પ્રશ્ન 1(a) [3 ગુણ]

નીચેના શબ્દો વ્યાખ્યાયિત કરો: a). Data items b). Data dictionary c).Meta data

જવાબ:

શહ€	વ્યાખ્યા	
Data Items	ડેટાના મૂળભૂત એકમો જે વધુ વિભાજન કરી શકાતા નથી. ડેટાબેઝ ફીલ્ડ્સમાં સંગ્રહિત વ્યક્તિગત તથ્યો અથવા મૂલ્યો	
Data Dictionary	ડેટાબેઝ સ્ટ્રક્ચર, ટેબલ્સ, કોલમ્સ અને સંબંધો વિશે મેટાડેટા ધરાવતો કેન્દ્રીય ભંડાર	
Metadata	ડેટા વિશેનો ડેટા જે ડેટાબેઝ એલિમેન્ટ્સની રચના, અવરોધો અને ગુણધર્મોનું વર્ણન કરે છે	

ਮੇਮरੀ ਟ੍ਰੀs: "DDM - Data Dictionary Manages"

પ્રશ્ન 1(b) [4 ગુણ]

ફાઇલ ઓરિએન્ટેડ સિસ્ટમના ગેરફાયદા સમજાવો.

જવાબ:

ગેરફાયદો	વિવરણ	
ડેટા રીડન્ડન્સી	બહુવિધ ફાઇલોમાં સમાન ડેટાનો સંગ્રહ, જે સ્ટોરેજનો બગાડ કરે છે	
ડેટા અસંગતતા	વિવિધ ફાઇલોમાં સમાન ડેટાના વિવિધ વર્ઝન	
ડેટા આઇસોલેશન	બહુવિદ્ય ફાઇલોમાં વિખરાયેલા ડેટાને એક્સેસ કરવામાં મુશ્કેલી	
સિક્યોરિટી સમસ્યાઓ	મર્યાદિત એક્સેસ કંટ્રોલ અને સુરક્ષા મિકેનિઝમ	

મેમરી ટ્રીક: "RDIS - Really Difficult Information System"

પ્રશ્ન 1(c) [7 ગુણ]

DBA ની જવાબદારીઓનું વિગતવાર વર્ણન કરો.

જવાબદારી	વિગતો	
ડેટાબેઝ ડિઝાઇન	લોજિકલ અને ફિઝિકલ ડેટાબેઝ સ્ટ્રક્ચર બનાવવું	
સિક્યોરિટી મેનેજમેન્ટ	યુઝર એક્સેસ કંટ્રોલ અને ડેટા પ્રોટેક્શન લાગુ કરવું	
પર્ફોર્મન્સ મોનિટરિંગ	ડેટાબેઝ પર્ફોર્મન્સ અને ક્વેરી એક્ઝિક્યુશન ઓપ્ટિમાઇઝ કરવું	
બેકઅપ અને રિકવરી	નિયમિત બેકઅપ દ્વારા ડેટા સેફ્ટી સુનિશ્ચિત કરવી	
યુઝર સપોર્ટ	ડેટાબેઝ યુઝર્સને ટેકનિકલ સહાય પૂરી પાડવી	
સિસ્ટમ મેઇન્ટેનન્સ	નિયમિત અપડેટ્સ, પેથેસ અને સિસ્ટમ ઓપ્ટિમાઇઝેશન	

મેમરી ટ્રીક: "DSPBUM - Database Specialists Provide Better User Management"

પ્રશ્ન 1(c OR) [7 ગુણ]

Data abstraction ની વ્યાખ્યા આપો? DBMS નું ત્રિ સ્તરનું આર્કિટેક્ચર સમજાવો.

જવાબ:

Data Abstraction: યુઝર્સને માત્ર આવશ્યક ફીચર્સ દર્શાવતી વખતે જટિલ implementation વિગતો છુપાવવાની પ્રક્રિયા.

