Package 'drape'

September 18, 2023

Title Doubly Robust Average Partial Effects

Version 0.0.1						
Description Doubly robust average partial effect estimation. This implementation contains methods for adding additional smoothness to plug-in regression procedures and for estimating score functions using smoothing splines. Details of the method can be found in Harvey Klyne and Rajen D. Shah (2023) arXiv:2308.09207 >.						
License MIT + file LICENSE						
Encoding UTF-8						
<pre>BugReports https://github.com/harveyklyne/drape/issues</pre>						
Suggests DoubleML, glmnet, graphics, hdi, knitr, Matrix, mlr3, paradox, partykit, rjson, rmarkdown, testthat (>= 3.0.0), xgboost						
VignetteBuilder knitr						
Config/testthat/edition 3						
RoxygenNote 7.1.2						
NeedsCompilation no						
Author Harvey Klyne [aut, cre, cph]						
Maintainer Harvey Klyne <hklyne@g.harvard.edu></hklyne@g.harvard.edu>						
Repository CRAN						
Date/Publication 2023-09-18 13:30:04 UTC						
R topics documented:						
basis_poly						

2 basis_poly

Index basis_poly		Estimate the score function of the d'th covariate using a pobasis.								lyı	าดเ	mic	al							
																				19
	z_correlated_normal	• • •					•			٠	 •	 ٠	•	 •	•	 •	٠			18
	spline_score																			
	sort_bin																			
	simulate_data																			
	rothenhausler_yu .																			15
	rothenhausler_basis																			15
	rmixture																			14
	resmooth																			13
	partially_linear																			13
	ng_pseudo_response																			12
	$new_X \ . \ . \ . \ . \ .$																			12
	mixture_score																			11
	MC_sums																			11
	fit_xgboost																			10
	fit_lasso_poly																			9
	drape																			8

Description

Computes the score function estimate when rho(X) is assumed to lie within the span of the polynomial basis of X.

Usage

```
basis_poly(X, d, degree = 2, lambda = NULL)
```

Arguments

Χ	matrix of covariates.

d integer index of covariate of interest.

degree maximum degree of polynomial terms.

lambda optional scalar penalty, if "NULL" chosen via cross-validation.

Value

list containing the estimated score function "rho", which takes matrix input and yields a vector of score estimates.

compare 3

Examples

```
set.seed(0)
X <- matrix(stats::rnorm(200), ncol=4)
bs <- basis_poly(X=X, d=1, degree=2)
bs$rho(X)</pre>
```

compare

Generate simulation data and evaluate estimators, with sample split-

Description

Generate simulation data and evaluate estimators, with sample splitting.

Usage

```
compare(n, ex_setting, f_setting, nfold = 5)
```

Arguments

n integer number of samples. For "401k" ex_setting this is ignored and the whole

data set is used.

ex_setting string "normal", "mixture2", "mixture3", "logistic", "t4", "401k".

f_setting string "plm", "additive", "interaction".

nfold integer number of cross-validation folds.

Value

list containing estimates, standard error estimates, and sample theta (for debugging).

compare_evaluate Evaluate estimators by training nuisance functions on training set and evaluating them on test set.

Description

Evaluate estimators by training nuisance functions on training set and evaluating them on test set.

Usage

```
compare_evaluate(train, test, ex_setting, f_setting, regression, sm_bw_out)
```

4 compare_lm

Arguments

train	list containing vector of responses y and matrix of predictors $X = (x,z)$.
test	list containing vector of responses y and matrix of predictors $X = (x,z)$.
ex_setting	string "normal", "mixture2", "mixture3", "logistic", "t4", "401k".
f_setting	string "plm", "additive", "interaction".
regression	Optional fitted regression.
sm_bw_out	Output of cv_resmooth.

Value

list containing f, df, and score estimates evaluated on the test set.

compare_lm	Generate simulation data and evaluate OLS estimator.	

Description

Generate simulation data and evaluate OLS estimator.

Usage

```
compare_lm(n, ex_setting, f_setting)
```

Arguments

n	integer number of samples. For "401k" ex_setting this is ignored and the whole data set is used.
ex_setting	string "normal", "mixture2", "mixture3", "logistic", "t4", "401k".
f_setting	string "plm", "additive", "interaction".

Value

list containing estimate, standard error estimate, and sample theta (for debugging).

```
compare_partially_linear
```

Generate simulation data and evaluate partially linear estimator.

Description

Generate simulation data and evaluate partially linear estimator.

