

Advanced Numerical Methods in Neuroscience

k-Space!

Jürgen Finsterbusch and Selim Onat

Department of Systems Neuroscience

University Medical Center Hamburg-Eppendorf

Motivation and Short Version

- MR imaging data are acquired in k-space
- k-space is the space of spatial frequencies, i.e. the Fourier space of the image space
- from the acquired (k-space) data images can be calculated with a Fourier transformation

MR data

 some MR imaging properties and artifacts and problems / limitations of image acquisition techniques can be explained / understood when considering k-space

Kernspinresonanz

Zutaten ...

Atome mit einem Kernspin (magnetischen Moment):
 Wasserstoff (¹H)

• starker Magnet

Radiowellenantenne ("Spule")
 mit Sender und Empfänger

Kernspinresonanz

Wie funktioniert's?

* * *

- Magnetisierung (im Magnetfeld)
 - magnetische Momente richten sich entlang des Magnetfeldes aus (ähnlich wie Kompassnadeln)

- Wasser / wasserhaltiges Gewebe wird magnetisch
- Radiowellen: Anregung ("Hochfrequenz-/HF-Anregung")
 - ein Radiowellenpuls "kippt" die Magnetisierung um einen bestimmten Winkel ("Kippwinkel"), z.B. um 90°

- Präzession und Induktion
 - darauf beginnt sie zu rotieren ("Präzession")
 - und induziert dabei eine Spannung in der Spule (ähnlich Dynamo)
 - diese Spannung wird gemessen und ist das MR-Signal ("Echo")

- Relaxation
 - Magnetisierung kehrt exponentiell zurück in den Ausgangszustand
 - Zeitkonstanten: T1 (Wiederaufbau) und T2(*) (Signalabfall)

Kernspinresonanz

Warum "Resonanz"?

- Zusammenhang zwischen Feldstärke und Frequenz (Anregung, Signal):
 - "Resonanzbedingung"

 $\omega = \gamma \cdot B$

- ω: Frequenz
- γ: Konstante des Atomkerns ("gyromagnetisches Verhältnis")
- B: Stärke des Magnetfeldes
- Anregung
 - Frequenz der Radiowellen muss Resonanzbedingung erfüllen
- Echo / Signal
 - Frequenz gegeben durch Resonanzbedingung
- Beispiel:
 - Feldstärke 3T: MR-Frequenz für Wasser(stoff) 123MHz

Ortskodierung: Gradientenfelder

- zusätzlich zum statischen Magnetfeld
- lineare Abhängigkeit des Magnetfeldes vom Ort, in beliebige Richtung
- Amplitude zeitlich veränderbar, kann schnell an/abgeschaltet werden

entscheidend: Stärke des Magnetfeldes wird verändert, nicht die Richtung

- typische Werte: ±20mT über 0.4m, in 0.2ms
 d.h. sehr klein im Vergleich zum statischen Feld
- mit Gradientenfeld: MR-Frequenz hängt linear vom Ort ab,
 z:B. für x: ω=γ·(B₀ + G_v·x)

Ortskodierung: Frequenz

Signal (Echo)

ohne Gradientenfeld

mit Gradientenfeld (von links nach rechts)

Ortskodierung: Frequenz

Etwas mathematischer

 $\omega = \gamma \cdot B$

Beispiel

- Frequenz-Analyse (Fourier-Transformation) liefert Signal-Verteilung entlang der Gradientenrichtung
- "Signal"-Raum und Bildraum sind Fourier-Paar

Etwas mathematischer ...

• bisher: G konstantinks

mitte

rechts

• allgemeiner, z.B. wenn G zeitlich *nicht* konstant

d.h. k ist das Zeitintegral der Gradientenamplitude

• für Schnittbild: Information in zwei Dimensionen erforderlich $k(T) = y \int_{0}^{T} G(t) dt$

MR Image Rekonstruction:

flash_1mm_384mm.dat

- read complex MR data
- make a Fourier transformation and get an MR image
- what do you see?
- what do you have to consider?

