Trivalley Bike Store Predictive Analytics

Content

Business Case: Analysis of Trivalley bike store's data and build a

- Classification model to predict whether a customer will buy a bike
- Regression model to predict a customer's Average monthly spending in the bike store

Data Acquisition: Bike store dataset was obtained in CSV format

Data Visualization: Descriptive Statistics using Tableau

Exploratory Data Analysis and Predictive Analysis done using Azure ML and Python

Data Preparation: Clean all noise, missing data (Qualitative and Quantitative analysis)

Exploratory Data Analysis: Find the most impacting features on dependent variable and find linear correlation between variables

Predictive Analysis with Machine Learning: Find the suitable machine learning algorithm, train, score and evaluate the prediction model

Data Visualization - Tableau

Tableau is an interactive data visualization tool used for Exploratory Data Analysis (EDA), where charts/graphs are plotted for dimensions (qualitative values) against measures (quantitative values) and dependent variables (readmit30) to get insights and understand their data. Exploratory Data Analysis (EDA) is an approach to analyzing datasets to summarize their statistical characteristics, often with visual methods.

Tableau is quick, simple, user-friendly, intuitive, can handle lot of data, provide statistical calculations on datasets

EDA:

- ☐ Get a better understanding of data that may not be analyzed by standard data science algorithms.
- Understanding data patterns that may be skipped by typical machine learning algorithms.
- Drawing charts and graphs for better understanding from different angles and projects the results.
- To get a better understanding of the problem statement, visually.
- ☐ To find the hidden trends and relationship between variables.
- Assess and validate your assumptions on the variables, whether the variables help answer business problem or not.
- ☐ Screen for noise variables, missing data, outliers, etc. Find which variables need imputation, preprocessing

Tableau

Chart Views

- Text tables
- 2. Heat maps
- 3. Highlight tables
- 4. Symbol maps
- 5. Maps
- 6. Pie charts
- 7. Horizontal bars
- 8. Stacked bars
- 9. Side-by-side bars
- 10. Tree maps
- 11. Circle views
- 12. Side-by-side circles
- 13. Lines (continuous)
- 14. Lines (discrete)
- 15. Dual lines
- 16. Area charts (continuous)
- 17. Area charts (discrete)
- 18. Dual combination
- 19. Scatter plots
- 20. Histogram
- 21. Box and whisker plots
- 22. Gantt
- 23. Bullet graphs
- 24. Packed bubbles

Data Pane, Marks card and Worksheet

Countries Vs Bike owners

Country Region Name

Top 10 cities with more Bike owners

City

Top 10 State Province with Bike owners

State Province Name

Country Vs Bike Buyer, Education

Avg. Monthly spending Vs Bike Buyer, City, Marital Status

Occupation Vs No. of cars, bikes owned

Occupation influences the number of car and bike buyers. Professionals buy more cars and bikes than other occupations.

Age Vs Bike buyer, Gender

More male bike owners than female bike owners. Most bikes are bought between 40 to 70 years.

Avg monthly spend Vs Bike buyer, Gender

Men spend more on bikes, than women.

Married people spend less on bikes, than single people.

Bike buyer Vs No. Children at home, Yearly Income

People with high yearly income have more children, but people with 0 children buy most bikes

Total Children Vs Avg month spend, Yearly Income, Home Owner flag

People with more children have high annual income and spend more monthly in bike store. Also people owns a house spend more monthly in bike store, even if they have the same number of children.

Features Vs Bike buyer status

Single, men, people in 50's buy more bikes

Features Vs Avg monthly spending

Men, married people, people who buy more bikes, people with more children at home, spend more monthly in bike store

Data Preparation

Total number of features = 26 **Total number of records** = 16519

No duplicate values found

Missing values

Title MiddleName Suffix AddressLine2

All the missing values are noise variables - ignore them

Convert DateBirth to Age, added Age as a feature to dataset

Binary/ Boolean

BikeBuyer, HomeOwnerFlag: (0,1)

Exploratory Data Analysis (EDA)

The Features (i.e., Variables) are segregated into three categories:

Dependent Variable (Y): Variable that is being measured in the experiment. It changes as a result of the changes to the independent variables. Y values to predict:

Y: BikeBuyer Status - Classification model

Y: AveMonthSpend – Regression model

Noise: Variable that does not affect the dependent variable.

Independent Variable or Predictor Variable (X): Variable whose change isn't affected by any other variable in the experiment.

Independent variable is the cause, and dependent variable is the effect.

