

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ESTATÍSTICA

Disciplina: INFERÊNCIA ESTATÍSTICA

Curso: Graduação em Estatística

Código: EST0035 Semestre: 2025.1

Professor: Frederico Machado Almeida

LISTA DE EXERCÍCIOS #04

Observações:

• Questões para entregar: 2, 4, 7(b), 8 e 11.

• Demais questões são apenas para estudar.

• Prazo de entrega: 06/06/2025

- Q1. Durante vários anos, uma determinada tarefa no processo de fabrico de um produto foi executada pelo Sr. Silva, que a levava a efeito num tempo médio de 35 minutos. O Sr. Silva abandonou a empresa, e foi substituído por um novo operário, o jovem Alberto que, apesar de não ter nenhuma experiencia, frequentou um curso de formação profissional que o pode tornar mais eficiente. Admita-se que o tempo de execução da tarefa pelo novo operário segue distribuição aproximadamente normal, com desvio-padrão de 4 minutos.
 - (a) Se, nas últimas 25 observações, o Alberto demorou, em media, 34 minutos, como classificaria a performance do jovem operário?
 - (b) Ao decidir não rejeitar Ho, existe a consciência de se poder estar a cometer um erro. Qual a respetiva probabilidade, se for verdade que o Alberto demora so 34 minutos em media? E se, pelo contrario, for verdade que ele demora mais? Ou seja, que demora 37 minutos?
- **Q2.** Assuma que a vida útil de uma marca de Pneus em milhas seja denotada por uma variável aleatória X, que é normalmente distribuída com média θ e desvio-padrãp 4500. Experiências passadas indicam que $\theta = 30000$. A afirmação do fabricante é de que os pneus fabricados por meio de um novo processo tem uma vida útil maior que 30000. Supondo que uma amostra aleatória de tamanho n, digamos, x_1, x_2, \dots, x_n tenha sido observada. A H_0 será rejeitada à favor da H_1 se $\bar{x}_{obs} > c$. Determine n e c tal que, a função poder do teste seja, π (30000) = 0,002 e π (35000) = 0,96.
- Q3. O Ministério da Saúde afirma que, com os meios agora postos à disposição dos Hospitais públicos, o número médio de dias de internamento e no máximo 15. Estas declarações foram postas em causa por alguns gestores hospitalares que decidiram proceder em conjunto ä recolha de uma amostra de 225 doentes onde se observou que o número médio de dias de internamento foi de 18. Com base nestes dados, e supondo que a variável em estudo segue uma distribuição normal com desvio-padrão 15 dias:

