Yakeen NEET 2.0 2026

Physics By Manish Raj Sir

Units and Measurements

Assignment-01 By: M.R. Sir

1. Amount of solar energy received on the earth's surface per unit area per unit time is defined a solar constant. Dimension of solar constant is

[**JEE Main 2020**]

- (1) $ML^2 T^{-2}$
- (2) MLT^{-2}
- (3) $M^2L^0T^{-1}$
- (4) $ML^{0}T^{-3}$
- 2. Dimensional formula for thermal conductivity is (here K denotes the temperature) [JEE Main 2020]
 - (1) $MLT^{-2}K^{-2}$
 - (2) $MLT^{-3}K^{-1}$
 - (3) MLT⁻³K
 - (4) MLT⁻²K
- 3. A quantity x is given by (IFv^2/WL^4) in terms of moment of inertia I, force F, velocity v, work W and length L. The dimensional formula for x is same as that of [JEE Main 2020]
 - (1) Coefficient of viscosity
 - (2) Force constant
 - (3) Energy density
 - (4) Planck's constant
- 4. The quantities $x = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$, $y = \frac{E}{B}$ and $z = \frac{1}{CR}$ are

defined where C – capacitance, R – resistance, I – length, E – electric field, B – magnetic field and ε_0 , μ_0 , – free space permittivity and permeability respectively. Then [JEE Main 2020]

- (1) Only x and y have the same dimension
- (2) Only x and z have the same dimension
- (3) x, y and z have the same dimension
- (4) Only y and z have the same dimension

5. A quantity f is given by $f = \sqrt{\frac{hc^5}{G}}$ where c is speed of light G universal gravitational constant and h is the Planck's constant. Dimension of f is that of:

[JEE Main 2020]

- (1) Momentum
- (2) Energy
- (3) Force
- (4) Pressure
- 6. The work done by a gas molecule in an isolated system is given by, $W = \alpha^2 \beta e^{\frac{-Bx^2}{kT}}$, where x is the displacement, k is the Boltzmann constant and T is the temperature, α and β are constants. Then the dimensions of β will be: [JEE Main 2021]
 - (1) $[M^0LT^0]$
- (2) $[M^2LT^2]$
- (3) $[MLT^{-2}]$
- (4) $[ML^2T^{-2}]$
- 7. Match List-I with List-II:

	List-I	List-II		
(A)	h (Planck's constant)	I	[M L T ⁻¹]	
(B)	E (Kinetic energy)	II	$[M L^2 T^{-1}]$	
(C)	V (electric potential)	III	$[M L^2 T^{-2}]$	
(D)	P (linear momentum)	IV	$[ML^2I^{-1}T^{-1}]$	

Choose the correct answer from the options given below: [JEE Main 2021]

- (1) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- (2) (a)-(i), (b)-(ii), (c)-(iv), (d)-(iii)
- (3) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
- (4) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
- **8.** If *e* is the electronic charged, *c* is the speed of light in free space and *h* is Planck's constant, the quantity

$$\frac{1}{4\pi\epsilon_0} \frac{|e|^2}{hc}$$
 has dimensions of: [JEE Main 2021]

- (1) $[LC^{-1}]$
- (2) $[M^0L^0T^0]$
- (3) [MLT⁰]
- (4) [MLT⁻¹]

- 9. If a typical combustion engine the work done by a gas molecule is given by $W = \alpha^2 \beta e^{\frac{-Bx^2}{kT}}$, where *x* is the displacement, k is the Boltzmann constant and Tis the temperature. If α and β are constants, dimensions of α will be: [**JEE Main 2021**]
 - (1) $[M^0 LT^0]$
- (2) $[M^2 LT^{-2}]$
- (3) $[MLT^{-2}]$
- (4) $[MLT^{-1}]$
- 10. The dimension of mutual inductance is:

[**JEE Main 2022**]

- (1) $[ML^2 T^{-2} A^{-1}]$ (2) $[ML^2 T^{-3} A^{-1}]$ (3) $[ML^2 T^{-2} A^{-2}]$ (4) $[ML^2 T^{-3} A^{-2}]$

- 11. The SI unit of a physical quantity is pascal-second. The dimensional formula of this quantity will be
 - [**JEE Main 2022**]
 - (1) $[ML^{-1} T^{-1}]$
- (2) $[ML^{-1} T^{-2}]$
- (3) $[ML^2 T^{-1}]$
- (4) $[M^{-1} L^3 T^0]$
- 12. If L, C and R are the self inductance, capacitance and resistance respectively, which of the following does not have the dimension of time?

