

Cursul #2

Open Shortest Path First

Cuprins

- Caracteristicile protocoalelor Link-State
- OSPF Single area
- OSPF Multi area

Protocoale de rutare link-state

Limitările Distance-Vector

- Scalabilitate
 - Peste câte hopuri poate RIP să transmit un update de rutare?

- Routing by rumour
 - Protocoalele DV nu au o viziune de ansamblu asupra rețelei
 - EIGRP păstrează mai multe căi către destinație?

Caracteristicile protocoalelor LS

Relații între vecini

- Într-un protocol link state, 2 vecini direct conectați creează o adiacență
 - scopul este reacția rapidă la schimbările din rețea
- Protocolul Hello
 - se trimit mesaje periodice cu funcție de keep-alive și de sincronizare de parametrii (condiții de adiacență)
- Tabelă de vecini

Relații între vecini

Convergență

Triggered updates – convergență foarte bună

- Flapping interface?
 - În mod normal fiecare protocol link-state are un timer foarte mic pe care îl așteaptă înainte să recalculeze topologia

Algoritmul SPF

- Într-un protocol LS, un ruter păstrează toate rutele către destinație în **tabela de topologie**
- Protocolul de rutare folosește apoi algoritmul **Dijkstra** pentru a calcula cea mai scurtă cale către destinație

A	B – 12	D-1	F - 5
В	A - 12	C - 2	
С	B - 2	D - 3	
D	A - 1	C - 3	E - 3
Ε	D - 3		
F	A - 5		
G	E - 4	F - 7	

Algoritmul SPF

• Folosind Dijkstra, fiecare ruter creează un arbore minim de acoperire în vârful căruia se pune pe sine

В	Dist = 6 (prin C)	
С	Dist = 4 (prin D)	
D	Dist = 1 (prin A)	
E	Dist = 4 (prin D)	
F	Dist = 5 (prin A)	
G	Dist = 8 (prin E)	

Pași în construirea SPF

Pasul 1 – adiacențe și rețele direct conectate

- Routerul stabilește adiacențe
- Routerul află rețelele direct conectate

Pasul 2 – LSP flood

• Se trimit mesaje speciale de tip LSP (Link State Packet) ce conțin rețelele direct conectate

Pasul 3 – popularea tabelei de topologie

- Fiecare rețea primită într-un LSP are și un cost asociat
- TOATE rețelele primite în LSP se păstrează în tabela de topologie

Pasul 4 - Dijkstra

• Se rulează algoritmul lui Dijkstra pentru a afla drumurile minime până la toate rețelele destinație

LSP

- Update-uri de rutare
- Link State Packet
 - ID vecin
 - tipul de link
 - cost link
 - starea link-ului

Transmiterea de mesaje LSP

- Mesajele LSP se trimit:
 - La inițializarea procesului de rutare
 - La apariția unei schimbări în topologie
 - Periodic la un interval mare de timp (în OSPF la 30 de minute)

• Imediat ce un router primește un LSP, îl transmite mai departe la ceilalți vecini

Avantaje/Dezavantaje

- vedere unitară asupra rețelei
- convergență bună
- scalabilitate: mărimea bazei de date link-state poate fi optimizată printr-un design atent
- triggered updates

- necesită un grad de competență mai mare al administratorului de rețea
- consum de memorie
- consum mare de procesor
- consum de lățime de bandă

Concluzia?

• There is no silver bullet

OSPF

Simple Area

Dezvoltarea protocolului OSPF

Caracteristici OSPF

- Nu folosește un protocol de nivel 4 pentru transportul mesajelor sale
 - Protocol 89 în antetul IP
 - Implementează intern un mecanism de ACK pentru transmiterea sigură a mesajelor
- Distanță administrativă 110
- Folosește adrese multicast pentru transmiterea mesajelor
 - 224.0.0.5 || FF02::5 all OSPF routers
 - 224.0.0.6 || FF02::6 DR and BDR
- Cost = 108/bandwidth

Activarea OSPFv3

- Numărul de proces
 - are semnificație locală
 - folosirea numărului de proces pentru a separa comunicarea OSPF nu este recomandată de CISCO
- OSPFv3 se activează per interfață
- OSPFv2 se activează din modul de configurare router ospf

```
R(config) # interface se0/0
R(config-if) # ipv6 ospf process-id> area <area-no>
```


Activarea OSPFv3

Metrica OSPF

10^8 bandwith

Mediu	Cost
56 kbps – serial	1785
T1 (1.544 Mbps – serial)	64
E1 (2.048 Mbps – serial)	48
4 Mbps Token Ring	25
Ethernet	10
16 Mbps Token Ring	6
100 Mbps Fast Ethernet FDDI 1 Gigabit Ethernet 10 Gigabit Ethernet	1

