Topic 7: Multiple Regression Inference

- Everything from simple regression extends here to multiple regression
- Each OLS estimator $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_k$ will have a standard error: $SE(\hat{\beta}_0), SE(\hat{\beta}_1), SE(\hat{\beta}_2), \dots, SE(\hat{\beta}_k)$
- For each $\hat{\beta}_j$: $\hat{\beta}_j \sim N(\beta_j, \sigma_{\hat{\beta}_j}^2)$

where
$$E(\hat{\beta}_j) = \beta_j$$
, and $var(\hat{\beta}_j) = \sigma_{\hat{\beta}_j}^2$

- \triangleright We don't know $\sigma_{\hat{\beta}_i}^2$, but we can use sample to estimate it.
- \triangleright The estimator $\hat{\sigma}_{\hat{\beta}_i}^2$ (something messy without matrix algebra)
- \triangleright The standard error is $\sqrt{\hat{\sigma}_{\hat{\beta}_j}^2}$. Stata will calculate it.

1) Hypothesis tests

- > Testing each coefficient separately.
- \triangleright Follow the same exact procedure we did for $\hat{\beta}_1$ as in Chapter 5.
- \triangleright Hypothesis: $H_0: \beta_j = \beta_j^*$
 - $H_1:eta_j
 eqeta_j^*$
- > t-stat:

$$t = \frac{\hat{\beta}_j - \beta_j^*}{SE(\hat{\beta}_j)} \sim N(0,1)$$
 under the null.

- \triangleright We can pick the significance level $\alpha = 0.01, 0.5$ or 0.1.
- ➤ Reject if t>1.96 or t<-1.96 if alpha=0.05.
- Calculate the p-value and see if it is <alpha. If so, reject H₀.
- Calculate the confidence interval:

$$\hat{\beta}_j \pm Z_{\frac{\alpha}{2}} \cdot SE(\hat{\beta}_j), Z_{\frac{\alpha}{2}} = 1.96 \text{ when } \alpha = 0.05$$

1) Hypothesis tests

. reg testscr str el_pct, r

Linear regression

Number of obs = 420 F(2, 417) = 223.82 Prob > F = 0.0000 R-squared = 0.4264 Root MSE = 14.464

testscr	Coef.	Robust Std. Err.	t	P≻∣t∣	[95% Conf.	Interval]
str	-1.101296	.4328472	-2.54	0.011	-1.95213	2504616
el_pct	6497768	.0310318	-20.94	0.000	710775	5887786
_cons	686.0322	8.728224	78.60	0.000	668.8754	703.189

1) Hypothesis tests

> So the results:

$$\hat{T}estScore = 686.0 - 1.10 \times STR - 0.650PctEL$$

$$(8.7) \quad (0.43) \quad (0.031)$$

- ➤ We use White (heteroskedasticity-robust) standard errors for exactly the same reason as in the case of a single regressor.
- > Test for beta1=0:

$$t = \frac{-1.10 - 0}{0.43} = -2.54$$

> Test for beta2=0:

$$t = \frac{-0.650 - 0}{0.031} = 20.97$$

A joint hypothesis specifies a value for two or more coefficients, that is, it imposes a restriction on two or more coefficients:

$$H_0$$
: $\beta_1 = 0$ and $\beta_2 = 0$

- H_1 : either $\beta_1 \neq 0$ or $\beta_2 \neq 0$ or both
- In general, a joint hypothesis will involve q restrictions. In the example above, q = 2, and the two restrictions are $\beta_1 = 0$ and $\beta_2 = 0$.
- A "common sense" idea is to reject if either of the individual *t*-statistics exceeds 1.96 in absolute value, but this "one at a time" test isn't valid.

- ➤ Why can't we just test the coefficients one at a time?
- \triangleright Let t_1 and t_2 be the *t*-statistics:

$$t_1 = \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)}$$
 and $t_2 = \frac{\hat{\beta}_2 - 0}{SE(\hat{\beta}_2)}$

- The "one at time" ("common-sense") test is: reject H_0 : $\beta_1 = \beta_2 = 0$ if $|t_1| > 1.96$ and/or $|t_2| > 1.96$
- ➤ What is the probability that this "one at a time" test rejects H₀, when H₀ is actually true? (It should be 5%.)

