Repetitorium Theoretische Elektrodynamik, WS 07/08

1. Multiple Choice

- a) Im Halbraum z < 0 befindet sich ein geerdeter Leiter. Eine Punktladung q > 0 befindet sich bei $\vec{r}_0 = (0,0,d)^T$. Dann gilt
 - \square Das Potential Φ im Halbraum z>0 entspricht dem Potential, das von der Ladung q bei $\vec{r}_0=(0,0,d)^T$ erzeugt wird.
 - \boxtimes Das Potential Φ im Halbraum z>0 entspricht dem Potential, das von der Ladung q bei $\vec{r}_0=(0,0,d)^T$ und der induzierten Oberflächenladung erzeugt wird.
 - \square Das Potential Φ im Halbraum z>0 entspricht dem Potential, das von der Ladung q bei $\vec{r}_0=(0,0,d)^T$, der Spiegelladung -q bei $-\vec{r}_0$ und der induzierten Oberflächenladung erzeugt wird.
 - \boxtimes Das Potential Φ im Halbraum z>0 entspricht dem Potential, das von der Ladung q bei $\vec{r}_0=(0,0,d)^T$ und der Spiegelladung -q bei $-\vec{r}_0$ erzeugt wird.
 - oxtimes Das elektrische Feld $ec{E}$ im Halbraum z>0 erhält man durch $ec{E}=-ec{
 abla}\Phi$
 - \Box Die Kraft, die auf die Ladung q ausgeübt wird, ist gegeben durch $\vec{F}=q\vec{E}$ mit $\vec{E}=-\vec{\nabla}\Phi$.
 - \boxtimes Für das Potential Φ im Halbraum z>0 gilt: $\Delta\Phi(\vec{r})=-\frac{q}{\varepsilon_0}\delta(\vec{r}-\vec{r_0}) \quad \Phi(x,y,0)=0 \ \forall x,y \in \mathbb{R}$
 - \boxtimes Für das Potential Φ im Halbraum z>0 gilt: $ΔΦ(\vec{r})=-\frac{q}{\varepsilon_0}\delta(\vec{r}-\vec{r}_0)+\frac{q}{\varepsilon_0}\delta(\vec{r}+\vec{r}_0)$ Φ(x,y,0)=0 $\forall x,y\in\mathbb{R}$
- b) Ein Leiter befindet sich im Raum, der Raum zwischen den Leitern ist ladungsfrei. Dann wird das Potential bis auf eine Konstante eindeutig bestimmt durch:
 - $\Box \Delta \Phi = 0$
 - $\boxtimes \Delta \Phi = 0$ und vorgegebene Ladungsverteilung auf Leiteroberfläche
 - $\boxtimes \Delta \Phi = 0$ und vorgegebenes Potential auf Leiteroberfläche
 - \square $\Delta\Phi=0$, vorgegebene Ladungsverteilung und vorgegebenes Potential auf Leiteroberfläche
- c) Für den spurlosen Quadrupoltensor Q gilt:
 - $\boxtimes \mathbf{Q}$ ist symmetrisch
 - ☑ Q ist diagnonalisierbar
 - □ Q enthält 6 voneinander unabhängige Komponenten
 - $\square Spur(\mathbf{Q})$ wird bei Koordinatendrehungen wie ein Tensor 2. Stufe transformiert.
 - \square Liegen sämtliche Ladungen in der x-y-Ebene, so ist \mathbf{Q} immer diagonal.
 - ⊠ Liegen sämtliche Ladungen auf den Koordinatenachsen, so ist Q immer diagonal.
 - \boxtimes Liegen sämtliche Ladungen in der x-y-Ebene, so ist $Q_{xz}=Q_{yz}=0$
 - \boxtimes Liegen sämtliche Ladungen auf den Koordinatenachsen, so ist $Q_{xz}=Q_{yz}=0$
- d) Für die magnetische Feldkonstante μ_0 gilt:
 - $\boxtimes \mu_0 = 4\pi \cdot 10^{-7} \frac{Vs}{Am}$
 - \square μ_0 lässt sich über die Kraft zwischen 2 parallelen Drähten nur ungenau messen.
 - \boxtimes Der Wert μ_0 ist durch die Definition des Ampere festgelegt.

