WERYFIKACJA HIPOTEZ STATYSTYCZNYCH METODA BOOTSTRAP I TESTY PERMUTACYJNE

WARTOŚĆ PRZECIĘTNA METODĄ BOOTSTRAP

Etap 1: Sformułowanie hipotezy zerowej H₀ i hipotezy alternatywnej H₁

$$H_0$$
: $\mu = \mu_0$
 H_1 : $\mu \neq \mu_0$ lub H_1 : $\mu < \mu_0$ lub H_1 : $\mu > \mu_0$

Etap 2: Wybór odpowiedniej statystyki testowej związanej z hipotezą zerową

$$m = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Etap 3: Obliczenie wartości wybranej statystyki testowej na podstawie wyników uzyskanych z próby

Etap 4: Ustalenie poziomu istotności α

 α – z treści zadania

Etap 5: Wyznaczenie obszaru krytycznego testu istotności

Schemat obliczeń:

- 1. Na podstawie próby losowej o rozmiarze n pobranej z populacji generalnej tworzymy "populację bootstrapową" jako kopię wartości z próby przeliczonych w taki sposób, by "populacja" idealnie spełniała hipotezę zerową. W tym celu do wszystkich wartości w stworzonej kopii próby dodajemy różnicę wartości oczekiwanej założonej w hipotezie zerowej oraz wartości oczekiwanej wyliczonej na podstawie oryginalnej próby losowej tak, aby wartość oczekiwana "populacji bootstrapowej" wynosiła μ_0 .
- 2. Na podstawie "populacji bootstrapowej" dokonujemy losowania prostego ze zwracaniem d prób bootstrapowych o rozmiarze n. Na podstawie każdej z prób wyliczamy wartość estymowanego parametru wartości oczekiwanej m_i .
- 3. Wyliczamy wartość *pvalue* jako frakcję prób boostrapowych, z których otrzymaliśmy bardziej ekstremalne wartości estymowanego parametru (w kierunku hipotezy alternatywnej) względem wartości *m* otrzymanej na podstawie oryginalnej próby losowej.

Etap 6: Podjęcie decyzji weryfikującej

Odrzucenie H₀ na rzecz H₁ następuje gdy:

 $pvalue \leq \alpha$

Wynik testu istotności nie daje podstaw do odrzucenia H₀ gdy:

 $pvalue > \alpha$

DWIE WARTOŚCI PRZECIĘTNE METODĄ BOOTSTRAP

Etap 1: Sformulowanie hipotezy zerowej H₀ i hipotezy alternatywnej H₁

Etap 2: Wybór odpowiedniej statystyki testowej związanej z hipotezą zerową

$$\Delta m = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i - \frac{1}{n_2} \sum_{i=1}^{n_2} y_i$$

Etap 3: Obliczenie wartości wybranej statystyki testowej na podstawie wyników uzyskanych z próby

Etap 4: Ustalenie poziomu istotności α

α – z treści zadania

Etap 5: Wyznaczenie obszaru krytycznego testu istotności

Schemat obliczeń:

- 1. Łączymy dwie próby losowe o rozmiarach n_1 i n_2 w "populację bootstrapową" o rozmiarze $n=n_1+n_2$.
- 2. Na podstawie "populacji bootstrapowej" dokonujemy losowania prostego ze zwracaniem d par prób bootstrapowych o rozmiarach n_1 i n_2 . Dla każdej z par prób bootstrapowych wyliczamy wartość estymowanego parametru różnicę między wartościami oczekiwanymi tych prób Δm_i .
- 3. Wyliczamy wartość *pvalue* jako frakcję par prób boostrapowych, z których otrzymaliśmy bardziej ekstremalne wartości estymowanego parametru (w kierunku hipotezy alternatywnej) względem wartości Δm otrzymanej na podstawie oryginalnej próby losowej.

Etap 6: Podjęcie decyzji weryfikującej

Odrzucenie H₀ na rzecz H₁ następuje gdy:

 $pvalue \leq \alpha$

Wynik testu istotności nie daje podstaw do odrzucenia H₀ gdy:

 $pvalue > \alpha$

DWIE WARTOŚCI PRZECIĘTNE METODĄ TESTU PERMUTACYJNEGO

Etap 1: Sformułowanie hipotezy zerowej H₀ i hipotezy alternatywnej H₁

$$H_0\colon \mu_1=\mu_2$$

$$H_1\colon \mu_1\neq \mu_2 \quad \text{lub} \quad H_1\colon \mu_1<\mu_2 \quad \text{lub} \quad H_1\colon \mu_1>\mu_2$$

Etap 2: Wybór odpowiedniej statystyki testowej związanej z hipotezą zerową

$$\Delta m = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i - \frac{1}{n_2} \sum_{i=1}^{n_2} y_i$$

Etap 3: Obliczenie wartości wybranej statystyki testowej na podstawie wyników uzyskanych z próby

Etap 4: Ustalenie poziomu istotności α

α – z treści zadania

Etap 5: Wyznaczenie obszaru krytycznego testu istotności

Schemat obliczeń:

- 1. Łączymy dwie próby losowe o rozmiarach n_1 i n_2 w "populację" o rozmiarze $n = n_1 + n_2$.
- 2. Na podstawie "populacji" dokonujemy losowania prostego ze zwracaniem d par prób o rozmiarach n_1 i n_2 (losujemy bez zwracania elementy, które mają trafić do pierwszej próby, a pozostałe trafiają do drugiej próby). Dla każdej z par prób wyliczamy wartość estymowanego parametru różnicę między wartościami oczekiwanymi tych prób Δm_i .
- 3. Wyliczamy wartość *pvalue* jako frakcję par prób, z których otrzymaliśmy bardziej ekstremalne wartości estymowanego parametru (w kierunku hipotezy alternatywnej) względem wartości Δm otrzymanej na podstawie oryginalnej próby losowej.

Etap 6: Podjęcie decyzji weryfikującej

Odrzucenie H₀ na rzecz H₁ następuje gdy:

$$pvalue \leq \alpha$$

Wynik testu istotności nie daje podstaw do odrzucenia H₀ gdy:

$$pvalue > \alpha$$