Minnesanteckningar

Logik för dataloger DD1351

1, Introduktion

Vad är logik?

Vetenskapen som studerar hur man bör resonera och dra slutsatser utifrån givna påståenden

Deduktion

I all deduktion gäller:

Om premisserna är sanna så är slutsatsen sann.

Logiska system vi kommer att studera

- Satslogik
- studerar påståenden och relationer mellan dessa
- Predikatlogik
- utökar språket med kvantifierare som tillåter oss att resonera kring relationer mellan objekt
- Prolog
- ett programmeringsspråk för att hantera logik
- Temporallogik
- tillåter resonemang om situationer och system kan utvecklas över tid
- Hoare-logik
- resonemang om program och deras korrekthet

2. Satslogik och Naturlig deduktion

Konnektiv Namn

Λ Konjunktion

V Disjunktion

¬ Negation

→ Implikation

The basic rules of natural deduction:

	introduction	elimination						
^	$\dfrac{\phi \psi}{\phi \wedge \psi}$ $\wedge \mathrm{i}$	$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \qquad \frac{\phi \wedge \psi}{\psi} \wedge e_2$						
V	$\frac{\phi}{\phi \vee \psi} \vee_{i_1} \frac{\psi}{\phi \vee \psi} \vee_{i_2}$	$\frac{\phi \lor \psi \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
\rightarrow	$\frac{\begin{vmatrix} \phi \\ \vdots \\ \psi \end{vmatrix}}{\phi \to \psi} \to i$	$\frac{\phi \phi \to \psi}{\psi} \to e$						
٦	$egin{array}{c} \phi \ dots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\frac{\phi \neg \phi}{\perp} \neg e$						
\perp	(no introduction rule for \perp)	$\frac{\perp}{\phi}$ \perp e						
77		$\frac{\neg\neg\phi}{\phi}$ $\neg\neg e$						
Some useful derived rules:								
	$\frac{\phi \to \psi \neg \psi}{\neg \phi} \text{ MT}$	$\frac{\phi}{\neg \neg \phi}$ ¬¬i						
	$\frac{\neg \phi}{\vdots}$ $\frac{\bot}{\phi}$ PBC	$\overline{\phi \lor \neg \phi}$ LEM						

Bevisbarhet

Om vi kan bevisa ψ utifrån premisserna $\varphi_1, \varphi_2, ..., \varphi_n$ så skriver vi detta som:

$$\phi_1,\phi_2,...,\phi_n\vdash\psi$$

Uttrycket ovan kallas en sekvent.

3. Predikatlogik

Satslogiken är dålig på att uttrycka egenskaper och relationer hos objekt.

Predikatlogik utökar det satslogiska språket med:

- variabler
- konstanter
- funktionssymboler
- relationssymboler
- kvantifierare

I första ordningens predikatlogik används två kvantifikatorer:

- Allkvantifikatorn: $\forall x \ P(x) f \ddot{o} r \ alla \ x \ \ddot{a} r \ P(x) \ sant$
- Existenskvantifikatorn: $\exists x \ P(x) f \ddot{o} r \ minst \ ett \ x \ \ddot{a} r \ P(x) \ sant$, d.v.s. $f \ddot{o} r \ n \mathring{a} got \ x \ \ddot{a} r \ P(x) \ sant$

Negeringen av dessa ger ytterligare två kvantifikatoruttryck

- $\neg \forall x \ P(x)$ för inte alla $x \ \ddot{a}r \ P(x)$ sant
- $\neg \exists x \ P(x) f \ddot{o} r \ inget \ x \ \ddot{a} r \ P(x) \ sant$

Substitution

För en variabel x, en term t och en formel ϕ , betecknar ϕ [t/x] formeln som är resultatet av substitutionen av alla fria förekomster av x i ϕ med t

Exempel:

$$\exists y \ (P(x,y) \land \exists x \ Q(x,y))$$

$$[x+1/x]$$

$$\exists y \ (P(x+1,y) \land \exists x \ Q(x,y))$$

Variabelinfångande

- Problem: $\phi(x) \equiv \exists y (x < y)$
- -vad är då $\phi(y)$? $\exists y(x < y)[y/x]$?

men $\exists y (y < y)$ har *inte* samma mening!

- Variabelinfångande

- när vi gör en substitution måste vi undvika variabelinfångande!
- Substitutionen $\phi[t/x]$ undviker infångande om t är fri för x i ϕ

Termen t är fri för variabeln x i formeln ϕ om ingen fri förekomst av x i ϕ är inom räckvidden för någon kvantifierare \forall y eller \exists y för någon variabel y i t.

4 – 7. **Prolog**

8. Satslogikens semantik

Naturlig deduktion – system av regler för att generera nya påståenden (slutsatser) utifrån givna påståenden (premisser) med symbolisk manipulation.

Man kan nu fråga sig:

- är alla regler korrekta (och vad betyder "korrekta")?
- har vi tillräckligt många regler?

Satslogikens semantik

Fråga: När är formeln $p \land \neg q \rightarrow r$ sann?

Svar: Det beror på variablernas **sanningsvärden**. Vilka påståenden variablerna representerar är inte relevant.

Formeln ovan är till exempel falsk om p är sann medan q och r är falska.

Modeller

En **modell** till en formel är en tolkning av symbolerna i formeln så att formeln blir sann eller falsk

– I satslogik är modell = valuering

Logisk konsekvens

Formeln ψ är en **logisk konsekvens** av φ_1 , φ_2 , ..., φ_n om ψ är sann i alla modeller i vilka φ_1 , φ_2 , ..., φ_n är sanna.

