!pip install -q gdown

Importar librerías necesarias

Cargar todas las librerías necesarias para la manipulación de datos

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.metrics import classification_report, mean_absolute_error
from xgboost import XGBClassifier
from statsmodels.tsa.stattools import acf
from google.colab import files
import gdown
import time
from lightgbm import LGBMClassifier
```

Datos extraidos de un Drive

```
urlclientes = "https://drive.google.com/file/d/1RpvKvh4YWUc6ETD-KUXBzDGZM3USgTTJ/view?usp=sharing"
# Extraer ID y convertirlo a un enlace descargable
file_clientes = urlclientes.split("/d/")[1].split("/")[0]
download_url1 = f"https://drive.google.com/uc?id={file_clientes}"
# Descargar el archivo
baseclientes = "base_clientes_final.csv"
gdown.download(download_url1, baseclientes, quiet=False)
urltransacciones = "https://drive.google.com/file/d/1GvPBcygM9lWfk8B4aywJY4B70c9XI5f3/view?usp=sharing"
# Extraer ID y convertirlo a un enlace descargable
file\_transacciones = urltransacciones.split("/d/")[1].split("/")[0]
download_url2 = f"https://drive.google.com/uc?id={file_transacciones}"
# Descargar el archivo
basetransacciones = "base_transacciones_final.csv"
gdown.download(download_url2, basetransacciones, quiet=False)
→ Downloading...
     From: <a href="https://drive.google.com/uc?id=1RpvKvh4YWUc6ETD-KUXBzDGZM3USgTTJ">https://drive.google.com/uc?id=1RpvKvh4YWUc6ETD-KUXBzDGZM3USgTTJ</a>
     To: /content/base_clientes_final.csv
100%| | 154k/154k [00:00<00:00, 35.5MB/s]
     100%|
     From: https://drive.google.com/uc?id=1GvPBcygM9lWfk8B4aywJY4B70c9XI5f3
     To: /content/base_transacciones_final.csv
                    ■| 36.3M/36.3M [00:00<00:00, 107MB/s]
     base_transacciones_final.csv
```

Cargar y preparar datos

Importar la base de datos, corregir inconsistencias, unirlas y generar variables temporales

```
# Carga de bases de clientes y transacciones
clientes = pd.read_csv(baseclientes)
transacciones = pd.read_csv(basecransacciones)

# Corregir datos faltantes o inconsistentes (ejemplo: asignar género)
clientes.loc[clientes['id'] == '9980f12e32711330d5f58460e169e6207afda041', 'genero'] = 'M'

# Merge para combinar información de clientes y sus transacciones
df = pd.merge(clientes, transacciones, on='id')

# Convertir fechas a formato datetime
df['fecha'] = pd.to_datetime(df['fecha'])
df['fecha_nacimiento'] = pd.to_datetime(df['fecha_nacimiento'])

# Crear columna 'anio_mes' para agrupar por mes
df['anio_mes'] = df['fecha'].dt.to_period('M')

# Calcular edad actual aproximada del cliente
df['edad'] = (pd.Timestamp('today') - df['fecha_nacimiento']).dt.days // 365

# Limpiar datos eliminando filas con valores nulos en columnas clave
df.dropna(subset=['monto', 'fecha', 'id'], inplace=True)
```

Detección de patrones de gasto recurrente

Agrupa los datos por cliente, comercio y mes para sumar montos y detectar si hay patrones recurrentes

```
# Agrupar transacciones por cliente, comercio y mes; sumar montos mensuales
recurrentes = df.groupby(["id", "comercio", "anio_mes"]).agg({"monto": "sum"}).reset_index()

# Crear tabla pivote con montos mensuales por cliente y comercio
pivot = recurrentes.pivot_table(index=["id", "comercio"], columns="anio_mes", values="monto", fill_value=0)
```

