Anexos

Guilherme Navarro N°USP:8943160 e Leonardo NUSP: 9793436

Exercício 5

Considere $X_i | \lambda \sim Exp(\lambda), i = 1, 2, ..., n$ ind. e $\lambda \sim Gama(a, b)$.

(c) A partir da aproximação normal obtida em (b), obtenha a distribuição a posteriori aproximada para λ .

Resolução

Como $\phi|x_i \stackrel{a}{\approx} N(ln(\frac{A}{B}), \frac{1}{B})$ logo $\phi = ln(\lambda) \Rightarrow \lambda = e^{\phi}$ Pelo teorema de tranformação de variáveis utilizando o método jacobiano, temos:

$$f_{\lambda}(\ln(\lambda)) = f_{\phi}(\ln(\lambda)) \left| \frac{d\phi}{d\lambda} \right| \propto \frac{1}{A} e^{-\frac{1}{2A}(\ln(\lambda) - \ln(\frac{A}{B}))^{2}} * \left| \frac{1}{\lambda} \right| \propto \frac{1}{A\lambda} e^{-\frac{1}{2A}(\ln(\lambda) - \ln(\frac{A}{B}))^{2}}$$
 (I)

Substituindo os valores em (I)

$$\frac{1}{(a+n)\lambda}e^{-\frac{1}{2(a+n)}(ln(\lambda)-ln(\frac{a+n}{b+n\bar{x}}))^2} \ (I)$$

Porém (I) é o núcleo da distribuição log-Normal, com isso temos que a partir da distribuição a posteriori obtida no item b, a distribuição a posteriori para λ é $Log - Normal(ln(\frac{a+n}{b+n\bar{x}}), \frac{1}{a+n})$

(d) Para n=10 e x=(8,23,22,2,4,3,11,4,23,21), obtenha as distribuições a posteriori de λ exata e aproximadas. Usando o programa \mathbf{R} , desenhe essas densidades em um gráfico e compare. Considere que a priori $\mathbb{E}[\lambda]=1$ e $Var[\lambda]=10$.

Resolução

Considerando que a priori $\mathbb{E}[\lambda] = 1$ e $Var[\lambda] = 10$, logo como sabemos que a distribuição gamma $\mathbb{E}[\lambda] = \frac{a}{b}$ e $Var[\lambda] = \frac{a}{b^2}$. Temos que: $\mathbb{E}[\lambda] = \frac{a}{b} = 1$ e $Var[\lambda] = \frac{a}{b^2} = 10$

$$\Rightarrow \left\{ \begin{array}{l} a=b \\ a=10b^2 \end{array} \right. \Rightarrow a=b=\frac{1}{10}$$

Logo a distribuição a priori para $\lambda \sim Gamma(0.1, 0.1)$. Assim do item a), temos a sguinte distribuição a posteriori $\lambda | x_i \sim Gamma(A, B)$ onde:

$$\begin{cases} A = a + n \\ B = b + \sum_{i=1}^{n} x_i \end{cases} \Rightarrow \begin{cases} A = 0.1 + 10 = 10.1 \\ B = 0.1 + 121 = 121.1 \end{cases}$$

Logo a distribuição a posteriori exata é $\lambda | x_i \sim Gamma(10.1, 121.1)$

Agora a calulando a deistribuição a posteriori aproximada, temos: do item a) temos que a aproixmação da normal para $\lambda | x_i \in N(\frac{A-1}{B}, \frac{A-1}{B^2}) \Rightarrow \lambda | x_i \stackrel{a}{\approx} N(0.075, 0.025^2)$.

1

Logo podemos concluir que a aproximação pela normal é até que razoávelmente boa.

Exercício 6

Utilizar os dados dos tempos associados aos maratonistas de Nova York (marathontimes). Considere agora uma distribuição a priori informativa para média $\mu \sim N(300, 100)$ e uma não informativa para variância $f(\sigma^2) \propto \frac{1}{\sigma^2}$. Além disso, suponha independência entre elas.

(a) Escreva uma função no \mathbf{R} para calcular o logaritimo da posteriori. Desenhe os gráficos de contornos dessa posteriori (usar mycontour).

Resolução

Sendo X os dados, considerando uma distribuição a posteriori para μ e σ^2 como

$$f(\mu,\sigma^2|X) \propto \frac{1}{(\sigma^2)^{\frac{n}{2}}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2} \frac{1}{\sigma^2} e^{\frac{(\mu - 300)^2}{200}} = \frac{1}{(\sigma^2)^{\frac{n}{2} + 1}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 - \frac{(\mu - 300)^2}{200}}$$

```
library(LearnBayes)
log_posterior <- function(theta,dados){ # log da posteriori de theta
    n <- length(dados) # tamanho dos dados
    mu <- theta[1] # parametro mu
    sigma2 <- theta[2] # parametro sigma²
    x <- dados # dados
    -n/2*log(sigma2)-1/(2*sigma2)*sum((x-mu)^2)-log(sigma2)-(mu-300)^2/200
}</pre>
```


(b) Simular 1000 valores dessa distribuição a posteiori e incluir no gráfico.

Resolução

Gráfico de contornos com simulação

(c) Seja $CV=\frac{\sigma}{\mu}$ o coeficiente de variação populacional. Utilizando os valores simulados anteriormente, estimar CV. Apresente os quantis de ordem 0.05, 0.25, 0.50, 0.75 e 0.95 da distribuição a posteriori de CV. Desenhe o histograma dos valores simulados dessa a posteriori (observe que esse histograma é uma estimativa da densidade a posteriori de CV).

Resolução

5% 25% 50% 75% 95% ## 3.988282 4.887381 5.504062 6.146965 7.187679

Histograma do Coeficiente de Variação