The probability of incorrectly rejecting the null hypothesis using the "one at a time" test

$$= \Pr_{H_0}[|t_1| > 1.96 \text{ and/or } |t_2| > 1.96]$$

$$= \Pr_{H_0}[|t_1| > 1.96, |t_2| > 1.96] + \Pr_{H_0}[|t_1| > 1.96, |t_2| \le 1.96]$$

$$+ \Pr_{H_0}[|t_1| \le 1.96, |t_2| > 1.96] \quad \text{(disjoint events)}$$

$$= \Pr_{H_0}[|t_1| > 1.96] \times \Pr_{H_0}[|t_2| > 1.96]$$

$$+ \Pr_{H_0}[|t_1| > 1.96] \times \Pr_{H_0}[|t_2| \le 1.96]$$

$$+ \Pr_{H_0}[|t_1| \le 1.96] \times \Pr_{H_0}[|t_2| \le 1.96]$$

$$+ \Pr_{H_0}[|t_1| \le 1.96] \times \Pr_{H_0}[|t_2| > 1.96]$$

$$(t_1, t_2 \text{ are independent by assumption)}$$

$$= .05 \times .05 + .05 \times .95 + .95 \times .05$$

$$= .0975 = 9.75\% - \text{which is } \textit{not } \text{the desired } 5\%!!$$

- The size of a test is the actual rejection rate under the null hypothesis.
 - The size of the "common sense" test isn't 5%! Intuitively, the individual testing of coefficient using t-stat rejects H₀ too much because individual test gives too many chances to reject H₀.
 - ➤ In fact, its size depends on the correlation between t₁ and t₂.
- > Two Solutions:
 - ➤ Use a different critical value in this procedure not 1.96 (this is the "Bonferroni method see SW App. 7.1) (this method is rarely used in practice however)
 - \triangleright Use a different test statistic that test both β_1 and β_2 at once: the *F*-statistic (this is common practice)

- Here we are interested in testing more than one coefficient at a time. For this, we use F-test.
- E.g. $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 X_{4i} + u_i$ Is $\beta_1 = \beta_3 = 0$? $H_0: \beta_1 = 0, \ \beta_3 = 0$ $H_1: \beta_1 \neq 0, \ \text{or} \ \beta_3 \neq 0, \ \text{or both}$
- \triangleright In H₀, the number of restriction is denoted q. Here q=2.
- ➤ If we believe the errors are homoskedastic, then an easy way to test q restrictions is to run 2 regressions:
- Unrestricted: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 X_{4i} + u_i$ restricted: $Y_i = \beta_0 + \beta_2 X_{2i} + \beta_4 X_{4i} + u_i$

Econ 3334

- Unrestricted: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 X_{4i} + u_i$ restricted: $Y_i = \beta_0 + \beta_2 X_{2i} + \beta_4 X_{4i} + u_i$
- Calculate the F-stat:

$$F = \frac{(SSR_{restricted} - SSR_{unrestricted})/q}{SSR_{unrestricted}/(n - k_{unrestricted} - 1)}$$

 $SSR_{restricted}$: the sum of squared residuals from the restricted regression

 $SSR_{unrestricted}$: the sum of squared residuals from the unrestricted regression

 $k_{unrestricted}$: the number of regressors in the unrestricted regression

q: the number of restriction.

- Unrestricted: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 X_{4i} + u_i$ restricted: $Y_i = \beta_0 + \beta_2 X_{2i} + \beta_4 X_{4i} + u_i$
- Calculate the F-stat:

$$F = \frac{(R_{unrestricted}^2 - R_{restricted}^2)/q}{(1 - R_{unrestricted}^2)/(n - k_{unrestricted} - 1)}$$

where:

 $R_{restricted}^2$ = the R^2 for the restricted regression $R_{unrestricted}^2$ = the R^2 for the unrestricted regression q = the number of restrictions under the null $k_{unrestricted}$ = the number of regressors in the unrestricted regression.

