

SRM VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur – 603203.

SUBJECT : CS8602 - COMPILER DESIGN

SEM / YEAR : VI/III

UNIT I -INTRODUCTION TO COMPILERS

Structure of a compiler – Lexical Analysis – Role of Lexical Analyzer – Input Buffering – Specification of Tokens – Recognition of Tokens – Lex – Finite Automata – Regular Expressions to Automata – Minimizing DFA.

	PART-A (2 - MARKS)		
Q. No	QUESTIONS	Competence	BT Level
1.	Define tokens, patterns and lexemes.	Remember	BTL-1
2.	Classify approach would you use to recover the errors in lexical analysis phase.	Apply	BTL-3
3.	Apply the regular expression for identifier and white space.	Apply	BTL-3
4.	Point out why is buffering used in lexical analysis? What are the commonly used buffering methods?	Analyze	BTL-4
5.	Define transition diagram for an identifier.	Remember	BTL-1
6.	Compare syntax tree and parse tree.	Analyze	BTL-4
7.	Summarize the issues in a lexical analyzer.	Evaluate	BTL-5
8.	Define buffer pair.	Remember	BTL-1
9.	Differentiate the features of DFA and NFA.	Understand	BTL-2
10.	State the interactions between the lexical analyzer and the parser.	Remember	BTL-1
11	Explain parse tree and construct a parse tree for –(id + id)	Evaluate	BTL-5
12.	Describe the operations on languages.	Remember	BTL-1
13.	List out the phases of a compiler.	Remember	BTL-1
14.	Generalizes the advantage of having sentinels at the end of each buffer halves in buffer pairs.	Create	BTL-6
15.	Classify the four software tools that generate parser.	Analyze	BTL-4
16.	Discuss Regular expression and the Algebraic properties of Regular Expression.	Understand	BTL-2
17.	Formulate the regular expressions are used though the lexical constructs of any programming language can be described using context free grammar.	Create	BTL-6
18.	Apply a grammar for branching statements.	Apply	BTL-3
19.	Express the main idea of NFA? And discuss with examples $(a/b)^*$	Understand	BTL-2
	Define lex. Discuss the components of a lex.	Understand	

	PA	ART-B (13- MARKS)			
	Describe the various phases of comp	iler with suitable example	(13)	Remember	BTL1
	(i)Give the structure of compiler			Analyze	BTL4
	(ii)Analyze structure of compiler with		(9)		
	(i). Discuss in detail about the role of	Lexical analyzer with the	(7)	Understand	BTL2
	possible error recovery actions.				
	(ii)Describe in detail about issues in l		(6)		
	(i) Describe the Input buffering techn		(7)	Remember	BTL1
	(ii)Discuss how a finite automaton is		(6)		
	perform lexical analysis with examp	ples.	(6)		
	Summarize in detail about how the	e tokens are specified by the	(13)	Understand	BTL2
	compiler with suitable example.				
_	Define Finite Automata. Differe	entiate Deterministic Finite	(13)	Understand	DTI 2
	Automata and Non-Deterministic Fin		(13)	Understand	DILZ
	Automata and Non-Deterministic Pin	nte Automata with examples.			
7	(i)Solve the given regular expression	n (a/b)* abb (a/b)* into NFA	(7)	Apply	BTL3
	using Thompson construction.				
	(ii).Compare NFA and DFA.		(6)		
8	Create DFA the following NFA.		(13)	Create	BTL6
	$M=(\{q_0,q_1\},\{0,1\},\delta,q_0,\{q_1\})$				
	Where $\delta(q_0,0) = \{q_0,q_1\}$				
	$\delta(q_0,1)=\{q_1\}$				
	$\delta(q_1,0)=\phi$				
_	$\delta(q_1,1) = \{q_0,q_1\}$		1-1		
9	(i) Show how the DFA is directly of	converted from an augmented	(7)	Apply	BTL3
	regular expression				
	$((\varepsilon/a)b^*)^*$.				
	(ii)Draw NFA for the regular express		(6)		
0.	(i) Define the language accepted by F.	A. Convert the following NFA		Remember	BTL1
	into DFA.	1	(7)		
	→ p {p,q}	{p}			
	q {r}	{r}			
	r {s}	φ			
	*s {s}	{s}	(6)		
	(ii)Draw the DFA for the augment	ed regular expression (a b)*#	(6)		
	directly using syntax tree.				
11	Define Lex and Lex specifications. H		(13)	Remember	BTL1
1.2	constructed using lex? Give an exam		(5)	D 1	DEL 5
12	(i)Explain an algorithm for Lex that		` '	Evaluate	BTL5
12	(ii) Describe in detail the tool for gen		(6)	A 1	DTI 4
13	(i) Analyze the algorithm for minimiz	zing the number of states of a	(7)	Analyze	BTL4
	DFA				

