Математический анализ 1. Лекции 1 – 2. Приложение 2. Школьные и околошкольные сведения, которые необходимы для успешного прохождения курса

Бином Ньютона

Утверждение

Для любого $n\in\mathbb{N}$ и $x\in\mathbb{R}$ верна формула бинома Ньютона:

$$(x+1)^n = C_n^0 + C_n^1 x^1 + C_n^2 x^2 + \dots + C_n^n x^n = \sum_{m=0}^n C_n^m x^m,$$

где
$$C_n^m = \frac{n!}{m!(n-m)!}$$
 для всех $0 \leqslant m \leqslant n.$

Замечание

$$n! = 1 \cdot 2 \cdot \ldots \cdot n, \ 0! = 1.$$

Доказательство.

База индукции. При n=1 равенство, очевидно, верно.

Шаг индукции. Сначала докажем формулу

$$C_k^{m-1} + C_k^m = C_{k+1}^m$$

Действительно,

$$C_k^{m-1} + C_k^m = \frac{k!}{(m-1)!(k-m+1)!} + \frac{k!}{m!(k-m)!} = \frac{k!}{(m-1)!(k-m)!} \cdot \left(\frac{1}{k-m+1} + \frac{1}{m}\right) =$$

$$= \frac{k!}{(m-1)!(k-m)!} \cdot \left(\frac{1}{k-m+1} + \frac{1}{m}\right) =$$

$$=\frac{n!}{(m-1)!(k-m)!}\cdot\left(\frac{1}{k-m+1}+\frac{1}{m}\right)=$$

$$(m-1)!(k-m)! \quad (k-m+1 + m) = k!$$

$$= \frac{k!}{(m-1)!(k-m)!} \cdot \frac{k+1}{(k-m+1)m} =$$

$$= \frac{n!}{(m-1)!(k-m)!} \cdot \frac{n+1}{(k-m+1)m} =$$

$$-\frac{(m-1)!(k-m)!}{(k+1)!} \cdot \frac{(k-m+1)m}{(k-m+1)!}$$

$$= \frac{(k+1)!}{m!(k-m+1)!} = C_{k+1}^m.$$

Теперь можно доказать шаг индукции.

Пусть $(x+1)^k = C_k^0 + C_k^1 x^1 + C_k^2 x^2 + \ldots + C_k^k x^k$.

Тогда

$$(x+1)^{k+1} = (x+1)^k \cdot (x+1) =$$

$$= \left(C_k^0 + C_k^1 x^1 + C_k^2 x^2 + \dots + C_k^k x^k\right) (x+1) =$$

(раскрываем скобки)

$$= C_k^0 x + C_k^1 x^2 + C_k^2 x^3 + \dots + C_k^k x^{k+1} + C_k^0 + C_k^1 x^1 + C_k^2 x^2 + \dots + C_k^k x^k =$$

(приводим подобные слагаемые)

$$= C_k^0 + \left(C_k^0 + C_k^1\right)x^1 + \ldots + \left(C_k^{k-1} + C_k^k\right)x^k + C_k^kx^{k+1} =$$

(используем ранее доказанную формулу)

$$= C_k^0 + C_{k+1}^1 x^1 + \ldots + C_{k+1}^k x^k + C_k^k x^{k+1} =$$

(преобразуем первое и последнее слагаемые)

$$= C_{k+1}^0 + C_{k+1}^1 x^1 + \ldots + C_{k+1}^k x^k + C_{k+1}^{k+1} x^{k+1}$$

Шаг индукции доказан.

Следствие

$$(a+b)^n = C_n^0 a^0 b^n + C_n^1 a^1 b^{n-1} + C_n^2 a^2 b^{n-2} + \dots + C_n^n a^n b^0 = \sum_{k=0}^n C_n^k a^k b^{n-k}.$$

Частные случаи

- $(a+b)^2 = a^2 + 2ab + b^2$.
- $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$
- $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.$

Многочлены и рациональные функции

 $\mathit{Mhoroчлеh}$ (полином) степени n (от одной переменной) это выражение вида

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

где $a_n \neq 0$. Степень многочлена p обозначается $\deg{(p)}$.

Для многочленов определены естественные операции сложения и умножения, например,

$$(2x^2 + x - 1) + (-x^2 + 2x + 3) = x^2 + 3x + 2,$$

$$(2x^2 + x - 1) \cdot (-x^2 + 2x + 3) = -2x^4 + 3x^3 + 9x^2 + x - 3.$$

При этом

$$\begin{split} \deg\left(p+q\right) &\leqslant \max\{\deg\left(p\right),\,\deg\left(q\right)\},\\ \deg\left(p\right) &\neq \deg\left(q\right) \Rightarrow \deg\left(p+q\right) = \max\{\deg\left(p\right),\,\deg\left(q\right)\},\\ \deg\left(p\cdot q\right) &= \deg\left(p\right) + \deg\left(q\right). \end{split}$$

Деление с остатком

Теорема

Для любой пары многочленов f и g (где $g \neq 0$) существует единственная пара многочленов q и r с условиями:

- 1. f = gq + r;
- $2. \ \deg(r) < \deg(g).$

Многочлен q называют (неполным) частным от деления f на g, а многочлен r называют остатком от деления f на g. Если r=0, говорят, что многочлен f делится на многочлен g.

