Croatian Journal of Education Vol.18; No.1/2016, pages: 41-70 Original research paper Paper submitted: 8th July 2014 Paper accepted: 29th January 2015 doi: 10.15516/cie.v18i1.1471

The Use of Data Mining for Strategic Management: A Case Study on Mining Association Rules in Student Information System

Aytuğ Onan¹, Vedat Bal² and Burcu Yanar Bayam³
¹Department of Computer Engineering, Celal Bayar University
²Department of Management Information Systems, Celal Bayar University
³Department of Business Administration, Celal Bayar University

Abstract

In today's competitive conditions changes in business environment and business structures make strategic management an effective form of management for business and organizations. Strategic management is a current management strategy that requires setting of the appropriate strategies, plans and applications and putting them into action in order to reach the aims and goals of organizations. The process of strategic management involves setting the company's vision, mission and objectives, determining the competitive position, and the evaluation of results obtained by strategy selection, development and application. In the application of activities related to the strategic management of business processes, the discipline of data mining, which can be defined as the process of extracting useful and meaningful patterns from large volumes of data, emerges as a viable method. In this study, strategic management and data mining disciplines and their basic concepts and applications are introduced. Apart from that, data mining methods in the context of strategic management are taken into consideration. In addition, a sample case study about the use of association rule mining algorithms in student information systems data will be presented.

Key words: business intelligence; data mining; educational data; knowledge discovery.

Introduction

In today's competitive environment, rapid changes in various types of business environment, such as political, economic, social or technological changes, make it crucial to consider and act strategically while managing a business or an organization. Business strategy can be defined as the management of the organization's resources and competences to reach the desired objectives by taking positive and negative external factors into account (Jeffs, 2008). Strategic management is an organizational process in which an understanding of the firm's performance is obtained by analysing external and internal environment, and the firm's conditions in terms of these environments (Nag et al., 2007). The main objectives of strategic management in the organizational context are obtaining a competitive advantage, building a sustainable competitive advantage, acting in a future-oriented way and managing the organization in an integrated manner (Barca, 2002). Strategic management is a process which requires the development of a clear vision and consequential mission statement of the firm, evaluation of strengths and weaknesses of the firm, identification of the important opportunities and threats regarding the business environment, analysis of the competition, the setting of the goals and objectives of the firm, assessment of the strategic options and selection of proper strategies, transformation of strategic plans to action plans and establishment of appropriate controls (Zimmerer et al., 2008).

Knowledge management is a vital practice for activities required in strategic management process. With the advances in the field of intelligent methods, such as expert systems, case-based reasoning, fuzzy logic, neural networks and data mining, it is possible for business organizations to extend their knowledge base by catching individual or collective knowledge (Laudon & Laudon, 2012). Expert systems, case-based reasoning and fuzzy logic methods are used for obtaining implicit knowledge, whereas neural networks and data mining are used for knowledge discovery (Laudon & Laudon, 2012).

Data mining is a non-trivial process of identifying valid, novel, potentially useful and ultimately understandable patterns in data (Srikant & Agrawal, 1996). Data mining and knowledge discovery are important processes for obtaining competitive advantages for business organizations. Data mining methods can be used to support targeting applications, which is central to marketing management (Levin & Zahavi, 2010). With the help of data mining methods, business organizations can improve their interaction with their customers by understanding their expectations more effectively and act accordingly (Thearling, 2010). Fraud detection, financial predictive modelling, market basket analysis, customer segmentation and customer churn analysis are among other common strategic applications of data mining in business organizations (Sumathi & Sivanandam, 2006). According to Badur and Livvarçin (2006), data mining methods can be vital for strategic management by making it possible to solve strategic decision problems, providing useful patterns for competitive intelligence and by being useful for knowledge management.

Data mining in educational domain is a relatively new research direction. Educational data mining aims to explore data from educational domain with the help of designed models, tasks, methods and algorithms (Pena-Ayala, 2014). A large amount of data can be collected from educational domain for data mining applications, whereas data mining provides decision support so that the educational practice and learning material can be improved (Calders & Pechenizkiy, 2011). The application of data mining in educational setting is mainly directed towards improving learning. Student modelling, predicting the performance of students and learning outcomes, generating recommendation, analysing the behaviour of learners, communicating with stakeholders, maintaining and improving courses and comparatively analysing various forms of pedagogical support are among the main reasons why data mining should be introduced in educational practice (Bousbia & Belamri, 2014). The techniques of data mining such as information visualization, clustering, classification and association rule mining can be extremely viable tools for enhancing education. Information visualization tools provide instructors with an understanding about their students (Romero et al., 2008). Clustering can be helpful in finding students who share similar learning characteristics (Tang & McCalla, 2005). This may enable instructors to behave differently towards students, based on their personal skills and qualifications. Classification can be used to predict and model student performance (Minaei-Bidgoli & Punch, 2003). Association rule mining algorithms can be used to determine students' learning problems and offer relevant advice (Hwang et al., 2003). Strategic management in educational settings and quality assurance require activities which are knowledge-driven. In this regard, data mining plays a crucial role in improving the quality of education (Alnoukari, 2012).

