<DEA 실습문제>

P은행은 새로 개발된 서울·경기권역 신도시 K市에 6개의 지점(지점 A, B, C, D, E, F)을 운영하고 있다. 아래 표는 6개 지점의 투입물(inputs)과 산출물(outputs) 정보를 나타내고 있다.

투입물 1: 월 평균 근무시간(단위: 100시간)

투입물 2: 시설면적(단위: m²)

투입물 3: 월 평균 영업활동비용(단위: 백만 원)

산출물 1: 월 평균 대출건수

산출물 2: 월 평균 예탁고 수준(단위: 십억 원)

요소 DMU	투입물 1	투입물 2	투입물 3	산출물 1	산출물 2
지점 A	15	650	49	200	25
지점 B	14	759	52	220	28
지점 C	16	627	55	210	27
지점 D	16	600	59	190	20
지점 E	12	580	47	163	15
지점 F	15	550	60	195	31

① DEA를 통해 각 지점의 효율성을 측정하기 위한 모형을 지점별로 수립하시오.

<정답>

- 의사결정변수

U₁: 투입물 1의 가중치

U2: 투입물 2의 가중치

U₃: 투입물 3의 가중치

V₁: 산출물 1의 가중치

V₂: 산출물 2의 가중치

- DEA Model 지점 A

Max EA $200V_1 + 25V_2$

s.t.
$$15U_1 + 650U_2 + 49U_3 = 1$$

 $200V_1 + 25V_2 \le 15U_1 + 650U_2 + 49U_3$
 $220V_1 + 28V_2 \le 14U_1 + 759U_2 + 52U_3$
 $210V_1 + 27V_2 \le 16U_1 + 627U_2 + 55U_3$
 $190V_1 + 20V_2 \le 16U_1 + 600U_2 + 59U_3$
 $163V_1 + 15V_2 \le 12U_1 + 580U_2 + 47U_3$
 $195V_1 + 31V_2 \le 15U_1 + 550U_2 + 60U_3$

 U_1 , U_2 , U_3 , V_1 , $V_2 \geq \epsilon$

- DEA Model 지점 B

Max EA 220V₁ + 28V₂

s.t.
$$14U_1 + 759U_2 + 52U_3 = 1$$

 $200V_1 + 25V_2 \le 15U_1 + 650U_2 + 49U_3$
 $220V_1 + 28V_2 \le 14U_1 + 759U_2 + 52U_3$
 $210V_1 + 27V_2 \le 16U_1 + 627U_2 + 55U_3$
 $190V_1 + 20V_2 \le 16U_1 + 600U_2 + 59U_3$
 $163V_1 + 15V_2 \le 12U_1 + 580U_2 + 47U_3$
 $195V_1 + 31V_2 \le 15U_1 + 550U_2 + 60U_3$
 $U_1, U_2, U_3, V_1, V_2 \ge \epsilon$

- DEA Model 지점 C

Max EA $210V_1 + 27V_2$

s.t.
$$16U_1 + 627U_2 + 55U_3 = 1$$

 $200V_1 + 25V_2 \le 15U_1 + 650U_2 + 49U_3$
 $220V_1 + 28V_2 \le 14U_1 + 759U_2 + 52U_3$
 $210V_1 + 27V_2 \le 16U_1 + 627U_2 + 55U_3$
 $190V_1 + 20V_2 \le 16U_1 + 600U_2 + 59U_3$
 $163V_1 + 15V_2 \le 12U_1 + 580U_2 + 47U_3$
 $195V_1 + 31V_2 \le 15U_1 + 550U_2 + 60U_3$
 $U_1, U_2, U_3, V_1, V_2 \ge \epsilon$

- DEA Model 지점 D

Max EA
$$190V_1 + 20V_2$$

s.t.
$$16U_1 + 600U_2 + 59U_3 = 1$$

 $200V_1 + 25V_2 \le 15U_1 + 650U_2 + 49U_3$
 $220V_1 + 28V_2 \le 14U_1 + 759U_2 + 52U_3$
 $210V_1 + 27V_2 \le 16U_1 + 627U_2 + 55U_3$
 $190V_1 + 20V_2 \le 16U_1 + 600U_2 + 59U_3$
 $163V_1 + 15V_2 \le 12U_1 + 580U_2 + 47U_3$
 $195V_1 + 31V_2 \le 15U_1 + 550U_2 + 60U_3$
 $U_1, U_2, U_3, V_1, V_2 \ge \epsilon$

