Universität Bonn

Notes for the lecture

Topology II

held by

Stefan Schwede

T_EXed by

Jan Malmström

Corrections and improvements

If you have corrections or improvements, contact me via (s94jmalm@uni-bonn.de).

Contents

Lecture						
1	Cohomology					
	1.1	Last	Ferm	2		
	1.2	Cup-p	product	2		
	1.3	Comn	nutativity of the cup-product	6		
	1.4	Künn	eth theorem	10		
		1.4.1	The Eilenberg-Zilber-theorem	10		
		1.4.2	Commutativity of the cup-product revisited	19		
A	ppen	dix		Α		
List of definitions						
List of statements						
ln	dex			D		

Lecture

Chapter 1

Cohomology

[07.04.2025, Lecture 1]

1.1 Last Term

In last term, we discussed

- CW-complexes
- higher homotopy groups
- Whitehead theorem
- Singular homology
- · cellular homology

In the very end, cohomology was started. Remeber

1.2 Cup-product

Let X be a simplicial set, and R^1 a ring.

$$C^n(X,R) = \max(X_n,R)$$

is an abelian group under pointwise addition. There is a differential

$$d^n \colon C^n(X,R) \to C^{n+1}(X,R)$$

given by

$$d^{n}(f)(y) = \sum_{i=0}^{n+1} (-1)^{i} f(d_{i}^{*}(y))$$

with $f: X_n \to R, y \in X_{n+1}$

¹A ring is not necessarily commutative, but has a unit

Construction 1.1 (Cup product/Alexander Whitney map). The cup product/Alexander Withney map

$$\cup: C^n(X,R) \times C^m(X,R) \to C^{m+n}(X,R)$$

with $n, m \ge 0$ is defined by

$$(f \cup g)(x) := f(d_{front}^*(x)) \cdot g(d_{back}^*(x))$$

with $f: X_n \to R, g: X_m \to R, x \in X_{n+m}$.

Where we use $[n+m] = \{0, 1, ..., n+m\}$ and d_{front} : $[n] \to [n+m], d_{back}$: $[m] \to [n+m]$ are given by $d_{front}(i) = i$, $d_{back}(i) = n+i$. Note, that d_{front} and d_{back} respectively suppress in their notation n and m.

Theorem 1.2: fundamental properties of cup product

The cup-product satisfies the following properties.

1. The AW-map is biadditive and satisfies a boundary formula:

$$d(f \cup g) = (df) \cup g + (-1)^n f \cup (dg) \in C^{m+n+1}(X, R)$$

- 2. Associativity: For $h \in C^k(X,R)$, $(f \cup g) \cup h = f \cup (g \cup h) \in C^{n+m+k}(X,R)$. Let $1 \in C^0(X,R)$ be the constant function $1: X_0 \to R$ with value 1. Then $1 \cup f = f \cup 1 = f$.
- 3. Naturality: Let $\alpha: Y \to X$ be a morphism of symplicial sets. Then

$$\alpha^*(f \cup g) = \alpha^*(f) \cup \alpha^*(g), \quad \alpha^*(1) = 1.$$

where
$$\alpha^*: C^n(X,R) \to C^n(Y,R), \quad f \mapsto f \circ \alpha_n$$
.

Proof.

1. We check some properties: Let d_{front} : $[n] \to [n+m]$, d_{back} : $[m] \to [n+m]$ be as in the definition of \cup . Then

$$d_i \circ d_{front} = \begin{cases} d_{front} \circ d_i & 0 \le i \le n+1 \\ d_{front} & n+1 \le i \le n+m+1 \end{cases}$$

and

$$d_i \circ d_{back} = \begin{cases} d_{back} \circ d_i & 0 \le i \le n \\ d_{back} \circ d_{i-n} & n \le i \le n+m+1 \end{cases}$$

Note, that for n + 1 and n respectively the cases are the same.

Now we calculate

$$\begin{split} d(f \cup g)(x) &= \sum_{i=0}^{n+m+1} (-1)^i (f \cup g)(d_i^*(x)) \\ &= \sum_{i=0}^{n+m+1} (-1)^i \cdot f(d_{front}^*(x)) \cdot g(d_{back}^*(d_i^*(x))) \\ &= \sum_{i=0}^{n} (-1)^i \cdot f(d_{front}^*(d_i^*(x))) \cdot g(d_{back}^*(d_i^*(x))) + \sum_{j=1}^{m+1} (-1)^{n+j} \cdot f(d_{front}^*(d_{j+n}^*(x))) \cdot g(d_{back}^*(d_{j+n}^*(x))) \\ &= \sum_{i=0}^{n+1} (-1)^i \cdot f(d_i^*(d_{front}^*(x))) \cdot g(d_{back}^*(x)) + \sum_{j=0}^{m+1} (-1)^{n+j} f(d_{front}^*(x)) \cdot g(d_j^*(d_{back}^*(x))) \\ &= d(f)(d_{front}^*(x)) \cdot g(d_{back}^*(x)) + (-1)^n \cdot f(d_{front}^*(x)) \cdot d(g)(d_{back}^*(x)) \\ &= ((df) \cup g)(x) + (-1)^n \cdot (f \cup dg)(x) \\ &= ((df) \cup g + (-1)^n \cdot f \cup (dg))(x) \end{split}$$

2. For $x \in X_{n+m+k}$ we see

$$\begin{split} ((f \cup g) \cup h)(x) &= (f \cup g)(d^*_{front}(x)) \cdot h(d^*_{back}(x)) \\ &= f(d^*_{front}(d^*_{front}(x))) \cdot g(d^*_{back}(d^*_{front}(x))) \cdot h(d^*_{back}(x)) \\ &= f(d^*_{front}(x)) \cdot g(d^*_{middle}(x)) \cdot h(d^*_{back}(x)) \end{split}$$

Note that we abuse that d_{front} suppresses the indices for which the map is the front map. We have in the last line

$$d_{front}$$
: $[n] \rightarrow [n+m+k], d_{middle}$: $[m] \rightarrow [n+m+k], d_{back}$: $[k] \rightarrow [n+m+k]$

defined by

$$d_{front}(i) = i, d_{middle}(i) = n + i, d_{back}(i) = n + m + i$$

this is obviously associative in the inputs²

3. Naturality for $\alpha \colon Y \to X$ we see

$$(\alpha^*(f \cup g))(y) = (f \cup g)(\alpha_{n+m}(y))$$

$$= f(d^*_{front}(\alpha_{n+m}(y))) \cdot g(d^*_{back}(\alpha_{n+m}(y))) = f(\alpha_n(d^*_{front}(y))) \cdot g(\alpha_m(d^*_{back}(y)))$$

$$= \alpha^*(f)(d^*_{front}(y)) \cdot \alpha^*(g)(d^*_{back}(y))$$

$$= (\alpha^*(f) \cup \alpha^*(g))(y).$$

SoSe 2025 4 Jan Malmström

²for Schwede at least.

Definition 1.3: Differential graded ring

A differential graded ring (dg-ring) is a cochain-complex $A = \{A^n, d^n\}_{n \in \mathbb{Z}}$ equipped with biadditive maps

$$:: A^n \times A^m \to A^{n+m}, \quad n, m \in \mathbb{Z}$$

and a unit $1 \in A^0$, such that;

- \bullet · is associative and has 1 as a unit element.
- the Leibniz rule holds:

$$d(a \cdot b) = (da) \cdot b + (-1)^n \cdot a \cdot (db)$$

with $a \in A^n, b \in A^m$.

Example 1.4. Some Differential graded rings are:

- C(X,R) for a simplicial set X and a ring R.
- De Rham complex of a smooth manifold.

Construction 1.5 (Cup-Product on cohomology). Let $A = (A^n, d, \cdot)$ be a dg-ring. We define a map

$$: H^n(A) \times H^m(A) \to H^{n+m}(A), \quad [a] \cdot [b] = [a \cdot b]$$

This is well defined:

$$d(a \cdot b) = (da) \cdot b + (-1)^n @.a \cdot (db) = 0$$

so $a \cdot b$ is a cycle and we can take its homology class. Let $x \in A^{n-1}$.

$$(a+dx) \cdot b = a \cdot b + (dx) \cdot b = a \cdot b + d(x \cdot b) = [(a+dx) \cdot b] = [a \cdot b]$$

so it only depends on the cohomology class of a, analogous for b.

The product on cohomology inherits associativity and unity with $1 = [1] \in H^0(A)$. We need to see 1 is a cocycle:

$$d(1) = d(1 \cdot 1) = (d1) \cdot 1 + (-1)^{0} \cdot 1 \cdot (d1) = 2 \cdot d(1)$$

and so d(1) = 0.

