Homework 11 Abstract Algebra Math 320 Stephen Giang

Problem 5.1.3: How many distinct congruence classes are there modulo $x^3 + x + 1$ in $\mathbb{Z}_2[x]$.

By Corollary 5.5, all congruence classes can be written in the form $ax^2 + bx + c$.

$$x^{2} + x + 1$$
 $x^{2} + x$ $x^{2} + 1$ x

1 $x^{2} + x + 1$ x

There are 8 distinct congruence classes.

Problem 5.1.4: Show that, under congruence modulo $x^3 + 2x + 1$ in $\mathbb{Z}_3[x]$, there are exactly 27 distinct congruence classes.

All distinct congruence classes can be written in the form $ax^2 + bx + c$. Because $a, b, c \in \mathbb{Z}_3$, each coefficient can only be either 0, 1, or 2. And because there are a total of 3 terms, that can only be one of 3 choices, the amount of combinations is $3^3 = 27$.

Problem 5.1.5: Show that there are infinitely many distinct congruence classes modulo $x^2 - 2$ in $\mathbb{Q}[x]$. Describe them.

All distinct congruence classes can be written in the form ax + b. Because $a, b \in \mathbb{Q}$, there are infinitely many choices that a and b can be, meaning there will be infinitely many distinct congruence classes

Problem 5.1.10: Prove or disprove: If p(x) is irreducible in F[x] and $f(x)g(x) \equiv 0_F \pmod{p(x)}$, then $f(x) \equiv 0_F \pmod{p(x)}$ or $g(x) \equiv 0_F \pmod{p(x)}$.

Notice the following:

Solution 5.1.10.
$$f(x)g(x) \equiv 0_F \pmod{p(x)} \rightarrow p(x)|f(x)g(x)$$

Because p(x) is irreducible, the only factors are its associates and nonzero constants.

If
$$(p(x), f(x)) = c$$
, then that makes $f(x) = cq(x)$, with $p(x) \nmid q(x)$. So then we have $p(x)|cq(x)g(x)$. Because $p(x) \nmid q(x)$, then $p(x)|cg(x)$. Meaning that $g(x) \equiv 0_F \pmod{p(x)}$.

If
$$(p(x), f(x)) = cp(x)$$
, then that makes $f(x) = cp(x)q(x)$. That means that $f(x) \equiv 0_F \pmod{p(x)}$.

4

Problem 5.1.12: If f(x) is relatively prime to p(x), prove that there is a polynomial $g(x) \in F[x]$ such that $f(x)g(x) \equiv 1_F \pmod{p(x)}$.

Because f(x) is relatively prime to p(x), notice that for some $g(x), u(x) \in F[x]$:

$$f(x)g(x) + p(x)u(x) = 1_F$$

 $f(x)g(x) - 1_F = p(x)(-u(x))$

The result is the same as $f(x)g(x) \equiv 1_F \pmod{p(x)}$ by definition of polynomial modulo.

Problem 5.2.1: Write out the addition and multiplication tables for the congruence class ring F[x]/p(x). In each case, is F[x]/p(x) a field?

$$F = \mathbb{Z}_2, \ p(x) = x^3 + x + 1$$

+	0	1	x	x + 1	x^2	$x^{2} + x$	$x^{2} + 1$	$x^2 + x + 1$	
0	0	1	x	x+1	x^2	$x^2 + x$		$x^2 + x + 1$	
1	1	0	x+1	x	$x^2 + 1$	$x^2 + x + 1$	x^2	$x^{2} + x$	
x	x	x+1	0	1	$x^{2} + x$	x^2	$x^2 + x + 1$	$x^2 + 1$	
x+1	x+1	x	1	0	$x^2 + x + 1$	$x^2 + 1$	$x^{2} + x$	x^2	
x^2	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$	0	x	1	x+1	
$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^{2} + 1$	x	0	x+1	1	
$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^{2} + x$	1	x+1	0	x	
$x^2 + x + 1$	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x^2	x+1	1	x	0	
	1								
×	0 1	x	x	: + 1	x^2	$x^2 + x$		$x^2 + 1$	$x^2 + x$

×	0	1	x	x+1	x^2	$x^{2} + x$	$x^2 + 1$	$x^2 + x + 1$
0	0	0	0	0	0	0	0	0
1	0	1	x	x+1	x^2	$x^{2} + x$	$x^2 + 1$	$x^2 + x + 1$
x	0	x	x^2	$x^{2} + x$	x^3	$x^3 + x^2$	$x^3 + x$	$x^3 + x^2 + x$
x+1	0	x+1	$x^{2} + x$	$x^2 + 1$	$x^3 + x^2$	$x^3 + x$	$x^3 + x^2 + x + 1$	$x^{3} + 1$
x^2	0	x^2	x^3	$x^3 + x^2$	x^4	$x^4 + x^3$	$x^4 + x^2$	$x^4 + x^3 + x^2$
$x^{2} + x$	0	$x^{2} + x$	$x^3 + x^2$	$x^{3} + x$	$x^4 + x^3$	$x^4 + x^2$	$x^4 + x^3 + x^2 + x$	$x^{4} + x$
$x^2 + 1$	0	$x^{2} + 1$	$x^3 + x$	$x^3 + x^2 + x + 1$	$x^4 + x^2$	$x^4 + x^3 + x^2 + x$	$x^4 + 1$	$x^4 + x^3 + x + 1$
$x^2 + x + 1$	0	$x^2 + x + 1$	$x^3 + x^2 + x$	$x^{3} + 1$	$x^4 + x^3 + x^2$	$x^4 + 1$	$x^4 + x^3 + x + 1$	$x^4 + x^2 + 1$

This is not a field because not every nonzero element has a multiplicative inverse.

Problem 5.2.7: Determine the rules for addition and multiplication of congruence classes. (In other words, if the product [ax + b][cx + d] is the class [rx + s], describe how to find r and s from a, b, c, d, and similarly for addition.)

$$\mathbb{Q}[x]/(x^2-3)$$
.

Notice: $[x^2] = [3]$, for multiplication:

$$(ax + b)(cx + d) = acx^{2} + adx + bcx + bd$$
$$= 3ac + adx + bcx + bd$$
$$= (ad + bc)x + (3ac + bd)$$

So we get

$$r = ad + bc$$
 $s = 3ac + bd$

Notice for addition:

$$(ax + b) + (cx + d) = (a + c)x + (b + d)$$

So we get

$$r = a + c$$
 $s = b + d$

Problem 5.2.8: Determine the rules for addition and multiplication of congruence classes. (In other words, if the product [ax + b][cx + d] is the class [rx + s], describe how to find r and s from a, b, c, d, and similarly for addition.)

 $\mathbb{Q}[x]/(x^2)$.

Notice: $[x^2] = [0]$, for multiplication:

$$(ax + b)(cx + d) = acx^{2} + adx + bcx + bd$$
$$= adx + bcx + bd$$
$$= (ad + bc)x + (bd)$$

So we get

$$r = ad + bc$$
 $s = bd$

We can also see that because $[x^2] = [0]$, then [x] = [0]. So we can write the product as just bd, where:

$$r = 0$$
 $s = bd$

Notice for addition:

$$(ax + b) + (cx + d) = (a + c)x + (b + d)$$

So we get

$$r = a + c$$
 $s = b + d$

We can also see that because $[x^2] = [0]$, then [x] = [0]. So we can write the sum as just b + d, where:

$$r = 0 s = b + d$$