Approved For Release STAT 2009/08/19 :

CIA-RDP88-00904R000100120

Approved For Release 2009/08/19 :

CIA-RDP88-00904R000100120

Вторая Международная конференция Организации Объединенных Наций по применению атомной энергии в мирных целях

A/CONF/15/F/2191/ USSR ORIGINAL: RUSSIAN

Не подлежит оглашению до официального сообщения на Конференции

THE EFFECT OF THE STRUCTURE & PROPERTIES OF URANIUM
ON ITS BEHAVIOR UNDER TRRADIATION

ВЛИЯНИЕ СТРУКТУРЫ И СВОЙСТВ УРАНА НА ЕГО ПОВЕДЕНИЕ ПОД ОБЛУЧЕНИЕМ.

<u>Авторы:</u>— ЗАЙМОВСКИЙ А.С., СЕРГЕЕВ Г.Я., ТИТОВА В.В., ЛЕВИТСКИЙ Б.М., СОКУРСКИЙ Ю.Н.^X).

I. POCT TEKCTYPIPOBAHHOFO YPAHA.

Увеличение плины и уменьшение диаметра текстурированных цилиндрических урановых образцов под облучением является одним из
наиболее ярких проявлений действия нейтронного поля на поведение
делящихся материалов. В советском докладе, представленном на женевской конференции 1955 г. /I/, а также в работах английских
/2/ и американских /3-5/ авторов эти эффекты были подробно описаны. В докладе Пейна й Киттела /3/ приведены количественные
данные о влиянии величины зернь и степени деформации при холодной
обработке на величину коэффициента радиационного роста Gi.

В экспериментах авторов данной статьи были получены значения G_i существенно большие, чем те, которые были сообщены Пейном и Киттелом. На рис. І приведены экспериментальные кривне изменения длины и диаметров цилиндрических образцов при выгорании 0.025, а на рис. 2 - соответствующие значения G_i (при степенях деформании до 50% с последующей рекристаллизацией) для урона с мелким (30-40 микрон) и крупным (ISO-I50 микрон) зерном. Измерения про-

х) В экспериментальной части работы принимали участие Ланин А.Г., Теплинская В.М., Захарова В.К., Проценко Л.Н., Голованова В.Н., Борисов К.А.

изводились с помощью специально сконструированного дистанционного прибора. Данные являются средними для большого числа образцов.

Очевидно радиационный рост зависит не только ст степени деформации и величины зерна после рекристаллизации, но и от химического состава урана, различного в опытах разных авторов.

2. MCKAMEHNE HOBEPXHOCTN HETEKCTYPNP OBAHHOPO YPAHA.

В многочисленных опубликованных статьях, описывающих явление искажения поверхности урана под облучением, не приводятся какие——либо количественные данные, хэрактеризующие величину шероховато—сти, т.е. увеличение диаметра исследованных образцов. Авторы настоящей работы исследовали изменения диаметров цилиндрических образцов, подвергнутых различной термической обработке, после облучения в нейтронном поле.

На рис. З приведены кривые, иллюстрирующие рост диаметра как функцию величины выгорания для сбразцов с разной обработкой. Как видно из этих данных, литне образцы с крупным зерном показывают в 2-3 раза больший рост диаметра вследствие большей шероховатости, чем закаленные мелкозернистые образцы.

В -закалка дает лучшие результаты, чем У -закалка. Как показали металлографические исследования, это, по-видимому, связано с большей степенью квазиизотропии В -закаленного металла.

Путем регулирования химического состава урана и условий термической обработки величина радиационного искажения поверхности может быть изменена в широких пределах благодаря возможности изменения величины верна (см. ниже).

В. ВЛИЯНИЕ СОСТАВА И ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА СТРУКТУРУ И МЕХАНИЧЕСКИЕ СВОЙСТВА УРАНА.

В докладе Пью /2/ на Женевской конференции 1955 г. указаны разные методы измельчения зерна урана. В этом докладе, в частности, сообщается, что для достижения необходимого эффекта закалки содержание железа, кремния или элюминия в уране должно составлять около 0,05%. Однако эти данные носят качественный характер, по-

скольку влияние отдельных элементов не покозоно.

Дувец /6/, исследовавший положение критических точек чистого урана как функцию скорости охлаждения, не осветил влияния примесей на положение критических точек при закалке.