Data Mining

Data mining is the process of knowledge discovery from large databases to extract useful information with the use of tools and techniques borrowed from other disciplines, such as statistics, mathematics, artificial intelligence and machine learning. Knowledge discovery process can be viewed as an iteration sequence of activities consisting of data cleaning, data integration, data selection, data transformation, data mining, pattern evaluation and knowledge presentation. Data cleaning aims to remove noisy, missing or inconsistent data from the data set; data integration aims to integrate multiple data sources; data selection aims to extract appropriate data from database; data transformation involves application of appropriate techniques so that data can be converted into a suitable form for mining task; data mining involves the application of data mining methods/algorithms to extract useful patterns; pattern evaluation aims to evaluate the interestingness of extracted patterns, while knowledge presentation involves presenting the mined knowledge to the user in a visual form (Han & Kamber, 2006).

Data mining tasks can mainly be categorized as classification, clustering, association, sequencing, regression and forecasting (Turban et al., 2005). Classification aims to

predict the class of unseen data based on building a model by predefined classes, a number of attributes and a learning set (Olson & Delen, 2008). The most popular classification methods are decision tree classifiers, support vector machines (SVM), logistic regression, discriminant analysis, neural networks, Bayesian networks, K-nearest neighbour classifier, case-based reasoning, genetic algorithm and fuzzy logic based techniques (Phyu, 2009; Badur & Livvarçin, 2006). Credit scoring, bond quality rating, common stock investment category classification, common stock price and earnings performance classification, failure prediction models for non-financial firms and early warning systems for financial institutions are among the typical applications of classification methods in business and finance (Altman & Walter, 1981).

Clustering is an unsupervised learning method in which data objects are assigned to clusters such that data objects within the same cluster are as close to each other as possible, whereas data objects within assigned to different clusters are as different as possible. The assignment of data objects into clusters is handled on the basis of proximity or similarity measures between data objects (Jain & Dubes, 1988). The most important clustering methods can be classified into five categories: partitioning methods, hierarchical methods, density-based methods, grid-based methods and model-based methods. K-means, K-medoids, CLARA, CLARANS, DBSCAN and Wave Cluster are among the most well-known clustering algorithms. Market segmentation and customer segmentation are some of the representative examples of the use of clustering in business (Han & Kamber, 2006).

Association aims to identify relationships between events that occur at one time, whereas sequencing aims to identify relationships between events that occur over a time period (Turban et al., 2005). Market basket analysis, multimedia data mining, data stream mining, web mining and software bug mining are among some of the application areas of frequent pattern mining (Han et al., 2007). By applying methods for sequential analysis over a time period, sequentially purchased item sets can be obtained and this information may be useful for developing marketing plans (Badur & Livvarçin, 2006).

Regression maps the data to a prediction value. There are linear and nonlinear regression techniques. Sales predictions can be done with the aid of regression techniques. Forecasting aims to predict future trends, such as demand based on an exhibited large data set. Both regression and forecasting methods are used for estimation (Turban et al., 2005).

Methods

Association rule mining requires finding interesting associations implicit in a large amount of data. Let I be a set of attributes called items, X be an item set that is a subset of I.

Let the database D contain a set of transactions $\{T_1, T_2, ..., T_n\}$, where each transaction is an item set and each item set has a support or frequency value indicating statistical

significance. The support *s* of an item set *X* is calculated by equation (1) given as follows (Rantzau & Schwarz, 1999):

$$s(X) = |\{T \in D | X \subseteq T | / |D|\}\}$$

$$\tag{1}$$

An association rule is an implication X=, where X, Y and $X \cap Y$ =. The confidence for rule X= is calculated by equation (2), given as follows (Rantzau & Schwarz, 1999):

$$c(X, Y) = s(X \cup Y) / s(X) \tag{2}$$

The confidence measure indicates the strength of a rule. A confidence threshold is used to exclude rules that are not strong enough and a support threshold is used to exclude rules whose number of transactions containing the union of antecedent and consequent part of association rule is below the specified threshold value (Rantzau & Schwarz, 1999).

Given a database D and confidence and support thresholds, association rule mining problem can be defined as the generation of all association rules X= with greater support value than the minimum support threshold and greater confidence value than the minimum confidence threshold. Association rule mining can be viewed as a two-step procedure in which finding all frequent item sets is followed by generating strong association rules from the frequent item sets (Han & Kamber, 2006). Besides support and confidence measures, some other rule evaluation measures are used in association rule mining, such as lift, rule interestingness, J-measure, conviction, correlation coefficients from statistics, Laplace or Gini rule induction and decision tree induction (Höppner, 2010).

Association Rule Mining Algorithms

This section presents three association rule mining algorithms utilized in this study, namely Apriori, Predictive Apriori and Tertius algorithms.

Apriori Algorithm

Apriori algorithm is one of the most popular association rule mining algorithms. It was introduced by Agrawal and Srikant (1994). Apriori algorithm finds all itemsets that have support not less than minimum support threshold based on prior knowledge. Itemsets satisfying minimum support condition are referred to as frequent itemsets. The main processing of algorithm is based on level-wise search, where k-itemsets are used to obtain (k+1)-itemsets (Liao, 2009). The algorithm starts with the scan of database to determine the total number of each item. The items that satisfy both minimum support and minimum confidence conditions are gathered as frequent 1-itemsets. Then, frequent 1-itemsets are used to obtain frequent 2-itemsets. In the same manner, frequent 3-itemsets are obtained from frequent 2-itemsets. The iterative process continues until no more k-itemsets can be found. An important characteristic of the algorithm is the downward closure property, which means that if an itemset is not frequent, its supersets are not frequent either (Motoda & Ohora, 2009).

