Experimentalphysik IV Atom-, Molekül- und Festkörperphysik

Vorlesung von Prof. Dr. Giuseppe Sansone im Sommersemester 2019

Markus Österle Damian Lanzenstiel

26. April 2019

Inhaltsverzeichnis

0	Ein	führung	2
	0.1	Wichtige Infos	2
		0.1.1 Programm	2
		0.1.2 Übungen	
		0.1.3 Literatur	2
	0.2	Leistungen	2
1	Qua	antenmechanik	3
	1.1	Grundlagen	3
		1.1.1 Programm Heute	7
	1.2	Drehimpulsoperator	7
		Vektormodell	
	1.4	Experimente: Wasserstoffatom Spektrum	10

Kapitel 0

Einführung

0.1 Wichtige Infos

0.1.1 Programm

- Atomphysik
- Molekülphysik
- Festkörperphysik

0.1.2 Übungen

- Anfang ab dem 06.05. 10.05.
- Übungsblatt 0 zum Einstieg wird nicht bewertet

0.1.3 Literatur

- Demtröder, Ex 3
- Haken-Wolf, Atom und Quantenphysik
- Christopher J. Foot, Atomic Physics
- Messiah Dover, Quantum Mechanics
- B.H. Bransden, Physics of atoms and molecules

0.2 Leistungen

Studienleistung: 50 % der Punkte aller Übungsblätter (kein Kriterium für die Zulassung zur Prüfung)

Prüfungsleistung: 50 % der Punkte und schriftliche Prüfung.

Termine:

Klausur 25.07.19 12-14 Uhr

Kapitel 1

Quantenmechanik

1.1 Grundlagen

i) Wellenfunktion $\Psi(r)$ mit r der Ortsdarstellung

$$P = \int_V |\Psi(\boldsymbol{r})|^2 \,\mathrm{d}\boldsymbol{r} \quad \text{Wahrscheinlichkeit} \qquad \quad \int_V |\Psi(\boldsymbol{r})|^2 \,\mathrm{d}\boldsymbol{r} = 1 \quad \text{Normierungsbedingung}$$

ii) Operatoren \hat{O}

$$\hat{O}\Psi(\mathbf{r}) = \Psi'(\mathbf{r})$$

Korrespondenzprinzip

$$r = \hat{r}$$
 $\hat{r}\Psi(r) = \Psi'(r) = r\Psi(r)$; $\hat{x}\Psi(x) = x\Psi(x) = \Psi'(x)$

$$m{p} = \hat{m{p}}$$
 $\hat{m{p}}\Psi(m{r}) = \Psi'(m{r}) = -i\hbar m{\nabla}\Psi(m{r})$; $\hat{p}_x\Psi(x) = -i\hbar \frac{\mathrm{d}}{\mathrm{d}x}\Psi(x) = \Psi'(x)$

 $\hat{\mathcal{H}}=$ Hamiltonian oder Hamilton-Operator. $\hat{\mathcal{H}}=\hat{\mathcal{H}}(\hat{\pmb{r}},\hat{\pmb{p}})$

$$\hat{\mathcal{H}} = \frac{\hat{p}^2}{2m} + V(\boldsymbol{r}) = -\frac{\hbar^2}{2m} \boldsymbol{\nabla}^2 + V(\boldsymbol{r})$$

iii) Zeitabhängige Schrödinger Gleichung

$$i\hbarrac{\partial}{\partial t}\Psi(m{r},t)=\hat{\mathcal{H}}\Psi(m{r},t)$$

Die klassische Energie sieht so aus:

$$E = \frac{p^2}{2m} + V(\mathbf{r})$$

In der QM dann folgendermaßen:

$$\hat{\mathcal{H}} = \frac{\hat{p}^2}{2m} + V(\boldsymbol{r})$$

Die Zeitunabhängige Schrödinger Gleichung sieht wie folgt aus:

$$\hat{\mathcal{H}}\Psi(m{r})=E\Psi(m{r})$$

Diese Gleichung ist eine Eingenwertgleichung. Der Hamilton Operator liefert also den Energie-Eingenwert E und die Eigenzustände $\Psi(\mathbf{r})$.

