$10_{59} (K10a_2)$

Ideals for irreducible components of X_{par}

$$I_1^u = \langle u^{35} - 4u^{34} + \dots + 2b - 4, -6u^{35} + 17u^{34} + \dots + 2a + 7, u^{36} - 3u^{35} + \dots - 2u + 1 \rangle$$

$$I_2^u = \langle b + u, a + 1, u^2 + u + 1 \rangle$$

$$I_3^u = \langle u^2 + b, -u^2 + a - 1, u^5 + u^3 + u - 1 \rangle$$

$$I_4^u = \langle b - u - 1, a + u, u^2 + u + 1 \rangle$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 45 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{35} - 4u^{34} + \dots + 2b - 4, -6u^{35} + 17u^{34} + \dots + 2a + 7, u^{36} - 3u^{35} + \dots - 2u + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 3u^{35} - \frac{17}{2}u^{34} + \dots + \frac{13}{2}u - \frac{7}{2} \\ -\frac{1}{2}u^{35} + 2u^{34} + \dots - \frac{3}{2}u + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}u^{34} + u^{33} + \dots - \frac{1}{2}u - \frac{1}{2} \\ \frac{1}{2}u^{35} - u^{34} + \dots - \frac{1}{2}u^{2} + \frac{3}{2}u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{35} - \frac{3}{2}u^{34} + \dots - \frac{3}{2}u^{2} - \frac{1}{2} \\ \frac{1}{2}u^{35} - u^{34} + \dots - \frac{1}{2}u^{2} + \frac{3}{2}u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2u^{35} - \frac{9}{2}u^{34} + \dots + \frac{7}{2}u - \frac{5}{2} \\ -\frac{3}{2}u^{35} + 4u^{34} + \dots - \frac{3}{2}u + 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-\frac{13}{2}u^{35} + 18u^{34} + \cdots \frac{11}{2}u 2$

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^{36} - 11u^{35} + \dots - 4u + 1$
c_2, c_9	$u^{36} - 3u^{35} + \dots - 4u + 1$
c_4, c_7	$u^{36} + 3u^{35} + \dots + 2u + 1$
c_5	$u^{36} + 19u^{35} + \dots + 4u + 1$
c_6, c_{10}	$u^{36} - 4u^{35} + \dots - 48u + 16$
c ₈	$u^{36} - 3u^{35} + \dots - 26u + 17$

