+ 1	٠. ٨	a de Ce			
Ljemplo:	Mar	ca de le		×	
0 '	Redmi (1) Honor	Motorol 2 Samsung	Apple 3		4
Rangos () <1500 Engresos	O _H 35	0 ₁₂ 07 14.268	0 ₁₃ <u>1</u> 0 15-537	0 ₁₀ = 52	1d X ₁ X ₂
Engresos economicos [1500-3500)	30 24.75	<u>18</u> 15.91	10 17.32	02,= 58	3 1 1
(3) [3510; tw>	05 23.05	20 /4.81	033 2 9	03.= 54	5 3 2
	0-1= 70	0-2= 45	0.3= 49	164	3 2

Ho: No existe reloción entre d rango de los ingresos económicos y la murca de celular Ha: SI existe relación...

Ø d= 0.05

$$\chi_{c}^{z} = 43.758$$

Pegion Critica

$$\frac{1}{0.95}$$
 $\frac{1}{0.95}$
 $\frac{$

P(
$$\chi^{2}_{(4g)}$$
) 43.758) = pchisq (43.758, df=4, lower.tail=F)
= 7.2 \tilde{e}^{9} = 0.000000072
P-value = 0.0000

Como 2 > Xo, se rechaza Ho

Existe relación sympactica entre los ingresos y marcas de celular

PERFILES FILA					
Marca de Celular					
	Redmi (1) Honor	Motorol 2 Samsung	Apple 3		
Rangos 0 21500	OH 35 67.31%	0,207	0310	0,= 52	
Engresos economicos (1500-3500)	30 51.72 ⁻ / ₂	18	10	02,= 58	
3 [3500; to>	05 9.26%	20 32.047.	0 ₃₃ 2 9	03.= 54	
	0.570	0 45	0.2= 49	164	

Þ	ENTILES	مرن م کو لو		
	Redmi (1) Honor	Motorol 2 Samsing	Apple 3	,
Rangos 0 <1500	O _H 35 50%	0,207	0310	04.= 52
Rangos () <1500 Engresos economicos (1500-3500)	30	18	10	02,= 58
3 [3500; too>	7-14 1/.	20	033 29	03.= 54
	0.1= 70	0-2= 45	0.3= 49	164

X1: Rango Salarios

Xz marca celular

<1000

- 1: Xjami
- (0005-2000)
- 2: Honor
- 3 [2000 2500)
- 3: Avanci-Motorola
- 9 [3/500- 5000>

5 [de 5000 a+>

- 4: Samsung
- J: Iphone

Multirariado

Analisis disniminante: Tecnica de dependencia de clasificación

Madrine learning

Analisis discimento Tecnico Supervisada de dasificación J cortegorica

Analisis de Covarianza moltivariado

ANCOVA M. Hrunado VS $\begin{array}{cccc}
\widetilde{y} \sim f(\chi_{1}, \chi_{2}, \dots) & & & & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & & \\
y \sim f(\chi_{1}, \chi_{2}, \dots) & & \\
y \sim f(\chi_{1$

Ancova Thu tiple

Regressión logistica binaria Simple	y~ f (X	y categorius (z) X tiene gisersolo1			
Regressión logistica prinama Multiple	$y \sim f(\overline{X})$	y cotegorica (2) X1,X2,X3,>1			
Regression logistica Muth'nomial Simple	y~ f(x)	y categoria (>2 cate no tienen Serarqui ex)			
Regrosión logistica Mutinomial Multiple	$y \sim f(x)$	J categorica (>2 cate notiens veragina) X (X,,XZ,XZ,)			
Regressión logistica Ordinal Surple	-	y categorica (>2cot. tienen Jerargusa) X (1)			
regresson logistica Ordinal MuH, ple	2.				
Analisis Discrimmante ADLS — D Simple (Y < KI E) La Junion Discrimmante una linea					
ADLM—» Y—K? >2 categorios Lo forción (LINEA)					
$J = \int (X_1, X_2, X_3)$ dependiente Independien	, X4, X5)	two lineations of VIF			
Selección de Variables					
Backward O Forward o	=0 8 te,	pwise			
$ = \begin{cases} y - B + B, X, + B, X - 1 - A + 1 \end{cases} $	+B, X+B, X2 B, X, +B, X3 B, X, +B, X4 X, +B, XJ	mxtora de Backward y For ward			

Nueva sección 31 página

mod

Elimino X2

y=/50+p, x, +p3 x3+p5 x5 2=0.71