Stationäre Zustände

Jeder messbaren Physikalische Größe ist ein Operator \hat{O} zugeordnet. Bei einer physikalischen Messung wir der **Erwartungswert** gemessen: $\langle \hat{O} \rangle = \langle \Psi | \hat{O} | \Psi \rangle$.

$$\langle \hat{O} \rangle = \langle \Psi(\boldsymbol{r}) | \hat{O} | \Psi(\boldsymbol{r}) \rangle = \int \Psi^*(\boldsymbol{r}) \ \underbrace{\hat{O} \ \Psi(\boldsymbol{r})}_{\Psi'(\boldsymbol{r})} \mathrm{d}\boldsymbol{r}$$

$$\langle \hat{O}(t) \rangle = \langle \Psi(\boldsymbol{r},t) | \hat{O} | \Psi(\boldsymbol{r},t) \rangle = \int \Psi^*(\boldsymbol{r},t) \hat{O} \Psi(\boldsymbol{r},t) d\boldsymbol{r}$$

Diese Gleichung können wir wie folgt umformen:

$$\Psi(\boldsymbol{r},t) = \Psi(\boldsymbol{r},t=0) \underbrace{e^{-iEt/\hbar}}_{\text{Phasenfaktor}}$$

$$\begin{split} \langle \hat{O} \rangle &= \int \Psi^*(\boldsymbol{r}, t=0) e^{i E t / \hbar} \hat{O} \Psi(\boldsymbol{r}, t=0) e^{-i E t / \hbar} \mathrm{d}\boldsymbol{r} \\ &= \int \Psi^*(\boldsymbol{r}, t=0) \hat{O} \Psi(\boldsymbol{r}, t=0) \mathrm{d}\boldsymbol{r} \stackrel{*}{=} \langle \hat{O}(t=0) \rangle \end{split}$$

*: wenn \hat{O} nicht Zeitabhängig ist.

Stationäre Zustände

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \hat{\mathcal{H}} \Psi(\mathbf{r}, t) \quad \text{mit} \quad \Psi(\mathbf{r}, t) e^{-iEt/\hbar} \Psi(\mathbf{r}, t = 0)$$

$$\frac{\partial \Psi}{\Psi} = -i \frac{\hat{\mathcal{H}}}{\hbar} \partial t$$

Lösung der DGL mittels Variablen-Trennung

$$\ln\left[\frac{\Psi(\boldsymbol{r},t)}{\Psi(\boldsymbol{r},t=0)}\right] = -\frac{i\hat{\mathcal{H}}t}{\hbar} \quad \Rightarrow \quad \Psi(\boldsymbol{r},t) = e^{-i\hat{\mathcal{H}}t/\hbar}\Psi(\boldsymbol{r},t=0)$$
$$\hat{\mathcal{H}}\Psi(\boldsymbol{r},t=0) = E\Psi(\boldsymbol{r},t=0)$$

Taylor Entwicklung:

$$e^x = e^{-i\hat{\mathcal{H}}t/\hbar} = a\left(\hat{\mathcal{H}}\right)^0 + b\left(\hat{\mathcal{H}}\right)^1 + c\left(\hat{\mathcal{H}}\right)^2 + \dots$$

$$\begin{split} e^{-i\hat{\mathcal{H}}t/\hbar}\Psi(\boldsymbol{r},t=0) &= a\Psi(\boldsymbol{r},t=0) + b\hat{\mathcal{H}}\Psi(\boldsymbol{r},t=0) + c\hat{\mathcal{H}}\cdot\hat{\mathcal{H}}\Psi(\boldsymbol{r},t=0) + \dots \\ &= a\Psi(\boldsymbol{r},t=0) + bE\Psi(\boldsymbol{r},t=0) + cE^2\Psi(\boldsymbol{r},t=0) + \dots \\ &= (a+bE+cE^2+\dots)\cdot\Psi(\boldsymbol{r},t=0) \\ &= e^{-iEt/\hbar}\Psi(\boldsymbol{r},t=0) \end{split}$$

Wir können einen Operator in der e-Funktion schreiben, da diese mit der Taylorentwicklung als Reihe entwickelt werden kann.

iv) Spin (Elektronen)

- ⇒ Wasserstoffatom (Stern-Gerlach)
- ⇒ Helium (Pauli Prinzip)

v) Quantensysteme

- Freies Teilchen, Potentialstufe (Tunneln)
- Harmonischer Oszillator ⇒ Molekülphysik
- Coulomb Potential \Rightarrow Wasserstoffatom

