

VISION-BASED EQUATION SOLVER VISION-BASED EQUATION SOLVER OLIGINATION SOLVER OLIGIN

by Sebastian Ho, Matteo Negro, Andrea Paparella, Anup Raj & Dwij Shetty

LIST OF CONTENTS

01

PROBLEM

04

IMAGE RECOGNITION

Andrea

02

IMAGE CLEANING

Sebastian, Matteo

05

FUTURE WORK

03

IMAGE SEGMENTATION

Matteo, Dwij, Anup

06

LIVE DEMO

PROBLEM

Recognizing mathematical equations from images: process, segment and recognize the digits to compute the final result.

Input

Images containing handwritten mathematical equations.

Ouput

Result of the equation.

Challenges

Variability in handwriting, symbol complexity, and image quality.

IMAGE CLEANING

To accurately segment and predict symbols with a CNN, clear number display in images is crucial. **Noise Reduction**

Brightness Adjustment

Histogram Equalization

62 - 40

 $\longrightarrow 62 - 40$

NOISE REDUCTION

Removing noise from photos

VERSION 1

- Thresholding
- Blurring

VERSION 2

- Shadow removal
- Erosion
- Adaptive thresholding

ADAPTIVE THRESHOLDING

ADAPTIVE MEAN

Thresholds areas based on the mean intensity of the neighborhood area

ADAPTIVE GAUSSIAN

Thresholds areas based on the Gaussian weighted sum of the neighborhood area. Weight each intensity by a Gaussian kernel, then take the sum of all elements.

OTSU'S BINARIZATION

BRIGHTNESS ADJUSTMENT

Adjusting the brightness in order to improve photo with low brightness to be recognized

ISSUES

- Makes the background more prominent than the text
- Complicates textbackground contrast

Threshold, Bright

Threshold, Original

HISTOGRAM EQUALIZATION

For adjusting image contrasts. To enhance low-contrast images, especially where symbols are faint or background lighting is poor.

ISSUES

- Amplification of background features.
- Unwanted enhancement of noise

IMAGE SEGMENTATION

Photos of equations need to be separated into their constituent symbols so that each symbol can be fed as input to the neural network.

CONTOURING

Segmenting the images by contouring

Bounding Rectangles

CONTOUR DETECTION

Identify the outlines of objects and shapes in an image

- cv2.findContours function used for detecting contours in an image.
- Analyzes a binary image and returns a list of contours found.

CONTOUR PROCESSING

Processing the contours identified in an image

Sorting contours based on their x-coordinate

• Ignoring child contours

BOUNDING RECTANGLES

Encloses a contour and isolates individual symbols from the rest of the image.

5+9

Original Image

- Isolates individual symbols from the rest of the image.
- The area within this rectangle is then cut out from the original binary image

ISSUES

There are examples of what we needed to fix.

These issues usually revolve around the shape and nature of the symbol.

EXAMPLES

- Division symbol
- Equals sign

These numbers have a common theme

FIXING THE ISSUE

- We examine two separate contours.
- The edges are compared.
- Merging based on threshold.

A visual example:

Contours with no merging

After merging contours to display a symbol

MEAN SHIFT FILTERING

Decomposes an image into its constituent symbols based on the clustering of feature points.

Harris corner detection

 Mean Shift Clustering groups feature points.

 Iterative processing of clusters to extract symbols.

HARRIS CORNER DETECTION

Find special points in the image

ISSUES

- Noise
- Density

SOLUTION

Hyper-parameters tuning

CLUSTERING

Find the groups of points that are close with **Mean Shift Algorithm**

ISSUES

- Underfitting
- Overfitting
- Number of clusters

SOLUTION

- Hyper-parameters tuning
- Filtering

SYMBOLS EXTRACTING

Decompose the original image in smaller images with one digit each

RESULTS & ISSUES

- This method is scale sensible
- We are able to get good results in general

IMAGE RECOGNITION

Cleaned up and segmented images are now ready to be recognized.

DATASET

- Handwritten
- No noise
- 554 images for each symbol
- Each image 155x135 pixels

MLP

- Shallow and Deep MLP have low accuracy
- Not able learn the features

Shallow

Deep

- CNNs perform better
- Shallow CNN is biased
- Deep CNN has very good accuracy and generalization capabilities

Shallow

Deep

OUR BEST MODEL

2 CONV

32 filters Kernel size of 3

1 MAX-POOL

2 FULLY-CONNECTED

93.4%

Train Accuracy

0.18

Train Loss

93.3%

Test Accuracy

0.27

Test Loss

FUTURE WORK

Next steps to make a better product.

Scale invariant segmentation

Recognizing symbols at different angle

Larger dataset

LIVE DEMO

0000

THANK YOU

0000

CONTRIBUTIONS

Led Image Cleaning

Led Image Recognition

Led Image Segmentation

Led Image Contouring

Led Image Contouring