Формальные языки Контрольная работа 1 16.10.2020

- 1. Привести три самых коротких различных строки, принадлежащих языку, описанному регулярным выражением; принадлежат ли строки *abbab* и *bababa* данному языку?
 - 1) $a((a \mid b)*b)*$
 - a, ab, abb/aab, abbab yes, bababa no.
 - 2) $(a(a \mid b)^*)^*b$
 - b, ab, aab/abb, abbab yes, bababa no.
 - 3) $(a \mid b)(a(a \mid b))^*(a \mid b)$
 - aa, ab, ba, bb, aaa, aab, baa, bab, abbab no, bababa yes.
 - 4) $(a \mid b)((a \mid b)b)^*(a \mid b)$
 - \bullet aa, ab, ba, bb, aba, abb, bba, bbb, abbab no, bababa yes.
 - 5) $(ba \mid b)^* \mid (bb \mid a)^*$
 - $\varepsilon, b, a, abbab no, bababa yes.$
 - 6) $(ab \mid b)^* \mid (bb \mid a)^*$
 - ε , a, b, abbab yes, bababa no.
 - 7) $(ba \mid a)^* \mid (bb \mid a)^*$
 - $\varepsilon, a, ba, bb, aa, abbab no, bababa yes.$
 - 8) $(ba \mid a)^* \mid (bb \mid b)^*$
 - $\bullet \ \varepsilon, a, b, \, abbab \, \mathrm{no}, \, bababa \, \mathrm{yes}.$
 - 9) $(a \mid b)^*b(a \mid \varepsilon)b(a \mid b)^*$
 - $\bullet \ bb, abb, bab, bba, bbb, \ abbab \mathrm{yes}, \ bababa \mathrm{yes}.$
 - 10) $(a \mid b)^*a(a \mid \varepsilon)b(a \mid b)^*$
 - \bullet ab, aaa, aab, aba, abb, bab,, abbab yes, <math>bababa yes.
 - 11) $(a \mid b)^*b(a \mid \varepsilon)a(a \mid b)^*$
 - $\bullet \ ba, aba, baa, bab, bba, \ abbab \ {\it yes}, \ bababa \ {\it yes}.$
 - 12) $(a \mid b)^*a(a \mid \varepsilon)a(a \mid b)^*$
 - $\bullet \ \ aa, aaa, aab, baa, \ abbab \ \mathrm{no}, \ bababa \ \mathrm{no}.$
 - 13) $(a \mid b)^*b(b \mid \varepsilon)b(a \mid b)^*$
 - $\bullet \ bb, abb, bba, bbb, \ abbab \ {\it yes}, \ bababa \ {\it no}.$
 - 14) $(a \mid b)^* a(b \mid \varepsilon) b(a \mid b)^*$

- ab, aab, aba, abb, bab, abbab yes, bababa yes.
- 15) $(a | b)^*b(b | \varepsilon)a(a | b)^*$
 - \bullet ba, aba, baa, bab, bba, abbab yes, bababa yes.
- 16) $(a | b)^*a(b | \varepsilon)a(a | b)^*$
 - aa, aaa, aab, aba, baa, abbab no, bababa yes.
- 2. Построить минимальный детерминированный конечный автомат, распознающий язык:
 - 1) $\{\omega \cdot a \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \text{ or } b=1\}$
 - (0 | 1)*01 | (0 | 1)*10 | (0 | 1)*11

- 2) $\{\omega \cdot a \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \text{ and } b = 0\}$
 - (0 | 1)*01 | (0 | 1)*10 | (0 | 1)*00

- 3) $\{a \cdot \omega \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \text{ or } b = 1\}$
 - $0(0 \mid 1)*1 \mid 1(0 \mid 1)*0 \mid 1(0 \mid 1)*1$

- 4) $\{a \cdot \omega \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \ and \ b = 0\}$
 - $0(0 \mid 1)*1 \mid 1(0 \mid 1)*0 \mid 0(0 \mid 1)*0$