[**JEE Main 2022**]

- In Vander Waals equation $P + \frac{a}{V^2} [V b] = RT$; P 13. is pressure, V is volume, R is universal gas constant and T is temperature. The ratio of constants $\frac{a}{h}$ is [JEE Main 2022] dimensionally equal to:
- (3) *PV*
- Dimension of $\frac{1}{\mu_0 \epsilon_0}$ should be equal to 14.

[**JEE Main 2023**]

- (1) $L T^{-1}$
- (2) $T^2 L^{-2}$
- (3) $L^2 T^{-2}$
- (4) $T L^{-1}$

15. Match List I with List II

[**JEE Main 2023**]

	List-I	List-II	
(A)	Torque	I	$M L^{-2} T^{-2}$
(B)	Stress	II	$M L^2 T^{-2}$
(C)	Pressure gradient	III	$M L^{-1} T^{-1}$
(D)	Coefficient of viscosity	IV	$M L^{-1} T^{-2}$

Choose the correct answer from the options given below:

- (1) A-I, B-III, C-II, D-IV
- (2) A-IV, B-I, C-III, D-II
- (3) A-II, B-I, C-IV, D-III
- (4) A-II, B-III, C-I, D-IV

16. Match List I with List II

[**JEE Main 2023**]

	List-I	List-II		
(A)	Spring constant	I	$[T^{-1}]$	
(B)	Angular speed	II	$[MT^{-2}]$	
(C)	Angular momentum	III	$[ML^2]$	
(D)	Moment of inertia	IV	$[ML^2T^{-1}]$	

Choose the correct answer from the options given below:

- (1) A-I, B-III, C-II, D-IV
- (2) A-IV, B-I, C-III, D-II
- (3) A-II, B-I, C-IV, D-III
- (4) A-II, B-III, C-I, D-IV
- In the equation $\left[X + \frac{a}{V^2}\right][Y b] = RT$, X is pressure, Y is volume, R is universal gas constant and T is temperature. The physical quantity equivalent to the ratio $\frac{a}{h}$ is: [JEE Main 2023]
 - (1) Pressure gradient
 - (2) Energy
 - (3) Impulse
 - (4) Coefficient of viscosity

18. Match List I with List II [**JEE Main 2023**]

	List-I	List-II		
(A)	Young's Modulus (Y)	I	$[M L^{-1} T^{-1}]$	
(B)	Co-efficient of	II	[M L T ⁻¹]	
	Viscosity (η)			
(C)	Planck's constant (h)	III	$[M L^{-1} T^{-2}]$	
(D)	Work function (φ)	IV	$[M L^2 T^{-2}]$	

Choose the correct answer from the options given below:

- (1) A-II, B-III, C-V, D-I
- (2) A-III, B-I, C-II, D-IV
- (3) A-I, B-III, C-IV, D-II
- (4) A-I, B-II, C-III, D-IV
- 19. The equation of stationary wave is:

$$y = 2a \sin\left(\frac{2\pi nt}{\lambda}\right) \cos\left(\frac{2\pi x}{\lambda}\right)$$

Which of the following is not correct:

[**JEE Main 2024**]

- (1) The dimensions of n/λ is [T]
- (2) The dimensions of *n* is $[LT^{-1}]$
- (3) The dimensions of x is [L]
- (4) The dimensions of *nt* is [L]
- What is the dimensional formula of ab^{-1} in the **20.** equation $\left(P + \frac{a}{V^2}\right)(V - b) = RT$, where letters have

their usual meaning.

[**JEE Main 2024**]

- (1) $[M^{-1} L^5 T^3]$
- (2) $[M^6 L^7 T^4]$
- (3) $[ML^2 T^{-2}]$ (4) $[M^0 L^3 T^{-2}]$
- If ε_0 is the permittivity of free space and E is the 21. electric field, then $\varepsilon_0 E^2$ has the dimensions:

[**JEE Main 2024**]

- (1) $[M^{-1} L^{-3} T^4 A^2]$
- (2) $[ML^2 T^{-2}]$
- (3) $[M^0 L^{-2} TA]$
- (4) $[ML^{-1} T^{-2}]$
- 22. The dimensional formula of latent heat is:

[**JEE Main 2024**]

- (1) $[ML^2 T^{-2}]$
- (2) $[M^0 L^2 T^{-2}]$
- (3) $[MLT^{-2}]$
- (4) $[ML^2 T^{-2}]$

23. The equation of state of a real gas is given by $\left(P + \frac{a}{V^2}\right)(V - b) = RT$, where P, V and T are

> pressure. Volume and temperature respectively and R is the universal gas constant. The dimensions of

 $\frac{a}{b^2}$ is similar to that of:

[JEE Main 2024]

- (1) *PV*
- (3) RT
- (4) R
- A force is represented by $F = ax^2 + bt^{1/2}$. Where x =distance and t =time. The dimensions of b^2/a [**JEE Main 2024**]
 - (1) $[ML^3T^{-3}]$
- (2) $[MLT^{-2}]$
- (3) $[ML^{-1}T^{-1}]$
- (4) $[ML^2T^{-3}]$
- 25. The position of a particle moving on x-axis is given by $x(t) = A \sin t + B \cos^2 t + Ct^2 + D$, where t is time. [JEE Main 2025] The dimension of $\frac{ABC}{D}$ is
- (3) L
- (4) $L^3 T^{-2}$
- 26. The electric flux is $\phi = \alpha \sigma + \beta \lambda$ where λ and σ are linear and surface charge density, respectively. $\left(\frac{\alpha}{\beta}\right)$ [**JEE Main 2025**] represents

(1) electric field

- (2) area
- (3) charge
- (4) displacement
- 27. The expression given below shows the variation of velocity (v) with time (t), $v = At^2 + \frac{Bt}{C+t}$. The dimension of ABC is: [**JEE Main 2025**]
 - (1) $[M^0 L^2 T^{-2}]$
 - (2) $[M^0 L^1 T^{-3}]$
 - (3) $[M^0 L^1 T^{-2}]$
 - (4) $[M^0 L^2 T^{-3}]$

28. Match List-I with List-II

[**JEE Main 2025**]

	List-I	List-II		
(A)	Boltzmann constant	I	ML^2T^{-1}	
(B)	Coefficient of viscosity	II	MLT ⁻³ K ⁻¹	
(C)	Planck's constant	III	$ML^2 T^{-2} K^{-1}$	
(D)	Thermal conductivity	IV	$ML^{-1} T^{-1}$	

Choose the correct answer from the options given below:

- (1) A-III, B-IV, C-I, D-II
- (2) A-II, B-III, C-IV, D-I
- (3) A-III, B-II, C-I, D-IV
- (4) A-III, B-IV, C-II, D-I
- **29.** The dimension of $\sqrt{\frac{\mu_0}{\epsilon_0}}$ is equal to that of:

 $(\mu_0 = Vacuum permeability and <math>\epsilon_0 = Vacuum permittivity)$ [JEE Main 2025]

- (1) Voltage
- (2) Capacitance
- (3) Inductance
- (4) Resistance

60. Match List-I with List-II

[JEE Main 2025]

	List-I	List-II		
(A)	Mass density	I	$[ML^2 T^{-3}]$	
(B)	Impulse	II	$[MLT^{-1}]$	
(C)	Power	III	$[ML^2T^0]$	
(D)	Moment of inertia	IV	$[\mathrm{ML^{-3}T^0}]$	

Choose the correct answer from the options given below:

- (1) A-IV, B-II, C-III, D-I
- (2) A-I, B-III, C-IV, D-II
- (3) A-IV, B-II, C-I, D-III
- (4) A-II, B-III, C-IV, D-I

A	NS	W	$\mathbf{E}\mathbf{R}$	K	$\mathbf{E}^{\mathbf{X}}$	V
	7.7	* *	אועו			

1.	(4)

2. **(2)**

3. (3)

4. (3)

5. **(2)**

(3) 6.

7. **(1)**

8. **(2)**

(1) 9.

10. (3)

- 11. (1)
- 12. **(4)**
- (3) 13.
- (3) 14.
- (3) **15.**
- **(3)** 16.
- **(2) 17.**
- 18. **(2)**
- 19. **(1)**
- 20. **(3)**

- **(4)** 21.
- 22. **(2)**
- **(2)** 23.
- (1) 24.
- **25. (1)**
- **(4) 26.**
- 27. **(4)**
- 28. **(1)**
- 29. **(4)**
- 30. **(3)**