Abbildung 1.1: Darstellung einer Potentialbarriere. Beispiel für den Tunneleffekt eines hindurchfliegenden Teilchens, das eigentlich weniger Energie hat als klassisch nötig wäre um die Barriere zu überwinden. Dieses Bild wurde mit dem LATEXPaket Tikz erstellt.

vi) Kommutatoren

$$\hat{x}: \boldsymbol{p} = \boldsymbol{p}_{x} \qquad [\hat{x}, \hat{p}] = \hat{x}\hat{p} - \hat{p}\hat{x}$$

$$\hat{A}; \hat{B}: \qquad [\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$
Wellenfunktion $\Psi(x)$
$$[\hat{x}, \hat{p}] \Psi(x) = \Psi'(x)$$

$$[\hat{x}, \hat{p}] = \hat{x}\hat{p} - \hat{p}\hat{x} = x \left(-i\hbar\frac{\mathrm{d}}{\mathrm{d}x}\right) - \left(-i\hbar\frac{\mathrm{d}}{\mathrm{d}x}\right)x$$

$$[\hat{x}, \hat{p}] \Psi(x) = \left\{x \left(-i\hbar\frac{\mathrm{d}}{\mathrm{d}x}\right) - \left(-i\hbar\frac{\mathrm{d}}{\mathrm{d}x}\right)x\right\}\Psi(x)$$

$$= x \left(-i\hbar\frac{\mathrm{d}}{\mathrm{d}x}\Psi(x)\right) - \left(-i\hbar\frac{\mathrm{d}}{\mathrm{d}x}\right)x\Psi(x)$$

$$= -i\hbar x\frac{\mathrm{d}\Psi}{\mathrm{d}x} + i\hbar\frac{\mathrm{d}}{\mathrm{d}x}(x\Psi(x))$$

$$= -i\hbar x\frac{\mathrm{d}\Psi}{\mathrm{d}x} + i\hbar x\frac{\mathrm{d}\Psi}{\mathrm{d}x} + i\hbar\Psi(x)\underbrace{\frac{\mathrm{d}x}{\mathrm{d}x}}_{=1}$$

$$= i\hbar\Psi(x) = \Psi'(x)$$

$$[\hat{x}, \hat{p}] = i\hbar \qquad \Rightarrow \quad \text{die zwei Operatore vertauschen nicht !!!}$$

Eigenschaft Kommutator

$$\hat{A};\,\hat{B}$$

$$\Delta A\cdot\Delta B\geq\frac{1}{2}\left|\langle\left[\hat{A},\hat{B}\right]\rangle\right|$$

Abbildung 1.2: Die Wahrscheinlichkeitsverteilung einer Gaußkurve. Der Pfeil soll die Standartabweichung darstellen. Dieses Bild wurde mit dem LATEXPaket Tikz erstellt.

$$\left[\hat{A},\hat{B}\right]$$
 Operator \Rightarrow

$$\begin{split} \langle \left[\hat{A}, \hat{B} \right] \rangle &= \langle \hat{A} \hat{B} - \hat{B} \hat{A} \rangle \\ &= \langle \Psi | \hat{A} \hat{B} - \hat{B} \hat{A} | \Psi \rangle \\ &= \int \Psi^* \left(\hat{A} \hat{B} - \hat{B} \hat{A} \right) \Psi \mathrm{d} \boldsymbol{r} \end{split}$$

 ΔA , ΔB Standardabweichung

$$\sigma_x = P(x) \quad \sigma_x = \left[\int (x - \mu)^2 P(x) dx \right]^{1/2} \qquad \mu = \int x P(x) dx$$

$$\hat{A} = \hat{x}, \ \hat{B} = \hat{p}. \ [\hat{x}, \hat{p}] = i\hbar$$

$$\Delta A \cdot \Delta B \ge \frac{1}{2} \left| \langle \left[\hat{A}, \hat{B} \right] \rangle \right|$$

$$\Delta x \cdot \Delta p \ge \frac{1}{2} \left| i\hbar \right| = \frac{\hbar}{2}$$

Morgen:

Operatoren die vertauschen: Drehimpulsoperator \boldsymbol{l} mit den Komponenten l_x, l_y, l_z und l^2 . Es gilt $\left[l^2, l_z\right] = 0$

$$\Delta l^2 \cdot \Delta l_z \ge 0$$

Man kann also Zustände finden, bei denen $\Delta l^2 = 0$; $\Delta l_z = 0$ sind. Diese Zustände können im Prinzip existieren und verletzen die Unschärferelation nicht! Diese Zustände sind dann gleichzeitig Eigenzustände von l^2 und l_z .