Критическая точка $\beta - \alpha$ — превращения исходного нелегированного урана при скорости охлаждения 200° /сек. снижается до 600° и при больших скоростях охлаждения остается на этом уровне, что согласуется с данными Дувец. Железо, кремний и, в меньшей степени, алюминий вызывают прегрессивное понижение критической точки $\beta - \alpha$ с увеличением содержания указанных элементов. Так, при 0,05 вес. % кремния и скорости охлаждения 400° /сек, критическая точка $\beta - \alpha$ снижается до 530° . Снижение критических точек при охлаждении и является, очевидно, одной из причин, образования мелкозернистой дезориентированной структуры $\alpha - \alpha$

На рис. 5 приведены графики, характеризующие изменение величины зерна урана в зависимости от содержания железа, кремния и элюминия при закалке со скоростью охлаждения порядка $100^{\circ}/\text{сек}$. Из этих кривых видно, что уже при 0,02-0,03 вес. % железа или кремния и 0,05 вес. % элюминия достигается предельное при данной скорости охлаждения измельчение зерна.

На рис. 6 показано, что твердость и прочность закаленного урана растут с увеличением содержания железа, кремния и элюминия. Существенно отметить, что в отличие от резко затухающей кривой, отражающей измельчение зерна, твердость и прочность с повышением содержания указанных элементов в закаленном уране растут непрерывно, за исключением кривой прочности для сплавов с железом. Очевидно рост прочностных характеристик определяется не только величиной зерна, но также и упрочнением как самого тела зерен,

так и их границ.

Как было установлено авторами методом рентгенографического анализа, при содержании железа 0,10-0,15% закалка урана в ледяную воду приводит к частичной или полной фиксации β -фазы. Структура такого металиа характеризуется игольчатыми выделениями α -фазы из β -фазы /рис.7а/.

В процессе вылеживания при комнатной температуре в течение месяца в -фаза практически полностью распадается. Таким образом, устойчивость переохлажденной при закалке урана с 0,15% железа в -фазы в сплавах урана с хромом /по данным D.W. White /6//.

Однако микроскопическое исследование образцов после завершения распада Э -фазы показывает, что первичные иглы С -фавы остаются видимыми. (Рис.76). Это свидетельствует о неравномерности распределения железа в закаленном металле.

Отмеченное неоднородное распределение железа подтверждается данными рентгенографического исследования расширения дифракционных линий оборования образы закаленного урана, содержащего до 0,15% железа (рис.8). В случае, когда содержание железа недостаточно для фиксации оборование закалки (менее 0,1%), расширение линий наблюдается непосредственно после закалки и возрастает с увеличением содержания железа. В сплаве с 0,15% железа после закалки расширение линий незначительно, но возрастает по мере распада

В -фазы в процессе вылеживания.

В сплавах с 0,1-0,15% железа кроме расширения линий наблюдалось их незначительное расщепление на два максимума заметных на
линиях с большими углами отражения (рис.8а). Анализ зависимости
величины расширения линий от угла отражения показал, что оно может быть связано с неоднородностью состава металла или с микронапряжениями. Поскельку отжиг при 630° в течение часа, достаточный
для снятия попряжений, привел лишь к частичному уменьшению расширения линий, расщепление линий и в существенной степени их расширение следует об"яснить неоднородностью состава

—фазы.

Неоднородность в распределении примесей, в том числе и железа, может возникнуть при обработках, предшествующих закалке. В частности было показано, что при отжите сплава урана с 0,15% железа в — области с последующим медленным охлаждением происходит сегрегация примесей. Примеси в основном выделяются в виде сетки, не связанной с границами с -зерен. Вероятно она образуется по границам растущих зерен за -фазы в процессе охла-ждения сплава (рис.9).

Полученные данные представляют интерес как с точки зрения теории термической обработки урана, так и с практической точки зрения, поскольку локальное повышение содержания железа может привести к фиксации — фазы при закалке и, следовательно, к охрупчиванию металла.

4. ПОЛЗУЧЕСТЬ УРАНА ПОД ОБЛУЧЕНИЕМ.

В настоящем разделе доклада приводятся данные советских авторов о полаучести урана под облучением. Большая часть этих данных была получена до 1954 года. Обнаруженное впервые советскими учеными чрезвычайно большое ускорение полаучести под облучением в 50-100 раз (на 1,5-2 порядка) было сообщено в докладе С.Т. Конобеевского, н.Ф.Правдюка и В.И.Кутайцева на Женевской конференции 1955 г. /1/.

