Decision Tree

CART - Classification And Regression Tree

Example of Decision Tree

A decision tree is one of the supervised machine learning algorithms.

A decision tree follows a set of if-else conditions to visualize the data and classify it according to the conditions.

Decision Tree- Representation

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
DI	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
DII	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Decision Tree- Representation

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Consider instance-

(Outlook= Sunny, Temperature= Hot, Humidity= High, Wind= Strong) Prediction-PlayTennis= No

The Gini impurity index

Measuring the diversity of a dataset

Which set is more diverse?

More diverse

Gini = 0.42

	Same	
•	Different	
	Different	
	Same	
•	Same	
•	Different	
•	Same	
	Same	
	Different	
	Same	

Different: 4 out of 10

•	_	Different	
		Same	
		Different	
*	•	Different	
	A	Different	
		Same	
•	•	Same	
	•	Different	
	*	Different	
0		Different	

Different: 7 out of 10

CART- Gini Index

L. Breiman, J. Friedman, R. Olshen and C. Stone in 1984 proposed an algorithm to build a binary decision tree also called CART decision tree.

in CART, for each node only two children are created.

CART uses Gini index as a measure to select the best attribute to be splitted, It is also known as Gini Index of Diversity and is denote as γ .

Gini Index

$$G(D) = 1 - \sum_{i=1}^k p_i^2$$

Gini index

The measure of the degree of probability of a particular variable being wrongly classified when it is randomly chosen is called the Gini index or Gini impurity. The data is equally distributed based on the Gini index.

Gini = 1 -
$$\sum_{i=1}^{n} (p_i)^2$$

Example-

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2,$$

$$gini_A(D) = \frac{|D_1|}{|D|} gini(D_1) + \frac{|D_2|}{|D|} gini(D_2)$$

$$\Delta gini(A) = gini(D) - gini_A(D)$$

age	income	student	credit_rating	buys_computer
youth	high	no	fair	no
youth	high	no	excellent	no
middle_aged	high	no	fair	yes
senior	medium	no	fair	yes
senior	low	yes	fair	yes
senior	low	yes	excellent	no
middle_aged	low	yes	excellent	yes
youth	medium	no	fair	no
youth	low	yes	fair	yes
senior	medium	yes	fair	yes
youth	medium	yes	excellent	yes
middle_aged	medium	no	excellent	yes
middle_aged	high	yes	fair	yes
senior	medium	no	excellent	no

- Compute the impurity of D:
- or Calculate Gini index of Class attribute
- Total tuples: 14
- Class N = 5: buys_computer = "no"

 $gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$

Class P = 9: buys computer = "yes"

We, need to compute the Gini Index of each attribute (age, income, student, credit rating)

- Lets now consider: credit_rating
 - It is a binary attribute

$$\begin{aligned}
gini_{credit-rating}(D) &= \left(\frac{D_1}{14}\right)gini(D_1) + \left(\frac{D_2}{14}\right)gini(D_2) \\
&= \frac{8}{14} \left(1 - \left(\frac{6}{8}\right)^2 - \left(\frac{2}{8}\right)^2\right) + \frac{6}{14} \left(1 - \left(\frac{3}{6}\right)^2 - \left(\frac{3}{6}\right)^2\right) = \mathbf{0.4285}
\end{aligned}$$

		CI	ass	
		yes	no	
credit_r	fair	6	2	8
ating	excellent	3	3	6
				14

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2,$$

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2, \qquad gini_A(D) = \frac{|D_1|}{|D|} gini(D_1) + \frac{|D_2|}{|D|} gini(D_2)$$

$$\Delta gini(A) = gini(D) - gini_A(D)$$

				- A
age	income	student	credit_rating	buys_computer
youth	high	no	fair	no
youth	high	no	excellent	no
middle_aged	high	no	fair	yes
senior	medium	no	fair	yes
senior	low	yes	fair	yes
senior	low	yes	excellent	no
middle_aged	low	yes	excellent	yes
youth	medium	no	fair	no
youth	low	yes	fair	yes
senior	medium	yes	fair	yes
youth	medium	yes	excellent	yes
middle_aged	medium	no	excellent	yes
middle_aged	high	yes	fair	yes
senior	medium	no	excellent	no

- Lets now consider: student
 - It is a binary attribute

		CI	Class	
		yes	no	
student	yes	6	1	7
	no	3	4	7
				14

$$\begin{aligned}
gini_{student}(D) &= \left(\frac{D_1}{14}\right)gini(D_1) + \left(\frac{D_2}{14}\right)gini(D_2) \\
&= \frac{7}{14}\left(1 - \left(\frac{6}{7}\right)^2 - \left(\frac{1}{7}\right)^2\right) + \frac{7}{14}\left(1 - \left(\frac{3}{7}\right)^2 - \left(\frac{4}{7}\right)^2\right) = \mathbf{0}.\mathbf{3673}
\end{aligned}$$

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2,$$

$$gini_{A}(D) = \frac{|D_{1}|}{|D|}gini(D_{1}) + \frac{|D_{2}|}{|D|}gini(D_{2})$$

$$\Delta gini(A) = gini(D) - gini_A(D)$$

	- 6	,()	8(-)	$A^{(-)}$
age	income	student	credit_rating	buys_computer
youth	high	no	fair	no
youth	high	no	excellent	no
middle_aged	high	no	fair	yes
senior	medium	no	fair	yes
senior	low	yes	fair	yes
senior	low	yes	excellent	no
middle_aged	low	yes	excellent	yes
youth	medium	no	fair	no
youth	low	yes	fair	yes
senior	medium	yes	fair	yes
youth	medium	yes	excellent	yes
middle_aged	medium	no	excellent	yes
middle_aged	high	yes	fair	yes
senior	medium	no	excellent	no

