Spring 2019

EECE 588 Lecture 19

Prof. Wonbin Hong

Uniform Aperture Distribution Over Space

Problem Formulation

- Uniform aperture distribution in space. In other words, no ground plane exists in this case.
- This case is similar to the previous case, except for the fact that no ground plane is present here.
- We can consider the aperture field distribution of:

$$\vec{E}_a = \hat{y}E_0 \quad \vec{H}_a = -\hat{x}E_0 / \eta$$

The next step is to replace this problem with an equivalent problem using equivalence theorem and find the equivalent electric and magnetic surface currents.

Problem Formulation

Similar to the previous case, the equivalence theorem is used. However, in this case, no ground plane is present and consequently:

- Therefore both $\overrightarrow{J_s}$ and $\overrightarrow{M_s}$ exist everywhere.
- It is possible to replace the lower hemisphere with PEC or PMC and get rid of $\overrightarrow{J_s}$ or $\overrightarrow{M_s}$ but the other current component $(\overrightarrow{M_s}$ or $\overrightarrow{J_s})$ will be present.

- The bottom line is that, we know the values of $\overrightarrow{J_S}$ or $\overrightarrow{M_S}$ only over the aperture.
- However, they exist <u>EVERYWHERE</u> on an infinite plane. So what should we do?

- One simple solution is to assume that $\overrightarrow{E_a}$ and $\overrightarrow{H_a}$ exist only over the aperture and assume that they are zero everywhere else on the aperture plane.
- This simplifies the problem but is not the most accurate technique.
- However it provides reasonable accuracy for many applications and is much simpler than other alternative analytical techniques such as iterative techniques.
- Solving this problem is similar to the previous case and it is going to be assigned as a Homework problem.
 - □ The idea is to consider $\overrightarrow{J_s}$ and $\overrightarrow{M_s}$ over the aperture, and zero everywhere else, and find \overrightarrow{A} and \overrightarrow{F} and take it from there.

TE₁₀ Aperture Distribution

TE₁₀ Mode Distribution

■ TE₁₀ is the first propagating mode in a rectangular waveguide. In a rectangular waveguide with inner dimensions of $a \times b$, the cut off frequency is given by:

In a rectangular waveguide, it is not possible to have a uniform field distribution (as a result of the boundary conditions that mandate the tangential component of electric field must go to zero at the boundary between a dielectric and a PEC).

TE₁₀ Mode Distribution

- Electric field distribution associated with TE₁₀ mode distribution inside a rectangular waveguide.
- Obtaining the far field radiation of this antenna is pretty much similar to all the previous cases.
- We have to follows this procedure:
 - 1. Replace the problem with the equivalent problem.
 - 2. \vec{J}_s exist everywhere.
 - 3. $\overrightarrow{M_S}$ exists only over the aperture, remember that $\hat{n} \times \vec{E} = 0$ over PEC.
 - 4. Replace the left half space with PEC $\rightarrow \vec{J}_s$ is short circuited.
 - 5. Using image theory, PEC can be removed and $\overrightarrow{M_s} = -2\widehat{n} \times \overrightarrow{E_a}$ radiates in free space.

Homework Problem

Consider the following electric field distribution in an aperture mounted on an infinite ground plane:

$$\vec{E}_a = \hat{y}E_0 \cos\left(\frac{\pi}{a}x'\right) \begin{cases} -b/2 \le y' \le b/2 \\ -a/2 \le x' \le a/2 \end{cases}$$

Find the radiated fields from this aperture in the far field.

- The TE₁₀ aperture field distribution results in a radiation pattern that has a wider beamwidth in the H-Plane.
- The tapering of the electric field in the H-plane results in broadening of the pattern in the H-Plane.
- However, for the same aperture dimensions, the E-Plane beamwidth does not change.
 - □ Note that the field components do not vary as a function of y (in the E-Plane) → The E-Plane pattern does not change.

- Tapering the aperture field distribution in the H-Plane results in:
 - □ Broadening the pattern in the H-Plane radiation patterns.

- Comparison between the radiation patterns of an aperture with Cosine Taper and Uniform aperture distributions.
- Both apertures are mounted on an infinite ground and the aperture dimensions are $a = 3\lambda$ and $b = 2\lambda$ with the exception that one has uniform distribution and the other has a cosine.

■ Comparison between the radiation patterns of an aperture with Cosine Taper and uniform aperture distributions. Both apertures are mounted on an infinite ground and the aperture dimensions are $b = 2\lambda$ and $a = 5\lambda$.

