SOLUTIONS SHEET 8

YANNIS BÄHNI

Exercise 1.

Exercise 2.

Exercise 3.

a. Suppose that $M\setminus \overline{A}$ is dense in M. Towards a contradiction, assume that A is not nowhere dense. Hence $\overset{\circ}{A}\neq\varnothing$. Since $\overset{\circ}{A}$ is open by definition of the interior of a set, there exists $\varepsilon>0$ and $x\in\overset{\circ}{A}$ such that $B_{\varepsilon}(x)\subseteq\overset{\circ}{A}$. Moreover, $\overset{\circ}{A}\subseteq\overline{A}$ and thus $B_{\varepsilon}(x)\subseteq\overline{A}$. This implies that $B_{\varepsilon}(x)$ and $M\setminus \overline{A}$ are disjoint. But $M\setminus \overline{A}$ is dense in M, hence we find a sequence $(x_n)_{n\in\mathbb{N}}$ in $M\setminus \overline{A}$ such that $x_n\to x$. Hence there exists $N\in\mathbb{N}$ such that $x_n\in B_{\varepsilon}(x)$ for all $n\geq N$. This is not possible since $B_{\varepsilon}(x)$ does not contain any elements of $M\setminus \overline{A}$. Contradiction.

b.

Lemma 1.1. Let $(x_k)_{k\in\mathbb{N}}$ be an enumeration of \mathbb{Q} . For $n\in\mathbb{N}$ define

$$E_n := \bigcup_{k \in \mathbb{N}} \left(x_k - \frac{1}{2^k n}, x_k + \frac{1}{2^k n} \right)$$
 (1)

and

$$E := \bigcap_{n \in \mathbb{N}} E_n. \tag{2}$$

Set $A := E^c$. Then A is meager and $\lambda(A^c) = 0$, where λ denotes the ordinary Lebesgue measure on \mathbb{R} .

Proof. We show first that $\lambda(A^c) = 0$. First observe that $(E_n)_{n \in \mathbb{N}}$ is a decreasing sequence of λ -measurable sets. Moreover, for any $n \in \mathbb{N}$ we have that

$$\lambda(E_n) \le \frac{1}{n} \sum_{k \in \mathbb{N}} \frac{1}{2^{k-1}} = \frac{1}{n} \sum_{k \in \mathbb{N}_0} \frac{1}{2^k} = \frac{2}{n} < \infty$$

by subadditivity of the measure. Elementary measure theory now tells us that

$$\lambda(A^c) = \lambda(E) = \lambda\left(\bigcap_{n \in \mathbb{N}} E_n\right) = \lim_{n \to \infty} \lambda(E_n) \le \lim_{n \to \infty} \frac{2}{n} = 0.$$

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

Let us show that A is meager. Since $A = E^c = \bigcup_{n \in \mathbb{N}} E_n^c$, we show that E_n^c is nowhere dense for all $n \in \mathbb{N}$. By part **a.** we can also show that $\mathbb{R} \setminus \bar{E}_n^c$ is dense in \mathbb{R} . For fixed $n \in \mathbb{N}$ we have that

$$E_n^c = \bigcap_{k \in \mathbb{N}} \left(\left(-\infty, x_k - \frac{1}{2^k n} \right] \cup \left[x_k + \frac{1}{2^k n}, \infty \right) \right).$$

Thus E_n^c is a closed set (finite unions and countable intersection of closed intervals) and so $\overline{E}_n^c = E_n^c$. So $\mathbb{R} \setminus \overline{E}_n^c = E_n$. But $\mathbb{Q} \subseteq E_n$ for all $n \in \mathbb{N}$ and thus E_n is dense in \mathbb{R} . \square **Exercise 4.**

a. If $A=\varnothing$, we have that $\cap_{\alpha\in A}\mathcal{T}_{\alpha}=\mathcal{P}(X)$ since topologies on X are subsets of $\mathcal{P}(X)$. Hence the intersection of the empty family of topologies on X is the discrete topology. Consider now $A\neq\varnothing$. Clearly, $\varnothing,X\in\cap_{\alpha\in A}\mathcal{T}_{\alpha}$ since $\varnothing,X\in\mathcal{T}_{\alpha}$ for all $\alpha\in A$. Let $U_1,\ldots,U_n\in\cap_{\alpha\in A}\mathcal{T}_{\alpha}$. Hence $U_1,\ldots,U_n\in\mathcal{T}_{\alpha}$ for all $\alpha\in A$ and so $U_1\cap\cdots\cap U_n\in\mathcal{T}_{\alpha}$ for all $\alpha\in A$. Hence $U_1\cap\cdots\cap U_n\in\cap_{\alpha\in A}\mathcal{T}_{\alpha}$. Finally, suppose that $(U_\beta)_{\beta\in B}$ is a family in $\cap_{\alpha\in A}\mathcal{T}_{\alpha}$. Hence for all $\alpha\in A$ we have that $U_\beta\in\mathcal{T}_{\alpha}$ for all $\beta\in B$. So $\cup_{\beta\in B}U_\beta\in\mathcal{T}_{\alpha}$ for all $\alpha\in A$ and therefore $\cup_{\beta\in B}U_\beta\in\cap_{\alpha\in A}\mathcal{T}_{\alpha}$.

