TEXAS TECH UNIVERSITY J.H. MURDOUGH ASCE STUDENT CHAPTER	THE TAS TO
--	------------

NAME_	ES 25	DATE
NAME_	ES 25	DATE

COURSE		SHEET_	10)F <u>3</u>
--------	--	--------	----	-------------

PROBLEM 15.10
Miren A concrete sever pipe 2.5 ft in chameter is laid so it has a drip in elevation of 10 ft per 500 length. If sewage from cet a deepth of 1.25 ft in the pipe, must will be the checkerge?
Fria 7 Discharge
Assumptions > Properties of sever are the same as clean mater Assume concrute pipe > Manning's n = .018
Solution > Slope = 1 At D= 2.5 At y=125 Bt
Trind How area of sewer for manning's equation given that the diameter is half full
$A = \pi 0^2 + (2.5)^2 = 2.45 64^2$
- Final hydraulic vactions for magning Equation, given that the pipe is half full:
$Rh = \frac{Ac}{Pret} = \frac{TD^2/8}{TD^2/2} = \frac{Q}{4}$
$=)$ $R_{n} = \frac{2.544}{4} = .625 \text{ ft}$
= 1.4859 (A) (Rh) 215 (So) 1/2
$= \frac{1.4859}{.013} \left(2.45\right) \left(.425\right)^{8/3} \left(\frac{1}{800}\right) \frac{1}{2}$
Q = 7.24 cgs.

NAME_ES.	25	DATE
----------	----	------

COURSE SHEETOF _	COURSE		SHEET	2	OF	3
------------------	--------	--	-------	---	----	---

PROBLEM 15.12 >
Diren + Water flows at a depth of Eft in the trapspoidal, concrete lend channel oronan. It the channel ocope is I ft in 1500 ft, what is the Vary and Q?
Find - Average velocity and discharge
Assumptions > Kg = , bleco or n = .015
V=1.407 e-5 gt2/s = 1=50°F 11
Solutivi =
Pury-Weisbuch equation>
Rn= A 100 =691
4kn = 060 = 10024
Ref1/2 = (URh) 3/2 (2950)1/2=
= \(\frac{1(6.91)}{1.40+c-5}\) \(\left(\frac{32.2}{1500} \right) \\ \right] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
=1,5/e-6
-) f= .013 (Figure 10.14)
V= \89 RhSo/f =\8(32.2)(6.91)(150)(.013)
>> V=9.55 B+1s
Q=VA= 9.55gt 100 = 955.42 gt 3/5
Manning's Equation > V = 1.4259 (M) (Rh) 9/3 (50) 1/2 V = 1.4859 (6.91) 2/3 (1500) 1/2 V=9.28 84/5
V=9.28 R1/s
Q=VA = 9.28 (100) = 927.91 8+3/5

TEXAS TECH UNIVERSITY	
J.H. MURDOUGH	
ASCE STUDENT CHAPTER	

NAME	ES 25	DATE
	•	

COURSE	SHEET	8	_OF	3
--------	-------	---	-----	---

PROBLEM 18-23
Bivers The lutter discharge in a rectangular channel 16ft wide is 900 cfs. It the depth of the water is 3ft, is the flow subcritical or experentical?
Final > It flow is subcritical or superentical
cholutuin >
1= las vate equention → Q=VA
=> 900 c/s = (v)(16)(3)
=> V=18.75
Fronde numbers
$F_{V} = \frac{1}{\sqrt{19}} = \frac{16.75}{\sqrt{(52.2)(3)}} = 1.908$
[Since France H is > 1, the flow is supercritical