 $= gini_{age \in \{senior\}}(D)$

 $= gini_{age} \in \{middle_aged\}(D)$

Now consider each possible splitting subsets
$$f \leftarrow f$$
 (youth, middle_aged), {youth, senior}, {middle_aged, senior}, {youth},{middle_aged}, {senior}} (D_1) (D_2)

bouth, middle_aged}, {youth, senior}, {middle_aged, senior}, {youth},{middle_aged}
$$gini_{age} \in \{youth, middle_aged\}(D) = \left(\frac{\underline{D_1}}{14}\right)gini(D_1) + \left(\frac{\underline{D_2}}{14}\right)gini(D_2)$$

youth, senior}, {middle_aged, senior}, {youth},{middle_aged, senior},
$$Q_2$$

 $gini_{age} \in \{youth, senior\}(D) = \left(\frac{D_1}{14}\right)gini(D_1) + \left(\frac{D_2}{14}\right)gini(D_2)$

 $= \frac{9}{14} \left(1 - \left(\frac{7}{9} \right)^2 - \left(\frac{2}{9} \right)^2 \right) + \frac{5}{14} \left(1 - \left(\frac{2}{5} \right)^2 - \left(\frac{3}{5} \right)^2 \right) = 0.3936 = gini_{age} \in \{youth\}(D)$

 $= \frac{10}{14} \left(1 - \left(\frac{5}{10} \right)^2 - \left(\frac{5}{10} \right)^2 \right) + \frac{4}{14} \left(1 - \left(\frac{4}{4} \right)^2 - \left(\frac{0}{4} \right)^2 \right) = 0.3571$

 $gini_{age} \in \{middle_aged,senior\}(D) = \left(\frac{D_1}{14}\right)gini(D_1) + \left(\frac{D_2}{14}\right)gini(D_2)$

aged, senior}, {youth},{middl}
$$\left(\frac{1}{4}\right)gini(D_1) + \left(\frac{D_2}{14}\right)gini$$

outh},{middle}
$$\left(\frac{Q_2}{Q_2}\right)aini($$

$$\left(\frac{Q_2}{A}\right)gini(D_2)$$

$$gini(D_2)$$

$$gini(D_2)$$

$$gtht_{age} \in \{youth, middle_aged\}(D) = \left(\frac{3}{14}\right)gtht(D_1) + \left(\frac{3}{14}\right)gtht(D_2)$$

$$= \frac{9}{14}\left(1 - \left(\frac{6}{9}\right)^2 - \left(\frac{3}{9}\right)^2\right) + \frac{5}{14}\left(1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2\right) = 0.4571$$

$$n(D_2)$$

$$i(D_2)$$

$$(D_2)$$

senior

senior

youth

vouth

senior

vouth

senior

middle_aged low

middle_aged medium

middle_aged high

youth

medium

medium

medium

medium

medium

age

no

yes

yes

yes

yes

yes

no

Class

no

3

0

2

14

yes

2

4

3

yes -

45.	1(21)-	giii(D)	Sima
income	student	credit_rating	buys_com
	no	PROPERTY AND RESIDENCE	no

fair

fair

excellent

excellent

excellent

excellent

excellent

Дgin	I(A) -	giii(D)-	gini _A (1
income	student	credit_rating	buys_cor

_	Δgin	$\Delta gini(A) = gini(D) - gini_A$			$i_A(L)$	
	incomo	ctudent	crodit	rating	huve	com

	Δgin	i(A) =	gini(D)–	$gini_A(D)$
Ī	income	student	credit_rating	buys_comp

i=1	$\Delta gini(A) = gini(D) - gini_A(D)$

no

no

no

yes

yes

yes

no

yes

yes

yes

no

yes

no

youth

senior

middle aged

$gini_A(D) = \frac{|D_1|}{|D_2|} gini(D_1) + \frac{|D_2|}{|D_2|} gini(D_2)$ $Gini(D) = 1 - \sum p_i^2$

high

16.17		D
	$\Delta gini(A) = gini$	$i(D) - gini_A(I)$
		- 1

ī	income	student	credit	rating	huve	comp	
	Δgin	i(A) =	gini((D)-	gini	A(D)	
				-			

	Δgin	i(A) =	gini((D)-	gini	$_{A}(D)$
1		abod and			house	

- Best binary split for age is {youth, senior} or {middle_aged} with minimum Gini index.
- And best binary split for income is {medium, high} or {low} with minimum Gini index.

Attribute	Split	Gini index	Reduction in impurity $\Delta gini=gini(D)-gini_A(D)$
age	{youth, senior} or {middle_aged}	0.3571	0.459 - 0.3571 = 0.1019
income	{medium, high} or {low}	0.4428	0.459 - 0.4428 = 0.0162
student	Binary	0.3673	0.459 - 0.3673 = 0.0917
credit_rating	Binary	0.4285	0.459 - 0.4285 = 0.0305

Age?

Youth, senior middle_aged

income	student	credit_rating	class
high	no	Fair	no
high	no	excellent	no
medium	no	fair	no
low	yes	fair	yes
medium	yes	excellent	Yes
medium	no	fair	yes
low	yes	fair	yes
low	yes	excellent	no
medium	yes	fair	yes
medium	no	excellent	no

income	student	credit_rating	class
high	no	fair	yes
low	yes	excellent	yes
medium	no	excellent	yes
high	yes	fair	yes