Statistics 700 Homework 4

Instructor: Yang Chen

SMC and MCMC

Due date: 6:00 pm (EST) Oct. 31, 2017

Bayesian Lasso. The Lasso method estimates linear regression coefficients through L_1 constrained least squares, also known as the penalized regression. It provides a way of obtaining a sparse solution for high-dimensional regression problems, which are prevalent in modern applications such as genetics. Here we investigate on the Bayesian interpretation and computation of the LASSO method.

Consider a regression model

$$y = \mu \mathbf{1}_n + X\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

where \boldsymbol{y} is the $n \times 1$ vector of responses, $\mathbf{1}_n$ is the $n \times 1$ vector of 1s, μ is the overall mean, $\boldsymbol{\beta}$ is $p \times 1$ vector of regression coefficients, X is the $n \times p$ matrix of standardized regressors, and $\boldsymbol{\epsilon}$ is the $n \times 1$ vector of independent and identically distributed normal errors with mean 0 and unknown variance σ^2 . Lasso estimates achieve

$$\min_{\beta} \left\{ (\tilde{\boldsymbol{y}} - X\boldsymbol{\beta})^T (\tilde{\boldsymbol{y}} - X\boldsymbol{\beta}) + \lambda \sum_{j=1}^p |\beta_j| \right\}$$

for some $\lambda \geq 0$, where $\tilde{\boldsymbol{y}} = \boldsymbol{y} - \bar{y} \mathbf{1}_n$, \bar{y} is sample average of \boldsymbol{y} .

We use the Diabetes Data from Efron et al. (2004). It contains p=10 variables and n=442 measurements. The data is standardized such that the means of all variables are zero, and all variances are equal to one. Refer to https://artax.karlin.mff.cuni.cz/r-help/library/care/html/efron2004.html for detailed information about loading the data. References: Efron, B., et al. 2004. Least angle regression (with discussion). Ann. Statist. 32:407–499.

1. Show that the Lasso estimate is equivalent to the Bayes posterior mode with conditional Laplace prior on β and Jeffrey's prior on σ^2 , i.e.

$$\pi(\boldsymbol{\beta}|\sigma^2) = \prod_{j=1}^p \frac{\lambda}{2\sqrt{\sigma^2}} \exp\left[-\lambda \frac{|\beta_j|}{\sqrt{\sigma^2}}\right], \ \pi(\sigma^2) \propto \sigma^{-2}. \tag{1}$$

Instructor: Yang Chen

2. The Laplace distribution can be represented as a scale mixture of normals, i.e.

$$\frac{a}{2}\exp\left\{-a|z|\right\} = \int_0^\infty \frac{1}{\sqrt{2\pi s}} e^{-z^2/(2s)} \frac{a^2}{2} e^{-a^2s/2} ds. \tag{2}$$

Then verify that we can represent the Bayesian Lasso model as

$$y_{i}|\mu, X_{i}, \boldsymbol{\beta}, \sigma^{2} \stackrel{iid}{\sim} N(\mu + X_{i}\boldsymbol{\beta}, \sigma^{2}), 1 \leq i \leq n;$$
$$\beta_{j}|\sigma^{2}, \tau_{j}^{2} \stackrel{iid}{\sim} N(0, \sigma^{2}\tau_{j}^{2}), 1 \leq j \leq p;$$
$$\tau_{j}^{2} \stackrel{iid}{\sim} \frac{\lambda^{2}}{2} \exp\left\{-\frac{\lambda^{2}\tau_{j}^{2}}{2}\right\}, 1 \leq j \leq p;$$
$$\sigma^{2} \sim \pi(\sigma^{2}).$$

Hint: integrate out $\{\tau_i^2\}_{1 \leq j \leq p}$.

- 3. Assume a flat prior on μ , write down the posterior distribution of $(\boldsymbol{\beta}, \{\tau_j^2\}_{1 \leq j \leq p}, \sigma^2 | X, \boldsymbol{y})$ after integrating out μ . Describe and implement a Gibbs sampler of the posterior using the diabetes data $(\lambda = 0.237)$.
- 4. Implement a Metropolis-Hastings algorithm to sample from the posterior of $(\boldsymbol{\beta}, \sigma^2 | X, \boldsymbol{y})$ with the diabetes data, using a conditional Laplace prior on $\boldsymbol{\beta}$ and a Jeffrey's prior on σ^2 given in Equation (1). Again, we take $\lambda = 0.237$.
 - Optional (≤ 5 bonus points). Try a reparametrization, e.g. $\log(\sigma^2)$, and discuss whether or not the reparametrization improves the sampling.
- 5. Compare the results from 3 (Gibbs sampler) and 4 (Metropolis-Hastings) with the Lasso estimates and ordinary least squares estimates. What do you find?
- 6. In practice, the value of λ is not given. Now implement and compare the following methods of choosing λ in the Bayesian Lasso and the ordinary Lasso.
 - K-fold cross validation for ordinary Lasso.