The cup product on the R-cohomology of a simplicial set X is the product induced by the cup product on $C^*(X,R)$ in $H^*(C(X,R)) = H^*(X,R)$.

Theorem 1.6: Properties of the cup-product on homology

Let X be a simplicial set and R a ring. Then

- The cup product on $H^*(X,R)$ is associative and unital, with unit the cohomology class of the constant function 1: $X_0 \to R$.
- For a morphism of simplicial sets $\alpha: Y \to X$, the relation

$$\alpha^*([x] \cup [y]) = \alpha^*[X] \cup \alpha^*[y]$$

holds for all $[x] \in H^n(X, R), [y] \in H^m(X, R).$

¹The sign is somehow connected to a sign-rule I couldn't follow. The d moved past the a or something.

Remark 1.7. The cup product generalizes to relative cohomology: For A, B simplicial subsets of X. We have

$$C^{n}(X, A; R) = \{f \colon X_{n} \to R \mid f(A_{n}) = \{0\}\}\$$

The relative cup product is the restriciton of \cup on $C^*(X,R)$ to

$$C^n(X, A; R) \times C^m(X, B; R) \xrightarrow{\cup} C^{n+m}(X, A \cup B; R).$$

Let $x \in (A \cup B)_{n+m}$, then

$$(f \cup g)(x) = f(d_{front}^*(x)) \cdot g(d_{back}^*(x))$$

if $x \in A_{n+m}$ then $f(d_{front}^*(x)) = 0$ and analogous with B_{n+m} , anyways the product is 0. This gives us biadditive well defined maps

In particular for A = B we get

$$\cup: H^n(X,A;R) \times H^n(X,A;R) \to H^{n+m}(X,A;R)$$

 $\cup: H^n(X,A;R) \times H^n(X,B;R) \to H^{n+m}(X,A \cup B;R)$

which is well defined and associative, but not unital anymore.

1.3 Commutativity of the cup-product

Theorem 1.8: Commutativity of the cup-product

Let X be a simplicial set and R a commutative ring. Then for all $[x] \in H^n(X,R)$; $[y] \in H^m(X,R)$ the realtion

$$[x] \cup [y] = (-1)^{n \cdot m} \cdot [y] \cup [x]$$

holds.

Schwede points out, that the easy way doesn't work. **Warning.** For $f \in C^n(X, R), g \in C^m(Y, R)$, then in general $f \cup g \neq (-1)^{n+m}(g \cup f)$ in $C^{n+m}(X, R)$. The commutativity is a property we only get on homology.

Construction 1.9. The \cup_1 -product (spoken Cup-one)

$$\cup_1 : C^n(X,R) \times C^m(X,R) \to C^{n+m-1}(X,R)$$

is defined by

$$(f \cup_1 g)(x) = \sum_{i=0}^{n-1} (-1)^{(n-1)\cdot(m+1)} f((d_i^{out})^*(x)) \cdot g((d_i^{inner})^*(x))$$

for $f \in C^n$, $g \in C^m$ and $x \in X_{n+m-1}$.³ where d_i^{out} : $[n] \to [n+m-1]$, d_i^{inner} : $[m] \to [n+m-1]$ are the unique monotone injective maps with images $\operatorname{Im}(d_i^{out}) = \{0, \dots, i\} \cup \{i+m, \dots, n+m-1\}$ and $\operatorname{Im}(d_i^{inn}) = \{i, \dots, i+m\}$.

SoSe 2025 6 Jan Malmström

³There are also \cup_i for $i \in \mathbb{N}$. However, they are quite messy and combinatorical.

Theorem 1.10: \cup_1 -Product

The \cup_1 -product satisfies the following formula

$$d(f \cup_1 g) = (df) \cup_1 g + (-1)^n \cdot f \cup_1 (dg) - (-1)^{n+m} (f \cup g) - (-1)^{n+1} m + 1(g \cup f)$$

for $f \in C^n(X, R)$ and $g \in C^m(X, R)$.

Remark 1.11. What we want to see, is that $f \cup g$ and $g \cup f$ are not the same but rather homotopic, and \cup_1 wittnesses that homotopy.

Proof. This theorem will not be prooven, because it is quite messy. You should find a lecture-video for that. \Box

Now suppose that f and g are cocycles, i.e. df = 0, dg = 0. Then

$$d(f \cup_1 g) = -(-1)^{n+m} (f \cup g) - (-1)^{(n+1)(m+1)} (g \cup f)$$

and we get

$$(-1)^{n+m+1} \cdot d(f \cup_1 g) = f \cup g - (-1)^{n \cdot m} (g \cup f)$$

and as such

$$0 = [(-1)^{n+m-1}] = [f] \cup [g] - (-1)^{n \cdot m}[g] \cup [f]$$

Remark 1.12. Last term we discussed the tensor product of two chain complexes (in an exercise):

$$(C \otimes D)_n = \bigoplus_{p+q=n} C_p \otimes D_q$$

and differential

$$d(x \otimes y) = (dx) \otimes y + (-1)^{|x|} \cdot x \otimes (dy)$$

Remark 1.13. Reinterpretation of $d(f \cup_1 g)$. The cup product yields a morphism of cochain complexes

$$C^*(X,R) \otimes C^*(X,R) \to C^*(X,R)$$

and we get a diagram

$$\begin{array}{ccc}
x \otimes y & C^*(X,R) \otimes C^*(X,R) & \xrightarrow{\cup} & C^*(X,R) \\
\downarrow & & \downarrow & & \downarrow \\
y \otimes x & C^*(X,R) \otimes C^*(X,R) & & & & \\
\end{array}$$

that does not commute, however it does so up to cochain homotopy and \cup_1 is exactly a cochain homotopy between the two maps.

[07.04.2025, Lecture 1] [09.04.2025, Lecture 2]

Only with the definition of the cup-product we cannot calculate a lot yet. Some methods to compute cup-products are:

- directly from the definition
- cellular approximation of the diagonal (whatever that means, he gives a little intuition I failed to record.) (this might be used later)
- Group homology (one exapmle later today, something for AT I)

- Poincaré duality (later this term)
- Analysis on smooth manifolds together with De Rahm Cohomology

The first two methods are not very practical.

Example 1.14. Let X be a discrete space, Then S(X) is a constant simplicial set. The chain complex has the form

$$\xrightarrow{0} \mathbb{Z}[X] \xrightarrow{=} \mathbb{Z}[X] \xrightarrow{0} \mathbb{Z}[X]$$

And so $H^n(X,R) = 0$ for $n \ge 0$. And only for n = m = 0 something nontrivial happens. for $f: X_0 \to R, g: X_0 \to R$, we have $(f \cup g)(x) = f(d^*_{front}(x)) \cdot g(d^*_{back}(x)) = f(x) \cdot g(x)$ and so the cup product is just pointwise multiplication in dimension 0.

More generally: $H^0(X, R) = \text{maps}(\pi_0(X), R)$ with \cup -product pointwise multiplication

Example 1.15. Let G be a group: Define a category \underline{G}^4 wit one object * and $\operatorname{Hom}_{\underline{G}}(*,*) = G$. We then define

$$BG = N(\underline{G})$$

Where N is the Nerve-Functor $CAT \rightarrow Sset$. Then

$$(BG)_n = G^n, \quad d_i^* \colon G^n \to G^{n-1}(g_1, \dots, g_n) \mapsto \begin{cases} (g_2, \dots, g_n) & i = 0 \\ (g_1, \dots, g_i \circ g_{i+1}, \dots, g_n) & 1 \le i \le n-1 \\ (g_1, \dots, g_{n-1}) & i = n \end{cases}$$

And $s_i(g_1, \ldots, g_n) = (g_1, \ldots, g_i, 1, g_{i+1}, \ldots, g_n).$

The general case of this is too hard to calculate. We take $G = (\mathbb{F}_2, +)$ and $R = \mathbb{F}_2$ and we calculate $H^*(B\mathbb{F}_2, \mathbb{F}_2)$. We see

And the map is defined by

$$f(d_0^*(q,h)) - f(d_1^*(q,h)) + f(d_2^*(q,h)) = f(h) - f(q \cdot h) + f(q)$$

and

$$df = 0 \Leftrightarrow f(q,h) = f(q) + f(h)$$

 \implies 1-cocycles are the group homomorphisms from G to A

$$H^1(BG,A) \cong \operatorname{Hom}(G,A)$$

and for $G = (\mathbb{F}_2, +), A = \mathbb{F}_2$

We define

$$0 \neq x := [\mathrm{Id}_{\mathbb{F}_2}] \in H^1(B\mathbb{F}_2, \mathbb{F}_2).$$

⁴via geometric realization, these define interesting spaces, namely some (missed word)-Maclane spaces M(G, 1), didn't catch it all

We will show that $x^n = x \cup \cdots \cup x$ $(n\text{-times}) \in H^n(B\mathbb{F}_2, \mathbb{F}_2)$ is nonzero.

