

Arquitetura e Organização de Computadores

Exercícios

António José Araújo João Canas Ferreira Bruno Lima

Conteúdo

1 Aritmética binária				6 Linguagem assembly		
	1.1 Exercícios resolvidos	1		6.1 Exercícios resolvidos 5	6	
	1.2 Exercícios propostos	7		6.2 Exercícios propostos 6	i2	
2	Vírgula flutuante		7 Organização de um CPU			
4	•	11		7.1 Exercícios resolvidos 6	6	
	2.1 Exercícios resolvidos	11		7.2 Exercícios propostos 7	$^{\prime}2$	
	2.2 Exercícios propostos	17		1 1		
			8	Memória Cache 7	5	
3	Circuitos combinatórios	20		8.1 Exercícios resolvidos 7	' 5	
	3.1 Exercícios resolvidos	20		8.2 Exercícios propostos 7	7	
	3.2 Exercícios propostos	29	So	luções dos exercícios propostos 8	1	
1	Circuitos sequenciais	35		1 Aritmética binária 8	31	
•	_			2 Vírgula flutuante 8	3	
	4.1 Exercícios resolvidos			3 Circuitos combinatórios 8	35	
	4.2 Exercícios propostos	42		4 Circuitos sequenciais 9)2	
				5 Linguagem assembly 9)4	
5	Desempenho	47		6 Organização de um CPU 10	0(
	5.1 Exercícios resolvidos	47		7 Memória Cache 10		
	5.2 Exercícios propostos	52		8 Desempenho 10)3	

Esta coletânea reúne exercícios resolvidos e propostos sobre a matéria lecionada em 2020/21 na unidade curricular de Arquitetura e Organização de Computadores do $1^{\rm o}$ ano do Mestrado Integrado em Engenharia Informática e Computação da Faculdade de Engenharia da Universidade do Porto.

1 Aritmética binária

1.1 Exercícios resolvidos

Exercício 1

Realizar as conversões de base indicadas.

a)
$$72_{10} = ?_2 = ?_{16}$$

b)
$$259_{10} = ?_2 = ?_{16}$$

c)
$$1110_2 = ?_{10} = ?_{16}$$

d)
$$100000,11_2 =?_{10} =?_{16}$$
 e) $1BEEF_{16} =?_2$

e)
$$1BEEF_{16} = ?_2$$

A conversão de decimal para qualquer base de representação pode ser feita por divisões sucessivas pela base pretendida ou realizando a decomposição do número em potências dessa base. Optando por este segundo processo, resulta

$$72_{10} = 64 + 8 = 2^{6} + 2^{3} = 1 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$$
$$= 1001000_{2}$$

Relativamente à conversão para hexadecimal, a forma mais simples de a realizar consiste em considerar a representação binária e formar grupos de 4 bits, da direita para a esquerda, e depois fazer a correspondência entre cada um desses grupos e o respetivo símbolo hexadecimal.

$$\frac{100}{4}$$
 $\frac{1000}{8}$ = $48_{\rm H}$

Nota: O índice 'H', tal como '16', indica uma representação em hexadecimal.

b)
$$259_{10} = 256 + 2 + 1 = 2^8 + 2^1 + 2^0 = 100000011_2$$

$$100000011_2 = \begin{array}{ccc} 1 & 0000 & 0011 & = 103_{\rm H} \\ 1 & 0 & 3 \end{array}$$

c)
$$1110_2 = 2^3 + 2^2 + 2^1 = 14_{10}$$

$$1110_2 = E_H$$

d)
$$100000, 11_2 = 2^5 + 2^{-1} + 2^{-2} = 32, 75_{10}$$

Como se trata de um número fracionário, na conversão de binário para hexadecimal, os grupos de 4 bits formam-se a partir da vírgula.

$$100000,11_2 = 10 0000, 1100 = 20, C_H$$

e)
$$1\mathrm{BEEF_H} = \underbrace{1}_{0001} \underbrace{B}_{1011} \underbrace{E}_{1110} \underbrace{E}_{1110} \underbrace{F}_{1111} = 11011111011101111_2$$

Exercício 2

Efetue as seguintes operações aritméticas binárias, considerando os operandos representados como números sem sinal, isto é, números positivos.

a) 1011110 + 100101

b) 1110010 - 1101101

c) 1001011×11001

d) 1101000 ÷ 100

As regras de cálculo são idênticas às regras usadas em base 10.

d) Nesta divisão ocorre uma situação particular: o divisor é uma potência de $2 (100_2 = 2^2 = 4)$. Nestas circunstâncias, o quociente pode ser obtido deslocando os bits do dividendo n posições para a direita, o que corresponde a subtrair n ao expoente de cada potência de base 2 da decomposição do dividendo. Neste exercício n = 2, pelo que, $1101000 \div 100 = 11010_2$.

Represente os seguintes números decimais em sinal e grandeza e em complemento para 2 com 6 bits.

- a) +12
- b) -12
- c) -1
- d) +32

- a) $12 = 8 + 4 = 1100_2$
 - Sinal e grandeza: sendo o número positivo, o bit de sinal é 0; a grandeza, escrita em 5 bits, é 01100. Assim, $12 = 001100_2$.
 - Complemento para 2: a representação de um número positivo em complemento para 2 é a mesma do número sem sinal (binário puro), respeitando porém a largura de representação. Portanto, 12 = 001100₂.
- b) A grandeza de -12 é $12 = 1100_2$.
 - Sinal e grandeza: sendo o número negativo, o bit de sinal é 1; a grandeza é codificada com 5 bits, 01100. Assim, -12 = 101100₂.
 - Complemento para 2:

A representação de um número negativo em complemento para 2 pode ser obtida a partir da representação binária do simétrico do número. Para tal, copiam-se todos os bits da direita para a esquerda até encontrar o primeiro 1, que ainda é copiado, e a partir daí complementam-se os restantes bits. Embora existam outros processos, este é um processo expedito.

Assim, partindo de $12 = 001100_2$ obtém-se $-12 = 110100_2$.

- c) Sinal e grandeza: $-1 = 100001_2$.
 - Complemento para 2: tendo em consideração o que foi descrito na alínea anterior, $1 = 000001_2$, pelo que $-1 = 111111_2$.
- d) O número em causa é $32 = 2^5 = 100000_2$.
 - Sinal e grandeza: a grandeza de 32 não se consegue codificar com apenas 5 bits, pelo que o valor 32 não é representável no formato pretendido.
 - Complemento para 2: o valor 32 também não é representável com 6 bits; é um número positivo e no entanto 100000_2 representa um número negativo (MSB=1).

Com 6 bits, o maior número representável é $2^{6-1} - 1 = 31$.

Considere a representação binária dos valores C1₁₆ e A7₁₆ com 8 bits.

a) Indique o valor decimal correspondente, admitindo que são interpretadas como números:

tskpositivos;

tskem) sinal e grandeza;

tskern complemento para dois.

- b) Indique a gama de valores representáveis considerando a forma complemento para 2.
- c) Admitindo que a referida representação se encontra em complemento para dois, efetue a sua adição em binário e comente o resultado.
- a) $C1_{16} = 11000001_2$ e $A7_{16} = 10100111_2$

i) $11000001_2 = 2^7 + 2^6 + 2^0 = 128 + 64 + 1 = 193$

 $10100111_2 = 2^7 + 2^5 + 2^2 + 2^1 + 2^0 = 128 + 32 + 4 + 2 + 1 = 167$

$$\begin{array}{ccc} 1 & \underline{0100111} & = -39 \\ - & \underline{2^5 + 7} \end{array}$$

iii) Os valores são ambos negativos.

 $11000001_2 \qquad \stackrel{\text{compl. 2}}{\longrightarrow} \qquad 00111111_2 = 63$

Este é o valor simétrico do número a identificar. Logo, 11000001_2 interpretado em complemento para 2, resulta no decimal -63.

 $10100111_2 \xrightarrow{\text{compl. 2}} 01011001_2 = 89$

Da mesma forma, 10100111_2 interpretado em complemento para 2, resulta no decimal -89.

b) Com 8 bits conseguem escrever-se $2^8=256$ números. Considerando que metade são números negativos e a outra metade corresponde a números positivos, incluindo o 0, resulta o seguinte intervalo de representação: [-128;+127]. Ao contrário do que sucede em sinal e grandeza, o 0 só tem uma representação.

De forma mais genérica, em complemento para 2, a gama de representação correspondente a n bits é:

$$[-2^{n-1}; +2^{n-1}-1]$$

c) A soma faz como para números sem sinal, ignorando o transporte a partir do bit mais significativo.

$$11000001 \\ + \underline{10100111} \\ \cancel{1}01101000$$

O resultado encontrado (01101000₂) está incorreto, porque a adição de dois números negativos não pode resultar num número positivo. Ocorre portanto, *overflow*.

Pode confirmar-se esta conclusão em decimal: (-63) + (-89) < -128, isto é, a soma não é representável com 8 bits.

Exercício 5

Admitindo que $A = 11001_2$ e $B = 11101_2$ se encontram representados em complemento para 2 com 5 bits, calcule A + B e indique, justificando, se ocorre *overflow*.

Efetuando os cálculos:

$$11001 + 11101 \\ 110110$$

Como se trata de uma adição em complemento para 2, o carry que ocorreu ao somar os bits mais significativos deve ignorar-se. A ocorrência deste carry não deve ser interpretada como ocorrência de overflow. Logo, A+B=10110.

O resultado encontrado é válido no formato especificado, pois não ocorre *overflow*, porque da adição de dois números negativos resultou um número negativo.

Exercício 6

Considere dois números binários com 6 bits, $M=101100_2$ e $N=110010_2$. M está representado em sinal e grandeza e N está representado em complemento para 2.

- a) Escreva M em formato hexadecimal e N em formato decimal.
- b) Indique, justificando, qual dos números tem maior grandeza.
- c) Mostre que em complemento para 2 a operação M + N não produz overflow.
- a) A conversão para hexadecimal é direta:

$$M = 10 1100 = 2C_{\rm H}$$

Como N está em complemento para 2 e é negativo, -N=001110=14, pelo que N=-14.

b) Como M está definido em sinal e grandeza e são usados 6 bits, a grandeza é dada pelos 5 bits menos significativos.

$$|M| = 01100$$
 (= 12₁₀)

Quanto a N, conclui-se da alínea anterior que

$$|N| = -N = 01110 \qquad (= 14_{10})$$

Conclusão: N é o número que possui maior grandeza.

c) O número M está definido em sinal e grandeza e é negativo, pelo que deve ser representado em complemento para 2 antes de ser operado.

$$-M = 001100$$
 $\stackrel{\text{compl. 2}}{\longrightarrow}$ $M = 110100$

Njá se encontra em complemento para 2, pelo que se pode então calcular $M+N\colon$

$$110100 \\ + \underline{110010} \\ \cancel{1}100110$$

Não há overflow, pois os operandos são negativos e o resultado encontrado também é negativo.

Exercício 7

Os valores $X=10111100_2$ e $Y=10100110_2$ estão representados com 8 bits. Determine o menor número de bits necessário para representar corretamente X+Y, supondo que os operandos estão representados em:

a) sinal e grandeza;

- b) complemento para 2.
- a) Representação em sinal e grandeza:

$$X = \frac{1}{S} \frac{0111100}{G}$$
 e $Y = \frac{1}{S} \frac{0100110}{G}$

Para calcular X+Y é necessário somar as grandezas de X e Y, operação esta realizada em 7 bits.

$$0111100 \\ + \underline{0100110} \\ 1100010$$

A grandeza resultante é representável em 7 bits. Como tal, e tendo em consideração o bit de sinal, o menor número de bits necessário para a representação de X+Y em sinal e grandeza é 8.

b) Representação em complemento para 2:

Estão a somar-se dois números com o mesmo sinal (negativos), mas o resultado alcançado com 8 bits apresenta sinal diferente (positivo). Quer isto dizer que ocorre *overflow* ao realizar a operação com 8 bits. Portanto, para que X+Y seja corretamente representado em complemento para 2, o número mínimo de bits a considerar deverá ser 9.

Considere a representação em complemento para 2 dos valores X e Y indicada:

$$X = 110010_2$$
 e $Y = 101011_2$

- a) Determine o valor decimal de X e Y.
- b) Calcule X Y e X + Y. Comente os resultados.
- a) X e Y são negativos, pelo que podem obter-se os números simétricos calculando o complemento para 2:

$$-X = 001110_2 = 2^3 + 2^2 + 2^1 = 14$$

 $-Y = 010101_2 = 2^4 + 2^2 + 2^0 = 21$

Logo,
$$X = -14 \text{ e } Y = -21.$$

b) A diferença pode ser calculada pela adição do simétrico:

$$X-Y=X+(-Y): 110010 + \frac{010101}{1000111}$$

Não ocorre overflow, porque os operandos têm sinais opostos. O resultado é por isso correto.

$$X + Y : 110010 + 101011$$
 1011101

Ocorre overflow, porque os operandos têm o mesmo sinal e o resultado tem sinal oposto. Por este motivo, o resultado é errado, pois não é representável com os 6 bits considerados.

1.2 Exercícios propostos

Exercício 9

Em cada alínea, considere o número dado e represente-o nos sistemas de numeração indicados.

a)
$$256_{10} = ?_2 = ?_{16}$$

b)
$$2047_{10} = ?_2 = ?_{16}$$

c)
$$24,25_{10} = ?_2 = ?_{16}$$

d)
$$4.2_{10} = ?_2 = ?_{16}$$

e)
$$10000_2 =?_{10} =?_{16}$$

e)
$$10000_2 =?_{10} =?_{16}$$
 f) $100,001_2 =?_{10} =?_{16}$

g)
$$1E_{16} = ?_2 = ?_{10}$$

h)
$$ABCD_{16} =?_{10} =?_2$$

i)
$$AB,C_{16} =?_{10} =?_2$$

j)
$$1110_{10} = ?_{16}$$

Efetue as seguintes operações aritméticas binárias, considerando os operandos representados como números sem sinal, isto é, números positivos.

a) 110101 + 11001

b) 101,01 + 100,111

c) 1011110 - 100101

d) 1000010 - 101101

e) 110111101 - 1100011

f) 110111101 - 11000,11

g) 1011×100

Exercício 11

Considere os números decimais +3, +2 e -3. Nas alíneas seguintes admita a representação em sinal e grandeza com 4 bits.

a) Escreva os números em binário.

b) Calcule 3 + 2 = 2 + (-3).

c) Calcule 3 + 14 e comente o resultado.

Exercício 12

Enumere os valores decimais que se podem representar com 4 bits usando as representações em sinal e grandeza e em complemento para 2. Em ambos os casos, indique a gama de representação na forma de um intervalo, relacionando os valores extremos (maior positivo e menor negativo) com o número de bits.

Exercício 13

Recorrendo a 8 bits, represente em sinal e grandeza e em complemento para 2, os seguintes números decimais:

a) 18

b) 49

c) -49

d) -3

e) -100

f) 115

g) -127

h) -128

Exercício 14

Considere os números $M=33_{16}$ e $N=33_{10}$ representados por 8 bits.

- a) Calcule M + N em binário, supondo que M e N são números sem sinal.
- b) Admitindo que os valores estão representados em complemento para 2, diga se ocorre overflow ao calcular N-M.

Exercício 15

Admitindo que $P \in Q$ representam dois números binários em complemento para dois, com 8 bits, efetue a sua adição binária e interprete o resultado.

a) $P = DE_H e Q = A3_H$ b) $P = 8C_H e Q = D3_H$ c) $P = 8C_H e Q = 74_H$

Considere os seguintes números binários: X = 11100011 e Y = 01001000.

- a) Indique o valor decimal de X e Y, para os casos de representação sem sinal e representação em complemento para 2.
- b) Calcule X + Y para ambas as representações de 8 bits e comente os resultados obtidos.

Exercício 17

Considere os números $P=1111010_2$ e $Q=0100010_2$ com 7 bits.

- a) Escreva P em hexadecimal e Q em decimal.
- b) Calcule P+Q e comente o resultado considerando que P e Q representam números:

tskadin sinal;

tskern complemento para 2.

Exercício 18

Considere os números $A = 11010_2$ (com 5 bits) e $B = 0101010_2$ (com 7 bits).

- a) Considere que A e B representam números sem sinal. Calcular A+B em 7 bits. Converter o resultado para decimal.
- b) Repita a alínea anterior, considerando agora que A e B representam números representados em sinal e grandeza.
- c) Repita a alínea anterior, considerando agora que A e B representam números representados em complemento para dois.

Exercício 19

Considere os números $M=4{\rm A_H}$ e $N={\rm A4_H}$ representados em complemento para 2 com 8 bits.

- a) Escreva M em binário.
- b) Determine o valor decimal de N.
- c) Calcule M-N e N-M, justificando se ocorre overflow.

Exercício 20

Considere os números $S=11001000_2$ e $T=00010001_2$ representados em complemento para 2 com 8 bits.

- a) Determine o valor decimal de S e T.
- b) Represente S e T em sinal e grandeza.
- c) Calcule S + T em sinal e grandeza e comente o resultado encontrado.

Considere os números de 8 bits expressos, nas bases indicadas, por: $X_2 = 10111100$, $Y_{10} = 73$ e $Z_{16} = 9$ E.

- a) Escreva Y em hexadecimal e Z em binário.
- b) Calcule X+Z, considerando que os operandos X e Z estão em complemento para 2, e justifique se ocorre overflow.
- c) Calcule o maior número N, em complemento para 2 com 8 bits, que adicionado a X conduz a uma soma negativa.

Exercício 22

Suponha que se pretende calcular a seguinte expressão (em que x é um número inteiro):

$$y = x^2 - 30x + 161$$

Considere x representado em binário com 5 bits (sem sinal).

- a) Qual \acute{e} a gama de valores de x?
- b) Determinar o maior valor positivo de y.
- c) Determinar o valor mais negativo de y?
- d) Qual é o número mínimo de bits necessário para representar o valor com sinal y.
- e) Representar os valores determinados nas alíneas b) e c) em complemento para dois.

2 Vírgula flutuante

2.1 Exercícios resolvidos

Exercício 1

A representação dos números reais X e Y no formato de precisão simples da norma IEEE 754 é a seguinte:

X: C3800000_H

- a) Calcule o expoente real do número codificado em X.
- b) Determine o sinal de X + Y.
- c) Justifique a afirmação: Sendo X um número qualquer, $X \times Y = X$.

O expoente real de X é:

$$E_X^{\text{real}} = 135 - 127 = 8$$

b) Como $E_Y = 127$, $E_X > E_Y$. Então |X| > |Y| e portanto,

$$S_{X+Y} = S_X = 1$$

ou seja, X + Y é um número negativo.

c) Como $E_Y = 127, E_Y^{\text{real}} = 0.$

Porque os 23 bits da mantissa de Y são nulos, $M_Y = 1,0$.

Então, conclui-se que Y=1 e por isso, para qualquer X, tem-se $X\times Y=X$.

Exercício 2

Considere $Y=25{,}25_{10}$ e o número real X cuja representação em formato IEEE 754 (precisão simples) é BF400000 $_{16}$.

- a) Mostre a representação de Y no formato IEEE 754 (em binário).
- b) Calcule $X \times Y$, indicando claramente todos os passos efetuados.

a) Pretende-se mostrar Y em binário no contexto da representação em vírgula flutuante com precisão simples (32 bits).

$$Y = 25,\!25_{10} = 2^4 + 2^3 + 2^0 + 2^{-2} = 11001,\!01_2 = 1,\!100101_2 \times 2^4$$

- $S_Y = 0$
- $E_Y = E_Y^{real} + 127 = 4 + 127 = 131 = 10000011_2$
- $M_Y = 1,100101_2$

Resulta então:

$$Y = 010000011100101 \underbrace{00 \cdots 0}_{17 \text{ 0's}}$$

b)
$$X = BF400000_{16} = \underbrace{1}_{S_X} \underbrace{01111110}_{E_X} \underbrace{100 \cdots 0_2}_{f_X}$$

Então:

- $S_{X\times Y}=1$
- $E_{X\times Y} = E_X + E_Y 127 = (131 + 126) 127 = 130 = 10000010_2$
- $M_{X\times Y}$: (em binário)

$$\begin{array}{c} 1,1001010\cdots 0 \\ \times 1,1000000\cdots 0 \\ \hline 0 00000000\cdots 0 \\ \cdots \\ 11001010\cdots 0 \\ \hline 11001011110 \cdots 0 \\ \hline \end{array}$$

A necessidade de normalizar a mantissa resultante leva ao incremento do expoente calculado:

$$M_{X\times Y} = 10,010111110\cdots 0_2 = 1,00101111_2 \times 2^1$$

Assim, $E_{X\times Y} = 131_{10} = 10000011_2$, pelo que

$$X \times Y = 110000011001011111 \underbrace{00 \cdots 0}_{15 \text{ 0's}}$$

Exercício 3

Considere o número cuja representação em hexadecimal é $C1200000_H$. Indique o valor decimal correspondente, se assumir que o número está representado:

- a) como inteiro sem sinal;
- b) em complemento para 2;
- c) em vírgula flutuante com precisão simples.

a) A representação binária do número é:

$$C1200000_{H} = 1100\ 0001\ 0010\ 0000\ 0000\ 0000\ 0000\ 0000_{2}$$

Interpretando este número como um inteiro sem sinal, o valor decimal correspondente é determinado com base na posição que cada bit ocupa. Assim:

$$\begin{array}{lll} 110000010010000000000000000000000\\ &=&2^{31}+2^{30}+2^{24}+2^{21}\\ &=&2^{21}\times(2^{10}+2^9+2^3+2^0)\\ &=&2\times2^{10}\times2^{10}\times(1024+512+9)\\ &=&2097152\times1545\\ &=&3240099840_{10} \end{array}$$

Nota: É admissível apresentar a solução na forma de uma soma de potências de 2.

b) $C1200000_H = 1100\ 0001\ 0010\ 0000\ 0000\ 0000\ 0000\ 0000_2$

Interpretando este número dado em complemento para 2 e atendendo a que é um número negativo (MSB=1), o decimal correspondente pode ser determinado depois de obter o simétrico correspondente. Este pode ser obtido por aplicação da regra prática que consiste em copiar todos os bits da direita para a esquerda até ser encontrado o primeiro 1 e depois complementar os restantes. Assim:

Portanto, C1200000_H representa -1054867456₁₀ em complemento para 2.

c) Assumindo o formato de vírgula flutuante, a interpretação do padrão de bits é:

Como o expoente está representado em excesso 127, o expoente real é 3. Então, o número decimal correspondente será:

$$-1,01_2 \times 2^3 = -1010_2 = -10_{10}$$

Sejam X e Y dois números reais, representados em vírgula flutuante com o formato de precisão simples da norma IEEE 754 da seguinte forma:

X: 1100001100000011000000000000000002 Y: 1100001101111110000000000000000000002

- a) Mostre que X é um número inteiro.
- b) Calcule o número Z que verifica a condição X+Z=0.
- c) Mostre que o expoente real de $X + Y \in 8$.

