Semaine du 3 au 7 octobre

Alg1: Espace vectoriel:

- famille **finie** libre, liée, génératrice d'un sous espace vectoriel; Base.
- Somme, somme directe de p sous espaces vectoriels.
- Cas de la dimension finie : dimension, base adaptée, formule de Grassman.
- Supplémentaire, existence en dimension finie.
- Rang d'une famille.

Alg2: Application linéaire:

- Restriction, réciproque, image d'une famille génératrice, liée, libre...
- Théorème du rang.
- Caractérisation d'une application linéaire par l'image d'une base.
- "Algèbre" $\mathcal{L}(E)$, "groupe" linéaire (vocabulaires!)
- Projecteur/projection, symétrie/involution : cours et exemples...

Alg3: Compléments sur les matrices

- Matrice associée à une famille, à une application linéaire
- Produit de matrices.
- Matrices carrées, matrices symétriques et antisymétriques, matrices inversibles.
- Binôme de Newton, formule $A^n B^n$.
- Matrices de changement de base.
- Rang d'une matrice. Trace d'une matrice, d'un endomorphisme.
- Opérations élémentaires sur les matrices, application aux systèmes, au calcul du rang.

Alg2-b: Hyperplan

- Formes linéaires, dim $(\mathcal{L}(E,\mathbb{K}))$ si E est de dimension finie.
- Une forme linéaire non nulle est surjective.
- H est un hyperplan de E ssi H est le noyau d'une forme linéaire (déf)
- H est un hyperplan de E ssi $\exists \vec{a} \in E \ (\notin H)$ tel que $H \oplus \text{Vect}(\vec{a}) = E$.
- H étant un hyperplan de $E, \forall \vec{a} \notin H, H \oplus \text{Vect}(\vec{a}) = E.$
- Exemples.
- En dimension finie, H est un hyperplan ssi $\dim(H) = \dim(E) 1$.
- Equation d'un hyperplan.
- Intersection de deux hyperplans

Alg5 : Polynôme d'endomorphisme, de matrice

- Définition. Exemples
- $-(PQ)(u) = P(u) \circ Q(u). \qquad (PQ)(M) = P(M) \times Q(M)$
- $\mathbb{K}[f] = \text{Vect}((f^k)_{k \in \mathbb{N}})$ $\mathbb{K}[M] = \text{Vect}((M^k)_{k \in \mathbb{N}})$
- $\mathbb{K}[f] \subset \mathcal{C}(f)$ (commutant de f) $\mathbb{K}[M] \subset \mathcal{C}(M)$ (commutant de M)
- $P \longmapsto P(f)$ et $P \mapsto P(M)$ ne sont ni injectif, ni surjectif
- Polynôme d'un matrice diagonale, triangulaire supérieure
- Polynôme annulateur.
- Il n'existe pas toujours un polynôme annulateur d'un endomorphisme.
- Il existe toujours un polynôme annulateur d'une matrice, ou d'un endomorphisme en dimension finie.

Alg6: Matrice semblables

- Définition.
- rang, trace et déterminant sont des invariants de similitude.
- $AsB \Longrightarrow A^t s B^T$, $AsB \Longrightarrow \forall Q \in \mathbb{K}[X]$, Q(A)sQ(B).
- Si AsB alors A inversible ssi B inversible et on a alors $A^{-1}sB^{-1}$.
- Exemples de matrices semblables.

Remarque : Pas d'étude spécifique des déterminants, mais, à l'occasion des exercices, cet outil a été utilisé pour justifier que des matrices sont inversibles, qu'une famille de \mathbb{R}^3 en est une base...

Page 1/2 MCOL03-PSI.tex

Programme de colle PSI

Questions de cours :

- * $L_2 = \{(u_n) \in \mathbb{R}^{\mathbb{N}} / \sum u_n^2 \text{ converge} \}$ est un espace vectoriel.
- * $\{f \in \mathscr{C}^{\infty}/f'' f = 0\}$ est un espace vectoriel (par trois méthodes différentes)
- * Espaces en somme directe : diverses caractérisations, cas de plus de 2 sous espaces...
- * Formule de Grassmann
- * Espaces supplémentaires : diverses caractérisations
- * Dans \mathbb{R}^2 , $\operatorname{Vect}(\vec{\imath}) \oplus \operatorname{Vect}(\vec{u}_{\alpha}) = \mathbb{R}^2$, où $\vec{u}_{\alpha} = \alpha \vec{\imath} + \vec{\jmath}$. (*)
- * $\mathscr{S}_n(\mathbb{R}) \oplus \mathscr{A}_n(\mathbb{R}) = \mathscr{M}_n(\mathbb{R})$
- * Thm du rang (cas général, puis application à la version classique...)
- * Projecteurs et projections
- * Symétries et involutions
- * Projection de $\mathcal{M}_n(\mathbb{R})$ sur $\mathcal{S}_n(\mathbb{R})$ parallèlement à $\mathcal{A}_n(\mathbb{R})$
- * Rang d'une application linéaire
- * Produit des matrices $E_{i,j}$ de la base canonique de $\mathcal{M}_n(\mathbb{K})$.
- * Applications linéaires canoniquement associées à $M \in \mathcal{M}_{n,p}(\mathbb{K})$
- * Définition de la trace d'une matrice, d'un endomorphisme.
- * $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ pour $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$
- * Pour un projecteur p, tr(p) = rg(p).
- * Hyperplan
- * $\mathscr{C}(f)$ est un ev stable par \circ . $\mathbb{K}[f] \subset \mathscr{C}(f)$.
- * Interpolation de Lagrange: (L_0, L_1, \ldots, L_n) base de $\mathbb{K}_n[X]$. Coord de $A \in \mathbb{K}_n[X]$. Pol. d'interpolation.
- * Exemples de détermination de la trace : $M \mapsto AM$, $P \mapsto P(X+1) + P(X)$.
- * Exemples de matrices semblables dans $\mathcal{M}_3(\mathbb{R})$. Non unicité de la matrice P...
- * $\operatorname{Ker}(f) = \operatorname{Ker}(f^2) \iff \operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0\}$
- * $\operatorname{Im}(f) = \operatorname{Im}(f^2) \iff \operatorname{Im}(f) + \operatorname{Ker}(f) = E$
- * Polynôme annulateur de degré 2 :
 - f inversible et $f^{-1} = \ldots$, $\mathbb{K}[f] = \mathbb{K}_1[f]$ de dim ≤ 2 , noyaux supplémentaires.
- * Puissance de matrices (récurrence, binôme de Newton, par polynôme annulateur)
- * p et q projecteurs commutant : Montrer que $p \circ q$ est un projecteur... Précisez!