11. Monetary Policy in HANK

Adv. Macro: Heterogenous Agent Models

Nicolai Waldstrøm

2024

- Last Time:
 - Fiscal policy in the canonical HANK model

- Last Time:
 - Fiscal policy in the canonical HANK model
- Today:
 - Other pillar of stabilization policy: Monetary policy
 - Will use as example to study alternatives to rational expecations (RE) in HANK

Last Time:

Fiscal policy in the canonical HANK model

Today:

- Other pillar of stabilization policy: Monetary policy
- Will use as example to study alternatives to rational expecations (RE) in HANK

Literature:

- Seminal paper: Kaplan, Moll, Violante (2018) »Monetary policy according to HANK«
- Auclert Rognlie, Straub (2020) »Micro jumps, macro humps«
- Alves, Kaplan, Moll, Violante (2020) »A further look at the propagation of monetary policy shocks in HANK«

Monetary Policy in HANK

Monetary Policy

- Introducing heterogeneous agents into the standard NK model fundamentally changes the transmission of Fiscal Policy
 - Potentially more effective
 - Important whether policy is deficit financed or tax financed

Monetary Policy

- Introducing heterogeneous agents into the standard NK model fundamentally changes the transmission of Fiscal Policy
 - Potentially more effective
 - Important whether policy is deficit financed or tax financed
- What about monetary policy?

• Last time: Canonical HANK model

- Last time: Canonical HANK model
- Very close to standard NK except for:
 - HA instead of RA
 - Sticky wages
 - Government

- Last time: Canonical HANK model
- Very close to standard NK except for:
 - HA instead of RA
 - Sticky wages
 - Government
- Today: Monetary policy don't really need a government?

- Last time: Canonical HANK model
- Very close to standard NK except for:
 - HA instead of RA
 - Sticky wages
 - Government
- Today: Monetary policy don't really need a government?
 - Issue: If we remove government no liquidity for households to save in
 - Fine in RA, issue in HA with borrowing constraint at a=0

- Last time: Canonical HANK model
- Very close to standard NK except for:
 - HA instead of RA
 - Sticky wages
 - Government
- Today: Monetary policy don't really need a government?
 - Issue: If we remove government no liquidity for households to save in
 - Fine in RA, issue in HA with borrowing constraint at a=0
 - Solution: Firm equity

Households

Household problem:

$$\begin{split} v_t(z_t, a_{t-1}) &= \max_{c_t} \frac{c_t^{1-\sigma}}{1-\sigma} - \varphi \frac{\ell_t^{1+\nu}}{1+\nu} + \beta \mathbb{E}_t \left[v_{t+1}(z_{t+1}, a_t) \right] \\ \text{s.t. } a_t + c_t &= (1 + r_t^a) a_{t-1} + Z_t z_t + \chi_t \\ \log z_{t+1} &= \rho_z \log z_t + \psi_{t+1} \ , \psi_t \sim \mathcal{N}(\mu_\psi, \sigma_\psi), \ \mathbb{E}[z_t] = 1 \\ a_t &\geq 0 \end{split}$$

- with $Z_t = w_t \ell_t$ real labor income
- **decisions:** Consumption-saving, c_t (and a_t)
- Union decision: Labor supply, ℓ_t
- Aggregate Consumption: $C_t^{hh} = \int c_t d\mathcal{D}_t$
- Consumption function: $C_t^{hh} = C^{hh} \left(\{ r_s^a, Z_s, \chi_s \}_{s=0}^{\infty} \right)$

Firms

Production and profits:

$$Y_t = L_t$$
$$\Pi_t = Y_t - w_t L_t$$

- Optimize subject to demand curve (monopolistic competition)
- First order condition:

$$w_t = rac{1}{\mu}$$

- where $\mu>1=$ markup - firms make positive profits in equilibrium

• Mutual fund collect households savings A_t and invest in firm equity

- ullet Mutual fund collect households savings A_t and invest in firm equity
- Firm j has ownership shares $v_{j,t}$ with price $p_{j,t}^D$

- Mutual fund collect households savings A_t and invest in firm equity
- Firm j has ownership shares $v_{j,t}$ with price $\emph{p}_{j,t}^{\emph{D}}$
- If you own shares in the firm you get profits/dividends $\Pi_{j,t}$

- Mutual fund collect households savings A_t and invest in firm equity
- Firm j has ownership shares $v_{j,t}$ with price $p_{j,t}^D$
- If you own shares in the firm you get profits/dividends $\Pi_{j,t}$
- Shares sum to 1, $\int v_{j,t} dj = 1$

- Mutual fund collect households savings A_t and invest in firm equity
- Firm j has ownership shares $v_{j,t}$ with price $p_{j,t}^D$
- If you own shares in the firm you get profits/dividends $\Pi_{j,t}$
- Shares sum to 1, $\int v_{j,t} dj = 1$
- Firms are gonna be symmetric in eq., $p_{j,t}^D = p_t^D$

- Mutual fund collect households savings A_t and invest in firm equity
- Firm j has ownership shares $v_{j,t}$ with price $p_{j,t}^D$
- If you own shares in the firm you get profits/dividends $\Pi_{j,t}$
- Shares sum to 1, $\int v_{j,t} dj = 1$
- Firms are gonna be symmetric in eq., $p_{j,t}^D = p_t^D$
- Total value of firm equity is then $\int p_t^D v_{j,t} dj = p_t^D$

Problem:

$$\max_{\upsilon_{j,t}} \int \left(\Pi_{j,t+1} + p_{j,t+1}^D \right) \upsilon_{j,t} - \left(1 + r_{t+1}^a \right) A_t$$

Problem:

$$\max_{v_{j,t}} \int \left(\Pi_{j,t+1} + p_{j,t+1}^{D} \right) v_{j,t} - \left(1 + r_{t+1}^{a} \right) A_{t}$$

• Subject to balance sheet:

$$\int p_{j,t}^D v_{j,t} dj = A_t$$

Problem:

$$\max_{v_{j,t}} \int \left(\Pi_{j,t+1} + p_{j,t+1}^D \right) v_{j,t} - \left(1 + r_{t+1}^a \right) A_t$$

• Subject to balance sheet:

$$\int p_{j,t}^D v_{j,t} dj = A_t$$

FOC:

$$p_t^D = \frac{\Pi_{t+1} + p_{t+1}^D}{1 + r_t}$$

Problem:

$$\max_{v_{j,t}} \int \left(\Pi_{j,t+1} + p_{j,t+1}^D \right) v_{j,t} - \left(1 + r_{t+1}^a \right) A_t$$

• Subject to balance sheet:

$$\int p_{j,t}^D v_{j,t} dj = A_t$$

FOC:

$$p_t^D = \frac{\Pi_{t+1} + p_{t+1}^D}{1 + r_t}$$

• where $r_t = E_t r_{t+1}^a$ the ex-ante interest rate

Problem:

$$\max_{v_{j,t}} \int \left(\Pi_{j,t+1} + p_{j,t+1}^D \right) v_{j,t} - \left(1 + r_{t+1}^a \right) A_t$$

