

Deep Sequence Modeling MIT 6.S191

Ava Soleimany

January 28, 2019

Sequences in the wild

Audio

Sequences in the wild

character:

6.S191 Introduction to Deep Learning

word:

Text

A Sequence Modeling Problem: Predict the Next Word

A sequence modeling problem: predict the next word

"This morning I took my cat for a walk."

A sequence modeling problem: predict the next word

"This morning I took my cat for a walk."

given these words

A sequence modeling problem: predict the next word

"This morning I took my cat for a walk."

given these words

predict the next word

Idea #I: use a fixed window

"This morning I took my cat for a walk."

given these predict the two words next word

Massachusetts
Institute of
Technology

Idea #I: use a fixed window

"This morning I took my cat for a walk."

given these predict the two words next word

One-hot feature encoding: tells us what each word is

Adapted from H. Suresh, 6.S191 2018

Problem #1: can't model long-term dependencies

"France is where I grew up, but I now live in Boston. I speak fluent ____."

We need information from **the distant past** to accurately predict the correct word.

Adapted from H. Suresh, 6.S191 2018

Idea #2: use entire sequence as set of counts

"This morning I took my cat for a" "bag of words" [0100100...00110001] prediction

Problem #2: counts don't preserve order

The food was good, not bad at all.

VS.

The food was bad, not good at all.

Adapted from H. Suresh, 6.S191 2018

Sequence modeling: design criteria

To model sequences, we need to:

- I. Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about order
- 4. Share parameters across the sequence

Today: Recurrent Neural Networks (RNNs) as an approach to sequence modeling problems

Adapted from H. Suresh, 6.S191 2018

Recurrent Neural Networks (RNNs)

Standard feed-forward neural network

One to One "Vanilla" neural network

Recurrent neural networks: sequence modeling

"Vanilla" neural network

Recurrent neural networks: sequence modeling

One to One "Vanilla" neural network

Many to One Sentiment Classification

Many to Many
Music Generation

6.S191 Lab!

Recurrent neural networks: sequence modeling

One to One "Vanilla" neural network

Massachusetts 4 8 1

Many to One Sentiment Classification

Many to Many

Music Generation

6.S191 Lab!

... and many other architectures and applications

A standard "vanilla" neural network

Apply a **recurrence relation** at every time step to process a sequence:

Apply a **recurrence relation** at every time step to process a sequence:

Apply a **recurrence relation** at every time step to process a sequence:

Note: the same function and set of parameters are used at every time step

Input Vector

Update Hidden State

$$h_t = \tanh(\boldsymbol{W_{hh}} h_{t-1} + \boldsymbol{W_{xh}} x_t)$$

Input Vector

Output Vector

$$\hat{y}_t = \boldsymbol{W_{hy}} h_t$$

Update Hidden State

$$h_t = \tanh(\boldsymbol{W_{hh}} h_{t-1} + \boldsymbol{W_{xh}} x_t)$$

Input Vector

Represent as computational graph unrolled across time

Re-use the same weight matrices at every time step

Forward pass

Backpropagation Through Time (BPTT)

Recall: backpropagation in feed forward models

Backpropagation algorithm:

- I. Take the derivative (gradient) of the loss with respect to each parameter
- 2. Shift parameters in order to minimize loss

RNNs: backpropagation through time

RNNs: backpropagation through time

[4]

Standard RNN gradient flow

Standard RNN gradient flow

Computing the gradient wrt h_0 involves many factors of W_{hh} (and repeated f'!)

Standard RNN gradient flow: exploding gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} (and repeated f'!)

Many values > 1:
exploding gradients

Standard RNN gradient flow: exploding gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} (and repeated f'!)

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

Standard RNN gradient flow: vanishing gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} (and repeated f'!)

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

Many values < 1:

vanishing gradients

Standard RNN gradient flow: vanishing gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} (and repeated f'!)

Largest singular value > 1:

exploding gradients

Gradient clipping to
scale hig gradients

Largest singular value < 1: vanishing gradients

- I. Activation function
- 2. Weight initialization
- 3. Network architecture

Why are vanishing gradients a problem?

Why are vanishing gradients a problem?