સ્તર	વિવરણ	હેતુ
External Level	ડેટાબેઝનો યુઝર વ્યૂ	વ્યક્તિગત યુઝર પરસ્પેક્ટિવ્સ
Conceptual Level	સંપૂર્ણ ડેટાબેઝની લોજિકલ સ્ટ્રક્ચર	એકંદર ડેટાબેઝ ઓર્ગેનાઇઝેશન
Internal Level	ફિઝિકલ સ્ટોરેજ વિગતો	ડેટા ખરેખર કેવી રીતે સ્ટોર થાય છે

મેમરી ટ્રીક: "ECI - Every Computer Industry"

પ્રશ્ન 2(a) [3 ગુણ]

નીચેના શબ્દો વ્યાખ્યાયિત કરો: a).Relationship set b).Participation c).Candidate key

જવાબ:

કાલ્દ	વ્યાખ્યા	
Relationship Set	એન્ટિટી સેટ્સ વચ્ચે સમાન પ્રકારના સંબંધોનો સંગ્રહ	
Participation	અવરોધ જે સ્પષ્ટ કરે છે કે એન્ટિટી ઓકરન્સ સંબંધમાં ફરજિયાત છે કે નહીં	
Candidate Key	એટ્રિબ્યુટ્સનો ન્યૂનતમ સેટ જે એન્ટિટી સેટમાં દરેક એન્ટિટીને અનન્ય રીતે ઓળખે છે	

મેમરી ટ્રીક: "RPC - Relationship Participation Candidate"

પ્રશ્ન 2(b) [4 ગુણ]

Generalization ઉદાહરણ સાથે સમજાવો.

જવાબ:

Generalization: બોટમ-અપ અપ્રોય જ્યાં નીયલા-સ્તરની એન્ટિટીઝના સામાન્ય એટ્રિબ્યુટ્સને ઉચ્ચ-સ્તરની એન્ટિટીમાં જોડવામાં આવે છે.

ખ્યાલ	વિવરણ	
હેતુ	સામાન્ય સુપરક્લાસ બનાવીને રીડન્ડન્સી ઘટાડવી	
દિશા	બોટમ-અપ (વિશિષ્ટથી સામાન્ય)	
ઉદાહરણ	Car, Truck, Bus → Vehicle	

મેમરી ટ્રીક: "GBU - Generalization Builds Up"

પ્રશ્ન 2(c) [7 ગુણ]

E-R Diagram ની વ્યાખ્યા આપો? E-R ડાયાગ્રામમાં વપરાતા વિવિધ Symbols ને ઉદાહરણ સાથે સમજાવો.

જવાબ:

E-R Diagram: ડેટાબેઝ ડિઝાઇનમાં એન્ટિટીઝ, એટ્રિબ્યુટ્સ અને સંબંધો દર્શાવતું ગ્રાફિકલ પ્રતિનિધિત્વ.

સિમ્બોલ	આકાર	ઉપયોગ	ઉદાહરણ
Entity	લંબચોરસ	ઓબ્જેક્ટ્સનું પ્રતિનિધિત્વ	Student, Course
Attribute	અંડાકાર	એન્ટિટીઝના ગુણધર્મો	Name, Age, ID
Relationship	હીરા	એન્ટિટીઝ વચ્ચેના જોડાણો	Enrolls, Teaches
Primary Key	અન્ડરલાઇન્ડ અંડાકાર	અનન્ય ઓળખકર્તા	Student_ID
Multivalued	ડબલ અંડાકાર	બહુવિધ મૂલ્યો	Phone_Numbers
Derived	ડેશ્ડ અંડાકાર	ગણતરી કરેલા એટ્રિબ્યુટ્સ	Age from DOB

મેમરી ટ્રીક: "EARPM - Every Attribute Represents Proper Meaning"

પ્રશ્ન 2(a OR) [3 ગુણ]

Relational Algebra ની વ્યાખ્યા આપો? Relational Algebra માં વિવિદ્ય કામગીરીની યાદી આપો?

