IT209: Tutorial

- 1. The ARM processor registers R13, R14, and R15 are architecturally used for special purposes. Which is the correct respective sequence of special purpose registers?
 - A) PC, LR, SP
 - B) LR, PC, SP
 - C) SP, LR, PC
 - D) LR, SP, PC
- 2. A cache that supports dirty bits to manage the most recently written value to a given memory location in the memory hierarchy is referred to as a
 - A) Write-back cache.
 - B) Write-through cache.
 - C) Set-associative cache.
 - D) Fully-associative cache.
- 3. What the above program is doing?

```
AREA PROGRAM, CODE, READONLY
ENTRY
MOV R1, #0X14
MOVS R2, R1, LSR #0X06
MOVEQ R1, R1, LSL #0X05
```

END

- A) Shift left 5 bits conditionally when zero is set.
- B) Shift left 5 bits conditionally when zero is reset.
- C) Shift right 5 bits conditionally when zero is set.
- D) Shift right 5 bits conditionally when zero is reset.
- 4. The given program calculates the largest number of two. Fill in the instruction accordingly to get the correct result.

```
AREA PROGRAM, CODE, READONLY
ENTRY

MAIN LDR R1, VALUE1
LDR R2, VALUE2
CMP R1, R2
MOV R1, R2
DONE STR R1, RESULT
END
```

- 5. What does I=1 and F=1 in the Program Status Register on reset signify?
- 6. What function does the given program perform?

```
AREA PROGRAM, CODE, READONLY
ENTRY
MAIN LDR R1, VALUE1
MVN R1, R1
STR R1, RESULT
END
```

7. What will be the content of the register R7 after the execution of the following program?

```
AREA PROGRAM, CODE, READONLY
ENTRY
MOV R6, #10
MOV R7, #1
LOOP CMP R6, #0
MULGT R7, R6, R7
SUBGT R6, R6, #1
STOP B STOP
END
```

- A) 0x00000009
- B) 0x000000A
- C) 0x00375F00
- D) 0x00000000
- 8. What will be the content of the register R2 after the execution of the following program?

```
AREA PROGRAM, CODE, READONLY
ENTRY
MOV R0, #0X11
LSL R1, R0, #1
LSL R2, R1, #1
END
```

- A) 0x00000110
- B) 0x00000022
- C) 0x00000101
- D) 0x00001101

9. What will be the output of the following program?

```
AREA PROGRAM, CODE, READONLY
ENTRY

MOV R0, #4

MOV R1, #3

MUL R1, R1, R0

END
```

- A) 12
- B) 0
- C) 4
- D) Error occurs

10. What will be the content of the register R1 and R5 after the execution of the following program?

```
AREA PROGRAM, CODE, READONLY
ENTRY

LDR R1, =-4
LDR R5, =-4
LDR R3, =2
ASR R1, #7
LSR R5, #7
END

A) R1 = 0xfffffffff , R5 = 0x01ffffff
B) R1 = 0xffffffff , R5 = 0x02ffffff
C) R1 = 0xfffffff , R5 = 0x02ffffff
D) R1 = 0xfffffff , R5 = 0x01efffff
```

11. Match the following

Field Mnemonic			Meaning
А	EQ	Р	Signed ≥
В	VS	Q	Negative
С	GT	R	Positive or zero
D	PL	S	Equal
Е	MI	Т	Overflow

12. Let A and B be two unknown 8-bit 2's complement numbers. We know the results of A ^ B(A ex-or B) and A & B(A and B) as shown below. Find A + B (sum).

```
A ^ B = 00110100
A & B = 11001001
```

13. Euclid's algorithm for computing the GCD of two positive integers (a,b) can be written as

```
while (a != b) {
    if (a > b)
        a = a - b;
    else
        b = b - a;
}
```

Write an equivalent ARM assembly program using only instructions [B(branch), CMP(compare), SUB(subtraction)]

NOTE: you can use appropriate conditional code after instruction. Let's say two numbers are stored in the register R0, R1.

- 14. Which combination of instructions correctly saves and retrieves register values for a subroutine?
 - A) STMDB SP!, {R0-R12, LR}
 - ; Subroutine instructions
 - LDMIA SP!, {R0-R12, PC}
 - B) STMDA LR, {RO-R12, LR}
 - ; Subroutine instructions
 - LDMFA LR!, {RO-R12, PC}
 - C) STMEA LR!, {R0-R12, SP}
 - ; Subroutine instructions
 - LDMIA LR! , {R0-R12, PC}
 - D) STR SP, {R0-R12, LR}
 - ; Subroutine instructions
 - LDR SP!, {R0-R12, PC}

15.	Consider the below subroutine, If initially registe	r R0 has value 7	, find the value o	n register R0 after
	executing the subroutine.			

SUBROUTINE CMP R0, #0

MOVEQ R0, #1

MOVEQ PC, LR

MOV R3, R0

SUB R0, R0, #1

BL SUBROUTINE

MUL R0, R3, R0

MOV PC, LR

- A) 0x13B0
- B) 0x7
- C) 0x0
- D) Code fragment runs into an infinite loop

16. Replace XX in LDM and STM with appropriate suffix from IA, IB, DA and DB such that they execute the corresponding function?

