Alfabetos

Un alfabeto es un conjunto finito no vacío, sin elementos que se obtengan por yuxtaposición, es decir que ningún simbolo se pueda formar colocando uno a continuación de otro. Se los denota con : Σ o V

Palabra: secuencia finita de letras formada por caracteres de un alfabeto.

Palabra Nula: está formada por 0 letras, se denota λ o ε

Longitud: cantidad de letras que forman una palabra.

Clausura de Kleene de un alfabeto

Se define:

$$V^* = V^0 \cup V^0 \cup V^1 \cup V^2 \cdots V^n \cup \cdots$$

 V^i : conjunto de palabras de longitud i formadas con las letras del alfabeto V

 V^st es el conjunto de todas las palabra de cualquier longitud, que se pueden escribir con letras del alfabeto V

Concatenación de palabras

Sea $w_1 \in V^*$, $w_2 \in V^*$ y $w_3 = w_1 \cdot w_2$ entonces w_3 está formada por las letras de w_1 a continuación por las letras de w_2 .

$$long(w_1 \cdot w_2) = long(w_1) + long(w_2)$$

Además:

$$(w_1 \cdot w_2) \cdot w_3 = w_1 \cdot (w_2 \cdot w_3)$$

 $(V^*;\cdot)$ es un semigrupo con neutro λ y se lo llama **Semigrupo libre** generado por V

Inversión, reflexión o transposición

Dada
$$w\in V^*$$
 , si $w=x_1x_2x_3\cdots x_{n-1}x_n$ se define:
$$w^R=x_nx_{n-1}\cdots x_3x_2x_1$$

Propiedades de la reflexión

1.
$$(w^R)^R = w$$

2.
$$\lambda^R = \lambda$$

$$3. (w \cdot y)^R = y^R \cdot w^R$$

4.
$$long(w^R) = long(w)$$

Palindrome

Sea $w \in V^*$, w es palindrome $\Leftrightarrow w = w^R$

Potencia de una palabra

Sea $w \in V^*$, con $n \in \mathbb{N}_0$ se define:

$$\begin{cases} w^0 = \lambda \\ w^1 = w \\ w^n = w \cdot w^{n-1} \end{cases}$$

Propiedad: $long(w^n) = n \cdot long(w)$

Lenguaje

Sea L un conjunto y V un alfabeto.

Diremos que L es un lenguaje $\Leftrightarrow L \subseteq V^*$

O sea un lenguajes es todo subconjunto de V^{st}

Observaciones

- 1. Los elementos de L son palabras.
- 2. Los lenguajes pueden ser finitos o infinitos.
- 3. Como $L \subseteq V^*$ entocnes $L \in P(V^*)$
- 4. Se pueden aplicar todas las propiedades y operaciones de conjuntos

Algunos lenguajes especiales son $L=\{\lambda\}=\Lambda$ se llama **Lenguaje nulo** y $L=\varnothing$ se llama **Lenguaje vacío**

Operaciones con lenguajes

Concatenacion de lenguajes

$$L = L_1 \cdot L_2 = \{x \cdot y \ / \ x \in L_1 \ \land \ y \in L_2\}$$

Son todas las palabras que se pueden formar concatenando cualquier palabra de L_1 con cualquier palabras de L_2

Propiedades

- 1. $|L_1 \cdot L_2| \le |L_1| \cdot |L_2|$
- 2. $(P(V^*); \cdot)$ semigrupo con neutro Λ
- 3. $L_1 \cdot L_2 \neq L_2 \cdot L_1$
- 4. $L=\varnothing$ es elemento **absorbente** de la concatenación
- 5. Si $L_1 \subset L_2$ y $L_3 \subset L_4$ entonces $L_1 \cdot L_3 \subset L_2 \cdot L_4$

Lenguaje inverso, reflejo o traspuesto

$$L^R = \{w^R \ / \ w \in L\}$$

Es decir $L^{\it R}$ tiene todas las palabras de $\it L$ pero reflejadas.

Potencia de un lenguaje

Sea L un lenguaje, con $n \in \mathbb{N}_0$ se define:

$$\begin{cases} L^0 = \Lambda \\ L^1 = L \\ L^n = L \cdot L^{n-1} \end{cases}$$

Clausura de Kleene de un lenguaje

$$L^* = \bigcup_{n=0}^{\infty} L^n = L^0 \cup L^1 \cup L^2 \cdots \cup L^n \cup \cdots$$

O sea, en la clausura de un lenguaje están todas las palabras que se obtienen concatenando las de L cualquier cantidad de veces.