Exkurs: Varianz und Standardabweichung in der Quantenmechanik

Wellenfunktion $\Psi(x)$ mit Wahrscheinlichkeit $P(x) = |\Psi(x)|^2$

$$\mu = \int x P(x) dx = \int x |\Psi(x)|^2 dx$$
$$\sigma = \int x^2 P(x) dx = \int x^2 |\Psi(x)|^2 dx$$

Die Varianz ist definiert als:

$$\sigma^2 = \int (x - \mu)^2 P(x) dx = \int (x^2 + \mu^2 - 2\mu x) P(x) dx$$

$$= \int x^2 P(x) dx + \mu^2 \int P(x) dx - 2\mu \int x P(x) dx$$

$$= \int x^2 P(x) dx + \mu^2 - 2\mu \mu = \int x^2 P(x) dx - \mu^2$$

$$= \langle x^2 \rangle - \langle x \rangle^2$$

Programm Heute

- Drehimpulsoperator
- Kugelflächenfunktionen (Wasserstoffatom)
- Vektormodell (klassische Darstellung)
 Macht es leichter z.B. die Wechselwirkung zwischen Drehimpulsoperator und Magnetfeld zu verstehen. Dieses klassische Modell macht voraussagen über die QM.
- Experimente (Spektrum des Wasserstoffatoms)
- Schrödinger Gleichung des Wasserstoffatoms

1.2 Drehimpulsoperator

$$egin{aligned} m{r} &\Rightarrow \hat{m{r}} = m{r} \ m{p} &\Rightarrow \hat{m{p}} = -i\hbarm{
abla} \ m{l} &\Rightarrow \hat{m{l}} = m{r} imes (-i\hbarm{
abla}) = -i\hbarm{r} imes m{
abla} \end{aligned}$$

 $\boldsymbol{l} = \boldsymbol{r} \times \boldsymbol{p} = \boldsymbol{r} \times m\boldsymbol{v}$

$$\hat{\boldsymbol{l}} = -i\hbar \begin{pmatrix} \boldsymbol{u}_x & \boldsymbol{u}_y & \boldsymbol{u}_x \\ x & y & z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{pmatrix} = -i\hbar$$

$$l_{x} = -i\hbar \left\{ y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right\}$$

$$l_{y} = -i\hbar \left\{ z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right\}$$

$$l_{z} = -i\hbar \left\{ x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right\}$$

$$[l_x, l_y] = l_x l_y - l_y l_x \neq 0$$

Vertauschungsregeln

$$\begin{split} [l_x,l_y] &= i\hbar l_z \\ [l_y,l_z] &= i\hbar l_x \\ [l_z,l_x] &= i\hbar l_y \end{split}$$

Das Betragsquadrat berechnet sich wie folgt: $l^2=l_x^2+l_y^2l_z^2$

Vertauschungregeln

$$\lceil l^2, l_x \rceil = \lceil l^2, l_y \rceil = \lceil l^2, l_z \rceil = 0$$

Wir werden bevorzugt l_z verwenden.

Die Eigenzustände von l_z

$$l_z = -i\hbar \left\{ x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right\} = -i\hbar \frac{\partial}{\partial \varphi}$$

 $l_z \Rightarrow$ Drehung um die z-Achse

Wir suchen die Operatoren $\Phi(\varphi)$. Hierzu stellen wir eine Eigenwertgleichung auf und lösen diese.

$$\begin{split} l_z\Phi(\varphi) &= m\hbar\Phi(\varphi) \quad \Rightarrow \quad -i\hbar\!\!\!/\frac{\partial}{\partial\varphi}\Phi(\varphi) = m\hbar\!\!\!/\Phi(\varphi) \quad \Rightarrow \quad \frac{\partial\Phi}{\Phi} = im\partial\varphi \\ \int \frac{\partial\Phi}{\Phi} &= \int im\partial\varphi \quad \Rightarrow \quad \Phi(\varphi) = ae^{im\varphi} \end{split}$$