Tipuri de mesaje OSPF

Hello

Stabilește și menține adiacențe între routere vecine OSPF

DBD

Database Description: listă abreviată cu informația din linkstate database

LSR

Link-state Request: cere informații despre o intrare din DBD

LSAck

Link-state Acknowledgement: confirmă primirea unui LSU

LSU

Link-state Update: reply la LSR, poate conține și informație nouă; format din mai multe LSA

Comunicația OSPF

Transmiterea de update-uri

• Pentru rețele point-to-point se folosește adresa 224.0.0.5 | FF02::5 pentru update-uri

• În retele multiacces, coordonarea update-urilor se face

De ce DR/BDR?

- Fără DR ar fi n(n-1)/2 adiacențe
- Cu DR sunt (n-1) adiacențe + (n-1) cu BDR = 2(n-1)

Fără DR:

5(5-1)/2 = 10 adiacențe

Cu DR:

2(5-1) = 8 adiacențe

Alegerea DR

Criterii de alegere a DR-ului

Criteriul 1

 Prioritatea cea mai mare

Criteriul 2

RouterID-ul cel mai mare

Alegerea DR nu este preemptivă

Criterii de alegere a RID-ului

Alegerea 1

Setat manual

Alegerea 2

 Adresa loopbackului cu adresa IP cea mai mare

Alegerea 3

 Cea mai mare adresă IP de pe o interfață a routerului

Scenarii de alegere DR/BDR

- DR nu mai funcționează
 - BDR îi ia locul iar noul BDR este ales din DROthers conform criteriilor de alegere
- Apare un nou router în OSPF
 - Nu se întâmplă nimic, procesul este nepreemptiv
- BDR nu mai funcționează
 - Noul BDR este ales din DROthers conform criteriilor de alegere
- Nici DR, nici BDR nu mai funcționează
 - Se alege mai întâi un nou DR și apoi un nou BDR conform criteriilor de alegere

Exemplu alegere DR/BDR

Router ID **A**: 2.0.0.1 Router ID **B**: 12.0.0.2 Router ID **C**: 13.0.0.2 Router ID **D**: 13.0.0.1

DR: B (prioritate 10 > prioritate default 1)

BDR: C (router-id cel mai mare)

Influențerea alegerii DR/BDR

- Modificarea priorității pe interfață
 - Are în mod implicit valoarea 1
 - Valoarea 0 înseamnă că ruterul nu poate participa în alegerea DR/BDR

```
R(config-if)# ipv6 ospf priority <pri>/prioritate>
```

Modificarea router-ID-ului

```
R(config-router)# router-id <router-id>
R# clear ipv6 ospf processes
```


Protocolul Hello

• Descoperirea vecinilor și menținerea adiacențelor

Network Mask					
Hello Interval	Options	Router Priority			
Dead Interval					
Designated Router					
Backup Designated Router					
Neighbour Router ID					
Neighbour Router ID					
<other fields="" id,="" if="" necessary="" neighbour="" of="" router=""></other>					

Timere(Hello_timer/Dead_timer)

• Pentru rețelele multiacces și p2p: 10/40

• Pentru rețelele NBMA: 30/120

Modificarea timerelor

- Un LSA are max-age 60 minute
 - o dată la 30 minute se face flooding cu un LSU pentru fiecare LSA deținut

```
R(config-if)# ipv6 ospf hello-interval <time>
R(config-if)# ipv6 ospf dead-interval <time>
```


Stările de adiacență OSPF

Init

Ruterul a trimis primul Hello și așteaptă un răspuns

Two-Way

Ruterul a primit un Hello ca răspuns de la vecinul său și a găsit router-id-ul său în câmpul de Neighbor Router ID din antet

Ex-start

Stabilirea statutului de master/slave pentru inițierea comunicării între rutere. Pentru rețelele multiaccess face alegerea DR/BDR.

Exchange

Se face sincronizarea bazelor de date folosind mesaje DBD, LSR și LSU

Full

Starea finală de adiacență în care toate LSDB-urile sunt sincronizate

Condiții de adiacența OSPF

OSPF

Multi Area

Scalabilitatea OSPF

- Cu cât avem mai multe rutere cu atât algoritmul Dijkstra rulează mai încet
- Soluție: împărțirea unui domeniu OSPF în mai multe zone
 - Fiecare zonă rulează algoritmul Dijkstra
- Pentru rețelele cunoscute în afara ariei (zonei) doar se adună distanța prin ruterul gateway al ariei (partial-Dijkstra)

