provienen de un potencial, entonces

$$\pmb{F}_i^a = -\frac{\partial V(\{\pmb{x}_j\})}{\partial \pmb{x}_i}$$

y expresando la fuerza \boldsymbol{Q}_{j} en términos del potencial \boldsymbol{V}

$$Q_j = \sum_i^N \boldsymbol{F}_i^a \cdot \frac{\partial \boldsymbol{x}_i}{\partial q_j} = -\sum_i^N \frac{\partial V}{\partial \boldsymbol{x}_i} \cdot \frac{\partial \boldsymbol{x}_i}{\partial q_j} = -\frac{\partial V}{\partial q_j},$$

el cual, insertado en la ecuación (2.5), conduce a

$$\sum_{i=1}^{3N-k} \left\{ \frac{d}{dt} \left[\frac{\partial T}{\partial \dot{q}_i} \right] - \frac{\partial}{\partial q_i} \left(T - V \right) \right\} \delta q_j = 0.$$

Dado que $V=V(\pmb{x}_1,...,\pmb{x}_N)=V(\{q_j\})$ (no depende de las velocidades generalizadas \dot{q}_j) se puede escribir

$$\sum_{j=1}^{3N-k} \left\{ \frac{d}{dt} \left[\frac{\partial}{\partial \dot{q}_j} \left(T - V \right) \right] - \frac{\partial}{\partial q_j} \left(T - V \right) \right\} \delta q_j = 0.$$

y definiendo al lagrangiano \mathcal{L} como

$$\mathcal{L} \equiv T - V$$

se arriba a

$$\sum_{j=1}^{3N-k} \left\lceil \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} \right\rceil \delta q_j = 0.$$

Nótese que $\mathcal{L}=\mathcal{L}(q_1,...,q_{3N-k},\dot{q}_1,...,\dot{q}_{3N-k},t)$, es decir que es función del conjunto $(\{q_j\},\{\dot{q}_j\},t)$. De esta manera las ecuaciones resultantes serán, a lo sumo, ecuaciones diferenciales para $q_j(t)$ de orden dos.

Si existieran fuerzas aplicadas que no provienen de un potencial (no conservativas) entonces

$$Q_j + Q_j^{NC} = -\frac{\partial V}{\partial q_j} + Q_j^{NC},$$

y las ecuaciones adquieren un término extra

$$\sum_{j=1}^{3N-k} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} - Q_j^{NC} \right] \delta q_j = 0.$$

Como esto vale para todo grado de libertad j, puesto que las variaciones son independientes, llegamos a

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} = Q_j^{NC}$$

que son las ecuaciones de Euler-Lagrange con presencia de fuerzas no conservativas. Este es el resultado más importante del capítulo.

Se tienen así una formulación para los problemas mecánicos en términos de ecuaciones diferenciales para los grados de libertad q_j que prescinden del conocimiento de las fuerzas de vínculo.

No sé si es la primera vez que aparecen. De serlo habría que remarcarlo como es debido, tal vez recuadrar

2.2.1 Algunos ejemplos del lagrangiano

EJEMPLO 2.1 Bloques deslizantes

Teníamos el vínculo

$$-2x_1 + x_2 =$$
cte.

Luego,

$$T = \frac{1}{2} m_1 \dot{x}_1^2 + \frac{1}{2} m_2 \dot{x}_2^2 \qquad \qquad V = -m_2 g x_2$$

y tomando x_2 como independiente llego a

$$T - V = \frac{1}{2} \left(\frac{m_1}{4} + m_2 \right) \dot{x}_2^2 + m_2 g x_2.$$

Luego, las ecuaciones de E-L serán

$$\frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{x}_2}\right) - \frac{\partial\mathcal{L}}{\partial x_2} = \left(\frac{m_1}{4} + m_2\right)\ddot{x}_2 - m_2g = 0$$

que conduce a

$$\ddot{x}_2 = \frac{m_2 g}{\frac{m_1}{4} + m_2},$$

que es a lo que se tenía que llegar.

EJEMPLO 2.2 Péndulo

Las ecuaciones son

$$m\ell\dot{\alpha}^2 = -T + mq\cos\alpha$$
 $m\ell\ddot{\alpha} = -mq\sin\alpha$

y se podría resolver desde aquí nomás. Pero escribamos el lagrangiano

$$\mathcal{L} = T - V = \frac{1}{2}m\ell^2\dot{\alpha}^2 - mg\ell(1 - \cos\alpha)$$

Sus ecuaciones de E-L son

$$m\ell\ddot{\alpha} + mg\ell\sin\alpha = 0$$

que es la ecuación del péndulo $\ddot{\alpha} = -g/\ell \sin \alpha$.

EJEMPLO 2.3 Aro acelerado

Supongamos un aro horizontal en una mesa sin rozamiento. Tiene un único grado de libertad. El vínculo es

$$(x - 1/2 \ at^2)^2 + (y - y_0)^2 = \ell^2$$

Falta ilustración del aro y sistema coordenado.

y las posiciones instantáneas de la masa m

$$x = \frac{1}{2}at^2 - \ell\cos(\varphi) \qquad y = y_0 + \ell\sin(\varphi)$$

Es conveniente utilizar el ángulo φ como coordenada generalizada. Pero φ está solidaria al aro. Eso no es un problema siempre que el $\mathcal L$ esté medido en un sistema inercial.

En este caso no hay potencial pero como φ es una coordenada vista en un sistema no inercial, aparecerán las fuerzas ficticias asociadas al movimiento. Serán

$$\dot{x} = at + \ell \sin(\varphi)\dot{\varphi}$$
 $\dot{y} = \ell \cos(\varphi)\dot{\varphi}$

y luego

$$\mathcal{L}=T=\frac{1}{2}m(\dot{x}^2+\dot{y}^2)=\frac{1}{2}m(a^2t^2+2at\ell\sin(\varphi)\dot{\varphi}+\ell^2\dot{\varphi}^2)$$

Las ecuaciones de Euler-Lagrange serán

$$\frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{\varphi}}\right) - \frac{\partial\mathcal{L}}{\partial\varphi} = m\ell^2\ddot{\varphi} + ma\ell\sin(\varphi) = 0$$

lo cual resulta en la ecuación de movimiento

$$\ddot{\varphi} = -\frac{a}{\ell}\sin(\varphi)$$

que es una ecuación que da oscilaciones, como la de un péndulo. Estas oscilaciones están causadas, claramente, por la aceleración $a.\,$

En este ejemplo se ve que se calcula la energía cinética T en un sistema inercial; no obstante, este valor está expresado en términos de una coordenada que no es inercial (es solidaria al aro). Aparecen entonces las fuerzas inerciales que tienen que aparecer y punto.

EJEMPLO 2.4 Problema 5 -para vínculos-

Este problema es de vínculos y trabajos virtuales. Habría que reubicarlo.

Se tienen dos masas m_1 y m_2 de manera que en principio se tendrían seis coordenadas; no obstante como el movimiento es en un plano (se puede tomar el z=0 como tal) y las masas están restringidas a moverse a lo largo del eje que las engarza se tiene, adoptando el esquema de la figura,

$$z_1 = z_2 = 0$$
 $x_2 = y_1 = 0$

es decir cuatro ecuaciones de vínculo a la cual le sumamos una quinta

$$x_1^2 + y_2^2 = \ell^2 (2.6)$$

de manera que resulta un problema para un único grado de libertad. Obviando los subíndices que no son necesarios, y diferenciando implícitamente la ecuación (2.6) se obtiene

$$xdx + ydy = 0$$

Utilizando el ángulo θ y parametrizando las variables implicadas en (2.6) de acuerdo con

$$x = \ell \sin \theta$$
 $y = \ell \cos \theta$

La T del \mathcal{L} es la vistda desde un sistema INERCIAL siempre; en todo caso luego aparecen las fuerzas ficticias necesarias. ESTO HAY QUE ESTUDIARLO Y ENTENDERLO.

El lagrangiano se dedujo de las ecuaciones de Newton, entonces debemos calcular T,V de un sistema inercial. Acá no se entiende si lo que se hace en la carpeta está bien o no, en el sentido de que parece que al usar una coordenada que no es inercial estamos calculando T no inercial.?

vemos que es una buena coordenada porque verifica el vínculo de manera natural. Planteando las ecuaciones

$$(T\sin\theta-m_1\ddot{x})\delta x+(m_2g-T\cos\theta-m_2\ddot{y})\delta y=0$$

$$x\delta x=-y\delta y \eqno(2.7)$$

pero usando la última, se tiene

$$-\frac{x}{\ell}T\delta x - \frac{y}{\ell}T\delta y = 0$$

de manera que desaparece la tensión. Entonces

$$m_2\ddot{x}\delta x = m_2(q - \ddot{y})\delta y$$

que es una ecuación de Lagrange de primera especie. Usando otra vez (2.7)

$$-m_1\ddot{x}\frac{y}{x}=m_2(g-\ddot{y})$$

y entonces ahora habría que convertir a expresar todo en términos de θ . Derivando las expresiones de x, y en términos del ángulo θ resulta que

$$\begin{split} -m_1\ell(\ddot{\theta}\cos\theta-\dot{\theta}^2\sin\theta)\frac{\cos\theta}{\sin\theta} &= m_2(g+\ell\ddot{\theta}\sin\theta+\ell\dot{\theta}\cos\theta)\\ \ddot{\theta}\ell(m_2\sin\theta+m_1\frac{\cos^2\theta}{\sin\theta})+\dot{\theta}^2\ell(m_2\sin\theta-m_1\cos\theta)+m_2g &= 0 \end{split}$$

Si $m_1 = m_2$ entonces

$$\ddot{\theta}\ell \frac{m}{\sin \theta} + mg = 0$$
$$\ddot{\theta} = -\frac{g}{\ell}\sin \theta,$$

y vemos que es un péndulo.

Ahora se quisiera calcular la tensión T. Se utilizarán multiplicadores de Lagrange. Sea que los vínculos se rompen (se rompen, por supuesto, en la dirección de las fuerzas de vínculos). Supongamos que existe y_1 (hay desplazamiento en la coordenada y_1) entonces existirá λ tal que $\lambda \delta y_1 \neq 0$

$$\delta y_1(m_1\ddot{y}_1 - \lambda - m_1g) \qquad \lambda = m_1g$$

pero la ecuación en (1) (página anterior) debe seguir valiendo.

$$\lambda_T + x\delta x + \lambda_T y\delta y$$

$$(m_1\ddot{x} + \lambda_T x)\delta x + (m_2(g - \ddot{y}) + \lambda_T + y)\delta y = 0$$

lo cual vale si $\lambda_T=-\frac{T}{\ell}$. Y se ve que el multiplicador de Lagrange es la tensión (vínculo) – la fuerza asociada a que se cumpla el vínculo –. Tengo un multiplicador por cada vínculo. Si hay n vínculos y quiero un vínculo uso un solo multiplicador. Pero ahora δx y δy son independientes, entonces deben anularse por separado los dos miembros de la ecuación de Newton.

$$\begin{split} m_1\ddot{x} + \lambda_T x & m_2(g - \ddot{y}) + \lambda_T y \\ \lambda_T &= -\frac{m_1 \ddot{x}}{x} \\ \lambda_T &= -\frac{m_1(\ddot{\theta}\cos\theta - \dot{\theta}^2\sin\theta)}{\sin\theta} = m_1(\frac{g}{\ell}\cos\theta - \dot{\theta}^2) \end{split}$$

2.3 Invariancia del lagrangiano ante adición de una derivada total

En los ejemplos del péndulo y del aro acelerado [CITAR], la resolución del sistema a través de las ecuaciones de Euler-Lagrange condujo a las mismas ecuaciones de movimiento (lo que signfica que, para iguales condiciones iniciales, la física del sistema es la misma) pero se partió de dos lagrangianos diferentes

$$\mathcal{L} = \frac{1}{2} m \ell^2 \dot{\alpha}^2 + m g \ell \cos \alpha \qquad \mathcal{L}' = \frac{1}{2} m \left(\ell^2 \ddot{\alpha} + 2 \ell g t \sin \alpha \ \dot{\alpha} + g^2 t^2 \right)$$

que llevaban a

$$\ell \ddot{\alpha} + q \sin \alpha = 0.$$

Es decir, que desde el punto de vista del movimiento del sistema, los dos lagrangianos son equivalentes. Pero notemos que el término central en \mathcal{L}' aparece vinculado a

$$\frac{d}{dt}\left(mlgt\cos\alpha\right) = -m\ell gt\dot{\alpha}\sin\alpha + mlg\cos\alpha,$$

de manera que

$$\mathcal{L}' = \frac{1}{2} m \ell^2 \dot{\alpha}^2 + m l g \cos \alpha - \frac{d}{dt} \left(m l g t \cos \alpha \right) + \frac{1}{2} g^2 t^2$$

$$\mathcal{L}' = \frac{1}{2} m \ell^2 \dot{\alpha}^2 + m l g \cos \alpha - \frac{d}{dt} \left(m l g t \cos \alpha - \frac{1}{6} g^2 t^3 \right)$$

o bien

$$\mathcal{L}' = \mathcal{L} + \frac{d}{dt}(F(\alpha,t)).$$

Entonces, parece que existe alguna relación entre dos lagrangianos que conducen a iguales ecuaciones de movimiento.

En el ejemplo visto del sistema mecánico del aro acelerado parece que existía alguna relación entre dos lagrangianos que conducían a iguales ecuaciones de movimiento. Veamos ahora el origen de esa relación.

Dado un lagrangiano $\mathcal{L}=\mathcal{L}(\dot{q}_i,q_i,t)$ nos construimos otro \mathcal{L}' sumándole al anterior la derivada total de una función arbitraria de las coordenadas y del tiempo $F=F(q_i,t)$, de modo que

$$\mathcal{L}'(\dot{q}_i,q_i,t) = \mathcal{L}(\dot{q}_i,q_i,t) + \frac{dF}{dt}(q_i,t).$$

La aceleración del aro era a pero escribimos g para enfatizar que tienen la misma forma.

Link con el ejemplo del aro acelerado!!

Las ecuaciones de Euler-Lagrange

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}'}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}'}{\partial q_j} = 0$$

para este nuevo lagrangiano resultan en

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}'}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}'}{\partial q_j} = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} + \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}_i} \left[\frac{dF}{dt} \right] \right) - \frac{\partial}{\partial q_j} \left[\frac{dF}{dt} \right] = 0$$
(3.1)

donde aparecen las ecuaciones correspondientes al lagrangiano \mathcal{L} más los dos términos del renglón inferior. Veremos que estos se cancelan exactamente por un argumento similar al encontrado en la ecuación (2.4) en la sección anterior.

Para ello es necesario expresar la derivada total de F,

$$\frac{dF}{dt} = \sum_{i}^{3N-k} \left(\frac{\partial F}{\partial q_i}\right) \dot{q}_i + \frac{\partial F}{\partial t}$$

y ver que

$$\frac{\partial}{\partial \dot{q}_j} \left[\frac{dF}{dt} \right] = \frac{\partial F}{\partial q_j} \qquad \qquad \frac{\partial}{\partial q_j} \left[\frac{dF}{dt} \right] = \frac{\partial^2 F}{\partial q_j^2} \dot{q}_j + \frac{\partial^2 F}{\partial q_j \partial t}$$

Usando explícitamente estos resultados en los términos extra de (3.1), se llega a que

$$\begin{split} \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}_j} \left[\frac{dF}{dt} \right] \right) - \frac{\partial}{\partial q_j} \left[\frac{dF}{dt} \right] &= \frac{d}{dt} \left(\frac{\partial F}{\partial q_j} \right) - \frac{\partial}{\partial q_j} \left(\frac{dF}{dt} \right) = \\ \left\{ \frac{\partial^2 F}{\partial {q_j}^2} \, \dot{q}_j + \frac{\partial^2 F}{\partial t \partial q_j} \right\} - \left\{ \frac{\partial^2 F}{\partial {q_j}^2} \dot{q}_j + \frac{\partial^2 F}{\partial q_j \partial t} \right\} &= \frac{\partial^2 F}{\partial t \partial q_j} - \frac{\partial^2 F}{\partial q_j \partial t} = 0 \end{split}$$

donde la obtención del cero responde a que hemos aceptado que las derivadas cruzadas de F son idénticas. Para ello basta con admitir que F sea de clase C^2 (derivadas segundas continuas).

Finalmente hemos comprobado que las ecuaciones de Euler Lagrange no se modifican si añadimos al lagrangiano la derivada total respecto del tiempo de una función de (q_i,t) . O sea que podríamos construir infinitos lagrangianos diferentes por el añadido de una derivada total y todos ellos llevan a las mismas ecuaciones de movimiento.

EJEMPLO 3.1 Lagrangiano en funcionamiento

Dos masas m_1 , m_2 conectadas mediantes barras rígidas de masa despreciable según indica la figura que se mueven en un plano.

En principio este problema tiene cuatro coordenadas x_1,x_2,y_1,y_2 pero las barras determinan dos ecuaciones de vínculo

$$x_1^2 + y_1^2 = \ell \qquad \qquad (x_2 - x_1)^2 + (y_2 - y_1)^2 = \ell^2$$

de modo que es un sistema con dos grados de libertad.

Para escribir el lagrangiano notemos que

$$T=T_1+T_2=\frac{1}{2}m_1(\dot{x}_1^2+\dot{y}_1^2)+\frac{1}{2}m_2(\dot{x}_2^2+\dot{y}_2^2)$$

$$V=-m_1gx_1-m_2gx_2$$

Y en términos de los ángulos α_1 , α_2 se tiene

$$\begin{split} x_1 &= \ell \cos \alpha_1 \qquad y_1 = \ell \sin \alpha_1 \\ x_2 &= \ell \cos \alpha_2 + \ell \cos \alpha_1 \qquad y_2 = \ell \sin \alpha_1 + \ell \sin \alpha_2 \end{split}$$

pero antes de hacer toda el álgebra, notemos que $(\dot{x}_1^2+\dot{y}_1^2)=|v_1|$ está siempre en la dirección del vector $\hat{\alpha}_1$ y no puede tener componente perpendicular. Considerando solamente esa componente, sería

$${m v}_1 = \ell \ \dot{lpha}_1 \hat{lpha}_1 \qquad {
m con} \qquad v_1^2 = \ell^2 \ \dot{lpha}_1^2$$

y correspondientemente

$$\begin{split} \pmb{v}_2 &= \ell \: \dot{\alpha}_1 \hat{\alpha}_1 + \ell \: \dot{\alpha}_2 \hat{\alpha}_2 \\ v_2^2 &= \ell^2 \: \dot{\alpha}_1^2 + \ell^2 \: \dot{\alpha}_2^2 + 2 \dot{\alpha}_1 \dot{\alpha}_2 \ell^2 \cos(\alpha_2 - \alpha_1). \end{split}$$

2.4 Momentos conjugados y coordenadas cíclicas

Dado un lagrangiano $\mathcal{L}=\mathcal{L}(q_i,\dot{q}_i,t)$ se define el momento canónicamente conjugado a q_j como

$$p_j \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}_j},\tag{4.1}$$

y entonces

$$\dot{p}_j = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) \equiv Q_j,$$

que es la fuerza generalizada en el grado de libertad j.

Este ejemplo es interesante porque considera unos versores movibles. Habría que continuarlo y ver qué se hizo en la carpeta. Sea ahora un lagrangiano que no depende explícitamente de la coordenada k, es decir

$$\mathcal{L} = \mathcal{L}(q_1, ..., q_{k-1}, q_{k+1}, ..., q_n, \dot{q}_1, ... \dot{q}_n, t),$$

entonces será

$$\frac{\partial \mathcal{L}}{\partial q_k} = 0$$

y como consecuencia las ecuaciones de Euler-Lagrange en la coordenada k-ésima resultan

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_k} \right) = \dot{p}_k = Q_k = 0$$

de manera que no existe fuerza generalizada en el grado de libertad k y como es $\dot{p}_k=0$, se conserva el momento p_k canónicamente conjugado a q_k . En estos casos se dice que la coordenada q_k que no aparece en el lagrangiano, es una coordenada cíclica.

EJEMPLO 4.1 Potencial central en un plano

Sea un potencial central V(r) en el plano. El lagrangiano de una partícula de masa m sometida al mismo, y en las convenientes coordenadas polares (r,φ) es

$$\mathcal{L} = \frac{1}{2} m (\, \dot{r}^2 + r^2 \dot{\varphi}^2) - V(r). \label{eq:loss}$$

Luego, las ecuaciones de Euler-Lagrange serán, en r,

$$\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{r}}\right) - \frac{\partial \mathcal{L}}{\partial r} = m\ddot{r} - m\dot{\varphi}^2 r + \frac{dV}{dr} = 0$$

y en φ

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \right) = mr^2 \ddot{\varphi} = 0.$$

En esta última debemos notar que $\partial\mathcal{L}/\partial\varphi=0$ y esto significa que φ es cíclica. Entonces se conserva el momento canónicamente conjugado a φ puesto que verifica

$$\dot{p}_{\varphi} = mr^2 \ddot{\varphi} = 0$$

lo cual lleva a que $mr^2\dot{\varphi}$ es una constante para este sistema. La moraleja es que la existencia de una coordenada cíclica permite ahorrarnos una integración. Esto, por supuesto, para este problema no es otra cosa que la conservación del momento angular [?].

2.5 Momentos canónicamente conjugados y traslaciones rígidas

Consideremos un sistema de partículas que sufre una traslación rígida infinitesimal. Esta traslación se lleva a cabo a través de un desplazamiento en la coordenada q y de magnitud δq en la dirección dada por el versor \hat{n} .

En efecto, para el sistema de N partículas, la traslación rígida implica

$$q \longrightarrow q + \delta q$$
 $\mathbf{x}_i \longrightarrow \mathbf{x}_i + \delta q \hat{n}$

La Figura 5.1 representa la situación.

Luego, suponiendo una energía cinética de tipo T_2 , el momento canónica- [¿se sabe esto a esta altura?] mente conjugado p (en la coordenada q –cuyo subíndice omitimos–) es

$$p = \frac{\partial T}{\partial \dot{q}} = \frac{1}{2} \sum_{i}^{N} m_{i} \left(\frac{\partial \boldsymbol{v}_{i}^{2}}{\partial \dot{q}} \right) = \sum_{i}^{N} m_{i} \boldsymbol{v}_{i} \cdot \frac{\partial \boldsymbol{v}_{i}}{\partial \dot{q}}$$

La forma de la traslación rígida implica que

$$\frac{\partial \boldsymbol{v}_i}{\partial \dot{q}} = \frac{\partial \boldsymbol{x}_i}{\partial q} = \lim_{\delta q \to 0} \frac{\boldsymbol{x}_i + \delta q \, \hat{\boldsymbol{n}} - \boldsymbol{x}_i}{\delta q} = \hat{\boldsymbol{n}}.$$

de modo que

$$p = \sum_{i}^{N} m_{i} \boldsymbol{v}_{i} \cdot \hat{\boldsymbol{n}} = \left(\sum_{i}^{N} m_{i} \boldsymbol{v}_{i}\right) \cdot \hat{\boldsymbol{n}} = \boldsymbol{P} \cdot \hat{\boldsymbol{n}} = P_{\hat{\boldsymbol{n}}}$$

Figura 5.1

Hemos arribado al resultado de que el momento canónicamente conjugado correspondiente a la coordenada generalizada asociada a la traslación rígida es la proyección del momento total en la dirección de ésta.

Para el ejemplo trivial de la partícula libre, $T=1/2 \ m(\dot{x}^2+\dot{y}^2+\dot{z}^2)$, se Este ejemplo suma algo? tiene $p_x = mv_x$ si la traslación es en la dirección \hat{x} .

Para las fuerzas generalizadas, equivalentemente se tiene

$$Q = \sum_{i}^{N} \boldsymbol{F}_{i}^{a} \cdot rac{\partial \boldsymbol{x}_{i}}{\partial q} = \left(\sum_{i}^{N} \boldsymbol{F}_{i}^{a}\right) \cdot \hat{n} = \boldsymbol{F} \cdot \hat{n},$$

Hablar de vectores al cuadrado. Nota de cómo se manipula: uso $dv_i^2 = 2v_i dv_i \mathbf{y}$

Recodemos que

$$oldsymbol{v}_i = \dot{q}_j rac{\partial oldsymbol{x}_i}{\partial q_j} - rac{\partial oldsymbol{x}_i}{\partial t}$$

la fuerza generalizada es la proyección de las fuerzas aplicadas en la dirección dada por $\hat{n}.$

La ecuación para la fuerza generalizada Q_i era

$$Q_j = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j}.$$

Aún en el caso de que T dependa de q_j la traslación rígida implica que $\partial T/\partial q_j=0$ porque es sumar un vector constante a la posición, luego $d{\boldsymbol x}_i/dt=d({\boldsymbol x}_i+{\boldsymbol a})/dt$ para todo ${\boldsymbol a}$ constante. Entonces, para la coordenada q asociada a la traslación en \hat{n} se tiene

$$Q = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}} \right) = \frac{dP_{\hat{n}}}{dt},$$

de tal manera que si en \hat{n} no hay fuerza Q tendremos $dP_{\hat{n}}/dt=0,$ es decir $P_{\hat{n}}$ conservado.

2.6 Momentos canónicamente conjugados y rotaciones rígidas

Ahora consideraremos un sistema de partículas que sufre una rotación rígida infinitesimal. Esta se materializa a través de un desplazamiento angular en la coordenada q de magnitud δq . La dirección y sentido, para cada posición \boldsymbol{x}_i vienen dadas por el producto vectorial $\hat{n} \times \boldsymbol{x}_i$.

Para un sistema de N partículas, la rotación rígida implica

$$q \longrightarrow q + \delta q |\boldsymbol{x}| \sin \alpha_i \qquad \boldsymbol{x}_i \longrightarrow \boldsymbol{x}_i + \delta q \ \hat{n} \times \boldsymbol{x}_i$$

La Figura 6.2 representa la situación, donde por razones de claridad se muestran solamente dos partículas.

El momento canónicamente conjugado en la coordenada angular q será

$$p = \frac{\partial T}{\partial \dot{q}} = \sum_{i}^{N} m_{i} \boldsymbol{v}_{i} \cdot \frac{\partial \boldsymbol{v}_{i}}{\partial \dot{q}} = \sum_{i}^{N} m_{i} \boldsymbol{v}_{i} \cdot \hat{\boldsymbol{n}} \times \boldsymbol{x}_{i} = \sum_{i}^{N} m_{i} \boldsymbol{v}_{i} \cdot (\hat{\boldsymbol{n}} \times \boldsymbol{x}_{i})$$

donde hemos utilizado el hecho de que

$$\frac{\partial \boldsymbol{v}_i}{\partial \dot{q}} = \frac{\partial \boldsymbol{x}_i}{\partial q} = \lim_{\delta q \to 0} \frac{\boldsymbol{x}_i + \delta q (\hat{n} \times \boldsymbol{x}_i) - \boldsymbol{r}_i}{\delta q} = \hat{n} \times \boldsymbol{x}_i.$$

Revisar porque esto no estaba tan claro. Supongo que la idea es ver que aún con presencia de T_1 esto sigue valiendo

Acá la cosa es que la traslación es una cosa que sufre el sistema pero no es dinámica. Es una construcción nuestra, como un cambio de sistema de referencia.

Esta coordenada q es especial en el sentido en que representa una rotación.

Figura 6.2

El sumando se puede reescribir (usando $A\cdot (B\times C)=B\cdot (C\times A)$) para que aparezca explícitamente la forma buscada,

$$p = \sum_{i}^{N} m_{i} \boldsymbol{v}_{i} \cdot (\hat{\boldsymbol{n}} \times \boldsymbol{x}_{i}) = \sum_{i}^{N} \hat{\boldsymbol{n}} \cdot (\boldsymbol{x}_{i} \times m_{i} \boldsymbol{v}_{i}) = \sum_{i}^{N} \hat{\boldsymbol{n}} \cdot \boldsymbol{l}_{i} = \hat{\boldsymbol{n}} \cdot \sum_{i}^{N} \boldsymbol{l}_{i} = \hat{\boldsymbol{n}} \cdot \boldsymbol{L}$$

que significa

$$p = \hat{n} \cdot \boldsymbol{L} = L_{\hat{n}},$$

el momento canónicamente conjugado en la dirección \hat{n} es el momento angular total del sistema proyectado en esa dirección. La fuerza generalizada será

$$Q = \sum_{i}^{N} \boldsymbol{F}_{i}^{a} \cdot \frac{\partial \boldsymbol{x}_{i}}{\partial q} = \sum_{i}^{N} \boldsymbol{F}_{i}^{a} \cdot (\hat{\boldsymbol{n}} \times \boldsymbol{x}_{i}) = \hat{\boldsymbol{n}} \cdot \left(\sum_{i}^{N} \boldsymbol{x}_{i} \times \boldsymbol{F}_{i}^{a}\right) = \hat{\boldsymbol{n}} \cdot \sum_{i}^{N} \boldsymbol{\tau}_{i} = \hat{\boldsymbol{n}} \cdot \boldsymbol{T},$$

i.e. la componente del torque en la dirección \hat{n} .

Asimismo, si la coordenada implica una rotación rígida entonces $\partial T/\partial q=0$ debido a que la energía cinética T es un escalar y es por ende invariante ante rotaciones (un vector rotado cambia su dirección pero no su módulo). Luego

$$Q = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{a}} \right) = \frac{dL_{\hat{n}}}{dt} = \boldsymbol{T}_{\hat{n}}.$$

Tal vez un ejemplo 2D ayude a aclarar un poco este tema.

Todo este análisis (traslaciones y rotaciones rígidas) vale si el potencial V no depende de la velocidad; en caso contrario cambia la forma de los momentos

canónicos. En efecto, en este caso es

$$p = \frac{\partial \mathcal{L}}{\partial \dot{q}} = \frac{\partial (T - V)}{\partial \dot{q}}$$

Volviendo al ejemplo de la partícula de masa m y carga q en un campo electromagnético se tendrá

$$p = mv_{\hat{n}} + \frac{q}{c}\mathbf{A} \cdot \hat{n},$$

es decir que aparece un término extra con el potencial vector respecto del caso en que la partícula está libre.

