MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (Malleability of Schnorr identification scheme). The Schnorr identification scheme is directly based on the discrete logarithm problem. The identification scheme is a honest verifier zero-knowledge proof that the prover knows x such that $g^x = y$ in a group \mathbb{G} of size q. The protocol itself is following.

Show that if an honest t-time prover \mathcal{P}^* that can convince the honest verifier with probability ε on average over all $y \in \mathbb{G}$ can also solve the discrete logarithm problem well enough.

Solution. Consider a modified prover \mathcal{P}^{**} that re-randomises the statement to be proven. That is it gets a statement $\text{POK}_y[\exists x:g^x=y]$ and then asks \mathcal{P}^* to prove $\text{POK}_{y'}[\exists x':g^{x'}=y']$ for $y'=yg^{\delta}$. Show how it can use the repies of \mathcal{P}^* to pass $\text{POK}_y[\exists x:g^x=y]$. What does this mean on the success rate of \mathcal{P}^{**} – can there be more successful statements.