Proposition. $x^n \in H^n(B\mathbb{F}_2, \mathbb{F}_2)$ is represented by

$$f_n : (\mathbb{F}_2)^n \to \mathbb{F}_2, f_n(\lambda_1, \dots, \lambda_n) = \lambda_1 \cdot \dots \cdot \lambda_n = \begin{cases} 1 & \text{if } \lambda_1 = \lambda_2 = \dots = \lambda_n = 1 \\ 0 & \text{else} \end{cases}$$

Proof. By induction on n. We checked for n = 1. For $n \ge 2$ we have

$$x^n = x^{n-1} \cup x = [f_{n-1}] \cup [\text{Id}_{\mathbb{F}_2}]$$

= $[f_{n-1} \cup \text{Id}]$

Then

$$(f_{n-1} \cup \operatorname{Id})(\lambda_1, \dots, \lambda_n) = f_{n-1}(d^*_{front}(\lambda_1, \dots, \lambda_n)) \cdot \operatorname{Id}_{\ell}(d^*_{back}(\lambda_1, \dots, \lambda_n))$$
$$= f_{n-1}(\lambda_1, \dots, \lambda_n - 1) \cdot \operatorname{Id}_{\ell}(\lambda_n)$$
$$= (\lambda_1 \cdot \dots \cdot \lambda_{n-1}) \cdot \lambda_n$$

Claim: $x^n \neq 0$. In the UCT for cohomology we used the evaluation pair

$$\Phi \colon H^n(X,A) \to \operatorname{Hom}(H_n(X;\mathbb{Z});A), \quad [f_n \colon X_n \to A] \mapsto \left\{ [\sum b_i x_i] \mapsto \sum b_i f(x_i) \right\}$$

for $b_i \in \mathbb{Z}, x_i \in X_n$. We can slightly variate that for ring coefficients:

$$\Phi \colon H^n(X,R) \to \operatorname{Hom}(H_n(X,R),R)$$

and $[f: X_n \to R] \mapsto \{ [\sum r_i \cdot x_i] \mapsto \sum r_i \cdot f(x_i) \}$ with $r_i \in R, x_i \in X_n$.

With $X = B\mathbb{F}_2, R = \mathbb{F}_2$, we consider

$$y := \sum_{(\lambda_1,\dots,\lambda_n)\in(\mathbb{F}_2)^n} 1(\lambda_1,\dots,\lambda_n) \in \mathbb{F}_2[(\mathbb{F}_2)^n] = \mathbb{F}_2[(B\mathbb{F}_2)_n]$$

Claim: y is an n-cycle in $C_*(B\mathbb{F}_2, \mathbb{F}_2)$.

$$dy = \sum_{i=0,\dots,n} (-1)^i \cdot d_i^* (\sum_1 \cdot (\lambda_1,\dots,\lambda_n))$$

$$= \sum_{i=0,\dots,n} \sum_{\substack{(\lambda_1,\dots,\lambda_n) \in \mathbb{F}_2^n \\ \text{cancel in pairs}}} (-1)^i \cdot d_i^* (\lambda_1,\dots,\lambda_n)$$

= 0

Now

$$d_0^*(0,\lambda_2,\ldots,\lambda_n)=(\lambda_2,\ldots,\lambda_n)=d_0^*(1,\lambda_2,\ldots,\lambda_n)$$

So

$$\Phi(x^n) \colon H_n(B\mathbb{F}_2, \mathbb{F}_2) \to \mathbb{F}_2$$

$$\Phi(x^n)[y] = \Phi[f_n][\sum_{(\lambda_1, \dots, \lambda_n) \in \mathbb{F}_2^n} (\lambda_1, \dots, \lambda_n)] = \sum_{(\lambda_1, \dots, \lambda_n)} f_n(\lambda_1, \dots, \lambda_n) = \sum_{(\lambda_1, \dots, \lambda_n)} \lambda_1, \dots \lambda_n = 1 \neq 0$$

and $[y] \neq 0$ in $H_n(B\mathbb{F}_2, \mathbb{F}_2)$.

We will later see, that in fact $H^*(B\mathbb{F}_2; \mathbb{F}_2) = \mathbb{F}_2[X]$.

SoSe~20259 Jan Malmström

Remark. Let p be an odd prime. $H^*(B\mathbb{F}_p, \mathbb{F}_p) = ?$.

$$0 \neq x = [\mathrm{Id}_{\mathbb{F}_p} \in H^1(B\mathbb{F}_p; \mathbb{F}_p)]$$

still makes sense, but now there are more scalars and

$$x^n = 0$$

for $n \ge 2$. The graded commutativity says:

$$x \cup x = (-1)^{1 \cdot 1} x \cup x = -x \cup x$$

so if R is commutative, $x \in H^n(X, R)$ and n is odd, then $2 \cdot (x \cup x) = 0$ in $H^{2n}(X, R)$. And then $2 \cdot x^2 = 0 \Rightarrow x^2 = 0$.

Define $h: \mathbb{F}_p \times \mathbb{F}_p \to \mathbb{F}_p$ by

$$h(i,j) = \begin{cases} 0 & \text{if } i+j$$

where we write $\mathbb{F}_p = \{0, \dots, p-1\}$. Now $h \in C^2(B\mathbb{F}_p, \mathbb{F}_p)$. Fact: dh = 0 and $0 \neq y := [h] \in H^2(B\mathbb{F}_p, \mathbb{F}_p)$.

We then get (but do not proove)

$$H^*(B\mathbb{F}_p, \mathbb{F}_p) = \Lambda(x) \otimes \mathbb{F}_p[y]$$

and

$$H^{2n}(B\mathbb{F}_p, \mathbb{F}_p) = \mathbb{F}_p\{y^n\}, \quad H^{2n+1}(B\mathbb{F}_p, \mathbb{F}_p) = \mathbb{F}_p\{xy^n\}$$

1.4 Künneth theorem

The Künneth theorem is an algebraic relationship between $H_*^*(X,R), H_*^*(Y,R)$ and $H_*^*(X \times Y,R)^5$.

Here is a simplest version in homology with field coefficients:

Theorem 1.16: Künneth, simple version

Let X and Y be spaces and k a field. Then

$$H_n(X \times Y, k)$$

is natural isomorphic to

$$\bigoplus_{p+q=n} H_p(X,k) \otimes_k H_q(Y,k)$$

1.4.1 The Eilenberg-Zilber-theorem

Let A, B be simplicial abelian groups. Then we get two natural chain homotopy equivalences

 $^{^{5}}H_{*}^{*}$ denotes, that Schwede was too lazy to write the statement for homology and cohomology separately

Definition 1.17: Simplicial abelian group

A simplicial abelian group is a functor $A: \Delta^{Op} \to \mathbf{Ab}.\mathbf{Groups}.$

Remark 1.18. Equivalently a simplicial abelian group is a collection of abelian groups A_n , and homomorphisms $\alpha^* \colon A_m \to A_n$ for all $\alpha \colon [n] \to [m]$ in Δ , s.t. $(\alpha \circ \beta)^* = \beta^* \circ \alpha^*$.

Equivalently a simplicial abelian group is a simplical set endorsed with abelian group structure on the sets of n-simplices, such that all α^* are homomorphisms.

Example 1.19. Let X be a simplicial set and A an abelian group. Then the composite

$$\Delta^{op} \xrightarrow{X} (\mathbf{Sets}) \xrightarrow{A[\bot]} (\mathbf{ab.grps})$$

is a simplicial abelian group.

Construction 1.20. Let $A: \Delta^{op} \to (\mathbf{ab.grps})$ be a simplicial abelian groups. Its *chain complex* $C_*(A)$ is the chain complex with $C_n(A) = A_n$ with differential

$$d: C_n(A) = A_n \to A_{n-1} = C_{n-1}(A), \quad d(a) = \sum_{i=0,\dots,n} (-1)^i d_i^*(a)$$

And one can easily check $d \circ d = 0$.

