Conceitos. Principais equipamentos e estruturas. Transmissão e técnicas de modulação.

Eduardo Furlan Miranda 2024-08-01

Baseado em:

- PESSOA, M. A. O. Informática Industrial I. 2017. ISBN 978-85-522-0184-7.
- TRONCO, M. L. Redes de Comunicação de Dados Industriais.
 2014. Apontamentos de Aula.

www.globalcources.com/enp

 A primeira evolução foi estabelecer um barramento de campo para transmissão de dados digitais utilizando os padrões RS232, RS485

Figura 4.1 | Barramento de campo

- Atualmente, esses sistemas foram aprimorados para o desenvolvimento dos chamados sistemas de controle distribuídos com vários meios de comunicação
 - permite sistemas abertos além dos proprietários e flexibilidade adequada para as diferentes topologias de rede

Figura 4.3 | Sistema de controle distribuído

Sistemas distribuídos e redes de comunicação industrial

- A definição de uma arquitetura para o sistema de controle engloba os elementos
 - Os CLPs utilizados para o controle do sistema produtivo
 - Os PACs utilizados para o controle local desse sistema produtivo
 - O sistema SCADA utilizado para a supervisão
 - As remotas de aquisição de dados
 - Uma rede de comunicação de dados

PAC = Programmable Automation Controller

- No CLP geralmente é tudo integrado, compacto
- O PAC geralmente e composto de vários módulos

Pirâmide da automação: integração como sistemas

Enterprise Resource Planning Modelo **ERP** orientado a componentes Manufacturing Execution **MES System Supervisory Control** IHM/SCADA and Data Acquisition Controle

Sens./Atuad.

Componentes de uma rede

Sinal analógico

- Elétrico, variação contínua
- Parâmetro portador da informação é implementado segundo a variação do fenômeno básico

Sinal digital

- Variação discreta
- Codificação

sinal digital com 3 estados discretos

• Elementos do sinal

- Amplitude
- Frequência
- Fase

TEMPO (SEG)	ÁNGULO ASSOCIADO	
0		
0,5	45*	
1,0	90°	
1,5	135°	
2,0	180°	
2,5	225°	
3,0	270°	
3,5	315	
4,0	315	

Modulação

- Portadora onda destinada a ser combinada a uma grandeza moduladora em um processo de modulação
- Moduladora Onda que provoca uma variação em características da onda portadora
- Onda Modulada Onda obtida por um processo de modulação ("soma" da portadora com a onda moduladora)

Onda portadora RF não modulada Sinal AF

Onda portadora RF modulada

Tipos de modulação

- Portadora senoidal
 - Moduladora analógica
 - Moduladora digital
- Portadora Trem-de-Pulsos
 - Moduladora analógica
 - Moduladora digital

(continua)

- Portadora Senoidal
- Moduladora analógica AM

- Portadora senoidal
- Moduladora analógica FM

- Portadora senoidal
- Moduladora analógica PM

Modulação por Chaveamento de Amplitude (ASK)

Modulação por Chaveamento de Frequência (FSK)

Modulação por Chaveamento de Fase (PSK)

Modulação por Diferencial por Chaveamento de Fase (DPSK)

Detecção Diferencial.

Modulação otimizada

número de bps aumenta, mas também aumenta a possibilidade de erro na transmissão e na demodulação, devido à interferência de ruídos (4 níveis devem ser detectados com precisão)

Modulação otimizada

FSK: 4 diferentes frequências para representar os dibit

 PSK: uso de detecção diferencial e associação de cada dibit a uma certa mudança de fase

Dibits	Mudança de Fase	
00	-135° = +225°	
01	-45° = +315°	
11	+ 45° = + 45°	
10	+135 = +135	

- QAM Modulação em Amplitude por Quadratura
 - Modulação combinada em amplitude e fase

Tribits	Mudança de Fase	Amplitude
000	-135°	A1
001	-135°	A2
010	- 45°	A1
011	- 45°	A2
100	+ 45°	A1
101	+ 45°	A2
110	+135°	A1
111	+135°	A2

- DPSK Chaveamento de Deslocamento de Fase Diferencial
 - Deslocamento de fase a cada símbolo (0 ou 1)

- Codificação
 - Códigos Binários, Multiníveis, HDB-3
- Detecção e Correção de Erros
 - Paridade, CRC
 próximos slides
- Multiplexação
 - FDM, TDM, PCM, PDH, SDH

Detecção e Correção de Erros Códigos Cíclicos (CRC)

- Tomar o trem de bits a ser transmitido
- Efetuar sua divisão (módulo 2) por um número binário fixo
 - Denominado gerador de código
- Transmitir efetivamente a informação original
 - Seguida do resto desta divisão

Códigos Cíclicos (CRC) - Transmissão

Códigos Cíclicos (CRC) - Recepção

- Ex. de representação dos bits
 - $10101 = 1.x^4 + 0.x^3 + 1.x^2 + 0.x^1 + 1.x^0 = x^4 + x^2 + 1$

- O polinômio é padronizado pela UTI
 - Ex.: CRC-16 = x16 + x15 + x2 + 1

Códigos Cíclicos (CRC) - Exemplo

Códigos Cíclicos (CRC) – Exemplo Recepção

0 Resto

Informação Recebida

Indica ausência de erros na transmissão

Exemplo

- 14 bits, com um 3-bit CRC, e o polinômio gerador
- Mensagem: 11010011101100

um a menos que o divisor

```
11010011101100\ 000 \quad \text{entrada deslocada para a direita com 3 zeros} \\ 1011 \quad \text{divisor (4 bits)} = x^3 + x + 1 = 1011
```

01100011101100 000 resultado