Data Mining Rule-based Classifiers

What is a classification rule

Section 5.1 of course book.

- Evaluating a rule
- Algorithms
 - PRISM

Incremental reduced-error pruning

- RIPPER
- Handling
 - Missing values
 - Numeric attributes
- ➤ Rule-based classifiers versus decision trees → C4.5rules, PART

TNM033: Introduction to Data Mining

1

Classification Rules

• "*if...then...*" rules

```
(Blood Type=Warm) \land (Lay Eggs=Yes) \rightarrow Birds (Taxable_Income < 50K) \land (Refund=Yes) \rightarrow Evade=No
```

- Rule: (Condition) $\rightarrow y$
 - where
 - > Condition is a conjunction of attribute tests

```
(A_1 = V_1) and (A_2 = V_2) and ... and (A_n = V_n)
```

- > y is the class label
- LHS: rule antecedent or condition
- RHS: rule consequent

TNM033: Introduction to Data Mining

Rule-based Classifier (Example)

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
human	warm	yes	no	no	mammals
python	cold	no	no	no	reptiles
salmon	cold	no	no	yes	fishes
whale	warm	yes	no	yes	mammals
frog	cold	no	no	sometimes	amphibians
komodo	cold	no	no	no	reptiles
bat	warm	yes	yes	no	mammals
pigeon	warm	no	yes	no	birds
cat	warm	yes	no	no	mammals
leopard shark	cold	yes	no	yes	fishes
turtle	cold	no	no	sometimes	reptiles
penguin	warm	no	no	sometimes	birds
porcupine	warm	yes	no	no	mammals
eel	cold	no	no	yes	fishes
salamander	cold	no	no	sometimes	amphibians
gila monster	cold	no	no	no	reptiles
platypus	warm	no	no	no	mammals
owl	warm	no	yes	no	birds
dolphin	warm	yes	no	yes	mammals
eagle	warm	no	yes	no	birds

- R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds
- R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes
- R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals
- R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles
- R5: (Live in Water = sometimes) \rightarrow Amphibians

TNM033: Introduction to Data Mining

3

Motivation

- Consider the rule set
 - Attributes A, B, C, and D can have values 1, 2, and 3

```
A = 1 \wedge B = 1 \rightarrow Class = Y C = 1 \wedge D = 1 \rightarrow Class = Y Otherwise, Class = N
```

- How to represent it as a decision tree?
 - The rules need a common attribute

```
\begin{array}{l} A = 1 \ \land \ B = 1 \ \rightarrow \ Class = Y \\ A = 1 \ \land \ B = 2 \ \land \ C = 1 \ \land \ D = 1 \ \rightarrow \ Class = Y \\ A = 1 \ \land \ B = 3 \ \land \ C = 1 \ \land \ D = 1 \ \rightarrow \ Class = Y \\ A = 2 \ \land \ C = 1 \ \land \ D = 1 \ \rightarrow \ Class = Y \\ A = 3 \ \land \ C = 1 \ \land \ D = 1 \ \rightarrow \ Class = Y \\ Otherwise, \ Class = N \end{array}
```

TNM033: Introduction to Data Mining

Application of Rule-Based Classifier

- A rule *r* covers an instance **x** if the attributes of the instance satisfy the condition (LHS) of the rule
 - R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds
 - R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes
 - R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals
 - R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles
 - R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	ves	no	no	?

The rule R1 covers a hawk \Rightarrow Class = Bird

The rule \mathbb{R}^3 covers the grizzly bear \Rightarrow Class = Mammal

TNM033: Introduction to Data Mining

Rule Coverage and Accuracy

- Quality of a classification rule can be evaluated by
 - Coverage: fraction of records that satisfy the antecedent of a

$$Coverage(r) = \frac{|LHS|}{n}$$

 Accuracy: fraction of records covered by the rule that belong to the class on the RHS

$$\mathsf{Accuracy}(r) = \tfrac{|LHS \, \cap \, RHS|}{|LHS|}$$

(n is the number of records in our sample)

Tid	Refund	Marital Status	Taxable Income	Class	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

(Status = Single) \rightarrow No

Coverage = 40%, Accuracy = 50%

TNM033: Introduction to Data Mining

7

How does Rule-based Classifier Work?