Usage

```
compare_partially_linear(n, ex_setting, f_setting)
```

Arguments

n integer number of samples. For "401k" ex_setting this is ignored and the whole

data set is used.

ex_setting string "normal", "mixture2", "mixture3", "logistic", "t4", "401k".

f_setting string "plm", "additive", "interaction".

Value

list containing estimate, standard error estimate, and sample theta (for debugging).

compare_rothenhausler Generate simulation data and evaluate Rothenhausler estimator.

Description

Generate simulation data and evaluate Rothenhausler estimator.

Usage

```
compare_rothenhausler(n, ex_setting, f_setting)
```

Arguments

n integer number of samples. For "401k" ex_setting this is ignored and the whole

data set is used.

ex_setting string "normal", "mixture2", "mixture3", "logistic", "t4", "401k".

f_setting string "plm", "additive", "interaction".

Value

list containing estimate, standard error estimate, and sample theta (for debugging).

6 cv_resmooth

cv_resmooth

K-fold cross-validation for resmoothing bandwidth.

Description

Picks the largest resmoothing bandwidth achieving a cross-validation score within some specified tolerance of the original regression.

Usage

```
cv_resmooth(
    X,
    y,
    d = 1,
    regression,
    tol = 2,
    prefit = FALSE,
    foldid = NULL,
    bw = exp(seq(-5, 2, 0.2))/(2 * sqrt(3)) * stats::sd(X[, d]),
    nfolds = 5L,
    n_points = 101,
    sd_trim = 5
)
```

Arguments

Χ	matrix of covariates.
У	vector of responses.
d	integer index of covariate to be smoothed along.
regression	If prefit = FALSE this is a function which takes input data of the form (X,y), and returns a prediction function. This prediction function itself accepts matrix input same width as X, and returns a vector of y-predictions, and optionally a vector of derivative predictions. If prefit = TRUE then this is a list of length nfolds with each entry containing a component "fit" consisting of a prediction function taking matrix input and returning a vector.
tol	vector of tolerances controlling the degree of permissible cross-validation error increase. Larger values lead to a larger amount of smoothing being selected.
prefit	boolean signifying if the regressions are already fit to the training data for each fold.
foldid	optional vector with components in 1:nfolds indicating the folds in which each observation fell. Overwrites nfolds.
bw	vector of bandwidths for the Gaussian resmoothing kernel.
nfolds	integer number of cross-validation folds.
n_points	integer number of gridpoints to be used for convolution.
sd_trim	float number of standard deviations at which to trim the Gaussian distribution.

cv_spline_score 7

Value

list. Vector "bw" of bandwidths used. Vectors "cv" of cross-validation scores and numeric "cv_unsm" for the cross-validation without any smoothing. Vector "bw_opt_inds" for the indices of the selected bandwidths under various tolerances. Vector "bw_opt" for the corresponding bandwidths.

Examples

```
X <- matrix(stats::rnorm(200), ncol=2)
y <- X[,1] + sin(X[,2]) + 0.5 * stats::rnorm(nrow(X))
reg <- function(X,y){
    df <- data.frame(y,X)
        colnames(df) <- c("y", "X1", "X2")
    lm1 <- stats::lm(y~X1+sin(X2), data=df)
    fit <- function(newX){
        newdf = data.frame(newX)
            colnames(newdf) <- c("X1", "X2")
            return(as.vector(stats::predict(lm1, newdata=newdf)))}
    return(list("fit"=fit))
}
cv_resmooth(X=X, y=y, d=2, regression=reg, tol = c(0.5, 1, 2))</pre>
```

cv_spline_score

K-fold cross-validation for spline_score.

Description

K-fold cross-validation for spline score.

Usage

```
cv_spline_score(x, df = 2:15, nfolds = 5L, tol = 0.001, nmax = NULL)
```

Arguments

X	vector of datapoints
df	vector of smoothing parameters for the non-parametric score estimator, corresponding to the effective degrees of freedom for a smoothing spline.
nfolds	integer number of cross-validation folds.
tol	numeric tolerance, minimum distance between neighbouring points, to avoid singularities.
nmax	if specified, overrides tol as maximal number of unique points.

Value

list of 5 elements: df vector, cv vector of corresponding cross-validation scores, se vector of standard error estimates, df_min cross-validation minimiser, df_1se largest smoothing parameter within CV score within one standard error of df_min.

8 drape

Examples

```
set.seed(0)
x <- stats::rt(100, df=4)
cv_spline_score(x)

x <- stats::rlogis(500)
cvspl <- cv_spline_score(x)
cvspl$df_min</pre>
```

drape

Estimate the doubly-robust average partial effect estimate of X on Y, in the presence of Z.

