1

12.10.6

EE23BTECH11040-MANOJ KUMAR AMBATIPUDI*

Question:

A beam of light consisting of two wavelengths, 650 nm and 520 nm, is used to obtain interference fringes in a Young's double-slit experiment.

- (a) Find the distance of the third bright fringe on the screen from the central maximum for wavelength 650 nm.
- (b) What is the least distance from the central maximum where the bright fringes due to both the wavelengths coincide?

Solution:

Let the wave equations of the 2 waves coming to interfere be

$$y_1 = A_1 \sin(2\pi f_1 t) + A_2 \sin(s\pi f_2 t) \tag{1}$$

$$y_2 = A_1 \sin(2\pi f_1 t + \phi_1) + A_2 \sin(2\pi f_2 t + \phi_2)$$
 (2)

Where A_1 and A_2 are amplitudes of waves and f_c is the frequency of the waves. Using principle of superposition, we get

$$y = y_1 + y_2 (3)$$

where y is the resultant wave and y_1,y_2 are initial waves.

$$y = A_1(\sin(2\pi f_1 t) + \sin(2\pi f_1 t + \phi_1)) + \tag{4}$$

$$A_2(\sin(2\pi f_2 t) + \sin(2\pi f_2 t + \phi_2)) \tag{5}$$

using

$$sin(c) + sin(d) = 2sin(\frac{c+d}{2})cos(\frac{c-d}{2})$$
 (6)

we get

$$y = 2A_1 sin(2\pi f_1 t + \frac{\phi_1}{2})cos(\frac{\phi_1}{2}) + \tag{7}$$

$$2A_2 \sin(2\pi f_2 t + \frac{\phi_2}{2})\cos(\frac{\phi_2}{2})$$
 (8)

Now for constructive interference to happen,

$$cos(\frac{\phi_1}{2}) = +/-1$$
 and $cos(\frac{\phi_2}{2}) = +/-1$

$$\implies \phi_1 = 2n_1\pi \text{ and } \phi_2 = 2n_2\pi$$
 (9)

Equation (9) is the condition for constructive Interference.

Now we will derive the condition for constructive interference in a YDSE setup where the light waves due to both the sources coincide.

The path difference suffered by 2 waves due to corresponding phase difference is given by,

$$\Delta x_1 = \frac{\lambda_1}{2\pi} 2n_1 \pi = n_1 \lambda \tag{10}$$

$$\Delta x_2 = \frac{\lambda_2}{2\pi} 2n_2 \pi = n_2 \lambda \tag{11}$$

In a YDSE setup, the 2 sources are seperated by a distance "d", the distance between screen and mid point of sources is "D" and θ_1 is the angle made by point of interest with horizontal line. The path difference between the 2 waves interfereing at the point of interest is given by

$$\Delta x_1 = d\sin(\theta_1) \tag{12}$$

$$\Delta x_2 = d\sin(\theta_2) \tag{13}$$

Now, from (12) and (13), we can write,

$$dsin(\theta_1) = n\lambda_1 \tag{14}$$

$$dsin(\theta_2) = n\lambda_2 \tag{15}$$

Now, for small values of θ_1 and θ_2 , we can approximate

$$sin(\theta_1) = \frac{y_1}{D} \tag{16}$$

$$sin(\theta_2) = \frac{y_2}{D} \tag{17}$$

upon substituting in (14),(15) and rearranging, we get

$$y_1 = n_1 \frac{D\lambda_1}{d} \tag{18}$$

$$y_2 = n_2 \frac{D\lambda_2}{d} \tag{19}$$

Now for interference to happen at same points,

$$y_1 = y_2 \tag{20}$$

$$\implies n_1 \lambda_1 = n_2 \lambda_2$$
 (21)

Now, we shall use the above equations to solve the questions.

(a) Finding the distance of the third bright fringe on the screen from the central maximum for wavelength

$$\lambda_1 = 650 \,\mathrm{nm} \tag{22}$$

The path difference for constructive interference is given by:

$$\Delta x_1 = n_1 \lambda_1 \tag{23}$$

where $n_1 = 3$ for the third bright fringe.

Substitute the values:

$$\Delta x_1 = 3 \times 650 = 1950 \,\mathrm{nm}$$
 (24)

$$y_1 = \Delta x_1 \cdot \frac{D}{d} = 1950 \times \frac{D}{d} \tag{25}$$

Where "D" is the distance of screen from sources, "d" is the distance between sources and " y_1 " is the distance from Central Maxima.

(b) The least distance from the central maximum where the bright fringes due to both wavelengths coincide: Given

$$\lambda_1 = 650 \text{nm}, \lambda_1 = 520 \text{nm}$$

$$n_1 \lambda_1 = n_2 \lambda_2 \tag{26}$$

$$\frac{n_2}{n_1} = \frac{\lambda_1}{\lambda_2} = \frac{650}{520} \tag{27}$$

$$\frac{n_2}{n_1} = \frac{\lambda_1}{\lambda_2} = \frac{650}{520}$$

$$\frac{n_2}{n_1} = \frac{5}{4}$$
(28)

Now we can assume $n_2 = 5k$ and $n_1 = 4k$ where k is some positive integer.

For smallest value of y_1 we shall take k=1.

Path difference $\Delta x_1 = 4 \times 650 = 2600$ nm

Now
$$y_1 = \Delta x_1 \frac{D}{d} = 2600 \frac{D}{d} nm$$

Answer for (b):

Hence, at a least distance of $2600 \times \frac{D}{d}$ nm the bright fringes due to both wavelengths coincide.

Variable	Description	Value
<i>y</i> ₁	Wave Equation of First Wave	none
<i>y</i> ₂	Wave Equation of Second Wave	none
у	Resultant Wave	none
f_c	Frequency of waves	none
A_1	Amplitude of First Wave	none
A_2	Amplitude of Second Wave	none
$\phi_1,\!\phi_2$	Phase Difference(before Interference)	none
I_{net}	Intensity after interference	none
n_1, n_2	Non Negative Integer Values	0,1,2
$\Delta x_1, \Delta x_2$	Path Differences	In soln.
λ_1, λ_2	Wavelengths	650,520
y_1, y_2	Distance between central maxima and point	In soln.
d	distance between the slits	None
D	Distance between Slits and Screen	None
θ_1, θ_2	Angular Distance From Central Maxima	None

TABLE 0 VARIABLES AND THEIR VALUES