Дифференциальные уравнения

Гуревич

Содержание

1	Базовые определения			
	1.1 ДУ первого порядка, разрешенные относительно производной	2		
	1.2 Метод изоклин	3		
2	Геометрические задачи, из которых возникают ДУ 2.1 Мини-рассказ про число е	5		
3	Однородное уравнение			
4	4 Обобщенно-однородное уравнение			
5	Уравнение в полных дифференциалах	8		

1 Базовые определения

Определение 1

$$F(t, x, \frac{dx}{dt}, ..., \frac{d^n x}{dt^n}) = 0$$
(1)

- обыкновенное дифференциальное уравнение (ОДУ) порядка п.

Здесь t - независмая переменная, x(t) - искомая функция.

Определение 2 Решение ОДУ - функция $x(t) \in C^n$ (дифференцируемая n раз), обращающая уравнение в тождество.

Примеры. $\frac{dx}{dt} = 0$ - решение есть константа.

 $\frac{dx}{dt} = 5$. Решение x = 5t + c. (Так как решение зависит от параметраконстанты, говорят об однопараметрическом семействе решений. Если задать x(0), то решение будет единственным, зависящим от начального условия).

 $\frac{d^2x}{dt^2}=w$ - уравнение равноускоренного движения. Решение: $x=\frac{wt^2}{2}+c_1t+c_2$, где c_1,c_2 - начальная скорость и начальная координата соответственно.

Пример. Для уравнения $\frac{dx}{dt} = f(t)$, если функция в правой части непрерывна на отрезке (a,b), тогда общее решение имеет вид $x = \int f(t)dt$. Более

точно,
$$t_0 \in (a, b)$$
, тогда $x(t) = \int_{t_0}^t f(\tau) d\tau + x(0)$.

Определение 3 Общее решение ОДУ - множество всех решений.

Естественно возникает вопрос, существует ли решение ДУ и единственно ли оно при заданных начальных условиях? Выражается ли оно через элементарные функции? Какова его область определения и значения?

1.1 ДУ первого порядка, разрешенные относительно производной

Определение 4 ДУ, разрешенные относительно производных - уравнения вида

$$\frac{dx}{dt} = f(t, x) \tag{2}$$

то есть уравнения, производная которых задана функцией в явном виде.

Пример. $(\frac{dx}{dt})^2 - x^2 = 0$ - не разрешенное относительно производных, но оно раскладывается в два таких уравнения.

Минимальные требования к функции f - определенность в области Геометрический смысл уравнения : рис1.

Говорят, что уравнение 1.1 определяет поле направлений в расширенном фазовом пространстве (в отличие от векторного поля в фазовом пространстве): каждой точке сопоставляется направление, определяемое функцией $f(x,t) = \operatorname{tg} \alpha$ (поскольку длина вектора не определена, говорят имено о поле направлений). Кое-кто говорит, что ДУ и поле направлений это одно и то же, поскольку ДУ биективно соответствуют полям направлений).

Пример. Пусть x(t) - количество зараженных вирусом в момент времени t. Допустим, что скорость заражения пропорциональная количеству уже зараженных людей. Запишем это в виде ДУ:

$$\frac{dx}{dt} = kx, \ k > 0$$

Мы получили простейшую модель роста населения Мальтуса. Очевидно, решение $x(t) = x_0 e^{kt}$. Проблема с такой моделью состоит в том, что количество людей дискретно, а найденная нами функция непрерывна. Корректировка состоит в том, что x(t) понимается в смысле *плотности населения*. **Пример.** Рассмотрим более интересное уравнение (уравнение Бернулли, оно же логистическое уравнение): $\frac{dx}{dt} = k(x)x$. Допустим, что k(x) - линейная убывающая функция. Тогда $\frac{dx}{dt} = (k_0 - \frac{k_0 x}{h})x$. (Здесь $k_0 = k(0)$, $h = k^{-1}(0)$). Получаем нелинейное уравнение, в котором переменные не разделяются. Теперь можно рассмотреть подробнее поле направлений. Пусть Γ_0 - множество точек (t,x), в которых $\frac{dx}{dt} = 0$, то есть векторы поля параллельны оси Ot. Решим уравнение $0 = x(k_0 - \frac{k_0}{h}x)$.