Toate ariile trebuie să aibă conectivitate la aria 0

Tipuri de rutere OSPF

- Internal router un ruter ce face parte dintr-o singură arie
- Backbone router ruter intern din aria 0
- ABR (Area Border Router) ruter ce face legătura între 2 arii
 - ABR-ul are sincronizate bazele de date din ambele arii
- ASBR (Autonomous System Border Router) ruter ce introduce rute externe în OSPF
 - e.g. pe care s-a dat comanda redistribute

Tipuri de rutere OSPF

- Pentru transmiterea de update-uri, se pot folosi 7 tipuri de pachete:
 - **Tipul1 Ruter Link LSA**: generat de fiecare ruter pentru fiecare zonă din care face parte. Transmite starea legăturilor ruter-ului respectiv către toate ruter-ele din zonele respective (mesaj multicast)
 - Tipul 2
 - Tipul 3
 - Tipul 4
 - Tipul 5
 - Tipul 6
 - Tipul 7

- Pentru transmiterea de update-uri, se pot folosi 7 tipuri de pachete:
 - Tipul1
 - Tipul 2 Network Link LSA: generat de către DR şi conţine toate ruter-ele din acea reţea cu care DR are stabilită o relaţie de adiacenţă
 - Tipul 3
 - Tipul 4
 - Tipul 5
 - Tipul 6
 - Tipul 7

- Pentru transmiterea de update-uri, se pot folosi 7 tipuri de pachete:
 - Tipul1
 - Tipul 2
 - Tipul 3 Network Summary LSA: generat de către ABR, descrie legăturile dintre ABR şi ruter-ele interne unei anumite zone. Sunt trimise în zona 0, către alte ABR, descriind rute către rețelele din zona locală conectată la ABR
 - Tipul 4
 - Tipul 5
 - Tipul 6
 - Tipul 7

- Pentru transmiterea de update-uri, se pot folosi 7 tipuri de pachete:
 - Tipul1
 - Tipul 2
 - Tipul 3
 - Tipul 4 Network Summary LSA: generat de ABR, descrie accesul către rutere ASBR
 - Tipul 5
 - Tipul 6
 - Tipul 7

- Pentru transmiterea de update-uri, se pot folosi 7 tipuri de pachete:
 - Tipul1
 - Tipul 2
 - Tipul 3
 - Tipul 4
 - Tipul 5 Network Summary LSA: generat de ABR, descrie accesul către rutere ASBR
 - Tipul 6
 - Tipul 7

10/12/21 42

- Pentru transmiterea de update-uri, se pot folosi 7 tipuri de pachete:
 - Tipul1
 - Tipul 2
 - Tipul 3
 - Tipul 4
 - Tipul 5
 - Tipul 6 Multicast LSA: Neimplementat pe ruter-ele Cisco
 - Tipul 7

10/12/21 43

- Pentru transmiterea de update-uri, se pot folosi 7 tipuri de pachete:
 - Tipul1
 - Tipul 2
 - Tipul 3
 - Tipul 4
 - Tipul 5
 - Tipul 6
 - Tipul 7 NSSA External LSA: create de ASBR şi transmise în not so stubby areas (NSSA). Aceste LSA-uri vor fi convertite la LSA de tipul 5 de către ABR.

LSA extra OSPFv3

- LSA-urile 8 și 9 sunt responsabile pentru routerele IPv6
- Tipul 8 Link LSA
 - Conține informații despre adresele link-local și lista adreselor IPv6 de pe link
 - LSA este flooded doar pe link local
- Tipul 9 Intra-Area LSA
 - Conține prefixele pentru ariile stub

10/12/21 45

Tabela de rutare

- Rutele OSPF pot avea mai multe coduri în tabela de rutare
 - O: rute din aceeași zonă, învățate prin LSA-uri de tip 1 și 2
 - O IA: rute inter-area, învățate prin LSA de tip 3
 - O E1 și E2: rute externe, învățate prin LSA-uri de tip 5
 - O N1 și N2: rute externe, învățate prin LSA-uri de tip 7
- Rutele externe E1 și E2 sunt diferite din perspectiva costului, astfel
 - E1: costul este cumulativ
 - E2: cost constant, default 20
- Dacă sunt 2 rute E1 și E2 către aceeași destinație, vor fi preferate rutele E1

Virtual Links

- Atunci când o zonă nu poate fi conectată direct la zona de backbone, se poate configura o legătură virtuală
- Restricţii de configurare:
 - o legătură virtuală trebuie realizată între două rutere care au o zonă comună
 - unul din cele două rutere trebuie să fie conectat la zona de backbone
- Pentru simplicitate, se poate folosi și un tunel GRE

Sumar

Protocoale Link-State OSPF Single Area

Protocoale Distance-Vector OSPF Multi Area