e) Im folgenden betrachten wir zeitabhängige \vec{E} und \vec{B} -Felder \Box Für eine Kurve γ ist das Kurvenintegral $\int_{\gamma} \vec{E} \cdot d\vec{r}$ wegunabhängig. \Box Es gilt \vec{E} ist wirbelfrei. \Box Das Magnetfeld des von der induzierten Spannung verursachten Stroms wirkt der Änderung des magnetischen Flusses entgegen. \Box Das Faraday'sche Induktionsgesetz ist eng verknüpft mit dem Ohm'schen Gesetz. \Box Für die Stromdichte \vec{j} gilt die Kontinuitätsgleichung $\vec{\nabla} \cdot \vec{j} = 0$ f) Für die elektrische Dipolstrahlung mit dem Dipolmoment $\vec{p}_0 e^{i\omega t}$ im Koordinatenursprung gilt: \Box Die Polarisation von \vec{E} ist radial. \Box $\vec{k} \parallel \hat{e}_r$ \Box Das elektrische Feld schwingt senkrecht zur von \hat{e}_r und \vec{p}_0 aufgespannten Ebene. \Box Die maximale Amplitude des \vec{E} -Feldes erhält man in einem Punkt in der Richtung von \vec{p}_0 \Box Die maximale Amplitude des \vec{B} -Feldes erhält man in einem Punkt in der Ebene senkrecht zu \vec{p}_0

2. Multipol-Entwicklung

Vier Ladungen q befinden sich in einem kartesichen Koordinatensystem an den Punkten

$$(0,d,0), (0,-d,0), (0,0,d), (0,0,-d)$$

und vier Ladungen -q an den Punkten

$$(-d,0,0), \left(-\frac{d}{2},0,0\right), (d,0,0), (2d,0,0)$$

Berechnen Sie das Dipolmoment \vec{p} und den spurlosen Quadrupoltensor Q dieser Ladungsanordnung.

Lösung. Die Ladungsdichte der Anordnung ist gegeben durch

$$\rho(\vec{r}) = q\{\delta(x)\delta(z)[\delta(y-d) + \delta(y+d)] + \delta(x)\delta(y)[\delta(z-d) + \delta(z+d)] - \delta(y)\delta(z)[\delta(x+d) + \delta(x+d/2) + \delta(x-d) + \delta(x-2d)]\}$$

Das Dipolmoment berechnet man aus

$$\vec{p} = \int \vec{r}\rho(\vec{r})d^3r = \begin{pmatrix} d + \frac{d}{2} - d - 2d \\ d - d \\ d - d \end{pmatrix} = -qd \begin{pmatrix} \frac{3}{2} \\ 0 \\ 0 \end{pmatrix}$$

Da alle Ladungen auf den Achsen liegen, folgt, dass $Q_{ij}=0$ für $i\neq j$. Da die Ladungsverteilung axialsymmetrisch bezüglich der x-Achse ist, gilt wegen der Spurfreiheit: $Q_{zz}=Q_{yy}=-\frac{1}{2}Q_{xx}$. Wir müssen nur eine Komponente berechnen:

$$Q_{zz} = \frac{1}{3} \int \rho(\vec{r})(2z^2 - x^2 - y^2)d^3r =$$

$$= \frac{1}{3}q(-d^2 - d^2 + 2d^2 + 2d^2) - \frac{1}{3}q\left(-d^2 - \frac{d^2}{4} - d^2 - 4d^2\right) = \frac{11}{4}qd^2$$

$$\Rightarrow \mathbf{Q} = \frac{11}{4}qd^2\begin{pmatrix} -2 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