Multiply many small numbers together

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias network to capture short-term dependencies

"The clouds are in the

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias network to capture short-term dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"The clouds are in the ____" $\hat{y}_1 \qquad \hat{y}_2 \qquad \hat{y}_3 \qquad \hat{y}_4$

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"The clouds are in the ____"

"I grew up in France, ... and I I speak fluent____"

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"The clouds are in the

"I grew up in France, ... and I I speak fluent____"

Trick #1: activation functions

Trick #2: parameter initialization

Initialize weights to identity matrix

Initialize biases to zero

$$I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

This helps prevent the weights from shrinking to zero.

Adapted from H. Suresh, 6.5191 2018

Solution #3: gated cells

Idea: use a more complex recurrent unit with gates to control what information is passed through

gated cell

LSTM, GRU, etc.

Solution #3: gated cells

Idea: use a more complex recurrent unit with gates to control what information is passed through

gated cell LSTM, GRU, etc.

Long Short Term Memory (LSTMs) networks rely on a gated cell to track information throughout many time steps.

Adapted from H. Suresh, 6.S191 2018

Long Short Term Memory (LSTM) Networks

Standard RNN

In a standard RNN, repeating modules contain a simple computation node

LSTM repeating modules contain interacting layers that control information flow

LSTM cells are able to track information throughout many timesteps

reiter & Schmidhuber, 1997 [2, 5]

LSTMs maintain a **cell state** c_t where it's easy for information to flow

Information is added or removed to cell state through structures called gates

Gates optionally let information through, via a sigmoid neural net layer and pointwise multiplication

[2, 5]

How do LSTMs work?

LSTMs forget irrelevant parts of the previous state

LSTMs selectively update cell state values

Long Short Term Memory (LSTMs)

LSTMs use an output gate to output certain parts of the cell state

Long Short Term Memory (LSTMs)

How do LSTMs work?

1) Forget 2) Update 3) Output

LSTMs: forget irrelevant information

$$f_t = \sigma(\boldsymbol{W_i}[h_{t-1}, x_t] + b_f)$$

- Use previous cell output and input
- Sigmoid: value 0 and 1 "completely forget" vs. "completely keep"

ex: Forget the gender pronoun of previous subject in sentence.

LSTMs: identify new information to be stored

$$i_t = \sigma(\mathbf{W}_i[h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(\mathbf{W}_C[h_{t-1}, x_t] + b_C)$$

- Sigmoid layer: decide what values to update
- Tanh layer: generate new vector of "candidate values" that could be added to the state

ex: Add gender of new subject to replace that of old subject.

LSTMs: update cell state

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- Apply forget operation to previous internal cell state: $f_t * C_{t-1}$
- Add new candidate values, scaled by how much we decided to update: $i_t * \tilde{C}_t$

ex: Actually drop old information and add new information about subject's gender.

LSTMs: output filtered version of cell state

$$o_t = \sigma(\mathbf{W}_o[h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh(C_t)$$

- Sigmoid layer: decide what parts of state to output
- Tanh layer: squash values between I and I
- $o_t * tanh(C_t)$: output filtered version of cell state

ex: Having seen a subject, may output information relating to a verb.

LSTM gradient flow

Backpropagation from C_t to C_{t-1} requires only elementwise multiplication! No matrix multiplication \rightarrow avoid vanishing gradient problem.

LSTM gradient flow

Uninterrupted gradient flow!

LSTMs: key concepts

- I. Maintain a separate cell state from what is outputted
- 2. Use gates to control the flow of information
 - Forget gate gets rid of irrelevant information
 - Selectively update cell state
 - Output gate returns a filtered version of the cell state
- 3. Backpropagation from c_t to c_{t-1} doesn't require matrix multiplication: uninterrupted gradient flow

RNN Applications

Example task: music generation

Input: sheet music

Output: next character in sheet music

Adapted from H. Suresh, 6.S191 2018

Example task: sentiment classification

Input: sequence of words

Output: probability of having positive sentiment

```
loss = tf.nn.softmax_cross_entropy_with_logits(
    labels=model.y, logits=model.pred
)
```

Adapted from H. Suresh, 6.S191 2018

Example task: sentiment classification

Tweet sentiment classification

The @MIT Introduction to #DeepLearning is definitely one of the best courses of its kind currently available online

introtodeeplearning.com

12:45 PM - 12 Feb 2018

Replying to @Kazuki2048

I wouldn't mind a bit of snow right now. We haven't had any in my bit of the Midlands this winter! :(

2:19 AM - 25 Jan 2019

Adapted from H. Suresh, 6.S191 2018

Example task: machine translation

Encoder (English)

Decoder (French)

Adapted from H. Suresh, 6.S191 2018

[8,9]