Note. The following commutes

Remark 1.21. The tensor product of chain complexes C, D is

$$(C \otimes D)_n := \bigoplus_{p+q=n} C_p \otimes D_q$$

with differential

$$d(x \otimes y) = (dx \otimes y) + (-1)^p x \otimes (dy)$$

for $x \in C_p, y \in D_q$.

We can also form the tensor product of simplical abelian groups:

Definition 1.22: Tensor product of simplicial abelian groups

$$A, B: \Delta^{op} \to (\mathbf{ab.grps})$$
 by

$$(A \otimes B)_n = A_n \otimes B_n, \quad \alpha^* : (A \otimes B)_n \to (A \otimes B)_m$$

for $\alpha \colon [m] \to [n]$ is defined as $\alpha^*(a \otimes b) = \alpha^*(a) \otimes \alpha^*(b)$ and we write $\alpha^*_{A \otimes B} := \alpha^*_A \otimes \alpha^*_B$. This can be equally described as the composite

$$\Delta^{op} \xrightarrow{(A,B)} (\mathbf{ab.grps}) \times (\mathbf{ab.grps}) \xrightarrow{\otimes} (\mathbf{ab.grps})$$

Warning. For $A, B \in (SAB) = \text{simplicial abelian groups}$

$$C_*(A \otimes B) \neq C_*(A) \otimes C_*(B)$$

Also he did this in dimension n, but I lacked time to copy.

The Eilenberg-Zilber theorem is a natural pair of chain homotopy equivalences between these two.

Construction 1.23. Let A, B be simplicial chain groups. The Alexander-Whitney map is the chain map

$$AW: C_*(A \otimes B) \to C_*(A) \otimes C_*(B)$$

defined by

$$C_n(A \otimes B) \longrightarrow \bigoplus_{p+q=n, p, q \geq 0} A_p \otimes B_q$$

$$\parallel \qquad \qquad \parallel$$

$$A_n \otimes B_n \qquad C_*(A) \otimes C_*(B)$$

$$AW_n(a \otimes b) = \sum_{p+q=n} d_{front}^*(a) \otimes d_{back}^*(b)$$

Where $[p] \xrightarrow{d_{front}} [p+q] = [n] \xleftarrow{d_{back}} [q].$

You may check for yourself, that this is a chain map, however Schwede didn't do that.

[09.04.2025, Lecture 2] [14.04.2025, Lecture 3]

Remark. An example for a simplicial abelian group, that is not of the form

$$\Delta^{op} \xrightarrow{X} \mathbf{sets} \xrightarrow{A[_]} (\mathbf{ab.grps.})$$

is for any abelian group G the simplicial set BG, that also admits structure of a simplicial abelian group.

Remark 1.24 (Relation between AW-map and cup-product). For a simplicial set X and ring R,

$$C^*(X,R) = \operatorname{Hom}(C_*(X,\mathbb{Z}),R) = \operatorname{Hom}(C_*(\mathbb{Z}[X])R)$$

and $C^n(X,R) = \text{Hom}(C_n(X,R),R)$. If $\psi \in C^n(X,R)$ is a cocycle, i.e. $d(\psi) = 0$, then it extends to a chain map

$$\tilde{\psi} \colon C_*(\mathbb{Z}[X]) \to R[n]$$

where R[n] is the complex with R in dimension n and 0 otherwise. and $\tilde{\psi}$ is ψ in dimension n and 0 otherwise.

For $f \in C^n(X, R)$, $g \in C^m(X, R)$ cocycles, we have $f \cup g \in C^{n+m}(X, R)$. Then $f \cup g$ is the following composite

$$C_*(\mathbb{Z}[X]) \xrightarrow{C_*(\mathbb{Z}[\text{diagonal}])} C_*(\mathbb{Z}[X \times X]) \cong C_*(\mathbb{Z}[X]) \otimes \mathbb{Z}[X])$$

$$C_*(\mathbb{Z}[X]) \otimes C_*(\mathbb{Z}[X]) \xrightarrow{\tilde{f} \otimes \tilde{g}} R[n] \otimes R[m] \xrightarrow{\text{mult}} R[n+m]$$

Definition 1.25: (p,q)-shuffle

A (p,q)-shuffle for $p,q \geq 0$ is a permutation σ of $\{0,1,\ldots,p+q-1\}$, such that the restriction of σ to $\{0,1,\ldots,p-1\}$ is monotone, and the restriction of σ to $\{p,\ldots,p+q-1\}$ is monotone.

Remark. "Shuffles leave the first p elements in order and the last q elements in order."

Example 1.26. The only (p,0)-shuffle or (0,q)-shuffles are the identity.

There are precisely two (1,1)-shuffles, namely both permutations of $\{0,1\}$.

 $\sigma \in S_3$ given by $\sigma(0) = 0\sigma(1) = 2$, $\sigma(2) = 1$ is not a (2,1)-shuffle, but it is a (1,2)-shuffle.

Remark 1.27. (p,q)-shuffles biject with p-element subsets of $\{0,1,\ldots,p+q-1\}$ by $\sigma\mapsto\{\sigma(0),\ldots,\sigma(p)\}$ and also wit q-element subsets of $\{0,1,\ldots,p+q-1\}$ by $\sigma\mapsto\{\sigma(p),\ldots,\sigma(p+q-1)\}$.

This means |(p,q)-shuffles $|=\binom{p+q}{p}=\binom{p+q}{q}$.

Notation 1.28. Let σ be a (p,q)-shuffle. We write $\mu_i := \sigma(i-1)$ for $1 \le 1 \le p$ and $\nu_i := \sigma(p+i-1)$ for $1 \le i \le q$.

This means $0 \le \mu_1 \le \cdots \le \mu_p$ and $0 \le \nu_1 \le \cdots \le \nu_q \le p+q-1$.

Definition 1.29: Eilenberg-Zilber map

Let A, B be simplicial abelian groups. The Eilenberg-Zilber map /shuffle map is

$$EZ \colon C_*(A) \otimes C_*(B) \to C_*(A \otimes B)$$

is the direct sum of the homomorphisms

$$\nabla_{p,q} \colon A_p \otimes B_q \to A_{p+q} \otimes B_{p+q}$$

given by

$$a \otimes b \mapsto a \nabla b := \sum_{\sigma : (p,q)\text{-shuffle}} \operatorname{sgn}(\sigma) \cdot (s_{\nu_i} \circ \cdots \circ s_{\nu_q})^*(a) \otimes (s_{\mu_1} \circ \cdots \circ s_{\mu_p})^*(b)$$

Example 1.30. There is only one (p,0)-shuffle, the identity of $\{0,\ldots,p-1\}$. Then $\mu_i=i-1$.

$$\nabla_{p,0} \colon A_p \otimes B_0 \to A_p \otimes B_p$$

is defined by

$$a \otimes b \mapsto a \nabla b = a \otimes (s_0 \circ \cdots \circ s_{p-1})^*(b).$$

For p = q = 1 i didn't have the time to copy.

Schwede claims, that the Eilenberg-Zilber map is a chain map and he can't believe he actually did those calculations 4 years ago. He will not torture us, but you may watch the videos.

Theorem 1.31: Shuffle maps form a chain map

The shuffle maps $\nabla_{p,q}$ for varying $p,q\geq 0$ assemble into a chain map. Furthermore, for $a\in A_p,b\in B_q$

$$d(a\nabla b) = (da)\nabla b + (-1)^p a\nabla(db)$$

He specifies, that the calculation takes up 8 pages of his notes.

Theorem 1.32: Eilenberg-Zilber

Let A, B be simplicial abelian groups. Then the morphisms

are mutually inverse natural chain homotopy equivalences.

Proof. A first method of proof would be explicit formulas for the chain homotopies $AW \circ EZ \sim Id$ and $EZ \circ AW \sim Id$. That is however infinitely annoying and we will not do this.

For the special case, where $A = \mathbb{Z}[X], B = \mathbb{Z}[Y]$ for simplicial sets X, Y we proove this via acyclic models. For that we need some category-theory:

Proposition 1.33 (Yoneda lemma). Let \mathcal{C} be a category and c an object of \mathcal{C} . Let $F: \mathcal{C} \to (\mathbf{sets})$ be a functor: Then the evaluation map

$$\operatorname{Nat}_{\mathcal{C} \to \mathbf{sets}}(\mathcal{C}(c,\underline{\hspace{0.1cm}}),F) \to F(c)$$

given by

$$(\tau \colon \mathcal{C}(c,\underline{\hspace{1ex}}) \to F) \mapsto (\tau_c \colon \mathcal{C}(c,c) \to F(c))(\mathrm{id}_c)$$

is bijective.