Description

Estimate the doubly-robust average partial effect estimate of X on Y, in the presence of Z.

Usage

```
drape(
   y,
   x,
   z,
   response_regression,
   predictor_regression,
   resmooth_bw = NULL,
   spline_df = NULL,
   nfolds = 5L,
   foldid = NULL,
   verbose = FALSE
)
```

Arguments

y vector of responses.

x vector of the predictor of interest.

z matrix of additional predictors.

response_regression

function which takes input data of the form (X,y), where X=cbind(x,z), and returns a prediction function $f:X \to y$ and optionally a similar derivative estimation function (in this case no resmoothing is done).

predictor_regression

function which takes input data of the form (z,x), and returns a prediction function m:z -> x.

resmooth_bw

optional numeric to be used as resmoothing bandwidth, otherwise chosen via cross-validation. Only used if response_regression doesn't predict derivatives.

fit_lasso_poly 9

spline_df	optional double, a smoothing parameter for the unconditional spline score estimator, corresponding to the effective degrees of freedom for a smoothing spline. If NULL, chosen via cross-validation.
nfolds	integer, number of sample-splits. If set to one, then all data is used for both training and evaluation.
foldid	optional vector with components in 1:nfolds indicating the folds in which each observation fell. Overwrites nfolds.
verbose	boolean controlling level of information outputted.

Value

list containing the average partial effect estimate and the corresponding standard error estimate. If verbose=TRUE, additionally contains variables used in computations.

Examples

```
set.seed(0)
data <- simulate_data(200, "normal", "plm")</pre>
response_regression <- function(X,y){</pre>
    df <- data.frame(y,X)</pre>
    colnames(df) \leftarrow c("y", paste0("X", 1:10))
    lm1 <- stats::lm(y~X1+sin(X2), data=df)</pre>
    fit <- function(newX){</pre>
         newdf <- data.frame(newX)</pre>
         colnames(newdf) <- paste0("X", 1:10)</pre>
         return(as.vector(stats::predict(lm1, newdata=newdf)))}
    return(list("fit"=fit))
}
predictor_regression <- function(z,x){</pre>
    df <- data.frame(x,z)</pre>
    colnames(df) \leftarrow c("x", paste0("Z", 1:9))
    lm1 \leftarrow stats::lm(x~Z1+Z2, data=df)
    fit <- function(newz){</pre>
         newdf <- data.frame(newz)</pre>
         colnames(newdf) <- paste0("Z", 1:9)</pre>
         return(as.vector(stats::predict(lm1, newdata=newdf)))}
    return(list("fit"=fit))
}
drape(data$y, data$x, data$z, response_regression, predictor_regression, nfolds=2)
```

fit_lasso_poly Fit a lasso regression using quadratic polynomial basis, with interactions.

Description

Compute regression function and derivative estimates based on polynomial basis lasso with penalty parameter chosen by cross validation (CV).

10 fit_xgboost

Usage

```
fit_lasso_poly(X, y, degree, lambda = NULL)
```

Arguments

X matrix of covariates.y vector of responses.

degree maximum degree of polynomial terms.

lambda optional scalar tuning parameter, if "NULL" chosen via cross-validation.

Value

List containing: A function "fit" which takes matrix input of the same width as X, and returns a vector of y-predictions. A scalar "lambda" the tuning parameter.

fit_xgboost

Fit pre-tuned XGBoost regression for use in simulations.

Description

Fit pre-tuned XGBoost regression for use in simulations.

Usage

```
fit_xgboost(X, y, params, derivative = FALSE)
```

Arguments

X matrix of covariates.y vector of responses.

params XGBoost hyperparameters.

derivative logical determining if numerical difference derivative estimate (wrt the first pre-

dictor) should also be returned.

Value

list containing a function "fit" which takes matrix input of the same width as X, and returns a vector of predictions. Optionally the list also contains a function "deriv_fit" for numerical difference derivative estimates.

MC_sums

MC_sums

Compute sums of a Monte Carlo vector for use in resmoothing.

Description

Compute sums of a Monte Carlo vector for use in resmoothing.

Usage

```
MC_sums(a, n, nMC, nbw)
```

Arguments

a vector of length (n x nMC x nbw).

n integer.
nMC integer.
nbw integer.

Value

list with nbw elements. The j'th element of which is a vector of length n, the i'th element being the sum of the $(((j-1)n + (i-1)) \times nMC + 1)$ to $(((j-1)n + i) \times nMC)$ elements of a inclusive.

mixture_score

Population score function for the symmetric mixture two Gaussian random variables.