જવાબ:

Relational Algebra: રિલેશનલ ડેટાબેઝ ટેબલ્સને મેનિપ્યુલેટ કરવા માટેની ઓપરેશન્સ સાથે ફોર્મલ ક્વેરી લેંગ્વેજ.

ઓપરેશન પ્રકાર	ઓપરેશન્સ	
મૂળભૂત ઓપરેશન્સ	Select, Project, Union, Set Difference, Cartesian Product	
વધારાની ઓપરેશન્સ	Intersection, Join, Division, Rename	

મેમરી ટ્રીક: "SPUDC-IJDR - Simple People Use Database Concepts"

પ્રશ્ન 2(b OR) [4 ગુણ]

Specialization ઉદાહરણ સાથે સમજાવો.

જવાબ:

Specialization: ટોપ-ડાઉન અપ્રોચ જ્યાં ઉચ્ચ-સ્તરની એન્ટિટીને વિશિષ્ટ નીચલા-સ્તરની એન્ટિટીઝમાં વિભાજિત કરવામાં આવે છે.

ખ્યાલ	વિવરણ	
હેતુ	અનન્ય એટ્રિબ્યુટ્સ સાથે વિશિષ્ટ સબક્લાસીસ બનાવવી	
દિશા	ટોપ-ડાઉન (સામાન્યથી વિશિષ્ટ)	
ઉદાહરણ	Employee → Manager, Clerk, Engineer	

મેમરી ટ્રીક: "STD - Specialization Top Down"

પ્રશ્ન 2(c OR) [7 ગુણ]

Attribute ની વ્યાખ્યા આપો? વિવિધ પ્રકારના Attribute ને ઉદાહરણ સાથે સમજાવો.

જવાબ:

Attribute: એન્ટિટીનું વર્ણન કરતી મિલકત અથવા લાક્ષણિકતા.

એટ્રિબ્યુટ પ્રકાર	વિવરણ	ઉદાહરણ
Simple	વધુ વિભાજન કરી શકાતું નથી	Age, Name
Composite	ઉપવિભાગ કરી શકાય છે	Address (Street, City, State)
Single-valued એક મૂલ્ય ધરાવે છે		SSN, Employee_ID
Multi-valued	બહુવિધ મૂલ્યો હોઈ શકે છે	Phone_Numbers, Skills
Derived અન્ય એટ્રિબ્યુટ્સથી ગણતરી કરેલ		Age from Birth_Date
Key	એન્ટિટીને અનન્ય રીતે ઓળખે છે	Student_ID

भेभरी ट्रीड: "SCSMDK - Simple Composite Single Multi Derived Key"

પ્રશ્ન 3(a) [3 ગુણ]

SQL માં GRANT અને REVOKE સ્ટેટમેન્ટ સમજાવો.

જવાબ:

સ્ટેટમેન્ટ	હેતુ	સિન્ટેક્સ ઉદાહરણ
GRANT	યુઝર્સને વિશેષાધિકારો પ્રદાન કરે છે	GRANT SELECT ON table TO user
REVOKE	યુઝર્સ પાસેથી વિશેષાધિકારો દૂર કરે છે	REVOKE SELECT ON table FROM user

સામાન્ય વિશેષાધિકારો: SELECT, INSERT, UPDATE, DELETE, ALL

भेभरੀ ਟ੍ਰੀs: "GR - Grant Removes (via REVOKE)"

પ્રશ્ન 3(b) [4 ગુણ]

નીચેના Character function સમજાવો .1) INSTR 2) LENGTH

જવાબ:

ફંક્શન	હેતુ	સિન્ટેક્સ	ઉદાહરણ
INSTR	સબસ્ટ્રિંગની સ્થિતિ શોધે છે	<pre>INSTR(string, substring)</pre>	INSTR('Hello', 'e') 2 રિટર્ન કરે છે
LENGTH	સ્ટ્રિંગની લંબાઈ રિટર્ન કરે છે	LENGTH(string)	LENGTH('Hello') 5 રિટર્ન કરે છે

મેમરી ટ્રીક: "IL - INSTR Locates, LENGTH measures"

પ્રશ્ન 3(c) [7 ગુણ]

નીચેના Table માટે SQL સ્ટેટમેન્ટ લખો: Student(Enno,name,branch,sem,clgname,bdate)

જવાબ:

```
-- 1. Create a table Student
CREATE TABLE Student (
   Enno VARCHAR(10) PRIMARY KEY,
   name VARCHAR(50),
   branch VARCHAR(20),
   sem INT,
   clgname VARCHAR(100),
   bdate DATE
);
-- 2. Add a column mobno in Student table
ALTER TABLE Student ADD mobno VARCHAR(15);
-- 3. Insert one record in student table
INSERT INTO Student VALUES
('E001', 'Raj Patel', 'IT', 3, 'GTU College', '2003-05-15', '9876543210');
-- 4. Find out list of students who have enrolled in "IT" branch
SELECT * FROM Student WHERE branch = 'IT';
-- 5. Retrieve all information about student where name begin with 'a'
SELECT * FROM Student WHERE name LIKE 'a%';
-- 6. Count the number of rows in student table
SELECT COUNT(*) FROM Student;
-- 7. Delete all record of student table
DELETE FROM Student;
```

મેમરી ટ્રીક: "CAIRSCD - Create Add Insert Retrieve Search Count Delete"

પ્રશ્ન 3(a OR) [3 ગુણ]

SQL માં equi join ઉદાહરણ સાથે સમજાવો.

જવાબ:

Equi Join: ટેબલ્સને જોડવા માટે સમતા શરતનો ઉપયોગ કરતી જોઇન ઓપરેશન.

જોઇન પ્રકાર	શરત	પરિણામ
Equi Join	Column1 = Column2	બંને ટેબલ્સમાંથી મેચિંગ રો

```
-- GEIGEDI
SELECT s.name, c.course_name
FROM Student s, Course c
WHERE s.course_id = c.course_id;
```

મેમરી ટ્રીક: "EE - Equi Equals"

પ્રશ્ન 3(b OR) [4 ગુણ]

નીચેના Aggregate function સમજાવો .1) MAX 2) SUM

જવાબ:

ફંક્શન	હેતુ	સિન્ટેક્સ	ઉદાહરણ
MAX	મહત્તમ મૂલ્ય રિટર્ન કરે છે	MAX(column)	MAX(salary)
SUM	કુલ સરવાળો રિટર્ન કરે છે	SUM(column)	SUM(marks)

ਮੇਮરੀ ਟੀક: "MS - MAX Sum"

પ્રશ્ન 3(c OR) [7 ગુણ]

નીચેના Table માટે SQL સ્ટેટમેન્ટ લખો: Employee(EmplD,Ename,DOB,Dept,Salary)

```
-- 1. Create a table Employee

CREATE TABLE Employee (
    EmpID VARCHAR(10) PRIMARY KEY,
    Ename VARCHAR(50),
    DOB DATE,
    Dept VARCHAR(30),
    Salary DECIMAL(10,2)
);
```

```
-- 2. Find sum of salaries of all employee

SELECT SUM(Salary) FROM Employee;

-- 3. Insert one record in Employee table

INSERT INTO Employee VALUES
('E001', 'John Doe', '1990-05-15', 'IT', 35000);

-- 4. Find names of employees who salary between 25000/- and 48000/-

SELECT Ename FROM Employee WHERE Salary BETWEEN 25000 AND 48000;

-- 5. Display detail of all employees in descending order of their DOB

SELECT * FROM Employee ORDER BY DOB DESC;

-- 6. List name of all employees whose name ends with 'a'

SELECT Ename FROM Employee WHERE Ename LIKE '%a';

-- 7. Find highest and least salaries of all employees

SELECT MAX(Salary) AS Highest, MIN(Salary) AS Lowest FROM Employee;
```