Equally: for every $x \in F(c)$, there is a unique natural transformation $\tau : (\mathcal{C}(c, _) \to F)$, such that $\tau_c(\mathrm{id}_c) = x$.

Remark. A special case of this is

$$\operatorname{Hom}_{\mathbf{sset}}(\Delta^n, X) \cong X_n, \quad (f : \Delta^n \to X) \mapsto f_n(\operatorname{id}_{[n]}).$$

where $\Delta^n = \Delta(\underline{\hspace{0.1cm}}, [n]).$

Proof. We show injectivity and surjectivity.

Injectivity Let $\tau \colon \mathcal{C}(c,\underline{\ }) \to F$ be any natural transformation. Let d be another object of \mathcal{C} , $f\colon c \to d$ any morphism. Then we have

$$\tau_d \colon \mathcal{C}(c,d) \to F(d)$$

and

$$\tau_d(f: c \to d) = \tau_d(\mathcal{C}(c, f)(\mathrm{id}_c)) = F(f)(\tau_c(\mathrm{id}_c))$$

where we use naturality of τ :

$$\begin{array}{ccc}
\mathcal{C}(c,d) & \xrightarrow{\tau_d} & F(d) \\
\downarrow \mathcal{C}(c,g) & & \downarrow F(g) \\
\mathcal{C}(c,e) & \xrightarrow{\tau_e} & F(e)
\end{array}$$

which implies the value of τ at $d, f: c \to d$ is determined by its value of (c, id_c) and the functorality of F.

Surjectivity Let $y \in F(c)$ be given. For an object d of C and morphism $f: c \to d$, we define

$$\tau_d \colon \mathcal{C}(c,d) \to F(d) \quad \tau_d(f) \coloneqq F(f)(y).$$

We check $\tau_c(\mathrm{id}_c) = F(\mathrm{id}_c)(y) = y$. We need to check for naturality. Let $g: d \to e$ be another morphism. Then

$$F(g)(\tau_d(f)) = F(g)(F(f)(y)) = F(g \circ f)(y)$$
$$= \tau_e(g \circ f) = \tau_e(\mathcal{C}(c, g)(f))$$

Let \mathcal{C} be a category, c an object of \mathcal{C} . We define the functor $\mathbb{Z}[\mathcal{C}(c,\underline{\ })]:\mathcal{C}\to(\mathbf{ab.grps.})$ as the composite

$$\mathcal{C} \xrightarrow{\mathcal{C}(c,_)} (\mathbf{sets}) \xrightarrow{\mathbb{Z}[_]} (\mathbf{ab.grps.}).$$

In particular, $\mathbb{Z}[\mathcal{C}(c,\underline{\ })](d) = \mathbb{Z}[\mathcal{C}(c,d)].$

Proposition (Additive Yoneda lemma). Let $c \in ob(\mathcal{C}), F : \mathcal{C} \to (\mathbf{ab.grps.})$ any functor. Then the evaluation map

$$\operatorname{Nat}_{\mathcal{C} \to (\mathbf{ab.grps.})}(\mathbb{Z}[\mathcal{C}(c,_)], F) \to F(c)$$

is bijective. $(\tau : \mathbb{Z}[\mathcal{C}(c,\underline{\ })] \to F) \mapsto \tau_c(1 \cdot \mathrm{id}_c)$.

Proof. For varying objects d of C, the bijections

$$\operatorname{Hom}_{AB}(\mathbb{Z}[\mathcal{C}(c,d)], F(d)) \cong \operatorname{Hom}_{\mathbf{sets}}(\mathcal{C}(c,d), F(d))$$

assemble into a bijection⁶

$$\operatorname{Nat}_{\mathcal{C} \to \mathbf{Ab}}(\mathbb{Z}[\mathcal{C}(c,_)], F) \cong \operatorname{Nat}_{\mathcal{C} \to \mathbf{sets}}(\mathcal{C}(c,_), F) \stackrel{\text{Yoneda}}{\cong} F(c)$$

Definition 1.34: Representable functor

A functor $F: \mathcal{C} \to \mathbf{Ab}$ is representable if there is an object $c \in \mathcal{C}$ and a natural isomorphism $F \cong \mathbb{Z}[\mathcal{C}(c,\underline{\ })]$

Note. Any isomorphism $F \cong \mathbb{Z}[\mathcal{C}(c,\underline{\ })]$ is determined by the "universal element" in F(c).

Example 1.35. Let $C = (\mathbf{ssets}) \times (\mathbf{ssets})$ be the product of two copies of the category of simplicial sets. Define $f : (\mathbf{ssets}) \times (\mathbf{ssets}) \to \mathbf{Ab}$ given by $F(X,Y) = \mathbb{Z}[X_p \times Y_q]$ for some $p, q \geq 0$. Claim. This functor is representable by (Δ^p, Δ^q) with natural isomorphisms.

$$(\mathbf{ssets} \times \mathbf{ssets})((\Delta^p, \Delta^q), (X, Y)) = \mathbf{sets}(\Delta^p, X) \times \mathbf{sets}(\Delta^q, Y) \cong X_p \times Y_q$$

Apply free abelian groups to get

$$\mathbb{Z}[(\mathbf{ssets} \times \mathbf{ssets})((\Delta^p, \Delta^q)(X, Y))] \cong \mathbb{Z}[X_P \times Y_q]$$

Notation 1.36. For $F: \mathcal{C} \to \mathbf{Chains}$ we write $F_n = (\underline{\ })_n \circ F: \mathcal{C} \to \mathbf{Ab}$ as the composite.

$$\mathcal{C} \xrightarrow{F} \mathbf{Chains} \xrightarrow{(_)_n} \mathbf{Ab}$$

SoSe 2025 15 Jan Malmström

⁶I don't know why though.

and the second map sends $C = C(n, d_n)_{n \in \mathbb{Z}} \mapsto C_n$.

Theorem 1.37: Acyclic models

Let C be a category, $F, G: C \to \mathbf{Chains}_+ = \text{non-negative grade chain complexes.}$ Let $\psi: F \to G$ be a natural transformation of functors. Suppose;

- 1. The transformation $\psi_0 \colon F_0 \to G_0 \colon \mathcal{C} \to \mathbf{Ab}$ is the zero natural transformation
- 2. For every $n \geq 1$, the functor $F_n : \mathcal{C} \to \mathbf{Ab}$ is isomorphic to a direct sum of representable functors, $\bigoplus_{i \in I} IZ[\mathcal{C}(c_i, \underline{\ })]$ for some family $\{c_i\}_{i \in I}$ of \mathcal{C} -objects such that $H_n(G(c_i)) = 0$.

Then ψ is naturally chain nullhomotopic.

[14.04.2025, Lecture 3] [16.04.2025, Lecture 4]

Proof. For $n \geq 0$, we will construct natural transformations

$$s_n \colon F_n \to G_{n+1}$$

of functors $\mathcal{C} \to \mathbf{Ab}$, such that

$$d_{n+1} \circ s_n + s_{n-1} \circ d_n = \psi_n \tag{*}$$

as natural transformations (i.e. they have the chain homotopy property).

The construction is by induction on n. We begin with $s_0 = 0$ and $s_{-1} = 0$. Suppose $n \ge 1$ and that s_0, \ldots, s_{n-1} have been constructed satisfying (*). Then

$$d_n^G \circ (\psi_n - s_{n-1} \circ d_n^F) = d_n^G \circ \psi_n - d_n^G \circ s_{n-1} \circ d_n^F$$

as ψ is a chain map,

$$= \psi_{n-1} \circ d_n^F - d_n^G \circ s_{n-1} \circ d_n^F = (\psi_{n-1} - d_n^G \circ s_{n-1}) \circ d_n^F \stackrel{(*)}{=} s_{n-2} \circ d_{n-1}^F \circ d_n^F = 0.$$

So $\psi_n - s_{n-1} \circ d_n^F \colon F_n \to G_n$ takes values in cycles. By 2.,

$$f_n = \bigoplus_{i \in I} \mathbb{Z}[\mathcal{C}(c, \underline{\ })]$$

for some set $\{c_i\}_{i\in I}$ of C-objects, such that $H_n(G(c_i))=0$. Let $j\in I$, write

$$x_j \in F(c_j) = \bigoplus_{i \in I} \mathbb{Z}[\mathcal{C}(c_i, c_j)]$$

be the element $1 \cdot id_j$ in the j-th summand. Then

$$\psi_n^{c_j}(x_i) - s_{n-1}^{c_j}(d_n^{F,c_i}(x_i)) \in G_n(c_i)$$

is a cycle. Since $H_n(G(c_i)) = 0$, the class is a boundary in the complex $G(c_i)$.

