10/29/01 Barnett

Apply $f_1(x) = \frac{x}{3}$ } with equal probability of $\frac{1}{2}$ on each iteration. or $f_2(x) = \frac{x+2}{3}$ }

Starting with p(x0) uniform in [0, 1],

Find p(xi) and sketch [Hint: what geometrically does for do?]

Find p(x2) and sketch =

What is $p(x_n)$? What is the limiting attractor set as $n \to \infty$?

Prove an upper bound on the distance of ×n to this set [Hint: dist of xo <?

with equal probabilities 1/3

	MATTH 53 WORKSHEET: Fractals from probabilistic Barnett SO CUTIONS games from probabilistic Barnett Analyse & G = X 2 with early radiability of V
4	Apply $f_1(x) = \frac{x}{3}$ 3 with equal probability of $\frac{1}{2}$ on each iteration. or $f_2(x) = \frac{x+2}{3}$
	Starting with $p(x_0)$ uniform in $[0,1]$,
	Find p(xi) and sketch [Hint: what geometrically does to do?] averse them p(xi) / find 36
	Find $p(x_2)$ and sketch $p(x_1) = \begin{cases} \frac{9}{2} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{2}{3} \end{cases}$ $p(x_1) = \begin{cases} \frac{9}{2} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{2}{3} \end{cases}$ $p(x_2) = \begin{cases} \frac{9}{2} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{2}{3} \end{cases}$ $p(x_2) = \begin{cases} \frac{9}{2} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{2}{3} \end{cases}$ $p(x_2) = \begin{cases} \frac{9}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{2}{3} \end{cases}$ $p(x_2) = \begin{cases} \frac{9}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} \end{cases}$ $p(x_2) = \begin{cases} \frac{9}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} \end{cases}$ $p(x_2) = \begin{cases} \frac{9}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} \end{cases}$
	$p(x_1) = \begin{cases} 9/4 & x_2 \leq 1/4 \text{ or } \frac{1}{4} \leq x_1 \leq 1/3 \text{ or } x_1 \geq 8/4 \end{cases}$ $2/3 < x_1 < 7/4 \text{ or } x_1 \geq 8/4 \end{cases}$ 0 otherwise
	What is $p(x_n)$? $p(x_n) = (\frac{1}{2})^n$ if $x_n \in K_n$, 0 otherwise What is the limiting attractor set as $n \to \infty$? K_{∞} , the Cantor-Set "missing third"
	Prove an upper bound on the distance of xn to this eat (Hat dit for 2
	Now try a 2D example: start with \vec{K}_0 uniform in triangle \vec{K}_0 $$
	Deduce the attractor set. Define Liv. towards 3 vertices. Sverpinski gasket for vertices (0,0), (1,0), (0,1).