KV Cache Compression

Gabriel Pernell, Alexander Martin

Background & Motivation

Prefix Caching (Prefilling)

Request #1 Request #1 C D A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. Request #2 F G User: Hello! Request #2 A chat between a curious user and an artificial Request #3 K M N intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. User: How are you? Prefill ■ Prefill (Cached) ■ Decode

Token Selection / Eviction

Reminder: Longer Context = Longer Inference Time

Long inference times motivate using a KV Cache

- Cache the keys and values to reduce redundancy and save inference time
- Memory required: 2bndLk
- Larger models → many GBs of memory

KV Cache Compression

KV cache memory consumption with larger models motivates cache compression & optimization methods.

- Existing methods use a fixed cache size per transformer layer
 - Is this efficient?
 - Authors say no, does not take into account attention varying by layer.

Goals & Research Questions

- Do LLMs aggregate information in recognizable patterns across layers?
 - If so, can this inform a smarter KV cache compression method?
- Goal: develop a compression method that
 - Allocates KV cache size based on layer and attention patterns
 - Preserve long-context performance while reducing memory

PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling

Zefan Cai , Yichi Zhang , Bofei Gao , Yuliang Liu , Yucheng Li , Tianyu Liu , Keming Lu , Wayne Xiong , Yue Dong , Junjie Hu , Wen Xiao

Presented by Gabriel Pernell

Background & Motivation

Reminder: Longer Context = Longer Inference Time

Long inference times motivate using a KV Cache

Cache the keys and values to reduce redundancy and save inference time

The cat sat on the

- Memory required: 2bndLk
- Larger models → many GBs of memory

KV Cache Compression

KV cache memory consumption with larger models motivates cache compression & optimization methods.

- Existing methods use a fixed cache size per transformer layer
 - Is this efficient?
 - Authors say no, does not take into account attention varying by layer.

Goals & Research Questions

- Do LLMs aggregate information in recognizable patterns across layers?
 - If so, can this inform a smarter KV cache compression method?
- Goal: develop a compression method that
 - Allocates KV cache size based on layer and attention patterns
 - Preserve long-context performance while reducing memory

Pyramidal Information Funneling

Observational Study: Information Flow via Attention

Setup: Multi-document QA task on LLaMA: visualized attention scores across layers

Model given several interrelated documents plus a question.

Findings & Interpretation

• Findings:

- Lower Layers: broad, uniform attention
- Middle Layers: localized attention (e.g. info within documents)
- Upper layers:
 - "massive attention" /
 attention sink, focus on a
 few key tokens
- Attention narrows like a pyramid

PyramidKV

PyramidKV: Pyramidal KV Cache Compression Method

More cache is allocated at lower levels, less at higher levels.

Two Key Components (1)

- Dynamic KV Cache Budget Allocation:
 - Retain the KV cache for the last a tokens (instruction tokens)
 - Determine the top and bottom layer budgets: Total cache budget: $k^{ ext{total}} = \sum_{l \in [0,m-1]} k^l$
 - Use an arithmetic sequence to compute cache sizes in between, forming the pyramidal shape.

Top:
$$k^{m-1} = k^{\text{total}}/(\beta \cdot m)$$

Bottom:
$$k^0 = (2 \cdot k^{\text{total}})/m - k^{m-1}$$

$$k^{l} = k^{0} - \frac{k^{0} - k^{m-1}}{m-1} \times l.$$

Two Key Components (2)

KV Cache Selection

- Which tokens do we keep?
 - Instruction tokens Keep
 - Compute how much each token is attended to by the instruction tokens
 - Keep the tokens with the highest attention scores

$$s_i^h = \sum_{j \in [n-\alpha,n]} A_{ij}^h$$

Experiments & Results

Setup

- Models: LLaMA-3-8B, LLaMA-3-70B, Mistral-7B
- Benchmark: LongBench (17 datasets across QA, summarization, code, few-shot learning).
- Baselines: FullKV, StreamingLLM, H2O, SnapKV.

Dense

Same total KV budget on average across methods.

