CAP VIII Equações Diferenciais Paraiais

Introdução

As equações diferenciais paraiais são aquelas que possuem derivadas em relação à mais de uma variável. Ex: Equação da onda $\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$

Estudaremos equações diferenciais parciais lineares de 2º ordem na forma

$$a\frac{3^{2}w}{3x^{2}} + b\frac{3^{2}w}{3x} + c\frac{3^{2}w}{3x^{2}} + d\frac{3w}{3x} + e\frac{3w}{3x} + fw + r = 0$$

ou numa notação mais compacta

auxx + buxy + cuyy + dux + euy + fu+r=0 onde os subscritos denotam derivadas.

Esta eq. possui paralelo algébrico na forma $ax^2 + bxy + Cy^2 + dx + cy + f = 0$

Usando es ionceitos da geometria analítica, a eq. algébrica descreverá uma curva que depende de

De forma análoga, nas eq. diferenciais parciais de 2º ordem teremos equações parabólicas, hiperbólicas e elípticas.

exemplos

i) eg. do calor ut = ouxx é parabólica

ii) eq. da onda utt-c211 x = 0 é hiperbolica

iii) eq. de Laplace 11xx + 11yy = 0 é eliptica

1 Equações Parabólicas

Vamos iniciar com uma derivação simples da eq. do calor. Seja u(x, y, z, t) a temperatura num num dado instante t num ponto x, y, z deitro de uma região homogenea limitada por uma superfície 5.

Emengia por unidade de volume = Com onde C = calor especifio na região flui na direção - Tu com magnitude KITUI onde K e a condutibilidade térmica do material.

1D De Fluxo de energia

un>12 energia com magnitude Kau

n'ds

vo e' uma região limita da pela superficie

No e a normal à superfície 50

Pela lei da conservação da energia

 $\frac{2}{2t} \iiint \operatorname{cn} dxdydz = \iiint K \nabla n \cdot \vec{n} dS$ $V_0 \qquad \qquad S_0$

Variação da energia no volume Vo no tempo

Fluxo da energia atraves da superfície So

Aplicander o Teorema de Gauss (Teorema de Divergência) as lado direito temos

$$\frac{\partial}{\partial t} \iiint (u \, dx \, dy \, dz) = \iiint (\vec{\nabla}_{\cdot} (\vec{k} \, \vec{\nabla}_{\cdot} u) \, dx \, dy \, dz)$$

$$V_{0} \qquad \text{on } \iiint [c \, u_{t} - \vec{k} \, \vec{\nabla}_{\cdot} u] \, dx \, dy \, dz$$

Contraindo o volume o para

P/ um ponto concluimos que o integrando deve ser Zero e nesse caso

$$Cu_t - K \nabla^2 u = 0$$

$$cu_t - K \nabla u = 0$$

 \mathcal{L} Constante de Difusão

on Mt = o Ju Eq. do Calor on Eq. de Difusão

5e o problema for indépendente de je 2 entrés o problema se torna $M_t = \sigma M_{XX}$,

Exemplo: barra

Vamos examinar a solução desta eq. na região I = {0 < x < 1} sujeito as condições

(condicue inicial) $\mu(x,0) = \phi(x)$, $0 \le x \le 1$ distribuição inicial de temperatura na banna

 $\mu(0,t)=0$ condicient de $\mu(1,t)=0$ contorno nas extremidades

A região De e sua discretização podem ser representados como

Vamos tomar U_m^n como uma ajroximação para u(mh,nk) em cada ponto da grade $\Omega_{h,k}(x,t)$: x=mh $O(m\langle H, Mh = t = nk)$

con condições de contorno
$$\int_{0}^{\infty} U_{0}^{n} = 0$$
 $\int_{0}^{\infty} U_{0}^{n} = 0$

Substituinde a equação diferencial ut= Tuxx por uma equação de diferenços temos

$$\frac{u(x,t+k)-u(x,t)}{k} = \sigma \frac{u(x+h,t)-2u(x,t)+u(x-h,t)}{h^2} + E(x,t)$$

"local discretization error"

