Constrained optimization

Ali Gooya

Reference:

Christopher Bishop, PRML 2006, Appendix D

Equality constraints

- Consider a D dimensional variable $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_D)^T$, we want to maximize $f(\mathbf{x})$ with a constraint that $g(\mathbf{x}) = 0$.
- We want to show that we need to maximize the Lagrangian given by: $L(x, \lambda) = f(x) + \lambda g(x)$ with $\lambda \neq 0$
- Note that $\nabla g(x)$ is normal to the constraint surface given by g(x) = 0
- To see this consider x_A and $x_A + \epsilon$ both placed on the constraint surface.
- For very small ϵ , we can write: $g(\mathbf{x}_A + \epsilon) \approx g(\mathbf{x}_A) + \epsilon^T \nabla g(\mathbf{x}_A)$, but since $g(\mathbf{x}_A + \epsilon) = g(\mathbf{x}_A) = 0$, then $\epsilon^T \nabla g(\mathbf{x}_A) = 0$, which means $\nabla g(\mathbf{x})$ is normal to the constraint surface.

Equality constraints

- Next, we seek a point x^* on the constraint surface such that $f(x^*)$ is maximized.
- Such a point must have the property that the vector $\nabla f(\mathbf{x})$ is also orthogonal to the constraint surface, as illustrated below because otherwise we could increase the value of $f(\mathbf{x})$ by moving a short distance along the constraint surface. Thus: $\nabla f(\mathbf{x}^*) + \lambda \nabla g(\mathbf{x}^*) = 0$.
- This suggest that we need to consider the gradient of the Lagrangian: $L(\lambda) = f(x) + \lambda g(x)$ with $\lambda \neq 0$

Example

A simple example of the use of Lagrange multipliers in which the aim is to maximize $f(x_1, x_2) = 1 - x_1^2 - x_2^2$ subject to the constraint $g(x_1, x_2) = 0$ where $g(x_1, x_2) = x_1 + x_2 - 1$. The circles show contours of the function $f(x_1, x_2)$, and the diagonal line shows the constraint surface $g(x_1, x_2) = 0$.

$$L(\mathbf{x}, \lambda) = 1 - x_1^2 - x_2^2 + \lambda(x_1 + x_2 - 1).$$

$$-2x_1 + \lambda = 0$$

$$-2x_2 + \lambda = 0$$

$$x_1 + x_2 - 1 = 0.$$

Inequality constraints

- Now consider maximising f(x) under the constraint $g(x) \ge 0$.
- If stationary point x_B lies in the region where $g(x_B) > 0$, the constraint is *inactive*, if it lies on the boundary g(x) = 0, the constraint is said to be **active**.

- Inactive constraint: g(x) plays no role, $\nabla f = 0$ thus, corresponds to stationary point of $L(x,\lambda) = f(x) + \lambda g(x)$ with $\lambda = 0$
- Active constraint: g(x) = 0, similar to equality constraint, $L(x, \lambda) = f(x) + \lambda g(x)$ with $\lambda \neq 0$. But the sign of λ is important and we should have $\lambda > 0$. Otherwise we can increase f by moving inside region given by g(x) > 0 which is contradictory with having active constraint.

Karush-Kuhn-Tucker (KKT) conditions (I)

• Thus, in either case, the solution to the problem of maximizing f(x) subject to $g(x) \ge 0$ is obtained by optimizing the Lagrange function $L(x,\lambda) = f(x) + \lambda g(x)$ with respect to x and λ subject to the conditions:

$$g(\mathbf{x}) \ \geqslant \ 0$$

$$\lambda \ \geqslant \ 0$$
 Slackness condition
$$\lambda g(\mathbf{x}) \ = \ 0$$

- If we minimize the function f(x) subject to $g(x) \le 0$ then
 - $L(x,\lambda) = f(x) + \lambda g(x)$
 - KKT conditions:

$$g(\mathbf{x}) \le 0$$
$$\lambda \ge 0$$
$$\lambda g(\mathbf{x}) = 0$$

Primal and dual problems

- So to maximize f(x), we look for stationary points (x^*) and λ^* of the Lagrangian $L(x,\lambda)=f(x)+\lambda g(x)$.
- Maximization of the Lagrangian w.r.t. x is the **primal** problem, whereas the minimization of the reduced Lagrangian, $d(\lambda)$, is the **dual** (always convex) problem.

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmax}} L(\mathbf{x}, \lambda)$$

$$d(\lambda) = L(\mathbf{x}^*, \lambda)$$

$$\lambda^* = \underset{\lambda}{\operatorname{argmin}} d(\lambda)$$

Karush-Kuhn-Tucker (KKT) conditions (II)

Finally, it is straightforward to extend the technique of Lagrange multipliers to the case of multiple equality and inequality constraints. Suppose we wish to maximize $f(\mathbf{x})$ subject to $g_j(\mathbf{x}) = 0$ for $j = 1, \ldots, J$, and $h_k(\mathbf{x}) \geqslant 0$ for $k = 1, \ldots, K$. We then introduce Lagrange multipliers $\{\lambda_j\}$ and $\{\mu_k\}$, and then optimize the Lagrangian function given by

$$L(\mathbf{x}, {\{\lambda_j\}}, {\{\mu_k\}}) = f(\mathbf{x}) + \sum_{j=1}^{J} \lambda_j g_j(\mathbf{x}) + \sum_{k=1}^{K} \mu_k h_k(\mathbf{x})$$
 (E.12)

subject to $\mu_k \geqslant 0$ and $\mu_k h_k(\mathbf{x}) = 0$ for k = 1, ..., K. Extensions to constrained functional derivatives are similarly straightforward. For a more detailed discussion of the technique of Lagrange multipliers, see Nocedal and Wright (1999).