Results

- PyramidKV consistently outperforms baselines, especially with small cache sizes.
- Maintains near-full performance using only 12% of full KV cache
- Even with 0.7% of KV cache, accuracy drop is minimal

Results Cont'd

• PyramidKV excels with small cache sizes:

Method	Single-Document QA			Multi-Document QA			Summarization			Few-shot Learning			Synthetic		Code		
	NrtvQA 18409	Qasper 3619	MF-en 4559	HorpotQA 9151	2WikiMQA 4887	Musique 11214	GovReport 8734	QMSum 10614	MultiNews 2113	TREC T	FriviaQA 8209	SAMSum 6258	1000ESF0FE	10.100.001		RB-P 4206	Avg.
FKV	27.75	46.48	49.45	52.04	54.90	30.42	32.37	22.27	27.58	73.50	92.46	45.73	12.50	72.50	40.96	63.91	46.55
						LlaMa	-3-70B-Inst	ruct, KV	Size = 64								
SKV	23.92	31.09	36.54	46.66	50.40	25.30	18.05	21.11	19.79	41.50	91.06	40.26	12.00	72.50	43.33	57.62	39.45
SLM	22.07	23.53	27.31	43.21	51.66	23.85	16.62	19.74	15.20	39.50	76.89	33.06	12.00	72.50	40.23	50.20	35.47
H2O	25.45	34.64	33.23	48.25	50.30	24.88	20.03	21.50	21.39	42.00	90.36	41.58	12.00	71.50	43.83	58.16	39.94
Ours	25.47	36.71	42.29	47.08	46.21	28.30	20.60	21.62	21.62	64.50	89.61	41.28	12.50	72.50	45.34	56.50	42.01
						LlaMa-3	3-70B-Instr	uct, KV	Size = 2048								
SKV	26.73	45.18	47.91	52.00	55.24	30.48	28.76	22.35	27.31	72.50	92.38	45.58	12.00	72.50	41.52	69.27	46.36
SLM	26.69	41.01	35.97	46.55	52.98	25.71	27.81	20.81	27.16	69.00	91.55	44.02	12.00	72.00	41.44	68.73	43.96
H2O	27.67	46.51	49.54	51.49	53.85	29.97	28.57	22.79	27.53	59.00	92.63	45.94	12.00	72.50	41.39	63.90	45.33
Ours	27.22	46.19	48.72	51.62	54.56	31.11	29.76	22.50	27.27	73.50	91.88	45.47	12.00	72.50	41.36	69.12	46.55

Needle In A Haystack Experiment

- Purpose: test long-context factual retrieval
- Result: LLaMa-3-70B achieves 100% accuracy with 128 KV entries using PyramidKV, matching full cache performance
- Significance: PyramidKV preserves long-range memory and retrieval ability.

KVzip: Query-Agnostic KV Cache Compression with Context Reconstruction

Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W. Lee, Sangdoo Yun, Hyun Oh Song

KVzip

KVzip: How to evict?

Evict tokens that don't contribute to reconstructing the context

KVzip: Attention Sparsity

KVzip: Performance

KVzip: Model Comparison

Conclusions & Critiques

Conclusions

- Main takeaway: PyramidKV mirrors attention naturally funneling through layers
- Performance:
 - Preserves accuracy while using only 12% of KV cache
 - Preserves long-context understanding ability
- Efficiency: Up to 90% GPU-memory reduction, minimal runtime overhead:

cache size	Memory	Compression Ratio	QMSum	TREC	TriviaQA	PCount	PRe	Lcc
512	428M	6.3%	22.80	71.50	90.61	5.91	69.50	58.16
1024	856M	12.5%	22.55	71.50	90.61	5.91	69.50	58.16
2048	1712M	25.0%	22.55	72.00	90.56	5.58	69.25	56.79
Full	6848M	100.0%	23.30	73.00	90.56	5.22	69.25	58.76

Critiques

- My thoughts: Very impressive results, lots of memory reduction with a simple implementation.
- Limits:
 - Evaluated only on 3 English models.
 - No multilingual testing.
 - The pyramid could fail on tasks with different attention shapes.
 - The observed attention phenomenon was only for multi-doc QA tasks.

Critiques: Attention Sparsity, Do you really want that?

Thank You!

Any Questions?

Gabriel Pernell, Alexander Martin

