

Rapport du Générateur de base Fréquence

Figure 1 || Photo Contractuel du projet au rendu final

Année 2021-2022 Groupe 3 Département Geii M. Béllier - M. Meule Université D'Orléans

GBF 2021 – JM. Page 1 / 8

- Remerciement

Je remercie l'IUT de Chartres, d'avoir permis l'acquisition de ce matériel, pour nous permettre de découvrir notre premier projet réel. Ce projet permettre d'accroître mes expériences pratiques de cette année.

- Sommaire

-	Re	emerciement	2
-		ommaire	
_		troduction	
l.		ahier des charges du générateur de base fréquence	
II.	Sc	chéma électrique du générateur de base fréquence	
III.		Schéma d'implantation du générateur de base fréquence	5
IV.		Fiche des composants / Nomenclature	5
V.	M	lesures	6
1)	Consommation énergie.	6
2)	Utilisation	7
VI.		Complément d'informations personnelles	7
-	Co	onclusion	8
_	Αı	nnexe	8

- Introduction

On se propose de réaliser entièrement un générateur base fréquence via une notice qui sera alimenté par une pile de 9V. Le but étant de pouvoir reproduire des signaux sinusoïdales et triangulaires pour pouvoir les exploiter. L'oscilloscope permettra de visualiser le résultat du générateur de base fréquence.

I. Cahier des charges du générateur de base fréquence.

Le but de ce projet est de réaliser un signal faible à partir d'une pile 9V.

Le montage se fera sur plaque de « PCB ». Pour faciliter l'étude, le schéma électrique est fourni.

- Alimentation pile 9V (jusqu'à 12V), en continu (DC).
- Soudure type « volcan » pour chaque composant du GBF.
- Rendu des formes d'ondes : Carré, Sinusoïdale et Triangle.
- Intervalle des fréquences: 1Hz -10 Hz, 10Hz -100 Hz, 100Hz 3KHz, 3KHz 5KHz, 65KHz 1MHz.
- Signal Final sinusoïdale :
 - o Amplitude: 0-3 V à 9 V DC entrée.
 - O Distorsion: moins de 1% (à 1 kHz).
- Signal Final Carrée :
 - o Amplitude : 8 V (sans charge) à 9 V DC entrée.
 - O Temps de montée : Moins que 50ns (à 1 kHz).
 - o Précision Temps : Moins que 30ns (à 1 kHz).
 - O Symétrie: moins de 5% (à 1 kHz).
- Signal Final Triangle :
 - o Amplitude : 0-3 V à 9 V DC entrée.
 - o Linéarité : moins de 1% (jusqu'à 100 kHz) 10mA.

GBF 2021 – JM. Page 3 / 8.

<u>DUPUIS Mathis</u> <u>24/09/2021</u>

II. Schéma électrique du générateur de base fréquence

Figure 2 || Scan du schéma électrique du projet.

Figure 3 || Scan du schéma électrique du micro-processeur du projet. (Modèle : XR2206)

GBF 2021 – JM. Page 4 / 8.

PUIS Mathis 24/09/2021

III. Schéma d'implantation du générateur de base fréquence

Figure 4 || Scan du schéma d'implantation du projet.