➤ Compare the fits of the regressions – the R²'s – if the "unrestricted" model fits sufficiently better, reject the null

- ➤ Choose a significance level alpha=0.05
- When the sample size is large, under the null, F-stat follows a $F_{q,\infty}$ distribution. (If a random variable W follows a χ_q^2 distribution, then W/q follows a $F_{q,\infty}$ distribution).

- Find the critical value from the F-distribution. For example, the 5% critical value from $F_{2,\infty}$ distribution is 3.00 (Table 4 in page 795 in SW).
- ➤ If F-stat is greater than the critical value, reject the null.

Econ 3334

 \triangleright Critical Values from $F_{q,\infty}$ distribution.

\underline{q}	5% critical value
1	3.84
2	3.00
3	2.60
4	2.37
5	2.21

Example: are the coefficients on STR and Expn jointly zero?

<u>Unrestricted population regression (under H_1):</u>

$$TestScore_i = \beta_0 + \beta_1 STR_i + \beta_2 Expn_i + \beta_3 PctEL_i + u_i$$

Restricted population regression (that is, under H_0):

$$TestScore_i = \beta_0 + \beta_3 PctEL_i + v_i$$

- The number of restrictions under H_0 is q = 2 (why?).
- The fit will be better (R^2 will be higher) in the unrestricted regression (why?)
- Expenditure per Student

STR: Student Teacher Ratio

PctEL: Percent Of English Learners;

Example:

Restricted regression:

$$\hat{T}estScore = 644.7 - 0.671PctEL, R_{restricted}^2 = 0.4149$$
(1.0) (0.032)

<u>Unrestricted regression</u>:

$$\hat{T}estScore = 649.6 - 0.29STR + 3.87Expn - 0.656PctEL$$

$$(15.5) \quad (0.48) \quad (1.59) \quad (0.032)$$

$$R_{unrestricted}^{2} = 0.4366, k_{unrestricted} = 3, q = 2$$
so
$$F = \frac{(R_{unrestricted}^{2} - R_{restricted}^{2})/q}{(1 - R_{unrestricted}^{2})/(n - k_{unrestricted} - 1)}$$

$$= \frac{(.4366 - .4149)/2}{(1 - .4366)/(420 - 3 - 1)} = 8.01$$

 \triangleright We reject the null that beta 1=0 and beta 2=0.

- ➤ Basically what we are doing is seeing if additional explanatory power of the excluded variables is jointly significant.
- In our example, do STR and Expn together explain a large enough portion of variance in TestScore relative to the model with just Pct_EL? The answer is yes. How large is "large enough"? We look to the F distribution.
- ➤ If error terms are heteroskedastic, then the methods won't work and more advanced option is available. Stata will handle either case.

- Heteroskedasicity and F-test
- Formula for the special case of the joint hypothesis $\beta_1 = \beta_1^*$ and $\beta_2 = \beta_2^*$ in a regression with two regressors:

$$F = \frac{1}{2} \left(\frac{t_1^2 + t_2^2 - 2\hat{\rho}_{t_1, t_2} t_1 t_2}{1 - \hat{\rho}_{t_1, t_2}^2} \right)$$

where $\hat{\rho}_{t_1,t_2}$ estimates the correlation between t_1 and t_2 .

> Reject when F is large (how large? Look to F distribution)

Heteroskedasicity and F-test

$$F = \frac{1}{2} \left(\frac{t_1^2 + t_2^2 - 2\hat{\rho}_{t_1, t_2} t_1 t_2}{1 - \hat{\rho}_{t_1, t_2}^2} \right)$$

- \triangleright The *F*-statistic is large when t_1 and/or t_2 is large
- The F-statistic corrects (in just the right way) for the correlation between t_1 and t_2 .
- The formula for more than two β 's is nasty unless you use matrix algebra.