Predictive Apriori Algorithm

Predictive Apriori algorithm is Apriori based algorithm for association rule mining that searches with an increasing support threshold for the best *n* rules concerning a support-based corrected confidence value. It was introduced by Scheffer (2001). Predictive Apriori algorithm aims to maximize the expected accuracy of an association rule on unobserved data. While ranking the rules, Apriori algorithm takes only confidence into account. However, predictive Apriori algorithm takes not only the confidence, but also support and predictive accuracy measures (Nahar et al., 2013).

Tertius Algorithm

Tertius algorithm is an association rule mining algorithm that searches for clauses with the highest value of confirmation evaluation. It was introduced by Flach and Lachiche (2001). Expected probability and observed probability measures are calculated in this algorithm (Nahar et al., 2013). The algorithm uses first order logic representation. The database scan depends on the number of literals in the rules. The algorithm has relatively long runtime (Arora et al., 2013).

Association Rule Mining on Educational Data

Many researchers have focused on the application of association rule mining algorithms on education data. With the use of educational association rule mining, the content which students access together, the combinations of courses students fail, students' attitudes and other useful information may be revealed. Zaiane and Luo (2001), for instance, proposed the discovery of useful patterns based on restrictions in order to aid educators in evaluating students' web-based course activities. In another study, Apriori algorithm is utilized to determine the success conditions of students based on the rules obtained on the grades received from university core courses in the first two academic years (Karabatak & İnce, 2004). Buldu and Üçgün (2010) utilized Apriori algorithm on vocational high school students' data in order to obtain the rules indicating the relation between the failed courses. Abdullah et al. (2011a) proposed a model consisting of pre-processing, mining patterns and assigning weights in order to discover highly positive association rules from students' enrolment data. Abdullah et al. (2011b) proposed a measure, called critical relative support measure, to extract efficiently least association rules to enhance current educational standards and management. In another study, association rule mining is applied to acquire useful rules from questionnaire results received from university students to observe the effects of social network sites on the students (Koç & Karabatak, 2011). Taş et al. (2013) applied Apriori algorithm to reveal the internship tendencies of students at Computer Engineering Department of Sakarya University in order to improve the efficiency of internship period and revise the internship policy of the department. In another study, students' attitudes towards selecting technical elective courses are analysed with the use of Apriori algorithm (Güngör et al., 2013).

It should be emphasized that association rule mining on education data is a promising field. Building a recommender agent for online learning activities, automatically guiding the learners' activities and intelligently generating and recommending learning materials, discovering useful relations from students' usage of information for the teacher, determining simultaneously occurring mistakes of students, obtaining a detailed feedback on e-learning process, determining navigation patterns of students and usage of these patterns in evaluation and adaptation of the course content based on students' progress are among the main viable applications of association rule mining in educational settings (Garcia et al., 2010).

Results

The data set used in this study has been obtained from student information system of Celal Bayar University. The data set contains records of 692 undergraduate students of Business Administration programme at the Faculty of Economics and Administrative Sciences. The main attributes of the data set are: class, age, gender, nationality, place of birth, family and marital status, last educational degree earned by mother, last educational degree earned by father, number of siblings, type of study (regular or evening programme), income status and success conditions of each student. Among the students involved in this study, 349 students were male and 343 students were female. The number of students enrolled in a regular study programme was 342, while the rest of the students participated in the evening programme. In this study, three well-known aforementioned association rule mining algorithms, Apriori, Predictive Apriori and Tertius algorithms, were utilized in order to extract useful association rules on the data set. In order to conduct experimental studies, WEKA (Waikato Environment for Knowledge Analysis) was used. WEKA is an open-source software written in Java, containing a collection of machine learning algorithms for data analysis and predictive modelling (Witten et al., 2011). In order to apply association rule mining algorithms, a data set is first pre-processed by unsupervised numeric to nominal conversion filter. In order to identify strong association rules regarding success conditions of the students, all students are mainly assigned into two distinct groups based on their grade point average (GPA) - as successful and unsuccessful students. Then, three association rule mining algorithms are applied to the database.

In Table 1, association rules obtained by Apriori algorithm are presented. The table illustrates the best (strong) association rules obtained by the association rule mining algorithm based on two interestingness measures: support and confidence. Here, support (which indicates the proportion of transactions in the database containing the item set) and confidence (which indicates the probability of finding the right hand side of a rule in transactions under the condition that these transactions are also in the left hand side) for the strong association rules are given.

In Table 2, association rules obtained by Predictive Apriori algorithm are presented. In Predictive Apriori algorithm, a rule is added if the expected predictive accuracy of this rule is among the n best rules. Hence, Table 2 includes support values and accuracy rates.

