

Universidad Católica Argentina

Sistemas Operativos Lic. Ing. Osvaldo Clúa

Threads

Hilos de ejecución (Execution Threads)

- Se separa la ejecución del agrupamiento de recursos.
- Los Procesos agrupan los recursos usados.
- Los Threads son hilos de ejecución que comparten el agrupamiento de recursos.
 - Pueden implementarse por multiprogramación o por multiprocesamiento.

Threads vs Procesos

 Los Threads comparten los recursos del proceso, entre ellos, el espacio de memoria.

Threads vs Procesos (2)

 Cada thread mantiene su propia información de estado.

(Thread Control Block) TCB

Hay información que pasa del PCB al (o los)
TCB.

Per process items

Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers

Accounting information

Per thread items

Program counter

Registers

Stack

State

Aplicaciones de Multithreading

- Varias aplicaciones que concurren sobre los mismo datos como:
 - Un server que lanza un thread por cada pedido.
 - Un procesador de texto concurrente con su corrector y su armador de pagina.
 - El manejo de Interfaces Gráficas.
- Sin embargo

Threads vs. eventos

- Algunos de los sistemas hechos con threads podrían hacerse con eventos.
- Hay una discusión con campos:
 - A favor de los threads.
 - A favor de los eventos.
- Lo que sí es malo es mezclar ambas prácticas (ej: Java threads sobre Windows en GUI).

Formas de construcción de un server

Model	Characteristics
Threads	Parallelism, blocking system calls
Single-threaded process	No parallelism, blocking system calls
Finite-state machine	Parallelism, nonblocking system calls, interrupts

- Tres modelos de arquitecturas de un server.
- · Hay que ser muy cuidadoso con la elección.
 - Algo mas sobre Finite State Machines

Implementación de Threading

- A nivel del kernel
 - El scheduler planifica threads.
 - Si el próximo está en otro proceso, hay un process context switch; si está en el mismo, no lo hay.
- A nivel de usuario
 - La biblioteca de threads permite al usuario multiplexar su time slice.
- · En un nivel intermedio

Threads en Espacio de Usuario

- Cuando un thread se bloquea, puede continuar otro.
- El time slice impide que el usuario bloquee al sistema.
- LinuxThreads
 - Pthreads es una API.
- Perl threads

Kernel Threads

- El Kernel planifica directamente threads.
- Si un thread se bloquea, se planifica otro.
- Native Posix Threads
 - Otra implementación de Pthreads.

¿Qué versión de Pthreads hay en mi linux?

\$ getconf GNU_LIBPTHREAD_VERSION

Implementaciones Híbridas

Solaris lwp (LightWeight Process) Windows 7 User Mode Scheduler (UMS)

- Permite decidir cuales planifica el Kernel y cuales la biblioteca.

Otros sistemas

- Anderson propuso Scheduler Activations
 - Ante un bloqueo de thread, el scheduler activa a la biblioteca de usuario.
- Jacketing (encapsular las llamadas bloqueantes)
- Para la implementación de corutinas se han propuestos mecanismos conocidos como fibras.
 - Antes se hacían con longjmp (3) y setjmp (3).
 - Ahora se usan las rutinas de makecontext (3).