Etudiant Ingénieur Machine Learning OpenClassrooms

CLASSEZ DES IMAGES À L'AIDE D'ALGORITHMES DE DEEP LEARNING

PROJET IML 6

SOMMAIRE

- La problématique et son Interprétation
- Cleaning effectué
- Exploration
- Feature engineering
- Modèle VGG-16 en « transfert learning »
- Modèle ResNet50 en « transfert learning »
- Mon Modèle CNN
- Data augmentation appliqué à mon modèle
- Conclusions
- Axes d'améliorations

LA PROBLÉMATIQUE ET SON INTERPRÉTATION

- Problématique d'une association de protection des animaux
 - ▶ Base de données des pensionnaires trop lourde à gérer manuellement
- Besoin
 - Pouvoir référencer les images des pensionnaires automatiquement par race de chien,
- Comment
 - réaliser un algorithme de détection de la race du chien sur une photo, afin d'accélérer leur travail d'indexation
 - Avec réseaux de neurones convolutifs CNN: reconnu comme efficace et certains pré-entrainés

CLEANING EFFECTUÉ

Base de données : ImageNetDogs Stanford Dogs Dataset

Train: 100 images / race

Test: 100 à 150 images / race

Sélection de 3 et 10 races

3 races

Bernese Mountain dog

Afghan Hound Airedale -

▶ 10 races

Bernese_mountain_dog

Afghan hound

Irish wolfhound

Scottish_deerhound

Australian_terrier

Sealyham terrier

Lakeland terrier

Siberian husky

Airedale

Saluki

20

Dog image numbers by Breed and by train/test set

count

Train

120

100

False True

140

FEATURE ENGINEERING

- CNN => recherche de feature non nécessaire
- Pre-processing

- 3 architectures de CNN testés
 - 2 modèles pré-entrainés sur ImageNet VGG-16 et ResNet50
 - > 2 modèles « transfert learning » en ré-entrainant leur dernière couche (FC)
 - > 1 modèle « from scratch » à entrainer en totalité

MODÈLE VGG-16

- Transfert learning pré-entrainé sur ImageNet
 - Remplacement des 3 derniers layers Fully connected par : 1 layer FC
 - Nb. unités = Nb race de chien à prédire
 - Activation : SOFTMAX
 - Ré-entrainement dernier layer (75 000 à 250 000 param.)

Total params: 14,789,955
Trainable params: 75,267
Non-trainable params: 14,714,688

NB. PARAMS (EX: 3 RACES DE CHIEN)

MODÈLE RESNET-50

- Transfert learning pré-entrainé sur ImageNet
 - Remplacement dernier layer Fully connected par: 1 layer FC
 - Nb. unités = Nb race de chien à prédire
 - Activation : SOFTMAX

Ré-entrainement dernier layer (300 000 à 1 000 000 param.)

COMPARAISON TRANSFERT LEARNING SUR TEST SET

CONFUSION: LAKELAND TERRIER (8) -> AIREDALE (2)

TL MEILLEUR SUR RACE TRÈS DIFFÉRENTE

MON MODÈLE CNN

Architecture type VGG-16 simplifié

2 PARAMÈTRES D'ARCHITECTURE

- nb_filters
- nb_nodes

INITIALISATION ALÉATOIRE => PLUS DE « RUN » NÉCESSAIRE 10.5 10.4 10.3 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 nb_conv_filters

PLUS DE FILTRES DE CONVOLUTION => PLUS D'ACCURACY

PLUS DE NOEUD FC => MOINS D'ACCURACY

MON MODÈLE CNN

Total params: 40,738,251
Trainable params: 40,738,251
Non-trainable params: 0

▶ Choix **256** filtres conv. et **50** noeuds FC pour limiter temps de calcul et dispersion

Limiter l'overfitting avec une initialisation **HE normal** pour les couches avec f. activ. ReLu

Accuracy scores on Global Test set [%]

MON MODÈLE CNN

Choix meilleur modèle parmi les 10 runs aléatoire

> 256 filtres couches de convolution

▶ **50 noeuds** couche Fully Connected

Optimizer: SGD avec learning rate: 3e-8

decay: 1e-6 & momentum: 0.9

Init. layer f. act. ReLu : HE normal random seed

Init layer f. act. Softmax : GLOROT Uniform

my_CNN_256filt_50nod_he_5 my_CNN_256filt_50nod_he_7 my_CNN_256filt_50nod_he_1 my_CNN_256filt_50nod_he_4 my_CNN_256filt_50nod_he_2 my_CNN_256filt_50nod_he_9

my CNN 256filt 50nod he 8

Mon modèle bien moins bon que les modèles Transfert Learning

CONFUSION ASSEZ ÉQUILIBRÉE / RACES

DATA AUGMENTATION SUR MON MODÈLE CNN

- Data générateur centré et normalisé
- 2 méthodes

300 TRAINING DATA => BATCH SIZE =30

- ▶ Ré-entrainé de zéro avec **5000** epochs (*DA0*)
- ▶ Ré-entrainé depuis modèle sans D.A. **+3000** epochs : (DA)

create data generator
datagen = ImageDataGenerator(
 featurewise_center=True,
 featurewise_std_normalization=True,
 rotation_range=20,
 width_shift_range=0.2,
 height_shift_range=0.2,
 horizontal_flip=True)

ACCURACY +5% À 5.5% AVEC DA

UN PEU MOINS D'OVERFITTING EN PARTANT DE ZÉRO (DAO)

DATA AUGMENTATION SUR MON MODÈLE CNN

Accuracy par race rééquilibrée

Mais Déséquilibrée en partant de zéro (DA0)

CONCLUSIONS

- Modèle choisi : Transfert Learning ResNet-50
 - Meilleur accuracy 10 classes => bonne capacité avec plus de races
- Pour mon modèle CNN
 - Limiter le nombre de filtres et noeud / nb. data en training
 - > 256 filters / 50 nodes
 - Utiliser l'initialisation « He normal » pour moins d'overfitting
 - Utiliser Data augmentation pour gagner en accuracy
 - potentiel estimé à 5 à 10%
 - mais nécessite beaucoup de temps de calcul

AXES D'AMELIORATION

- Mon modèle en D.A.
 - Relancer l'entrainement sur plus d'itérations
 - Ajouter des nouvelles photos d'entrainement
 - Cloud computing plus performant pour Augmenter le nombre de races prédites
- Augmenter nombre de race avec ResNet-50 en transfert learning
- Essayer d'autre réseaux CNN