3. Magnetfeld einer rotierenden Scheibe

Eine dünne Scheibe aus leitendem Material und mit Radius r sei gleichmäßig mit der Ladung Q aufgeladen. Die Scheibe dreht sich mit der konstanten Winkelgeschwindigkeit ω um die achse senkrecht zur Oberfläche der Scheibe. Berechnen Sie das magnetische Feld in der Achse der Anordnung? Hinweis: Benutzen Sie

$$\int \frac{r^3}{(z^2+r^2)^{3/2}} dr = \frac{2z^2+r^2}{\sqrt{z^2+r^2}}$$

Lösung. Das Biot-Savart'sches Gesetz lautet allgemein:

$$\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{j}(\vec{x}') \times (\vec{x} - \vec{x}')}{|\vec{x} - \vec{x}'|^3} d^3x'$$

Sei A die Kreisscheibe in der x-y-Ebene mit Radius R, $\vec{\omega} = \omega \vec{e}_z$. Die Stromdichte in unserem Fall ist gegeben durch

$$\vec{j}(\vec{x}') = \underbrace{\sigma\delta(z)\theta\left(R - \sqrt{x^2 + y^2}\right)}_{\rho(\vec{x}')}\underbrace{(\vec{\omega} \times \vec{x}')}_{\vec{v}}$$

Also gilt:

$$\vec{B}(\vec{x}) = \frac{\sigma\mu_0}{4\pi} \int_A \frac{(\vec{\omega} \times \vec{x}') \times (\vec{x} - \vec{x}')}{|\vec{x} - \vec{x}'|^3} dx' dy' = \frac{\sigma\mu_0}{4\pi} \int_A \frac{(\vec{x}' - \vec{x}) \times (\vec{\omega} \times \vec{x}')}{|\vec{x} - \vec{x}'|^3} dx' dy'$$

Wir wollen das Feld an der Stelle $\vec{x} = z\vec{e}_z$ berechnen.

$$\begin{split} \vec{B}(\vec{x}) &= \frac{\sigma\mu_0}{4\pi} \int_A \frac{\vec{\omega}|\vec{x}'|^2 - \vec{x}' \underbrace{(\vec{\omega} \cdot \vec{x}')}_{|\vec{x} - \vec{x}'|^3} - \underbrace{\vec{\omega}}_{(\vec{x} \cdot \vec{x}')} + \vec{x}' \underbrace{(\vec{\omega} \cdot \vec{x})}_{|\vec{x} - \vec{x}'|^3} dx' dy' = \\ &= \frac{\sigma\mu_0}{4\pi} \vec{\omega} \int_A \frac{|\vec{x}'|^2}{|\vec{x} - \vec{x}'|^3} dx' dy' + \underbrace{\frac{\sigma\mu_0}{4\pi}}_{0} \underbrace{(\vec{\omega} \cdot \vec{x})}_{0} \underbrace{\int_A \frac{\vec{x}'}{|\vec{x} - \vec{x}'|^3} dx' dy'}_{0} = \\ &= \frac{\sigma\mu_0}{4\pi} \vec{\omega} 2\pi \int_0^R \frac{r^3}{(r^2 + z^2)^{3/2}} dr = \underbrace{\frac{\sigma\mu_0}{2}}_{0} \vec{\omega} \underbrace{\frac{2z^2 + r^2}{\sqrt{z^2 + r^2}}}_{0} \Big|_0^R = \underbrace{\frac{Q\mu_0}{2\pi}}_{2\pi R^2} \underbrace{\frac{2z^2 + R^2}{\sqrt{z^2 + R^2}}}_{0} - 2|z| \underbrace{)}_{\vec{\omega}} \vec{\omega} \end{split}$$

