

unordered-map & unordered-set

Maps & Sets

Part - 2

Raghav Garg

ordered vs unordered

```
ordered ret
S. insert (4);
                      Set Lint>s;
S.insert(2)
                     map ca, bo m;
S-insert (3);
```

12568

😘 skills

Ques: Finding 3-Digit Even Numbers [Leetcode - 2094]

100 to 999

Medium

Ques: Finding 3-Digit Even Numbers [Leetcode - 2094]

$$S = \{ 2, 1, 3, b \}$$
 $i = 100$

$$a = x\%10 - a = 0$$

$$x = x/10 = x = 1$$
 $c = x\%10 \rightarrow c = 1$

$$i=101$$
 $i=102$

$$\alpha = 1$$
 $\alpha = 2$

$$c = 1$$
 $C = 1$

Ques: Finding 3-Digit Even Numbers [Leetcode - 2094]

$$\{2, 2, 8, 8, 23\}$$
 $\{22, 2, 8, 8, 23\}$
 $\{22, 2, 8, 8, 23\}$
 $\{22, 2, 8, 8, 23\}$

Ques: Finding 3-Digit Even Numbers [Leetcode - 2094]

$$am = \{2, 2, 8, 8, 23\}$$

1

m

1

(2,0) (2,1) (2,2) (8,2) (2,3) 100 to 999

$$x = 222$$

$$a = 2$$

Ques: Count Nice Pairs in an Array [Leetcode - 1814]

$$0$$
 1 2 3 $\{42,11,1,973\}$

$$(0,3) \rightarrow (42 + 79 = 97 + 29)$$

= $(121 = 121)$

$$(1, 2) = |1| + | = 12$$

Ques: Count Nice Pairs in an Array

$$\{42,11,1,973\}$$

$$\{18,0,0,18\}$$

$$\{18,0,0,18\}$$

$$\{18,0,0,18\}$$

$$\{18,0,0,18\}$$

$$\{18,0,0,0,18\}$$

$$\{18,0,0,0,18\}$$

$$\{18,0,0,0,18\}$$

mumd =
$$\{213, 10, 35, 24, 76\}$$

C, $\{-18, 9, -18, -18, 9\}$
 $(-18, 2)$
 $(-18, 2)$
 $(-18, 2)$
 $(-18, 2)$
 $(-18, 1)$
 $(-18, 1)$

$$13-31=-18$$
 $35-53=+18$
 $24-42=-18$
 $26-62$

Top view of binary tree

Top view of binary tree

- 1) Hashmab
- 2) Level Order Fraversal

Top view of binary tree

Ques: Copy List with Random Pointer [Leetcode - 138]

- 1) Create deep copy without random connections 7
- 2) Alternate linking
- 3) Mark random pointers
- 4) Remore alterrate connections

$$S \cdot C \cdot = O(1)$$

 $T \cdot C \cdot = O(n)$

Method-2:

$$J$$

 $T \cdot C \cdot = O(n)$
 $S \cdot C \cdot = G(n)$

map < Node⁺, Node⁺ >

a ke b ke
nodes

THANK YOU!