Comparing Different Methods for Identifying Good Pairs Trade

Miao-Chin Yen

Department of Management Science and Engineering, Stanford University

Pairs Trading

- Notion: identify a pair of stocks whose price performance behave similar by examining the historical data.
- Trading Strategy: "Buy Low and Sell High" strategy to make profit when the spread of the time series between the pair widens.
- Objective: identify a good approach to generate pairs

Pairs Selection

- 1. Price time series $\{P_{i,t}\}_{t=1}^{T}$ for i = 1, 2, ..., n.
- 2. Accumulative return time series $\{R_{i,t} = \frac{P_{i,t} P_{i,t-1}}{P_{i,t}}\}_{t=1}^T$ for i = 1, 2, ..., n.
 - Selected by Distance (Distance Approach)
 - Selected by Correlation (Correlation Approach)
 - Selected by Cointegration (Cointegration Approach)
 - Selected by Autoregressive Process (AR Approach)

Distance Approach & Correlation Approach

- Distance approach selects the pair with the shortest euclidean distance between two time series.
- Correlation approach selects the pair with the highest linear correlation.

▶ Consider time series $\{R_{i*,t} - R_{j*,t}\}_{t=1}^{T}$ in our experiment.

Cointegration Approach

- Cointegration enables us to describe the relationship between stock price time series instead of cumulative return time series.
- ▶ An I(1) or integrated of 1 series is a random walk.
- An I(0) or integrated of 0 series is a weakly stationary time series.

$$\exists \ \beta \text{ s.t. } \{z_t = P_{i,t} - \beta P_{j,t}\}_{t=0}^T \text{ is an } I(0) \text{ series}$$

► Consider time series $\{P_{i^*,t} - \beta P_{j^*,t}\}_{t=0}^T$ in our experiment.

AR Approach

- Fit $\{X_t = R_{i,t} R_{j,t}\}_{t=1}^T$ as AR(p) process and use mean-reverting(stationary) property to choose pairs.
- Half-Life: measure the mean-reverting speed

$$h = -\frac{\ln 2}{\ln \sum_{k=1}^{p} \phi_k}$$

Shorter half-life means the process is expected to halve its distance to the stationary mean faster.

$$\begin{split} (i^*,j^*) &= \operatorname*{arg\;min}_{i,j,i\neq j} - \frac{\ln 2}{\ln \sum_{k=1}^p \phi_k^{(i^*,j^*)}} \\ \text{s.t. } X_t &= \sum_{k=1}^p \phi_k X_{t-k} + W_t \quad \text{ where } W_t \sim \textit{WN}\left(0,1\right) \end{split}$$

► Consider time series $\{R_{i*,t} - R_{j*,t}\}_{t=1}^{T}$ in our experiment.

Data & Criteria

- ▶ Select 165 stocks from Vanguard Small Cap Value ETF (VBR), resulting in $\frac{165\cdot164}{2}=13530$ different pairs
- ▶ Formation period: Jaunary 1, 2019 to December 31, 2020
- ▶ Trading period: January 1, 2021 to December 31, 2021
- Criteria
 - 1. Portfolio has high prob. within $[\hat{\mu}_F 2\hat{\sigma}_F, \hat{\mu}_F + 2\hat{\sigma}_F]$
 - 2. MD := $\left|\frac{\hat{\mu}_{\mathsf{T}} \hat{\mu}_{\mathsf{F}}}{\hat{\sigma}_{\mathsf{T}}}\right|$

Experiment Results

Distance	$\%$ Days within $[\hat{\mu}_{ ext{F}} - 2\hat{\sigma}_{ ext{F}}, \hat{\mu}_{ ext{F}} + 2\hat{\sigma}_{ ext{F}}]$	MD	Correlation	$\%$ Days within $[\hat{\mu}_{ ext{F}} - 2\hat{\sigma}_{ ext{F}}, \hat{\mu}_{ ext{F}} + 2\hat{\sigma}_{ ext{F}}]$	MD
EGP-FR	87.2	0.58	UA-UAA	24.7	2.17
NWE-BKH	80.0	0.26	PEB-PK	100.0	0.67
CENT-CENTA	99.6	1.10	CENT-CENTA	99.6	1.10
UA-UAA	24.7	2.17	GPMT-ARI	100.0	0.94
OGS-IDA	9.9	1.91	ROIC-SITC	58.9	2.84

