

www.vishay.com

Vishay

HALOGEN FREE

GREEN

(5-2008)

Surface Mount Multilayer Ceramic Chip Capacitors for Commodity Applications

FEATURES

- Available from 0402 to 1210 body sizes
- Ultra stable C0G (NP0) dielectric
- High capacitance in X5R, X7R, Y5V
- For high frequency applications
- Ni-barrier with 100 % tin terminations
- Dry sheet technology process
- Base Metal Electrode system (BME)
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

APPLICATIONS

- Consumer electronics
- Telecommunications
- Data processing
- Mobile applications

ELECTRICAL SPECIFICATIONS

Operating Temperature:

C0G (NP0): -55 °C to +125 °C

X5R: -55 °C to +85 °C X7R: -55 °C to +125 °C Y5V: -25 °C to +85 °C

Capacitance Range:

C0G (NP0): 0.5 pF to 39 nF

X5R: 47 nF to 220 μF X7R: 100 pF to 47 μF Y5V: 10 nF to 100 μF

Voltage Range:

C0G (NP0): 10 V_{DC} to 100 V_{DC}

X5R: 6.3 V_{DC} to 50 V_{DC} X7R: 10 V_{DC} to 100 V_{DC} Y5V: 6.3 V_{DC} to 100 V_{DC}

Temperature Coefficient of Capacitance (TCC):

C0G (NP0): 0 ppm/°C \pm 30 ppm/°C from -55 °C to +125 °C X5R: \pm 15 % from -55 °C to +85 °C without voltage applied X7R: \pm 15 % from -55 °C to +125 °C without voltage applied Y5V: +30 % / - 80 % from -25 °C to +85 °C without voltage applied

Insulation Resistance (IR) at U_R:

 \geq 10 G Ω or R x C \geq 500 Ω x F whichever is less

Test Conditions for Capacitance Tolerance:

preconditioning for X5R, X7R, Y5V MLCC: perform a heat treatment at +150 °C \pm 10 °C for 1 h, then leave in ambient condition for 24 h \pm 2 h before measurement

Test Conditions for Capacitance and DF Measurement:

measured at conditions of 30 % to 70 % related humidity.

C0G (NP0): Apply 1.0 V_{RMS} \pm 0.2 V_{RMS}, 1.0 MHz \pm 10 % for caps \leq 1000 pF, at +25 °C ambient temperature Apply 1.0 V_{RMS} \pm 0.2 V_{RMS}, 1.0 kHz \pm 10 % for caps > 1000 pF, at +25 °C ambient temperature

X5R / X7R: Caps \leq 10 $\,\mu F$ apply 1.0 V_{RMS} \pm 0.2 V_{RMS} , 1.0 kHz \pm 10 %, at +25 °C ambient temperature $^{(1)}$ Caps > 10 $\,\mu F$ apply 0.5 V_{RMS} \pm 0.2 V_{RMS} , 120 Hz \pm 20 %, at +25 °C ambient temperature

Y5V: Caps \leq 10 µF apply 1.0 V_{RMS} \pm 0.2 V_{RMS}, 1.0 kHz \pm 10 %, at +20 °C ambient temperature Caps > 10 µF apply 0.5 V_{RMS} \pm 0.2 V_{RMS}, 120 Hz \pm 20 %, at +20 °C ambient temperature

Note

(1) Test conditions: 0.5 V_{RMS} ± 0.2 V_{RMS}, 1 kHz ± 10 % X7R: 0603: ≥ 2.2 µF / 10 V 0805: 10 µF (6.3 V and 10 V) X5R: 0402: ≥ 4.7 µF / 6.3 V and ≥ 2.2 µF / 10 V

0603: 10 μF (6.3 V and 10 V)

Aging Rate:

C0G (NP0): 0 % per decade

X5R: 6.3 V_{DC} / 10 V_{DC} : 3 % maximum per decade 16 V_{DC} / 25 V_{DC} : 2 % maximum per decade

X7R: \leq 10 V_{DC}: 1.5 % maximum per decade \geq 16 V_{DC}: 1 % maximum per decade

Y5V: 6.3 V_{DC} : 12.5 % maximum per decade 10 V_{DC} / 16 V_{DC} : 9 % maximum per decade \geq 25 V_{DC} : 7 % maximum per decade

Dielectric Strength Test:

this is the maximum voltage the capacitors are tested 1 s to 5 s period and the charge / discharge current does not exceed 50 mA.

 \leq 100 V_{DC}: 250 % of rated voltage

Vishay

Dissipation Factor (DF):

C0G (NP0): Cap. $< 30 \text{ pF: } Q \ge 400 + 20C$

Cap. ≥ 30 pF: Q ≥ 1000

X5R, X7R:

