3DIC Partitioning

Turning integrated circuits 3D

Quentin Delhaye

Fit as much as you can

Shrink the car

Physical limitation

Go 3D

Planar 2D IC

Planar 2D IC: only one transistor layer

What is a 3D IC?

Face-to-Back (past)

Face-to-Face (present)

Transistor-on-transistor (future)

What is a 3D IC?

Face-to-Back (past)

Face-to-Face (present)

Transistor-on-transistor (future)

Somebody needs to decide what goes where

3D benefit: shorter connections

Increased performance
Decreased system power consumption
Improved area utilisation

2D flow...

Place and route (P&R): QRouter, Graywolf, FGR, ...

... Extended to 3D

Pick which standard cell or module goes where

Steps to go 3D

Automated 3D flow

There is an optimum grain

Automated 3DIC partitioning

