Logika układów cyfrowych lab.

Prowadzący: Mgr inż. Antoni Sterna (E02-38m, wtorek 17:05)

sprawozdanie 5 - 2017.11.14

Jakub Dorda 235013 Marcin Kotas 235098

> 20 listopada 2017 LAT_EX

1 Wprowadzenie/cel ćwiczeń

Celem ćwiczeń było poznanie podstaw projektowania automatów w wariantach Moore'a i Mealy. Należało zaprojektować grafy w obu wariantach dla subtraktora szeregowego oraz komparatora szeregowego. Dodatkowo przeprowadzona została synteza strukturalna komparatora w wariancie Mealy w celu uruchomienia na zestawie UNILOG.

2 Subtraktor szeregowy

2.1 Automat Moore'a

• Wejścia: $Z = \{Z_0, Z_1, Z_2, Z_3\}$

	z_1	z_0
$\overline{Z_0}$	0	0
Z_1	0	1
Z_2	1	0
Z_3	1	1

 z_1 - cyfra odjemnej

 z_0 - cyfra odjemnika

• Stany wewnętrzne: $Q = \{Q_0, Q_1, Q_2, Q_3\}$

$$\begin{array}{c|cccc} & q_1 & q_0 \\ \hline Q_0 & 0 & 0 \\ Q_1 & 0 & 1 \\ Q_2 & 1 & 0 \\ Q_3 & 1 & 1 \\ \end{array}$$

 Q_0 - stan bez pożyczki, wynik=0

 Q_1 - stan z pożyczką, wynik = 0

 Q_2 - stan bez pożyczki, wynik = 1

 Q_3 - stan z pożyczką, wynik = 1

• Funkcja wyjść: $Y = \{Y_0, Y_1\}$

$$\begin{array}{c|c} Q & Y \\ \hline Q_0 & Y_0 \\ Q_1 & Y_0 \\ Q_2 & Y_1 \\ Q_3 & Y_1 \\ \end{array}$$

$$Y_0$$
 - wynik = 0
 Y_1 - wynik = 1

2.2 Automat Mealy

• Wejścia: $Z = \{Z_0, Z_1, Z_2, Z_3\}$

$$\begin{array}{c|cccc} & z_1 & z_0 \\ \hline Z_0 & 0 & 0 \\ Z_1 & 0 & 1 \\ Z_2 & 1 & 0 \\ Z_3 & 1 & 1 \\ \end{array}$$

 z_1 - cyfra odjemnej

 z_0 - cyfra odjemnika

1

• Stany wewnętrzne: $Q = \{Q_0, Q_1\}$

 Q_0 - stan bez pożyczki Q_1 - stan z pożyczką

• Funkcja wyjść: $Y = \{Y_0, Y_1\}$

 Y_0 - wynik = 0

 Y_1 - wynik = 1

2.3 Grafy:

Graf 1 - subtraktor szeregowy w wersji Moore'a

Graf 2 - subtraktor szeregowy w wersji Mealy

3 Komparator szeregowy

3.1 Automat Moore'a

• Wejścia: $Z = \{Z_0, Z_1, Z_2, Z_3\}$

$$\begin{array}{c|cccc} & z_1 & z_0 \\ \hline Z_0 & 0 & 0 \\ Z_1 & 0 & 1 \\ Z_2 & 1 & 0 \\ Z_3 & 1 & 1 \\ \end{array}$$

 z_1 - cyfra pierwszej liczby

 z_0 - cyfra drugiej liczby

• Stany wewnętrzne: $Q = \{Q_1, Q_2, Q_3\}$

$$\begin{array}{c|cccc} & q_1 & q_0 \\ \hline Q_1 & 0 & 1 \\ Q_2 & 1 & 0 \\ Q_3 & 1 & 1 \\ \end{array}$$

 Q_1 - druga liczba większa

 Q_2 - pierwsza liczba większa

 Q_3 - stan wejściowy, obie liczby równe

 \bullet Funkcja wyjść: $Y=\{Y_1,Y_2,Y_3\}$ (kodowanie y_1,y_0 takie samo jak dla stanów wew.)