RATED VOLTAGE	D.F. ≤		EXCEPTION OF D.F. \leq
1021710.2		3 %	1206 ≥ 0.47 μF
≥ 100 V	2.5 %	5 %	0603 ≥ 0.068 μF; 0805 > 0.1 μF; 1206 > 1 μF
		3 %	$0603 \ge 0.047~\mu\text{F};~0805 \ge 0.18~\mu\text{F}; \\ 1206 \ge 0.47~\mu\text{F}$
≥ 50 V	2.5 %	5 %	1210 ≥ 4.7 μF
		10 %	0402 ≥ 0.1 μF; 0603 ≥ 1 μF; 0805 ≥ 1 μF; 1206 ≥ 2.2 μF; 1210 ≥ 10 μF
		5 %	0805 ≥ 1 μF; 1210 ≥ 10 μF
	l	7 %	0603 ≥ 0.33 μF; 1206 ≥ 4.7 μF
25 V	3.5 %	10 %	$0402 \ge 0.10 \ \mu F; \ 0603 \ge 0.47 \ \mu F; \ 0805 \ge 2.2 \ \mu F; \ 1206 \ge 6.8 \ \mu F; \ 1210 \ge 22 \ \mu F$
16 V	3.5 %	5 %	$0402 \ge 0.033 \ \mu\text{F}; \ 0603 \ge 0.15 \ \mu\text{F}; \ 0805 \ge 0.68 \ \mu\text{F}; \ 1206 \ge 2.2 \ \mu\text{F}; \ 1210 \ge 4.7 \ \mu\text{F}$
10 V	3.5 %	10 %	$0402 \ge 0.22~\mu F;~0603 \ge 0.68~\mu F;~0805 \ge 2.2~\mu F;~1206 \ge 4.7~\mu F;~1210 \ge 22~\mu F$
10 V	5 %	10 %	0402 ≥ 0.33 μ F; 0402/X7R ≥ 0.22 μ F 0603 ≥ 0.33 μ F; 0805 ≥ 2.2 μ F; 1206 ≥ 2.2 μ F; 1210 ≥ 22 μ F
		15 %	0402 ≥ 1 μF
6.3 V	10 %	15 %	0402 ≥ 1 μF; 0603 ≥ 10 μF; 0805 ≥ 4.7 μF; 1206 ≥ 47 μF; 1210 ≥ 100 μF
		20 %	0402 ≥ 2.2 μF
4 V	15 %	-	-

Y5V:

RATED VOLTAGE	D.F. ≤		EXCEPTION OF D.F. \leq
≥ 50 V	5 %	7 %	$0603 \ge 0.1 \ \mu F; \ 0805 \ge 0.47 \ \mu F; \ 1206 \ge 4.7 \ \mu F$
35 V	7 %	-	-
25 V	5 %	7 %	$\begin{array}{c} 0402 \geq 0.047 \; \mu F; \; 0603 \geq 0.1 \; \mu F; \\ 0805 \geq 0.33 \; \mu F; \; 1206 \geq 1 \; \mu F; \\ 1210 \geq 4.7 \; \mu F \end{array}$
		9 %	$0402 \ge 0.068 \ \mu F; \ 0603 \ge 0.47 \ \mu F; \ 1206 \ge 4.7 \ \mu F; \ 1210 \ge 22 \ \mu F$
16 V	7 %	9 %	$0402 \ge 0.068 \ \mu F; \ 0603 \ge 0.68 \ \mu F$
C < 1.0 µF	1 70	12.5 %	0402 ≥ 0.22 μF
16 V C ≥ 1.0 µF	9 %	12.5 %	0603 ≥ 2.2 μ F; 0805 ≥ 3.3 μ F; 1206 ≥ 10 μ F; 1210 ≥ 22 μ F
10 V	12.5 %	20 %	0402 ≥ 0.47 μF
6.3 V	20 %	-	-

DIEL FOTDIO	0405	MAXIMUM VOLTAGE	CAPAC	ITANCE
DIELECTRIC	CASE	(V)	MINIMUM	MAXIMUM
	0402	100	0.5 pF	1.0 nF
COC (NIDO)	0603	100	0.5 pF	3.3 nF
C0G (NP0)	0805	100	0.5 pF	12 nF
	1206	100	1.5 pF	39 nF
	0402	50	47 nF	10 μF
	0603	50	220 nF	22 µF
K5R	0805	50	1.5 µF	47 µF
	1206	50	1.5 µF	100 μF
	1210	50	1.5 µF	220 µF
	0402	50	100 pF	1 µF
	0603	100	100 pF	2.2 µF
X7R	0805	100	100 pF	10 µF
	1206	100	150 pF	22 µF
	1210	100	1.0 nF	47 µF
	0402	50	10 nF	470 nF
	0603	50	10 nF	2.2 µF
Y5V	0805	100	10 nF	10 µF
	1206	100	10 nF	22 µF
	1210	100	10 nF	100 μF

Note

• Detail ratings see "Selection Chart"

www.vishay.com Vishay

Notes

- Detail rating see "Selection Chart"
- (1) DC voltage rating should not be exceeded in application. Other application factors may affect the MLCC performance. Consult for questions: mlcc@vishay.com
- (2) Not all values, see "Selection Chart"
- (3) No 5 % tolerance for X5R

Vishay

DIMENSIONS in inches (millimeters)