Aufgrund der Definition von φ erwarten wir, dass unsere Funktion bei den Winkeln φ_0 und $\varphi_0 + n \cdot 2\pi$ $(n \in \mathbb{Z})$ gleich sind. $\Phi(\varphi_0) = \Phi(\varphi_0 + 2\pi)$

$$\Rightarrow \oint de^{im\varphi_0} = de^{im\varphi_0}e^{im2\pi} \Rightarrow e^{im2\pi} = 1$$

$$m = 0$$

$$m = 1 \Rightarrow e^{i2\pi} = 1!$$

$$m = 2 \Rightarrow e^{i4\pi} = 1!$$

$$m = -1 \Rightarrow e^{-i2\pi} = 1!$$

$$m = -2 \Rightarrow e^{-i4\pi} = 1!$$

$$m = 0, \pm 1, \pm 2, \pm 3, \dots$$

m = Magnetische Quantenzahl

 \Rightarrow Zeemann Effekt

$$l_x \Phi(\varphi) = m\hbar \Phi_m(\varphi) \qquad \Phi_m(\varphi) = ae^{im\varphi}$$

$$\int_0^{2\pi} d\varphi \Phi_m^*(\varphi) \Phi_m(\varphi) = 1 \quad \Rightarrow \quad a = \frac{1}{\sqrt{2\pi}}$$

$$\Phi_m(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi}$$

Eigenzustände l^2

$$\begin{cases} l^2 \mathcal{Y}_{l,m}(\theta,\varphi) = l(l+1)\hbar^2 \mathcal{Y}_{l,m}(\theta,\varphi) \\ l_z \mathcal{Y}_{l,m}(\theta,\varphi) = m\hbar \mathcal{Y}_{l,m}(\theta,\varphi) \end{cases}$$

 $\hat{l^2}=l^2,\,\hat{l_z}=l_z;$ beide Ausdrücke sind Operatoren, auch wenn sie ohne Dach geschrieben werden.

Operatoren $\hat{A}\rho(\mathbf{r}) = a\rho(\mathbf{r})$ \Rightarrow Eigenzustände und Eigenwerte.

m = magnetische Quantenzahll = Drehimpuls Quantenzahl

$$\mathcal{Y}_{l,m}(\theta,\varphi) \propto e^{im\varphi} P_l^m(\cos(\theta)) \cdot a$$

 P_l^m sind die **Legendre Polynome**.

Wir haben bereits gesehen, dass $m=0,\pm 1,\pm 2,\dots \in \mathbb{Z}$ und $l=0,1,2,\dots \in \mathbb{N}$ sein müssen. Es gilt $-l\leq m\leq l$.

Also
$$m = -l, m = -l + 1, m = -l + 2, \dots, m = 0, \dots, m = l - 2, m = l - 1, m = l$$

$$\int d\Omega \mathcal{Y}_{l,m}^*(\theta, \varphi) \mathcal{Y}_{l,m}(\theta, \varphi) = \delta_{ll'} \delta_{mm'} \qquad d\Omega = \sin \theta d\theta d\varphi$$

$$\begin{aligned} l' &= l \\ m' &= m \end{aligned} \Rightarrow \int d\Omega |\mathcal{Y}_{l,m}(\theta, \varphi)|^2 = 1$$

$$l' &= l \Rightarrow \delta_{ll'} = 0 \Rightarrow \int d\Omega \mathcal{Y}_{0,m}^*(\theta, \varphi) \mathcal{Y}_{0,m}(\theta, \varphi) = 0$$

Kugelflächenfunktionen

$$l=0, m=0 \Rightarrow$$

$$\mathcal{Y}_{0,0}(\theta,\varphi) = \frac{1}{\sqrt{4\pi}}$$

$$l = 1, m = -1$$

$$\mathcal{Y}_{1,-1}(\theta,\varphi) = \sqrt{\frac{3}{8\pi}} \underbrace{\sin \theta}_{P_I^m(\cos \theta)} e^{-i\varphi}$$

$$l = 1, m = 0$$

$$\mathcal{Y}_{1,0}(\theta,\varphi) = \sqrt{\frac{3}{4\pi}}\cos\theta$$

$$l = 1, m = 1$$

$$\mathcal{Y}_{1,0}(\theta,\varphi) = \sqrt{\frac{3}{8\pi}}\cos\theta e^{i\varphi}$$

[Folie: Betragsquarat der Kugelflächenfunktionen] (Darstellung der Elektronen-Orbitale)

 $\mathcal{Y}_{l,m}(\theta,\varphi)$

$$l = 0 \Rightarrow b - \text{Obrital}$$

 $l = 1 \Rightarrow p - \text{Obrital}$

$$l=2 \Rightarrow d-\text{Obrital}$$

$$l = 3 \implies f - \text{Obrital}$$

1.3 Vektormodell

Die Kugelflächenfunktionen sind die Eigenzustände von l^2 und l_z und liefern die Eigenwerte $l(l+1)\hbar^2$ und $m\hbar$.

