

دانشكده مهندسي كامپيوتر

گزارش پایانی درس: مبانی هوش محاسباتی

عنوان پژوهش: تمرین دوم بخش چهارم (پروژه فازی)

ارائه دهنده:

نرگس سادات موسوی جد

شادي شاهي محمدي

استاد درس:

دكتر كارشناس

بهار ۱۴۰۴

فهرست:

۱-۱-کلاسهای فازی: ۱-۲-پیش پردازش دادهها: ۱-۳-کلاس سیستم استنتاج فازی: ۱-۳-کلاس کروموزوم (Chromosome) و الگوریتم ژنتیک:(Genetic Algorithm) و الگوریتم ژنتیک:۱-٥-تست مدل: ۱-٥-تست مدل: ۱-۲-تحلیل اکتشافی دادهها: ۱-۲-نتایج مربوط به انتخاب ویژگی: ۱-۲-نتایج مربوط به انتخاب ویژگی: ۱-۲-توابع عضویت: ۱-۲-توابع عضویت: ۱-۲-تایج الگوریتم ژنتیک: ۱-۲-نتایج الگوریتم ژنتیک:	١	۱-پیادهسازی یک سیستم استنتاج فازی:
۱-۲-پیش پردازش دادهها:	١	١-١-كلاسهاى فازى :
۱-۳-کلاس سیستم استنتاج فازی: ۱-۶-کلاس کروموزوم (Chromosome) و الگوریتم ژنتیک:(Genetic Algorithm) ه ۱-۵-تست مدل: ۱-۱-تعلیل اکتشافی دادهها: ۲-۲-تعلیل اکتشافی دادهها: ۲-۲-نتایج مربوط به انتخاب ویژگی: ۲-۳-توابع عضویت:		
۱- ٤- كلاس كروموزوم (Chromosome) و الگوريتم ژنتيك: (Genetic Algorithm) ه ا ـ ٥- تست مدل: ۱- ٥- تست مدل: ۱- ٢- تحليل اكتشافي دادهها: ۲- ٢- تتابيج مربوط به انتخاب ويژگي: ۲- ٣- توابع عضويت: ۲- ٢- نتابيج الگوريتم ژنتيك:		
۱- نتایج: ۱- ۲- تحلیل اکتشافی دادهها: ۲- ۲- نتایج مربوط به انتخاب ویژگی: ۲- ۳- توابع عضویت: ۲- ۴- نتایج الگوریتم ژنتیک:		
۱- نتایج: ۱- ۲- تحلیل اکتشافی دادهها: ۲- ۲- نتایج مربوط به انتخاب ویژگی: ۲- ۳- توابع عضویت: ۲- ۴- نتایج الگوریتم ژنتیک:	٩	١-٥-تست مدل:
۱-۲-تحلیل اکتشافی دادهها: ۲-۲-نتایج مربوط به انتخاب ویژگی: ۲-۳-توابع عضویت: ۲-۴-نتایج الگوریتم ژنتیک:		
۲-۲-نتایج مربوط به انتخاب ویژگی: ۲-۳-توابع عضویت: ۲-۴-نتایج الگوریتم ژنتیک:	١	- ۱ ـ ۲ ـ تحلیل اکتشافی دادهها:
٢-٢-نتايج الگوريتم ژنتيک:		
٢-٢-نتايج الگوريتم ژنتيک:	١,	۲-۳-توابع عضویت: ۵

1-پیادهسازی یک سیستم استنتاج فازی:

هدف این سیستم به طور کلی، استفاده از مدل فازی برای پیشبینی و ارزیابی عملکرد با استفاده از دادههای آموزشی و آزمایشی است. در اینجا، به تفکیک به عملکرد هر بخش از کد می پردازیم:

1-1-كلاسهاي فازي:

FuzzySet : این کلاس پایه برای مجموعههای فازی است که متغیرهای is_continuous برای گسسته یا پیوسته بودن مجموعه و alpha برای برش آلفا را ذخیره می کند. یک متد membership_func برای محاسبه تابع عضویت دارد که توسط کلاسهای فرزند پیادهسازی می شود.

```
class FuzzySet:
    def __init__ (self, is_continuous, alpha):
        self.is_continuous = is_continuous
        self.alpha = alpha

def cut(self, x):
        membership_value = self.membership_func(x)
        if membership_value > self.alpha:
            return self.alpha
        return membership_value

@abstractmethod
def membership_func(self, x):
    """Abstract method for area calculation"""
    pass
```