```
#Para detectar patrones: Si la serie es demasiado corta \rightarrow no recurrente
#Si alguna autocorrelación en los primeros 12 lags es > 0.5 \rightarrow es recurrente
def detectar_periodicidad(serie):
   if len(serie) < 3 or np.var(serie) == 0:</pre>
       return False
   acf_vals = acf(serie, nlags=min(12, len(serie)-1), fft=True)
   return any(acf_vals[1:] > 0.5)
# Aplicar detección de recurrencia a cada cliente-comercio
pivot["recurrente"] = pivot.apply(lambda row: detectar_periodicidad(row.values), axis=1)
df_recurrentes = pivot[pivot['recurrente']].reset_index()
recurrentes
<del>∑</del>*
                                              comercio anio_mes monto
           003d9abe467a91847d566cf455bd2d7d6c8f7e75
                                               AMAZON
                                                         2022-01
                                                                83.28
           003d9abe467a91847d566cf455bd2d7d6c8f7e75
                                               AMAZON
                                                        2022-02 172.78
      2
           003d9abe467a91847d566cf455bd2d7d6c8f7e75
                                               AMAZON
                                                        2022-04 168.78
           003d9abe467a91847d566cf455bd2d7d6c8f7e75
                                                         2022-07
      3
                                               AMAZON
                                                                19.90
           003d9abe467a91847d566cf455bd2d7d6c8f7e75
                                               AMAZON
                                                         2022-08
                                                                48.38
     120579
            2022-06
    120580
            ff67da037fae796809be0e36fb9cdd0e191c38a4 UBER EATS
                                                        2022-07
                                                                65.02
    120581
            2022-08
                                                                76.47
     120582
            2022-10
                                                                48.81
            2023-01
    120584 rows x 4 columns
```

Exportación del DataFrame con etiquetas

Se exporta el dataframe recurrentes

recurrentes.to_csv('recurrentes.csv', index=False)
#from google.colab import files
#files.download('recurrentes.csv')

Preparación de datos para modelado predictivo

Crea nuevas variables de contexto temporal y de comportamiento de gasto para entrenar modelos predictivos.

Clase 1 -> Gastos recurrentes Clase 0 -> Sin gastos

XGBoost que es demasiado robusto y tiene costo computacional "alto"

