Paradigma

WEBINAR - abril 16 2020

# Kaggle de Data Science - Nivel 2 optimización y tuneado.

ponente: Marco Russo



### Quién soy.

- Consultor en Data en Paradigma Digital, con más de 7 años como docente para importantes escuelas de negocios y profesor colaborador en la UOC.
- Especializado en data mining, optimización de modelos y machine learning en área del Marketing, Retail y Banca-Finanzas entre otras. Además de especialista en analítica digital, SEO y PPC en digital marketing y visualización de datos - BI.
- Apasionado de IoT, datos y robótica, dedico el tiempo con mi familia y a mi deporte favorito, bici de carretera.



Marco Russo (aka marcusRB)



@rb\_marcus



github.com/marcusRB



marcusRB

### Qué vamos a ver.

- Organización del entorno de trabajo
- 2. Flujo de trabajo
- 3. Tips
- 4. Optimización de los modelos
- 5. Demo

# 01.01

• • • Introducción

Nivel 1.

#### Webinar y repo - nivel 1.

https://bit.ly/34HCEGz





# 01.02

• • • Introducción

### Flujo de trabajo.

#### Flujo de trabajo.

Check feature one by Check missing values Apply selected features to ML models. one new patterns and and impute / remove insights them. Feat. Wrangle Modeling **EDA** Cleanse Engineer. Prepare features for the Create new features or final model. check cluster / groups to select the best ones.

#### Build prediction model.



Calculate CV to cross-validate

#### Cómo funciona.

- "Train" a model on lots and lots of data
  - Start with poor predictions
  - Make little tweaks to improve
  - Like child doing homework!
- Infer predictions on new data







Inference

#### Mejora continua.

|   | Model                    | Score_1st |  |
|---|--------------------------|-----------|--|
| 4 | Decision Tree            | 99.99     |  |
| 1 | KNN                      | 98.27     |  |
| 0 | Support Vector Machines  | 97.69     |  |
| 2 | Logistic Regression 97.0 |           |  |
| 3 | Random Forest 93.86      |           |  |



#### Submit.



# 01.03

• • • Introducción

Tips.

#### EDA y correlaciones.



#### Features.



[WEBINAR] / Kaggle nivel 1.

14

# 01.04

• • • Introducción

### Optimización de modelos.

#### Eliges el estimador.





https://scikit-learn.org/stable/tutorial/machine\_learning\_map/index.html

#### Los más frecuentes son.



#### Regression

What is the temperature going to be tomorrow?





#### Classification

Will it be Cold or Hot tomorrow?



#### Depende del dataset.



- 04 Modelos.

#### Algoritmos más utilizados.



[WEBINAR] / Kaggle nivel 1.

19

#### Pipeline Optimización.



#### Construir un ensemble.



Figure 7-2. Hard voting classifier predictions

#### Construir un modelo ANN.





#### Construir un modelo ANN.





[WEBINAR] / Kaggle nivel 1.

23

#### **Predicted Class**

|              | ſ        |                                   |                                                   | 1                                              |
|--------------|----------|-----------------------------------|---------------------------------------------------|------------------------------------------------|
|              |          | Positive                          | Negative                                          |                                                |
| Actual Class | Positive | True Positive (TP)                | False Negative (FN)  Type II Error                | Sensitivity $\frac{TP}{(TP + FN)}$             |
| Actual Class | Negative | False Positive (FP)  Type I Error | True Negative (TN)                                | Specificity $\frac{TN}{(TN+FP)}$               |
|              |          | $\frac{TP}{(TP+FP)}$              | Negative Predictive  Value $\frac{TN}{(TN + FN)}$ | Accuracy $\frac{TP + TN}{(TP + TN + FP + FN)}$ |

**Table 3**Measures for multi-class classification based on a generalization of the measures of Table 1 for many classes  $C_i$ :  $tp_i$  are true positive for  $C_i$ , and  $fp_i$  – false positive,  $fn_i$  – false negative, and  $tn_i$  – true negative counts respectively.  $\mu$  and M indices represent micro- and macro-averaging.

| Measure                | Formula                                                                              | Evaluation focus                                                                                             |
|------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Average Accuracy       | $\frac{\sum_{i=1}^l \frac{tp_i + tn_i}{tp_i + fn_i + fp_i + tn_i}}{I}$               | The average per-class effectiveness of a classifier                                                          |
| Error Rate             | $\frac{\sum_{i=1}^{l}\frac{fp_i+fn_i}{tp_i+fn_i+fp_i+tn_i}}{l}$                      | The average per-class classification error                                                                   |
| $Precision_{\mu}$      | $\frac{\sum_{i=1}^{l} tp_i}{\sum_{i=1}^{l} (tp_i + fp_i)}$                           | Agreement of the data class labels with those of a classifiers if calculated from sums of per-text decisions |
| $Recall_{\mu}$         | $\frac{\sum_{i=1}^{l} tp_i}{\sum_{i=1}^{l} (tp_i + fn_i)}$                           | Effectiveness of a classifier to identify class labels if calculated from sums of per-text decisions         |
| $Fscore_{\mu}$         | $\frac{(\beta^2+1)Precision_{\mu}Recall_{\mu}}{\beta^2Precision_{\mu}+Recall_{\mu}}$ | Relations between data's positive labels and those given by a classifier based on sums of per-text decisions |
| Precision <sub>M</sub> | $\frac{\sum_{i=1}^{l} \frac{tp_i}{tp_i + fp_i}}{l}$                                  | An average per-class agreement of the data class labels with those of a classifiers                          |
| Recall <sub>M</sub>    | $\frac{\sum_{i=1}^{l} \frac{tp_i}{tp_i + fn_i}}{l}$                                  | An average per-class effectiveness of a classifier to identify class labels                                  |
| Fscore <sub>M</sub>    | $\frac{(\beta^2+1)Precision_MRecall_M}{\beta^2Precision_M+Recall_M}$                 | Relations between data's positive labels and those given by a classifier based on a per-class average        |

créditos Machine Learning Mastery



créditos Machine Learning Mastery

© 2019 MachineLearningMastery.com All Rights Reserved.





créditos Machine Learning Mastery



# ¡Muchas Gracias!