See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231739722

An intramolecular bromonium to thiiranium ion rearrangement

ARTICLE in THE JOURNAL OF ORGANIC CHEMISTRY · NOVEMBER 1983							
Impact Factor: 4.72 · DOI: 10.1021/jo00171a049							
CITATIONS	READS						
15	14						

2 AUTHORS, INCLUDING:

John Bland

United States Department of Agriculture, Ne...

76 PUBLICATIONS **1,658** CITATIONS

SEE PROFILE

and N-phenylbenzimidoyl fluoride (0.01 mol) were boiled in ethylene chloride as described for pyridine 1-oxide. 3-Picoline 1-oxide hydrofluoride separated (identified by its giving a positive color test for F_3^{-8} and by its giving 3-picoline 1-oxide on treatment with alkali). Again no ring-fluorinated product was detected by GLC. Chromatography on Sephadex LH 20 as before gave a mixture of 2- and 6-(N-benzoylanilino)-3-picoline [1.001 g (35%). Anal. Calcd for $C_{19}H_{16}N_2O$: N, 9.59. Found: N, 9.72] and benzanilide (0.493 g, 25%). The mixture of isomers was resolved by TLC on silica gel with benzene/ethanol (5:1 v/v) as the developer. The products were identical with authentic samples. By use of a densitometer to scan the TLC plates, the 2,3-/2,5-isomer ratio was found to be approximately 1:40 (±15%).

Acknowledgment. This work was supported by grants from the DHEW (NIH GM 25242) to R.A.A. and from the National Science Foundation/Polish Fundusz Marii Sklodowskiej Curie (Grant No. OIP-75-020490 to R.A.A. and P.T.) for which we are grateful.

Registry No. 1, 626-60-8; 2 (Ar = Ph), 20107-78-2; 2 (Ar = $2-CH_3C_6H_4$), 87281-82-1; 2 (Ar = 3-CH₃C₆H₄), 87281-83-2; 2 (Ar = $4-CH_3C_6H_4$), 56969-75-6; 2 (Ar = $2.4-(CH_3)_2C_6H_3$), 87281-84-3; 2 (Ar = $3.5 \cdot (CH_3)_2 C_6 H_3$), 87281-85-4; 2 (Ar = $2 \cdot OCH_3 C_6 H_4$), 87319-90-2; 2 (Ar = $3-OCH_3C_6H_4$), 87281-86-5; 2 (Ar = 4-6) $OCH_3C_6H_4$), 56969-76-7; 2 (Ar = 2,4-(OMe)₂C₆H₃), 87308-16-5; 2 (Ar = 3.5-(OMe)₂C₆H₃), 87281-87-6; 2 (Ar = 2-ClC₆H₄), 87281-88-7; 2 (Ar = $3-\text{ClC}_6\text{H}_4$), 87281-89-8; 2 (Ar = $2,4-\text{Cl}_2\text{C}_6\text{H}_3$), 87281-90-1; 2 (Ar = 3,4- $\text{Cl}_2\text{C}_6\text{H}_3$), 87281-91-2; 2 (Ar = 2- $\text{NO}_2\text{C}_6\text{H}_4$), 87281-92-3; 2 (Ar = $3-NO_2C_6H_4$), 87281-93-4; 3 (Ar = $3,4-Cl_2C_6H_3$), 6043-42-1; 3 (Ar = Ph), 93-98-1; 3 (Ar = $2-CH_3C_6H_4$), 7055-03-0; 3 (Ar = 3-CH₃C₆H₄), 23099-05-0; 3 (Ar = 4-CH₃C₆H₄), 6833-18-7; 3 (Ar = $2.4 - (CH_3)_2 C_6 H_3$), 5180-83-6; 3 (Ar = $2 - OCH_3 C_6 H_4$), 6833-21-2; 3 (Ar = $3-OCH_3C_6H_4$), 6833-23-4; 3 (Ar = $4-OCH_3C_6H_4$), 7465-88-5; 3 (Ar = 2,4-(OMe)₂C₆H₃), 1718-94-1; 3 (Ar = 3,5- $(OMe)_3C_6H_3$), 87282-04-0; 3 (Ar = 2-ClC₆H₄), 6833-13-2; 3 (Ar = $3-ClC_6H_4$), 6832-92-4; 3 (Ar = $2-NO_2C_6H_4$), 2385-27-5; 3 (Ar = $3-NO_2C_6H_4$), 2243-73-4; 3 (Ar = 2,4-(NO₂)₂C₆H₃), 22978-56-9; 3 $(Ar = 3.5-(NO_2)_2C_6H_3)$, 7461-51-0; 3 $(Ar = 3.5-Me_2C_6H_3)$, 87282-03-9; 3 $(Ar = 2.4-Cl_2C_6H_3)$, 6043-39-6; PhCCl=NPh, 4903-36-0; 2-CH₃C₆H₄CCl=NPh, 51619-51-3; 3-CH₃C₆H₄CCl= NPh, 87281-94-5; $4-CH_3C_6H_4CCl=NPh$, 34916-13-7; 2,4- $(CH_3)_2C_6H_3CCl$ =NPh, 87281-95-6; 3,5- $(CH_3)_2C_6H_3CCl$ =NPh, 59386-97-9; 87281-96-7; $2-OCH_3C_6H_4CCl=NPh$, OCH₃C₆H₄CCl=NPh, 87281-97-8; 4-OCH₃C₆H₄CCl=NPh, 38968-72-8; $2,4-(OMe)_2C_6H_3CCl=NPh$, 87281-98-9; 3,5-(OMe)₂C₆H₃CCl=NPh, 87281-99-0; 2-ClC₆H₄CCl=NPh, 59387-00-7; 3- ClC_6H_4CCl =NPh, 55832-04-7; 2,4- $Cl_2C_6H_3CCl$ =NPh, 87282-00-6; $3,4-Cl_2C_6H_3CCl=NPh$, 87282-01-7; 2-NO₂C₆H₄CCl=NPh, 57761-80-5; 3-NO₂C₆H₄CCl=NPh, 5509-90-0; $2,4-(NO_2)_2C_6H_3CCl=NPh$, 87282-02-8; $3,5-(NO_2)_2C_6H_3CCl=NPh$, 29955-47-3; pyridine oxide, 694-59-7.