Table 1
Association rules obtained by Apriori algorithm

Rules	Support Values	Confidence
If {Age=19 AND Type_of_study=Regular_programme} ==> Class=1	73 / 73	1.0
If {Age=19 AND Success_conditions=Unsuccessful} ==> Class=1	98/92	0.94
If {Gender=Male AND Last_educational_degree_Father=High_school} ==> Success_conditions=Unsuccessful	90 / 84	0.93
If {Age=19} ==> Class=1	124 / 115	0.93
If {Last_educational_degree_Mother=Secondary_school_or_below AND Last_educational_degree_Father=Secondary_school_or_ below AND type_of_study=Regular_programme AND Success_ conditions=Unsuccessful} ==> Income_status=Low	96 / 89	0.93
If {Gender=Male AND Last_educational_degree_ Father=Secondary_school_or_below AND type_of_study=Regular_ programme}==>Income_status=Low	77 / 71	0.92
If {Age=19 AND Income_status=Low}==>Class=1	75 / 69	0.92
If {Class=1 AND Gender=Female AND Income_status=Low AND Last_educational_degree_Father=Secondary_school_or_below }==> Last_educational_degree_Mother=Secondary_school_or_below	88 / 80	0.91
If {Class=1 AND Last_educational_degree_Mother=Secondary_school_ or_below AND Last_educational_degree_Father=Secondary_school_ or_below AND type_of_study=Regular_programme}==>Income_ status=Low	87 / 79	0.91
If {last_educational_degree_Mother=Secondary_school_or_below AND last_educational_degree_Father=Secondary_school_or_below AND type_of_study=Regular_programme}==>Income_status=Low	151 / 137	0.91
If {last_educational_degree_Father=Secondary_school_or_below AND type_of_study=Regular_programme AND Success_conditions=Unsuccessful}==>Income_status=Low	115 / 104	0.90
If {Age=21 AND last_educational_degree_Father=Secondary_school_ or_below}==> last_educational_degree_Mother=Secondary_school_ or_below	90 / 81	0.90
If {Class=1 AND Gender=Male AND last_educational_degree_ Mother=Secondary_school_or_below AND last_educational_degree_ Father=Secondary_school_or_below}==> Income_status=Low	90 / 81	0.90

Table 2
Association rules obtained by Predictive Apriori algorithm

Rules	Support Values	Accuracy
If {Age=19 AND Type_of_study=Regular_programme} ==> Class=1	73 / 73	0.99488
If {Class=2 AND Gender=Male AND last_educational_degree_ Father=High_school} ==> Success_conditions=Unsuccessful	34 / 34	0.99411
If {Gender=Male AND last_educational_degree_MOTHER=High_school AND last_educational_degree_Father=High_school AND Type_of_study=Evening_programme} ==> Success_conditions=Unsuccessful	26 / 26	0.99338
If {Class=2 AND Age=20 AND last_educational_degree_ MOTHER=Secondary_school_or_below AND last_educational_ degree_Father=Secondary_school_or_below AND Success_ conditions=Unsuccessful}==> Income_status=Low	25 / 25	0.99324
If {Age=19 AND Income_status=High} ==> Class=1	24 / 24	0.99309
If {Gender=Male AND place_of_birth=IZMIR AND last_educational_degree_Father=High_school AND Income_status=Low} ==> Success_conditions=Unsuccessful	23 / 23	0.99292
If {Class=2 AND Gender=Male AND last_educational_degree_ Father=Secondary_school_or_below AND Type_of_study=Regular_ programme} ==> Income_status=Low	21 / 21	0.99252
If {Age=21 AND Gender=Male AND last_educational_degree_ MOTHER=Secondary_school_or_below AND Type_of_study=Regular_ programme} ==> Income_status=Low	21 / 21	0.99252
If {Age=21 AND Gender=Female AND last_educational_degree_Father=Secondary_school_or_below AND Success_conditions=Successful} ==> last_educational_degree_MOTHER=Secondary_school_or_below	21 / 21	0.99252
If {Age=21 AND Gender=Male AND last_educational_degree_ Father=High_school} ==> Success_conditions=Unsuccessful	19/19	0.99201
If {Age=20 AND Gender=Male AND last_educational_degree_ Father=High_school AND Type_of_study=Evening_programme} ==> Success_conditions=Unsuccessful	19 / 19	0.99201
If {Class=2 AND place_of_birth=IZMIR AND last_educational_degree_Father=Secondary_school_or_below AND Success_conditions=Unsuccessful} ==> Income_status=Low	18 / 18	0.99169
If {Age=21 AND Gender=Female AND Type_of_study=Regular_programme AND Success_conditions=Successful} ==> last_educational_degree_MOTHER=Secondary_school_or_below	18 / 18	0.99169
If {Gender=Male AND last_educational_degree_Father=High_ school AND Type_of_study=Evening_programme} ==> Success_ conditions=Unsuccessful	52 / 51	0.99165
If {Class=2 AND Age=20 AND place_of_birth=IZMIR AND last_educational_degree_Father=Secondary_school_or_below} ==>Income_status=Low	17 / 17	0.99134
If {Age=19 AND Gender=Male AND last_educational_degree_ MOTHER=Secondary_school_or_below AND last_educational_degree_ Father=Secondary_school_or_below} ==> Class=1	17 / 17	0.99134

