

Lahore University of Management Sciences EE352+L - Electromechanical Systems + Lab

Spring 2016 - 17

Instructor	Nauman Ahmad Zaffar
Room No.	9-213A
Office Hours	TBA
Email	nauman.zaffar@lums.edu.pk
Telephone	X8311
TA	TBA, Khawaja Samad Shah (Lab Engineer)
TA Office Hours	TBA
Course URL (if any)	

Course Basics				
Credit Hours 3				
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	75 minutes each
Recitation (per week)	Nbr of Lec(s) Per Week	0	Duration	N/A
Lab (per week)	Nbr of Lec(s) Per Week	1	Duration	150 minutes

Course Distribution		
Core	Υ	
Elective	N	
Open for Student Category	Electrical Engineering, Physics	
Close for Student Category		

COURSE DESCRIPTION

This course introduces the fundamentals of DC and AC electromechanical systems to be used for variety of applications. The course starts with the study of fundamental physical laws of electrical devices and appropriate mathematical models are developed to understand their operation and design. The physical construction, operation and mathematical design of transformers, DC machines, and AC machines will be discussed in detail. The speed control of rotating machines will also be introduced.

COURSE PREREQUISITE	E(S)
• EE242	Circuits II (recommended)
• PHY102	Electricity and magnetism (required)
• EE330	Electromagnetic Fields and Waves (recommended)

COURSE OBJ	ECTIVES
1.	Study the basic principles of electromechanical System such as electromagnetic actuators, rotating electrical machines and transformers
2.	Understand fundamental principles governing structure and operation of electric machines
3.	Study the basics of single phase and three phase ac systems for use with electromechanical systems

Course	Learning	Outcomes

EE352:	The students should be able to	0:

CLO1: Understand and apply the principles of electromagnetic induction in power circuits.

CLO2: Learn the principles governing operation, characterization and design of ideal and non-ideal single phase and three phase transformers as examples of electromagnetic circuits.

CLO3: Understand the principles of rotating magnetic field, electromagnetic torque and machine action for synchronous ac machine

CLO4: Understand the principles of machine action for ac induction machine as motor and generator

CLO5: Understand the principles of machine action for dc machines as motor and generator

CLO6: Apply the knowledge in lab environment working as a group

Relation to EE Program Outcomes

EE-352 CLOs	Related PLOs	Teaching Methods	CLO Attainment checked in		
CLO1	PLO1	Instruction, Tutorial, Assignments	Midterm, Final		

Lahore University of Management Sciences

CLO2	PLO3	Instruction, Tutorial, Assignments	Midterm, Final
CLO3	PLO2	Instruction, Tutorial, Assignments	Midterm, Final
CLO4	PLO2	Instruction, Tutorial, Assignments	Midterm, Final
CLO5	PLO2	Instruction, Tutorial, Assignments	Final
CLO6	PLO9	Instruction, Labs	Lab Exam

Grading Breakup and Policy

Assignment(s): Home Work: → 10% Quiz(s): 10-12 → 15% Class Participation: N/A Attendance: N/A

Labs (Performance + Report): 15% (8% + 7%)

Midterm Examination: 01 → 20%

Lab Exam: 10%

Final Examination: Comprehensive → 30%

Examination De	etail
Midterm Exam	Yes/No: Yes Combine/Separate: Combined Duration: 03 hrs Preferred Date: During Mid-week Exam Specifications: Closed book, closed notes, 1 A4 double sided, hand written help sheet, calculators
Final Exam	Yes/No: Yes Combine/Separate: Combined Duration: 03 hrs Exam Specifications: Closed book, closed notes, 1 A4 double sided, hand written help sheet, calculators

COURSE OVERVIEW				
Lecture	Topics	Recommended Readings	Related CLOs & Additional Remarks	
	- Introduction to Machinery Principles, Laws	Chapman: 1.1, 1.2, 1.3, 1.4	CLO1, CLO2	
1.	governing linear and rotational motion			
	- The Magnetic Field, Magnetic circuits			
	- Electric losses in ferromagnetic materials	Chapman: 1.4, 1.5, 1.6, 1.7	CLO2	
2.	- Interaction of changing magnetic fields			
۷.	- Transformer			
	- Motor and generator principle basics			
3.	- The Ideal Transformer	Chapman: 2.3, 2.4	CLO2	
3.	- Theory of Operation of single phase transformer			
4.	- Equivalent Circuit of a Transformer	Chapman: 2.5, 2.7	CLO2	
4.	- Transformer Voltage Regulation and Efficiency			
5.	- Per-unit system	Chapman: 2.6, 2.9	CLO2	
٥.	- Auto Transformers			
6.	- A simple loop in a uniform magnetic field	Chapman: 4.1, 4.2	CLO1, CLO3	
0.	- The rotating magnetic field			
7.	- Induced voltage in an AC machine	Chapman: 4.3, 4.4, 4.5	CLO1, CLO3	
7.	- Induced torque in an AC machine			
	- AC Machines power flows and losses	Chapman: 4.7, 4.8	CLO1, CLO3	
8.	- Voltage and Speed regulation			
	- Speed of rotation of a synchronous generator	Chapman: 5.2, 5.3	CLO3	
9.	- Internally generated voltage of a synchronous	,		
	generator			
10.	- Equivalent circuit of a synchronous generator	Chapman: 5.4, 5.5, 5.6	CLO3	

