JUNHO DE 2022

REDES DE COMUNICAÇÕES II

ENGENHARIA DE COMPUTADORES E INFORMÁTICA

TÚNEIS DE TRÁFEGO

OBJETIVOS

- Garantir que um pacote que alcança um determinado nó da rede, também alcança um nó de rede secundário específico, independentemente dos processos de routing de nós intermediários.
- Garantir a entrega de um pacote a um nó remoto quando os nós intermediários não suportam o protocolo da rede origem do pacote.
- Definir um canal virtual que adiciona funcionalidades adicionais de forma a proporcionar QoS diferenciado, requisitos de segurança e/ou otimização de routing.

Alcançado adicionando, na entrada do túnel, um ou mais cabeçalhos de protocolo ao pacote original para lidar com a entrega ao ponto de saida do túnel.

	Original Packet		
Delivery Header(s)	Original Header(s)	Data	

PONTOS DE SAÍDA DOS TÚNEIS

Delivery protocol(s)	Original protocol(s)	5.1
Source: A address Destination: B address	Source: X address Destination: Y address	Data

VIRTUAL TUNNEL INTERFACE (VTI)

- Construção lógica que cria uma interface de rede virtual que pode ser vista como qualquer outra interface dentro de um equipamento de rede.
- Um túnel não não precisa de ter quaisquer outros endereços de rede para além daqueles já ligados ao router de saída
- No entanto, a maioria das implementações impões que um endereço de rede deve estar ligado a uma interface de rede de forma a permitir processamento IP da interface.
- A interface do túnel pode ter uma ligação explícita ao endereço de rede ou reutilizar um endereço de outra interface já configurada no router.

```
#interface Tunnel 1
    #ip address 10.1.1.1 255.255.255.252
3
    #ipv6 address 2001:A:A::1/64
4
    #ip unnumbered FastEthernet0/0
5
   #ipv6 unnumbered FastEthernet0/0
   #ip ospf cost 10
   #ipv6 ospf 1 area 0
8
   #tunnel mode ipip
9
    #tunnel source FastEthernet0/0
    #tunnel destination 200.2.2.2
10
```

REQUISITOS

- Um identificador numérico.
- Um endereço IP cativo, que permita o processamento por IP.
 - Adicionar o interface do túnel à tabela de routing e permite routing pela interface.
- Um modo definido ou tipo de túnel.
 - Disponibilidade dos modos do túnel depene do modelo do router, sistema operativo e licenças.
- Origem do túnel.
 - Definido com o nome da interface local ou IPv4/v6 dependendo do tipo de túnel.
- Destino do túnel.
 - Definido com o nome de domínio our IPv4/v6 dependendo o tipo do túnel.
 - Não é uma configuração obrigatória.

LOOPBACK INTERFACES AS END-POINTS

- É outra construção lógica que cria uma interface de rede virtual completamente independente do resto das interfaces físicas e lógicas do router.
- O objetivo primário de uma interface de loopback e providenciar um endereço de rede para servir como identificador de router em configurações de rede remotas e algoritmos distribuídos.
- A principal vantagem de usar interfaces de loopback como saídas de túneis é o facto de a criação de um túnel não cativo a nenhuma ligação de rede específica que possa falhar.

TIPOS DE TÚNEIS

- IPv4-IPv4
 - Pacotes originalmente IPv4 são distribuídos usando IPv4.
- GRE IPv4
 - o O protocolo original do pacote é definido pelo header do GRE e entregue usando IPv4.
- IPv6-IPv6
 - Pacotes IPv6 entregues por protocolo IPv6.
- GRE IPv6
 - o O protocolo original do pacote é definido pelo header do GRE e entregue usando IPv6.
- IDv4-IDv6
 - Pacotes IPv4 são entregues usando IPv6.
- IPv6-IPv4
 - Pacotes IPv6 entregues usando IPv4.

REDES DE SOBREPOSIÇÃO

Pode ser definida como uma rede virtual definida sobre uma outra rede.

 Para um propósito específico como transportes privados, politicas de routing específicas, QoS, ...
 A rede base pode ser também ela virtual ou física.
 Quando qualquer nível de privacidade está presente numa rede desta natureza, passa a designar-se como uma VPN (Virtual Private Network).

