ILATE

Math 1450, Honor Calculus Practice9, Fall 2016.

October 11, 2016

PSID:	Name:
(1) Calculate $\int \frac{3x \ln(x^6)}{\Delta} dx$.	(1) $\int 3 \times \ln(x^6) dx = \int 3 \times \cdot 6 \ln(x) dx$
(2) Calculate $\int \frac{x^2 e^{-4x} dx}{A}$	=18 $\int \times \ln x dx = 18 \cdot \left[\frac{\ln x}{2}\right] \times \left[\frac{2}{2} - \int \frac{x}{2} dx\right]$
(3) Calculate $\int \frac{6x \cos(\pi x) dx}{A}$	$du = \ln x - dv = xdx$ $du = \frac{dx}{x} = \frac{x^2}{x}$
(4) Calculate $\int 2e^x \cos(x) dx$.	MU= X Z V= Z
(5) Calculate $\int 6x \arctan(x^2) dx$	$= 9 \times 2 \ln(x) - 9 \times dx = 9 \times 2 \ln(x) - \frac{9}{2} \times \frac{2}{7} + C$
(6) Calculate $\int x^3 \sin(x^2) dx$.	(2) $\int x^2 e^{-4x} dx = -\frac{x^2}{4} e^{-4x} = -\frac{x}{8} e^{-4x} = -\frac{1}{32} e^{-4x} e^{-4x}$
(7) Calculate $\int x^3 e^{x^2} dx$.	Table: u dv Sign
(8) Calculate $\int \frac{xe^x}{(x+1)^2} dx$.	u dv sign x² reux + x² reux + x² reux + x² reux + x² reux +
(3) S6x cos(TTX)dx	a 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$\sqrt{1-(x-dy=\cos(\pi x)dx)}$	d 0 2 - 4x 2x - 4x - 64 16 ex
$du = 6 dx = \sqrt{\frac{1}{\pi}} dx$ $du = 6 dx = \sqrt{\frac{1}{\pi}} \sqrt{\frac{1}{\pi}} x$	$+\frac{2}{-64}e^{4X}$
du=6uxev T	(6) $\int x^3 \sin(x^2) dx = -\frac{x^2 \cos(x^2)}{2} + \int x \cos(x^2) dx$
V	$11-x^2 = dy - x \sin x dx$
$= \frac{6 \times \sin(\pi x)}{\pi} - \frac{6}{\pi} \int \sin(\pi x)$	$dx \qquad du = x \times dx = x \times dx$ $du = x \times dx = x \times dx$
$= \frac{6 \times \sin(\pi x)}{\pi} - \frac{6}{\pi} \left(-\cos(\pi x) \right)$	
$= \frac{6 \times \sin(\pi x)}{\pi} + \frac{6}{\pi} \cos(\pi x)$	
THE COSCTIX)	+ C

$$|Y| = \frac{2e^{x} \cos xxx}{1} dx = \frac{2e^{x} \cos xx}{1} + \frac{1}{2} e^{x} \sin xx + \frac{1}{2} e^{x} \sin xx + \frac{1}{2} e^{x} \cos xx +$$