If {Age=19 AND last_educational_degree_MOTHER=Undergraduate} ==> Class=1	17 / 17	0.99092
If {Gender=Male AND place_of_birth=AYDIN} ==> Success_conditions=Unsuccessful	16 / 16	0.99092
If {Class=1 AND Age=21 AND last_educational_degree_ Father=Secondary_school_or_below AND Type_of_study=Regular_ programme} ==> last_educational_degree_MOTHER=Secondary_ school_or_below	16 / 16	0.99092
If {Class=2 AND Age=21 AND Gender=Female Success_ conditions=Successful} ==> last_educational_degree_ MOTHER=Secondary_school_or_below	16 / 16	0.99092
If {Age=19 AND last_educational_degree_MOTHER=High_school AND last_educational_degree_Father=High_school AND Success_conditions=Unsuccessful} ==> Class=1	16 / 16	0.99092
If {Age=19 AND Gender=Male AND last_educational_degree_ Father=High_school} ==> Class=1	15 / 15	0.99043
If {Age=23 AND last_educational_degree_Father=Secondary_school_ or_below AND Income_status=Low} ==> last_educational_degree_ MOTHER=Secondary_school_or_below	15 / 15	0.99043
If {Class=2 AND Age=20 AND Gender=Male AND last_educational_degree_Father=Secondary_school_or_below} ==> Income_status=Low	15 / 15	0.99043
If {Age=21 AND Gender=Male AND last_educational_degree_ Father=Secondary_school_or_below AND Type_of_study=Regular_ programme} ==> Income_status=Low	15 / 15	0.99043

Table 3 presents the association rules obtained by Tertius algorithm.

Table 3
Association rules obtained by Tertius algorithm

Rules

 $If \{last_educational_degree_mother = Secondary_school_or_below \ AND \ Income_status = Low \} ==> place_of_birth = ERZURUM \ OR \ last_educational_degree_father = Secondary_school_or_below$

If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==> place_of_birth = ELAZIG OR last_educational_degree_father = Secondary_school_or_below

 $\label{locational_degree_mother} If \{ last_educational_degree_mother = Secondary_school_or_below \ AND \ Income_status = Low \} ==> place_of_birth = BITLIS \ OR \ last_educational_degree_father = Secondary_school_or_below \ AND \ location = Seco$

If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==> place_of_birth = ANTALYA OR last_educational_degree_father = Secondary_school_or_below

If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==>
place_of_birth = KARS OR last_educational_degree_father = Secondary_school_or_below

If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==> place_of_birth = MALATYA OR last_educational_degree_father = Secondary_school_or_below

 $\label{locational_degree_mother} If \{ last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low \} ==> place_of_birth = KAHRAMANMARAS OR last_educational_degree_father = Secondary_school_or_below AND Income_status = Low \} ==> place_of_birth = KAHRAMANMARAS OR last_educational_degree_father = Secondary_school_or_below AND Income_status = Low \} ==> place_of_birth = KAHRAMANMARAS OR last_educational_degree_father = Secondary_school_or_below AND Income_status = Low \} ==> place_of_birth = KAHRAMANMARAS OR last_educational_degree_father = Secondary_school_or_below AND Income_status = Low \} ==> place_of_birth = Secondary_school_or_below AND Income_status = Low \} ==> place_of_birth = Secondary_school_or_below AND Income_status = Low \} ==> place_of_birth = Secondary_school_or_below AND Income_status = Secondary_school_or_$

```
If { last educational degree mother = Secondary school or below AND Income status = Low } ==>
place_of_birth = VAN OR last_educational_degree_father = Secondary_school_or_below
If { last educational degree mother = Secondary school or below AND Income status = Low } ==>
place of birth = ERZINCAN OR last educational degree father = Secondary school or below
If { last educational degree mother = Secondary school or below AND Income status = Low } ==> AGE
= 28 OR last educational degree father = Secondary school or below
If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==>
place of birth = ARTVIN OR last educational degree father = Secondary school or below
If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==>
place of birth = AFYON OR last educational degree father = Secondary school or below
If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==>
place of birth = EDIRNE OR last educational degree father = Secondary school or below
If { last educational degree mother = Secondary school or below AND Income status = Low } ==>
place_of_birth = HATAY OR last_educational_degree_father = Secondary_school_or_below
If { last educational degree mother = Secondary school or below AND Income status = Low } ==>
place_of_birth = MUGLA OR last_educational_degree_father = Secondary_school_or_below
If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==> AGE
= 27 OR last educational degree father = Secondary school or below
If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==>
place of birth = CANAKKALE OR last educational degree father = Secondary school or below
If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==> last_
educational_degree_father = Secondary_school_or_below OR CLASS = 3
If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==> last_
educational degree father = Secondary school or below
If { last educational degree mother = Secondary school or below AND Income status = Low } ==>
place_of_birth = KUTAHYA OR last_educational_degree_father = Secondary_school_or_below
If { last educational degree mother = Secondary school or below AND Income status = Low } ==>
place_of_birth = ANKARA OR last_educational_degree_father = Secondary_school_or_below
If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==>
place of birth = DIYARBAKIR OR last educational degree father = Secondary school or below
If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==>
place of birth = SIVAS OR last educational degree father = Secondary school or below
If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==>
place_of_birth = KASTAMONU OR last_educational_degree_father = Secondary_school_or_below
If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==>
place_of_birth = SAKARYA OR last_educational_degree_father = Secondary_school_or_below
If { last_educational_degree_mother = Secondary_school_or_below AND Income_status = Low } ==>
place_of_birth = YOZGAT OR last_educational_degree_father = Secondary_school_or_below
```

Discussion

For Apriori algorithm, rules with confidence levels above 90% are selected. For Predictive Apriori algorithm, rules with accuracy levels above 99% are selected and for Tertius algorithm, rules with confirmation levels above 79% are selected.