2.7 Energía cinética de un sistema

Resulta útil disponer de la energía cinética de un sistema en función de coordenadas generalizadas. Para un sistema de N partículas, es

$$T = \frac{1}{2} \sum_{i}^{N} m_i |\boldsymbol{v}_i|^2$$

donde las posiciones de cada una de ellas se pueden expresar en términos de k coordenadas generalizadas

$$\boldsymbol{x}_i = \boldsymbol{x}_i(q_1, q_2, ..., q_k, t)$$

y sus respectivas velocidades serán

$$oldsymbol{v}_i = \sum_j^k rac{\partial oldsymbol{x}_i}{\partial q_j} \ \dot{q}_j + rac{\partial oldsymbol{x}_i}{\partial t}.$$

Luego, utilizando el hecho de que $|\boldsymbol{v}_i|^2 = \boldsymbol{v}_i \cdot \boldsymbol{v}_i$, se tiene

$$T = \frac{1}{2} \sum_{i}^{N} m_{i} \left(\sum_{j=1}^{k} \frac{\partial \boldsymbol{x}_{i}}{\partial q_{j}} \dot{q}_{j} + \frac{\partial \boldsymbol{x}_{i}}{\partial t} \right) \cdot \left(\sum_{s=1}^{k} \frac{\partial \boldsymbol{x}_{i}}{\partial q_{s}} \dot{q}_{s} + \frac{\partial \boldsymbol{x}_{i}}{\partial t} \right) \tag{7.1}$$

y expandiendo el producto resulta

$$T = \frac{1}{2} \sum_{i}^{N} m_{i} \left[\sum_{j}^{k} \sum_{s}^{k} \frac{\partial \boldsymbol{x}_{i}}{\partial q_{j}} \cdot \frac{\partial \boldsymbol{x}_{i}}{\partial q_{s}} \dot{q}_{s} \dot{q}_{j} + 2 \frac{\partial \boldsymbol{x}_{i}}{\partial t} \cdot \sum_{j}^{k} \frac{\partial \boldsymbol{x}_{i}}{\partial q_{j}} \dot{q}_{j} + \left| \frac{\partial \boldsymbol{x}_{i}}{\partial t} \right|^{2} \right],$$

la cual se puede separar en tres contribuciones

$$T = T_2 + T_1 + T_0$$

La derivada con respecto al tiempo de la posición es la d/dt no la parcial.

Este chapter es básicamente un desarrollo formal, habría que bajar con alguna aplicación práctica.

Sacarle espacio al cdot

con las siguientes formas:

$$\begin{split} T_2 &= \frac{1}{2} \sum_{j}^{k} \sum_{s}^{k} \left(\sum_{i}^{N} m_i \frac{\partial \boldsymbol{x}_i}{\partial q_j} \cdot \frac{\partial \boldsymbol{x}_i}{\partial q_s} \right) \dot{q}_j \dot{q}_s \\ T_1 &= \sum_{j}^{k} \left(\sum_{i}^{N} m_i \frac{\partial \boldsymbol{x}_i}{\partial t} \cdot \frac{\partial \boldsymbol{x}_i}{\partial q_j} \right) \dot{q}_j \\ T_0 &= \frac{1}{2} \sum_{i}^{N} m_i \left| \frac{\partial \boldsymbol{x}_i}{\partial t} \right|^2, \end{split}$$

donde se ha alterado el orden de los signos \sum para enfatizar el hecho de que las cantidades entre paréntesis pueden asociarse a una matriz y un vector de acuerdo con

$$\begin{split} a_{js}(q_1,...,q_k,t) &\equiv \sum_i^N m_i \frac{\partial \pmb{x}_i}{\partial q_j} \cdot \frac{\partial \pmb{x}_i}{\partial q_s} \\ b_j(q_1,...,q_k,t) &\equiv \sum_i^N m_i \frac{\partial \pmb{x}_i}{\partial q_i} \cdot \frac{\partial \pmb{x}_i}{\partial t} \end{split}$$

Entonces

$$T_2 = \frac{1}{2} \sum_j^k \sum_s^k \, a_{js} \, \dot{q}_s \dot{q}_j, \qquad T_1 = \sum_j^k \, b_j \, \dot{q}_j, \qquad T_0 = \frac{1}{2} \sum_i^N m_i \left| \frac{\partial \boldsymbol{x}_i}{\partial t} \right|^2$$

son, respectivamente, contribuciones cuadráticas, lineales o de orden cero con respecto a las velocidades generalizadas \dot{q} .

Para una particula libre será

$$T = T_2$$

es decir que solamente es cuadrática en las velocidades. Para una partícula sometida a vínculos en general, en términos de las coordenadas generalizadas, se tendrán las tres clases de cinética.

En coordenadas esféricas la energía de una partícula libre es

$$T_2 = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin\theta\dot{\varphi}^2\right).$$

Si las coordenadas generalizadas son las coordenadas r, θ, φ se identifica

$$T_2 = \frac{1}{2} m \left(a_r(r,\theta,\varphi) \dot{r}^2 + a_\theta(r,\theta,\varphi) \dot{\theta}^2 + a_\phi(r,\theta,\varphi) \dot{\varphi}^2 \right).$$

Figura 8.3 Sistema de partículas

2.8 Energía cinética de un sistema de partículas

La energía de un sistema de partículas es

$$\begin{split} T &= \frac{1}{2} \sum_{i}^{N} m_{i} \boldsymbol{v}_{i}^{2} = \frac{1}{2} \sum_{i}^{N} m_{i} \left(\dot{\boldsymbol{R}} + \dot{\boldsymbol{r}}_{i}' \right)^{2} = \\ &\frac{1}{2} \sum_{i}^{N} m_{i} \boldsymbol{V}_{cm}^{2} + \frac{1}{2} \sum_{i}^{N} m_{i} \boldsymbol{V}_{i}'^{2} + \frac{1}{2} \sum_{i}^{N} 2 m_{i} \boldsymbol{V}_{cm} \cdot \boldsymbol{r}_{i}' \end{split}$$

y veremos ahora que el último término es nulo ya que son vectores perpendiculares. Para ello notemos que

$$M\mathbf{R}_{cm} = \sum_{i}^{N} m_i \mathbf{r}_i = \sum_{i}^{N} m_i (\mathbf{R}_i + \mathbf{r}_i')$$

$$0 = \sum_{i}^{N} m_i \mathbf{r}_i'$$

y también

$$0 = \sum_{i}^{N} m_{i} \boldsymbol{v}_{i}^{\prime}$$

de modo que

$$0 = \sum_{i}^{N} m_i \mathbf{V}_{cm} \cdot \mathbf{r}_i'.$$

Finalmente

$$T^{tot} = T^{cm} + T^{tot}_{cm}$$

Esto hay que revisarlo, derivo ambos miembros? Vincular con la figura.

2.9 Trabajo en un sistema de partículas

Empezamos desde

$$W = W^{ext} + W^{int}$$

donde el trabajo externo puede escribirse

Quiero un ℓ en bold, no me gusta el s.

$$W^{ext} = \sum_{i}^{N} \int_{1}^{2} \mathbf{F}_{i}^{e} \cdot d\mathbf{s}$$
 (9.1)

La no dependencia del camino para la integral que da (9.1) requiere que

$$\label{eq:final_equation} \boldsymbol{F}_i^e = \boldsymbol{F}_i^e(\boldsymbol{r}_i) \qquad \nabla_{r_i} \times \boldsymbol{F}_i^e = 0$$

y entonces puedo inducir la existencia de una función potencial para las fuerzas barra resizeable ya. externas,

$$W^{ext} = -\sum_{i}^{N} \Delta V_{i} \big]_{1}^{2}$$

Por otro lado,

$$W_c^{int} = \int_1^2 \sum_{\substack{j \ j
eq i}}^N oldsymbol{F}_{ij}^e \cdot doldsymbol{s}_i$$

$$\sum_{i}^{N}W_{i}^{int}=W^{int}=\sum_{\substack{j\\i\neq i}}^{N}\int_{1}^{2}\sum_{\substack{j\\j\neq i}}^{N}\boldsymbol{F}_{ij}^{e}\cdot d\boldsymbol{s}_{i}$$

2.10 Lagrangiano cíclico en el tiempo

Empezando desde la derivada total con respecto al tiempo del lagrangiano,

$$\frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) = \frac{\partial\mathcal{L}}{\partial q}\dot{q} + \frac{\partial\mathcal{L}}{\partial \dot{q}}\ddot{q} + \frac{\partial\mathcal{L}}{\partial t} \tag{10.1}$$

y usando la derivada total del término

$$\frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}}\dot{q}\right) = \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}}\right)\dot{q} + \frac{\partial\mathcal{L}}{\partial\dot{q}}\ddot{q},$$

se puede expresar (10.1) sin derivadas segundas explícitas \ddot{q} de suerte que

$$\frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) = \frac{\partial\mathcal{L}}{\partial q}\dot{q} + \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial \dot{q}}\dot{q}\right) - \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial \dot{q}}\right)\dot{q} + \frac{\partial\mathcal{L}}{\partial t}$$

la cual, acomodando un poco los términos, resulta en

$$\frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) = \left[\frac{\partial\mathcal{L}}{\partial q} - \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial \dot{q}}\right)\right]\dot{q} + \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial \dot{q}}\dot{q}\right) + \frac{\partial\mathcal{L}}{\partial t}.$$

Como el corchete son las ecuaciones de Euler-Lagrange y además $\partial \mathcal{L}/\partial \dot{q} \equiv p$ se tiene

$$\frac{d}{dt}\left(\mathcal{L}(q,\dot{q},t)\right) = \frac{d}{dt}\left(p\:\dot{q}\right) + \frac{\partial\mathcal{L}}{\partial t},$$

o bien,

$$\frac{d}{dt} \left(p \ \dot{q} - \mathcal{L} \right) = - \frac{\partial \mathcal{L}}{\partial t}.$$

Definiendo al operador hamiltoniano $\mathcal H$ como

$$\mathcal{H} \equiv p \, \dot{q} - \mathcal{L} \tag{10.2}$$

resulta que

$$\frac{d\mathcal{H}}{dt} = -\frac{\partial \mathcal{L}}{\partial t} \tag{10.3}$$

El hamiltoniano es un operador tal que su variación temporal total depende de la variación temporal explícita del lagrangiano. Entonces, si el lagrangiano no depende explícitamente del tiempo se tiene que $\mathcal{H}=\mathcal{H}_0$, el hamiltoniano se conserva.

Por otra parte, si se cumple que :

- · Los vínculos no dependen del tiempo
- El potencial no depende de las velocidades generalizadas,

entonces el hamiltoniano es la energía, es decir

$$\mathcal{H} = E = T + V. \tag{10.4}$$

La condición de que los vínculos no dependan del tiempo tiene como consecuencia que la energía cinética sea una función cuadrática en las velocidades generalizadas. Entonces la condición (10.4) se puede expresar en términos de las energías cinéticas y potenciales como

$$T = T_2 \hspace{1cm} V \neq V(\dot{q})$$

Asimismo, la condición de energía constante $E=E_0$ se cumplirá si el trabajo de las fuerzas no conservativas es nulo, $W^{\rm nc}=0$.

Esto se debiera haber visto antes en algún momento, y convendría recordarlo aquí.

No sé en qué momento se ha definido el hamiltoniano, H=T+V, deberíamos referirlo y tenerlo en cuenta.

 $^{^1}$ Notemos en la ecuación (10.3) que la derivada $\partial \mathcal{L}/\partial t$ refiere a la aparición explícita de t; de este modo el hecho de que sea $\partial \mathcal{L}/\partial t=0$ significa que el \mathcal{H} se conserva pero no que \mathcal{L} se conserva. Esto último requeriría $d\mathcal{L}/dt=0$.

EJEMPLO 10.1 Bola rotante engarzada en alambre

Una barra gira sobre un mesa sin rozamiento en torno a un punto fijo O con velocidad angular constante ω . Esta barra tiene enhebrada una bola de masa m que puede deslizarse libremente a lo largo de la misma, como se ilustra esquemáticamente en la figura 10.4.

Figura 10.4 Problema de la barra que gira con una masa m enhebrada.

Claramente la bola seguirá, con respecto a un sistema de coordenadas polar (ρ, φ) con origen en el punto O, una trayectoria como la esquematizada por la curva verde.

En este problema no hay potencial y el lagrangiano, que es T, será

$$\mathcal{L} = \frac{1}{2}(\dot{\rho}^2 + \rho^2 \omega^2)$$

El hamiltoniano es

$$\mathcal{H} = \frac{1}{2}(\dot{\rho}^2 - \rho^2 \omega^2). \tag{10.5}$$

Luego, como el lagrangiano no depende explícitamente del tiempo entonces el hamiltoniano dado por la (10.5) se conserva. No obstante, el hamiltoniano no es la energía puesto que la energía cinética T tiene la forma $T=T_2+T_0$, que proviene del hecho de que la fuerza de vínculo (que tendrá dirección angular en este caso) dependerá del tiempo. La energía no se conserva, claramente hay trabajo de la fuerza de vínculo, que es una fuerza no conservativa.

La conservación del hamiltoniano dependerá de las coordenadas generalizadas elegidas. Podría pensarse que el $\mathcal H$ es la energía vista en un sistema no inercial [?]. La energía siempre es la medida en un sistema inercial. Además, cuando se conserve lo será desde cualquier sistema de coordenadas inercial elegido.

2.11 Energía cinética y el hamiltoniano

Dado que la energía cinética tiene la forma general

$$T = \underbrace{\frac{1}{2} \sum_{i}^{N} m_i \left(\frac{\partial \boldsymbol{r}_i}{\partial t}\right)^2}_{T_0} + \underbrace{\sum_{j}^{3n-k} b_j(q_1, ..., q_{3N-k}, t) \dot{q}_j}_{T_1} + \underbrace{\frac{1}{2} \sum_{j}^{3n-k} \sum_{s}^{3n-k} a_{js}(q_1, ..., q_{3N-k}, t) \dot{q}_s \dot{q}_j}_{T_2}$$

entonces se sigue que

$$E = T_0 + T_1 + T_2 + V (11.1)$$

y como

$$p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = T_1 + 2T_2$$

es

$$\mathcal{H} = \sum_{i}^{N} p_{i} \dot{q}_{i} - (T_{0} + T_{1} + T_{2} - V) = 2T_{2} + T_{1} - T_{0} - T_{1} - T_{2} + V = T_{2} - T_{0} + V$$

pero como E es (11.1) se tendrá

$$E = H \iff 2T_0 + T1 = 0$$

y un solución de este sistema es, por supuesto, $T_0=T_1=0\,$

2.12 Principio de acción mínima

El estado de un sistema mecánico de N grados de libertad en un dado instante de tiempo t puede asociarse a un vector de componentes $\{q_i\}$ viviendo en un espacio N-dimensional de coordenadas generalizadas. La evolución entre dos puntos en ese espacio, de $\{q_i(t_a)\}$ a $\{q_i(t_b)\}$ por ejemplo, se realiza por un trayecto continuo entre esos dos puntos, que es la trayectoria del sistema.

 $\mbox{\bf Figura 12.5} \quad \mbox{Trayectoria de un sistema mecánico } \{q_i\} \mbox{ entre dos puntos del espacio N-dimensional de coordenadas generalizadas.}$

En principio cualquier trayecto entre dos puntos es posible porque eso depende de la física a la cual está sometido el sistema, no obstante existe un principio que permite saber cuál es la trayectoria que seguirá. Considerando el lagrangiano $\mathcal{L}=T-V$ y la siguiente integral (la acción S) entre los puntos $\{q_i(t_a)\}$ y $\{q_i(t_b)\}$,

$$S = \int_{t_2}^{t_b} \mathcal{L}(q_1(t,q_2(t),...,\dot{q}_1(t),\dot{q}_2(t),...,t)) \ dt$$

se tiene que la trayectoria real entre estos dos puntos es tal que la integral S toma su valor mínimo.

Dicho de otra manera, esto significa que S como funcional dependiendo de $\{q_i\}, \{\dot{q}_i\}$ deberá tener un valor mínimo (o ser estacionaria) al especializarse en la trayectoria real. Esto es análogo a lo que sucede en cálculo; en el mínimo de una función (de una o varias variables) la derivada se anula. El concepto equivalente en funcionales como S es el de variación nula.

La idea es construir una *variación* arbitraria respecto de la trayectoria real $\{q_i\}$ y forzar a que esa variación se anule para obtener un condición sobre las $\{q_i\}$ (para funciones esa condición era que el gradiente se anule).

Si me sitúo en la trayectoria verdadera, es decir el conjunto $\{q_i(t)\}$, una variación arbitraria de la misma tendrá la forma

$$q_i(t) \rightarrow q_i(t) + \delta q_i(t) \qquad i = 1, 2, \dots \tag{12.1} \label{eq:12.1}$$

donde cada coordenada q variará de acuerdo con su correspondiente desplazamiento δq . La variación se hace en un intervalo de tiempo arbitrario $[t_a,t_b]$ y con extremos fijos,

$$\delta q(t_a) = 0 \qquad \qquad \delta q(t_b) = 0, \tag{12.2}$$

lo que significa que los puntos de partida y llegada en el espacio de fases son los mismos.

Asimismo se pedirá que todas las trayectorias empleen el mismo tiempo de manera que la variación se hará en algún tiempo fijo intermedio $t_a < t < t_b$. O sea que $\delta t = 0$.

Una representación unidimensional (una única q) puede verse en la Figura 12.6. La trayectoria real sería la curva q(t) en color rojo, mientras que la curva verde sería una trayectoria variada a través de δq . Los extremos fijos (12.2) implican que la variación es nula allí, y entonces las curvas comienzan y terminan en el mismo punto.

El hecho de considerar una variación a tiempo fijo t_j implica que nos situaremos arbitrariamente en ese instante y variaremos las trayectorias $\{q_i\}$ congeladas en ese instante arbitrario. Por supuesto, el resultado debería valer para cualquier instante intermedio considerado.

La idea es determinar las condiciones que se necesitan para

$$\frac{\delta S}{\delta q_i} = 0.$$

Habría que justificar cuál es el significado de esto y porqué es así.

Cuán sketchi es todo esto!! Mucho para aclarar. Tal vez se justifique un minicurso de variacional como apéndice.

Figura 12.6 El principio de acción mínima

Para ello comenzamos tomando una variación de S que pasa dentro de la integral como

$$\delta S = \int \left[\mathcal{L}(q_i + \delta q_i, \dot{q}_i + \delta \dot{q}_i, t) - \mathcal{L}(q_i, \dot{q}_i, t) \right] dt$$

y donde vemos explícitamente que es a tiempo fijo.

La variación de la integral puede escribirse

$$\delta S = \int_{t_a}^{t_b} \sum_{i}^{N} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta \dot{q}_i + \frac{\partial \mathcal{L}}{\partial q_i} \delta q_i \right) dt,$$

y como será útil tener todo en función de las variaciones δq_i , es conveniente expresar las variaciones $\delta \dot{q}_i$ en términos de una derivada total a través de

$$\frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}_{i}}\delta q_{i}\right) = \frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}_{i}}\right)\delta q_{i} + \frac{\partial\mathcal{L}}{\partial\dot{q}_{i}}\delta\dot{q}_{i},$$

resultando en

$$\delta S = \int_{t_a}^{t_b} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right) - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) \delta q_i + \frac{\partial \mathcal{L}}{\partial q_i} \delta q_i \right] dt,$$

que se puede separar en dos términos

$$\delta S = \int_{t_a}^{t_b} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right) \right] dt + \int_{t_a}^{t_b} \sum_{i}^{N} \left[\frac{\partial \mathcal{L}}{\partial q_i} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) \right] \delta q_i \ dt,$$

Pero el primer término es una derivada total y por el teorema fundamental del cálculo,

$$\int_{t_a}^{t_b} \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right) \right] dt = \sum_{i}^{N} \left. \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right|_{t_a}^{t_b}$$
(12.3)

y es nulo porque $\delta q_i=0$ en los extremos para toda coordenada i (las variaciones son nulas en los extremos). Decimos que este es un término de superficie. Entonces la condición

$$\delta S = \sum_{i}^{N} \int_{t_{a}}^{t_{b}} \left[\frac{\partial \mathcal{L}}{\partial q_{i}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) \right] \delta q_{i} dt = 0$$

se verificará por el cumplimiento de las ecuaciones de Euler-Lagrange²

$$\sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) - \frac{\partial \mathcal{L}}{\partial q_{i}} \right] = 0.$$

Se puede ver que

$$\delta S = 0 \quad \iff \quad \sum_{i}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) - \frac{\partial \mathcal{L}}{\partial q_{i}} \right] = 0.$$

Luego, si se hace $\mathcal{L}' = \mathcal{L} + df/dt$ (ambos lagrangianos difieren en una derivada total con respecto al tiempo) la trayectoria que minimiza \mathcal{L}' es la que misma que minimiza \mathcal{L} por la condición dada por (12.3).

La moraleja es que si los lagrangianos difieren en una derivada total del tiempo obtenemos la misma física.

EJEMPLO 12.1 Problema círculos

El disco pequeño está solidario al disco [?]. La línea AB está pintada sobre los discos para poder medir los ángulos. El eje x_1 está solidario al piso (inercial).

La segunda figura ilustra el movimiento de la masa en el sistema fijo.,

$$x_1 = R_1 \cos \theta_1 + \rho \cos(\theta_1 + \theta_2 + \varphi)$$

 $^{^2}$ Como las variaciones δq_i son arbitrarias e independientes la anulación de la ecuación δS requiere la anulación de cada uno de los i=1,2,...N corchetes en los integrandos.

$$y_1 = R_1 \sin \theta_1 + \rho \sin(\theta_1 + \theta_2 + \varphi)$$

Luego, hay que calcular

$$\frac{1}{2}m|\boldsymbol{v}|^2$$

con

$$\begin{split} \dot{x}_1 &= -R_1 \sin \theta_1 \dot{\theta}_1 + \dot{\rho} \cos(\theta_1 + \theta_2 + \varphi) - \rho (\dot{\theta}_1 + \dot{\theta}_2 + \dot{\varphi}) \sin(\theta_1 + \theta_2 + \varphi) \\ \dot{y}_1 &= R_1 \cos \theta_1 \dot{\theta}_1 + \dot{\rho} \sin(\theta_1 + \theta_2 + \varphi) + \rho (\dot{\theta}_1 + \dot{\theta}_2 + \dot{\varphi}) \cos(\theta_1 + \theta_2 + \varphi) \end{split}$$

Habría que elevar esto al cuadrado, lo cual a mano es un trabajo un poco cumbersome.

$$T = \frac{1}{2} m (R_1^2 \dot{\theta}_1^2 + \rho^2 (\dot{\theta}_1 + \dot{\theta}_2 + \dot{\varphi}) + \dot{\rho}^2 + 2 R_1 \dot{\theta}_1 \left[\dot{\rho} \sin(\theta_2 + \varphi) + \rho (\dot{\theta}_1 + \dot{\theta}_2 + \dot{\varphi}) \cos(\theta_2 + \varphi) \right])$$

y como no hay potencial, entonces $\mathcal{L}=T$. Trabajando con las ecuaciones de Lagrange se llega a

$$\begin{split} \ddot{\rho}-\rho(\omega_1+\omega_2+\dot{\varphi})^2-R_1\omega_1^2\cos(\omega_2t+\varphi)&=0\\ \ddot{\varphi}+\frac{\dot{\rho}}{\rho}\left[2(\omega_1+\omega_2)\right]+\frac{R_1\omega_1(\omega_1+\omega_2)}{\rho}\sin(\omega_2t+\varphi)&=0 \end{split}$$

Este sistema tiene dos grados de libertad (ρ,φ) y el lagrangiano es $\mathcal{L}(\varphi,\rho,\dot{\varphi},\dot{\rho},t).$ En realidad $\dot{\theta}_j=\dot{\theta}_j(\rho\varphi)$ para j=1,2 y entonces θ_j no son coordenadas generalizadas.

Este problema se puede simplificar si se asume que $\dot{\theta}_1,\dot{\theta}_2$ son constantes [Esto viene antes o viene después].

EJEMPLO 12.2 Problema 17

Un problema de dos masas con, en principio, seis grados de libertad. Dado que el movimiento se asume que ocurre en un plano, el z por ejemplo, eso implica dos vínculos $z_1=z_2=0$ a los cuales debemos sumarle la fijación de m_1 en la altura $y_1=0$ y el vínculo de la barra

$$y_2^2 + (x_2 - x_1)^2 = \ell^2$$

luego es un problema de dos grados de libertad, que pueden ser elegidos como (x, φ) . Esto último puesto que

$$x_2 = x + \ell \sin \varphi$$
 $y_2 = \ell \cos \varphi$.

Considerando $x_1 equivx$ para simplificar la notación se tiene

$$\dot{x}_2 = \dot{x} + \ell \dot{\varphi} \cos \varphi \qquad \qquad \dot{y}_2 = -\ell \dot{\varphi} \sin \varphi$$

Todo esto permite escribir

$$T = \frac{1}{2}(m_1 + m_2)\dot{x}^2 + \frac{1}{2}m_2(2\dot{x}\dot{\varphi}\ell\cos{+}\ell^2\dot{\varphi}^2)$$

$$V = -m_2 g\ell \cos \varphi$$

La condición de que $\mathcal{L} \neq \mathcal{L}(\varphi)$ implica la cantidad conservada

$$\frac{\partial \mathcal{L}}{\partial \dot{x}} = \dot{x}(m_1 + m_2) + m_2 \dot{\varphi} \ell \cos \varphi \equiv p_x,$$

que es el momento lineal en x. Para la coordenada φ resulta la ecuación

$$\ddot{x}\cos\varphi + \ell\ddot{\varphi} + g\sin\varphi = 0,$$

mientras que para x se tiene

$$\ddot{x}(m_1 + m_2) + m_2 \ell(\cos\varphi\ddot{\varphi} - \sin\varphi\dot{\varphi}^2) = 0.$$

Se pueden combinar para tener una ecuación para φ solamente. Luego esa dinámica la puedo obtener? [ver carpeta].

EJEMPLO 12.3 Problema 7

En este problema convienen esféricas θ constante. Tendremos dos grados de libertad (φ, r) . Usando las expresiones de las coordenadas esféricas (ver XXXX chap 1) se tiene

$$|\dot{\mathbf{x}}|^2 = |\dot{r}\hat{r} + r\sin\theta\dot{\varphi}\hat{\varphi}|^2$$
$$v^2 = \dot{r}^2 + r^2\dot{\varphi}^2\sin^2\varphi$$

Con esto escribimos T usando que $V = mqr \cos \alpha$.

$$\mathcal{L} = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\varphi}^2\sin^2\alpha) - mgr\cos\alpha$$

El grado de libertad φ tendrá asociado un momento conjugado que se conserva, pues $\partial \mathcal{L}/\partial \varphi=0$, luego

$$\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2 \dot{\varphi} \sin^2 \alpha = cte. \equiv L$$

mientras la ecuación de E-L para r arrojará

$$m\ddot{r} - mr\dot{\varphi}^2 \sin^2 \alpha + mq \cos \alpha = 0$$

y utilizando la conservación

$$\ddot{r} - \frac{L^2}{mr^3 \sin^2 \alpha} + mg \cos \alpha = 0.$$

Si ahora calculamos la energía E=T+V se obtiene

$$E = \frac{1}{2}m\dot{r}^2 + \frac{L^2\varphi}{mr^2\sin^2\alpha} + mgr\cos\alpha$$

donde los dos últimos términos constituyen un potencial efectivo.

EJEMPLO 12.4 Cicloides y esas cosas

Tautocrona, Huygens (1773)

Curva cicloide

Con las consideraciones de las figuras, tenemos en rápida sucesión

$$\mathbf{R} = (vt, b)$$

$$\mathbf{X'} = (-b\sin\varphi, -b\cos\varphi); \quad \varphi = \omega t$$

$$\mathbf{X} = (vt - b\sin\varphi, b - b\cos\varphi)$$

y por condición de rodadura

$$\begin{split} \boldsymbol{v}_q &= 0 = \boldsymbol{v}_{cm} + \boldsymbol{\omega} \times \boldsymbol{x}_{cm} = v \hat{x} + (-\omega) b \hat{k} \times (-\hat{y}) \\ & 0 = (v - \omega b) \hat{x}, \end{split}$$

o bien $v=\omega b$ e integrando

$$vt = \omega tb = \varphi b.$$

Con esto llego a mi ecuación paramétrica para el cicloide

$$\begin{cases} x = b \ (\varphi - \sin \varphi) \\ y = b \ (1 - \cos \varphi) \end{cases}$$

Este cicloide tiene gráfico

Pero neceisto uno que mire hacia abajo, lo cual se logra con un cambio $y^\prime = -y + bz$ de modo que

$$\begin{cases} x = b \left(\varphi - \sin \varphi \right) \\ y = b \left(1 + \cos \varphi \right) \end{cases}$$

Ahora se hace un cambio de variables nuevo

$$\frac{y}{b} = 1 + \cos \varphi \qquad \qquad \frac{y - b}{b} = \cos \varphi$$

y entonces

$$x(y) = b \left(\text{ acos } \left(\frac{y-b}{b} \right) - \sqrt{1 - ((y-b)/b)^2} \right)$$

Usando todo esto

$$T=\frac{1}{2}m(\dot{x}^2+\dot{y}^2) \qquad V=mgy$$

$$\mathcal{L}=\frac{1}{2}m(\dot{x}^2+\dot{y}^2)-mgy$$

Derivando x y haciendo el álgebra,

$$\dot{x} = -\dot{y}\sqrt{\frac{2b-y}{y}}.$$

Utilizando toda esta información, el lagrangiano es

$$\mathcal{L} = rac{mb\dot{y}}{y} - mgy$$

y las ecuaciones de E-L

$$mb\left(2\frac{\ddot{y}}{y} - \frac{\dot{y}^2}{y^2}\right) + mg = 0.$$

Podemos ver, con alguna experiencia, que

$$\frac{d}{dt}\left(\frac{\dot{y}^2}{y}\right) = \dot{y}\left(2\frac{\ddot{y}}{y} - \frac{\dot{y}^2}{y^2}\right)$$

Luego,

$$mb\frac{1}{\dot{y}}\frac{d}{dt}\left(\frac{\dot{y}^2}{y}\right) + mg = 0$$
$$\frac{d}{dt}\left(\frac{\dot{y}^2}{y}\right) = -\frac{g}{b}\frac{dy}{dt},$$

y ahora se puede integrar

$$\begin{split} \int_0^t \frac{d}{dt} \left(\frac{\dot{y}^2}{y} \right) dt &= -\frac{g}{b} \int_0^t \frac{dy}{dt} dt, \\ \left. \frac{\dot{y}^2}{y} \right|_0^t &= -\left. \frac{g}{b} y \right|_0^t \end{split}$$

Usando condiciones iniciales

$$\begin{cases} \dot{y}(t=0)=0\\ y(t=0)=y_0\\ \\ \frac{\dot{y}^2}{y}=-\frac{g}{b}y+\frac{g}{b}y_0\\ \\ \dot{y}=\frac{g}{b}\sqrt{(y_0-g)y} \end{cases}$$

de manera que

$$\begin{split} & \int_{y_0}^y \frac{dy}{\sqrt{y_0y-y^2}} = \sqrt{\frac{g}{b}} \int_0^t dt = \sqrt{\frac{g}{b}} t \\ & \mathrm{asin} \left(\frac{y-y_0/2}{y_0/2} \right) |_{y_0}^y = \mathrm{asin} \left(\frac{y-y_0/2}{y_0/2} \right) - \frac{\pi}{2} \\ & \frac{y-y_0/2}{y_0/2} = \sin(\sqrt{\frac{g}{b}} t + \pi/2) = \cos(\sqrt{\frac{g}{b}} t) \end{split}$$

Finalmente,

$$y(t) = \frac{y_0}{2}(1+\cos(\sqrt{\frac{g}{b}}t)).$$

Si quiero calcular el tiempo de caída será:

$$0 = \frac{y_0}{2} \left(1 + \cos(\sqrt{\frac{g}{b}} \tau) \right),\,$$

de lo cual se deduce

$$au = \sqrt{rac{b}{g}}\pi.$$

La cicloide es la curva de caída por la cual se tarda el tiempo mínimo. La masa m tarda lo mínimo en caer por esta curva. Si las dos ruedas están pegadas girando ambas, recorrerán en un giro una distancia verde:

Esto no sucede: alguna de ambas deslizará.