((ii) Minimize DFA using Thompson Construction. (a/b)*a(a/b)(a/b)	(6)		
(Show the minimized DFA for the regular expression: $(0+1)*(0+1)10$.	(13)	Apply	BTL3
((a b)*a(a b)(a b)(a b).			
	PART-C (15- MARK)	(0)	T ₌	
1.	(i) Create languages denoted by the following regular expressions a) (a b)*a(a b)(a b) b) a*ba*ba*ba*	(9)	Create	BTL6
	 c) !! (aa bb)*((ab ba)(aa bb)*(ab ba)(aa bb)*)* (ii) Write regular definitions for the following languages: a) All strings of lowercase letters that contain the five vowels in order. b) All strings of lowercase letters in which the letters are in ascending lexicographic order. c) Comments, consisting of a string surrounded by / and /, without 	(6)		
2.	an intervening */, unless it is inside double-quotes (") Find transition diagrams for the following regular expression	(1.5)	Evaluate	BTL5
	 and regular definition. a(a b)*a ((ε a)b*)* All strings of digits with at most one repeated digit. All strings of a's and b's that do not contain the substring abb. All strings of a's and b's that do not contain the subsequence abb. 			DEL 4
	.(i) Prove that the following two regular expressions are equivalent by showing that the minimum state DFA's are same : a) (a/b)* b) (a*/b*)* (ii) Minimize DFA using Thompson Construction (a/b)*abb(a/b)*	(10)	Analyze	BTL4
	Generalize and give an example one regular expression if we were to revise the definition of a DFA to allow zero or one transition out of each state on each input symbol. Some regular expressions would then have smaller DFA's than they do under the standard definition of a DFA. Give and generalize an example of one such regular expression.	(15)	Create	BTL6
	UNIT II SYNTAX ANALYSIS			
own educ	of Parser – Grammars – Error Handling – Context-free grammars – Varsing - General Strategies Recursive Descent Parser Predictive Pace Parser-LR Parser- LR (0)Item Construction of SLR Parsing Table - Error Handling and Recovery in Syntax Analyzer-YACC.	arser-	LL(1) Parse	r-Shift