SIZE CODE	THICKNESS SYMBOL	SOLDERING METHOD (1)	L	w	Т	МВ
0402	N	R	0.040 ± 0.002 (1.00 ± 0.05)	0.020 ± 0.002 (0.50 ± 0.05)	0.020 ± 0.002 (0.50 ± 0.05)	0.010 + 0.002 / - 0.004
(1005)	Е	R	0.040 ± 0.008 (1.00 ± 0.20)	0.020 ± 0.008 (0.50 ± 0.20)	0.020 ± 0.008 (0.50 ± 0.20)	(0.25 + 0.05 / - 0.10)
	S	R/W	0.063 ± 0.004 (1.60 ± 0.10)	0.030 ± 0.004 (0.80 ± 0.10)	0.030 ± 0.0028 (0.80 ± 0.07)	
0603 (1608)	Х	R/W	0.063 + 0.006 / - 0.004 (1.60 + 0.15 / - 0.10)	0.030 + 0.006 / - 0.004 (0.80 + 0.15 / - 0.10)	0.030 + 0.006 / - 0.004 (0.80 + 0.15 / - 0.10)	0.016 ± 0.006 (0.40 ± 0.15)
	X'	R/W	0.063 ± 0.008 (1.60 ± 0.20)	0.030 ± 0.008 (0.80 ± 0.20)	0.030 ± 0.008 (0.80 ± 0.20)	
	А	R/W			0.024 ± 0.004 (0.60 ± 0.10)	
	В	R/W	0.080 ± 0.006 (2.00 ± 0.15)	0.050 ± 0.004 (1.25 ± 0.10)	0.030 ± 0.004 (0.80 ± 0.10)	
0805 (2012)	D	R			0.049 ± 0.004 (1.25 ± 0.10)	0.020 ± 0.008 (0.50 ± 0.20)
	Т	R/W	0.080 ± 0.008	0.050 ± 0.008	0.033 ± 0.004 (0.85 ± 0.10)	
	ı	R	(2.00 ± 0.20)	(1.25 ± 0.20)	0.049 ± 0.008 (1.25 ± 0.20)	
	В	R/W			0.030 ± 0.004 (0.80 ± 0.10)	
	С	R	0.126 ± 0.006 (3.20 ± 0.15)	0.063 ± 0.006	0.037 ± 0.004 (0.95 ± 0.10)	
1206	D	R		(1.60 ± 0.15)	0.049 ± 0.004 (1.25 ± 0.10)	0.024 ± 0.008
(3216)	J	R	0.126 ± 0.008		0.045 ± 0.006 (1.15 ± 0.15)	(0.60 ± 0.20)
	G	R	(3.20 ± 0.20)	0.063 ± 0.008 (1.60 ± 0.20)	0.063 ± 0.008 (1.60 ± 0.20)	
	Р	R	0.126 + 0.012 / - 0.004 (3.20 + 0.30 / - 0.10)	0.063 + 0.012 / - 0.004 (1.60 + 0.30 / - 0.10)	0.063 + 0.012 / - 0.004 (1.60 + 0.30 / - 0.10)	
	С	R	0.126 ± 0.012	0.098 ± 0.008	0.037 ± 0.004 (0.95 ± 0.10)	
	C R D R		(3.20 ± 0.30)	(2.50 ± 0.20)	0.049 ± 0.004 (1.25 ± 0.10)	
1210 (3225)	G	R			0.063 ± 0.008 (1.60 ± 0.20)	0.030 ± 0.010 (0.75 ± 0.25)
	К	R	0.126 ± 0.016 (3.20 ± 0.40)	0.098 ± 0.012 (2.50 ± 0.30)	0.078 ± 0.008 (2.00 ± 0.20)	
	М	R			0.098 ± 0.012 (2.50 ± 0.30)	

Note

(1) "R" = Reflow soldering process; "W" = Wave soldering process

www.vishay.com

Vishay

SELECTI	ON CHA	RT																			
DIELECTRIC											CO	G (N	P0)								
STYLE			,	/ J040	2			,	/ J06	03				VJ080)5			1	/J120	6	
SIZE CODE				0402					0603	3				0805	5				1206		
VOLTAGE (\	/ _{DC})	10	16	25	50	100	10	16	25	50	100	10	16	25	50	100	10	16	25	50	100
VOLTAGE C	ODE	Q	J	Х	Α	В	Q	J	Х	Α	В	Q	J	Х	Α	В	Q	J	Х	Α	В
CAP. CODE	CAP.																				
0R5	0.5 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α					
1R0	1.0 pF	N	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α					
1R2	1.2 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α					
1R5	1.5 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
1R8	1.8 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
2R2	2.2 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
2R7	2.7 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
3R3	3.3 pF	N	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
3R9	3.9 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
4R7	4.7 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
5R6	5.6 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
6R8	6.8 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
8R2	8.2 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
100	10 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
120	12 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
150	15 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
180	18 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
220	22 pF	Ν	N	N	Ν	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
270	27 pF	Ν	N	N	Ν	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
330	33 pF	Ν	N	N	Ν	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
390	39 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
470	47 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
560	56 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
680	68 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
820	82 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
101	100 pF	Ν	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
121	120 pF	N	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
151	150 pF	N	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
181	180 pF	N	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
221	220 pF	N	N	N	N	N	S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
271	270 pF	N	N	N	N		S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
331	330 pF	N	N	N	N		S	S	S	S	S	Α	Α	Α	Α	Α	В	В	В	В	В
391	390 pF	N	N	N	N		S	S	S	S	S	В	В	В	В	В	В	В	В	В	В
471	470 pF	N	N	N	N		S	S	S	S	S	В	В	В	В	В	В	В	В	В	В
561	560 pF	N	N	N	N		S	S	S	S	S	В	В	В	В	В	В	В	В	В	В
681	680 pF	Ν	N	N	N		S	S	S	S	S	В	В	В	В	В	В	В	В	В	В

- Letters indicate product thickness, see packaging quantities
 (1) Only in 5 % (code "J") tolerance
- (2) Contact mlcc@vishay.com for availability