An Intramolecular Bromonium to Thiiranium Ion Rearrangement

John M. Bland and Charles H. Stammer*

University of Georgia, Chemistry Department, Athens, Georgia 30602

Received March 1, 1983

In connection with our synthetic program, we had occasion to carry out the bromination of methyl allyl sulfide (1) at 0 °C in CCl₄ solution with the intention of obtaining the unsymmetrical dibromide 2. It was immediately clear from the ¹H NMR spectrum of the product that 2 was not formed and that the symmetrical structure 3 best accommodated the spectroscopic evidence. A ¹³C spectrum of the product showed only three peaks (Table I), while four peaks were expected for the unsymmetrical compound 2.

When 3 was heated in refluxing CDCl₃, four new peaks appeared in the ¹³C spectrum corresponding to structure 2. The equilibrium mixture (after 5 h) contained approximately 82% of 2 according to direct measurement of the methyl peak heights in the ¹³C spectrum at room temperature.

MeS
$$\frac{Br_2}{1}$$
 MeS $\frac{Br^+}{k_0}$ MeS $\frac{Br^-}{k_0}$ MeS $\frac{Br^-}{k_0}$ MeS $\frac{Br^-}{k_0}$ MeS $\frac{Br^-}{k_0}$ $\frac{A_2}{k_0}$ $\frac{A_2}{k_0}$

The explanation for this behavior must lie in the tremendous ease with which the "mustard" type of structure can form thiiranium ions. The fact that the symmetrical compound 3 is the kinetic product while the expected product 2 is the thermodynamic one requires that an intermediate thiiranium ion (5) be formed directly from the bromonium ion (4). To our knowledge there is no known case that invokes the rapid intramolecular conversion of a bromonium ion into a thiiranium ion. The transition state for such a rearrangement requires a spiro[2.2]pentane structure (6) which has the two three-membered rings in an orthogonal arrangement. This phenomenon $(4 \rightleftharpoons 5)$ is, however, required to explain the formation of 3 in this case. because it is not energetically feasible that the thermodynamically more stable product 2 is intermediate in the formation of 3 from 4. Quantitatively speaking, $k_1 > k_0$ and $k_2 > k_3$, but since $K_3 > K_2$, k_{-2} must be considerably greater than k_{-3} . For this reason, at temperatures greater than 25 °C, we expect bromination of 1 to give a mixture of 2 and 3. The rapid opening of the thiirane ring at the primary carbon of 5 giving 3 is consistent with what is known² about these reactions in nonpolar solvents such as CCl₄.

Since the proposed mechanism requires participation of the sulfur atom, we investigated bromination of allyl methyl sulfone³ (7) in which the sulfur atom should be unable to participate in the reaction. Four signals in both the ¹H and ¹³C NMR spectra of the product indicated that the sole bromo compound formed at room temperature was the unsymmetrical dibromo sulfone 8 (Table II). The

spectra of 8 were unchanged after a week at ambient temperature, indicating no tendency to rearrange. This result strengthens the proposed hypothesis that a bro-

^{(1) (}a) Streitweiser, A., Jr. "Solvolytic Displacement Reactions"; McGraw-Hill: New York, 1962; pp 16-18, 108-110. (b) Gundermann, K.-D. Angew. Chem. 1963, 75, 1194. (c) Capon, B. Q. Rev. 1964, 18, 45. (d) Ohishi, J.; Ikegami, S. Chem. Pharm. Bull. 1978, 26, 3211. (e) Sammes, P. G. Chem. Rev. 1976, 76, 115-117.

