Source: [KBhPHYS201ElectricFields]]

#ref #incomplete

1 | Voltage

- Units: $\frac{Nm}{C} = \frac{J/C}{L}V$
- Amount of energy per unit of charge it takes to bring that charge to that point
 - · If you have a ball and you are taking it up the hill, then it takes energy to do that
 - · When you let go, it will roll back down the hill
 - Voltage = energy per charge is similar to energy per kilogram of raising the ball.
 - Field is the amount that it is resisting-the amount of force required to move the charge.
 - · Analogous to gravitational potential energy.

Zero Point

- If you have one positive and one negative, then the zero point of the voltage is between the two charges
- · The zero can be defined anywhere, just like zero gravitational energy can be anywhere
 - · However, conventionally, we define zero to be between two opposite charges
 - · We also define the voltage infinity distance away to be zero

Equipotential

- A line that shows where voltage is the same srcPhETChargesFieldsEquipotentialLines.png
- · Joules of electric potential energy
- Scalar, while electric field is a vector ### Relationship with Electric Field
- · Perpendicular to the electric field

Exr0n · **2020-2021** Page 1