Detta skrivs

$$|\varphi_1, \varphi_2, \dots, \varphi_n| = \psi$$

Sundhet

Ponera att vi kan bevisa ψ utifrån premisserna $\phi_1, \phi_2, ..., \phi_n$ Är det då också så att ψ är en logisk konsekvens av , $\phi_1, \phi_2, ..., \phi_n$?

Dvs är det sant att ϕ_1 , ϕ_2 , ..., $\phi_n \vdash \psi$ medför ϕ_1 , ϕ_2 , ..., $\phi_n \vdash \psi$?

Denna (önskvärda) egenskap kallas sundhet.

... och svaret är **ja**, naturlig deduktion är sund för satslogik.

Sundhet, följder

En följd av satslogikens sundhet är: Om ψ **inte** är en logisk konsekvens av φ_1 , φ_2 , ..., φ_n

så **finns det heller inget bevis** för ψ utifrån premisserna $\varphi_1, \varphi_2, ..., \varphi_n.$

Dvs vi kan använda metoden med sanningstabeller för att en viss sekvent **inte** är bevisbar.

Fullständighet

Antag att ψ är en logisk konsekvens av ϕ_1 , ϕ_2 , ..., ϕ_n .

Är det då också så att vi kan bevisa ψ utifrån premisserna

 $\varphi_1, \varphi_2, ..., \varphi_n. ?$ Dvs är det sant att

 $\phi_1, \phi_2, ..., \phi_n$ |= ψ medför att $\phi_1, \phi_2, ..., \phi_n$ |- ψ ? Denna (önskvärda) egenskap kallas fullständighet.

Validitet och satisfierbarhet

En formel är valid om den är sann i alla modeller.

• Enklaste exemplet: $p \lor \neg p$

En formel är satisfierbar om den är sann i någon modell.

• Enklaste exemplet: *p*

En formel är **osatisfierbar** om den är falsk i alla modeller.

• Enklaste exemplet: $p \land \neg p$

- (1) + (2) + (3) = Alla satslogiska formler som finns
- (1) + (2) = Alla satisfierbara formler

Om φär valid så är ¬φosatisfierbar

Om ψ är varken valid eller osatisfierbar, så gäller samma sak även för $\neg \psi$

9. Naturlig deduktion för predikatlogik

Vi utökar naturlig deduktion till att även gälla för predikatlogik.

Bevisregler:

- alla regler från satslogiken, plus
- introduktions- och elimineringsregler för
- likhet
- all-kvantifiering $\forall x$
- existens-kvantifiering $\exists x$

Regler:

 $\forall x$ introduktion

 $\forall x$ eliminering

 $\exists x$ introduktion

 $\exists x$ eliminering

		introduction	elimination	
_	=	$\overline{t=t}^{=i}$	$\frac{t_1 = t_2 \Phi[t_1/x]}{\Phi[t_2/x]} = e$	
	A	$\frac{\begin{bmatrix} x_0 : \\ \vdots \\ \Phi[x_0/x] \end{bmatrix}}{\forall x \Phi} \forall x i$	$\frac{\forall x \Phi}{\Phi[t/x]} \forall x e$	
	3	$\frac{\Phi[t/x]}{\exists x \Phi} \exists x i$	$\frac{\exists x \Phi \qquad \begin{array}{c} x_0 \colon \Phi[x_0/x] \\ \vdots \\ \chi \end{array}}{\chi} \exists x e$	

10. Predikatlogikens semantik

Vi har utökat **naturlig deduktion** till att även gälla predikatlogik (fö 9).

Vi vill nu definiera en semantik (modellteori) till predikatlogiken.

Modeller

En formel kan vara sann i en modell och falsk i en annan.

En **modell** till en predikatlogisk formel Φ specificerar:

- en mängd A (universum, alla objekt vi talar om)
- ett element i A för varje konstant i Φ
- en funktion $f: A^n \rightarrow A$ för varje funktionssymbol (med n argument) i Φ
- en n-ställig relation över A för varje predikatsymbol (med n argument) i Φ

Precis som för satslogik kan man visa:

Naturlig deduktion är ett sunt och fullständigt bevissystem för predikatlogik

Sundhet, följder

Predikatlogikens sundhet har några intressanta följder: Om ψ inte är en logisk konsekvens av φ_1 , φ_2 , ..., φ_n så **finns det heller inget bevis** för ψ utifrån premisserna φ_1 , φ_2 , ..., φ_n .

Dvs om vi kan hitta ett enda sätt att tolka symbolerna i formlerna så att φ_1 , φ_2 , ..., φ_n blir sanna, men ψ falsk, så kan vi **inte bevisa** φ_1 , φ_2 , ..., φ_n $I-\psi$.

Validitet och satisfierbarhet

En formel är valid om den är sann i alla modeller.

• Exempel: $\forall x (P(x) \lor \neg P(x))$

En formel är satisfierbar om den är sann i någon modell.

• Exempel: $\forall x (P(x))$

En formel är **osatisfierbar** om den är falsk i alla modeller.

• Exempel: $\forall x (P(x) \land \neg P(x))$

(1) + (2) + (3) = Alla predikatlogiska formler som finns

(1) + (2) = Alla satisfierbara formler

Om ϕ är valid så är $\neg \phi$ osatisfierbar

Om ψ är varken valid eller osatisfierbar, så gäller samma sak även för $\neg \psi$