2-D MULTI-PEN PLOTTER SIMULATOR

Brief description

Develop a program for 2-d plotter simulation with zero or more pens. Each pen can be moved across plotter drawing plane by attached motors in 2-d Cartesian coordinate system.

Drawing plane is infinite in size, but infinite positions like (-Inf, 4.6) are assumed not possible in any case - just do not care about them!

Each pen can be in two modes:

- drawing (on) leaves a trace on plotter plane during movements;
- no drawing (off) leaves no traces on plane.

Program must:

- read control text commands from standard input;
- implement simulation procedure: calculate pens positions in real-time according to given motors command;
- output simulation world state in log/text files.

Special conditions

- solve a given problem with C++ or Java language;
- send us your solution as zipped working directory (inc. ".git" dir if Git'll be used);
- optional but preferable:
 - use Git to demonstrate development process;
 - prefer to use "clean code" conceptions;
 - share your solution with us on "github.com".

Detailed description

Program runtime phases

For simplicity program run-time separated to strict phases:

- 1. CONF: simulator configuration phase.
- 2. ${\tt SIMS:}$ simulation run phase (main workload).
- 3. FIN: simulation stops at "stop" command received and then program exit.

Transition graphs is: [CONF] -> [SIMS] -> [FIN]

Simulation domain

- objects of simulation are pens and motors;
- each pen have two movement axes: x and y;
- to each axis of a pen one and only one motor can be attached;
- one motor can be attached to several axes or even to different pens (see APPENDIX B example with DIAG pen);
- motor transforms it's shaft rotary movements into linear movements of pen across axes;
- axis position measured in abstract units (a.u.);
- assume there are NO collisions possible between motors (or pens), so you do not need to take it in account;
- individual parameters of each pen is:
 - motors attached to axes \mathbf{x} and \mathbf{y} ;
 - toggled on (drawing) or off (not drawing) state;
- individual parameters of each motor is:

```
S_max_aups - maximal speed in abstract units per second (aups);
A_aupss - acceleration absolute value in abstract units per seconds^2 (aupss);
TP - target position in abstract units (au);
P - current position in abstract units (au) relative to zero point;
V - current velocity in abstract units per second (aups);
```

- current position P and velocity V of each motor must be periodically updated:

```
P(new) = P(old) + V(old) * dT + a * dT^2 / 2

V(new) = V(old) + a * dT

P \rightarrow TP
```

Using:

- current requested target position "TP";
- previous motor position "P(old)";
- motor velocity "V(old)", where $|V| <= S_max_aups;$
- velocity "a". It can have only fixed values:

0 - zero acceleration; A_aupss - "acceleration"; -A_aupss - "deceleration";

- see "set sim dT" command to determine time period value.

Control protocol

- program read simple ASCII case insensitive text commands from standard input;
- commands are separated with new line character "\n";
- command execution must start immediately after command received;
- commands are received and executed in asynchronous mode, so next command can be received and executed before previous one execution finished (see APPENDIX B example);
- commands are:

Command	CONF	SIMS	Description	
create motor <motor_name></motor_name>	+		create new motor	
create pen <pen_name></pen_name>	+		create new pen	
attach <motor_name> with <axis> of <pen_name></pen_name></axis></motor_name>	+		attach motor to pen axis	
set sim dT= <sim_dt_s></sim_dt_s>	+	+	set period for simulation state update calculation	
set log dT= <log_dt_s></log_dt_s>	+	+	set period for logging	
set motor <motor_name> S=<s_max_aups></s_max_aups></motor_name>	+	+	set motor max speed	
set motor <motor_name> A=<a_aupss></a_aupss></motor_name>	+	+	set motor acceleration magnitude	
set pen <pen_name> on off</pen_name>	+	+	toggle on/off pen drawing mode	
set motor <motor_name> P=<pos_au></pos_au></motor_name>		+	set motor target position	
start	+		start simulation phase	
stop		+	stop simulation and program exit	

NOTE: see APPENDIX A for parameters types description.

NOTE: "+" means "allowed during this phase".