- (Optional) Empirical Bayes for Bayesian Lasso.
 - At each iteration, run Gibbs sampler using a λ value estimated from the sample of the previous iteration: iteration k uses the Gibbs sampler with $\lambda^{(k-1)}$ and update

$$\lambda^{(k)} = \sqrt{\frac{2p}{\sum_{j=1}^{p} E_{\lambda^{(k-1)}}(\tau_j^2 | \tilde{\boldsymbol{y}})}},$$
 (3)

Instructor: Yang Chen

replacing $E_{\lambda^{(k-1)}}(\tau_j^2|\tilde{\pmb{y}})$ with averages from the Gibbs sample. Set initial value as

$$\lambda^{(0)} = p \sqrt{\hat{\sigma}_{LS}^2} / \sum_{j=1}^p |\hat{\beta}_j^{LS}|,$$

where $\hat{\sigma}_{LS}^2$ and $\hat{\beta}_j^{LS}$ are estimates from the usual least squares procedure. What is your reasoning behind Equation 3? Can you track the $\lambda^{(k)}$ throughout the Gibbs sampler? What do you find?

- Full Bayes for Bayesian Lasso.
 - Put a Gamma prior on λ^2 , i.e.

$$\pi(\lambda^2) = \frac{\delta^r}{\Gamma(r)} [\lambda^2]^{r-1} \exp(-\delta \lambda^2),$$

where $r = 1, \delta = 1.78$ for the diabetes data.

Do you obtain similar results from the three methods above? Explain.

Remark: This homework problem is based on "The Bayesian Lasso" by Trevor PARK and George CASELLA, Journal of the American Statistical Association, June 2008, Vol. 103, No. 482, pp. 681-686. Please work out your own solutions before referring to the original paper.

Optional Reading. Read at least one of the following papers and post your summary and thoughts on Canvas. Bonus points up to 5 will be rewarded.

1. Cowles, Mary Kathryn, and Bradley P. Carlin. "Markov chain Monte Carlo convergence diagnostics: a comparative review." Journal of the American Statistical Association 91.434 (1996): 883-904.

2. Neal, Radford M. "Probabilistic inference using Markov chain Monte Carlo methods." (1993).

Instructor: Yang Chen

- 3. Kass, Robert E., et al. "Markov chain Monte Carlo in practice: a roundtable discussion." The American Statistician 52.2 (1998): 93-100.
- 4. Betancourt, Michael. "The Convergence of Markov chain Monte Carlo Methods: From the Metropolis method to Hamiltonian Monte Carlo." arXiv preprint arXiv:1706.01520 (2017).
- 5. Salimans, Tim, Diederik Kingma, and Max Welling. "Markov chain monte carlo and variational inference: Bridging the gap." Proceedings of the 32nd International Conference on Machine Learning (ICML-15). 2015.
- Rosenthal, Jeffrey S. "Minorization conditions and convergence rates for Markov chain Monte Carlo." Journal of the American Statistical Association 90.430 (1995): 558-566.
- 7. Rosenthal, Jeffrey S. "Asymptotic variance and convergence rates of nearly-periodic Markov chain Monte Carlo algorithms." Journal of the American Statistical Association 98.461 (2003): 169-177.
- 8. Walker, Stephen, and Nils Lid Hjort. "On Bayesian consistency." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63.4 (2001): 811-821.
- 9. Walker, Stephen G. "Modern Bayesian asymptotics." Statistical Science (2004): 111-117.
- 10. Walker, Stephen. "New approaches to Bayesian consistency." Annals of Statistics (2004): 2028-2043.
- 11. De Blasi, Pierpaolo, and Stephen G. Walker. "Bayesian asymptotics with misspecified models." Statistica Sinica (2013): 169-187.
- 12. Gelfand, Alan E., and Dipak K. Dey. "Bayesian model choice: asymptotics and exact calculations." Journal of the Royal Statistical Society. Series B (Methodological) (1994): 501-514.
- 13. Carlin, Bradley P., and Siddhartha Chib. "Bayesian model choice via Markov chain Monte Carlo methods." Journal of the Royal Statistical Society. Series B (Methodological) (1995): 473-484.