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
lemur	warm	yes	no	no	?
turtle	cold	no	no	sometimes	?
dogfish shark	cold	yes	no	yes	?

A **lemur** triggers rule $\mathbb{R}^3 \Rightarrow$ class = mammal

A **turtle** triggers both R4 and R5 \rightarrow voting or ordering rules

A **dogfish shark** triggers none of the rules \rightarrow default rule

TNM033: Introduction to Data Mining

Building Classification Rules

- Direct Method
 - > Extract rules directly from data
 - > e.g.: RIPPER, Holte's 1R (OneR)
- Indirect Method
 - > Extract rules from other classification models (e.g. decision trees, etc).
 - > e.g: C4.5rules

TNM033: Introduction to Data Mining

_

A Direct Method: Sequential Covering

- Let **E** be the training set
 - Extract rules one class at a time

For each class C

- 1. Initialize set S with E
- 2. While S contains instances in class C
 - 3. Learn one rule **R** for class **C**
 - 4. Remove training records covered by the rule **R**

Goal: to create rules that cover many examples of a class C and none (or very few) of other classes

TNM033: Introduction to Data Mining

A Direct Method: Sequential Covering

- How to learn a rule for a class C?
- 1. Start from an empty rule

$$\{\} \rightarrow class = C$$

- 2. Grow a rule by adding a test to LHS (a = v)
- 3. Repeat Step (2) until **stopping criterion** is met

Two issues:

- How to choose the best test? Which attribute to choose?
- When to stop building a rule?

TNM033: Introduction to Data Mining

1.

Example: Generating a Rule

• Possible rule set for class "b":

```
If (x \le 1.2) then class = b
If (x > 1.2) and (y \le 2.6) then class = b
```

• Could add more rules, get "perfect" rule set

TNM033: Introduction to Data Mining

Simple Covering Algorithm

- Goal: Choose a test that improves a quality measure for the rules.
 - E.g. maximize rule's accuracy
- Similar to situation in decision trees: problem of selecting an attribute to split on
 - Decision tree algorithms maximize overall purity
- Each new test reduces rule's coverage:
 - t total number of instances covered by rule
 - p positive examples of the class predicted by rule
 - t p number of errors made by rule
 - Rules accuracy = p/t

TNM033: Introduction to Data Mining

13

When to Stop Building a Rule

- When the rule is perfect, i.e. accuracy = 1
- When increase in accuracy gets below a given threshold
- When the training set cannot be split any further

TNM033: Introduction to Data Mining

Rule Evaluation in PRISM

Accuracy = $\frac{p}{t}$

- *t*: Number of instances covered by rule
- *p*: Number of instances covered by rule that belong to the positive class
- Produce rules that don't cover *negative* instances, as quickly as possible
- Disadvantage: may produce rules with very small coverage
 - Special cases or noise? (overfitting)

TNM033: Introduction to Data Mining

Rule Evaluation

• Other metrics:

FOIL's inf. gain =
$$p_1 \times (\log_2 \frac{p_1}{t_1} - \log_2 \frac{p_0}{t_0})$$

$$\text{Laplace} = \frac{p+1}{t+k}$$
Accuracy after a new test is added Accuracy before a new test is added

$$m-estimate = \frac{p+k.f}{t+k}$$

• These measures take into account the coverage/support count of the rule

t: number of instances covered by the rule p: number of instances covered by the rule that are positive examples

k: number of classes

f. prior probability of the positive class

TNM033: Introduction to Data Mining

17

Missing Values and Numeric attributes

- Common treatment of missing values
 - Algorithm delays decisions until a test involving attributes with no missing values emerges
- Numeric attributes are treated just like they are in decision trees
 - 1. Sort instances according to attributes value
 - 2. For each possible threshold, a binary-less/greater than test is considered
 - Choose a test A < v, if it is the one that produces higher accuracy