Let $y_j \in G(c_j)_{n+1}$ be a element such that

$$d_{n+1}^{c_j}(y_j) = \psi_n^{c_j}(x_j) - s_{n-1}^{c_j}(d_n^{F,c_j}(x_j))$$

The additive Yoneda lemma provides a unique natural transformation

$$s_{n,j} \colon \mathbb{Z}[\mathcal{C}(c_j, \underline{\hspace{0.1cm}})] \to G_{n+1}$$

such that $s_{n,j}(x_j) = s_{n,j}^{c_j}(1 \cdot id_{c_j}) = y_j \in G_{n+1}(c_j)$.

We define the natural transformation

$$s_n \colon F_n = \bigoplus_{i \in I} \mathbb{Z}[\mathcal{C}(c_i, \underline{\hspace{1ex}})] \to G_{n+1}$$

as
$$s_n = \bigoplus_{j \in I} s_{n,j}$$
.

It suffices now to show, that (*) holds on each summand $\mathbb{Z}[\mathcal{C}(c_j, \underline{\hspace{0.1cm}})]$. By the additive Yoneda lemma, there it suffices to check the relation on $1 \cdot \mathrm{id}_{c_j}$, which holds by definition.

Remark. We only prooved "half" of the acyclic models theorem. The other half states:

Let C and $F, G: C \to \mathbf{Chains}_+$ be as before, satisfying 2.. Then any natural transformation $\psi_0: F_0 \to G_0$ can be extended to a natural transformation $\psi: F \to G$.

Now to actually proove the Eilenberg-Zilber-Theorem ?? (at least in a special case.) Let A, B be simplicial abelian groups. We assume $A = C_*(\mathbb{Z}[X])$, $B = C_*(\mathbb{Z}[Y])$ for some simplicial sets X, Y. We write $C_*(X), C_*(Y)$. For sets S, T,

$$\mathbb{Z}[S] \otimes \mathbb{Z}[T] \qquad \mathbb{Z}[S \times T]$$

$$s \otimes t \longrightarrow (s,t)$$

is naturally isomorphic. Dimensionwise this gives $\mathbb{Z}[X] \otimes \mathbb{Z}[Y] \cong \mathbb{Z}[X \times Y]$.

We want to move this further to $C_*(X) \otimes C_*(Y) \cong C_*(X \times Y)$.

Proposition 1.38.

- 1. For all $p \geq 0$, the simplicial set Δ^q is simplicially contractible.
- 2. For all $p \geq 0$, the complex $C_*(\Delta^p)$ is chain homotopy equivalent to the complex $\mathbb{Z}[0]$, the complex consisting of \mathbb{Z} in dimension 0.
- 3. For $p, q \ge 0$, the chain complex $C_*(\Delta^p) \otimes C_*(\Delta^q)$ is chain homotopy equivalent to $\mathbb{Z}[0]$. In particular,

$$H_n(C_*(\Delta^p)\otimes C_*(\Delta^q))=0$$

for n > 0.

Proof.

1. We define a morphism of simplicial sets $H: \Delta^p \times \Delta^1 \to \Delta^p$ that contracts Δ^p to the last vertex.⁷ In dimension n,

$$H_n: \Delta([n],[p]) \times \Delta([n],[1]) \to \Delta([n],[p])$$

is given by

$$H_n(\alpha, \beta)(i) = \begin{cases} \alpha(i) & \text{if } \beta(i) = 0\\ p & \text{if } \beta(i) = 1 \end{cases}$$

for $0 \le i \le n$. Let $\gamma \colon [m] \to [n]$ be any morphism in Δ . Then

$$H_m(\gamma^*(\alpha,\beta))(j) = H_m(\alpha \circ \gamma, \beta \circ \gamma)(j) = \begin{cases} \alpha(\gamma(j)) & \text{if } \beta(\gamma(j)) = 0 \\ p & \text{if } \beta(\gamma(j)) = 1 \end{cases} = H_n(\alpha,\beta)(\gamma(j)) = \gamma^*(H_n(\alpha,\beta)(j))$$

SoSe 2025 17 Jan Malmström

⁷remember, that Homotopy is not symmetric in Simplicial sets. This is such an example.

This means H is a homotopy from Id_{Λ^p} to the composite

$$\Delta^p \to \Delta^0 \xrightarrow{p\text{-th vertex}} \Delta^p$$

2. C_* : ssets \to chains takes simplicial homotopies to chain homotopies. So we know $C_*(\Delta^p)$ is chain homotopy equivalent to

$$C_*(\Delta^0) = (\dots \mathbb{Z} \xrightarrow{\mathrm{Id}} \mathbb{Z} \xrightarrow{0} \mathbb{Z})$$

which is chain homotopy equivalent to

$$(\dots 0 \to 0 \to 0 \to 0 \to \mathbb{Z}) = \mathbb{Z}[0]$$

3. The tensor product of chain complexes preserves chain homotopy equivalences in each variable separatedly. So

$$C_*(\Delta^p) \otimes C_*(\Delta^q) \sim \mathbb{Z}[0] \otimes C_*(\Delta^1) \sim \mathbb{Z}[0] \otimes \mathbb{Z}[0] \cong \mathbb{Z}[0].$$

We now must produce natural chain homotopies from

$$AW \circ EZ : C_*(X) \otimes C_*(Y) \to C_*(X) \otimes C_*(Y)$$

and

$$EZ \circ AW : C_*(X \times Y) \to C_*(X \times Y)$$

to the respective identities.

Claim. AW \circ EZ $-\operatorname{Id}_{C_*(X)\otimes C_*(Y)}: C_*(X)\otimes C_*(Y)\to C_*(X)\otimes C_*(Y)$ satisfies the hypothesis of acyclic models.

Proof.

$$C_0(X)\otimes C_0(Y) \cong \mathbb{Z}[X_0]\otimes \mathbb{Z}[Y_0] \stackrel{\cong}{\mathbb{Z}}[X_0\times Y_0]$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$(C_*(X)\otimes C_*(Y))_0 \qquad \qquad C_0(X\times Y)$$

Which means $(\mathbf{AW} \circ \mathbf{EZ})_0 = \mathrm{Id}$ and $(\mathbf{EZ} \circ \mathbf{AW})_0 = \mathrm{Id}$. which means $\psi_0 = \mathrm{zero}$ natural transformation.

$$(C_*(X) \otimes C_*(Y))_n = \bigoplus_{p+q=n} C_p(X) \otimes C_q(Y) = \bigoplus_{p+q=n} \mathbb{Z}[X_p] \otimes \mathbb{Z}[Y_q] \cong \bigoplus_{p+q=n} \mathbb{Z}[X_p \times Y_q]$$

which is represented by (Δ^p, Δ^q) . Then $H_n(C_*(\Delta^p \otimes \Delta^q)) = 0$ (I think, he erased before I could copy.)

We consider $\phi \colon \mathbf{EZ} \circ \mathbf{AW} - \mathrm{Id}_{C_*(X \times Y)} \colon C_*(X \times Y) \to C_*(X \times Y)$. We know, $\phi_0 = 0$. We need to show, that ϕ satisfies the hypothesis of acyclic models.

$$C_n(X \times Y) = \mathbb{Z}[X_n \times Y_n]$$

is representable by (Δ^n, Δ^n) .

$$H_n(C_*(\Delta^n \times \Delta^n)) \cong H_n(\Delta^0 \times \Delta^0) = H_n(\Delta^0) = 0$$

SoSe 2025 18 Jan Malmström

for n > 0, where we used $\Delta^n \sim \Delta^0$ and so $\Delta^n \times \Delta^n \sim \Delta^0 \times \Delta^0$. So acyclic models produces a natural chain nullhomotopy of ϕ .

This concludes the proof of the Künneth theorem.

1.4.2 Commutativity of the cup-product revisited

The symmetry isomorphism of chain complexes C, D is the morphism.

$$\tau_{C,D} \colon C \otimes D \xrightarrow{\cong} D \otimes C$$

is given by

$$\tau_{C,D_n}$$
 : $(C \otimes D)_n$ $(D \otimes C)_n$

$$\bigoplus_{p+q=n} C_p \otimes D_q \qquad \qquad \bigoplus_{q+p=n} D_q \otimes C_p$$

$$c \otimes d$$
 $(-1)^{pq} \cdot d \otimes c$

Fact.

$$C_*(X) \otimes C_*(Y) \xrightarrow{\mathbf{EZ}} C_*(X,Y)$$

$$\downarrow^{\tau} \qquad \qquad \downarrow^{C_*(flip)}$$

$$C_*(Y) \otimes C_*(X) \xrightarrow{\mathbf{EZ}} C_*(Y \otimes X)$$

commutes. where $flip: X \times Y \to Y \times X, \ (x,y) \mapsto (y,x)$. Hence, "The Eilenberg-Zilber map is symmetric".