3 de 13

Observaciones:

1.
$$\Lambda^* = \Lambda$$

2.
$$\emptyset^* = \Lambda$$

3.
$$\forall L: \lambda \in L^*$$

Clausura positiva de un lenguaje

$$L^+ = \bigcup_{n=1}^{\infty} L^n = L^1 \cup L^2 \cdots \cup L^n \cup \cdots$$

Observaciones:

1.
$$\Lambda^+ = \Lambda$$

$$2. \varnothing^+ = \varnothing$$

Complemento de un lenguaje

$$\bar{L} = V^* - L$$

Ej:

Sea
$$V = \{a, b\}$$

$$L_1 = \{ w \in V^* \mid w \text{ comienza con } a \}$$

Entonces el complemento de L_1 es:

$$\bar{L}_1 = \{ w \in V^* / w \text{ no comienza con } a \}$$

Gramaticas

Una gramatica es una cuaterna $G = (V_n; V_t; P; S)$ siendo:

 V_n : Vocabulario o alfabeto de **no terminales**

 V_t : Vocabulario o alfabeto de **terminales**

P: Producciones

S: simbolo variable incial

Requisitos

- 1. V_n y V_t son finitos.
- 2. $V_n \cap V_t = \emptyset$
- 3. P es finito y $P \subset (V^+ V_t^*)$ siendo $V = V_n \cup V_t$
- 4. S pertenece a V_n

Observaciones

- 1) La gramática va a generar palabras formadas por las letras del alfabeto de **terminales** V_t . El otro alfabeto, V_n , contiene las variables o **no terminales** que se usan para ir formando las palabras.
- 2) Las producciones son reglas gramaticales. En vez de escribirlas en forma de par ordenado (a;b), se escriben como $a \to b$ y se lee "a produce b". Ello significa que la parte "a" puede reemplazarse por "b". Por ello, en la primera parte no puede haber terminales solas ni λ . Siempre al menos debe haber una variable para hacer el reemplazo.
- 3) El lenguaje generado por la gramática G se llama L(G).
- 4) Puede haber varias gramáticas que generen un mismo lenguaje, pero el lenguaje que genera una gramática es único.

Ej:

Sea la gramatica
$$G=\{(\{S,X,Y\},\{a,b,c\},P,S)\}$$
 con el conjunto $P:S\to aSb+aX$
$$X\to cX+bY$$

$$Y\to a$$

Para hallar palabras de L(G) debemos ir aplicando sucesivas veces las producciones hasta lograr palabras, comenzando por alguna de las producciones que comienzan con el símbolo inicial S.

5 de 13

Árbol de derivación

Es un arbol cuya raíz es el simbolo inicial, y cada vértice tiene tantos hijos como producciones diferentes existan que parten de dicho vértice. Es decir: Si $A \to B$, entonces A es padre de B. Si $A \to B + C$, entonces A tiene dos hijos: B y C. En este tipo de arboles, las hojas son las palabras del lenguaje, y cada rama nos da la derivación de dicha palabra.

Construiremos el arbol de derivación de la gramatica de arriba.

Comenzamos con las producciones de S

Ahora consideremos las producciones de X, con lo que podemos agregar:

Si consideramos ahora la producción de Y, ya obtenemos una expresión formada solamente por terminales, es decir ua palabra del lenguaje, la recuadramos:

Pero debemos continuar con la otra rama, otra vez la variable X

Y seguimos de esta forma ahora con X y con Y:

Podemos ver que todo el subárbol derecho del árbol principal genera las palabras de la forma ac^nba , con $n \ge 0$ pero aún falta el subárbol izquierdo, es decir el que tiene por raíz. aSb

Luego, por cada sub-árbol de mas a la izquierda, lo que agregan es una "a" mas a izquierda y una "b" a derecha simultáneamente. Por lo tanto el lenguaje que genera esta Gramática es:

$$L(G) = \{a^m a c^n b a b^m / n \ge 0, m \ge 0\}$$

Dos gramaticas son equivalentes si generan el mismo Lenguaje.

Tipos de Gramáticas

Tipo	Nombre	Producciones
0	Irrestricta	Cualquier forma
1	Sensible al contexto	$aXb \rightarrow aYb$ donde $a, b, Y \in V^*, X \in V_n$
2	Independiente del contexto	$X \to Y$ donde $X \in V_n$
3	Regular	$X \to Y$ donde $X \in V_n, Y$ puede ser Vt, tV, t, λ

Se dice que un Lenguaje L es regular si existe una gramatica regular que lo genera.

