71	2	3	4	5	6	7	8	9	10	11	12
В	A	D	CD	BCD	A	BCD	В	ACD	D	ABCD	C

1、 加法器采用先行进位的目的是()

A.优化加法器结构 B.提高进位产生速度

C.保证运算结果正确 D.正确传递进位值

2、 十进制数 178.125 表示成 IEEE 754 单精度浮点数的结果是 ()

A.43322000H B.43591000H C.B3591000H D.B3322000H

3、 指令所需要的操作数不会来自()

A.指令寄存器 IR B.主存

C.通用寄存器 D.变址寄存器

- 4、 [多选]下列计算机系统性能评价的描述中正确的是
 - A.程序 MIPS 值越高, 计算机的性能越高
 - B.程序的 CPI 值越低,计算机的性能越高
 - C.主频高的机器性能不一定高
 - D.同一程序在不同机器的 MIPS 不一定相同
- 5、 [多选]下列关于取指令阶段指令流程的描述中,正确的是()
 - A.取指流程中只有一条数据通路;
 - B.取指流程包含取指令和 PC 增量流程
 - C.不同 PC 增量方式影响取指流程;
 - D.CPU 内总线结构影响取指流程:
- 6、 某机有 5 级中断 L4~L0, 中断响应优先级从高到低的次序是 L4>L3>L2>L1>L0, 设中断屏蔽字为 M4M3M2M1M0, M_i=1(0≤i≤4)表示对 Li 级中断进行屏蔽。若要实现中断完成(处理)优先级从高到低的顺序 L4>L1>L3>L2>L0,则在 L3 的中断服务程序中,应把中断屏蔽字设置为()

A.01101 B.10010 C.11000 D. 00111

- 7、 [多选]下列关于 Cache 的说法中,错误的是
 - A.采用直接映像时, Cache 无需考虑替换问题
 - B.如果选用最优替换算法,则 Cache 的命中率可达到 100%
 - C.提高 Cache 本身速度比提高 Cache 命中率更有利于提升存储器的等效访问速度
 - D.Cache 的容量与主存的容量差别越大,存储系统的等效访问速度越高
- 8、 在补码定点加减法运算的溢出判别中,下列说法错误的是()
 - A.对于减法,符号不同的两个数相减可能发生溢出
 - B.对于加法,符号相同的两个数相加一定发生溢出
 - C.对于加法,符号不同的两个数相加永不会发生溢出
 - D.对于减法,符号相同的两个数相减永不会发生溢出
- 9、 [多选] 单周期 MIPS 在一个时钟周期中可能完成的操作()
 - A. ALU 运算和向寄存器堆写数据
 - B.从数据存储器读数据和向数据存储器写数据;
 - C.更新 PC 内容和向数据存储器写数据
 - D.寄存器堆读数据,ALU运算和数据存储器写数据
- 10、 某型 MIPS32 指令架构的单周期 CPU, 其数据通路结构如下图:

执行指令 **sw rt, offset(rs)** 时,应由控制器产生的控制信号 PCSrc、aluSrc、memRead/memWrite、regWrite 和 extend 分别是()

- A. 1, 0, 1/0, 1, 0;
- B. 1, 1, 0/0, 0, 1;
- C. 0, 1, 1/0, 1, 0;
- D. 0, 1, 0/1, 0, 1;
- 11、[**多选**]下列寄存器中,对**系统硬件工程师**不透明的是
 - A.存储器地址寄存器(MAR)
 - B.程序计数器(PC)
 - C.存储器数据寄存器(MDR)
 - D.指令寄存器(IR)
- 12、已知一个虚拟页式存储系统,其物理内存内存容量为 512MB,虚存容量为 128GB,均 按字节寻址,假定页面大小为 4KB,则该页式虚拟存储系统的虚页号为()位。
 - A. 37 B. 29 C.25 D. 12

得分	评卷人

二、分析问答题(12分)

在 CRC 编码实验中,待传输 16 位数据位 = 0000 0000 0000 0111, 采用 CRC 循环冗余 校验码进行数据校验,生成多项式为 1101111。

1) 试根据 CRC 校验码的编码规则给出该编码的 CRC 余数。

 $111000000 \mod 11011111 = 010011$

2) 假设接收方接收到的最终编码为 0000 0000 0000 0111 0000 11, 假设最多发生一位错,最低位为第 1 位,结合课程实验中所用到的方法说明 CRC 编码如何定位错误并纠正错误。

111000011 mod 1101111 = 010000 发生错误 根据余数应该右起第 5 位错

3) 课程实验中并行 CRC 编码电路的基本思路是什么?

