Sprawozdanie z zajęć laboratoryjnych № 12

Tymoteusz Chmielecki, AGH

27/05/2020

1 Wstęp teoretyczny

1.1 Kwadratury Newtona-Cotesa

1.1.1 Metoda trapezów

Do obliczenia przybliżonej wartości całki można zastosować metodę trapezów. Polega ona na podzieleniu obszaru całkowania na zwiększającą się liczbę trapezów o wierzchołkach znajdujących się w punktach $(x_i,0),(x_i,f(x_i)),(x_{i+1},0)$ oraz $(x_{i+1},f(x_{i+1}))$. Dokładność aproksymacji podwyższa się gdy zwiększamy ilość podprzedziałów. Przybliżenie określamy wzorem:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{N-1} \frac{h}{2} (f(x_i) + f(x_{i+1}))$$
 (1)

gdzie: N - liczba podprzedziałów, $h=\frac{b-a}{N}$ - szerokość podprzedziału, $f(x_i)=a+ih_w$ - wartość funkcji w x_i

1.1.2 Metoda $\frac{3}{8}$

Metoda $\frac{3}{8}$ działa analogicznie do metody trapezów, przy czym f(x) aproksymujemy za pomocą wielomianu 3. stopnia, przechodzącego przez 4 węzły. Tak jak poprzednio dokładność aproksymacji podwyższa się gdy zwiększamy ilość podprzedziałów. Przybliżenie określamy wzorem:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{\frac{N}{3}-1} \frac{3h}{8} (f(x_{3i}) + 3f(x_{3i+1}) + 3f(x_{3i+2}) + f(x_{3i+3}))$$
 (2)

gdzie: N - liczba podprzedziałów (musi być wielokrotnością 3), $h=\frac{b-a}{N}$ - szerokość podprzedziału, $f(x_i)=a+ih_w$ - wartość funkcji w x_i

1.2 Ekstrapolacja Richardsona

Obydwie wcześniej wymienione metody można rozwinąć o ekstrapolację Richardsona, której celem jest poprawienie wyniku. Tworzymy w tym celu trójkątną tablicę:

$$D = \begin{pmatrix} D_{0,0} & 0 & \dots & 0 \\ D_{1,0} & D_{1,1} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ D_{w,0} & Dw, 1 & \dots & D_{w,w} \end{pmatrix}$$

gdzie wartość pierwszego wiersza wypełniamy wartościami wybranej przez nas aproksymacji ze zwiększającą się dokładnością, zaś resztę za pomocą ekstrapolacji. Do ekstrapolacji używamy wzoru:

$$D_{w,k} = \frac{4^k D_{w,k-1} - D_{w-1,k-1}}{4^k - 1} \tag{3}$$

2 Numeryczne szacowanie całki z kwadraturami Newtona-Cotesa

2.1 Zadanie

Funkcję z której liczymy całkę określamy jako:

$$f(x) = \ln(x^3 + 3x^2 + x + 0.1)\sin(18x) \tag{4}$$

Określamy również wartość parametru

$$w = 8$$

W pierwszym kroku obliczamy wartość całki

$$I = \int_{0}^{1} f(x)dx \ (= -0.186486896) \tag{5}$$

stosując ekstrapolację Richardsona w połączeniu z metodą trapezów, w następnym zaś z metodą $\frac{3}{8}$. Wypełniamy pierwszy wiersz macierzy trójkątnej wg wzoru (1):

$$D_{w,0} = \sum_{i=0}^{N-1} \frac{h_w}{2} (f(x_i) + f(x_{i+1}))$$
 (6)

gdzie: $N=2^w$, $h_w=\frac{b-a}{N}$ Następnie postępujemy analogicznie dla metody $\frac{3}{8}$, wypełniając pierwszy wiersz wg. wzoru (2):

$$D_{w,0} = \sum_{i=0}^{N-1} \frac{h}{2} (f(x_i) + f(x_{i+1}))$$
(7)

Dla obydwu metod kończymy poprzez ekstrapolację reszty wartości macierzy wg. wzoru (3).

2.2 Wyniki

Do wykonania zadania użyto programu napisanego w języku C. Do operacji na macierzach użyto biblioteki GSL. W pierwszej tabelce widzimy wyniki dla metody trapezów.

Metoda trapezów		
w	$D_{w,0}$	$D_{w,w}$
0	-0.6117694336	-0.6117694336
1	-0.2257981458	-0.0971410499
2	0.2498393627	0.4420869488
3	-0.1032662652	-0.2741156969
4	-0.1668213661	-0.1842337842
5	-0.1816363823	-0.1864995993
6	-0.1852783076	-0.1864868809
7	-0.1861850002	-0.1864868960
8	-0.1864114378	-0.1864868960

Table 1: Wartości elementów $D_{w,0}$ i $D_{w,w}$ obliczone przy użyciu metody trapezów z ekstrapolacją Richardsona

Figure 1: Wartości aproksymacji metodą trapezów, ekstrapolacji Richardsona i wartość całki

Tutaj widzimy nałożone na siebie wykresy wyników metody trapezów, ekstrapolacji Richardsona i analitycznie obliczonej wartości całki. Analogicznie w drugiej tabelce wartości metody $\frac{3}{8}$

Metoda $\frac{3}{8}$		
w	$D_{w,0}$	$D_{w,w}$
0	-0.3058917219	-0.3058917219
1	-0.0043287659	0.0961922194
2	-0.2011329205	-0.2909294070
3	-0.1871546737	-0.1750690029
4	-0.1865258214	-0.1867704777
5	-0.1864892885	-0.1864853061
6	-0.1864870449	-0.1864868979
7	-0.1864869053	-0.1864868960
8	-0.1864868966	-0.1864868960

Table 2: Wartości elementów $D_{w,0}$ i $D_{w,w}$ obliczone przy użyciu metody $\frac{3}{8}$ z ekstrapolacją Richardsona

Figure 2: Wartości aproksymacji metodą $\frac{3}{8}$, ekstrapolacji Richardsona i wartość całki

Podobnie jak na wykresie powyżej widzimy nałożone na siebie wykresy wyników metody $\frac{3}{8}$, ekstrapolacji Richardsona i analitycznie obliczonej wartości całki.

W obydwu przypadkach łatwo odczytać z wykresu i z wyników z tabel, że przybliżenia bez ekstrapolacji są już bardzo bliskie faktycznej wartości całki (5). W przypadku metody trapezów mówimy tu o różnicy rzędu 10^{-5} , zaś dla metody $\frac{3}{8}$ wynik pokrywa się dokładnie do 10 miejsca po przecinku. Stosując ekstrapolację Richardsona dla obydwu metod po 7 iteracjach dochodzimy już do wyniku pokrywającego się dokładnie z wartością analityczną całki.

3 Wnioski

Aproksymacja całki przy pomocy metody trapezów lub $\frac{3}{8}$ daje możliwość otrzymania poprawnych wyników. Pokryły się one z wartościami oczekiwynami, z małą różnicą dla metody trapezów. Dodanie do tych metod ekstrapolacji Richardsona pozwoliło na bardzo dokładne oszacowanie pokrywające się do 10 miejsc po przecinku w obydwu przypadkach. Warto zaznaczyć, że w tym zadaniu dostaliśmy ustaloną liczbę wierszy w macierzy Richardsona. W normalnym przypadku należałoby zbadać zbieżność metody i skończyć algorytm gdy wartości ekstrapolacji przestają się zmieniać.