1

2

3

1

2

3

Claims

What is claimed is:

1 .	1. A charge pump for a phase-locked loop circuit suitable for use in a mixed
2	signal integrated circuit, the charge pump having complementary P- and N-channel charge
3	pump devices, comprising:
4	a constant current generator suitable for generating a current reference for providing
5	a substantially constant gate-to-source bias for the P- and N-channel charge
6	pump devices;
7	a differential pair of P-channel pass-gate devices suitable for isolating the P-channel
8	charge pump device from supply and ground transients in the mixed signal
9	integrated circuit; and
10	a differential pair of N-channel pass-gate device suitable for isolating the N-channel
11	charge pump device from supply and ground transients in the mixed signal
12	integrated circuit
13	wherein the charge pump is capable of substantially eliminating loss of lock by the
14	phase-locked loop circuit due to supply and ground transients.

- 2. The charge pump as claimed in claim 1, wherein the current reference generated by the constant current generator comprises a high power supply rejection for the P- and N- channel charge pump devices.
- 3. The charge pump as claimed in claim 1, wherein the constant current generator comprises P- and N- channel bias devices, and wherein the P- and N- channel charge pump devices function as current mirrors of the P- and N-channel bias devices.
- 1 4. The charge pump as claimed in claim 3, wherein the P- and N- channel charge 2 pump devices have a substantially constant current.

1

2

- 5. The charge pump as claimed in claim 1, wherein the phase-locked loop circuit includes a phase detector having P- and N- channel drivers, and wherein the P- and N- channel pass gate devices have an on/off state, and wherein the on/off state of the P- and N- channel pass-gate devices is controlled in accordance with the P- and N-channel drivers.
- 1 6. The charge pump as claimed in claim 1, wherein the P- and N- channel phase 2 gate devices comprise an on-resistance, and wherein the supply and ground transients are 3 restricted to the P- and N-channel pass-gate devices' on-resistance.
 - 7. The charge pump as claimed in claim 1, wherein the constant current source is programmable.

1	8. A phase-locked loop circuit suitable for use in a mixed signal	1 integrated		
2	circuit, comprising:			
3	a phase detector; and			
4	a charge pump driven by the phase detector, the charge pump having con	nplementary		
5	P- and N-channel charge pump devices, the charge pump include	ling:		
6	a constant current generator suitable for generating a current re	eference for		
7.	providing a substantially constant gate-to-source bias fo	r the P- and		
8	N-channel charge pump devices;			
9	a first differential pair of pass-gate devices suitable for isola	iting the P-		
10	channel charge pump device from supply and ground tran	sients in the		
11	mixed signal integrated circuit; and			
12	a second differential pair of pass-gate devices suitable for isola	ating the N-		
13	channel device from supply and ground transients in the r	nixed signal		
14	integrated circuit.			
1	9. The phase-locked loop circuit as claimed in claim 8, wherein	the current		
2	reference generated by the constant current generator comprises a high po	wer supply		
3	rejection for the P- and N- channel charge pump devices.			
1	10. The phase-locked loop circuit as claimed in claim 8, wherein	the constant		
2	current generator comprises P- and N- channel bias devices, and wherein the P- and N			
3	channel charge pump devices function as current mirrors of the P- and N-channel bia			
4	devices.			

- 1 11. The phase-locked loop circuit as claimed in claim 10, wherein the P- and Nchannel charge pump devices have a substantially constant current.
- 1 12. The phase-locked loop circuit as claimed in claim 8, wherein the phase 2 detector comprises P- and N- channel drivers, and wherein the P- and N- channel pass gate

- 3 devices have an on/off state, and wherein the on/off state of the P- and N-channel pass-gate
- 4 devices is controlled in accordance with the P- and N-channel drivers.
- 1 13. The phase-locked loop circuit as claimed in claim 8, wherein the P- and N-
- 2 channel phase gate devices comprise an on-resistance, and wherein the supply and ground
- 3 transients are restricted to the P- and N-channel pass-gate devices' on-resistance.
- 1 14. The phase-locked loop circuit as claimed in claim 8, wherein the charge pump
- 2 is programmable.

2

1

2

19.

1	15.	A mixed signal integrated circuit having a phase-locked loop circuit,
2	comprising:	
3	a phas	e detector; and
4	a charg	ge pump driven by the phase detector, the charge pump having complementary
5		P- and N-channel charge pump devices, the charge pump including:
6		a constant current generator suitable for generating a current reference for
7		providing a substantially constant gate-to-source bias for the P- and
8		N-channel charge pump devices;
9		a first differential pair of pass-gate devices suitable for isolating the P-
10		channel charge pump device from supply and ground transients in the
11		mixed signal integrated circuit; and
12		a second differential pair of pass-gate devices suitable for isolating the N-
13		channel device from supply and ground transients in the mixed signal
14		integrated circuit.
1	16.	The mixed signal integrated circuit as claimed in claim 15, wherein the
2	current referen	ace generated by the constant current generator comprises a high power supply
3	rejection for the	he P- and N- channel charge pump devices.
1	17.	The mixed signal integrated circuit as claimed in claim 15, wherein the
2	constant curre	nt generator comprises P- and N- channel bias devices, and wherein the P- and
3	N- channel ch	arge pump devices function as current mirrors of the P- and N-channel bias
4	devices.	
1	18.	The mixed signal integrated circuit as claimed in claim 17, wherein the P- and

00-460/1C 14

N- channel charge pump devices have a substantially constant current.

The mixed signal integrated circuit as claimed in claim 15, wherein the phase

detector comprises P- and N- channel drivers, and wherein the P- and N- channel pass gate

- 3 devices have an on/off state, and wherein the on/off state of the P- and N-channel pass-gate
- 4 devices is controlled in accordance with the P- and N-channel drivers.
- 1 20. The mixed signal integrated circuit as claimed in claim 15, wherein the P- and
- 2 N- channel phase gate devices comprise an on-resistance, and wherein the supply and ground
- 3 transients are restricted to the P- and N-channel pass-gate devices' on-resistance.
- 1 21. The mixed signal integrated circuit as claimed in claim 15, wherein the charge
- 2 pump is programmable.