RÁMCOVÝ POSTUP PRE VYPRACOVANIE SEMINÁRNEJ PRÁCE [max 5 bodov]:

- 1. Riešiteľ odovzdá semestrálnu prácu elektronicky. Dokumentácia bude vypracovaná **v textovom editore** (odovzdať treba vo forme súboru typu doc, docx alebo pdf). Všetko, čo chce riešiteľ odovzdať, bude súčasťou jedného súboru (*.zip, *.rar). Je nutné odovzdať aj zdrojové kódy programu.
- 2. Dokumentácia musí obsahovať:
 - Popis riešeného algoritmu na konkrétnej úlohe [1 bod],
 - Popis jednotlivých tried programu [1 bod],
 - Záverečné zhodnotenie, výpis hodnoty účelovej funkcie po vsúvacej heuristike, riešenie vypísané v súbore [1 bod].
- 3. Príloha musí obsahovať [2 body]:
 - Vstupné súbory danej úlohy,
 - Zdrojové kódy programu v jazyku java, spustiteľné v NetBeans alebo BlueJ.
 - Termín odovzdania dokumentácie 12. týždeň výučby.
 - Obhajoba programu sa nebude konať z dôvodu nedostatku času.
- 4. Bodujú sa iba odovzdané časti.

Zadanie H1

a/ Primárnou vsúvacou heuristikou riešite úlohu danú modelom (úloha o batohu s kapacitou K a obmedzeným počtom predmetov v batohu r). Riešte úlohu pre n=500, r=300, K=15000 a pre lokálne kritérium "Vlož prvok z dosial" nespracovaných prvkov, ktorý má najmenšiu požiadavku na kapacitu (najmenšiu hmotnosť)". Východiskové riešenie položte rovné prázdnemu batohu. Súčasťou zadania sú súbory H1_a.txt a H1_c.txt, ktoré obsahujú n údajov koeficientov a_j a c_j pre j=1..n potrebných pre riešenie zadanej úlohy.

Max
$$\sum_{j=1}^{n} c_{j}z_{j}$$
 za podmienok $\sum_{j=1}^{n} z_{j} \leq r$ $\sum_{j=1}^{n} a_{j}z_{j} \leq K$ $z_{j} \in \{0,1\} \ \forall j=1..n$

Zadanie H2

a/ Primárnou vsúvacou heuristikou riešite úlohu danú modelom (úloha o batohu s kapacitou K a obmedzeným počtom predmetov v batohu r). Riešte úlohu pre n=500, r=300, K=15000 a pre lokálne kritérium "Vlož prvok z dosial" nespracovaných prvkov, ktorý má najväčší koeficient c_i, j=1..n (najväčšiu cenu)". Východiskové riešenie položte rovné prázdnemu batohu. Súčasťou zadania sú súbory H2_a.txt a H2_c.txt, ktoré obsahujú n údajov koeficientov a_j a c_j pre j=1..n potrebných pre riešenie zadanej úlohy.

Max
$$\sum_{j=1}^{n} c_{j}z_{j}$$
 za podmienok $\sum_{j=1}^{n} z_{j} \leq r$ $\sum_{j=1}^{n} a_{j}z_{j} \leq K$ $z_{j} \in \{0,1\} \ orall j=1..n$

Zadanie H3

a/ **Duálnou vsúvacou heuristikou** riešite úlohu danú modelom (úloha o batohu s kapacitou *K* a obmedzeným počtom predmetov v batohu *r*). Riešte úlohu pre *n*=500, *r*=300, *K*=15000 a pre **lokálne kritérium** "*Odstráň prvok z dosiaľ nespracovaných prvkov, ktorý má najväčšiu požiadavku na kapacitu* (najväčšiu hmotnosť)". Východiskové riešenie položte rovné batohu, v ktorom sú vložené všetky prvky (neprípustné riešenie). Súčasťou zadania sú súbory **H3_a.txt** a **H3_c.txt**, ktoré obsahujú *n* údajov koeficientov *a_j* a *c_j* pre *j*=1..*n* potrebných pre riešenie zadanej úlohy.

Max
$$\sum_{j=1}^{n} c_{j}z_{j}$$
 za podmienok $\sum_{j=1}^{n} z_{j} \leq r$ $\sum_{j=1}^{n} a_{j}z_{j} \leq K$ $z_{j} \in \{0,1\} \ \forall j=1..n$

Zadanie H4

a/ **Duálnou vsúvacou heuristikou** riešite úlohu danú modelom (úloha o batohu s kapacitou *K* a obmedzeným počtom predmetov v batohu *r*). Riešte úlohu pre *n*=500, *r*=300, *K*=15000 a pre **lokálne kritérium** "Odstráň prvok z dosiaľ nespracovaných prvkov, ktorý **má najmenší koeficient c**_j, j=1...n (najmenšiu cenu)". Východiskové riešenie položte rovné batohu, v ktorom sú vložené všetky prvky (neprípustné riešenie). Súčasťou zadania sú súbory **H4_a.txt** a **H4_c.txt**, ktoré obsahujú *n* údajov koeficientov *a_j* a *c_j* pre *j*=1...n potrebných pre riešenie zadanej úlohy.