b. Define

$$\mathcal{B} := \{U_1 \cap \cdots \cap U_n : n \in \mathbb{N}, U_i \in \mathcal{S} \text{ for all } i = 1, \dots, n\}$$

and

$$\mathcal{T} := \{ \bigcup_{\alpha \in A} B_{\alpha} : B_{\alpha} \in A \text{ for all } \alpha \in A \}.$$

Lemma 1.2. $\mathcal{T}_{\mathcal{F}} = \mathcal{T}$.

Proof. By part **a.**, $\mathcal{T}_{\mathcal{F}}$ is a topology. We show that also \mathcal{T} is a topology. By [Lee11, p. 34] it is enough to show that \mathcal{B} satisfies the following two conditions:

- (i) $\bigcup_{B \in \mathcal{B}} B = X$.
- (ii) If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, there exists an element $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Then $\mathcal T$ is the unique topology on X generated by $\mathcal B$, i.e. the collection of arbitrary unions of elements of $\mathcal B$. Since $\mathcal F$ is nonempty, there exists $f\in \mathcal F$. Clearly $X=f^{-1}(Y_f)$ and Y_f is open in Y_f . Hence $f^{-1}(Y_f)\in \mathcal S$ and thus $X\in \cup_{B\in \mathcal B} B$. Suppose that $B_1,B_2\in \mathcal B$ such that $B_1\cap B_2\neq \emptyset$. Hence we find $U_1,\ldots,U_n,V_1,\ldots,V_m\in \mathcal S$ such that $B_1=U_1\cap\cdots\cap U_n$ and $B_2=V_1\cap\cdots\cap V_m$. Suppose $x\in B_1\cap B_2$. Then also $x\in U_1\cap\cdots\cap U_n\cap V_1\cap\cdots\cap V_m$. But

$$U_1 \cap \cdots \cap U_n \cap V_1 \cap \cdots \cap V_m \in \mathcal{B}$$

as a finite intersection of elements of S. Hence T is a topology.

Clearly, $S \subseteq \mathcal{T}$, since already $S \subseteq \mathcal{B}$. Since $\mathcal{T}_{\mathcal{F}}$ is the smallest topology containing S, we get that $\mathcal{T}_{\mathcal{F}} \subseteq \mathcal{T}$.

Let $U \in \mathcal{T}$. Then $U = \bigcup_{\alpha \in A} B_{\alpha}$ for some index set A and $B_{\alpha} \in \mathcal{B}$ for all $\alpha \in A$. But each B_{α} is a finite intersection of elements of S and thus since $\mathcal{T}_{\mathcal{F}}$ is a topology containing

 \mathcal{S} , we have that $B_{\alpha} \in \mathcal{T}_{\mathcal{F}}$ for all $\alpha \in A$. But then also $U \in \mathcal{T}_{\mathcal{F}}$ as a union of sets in $\mathcal{T}_{\mathcal{F}}$.

Exercise 5. Suppose that $x_n \to x$. Proposition 6.2.2 implies that the sequence $(x_n)_{n \in \mathbb{N}}$ is bounded, in particular $\sup_{n \in \mathbb{N}} \|x_n\| < \infty$. Moreover, lemma 6.2.1 yields $f(x_n) \to f(x)$ for all $f \in X^*$. Since $Y \subseteq X^*$ we also have $f(x_n) \to f(x)$ for all $f \in Y$. Conversly, suppose $\|x_n\| \leq M$ for some $M \geq 0$ and $f(x_n) \to f(x)$ for all $f \in Y$. Let $f \in X^*$. Since Y is dense in X^* , we find a sequence $(f_k)_{k \in \mathbb{N}}$ in Y such that $\|f_k - f\| \to 0$. Hence

$$|f(x_n) - f(x)| = |f(x_n) - f(x) + f_k(x_n) - f_k(x_n) + f_k(x) - f_k(x)|$$

$$\leq |f(x_n) - f_k(x_n)| + |f_k(x_n) - f_k(x)| + |f_k(x) - f(x)|$$

$$\leq ||f - f_k|| (||x_n|| + ||x||) + |f_k(x_n) - f_k(x)|$$

$$\leq ||f - f_k|| (|M + ||x||) + |f_k(x_n) - f_k(x)|$$

and so

$$\lim_{n\to\infty} |f(x_n) - f(x)| \le ||f - f_k|| \left(M + ||x||\right) \xrightarrow{k\to\infty} 0.$$

References

[Lee11] John M. Lee. *Introduction to Topological Manifolds*. Second Edition. Springer Science+Business Media, 2011.