2. 3. 4. 5. 6. 7. 8. 9. 10.	Write the rule to eliminate left recursion in a grammar. Prepare and Eliminate the left recursion for the grammar. S → Aa b A → Ac Sd ε Define handle pruning. Solve FIRST and FOLLOW by use the LL(1) grammar. List the concepts of Predictive parsing and shift reduce parsing. Differentiate Top Down parsing and Bottom Up parsing. Define Recursive Descent Parsing. List out the properties of parse tree. Compare and contrast top down parsing with bottom up parsing techniques. Solve the following grammar is ambiguous: S→aSbS / bSaS / € Define kernel and non-kernel items. Difference between ambiguous and unambiguous grammar.	Apply Remember Understand	BTL1 BTL3 BTL1 BTL2 BTL1 BTL1 BTL1 BTL4
2. 3. 4. 5. 6. 7. 8. 9. 10.	Prepare and Eliminate the left recursion for the grammar. S → Aa b A → Ac Sd ε Define handle pruning. Solve FIRST and FOLLOW by use the LL(1) grammar. List the concepts of Predictive parsing and shift reduce parsing. Differentiate Top Down parsing and Bottom Up parsing. Define Recursive Descent Parsing. List out the properties of parse tree. Compare and contrast top down parsing with bottom up parsing techniques. Solve the following grammar is ambiguous: S→aSbS / bSaS / € Define kernel and non-kernel items.	Remember Apply Remember Understand Remember Remember Analyze Apply	BTL1 BTL3 BTL1 BTL2 BTL1 BTL1 BTL1
2. 3. 4. 5. 6. 7. 8.	grammar. $S \rightarrow Aa \mid b$ A $\rightarrow Ac \mid Sd \mid \epsilon$ Define handle pruning. Solve FIRST and FOLLOW by use the LL(1) grammar. List the concepts of Predictive parsing and shift reduce parsing. Differentiate Top Down parsing and Bottom Up parsing. Define Recursive Descent Parsing. List out the properties of parse tree. Compare and contrast top down parsing with bottom up parsing techniques. Solve the following grammar is ambiguous: $S\rightarrow aSbS / bSaS / \epsilon$ Define kernel and non-kernel items.	Apply Remember Understand Remember Remember Analyze Apply	BTL3 BTL1 BTL2 BTL1 BTL1 BTL1
2. 3. 4. 5. 6. 7. 8. 9. 10.	S → Aa b A → Ac Sd ε Define handle pruning. Solve FIRST and FOLLOW by use the LL(1) grammar. List the concepts of Predictive parsing and shift reduce parsing. Differentiate Top Down parsing and Bottom Up parsing. Define Recursive Descent Parsing. List out the properties of parse tree. Compare and contrast top down parsing with bottom up parsing techniques. Solve the following grammar is ambiguous: S→aSbS / bSaS / € Define kernel and non-kernel items.	Apply Remember Understand Remember Remember Analyze Apply	BTL3 BTL1 BTL2 BTL1 BTL1 BTL1
3. 4. 5. 6. 7. 8. 9. 10.	A →Ac Sd ε Define handle pruning. Solve FIRST and FOLLOW by use the LL(1) grammar. List the concepts of Predictive parsing and shift reduce parsing. Differentiate Top Down parsing and Bottom Up parsing. Define Recursive Descent Parsing. List out the properties of parse tree. Compare and contrast top down parsing with bottom up parsing techniques. Solve the following grammar is ambiguous: S→aSbS / bSaS / € Define kernel and non-kernel items.	Apply Remember Understand Remember Remember Analyze Apply	BTL3 BTL1 BTL2 BTL1 BTL1 BTL1
3. 4. 5. 6. 7. 8. 9. 10.	Define handle pruning. Solve FIRST and FOLLOW by use the LL(1) grammar. List the concepts of Predictive parsing and shift reduce parsing. Differentiate Top Down parsing and Bottom Up parsing. Define Recursive Descent Parsing. List out the properties of parse tree. Compare and contrast top down parsing with bottom up parsing techniques. Solve the following grammar is ambiguous: S→aSbS / bSaS / € Define kernel and non-kernel items.	Apply Remember Understand Remember Remember Analyze Apply	BTL3 BTL1 BTL2 BTL1 BTL1 BTL1
3. 4. 5. 6. 7. 8. 9. 10.	Solve FIRST and FOLLOW by use the LL(1) grammar. List the concepts of Predictive parsing and shift reduce parsing. Differentiate Top Down parsing and Bottom Up parsing. Define Recursive Descent Parsing. List out the properties of parse tree. Compare and contrast top down parsing with bottom up parsing techniques. Solve the following grammar is ambiguous: S→aSbS / bSaS / € Define kernel and non-kernel items.	Apply Remember Understand Remember Remember Analyze Apply	BTL3 BTL1 BTL2 BTL1 BTL1 BTL1
4. 5. 6. 7. 8. 9. 10.	List the concepts of Predictive parsing and shift reduce parsing. Differentiate Top Down parsing and Bottom Up parsing. Define Recursive Descent Parsing. List out the properties of parse tree. Compare and contrast top down parsing with bottom up parsing techniques. Solve the following grammar is ambiguous: S→aSbS / bSaS / € Define kernel and non-kernel items.	Remember Understand Remember Remember Analyze Apply	BTL1 BTL2 BTL1 BTL1 BTL4
5. 6. 7. 8. 9.	Differentiate Top Down parsing and Bottom Up parsing. Define Recursive Descent Parsing. List out the properties of parse tree. Compare and contrast top down parsing with bottom up parsing techniques. Solve the following grammar is ambiguous: S→aSbS / bSaS / € Define kernel and non-kernel items.	Understand Remember Remember Analyze	BTL2 BTL1 BTL1 BTL4
6. 7. 8. 9.	Define Recursive Descent Parsing. List out the properties of parse tree. Compare and contrast top down parsing with bottom up parsing techniques. Solve the following grammar is ambiguous: S→aSbS / bSaS / € Define kernel and non-kernel items.	Remember Remember Analyze Apply	BTL1 BTL1 BTL4
7. 8. 9.	List out the properties of parse tree. Compare and contrast top down parsing with bottom up parsing techniques. Solve the following grammar is ambiguous: S→aSbS / bSaS / € Define kernel and non-kernel items.	Remember Analyze Apply	BTL1 BTL4
8.9.10.	Compare and contrast top down parsing with bottom up parsing techniques. Solve the following grammar is ambiguous: S→aSbS / bSaS / € Define kernel and non-kernel items.	Analyze Apply	BTL4
9. 10.	techniques. Solve the following grammar is ambiguous: S→aSbS / bSaS / € Define kernel and non-kernel items.	Apply	
9. 10.	Solve the following grammar is ambiguous: S→aSbS / bSaS / € Define kernel and non-kernel items.		BTL3
10.	Define kernel and non-kernel items.		
11	Difference between ambiguous and unambiguous grammar.		BTL1
		Analyze	BTL4
12.	Define parser. Give the advantages and disadvantages of LR parsing.	Evaluate	BTL5
	Define Phrase level error recovery.	Remember	BTL1
	Evaluate the conflicts encountered while parsing.	Evaluate	BTL5
	Analyze the categories of shift reduce parsing.	Analyze	BTL4
	How to create an input and output translator with YACC?	Create	BTL6
	Summarize the Error recovery scheme in yacc.	Understand	
	What is the main idea of Left factoring? Give an example.	Understand	
	Discuss when Dangling reference occur?	Understand	
	Examine the approach would you use in Panic mode error	Apply	BTL3
	recovery.	rppry	B 1 L 3
ŀ	PART-B (13- MARKS)		
1.	(i)Explain left recursion and Left Factoring. (7) Analyze	BTL-4
	(ii)Eliminate left recursion and left factoring for the following (6		
	grammar.		
	$E \rightarrow E + T \mid E - T \mid T$		
	$T \rightarrow a \mid b \mid (E)$.		
2.	(i)What is an ambiguous and un ambiguous grammar? (5) Create	BTL6
-	Identify the following grammar is ambiguous or not.		
	$E \rightarrow E + E \mid E \times E \mid (E) \mid -E \mid id$ for the sentence $id + id \times id$		
	(ii) Prepare the following grammar is LL(1) but not SLR(1).		
	S→AaAb BbBa		
	A→€ (8)	
	В→€		
3.	(i) Illustrate the predictive parser for the following grammar. (8) Apply	BTL3