• Subject to balance sheet:

$$\int p_{j,t}^D v_{j,t} dj = A_t$$

FOC:

$$p_t^D = \frac{\Pi_{t+1} + p_{t+1}^D}{1 + r_t}$$

- where $r_t = E_t r_{t+1}^a$ the ex-ante interest rate
- Price of equity can be written as (assume $r_t = r$): $p_t^D = \sum_{r=0}^{\infty} (1+r)^{-s} \Pi_{t+s}$
 - Asset price today reflect discounted sum of future profits

Problem:

$$\max_{v_{j,t}} \int \left(\Pi_{j,t+1} + p_{j,t+1}^D \right) v_{j,t} - \left(1 + r_{t+1}^a \right) A_t$$

• Subject to balance sheet:

$$\int p_{j,t}^D v_{j,t} dj = A_t$$

FOC:

$$\rho_t^D = \frac{\Pi_{t+1} + \rho_{t+1}^D}{1 + r_t}$$

- where $r_t = E_t r_{t+1}^a$ the ex-ante interest rate
- Price of equity can be written as (assume $r_t = r$):

$$\rho_t^D = \sum_{s=0}^{\infty} (1+r)^{-s} \Pi_{t+s}$$

- Asset price today reflect discounted sum of future profits
- Valuation effects: As with nominal gov bonds:

$$1 + r_t^a = \begin{cases} \frac{\Pi_0 + p_0^D}{p_{ss}^D} & t = 0\\ 1 + r_{t-1} & t > 0 \end{cases}$$

Union

Everybody works the same:

$$\ell_t = L_t^{hh}$$

 Maximization subject to wage adjustment cost imply a New Keynesian Wage (Phillips) Curve (NKWPC or NKWC)

$$\pi_{t}^{w} = \kappa \left(\varphi \left(L_{t}^{hh} \right)^{\nu} - \frac{1}{\mu} \left(1 - \tau_{t} \right) w_{t} \left(C_{t}^{hh} \right)^{-\sigma} \right) + \beta \pi_{t+1}^{w}$$

Two options for monetary policy

- Two options for monetary policy
- 1. Government bonds are nominel, CB chooses nominel interest rate:

$$i_t = i_{ss} + \phi \pi_t$$

- Two options for monetary policy
- 1. Government bonds are nominel, CB chooses nominel interest rate:

$$i_t = i_{ss} + \phi \pi_t$$

• And fisher equation links nominal rate *i* to real rate *r*:

$$1 + r_t = \frac{1 + i_t}{1 + \pi_{t+1}}$$

- Two options for monetary policy
- 1. Government bonds are nominel, CB chooses nominel interest rate:

$$i_t = i_{ss} + \phi \pi_t$$

• And fisher equation links nominal rate *i* to real rate *r*:

$$1 + r_t = \frac{1 + i_t}{1 + \pi_{t+1}}$$

• 2. Alternative: Real rate rule. CB chooses real rate r_t directly

$$r_t = r_{ss} + (\phi - 1) \pi_t$$

Market clearing

- 1. Asset market: $p_t^D = A_t^{hh}$
- 2. Labor market: $L_t = L_t^{hh}$
- 3. Goods market: $Y_t = C_t^{hh}$

The consumption function

• Model features a consumption function:

$$C_t^{hh} = C_t^{hh}\left(\left\{r_s^a, Z_s\right\}_{s=0}^{\infty}\right) \Rightarrow \boldsymbol{C}^{hh} = C^{hh}\left(\boldsymbol{r}^a, \boldsymbol{Z}\right)$$

The consumption function

Model features a consumption function:

$$C_t^{hh} = C_t^{hh} \left(\left\{ r_s^a, Z_s \right\}_{s=0}^{\infty} \right) \Rightarrow \boldsymbol{C}^{hh} = C^{hh} \left(\boldsymbol{r}^a, \boldsymbol{Z} \right)$$

• Linearize around steady state:

$$d\mathbf{C} = \mathbf{M}d\mathbf{Z} + \mathbf{M}_{r^a}d\mathbf{r}^a$$

The consumption function

Model features a consumption function:

$$C_t^{hh} = C_t^{hh} \left(\left\{ r_s^a, Z_s \right\}_{s=0}^{\infty} \right) \Rightarrow \boldsymbol{C}^{hh} = C^{hh} \left(\boldsymbol{r}^a, \boldsymbol{Z} \right)$$

Linearize around steady state:

$$d\mathbf{C} = \mathbf{M}d\mathbf{Z} + \mathbf{M}_{r^a}d\mathbf{r}^a$$

• As discussed in last lecture, can split overall effect of asset returns $d\mathbf{r}^a$ into intertemporal substitution effect (ex-ante r) and a capital gain effect at time 0:

$$d\mathbf{C} = \mathbf{M}d\mathbf{Z} + \mathbf{M}_r d\mathbf{r} + \mathbf{m}dcap_0$$

The consumption function

Model features a consumption function:

$$C_t^{hh} = C_t^{hh} \left(\left\{ r_s^a, Z_s \right\}_{s=0}^{\infty} \right) \Rightarrow \boldsymbol{C}^{hh} = C^{hh} \left(\boldsymbol{r}^a, \boldsymbol{Z} \right)$$

Linearize around steady state:

$$d\mathbf{C} = \mathbf{M}d\mathbf{Z} + \mathbf{M}_{r^a}d\mathbf{r}^a$$

• As discussed in last lecture, can split overall effect of asset returns $d\mathbf{r}^a$ into intertemporal substitution effect (ex-ante r) and a capital gain effect at time 0:

$$d\mathbf{C} = \mathbf{M}d\mathbf{Z} + \mathbf{M}_r d\mathbf{r} + \mathbf{m}dcap_0$$

Note: m is a vector not matrix (multiplies onto scalar dcap₀, not vector)

Interest rate Jacobians

• Write real labor income as $Z_t = w_t L_t = \frac{1}{\mu} Y_t \Rightarrow d \mathbf{Z} = \frac{1}{\mu} d \mathbf{Y}$

- Write real labor income as $Z_t = w_t L_t = \frac{1}{\mu} Y_t \Rightarrow d \mathbf{Z} = \frac{1}{\mu} d \mathbf{Y}$
- Linearize goods market clearing:

$$d\mathbf{Y} = \mathbf{M}_r d\mathbf{r} + \frac{1}{\mu} \mathbf{M} d\mathbf{Y} + \mathbf{m} dcap_0$$

- Write real labor income as $Z_t = w_t L_t = \frac{1}{u} Y_t \Rightarrow d\mathbf{Z} = \frac{1}{u} d\mathbf{Y}$
- Linearize goods market clearing:

$$d\mathbf{Y} = \mathbf{M}_r d\mathbf{r} + \frac{1}{\mu} \mathbf{M} d\mathbf{Y} + \mathbf{m} dcap_0$$