O expoente real de X é:

$$E_X^{\text{real}} = 134 - 127 = 7$$

Logo,

$$X_{10} = -1,0000011_2 \times 2^7 = -10000011_2 = -131_{10}$$

b)
$$X + Z = 0 \quad \Leftrightarrow \quad Z = -X$$

Em termos de representação em vírgula flutuante

$$S_Z = -S_X$$

$$E_Z = E_X$$

$$M_Z = M_X$$

Logo,

$$Z = 0100001100000011 \underbrace{00 \cdots 0_2}_{16 \text{ 0's}}$$

c)
$$E_{X+Y}^{\rm real} = E_Y^{\rm real} \equiv E_X^{\rm real} = 7$$

Contudo, ao somar as mantissas, o resultado pode não estar normalizado:

$$M_X$$
: 1,0000011
 M_Y : $+1,1111100$
 M_{X+Y} $10,11111111$ = 1,011111111₂ × 2¹

Logo, o expoente indicado inicialmente tem de ser incrementado, resultando

$$E_{X+Y}^{\text{real}} = 8$$

Os números reais $X,\,Y$ e Z estão representados no formato de precisão simples da norma IEEE 754.

- a) Sendo X representado por 234567654328, indique o seu sinal.
- b) Complete, com os bits em falta, os campos da seguinte igualdade:

$$Y=+$$
 $\times 2^3=$ 1 bit 8 bits 001010 ... 0 23 bits

c) Qual é o número Z tal que o valor de $Y \times Z$ é representado por $110000011001010 \cdots 0_2$?

a)
$$X = 23456765432_8 = \underbrace{1}_{\longleftarrow} \underbrace{00111001}_{E_X} \underbrace{01110111110101100011010}_{f_X}$$

X é negativo.

Note-se que a conversão de cada dígito octal origina 3 bits e por essa razão X_2 devia possuir 33 bits. Porém, a representação de X_2 em vírgula flutuante é constituída por 32 bits, que no seu conjunto correspondem a X_8 , pois o dígito mais significativo (2) pode escrever-se como 010_2 ou 10_2 .

b)
$$\begin{array}{ccc} Y>0 & \Rightarrow & S_Y=0 \\ E_Y^{\rm real}=3 & \Rightarrow & E_Y=E_Y^{\rm real}+127=130=10000010_2 \\ f_Y=0,\!00101 & \Rightarrow & M_Y=1,\!00101_2 \end{array}$$

Daqui resulta

$$Y = +1,00101_2 \times 2^3 = 0 10000010 001010...0$$

1 bit 8 bits 23 bits

c)
$$S_{Y\times Z} = - \Rightarrow S_Z = -S_Y = -$$

$$E_{Y\times Z} = E_Y + E_Z - 127 \Leftrightarrow 131 = 130 + E_Z - 127 \Leftrightarrow E_Z = 128$$

$$M_{Y\times Z} \equiv M_Y \Rightarrow M_Z = 1,0$$

Logo,

$$Z = \frac{1}{S_Z} \frac{10000000}{E_Z} \frac{00...0}{f_Z}$$

Nesta questão, todos os números reais estão representados em vírgula flutuante (formato de precisão simples da norma IEEE 754).

- b) Considerando um segundo número Y em que os 23 bits da sua mantissa são nulos, calcule:
 - i) a mantissa de $X \times Y$;
 - ii) o expoente de Y, sabendo que o expoente resultante de $X \times Y$, representado nos seus 8 bits, é 10000000_2 .

O expoente real de X é:

$$E_X^{\text{real}} = 132 - 127 = 5$$

Logo,

$$X_{10} = +1,0011101_2 \times 2^5 = 100111,01_2 = 39,25_{10}$$

b) i) Como os 23 bits da parte representável (parte fracionária) da mantissa são nulos, conclui-se que $M_Y=1, f_Y=1,0.$ Assim,

$$M_{X\times Y} = M_X \times M_Y = M_X = 1,0011101_2$$

ii) O expoente do produto de dois números em vírgula flutuante é dado pela soma dos expoentes dos operandos menos o excesso 127. O expoente assim calculado nem sempre constitui o expoente definitivo do resultado, pois se o produto das mantissas não resultar normalizado então o expoente deve ser ajustado de acordo com a normalização. Porém, neste exercício não acontece tal situação porque é dito que $M_Y=1,0$. Assim,

$$E_{X \times Y} = E_X + E_Y - 127$$

 $128 = 132 + E_Y - 127$
 $E_Y = 123 \quad (E_Y^{\text{real}} = -4)$

2.2 Exercícios propostos

Exercício 7

a) a mantissa do número;

b) o expoente do número;

c) o valor decimal representado.

Exercício 8

Represente em vírgula flutuante, no formato de precisão simples (32 bits) da norma IEEE 754, os seguintes números:

a) 31,25

b) -0.625

c) 0

d) 1026,5

Exercício 9

Considere a representação IEEE-754 de precisão simples. (Nota: use um conversor — por exemplo, http://www.h-schmidt.net/FloatConverter/IEEE754.html — para obter os números em decimal).

- a) Qual é o mais pequeno número positivo (normalizado) representável?
- b) Qual é o maior número normalizado representável?
- c) Qual é o maior número negativo (normalizado) representável?
- d) Qual é o menor número normalizado representável?

Exercício 10

Considere uma representação em vírgula flutuante normalizada do tipo IEEE-754, com 8 bits no total. O bit mais significativo representa o sinal e é seguido por um expoente de 3 bits (representado por notação *em excesso*) e um significando de 4 bits.

- a) Qual é o valor representado por 1 001 1101?
- b) Qual é o valor representado por 0 101 1001?
- c) Qual é a representação de 3/8 neste formato?

Exercício 11

Considere os números decimais A = 33 e B = -2.875.

- a) Represente A e B em vírgula flutuante, no formato de IEEE 754 de 32 bits.
- b) Efetue as operações seguintes em vírgula flutuante no formato de 32 bits:

tsk[A] + B

 $tsk \mathbb{B} - A$

 $tsk \Re B$

c) Represente os resultados das operações em decimal e verifique se correspondem ao valores esperados.

Dois números V_1 e V_2 estão representados em vírgula flutuante no formato de 32 bits. Os seus valores, expressos em hexadecimal, são:

 V_1 : 421D0000_H

 V_2 : C0000000_H

Calcule:

- a) $-V_2$
- b) $V_1 + V_2$ c) $V_2 V_1$ d) $V_1 \times V_2$

Exercício 13

Seja um número real X, cuja representação em vírgula flutuante (norma IEEE 754, com 32 bits) é 3F400000_H. Considere também $Y = 11,625_{10}$.

- a) Apresente em binário a representação de Y no mesmo formato.
- b) Calcule X + Y em vírgula flutuante, indicando claramente todos os passos efetuados.

Exercício 14

Considere a representação em vírgula flutuante, norma IEEE 754, com 32 bits. Sendo A um número real, cuja representação nesse formato é $40400000_{\rm H}$, e sendo $B=-10.25_{10}$:

- a) apresente a representação binária de B no mesmo formato.
- b) calcule A-B em vírgula flutuante, indicando claramente todos os passos efetuados. No final, converta o resultado para decimal.

Exercício 15

Considere que S e T representam dois números em vírgula flutuante no formato de precisão simples definido pela norma IEEE 754:

- a) Indique a representação de S em hexadecimal.
- b) Mostre como se realiza a adição de S e T, indicando claramente todos os passos efetuados.

Exercício 16

No formato de precisão simples da norma IEEE 754, os números X e Y são representados por

 $X: C3800000_{\rm H}$

Das afirmações seguintes indique a correta, fundamentando a sua escolha.

- A. O expoente real de $X \in 8$.
- B. X Y é um número positivo.
- C. O expoente real de $X \in 8$ e $Y \in \mathbb{R}$ e um número negativo.
- D. X > Y.

Em aplicações de aprendizagem por computador tem vindo a tornar-se frequente o uso do formato Bfloat16, que usa 8 bits para representar o expoente e 7 bits para a mantissa. São usadas as regras gerais da IEEE 754 com arredondamento (no caso de empate, arredondar para o número par representável mais próximo). Todos os números não-normalizados são tratados como zero.

- a) Determinar o valor decimal do maior número representável.
- b) Determinar o valor decimal do menor número positivo representável.
- c) Determinar o resultado do cálculo $(2.6\times10^6)\times(3.1\times10^4)$ quando todos os números são representados em Bfloat16. Comente o resultado.

3 Circuitos combinatórios

3.1 Exercícios resolvidos

Exercício 1

Simplifique algebricamente as seguintes funções booleanas usando teoremas da álgebra de Boole.

a)
$$F(A, B, C) = A \cdot B + \overline{\overline{A} + B} + A \cdot C$$
.

b)
$$F(A, B, C) = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + B + \overline{C}).$$

c)
$$F(X, Y, Z) = X + \overline{X} \cdot Z + X \cdot \overline{Y}$$
.

d)
$$G(X, Y, Z) = X \cdot \overline{Y} \cdot Z + X \cdot \overline{Y} \cdot \overline{Z} + \overline{X} \cdot \overline{Y} \cdot \overline{Z}$$
.

e)
$$F(A, B, C) = A \cdot (\overline{B} + C) + B \cdot \overline{C}$$
.

a)
$$F(A, B, C) = A \cdot B + \overline{A + B} + A \cdot C$$
$$= A \cdot B + A \cdot \overline{B} + A \cdot C$$
$$= A \cdot (B + \overline{B}) + A \cdot C$$
$$= A + A \cdot C$$
$$= A \cdot (1 + C)$$
$$= A$$

b)
$$F(A,B,C) = (A+B+C)\cdot(A+B+\overline{C})\cdot(\overline{A}+B+C)\cdot(\overline{A}+B+\overline{C})$$
$$= ((A+B)+(C\cdot\overline{C}))\cdot((\overline{A}+B)+(C\cdot\overline{C}))$$
$$= (A+B)\cdot(\overline{A}+B)$$
$$= B+A\cdot\overline{A}$$
$$= B$$

c)
$$F(X,Y,Z) = X + \overline{X} \cdot Z + X \cdot \overline{Y}$$

 $= X \cdot (1 + \overline{Y}) + \overline{X} \cdot Z$
 $= X + \overline{X} \cdot Z$
 $= X + Z$

$$\begin{array}{lll} \mathrm{d}) & G(X,Y,Z) & = & X \cdot \overline{Y} \cdot Z + X \cdot \overline{Y} \cdot \overline{Z} + \overline{X} \cdot \overline{Y} \cdot \overline{Z} \\ & = & X \cdot \overline{Y} (Z + \overline{Z}) + \overline{X} \cdot \overline{Y} \cdot \overline{Z} \\ & = & \overline{Y} \cdot (X + \overline{X} \cdot \overline{Z}) \\ & = & \overline{Y} \cdot (X + \overline{Z}) \\ & = & X \cdot \overline{Y} + \overline{Y} \cdot \overline{Z} \end{array}$$

e)
$$F(A, B, C) = A \cdot (\overline{B} + C) + B \cdot \overline{C}$$

$$= A \cdot (\overline{B} + \overline{C}) + B \cdot \overline{C}$$

$$= A \cdot (\overline{B \cdot \overline{C}}) + B \cdot \overline{C} \cdot (A + \overline{A})$$

$$= A \cdot B \cdot \overline{C} + A \cdot B \cdot \overline{C} + B \cdot \overline{C} \cdot \overline{A} + A \cdot B \cdot \overline{C}$$

$$= A \cdot (\overline{B \cdot \overline{C}} + B \cdot \overline{C}) + B \cdot \overline{C} \cdot (\overline{A} + A)$$

$$= A + B \cdot \overline{C}$$

Obtenha a tabela de verdade para cada uma das seguintes funções booleanas.

a)
$$F(A, B, C) = (A + \overline{B}) \cdot (A + B + \overline{C})$$

b)
$$F(X, Y, Z) = X \cdot \overline{Y} + \overline{X} \cdot Y \cdot \overline{Z}$$

- a) Se um termo soma é 0 então a função também é 0. Assim:
 - se A=0 e B=1, então F=0;
 - se A=0 e B=0 e C=1, então F=0.

Desta forma identificam-se as combinações das variáveis, isto é, as linhas da tabela de verdade onde F=0, tal como apresentado. Nas restantes situações F=1.

- b) Se um termo produto é 1 então a função também é 1. Assim:
 - se X=1 e Y=0, então F=1;
 - \bullet se X=0 e Y=1 e Z=0, então F=1.

Desta forma identificam-se as combinações das variáveis, isto é, as linhas da tabela de verdade onde F=1, tal como apresentado. Nas restantes situações F=0.

X	Y	Z	F		
0	0	0	0		
0	0	1	0		
0	1	0	1	\longleftarrow	$\overline{X} \cdot Y \cdot \overline{Z}$
0	1	1	0		
1	0	0	1	\leftarrow	$X \cdot \overline{Y}$
1	0	1	1	\longleftarrow	$X \cdot \overline{Y}$
1	1	0	0		
1	1	1	0		

Escreva uma expressão booleana para as funções lógicas representadas pelas tabelas de verdade indicadas.

a)
$$\begin{array}{c|cccc} x & y & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$$

A partir da tabela de verdade de uma função booleana podem retirar-se expressões algébricas na forma de uma soma de produtos ou na forma de um produto de somas.

Para a expressão na forma de uma *soma de produtos* identificam-se as linhas da tabela de verdade onde a função é 1 e forma-se um termo produto tal que nessa combinação das variáveis da função o valor do produto seja 1 (igual ao valor da função). A expressão da função obtém-se pela soma de todos os termos produto nestas condições.

Para a expressão na forma de um *produto de somas* identificam-se as linhas da tabela de verdade onde a função é 0 e forma-se um termo soma tal que nessa combinação das variáveis da função o valor da soma seja 0 (igual ao valor da função). A expressão da função obtém-se pelo produto de todos os termos soma nestas condições.

A partir destas expressões podem obter-se outras equivalentes por simplificação baseada em teoremas da álgebra de Boole.

a) Optando pela forma soma de produtos e procedendo da forma descrita, os termos produto que definem a função são os indicados.

$$\begin{array}{c|ccccc} x & y & f \\ \hline 0 & 0 & 1 & \longrightarrow & \overline{x} \cdot \overline{y} \\ 0 & 1 & 0 & \\ 1 & 0 & 0 & \\ 1 & 1 & 1 & \longrightarrow & x \cdot y \end{array}$$

Logo,
$$f(x,y) = \overline{x} \cdot \overline{y} + x \cdot y$$
.

b) Optando pela forma produto de somas e procedendo da forma descrita, os termos soma que definem a função são os indicados.

Logo,
$$g(x, y, z) = (x + \overline{y} + \overline{z}) \cdot (\overline{x} + \overline{y} + z) \cdot (\overline{x} + \overline{y} + \overline{z}).$$

Exercício 4

Considere a função booleana F(X, Y, Z) com

$$F(X,Y,Z) = \overline{X} \cdot \overline{Y} \cdot \overline{Z} + \overline{X} \cdot \overline{Y} \cdot Z + \overline{X} \cdot Y \cdot \overline{Z} + X \cdot \overline{Y} \cdot \overline{Z} + X \cdot \overline{Y} \cdot Z + X \cdot Y \cdot Z$$

- a) Simplifique a expressão de F(X, Y, Z).
- b) Construa a tabela de verdade da função.
- c) Indique a expressão de F(X,Y,Z) na forma de um produto de somas.
- d) Obtenha um circuito lógico que realiza a função F(X,Y,Z), usando apenas portas lógicas do tipo NOR.

a)
$$F(X,Y,Z) = \overline{X} \cdot \overline{Y} \cdot \overline{Z} + \overline{X} \cdot \overline{Y} \cdot Z + \overline{X} \cdot Y \cdot \overline{Z} + X \cdot \overline{Y} \cdot \overline{Z} + X \cdot Y \cdot Z$$

$$= \overline{X} \cdot \overline{Y} \cdot (\overline{Z} + Z) + \overline{X} \cdot Y \cdot \overline{Z} + X \cdot \overline{Y} \cdot (\overline{Z} + Z) + X \cdot Y \cdot Z$$

$$= \overline{X} \cdot \overline{Y} + X \cdot \overline{Y} + \overline{X} \cdot Y \cdot \overline{Z} + X \cdot Y \cdot Z$$

$$= \overline{Y} + \overline{X} \cdot Y \cdot \overline{Z} + X \cdot Y \cdot Z$$

$$= \overline{Y} + \overline{X} \cdot \overline{Z} + X \cdot Z$$

b) Como a expressão de F está na forma de uma soma de produtos, cada termo produto identifica combinações das entradas X,Y,Z onde F=1. Ao lado da tabela de verdade indicam-se esses termos.

		_			
X	Y	Z	F		
0	0	0	1	\leftarrow	$\overline{Y} \in \overline{X} \cdot \overline{Z}$
0	0	1	1	\leftarrow	\overline{Y}
0	1	0	1	\leftarrow	$\overline{X} \cdot \overline{Z}$
0	1	1	0		
1	0	0	1	\leftarrow	\overline{Y}
1	0	1	1	\leftarrow	\overline{Y} e $X \cdot Z$
1	1	0	0		
1	1	1	1	\leftarrow	$X \cdot Z$

c) Na tabela de verdade identificam-se os termos soma para os quais F=0. São eles

$$X + \overline{Y} + \overline{Z}$$
 e $\overline{X} + \overline{Y} + Z$

resultando

$$F(X, Y, Z) = (X + \overline{Y} + \overline{Z}) \cdot (\overline{X} + \overline{Y} + Z)$$

d) Considerando a expressão da função na forma de um produto de somas, pode obter-se uma expressão equivalente apenas com somas lógicas negadas, cada uma das quais será realizada por uma porta NOR no circuito lógico pretendido. A negação das variáveis pode também realizar-se através de um NOR aplicando a variável a negar a ambas as entradas do NOR.

$$F(X,Y,Z) = \overline{\overline{(X+\overline{Y}+\overline{Z})\cdot(\overline{X}+\overline{Y}+Z)}} = \overline{X+\overline{Y}+\overline{Z}+\overline{X}+\overline{Y}+Z}$$

O circuito resultante é:

Exercício 5

O circuito da figura implementa uma função F(A, B, C).

- a) Deduza uma expressão da função lógica realizada pelo circuito, indicando-a na forma de um produto de somas.
- b) Escreva F(A, B, C) como uma soma de produtos simplificada.

a) A expressão da função realizada pelo circuito lógico pode obter-se através das expressões que resultam da saída de cada porta lógica como funções das entradas do circuito.

$$F(A, B, C) = \overline{\overline{A} \cdot B \cdot (1 \oplus C) + A \cdot B}$$

$$= \overline{\overline{A} \cdot B \cdot \overline{C} + A \cdot B}$$

$$= \overline{\overline{A} \cdot B \cdot \overline{C} \cdot \overline{A} \cdot B}$$

$$= (A + \overline{B} + C) \cdot (\overline{A} + \overline{B})$$

b)
$$F(A, B, C) = (A + \overline{B} + C) \cdot (\overline{A} + \overline{B})$$
$$= A \cdot \overline{A} + A \cdot \overline{B} + \overline{A} \cdot \overline{B} + \overline{B} + \overline{A} \cdot C + \overline{B} \cdot C$$
$$= (A + \overline{A} + 1 + C) \cdot \overline{B} + \overline{A} \cdot C$$
$$= \overline{B} + \overline{A} \cdot C$$

Exercício 6

Pretende-se projetar um circuito capaz de detetar se um número com 3 bits $n_2n_1n_0$ aplicado à sua entrada está compreendido entre 2 e 5 (inclusive). A saída do circuito é uma função de 3 variáveis, $G(n_2,n_1,n_0)$, sendo G=1 para os números nas condições indicadas e G=0 no caso contrário. Defina o comportamento do circuito que realiza G na forma de uma tabela de verdade.