	$L \rightarrow L, S \mid S$			
	(ii)Analyze, Is it possible, by modifying the grammar in any way			
	to construct predictive parser for the language of			
	$S \rightarrow SS + SS * $ a string "aa+ a *.	(5)		
4.	(i)Evaluate predictive parsing table and parse the string id+id*id.	(7)	Evaluate	BTL5
	And find FIRST and FOLLOW.			
	$E \rightarrow E + T \mid T$			
	$T \rightarrow T^*F \mid F$			
	$F \rightarrow (E) \mid id$			
	(ii)Construct Stack implementation of shift reduce parsing for the	(6)		
		(0)		
	grammar E->E+E			
	E->E+E E->E*E			
	E->(E) E > id and the input string id1 id2*id2			
5.	E->id and the input string id1+id2*id3	(7)	Damaanahan	DTI 1
3.	(i). Describe on detail about the role of parser.	` ′	Remember	BTL1
	(ii)Discuss about the context-free grammar.	(6)	D 1	D.T. 1
6.	(i). What are the different kinds of syntax error phased by a	(7)	Remember	BILI
	program? Explain in detail.			
	(ii). What are the Error recovery techniques used in Predictive			
	parsing? Explain in detail.	(6)		
7.	Give the predictive parser for the following grammar.		Understand	BTL2
	$S \rightarrow (L) \mid a$			
	$L \rightarrow L, S \mid S$			
	i. Give a rightmost derivation for (a, (a, a)) and show the handle of	(5)		
	each right-sentential form.			
	ii.Show the steps of a shift reduce parser.	(8)		
8.	Analyze the following grammar is a LR(1) grammar and construct	(13)	Analyze	BTL4
	LALR parsing table.	. ,		
	$S \rightarrow Aa \mid bAc \mid dC \mid bda$			
	$A \rightarrow d$.			
	Parse the input string bdc using the table generated.			
9.	(i) Define YACC parser generator. List out the Error recovery	(8)	Remember	BTL1
	actions in YACC.	(-)		
	(ii)List out different error recovery strategies. Explain them.			
	million out different effor recovery strategies. Explain them.	(5)		
10.	(i) Show SLR parsing table for the following grammar	_ `	Apply	BTL-3
10.	S \rightarrow Aa bAc Bc bBa	(0)	- PP13	
	$A \rightarrow d$			
	$A \rightarrow d$ $B \rightarrow d$			
	And parse the sentence "bdc" and "dd".			
1	(ii)Construct a parse tree for the input string w-cad using top down		i	I