www.vishay.com

Vishay

SELECTIO	N CHA	RT																			
DIELECTRIC											CO	G (N	P0)								
STYLE			,	VJ 040	2			1	/J060	03				VJ080)5			1	/J120	6	
SIZE CODE				0402					0603	3				080	5				1206		
VOLTAGE (V	oc)	10	16	25	50	100	10	16	25	50	100	10	16	25	50	100	10	16	25	50	100
VOLTAGE CO	DDE	Q	J	Х	Α	В	Q	J	Х	Α	В	Q	J	Х	Α	В	Q	J	Х	Α	В
CAP. CODE	CAP.																				
821	820 pF	Ν	N	N	N		S	S	S	S	S	В	В	В	В	В	В	В	В	В	В
102	1.0 nF	N	N	N	N		S	S	S	S	S	В	В	В	В	В	В	В	В	В	В
122	1.2 nF						Х	Χ	Χ	Х		В	В	В	В	В	В	В	В	В	В
152	1.5 nF						Х	Χ	Χ	Х		В	В	В	В	В	В	В	В	В	В
182	1.8 nF						Χ	Χ	Χ	Χ		В	В	В	В	В	В	В	В	В	В
222	2.2 nF						Χ	Χ	Χ	Х		В	В	В	В	В	В	В	В	В	В
272	2.7 nF						Χ	Χ	Χ	Χ		D	D	D	D	D	В	В	В	В	В
332	3.3 nF						Χ	Χ	Χ	Χ		D	D	D	D	D	В	В	В	В	В
392	3.9 nF											D	D	D	D	D	В	В	В	В	В
472	4.7 nF											D	D	D	D	D	В	В	В	В	В
562	5.6 nF											D	D	D	D		В	В	В	В	В
682	6.8 nF											D	D	D	D		С	С	С	С	С
822	8.2 nF											D	D	D	D		D	D	D	D	D
103	10 nF											D	D	D	D		D	D	D	D	D
123	12 nF											T (1)	T (1)	T (1)(2)	T (1)(2)		Р	Р	P ⁽¹⁾	P (1)	
153	15 nF																Р	Р	P (1)	P (1)	
183	18 nF																Р	Р	P (1)	P (1)	
223	22 nF																Р	Р	P (1)	P (1)	
273	27 nF																Р	Р	P (1)	P (1)	
333	33 nF																Р	Р	P ⁽¹⁾	P (1)	
393	39 nF																Р	Р	P (1)	P (1)	
473	47 nF																				
563	56 nF																				
683	68 nF																				
823	82 nF																				
104	100 nF																				

- Letters indicate product thickness, see packaging quantities
- (1) Only in 5 % (code "J") tolerance
 (2) Contact mlcc@vishay.com for availability

Vishay

SELECTIO	N CHAF	RT														
DIELECTRIC									X5R							
STYLE			1	VJ0402					VJ060	3			,	VJ0805		
SIZE CODE				0402					0603					0805		
VOLTAGE (V _D	c)	6.3 V	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25 V	50 V
VOLTAGE CO	DE	Υ	Q	J	Х	Α	Υ	Q	J	Х	Α	Υ	Q	J	Х	Α
CAP. CODE	CAP.															
473	47 nF			N												
563	56 nF		N													
683	68 nF		N	N												
823	82 nF	N	N	N												
104	100 nF	N	N	N	N											
124	120 nF															
154	150 nF		N		N											
184	180 nF															
224	220 nF	N	N	N	N				Х	Х						
274	270 nF							Х	Х							
334	330 nF	N	N					Х	Х	Х						
394	390 nF							Х	Х							
474	470 nF	N	N	E (3)	E (2)(3)	E (2)(3)		Х	Х	Х	X (2)					
564	560 nF															
684	680 nF	N	N					Х	Х	Х						
824	820 nF						Х	Х	Х							
105	1.0 µF	N	N	N	N (3)		Х	Х	Х	Х	X (3)					
155	1.5 µF						Х					I	ı	ı	I	
225	2.2 µF	N	N (3)	E (3)	E (3)		Х	Х	X'	X ₁ (3)	X' (2)(3)	I	ı	ı	I	I (3)
335	3.3 µF											I	I	I	I	
475	4.7 µF	E (1)(3)		E (1)(3)			Х	X (3)	X ₁ (3)	X1 (5)(3)		I	I	I	I	I (3)
106	10 μF	E (1)(3)	E (1)(3)				X'	X' (3)	X' (3)	X' (1)(3)		I	I	I	l (3)	I (3)
226	22 µF						X' (1)(3)	X' (1)(3)				l (3)	I (1)(3)	I (1)(3)	I (1)(3)	
476	47 μF											l (1)(3)	I (1)(3)			
686	68 μF															
107	100 μF															

Notes

- · Letters indicate product thickness, see packaging quantities
- (1) Not in 10 % (code "K") tolerance
- (2) Not in 20 % (code "M") tolerance
- (3) Contact mlcc@vishay.com for availability

SELECTIO	N CHART	1										
DIELECTRIC							X5R					
STYLE				VJ1206					VJ1	210		
SIZE CODE				1206					12	10		
VOLTAGE (V _D	c)	6.3 V	10 V	16 V	25 V	50 V	4 V	6.3 V	10 V	16 V	25 V	50 V
VOLTAGE CO	DE	Υ	Q	J	Х	Α	S	Υ	Q	J	Х	Α
CAP. CODE	CAP.											
105	1.0 µF											
155	1.5 µF		J	J					K	K		
225	2.2 µF		J	J	Р	P (2)(3)			K	K		
335	3.3 µF		Р	Р	Р							
475	4.7 µF	Р	Р	Р	Р	P (3)			K	K	K	
685	6.8 µF	Р	Р									
106	10 μF	Р	Р	Р	Р	P (3)			K	K	K (3)	M (3)
226	22 μF	Р	Р	P (3)	P (2)(3)			M (3)	M (3)	M (3)	M (3)	
476	47 µF	P (3)	P (3)					M (3)	M (3)	M (3)		
107	100 μF	P (1)(3)						M (1)(3)	M (1)(3)			
227	220 µF						M (1)(3)					

