Corrigé du devoir maison 6.

Exercice 1

- 1°) Soit $x \in \mathbb{R} \setminus \mathbb{Z}$. Alors |x| < x < |x| + 1. Ce qui s'écrit x 1 < |x| < x. $-x \notin \mathbb{Z} \text{ donc } \lfloor -x \rfloor < -x < \lfloor -x \rfloor + 1.$ D'où $-x - 1 < \lfloor -x \rfloor < -x$. En sommant membre à membre, $-2 < \lfloor x \rfloor + \lfloor -x \rfloor < 0$.
- Or $\lfloor x \rfloor + \lfloor -x \rfloor \in \mathbb{Z}$. Donc $\lceil \lfloor x \rfloor + \lfloor -x \rfloor = -1 \rceil$ (car -1 est le seul entier de l'intervalle]-2,0[). **2**°) **a**) Soit $k \in \{1, ..., q-1\}$.
 - Supposons que $\frac{kp}{q} \in \mathbb{Z}$. Alors q divise kp. Or q et p sont premiers entre eux donc, par le lemme de Gauss, q divise k: ceci est exclu puisque $k \leq q-1$.

Ainsi,
$$\frac{kp}{q} \notin \mathbb{Z}$$
. D'où $\left\lfloor \frac{kp}{q} \right\rfloor + \left\lfloor -\frac{kp}{q} \right\rfloor = -1$.

Donc, $S + T = \sum_{k=1}^{q-1} \left(\left\lfloor \frac{kp}{q} \right\rfloor + \left\lfloor -\frac{kp}{q} \right\rfloor \right) = \sum_{k=1}^{q-1} -1 = -(q-1)$.

Finalement, S + T = 1 - q

b)

$$T = \sum_{k=1}^{q-1} \left\lfloor -\frac{kp}{q} \right\rfloor$$

$$= \sum_{j=1}^{q-1} \left\lfloor -\frac{(q-j)p}{q} \right\rfloor \quad \text{en posant } j = q-k \text{ (donc } k = q-j)$$

$$= \sum_{j=1}^{q-1} \left\lfloor -p + \frac{jp}{q} \right\rfloor$$

$$= \sum_{j=1}^{q-1} \left(-p + \left\lfloor \frac{jp}{q} \right\rfloor \right) \quad \text{car } p \in \mathbb{Z}$$

$$= -p(q-1) + \sum_{j=1}^{q-1} \left\lfloor \frac{jp}{q} \right\rfloor$$

$$T = -p(q-1) + S$$

Ainsi,
$$S - T = p(q - 1)$$

Ainsi, S - T = p(q - 1). c) On sait : $\begin{cases} S + T = -(q - 1) \\ S - T = p(q - 1) \end{cases}$ donc en faisant la demi-somme : $S = \frac{(p - 1)(q - 1)}{2}$

Exercice 2

1°) S_H est l'ensemble des suites récurrentes linéaires d'ordre 2 d'équation caractéristique (K): $r^2 - 5r + 6 = 0$.

Son discriminant est $\Delta = 25 - 24 = 1$, les solutions de (K) sont donc $\frac{5+1}{2} = 3$ et $\frac{5-1}{2} = 2$. D'après le cours, si $u \in S_H$, alors il existe des réels λ et μ tels que : $\forall n \in \mathbb{N}$, $u_n = \lambda 3^n + \mu 2^n$.

Dans le cours, nous n'avons pas explicitement écrit la réciproque, mais elle est vraie : si λ et μ sont des réels et que pour tout $n \in \mathbb{N}$, $u_n = \lambda 3^n + \mu 2^n$, alors $u \in S_H$ car, pour tout $n \in \mathbb{N}$:

$$u_{n+2} - 5u_{n+1} + u_n = \lambda 3^{n+2} + \mu 2^{n+2} - 5(\lambda 3^{n+1} + \mu 2^{n+1}) + 6(\lambda 3^n + \mu 2^n)$$

= $\lambda . 3^n (3^2 - 5.3 + 6) + \mu . 2^n (2^2 - 5.2 + 6)$
= 0 car 3 et 2 sont solutions de (K)

Ainsi
$$S_H = \{ u \in \mathbb{R}^N / \exists (\lambda, \mu) \in \mathbb{R}^2, \forall n \in \mathbb{N}, u_n = \lambda 3^n + \mu 2^n \}$$

2°) Soit A un réel, on pose, pour tout $n \in \mathbb{N}, v_n = A.5^n$.

$$(v_n) \in S \iff \forall n \in \mathbb{N}, \ v_{n+2} - 5v_{n+1} + 6v_n = 5^n$$

 $\iff \forall n \in \mathbb{N}, \ A.5^{n+2} - 5.A.5^{n+1} + 6.A.5^n = 5^n$
 $\iff \forall n \in \mathbb{N}, \ 6.A.5^n = 5^n$
 $\iff A = \frac{1}{6} \quad \text{car pour tout } n \in \mathbb{N}, \ 5^n \neq 0$

Ainsi, la suite (v_n) telle que pour tout $n \in \mathbb{N}$, $v_n = \frac{1}{6}5^n$, est dans S.

