

GEOMETRÍA

Retroalimentación

Tomo I

1. En el gráfico, halle el valor de x, si: AB = BD = DE = CE.

2. En la figura, halle el valor de x.

3. Si los lados de un triangulo miden 6x, x y 21, halle la suma de los valores enteros que puede tomar x.

4. Calcule la m \triangleleft BAC, si AB = BD; además \overline{BD} es bisectriz del \triangle ABC.

5. En la siguiente figura, halle el valor de x.

6. Halle el valor de x, si \overline{AH} es altura y \overline{CD} es bisectriz interior del

$$3x + 2x = 90^{\circ}$$
 $5x = 90^{\circ}$
 $x = 18^{\circ}$

7. Halle BC si AB = 7 y DC = 5.

8. En un triángulo ABC, se traza la mediana \overline{BM} . Si BM = 4, AB = 15 y

m4ABM = 90°, halle BC. A-L-ATeorema de Pitágoras $c^2 = a^2 + b^2$ **∠**ABM ≅ **△**CHM (A-L-A) **BCH:** Pitágoras $x^2 = 8^2 + 15^2$ 15 $\alpha + \beta = 90^{\circ}$ $x^2 = 289$

9. En un triángulo equilátero ABC, se prolonga \overline{AC} hasta D y \overline{CB} hasta E, tal que EB = CD y m \angle AEB = 40°. Halle m \angle EBD.

10.Se tiene un triángulo escaleno ABC donde la m₄ABC= 80°. Luego se lo hace girar manteniendo fijo el vértice A hasta la posición AB'C' y B, B' y C son colineales. Halle m₄CB'C'.

