CSE465 Section: 03

DEPRESSIVE TWEETS DETECTION USING DEEP LEARNING MODELS

Submitted by:

Rifat Azim #1912353642

MOTIVATION

- Social media is essential for instant communication and global connectivity, serving as a central hub for social interaction and information sharing in our daily lives.
- Along with sharing our life updates, pictures, memes, writing blogs, some people also share their mental struggles in a subtle way on their preferred social media platform.
- Early detection of people who are struggling with mental health through their social media posts can help them in many ways.
- Which brings us to this project where we are going to build a model that can extract depressive, anxious, or passive-suicidal posts from tons of social media posts and help the sufferers.

DATASET

For this project, we may need to use multiple datasets to classify depressive posts from normal posts.

- 1. For sentiment analysis, we're using Sentiment140 dataset which is commonly used amongst the machine learning engineers.
 - (https://www.kaggle.com/datasets/kazanova/sentiment140)
- 2. Since there is no public dataset available regarding depressive posts, so primarily, we're using a twitter dataset available on github, which is scrapped by a company named TWINT.

 (https://github.com/eddieir/Depression_detection_using_Twitter_post)
- 3. To improve generalization, address ambiguity and enhance model performance, we're also using English-contraction dataset. (https://www.kaggle.com/datasets/yetman/english-contractions)

SYSTEM DESIGN

The core my project is based on these ideas:

ACCURACY SCORE

• F1 Score of TF-IDF Classifier

	precision	recall	f1-score
0	0.99553	1.00000	0.99776
1	1.00000	0.98323	0.99154
accuracy			0.99646
macro avg	0.99776	0.99162	0.99465
weighted avg	0.99647	0.99646	0.99645

• F1 Score of LSTM

	precision	recall	f1-score
0	0.99414	0.99456	0.99435
1	0.98179	0.98042	0.98111
accuracy			0.99130
macro avg	0.98797	0.98749	0.98773
weighted avg	0.99130	0.99130	0.99130

ACCURACY SCORE

• Using Naïve Baye's:

	precision	recall	f1-score
0	0.88731	0.99832	0.93955
1	0.99057	0.58172	0.73298
accuracy			0.90142
macro avg	0.93894	0.79002	0.83627
weighted avg	0.91133	0.90142	0.89150

• Using Logistic Regression:

	precision	recall	f1-score
0 1	0.98512 0.91356	0.97271 0.95152	0.97888 0.93216
accuracy		2 25212	0.96778
macro avg weighted avg	0.94934 0.96848	0.96212 0.96778	0.95552 0.96801

FUTURE IMPROVEMENT

- We need to use a larger and more diverse dataset that includes multiple languages to improve model generalizability globally.
- We are looking forward to develop the system to perform real-time sentiment analysis, making it suitable for monitoring on-going social trends and help the sufferers.
- Although we already have a very good result, we still need to use more powerful models for bigger datasets in future.
- Collaborate with social media platforms to integrate this model as a tool for identifying depressive patterns among users.
- Facilitate timely interventions by providing users with mental health resources or connecting them with professionals.
- Lastly, we need to use this technology to raise awareness and support mental health initiatives, ultimately benefiting users on a global scale.

THANK YOU