મેમરી ટ્રીક: "CSIDDHL - Create Sum Insert Display Display List HighLow"

પ્રશ્ન 4(a) [3 ગુણ]

નીચે દર્શાવેલ રિલેશનલ સ્ક્રીમાનું ધ્યાન માં લઇ દરેક ક્વેરી માટે રિલેશનલ એલજીબ્રા એક્સપ્રેશન લખો.

જવાબ:

```
Student (Enrollment_No,Name,DOB,SPI)

i. σ(SPI > 7.0)(Student)

ii. π(Name)(σ(Enrollment_No = 007)(Student))
```

ਮੇਮરੀ ਟ੍ਰੀs: "SP - Select Project"

પ્રશ્ન 4(b) [4 ગુણ]

Partial functional dependency ની ટૂંકી નોંધ લખો.

ખ્યાલ	વિવરણ
વ્યાખ્યા	Non-prime એટ્રિબ્યુટ કમ્પોઝિટ પ્રાઇમરી કીના ભાગ પર આદ્યાર રાખે છે
ક્યાં જોવા મળે	કમ્પોઝિટ પ્રાઇમરી કી વાળા ટેબલ્સમાં
સમસ્યા	રીડન્ડન્સી અને અપડેટ એનોમેલીઝ કારણભૂત
સોલ્યુશન	2NF માં ડીકમ્પોઝ કરવું

ઉદાહરણ: Table(StudentID, CourseID, StudentName, CourseName) માં, StudentName માત્ર StudentID પર આધાર રાખે છે (કીનો ભાગ).

મેમરી ટ્રીક: "PDPR - Partial Dependency Problems Resolved"

પ્રશ્ન 4(c) [7 ગુણ]

Normalization ની જરૂરિયાત સમજાવો? ઉદાહરણ સાથે 2NF વિશે ચર્ચા કરો.

જવાબ:

Normalization ની જરૂરિયાત:

સમસ્યા	Normalization દ્વારા સોલ્યુશન
ડેટા રીડન્ડન્સી	ડુપ્લિકેટ ડેટા દૂર કરે છે
અપડેટ એનોમેલીઝ	અસંગત અપડેટ્સ અટકાવે છે
ઇન્સર્ટ એનોમેલીઝ	સ્વતંત્ર ડેટા ઇન્સર્શનની મંજૂરી આપે છે
ડિલીટ એનોમેલીઝ	મહત્વપૂર્ણ ડેટાની હાનિ અટકાવે છે

Second Normal Form (2NF):

- 1NF માં હોવું જોઈએ
- કોઈ આંશિક કાર્યાત્મક નિર્ભરતા નહીં

ઉદાહરણ:

```
2NF પહેલાં:
StudentCourse(StudentID, CourseID, StudentName, CourseName)

2NF પછી:
Student(StudentID, StudentName)
Course(CourseID, CourseName)
Enrollment(StudentID, CourseID)
```

મેમરી ટ્રીક: "NUID2 - Normalization Unifies Important Data to 2NF"

પ્રશ્ન 4(a OR) [3 ગુણ]

નીચે દર્શાવેલ રિલેશનલ સ્ક્રીમાનું ધ્યાન માં લઇ દરેક ક્વેરી માટે રિલેશનલ એલજીબ્રા એક્સપ્રેશન લખો.

```
Student(Enno,name,age,address)

i. \pi(name)(\sigma(address = 'Surat')(Student))

ii. \pi(name)(\sigma(age > 30)(Student))
```

પ્રશ્ન 4(b OR) [4 ગુણ]

1NF ની વ્યાખ્યા આપો? યોગ્ય ઉદાહરણ સાથે 1NF સમજાવો.