Следует указать, что английские авторы Робертс и Коттрелл /8-9/, Роуз /10/, а также автор заметки в журнале Engineering /11/ не отметили этого факта. Робертс и Коттрелл пишут о советской работе, но вместо указанного С.Т. Конобеевским и др. резкого ускорения ползучести на 1,5-2 порядка, т.е. в 50-100 раз, ошибочно говорят об ускорении ползучести только в 1,5-2 раза, что соизмеримо с разбросом значений при определении этой характеристики.

Таким образом, эффект резкого ускорения ползучести урана под облучением, в том числе и при очень малых нагрузках, был впервые открыт советскими учеными.

а) Методика исследования полаучести под облучением.

Для испытания образцов на ползучесть в нейтронном поле был применен специально сконструированный аппарат, вводившийся непосредственно в активную зону теплового реактора с графитовым замедлителем. Нагружение образца производилось пневматически, а

деформация образца измерялась с помощью высокочувствительного электро-индукционного датчика с мостовой схемой. Температура измерялась термопарами медь-константан с автоматической записью на потенциометре. Испытания проводились при температуре реактора. Иногда применялся подогрев образца специальной спиралью. Опыты проводились в атмосфере очищенного гелия.

Исследования поизучести образцов без облучения проводились в точно таких же тубусах, но вне реактора.

На рис. 10 схематически изображен тубус прибора, в котором производились испытания на ползучесть. Измерения нагрузок, деформаций, температуры, регулирование давления газа и т.д. производились дистанционно.

Испытения были проведены в потоке тепловых нейтронов, равном $6.10^{12} \, \mathrm{H/cm^2}$. сек.

б) Образцы для испытаний.

Полаучесть под облучением и без облучения изучалась на образцах в следующих состояниях:

- I литой уран;
- 2 уран, отожженный в В -фазе;
- З уран, закаленный из В -фазы;
- 4 уран, заколенный из 🗡 -фазы;
- 5 уран, прокатанный в области 🗘 фазы;
- 6 уран, прокатанный в области α -фазы и рекристаллизованный.

Образцы представляли собой прутки диаметром 2 мм и длиной 70 мм.

в) Результаты испытаний.

На рис. II, I2 и I3 изображены кривые "деформация-время" для образцов из урана в различных состояниях и при различных напряжениях и температурах, а на рис. I4 аналогичные кривые, полученные без облучения.

Из приведенных дэнных видно:

I. Период неустановившейся ползучести для образцов под облучением составляет 10-30 часов, в то время как без облучения этот период составляет 200-400 часов.

3. Ускорение ползучести под облучением в 50-I00 раз проявляется как при малых напряжениях порядка 0,2-0,5 кг/мм², так и при напряжениях до 15 km/mm^2 (рис. 12, 13).

4. Скорость ползучести прокатанного со степенью деформации 50% и затем отожженного в 🗸 -фазе урана, за вычетом скорости радиационного роста для этих образцов, в 50 раз больше скорости ползучести такого материала без облучения (рис.II).

Экспериментально определенные значения скорости ползучести при малых нагрузках подтверждаются экспериментами Робертса и Коттрелла, проведенными на проволочных спиралях из урана. Однако в отличие от данных этих авторов, резкое ускорение ползучести нами наблюдалось не по прошествии времени tm (по концепции Коттрелла), а практически сразу же после приложения нагрузки. Это различие может быть обусловлено, как различием методики экспериментов, условий опыта (температура, величина нейтронного поля), так и различием в исходном состоянии и форме образцов.

Высокая скорость ползучести текстурированного в урана (рис.II), превосходяцая в 50 раз скорость ползучести без облучения даже после вычитания скорости радиационного роста, является с точки зрения концепции Коттрелла на первый взгляд неожиданной, однако такой результат может быть об"яснен тем, что при деформации, равной 50%, ориентировку [ОІО] имеет сравнительно небольшая часть зерен. Поэтому взаимодействие зерен с различной ориентировкой вполне достаточно, чтобы обусловить ускоренную ползучесть под облучением.

Прямая связь скорости ползучести урана, имеющего дезориентированную структуру, со скоростью выгорания показана на рис.15, построенном на основании результатов настоящей работы для закаленного урана с дезориентированной структурой. Таким образом теоретическая концепция Коттрелла, связывающая ползучесть с коэф-

Таблица І.