But however for AW the same diagram does NOT commute.

Howeveer it does so up to natural chain homotopy by applying the acyclic models to the differenc of the two composites. He explains, why we can apply acyclic models.

Let X be a simplicial set. The diagonal $\Delta \colon X \to X \times X$ is flip-invariant, i.e.

$$X \xrightarrow{\Delta} X \times X$$

$$\downarrow^{flip}$$

$$X \times X$$

We draw a diagram:

$$C_*(X) \xrightarrow{C_*(\Delta)} C_*(X \times X) \xrightarrow{\mathbf{AW}} C_*(X) \otimes C_*(X)$$

$$\downarrow^{C_*(\Delta)} \downarrow^{C_*(flip)} \qquad \downarrow^{\tau}$$

$$C_*(X \times X) \xrightarrow{\mathbf{AW}} C_*(X) \otimes C_*(X)$$

that commutes up to homotopy. We apply the functor $\operatorname{Hom}(_,R)$ to get a new diagram and my speed at copying was not capable of keeping up. You may want to have a look at the videos for this.

[14.04.2025, Lecture 4] [23.04.2025, Lecture 5]

The Plan for today is to show the Künneth theorem for homology. The rough approximation is, that product of spaces goes to Tensorproducts of abelian groups.

If X, Y are simplicial sets, then by EZ we have $H_*(X \times Y; R) = H_*(C_*(X \times Y; R)) \cong H_*((C_*(X, R)) \otimes_R C_*(Y; R))$ and we want to see how that relates to $H_*(X, R) \otimes_R H_*(Y; R)$.

In the following R is a commutative ring (have integers and fields in mind).

Definition 1.39: Tensor Product of R-chains

Let C, D be chain complexes of R-modules. We define a new complex of R-modules $C \otimes_R D$:

$$(C \otimes_R D)_n = \bigoplus_{p+q=n} C_p \otimes_R D_q$$

with differential

$$d(x \otimes y) = dx \otimes y + (-1)^{pq} x \otimes dy.$$

Note that $R \otimes \mathbb{Z}[S] \cong R[S]$ for S a simplicial set. And $R[S] \otimes_R R[T] \cong R[S \times T]$ for S, T simplicial sets.

For X, Y simplicial sets, we have

$$R \otimes C_*(X, \mathbb{Z}) \otimes C_*(Y, \mathbb{Z}) \xrightarrow{R \otimes \mathbf{EZ}} R \otimes C_*(X \times Y; \mathbb{Z}) \cong C_*(X \otimes Y; R)$$

and for $R \otimes C_*(X; \mathbb{Z}) \otimes C_*(Y; \mathbb{Z}) \cong (R \otimes C_*(X; Z)) \otimes_R (R \otimes C_*(Y; \mathbb{Z})) = C_*(X, R) \otimes_R C_*(Y, R)$, so we get a Eilenberg-Zilber map

$$C_*(X,R) \otimes_R C_*(Y,R) \xrightarrow{\mathbf{EZ}} C_*(X \times Y;R)$$

Aim. relate $H_*(C \otimes_R D)$ to $H_*(C), H_*(D)$. Our bope is to have a map

$$\bigoplus_{p+q=n} H_p(C) \otimes_R H_q(D) \xrightarrow{???} H_n(C \otimes_R D)$$

For example taking $R = \mathbb{Z}$ and $C = D = (\dots, \to 0 \to \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \to 0)$. Then

$$H_n(C) = H_n(D) = \begin{cases} \mathbb{Z}/2 & n = 0\\ 0 & n \neq 0 \end{cases}$$

but $C \otimes D = (0 \to 0 \to \mathbb{Z} \to \mathbb{Z}^2 \to \mathbb{Z} \to 0)$. And

$$H_1(C \otimes D) = \{(x, -x) \in \mathbb{Z}\}/\{(2y, -2y) \mid y \in \mathbb{Z}\} \cong \mathbb{Z}/2 \neq 0$$

Definition 1.40: Projective R-modules

An R-module P is projective if for every epimorphism $\varepsilon \colon M \to N$ of R-modules, the map

$$\operatorname{Hom}(P,\varepsilon)\colon \operatorname{Hom}(P,M)\to \operatorname{Hom}(P,N)$$

is surjective.

$$P \xrightarrow{f} N$$

Fact. P is projective iff P is a direct summand of a free modulo iff there exists a R-module Q and a set S, such that

$$P \oplus Q \cong R[S].$$

Proof. Free modulse are projective:

$$R[S] \xrightarrow{g} M$$

$$\downarrow^{\varepsilon}$$

$$R[S] \xrightarrow{f} N$$

for every $s \in S$ choose $m_s \in M$ $\varepsilon(m_s) = f(s)$. Then there is a unique homomorphism $g \colon R[S] \to M$ such that $g(s) = m_s$.

Let P be projective and Q a summand of P. For reasons I couldn't copy, then Q is also projective. Let P be a projective R-modulo. Consider the epimorphism

$$R[P] \to P$$
$$p \mapsto p$$

Then we have

$$p \xrightarrow{\operatorname{id}} P$$

$$P$$

So P is a direct summand of R[P].

- If R is a field, then all modules are free, hence projective.
- $R = \mathbb{Z}/6$, $P = \mathbb{Z}/2$, $Q = \mathbb{Z}/3$. Then $\mathbb{Z}/6 \cong \mathbb{Z}/2 \oplus \mathbb{Z}/3$, so, as $\mathbb{Z}/6$ is free, $\mathbb{Z}/2$ and $\mathbb{Z}/3$ are projective, but not free.

Proposition 1.41. Let R be a commutative ring, and

$$0 \to I \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$$

be a short exact sequence of R-modules.

Then for every R-module P, the sequence

$$P \otimes_R I \xrightarrow{P \otimes_R \alpha} P \otimes_R M \xrightarrow{p \otimes_R \beta} P \otimes_R N \to 0$$

is exact. (" $P \otimes_R$ _ is right exact"). If moreover P is projective, then it is also exact with a 0 on the left, i.e. $P \otimes_R \alpha$ is injective. ("projective modules are flat").

Proof.

$$p \otimes_R \beta$$
) $\circ (p \otimes_R) \alpha = P \otimes_r (\beta \circ \alpha) = P \otimes_R 0 = 0$

so $\operatorname{Im}(P \otimes_R \alpha) \subseteq \ker(P \otimes_R \beta)$ so we get an induced homomorphism

$$\gamma \frac{P \otimes_R M}{\operatorname{Im}(P \otimes_R \alpha)} \to P \otimes_R N$$

SoSe 2025 21 Jan Malmström

exactness is equivalent to δ being an isomorphism. We define a homomorphism $\delta \colon P \otimes_R N \to \frac{P \otimes_R M}{\operatorname{Im}(P \otimes_R \alpha)}$ given by $(p,n) \in P \otimes N$ choose $\tilde{n} \in M$, such that $\beta(\tilde{n}) = n$.

Claim. $\delta(p \otimes n) = p \otimes \tilde{n} + \operatorname{Im}(P \otimes_R \alpha)$ is independent of choice of \tilde{n}

Proof. Let
$$\tilde{n} \in M$$
 also satisfy $\beta(\tilde{n}) = n$. Then $\beta(\tilde{n} - \tilde{n}) = 0$, so there is $i \in I$ s.t. $\alpha(i) = \tilde{n} - \tilde{n}$. $p \otimes \tilde{n} - p \otimes \tilde{n} = p \otimes (\tilde{n} - \tilde{n}) = p \otimes \alpha(i) \in \operatorname{Im}(P \otimes_R \alpha)$.

Claim. The assignment of δ is biadditive and sends (rp, n) and (p, rn) to the same element.

Then this extends to a well defined R-linear map

$$P \otimes_R N \to \frac{P \otimes_R M}{\operatorname{Im}(P \otimes_R \alpha)}$$

which is isomorphic.

Now let P be projective. We show that then $P \otimes_R \alpha$ is injective.