Note: W.F. Ames chama kE(x,t) "local truncation error"

Numerical Methods for Portial Differential Equations 3rd Edition 1992

Exercício: Expandindo cada temo en série de Taylor e assumindo que suficientes derivadas de u existem, mostre que o erro local de discretiza coo é dado por

$$E(x,t) = (\mu_t - \sigma u_{xx}) + \frac{k}{2} \mu_{tt} - \frac{h^2}{12} \sigma \mu_{xxx} + termes$$
de orden superior

ou, o eno de discretigação local é u(k+h²)

A equação de diferenças pode ser escrita como

$$\frac{U_{m}^{n+1} - U_{m}^{n}}{k} = \sigma \frac{U_{m+1}^{n} - 2U_{m}^{n} + U_{m-1}^{n}}{h^{2}}$$

 $U_{m}^{n+1} = U_{m}^{n} + \frac{k \sigma}{h^{2}} \left[U_{m+1}^{n} - 2 U_{m}^{n} + U_{m-1}^{n} \right], m=1,2...M-1$

que pode ser escrito na forma compacta
$$U_m^{n+1} = U_m^n + \frac{kT}{h^2} \int_{x}^{2} U_m^n, \quad \int_{x}^{2} U_m^n \equiv U_{m+1}^{n} - 2U_m^n + U_{m-1}^{n}$$

Exemplo Calcule u = uxx sujeito às condiçues de contorno M(0,t) = M(1,t) = 0 e/ condição inicial. $\mu(x,0) = \sin(\pi x)$ resando h = 0.1 e k = 0.005

> Solução analítica $M(x,t) = \exp(-Tit) \sin(Tix)$

×	t=0.02	t=0.04
0	0.00000	0.00000
0.1	0.252818	0.206839
0,2	0480888	0.393432
0.3	0.661886	0.541512
0,4	0.778093	0.636586
0.5	0.818136	0.669346
0.6	0.778093	0.636586
0.7	0.661886	0.54/512
0.8	0.480888	0.393432
0.9	0.252818	0.206839
1.0	0,000000	0.00000

Análise de estabilidade

$$A = Q \cdot U_{m}^{n+1} = U_{m}^{n} + \Gamma \left(U_{m+1}^{n} - 2U_{m}^{n} + U_{m-1}^{n} \right), \quad U_{m} = 0$$

pode ser escrita na forma matricial

$$\begin{bmatrix} V_{1}^{n+1} \\ V_{2}^{n+1} \\ \vdots \\ V_{N-1}^{n+1} \end{bmatrix} = \begin{bmatrix} 1-2r & r \\ r & 1-2r & r \\ 0 & r & 1-2r \end{bmatrix} \begin{bmatrix} V_{1}^{n} \\ V_{2}^{n} \\ \vdots \\ V_{N-1}^{n+1} \end{bmatrix}$$

ou Un+1 = CUn.

Suponha que haja une erro & em v° então o erro em v' será $C(V^{\circ}+E^{\circ})-Cv^{\circ}=CE^{\circ}$ que será $C^{2}E^{\circ}$ em V^{2} e $C^{\infty}E^{\circ}$ em V^{∞} . Para estudor a estabilidade vanos determinar os autovalores da matriz C. Ela.

$$\begin{bmatrix} b & c \\ a & b & c \\ \end{bmatrix} por \\ \lambda_j = b + 2\sqrt{ac} \text{ (as)} \left(\frac{j\pi}{N+1} \right)$$

$$a & b & c \\ a & b & d \\ \end{bmatrix}$$

identificando temos a=r, b=1-2r e c=r, N=M-1.

e os autovalores serão $\lambda_j=1-2r+2[r^2\cos(j\pi)]$ $=1-2r(1-\cos(j\pi))$

146

O sistema ficará limitado se o maior autovalor em modulo satisfizer $121 \le 1$. O maior autovalor em módulo será dado por $1-2r\left(1-\cos\left(\frac{M-1}{17}\right)\right)$ aujo módulo será ≤ 1 desde que $r=\frac{k\sigma}{h^2} \le \frac{1}{2}$.

