Do Now

The following is a chart of the temperature of a cup of coffee as it cools.

X	t (minutes)	0	2	5	9	10
Y	H(t) (degrees Celcius)	66	60	52	44	43

t (minutes)

0
2
5
9
10

H(t) (degrees Celcius)

66
60
52
44
43

Slope = ARCC

a.) Find the average rate of change over the interval [5, 10]. Interpret the meaning of your answer.

The temp doeps

minute over the interval [5, 10]

b.) Approximate the derivative at t=1. Interpret the meaning of your answer.

The decivative

The decivative

At t=1 is 3 in the decivative

c.) Approximate the instantaneous slope at t=2. interpret the meaning of your answer.

AIMS: - use the power rule to find derivatives

Unit 2.5 - The Power Rule for finding Derivative

I. The Power Rule

To the the district of the power Proble:
$$\frac{d}{dx}(x^2) = 2x$$

Power Proble: $\frac{d}{dx}(x^3) = 6x^2$

Power Proble: $\frac{d}{dx}(x^3) = -6x^2$
 $\frac{d}{dx}(3x^{-1}) = -3x^{-2}$
 $\frac{d}{dx}(3x^{-1}) = -3x^{-2}$
 $\frac{d}{dx}(3x^{-1}) = -3x^{-2}$
 $\frac{d}{dx}(5x^3) = 0.15x^{-1.7}$
 $\frac{d}{dx}(5x^3) = 0.15x^{-1.7}$
 $\frac{d}{dx}(5x^3) = 0.15x^{-1.7}$

Find $\frac{dy}{dx}$ for the following functions:

$$f(x) = ax^3 + bx^2 + cx + d$$

Find the value of the derivative of the following functions at x=1

$$y = \frac{x^{\frac{3}{2}} + 2}{x}$$

$$y = (x^{\frac{3}{2}} + 2)x^{-1}$$

$$= x^{\frac{3}{2}} + 2x^{-1} + 3x^{-1}$$

$$f(x) = 1 + x + x^{2} + x^{3} + x^{4} + x^{5}$$

$$y = \frac{x^{\frac{3}{2}} + 2}{x} + \frac{2}{x}$$

$$y = \frac{x^{\frac{3}{2}} + 2}{x} + \frac{2}{x}$$

$$y = \frac{x^2 + 1}{5}$$

$$f(x) = \frac{1 + x + x^2 + x^3 + x^4 + x^5 + x^6}{x^3}$$

General ideas about derivatives to keep in mind:

Equations of tangent and normal lines:

Find the line tangent to $y = 3x^8 + 2x + 1$ at x=1

Now find the line normal to $y = 3x^8 + 2x + 1$ at x=1

$$m = -26$$

AP Question:

Let $f(x) = 4x^3 - 3x - 1$. An equation of the line tangent to y = f(x) at x = 2 is

- a.) y = 25x 5
- b.) y = 45x + 65
- c.) y = 45x 65
- d.) y = 65 45x
- e.) y = 65x 45

AIMS: - use the power rule to find derivatives

TTL

1.) Find the equation of the line normal to $f(x) = -\frac{1}{2}x^4 - 9x + 8$ at x=1