Para os números compreendidos entre 2 e 5, formados em binário por $n_2n_1n_0$, G=1. Para os restantes $G \in 0$. Assim resulta a tabela de verdade seguinte:

n_2	n_1	n_0	G
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

A figura mostra um circuito, baseado num multiplexador de 8 para 1, que realiza uma função F(W,X,Y,Z).

- a) Defina F(W, X, Y, Z) através de uma tabela de verdade.
- b) Represente F(W, X, Y, Z) através de uma expressão algébrica.
- a) As variáveis W, X e Y determinam a entrada do multiplexador que é selecionada. O valor nela aplicado surge na saída do circuito. A tabela de verdade pretendida obtém-se considerando todas as combinações das variáveis e consequentes valores da função.

W	X	Y	Z	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

b) Considere-se a forma soma de produtos nesta resolução. Embora não seja requerido no enunciado vai proceder-se à simplificação da expressão.

$$\begin{array}{ll} F & = & \overline{W} \cdot \overline{X} \cdot \overline{Y} \cdot Z + \overline{W} \cdot \overline{X} \cdot Y \cdot \overline{Z} + W \cdot \overline{X} \cdot \overline{Y} \cdot Z + W \cdot \overline{X} \cdot Y \cdot Z + W \cdot X \cdot Y \cdot \overline{Z} + W \cdot X \cdot Y \cdot Z \\ & = & \overline{W} \cdot \overline{X} \cdot \overline{Y} \cdot Z + \overline{W} \cdot \overline{X} \cdot Y \cdot \overline{Z} + W \cdot \overline{X} \cdot Z \cdot (\overline{Y} + Y) + W \cdot X \cdot Y \cdot (\overline{Z} + Z) \\ & = & \overline{W} \cdot \overline{X} \cdot \overline{Y} \cdot Z + \overline{W} \cdot \overline{X} \cdot Y \cdot \overline{Z} + W \cdot \overline{X} \cdot Z + W \cdot X \cdot Y \\ & = & \overline{X} \cdot (Z \cdot (\overline{W} \cdot \overline{Y} + W) + \overline{W} \cdot Y \cdot \overline{Z}) + W \cdot X \cdot Y \\ & = & \overline{X} \cdot (\overline{Y} \cdot Z + W \cdot Z + \overline{W} \cdot Y \cdot \overline{Z}) + W \cdot X \cdot Y \\ & = & \overline{X} \cdot \overline{Y} \cdot Z + W \cdot \overline{X} \cdot Z + \overline{W} \cdot \overline{X} \cdot Y \cdot \overline{Z} + W \cdot X \cdot Y \end{array}$$

Seja a função booleana $S = (A + B + C) \cdot (A + \overline{B} + \overline{C}).$

- a) Represente S através de uma tabela de verdade.
- b) Realize a função S recorrendo ao multiplexador de 8 para 1 da figura.

b) Efetuar as seguintes ligações:

$$D0 = 0$$
, $D1 = D2 = 1$, $D3 = 0$,
 $D4 = D5 = D6 = D7 = 1$,
 $S2 = A$, $S1 = B$, $S0 = C$ e $Y = F$.

Exercício 9

Pretende-se realizar um circuito capaz de comparar duas quantidades positivas $A \in B$, representadas em binário com 2 bits cada uma $(a_1a_0 \in b_1b_0)$, e produzir duas saídas, $X \in Y$. A saída X deve ser 1 se e só se A = B, e a saída Y deve ser 1 se e só se A > B.

- a) Construa uma tabela de verdade de X e Y como funções de a_1 , a_0 , b_1 e b_0 .
- b) Obtenha um circuito que realize a função Y.
- c) Mostre como, com um mínimo de esforço, poderia acrescentar a este circuito uma saída Z que fosse 1 quando A < B.
- d) Admitindo que tinha disponíveis vários circuitos como o descrito atrás, mostre como os poderia utilizar para realizar a comparação de quantidades de 6 bits cada, isto é, de modo a detetar as situações de A = B e A > B quando $A = a_5a_4a_3a_2a_1a_0$ e $B = b_5b_4b_3b_2b_1b_0$.

a)	a_1	a_0	b_1	b_0	X	Y
	0	0	0	0	1	0
	0	0	0	1	0	0
	0	0	1	0	0	0
	0	0	1	1	0	0
	0	1	0	0	0	1
	0	1	0	1	1	0
	0	1	1	0	0	0
	0	1	1	1	0	0
	1	0	0	0	0	1
	1	0	0	1	0	1
	1	0	1	0	1	0
	1	0	1	1	0	0
	1	1	0	0	0	1
	1	1	0	1	0	1
	1	1	1	0	0	1
	1	1	1	1	1	0

b)
$$Y = \overline{a_1} \cdot a_0 \cdot \overline{b_1} \cdot \overline{b_0} + a_1 \cdot \overline{a_0} \cdot \overline{b_1} + a_1 \cdot a_0 \cdot \overline{b_1} + a_1 \cdot a_0 \cdot b_1 \cdot \overline{b_0}$$

$$= \overline{a_1} \cdot a_0 \cdot \overline{b_1} \cdot \overline{b_0} + a_1 \cdot \overline{b_1} + a_1 \cdot a_0 \cdot b_1 \cdot \overline{b_0}$$

$$= \overline{a_1} \cdot a_0 \cdot \overline{b_1} \cdot \overline{b_0} + a_1 \cdot (\overline{b_1} + a_0 \cdot b_1 \cdot \overline{b_0})$$

$$= \overline{a_1} \cdot a_0 \cdot \overline{b_1} \cdot \overline{b_0} + a_1 \cdot (\overline{b_1} + a_0 \cdot \overline{b_0})$$

$$= a_1 \cdot \overline{b_1} + a_1 \cdot a_0 \cdot \overline{b_0} + \overline{a_1} \cdot a_0 \cdot \overline{b_1} \cdot \overline{b_0}$$

$$= a_1 \cdot \overline{b_1} + a_0 \cdot \overline{b_0} (a_1 + \overline{a_1} \cdot \overline{b_1})$$

$$= a_1 \cdot \overline{b_1} + a_0 \cdot \overline{b_0} (a_1 + \overline{b_1})$$

$$= a_1 \cdot \overline{b_1} + a_0 \cdot \overline{b_0} \cdot \overline{b_0} + a_1 \cdot a_0 \cdot \overline{b_0}$$

Desenhar o circuito a partir da expressão encontrada.

c) A função pretendida define-se como

$$Z = \overline{X} \cdot \overline{Y}$$

d) Usar 3 circuitos comparadores de 2 bits idênticos aos da alínea a), combinando as saídas da seguinte forma:

$$X = X_1 \cdot X_2 \cdot X_3$$
 e $Y = Y_3 + X_3 \cdot Y_2 + X_3 \cdot X_2 \cdot Y_1$

em que:

- X_1 é a saída X do comparador de a_1a_0 com b_1b_0 ;
- X_2 é a saída X do comparador de a_3a_2 com b_3b_2 ;
- X_3 é a saída X do comparador de a_5a_4 com b_5b_4 ;
- \bullet $Y_1,\,Y_2$ e Y_3 são as saídas Y dos comparadores correspondentes.

3.2 Exercícios propostos

Exercício 10

Simplifique algebricamente as seguintes funções booleanas utilizando teoremas da álgebra de Boole.

a)
$$F(A, B, C, D, E) = A \cdot B \cdot \overline{C} + \overline{C} \cdot \overline{D} \cdot E + A \cdot B + A \cdot B \cdot \overline{C} \cdot \overline{D} \cdot E + A \cdot B \cdot D \cdot \overline{E} + \overline{C} \cdot D \cdot E$$
.

b)
$$F(A, B, C) = \overline{A + A \cdot \overline{B} + \overline{A} \cdot C}$$
.

c)
$$G(A, B, C) = A \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot \overline{C}$$
.

d)
$$F(A, B, C, D) = \overline{B} \cdot C \cdot \overline{D} + \overline{A} \cdot (\overline{C} + B) + A \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot C \cdot D$$
.

e)
$$F(W, X, Y, Z) = \overline{\overline{W} \cdot (\overline{X} + Y \cdot (Z + W))}$$
.

f)
$$F(A, B, C, D) = \overline{A} \cdot B \cdot C + \overline{B} \cdot C \cdot D + \overline{A} \cdot \overline{B} \cdot C \cdot \overline{D} + A \cdot B \cdot C \cdot D$$
.

Exercício 11

Obtenha a tabela de verdade para cada uma das seguintes funções booleanas.

a)
$$F(A, B, C) = A \cdot \overline{B} + \overline{A} \cdot \overline{C}$$
.

b)
$$G(X, Y, Z) = (X + \overline{Z}) \cdot (\overline{X} + \overline{Y} + Z).$$

c)
$$F(W, X, Y, Z) = \overline{W \cdot X} \cdot (\overline{\overline{Y} + \overline{Z}}).$$

Exercício 12

Considere a função $F(X,Y,Z) = X \cdot \overline{Y} + X \cdot Y \cdot \overline{Z} + \overline{X} \cdot Z$.

- a) Indique a respetiva tabela de verdade.
- b) Escreva F(X, Y, Z) como um produto de somas.
- c) Desenhe o circuito lógico correspondente.

Exercício 13

Considere o circuito lógico apresentado na figura.

- a) Deduza a expressão booleana simplificada correspondente à saída Y do circuito.
- b) Mostre que a saída Z pode ser definida por $Z(A, B, C) = \overline{B} + \overline{C}$.

Considere a função booleana $F(A,B,C) = \overline{A + \overline{B} + \overline{C}} + \overline{\overline{A} \cdot B} \cdot C$.

- a) Indique a expressão de F(A, B, C) como uma soma de produtos simplificada.
- b) Construa a tabela de verdade da função F(A, B, C).
- c) Obtenha um circuito lógico que realize a função F(A, B, C).

Exercício 15

Considere as seguintes funções booleanas:

$$F = \overline{X} \cdot Y + \overline{X} \cdot \overline{Y} \cdot Z$$
 e $G = (\overline{A} + B + C) \cdot (A + \overline{B} + \overline{D}) \cdot (B + \overline{C} + \overline{D}) \cdot (A + B + C + D)$.

- a) Represente F(X,Y,Z) através de uma tabela de verdade e obtenha uma expressão na forma de um produto de somas.
- b) Represente G(A, B, C, D) através de uma tabela de verdade e obtenha uma expressão na forma de uma soma de produtos (não simplificada).

Exercício 16

Seja a função booleana $G(A,B,C)=A\cdot\overline{C}+\overline{B}\cdot A\cdot C+B\cdot C\cdot\overline{A}$. Exprima G(A,B,C) na forma de um produto de somas simplificado.

Exercício 17

A figura seguinte mostra um circuito que realiza uma função G(X,Y,S). Além de portas lógicas, o circuito inclui um bloco, M, que realiza a função F(A,B,S) definida por: F=A se S=0 e F=B se S=1.

- a) Exprima a função F numa tabela de verdade.
- b) Indique uma expressão simplificada para F(A, B, S).
- c) O circuito que realiza a função F é um multiplexador (multiplexer) de 2 para 1. Mostre como é constituído.
- d) Encontre uma expressão simplificada do tipo soma de produtos para a função G(X,Y,S) realizada pelo circuito.
- e) Mostre que o circuito seguinte, usando apenas portas NAND, realiza a função G.

Considere um circuito que apresenta na saída S o valor lógico 1 sempre que na sua entrada o número positivo de 4 bits, $A_3A_2A_1A_0$, é maior que 5 e múltiplo de 4.

- a) Construa a tabela de verdade da função $S(A_3, A_2, A_1, A_0)$.
- b) Obtenha uma expressão para $S(A_3, A_2, A_1, A_0)$ e simplifique-a.

Exercício 19

Um circuito elementar utilizado na construção de circuitos digitais para aritmética binária é o somador completo (full-adder) representado na figura. O somador tem 2 saídas Co e S que representam em binário a soma dos valores (0 ou 1) presentes nas entradas A, B e Ci.

- a) Construa a tabela de verdade correspondente às funções S(A, B, Ci) e Co(A, B, Ci).
- b) Escreva a expressão das funções S(A,B,Ci) e Co(A,B,Ci) na forma de uma soma de produtos.
- c) Verifique que o circuito lógico da figura seguinte realiza as funções S(A, B, Ci) e Co(A, B, Ci).

d) Considere agora um somador de 4 bits, constituído por 4 somadores completos, como mostra a figura.

Identifique na figura o valor de cada um dos sinais admitindo que os valores a somar, representando números positivos, são $A = A_3 A_2 A_1 A_0 = 1010$ e $B = B_3 B_2 B_1 B_0 = 1110$.

Exercício 20

Pretende-se construir um circuito combinatório para comparar dois números de 2 bits, sem sinal, $A = A_1 A_0$ e $B = B_1 B_0$. A saída MAIOR é 1 quando A for maior do que B e 0 no caso contrário.

- a) Expresse a função do circuito numa tabela de verdade.
- b) Escreva uma expressão da função $MAIOR(A_1, A_0, B_1, B_0)$.

Exercício 21

O circuito da figura contém um comparador de magnitude de 2 bits e 2 multiplexadores de 2 para 1. As entradas do circuito formam dois números positivos, de 2 bits, $A = A_1A_0$ e $B = B_1B_0$. As saídas definem um número, também com 2 bits, $M = M_1M_0$. Analise o circuito e identifique a sua funcionalidade.

Um multiplexador com n entradas de seleção pode ser usado para implementar qualquer função lógica de n variáveis. Na figura mostra-se o símbolo de um multiplexador de 4 para 1, o qual possui 2 entradas de seleção.

- a) Mostre como implementar o produto lógico de duas variáveis recorrendo ao multiplexador.
- b) Realize a função $F(X,Y) = X \cdot \overline{Y} + \overline{X} \cdot Y$ com o multiplexador apresentado.
- c) Verifique, exemplificando, que é igualmente possível implementar funções de três variáveis. Sugestão: represente uma função de 3 variáveis através de uma tabela de verdade e, para cada combinação das variáveis, relacione o valor da função com uma dessas variáveis.

Exercício 23

A figura mostra um circuito constituído por um descodificador binário de 2 para 4 e um conjunto de 3 lâmpadas. O estado das lâmpadas é controlado pelas entradas A e B do circuito, ou seja, L_{vm} , L_{lj} e L_{vr} são funções de A e B. Admita que para ligar uma lâmpada é necessário que a saída do descodificador que a controla tenha o valor lógico 1.

- a) Indique o estado de cada lâmpada se AB = 01 e AB = 11.
- b) Determine o valor das entradas de modo a ligar, simultaneamente, as lâmpadas verde ($L_{vr} = 1$) e laranja ($L_{lj} = 1$).

Exercício 24

O descodificador binário n-para- 2^n é um circuito muito comum.

- a) Mostrar como construir um descodificador binário 2-4 usando portas lógicas simples.
- b) Mostrar como acrescentar uma entrada de habilitação (enable) ao circuito anterior.

- c) Mostrar como construir um descodificador 3-para-8 (sem *enable*) a partir de dois descodificadores 2-4 com entrada *enable*.
- d) Mostrar como acrescentar uma entrada de habilitação (enable) ao circuito anterior.

Usar um descodificador binário 3-para-8 (entradas $I_0 \dots I_2$, saídas $Q_0 \dots Q_7$) nas alíneas que se seguem.

- a) Escrever as funções lógicas das saídas Q_0 e Q_3 do descodificador.
- b) Mostrar como implementar a função booleana $F(X,Y,Z) = X \cdot Y \cdot \overline{Z} + \overline{X} \cdot Z$ usando apenas um descodificador e portas lógicas do tipo OR.

4 Circuitos sequenciais

4.1 Exercícios resolvidos

Exercício 1

Considere o seguinte circuito com uma entrada X e uma saída Y.

a) Desenhe no diagrama seguinte a evolução temporal das saídas dos flip-flops $(Q_1 \in Q_0)$, assim como da saída Y, sabendo que a entrada X evolui da forma representada. Nota: considere que no instante inicial $Q_1 \in Q_0$ têm o valor lógico 0.

- b) Admitindo que o período do sinal de relógio é $20\,\mathrm{ns}$, indique ao fim de quanto tempo a saída Y passa de 0 a 1 pela primeira vez.
- a) Como inicialmente $Q_0 = 0$ e $Q_1 = 0$, nas entradas dos flip-flops vão estar os valores $D_0 = 0$ e $D_1 = 1$, uma vez que X = 0. Ao ocorrer a primeira transição do sinal de relógio são estes os valores capturados pelos flip-flops, aparecendo nas saídas respetivas. Na próxima transição, o estado das saídas e X determinam os novos valores que os flip-flops vão apresentar. Assim se completam as formas de onda apresentadas.

b) Considerando $T=20\,\mathrm{ns},$ verifica-se pelo resultado da alínea anterior que Y transita de 0 para 1 ao fim de $2.5\times T=50\,\mathrm{ns}.$

Exercício 2

Considere o seguinte circuito sequencial, constituído por dois flip-flops e um multiplexador. Os flip-flops são sensíveis à transição ascendente do sinal de relógio (CLK) e o seu estado inicial é 0.

Assumindo a sequência de valores da entrada do circuito (IN) indicada na figura seguinte, apresente a forma de onda dos sinais X e OUT.

Inicialmente, X e OUT apresentam o valor 0. Sendo a entrada de seleção do multiplexador 0, o valor que surge na sua saída é 1, referente à entrada I_0 . Como IN=0 e Y=1 quando ocorre a primeira transição do sinal de relógio, então X e OUT passam a assumir os valores 0 e 1, respetivamente. A análise do sucedido para as restantes transições segue o mesmo raciocínio, levando ao resultado apresentado na figura seguinte.

Considere o circuito, composto por um registo de 4 bits e um multiplexador com duas entradas de 4 bits. Admita que as entradas *enable* e *reset* do registo são ativadas pelo valor lógico 1.

Nas alíneas seguintes, considere em cada transição ativa do sinal de relógio o valor das entradas apresentadas em cada tabela. Determine o valor da saída OUT após cada uma das transições assinaladas.

a)	Transıçao	D	en	rst
	1	0110	1	0
	2	0100	1	1
	3	0100	0	0
	4	1101	1	0
		'		

b)	Transição	IN	sel	en	rst
	1	1001	1	1	0
	2	1111	1	1	0
	3	0101	0	1	0
	4	1000	1	0	0
	5	1000	1	1	0
	6	1111	1	1	1
	7	0101	0	1	0
	8	0000	1	1	0
	9	0001	1	1	0

a) Os sinais considerados só envolvem o registo de 4 bits. Para cada transição ativa do sinal de relógio é necessário ter em consideração que a saída do registo assume o valor presente na entrada D se a entrada de habilitação (enable) estiver ativa (en=1), permanecendo inalterado até à próxima transição. Caso en seja 0, a saída mantém o valor anterior. Relativamente à

entrada reset do registo, quando ativo (rst=1) coloca a saída em 0000, independentemente do valor das restantes entradas.

Aplicando estas considerações à sequência de entradas dada, obtém-se a saída OUT como se mostra na tabela seguinte.

Transição (CLK)	D	en	rst	OUT
1	0110	1	0	0110
2	0100	1	1	0000
3	0010	0	0	0000
4	1101	1	0	1101

b) Além do que foi descrito na análise anterior, há agora que ter em consideração o multiplexador. Observando a forma como está a ser usado, conclui-se que o valor aplicado na entrada do registo provém da entrada IN, quando sel=1, ou da saída OUT do registo, quando sel=0.

Aplicando estas considerações à sequência de entradas dada, obtém-se a saída OUT como se mostra na tabela seguinte.

Transição (CLK)	IN	sel	en	rst	OUT
1	1001	1	1	0	1001
2	1111	1	1	0	1111
3	0101	0	1	0	1111
4	1000	1	0	0	1111
5	1000	1	1	0	1000
6	1111	1	1	1	0000
7	0101	0	1	0	0000
8	0000	1	1	0	0000
9	0001	1	1	0	0001

A figura representa um circuito sequencial baseado num contador de 4 bits.