Механические свойства урана, полученые при испытаниях под облучением и без облучения.

		<u> </u>		_	, 1
NōNō NōNō	Условия испытэния	Температура образца	Продолжи- атроналот испытания	Предел прочности Об а	Относи- тельное удли н ение
		(<u>o</u> C)	(мин.)	Kr/MM ²	5 %
I	2	3	4	5	6
I.	Без облуче- ния	20	8	46,2	7,7
2.	_ 11	20	10	48,0	9,5
	1 (19)		Cp.	47,I	6ر 8
3. 4.	Без облуче- ния_ "_	153 150	29 28	27,3 27,3	12,8 8,9
-			Cp.	27,3	10,8
5. 6.	Без облуче- ния	200 200	56 55	20,7 21,8	5,0 6,9
7.	- " -	200	55	20,4	6,8
			Ср.	9,02	6,2
8.	Под облуче-	150	27	35,6	9,0
9.	Huem. hv = 1,5.10 ¹³ H/cm ² cek.	I 50	25	31,8	8,4
			Cp.	33,7	8,7
IO.	Пот оолуче- нием лу = 1,5.10 ¹³	200	5ô	20,4	5,3
II.	H/cm ² .cek.	200	53	30,6	4,9
-			Ср.	25,5	5,6

фициентом радизионного роста, подтверждзется.

5. <u>МЕХАНИЧЕСКИЕ СВОЙСТВА УРАНА, ОПРЕДЕЛЕННЫЕ В ПРОЦЕССЕ</u> ЕГО ОБЛУЧЕНИЯ.

Вопрос о механических свойствах урана во время облучения имеет чрезвычайно большое практическое значение в связи с действием термических напряжений на атомное горючее в процессе его использования.

В опубликованных до настоящего времени работах /1,3,12/ приводятся данные о свойствах урана при комнатных и повышенных температурах после действия облучения, но не во время облучения. В настоящем разделе приводятся некоторые результаты исследования механических свойств урана непосредственно в нейтронном поле атомного реактора.

Испытания образцов производились в приборе, конструкция которого была подобна конструкции прибора, применявшегося при исследовании ползучести под облучением, с той лишь разницей, что
диапазон измеряемых деформаций был расширен до 20 мм. Нагружение
до разрыва производилось с постоянной скоростью. Образцы представляли собой прутки диаметром 2 мм и длиной 70 мм. Суммарное
время пребывания образцов в реакторе и их испытания на разрыв
быле 30-60 минут. Результаты этих исследований приведены на рис.
16 и в таблице I.

Эти данные показывают, что даже при кратковременном пребывании в нейтронном поле /до I часа/ несколько снижается относительное удлинение урана и заметно повышается предел прочности.

J TTEPATYPA

- I. Конобесвений С.Т., Правчюк Н.Ф., Кутайцев В.П.

 "Вимяние облучения на структуру и свойства денящихся натериалов".

 Доклады, представлениие СССР на Международную конференцию по мирному использованию атомной энергии. Кад. АН.СССР (1955)
- 2. Pugh S.F., "Damage Occurring in Uranium during Burnup".
 Paper N443.
- 3.X) Paine S.H. and Kittel I.H., "Irradiation Effects in Uranium and its Alloys". Paper N745.
- 4.* Foot Frank G., "Physical Metallurgy of Uranium".
 Paper N555.
 - 5. x) Howe I.P., "Metallurgy of Reactor Fuel". Paper N825.
- 6. Duwez R., "The Effect of the Rate of Cooling on the Allotropic Transformation Temperatures of Uranium". Journ. Appl. Phys., 24,(2) 152 (1953).
- 7. White D.W., "Transformation Kinetics in Uranium-Chromium Alloys". Journ. of Met., 7, (11) 1221 (1955).
- 8.Cottrell A.H., "Effects of Neutron Irradiation on Metals and Alloys", Met. Rev., 1, 479 (1956).
- 9. Roberts A.C. and Cottrell A.H., "Creep of Alpha Uranium during Irradiation with Neutrons", Phil. Mag. 1, (8) 711 (1956).
- 10. Rose H.C., Member M.Sc. "A Compressive Creep Test of Alpha Uranium under Neutron Irradiation". Journ. Inst. of Met., 86, (3),122 (1957).
 - 11. Atomic Review Enginnering, 183, (4750),380(1957).
- 12. Hueschen R.E., Kemper R.S., and Kelly W.S., 2nd Nucl. Eng. Sci. Con. (1957) 57 N.E.S.C. 13.