Notes

- Letters indicate product thickness, see packaging quantities
- Not in 10 % (code "K") tolerance
- (2) Not in 20 % (code "M") tolerance
- (3) Contact mlcc@vishay.com for availability

www.vishay.com

Vishay

SELECTION	ON CH	ART															
DIELECTRIC	;								X7	'n							
STYLE				VJ0	402					VJ0603	3				VJ080	5	
SIZE CODE					02					0603					0805		
VOLTAGE (V		6.3 V	10 V	16 V	25 V	50 V	100 V	10 V	16 V	25 V	50 V	100 V	10 V	16 V	25 V	50 V	100 V
VOLTAGE CO		Υ	Q	J	Х	Α	В	Q	J	Х	Α	В	Q	J	Х	Α	В
101	CAP. 100 pF		N	N	N	N		S (1)	S (1)	S (1)	S (1)	S (1)	B (1)	B (1)	B (1)	B ⁽¹⁾	B ⁽¹⁾
121	120 pF		N	N	N	N		S (1)	S (1)	S (1)	S (1)	S (1)	B (1)	B (1)	B (1)	B (1)	B (1)
151	150 pF		N	N	N	N		S (1)	S (1)	S (1)	S (1)	S (1)	B (1)	B (1)	B (1)	B (1)	B (1)
181	180 pF		N	N	N	N		S (1)	S (1)	S (1)	S (1)	S (1)	B (1)	B (1)	B (1)	B (1)	B ⁽¹⁾
221	220 pF		Ν	N	N	Ν		S (1)	S (1)	S (1)	S (1)	S (1)	B (1)	B (1)	B (1)	B (1)	B ⁽¹⁾
271	270 pF		N	N	N	N		S (1)	S (1)	S (1)	S (1)	S (1)	B (1)	B (1)	B (1)	B (1)	B (1)
331	330 pF		N	N	N	N		S (1)	S (1)	S (1)	S (1)	S (1)	B (1)	B (1)	B (1)	B (1)	B (1)
391	390 pF		N	N	N N	N N		S (1)	S ⁽¹⁾	S (1)	S ⁽¹⁾	S ⁽¹⁾	B (1)	B (1)	B (1)	B (1)	B (1)
471 561	470 pF 560 pF		N N	N N	N	N		S	S	S	S	S	B B	B B	B B	B B	B B
681	7q 086		N	N	N	N		S	S	S	S	S	В	В	В	В	В
821	820 pF		N	N	N	N		Š	Š	Š	Š	Š	В	В	В	В	В
102	1.0 nF		N	N	N	N		S	S	S	S	S	В	В	В	В	В
122	1.2 nF		N	N	N	N		S	S	S	S	S	В	В	В	В	В
152	1.5 nF		N	N	N	N		S	S	S	S	S	В	В	В	В	В
182	1.8 nF		N N	N N	N N	N N		S	S	S	S	S	B B	B B	B	B	B B
222 272	2.2 nF 2.7 nF		N	N	N	N	1	S	S	S	S	S	В	В	В	В	В
332	3.3 nF		N	N	N	N		S	S	S	S	S	В	В	В	В	В
392	3.9 nF		N	N	N	N		Š	Š	Š	S	Š	В	В	В	В	В
472	4.7 nF		Ν	N	N	Ν		S	S	S	S	S	В	В	В	В	В
562	5.6 nF		N	N	N	N		S	S	S	S	S	В	В	В	В	В
682	6.8 nF		N	N	N	N		S	S	S	S	S	В	В	В	В	В
822 103	8.2 nF 10 nF		N N	N N	N N	N N		S	S	S	S	S	B B	B B	B B	B B	B B
123	12 nF		N	N	N	IN		S	S	S	S	3	В	В	В	В	В
153	15 nF		N	N	N			S	S	S	S		В	В	В	В	В
183	18 nF		N	N	N			S	S	S	S		В	В	В	В	В
223	22 nF		N	N	N			S	S	S	S	X (2)	В	В	В	В	В
273	27 nF		N	N	N			S	S	S	S		В	В	В	В	D
333 393	33 nF 39 nF		N N	N N	N N			S	S	S	X		B B	B B	B	B	D D
473	47 nF		N	N	N	N (2)		S	S	S	X	X (2)	В	В	В	В	D
563	56 nF		N	N	.,	14		S	S	S	X	χ.,	В	В	В	В	D
683	68 nF		N	N				Š	Š	Š	X		В	В	В	В	D
823	82 nF		N	N				S	S	S	Х		В	В	В	В	D
104	100 nF		N	N	N			S	S	S	Х	X (2)	В	В	В	B/D	D
124	120 nF							S	S	X			В	В	В	D	
154 184	150 nF 180 nF							S	S	X			D D	D D	D D	D D	
224	220 nF				N (2)(4)		 	S	S	X	X (2)		D	D	D	D	J (2)
274	270 nF							X	X	X			D	D	D	<u> </u>	
334	330 nF							X	X	X			D	D	D		
394	390 nF		(0\/A\					X	X	X	N (0\/A\		D	D	D		. /0\
474	470 nF		N (2)(4)					X	X	Х	X (2)(4)		D	D	D		l (2)
564 684	560 nF 680 nF							X	X				D D	D D	D D		—
824	820 nF						1	X	X				D	D	D	1	
105	1.0 µF	N (2)(4)					1	X	X	X (1)	X (2)(4)		D	D	D	[(1)	
155	1.5 µF												Ĩ	J (1)	I (1)		
225	2.2 µF							X (1)	X' (2)(4)						ı	(2)(4)	
335	3.3 µF												1 /4\/ / /	1 /4\//	1 /4\//4\		
475	4.7 µF												 (1)(4)	(1)(4)	(1)(4)		ļ
685 106	6.8 µF							-					 (1)(4)	(3)(4)			
156	10 μF 15 μF						1						17.77.9	1 ,2/, ./	1	1	
226	22 μF						1								1	1	
336	33 µF														1	1	
476	47 µF																
686 Notes	68 µF]]			