Получаем следующее поле: рис 2. Кривые, заключенные в середине, называются логистическими кривыми. "Крутизна"логистической кривой зависит от параметра k_0 . Данное уравнение было рассмотрено Ферхюльстом как уточнение модели Мальтуса.

1.2 Метод изоклин

Метод изоклин заключается в рисовании и исследовании графиков решений уравнения 1.1.

Определение 5 Изоклина наклона α - геометрическое место точек Γ_{α} ,

в которых касательная к решению уравнения 1.1 имеет наклон, равный α .

To есть, Γ_{α} : tg $\alpha = f(t, x)$

Опишем алгоритм метода изоклин на примере. Пусть задано уравнение $\frac{dx}{dt} = \frac{x}{t}$.

- 1. Найдем $\Gamma_0:0=\frac{x}{t}$ (то есть x=0 $(t\neq 0)$) Найдем $\Gamma_{90}:\frac{t}{x}=0$, то есть t=0 $(x\neq 0)$ Получили, что эти гаммы есть координатные оси.
- 2. Определим области с постоянным знаком $\frac{dx}{dt}$ (среди тех, на которые плоскость разбивается изоклинами)
- 3. Исследуем симметрии уравнений, например относительно $x \to -x, \ t \to -t$ (или одновременного применения). Эти симметрии эквивалентны отражению относительно осей.
- 4. Нахождение точек перегиба и областей выпуклости, вогнутости интегральных кривых.
- 5. Приближенное построение интегральных кривых (то есть решений уравнения).

РИС 3!!!! Замечание. Не все интегральные кривые являются решениями. Так, в рассмотренном примере ось Ox - интегральная кривая, но она очевидно не является решением (так как не является функцией).

Метод изоклин является качественным, и он не дает более подробной информации о геометрии кривых. В данном конкретном примере интегральные кривые - в точности прямые, проходящие через точку (0,0), поскольку мы заметили, что в каждой точке направление касательной к интегральной кривой совпадает с прямой, соединяющей эту точку и начало координат.

Пример. Немного изменим уравнение: $\frac{dx}{dt} = -\frac{x}{t}$. Главные изоклины точно такие же, как у предыдущего, а вот знаки в координатных четвертях меняются. Поле направлений выглядит совершенно по-другому, в нем гиперболы. РИС4.

Пример. Получим уравнение окружности с помощью ОДУ, исходя из следующего свойства: касательная перпендикулярна радиусу. То есть мы имеем некоторое поле направлений, исходя из которого можно восстановить ДУ: РИС5 tg $\alpha = \frac{dy}{dx}$, tg $\beta = \frac{y_0}{x_0}$ Поскольку $\alpha = \beta + 90$, имеем tg $\alpha = \frac{dy}{dx}$

 $tg(\beta + 90) = -\frac{1}{tg\beta}$. В итоге уравнение имеет вид $\frac{dy}{dx}\Big|_{x=x_0} = -\frac{x_0}{y_0}$ или, если сотрем нолики (поскольку свойство универсально)

$$\frac{dy}{dx} - \frac{x}{y}$$

Заметим, что это же уравнение можно получить дифференцированием обычного уравнения окружности. Решая его, в качестве параметра вылезет чтото, отвечающее за радиус.

Посмотрим на изоклины этого уравнения: РИС6. Ещё по приколу можно посчитать изоклины на 45^{0} .

2 Геометрические задачи, из которых возникают ΠY

Пример (№17). Составим уравнение по решению: $y = e^{cx}$, $y' = ce^{cx}$. Имеем $c = \frac{\ln y}{x}$, значит, $y' = \frac{\ln y}{x}e^{\ln y}$.

