Intro Math Modeling, NYU Courant (Aref Hashemi)

Description

In this course, we mathematically model and analyze a variety of physical and biological systems. The tools include calculus, algebra, probability, ordinary and partial differential equations, numerical analysis, and stochastic processes. Whenever needed, we use python for coding.

Recommended Textbooks

- Nonlinear Dynamics & Chaos by Steven H. Strogatz
- Transport Phenomena by R. Byron Bird, Warren E. Stewart, and Edwin N. Lightfoot
- An Introduction to Mechanics by Daniel Kleppner and Robert Kolenkow
- Fundamentals of Fluid Mechanics by Bruce R. Munson, Donald F. Young, and Theodore H. Okiishi
- Heat Transfer by J. P. Holman
- $\bullet\,$ Numerical Analysis for Engineers and Scientists by G. H. Miller

Tentative Schedule

Week	Topics	Reading
1 (01/23)	dimensional analysis, Buckingham π theorem, coordinate systems, shell balance	Munson Ch1 & Ch7 Holman Ch1
2 (01/30)	differential form of transport equations, derivation of continuity and heat equations in Cartesian and Cylindrical coordinates, vector formulation	Holman Ch1 Bird Ch11
3 (02/06)	modeling of transport equations, 1D transport systems, different types of BCs (Dirichlet, Neumann, Robin), conduction-convection problems (heat fin), evaporating droplet	Holman Ch2 Bird Ch10 & Ch12
4 (02/13)	a draining cone-shape reservoir, Bernoulli equation, numerical solution, finite difference methods, Euler's method, Newton-Raphson method, projectile with nonlinear drag, a radiating object	Munson Ch3 Miller Ch10 Holman Ch8
5 (02/20)	1D flows, fixed points & stability + project starts	Strogatz Ch2
6 (02/27)	population growth, linear stability analysis, potentials, language death, laser threshold, bifurcations	Strogatz Ch2 & Ch3
7 (03/06)	centrifugal force, overdamped bead on a rotating hoop, insect outbreak	Strogatz Ch3
8 (03/13)	No Classes (Spring Break)	
9 (03/20)	2D flows, simple harmonic oscillator, classification of 2D linear systems, love affairs	Strogatz Ch5
10 (03/27)	regular perturbation theory, projectile motion with nonlinear drag, weakly damped linear oscillator, two-timing	Strogatz Ch7
11 (04/03)	semi-infinite regions, combination of variables, Stefan problem, film condensation	Bird Ch12 Holman Ch9
12 (04/10)	angular momentum and fixed axis rotation, moment of inertia, parallel axis theorem	Kleppner Ch7
13 (04/17)	torque and angular momentum, conservation of angular momentum, law of equal areas (Kepler's second law), effective area of a far-off planet	Kleppner Ch7
14 (04/24)	central force motion, universal features of central force motion, energy equation and diagrams, energy diagram of planetary motion, perturbed circular orbit	Kleppner Ch10
15 (05/01)	planetary motion, elliptic orbits, Kepler's first and third laws, geostationary orbit, satellite orbit transfer	Kleppner Ch10

The material discussed during the class sessions are, to some extend, based on the **Reading** column.