Ej:

Sea
$$G = \{(A, B, C), \{0, 1, 2\}, P, A\}$$

Tipo 0:

$$P = \begin{cases} A \to A2 + 11B \\ 1B \to 01 + 0C21 \\ C22 \to 2 + 2C \end{cases}$$

8 de 13

Tipo 1:

$$P = \begin{cases} A \rightarrow 0BC \\ 0B \rightarrow 011 + 0B1 \\ 1C \rightarrow 12 + 12C \end{cases}$$

Tipo 2:

$$P = \begin{cases} A \to BC \\ B \to 01 + 0B1 \\ C \to 2 + 2C \end{cases}$$

Tipo 3:

$$P = \begin{cases} A \to 1B + 0A \\ B \to 0 + 0C \\ C \to 2 + 2C \end{cases}$$

Expresiones regulares

Una E. R. es una secuencia de elementos que verfica:

$$\lambda$$
 es ER
 $a \in V \Rightarrow a$ es ER
Si X, Y son $ER \Rightarrow X \cdot Y$ es ER
Si X, Y son $ER \Rightarrow X + Y$ es ER
Si X es $ER \Rightarrow X^*$ es ER

O sea, las expresiones regulares sólo pueden contener letras del alfabeto, la palabra nula λ , concatenaciones (\cdot) , disyunciones (+) y clausuras de Kleene (*)

Propiedad: Para cada Lenguaje regular, existe una expresión regular que lo define.

Ej:

El lenguaje regular: $L = \{1^n0^m2^{2p+1}(0 \lor 1) \mid n \ge 0, m \ge 1, p \ge 0\}$ Se puede indicar con la ER:

$$1*00*(22)*2(0 + 1)$$

Automatas

Cada lenguaje tiene su propia maquina reconocedora del mismo.

Lenguaje Tipo	Maquina que lo reconoce
0	Maquina de Turing
1	Automata linealmente acotado
2	Automata de pila (Push Down)
3	Automata Finito

En esta asignatura solo estudiaremos los Automatas Finitos

Automatas Finitos

Un automata Finito es una 5-upla: (Q, V, δ, q_0, F) donde:

Q: Conjunto finito de estados.

V: Vocabulario o alfabeto de entrada.

 $\delta: Q \times V \to Q$ Función de transición.

 q_0 : Estado inicial.

F: Conjunto de estados finales $F \neq \emptyset$ y $F \subset Q$

Los Automatas Finitos se pueden representar con **Tablas de transición** o con **Diagramas de transición de estados**.

Un Automata acepta una palabra si y solo si al ir ingresando letra por letra desde el estado inicial llega a un estado final cuando termina la palabra.

Clasificación de los A.F.

Los Automatas finitos pueden ser **Deterministicos** (A.F.D) o **No Deterministicos** (A.F.N)

Un Automata finito es **Deterministico** si no tiene transiciones por λ y δ cumple unicidad.

Metodo para obtener la E.R. a partir del A.F.

Se escribe p = aq

Se escribe: p = aq + br

Se escribe $p = a^*$

Se escribe: $p = a^*(bq)$

Se escribe $p = \lambda$

Obtencion de la G.R. a partir del A.F.

Sea $A = (Q, V, \delta, q_0, F)$ queremos hallar una Gramatica $G = (V_n, V_t, P, S)$ que genere el mismo lenguaje que es reconocido por el automata.

Los elementos de la gramatica se obtienen de la siguiente forma:

 $V_n = Q$ (Los estados pasan a ser las variables)

 $V_t = V$ (El alfabeto de terminales es el alfabeto de entrada del A.F)

 $S = q_0$ (El símbolo inicial es el que era estado inicial)

Y las producciones P son tales que: $q \to a\delta(q, a)$ y $q \to \lambda$ si q es estado final.

Obtencion del A.F. a partir de la G.R.

Dada $G = (V_n, V_t, P, S)$ queremos hallar un automata $A = (Q, V, \delta, q_0, F)$ que reconozca el lenguaje generado por esta gramatica.

Los elementos del automata se obtienen de la siguiente forma:

 $Q = V_n \cup \{f\}$ (Los estados son las variables más un nuevo estado que se agrega)

 $V = V_t$ (El alfabeto de entrada es el alfabeto de terminales)

 $q_0 = S$ (El estado inicial es el que era el símbolo inicial)

 $F = \{q \in V_n \mid q \to \lambda\} \cup \{f\}$ (Los estados finales son todos los que producían la palabra unla y además el estado que se agrega)

Y la función de transición δ es tal que:

$$\delta(q, a) = p \text{ si } q \to ap$$

 $\delta(q, a) = f \text{ si } q \to a$
 $\delta(t, a) = \emptyset$