Деление многочленов в столбик

Пример

$$\frac{10x^{5} + 3x^{4} - 12x^{3} + 25x^{2} - 2x + 5}{10x^{5} - 2x^{4} + 4x^{3}} = \frac{5x^{2} - x + 2}{2x^{3} + x^{2} - 3x + 4}$$

$$\frac{5x^{4} - 16x^{3} + 25x^{2} - 2x + 5}{5x^{4} - x^{3} + 2x^{2}}$$

$$\frac{5x^{4} - 16x^{3} + 25x^{2} - 2x + 5}{-15x^{3} + 23x^{2} - 2x + 5}$$

$$\frac{-15x^{3} + 23x^{2} - 2x + 5}{20x^{2} + 4x + 5}$$

$$\frac{20x^{2} + 4x + 5}{8x - 3}$$

$$10x^5 + 3x^4 - 12x^3 + 25x^2 - 2x + 5 = (5x^2 - x + 2) \cdot (2x^3 + x^2 - 3x + 4) + (8x - 3).$$

Корни многочленов

Теорема Безу

Остаток от деления многочлена f на одночлен x-a равен f(a).

Определение

Число c называется корнем многочлена f, если f(c)=0.

Следствие (из теоремы Безу)

Число c является корнем многочлена f тогда и только тогда, когда f (нацело) делится на x-c.

Определение

Кратность корня c многочлена f есть наибольшее натуральное число k, для которого f делится на $\left(x-c\right)^k$.

Упражнение. Убедившись, что 2 есть корень многочлена $x^3-x^2-8x+12$, найдите его кратность.

Теорема

Пусть c_1, c_2, \ldots, c_s есть все различные **комплексные** корни многочлена

$$f = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

а k_1, k_2, \ldots, k_s – это их соответственные кратности. Тогда

$$k_1 + k_2 + \ldots + k_s = n.$$

Иначе говоря, многочлен степени n имеет ровно n комплексных корней, если каждый корень считать столько раз, какова его кратность.

Следствие

Пусть f и g – многочлены степени не более n, и пусть они принимают одинаковые значения в n+1 различных точках, т.е. $f(x_1)=g(x_1)$, $f(x_2)=g(x_2),\,\ldots,\,f(x_{n+1})=g(x_{n+1})$ для некоторых различных чисел x_1,x_2,\ldots,x_n . Тогда f=g.

Пример

$$\frac{(x-a)(x-b)}{(c-a)(c-b)} + \frac{(x-a)(x-c)}{(b-a)(b-c)} + \frac{(x-b)(x-c)}{(a-b)(a-c)} = 1$$

(здесь a, b, c – произвольные различные действительные числа).

Разложение многочленов на множители

Теорема

Пусть c_1, c_2, \ldots, c_s есть все различные **комплексные** корни многочлена

$$f = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

а k_1, k_2, \ldots, k_s — это их соответственные кратности. Тогда

$$f = a_n(x - c_1)^{k_1}(x - c_2)^{k_2} \dots (x - c_s)^{k_s}.$$

Теорема

Каждый многочлен **с действительными коэффициентами** может быть представлен в виде произведения многочленов первой степени и многочленов второй степени, не имеющих корней.

Теорема

Целые корни многочлена с целыми действительными коэффициентами и коэффициентом a_n , при старшей степени x равным единице, есть делители свободного члена a_0 .

Графики простейших многочленов

График многочлена первой степени – прямая. График многочлена второй степени – парабола.

$$f(x) = ax^2 + bx + c, a \neq 0$$

- ▶ $a > 0 \Rightarrow$ ветви вверх;
- $ightharpoonup a < 0 \Rightarrow$ ветви вниз;
- lacktriangle корни: $\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$; (абсциссы точек пересечения с осью Ox)
- igl вершина: $\left(rac{-b}{2a}, rac{4ac-b^2}{4a}
 ight)$.

Рациональные функции

Рациональным выражением называется дробь $\dfrac{p(x)}{q(x)},$ где p(x) и q(x) – многочлены ($\deg(q)>0$). Рациональной функцией называется числовая функция f, которая задается формулой $f(x)=\dfrac{p(x)}{q(x)},$ где $\dfrac{p(x)}{q(x)}$ есть рациональное выражение.

Определение

- lacktriangle Дробь $\dfrac{p(x)}{q(x)}$ называется правильной, если $\deg(p) < \deg(q)$.
- Элементарными дробями называются дроби вида

$$\frac{a}{(x-b)^k} \bowtie \frac{ax+b}{(x^2+cx+d)^k},$$

где квадратный трехчлен $x^2 + cx + d$ не имеет действительных корней (т.е. $c^2 - 4d < 0$).

Мы будем рассматривать только рациональные функции с действительными коэффициентами.

