10 класс

Задача 1. Упругая система

На гладкой горизонтальной поверхности расположена конструкция, показанная на рисунке 6 (вид сверху). Один конец пружины жёсткости k_1 прикреплён к грузу массы m, второй — к палочке Π . У пружины жёсткости k_2 один конец закреплён неподвижно, а второй прикреплён к той же палочке Π . На па-

лочку всё время действует сила F, остающаяся постоянной по величине и направлению что бы ни случилось. Поначалу груз m удерживают неподвижно, а затем отпускают без толчка.

- 1. Найдите максимальную скорость груза.
- 2. Найдите удлинение первой пружины в момент, когда её длина будет минимальна.

Считайте, что масса пружин и палочки равна нулю, длины пружин в недеформированном состоянии одинаковы, растяжения пружин в момент отпускания груза тоже одинаковы, силу F прикладывают к палочке таким образом, что она движется поступательно (не поворачивается при движении), трение отсутствует.

Задача 2. Исследование планеты

Спускаемый аппарат осуществляет посадку на поверхность экзотической планеты. Во время спуска проводилось измерение зависимости давления p в атмосфере планеты от расстояния z до поверхности планеты (график на отдельном листе). Измерение температуры, произведённое на высоте $z_1=5$ км дало значение $T_1=250$ К. Вычислите температуру T_0 у поверхности планеты. Считайте, что радиус планеты $R\gg z_1$. Атмосфера состоит из углекислого газа.

 $\it Примечание.$ График на отдельном листе необходимо сдать вместе с вашим решением.

Задача 3. Термоэлектродинамика

Два диска, по которым равномерно распределены заряды q и -q, могут двигаться без трения в длинном непроводящем теплоизолированном цилиндре, расположенном горизонтально (рис. 7). Расстояние между дисками много меньше их радиуса. Между дисками находится некоторое количество гелия, за дисками га-

Puc 7

за нет, система находится в равновесии. Заряды дисков мгновенно уменьшают вдвое, после чего ожидают прихода системы в равновесие. Пренебрегая теплообменом, найдите, во сколько раз изменятся температура газа и расстояние между дисками.

Задача 4. Стенка с дыркой

Рис. 8

Три одинаковых бруска движутся с одинаковыми скоростями \vec{v} . Длинная лёгкая упругая резинка, связывающая первый и второй бруски, проходит сквозь отверстие в массивной стене и через лёгкий блок, прикреплённый к третьему бруску (рис. 8). В начальный момент

времени резинка не растянута. Определите скорости брусков после упругого столкновения первого бруска со стеной в момент времени, когда резинка оказалась

- 1. максимально растянутой;
- 2. снова ненатянутой.

Трение в системе не учитывайте. Считайте, что пока резинка не станет снова ненатянутой, груз 2 не сталкивается с блоком, а груз 1 не ударяется о стену.

Задача 5. Нелинейность

Некоторые элементы электрических цепей являются нелинейными, то есть сила тока, протекающего через них, не пропорциональна приложенному напряжению. Допустим, что у нас есть лампа накаливания, для которой сила тока I_{π} пропорциональна $\sqrt{U_{\pi}}$, диод, у которого I_{π} пропорциональна U_{π}^2 , и источник постоянного напряжения. При этом и лампа, и диод обладают одинаковым свойством: если подключить любой из этих элементов к источнику в качестве нагрузки, то мощность тепловых потерь на нагрузке будет максимально возможной для данного источника. Если подключить к источнику лампу и диод, соединив их последовательно, то мощность потерь на такой нагрузке будет равна $P_1=7,2$ Вт. Какой будет мощность, если в качестве нагрузки к источнику присоединить лампу и диод, соединенные параллельно?