Пример (№25). Дано семейство функций $y = ax^2 + be^x$, $y' = 2ax + be^x$, $y'' = 2a + be^x$. Найдем ДУ, решениями которого они являются. Так как у нас два параметра: a и b, то и уранвение будет второго порядка. Имеем

$$y - y'' = 2a(x - 1) \implies a = \frac{y' - y''}{x - 1}$$
$$y'' = \frac{2(y' - y'')}{2(x - 1)} + be^x \implies \frac{1}{e^x} (y'' - \frac{y' - y''}{x - 1}) = b$$
$$y = \frac{y' - y''}{2(x - 1)} x^2 + (y'' - \frac{y' - y''}{x - 1})$$

Возникает вопрос: а единственно это решение? Здесь мы пользуемся теоремой о неявной функции.

Пример (№30). Составим уравнение для окружностей, центры которых лежат на y = 2x. Уравнение окружностей $(x - x_0)^2 + (y - 2x_0)^2 = 1$. Ответом должно быть однопараметрическое семейство решений, которые соответствуют различным положениям центра на прямой. Дифференцируем:

$$2(x - x_0) + 2(y - 2x_0)y' = 0 \implies x_0 = \frac{x + yy'}{1 + 2y'}$$

Подставим выражение для параметра обратно в уранвение:

$$(x - \frac{x + yy'}{1 + 2y'})^2 + (y - 2\frac{x + yy'}{1 + 2y'})^2 = 1$$

Пример (№71). Найдем кривые, касательные которых заметают одинаковые площади под своим графиком. Пусть f(x) = y - искомая кривая. Её производная не может быть нулевой, иначе она не образует треугольник с осью абсцисс.

Фикисруем точку x_0 . Получаем условие: $\frac{y^2(x_0)}{2y'(x_0)} = a^2 \implies y' = \frac{y^2}{2a^2}$. Если производная отрицательная, то в этой формуле должен вылезти минус (и формально мы имеем два случая, поэтому

$$y' = \pm \frac{y^2}{2a^2}$$

Проинтегрируем (переменные разделяются): $\frac{1}{y} = \pm \frac{1}{2a^2}x + C$ Итак,

$$y = \frac{2a^2}{2a^2C \pm x}$$

Пример (№73). Ещё одна геометрическая задачка. Беглый анализ: производная не равна нулю. Уравнение касательной: $y = y'(x_0)(x - x_0) + y_0$. Точка пересечения с осью абсцисс: $x_k = \frac{-y_0}{y'(x_0)} + x_0$. Уравнение нормали: $y = -\frac{1}{y'}(x - x_0) + y_0$. Точка пересечения нормали с осью абсцисс: $x_n = y_0 y' + x_0$. Диффур снова распадается на два случая... $|KN| = |x_k - x_n| = |\frac{y}{y'}$. Рашаем дома кароч.

2.1 Мини-рассказ про число е

Архимед в общем-то знал, что при умножении показатели степеней складываются. Это легко получить из анализа обычной геометрической пргрессии. В XV веке начали торговать, используя сложные проценты. Возник вопрос, можно ли полутать бесконечное количество денег при уменьшении периода факторизации. Какой-то челик (Саймон вставить фамилию) решил написать таблицу сложных процентов, чтобы полутать денег с её использования, и оказалось, что ответ на предыдущий вопрос отрицательный. Иоста Бюрге (помощник Кеплера) посмотрел на таблицы и полутал с них инфу о том,

что с их помощью можно перемножать огромные числа. Джон Непер составил более юзабельные таблицы, ввел понятие логарифма, и кароч дальше вводим предел для натуральных чисел, переходим к непрерывной хрени... Теперь фокус: $e^k = \lim_{n \to \infty} (1 + \frac{1}{n})^{nk} = (1 + \frac{k}{m})^m = \sum_{i=0}^m C_m^i (\frac{k}{m})^i = \sum_{i=0}^m \frac{k^i}{i!}$. Эту хрень придумал Бернулли, и она сходится к e быстрее обычного предела. Можно это положить за определение e^x , и мгновенно распространить на любые действительные показатели степеней.