提前计算若干编码的余数,然后将编码数据拆解成若干编码的排列组合,将余数异或 加即可得到余数。

- 4) 在 CRC 编码流水传输中是如何区分一位错还是两位错的? 对于两位错,流水线是如何处理的?
- 1、可以引入偶校验位,也可以直接利用 CRC 编码余数进行判断。。
- 2、对于两位错,要求清除两个接口的数据,并在发送端重新回滚。

得分	评卷人

三、分析计算题(12分)

计算分析题(10 分)已知 $[x]_{*}=11111011$, $[y]_{*}=01010111$,用补码一位乘法计算 $[x\times y]_{*}=?$ (单符号位)将答案填写在下面,并将计算过程填写在表格中。

 $[x \times y]_{*} = _{7E4D}$ (十六进制) $x \times y = _{-435}$ (10 进制)

如果 $[x]_{**}=1000000$ 时, $[y]_{**}=00000001$,运算结果等于多少?结果是否正常,为什么? =80,结果不正常,因为-x 溢出了,无法进行运算。

$[-x]_{*}=00000101$

#	运算	部分积	移出位	判断位 y _n y _{n+1}
1		00000000		0 101011 <u>10</u>
2	+[-X]*	00000101		
3	=	00000101		
4	→	00000010	1	0 10101 <u>11</u>
5	+0	0		
6	=	00000010	1	
7	\rightarrow	0000001	01	0 1010 <u>11</u>
8	+0	0		
9	=	0000001	01	
10	\rightarrow	00000000	101	0 101 <u>01</u>
11	+[x]*	11111011		
12	=	11111011	101	
13	→	11111101	1101	010 <u>10</u>
14	+[-x]*	00000101		
15	=	00000010	1101	
16	→	0000001	01101	01 <u>01</u>
17	+[x]*	11111011		
18	=	11111100	01101	
19	→	11111110	001101	<u>010</u>
20	+[-x]*	00000101		
21	=	00000011	001101	
22	→	0000001	1001101	<u>01</u>
23	+[x] _补	11111011		
24	=	11111100	1001101	
25				

得分	评卷人

四、综合分析题(12分)

一个包含 10 个元素的一维数组顺序存放在主存连续单元,主存每个存储单元存放一个数组元素,机器的 Cache 分为指令 Cache 和数据 Cache,其中数据 Cache 有 4 行,每行可存放两个数组元素,Cache 的初始状态为空,采用 LRU 替换算法,某程序的伪代码如下:

SUM :=0

for j:=0 to 9 do
SUM:= SUM +A(j)

end

Ave:= SUM/8

for i:=9 to 0 do A(i) := A(i)/Ave

end

- 1) 将 Cache 分为指令 Cache 和数据 Cache 的架构称为哈佛结构,这种结构有什么好处?
- 2) 计算全相联映射方式下 Cache 读操作的命中率。
- 3) 假定主存的存取时间为 200ns, Cache 的存取时间为 20 ns, 求该存储系统的平均存取时间。

参考答案:

- 1) 将 Cache 分为指令 Cache 和数据 Cache 时,CPU 可并行访问指令和数据,缩短程序的执行时间。 (2 分)
- 2) 全相联系方式下 Cache 中的内容变化如下图所示 a)第一轮循环读命中情况

	j=0-7	命中	j=8,9	命中
C0	a[0],a[1]	a[1]	a[8],a[9]	a[9]
C1	a[2],a[3]	a[3]	a[2],a[3]	
C2	a[4],a[5]	a[5]	a[4],a[5]	
C3	a[6],a[7]	a[7]	a[6],a[7]	

b)第二轮循环命中的情况

循环前	j=9-2	命中	j=1, 0	命中
a[8],a[9]	a[8],a[9]	a[8],a[9]	a[1],a[0]	a[0]
a[2],a[3]	a[2],a[3]	a[3],a[2]	a[2],a[3]	
a[4],a[5]	a[4],a[5]	a[5],a[4]	a[4],a[5]	
a[6],a[7]	a[6],a[7]	a[7],a[6]	a[6],a[7]	

两轮循环中数组中的元素共被访问 20 次,两轮循环中从数据 Cache 中共命中 14 次,命中率为 14/20 = 70%

3) T = 20 ns \times 0.7 + 200 ns \times (1-0.7) = 74 ns (4 %)

得分	评卷人

五、设计分析题(12分)

(1) 计算所需要的 RAM 和 ROM 芯片数量;

(1) ROM 有 16K 地址,需要
$$\frac{16}{8} \times \frac{32}{8} = 8$$
 片 8K×8 位的 ROM

RAM 有 48K 地址,需要
$$\frac{48}{8} \times \frac{32}{8} = 24$$
 片 8K×8 位的 RAM

(2) 如何保证存储器按字边界对齐?

