NSW INDEPENDENT TRIAL EXAMS –2004

MATHEMATICS (2 unit) -HSC TRIAL.

Suggested Solutions

(b)
$$\frac{\alpha - 2(\alpha + 2)}{\alpha^2 - 4}$$

$$\frac{-\alpha - 4}{\alpha^2 - 4}$$

(d)
$$7\frac{1}{2} = 6$$

 $92\frac{1}{2} = 2$

$$\frac{x}{6} = \frac{921}{7}$$

$$x = \frac{874}{7}$$

(e)
$$6x - 2y = 10$$

 $x + 2y = -3$

(1)
$$m_{Ao} = \frac{2}{3}$$

 $-m_{Bo} \cdot m_{Ao} = 1$
 $Ao \perp OB$

(111)
$$m = -\frac{3}{2}$$
.
 $y - 2 = -\frac{3}{2}(\alpha - 3)$

$$3x + 2y - 13 = 0$$

$$(v)$$
 $x=-1:-3+2y-13=0$

(v)
$$AC = \sqrt{(3+1)^2 + (2-8)^2}$$

= $\sqrt{16+36}$
= $\sqrt{52} = 2\sqrt{13}$

$$A = \frac{1}{2} \cdot 0A \cdot (08 + AC)$$

$$= \frac{1}{2} \cdot \sqrt{13} \left(\sqrt{13} + 2\sqrt{13} \right)$$

$$= \frac{39}{2} \text{ units } ^{2}.$$

$$V_8 = P(1 - \frac{r}{100})^7$$

= 1666 x 0.875

(c) (1)
$$\frac{1}{3}e^{3\alpha} + c$$

(1)
$$\left[\tan x - \frac{x^2}{2}\right]^{\frac{\pi}{4}}$$

= $\left(1 - \frac{\pi^2}{4x^2}\right) - \left(0 - 0\right)$

$$= 1 - \pi \frac{1}{32}$$

(1)
$$\angle AOX = \angle CBY$$

$$AD = BC (off sides seet)$$

$$A\widehat{X}O = 90^{\circ} (AX \pm DB)$$

$$sim \quad B\widehat{Y}C = 90^{\circ}$$

$$\angle ADX = \triangle CBY (AAS)$$

(III)
$$AX = CY$$
 (corr sides cong S_0)
(IV) $AX = CY$

(IV)
$$Ax = CY$$

$$AXB = 1CYD = 90^{\circ}$$

$$-'AX//CY (alt L'o =)$$

$$AXCY is a farm$$

$$Pair of off sides = and []$$

(b)
$$BAC = 120^{\circ} (L \text{ am } D = 180^{\circ})$$

$$\frac{12}{8m + 5} = \frac{BC}{8m \cdot 120^{\circ}}$$

$$BC = \frac{12.\sqrt{3}}{16}$$

(c) ABCD Area =
$$\frac{1}{2} 4^2 \theta - \frac{1}{2} 2^2 \theta$$

$$T = 6\theta$$

$$\therefore \theta = \pi/6$$

$$\theta = 30^\circ$$

$$Q = (a)(b) = (5-1)10$$

$$S_{SG}(1) T_{n} = 20 + (n-1) 10$$

$$= 10 m + 10$$

$$(11) S_{n} = \frac{m}{2} (2x20 + (n-1) 10)$$

$$= n(15+5n)$$
$$= 15n+5n^2$$

(10)
$$900 = 16n + 5n^{2}$$

 $n^{2} + 3n - 180 = 0$
 $(n-12)(n+15) = 0$
 $n = 12 (n \neq -15)$
 $n = 12 (n \neq -15)$

(b)
$$\cos^2 \Theta = \frac{1}{2}$$

 $\cos \Theta = \pm \frac{1}{\sqrt{2}}$
 $\Theta = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$

(c)
$$7-2x > 5$$
 $-7+2x > 5$ $-2x > -7$ $2x > 12$ $2x > 12$ $2x > 6$

$$\begin{array}{rcl}
\mathcal{Q}_{6}(a_{j}(0)) & \frac{2}{x} & = 3-x \\
x^{2} - 3x + 2 & = 0 \\
(x - 1)(x - 1) & = 0 \\
x & = 2, 1 \\
\mathcal{F}_{7} & = 1, 1
\end{array}$$

$$\mathcal{Q}_{6}(a_{j}(0)) & \frac{2}{x} & = 3-x \\
x^{2} - 3x + 2 & = 0 \\
(x - 1)(x - 1) & = 0$$

$$x = 2, 1 \\
\mathcal{F}_{7} & = 1, 1$$

$$\mathcal{A}_{7}(1, 1) & \mathcal{B}_{7}(2, 1)$$

$$\begin{array}{rcl}
\mathcal{A} = & \int_{1}^{2} (3 - \alpha - \frac{2}{\alpha}) d\alpha \\
&= & 3\alpha - \frac{\alpha^{2}}{2} - 2 \ln \alpha \int_{1}^{2} \\
&= & \left(6 - \frac{4}{2} - 2 \ln \alpha\right) - \left(3 - \frac{1}{2} - 6\right) \\
&= & \left(\frac{3}{2} - 2 \ln \alpha\right) & \text{unito } \end{array}$$

