Таблица значений тригонометрических функций:

		Аргумент а															
Функция	0	$\frac{\pi}{6}$ 30°	$\frac{\pi}{4}$ 45°	$\frac{\pi}{3}$ 60°	$\frac{\pi}{2}$ 90°	$\begin{array}{ c c }\hline 2\pi\\\hline 3\\120^{\circ}\end{array}$	$\frac{3\pi}{4}$ 135°	$\frac{5\pi}{6}$ 150°	π 180°	$\frac{7\pi}{6}$ 210°	$\frac{5\pi}{4}$ 225°	$\frac{4\pi}{3}$ 240°	$\frac{3\pi}{2}$ 270°	$\frac{5\pi}{3}$ 300°	$\frac{7\pi}{4}$ 315°	$\frac{11\pi}{6}$ 330°	2π 360°
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$tg\alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	ı	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0
ctglpha		$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	-	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	_

Запоминать эти значения без необходимости не нужно, но полезно знать, что:

$$\sin 0 = 0$$
, $\sin \frac{\pi}{2} = 1$, $\cos 0 = 1$, $\cos \frac{\pi}{2} = 0$

Это ускорит решение заданий.

Также время от времени требуются формулы по переводу градусов в радианы, и наоборот:

- 1) Радианы переводятся в градусы по формуле: $\alpha_{\it ppad} = \alpha_{\it pad} \cdot \frac{180}{\pi}$. Например, переведём в градусы $\alpha_{\it pad} = \frac{\pi}{6}$: $\alpha_{\it ppad} = \frac{\pi}{6} \cdot \frac{180}{\pi} = 30^\circ$
- 2) Градусы переводятся в радианы по формуле: $\alpha_{\it pad} = \frac{\alpha_{\it cpad} \cdot \pi}{180}$. Например, переведём в радианы $\alpha_{\it cpad} = 60^{\circ}$: $\alpha_{\it pad} = \frac{60 \cdot \pi}{180} = \frac{\pi}{3} \; pad$.

Таблица значений обратных тригонометрических функций:

	Аргумент $lpha$													
Функция	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{3}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\sqrt{3}$	
rcsin lpha	_	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	Бяка	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	Бяка	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	_	
$\arccos \alpha$	_	π	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	Бяка	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	Бяка	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0	_	
arctgα	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	Бяка	Бяка	$-\frac{\pi}{6}$	Бяка	0	Бяка	$\frac{\pi}{6}$	Бяка	Бяка	$\frac{\pi}{4}$	$\frac{\pi}{3}$	
arcctgα	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	Бяка	Бяка	$\frac{2\pi}{3}$	Бяка	$\frac{\pi}{2}$	Бяка	$\frac{\pi}{3}$	Бяка	Бяка	$\frac{\pi}{4}$	$\frac{\pi}{6}$	

Полезно ознакомиться с графиками и основными свойствами тригонометрических функций и обратных тригонометрических функций. Читайте последние параграфы методического материала http://mathprofi.ru/grafiki_i_svoistva_funkcij.html

Формулы приведения:

Функция	Аргумент α												
	$\frac{\pi}{2}$ – α	$\frac{\pi}{2} + \alpha$	$\pi - \alpha$	$\pi + \alpha$	$\frac{3\pi}{2}$ – α	$\frac{3\pi}{2} + \alpha$	$2\pi-\alpha$	$2\pi + \alpha$					
$\sin \alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$	$-\cos\alpha$	$-\sin \alpha$	$\sin \alpha$					
$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos\alpha$	$-\cos\alpha$	$-\sin\alpha$	$\sin \alpha$	$\cos \alpha$	$\cos \alpha$					
$tg\alpha$	$ctg\alpha$	$-ctg\alpha$	$-tg\alpha$	$tg\alpha$	$ctg\alpha$	$-ctg\alpha$	$-tg\alpha$	$tg\alpha$					
$ctg\alpha$	$tg\alpha$	$-tg\alpha$	$-ctg\alpha$	$ctg\alpha$	tgα	$-tg\alpha$	$-ctg\alpha$	$ctg\alpha$					

Пример на всякий случай:
$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos \alpha$$

Иногда приходится заглядывать, чаще всего, для того, чтобы упростить предел