```
df = pd.read_csv("recurrentes.csv")
# Convertir 'anio_mes' a formato datetime
\label{eq:dfconstraint} $$ df["anio_mes"] = pd.to_datetime(df["anio_mes"], format="%Y-%m") $$
# Ordenar por cliente, comercio y fecha
df = df.sort_values(by=["id", "comercio", "anio_mes"]).reset_index(drop=True)
# Crear clave única combinando cliente y comercio
df["clave"] = df["id"] + "_" + df["comercio"]
# Calcular el mes siguiente para cada registro
df["anio_mes_next"] = df["anio_mes"] + pd.offsets.MonthBegin(1)
# Definir variables objetivo:
# 'target ocurrencia' indica si hubo transacción en el mes siguiente (1 = si, 0 = no)
# 'target_monto' es el monto gastado en ese mes siguiente
futuro = df[["clave", "anio_mes", "monto"]].copy()
futuro["anio_mes"] = futuro["anio_mes"] - pd.offsets.MonthBegin(1)
futuro = futuro.rename(columns={"monto": "target_monto"})
df = df.merge(futuro, on=["clave", "anio_mes"], how="left")
df["target_ocurrencia"] = (~df["target_monto"].isna()).astype(int)
# Crear variables predictivas basadas en historial de montos y frecuencia:
df["monto_mes_anterior"] = df.groupby("clave")["monto"].shift(1)
df["monto_ultimos_3"] = df.groupby("clave")["monto"].transform(lambda x: x.shift(1).rolling(3).mean())
df["frecuencia_ultimos_6"] = df.groupby("clave")["monto"].transform(lambda x: x.shift(1).rolling(6).apply(lambda y: np.sum(~np.isnan(y))))
df["inactividad_ultimos_6"] = df.groupby("clave")["monto"].transform(lambda x: x.shift(1).rolling(6).apply(lambda y: 6 - np.count_nonzero(~np.isnan(y))))
\label{eq:def-def} $$ df["dias_desde_ultimo_pago"] = df.groupby("clave")["anio_mes"].transform(lambda x: (x.max() - x).dt.days) $$ $$ desde_ultimo_pago"] = df.groupby("clave")["anio_mes"].transform(lambda x: (x.max() - x).dt.days) $$ $$ desde_ultimo_pago"] = df.groupby("clave")["anio_mes"].transform(lambda x: (x.max() - x).dt.days) $$ $$ desde_ultimo_pago"] = df.groupby("clave")["anio_mes"].transform(lambda x: (x.max() - x).dt.days) $$ $$ desde_ultimo_pago"] = df.groupby("clave")["anio_mes"].transform(lambda x: (x.max() - x).dt.days) $$ $$ desde_ultimo_pago"] = df.groupby("clave")["anio_mes"].transform(lambda x: (x.max() - x).dt.days) $$ $$ desde_ultimo_pago"] = df.groupby("clave")["anio_mes"].transform(lambda x: (x.max() - x).dt.days) $$ $$ desde_ultimo_pago"] = df.groupby("clave")["anio_mes"].transform(lambda x: (x.max() - x).dt.days) $$ desde_ultimo_pago["anio_mes"] = df.groupby("anio_mes"].transform(lambda x: (x.max() - x).dt.days) $$ desde_ultimo_pago["anio_mes"] = df.groupby("anio_mes"] = df.groupby("anio_mes"] = df.groupb
# Rellenar valores faltantes y extraer mes para posibles patrones estacionales
df = df.fillna(0)
df["mes"] = df["anio_mes"].dt.month
# Eliminar filas sin información de ocurrencia futura para modelado
df_model = df.dropna(subset=["target_ocurrencia"])
df model
₹
```

3		id	comercio	anio_mes	monto	clave	anio_mes_next	target_monto	target_ocur
	0	003d9abe467a91847d566cf455bd2d7d6c8f7e75	AMAZON	2022-01- 01	83.28	003d9abe467a91847d566cf455bd2d7d6c8f7e75_AMAZON	2022-02-01	172.78	
	1	003d9abe467a91847d566cf455bd2d7d6c8f7e75	AMAZON	2022-02- 01	172.78	003d9abe467a91847d566cf455bd2d7d6c8f7e75_AMAZON	2022-03-01	0.00	
	2	003d9abe467a91847d566cf455bd2d7d6c8f7e75	AMAZON	2022-04- 01	168.78	003d9abe467a91847d566cf455bd2d7d6c8f7e75_AMAZON	2022-05-01	0.00	
	3	003d9abe467a91847d566cf455bd2d7d6c8f7e75	AMAZON	2022-07- 01	19.90	003d9abe467a91847d566cf455bd2d7d6c8f7e75_AMAZON	2022-08-01	48.38	
	4	003d9abe467a91847d566cf455bd2d7d6c8f7e75	AMAZON	2022-08- 01	48.38	003d9abe467a91847d566cf455bd2d7d6c8f7e75_AMAZON	2022-09-01	0.00	

12	0579	ff67da037fae796809be0e36fb9cdd0e191c38a4	UBER EATS	2022-06- 01	49.29	ff67da037fae796809be0e36fb9cdd0e191c38a4_UBER	2022-07-01	65.02	
12	20580	ff67da037fae796809be0e36fb9cdd0e191c38a4	UBER EATS	2022-07- 01	65.02	ff67da037fae796809be0e36fb9cdd0e191c38a4_UBER	2022-08-01	76.47	
12	20581	ff67da037fae796809be0e36fb9cdd0e191c38a4	UBER EATS	2022-08- 01	76.47	ff67da037fae796809be0e36fb9cdd0e191c38a4_UBER	2022-09-01	0.00	
12	0582	ff67da037fae796809be0e36fb9cdd0e191c38a4	UBER EATS	2022-10- 01	48.81	ff67da037fae796809be0e36fb9cdd0e191c38a4_UBER	2022-11-01	0.00	
12	0583	ff67da037fae796809be0e36fb9cdd0e191c38a4	UBER EATS	2023-01- 01	83.86	ff67da037fae796809be0e36fb9cdd0e191c38a4_UBER	2023-02-01	0.00	
190594 roug v. 14 columns									

120584 rows x 14 columns

Entrenamiento de modelos XGBoost y Random Forest

Se entrena un modelo XGBoost para predecir si habrá un gasto el siguiente mes y Random Forest para predecir el monto

