CHALMERS

UNIVERSITY OF GOTHENBURG

Software Engineering Principles for Complex Systems

- Robocode introduction -

Tobias Schwarz, Mazen Mohamad, Thorsten Berger, Wardah Mahmood

Robocode

What is Robocode?

- Robocode is a programming game
 - Provides a game engine to simulate robot competitions (battles)
- You're not directly controlling the robot, but programming it to manage the battle by its own
- Implement one or many Java classes how the robot behaves and reacts to its environment
- Robot competitions takes places on a simulated battlefield
- Purpose of assignment:
 Learn creating an SPL in a fun
 and interactive environment

Robocode Important Websites

- RoboWiki
 - Main source of information
 - Over 200 OS robots available
- Robocode website
 - Download Robocode.
 - Robocode API.

Robot Anatomy

- Body Carries the gun with the radar on top. The body is used for moving the robot ahead and back, as well as turning left or right.
- Gun Mounted on the body and is used for firing energy bullets. The gun can turn left or right. Carries the radar on top.
- Radar Mounted on the gun and is used to scan for other robots when moved. The radar can turn left or right.
- Each area contains a set of strategies

1. Simulated battle

- Different robots
- Radar
- Bullets
- Hit by bullet

2. Individual robot

- 1. Health points (=98.8)
- 2. Name (=Corners)

- 1. Simulator information
 - Turns/Ticks (time measure)
 - Round
 - FPS (1Tick per FPS)
 - Memory
- 2. Robot information
 - Name and health
- 3. Simulation settings
 - Pause/stop/restart
 - FPS setting

Results for 100 rounds											×
Rank	Robot Name	Total Score	Survival	Surv Bonus	Bullet Dmg	Bullet Bonus	Ram Dmg * 2	Ram Bonus	1sts	2nds	3rds
1st	apc.LeeroyJenkins2 1.0	46381 (45 %)	18850	3560	20789	3173	10	0	89	5	2
2nd	banshee.micro.Nexus6 0	23288 (23 %)	7850	40	11329	1089	2837	143	3	10	44
3rd	sample.MyFirstJuniorRobot	17995 (18 %)	12200	320	5169	254	46	7	10	49	23
4th	sample.Corners	11427 (11 %)	7500	0	3747	169	11	0	0	30	19
5th	ad.last.Bottom 1.0	3502 (3 %)	3500	0	2	0	0	0	0	4	12
	Save									ОК	

- Rank
- Robot Name
- Total Score

- Points for
 - Survival
 - Survival Bonus
 - Bullet Damage
 - Bullet Bonus
 - Ram Damage
 - Ram Bonus
- Times won on position X

Constrains

- Robots health (100points)
 - Lose health points for: Getting hit, shooting, hitting a wall or other robots
 - Gain health points for: Hitting other robot
- Actions per tick
 - E.g. gun turns max 20 degrees and radar turns max 45 degrees
 - Robot's velocity influences body turn rate
 - Bullet power and speed. Shooting cooldown phase
 - Body, gun, and radar influence each other

More details: Robowiki - Game physics

Battlefield and Robot Positioning

Trigonometric:

https://www.ibm.com/developerworks/java/library/jrobocode2/sidefile-robo2.html

Live Demo

- With robots
 - Sample.MyFirstRobot
 - Sample.Corners
 - Sample.RamFire
 - Sample.Crazy

```
package pkg;
1.
      import robocode.*;
3.
4.
       public class MyFirstRobot extends Robot {
6.
         public void run() {
           while (true) {
7.
8.
             ahead(100);
9.
             turnGunRight(360);
10.
             back(100);
             turnGunRight(360);
11.
12.
13.
14.
15.
         public void
      onScannedRobot(ScannedRobotEvent e) {
16.
           fire(1);
17.
18.
19.
```

- "Package" for organizational purposes of robots in RoboCode Simulator
- Import RoboCode library to receive access to its functions

```
package pkg;
1.
2.
      import robocode.*;
3.
4.
      public class MyFirstRobot extends Robot {
5.
6.
         public void run() {
           while (true) {
7.
8.
             ahead(100);
9.
             turnGunRight(360);
10.
             back(100);
             turnGunRight(360);
11.
12.
13.
14.
15.
         public void
       onScannedRobot(ScannedRobotEvent e) {
16.
           fire(1);
17.
18.
19.
```

- "Main" class of your robot
- Extends Robot / AdvancedRobot
 - Robot = blocking calls
 - Ad.Robot = non-blocking calls

```
package pkg;
1.
3.
      import robocode.*;
4.
      public class MyFirstRobot extends Robot {
6.
         public void run() {
           while (true) {
7.
8.
             ahead(100);
9.
             turnGunRight(360);
             back(100);
10.
             turnGunRight(360);
11.
12.
13.
14.
15.
         public void
       onScannedRobot(ScannedRobotEvent e) {
16.
           fire(1);
17.
18.
19.
```

- Run() for robot configuration
- While-loop contains basic behavior; always executed when no on-events, e.g. onScannedRobot
- In this example:
 - Continue loop until health points run out or onScannedRobot is called

```
package pkg;
1.
2.
3.
      import robocode.*;
4.
      public class MyFirstRobot extends Robot {
5.
6.
         public void run() {
           while (true) {
7.
8.
             ahead(100);
9.
             turnGunRight(360);
10.
             back(100);
             turnGunRight(360);
11.
12.
13.
14.
15.
         public void
       onScannedRobot(ScannedRobotEvent e) {
16.
           fire(1);
17.
18.
19.
```

- Ahead Pixels to move
- turnGunRight Degree to turn gun attached radar
- In this example:
 - 1. Move ahead 100 pixels.
 - 2. Turn the gun right by 360 degrees.
 - 3. Move back 100 pixels.
 - 4. Turn the gun right by 360 degrees again.

```
package pkg;
1.
      import robocode.*;
3.
4.
      public class MyFirstRobot extends Robot {
5.
6.
         public void run() {
           while (true) {
7.
8.
             ahead(100);
9.
             turnGunRight(360);
             back(100);
10.
11.
             turnGunRight(360);
12.
13.
14.
15.
         public void
       onScannedRobot(ScannedRobotEvent e) {
16.
           fire(1);
17.
18.
19.
```

- Event handling code on certain event and implementation about action to take
 - onScannedRobot()
 - onHitByBullet()
 - onHitWall()
 - **—** ...
- Callout contains information about event, such as scanned enemy robot

Next steps

- Download and install required software
- Build your first own robot
- Run a competition with your own robot
- Learn more about movement, targeting and firing Highly recommended:
 - https://www.ibm.com/developerworks/java/library/j-robocode/
 - https://robocode.sourceforge.io/docs/robocode/

Recommended:

- https://www.ibm.com/developerworks/java/library/j-robocode2/jrobocode2-pdf.pdf
- http://robowiki.net/ (Chalmers Mirror) -> Radar, Targeting,
 Movement, Tutorials

Further reading

- RoboCode FAQ
- Basic knowledge in trigonometry (used to targeting, movement and avoid getting hit):
 https://www2.clarku.edu/faculty/djoyce/trig/
- Secrets from the Robocode masters
 https://robocode.sourceforge.io/developerWorks.php
 http://mark.random-article.com/robocode/
- Interests of research
 - Applying Machine Learning to Robocode
 - Deep Q-Learning for Robocode

If you have something to discuss or ask, use CANVAS discussion section.

CHALMERS