2.13 Aplicaciones del principio de acción mínima

El principio variacional de Hamilton tiene más uso como herramiento formal de lo que tiene en el campo de la aplicación.

Me falta algo de esta clase inicial, pero esperamos que no sea fundamental!

$$S = \int (T - V_0)dt$$

donde el lagrangiano es con $V=V_0$ constante (un lagrangiano sujeto a potencial constante). La integral de acción da una medida de la longitud de la órbita (el espacio recorrido). Para una partícula sujeta a V=0

$$S = \frac{1}{2} \int m v_0^2 dt = \frac{1}{2} m v_0^2 (t - t_0)$$

de manera que $v_0(t-t_0)$ representa la distancia d recorrida, y es

$$S = \frac{1}{2} m v_0 d$$

Comentario sobre el cálculo de las variaciones

$$I = \int f\left(x, \frac{dx}{dt}, t\right) dt$$

entonces I es extremo si

$$\frac{d}{dt}\left(\frac{\partial f}{\partial [dx/dt]}\right) - \frac{\partial f}{\partial x} = 0$$

También podemos encontrar esta notación, dependiendo del tipo de problema,

$$I = \int f\left(y, \frac{dy}{dx}, x\right) dx$$

Esta idea debe estar en el suplemento matemático que le dedicaremos a variacional

2.13.1 Billares [otro título?]

Consideramos una partícula libre en una región del espacio (una partícula rebotando en cierta región). Podemos pensar en un potencial

$$V(\boldsymbol{x}) = \begin{cases} 0 & \boldsymbol{x} \in D \\ \infty & \boldsymbol{x} \notin D \end{cases}$$

Es un pozo de potencial con una partícula libre en su interior; se los suele llamar *billares*. En este caso

$$I = \int_{q_i}^{qa_f} \, \mathcal{L}(q_1(t), q_2(t), ..., q_k(t), \dot{q}_1(t), ..., \dot{q}_k(t), t) dt.$$

La integral da la longitud de la órbita (espacio recorrido)

$$\frac{1}{2}mv_0^2 \int_{t_i}^{t_f} dt = \frac{1}{2}mv_0^2(t_f - t_i)$$

En un billar circular

Si parto del punto rojo y quiero minimizar (extremar) la trayectoria que me da el ir hacia (x,y) y volver al punto rojo, obtendré una órbita periódica en (x_0,y_0) . Esa órbita periódica es extrema entre ir y volver al punto rojo.

En un billar eliptico

hay muchas trayectorias posibles entre los focos. El lagrangiano integrado me da todos las extremas (1, 2, ...), que por otro lado son las reales, y con las condiciones iniciales determinaré qué trayectoria extrema estaré considerando.

Hay muchas trayectorias (1, 2, ...) que son posibles

$$I = \int \mathcal{L}$$

da la longitud total de todo el camino.

¿Esta sección aporta algo?

Esto lo clavo por acá, después

reacomodarlo

2.13.2 Minimización del camino entre dos puntos

Figura 13.7

El τ es fijo. Este problema no es como el del billar porque la velocidad no es constante [?].

$$I = \int_{1}^{2} \mathcal{L} \, dt$$

pero se puede descomponer en $I=I_1+I_2;$ es decir un lagrangiano para cada medio, luego

$$I = \frac{1}{2} m v_1^2 \int_0^{t_i} dt + (\frac{1}{2} m v_2^2 + V_0) \int_{t_i}^{t_f} dt,$$

que al integrar da

$$I = \frac{1}{2} m v_1^2 t_i + \frac{1}{2} m v_2^2 (t_f - t_i) + V_0 (t_f - t_i).$$

Las condiciones geométricas del problema (ver Figura) implican que

$$v_1t_i=\ell_1(x) \qquad \qquad v_2(t_f-t_i)=\ell_2(x)$$

siendo ℓ_i longitudes que dependen de x. Esto permite expresar los tiempos t en términos de la distancia x sobre la frontera. Entonces se obtiene la acción I en términos de posiciones y velocidades, i.e.

$$I = I(v_1,v_2,x) = \frac{1}{2} m v_1 \ell_1(x) + \frac{1}{2} m v_2 \ell_2(x) + \frac{V_0}{V_2} \ell_2(x).$$

Luego, como todo sucede a τ fijo (
 $t_f=\tau)$ se debe tener el siguiente vínculo

$$\tau = \frac{\ell_1(x)}{v_1} + \frac{\ell_2(x)}{v_2}.$$

Entonces, diferenciando implícitamente el vínculo y la integral I obtenemos, respectivamente,

$$\begin{split} d\tau &= 0 = \left(\frac{1}{v_1}\frac{d\ell_1}{dx} + \frac{1}{v_2}\frac{d\ell_2}{dx}\right)dx - \frac{\ell_1}{v_1^2}dv_1 - \frac{\ell_2}{v_2^2}dv_2 \\ dI &= \left(\frac{v_1}{2}\frac{d\ell_1}{dx} + \frac{v_2}{2}\frac{d\ell_2}{dx} + \frac{V_0}{v_2}\frac{d\ell_2}{dx}\right)dx + \frac{\ell_1}{2}dv_1 + \left(\frac{\ell_2}{2} - \frac{V_0\ell_2}{v_2^2}\right)dv_2 = 0 \end{split}$$

En esta última ecuación, si fuesen independientes los diferenciales dx, dv_1, dv_2 entonces sería nulo cada paréntesis. Como no es el caso empleamos multiplicadores de Lagrange,

$$d\tau = \lambda \left(\frac{1}{v_1}\frac{d\ell_1}{dx} + \frac{1}{v_2}\frac{d\ell_2}{dx}\right)dx - \lambda \frac{\ell_1}{v_1^2}dv_1 - \lambda \frac{\ell_2}{v_2^2}dv_2$$

y combinando

$$\begin{split} \left(\frac{v_1}{2}\frac{d\ell_1}{dx} + \frac{v_2}{2}\frac{d\ell_2}{dx} + \frac{V_0}{v_2}\frac{d\ell_2}{dx} - \lambda \left[\frac{1}{v_1}\frac{d\ell_1}{dx} + \frac{1}{v_2}\frac{d\ell_2}{dx}\right]\right) dx + \\ \left(\frac{\ell_1}{2} + \lambda \frac{\ell_1}{v_1^2}\right) dv_1 + \left(\frac{\ell_2}{2} - \frac{V_0\ell_2}{v_2^2} + \lambda \frac{\ell_2}{v_2^2}\right) dv_2. \end{split}$$

Ahora se puede igualar a cero cada paréntesis porque consideramos independientes v_1 y v_2 . Entonces, se tienen

$$\lambda = -\frac{1}{2}v_1^2 \qquad \qquad \lambda = -\frac{1}{2}v_2^2 + V_0$$

de manera que ha resultado la conservación de la energía

$$\frac{1}{2}v_1^2 = \frac{1}{2}v_2^2 - V_0$$

Reemplazando en la anterior expresión, se llega a

$$\begin{split} v_1\frac{d\ell_1}{dx}+v_2\frac{d\ell_2}{dx}&=0.\\ \ell_1&=\sqrt{Y_0^2+x^2} \qquad \ell_2=\sqrt{Y_f^2+(L-x)^2}\\ \frac{d\ell_1}{dx}&=\sin(\alpha_1) \qquad \frac{d\ell_2}{dx}=-\sin(\alpha_2) \end{split}$$

de modo que

$$v_1\sin(\alpha_1) = v_2\sin(\alpha_2),$$

que es la conclusión de la ley de Snell. Entonces podemos establecer un parangón entre mecánica clásica y óptica geométrica.

Figura 13.8

2.13.3 Acción mínima ejemplos

En general, dada una integral

$$I = \int_{t_1}^{t_2} f\left(y, \frac{dy}{dt}, t\right) dt,$$

si se tiene que

$$\frac{d}{dt} \left(\frac{\partial f}{\partial dy/dt} \right) - \frac{\partial f}{\partial y} = 0,$$

entonces se da que I es un extremo. Por ello esta idea es generalizable a casos no mecánicos, como veremos a continuación.

EJEMPLO 13.1 Espejimo -problema 5-

En estos problemas debemos saber primeramente de qué punto a qué punto vamos.

$$I = \int_{x_1}^{x_2} n(y) d\ell = \int_1^2 n_0 \left(1 + \frac{y}{h}\right) \sqrt{dx^2 + dy^2} = \int_1^2 n_0 \left(1 + \frac{y}{h}\right) \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \ dx$$

Si defino y'=dy/dx y $f=n_0(1+y/h)\sqrt{1+{y'}^2}$ se tiene

$$\frac{d}{dx}\left(\frac{\partial f}{\partial y'}\right) = \frac{d}{dx}\left(n_0\left(1 + \frac{y}{h}\right)\frac{y'}{\sqrt{1 + {y'}^2}}\right)$$

y haciendo la derivada explícitamente

$$\begin{split} \frac{d}{dx}\left(\frac{\partial f}{\partial y'}\right) &= n_0\left(\frac{{y'}^2}{h\sqrt{1+{y'}^2}} + \left(1+\frac{y}{h}\right)\left[y''\frac{1}{\sqrt{1+{y'}^2}} + \frac{y'}{2(\sqrt{1+{y'}^2})^3}2y'y''\right]\right) \\ &\qquad \qquad \frac{\partial f}{\partial y} = \frac{n_0}{h}\sqrt{1+{y'}^2} \end{split}$$

Luego, juntando todo

$$y'' = \frac{1 + y'^2}{h + y}.$$

Si tomamos

$$y + h = \frac{\alpha h}{n_0} \cosh\left(\frac{\alpha n_0}{\alpha h} + \beta\right)$$
$$y'' = \frac{n_0}{\alpha h} \cosh()$$

Acá, claramente, faltan cosas.

EJEMPLO 13.2 Problema 8

Por la periodicidad se propone una serie de Fourier

$$y = \frac{a_0}{2} + \sum_{n=1} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$

donde ω corresponde a la frecuencia del movimiento de subida y bajada.

$$y(0) = 0 \hspace{1cm} \mathcal{L} = T - V$$

$$y(t_{\rm caida}) = 0 \hspace{1cm} \mathcal{L} = \frac{m}{2} \dot{y}^2 - mgy$$

Entonces queremos lograr $\delta I=0$ para

$$I = \int_0^{t_c} \mathcal{L} \, dt$$

para hallar la mejor serie de Fourier que verifique

$$\dot{y} = \sum_n -a_n \sin(n\omega t) n\omega + b_n \cos(n\omega t) n\omega$$

y esto habría que elevarlo al cuadrado.

Quisiera ver la diferencia entre las dos trayectorias que muestra la figura.

$$y(0) = \frac{\omega}{2} + \sum a_n = y(t_c)$$

Y calculo acá las variaciones

$$0=\delta y(0)=\delta\frac{a_0}{2}+\sum_n\delta a_n$$

$$\delta a_0=-\sum 2\delta a_n \qquad \text{vinculo}$$

$$I = m \int_0^{t_c} \left[\sum_n a_n n \omega \sin(n \omega t) + b_n n \omega \cos(n \omega t) \right]^2 dt - mg \int_0^{t_c} \left[\frac{a_0}{2} \sum_n a_n \cos(n \omega t) + b_n \sin(n \omega t) \right] dt \\ \text{Anoté: porque } t_c \text{ es el tiempo de un período.}$$

$$\begin{split} &\int_0^{t_c} \cos(n\omega t) dt = 0 \qquad \qquad \int_0^{t_c} \sin(n\omega t) dt = 0 \\ &\int_0^{t_c} \cos^2(n\omega t) dt = T/2 \qquad \qquad \int_0^{t_c} \sin^2(n\omega t) dt = T/2 \\ &I = \frac{m}{2} \left(\sum_n a_n^2 n^2 \omega^2 \frac{T_c}{2} + \sum_n b_n^2 n^2 \omega^2 \frac{T_c}{2} \right) - mgT_c \frac{a_0}{2} \end{split}$$

La integral ya está dada en función de los coeficientes de la serie, de manera que lo que faltaría es hacer variar los coeficientes y ya.

$$\delta I = -\frac{m}{2}\sum_n a_n\delta a_n n^2\omega^2 t_c + \frac{m}{2}\sum_n b_n\delta b_n n^2\omega^2 t_c - mg\delta\frac{a_0}{2}t_c + \frac{mg}{2}\sum_n 2\delta a_n t_c = 0$$

y como los δa_n , δb_n son independientes todos los términos serán cero por separado. Entonces

$$\frac{m}{2}b_n\delta b_n n^2\omega^2 t_c = 0 \qquad \qquad \Rightarrow \quad b_n = 0,$$

es decir que no hay senos. Por otro lado,

$$a_n = \frac{2g}{n^2 \omega^2}$$

y

$$y(t) = \sum_{n} \frac{1 - \cos(n\omega t)}{n^2 \omega^2 / 2g}$$

Se ve que la mejor serie de Fourier tendrá algo que se aproxima a la parábola.

Podemos ver si se llega a la altura máxima $y_{\rm maxima} \equiv y(t_c/2)$

$$y(t_c/2) = \frac{2g}{\omega^2} \sum_n \frac{2}{n^2} = \frac{4g}{\omega^2} \frac{\pi^2}{6} = \frac{gt_c^2}{6} = \frac{2v_0^2}{3g}$$

o bien

$$y(t_c/2) = \frac{2v_0^2}{3q} \tag{13.1}$$

donde

$$E = mgy_{\text{maxima}}, E_0 = \frac{mv_0^2}{2}$$

y la altura máxima real es $Y_{
m maxima}=v_0^2/(2g)$ que difiere de la que se obtiene con la serie de Fourier. Entonces, la mejor solución de entre las series de Fourier es (13.1) que difiere de la solución real. Esta solución es derivable en los nodos, mientras que la solución real no lo es.

Este ejemplo hay que trabajarlo bastante!

2.14 Multiplicadores de Lagrange

El principio variacional de Hamilton nos dice que la trayectoria real que sigue un sistema es la que extremiza la acción

$$S = \int_{t_i}^{t_f} \mathcal{L}\left(q_i[t], \dot{q}_i[t], t\right) dt.$$

Esa condición de extremo, conducía directamente a las ecuaciones de Euler-Lagrange, es decir

$$\delta S = 0 \quad \Leftrightarrow \quad \int \sum_{j=1}^{N} \left[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \right) - \frac{\partial \mathcal{L}}{\partial q_{j}} \right] \delta q_{j} \, dt = 0 \qquad (14.1)$$

donde δq_j eran desplazamientos independientes y esta condición significaba que el corchete debía ser nulo para todo grado de libertad j.

Pero puede suceder (en el caso de vínculos no-holónomos, por ejemplo) que no se pueda despejar alguna q_i y entonces no todos los δq_i son independientes.

Si se tienen s ecuaciones de vínculo no holónomos [¿cómo es un vínculo no-holónomo? o es que se deriva una ecuación de vínculo usual??]

$$\sum_{\ell}^{N} a_{\ell}^{k}(q_{i},t)\dot{q}_{\ell} + b^{k}(q_{i},t) = 0 \qquad \qquad k = 1,2,...,s$$

Habría que tomarse medio minuto para chequear: consistencia de la notación con respecto a los límites en estas integrales de acción, definir extremización, ver si la implicancia es un sí y sólo sí o no, etc.

donde ℓ suma en los grados de libertad. Multiplicando por δt puede verse que no son independientes,

$$\sum_{\ell}^N a_{\ell}^k(q_i,t) \delta q_{\ell} + b^k(q_i,t) \delta t = 0.$$

Si ahora las δq_ℓ son variaciones a t fijo, entonces se cumple

$$\sum_{\ell=0}^{N} a_{\ell}^{k}(q_{i}, t) \delta q_{\ell} = 0,$$

expresión que puede intregrarse con respecto al tiempo y sumar sobre todas las ecuaciones de vínculo,

$$\sum_k^s \int_{t_i}^{t_f} \lambda^k \sum_\ell^N a_\ell^k(q_i, t) \delta q_\ell \, dt = 0.$$

El cero de esta última ecuación puede restarse del otro cero dado por la integral (14.1), suma de N-s ecuaciones con δq_ℓ independientes [¿checar esto?] con para construirnos de esa manera la ecuación

$$\int \sum_{j=1}^{N-s} \left\{ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} - \sum_k^s \lambda^k a_j^k(q_i, t) \right\} \delta q_j \, dt = 0$$

y se tienen N-s ecuaciones

$$\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j}\right) - \frac{\partial \mathcal{L}}{\partial q_j} = \sum_k^s \lambda^k a_j^k(q_i,t),$$

y s ecuaciones

$$\sum_{\ell}^{N} a_{\ell}^{k}(q_{i}, t)\dot{q}_{\ell} + b^{k}(q_{i}, t) = 0. \tag{14.2}$$

El parámetro λ^k es la fuerza de vínculo asociada al vínculo que no se pudo despejar. Es un multiplicador de Lagrange.

Los vínculos holónomos se pueden escribir también en la forma (14.2). Un vínculo holónomo está representado por una ecuación del tipo

$$f(\boldsymbol{x}_1,\boldsymbol{x}_2,...,\boldsymbol{x}_N,t)=cte.$$

de manera que para desplazamientos virtuales (donde $\delta t=0$) la derivada temporal de esta ecuación implica³

$$\sum_{i} \nabla_{i} f \cdot \delta \boldsymbol{x}_{i} = 0$$

 ³Recordemos que para desplazamientos virtuales el término $\partial f/\partial t$ no aparece por estar multiplicado a $\delta t=0$.

y esta ecuación es precisamente de la forma $\sum_{\ell} a_{\ell}^{k} \delta q_{\ell}$.

EJEMPLO 14.1 Resolución de sistema holónomo

Consideramos un cilindro rodando sin deslizar.

Los vínculos son relaciones entre velocidades que se pueden intergrar. De la soga:

$$\dot{x}_1 + \dot{\alpha}a = \dot{x}_2$$

por el rozamiento sobre el piso:

$$\dot{\alpha}a = \dot{x}_1$$

$$\begin{split} \Delta x_1 + a \Delta \alpha &= \Delta x_2 \\ \delta x_1 + a \delta \alpha - \delta x_2 &= 0 \\ \end{split} \qquad \quad \begin{aligned} \Delta \alpha a &= \Delta x_1 \\ \delta x_1 - a \delta \alpha &= 0 \end{split}$$

El lagrangiano es

$$\mathcal{L} = \frac{1}{2}m\dot{x}_2^2 + \frac{1}{2}M\dot{x}_1^2 + \frac{1}{2}I\dot{\alpha}^2 + mgx_2$$

donde los dos términos centrales en el rhs son la cinética del cuerpo rígido.

Ahora hacemos

$$\lambda^1(\delta x_1 + a\delta\alpha - \delta x_2) = 0 \qquad \qquad \lambda^2(\delta x_1 - a\delta\alpha) = 0$$

donde deberíamos obtener λ^1 tensión y λ^2 fuerza de rozamiento. Luego,

$$\begin{array}{ll} m\ddot{x}_1 &= (\lambda^1 1 + \lambda^2 1) \\ m\ddot{x}_2 &= mg + \lambda^1 (-1) \\ I\ddot{\alpha} &= (\lambda^1 a - \lambda^2 a) \end{array}$$

Escribiendo las ecuaciones de Newton para este problema resulta en

$$\begin{split} m\ddot{x}_1 &&= T - F_{\rm roz} \\ m\ddot{x}_2 &&= mg - T \\ I\ddot{\alpha} &&= Ta + F_{\rm roz} a \end{split}$$

de manera que identificamos naturalmente a

$$\lambda^1 = T$$
 $\lambda^2 = -F_{roz}$

Entonces, para el caso de vínculo holónomos tendremos $a_\ell^k(q_i,t) = \nabla_i f^k \cdot \delta \pmb{x}_i$ de modo que

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) - \frac{\partial \mathcal{L}}{\partial q_i} = \sum_{k}^{s} \lambda^k \frac{\partial f^k}{\partial q_i}$$
 (14.3)

Falta entender bien principio trabajos virtuales y despl virtual ($\delta t=0$)

Aclarar mil cosas: rueda un poco (máximo $\alpha=\pi/2$). ¿Es una aproximación sólo válida para ángulos pequeños? El caso exacto es mucho quilombo? Sirve para algo?

Lo de los δ pide para ser explicado y entendido.

Hay que escribir bien la conversión de ∇f^k hacia $\partial f^k/\partial q_j$. Parece una boludez, pero tal vez no sea así.

Pero sabemos [sí?] que cuando existe fuerza generalizada (no proveniente de un potencial) se tenía

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} = Q_j, \qquad Q_j = \sum_i^N \mathbf{F}_i^a \cdot \frac{\partial \mathbf{x}_i}{\partial q_j} \qquad (14.4)$$

e igualando los miembros derechos de (14.3) y (14.4)

$$\sum_{i}^{N} \boldsymbol{F}_{i}^{a} \cdot \frac{\partial \boldsymbol{x}_{i}}{\partial q_{j}} = \sum_{k}^{s} \lambda^{k} \, \frac{\partial f^{k}}{\partial q_{j}}$$

se arriba a que

$$\lambda^k = \mathbf{F}_i^a$$

de manera que λ^k son las fuerzas de vínculo asociadas a los vínculos que no se pudieron retirar (no despejados en las ecuaciones [?]). Si los vínculos son holónomos (pero no quise despejar) entonces son las fuerzas de vínculo.

La moraleja es que si no puedo despejar en función de coordenadas independientes sí o sí necesito introducir multiplicadores de Lagrange.

Tenía anotado que (14.4) es el lagrangiano con fuerzas no conservativas, cuando por supuesto F son fuerzas no conservativas.

Más sobre el asunto de vínculos

comparando vemos que

$$Q_j = \sum \lambda^k a_j^k(q_j,t) \quad \text{vínculos no holónomos}$$

$$Q_j = \sum \lambda^k \nabla_j f^k \cdot \delta r_j$$
 vínculos holónomos

En el caso de vínculos holónomos

$$g(\boldsymbol{r}_1,...,\boldsymbol{r}_n,t)=0$$

donde no quise despejar en función de $q_q, ..., q_n$ resulta que

$$Q_j^{\delta q_j} = \sum_i^N \lambda(\nabla_i f^k \cdot \delta \boldsymbol{r}_i)$$

donde $\delta \boldsymbol{r}_i$ es un desplazamiento virtual de la partícula. Vamos a reescribir este término,

$$\sum_{i}^{N} \frac{\partial g^{k}}{\partial \boldsymbol{r}_{i}} \delta \boldsymbol{r}_{i} = 0$$

Acá hay temas con los índices y con lo que se suma. Parece no ser la misma cosa. Tenía observado en la carpeta que $\boldsymbol{x} = \boldsymbol{x}(q_i,t)$ y $f(q_i,t) = 0$.

Hay que revisar bien esta sección y meter algún ejemplo esclarecedor.

El supraíndice con δq_j va sobre el igual en realidad.

$$\nabla_i f^k \cdot \delta \boldsymbol{r}_i = \sum_i \frac{\partial g^k}{\partial \boldsymbol{r}_i} \frac{\partial \boldsymbol{r}_i}{\partial q_j} \delta q_j$$

$$Q_{j}^{\delta q_{j}} = \lambda \sum_{k} \frac{\partial g^{k}}{\partial \boldsymbol{r}_{i}} \sum_{j} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{j}} \delta q_{j}$$

luego como

$$a_j^k \equiv \frac{\partial g^k}{\partial \boldsymbol{r}_i}$$

se sigue que los λ^k son las fuerzas de vínculo.

En el caso de vínculos no holónomos λ^k son las fuerzas de vínculo asociadas a los vínculos no retirados.

$$\begin{split} Q_{j}\delta q_{j} &= \sum \lambda^{k}(\nabla_{i}g^{k}\cdot\delta\boldsymbol{r}_{i})\\ Q_{j} &= \sum_{k}\lambda^{k}\frac{\partial g^{k}}{\partial\boldsymbol{r}_{i}}\frac{\partial\boldsymbol{r}_{i}}{\partial q_{j}}\\ Q_{j} &= \sum_{k}\lambda^{k}\frac{\partial g^{k}}{\partial q_{j}} \end{split}$$

entonces $\lambda^k = F^v$.

Como extra escribamos que para cada grado de libertad j

$$\frac{\partial \mathcal{L}}{\partial q_j} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \sum_k^s \lambda^k a_j^k \equiv 0$$

donde δq_i son ahora independientes.

$$Q_j = \sum_{i}^{N} F_i^a \frac{\partial \boldsymbol{r}_i}{\partial q_j}.$$

EJEMPLO 14.2 Moneda rodando por un plano

Consideramos una moneda que rueda libremente por un plano (no sujeta a potencial). Situraemos un sistema de ejes sobre la moneda, que etiquetaremos 123 y otro fijo fuera de la misma xyz.

$$egin{aligned} oldsymbol{V}_{cm} &= -oldsymbol{\Omega} imes oldsymbol{r} &= -(\dot{\phi}\hat{2} + \dot{\psi}\hat{3}) imes (-a\hat{2}) \\ & \dot{x}\hat{x} + \dot{y}\hat{y} &= -a\dot{\psi}\hat{1} \end{aligned}$$

siendo los vínculos

$$z_{cm} - a = 0$$
 $\theta = \pi/2$ $|V_{cm}| = a\dot{\psi}$

de tal modo que son dos grados de libertad. Los vínculos provienen de la rodadura y de considerar que la moneda permanece en todo momento vertical, aunque pueda cambiar la dirección de su

Figura 14.9 Moneda que rueda libremente por un plano. Intercambié ejes 2 y 3 respecto del dibujo anterior.

velocidad. En este problema se deben utilizar multiplicadores de Lagrange de manera obligada. El lagrangiano puede escribirse como

$$\mathcal{L} = T = \frac{1}{2} m a^2 \dot{\psi}^2 + \frac{1}{2} I_2^2 \dot{\phi}^2 + \frac{1}{2} I_3^2 \dot{\psi}^2.$$

Como los vínculos dependen de la velocidad, resulta

$$\dot{y} = a\dot{\psi}\cos(\psi)\sin(\phi) = a\sin(\phi)\dot{\psi}$$
$$\dot{x} = a\dot{\psi}\cos(\psi)\cos(\phi) = a\cos(\phi)\dot{\psi}$$

de tal manera que

$$\dot{y} - a\sin(\phi)\dot{\psi} = 0$$
 $\dot{x} - a\cos(\phi)\dot{\psi} = 0$

y luego esto equivale a

$$\lambda_1(dy-a\sin(\phi)d\psi)=0 \qquad \lambda_2(dx-a\cos(\phi)d\psi)=0$$

y finalmente

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) - \frac{\partial \mathcal{L}}{\partial q_i} = \lambda_i \nabla_i f \cdot \delta \boldsymbol{r}_i$$

Podemos escribir

$$\begin{split} m\ddot{x} &= \lambda_1 \qquad m\ddot{x} = ma\frac{d}{dt}(\cos(\phi)\dot{\psi}) \\ m\ddot{x} &= ma(-\sin(\phi)\dot{\phi}\dot{\psi} + \cos(\phi)\ddot{\psi}) \\ m\ddot{y} &= \lambda_2 \\ I_2\ddot{\phi} &= 0 \qquad I_3\ddot{\psi} = -\lambda_2 a\sin(\phi) - \lambda_1 a\cos(\phi) \\ \hat{1} &= \cos(\psi)[\sin(\phi)\hat{y} + \cos(\phi)\hat{x}] \end{split}$$

2.14.1 Soluciones aproximadas

Puedo tomar un subconjunto pequeño de funciones y restringirme a buscar cua es la mejor función de ese conjunto en el sentido de extremar I:

$$I = \int_{t_i}^{t_f} \mathcal{L}(q_1,...,q_n,\dot{q}_1,...,\dot{q}_n,t) \ dt, \label{eq:energy_equation}$$

No entiendo/recuerdo lo que quise decir con la expresión bajar los ejes. Calculo que se relaciona con la proyección de los ejes 123 en xyz. Confirmarlo.

Figura 14.10

donde el subconjunto de las funciones $q_1, q_2, ..., q_n$ las tomo de algún subconjunto en particular. Por ejemplo,

$$q_1^f = a_0 + a_1 t_f + \dots \qquad q_1^i = a_0 + a_1 t_i + \dots$$

2.14.2 Oscilador armónico

Considero un oscilador armónico en una dimensión.

$$\mathcal{L} = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}k\dot{x}^2$$

Quiero resolver de manera aproximada el oscilador armónico y ver que está bien. Si considero $n \to \infty$ tengo infinitos parámetros y puedo parametrizar cualquier curva que una los puntos inicial y final.

$$I = \int_{t_i}^{t_f} \mathcal{L}(x, \dot{x}) \, dt$$

Parto el intervalo y considero una partición de N cachos.

$$\Delta t N = t_i - t_f$$

donde $\Delta t \rightarrow 0$ y $N \rightarrow \infty.$ Luego la versión discreta de la integral es

$$I \approx \sum_{i=1}^{N-1} \left(\frac{1}{2} m \frac{(x_{i+1}-x_i)^2}{\Delta t^2} - \frac{1}{2} k x_i^2\right) \Delta t$$

Tomamos la derivada

$$\frac{\partial I}{\partial x_j} = \left(m\frac{(x_j-x_{j-1})}{\Delta t^2} - m\frac{(x_{j+1}-x_j)}{\Delta t^2}\right)\Delta t - kx_j\Delta t$$

comments del gráfico: toda curva que comunica los dos puntos la descompongo en poligonales. Columnas de partición e igualándola a cero,

$$\frac{m}{\Delta t^2}(-2x_j + x_{j-1} + x_{j+1}) + kx_j = 0$$

que se puede escribir como

$$\frac{m}{\Delta t} \left(\frac{x_{j+1} - x_j}{\Delta t} - \frac{x_j - x_{j-1}}{\Delta t} \right) + k x_j = 0$$

y que en el límite continuo va a

$$m\ddot{x} - kx = 0.$$

EJEMPLO 14.3 Geodésicas

La idea es extremizar la distancia entre dos puntos de una dada geometría. En el caso del plano se tiene

$$I = \int ds = \int \sqrt{dx^2 + dy^2} = \int \sqrt{1 + \dot{y}^2} \ dx$$

donde se ha definido $\dot{y}\equiv dy/dx$. Evidentemente si la geometría es plana, la curva que extremiza el intervalo tiene que ser una recta. Veámoslo. Las ecuaciones de Euler Lagrange se reducen a:

$$\frac{d}{ddx}\left(\frac{\dot{y}}{\sqrt{1+\dot{y}^2}}\right) = 0,$$

las cuales nos dicen que

$$\frac{\dot{y}}{\sqrt{1+\dot{y}^2}} = C$$

donde C es una constante. No es difícil ver que esta ecuación lleva a

$$y(x) = C_1 x + C_2$$

para C_1, C_2 constantes. Esta es la ecuación de una recta en el plano.

