

L'usage des calculatrices programmables ou d'ordinateurs n'est pas autorisé Donner les expressions littérales avant les applications numériques Tout résultat sans unité convenable n'est pas accepté

Le sujet se compose de quatre exercices :

Exercice 1: (07 points)

- Partie 1 : dosage acide base;
- Partie 2 : synthèse d'un ester.

Exercice 2 : (03 points)

- Ondes.
- Physique nucléaire.

Exercice 3 : (04.5 point/)

- Réponse d'un dipôle RL à un échelon de tension ascendant ;
- Oscillations libres dans un circuit RLC série.

Exercice 4 : (05.5 point/)

- Partie 1 : Etude du mouvement d'un skieur ;
- Partie 2 : Etude d'un système mécanique oscillant.

Barème

Exercice 1: (07 points)

Quelques insectes, commes les abeilles et les fourmies, communiquent entre elles à l'aide de substances chimiques organiques, appelées phéromones, pour se défendre ou se féconder...

Le but de cet exercice dans sa première partie, est d'étudier la réaction d'une solution d'acide éthanoïque avec une solution d'hydroxyde de sodium, et dans sa deuxième partie, à l'étude de la synthèse de la phéromone (P) à partir de l'acide éthanoïque.

Les deux parties sont indépendantes

Données :

- Toutes les mesures ont été faites à 25°C;
- $pK_A(CH_3COOH/CH_3COO^-) = 4.8$;
- La masse molaire de l'acide éthanoïque est : M(CH₃COOH) = 60 g.mol⁻¹;
- La masse volumique de l'acide éthanoïque pur est : $\rho = 1,05 \text{ g.mL}^{-1}$;
- La masse molaire de la phéromone est : M(P) = 130 g.mol⁻¹.

Première partie: Etude de la réaction de l'acide éthanoïque avec l'hydroxyde de sodium

Pour déterminer la concentration molaire d'une solution d'acide éthanoïque, on le neutralise par une solution d'hydroxyde de sodium $(Na_{(aq)}^+ + HO_{(aq)}^-)$ de concentration molaire $C_b = 1,5.10^{-2}$ mol. L^{-1} .

On ajoute progressivement, à un volume v_a = 10 mL d'une solution d'acide éthanoïque (S_a) , de concentration molaire C_a , un volume v_b de la solution (S_b) d'hydroxyde de sodium, puis on mesure le pH du mélange.

La figure suivante donne les courbes $pH = f(v_b)$ et $\frac{dpH}{dv_b} = f(v_b)$ de ce dosage.

موضوع الامتحان الوطني الموحد للبكالوريا 2015 – الدورة الاستدراكية – مادة الفيزياء و الكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزيائية (الترجمة الفرنسية)

0,75

1

0,5

0,5

1

- 1-1-Représenter, sur la copie de rédaction, un schéma légendé du dispositif expérimental permettant de réaliser le dosage acide-base par mesure de pH.
 - 1-2- Ecrire l'équation modélisant la réaction ayant lieu au cours du dosage, et donner ses deux caractéristiques.
- 1 1-3- Calculer la valeur de la concentration C_a de la solution d'acide éthanoïque.
- 0,5 1-4-Préciser, en justifiant, laquelle des deux éspèces CH₃COOH et CH₃COO est dominante dans le mélage réactionnel à pH = 7.
- 0,75 | 1-5-Trouver, à l'aide de la courbe du dosage, le volume v_b à ajouter pour que : $\frac{\left[CH_3COOH\right]_{eq}}{\left[CH_3COO^-\right]_{eq}} = 1.$

Deuxième partie : Synthèse de la phéromone (P)

La synyhèse de la phéromone au laboratoire, peut être réalisée par la réaction entre l'acide éthanoïque (A) et un alcool (B) de formule C_5H_{11} -OH.