• For small capital gains, solution is:

$$d\mathbf{Y} = \left(\mathbf{I} - \frac{1}{\mu}\mathbf{M}\right)^{-1}\mathbf{M}_r d\mathbf{r} \equiv \mathcal{M}\mathbf{M}_r d\mathbf{r}$$

- Write real labor income as $Z_t = w_t L_t = \frac{1}{\mu} Y_t \Rightarrow d \mathbf{Z} = \frac{1}{\mu} d \mathbf{Y}$
- Linearize goods market clearing:

$$d\mathbf{Y} = \mathbf{M}_r d\mathbf{r} + rac{1}{\mu} \mathbf{M} d\mathbf{Y} + \mathbf{m} dcap_0$$

• For small capital gains, solution is:

$$d\mathbf{Y} = \left(\mathbf{I} - \frac{1}{\mu}\mathbf{M}\right)^{-1}\mathbf{M}_r d\mathbf{r} \equiv \mathcal{M}\mathbf{M}_r d\mathbf{r}$$

Note: **can** multiplier invert this PV of columns in $\frac{1}{\mu} \mathbf{M}$ is not 1 when $\mu > 1!$)

- Write real labor income as $Z_t = w_t L_t = \frac{1}{\mu} Y_t \Rightarrow d \mathbf{Z} = \frac{1}{\mu} d \mathbf{Y}$
- Linearize goods market clearing:

$$d\mathbf{Y} = \mathbf{M}_r d\mathbf{r} + rac{1}{\mu} \mathbf{M} d\mathbf{Y} + \mathbf{m} dcap_0$$

For small capital gains, solution is:

$$d\mathbf{Y} = \left(\mathbf{I} - \frac{1}{\mu}\mathbf{M}\right)^{-1}\mathbf{M}_r d\mathbf{r} \equiv \mathcal{M}\mathbf{M}_r d\mathbf{r}$$

- Note: **can** multiplier invert this PV of columns in $\frac{1}{\mu} \mathbf{M}$ is not 1 when $\mu > 1!$)
- Monetary policy operates through:
 - **Direct** (partial eq., **M**_r) effect
 - Indirect (general eq., M) effect

- Write real labor income as $Z_t = w_t L_t = \frac{1}{\mu} Y_t \Rightarrow d \mathbf{Z} = \frac{1}{\mu} d \mathbf{Y}$
- Linearize goods market clearing:

$$d\mathbf{Y} = \mathbf{M}_r d\mathbf{r} + rac{1}{\mu} \mathbf{M} d\mathbf{Y} + \mathbf{m} dcap_0$$

For small capital gains, solution is:

$$d\mathbf{Y} = \left(\mathbf{I} - \frac{1}{\mu}\mathbf{M}\right)^{-1}\mathbf{M}_r d\mathbf{r} \equiv \mathcal{M}\mathbf{M}_r d\mathbf{r}$$

- Note: **can** multiplier invert this PV of columns in $\frac{1}{\mu} \mathbf{M}$ is not 1 when $\mu > 1!$)
- Monetary policy operates through:
 - **Direct** (partial eq., **M**_r) effect
 - Indirect (general eq., M) effect
- Q1: Sign? Positive/negative?

- Write real labor income as $Z_t = w_t L_t = \frac{1}{\mu} Y_t \Rightarrow d \mathbf{Z} = \frac{1}{\mu} d \mathbf{Y}$
- Linearize goods market clearing:

$$d\mathbf{Y} = \mathbf{M}_r d\mathbf{r} + rac{1}{\mu} \mathbf{M} d\mathbf{Y} + \mathbf{m} dcap_0$$

For small capital gains, solution is:

$$d\mathbf{Y} = \left(\mathbf{I} - \frac{1}{\mu}\mathbf{M}\right)^{-1}\mathbf{M}_r d\mathbf{r} \equiv \mathcal{M}\mathbf{M}_r d\mathbf{r}$$

- Note: **can** multiplier invert this PV of columns in $\frac{1}{\mu} \mathbf{M}$ is not 1 when $\mu > 1!$)
- Monetary policy operates through:
 - **Direct** (partial eq., **M**_r) effect
 - Indirect (general eq., M) effect
- Q1: Sign? Positive/negative?
- Q2: Do you expect the effects of monetary policy on output to be larger in HANK then RANK?

• Assume logarithmic utility $u(c) = \log(c)$

- Assume logarithmic utility $u(c) = \log(c)$
- Proposition: Above model features exact equivalence between RANK and HANK for the response of aggregates w.r.t a monetary policy shock (Werning 2015)

- Assume logarithmic utility $u(c) = \log(c)$
- Proposition: Above model features exact equivalence between RANK and HANK for the response of aggregates w.r.t a monetary policy shock (Werning 2015)
- ... but transmission channel is different

- Assume logarithmic utility $u(c) = \log(c)$
- Proposition: Above model features exact equivalence between RANK and HANK for the response of aggregates w.r.t a monetary policy shock (Werning 2015)
- ... but transmission channel is different
- Decompose $d\mathbf{Y}$ into direct and indrect effect using $d\mathbf{Y}^j = \mathbf{M}_{r^a}^j d\mathbf{r}^a + \mathbf{M}^j d\mathbf{Z}$ for $j \in \{HA, RA\}$

- In basic HANK model:
 - Monetary policy has same effectiveness as in RANK
 - But transmission different: Indirect income effects more important than in RANK

- In basic HANK model:
 - Monetary policy has same effectiveness as in RANK
 - But transmission different: Indirect income effects more important than in RANK
- Exact equivalence is the product of a number of simplifying assumptions:
 - Linear production function
 - No investment
 - Log utility
 - Equal incidence of labor income
 - No government debt

- In basic HANK model:
 - Monetary policy has same effectiveness as in RANK
 - But transmission different: Indirect income effects more important than in RANK
- Exact equivalence is the product of a number of simplifying assumptions:
 - Linear production function
 - No investment
 - Log utility
 - Equal incidence of labor income
 - No government debt
- How does the effectiveness of monetary policy look in more realistic models?
 - Kaplan, Moll, Violante (2018) »Monetary policy according to HANK«
 - Auclert Rognlie, Straub (2020) »Micro jumps, macro humps«

KMV 2018

Monetary policy according to HANK

- Kaplan, Moll, Violante (2018) is a seminal paper in the HANK litterature
 - The term HANK originates from this paper

Monetary policy according to HANK

- Kaplan, Moll, Violante (2018) is a seminal paper in the HANK litterature
 - The term HANK originates from this paper
- They study the transmission of monetary policy in medium scale HANK model

Monetary policy according to HANK

- Kaplan, Moll, Violante (2018) is a seminal paper in the HANK litterature
 - The term HANK originates from this paper
- They study the transmission of monetary policy in medium scale HANK model
- Follows Kaplan & Violante (2014) closely
 - See lecture 2
 - Household can hold both liquid and illiquid assets
 - Model features both poor and wealthy Hand-to-mouth households