- a) Desenhe as formas de onda das saídas do contador $(Q_3, Q_2, Q_1 e Q_0)$ e do circuito completo (OUT).
- b) Indique a sequência de estados ocorridos, numerando-os em decimal.
- c) Considere agora que o contador possui uma entrada de *reset* (ativa a 1), acionada como mostra a figura seguinte. Determine a sequência de estados da saída do contador.

a) O circuito apresentado é constituído por um contador de 4 bits. Considerando que inicialmente as suas saídas são nulas, a cada transição do sinal de relógio o valor das saídas é incrementado, resultando a representação das formas de onda mostrada na figura seguinte.

b) Sequência de estados (valores resultantes de $Q_3Q_2Q_1Q_0$):

$$0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, \cdots$$

c) No estado $Q_DQ_CQ_BQ_A=0100$ a entrada de reset fica ativa. Admitindo-o síncrono, na próxima transição do sinal de relógio o estado do contador passa para 0000. A sequência de estados resultante é: $0, 1, 2, 3, 4, 0, \cdots$

Exercício 5

Considere os sistemas de memória externa apresentados na figura seguinte.

- a) Determine a capacidade de cada circuito de memória.
- b) Elabore o mapa de memória de cada sistema. Indique, justificando, se a descodificação de memória é total ou parcial.
- c) Para cada um dos seguintes endereços, indique o componente, ou seja, o circuito de memória, afetado: $B7FF_H$, 1000_H , $E7AA_He$ 8000_H .
- a) Obtém-se a capacidade de um circuito de memória multiplicando o número de posições pelo número de bits por posição. O número de bits por posição é igual ao número de bits do porto de dados D[]. Todos os circuitos deste problema têm um porto de dados de 8 bits (1 byte).

O número de posições é determinado pela dimensão do porto de endereços A[]. Para portos de N bits, existem 2^N posições.

Assim, para a figura (a) temos:

- RAM1: $2^{12} \times 8 \text{ bits} = 2^2 \times 2^{10} \times 8 \text{ bits} = 4 \times 2^{10} \text{ byte} = 4 \text{ KiB}$
- RAM2: $2^{13} \times 8 \text{ bits} = 8 \text{ KiB}$

Para a figura (b) temos:

- RAM1: $2^{13} \times 8 \text{ bits} = 8 \text{ KiB}$ • RAM2: $2^{14} \times 8 \text{ bits} = 16 \text{ KiB}$
- b) O mapa de memória indica, para cada endereço possível, qual o circuito que armazena os dados correspondentes. Em ambas as figuras, o barramento de endereços do CPU tem 16

bits (A[15:0]). Portanto, o espaço de endereçamento tem 2^{16} posições (de 1 byte, neste caso), i.e., $64\,\mathrm{KB}$. A gama de endereços vai de 0000_H a FFFF_H.

Os endereços mapeados em cada circuito podem ser determinados por análise das condições em que o circuito está habilitado, i.e., para que endereços é que se tem CS=1.

Para a figura (a) temos:

• RAM1: $CS = A_{15} \cdot A_{14} \cdot A_{13} \cdot \overline{A_{12}} = 1$.

Esta condição só é satisfeita se $A_{15} = 1$, $A_{14} = 1$, $A_{13} = 1$, $A_{12} = 0$.

Logo, os endereços mapeadas na RAM1 têm o formato

em que X indica que o bit correspondente tanto pode ser 0 como 1. Os endereços com este formato estão na gama:

Em hexadecimal, a gama é E000_H-EFFF_H.

Como todos os bits do endereço são usados $(A_{15} - A_{12})$ na definição de CS; os restantes na ligação ao porto de endereços de RAM1), trata-se de descodificação total.

• RAM2: $CS = A_{15} \cdot \overline{A_{14}} \cdot \overline{A_{13}} = 1$.

Esta condição só é satisfeita se $A_{15}=1, A_{14}=0, A_{13}=0.$

Logo, os endereços mapeadas na RAM2 têm o formato

Os endereços com este formato estão na gama:

Em hexadecimal, a gama é 8000_H-9FFF_H.

Trata-se igualmente de descodificação total.

O mapa de memória para o sistema da figura (a) é o seguinte:

Gama (hex)	Dispositivo
0000-7FFF	
8000-9FFF	RAM2
A000-DFFF	
E000-EFFF	RAM1
F000-FFFF	

A análise do sistema da figura (b) faz-se de forma análoga.

• RAM1: $CS = A_{15} \cdot \overline{A_{13}} = 1$. Esta condição só é satisfeita se $A_{15} = 1, A_{13} = 0$.

Logo, os endereços mapeadas na RAM1 têm o formato

O símbolo ? indica que o bit correspondente não é usado na descodificação. Portanto, trata-se de descodificação parcial.

Neste caso particular, dois endereços que difiram apenas no bit A_{14} têm o mesmo efeito em termos de acesso a memória: os dois endereços diferentes são mapeados no mesma posição física de memória. Temos, portanto, duas gamas de endereços equivalentes, que apenas diferem no valor de A_{14} . Para $A_{14}=0$ a gama é:

Em hexadecimal, a gama é 8000_H - $9FFF_H$.

Para $A_{14} = 1$ a gama é:

Em hexadecimal, a gama é $C000_H$ -DFFF_H.

As duas gamas são mapeadas de forma sobreposta na RAM1. Por exemplo, os endereços $8000_{\tt H}$ e $C000_{\tt H}$ referem-se ambos à primeira posição física do circuito RAM1. A memória disponível não aumenta por ser usada descodificação parcial.

O circuito RAM2 também é usado com descodificação parcial. Os endereços correspondentes têm o formato

a que correspondem as gamas 0000_H -3FFF $_H$ e 4000_H -7FFF $_H$.

O mapa de memória para o sistema da figura (b) é o seguinte:

Dispositivo
RAM2 (*)
RAM2 (*)
RAM1 (**)
RAM1 (**)

Os asteriscos assinalam gamas fisicamente sobrepostas.

c) Para determinar os componentes usados basta consultar os mapas de memória obtidos na alínea anterior. Os resultados são os seguintes:

Endereço	Figura (a)	Figura (b)
B7FF		
1000		RAM2
E7AA	RAM1	
8000	RAM2	RAM1

4.2 Exercícios propostos

Exercício 6

Assuma que no circuito seguinte os *flip-flops* do tipo D são sensíveis ao flanco ascendente do sinal de relógio e que inicialmente as saídas são nulas.

Represente a forma de onda da saída Q em resposta à entrada D representada na figura. Sugestão: comece por verificar qual o valor de X após cada transição do sinal de relógio.

Exercício 7

Considere o seguinte circuito sequencial, constituído por portas lógicas e um flip-flop do tipo D, sensível ao flanco ascendente do sinal de relógio, em que no início Q = 0.

- a) Indique a expressão da função lógica D(J, K, Q) à entrada do flip-flop.
- b) Considerando os valores das entradas J e K apresentados na figura seguinte, obtenha o valor da saída Q do circuito.

Considere o circuito sequencial da figura seguinte.

- a) Escreva a expressão das entradas D_0 e D_1 dos flip-flops.
- b) Represente as formas de onda correspondentes aos sinais Q_0 e Q_1 , assumindo que o estado inicial dos *flip-flops* é "00" e que EN=1.
- c) Mostre qual o estado do circuito após 4 transições consecutivas do sinal de relógio (CLK).

Exercício 9

Considere o seguinte circuito, composto por um flip-flop e uma porta XOR (ou-exclusivo).

- a) Assumindo que o estado inicial do flip-flop é 0, determine a sequência de valores na saída T se na entrada X ocorrer a sequência 0110001001111100 (um bit a cada ciclo do relógio).
- b) Descreva a função do circuito relacionando T com X.
- c) Ao circuito anterior foi acrescentado um contador síncrono de 4 bits, tal como representado na figura seguinte. Identifique a relação entre as saídas $Q_3Q_2Q_1Q_0$ do contador e a entrada X do circuito.

A figura mostra a constituição de um banco de registos.

Além dos 8 registos de 4 bits, fazem parte do circuito um descodificador de 3 para 8 e um multiplexador de 8 (conteúdos de 4 bits) para 1. A entrada DIN representa o valor de 4 bits a escrever num dos 8 registos, endereçado (identificado) por ADDR. A escrita ocorre se WRITE=1. A leitura de um registo é feita endereçando o registo pretendido, surgindo o valor na saída DOUT. As operações de escrita são síncronas com o sinal de relógio.

- a) Expresse a capacidade de armazenamento do banco de registos em bytes.
- b) Explique o que garante escrever um conteúdo num (e um só) determinado registo.
- c) Admita que o conteúdo inicial dos registos é "0000" e que os valores das entradas são: DIN=1111, ADDR=001 e WRITE=1. Descreva que alterações ocorrem no circuito após uma transição do sinal de relógio.
- d) Explique a utilidade das entradas enable e reset dos registos.
- e) Descreva a função desempenhada pelo descodificador de 3 para 8 e pelo multiplexador de 8 para 1, no contexto da sua utilização no banco de registos.
- f) Mostre que alteração seria necessária efetuar para que fosse possível ler, simultaneamente, o conteúdo de dois registos diferentes, apresentando-o nas saídas DOUT1 e DOUT2.

Exercício 11

Um sistema de memória é constituído por uma memória RAM e uma memória ROM. O barramento de endereços possui 16 bits e o barramento de dados é de 8 bits. A figura seguinte mostra o correspondente diagrama de blocos, onde CS representa o sinal de *chip select* das memórias.

- a) Determine o intervalo de endereços a que a RAM responde e justifique se a descodificação de endereços é total ou parcial.
- b) Considere que a primeira posição da memória ROM tem o endereço 0xC800 e que o endereço de cada posição é único. Calcule o endereço da última posição da ROM.
- c) Apresente o circuito de descodificação de endereços da ROM considerando as condições da alínea anterior.

Um processador dispõe de um espaço de endereçamento de 64 KiB e de um barramento de dados com 8 linhas. O seu mapa de memória é o seguinte:

Dispositivo
ROM1
RAM1
-
RAM2
-

- a) Determine as dimensões de cada um dos dispositivos de memória.
- b) Determine as equações lógicas dos circuitos de descodificação de endereços (descodificação total).
- c) Apresente o diagrama de blocos do sistema de memória com descodificação de endereços.

Exercício 13

Um sistema emprega um processador com 14 bits de endereço e 8 bits de dados. Assumir que se dispõe apenas de circuitos RAM de dimensão $2^{10} \times 4$ bits.

Pretende-se construir um subsistema de memória com 2048 posições (de 1 byte cada) a partir do endereço 0 (i.e., a gama de endereços vai de 0 a 2047). Endereços pares e ímpares devem ativar circuitos RAM diferentes. O sistema usa descodificação completa.

- a) Apresente o esquema de ligações do sistema, incluindo o sub-sistema de descodificação de endereços.
- b) O valor 0x9A é guardado na posição 250. Onde fica guardada fisicamente a informação?

5 Desempenho

Alguns destes exercícios são extraídos ou adaptados do livro "Computer Organization and Design – The Hardware/Software Interface", D. Hennessy e J. Patterson, 4ª edição.

5.1 Exercícios resolvidos

Exercício 1

Um computador possui três classes de instruções, $A, B \in C$. O CPI de cada uma delas é, respetivamente, $1, 2 \in 3$. Um projetista está a implementar um compilador e precisa de escolher uma de duas sequências de instruções a usar nesse computador. Dessas sequências é conhecido o número de instruções de cada classe, conforme mostra a tabela seguinte.

Sequência de instruções -	Nº de instruções por classe			
Bequencia de instruções	A	В	C	
1	2	1	2	
2	4	1	1	

- a) Determine em qual das duas sequências de instruções é executado o maior número de instruções.
- b) Mostre qual das sequências é executada de forma mais rápida.
- c) Calcule o valor do CPI para cada sequência.
- a) Na sequência 1 são executadas 2+1+2=5 instruções e na sequência 2 são executadas 4+1+1=6 instruções. É pois na sequência 2 que são executadas mais instruções.
- b) O número de ciclos é dado por

$$N_{
m ciclos} = \sum_{i} N_i \times {
m CPI}_i$$

onde N_i se refere ao número de instruções da classe i e CPI_i é o número de ciclos por instrução dessa classe.

Sequência 1:
$$N_{\text{ciclos}} = 2 \times 1 + 1 \times 2 + 2 \times 3 = 10$$

Sequência 2:
$$N_{\text{ciclos}} = 4 \times 1 + 1 \times 2 + 1 \times 3 = 9$$

A sequência 2 é a mais rápida, porque é executada em menos ciclos de relógio.

c)

$$CPI = \frac{N_{ciclos}}{N_{inst}}$$

Sequência 1: CPI = 10/5 = 2

Sequência 2: CPI = 9/6 = 1.5

Exercício 2

Considere um computador com três classes de instruções, A, B e C, para as quais o valor de CPI é 1, 2 e 3, respetivamente. Para ser executado nesse computador, um programa é obtido através de dois compiladores distintos, originando o número de instruções de cada classe indicado na tabela.

Sequência de instruções	N^{Q} de instruções por classe			
Sequencia de instruções	A	В	C	
Compilador 1	5×10^{9}	1×10^{9}	1×10^{9}	
Compilador 2	10×10^{9}	1×10^{9}	1×10^{9}	

Assuma que o computador funciona a 500 MHz.

- a) Indique a sequência que é executada em menos tempo.
- b) Determine a qual das sequências de instruções corresponde o maior valor de MIPS (milhões de instruções por segundo).

a) O tempo de execução é dado por

$$t_{
m exec} = rac{N_{
m ciclos}}{f_{
m CLK}}$$

sendo o número de ciclos de relógio determinado por

$$N_{\text{ciclos}} = \sum_{i} N_i \times \text{CPI}_i$$

Então, o tempo de execução da sequência de instruções obtida por cada compilador é

$$t_{\rm exec_C1} = \frac{(5\times1 + 1\times2 + 1\times3)\times10^9}{500\times10^6} = \frac{10\times10^9}{500\times10^6} = 20\,\rm s$$

e

$$t_{\text{exec_C2}} = \frac{(10 \times 1 + 1 \times 2 + 1 \times 3) \times 10^9}{500 \times 10^6} = \frac{15 \times 10^9}{500 \times 10^6} = 30 \,\text{s}$$

Atendendo aos tempos de execução calculados, conclui-se que o compilador 1 gera o programa mais rápido.

$$MIPS = \frac{N_{instr}}{t_{erec} \times 10^6}$$

Portanto,

$$MIPS_1 = \frac{(5+1+1) \times 10^9}{20 \times 10^6} = 350$$

e

$$MIPS_2 = \frac{(10+1+1) \times 10^9}{30 \times 10^6} = 400$$

Daqui se conclui que o compilador 2 proporciona uma taxa de execução de instruções superior.

Exercício 3

A execução de um programa num computador A, o qual funciona com um sinal de relógio de $2\,\mathrm{GHz}$, demora $10\,\mathrm{s}$. Um computador B que está a ser desenvolvido é capaz de executar o mesmo programa em $6\,\mathrm{s}$. Este computador B pode atingir uma frequência de relógio superior à do computador A, embora consuma 1,2 vezes mais ciclos de relógio do que o computador A a executar o referido programa. Determine a frequência do sinal de relógio a que B pode funcionar.

O tempo de execução de um programa com N_{instr} instruções é dado por

$$t_{\rm exec} = N_{\rm instr} \times {\rm CPI} \times T_{\rm CLK}$$

A razão dos tempos de execução no computador A e no computador B é

$$\frac{t_{\rm exec_A}}{t_{\rm exec_B}} = \frac{N_{\rm instr} \times {\rm CPI}_A \times f_{\rm CLK_B}}{N_{\rm instr} \times {\rm CPI}_B \times f_{\rm CLK_A}} = \frac{10}{6}$$

Como $\text{CPI}_B = 1,2 \times \text{CPI}_A$, então resulta $f_{\text{CLK_B}} = f_{\text{CLK_A}} \times 1,2 \times \frac{10}{6} = 2 \times f_{\text{CLK_A}}$, conclui-se que $f_{\text{CLK_B}} = 4 \, \text{GHz}$.

Exercício 4

Considere dois computadores A e B que possuem o mesmo conjunto de instruções. O período do sinal de relógio dos computadores A e B é 250 ps e 500 ps, respetivamente, e o número de ciclos de relógio consumidos por instrução (CPI) é 2 no computador A e 1,2 no computador B, respetivamente. Mostre qual dos computadores é o mais rápido a executar um programa.

$$t_{exec_A} = N_{instr} \times 2 \times 250 = 500 \times N_{instr} \text{ ps}$$

e

$$t_{exec_B} = N_{instr} \times 1.2 \times 500 = 600 \times N_{instr} \text{ ps}$$

Então,

$$\frac{t_{exec_B}}{t_{exec_A}} = \frac{6}{5} = 1.2$$

O computador A é o mais rápido.

Um dado programa é executado em dois computadores diferentes, A e B, tendo-se obtido os seguintes indicadores:

Indicador	A	B
$N^{\underline{o}}$ de instruções	10^{7}	8×10^{6}
Frequência	$4\mathrm{GHz}$	$4\mathrm{GHz}$
CPI	1	1,1

- a) Indique qual o computador com maior valor de MIPS.
- b) Indique qual o computador mais rápido.

a)
$$\text{MIPS} = \frac{N_{instr}}{t_{exec} \times 10^6} = \frac{N_{instr}}{N_{instr} \times \text{CPI} \times T_{CLK} \times 10^6} = \frac{f_{CLK}}{\text{CPI} \times 10^6}$$
 Logo,
$$\text{MIPS}_A = \frac{4 \times 10^9}{1 \times 10^6} = 4 \times 10^3$$

$$\text{e}$$

$$\text{MIPS}_B = \frac{4 \times 10^9}{1,1 \times 10^6} \approx 3636$$

A é o computador com maior valor de MIPS.

b)
$$t_{exec} = N_{instr} \times \text{CPI} \times T_{CLK} = \frac{N_{instr}}{\text{MIPS} \times 10^6}$$

$$t_{exec_A} = \frac{10^7}{4 \times 10^3 \times 10^6} = 2.5 \,\text{ms}$$

$$t_{exec_B} = \frac{8 \times 10^6}{3636 \times 10^6} \approx 2.2 \,\text{ms}$$

B é o computador mais rápido.

Exercício 6

Para um dado programa foram obtidas as seguintes medidas:

- \bullet Ocorrência de operações de vírgula flutuante (VFL) (exceto raiz quadrada): $25\,\%$
- Ocorrência da operação de raiz quadrada: 2 %
- CPI médio de operações em VFL: 4,0
- CPI de raiz quadrada: 20
- CPI médio para outras instruções: 1,33

Considere duas alternativas para melhorar o desempenho: reduzir o CPI da operação de raiz quadrada para 2 ou baixar o CPI de todas as instruções de VFL para 2,5. Compare as duas alternativas usando a equação de desempenho do CPU.

O número de instruções e a frequência do relógio do computador continuam a ser os mesmos nas duas alternativas. Basta por isso comparar os valores de CPI.

$$CPI_1 = 0.25 \times 4 + 0.02 \times 2 + (1 - 0.25 - 0.02) \times 1.33 \approx 2.01$$

$$CPI_2 = 0.25 \times 2.5 + 0.02 \times 20 + (1 - 0.25 - 0.02) \times 1.33 \approx 2.00$$

Embora os valores sejam muito próximos, na segunda alternativa ("... baixar o CPI de todas as instruções de VFL para 2,5") o tempo de execução é menor, ou seja, o desempenho é superior.

Exercício 7

Um processador executa um programa em que 30% do tempo de execução é gasto em adições de vírgula flutuante, 25% em multiplicações de vírgula flutuante e 10% em divisões de vírgula flutuante. Para a nova geração desse processador, a equipa de projeto propõe três aperfeiçoamentos possíveis na unidade de vírgula flutuante, consistindo em tornar o:

- 1. somador duas vezes mais rápido;
- 2. multiplicador três vezes mais rápido;
- 3. divisor dez vezes mais rápido.

Indique qual destas alternativas poderá proporcionar o maior aumento de desempenho.

A lei de Amdahl pode ser expressa por

$$s_{total}(f) = \frac{1}{(1-f) + \frac{f}{s}}$$

onde f representa a fração de tempo gasto na execução da parte melhorada e s traduz o aumento de rapidez dessa parte.

A aplicação da lei de Amdahl às três situações descritas permite pois quantificar o aumento de desempenho:

1.
$$f = 0.3 \text{ e } s = 2 \rightarrow s_{total}(f) = \frac{1}{0.7 + 0.3/2} = 1.18$$

2.
$$f = 0.25 \text{ e } s = 3 \rightarrow s_{total}(f) = \frac{1}{0.75 + 0.25/3} = 1.20$$

3.
$$f = 0.1 \text{ e } s = 10 \rightarrow s_{total}(f) = \frac{1}{0.9 + 0.1/10} = 1.10$$

O maior ganho de desempenho é obtido com a melhoria do multiplicador de vírgula flutuante (alternativa 2). Pode ainda concluir-se que tornar o divisor muito mais rápido leva ao menor aumento de desempenho devido à baixa ocorrência de divisões em vírgula flutuante (10%). Na verdade, mesmo tornando o divisor infinitamente mais rápido, o *speed-up* obtido seria 1,11.

