Supplementary Material

1 Proof of Theorem VI.1

We give the detailed definition of the transformation from $\overline{\text{AD}}$ to $\overline{\text{MWIS}}$ by replacing directed edges E_I with undirected edges $E_{I \to C}$.

Predicate 1.1 (R). $R(n_i, n_j)$ denotes if n_j is reachable from n_i by E_I . An inductive definition of predicate R is as follows,

- 1. $\forall n_i \in N, R(n_i, n_i)$.
- 2. $\forall n_i, n_j, n_k \in N, R(n_i, n_j) \land \langle n_i, n_k \rangle \in E_I \rightarrow R(n_i, n_k)$

Predicate R is reflexive and transitive by its definition. That is, $\forall n_i, n_j, n_k \in N$ it must satisfy:

- Reflexivity: $R(n_i, n_i)$, i.e., every node is reachable from itself.
- Transitivity: if $R(n_i, n_i) \wedge R(n_i, n_k)$, then $R(n_i, n_k)$.

Definition 1.1 (T). $T: G_{\overline{AD}} \to G_{\overline{MWIS}}$, denoting the transformation from $G_{\overline{AD}} = (N, E_I, E_C)$ to $G_{\overline{MWIS}} = (N, \emptyset, E_C \cup E_{I \to C})$ by replacing directed edges E_I with undirected edges $E_{I \to C}$. Specifically, $\forall n_{a_s}, n_{a_t}, n_{b_s}, n_{b_t} \in N$, s.t. $(n_{a_t}, n_{b_t}) \in E_C \land R(n_{a_s}, n_{a_t}) \land R(n_{b_s}, n_{b_t}), (n_{a_s}, n_{b_s}) \in E_{I \to C}$.

Then Theorem VI.1 can also be defined as follows.

Theorem. Assuming the optimal solution of \overline{AD} in $G_{\overline{AD}}$ is $N'_{\overline{AD}}$, and the one of \overline{MWIS} in $G_{\overline{MWIS}} = T(G_{\overline{AD}})$ is $N'_{\overline{MWIS}}$, $N'_{\overline{AD}} = N'_{\overline{MWIS}}$.

The proof of the Theorem is given as follows.

Proof.

- 1) First, we prove $N'_{\overline{AD}}$ is also an independent set of $G_{\overline{MWIS}}$. $\forall n_i, n_j \in N'_{\overline{AD}}$,
 - a) According to the definition of \overline{AD} , as $n_i, n_j \in N'_{\overline{AD}}$, we have $(n_i, n_j) \notin E_C$.
 - b) Assume $(n_i, n_j) \in E_{I \to C}$. According to the definition of T, $\exists n_{a_t}, n_{b_t}$, s.t. $(n_{a_t}, n_{b_t}) \in E_C \land R(n_i, n_{a_t}) \land R(n_j, n_{b_t})$.

As $n_i \in N'_{\overline{AD}}$ and $R(n_i, n_{a_t})$, n_{a_t} must be in $N'_{\overline{AD}}$. Similarly, n_{b_t} is also in $N'_{\overline{AD}}$. Thus, both n_{a_t} and n_{b_t} are in $N'_{\overline{AD}}$. We can have $(n_{a_t}, n_{b_t}) \notin E_C$. Contradiction.

- Therefore, $(n_i, n_j) \notin E_{I \to C}$
- c) According to a) and b), $\forall n_i, n_j \in N'_{\overline{AD}}$, $(n_i, n_j) \notin E_C$ and $(n_i, n_j) \notin E_{I \to C}$. Thus, $N'_{\overline{AD}}$ is also an independent set of $G_{\overline{MWIS}}$.
- 2) Second, we prove $N'_{\overline{\rm MWIS}}$ is also a solution of $\overline{\rm AD}$ in $G_{\overline{\rm AD}}.$
 - a) $\forall n_i, n_j \in N'_{\overline{\text{MWIS}}}$, according to the definition of $\overline{\text{MWIS}}$, $(n_i, n_j) \notin E_C$.
 - b) $\forall n_i \in N'_{\overline{\text{MWIS}}}$, we are going to prove that $\forall n_j \in N \text{ s.t. } \langle n_i, n_j \rangle \in E_I, n_j \in N'_{\overline{\text{MWIS}}}$ by contradiction. We assume $\exists n_j \text{ s.t. } \langle n_i, n_j \rangle \in E_I \text{ and } n_j \notin N'_{\overline{\text{MWIS}}}$.

- i) $\forall n_k$ s.t. $(n_j, n_k) \in E_C$, as $R(n_i, n_j)$ and $R(n_k, n_k)$, according to the definition of T, we can have $(n_i, n_k) \in E_{I \to C}$. Thus, $n_k \notin N'_{\overline{\text{MWIS}}}$.
- ii) $\forall n_k \text{ s.t. } (n_j, n_k) \in E_{I \to C}$, according to the definition of T, $\exists n_{j_t}, n_{k_t} \in N$, s.t. $(n_{j_t}, n_{k_t}) \in E_C \land R(n_j, n_{j_t}) \land R(n_k, n_{k_t})$. As $R(n_i, n_j) \land R(n_j, n_{j_t})$, we can also have $R(n_i, n_{j_t})$ (i.e., transitivity of R), which implies $\exists n_{j_t}, n_{k_t} \in N$, s.t. $(n_{j_t}, n_{k_t}) \in E_C \land R(n_i, n_{j_t}) \land R(n_k, n_{k_t})$. Thus, $(n_i, n_k) \in E_{I \to C}$ by the definition of T, and $n_k \notin N'_{\overline{\text{MWIS}}}$.

Therefore, $\forall n_k$ s.t. $(n_j, n_k) \in E_C \cup E_{I \to C}, n_k \notin N'_{\overline{\text{MWIS}}}$. $N''_{\overline{\text{MWIS}}} = N'_{\overline{\text{MWIS}}} + \{n_j\}$ is also an independent set.

As $w: N \to \mathbb{R}_{\geq 0}$, $w(N''_{\overline{\text{MWIS}}}) \geq w(N'_{\overline{\text{MWIS}}})$, $N'_{\overline{\text{MWIS}}}$ is not guaranteed to be the optimal solution. Contradiction.

Therefore, $\forall n_i \in N'_{\overline{\text{MWIS}}}$, if $\langle n_i, n_j \rangle \in E_I$, we must have $n_j \in N'_{\overline{\text{MWIS}}}$.

- c) According to a) and b) and the definition of \overline{AD} , $N'_{\overline{MWIS}}$ is also a solution of \overline{AD} in $G_{\overline{AD}}$.
- 3) According to 1) and 2), we can have $N'_{\overline{\mathrm{AD}}} = N'_{\overline{\mathrm{MWIS}}}.$