Max
$$\sum_{j=1}^{n} c_{j}z_{j}$$
 za podmienok
$$\sum_{j=1}^{n} z_{j} \leq r$$

$$\sum_{j=1}^{n} a_{j}z_{j} \leq K$$

$$z_{j} \in \{0,1\} \ \forall j=1..n$$

Zadanie H5

a/ Primárnou heuristikou s výhodnostnými koeficientmi riešite úlohu danú modelom (úloha o batohu s kapacitou K a obmedzeným počtom predmetov v batohu r). Riešte úlohu pre n=500, r=300, K=15000 a pre lokálne kritérium "Vlož prvok z dosiaľ nespracovaných prvkov, ktorý má najväčší pomer koeficientov c_i/a_i (najväčší výhodnostný koeficient)". Východiskové riešenie položte rovné prázdnemu batohu. Súčasťou zadania sú súbory H5_a.txt a H5_c.txt, ktoré obsahujú n údajov koeficientov a_i a c_i pre j=1..n potrebných pre riešenie zadanej úlohy.

Max
$$\sum_{j=I}^{n} c_{j}z_{j}$$
 za podmienok
$$\sum_{j=1}^{n} z_{j} \leq r$$

$$\sum_{j=1}^{n} a_{j}z_{j} \leq K$$

$$z_{j} \in \{0,1\} \ \forall j=1..n$$

Zadanie H6

a/ Duálnou heuristikou s výhodnostnými koeficientmi riešite úlohu danú modelom (úloha o batohu s kapacitou K a obmedzeným počtom predmetov v batohu r). Riešte úlohu pre n=500, r=300, K=15000 a pre lokálne kritérium "Odstráň prvok z dosiaľ nespracovaných prvkov, ktorý má najmenší pomer koeficientov c_i/a_i (najmenší výhodnostný koeficient)". Východiskové riešenie položte rovné batohu, v ktorom sú vložené všetky prvky (neprípustné riešenie). Súčasťou zadania sú súbory H6_a.txt a H6_c.txt, ktoré obsahujú n údajov koeficientov a_i a c_i pre j=1..n potrebných pre riešenie zadanej úlohy.

Max
$$\sum_{j=1}^{n} c_{j}z_{j}$$
 za podmienok $\sum_{j=1}^{n} z_{j} \le r$ $\sum_{j=1}^{n} a_{j}z_{j} \le K$ $z_{j} \in \{0,1\} \ orall j=1..n$

Zadanie H11

a/ **Duálnou vsúvacou heuristikou** riešite úlohu danú modelom (obrátená úloha o batohu, kde hmotnosť batohu musí byť aspoň *K* a počet predmetov v batohu aspoň *r*). Riešte úlohu pre *n*=500, *r*=300, *K*=15000 a pre **lokálne kritérium** "*Vlož prvok z dosiaľ nespracovaných prvkov, ktorý má najväčšiu hmotnosť". Východiskové riešenie položte rovné prázdnemu batohu (neprípustné riešenie). Súčasťou zadania sú súbory H1_a.txt a H1_c.txt, ktoré obsahujú <i>n* údajov koeficientov *a_j* a *c_j* pre *j*=1...*n* potrebných pre riešenie zadanej úlohy.

Min
$$\sum_{j=1}^{n} c_{j}z_{j}$$
 za podmienok $\sum_{j=1}^{n} z_{j} \ge r$ $\sum_{j=1}^{n} a_{j}z_{j} \ge K$ $z_{j} \in \{0,1\} \ \forall j=1..n$

Zadanie H22

a/ **Duálnou vsúvacou heuristikou** riešite úlohu danú modelom (obrátená úloha o batohu, kde hmotnosť batohu musí byť aspoň *K* a počet predmetov v batohu aspoň *r*). Riešte úlohu pre *n*=500, *r*=300, *K*=15000 a pre **lokálne kritérium** "*Vlož prvok z dosiaľ nespracovaných prvkov, ktorý má najmenší koeficient c_j, <i>j*=1...*n* (*najmenšiu cenu*)". Východiskové riešenie položte rovné prázdnemu batohu (neprípustné riešenie). Súčasťou zadania sú súbory **H2_a.txt** a **H2_c.txt**, ktoré obsahujú *n* údajov koeficientov *a*_i a *c*_i pre *j*=1...*n* potrebných pre riešenie zadanej úlohy.