Notes

- Letters indicate product thickness, see packaging quantities

 1) Not in 5 % (code "J") tolerance

 2) Only in 10 % (code "K") tolerance

 3) Only in 20 % (code "M") tolerance

 4) Contact mlcc@vishay.com for availability

www.vishay.com

Vishay

SELECTIO	N CHART											
DIELECTRIC							X7R					
STYLE				VJ1206	1				VJ1	210		
SIZE CODE				1206					12	:10		
VOLTAGE (VD	nc)	10 V	16 V	25 V	50 V	100 V	6.3 V	10 V	16 V	25 V	50 V	100 V
VOLTAGE CO		Q	J	X	Α	В	Υ	Q	J	X	Α	В
CAP. CODE	CAP.	<u> </u>					•					
101	100 pF											
121	120 pF											
151	150 pF	B ⁽¹⁾	B (1)	B (1)	B (1)	B (1)						
181	180 pF	B ⁽¹⁾	B (1)	B ⁽¹⁾	B (1)	B ⁽¹⁾						
221	220 pF	B (1)										
271	270 pF	B (1)										
331	330 pF	B (1) B (1)	B ⁽¹⁾	B ⁽¹⁾	B ⁽¹⁾	B ⁽¹⁾ B ⁽¹⁾						
391 471	390 pF 470 pF	В (1)										
561	560 pF	В	В	В	В	В						
681	680 pF	В	В	В	В	В						
821	820 pF	В	В	В	В	В						
102	1.0 nF	В	В	В	В	В		С	С	С	С	С
122	1.2 nF	В	В	В	В	В		С	С	С	С	С
152	1.5 nF	В	В	В	В	В		С	С	С	С	С
182	1.8 nF	В	В	В	В	В		С	С	C	C	C
222	2.2 nF	В	В	В	В	В		C	C	C	C	C
272 332	2.7 nF	B	B B	B B	B B	B B		C	C	C	C	C
392	3.3 nF 3.9 nF	В	В	В	В	В		C	C	C	C	C
472	4.7 nF	В	В	В	В	В		C	C	C	C	C
562	5.6 nF	В	В	В	В	В		Č	Č	Č	Č	Č
682	6.8 nF	В	В	В	В	В		Č	Č	Č	Č	Č
822	8.2 nF	В	В	В	В	В		С	С	С	С	С
103	10 nF	В	В	В	В	В		С	С	С	С	С
123	12 nF	В	В	В	В	В		С	С	С	С	С
153	15 nF	В	В	В	В	В		C	С	C	С	C
183 223	18 nF 22 nF	B	B B	B B	B B	B B		C	C	C	C	C
273	27 nF	В	В	В	В	В		C	C	C	C	C
333	33 nF	В	В	В	В	В		C	Č	C	C	C
393	39 nF	В	В	В	В	В		Č	Č	Č	Č	Č
473	47 nF	В	В	В	В	В		С	С	С	С	С
563	56 nF	В	В	В	В	В		С	С	С	С	С
683	68 nF	В	В	В	В	В		C	С	С	С	С
823	82 nF	В	В	В	В	D		C	C	C	C	C
104	100 nF	В	В	В	В	D		C	C	C	С	C
124 154	120 nF 150 nF	B C	B C	B C	B C	D G		C	C	C	OO	C D
184	180 nF	C	C	C	C	G		C	C	C	C	D
224	220 nF	C	C	C	C	G		C	C	C	Č	D
274	270 nF	Č	Č	Č	D	Ğ		Č	Č	Č	Č	Ğ
334	330 nF	Č	Č	Č	D	Ğ		Č	Č	Č	D	Ğ
394	390 nF	С	С	J	Р	G		С	С	С	D	М
474	470 nF	J	J	J	Р	G		С	С	С	D	М
564	560 nF	J	J	J	P	P		D	D	D	D	M
684	680 nF	J	J	J	P	P		D	D	D	D	K
824 105	820 nF 1.0 μF	J	J	J	P P	P P		D D	D D	D D	D D	K K
155	1.0 µF 1.5 µF	J	J	J P	<u> </u>	٢		U	ע	ע	U	M
225	2.2 µF	J	J	P	P (1)(4)	P (2)(4)			K	G	M ⁽¹⁾	M
335	3.3 µF	P	P	P					K ⁽²⁾	G ⁽¹⁾		
475	4.7 µF	P	P	P	P (1)(4)			K	K	K (1)	M (1)(4)	
685	6.8 µF											
106	10 μF	Р	P (1)(4)	P (1)(4)				K	K	K (1)(4)	M (1)(4)	
156	15 µF	D (41/A)	D (0\/A\					1 A (O)(A)	B # (4\/A\	B # (4\/A\		
226	22 µF	P (1)(4)	P (3)(4)					M (2)(4)	M (1)(4)	M (1)(4)		
336 476	33 μF 47 μF	1	1		1		M (2)(4)	M (1)(4)				
686	47 μF 68 μF	1					IVI \=/\ ·/	IVI (')(')				
107	100 μF											
101	ι ιου μι		ı	1	1			1	·	·		

