BIOL550-Bioinformatics- Group Project

F17_T3

Dawei Wang (iits_18)

Jiaxing Miao (iits_14)

Zonglin Yang (iit_21)

1. Preparation

(1) Decompress illumina data (R1.fastq.gz & R2.fastq.gz)

```
gzip -d --force Illumina_R1.fastq.gz
gzip -d --force Illumina_R2.fastq.gz
```

(2) Decompress Nanopore data and transfer it into fastq format

```
tar -zxvf nanopore.tar.gz
cd FAST5
poretools stats --type 2D *.fast5
poretools fastq --type 2D *.fast5 > Nanopore.2D.fastq
```

Therefore we have R1.fastq & R2.fastq & Nanopore.2D.fastq and put them into different files: illumina data into [Illumina] file and nanopore data into [Nanopore] file so that bring convenience to further operation.

2. Examining quality scores

The quality scores of all 3 data are appropriate.

For nanopore data, the quality score is between 8-14, so the data is well fitted. We keep position 1-9 in order for maintaining the integrity of data.

Besides, there are no adapters in those data.

3. Assembling by Ray, Canu and SPAdes

Make two directories for further operation. And copy corresponding files into right directories.

Use Kmergenie to help choose best kmer.

For Illumina

Is *.fastq > list kmergenie list

(1) Using Ray assemble illumina data

nano Ray.sh [in bash script]

#!/usr/bin/bash

```
echo "Running Ray(k61)";
      mpirun -np 10 Ray -k61 -p Illumina_R1.fastq Illumina_R2.fastq -o IllRay-k61;
      echo "Ray(k61) Done";
      echo "Running Ray(k81)";
      mpirun -np 10 Ray -k81 -p Illumina R1.fastq Illumina R2.fastq -o IllRay-k81;
      echo "Ray(k81) Done";
      echo "Running Ray(k101)";
      mpirun -np 10 Ray -k101 -p Illumina_R1.fastq Illumina_R2.fastq -o IllRay-k101;
      echo '3kmers Ray is done.'
      ## we choose 3 different Kmers and use screen and bash script to finish the process.
   (2) Using Canu assemble nanopore data
      canu -p MinCanu -d MinCanu -maxThreads=10 -genomeSize=2.19m -nanopore-
      raw *.fastq
      canu -p OrCanu -d Orcanu -maxThreads=10 -genomeSize=2.6m -nanopore-raw
      *.fastq
      ## we check on NCBI, the interval of genome size for this bacteria is (2.18819,
      2.71143), so we choose a lower size(2.19m) and median size(2.60m).
   (3) Using SPAdes assemble illumina & nanopore data
      spades.py --careful --nanopore Nanopore.2D.fastg --pe1-1 Illumina_R1.fastg --
      pe1-2 Illumina R2.fastq -o SPAdes
      Rename and copy all Contig files to /Contigs.
4. Blast: blastn and faSomeRecords by perl: Operate under /Contigs
   (1) megablastn: using bash script; using screen to operate all blastn analysis
      nano ~/.bash profile
      [add this line below in]
      export BLASTDB=/media/Data 1/NCBI/NT
```

source ~/.bash_profile

[in bash script]

nano blastn_Ray.sh # running Ray under Kmer=61, 81, 101

#!/usr/bin/bash

echo "Running blastn with Ray_k61";

blastn -task megablast -query Ray_k61_Contigs.fasta -db mini_nt -out Ray_k61_Contigs.blastn -evalue 1e-10 -culling_limit 1 -outfmt '6 qseqid sseqid bitscore evalue staxids sskingdoms sscinames' -num_threads 20;

echo "Done";

echo "Running blastn with Ray k81";

blastn -task megablast -query Ray_k81_Contigs.fasta -db mini_nt -out Ray_k81_Contigs.blastn -evalue 1e-10 -culling_limit 1 -outfmt '6 qseqid sseqid bitscore evalue staxids sskingdoms sscinames' -num_threads 20;

echo "Done";

echo "Running blastn with Ray_k101";

blastn -task megablast -query Ray_k101_Contigs.fasta -db mini_nt -out Ray_k101_Contigs.blastn -evalue 1e-10 -culling_limit 1 -outfmt '6 qseqid sseqid bitscore evalue staxids sskingdoms sscinames' -num_threads 20;

blastn -task megablast -query Canu_Contigs.fasta -db mini_nt -out Canu_Contigs.blastn -evalue 1e-10 -culling_limit 1 -outfmt '6 qseqid sseqid bitscore evalue staxids sskingdoms sscinames' -num_threads 20 echo 'All Ray blastn Done';

For Canu:

blastn -task megablast -query Canu_Contigs.fasta -db mini_nt -out Canu_Contigs.blastn -evalue 1e-10 -culling_limit 1 -outfmt '6 qseqid sseqid bitscore evalue staxids sskingdoms sscinames' -num_threads 20

blastn -task megablast -query 02_Canu_Contigs.fasta -db mini_nt -out 02_Canu_Contigs.blastn -evalue 1e-10 -culling_limit 1 -outfmt '6 qseqid sseqid bitscore evalue staxids sskingdoms sscinames' -num_threads 20