TriangleSet: این کلاس یک مجموعه فازی مثلثی است که یک تابع عضویت مثلثی را پیادهسازی میکند.

```
class TriangleSet(FuzzySet):
    def __init__(self, is_continuous, a, b, c):
        super().__init__(is_continuous, 1)
        self.a = a
        self.b = b
        self.c = c

    def membership_func(self, x):
        if not self.is_continuous:
            x = int(x)
        if self.a == self.b:
            return np.maximum(np.minimum(1, (self.c - x) / (self.c - self.b)), 0)
        elif self.c == self.b:
            return np.maximum(np.minimum(1, (x - self.a) / (self.b - self.a)), 0)
        return np.maximum(np.minimum((x - self.a) / (self.b - self.a), (self.c - x) / (self.c - self.b)), 0)
```

CategoricalSet : این کلاس برای مجموعههای فازی دستهای (categorical) است که مقادیر را به صورت دقیق (بله یا خیر) دستهبندی می کند. این دو کلاس نمونههای از کلاس مجموعهی فازی هستند.

```
class CategoricalSet(FuzzySet):
    def __init__(self, category_num):
        super().__init__(False, 1)
        self.category_num = category_num

def membership_func(self, x):
    if self.category_num == x:
        return 1
    else:
        return 0
```

Linguistic Variable : این کلاس برای متغیرهای زبانی استفاده می شود که دامنه ای از مقادیر عددی دارند و می توانند چندین مجموعه فازی داشته باشند:

```
class LinguisticVariable:
    def __init__(self, name, lower_limit, upper_limit):
        self.name = name
        self.lower_limit = lower_limit
        self.upper_limit = upper_limit
        self.fuzzy_sets = {}
```

Rule : این کلاس برای قوانین فازی تعریف شده که شامل پیششرطها(antecedents) ، نتیجه (result) و وزن (weight) است.

```
class Rule:
    def __init__(self, antecedents, result, weight):
        self.antecedents = antecedents
        self.result = result
        self.weight = weight

def __eq__(self, other):
        if not isinstance(other, Rule):
            return False
        return (self.antecedents == other.antecedents) and (self.result == other.result)

def __hash__ (self):
    return hash((self.antecedents, self.result))
```

۱-۲-پیش پر دازش دادهها:

() preprocessing: این تابع برای پیشپردازش دادهها، شامل بارگذاری، تقسیم دادهها به آموزش و آزمایش و حذف دادههای گمشده است. همچنین اطلاعاتی از دادهها را نمایش می دهد.

```
def preprocessing():
    df = pd.read_csv("dataset.csv")
    print("head of dataset:")
    print(df.head(), "\n")
    print("information of dataset and its columns:")
    print(df.info(), "\n")
    print("some statistics:")
    print(df.describe(), "\n")

    print("check for missing data")
    print(df.isna().sum())
    df = df.dropna()

    df['Target'] = df['Target'].map({'Dropout': 0, 'Graduate': 1, 'Enrolled': 2})

    plot_dataset_columns(df)
    plot_correlation_matrix(df)
    return df
```

() feature_selection: این تابع برای انتخاب ویژگیها از دادهها با استفاده از معیار اطلاعات متقابل (mutual information) به کار میرود. در نهایت ۱۰ ویژگی منتخب برای استفاده در سیستم استنتاج فازی بکار میروند.

```
def feature_selection(dataset):
    scores = mutual_info_classif(
        dataset.drop(columns='Target'),
        dataset['Target'],
        random_state=0
    )
    mi_series = pd.Series(scores,
index=dataset.drop(columns='Target').columns) \
        .sort_values(ascending=False)
    top_features = mi_series.index[:10].tolist()
    print("feature selection scores:")
    print(mi_series)

    selected_columns = top_features + ['Target']
    df_selected = dataset[selected_columns]
    return df selected
```

1-3-كلاس سيستم استنتاج فازي:

FIS : این کلاس نماینده سیستم استنتاج فازی است که شامل قوانین فازی (rules) و متغیرهای زبانی (FIS) امی باشد.

```
class FIS:
    def __init__(self, train_set, linguistic_variables_list):
        self.train_set = train_set
        self.rules = []
        self.linguistic_variables = linguistic_variables_list

def find_matching_rule(self, target_rule):
    for rule in self.rules:
        if rule == target_rule:
            return rule
    return None
```

(wang_mendel) این متد برای یادگیری قوانین فازی به روش Wang-Mendel استفاده می شود. برای هر ردیف از دادههای آموزشی، بهترین مجموعه فازی برای پیش شرطها انتخاب می شود و قانونی تولید می گردد و در صورتی که قانون تکراری نبود، به قوانین موجود افزوده می شود.