Household problem

 Households solve (here converted to discrete time, paper in cont. time):

$$\begin{aligned} V_t\left(a_{t-1},b_{t-1},z_t\right) &= \max_{c_t,a_t,b_t} u\left(c_t,\ell_t\right) + \beta E_t V_{t+1}\left(a_t,b_t,z_{t+1}\right) \\ b_t + c_t &= (1-\tau_t)w_t z_t \ell_t + \left(1+r_t^b\right)b_{t-1} - d_t - \chi(d_t,a_{t-1}) \\ a_t &= (1+r_t^a)a_{t-1} + d_t \\ b_t &\geq -\bar{b} \quad a_t \geq 0. \end{aligned}$$

Household problem

 Households solve (here converted to discrete time, paper in cont. time):

$$\begin{aligned} V_t\left(a_{t-1},b_{t-1},z_t\right) &= \max_{c_t,a_t,b_t} u\left(c_t,\ell_t\right) + \beta E_t V_{t+1}\left(a_t,b_t,z_{t+1}\right) \\ b_t + c_t &= (1-\tau_t)w_t z_t \ell_t + \left(1+r_t^b\right)b_{t-1} - d_t - \chi(d_t,a_{t-1}) \\ a_t &= (1+r_t^a)a_{t-1} + d_t \\ b_t &\geq -\bar{b} \quad a_t \geq 0. \end{aligned}$$

with b_t=liquid asset, a_t=illiquid assets, d_t=deposits into illiquid asset

Household problem

 Households solve (here converted to discrete time, paper in cont. time):

$$\begin{aligned} V_t\left(a_{t-1},b_{t-1},z_t\right) &= \max_{c_t,a_t,b_t} u\left(c_t,\ell_t\right) + \beta E_t V_{t+1}\left(a_t,b_t,z_{t+1}\right) \\ b_t + c_t &= (1-\tau_t)w_t z_t \ell_t + \left(1+r_t^b\right)b_{t-1} - d_t - \chi(d_t,a_{t-1}) \\ a_t &= (1+r_t^a)a_{t-1} + d_t \\ b_t &> -\bar{b} \quad a_t > 0. \end{aligned}$$

- with b_t=liquid asset, a_t=illiquid assets, d_t=deposits into illiquid asset
- Return on illiquid asset r_t^a Return on liquid asset r_t^b
 - Household will prefer to hold at due to superior return
 - But not good for consumption smoothing as they have to pay adjustment cost to use at for smoothing against shocks
 - Some HHs will be wealthy hand-to-mouth

MPCs

• 1) MPCs for different sizes of stimulus checks, 2) MPCs across the wealth distribution

10

Direct vs indirect effects

■ Amplification in HANK (elasticity of $C^{HANK} = -2.9$ vs $C^{RANK} = -2.07$)

Direct vs indirect effects

- Amplification in HANK (elasticity of $C^{HANK} = -2.9$ vs $C^{RANK} = -2.07$)
- Baseline HANK: Indirect effects account for majority of transmission ($\approx 80\%$)

TABLE 7—DECOMPOSITION OF THE EFFECT OF MONETARY SHOCK ON AGGREGATE CONSUMPTION

	Baseline (1)	$\omega = 1$ (2)	$\omega = 0.1$ (3)	$\frac{\varepsilon}{\theta} = 0.2$ (4)	$\phi = 2.0$ (5)	$\frac{1}{\nu} = 0.5$ (6)
Change in r ^b (pp)	-0.28	-0.34	-0.16	-0.21	-0.14	-0.25
Elasticity of Y	-3.96	-0.13	-24.9	-4.11	-3.94	-4.30
Elasticity of I	-9.43	7.83	-105	-9.47	-9.72	-9.79
Elasticity of C	-2.93	-2.06	-6.50	-2.96	-3.00	-2.87
Partial eq. elasticity of C	-0.55	-0.45	-0.99	-0.57	-0.59	-0.62
Component of percent change in	C due to					
Direct effect: r ^b	19	22	15	19	20	22
Indirect effect: w	51	56	51	51	51	38
Indirect effect: T	32	38	19	31	31	45
Indirect effect: ra and q	-2	-16	15	-2	-2	-4

Expectations

■ Auclert, Rognlie and Straub (2020) »Micro jumps, macro humps«

- Auclert, Rognlie and Straub (2020) »Micro jumps, macro humps«
- Estimate parameters in quantitative HANK model to match estimated effects of causal monetary policy shock

- Auclert, Rognlie and Straub (2020) »Micro jumps, macro humps«
- Estimate parameters in quantitative HANK model to match estimated effects of causal monetary policy shock
- Main hurdle: Empirical response of C, Y is hump-shaped to monetary policy shock.

- Auclert, Rognlie and Straub (2020) »Micro jumps, macro humps«
- Estimate parameters in quantitative HANK model to match estimated effects of causal monetary policy shock
- Main hurdle: Empirical response of C, Y is hump-shaped to monetary policy shock.
- Want a model that simultaneously match hump-shaped agg.
 response to r and iMPC moment

The problem

- Standard model does not give hump shaped for C to standard shock
- Does not matter if shock is hump shaped or not

The solution: RANK

• Solution in RANK litterature: Habits in utility function:

$$\sum_{t=0}^{\infty} \beta^{t} u \left(C_{t} - \gamma C_{t-1} \right)$$

$$\Rightarrow u' \left(C_{t} - \gamma C_{t-1} \right) = \beta R_{t+1} u' \left(C_{t+1} - \gamma C_{t} \right)$$

The solution: RANK

Solution in RANK litterature: Habits in utility function:

$$\sum_{t=0}^{\infty} \beta^{t} u \left(C_{t} - \gamma C_{t-1} \right)$$

$$\Rightarrow u' \left(C_{t} - \gamma C_{t-1} \right) = \beta R_{t+1} u' \left(C_{t+1} - \gamma C_{t} \right)$$

 Generates persistence in C response to shocks because household don't want to deviate too much from last periods consumption level

The solution: RANK

Solution in RANK litterature: Habits in utility function:

$$\sum_{t=0}^{\infty} \beta^{t} u \left(C_{t} - \gamma C_{t-1} \right)$$

$$\Rightarrow u' \left(C_{t} - \gamma C_{t-1} \right) = \beta R_{t+1} u' \left(C_{t+1} - \gamma C_{t} \right)$$

- Generates persistence in C response to shocks because household don't want to deviate too much from last periods consumption level
- However: Does not work in HANK because it kills iMPCs:

Deviations from alternative expecations

Solution: Deviate from rational expecations (RE)

Deviations from alternative expecations

- Solution: Deviate from rational expecations (RE)
- Assume households have imperfect expecations about **changes** in aggregate variables (Z, r)
 - Implies that steady state is unaffected
 - Still rational expecations w.r.t idiosyncratic income shocks