A execução de um programa num computador demora $1000\,\mathrm{s}$, sendo $75\,\%$ do tempo gasto em multiplicações e divisões. Pretende-se remodelar o computador com *hardware* mais rápido para a realização das operações de multiplicação e divisão. Calcule quanto mais rápidas devem ser as operações de multiplicação e divisão para que o programa seja:

a) três vezes mais rápido;

b) quatro vezes mais rápido.

a) Aplicando a lei de Amdahl, o aumento de rapidez do programa é dado por

$$s_{total}(f) = \frac{1}{(1-f) + \frac{f}{s}}$$

onde f representa a fração de tempo gasto na execução da parte melhorada e s traduz o aumento de rapidez dessa parte. Assim,

$$3 = \frac{1}{(1 - 0.75) + \frac{0.75}{s}} = \frac{1}{\frac{1}{4} + \frac{3}{4 \times s}} = \frac{4 \times s}{s + 3}$$

resultando

$$3 \times s + 9 = 4 \times s \Leftrightarrow s = 9$$

isto é, as operações devem ser 9 vezes mais rápidas.

b) Da mesma forma, resulta

$$4 = \frac{1}{(1 - 0.75) + \frac{0.75}{s}} = \frac{1}{\frac{1}{4} + \frac{3}{4 \times s}} = \frac{4 \times s}{s + 3}$$

e

$$4 \times s + 12 = 4 \times s$$

que não tem solução, concluindo-se ser impossível o programa ficar 4 vezes mais rápido.

5.2 Exercícios propostos

Exercício 9

A tabela apresentada mostra a frequência de funcionamento de 3 processadores, o número de instruções executadas em cada um deles e o respetivo tempo de execução.

Processador	F_{CLK} (GHz)	Nº de instruções	Tempo (s)
P_1	2	20×10^9	7
P_2	1,5	30×10^9	10
P_3	3	90×10^{9}	9

- a) Calcule o número de instruções executadas por ciclo de relógio, por cada processador.
- b) Calcule a frequência a que o processador P_2 deve funcionar para que o tempo de execução das instruções seja igual ao apresentado para P_1 .
- c) Calcule o número de instruções a executar em P_2 de modo a que o seu tempo de execução seja igual ao de P_3 .

Considere que dois processadores distintos, P_1 e P_2 , implementam o mesmo conjunto de instruções e que estas se podem enquadrar em quatro classes diferentes $(A, B, C \in D)$. A frequência e o CPI por classe de instruções de cada implementação encontram-se na tabela.

Processador	F_{CLK} (GHz)	$ ext{CPI } A$	$\mathrm{CPI}\; B$	$\mathrm{CPI}\; C$	$ ext{CPI } D$
P_1	1,5	1	2	3	4
P_2	2	2	2	2	2

- a) Seja um programa com 1 milhão de instruções divididas pelas quatro classes da seguinte forma: 10% são da classe A, 20% são da classe B, 50% são da classe C e 20% são da classe D. Verifique qual dos processadores é mais rápido a executar o programa.
- b) Calcule o CPI médio de cada processador.
- c) Calcule o número de ciclos de relógio necessários à execução do programa em cada processador.

Exercício 11

Dois processadores, P_1 e P_2 , implementam de forma diferente o mesmo conjunto de instruções, composto por cinco classes de instruções. P_1 funciona com um relógio de 4 GHz e P_2 funciona a 6 GHz. O número médio de ciclos de relógio para cada classe de instruções é dado pela tabela que se segue.

Classe	CPI de P_1	CPI de P ₂
A	1	2
В	2	2
\mathbf{C}	3	2
D	4	4
${ m E}$	3	4

O desempenho de pico (peak performance) é definido como a cadência máxima a que um computador pode executar a sequência de instruções mais favorável (para uma dada tarefa). Determinar o desempenho de pico de P₁ e P₂ expresso em instruções por segundo. Comentar o resultado.

Exercício 12

A tabela seguinte apresenta o número de operações em vírgula flutuante (VFL) executadas em três programas diferentes e o respetivo tempo de execução em três computadores $A,\ B$ e C, distintos.

Programa	N^{o} operações VFL	Tempo de execução (s)			
		Comp. A	Comp. B	Comp. C	
1	5×10^9	2	5	10	
2	20×10^{9}	20	20	20	
3	40×10^{9}	200	50	15	

- a) Mostre qual o computador mais rápido em termos do tempo total de execução.
- b) Determine quantas vezes esse computador é mais rápido do que os outros dois.

A tabela mostra o número total de instruções executadas por um programa, bem como a sua distribuição por tipo.

Total	Aritméticas	Store	Load	Salto
700	500	50	100	50

- a) Assuma que o tempo de execução das instruções aritméticas corresponde a 1 ciclo de relógio, loads e stores correspondem a 5 ciclos de relógio e as instruções de salto correspondem a 2 ciclos de relógio. Calcule o tempo de execução do programa num processador a 2 GHz.
- b) Calcule o valor do CPI para o programa.
- c) Se o número de instruções de *load* for reduzido para metade, quanto mais rápida é a execução do programa e qual o valor do CPI?

Exercício 14

Um processador executa um programa constituído por vários tipos de instruções, entre as quais existem instruções de transferência de dados. Supondo que é possível melhorar o tempo de execução das instruções de transferência de dados em 11 vezes, calcule a percentagem do tempo de execução gasto por essas instruções de forma a conseguir-se melhorar o desempenho do processador em 5 vezes.

Exercício 15

Medindo o tempo de acesso a disco verificou-se que 80% do tempo de execução de um determinado programa num computador era gasto em acessos ao disco. Substituindo o disco de tal computador constatou-se que este era duas vezes mais rápido.

- a) Calcule quanto melhorou o desempenho do computador.
- b) Verifique qual a melhoria de desempenho que seria alcançada se o disco tivesse um tempo de acesso desprezável.

Exercício 16

Suponha que se pretende melhorar um computador acrescentando-lhe uma unidade vetorial. (Estas unidades implementam instruções específicas para o tratamento de vetores.) Um cálculo executado em modo vetorial é 10 vezes mais rápido que o normal.

- a) Desenhe um gráfico que mostre o ganho de rapidez (*speedup*) em função da percentagem de tempo de execução em modo vetorial (percentagem de vetorização).
- b) Que percentagem de vetorização é necessária para se obter um ganho de rapidez de 2?
- c) Considerar o caso da alínea anterior. Com a utilização da unidade vetorial, o computador demora metade de tempo a realizar os cálculos. Em que percentagem desse novo tempo (mais curto) é que a unidade vetorial está a ser usada?
- d) Que percentagem de vetorização é necessária para obter metade do máximo ganho de rapidez possível?
- e) Suponha que se determinou empiricamente que a percentagem de vetorização é de 70 %. Os projetistas de *hardware* acham que é possível duplicar o desempenho da unidade vetorial. Em alternativa, o grupo de compilação poderia tentar aumentar a utilização do modo vetorial, como forma de aumentar o desempenho. Que aumento da percentagem de vetorização (em relação à situação atual) seria necessário para obter o mesmo resultado que a duplicação do desempenho de *hardware*? Que alternativa é mais aconselhável?

Um processador suporta 4 classes de instruções. Durante a execução de um dado programa, a percentagem de tempo gasta com instruções de cada classe foi o seguinte:

Uma nova versão do processador executa instruções de classe A três vezes mais rapidamente e instruções de classe C quatro vezes mais rapidamente. Determinar o ganho de rapidez (speedup) obtido pela nova versão.

6 Linguagem assembly

6.1 Exercícios resolvidos

Exercício 1

Para as seguintes expressões aritméticas (números inteiros de 64 bits), especifique um mapeamento de variáveis para registos e o fragmento de código assembly ARM que as implementa.

a)
$$f = g - (f + 5)$$
 b) $f = A[12] + 17$

O primeiro passo neste tipo de problemas é escolher uma atribuição de variáveis a registos. Cada variável é atribuída a um registo. Como a arquitetura ARM possui 31 registos de uso geral, trata-se de uma tarefa simples porque, neste caso, se pode usar um registo diferente para cada variável.

a) Uma possível atribuição de registos a variáveis é a seguinte (escolha arbitrária):

O fragmento de código que realiza os cálculos desejados é:

add X0, X0, 5 // Calcula
$$f = f + 5$$

sub X0, X1, X0 // Calcula $f = g - f$

Após esta sequência de duas instruções, X0 contém o novo valor associado a f. O cálculo da primeira parte da expressão (instrução add) pode guardar o resultado intermédio no registo X0, porque a segunda instrução estabelece o valor final correto.

b) Possível atribuição de variáveis a registos:

Como cada elemento de uma sequência de inteiros tem 8 bytes, o elemento de índice 12 da sequência A está guardado a partir da posição de memória cujo endereço é dado por:

endereço base de A + 12
$$imes$$
 8

A primeira instrução deve ir buscar o valor guardado nessa posição.

```
ldur X0, [X6, #96] // Carrega valor da posição X6+96 add X0, X0, #17 // Soma-lhe o valor 17
```

Assuma as seguintes condições iniciais:

$$XO = OxOOOOOOOBEADFEED$$

X1 = OxOOOOOOODEADFADE

a) Determine o valor de X2 após a execução da seguinte sequência de instruções:

b) Determine o valor de X2 após a execução da seguinte sequência de instruções:

```
lsr X2, X0, 3
and X2, X2, 0x00000000FFFFFFEF
```

Em binário, os valores iniciais dos registos são:

```
 \begin{array}{l} {\tt XO} = 0 \ldots 0 \ 1011 \ 1110 \ 1010 \ 1101 \ 1111 \ 1110 \ 1110 \ 1101_2 \\ {\tt X1} = 0 \ldots 0 \ 1101 \ 1110 \ 1010 \ 1101 \ 1111 \ 1010 \ 1101 \ 1110_2 \\ \end{array}
```

a) A primeira instrução desloca o valor de X0 quatro bits para a esquerda. Nos 4 bits menos significativos são introduzidos zeros. O resultado da operação é guardado em X2; o registo X0 fica inalterado. O valor de X2 depois da execução da primeira instrução é:

A instrução orr calcula a função ou-inclusivo de cada bit de X2 com o bit de X0 situado na mesma posição. O resultado é guardado em X2. O resultado da operação orr é 1 sempre que pelo menos um dos operandos seja 1. Logo:

```
\mathtt{X2} = 0 \ldots 0 \ 1011 \ 1111 \ 1110 \ 1111 \ 1111 \ 1111 \ 1110 \ 1101 \ 1110_2 = \mathtt{0x00000000DFEFFEDE}
```

b) A instrução 1sr desloca o valor de X0 três posições para a direita, introduzindo zeros pela esquerda; os 3 bits menos significativos perdem-se. O valor de X2 depois da execução da primeira instrução é:

```
X2 = 000 \ 0 \ 0...0 \ 0001 \ 0111 \ 1101 \ 0101 \ 1011 \ 1111 \ 1101 \ 1101_2
```

A instrução and calcula a função e-lógico de cada bit de X2 com o bit correspondente da constante 0x00000000FFFFFFEF

```
00000000FFFFFEF<sub>16</sub> = 0...0 1111 1111 1111 1111 1111 1110 1111<sub>2</sub>
```

O resultado é guardado em X2. O e-lógico de dois bits tem resultado 1 apenas se ambos os operandos forem 1. Neste caso, os operandos são dados pelo conteúdo de X2 e pela constante indicada. O valor final de X2 é:

$$\mathtt{X2} = 0 \ldots 0\ 0001\ 0111\ 1101\ 0101\ 1011\ 1111\ 1100\ 1101_2 = \mathtt{0x00000000017D5BFCD}$$

Assuma as seguintes condições iniciais:

 $\mathtt{XO} = \mathtt{FFFF} \ \mathtt{FFFF} \ \mathtt{FFFF} \ \mathtt{FFFF}_{16}$

Determine o valor de X1 após a execução do fragmento seguinte:

cmp X0, X1 bge ELSE b DONE

ELSE: add X1, X1, 2

DONE: ..

A primeira instrução compara os conteúdos de X0 e X1 alterando o valor das *flags* (registo NZVC) de acordo com o resultado da comparação. A operação realizada é equivalente a:

Neste caso os valores dos indicadores (flags) são alterados para N=1, Z=0, C=1 e V=0.

O salto condicional (segunda instrução) é tomado se as *flags* N e V apresentarem o mesmo valor, o que se verifica quando X0 é maior ou igual a X1 (a condição **ge** interpreta os valores dos registos como sendo números em complemento para 2). Como neste caso o conteúdo de X0 é negativo e o conteúdo de X1 é positivo, o salto não será tomado.

Em consequência, a terceira instrução a ser executada é a de salto incondicional (a instrução b). Esta instrução leva o fluxo de execução a passar para o fim do fragmento apresentado (etiqueta DONE). A instrução add não é executada.

Como o conteúdo de X1 não foi alterado, o seu valor são sofre alteração.

Apresenta-se a seguir um programa em assembly. Na quinta linha do programa é invocada uma sub-rotina, através da instrução b1 (branch with link), designada por par. Esta sub-rotina, cujo código não é fornecido, tem como objetivo determinar se um número é par. Admita que a sub-rotina recebe esse número no registo X0 e que devolve no registo X0 o valor 1 caso seja par, ou 0 no caso contrário.

```
X10, 0x0000000FF000000
          mov
                 X1, 3
          mov
                 X2, 0
          mov
                 XO, [X10]
loop:
          stur
          bl
                                     // Chama rotina par
                 par
                 X0, 0
          cmp
          beq
                 step
          add
                 X2, X2, 1
                 XO, [X10]
          ldur
step:
                 XO, XO, 1
          add
          adds
                 X1, X1, -1
          bne
                 loop
```

- a) Considerando que antes da execução do programa o registo X0 possui o valor 8, indique o conteúdo dos registos X0 e X2 após a execução do programa.
- b) Tendo em consideração a descrição que foi realizada, implemente a rotina par.
- a) Em algumas situações é útil preservar o valor do registo X0 (onde, segundo a convenção as sub-rotinas devem retornar o resultado), para isso uma solução possível é armazenar o conteúdo do registo numa posição de memória antes da invocação da sub-rotina e voltar a carregar esse valor após a execução da mesma. Neste caso foi utilizado o endereço de memória 0x0000000FF000000 para armazenar o conteúdo do registo X0.

O programa realiza 3 iterações, incrementando em cada uma delas o valor X0, que inicialmente é 8. Em cada iteração é determinada a paridade do valor em X0 invocando a rotina par. Caso o valor em X0 seja par o registo X2 é incrementado. No final da execução do programa X2=2, correspondendo aos 2 números pares encontrados (8 e 10), e X0=11, correspondendo ao resultado da adição de uma unidade em cada iteração ao valor de X0.

b) O bit menos significativo de um número par é 0. A rotina seguinte baseia-se nesta propriedade.

- a) Escreva um fragmento de código *assembly* que determina se um dado número inteiro N está presente numa sequência SEQ. Assuma a seguinte atribuição de registos:
 - $N \rightarrow XO$
 - endereço-base de $SEQ \rightarrow X1$
 - número de elementos de SEQ \rightarrow X2
 - resultado \rightarrow X0
- b) Converta o fragmento anterior numa sub-rotina chamada pesq (de "pesquisa"). Os argumentos da função seguem a ordem indicada na alínea anterior.
- c) Use a sub-rotina anterior num fragmento que determina quantos elementos de uma sequência SEQ1 estão presentes noutra sequência SEQ2. Usar a seguinte atribuição de registos:
 - endereço-base de SEQ1 \rightarrow X7
 - número de elementos de SEQ1→X8
 - endereço-base de SEQ2 \rightarrow X9
 - número de elementos de SEQ2 \rightarrow X10
 - resultado \rightarrow X5
- a) O fragmento consiste num ciclo em que se varia o registo X1 de forma a conter o endereço de elementos sucessivos de SEQ. O número de iterações é, no máximo, igual ao número de elementos de SEQ, que é decrementado de uma unidade em cada iteração.

O ciclo pode terminar, quando se encontra um elemento igual ao procurado, nesse caso é colocado em X3 o valor 1 e a instrução de salto para a etiqueta fim é executada.

Se o valor procurado não existir em SEQ, o ciclo é terminado porque o contador de elementos vem a 0. Neste caso, o valor de X3 não é alterado, mantendo o valor inicial estabelecido na primeira instrução.

Na última linha o valor de X3 é transferido para o registo X0 de forma a deixar o resultado em X0 tal como é pedido no enunciado.

```
// resultado a Zero
            mov
                     X3, 0
                     X2, 0
                                // terminar?
  prox:
            cmp
                     fim
            beq
3
                                 // obter elemento
            ldur
                     x4, [x1]
                                 // elemento = N?
                     x4,
                         XΟ
            cmp
            bne
                     seg
6
                     X3, 1
                                // encontrado, resultado a 1
            mov
7
                     fim
8
9
   seg:
            add
                     x1, x1, 8 // atualizar endereço
                     x2, x2, 1 // ajustar numero de elementos
            sub
10
                     prox
            b
11
  fim:
                     x0, x3
                                 // colocar resultado em XO
            mov
12
```

b) Para transformar o fragmento numa sub-rotina é necessário alterá-lo para corresponder às convenções de invocação: os argumentos nos registos X0–X7 e o resultado nos registos X0 e X1

A atribuição de registos passa a ser a seguinte:

- $N \rightarrow XO$
- endereço-base de $SEQ \rightarrow X1$
- número de elementos de SEQ \rightarrow X2
- resultado \rightarrow X0

```
// resultado a Zero
  pesq:
           mov
                    X3, 0
  L1:
                    X2, 0
                                 // terminar?
            cmp
           beq
                    L3
                    X4, [X1]
           ldur
                                  // obter elemento
4
                    X4, X0
                                  // elemento = N?
            cmp
            bne
                    L2
6
                    X3, 1
                                 // encontrado, resultado a 1
            mov
                    L3
  L2:
            add
                    X1, X1, 8
                                 // atualizar endereço
                                 // ajustar numero de elementos
            sub
                    X2, X2, 1
10
                    L1
11
                                  // colocar resultado em XO
  L3:
            mov
                    X0, X3
12
            ret
13
```

A ultima instrução da sub-rotina (ret), tem com função fazer com que no final da execução da sub-rotina o programa retorne para o programa principal continuando a executar as suas instruções normalmente.

c) O fragmento consiste num ciclo em que se "percorre" a sequência SEQ1. As linhas 2–3 verificam se existem elementos a processar. Em caso afirmativo, obtém-se o próximo elemento de memória; as linhas 9–10 procedem à atualização do contador de elementos e do endereço do próximo elemento.

A sub-rotina pesq é usada para procurar um dado elemento de SEQ1 em SEQ2. As linhas 4–6 preparam a invocação da sub-rotina, colocando os argumentos nos registos apropriados (valor a procurar em X0, endereço-base de SEQ2 em X1 e número de elementos de SEQ2 em X2).

A linha 8 processa o resultado da invocação (registo X0). Se o valor foi encontrado em SEQ2, o contador X5 é incrementado de uma unidade.

```
mov
                   X5, 0
                              // inicializar contador
  ciclo:
           cmp
                   X8, 0
                               // mais elementos de SEQ1?
                   stop
                                // terminar
           beq
                   XO, [X7]
                                // obter um elemento de SEQ1
           ldur
           mov
                   X1, X9
                                // onde pesquisar
                               // nº de elementos a pesquisar
                   X2, X10
           mov
                                // invocar sub-rotina
           bl
                   pesq
                   X5, X5, X0
                               // atualizar contador
           add
                   X7, X7, 8 // próximo endereço
           add
                   X8, X8, 1 // decrementar n^{\circ} de elementos
           sub
10
                   ciclo
                               // repetir
11
  stop:
           . . .
```

6.2 Exercícios propostos

Exercício 6

Para as seguintes expressões aritméticas (números inteiros de 64 bits), especifique um mapeamento de variáveis para registos e o fragmento de código assembly ARMv8 que as implementa.

```
a) f = g + (j + 2)
b) k = a + b - f + d - 30
c) f = g + h + A[4]
d) f = g - A[B[10]]
e) f = k - g + A[h + 9]
f) f = g - A[B[2] + 4]
```

Exercício 7

Para os seguintes fragmentos de código assembly ARMv8, indique um mapeamento entre registos e variáveis e determine as expressões simbólicas correspondentes.

```
a) add x0,x0,x1
add x0,x0,x2
add x0,x0,x3
add x0,x0,x4
b) ldur x0,[x6, 8]
```

c) Assumir que X6 contém o endereço-base da sequência A[].

```
add x6, x6, -40
lsl x10, x1, 3
add x6, x6, x10
ldur x0, [x6, 16]
```

Assuma as seguintes condições iniciais:

$$X0 = 0x55555555555555$$

X1 = 0x0123456789ABCDEF

Determine o valor de X2 após a execução das sequências de instruções seguintes.

- a) lsl x2, x0, 4 orr x2, x2, x1
- b) lsl x2, x0, 4 and x2, x2, -1
- c) lsr x2, x0, 3 and x2, x2, 0x00EF

Exercício 9

Os processadores RISC como o ARM implementam apenas instruções muito simples. Este exercício aborda exemplos de hipotéticas instruções mais complexas.

a) Considere uma instrução hipotética abs que coloca num registo o valor absoluto de outro registo.

abs X2, X1 é equivalente a
$$X2 \leftarrow |X1|$$

Apresente uma sequência de instruções ARMv8 que realiza esta operação.

b) Repita a alínea anterior para a instrução sgt, em que sgt X1, X2, X3 é equivalente a se X2 > X3 então X1 \leftarrow 1 senão X1 \leftarrow 0.