Description

Population score function for the symmetric mixture two Gaussian random variables.

Usage

```
mixture_score(x, sd)
```

Arguments

x vector of observations.

sd standard deviation of each Gaussian.

Value

vector of length n

12 ng_pseudo_response

new_X	Generate a matrix of covariates for use in resmoothing, in which the d'th column of X is translated successively by the Kronecker product
	of bw and MC_variates.

Description

Generate a matrix of covariates for use in resmoothing, in which the d'th column of X is translated successively by the Kronecker product of bw and MC_variates.

Usage

```
new_X(X, d, MC_variates, bw)
```

Arguments

X matrix of covariates.

d integer index of covariate to be smoothed along.

MC_variates vector of standard Gaussian rvs.

bw vector of bandwidths for the Gaussian kernel.

Value

matrix with ncol(X) columns and (nrow(X)length(MC_variates) length(bw)) rows.

ng_pseudo_response	Generate pseudo responses as in Ng 1994 to enable univariate score
	estimation by standard smoothing spline regression.

Description

Pseudo responses should be regarded as a computational tool, not as an estimate of the score itself.

Usage

```
ng_pseudo_response(x, w = rep(1, length(x)))
```

Arguments

x vector of covariates.w vector of weights.

Value

A vector of score estimates.

partially_linear 13

Examples

```
x <- seq(-3,3, length.out=50)
ng_pseudo_response(x)</pre>
```

partially_linear

Fit a doubly-robust partially linear regression using the DoubleML package and pre-tuned XGBoost regressions, for use in simulations.

Description

Fit a doubly-robust partially linear regression using the DoubleML package and pre-tuned XGBoost regressions, for use in simulations.

Usage

```
partially_linear(X, y, g_params, m_params)
```

Arguments

X matrix of covariates.y vector of responses.

g_params XGBoost hyperparameters for partially linear regression of y on X.

m_params XGBoost hyperparameters for predictor regression of the first column of X on

the others.

Value

List containing the linear parameter estimate and the corresponding standard error estimate.

resmooth

Resmooth the predictions of a fitted model

Description

Smooth the predictions of a fitted model by convolving them with a Gaussian kernel along the d'th covariate.

Usage

```
resmooth(
   fit,
   X,
   d = 1,
   bw = exp(seq(-1, 1))/(2 * sqrt(3)) * stats::sd(X[, d]),
   n_points = 101,
   sd_trim = 5
)
```

14 rmixture

Arguments

fit	a prediction function taking matrix input and returning a vector.
Χ	matrix of covariates.
d	integer index of covariate to be smoothed along.
bw	vector of bandwidths for the Gaussian kernel.
n_points	integer number of gridpoints to be used for convolution.
sd_trim	float number of standard deviations at which to trim the Gaussian distribution.

Value

List with the following elements. A list "pred" of the same length as "bw". Each element is a vector of predictions which are smooth with respect to the dth column of X, with smoothness corresponding to the respective element of "bw". A similar list "deriv" of corresponding vectors of first derivatives. Vectors "gridpoints" and "prob_weights" of equally spaced gridpoints and corresponding normal density weights. Vector "bw" of bandwidths used.

Examples

```
# Single bandwidth
X <- matrix(seq(-2,2,by=0.05))
fit <- function(Y){1*(rowMeans(Y)<0)}
sm <- resmooth(fit=fit, X=X, d=1, bw=0.2)
sm*pred[[1]]

# Multiple bandwidths simultaneously
X <- matrix(stats::rnorm(200), ncol=2)
y <- X[,1] + sin(X[,2]) + 0.5 * stats::rnorm(nrow(X))
df <- data.frame(y,X)
lm1 <- stats::lm(y~X1+sin(X2), data=df)
fit <- function(Y){as.vector(stats::predict(lm1, newdata=data.frame(Y)))}
resmooth(fit=fit, X=X, d=2)</pre>
```

rmixture

Symmetric mixture two Gaussian random variables.

Description

The resulting distribution is mean zero, variance one. $X \sim N(-\sqrt{1-sd^2}), sd^2)$ wp 0.5, $N(\sqrt{1-sd^2}), sd^2$ wp 0.5.

Usage

```
rmixture(n, sd)
```

Arguments

n number of observations. sd standard deviation of each Gaussian. rothenhausler_basis 15

Value

vector of length n

rothenhausler_basis

Generate the modified quadratic basis of Rothenhausler and Yu.

Description

Generate the modified quadratic basis of Rothenhausler and Yu.