⁽²⁾ See Bolster, J.; Kellog, R. M. J. Chem. Soc., Chem. Commun. 1978, 630 and references therein.

⁽³⁾ Attempts to use methyl allyl sulfoxide led to mixtures containing 2 and 3 formed, apparently, from 1 produced by bromine reduction (see Aida, T.; Furukawa, N.; Oae, S. Tetrahedron Lett. 1973, 3853) of the starting sulfoxide.

Table I

	,_S	2 3 (1)	3 2	Br (2)	S-2	3 Br (3)
\mathbf{C}	¹ H	¹³ C ^a	¹H	¹³ C ^a	¹H	¹³ C ^a
C ₁ C ₂ C ₃ C ₄	2.05 (s) 3.15 (d) 6.1-5.6 (m) 5.25-5.0 (m)	14.1 (q) 36.7 (t) 133.9 (d) 116.7 (t)	2.25 (s) 3.15 (d of d) 4.5-4.15 (m) 4.0-3.7 (m)	16.6 (q) 40.3 (t) 50.5 (d) 36.0 (t)	2.25 (s) 3.2-2.9 (m) 3.75 (d of d)	15.1 (q) 49.1 (d) 33.9 (t)

^a Multiplicity (s, d, t, q) as determined from off-resonance decoupled spectra.

Table II

		3 (7)		Br (8)
C	¹H	¹³ C ^a	¹H	¹³ C ^a
C ₁ C ₂ C ₃ C ₄	2.90 (s) 3.80 (d) 6.2-5.75 (m) 5.6-5.4 (m)	38.7 (q) 58.7 (t) 124.9 124.3	3.1 (s) 4.1-3.4 (m) 4.8-4.5 (m) 4.1-3.4 (m)	42.8 (q) 60.0 (t) 41.9 (d) 35.9 (t)

 a Multiplicity (s, d, t, q) as determined from off-resonance decoupled spectra.

monium ion such as 4 is readily susceptible to intramolecular attack by an adjacent sulfur atom. Thus, careful analysis (preferably by ¹³C NMR) of the halogenation products formed from allylic sulfides is warranted in order to confirm the formation of the "expected" products.

Experimental Section

General Methods. ¹H NMR spectra were recorded on a Varian EM-390 spectrometer and ¹³C NMR spectra were recorded on a JEOL FX-90Q spectrometer. Chemical shifts are reported in parts per million(s) relative to internal tetramethylsilane.

Materials. Allyl methyl sulfide was obtained from Aldrich Chemical Co. and used without further purification. Bromine was procured from J.T. Baker and was distilled from P_2O_5 prior to use.

1,3-Dibromo-2-(methylthio)propane (3). To a solution of 1.00 g (11.3 mmol) of allyl methyl sulfide in 10 mL of CCl₄ cooled to -10 °C in an CCl₄/CO₂ bath was added dropwise a solution of 1.80 g (11.3 mmol) of Br₂ in 5 mL of CCl₄, keeping the temperature below -10 °C. A yellow precipitate formed, which dissolved on warming to room temperature, giving a colorless solution. The CCl₄ was removed in vacuo to give 2.80 g (100%) of 3 as a colorless liquid.

1,2-Dibromo-3-(methylthio) propane (2). A CDCl₃ (1 M) solution of 3 was heated at reflux for 5 h or 3 was heated without solvent for 1 h at 115 °C to give a mixture of 2 and 3 in an 82:18 ratio, as shown by 13 C NMR. Distillation via Kugelrohr at 98–102 °C (0.2 mmHg) gave a colorless liquid in 68% yield having a 2/3 ratio of 78:22.

Allyl Methyl Sulfone (7). An ice cold solution of 7.28 g (34.0 mmol) of NaIO₄ in 70 mL of H₂O containing 1.00 g (11.3 mmol) of allyl methyl sulfide stood at room temperature for 30 h and then at 5 °C for 2 days. The aqueous solution was decanted from the inorganic crystals and extracted with CH₂Cl₂ (4 × 15 mL). The combined organic phase was washed with 10 mL of H₂O and dried (MgSO₄), filtered, and concentrated in vacuo to give 0.77 g (56%) of a colorless liquid that was shown to be 93% sulfone and 7% sulfoxide by 13 C NMR.