 3°) Soit (u_n) une suite de réels.

$$(u_n) \in S \iff \forall n \in \mathbb{N}, \ u_{n+2} - 5u_{n+1} + 6u_n = 5^n$$

$$\iff \forall n \in \mathbb{N}, \ u_{n+2} - 5u_{n+1} + 6u_n = v_{n+2} - 5v_{n+1} + 6v_n \qquad \text{car } (v_n) \in S$$

$$\iff \forall n \in \mathbb{N}, \ (u_{n+2} - v_{n+2}) - 5(u_{n+1} - v_{n+1}) + 6(u_n - v_n) = 0$$

$$\iff (u_n - v_n) \in S_H$$

$$\iff \exists (\lambda, \mu) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_n - v_n = \lambda 3^n + \mu 2^n$$

$$\iff \exists (\lambda, \mu) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_n = \lambda 3^n + \mu 2^n + \frac{1}{6}5^n$$

Ainsi,
$$S = \left\{ u \in \mathbb{R}^N / \exists (\lambda, \mu) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_n = \lambda 3^n + \mu 2^n + \frac{1}{6} 5^n \right\}$$
.

On a un résultat similaire à celui pour les équations différentielles : S est l'ensemble des solutions d'une équation linéaire d'inconnue $u \in \mathbb{R}^{\mathbb{N}}$, et S_H est l'ensemble des solutions de équation homogène associée. On constate que les éléments de S sont bien les sommes d'une solution particulière et d'une solution de l'équation homogène.

Exercice 3

- 1°) Pour $n \in \mathbb{N}$, on note H_n : le réel u_n existe et $u_n > 0$.
 - H_0 est vraie.
 - Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie i.e. u_n existe et $u_n > 0$. Alors, $1 + nu_n > 0$. Donc, comme quotient de deux réels strictement positifs, u_{n+1} existe et $u_{n+1} > 0$. Ainsi, H_{n+1} est vraie.
 - On a montré par récurrence que, pour tout $n \in \mathbb{N}$, u_n existe et $u_n > 0$.
- 2°) Soit $n \in \mathbb{N}$.

$$\frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{1 + nu_n}{u_n} - \frac{1}{u_n}$$

$$= \frac{1}{u_n} + n - \frac{1}{u_n}$$

$$\boxed{\frac{1}{u_{n+1}} - \frac{1}{u_n} = n}$$

3°) Méthode 1 : faire apparaître une somme télescopique Soit $n \in \mathbb{N}^*$.

$$\forall k \in \mathbb{N}, \, \frac{1}{u_{k+1}} - \frac{1}{u_k} = k.$$

En sommant de k = 0 à k = n - 1:

$$\sum_{k=0}^{n-1} \left(\frac{1}{u_{k+1}} - \frac{1}{u_k} \right) = \sum_{k=0}^{n-1} k$$

$$\frac{1}{u_1} - \frac{1}{u_0} + \frac{1}{u_2} - \frac{1}{u_1} + \frac{1}{u_3} - \frac{1}{u_2} + \dots + \frac{1}{u_n} - \frac{1}{u_{n-1}} = \frac{n(n-1)}{2}$$

$$\frac{1}{u_n} - \frac{1}{u_0} = \frac{n(n-1)}{2} \quad \text{par t\'el\'escopage}$$

$$\frac{1}{u_n} = 1 + \frac{n(n-1)}{2} = \frac{2 + n(n-1)}{2}$$

$$u_n = \frac{2}{n(n-1) + 2}$$

Méthode 2 : Conjecturer une formule pour $\frac{1}{u_n}$ comme dans l'exo 1 du TD 8

Ainsi, en posant pour tout $n \in \mathbb{N}$, $v_n = \frac{1}{u_n}$, on a $v_0 = 1$ et :

$$\forall n \in n, \ v_{n+1} = v_n + n.$$

3

Posons, pour tout $n \in \mathbb{N}^*$, $P_n : v_n = v_0 + \sum_{k=0}^{n-1} k$.

• P_1 est vraie car $v_1 = v_0 + 0$ et $\sum_{k=0}^{1-1} k = 0$.

• Supposons P_n vraie pour un $n \in \mathbb{N}^*$ fixé.

$$v_{n+1} = v_n + n = v_0 + \sum_{k=0}^{n-1} k + n = v_0 + \sum_{k=0}^{n} k$$
, donc P_{n+1} est vraie.

• Conclusion: pour tout $n \in \mathbb{N}^*$, $v_n = v_0 + \sum_{k=0}^{n-1} k$ i.e. $\frac{1}{u_n} = 1 + \frac{n(n-1)}{2} = \frac{2 + n(n-1)}{2}$.

On retrouve que pour tout $n \in \mathbb{N}^*$, $u_n = \frac{2}{2 + n(n-1)}$.

On retrouve que pour tout
$$n \in \mathbb{N}^*$$
, $u_n = \frac{2}{2 + n(n-1)}$

Ainsi, par opérations,
$$u_n \xrightarrow[n \to +\infty]{} 0$$
.