Consider special case that t_1 and t_2 are independent, so $\hat{\rho}_{t_1,t_2} \stackrel{p}{\to} 0$; in large samples the formula becomes

$$F = \frac{1}{2} \left(\frac{t_1^2 + t_2^2 - 2\hat{\rho}_{t_1, t_2} t_1 t_2}{1 - \hat{\rho}_{t_1, t_2}^2} \right) \cong \frac{1}{2} (t_1^2 + t_2^2)$$

- ➤ Under the null, t₁ and t₂ have standard normal distributions that, in this special case, are independent
- The large-sample distribution of the F-statistic is the distribution of the average of two independently distributed squared standard normal random variables.

. reg testscr str expn el_pct

Source	ss	df		MS		Number of obs		420
Model Residual	66409.8835 85699.7102	3 416		36.6278 .008919		F(3, 416) Prob > F R-squared	=	107.45 0.0000 0.4366
Total	152109.594	419	363	. 030056		Adj R-squared Root MSE	=	0.4325 14.353
testscr	Coef.	Std.	Err.	t	P≻ t	[95% Conf.	In	terval]
str expn el_pct _cons	2863993 3.867901 6560227 649.578	.4805 1.412 .0391 15.20	122 1059	-0.60 2.74 -16.78 42.72	0.551 0.006 0.000 0.000	-1.230956 1.092117 7328924 619.6883		6581569 .643686 5791529 79.4676

```
. test (str=0) (expn=0)

( 1) str = 0
( 2) expn = 0

F( 2, 416) = 8.01
Prob > F = 0.0004
```

Econ 3334

. reg testscr str expn el_pct, r

Linear regression

Number of obs = 420

F(3, 416) = 147.20

 $\texttt{Prob} \; \succ \; \texttt{F} \qquad \qquad = \; \; \textbf{0.0000}$

R-squared = 0.4366

Root MSE = 14.353

testscr	Coef.	Robust Std. Err.	t	P≻ t	[95% Conf.	Interval]
str	2863993	.4820728	-0.59	0.553	-1.234002	.661203
expn	3.867901	1.580722	2.45	0.015	.7607024	6.9751
el_pct	6560227	.0317844	-20.64	0.000	7185008	5935446
_cons	649.578	15.45834	42.02	0.000	619.1917	679.9642

```
. test (str=0) (expn=0)

( 1) str = 0
( 2) expn = 0

F( 2, 416) = 5.43
Prob > F = 0.0047
```

- ➤ Overall significance of the model
- ➤ We also might be interested in testing if the regression model does statistically better than just the mean.
- Unrestricted: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + ... + \beta_k X_{ki} + u_i$ Restricted: $Y_i = \beta_0 + u_i$
- ➤ Here q=the number of restrictions= number of explanatory variables of the unrestricted regression (k)
- > You can just do a F-test.

- TestScore_i = $\beta_0 + \beta_1 STR_i + \beta_2 Expn_i + \beta_3 PctEL_i + u_i$ v.s. $TestScore_i = \beta_0 + u_i$
- ➤ What is overall significance test doing for us?
- ➤ It is telling us how our model with 4 explanatory variables (including the intercept as an explanatory variable) perform relative to a model with just the intercept?

```
. test (str=0) (expn=0) (el_pct=0)

( 1)    str = 0
( 2)    expn = 0
( 3)    el_pct = 0

F( 3, 416) = 147.20
Prob > F = 0.0000
```

- ➤ We already looked at
 - (*i*) $H_0: \beta_j = 0$
 - (*ii*) H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$
 - (*iii*) $H_0: \beta_1 = \beta_2 = \beta_3 = ... = \beta_k = 0$
- > Now we are interested in linear restriction such as

$$H_0: \beta_i = \beta_\ell$$

or

$$H_0: \beta_i = \beta_\ell + 2\beta_r$$

> How? Easy answer is that Stata can do it.