parser S->cA								
						(5)		
A->ab								
11. (i) Defi	ne SLR (1)	parser. Do	escribe th	e Steps fo	or the SLR par	rser. (5)	Understand	BTL2
1 ' '	dict the foll	owing gra	ammar fo	r generate	the SLR pars	sing (8)		
table.								
	$E \rightarrow$	E+T T						
	$T \rightarrow$	T*F F						
	E.	E* a 1a						
12 (:)(0		F* a b				(10)	A1	DTI 2
	sider the following	llowing g	rammar			(10)	Apply	BTL3
$S \rightarrow A$								
$A \rightarrow SA$	•					(3)		
	uct the SLR	-		-				
					string "abab"			
	ne LALR for						Understand	BTL-2
$E \rightarrow E$	+ T T, T	\rightarrow T * F	$ F, F \rightarrow$	(E)/id	and parse the			
	ing. (a+b)							
			nmar usir	ng canonic	cal parsing tal	ble. (13)	Remember	BTL-1
$E \rightarrow E$				-8 • WII 5 III •	our pursing the	(10)		
$F \rightarrow (1)$								
`	,							
$E \rightarrow T$								
$F \rightarrow id$								
$T \rightarrow T$								
	* F							
$T \rightarrow T$	* F							
$T \to T$ $T \to F$	* F			•	-MARKS)			
$T \to T$ $T \to F$	* F	or gramma		•	-MARKS) dence function	n (15)	Create	BTL6
$T \to T$ $T \to F$ $. What i$	* F s an operato		r? Draw	•		n (15)	Create	BTL6
$T \to T$ $T \to F$ $. What i$	* F		r? Draw	•		n (15)	Create	BTL6
$T \to T$ $T \to F$ $. What i$	* F s an operato for the follow		r? Draw	the preced	dence functio	n (15)	Create	BTL6
$T \to T$ $T \to F$ $. What i$	* F s an operato		r? Draw	•		n (15)	Create	BTL6
$T \to T$ $T \to F$ $. What i$	* F s an operato for the follow		e.	the preced	dence functio	n (15)	Create	BTL6
$T \to T$ $T \to F$ $. What i$	* F s an operato for the follow		r? Draw	the preced	dence functio	n (15)	Create	BTL6
$T \to T$ $T \to F$ $What i$ $graph f$	* F s an operato for the follow		e.	the preced	dence functio	n (15)	Create	BTL6
$T \to T$ $T \to F$ $What i$ $graph f$	s an operator for the follow	wing table	e.	the preced	dence functio	n (15)	Create	BTL6
$T \to T$ $T \to F$ $T \to F$ $T \to F$ $T \to F$	* F s an operato for the follow		Praw e.)	the preced	dence functio	n (15)	Create	BTL6
$T \to T$ $T \to F$ $T \to F$ $T \to F$ $T \to F$	s an operator for the follow	wing table) > =	the preced	s	n (15)	Create	BTL6
$T \to T$ $T \to F$ \vdots What i graph to	s an operator for the follow	wing table	Praw e.)	the preced	dence functio	n (15)	Create	BTL6
$T \to T$ $T \to F$ \vdots What i graph to	s an operator for the follow	wing table		the preced	s	n (15)	Create	BTL6
$T \to T$ $T \to F$ $T \to F$ $T \to F$ $T \to F$	s an operator for the follow	wing table) > =	the preced	s	n (15)	Create	BTL6
$T \to T$ $T \to F$ A What is graph to the second of the se	s an operator for the following a	(the preced	s	n (15)	Create	BTL6
$T \to T$ $T \to F$ What is graph to the second of the second	s an operator for the following a	(the preced	s			BTL6

3	Analyze the LR parsing algorithm with an example (15)	Analyze	BTL4
1	What is CFG . Explain in detail about the Context-Free Grammar. (15)	Evaluate	BTL5
	UNIT-III INTERMEDIATE CODE GENERATION		1	1
Synta	ax Directed Definitions, Evaluation Orders for Syntax Directed		Definitions.	Intermediate
•	uages: Syntax Tree, Three Address Code, Types and Declarations,			
_	Checking.			1
	PART-A (2 - MARKS)			
1.	List out the two rules for type checking.		Remember	BTL1
2.	Compare synthesized attributes and inherited attributes.		Analyze	BTL4
3.	What is Annotated parse tree?		Remember	BTL1
4.	Define Type checker.		Remember	BTL1
5.	What is a syntax tree? Draw the syntax tree for the assignment		Create	BTL6
	statement $a := b * -c + b * -c$			
6.	Define type systems.		Remember	BTL1
7.	Express the rule for checking the type of a function.		Understand	BTL2
8.	Define Syntax directed definition of a simple desk calculator.		Remember	BTL1
9.	Summarize about the S-attributed definition?		Evaluate	BTL5
10.	Give the difference between syntax-directed definitions and		Understand	BTL2
	translation schemes.			
11.	State the type expressions.		Remember	BTL1
12.	Illustrate the methods of implementing three-address statements.		Apply	BTL3
13.	Differentiate S-attribute and L-attribute definitions.			BTL4
14.	Create the target machine instructions to implement the call		Create	BTL6
	statement in static allocation.			
15.	Translate the conditional statement if a <b 0="" 1="" else="" into="" td="" then="" three<=""><td></td><td>Understand</td><td>BTL2</td>		Understand	BTL2
	address code.			
16.	Test whether the following rules are L-attribute or not? Semantic		Evaluate	BTL5
	rules			
	A.s = B.b;			
	B.i = f(C.c, A.s)			
17.	What are the methods of representing a syntax tree?		Understand	BTL2
18.	Explain the syntax directed definition for if-else statement		Analyze	BTL4
19.	Examine the usage of syntax directed definition		Apply	BTL3
20.	Discuss the three address code sequence for the assignment		Understand	BTL2
	statement. $d=(a-b)+(a-c)+(a-c)$			
	PART-B (13- MARKS)			
1.	Discuss the following in detail about the Syntax Directed		Understand	BTL2
	Definitions.			
		(7)		
	. /	(6)		
	Evaluate the expressions for the SDD annotated parse tree for the		Evaluate	BTL5
2.	following expressions.			
	(i)3 * 5 + 4n	(7)		1