જવાબ:

First Normal Form (1NF): દરેક કૉલમ એટોમિક (અવિભાજ્ય) મૂલ્યો ધરાવે છે, અને દરેક કૉલમ એક જ પ્રકારના મૂલ્યો ધરાવે છે.

નિયમ	વિવરણ
એટોમિક મૂલ્યો	એક સેલમાં બહુવિધ મૂલ્યો નહીં
રિપીટિંગ ગ્રુપ્સ નહીં	ડુપ્લિકેટ કૉલમ્સ નહીં
અનન્ય રો	દરેક રો અનન્ય હોવી જોઈએ

ઉદાહરણ:

```
1NF પહેલાં:
Student(ID, Name, Subjects)
1, John, Math, Science, English

1NF પછી:
Student(ID, Name, Subject)
1, John, Math
1, John, Science
1, John, English
```

મેમરી ટ્રીક: "ANU - Atomic No-repeat Unique"

પ્રશ્ન 4(c OR) [7 ગુણ]

Transitive Dependency ની વ્યાખ્યા આપો? યોગ્ય ઉદાહરણ સાથે 3NF સમજાવો.

જવાબ:

Transitive Dependency: Non-prime એટ્રિબ્યુટ પ્રાઇમરી કી પર સીધો આધાર ન રાખીને બીજા non-prime એટ્રિબ્યુટ પર આધાર રાખે છે.

Third Normal Form (3NF):

- 2NF માં હોવું જોઈએ
- કોઈ ટ્રાન્ઝિટિવ નિર્ભરતા નહીં

3NF પહેલાં	3NF પછી
Student(ID, Name, DeptCode, DeptName)	Student(ID, Name, DeptCode)
DeptName, DeptCode પર આધાર રાખે છે	Department(DeptCode, DeptName)

મેમરી ટ્રીક: "T3ND - Transitive Third Normal Form No Dependencies"

પ્રશ્ન 5(a) [3 ગુણ]

Serializability ની વ્યાખ્યા આપો? Serializability ના નિયમો સમજાવો?

જવાબ:

Serializability: સમાંતર ટ્રાન્ઝેક્શન એક્ઝિક્યુશન સીરિયલ એક્ઝિક્યુશનના સમાન પરિણામ આપે તેની ખાતરી કરતી મિલકત.

નિયમ	વિવરણ
Conflict Serializability	વિવિધ ક્રમમાં કોઈ સંઘર્ષકારી ઓપરેશન્સ નહીં
View Serializability	સીરિયલ શેક્યૂલ જેવા જ રીડ-રાઇટ પેટર્ન

મેમરી ટ્રીક: "SCV - Serial Conflict View"

પ્રશ્ન 5(b) [4 ગુણ]

Implicit Cursors ના Attribute સમજાવો.

જવાબ:

એટ્રિબ્યુટ	વિવરણ
%FOUND	TRUE જો છેલ્લા SQL એ ઓછામાં ઓછી એક રો પર અસર કરી
%NOTFOUND	TRUE જો છેલ્લા SQL એ કોઈ રો પર અસર ન કરી
%ROWCOUNT	છેલ્લા SQL દ્વારા પ્રભાવિત રોની સંખ્યા
%ISOPEN	ઇમ્પ્લિસટ કર્સર્સ માટે હંમેશા FALSE

મેમરી ટ્રીક: "FNRI - Found NotFound RowCount IsOpen"

પ્રશ્ન 5(c) [7 ગુણ]

Two phase locking protocol ને યોગ્ય ઉદાહરણ સાથે સમજાવો.

જવાબ:

Two Phase Locking (2PL): બે તબક્કા દ્વારા serializability સુનિશ્ચિત કરતો પ્રોટોકોલ.