Un ejemplo más sofisticado

Si a una curva z=z(x) como la que se ilustra en la figura se la hace girar en torno al eje z se tiene una superficie de revolución. Un punto tridimensional en esa superficie se puede parametrizar en términos de coordenadas cilíndricas ρ, θ, z según

$$\begin{cases} x = \rho(z) \cos(\theta) \\ y = \rho(z) \sin(\theta) \\ z = z \end{cases}$$

donde el hecho de que la superificie es 2D se trasluce en que cada coordenada cartesiana 3D x, y, z depende a lo sumo de dos variables θ, z .

La trayectoria mínima entre dos puntos provendrá otra vez de extremar

$$I = \int ds = \int \sqrt{dx^2 + dy^2 + dz^2}$$

pero utilizando la restricción de la superficie dada por las ecuaciones XXX. Utilizando la prima para denotar la derivada con respecto a z se tiene

$$dx = \rho' \cos \theta dz - \rho \sin \theta d\theta$$
$$dy = \rho' \sin \theta dz + \rho \cos \theta d\theta$$

Creo que se puede usar que uno conoce diferencias finitas algo. El final parece no estar muy claro en la carpeta. Hacer la cuenta a mano bien.

Este material es parte de una clase práctica. Habría que ver de hacerlo encajar mejor.

$$I = \int \sqrt{{\rho'}^2 dz^2 + \rho^2 d\theta^2 + dz^2}$$

que se puede poner en términos de la derivada con respecto a z sacando como factor común su diferencial. Entonces

$$I = \int \sqrt{({\rho'}^2 + 1)dz^2 + {\rho^2}{\theta'}^2}dz$$

donde tanto ρ como θ son funciones de z. El lagrangiano es función de θ' , ρ , ρ'

Si calculamos las ecuaciones de Euler Lagrange para θ (que son las más fáciles puesto que la dependencia es solo de la derivada) se llega a

$$\frac{\rho \rho' \theta'}{\sqrt{({\rho'}^2 + 1) + \rho^2 {\theta'}^2}} = C$$

que se puede, haciendo el álgebra correspondiente, lleva a la forma explícita

$$\theta(z) = C_1 \int \frac{\sqrt{{\rho'}^2+1}}{2\sqrt{\rho^2-C_1^2}} dz + C_2, \tag{14.5} \label{eq:theta}$$

que es una ecuación genérica para una superficie en rotación. Es decir, que recorrer la curva de longitud mínima por esa superficie debe hacerse avanzando en θ según la prescripción dada por (14.5).

Si la superficie fuera un cilindro, de radio a, por ejemplo, se tendría $\rho=a$ de modo que la (14.5) se integra inmediatamente para dar

$$\theta(z) = C_1 \frac{z}{a\sqrt{a^2 - C_1^2}}.$$

Luego, para dos puntos separados verticalmente una distancia h (ver figura) sobre la superficie del cilindro se tiene que la curva que representa la distancia mínima es una hélice en el cilindro, de paso h. Si la superficie lateral de este cilindro se desplegase sobre un plano, esa curva es una recta.

Superficie general en 3D

Si la partícula debe caminar en la superficie Ω entonces tal vez se pueda expresar como z=z(x,y) de tal forma se tendrá

$$I = \int f(\dot{x}, \dot{y}, \dot{z}) dt$$

Luego, la derivada total de z será

$$\frac{dz}{dt} = \dot{z} = \frac{\partial z}{\partial x}\dot{x} + \frac{\partial z}{\partial y}\dot{y}$$

y entonces

$$I = \int f(\dot{x}, \dot{y}, \frac{\partial z}{\partial x} \dot{x} + \frac{\partial z}{\partial y} \dot{y}) dt.$$

Planteando las ecuaciones de Euler-Lagrange

$$\begin{split} \frac{d}{dt} \left(\frac{df}{d\dot{x}} + \frac{df}{d\dot{z}} \frac{dz}{dx} \right) - \frac{df}{d\dot{z}} \frac{d}{dx} \left(\frac{\partial z}{\partial x} \dot{x} + \frac{\partial z}{\partial y} \dot{y} \right) &= 0 \\ \frac{d}{dt} \left(\frac{df}{d\dot{y}} + \frac{df}{d\dot{z}} \frac{dz}{dy} \right) - \frac{df}{d\dot{z}} \frac{d\dot{z}}{dy} &= 0 \end{split}$$

las cuales se pueden simplificar usando la derivada total,

$$\frac{d}{dt}\left(\frac{df}{d\dot{x}}\right) + \frac{d}{dt}\left(\frac{df}{d\dot{z}}\right)\frac{dz}{dx} + \frac{df}{d\dot{z}}\frac{d}{dt}\left(\frac{dz}{dx}\right) + \frac{df}{d\dot{z}}\frac{d}{dt}\left(\frac{dz}{dx}\right) = 0$$

Los dos últimos términos tienen que aparecer tachados.

Luego,

$$\begin{split} \frac{d}{dt}\left(\frac{df}{d\dot{x}}\right) + \frac{dz}{dx}\frac{d}{dt}\left(\frac{df}{d\dot{z}}\right) &= 0\\ \frac{d}{dt}\left(\frac{df}{d\dot{y}}\right) + \frac{dz}{dy}\frac{d}{dt}\left(\frac{df}{d\dot{z}}\right) &= 0 \end{split}$$

y como

$$\frac{dG}{dx}\dot{x} + \frac{dG}{dy}\dot{y} + \frac{dG}{dz}\dot{z} = 0,$$

se sigue que

$$\dot{z} = -\left(rac{dG}{dx}\dot{x} + rac{dG}{dy}\dot{y}
ight)rac{1}{dG/dz}$$

o bien

$$\dot{z} = -\left(rac{G_x}{G_z}\dot{x} + rac{G_y}{G_z}\dot{y}
ight)$$

de tal manera que

$$\begin{split} \frac{d}{dt} \left(\frac{df}{d\dot{x}} \right) + \frac{G_x}{G_z} \frac{d}{dt} \left(\frac{df}{d\dot{z}} \right) &= 0 \\ \frac{d}{dt} \left(\frac{df}{d\dot{y}} \right) + \frac{G_y}{G_z} \frac{d}{dt} \left(\frac{df}{d\dot{z}} \right) &= 0 \\ \frac{d}{dt} \left(\frac{df}{d\dot{z}} \right) &= \lambda(t) G_z \end{split}$$

Entonces

$$\frac{1}{G_x}\frac{d}{dt}\left(\frac{df}{d\dot{x}}\right) = \frac{1}{G_y}\frac{d}{dt}\left(\frac{df}{d\dot{y}}\right) = \frac{1}{G_z}\frac{d}{dt}\left(\frac{df}{d\dot{z}}\right)$$

Esta expresión puede simplificarse como

$$f = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} = 1$$

si el parámetro t es s

$$s = \int ds = \int \sqrt{dx^2 + dy^2 + dz^2} = \int \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} ds$$

y entonces

$$\frac{d}{dt}\left(\frac{df}{d\dot{x}}\right) = \ddot{x}$$

de manera que la ecuación de la geodésica es

$$\frac{1}{G_x}\frac{d^2x}{ds^2} = \frac{1}{G_y}\frac{d^2y}{ds^2} = \frac{1}{G_z}\frac{d^2z}{ds^2}$$

Ahora, si consideramos

$$I = \int [f(\dot{x},\dot{y},\dot{z}) + \lambda G(x,y,z)] dt$$

se tiene que

$$\frac{d}{dt}\left(\frac{df}{d\dot{x}}\right) - \lambda G_x = 0$$

y es un vínculo que hay que integrar, y es mucho más difícil.

Volviendo a la superficie general

$$I = \int \left[\frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - \lambda G\right]dt$$

$$T = \sqrt{(\dot{x}^2 + \dot{y}^2 + \dot{z}^2)} = cte. \equiv k$$

y entonces s = kt

$$k^{2}m\ddot{x} - \lambda G_{x} = 0$$

$$k^{2}m\ddot{y} - \lambda G_{y} = 0$$

$$k^{2}m\ddot{z} - \lambda G_{z} = 0$$

$$G(x, y, z) = 0$$

La partícula se mueve en una geodésica

$$\frac{\ddot{x}}{G_x} = \frac{\ddot{y}}{G_y} = \frac{\ddot{z}}{G_z}$$

2.15 Potenciales dependientes de la velocidad

Hasta el momento se consideró que el potencial *V* dependía únicamente de la posición y resultaba eso en una fuerza generalizada [la llamé así?]

$$Q_j = -\frac{\partial V}{\partial q_j}$$

para la cual el $\mathcal{L} \equiv T - V$ cumplía las ecuaciones de Euler Lagrange

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} = 0.$$
 (15.1)

Si en cambio se tiene un potencial dependiente, además, de la velocidad,

$$U=U(q_1,...,q_2,\dot{q}_1,...,\dot{q}_n,t)$$

y se requiere que sigan valiendo las ecuaciones (15.1) para $\mathcal{L}\equiv T-U,$ necesitaremos evidentemente

$$Q_j = \frac{d}{dt} \left(\frac{\partial U}{\partial \dot{q}_j} \right) - \frac{\partial U}{\partial q_j},$$

una fuerza generalizada que depende de posiciones y velocidades.

El ejemplo canónico de una tal fuerza es la fuerza de Lorentz, que es la que sufre una partícula de carga q en presencia de un campo electromagnético dado por campos E, B y cuya forma es

$$F = qE + \frac{q}{c}(\boldsymbol{v} \times \boldsymbol{B}) \tag{15.2}$$

Esta fuerza (15.2) puede expresarse en términos de dos potenciales. Para ello es necesario recurrir a las relaciones que verifican los campos $\boldsymbol{E}, \boldsymbol{B}$ y que están dadas por las ecuaciones de Maxwell, cuyo esquema se presenta en la siguiente tabla.

$$\nabla \cdot \mathbf{E} = 4\pi\rho \qquad \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \qquad \nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$$

Dado que la divergencia de $m{B}$ es nula, entonces existe un potencial vector $m{A}$ tal que

$$\nabla \times \mathbf{A} = \mathbf{B}$$
.

Entonces, la ley de Faraday resulta

$$\nabla \times \boldsymbol{E} = -\frac{1}{c} \frac{\partial}{\partial t} \left(\nabla \times \boldsymbol{A} \right)$$

o bien

$$\nabla \times \left(\boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t} \right) = 0$$

La cantidad entre paréntesis es de rotor nulo y entonces se puede escribir

$$E + \frac{1}{c} \frac{\partial A}{\partial t} = -\nabla \varphi(x, t)$$

de manera que los campos B, E pueden expresarse en términos de una función escalar φ y un campo vectorial A como

$$\boldsymbol{B} = \nabla \times \boldsymbol{A}$$
 $\boldsymbol{E} = -\nabla \varphi - \frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t}.$

Entonces, en términos de estos potenciales (15.2) resulta

$$\mathbf{F} = -q\nabla\varphi - \frac{q}{c}\frac{\partial\mathbf{A}}{\partial t} + \frac{q}{c}\mathbf{v} \times \nabla \times \mathbf{A}.$$

Supongamos, para simplificar el razonamiento, que es ${\pmb F}=F_x\hat x$ y veamos que

$$F_x = -q \frac{\partial \varphi}{\partial x} - \frac{q}{c} \frac{\partial A_x}{\partial t} + \frac{q}{c} \left(v_y [\nabla \times \mathbf{A}]_z - v_z [\nabla \times \mathbf{A}]_y \right)$$

se puede escribir

$$F_x = \frac{d}{dt} \left(\frac{\partial U}{\partial v_x} \right) - \frac{\partial U}{\partial x}.$$

Desarrollando explícitamente el rotor se tiene

$$\left(v_y[\nabla\times \boldsymbol{A}]_z - v_z[\nabla\times \boldsymbol{A}]_y\right) = v_y\frac{\partial A_y}{\partial x} - v_y\frac{\partial A_x}{\partial y} - v_z\frac{\partial A_x}{\partial z} + v_z\frac{\partial A_z}{\partial x} + v_x\frac{\partial A_x}{\partial x} - v_x\frac{\partial A_x}{\partial x} - v_x\frac{\partial A_x}{\partial x} - v_x\frac{\partial A_x}{\partial x} + v_x\frac{\partial A_x}{\partial x} - v_x\frac{\partial A_x}$$

donde se ha sumado y restado la conveniente combinación $v_x\partial_x A_x$. Dado que las velocidades y las posiciones son variables independientes (se verifica $\partial_a v_b = 0$ para cualquier combinación a,b=x,y,z) se puede $\mathit{filtrar}$ la velocidad dentro de las derivadas para reescribir

$$v_x\frac{\partial A_x}{\partial x} + v_y\frac{\partial A_y}{\partial x} + v_z\frac{\partial A_z}{\partial x} = \frac{\partial}{\partial x}(v_xA_x + v_yA_y + v_zA_z) = \frac{\partial}{\partial x}(\boldsymbol{v}\cdot\boldsymbol{A})$$

Los tres términos restantes en derivadas respecto de ${\cal A}_x$ no son otra cosa que una derivada total,

$$-\frac{q}{c}\left(\frac{\partial A_x}{\partial t}-v_x\frac{\partial A_x}{\partial x}-v_y\frac{\partial A_x}{\partial y}-v_z\frac{\partial A_x}{\partial z}\right)=-\frac{q}{c}\left(\frac{\partial A_x}{\partial t}-\boldsymbol{v}\cdot\nabla(A_x)\right)=-\frac{q}{c}\frac{dA_x}{dt}$$

Luego, se fuerza la aparición de una derivada con respecto a la velocidad (para obtener una expresión en consonancia con la buscada) del siguiente modo

$$A_x = \frac{\partial}{\partial v_x}(v_x A_x + v_y A_y + v_z A_z) = \frac{\partial}{\partial v_x}(\boldsymbol{v} \cdot \boldsymbol{A}),$$

y juntando todo resulta

$$F_x = -\frac{\partial}{\partial x} \left(q \boldsymbol{\varphi} - \frac{q}{c} \boldsymbol{v} \cdot \boldsymbol{A} \right) + \frac{d}{dt} \left(\frac{\partial}{\partial v_x} \left(-\frac{q}{c} \boldsymbol{v} \cdot \boldsymbol{A} \right) \right).$$

Como $\varphi = \varphi(\boldsymbol{x},t)$, se la puede incluir dentro de la derivada con respecto a la velocidad obteniendo finalmente el resultado buscado

$$F_x = -\frac{\partial U}{\partial x} + \frac{d}{dt} \left(\frac{\partial U}{\partial v_x} \right),$$

donde

$$U = q\varphi - \frac{q}{c} \boldsymbol{v} \cdot \boldsymbol{A}.$$

Se puede demostrar directamente la fórmula anterior desde la expresión vectorial de F utilizando su equivalente indicial, es decir a partir de

$$F_i = -q \partial_i \varphi - \frac{q}{c} \; \partial_t A_i + \frac{q}{c} \; \epsilon_{ilm} v_l \epsilon_{mjk} \partial_j A_k$$

que es la coordenada i-ésima de la fuerza F. Utilizando las propiedades del símbolo de Levi-Civita se tiene

$$F_i = -q\partial_i \varphi + \frac{q}{c} \left[-\partial_t A_i + (\delta_{ij}\delta_{lk} - \delta_{ik}\delta_{lj}) v_l \partial_j A_k \right]$$

y, tras colapsar las deltas, y reordenar términos

$$F_i = -q \partial_i \varphi + \frac{q}{c} \left[-\partial_t A_i - v_j \partial_j A_i + v_k \partial_i A_k \right].$$

Mucho para tener en cuenta: resumen previo de notación indicial, resumen de classical field theory. Aclarar que posición y velocidad son independientes.

Como el campo de velocidad v no depende explícitamente de x se puede introducir v_k a través de la derivada ∂_i . Además los dos primeros términos del corchete representan la derivada total de A_i de manera que tenemos

$$F_i = -q \partial_i \varphi + \frac{q}{c} \left[-\frac{d}{dt} \left(A_i \right) + \partial_i (v_k A_k) \right], \label{eq:Fi}$$

o bien

$$F_i = -\partial_i \left[q\varphi - \frac{q}{c} (v_k A_k) \right] - \frac{d}{dt} \left(\frac{q}{c} A_i \right).$$

Se puede hacer aparecer explícitamente lo faltante dentro de la derivada total notando que se puede escribir de manera absolutamente general

$$\frac{q}{c}A_i = \frac{\partial}{\partial v_i}(-q\varphi + \frac{q}{c}v_kA_k)$$

dado que φ y A son funciones de la posición y el tiempo solamente. Luego,

$$F_i = -\partial_i \left[q\varphi - \frac{q}{c}(v_k A_k) \right] + \frac{d}{dt} \left[\frac{\partial}{\partial v_i} (q\varphi - \frac{q}{c} v_k A_k) \right]$$

y esto significa que el potencial completo es

$$U(\boldsymbol{x},\boldsymbol{v},t) = q \, \varphi(\boldsymbol{x},t) - \frac{q}{c} \, \boldsymbol{v} \cdot \boldsymbol{A}(\boldsymbol{x},t).$$

En el ejemplo de la fuerza de Lorentz se desprecia el campo generado por la misma partícula que se mueve. Es decir, que el campo externo no es afectado por el movimiento de la partícula. Una formulación lagrangiana que lo tuviera en cuenta debería considerar un \mathcal{L}_p para la partícula.

2.16 Cambio de gauge en potenciales

Según se vio en la sección anterior, en el caso del electromagnetismo tenemos un potencial U que depende de la posición y la velocidad de una manera muy especial. Además el potencial escalar φ usual en la electrostática fue necesario definir un potencial vector \boldsymbol{A} que estaba vinculado con el campo magnético \boldsymbol{B} a través de : $\nabla \times \boldsymbol{A} = \boldsymbol{B}$.

Solamente se le pide al campo \boldsymbol{A} que su rotor sea \boldsymbol{B} y esto no lo determina por completo. En particular si se define

$$\mathbf{A}' = \mathbf{A} + \nabla f,$$

un nuevo potencial A' que difiere del original por el añadido del gradiente de una función escalar, las ecuaciones de movimiento no se ven alteradas. En efecto, la divergencia del campo magnético B es

$$\nabla \cdot \mathbf{B} = \nabla \cdot (\nabla \times \mathbf{A}') = \nabla \cdot (\nabla \times \mathbf{A}) + \nabla \cdot (\nabla \times \nabla f) = 0$$

donde el cero se logra porque cada uno de los dos miembros es cero por separado. Asimismo, como el rotor de un gradiente es nulo, el rotor de \boldsymbol{B} no se ve alterado:

$$\nabla \times \boldsymbol{B} = \nabla \times (\nabla \times \boldsymbol{A}') = \nabla \times (\nabla \times \boldsymbol{A}) + \nabla \times (\nabla \times \nabla f) = \nabla \times (\nabla \times \boldsymbol{A}).$$

Luego, hay un grado de libertad extra en la determinación del A que es esta función escalar f, y que se suele expresar dando la divergencia de A. En efecto,

$$\nabla \cdot \mathbf{A}' = \nabla \cdot \mathbf{A} + \nabla^2 f.$$

La divergencia de A se puede elegir entonces arbitrariamente y esto es lo que se conoce como la *libertad de gauge*[?] o el cambio de *gauge* del potencial. Descansa en el hecho de que las ecuaciones de movimiento son, por supuesto, independientes del gauge elegido.

Chequear esta mini subsección.

Capítulo 3

Simetrías

3.1 Constantes de movimiento y simetrías

Si en las ecuaciones de Euler-Lagrange

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) - \frac{\partial \mathcal{L}}{\partial q_j} = 0,$$

se daba el caso de que $\mathcal L$ no dependía de q_j entonces $\partial \mathcal L/\partial q_j=0$ y

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) = 0$$

significa que

$$\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \equiv p_j$$

es una constante ($\dot{p}_j=0$).

Por otra parte, si δq_i es traslación rígida en una dirección \hat{n} entonces

$$p_i = \mathbf{P} \cdot \hat{n}$$
 y $Q_i = \mathbf{F} \cdot \hat{n}$.

En cambio, si δq_i es una rotación rígida en torno a un eje \hat{n} se tiene

$$p_i = \boldsymbol{L} \cdot \hat{\boldsymbol{n}} \qquad \text{y} \qquad Q_j = \boldsymbol{T} \cdot \hat{\boldsymbol{n}}.$$

En estos dos casos

$$\frac{\partial T}{\partial a_i} = 0$$

puesto que:

- Como T depende de las velocidades (y no de las coordenadas) no depende del origen y por lo tanto no varía ante una traslación rígida (que es un cambio de origen).
- Como T es un escalar no cambia ante una rotación.

Luego, si $V \neq V(\dot{q})$ (el potencial V no depende explícitamente de las velocidades) entonces las ecuaciones de Euler-Lagrange adoptan la forma

$$\begin{split} \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) &= -\frac{\partial V}{\partial q_j} \\ \frac{d}{dt} \left(p_j \right) &= -\frac{\partial V}{\partial q_j} \end{split}$$

y entonces

$$\dot{p}_j = -\frac{\partial V}{\partial q_j}$$

es la fuerza total proyectada en la dirección \hat{n} .

Para examinar constantes de movimiento podemos ver primero las variables cíclicas. Sin embargo, si elegimos otras coordenadas tal vez no aparezca la constante de movimiento como coordenada cíclica (aunque por supuesto sigue existiendo dicha constante).

Acá parecen estar separadas los movimientos rígidos del hecho de que V sea de las coordenadas solamente. En un caso tenemos $\dot{p}=0$ y en otro $\dot{p}=-\partial V/\partial q$. Creo que lo del potencial sería para las otras coordenadas no afectadas por la simetría?.

3.1.1 Simetrías en el lagrangiano

Sea un cambio de coordenadas $q_i o q_i'$, si como resultado de éste se tenía

$$\mathcal{L}(q_i,\dot{q}_i,t) = \mathcal{L}(q_i(q_i',t),\dot{q}_i(\dot{q}_i',t),t),$$

es decir, que al escribir el lagrangiano en función de las nuevas coordenadas obtengo el mismo, se está ante la presencia de una simetría asociada.

Las variables cíclicas son un caso particular de teorema de Noether. Una transformación infinitesimal genérica de k grados de libertad es

$$\begin{array}{ll} q_1' &= q_1 + \varepsilon g_1(q_1,...,q_k,t) \\ q_2' &= q_2 + \varepsilon g_2(q_1,...,q_k,t) \\ ... \\ q_k' &= q_k + \varepsilon g_k(q_1,...,q_k,t) \end{array}$$

Para una traslación infinitesimal rígida se tiene

$$x'_{i} = x_{i} + \delta x$$
$$y'_{i} = y_{i} + \delta y$$
$$z'_{i} = z_{i} + \delta z$$

o bien ${m x}'={m x}+\delta{m x}$ y la energía cinética

$$T = \sum_i \frac{1}{2} m_i v_i^2$$

es invariable puesto que depende de las velocidades (que no dependen del origen) y se da $\dot{x}=\dot{x}'$ y lo mismo para las otras coordenadas.

Para una rotación en el plano xy

$$x'_{i} = x_{i} + \varepsilon y_{i}$$
$$y'_{i} = y_{i} - \varepsilon x_{i}$$
$$z'_{i} = z_{i}$$

que matricialmente se pueden ver como

$$\begin{pmatrix} x_i' \\ y_i' \end{pmatrix} = \begin{pmatrix} 1 & \varepsilon \\ -\varepsilon & 1 \end{pmatrix} \begin{pmatrix} x_i \\ y_i \end{pmatrix} \qquad \begin{pmatrix} 1 & -\varepsilon \\ \varepsilon & 1 \end{pmatrix} \begin{pmatrix} \dot{x}_i' \\ \dot{y}_i' \end{pmatrix} = \begin{pmatrix} \dot{x}_i \\ \dot{y}_i \end{pmatrix}$$

resulta

$$T = \sum_{i} \frac{1}{2} m_i v_i^2 = \frac{1}{2} \sum_{i} m_i (\dot{x}_i^2 + \dot{y}_i^2)$$

y ahora para T^\prime expresamos las coordendas primitivas en función de las nuevas (primadas).

$$T' = \frac{1}{2} \sum_i m_i ([\dot{x}_i' - \varepsilon \dot{y}_i']^2 + [\dot{y}_i' + \varepsilon \dot{x}_i']^2)$$

y a primer orden

$$T' = \frac{1}{2} \sum_{i} m_{i} (\dot{x}_{i}^{'2} - 2\varepsilon \dot{y}_{i}'\dot{x}_{i}' + 2\varepsilon \dot{y}_{i}'\dot{x}_{i}' + \dot{y}_{i}^{'2}) = \frac{1}{2} \sum_{i} m_{i} (\dot{x}_{i}^{'2} + \dot{y}_{i}^{'2}) = T.$$

Entonces T es invariante ante traslación rígida y rotación rígida. Faltaría completar este análisis con las simetrías del potencial V para ver las simetrías del lagrangiano. En los casos en que

$$V = V(|\boldsymbol{x}_i - \boldsymbol{x}_i|)$$
 Invariancia de traslación en cualquier dirección

lo cual significa depender de la distancia relativa. Otro caso es:

$$V=V(x_i,y_i)$$
 — Invariancia de traslación en z

Resolver un problema de double superscript aquí. T es invariante porque es básicamente un escalar. Noether dice que si el lagrangiano \mathcal{L} es invariante entonces hay una simetría de la transformación que no necesariamente es rotación rígida o traslación rígida.

$$T$$
 se conserva en
$$\begin{cases} \text{rotación rígida} \\ \text{traslaciones} \end{cases}$$

$$V$$
 tendrá $\left\{ egin{array}{ll} 1. \ {
m rotación \ rígida} \\ 2. \ {
m traslación} \\ 3. \ {
m rotación \ y \ traslación} \end{array}
ight.$

Luego, digamos que:

- $\mathcal L$ tiene un momento lineal si V tiene 1
- $\mathcal L$ tiene un momento angular si V tiene 2
- \mathcal{L} tiene una combinación de momento lineal y angular si V tiene 3

Si se tiene constante de movimiento, no necesariamente el lagrangiano $\mathcal L$ tiene esa simetría.

Una trasnformación general para k grados de libertad se escribe como

$$\begin{array}{ll} q_1' &= q_1 + \sum_{\ell=1}^S \varepsilon_\ell g_1^\ell(q_1,...,q_k,t) \\ q_2' &= q_2 + \sum_{\ell=1}^S \varepsilon_\ell g_2^\ell(q_1,...,q_k,t) \\ ... \\ q_k' &= q_k + \sum_{\ell=1}^S \varepsilon_\ell g_k^\ell(q_1,...,q_k,t) \end{array}$$

donde el término en cada sumatoria corresponde al δq_k .

La simetría de paridad x o -x, que es una reflexión tiene la particularidad de que es discreta, no se puede ir continuamente.

3.1.2 Rotación en 3D infinitesimal

3.2 El teorema de Noether

Si existe una transformación continua $q_i \longrightarrow q_i + \delta q_i$ que deje invariante el $\mathcal L$ entonces hay una constante de movimiento asociada a dicha transformación.

La transformación se puede escribir

$$q_i \longrightarrow q_i' = q_i + \delta q_i$$

y cumple

$$\mathcal{L}(q_i,\dot{q}_i,t) = \mathcal{L}(q_i',\dot{q}_i',t) = \mathcal{L}(q_i[q_i',t],\dot{q}_i[\dot{q}_i',t],t)$$

y así si consideramos una variación a t fijo, también vale que

$$\begin{split} \delta\mathcal{L} &= \sum_{i} \frac{\partial \mathcal{L}}{\partial q_{i}} \delta q_{i} + \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta \dot{q}_{i} = \sum_{i} \frac{\partial \mathcal{L}}{\partial q_{i}} \delta q_{i} + \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta q_{i} \right) - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) \delta q_{i} = 0 \\ \delta\mathcal{L} &= \sum_{i} \left[\frac{\partial \mathcal{L}}{\partial q_{i}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) \right] \delta q_{i} + \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta q_{i} \right) = 0 \end{split}$$

pero como el primer término del RHS es nulo por las ecuaciones de Euler-Lagrange tenemos que

$$\delta\mathcal{L} = \frac{d}{dt} \left(\sum_i \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i \right) = 0,$$

lo que está dentro del paréntesis es la cantidad conservada.

Existe una simetría (que deja invariante al lagrangiano) y resulta en una constante de movimiento. No obstante, no toda constante de movimiento proviene de una simetría.

EJEMPLO 2.1 Rotación en el plano

Una rotación en el plano xy bajo un ángulo pequeño ϵ se puede escribir (ver Apéndice A) como

$$\begin{cases} x' = x + \epsilon y \\ y' = y - \epsilon x \end{cases}$$

Figura 2.1

Si consideramos el lagrangiano de una partícula libre en dicho plano $\mathcal{L}=1/2m(\dot{x}^2+\dot{y}^2)$, la cantidad conservada será

$$m\dot{x}\delta x + m\dot{y}\delta y = 2\epsilon(-p_xy + p_yx) = cte.$$

que no es otra cosa que el momento angular L_z (que se conserva).

Por supuesto, para una rotación general (no restringida a un plano) son necesarios tres parámetros. La rotación plana requiere solamente un parámetro.

En el caso de una partícula rebotando en un billar hay simetría de rotación en torno a z, luego hay constante de movimiento. En el caso del movimiento elíptico donde 1 y 2 son los focos no hay simetría de rotación pero aún así hay constante de movimiento $\ell_1\ell_2$.

Figura 2.2

3.2.1 Rotación infinitesimal

Recordemos que

$$\delta q_i = q_i' - q_i$$

y una traslación infinitesimal es

$$\mathbf{r}_i' - \mathbf{r}_i = \delta \mathbf{r}$$
.

La variable cíclica es un caso particular de teorema de Noether, pero hay constantes de movimiento que no provienen de ninguna simetría.

$$\begin{split} \frac{d}{dt} \left(\sum_i \frac{\partial \mathcal{L}}{\partial \dot{q}_i} (\delta \alpha \hat{n} \times \boldsymbol{r}_i) \right) \\ \frac{d}{dt} \left(\delta \alpha \sum_i \boldsymbol{p}_i \times \boldsymbol{r}_i \right) &= \delta \alpha \frac{d}{dt} \left(\sum_i \boldsymbol{p}_i \times \boldsymbol{r}_i \right) = 0 \end{split}$$

siendo $\delta \alpha \equiv \epsilon$ un parámetro infinitesimal. Para k grados de libertad

$$q_i' = q_i + \underbrace{\epsilon_i g_i(q_1,...,q_n,t)}_{\delta q}$$

$$q'_k = \dots$$

En la carpeta estaba este tema. Aparentemente para una rotación general aparecía el momento angular conservado, si se manipulaban adecuadamente los índices.

$$\begin{aligned} & \bm{r}_i' = \bm{r}_i + \delta \bm{r} \quad \text{traslación rígida} \\ & \bm{r}_i' = \bm{r}_i + \delta \alpha \ \hat{n} \times \bm{r}_i \quad \text{rotación rígida} \end{aligned}$$

o también

$$\delta \boldsymbol{r} \times \boldsymbol{r}$$

T es invariante siempre frente a (por ser un escalar)

$$T = T'$$

entonces habrá que examinarlo. Constatemos que

$$V = V(|\boldsymbol{r}_i - \boldsymbol{r}_i|)$$

es invariancia ante una traslación rígida, y

$$V = V(x_1, x_2)$$

es una invariancia de traslación en x_3 .

