ESO 208A

Computational Method in Engineering

Lecture 09

Office Hours

- Monday 5:00 to 7:00 pm
- Friday 12:00 to 1:00 pm

Müller's method obtains a root estimate by projecting a parabola to the *x* axis through three function values.

Figure 7.3 of C&C

1. Write the equation of a parabola in a convenient form:

$$f_2(x) = a(x-x_2)^2 + b(x-x_2) + c$$

2. The parabola should intersect the three points $[x_o, f(x_o)]$, $[x_1, f(x_1)], [x_2, f(x_2)].$

$$f(x_o) = a(x_o - x_2)^2 + b(x_o - x_2) + c$$

$$f(x_1) = a(x_1 - x_2)^2 + b(x_1 - x_2) + c$$

$$f(x_2) = a(x_2 - x_2)^2 + b(x_2 - x_2) + c$$

3. The three equations can be solved to estimate a, b, and c

Define

$$h_o = x_1 - x_o \qquad h_1 = x_2 - x_1$$

$$\delta_o = \frac{f(x_1) - f(x_o)}{x_1 - x_o} \qquad \delta_1 = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

then,

$$a = \frac{\delta_1 - \delta_o}{h_1 + h_o} \quad b = ah_1 + \delta_1 \quad c = f(x_2)$$

4. Roots can be found by applying quadratic formula:

$$x_3 - x_2 = \frac{-2c}{b \pm \sqrt{b^2 - 4ac}}$$

5. \pm term yields two roots; the sign is chosen to agree with b. This will result in a largest denominator, and will give root estimate that is closest to x_2 .

6. Once x_3 is determined, the process is repeated by employing a sequential approach just like in secant method, x_1 , x_2 , and x_3 to replace x_0 , x_1 , and x_2 .

- 1. Bairstow's method is an iterative approach loosely related to both Müller and Newton Raphson methods
- 2. It is based on dividing the given polynomial by a quadratic polynomial x^2 -rx-s:

$$f_n(x) = a_o + a_1 x + a_2 x^2 + \dots + a_n x^n$$
$$= (x^2 - rx - s) f_{n-2}(x) + R$$

where

$$f_{n-2}(x) = b_2 + b_3 x + \dots + b_{n-1} x^{n-3} + b_n x^{n-2}$$

 $R = b_1(x-r) + b_o$

3. The coefficients *b*'s are obtained very easily by using recursive relation

$$b_n = a_n$$

 $b_{n-1} = a_{n-1} + rb_n$
 $b_i = a_i + rb_{i+1} + sb_{i+2}$ $i = n - 2 \text{ to } 0$

4. Using Newton Raphson approach, r and s are adjusted so as to make both b_o and b_1 approach zero

$$b_1 = a_1 + rb_2 + sb_3 \Rightarrow u(r, s)$$
$$b_0 = a_0 + rb_1 + sb_2 \Rightarrow v(r, s)$$

5. Obtain corrections in r and s by Newton-Raphson method

Changes Δs and Δr needed to improve guesses will be estimated by

$$\frac{\partial b_1}{\partial r} \Delta r + \frac{\partial b_1}{\partial s} \Delta s = -b_1$$

$$\frac{\partial b_o}{\partial r} \Delta r + \frac{\partial b_o}{\partial s} \Delta s = -b_o$$

6. Bairstow (1920) showed that the partial derivatives of b_1 and b_2 are obtained by the recursive relation

$$\begin{aligned} c_n &= b_n \\ c_{n-1} &= b_{n-1} + rc_n \\ c_i &= b_i + rc_{i+1} + sc_{i+2} \quad i = n-2 \text{ to } 2 \\ \text{where} \\ \frac{\partial b_o}{\partial r} &= c_1 \quad \frac{\partial b_o}{\partial s} = \frac{\partial b_1}{\partial r} = c_2 \quad \frac{\partial b_1}{\partial s} = c_3 \end{aligned}$$

7. Iterate the steps untill $(\Delta r/r)$ and $(\Delta s/s)$ drops below a specified threshold

8. The roots quadratic polynomial x^2 -rx-s are obtained as

$$x = \frac{r \pm \sqrt{r^2 + 4s}}{2}$$

- 9. At this point three possibilities exist:
 - 1. The quotient is a third-order polynomial or greater. The previous values of r and s serve as initial guesses and Bairstow's method is applied to the quotient to evaluate new r and s values.
 - 2. *The quotient is quadratic*. The remaining two roots are evaluated directly, using the above eqn.
 - 3. The quotient is a 1^{st} order polynomial. The remaining single root can be evaluated simply as x=-s/r.

- Graphical Method Provide insights but tedious/subjective
- Bracketing methods
 - 1. Bisection method
 - 2. False position method
 - 3. Modified false position method
- Open methods
 - 1. Fixed-point iteration
 - 2. Newton-Raphson
 - 3. Secant & Modified Secant NR problems near zero gradient

May diverge

FP - linear convergence

NR – quadratic convergence

Secant – between linear & quadratic

Linear or better convergence

Guaranteed convergence

Hybrid Methods

- 1. Dekker method
- 2. Brent method

Combination

- Bracketing method at the beginning
- Open method near convergence

Multiple roots

- 1. Bracketing method Only for odd number of roots
- 2. Newton-Raphson Linear convergence
- 3. Modified Newton Raphson Quadratic convergence
 - a. Known multiplicity
 - b. Derivative function

Roots of polynomials

- 1. Evaluation of polynomials
- 2. Division of polynomials
- 3. Deflation of polynomials
- 4. Effective degree of polynomials

Method of finding roots

- 1. Müller method Real and complex rooots
- 2. Bairstow method

- 1. Except for rare cases, computers will provide approximate solution.
- 2. No method is "universally" better than others.
- 3. Domain knowledge should guide the selection of algorithm and guess value(s).

Comparison of different algorithms

Method	Туре	Guesses	Convergence	Stability	Programming	Comments
Direct	Analytical	_	_	_		
Graphical	Visual	_	_	_	_	Imprecise
Bisection	Bracketing	2	Slow	Always	Easy	·
False-position	Bracketing	2	Slow/medium	Always	Easy	
Modified FP	Bracketing	2	Medium	Always	Easy	
Fixed-point iteration	Open	1	Slow	Possibly divergent	Easy	
Newton-Raphson	Open	1	Fast	Possibly divergent	Easy	Requires evaluation of f'(x)
Modified Newton- Raphson	Open	1	Fast (multiple), medium (single)	Possibly divergent	Easy	Requires evaluation of f'(x) and f"(x)
Secant	Open	2	Medium/fast	Possibly divergent	Easy	Initial guesses do not have to bracket the root
Modified secant	Open	1	Medium/fast	Possibly divergent	Easy	
Brent	Hybrid	1 or 2	Medium	Always (for 2 guesses)	Moderate	Robust
Müller	Polynomials	2	Medium/fast	Possibly divergent	Moderate	
Bairstow	Polynomials	2	Fast	Possibly divergent	Moderate	

Announcement

- 1. The due date for the first computer assignment will be Sunday, August 21, 11:59 pm.
- 2. No option of late or second submission.
- 3. The computer programs should be written so that they can be easily evaluated on independent test data.
 - a. GUI
 - b. Text file
 - c. Screen input