Final-Exam, MTH 320, Fall 2020

Ayman Badawi

Score =
$$\frac{}{48}$$

QUESTION 1. (6 points) Let $F = (1 \ 3 \ 2 \ 4) \ o \ (1 \ 2 \ 3) \ o \ (4 \ 5)$

- (i) Is $F \in A_5$? Explain
- (ii) Find |F|
- (iii) Find F^{-1}

QUESTION 2. (6 points) (up to isomorphic) classify all noncyclic abelian group with 36 elements, such that each has unique subgroup with 9 elements. Write down the invariant factors of each group.

QUESTION 3. (6 points) Let $F: Z_5 \oplus Z_5 \to Z_5$ such that $F(a,b) = a^{-1} + 2b$ (note that a^{-1} means inverse of a under addition mod 5 and 2b means 2 times b mod 5)

- (i) Show that F is a group homomorphism.
- (ii) Find Ker(F)
- (iii) For each left cosets, say L, of Ker(f), find F(w) for every $w \in L$.

QUESTION 4. (6 points)

- (i) We know that $(Aut(Z_{24}), o) \approx Z_{m_1} \oplus \cdots \oplus Z_{m_w}$, where $m_1, ..., m_w$ are the invariant factors of $Aut(Z_{24})$. Find $m_1, ..., m_w$.
 - (ii) Construct a subgroup, H, of $Aut(Z_{24})$ such that |H|=4. Is it possible that H is cyclic? Explain.

QUESTION 5. (4 points) Give me an example of a group (D, .) such that D has a normal subgroup H such that D/H is cyclic, but D is not abelian.

QUESTION 6. (4 points) (up to isomorphic) classify all abelian group with 72 elements.

QUESTION 7. (4 points) We know $U(360) \approx Z_{m_1} \oplus \cdots \oplus Z_{m_w}$, where $m_1, ..., m_w$ are the invariant factors of U(360). Find $m_1, ..., m_w$. [Note $360 = 2^3 \cdot 3^2 \cdot 5$]

QUESTION 8. (4 points) Let D be a simple group such that $|D| \ge 60$. Prove that D does not have a subgroup H such that $1 < [H:D] \le 4$ (Recall that [H:D] = |D|/|H|)

QUESTION 9. (4 points) Let $F: D \to L$ be a group homomorphism and H be a subgroup of Range(F). Prove that $K = \{a \in D \mid F(a) \in H\}$ is a subgroup of D and $Ker(F) \subseteq K$.

QUESTION 10. (4 points) Let D be a group such that |D| = 65. Assume that D has a normal subgroup with 5 elements. Prove that D is cyclic.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com