MATH 239 Summary Sheet

Graphs

- $V(G) = \text{set of } \mathbf{vertices} \text{ in the graph } G$
- E(G) = set of edges in the graph G
- "k-regular graph" = every vertex has degree k
- "Complete graph" (K_n) = all vertices are adjacent; i.e. (n-1)-regular
- "Complete bipartite graph" $(K_{m,n})$ = all vertices in one partition are adjacent to all vertices in other partition
- Handshaking Lemma:

$$\sum_{v \in V(G)} deg(v) = 2|E(G)|$$

Paths and Cycles

- Theorem: \exists a walk between u, v in $G \Longrightarrow \exists$ a path between u, v in G
 - Corollary: \exists a path between x, y AND \exists a path between $y, z \implies \exists$ a path between x, z
- Theorem: every vertex in G has degree $\geq 2 \implies G$ contains a cycle

Connectedness

- Fix vertex v in G;
 - \blacksquare \forall vertex w in G, \exists path between $v, w \implies G$ is **connected**
- Let $X \subset V(G)$;
 - "Cut induced by X" = set of edges with exactly one vertex $\in X$
 - **Theorem:** G is <u>not connected</u> $\iff \exists X \text{ such that cut induced by } X \text{ is empty}$
- "Eulerian circuit" = closed walk that contains every edge exactly once
- Theorem: G has Eulerian circuit \iff G is connected AND every vertex has even degree
- Lemma: G is connected AND e is a bridge \implies G-e has exactly 2 components
- Theorem: e is a bridge \iff e is not contained in any cycle
 - Corollary: \exists 2 distinct paths between u, v in $G \implies G$ contains a cycle

Trees

- "Tree" = connected graph with no cycles
- "Leaf" = vertex in a tree with degree 1

- Let T be a tree;
 - Lemma: \exists a unique path between every u, v in T
 - **Lemma:** every edge in T is a bridge
 - Theorem: $T \text{ has } \ge 2 \text{ vertices } \implies T \text{ has } \ge 2 \text{ leaves}$
 - **Theorem:** |E(T)| = |V(T)| 1
- Theorem: G is connected $\iff G$ has a spanning tree
 - Corollary: G is connected AND G has p vertices and q = p 1 edges \implies G is a tree
- Theorem: T is a spanning tree of G AND e is an edge $\notin T \implies T + e$ contains exactly 1 cycle C
 - Also: e' is an edge $\in C \implies T + e e'$ is also a spanning tree of G

Bipartites

- Theorem: all trees are bipartite
- Theorem: G is bipartite \iff G contains no odd cycles

Minimum Spanning Tree

- Prim's Algorithm:
 - lacksquare Begin with a vertex in G and add it to T
 - \blacksquare At each step, find the lowest-weight edge that joins a vertex in T with a vertex not in T
 - \blacksquare Follow this edge and add the vertex to T; repeat

Planarity

• Handshaking Lemma for Faces (Faceshaking Lemma):

$$\sum_{f \in faces} deg(f) = 2|E(G)|$$

• Euler's Formula: let G be a connected graph with p vertices and q edges; if G has a planar embedding with f faces, then

$$p - q + f = 2$$

- Theorem: a graph is planar \iff it can be drawn on the surface of a sphere
- "Platonic graph" = graph whose planar embedding has vertices all with degree $d \ge 3$ and faces all with degree $d^* \ge 3$
- **Theorem:** there are exactly 5 platonic graphs
- Lemma: (d, d^*) pairs are: (3, 3), (3, 4), (4, 3), (3, 5), (5, 3)

• **Lemma:** G is a platonic graph with p vertices of degree d, q edges, and f faces of degree d^* , then:

$$q = \frac{2dd^*}{2d + 2d^* - dd^*} \qquad \qquad p = \frac{2q}{d} \qquad \qquad f = \frac{2q}{d^*}$$

- **Theorem:** if a graph is connected and planar with $p \geq 3$ vertices and q edges, then $q \leq 3p-6$
 - Corollary: a planar graph has a vertex of degree < 6
- Note: K_5 and $K_{3,3}$ are not planar
- Kuratowski's Theorem: G is <u>not planar</u> \iff G contains a edge subdivision of K_5 or $K_{3,3}$
- Theorem: G is 2-colourable $\iff G$ is bipartite
- **Theorem:** K_n is n-colourable
- **Theorem:** every vertex of G has degree $\leq d \implies G$ is (d+1)-colourable
- Four Colour Theorem: every planar graph is 4-colourable

Matchings and Covers

- Lemma: M has an augmenting path $\implies M$ is not a maximum matching
- Lemma: M is a matching of G AND C is a cover of $G \implies |M| \leq |C|$
- Lemma: $|M| = |C| \implies M$ is a maximum matching and C is a minimum cover
- Konig's Theorem: in a bipartite graph, the max size of a matching = min size of a cover