Computer Architecture Assignment-2 Report CS22B2012 Aditya K

CS22B2014 Navaneethakrishnan R

Code Optimization Techniques for Data:

1. Merging Arrays:

Allocating arrays so that paired operands show up in the same cache block.

Without Optimization

Metric	HWThread 1
Runtime (RDTSC) [s] Runtime unhalted [s] Clock [MHz] CPI LII request rate LII miss rate LII miss ratio LII stalls	0.3601 0.3183 2582.6619 0.4198 0.1874 0.0044 0.0233 10053148 0.0051

+	
Metric	HWThread 1
Runtime (RDTSC) [s]	0.3600
Runtime unhalted [s]	0.3206
[Clock [MHz]	2593.8627
CPI	0.4226
L1 DTLB load misses	348903
L1 DTLB load miss rate	0.0002
L1 DTLB load miss duration [Cyc]	22.3257
L1 DTLB store misses	141876
L1 DTLB store miss rate	0.0001
L1 DTLB store miss duration [Cyc]	23.3228
÷i	

ICACHE MISS RATE

TLB_DATA MISS RATE

With Optimization

Metric	HWThread 1
Runtime (RDTSC) [s]	1.2536
Runtime unhalted [s]	1.1537
Clock [MHz]	2593.9718
CPI	0.4164
L1I request rate	0.1563
L1I miss rate	0.0016
LlI miss ratio	0.0100
L1I stalls	15575568
L1I stall rate	0.0022

ICACHE MISS RATE

	HWThread 1
Runtime (RDTSC) [s]	1.2407
Runtime unhalted [s]	1.1430
Clock [MHz] j	2593.5578
CPI	0.4135
L1 DTLB load misses	1568833
L1 DTLB load miss rate	0.0002
L1 DTLB load miss duration [Cyc]	26.7096
L1 DTLB store misses	350493
L1 DTLB store miss rate	4.893079e-05
L1 DTLB store miss duration [Cyc]	26.8994

TLB_DATA MISS RATE

Inference:

The runtime of the optimized code is around **4 times higher** than the non-optimized one. This maybe due to calling of the constructor of the class **Merge** and the allocations to the class since constructors are called and members are initialized during run time. The number of load misses for data in the optimized code is almost **4 times** that of non-optimized code.

On the other hand the optimized code has a relatively lower request and miss rate for instructions. The store missrate is much lower in the optimized code which is about **40**% of the miss rate of non-optimized code

2. Loop Fusion:

Aggregation of loops which access the same data into a single loop.

Without Optimization

Metric	HWThread 1
Runtime (RDTSC) [s]	1.4069
Runtime unhalted [s]	2.2914
Clock [MHz]	4380.1743
CPI	0.3794
L1I request rate	0.1786
L1I miss rate	0.0016
L1I miss ratio	0.0092
L1I stalls	8675938
L1I stall rate	0.0006

+	++
Metric	HWThread 1
+	++
Runtime (RDTSC) [s]	1.4763
Runtime unhalted [s]	2.3986
Clock [MHz]	4451.6754
CPI	0.3969
L1 DTLB load misses	270488
L1 DTLB load miss rate	1.726620e-05
L1 DTLB load miss duration [Cyc]	21.0404
L1 DTLB store misses	48720
L1 DTLB store miss rate	3.109969e-06
L1 DTLB store miss duration [Cyc]	27.7495
+	++

ICACHE MISS RATE

TLB_DATA MISS RATE

With Optimization

Metric	HWThread 1
Runtime (RDTSC) [s]	1.5899
Runtime unhalted [s]	2.2205
Clock [MHz]	4363.2133
CPI	0.3836
L1I request rate	0.1814
L1I miss rate	0.0016
L1I miss ratio	0.0090
L1I stalls	19056079
L1I stall rate	0.0013

_	_		
\sim	\sim 11E	MAICO	RATE
IL . 4	(.HE	IVII	RAIF
-	\sim 11 $-$	111100	

+ Metric	++ HWThread 1
Runtime (RDTSC) [s]	+ 1.4090
Runtime unhalted [s]	2.2251
Clock [MHz]	4293.0325
CPI	0.3863
L1 DTLB load misses	253230
L1 DTLB load miss rate	1.695980e-05
L1 DTLB load miss duration [Cyc]	20.9951
L1 DTLB store misses	45454
L1 DTLB store miss rate	3.044232e-06
L1 DTLB store miss duration [Cyc]	28.2600
+	++

TLB_DATA MISS RATE

Inference:

Instruction-wise both are very similar with minute differences, whereas on the data we are able to see a significant drop in the load misses and store misses in the optimized code.

