Évaluation nº 5 Inéquations Complétez l'encadré et codez ci-dessous votre		$\mathbf{e} pprox 0 \mathrm{h} 4$ nt (classe p	_	néro d		cembre nt à 2 chi	
NOM:		\bigcirc 3C \bigcirc	2A \(\)2B \(\))2C ()1B2		
Prénom :		$ \bigcirc 0\bigcirc 1$	$\bigcirc 2 \bigcirc 3$				
email : (si changement)		$\bigcirc 0 \bigcirc 1$	$\bigcirc 2 \bigcirc 3 \bigcirc$)4 ()5 \(\)6	\bigcirc 7 \bigcirc	8 09
Aucun document n'est autorisé. L'usage de la Les questions à choix multiples ont une unique tification n'est attendue pour ces questions. Po La clarté de la rédaction sera prise en ce Toute action volontaire rendant impossible ou une dégradation de la note finale.	e bonne r our les qu compte d	éponse per lestions ouv lans la no	mettant d'att vertes, tous le tation. Le t	es cal otal d	culs se es poi	ront jus nts est 2	tifiés. 20.
Question 1 L'ensemble des nombres x tels que $x > -4$ se	e note :						
$\bigcirc]-\infty;-4[\qquad \qquad \bigcirc]-4;\infty]$	<u> </u>	$-4;\infty[$	\bigcirc [∞ ; –	4[\bigcirc	[x; -4[
L'ensemble des nombres x tels que $-3 \geqslant x \geqslant 1$	−7 se no	te:					
$\bigcirc \]-7;-3]$ $\bigcirc \]-7;-3[$		3; -7]	$\bigcirc [-7; -3]$	3[\bigcirc	[-7; -3]	
Question 2 Indiquer si chaque affirmation est vraie ou fau	ısse						
2 est une solution de l'inéquation $9x - 5 \geqslant 6x$	x+3, d'	inconnue x	:		Vrai		Faux
-1 est une solution de l'inéquation $3x-1\leqslant$	$2x-4\;,$	d'inconnue	<i>x</i> :		Vrai		Faux
-2 est une solution de l'inéquation $x^2 + 3x$ –	-5<2,	d'inconnue	<i>x</i> :	\bigcirc	Vrai		Faux
Question 3 Représenter les intervalles I	$=]-\infty;$	-4[et J =]-3;5] sur u	ne dro	ite gra	duée et d	lonner
l'intervalle $I \cap J$.			$\bigcirc 0 \bigcirc 0.$	5 🔾 1	$\bigcirc 1.5$	Ne rien coc	her ici!

$(I_1) 7x > -17$	(I_2) x -	$-18 \geqslant -8$	(I_3) 5-	$-12x \geqslant -7$
Vous présenterez les détails des	$calculs\ et\ donnerez\ l$	'ensemble des soluti	ions sous forme d	l'un intervalle o
réunion d'intervalles.	$\bigcirc 0 \bigcirc 0$	$.5 \bigcirc 1 \bigcirc 1.5 \bigcirc 2$	$2\bigcirc 2.5\bigcirc 3\bigcirc 3$	3.5 Ne rien cocher ici !

Question 5 Résoudre dans $\mathbb R$ les inéquations suivantes d'inconnue x. $(I_3) \quad 1 \leqslant 3 - 2x \leqslant 5$ $(I_1) -5x - 2 \leqslant 2 - 4x$ (I_2) $7 - (2x - 5) \geqslant 5x + 3$ $Vous\ pr\'esenterez\ les\ d\'etails\ des\ calculs\ et\ donnerez\ l'ensemble\ des\ solutions\ sous\ forme\ d'un\ intervalle\ ou$ réunion d'intervalles. $\bigcirc 0$ $\bigcirc 0.5$ $\bigcirc 1$ $\bigcirc 1.5$ $\bigcirc 2$ $\bigcirc 2.5$ $\bigcirc 3$ $\bigcirc 3.5$ $\bigcirc 4$ $\bigcirc 4.5$ $\bigcirc 5$ $\bigcirc 5.5$ Ne rien cocher ici!

Question 6	Résoudre dans $\mathbb R$ l'iné	quation suivant	te d'inconnue x .		
		5x -	$2 \geqslant 0.1$		
Vous présentere	ez les détails des calcul	s et donnerez l			
réunion d'inter	valles.		$\bigcirc 0\bigcirc 0.5\bigcirc 1$	$\bigcirc 1.5 \bigcirc 2 \bigcirc 2.$	5 Ne rien cocher ici!
Question 7	2 est une solution de l	l'inéquation 2 m²	2 5	0 d'inconnue «	
	inéquation vérifiée pa				les de m .
		•		.5 🔾 1 🔾 1.5 🔾	