Financial Econometrics - Part V Factor Models in Finance

Li Chen lichen812@xmu.edu.cn

WISE, Xiamen University

October 29, 2022

Suppose that there are k assets and T time periods. Let r_{it} be the return of asset i in the time period t. A general form for the factor model is

$$r_{it} = \alpha_i + \beta_{i1} f_{1t} + \dots + \beta_{im} f_{mt} + \epsilon_{it} = \alpha_i + b_i' f_t + \epsilon_{it}, \quad (1)$$

for t=1,2,...,T, i=1,2,...,k, where α_i is the intercept term, $f_t=(f_{1t},...,f_{mt})'$ are m common factors, $b_i=(\beta_{i1},...,\beta_{im})'$ is called the vector of factor loadings for asset i, ϵ_{it} is the specific factor of asset i.

The factor vector $f_t = (f_{1t}, ..., f_{mt})'$ is assumed to be an m-dimensional stationary process such that

$$E(f_t) = \mu_f, \tag{2}$$

$$Cov(f_t) = \Sigma_f.$$
 (3)

At time t, we can write the model as

$$r_t = \alpha + Bf_t + \epsilon_t, \tag{4}$$

where $r_t = (r_{1t},...,r_{kt})'$ is a $k \times 1$ vector, $\alpha = (\alpha_1,...,\alpha_k)'$, B is a $k \times m$ factor loading matrix, and $\epsilon_t = (\epsilon_{1t},...,\epsilon_{kt})'$ for which $Cov(\epsilon_t) = D = diag(\sigma_1^2,...,\sigma_k^2)$. Then, we have the covariance matrix

$$Cov(r_t) = B\Sigma_f B' + D. (5)$$

For fixed i, we can write the model as

$$R_i = \alpha_i 1_T + Fb_i' + E_i, \tag{6}$$

where $R_t = (r_{11}, ..., r_{1T})'$ is a $T \times 1$ vector, $1_T = (1, ..., 1)'$ is a T-dimensional vector of ones, F is a $T \times m$ matrix whose tth row is f'_t , and $E_i = (\epsilon_{i1}, ..., \epsilon_{iT})'$ for which $Cov(E_i) = \sigma^2 I_T$.

Capital Asset Pricing Model

Capital Asset Pricing Model (CAPM)

$$r_{it} = \alpha_i + \beta_i r_{mt} + \epsilon_{it}, \tag{7}$$

for i=1,2,...,m, t=1,2,...,T. In the model, r_{it} is the excess return of asset i, r_{mt} is the excess return of the market, and β_i is the well-known β (Beta) for the asset.

Question: How to interpret α_i and β_i in the CAPM?

Capital Asset Pricing Model

- ho β > 1: Aggressive stock: Exhibits greater volatility than the market portfolio.
- lacktriangleright eta=1: Tracking stock: Tracks the market portfolio exactly.
- ▶ $0 < \beta < 1$: Conservative stock: Exhibits less volatility than the market portfolio.
- ho β = 0: Independence: Independent of the market.
- ▶ $-1 < \beta < 0$: Imperfect hedge: Moves in the opposite direction to the market portfolio.
- ▶ $\beta = -1$: Perfect hedge: Moves in the exact opposite direction to the market portfolio.

Fama-French three Factor Model

In the Fama-French (1992, 1993) method, combinations of portfolios are constructed to take account of the observed fact that

- Small stocks have higher average returns than large stocks;
- Value stocks have higher average returns than growth stocks;

Therefore, they established the Fama-French three Factor Model (FF3FM) as

$$r_{it} = \alpha_i + \beta_i r_{mt} + \gamma_i SMB_t + \theta_i HML_t + \epsilon_{it}, \tag{8}$$

for i = 1, 2, ..., m, t = 1, 2, ..., T.

Fama-French three Factor Model

In the model,

- r_{it} is the excess return of asset i;
- r_{mt} is the excess return of the market;
- ► *SMB*_t is the performance of small stocks relative to large stocks
 - Small firms are more susceptible to changes in economic conditions;
 - SMB is the return on a portfolio long in small stocks and short in large stocks.
- $ightharpoonup HML_t$ is the performance of value stocks to growth stocks
 - High book value relative to market value increases the likelihood of financial distress;
 - HML is the return on a portfolio long in value stocks and short in growth stocks.

Principal Component Analysis

Suppose that $r=(r_1,...,r_k)'$ is a k-dimensional vector of random variables with covariance matrix Σ_r . A principal component analysis (PCA) is concerned with using a few linear combinations of r_i to explain the structure of Σ_r .

e.g. if r denotes the monthly return of k assects, then PCA can be used to study the main source of variations of these k asset returns. PCA is one of the methods of dimension-reduction.

Principal Component Analysis

PCA steps:

- 1. Find the variance-covariance matrix of r_t , denoted as Σ_r ;
- 2. Compute the eigenvalues and eigenvectors of Σ_r ;
- 3. Find the first L largest eigenvalues $\lambda_1, ..., \lambda_L$ and their corresponding eigenvectors $w = (w_1, ..., w_L)$;
- 4. Finally, $f_t = w'r_t$.