$$\hat{T}estScore = 649.6 - 0.29STR + 3.87Expn - 0.656PctEL$$

$$(15.5) \quad (0.48) \quad (1.59) \quad (0.032)$$

> Suppose we want to know if the magnitude of the impact of STR is PctEL are the same:

$$H_0: \beta_1 = \beta_3 \text{ v.s. } H_1: \beta_1 \neq \beta_3$$

- \triangleright Use F-test with one restriction q=1.
- . test (str=el_pct)

 (1) str el_pct = 0

 F(1, 416) = 0.57
 Prob > F = 0.4494

- ➤ We can also test this hypothesis "manually" by transforming the regression and doing a t test
- $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$
- Want to test

$$H_0: \beta_1 = \beta_3 \text{ v.s. } H_1: \beta_1 \neq \beta_3$$

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + u_{i}$$

$$= \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + (\beta_{3}X_{1i} - \beta_{3}X_{1i}) + u_{i}$$

$$= \beta_{0} + \beta_{1}X_{1i} - \beta_{3}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \beta_{3}X_{1i} + u_{i}$$

$$= \beta_{0} + (\beta_{1} - \beta_{3}) X_{1i} + \beta_{2}X_{2i} + \beta_{3} (X_{3i} + X_{1i}) + u_{i}$$

$$= \beta_{0} + \gamma X_{1i} + \beta_{2}X_{2i} + \beta_{3}W_{i} + u_{i}$$

> We can run the following regression:

$$Y_i = \beta_0 + \gamma X_{1i} + \beta_2 X_{2i} + \beta_3 W_i + u_i$$

where $W_i = X_{3i} + X_{1i}$

- \triangleright and use a basic t test to test $H_0: \gamma = 0$ v.s. $H_1: \gamma \neq 0$
- In the example, the original regression: $TestScore_i = \beta_0 + \beta_1 STR_i + \beta_2 Expn_i + \beta_3 PctEL_i + u_i$
- > we run the following regression:

$$TestScore_i = \beta_0 + \gamma STR_i + \beta_2 Expn_i + \beta_3 W_i + u_i$$

where Wi=PctELi+STRi.

- . gen w=el_pct+str
- . reg testscr str expn w, r

Linear regression

Number of obs = 420 F(3, 416) = 147.20 Prob > F = 0.0000 R-squared = 0.4366 Root MSE = 14.353

testscr	Coef.	Robust Std. Err.	t	P≻ t	[95% Conf.	Interval]
str expn	. 3696233 3. 867902	.4881617 1.580722	0.76	0.449	5899479 .7607025	1.329195 6.975101
w	6560227	.0317844	-20.64	0.000	7185008	5935446
_cons	649.578	15.45834	42.02	0.000	619.1917	679.9642

4) Confidence Set

The 95% confidence set for β_1 and β_2 is an ellipse. The ellipse contains the pairs of values of β_1 and β_2 that cannot be rejected using the *F*-statistic at the 5% significance level.

4) Confidence Set

➤ In the example, after running the regression:

$$TestScore = 649.6 - 0.29STR + 3.87Expn - 0.656PctEL$$

(15.5) (0.48) (1.59) (0.032)

> type: ellip expn str, coefs c(chi2)

- > In multiple regression, if you leave out a variable that is
 - 1) correlated with at least one of the included regressors and
 - 2) is a determinant of Y, then, all the slope estimators will be biased and inconsistent.
- > Suppose the TRUE model is

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$$

Figure 3. But we do $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_3 X_{3i} + u_i$ (left X_{2i} out)

If say X_{2i} is correlated with X_{1i} , then in general both $\hat{\beta}_1$ and $\hat{\beta}_3$ will be biased and inconsistent.

- ➤ What do you do? Try to find X2 and include it or at least find some proxy.
 - ➤ If you don't have say, mortgage rate, proxy it with Fed Fund's rate
 - > If you don't have working experience, proxy it with age.
- ➤ How to choose your model:
 - ➤ Don't rely on R² or adjusted R². That is an indication of how you are doing in explaining variation of Y. But it shouldn't be your sole objective.
 - > Don't worry too much about significance of individual coefficient.
 - > Always let your economic theory dictate your variables.
 - Try different specifications as long as they make sense and see if the results are sensitive.