General problem:

Suff. conditions for CQ:

· all gi are linear

• all gi are convex and $\exists x*: g_i(x*)<0$ $\forall i$ (Stater) \Rightarrow CQ $\forall x \in S$

· Vgi(x) are linearly 11 tieI(x)

1 -> CQ in xes

First order (necessary) optimality conditions (KKT): fect, giect, ca holds at E.

If \(\times\) is a local minimum of (P) => Bui ≥0 Vi∈ I(x); Ve∈ R:

(•) $\nabla f(\bar{x}) + \sum_{i \in I} u_i \nabla g_i(\bar{x}) = 0$

· Vf(x) + Zu; Vg; (x) + Z ve The(x) = 0

· uigi(x) = 0 VieI

· he(x) = 0

• $g_i(\bar{x}) \leq 0$ $\forall i \in I$

• If f and gi are convex \Rightarrow the condition is necessary and sufficient and $\exists x^*: gi(x^*) < 0 \ \forall i$

Lagrangian function associated: $L(x, u) = f(x) + \sum_{i \in T} u_i g_i(x)$

YXEX, UZO

Dual function: $W(\underline{u}) = \min L(\underline{x}, \underline{u})$

Dual problem: max w(u) 02n

Properties:

- $\forall \underline{x} \in X$ (\underline{x} feasible bolotion) and $\underline{y} \ni \underline{0} : W(\underline{u}) \leq f(\underline{x})$ (weak duality)
- If ∃\$\overline{u}_r\overline{x}\$ s.t. \$w(\overline{u}) = f(\overline{x})\$ we have strong abality : \$\overline{u}\$ is optimal for the abal and \bar{x} is optimal for the original problem (P). Horeove (\bar{x},\bar{y}) is a buddle point of L(x, u).
- Generally we can have a duality goop: max $w(\underline{u}) < \min_{\underline{v} \in S} f(\underline{x})$

but if the problem is convex (or it holds the strong duality) the problem has a finite optimal solution and we have no duality gop.

How com we solve the dual:

If $X \subseteq \mathbb{Z}^n$ then $w(\underline{u})$ is piecewise concave and we can find the global optimal solutions with the subgroudient method (rince w(x) may not be everywhere continuously differentiable we use the groudient if the point is cout oliff. , the subgradient it it's not).

> W(u) is always concave, if X \(Z^n \) then it's piecewise concave