For Apriori algorithm, 13 association rules obtained are presented in Table 1. As it can be observed from the results, the best rule found with the highest confidence measure value indicates that students of age 19 enrolled in regular study programme are generally in their first year of undergraduate study programme. Similarly, the second and the fourth rules have age value 19 and class 1 in their antecedent and consequent, respectively. The third rule listed in Table 1 is an indicator of the association between the gender of students, the last educational degree earned by their parents and their success condition. According to this rule, male students with fathers who graduated from high schools are expected to be unsuccessful at their courses with a relatively high confidence value. The fifth association rule shows that unsuccessful students in regular study programme who have parents with relatively low level of education are expected to have low family incomes. Similarly, five more rules have low income in their consequent parts. The eighth rule states that first-year female students with low income and with fathers who graduated from secondary school or who have a lower level of education are expected to have mothers who graduated from secondary school or lower. Similar to this rule, the twelfth rule also emphasizes an association between the parents' educational levels.

For Predictive Apriori algorithm, 25 association rules are generated. Since Apriori and Predictive Apriori algorithms are based on different metrics, the rules generated by Predictive Apriori are not exactly the same as the ones obtained by Apriori. When the association rules are grouped according to their consequents, it can be observed that the rules generated by Predictive Apriori algorithm reveal results about four conditions: class, success condition, income status and the last educational degree earned by students' mothers. The rules indicating that students are in their first year always have age value 19 in their antecedents. As it has been obtained by Apriori algorithm, the rules about students' success conditions indicate a strong association that male students having fathers who graduated from high schools are generally unsuccessful. Moreover, the rules regarding income status in their consequents are generally characterized by lower educational degree of parents in their antecedents. The last point revealed by Predictive Apriori algorithm points out that those students whose fathers have lower educational degrees are expected to have mothers who are also not well-educated. As it can be observed from the rules listed in Table 3, the rules generated by Tertius algorithm are not as rigid as the ones that are generated by either Apriori or Predictive Apriori algorithm, since these rules generally have conjunctions in their consequents. All the rules of Tertius algorithm indicate that students with low family incomes and with mothers with lower level of education are expected to have fathers who also have a lower level of education.

The main intention of the experimental study is to extract strong association rules regarding success conditions of students. On the other hand, the study is constrained by the use of demographic attributes in model formulation. Though demographic attributes can contribute to determine success conditions of students properly, these attributes are not sufficient. In order to formulate a rigid model, attributes such as individual course grades of students and students' university entrance exam grades should also be taken into consideration. However, the student information system used to extract data set is not very flexible in providing such attributes. Many of the potentially useful attributes either do not exist or they lack certain values. Hence, some interesting association rules that may be revealed otherwise cannot be obtained in this study.

Overall, a number of different rules are generated via the aforementioned association rule mining algorithms. The above results of Apriori and Predictive Apriori algorithms indicate that the parents of unsuccessful students have low family income or/and their last educational degrees conferred are relatively low (secondary school or earlier cycles of education). Hence, generally speaking, the more educated the parents, the more successful the students are at their courses. Apart from that, the rules also exhibit patterns between the family incomes and the educational levels. Again, in families with low income parents usually have relatively low educational degrees and the students from such families tend to be unsuccessful in their courses at university. Strategic management is the discipline of setting appropriate strategies, plans and applications and actions to make it possible for organizations to reach their objectives and goals. Data mining is a viable tool for providing efficient solutions to strategic management. Since education domain is a data-rich area, data mining may provide efficient solutions in terms of strategic management in education domain.

Conclusions

Data mining in educational settings aims to enhance the quality of learning process. Among the many possible application areas of educational data mining, student modelling plays a central role in achieving the desired goals of educational quality improvement. The necessity and suitability of data mining methods for strategic management of business organizations is a well-known issue. In this paper, researchers explored the use of association rule mining algorithms on educational data gathered from student information system of Celal Bayar University. The data set is mainly characterized by demographic attributes of students. Though demographic attributes on their own may not be sufficient to fully model success conditions of students, some interesting association rules are still revealed with the help of the algorithms. The obtained association rules state that there is a strong association between parents' educational level, family income and academic success. According to the results, students with low family income or parents with low educational level are expected to be unsuccessful at their academic education with a strong confidence. Hence, the

improved counselling services should be provided for the students who are expected to be unsuccessful at their courses starting from their first year in undergraduate education. As has been previously mentioned, the main constraint of the study is the limitation of data set. Hence, the study should be enriched by improving the main attributes of the data set in the future.

