

Date Planned : / /	Daily Tutorial Sheet - 3	Expected Duration : 90 Min		
Actual Date of Attempt : / /	Level - 1	Exact Duration :		

ACIO	ai Daic	of Allempi	/ /		LCVCI -	•	LAC	aci bolalion		
31.	Which one of the following sets of ions represents a collection of isoelectronic species?									
	(A)	K^+ , Cl^- , Ca^{2+} ,	Sc^{3+}		(B)	Ba ²⁺ , Sr ²⁺ , K ⁺	, S ²⁻			
	(C)	N ³⁻ ,O ²⁻ , F ⁻ , S	5^{2-}		(D)	Li ⁺ , Na ⁺ , Mg ²⁺	, Ca ²⁺			
32 .	Which of the following statements does not form a part of Bohr's model of hydrogen atom?									
	(A)	Energy of the electrons in the orbit is quantized								
	(B)	The electron in the orbit nearest to the nucleus has the lowest energy								
	(C)	Electrons revolve in different orbits around the nucleus								
		(D) The position and velocity of the electrons in the orbit cannot be determined simultaneously								
33.	α – particles are represented by :									
	(A)	lithium atoms			(B)	helium nuclei				
	(C) hydrogen nuclei (D) None of these The transition of electrons in H atom that will emit maximum energy is:							()		
34.	The tra (A)							n \n	(P)	
		$n_3 \rightarrow n_2$	(B)	$n_4 \rightarrow n_3$	(C)	$n_5 \rightarrow n_4$		$n_6 \rightarrow n_5$		
35.	If the energy of electron in H atom is given by expression, $-1312 / n^2 kJ mol^{-1}$, then the energy required									
		te the electron fr	0							
	(A)	328 kJ/mol	(B)	656 kJ/mol	(C)	984 kJ/mol	(D)	1312 kJ/mol		
36.	The work function of a metal is 4.2 eV. If radiations of 2000 Å fall on the metal, then the kinetic energy of									
		stest photoelectro		10		10				
	(A)	$1.6\times10^{-19}\mathrm{J}$	(B)	$16\times10^{10}J$	(C)	$3.2\times10^{-19}J$	(D)	$6.4\times10^{-10}\mathrm{J}$		
37 .	The ratio of the radii of the three Bohr orbits for a given atom is:									
	(A)	1:1/2:1/3	(B)	1:2:3	(C)	1:4:9	(D)	1:8:27		
38.	If the threshold wavelength (λ_0) for ejection of electron from metal is 330 nm, then work function for the									
	photoe	electric emission	is:							
	(A)	$1.2\times10^{-18}J$	(B)	$1.2\times 10^{-20}J$	(C)	$6\times 10^{-19}J$	(D)	$6\times 10^{-12}J$		
39.	In exci	In excited H atom, when electron drop from $n = 4, 5, 6$ to $n = 1$, there is emission of:								
	(A)	UV light	(B)	Visible light	(C)	IR light	(D)	Radio waves		
40 .	In Bohr's stationary orbits:									
	(A)	electrons do n	ot move							
	(B)	electrons emit radiations while moving								
	(C)	energy of the electron remains constant								
	(D)			he electrons is						
41.		At 200°C, hydrogen molecule have velocity 2.4×10^5 cm s ⁻¹ . The de Broglie wavelength in this case is								
	approx	ximately.				4			$lackbox{}$	
	(A)	1 Å	(B)	1000 Å	(C)	$0.529 \times \frac{4}{3} \text{ Å}$	(D)	10 Å		

The radius of second Bohr's orbit of Hydrogen atom is: **42**.

> (A) 0.053 nm

 $\frac{0.053}{4}$ nm **(B)**

(C) $0.053 \times 4 \text{ nm}$ **(D)**

 $0.053 \times 20 \text{ nm}$

The radius of the second Bohr orbit for Li^{2+} is : 43.

(A)

 $0.529 \times \frac{4}{3} \text{Å}$ **(B)** $0.529 \times \frac{2}{3} \text{Å}$ **(C)** $0.529 \times \frac{4}{9} \text{Å}$

 $0.529 \times \frac{2}{3} \text{Å}$ (D)

25

If velocity of an electron in 1st orbit of H atom is v, what will be the velocity in 3rd orbit of Li^{2+} ? 44.

(A)

v/3 **(B)**

(C) 3v (D) 9v

45. How many number of atomic orbitals associated with M-shell?

(A)

(B) 12 (C) 16

(D)