FICHE MÉTHODE 8

Gérer les chiffres significatifs et la notation scientifique

En physique, toute grandeur numérique est une grandeur mesurée. Cette mesure est effectuée avec une certaine précision. Cela a une conséquence sur l'écriture du résultat.

1 Nombre de chiffres significatifs

Le nombre de chiffres significatifs indique la précision d'une mesure. Les chiffres significatifs sont les chiffres connus avec certitude et le premier chiffre incertain.

EXEMPLE

La mesure « 1,32 m » comporte 3 chiffres significatifs. Les chiffres 1 et 3 sont connus avec certitude. Le chiffre 2 est incertain.

3 Calcul et chiffres significatifs

a. Multiplication et division

Le résultat d'une multiplication ou d'une division a autant de chiffres significatifs que la mesure la moins précise utilisée dans le calcul.

EXEMPLE

On donne une vitesse v et une distance parcourue d: $v = 3,2 \text{ m} \cdot \text{s}^{-1}$; d = 10,2 m.

La durée du déplacement s'écrit : $\Delta t = \frac{d}{v}$.

d est connu avec 3 chiffres significatifs ; v, avec seulement 2 chiffres significatifs. La mesure la moins précise est celle de v.

Le résultat de Δt ne sera donc donné qu'avec 2 chiffres significatifs : $\frac{10,2}{3,2}$ = 3,1875, que l'on arrondit donc à 3,2 : Δt = 3,2 s.

b. Addition et soustraction

Le résultat d'une addition ou d'une soustraction a autant de décimales que la mesure présente dans le calcul qui en a le moins.

EXEMPLE

On donne deux longueurs L = 23,12 m et $\ell = 0,821$ m. La mesure qui a le moins de décimales est 23,12 (2 décimales).

 $L - \ell = 23,12 - 0,821 = 22,299$, que l'on arrondit donc à 22,30 : $L - \ell = 22,30$ m.

2 Particularité du « zéro »

Lorsque le premier chiffre de gauche est un zéro, ce zéro n'est pas significatif.

Lorsque le dernier chiffre de droite est un zéro, ce zéro est significatif.

EXEMPLE

La mesure « 0,42 m » ne comporte que 2 chiffres significatifs.

La mesure « 2,30 m » comporte 3 chiffres significatifs.

4 La notation scientifique

 La notation scientifique consiste à exprimer un nombre sous la forme :

 $a \times 10^b$ avec $1 \le a < 10$ et b entier relatif non nul

EXEMPLE

En notation scientifique, 0,0025 s'écrit : 2.5×10^{-3} .

a doit être compris entre 1 (inclus) et 10 (exclu).

EXEMPLE

La valeur 1,5 est déjà une notation scientifique. On n'écrira pas : $1,5 \times 10^{\circ}$.

 Pour exprimer un nombre en puissance de 10, la relation mathématique suivante peut être utile :

$$10^n \times 10^m = 10^{n+m}$$

FXEMPLE

Pour convertir 100 mm en m et utiliser la notation scientifique, on écrit :

100 mm = 1×10^2 mm = $1 \times 10^2 \times 10^{-3}$ m = 1×10^{-1} m

• Dans l'écriture scientifique $a \times 10^b$, c'est le nombre de chiffres de a qui donne le nombre de chiffres significatifs.

EXEMPLE

 $3,00 \times 10^8 \text{ m} \cdot \text{s}^{-1}$ comporte 3 chiffres significatifs.