- DEA Model 지점 E

Max EA $163V_1 + 15V_2$

s.t.
$$12U_1 + 580U_2 + 47U_3 = 1$$

 $200V_1 + 25V_2 \le 15U_1 + 650U_2 + 49U_3$
 $220V_1 + 28V_2 \le 14U_1 + 759U_2 + 52U_3$
 $210V_1 + 27V_2 \le 16U_1 + 627U_2 + 55U_3$
 $190V_1 + 20V_2 \le 16U_1 + 600U_2 + 59U_3$
 $163V_1 + 15V_2 \le 12U_1 + 580U_2 + 47U_3$
 $195V_1 + 31V_2 \le 15U_1 + 550U_2 + 60U_3$
 $U_1, U_2, U_3, V_1, V_2 \ge \epsilon$

- DEA Model 지점 F

Max EA $195V_1 + 31V_2$

s.t.
$$15U_1 + 550U_2 + 60U_3 = 1$$

 $200V_1 + 25V_2 \le 15U_1 + 650U_2 + 49U_3$
 $220V_1 + 28V_2 \le 14U_1 + 759U_2 + 52U_3$
 $210V_1 + 27V_2 \le 16U_1 + 627U_2 + 55U_3$
 $190V_1 + 20V_2 \le 16U_1 + 600U_2 + 59U_3$
 $163V_1 + 15V_2 \le 12U_1 + 580U_2 + 47U_3$
 $195V_1 + 31V_2 \le 15U_1 + 550U_2 + 60U_3$
 $U_1, U_2, U_3, V_1, V_2 \ge \epsilon$

② 위 ①에서 수립한 모형을 바탕으로 각 지점이 효율적으로 운영되고 있는지의 여부를 DEA를 통해 판단하시오. 비효율적인 지점은 어느 지점이며, 그들의 상대적 효율성은 얼마인가?

<정답>

- 지점 D: 0.9188, 지점 E: 0.9175 (Excel 파일 참조)

③ 위 ②의 결과와 수업내용을 바탕으로 비효율적인 지점의 구조조정 목표인 가상의 효율적 단위의 투입물과 산출물 수준을 구하고, 비효율적인 지점의 구조조정 방안을 제시하시오.

<정답>

- 지점 D의 구조조정

	지점 C (참조대상)	지점 F (참조대상)	가상의 효율적 단위 (구조조정 목표)	비교	지점 D	구조조정
투입물 1	16	15	0.4425(16) + 0.4978(15) = 14.547	<	16	-1.453
투입물 2	627	550	0.4425(627) + 0.4978(550) = 551.2375	<	600	-48.7625
투입물 3	55	60	0.4425(55) + 0.4978(60) = 54.2055	<	59	-4.7945
산출물 1	210	195	0.4425(210) + 0.4978(195) = 189.996	÷	190	0
산출물 2	27	31	0.4425(27) + 0.4978(31) = 27.3793	>	20	+7.3793

지점 D는 현재보다 투입물 1을 1.453단위, 투입물 2를 48.7625단위, 투입물 3을 4.7945단위 만큼 줄이고, 산출물 2는 7.3793단위만큼 증가시킴으로써 효율적 단위로 변모할 수 있음

- 지점 E의 구조조정

	지점 B	지점 F	가상의 효율적 단위	비교	지점 E	구조조정
	(참조대상)	(참조대상)	(구조조정 목표)			
투입물 1	14	15	0.5229(14) + 0.2460(15) = 11.0106	<	12	-0.9894
투입물 2	759	550	0.5229(759) + 0.2460(550) = 532.1811	<	580	-47.8189
투입물 3	52	60	0.5229(52) + 0.2460(60) = 41.9508	<	47	-5.0492
산출물 1	220	195	0.5229(220) + 0.2460(195) = 163.008	÷	163	0
산출물 2	28	31	0.5229(28) + 0.2460(31) = 22.2672	>	15	+7.2672

지점 D는 현재보다 투입물 1을 0.9894단위, 투입물 2를 47.8189단위, 투입물 3을 5.0492단위 만큼 줄이고, 산출물 2는 7.2672단위만큼 증가시킴으로써 효율적 단위로 변모할 수 있음