Cálculo Numérico Sexta lista de exercícios Prof. Dr. Rogério Galante Negri

1. Com base na Tabela 1:

- a) Calcule $e^{3.1}$ usando um polinômio interpolador sobre três pontos;
- b) Dê um limitante para o erro cometido.
- 2. Com base na Tabela 2, verifique que um polinômio de grau 2 é uma boa escolha para obter o calor específico quando a temperatura é de 32.5°C. Ainda, use interpolação linear para obter o valor de temperatura cujo calor específico é de 0.99837.
- 3. Com base na Tabela 3, calcule um valor aproximado para x tal que $f \circ g(x) = 0.6$, com uso de polinômios interpoladores de segundo grau.
- 4. Sabe-se que a equação $x e^{-x} = 0$ admite raiz no intervalo (0,1). Usando interpolação quadrática, determine o valor desta raiz. Se possível, estime o erro cometido e justifique.
- 5. a) De modo geral, o Código 1 apresenta uma função, escrita de forma recursiva, que implementa o operador de diferenças divididas. Entenda o que tal função faz e crie uma documentação para ela;
 - b) Use a função para construir uma tabela de diferenças divididas a partir dos dados da Tabela 4
 - c) Estime o valor de f(1.23) da melhor forma possível, de modo que o erro cometido possa ser estimado. Justifique o grau do polinômio escolhido.
- 6. Considerando os dados da Tabela 5 e um polinômio interpolador de grau 3, determine x tal que f(x) = 2.3. Justifique a escolha do processo.

Tab. 1: Observações x vs. e^x

x	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8
e^x	11.02	13.46	16.44	20.08	24.53	29.96	36.59	44.70

Tab. 2: Observações sobre Calor específico da água vs. Temperatura (${}^{o}C$)

	-		_	_		_	` /
Temperatura	20	25	30	35	40	45	50
Calor específico	0.99907	0.99852	0.99826	0.99818	0.99828	0.99849	0.99878

Tab. 3: Observações sobre w, f(x), $x \in f(x)$.

w	0.1	0.2	0.4	0.6	0.8	0.9
f(w)	0.905	0.819	0.67	0.549	0.449	0.407
x	1	1.2	1.4	1.7	1.8	
g(x)	0.21	0.32	0.48	0.56	0.78	

Tab. 4: Observações sobre $x \in f(x)$.

			-	1.5	_	_
f(x)	-2.78	-2.241	-1.65	-0.594	1.34	4.564

Tab. 5: Observações sobre $x \in f(x)$.

ſ	x	0.0	0.2	0.4	0.6	0.8	1.0
	f(x)	1.0	1.2408	1.5735	2.0333	2.6965	3.7183

Cod. 1 Função recursiva que implementa o operador "diferença dividida".

```
function d = difDiv(x,f)
%Documentação...?

n = length(x);
if (n == 1)
    d = f(1);
elseif (n > 2)
    d = (difDiv(x(2:n),f(2:n)) - difDiv(x(1:n-1),f(1:n-1)))/(x(n) - x(1));
else
    d = (f(2) - f(1))/(x(2) - x(1));
end
```