BFS - Blatt 2

oz83upir (Jan Gremer) - lu08mika (Metin Eren Heybet) - om24esyc (Luka Jeremic) - ci24nony (Dennis Gehring)

09 November 2024

Aufgabe 9

(a)
$$M = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9\}$$

$$\Sigma = \{0, 1, \#\}$$

$$\Gamma = \{0, 1, \#, "B", X\}$$

$$F = \{q_9\}$$

δ	0	1	B	X	#
q_0	(q_2, X, R)	(q_1, X, R)	-	-	-
q_1	$(q_1, 0, R)$	$(q_1,1,R)$	-	-	$(q_3, \#, R)$
q_2	$(q_2, 0, R)$	$(q_2, 1, R)$	-	-	$(q_4, \#, R)$
q_3	-	(q_5, X, L)	-	(q_3, X, R)	-
q_4	(q_5, X, L)	-	-	(q_4, X, R)	-
q_5	-	-	-	(q_5, X, L)	$(q_6, \#, L)$
q_6	$(q_6, 0, L)$	$(q_6, 1, L)$	-	(q_7, X, R)	-
q_7	(q_2, X, R)	(q_1, X, R)	-	-	$(q_8, \#, R)$
q_8	-	-	(q_9, B, N)	(q_8, X, R)	-
q_9	_	-	-	-	-

• Erklärung der Arbeitsweise:

- Die TM liest immer das linkeste ungelesene Zeichen und speichert 0/1 im Zustand.
- Dann läuft die TM linkesten ungelesenen Zeichen rechts des #
- Falls die beiden Zeichen übereinstimmen wird fortgesetzt, sonst angehalten
- Verglichene Zeichen werden durch X ersetzt.
- Zum Fortsetzen läuft die TM wieder zum linkesten Zeichen und geht zu (1)
- Falls ein # und direkt links davon X gelesen wird, ist das linke Wort vollständig analysiert.
- Falls dann auch das rechte Wort vollständig analysiert ist, hält die TM im gültigen Endzustand (q_9)

- Konfigurationsübergänge für Eingabe 01#01: $q_001\#01 \vdash Xq_21\#01 \vdash X1q_2\#01 \vdash X1\#q_401 \vdash X1q_5\#X1$ $\vdash Xq_61\#X1 \vdash q_6X1\#X1 \vdash Xq_71\#X1 \vdash XXq_1\#X1 \vdash XX\#q_3X1$ $\vdash XX\#Xq_31 \vdash XX\#q_5XX \vdash XXq_5\#XX \vdash Xq_6X\#XX \vdash XXq_7\#XX$ $\vdash XX\#q_8XX \vdash XX\#Xq_8X \vdash XX\#XXq_8 \vdash XX\#XXq_9 \rightarrow TM hält akzeptierend$
- (b) Wieviel Platz $S_{A9}(n)$ und Zeit $T_{A9}(n)$ benötigt die TM?:
 - Platzbedarf der TM M ist $\Theta(n)$, da die Turingmaschine M außer dem schon besetzten Bereich nie etwas schreibt. Also die Maschine läuft "in-place".
 - Laufzeit $\Theta(n^2)$: Nachdem ein Zeichen aus dem ersten Wort gemerkt wird, bewegt sich der Kopf durch den Rest des Worts und auch nach der Vergleichung zurück. Also insgesamt wird n^2 mal das Band durchgelaufen.

Aufgabe 9

•
$$M = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

 $Q = \{q_0, q_1, q_2, q_3, q_{end}\}$
 $\Sigma = \{0, 1\}$
 $\Gamma = \{0, 1, "B"\}$
 $F = \{q_{end}\}$

δ	0	1	B
q_0	$(q_0, 0, R)$	$(q_0, 1, R)$	(q_1, B, L) $(q_e nd, B, N)$ (q_3, B, R)
q_1	$(q_1, 1, L)$	$(q_2,0,L)$	(q_end, B, N)
q_2	$(q_0,0,R)$	$(q_0,1,R)$	(q_3, B, R)
q_3	(q_0, B, R)	-	-
q_{end}	-	-	-

(a) Platzaufwand dieser TM:

Sei n die Anzahl der Bits von p. Die TM beschreibt nur den Bandbereich der Eingabe sowie die beiden Blanks direkt links bzw. rechts der Eingabe, welche gelesen und direkt wieder als B geschrieben werden. In beiden Fällen $(q_0 \text{ und } q_2)$ wird der Kopf auch weg von den weiteren Blanks bewegt.

Somit wird insgesamt nur der Platz der Eingabe sowie die beiden Felder direkt rechts und links davon benötigt.

$$\rightarrow n + O(1)$$