ROUTING ENTRE TÚNEIS

STATIC ROUTES

```
#ip route 192.168.2.0 255.255.255.0 Tunnel1
#ip route 192.168.2.0 255.255.255.0 10.1.1.2
#ipv6 route 2001:A:1::/64 Tunnel1
#ipv6 route 2001:A:1::/64 2001:0:0::2
#ip route 192.168.2.100 255.255.255.255 10.1.1.2
#ipv6 route 2001:A:1::100/128 2001:0:0::2
```

ROUTE-MAPS

```
#access-list 100 permit ip host 192.168.1.100 192.168.2.0 255.255.255.0

#route-map routeT1

#match ip address 100

#set ip next-hop 10.1.1.2

#interface FastEthernet0/1

#ip policy route-map routeT1
```

DYNAMIC ROUTING

```
1 #router ospf 1
2 #network 200.1.1.0 0.0.0.255 area 0
3 #network 200.0.0.1 0.0.0.0 area 0
4 !
5 #router ospf 2
6 #network 10.0.0.0 0.255.255.255 area 0
7 #network 192.168.0.0 0.0.255.255 area 1
```

Múltiplos e diferentes processos de encaminhamento:

- um por rede de sobreposição
- e um para a rede "vizinha"

IPV6 DEPLOYMENT TECHNIQUES

Colocar em produção IPv6 usando dual-stack backbones.

- Aplicações IPv4 e IPv6 coexistem numa camada de routing backbone de IP duplo.
- Todos os routers na rede precisam de ser atualizados para serem dual-stack.

Túneis de IPv6 por IPv4.

- · Configurados manualmente.
 - Com ou sem Generic Routing Encapsulation (GRE).
- Mecanismos de túnel semi-automáticos.
- Mecanismos totalmente automáticos (compativel com IPv4 e 6to4).

DUAL STACK

Aplicações podem comunicar com ambos.

A escolha da versão de IP é baseada na resposta de DNS e em preferências das aplicações.

OVERLAY TUNNELING

Manual

- IPv6 manualmente configurado IPv6 por IPv4.
- IPv6 por IPv4 GRE Túnel.

Mecanismos semi-autónomos

- Tunnel Broker.
- Teredo.
- Dual Stack Transition Mechanism (DSTM).

Mecanismos totalmente autonomos

- Automatic IPv4 Compatible Tunel (obsoleto).
- o 6to4 Tunnel.
- ISATAP Tunnel.

MANUALMENTE CONFIGURADO

Ligação permanente entre dois domínios de IPv6 por uma backbone de IPv4.

O principal uso é para ligações estáveis que requeiram comunicações seguras regularmente entre:

• Dois routers limitrofesm, end system e um router limite, ou para conectar com redes IPv6 remotas. Tunelar entre dois pontos.

Gestão complexa.

IPV6 OVER IPV4 GRE TUNNEL

Usa a tecnica padrão de GRE.

Tem de ser configurado manualmente.

O principal uso é para ligações que requeiram comunicações regulares e estaveis.

IPv4 por IPv6 também é possivel.

TUNNEL BROKER

Permite que aplicações IPv6 em sistemas dual-stack acedam a um backbone IPv6.

Gere pedidos de túnel e configurações automaticamente.

Potenciais implicações na segurança.

• Tem apenas um ponto de falha. Implementação mais comum: Teredo.

AUTOMATIC IPV4 COMPATIBLE TUNNEL

- O endereço IPv4 da saída do túnel está inserido no endereço IPv6 destino.
- Os sistemas têm de ser dual-stack.
- Comunica apenas com outros locais compativeis com IPv4.

AUTOMATIC 6T04 TUNNELS

- O endereço IPv4 da saída do túnel está inserido no endereço IPv6 destino.
- Permite domínios IPv6 isolados conectarem-se através de redes IPv.
- Não são túneis point-to-point mas sim multipoint.
- Um router/host 6to4 precisa de ter um endereço endereçável em IPv4 globalmente.
- Não pode localizar atrás de um NAT, a não ser que esta suporte o protocolo 41 de encaminhamento de pacotes.

6TO4 RELAY ROUTERS

- Conecta terminais 6to4 de um domínio IPv6 e:
 - outros routers 6to4.
 - o a internet IPv6 através de um router de relay 6to4.
- 6to4 relay router:
 - Conecta routers 6to4 na internet IPv4 e terminais na internet IPv6.

ISATAP TUNNELS

Intra-site Automatic Tunnel Address Protocol

- Túneis point-to-multipoint que podem ser usado para conectar sistema dentro de um local.
- Usado para tunelar IPv4 como se um domínio administrativo para criar uma rede virtual IPv6 sobre uma rede IPv4.

64-bit Unicast Prefix 0000:5EFE: IPv4 Address

/64