Представление рационального выражения в виде суммы многочлена и элементарных дробей

- 1. Выделение целой части с помощью деления с остатком: каждое рациональное выражение $\frac{p(x)}{q(x)}$ можно представить в виде $\frac{p(x)}{q(x)} = p_1(x) + \frac{p_2(x)}{q(x)}, \text{ где } p_1(x) \text{ есть многочлен, a } \frac{p_2(x)}{q(x)} \text{ есть правильная дробь.}$
- 2. Разложение правильной дроби в сумму элементарных дробей: каждую правильную дробь $\frac{p(x)}{q(x)}$ можно представить в виде суммы элементарных дробей $\frac{a}{(x-b)^k}$ и $\frac{ax+b}{(x^2+cx+d)^k}$, знаменатели которых являются делителями многочлена q(x).

Метод неопределенных коэффициентов

Примеры

1.
$$f(x) = \frac{2x}{x^3 - x^2 + x - 1}$$
.

▶ Раскладываем знаменатель на множители: $f(x) = \frac{2x}{(x-1)(x^2+1)}$.

Значит, решение надо искать в виде $\frac{A}{x-1} + \frac{Bx + C}{x^2 + 1}$;

$$\frac{2x}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}.$$

Правую часть приводим к общему знаменателю:

$$\frac{2x}{(x-1)(x^2+1)} = \frac{(A+B)x^2 + (C-B)x + (A-C)}{(x-1)(x^2+1)}.$$

▶ Приравниваем коэффициенты при одинаковых степенях в числителе, составляем систему

составляем систему
$$\begin{cases} A+B=0,\\ C-B=2,\\ A-C=0. \end{cases}$$

Решаем систему и записываем окончательный результат: A=1, B=-1, C=1.

$$f(x) = \frac{1}{x-1} - \frac{x-1}{x^2+1}.$$

2.
$$f(x) = \frac{2x}{x^3 + x^2 - x - 1}$$
.

$$x^3 + x^2 - x -$$

$$x^{3} + x^{2} - x -$$
• Раскладываем знам

▶ Раскладываем знаменатель на множители:
$$f(x) = \frac{2x}{(x-1)(x+1)^2}$$
.

Правую часть приводим к общему знаменателю:

 $\frac{2x}{(x-1)(x+1)^2} = \frac{(A+B)x^2 + (2A+C)x + (A-B-C)}{(x-1)(x^2+1)}.$

Значит, решение надо искать в виде $\frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{C}$;

 $\frac{2x}{(x-1)(x+1)^2} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2}.$

Приравниваем коэффициенты при одинаковых степенях в числителе, составляем систему

$$\begin{cases} A + B = 0, \\ 2A + C = 2, \\ A - B - C = 0. \end{cases}$$

 $f(x) = \frac{1}{2(x-1)} - \frac{1}{2(x+1)} + \frac{1}{(x+1)^2}.$

Решаем систему и записываем окончательный результат: $A=\frac{1}{2}, B=-\frac{1}{2}, C=1$,

Частный случай

$$q(x) = (x - x_1)(x - x_2) \dots (x - x_n),$$

где все числа x_1, x_2, \dots, x_n различны. В этом случае

$$\frac{p(x)}{q(x)} = \frac{A_1}{x - x_1} + \frac{A_2}{x - x_2} + \dots + \frac{A_n}{x - x_n},$$

где для каждого i $(1\leqslant i\leqslant n)$ число A_i может быть вычислено по формуле

$$A_i = \frac{p(x_i)}{(x_i - x_1)(x_i - x_2)\dots(x_i - x_{i-1})(x_i - x_{i+1})\dots(x_i - x_n)}.$$

Рекомендуемые задачи

- **1**. Разделите с остатком многочлен $x^4 + 2x + 1$ на многочлен $x^2 x + 2$.
- 2. Найдите все корни многочлена $x^3 x^2 5x + 6$, предварительно угадав один из них.
- 3. Убедившись, что 2 есть корень многочлена $x^3-x^2-8x+12$, найдите его кратность.
- 4. Разложите многочлен $2x^3-3x^2-5x+6$ в произведение неприводимых многочленов.
- 5. Разложите многочлен x^4+1 в произведение многочленов второй степени.
- 6. Найдите многочлен степени не выше 3, график которого проходит через точки (0,-1),(1,1),(2,1),(3,-1).
- 7. Представьте в виде суммы элементарных дробей (и, быть может, многочлена) рациональные выражения: $\frac{x^3+2x+1}{x^2-5x+6}, \ \frac{x^3+x+1}{(x-2)(x+1)^2}, \ \frac{x+3}{(x-3)(x^2+1)}, \ \frac{1}{x^4+1}.$

Степенная функция с произвольным показателем

Степенная функция с произвольным показателем это функция

$$f(x) = x^a$$
.