Exercício 10

Considere o seguinte fragmento de código assembly ARMv8:

Assuma os seguintes valores iniciais:

$$X4 = 0x12345678$$
 $X5 = 0x7D0$

Explique como é alterada a memória durante a execução do fragmento de código. Apresente numa tabela o endereço e o conteúdo das posições de memória alteradas pela execução do fragmento de código.

Exercício 11

Numa zona de memória (endereço-base em X4) está uma sequência de números inteiros (de 64 bits) diferentes de 0. A sequência é terminada por um zero.

Escreva um fragmento de código *assembly* que determina o número de valores da sequência. O valor final, 0, não entra para a contagem. O resultado deve ser guardado em X0.

Considerar os seguintes fragmentos de código assembly.

```
Fragmento 1:
               LOOP:
                                 X1. 0
                        cmp
                                 DONE
                        b.eq
                                 X2, X2, 2
                        add
                                 X1, X1, -1
                        add
                        b
                                 LOOP
               DONE:
Fragmento 2: LOOP:
                                X3, OxA
                       mov
              LOOP2:
                                X2, X2, 2
                       add
                                X3, X3, -1
                       adds
                                L00P2
                       b.ne
                       adds
                                X1, X1, -1
                       b.ne
                                LOOP
              DONE:
                       . . .
```

- a) Assumir a seguinte situação inicial: X1=10 e X2=0. Determinar, para cada fragmento, o valor final de X2.
- b) Assuma agora que X1=N (com N>0). Determinar, para cada fragmento, o número de instruções executadas em função de N.

Exercício 13

Escrever um fragmento para determinar se duas sequências de números inteiros (64 bits) têm o mesmo conteúdo. As sequências têm 100 elementos. Usar a seguinte atribuição de registos:

```
endereço-base da sequência A 
ightarrow X4 endereço-base da sequência B 
ightarrow X5
```

O resultado, a guardar em X0, deve ser 1, se as duas sequências tiverem o mesmo conteúdo ou 0 no caso contrário.

Exercício 14

Escreva um fragmento de código assembly ARMv8 para determinar quantos números ímpares estão contidos numa sequência de 50 números inteiros (de 64 bits). Assuma que o endereço-base da sequência está contido no registo X0. O resultado deve ficar no registo X7.

Exercício 15

Pretende-se escrever um programa que permita realizar diversas tarefas envolvendo sequências de números inteiros (64 bits) em memória. Para que o programa resulte estruturado e o código seja facilmente reutilizado, o seu desenvolvimento deve basear-se na chamada de sub-rotinas, realizando cada uma destas sub-rotinas uma tarefa específica.

Escreva um programa que realiza as tarefas a seguir descritas usando uma sub-rotina para cada tarefa.

Nota: deve gerir a utilização de registos por forma a respeitar as convenções de chamada e de retorno das sub-rotinas.

- a) Somar todos os elementos de uma sequência.
- b) Determinar o número de elementos ímpares da sequência.

- c) Determinar o número de elementos que são iguais ou superiores a um valor dado.
- d) Determinar se duas sequências com o mesmo comprimento são iguais.

7 Organização de um CPU

As figuras foram extraídas do livro "Computer Organization and Design – ARM Edition", Patterson & Hennessey.

Resumo dos formatos de codificação e opcodes

Field	opco	de	Rm	sha	mt	Rn	Rd	
Bit positions	31:2	1	20:16	15:	10	9:5	4:0	
a. R-type instruction								
Field	1986 or	1984	address	5	0	Rn	Rt	
Bit positions	31:2	1	20:12		11:10	9:5	4:0	
b. Load or st	ore instruction							
Field	180		a	address			Rt	
Bit positions	ons 31:24		23:5			4:0		
c. Conditional branch instruction								
	31 26 2	5						0
	opcode address							
d. Branch	6 bits	26 bits						

Instrução	Opcode			
ADD	100	0101	1000	
SUB	110	0101	1000	
AND	100	0101	0000	
ORR	101	0101	0000	
LDUR	111	1100	0010	
STUR	111	1100	0000	
CBZ	101	1010	0	
В	000	101		

ALU trabalha em 3 contextos diferentes.

1. instruções lógico-aritméticas: ALUOp[1:0]=10

2. cálculo de endereços: ALUOp[1:0]=00

3. comparação: ALUOp[1:0]=01

7.1 Exercícios resolvidos

Exercício 1

Considere o CPU da figura 7.1. Determine o valor de todos os sinais de controlo durante a execução da seguinte instrução:

ADD X3, X8, X11

Indique também quais os componentes com funções úteis.

Figura 7.1: CPU com multiplexadores e sinais de controlo

Os valores dos sinais de controlo são determinados pela operação efetuada, que estabelece a forma como os recursos do CPU são usados.

A instrução ADD usa dois registos como fonte de operandos e um como destino do resultado. Como a instrução altera o banco de registos (para guardar o resultado da soma), deve ter-se RegWrite=1. Como o valor que é guardado no registo provém da ALU e não da memória, tem-se MemtoReg=0. Nas instruções tipo R, a especificação do registo do segundo operando é feita pelos bits 20:16 da instrução, pelo que Reg2Loc=0.

Esta instrução não acede a memória, seja para leitura, seja para escrita. Por isso, MemRead=0 e MemWrite=0. Como também não é um salto condicional, Branch=0, o que implica PCSrc=0 (porque PcSrc = AND(Zero, Branch)).

A instrução ADD usa a ALU para realizar a operação (adição) sobre dois operandos provenientes de registos. Um operando da ALU provém sempre do banco de registos; a origem do segundo é determinada pelo sinal ALUSrc. Como neste caso o segundo operando também provém do banco de registos, tem-se ALUSrc=0. A operação da ALU é controlada pelo sinal de 2 bits ALUOp. Como se trata de uma instrução do tipo R, tem-se ALUOp=102. Esta instrução não afeta o fluxo de instruções, pelo que PCSrc=0.

Todos os módulos têm funções úteis, exceto a memória da dados (Data memory), o módulo de extensão de sinal (Sign extend), o módulo de deslocamento (Shift left 2) e o somador usado para calcular o destino dos saltos relativos (Add ligado a Shift left 2).

Suponha que a unidade de controlo usada com o CPU da figura 7.1 possui um defeito de fabrico que faz com que um determinado sinal de controlo tenha o valor fixo 0. Indique, justificando, quais as instruções que deixam de funcionar corretamente, considerando que o defeito ocorre em:

a) RegWrite

b) ALUOp[1]

Para que uma instrução não funcione como esperado é necessário que o sinal, em operação correta, assuma um valor diferente daquele que é imposto pelo defeito de fabrico.

- a) Como o defeito de fabrico impõe sempre RegWrite=0, todas as instruções que requerem RegWrite=1 funcionarão incorretamente. As instruções com RegWrite=1 são as que alteram o conteúdo de um registo: as instruções do tipo R e a instrução LDUR.
- b) O sinal ALUOp[1]=1 somente para as instruções lógico-aritméticas. Como o defeito impõe ALUOp[1]=0, a ALU comporta-se nestas instruções como se estivesse a efetuar um cálculo de endereços, i.e., a efetuar uma adição. Logo, o defeito de fabrico impede todas as instruções lógico-aritméticas, exceto a adição, de funcionarem corretamente: SUB, AND e ORR.

Exercício 3

Processadores podem apresentar defeitos de fabrico. Suponha que se pretende detetar se um CPU tem um certo defeito procedendo da seguinte forma:

- 1. preencher PC, registos e memória de instruções com valores selecionados apropriadamente:
- 2. executar *uma única* instrução;
- 3. ler os valores de PC, registos e memória de dados.

Os valores lidos são examinados para determinar se uma dada falta está presente ou não.

- a) Apresente um teste que permita determinar se o bit 12 da saída da memória de instruções está sempre a 0 (stuck-at-0).
- b) Repita a alínea anterior para uma falta *stuck-at-1* (saída sempre a 1). É possível usar um único teste para os dois casos? Se sim, como; se não, porquê?

Para detetar um defeito é preciso provocar uma situação em que o sinal afetado assuma normalmente o valor complementar daquele que é imposto pelo defeito.

a) Este defeito afeta o bit 12 das instruções obtidas de memória. Nas instruções de tipo R, este bit pertence ao campo shamt, que não é usado. Por isso, é necessário usar uma instrução de outro tipo. Uma solução possível:

CBZ X31, 128

Na ausência de defeito, $PC \leftarrow PC + 128 \times 4$. Na presença do defeito, $128_{10} = 000 \dots 10000000_2$ transforma-se em $000 \dots 00000000_2$, já que o bit 12 (o décimo terceiro bit da instrução) é forçado a 0. Portanto, o valor de PC mantém-se.

b) Por um raciocínio análogo ao da alínea anterior, é necessário usar uma constante com o bit 12 a zero. Por exemplo: CBZ X31, 256.

Na ausência de defeito, temos PC \leftarrow PC + 256 \times 4; no caso contrário, toma o valor PC \leftarrow PC + 384 \times 4 (o campo de endereço muda de 000...1000000002 para 000...11000000002)

Não é possível testar simultaneamente a presença de um ou outro defeito, porque isso exigiria usar uma única instrução para impor condições opostas no local do defeito.

Exercício 4

A tabela seguinte indica a latência máxima dos blocos usados na implementação do CPU conforme indicado na figura 7.1.

A latência dos restantes módulos é nula.

Determine o caminho crítico (caminho de propagação de sinais com maior latência) para a instrução AND.

É preciso encontrar o caminho ao longo do qual a propagação de sinais demora mais. O tempo de propagação deve ser contado a partir da saída do registo PC (que muda no início de cada ciclo). Para cada instrução, existem duas tarefas a realizar:

- 1. Calcular o endereço da próxima instrução.
- 2. Realizar a operação da instrução corrente.

Estas duas tarefas são independentes, exceto no caso das instruções que alteram o fluxo de instruções (saltos condicionais e incondicionais). Para a instrução AND as tarefas são independentes.

Para calcular o tempo de propagação associado a cada módulo, é preciso determinar o respetivo sinal de entrada que é atualizado em último lugar. Para um módulo de latência L com N entradas relevantes cujos valores estejam atualizados nos instantes t_1, t_2, \ldots, t_n , e latência máxima L, a saída estará atualizada no instante $t = \max(t_1, t_2, \ldots, t_n) + L$.

Por exemplo, a saída da memória de instruções (I-MEM) está atualizada 400 ps após o início da instrução. A unidade de controlo (Control) atualiza todos os sinais de controlo no instante

$$400 \,\mathrm{ps} + 100 \,\mathrm{ps} = 500 \,\mathrm{ps}$$

Para determinar o caminho crítico, é preciso determinar qual das duas tarefas demora mais.

1^a tarefa: A propagação de dados relativos ao cálculo do próximo endereço passa pelos seguintes módulos:

$$\mathtt{Add} \to \mathtt{Mux}$$

A saída de Add está atualizada após 100 ps.

As entradas relevantes de Mux são a saída do 1^{0} somador e o sinal de controlo. Este último está atualizado no instante $t=500\,\mathrm{ps}$, conforme calculado anteriormente. Portanto, a saída de Mux está atualizada em

$$t = \max(100 \,\mathrm{ps}, 500 \,\mathrm{ps}) + 30 \,\mathrm{ps} = 530 \,\mathrm{ps}$$

Portanto, o endereço da próxima instrução está calculado após 530 ps.

 $2^{\underline{a}}$ tarefa: A realização da operação utiliza os seguintes módulos:

$$\texttt{I-Mem} \to \texttt{Control} \to \texttt{Mux} \to \texttt{Regs} \to \texttt{Mux} \to \texttt{ALU} \to \texttt{Mux}$$

O 1° Mux é o que está ligado à entrada Read Register 2, o 2° Mux é o da entrada da ALU e o 3° é o que está à saída da memória D-Mem. É de notar que a entrada de seleção do 1° Mux só está disponível ao fim de $400\,\mathrm{ps} + 100\,\mathrm{ps} = 500\,\mathrm{ps}$. Por este motivo, nesta instrução (e em outras do tipo R) a unidade de controlo pertence ao caminho crítico.

A saída superior de Regs está pronta no instante

$$t = 400 \,\mathrm{ps} + 200 \,\mathrm{ps} = 600 \,\mathrm{ps}$$

A saída inferior de Regs está pronta no instante

$$t = 400 \,\mathrm{ps} + 100 \,\mathrm{ps} + 30 \,\mathrm{ps} + 200 \,\mathrm{ps} = 730 \,\mathrm{ps}$$

No instante $t = 730 \,\mathrm{ps}$ já todos os sinais de controlo estão atualizados, o que implica que, daqui para a frente, estes já $n\tilde{a}o$ influenciam o cálculo do tempo de propagação.

Portanto, o resultado da operação está pronto (i.e., disponível na entrada Write data do banco de registos) no instante

$$t = 730 \,\mathrm{ps} + 30 \,\mathrm{ps} + 120 \,\mathrm{ps} + 30 \,\mathrm{ps} = 910 \,\mathrm{ps}$$

Falta verificar se as demais entradas relevantes do módulo Regs estão atualizadas neste instante. A entrada RegWrite está atualizada desde o instante 500 ps, porque é um sinal de controlo. A entrada Write register está pronta desde o instante 400 ps. Portanto, a entrada Write data é a última a ficar atualizada.

Concluindo, o caminho crítico é I-Mem \to Control \to Mux \to Regs \to Mux \to ALU \to Mux, com um tempo de propagação de 910 ps.

Assuma que o processador da figura 7.1 recebe a seguinte instrução:

1111 1000 0100 0001 0000 0000 0100 0011

- a) Indique os valores das saídas dos componentes Sign-extend e Shift-left2.
- b) Indique os valores de entrada da unidade de controlo da ALU.
- c) Qual é o valor de PC depois da execução da instrução?

Assuma agora que o conteúdo dos registos é o seguinte:

XO	X1	Х2	ХЗ	Х4	Х5	Х6	Х7	X12
0	1	4	3	-4	5	6	8	1

- d) Indique os valores de saída de cada multiplexador.
- e) Indique os valores de entrada da ALU e dos dois somadores.
- f) Indique os valores de todas as entradas do banco de registos.

A resolução usa a figura 7.1 como referência.

a) O componente Sign-extend tem à entrada a instrução, e produz um valor de 64 (com sinal) a partir de um campo da instrução. Neste caso, Instr[26]=0, pelo que o campo escolhido é Instr[20:12]. O valor do campo é 000010000₂, logo o valor à saída de Sign-Extend é:

O componente Shift-left2 produz à saída o valor da entrada deslocado de 2 bits para a esquerda: 0x000000000040.

- b) Para responder às alíneas seguintes é necessário saber de que instrução se trata (para se conhecerem os valores dos sinais de controlo).
 - Consultado a lista de opcodes, temos opcode=11111000010 $_2$ = 1986 $_{10}$, logo trata-se de uma instrução LDUR.
 - Para a instrução LDUR, a ALU é usada para calcular o endereço dos dados fazendo uma adição: ALUop=00.
- c) Como a instrução LDUR não altera o fluxo de instruções, $PC \leftarrow PC + 4$.
- d) Descodificando a instrução, tem-se:

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 11111000010
 000010000
 00
 00010
 00011

 opcode
 address
 00 Rn
 Rt

Portanto, Rn=2 e Rt=3. A instrução completa é: LDUR X3, [X2,#16].

Como a instrução usa a ALU para calcular a soma X2+16, o multiplexador à entrada da ALU seleciona a constante (após extensão de sinal): a saída desse multiplexador tem o valor 16.

Como na instrução LDUR o registo de destino é definido por Instr[0:4], o multiplexador que alimenta a entrada Read register 2 pode selecionar qualquer valor uma vez que é irrelevante para esta instrução. Logo, a sua saída pode ser 00010₂=2 ou 00011₂=3.

A instrução LDUR transfere um valor de memória para um registo. Portanto, a saída do multiplexador controlado por MemtoReg tem o valor proveniente da posição de memória lida (valor armazenado em memória a partir da posição 20, pois X2=4).

Esta instrução não altera o fluxo de instruções. Portanto, a saída do multiplexador controlado por PCSrc é igual a PC+4.

e) A entrada superior da ALU tem o valor do endereço-base (registo X2):4.

A entrada inferior da ALU tem a constante 16 (em 64 bits).

As entradas do somador da esquerda são: PC e 4.

As entradas do somador de destino de saltos são: PC+4 e o valor da constante multiplicado por 4 (efeito do deslocamento de 2 bits para a esquerda) $16 \times 4 = 64$ (em 64 bits).

- f) Os valores das entradas do banco de registos são:
 - Read register 1: valor de Rn: 2.
 - Read register 2: o valor de Reg2Loc é irrelevante para esta instrução. Logo, o valor de Read register 2 pode ser 00010₂=2 ou 00011₂=3.
 - Write register: valor de Rt: 3
 - Write data: valor lido de memória (do endereço 20).
 - RegWrite: 1 (sinal de controlo para habilitar o armazenamento do novo valor).

7.2 Exercícios propostos

Exercício 6

Para as seguintes instruções em código-máquina ARMv8, determine as instruções assembly correspondentes. Indique o tipo de codificação, bem como os valores de todos os campos.

a) 0xF81F80A0

b) 0xF8404023

Exercício 7

Considere o CPU da figura 7.1. Determine o valor de todos os sinais de controlo durante a execução das instruções indicadas a seguir. Indique também quais os componentes com funções úteis.

a) LDUR X3, [X7, #64]

b) STUR X8, [X2, #128]

c) CBZ X9,#-5

Suponha que a unidade de controlo usada com o CPU da figura 7.1 possui um defeito de fabrico que faz com que um determinado sinal de controlo tenha o valor fixo 0. Indique, justificando, quais as instruções que deixam de funcionar corretamente, considerando que a falha ocorre em:

a) PCSrc

b) MemWrite

Exercício 9

Pretende-se implementar a instrução BR reg (branch register). Esta instrução passa o fluxo de execução para a instrução cujo endereço está no registo reg: $PC \leftarrow reg$.

A codificação de BR tem o formato R com alguns campos fixos:

31		21	20 16	15	10	9 5	4	0
	11010110000		11111	000000		reg		00000
	opcode		5 bits	shamt		Rn		Rd

Indique quais os elementos e sinais de controlo que devem ser acrescentados ao CPU indicado na figura 7.1. Defina os valores dos sinais de controlo para a nova situação.

Exercício 10

Considere a instrução LDUR X8, [X17,#40]. Para responder às questões seguintes refira-se à figura 7.1.

- a) Represente a instrução em linguagem-máquina.
- b) Qual é o número de registo fornecido à entrada Read register 1? O valor deste registo é usado?
- c) Responda à mesma questão para a entrada Read register 2.
- d) Qual é o número de registo fornecido à entrada Write register? O valor deste registo é realmente alterado?
- e) Qual é o valor dos sinais de controlo MemRead e MemWrite?
- f) Responda às alíneas anteriores para a instrução:

Label CBZ X11, Label

Exercício 11

A tabela seguinte indica a latência máxima dos blocos usados na implementação do CPU indicado na figura 7.1.

Determine o caminho crítico (caminho de propagação de sinais com maior latência) para as instruções seguintes, bem como o tempo de propagação correspondente.

a) LDUR

b) CBZ

Pretende-se projetar a unidade de controlo para uma implementação do CPU em que os componentes têm a seguinte latência máxima:

I-Mem	Add	Mux	ALU	Regs	D-Mem	Sign-extend	Shift-left2	ALU Ctrl
$400\mathrm{ps}$	$100\mathrm{ps}$	$30\mathrm{ps}$	$120\mathrm{ps}$	$200\mathrm{ps}$	$350\mathrm{ps}$	$20\mathrm{ps}$	$0\mathrm{ps}$	$50\mathrm{ps}$

- a) Determine o tempo disponível para a unidade de controlo gerar o sinal MemWrite sem aumentar a latência da implementação.
- b) Determine qual é o sinal de controlo que pode demorar mais a ser gerado e qual é o tempo de que a unidade de controlo dispõe para esse efeito sem aumentar a latência da implementação.
- c) Determine qual é o sinal de controlo que pode demorar *menos* a ser gerado (sinal crítico) e qual é o tempo de que a unidade de controlo dispõe para esse efeito sem aumentar a latência da implementação.

8 Memória Cache

8.1 Exercícios resolvidos

Exercício 1

Considere uma memória cache do tipo direct-mapped, com 8 blocos e 1 palavra por bloco. Complete a seguinte tabela, que representa a evolução do estado da memória cache para os dez acessos consecutivos indicados. Inicialmente, a memória cache está vazia. Os endereços são endereços de palavras.

Apresente também o conteúdo da memória cache após o último acesso.

Acesso	Endereço	Hit/Miss	Conteúdo do bloco			
Acesso	Endereço	1116/101188	inicial	final		
1	22					
2	26					
3	22					
4	26					
5	16					
6	3					
7	16					
8	8					
9	27					
10	10					

Como a memória tem 8 blocos, o índice do bloco é definido pelo resto da divisão do endereço por 8.

