	Hall Ticket No.:												SRIT R20
--	------------------	--	--	--	--	--	--	--	--	--	--	--	----------

SRINIVASA RAMANUJAN INSTITUTE OF TECHNOLOGY

(AUTONOMOUS)

II B. Tech II Sem – Semester End Examinations – Regular – Aug 2022

DISCRETE MATHEMATICS [R204GA05401]

(Common to CSE, CSD & CSM)

Time: 3 hours Max. Marks: 60

PART-A

(Compulsory Question)

		1 0 11 1 (7 11 00 10 11)						
1		Answer the following: $(5 \times 02 = 10 \text{ Marks})$						
	a)	Define law of duality.						
	b)	What is composition of function?						
	c)	Write the properties of integers						
	<u>d)</u>	Write the basic of counting principles.						
	e)	Define graph coloring. Give an example.						
		PART-B						
		(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)						
		UNIT-1						
2	a)	Explain the inference theory for predicate calculus.	[5M]					
	b)	Explain disjunctive normal Form.	[5M]					
		(OR)						
3	a)	Obtain the principal conjunctive normal form of the formula S given by $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$.	[5M]					
	b)	Show that (R VS) follows logically from the premises (CVD),(C VD) $\rightarrow \neg$ H, \neg H \rightarrow (A $\land \neg$ B) and (A $\land \neg$ B) \rightarrow (RVS).	[5M]					
		UNIT-2						
4	a)	Show that $f(x, y) = x + y$ is primitive recursive.	[5M]					
	b)	Let $f(x)=x+2$, $g(x)=x-2$ and $h(x)=3x$ for $x \in R$ where R is set of real numbers. Find	[5M]					
		$g \circ f$; $f \circ g$; $f \circ f$; $g \circ g$; $f \circ h$; $h \circ g$; $h \circ f$ and $f \circ h \circ g$.						
		(OR)						
5	a)	Explain lattice and write its properties.	[5M]					
	b)	Explain relation matrix and digraph with an example.	[5M]					
		UNIT-3						
6	a)	Explain Groups, Subgroups and Normal subgroups.	[5M]					
	b)	Let G1 and G2 be subgroups of a group G, show that $G1 \cap G2$ is also a subgroup of G	[5M]					
		and Is G1∪G2 is always a subgroup of G.						
		(OR)	_					
7	a)	Explain about homomorphism	[5M]					
	b)	Write the Euclidian algorithm with an example.	[5M]					
		UNIT-4						
8	a)	Suppose that 200 faculty members can speak French and 50 can speak Russian, while	[5M]					
		only 20 can speak both French and Russian. How many faculty members can speak						
		either French or Russian.						
	b)	Explain the circular permutations. Give an example.	[5M]					

		(OR)				
9	a)	Find out the coefficient of x9y3 in the expansion of (x+2y)12 using binomial theorem	[5M]			
	b)	Explain the enumerating permutations with constrained repetitions.	[5M]			
UNIT-5						
10		Define K- regular graph. Give examples of 2- regular, 3- regular, 4- regular graphs.	[10M]			
		(OR)				
11	a)	State and explain four color theorem with an example.	[5M]			
	b)	Explain krushkal's algorithm with an example.	[5M]			