Notes

- Letters indicate product thickness, see packaging quantities

 (1) Not in 5 % (code "J") tolerance

 (2) Only in 10 % (code "K") tolerance

 (3) Only in 20 % (code "M") tolerance

 (4) Contact mlcc@vishay.com for availability

Revision: 11-Aug-2020

Vishay

SELECTIO	ON CHART	Γ															
DIELECTRIC									Y	′5 V							
STYLE				٧J	0402					VJ060	3				VJ080)5	
SIZE CODE					402					0603					0805		
VOLTAGE (V	DC)	6.3 V	10 V	16 V	25 V	50 V	100 V	10 V	16 V	25 V	50 V	100 V	10 V	16 V	25 V	50 V	100 V
VOLTAGE CO	ODE	Υ	Q	J	Х	Α	В	Q	J	Х	Α	В	Q	J	Х	Α	В
CAP. CODE	CAP.																
102	1.0 nF																
122	1.2 nF																
152	1.5 nF																
182	1.8 nF																
222	2.2 nF																
272	2.7 nF																
332	3.3 nF																
392	3.9 nF																
472	4.7 nF																
562	5.6 nF																
682	6.8 nF																
822	8.2 nF																
103	10 nF		N	N	N	N		S	S	S	S		Α	Α	Α	Α	В
123	12 nF		N	N	N	N		S	S	S	S		Α	Α	Α	Α	
153	15 nF		N	N	N	N		S	S	S	S		Α	Α	Α	Α	В
183	18 nF		N	N	N	N		S	S	S	S		Α	Α	Α	Α	
223	22 nF		N	N	N	N		S	S	S	S		Α	Α	Α	Α	В
273	27 nF		N	N	N	N		S	S	S	S		Α	Α	Α	Α	
333	33 nF		N	N	N	N		S	S	S	S		Α	Α	Α	Α	В
393	39 nF		Ν	Ν	N			S	S	S	S		Α	Α	Α	Α	
473	47 nF		Ν	Ν	N			S	S	S	S		Α	Α	Α	Α	В
563	56 nF		Ν	Ν	N ⁽¹⁾			S	S	S	S		Α	Α	Α	Α	
683	68 nF		Ν	Ν	N			S	S	S	S		Α	Α	Α	Α	В
823	82 nF		N	N				S	S	S	S		Α	Α	Α	Α	
104	100 nF		N	N	Ν			S	S	S	S		Α	Α	Α	Α	В
154	150 nF		N					S	S	S	S		Α	Α	Α	Α	
224	220 nF	N	Ν					S	S	S	S		Α	Α	Α	Α	
334	330 nF	N	N					S	S	S			В	В	В	В	
474	470 nF	N	N					S	S				В	В	В	В	
684	680 nF							S	Χ				В	В	D	D	
105	1.0 µF							S	Х				В	В	D	D	
155	1.5 µF							S					D	D			
225	2.2 µF							S					D	D			
335	3.3 µF												D	D			
475	4.7 μF												D	D			
685	6.8 µF												I				
106	10 μF												Ι				
226	22 µF																
336	33 µF																
476	47 μF																
686	68 µF																
107	100 μF																

Notes

• Letters indicate product thickness, please see packaging quantities

(1) Not in 20 % (code "M") tolerance

Vishay

SELECTION	N CHART													
DIELECTRIC								Y5V						
STYLE				VJ1	206						VJ1210	1		
SIZE CODE				12	206						1210			
VOLTAGE (V _{DC}	:)	10 V	16 V	25 V	35 V	50 V	100 V	6.3 V	10 V	16 V	25 V	35 V	50 V	100 V
VOLTAGE COD	DE	Q	J	Х	Z	Α	В	Υ	Q	J	Х	Z	Α	В
CAP. CODE	CAP.													
102	1.0 nF													
122	1.2 nF													
152	1.5 nF													
182	1.8 nF													
222	2.2 nF													
272	2.7 nF													
332	3.3 nF													
392	3.9 nF													
472	4.7 nF													
562	5.6 nF													
682	6.8 nF													
822	8.2 nF													
103	10 nF	В	В	В		В	В							С
123	12 nF	В	В	В		В								
153	15 nF	В	В	В		В	В							С
183	18 nF	В	В	В		В								
223	22 nF	В	В	В		В	В							С
273	27 nF	В	В	В		В								
333	33 nF	В	В	В		В	В							С
393	39 nF	В	В	В		В								
473	47 nF	В	В	В		В	В							С
563	56 nF	В	В	В		В								
683	68 nF	В	В	В		В	В							С
823	82 nF	В	В	В		В								
104	100 nF	В	В	В		В	В		С	С	С		С	С
154	150 nF	В	В	В		В	С		С	С	С		С	С
224	220 nF	В	В	В		В	С		С	С	С		С	С
334	330 nF	В	В	В		В			С	С	С		С	С
474	470 nF	В	В	В		В			С	С	С		С	
684	680 nF	В	В	В		В			С	С	С		С	
105	1.0 μF	С	С	С		С			С	С	С		С	
155	1.5 µF	С	С	С					С	С	С			
225	2.2 µF	С	С	С					С	С	С		G	
335	3.3 µF	J	J	J					С	С	С			<u> </u>
475	4.7 μF	J	J	J	J				С	С	D		G	
685	6.8 μF	J	J						С	С	D			<u> </u>
106	10 μF	J	J						D	D	G	K		
226	22 µF	Р							K	K				
336	33 µF													
476	47 μF	<u> </u>						K	K					
686	68 μF													
107	100 μF							М						

