Grafi in memoria e Visite di grafi

Esistono diverse strutture che si posso usare per rappresentare i grafi in memoria. Principalmente si distinguono in due:

- Matrici di Adiacenza
- Liste di Adiacenza

Grafi non diretti

Quanto spazio?

	a	b	C	<u>d</u>
a	0	1	1	1
b	1	0	1	0
C	1	1	0	1
d	1	0	1	0
Matrice di adiacenza				

 $O(n^2)$

Le operazioni che possiamo eseguire sono:

Operazione	Matrice di Adiacenza	Liste di Adiacenza
Elenco archi incidenti in v	O(n)	$O(\delta(v))$
Ricerca arco (u,v)	O(1)	$O(min[\delta(u),\delta(v)])$

Grafi diretti

Quanto spazio?

	a	b	C	d
a	0	1	0	1
b	0	0	1	0
C	1	0	0	1
d	0	0	0	0
Matrice di adiacenza				

 $O(n^2)$

Le

operazioni che possiamo eseguire sono:

Operazione	Matrice di Adiacenza	Liste di Adiacenza	
Elenco archi incidenti in v	O(n)	$O(\delta(v))$	
Ricerca arco (u,v)	O(1)	$O(\delta(u))$	

Scopo e tipi di visita

Una visita in un grafo ci permette di visitare i nodi in modo sistematico, ciò che si genera da questa visita è un albero di visita.

Esistono vari tipi di visite principalmente:

- BFS -> Visita in ampiezza
- DFS -> Visita in profondità

Visita in Ampiezza

Dato un grafo G (non pesato) e un nodo s, trova tutte le distanze/cammini minimi da sverso ogni altro nodo v.

(i) Applicazioni

- Web Crawling
- Social Networking
- Network Broadcast
- Garbage Collection
- Model Checking
- Risolvere puzzle

Partiamo da un qualsiasi nodo, inseriamo nella coda tutti i nodi vicini a quello di partenza, una volta inseriti tutti, eliminiamo il nodo di partenza e facciamo la stessa cosa con il primo nodo disponibile nella coda.

Complessità:

Il temppo di esecuzione dipende dalla struttura che usiamo per rappresentare il grafo, infatti:

- Liste di Adiacenza -> O(m+n)
- Matrice di Adiacenza -> $O(n^2)$

Osservazioni

- 1. Se il grafo è connesso allora $m \geq n-1$ e quindi O(m+n) = O(m)
- 2. Ricordiamo che $m \leq n(n-1) \backslash 2$ si ha $O(m+n) = O(n^2)$

Per $m=o(n^2)$ la rappresentanza mediante liste di adiacenza è temporalemente più efficiente.

⊘ Teorema

Per ogni nodo v, il livello di v nell'albero BFS è pari aòòa distanza di v dalla sorgente s (Sia per i grafi orientati che non orientati).

Visita in Profondità

Quello che ci serve per creare un DFS è una pila ed una variabile booleana.

```
procedura visitaDFSRicorsiva(vertce v, albero T):
    marca e visita il vertice v
    for each (arco(u,v)) do
        if(w non è marcato) then
            aggiungi l'arco (v,w) dell'albero T
            visitaDFSRicorsiva(w,T)

algoritmo visitaDFS(vertice s) -> albero
    T <- albero vuoto
    visitaDFSRicorsiva(s,T)
    return T</pre>
```

Controlliamo ogni nodo possibile, finchè non ci troviamo in un nodo che non ha più vicini, allora torniamo indietro al primo nodo che ha vicini ancora non esplorati.

Complessità: Il tempo di esecuzione dipende dalla struttura dati usata:

- Liste di Adiacenza -> O(m+n)
- Matrice di Adiacenza -> $O(n^2)$

Proprietà dell'albero DFS radicato in s:

- 1. Se il grafo non è orientato, per ogni arco (u, v) si ha che: (u, v) è un arco dell'albero DFS, oppure i nodi u e v sono l'uno discentente/antenato dell'altro.
- 2. Se il grafo è orientato, per ogni arco (u, v) si ha che: (u, v) è un arco dell'albero DFS, oppure i nodi u e v sono l'uno discentente/antenato dell'altro, oppure (u, v) è un arco

traversalmente a sinistra,	ovvero il vertice	v è in un sottoa	lbero visitato pred	edentemente
$ad\; u.$				