Min
$$\sum_{j=1}^{n} c_{j}z_{j}$$
 za podmienok
$$\sum_{j=1}^{n} z_{j} \ge r$$

$$\sum_{j=1}^{n} a_{j}z_{j} \ge K$$

$$z_{j} \in \{0,1\} \ \forall j=1..n$$

Zadanie H33

a/ Primárnou vsúvacou heuristikou riešite úlohu danú modelom (obrátená úloha o batohu, kde hmotnosť batohu musí byť aspoň K a počet predmetov v batohu aspoň r). Riešte úlohu pre n=500, r=300, K=15000 a pre lokálne kritérium "Odstráň prvok z dosiaľ nespracovaných prvkov, ktorý má najmenšiu hmotnosť". Východiskové riešenie položte rovné batohu, v ktorom sú vložené všetky prvky. Súčasťou zadania sú súbory H3_a.txt a H3_c.txt, ktoré obsahujú n údajov koeficientov aj a cj pre j=1..n potrebných pre riešenie zadanej úlohy.

Min
$$\sum_{j=1}^{n} c_{j}z_{j}$$
 za podmienok $\sum_{j=1}^{n} z_{j} \geq r$ $\sum_{j=1}^{n} a_{j}z_{j} \geq K$ $z_{j} \in \{0,1\} \ \ orall j=1...n$

Zadanie H44

a/ **Primárnou vsúvacou heuristikou** riešite úlohu danú modelom (obrátená úloha o batohu, kde hmotnosť batohu musí byť aspoň *K* a počet predmetov v batohu aspoň *r*). Riešte úlohu pre *n*=500, *r*=300, *K*=15000 a pre **lokálne kritérium** "*Odstráň prvok z dosiaľ nespracovaných prvkov, ktorý má najväčší koeficient c_j, <i>j*=1..*n* (*najväčšiu cenu*)". Východiskové riešenie položte rovné batohu, v ktorom sú vložené všetky prvky. Súčasťou zadania sú súbory **H4_a.txt** a **H4_c.txt**, ktoré obsahujú *n* údajov koeficientov *a_j* a *c_j* pre *j*=1..*n* potrebných pre riešenie zadanej úlohy.

Min
$$\sum_{j=1}^n c_j z_j$$
 za podmienok $\sum_{j=1}^n z_j \ge r$ $\sum_{j=1}^n a_j z_j \ge K$ $z_j \in \{0,1\} \ orall j=1..n$

Zadanie H55

a/ Duálnou heuristikou s výhodnostnými koeficientmi riešite úlohu danú modelom (obrátená úloha o batohu, kde hmotnosť batohu musí byť aspoň *K* a počet predmetov v batohu aspoň *r*). Riešte úlohu pre *n*=500, *r*=300, *K*=15000 a pre lokálne kritérium "*Vlož prvok z dosiaľ nespracovaných prvkov, ktorý má najmenší pomer koeficientov c_i/a_i* (najmenší koeficient výhody)". Východiskové riešenie položte rovné prázdnemu batohu (neprípustné riešenie). Súčasťou zadania sú súbory H5_a.txt a H5_c.txt, ktoré obsahujú *n* údajov koeficientov *a_i* a *c_i* pre *j*=1..*n* potrebných pre riešenie zadanej úlohy.

Min
$$\sum_{j=1}^{n} c_{j}z_{j}$$
 za podmienok $\sum_{j=1}^{n} z_{j} \geq r$ $\sum_{j=1}^{n} a_{j}z_{j} \geq K$ $z_{j} \in \{0,1\} \ orall j=1..n$

Zadanie H66

a/ Primárnou heuristikou s výhodnostnými koeficientmi riešite úlohu danú modelom (obrátená úloha o batohu, kde hmotnosť batohu musí byť aspoň *K* a počet predmetov v batohu aspoň *r*). Riešte úlohu pre *n*=500, *r*=300, *K*=15000 a pre lokálne kritérium "Odstráň prvok z dosiaľ nespracovaných prvkov, ktorý má najväčší pomer koeficientov c_j/a_j (najväčší koeficient výhody)". Východiskové riešenie položte rovné batohu, v ktorom sú vložené všetky prvky. Súčasťou zadania sú súbory H6_a.txt a H6_c.txt, ktoré obsahujú *n* údajov koeficientov a_j a c_j pre *j*=1..*n* potrebných pre riešenie zadanej úlohy.

Min
$$\sum_{j=1}^{n} c_{j}z_{j}$$
 za podmienok
$$\sum_{j=1}^{n} z_{j} \ge r$$

$$\sum_{j=1}^{n} a_{j}z_{j} \ge K$$

$$z_{j} \in \{0,1\} \ \forall j=1..n$$