Lahore University of Management Sciences

	- Phasor diagram of a synchronous generator		
		Chamman: 5 9 5 0	CL C2
11.	- Synchronous generator operation	Chapman: 5.8, 5.9	CLO3
	- Parallel operation of AC Generators		CL04 CL03
12.	- Basic principles of motor operation	Chapman: 6.1, 6.2	CLO1, CLO3
	- Steady-state synchronous motor operation		
	- Effect of load changes on a synchronous motor	Chapman: 6.2, 6.3, 6.4	CLO3
13.	- Power-factor correction		
	- Starting synchronous motors		
	Midterm		
14.	- Basic induction motor concepts	Chapman: 7.2, 7.3	CLO4
	- Equivalent circuit of induction motor		
15.	 Power and Torque in Induction motors 	Chapman: 7.4	CLO4
16.	- Torque-speed characteristics	Chapman: 7.5	CLO4
17.	 Speed control of induction motors 	Chapman: 7.9, 7.12	CLO4
17.	- The induction generator		
18.	- A simple rotating loop between curved pole faces	Chapman: 8.1, 8.2	CLO1, CLO5
10.	- Commutation in a simple four-loop DC machine		
	- Problems with commutation in real machines	Chapman: 8.4, 8.5	CLO5
19.	- The internal generated voltage and induced torque		
	equations of DC machines		
	- The construction of DC Machines	Chapman: 8.6, 8.7	CLO5
20.	- Power flow in DC machines		
	- Losses in DC Machines		
21.	- Equivalent circuit – DC machines	Chapman: 9.2, 9.3	CLO5
21.	- Magnetization curve – DC machines		
22.	- Separately excited and shunt DC Motors	Chapman: 9.4, 9.5	CLO5
22.	- Permanent Magnet DC Motor		
	- Series DC Motor	Chapman: 9.6, 9.7, 9.10	CLO5
23.	- Compound DC Motor		
	- DC motor efficiency calculations		
24	- Separately excited DC Generator	Chapman: 9.12, 9.13	CLO5
24.	- Shunt DC Generator		
25	- Series DC Generator	Chapman: 9.14, 9.15, 9.16	CLO5
25.	- Compounded DC Generators		
26	- Single phase motors	Chapman: 10.1	CLO1, CLO3
26.	- Universal motor		
27.	- Single phase induction motor	Chapman: 10.2	CLO4
28.	- Starting single phase induction motors	Chapman: 10.3	CLO4

Textbook(s)/Supplementary Readings

Textbook:

Electric Machinery Fundamentals (4th Edition) by Stephen J. Chapman

Supplementary Reading:

Electric Machinery (6th Edition) by A.E. Fitzgerald; Charles Kingsley, Jr; Stephen D. Umans

Labs (1+n weeks → simulation + performance)					
	Design of an Indu	ctor using Ferrite Core using different core shapes	1 week	CLO6	
1	- Toroid shape				
1	- E-I shape				
	- E-E shape				
	Voltage Regulation	n in a Single Phase Transformer and Auto transformer for	1 week	CLO6	
2	- Resistive Loa	nd			
	- Capacitive L	oad			

Lahore University of Management Sciences

	Measure Equivalent circuit parameters of a Single Phase Transformer	1 week	CLO6
3	- Open Circuit Test		
	- Short Circuit Test		
	Magnetic characteristics (Open Circuit Characteristics):	1 week	CLO6
4	- Separately Excited DC Generator		
	- Shunt Generator		
5	Load Characteristics of a DC Shunt Generator (Self excited generator)	1 week	CLO6
	Load Characteristics of a series DC Machine	1 week	CLO6
6	- As a motor		
	- As a generator		
	Load Test	1 week	CLO6
7	- DC shunt motor		
	- Separately Excited Motors		
8	Voltage drops inside a DC Shunt Generator at different loads	1 week	CLO6
9	Load Characteristics of a Single Phase Capacitor Start Induction Motor	1 week	CLO6
1	Load Characteristics of a 3-Phase Squirrel Cage Induction Motor	1 week	CLO6
1	Use of Induction Motor as an Induction Generator	1 week	CLO6
1	Synchronization of an Synchronous Generator (Alternator) with WAPDA Bus Bar	1 week	CLO6