O efeito da sequência de acessos é descrito a seguir. A operação de obtenção do resto é representada por %:

a % b = resto da divisão de a por b.

- 1. Endereço 22 \rightarrow posição 22 % 8 = 6; falha (miss); cache[6] \leftarrow mem[22].
- 2. Endereço 26 \rightarrow posição 26 % 8 = 2; falha (miss); cache[2] \leftarrow mem[26].
- 3. Endereço $22 \rightarrow \text{posição } 22 \% 8 = 6$; acerto (hit); cache[6] tem conteúdo de mem[22].
- 4. Endereço $26 \rightarrow \text{posição } 26 \% 8 = 2$; acerto (hit); cache[2] tem conteúdo de mem[26].
- 5. Endereço 16 \rightarrow posição 16 % 8 = 0; falha (miss); cache[0] \leftarrow mem[16].

- 6. Endereço $3 \rightarrow \text{posição } 3 \% 8 = 3$; falha (miss); cache[3] $\leftarrow \text{mem}[3]$.
- 7. Endereço 16 \rightarrow posição 16 % 8 = 0; acerto (hit); cache[0] tem conteúdo de mem[16].
- 8. Endereço $8 \rightarrow posição 8 \% 8 = 0$; falha (miss); cache[0] tinha conteúdo de mem[16]; cache[0] $\leftarrow mem[8]$.
- 9. Endereço 27 \rightarrow posição 27 % 8 = 3; falha (miss); cache[3] tinha conteúdo de mem[3]; cache[3] \leftarrow mem[27].
- 10. Endereço 10 \rightarrow posição 10 % 8 = 2; falha (miss); cache[2] tinha conteúdo de mem[26]; cache[2] \leftarrow mem[10].

Portanto, a tabela fica:

Acesso	Endereço	Hit/Miss	Conteúdo	do bloco
ACESSO	Endereço	IIIU/MISS	inicial	final
1	22	M	-	mem[22]
2	26	M	-	mem[26]
3	22	Н	mem[22]	mem[22]
4	26	Н	mem[26]	mem[26]
5	16	M	-	mem[16]
6	3	M	-	mem[3]
7	16	Н	mem[16]	mem[16]
8	8	M	mem[16]	mem[8]
9	27	M	mem[3]	mem[27]
10	10	М	mem[26]	mem[10]

O conteúdo final da memória cache é:

Bloco	Conteúdo			
0	mem[8]			
1	-			
2	mem[10]			
3	mem[27]			
4	-			
5	-			
6	mem[22]			
7	-			

Exercício 2

Um processador funciona a 2 GHz e possui uma memória cache unificada. A taxa de falhas no acesso à cache é 9% e o tempo de acesso à memória principal é $50\,\mathrm{ns}$.

- a) Calcule a penalidade de falha em ciclos.
- b) Medições efetuadas para um conjunto de benchmarks revelaram que o número de ciclos de protelamento em acessos a memória (por instrução) é $\mathrm{CPI}_{\mathrm{prot}}=12$.

Determine a percentagem de instruções que acede a dados.

a) Para obter a penalidade de falha em ciclos, determina-se o número de ciclos que o processador executa durante o tempo de acesso a memória principal.

$$T = \frac{1}{F} = 0.5 \,\text{ns}$$
 logo $p_f = \frac{50}{0.5} = 100$

b) Seja n_a o número de acessos a memória por instrução e t_f a taxa de falhas.

O número médio de ciclos gastos em protelamento devidos a falhas no acesso a cache é:

$$CPI_{prot} = t_f \times p_f \times n_a$$

Portanto:

$$n_a = \frac{\text{CPI}_{\text{prot}}}{t_f \times p_f},$$

o que implica

$$n_a = \frac{12}{0,09 \times 100} = \frac{4}{3}$$

Cada instrução requer obrigatoriamente um acesso para a sua obtenção. Acessos adicionais são necessariamente acessos a dados. Então, o número médio de acessos a dados é: $n_a-1=\frac{1}{3}=33,3\%$.

8.2 Exercícios propostos

Alguns exercícios foram extraídos ou adaptados do livro "Computer Organization and Design – The Hardware/Software Interface", Hennessy & Patterson, 4ª edição.

Exercício 3

Um CPU tem endereços de 18 bits e uma memória *cache* de mapeamento direto para palavras (32 bits). A memória *cache* tem 16 posições. A política de escrita é *write-through*. O conteúdo inicial da memória *cache* está indicado na tabela (em hexadecimal).

1
1
1
0
1
0
1
1
1
1
0
1
1
1
0
1

- a) Determine o número de bits da etiqueta e do índice. Qual é o espaço de endereçamento? Qual a quantidade máxima de memória usável num sistema baseado neste CPU?
- b) Indique as alterações da memória *cache* para a seguinte sequência de acessos (L=leitura, E=escrita):

tipo	endereço	valor
L	2df10	-
L	23454	-
L	3f7b0	-
E	048c4	1212abab
E	3f7d0	00001111
Е	1dde8	aaaabbbb

Assuma que o CPU do problema anterior é usado com uma memória *cache* também semelhante à anterior, mas que usa a política de escrita *write-back*. O conteúdo inicial da memória *cache* está indicado na tabela (em hexadecimal).

	conteúdo	etiqueta	V	d
0	12345678	abc	1	1
1	6548feab	123	0	0
2	3c1f56fd	678	1	0
3	afd12498	567	0	0
4	6198fa34	b7c	1	0
5	1929aaaa	8d1	0	1
6	bbabeedd	cd3	1	1
7	1123aa56	456	1	0
8	7611432a	001	1	1
9	ffffeffe	877	1	1
10	ddedd556	777	0	0
11	4444ccc	198	1	1
12	7627abed	fdf	0	1
13	8768888a	479	1	0
14	71672912	655	0	0
15	22256733	111	1	0

- a) Explique a finalidade do campo d.
- b) Indique as alterações da memória *cache* para a seguinte sequência de acessos (L=leitura, E=escrita):

	tipo	endereço	valor
•	L	2df10	-
	E	2df10	33334444
	E	10c64	9999aaaa
	L	23454	-
	L	3f7b0	-
	E	21de4	bbbb7777
	E	2afdc	1212abab
	E	3f7b0	00001111

Uma memória cache do tipo write-through com 4 blocos de 8 bytes é usada como D-cache num processador ARMv8.

O conteúdo da memória cache é o seguinte (em hexadecimal):

bloco			С	ont		etiqueta	V			
	7	6	5	4	3	2	1	0		
0	2a	5d	04	aa	78	00	9с	23	2900002	1
1	1b	b2	34	bb	7a	10	9f	a3	0000893	1
2	99	52	36	СС	88	b0	3с	2b	7bcd001	1
3	42	15	90	cd	71	ab	3f	6d	65abfff	0

Assuma que X0 = 0x52000044 e X1=0xf79a0034.

- a) Qual é o comprimento da etiqueta?
- b) Qual é o valor lido de memória por uma operação de 32 bits que use o endereço guardado em X0?
- c) Que alterações da memória *cache* são causadas pela escrita de um valor de 4 bytes (*doubleword*) da posição especificada por [XO, -4]?
- d) Qual é o valor obtido por uma instrução de leitura de 1 byte do endereço da posição de memória especificada pelo conteúdo de X1?

Exercício 6

Para cada um dos sistemas indicados a seguir considere que o tempo de acesso a memória principal é de $70\,\mathrm{ns}$ e que 36% das instruções acedem a dados em memória. O acesso a memória principal tem início após falta de acesso à memória cache.

Processador	Tamanho	Taxa de faltas	Tempo de acerto
P1	1 KiB	11,4%	$0.62\mathrm{ns}$
P2	$2\mathrm{KiB}$	$8{,}0\%$	$0,\!66\mathrm{ns}$

- a) Assumindo que é o tempo de acerto que determina o período de relógio, determine as frequências de operação dos dois sistemas.
- b) Determine o tempo médio de acesso à memória para os dois casos.

c) Assumindo um CPI básico de 1, qual é o CPI de cada um dos processadores? Qual é o processador mais rápido?

Exercício 7

Um CPU (com $F=1\,\mathrm{GHz}$) está equipado com memórias cache para instruções e para dados, cujas taxas de faltas são, respetivamente, $5\,\%$ e $10\,\%$. O tempo de acesso a memória principal é $80\,\mathrm{ns}$ (a acrescentar ao tempo de acesso a memória cache).

Em média, 40 % das instruções de um programa acedem a dados (i.e., são load ou store).

- a) Determine a taxa de faltas global da memória cache em número de faltas por 1000 instruções.
- b) Suponha que se pretendia equipar o CPU com uma memória *cache* unificada. Determine a máxima taxa de faltas desta alternativa para que ela apresente o mesmo desempenho que a versão *split cache*.
- c) Assuma que, na ausência de faltas de *cache*, o CPU tem CPI_{ideal}=1,2. Determine o CPI efetivo para os seguintes casos:
 - i) sistema sem memória cache;
 - ii) sistema com memória cache.

Soluções dos exercícios propostos

1 Aritmética binária

Exercício 9

- a) 1000000002; 100_H
- b) 1111111111111_2 ; $7FF_H$
- c) 11000,01₂; 18,4_H
- d) A parte fracionária não tem representação finita. Usando 4 bits para a parte fracionária, a solução é: $100,0011_2;4,3_H.$
- e) 16_{10} ; 10_{H}
- f) $4,125_{10}; 4,2_{H}$
- g) $11110_2;30_{10}$
- h) 43981₁₀; 10101011111001101₂
- i) $171,75_{10}; 10101011,11_2$
- $j) 456_{H}$

- a) 1001110₂
- b) 1010,001₂
- c) 1001_2
- d) 10101₂
- e) 1111010₂
- f) 11000100,01₂
- g) 101100_2

- a) $3 = 0011_2$; $2 = 0010_2$; $-3 = 1011_2$
- b) $3+2=0101_2$; $2+(-3)=1001_2$
- c) Impossível: 14 não é representável.

Exercício 12

Sinal e grandeza: [-7, 7]; complemento para 2: [-8, 7]

Exercício 13

- a) SG: 00010010₂; C2: 00010010₂ b) SG: 00110001₂; C2: 00110001₂
- c) SG: 10110001₂; C2: 11001111₂ d) SG: 10000011₂; C2: 11111101₂
- e) SG: 11100100_2 ; C2: 100111100_2 f) SG: 01110011_2 ; C2: 01110011_2
- g) SG: 11111111₂; C2: 10000001₂ h) SG: impossível; C2: 10000000₂

Exercício 14

- a) 1010100₂
- b) Não ocorre overflow; a diferença de números com o mesmo sinal é sempre representável.

Exercício 15

- a) 10000001₂; resultado correto (não ocorre overflow).
- b) 01011111₂; resultado errado (ocorre overflow).
- c) 000000002; resultado correto (não ocorre overflow).

Exercício 16

- a) X SS: 227; C2: -29
 - Y SS: 72; C2: 72
- b) SS: 100101011; resultado errado (ocorre overflow).
 - C2: 00101011; resultado correto (não ocorre overflow).

- a) $P_{\rm H} = 7A$; $Q_{10} = 34$
- b) i) 0011100₂; resultado errado, pois a soma necessita de 8 bits (há overflow).
 - ii) 00111002; resultado correto, a soma é representável (não há overflow).

- a) $A + B = 1000100_2 = 68_{10}$.
- b) $A + B = 0100000_2 = 32_{10}$.
- c) $A + B = 0100100_2 = 36_{10}$.

Exercício 19

- a) 01001010₂
- b) -92
- c) $M N = 10100110_2$; resultado errado (ocorre overflow).

 $N-M=01011010_2$; resultado errado (ocorre overflow).

Exercício 20

- a) S = -56; T = 17
- b) $S = 10111000_2$; $T = 00010001_2$
- c) $S + T = 10100111_2$; resultado correto (não há overflow ao somar as grandezas).

Exercício 21

- a) $Y = 49_{\text{H}}; Z = 100111110_2$
- b) 01011010₂; ocorre *overflow*, i.e., o resultado está errado (a soma de números negativos não pode ser positiva).
- c) 01000011₂

Exercício 22

a) $x \in [0; 31]$

b) 192

c) -64

d) 9 bits

e) $192:011000000_2$ $-64:111000000_2$

2 Vírgula flutuante

Exercício 7

- b) 00000100₂

c) -22.0

- a) $41FA0000_{H}$
- b) BF200000_H
- c) $000000000_{\rm H}$
- d) 44805000_H

Exercício 10

a) Número negativo. O expoente é 1-3=-2, resultando em $-2^{-2}\times 1{,}1101_2$, ou seja $-2^0\times 0{,}011101_2$.

Em decimal, corresponde a $-(2^{-2} + 2^{-3} + 2^{-4} + 2^{-6}) = -2^{-6} \times (2^4 + 2^3 + 2^2 + 1) = -\frac{16 + 8 + 4 + 1}{64} = -\frac{29}{64}$.

- b) Número positivo. O expoente é 5-3=2, resultando em $2^2\times 1{,}1001_2$, ou seja $2^0\times 110{,}01_2$. Em decimal, corresponde a $6+2^{-2}=6{,}25$.
- c) Número positivo. $\frac{3}{8} = \frac{1+2}{8} = 2^{-3} \times 11_2 = 2^{-2} \times 1,1_2.$

O expoente da representação é $-2+3=1=001_2$ e o significando é $0,1000_2$.

A representação completa é $(0\ 001\ 1000)_2$.

Exercício 11

- a) $A: 42040000_{H}; B: C0380000_{H}$
- b) i) A + B: 41F10000_H
 - ii) B A: C20F8000_H
 - iii) $3 \times B$: C10A0000_H
- c) $A + B = 30{,}125$ $B A = -35{,}875$ $3 \times B = -8{,}625$.

Exercício 12

- a) 40000000_H
- b) 42150000_H
- c) C2250000_H
- d) C29D0000_H

Exercício 13

- b) 41460000_H (falta indicar os passos)

Exercício 14

- b) 13,25₁₀ (falta indicar os passos)

Exercício 15

a) $C1400000_{H}$

b) C2080000_H (falta mostrar os passos).

Opção A.

Exercício 17

- a) $3,3895314 \times 10^{38}$
- b) $1,17549435 \times 10^{-38}$
- c) representação de 2.6×10^6 : 0x4a1e representação de 3.1×10^4 : 0x46f2 resultado da multiplicação: 0x5195 \rightarrow 79993765888.

O resultado exato seria 80600000000. Logo, o erro absoluto é 606234112 e o erro relativo é $0.752\,\%$. A representação mais curta provoca um erro, mas o respetivo valor relativo é pequeno. A implementação física de Bfloat16 exige menos recursos que a de precisão simples e pode ser feita mais rapidamente.

3 Circuitos combinatórios

Exercício 10

a)
$$F(A, B, C, D, E) = A \cdot B + \overline{C} \cdot E$$

b)
$$F(A, B, C) = \overline{A} \cdot \overline{C}$$

c)
$$G(A, B, C) = A \cdot \overline{B} + A \cdot \overline{C}$$

d)
$$F(A, B, C, D) = \overline{B} \cdot C + A \cdot C \cdot \overline{D}$$

e)
$$F(W, X, Y, Z) = W + X \cdot \overline{Z} + X \cdot \overline{Y}$$

f)
$$F(A, B, C, D) = \overline{A} \cdot C + C \cdot D$$

a)	A	B	C	$\mid F \mid$
	0	0	0	1
	0	0	1	0
	0	1	0	1
	0	1	1	0
	1	0	0	1
	1	0	1	1
	1	1	0	0
	1	1	1	0

b)	X	Y	Z	G
	0	0	0	1
	0	0	1	0
	0	1	0	1
	0	1	1	0
	1	0	0	1
	1	0	1	1
	1	1	0	0
	1	1	1	1

2)	W	X	Y	Z	F
	0	0	0	0	0
	0	0	0	1	0
	0	0	1	0	0
	0	0	1	1	1
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	0
	0	1	1	1	1
	1	0	0	0	0
	1	0	0	1	0
	1	0	1	0	0 0 1 0 0 0
	1	0	1	1	1
	1	1	0	0	0
	1	1	0	1	0
	1	1	1	0	
	1	1	1	1	0

b)
$$F = (X + Z) \cdot (\overline{X} + \overline{Y} + \overline{Z})$$
. c) —

Exercício 13

a)
$$Y = A + B$$
.

Exercício 14

a)
$$F = \overline{A} \cdot B + \overline{C}$$

c) Nota: usar a expressão simplificada.

$$F = (X + Y + Z) \cdot \overline{X}$$

b)	A	B	C	D	G
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	1
	0	0	1	1	0
	0	1	0	0	1
	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	$\begin{array}{c} 1 \\ 0 \end{array}$
	1	0	0	0	0
	1	0	0	1	0
	1	0	1	1 0	1
	1	0	1	1	0
	1	1	0	0	1
	1	1	0	1	1
	1	1	1	0	1
	1	1	1	1	1

$$G = A \cdot B + \overline{A} \cdot \overline{B} \cdot C \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D + \overline{A} \cdot B \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot C \cdot \overline{D}$$

Nota: construir tabela de verdade, exprimir G na forma de produto de somas e simplificar. $G = (A + B) \cdot (A + C) \cdot (\overline{A} + \overline{B} + \overline{C})$

Exercício 17

b)
$$F(A, B, S) = A \cdot \overline{S} + B \cdot S$$
.

c) Nota: desenhar circuito lógico que realiza F(A, B, S).

d)
$$G(X, Y, S) = X \cdot Y + X \cdot S + Y \cdot S$$
.

e) Nota: deduzir expressão da função realizada pelo circuito e simplificar. Alternativamente, pode ser construída a tabela de verdade a partir da expressão deduzida do circuito e da expressão obtida na alínea anterior, com fins comparativos.

a)	A_3	A_2	A_1	A_0	S
	0	0	0	0	0
	0	0	0	1	0
	0	0	1	0	0
	0	0	1	1	0
	0	1	0	0	0
		1	0	1	0
	0	1	1	0	0
	0	1	1	1	0
	1	0	0	0	1
	1	0	0	1	0
	1	0	1	0	0
	1	0	1	1	0
	1	1	0	0	1
	1	1	0	1	0
	1	1	1	0	0
	1	1	1	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b)
$$S = A_3 \cdot \overline{A_1} \cdot \overline{A_0}$$

a)	A	B	Ci	Co	S
	0	0	0	0	0
	0	0	1	0	1
	0	1	0	0	1
	0	1	1	1	0
	1	0	0	0	1
	1	0	1	1	0
	1	1	0	1	0
	1	1	1	1	1

b)
$$S(A, B, Ci) = \overline{A} \cdot \overline{B} \cdot Ci + \overline{A} \cdot B \cdot \overline{Ci} + A \cdot \overline{B} \cdot \overline{Ci} + A \cdot B \cdot Ci.$$

 $Co(A, B, Ci) = \overline{A} \cdot B \cdot Ci + A \cdot \overline{B} \cdot Ci + A \cdot B \cdot \overline{Ci} + A \cdot B \cdot Ci.$

- c) Nota: para ambas as funções, S e Co, deduzir expressão da função realizada pelo circuito e simplificar. Alternativamente, pode ser construída a tabela de verdade a partir das expressões deduzidas do circuito e das expressões obtidas na alínea anterior, verificando-se que coincidem. Esta segunda opção poderá ser a mais simples.
- d) $Co = 1, w_3 = 1, w_2 = 1, w_1 = 0, Ci = 0, S_3 = 1, S_2 = 0, S_1 = 0$ e $S_0 = 0$.

a)	A_1	A_0	B_1	B_0	MAIOR
	0	0	0	0	0
	0	0	0	1	0
	0	0	1	0	0
	0	0	1	1	0
	0	1	0	0	1
	0	1	0	1	0
	0	1	1	0	0
	0	1	1	1	0
	1	0	0	0	1
	1	0	0	1	1
	1	0	1	0	0
	1	0	1	1	0
	1	1	0	0	1
	1	1	0	1	1
	1	1	1	0	1
	1	1	1	1	0

b)
$$MAIOR = A_1 \cdot \overline{B_1} + A_0 \cdot \overline{B_1} \cdot \overline{B_0} + A_1 \cdot A_0 \cdot \overline{B_0}.$$

Exercício 21

O circuito determina o máximo de A e B.

Exercício 22

a)

b)

c) Por exemplo, sendo F uma função definida por:

X	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

então o circuito resultante será:

Exercício 23

- a) AB=01 \Rightarrow $L_{vm}=0, L_{lj}=1$ e $L_{vr}=0.$ AB=11 \Rightarrow todas as lâmpadas se mantêm desligadas, pois a saída que fica ativa é Y_3 e não é usada.
- b) É impossível ter simultaneamente duas saídas de um descodificador binário ativas.

Exercício 24

a) O circuito seguinte implementa um descodificador binário 2-para-4.

b) O circuito seguinte é um descodificador binário 2-para-4 com sinal de habilitação (enable).

c) O circuito seguinte mostra um descodificador binário 3-para-8 (sem sinal de habilitação). Ter em atenção a numeração das saídas, que depende da forma como a entrada I_2 é ligada.

d) O circuito seguinte mostra um descodificador binário 3-para-8 com sinal de habilitação.