Usage

```
rothenhausler_basis(X)
```

Arguments

Χ

matrix of covariates.

Value

List containing the modified basis matrices for regression and derivative estimation.

rothenhausler_yu

Estimate the average partial effect of using the debiased lasso method of Rothenhausler and Yu, using pre-tuned lasso penalties, for use in simulations.

Description

Estimate the average partial effect of using the debiased lasso method of Rothenhausler and Yu, using pre-tuned lasso penalties, for use in simulations.

Usage

```
rothenhausler_yu(X, y, f_lambda, m_lambda)
```

Arguments

X matrix of covariates. y vector of responses.

f_lambda lasso penalty for regression of y on X.

m_lambda lasso penalty for predictor regression of the first column of X on the others.

Value

List containing the linear parameter estimate and the corresponding standard error estimate.

16 sort_bin

simulate_data

Generate simulation data.

Description

If $ex_{\text{setting}} = "401k"$ then 401k data set is used for (X,Z). Otherwise:

Usage

```
simulate_data(n, ex_setting, f_setting)
```

Arguments

n integer number of samples. For "401k" ex_setting this is ignored and the whole

data set is used.

ex_setting string "normal", "mixture2", "mixture3", "logistic", "t4", "401k".

f_setting string "plm", "additive", "interaction".

Details

```
Z \sim N_9(0,Sigma), where Sigma_j = 1, Sigma_j
```

Value

list containing y, x, z. Additionally contains the population nuisance parameters evaluated on the data, and the sample version of the average partial effect.

Examples

```
simulate_data(100, "normal", "plm")
```

sort_bin

Sort and bin x within a specified tolerance, using hist().

Description

Sort and bin x within a specified tolerance, using hist().

Usage

```
sort_bin(x, tol = 1e-05, nmax = NULL)
```

spline_score 17

Arguments

	Χ	vector of covariates.
--	---	-----------------------

tol numeric tolerance, minimum distance between neighbouring points, to avoid

singularities.

nmax if specified, overrides tol as maximal number of unique points.

Value

list with three elements. x_sort is sorted and binned x, w is a vector of weights corresponding to the frequency of each bin, order is a vector specifying the ordering of x into the binned values sort_x.

spline_score	Univariate score estimation via the smoothing spline method of Cox
	1985 and Ng 1994.

Description

Univariate score estimation via the smoothing spline method of Cox 1985 and Ng 1994.

Usage

```
spline\_score(x, df = 5, tol = 0.001, nmax = NULL)
```

Arguments

x	vector of datapoints
df	vector of smoothing parameters for the non-parametric score estimator, corresponding to the effective degrees of freedom for a smoothing spline.
tol	numeric tolerance, minimum distance between neighbouring points, to avoid singularities.
nmax	if specified, overrides tol as maximal number of unique points.

Value

score function "rho" and derivative "drho", which take vector input and yield a vector of score estimates corresponding to each df (in a list if there are multiple df values). Also output the vector "df".

Examples

```
# Single bandwidth
x <- stats::rlogis(100)
spl <- spline_score(x, df=6)
spl$rho(x)
spl$drho(x)</pre>
```

z_correlated_normal

```
# Multiple bandwidths simultaneously
x <- stats::rt(n=100, df=4)
spl <- spline_score(x, df=c(2,5,10))
spl$rho(x)</pre>
```

z_correlated_normal $Generate \ n \ copies \ of \ Z \sim N_p(0,Sigma), \ where \ Sigma_jj = 1, \ Sigma_jk = corr for \ all \ j \ not \ equal \ to \ k.$

Description

Generate n copies of $Z \sim N_p(0,Sigma)$, where $Sigma_j = 1$, $Sigma_j = 1$, Si

Usage

```
z_correlated_normal(n, p, corr)
```

Arguments

n integer number of samples.
p integer number of dimensions.
corr float correlation in (-1,1).

Value

n by p matrix.

Index

```
basis_poly, 2
compare, 3
compare_evaluate, 3
compare_1m, 4
compare_partially_linear, 5
compare_rothenhausler, 5
cv_resmooth, 6
cv_spline_score, 7
drape, 8
fit_lasso_poly, 9
\texttt{fit\_xgboost}, \textcolor{red}{10}
MC_sums, 11
mixture_score, 11
new_X, 12
ng_pseudo_response, 12
partially_linear, 13
resmooth, 13
rmixture, 14
rothenhausler_basis, 15
rothenhausler_yu, 15
{\tt simulate\_data}, \\ 16
sort_bin, 16
spline_score, 17
{\tt z\_correlated\_normal, 18}
```