Область определения:

- ightharpoonup если a натуральное число, то $\operatorname{dom} f = \mathbb{R}$;
- ightharpoonup если a целое неположительное число, то $\mathrm{dom}\,f=\mathbb{R}\setminus\{0\}$;
- ▶ если a не целое положительное число, то $dom f = [0, \infty)$;
- ightharpoonup если a не целое отрицательное число, то $\mathrm{dom}\, f=(0,\infty).$

Замечание

В некоторых случаях на практике функции $x^{\frac{1}{k}}$ и $\sqrt[k]{x}$ отождествляют (здесь k натуральное число). Тогда при нечетном k областью определения функции $x^{\frac{1}{k}}$ становится все множество \mathbb{R} . Но это не совсем корректно.

Определения

- lackbox Если a=n, где $n\in\mathbb{N}$, то $x^a=\underbrace{x\cdot x\cdot\ldots\cdot x}_{n\ \mathrm{pas}};$
- $x^0 = 1;$
- lacktriangle если a=-n, где $n\in\mathbb{N}$, то $x^a=rac{1}{x^n}$;
- $lackbox{lack}$ если $a=rac{p}{q}$, где $p\in\mathbb{Z}$, а $q\in\mathbb{N}$, то x^a есть такое неотрицательное число y, что $y^q=x^p$;
- ightharpoonup если $a\in\mathbb{R}\setminus\mathbb{Q}$, то

$$x^a = \sup\{x^r : r \in \mathbb{Q} \text{ if } r < a\} = \inf\{x^r : r \in \mathbb{Q} \text{ if } r > a\}.$$

Замечание

В этих определениях считается, что x принадлежит области определения функции x^a , см. предыдущий слайд.

Основные алгебраические формулы. Следующие равенства верны для всех значений x и y, при которых обе части равенства имеют смысл:

$$(xy)^a = x^a y^a, \left(\frac{x}{y}\right)^a = \frac{x^a}{y^a},$$

$$(x^a)^b = x^{ab}.$$

Уравнения. Если $a \neq 0$, то

$$x, y > 0 \Rightarrow (x^a = y \Leftrightarrow x = y^{\frac{1}{a}}).$$

Упражнение. Решите систему уравнений $\begin{cases} x^{0,2}y^{-0,7}=10,\\ x^{-0,8}y^{0,3}=5. \end{cases}$

Степенная функция в экономике, пример. Функция Кобба-Дугласа

$$Q = AK^{\alpha}L^{\beta},$$

где Q – объем производства, K – капитал, L – труд, A, α, β – параметры.

Функция $f(x)=x^a$ и ее график (при неотрицательных значениях x)

$$f(x) = x^a$$
, $a > 1$. Возрастающая, выпуклая (вниз).

Замечание

Функция называется выпуклой (вниз), если любая хорда ее графика лежит выше графика.

Замечание

График проходит через точку (1,1).

Функция $f(x)=x^a$ и ее график (при неотрицательных значениях x)

$$f(x) = x^a$$
, $0 < a < 1$. Возрастающая, вогнутая (выпуклая вверх).

Замечание

Функция называется вогнутой (выпуклой вверх), если любая хорда ее графика лежит ниже графика.

Замечание

График проходит через точку (1,1).

Функция $f(x)=x^a$ и ее график (при неотрицательных значениях x)

$$f(x) = x^a$$
, $a < 0$. Убывающая, выпуклая (вниз).

Замечание

При a<0 функция $f(x)=x^a$ стремится к нулю при $x\to\infty$ и к бесконечности при $x\to0$. Оси координат являются асимпототами.

Замечание

График проходит через точку (1,1).

Показательная и логарифмическая функции

Показательная функция с основанием a это функция

$$f(x) = a^x$$
.

Параметр a должен удовлетворять условиям: $a>0, a\neq 1$. Логарифмическая функция с основанием a это функция, обратная к функции $f(x)=a^x$. Обозначение: $f(x)=\log_a(x)$. Из определения логарифмической функции следует, что:

- $ightharpoonup a^{\log_a(x)} = x$ для всех $x \in \mathrm{dom}\left(\log_a(x)\right)$;
- ▶ $\log_a(a^x) = x$ для всех $x \in \text{dom}(a^x)$.

Область определения и область значений.

- $ightharpoonup dom(a^x) = \mathbb{R}, \ \mathrm{ran}(a^x) = (0, \infty);$
- $ightharpoonup \operatorname{dom}(\log_a(x)) = (0, \infty), \operatorname{ran}(\log_a(x)) = \mathbb{R}.$

Основные алгебраические формулы. Следующие равенства верны для всех значений переменных x и y, а также параметров a,b,c, при которых обе части равенства имеют смысл:

- $ightharpoonup \log_a(1) = 0;$

 $\log_c(u)$ Последнее равенство означает, что логарифмы с разными основаниями линейно связаны. Это позволяет все рассуждения и вычисления, связанные с логарифмами сводить к рассуждениям о логарифме с каким-либо фиксированным основанием, например о десятичном логарифме $\log_{10}(x) = \lg(x)$ или натуральном логарифме $\log_e(x) = \ln(x)$.

Упражнение. Докажите формулу $\log_{a^b}(x) = \frac{\log_a(x)}{b}$.