 $\mathcal L$ tendrá como constante un momento lineal si V es invariante frente a traslación. $\mathcal L$ tendrá como constante un momento angular si V es invariante frente a rotación. $\mathcal L$ tendrá como constante una combinación si V es invariante frente a una roto-traslación.

Otra construcción posible es

$$\delta \mathcal{L} = 0$$

$$\mathcal{L}(q_i,\dot{q}_i,t) - \mathcal{L}(q_i',\dot{q}_i',t) = 0$$

pidiendo que $d\mathcal{L}=0$ llego a

$$\sum \left\{ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q \right) - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q'}_i} \delta q' \right) \right\} = 0$$

$$\sum \left\{ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q \right) - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q'}_i} \delta q \right) - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q'}_i} \sum_{\ell}^s \epsilon_\ell g_i^\ell \right) \right\} = 0$$

y podemos usar que

$$\frac{\partial \mathcal{L}}{\partial \dot{q'}_{i}} = \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}$$

pues $g \neq g(t)$ y es todo a tiempo fijo. Se tiene

$$q'=q+\delta q$$

Las primas están mal. Hay que pensar una construcción adecuada. Queda odd.

$$q_i' = q_i + \sum_{\ell}^s \epsilon_{\ell} g_i^{\ell}$$

siendo esta la transformación general

$$\delta q_i' = \delta q_i + \sum_{\ell}^s \epsilon_{\ell} g_i^{\ell}$$

Extraemos también que

$$\frac{\partial \mathcal{L}}{\partial \dot{q'}_{i}} \sum_{\ell}^{s} \epsilon_{\ell} g_{i}^{\ell} = C$$

Por hipótesis de Noether, se tiene $\delta\mathcal{L}=0$ y si δ de la variación es pequeño (o sea que la variación es infinitesimal) vale que $d\mathcal{L}=0$. Asimismo, se puede pensar también como que \mathcal{L} es invariante ante la transformación infinitesimal δq

$$\delta \mathcal{L} = \sum_{i}^{N} \frac{\partial \mathcal{L}}{\partial q_{i}} \delta q_{i} + \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta \dot{q}_{i} = 0$$

y aplicando la regla de la derivada del producto en el segundo término, se tiene

$$\delta \mathcal{L} = \sum_{i}^{N} \left[\frac{\partial \mathcal{L}}{\partial q_{i}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) \right] \delta q_{i} + \sum_{i}^{N} \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta q_{i} \right) = 0$$

donde el primer término es nulo (por ecuaciones de Euler-Lagrange), y el segundo término

$$\frac{d}{dt} \left(\sum_{i}^{N} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta q_{i} \right) = 0$$

involucra la cantidad conservada

$$\sum_{i}^{N} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta q_{i} = cte. \tag{2.1}$$

Si se usa la prescripción [de dónde salió?]

$$\delta q_i = \sum_{\ell}^s \epsilon_\ell g_i^\ell(q_1, q_2, ..., q_n)$$

en (2.1) se tiene

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_1} \sum_{\ell=1}^s \epsilon_\ell g_1^\ell + \frac{\partial \mathcal{L}}{\partial \dot{q}_2} \sum_{\ell=1}^s \epsilon_\ell g_2^\ell + \dots \right) = 0$$

y si tomo $epsilon_1=\epsilon$ y todos los $\epsilon_2,\epsilon_3,...=0$ lo cual se puede hacer puesto que son independientes,

$$\frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial\dot{q}_1}\epsilon g_1^1+\frac{\partial\mathcal{L}}{\partial\dot{q}_2}\epsilon g_2^1+\ldots\right)=0$$

y como los primeros términos dentro de cada sumando en el paréntesis son los momentos canónicamente conjugados,

$$\begin{split} \frac{d}{dt}\left(\sum_{i}p_{i}g_{i}^{1}\right) &= 0\\ \\ \frac{d}{dt}\left(\sum_{i}p_{i}g_{i}^{2}\right) &= 0\\ \\ \frac{d}{dt}\left(\sum_{i}p_{i}g_{i}^{\ell}\right) &= 0 \qquad \ell = 1,2,...,s \end{split}$$

y tendré una constante de movimiento por cada parámetro independiente.

Acá no entiendo bien de qué la va esta construcción.

3.2.2 Rotación en 3D infinitesimal

En este caso se escribe

$$\boldsymbol{x}_i' = \boldsymbol{x}_i + \delta \,\hat{n} \times \boldsymbol{x}_i$$

que es una rotación en torno a un versor genérico \hat{n} y el carácter de infinitesimal viene dado por $\delta \ll 1$. En términos de coordenads esféricas

$$(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta)\times(x_i,y_i,z_i)$$

de modo que

$$\begin{split} x_i' &= x_i + \delta(\sin\theta\sin\phi z_i - \cos\theta y_i) \\ x_i' &= x_i + \delta(\cos\theta x_i - \sin\theta\cos\phi z_i) \\ x_i' &= x_i + \delta(\sin\theta\cos\phi y_i - \sin\theta\sin\phi x_i) \end{split}$$

que es una rotación controlada por tres parámetros (θ, ϕ, δ) . Como por hipótesis la rotación es una trasnsformación de simetría se tendrá

$$\frac{d}{dt} \left(\sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{x}_{i}} \delta x_{i} + \frac{\partial \mathcal{L}}{\partial \dot{y}_{i}} \delta y_{i} + \frac{\partial \mathcal{L}}{\partial \dot{z}_{i}} \delta z_{i} \right) = 0$$

y si usamos las expresiones dadas por las ecuaciones anteriores donde δ es una constante, se tendrá

$$\delta \cdot \frac{d}{dt} \left(\sum_i (p_{x_i} z_i - p_{z_i} x_i) \sin\theta \sin\phi + (-p_{x_i} y_i + p_{y_i} x_i) \cos\theta + (-p_{y_i} z_i + p_{z_i} y_i) \sin\theta \cos\phi \right) = 0$$

y como θ, ϕ, δ son independientes tomo $\theta = 0$ y ϕ genérico para llegar a

$$\delta \cdot \frac{d}{dt} \left(\sum_i (p_{y_i} x_i - p_{x_i} y_i) \right) = 0$$

que implica L_z constante. De forma similar, considerando $\theta=\pi/2$ y $\phi=0$

$$\delta \cdot \frac{d}{dt} \left(\sum_i (p_{z_i} y_i - p_{y_i} z_i) \right) = 0,$$

que conduce a L_x constante. Finalmente, $\theta=\pi/2$ y $\phi=\pi/2$ desemboca en L_y constante,

$$\delta \cdot \frac{d}{dt} \left(\sum_i (p_{x_i} z_i - p_{z_i} x_i) \right) = 0.$$

Tener en cuenta que conservamos el L total, i.e. la \sum_{i} .

EJEMPLO 2.2 Helicidad

Supongamos una transformación

$$ho' =
ho$$
 $z' = z + a\delta \varphi$
 $\varphi' = \varphi + \delta \varphi$

que es una rotación y traslación. Automáticamente T es invariante ante tal transformación y según Noether se conserva

$$\begin{split} &\sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{\varphi}_{i}} \delta \varphi + \sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{z}_{i}} a \delta \varphi + \sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{\rho}_{i}} 0 = cte. \\ &\sum_{i} l_{z_{i}} + a \sum_{i} p_{z_{i}} = \sum_{i} \left(l_{z_{i}} + a p_{z_{i}} \right) = \frac{cte.}{\delta \varphi} \end{split}$$

y la cantidad entre paréntesis es la helicidad.

El caso más general es cuando

$$\mathcal{L}(q) = \mathcal{L}\dot{q} + \varepsilon \frac{df}{dt}$$

y entonces

$$\sum p_i \delta q_i + f$$

Corregir esto!

esta forma toman las constantes de movimiento.

Fuerzas centrales

4.1 Fuerzas centrales

Una fuerza central es aquella que depende únicamente de la distancia entre dos puntos. Es decir que si se tienen dos puntos $\boldsymbol{x},\boldsymbol{y}$, separados una distancia $r=|\boldsymbol{r}|=|\boldsymbol{x}-\boldsymbol{y}|$, una fuerza central \boldsymbol{F} verifica

$$F(x, y) = F(r) \hat{r},$$
 $\hat{r} = \frac{r}{r}$

de manera que la información sobre la dirección de la misma (\hat{r}) está establecida en la recta que une x con y mientras que su módulo es una función escalar F(r).

punto, y es una función vectorial tomar vector y da vector, que resulta finalmente más simple porque se sabe de antemano la dirección de la salida –en la dirección de la recta que une los puntos–.

Comentario de que fijo un

Figura 1.1

Esto implica, al ser una fuerza dependiente de una sola coordenada, que siempre es posible obtener un potencial a partir de ella, es decir que existe V(r)

tal que

$$F(r) = -\frac{\partial V}{\partial r}.$$

Entonces la parte cinética del lagrangiano se puede escribir en coordenadas esféricas (r,θ,ϕ) como

$$\mathcal{L} = \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin(\theta)^2 \dot{\phi}^2 \right)$$

El momento angular \boldsymbol{L} se conserva puesto que $\boldsymbol{\tau}=\boldsymbol{x}\times\boldsymbol{F}=0$. Como es $\boldsymbol{L}=\boldsymbol{x}\times\boldsymbol{p}=\boldsymbol{x}\times\boldsymbol{m}$ $\dot{\boldsymbol{x}}=cte$ entonces se sigue que $\boldsymbol{r},\boldsymbol{p}$ se hallan contenidos en el mismo plano.

Puedo pedir, sin pérdida de generalidad, que $\theta=\pi/2$ y entonces

$$\mathcal{L} = \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) - V(r). \label{eq:loss}$$

Como ϕ es cíclica se tiene

$$\frac{\partial \mathcal{L}}{\partial \dot{\phi}} = L = mr^2 \dot{\phi}$$

que no es otra cosa que la conservación del momento angular, información que puede ser llevada al lagrangiano,

$$\mathcal{L} = \frac{1}{2}m\dot{r}^2 + \left\lceil \frac{L^2}{2mr^2} - V(r) \right\rceil$$

donde el último corchete será lo que llamaremos un potencial efectivo V_{eff} ,

$$\mathcal{L} = \frac{1}{2} m \dot{r}^2 + V_{eff}(r)$$

La ecuación de Euler-Lagrange resulta en

$$m\ddot{r} - \frac{L^2}{mr^3} + \frac{\partial V}{\partial r} = 0$$

pero es más sencillo utilizar la conservación de la energía que explícitamente tiene la expresión

$$E = \frac{1}{2}m\dot{r}^2 + \frac{L^2}{2mr^2} + V(r)$$

desde la cual se puede integrar directamente la trayectoria r=r(t) según

$$\frac{dr}{dt} = \sqrt{\frac{2}{m} \left(E - \frac{L^2}{2mr^2} - V(r) \right)},$$

aunque suele ser más útil la trayectoria en el espacio físico $r=r(\phi)$ o bien $\phi=\phi(r).$

$$mr^2 \frac{d\phi}{dt} = L \longrightarrow mr^2 \frac{d\phi}{dr} \dot{r} = L$$

luego

$$\dot{r}d\phi = \frac{L}{mr^2}dr$$

$$\int d\phi = \int \frac{L/mr^2}{\sqrt{\frac{2}{m}\left(E - \frac{L^2}{2mr^2} - V(r)\right)}}dr$$

En el gráfico bajo estas líneas ilustramos muchas de las características de la física del problema de fuerzas centrales.

Figura 1.2

4.2 Solución a partir de las ecuaciones de Euler-Lagrange

$$\begin{split} m\ddot{r} - \frac{L^2}{mr^3} - \frac{\partial V}{\partial r} &= 0 \\ d\phi = \frac{L}{mr^2} dt &\longrightarrow \frac{\partial \phi}{\partial r} \frac{\partial r}{\partial t} &= \frac{L}{mr^2} \\ \frac{d}{t}(\dot{r}) &= \frac{L}{mr^2} \frac{d}{\phi}(\dot{r}) \\ m\frac{d^2r}{dt^2} - \frac{L^2}{mr^3} &= -\frac{\partial V}{\partial r} \end{split}$$

$$\begin{split} \frac{L}{r^2} \frac{d}{\phi} \left(\frac{dr}{dt} \right) - \frac{L^2}{mr^3} &= -\frac{dV}{dr} \\ \frac{L}{r^2} \frac{d}{\phi} \left(\frac{L}{mr^2} \frac{dr}{d\phi} \right) - \frac{L^2}{mr^3} &= -\frac{dV}{dr} \end{split}$$

y acá probamos el conveniente cambio de variables

$$\begin{split} U &= \frac{1}{r} \qquad dU = -\frac{1}{r^2} dr \qquad \frac{dU}{d\phi} = -\frac{1}{r^2} \frac{dr}{d\phi} = -U^2 \frac{dr}{d\phi} \\ &\qquad U^2 L \frac{d}{d\phi} \left\{ -\frac{L}{m} \frac{dU}{d\phi} \right\} - \frac{L^2}{mr^3} U^3 = F(1/U) \\ &\qquad -\frac{U^2 L^2}{m} \frac{d^2 U}{d\phi^2} - \frac{L^2}{mr^3} U^3 = F(1/U) \\ &\qquad -\frac{U^2 L^2}{m} \left[\frac{d^2 U}{d\phi^2} + U \right] = F(1/U) \end{split}$$

o bien

$$\left[\frac{d^2U}{d\phi^2}+U\right]=-\frac{F(1/U)m}{U^2L^2}.$$

En el caso del potencial de Kepler será

$$\left\lceil \frac{d^2 U}{d\phi^2} + U \right\rceil = -\frac{Km}{L^2},$$

es decir que el miembro derecho es una constante. Sale fácil entonces.

4.3 Velocidad areolar

$$\dot{\phi} = \frac{L}{mr^2}$$

De la figura puede verse que

$$A = \frac{1}{2}r^2d\phi$$

y entonces

$$\frac{dA}{dt} = \frac{1}{2}r^2\frac{d\phi}{dt} = \frac{1}{2}r^2\dot{\phi} = \frac{1}{2}\frac{L}{m} = cte.$$

$$A = \frac{1}{2} r \cdot d\varphi \cdot r = \frac{1}{2} r^2 \cdot d\varphi$$

Figura 3.3

4.4 Las fuerzas centrales y las leyes de Kepler

Tenemos

$$\int d\phi = \int \frac{(L/Mr^2)}{\sqrt{\frac{2}{m}(E-V_{eff})}} dr \qquad \frac{d^2U}{d\phi^2} + U = -\frac{F(1/U)m}{U^2L^2} \quad U = 1/r$$

que es simétrica respecto a ϕ y $-\phi.$ Esto determina una simetría orbital si tomamos

$$U(\phi = 0) = U_0 \qquad \frac{dU}{d\phi} \Big|_{\phi = 0} = 0$$

lo cual significa que U_0 es un extremo (punto apsidal).

Calculemos ahora el ángulo que recorre una oscilación completa,

$$\Delta\phi = 2\int_{r_m}^{r_M} \frac{(L/Mr^2)}{\sqrt{\frac{2}{m}(E-V_{eff})}} dr$$

Si $\Delta \phi = 2q$ siendo $q = (m/n)\pi$ son $m, n \in \mathbb{Z}$ entonces

$$\Delta\phi=2\frac{m}{n}\pi$$

$$\frac{m}{n} = \frac{2\pi}{\Delta\phi}$$

y esto significaría que la órbita se cierra.

La ecuación a resolver es

$$\frac{d^2U}{d\phi^2} + \left(U - \frac{km}{L^2}\right) = 0.$$

Si consideramos una nueva variable

$$\beta = U - \frac{km}{L^2}$$

la anterior pasa a

$$\frac{d^2\beta}{d\phi^2} + \beta = 0$$

y es fácil ver que la solución es

$$\beta = A\cos(\phi - \phi_0),$$

o bien

$$U(\phi) = \frac{km}{L^2} + A\cos(\phi - \phi_0), \tag{4.1}$$

donde A,ϕ_0 son constantes. Ahora bien, la expresión (4.1) es la solución general, necesitamos proveer las condiciones iniciales para fijar A,ϕ_0 . Propongamos $\phi_0=0$ punto apsidal. Luego podemos utilizar r_m,r_M lo cual determina U_m,U_M respectivamente, cuyos valores son

$$U_m^M = \frac{km}{L^2} \left(1 \pm \sqrt{1 + \frac{2EL^2}{k^2 m}} \right)$$

y esto nos permite fijar A. Incorporando esto en (4.1) y recordando que $U(\phi)=1/r$ se tiene

$$\frac{1}{r} = \frac{km}{L^2} \left(1 + \sqrt{1 + \frac{2EL^2}{k^2 m}} \cos(\phi) \right),$$

que no es otra cosa que la ecuación de una elipse en coordenadas polares con origen en un foco. Veámoslo.

Las elipses verifican

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad \sigma^2 = a^2 - b^2$$

donde σ es la semi-distancia focal. Definiendo $\sigma/a\equiv\varepsilon$ (la excentricidad) se puede expresar

$$b = a\sqrt{1 - \varepsilon^2}$$

Por otro lado, usando el teorema del coseno para el triángulo definido en la Figura 4.4 es

$$s^2 = (2\sigma)^2 + r^2 - 4\sigma r \cos(\pi - \phi)$$

y como s+r es la distancia que se mantiene constante e igual, entre otras, a 2a se sigue que

$$(2a-r)^2=4\sigma^2+r^2+4\sigma r\cos(\phi)$$

Eligiendo el punto $\phi_0=0$ obtenemos una elipse como la de arriba.

Falta el sistema de coordenadas en el foco f'. Revisar quién es EL.

Figura 4.4

cuya simplificación conduce a

$$\frac{1}{r} = \frac{1 + \varepsilon \cos(\phi)}{a(1 - \varepsilon)} = \frac{a}{b^2} \left(1 + \varepsilon \cos(\phi) \right)$$

la cual es la ecuación de una elipse.

Entonces en resumen, las leyes de Kepler son

Acá hay que hacer un laburo muy importante.

 Los planetas giran en órbitas elípticas con el Sol en uno de sus focos. Esto es común de los potenciales del tipo

$$V \propto 1/r$$

2. El radio vector recorre áreas iguales en tiempos iguales

$$\delta A = \frac{1}{2} r^2 \delta \phi \quad \longrightarrow \quad \frac{dA}{dt} = \frac{r^2}{2} \dot{\phi} = \frac{L}{2m} (cte.)$$

Esto es una característica de todo potencial central.

 El cubo del semieje mayor de la órbita de un planeta es proporcional al cuadrado del período empleado en recorrerla. La ecuación anterior, que da la velocidad areolar, se puede integrar como

$$\int dA = \frac{L}{2m} \int dt$$

que conduce a

$$\pi ab = \frac{L}{2m}\tau \qquad \longrightarrow \qquad a = \frac{L\tau}{2\pi bm},$$

y luego, como $km/L^2=a/b^2$ llegamos a

$$a^3 = \frac{k}{m} \frac{1}{4\pi^2} \, \tau^2 = \frac{GM}{4\pi^2} \tau^2$$

y esto es independiente de la masa del planeta.

Como a depende de L se tiene que dependiendo de la energía E tendré órbitas como las ilustradas debajo todas las cuales tienen la misma energía

$$a=\frac{1}{2}(r_M+r_m)=-\frac{k}{2E}$$

Para una elipse con el sistema coordenado en el centro se tiene

$$\frac{1}{r^2} = \frac{1}{b^2}(1-\varepsilon^2\cos^2(\phi))$$

Trabajamos más con la elipse,

$$\begin{split} r_M + r_m &= 2a \\ E &= \frac{L^2}{2mr^2} - \frac{k}{r} \qquad E - \frac{L^2}{2m}U^2 - kU = 0 \\ \frac{1}{r_{m,M}} &= \frac{\frac{2mkE}{L^2} \mp \sqrt{\left(\frac{2mkE}{L^2}\right)^2 + \frac{8mE}{L^2}}}{2} \\ \frac{1}{r_{m,M}} &= \frac{mEk}{L^2} \left(1 \pm \sqrt{1 - \frac{2L^2}{mEk^2}}\right) \end{split}$$

y acá constatamos que representa una elipse; es decir que las órbitas son elípticas.

4.5 Vector de Runge-Lenz

Para el problema de Kepler también se conserva una cantidad llamada *vector* de Runge-Lenz definido como

$$\boldsymbol{R} = \boldsymbol{v} \times \boldsymbol{l} - \alpha \frac{\boldsymbol{x}}{x}.$$

Luego, si le tomamos la derivada temporal, resulta

$$\frac{d\boldsymbol{R}}{dt} = \left(\frac{d\boldsymbol{v}}{dt} \times \boldsymbol{l}\right) + \left(\boldsymbol{v} \times \frac{d\boldsymbol{l}}{dt}\right) - \alpha \frac{\boldsymbol{v}}{x} + \frac{\alpha}{x^2} \frac{dx}{dt} \boldsymbol{x}$$

donde el último se puede poner en términos de la velocidad si utilizamos la regla de la cadena así

$$\frac{d|\boldsymbol{x}|}{dt} = \frac{d|\boldsymbol{x}|}{dx_i} \frac{dx_i}{dt} = \nabla(|\boldsymbol{x}|) \cdot \boldsymbol{v} \qquad i = 1, 2, 3$$

Esto estaba en la carpeta pero no lo entiendo bien del todo. Tal vez ilustración de la elipse con el sistema coordenado en el origen. Luego, cada componente i-ésimo del gradiente de la norma del vector de posición tiene (en coordenadas cartesianas) la misma forma; tomando como ejemplo el i=1

$$\frac{d|\mathbf{x}|}{dx_1} = \frac{d\sqrt{x_1^2 + x_2^2 + x_3^2}}{dx_1} = \frac{x_1}{|\mathbf{x}|},$$

de manera que

$$\nabla(|\boldsymbol{x}|) = \frac{\boldsymbol{x}}{x} = \hat{x},$$

el gradiente de la norma del vector es su dirección. Entonces, volviendo a la ecuación original resulta

$$\frac{d\boldsymbol{R}}{dt} = \left(\frac{d\boldsymbol{v}}{dt} \times \boldsymbol{l}\right) + \left(\boldsymbol{v} \times \frac{d\boldsymbol{l}}{dt}\right) - \alpha \frac{\boldsymbol{v}}{x} + \alpha \, \boldsymbol{x} \left(\frac{\boldsymbol{x} \cdot \boldsymbol{v}}{x^3}\right)$$

Dado que ${m l}={m x} imes m{m v}$ el segundo término en la anterior expresión desaparece y nos queda

$$\frac{d\boldsymbol{R}}{dt} = \left(\frac{d\boldsymbol{v}}{dt} \times [\boldsymbol{x} \times m\boldsymbol{v}]\right) - \alpha \frac{\boldsymbol{v}}{x} + \alpha \; \boldsymbol{x} \left(\frac{\boldsymbol{x} \cdot \boldsymbol{v}}{x^3}\right)$$

$$\frac{d\boldsymbol{V}}{dt}\times(\boldsymbol{x}\times m\boldsymbol{v})+\boldsymbol{V}\times\left(\frac{d\boldsymbol{r}}{dt}\times m\boldsymbol{v}+\boldsymbol{r}\times m\frac{d\boldsymbol{v}}{dt}\right)$$

pero como $\frac{d\mathbf{r}}{dt} \times m\mathbf{v} = 0$ resulta lo que resulta.

Figura 5.5

El vector de Runge-Lenz siempre apunta en la misma dirección dada su Mejorar la figura! constancia (ver figura).

Escribo
$$T = E - V$$

$$r_{max}mv^2 = 2Er_{max} + 2\alpha$$

pero

$$r_{max} = \frac{2El^2\alpha}{\alpha^2m(1-\varepsilon)} = \frac{-1}{\alpha}\frac{b^2\alpha}{\alpha^2(1-\varepsilon)}$$

$$r_{max} = -(1+\varepsilon)\alpha$$

$$b^2 = a^2(1 - \varepsilon^2)$$

EJEMPLO 5.1 Vector de Runge-Lenz en órbitas elípticas

Este título es provisorio

Sabemos que el vector de Runge-Lenz tiene la forma

$$\boldsymbol{A} = \boldsymbol{V} \times \boldsymbol{L} - \alpha \frac{\boldsymbol{x}}{x}$$

y cumple

$$\frac{dA}{dt} = 0$$

Veamos qué expresión tiene el módulo $A \equiv |\boldsymbol{A}|$. Tomando el producto escalar

$$\boldsymbol{A}\cdot\boldsymbol{x} = Ar\cos\theta = (\boldsymbol{V}\times\boldsymbol{L})\cdot\boldsymbol{x} - \alpha\frac{\boldsymbol{x}\cdot\boldsymbol{x}}{x}$$

y reescribiendo (ciclicidad del producto vectorial)

$$(oldsymbol{V} imes oldsymbol{L}) \cdot oldsymbol{x} = oldsymbol{L} \cdot (oldsymbol{r} imes oldsymbol{v}) = oldsymbol{L} \cdot rac{oldsymbol{L}}{m} = rac{L^2}{m}$$

y entonces

$$\alpha r \left(1 + \frac{A}{\alpha} \cos \theta \right) = \frac{L^2}{m}$$

pero como $(1 + \varepsilon \cos \theta) = p/r$ es la excentricidad se tiene $A = \varepsilon \alpha$.

4.6 Orbitas de potenciales centrales

$$V(r)=-\frac{\alpha}{r}$$

$$V(r)=\frac{kr^2}{2}$$

Estos dos casos dan órbitas cerradas. Pero hay otros potenciales interesantes. El potencial de Yukawa

$$V(r) = -\frac{\mathrm{e}^{-\lambda r}}{r^{\alpha}}$$

que es aproximadamente como un potencial coulombiano apantallado ($\alpha=1,\lambda=0$). Otro es el oscilador no armónico

$$V(r) = r^{\alpha}$$

Algunos casos se muestran bajo estas líneas

Da órbita que no se cierra en un billar elíptico.

Figura 6.6 Algunas curvas de potenciales anarmónicos r^{α} .

Figura 6.7

4.7 Reducción del problema de dos cuerpos a uno equivalente

Para dos partículas de masas m_1 y m_2 sometidas a una fuerza central

$${\pmb F}_{21} = F(r) \hat{r}_{21} \qquad \qquad F(r) = -\frac{dV(r)}{dr} \label{eq:force}$$

siendo $x \equiv |{m x}_2 - {m x}_1|$ la distancia relativa.

La energía del sistema será de la forma $E=T_1+T_2+V(r)$ pero se puede expresar según $E=T_{cm}+T_{rel}+V(r)$; es decir separando la energía cinética en el aporte del centro de masa más un aporte que depende de la distancia relativa entre los cuerpos. De modo idéntido para el momento angular podemos pasar de $L_{total}=L_{cm}+L_{spin}$ donde el momento angular de spin es el referido al movimiento en torno al centro de masas.

Consideramos el siguiente sistema de coordenadas,

$$r \equiv |\boldsymbol{r}_2 - \boldsymbol{r}_1|$$
 $\dot{r} \equiv |\dot{\boldsymbol{r}}_2 - \dot{\boldsymbol{r}}_1|$

Revisar y consolidar toda la notación aquí, que está mezclada.

Figura 7.8 .

donde el sistema centro de masas es

$$egin{aligned} m{R}_{cm} &= rac{m_1 m{r}_1 + m_2 m{r}_2}{m_1 + m_2} & Mm{V}_{cm} &= m_1 m{v}_1 + m_2 m{v}_2 \ & 0 &= m_1 m{r}_1' + m_2 m{r}_2' \end{aligned}$$

que provocan

$$m{r}_1' = -rac{m_2}{m_1}m{r}_2' \qquad m{r}_2' = -rac{m_1}{m_2}m{r}_1'$$

dando unas r relativas

$$\mathbf{r} = \mathbf{r}_1' - \mathbf{r}_2' = -\frac{m_1 + m_2}{m_1} \mathbf{r}_2' = -\frac{m_1 + m_2}{m_2} \mathbf{r}_1'.$$
 (7.1)

Figura 7.9 Sistema coordenado para la reducción del problema de dos cuperpos al de uno equivalente.

Luego, como la energía se conserva (el $V_{cm}=cte$.) podemos escribir

$$E = \frac{1}{2} m_1 \dot{r}_1^2 + \frac{1}{2} m_2 \dot{r}_2^2 + V(r)$$

$$\begin{split} E &= \frac{1}{2} m_1 (\dot{\boldsymbol{R}} + \dot{\boldsymbol{r}}_1')^2 + \frac{1}{2} m_2 (\dot{\boldsymbol{R}} + \dot{\boldsymbol{r}}_2')^2 + V(r) \\ E &= \frac{1}{2} m_1 (\boldsymbol{V})^2 + \frac{1}{2} m_1 (\dot{\boldsymbol{r}}_1')^2 + \frac{1}{2} m_2 (\boldsymbol{V})^2 + \frac{1}{2} m_2 (\dot{\boldsymbol{r}}_2')^2 + V(r) \\ E &= \frac{1}{2} M \boldsymbol{V}^2 + \frac{1}{2} \frac{m_2^2}{m_1} \dot{\boldsymbol{r}}_2'^2 + \frac{1}{2} m_2 \dot{\boldsymbol{r}}_2'^2 + V(r) \\ E &= \frac{1}{2} M \boldsymbol{V}^2 + \frac{1}{2} \frac{m_2 m_1}{M} \dot{\boldsymbol{r}}^2 + V(r). \end{split}$$

Pero como E y la V se conservan, se tiene

$$e \equiv E - \frac{1}{2}M\mathbf{V}^2 = \frac{1}{2}\mu\dot{\mathbf{x}}^2 + V(r)$$

donde e es una cantidad conservada que podemos llamar la energía reducida[?].

Este último x es un vector distancia relativa. Es un problema equivalente para la partícula centro de masas.

Figura 7.10

Podemos considerar ahora los momentos angulares de las partículas respecto de este sistema centro de masas. Así

$$oldsymbol{l}_1' = oldsymbol{x}_1' imes oldsymbol{p}_1$$
 $oldsymbol{l}_2' = oldsymbol{x}_2' imes oldsymbol{p}_2'$

y sus módulos verifican

$$|\mathbf{l}_1'| = x_1^{2'} m_1 \dot{\theta}$$
 $|\mathbf{l}_2'| = x_2^{2'} m_2 \dot{\theta}$

de manera que

$$\ell = (x_1^{2'} m_1 + x_2^{2'} m_2) \dot{\theta} = \mu r^2 \dot{\theta}$$
 (7.2)

es el momento angular de spín para este sistema. Nótese que a partir de (7.1) se puede expresar las x'_i (i=1,2) en términos de r.