Exploratory Data Analysis - continued

Noise variables

- □ Customer ID
- ☐ Title
- □ FirstName
- MiddleName
- □ LastName
- ☐ Suffix
- □ AddressLine1
- □ AddressLine2
- PhoneNumber
- BirthDate

Independent Variables

- □ AveMonthSpend
- ☐ City
- ☐ StateProvinceName
- □ CountryRegionName
- □ PostalCode
- □ Age
- □ Education
- □ BikeBuyer

- Occupation
- ☐ Gender
- □ MaritalStatus
- □ HomeOwnerFlag
- NumberCarsOwned
- □ NumberChildrenAtHome
- □ TotalChildren
- ☐ YearlyIncome

Exploratory Data Analysis - Azure ML

- Qualitative and Quantitative analysis
- Find features impacting Y (BikeBuyer Status, AveMonthSpend)
- Find linear relationship between numeric variables
- Edit Metadata specify/modify new datatype for the column(s)
- Split data divide dataset into two distinct sets. Use random data, 70% for training and 30% for testing
- Train model using suitable Azure ML algorithm
- Score model generate predictions using a trained classification or regression model Classification model – gives probability of the predicted value Regression model - generates the predicted numeric value
- Evaluate model measure the accuracy of a trained model using metrics

Azure Predictive model

Performance metrics - Classification model

☐ Accuracy measures the proportion of correctly classified results from the total number of cases.
☐ Precision is the proportion of true results over all positive results.
☐ Recall is the ability of a model to detect all positive results.
☐ F-score is the weighted average of precision and recall, where the ideal F-score value is 1.
□ AUC (Area Under Curve) measures the area under the curve plotted with true positives on y axis
and false positives on x axis.
☐ True Positives (TP) are the instances in which the model <i>correctly</i> predicted a <i>positive</i> results.
☐ True Negatives (TN) are the instances in which the model correctly predicted a negative result.
☐ False Positives (FP) are the instances in which the model incorrectly predicted a positive result
FP: Type 1 error
☐ False Negatives (FN) are the instances in which the model incorrectly predicted a negative result (
FN: Type 2 error

Performance metrics - Classification model

Two-Class Bayes point machine and Two-Class Boosted Decision Tree algorithms are trained, scored and evaluated.

Two-Class Boosted Decision Tree algorithm has the best performance metrics.

Results show high accuracy (78.2%), high precision (71.9%) values.

ROC Curve – Classification model

ROC (Receiver Operating Characteristic) curve describes the binary classifier model's performance.

This plot is most useful when the dataset is balanced.

The ideal plot should arc close to the top-left corner of the chart.

Performance metrics - Regression model

Mean absolute error (MAE) measures how close the predictions are to the actual outcomes;
thus, a lower score is better.
Root mean squared error (RMSE) is the square root of the mean of the square of all of the error.
is always non-negative, and a value of 0, would indicate a perfect fit to the data. RMSI
values between 0.2 and 0.5 shows that the model can relatively predict the data accurately.
Relative absolute error (RAE) is the relative absolute difference between expected and actual
values
Relative squared error (RSE) normalizes the total squared error of the predicted values by
dividing by the total squared error of the actual values.
Coefficient of determination, often referred to as R ² , represents the predictive power of the
model as a value between 0 and 1. Zero means the model is random (explains nothing); 1 means
there is a perfect fit.

Performance metrics—Regression model

Trivalley Bike Store - Predictive Analytics > Evaluate Model > Evaluation results

4	M	0	t	FI.	0	e
	1 4 1	C	'n.		Ŀ	Ç,

Mean Absolute Error	1.56714
Root Mean Squared Error	2.027632
Relative Absolute Error	0.076098
Relative Squared Error	0.005581
Coefficient of	0.994419
Determination	

▲ Error Histogram

Me	ean Absolute Error	2.554118
Ro	ot Mean Squared Error	3.21582
Re	lative Absolute Error	0.124023
Re	lative Squared Error	0.014038
500	efficient of	0.985962

Error Histogram

Neural Network Regression and Boosted Decision Tree Regression algorithms are trained, scored and evaluated.

Neural Network Regression algorithm has the best performance metrics with R² value 99.4% and RMSE 2.02

Chi-Squared Test Analysis - BikeBuyer

Chi-squared test is a statistical method that measures how close expected values are to actual results.

Top 5 impacting features on BikeBuyer: NumberChildrenAtHome, AveMonthSpend, Age, YearlyIncome,

NumberCarsOwned

Bottom 3 impacting features on employee retention: HomeOwnerFlag, CountryRegionName, StateProvinceName

Independent variable	Chi-squared test value
NumberChildrenAtHome	3647.0139
AveMonthSpend	2957.0945
Age	1946.4329
YearlyIncome	1405.7185
NumberCarsOwned	1201.2517
TotalChildren	1041.8744
MaritalStatus	614.4861
Occupation	542.3577
Postalcode	381.5548

Linear Correlation Tests Analysis - BikeBuyer

The correlation coefficient \mathbf{r} measures the strength and direction of a linear relationship between two variables. r is always between +1 (Strong positive) and -1 (Strong negative).

Strong correlation: r > 0.7, Moderate correlation: 0.6 to 0.4, Weak correlation: r < 0.4

Top 2 features that have moderate linear relationship with **BikeBuyer status**: NumberChildrenAtHome, AveMonthSpend. All other correlations are weak (< ±0.3)

Independent Variable	R (Independent variable, BikeBuyer)
NumberChildrenAtHome	0.456377
AveMonthSpend	0.421783
YearlyIncome	0.28708
TotalChildren	0.233467
NumberCarsOwned	0.164751
Age	-0.137715
HomeOwnerFlag	0.000552

Chi-Squared Test Analysis - AveMonthSpend

Chi-squared test is a statistical method that measures how close expected values are to actual results.