Уравнения. Если a,b>0, $a\neq 1$, то

$$a^x = b \Leftrightarrow x = \log_a(b) = \frac{\ln(b)}{\ln(a)}.$$

Если a > 0, $a \neq 1$, то

$$\log_a(x) = b \Leftrightarrow x = a^b.$$

Показательная функция в экономике.

Мальтузианская модель роста:

$$P(t) = P_0 e^{kt}$$
.

где $P_0 = P(0)$ — исходная численность населения, k — темп прироста населения ("мальтузианский параметр"), t — время.

Функция $f(x) = a^x$ и ее график

$$f(x) = a^x$$
, $a > 1$. Возрастающая, выпуклая (вниз).

Замечание

График проходит через точку (0,1). При стремлении x к минус бесконечности, функция стремится к нулю. Ось Ox есть асимптота.

Функция $f(x) = a^x$ и ее график

$$f(x) = a^x$$
, $0 < a < 1$. Убывающая, выпуклая (вниз).

Замечание

График проходит через точку (0,1). При стремлении x к бесконечности, функция стремится к нулю. Ось Ox есть асимптота. График функции a^x симметричен графику функции $\left(\frac{1}{a}\right)^x$ относительно оси Oy.

Функция $f(x) = \log_a(x)$ и ее график

 $f(x) = \log_a(x), \ a > 1.$ Возрастающая, вогнутая (выпуклая вверх).

Замечание

График проходит через точку (1,0). При стремлении x к нулю, функция стремится к минус бесконечности. Ось Oy есть асимптота. График симметричен графику функции $f(x)=a^x$ относительно прямой y=x.

Функция $f(x) = \log_a(x)$ и ее график

$$f(x) = \log_a(x)$$
, $0 < a < 1$. Убывающая, выпуклая (вниз).

Замечание

График проходит через точку (1,0). При стремлении x к нулю, функция стремится к бесконечности. Ось Oy есть асимптота. График симметричен графику функции $f(x)=a^x$ относительно прямой y=x и графику функции $f(x)=\log_{\frac{1}{a}}(x)$ относительно оси Ox.

Сравнение роста показательной, степенной и логарифмической функций

Теорема

Пусть a>0, b>1. Тогда существует такое число x_0 , что $b^{x_0}=(x_0)^a$ и с ростом $x>x_0$ разность b^x-x^a будет монотонно увеличиваться и превзойдет любое наперед заданное число $C\in\mathbb{R}$.

Следствие

Пусть $a>0,\,b>1.$ Тогда существует такое число x_0 , что $\log_b(x_0)=(x_0)^a$ и с ростом $x>x_0$ разность $\log_b(x)-x^a$ будет монотонно убывать и окажется меньше любого наперед заданного числа $C\in\mathbb{R}.$

Рекомендуемые задачи

- 1. Упростите выражение $\left(\frac{9^{\frac{1}{5}}27^{\frac{2}{3}}}{3^{\frac{1}{2}}}\right)^{\frac{4V}{11}}$.
- 2. Решите уравнение $64^x \cdot 2^{x^2} = 16^{-2}$.
- 3. Решите уравнение $25^x 5^{x+1} + 6 = 0$.
- **4**. Решите уравнение $\log_{\frac{1}{\pi}}(7-x) = -2$.
- **5**. Решите уравнение $(x+2)^{\log_2(x+2)} = 4(x+2)$.
- 6. Решите уравнение $5^{\log_2(x)} + x^{\log_2(5)} = 10$.
- 7. Решите систему уравнений $\begin{cases} x^{0,2}y^{-0,7}=10,\\ x^{-0,8}y^{0,3}=5. \end{cases}$

Синус и косинус: определение

Основные формулы

Существует огромное количество тригонометрических формул. Чтобы не обременять свою память, уместно помнить только основные из них, а остальные выводить по мере необходимости.

Основное тригонометрическое тождество:

$$\sin^2 x + \cos^2 x = 1.$$

▶ Определения тангенса и котангенса

$$\operatorname{tg} x = \frac{\sin x}{\cos x}, \quad \operatorname{ctg} x = \frac{\cos x}{\sin x}.$$

Периодичность:

$$\sin(x + 2k\pi) = \sin x,$$
 $\cos(x + 2k\pi) = \cos x,$
 $\operatorname{tg}(x + k\pi) = \operatorname{tg} x,$ $\operatorname{ctg}(x + k\pi) = \operatorname{ctg} x.$

▶ Четность/нечетность:

$$\sin(-x) = -\sin x,$$
 $\cos(-x) = \cos x,$
 $\operatorname{tg}(-x) = -\operatorname{tg} x,$ $\operatorname{ctg}(-x) = -\operatorname{ctg} x.$

Замечание

Свойство периодичности и четности/нечетности позволяет свести значение любой тригонометрической функции от числа x к значению той же тригонометрической функции от некоторого числа y из отрезка $[0,\pi]$. Например,

$$\sin\left(\frac{5\pi}{4}\right) = -\sin\left(-\frac{5\pi}{4}\right) = -\sin\left(2\pi - \frac{5\pi}{4}\right) = -\sin\left(\frac{3\pi}{4}\right).$$