```
features = [
    "mes", "monto_mes_anterior", "monto_ultimos_3",
    "frecuencia_ultimos_6", "inactividad_ultimos_6", "dias_desde_ultimo_pago"
]
#Clasificación para saber si se realiza el pago o no y regresión para saber el monto
X = df_model[features]
y_class = df_model["target_ocurrencia"]
y_reg = df_model["target_monto"].fillna(0)

#XGBoost
X_train_c, X_test_c, y_train_c, y_test_c = train_test_split(X, y_class, test_size=0.2, random_state=42)

xgb_base = XGBClassifier(
    use_label_encoder=False,
    eval_metric='logloss',
    random_state=42
```

```
param\_grid = {
    'max_depth': [3, 4],
                                          # Menos niveles, suficiente para evitar árboles muy complejos
    'n_estimators': [50, 100],
'learning_rate': [0.1],
                                          # Número moderado de árboles
                                         # Un solo valor razonable (puedes cambiarlo a 0.1 si quieres algo más rápido)
    'reg_alpha': [0, 0.1],
                                          # Regularización L1 para prevenir overfitting
                                          # Balance de clases (por si la clase 0 está poco representada)
    'scale_pos_weight': [1, 1.5]
grid_search = GridSearchCV(
    estimator=xgb_base,
    param_grid=param_grid,
    scoring='f1',
    cv=3.
    verbose=1,
    n_jobs=-1
grid_search.fit(X_train_c, y_train_c)
print("Mejores hiperparámetros:")
print(grid_search.best_params_)
# Predecir en test set
y_pred_c = grid_search.best_estimator_.predict(X_test_c)
print("\nReporte de clasificación (mejor modelo):")
print(classification_report(y_test_c, y_pred_c, digits=3))
Fitting 3 folds for each of 16 candidates, totalling 48 fits /usr/local/lib/python3.11/dist-packages/xgboost/core.py:158: UserWarning: [16:25:24] WARNING: /workspace/src/learner.cc:740:
     Parameters: { "use_label_encoder" } are not used.
       warnings.warn(smsg, UserWarning)
    Mejores hiperparámetros: {'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 100, 'reg_alpha': 0, 'scale_pos_weight': 1}
     Reporte de clasificación (mejor modelo):
                                  recall f1-score
                    precision
                                                       support
                        0.917
                                   0.607
                                               0.731
                                                          8168
                        0.829
                                   0.972
                                               0.894
                                                         15949
                                               0.848
                                                         24117
         accuracy
                        0.873
                                   0.789
                                               0.812
                                                         24117
        macro avg
     weighted avg
                        0.858
                                   0.848
                                              0.839
                                                         24117
```

Evaluación de regresión por comercio

Aquí se entrena un modelo de regresión por comercio para predecir montos. Se imprime el MAE por comercio.

Este modelo no sirve porque el MAE es grande

Se comparan los reportes de clasificación de train y test del XGBoost para verificar que el recall en la clase 0 no sea por overfitting

```
print("\nMAE por comercio:")
for comercio in df_model["comercio"].unique():
    subset = df_model[(df_model["comercio"] == comercio) & (df_model["target_ocurrencia"] == 1)]
    if len(subset) > 100:
        X_reg = subset[features]
        y_reg = subset["target_monto"]
        X_train, X_test, y_train, y_test = train_test_split(X_reg, y_reg, test_size=0.2, random_state=42)
        model = RandomForestRegressor(n_estimators=100, random_state=42)
        model.fit(X_train, y_train)
        y_pred = model.predict(X_test)
        print(f"{comercio}: MAE = {mean_absolute_error(y_test, y_pred):.2f}")
```

∑+

