Pertemuan #13 Desain Program

Pengertian

- **Desain program -** membuat instruksi untuk programmer
- Pendekatan modular dari atas ke bawah dimulai dengan "gambaran besar" dan secara bertahap menambahkan detail
- Dokumen desain program semua bagan struktur dan spesifikasi yang dibutuhkan oleh programmer untuk mengimplementasikan sistem

Structure Chart

- Structure Chart merupakan teknik desain program yang sering digunakan
- Memperlihatkan semua komponen kode dalam format hierarkis
 - □ Urutan (sequence)
 - □ Pilihan (branching)
 - Pengulangan (looping)

Contoh Structure Chart

Elemen Structure Chart

Module

1.2 Calculate Current GPA

Library Module

1.2 Calculate Current GPA

Loop

Conditional Line

Control Couple

Data Couple

Off Page

Pembuatan Structure Chart

- Satu proses dalam DFD cenderung mewakili satu modul pada structure chart
 - □ Proses afferent memberikan input ke sistem
 - □ Proses central melakukan operasi sistem
 - □ Proses efferent menangani keluaran sistem
- Leveling pada DFD dapat berkorespondensi dengan hierarki pada structure chart

м

Tipe Structure Chart

- Transaction structure modul kontrol memanggil modul bawahan, yang masing-masing menangani transaksi tertentu
 - □ Banyak proses afferent
 - Sedikit proses efferent
 - Berada pada tingkat atas pada structure chart
 - Menggunakan input untuk membuat output baru
- Transform structure modul kontrol memanggil beberapa modul bawahan secara berurutan
 - Setiap bawahan melakukan langkah dalam proses yang mengubah input menjadi output
 - Sedikit proses afferent
 - □ Banyak proses efferent
 - Berada pada tingkat yang lebih rendah pada structure chart

Transaction Structure Chart

Transform Structure Chart

Mapping DFD ke Structure Chart

Tahapan Mapping DFD ke SC

- Tentukan aliran informasi pada DFD di sistem
- Identifikasi/Analisis pola struktural yang khas di DFD
- Gunakan metode heuristik untuk memetakan DFD ke dalam Structure Chart → Firstcut Structure Chart
- Periksa kembali dan perbaiki Structure Chart untuk mengoptimalkan hasil Structure Chart (dilakukan secara terus menerus) → Final Structure Chart

re.

Dua Pola Mapping

- Transaction Flow Analysis
- Transform Flow Analysis

Transform Flow

M

Karakteristik Transform Flow

- sistem memiliki tujuan tunggal yang koheren
- pusat transformasi (center of transformation)
 mengeksekusi algoritma, transformasi data, manipulasi database, ...
- proses input-driven menyaring, memeriksa dan menerjemahkan aliran data eksternal
- proses output-driven memformat hasil untuk presentasi ke lingkungan (pengguna)
- beberapa jalur untuk mendapatkan input

Mapping Transform secara Heuristic

Transaction Flow

.

Karakteristik Transaction Flow

- satu jalur proses penerimaan (reception path)
- transaksi: item data tunggal yang mencakup semua informasi yang diperlukan untuk eksekusi
- pusat transaksi (transaction center) mengevaluasi transaksi & menginisialisasi jalur-aksi yang benar
- action-paths mengimplementasi berbagai jenis fungsionalitas sistem
- sebuah action-paths bisa merupakan sub-sistem lengkap dengan karakteristik transform flow

Mapping Transaction secara Heuristic

Transaction Mapping bersama Transform Mapping

10

Optimalisasi Structure Chart

- Pembuatan structure chart dilakukan secara heuristic (perbaikan secara berkelanjutan) sampai didapatkan structure chart yang optimal
- Ciri structure chart berkualitas tinggi:
 - menghasilkan program yang modular
 - □ dapat digunakan kembali
 - □ mudah diimplementasikan
- Tindakan yang bisa dilakukan:
 - Meningkatkan kohesi dalam modul
 - Menurunkan kopling antar modul
 - □ Level fan-in dan fan-out yang sesuai

Tipe Kohesi

- Functional: dikelompokkan karena menjalankan satu fungsi
- Baik

- Sequential: dikelompokkan karena dijalankan secara berurutan
- Communicational: dikelompokkan karena mengelola data yang sama
- Procedural: output dari satu bagian menjadi input di bagian lainnya
- Temporal: karena kesamaan waktu proses
- Logical: dikelompokkan karena secara logika melakukan hal yang sama
- Coincidental: setiap bagian tidak mempunyai hubungan yang penting

Buruk

Tipe Kopling

Data: antar modul berbagi data, misalnya melalui parameter

Baik

- Stamp: modul berbagi struktur data komposit dan hanya menggunakan bagian-bagiannya
- Control: satu modul mengendalikan aliran modul lainnya
- Common: beberapa modul memiliki akses ke data global (common) yang sama
- Content: satu modul menggunakan kode modul lain

Buruk

Fan-in dan Fan-out

- Fan-in: jumlah modul yang masuk ke suatu modul
- Fan-out: jumlah modul yang keluar dari suatu modul
- Fan-in yang tinggi lebih baik dibanding Fan-in yang rendah

Fan-in tinggi, penggunaan kembali modul sebelumnya tinggi

Fan-in rendah, kurang baik