Кроме того, значение функций $\lg x$ и $\operatorname{ctg} x$ можно свести к значению той же тригонометрической функции от некоторого числа y из отрезка $\left[0,\frac{\pi}{2}\right]$. Например,

$$\operatorname{tg}\left(\frac{23\pi}{4}\right) = \operatorname{tg}\left(5\pi + \frac{3\pi}{4}\right) = \operatorname{tg}\left(\frac{3\pi}{4}\right) = -\operatorname{tg}\left(-\frac{3\pi}{4}\right) = -\operatorname{tg}\left(\frac{\pi}{4}\right).$$

> Значения функций $\sin x$ и $\cos x$ тоже можно свести к значению некой тригонометрической функции от некоторого числа y из отрезка $\left[0,\frac{\pi}{2}\right]$. Для этого нужны еще две тригонометрические формулы:

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x, \qquad \cos\left(\frac{\pi}{2} - x\right) = \sin x.$$

Теперь можно получить все так называемые "формулы приведения". Например,

$$\sin\left(\frac{\pi}{2} + x\right) = \sin\left(\frac{\pi}{2} - (-x)\right) = \cos(-x) = \cos x$$

$$\cos(\pi - x) = \cos\left(\frac{\pi}{2} - \left(x - \frac{\pi}{2}\right)\right) = \sin\left(x - \frac{\pi}{2}\right) =$$

$$= -\sin\left(\frac{\pi}{2} - x\right) = -\cos x.$$

▶ Полезно также помнить формулы:

$$\operatorname{tg}\left(\frac{\pi}{2} - x\right) = \operatorname{ctg} x, \qquad \operatorname{ctg}\left(\frac{\pi}{2} - x\right) = \operatorname{tg} x.$$

▶ Некоторые значения

	x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
	$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
٠	$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
٠	tg(x)	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	н/о	0
•	ctg(x)	н/о	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	н/о

▶ Синус и косинус суммы

$$\sin(x+y) = \sin x \cos y + \cos x \sin y;$$
$$\cos(x+y) = \cos x \cos y - \sin x \sin y.$$

Следствия

$$\sin(x - y) = \sin x \cos y - \cos x \sin y;$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y.$$

Остальные формулы легко выводятся из вышеуказанных.

Кратные углы и понижение степени

Кратные углы:

$$\sin 2x = \sin(x+x) = \sin x \cos x + \cos x \sin x = 2 \sin x \cos x;$$

$$\cos 2x = \cos(x+x) = \cos x \cos x - \sin x \sin x = \cos^2 x - \sin^2 x =$$

$$= 2 \cos^2 x - 1 = 1 - 2 \sin^2 x;$$

$$\sin 3x = \sin(2x+x) = \sin 2x \cos x + \cos 2x \sin x =$$

$$= 2 \sin x \cos^2 x + (1 - 2 \sin^2 x) \sin x = 3 \sin x - 4 \sin^3 x$$
etc.

Понижение степени:

$$\cos^2 x = \frac{1 + \cos 2x}{2}; \quad \sin^2 x = \frac{1 - \cos 2x}{2};$$

 $\sin^3 x = \frac{3\sin x - \sin 3x}{4}$ etc.

Преобразование суммы в произведение, и наоборот

Сложим равенства

$$\sin(x+y) = \sin x \cos y + \cos x \sin y,$$

$$\sin(x-y) = \sin x \cos y - \cos x \sin y.$$

Получим равенство

$$\sin(x+y) + \sin(x-y) = 2\sin x \cos y.$$

Если положить x - y = a и x + y = b, получим равенство

$$\sin a + \sin b = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right).$$

Если "развернуть" равенство и перенести двойку справа налево, получим равенство

$$\sin x \cos y = \frac{1}{2}(\sin(x+y) + \sin(x-y)).$$

Преобразование суммы в произведение, и наоборот

Сложим равенства

$$cos(x + y) = cos x cos y - sin x sin y,$$

$$cos(x - y) = cos x cos y + sin x sin y.$$

Получим равенство

$$\cos(x+y) + \cos(x-y) = 2\cos x \cos y.$$

Если положить x-y=a и x+y=b, получим равенство

$$\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right).$$

Если "развернуть" равенство и перенести двойку справа налево, получим равенство

$$\cos x \cos y = \frac{1}{2}(\cos(x+y) + \cos(x-y)).$$

Преобразование суммы в произведение, и наоборот

Вычтем из первого второе

$$cos(x + y) = cos x cos y - sin x sin y,$$

$$cos(x - y) = cos x cos y + sin x sin y.$$

Получим равенство

$$\cos(x+y) - \cos(x-y) = -2\sin x \sin y.$$

Если положить x-y=a и x+y=b, получим равенство

$$\cos a - \cos b = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right).$$

