COL 351: Analysis and Design of Algorithms

Lecture 17

Tutorial Problems

- Covid-test centres (4.5)
- Longest Common Subsequence (4.2)
- Bipartite graph (3.3)
- Delay Synchronisation (2.4)

Covid-test centres

Given: A sorted array A of locations of n residents, and a parameter k.

Goal: Compute a k-sized integer array C of locations of Covid-test centres that minimizes:

$$\sum_{i=1}^{n} d_i, \text{ where, } d_i = \min_{j \in \{1, \dots, k\}} \left| \underline{A[i]} - \underline{C[j]} \right|.$$

What if we have to open only one test centre?

Lemma: If we want to just open one test centre for residents at locations x_1, \ldots, x_L sorted in non-decreasing order then the best choice is any point lying between $y = x_{\left\lceil \frac{1+L}{2} \right\rceil}$ and $y = x_{\left\lceil \frac{1+L}{2} \right\rceil}$.

Covid-test centres: dynamic program

Make table T of size $n \times k$.

T[i,j]: Optimal solution for first i residents in A with j testing centres.

Eg.
$$n=8$$
 $k=3$

Covid-test centres: dynamic program

Make table T of size $n \times k$.

T[i,j]: Optimal solution for first i residents in A with j testing centres.

$$T[i,j] = \min_{\alpha \in [1,i]} \left(T(\alpha - 1, j - 1) + \sum_{r=\alpha}^{i} \left| A[r] - A\left[\frac{\alpha + i}{2}\right] \right| \right)$$

Longest Common Subsequence

Given: Two sequences $X=(x_1,\ldots,x_m)$ and $Y=(y_1,\ldots,y_n)$.

Goal: Compute LCS of X and Y in O(m+n) space.

Longest Common Subsequence

$$X_{i} = (x_{i}...x_{i})$$

 $Y_{j} = (y_{i}...y_{j})$

Given: Two sequences $X = (x_1, ..., x_m)$ and $Y = (y_1, ..., y_n)$.

Goal: Compute LCS of X and Y in O(m+n) space.

1. Reate a 20-array "T" of size
$$(m+i) \times (n+i)$$
.

2. For $i = 0$ to $m : T[i,0] = 0$

3. For $j = 0$ to $n : T[0,j] = 0$

4. For $i = 1$ to $m :$

For $j = 1$ to $n :$
 $f(x_i = y_j) : T[i,j] = T[i-1,j-1] + 1$

Else $T[i,j] = max(T[i-1,j], T[i,j-1])$

Time =
$$O(mn)$$

Space = O(min { m, n }) \times \text{ we can modify} this algorithm

this algorithm

LCS algorithm

1. If
$$(x_i = y_j)$$
: return LCS $(X_{i-1}, Y_{j-1}) \cdot x_i$

2.
$$\ell_1 = \text{Len-LCS}(X_i, Y_{j-1})$$

3.
$$\mathcal{C}_2 = \text{Len-LCS}(X_{i-1}, Y_j)$$
.

4. If
$$\mathcal{C}_1 \geqslant \mathcal{C}_2$$
: return LCS (X_i, Y_{j-1}) Else return LCS (X_{i-1}, Y_i)

$$LCS(X_i, Y_j)$$

space =
$$O(m+n)$$

Time = $O((m+n) \cdot (mn))$

$$m=5$$
, $n=3$

2. $\ell_1 = \text{Len-LCS}(X_i, Y_{j-1})$ Will take O(m+n) space, and also vacate the space.

Y₃ Either

Bipartite graph

Definition: A graph whose vertices can be partitioned into two sets X, Y such that each edge edge lie in set $X \times Y$.

Claim 1: A graph G with an odd cycle cannot be bipartite.

Jet
$$C = (a_1 \dots a_{2i+1})$$
 be a cycle
$$a_1 \ a_3 \ a_5 \dots a_{2i+1} \leftarrow \text{Set } X$$

$$a_2 \ a_4 \ a_6 \dots a_{2i+1} \leftarrow \text{Set } Y$$

$$\Rightarrow a_1 \ 4 \ a_{2i+1} \ both \ lie \ in \ X$$

Bipartite graph

Definition: A graph whose vertices can be partitioned into two sets X, Y such that each edge edge lie in set $X \times Y$.

Claim 2: Let G be a connected graph, and T be a BFS tree of G. Then, G is bipartite iff all edges $(x,y) \in E$ satisfies |level(x) - level(y)| = 1.

To show: 752 => 75,

Prof: Suppose S2 fails.

Let $(x,y) \in E$ be such that level (x) = level(x) = iLet 3 = LCA(x,y) be lowest common ancested of x,y

BFS Tree

Bipartite graph

Definition: A graph whose vertices can be partitioned into two sets X, Y such that each edge edge lie in set $X \times Y$.

Claim 2: Let G be a connected graph, and T be a BFS tree of G. Then, G is bipartite iff all edges $(x,y) \in E$ satisfies |level(x) - level(y)| = 1.

To show: S2 => S,

Proof: Put vertices in odd level in X 4 vertices in even level in Y.

Delay Synchronisation

Given: A binary tree T with n leaves, such that each edge e has delay d_e .

Goal: Add minimum delay addition to edges of T so that delay at leaves is synchronised.

- Solve subtree at left child 21,