Luego, en coordenadas polares en el centro de masa resulta

$$e = \frac{1}{2}\mu(\dot{r}^2 + r^2\dot{\phi}^2) + V(r),$$

o bien, usando (7.2),

$$e = \frac{1}{2}\mu \dot{r}^2 + \frac{\ell^2}{2\mu r^2} + V(r)$$

que no es otra cosa que el problema de fuerza central para un cuerpo de masa μ .

Diremos que la *distancia relativa* describe una elipse. Las trayectoria reales en el espacio físico son dos elipses confocales. Por supuesto dejan de cumplirse las leyes de Kepler en este caso.

Si como solución proponemos

$$V(r) = -\frac{\alpha}{r}$$

tendré $r=r(\phi)$ una elipse, que es lo que describe el r relativo. Se descompondrá el movimiento según las ecuaciones de transformación

$$m{r}_1'=-rac{m_2}{m_1+m_2}m{r}$$
 Elipse de dirección contraria a $m{r}$
$$m{r}_2'=rac{m_1}{m_1+m_2}m{r}$$
 Elipse de dirección igual a $m{r}$

Tendremos dos elipses confocales como muestra la figura bajo estas líneas En este caso ya dejan de cumplirse las leyes de Kepler

$$\frac{d\mathcal{A}}{dt} = \frac{\ell}{2\mu} \qquad a^3 \sim \tau^2$$

para la órbita relativa.

$$\frac{\pi ab}{\tau} = \frac{\ell}{2\mu}$$

$$b = \frac{\ell}{\sqrt{\alpha\mu}} a^{1/2} \qquad \frac{a}{b} = \frac{\mu\alpha}{\ell^2}$$

$$\frac{\pi a^{3/2}}{\sqrt{\alpha\mu}\tau} = \frac{1}{2\mu}$$

y entonces ahora se ve que no es independiente de las masas y no se puede simplificar $\sqrt{\mu\alpha}$ con μ como ocurría en un movimiento elíptico tradicional (bajo potencial gravitatorio). Entonces no es válida la ley de Kepler.

Figura 7.11

4.8 Dispersión

Consideramos la dispersión de un haz de partículas de cierta energía cinética por un centro dispersor, ver ilustración.

Figura 8.12

$$d\sigma = \frac{dN}{n}$$

donde dN es el número de partículas dispersadas entre χ y $\chi+d\chi$ y n es el número de partículas emitidas por tiempo y por área. De esta forma $d\sigma$ tiene unidades de área.

Consideramos d centro dispersor con simetría esférica (cilíndrica basta). Usamos como suposiciones que todo lo que emerge entre $\rho+d\rho$ - ρ es dispersado entre $\chi+d\chi$ - χ , y que se conservan tanto E como L.

Figura 8.13

El anillo se dispersa en un sector esférico. Entonces podemos establecer las siguientes conclusiones para el anillo entre $\rho+d\rho$ - ρ , a saber

$$A = \pi((\rho + d\rho)^2 - \rho^2) \longrightarrow A \approx 2\pi\rho \, d\rho,$$

entonces

$$d\sigma = \frac{2\pi\rho \, d\rho I}{I}$$

donde ρ es el parámetro de impacto y I el número de partículas por unidad de tiempo y área. Finalmente

$$d\sigma = 2\pi\rho(\chi) \left| \frac{d\rho}{d\chi} \right| d\chi$$

Como se conservan la energía y el momento angular

$$E = \frac{1}{2}mV_{\infty}^2 \qquad L = m\rho V_{\infty}^2$$

En general se desconoce V(r).

Se puede calcular el ángulo φ_0 de acuerdo a

$$\chi = \pi - 2\varphi_0,$$

Figura 8.14

donde

$$\varphi_0 = \int_{r_m}^{\infty} \frac{L/mr^2}{\sqrt{\frac{2}{m}(E-V_{eff})}} dr$$

$$\chi = \pi - 2\varphi_0(\rho)$$

e invertimos desde la última ecuación.

Veamos el caso de una esfera maciza. En general los cuerpos duros equivalen a un potencial del tipo

$$V = \begin{cases} \infty & \text{cuerpo} \\ 0 & \text{fuera} \end{cases}$$

Figura 8.15

$$\chi = \pi - 2\varphi_0$$

$$\sin(\varphi_0) = \frac{\rho}{a} \qquad d\rho = -a\frac{1}{2}\cos\left(\frac{\pi - \chi}{2}\right)$$

y entonces

$$d\sigma = 2\pi a^2 \sin\left(\frac{\pi - \chi}{2}\right) \frac{1}{2} \cos\left(\frac{\pi - \chi}{2}\right) d\chi$$
$$d\sigma = \frac{\pi}{2} a^2 \sin(\pi - \chi) d\chi = \frac{\pi}{2} a^2 \sin(\chi) d\chi$$

y como hay que integrar χ de 0 a π

$$\int_0^\pi \frac{\pi}{2} a^2 \sin(\chi) d\chi = \pi a^2$$

$$\sigma = \pi a^2$$

En el caso de los cuerpos duros la sección eficaz es la sombra de los mismos.

Sobre el ángulo sólido

$$\Omega = extsf{Area}/r^2$$
 $d\Omega = 2\pi\sin(\chi)d\chi$ $\Omega = 4\pi$ para la esfera.

4.9 Dispersión por dos cuerpos

Consideramos el caso de un cuerpo que se fracciona en dos (creo?) Desde

Figura 9.16

el centro de masa

$$P_1 + P_2 = 0$$

 $m_1 v_1 + m_2 v_2 = 0$

definimos una velocidad relativa

$$oldsymbol{v} \equiv oldsymbol{v}_2 - oldsymbol{v}_1 = oldsymbol{v}_2 \left(rac{m_1 + m_2}{m_1}
ight).$$

Con respecto a la energía,

$$\begin{split} \frac{1}{2}M\pmb{V}_{cm}^2 + e_{int} &= \frac{1}{2}m_1\pmb{v}_1^2 + \frac{1}{2}m_2\pmb{v}_2^2 + e_{int1} + e_{int2} + \frac{1}{2}M\pmb{V}_{cm}^2 \\ &\frac{1}{2}m_1\pmb{v}_1^2 + \frac{1}{2}m_2\pmb{v}_2^2 = e_{int} - e_{int1} - e_{int2} = \Delta e \end{split}$$

Figura 9.17

y pasando todo en términos de la velocidad relativa

$$\frac{1}{2}\frac{m1m2}{m_1+m_2}v=\Delta e$$

entonces

$$v = \sqrt{\frac{2\Delta e}{\mu}}$$

Figura 9.18

El problema es evidentemente plano.

$$\begin{split} \boldsymbol{V}_{1}^{L} &= \boldsymbol{V}_{cm} + \boldsymbol{V}_{1}' &\longrightarrow (\boldsymbol{V}_{1}^{L} - \boldsymbol{V}_{cm}) = \boldsymbol{V}_{1}' \\ &V_{1}^{L^{2}} - V_{cm} - 2\boldsymbol{V}_{1}^{L^{2}}\boldsymbol{V}_{cm} = V_{1}^{2} \\ &V_{1x}^{L^{2}} + V_{1y}^{L^{2}} - V_{cm} - 2V_{1x}^{L^{2}}V_{cm} = V_{1}^{2} \\ &(V_{1x}^{L} - V_{cm})^{2} + V_{1y}^{L^{2}} = V_{1}^{2} \end{split}$$

que es una circunferencia.

$$\tan(\theta) = \frac{V_1 \sin(\chi)}{V_{cm} + V_1 \cos(\chi)}$$

Figura 9.19

Esto tiene dos raíces $\chi_{1,2}$ si $V_{cm} > V_1$.

Si $V_{cm} > V_1$ hay una sola V de las partículas.

Si $V_{cm} < V_1$ hay partículas emitidas hacia atrás vistas desde L.

Si pensamos en una distribución isótropa de partículas, desde el centro de masa

$$e = \frac{1}{2} m_1 V_1^2$$

$$V_L^2 = V_1^2 + V_{cm}^2 - 2 V_1 V_{cm} \cos(\pi - \chi)$$

a iguales V_1, V_{cm} se tienen variables V_L, χ , entonces

$$\begin{split} dV_L^2 &= -2V_1V_{cm}\sin(\chi)d\chi\\ \frac{dV_L^2}{2V_1V_{cm}} &= \sin(\chi)d\chi\\ d\sigma &= 2\pi\rho|\frac{d\rho}{d\chi}|d\chi \end{split}$$

$$\begin{split} d\Omega &= 2\pi \sin(\chi) d\chi \\ \frac{d\Omega}{4\pi} &= \frac{1}{2} \sin(\chi) d\chi \\ \frac{d\Omega}{4\pi} &= \frac{d(V_L^2)}{4V_1 V_{orm}} = \frac{1}{2} \frac{d(1/2m_1 V_L^2)}{m_1 V_1 V_{orm}} \end{split}$$

4.10 Scattering

Tenemos dos suposiciones básicas:

- Interacción elástica.
- Conservación de energía y de momento.

Figura 10.20

Desde el centro de masa se tienen:

$$P = P_1 + P_2 = 0$$
 $r \equiv r_2 + r_1$ $V \equiv V_2 - V_1$

donde los últimos son las posiciones y velocidades relativas.

$$\begin{split} E &= \frac{1}{2} M \pmb{V}_{cm}^2 + \frac{1}{2} \mu \pmb{V}^2 + V(r) \\ m_1 \pmb{V}_1 + m_2 \pmb{V}_2 &= 0 \qquad m_1 \pmb{V}_1 = -\frac{m_2}{m_1} \pmb{V}_2. \end{split}$$

En términos de las velocidades relativas

$$m{V}_2 = rac{m_1}{m_1 + m_2} m{V} \qquad m{V}_1 = -rac{m_2}{m_1 + m_2} m{V}$$

Figura 10.21

Se puede escribir la energía cinética del siguiente modo

$$\begin{split} T &= \frac{1}{2} m_1 \boldsymbol{V}_{1-in}^2 + \frac{1}{2} m_2 \boldsymbol{V}_{2-in}^2 = \frac{1}{2} M \boldsymbol{V}_{cm}^2 + \frac{1}{2} m_1 \boldsymbol{V}_{1-cm}^2 + \frac{1}{2} m_2 \boldsymbol{V}_{2-cm}^2 \\ & T - \frac{1}{2} M \boldsymbol{V}_{cm}^2 \equiv t = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} \boldsymbol{V}^2 = \frac{1}{2} \mu \boldsymbol{V}^2 \\ & \boldsymbol{V}_1^L = \boldsymbol{V}_{cm} - \frac{m_2}{M} \boldsymbol{V} \qquad \boldsymbol{V}_2^L = \boldsymbol{V}_{cm} - \frac{m_1}{M} \boldsymbol{V} \\ & \boldsymbol{p}_1^L = m_1 \boldsymbol{V}_{cm} - \mu \boldsymbol{V} = m_1 \frac{\boldsymbol{P}}{M} - \mu \boldsymbol{V} \\ & \boldsymbol{p}_2^L = m_2 \boldsymbol{V}_{cm} + \mu \boldsymbol{V} = m_2 \frac{\boldsymbol{P}}{M} + \mu \boldsymbol{V} \end{split}$$

Donde

Figura 10.22

$$\begin{aligned} \boldsymbol{V}_{cm} + \boldsymbol{V}_1 &= \boldsymbol{V}_1^L \\ \boldsymbol{p}_2^L &= \frac{m_2}{M} \boldsymbol{P} + \mu \boldsymbol{V} \hat{\boldsymbol{n}} \qquad \boldsymbol{p}_1^L = \frac{m_1}{M} \boldsymbol{P} - \mu \boldsymbol{V} \hat{\boldsymbol{n}} \\ &\frac{m_2}{M} \boldsymbol{P} + \frac{m_1}{M} \boldsymbol{P} = \boldsymbol{P} = \boldsymbol{p}_2^L + \boldsymbol{p}_1^L \\ \tan(\theta_2) &= \frac{P_1 \sin(\chi)}{(m_2/M)P + P_1 \cos(\chi)} \end{aligned}$$

4.11 Dispersión por potenciales infinitos

La idea es que sabiendo ρ (parámetro de impacto) quiero saber qué ángulo χ se desvían las partículas incidentes.

Figura 11.23

$$\begin{split} \phi_0 + \alpha &= \frac{\pi}{2} \qquad 2\phi_0 + \alpha + \beta = \pi \qquad \phi_0 + \beta = \frac{\pi}{2} \\ \alpha &= \beta \qquad 2\alpha = 2\beta = \chi \\ \frac{d\rho}{dz} &= \tan{(\beta)} = \tan{\left(\frac{\chi}{2}\right)} \\ \tan{\left(\frac{\chi}{2}\right)} &= \frac{d\rho}{dz} = \frac{d\rho/dz}{dz/d\theta} \end{split}$$

con θ variable paramétrica. Donde $\rho=\rho(z)$ es la función que da la curva roja (el perfil del cuerpo dispersor).

Capítulo 5

Pequeñas oscilaciones

Es un formalismo para analizar el movimiento que realiza un sistema cuando está sometido a ligeras perturbaciones en la posición de equilibrio.

Escribimos

$$V(q_1,...,q_n) \approx V(q_1^0,...,q_n^0) + \sum_{i=1}^n \left. \frac{\partial V}{\partial q_i} \right|_{q_i^0} (q_i - q_i^0) + \frac{1}{2} \sum_{i,j=1}^n \left. \frac{\partial^2 V}{\partial q_i \partial q_j} \right|_{q_i^0} (q_i - q_i^0) (q_j - q_i^0)$$

$$T(q_1,...,q_n,\dot{q}_1,...,\dot{q}_n) \approx \frac{1}{2} \left(m(q_1^0,...,q_n^0) + \sum_{i=1}^n \left. \frac{\partial m}{\partial q_i} \right|_{q_i^0} (q_i - q_i^0) + ... \right) \sum_{i,j}^n \dot{q}_i \dot{q}_j$$

Haciendo la aproximación consistente es

$$\mathcal{L} = T - V = -\frac{1}{2} \sum_{i,j}^n \left. \frac{\partial^2 V}{\partial q_i \partial q_j} \right|_{q_i^0} (\eta_i)(\eta_j) + \frac{1}{2} \sum_{i,j}^n \left. m_{ij} \right|_{q_i^0} \dot{\eta}_i \dot{\eta}_j$$

con $V_{ij}\equiv\partial^2V/\partial q_i\partial q_j|_{q_i^0}, m_{ij}=m_{ij}|_{q_i^0}$ simétricos y donde $\eta_i=q_i-q_i^0$. Con esta nomenclatura puede escribirse

$$\mathcal{L} = \frac{1}{2} \sum_{i,j=1}^n m_{ij} \dot{\eta}_i \dot{\eta}_j - \frac{1}{2} \sum_{i,j=1}^n V_{ij} \eta_i \eta_j$$

siendo ambas sumatorias formas bilineales cuadráticas reales y definidas positivas. Matricialmente,

$$\mathcal{L} = rac{1}{2} \dot{oldsymbol{\eta}}^t \mathbb{T} \dot{oldsymbol{\eta}} - rac{1}{2} \dot{oldsymbol{\eta}}^t \mathbb{V} \dot{oldsymbol{\eta}}$$

y si ahora evaluamos las ecuaciones de Euler-Lagrange para este formalismo resulta que

$$\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k}\right) - \frac{\partial \mathcal{L}}{\partial \eta_k} = \frac{d}{dt}\left(\frac{1}{2}\sum_{i,j=1}^n m_{ij}\frac{d}{d\dot{\eta}_k}(\dot{\eta}_i\dot{\eta}_j)\right) - \frac{1}{2}\sum_{i,j=1}^n V_{ij}\frac{d}{d\eta_k}(\eta_i\eta_j) = 0$$

son n ecuaciones diferenciales de Euler,

$$\sum_{j=1}^{n} m_{kj} \ddot{\eta}_j + V_{kj} \eta_j = 0 \qquad k = (1, ..., n).$$

Se propone como solución

$$\eta_i(t) = A_i e^{i\omega t}$$

tomando al final del proceso $\Re\{A_je^{i\omega t}\}$ como solución física. Esta elección lleva a

$$\sum_{i=1}^{n} (-\omega^2 m_{kj} + V_{kj}) A_j = 0$$

que equivale a

$$(\mathbb{V} - \omega^2 \mathbb{T}) \mathbf{A} = 0$$

que no es otra cosa que un problema de autovalores y autovectores generalizado. Necesito

$$|\mathbb{V} - \omega^2 \mathbb{T}| = 0$$

siendo $\omega_1^2,...,\omega_n^2$ autofrecuencias con $\omega_s^2 \in \mathbb{R}$ y $\omega_s^2 \geq 0.$

Entonces, dado un $V=V(q_i)$ puede ser más fácil obtener explícitamente la serie de Taylor con $\partial^2 V/\partial q_i\partial q_j|_{q_i^0}$ o bien cambiar variable $\eta=q_i-q_i^0$ y quedarse con los términos cuadráticos en $\eta_i\eta_j$. Para la energía cinética $T=T(q,\dot{q})$ puede ser más fácil evaluar $m_{ij}(q_i)|_{q_i^0}$ y quedarnos con los términos cuadráticos en $\dot{\eta}_i\dot{\eta}_j$.

$$\eta_i^s = A_i^s e^{i\omega_s t} \qquad s = 1, ..., N$$

Vectorialmente es

$$oldsymbol{\eta}^s = oldsymbol{A}^s_j e^{i\omega_s t} = egin{pmatrix} A_1 e^{i\omega_s t} \ A_2 e^{i\omega_s t} \ \dots \ A_N e^{i\omega_s t} \end{pmatrix}$$

para la frecuencia ω_s , siendo cada uno un grado de libertad moviéndose con frecuencia ω_s .

Luego, es

$$\begin{split} \pmb{\eta}_{tot} &= c_1 \pmb{\eta}^1 + c_2 \pmb{\eta}^2 + \ldots + c_N \pmb{\eta}^N \\ \pmb{\eta}_{tot} &= \begin{pmatrix} \eta_1 \\ \eta_2 \\ \ldots \\ \eta_n \end{pmatrix} = \begin{pmatrix} c_1 A_1^1 e^{i\omega t} + c_2 A_1^2 e^{i\omega t} + \ldots + c_n A_1^n e^{i\omega t} \\ c_1 A_2^1 e^{i\omega t} + c_2 A_2^2 e^{i\omega t} + \ldots + c_n A_n^n e^{i\omega t} \\ \ldots \\ c_1 A_n^1 e^{i\omega t} + c_2 A_n^2 e^{i\omega t} + \ldots + c_n A_n^n e^{i\omega t} \end{pmatrix} \end{split}$$

entonces A^s es un modo normal de frecuencia s.

$$\mathbf{A}^s = \begin{pmatrix} A_1^s \\ A_2^s \\ \dots \\ A_n^s \end{pmatrix} e^{i\theta_0}$$

La solución total (*j* es el grado de libertad) se puede escribir

$$\eta_j(t) = \sum_{s=1}^N c_s A_j^s e^{i\omega_s t}$$

$$\pmb{\eta}(t) = \sum_{s=1}^N c_s \pmb{A}^s e^{i\omega_s t}$$

y finalmente

$$\pmb{\eta}(t) = \Re \left\{ \sum_{s=1}^N c_s \pmb{A}^s e^{i\omega_s t} \right\}$$

Matricialmente,

$$A^{\dagger} \mathbb{T} A = 1$$

siendo el † el traspuesto conjugado. Se pide que la norma (en la métrica dada por $\mathbb T$ de la unidad)

$$A^t \mathbb{T} A = \mathbb{1}$$

lo cual significa que A diagonaliza a \mathbb{T} , siendo

$$A = \begin{pmatrix} A_1^1 & A_1^2 & \dots & A_1^n \\ A_2^1 & \dots & & & \\ A_n^1 & A_n^2 & \dots & A_n^n \end{pmatrix}$$

la matriz modal donde sus columnas son autovectores.

$$(\mathbb{V} - \omega^2 \mathbb{T}) \mathbf{A} = 0$$

interpolando a la matriz

$$A^t \mathbb{V} A = \omega^2 A^t \mathbb{T} A = \omega^2 \mathbb{1}$$

y sea ahora el siguiente cambio de coordenadas

$$\eta = A\xi$$

tal que

$$A^{n \times n} \xi^{n \times 1} \qquad (A \boldsymbol{\xi})^t = \xi^{t^{1 \times n}} A^{t^{n \times n}}$$

y que se llaman coordenadas normales.

$$\begin{split} \mathcal{L} &= \frac{1}{2} \dot{\pmb{\eta}}^t \mathbb{T} \dot{\pmb{\eta}} - \frac{1}{2} \dot{\pmb{\eta}}^t \mathbb{V} \dot{\pmb{\eta}} \\ \mathcal{L} &= \frac{1}{2} A^t \dot{\pmb{\xi}}^t \mathbb{T} A \dot{\pmb{\xi}} - \frac{1}{2} A^t \dot{\pmb{\xi}}^t \mathbb{V} \dot{\pmb{\xi}} \\ \mathcal{L} &= \frac{1}{2} \dot{\pmb{\xi}}^t \mathbb{1} \dot{\pmb{\xi}} - \frac{1}{2} \dot{\pmb{\xi}}^t \omega^2 \mathbb{1} \dot{\pmb{\xi}} \\ \mathcal{L} &= \frac{1}{2} \sum_i \dot{\pmb{\xi}}_i^2 - \frac{1}{2} \sum_i \boldsymbol{\xi}_i^2 \omega_i^2 \\ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\xi}_i} \right) - \frac{\partial \mathcal{L}}{\partial \boldsymbol{\xi}_i} = \sum_i \ddot{\xi}_i + \omega_i^2 \boldsymbol{\xi}_i = 0 \end{split}$$

y son N ecuaciones de Euler-Lagrange.

$$\sum_i (-\omega^2 + \omega_i^2) A_i = 0$$

de modo que si $\omega^2=\omega_i^2$ entonces

$$\xi_i = C_i e^{i\omega_i t}$$

Digamos que en coordenadas normales

$$\xi_j = C_j e^{i\omega_j t}$$

grados de libertad en ξ (un grado de libertad es una ω) y se desacoplan los grados de libertad en lo que hace a ω_s . Por otro lado,

$$\eta_j = \sum_{s=1}^N c_s A_j^s e^{i\omega_j t}$$

grados de libertad en η , un grado de libertad entonces es combinación lineal de todas las ω .

Si
$$\omega = 0$$
 es

$$\xi_i = At + B$$

$$\eta_j = \sum_{s=1}^{N-1} c_s A_j^s e^{i\omega_j t} + A_j (Gt + D)$$

siendo el último término asociado a la $\omega=0$. Para volver atrás es

$$A^{\dagger} \mathbb{T} A = 1$$

y entonces

$$A^{\dagger} \mathbb{T} \boldsymbol{\eta} = A^{\dagger} \mathbb{T} A \boldsymbol{\xi}$$
$$A^{\dagger} \mathbb{T} \boldsymbol{\eta} = \mathbb{1} \boldsymbol{\xi}$$

coordenadas normales en función de las de desplazamiento.

En conclusión podemos decir varias cosas,

- Las frecuencias nulas están asociadas a momentos conservados.
- En coordenadas normales cada grado de libertad oscial con una frecuencia única (son N osciladores independientes)
- · Las amplitudes cumplen

$$m{A}^s = egin{pmatrix} a_1^s e^{i\phi_s} \ a_2^s e^{i\phi_s} \ \dots \ a_n^s e^{i\phi_s} \end{pmatrix}$$

donde tienen la misma fase los A^s_i para toda frecuencia ω_s

- Los modos normales pueden excitarse por separado (son ortogonales).
- Frecuencias iguales generarán modos normales que son físicamente los mismos. Son generados por la simetría del problema.

$$\mathbf{A} = a_1(v_1) + a_2(v_2)$$

si por ejemplo generan dos autovectores de esta forma.

5.1 Oscilaciones viscosas

$$\sum_{j} m_{ij} \ddot{\eta}_j + V_{ij} \eta_j + B_{ij} \dot{\eta}_j = 0$$

no se puede convertir en osciladores independientes.

$$\det\left\{\mathbb{V} + \omega^2 \mathbb{T} + \omega \mathbb{B}\right\} = 0$$

Cuerpos rígidos

6.1 Cuerpos rígidos

Los vínculos constituyen la condición de rigidez,

$$|\boldsymbol{r}_i - \boldsymbol{r}_j| = d_{ij} \qquad i \neq j \tag{1.1}$$

Del discreto al continuo

$$\boldsymbol{R} = \frac{\sum_{i} m_{i} \boldsymbol{r}_{i}}{\sum_{i} m_{i}} \longrightarrow \boldsymbol{R} = \frac{\int \rho \boldsymbol{r}_{i} dv}{\int \rho dv}$$

6.1.1 Grados de libertad de un cuerpo rígido

Cada punto tiene como vínculos las ecuaciones (1.1)

Figura 1.1

El cuerpo rígido tiene seis grados de libertad. Si las condiciones de rigidez son lineales resultan cinco grados de libertad.

6.1.2 Velocidad de un cuerpo rígido

Lo único que pueden hacer los puntos de un cuerpo rígido es rotar.

Figura 1.2

$$\begin{split} \delta r_{p_0} &= r_{p_0} \sin(\beta) \delta \alpha \\ \frac{\delta r_{p_0}}{\delta t} &= r_{p_0} \sin(\beta) \frac{\delta \alpha}{\delta t} \\ v_{p_0} &= \dot{\alpha} r_{p_0} \sin(\beta) \end{split}$$

pero $v_{p_0} \perp \hat{n}$ y $v_{p_0} \perp r_{p_0}$ de manera que

$$oldsymbol{V}_{p_0} = oldsymbol{\Omega} imes oldsymbol{r}_{p_0}.$$

Luego, para ir a un sistema inercial le sumo la V de algún punto del rígido (el origen O) medido desde un sistema inercial. Entonces, el campo de velocidad del cuerpo rígido es

$$V_p = V_0 + \Omega \times r_{p_0}$$
.

6.1.3 Unicidad de la velocidad de rotación

$$oldsymbol{V}_p = oldsymbol{V}_0' + oldsymbol{\Omega}' imes oldsymbol{r}_{p_0'}$$

siendo Ω ' la Ω como se ve desde el sistema O'

$$oldsymbol{V}_p = oldsymbol{V}_0 + oldsymbol{\Omega} imes oldsymbol{r}_{p_0}$$

y donde Ω es la vista desde el sistema O.

$$\textbf{\textit{V}}_0' + \boldsymbol{\varOmega}' \times \textbf{\textit{r}}_{p_0'} = \textbf{\textit{V}}_0 + \boldsymbol{\varOmega} \times \textbf{\textit{r}}_{p_0}$$

Figura 1.3

y descomponiendo de acuerdo con el dibujo resulta

$$\begin{split} \boldsymbol{\varOmega} \times \boldsymbol{r}_{OO'} + \boldsymbol{\varOmega}' \times \boldsymbol{r}_{0'p} &= \boldsymbol{\varOmega} \times \boldsymbol{r}_{p_0} \\ \boldsymbol{\varOmega} \times (\boldsymbol{r}_{00'} - \boldsymbol{r}_{0p}) + \boldsymbol{\varOmega}' \times \boldsymbol{r}_{0'p} &= 0 \\ (\boldsymbol{\varOmega}' - \boldsymbol{\varOmega}) \times \boldsymbol{r}_{0'p} &= 0, \end{split}$$

de la cual se deduce que $\Omega'=\Omega$. Entonces, Ω es la misma para cualquier punto del cuerpo rígido.

$$\begin{split} \boldsymbol{\varOmega} \cdot \boldsymbol{V_p} &= \boldsymbol{\varOmega} \cdot \boldsymbol{V_0} + \boldsymbol{\varOmega} \cdot (\boldsymbol{\varOmega} \times \boldsymbol{r_{0p}}) \\ \boldsymbol{\varOmega} \cdot \boldsymbol{V_p} &= \boldsymbol{\varOmega} \cdot \boldsymbol{V_0} \end{split}$$

lo cual se cumple para todo punto p perteneciente al cuerpo rigido. Si es $\Omega \cdot V_0 = 0$ entonces serán $\Omega \perp V_0$ y $\Omega \perp V_p$.

Si en un instante dado Ω es perpendicular a V_p entonces Ω es perpendicular a $V_{p'}$ para todo punto del cuerpo rígido.

6.1.4 Eje instantáneo de rotación

Si p es tal que $\boldsymbol{V}_{\!p}=0$ entonces

$$V_0 = -\Omega imes r_{p0}$$

donde V_0 es una velocidad desde un sistema inercial. Desde el sistema inercial el cuerpo rígido realiza una rotación pura, puesto que veo al punto O rotar en torno a algún eje.

$$\boldsymbol{V_0} = -\boldsymbol{\Omega} \times (r_{\perp} + r_{\parallel}) = -\boldsymbol{\Omega} \times r_{\perp}$$

y esto define un eje instantáneo de rotación.