Если "развернуть" равенство и перенести минус двойку справа налево, получим равенство

$$\sin x \sin y = \frac{1}{2}(\cos(x-y) - \cos(x+y)).$$

Формула вспомогательного угла

$$\begin{split} a\sin x + b\cos x &= \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x \right) = \\ \sqrt{a^2 + b^2} \left(\cos \varphi \sin x + \sin \varphi \cos x \right) &= \sqrt{a^2 + b^2} \sin(x + \varphi), \end{split}$$

где

$$\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}, \quad \sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}.$$

Следствие

$$\max_{x \in \mathbb{R}} (a \sin x + b \cos x) = \sqrt{a^2 + b^2},$$

$$\min_{x \in \mathbb{R}} (a \sin x + b \cos x) = -\sqrt{a^2 + b^2}.$$

В частности,

$$-\sqrt{2} \leqslant \sin x + \cos x \leqslant \sqrt{2}.$$

Обратные тригонометрические функции

Взаимно-обратные функции:

$$f(x) = \sin x, \text{ dom } f = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$f^{-1}(x) = \arcsin x, \text{ dom } f^{-1} = [-1, 1]$$

$$f(x) = \cos x, \text{ dom } f = [0, \pi]$$

$$f^{-1}(x) = \arccos x, \text{ dom } f^{-1} = [-1, 1]$$

$$f(x) = \operatorname{tg} x, \text{ dom } f = \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

$$f^{-1}(x) = \operatorname{arcctg} x, \text{ dom } f^{-1} = \mathbb{R}$$

$$f(x) = \operatorname{ctg} x, \text{ dom } f^{-1} = \mathbb{R}$$

Замечание

Важно помнить области определения функций из левой колонки (они же области значений функций из правой колонки).

Основные соотношения

$$\arcsin x + \arccos x = \frac{\pi}{2},$$

$$\operatorname{arctg} x + \operatorname{arcctg} x = \frac{\pi}{2}.$$

Решение уравнений

Уравнение $\sin x = a$.

- **Е**сли |a| > 1, решений нет (пустое множество);
- ightharpoonup если $|a|\leqslant 1$, то множество решений есть

$$\{\arcsin a + 2k\pi : k \in \mathbb{Z}\} \cup \{(\pi - \arcsin a) + 2k\pi : k \in \mathbb{Z}\} =$$
$$= \{(-1)^k \arcsin a + k\pi : k \in \mathbb{Z}\}.$$

Частные случаи:

$$\begin{split} \sin x &= 0 \Leftrightarrow x \in \{k\pi: k \in \mathbb{Z}\}; \\ \sin x &= 1 \Leftrightarrow x \in \left\{\frac{\pi}{2} + 2k\pi: k \in \mathbb{Z}\right\}; \\ \sin x &= -1 \Leftrightarrow x \in \left\{-\frac{\pi}{2} + 2k\pi: k \in \mathbb{Z}\right\}. \end{split}$$

Решение уравнений

Уравнение $\cos x = a$.

- ▶ Если |a| > 1, решений нет (пустое множество);
- ightharpoonup если $|a|\leqslant 1$, то множество решений есть

$$\begin{split} & \left\{ \arccos a + 2k\pi : k \in \mathbb{Z} \right\} \cup \left\{ -\arccos a + 2k\pi : k \in \mathbb{Z} \right\} = \\ & = \left\{ \pm \arccos a + 2k\pi : k \in \mathbb{Z} \right\}. \end{split}$$

Частные случаи:

$$\begin{aligned} \cos x &= 0 \Leftrightarrow x \in \left\{ \pm \frac{\pi}{2} + 2k\pi : k \in \mathbb{Z} \right\}; \\ \cos x &= 1 \Leftrightarrow x \in \{2k\pi : k \in \mathbb{Z}\}; \\ \cos x &= -1 \Leftrightarrow x \in \{(2k+1)\pi : k \in \mathbb{Z}\}. \end{aligned}$$

Решение уравнений

Уравнение $\operatorname{tg} x = a$.

- ightharpoonup Решение существует при любом $a \in \mathbb{R}$.
- ▶ Множество решений есть

$$\{ \operatorname{arctg} a + k\pi : k \in \mathbb{Z} \}.$$

Частный случай:

$$\operatorname{tg} x = 0 \Leftrightarrow x \in \{k\pi : k \in \mathbb{Z}\}.$$

Рекомендуемые задачи

- 1. Представьте в виде суммы выражений вида $\sin ax$ и/или $\cos ax$ выражения:
 - 1.1 $\sin 2x \cdot \cos 4x$.
 - 1.2 $\sin x \cdot \sin 2x \cdot \sin 3x$.
 - 1.3 $\sin^2 2x \cdot \cos 3x$.
- 2. Используя представление суммы или разности тригонометрических функций в виде произведения, решите уравнения:
 - $2.1 \sin x + \sin 3x = 0$
 - $2.2 \sin x = \cos 2x$.
- 3. Найдите $\sin x$ и $\cos x$ из условия $3\sin x + 4\cos x = 0$.
- 4. Выразите $\sin x$, $\cos x$, $\tan x$, $\cot x$ через $\tan x$. Решите уравнение $2\cos x + 5\sin x = 3$, используя найденные выражения.