3 Однородное уравнение

$$\frac{dx}{dt} = f(\frac{x}{t})$$

Как искать его решение? Заменой $u(t)=\frac{x}{t}$. Тогда уравнение перепишется в виде $\frac{dx}{dt}=\frac{du}{dt}t+u$. В нем переемнные разделяются: $\frac{du}{f(u)-u}=\frac{dt}{t}$. Итак, типы уравнений:

- 1. С разделяющимися переменными
- 2. Приводящиеся к виду $\frac{dx}{dt} = f(ax + bx + c)$
- 3. Првиодящиеся к виду $(a_1x + b_1t + c_1)dx + (a_2x + b_2x + c_2)dt = 0$

Подумаем, можно ли это последнее привести к однородному. Добавим условие $c_1^2+c_2^2\neq 0$ (иначе система уже однородна). В общем, если эти две прямые пересекаются в точке (x_*,t_*) , то можно ввести новые переменные, передвинув эту точку в начало координат: $x\mapsto x-x_*,\ t\mapsto t-t_*$. Тогда система перепишется без $c_1,\ c_2,$ и таким образом будет однородной. Если прямые не пересекаются, то прямые лиюо совпадают, либо параллельны. Тогда введем замену (для любой прямой) $z(t)=a_1x+b_1t+c_1$. Так как прямые параллельны, то $\frac{a_1}{a_2}=\frac{b_1}{b_2}=k$, значит, мы можем выразить вторую прямую: $a_2x+b_2t+c_2=\frac{1}{k}(a_1x+b_1t+kc_2)=\frac{1}{k}(z-c_1+kc_2)$. Уравнение приводится к виду $z(t)dx+\frac{1}{k}(z-c_1+kc_2)dt=0$. Но у нас все равно многовато переменны. Выразим dx через z:

$$z(\frac{dz - b_1 dt}{a_1}) + \frac{1}{k}(z - c_1 + kc_2) = 0$$

Умножим на a_1k :

$$kzdz = kb_1zdt - a_1zdt - a_1(kc_2 - c_1)dt$$

Домножим на $\frac{1}{kzdt}$:

$$\frac{dz}{dt} = ((b_1 - \frac{a_1}{k})z - a_1(kc_2 - c_1))\frac{1}{z}$$

Finally, уравнение с разделяющимися переменными! ПОБЕДА!

4 Обобщенно-однородное уравнение

Определение 6 Обобщенно-однородное уравнение - уравнение вида

$$M(x,t)dx + N(x,t)dt = 0$$

причем M, N - такие. что $\exists n \in \mathbb{R}$: если $x = z^n(t)$, то уравнение $M(z^n, t)nz^{n-1}dz + N(z^n, t)dt = 0$ однородно.

Пример. Испортим однородное уравнения, чтобы сделать его обощеннооднородным. Роман придумал, чел харош.

Сведем и этого зверя к разделяющимся переменным.

$$\begin{cases} n(kz)^{n-1}M((kz)^n, kt) = k^m M(z^n, t)nz^{n-1} \\ N((kz)^n, kt) = k^m N(z^n, t) \end{cases}$$

5 Уравнение в полных дифференциалах

Напомним, что полный дифференциал dF(x,y) C^1 -гладкой функции равен $\frac{\partial F}{\partial x}dx+\frac{\partial F}{\partial y}dy.$

Определение 7 Уравнение в полных дифференциалах - уравнение вида

$$dF(x,y) = 0, \ F \in C^2(\Omega), \ \Omega \subset \mathbb{R}^2$$

Если мы знаем саму функцию, то решение находится мгновенно: dF(x,y) = const. Правда, оно неявное. Выразим y = y(x) по теореме о неявной функции.

Пример. $x^2 \sin t dt + 2x \cos t dx = 0$

Уравнение является уравнение в полных дифференциалах, если существуют такие функции, что $M=\frac{\partial F}{\partial x},\ N=\frac{\partial F}{\partial y}$

Teor	ема 1	(достаточное	условие	разрешимости	<i>):</i>
------	-------	--------------	---------	--------------	-----------

Доказательство.

Помеоморфный (без самопересечений, так как биекция) образ окружности в плоскости можно непрерывно продеформировать в точку. Теорема Жордана: гомеоморфный образ окружности делит плоскость на две компоненты связности. Теорема Шёнфлиса: внутренняя часть этой плоскости гомеоморфна открытому диску. Это кстати эквивалентно тому, что фундаментальная группа тривиальна.