4. Relativistische Transformation eines Dipolfeldes

Ein magnetischer Dipol (ruhend in K) sei parallel zur z-Achse ausgerichtet. (magnetisches Moment $\vec{m} = m\vec{e}_z$)

a) Wie lauten die kartesischen Kompomenten des \vec{B} -Feldes? Lösung. Das Magnetfeld eines Dipols ist gegeben durch

$$\vec{B} = \frac{\mu_0}{4\pi} \left(\frac{3(\vec{r} \cdot \vec{m})\vec{r}}{r^5} - \frac{\vec{m}}{r^3} \right)$$

für $\vec{m} = m\vec{e}_z$ ist somit

$$B_x = \frac{\mu_0}{4\pi} \frac{3mzx}{r^5}$$
 $B_y = \frac{\mu_0}{4\pi} \frac{3mzy}{r^5}$ $B_z = \frac{\mu_0}{4\pi} \frac{m}{r^5} (2z^2 - x^2 - y^2)$

b) Berechnen Sie nun das $\vec{E}-$ und \vec{B} -Feld eines gleichförmig in z-Richtung bewegten magnetischen Dipols, dessen Moment parallel zur z-Richtung orientiert ist. Zur Zeit t=0 soll sich der Dipol im Nullpunkt von K befinden.

Transformation der Felder (K' bewegt sich in z-Richtung)

$$E'_{z} = E_{z} B'_{z} = B_{z}$$

$$E'_{x} = \gamma (E_{x} - c_{0}\beta B_{y}) B'_{x} = \gamma (B_{x} + (\beta/c_{0})E_{y})$$

$$E'_{y} = \gamma (E_{y} + c_{0}\beta B_{x}) B'_{y} = \gamma (B_{y} - (\beta/c_{0})E_{x})$$

Lösung. Sei K' das Ruhesystem des Dipols, das sich entlang der positiven z-Richtung bewegt. Dort herrschen die Felder

$$B'_{x} = \frac{\mu_{0}}{4\pi} \frac{3mz'x'}{r'^{5}} \qquad B'_{y} = \frac{\mu_{0}}{4\pi} \frac{3mz'y'}{r'^{5}} \qquad B'_{z} = \frac{\mu_{0}}{4\pi} \frac{m}{r'^{5}} (2z'^{2} - x'^{2} - y'^{2})$$

$$\vec{E}' = \vec{0}$$

Der Beobachter befindet sich in K, welches sich von der Sicht des Dipols aus in negativer z-Richtung bewegt. Also gilt

$$B_x = \gamma B'_x \qquad E_x = -\gamma(-\beta)c_0B'_y = vB_y$$

$$B_y = \gamma B'_y \qquad E_y = \gamma(-\beta)c_0B'_y = -vB_x$$

$$B_z = B'_z \qquad E_z = E'_z = 0$$

Mit der Lorentz-Transformation

$$x' = x$$
 $y' = y$ $z' = \gamma(z - vt)$

erhalten wir schließlich

$$B_x = \gamma^2 \frac{\mu_0}{4\pi} \frac{3mx(z - vt)}{[x^2 + y^2 + \gamma^2(z - vt)^2]^{5/2}}$$

$$B_y = \gamma^2 \frac{\mu_0}{4\pi} \frac{3my(z - vt)}{[x^2 + y^2 + \gamma^2(z - vt)^2]^{5/2}}$$

$$B_z = \frac{\mu_0}{4\pi} \frac{2\gamma^2(z - vt)^2 - x^2 - y^2}{[x^2 + y^2 + \gamma^2(z - vt)^2]^{5/2}}$$

$$E_x = v\gamma^2 \frac{\mu_0}{4\pi} \frac{3my(z - vt)}{[x^2 + y^2 + \gamma^2(z - vt)^2]^{5/2}}$$

$$E_y = -v\gamma^2 \frac{\mu_0}{4\pi} \frac{3mx(z - vt)}{[x^2 + y^2 + \gamma^2(z - vt)^2]^{5/2}}$$