Lab11-Approximation Algorithm

Algorithm and Complexity (CS214), Xiaofeng Gao, Spring 2018.

- * Name: Hongyi Guo Student ID: 516030910306 Email: guohongyi@sjtu.edu.cn
- 1. Write (I, sol, m, goal) for Max k-Cover and Minimum Bin Packing (refer Q2, Q3 below).

Solution.

name	I	sol	m	goal
Max k-Cover	$U = \{e_1, \dots, e_n\}$ and a collection of m subsets $S = \{S_1, \dots, S_m\}$ of U	k subsets from S $S_{i_1} \dots S_{i_k}$	number of e_i 's s.t. $\exists j, e_i \in S_{i_j}$	max
Minimum Bin Packing	a finite rational set $F = \{a_i\}_{i=1}^n,$ where $a_i \in (0,1]$	$\begin{cases} \{F_i\}_{i=1}^k \cup_{i=1}^k F_i = F, \\ \forall i, j \in k, i \neq j, F_i \cap F_j = \emptyset \\ \forall i, 1 \leq i \leq k, \sum_{a \in F_i} a \leq 1 \end{cases}$	k	min

2. Max k-Cover: Given a universe $U = \{e_1, \dots, e_n\}$ of n elements, a collection of m subsets $S = \{S_1, \dots, S_m\}$ of U, and a positive integer k < m. Our goal is to pick k subsets to maximize the number of covered elements. One greedy approach is shown in Algorithm 1.

Algorithm 1: Greedy Max k-Cover

 $\overline{\mathbf{Input}}: U, \{S_i\}_{i=1}^m, k.$

Output: k subsets from $\{S_i\}_{i=1}^m$.

- 1 $V \leftarrow U; W \leftarrow \emptyset;$
- 2 for i = 1 to k do
- 3 Pick S_j that covers max number in V;
- 4 $V \leftarrow V \backslash S_i; W \leftarrow W \cup S_i;$
- 5 return W;
- (a) Denote opt as the max number of covered elements; γ_i as the number of elements covered by greedy after i iterations; $\beta_i = opt \gamma_i$. Show that $\gamma_i \gamma_{i-1} \ge \frac{\beta_{i-1}}{k}$;

Solution. We denote W_i as the sets chosen by greedy algorithm after i iterations, and W^* as all sets chosen by optimal algorithm. It's clear that sets in $W^*\backslash W_i$ can cover at least $opt - \gamma_i$ elements. On average, each of them can cover at least $\frac{opt - \gamma_i}{|W^*\backslash W_i|} > \frac{opt - \gamma_i}{k}$

In greedy algorithm, S_j can cover the most number of elements among the remaining sets, so it definitely exceeds the average level. Therefore, $\gamma_i - \gamma_{i-1} \ge \frac{opt - \gamma_i}{k}$.

(b) Prove that Algorithm 1 is an r-approximation where $r \leq 1 + \frac{1}{e-1}$, based on Problem 2a.

Solution. From problem 2a, we already proved that $\gamma_i - \gamma_{i-1} \ge \frac{\beta_{i-1}}{k}$. So,

$$\gamma_k \ge \frac{opt - \gamma_{k-1}}{k} + \gamma_{k-1} = \frac{opt}{k} + (1 - \frac{1}{k})\gamma_{k-1}$$

Then we get

$$opt - \gamma_k \le (1 - \frac{1}{k})(opt - \gamma_{k-1})$$

which is like a geometric sequence, then we can get following inequality equation via the property of geometric sequence.

$$opt - \gamma_k \le (1 - \frac{1}{k})(opt - \gamma_0) = (1 - \frac{1}{k})^k \times opt$$

Therefore,

$$\gamma_k \ge opt \times \left[1 - (1 - \frac{1}{k})^k\right] > opt \times (1 - \frac{1}{e})$$

So, the greedy algorithm is an r-approximation where $r = \frac{1}{1 - \frac{1}{e}} = \frac{e}{e - 1} = 1 + \frac{1}{e - 1}$.

- 3. **Minimum Bin Packing:** Given a finite rational set $F = \{a_i\}_{i=1}^n$, where $a_i \in (0,1]$. We need to find a partition $\{F_i\}_{i=1}^k$ of F with no intersection and $\bigcup_{i=1}^k F_i = F$ with minimum k. The numbers in F_i are put into a bin, and the sum of numbers in each bin is at most 1. An idea to design a sequential algorithm is that for each number a_i , if a_i can fit into the last open bin then assign a_i to this bin, or else we open a new bin and assign a_i to it. Note that $\{a_i\}_{i=1}^n$ are NOT sorted in this algorithm.
 - (a) Show that the approximation ratio of the algorithm by the idea above is at most r=2.