- 5) $\{a \cdot b \cdot \omega \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \text{ or } b = 1\}$
 - $01(0 \mid 1)^* \mid 10(0 \mid 1)^* \mid 11(0 \mid 1)^*$

- 6) $\{a \cdot b \cdot \omega \mid \omega \in \{0, 1\}^*, a \in \{0, 1\}, b \in \{0, 1\}, a \text{ and } b = 0\}$
 - $01(0 \mid 1)^* \mid 10(0 \mid 1)^* \mid 00(0 \mid 1)^*$

- 7) $\{\omega \cdot a \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a = b\}$
 - (0 | 1)*00 | (0 | 1)*11

- 8) $\{\omega \cdot a \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \neq b\}$
 - (0 | 1)*01 | (0 | 1)*10

- 9) $\{a \cdot \omega \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a = b\}$
 - 0(0 | 1)*0 | 1(0 | 1)*1

- 10) $\{a \cdot \omega \cdot b \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \neq b\}$
 - 0(0 | 1)*1 | 1(0 | 1)*0

11) $\{a \cdot b \cdot \omega \mid \omega \in \{0, 1\}^*, a \in \{0, 1\}, b \in \{0, 1\}, a = b\}$ • $00(0 \mid 1)^* \mid 11(0 \mid 1)^*$

- 12) $\{a \cdot b \cdot \omega \mid \omega \in \{0,1\}^*, a \in \{0,1\}, b \in \{0,1\}, a \neq b\}$
 - 01(0 | 1)* | 10(0 | 1)*

- 3. Построить регулярную грамматику, задающую язык:
 - 1) $\{\alpha \cdot 100 \cdot \beta \mid \alpha, \beta \in \{0,1\}^*\} \cap \{\gamma \cdot 000 \cdot \delta \mid \gamma, \delta \in \{0,1\}^*\}$
 - $\xi 000\xi 100\xi \mid \xi 100\xi 000\xi \mid \xi 1000\xi$
 - 2) $\{\alpha \cdot 100 \cdot \beta \mid \alpha, \beta \in \{0,1\}^*\} \cup \{\gamma \cdot 000 \cdot \delta \mid \gamma, \delta \in \{0,1\}^*\}$
 - $\xi 100\xi \mid \xi 000\xi$
 - 3) $\{\alpha \cdot 001 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 000 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - 4) $\{\alpha \cdot 001 \cdot \beta \mid \alpha, \beta \in \{0,1\}^*\} \cup \{\gamma \cdot 000 \cdot \delta \mid \gamma, \delta \in \{0,1\}^*\}$

