Rings and Fields

PMATH 334

Tomáš Vávra

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of PMATH 334 during Winter 2022 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For the table of contents, I am most likely following http://www.math.uwaterloo.ca/~lwmarcou/notes/pmath334.pdf.

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Sibelius Peng

Contents

Pr	reface	1
1	Introduction & Motivation	3
	1.1 Fermat's Last Theorem	. 3
	1.2 Straightedge and compass construction	3
2	An introduction to Rings	5
	2.1 Definitions and basic properties	. 5

Introduction & Motivation

1.1 Fermat's Last Theorem

Fermat's Last Theorem

The equation $x^m + y^m = z^m$ has no non-trivial solutions in integers for $m \ge 3$.

For example, (1,0,1), (-1,0,1) for m even, are trivial solutions.

In 1897, Gabriel Lamé announced that he has a proof. First he assumed that m is a prime. He writes

$$z^{p} = x^{p} + y^{p} = (x + y)(x + \zeta_{p}y)(x + \zeta_{p}^{2}y) \cdots (x + \zeta_{p}^{p-1}y)$$

where $\zeta_p = \cos(\frac{2\pi}{p}) + i\sin(\frac{2\pi}{p})$.

Then the next step is to show that $(x + \zeta_p^? y)$ are coprime.

$$q_1^{\alpha_1}q_2^{\alpha_2}\cdots=z^p=(x+y)(x+\zeta_py)\cdots(\quad)$$

Then $(x + \zeta_p y) = (\cdots)^p$ (*). But this is wrong if the factorization is non-unique. However, we have

$$\mathbb{Z}[\zeta_p] = \{a_1 + a_2\zeta_p + a_3\zeta_p^2 + \cdots : a_i \in \mathbb{Z}\}\$$

can be a unique factorization domain (UFD). This means (*) works. Kummer salvages the argument for approximately 60% of prime exponents.

1.2 Straightedge and compass construction

We are given a length 1 straightedge ruler, and a compass. With these, we can

- connect two points with a straightedge,
- draw a circle, centered at A, and going through B,
- draw intersections of two line segments, circle & line, two circles.

What lengths are constructible? where length means distance between two points. We can do $+,-,\times,\div,\sqrt{}$. Then we can do field extensions:

$$\mathbb{Q} \to \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2},\sqrt{3}) \to \cdots$$

Is trisection of an angle doable? No, not possible.

Possible to double the cube, square the circle of the same area?

What regular *m*-gons are constructible? This is equivalent to the question: is $\cos(\frac{2\pi}{m}) + i\sin(\frac{2\pi}{m})$ constructible?

These can be answered via field extensions.

Other applications including coding theory.

An introduction to Rings

2.1 Definitions and basic properties

ring

A ring is a set with two binary operations +, \times , such that

- 1. (R, +) is an abelian group.
 - + is commutative and associative.
 - $\exists 0 \in \mathbb{R}, 0 + a = a + 0 = a \text{ for all } a \in R.$
 - $\forall a \in \mathbb{R}, \exists (-a) \in R, a + (-a) = (-a) + a = 0.$
- 2. \times is associative $(a \times b) \times c = a \times (b \times c)$.
- 3. distributive laws hold: $(a + b) \times c = (a \times c) + (b \times c)$.

The ring is called commutative if \times is commutative. The ring is said to have an identity if $\exists 1 \in R$, $1 \times a = a \times 1 = a$, for all $a \in R$, and this does not require the existence of inverse.

For simplicity, we write

$$ab := a \times b$$
, $b-a = b + (-a)$

Example:

 \mathbb{Z} is a commutative ring with identity.

Trivial rings: Let (R, +) be an abelian group. We define $a \times b = 0$ for all $a, b \in R$. The result is a commutative ring with "trivial structure".

 $R = \{0\}$ is a zero ring. 0 = 1 in this case, and it is the only such ring. It leads to assumption $0 \neq 1$, saying $R \neq \{0\}$.

 \mathbb{Q} , \mathbb{R} , \mathbb{C} are commutative rings with identity.

 $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$ with $+, \times \mod m$ is a ring with identity, and commutative.

The real quaternions: $\{a+bi+cj+dk: a,b,c,d\in\mathbb{R}\}$. Addition is "component-wise". And the multiplication follows

$$i^2 = j^2 = k^2 = -1$$
, $ij = -ji = k$, $jk = -kj = i$, $ki = -ik = j$

And this is non-commutative ring, with identity 1.

Let *X* be a set, *A* be a ring. Consider the set $F = \{f : X \to A\}$. Define

$$(f+g)(x) = f(x) + g(x), \qquad (f \times g)(x) = f(x) \times g(x)$$

F commutative & having identity is inherited from the ring *A*.

 $M_m(\mathbb{Z})$ is the ring of square $m \times m$ matrices with coefficients in \mathbb{Z} . It is non-commutative ring with identity.

A function $f : \mathbb{R} \to \mathbb{R}$ is said to have compact support, if $\exists a, b \in \mathbb{R}$, f(x) = 0 for $x \notin [a, b]$. $R = \{f : \mathbb{R} \to \mathbb{R} : f \text{ has compact support}\}$ is a commutative ring, without identity.

Proposition 2.1

Let R be a ring. Then

- 1. 0a = a0 for all $a \in R$.
- 2. (-a)b = a(-b) = -(ab) for all $a, b \in R$.
- 3. (-a)(-b) = ab for all $a, b \in R$.
- 4. If *R* has an identity 1, then it is unique, and (-a) = (-1)a.

Proof:

We see that

$$0a = (0+0)a = 0a + 0a$$
$$0a - 0a = (0a + 0a) - 0a = 0a + (0a - 0a)$$
$$0a = 0$$

We also see that

$$(-a)b + ab = ((-a) + a)b = 0b = 0$$

We would like to be able to cancel with respect to x: $ab = ac \implies b = c$. However, this is not true in general.

Index

	R									
ring	 					 				