Problem: Find the distribution plan for Westvaco's paper mill in Wickliffe, Kentucky that creates a least-cost assignment of truckloads to carriers within the necessary requirements

Solution: Minimize the total cost of distribution from Wickliffe to different destinations by meeting trips(truckloads) and intermediate stop requirements

Inputs: in blue in spreadsheet,

For each destination

- No of trips (truckloads) required
- No of intermediate stops required
- Distance (miles) travelled per trip
- Cost (\$/miles) per Carrier
- Some destinations are not served by some carriers, set as 0 and highlighted in red
- Total 32 trips are required for distributing last night's production

For each carrier

- Minimum truckload charge
- Intermediate stop-off charge
- Available trips(pulls)
- Minimum trips(commitment) required

Objective function: Min (Total Transportation Cost) = $\min_{i \in (1...12), j \in (1...6)} \sum Xij * Cij$, where

- Minimize the total transportation cost (\$) to destination i by carrier j
- X_{ij} No of trips to destination i by carrier j
- **C**_{ij} Total Cost (\$) to destination i by carrier j per trip
- $i \in (1...12)$ for the 12 destinations
- $j \in (1...6)$ for the 6 carriers
- C_{ij} = min [(CC_{ij} * D_i + SC_j * S_i), MC_j], where
 - Total cost per trip is the minimum of Carrier Cost based on destination distance and no of stops or the carrier's minimum truckload charge
 - o This has been calculated in a separate table based on the input data
 - CC_{ij} Carrier Cost in miles/\$ to destination i by carrier j
 - **D**_i Distance in miles for each trip to destination i
 - SC_i Intermediate stop-off charge for carrier j
 - **S**_i No of stops for destination i trip
 - o **MC**_i Minimum truckload charge for carrier j for each trip

Decision variable: X_{ij} – No of trips to destination i by carrier j **Constraints**:

- 1. $\sum_{i} Xij \le ATC_{i}$ for all j, where
 - o ATC_i Available trips(pulls) for each carrier j

- 2. $\sum_{i} Xij >= MTC_{j}$ for all j, where
 - \circ MTC_j Minimum trips(commitment) for each carrier j
- 3. $\sum_{i} Xij >= T_{i}$ for all i, where
 - T_i No of trips required to be made to destination i
- 4. $X_{ij} \in int$, must be integer to ensure 1 full trip/carrier
- 5. $\sum_{i,j} Xij \leq 0$, where
 - $\circ \quad \textbf{i,j} \in \{(1,1),(2,1),(3,1),(5,1),(6,1),(8,1),(9,1),(10,1),(12,1),(9,3),(5,4),(9,5),(5,6),(9,6)\}$
 - Total of all trips that are not served by carrier j to destination i should be 0, to ensure that they are not part of the distribution plan

Result:

- The least-cost distribution plan from Wickliffe to different destinations is given with minimum total cost of \$ 22,394.38
- The results are given in Case5.1 sheet