$$\begin{array}{c|c}
Q & Y \\
\hline
Q_1 & Y_1 \\
Q_2 & Y_2 \\
Q_3 & Y_3
\end{array}$$

 Y_1 - druga liczba większa

 ${\cal Y}_2$ - pierwsza liczba większa

 Y_3 - obie liczby równe

3.2 Automat Mealy

• Wejścia oraz stany wewnętrzne takie same jak dla automatu Moore'a

• Wyjścia: $Y = \{Y_1, Y_2, Y_3\}$

	y_1	y_0
Y_1	0	1
Y_2	1	0
Y_3	1	1

 Y_1 - druga liczba większa

 Y_2 - pierwsza liczba większa

 Y_3 - obie liczby równe

3.3 Grafy:

Graf 3 - komparator szeregowy w wersji Moore'a

Graf 4 - komparator szeregowy w wersji Mealy

3.4 Tabela prawdy i tablice Karnaugh dla automatu Mealy:

Tabela 1: Tabela Prawdy - funkcja przejść

t			t -	- 1		
	q_1	q_0	z_1	z_0	q_1	q_0
	0	0	0	0	-	_
	0	0	0	1	_	-
	0	0	1	0	_	-
	0	0	1	1	_	-
-	0	1	0	0	0	1
	0	1	0	1	0	1
	0	1	1	0	1	0
	0	1	1	1	0	1
-	1	0	0	0	1	0
	1	0	0	1	0	1
	1	0	1	0	1	0
	1	0	1	1	1	0
	1	1	0	0	1	1
	1	1	0	1	0	1
	1	1	1	0	1	0
	1	1	1	1	1	1

Tabela 2: Tablica Karnaugh dla q_1

$z_1 z_0$ $q_1 q_0$	00	01	11	10
00	-	0	1	1
01	-	0	0	0
11	-	0	1	1
10	-	1	1	1

Tabela 3: Tablica Karnaugh dla q_0

q_1q_0 z_1z_0	00	01	11	10
00	-	1	1	0
01	-	1	1	1
11	-	1	1	0
10	-	0	0	0

Tabela 4: Tabela Prawdy - funkcja wyjść

q_1	q_0	z_1	z_0	y_1	y_0
0	0	0	0	-	-
0	0	0	1	-	-
0	0	1	0	-	-
0	0	1	1	-	-
0	1	0	0	0	1
0	1	0	1	0	1
0	1	1	0	1	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	1	0
1	1	0	0	1	1
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	1	1

Tabela 5: Tablica Karnaugh dla y_1

$\begin{array}{c} & q_1q_0 \\ z_1z_0 & \end{array}$	00	01	11	10
00	-	0	1	1
01	-	0	0	0
11	-	0	1	1
10	-	1	1	1

Tabela 6: Tablica Karnaugh dla y_0

q_1q_0 z_1z_0	00	01	11	10
00	-	1	1	0
01	-	1	1	1
11	-	1	1	0
10	-	0	0	0

3.5 Minimalizacje:

$$q_1(t+1) = y_1 = z_1 \overline{z_0} + q_1 z_1 + q_1 \overline{z_0} = \overline{\overline{z_1} \overline{z_0} \cdot \overline{q_1} \overline{z_1} \cdot \overline{q_1} \overline{z_0}}$$

$$q_0(t+1) = y_0 = \bar{z}_1 z_0 + q_0 \bar{z}_1 + q_0 z_0 = \overline{\overline{z}_1 z_0} \cdot \overline{q_0 \overline{z}_1} \cdot \overline{q_0 z_0}$$

3.6 Użyte wzory:

$$\overline{a+b} = \bar{a} \cdot \bar{b} \tag{1}$$

3.7 Schemat układu:

Schemat 1 - komparator szeregowy w wersji Mealy

4 Wnioski/podsumowanie

W celu sprawdzenia poprawności działania komparatora należało przeprowadzić testy dla wszystkich możliwych kombinacji wejść oraz stanów. Za stan wejściowy przyjęto $q_1 = 1, q_0 = 1$, więc przycisk reset należało podłączyć do wejść set przerzutników.