- $\xi 001\xi \mid \xi 000\xi$
- 5) $\{\alpha \cdot 010 \cdot \beta \mid \alpha, \beta \in \{0,1\}^*\} \cap \{\gamma \cdot 000 \cdot \delta \mid \gamma, \delta \in \{0,1\}^*\}$
 - $\xi 010\xi 000\xi \mid \xi 000\xi 010\xi \mid \xi 00010\xi \mid \xi 01000$
- 6) $\{\alpha \cdot 010 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 000 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - $\xi 010\xi \mid \xi 000\xi$
- 7) $\{\alpha \cdot 001 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 100 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - $\xi 001\xi 100\xi \mid \xi 100\xi 001\xi \mid \xi 00100\xi \mid \xi 1001\xi \mid \xi 10001\xi$
- 8) $\{\alpha \cdot 001 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 100 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - $\xi 001\xi \mid \xi 100\xi$
- 9) $\{\alpha \cdot 101 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 010 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - *ξ*101*ξ*010*ξ* | *ξ*010*ξ*101*ξ* | *ξ*0101*ξ* | *ξ*1010*ξ*
- 10) $\{\alpha \cdot 101 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 010 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - $\xi 101\xi \mid \xi 010\xi$
- 11) $\{\alpha \cdot 011 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 111 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - $\xi 011\xi 111\xi \mid \xi 111\xi 011\xi \mid \xi 0111\xi$
- 12) $\{\alpha \cdot 011 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 111 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - $\xi 011\xi \mid \xi 111\xi$
- 13) $\{\alpha \cdot 110 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 111 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - $\xi 110\xi 111\xi \mid \xi 111\xi 110\xi \mid \xi 1110\xi$
- 14) $\{\alpha \cdot 110 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 111 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - $\xi 110\xi \mid \xi 111\xi$
- 15) $\{\alpha \cdot 101 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 111 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - $\xi 101\xi 111\xi \mid \xi 111\xi 101\xi \mid \xi 11101\xi \mid \xi 10111\xi$
- 16) $\{\alpha \cdot 101 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 111 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - $\xi 101\xi \mid \xi 111\xi$
- 17) $\{\alpha \cdot 110 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 011 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - $\xi 110\xi 011\xi \mid \xi 011\xi 110\xi \mid \xi 01110\xi \mid \xi 0110\xi \mid \xi 11011\xi$
- 18) $\{\alpha \cdot 110 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 011 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - $\xi 110\xi \mid \xi 011\xi$
- 19) $\{\alpha \cdot 010 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cap \{\gamma \cdot 101 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - $\xi 010\xi 101\xi \mid \xi 101\xi 010\xi \mid \xi 1010\xi \mid \xi 0101\xi$
- 20) $\{\alpha \cdot 010 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 101 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$
 - $\xi 010\xi \mid \xi 101\xi$

4. Проверить регулярность языка (если регулярный, построить автомат, регулярное выражение или регулярную грамматику, иначе — доказать нерегулярность)

1)
$$\{\omega \in \{a,b\}^* \mid |\omega|_a = |\omega|_b\}$$

2)
$$\{\omega \in \{a, b\}^* \mid |\omega|_a \ge |\omega|_b\}$$

3)
$$\{\omega \in \{a, b\}^* \mid |\omega|_a \le |\omega|_b\}$$

4)
$$\{\omega \in \{a, b\}^* \mid |\omega|_a \neq |\omega|_b\}$$

5)
$$\{\alpha \cdot a \cdot \beta \mid \alpha, \beta \in \{a, b\}^*, |\alpha|_b \ge |\beta|_a\}$$

6)
$$\{\alpha \cdot a \cdot \beta \mid \alpha, \beta \in \{a, b\}^*, |\alpha|_b > |\beta|_a\}$$

$$7) \ \{a^m \cdot \omega \mid 1 \le |\omega|_b \le m\}$$

8)
$$\{\omega \cdot a^m \mid 1 \le |\omega|_b \le m\}$$

5. По регулярному выражению построить недетерминированный конечный автомат без эпсилон-переходов

1)
$$a((a \mid b)^*b)^*$$

2)
$$(a(a \mid b)^*)^*b$$

3)
$$(a \mid b)(a(a \mid b))^*(a \mid b)$$

4) $(a \mid b)((a \mid b)b)^*(a \mid b)$

5) $(ba \mid b)^* \mid (bb \mid a)^*$

6) $(ab | b)^* | (bb | a)^*$

7) $(ba \mid a)^* \mid (bb \mid a)^*$

8) $(ba \mid a)^* \mid (bb \mid b)^*$

9) $(a \mid b)^*b(a \mid \varepsilon)b(a \mid b)^*$

10) $(a \mid b)^*a(a \mid \varepsilon)b(a \mid b)^*$

11) $(a \mid b)^*b(a \mid \varepsilon)a(a \mid b)^*$

12) $(a \mid b)^*a(a \mid \varepsilon)a(a \mid b)^*$

13) $(a \mid b)^*b(b \mid \varepsilon)b(a \mid b)^*$

14) $(a \mid b)^*a(b \mid \varepsilon)b(a \mid b)^*$

15) $(a \mid b)^*b(b \mid \varepsilon)a(a \mid b)^*$

16) $(a \mid b)^*a(b \mid \varepsilon)a(a \mid b)^*$