该 32 位存储器总共有 64K 地址,需要 16 根地址线访问,为了保证存储器按字边界对齐可以采用以下方法:即计算机的 18 位地址线高 16 位连接存储器,低 2 位地址则不连接存储器,而是用于字节访问。

(3) 画出 CPU 与存储器的连接,注意片选信号和不同芯片的顺序。

CPU 与存储器的连接如下图所示:

第7页 共11页

得分	评卷人

六、设计分析题(12分)

现针对云计算开发了一款64位的MIPS指令集的变体,为了更适应大数据场景,操作码 0pcode字段为7位,通用寄存器的数目由32个变成了128个,寄存器数据位宽64位,假设R型指令中64位字长的指令字多余位均扩展到最右侧的Funct字段, I型指令中多余位均扩展到 Immediate字段。

(1) 请给出R型指令和I型指令字段划分。

0pcode	Rs	Rt	Rd	Shamt	Funct
7	7	7	7	6	30

0pcode	Rs	Rt	Imm
7	7	7	43

(2) 该MIPS指令系统最多可以支持多少条指令,给出计算表达式。

2⁷-1 非R型号指令 + 2³⁰ R型指令

(3) 执行一条R型指令后,PC的增量是多少,给出计算表达式;

\$pc=\$pc+8;

(4) 请问有条件分支指令Beq最多能将PC寄存器的值增加多少?给出计算表达式。

得分	评卷人

七、工程设计题(16分)

在 CPU 设计实验中中我们实现了如下 8 条 MIPS 指令的多周期 CPU,指令功能描述如下表所示,后页给出了主机数据通路图。

#	MIPS 指令	RTL 功能描述	
1	add \$rd,\$rs,\$rt	$R[\$rd] \leftarrow R[\$rs] + R[\$rt]$	
2	slt \$rd,\$rs,\$rt	R[\$rd]←R[\$rs] <r[\$rt] 1,有符号比较<="" td="" 小于置=""></r[\$rt]>	
3	addi \$rt,\$rs,imm	$R[\$rt]\leftarrow R[\$rs]+SignExt_{16b}(imm)$	
4	lw \$rt,imm(\$rs)	$R[\$rt] \leftarrow Mem_{4B}(R[\$rs] + SignExt_{16b}(imm))$	
5	sw \$rt,imm(\$rs)	$Mem_{4B}(R[\$rs]+SignExt_{16b}(imm)) \leftarrow R[\$rt]$	
6	beq \$rs,\$rt,imm	$if(R[\$rs] = R[\$rt]) PC \leftarrow PC + SignExt_{18b}(\{imm, 00\})$	
7	bne \$rs,\$rt,imm	$if(R[\$rs] != R[\$rt]) PC \leftarrow PC + SignExt_{18b}(\{imm, 00\})$	
8	syscall	系统调用,这里用于停机	

1) 根据主机数据通路图的信息请给出 sw 指令在取指令阶段和执行指令阶段的数据通路和控制信号。

1) 取指令阶段

时钟	数据通路	控制信号
T1	Mem[PC]→IR PC+4→PC	IRwrite=1 IorD=0 PcWrite=1 MemRead ALU OP ALU srcA ALU SrcB
Т2	Reg→A、B PC+4+IMM16<<2→C	ALU_OP ALU_srcA ALU_SrcB
Т3		
T4		

2) 执行指令阶段

时钟	数据通路	控制信号
T1	A+B → C	ALU_OP ALU_srcA ALU_SrcB
Т2	B→Mem[C]	IorD=1 MemWrite
Т3		
T4		

2) 在 Logisim 环境中支持 Ctrl+R 进行系统总复位,为什么电路中还要增加一个 Rst 复位信号?

Ctr1+R 复位会清空 RAM 存储器,导致程序丢失,增加的 Rst 信号可避免 RAM 数据丢失

3) 如果采用微程序构造控制器,采用水平型直接表示法,微指令分为哪几个字段,各字段 长度多少,各字段包括哪些信息,

操作控制字段 17 位 P字段 1 位 下址字段 4 位

4) 微程序通常是串行执行的,简要叙述取指微程序执行完毕后系统是如何跳转到当前指令 对应的微程序入口地址的?

P 字段为 0 时,下址字段提供下条微指令地址,P 字段为 1 时,由地址转移逻辑根据指令功能给出下条微指令地址。

第11页 共11页

计算机科学与技术学院	答题草稿纸

计算机科学与技术学院	答题草稿纸

计算机科学与技术学院	答题草稿纸

计算机科学与技术学院	答题草稿纸