- 0,5 2-1- Ecrire l'équation modélisant la réaction entre (A) et (B).
 - 2-2- Citer deux caractéristiques de cette réaction.
- 2-3- On mélange le volume V_A = 28,6 mL d'acide (A) pur, avec la quantité de matière n_B = 0,50 mol de l'alcool (B). On ajoute quelques gouttes d'acide sulfurique. On chauffe à reflux, le mélange réactionnel pendant presque quatre heures. A l'équilibre, et après traitement nécéssaire, on obtient une quantité de la phéromone (P), de masse m_P = 43,40 g.
 - a- Quel est l'interêt du chauffage à reflux, et de l'addition d'acide sulfurique ?
 - b- Déterminer, à l'aide du tableau descriptif, la composition molaire du mélange réactionnel à l'équilibre.
 - c- Calculer le rendement r de la synthèse de la phéromone (P).

Exercice 2: (03 points)

L'exercice comprend cinq questions, à chacune on a proposé quatres réponses. Recopier sur la copie, le numéro de la question et écrire à coté la réponse juste, parmi les quatres réponses proposées, sans aucune justification.

Ondes (01,5 points) :

Pour déterminer la célérité de propagation d'une onde le long d'une corde, le professeur de physique demande à l'un des élèves de produire un ébranlement à l'une des extrémité d'une corde horizontale, et en même temps, il demande à une élève de filmer la séquence à l'aide d'une caméra numérique réglée sur la prise de 25 images par seconde.

Photo N°8

Photo N°12

Une règle blanche (R) de logueur 1 m, a été placée au voisinage de la corde comme échelle de mesure.

Après traitement informatique avec un logiciel convenable, le professeur choisit parmi les photos obtenues, les photos N°8 et N°12 (Figure ci-dessus), pour les étudier et les exploiter.

موضوع الامتحان الوطني الموحد للبكالوريا 2015 - الدورة الاستدراكيت مادة الفيزياء و الكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزيائية (الترجمة الفرنسية)

- 0,5
 - La durée Δt séparant la prise des deux photos N°8 et N°12 de l'onde est :
 - $\Delta t = 0.12 \text{ s}$
- $\Delta t = 0.16 \text{ s}$
- $\Delta t = 0.20 \text{ s}$
- $\Delta t = 0.24 \text{ s}$
- 0,5 2- La distance d' parcourue par l'onde pendant la durée Δt est :
- d = 0.50 m
- d = 1.00 m
- d = 1.50 m
- 3- La célerité de propagation de l'onde le long de la corde est : 0,5
 - $v = 5.10 \text{ m.s}^{-1}$ $v = 6.25 \text{ m.s}^{-1}$
- $v = 7.30 \text{ m.s}^{-1}$
- $v = 10,50 \text{ m.s}^{-1}$

Physique nucléaire (01,5 points) :

Le noyau de Polonium $^{210}_{84}$ Po , se désintègre en un noyau de Plomb $^{206}_{82}$ Po .

- 0,75
- Au cours de cette désintegration, il y'a émission d'une particule sous forme :
 - Particule α
- Neutron
- Electron
- Positron

- 0,75
- On considère un échantillon radioactif de Polonium 210, de demi-vie t_{1/2}. Son activité initiale est a_0 , et son activité à un instant t est a(t):

A l'instant $t_1 = 3 t_{1/2}$, le rapport $\frac{a(t_1)}{2}$ est égal à :

Exercice 3: (04,5 points)

Les résistors, les condensateurs et les bobines, sont parmi les composants essentiels entrant dans la composition de plusieurs appareils électroniques qu'on utilise dans notre vie quotidienne.

Le but de cet exercice est de déterminer les deux grandeurs caractérisant une bobine, et à l'étude d'un circuit électrique oscillant librement, pour déterminer la capacité d'un condensateur.

1- Réponse d'un dipôle RL à un échelon de tension ascendant :

Le circuit de la figure 1 est constitué de :

- Un générateur idéal de tension de f.é.m. E;
- Une bobine d'inductance L et de résistance interne r;
- Un résistor de résistance $R = 90 \Omega$;
- Un interrupteur K.

