

Data & Knowledge Management

Presented by

Clayton J. Hamilton, PharmD

Program and Data Management

Veterans Affairs - National Academic Detailing Service

Clayton.Hamilton@va.gov

Differentiate between structured versus unstructured EMR data

Summarize high level concepts for EMR data transactions and data warehousing

Describe key elements of a relational database.

Formulate simple SQL queries using a basic understanding of language syntax

^{*}EMR = Electronic Medical Record

Databases & Healthcare - My story

- PGY1 at the Fort Harrison VA Medical Center in Helena, MT.
- Identified missed opportunities for improved care
- Learned about patient dashboards during anticoag rotation
- Pursued PGY2 in Pharmacy Outcomes and Health Care Analytics
- Using data to improve patient care through population health management

Why specialize in informatics as a pharmacist?

Multiply your impact on a patient population

Improve health care quality and patient safety

Support clinical research projects

Lead the data revolution in health care

Medical Data Pipeline - Overview

VA Computerized Patient Record System (CPRS)

^{*}GUI: Graphical User Interface

Transactional Data

- Any information entered into the electronic medical record (EMR)
- Single transactions are the base unit of the entire EMR
- Communicate completed work to other users
- Records management: The process of retaining transactions for future use

Transactional Data Structure

Structured data

Fits a pre-defined model

Much easier to process/query

Examples: dates, lab data, SSNs, phone

numbers, NDCs

Semistructured data

Contains both structured and unstructured data

Example: cellphone photos

Unstructured data

No predefined model

Much more process intensive to query

Example: raw text, video, audio recordings

What type of data is this PowerPoint?

Transactional Data: Structured Lab data entry

Every EMR has it's own specific limitations

Transactions originate from a wide variety of sources Hospital Information eMAR. System Robot/Packager Charges (CPOE, ADT, Financial) (BCMA) ADT Orders Inventory Orders Orders TPN Compounder - Orders-ADT-Pharmacy Information Interface Outpatient -Orders Prices Engine System Registration Inventory Wholesaler Charges 4 Result 1st Doses, Quary UD Cartlists, Picklists Pocket ADT Orders Charges Load/Unload Lab/Pathology Results Clinical System Carousel for Inventory Control Automated Dispensing Cabinets

The short answer: Data Warehouse(s)

- Contains football fields of servers
- Gathers, transforms, and stores health data in databases
- Access to the data warehouse grants users the ability to provide accurate management information and supporting data analysis

VA Data Warehousing Architecture

The Relational Database

- A database is a repository of data
- Structured data is typically stored in tables similar to spreadsheets
- Tables can be joined/linked together through shared columns

• Goal is to store a piece of data only once (normalization)

Why not have one spreadsheet with all the data in it?

Denormalized Data

Table Name: RxFill							
PatientName	Age	DrugName	FillDate	Qty	DaysSupply	FormularyFlag	PricePerUnit
Smith,John	55	Atorvastatin	2021-01-05	30	30	Y	0.05
Smith,John	55	Atorvastatin	2021-02-10	30	30	Y	0.05
Johnston,Smith	65	Metformin	2021-01-05	60	30	Y	0.01
Johnston,Smith	65	Metformin	2021-02-11	60	30	Y	0.01

- Note how the yellow columns contain duplicate data
- Increases required storage space and data processing time
- This duplication becomes non-trivial when this data model is applied to millions of patient records

Normalized/Relational Database Diagram

Table Name: RxFill					
RxFill_ID	Patient_ID	Drug_ID	FillDate	Qty	DaysSupply
1	1	1	2021-01-05	30	30
2	1	1	2021-02-10	30	30
3	2	2	2021-01-05	60	30
4	2	2	2021-02-11	60	30

Patient_ID

Drug_ID

Table Name: Patient				
Patient_ID	PatientName	Age		
1	Smith,John	55		
2	Johnston,Smith	65		

Drug_ID	DrugName	FormularyFlag	PricePerUnit
1	Atorvastatin	Y	0.05
2	Metformin	Y	0.01

What other supporting tables might you find in a pharmacy database?

Pharmacy Relational Database Diagram Example

Retrieving Structured Medical Data

Examples with practice database

What is SQL?

- Structured Query Language
- Used to communicate with data within a database
- Code is written in an user-interface that is connected to the database
- Critical data operations:
 - Accessing
 - Updating
 - Inserting
 - Manipulating
 - Modifying

Basic structure of a SQL query

```
Select [Column1Name]
    , [Column2Name]
From [DatabaseName].[Schema].[Table]
Where ....[insert expressions for column filtering here]
Order by [ColumnName];
```

Order of processing

FROM Clause

Indicates which database table the query will retrieve data from

Format:

FROM Database.Schema.TableName

Select *

From Pharm.mockpharmacydata

Where DispensedDate >= '2019-10-01'

Order by DispensedDateTime;

WHERE Clause Comparison Operators

Applies filters to the table

Comparison	Symbol
Equal to	=
Greater than	>
Lesser than	<
Greater than or equal to	>=
Less than or equal to	<=
Not equal to	<>

Select *

From Pharm.mockpharmacydata

Where DispensedDate >= '2019-10-01'

Order by DispensedDateTime;

SELECT Clause

Indicates which database column(s) will appear in the results set

Tip: **Select** * means "select all columns"

```
Select [Column1]
,[Column2]
```

From Pharm.mockpharmacydata
Where DispensedDate >= '2019-10-01'
Order by DispensedDateTime;

ORDER BY Clause

Indicates which column(s) the results will be sorted by

```
Select [Column1]
,[Column2]
,.....
From Pharm.mockpharmacydata
Where DispensedDate >= '2019-10-01'
Order by DispensedDateTime;
```

Clinical Dashboards and Performance Reports

Electronic reports can be built to share data pulled using SQL

- Many software applications exist:
 - SQL Server Reporting Services (SSRS)
 - Power BI (Business Intelligence)
 - Pyramid Analytics
 - Tableau

Databases & Healthcare - Case Study

Background

- VA CARES: a pharmacist-led telehealth oncology med management program supporting 3 medical centers
- Serves rural Veterans receiving oral antineoplastic therapies prescribed by non-VA providers

Problems

- Asynchronous pre-enrollment data needed along with process tracking
- Need to determine if there are cost-savings associated

Solution

- Developed an internal patient enrollment app to track status and data needed from non-VA providers
- Developed a dashboard that tracks patient data
- Retrieved data captured in clinician notes to support implementation scientist's cost savings analyses

Key Points

- Pharmacists are well positioned to merge clinical and data knowledge
- Understanding the fundamentals of how data is captured and retrieved allows for rapid analysis of your patient population
- Structured Query Language (SQL) allows you to interact with a database
- Data can be presented to leadership/clinicians to support decision-making

Next steps (optional)

 Follow the <u>steps outlined in my GitHub repository</u> to create your first database

- Follow the DataManipulationScript.sql to practice executing and writing queries
- Review the data, ask questions about the data, attempt to answer those questions using SQL

Questions?