1

Fourier Series

EE3900: Linear Systems and Signal Processing Indian Institute of Technology Hyderabad

Pradeep Mundlik AI21BTECH11022

1. Periodic Function

Let

$$x(t) = A_0 |\sin(2\pi f_0 t)| \tag{1.1}$$

1.1 Plot x(t)

Solution: Download the following Python code that plots Fig. 1.1.

Run the code by executing

python 1.1.py

Fig. 1.1. Plot of x(t)

1.2 Show that x(t) is periodic and find its period **Solution:** Since x(t) is the absolute value of a sinusoidal function, it is periodic, which is also evident from the plot

Consider $x(t + \frac{1}{2f_0})$

$$x\left(t + \frac{1}{2f_0}\right) = A_0 \left| \sin\left(2\pi f_0 \left(t + \frac{1}{2f_0}\right)\right) \right|$$
 (1.2)

$$= A_0 \left| \sin \left(2\pi f_0 t + \pi f_0 \right) \right| \tag{1.3}$$

$$= A_0 \left| (-1)^{f_0} \sin \left(2\pi f_0 t \right) \right| \tag{1.4}$$

$$= A_0 |\sin(2\pi f_0 t)| \tag{1.5}$$

$$= x(t) \tag{1.6}$$

Therefore, x(t) is periodic with period $\frac{1}{2f_0}$

2. Fourier Series

Consider $A_0 = 12$ and $f_0 = 50$ for all numerical calculations

2.1 If

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k f_0 t}$$
 (2.1)

show that

$$c_k = f_0 \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} x(t)e^{-j2\pi k f_0 t} dt$$
 (2.2)

Solution:

$$x(t)e^{-j2\pi nf_0t} = \sum_{k=-\infty}^{\infty} c_k e^{-j2\pi(n-k)f_0t}$$

$$(2.3)$$

$$\implies \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} x(t)e^{-j2\pi nf_0t} dt = \sum_{k=-\infty}^{\infty} c_k \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} e^{-j2\pi(n-k)f_0t} dt$$

But

$$\int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} e^{-j2\pi(n-k)f_0t} dt = \begin{cases} \frac{1}{f_0} & k = n\\ 0 & k \neq n \end{cases}$$

$$= \frac{1}{f_0} \delta(n-k)$$
(2.5)

$$\sum_{k=-\infty}^{\infty} c_k \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} e^{-J2\pi(n-k)f_0 t} dt = \sum_{k=-\infty}^{\infty} c_k \frac{1}{f_0} \delta(n-k)$$

$$= \frac{1}{f_0} c_n * \delta(n) \quad (2.8)$$

$$= \frac{1}{f_0} c_n \quad (2.9)$$

Therefore

$$c_k = f_0 \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} x(t)e^{-J^2\pi k f_0 t} dt$$
 (2.10)

2.2 Find c_k for (1.1)

Solution:

$$c_k = f_0 \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} A_0 \left| \sin \left(2\pi f_0 t \right) \right| e^{-J2\pi k f_0 t} dt \quad (2.11)$$

$$c_k = f_0 \int_{-\frac{1}{2f_0}}^0 A_0 \left(-\sin\left(2\pi f_0 t\right) \right) e^{-J2\pi k f_0 t} dt$$
$$+ f_0 \int_0^{\frac{1}{2f_0}} A_0 \left(\sin\left(2\pi f_0 t\right) \right) e^{-J2\pi k f_0 t} dt \quad (2.12)$$

$$c_k = f_0 \int_0^{\frac{1}{2f_0}} A_0 \sin(2\pi f_0 u) e^{j2\pi k f_0 u} dt + f_0 \int_0^{\frac{1}{2f_0}} A_0 \sin(2\pi f_0 t) e^{-j2\pi k f_0 t} dt$$
 (2.13)

$$c_k = f_0 \int_0^{\frac{1}{2f_0}} A_0 \sin(2\pi f_0 t) \left(e^{j2\pi k f_0 t} + e^{-j2\pi k f_0 t} \right) dt$$
(2.14)

$$= f_0 A_0 \int_0^{\frac{1}{2f_0}} 2\sin(2\pi f_0 t) \cos(2\pi k f_0 t) dt$$
(2.15)

Therefore

$$c_k = \begin{cases} \frac{2A_0}{\pi(1-k^2)} & k \text{ is even} \\ 0 & k \text{ is odd} \end{cases}$$
 (2.21)

2.3 Verify (1.1) using Python

Solution: Download the following Python code that plots Fig. 2.3.

Run the code by executing

python 2.3.py

Fig. 2.3. Plot of x(t) along with its complex Fourier series expansion

2.4 Show that

$$x(t) = \sum_{k=0}^{\infty} (a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t))$$
(2.22)

and obtain the formulae for a_k and b_k Solution:

$$= f_0 A_0 \int_0^{\frac{1}{2f_0}} \left\{ \sin\left(2\pi(1+k)f_0t\right) + \sin\left(2\pi(1-k)f_0t\right) \right\} \, \mathrm{d}t_{x(t)} = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k f_0 t}$$
(2.23)

$$= f_0 A_0 \left[-\frac{\cos(2\pi(1+k)f_0t)}{2\pi(1+k)f_0} - \frac{\cos(2\pi(1-k)f_0t)}{2\pi(1-k)f_0} \right]_0^{\frac{1}{2f_0}} = c_0 + \sum_{k=1}^{\infty} c_k e^{j2\pi k f_0t} + c_{-k} e^{-j2\pi k f_0t}$$
(2.24)

$$= \frac{f_0 A_0}{2\pi f_0} \left[\frac{1 - (-1)^{1+k}}{1+k} + \frac{1 - (-1)^{1-k}}{1-k} \right]$$
(2.18)
$$= \left(1 + (-1)^k \right) \frac{A_0}{2\pi} \left[\frac{1}{1+k} + \frac{1}{1-k} \right]$$
(2.19)
$$= \left(1 + (-1)^k \right) \frac{A_0}{\pi (1-k^2)}$$
(2.20)

$$x(t) = c_0 + \sum_{k=1}^{\infty} (c_k + c_{-k}) \cos(2\pi k f_0 t)$$
$$+ \sum_{k=1}^{\infty} J(c_k - c_{-k}) \sin(2\pi k f_0 t) \quad (2.25)$$

