

1. The ratio of the coefficient of the middle term in the expansion of $(1+x)^{20}$ and the sum of the coefficients of two middle terms in expansion of $(1+x)^{19}$ is																
2.	If numerically gr	If numerically greatest term in the expansion of $(3-5x)^{11}$, where $x=\frac{1}{5}$, is 729λ , then the value of $\frac{\lambda}{150}$ is														
3.		If the middle term in the binomial expansion of $\left(\frac{1}{x} + x \sin x\right)^{10}$ is $\frac{63}{8}$, then the value of $6\sin^2 x + \sin x - 2$ is The term independent of x in the expansion of $\left(\frac{x+1}{x^{2/3} - x^{1/3} + 1} - \frac{x-1}{x - x^{1/2}}\right)^{10}$, where $x \neq 0, 1$ is equal to mathongo we mathongo we mathongo we mathongo.														
4.	The term indepen	ndent of x in the ϵ	expansion o	$f\left(\frac{x+1}{x^{2/3}-x^{1/3}}\right)$	$\frac{x-1}{x-x^{1/2}}$ $\left(\frac{x-1}{x-x^{1/2}}\right)^{10}$, v	where x	e eq 0,1 is equ	al to								
5.	In the expansion	of $\left(3^{\frac{-x}{4}} + 3^{\frac{5x}{4}}\right)^n$, the sum of	f binomial c	coefficients is 64	and the	term with the	e grea	test binomial c	oeffic	cient exceeds the	he thir	rd term by $(n -$	- 1),		
	(1) 0	x must be				(2)	1									
6/	(3) 2	1) n	/// · mat	hongo 10	e: matherene	. ///										
0.	Suppose $\left(\sqrt{2} + 1\right)$ If $n = 6$ then p is	S														
	(1) 196 (3) 198					(2) (4)	197 199									
7.	7. In the expansion of $(1+3x+2x^2)^6$ the coefficient of x^{11} is (1) 288 ng															
	(3) 576					(4)	216 hongo 674									
8.	The number of di	istinct terms in th	is (2)	29 thongo												
	(3) 28					(4)										
9.	If the number of	terms in the expa	nsion of $(1$	$-\frac{2}{x} + \frac{4}{x^2}$	$x \neq 0, \text{ is } 13,$	then the	e sum of the c	oeffic	cients of all the	term	s in this expan	sion is	mathongo			
	(1) 243 (3) 64					(2)	729 2187									
10.	The value of $\binom{21}{6}$	$C_1 - ^{10}C_1 + (^{21}C_1)$	$(C_2 - {}^{10}C_2) +$	$-(^{21}C_3-^{10}$	$C_3) + (^{21}C_4 - ^{10}C_4)$	$C_4)+.$	$ + (^{21}C_{10} - ^{1}$	$^{10} C_{10}$) is thongo							
	(1) $2^{21} - 2^{11}$ (3) $2^{20} - 2^9$. ,	$2^{21} - 2^{10}$ $2^{20} - 2^{10}$									
	mathongo /					///. r	nathongo									