References

- Abdullah, Z., Herawan, T., Ahmad, N., & Deris, M. M. (2011a). Extracting highly positive association rules from students' enrolment data. *Procedia- Social and Behavioral Sciences*, 28, 97-101. http://dx.doi.org/10.1016/j.sbspro.2011.11.022
- Abdullah, Z., Herawan, T., Ahmad, N., & Deris, M. M. (2011b). Mining significant association rules from educational data using critical relative support approach. *Procedia- Social and Behavioral Sciences*, 28, 107-111. http://dx.doi.org/10.1016/j.sbspro.2011.11.020
- Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Paper presented at the 20th International Conference on Very Large Data Bases, Santiago.
- Alnoukari, M. (2014). ASD-BI: A Knowledge discovery process modelling based on adaptive software development agile methodology. In R. El Sheikh, & A. Abdel (Eds.), *Business Intelligence and Agile Methodologies for Knowledge Based Organizations: Cross-Disciplinary Applications* (pp. 183-205). New York: IGI Global.
- Altman, E. I., & Walter, I. (1981). Applications of classification techniques in business, banking and finance. Connecticut: Jai Press.
- Arora, J., Bhalla, N., & Rao, S. (2013). A review on association rule mining algorithms. *International Journal of Innovative Research in Computer and Communication Engineering*, 1(5), 1246-1251.
- Badur, B., & Livvarçin, Ö. (2006). *Role of data mining in strategic management*. Paper presented at the International Strategic Management Conference, Istanbul.
- Barca, M. (2002). Stratejik açı: stratejik düşünme düzeyi, tarzı ve gerekliliği. In İ. Dalay, R. Coşkun, & R. Altunışık (Eds.), *Stratejik Boyutuyla Modern Yönetim Yaklaşımları* (pp. 9-26). İstanbul: Beta Publishing.
- Bousbia, N., & Belamri, I. (2014). Which contribution does EDM provide to computer-based learning environments? In A. Pena-Ayala (Ed.), *Educational Data Mining* (pp. 3-28). Berlin: Springer-Verlag. http://dx.doi.org/10.1007/978-3-319-02738-8_1
- Buldu, A., & Üçgün, K. (2010). Data mining application on students' data. *Procedia- Social and Behavioral Sciences*, 2, 5251-5259. http://dx.doi.org/10.1016/j.sbspro.2010.03.855
- Cai, Z., Li, Z., Kang, Z., & Liu, Y. (2009). *Computational Intelligence and Intelligent Systems*. Springer: Berlin. http://dx.doi.org/10.1007/978-3-642-04962-0_55
- Calders, T., & Pechenizkiy, M. (2011). Introduction to special section on educational data mining. *ACM SIGKDD Explor.*, 13(2), 3-6. http://dx.doi.org/10.1145/2207243.2207245

- Flach, P. A., & Lachiche, N. (2001). Confirmation-guided discovery of first-order rules with Tertius. *Machine Learning*, 42(1-2), 61-95. http://dx.doi.org/10.1023/A:1007656703224
- Garcia, E., Romero, C., Ventura, S., de Castro, C., & Calders, T. (2010). Association Rule Mining in Learning Management Systems. In C. Romero, S. Ventura, M. Pechenizkiy, & R. Baker (Eds.), *Handbook of Educational Data Mining* (pp. 93-107). New York: Taylor & Francis Group. http://dx.doi.org/10.1201/b10274-9
- Gungor, E., Yalçın, N., & Yurtay, N. (2013). *Apriori algoritması ile teknik seçmeli ders seçim analizi*. Paper presented at Akademik Bilişim Conference, Mersin.
- Han, J., & Kamber, M. (2006). *Data mining: concepts and techniques.* (2nd ed.). Massachusetts: Morgan Kaufmann Publishers.
- Han, J., Cheng, H., Xin, D., & Yan, X. (2007). Frequent pattern mining: current status and future directions. *Data Mining and Knowledge Discovery*, 15(1), 55-86. http://dx.doi.org/10.1007/s10618-006-0059-1
- Höppner, F. (2010). Association rules. In O. Maimon, & L. Rokach (Eds.), *Data Mining and Knowledge Discovery Handbook* (pp. 353-376). Berlin: Springer Verlag. http://dx.doi.org/10.1007/978-0-387-09823-4
- Hwang, G. J., Hsiao, C. L., & Tseng, C. R. (2003). A computer-assisted approach to diagnosing student learning problems in science courses. *Journal of Information Science and Engineering*, 19, 229-248.
- Jain, A. K., & Dubes, R. C. (1988). *Algorithms for clustering data*. Upper Saddle River: Prentice Hall.
- Jeffs, C. (2008). Strategic management. (1st ed.). Sage: London.
- Karabatak, M., & İnce, M. C. (2004). *Apriori algoritması ile öğrenci başarısı analizi*. Paper presented at Eleco'2004-Elektrik-Elektronik ve Bilgisayar Mühendisleri Sempozyumu, Bursa
- Laudon, K. C., & Laudon, J. P. (2011). *Management information systems*. (12th ed.). London: Prentice Hall.
- Levin, N., & Zahavi, J. (2010). Data mining for target marketing. In O. Maimon, & L. Rokach (Eds.), *Data Mining and Knowledge Discovery Handbook* (pp. 1261-1299). Berlin: Springer Verlag. http://dx.doi.org/10.1007/978-0-387-09823-4
- Liao, B. (2009). An improved algorithm of Apriori. *Communications in Computer and Information Sciences*, 51, 427-432. http://dx.doi.org/10.1007/978-3-642-04962-049
- Minaei-Bidgoli, B., & Punch, W. (2003). *Using genetic algorithms for data mining optimization in an educational web-based system* (pp. 2252–2263). Paper presented at the Genetic and evolutionary computation conference, Chicago, USA. http://dx.doi.org/10.1007/3-540-45110-2_119
- Motoda, H., & Ohara, K. (2009). Apriori. In X. Wu, & V. Kumar (Eds.), *The Top Ten Algorithms in Data Mining* (pp. 61-93). NY: Taylor and Francis Publishing, (Chapter 4) http://dx.doi.org/10.1007/s10115-007-0114-2
- Nag, R., Hambrick, D. C., & Chen, M. J. (2007). What is strategic management, really? Inductive derivation of a consensus definition of the field. *Strategic Management Journal*, 28, 935-955. http://dx.doi.org/10.1002/smj.615