Note

• Letters indicate product thickness, please see packaging quantities

www.vishay.com

Vishay

SIZE CODE	MAX. THICKNESS (mm)	THICKNESS SYMBOL	PAPER TAPE		PLASTIC TAPE	
(inch / mm)			7" REEL (C)	13" REEL (P)	7" REEL (T)	13" REEL (R)
0402 (1002)	0.55	N	10K	50K		
	0.70	Е	10K			
0603 (1608)	0.87	S	4K	15K		
	0.95	Х	4K	15K		
	1.00	X'	4K	15K		
0805 (2012)	0.75	Α	4K	15K		
	0.95	В, Т	4K	15K		
	1.40	D			ЗК	10K
	1.45	I			зК	10K
	0.95	В	4K	15K		
	1.05	С			зК	10K
1206 (3216)	1.30	J			зК	10K
1206 (3216)	1.35	D			зК	10K
	1.80	G			2K	
	1.90	Р			2K	
1210 (3225)	1.05	С			3K	10K
	1.35	D			3K	10K
	1.80	G			2K	
	2.20	K			1K	
	2.80	М			1K	

www.vishay.com

Vishay

TAPE AND REEL SPECIFICATION

Dimensions of paper tape

Dimensions of plastic tape

SIZE CODE	0402		0603	0805		1206
THICKNESS	N	E	S, X, X'	Α	B, T	В
A ₀	0.62 ± 0.05	0.70 ± 0.10	1.02 ± 0.05	1.50 ± 0.10	1.50 ± 0.10	2.00 ± 0.10
B ₀	1.12 ± 0.05	1.20 ± 0.10	1.80 ± 0.05	2.30 ± 0.10	2.30 ± 0.10	3.50 ± 0.10
Т	0.60 ± 0.05	0.70 ± 0.10	0.95 ± 0.05	0.75 ± 0.05	0.95 ± 0.05	0.95 ± 0.05
K ₀	-	-	-	-	-	-
W	8.00 ± 0.10	8.00 ± 0.10	8.00 ± 0.10	8.00 ± 0.10	8.00 ± 0.10	8.00 ± 0.10
P ₀	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10
10 x P ₀	40.0 ± 0.10	40.0 ± 0.10	40.0 ± 0.10	40.0 ± 0.10	40.0 ± 0.10	40.0 ± 0.10
P ₁	2.00 ± 0.05	2.00 ± 0.05	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10
P ₂	2.00 ± 0.05	2.00 ± 0.05	2.00 ± 0.05	2.00 ± 0.05	2.00 ± 0.05	2.00 ± 0.05
D ₀	1.55 ± 0.05	1.55 ± 0.05	1.55 ± 0.05	1.55 ± 0.05	1.55 ± 0.05	1.50 ± 0.05
D ₁	-	-	-	-	-	-
Е	1.75 ± 0.05	1.75 ± 0.05	1.75 ± 0.05	1.75 ± 0.05	1.75 ± 0.05	1.75 ± 0.10
F	3.50 ± 0.05	3.50 ± 0.05	3.50 ± 0.05	3.50 ± 0.05	3.50 ± 0.05	3.50 ± 0.05

DIMENSIONS PLASTIC TAPE in millimeters						
SIZE CODE	0805	1206		1210		
THICKNESS	D, I	C, J, D	G, P	C, D	G, K	М
A ₀	< 1.57	< 1.85	< 1.95	< 2.97	< 2.97	< 2.97
B ₀	< 2.40	< 3.46	< 3.67	< 3.73	< 3.73	< 3.73
Т	0.23 ± 0.05	0.23 ± 0.05	0.23 ± 0.05	0.23 ± 0.05	0.23 ± 0.05	0.23 ± 0.05
K ₀	< 2.50	< 2.50	< 2.50	< 2.50	< 2.50	< 3.00
W	8.00 ± 0.10	8.00 ± 0.10	8.00 ± 0.10	8.00 ± 0.10	8.00 ± 0.10	8.00 ± 0.10
P ₀	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10
10 x P ₀	40.0 ± 0.10	40.0 ± 0.10	40.0 ± 0.10	40.0 ± 0.10	40.0 ± 0.10	40.0 ± 0.10
P ₁	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10
P ₂	2.00 ± 0.05	2.00 ± 0.05	2.00 ± 0.05	2.00 ± 0.05	2.00 ± 0.05	2.00 ± 0.05
D ₀	1.50 ± 0.05	1.50 ± 0.05	1.50 ± 0.05	1.50 ± 0.05	1.50 ± 0.05	1.50 ± 0.05
D ₁	1.00 ± 0.10	1.00 ± 0.10	1.00 ± 0.10	1.00 ± 0.10	1.00 ± 0.10	1.00 ± 0.10
Е	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10
F	3.50 ± 0.05	3.50 ± 0.05	3.50 ± 0.05	3.50 ± 0.05	3.50 ± 0.05	3.50 ± 0.05

Vishay

REEL SPECIFICATION

REEL DIMENSIONS in millimeters					
SYMBOL	7" REEL	13" REEL			
Α	13.0 ± 0.5	13.0 ± 0.5			
В	9.0 ± 1.0	9.0 ± 1.0			
С	178.0 ± 1.0	330.0 ± 1.0			
D	60.0 ± 1.0	100.0 ± 1.0			

CONSTRUCTION						
NO.	NA	C0G (NP0)	X5R / X7R / Y5V			
1	Ceramic	CaZrO ₃ based	BaTiO ₃ based			
2	Inner el	Ni				
3		Inner layer	C	Cu		
4	Termination	Middle layer	Ni			
5		Outer layer	Sn (ı	matt)		

STORAGE AND HANDLING CONDITIONS

- (1) To store products at 5 °C to 40 °C ambient temperature and 20 % to 70 % relative humidity conditions.
- (2) The product is recommended to be used within one year after shipment. Check solderability in case of shelf life extension is needed.

Cautions:

- a. The corrosive gas reacts on the terminal electrodes of capacitors, and results in the poor solderability.

 Do not store the capacitors in the ambience of corrosive gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.)
- b. In corrosive atmosphere, solderability might be degraded, and silver migration might occur to cause low reliability.
- c. Due to the dewing by rapid humidity change, or the photochemical change of the terminal electrode by direct sunlight, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or dewing condition. To store products on the shelf and avoid exposure to moisture.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.