Deviations from alternative expecations

- Solution: Deviate from rational expecations (RE)
- Assume households have imperfect expecations about changes in aggregate variables (Z, r)
 - Implies that steady state is unaffected
 - Still rational expecations w.r.t idiosyncratic income shocks
- Will only implement this to first-order (e.g. linear approximations)
 - Much more difficult if we want full non-linear solution

Income Jacobian

Example: Response of aggregate consumption C to change in agg. income Z

$$d\mathbf{C} = \mathbf{M}d\mathbf{Z}$$

Income Jacobian

Example: Response of aggregate consumption C to change in agg. income Z

$$d\mathbf{C} = \mathbf{M}d\mathbf{Z}$$

• where **M** is jacobian with rational expectations:

$$\mathbf{M} = \begin{bmatrix} \frac{\partial C_0}{\partial Z_0} & \frac{\partial C_0}{\partial Z_1} & \frac{\partial C_0}{\partial Z_2} & \cdots \\ \frac{\partial C_1}{\partial Z_0} & \frac{\partial C_1}{\partial Z_1} & \frac{\partial C_1}{\partial Z_2} & \cdots \\ \frac{\partial C_2}{\partial Z_0} & \frac{\partial C_2}{\partial Z_1} & \frac{\partial C_2}{\partial Z_2} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Income Jacobian

 Example: Response of aggregate consumption C to change in agg. income Z

$$d\mathbf{C} = \mathbf{M}d\mathbf{Z}$$

• where **M** is jacobian with rational expectations:

$$\mathbf{M} = \begin{bmatrix} \frac{\partial C_0}{\partial Z_0} & \frac{\partial C_0}{\partial Z_1} & \frac{\partial C_0}{\partial Z_2} & \cdots \\ \frac{\partial C_1}{\partial Z_0} & \frac{\partial C_1}{\partial Z_1} & \frac{\partial C_1}{\partial Z_2} & \cdots \\ \frac{\partial C_2}{\partial Z_0} & \frac{\partial C_2}{\partial Z_1} & \frac{\partial C_2}{\partial Z_2} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

- Note that elements above diagonal are affected by expectations (i.e. they concern the **future**)
 - Elements on and below diagonal reflect changes in income today or in the past (known by HHs)

Expectations matrix

• Introduce expectations matrix **E**:

$$m{E} = egin{bmatrix} 1 & * & * & * & \cdots \ 1 & 1 & * & * & \cdots \ 1 & 1 & 1 & * & \cdots \ 1 & 1 & 1 & 1 & \cdots \ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Expectations matrix

• Introduce expectations matrix **E**:

$${m E} = egin{bmatrix} 1 & * & * & * & \cdots \ 1 & 1 & * & * & \cdots \ 1 & 1 & 1 & * & \cdots \ 1 & 1 & 1 & 1 & \cdots \ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

- Element t, s ($E_{t,s}$) captures average date-t exp. about shock to Z at date s.
 - $E_{t,s}dZ_s$ is then the expected value of dZ_s at date t

Expectations matrix

• Introduce expectations matrix E:

$$m{E} = egin{bmatrix} 1 & * & * & * & \cdots \ 1 & 1 & * & * & \cdots \ 1 & 1 & 1 & * & \cdots \ 1 & 1 & 1 & 1 & \cdots \ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

- Element t, s ($E_{t,s}$) captures average date-t exp. about shock to Z at date s.
 - $E_{t,s}dZ_s$ is then the expected value of dZ_s at date t
- How to get jacobian $\hat{\boldsymbol{M}}$ associated with \boldsymbol{E} ?

$$\mathbf{E} = \begin{bmatrix} 1 & 0.4 & 0.3 & \cdots \\ 1 & 1 & 0.6 & \cdots \\ 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Expectations matrix:

$$m{E} = egin{bmatrix} 1 & 0.4 & 0.3 & \cdots \ 1 & 1 & 0.6 & \cdots \ 1 & 1 & 1 & \cdots \ dots & dots & dots & dots & dots \end{bmatrix}$$

• At t=0 expected path of $d\mathbf{Z}$ is $\{1 \cdot dZ_0, 0.4 \cdot dZ_1, 0.3 \cdot dZ_2\}$

$$\mathbf{E} = \begin{bmatrix} 1 & 0.4 & 0.3 & \cdots \\ 1 & 1 & 0.6 & \cdots \\ 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

- At t = 0 expected path of $d\mathbf{Z}$ is $\{1 \cdot dZ_0, 0.4 \cdot dZ_1, 0.3 \cdot dZ_2\}$
- At t = 1 expected path of $d\mathbf{Z}$ is $\{1 \cdot dZ_0, 1 \cdot dZ_1, 0.6 \cdot dZ_2\}$

$$\mathbf{E} = \begin{bmatrix} 1 & 0.4 & 0.3 & \cdots \\ 1 & 1 & 0.6 & \cdots \\ 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

- At t = 0 expected path of $d\mathbf{Z}$ is $\{1 \cdot dZ_0, 0.4 \cdot dZ_1, 0.3 \cdot dZ_2\}$
- At t = 1 expected path of $d\mathbf{Z}$ is $\{1 \cdot dZ_0, 1 \cdot dZ_1, 0.6 \cdot dZ_2\}$
- What is response of C?

$$\mathbf{E} = \begin{bmatrix}
1 & 0.4 & 0.3 & \cdots \\
1 & 1 & 0.6 & \cdots \\
1 & 1 & 1 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}$$

- At t = 0 expected path of $d\mathbf{Z}$ is $\{1 \cdot dZ_0, 0.4 \cdot dZ_1, 0.3 \cdot dZ_2\}$
- At t=1 expected path of $d\textbf{\textit{Z}}$ is $\{1\cdot dZ_0, 1\cdot dZ_1, 0.6\cdot dZ_2\}$
- What is response of C?
- Period 0 with RE:

$$dC_0 = \frac{\partial C_0}{\partial Z_0} dZ_0 + \frac{\partial C_0}{\partial Z_1} dZ_1 + \frac{\partial C_0}{\partial Z_2} dZ_2 + \dots$$

Expectations matrix:

$$\mathbf{E} = \begin{bmatrix}
1 & 0.4 & 0.3 & \cdots \\
1 & 1 & 0.6 & \cdots \\
1 & 1 & 1 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}$$

- At t = 0 expected path of $d\mathbf{Z}$ is $\{1 \cdot dZ_0, 0.4 \cdot dZ_1, 0.3 \cdot dZ_2\}$
- At t=1 expected path of $d\textbf{\textit{Z}}$ is $\{1\cdot dZ_0, 1\cdot dZ_1, 0.6\cdot dZ_2\}$
- What is response of C?
- Period 0 with RE:

$$dC_0 = \frac{\partial C_0}{\partial Z_0} dZ_0 + \frac{\partial C_0}{\partial Z_1} dZ_1 + \frac{\partial C_0}{\partial Z_2} dZ_2 + \dots$$

With alternative *E*:

$$d\hat{C}_0 = \frac{\partial C_0}{\partial Z_0} dZ_0 + 0.4 \cdot \frac{\partial C_0}{\partial Z_1} dZ_1 + 0.3 \cdot \frac{\partial C_0}{\partial Z_2} dZ_2 + \dots$$

• $d\hat{C}_0$ simple to get. What about $d\hat{C}_1$?

