Evaluation Metrics for Classification Problems

★ 1. Confusion Matrix

The foundation of all classification metrics.

	Predicted Positive	Predicted Negative	
Actual Positive	True Positive (TP)	False Negative (FN)	
Actual Negative	False Positive (FP)	True Negative (TN)	

- TP (True Positive): Correctly predicted positives
- TN (True Negative): Correctly predicted negatives
- FP (False Positive): Incorrectly predicted positives (Type I error)
- FN (False Negative): Incorrectly predicted negatives (Type II error)

🖈 2. Accuracy

Measures the overall correctness of the model.

$$\label{eq:accuracy} \text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

When to Use:

- When classes are balanced
- When every class matters equally

X Not Reliable:

• When the data is imbalanced (e.g., 95% class A and 5% class B — model can have 95% accuracy by always predicting A)

3. Precision

Of all predicted positives, how many are actually positive?

$$\text{Precision} = \frac{TP}{TP + FP}$$

Use when:

False positives are costly
e.g., Spam classification — don't want to mark important emails as spam

4. Recall (Sensitivity / True Positive Rate)

Of all actual positives, how many did we correctly predict?

$$\text{Recall} = \frac{TP}{TP + FN}$$

Use when:

Missing positives is costly
e.g., Medical test — failing to detect disease is dangerous

★ 5. **F1-Score**

Harmonic mean of precision and recall Gives a **balanced measure** when both are important

$$F1 Score = 2 imes rac{Precision imes Recall}{Precision + Recall}$$

- F1 Score is high only when **both** precision and recall are high.
- Useful when data is imbalanced.