TNM033: Introduction to Data Mining

Rule Pruning

- The **PRISM** algorithm tries to get perfect rules, i.e. rules with accuracy = 1 on the training set.
 - These rules can be overspecialized → overfitting
 - Solution: prune the rules
- Two main strategies:
 - Incremental pruning: simplify each rule as soon as it is built
 - Global pruning: build full rule set and then prune it

TNM033: Introduction to Data Mining

10

Incremental Pruning: Reduced Error Pruning

- The data set is split into a training set and a **prune set**
- Reduced Error Pruning
 - 1. Remove one of the conjuncts in the rule
 - 2. Compare error rate on the prune set before and after pruning
 - 3. If error improves, prune the conjunct
- Sampling with stratification advantageous
 - Training set (to learn rules)Validation set (to prune rules)
 - Test set (to determine model accuracy)

TNM033: Introduction to Data Mining

Direct Method: RIPPER

- For **2-class problem**, choose one of the classes as positive class, and the other as negative class
 - Learn rules for positive class
 - Negative class will be default class

• For multi-class problem

- Order the classes according to increasing class prevalence (fraction of instances that belong to a particular class)
- Learn the rule set for smallest class first, treat the rest as negative class
- Repeat with next smallest class as positive class
- Available in Weka

TNM033: Introduction to Data Mining

21

Direct Method: RIPPER

- Learn one rule:
 - Start from empty rule
 - Add conjuncts as long as they improve FOIL's information gain
 - Stop when rule no longer covers negative examples
 - > Build rules with accuracy = 1 (if possible)
 - Prune the rule immediately using reduced error pruning
 - Measure for pruning: $W(R) = \frac{(p-n)}{(p+n)}$
 - > p: number of positive examples covered by the rule in the validation set
 - n: number of negative examples covered by the rule in the validation set
 - Pruning starts from the last test added to the rule
 - ➤ May create rules that cover some negative examples (accuracy < 1)
- A global optimization (pruning) strategy is also applied

TNM033: Introduction to Data Mining

Indirect Method: C4.5rules

- Extract rules from an unpruned decision tree
- For each rule, r: RHS \rightarrow c, consider pruning the rule
- Use class ordering
 - Each subset is a collection of rules with the same rule consequent (class)
 - Classes described by simpler sets of rules tend to appear first

TNM033: Introduction to Data Mining

23

Example

Name	Give Birth	Lay Eggs	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	no	yes	mammals
python	no	yes	no	no	no	reptiles
salmon	no	yes	no	yes	no	fishes
whale	yes	no	no	yes	no	mammals
frog	no	yes	no	sometimes	yes	amphibians
komodo	no	yes	no	no	yes	reptiles
bat	yes	no	yes	no	yes	mammals
pigeon	no	yes	yes	no	yes	birds
cat	yes	no	no	no	yes	mammals
leopard shark	yes	no	no	yes	no	fishes
turtle	no	yes	no	sometimes	yes	reptiles
penguin	no	yes	no	sometimes	yes	birds
porcupine	yes	no	no	no	yes	mammals
eel	no	yes	no	yes	no	fishes
salamander	no	yes	no	sometimes	yes	amphibians
gila monster	no	yes	no	no	yes	reptiles
platypus	no	yes	no	no	yes	mammals
owl	no	yes	yes	no	yes	birds
dolphin	yes	no	no	yes	no	mammals
eagle	no	yes	yes	no	yes	birds

TNM033: Introduction to Data Mining

Indirect Method: PART

- Combines the divide-and-conquer strategy with separate-andconquer strategy of rule learning
 - 1. Build a partial decision tree on the current set of instances
 - 2. Create a rule from the decision tree
 - The leaf with the largest coverage is made into a rule
 - 3. Discarded the decision tree
 - 4. Remove the instances covered by the rule
 - 5. Go to step one
- Available in WEKA

Advantages of Rule-Based Classifiers

- As highly expressive as decision trees
- Easy to interpret
- Easy to generate
- Can classify new instances rapidly
- Performance comparable to decision trees
- Can easily handle missing values and numeric attributes
- Available in **WEKA**: **Prism**, **Ripper**, **PART**, **OneR**

TNM033: Introduction to Data Mining