On ferme l'interrupteur à l'instant t = 0. Le suivi de l'évolution des tensions u_R aux bornes du résistor et la tension U_{PN} aux bornes du générateur, permet de tracer les courbes $u_R(t)$ et $U_{PN}(t)$ de la figure 2 ci-dessous.

- 0,25
- 1-1- Recopier sur la copie, le schéma du circuit de la figure 1, et représenter dessus la tension u_R en convention récepteur.
- 1-2- Par exploitation du document de la figure 2, déterminer :
- 0,25
- La force électromotrice E du générateur. La valeur de la constante de temps τ.
- 0,5 0,75
- La résistance r de la bobine.
- $0.25 \mid 1-3$ Vérifier que la valeur du coefficient d'inductance de la bobine est : L = 0.2 H.

موضوع الامتحان الوطني الموحد للبكالوريا 2015 – الدورة الاستدراكيم – مادة الفيزياء و الكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزيائية (الترجمة الفرنسية)

2- Oscillations libres dans un circuit RLC série :

Pour obtenir des oscillations électriques libres, on remplace, le générateur, dans le circuit précédent (Figure 1), par un condensateur de capacité C initialement chargé.

Le suivi de l'évolution de la tension u_C aux bornes du condensateur en fonction du temps, à l'aide d'un matériel informatique convenable, permet d'obtenir la courbe de la figure 3.

Figure 3

- 0,5
- **2-1-** Représenter le schéma du dispositif expérimental, et montrer dessus, le branchement du système d'acquisition permettant de suivre $u_C(t)$.
- 0,5
- **2-2-** Etablir l'équation différentielle vérifiée par la tension $u_C(t)$.
- 0,5
- 2-3- Calculer la valeur de la capacité du condensateur, sachant que la valeur de la pseudo période est égale à celle de la péride propre de l'oscillateur.
- 0,5
- **2-4-** Déterminer la valeur \mathcal{E}_1 de l'énergie du circuit à l'instant t=36 ms.
- 0,5
- **2-5-** Justifier, du point de vue énergétique, le régime oscillatoire représenté sur la figure 3.

Exercice 4: (05,5 points)

Les deux partie sont indépendantes

Première partie (03 points): Etude du mouvement d'un skieur

La pratique du sport du ski, dans les stations des montagnes, attire de plus en plus l'intension des jeunes marocains, parcequ'elle intégre les qualités du plasir et l'aventure.

موضوع الامتحان الوطني الموحد للبكالوريا 2015 – الدورة الاستدراكية – مادة الفيزياء و الكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزيائية (الترجمة الفرنسية)

Le but de cet exercice est d'étudier le mouvement du centre d'inertie d'un skieur et ses accessoires sur le circuit du ski.

La figure ci-dessous, représente un circuit de ski constitué de deux parties:

- Partie A'B' rectiligne et inclinée d'un angle α par rapport au plan horizontal ;
- Partie B'C' rectiligne et horizontale.

Données:

- $g = 9.8 \text{ m.s}^{-2}$;
- Longueur de la partie A'B': A'B' = 80 m;
- Masse du skieur et ses accessoires : m = 60 kg;
- L'angled'inclinaison : $\alpha = 18^{\circ}$.

1- <u>Etude du mouvement du skieur et ses accessoires sur la partie inclinée sans frottements.</u>

On étudie le mouvement du centre d'inertie G du système (S), formé du skieur et ses accessoires, dans le repère (A, \vec{i}', \vec{j}') lié à la terre et supposé galiléen.

A un instant t = 0, choisi comme origine des temps, le système (S) part sans vitesse initiale d'une position où G coincide avec A.

Le mouvement de G se fait suivant la ligne de plus grande pente du plan incliné AB, tel que : AB = A'B'.

Par application de la deuxième loi de Newton, trouver :

- 1-1- La valeur de l'accélération a_G du mouvement du centre d'inertie G.
- 1-2-L'intensité R de la force modélisant l'action du plan incliné sur (S).
- 1-3- La valeur v_B de la vitesse de G au passage par la position B.

2- Etude du mouvement du skieur et ses accessoires sur la partie horizontale avec frottements.