Therefore

$$a_k = \begin{cases} c_0 & k = 0 \\ c_k + c_{-k} & k > 0 \end{cases}$$
 (2.26)

$$b_k = j(c_k - c_{-k}) \quad k \ge 0 \tag{2.27}$$

2.5 Find a_k and b_k for (1.1)

Solution:

$$a_0 = c_0 = \frac{2A_0}{\pi} \tag{2.28}$$

For k > 0, if k is odd

$$a_k = 0 + 0 = 0 (2.29)$$

and if k is even

$$a_k = \frac{2A_0}{\pi(1 - k^2)} + \frac{2A_0}{\pi(1 - k^2)} = \frac{4A_0}{\pi(1 - k^2)}$$
(2.30)

For odd or even k, $c_k = c_{-k}$ always

$$b_k = 0 \quad \forall k \ge 0 \tag{2.31}$$

Therefore

$$a_{k} = \begin{cases} \frac{2A_{0}}{\pi} & k = 0\\ \frac{4A_{0}}{\pi(1-k^{2})} & k = 2m, m \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$
 (2.32)

$$b_k = 0 \qquad k \ge 0 \tag{2.33}$$

2.6 Verify (2.22) using Python

Solution: Download the following Python code that plots Fig. 2.6.

Run the code by executing

python 2.6.py

3. Fourier Transform

3.1

$$\delta(t) = 0 \qquad t \neq 0 \tag{3.1}$$

$$\int_{-\infty}^{\infty} \delta(t) dt = 1 \tag{3.2}$$

3.2 The Fourier Transform of g(t) is

$$G(f) = \int_{-\infty}^{\infty} g(t)e^{-j2\pi ft} dt \qquad (3.3)$$

3.3 Show that

$$g(t-t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} G(f)e^{-j2\pi ft_0}$$
 (3.4)

Fig. 2.6. Plot of x(t) along with its Fourier series expansion

Fig. 2.6. Comparison of the Fourier series of x(t)

Solution:

$$g(t - t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} \int_{-\infty}^{\infty} g(t - t_0) e^{-j2\pi f t} dt \qquad (3.5)$$
$$= \int_{-\infty}^{\infty} g(u) e^{-j2\pi f(u + t_0)} du \qquad (3.6)$$

$$=e^{-j2\pi f t_0} \int_{-\infty}^{\infty} g(u)e^{-j2\pi f u} \, du \quad (3.7)$$

$$=G(f)e^{-j2\pi ft_0} (3.8)$$

3.4 Show that

$$G(t) \stackrel{\mathcal{F}}{\longleftrightarrow} g(-f)$$
 (3.9)

Solution:

$$G(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \int_{-\infty}^{\infty} G(t)e^{-j2\pi ft} dt$$
 (3.10)

But

$$g(t) = \int_{-\infty}^{\infty} G(f)e^{j2\pi ft} \,\mathrm{d}f \qquad (3.11)$$

$$= \int_{-\infty}^{\infty} G(u)e^{j2\pi ut} du \qquad (3.12)$$

$$\implies g(-f) = \int_{-\infty}^{\infty} G(u)e^{-j2\pi uf} du \qquad (3.13)$$

$$= \mathcal{F}\left\{G(t)\right\} \tag{3.14}$$

3.5 Find the Fourier transform of $\delta(t)$ **Solution:**

$$\delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \int_{-\infty}^{\infty} \delta(t) e^{-j2\pi f t} \, \mathrm{d}t \tag{3.15}$$

$$= e^{-j2\pi ft} \Big|_{t=0}$$
 (3.16)
=1 (3.17)

$$=1 \tag{3.17}$$

3.6 Find the Fourier transform of $e^{-J2\pi f_0 t}$ **Solution:**

$$\delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 1$$
 (3.18)

$$\implies \delta(t - f_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j2\pi f f_0} \tag{3.19}$$

$$\implies e^{-j2\pi t f_0} \stackrel{\mathcal{F}}{\longleftrightarrow} \delta(-f - f_0) \tag{3.20}$$

$$\therefore e^{-j2\pi t f_0} \stackrel{\mathcal{F}}{\longleftrightarrow} \delta(f + f_0) \tag{3.21}$$

3.7 Find the Fourier transform of $\cos(2\pi f_0 t)$ **Solution:**

$$\cos(2\pi f_0 t) = \frac{e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}}{2}$$
 (3.22)

$$\implies \cos(2\pi f_0 t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{\delta(f - f_0) + \delta(f + f_0)}{2}$$
(3.23)

3.8 Find the Fourier transform of x(t) and plot it. Verify using Python

Solution:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k f_0 t}$$
 (3.24)

$$\mathcal{F}\left\{x(t)\right\} = \sum_{k=-\infty}^{\infty} c_k \mathcal{F}\left\{e^{j2\pi k f_0 t}\right\}$$
 (3.25)

$$=\sum_{k=-\infty}^{\infty}c_k\delta(f-kf_0)$$
 (3.26)

$$= \frac{2A_0}{\pi} \sum_{k \text{ is even}} \frac{\delta(f - kf_0)}{1 - k^2}$$
 (3.27)