	(ii)1* 2*3*(4+5)	(6)		
3.	Suppose that we have a production $A \rightarrow BCD$. Each of the four non terminal A, B, C and D have two attributes: S is a synthesized attribute and i is an inherited attribute. Analyze For each of the sets of rules below tell whether (i)the rules are consistent with an S-attributed definition(ii) the rules are consistent with an L-attributed definition and(iii) whether the rules are consistent with any evaluation order at all? a) $A.s = B.i + C.s$ b) $A.s = B.i + C.s$ and $D.i = A.i + B.s$.	(13)	Analyze	BTL4
4.	Apply the S-attributed definition and constructs syntax trees for a simple expression grammar involving only the binary operators $+$ and $-$. As usual, these operators are at the same precedence level and are jointly left associative. All nonterminal have one synthesized attribute node, which represents a node of the syntax tree. Production:L->E\$ $E \rightarrow E_1 + T$, $E \rightarrow T$, $T - >T1*F$, $T \rightarrow (E)$, $T \rightarrow digit$.	(13)	Apply	BTL3
5.	Discuss in detail about (i)Dependency graph (ii)Ordering Evaluation of Attributes.	(10) (3)	Understand	BTL2
6.	Create variants of Syntax tree. Explain in detail about it with suitable examples.	(13)	Create	BTL6
7.	 (i).Analyse the common three address instruction forms. (ii). Explain the two ways of assigning labels to the following three address statements Do i=i+1; While (a[i]<v);< li=""> </v);<>	. ,	Analyze	BTL4
8.	Describe.in detail about (i) Quadruples (ii) Triples.	(7) (6)	Remember	BTL1
9.	(i) Describe in detail about addressing array Elements.(ii) Discuss in detail about Translation of array reference.	_ ` ′	Remember	BTL1
10.	Describe in detail about types and declaration with suitable examples.	(13)	Remember	BTL1
11.	Compare three address code for expression with the Incremental translation.	(13)	Analyze	BTL-4
12.	Show the intermediate code for the following code segment along with the required syntax directed translation scheme while ($i < 10$) if ($i \% 2 == 0$) evensum = evensum + i else	(13)	Understand	BTL-2

			1	
	oddsum = oddsum + i			
13.	(i) State the rules for type checking with example.	(7)	Remember	BTL-1
13.	(ii) Give an algorithm for type inference and polymorphic function.	` /	Kemember	DIL-I
14.	Illustrate an algorithm for unification with its operation.		Apply	BTL-3
111	PART-C(15 -MARKS)	(13)	трргу	DIL-3
1.	Create the following uind the arithmetic expression a+- (b+c)*	(15)	Create	BTL-6
	into	(10)		
	(i)Syntax tree			
	(ii)Quadruples			
	(iii)Triples			
	(iv)Indirect Triples			
2.	Explain the steps for constructing a DAG. Construct the DAG for	(15)	Evaluate	BTL5
	the following expression			
	((x+y)-((x+y)*(x-y)))+((x+y)*(x-y))			
2		(15)	C 4 .	BTL-6
3.	Generate an intermediate code for the following code segment	(15)	Create	BIL-0
	with the required syntax-directed translation scheme.			
	if (a > b) x = a + b			
	x = a + b else			
	x = a - b			
4.	What is Type conversion? What are the two types of type	(15)	Evaluate	BTL5
''	conversion? Evaluate the rules for the type conversion.	(13)	Lvaruate	DIL3
	UNIT IV- RUN-TIME ENVIRONMENT AND CODE (TENIE	DATION	
Storag	ge Organization, Stack Allocation Space, Access to Non-loca			Stack Hean
_	gement - Issues in Code Generation - Design of a simple Code Gene			наск, псар
TVIAIIA	PART-A (2 -MARKS)	Tutor.		
1.	Lis t out limitations of the static memory allocation.		Remember	BTL1
	How the storage organization for the run-time memory is		Apply	BTL3
2.	organized?			
3.	What is heap allocation?		Remember	BTL1
4.	How the activation record is pushed onto the stack?		Apply	BTL3
5.	Analyze the storage allocation strategies.		Analyze	BTL4
6.	State the principles for designing calling sequences.		Remember	BTL1
7.	List out the dynamic storage techniques.		Remember	BTL1
8.	Define the non-local data on stack.		Remember	BTL1
9.	Define variable data length on the stack.		Remember	BTL1
10.	Differentiate between stack and Heap allocation		Analyze	BTL4
11.	Distinguish between static and dynamic storage allocation.		Understand	BTL2
12.	Discuss the main idea of Activation tree.		Understand	BTL2
13.	Give the fields in an Activation record.		Understand	BTL2
14.	Compose space efficiency and program efficiency.		Create	BTL6
15.	Construct typical memory hierarchy configuration of a computer.		Evaluate	BTL5
16.	How would you solve the issues in the design of code generators?		Apply	BTL3