()mamdani این متد برای محاسبه نتیجه سیستم فازی به روش Mamdani است. در اینجا، برای هر قانون، عضویت پیششرطها محاسبه شده و سپس نتیجه خروجی محاسبه میشود.

```
def mamdani(self, inputs):
    weight_prod_z = 0
    sum_weight = 0
    for rule in self.rules:
        antecedents_memberships = []
        i = 0
        for antecedent in rule.antecedents:
            membership =
self.linguistic_variables[i].fuzzy_sets[antecedent].membership_func(inputs.il oc[i])
        antecedents_memberships.append(membership)
        i += 1
        alpha = min(antecedents_memberships)
        output_set = self.linguistic_variables[i].fuzzy_sets[rule.result]
        if isinstance(output_set, CategoricalSet):
            weight_prod_z += output_set.category_num * alpha
            sum_weight += alpha
    if sum_weight == 0:
        return 0
    return int(weight_prod_z / sum_weight)
```

(Genetic Algorithm):و الكوريتم ژنتيك (Chromosome) و الكوريتم ژنتيك

Chromosome : این کلاس برای نمایندگی یک کروموزوم از الگوریتم ژنتیک استفاده می شود. کروموزوم شامل لیستی از قوانین فازی است. در واقع در اینجا کروموزومها با روش پتزبورگ پیاده سازی شده اند و طول متفاوتی دارند.

```
class Chromosome:
    def __init__ (self, num_rules, chromosome_list, num_element_in_rule=11):
        self.num_rules = num_rules
        self.chromosome_list = chromosome_list
        self.num_element_in_rule = num_element_in_rule

    def modify_gen(self, rule_idx, gen_index):
        rule = self.chromosome_list[rule_idx]
        target_index = next(i for i, var in
enumerate(fis.linguistic_variables) if var.name == "Target")

    if gen_index == self.num_element_in_rule - 1:
        fuzzy_set_names =
list(fis.linguistic_variables[target_index].fuzzy_sets.keys())
        rule.result = random.choice(fuzzy_set_names)
    else:
        fuzzy_set_names =
list(fis.linguistic_variables[gen_index].fuzzy_sets.keys())
        rule.antecedents[gen_index] = random.choice(fuzzy_set_names)
```

Genetic : این کلاس پیادهسازی الگوریتم ژنتیک است که از جمعیت کروموزومها (که هر کروموزوم مجموعهای از قوانین است) استفاده می کند. این الگوریتم از انتخاب والدین(parent selection)، ترکیب (crossover) و جهش (mutation) برای تولید نسلهای جدید استفاده می کند.

()init_population: این متد برای ایجاد جمعیت اولیه کروموزومها از مجموعه قوانین موجود استفاده می شود. برای حفظ تنوع ژنها بیشتر قوانین به صورت تصادفی ساخته شده و بکار می روند ولی برای استفاده از تجربیات قبلی، از قوانین ساخته شده با روش wang mendel نیز استفاده می شود.

() fitness: تابع برازندگی برای ارزیابی کروموزومها با استفاده از دقت و F1 score و همچنین تعداد قوانین بکار میرود. این تابع به هرکدام از این معیارها وزنی داده و در نهایت مقدار نهایی برازندگی هر کروموزوم را که درواقع یک پایگاه قوانین است محاسبه میکند.

```
def fitness(self, chromosome):
    temp_fis = FIS(self.train_set, self.fis_model.linguistic_variables)
    temp_fis.rules = copy.deepcopy(chromosome.chromosome_list)
    y_true = []
    y_pred = []
    for _, row in self.valid_set.iterrows():
        predicted = temp_fis.mamdani(row)
        y_pred.append(predicted)
        y_true.append(row['Target'])

acc = accuracy_score(y_true, y_pred)
    f1 = f1_score(y_true, y_pred, average='weighted')
    penalty = chromosome.num_rules / len(self.fis_model.rules)
    fitness_value = 0.5 * acc + 0.3 * f1 + 0.2 * (1 - penalty)

return fitness value
```

