Module 2.5: Two Basic Proof Patterns MCIT Online - CIT592 - Professor Val Tannen

LECTURE NOTES

Proof of an "if-then" statement

Recall the statement

If m + n is even then m - n is even.

Logical structure: $even(m+n) \Rightarrow even(m-n)$.

What did we do?

We assumed the premise even(m + n).

Then, $m+n=2\ell$, for some integer ℓ (by definition of "even").

Then, $m = 2\ell - n$.

Then, $m - n = (2\ell - n) - n = 2\ell - 2n = 2(\ell - n)$.

Then, we satisfied the definition of "even" (by taking $k = \ell - n$).

We concluded even(m-n).

The proof pattern for implication

You wish to prove $P_1 \Rightarrow P_2$

Proof pattern.

assert the **premise** P_1

(then derive/infer)

...logical/mathematical consequences ...

(until you can)

assert the **conclusion** P_2

With all this you have proven $P_1 \Rightarrow P_2$.

A proof with cases I

Recall the statement

If $p = r \cdot s$ and p is prime, then one of r and s equals 1 and the other one equals p.

Logical structure:

$$(p = r \cdot s) \land prime(p) \Rightarrow (r = 1 \land s = p) \lor (s = 1 \land r = p).$$

What did we do to prove this one? To begin with, we have an implication.

We assumed the premise $(p = r \cdot s) \land prime(p)$

Then, $r \mid p$

Then, since p is prime, r = 1 or r = p.

Then, we proceeded in **two cases**.

A proof with cases II

Because r = 1 or r = p we can continue in two cases.

In the first case we assume r = 1.

Therefore $p = 1 \cdot s$.

And thus s = p.

Hence, $(r = 1 \land s = p) \lor (s = 1 \land r = p)$.

In the second case we assume r = p.

Therefore $p = p \cdot s$.

And thus 1 = s.

Hence, $(r = 1 \land s = p) \lor (s = 1 \land r = p)$.

In both cases we have concluded $(r = 1 \land s = p) \lor (s = 1 \land r = p)$.

The by-cases proof pattern

Assuming $P_1 \vee P_2$ you wish to prove P_3 .

Proof pattern.

```
assert P_1 \vee P_2
```

Case 1. assert P_1 .

... logical/mathematical consequences ...

assert P_3

Case 2. assert P_2 .

... logical/mathematical consequences ...

assert P_3

Since in both cases we obtained P_3 , we have proved it assuming $P_1 \vee P_2$.

Some observations about by-cases

- 1. It generalizes easily to more than two cases. If we start from a disjunction of k statements, then we will have k cases.
- 2. The cases need not be *mutually exclusive*, as they were (almost) in our example: $(r = 1) \lor (r = p)$. We will give examples later in the course.
- 3. The disjunction that yields the cases need not appear as part of the assumptions in the original statement. In fact $(r = 1) \lor (r = p)$ did not. You can see a more striking example in another segment in this module.