- Nahar, J., Imam, T., Tickle, K. S., & Chen, Y. P. P. (2013). Association rule mining to detect factors which contribute to heart disease in males and females. *Expert Systems with Applications*, 40, 1086-1093. http://dx.doi.org/10.1016/j.eswa.2012.08.028
- Olson, D. L., & Delen, D. (2008). *Advanced data mining techniques*. Berlin: Springer-Verlag. http://dx.doi.org/10.1007/978-3-540-76917-0
- Pena-Ayala, A. (2014). Educational data mining: a survey and a data mining-based analysis of recent works. *Expert Systems with Applications*, 41(4), 1432-1462. http://dx.doi.org/10.1016/j.eswa.2013.08.042
- Phyu, T. N. (2009). Survey of classification techniques in data mining. *Proceedings of the International MultiConference of Engineers and Computer Scientistis*, 1, 727-731.
- Rantzau, R., & Schwarz, H. (1999). A multi-tier architecture for high-performance data mining. In A.P. Buchman (Ed.), Datenbanksysteme in Büro, Technik und Wissenschaft Informatik aktuell (pp. 151-163). Berlin: Springer-Verlag. http://dx.doi.org/10.1007/978-3-642-60119-4 10
- Romero, C., Ventura, S., & Garcia, E. (2008). Data mining in course management systems: Moodle case study and tutorial. *Computers & Education*, 51(1), 368-384. http://dx.doi.org/10.1016/j.compedu.2007.05.016
- Scheffer, T. (2001). Finding association rules that trade support optimally against confidence. Paper presented at the 5th European Conference on Principles and Practice of Knowledge Discovery in Databases, Freiburg. http://dx.doi.org/10.1007/3-540-44794-6_35
- Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: generalizations and performance improvements. Paper presented at the 5th International Conference on Extending Database Technology, France. http://dx.doi.org/10.1007/bfb0014140
- Sumathi, S., & Sivanandam, S. N. (2006). *Introduction to data mining and its applications*. Berlin: Springer-Verlag. http://dx.doi.org/10.1007/978-3-540-34351-6_2
- Tang, T., & McCalla, G. (2005). Smart recommendation for an evolving e-learning system. *International Journal on E-Learning*, 4(1), 105-129.
- Taş, M., Adak, M. F., & Yurtay, N. (2013). *Birliktelik kurallarının çıkarılması ve staj eğiliminin belirlenmesi*. Paper presented at ISITES 2013-The First International Symposium on Innovative Technologies in Engineering and Science, Sakarya.
- Thearling, K. (2010). Data mining for CRM. In O. Maimon, L. Rokach (Eds.), *Data Mining and Knowledge Discovery Handbook* (pp. 1249-1252). Berlin: Springer Verlag. http://dx.doi.org/10.1007/978-0-387-09823-4
- Turban, E., Aronson, J. E., & Liang, T. P. (2004). *Decision support systems and intelligent systems.* (7th ed.). Upper Saddle River: Prentice-Hall.
- Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: practical machine learning tools and techniques. (3rd ed.). San Francisco: Morgan Kaufmann.
- Zaiane, O., & Luo, J. (2001). *Web usage mining for a better web-based learning environment*. Paper presented at Conference on Advanced Technology for education, Alberta.
- Zimmerer, T. W., & Scarborough, N. M. (2008). Essentials of entrepreneurship and small business management. (5th ed.). London: Prentice Hall.

Aytuğ Onan

Department of Computer Engineering, Faculty of Engineering, Celal Bayar University, 45140, Manisa, Turkey aytug.onan@cbu.edu.tr

Vedat Bal

Department of Management Information Systems, Faculty of Business Administration, Celal Bayar University, 45140, Manisa, Turkey vedat.bal@cbu.edu.tr

Burcu Yanar Bayam

Division of Business Administration, Graduate School of Social Sciences, Celal Bayar University, 45140, Manisa, Turkey burcu.yanar@cbu.edu.tr Copyright of Croatian Journal Educational / Hrvatski Casopis za Odgoj I Obrazovanje is the property of Uciteljski Fakultet u Zagrebu and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.