- $d\hat{C}_0$ simple to get. What about $d\hat{C}_1$?
- With RE we have:

$$dC_1 = \frac{\partial C_1}{\partial Z_0} dZ_0 + \frac{\partial C_1}{\partial Z_1} dZ_1 + \frac{\partial C_1}{\partial Z_2} dZ_2 + \dots$$

- $d\hat{C}_0$ simple to get. What about $d\hat{C}_1$?
- With RE we have:

$$dC_1 = \frac{\partial C_1}{\partial Z_0} dZ_0 + \frac{\partial C_1}{\partial Z_1} dZ_1 + \frac{\partial C_1}{\partial Z_2} dZ_2 + \dots$$

With Alternative E:

$$d\hat{C}_{1} = \underbrace{\frac{\partial C_{1}}{\partial Z_{0}} dZ_{0}}_{\text{Past shock}} + \underbrace{0.4 \frac{\partial C_{1}}{\partial Z_{1}} dZ_{1} + (1 - 0.4) \frac{\partial C_{0}}{\partial Z_{0}} dZ_{1}}_{\text{Shock "today"}} + \underbrace{0.3 \frac{\partial C_{1}}{\partial Z_{2}} dZ_{2} + (0.6 - 0.3) \frac{\partial C_{0}}{\partial Z_{1}} dZ_{2}}_{\text{Future shock}}$$

27 / 100

- $d\hat{C}_0$ simple to get. What about $d\hat{C}_1$?
- With RE we have:

$$dC_1 = \frac{\partial C_1}{\partial Z_0} dZ_0 + \frac{\partial C_1}{\partial Z_1} dZ_1 + \frac{\partial C_1}{\partial Z_2} dZ_2 + \dots$$

With Alternative E:

$$d\hat{C}_{1} = \underbrace{\frac{\partial C_{1}}{\partial Z_{0}} dZ_{0}}_{\text{Past shock}} + \underbrace{0.4 \frac{\partial C_{1}}{\partial Z_{1}} dZ_{1} + (1 - 0.4) \frac{\partial C_{0}}{\partial Z_{0}} dZ_{1}}_{\text{Shock "today"}} + \underbrace{0.3 \frac{\partial C_{1}}{\partial Z_{2}} dZ_{2} + (0.6 - 0.3) \frac{\partial C_{0}}{\partial Z_{1}} dZ_{2}}_{\text{Future shock}}$$

Intuition:

- $d\hat{C}_0$ simple to get. What about $d\hat{C}_1$?
- With RE we have:

$$dC_1 = \frac{\partial C_1}{\partial Z_0} dZ_0 + \frac{\partial C_1}{\partial Z_1} dZ_1 + \frac{\partial C_1}{\partial Z_2} dZ_2 + \dots$$

With Alternative E:

$$d\hat{C}_{1} = \underbrace{\frac{\partial C_{1}}{\partial Z_{0}} dZ_{0}}_{\text{Past shock}} + \underbrace{0.4 \frac{\partial C_{1}}{\partial Z_{1}} dZ_{1} + (1 - 0.4) \frac{\partial C_{0}}{\partial Z_{0}} dZ_{1}}_{\text{Shock "today"}} + \underbrace{0.3 \frac{\partial C_{1}}{\partial Z_{2}} dZ_{2} + (0.6 - 0.3) \frac{\partial C_{0}}{\partial Z_{1}} dZ_{2}}_{\text{Future shock}}$$

- Intuition:
 - Past shock: Fully known, so standard effect

- $d\hat{C}_0$ simple to get. What about $d\hat{C}_1$?
- With RE we have:

$$dC_1 = \frac{\partial C_1}{\partial Z_0} dZ_0 + \frac{\partial C_1}{\partial Z_1} dZ_1 + \frac{\partial C_1}{\partial Z_2} dZ_2 + \dots$$

With Alternative E:

$$d\hat{C}_{1} = \underbrace{\frac{\partial C_{1}}{\partial Z_{0}} dZ_{0}}_{\text{Past shock}} + \underbrace{0.4 \frac{\partial C_{1}}{\partial Z_{1}} dZ_{1} + (1 - 0.4) \frac{\partial C_{0}}{\partial Z_{0}} dZ_{1}}_{\text{Shock "today"}} + \underbrace{0.3 \frac{\partial C_{1}}{\partial Z_{2}} dZ_{2} + (0.6 - 0.3) \frac{\partial C_{0}}{\partial Z_{1}} dZ_{2}}_{\text{Future shock}}$$

- Intuition:
 - Past shock: Fully known, so standard effect
 - Present shock: Weighted average of forward looking RE part and »myopic« surprise

- $d\hat{C}_0$ simple to get. What about $d\hat{C}_1$?
- With RE we have:

$$dC_1 = \frac{\partial C_1}{\partial Z_0} dZ_0 + \frac{\partial C_1}{\partial Z_1} dZ_1 + \frac{\partial C_1}{\partial Z_2} dZ_2 + \dots$$

With Alternative E:

$$d\hat{C}_{1} = \underbrace{\frac{\partial C_{1}}{\partial Z_{0}} dZ_{0}}_{\mathsf{Past \ shock}} + \underbrace{0.4 \frac{\partial C_{1}}{\partial Z_{1}} dZ_{1} + (1 - 0.4) \frac{\partial C_{0}}{\partial Z_{0}} dZ_{1}}_{\mathsf{Shock} \ "today"} + \underbrace{0.3 \frac{\partial C_{1}}{\partial Z_{2}} dZ_{2} + (0.6 - 0.3) \frac{\partial C_{0}}{\partial Z_{1}} dZ_{2}}_{\mathsf{Future \ shock}}$$

- Intuition:
 - Past shock: Fully known, so standard effect
 - Present shock: Weighted average of forward looking RE part and »myopic« surprise
 - Future shock: Initial RE part from period 0 (weight: 0.3) and revision of expectations (weight: 0.6 0.3)

• At first glance seems hard to implement

- At first glance seems hard to implement
- ... but we have a general formula to get $\hat{\textbf{\textit{M}}}$ given $\textbf{\textit{E}}$

- At first glance seems hard to implement
- ... but we have a general formula to get $\hat{\boldsymbol{M}}$ given \boldsymbol{E}
- \hat{M} matrix with expectations matrix E:

$$\hat{M}_{t,s} = \sum_{\tau=0}^{\min\{t,s\}} \underbrace{\left(E_{\tau,s} - E_{\tau-1,s}\right) M_{t-\tau,s-\tau}}_{\text{date-t effect of date-τ expectation revision of date-s shock}$$