તબક્કો	વિવરણ	નિયમો
વૃદ્ધિ તબક્કો	માત્ર લોક મેળવવા	લોક મેળવી શકે છે, છોડી શકતા નથી
ઘટાડો તબક્કો	માત્ર લોક છોડવા	લોક છોડી શકે છે, મેળવી શકતા નથી

ઉદાહરણ:

Transaction T1:

1. Lock(A) – વૃદ્ધિ

2. Lock(B) – વૃદ્ધિ

3. Read(A), Write(A)

4. Unlock(A) – ઘટાડો

5. Read(B), Write(B)

6. Unlock(B) – ઘટાડો

મેમરી ટ્રીક: "2PGS - Two Phase Growing Shrinking"

પ્રશ્ન 5(a OR) [3 ગુણ]

ટ્રાન્ઝેક્શનની ACID પ્રોપર્ટીસ સમજાવો.

જવાબ:

પ્રોપર્ટી	વિવરણ
Atomicity	ટ્રાન્ઝેક્શન all-or-nothing છે
Consistency	ડેટાબેઝ વેલિડ સ્ટેટમાં રહે છે
Isolation	સમાંતર ટ્રાન્ઝેક્શન્સ દખલ કરતા નથી
Durability	કમિટ થયેલા ફેરફારો કાયમી છે

મેમરી ટ્રીક: "ACID - All Changes In Database"

પ્રશ્ન 5(b OR) [4 ગુણ]

Triggers ની વ્યાખ્યા આપો? ટ્રિગર્સના ફાયદા સમજાવો.

જવાબ:

Triggers: ડેટાબેઝ ઇવેન્ટ્સના જવાબમાં આપોઆપ એક્ઝિક્યુટ થતી વિશેષ સ્ટોર્ડ પ્રોસીજર્સ.

ફાયદો	વિવરણ
આપોઆપ એક્ઝિક્યુશન	સ્પષ્ટ કૉલ વિના ચાલે છે
ડેટા ઇન્ટેગ્રિટી	બિઝનેસ રૂલ્સ લાગુ કરે છે
ઓડિટિંગ	ડેટાબેઝ ફેરફારોને ટ્રેક કરે છે
સિક્યોરિટી	ડેટા એક્સેસ કંટ્રોલ કરે છે

મેમરી ટ્રીક: "ADAS - Automatic Data Auditing Security"

પ્રશ્ન 5(c OR) [7 ગુણ]

Problems of concurrency control ની યાદી બનાવો. કોઈપણ બેના યોગ્ય ઉદાહરણ સાથે સમજાવો.

જવાબ:

Concurrency Control ની સમસ્યાઓ:

સમસ્યા	વિવરણ
Lost Update	એક ટ્રાન્ઝેક્શનનું અપડેટ બીજાના દ્વારા ઓવરરાઇટ થાય છે
Dirty Read	અનકમિટેડ ડેટા વાંચવો
Non-repeatable Read	સમાન ટ્રાન્ઝેક્શનમાં વિવિધ મૂલ્યો વાંચવા
Phantom Read	રીડ્સ વચ્ચે નવી રો દેખાય છે

ઉદાહરણ 1 - Lost Update:

```
T1: Read(A=100)
T2: Read(A=100)
T1: A = A + 50 (A=150)
T2: A = A + 30 (A=130) <- T1 ਜੁਂ ਅਪਤੇਟ ਪੁਮ
T1: Write(A=150)
T2: Write(A=130) <- ਲਾਂਗਿਮ ਮ੍ਰਵਪ ਅਹੇਟੁਂ
```

ઉદાહરણ 2 - Dirty Read:

```
T1: Write(A=200) [કમિટ નથી]
T2: Read(A=200) <- Sર્ટી રીડ
T1: Rollback <- A પાછું મૂળ મૂલ્યે
T2: ખોટા મૂલ્ય સાથે ચાલુ રાખે છે
```

મેમરી ટ્રીક: "LDNP - Lost Dirty Non-repeatable Phantom"