- a) $Q_0 = \overline{I_2} \cdot \overline{I_1} \cdot \overline{I_0} \in Q_3 = \overline{I_2} \cdot I_1 \cdot I_0.$
- b) Ligar X à entrada I_0 , Y à entrada I_1 e Z à entrada I_2 .

Para X=1, Y=1, Z=0, apenas a saída $Q_3=1$.

Com X=0,Z=1 podemos ter uma de duas saídas a 1 (dependendo do valor de Y): Q_4 e Q_6 . F deve tomar o valor 1 apenas nestes casos. Logo, $F(X,Y,Z)=Q_3+Q_4+Q_6$.

O circuito resultante é:

4 Circuitos sequenciais

Exercício 6

Exercício 7

a)
$$D(J, K, Q) = J \cdot \overline{Q} + \overline{K} \cdot Q$$

b)

a)
$$D_0 = EN \oplus Q_0$$
 e $D_1 = EN \cdot Q_0 \oplus Q_1$

$$D_1 = EN \cdot Q_0 \oplus Q_1$$

b) A figura seguinte mostra as formas de onda pedidas.

Estado 00 (estado inicial).

Exercício 9

- a) 0101001101000010.
- b) A saída T assinala as mudanças de valor da entrada X.
- A saída do contador fornece o número de transições de valor lógico da entrada X, até ao máximo de 15.

Exercício 10

- a) 4 bytes.
- b) Descodificador binário.
- c) O conteúdo do registo 1 passa a ser 1111.
- d) A entrada de enable permite habilitar a escrita de um valor num registo. A entrada reset permite limpar, isto é, escrever o valor 0 num dos registos.
- O descodificador permite identificar o registo a aceder para uma operação de escrita ou de leitura. Quanto ao multiplexador, permite selecionar a saída de um registo, ou seja, fazer a leitura desse registo.
- f) Um segundo multiplexador de 8 (entradas de 4 bits) para 1, assim como uma segunda entrada de 3 bits com o endereço do registo a ler.

Exercício 11

a) [0x4000; 0x5FFF]

Descodificação parcial, pois há um bit (A_{12}) que não é usado pela RAM, originando dois endereços para cada entrada da RAM.

b) 0xCFFF

c) O circuito resulta da expressão $CS_{\text{ROM}} = A_{15} \cdot A_{14} \overline{A_{13}} \cdot \overline{A_{12}} \cdot A_{11}$ (AND com duas entradas negadas).

Exercício 12

a) ROM1: 16 KiB

RAM1: 16 KiB

RAM2: 4 KiB

b) $CS_{\text{ROM1}} = \overline{A_{15}} \cdot \overline{A_{14}}$

 $CS_{\text{RAM1}} = \overline{A_{15}} \cdot A_{14}$

 $CS_{\text{RAM2}} = A_{15} \cdot A_{14} \cdot \overline{A_{13}} \cdot A_{12}$

c) —

Exercício 13

Como cada circuito só armazena 4 bits por posição, é necessário usar 2 circuitos para a mesma posição (um para guardar os bits D[3,0] e outro para os bits D[7,4]. Um grupo de dois circuitos RAM armazena os valores dos endereços pares entre 0 e 2047 (0, 2, 4, ..., 2046), enquanto o segundo grupo guarda os valores dos endereços ímpares (1, 3, 5, ..., 2047).

O bit A0 deve ser usado para selecionar o grupo de RAMs pretendido.

a) A figura apresenta uma solução. Os circuitos RAM1 e RAM2 realizam o grupo que armazena o conteúdo correspondente aos endereços pares.

b) O endereço 250 é par. Logo, os dados vão ficar guardados na posição 250/2=125 dos circuitos RAM1 e RAM2. O valor A (bits [D0,D3]) é armazenado em RAM1 e o valor 9 em RAM2.

5 Linguagem assembly

É necessário definir uma atribuição arbitrária de variáveis a registos.

a) Atribuição: f \rightarrow x0, g \rightarrow x1, j \rightarrow x2.

add x0, x2, 2add x0, x1, x0

b) Atribuição: a \rightarrow x0, b \rightarrow x1, d \rightarrow x2, f \rightarrow x3, k \rightarrow x4.

add x4, x0, x1 sub x4, x4, x3 add x4, x4, x2 add x4, x4, -30

c) Atribuição: f \rightarrow x0, g \rightarrow x1, h \rightarrow x2, A \rightarrow x7.

1dur x0, [x7, 32] add x0, x0, x1 add x0, x0, x2

d) Atribuição: f \rightarrow x0, g \rightarrow x2, A \rightarrow x6, B \rightarrow x7.

ldurx5, [x7, 80]ls1x5, x5, 3addx5, x5, x6ldurx0, [x5]subx0, x2, x0

e) Atribuição: f \rightarrow x0, g \rightarrow x1, h \rightarrow x2, k \rightarrow x3, A \rightarrow x6.

add x10, x2, 9
lsl x10, x10, 3
add x10, x6, x10
ldur x0, [x10]
add x0, x0, x3
sub x0, x0, x1

f) Atribuição: f \rightarrow x0, g \rightarrow x1, A \rightarrow x6, B \rightarrow x7.

ldur x10, [x7, 16] add x10, x10, 4 lsl x10, x10, 3 add x10, x6, x10 ldur x10, [x10] sub x0, x1, x10

- a) Atribuição: f \to x0, g \to x1, h \to x2, i \to x3, j \to x4 A expressão correspondente é: f = f + g + h + i + j
- b) Atribuição: f \rightarrow x0, A \rightarrow x6 A expressão correspondente é: f = A[1]
- c) Atribuição: f \rightarrow x0, g \rightarrow x1, A \rightarrow x6 A expressão correspondente é: f = A[g-3]

Exercício 8

- a) 0x55775577DDFFDDFF
- b) 0x5555555555555
- c) 0x0000000000000AA

Exercício 9

pos: ...

Ou, tirando proveito da instrução CSNEG:

pos: ...

Ou, tirando proveito da instrução CSINC:

Exercício 10

A cada iteração do ciclo L1 será guardado em memória (no endereço dado pelo conteúdo do registo X5) o valor do registo X4. Como em cada ciclo o valor do registo X4 sofre um deslocamento de 4 bits para a esquerda, o seu valor será zero após 16 iterações e consequentemente a instrução de salto não é realizada, terminando o programa.

Tendo em conta os valores iniciais, a tabela com o conteúdo da memória é:

Endereço	Valor
0x7D0	$0 \times 0000000012345678$
0x7D8	$0 \times 0000000123456780$
0x7E0	$0 \times 0000001234567800$
0x7E8	0x0000012345678000
0x7F0	0x0000123456780000
0x7F8	$0 \times 0001234567800000$
0x800	$0 \times 0012345678000000$
0x808	0x0123456780000000
0x810	0x1234567800000000
0x818	0x2345678000000000
0x820	0x34567800000000000
0x828	0x45678000000000000
0x830	0x56780000000000000
0x838	0x67800000000000000
0x840	0x78000000000000000
0x848	0x80000000000000000

Uma possível solução:

```
mov x0, 0
ciclo: ldur x1, [x4]
cmp x1, 0
b.eq fim
add x4, x4, 8
add x0, x0, 1
b ciclo
fim: ...
```

Exercício 12

- a) Fragmento 1: 20; fragmento 2: 200.
- b) Fragmento 1: $5 \times N + 2$; fragmento 2: $(1 + 3 \times 10 + 2) \times N = 33 \times N$.

Exercício 13

Uma possível solução:

```
X6, 100
                                   // dimensão das seq.
               mov
1
                     X0, 1
               mov
2
               ldur
                     X1, [X4]
                                   // extrai elemento de A
  proximo:
3
                     X2, [X5]
                                   // extrai elemento de B
               ldur
4
               cmp
                     X1,X2
                                   // compara os elementos extraidos
5
               b.eq
                     continua
                                   // continua se forem iguais
6
                     X0,0
                                   // termina se forem diferentes
               mov
                     fim
               b
                     X6,X6, 1
  continua:
               subs
9
               b.eq
                     fim
10
               add
                     X4,X4, 8
                                   // se não chegou ao fim
11
                     X5,X5, 8
               add
                                   // passar ao próximo elemento
12
                     proximo
               b
  fim:
14
```

Uma solução entre outras possíveis:

```
mov
                  X8, 50
                                   // contador: X8
                  X7, 0
                                   // resultado a zero
          mov
                  X9, [X0]
  ciclo: ldur
          ands
                  X10, X9, 1
          b.eq
                  prox
                                   // par
5
          add
                  X7, X7, 1
                                   // impar
                  XO, XO, 8
                                   // próximo endereço
          add
  prox:
          subs
                  X8, X8, 1
                                   // decrementar contador
                  ciclo
          b.ne
9
10
```

- a) Parâmetros da sub-rotina:
 - X0: endereço-base da sequência
 - X1: número de elementos da sequência

```
soma:
           mov
                  X2, 0
                               // coloca contador a 0
  L1:
                  X1, 0
                               // verifica se chegou ao fim
           cmp
                  L2
                               // terminar
           b.eq
3
                  X3, [X0]
                               // obter um elemento
           ldur
4
           add
                  X2, X2, X3
                              // acumular
                               // endereço do próximo elemento
                  XO, XO, 8
           add
                              // ajustar n^{Q} de elementos
           add
                  X1, X1, -1
                               // repetir (próximo elemento)
                  L1
                  X0, X2
                               // devolver resultado em XO
  L2:
           mov
           ret
10
```

- b) Parâmetros da sub-rotina:
 - X0: endereço-base da sequência

• X1: número de elementos da sequência

```
// coloca contador a 0
  impar:
                   X7, 0
           mov
  L21:
                   X1, 0
                                     // verifica se chegou ao fim
           cmp
                   L23
           b.eq
                                     // terminar
           ldur
                   X9, [X0]
                                     // obter um elemento
4
                                    // testar se é impar
           ands
                   X10, X9, 1
5
                                     // se par, não contabiliza
                   L22
           beq
                                     // contabilizar
           add
                   X7, X7, 1
  L22:
           add
                   X0, X0, 8
                                    // endereço do próximo elemento
                                    // ajustar nº de elementos
           sub
                   X1, X1, 1
9
           b
                   L21
                                    // repetir (próximo elemento)
10
                                    // devolver resultado em XO
                   XO, X7
11
  L23:
           mov
12
           ret
```

- c) Parâmetros da sub-rotina:
 - X0: endereço-base da sequência
 - X1: número de elementos da sequência
 - X2: valor de limiar

```
1 limiar: mov
                                    // coloca contador a 0
                   X7, 0
  L31:
                   X1, 0
                                    // verifica se chegou ao fim
           cmp
                                    // terminar
           b.eq
                   L33
                                    // obter um elemento
           ldur
                   X9, [X0]
4
                   X9, X2
                                    // testar se é maior que o limiar
           cmp
                   L32
                                    // se menor, não contabiliza
           b.lt
                                    // contabilizar
           add
                   X7, X7, 1
                                    // endereço do próximo elemento
  L32:
           add
                   X0, X0, 8
                   X1, X1, 1
                                    // ajustar n^{o} de elementos
           sub
9
                                    // repetir (próximo elemento)
           b
                   L31
10
                   X0, X7
                                    // devolver resultado em XO
  L33:
           mov
           ret
12
```

- d) Parâmetros da sub-rotina:
 - X0: endereço-base da sequência 1
 - X1: endereço-base da sequência 2
 - X2: número de elementos de cada sequência

```
// coloca resultado a 1
  iguais: mov
                 X7, 1
  L41:
           cmp
                 X2, 0
                                   // verifica se chegou ao fim
                 L43
                                   // terminar
           b.eq
                                   // obter um elemento de cada sequência
           ldur
                 X9, [X0]
4
           ldur
                 X10, [X1]
                 X9, X10
           cmp
                 L42
                                   // Se nao forem iguais termina
           b.ne
                 X0, X0, 8
                                   // endereço do próximo elemento
           add
           add
                 X1, X1, 8
                 X2, X2, 1
           sub
                                   // ajustar nº de elementos
10
                 L41
                                   // repetir (próximo elemento)
11
                                   // resultado a 0
                 X7, 0
  L42:
           mov
                 X0, X7
  L43:
                                   // devolver resultado em XO (1 se iguais)
           mov
           ret
14
```

6 Organização de um CPU

Exercício 7

Ter em atenção que PcSrc = AND(Zero, Branch).

a) RegWrite=1, MemRead=1, ALUSrc=1, MemWrite=0, MemtoReg=1, PCSrc=0, ALUOp=00, Reg2Loc=X.

Todos os componentes realizam trabalho útil, exceto Shift left 2 e o somador para endereço de saltos (Add). O valor Read data 2 também não é utilizado.

b) RegWrite=0, MemRead=0, ALUSrc=1, MemWrite=1, MemtoReg=X, PCSrc=0, ALUOp=00, Reg2Loc=1.

Todos os componentes realizam trabalho útil, exceto Shift left 2, somador para endereços de saltos (Add) e multiplexador MemtoReg. utilizado.

c) RegWrite=0, MemRead=0, ALUSrc=0, MemWrite=0, MemtoReg=X, ALUOp=01, Reg2Loc=1.

$$PCSrc = \begin{cases} 0 & \text{se X9} \neq 0 \\ 1 & \text{se X9} = 0 \end{cases}$$

Todos os componentes realizam trabalho útil, exceto memória de dados (D-Mem) e multiplexador MemtoReg. O valor Read data 1 também não é utilizado.

Exercício 8

a) Instrução CBZ.

b) Instrução STUR.

Acrescentar um multiplexador que receberá na entrada 0 a saída proveniente do multiplexador controlado por PCSrc e na entrada 1 a saída Read data 1 do banco de registos. Este novo multiplexador deverá ser controlado por um sinal adicional de controlo, BranchReg, tal que BranchReg=1 se opcode=11010110000 e BranchReg=0 no caso contrário.

Exercício 10

- a) 0xF8428228.
- b) 17. Sim.
- c) Indefinido (Reg2Loc=X). Não.
- d) 8. Sim.
- e) MemRead=1, MemWrite=0.
- f) OxB400000B; 0, não; 11, sim; 11, não; MemRead=0, MemWrite=0.

Exercício 11

- a) I-Mem \to Regs \to ALU \to D-Mem \to Mux . Tempo: 1100 ps.
- b) I-Mem \rightarrow Control \rightarrow Mux \rightarrow Regs \rightarrow Mux \rightarrow ALU \rightarrow Mux (PCSrc). Tempo: 910 ps.

Exercício 12

- a) 320 ps.
- b) RegWrite. 700 ps para a instrução mais lenta (LDUR).
- c) Reg2Loc. 120 ps. Evita que STUR demore mais que 1100 ps, correspondente à instrução mais lenta (LDUR).

7 Memória Cache

- a) Etiqueta: 12 bit; índice: 4 bit; espaço de endereçamento: 0x00000 0x3ffff; capacidade máxima: 256 KiB.
- b) 1. Lê valor 0x6198fa34 de memória cache.
 - 2. Lê valor de memória principal e coloca-o na posição 5, com v=1 e etiqueta 0x8d1.
 - 3. Lê valor de memória principal e coloca-o na posição 12, com v=1 e etiqueta 0xfde.
 - 4. Escreve valor 0x1212abab na posição 1, v=1, e atualiza a memória principal no endereço 0x048c4.
 - Não altera memória cache (não existe informação em cache para este endereço, porque a etiqueta é diferente); coloca valor 0x00001111 em memória principal no endereço 0x3f7d0.
 - 6. Não altera memória *cache* (não existe informação válida em *cache* para este endereço); coloca valor Oxaaaabbbb em memória principal no endereço Ox1dde8.

- a) O campo d indica se o valor de conteúdo em memória *cache* é diferente do valor em memória principal.
- b) A determinação do índice e da etiqueta faz-se como no problema anterior.
 - 1. Índice 4, etiqueta 0xb7c e v=1: read hit. Ler valor 0x6198fa34 de memória cache (bloco 4).
 - 2. Endereço igual ao da alínea anterior: write hit. Como d=0, não é necessário fazer write back. O valor 0x33334444 é escrito na memória cache (bloco 4), v=1, d=1, etiqueta 0xb7c.
 - 3. Índice 9, etiqueta 0x431, v=1: write miss. Como v=1 e d=1, é necessário fazer write back: escrever o valor 0xffffeffe (posição 9) em memória (endereço 0x21de4). O valor 0x9999aaaa é colocado na posição 9 da memória cache, com v=1, d=1, etiqueta 0x431.
 - 4. Índice 5, etiqueta 0x8d1 e v=0: read miss. Como v=0, não faz write back (valor de d não interessa neste caso). Ler valor de memória principal e colocá-lo na posição 5, com v=1, d=0, etiqueta 0x8d1.
 - 5. Índice 12, etiqueta 0xfde, v=0: read miss. Como v=0, não faz write back. Ler valor de memória principal e colocá-lo na posição 12, com v=1, d=0, etiqueta 0xfde.
 - 6. Índice 9, etiqueta 0x877. O bloco 9 foi alterado pelo terceiro acesso, pelo que a etiqueta é diferente (etiqueta atual do bloco 0x431). Como v=1, ocorre um write miss. Como d=1, é necessário efetuar write back: escrever o valor valor 0x9999aaaa na posição de endereço 0x00010c64. Escrever valor 0xbbbb7777 no bloco 9 da memória cache, v=1, d=1, etiqueta 0x877.
 - 7. Índice 7, etiqueta 0xabf, v=1: como as etiquetas não coincidem, ocorre write miss. Como d=0, não existe necessidade de fazer write-back. Colocar o valor 0x1212abab em memória cache (bloco 7) com v=1, d=1.
 - 8. Índice 12, etiqueta 0xfde, v=1 (mesmo endereço que no quinto acesso, que alterou este bloco): read hit. Basta atualizar valor em memória cache: escreve valor 0x00001111 no bloco 12 com v=1, d=1, etiqueta 0xfde (mantém etiqueta).

Exercício 5

- a) 59 bits
- b) 0x2a5d04aa
- c) O conteúdo do bloco 0 é alterado para 2a 5d 04 aa 00 00 00 00.
- d) 0x00000cc

- a) P1: 1,61 GHz; P2: 1,52 GHz.
- b) P1: 8,6 ns; P2: 6,26 ns.
- c) Ter em atenção que existem 1 + 0.36 acessos a memória por instrução.
 - P1: $CPI=1 + 0.114 \times 1.36 \times 70/0.62 = 18.5$; P2: CPI=12.54.

- a) $90 \text{ faltas}/10^3 \text{ instruções.}$
- b) 6,43 %.
- c) Um acesso a memória custa 80 ciclos (período de relógio: 1 ns).
 - i) $CPI_{efetivo} = 1,2 + 1,4 \times 80 = 113,2 \text{ ciclos/instrução}.$
 - ii) $\text{CPI}_{\text{efetivo}} = 1,2 + 0,0643 \times 1,4 \times 80 = 8,4 \text{ ciclos/instrução}.$

8 Desempenho

Exercício 9

- a) IPC $_{P_1}=1,43$ (instruções/ciclo) IPC $_{P_2}=2,00$ (instruções/ciclo) IPC $_{P_3}=3,33$ (instruções/ciclo)
- b) 2,1 GHz
- c) 27×10^9

Exercício 10

- a) P_1 : $t_{exec} = 1.87 \,\text{ms}$ P_2 : $t_{exec} = 1.00 \,\text{ms}$ P_2 é o processador mais rápido.
- b) $\text{CPI}_{P_1} = 2.8 \text{ (ciclos/instrução)}$ $\text{CPI}_{P_2} = 2.0 \text{ (ciclos/instrução)}$
- c) $P_1: 2.8 \times 10^6$ $P_2: 2 \times 10^6$

Exercício 11

 P_1 : 4×10^9 (instruções/segundo) P_2 : 3×10^9 (instruções/segundo)

Exercício 12

- a) C é o computador mais rápido (45 s).
- b) C é 1,67 vezes mais rápido que B e 4,93 vezes mais rápido que A.

- a) $t_{exec} = 675 \,\mathrm{ns}$
- b) CPI = 1,93 (instruções/segundo)
- c) A execução é 1,23 mais rápida e CPI=1,69

88%

Exercício 15

a) 1,67

b) 5

Exercício 16

a) Desenhar o gráfico da função

$$S(f) = \frac{1}{\frac{f}{10} + (1 - f)} = \frac{10}{10 - 9 \times f} \qquad 0 \le f \le 1$$

b)
$$f = \frac{5}{9} \approx 0.56 = 56\%$$

- c) Percentagem de tempo gasto em modo vetorial após introdução da alteração: $\frac{1}{9}\approx\!11\,\%$
- d) Speedup máximo: 10; para obter speedup de 5 é preciso que $f = \frac{8}{9} \approx 88.9 \%$
- e) Duplicação de desempenho da unidade vetorial: $S \approx 2,99$. Sem duplicação de desempenho, o mesmo *speedup* é obtido para $f \approx 0,74 = 74\%$. Provavelmente é mais fácil passar de 70% para 74% do que duplicar o desempenho da unidade vetorial.

Exercício 17

O ganho de rapidez da nova versão é 2.