Figura 1.4

6.2 Ángulos de Euler

Se toma un sistema 123 inicialmente coincidente con uno XYZ paralelo al inercial, 123 tiene origen en el centro de masa del cuerpo.

$$\begin{split} A_1(\phi) &= \begin{pmatrix} \cos(\phi) & \sin(\phi) & 0 \\ -\sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ A_2(\theta) &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & \sin(\theta) \\ 0 & -\sin(\theta) & \cos(\theta) \end{pmatrix} \\ A_3(\psi) &= \begin{pmatrix} \cos(\psi) & \sin(\psi) & 0 \\ -\sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \mathbf{\Omega} &= \dot{\phi}\hat{z} + \dot{\theta}\hat{n} + \dot{\psi}\hat{3} \end{split}$$

Figura 2.5

y expresando \hat{z}, \hat{n} en $\hat{1}, \hat{2}, \hat{3}$ resulta

$$\boldsymbol{\varOmega} = [\dot{\phi}\sin(\theta)\sin(\psi) + \dot{\theta}\cos(\psi)]\hat{1} + [\dot{\phi}\sin(\theta)\cos(\psi) - \dot{\theta}\sin(\psi)]\hat{2} + [\dot{\phi}\cos(\theta) + \dot{\psi}]\hat{3}$$

Ahora estamos interesados en el momento angular.

$$oldsymbol{L}_0^{sist} = oldsymbol{L}^{cm} + oldsymbol{L}_{cm}^{sist}$$

$$\boldsymbol{L}_{spin} = \sum_{i}^{N} m_{i}(\boldsymbol{r}_{i}^{\prime} \times \boldsymbol{v}_{i}^{\prime})$$

que están en el sistema 123.

$$\boldsymbol{L}_{spin} = \sum_{i}^{N} m_{i} (\boldsymbol{r}_{i} \times \boldsymbol{\varOmega} \times \boldsymbol{r}_{i})$$

$$\boldsymbol{L}_{spin} = \sum_{i}^{N} m_{i} \left[\; \boldsymbol{\varOmega}(\boldsymbol{r}_{i} \cdot \boldsymbol{r}_{i}) - \boldsymbol{r}_{i}(\boldsymbol{r}_{i} \cdot \boldsymbol{\varOmega}) \; \right]$$

$$\boldsymbol{L}_{spin} = \sum_{i}^{N} m_{i} \left[\ \boldsymbol{\varOmega} \sum_{j}^{3} (x_{j}^{2i}) - \boldsymbol{r}_{i} \sum_{\ell}^{3} x_{\ell}^{i} \Omega_{\ell} \ \right]$$

y la componente k-ésima será

$$L_k = \sum_i^N m_i \left[\right. \left. \Omega_k \sum_j^3 (x_j^{2i}) - x_k^i \sum_\ell^3 x_\ell^i \Omega_\ell \left. \right] \right. \label{eq:lagrangian}$$

$$\begin{split} L_k &= \sum_i^N m_i \left[\ \sum_j^3 \delta_{kj} \Omega_j r_i^2 - x_k^i \sum_\ell^3 x_\ell^i \Omega_\ell \ \right] \\ L_k &= \sum_i^3 \sum_i^N m_i \left[\ \delta_{kj} r_i^2 - x_k^i x_j^i \ \right] \Omega_j = \sum_i^3 I_{kj} \Omega_j \end{split}$$

o vectorialmente

$$L_{snin} = I\Omega$$

siendo *I* el tensor de inercia. Explícitamente:

$$I_{kj} = \sum_i^N m_i \left[\; \delta_{kj} r_i^2 - x_k^i x_j^i \; \right]$$

$$\begin{pmatrix} L_1 \\ L_2 \\ L_3 \end{pmatrix} = \begin{pmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{pmatrix} \begin{pmatrix} \Omega_1 \\ \Omega_2 \\ \Omega_3 \end{pmatrix}$$

Sean 1,2,3 los ejes principales, entonces I es diagonal y

$$\boldsymbol{L}_{spin} = \begin{pmatrix} I_{11} & 0 & 0 \\ 0 & I_{22} & 0 \\ 0 & 0 & I_{33} \end{pmatrix} \begin{pmatrix} \Omega_1 \\ \Omega_2 \\ \Omega_3 \end{pmatrix} = I\boldsymbol{\Omega}$$

y se puede escribir

$$\frac{d}{dt}\Big|_{in}\Box = \frac{d}{dt}\Big|_{rot}\Box + \Omega \times \Box$$

que es válida pra sistemas rotantes (no aquellos que rotan y se trasladan). En este caso Ω es la del sistema rotante (en un cuerpo rígido es la Ω del cuerpo rígido).

Se puede escribir también

$$\left. \frac{d}{dt} \right|_{in} \boldsymbol{L}_{spin} = \boldsymbol{T}_{cm}$$

siendo la derivada de uns sitema XYZ, y T el torque del cuerpo rígido referido al centro de masa y medido dese el sistema XYZ (inercial). Entonces

$$egin{aligned} oldsymbol{T}_{cm} = \left. rac{d}{dt}
ight|_{rot} oldsymbol{L}_{spin} + oldsymbol{\Omega} imes (oldsymbol{L}_{spin}) \end{aligned}$$

y

$$T_{cm} = I \frac{d}{dt} \Big|_{rot} \Omega + \Omega \times (I \Omega).$$

I visto desde XYZ es I = I(t) e I desde 123 es constante.

$$\boldsymbol{T}_{cm} = \begin{pmatrix} I_1 \dot{\boldsymbol{\Omega}}_1 \\ I_2 \dot{\boldsymbol{\Omega}}_2 \\ I_3 \dot{\boldsymbol{\Omega}}_3 \end{pmatrix} + \begin{vmatrix} \hat{1} & \hat{2} & \hat{3} \\ \Omega_1 & \Omega_2 & \Omega_3 \\ I_1 \Omega_1 & I_2 \Omega_2 & I_3 \Omega_3 \end{vmatrix}$$

De este sistema resultan,

$$\begin{split} \mathbf{T}_{1} &= I_{1}\dot{\Omega}_{1} + (I_{3} - I_{2})\;\Omega_{2}\;\Omega_{3}\\ \mathbf{T}_{2} &= I_{2}\dot{\Omega}_{2} + (I_{1} - I_{3})\;\Omega_{3}\;\Omega_{1}\\ \mathbf{T}_{3} &= I_{3}\dot{\Omega}_{3} + (I_{2} - I_{1})\;\Omega_{1}\;\Omega_{2} \end{split}$$

que son las ecuaciones de Euler. Las mismas requieren I en ejes principales, Ω en 1,2,3 (en función de ϕ , θ , ψ). Es Ω la velocidad de rotación del sistema cuerpo rígido (rotante) respecto a un sistema XYZ fijo en el centro de masa y coincidente con X'Y'Z' (inercial) a todo tiempo. Salvo la traslación del centro de masa, este sistema XYZ será inercial.

Todo este tratamiento de ecuaciones de Euler es para el caso ${m L}_{spin} \equiv {m L}_{cm}^{sist}$, de manera que no me importan las traslaciones del centro de masa.

$$\left. \frac{d}{dt} \right|_{YVZ} \boldsymbol{L}_{spin} = \boldsymbol{T}_{cm} = \left. \frac{d}{dt} \right|_{123} \boldsymbol{L}_{spin} + \boldsymbol{\Omega} \times \boldsymbol{L}_{spin}$$

6.3 Energía cinética del cuerpo rígido

Queremos escribir la energía cinética de un cuerpo rígido explícitamente en términos del momento de inercia I.

$$T = \frac{1}{2} \sum_{i}^{N} m_i v_i^2 = \frac{1}{2} \sum_{i}^{N} m_i (\boldsymbol{v}_{cm} + \boldsymbol{\varOmega} \times \boldsymbol{r}_i)^2$$

donde la última r_i está referida al centro de masa (posiciones de los puntos del cuerpo rígido referidas al centro de masa).

$$T = \frac{1}{2} \sum_{i}^{N} m_i (\boldsymbol{v}_{cm}^2 + (\boldsymbol{\varOmega} \times \boldsymbol{r}_i)^2 + 2 \boldsymbol{v}_{cm} \cdot (\boldsymbol{\varOmega} \times \boldsymbol{r}_i))$$

pero es fácil ver que el término de cruza es cero dado que

$$\sum_{i}^{N} m_{i} \boldsymbol{v}_{cm} \cdot (\boldsymbol{\varOmega} \times \boldsymbol{r}_{i}) = \sum_{i}^{N} m_{i} \boldsymbol{r}_{i} \cdot (\boldsymbol{v}_{cm} \times \boldsymbol{\varOmega}) = M \boldsymbol{R}_{cm} \cdot (\boldsymbol{v}_{cm} \times \boldsymbol{\varOmega}) = 0$$

puesto que $M{m R}_{cm}$ es nulo para un sistema no inercial. Luego

$$T = \frac{1}{2} \sum_{i}^{N} m_i \boldsymbol{v}_{cm}^2 + \frac{1}{2} \sum_{i}^{N} m_i (\boldsymbol{\varOmega} \times \boldsymbol{r}_i)^2$$

$$T = \frac{1}{2} \sum_{i}^{N} m_i \boldsymbol{v}_{cm}^2 + \frac{1}{2} \sum_{i}^{N} m_i (\Omega^2 r_i^2 - (\boldsymbol{\varOmega} \cdot \boldsymbol{r}_i)^2)$$

pero veamos el último paréntesis en detalle,

$$\left(\sum_{j}\sum_{k}\Omega_{j}\Omega_{j}x_{k}^{i}x_{k}^{i}-\sum_{\ell}\sum_{p}\Omega_{\ell}x_{\ell}^{i}\Omega_{p}x_{p}^{i}\right)$$

$$\left(\sum_{j}\sum_{k}\Omega_{j}\delta_{jk}\Omega_{k}x_{k}^{i}x_{k}^{i}-\sum_{\ell}\sum_{p}\Omega_{\ell}x_{\ell}^{i}\Omega_{p}x_{p}^{i}\right)$$

y reetiquetando

$$\left(\sum_{j}\sum_{k}\Omega_{j}\delta_{jk}\Omega_{k}x_{k}^{i}x_{k}^{i}-\sum_{j}\sum_{k}\Omega_{j}x_{j}^{i}\Omega_{p}x_{k}^{i}\right)$$

$$\frac{1}{2}\sum_{i}^{N}m_{i}\sum_{j,k}\Omega_{j}\Omega_{k}\left[\delta_{jk}(r^{i})^{2}-x_{j}^{i}x_{k}^{i}\right]$$

y entonces

$$T = \frac{1}{2}MV_{cm}^2 + \frac{1}{2}\sum_{j,k}\Omega_j\Omega_kI_{jk}$$

y como lo último es una forma cuadrática podemos escribir de manera más elegante

$$T = \frac{1}{2}MV_{cm}^2 + \frac{1}{2}\boldsymbol{\Omega}^t I \boldsymbol{\Omega}.$$

Recordemos que el tensor de inercia tiene en su diagonal los momentos de inercia mientras que los términos fuera de la misma son los productos de inercia.

$$I_{ik} = \sum_q m_q \left(\delta_{ik} (r_q)^2 - x_i^q x_k^q \right)$$

y el paso al continuo nos deja los momentos de inercia,

$$I_{ik} = \int_{V} \rho(\mathbf{r}) \left[\delta_{ik} r^2 - x_i x_k \right] dV$$

donde por supuesto es $r^2 = x_1^2 + x_2^2 + x_3^2$.

El cambio de sistema se hace de acuerdo a

$$I'_{ik} = \sum_{\ell s} a_{i\ell} I_{\ell s} a_{ks}$$

y en componentes,

$$\sum_q m_q (\delta_{ik} {r'}_q^2 - x_i' x_k') = a_{i\ell} a_{ks} \sum_q m_q (\delta_{\ell s} r_q^2 - x_\ell x_s)$$

donde en el miembro izquierdo es $i \neq k$, y el derecho $\ell \neq s$

$$-\sum_q m_q x_i' x_k' = -\sum_q m_q a_{i\ell} x_\ell a_{ks} x_s$$

entonces

$$I = \begin{pmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{pmatrix}$$

siendo el triángulo superior valores repetidos. El tensor de inercia es simétrico por su definición. De los nueve componentes son independientes seis. Matemáticamente

$$I_{ik} = I_{ki}$$
.

Todo tensor simétrico se puede llevar a una forma diagonal eligiendo bien los ejes del sistema 123 fijo al cuerpo. Podemos conseguir una transformación $I \to I'$ tal que

$$I' = \begin{pmatrix} I'_{11} & 0 & 0\\ 0 & I'_{22} & 0\\ 0 & 0 & I'_{33} \end{pmatrix}$$

Los I'_{ik} son los momentos principales de inercia (aquellos que están calculados sobre *ejes principales de inercia*).

Cuando el cuerpo rígido tiene simetría pueden hallarse a ojo los ejes principales de inercia.

Para el cálculo de I se usa un sistema fijo al cuerpo rígido. Si usamos un sistema inercial, será $I_{ik} = I_{ik}(t)$ lo cual no es conveniente.

Es conveniente elegir 123 con origen en el centro de masa y partícipes del movimiento del cuerpo rígido (clavados al mismo). Asimismo conviene elegir XYZ referidos al sistema inercial coincidentes pero trasladados al centro de masa. Así los I_{ik} resultan características geométricas del cuerpo.

6.4 La peonza simétrica

$$T_{rot} = \frac{1}{2}I_1\Omega_1^2 + \frac{1}{2}I_2\Omega_2^2 + \frac{1}{2}I_3\Omega_3^2$$

donde son

$$\Omega_1 = \dot{\theta}$$
 $\Omega_2 = \dot{\phi}\sin(\theta)$ $\Omega_3 = \dot{\phi}\cos(\theta) + \dot{\psi}$

y debemos destacar que $\psi=0$ no es vínculo sino solo comodidad pues $\dot{\psi}\neq0$ y es independiente. Los vínculos pueden escribirse

$$\begin{split} \theta_e &= \theta \\ \\ \phi_e + \frac{3}{2}\pi &= \phi \ \longrightarrow \ \dot{\phi_e} = \dot{\phi} \\ \\ r^2 &= a^2 = x_{cm}^2 + y_{cm}^2 + z_{cm}^2 \end{split}$$

y las coordenadas

Figura 4.6

$$\begin{split} x &= a \sin(\theta) \cos\left(\frac{\pi}{2} - \phi_e\right) = a \sin(\theta) \sin(\phi_e) \\ y &= a \sin(\theta) \sin\left(\frac{\pi}{2} - \phi_e\right) = -a \sin(\theta) \cos(\phi_e) \\ z &= a \cos(\theta) \end{split}$$

y la velocidad

$$\dot{x}^2 + \dot{y}^2 + \dot{z}^2 = a^2 \dot{\theta}^2 + a^2 \sin(\theta)^2 \dot{\phi}^2$$

y el lagrangiano finalmente

$$\mathcal{L} = \frac{1}{2} M (a^2 \dot{\theta}^2 + a^2 \sin(\theta)^2 \dot{\phi}^2) + \frac{1}{2} I_1 \dot{\theta}^2 + \frac{1}{2} I_2 \sin(\theta)^2 \dot{\phi}^2) + \frac{1}{2} I_3 (\dot{\phi} \cos(\theta) + \dot{\psi})^2$$

pero por la simetría $I_1=I_2\equiv I$ de modo que

$$\mathcal{L} = \frac{1}{2} M a^2 (\dot{\theta}^2 + \sin(\theta)^2 \dot{\phi}^2) + \frac{1}{2} I (\dot{\theta}^2 + \sin(\theta)^2 \dot{\phi}^2) + \frac{1}{2} I_3 (\dot{\phi} \cos(\theta) + \dot{\psi})^2$$

$$\mathcal{L} = \frac{1}{2}(Ma^2+I)(\dot{\theta}^2+\sin(\theta)^2\dot{\phi}^2) + \frac{1}{2}I_3(\dot{\phi}\cos(\theta)+\dot{\psi})^2 - mga\cos(\theta)$$

y los primeros dos términos representan una rotación pura si tomo

$$(Ma^2 + I) \equiv I'$$

donde I' es otro momento de inercia.

Figura 4.7

Luego hay unos interesantes comentarios sobre la ubicación de los ejes. El famoso "bajo ejes".

$$T = T_{trasl} + T_{rot} + T_{acopl} \label{eq:trasl}$$

y el último es nulo si elegimos el origen común O=O'= centro de masa.

$$\boldsymbol{V} = \boldsymbol{V}_{\!cm} + \boldsymbol{\Omega} \times \boldsymbol{r}$$

También es $T_{acopl}=0$ si $V_0=0$ (aquí también se anula T_{trasl}).

6.5 Teorema de Steiner

$$\begin{aligned} \boldsymbol{x} &= \boldsymbol{U} - \boldsymbol{a} \\ I_{ij}^0 &= \sum_{s}^N m^s (\delta_{ij} x_s^2 - x_i^s x_j^s) \end{aligned}$$

$$I_{ij}^0 = \sum_{s}^{N} m^s (\delta_{ij} (\boldsymbol{U}_s - \boldsymbol{a})^2 - (U_i^s - a_i)(U_j^s - a_j))$$

Trasladamos el punto (con el sistema de ejes paralelo al del centro de masa) sin

Figura 5.8

rotarlo. Eso es importante.

$$I_{ij}^{0} = \sum^{N} m^{s} \left[\delta_{ij} (U_{s}^{2} + a^{2} - 2Ua) - (U_{i}^{s} U_{j}^{s} + a_{i} a_{j} - a_{i} U_{j}^{s} - a_{j} U_{i}^{s}) \right]$$

$$I_{ij}^{0} = \sum_{s}^{N} m^{s} (\delta_{ij} U_{s}^{2} - U_{i}^{s} U_{j}^{s}) + \sum_{s}^{N} m^{s} (\delta_{ij} a^{2} - a_{i} a_{j}) - \sum_{s}^{N} m^{s} \delta_{ij} 2 U^{s} a + \sum_{s}^{N} m^{s} (a_{i} U_{j}^{s} + a_{j} U_{i}^{s})$$

pero las dos últimas sumatorias son nulas, y

$$I_{ij}^0 = \sum_{s}^{N} m^s (\delta_{ij} U_s^2 - U_i^s U_j^s) + \sum_{s}^{N} m^s (\delta_{ij} a^2 - a_i a_j) = I_{ij}^{cm} + M(\delta_{ij} a^2 - a_i a_j)$$

Esto sale de

$$\sum_{s}^{N}m^{s}\delta_{ij}U^{s}a=\delta_{ij}a\sum_{s}^{N}m^{s}U^{s}=0$$

puesto que es nula la suma en s. Porque

$$0 = \sum_{s=1}^{N} m^{s} U^{s} = \sum_{s=1}^{N} m^{s} (U_{1}^{s} \hat{1} + U_{2}^{s} \hat{2} + U_{3}^{s} \hat{3})$$

pero como es vectorial vale para cada coordenada

$$0 = \sum_{s}^{N} m^{s} U_{i}^{s} \qquad \forall i = 1, 2, 3$$

Figura 5.9

Figura 6.10 Sistemas rotantes.

$$0 = \sum_{s}^{N} m^{s} U_{i}^{s} a$$

La moraleja es que trasladar en un solo eje conserva la diagonalidad del tensor de inercia.

6.6 Sistemas no inerciales

 Ω es la velocidad angular del sistema no inercial. \ddot{R} es la aceleración del sistema no inercial. Ambas se miden sólo desde el sistema inercial.

$$r = R + r'$$

$$\left. \frac{d\mathbf{r}}{dt} \right|_{in} = \left. \frac{d\mathbf{R}}{dt} \right|_{in} + \left. \frac{d\mathbf{r}'}{dt} \right|_{in}$$

si despejamos la derivada respecto del sistema primado,

$$\left. \frac{d\mathbf{r}'}{dt} \right|_{in} = \left. \frac{d\mathbf{r}}{dt} \right|_{in} - \left. \frac{d\mathbf{R}}{dt} \right|_{in}$$

y usamos

$$\left. \frac{d\mathbf{r}'}{dt} \right|_{in} = \left. \frac{d\mathbf{r}'}{dt} \right|_{noin} + \mathbf{\Omega} \times \mathbf{r}'$$

va resultando

$$\frac{d}{dt} \left(\frac{d\mathbf{r}'}{dt} \Big|_{noin} \right) \Big|_{in} = \frac{d^2\mathbf{r}}{dt^2} \Big|_{in} - \frac{d^2\mathbf{R}}{dt^2} \Big|_{in} - \frac{d(\mathbf{\Omega} \times \mathbf{r}')}{dt} \Big|_{in}$$

$$\frac{d^2\mathbf{r}'}{dt^2} \Big|_{noin} + \mathbf{\Omega} \times \frac{d\mathbf{r}'}{dt} \Big|_{noin} = \mathbf{a}|_{in} - \ddot{\mathbf{R}}|_{in} - \frac{d\mathbf{\Omega}}{dt} \Big|_{in} \times \mathbf{r}' + \mathbf{\Omega} \times \frac{d\mathbf{r}'}{dt} \Big|_{in}$$

donde hemos usado que

$$\begin{split} \frac{d\boldsymbol{\Omega}}{dt}\Big|_{in} &= \frac{d\boldsymbol{\Omega}}{dt}\Big|_{noin} \qquad \frac{d\boldsymbol{R}}{dt}\Big|_{in} = -\frac{d\boldsymbol{R}}{dt}\Big|_{noin} \\ \frac{d^2\boldsymbol{r}'}{dt^2}\Big|_{noin} + \left(\boldsymbol{\Omega} \times \frac{d\boldsymbol{r}'}{dt}\Big|_{noin}\right) &= \boldsymbol{a}|_{in} - \ddot{\boldsymbol{R}}|_{in} - \left[\frac{d\boldsymbol{\Omega}}{dt}\Big|_{noin} + \boldsymbol{\Omega} \times \boldsymbol{\Omega}\right] \times \boldsymbol{r}' + \boldsymbol{\Omega} \times \left[\frac{d\boldsymbol{r}'}{dt}\Big|_{noin} + \boldsymbol{\Omega} \times \boldsymbol{r}'\right] \\ \boldsymbol{a}'|_{noin} &= \boldsymbol{a}|_{in} - \ddot{\boldsymbol{R}}|_{in} - \dot{\boldsymbol{\Omega}} \times \boldsymbol{r}' - \boldsymbol{\Omega} \times \dot{\boldsymbol{r}}'|_{noin} - \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \dot{\boldsymbol{r}}') - \boldsymbol{\Omega} \times \frac{d\boldsymbol{r}'}{dt} \end{split}$$

$$\left. \boldsymbol{a}' \right|_{noin} = \ddot{\boldsymbol{r}} - \ddot{\boldsymbol{R}} - \dot{\boldsymbol{\Omega}} \times \boldsymbol{r}' - 2\boldsymbol{\Omega} \times \left. \dot{\boldsymbol{r}}' \right|_{noin} - \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \dot{\boldsymbol{r}}')$$

Vale la pena aclarar la deduccion,

$$\frac{d\boldsymbol{r}}{dt}\Big|_{in} = \frac{d\boldsymbol{R}}{dt}\Big|_{in} + \frac{d\boldsymbol{r}'}{dt}\Big|_{noin} + \boldsymbol{\Omega} \times \boldsymbol{r}'$$

pero si es $\mathbf{R} = 0$ se tiene $\mathbf{r} = \mathbf{r}'$ y entonces

$$\left. \frac{d\boldsymbol{r}}{dt} \right|_{in} = \left. \frac{d\boldsymbol{r}'}{dt} \right|_{noin} + \boldsymbol{\Omega} \times \boldsymbol{r}'$$

donde el sistema no inercial es el rotante.

6.7 Lagrangiano de un sistema no inercial que se traslada

$$\begin{split} \mathcal{L} &= \frac{1}{2} m v^2 - U(\boldsymbol{r}) \\ \mathcal{L} &= \frac{1}{2} m (v + v')^2 - U(\boldsymbol{r}) \\ \mathcal{L} &= \frac{1}{2} m v^2 + m \boldsymbol{v} \cdot \boldsymbol{v}' + \frac{1}{2} m {v'}^2 - U(\boldsymbol{r}) - U \end{split}$$

pero el primer término se tira puesto que equivale a un término df/dt que cumple

$$\frac{df}{dt} = \frac{1}{2}mv^2 \qquad f = \frac{1}{2}m\frac{v^3}{3} + K$$

y además

$$m\mathbf{v} \cdot \mathbf{v}' = m\mathbf{v} \cdot \frac{d\mathbf{v}'}{dt} = -m\frac{d\mathbf{v}}{dt}\mathbf{r}' + \frac{d}{dt}(m\mathbf{r}'\mathbf{v})$$

y el último término acá lo tiramos porque equivale a un df_2/dt .

$$\begin{split} \mathcal{L} &= \frac{1}{2} m {v'}^2 - m \frac{d \boldsymbol{v}}{dt} \cdot \boldsymbol{r'} - U(\boldsymbol{r}) \\ \frac{d \frac{\partial \mathcal{L}}{\partial \boldsymbol{v'}}}{dt} - \frac{\partial \mathcal{L}}{\partial \boldsymbol{r'}} &= m \cdot \dot{\boldsymbol{v}} + m \frac{d \boldsymbol{v}}{dt} + \frac{d U}{d \boldsymbol{r'}} = 0 \\ m \boldsymbol{a} &= -\frac{d U}{d \boldsymbol{r'}} - m \boldsymbol{A} \end{split}$$

donde el último término es la aceleración del sistema inercial y el primero el producto ma'. Expresamos v=v(V,v') con lo cual aparecen en el $\mathcal L$ las fuerzas ficticias y expreso T en función de coordenadas que se hallan sobre un sistema no inercial.

$$\begin{aligned} \frac{d\boldsymbol{r}}{dt}\Big|_{in} &= \frac{d\boldsymbol{r}}{dt}\Big|_{rot} + \boldsymbol{\varOmega} \times \boldsymbol{r} \\ \frac{d^2\boldsymbol{r}}{dt^2}\Big|_{in} &= \frac{d}{dt}\left(\frac{d\boldsymbol{r}}{dt}\Big|_{rot} + \boldsymbol{\varOmega} \times \boldsymbol{r}\right)\Big|_{rot} + \boldsymbol{\varOmega} \times \left(\frac{d\boldsymbol{r}}{dt}\Big|_{rot} + \boldsymbol{\varOmega} \times \boldsymbol{r}\right) \\ \frac{d^2\boldsymbol{r}}{dt^2}\Big|_{in} &= \frac{d^2\boldsymbol{r}}{dt^2}\Big|_{rot} + \left.\frac{d\boldsymbol{\varOmega}}{dt}\right|_{rot} \times \boldsymbol{r} + 2\boldsymbol{\varOmega} \times \frac{d\boldsymbol{r}}{dt}\Big|_{rot} + \boldsymbol{\varOmega} \times (\boldsymbol{\varOmega} \times \boldsymbol{r}) \end{aligned}$$

6.7.1 Lagrangiano en un sistema rotante

$$\begin{split} \mathcal{L} &= \frac{1}{2} m \boldsymbol{v}^2 - U(\boldsymbol{r}) \\ \mathcal{L} &= \frac{1}{2} m (\boldsymbol{v}' + \boldsymbol{\Omega} \times \boldsymbol{r})^2 - U(\boldsymbol{r}) \\ \mathcal{L} &= \frac{1}{2} m \boldsymbol{v}'^2 + m \boldsymbol{v}' \cdot (\boldsymbol{\Omega} \times \boldsymbol{r}) + \frac{1}{2} m (\boldsymbol{\Omega} \times \boldsymbol{r})^2 - U(\boldsymbol{r}) \end{split}$$

donde esto último es un potencial efectivo $U=U({\bm r},{\bm v})$ y para U dependiente de la velocidad teníamos

$$\boldsymbol{F} = -\frac{\partial U}{\partial q_i} + \frac{d}{dt} \left(\frac{\partial U}{\partial \dot{q}_i} \right)$$

6.8 Sistemas rotantes

Considero dos sistemas, XYZ inercial y X'Y'Z' rotante (no inercial).

$$U' = AU$$

donde A es la matriz del cambio de coordenadas (una transformación ortogonal) y U es una descripción desde el XYZ y U' una descripción desde el XYYZ'.

Haremos unas derivadas utilizando la regla de la cadena,

$$\frac{dU}{dt} = \frac{dU_x}{dt}\hat{x} + \frac{dU_y}{dt}\hat{y} + \frac{dU_z}{dt}\hat{z}$$

donde es U=U(x,y,z), pero ahora si es $U=U(x^{\prime},y^{\prime},z^{\prime})$ se tiene en cambio

$$\frac{dU}{dt} = \frac{dU_x'}{dt}\hat{x}' + U_x'\frac{d\hat{x}'}{dt} + \frac{dU_y}{dt}\hat{y} + U_y'\frac{d\hat{y}'}{dt} + \frac{dU_z}{dt}\hat{z} + U_z'\frac{d\hat{z}'}{dt}$$

Pero X'Y'Z' es un sistema ortogonal y sus versores cumplen condiciones de ortogonalidad entonces

$$\hat{x}' \cdot \hat{x}' = \hat{y}' \cdot \hat{y}' = \hat{z}' \cdot \hat{z}' = 1$$

$$\hat{x}' \cdot \hat{y}' = \hat{x}' \cdot \hat{z}' = \hat{y}' \cdot \hat{z}' = 0$$

Ahora tenemos que hacer las variaciones de las dos ecuaciones precedentes. De la primera

$$\hat{x}' \cdot \delta \hat{x}' = \hat{y}' \cdot \delta \hat{y}' = \hat{z}' \cdot \delta \hat{z}' = 0 \tag{8.1}$$

y de la segunda

$$\hat{x}' \cdot \delta \hat{y}' + \hat{y}' \cdot \delta \hat{x}' = 0 \qquad \qquad \hat{x}' \cdot \delta \hat{z}' + \hat{z}' \cdot \delta \hat{x}' = 0 \qquad \qquad \hat{y}' \cdot \delta \hat{z}' + \hat{z}' \cdot \delta \hat{y}' = 0$$
(8.2)

Asimismo, una variación $\delta \hat{x}'$ arbitraria puede escribirse como

$$\delta \hat{x}' = \delta \alpha_{xx} \hat{x}' + \delta \alpha_{xy} \hat{y}' + \delta \alpha_{xz} \hat{z}'$$

donde es $\delta\alpha_{xx}=0$ debido al primer miembro de (8.1). Notemos que $\delta\alpha_{xy}$ significa una variación en \hat{x}' proyectada en \hat{y}' . Del mismo modo escribimos

$$\delta \hat{y}' = \delta \alpha_{yx} \hat{x}' + \delta \alpha_{yz} \hat{z}'$$

$$\delta \hat{z}' = \delta \alpha_{zx} \hat{x}' + \delta \alpha_{zy} \hat{y}'$$

donde ya hemos anulado las que sabemos son nulas por el mismo argumento. Usando (8.2) se tiene también

$$\hat{x}' \cdot \delta \hat{z}' = -\hat{z}' \cdot \delta \hat{x}' \qquad \hat{x}' \cdot \delta \hat{y}' = -\hat{y}' \cdot \delta \hat{x}'$$

que pasan respectivamente a

$$\hat{x}' \cdot \delta \alpha_{zx} = -\hat{z}' \cdot \delta \alpha_{xz} \qquad \hat{x}' \cdot \delta \alpha_{yx} = -\hat{y}' \cdot \delta \alpha_{xy}$$

Pero las variaciones son tres (¿?)

$$\delta \boldsymbol{\alpha} = (\delta \alpha_x, \delta \alpha_y, \delta \alpha_z).$$

La delta de un versor tiene componentes en los otros tres versores (no en el mismo versor)

$$\begin{split} \delta \hat{x}' &= \delta \alpha_{xy} \hat{y}' + \delta \alpha_{xz} \hat{z}' \\ \delta \hat{y}' &= \delta \alpha_{yx} \hat{x}' + \delta \alpha_{yz} \hat{z}' \\ \delta \hat{z}' &= \delta \alpha_{zx} \hat{x}' + \delta \alpha_{zu} \hat{y}' \end{split}$$

pero proyectando

$$\begin{split} \hat{x}' \cdot \delta \hat{z}' &= -\hat{z}' \cdot \delta \hat{x}' &\longrightarrow &\delta \alpha_{zx} = -\delta \alpha_{xz} \\ \hat{y}' \cdot \delta \hat{z}' &= -\hat{z}' \cdot \delta \hat{y}' &\longrightarrow &\delta \alpha_{zy} = -\delta \alpha_{yz} \\ \hat{x}' \cdot \delta \hat{y}' &= -\hat{y}' \cdot \delta \hat{x}' &\longrightarrow &\delta \alpha_{yx} = -\delta \alpha_{xy} \end{split}$$

Con las siguientes definiciones

$$\delta\alpha_{zx} \equiv \delta\alpha_y \qquad \delta\alpha_{yz} \equiv \delta\alpha_x \qquad \delta\alpha_{xy} \equiv \delta\alpha_z$$

Figura 8.11

estamos autorizados a escribir

$$\begin{split} \delta \hat{x}' &= \delta \alpha_z \hat{y}' - \delta \alpha_y \hat{z}' \\ \delta \hat{y}' &= -\delta \alpha_z \hat{x}' + \delta \alpha_x \hat{z}' \\ \delta \hat{z}' &= \delta \alpha_y \hat{x}' - \delta \alpha_x \hat{y}' \end{split}$$

La rotación infinitesimal puede verse como un vector

$$\begin{split} \delta \pmb{\alpha} &= \delta \alpha_x \hat{x} + \delta \alpha_y \hat{y} + \delta \alpha_z \hat{z} \\ \frac{\delta \pmb{\alpha}}{\delta t} &= \Omega_x \hat{x} + \Omega_y \hat{y} + \Omega_z \hat{z} \end{split}$$

donde hemos hecho $\Omega_i = \delta \alpha_i/\delta t.$ En términos de las nuevas variables

$$\begin{split} \frac{d\hat{x}'}{dt} &= \Omega_z \hat{y}' - \Omega_y \hat{z}' \\ \frac{d\hat{y}'}{dt} &= -\Omega_z \hat{x}' + \Omega_x \hat{z}' \\ \frac{d\hat{z}'}{dt} &= \Omega_y \hat{x}' - \Omega_x \hat{y}' \end{split}$$

entonces podemos hacer la construcción

$$\frac{d}{dt} = \left. \frac{d}{dt} \right|_{X'Y'Z'} + U_x'(\Omega_z \hat{y}' - \Omega_y \hat{z}') + U_y'(-\Omega_z \hat{x}' + \Omega_x \hat{z}') + U_z'(\Omega_y \hat{x}' - \Omega_x \hat{y}')$$

y usando la regla del producto vectorial podemos colapsar en

$$\left. \frac{d}{dt} \right|_{in} \boldsymbol{U} = \left. \frac{d}{dt} \right|_{rot} \boldsymbol{U} + \boldsymbol{\Omega} \times \boldsymbol{U}$$

Notemos que

$$m{\Omega} imes m{U}' = egin{bmatrix} \hat{x}' & \hat{y}' & \hat{z}' \\ \Omega_x & \Omega_y & \Omega_z \\ U_x' & U_y' & U_z' \end{bmatrix}.$$

EJEMPLO 8.1 Rotación en \hat{z}

Consideremos una rotación en torno a \hat{z}' de modo que $\delta\hat{z}'=0$ de modo que $\delta\alpha_x=\delta\alpha_y=0$ de manera que

$$\delta \hat{x}' = \delta \alpha_z \hat{y}' \qquad \delta \hat{y}' = -\delta \alpha_z \hat{x}'$$

y tener que

$$\delta \alpha_z \equiv \omega_z$$
.

