91. Показатели. Первообразные корни. Существование по модулю p.

Лемма: Если порядки чисел x_1, \ldots, x_k взаимно-просты, то порядок $x_1 \cdot \ldots \cdot x_k$ равен

lacktriangle Докажем для двух чиел, для большего числа - по индукции. Пусть $\operatorname{ord}_n a = \delta_a, \operatorname{ord}_n b =$ $\delta_b, (\delta_a, \delta_b) = 1$. Тогда $(ab)^{\delta_a \delta_b} = (a^{\delta_a})^{\delta_b} (b^{\delta_b})^{\delta_a} = 1 \pmod{n}$. Докажем, что $k < \delta_a \delta_b$ не являются порядками. Пусть $(ab)^k = 1 \pmod{n}$. Возведем обе части в степень δ_a : $(a^{\delta_a})^k b^{k\delta_a} = b^{k\delta_a} = b^{k\delta_a}$ $1 \Rightarrow k\delta_a \vdots \delta_b, \ (\delta_a, \delta_b) = 1 \Rightarrow k \vdots \delta_b.$ Аналогично показываем, что $k \vdots \delta_a \Rightarrow \operatorname{ord}_n(ab) = \delta_a \delta_b \blacksquare$

Утверждение: Если p нечетное простое число то по модулю p существует первооб-

\Delta Пусть $\delta_1, \ldots, \delta_{p-1}$ - показатели (порядки) чисел $1, \ldots, p-1$ соответственно. Рассмотрим $\tau:=[\delta_1,\ldots,\delta_{p-1}]=q_1^{\alpha_1}\cdot\ldots\cdot q_k^{\alpha_k}$ - каноническое разложение. $\forall i\in\{1,\ldots,k\}\ \exists \delta\in\{\delta_1,\ldots,\delta_n\}\ \exists a:\ \delta=aq_i^{\alpha_i},\ (a,q_i)=1\ (\text{верно, так как если полная}$

степень делителя НОКа не входит ни в какое из чисел, то ее не должно быть в НОКе)

Зафиксируем i и найдем соответствующую ему δ . Выберем x такой что δ - его показатель. $1=x^{\delta}=x^{aq_i^{\alpha_i}}=(x^a)^{q_i^{\alpha_i}} \pmod{p} \Rightarrow q_i^{\alpha_i}$ - порядок x^a (меньше не может быть так как иначе δ не был бы порядком x)

Рассмотрим $g=\prod_{i=1}^k x_i^{a_i}$ (по всем i). По лемме порядок g равен $q_1^{\alpha_1}\cdot\ldots\cdot q_k^{\alpha_k}=\tau\Rightarrow \tau\leq$ p-1 (так как это порядок).

Рассмотрим сравнение $x^{\tau} \equiv 1 \pmod{p}$. Все числа $1, \dots, p-1$ являются его корнями (так как τ - HOK их порядков) $\Rightarrow \tau \geq p-1$ (так как многочлен не может иметь больше корней чем его степень) $\Rightarrow \tau = p-1 \Rightarrow g$ - первообразный корень.

92. Показатели. Первообразные корни. Существование по модулю p^{α} , $\alpha > 2$: формулировка и доказательство леммы. Существование по модулю $2p^{\alpha}$.

Лемма: $\exists t: (g+pt)^{p-1} = 1 + pu, (p,u) = 1$

$$(g+pt)^{p-1} = g^{p-1} + g^{p-2}(p-1)pt + p^2a = \underbrace{1+pv}_{g^{p-1}} + p(g^{p-2}(p-1)t + pa) = 1 + p(v + \underbrace{g^{p-2}(p-1)}_{\text{взаимно просто с } p} t + pa)$$

Так как t можно выбирать любым, легко можем подобрать его так, чтобы $v+g^{p-2}(p-1)t$ было взаимно просто с p. Тогда $u = v + g^{p-2}(p-1)t + pa$ - искомое

Утверждение 1: По модулю p^{α} , $\alpha > 2$ (p - нечетное простое) существует первообразный корень.

Утверждение: По модулю $2p^{\alpha}$ (p - нечетное простое) существует первообразный корень.

$$\varphi(2p^{\alpha}) = \varphi(2)\varphi(p^{\alpha}) = \varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1} = p^{\alpha-1}(p-1)$$

Для подсчета $\varphi(p^{\alpha})$ воспользовались тем, что чисел кратных p, которые меньше p^{α} всего $p^{\alpha-1}$.

Пусть g+pt - первообразный корень по модулю p^{α} . Если g+pt - нечетное, то это и есть первообразный корень по модулю $2p^{\alpha}$ (если $a=(g+pt)^{\varphi(2p^{\alpha})}$ нечетное, то a-1 - четное, а значит $a-1 : p^{\alpha} \Leftrightarrow a-1 : 2p^{\alpha}$)

Если g + pt - чётное, то берем $g + pt + p^{\alpha}$

93. Показатели. Первообразные корни. Существование по модулю p^{α} , $\alpha \geq 2$: формулировка леммы (б/д) и вывод существования из неё. Существование по модулю $2p^{\alpha}$.

Лемма: $\exists t : (g+pt)^{p-1} = 1 + pu, (p,u) = 1$

Утверждение 1: По модулю $p^{\alpha}, \alpha > 2$ (p - нечетное простое) существует первообразный корень.