UnB

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ESTATÍSTICA

- (a) Terão os gestores hospitalares razão? Justifique convenientemente a sua resposta, utilizando o teste adequado, a 1% de significância. Na decisão que tomou, qual a probabilidade de estar a cometer um erro?
- (b) Com que probabilidade e dada razão aos gestores hospitalares, se o verdadeiro número médio de dias de internamento for 17?
- (c) Como variaria aquela probabilidade se a hipótese alternativa fosse superior ao valor especificado na alínea (b)? E se o tamanho da amostra aumentasse?
- Q4. Seja X uma variável aleatória com distribuição Poisson de média θ . Considere as seguintes hipóteses, $H_0: \theta = 3/4$ contra $H_1: \theta < 3/4$. Então, com base nas hipóteses podemos afirmar que $\Theta = \{\theta: 0 < \theta \leq 3/4\}$. Seja X_1, X_2, \cdots, X_{16} uma amostra aleatória de tamanho 16 da distribuição supracitada. Assuma que a H_0 será rejeitada se $T(\mathbf{x}) = \sum_{i=1}^{16} x_i \leq 2$. Se $\pi(\theta)$ denota a função poder, obtenha os poderes $\pi(1/8)$, $\pi(1/4), \pi(1/2)$ e $\pi(3/4)$, e faça o respectivo gráfico. Qual é o tamanho desse teste?
- **Q5.** Seja X_1, X_2, \dots, X_n uma amostra aleatória de $X \sim \mathcal{N} (\theta, \sigma^2 = 100)$. Mostre, usando um teste MP que $RC = \{(x_1, x_2, \dots, x_n) : c \leq \bar{x}\}$ é a melhor região crítica para testar as hipóteses $H_0 : \theta = 75$ contra $H_1 : \theta = 78$. Encontre $n \in c$ tal que, $\mathbb{P}_{H_0}(T(\mathbf{X} \in C_\alpha)) = \mathbb{P}_{H_0}(\bar{X}_n \geq c) = 0,05$ e $\mathbb{P}_{H_1}(T(\mathbf{X} \in C_\alpha)) = \mathbb{P}_{H_1}(\bar{X}_n \geq c) = 0,90$ aproximadamente.
- **Q6.** Assuma que o peso de cereal em uma caixa de 10kg segue uma distribuição normal de média μ , e variância σ^2 . Para testar as hipóteses $H_0: \mu = 10, 1$ contra $H_1: \mu > 10, 1$ uma amostra de tamanho n = 16 foi extraída da distribuição de X, tendo se observado $\bar{x} = 10, 4$ e s = 0, 40.
 - (a) O que se pode dizer quanto a rejeição ou não da H_0 ao nível de significância de 5%?
 - (b) Qual é o valor-p aproximado do teste?
 - (c) Encontre as probabilidades do erro tipo I e tipo II (nesse último caso considere $\mu_1 = 12$).
- Q7. Considerando amostras aleatórias das distribuições a seguir, obtenha o teste da razão de verossimilhanças para testar $H_0: \theta = \theta_0$ contra $H_1: \theta \neq \theta_0$. Se possível, obtenha a distribuição exata da estatística do teste, caso contrário, obtenha a distribuição aproximada. Com a distribuição exata ou aproximada, calcule a função poder exata (ou aproximada) dos testes que você obteve.
 - (a) $f(x|\theta) = \frac{1}{2\theta} e^{-\frac{|x|}{\theta}} \mathbf{1}_{(-\infty,\infty)}(x)$, com $\theta > 0$.
 - (b) $f(x|\theta) = \frac{x}{\theta^2} e^{-\frac{x}{\theta}} \mathbf{1}_{(0,\infty)}(x)$, com $\theta > 0$.
- **Q8.** Seja X_1, X_2, \dots, X_n cópias iid's de uma variável aleatória X com distribuição exponencial, tal que, $f(x|\theta) = (1/\theta) e^{-x/\theta}, \ 0 < x < \infty$, e zero caso contrário.
 - (a) Supondo n=2, mostre que o teste com melhor região crítica de $H_0: \theta=2$ contra $H_1: \theta=4$ é dado pela seguinte estatística $R(X_1,X_2)=X_1+X_2$.
 - (b) Para a amostra aleatória X_1, X_2, \cdots, X_n obtenha o teste da razão de verossimilhanças para testar as hipóteses $H_0: \theta \leq \theta_0$ contra $H_1: \theta > \theta_0$

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ESTATÍSTICA

- **Q9.** Seja X_1, X_2, \dots, X_n uma amostra aleatória de tamanho n da distribuição $\mathbb{N}(\mu, 1)$. Considere as hipóteses $H_0: \mu = 0$ contra $H_1: \mu = 2$. Mostre que a região crítica para um teste MP para testar H_0 contra H_1 é dada por: $RC = \{\mathbf{x}: \sum_{i=1}^n x_i \geq c\}$.
- **Q10.** Seja X_1, X_2, \dots, X_n uma amostra aleatória de tamanho n proveniente da distribuição Poisson (θ) . Encontre um teste MP para testar as hipóteses $H_0: \theta = \theta_0$ contra $H_1: \theta = \theta_1$, com $\theta_1 > \theta_0$.
- **Q11.** Seja X uma única observação da função de densidade $f(x|\theta) = (2\theta x + 1 \theta)$, para 0 < x < 1 e $\theta > 0$. Queremos testar as seguintes hipóteses $H_0: \theta = 1$ contra $H_1: \theta = 2$.
 - (a) Obtenha o teste MP com nível de significância α .
 - (b) Se $\alpha = 0.05$ e x = 0.8 qual a sua conclusão?