17	Evaluate Best-fit and Next-fit object placement.		Evaluate	BTL5
1/.	Prepare optimal code sequence for the given sequence		Create	BTL6
	t=a+b		Create	DILO
18.	t=t*c			
	t=t/d			
19.	Analyze the different forms of machine instructions.		Analyze	BTL4
20.	Discuss the four principle uses of registers in code generation.		Understand	
	PART-B (13- MARKS)		•	•
1.	(i) Illustrate the storage organization memory in the perspective of	(8)	Apply	BTL3
	compiler writer with neat diagram.	` '		
	(ii)Compare static versus dynamic memory allocation.	(5)		
2.	Explain in detail about the various issues in code generation with		Evaluate	BTL5
	examples.	(13)		
3.	(i) Develop a quicksort algorithm for reads nine integers into an	(9)	Create	BTL6
	array a and sorts them by using the concepts of activation tree.		-	
<u> </u>	(ii)Give the structure of the action record.	(4)		
4.	How to a design a call sequences and analyze the principles of	(13)	Analyze	BTL4
	activation records with an example.			
5.	Discuss in detail about the activation tree and activation record	(13)	Understand	BTL 2
	with suitable example			
6.	(i) Analyze the data access without nested procedure and the issues	(7)	Analyze	BTL4
	with nested procedure.			
	(ii)Give the version of quicksort in ML style using nested	(6)		
	procedure.			
7.	(i) Discuss in detail about heap manager.	` /	Understand	BTL2
0	(ii)Describe in detail about the memory hierarchy of a computer	(6)	D 1	D/DL 1
8.	Define fragmentation? Describe in detail about how to reduce the	(13)	Remember	BTL1
9.	fragment.		Damaanahan	DTI 1
9.	Write short notes on the following i. Best fit and next object placement.		Remember	BILI
	ii. Managing and coalescing free space	(7) (6)		
10	Examine the problems with manual deallocation of memory and	_ ` /	Remember	RTI 1
10.	explain how the conventional tools are used to cope with the	(13)	Kememoer	DILI
	complexity in managing memory.			
11.	Explain in detail about instruction selection and register allocation	(13)	Analyze	BTL4
	of code generation.	(15)	111111111111111111111111111111111111111	512.
12.	Illustrate in detail about the code generation algorithm with an	(13)	Apply	BTL-3
	example.	(10)	-rr- <i>J</i>	
13.	Describe the usage of stack in the memory allocation and discuss	(13)	Understand	BTL-2
	in detail about stack allocation space of memory.	` /		
14.	Define the heap management of memory and describe in detail	(13)	Remember	BTL-1
	about it.	(- /		
			1	1
	PART-C (15-MARKS)			
1.	Suppose the heap consists of seven chunks, starting at address	(15)	Evaluate	BTL-5
	0. The sizes of the chunks, in order, are 80, 30, 60, 50, 70, 20, 40			

	bytes. When we place an object in a chunk, we put it at the high		
	end if there is enough space remaining to form a smaller chunk (so		
	that the smaller chunk can easily remain on the linked list of free		
	space). However, we cannot tolerate chunks of fewer that 8 bytes,		
	so if an object is almost as large as the selected chunk, we give it		
	the entire chunk and place the object at the low end of the chunk.		
	If we request space for objects of the following sizes: 32, 64, 48,		
	16, in that order, what does the free space list look like after		
	satisfying the requests, if the		
	method of selecting chunks is a) First fit. b) Best fit.		
2.	Compare the stack and heap allocation memory in detail with (15)	Analyze	BTL4
	suitable examples.		
3.	Generate code for the following sequence assuming that n is in a (15)	Create	BTL-6
	memory location		
	s=0		
	i=0		
	L1: if I > n goto L2		
	s=s+i		
	i=i+1		
	goto L1		
	L2:		
4.	Create following assignment statement into three address code (15)	Create	BTL-6
	D:=(a-b)*(a-c)+(a-c)		
	Apply code generation algorithm to generate a code sequence for		
	the three address statement. (13)		
	UNIT V- CODE OPTIMIZATION		
Princ	ipal Sources of Optimization - Peep-hole optimization - DAG- Optim	ization of B	asic Blocks
Globa	al Data Flow Analysis - Efficient Data Flow Algorithm.		
	PART-A (2 -MARKS)		
1.	List out the examples of function preserving transformations.	Remember	BTL1
2.	Illustrate the concepts of copy propagation.	Apply	BTL3
3.	State the use of machine Idioms.	Remember	BTL1
4.	Show the flow graph for the quicksort algorithm	Apply	BTL3
5.	Apply the basic block concepts, how would you representing the	Apply	BTL3
	dummy blocks with no statements indicated in global dataflow		
	analysis?		
6.	Identify the constructs for optimization in basic block.	Remember	BTL1
7.	List out the properties of optimizing compilers.		BTL1
8.	Define the term data flow analysis.		BTL1
9.	How is liveness of a variable calculated? Identify it.		BTL1
10.	What is DAG? Point out advantages of DAG.		BTL4
11.	Give the uses of gen and Kill functions	Understand	
12.	Discuss the concepts of basic blocks and flow graphs.	Understand	
13.	Give the main idea of dead code elimination and constant folding.	Understand	
14.	Prepare the three address code sequence for the assignment		BTL6
17.	-	Create	שובט
	statement.		

