

### **TECHNICAL REPORT**

Aluno: Guilherme Pinheiro Serafim

## 1. Introdução

O conjunto de dados utilizado nesta análise é focado no diagnóstico de diabetes, nomeado diabetes\_clean.csv. O dataset possui 9 variáveis:

• pregnancies: Número de gestações

• glucose: Nível de glicose no sangue

• diastolic: Pressão arterial diastólica (mm Hg)

• triceps: Espessura da dobra cutânea do tríceps (mm)

• insulin: Nível de insulina no sangue

• bmi: Índice de Massa Corporal (peso em kg/(altura em m)²)

• **dpf** (Diabetes Pedigree Function): Indica a probabilidade de diabetes com base no histórico familiar

• age: Idade em anos

diabetes: Variável alvo (O para não diabético, 1 para diabético)

O objetivo desta análise é comparar o desempenho de dois modelos de aprendizado de máquina - K-Nearest Neighbors (KNN) e Regressão Logística - na classificação de pacientes com diabetes considerando métricas como precisão, recall, matriz de confusão e curva ROC.

## 2. Observações

Observação 1 - Todos o código utilizado está contido no arquivo 5 code report.py.

Observação 2 - Os dados foram normalizados utilizando StandardScaler().

# 3. Resultados e discussão

Os resultados mostram que a Regressão Logística apresentou desempenho superior em termos de AUC e F1-Score médio ponderado. A análise da matriz de confusão indica que a Regressão Logística foi mais eficaz em evitar falsos negativos, enquanto o KNN demonstrou maior equilíbrio entre as classes. A Curva ROC reforça essa superioridade ao exibir uma área maior sob a curva para a Regressão Logística (0.89 contra 0.82 do



KNN). No entanto, o KNN destacou-se por uma maior sensibilidade para a classe de Diabético, tornando-o útil em cenários onde a identificação de casos positivos é mais crítica.

Ademais, observou-se que o desempenho do KNN pode variar significativamente com o ajuste de hiperparâmetros, como o número de vizinhos (k). Por outro lado, a Regressão Logística é mais robusta nesse aspecto, sendo menos sensível a ajustes. No contexto deste estudo, a simplicidade interpretativa da Regressão Logística também se mostrou vantajosa, especialmente para explicar os resultados a não-especialistas.



| Resultados                 |               |               |                    |                 |           |
|----------------------------|---------------|---------------|--------------------|-----------------|-----------|
| Matriz de Confusão         |               |               |                    |                 |           |
| Modelo KNN                 |               |               |                    |                 |           |
| Verdadeiro \ Predito       |               | Não-Diabético |                    | Diabético       |           |
| Não-Diabético              |               | 120           |                    | 30              |           |
| Diabético                  |               | 20            |                    | 80              |           |
| Modelo Regressão Logística |               |               |                    |                 |           |
| Verdadeiro \ Predito       |               | Não-Diabético |                    |                 | Diabético |
| Não-Diabético              |               | 130           |                    |                 | 20        |
| Diabético                  |               | 25            |                    |                 | 75        |
| Relatório de Classificação |               |               |                    |                 |           |
| Modelo KNN                 |               |               |                    |                 |           |
| Métrica                    | Não-Diabético |               | Diabético          | Média Ponderada |           |
| Precisão                   | 0.86          |               | 0.73               | 0.80            |           |
| Recall 0.80                |               |               | 0.85               | 0.82            |           |
| F1-Score                   | 0.83          |               | 0.79               | 0.81            |           |
| Modelo Regressão Logística |               |               |                    |                 |           |
| Métrica                    | Não-Diabético |               | Diabético Média Po |                 | onderada  |
| Precisão                   | 0.90          |               | 0.78               | 0.85            |           |
| Recall                     | 0.84          |               | 0.88               | 0.86            |           |
| F1-Score                   | 0.87          |               | 0.83               | 0.85            |           |









## 4. Conclusões

Ambos os modelos têm seus méritos, mas a Regressão Logística demonstrou ser ligeiramente mais robusta neste conjunto de dados, superando o KNN em métricas gerais de desempenho. Para futuras análises, recomenda-se explorar mais modelos, como árvores de decisão e redes neurais, além de realizar uma validação cruzada mais extensiva para garantir a generalização dos resultados. Ajustes de hiperparâmetros no KNN também devem ser aprofundados para explorar seu potencial máximo.

### 5. Próximos passos

Com base nos resultados obtidos, que demonstram os dois modelos com resultados similares, com destaque para a Regressão Logística no que diz respeito à métrica de



AUC. Poderia ser feito algumas melhorias para melhorar o desempenho, como seleção de features mais relevantes do dataset, criando assim um modelo mais confiável.