```
/ELEVEN: MAE = 32.03
COPPEL: MAE = 188.38
MEGACABLE: MAE = 24.14
SEARS: MAE = 178.84
SERV AGUA DREN: MAE = 31.88
VIX: MAE = 2.82
CABLEYCOMUN: MAE = 21.47
PARCO: MAE = 9.80
UBRPAGOSMEX: MAE = 129.02
ALSUPER: MAE = 151.57
GOOGLE YOUTUBEPREMIUM: MAE = 11.44
TOTAL PLAY: MAE = 25.05
AT&T: MAE = 36.93
TELEFONICA: MAE = 17.08
OPENAI: MAE = 11.52
TULOTERO: MAE = 74.78
TULUIERU: MAE = 74.78
NAYAX: MAE = 22.60
URBANI: MAE = 18.59
DISNEY PLUS: MAE = 26.45
TOTAL PASS: MAE = 16.40
RENTAMOVISTAR: MAE = 58.56
ROTOPLAS: MAE = 28.92
AUDIBLE: MAE = 6.45
APLAZO: MAE = 205.94
CALIENTE: MAE = 621.47
COSTCO GAS: MAE = 113.85
SMART: MAE = 113.80
BET365: MAE = 2047.46
CANVA: MAE = 8.83
SMARTFIT: MAE = 43.12
ALLIANZ MEXICO: MAE = 97.93
```

Desempeño entre conjunto de entrenamiento y prueba

Para tener claro que no existe sobreajuste se comparan los reportes de clasificacion en el conjunto de entrenamiento de prueba

```
y_train_pred_c = grid_search.best_estimator_.predict(X_train_c)
print("\nReporte de clasificación (Training Set):")
print(classification_report(y_train_c, y_train_pred_c, digits=3))
print("\nReporte de clasificación (Test Set):")
print(classification_report(y_test_c, y_pred_c, digits=3))
    Reporte de clasificación (Training Set):
                  precision
                                recall f1-score
                                                    support
                                 0.624
                       0.835
                                                      63869
                                 0.973
                                            0.899
                                            0.855
                                                      96467
        accuracy
       macro avg
                       0.879
                                 0.799
                                            0.822
                                                      96467
     weighted avg
                       0.865
                                 0.855
                                           0.847
                                                      96467
     Reporte de clasificación (Test Set):
                                recall f1-score
                  precision
                                                    support
               0
                       0.917
                                 0.607
                                            0.731
                                                       8168
                                            0.894
                                                      15949
                                            0.848
                                                      24117
        accuracy
                       0.873
                                 0.789
                                            0.812
    weighted avg
                       0.858
                                 0.848
                                            0.839
                                                      24117
```

Costo computacional del modelo XGBoost

```
Tiempo de entrenamiento

start_time = time.time()
grid_search.fit(X_train_c, y_train_c)
end_time = time.time()
print(f"Tiempo de entrenamiento: {end_time - start_time:.2f} segundos")

Fitting 3 folds for each of 16 candidates, totalling 48 fits
    //usr/local/lib/python3.11/dist-packages/xgboost/core.py:158: UserWarning: [16:26:13] WARNING: /workspace/src/learner.cc:740:
    Parameters: { "use_label_encoder" } are not used.

    warnings.warn(smsg, UserWarning)
    Tiempo de entrenamiento: 15.81 segundos

Tiempo de inferencia

start_time = time.time()
y_pred = grid_search.best_estimator_.predict(X_test_c)
end_time = time.time()
print(f"Tiempo de inferencia para {len(X_test_c)} muestras: {end_time - start_time:.4f} segundos")

Tiempo de inferencia para 24117 muestras: 0.0311 segundos
```

Uso de memoria

```
!pip install -q memory-profiler
from memory_profiler import memory_usage
def train_model():
    grid_search.fit(X_train_c, y_train_c)
mem_usage = memory_usage(train_model)
print(f"Uso máximo de memoria: {max(mem_usage):.2f} MB")

>→ Fitting 3 folds for each of 16 candidates, totalling 48 fits
    /usr/local/lib/python3.1l/dist-packages/xgboost/core.py:158: UserWarning: [16:26:33] WARNING: /workspace/src/learner.cc:740:
    Parameters: { "use_label_encoder" } are not used.
    warnings.warn(smsg, UserWarning)
    Uso máximo de memoria: 559.09 MB
```

Modelos alternativos para la entrega

Debido al alto costo de entrenar y desplegar XGBoost, se evaluan otros modelos con menor carga computacional: Logistic Regression,LightGBM y HistGradientBoostingClassifier