Le mouvement de G se fait sur la partie BC, tel que : BC = B'C'.

On étudie le mouvement du centre d'inertie G du système (S) formé du skieur et ses accessoires dans le repère (B, i) lié à la terre et supposé galiléen. On prend $x_G = 0$, à un instant t = 0, considéré comme nouvelle origine des dates.

Le système subit au cours de son mouvement deux types de frottements.

- Frottements dus au contact entre la partie B'C' et le système (S), modélisés par une force constante : $\vec{f}_1 = -6.\vec{i}$;
- Frottements dus à l'action de l'air, modélisés par la force : $\vec{f}_2 = -0.06 \cdot v^2 \cdot \vec{i}$, où v représente la vitesse du centre d'inertie G.

2-1- Par application de la deuxième loi de Newton, montrer que l'équation différentielle vérifiée par la vitesse v, s'écrit sous la forme : $\frac{dv}{dt} + 10^{-3}.v^2 + 0.1 = 0.$

1

0,5

0,5

0,5

0,5

2-2-En exploitant le tableau ci-contre, et en utilisant la méthode d'Euler, calculer les valeurs : a_{i+1} et v_{i+2} .

t(s)	v(m.s ⁻¹)	a(m.s ⁻²)
$t_{i} = 0,4$	21,77	- 0,57
$t_{i+1} = 0.8$	21,54	a_{i+1}
$t_{i+2} = 1,2$	V_{i+2}	-0,55

الصفحة 7 7

موضوع الامتحان الوطني الموحد للبكالوريا 2015 - الدورة الاستدراكيت -مادة الفيزياء و الكيمياء - شعبت العلوم التجريبيت مسلك العلوم الفيزيائيت (الترجمة الفرنسية)

Première partie (02,5 points): Etude d'un système mécanique oscillant

Le pendule de torsion permet de déterminer quelques grandeurs physiques caractéristiques de la matière, comme la constante de torsion des matériaux solides déformables, et les moments d'inertie des oscillateurs mécaniques.

On étudira de façon simplifiée, la méthode de détermination de la constante de torsion d'un fil métallique, et quelques grandeurs dynamiques et cinématiques, en exploitant les diagrammes d'énergie du pendule de torsion.

Le pendule de torsion se compose d'un fil de torsion vertical de constante de torsion C, et d'une barre AB homogène, de moment d'inertie $J_{\Delta}=2,4.10^{-3}$ kg.m² par rapport à un axe vertical (Δ) colinéaire au fil et passant par le centre d'inertie G de la barre.

On tourne la barre, horizontalement, dans le sens positif, autour de (Δ) , d'un angle $\theta_m = 0,4$ rad par rapport à la position d'équilibre, et on la lâche sans vitesse initiale à un instant t=0, considéré comme origine des temps.

On repère la position de la barre à chaque instant par son abscisse angulaire θ par rapport à sa position d'équilibre (Figure 1)

On étudie le mouvement du pendule dans un repère lié à la terre et supposé galiléen.

La position d'équilibre est choisie comme état de référence de l'énergie potentielle de torsion, et le plan horizontal passant par G comme état de référence de l'énergie

Figure 1

On néglige tous les frottements.

potentielle de pesanteur.

Les courbes (a) et (b) de la figure 2, représentent les variations, en fonction du temps, des énergies : potentielle E_p et cinétique E_C , de l'oscillateur.

- 0,5 1- Affecter, à chaque courbe, l'énergie correspondante. Justifier.
- 0,5 **2-** Déterminer la valeur de la constante de torsion C du fil métallique.
- 0,75 3- Trouver la valeur absolue de la vitesse angulaire à l'instant de passage de l'oscillateur par une position d'abscisse angulaire θ_1 = 0,2 rad.

0,75 4- Calculer le travail du couple de torsion W_C lorsque l'oscillateur passe de la position d'équilibre repérée par l'abscisse angulaire $\theta = 0$, à la position repérée par l'abscisse angulaire θ_1 .