Case 1 P = R[S] free, S some set. Then

$$P \otimes_R M = R[S] \otimes_R M \cong \bigoplus s \in SM$$

we have a natural isomorphism of R-modules in M.

From this we get a commutative square of R-modules:

$$P \otimes_R I \xrightarrow{P \otimes_R \alpha} P \otimes_R M$$

$$\parallel \downarrow \qquad \qquad \parallel \downarrow \qquad \qquad \qquad \parallel \downarrow \qquad \qquad \parallel \parallel \downarrow \qquad$$

where the bottom map is injective.

General case P projective is a summand of a free module F, i.e. there are homomorphisms

$$P \xrightarrow{\lambda} F \xrightarrow{\mu} P$$

s.t. $\mu \circ \lambda = \mathrm{Id}_P$. We consider thee commutative square

$$P \otimes_R I \xrightarrow{P \otimes_R \alpha} P \otimes_R N$$

$$\downarrow^{\lambda \otimes_R I} \qquad \downarrow^{\lambda \otimes_R N}$$

$$F \otimes_R I \xrightarrow{F \otimes_R \alpha} F \otimes_R N$$

where the bottom map is injective by Case 1 and $\lambda \otimes_R I$ is injective, as it admits a retraction.

Definition 1.42: Global dimension of rings

A commutative ring R has global dimension ≤ 1 if every submodule of a projective module is projective.

Example 1.43. • fields have global dimension of ≤ 1 .

SoSe 2025 22 Jan Malmström

- the ring of integers \mathbb{Z} (subgroups of free abelian groups are free).
- every PID⁸ is of this form. See for example k[x] for k a field or $\mathbb{Z}[i]$ the gaussian integers
- \mathbb{Z}_p the *p*-adic integers.

Definition 1.44: Tor of nice rings

Let R be a commutative ring of global dimension ≤ 1 . Let M, N be R-modules. Choose an epimorphism $p: P \to N$ of R-modules with P projective. Define

$$\operatorname{Tor}^R(M,N) = \operatorname{Ker}(M \otimes_R N \xrightarrow{M \otimes_R incl} M \otimes_R P)$$

Facts. This is independent up to preferred isomorphism of the choice of $p: P \to N$.

It is symmetric, i.e. we can resolve M instead of N.

If P is projective, then $\operatorname{Tor}^R(P, N) = 0 = \operatorname{Tor}^R(M, P)$.

Construction 1.45. For R a commutative ring, C, D complexes of R-modules. We define a natural homomorphism

$$\Phi \colon H_p(C) \otimes_R H_q(D) \to H_{p+q}(C \otimes RD)$$

via $[x] \otimes [y] \mapsto [x \otimes y]$

We can check this is well defined.

Theorem 1.46: Algebraic Künneth theorem

Let R be a commutative ring of global dimension ≤ 1 . Let C, D be complexes of projective R-modules. Then the following map is R-linearly split injective

$$\bigoplus \Phi \colon \bigoplus_{p+q=n} H_p(C) \otimes_R H_q(D) \to H_n(C \otimes_R D)$$

Moreover the cokernel is naturally isomorphic to

$$\bigoplus_{p+q=n-1} \operatorname{Tor}^{R}(H_{p}(C), H_{q}(D)).$$

Equivalently, there is a natural and split short exact sequence

$$0 \to \bigoplus_{p+q=n} H_p(C) \otimes_R H_q(D) \xrightarrow{\Phi} H_n(C \otimes D) \to \bigoplus_{p+q=n-1} \operatorname{Tor}^R(H_p(C), H_q(D)) \to 0$$

Proof. We let $Z = \{Z_q\}_{q \in \mathbb{Z}}$ be the complex of R modules with d = 0 where $Z_q = \text{Ker}(d: D_q \to D_{q-1})$, let $B = \{B_q\}$ be the complex with d = 0 where $B_q = \text{Im}(D: D_{q+1} \to D_q)$. We have a short exact sequence of complexes of R-modules

$$0 \to Z \xrightarrow{incl} D \xrightarrow{d} B[1] \to 0$$

where B[1] is the complex B shilfted up by 1.

We have $B_q \subseteq Z_q \subseteq D_q$ projective by hypothesis. Since R has global dimension ≤ 1 , B_q and Z_q are also projective.

$$0 \to Z_q \to D_q \xrightarrow{d} B_{q-1} \to 0$$

SoSe 2025 23 Jan Malmström

⁸no zero divisors and every ideal is generated by a single element.

is hort exact, B_{q-1} is projective, so the sequence splits.

For every R-module N, the sequence

$$0 \to N \otimes_R Z_p \to N \otimes_R D_q \to N \otimes_R B_{q-1} \to 0$$

is exact.

This means we get a short exact sequence of complexes

$$0 \to C \otimes_R Z \to C \otimes_R D \to C \otimes_R B[1] \to 0$$

This means we get a long exact homology sequence

$$\to H_n(C \otimes_R Z) \xrightarrow{H_n(C \otimes_R incl)} H_n(C \otimes D) \xrightarrow{H_n(C \otimes d)} H_{n-1}(C \otimes_R B) \xrightarrow{\partial} H_{n-1}(C \otimes_R Z) \to \dots$$

Since Z has trivial differential:

$$H_n(C \otimes_R Z) = H_n(\bigoplus_{q \in \mathbb{Z}} C[q] \otimes Z_q) \cong \bigoplus_{q \in \mathbb{Z}} H_n(C[q] \otimes Z_q) \cong \bigoplus_{q \in \mathbb{Z}} H_n(C[q]) \otimes_R Z_q = \bigoplus_{p \in \mathbb{Z}} H_{n-q}(C) \otimes_R Z_q$$

where we use that Z_q is projective.

Similarly $H_n(C \otimes_R B) \cong \bigoplus_{q \in \mathbb{Z}} H_{n-q}(C) \otimes B_q$.

This gives us a long exact sequence

$$\cdots \to \bigoplus_{p+q=n} H_p(C) \otimes_R Z_q \to H_n(C \otimes_R D) \to \bigoplus_{p+q=n-1} H_p(C) \otimes B_q \to \bigoplus_{p+q=n-1} H_p(C) \otimes Z_q$$

This splits up into short exact sequences

$$0 \to \bigoplus_{p+q=n} \operatorname{Coker}(H_p(C) \otimes B_q \to H_p(C) \otimes_R Z_p) \to H_n(C \otimes_R D) \to \bigoplus_{p+q=n-1} \operatorname{Ker}(H_p(C) \otimes_R B_q \to H_p(C) \otimes Z_q) \to 0$$

We know $0 \to B_q \to Z_q \to H_q(D)$ is a projective resolution of $H_q(D)$.

This means for all R-modules N,

$$\operatorname{Tor}^R(N; H_q(D)) = \operatorname{Ker}(N \otimes_R B_q \to N \otimes_R Z_q)$$

$$N \otimes_R H_q(D) \cong \operatorname{Coker}(N \otimes_R B_q \to N \otimes_R Z_q)$$

So we get:

$$0 \to \bigoplus_{p+q=n} H_p(C) \otimes H_q(D) \xrightarrow{\Phi} H_n(C \otimes_R D) \to \bigoplus_{p+q=n-1} \operatorname{Tor}^R(H_p(C), H_q(D)) \to 0$$

for next lecture remains, that Φ has a R-linear retraction!

SoSe 2025 24 Jan Malmström

Appendix

List of definitions

1.3	Differential graded ring	5
1.17	Simplicial abelian group	11
1.22	Tensor product of simplicial abelian groups	11
1.25	(p,q)-shuffle	13
1.29	Eilenberg-Zilber map	13
1.34	Representable functor	15
1.39	Tensor Product of R -chains	20
1.40	Projective R -modules	20
1.42	Global dimension of rings	22
1.44	Tor of nice rings	23

List of statements

1.2	fundamental properties of cup product	3
1.6	Properties of the cup-product on homology	5
1.8	Commutativity of the cup-product	6
1.10	\cup_1 -Product	7
1.16	Künneth, simple version	10
1.31	Shuffle maps form a chain map	13
1.32	Eilenberg-Zilber	14
1.37	Acyclic models	16
1.46	Algebraic Künneth theorem	23

Index

(p,q)-shuffle, 13

Alexander Whitney map, 3

cup-product, 3, 5

differential graded ring, 5

Eilenberg-Zilber map, 13

Global dimension, 22 graded ring, 5

Künneth theorem, 10

Projective Module, 20

representable functor, $15\,$

ring, 2

shuffle map, 13

simplicial abelian group, 11

Tensor product of simplicial abelian groups,

11