STMFD	STM{XX}
LDMFD	LDM{XX}
STMEA	STM{XX}
LDMEA	LDM{XX}

17. What will be the content of R0 & SP after execution of program? Assume that the DATA is stored at 0x8000.

CODE	R0	SP
LDR R0, =DATA		
LDR SP, =0X4EFC		
LDM R0!, {R2 - R9}		
STM SP, {R7, R2, R6, R8}		
STM SP!, {R9, R3-R5}		
DATA DCD 1, 2, 3, 4, 5, 6, 7, 8		

18. What will be the contents of register R1-R5 and SP after the execution of each instructions? Assume initial values of R1, R2, R3, R4, and R5 are 1, 2, 3, 4, and 5 respectively.

	SP	R1	R2	R3	R4	R5
MOV SP,#0X4000						
STMED SP!,{R1-R5}						
LDMFD SP!,{R1-R5}						
STMFA SP!,{R1-R5}						
LDMEA SP!,{R1-R5}						

19.	Which register will be stored at which memory location after executing program? What will be the	ne
	value of SP at the end of program?	

AREA PROGRAM, CODE, READONLY
ENTRY

LDR SP, =0X4000

PUSH {R2}

PUSH {R3}

PUSH {R7}

POP {R8}

POP {R8}

PUSH {R0}

PUSH {R8}

END

0X3FF0	0X3FF4	0X3FF8	0X3FFC	0X4000	0X4004	0X4008	0X400C	0X4010

20. What is significance of ^ in below instruction?

LDMFD SP!, {RO-R3, PC}^

- 21. The appropriate return addresses are obtained with the help of ______ in case of nested routines.
 - A) MAR
 - B) MDR
 - C) Buffers
 - D) Stack-pointers

22.		ong statement/s regarding interrupts and subroutines among the following is/are				
	 i) The sub-routine and interrupts have a return statement ii) Both of them alter the content of the PC 					
iii) Both are software oriented						
iv) Both can be initiated by the user						
	., 500	Total Se miliated S7 the aser				
	A) i, ii	and iv				
	B) ii ai	nd iii				
	C) iv					
	D) iii a	nd iv				
23.	What is	the problem with this code?				
		AREA PROGRAM, CODE, READONLY				
	CT 4 D T	ENTRY				
	START	MOV R0, #1 MOV R1, #3				
		BL SUB1				
		ADD R0, R0, R1				
	SUB1	ADD R0, R0, R1				
		BL SUB2				
		BX LR				
	SUB2	ADD R0, R0, R1				
	END	BX LR				
	EIND					
24.	Explain	pre-fetch abort in one sentence.				
25.	Why th	e FIQ vector is the last entry in the vector table. Explain in 1-2 sentences.				
_0.	,					
26.	Which	of the following trigger an interrupt by executing a special operation which is known as a				
_5.	system					
	A) Har					
	B) Sof					
	C) Ker					
	D) Noi					

27.	When the p	ocess is returned after an interrupt service should be loaded again.
	I. Regi	ster contents
	II. Cond	dition codes
	III. Stac	k contents
	IV. Retu	rn addresses
	A) i,iv	
	B) ii,iii and	iv
	C) iii,iv	
	D) i,ii	
28.		ssembly code and you get error "Undefined Instruction at 80H". At what address code
	will jump?	
29.	Will followin	ng code go in infinite loop? Justify.
		AREA PROGRAM, CODE, READONLY
		ENTRY
		LDR R1, =0
		B MAIN
		SWI_MAIN
		STMFD SP!, {R0-R12, LR}
		LDR R10, [LR, #-4]
		BIC R10, R10, #0XFF000000
		BIC R10, R10, #0XFF000000 CMP R10, #01
		BIC R10, R10, #0XFF000000 CMP R10, #01 BLEQ SWI_ADD
		BIC R10, R10, #0XFF000000 CMP R10, #01 BLEQ SWI_ADD CMP R10, #02
	MAIN	BIC R10, R10, #0XFF000000 CMP R10, #01 BLEQ SWI_ADD
	MAIN	BIC R10, R10, #0XFF000000 CMP R10, #01 BLEQ SWI_ADD CMP R10, #02 BLEQ SWI_MUL
	MAIN	BIC R10, R10, #0XFF000000 CMP R10, #01 BLEQ SWI_ADD CMP R10, #02 BLEQ SWI_MUL LDR R0, =2
	MAIN	BIC R10, R10, #0XFF000000 CMP R10, #01 BLEQ SWI_ADD CMP R10, #02 BLEQ SWI_MUL LDR R0, =2 LDR R1, =2
	MAIN	BIC R10, R10, #0XFF000000 CMP R10, #01 BLEQ SWI_ADD CMP R10, #02 BLEQ SWI_MUL LDR R0, =2 LDR R1, =2 LDR R2, =2
		BIC R10, R10, #0XFF000000 CMP R10, #01 BLEQ SWI_ADD CMP R10, #02 BLEQ SWI_MUL LDR R0, =2 LDR R1, =2 LDR R2, =2 SWI 02
	MAIN SWI_ADD SWI_MUL	BIC R10, R10, #0XFF000000 CMP R10, #01 BLEQ SWI_ADD CMP R10, #02 BLEQ SWI_MUL LDR R0, =2 LDR R1, =2 LDR R2, =2

30. Execution is in which mode at the end of following code?

AREA PROGRAM, CODE, READONLY ENTRY LDR RO, =0X11 MRS R10, CPSR AND R10, R10, #0XFFFFFFE0 ORR R10, R10, R0 MSR CPSR_C, R0 END