Top 5 impacting features on BikeBuyer: NumberChildrenAtHome, YearlyIncome, Gender, TotalChildren,

NumberCarsOwned

Bottom 3 impacting features on employee retention: CountryRegionName, HomeOwnerFlag, StateProvinceName

Independent variable	Chi-squared test value
NumberChildrenAtHome	10821.3795
YearlyIncome	9234.7757
Gender	8651.7349
TotalChildren	5025.7259
NumberCarsOwned	3876.6647
Occupation	3708.4833
PostalCode	3545.5967
Age	3097.4688
City	3042.6127

Linear Correlation Analysis - AveMonthSpend

The correlation coefficient **R** measures the strength and direction of a linear relationship between two numeric variables. R is always between +1 (Strong positive) and –1 (Strong negative).

Top 3 features that have strong/moderate linear relationship with **AveMonthSpend**: NumberChildrenAtHome, YearlyIncome, TotalChildren

All other correlations are moderate or weak

Independent Variable	R (Independent variable, AveMonthSpend)
NumberChildrenAtHome	0.730421
YearlyIncome	0.607616
TotalChildren	0.500159
BikeBuyer	0.421783
NumberCarsOwned	0.34667
HomeOwnerFlag	0.134242
Age	0.014858

Exploratory Data Analysis - Python

Python has open-source libraries that can automate the whole process of Exploratory Data Analysis and save a lot of time. Some of these popular EDA libraries are:

- ❖ **Autoviz** performs automatic visualization of any dataset with one line
- ❖ Pandas Profiling generates interactive HTML reports and describes various aspects of the dataset. Key functionalities include handling missing values, statistics of dataset like mean, mode, median, skewness, standard deviation etc., charts like histograms.
- Sweetviz generates visualizations which is useful in exploratory data analysis with just a few lines of codes. The library can be used to visualize the variables and comparing the dataset.
- ❖ Pycaret is an end-to-end machine learning and model management tool that speeds up the experiment cycle exponentially and makes you more productive.
- ❖ H2O supports the most widely used statistical & machine learning algorithms with AutoML functionality that automatically runs through all the algorithms and their hyperparameters to produce a leaderboard of the best models.

AutoViz EDA

Trivalley Bike Store Analytics

Pandas Profiling EDA

Trivalley Bike Store Analytics

Sweetviz EDA (Classification model)

Sweetviz EDA (Regression model)

Pycaret EDA (Classification model)

Random Forest Classifier is the best classification model with best performance metrics

Pycaret EDA (Regression model)

Decision Tree Regressor is the best regression model with best performance metrics

H2O EDA (Classification model)

The current version of AutoML in H2O, trains and cross-validates a default Random Forest, an Extremely-Randomized Forest, a random grid of Gradient Boosting Machines (GBMs), a random grid of Deep Neural Nets, a fixed grid of Generalized Linear Model (GLMs), and then trains two Stacked Ensemble models at the end.

The H2O AutoML interface is designed to have as few parameters as possible so that all the user needs to do is point to their dataset, identify the response column and optionally specify a time constraint or limit on the number of total models trained.

Maxi	mum Metrics: Maximum metric	s at their	respective	threshold
	metric	threshold	value	idx
0	max f1	0.291442	0.692308	260.0
1	max f2	0.141998	0.792655	346.0
2	max f0point5	0.569330	0.728564	131.0
3	max accuracy	0.569330	0.797546	131.0
4	max precision	0.906448	1.000000	0.0
5	max recall	0.086393	1.000000	390.0
6	max specificity	0.906448	1.000000	0.0
7	max absolute_mcc	0.462732	0.524586	176.0
8	max min_per_class_accuracy	0.265559	0.767890	273.0
9	max mean_per_class_accuracy	0.291442	0.770389	260.0
10	max tns	0.906448	2170.000000	0.0
11	max fns	0.906448	1088.000000	0.0
12	max fps	0.075288	2170.000000	399.0
13	max tps	0.086393	1090.000000	390.0
14	max tnr	0.906448	1.000000	0.0
15	max fnr	0.906448	0.998165	0.0
16	max fpr	0.075288	1.000000	399.0
17	max tpr	0.086393	1.000000	390.0

H2O EDA (Regression model)

```
ModelMetricsRegressionGLM: stackedensemble ** Reported on test data. **
```

MSE: 10.566096627427786 RMSE: 3.2505532802013546 MAE: 2.5662728554957908

RMSLE: 0.05321449189077472

R^2: 0.9857956781174668

Mean Residual Deviance: 10.566096627427786

Null degrees of freedom: 3259

Residual degrees of freedom: 3254 Null deviance: 2427054.4419247042

Residual deviance: 34445.475005414584

AIC: 16951.419683376396

Questions?