Cointegration-	% Days within	MD	Cointegration-	% Days within	MD
Distance Sorting	$[\hat{\mu}_{ extsf{F}}-2\hat{\sigma}_{ extsf{F}},\hat{\mu}_{ extsf{F}}+2\hat{\sigma}_{ extsf{F}}]$		Correlation Sorting	$[\hat{\mu}_{ extsf{F}}-2\hat{\sigma}_{ extsf{F}},\hat{\mu}_{ extsf{F}}+2\hat{\sigma}_{ extsf{F}}]$	
OGS-POR	9.56	1.97	PTEN-CLR	53.3	0.66
NWE-BKH	78.0	0.25	FULT-BRKL	99.6	0.30
IDA-WTM	99.6	0.35	SFNC-FCF	7.2	3.58
OGS-SR	45.8	2.39	PEB-ASB	5.9	2.93
FR-EGP	99.6	0.63	ASB-PK	7.5	2.64

Experiment Results

AR(1)	$\%$ Days within $[\hat{\mu}_{ m F}-2\hat{\sigma}_{ m F},\hat{\mu}_{ m F}+2\hat{\sigma}_{ m F}]$	MD	AR(2)	$\%$ Days within $[\hat{\mu}_{ ext{F}}-2\hat{\sigma}_{ ext{F}},\hat{\mu}_{ ext{F}}+2\hat{\sigma}_{ ext{F}}]$	MD
GPMT-SABR	36.25	1.35	GPMT-SABR	36.25	1.35
IDA-WTM	45.81	0.35	OFC-MGEE	99.60	0.69
FOR-WH	43.82	0.99	H-BXMT	90.83	0.35
NWE-BKH	78.08	0.25	FOR-WH	43.82	0.99
H-UMPQ	39.84	1.63	H-UCBI	59.76	2.78

AR(3)	$\%$ Days within $[\hat{\mu}_{ ext{F}} - 2\hat{\sigma}_{ ext{F}}, \hat{\mu}_{ ext{F}} + 2\hat{\sigma}_{ ext{F}}]$	MD	AR(4)	$\%$ Days within $[\hat{\mu}_{ ext{F}}-2\hat{\sigma}_{ ext{F}},\hat{\mu}_{ ext{F}}+2\hat{\sigma}_{ ext{F}}]$	MD
OFC-MGEE	99.60	0.69	OFC-MGEE	99.60	0.69
FOR-WH	43.82	0.99	FOR-WH	43.82	0.99
SBRA-FHI	58.56	1.25	IDA-WTM	45.81	0.35
GPMT-SABR	36.25	1.35	WH-HOMB	75.29	0.36
IDA-WTM	45.81	0.35	SBRA-FHI	58.56	1.25

Next Step & Summary

Next Step

- Apply Granger Causality
- Analyze importance of different factors for selecting pairs

Summary

By inspecting the experiments to date, it seems that mean-reverting property would be important for selecting pairs. However, other methods can sometimes provide strong and useful pairs. Therefore, it would be worth studying the importance of different factors.

Supplementary

Example. AR(1)

Let $x_t=\phi_1x_{t-1}+w_t$ where $|\phi_1|<1$ denote a weak-stationary AR(1) process. We further let $E[x_t]=\mu$ for all t because of stationarity. By computation, we derive

$$\mu = \frac{1}{1 - \phi_1}$$

We then plug μ into the AR(1) process and get

$$x_t - \mu = \phi_1 (X_{t-1} - \mu) + w_t$$

We define $y_t = x_t - \mathbb{E}[x_t]$ to be the distance to the stationary mean. By definition of half-life, we want to find h such that

$$\mathbb{E}_t\left[y_{t+h}\right] = \frac{1}{2}y_t$$

Since $\mathbb{E}_t\left[y_{t+h}\right] = \phi_1^h y_t = \frac{1}{2} y_t$,

$$h = -\frac{\ln 2}{\ln \phi_1}$$