	d := (a - b) + (a - c) + (a - c).		
15.	Construct and explain the DAG for the follow basic block.	Evaluate	BTL5
	d:= b * c		
	e := a + b		
	b:= b*c		
	a := e-d.		
16.	What role does the target machine play on the code generation	Analyze	BTL4
	phase of the compiler? Analyze it.		
17.	Draw the DAG for the statement $a = (a*b+c) - (a*b+c)$ and	Evaluate	BTL5
	evaluate it.		
18.	Develop the code for the follow C statement assuming three	Create	BTL6
	registers are available.		
	x = a / (b + c) - d * (e + f)		
19.	Point out the characteristics of peephole optimization.	Analyze	BTL4
20.	Define algebraic transformations. Give an example	Understand	BTL2
	PART-B(13 MARKS)	>	
1.	Explain briefly about the principal sources of optimization. (13)	Evaluate	BTL5
2.	(i). Explain in detail about optimization of basic blocks. (5)	Analyze	BTL4
	(ii).Construct the DAG for the following Basic block & explain it. (8)		
	1. t1: = 4 * i		
	2. t2:= a [t1]		
	3. t3: = 4 * i		
	4. t4:= b [t3]		
	5. t5:=t2*t4		
	6. t6:=Prod+t5		
	7. Prod:=t6		
	8. t7:=i+1		
	9. i:= t7		
	10. if i<= 20 goto (1).		
3.	Discuss the following in detail	Understand	BTL2
	(i)Semantic preserving transformation (7)		
	(ii)Global Common subexpression (6)		
4.	Write about the following in detail (5)	Remember	BTL1
	(i)copy propagation (5)		
	(ii)Dead code Elimination (3)		
	(iii)code motion		
5.	Explain in detail about the data-flow schemas on basic block and (13)	Analyze	BTL4
	the transfer equations for reaching definitions with example]	
6.	•	Apply	BTL3
	(ii)Discuss the live variable analysis (6)	FF-3	
7.		Analyze	BTL4
8.		Apply	BTL3
9.	(i) Discuss in detail about how to find Local Common Sub (8)		BTL2
	expressions.		
	(ii) Discuss in detail about the Use of Algebraic Identities. (5)		
	D 1 11 11 11 11 11 11 11 11 11 11 11 11	1	t

10				
10.	Describe in detail about the flow of control optimization.	(7)	Remember	BTL1
	Identify the methods to eliminate the unreachable code, load and			
	store data.	(6)		
11.	(i) Give an example to identify the dead code in the DAG.	` /	Remember	BTL1
	(ii) Describe the representation of array using DAG with example.	(8)		
12.	Summarize in detail about the dataflow analysis of available	(13)	Understand	BTL2
	expression with suitable example.			
13.	(i) Formulate steps to identify the loops in the basic block.	(7)	Create	BTL6
	(ii) Describe about induction variable and end reduction in strength	(6)		
14.	Describe the efficient data flow algorithms in detail.	(13)	Remember	BTL1
	PART-C(15 MARKS)			
1.	Create DAG and three – address code for the following C	(15)	Create	BTL6
	program. (15)	(10)	Create	2120
	i = 1; s = 0;			
	while ($i <= 10$)			
	winie (1<-10)			
	s = s + a[i][i];			
	i = i + 1;			
		(4.5)	<u> </u>	D.TT. 6
2.		(15)	Create	BTL6
	sub expression for each loop, Identify Induction variables for each			
	loop and Identify loop invariant computation for each loop from			
	the given diagram,			
	ENTRY			
	B_1			
	(1) a = 1 (2) b = 2			
	(3) c - a+b			
	(4) d = c-a			
	B ₂			
	(5) d - b+d			
	B ₃			
	(3) b = 3.b B ₅			
	(a) b = a+b			
	B ₄ (6) d - a+b (9) e - c-a			
	(// 6 - 6+1			
	(10) - 3+3 B ₆			
	(10) a - b*d 6 (11) b - a-d			
	EXIT			
3.	Compute the grn and Kill sets for each Block, In and Out sets for	(15)	Evaluate	BTL5
٥.		(13)	Lvaluate	כשום
	each block, Compute e_gen and e_kill from the given diagram.			<u> </u>