Directivity

Broadening the radiation pattern results in reduction in the Directivity of the antenna. The directivity of the TE₁₀ mode can be calculated as:

Directivity =
$$\begin{cases} 4\pi \frac{ab}{\lambda^2} & \text{uniform field dist.} \\ 0.81 \times 4\pi \frac{ab}{\lambda^2} & \text{cosine taper (TE}_{10}) \end{cases}$$

 One advantage of tapering is the reduction in side lobe level that occurs (from -13.26 dB to -23 dB).

Circular Apertures

Circular Apertures

- Treatment of circular apertures is not much different from the rectangular apertures.
- Equivalence principle in conjunction with image theory must be used to formulate the problem.

Circular Apertures

- After formulating the problem, the problem simplifies to a magnetic current of $\overrightarrow{M_S} = -2\widehat{n} \times \overrightarrow{E_a}$ existing only over the aperture.
- Vector electric potential \vec{F} should be calculated in the far field and the \vec{E} and \vec{H} fields simply follow using equations provided in slide #14.
- We will consider two different cases:
 - □ Uniform aperture distribution (easy).
 - □ TE₁₁ Mode Distribution (more realistic).

Far Field Radiation

• In the E-Plane ($\varphi = \pi/2$ or y-z plane)

$$E_{\theta} = j \frac{ka^2 E_0 e^{-jkr}}{r} \left\{ \frac{J_1(ka \sin \theta)}{ka \sin \theta} \right\} \quad E_r = E_{\varphi} = 0$$

- $J_p(x)$ = Bessel function of the first kind of order p.
- For uniform aperture distribution in the H-Plane:

$$E_{\varphi} = j \frac{ka^{2} E_{0} e^{-jkr}}{r}$$

$$\cos \theta \left[\frac{J_{1}(ka \sin \theta)}{ka \sin \theta} \right]$$

Radiation Patterns of an Aperture with Uniform Electric Field Distribution

■ Radiation patterns of a circular aperture radius of $a = 2\lambda$.

Radiation Patterns: H-Plane

■ Radiation patterns of a circular aperture radius of $a = 5\lambda$.

Radiation Patterns: E-Plane

■ Radiation patterns of a circular aperture radius of $a = 5\lambda$.

Directivity

For a circular aperture with uniform aperture distribution, we have:

$$D = \frac{4\pi A_{em}}{\lambda^2}$$

But the maximum effective area and the physical area are the same for uniform aperture distribution. Therefore:

$$D = \frac{4\pi}{\lambda^2} \pi a^2 = \left(\frac{C}{\lambda}\right)^2$$

■ The side lobe level for a circular aperture with uniform aperture distribution ($a \gg \lambda$) is -17.6 dB in the E-Plane and H-Plane.

TE₁₁ Mode Distribution

TE₁₁ mode is the dominant mode in circular waveguides and has an electric field distribution as shown in the figure below.

■ In many applications such as circular horn antennas, a circular waveguide (with TE₁₁ mode distribution) is used to feed the antenna.

A simple way of obtaining TE₁₁ aperture distribution is to have an open

ended circular waveguide.

TE₁₁ Mode Distribution

- Treatment of this problem is almost identical to the rectangular aperture in an infinite ground plane.
- Two main differences are:
 - The problem must be solved in cylindrical coordinate system rather than the rectangular coordinate system used before.
 - 2. The expression for the aperture electric field (magnetic current) is different.

$$\vec{E}_{a} = \hat{\rho} E_{\rho} + \hat{\varphi} E_{\varphi}$$

$$E_{\rho} = E_{0} J_{1} (\chi'_{11} \rho' / a) \sin \varphi' / \rho'$$

$$E_{\varphi} = E_{0} J'_{1} (\chi'_{11} \rho' / a) \cos \varphi'$$

$$\rho' \leq a$$

$$\chi'_{11} = 1.841$$

$$J' = \frac{\partial}{\partial \rho'} J$$

- The aperture field is tapered in the H-Plane → The pattern in the H-Plane is broadened.
- However, the side lobe level also decreases.

Directivity

The directivity of the circular aperture antenna with TE₁₁ mode distribution is:

$$D = \begin{cases} 10.5\pi \left(\frac{a}{\lambda}\right)^2 & \text{TE}_{11} \text{ mode distribution.} \\ 4\pi^2 \left(\frac{a}{\lambda}\right)^2 & \text{Uniform field dist.} \end{cases}$$

- Side lobe levels are:
 - □ -26.2 dB in H-Plane
 - □ -17.6 dB in E-Plane
- Note that these are valid for $a \gg \lambda$.