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y^{36} + 31y^{35} + \dots + 196y + 1$
c_2, c_9	$y^{36} + 11y^{35} + \dots + 4y + 1$
c_4, c_7	$y^{36} + 19y^{35} + \dots + 4y + 1$
c_5	$y^{36} - y^{35} + \dots - 12y + 1$
c_6, c_{10}	$y^{36} - 20y^{35} + \dots - 128y + 256$
c ₈	$y^{36} - 21y^{35} + \dots + 5682y + 289$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.387195 + 0.859809I		
a = 0.864957 + 0.109414I	-0.34130 - 1.65777I	-2.55644 + 4.36495I
b = -0.0189081 + 0.0958332I		
u = -0.387195 - 0.859809I		
a = 0.864957 - 0.109414I	-0.34130 + 1.65777I	-2.55644 - 4.36495I
b = -0.0189081 - 0.0958332I		
u = -0.729583 + 0.777572I		
a = -1.03050 + 1.01725I	-1.45237 - 5.42060I	-4.83818 + 6.67480I
b = 0.317863 - 1.274650I		
u = -0.729583 - 0.777572I		
a = -1.03050 - 1.01725I	-1.45237 + 5.42060I	-4.83818 - 6.67480I
b = 0.317863 + 1.274650I		
u = 0.859716 + 0.267248I		
a = -0.901846 + 1.060320I	-4.44713 - 8.11971I	-3.47630 + 5.34748I
b = 0.44242 - 1.51885I		
u = 0.859716 - 0.267248I		
a = -0.901846 - 1.060320I	-4.44713 + 8.11971I	-3.47630 - 5.34748I
b = 0.44242 + 1.51885I		
u = 0.849597 + 0.216556I		
a = 0.853721 - 0.852880I	-5.28539 - 2.14662I	-5.02569 + 0.44253I
b = -0.173950 + 1.239740I		
u = 0.849597 - 0.216556I		
a = 0.853721 + 0.852880I	-5.28539 + 2.14662I	-5.02569 - 0.44253I
b = -0.173950 - 1.239740I		
u = -0.551728 + 0.987777I		
a = -0.415426 - 1.128760I	1.29309 - 3.12534I	1.43285 + 2.16786I
b = 0.676359 - 0.193589I		
u = -0.551728 - 0.987777I		
a = -0.415426 + 1.128760I	1.29309 + 3.12534I	1.43285 - 2.16786I
b = 0.676359 + 0.193589I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.587634 + 0.555787I		
a = -0.996846 + 0.434125I	2.54802 - 1.41982I	3.82315 + 3.52465I
b = 0.801082 - 0.030150I		
u = -0.587634 - 0.555787I		
a = -0.996846 - 0.434125I	2.54802 + 1.41982I	3.82315 - 3.52465I
b = 0.801082 + 0.030150I		
u = -0.424101 + 1.130320I		
a = 1.47023 + 1.05531I	-4.09621 - 1.05243I	-6.63369 + 0.71979I
b = 0.079663 + 1.259790I		
u = -0.424101 - 1.130320I		
a = 1.47023 - 1.05531I	-4.09621 + 1.05243I	-6.63369 - 0.71979I
b = 0.079663 - 1.259790I		
u = 0.515700 + 1.111390I		
a = -1.30481 + 0.95936I	-0.65138 + 7.27213I	-2.75984 - 7.42786I
b = 1.199870 + 0.507968I		
u = 0.515700 - 1.111390I		
a = -1.30481 - 0.95936I	-0.65138 - 7.27213I	-2.75984 + 7.42786I
b = 1.199870 - 0.507968I		
u = 0.445924 + 1.144390I		
a = 0.761539 - 0.451840I	-4.74271 + 4.00295I	-9.23293 - 4.01986I
b = -0.595300 + 0.157343I		
u = 0.445924 - 1.144390I		
a = 0.761539 + 0.451840I	-4.74271 - 4.00295I	-9.23293 + 4.01986I
b = -0.595300 - 0.157343I		
u = -0.471044 + 1.134590I		
a = -1.37055 - 1.28746I	-3.75883 - 6.78157I	-5.67848 + 6.13587I
b = 0.30745 - 1.38445I		
u = -0.471044 - 1.134590I		
a = -1.37055 + 1.28746I	-3.75883 + 6.78157I	-5.67848 - 6.13587I
b = 0.30745 + 1.38445I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.024315 + 0.768307I		
a = 1.47731 - 0.09368I	-1.10226 - 1.38558I	-6.76484 + 3.92520I
b = 0.090892 - 0.615872I		
u = -0.024315 - 0.768307I		
a = 1.47731 + 0.09368I	-1.10226 + 1.38558I	-6.76484 - 3.92520I
b = 0.090892 + 0.615872I		
u = 0.264173 + 1.234870I		
a = 0.373926 - 0.622707I	-9.31556 - 4.56904I	-8.72559 + 2.82656I
b = 0.32517 - 1.56431I		
u = 0.264173 - 1.234870I		
a = 0.373926 + 0.622707I	-9.31556 + 4.56904I	-8.72559 - 2.82656I
b = 0.32517 + 1.56431I		
u = 0.304638 + 1.233790I		
a = -0.105861 + 0.569620I	-9.88952 + 1.61524I	-9.56754 - 2.32735I
b = -0.119820 + 1.383530I		
u = 0.304638 - 1.233790I		
a = -0.105861 - 0.569620I	-9.88952 - 1.61524I	-9.56754 + 2.32735I
b = -0.119820 - 1.383530I		
u = 0.636789 + 0.302809I		
a = -1.62143 + 0.78351I	1.68165 - 2.75426I	1.42028 + 4.13268I
b = 1.017930 - 0.416218I		
u = 0.636789 - 0.302809I		
a = -1.62143 - 0.78351I	1.68165 + 2.75426I	1.42028 - 4.13268I
b = 1.017930 + 0.416218I		
u = 0.549648 + 1.188840I		
a = 1.80307 - 0.33069I	-8.19229 + 7.27945I	-7.73458 - 3.93070I
b = -0.278564 - 1.254500I		
u = 0.549648 - 1.188840I		
a = 1.80307 + 0.33069I	-8.19229 - 7.27945I	-7.73458 + 3.93070I
b = -0.278564 + 1.254500I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.572738 + 1.180430I		
a = -1.98873 + 0.46037I	-7.1856 + 13.3899I	-6.02318 - 8.65555I
b = 0.48742 + 1.57860I		
u = 0.572738 - 1.180430I		
a = -1.98873 - 0.46037I	-7.1856 - 13.3899I	-6.02318 + 8.65555I
b = 0.48742 - 1.57860I		
u = 0.274519 + 0.624372I		
a = -2.10757 + 0.21578I	-0.04793 + 2.91691I	-3.21123 - 0.65680I
b = 0.635668 + 1.038860I		
u = 0.274519 - 0.624372I		
a = -2.10757 - 0.21578I	-0.04793 - 2.91691I	-3.21123 + 0.65680I
b = 0.635668 - 1.038860I		
u = -0.597841 + 0.093585I		
a = -0.261177 + 0.245146I	-0.94199 + 2.63032I	-1.44776 - 2.88489I
b = 0.304766 + 1.198650I		
u = -0.597841 - 0.093585I		
a = -0.261177 - 0.245146I	-0.94199 - 2.63032I	-1.44776 + 2.88489I
b = 0.304766 - 1.198650I		

II.
$$I_2^u = \langle b + u, a + 1, u^2 + u + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u+1 \\ -u-1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ -u-1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8u + 1

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_4 c_5, c_8	$u^2 + u + 1$		
c_3, c_7, c_9	$u^2 - u + 1$		
c_6, c_{10}	u^2		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_5, c_7 c_8, c_9	$y^2 + y + 1$		
c_6,c_{10}	y^2		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = -1.00000	-4.05977I	-3.00000 + 6.92820I
b = 0.500000 - 0.866025I		
u = -0.500000 - 0.866025I		
a = -1.00000	4.05977I	-3.00000 - 6.92820I
b = 0.500000 + 0.866025I		

