Aufgabe 1: Timing (4 + 4) Punkte

Zur Berechnung der Funktion $f := a \oplus b \oplus c \oplus d$ kann die Realisierung aus Abb. 1 verwendet werden. Die Anstiegs- und Abfallzeiten an den primären Eingängen sind kleiner als $\delta = 0.13ns$. Weiterhin sind die Anstiegs- und Abfallzeiten an den Ausgängen eines Gatters kleiner als δ , falls die Anstiegs- und Abfallzeiten an den Eingängen des Gatters kleiner als δ sind. Alle primären Eingänge schalten zum Zeitpunkt t_0 auf die neun logischen Werte, d.h. in dieser Aufgabe bezieht sich t_0 nicht auf M, sondern auf den Zeitpunkt zuvor, an dem die primären Eingänge umgeschaltet werden.

Bis zu welchem Zeitpunkt liegt an Signal f mindestens der alte logische Wert an und ab welchem Zeitpunkt liegt sicher der neue logische Wert an, wenn

- a) ein ⊕-Gatter durch die Realisierung aus fig. ?? zusammengesetzt wird?
- b) ein ⊕-Gatter durch die Realisierung aus fig. ?? zusammengesetzt wird?

Abbildung 1: Realisierung der

-Funktion mit 4 Eingängen.

(a) \oplus -Gatter mit NOT/AND/OR

(b) ⊕-Gatter mit NAND

Abbildung 2: Gatter Varianten

	AND		NAND		OR		NOT	
				\max				
t_{PLH}								
t_{PHL}	0.02	0.12	0.01	0.12	0.04	0.14	0.00	0.08

Quiz 2 TI-Tutorat

Aufgabe 2: ReTI Pfäde (4 + 4 Punkte)

Prüfen Sie, ob die folgenden Befehle mit den vorgestellten Datenpfaden der ReTI und der vorgestellten groben zeitlichen Planung durch idealisierte Timing-Diagramme realisierbar sind. Vernachlässigen Sie dabei eventülle Probleme mit der Codierung der Befehle und der Unterbringung neben den bereits definierten Befehlen.

Für jeden der Befehle:

- Ergänzen Sie (falls nötig) in dem entsprechenden Diagramm eine minimale Menge von zusätzlichen Treibern, um den Befehl für alle $S, D \in \{ACC, IN1, IN2, PC\}$ ausführen zu können.
- Markieren Sie exemplarisch für S = IN1 und D = IN2 die in der Execute-Phase aktiven Datenpfade bzw. die aktiven Treiber.
- Geben Sie im Kasten neben der ALU an, welche Operation die ALU ausführen muss. Die ALU unterstütze dabei wie üblich die Operationen

$$([l] + [r]), ([l] - [r]), ([r] - [l]), ([l] \wedge [r]), ([l] \vee [r])$$
 und $([l] \oplus [r])$

l sei hierbei das Wort auf dem Bus L, r das Wort auf dem Bus R.

• Ist ein Befehl selbst mit zusätzlichen Treibern nicht realisierbar, begründen Sie dies kurz am Ende der Aufgabe.

Quiz 2 TI-Tutorat

Befehl	Wirkung
STOREREL S i	$M(\langle PC \rangle + [i]) := S$

Befehl	Wirkung		
STOREREL S i	$M(\langle PC \rangle + [i]) := S$		

Abbildung 3: Zusatzversuch