Die Länge von \boldsymbol{l} ist $\sqrt{l(l+1)\hbar^2}$, die von der z-Komponente l_z ist $m\hbar$.

Klassisch wissen wir z-Komponente und Länge |l| und müssen für die anderen beiden Komponenten zurück zur QM.

$$\langle l_x \rangle = \langle \mathcal{Y}_{l,m}(\theta,\varphi) | l_x | \mathcal{Y}_{l,m}(\theta,\varphi) \rangle = \int \mathcal{Y}_{l,m}^*(\theta,\varphi) l_x \mathcal{Y}_{l,m}(\theta,\varphi) \stackrel{*}{=} 0$$

(*) kann mathematisch gezeigt werden, ist aber nicht Tiel der Vorlesung.

Das selbe gilt auch für l_y . $\langle l_y \rangle = 0$ intuitives Modell

$$|\mathbf{l}| = \sqrt{l(l+1)\hbar^2}$$

$$l_z = m\hbar$$

$$\langle l_x \rangle = 0$$

$$\langle l_y \rangle = 0$$

Beispiel:

$$l=2, m=-2, -1, 0, 1, 2$$

$$\Rightarrow |\boldsymbol{l}| = \sqrt{6}\hbar$$

Präzession um die z-Achse hängt von der Quantenzahl m ab.

1.4 Experimente: Wasserstoffatom Spektrum

Präsentation auf Folien: Wasserstoffatom

[Folie: Balmer Series: Wasserstoffatom]

Es gibt verschiedene Zustände im Atom. Man misst das Licht, dass von diesem Atom emittiert wird mit einem Spektrometer. Man erhält Spektrallinien (zunächst einmal die **Balmer Serie**). Beispielsweise die schwarzen Absorptionslinien im Sonnenspektrum oder diskrete Emissionslinien im Wasserstoffspektrum. Die Linien befinden sich im sichtbaren Spektrum und im nahen UV Die Position der Linien führte auf die **Balmer Gleichung**:

$$\lambda = B\left(\frac{m^2}{m^2 - 4}\right)$$

[Folie: Lyman Series: Wasserstoffatom]Später wurde dann die Lyman Serie. Diese Linien sind eher im UV Bereich zu finden. Auch für ihre Positionen konnte eine Gleichung aufgestellt werden.

$$\lambda = \frac{1}{R_H} \left(\frac{m^2}{m^2 - 1} \right)$$

[Folie: Bohrsches Atommodell]

Im Bohrschen Atommodell geht man von festen Umlaufbahnen der Elektronen um den Atomkern aus. Bohr hat eine Quantisierung des Drehimpulses eingeführt als die Stationären Zustände der De-Broglie Wellenlänge der Elektronen.

Mit der Quantisierung der Umlaufbahnen kommt man zu Schlussfolgerung, dass die Energie der Elektronen nicht beliebig sondern diskret ist. Durch die Energie der emittierten Photonen

konnte die **Rydberg-Formel** aufgestellt werden, die die Wellenlängen der Balmer- und der Lyman-Serie beschreibt.

$$\lambda = \frac{hc}{R_y} \left(\frac{m^2 n^2}{m^2 - n^2} \right)$$

[Folie: Rydberg Saal in Lund]

Bild der Originalen Gleichung von Rydman an einer Wand verewigt.

Wie man an der allgemeineren Rydberg-Formel kann man erkennen, dass die Balmer Serie ein Spezialfall für n=2 und die Lyman-Serie ein Spezialfall für n=1 ist.

[Folie: Übergänge zwischen stationären Zuständen]

Alle weiteren bekannten Serien wie: Balmer, Lyman, Paschen, Brackett, und Pfund.

Morgen

- Energie des Wasserstoffatoms
- ullet Korrespondenzprinzip: $({m r} o {m r},\, {m p} o -i\hbar {m
 abla})$ Zeitunabhängige Schrödingergleichung
- Energiezustände und Eigenwerte
- \bullet Drehimpulsoperator \boldsymbol{l} und Kugelflächenfunktionen $\mathcal{Y}_{l,m}(\boldsymbol{\theta},\varphi)$