Spike Artifact

flash_1mm_384mm.dat

- read complex MR data
- add a high intensity peak somewhere in the matrix
- make a Fourier transformation and get the MR image
- vary intensity and position of peak
- what do you see?
- why?

Data is acquired in the k-space

MR-Bildgebung

- Objektschnitt ist zweidimensional
- ideal: das Signal für alle Werte im k-Raum messen
- Problem
 - k-Raum unendlich groß
 - k(T) beschreibt Linie im k-Raum ("Trajektorie")
- meist: kartesische Abtastung, d.h. parallele Linien
 - abgedeckter Bereich definiert Auflösung
 - Zeilenabstand der Linien definiert Messfeld (field-of-view)

$$k(T) = \gamma \int_{0}^{T} G(t)dt$$

Resolution:

- read complex MR data
- make a Fourier transformation to get the MR images
- what is different in the images?
- what is different in the raw data?
- why are the images different?

Effect of Resolution it atsklinikum | Hamburg-Eppendorf

 same frequency range is acquired but with increasing steps.

Exercise IV

Field-of-View

- read complex MR data
- make a Fourier transformation to get the MR images
- what is different in the images?
- what is different in the raw data?
- why is one of the images different?
- which data set would you prefer?

flash_1mm_384mm.da t flash_1mm_192mm.da t flash_1mm_96mm.dat

Effect of Field of Viewitsklinikum

Same frequency range is covered but at different sampling densities / frequency resolutions.

Pulse Sequence: FLASH

• pulse sequence $\Leftrightarrow k(T)$

Pulse Sequence: Echo-Planar Imaging

Pulse Sequence: Echo-Planar Imaging

Echo-Planar Imaging

Properties

- all signals required for image acquired after a single RF excitation
- very fast
- sensitive to artifacts
 - odd lines: positive gradient pulse, even lines: negative gradients
 - different echo times for different lines:
 relaxation, frequency offsets, geometric distortions

Echo-Planar Imaging

- read complex MR data
- make a Fourier transformation to get the MR images
- what is different between FLASH and EPI images?

flash_1mm_192mm.da t epi-se_2mm.dat

odd vs. even lines

N/2 ghosting

- read complex MR data
- make a Fourier transformation to get the MR images
- add a phase offset to every 2nd line in the FLASH data
- vary the phase offset
- what happens to the images?
- what looks EPI-like?

flash_1mm_192mm.da t epi-se 2mm.dat

Image Blurring / Resolution

- read complex MR data
- make a Fourier transformation to get the MR images
- multiply MR data with exponential decay along line direction
- vary decay factor or exponential decay
- what happens to the images?
- why?

flash_1mm_192mm.da t

Point Spread Function I

- make an empty array
- add a point somewhere
- make a Fourier transformation to get in "MR data" in k-space
- multiply "MR data" with exponential decay along line direction
- vary decay factor or exponential decay
- make a Fourier transformation of the modified "MR data" to get "MR images"
- what do you see?
- why?

Point Spread Function II

- make an empty array
- add somewhere two neighbouring points
- make a Fourier transformation to get in "MR data" in k-space
- multiply "MR data" with exponential decay along line direction
- vary decay factor or exponential decay
- make a Fourier transformation of the modified "MR data" to get "MR images"
- what do you see?

Summary

- MR imaging data are acquired in k-space, the Fourier space of the image space
- MR data need to be Fourier transformed to get MR images

Fourier Transformation (Image)

- usually parallel lines are acquired, in multiple shots or a single shot
- MR data are only a subset of the objects k-space representation defining the resolution (area) and the field-of-view (sampling density)
- MR data may be disturbed / corrupted yielding artifacts, in particulart for single-shot sequences
 - spikes
 - N/2 ghosting
 - image blurring
 - frequency offset shifts
 - geometric distortions

— ...

Done.

Thanks!