3. Loop Interchange:

Exchanging inner and outer loop order to improve cache performance.

Without Optimization

+ Metric	HWThread 1
Runtime (RDTSC) [s] Runtime unhalted [s] Clock [MHz] CPI L1I request rate L1I miss rate L1I miss ratio L1I stalls	0.5210 0.4993 2588.3225 0.4245 0.1936 0.0030 0.0156 13818722 0.0045

Metric	HWThread 1
Runtime (RDTSC) [s] Runtime unhalted [s] Clock [MHz] CPI L1 DTLB load misses L1 DTLB load miss rate L1 DTLB load miss duration [Cyc] L1 DTLB store misses	0.5082 0.4865 2586.8048 0.4175 319660 0.0001 21.5924 39235 1.299100e-05
L1 DTLB store miss duration [Cyc]	26.8909

ICACHE MISS RATE

TLB_DATA MISS RATE

With Optimization

Metric	HWThread 1
Runtime (RDTSC) [s]	0.5233
Runtime unhalted [s]	0.5034
Clock [MHz]	2593.8492
CPI	0.4445
LlI request rate	0.1893
L1I miss rate	0.0030
L1I miss ratio	0.0157
L1I stalls	90904312
L1I stall rate	0.0310

Metric HWThread 1 Runtime (RDTSC) [s] 0.5008 Runtime unhalted [s] 0.4673 Clock [MHz] 2542.0308 CPI 0.4125 L1 DTLB load misses 309897 L1 DTLB load miss rate 0.0001 L1 DTLB load miss duration [Cyc] | 20.7655 L1 DTLB store misses 39109 L1 DTLB store miss rate 1.332063e-05 L1 DTLB store miss duration [Cyc] 26.7094

ICACHE MISS RATE

TLB_DATA MISS RATE

Inference:

The stall rate and stalls of instructions have shown significant increase in the optimized code.

Loop interchanging has shown that there is significant improvement in loading data in the optimized code. The miss penalty for the load miss in L1 data cache is lower by about **1 clock cycle** in the optimized code.

4.Blocking:

Maximizing number of instructions executed in a sub-block

Without Optimization

+	HWThread 1
+	95.7478 95.7478 95.5379 2593.7601 0.3554 0.1642 0.0001 0.0005 189984140 0.0003

+	++
Metric	HWThread 1
+ Runtime (RDTSC) [s]	++ 95.2939
Runtime unhalted [s]	95.0881
Clock [MHz]	2593.7893
CPI	0.3519
L1 DTLB load misses	29271786
L1 DTLB load miss rate	4.179528e-05
L1 DTLB load miss duration [Cyc]	13.2166
L1 DTLB store misses	63721
L1 DTLB store miss rate	9.098306e-08
L1 DTLB store miss duration [Cyc]	28.9952
	1

ICACHE MISS RATE

TLB_DATA MISS RATE

With Optimization

+ HWThread 1
194.9057
194.5210
2593.8777
0.3838
0.1647
0.0082
0.0500
33402583911
0.0254

Metric	HWThread 1
Runtime (RDTSC) [s]	194.6033
Runtime unhalted [s]	194.1958
Clock [MHz]	2593.9195
CPI	0.3825
L1 DTLB load misses	23639393
L1 DTLB load miss rate	1.796320e-05
L1 DTLB load miss duration [Cyc]	17.8077
L1 DTLB store misses	620669
L1 DTLB store miss rate	4.716367e-07
L1 DTLB store miss duration [Cyc]	25.2197

ICACHE MISS RATE

TLB_DATA MISS RATE

Inference

With blocking, we see a large increment in the overall runtime of the program.

There is a reduction in the load misses of the optimized code by about **7 million** misses. The miss rate is also **2 times** lesser in the optimized code.