NOTE: spaces are delimiters of command subitems and for simplicity do assume that there always will be only one space between subitems.

Output

- each pen's position must be written to separate log file (text file) with name:

<pen_name>.log

- each line in log file must be in format:

<simulation_time_s>;<pen_axis_position_x>;<pen_axis_position_y>

- if pen is toggled on then program do writes pen's position to text file with given period
 (see "set log dT" command);
- if pen is toggled off then program must once write a string in format:

<simulation_time_s>;-;-

and do not write anything for this pen till it is toggled on again.

Initial states

- at start program runs to CONF phase;
- initial state of simulator: nor any pens and nor any motors are exist;
- initial state of new created pen:
 - pen is toggled on;
 - no motors attached to pen's axes;
- initial state of new created motor:

S_max_aups = 1.0 aupss;
A_aupss = 1.0 aups;
TP = 0.0 aup;
P = 0.0 aup;
V = 0.0 aups.

Notes

- motor shaft rotation assumed to be equivalent to pen's axis linear movements. So angular acceleration, velocity and position of motor shaft replaced here with axis linear acceleration, velocity and position;
- $\mbox{-}$ if motor attached to several axes then these axes acceleration, velocity and positions will be the same.

APPENDIX A: Types

<pen_name> ::= <name> - unique name of a specific pen <motor_name> ::= <name> - unique name of a specific motor ::= <decimal> - maximum speed value for specific motor <S_max_aups> <A_aupss> ::= <decimal> - acceleration magnitude for specific motor <simulation_time_s> ::= <decimal> - simulation world update time delta in seconds position of pen's x axis in a.u.position of pen's y axis in a.u. <pen_axis_position_x> ::= <position> <pen_axis_position_y> ::= <position> ::= <decimal> - motor (or pen) position in a.u. <position> <axis> ::= x | y - name of the axis ::= string of character from set ['A'..'Z', '0'..'9', '_'] ::= decimal representation of real number with '.' for decimal point. <name> <decimal>

No Scientific form for number.

Value can be negative (with '-' sign).

APPENDIX B: Commands sequence and outputs example

PHASE	INPUT:	TIME	OUTPUT:	OUTPUT:	OUTPUT:
PHASE	COMMANDS	s	LEFT_HAND.log	RIGHT_HAND.log	DIAG.log
CONF	create pen LEFT_HAND	-			
	create pen RIGHT_HAND	-			
	create pen DIAG	-			
	create motor LX	-			
	create motor LY	-			
	create motor RX	-			
	create motor RY	-			
	create motor DIAG	-			
	attach LX with x of LEFT_HAND	-			
	attach LY with y of LEFT_HAND	-			
	attach RX with x of RIGHT_HAND	-			
	attach RY with y of RIGHT_HAND	-			
	attach DIAG with x of DIAG	-			
	attach DIAG with y of DIAG	-			
	set sim dT=0.1	-			
	set log dT=1.0	-			
	set pen LEFT_HAND on	-			
	set pen RIGHT_HAND on	-			
	set pen DIAG on	-			
	start	0	0;0;0	0;0;0	0;0;0
					
	set motor LX P=300	10	10;0;0	10;0;0	10;0;0
		11	11;4.4;0	11;0;0	11;0;0
		29	29;230;0	29;0;0	29;0;0
	set motor LY P=-2.3	30	30;234;0	30;0;0	30;0;0
		31	31;238;-0.1	31;0;0	31;0;0
SIMS					
SIMS	set pen RIGHT_HAND off	44	44;267;-2.3	44;-;-	44;0;0
		58	58;300;-1.9		58;0;0
	set motor DIAG P=35	59	59;300;-2.0		59;0;0
		60	60;300;-2.1		60;2;2
		89	89;300;-2.3		89;33;33
		90	90;300;-2.3		90;35;35
	set pen DIAG off	91	91;300;-2.3		91;-;-
FIN	stop	99	99;300;-2.3		

NOTE: position changes in this example are totally inaccurate - they're given only for the purpose of demonstrating the basic principles!