Método implicito para a equação do Calor ut= Tuxx

Um método para obtenção da solução de

pela regra do trapégio

$$y^{n+1} = y^n + \frac{k}{2} \left[f^n + f^{n+1} \right]$$
, onde $y^n \approx y(nk)$

onde os indices superescritos são temporais.

Je escrevermos a equação de calor como

$$\frac{du}{dt} = \sigma A u$$
, ende $A \in operador \frac{\partial^2}{\partial x^2}$ então

a regra do trapégio fornece

$$U^{n+1} = U^n + \frac{\kappa \sigma}{2} \left[A U^{n+1} + A U^n \right]$$

$$U_{m}^{n+1} = U_{m}^{n} + \frac{r}{2} \left[S_{x}^{2} U_{m}^{m+1} + S_{x}^{2} U_{m}^{n} \right] \qquad r \equiv \frac{k \sigma}{h^{2}}$$

$$U_{m}^{n+1} - \frac{1}{2} \Gamma \left[U_{m+1}^{n+1} - 2 U_{m}^{n+1} + U_{m-1}^{n+1} \right] = U_{m}^{n} + \frac{\Gamma}{2} \left[U_{m+1}^{n} - 2 U_{m}^{n} + U_{m-1}^{n} \right]$$

condições de contorno
$$V_0^{n+1} = 0$$

$$U_{M}^{n+1} = 0$$

teremos então um sistema de M-I equações que podem ser colocados na forma matricial

$$\begin{bmatrix} 1+r & -r/2 \\ -\frac{r}{2} & 1+r & -\frac{r}{2} \\ & &$$

One pode ser escrita como $C_1 U^{n+1} = C_2 U^n$.

Como a matriz C, é tridiagonal, ela pode ser resolvida por de composição LU, seguida de "forward" E "BACKWARD" "SUBSTITUTION". A decomposição só necessita ser realizada uma só vez ja que C, é a mesma em todos os tempos.

pontos do futuro dependem do presente e do futuro.

Exercício: Resolva $\mu_t = \mu_{xx}$ com $\mu(x,0) = \sin \pi x$ $0 \le x \le 1$ C.C. $\mu(0,t) = \mu(1,t) = 0$, usando os mesmos parâmetros do exemplo explicito.

O método de CN é um caso porticular de un método mais geral

$$U_{m}^{n+1} = U_{m}^{n} + r \left[\theta S_{x}^{2} U_{m}^{n+1} + (1-\theta) S_{x}^{2} U_{m}^{n} \right] \qquad m=1,2...M-1,$$

$$\theta = 0$$
 explicito

$$\theta = \frac{1}{2}$$
 CN (semi-implicato)

$$\frac{\mu(x,t+k)-\mu(x,t)}{k} = \sigma \left[\theta \frac{\mu(x+h,t+k)-2\mu(x,t+k)+\mu(x-h,t+k)}{h^2}\right]$$

$$+(1-\theta)\frac{\mu(x+h,t)-2\mu(x,t)+\mu(x-h,t)}{h^2}$$
 + $E(x,t)$

Exercício: Mostre que

$$E(x,t) = \sigma \left[\sigma \left(\frac{1}{2} - \theta \right) k - \frac{h^2}{12} \right] u_{xxxx} + O(k^2 + h^4)$$

Para CN,
$$\theta = \frac{1}{2} \rightarrow E = O(h^2 + k^2)$$

Se
$$\theta = \frac{1}{2} - \frac{h^2}{12\sigma k}$$
 $\Rightarrow E = O(k^2 + h^4)$

Estabilidade (ver QUINNEY)

$$0 \le \theta < \frac{1}{2}$$
, $\frac{\sigma k}{h^2} \le \frac{1}{2-4\theta}$ estavel

$$\frac{1}{2} \leqslant \theta \leqslant 1$$
, Sempre estavel

(aso particular
$$\theta = \frac{1}{2} - \frac{h^2}{12 \, \text{RC}} \rightarrow \frac{1}{2-4\theta} = \frac{3 \, \text{RC}}{h^2} \rightarrow \text{estavel}$$

Equações Elípticas

Equações elípticas podem aparecer na equação do calor em 2D

$$\frac{\partial u}{\partial t} = \sigma \left(u_{xx} + u_{yy} \right)$$

Se existir uma solução estacionária <u>du</u> =0 0 que

leva a [uxx + uyy = 0] eq. de Laplace

fluxo estacionario de calor ou eletricidade.

fluxo irrotacional de un fluido incompressivel

problemas de potencial na eletricidade e magnetismo

são equações de contorno que podem ser de Dirichlet ou de Neumann.

