1 Primitive d'une fonction

Définition 1 Soit f une fonction définie sur un intervalle I de \mathbb{R} . On dit qu'une fonction $F:I\to\mathbb{R}$ est une primitive de f sur I si F est dérivable sur I et si, pour tout x de I, on a:F'(x)=f(x).

Proposition 1 Soit f une fonction définie sur un intervalle I de $\mathbb R$ et soit F une primitive de f sur I. Alors

- 1. Les primitives de f sur I sont les fonctions $x\mapsto G(x)=F(x)+C$, où C est une constante réelle.
- 2. Pour tout a de I, il existe une unique primitive G de f telle que G(a)=b, où $b\in\mathbb{R}$.

Proposition 2 Soient F une primitive de f et G une primitive de g. Alors pour tout $(\lambda,\mu)\in\mathbb{R}^2$, $\lambda F+\mu G$ est une primitive de $\lambda f+\mu g$.

2 Fonctions usuelles

Fonctions	Primitives	I (domaine de définition de F)
a , a une constante dans $\mathbb R$	$ax + C$, où $C \in \mathbb{R}$	\mathbb{R}
$x^n, n \in \mathbb{N}^*$	$\frac{x^{n+1}}{n+1} + C$	\mathbb{R}
$x^{\alpha}, \alpha \in \mathbb{R} - \{-1\}$	$\frac{x^{\alpha+1}}{\alpha+1} + C$	\mathbb{R} ou \mathbb{R}^\star
$\frac{1}{x}$	$\ln x + C$	$]-\infty,0[\ ou\]0,+\infty[$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x} + C$	$]0,+\infty[$
e^x	$e^x + C$	\mathbb{R}
$\sin x$	$-\cos x + C$	\mathbb{R}
$\cos x$	$\sin x + C$	\mathbb{R}

1 IONISX

INTÉGRALES PRIMITIVE

3 Formules primitives

Fonctions	Primitives
$u'u^n, n \in \mathbb{N}^*$	$\frac{u^{n+1}}{n+1} + C, C \in \mathbb{R}$
$\frac{u'}{u^2}$	$-\frac{1}{u} + C$
$\boxed{\frac{u'}{u}, u(x) \neq 0, \ \forall x \in I}$	$\ln u + C$
$\frac{u'}{\sqrt{u}}, u > 0 \text{ sur } I$	$2\sqrt{u} + C$
$u'e^u$	$e^u + C$
$u'\sin u$	$-\cos u + C$
$u'\cos u$	$\sin u + C$

4 Relation primitive-intégrale

Théorème 1 Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. La fonction $F:I\to\mathbb{R}$ définie par $F(x)=\int_a^x f(t)dt$ est une primitive de f, c'est-à-dire F est dérivable et F'(x)=f(x). Par conséquent, $\int_a^b f(t)dt=F(b)-F(a)$.

2 IONISX