- At first glance seems hard to implement
- ... but we have a general formula to get $\hat{\boldsymbol{M}}$ given \boldsymbol{E}
- \hat{M} matrix with expectations matrix E:

$$\hat{M}_{t,s} = \sum_{\tau=0}^{\min\{t,s\}} \underbrace{\left(E_{\tau,s} - E_{\tau-1,s}\right) M_{t-\tau,s-\tau}}_{\text{date-t effect of date-τ expectation revision of date-s shock}$$

• with $E_{-1,s} = 0$ by convention

- At first glance seems hard to implement
- ... but we have a general formula to get $\hat{\pmb{M}}$ given \pmb{E}
- \hat{M} matrix with expectations matrix E:

$$\hat{M}_{t,s} = \sum_{ au=0}^{\min\{t,s\}} \underbrace{\left(E_{ au,s} - E_{ au-1,s}
ight) M_{t- au,s- au}}_{ ext{date-}t ext{ effect of date-} au ext{ expectation revision of date-}s ext{ shock}$$

- with $E_{-1,s} = 0$ by convention
- Fast and easy to implement

Examples

Examples:

$$\mathbf{E}^{\mathsf{RE}} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

$$\mathbf{\textit{E}}^{\mathsf{RE}} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}, \qquad \mathbf{\textit{E}}^{\mathsf{Myopic}} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & \cdots \\ 1 & 1 & 1 & 0 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Examples

Examples:

$$\mathbf{\textit{E}}^{\mathsf{RE}} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}, \qquad \mathbf{\textit{E}}^{\mathsf{Myopic}} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & \cdots \\ 1 & 1 & 1 & 0 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

- Two extremes:
 - Rational expectations: Households are fully informed about the future path of Z from the moment the shock manifests
 - Myopic expectations: Households are not forward looking w.r.t aggregates. Every change in Z is a surprise.

Examples

Examples:

$$\boldsymbol{\textit{E}}^{\mathsf{RE}} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}, \qquad \boldsymbol{\textit{E}}^{\mathsf{Myopic}} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

- Two extremes:
 - Rational expectations: Households are fully informed about the future path of Z from the moment the shock manifests
 - Myopic expectations: Households are not forward looking w.r.t aggregates. Every change in Z is a surprise.
- Implied jacobians:

$$\hat{\textbf{\textit{M}}}^{RE} = \textbf{\textit{M}} = \begin{bmatrix} \frac{\partial C_0}{\partial Z_0} & \frac{\partial C_0}{\partial Z_1} & \frac{\partial C_0}{\partial Z_2} & \cdots \\ \frac{\partial C_1}{\partial Z_0} & \frac{\partial C_1}{\partial Z_1} & \frac{\partial C_1}{\partial Z_2} & \cdots \\ \frac{\partial C_2}{\partial Z_0} & \frac{\partial C_2}{\partial Z_1} & \frac{\partial C_2}{\partial Z_2} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}, \qquad \hat{\textbf{\textit{M}}}^{Myopic} = \begin{bmatrix} \frac{\partial C_0}{\partial Z_0} & 0 & 0 & \cdots \\ \frac{\partial C_1}{\partial Z_0} & \frac{\partial C_0}{\partial Z_0} & 0 & \cdots \\ \frac{\partial C_1}{\partial Z_0} & \frac{\partial C_0}{\partial Z_0} & \frac{\partial C_0}{\partial Z_0} & \cdots \\ \frac{\partial C_2}{\partial Z_0} & \frac{\partial C_1}{\partial Z_0} & \frac{\partial C_0}{\partial Z_0} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Jacobians

Jacobian of C w.r.t Z

• Given some exp. matrix \boldsymbol{E} we can construct alternative jacobians $\hat{\boldsymbol{M}}, \hat{\boldsymbol{M}}_r$

- Given some exp. matrix \boldsymbol{E} we can construct alternative jacobians $\hat{\boldsymbol{M}}, \hat{\boldsymbol{M}}_r$
- Solve for GE using these jacobians instead of RE jacobians M, M_r :

$$\boldsymbol{H}(\boldsymbol{U}, \boldsymbol{X}) = 0 \Rightarrow d\boldsymbol{U} = -\hat{\boldsymbol{H}}_U^{-1}\hat{\boldsymbol{H}}_X d\boldsymbol{X}$$

- Given some exp. matrix \boldsymbol{E} we can construct alternative jacobians $\hat{\boldsymbol{M}}, \hat{\boldsymbol{M}}_r$
- Solve for GE using these jacobians instead of RE jacobians M, M_r :

$$\boldsymbol{H}(\boldsymbol{U},\boldsymbol{X}) = 0 \Rightarrow d\boldsymbol{U} = -\hat{\boldsymbol{H}}_{U}^{-1}\hat{\boldsymbol{H}}_{X}d\boldsymbol{X}$$

In our example:

$$\mathbf{Y} - \mathbf{C}\left(\mathbf{r}, \frac{1}{\mu}\mathbf{Y}\right) = 0$$
$$\Rightarrow d\mathbf{Y} = \left(\mathbf{I} - \frac{1}{\mu}\hat{\mathbf{M}}\right)^{-1}\hat{\mathbf{M}}_r d\mathbf{r}$$

- Given some exp. matrix \boldsymbol{E} we can construct alternative jacobians $\hat{\boldsymbol{M}}, \hat{\boldsymbol{M}}_r$
- Solve for GE using these jacobians instead of RE jacobians M, M_r :

$$\boldsymbol{H}(\boldsymbol{U},\boldsymbol{X}) = 0 \Rightarrow d\boldsymbol{U} = -\hat{\boldsymbol{H}}_{U}^{-1}\hat{\boldsymbol{H}}_{X}d\boldsymbol{X}$$

In our example:

$$\mathbf{Y} - \mathbf{C}\left(\mathbf{r}, \frac{1}{\mu}\mathbf{Y}\right) = 0$$
$$\Rightarrow d\mathbf{Y} = \left(\mathbf{I} - \frac{1}{\mu}\hat{\mathbf{M}}\right)^{-1}\hat{\mathbf{M}}_r d\mathbf{r}$$

• where
$$-\hat{\pmb{H}}_U^{-1} = \left(\pmb{I} - \frac{1}{\mu}\hat{\pmb{M}}\right)^{-1}$$
 and $\hat{\pmb{H}}_X = -\hat{\pmb{M}}_{r}$

Non-RE expecations in GEModelTools I

- How to implement in GEModelTools?
 - Currently no built in way to handle

Non-RE expecations in GEModelTools I

- How to implement in GEModelTools?
 - Currently no built in way to handle
- Work around (see exercise):

- How to implement in GEModelTools?
 - Currently no built in way to handle
- Work around (see exercise):
 - 1. Compute all Jacobians for household block
 - model.compute_hh_jacs()
 - If using RA/TA instead of HA must manually compute jac

- How to implement in GEModelTools?
 - Currently no built in way to handle
- Work around (see exercise):
 - 1. Compute all Jacobians for household block
 - model.compute_hh_jacs()
 - If using RA/TA instead of HA must manually compute jac
 - 2. Construct Expectation matrix ${\it E}$ and compute ${\it M}$ by modyfing RE jacobians in model.jac_hh

