Clase nº36

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

29 de Noviembre 2021

Objetivo de la clase

► Conocer y utilizar criterios de convergencia de series.

Teorema 27: Criterio de D'Alembert o de la razón o del cuociente

Si

$$\rho = \lim_{n \to +\infty} \frac{a_{n+1}}{a_n},$$

entonces la serie de términos positivos,

$$\sum_{n=1}^{+\infty} a_n$$
 es $\left\{ egin{array}{ll} \mbox{convergente si} &
ho < 1, \ \mbox{divergente si} &
ho > 1, \ \mbox{no se puede concluir nada si} &
ho = 1. \end{array}
ight.$

Ejemplo 33

Determinar si la siguiente serie converge

$$\sum_{n=1}^{+\infty} \frac{(n+1)(n+2)}{n!}.$$

Teorema 28: Criterio de la raíz o de Cauchy

Si

$$\rho = \lim_{n \to +\infty} (a_n)^{\frac{1}{n}},$$

entonces la serie de términos positivos,

$$\sum_{n=1}^{+\infty} a_n \text{ es } \begin{cases} & \textit{convergente si} & \rho < 1, \\ & \textit{divergente si} & \rho > 1, \\ & \textit{no se puede concluir nada si} & \rho = 1. \end{cases}$$

Ejemplo 34

Determine si la siguiente serie es convergente o divergente

$$\sum_{n=1}^{+\infty} 2^n$$

Ejemplo 35

Determine si la siguiente serie es convergente o divergente

$$\sum_{n=1}^{+\infty} 2^{-n}$$

Series de términos alternados

Definición 29

Si a_n es positivo para cada n, la serie $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ se llama serie alternada.

Observación

Como el comportamiento de una serie no cambia si se modifica un número finito de términos, podemos tener series alternadas de la forma

$$\sum (-1)^n a_n \quad o \quad \sum (-1)^{n-1} a_n,$$

siendo $a_n > 0$. También, se puede considerar series alternadas donde el índice toma un valor inicial $n = n_0$.

Series de términos alternados

Teorema 30: Criterio de Leibniz

Si la sucesión $\{a_n\}$ es una sucesión decreciente que converge a cero, entonces la serie alternada $\sum_{n=1}^{+\infty} (-1)^{n+1} a_n$ converge. Además, si S denota la suma y S_n es su enésima suma parcial, se tiene la desigualdad $0<(-1)^n(S-S_n)< a_{n+1}$.

Ejemplo 36

Determine si la siguiente serie es convergente o divergente

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$$

Definición 31

Diremos que la serie $\sum_{n=1}^{\infty} a_n$ converge absolutamente si la serie

$$\sum_{n=1}^{+\infty} |a_n|$$

converge.

➤ Si una serie converge y la serie de sus valores absolutos diverge, diremos que es **condicionalmente convergente**.

Ejemplo 37

Del ejemplo 36 tenemos que

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$$

es convergente. Pero la serie

$$\sum_{n=1}^{+\infty} \left| \frac{(-1)^{n+1}}{n} \right| = \sum_{n=1}^{+\infty} \frac{1}{n}$$

es divergente. (ver ejemplo 27)

Ejemplo 37

Luego,

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$$

es condicionalmente convergente

Ejemplo 38

Por criterio de Leibniz la serie

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^2}$$

es convergente. Además, la serie

$$\sum_{n=1}^{+\infty} \left| \frac{(-1)^{n+1}}{n^2} \right| = \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

es convergente (ver ejemplo 30).

Ejemplo 38

Por lo tanto,

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^2}$$

converge absolutamente.

Ejemplo 39

La serie alternada

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p} \ \ es \ \ \left\{ \begin{array}{cc} absolutamente \ convergente \ si \ & p>1 \\ condicionalmente \ convergente \ si \ & 0$$

Teorema 32

Si
$$\sum_{n=1}^{+\infty} |a_n|$$
 converge, entonces la serie $\sum_{n=0}^{+\infty} a_n$ converge.

Observación

Para demostrar que una serie converge absolutamente podemos utilizar los criterios que se vieron para la convergencia de series de términos positivos. Además se puede ocupar otros criterios (investigar):

- Criterio de Abel.
- Criterio de Dirichlet.

Observación

- La convergencia absoluta de una serie implica la convergencia a la misma suma de cualquier arreglo entre los términos de la serie.
- Si la serie sólo converge condicionalmente, siempre existe un arreglo de sus términos de modo que la suma del arreglo converge a un número dado a priori (Investigar Teorema de Riemann).

Series de funciones

Series de funciones

Definición 33

Para cada $n \in \mathbb{N}$ sea $f_n : [a, b] \to \mathbb{R}$ una función real. Diremos que la sucesión de funciones $\{f_n\}$ converge puntualmente o **simplemente** a la función f si para cada $x \in [a, b]$ y cada $\epsilon > 0$,

Existe $N_0 \in \mathbb{N}$, $N_0 = N_0(\epsilon, x)$, tal que

$$|f_n(x) - f(x)| < \epsilon$$
 para $n \ge N_0(\epsilon, x)$.

Series de funciones

Ejemplo 40

Consideremos la sucesión de funciones $\{f_n\}$, donde cada $f_n: [0,1] \to \mathbb{R}$ está dada por $f_n(x) = x^n$. Sea $f: [0,1] \to \mathbb{R}$, la función definida por f(x) = 0 si $0 \le x < 1$ y f(1) = 1. Mostrar que la sucesión $\{f_n\}$ converge puntualmente a la función f.

Ejercicio propuesto

c) $\sum_{n=1}^{+\infty} \frac{1}{(1+\sqrt{n})}.$

Utilizando los criterios vistos, determine si la siguiente serie es convergente o divergente:

a)
$$\sum_{n=1}^{+\infty} \frac{n}{n^2 + 1}$$
. d) $\sum_{n=1}^{+\infty} \frac{5}{(n^3 + 1)^{5/3}}$

a)
$$\sum_{n=1}^{+\infty} \frac{n}{n^2 + 1}$$
.
b) $\sum_{n=1}^{+\infty} \frac{1}{n \ln n}$.
d) $\sum_{n=1}^{+\infty} \frac{5}{(n^3 + 1)^{5/3}}$
e) $\sum_{n=1}^{+\infty} \frac{\sqrt{n}}{n + 1}$.

a)
$$\sum_{n=1}^{+\infty} \frac{n}{n^2+1}$$
. d) $\sum_{n=1}^{+\infty} \frac{5}{(n^3+1)^{5/3}}$

f) $\sum_{n=0}^{+\infty} \frac{(-1)^n}{\ln n}.$

Ejercicio propuesto

```
\sum_{n=1}^{+\infty} \frac{n}{n^2 + 1}
```

utilizando el Criterio de D'Alembert?

Bibliografía

	Autor	Título	Editorial	Año
1	Stewart, James	Cálculo de varias variables:	México: Cengage	2021
		trascendentes tempranas	Learning	
2	Burgos Román,	Cálculo infinitesimal	Madrid: McGraw-	1994
	Juan de	de una variable	Hill	
3	Zill Dennis G.	Ecuaciones Diferenciales	Thomson	2007
		con Aplicaciones	THOMSON	2001
4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

Puede encontrar bibliografía complementaria en el programa.