Definition of the Trig Functions

Right triangle definition

For this definition we assume that

$$0 < \theta < \frac{\pi}{2} \text{ or } 0^{\circ} < \theta < 90^{\circ}$$
.

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$
 $\csc \theta = \frac{\text{hypotenuse}}{\text{opposite}}$
 $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$
 $\sec \theta = \frac{\text{hypotenuse}}{\text{adjacent}}$
 $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$
 $\cot \theta = \frac{\text{adjacent}}{\text{opposite}}$

Unit circle definition

For this definition θ is any angle.

$$\sin \theta = \frac{y}{1} = y \quad \csc \theta = \frac{1}{y}$$

$$\cos \theta = \frac{x}{1} = x \quad \sec \theta = \frac{1}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

Facts and Properties

Domain

The domain is all the values of θ that can be plugged into the function.

 $\sin \theta$, θ can be any angle

 $\cos \theta$, θ can be any angle

$$\tan \theta$$
, $\theta \neq \left(n + \frac{1}{2}\right)\pi$, $n = 0, \pm 1, \pm 2, ...$

 $\csc\theta$, $\theta \neq n\pi$, $n = 0, \pm 1, \pm 2,...$

$$\sec \theta$$
, $\theta \neq \left(n + \frac{1}{2}\right)\pi$, $n = 0, \pm 1, \pm 2, ...$

col θ , $\theta \neq n\pi$, $n = 0, \pm 1, \pm 2, ...$

Range

The range is all possible values to get out of the function.

$$-1 \le \sin \theta \le 1$$
 $\csc \theta \ge 1$ and $\csc \theta \le -1$

$$-1 \le \cos \theta \le 1$$
 $\sec \theta \ge 1$ and $\sec \theta \le -1$

$$-\infty < \tan \theta < \infty$$
 $-\infty < \cot \theta < \infty$

Period

The period of a function is the number, T, such that $f(\theta+T)=f(\theta)$. So, if ω is a fixed number and θ is any angle we have the following periods.

$$\sin(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\cos(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\tan(\omega\theta) \rightarrow T = \frac{\pi}{\omega}$$

$$\csc(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$sec(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\cot(\omega\theta) \rightarrow T = \frac{\pi}{\omega}$$

tythagoreansthm Utb=C

Formulas and Identities

Tangent and Cotangent Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

Reciprocal Identities

$$csc \theta = \frac{1}{\sin \theta} \qquad sin \theta = \frac{1}{\csc \theta}$$

$$sec \theta = \frac{1}{\cos \theta} \qquad cos \theta = \frac{1}{\sec \theta}$$

$$\cot \theta = \frac{1}{\tan \theta} \qquad \tan \theta = \frac{1}{\cot \theta}$$

Pythagorean Identities

$$\sin^2\theta + \cos^2\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

Even/Odd Formulas

$$\sin(-\theta) = -\sin\theta$$
 $\csc(-\theta) = -\csc\theta$

$$cos(-\theta) = cos \theta$$
 $sec(-\theta) = sec \theta$

$$\tan(-\theta) = -\tan\theta \qquad \cot(-\theta) = -\cot\theta$$

Periodic Formulas

If n is an integer.

$$\sin(\theta + 2\pi n) = \sin\theta \quad \csc(\theta + 2\pi n) = \csc\theta$$

$$cos(\theta + 2\pi n) = cos \theta \quad sec(\theta + 2\pi n) = sec \theta$$

$$\tan(\theta + \pi n) = \tan\theta \quad \cot(\theta + \pi n) = \cot\theta$$

Double Angle Formulas

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$$
$$= 2\cos^2 \theta - 1$$

$$= 1 - 2\sin^2\theta$$

$$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$$

Degrees to Radians Formulas

If x is an angle in degrees and t is an angle in radians then

$$\frac{\pi}{180} = \frac{t}{x} \implies t = \frac{\pi x}{180} \quad \text{and} \quad x = \frac{180t}{\pi} \quad \tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$

Half Angle Formulas

$$\sin^2\theta = \frac{1}{2}(1-\cos(2\theta))$$

$$\cos^2\theta = \frac{1}{2}(1+\cos(2\theta))$$

$$\tan^2\theta = \frac{1-\cos(2\theta)}{1+\cos(2\theta)}$$

Sum and Difference Formulas

$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$$

$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1\mp \tan\alpha \tan\beta}$$

Product to Sum Formulas

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos (\alpha - \beta) + \cos (\alpha + \beta) \right]$$

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin (\alpha + \beta) + \sin (\alpha - \beta) \right]$$

$$\cos \alpha \sin \beta = \frac{1}{2} \left[\sin (\alpha + \beta) - \sin (\alpha - \beta) \right]$$

Sum to Product Formulas

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)$$

$$\sin \alpha - \sin \beta = 2\cos\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)$$

$$\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2} \right) \sin \left(\frac{\alpha - \beta}{2} \right)$$

Cofunction Formulas

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \qquad \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec \theta$$
 $\sec\left(\frac{\pi}{2} - \theta\right) = \csc \theta$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$
 $\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$

Unit Circle

For any ordered pair on the unit circle (x, y): $\cos \theta = x$ and $\sin \theta = y$

Inverse Trig Functions

Definition

 $y = \sin^{-1} x$ is equivalent to $x = \sin y$ $y = \cos^{-1} x$ is equivalent to $x = \cos y$

 $y = \tan^{-1} x$ is equivalent to $x = \tan y$

Inverse Properties $x = ((x)^{1-}\cos)\cos$

 $\cos^{-1}(\cos(\theta)) = \theta$

 $\sin\left(\sin^{-1}(x)\right) = x$

 $\sin^{-1}\left(\sin\left(\theta\right)\right)=\theta$

 $\tan\left(\tan^{-1}\left(x\right)\right)=x$

Alternate Notation

 $\tan^{-1}(\tan(\theta)) = \theta$

Domain and Range

Function	Domain	Range
$y = \sin^{-1} x$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$J' = \cos^{-1} x$	$-1 \le x \le 1$	$0 \le y \le \pi$
$y = \tan^{-1} x$	00 > 7, > 00-	$-\frac{\pi}{2} < y < \frac{\pi}{2}$

 $\sin^{-1} x = \arcsin x$ $\cos^{-1} x = \arccos x$

 $tan^{-1}x = \arctan x$

Law of Sines, Cosines and Tangents

Law of Sines

$$\frac{\sin\alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin\gamma}{c}$$

Law of Cosines

$$a^1 = b^1 + c^2 - 2bc \cos \alpha$$

$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

 $c^2 = a^2 + b^2 - 2ab\cos\gamma$

Mollweide's Formula

 $\frac{a+b}{c} = \frac{\cos\frac{1}{2}(\alpha-\beta)}{\sin\frac{1}{2}\gamma}$

Law of Tangents

$$\frac{a-b}{a+b} = \frac{\tan\frac{1}{2}(\alpha-\beta)}{\tan\frac{1}{2}(\alpha+\beta)}$$

$$\frac{b-c}{b+c} = \frac{\tan\frac{1}{2}(\beta-\gamma)}{\tan\frac{1}{2}(\beta+\gamma)}$$

$$\frac{a-c}{a+c} = \frac{\tan\frac{1}{2}(\alpha-\gamma)}{\tan\frac{1}{2}(\alpha+\gamma)}$$