III.
$$I_3^u = \langle u^2 + b, -u^2 + a - 1, u^5 + u^3 + u - 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} - 1 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + u + 1 \\ u^{4} - u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + u + 1 \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + u + 1 \\ -u^{3} - u^{2} - u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =-6

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^5 - 2u^4 + 3u^3 - 2u^2 + u + 1$
$c_2, c_4, c_7 \ c_9$	$u^5 + u^3 + u + 1$
c_5	$u^5 + 2u^4 + 3u^3 + 2u^2 + u - 1$
c_{6}, c_{10}	$(u+1)^5$
c ₈	$u^5 + u^3 - 2u^2 - u + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_5	$y^5 + 2y^4 + 3y^3 + 6y^2 + 5y - 1$
c_2, c_4, c_7 c_9	$y^5 + 2y^4 + 3y^3 + 2y^2 + y - 1$
c_6, c_{10}	$(y-1)^5$
c_8	$y^5 + 2y^4 - y^3 - 6y^2 + 9y - 4$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.707729 + 0.841955I		
a = 0.79199 - 1.19175I	-1.64493	-6.00000
b = 0.208008 + 1.191750I		
u = -0.707729 - 0.841955I		
a = 0.79199 + 1.19175I	-1.64493	-6.00000
b = 0.208008 - 1.191750I		
u = 0.389287 + 1.070680I		
a = 0.005198 + 0.833601I	-1.64493	-6.00000
b = 0.994802 - 0.833601I		
u = 0.389287 - 1.070680I		
a = 0.005198 - 0.833601I	-1.64493	-6.00000
b = 0.994802 + 0.833601I		
u = 0.636883		
a = 1.40562	-1.64493	-6.00000
b = -0.405620		

IV.
$$I_4^u=\langle b-u-1,\; a+u,\; u^2+u+1\rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u+2 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_4 \ c_5, c_8$	$u^2 + u + 1$
c_3, c_7, c_9	$u^2 - u + 1$
c_6, c_{10}	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_7 c_8, c_9	$y^2 + y + 1$
c_6,c_{10}	y^2

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0.500000 - 0.866025I	0	0
b = 0.500000 + 0.866025I		
u = -0.500000 - 0.866025I		
a = 0.500000 + 0.866025I	0	0
b = 0.500000 - 0.866025I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^{2}+u+1)^{2})(u^{5}-2u^{4}+\cdots+u+1)(u^{36}-11u^{35}+\cdots-4u+1)$
c_2	$((u^{2}+u+1)^{2})(u^{5}+u^{3}+u+1)(u^{36}-3u^{35}+\cdots-4u+1)$
c_3	$((u^{2}-u+1)^{2})(u^{5}-2u^{4}+\cdots+u+1)(u^{36}-11u^{35}+\cdots-4u+1)$
c_4	$((u^{2}+u+1)^{2})(u^{5}+u^{3}+u+1)(u^{36}+3u^{35}+\cdots+2u+1)$
<i>C</i> 5	$((u^{2}+u+1)^{2})(u^{5}+2u^{4}+\cdots+u-1)(u^{36}+19u^{35}+\cdots+4u+1)$
c_6, c_{10}	$u^4(u+1)^5(u^{36}-4u^{35}+\cdots-48u+16)$
<i>C</i> ₇	$((u^2 - u + 1)^2)(u^5 + u^3 + u + 1)(u^{36} + 3u^{35} + \dots + 2u + 1)$
C ₈	$((u^{2}+u+1)^{2})(u^{5}+u^{3}-2u^{2}-u+2)(u^{36}-3u^{35}+\cdots-26u+17)$
<i>C</i> 9	$((u^2 - u + 1)^2)(u^5 + u^3 + u + 1)(u^{36} - 3u^{35} + \dots - 4u + 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3	$(y^{2} + y + 1)^{2}(y^{5} + 2y^{4} + 3y^{3} + 6y^{2} + 5y - 1)$ $\cdot (y^{36} + 31y^{35} + \dots + 196y + 1)$
c_2, c_9	$((y^2 + y + 1)^2)(y^5 + 2y^4 + \dots + y - 1)(y^{36} + 11y^{35} + \dots + 4y + 1)$
c_4, c_7	$((y^2+y+1)^2)(y^5+2y^4+\cdots+y-1)(y^{36}+19y^{35}+\cdots+4y+1)$
c_5	$((y^2+y+1)^2)(y^5+2y^4+\cdots+5y-1)(y^{36}-y^{35}+\cdots-12y+1)$
c_6, c_{10}	$y^4(y-1)^5(y^{36}-20y^{35}+\cdots-128y+256)$
c ₈	$(y^{2} + y + 1)^{2}(y^{5} + 2y^{4} - y^{3} - 6y^{2} + 9y - 4)$ $\cdot (y^{36} - 21y^{35} + \dots + 5682y + 289)$