▲ Покажем, что найденный в лемме g+pt - первообразный корень по модулю p^{α} . Пусть δ - показатель q+pt по модулю p^{α} .

$$(g+pt)^{\delta} \equiv 1 \pmod{p^{\alpha}} \Rightarrow (g+pt)^{\delta} \equiv 1 \pmod{p}$$

g - первообразный корень по модулю $p \Rightarrow \delta$: (p-1). С друой строны δ делит $\varphi(p^{\alpha}) = p^{\alpha-1}(p-1) \Rightarrow \delta = p^k(p-1), k \leq a-1$.

$$(g+pt)^{p-1}=1+pu, (p,u)=1$$
 (по лемме)

$$(g+pt)^{p(p-1)} = (1+pu)^p = 1+p^2u+p^3v = 1+p^2(u+pv) = 1+p^2u_1, (u_1,p) = 1$$

 $(u_1, p) = 1 \Rightarrow u_1$ не содержит делителя $p^{\alpha-2}$ (при $\alpha \neq 2$) $\Rightarrow (1 + gt)^{p(p-1)} \not\equiv 1 \pmod{p^{\alpha}}$ Будем повторять такой процесс для получившегося равенства пока не получим

$$(g+pt)^{p^{\alpha-1}(p-1)} = 1 + p^{\alpha}u_{\alpha-1} \equiv 1 \pmod{p^{\alpha}}$$

Следовательно, так как все меньшие δ вида $p^k(p-1)$ не подходят, порядком g+pt является $p^{\alpha-1}(p-1)=\varphi(p^\alpha)\Rightarrow g+pt$ - первообразный корень

Замечание: существование по модулю $2p^{\alpha}$ см. билет 93.

94. Показатели. Первообразные корни. Несуществование по модулю $2^n, n > 3$.

Замечание: Покажем, что по модулям 2 и 4 первообразные корни существуют.

$$m=2$$
: $\varphi(2)=1,1^1\equiv 1\,(\mathrm{mod}\ 2)\Rightarrow 1$ - первообразный корень

$$m=4$$
: $\varphi(4)=2, 3^2=9\equiv 1\ (\mathrm{mod}\ 4),\ 3^1\not\equiv 1\ (\mathrm{mod}\ 4)\Rightarrow 3$ - первообразный корень

Утверждение: По модулю 2^{α} , $\alpha \geq 3$ не существует первообразных корней.

Пусть a=1+2t - нечетное. Покажем, что $a^{(2^{\alpha-2})}\equiv 1\ (\mathrm{mod}\ 2^{\alpha})$

$$(1+2t)^2 = 1+4t+4t^2 = 1+4\underbrace{t(t+1)}_{\text{четное}} = 1+8t_1$$

$$(1+2t)^4 = (1+8t_1)^2 = 1+16t_1+64t_1^2 = 1+16t_2$$

$$(1+2t)^{(2^k)} = 1 + 2^{k+2}t_k$$

 $(1+2t)^{(2^{\alpha-2})} = 1 + 2^{\alpha}t_{\alpha-2} \equiv 1 \pmod{2^{\alpha}}$

Следовательное любое нечетное число (то есть любое число, взаимно простое с 2^{α}) не является первообразным корнем \Rightarrow первообразных корней по этому модулю нет

95. Показатели. Первообразные корни. Несуществование по модулям, отличным от $2^n, p^{\alpha}, 2p^{\alpha}$.

 \blacktriangle Пусть $n=p_1^{k_1}\cdot\ldots\cdot p_m^{k_m}$. $\varphi(n)=\prod_{i=1}^m\varphi(p_i^{k_i})=\prod_{i=1}^mp_i^{k_i-1}(p_i-1)$. Предположим противное: пусть существует g - первообразный корень по модулю n. Из теоремы Эйлера верно

$$\begin{cases} g^{(p_1-1)p_1^{k_1-1}} \equiv 1 \pmod{p_1^{k_1}} \\ \dots \\ g^{(p_m-1)p_m^{k_m-1}} \equiv 1 \pmod{p_m^{k_m}} \end{cases}$$

Очевидно, что $\forall i\ z=\varphi(n)/2=\frac{\prod_{i=1}^m p_i^{k_i-1}(p_i-1)}{2}\ \vdots\ (p_i-1)p_i^{k_i-1}$ (двойку можно забрать из любого множителя относящегося к простому делителю, отличному от i-ого). Тогда верно

$$\begin{cases} g^z \equiv 1 \pmod{p_1^{k_1}} \\ \dots \\ g^z \equiv 1 \pmod{p_m^{k_m}} \end{cases}$$

Пусть $g^z=1+p_1^{k_1}a=1+p_2^{k_2}b\Rightarrow p_1^{k_1}a=p_2^{k_2}b$. В силу взаимной простоты $p_1,p_2\Rightarrow a:p_2^{k_2}\Rightarrow g^z=1+p_1^{k_1}p_2^{k_2}a_1$. По индукции будем присоединять все больше множителей и в итоге получим

$$g^z = 1 + p_1^{k_1} \cdot \ldots \cdot p_m^{k_m} t = 1 + nt \equiv 1 \pmod{n}, \ z = \varphi(n)/2 < \varphi(n) \Rightarrow$$

 $\Rightarrow g$ не является первообразным корнем по модулю n