```
from sklearn.model_selection import train_test_split
from \ sklearn.linear\_model \ import \ LogisticRegression
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.metrics import classification report
df = pd.read_csv("recurrentes.csv")
df["anio_mes"] = pd.to_datetime(df["anio_mes"], format="%Y-%m")
df = df.sort_values(by=["id", "comercio", "anio_mes"]).reset_index(drop=True)
df["clave"] = df["id"] + "_" + df["comercio"]
df["anio_mes_next"] = df["anio_mes"] + pd.offsets.MonthBegin(1)
futuro = df[["clave", "anio_mes", "monto"]].copy()
futuro["anio_mes"] = futuro["anio_mes"] - pd.offsets.MonthBegin(1)
futuro = futuro.rename(columns={"monto": "target_monto"})
df = df.merge(futuro, on=["clave", "anio_mes"], how="left")
df["target_ocurrencia"] = (~df["target_monto"].isna()).astype(int)
df["monto_mes_anterior"] = df.groupby("clave")["monto"].shift(1)
\label{eq:df-monto} $$ df["monto_ultimos_3"] = df.groupby("clave")["monto"].transform(lambda x: x.shift(1).rolling(3).mean()) $$ $$ f(x) = f
 df["frecuencia\_ultimos\_6"] = df.groupby("clave")["monto"]. transform(lambda x: x.shift(1).rolling(6).apply(lambda y: np.sum(~np.isnan(y)))) \\
df["inactividad_ultimos_6"] = df.groupby("clave")["monto"].transform(lambda x: x.shift(1).rolling(6).apply(lambda y: 6 - np.count_nonzero(~np.isnan(y))))
df["dias_desde_ultimo_pago"] = df.groupby("clave")["anio_mes"].transform(lambda x: (x.max() - x).dt.days)
df = df.fillna(0)
df["mes"] = df["anio_mes"].dt.month
df_model = df.dropna(subset=["target_ocurrencia"])
        "mes", "monto_mes_anterior", "monto_ultimos_3",
        "frecuencia_ultimos_6", "inactividad_ultimos_6", "dias_desde_ultimo_pago"
X = df model[features]
y_class = df_model["target_ocurrencia"]
X_train_c, X_test_c, y_train_c, y_test_c = train_test_split(X, y_class, test_size=0.2, random_state=42)
def medir_tiempo(modelo, nombre):
       start_train = time.time()
       modelo.fit(X_train_c, y_train_c)
       end_train = time.time()
       start pred = time.time()
       v pred = modelo.predict(X test c)
       end_pred = time.time()
       print(f"\n Modelo: {nombre}")
       print(f" Tiempo de entrenamiento: {end_train - start_train:.2f} segundos")
       print(f" Tiempo de inferencia: {end_pred - start_pred:.4f} segundos";
       \verb|print(classification_report(y_test_c, y_pred, digits=3))|\\
#Logistic Regression
log_model = LogisticRegression(max_iter=1000, random_state=42)
medir_tiempo(log_model, "Logistic Regression")
#LightGBM
lgb_model = LGBMClassifier(
       boosting_type='gbdt',
        num_leaves=31,
       learning_rate=0.1,
       n estimators=100,
       class weight='balanced'.
        random state=42
medir_tiempo(lgb_model, "LightGBM")
#HistGradientBoostingClassifier
hist_model = HistGradientBoostingClassifier(
       max_iter=100,
       learning_rate=0.1,
       max depth=6,
       random_state=42
```