()crossover: متد کراس اور برای ترکیب دو کروموزوم و ایجاد دو فرزند استفاده می شود. در اینجا از روش کراس اور تک نقطه ای استفاده شده است.

```
def crossover(self, parent1, parent2):
    rules1 = parent1.chromosome_list
    rules2 = parent2.chromosome_list

min_len = min(len(rules1), len(rules2))
    # too short for crossover
    if min_len < 2:
        return copy.deepcopy(parent1), copy.deepcopy(parent2)

    crossover_point = random.randint(1, min_len - 1)

    child1_rules = copy.deepcopy(rules1[:crossover_point] +
    rules2[crossover_point:])
        child2_rules = copy.deepcopy(rules2[:crossover_point] +
    rules1[crossover_point:])

    child1 = Chromosome(len(child1_rules), child1_rules)
        child2 = Chromosome(len(child2_rules), child2_rules)
    return child1, child2</pre>
```

()mutation : تابع mutationیک بخش از الگوریتم ژنتیک است که برای ایجاد تغییرات تصادفی در یک والد به به به به به به به به بخش از الگوریتم ژنتیکی استفاده می شود. ابتدا با احتمال mutation_rate مشخص می شود که آیا جهش انجام شود یا نه. سیس بسته به مقدار عدد تصادفی rand_op، یکی از سه نوع جهش اعمال می شود: اگر rand_op

0.5 باشد، جهش در ژنهای قوانین موجود رخ می دهد به طوری که با احتمال 0.5 هر ژن از هر قانون ممکن است تغییر یابد (با استفاده از modify_gen). اگر مقدار rand_op بین 0.5 و 0.5 باشد و تعداد قوانین بیشتر از 0.5 باشد، یکی از قوانین به صورت تصادفی حذف می شود. در غیر این صورت، یک قانون جدید تولید شده و اگر تکراری نباشد، به مجموعه قوانین افزوده می شود. این طراحی باعث ایجاد تعادل بین اکتشاف (افزایش تنوع) و بهره برداری (بهبود جواب موجود) در فضای جست و جو می شود

()parent_selection: متد انتخاب والدين به روش تورنومنت ۵ تايي ميباشد.

```
def parent_selection(self, fitness_scores, k=5):
    selected = random.sample(list(enumerate(fitness_scores)), k)
    winner = max(selected, key=lambda x: x[1])
    return self.population[winner[0]]
```

()run: این متد برای اجرای الگوریتم ژنتیک در چندین نسل (تکرار) استفاده می شود. در هر نسل، والدین انتخاب شده و با استفاده از ترکیب و جهش فرزندان جدید تولید می شوند. سپس نسل جدید جایگزین نسل قبلی می شود.

```
def run(self):
    print("Genetic Algorithm Running...")
    fitness_scores = [self.fitness(ch) for ch in self.population]
    best_fitness = max(fitness_scores)
    for generation in range(self.generations):
        new_population = []
        for _ in range(self.population_size // 2):
            parent1 = self.parent_selection(fitness_scores)
            parent2 = self.parent_selection(fitness_scores)
            if random.random() < self.crossover_rate:
                  child1, child2 = self.crossover(parent1, parent2)
        else:
            child1, child2 = copy.deepcopy(parent1),
copy.deepcopy(parent2)
        self.mutation(child1)
        self.mutation(child2)
        new population.append(child1)</pre>
```

```
new_population.append(child2)
print(max(fitness_scores))

self.accuracy_history.append(best_fitness)
self.population = new_population

fitness_scores = [self.fitness(ch) for ch in self.population]
best_fitness = max(fitness_scores)

print("Genetic Algorithm Completed.")
return self.population[np.argmax(fitness_scores)]
```

1-۵-تست مدل:

در نهایت به کمک تابع test_model مدل استنتاجی فازی با قوانین جدید تست می شود. این تابع برای ارزیابی مدل روی دادههای آزمایشی است که دقت، دقت مثبت، بازیابی، F1score و ماتریس آشفتگی را محاسبه می کند.

```
def test_model(test_set, fis_model):
    y_true = []
    y_pred = []

for _, row in test_set.iterrows():
        y_true.append(row["Target"])
        y_pred.append(fis_model.mamdani(row))

acc = accuracy_score(y_true, y_pred)
    precision = precision_score(y_true, y_pred, average='weighted',
zero_division=0)
    recall = recall_score(y_true, y_pred, average='weighted',
zero_division=0)
    f1 = f1_score(y_true, y_pred, average='weighted', zero_division=0)
    cm = confusion_matrix(y_true, y_pred)

print("Evaluation on Test Set")
    print(f"num_rules: {len(fis_model.rules)}")
    print(f"Accuracy: {acc:.4f}")
    print(f"Recall: {recall:.4f}")
    print(f"F1 Score: {f1:.4f}")
    print("\nConfusion Matrix:")
    print(cm)
```

۲-نتایج:

1-2-تحليل اكتشافي دادهها:

نمایش هدرهای دیتاست:

head of dataset:					
0	Marital status Applicat	ion mode 8	Application of		e \ 2
1	1	6		1 11	
2	1	1			5
3 4	1 2	8 12		2 1:	3
7	2	12		Ι ,	5
	Daytime/evening attendand		ous qualificat		
0 1		1		1 1	1 1
2		1		1	1
3		1		1	1
4		0		1	1
	Mother's qualification	Father's o	qualification	Mother's o	ccupation
0	13		10		6
1	. 1		3		4
					1.0
2	. 22		27		10
3	23		27		6
4	22		28		10
	•				
4			6		
\	Curricular units 2nd sem	(approved	d) Curricula:	r units 2nd s	sem (grade)
0			0		0.000000
1			6		13.666667
2			0 5		0.000000 12.400000
4			6		13.000000
		/ ! ! 1		TT 3	
0	Curricular units 2nd sem	(without	evaluations)	Unemployme	nt rate \ 10.8
1			0		13.9
2			0		10.8
3			0		9.4
4 Tn	flation rate GDP Tare	aet.	0		13.9
		J			

```
0 1.4 1.74 Dropout
1 -0.3 0.79 Graduate
2 1.4 1.74 Dropout
3 -0.8 -3.12 Graduate
4 -0.3 0.79 Graduate
```

[5 rows x 35 columns]

نمایش اطلاعات هر ستون دیتاست:

information of dataset and its columns:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4424 entries, 0 to 4423
Data columns (total 35 columns):

Data #	Columns (total 35 columns): Column	N	Jon-Null	Count	Dtype
		_			
0	Marital status	4	1424 non	-null	int64
1	Application mode	4	1424 non	-null	int64
2	Application order	4	1424 non	-null	int64
3	Course	4	1424 non	-null	int64
4	Daytime/evening attendance	4	1424 non	-null	int64
5	Previous qualification	4	1424 non	-null	int64
6	Nacionality	4	1424 non	-null	int64
7	Mother's qualification	4	1424 non	-null	int64
8	Father's qualification	4	1424 non	-null	int64
9	Mother's occupation	4	1424 non	-null	int64
10	Father's occupation	4	1424 non	-null	int64
11	Displaced	4	1424 non	-null	int64
12	Educational special needs	4	1424 non	-null	int64
13	Debtor	4	1424 non	-null	int64
14	Tuition fees up to date	4	1424 non	-null	int64
15	Gender	4	1424 non	-null	int64
16	Scholarship holder		1424 non		
17	Age at enrollment		1424 non		
18	International		1424 non		
19	Curricular units 1st sem (cr		1424 non		
20	Curricular units 1st sem (en	rolled) 4	1424 non	-null	int64
21	Curricular units 1st sem (ev		1424 non		
22	Curricular units 1st sem (ap		1424 non	-null	int64
23	Curricular units 1st sem (gr	rade) 4	1424 non	-null	float64
24	Curricular units 1st sem (wi				
25	Curricular units 2nd sem (cr		1424 non		
26	Curricular units 2nd sem (en		1424 non		
27	Curricular units 2nd sem (ev	valuations) 4	1424 non	-null	int64
28	Curricular units 2nd sem (ap	proved) 4	1424 non	-null	int64
29	Curricular units 2nd sem (gr		1424 non		
30	Curricular units 2nd sem (wi	thout evaluations) 4	1424 non	-null	int64
31	Unemployment rate	4	1424 non	-null	float64
32	Inflation rate	4	1424 non	-null	float64
33	GDP	4	1424 non	-null	float64
34	Target	4	1424 non	-null	object

dtypes: float64(5), int64(29), object(1)

memory usage: 1.2+ MB

None

نمایش اطلاعاتی آماری دیتاست: (برای بقیه دادهها نیز به همین ترتیب)

some statistics:

	Marital status	Application mode	Application order	Course	\
count	4424.000000	4424.00000	4424.000000	4424.000000	
mean	1.178571	6.886980	1.727848	9.899186	
std	0.605747	5.298964	1.313793	4.331792	
min	1.000000	1.00000	0.000000	1.000000	
25%	1.000000	1.00000	1.00000	6.000000	
50%	1.000000	8.00000	1.000000	10.000000	
75%	1.000000	12.00000	2.00000	13.000000	
max	6.000000	18.000000	9.00000	17.000000	

نمودار برخی از ستونها که در فرایند انتخاب ویژگی انتخاب شدهاند:

نمایش ماتریس همبستگی:

٢-٢-نتايج مربوط به انتخاب ويژگى:

ده ویژگی اول در مدل استفاده شده است.

feature selection scores:				
Curricular units 2nd sem (ap	oproved) 0.309306			
Curricular units 1st sem (ap	oproved) 0.244813			
Curricular units 2nd sem (gr	rade) 0.238680			
Curricular units 1st sem (gr	rade) 0.194403			
Tuition fees up to date	0.101759			
Curricular units 2nd sem (ev	<i>r</i> aluations) 0.087349			
Curricular units 1st sem (ev	valuations) 0.083303			
Course	0.076519			
Curricular units 1st sem (er	nrolled) 0.060009			

Scholarship holder	0.054155
Application mode	0.048580
Curricular units 2nd sem (enrolled)	0.046073
Age at enrollment	0.044143
Debtor	0.035538
Mother's qualification	0.033370
Mother's occupation	0.028415
Gender	0.025723
Inflation rate	0.018512
Educational special needs	0.015218
Father's qualification	0.015068
Previous qualification	0.014537
Father's occupation	0.010913
Unemployment rate	0.009486
Application order	0.008450
Curricular units 1st sem (without evaluations)	0.008039
Curricular units 2nd sem (credited)	0.008035
Daytime/evening attendance	0.007567
Marital status	0.007201
Curricular units 2nd sem (without evaluations)	0.006746
GDP	0.002705
Curricular units 1st sem (credited)	0.002604
International	0.001808
Displaced	0.001186
Nacionality	0.000000

dtype: float64 Train size: 3539 Test size: 885

۲-۳-توابع عضويت:

دو تابع عضویت پیوسته و یک تابع گسسته در زیر به نمایش در آمده است:

4-4-نتايج الگوريتم ژنتيك:

نمودار دقت الگوریتم ژنتیک در طول نسلهای مختلف در زیر به نمایش در آمده است همانطور که مشاهده می شود الگوریتم با شیب خوبی به سمت مقادیر بهینه حرکت می کند:

۲-۵-نتایج تست سامانه استنتاج فازی:

آمارهای سامانه استنتاج اولیه به صورت زیر است:

```
Evaluation on Test Set num_rules: 40
Accuracy: 0.5514
Precision: 0.5803
Recall: 0.5514
F1 Score: 0.5222

Confusion Matrix:
[[235 32 17]
[195 243 4]
[106 43 10]]
```

در حالی که سامانهی جدید با تغییر نه چندان زیاد دقت توانسته است، تعداد قوانین را از ۴۰ به ۶ قانون

کاهش دهد:Evaluation on Test Set

num_rules: 6
Accuracy: 0.4712
Precision: 0.5750
Recall: 0.4712
F1 Score: 0.4257

Confusion Matrix:
[[265 12 7]
[272 145 25]
[135 17 7]]

https://colab.research.google.com/drive/1R-v6x_Usxu6_18e3SMW71e0OR- کد برنامه: -oEqbZf?usp=sharing