IV. Fiche des composants / Nomenclature

Repère	Qté	Désignation	Fabriquant	Référence fabriquant	Distrib.	Code Commande	UDV	PrixUnit.	Total /module	TotalAchat
R1	1	Résistance traversante, 1 kOhm	MULTICOMP PRO	MCCFR0W4]0102A50	FARNELL	1652634	1	0.0262 €	0.0262 €	0.0262 €
R2,R7	2	Potentiomètres 50K (B503)	Bourns	PTV112-4420A-B503	MOUSER ELEC.	652-PTV112-4420AB503	1	1.3400 €	2.6800 €	2.6800 €
R3,R4,R6	3	Résistance traversante, 5.1 kOhm	VISHAY	MRS25000C5101FCT00	FARNELL	9469184	10	0.0120 €	0.1200 €	0.1200 €
R4	1	Résistance traversante, 330 Ohm	VISHAY	MBA02040C3300FC100	FARNELL	3546868	1	0.1710 €	0.1710 €	0.1710 €
R8	1	Potentiomètres 100K (B104)	Bourns	PTV09A-4020U-B104	MOUSER ELEC.	652-PTV09A4020U-B104	1	0.7030 €	0.7030 €	0.7030 €
C1	1	Condensateur électrolytique, 100 µF	RUBYCON	10ML100MEFC6.3X5	FARNELL	8126160	5	0.0390 €	0.1950 €	0.1950 €
C2	1	CONDENSATEUR CERAMIQUE 0.1UF	CDE MALLORY	M20R104M5-F	FARNELL	1422867	1	0.7960 €	0.7960 €	0.7960 €
C3,C4	2	Condensateur électrolytique, 10µF	PANASONIC	ECEA1HN100UB	FARNELL	2917920	5	0.1036 €	0.5180 €	0.5180 €
C5	1	Condensateur céramique multicouche, 1µF	KEMET	C320C105K5N5TA91707301	FARNELL	2752828	5	0.1550 €	0.7750 €	0.7750 €
C6	1	CONDENSATEUR CERAMIQUE 50V, 47nF	DON'S	SC45F1H473ZB515A	L'Implusion	C47NF	10	0.0700 €	0.7000 €	0.7000 €
C7	1	CONDENSATEUR CERAMIQUE 50 V, 2,2nF	CINETECH	TCH1H222]L515Y	L'Implusion	C2,2NF	10	0.0570 €	0.5700 €	0.5700 €
C8	1	Condensateur céramique multicouche, 100 pF	MULTICOMP PRO	MC0805N101J500A2.54MM	FARNELL	2309023	1	0.1420 €	0.1420 €	0.1420 €
UI	1	Function Generator	EXAR	XR2206CP	L'IMPULSION	XR2206CP	1	2.2700 €	2.2700 €	2.2700 €
JK1	1	Clip de retenue pour batterie	BUD INDUSTRIES	HH-3449	FARNELL	1650667	1	1.1200 €	1.1200 €	1.1200 €
]1,]2	2	JUMPER, 2W AY, 2.54 MM	3M	929955-06	FARNELL	1368291	1	0.5280 €	0.5280 €	1.0560 €
]3	1	2*5 Jumper cap	TE Connectivity	5-146252-5	RS	745-4886	1	0.1600 €	0.1600 €	0.1600 €
P1	1	Bornier fil-à-carte	WEIDMULLER	1234570000	FARNELL	1234570000	10	0.0847 €	0.8470 €	0.8470 €
									12.3212 €	12.8492 €

Figure 5 || Tableau récapitulatif des composants du projet.

Le coût total de du générateur de base fréquence seule est de 12,85 €.

ABL 5051 - 1M . Lage 5 / 8 .

V. Mesures

1) Consommation énergie.

Mesure à effectuer	<u>Valeur</u>	<u>Unité</u>
- Fréquence Minimal sinusoïde ou triangle.	520	MHz
- Fréquence Maximal sinusoïde ou triangle.	1,2	MHz
- Tension crête à crête en sinusoïdal à fréquence Minimal.	5,8	V
- Tension crête à crête en sinusoïdal à fréquence Maximal.	2,4	V
- Tension crête à crête en Triangle à fréquence Minimal.	5,6	V
- Tension crête à crête en Triangle à fréquence Maximal.	3,8	V
- Valeur moyenne de tension à 1 kHz Sinus.	4,59	V
- Valeur moyenne de tension à 1 kHz Triangle.	4,66	V
- Tension crête à crête à 1 kHz signal Carré.	8,80	V
 Valeur moyenne de tension à 1 kHz signal Carré. 	6,56	V
 Valeur minimale de tension à 1 kHz signal Carré. 	0,0064	V
 Valeur maximale de tension à 1 kHz signal Carré. 	9,36	V

Pour donner suite à ce tableau, nous avons cherché à calculer les valeurs de tensions et de courant réel via un multimètre.

Figure 6 | | Photo d'un montage en série. (Intensité)

Figure 7 || Photo d'un montage en série. (Intensité)

Figure 8 ||Photo d'un montage en parallèle. (Tension)

GBF 2021 – JM. Page 6 / 8.

2) Utilisation

Le potentiomètre « Amp » sert à régler l'amplitude d'onde sinusoïdale ou triangulaire.

Le potentiomètre « Fine » sert à régler la fréquence finement.

Le potentiomètre « Coarse » sert à régler la fréquence grossièrement.

On peut remarquer qu'à partir d'une certaine fréquence, le générateur de base fréquence n'est plus capable d'envoyer des signaux corrects à l'oscilloscope, ce qui le rend incompréhensible.

VI. Complément d'informations personnelles

Durant ce projet, nous avons constaté que les courbes sinusoïdales n'était pas « parfaite », une solution fut donc apportée en changeant la résistante R4, la voici :

Cette dernière à permise de lisser le rendu des fréquences du GBF (On rappelle que le but ici et de constater une différence de rendu).

GBF 2021 – JM. Page 7 / 8.

- Conclusion

Pour conclure, ce projet a permis de découvrir les soudures pour les personnes n'ayant fait. Mais surtout les possibilités de petites cartes électroniques, dont pour ce cas un générateur de base fréquence.

- Annexe

Site internet:

- https://www.limpulsion.fr/web/index.php
- https://www.gotronic.fr/
- https://fr.rs-online.com/web/
- http://fr.farnell.com/

Documents fournis:

- « Vérifier la partie GEII d'un système partie 1 »
- « Vérifier la partie GEII d'un système partie 2 »
- « Notice 'XR2206' Generator Manuall Install »

GBF 2021 – JM. Page 8 / 8.