Merge Sort: Counting Inversions ☆

Your Merge Sort: Counting Inversions submission got 45.00 points.

Share

Tweet

×

Ü

Proceed to Interview Preparation Kit

Problem

Submissions

Leaderboard

Editorial A

In an array, arr, the elements at indices i and j (where i < j) form an inversion if arr[i] > arr[j]. In other words, inverted elements arr[i] and arr[j] are considered to be "out of order". To correct an inversion, we can swap adjacent elements.

For example, consider the dataset arr = [2, 4, 1]. It has two inversions: (4, 1) and (2, 1). To sort the array, we must perform the following two swaps to correct the inversions:

$$arr = [2,4,1] \xrightarrow{swap(arr[1],arr[2]) \rightarrow swap(arr[0],arr[1])} [1,2,4]$$

Given $m{d}$ datasets, print the number of inversions that must be swapped to sort each dataset on a new line.

Function Description

Complete the function countlnversions in the editor below. It must return an integer representing the number of inversions required to sort the array. countlnversions has the following parameter(s):

• arr: an array of integers to sort .

Input Format

The first line contains an integer, $oldsymbol{d}$, the number of datasets.

Each of the next d pairs of lines is as follows:

- 1. The first line contains an integer, **n**, the number of elements in **arr**.
- 2. The second line contains $m{n}$ space-separated integers, $m{arr}[m{i}]$

Constraints

- $1 \le d \le 15$
- $1 \le n \le 10^5$
- $1 \le arr[i] \le 10^7$

Output Format

For each of the d datasets, return the number of inversions that must be swapped to sort the dataset.

Sample Input

2

1 1 1 2 2

5

2 1 3 1 2

Sample Output

0

4


```
Explanation
```

```
We sort the following oldsymbol{d}=\mathbf{2} datasets:
```

1. arr = [1, 1, 1, 2, 2] is already sorted, so there are no inversions for us to correct. Thus, we print 0 on a new line.

2.
$$arr = [2,1,3,1,2] \xrightarrow{\text{1 swap}} [1,2,3,1,2] \xrightarrow{\text{2 swaps}} [1,1,2,3,2] \xrightarrow{\text{1 swap}} [1,1,2,2,3]$$

We performed a total of $\mathbf{1}+\mathbf{2}+\mathbf{1}=\mathbf{4}$ swaps to correct inversions.

⊗ Test case 5 🖰		2 1 3 1 2 cted Output	ownload
⊗ Test case 6 🖰	1	0	
	2	4	

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature

