Amostragem e PCM

Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/~edmar.nascimento

Universidade Federal do Vale do São Francisco

Roteiro

Amostragem

Quantização

Introdução

- O processo de digitalização de um sinal analógico consiste em duas etapas básicas: amostragem e quantização
- No processo de amostragem, obtém-se amostras do sinal em instantes de tempo discretos
- Na etapa de quantização, as amostras em tempo discretos obtidas são mapeadas para um alfabeto finito
- O sinal digital consiste então de uma seqüência de símbolos discretos (números)
- Esses números podem ainda ser representados em outros sistemas de numeração como o binário

- O teorema da amostragem estabelece condições para que um sinal analógico possa ser recuperado a partir de suas amostras
- Um sinal g(t) cujo espectro é limitado em banda a B Hz (ou seja, $G(\omega)=0$ para $|\omega|>2\pi B$) pode ser reconstruído a partir de suas amostras se ele for amostrado a uma fregüência f_s superior a 2B Hz
 - $f_s > 2B$ ou $T_s = 1/f_s < 1/(2B)s$
- A prova desse teorema pode ser feita a partir da amostragem de g(t) usando um trem de pulsos $\delta_{\mathcal{T}_s}(t)$ com período \mathcal{T}_s

• O sinal amostrado $\overline{g}(t)$ pode ser escrito como

$$\overline{g}(t) = g(t)\delta_{T_s}(t) = \sum_{n=-\infty}^{\infty} g(t)\delta(t - nT_s)$$

$$= \sum_{n=-\infty}^{\infty} g(nT_s)\delta(t - nT_s)$$

• Como $\delta_{T_s}(t)$ é periódico, a sua expansão em séries de Fourier resulta em

$$\delta_{T_s}(t) = \frac{1}{T_s} [1 + 2\cos\omega_s t + 2\cos2\omega_s t + \cdots]$$

• Assim o sinal amostrado $\overline{g}(t)$ pode ser reescrito como

$$\overline{g}(t) = \frac{1}{T_s}[g(t) + 2g(t)\cos\omega_s t + 2g(t)\cos2\omega_s t + \cdots]$$

• O espectro de $\overline{g}(t)$ denotado por $\overline{G}(\omega)$ é dado então por

$$\overline{G}(\omega) = \frac{1}{T_s} [G(\omega) + G(\omega - \omega_s) + G(\omega + \omega_s) + G(\omega - 2\omega_s) + G(\omega + 2\omega_s) + \cdots]$$

$$= \frac{1}{T_s} \sum_{n = -\infty}^{\infty} G(\omega - n\omega_s)$$

- Para que se possa reconstruir g(t) a partir de $\overline{g}(t)$ é necessário que as réplicas de $G(\omega)$ não se sobreponham, ou seja, que $\omega_s > 2(2\pi B)$ ou $f_s > 2B$
- A taxa mínima de amostragem $f_s = 2B$ é denominada de taxa de Nyquist e o período máximo $T_s = 1/(2B)$ de intervalo de Nyquist

Sinal Amostrado e o seu Espectro

- A reconstrução do sinal analógico é feita a partir de um filtro passa-baixas com banda de passagem igual a B Hz
- Resultados análogos podem ser obtidos considerando outros tipos de amostragem como a natural e a utilizando um segurador de ordem zero
- Na amostragem natural, considera-se um trem de pulsos $\delta_p(t)$ de largura T e amplitude 1/T
- O sinal amostrado é dado por

$$g_s(t) = g(t)\delta_p(t)$$

• Como o sinal $\delta_p(t)$ é periódico, a sua representação no domínio da freqüência pode ser feita em termos da série exponencial de Fourier, ou seja:

$$\delta_p(t) = \sum_{n=-\infty}^{\infty} c_n e^{j\omega_s t}, \quad c_n = \frac{1}{T_s} sinc(\frac{nT}{T_s})$$

Essas expressões resultam em

$$egin{array}{lcl} g_s(t) &=& g(t) \sum_{n=-\infty}^{\infty} c_n e^{j2\pi n f_s t} \ & \ G_s(\omega) &=& \mathcal{F}\Big\{g(t) \sum_{n=-\infty}^{\infty} c_n e^{j\omega_s t}\Big\} = \sum_{n=-\infty}^{\infty} c_n \mathcal{F}\{g(t) e^{j\omega_s t}\} \ &=& \sum_{n=-\infty}^{\infty} c_n G(\omega - n\omega_s) \end{array}$$

Amostragem Natural

- Observa-se que as réplicas do espectro são agora multiplicadas pelos coeficientes c_n
- Pode-se também fazer uma reconstrução aproximada de g(t) através de um filtro segurador de ordem zero
- Aplicando o filtro segurador de ordem, tem-se:

$$h(t) = rect\left(\frac{t}{T_s}\right)$$

$$h(t) * [g(kT_s)\delta(t - kT_s)] = g(kT_s)h(t - kT_s)$$

$$= g(kT_s)rect\left(\frac{t - kT_s}{T_s}\right)$$

$$y(t) = \sum_{k} g(kT_s)rect\left(\frac{t - kT_s}{T_s}\right)$$

- Aproximações melhores podem ser obtidas através de um filtro segurador de ordem 1
- Uma expressão exata para a reconstrução no domínio do tempo podem ser obtidas considerando-se um filtro

$$h(t) = 2BT_s sinc(2\pi Bt) \iff H(\omega) = T_s rect(\frac{\omega}{4\pi B})$$

• Se $T_s = 1/(2B)$, então a reconstrução exata do sinal é dada pela *fórmula de interpolação*

$$g(t) = \sum_{k} g(kT_s)\delta(t - kT_s) * h(t) = \sum_{k} g(kT_s)h(t - kT_s)$$

$$= \sum_{k} g(kT_s)sinc[2\pi B(t - kT_s)]$$

$$= \sum_{k} g(kT_s)sinc(2\pi Bt - k\pi)$$

Reconstrução Aproximada

Reconstrução Exata

Dificuldades na Reconstrução

- Quando se utiliza a freqüência de Nyquist na amostragem, se requer um filtro passa-baixas ideal na reconstrução que é irrealizável
- Quando há uma separação maior entre as bandas (f_s > 2B), então é mais fácil projetar filtros para recuperar o sinal g(t)
- Sendo assim, há um compromisso entre o projeto do filtro e a escolha da freqüência de amostragem
- Outro problema que surge é que os sinais práticos não são limitados em banda
 - Isso significa que as componentes do sinal acima de $\omega_s/2$ são perdidas e também interferem ao mesmo tempo no sinal recuperado
 - Esse fenômeno é conhecido como aliasing ou spectral folding (dobra espectral)

Aliasing

- Várias técnicas podem ser usadas para lidar com esse problema
 - Aumentar a freqüência de amostragem
 - Eliminar uma porção do espectro antes da amostragem (filtro antialiasing) (pré-filtragem)
 - Eliminar a porção comprometida do espectro do sinal amostrado (filtro antialiasing) (pós-filtragem)

Freqüência de Amostragem

Aliasing

Aplicações do Teorema da Amostragem

- Com a amostragem, um sinal contínuo pode ser representado por uma seqüência de números
- Pode-se utilizar o valor das amostras para variar os parâmetros de um trem de pulsos periódico
 - Amplitude (PAM Pulse-Amplitude Modulation)
 - Largura (PWM Pulse-Width Modulation)
 - Posição (PPM Pulse-Position Modulation)
 - PCM Pulse-Code Modulation

Sinais Modulados em Pulso

Sinais Modulados em Pulso

 Com as modulações de pulso, pode-se utilizar a multiplexação por divisão de tempo (TDM)

- Além da amostragem, para obter-se a representação digital de um sinal é necessário quantizá-lo
- Em PCM, as amplitudes s\(\tilde{a}\) arredondadas para um dentre
 L n\(\tilde{v}\) eis discretos (n\(\tilde{v}\) eis quantizados)
- Se o sinal analógico m(t) possui amplitudes na faixa $(-m_p, m_p)$, o tamanho de cada intervalo é dado por:

$$\Delta v = \frac{2m_p}{L}$$

- Cada amostra é aproximada para o ponto médio do intervalo em que ela se encontra
- Um sinal desse tipo é conhecido como um sinal digital L-ário

- Para converter um sinal digital L-ário em um sinal binário
 (2 níveis 0 e 1) pode-se utilizar algum tipo de codificação
 - BCD, Gray, NBC, etc.
- L níveis correspondem a L símbolos que correspondem a log₂ L bits
- Em telefonia, tem-se:
 - $f_{min} = 300Hz$, $f_{max} = 3400Hz$ e B = 3100Hz
 - $f_s = 6,8kHz$, mas na prática escolhe-se $f_s = 8kHz$
 - L = 256 ou 8 bits por amostra
 - R = 64kbps

- Em som com qualidade de CD, tem-se:
 - \bullet B = 15kHz
 - $f_s = 30kHz$, mas na prática escolhe-se $f_s = 44,1kHz$
 - L = 65536 ou 16 bits por amostra
 - *R* = 705, 6*kbps*

Vantagens da Comunicação Digital

- As comunicações digitais apresentam várias vantagens, dentre as quais:
 - Maior robustez (desde que o ruído e distorções estejam dentro de limites)
 - Uso de repetidores regenerativos
 - Hardware digital (microprocessadores, circuitos integrados)
 - Multiplexação mais simples
 - Compromisso entre SNR e largura de banda
 - Armazenamento simples e barato
 - Reprodução sem deterioração
 - Custo do hardware decrescente

Quantização

- O erro na aproximação da amostra m(kT_s) pelo ponto médio do intervalo de quantização gera um erro de quantização
- Seja m(t) o sinal, $m(kT_s)$ a amostra contínua no instante kT_s e $\hat{m}(kT_s)$ a amostra quantizada
- A partir da fórmula de interpolação, tem-se que:

$$m(t) = \sum_{k} m(kT_s) sinc(2\pi Bt - k\pi)$$

$$\hat{m}(t) = \sum_{k} \hat{m}(kT_s) sinc(2\pi Bt - k\pi)$$

 Sendo que m(t) é o sinal reconstruído a partir de suas amostras

Quantização

• Seja $q(t) = \hat{m}(t) - m(t)$, então:

$$q(t) = \sum_{k} [\hat{m}(kT_s) - m(kT_s)] sinc(2\pi Bt - k\pi)$$
$$= \sum_{k} q(kT_s) sinc(2\pi Bt - k\pi)$$

- Em que q(kT_s) é o erro de quantização da k-ésima amostra
- q(t) é chamado de ruído de quantização

Erro de Quantização

A potência do erro é dada por:

$$P_{q} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} q^{2}(t) dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[\sum_{k} q(kT_{s}) sinc(2\pi Bt - k\pi) \right]^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{2BT} \sum_{k} q^{2}(kT_{s})$$

 Esta equação representa a média do quadrado do erro de quantização

Quantização

Erro de Quantização

• Para se calcular P_q , pode-se admitir que o erro é uniformemente distribuído na faixa $(-\Delta v/2, \Delta v/2)$, assim, tem-se:

$$P_q = \frac{1}{\Delta v} \int_{-\Delta v/2}^{\Delta v/2} q^2 dq = \frac{(\Delta v)^2}{12} = \frac{m_p^2}{3L^2}$$

• A potência do ruído de quantização P_q pode ser denotada por N_q (N de noise (ruído em inglês)), assim:

$$N_q = \frac{(\Delta v)^2}{12} = \frac{m_p^2}{3L^2}$$

Erro de Quantização

 A relação sinal ruído pode ser calculada observando-se que:

$$\hat{m}(t) = m(t) + q(t)$$

$$S_o = P_m$$

$$N_o = N_q = \frac{m_p^2}{3L^2}$$

Assim, a SNR é dada por:

$$\frac{S_o}{N_o} = 3L^2 \frac{P_m}{m_p^2}$$

- A relação sinal ruído deveria ser constante, mas ela varia com a potência do sinal
- No caso dos sinais de voz, a SNR é maior para uma voz forte
 - Podem existir variações de até 40dB (10⁴)
- A causa disso é o fato da quantização ser uniforme
 - Intervalos de mesmo tamanho
- A solução é usar um passo de quantização menor para amplitudes maiores, pois $N_q = (\Delta v)^2/12$
- O equivalente de um passo de quantização menor pode ser obtido através da compressão do sinal seguida da quantização uniforme

- A quantização não-uniforme pode ser realizada de duas formas:
 - Usando um quantizador não-uniforme
 - Usando uma curva característica de compressão seguida de um quantizador uniforme

Quantização não Uniforme

- As técnicas de compressão mais conhecidas são conhecidas como lei μ e lei A
- A lei μ para amplitudes positivas é dada por:

$$y = \frac{1}{\ln(1+\mu)}\ln\left(1+\frac{\mu m}{m_p}\right), \quad 0 \le \frac{m}{m_p} \le 1$$

A lei A para amplitudes positivas é dada por:

$$y = \left\{ \begin{array}{c} \frac{A}{1 + \ln A} \left(\frac{m}{m_p} \right), & 0 \le \frac{m}{m_p} \le \frac{1}{A} \\ \frac{A}{1 + \ln A} \left(1 + \ln \frac{Am}{m_p} \right), & \frac{1}{A} \le \frac{m}{m_p} \le 1 \end{array} \right\}$$

Quantização não Uniforme

Quantização não Uniforme

- ullet O nível de compressão é controlado pelo parâmetro μ ou A
- Para alcançar uma SNR constante, o valor de $\mu = 255$ é usado para 256 níveis (8 bits por amostra)
- Para esses valores, a SNR é aproximada por:

$$\frac{S_o}{N_o} \simeq \frac{3L^2}{[\ln{(1+\mu)}]^2}, \quad \mu^2 \gg \frac{m_p^2}{P_m}$$

Taxa Máxima de Informação

- É importante em comunicações digitais conhecer a taxa máxima de informação que pode ser enviada através de um canal com largura de banda de B Hz
- Uma justificativa mais coerente para os resultados mostrados a seguir pode ser dada ao se estudar o efeito da Interferência Intersimbólica
- Em um canal livre de erros, sem ruído e com largura de banda de B Hz podem ser transmitidos no máximo 2B pedaços independentes de informação por segundo
 - Dois pedaços de informação por segundo para cada Hertz de largura de banda
 - Com 2B amostras por segundo é possível reconstruir o sinal amostrado

Largura de Banda

 Para o PCM binário, n bits são associados a L níveis de quantização

$$L = 2^n$$
, $n = \log_2 L$

- Cada amostra é codificada em n bits
- Se m(t) tem banda B, são necessárias 2B amostras para a reconstrução ou 2nB bps (2nB pedaços de informação por segundo)
- Se em 1Hz se pode transmitir 2 pedaços de informação, então para transmitir 2nB pedaços é necessário uma banda teórica mínima de

$$B_T = nBHz$$

Largura de Banda

- A equação anterior é válida para uma amostragem na taxa de Nyquist
- Se a taxa de amostragem é maior que a de Nyquist, então a expressão da largura de banda teórica mínima para a transmissão é

$$B_{min} = \frac{R}{2}$$

- Nessa expressão, R é a taxa de transmissão em símbolos por segundo
- Se a transmissão for binária, então R é dado em bits por segundo

Quantização

Exemplo

Exemplo 6.2

Um sinal m(t) limitado a banda de 3kHz é amostrado em uma taxa $33\frac{1}{3}\%$ superior a taxa de Nyquist. O erro máximo aceitável nas amplitudes das amostras (erro máximo de quantização) é de 0,5% da amplitude de pico m_p . As amostras quantizadas são codificadas em binário. Encontre a largura de banda mínima do canal requerida para transmitir o sinal binário. Se 24 desses sinais são multiplexados no tempo, determine a largura de banda mínima necessária para transmitir o sinal multiplexado.

Exemplo

Solução - Exemplo 6.2

$$f_N = 2 \times 3000 = 6000 Hz$$
 $f_S = 6000 + (1/3)6000 = 8000 Hz$
 $\frac{\Delta v}{2} = \frac{m_p}{L} = 0,5\% m_p \Longrightarrow L = 200$
 $L = 256 \Longrightarrow n = 8bits$
 $R = 8 \times 8000 = 64000 bps$
 $2bits/s/Hz \Longrightarrow B_{min} = R/2 = 32kHz$
 $R_M = 24 \times 64000 = 1,536 Mbps$
 $B_{min(M)} = R_M/2 = 0,768 MHz$

Largura de Banda e SNR

• Para o PCM binário, $L = 2^n \Longrightarrow L^2 = 2^{2n}$ e assim:

$$\frac{S_o}{N_o} = c(2)^{2n} = c(2)^{2B_T/B}$$

Em que:

$$c = \left\{ egin{array}{l} rac{3P_M}{m_p^2}, & {\sf Sem\ compress\~ao} \ rac{3}{[\ln{(1+\mu)}]^2}, & {\sf Com\ compress\~ao} \ \end{array}
ight\}$$

• A SNR cresce exponencialmente com a largura de banda da transmissão B_T

Largura de Banda e SNR

• Em dB, tem-se:

$$\left(\frac{S_o}{N_o}\right)_{dB} = 10 \log_{10} \left(\frac{S_o}{N_o}\right)$$

$$= 10 \log_{10} [c(2)^{2n}]$$

$$= 10 \log_{10} c + 20n \log_{10} 2$$

$$= (\alpha + 6n) dB$$

- Em que $\alpha = 10 \log_{10} c$
- Assim, o aumento de um bit proporciona um aumento de 6dB na SNR (quadruplica)

Exemplo

Exemplo 6.3

Um sinal m(t) com largura de banda de 4kHz é transmitido usando PCM com compressão com parâmetro $\mu=100$. Compare a largura de banda e a SNR quando L=64 e L=256.

Solução - Exemplo 6.3

Para $L = 64 \text{ e } n = 6, B_T = nB = 24kHz$

$$\left(\frac{S_o}{N_o}\right)_{dB} = (\alpha + 36) = 27,49 dB$$

Para $L = 256 \text{ e } n = 8, B_T = nB = 32kHz$

$$\left(\frac{S_o}{N_o}\right)_{dB} = (\alpha + 48) = 39,49 dB$$

Exemplo

Exemplo 6.3

Um sinal m(t) com largura de banda de 4kHz é transmitido usando PCM com compressão com parâmetro $\mu=100$. Compare a largura de banda e a SNR quando L=64 e L=256.

Solução - Exemplo 6.3

Para $L = 64 \text{ e } n = 6, B_T = nB = 24kHz$

$$\left(\frac{S_o}{N_o}\right)_{dB} = (\alpha + 36) = 27,49dB$$

Para $L = 256 \text{ e } n = 8, B_T = nB = 32kHz$

$$\left(\frac{S_o}{N_o}\right)_{dB} = (\alpha + 48) = 39,49dB$$

- Amostras sucessivas são correlacionadas (semelhantes)
- Uma opção é transmitir a diferença entre as amostras em vez da amostra em si
 - Menos bits são necessários
- Esse esquema pode ser aprimorado usando-se estimativas (predições) com base nos valores anteriores
- A diferença entre o valor da amostra e de sua estimativa é dada por:

$$d[k] = m[k] - \hat{m}[k]$$

• A predição $\hat{m}[k]$ pode ser obtida a partir da representação em séries de Taylor de $m(t+T_s)$

$$m(t + T_s) = m(t) + T_s \frac{dm}{dt} + \frac{T_s^2}{2!} \frac{d^2m}{dt^2} + \cdots$$

 $\approx m(t) + T_s \frac{dm}{dt} \quad (T_s \text{ pequeno})$

• Para $t = kT_s$ e simplificando-se a notação $m(kT_s) = m(k)$, tem-se que:

$$m[k+1] = m[k] + T_s \frac{(m[k] - m[k-1])}{T_s} = 2m[k] - m[k-1]$$

- A amostra no instante k + 1 depende das duas amostras anteriores
- No caso geral, quanto maior a quantidade de termos, melhor é a estimativa

$$\hat{m}[k] = a_1 m[k-1] + a_2 m[k-2] + \cdots + a_N m[k-N]$$

 Essa equação representa um preditor linear cujos coeficientes a_j são escolhidos de modo a minimizar algum critério como o erro médio quadrático

No DPCM, transmite-se a diferença quantizada de

$$d[k] = m[k] - \hat{m}_q[k]$$

Ou seja,

$$d_q[k] = d[k] + q[k]$$

• Em que $\hat{m}_q[k]$ representa a estimativa quantizada de m[k], pois o receptor só dispõe da versão quantizada

- O ganho obtido com o DPCM é chamado de ganho de predição
 - Se o mesmo L é usado para PCM e DPCM e mp e dp são os valores de pico, então o ruído de quantização em DPCM é reduzido por um fator de

$$\left(\frac{m_p}{d_p}\right)^2$$

A SNR cresce por um fator de

$$G_p = \frac{P_m}{P_d}$$

 Se a SNR é mantida igual para ambos, o DPCM usa em torno de 3 a 4 bits a menos por amostra

Modulação Delta

- Similar ao DPCM
- Se utiliza 1 bit para codificar a diferença $m[k] \hat{m}_q[k]$ (L=2)
- Para compensar essa baixa resolução, a amostragem é feita em uma taxa superior (sobreamostragem ~ 4f_s
- O preditor é de primeira ordem: $\hat{m}_q[k] = m_q[k-1]$
- No receptor, o sinal é obtido através da soma das diferenças

$$m_q[k] = \sum_{m=0}^k d_q[m]$$

Modulação Delta

Quantização

Modulação Delta