Figura 8.12

6.9 El tensor de inercia

Siendo I el tensor de inercia buscamos soluciones a

$$I\mathbf{v} = \lambda \mathbf{v}$$
.

o bien en componentes

$$\sum_{j=1}^{3} I_{ij} v_j = \lambda v_i \tag{9.1}$$

que se trabaja así

$$\sum_{i=1}^3 I_{ij}v_j - \lambda v_i = \sum_{i=1}^3 (I_{ij} - \delta_{ij}\lambda)v_j = 0$$

lo cual en extenso corresponde al siguiente sistema de tres ecuaciones

$$(I_{11} - \lambda)v_1 + I_{12}v_2 + I_{13}v_3 = 0$$

$$I_{21}v_1 + (I_{22} - \lambda)v_2 + I_{23}v_3 = 0$$

$$I_{31}v_1 + I_{32}v_2 + (I_{33} - \lambda)v_3 = 0$$

Ahora multiplicamos la ecuación (9.1) y su conjugada compleja (denotada por *) por $\sum_i v_i$ y $\sum_i v_i^*$, respectivamente, para obtener

$$\sum_i v_i \sum_{j=1}^3 I_{ij} v_j^* = \lambda^* \sum_i v_i^* v_i$$

$$\sum_i v_i^* \sum_{j=1}^3 I_{ij} v_j = \lambda \sum_i v_i v_i^*$$

Ahora si resto ecuación a ecuación tenemos

$$\sum_{i} \sum_{j=1}^{3} (v_{i} I_{ij} v_{j}^{*} - v_{i}^{*} I_{ij} v_{j}) = (\lambda^{*} - \lambda) \sum_{i} v_{i}^{*} v_{i}$$

podemos cambiar de índices en el segundo sumando del miembro izquierdo puesto que los índices están sumados y son por ello mudos (dummies),

$$\sum_{i} \sum_{j=1}^{3} (v_{i} I_{ij} v_{j}^{*} - v_{j}^{*} I_{ji} v_{i}) = (\lambda^{*} - \lambda) \sum_{i} v_{i}^{*} v_{i}$$

pero si usamos la propiedad de simetría del tensor de inercia ${\cal I}_{ij} = {\cal I}_{ji}$ entonces

$$0 = (\lambda^* - \lambda) \sum_i v_i^* v_i$$

de modo que como v es arbitrario se tiene la importante conclusión de que $\lambda^* = \lambda$. Los autovalores del tensor de inercia son reales.

Si es por ejemplo λ^s uno de los autovalores se pueden despejar

$$(v_1^s,v_2^s(v_1),v_3^s(v_1))\ e^{i\phi}$$

pero como la fase es la misma para todos me quedo con los módulos (los cuales definirán las direcciones). Pido

$$v_1^{s^2} + v_2^s(v_1)^2 + v_3^s(v_1)^2 = 1$$

o dicho de otro modo que la norma sea uno.

Sean $\lambda^p \neq \lambda^s$ entonces

$$\sum_{i} v_i^p \sum_{j=1}^3 I_{ij} v_j^s = \lambda^s \sum_{i} v_i^p v_i^s$$

$$\sum_{i} v_i^s \sum_{j=1}^3 I_{ij} v_j^p = \lambda^p \sum_{i} v_i^s v_i^p$$

y restando ecuación a ecuación y cambiando subíndices como hiciéramos oportunamente,

$$\sum_i \sum_{i=1}^3 (v_i^p I_{ij} v_j^s - v_i^s I_{ij} v_j^p) = (\lambda^s - \lambda^p) \sum_i v_i^p v_i^s$$

luego como es nulo el miembro izquierdo resulta que

$$\sum_{i} v_i^p v_i^s = 0$$

de modo que son ortogonales v^p y v^s . Los autovectores son ortogonales.

$$I\mathbf{v} = \lambda \mathbf{v} \longrightarrow \mathbf{v}^t I\mathbf{v} = \mathbf{v}^t \lambda \mathbf{v},$$

pero como la norma de v es unitaria, es

$$\mathbf{v}^t I \mathbf{v} = \lambda \mathbf{v}^t \mathbf{v} = \lambda$$

Si armo una matriz $V=(v^sv^pv^q)$ será en todo su esplendor

$$V^t I V = \begin{pmatrix} v_1^s & v_2^s & v_3^s \\ v_1^p & v_2^p & v_3^p \\ v_1^q & v_2^q & v_3^q \end{pmatrix} I \begin{pmatrix} v_1^s & v_1^p & v_1^q \\ v_2^s & v_2^p & v_2^q \\ v_3^s & v_2^p & v_3^q \end{pmatrix}$$

o bien

$$V^tIV=\lambda 1$$

donde entendemos el 1como una matriz identidad. Entonces $\lambda^s,\lambda^p,\lambda^q$ son los momentos principales de inercia

$$I = \begin{pmatrix} \lambda^s & 0 & 0 \\ 0 & \lambda^p & 0 \\ 0 & 0 & \lambda^q \end{pmatrix}$$

Vale que, además,

$$\lambda^s = \sum_{ij} v_i^s I_{ij} v_j^s > 0$$

puesto que es una forma cuadrática.

Para el objeto debajo de estas líneas rotando en $2\pi/3$ tengo la misma situación física (eje de simetría de orden tres), entonces tengo eje principal de inercia allí.

La idea es que si pienso en planos siempre se hacen nulos los productos de inercia rotacionales.

Para la siguiente figura el plano de simetría es eje principal, luego es eje principal de inercia.

6.10 Movimiento de un cuerpo asimétrico

$$L_{snin} = I\Omega$$

y como la energía se conserva es

$$E = T + V$$

$$E = T_{trasl} + T_{rot} + V(R_{cm})$$

donde cada una se conserva separadamente.

Usaremos una notación en la cual el subíndice refiere a referido a y el supraíndice a de qué puntos/puntos

$$\left. oldsymbol{L}
ight|_0^{sist} = \left. oldsymbol{L}_{orb}
ight|_0^{cm} + \left. oldsymbol{L}_{spin}
ight|_{cm}^{sist}$$

$$\left. \frac{d\boldsymbol{L}^{orb}}{dt} \right|_{in} = \boldsymbol{\tau}_0^{cm} = \boldsymbol{R}_{cm} \times \boldsymbol{F} = \boldsymbol{R}_{cm} \times -Mg\hat{z} \neq 0$$

de tal manera que el $m{L}^{orb} \equiv m{L}_0^{cm}$ no se conserva.

El que se conserva es \boldsymbol{L}^{spin} pues pensamos la $\boldsymbol{F}=M\boldsymbol{g}$ aplicada en el centro de masa que es el origen y que tiene $\boldsymbol{R}_{cm}=0$.

$$L^{spin} = L_1 \hat{1} + L_2 \hat{2} + L_3 \hat{3} = I_1 \Omega_1 \hat{1} + I_2 \Omega_2 \hat{2} + I_3 \Omega_3 \hat{3}$$

y podemos escribir

$$T_{rot} = \frac{1}{2} \left(I_1 \Omega_1^2 + I_2 \Omega_2^2 + I_3 \Omega_3^2 \right)$$

$$\begin{split} T_{rot} &= \frac{L_1^2}{2I_1} + \frac{L_2^2}{2I_2} + \frac{L_3^2}{2I_3} \\ 1 &= \frac{L_1^2}{2I_1T_{rot}} + \frac{L_2^2}{2I_2T_{rot}} + \frac{L_3^2}{2I_3T_{rot}} \end{split}$$

Entonces, si se da que $I_3 > I_2 > I_1$ se tiene

$$L_{spin}^2 = L_1^2 + L_2^2 + L_3^2 \qquad L^2 = I_1^2 \Omega_1^2 + I_2^2 \Omega_2^2 + I_3^2 \Omega_3^2$$

donde como se conservan $T_{rot} \equiv T$ y $L_{spin} \equiv L$

$$2T = \frac{L_1^2}{I_1} + \frac{L_2^2}{I_2} + \frac{L_3^2}{I_3} \qquad L^2 = L_1^2 + L_2^2 + L_3^2$$

de la primera deducimos un elipsoide de semiejes en L_i y de la segunda una esfera de radio L en L_i .

Esto está super oscuro. No sé qué se quiso decir, tal vez se halle explicado mejor en la carpeta.

$$\begin{split} 2I_3T > 2I_2T > 2I_1T \\ L^2 > 2I_3T & L_1^2 + L_2^2 + L_3^2 > \frac{I_3}{I_1}L_1^2 + \frac{I_3}{I_2}L_2^2 + L_3^2 \\ L_1^2\left(\frac{I_1 - I_3}{I_1}\right) + L_2^2\left(\frac{I_2 - I_3}{I_1}\right) > 0 \end{split}$$

pero esto no vale. Asimismo tampoco vale que

$$L^2<2I_1T$$

y resulta

$$2I_3T > L^2 > 2I_1T$$

entonces L_{spin} (su punta) se mueve en la intersección de una esfera y un elipsoide. Estos movimientos son periódicos.

La peonza tiene movimientos estables para la rotación en torno a \hat{x}_1,\hat{x}_3 pero inestables en torno a $\hat{x}_2.$ El movimiento puede resolverse mediante ecuaciones de Euler. Es estable rotar en torno al mayor o menor momento de inercia lo que generará un movimiento oscilatorio para Ω ($\omega^2>0$), en cambio es inestable rotar en torno al momento de inercia intermedio, lo cual generará un movimiento armónico para Ω ($\omega^2<0$).

Con L constante si $L \parallel \Omega$ entonces ambos son constantes (corresponde a una rotación). Se consigue con Ω en la dirección del eje principal. Si $L \nparallel \Omega$ entonces Ω oscila en torno a L.

Figura 9.13

Figura 10.14

Figura 10.15

Figura 10.16

Capítulo 7

Ecuaciones de Hamilton

Se pasa de las variables (q, \dot{q}) hacia el par (q, p) con

$$p = \frac{\partial \mathcal{L}}{\partial \dot{q}}$$

Se parte del

$$H(q_i,p_i,t) = \sum_{i}^{3N-k} p_i \dot{q}_i - \mathcal{L}(q_i,\dot{q}_i,t)$$

y consideramos el diferencial

$$\begin{split} dH &= \sum_{i} p_{i} d\dot{q}_{i} + \dot{q}_{i} dp_{i} - \frac{\partial \mathcal{L}}{\partial q_{i}} dq_{i} - \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} d\dot{q}_{i} - \frac{\partial \mathcal{L}}{\partial t} dt \\ dH &= \sum_{i} \dot{q}_{i} dp_{i} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) dq_{i} - \frac{\partial \mathcal{L}}{\partial t} dt \\ dH &= \sum_{i} \dot{q}_{i} dp_{i} - \dot{p}_{i} dq_{i} - \frac{\partial \mathcal{L}}{\partial t} dt \end{split}$$

se deducen entonces,

$$\frac{\partial H}{\partial p_i} = \dot{q}_i \qquad \frac{\partial H}{\partial q_i} = -\dot{p}_i \qquad \frac{\partial H}{\partial t} = -\frac{\partial \mathcal{L}}{\partial t}$$

que son las ecuaciones de Hamilton. Donde (p,q) son 2N grados de libertad del sistema llamados las variables canónicas. Si $V \neq V(\dot{q})$ y los vínculos no dependen del tiempo entonces $T=T_2$ (la energía cinética es cuadrática en las velocidades) y H=E.

7.1 Transformación canónica del hamiltoniano

Es una transformación que verifica

$$H \longrightarrow K$$

donde $K=K(\boldsymbol{Q}_i, P_i, t)$ es un nuevo hamiltoniano proveniente de

$$\frac{\partial H}{\partial p_i} = \dot{q}_i \longrightarrow \dot{Q}_i = \frac{\partial K}{\partial P_i}$$

$$-\frac{\partial H}{\partial q_i} = \dot{p}_i \longrightarrow \dot{P}_i = -\frac{\partial K}{\partial Q_i}$$

y ahora usamos el Principio Variacional de Hamilton,

$$S = \int_{t_i}^{t_f} \mathcal{L} dt = \int_{t_i}^{t_f} \left\{ \sum_i p_i \dot{q}_i - H(p_i, q_i, t) \right\} dt$$

$$\delta S = \sum p_i \delta \dot{q}_i + \dot{q}_i \delta p_i - \frac{\partial H}{\partial p_i} \delta p_i - \frac{\partial H}{\partial q_i} \delta q_i - \frac{\partial H}{\partial t} \delta t$$

pero el último término es nulo porque la variación es a tiempo fijo. Usando las ecuaciones de Euler-Lagrange en el primer término resulta que

$$\delta S = \int_{t_i}^{t_f} \left\{ \sum_i \left(-\dot{p}_i - \frac{\partial H}{\partial q_i} \right) \delta q_i + \left(\dot{q}_i - \frac{\partial H}{\partial p_i} \right) \delta p_i + \frac{d}{dt} \left(p_i \delta q_i \right) \right\} dt$$

y llego pidiendo que sea extremo S a las ecuaciones de Hamilton (dos primeros paréntesis) mientras que el último término resulta

$$\int_{t_{i}}^{t_{f}}\left\{ \frac{d}{dt}\left(p_{i}\delta q_{i}\right)\right\} dt=\left.p_{i}\delta q_{i}\right|_{t_{i}}^{t_{f}}.$$

Entonces, usando la misma idea que el $\mathcal L$ se tiene

$$\mathcal{L}' = \mathcal{L} + \frac{dF}{dt}$$

siendo F una función generatriz. Luego,

$$\sum p_i \dot{q}_i - H(p_i,q_i,t) = \sum P_i \dot{Q}_i - K(P_i,Q_i,t) + \frac{dF}{dt}$$

Transformaciones canónicas

8.1 Funciones generatrices

Consideraremos ahora varios casos diferentes de dependencia en la función generatriz,

$$\begin{split} F_1 &= F_1(q_i,Q_i,t) \\ \sum p_i \dot{q}_i - H + K - \sum P_i \dot{Q}_i - \frac{\partial F_1}{\partial q_i} \dot{q}_i - \frac{\partial F_1}{\partial Q_i} \dot{Q}_i - \frac{\partial F_1}{\partial t} = 0 \\ \sum \left(p_i - \frac{\partial F_1}{\partial q_i} \right) \dot{q}_i - \sum \left(P_i + \frac{\partial F_1}{\partial Q_i} \right) \dot{Q}_i - \frac{\partial F_1}{\partial t} - H + K = 0 \end{split}$$

y la transformación canónica queda definida por

$$\frac{\partial F_1}{\partial q_i} = p_i \hspace{1cm} \frac{\partial F_1}{\partial Q_i} = -P_i \hspace{1cm} \frac{\partial F_1}{\partial t} = K - H$$

Todas las combinaciones posibles son

$$F_1 = F_1(q_i,Q_i,t) \qquad F_2 = F_2(q_i,P_i,t) \qquad F_3 = F_3(p_i,Q_i,t) \qquad F_4 = F_4(p_i,P_i,t)$$

y para ${\cal F}_2$, por ejemplo, se tiene

$$F_2(q_i,P_i,t) = \sum_i^N q_i P_i$$

la cual es una identidad (transformación). Y

$$\frac{\partial F_2}{\partial q_i} = P_i = p_i \qquad \frac{\partial F_2}{\partial Q_i} = q_i = Q_i$$

8.2 Corchetes de Poisson

Sea $A = A(q_i, p_i, t)$ entonces

$$\frac{d}{dt}A = \sum_{i} \frac{\partial A}{\partial q_{i}} \frac{\partial q_{i}}{\partial t} + \frac{\partial A}{\partial p_{i}} \frac{\partial p_{i}}{\partial t} + \frac{\partial A}{\partial t}$$

$$\frac{d}{dt}A = \underbrace{\sum_{i} \frac{\partial A}{\partial q_{i}} \frac{\partial q_{i}}{\partial t} + \frac{\partial A}{\partial p_{i}} \frac{\partial p_{i}}{\partial t}}_{\equiv [A,H]} + \frac{\partial A}{\partial t}$$

entonces

$$\frac{d}{dt}A = [A, H] + \frac{\partial A}{\partial t}.$$

Las constantes de movimiento en un sistema cumplen que su corchete de Poisson con el hamiltoniano es nulo.

$$\frac{\partial H}{\partial p_i} = \dot{q}_i = [q_i, H] \qquad -\frac{\partial H}{\partial q_i} = \dot{p}_i = [p_i, H]$$

Una transformación canónica cumple

$$[p_i, q_i] = \delta_{ij}$$
 $[p_i, p_j] = 0$ $[q_i, q_j] = 0$

de modo que el corchete entre los momentos es nulo así también como el corchete entre las coordenadas.

Capítulo 9

Ecuaciones de Hamilton-Jacobi

$$q_i \longrightarrow Q_i \equiv \beta_i \qquad p_i \longrightarrow P_i \equiv \alpha_i$$

Pasamos a unas nuevas coordenadas y momentos (β_i,α_i) que son constantes. Entonces la acción es del tipo F_2 , i.e.

$$S = S(q_i, \alpha_i, t).$$

Entonces

$$\frac{\partial S}{\partial q_i} = p_i \qquad \frac{\partial S}{\partial \alpha_i} = \beta_i \qquad \frac{\partial S}{\partial t} = H - K \tag{1}$$

donde

$$H(q_i,p_i,t) - \frac{\partial S}{\partial t} = K = 0$$

y esto lleva a la ecuación de Hamilton-Jacobi,

$$H(q_i,p_i,t) - \frac{\partial S}{\partial t} = 0$$

que no es otra cosa que una ecuación en derivadas parciales (PDE). Notemos que

$$\frac{\partial S}{\partial q_i} = p_i(q_i,\alpha_i,t) \qquad \frac{\partial S}{\partial \alpha_i} = \beta_i(q_i,\alpha_i,t)$$

y además que Hamilton-Jacobi tiene solución si el problema es totalmente separable. Si $H=H(q_i,\alpha_i)$ entonces $dH/dt=\partial H/\partial t=0$ y en ese caso es H=cte. y podemos poner $H=\alpha_1$. Entonces

$$\frac{\partial S}{\partial t} = -\alpha_1 \quad \longrightarrow \quad S = W(q_i, \frac{\partial S}{\partial q_i}) - \alpha_1 t.$$

Se procede en la misma forma con cada coordenada hasta obtener S. Podemos ver que si $\alpha_1=\alpha_1(\alpha_i)$, y me quedo con $H=\alpha_1\equiv K$ entonces

$$\frac{\partial K}{\partial \alpha_i} = a = \dot{Q}_i \longrightarrow Q_i = \beta = at + \beta_0$$

$$\frac{\partial K}{\partial \beta_i} = 0 = -\dot{P}_i \longrightarrow P_i = \alpha_i(ctes.).$$

La α_1 no puede depender de q_i pues si se tuviera $\partial \alpha_1/\partial q_i \neq 0$ no sería constante α_1 pues $\dot{q} \neq 0$.

Luego, invirtiendo las ecuaciones (1) determinamos las trayectorias

$$q_i = q_i(\alpha_i, \beta_i, t).$$

Además, si el problema es totalmente separable, entonces

$$S = \sum_{i}^{N} W(q_i, \alpha_1, ..., \alpha_n) - \alpha_1 t$$

y tendré tantas constantes de movimiento como grados de libertad. La solución se compone de problemas independientes en una variable.

9.1 Preservación del volumen en una transformación canónica

Definamos un hipervolumen $\mathcal V$ en el espacio de fases de acuerdo a

$$\int dq_1dq_2...dq_ndp_1dp_2...dp_n = \mathcal{V}_{p,q}$$

$$\int dQ_1dQ_2...dQ_ndP_1dP_2...dP_n = \mathcal{V}_{P,Q}$$

El jacobiano de la transformación es

$$\frac{\partial(Q_1,...,Q_n,P_1,...,P_n)}{\partial(q_1,...,q_n,p_1,...,p_n)} = \frac{\partial(Q_1,...,Q_n,P_1,...,P_n)/\partial(q_1,...,q_n,P_1,...,P_n)|_{P_i = cte}}{\partial(q_1,...,q_n,p_1,...,p_n)/\partial(q_1,...,q_n,P_1,...,P_n)|_{q_i = cte}}$$

que en notación de matriz es

$$\begin{pmatrix} \frac{\partial Q_1}{\partial q_1} & \frac{\partial Q_1}{\partial q_2} & \dots & \frac{\partial Q_1}{\partial p_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial P_n}{\partial q_1} & \dots & \dots & \frac{\partial P_n}{\partial p_n} \end{pmatrix}$$

Figura 1.1

Figura 1.2

Entonces

$$J_{ij}^{num} = \frac{\partial Q_i}{\partial q_j} = \frac{\partial}{\partial q_j} \left(\frac{\partial F_2}{\partial P_i} \right)$$

y

$$J_{ij}^{den} = \frac{\partial p_i}{\partial P_j} = \frac{\partial}{\partial P_j} \left(\frac{\partial F_2}{\partial q_i} \right)$$

pero como estas dos expresiones son iguales se tiene que J=1 y entonces se conserva el volumen, aunque cambiando de forma.

En sistemas de un grado de libertad

$$A_{p,q} = \int dp dq \qquad A_{P,Q} = \int dP dQ$$

y el jacobiano

$$J = \begin{vmatrix} \frac{\partial Q}{\partial q} & \frac{\partial Q}{\partial p} \\ \frac{\partial P}{\partial q} & \frac{\partial P}{\partial p} \end{vmatrix} = \frac{\partial Q}{\partial q} \frac{\partial P}{\partial p} - \frac{\partial Q}{\partial p} \frac{\partial P}{\partial q} = [Q, P] = 1$$

Notamos que le corchete de Poisson para una transformación canónica en un grado de libertad es el corchete que ya sabíamos da uno. El área se conserva.

Comentemos que un sistema disipativo achica el área de la transformación.

9.2 Variables ángulo-acción

Consideremos una transformación canónica

$$p, q \longrightarrow J, \theta$$

la cual requiere

- Conservativos S = W Et
- Totalmente separables $W = \sum_i^N \ W_i(q_1,\alpha_1,...,\alpha_n)$
- Problemas periódicos

El movimiento periódico es de rotación o libración,

Figura 2.3

La periodicidad de cada coordenada no implica periodicidad de todo el movimiento real.

$$S = \sum_{i}^{N} W_i(q_i, J_i) - Et$$

Libración y rotación son dos movimientos de naturaleza diferente. No se puede pasar de uno a otro mediante pequeñas perturbaciones.

La integral de acción es

$$J_i = \frac{1}{2\pi} \int_{ciclo} p_i(q_1, \alpha_1, ..., \alpha_n) dq_i$$

donde

$$J_i = J_i(\alpha_1, ..., \alpha_n)$$

Figura 2.4

son constantes y a su vez los α_i son constantes de separación. Asimismo $\alpha_i=\alpha_i(J_1,...,J_n).$ La transformación S es

$$\frac{\partial S}{\partial q_i} = p_i = \frac{\partial W}{\partial q_i} \qquad \frac{\partial S}{\partial J_i} = \theta_i = \frac{\partial W}{\partial J_i}$$

siendo $p_i=p_i(q_1,J_1,...,J_n)$. El nuevo hamiltoniano es $E=E(J_1,...,J_n)$

$$\frac{\partial E}{\partial J_{:}} = \dot{\theta}_{i} \equiv \omega \qquad \frac{\partial E}{\partial \theta_{:}} = -\dot{J}_{i}$$

de manera que tenemos

$$\theta_i = \omega t + \theta_{0_i} \qquad \frac{\partial W}{\partial J_i} = \theta_i = \theta_i(q_i, J_i)$$

y entonces despejamos las q_i desde

$$\theta_i(q_i,J_i) = \omega t + \theta_{0_i}.$$

Las condiciones iniciales (q_i,J_i) se introducen en

$$\frac{\partial W}{\partial q_i} = p_i(q_1, J_1, ..., J_n)$$

y obtengo las $J_1,...,J_n$ constantes.

9.3 Transformación canónica infinitesimal

$$F_2 = F_2(q_i, P_i) = \sum_i^N q_i P_i$$

es la indentidad

$$\frac{\partial F_2}{\partial q_i} = p_i \equiv P_i \qquad \frac{\partial F_2}{\partial P_i} = Q_i \equiv q_i$$

y donde considero

$$\begin{split} F_2(q_i,P_i) &= \sum q_i P_i + \epsilon G(q_1,...,q_n,P_1,...,P_n) &\quad \text{con } \epsilon \sim 0 \\ p_i &= P_i + \epsilon \frac{\partial G}{\partial q_i} \longrightarrow P_i = p_i - \epsilon \frac{\partial G}{\partial q_i} \\ Q_i &= q_i + \epsilon \frac{\partial G}{\partial p_i} \longrightarrow Q_i = q_i - \epsilon \frac{\partial G}{\partial P_i} \end{split}$$

donde $\partial G/\partial P_i \approx \partial G/\partial p_i$ diferirán en un orden ϵ^2 el cual descarto. Entonces

$$\delta p_{\ell} = -\epsilon \frac{\partial G}{\partial q_{\ell}} \qquad \delta q_{\ell} = \epsilon \frac{\partial G}{\partial p_{\ell}}.$$

Si considero H en lugar de G y $\epsilon = \delta t$ entonces

$$\frac{\delta p_{\ell}}{\delta t} = -\frac{\partial H}{\partial q_{\ell}} \qquad \frac{\delta q_{\ell}}{\delta t} = \frac{\partial H}{\partial p_{\ell}}$$

de tal manera que

$$\dot{p}_{\ell} = -\frac{\partial H}{\partial q_{\ell}} \qquad \dot{q}_{\ell} = -\frac{\partial H}{\partial p_{\ell}}$$

y donde se ve que el H genera la transformación evolución temporal.

$$\delta A = A(q_i + \delta q_i, p_i + \delta p_i) - A(q_i, p_i)$$

y

$$\begin{split} \delta A &= \sum_i \left(\frac{\partial A}{\partial q_i} \delta q_i + \frac{\partial A}{\partial p_i} \delta p_i \right) \\ \delta A &= \epsilon \sum_i \left(\frac{\partial A}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial A}{\partial p_i} \frac{\partial H}{\partial q_i} \right) = \epsilon [A, H] \longrightarrow \frac{\delta A}{\delta t} = [A, H] \end{split}$$

entonces las constantes de movimiento generan transformaciones canónicas infinitesimales que dejan invariante al hamiltoniano H. Si

$$\frac{dA}{dt} = 0 \Longrightarrow [A.H] = 0$$

9.4 Potencial electromagnético

Arranquemos por los momentos canónicamente conjugados

$$\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = p_i \quad \text{pero } siV \neq V(q) \longrightarrow \frac{\partial T}{\partial \dot{q}_i} = p_i$$

entonces

$$\begin{split} U(q,\dot{q}) &= e\phi - e/c\pmb{A}\cdot \pmb{V} \longrightarrow \mathcal{L} = T - e\phi + e/c\pmb{A}\cdot \pmb{V} \\ p_x &= \frac{\partial T}{\partial \dot{x}} - \frac{\partial U}{\partial \dot{x}} = mV_x - (e/c)A_x. \end{split}$$

Hacemos un cambio de gauge, en un potencial generalizado

$$U = e\Phi(\boldsymbol{x},t) - (q/c)\boldsymbol{A}(\boldsymbol{x},t)\cdot\boldsymbol{V}(t)$$

y el cambio de gauge es

$$\mathbf{A}' = \mathbf{A} + \nabla f$$

que no altera las ecuaciones de movimiento.

Apéndice A

Rotación en el plano

Rotación de un sistema de coordenadas en el plano (pasar de cuaderno).

Para los apéndices faltaría una estructura más consistente. Tal vez subapéndices con aquellos que resulten demasiado pequeños como para justificar una sección con letras grandes. La idea sería agrupar temas comunes y poner en apéndice todo aquello de uso suficientemente general. Deberíamos evitar también que un tomo dependa de un apéndice en otro tomo. En ese caso tal vez convenga duplicar.

Indice

Coordenadas cíclicas, 29

Energía cinética, 33

Fuerzas centrales, 62

Lagrangiano, 26

Momentos conjugados, 29

Noether, teorema de, 58

Oscilador no armónico, 71

Trabajos virtuales, principio de, 22

Velocidad areolar-, 65