Exemplo: considere a eq. de Laplace no quadrado $0 \le x \le L$, $0 \le y \le L$ com u = 0 nas bordas exceto na linha $0 \le x \le L$, y = 0 onde $u(x,0) = \sin^2 \pi x$. E possível mostrar que a solução exata e

$$\mu(x,y) = -\frac{8}{\pi} \sum_{j=0}^{\infty} \frac{\sinh [(2j-1)\pi (1-y)]}{(4j^2-1)(2j-3)\sinh [(2j-1)\pi]} \sinh [(2j-1)\pi]$$

(VER QUINNEY)

SOLUGÃO NUMÉRICA PARA EQ. DE LAPLACE

Seja
$$0 \le x \le L$$
 $0 \le y \le L$

sujeito às condições de conformo

$$u(x,y) = \begin{cases} f_{1}(x), & y=0 & 0 \le x \le L \\ f_{2}(x), & y=1 & 0 \le x \le L \end{cases}$$

$$\begin{cases} g_{1}(x), & x=0 & 0 \le y \le L \\ g_{2}(x), & x=0 & 0 \le y \le L \end{cases}$$

Em cada ponto substituimos as derivadas por diferenças centrais

$$\frac{u(x+h,y)-2u(x,y)+u(x-h,y)}{h^2}+\frac{u(x,y+h)-2u(x,y)+u(x,y-h)}{h^2}+E=0$$

$$4u(x,y) = u(x+h,y) + u(x-h,y) + u(x,y+h) + u(x,y-h)$$

 $u(x,y) = \frac{1}{4}$

$$U_{ij}^{n+1} = \frac{1}{4} \left[U_{i+1}^{n}, j + U_{i-1,j}^{n} + U_{i,j+1}^{n} + U_{i,j-1}^{n} \right]$$

n → i teração i,j → índices espaciais x, y que corresponde ao método de

152

Pode-se autherer a convergêncie usembo o método de ganss-Seidel

De
$$i=1$$
 ate $N-1$

{ De $j=1$ ate $N-1$

{ Uij \leftarrow (Ui+1, $j+$ Ui-1, $j+$ Ui, $j-1+$ Vi, $j+1$)/4}

ver taubén Numerical Recipes giordano - Comp. Physics

EQUAÇÕES HIPERBÓLICAS

$$u_{tt} = c^2 u_{xx}$$
 eq. da onda

$$\frac{\int_{t}^{2} U_{m}^{n}}{\kappa^{2}} = c^{2} \int_{x}^{2} U_{m}^{n}$$

$$\frac{U_{m}^{n+1} - 2U_{m}^{n} + U_{m}^{n-1}}{k^{2}} = c^{2} \frac{U_{m+1}^{n} - 2U_{m}^{n} + U_{m-1}^{n}}{h^{2}} + E$$

$$E = O(k^{2} + h^{2})$$

estavel se $0 < \frac{R^3C^2}{h^2} \le 1$

3 míveis

$$u(x,0) = \phi(x)$$

$$\frac{\partial u}{\partial x}(x,0) = \psi(x)$$

Taylor
$$u(x,k) = u(x,0) + k \frac{\partial u}{\partial t} + k^2 \frac{\partial^2 u}{\partial t^2}$$

$$U_m^1 = U_m^0 + k \psi(mh) + \frac{k^2}{2} c^2 \phi_{xx}(mh)$$

Nota: A eq. ut Cux = 0 também é hiperbólica e também pode ser discretizada para solução. Ver detalhes, implementações e análice em QUINNEY.