- How to implement in GEModelTools?
 - Currently no built in way to handle
- Work around (see exercise):
 - 1. Compute all Jacobians for household block
 - model.compute_hh_jacs()
 - If using RA/TA instead of HA must manually compute jac
 - 2. Construct Expectation matrix ${\pmb E}$ and compute $\tilde{\pmb M}$ by modyfing RE jacobians in model.jac_hh
 - 3. Overwrite jacobians model.jac_hh with $\tilde{\pmb{M}}$ for each output/input to household block

- How to implement in GEModelTools?
 - Currently no built in way to handle
- Work around (see exercise):
 - 1. Compute all Jacobians for household block
 - model.compute_hh_jacs()
 - If using RA/TA instead of HA must manually compute jac
 - 2. Construct Expectation matrix \boldsymbol{E} and compute $\boldsymbol{\tilde{M}}$ by modyfing RE jacobians in model.jac_hh
 - 3. Overwrite jacobians model.jac_hh with $\tilde{\pmb{M}}$ for each output/input to household block
 - Compute all Jacobians w.r.t unknowns and shocks, but not for household block
 - model.compute_jacs(compute_hh_jac=False,do_shocks=True)
 - GEModelTools will automatically use whatever jacobian is in model.jac_hh to construct Jacobians H_U, H_Z

- How to implement in GEModelTools?
 - Currently no built in way to handle
- Work around (see exercise):
 - 1. Compute all Jacobians for household block
 - model.compute_hh_jacs()
 - If using RA/TA instead of HA must manually compute jac
 - 2. Construct Expectation matrix \boldsymbol{E} and compute \boldsymbol{M} by modyfing RE jacobians in model.jac_hh
 - 3. Overwrite jacobians model.jac_hh with $\tilde{\pmb{M}}$ for each output/input to household block
 - Compute all Jacobians w.r.t unknowns and shocks, but not for household block
 - model.compute_jacs(compute_hh_jac=False,do_shocks=True)
 - GEModelTools will automatically use whatever jacobian is in model.jac_hh to construct Jacobians H_U, H_Z
 - 5. Solve for IRFs:
 - model.find_IRFs(shocks=[x])

Back to Auclert, Rognlie, Straub (2020) - Sticky expectations

 Auclert, Rognlie, Straub (2020) use sticky information/expectations (Mankiw and Reis (2002))

Back to Auclert, Rognlie, Straub (2020) - Sticky expectations

- Auclert, Rognlie, Straub (2020) use sticky information/expectations (Mankiw and Reis (2002))
- Only a fraction 1θ of HHs update their information set about the aggregate economy each period
 - Only learn full path of shock $d\mathbf{r}$, $d\mathbf{Z}$ if you update
 - 1. period: $1-\theta$ update and learn full path
 - 2. period: $\theta(1-\theta)$ update, so $1-\theta+\theta(1-\theta)=1-\theta^2$ have full info

Back to Auclert, Rognlie, Straub (2020) - Sticky expectations

- Auclert, Rognlie, Straub (2020) use sticky information/expectations (Mankiw and Reis (2002))
- Only a fraction $1-\theta$ of HHs update their information set about the aggregate economy each period
 - Only learn full path of shock $d\mathbf{r}$, $d\mathbf{Z}$ if you update
 - 1. period: $1-\theta$ update and learn full path
 - 2. period: θ (1 $-\theta$) update, so $1 \theta + \theta$ (1 $-\theta$) = $1 \theta^2$ have full info
- Expectations matrix:

$$m{E} = egin{pmatrix} 1 & 1- heta & 1- heta & \dots \ 1 & 1 & 1- heta^2 & \dots \ 1 & 1 & 1 & \dots \ dots & dots & dots & dots \end{pmatrix}$$

Sticky expectations

- Properties:

 - Response of consumption at 0 to Z_1 is $(1-\theta)\frac{\partial C_0}{\partial Z_1}$ Response of consumption at 1 to Z_1 is $(1-\theta)\frac{\partial C_1}{\partial Z_1}+\theta\frac{\partial C_0}{\partial Z_0}$ and so forth

Sticky expectations

- Properties:
 - Response of consumption at 0 to Z_1 is $(1-\theta)\frac{\partial C_0}{\partial Z_1}$
 - Response of consumption at 1 to Z_1 is $(1-\theta)\frac{\partial \widetilde{C_1}}{\partial Z_1} + \theta\frac{\partial C_0}{\partial Z_0}$ and so forth
- $\theta = 0$ gives us RE, $\theta = 1$ gives us myopic behavior.

Sticky expectations

- Properties:
 - Response of consumption at 0 to Z_1 is $(1-\theta)\frac{\partial C_0}{\partial Z_1}$
 - Response of consumption at 1 to Z_1 is $(1-\theta)\frac{\partial C_1}{\partial Z_1} + \theta\frac{\partial C_0}{\partial Z_0}$ and so forth
- $\theta = 0$ gives us RE, $\theta = 1$ gives us myopic behavior.
- Since households perfectly observe income changes today and in past iMPCs are preserved
 - Unlike habit formation

Estimation

- Auclert, Rognlie, Straub (2020) fomulate full HANK model with:
 - Investment
 - Sticky wages + prices
 - Government

Estimation

- Auclert, Rognlie, Straub (2020) fomulate full HANK model with:
 - Investment
 - Sticky wages + prices
 - Government
- Estimate parameters to match empirical evidence on causally identified monetary policy shock in the US (Romer & Romer shock)

Estimation

- Auclert, Rognlie, Straub (2020) fomulate full HANK model with:
 - Investment
 - Sticky wages + prices
 - Government
- Estimate parameters to match empirical evidence on causally identified monetary policy shock in the US (Romer & Romer shock)

• Estimate $\theta = 0.935 \Rightarrow \textbf{Large}$ deviation from RE

Direct and indirect effects

• Can decompose C into direct and indirect as before

 In the estimated model with sticky expectations indirect effect is by far the most important driver of consumption

Exercise

Exercise

Consider the HANK model described in section 2

- Compare a monetary policy shock in HANK and RANK. Decompose the response in HANK into direct and indirect effects using the household Jacobians
- 2. Solve for a monetary policy shock in HANK and RANK with myopic expectations w.r.t r, Z, only r and only Z
- 3. Solve for a monetary policy shock in HANK and RANK with sticky expectations w.r.t r, Z, only r and only Z
- 4. Consider a model where household hold nominal government debt instead. Relax the borrowing constraint to -1, $\underline{a} = -1$ and solve for a monetary policy shock (assume rational expectations). Does the presence of household debt amplify or dampen the effects of monetary policy?

Summary

Summary and next week

- Today:
 - Monetary policy in HANK
 - Alternatives to rational expecations, and how to implement them using jacobians
- Next week: HANK + unemployment risk in GE (JD)
- Homework:
 - 1. Work on exercise