(le) (1)
$$4y - 12 = -(x^2 - 4x)$$

 $4y - 12 - 4 = -(x^2 - 4x + 4)$
 $4(y - 4) = (x - 2)^2$
- Vertine is $(2, 4)$

(1) Max Val of
$$12-4x-x^2$$

= $4\cdot 4 = 16$
- Mori Val of $x^2+4x-12$
= -16

(c) (d)
$$V = x^{*} \cdot h$$

$$4 = x^{*} \cdot h$$

$$h = 4/x^{*}$$

(11)
$$A = 4xh + x^2$$

$$= \frac{16}{x} + x^2$$

$$= x^2 + 16x^{-1}$$

(III)
$$\frac{dA}{dx} = 2x - 16x^{-2} = 0$$

$$200^{3} = 16$$

$$20 = 2$$

$$\frac{d^2A}{dx^2} = 2 + 16x^3 > 0$$

$$= \frac{1}{2} Mun A$$

$$Mari A = 2^2 + \frac{16}{2}$$

= 12 m²

Q7 (a) (1) 0, 0.1761, 0.3010, 0.3979, 0.4771

(iv)
$$A = 0.5 \{ 0 + 0.4771 + 4(.1761 + .3979) + 2(.3010),$$

= 1.69

(b) (i)
$$P(BB) = \frac{4}{8} \cdot \frac{4}{8} = \frac{1}{4}$$

(ii) $P(\overline{q}\overline{q}) = \frac{5}{8} \cdot \frac{5}{8} = \frac{25}{64}$

(11)
$$P(Diff) = 1 - P(cone)$$

$$= 1 - (4 + 3 \cdot 3 + 4 \cdot 4)$$

$$= 1 - \frac{13}{32} = \frac{19}{32}$$
(14) $P(GG) + P(BB)$

$$= \frac{3}{8} \cdot \frac{2}{7} + \frac{4}{8} \cdot \frac{3}{7}$$

$$= 9$$

$$Q8(a)(0) f'(x) = 6x - 3x^{2}$$

 $3x(2-x) = 0$
 $x = 0, 1$

(11)
$$x = 0 \quad y = 0$$
 (0,0)
 $f''(x) = 6 - 6x$
 $f''(0) = 6 > 0 \quad min \quad TP$
 $x = 2 \quad y = 4 \quad (2,4)$
 $f''(x) = -6 < 0 \quad mox \quad TP$

$$Q86(0) V = -500t + 5t^{2} + c$$

$$12500 = -0 + 0 + c$$

$$... V = 5t^{2} - 500t + 12500$$

$$(11) V = 0 \quad ... t^{2} - 100t + 2500 = 0$$

(ii)
$$V=0$$
 : $t^2-100t+2500=0$
 $(t-50)^2=0$

Empty when
$$t = 50$$
 mins
(11) $t = 0$ dV = $-10(50-0)$

10
$$V = 2500$$
 (20%)
 $t^2 - 100t + 2000 = 0$

$$t = \frac{100 \pm \sqrt{2000}}{2}$$
= 50 ± 10Vs

$$Q_{10}(a_{1})(1) = 6\% g P = .06 \times P$$
.
 $B = P + .06P = 1.06P$
(1) Year 2 - Start of Yn
 $Bal = P + 1.06P$
 $T = 6\% (P + 1.06P)$

End
$$g$$
 B $d = P + 1.06P + 69.69 (P + 1.06P) (b) (c) $v = 1 + 2\cos t$
 $= (P + 1.069) (1.06)$ (1) $1 + 2\cos t = 0$
 $B = P(1.06) (1.06 + 1)$ $\cos t = -1$$

Sim yr3
$$B = P(1.06)(1.06^2 + 1.06 + 1)$$

(11) 25yo $B = P(1.06)(1.06^{24} + - + 1.06 + 1)$
 $500000 = P(1.06)((1.06)^{25} - 1)$
 $1.06 - 1$

1.06. { 1.06 25-1}

$$Qq(a) V = \pi \int_{e^{+\alpha}}^{3} e^{+\alpha} d\alpha$$

$$= \pi \frac{e^{+\alpha}}{4} \int_{1}^{3}$$

$$= \frac{\pi}{4} \left(e^{12} - e^{4} \right)$$

$$(b) (1) Wo = 800$$

$$1200 = 800 e^{3k}$$

$$e^{3k} = 1.5$$

$$3k = \ln 1.5$$

$$k = 0.135$$

(c)
$$\frac{1+\frac{\cos\theta}{\sin\theta}}{\sin\theta} = \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\cos\theta}$$

$$= \sin\theta + \cos\theta - \frac{\cos\theta}{\sin\theta}$$

$$= \sin\theta + \cos\theta - \frac{\sin\theta}{\cos\theta}$$

$$= \sin\theta + \cos\theta - \sin\theta$$

Q'10.
(b)(c)
$$v = 1 + 2c\omega t$$

(1) $1 + 2c\omega t = 0$.
 $cost = -\frac{1}{2}$

(V) t from
$$0 \rightarrow 2\pi$$
 moves away from 0 , Step 4 neveroes direction $t = 2\pi (x = 2\pi + \sqrt{3})$ moves towards 0 at $t = \pi$