х) материалы международной Конференции 1955 года по мирному использованию этомной энергии.

Рис.І. Изменение высоты (A h) и диаметра (A d) текстурированных цилиндрических образцов из урана в зависимости от степени деформации (E) тос —области и величины зерна. Температура прокатки 500°. Выгорание — 0.02%.

I - мелкое зерно

2 - крупное зерно

Рис. 2. Зависимость коэффициента роста (Gi) текстурированного урана от степени деформации в — области для металла с мелким (I) и крупным (2) зерном. Температура прокатки 500°С. Выгорание — С,02%.

Рис.З. Изменение диаметра (Д с) образцов из нетекстурированного урана с дезориентированной структурой в зависимости от термической обработки и выгорания.

I — литой ура́н;
2 — уран, закаленный из Т — фазы в воду;
3 — — — из Т — фазы в масло;
4 — — — из В — фазы в воду;
5 — — из В — фазы в масло.

Рис.4. Влияние содержания железа, кремния и алюминия в уране и скорости охлаждения на положение критичес-кой точки β — — превращения.

```
І-мсходный уран (Fe -0.00%, Si-0,00%, Al-0,0%);

2-уран с 0,0% Al (сод. Fe и Si, как в (I));

3-уран с 0,0% Fe (сод. Al и Si, как в (I));

4-уран с 0,0% Fe (сод. Al и Si, как в (I));

5-уран с 0,0% Fe (сод. Al и Si, как в (I));

6-уран с 0,0% Si (сод. Fe и Al, как в (I));

7-уран с 0,0% Si (сод. Fe и Al, как в (I));
```


ис.э. Блияние содержания железа, кремния и алюминия в уране На величину макрозерна.

Рис 6. Влияние содержания железа, кремния и алюминия в уране на твердость (а), предел прочности(б) и предел текучести (в). Температура испытания 20°С.

x500

Рис.7. Микроструктура сплава с 0,15 вес. % железа после закалки из 7 -фазы в ледяную воду (а) и после вылеживания закаленного сплава при комнатной температуре в течение одного месяца (б).

Рис.8. Фотометрические кривые дифракционных линий (152) — фазы сплава с 0.1% железа после закалки из 7 фазы в ледяную воду (а) и после отжига при 950°С в течение 3-х часов (б).

x 500

Тис. 9. Микроструктура сплава с 0.15 вес. 6 железа после отжига при 850° С в течение I часа и недленного ожлаждения с печью.

Рис.10. Схема тубуса прибора для исследовония ползучести урона под облучением.

I - корпус

6 - нижний захват

2 - вехими захват 7 - подвижным пормень

3 — образец

8 -- мембрина

4 - нагреватель

9 - электрэ-индук-ционный детчик

5 — термопара

-20-

Рис.11. Ползучесть текстурированного урана под облучением $(n\,v_{=}6.10^{12}\,_{\rm H/cm^2.cek};$ температура испытания $220^{\rm o}$ C). Выключение реактора в процессе испытания отмечено на графике пунктиром.

Рис.12. Ползучесть урэна в зависимости от термической обработки. ($n \sim =6.10^{12} \text{H/cm}^2$.cek. $T=220^{\circ}\text{C}$; $G=15 \text{ kr/mm}^2$)

I - уран незакаленный;

2 - уран, закаленный из 🔑 -фазы в воду;

3 - уран, закаленный из 🔭 -фазы в воду:

Рис.ІЗ. Ползучесть урана в различных состояниях под облучением. ($n_{\rm v}=6.10^{12}$ н/см 2 .сек; $T=280^0$; $\sigma=0.2$ кг/мм 2).

- I урвн, прокатанный при 500° С со степенью деформации 60%;
- 2 уран, закаленный из 🧨 -фазы в воду;
- 3 уран, отожженный в 💪 -фазе.

Рис.15. Зависимость скорости ползучести литого урана ($\mathbf Y$) от относительной величины нейтронного потока ($\mathbf N$).

Рис.16. Кривые "напряжение — деформация, полученные при исследовании урановых образцов без облучения (1,2,3) и под облучением (4,5). (nv =6.10¹² H/cm²cek, T=220°C).