2,3-Dibromo-1-propyl Methyl Sulfone (8). To a solution of 0.51 g (4.3 mmol) of 7 in 3 mL of CDCl₃, cooled to -60 °C, was added a solution of 0.68 g (4.3 mmol) of Br₂ in 2 mL of CDCl₃. After 10 min at room temperature, ¹³C NMR showed 100% 8, and concentration in vacuo gave 1.19 g (100%) of 8 as a light yellow liquid.

Anal. Calcd for $C_4H_8SO_2Br_2$: C, 17.16; H, 2.88; S, 11.45. Found: C, 17.37; H, 2.93; S, 11.34.

Acknowledgment. We are grateful for the financial support of NIDA Grant No. DA 02938.

Registry No. 1, 10152-76-8; 2, 86823-45-2; 3, 86823-46-3.

Cation Exchange Resin (Hydrogen Form) Assisted Decomposition of 1-Aryl-3,3-dialkyltriazenes. A Mild and Efficient Method for the Synthesis of Aryl Iodides

Nagichettiar Satyamurthy and Jorge R. Barrio*

Division of Biophysics, Departments of Radiological Sciences and Pharmacology, School of Medicine and Laboratory of Nuclear Medicine, Laboratories of Biomedical and Environmental Sciences, University of California, Los Angeles, Los Angeles, California 90024

Received April 25, 1983

The wide use of aromatic radioiodinated compounds in medicinal diagnostic procedures¹ has warranted the development of a mild and efficient method for the regiospecific incorporation of iodine into an aromatic nucleus. Access to these compounds commonly involve electrophilic halogenations by the in situ generation of radiohalonium ions, which generally require highly activated aromatic rings² and result in the formation of a mixture of isomers.³ Recent work involving the cleavage of aryl–silicon⁴ or aryl–boron⁵ bonds with electrophilic halonium ions has been directed toward developing more selective methods for this reaction.

On the other hand, nucleophilic substitutions by the Sandmeyer reaction, and its subsequent modifications,⁶

(1) Colombetti, L. G., Ed. "Principles of Radiopharmacology"; CRC Press: Boca Raton, FL, 1979. (b) Myers, W. G.; Anger, H. O.; Lamb, J. F.; Winchell, H. S. In "Radiopharmaceuticals and Labelled Compounds"; IAEA: Vienna, 1973; Vol. 2, p 249. (c) Heindel, N. D. In "The Chemistry of Radiopharmaceuticals"; Heindel, N. D., Burns, H. D., Honda, T., Brady, L. W., Eds.; Masson Publishing: New York, 1978; p 11. (2) (a) Wilbur, D. S.; Bentley, G. E.; O'Brien, H. A., Jr. J. Labelled Compd. Radiopharm. 1981, 18, 1693. (b) Malcolme-Lawes, D. J.; Massey, L. Parligonal Chem. 1981, 64, 391. (c) McFlyen, W. D. Parley.

(2) (a) Wilbur, D. S.; Bentley, G. E.; O'Brien, H. A., Jr. J. Labelled Compd. Radiopharm. 1981, 18, 1693. (b) Malcolme-Lawes, D. J.; Massey, J. J. Radioanal. Chem. 1981, 64, 281. (c) McElvany, K. D.; Barnes, J. W.; Welch, M. J. Int. J. Appl. Rad. Isot. 1980, 31, 679. (d) Braun, U.; Shulgin, A. T.; Braun, G.; Sargent, T., III J. Med. Chem. 1977, 20, 1543. (e) Fowler, J. S.; MacGregor, R. R.; Wolf, A. P.; Ansari, A. N.; Atkins, H. L. J. Med. Chem. 1976, 19, 356.

(3) Youfeng, H; Coenen, H. H.; Petzold, G.; Stocklin, G. J. Labelled Compd. Radiopharm. 1982, 19, 807.

(4) Wilbur, D. S.; Anderson, K. W.; Stone, W. E.; O'Brien, H. A., Jr. J. Labelled Compd. Radiopharm. 1982, 19, 1171.
(5) Kabalka, G. W.; Sastry, K. A. R.; Muralidhar, K. J. Labelled Compd. Radiopharm. 1982, 19, 795.

(6) (a) Sandmeyer, T. Chem. Ber. 1884, 17, 1633, 2650. (b) Gattermann, L. Ibid. 1890, 23, 1218. (c) For reviews on the Sandmeyer reaction and the attempts to improve the method, see the following: Hodgson, H. H. Chem. Rev. 1947, 40, 251. Cowdrey, W. A.; Davies, D. S. Q. Rev., Chem. Soc. 1952, 6, 358. Pfeil, E. Angew. Chem. 1953, 65, 155.