Solution. In any solution, the number of bins should be non-less than the sum of all numbers in F, otherwise they can't hold all numbers.

In the greedy algorithm, the first number in the jth(j > 1) bin is larger than the remaining place in the j-1th bin. So the sum of number in two adjacent bin is larger than 1.

Denote the number of bins in the sequential algorithm by m_s and in the optimal algorithm, m^* . Suppose in the sequential algorithm, sum of number in the jth bin is b_j .

Whether m_s is odd or even will not make much effect to r, we may as well assume m_s is even, then

$$\sum_{j=1}^{m_s} b_j = \sum_{j=1}^{m_s/2} (b_{j*2-1} + (b_{j*2})) > \sum_{j=1}^{m_s/2} = m_s/2$$

So,

$$m_s < 2 \times \sum_{i=1}^{m_s} b_j = 2 \times \sum_{i=1}^{n} a_i \le 2m^*$$

Therefore, the approximation ratio of the sequential algorithm is at most r=2.

(b) (Optional Subquestion with Bonus) Give an input instance to show the tightness of r=2.

Solution. For any given $0 < \epsilon < 1$. We can construct an instance as following.

$$F = \underbrace{\{\epsilon, 1, \epsilon, 1, \dots, \epsilon\}}_{\frac{1}{\epsilon} \epsilon' s, \frac{1}{\epsilon} - 1} \underbrace{}_{1's}$$

The result given by greedy algorithm is $\frac{2}{\epsilon} - 1$.

The result given by optimal algorithm is $\frac{1}{\epsilon}$.

Therefore, $r = \frac{2/\epsilon - 1}{1/\epsilon} = 2 - \epsilon$. As long as ϵ is small enough, r is close to 2 infinitely.

4. Consider the Revised Greedy Knapsack Algorithm (refer Greedy Knapsack in Slide 17).

Algorithm 2: Revised Greedy Knapsack

```
Input: X with n items; b; \{p_i\}_{i=1}^n; \{a_i\}_{i=1}^n; \{e > 0.

Output: val(Y): The total value of Y where Y \subseteq X such that \sum_{x_i \in Y} a_i \le b.

1 Y_0 \leftarrow GreedyKnapsack(X, b, \{p_i\}_{i=1}^n, \{a_i\}_{i=1}^n); h \leftarrow \epsilon \cdot val(Y_0);

2 Set I_h \leftarrow \{i \mid 1 \le i \le n, p_i \le h\}, and reorder them as I_h = \{1, 2, \cdots, m\} (m \le n), where \{\frac{p_i}{a_i}\}_{i=1}^m is nonincreasing; temp \leftarrow 0; currenttemp \leftarrow val(Y_0);

3 foreach I \subseteq \{m+1, m+2, \cdots, n\} such that |I| \le \frac{2}{\epsilon} do

4 | if \sum_{i \in I} a_i > b then temp \leftarrow 0;

6 else if \sum_{i=1}^m a_i \le b - \sum_{i \in I} a_i then temp \leftarrow \sum_{i=1}^m p_i + \sum_{i \in I} p_i;

6 else Find max k s.t. \sum_{i=1}^k a_i \le b - \sum_{i \in I} a_i < \sum_{i=1}^{k+1} a_i and temp \leftarrow \sum_{i=1}^k p_i + \sum_{i \in I} p_i;

6 if currenttemp < temp then currenttemp \leftarrow temp and update Y;
```

(a) Time complexity: $O(f(n, \epsilon)) = O(\dots)$. (Sort: $O(n \log n)$).

Solution.

s return $val(Y) \leftarrow currenttemp;$

$$O(f(n,\epsilon)) = O\left(n\log n + m * \binom{n-m}{1} + m * \binom{n-m}{2} + \dots + m * \binom{n-m}{\lfloor \frac{2}{\epsilon} \rfloor}\right)$$

$$= O\left(n\log n + m * (n-m)^{\lfloor \frac{2}{\epsilon} \rfloor}\right)$$
(1)

(b) The approximation ratio is $1 + \epsilon$ when $\epsilon < 1$, then is it a log-APX? an APX? a PTAS? an FPTAS?

Solution.

log-APX	No
APX	Yes
PTAS	Yes
FPTAS	No