For SPAdes:

blastn -task megablast -query SPAdes _Contigs.fasta -db mini_nt -out SPAdes

_Contigs.blastn -evalue 1e-10 -culling_limit 1 -outfmt '6 qseqid sseqid bitscore evalue staxids sskingdoms sscinames' -num_threads 20

```
(2) Perl Script and faSomeRecords
   nano v.pl
   [in perl script]
 #!/usr/bin/perl
 $usage = "USAGE -> perl v.pl *.blastn";
 die "\n$usage\n" unless @ARGV; #usage introfuction
 while ($file = shift @ARGV){
        open IN, "<$file"; #open the .blastn file
        file = \sim s/.blastn //;
        open OUTS, ">$file.Staphylococcus list";
        open OUTC, ">$file.Contaminant_list";
        while (\frac{1}{N} = \frac{1}{N})
                chomp $line;
                if ($line =~ m/.+Staphylococcus/){
                       @contig = split("\t",$line);
                       print OUTS "$contig[0]\n";
                       }
                else {
                          print OUTC "$contig[0]\n";
                       }
        }
     $input = "$file.fasta"; #for system usage
        $output = "$file.Staphylococcus.fasta";
        $list = "$file.Staphylococcus_list";
        $listC = "$file.Contaminant_list";
        $outputC = "$file.Contaminant.fasta";
```

```
system "faSomeRecords $input $list $output";
system "faSomeRecords $input $listC $outputC";
}
system 'echo "Job is done, ALL multifasta file has been created.";
```

5. Quast & Analysis

quast.py -o QuastResult Canu_Contigs.fasta Canu_Contigs.Staphylococcus.fasta 02_Canu_Contigs.fasta 02_Canu_Contigs.Staphylococcus.fasta SPAdes_Contigs.fasta SPAdes_Contigs.Staphylococcus.fasta Ray_k61_Contigs.fasta Ray_k61_Contigs.Staphylococcus.fasta Ray_k81_Contigs.Staphylococcus.fasta Ray_k81_Contigs.Staphylococcus.fasta Ray_k101_Contigs.fasta Ray_k101_Contigs.fasta

The Canu results are different in genome size, but their graphs are coincided.

For SPAdes, the wathet blue line is the best due to faster reaching to maximize so that the number of contig is smaller than others.

For Ray, because of the very negligible difference in Kmer=61, 81 and 101, we decide to use the Kmer=81.

Among these three different approaches, we believe that SPAdes performs better, the hybrid data would provide more reliability. Besides that, SPAdes has a higher N50 than others, as well as the largest length and assemble accuracy.

Statistics without reference	Ray_k61_Conti	gs = Ray_k81_Conti	gs = Ray_k101_Cont	tigs = Ray_k81_Contigs.Staphylococcus
# contigs	369	369	369	194
Largest contig	106 500	106 500	106 500	46 394
Total length	4 908 972	4 909 299	4 909 182	2 223 849
N50	25 750	25 750	25 750	19 073
Statistics without refer	rence E Canu	_Contigs = 02_	Canu_Contigs	Canu_Contigs.Staphylococcus
Statistics without refer	rence = Canu	Contins = 02	Canu Contins	Canu Contine Stanbylococcus
Statistics without refer # contigs	rence Canu	_Contigs ≡ 02_	Canu_Contigs	Canu_Contigs.Staphylococcus
# contigs	14	14	Canu_Contigs	
		14 3 166 1 09		10

Statistics without reference	SPAdes_Contigs	■ SPAdes_Contigs.Staphylococcus
# contigs	24	12
Largest contig	983 817	888 174
Total length	5 098 693	3 110 355
N50	794 189	553 249

- 6. PROKKA Annotation & Artemis & Number of Proteins
 - (1) PROKKA Annotation: We annotate 3 assembly: Canu, Ray(Kmer=81) and SPAdes prokka *.Staphylococcus.fasta --outdir prokka_annotation_* --prefix BIO550_ -- metagenome --kingdom Bacteria --increment 10 --compliant --addgenes -- mincontiglen 200 --centre -protein ## generating 3 folders containing 11 files, individually. The *.gbk(genebank) file is used for splitting and annotation. The *.faa file is used for calculation of number of protein.
 - (2) Artemisnano split.pl[in perl script]#!/usr/bin/perl

my \$file = shift (@ARGV);

```
open IN, "<$file";
   my $output;
   while (my line = <IN>){
      chomp $line;
       if (\frac{= \sim /^LOCUS(s+(S+))}{}
               $output = "$1.gbk";
               open OUT, ">>$output";
               print OUT "$line\n";
                close OUT;
       }
       else{
                open OUT, ">>$output";
               print OUT "$line\n";
                close OUT;
       }
   }
   ./split2.pl BIO550_.gbk ##running the perl
For Ray
For Canu
For SPAdes
                                                                         split.pl
   (3) Number of Proteins: under each folders, using command line below
      grep -c'>'BIO550_.faa
                                                 Canu
                                                                     SPAdes
        Approach
                            Ray
```

Protein Number	2109	6068	2891

Analysis: According to NCBI database, the interval of genome size is (2.18819, 2.71143). The rough calculation gives the number of protein equaled to 2400. Ray and SPAdes analysis are very approximately to it, but Canu analysis is very huge. The reason we assume is Ray is just reflect the approximate protein number, SPAdes is a ref based on Ray. Canu, on the other hand, would be not that precise, protein number often triple than regular number.