Übungszettel 10

Unentscheidbare Probleme

Abgabe bis 16. Januar 2014

Übungszettel zur Vorlesung Theoretische Informatik im Wintersemester 2013/2014

Maciej Liśkiewicz, Oliver Witt, Jan Heitmann, Fabian Klötzl, Karol Lassota, Florian Thaeter

Aufgabe 10.1 Reduktion, 4 Punkte

Gegeben sei eine Funktion $f: \{0,1,\#\}^* \to \{0,1\}^*$, für die für jedes Codewort $w \in \{0,1\}^*$ und jedes Wort $x \in \{0,1\}^*$ gilt, dass f(w#x) = w', wobei die Turing-Maschine $M_{w'}$ Folgendes tut:

- 1. $M_{w'}$ löscht die Eingabe,
- 2. schreibt dann das Wort x auf das Band und
- 3. simuliert dann M_w auf x.

Für alle anderen Worte $v \in \{0, 1, \#\}^*$ gelte $f(v) = \lambda$. Dabei codiere $\lambda \notin \text{codes}$ eine Default-TM, die keinen akzeptierenden Zustand hat und nie hält.

Beweisen Sie, dass sich das Halteproblem auf das Problem

 $SH = \{w \mid M_w \text{ hält bei Eingabe } w \text{ an}\}$ mittels der Funktion f reduzieren lässt.

Aufgabe 10.2 Reduktion, 6 Punkte

Beweisen Sie mittels Reduktion, dass die folgenden Sprachen nicht rekursiv sind:

- 1. $L_1 = \{ w \mid M_w \text{ hält auf Eingabe } 0110111 \text{ und } 11101101 \},$
- 2. $L_2 = \{ w \mid M_w \text{ hält auf jedem binären Palindrom } \},$
- 3. $L_3 = \{ w \# x \mid M_w \text{ hält auf } x \text{ nach einer geraden Anzahl von Schritten} \}.$

Aufgabe 10.3 Reduktion, 4 Punkte

Zeigen Sie per Reduktion, dass die folgenden Sprachen nicht rekursiv sind:

```
1. L_1 = \{ w \# w' \mid L(M_w) = L(M_{w'}) \},
2. L_2 = \{ w \# w' \mid L(M_w) \cap L(M_{w'}) = \emptyset \}.
```

Aufgabe 10.4 Satz von Rice, 4 Punkte

Beweisen Sie mithilfe des Satzes von Rice, dass die folgenden Sprachen nicht rekursiv sind:

```
    L<sub>1</sub> = { w | L(M<sub>w</sub>) ist kontextsensitiv },
    L<sub>A</sub> = { w | L(M<sub>w</sub>) = A } für eine feste Sprache A ∈ RE.
```

Aufgabe* 10.5 Das Halteproblem für 2DFAs, 2 Bonuspunkte

In der Vorlesung wurde gezeigt, wie man jede Turing-Maschine eindeutig durch ein binäres Codewort w codieren kann. Ein analoges Vorgehen lässt sich auch bei 2DFAs anwenden. In dieser Aufgabe sei mit M_w der 2DFA gemeint, der durch das Codewort w repräsentiert wird.

Nun sei die Sprache $L = \{ w \# x \mid M_w \text{ hält auf Eingabe } x \}$ gegeben. Dies entspricht dem Halteproblem für 2DFAs. Ist dieses Problem entscheidbar? Begründen Sie Ihre Antwort.

Aufgabe* 10.6 Rekursive Aufzählbarkeit, 3 Bonuspunkte

Zeigen Sie, dass sowohl die Sprache TOTAL = $\{w \mid M_w \text{ hält bei allen Eingaben}\}$ als auch das Komplement von TOTAL nicht rekursiv aufzählbar sind.