```
medir_tiempo(hist_model, "HistGradientBoosting")
₹
      Modelo: Logistic Regression
       Tiempo de entrenamiento: 1.71 segundos
Tiempo de inferencia: 0.0139 segundos
                      precision
                                      recall f1-score
                                                              support
                           0.793
                                        0.509
                                                    0.620
                   1
                           0.788
                                        0.932
                                                    0.854
                                                                15949
                                                    0.789
                                                                24117
          accuracy
                                                    0.737
0.775
                                                                24117
24117
         macro avg
                           0.790
                                        0.721
                           0.789
     weighted avg
                                        0.789
     [LightGBM] [Info] Number of positive: 63869, number of negative: 32598 [LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.014448 seconds. You can set `force_col_wise=true` to remove the overhead.
     [LightGBM] [Info] Total Bins 558
[LightGBM] [Info] Number of data points in the train set: 96467, number of used features: 5
     [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000
     [LightGBM] [Info] Start training from score 0.000000
      Modelo: LightGBM
       Tiempo de entrenamiento: 1.38 segundos
       Tiempo de inferencia: 0.2160 segundos
                      precision
                                      recall f1-score
                                                              support
                   0
                           0.747
                                        0.772
                                                    0.759
                                                                 8168
                   1
                           0.881
                                        0.866
                                                    0.873
                                                                15949
                                                    0.834
                                                                24117
          accuracy
         macro avq
                           0.814
                                        0.819
                                                    0.816
                                                                24117
     weighted avg
                           0.836
                                        0.834
                                                    0.835
                                                                24117
      Modelo: HistGradientBoosting
      Tiempo de entrenamiento: 1.64 segundos
      Tiempo de inferencia: 0.2280 segundos
                                      recall
                      precision
                                                f1-score
                                                              support
                   0
                           0.911
                                        0.624
                                                    0.740
                                                                 8168
                           0.834
                                        0.969
                                                    0.896
                                                                15949
                                                    0.852
                                                                24117
          accuracy
         macro avg
                           0.872
                                        0.796
                                                    0.818
                                                                24117
```

Conclusion

weighted avg

Si bien XGBoost obtuvo el mejor desempeño general en términos de precisión y recall, su alto costo computacional en tiempo y memoria lo hace menos práctico en entornos de producción o cuando se requiere escalar.

El modelo que ofrece el mejor balance entre desempeño y eficiencia computacional es LightGBM, ya que mantiene un buen nivel de precisión, especialmente en la clase minoritaria, con un tiempo de entrenamiento mucho menor y un uso eficiente de recursos.

24117

REGRESION PARA PREDECIR EL MONTO

0.860

0.852

0.843

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from lightgbm import LGBMRegressor
from scipy.stats import zscore
# Cargar y preparar tus datos
#df = pd.read_csv("recurrentes.csv")
df = df_model
#df = preparar_features(df)
df_reg = df[df["target_ocurrencia"] == 1].copy()
# Aplicar z-score al target
df_reg["z_score_monto"] = zscore(df_reg["target_monto"])
df_z_filtered = df_reg[np.abs(df_reg["z_score_monto"]) < 3].copy()</pre>
df_z_filtered.drop(columns=["z_score_monto"], inplace=True)
# Definir features y target
features = ['mes', 'monto_mes_anterior', 'monto_ultimos_3', 'frecuencia_ultimos_6', 'inactividad_ultimos_6', 'dias_desde_ultimo_pago']
X = df_z_filtered[features]
y = df_z_filtered["target_monto"]
# Separar v entrenar
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
model = LGBMRegressor(n_estimators=100, max_depth= 15, learning_rate=0.05, num_leaves=31, random_state=123, reg_alpha= 0.5, reg_lambda= 0)
model.fit(X_train, y_train)
# Predicción y métricas
y_pred = model.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
```

```
12 - 12_SCUIE(y_test, y_pieu/
print(f"Evaluación del modelo con Z-score:")
print(f"MAE = {mae:.2f}")
print(f"MSE = {mse:.2f}")
print(f''R^2 = \{r2:.2f\}'')
[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.006850 seconds. You can set `force_col_wise=true` to remove the overhead. [LightGBM] [Info] Total Bins 558
     [LightGBM] [Info] Number of data points in the train set: 63306, number of used features: 5 [LightGBM] [Info] Start training from score 108.158325
     Evaluación del modelo con Z-score:
MAE = 67.78
MSE = 16523.69
     R^2 = 0.42
y_pred = lgb_model.predict(X_test_c)
#Los que si tienen recurrencia
y_prob = lgb_model.predict_proba(X_test_c)[:, 1]
# Df de predicciones
df_predicciones = X_test_c.copy()
df_predicciones["prediccion"] = y_pred
df_predicciones["probabilidad_ocurrencia"] = y_prob
df_predicciones["real"] = y_test_c.values
df_predicciones = df_predicciones.reset_index(drop=True)
df_predicciones.to_csv("predicciones_lightgbm.csv", index=False)
print(df_predicciones.head())
```