Problem 1.

For the context given by the following table:

CONSTRUCT

- 1. All concepts using CbO;
- 2. Diagram of the concept lattice;
- 3. Generator cover of implications and proper premise base of implications;
- 4. Generator basis of association rules with conf $\geq \frac{1}{3}$ and supp $\geq \frac{1}{4}$ (using concept lattice diagram).

	а	b	C	d
1		×	×	×
2	×	×	×	
3		×	×	
4	×			×
5	×	×		×

Solution:

1. CbO

All concepts

• $(\emptyset, \{a, b, c, d\});$

• $(\{1,5\},\{b,d\});$

• $(\{1,4,5\},\{d\});$

• $(1,\{b,c,d\});$

• $({2,5},{a,b});$

• $({2,4,5},{a});$

• $(2,\{a,b,c\});$

• $({4,5},{a,d});$

• $(\{1,2,3,5\},\{b\});$

• $(5, \{a, b, d\});$

- $(\{1,2,3\},\{b,c\});$
- ({1, 2, 3, 4, 5}, {Ø});

2. Concept lattice:

3. Generation cover of implications (MinGen → MinGen"):

- $acd \rightarrow abcd$;
- $cd \rightarrow bcd$;
- $ac \rightarrow abc$;
- $c \rightarrow bc$.

And after simplifications:

- $acd \rightarrow b$
- $cd \rightarrow b$
- $ac \rightarrow b$
- $c \rightarrow b$

After removing duplicates: $c \rightarrow b$.

4. Computed conf and supp:

Finally:

- $0 \rightarrow a$;
- $0 \rightarrow b$:
- $0 \rightarrow d$;
- $b \rightarrow a$;
- $b \rightarrow c$;

- $b \rightarrow d$;
- $d \rightarrow a$;
- $d \rightarrow b$;
- $a \rightarrow b$;
- $a \rightarrow d$.

Problem 2.

Minimum (Duquenne-Guigues) basis of implications has the following form: $\{A \to A'' \mid A \text{ is a pseudointent}\}\$, where pseudointents are defined recursively as follows:

Definition

A subset of attributes P is a pseudointent if

- 1. $P'' \neq P$;
- **2.** $Q'' \subset P \ \forall Q \ \text{s.t} \ Q \subset P$.

	а	b	C	d	е
1	U	٧	t	r	q
2	t	t	q	r	q
3	q	t	q	t	t
4	r	q	q	U	U
5	q	٧	t	r	t

CONSTRUCT:

minimum basis of functional dependencies for the given many-valued context.

Hint: convert the many-valued context to a binary one with the same implications and compute the minimum (Duquennt-Guigues base).

Solution: Let me to convert the many-valued context to a binary one. To get the implication basis it requires to find all the nontrivial implications $A \to A''$, transform them to the minimal form and remove duplicates. So, the implications:

$$a \rightarrow ae \quad b \rightarrow bc \quad bd \rightarrow bcd \quad cd \rightarrow bcd$$

b a C d е X × 2 × × × 3 × × 4 × 5 × 6 × ×

Hence, the basis:

$$a \rightarrow e \quad b \rightarrow c \quad bd \rightarrow c \quad cd \rightarrow b.$$