Optimization Hw1

Toby Harvey

October 30, 2019

Problem 1

Theorem 1. $a^T x = ||a|| \, ||x|| \cos \theta$.

Proof. Let $\vec{a} = [a_1, a_2]$ and $\vec{x} = [x_1, x_2] \in \mathbb{R}^2$. The vector x - a creates a triangle in \mathbb{R}^2 . Denote the angle opposite $\vec{x} - \vec{a}$ as θ . From the law of cosines we have:

$$\begin{aligned} ||\vec{x} - \vec{a}||^2 &= ||\vec{x}||^2 + ||\vec{a}||^2 - 2 \, ||\vec{x}|| \, ||\vec{a}|| \cos \theta \\ \implies 2 \, ||\vec{x}|| \, ||\vec{a}|| \cos \theta &= x_1^2 + x_2^2 + a_1^2 + a_2^2 - (x_1 - a_1)^2 + (x_2 - a_2)^2 \\ \implies 2 \, ||\vec{x}|| \, ||\vec{a}|| \cos \theta &= x_1^2 + x_2^2 + a_1^2 + a_2^2 - (x_1^2 - 2a_1x_1 + a_1^2 + x_2^2 - 2a_2x_2 + a_2^2) \\ \implies 2 \, ||\vec{x}|| \, ||\vec{a}|| \cos \theta &= 2(a_1x_1 + a_2x_2) \\ \implies ||\vec{x}|| \, ||\vec{a}|| \cos \theta &= \vec{a} \cdot \vec{x} \end{aligned}$$

Distance between two parallel hyperplanes:

Since \vec{a} is normal to the plane. The distance from orgin to the plane must be a multiple of \vec{a} or $d\vec{a}$. Solving for d we get:

$$da_1^2 + da_2^2 = b_1 \implies d(a_1^2 + a_2^2) = b_1 \implies d = \frac{b_1}{\vec{a}}$$

We need the distance between the two planes or

$$\left|\frac{b_2}{\|\vec{a}\|} - \frac{b_1}{\|\vec{a}\|}\right| \implies \frac{|b_2 - b_1|}{\|a\|}$$

Problem 2

Proposition 1. S is a polyhedron.

Proof. As seen in Boyd and Vandenberghe if we can show that S is a half space we can show it is a poyhedron or is convex. To that end, we expand the inner products:

$$||x - x_0|| \le ||x - x_i|| \implies ||x - x_0||^2 \le ||x - x_i||^2$$

$$\implies \langle x - x_0, x - x_0 \rangle \le \langle x - x_i, x - x_i \rangle$$

$$\implies \langle x, x \rangle + 2\langle x, x_0 \rangle + \langle x_0, x_0 \rangle \le \langle x, x \rangle + 2\langle x, x_i \rangle + \langle x_i, x_i \rangle$$

$$\implies x^T x + 2x^T x_0 + x_0^T x_0 \le x^T x + 2x^T x_i + x_i^T x_i$$

$$\implies 2(x_0 - x_i)x \le x_i^T x_i - x_0^T x_0$$

This is by definition a halfspace. Where $A=x_0-x_i$ for i=0,...,k, and $b=\frac{x_i^Tx_i-x_0^Tx_0}{2}$ for i=0,...,k.

Problem 3

Proposition 2. f is convex if and only if $(\nabla f(x) - \nabla f(y))(x - y) \ge 0$.

Proof. If f is convex then both $f(x) + \nabla f(x)(y-x) \le f(y)$ and $f(y) + \nabla f(y)(x-y) \le f(x)$ dependent on if x or y is larger. Adding these together we get:

$$f(x) + \nabla f(x)(y - x) + f(y) + \nabla f(y)(x - y) \le f(x) + f(y)$$

$$\implies \nabla f(x)(y - x) + \nabla f(y)(x - y) \le 0 \implies -\nabla f(x)(y - x) - \nabla f(y)(x - y) \ge 0$$

$$\implies (\nabla f(x) - \nabla f(y))^{T}(x - y) \ge 0$$

The other way:

If we say that $(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0$ and without loss of generality x > y then this can only be the case if $(\nabla f(x) - \nabla f(y))$ is positive, and by hypothesis x - y > 0 meaning we must also have $\nabla^2 \ge 0$ at the limit.

Problem 4

1.

Proof. Using the same technique as in class where we us the fact that $\max\{f_1(x), f_2(x), ..., f_m(x)\} = f_n(x)$ for some n in 1...m. We must show $f(x_1t+x_2(1-t)) \leq f(x_1)t+f(x_2)(1-t)$. To that end:

$$f(x_1t + x_2(1-t)) = f_n(x_1t + x_2(1-t)) \le f_n(x_1) + f_n(x_2)(1-t)$$

$$\le \max\{f_1(x_1), ..., f_m(x_1)\}t + \max\{f_1(x_2), ..., f_m(x_2)\}(1-t)$$

$$= f(x_1)t + f(x_2)(1-t)$$

Where the second inequality is by the fact that f_n is in the set of functions that f maximizes over but is not necessarly the maximum at either x_1 or x_2 .

2.

Proof. We use the second order condition. Differentiating f with respect to x_{ij} we get:

$$\frac{\partial f}{\partial x_{ij}} = 1\ln(x_{ij} + 1) + (x_{ij} + 1)\frac{1}{x_{ij} + 1} - 1 = \ln(x_{ij} + 1)$$

and

$$\frac{\partial^2 f}{\partial x_{ij}^2} = \frac{1}{x_{ij} + 1}$$

Where $\frac{\partial^2 f}{\partial x_{ij} x_{pq}} = 0$, $pq \neq ij$. Therefore the Hessian is $\frac{1}{x_{ij}+1}$ on the diagonal and 0 otherwise, and since $\frac{1}{x_{ij}+1}$ is positive, f is convex.

Problem 5

We can use all facts that we have already proved, plus proof that absolute value is convex.

Proposition 3. absolute value is convex.

Proof.

$$|tx_1 + x_2(1-t)|$$

$$\leq |tx_1| + |x_2(1-t)|$$

$$= t|x_1| + |x_2|(1-t)$$

We showed that $\ln \frac{1}{c^T x + d}$ is convex in class, and $|a^T x + b|$ is convex, and I just showed that the maximum of a set of convex functions is convex. Therefore f(x) must also be convex.

Let x_a and x_b in S, so that $||x_a - x_0|| \le ||x_a - x_i||$ and $||x_b - x_0|| \le ||x_b - x_i||$. We must show that $||(tx_a + (1-t)x_b) - x_0|| \le ||(tx_a + (1-t)x_b) - x_i||$. To that end we have:

$$||tx_a + (1-t)x_b - x_0|| = ||tx_a + x_b - tx_b - x_0|| \le ||x_b - x_0|| + ||tx_a - tx_b||$$

$$\le ||x_b - x_i|| + t ||x_a - x_b||$$