

Analytical Geometry and Linear Algebra II, Lab 10

Circulant Matrix

Systems of linear differential equations

How I spent last weekend

Watched both seasons in 1 day (24 series) of "Mushoku Tensei"

RAGE and VEGs clubs cooking collaboration event

Circulant Matrix

Watch [5] video, if you want to get how to derive this property and the necessity of it.

Circulant matrix (N = 4) is:

$$C_4 = c_0 I + c_1 P + c_2 P^2 + C_3 P^3 = \begin{bmatrix} c_0 & c_1 & c_2 & c_3 \\ c_3 & c_0 & c_1 & c_2 \\ c_2 & c_3 & c_0 & c_1 \\ c_1 & c_2 & c_3 & c_0 \end{bmatrix}, \text{ where } P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Properties:

Properties:

It has *eigenvectors* in the Fourier Matrix columns $F_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & i^2 & 1 & (-i)^2 \\ 1 & i^3 & -1 & (-i)^3 \end{bmatrix}$

Eigenvalues of C can be found by the Fourier transform $F_4\bar{c}=\bar{\lambda}$

Example 2 The same ideas work for a Fourier matrix F and a circulant matrix C of any size. Two by two matrices look trivial but they are very useful. Now eigenvalues of P have $\lambda^2 = 1$ instead of $\lambda^4 = 1$ and the complex number i is not needed: $\lambda = \pm 1$.

Fourier matrix
$$F$$
 from eigenvectors of P and C
$$F = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & -\mathbf{1} \end{bmatrix} \quad P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \begin{array}{c} \text{Circulant} \\ c_0 I + c_1 P \end{array} \quad C = \begin{bmatrix} c_0 & c_1 \\ c_1 & c_0 \end{bmatrix}.$$

The eigenvalues of C are $c_0 + c_1$ and $c_0 - c_1$. Those are given by the Fourier transform Fc when the vector c is (c_0, c_1) . This transform Fc gives the eigenvalues of C for any size n.

Task 1

What are the 3 solutions to $\lambda^3=1$? They are complex numbers $\lambda=\cos\theta+i\sin\theta=e^{i\theta}$. Then $\lambda^3=e^{3i\theta}=1$ when the angle 3θ is 0 or 2π or 4π . Write the 3 by 3 Fourier matrix F with columns $(1,\lambda,\lambda^2)$.

Check that any 3 by 3 circulant C has eigenvectors $(1, \lambda, \lambda^2)$ from Problem 8. If the diagonals of your matrix C contain c_0, c_1, c_2 then its eigenvalues are in Fc.

Task 1 Answer

$\lambda^3=1$ has 3 roots $\lambda=1$ and $e^{2\pi i/3}$ and $e^{4\pi i/3}$. Those are ${f 1},{m \lambda},{m \lambda^2}$ if we take

 $\lambda = e^{2\pi i/3}$. The Fourier matrix is

$$F_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \lambda & \lambda^2 \\ 1 & \lambda^2 & \lambda^4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & e^{2\pi i/3} & e^{4\pi i/3} \\ 1 & e^{4\pi i/3} & e^{8\pi i/3} \end{bmatrix}.$$

A 3 by 3 circulant matrix has the form on page 425:

$$C = \begin{bmatrix} c_0 & c_1 & c_2 \\ c_2 & c_0 & c_1 \\ c_1 & c_2 & c_0 \end{bmatrix} \text{ with } C \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = (c_0 + c_1 + c_2) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$C \begin{bmatrix} 1 \\ \lambda \\ \lambda^2 \end{bmatrix} = (c_0 + c_1 \lambda + c_2 \lambda^2) \begin{bmatrix} 1 \\ \lambda \\ \lambda^2 \end{bmatrix} \quad C \begin{bmatrix} 1 \\ \lambda^2 \\ \lambda^4 \end{bmatrix} = (c_0 + c_1 \lambda^2 + c_2 \lambda^4) \begin{bmatrix} 1 \\ \lambda^2 \\ \lambda^4 \end{bmatrix}.$$

Those 3 eigenvalues of C are exactly the 3 components of $F\mathbf{c}=F\begin{bmatrix}c_0\\c_1\\c_2\end{bmatrix}$,

Reference material

- Eigenvectors of Circulant Matrices: Fourier Matrix
- Lecture 23, Differential Equations and exp(At)
- "Linear Algebra and Applications", pdf pages 435–436
 Circulant Matrix 8.3
- "Linear Algebra and Applications", pdf pages 330–348
 Systems of Differential Equations 6.3