Математический анализ 1. Лекции 1-2. Приложение 1. Доказательства некоторых утверждений

Основные свойства пределов

1. Если $\lim_{n\to\infty} a_n$ существует, то он единственный.

Доказательство.Допустим, что последовательность a имеет два различных предела c_1 и c_2 . Выберем непересекающиеся окрестности $O_{\varepsilon}(c_1)$ и $O_{\varepsilon}(c_2)$ точек c_1 и c_2 . Это всегда можно сделать, положив, например $\varepsilon=\frac{|c_2-c_1|}{2}$. Тогда для некоторых номеров N_1 и N_2 выполнено $\{a_n:n\geqslant N_1\}\subseteq O_{\varepsilon}(c_1)$ и $\{a_n:n\geqslant N_2\}\subseteq O_{\varepsilon}(c_2)$. Пусть $N_3=\max\{N_1,N_2\}$. Тогда

$$\{a_n: n \geqslant N_3\} \subseteq \{a_n: n \geqslant N_1\} \cap \{a_n: n \geqslant N_2\} \subseteq O_{\varepsilon}(c_1) \cap O_{\varepsilon}(c_2) = \varnothing.$$

Значит, последовательность a не имеет членов с номерами большими или равными N_3 , противоречие.

2. Существование и значение $\lim_{n \to \infty} a_n$ не зависит от любого конечного числа членов последовательности a. Это можно выразить следующим образом. Пусть $a_n = b_n$ для всех $n \in \mathbb{N}$, начиная с некоторого номера N. Тогда пределы $\lim_{n \to \infty} a_n$ и $\lim_{n \to \infty} b_n$ существуют и не существуют одновременно u, если эти пределы существуют, то они равны.

Доказательство. см. определение.

3. Если последовательность сходится (т.е. имеет предел), то она ограничена (сверху и снизу).

Доказательство. Пусть $\lim_{n \to \infty} a_n = c$. Выберем некоторое фиксированное положительное число ε , например, пусть $\varepsilon = 1$. Тогда по определению существует такое число N, что для всех $n \geqslant N$ выполнено $|a_n - c| < 1$, т.е.

$$c-1 < a_n < c+1$$
.

Следовательно, для всех $n \in \mathbb{N}$

$$|a_n| \le \max\{|a_1|, |a_2|, \dots, |a_{N-1}|, |c-1|, |c+1|\}.$$

4. Если последовательность b есть подпоследовательность последовательности a и, при этом, существует $\lim_{n \to \infty} a_n$, то существует и $\lim_{n \to \infty} b_n$, причем $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$. В частности, если существует $\lim_{n \to \infty} a_n$, то существуют и пределы $\lim_{n \to \infty} a_{n+1}$, $\lim_{n \to \infty} a_{2n}$ и т.п., и все они равны $\lim_{n \to \infty} a_n$.

Доказательство. Пусть $\lim_{n \to \infty} a_n = c$, и ε есть произвольное положительное число. Тогда существует такое число N, что $|a_n - c| < \varepsilon$ для всех $n \geqslant N$. Пусть K есть некоторое натуральное число, для которого $\varphi(K) \geqslant N$ (такое число существует в силу того, что φ строго возрастает). Тогда для всех $n \geqslant K$ выполнено $\varphi(n) \geqslant \varphi(K) \geqslant N$ и, следовательно, $|b_n - c| = |a_{\varphi(n)} - c| < \varepsilon$. Значит. $\lim_{n \to \infty} b_n = c$.

5. Если последовательность a монотонно возрастает (быть может, нестрого) и ограничена сверху, то существует $\lim_{n \to \infty} a_n$, причем $\lim_{n \to \infty} a_n = \sup\{a_n : n \in \mathbb{N}\}$. Если последовательность a монотонно убывает и ограничена снизу, то существует $\lim_{n \to \infty} a_n$, причем $\lim_{n \to \infty} a_n = \inf\{a_n : n \in \mathbb{N}\}$.

Доказательство. Обозначим $c=\sup\{a_n:n\in\mathbb{N}\}$. Пусть ε есть произвольное положительное число. Тогда хотя бы один член a_N последовательности a лежит в интервале $(c-\varepsilon,c)$. Действительно, в противном случае число $c-\varepsilon$ есть верхняя грань множества $\{a_n:n\in\mathbb{N}\}$, что противоречит тому, что c есть точная верхняя грань этого множества. Далее, поскольку последовательность возрастает, для каждого $n\geqslant N$ выполнено $a_n\geqslant c-\varepsilon$. С другой стороны, поскольку c есть верхняя грань множества $\{a_n:n\in\mathbb{N}\}$, для всех $n\in\mathbb{N}$ выполнено $a_n\leqslant c< c+\varepsilon$. Значит, для всех $n\geqslant N$ выполнено

$$c - \varepsilon < a_n < c + \varepsilon$$
,

т.е.

$$|a_n - c| < \varepsilon,$$

что доказывает первую часть утверждения. Вторая часть утверждения доказывается аналогично.