Sequence divergence in venom genes within and between montane pitviper (Viperidae: Crotalinae: Cerrophidion) species is driven by mutation-drift equilibrium

Ramses Alejandro Rosales-García^{a,*}, Rhett Rautsaw^a, Erich P. Hofmann^{a,b}, Christoph I. Grünwald^{c,d}, Hector Franz-Chavez^{c,d}, Ivan T. Ahumada-Carrillo^{c,d}, Ricardo Ramirez-Chaparro^{c,d}, Miguel Angel De la Torre-Loranca^e, Jason L. Strickland^{a,f}, Andrew J. Mason^{a,g}, Matthew L. Holding^{a,h}, Miguel Borjaⁱ, Gamaliel Castañeda-Gaytanⁱ, Edward A. Myers^a, Mahmood Sasa^j, Darin R. Rokyta^k, Christopher L. Parkinson^{a,*}

^a Department of Biological Sciences, Clemson University, Clemson, SC 29634

^b Science Department, Cape Fear Community College, Wilmington, NC 28401

^c Herp.mx A.C., Colima, Mexico

^d Biodiversa A. C., Chapala, Jalisco, Mexico 45900

^e Instituto Lorancai, Ocotepec, Veracruz, Mexico 24105

f Department of Biology, University of South Alabama, Mobile, AL 36688

 $^{^{\}rm g}$ Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210

^h Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109

ⁱ Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico, 35010

^j Centro Investigaciones en Biodiversidad y Ecología Tropical and Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica

^k Department of Biological Science, Florida State University, Tallahassee, Florida 32306

 $^{^{\}ast}$ Corresponding author: viper@clemson.edu, ramsesr@g.clemson.edu

Figure S1. RSEM results for *C. tzotziolorum*. **A.** Average of the northern population; and **B.** Average of the southern population. (I) barplot of the log ranked expression of toxin genes; (II) pie chart of the percent expression of each toxin family for individual populations and for all the individuals.

Figure S2. Heatmap showing the log TPM expression of toxin families in C. godmani. In the left columns (Pop & SVL) the orange and red colors respectively represent significant differential expression agreement by both DESeq2 and edgeR (FDR < 0.05).

Figure S3. Heatmap showing the log TPM expression of toxins identified as differentially expressed in C. tzotzilorum ordered by the average expression. In the left columns (Pop & SVL) the darker colors represent significant differential expression agreement by both DESeq2 and edgeR (FDR < 0.05).

Figure S4. Heatmap showing the log TPM expression of toxin families in $C.\ tzotzilo-rum$. None of the toxin families were significally differently expressed by both DESeq2 and edgeR (FDR < 0.05), However PLA₂s were differentially expressed in DESeq2 by population, and HYAL, SVMPIII, and VEGF were differentially expressed in DESeq2 by SVL.

Figure S5. Bootstrap pie charts, with 1000 repetitions of the linear model comparing toxins against nontoxins with equal sample size. True in green (p < 0.05) and false in red (p > 0.05).

Figure S6. Bootstrap pie charts, with 1000 repetitions of the linear model comparing toxins against nontoxins with equal sample size. True in green (p < 0.05) and false in red (p > 0.05). A Tajima's D. B F_ST. C Synonymous SNPs Tajima's D. D Nonsynonymous SNPs Tajima's D. E BUSTED model LRT, tested with a non parametric Kruskal Wallis test.

Figure S7. Selection plots. Left: estimates of selection using A Nucleotide Diversity (π) , B Synonymous SNPs Tajima's D, and C Nonsynonymous SNPs Tajima's D for toxins and nontoxins, each with the nontoxin 95th percentile (dotted lines) to identify outlier toxins. The toxin family and the rank based on highest-to-lowest average expression in the transcriptome are displayed for toxins which fall outside the 95th percentile. Right: Linear regressions of the Toxin's mean expression (Average TPM) and estimates of selection including D Nucleotide Diversity (π) , E Synonymous SNPs Tajima's D., and F Nonsynonymous SNPs Tajima's D. For Tajima's D, dotted lines are regressions of all the transcripts (center), just positive values (top) and just negative values (bottom).

Figure S8. Selection plots. Left: estimates of selection using **A** Nucleotide Diversity (π) , **B** Tajima's D, **C** F_{ST} , and **D** BUSTED model LRT for non differentially expressed genes (FALSE) and differentially expressed (TRUE).

Figure S9. Expasy Peptide Cutter Results (https://web.expasy.org/peptide_cutter/) for Cgodm_PLA2_11. The peptide cutter tool was set to identify Chimotrypsin like cleavege residuals with cut of 50 % probability of cleavage.