Chapter 8 Graph Theory 图论

Lu Han

hl@bupt.edu.cn

Definition 8.6.1 G_1 and G_2 are **isomorphic** (同构的) if there exist a one-to-one, onto functions f from the vertices of G_1 to the vertices of G_2 and a one-to-one, onto function g from the edges of G_1 to the edges of G_2 , so that an edge e is incident on e0 and e1 if and only if the edge e3 is incident on e4 and e5 is called an isomorphism of e6 onto e7 onto e8 (e9 is called an isomorphism of e9 onto e9 (e1 is incident on e9 is called an isomorphism of e9 onto e9 (e1 is incident on e9 is called an isomorphism of e9 onto e9 (e1 is incident on e9 is called an isomorphism of e9 onto e9 (e9 is incident on e9 is called an isomorphism of e9 onto e9 (e9 is incident on e9 is called an isomorphism of e9 onto e9 (e9 is incident on e9 is called an isomorphism of e9 onto e9 onto e9 is called an isomorphism of e9 onto e9 onto e9 is called an isomorphism of e9 onto e9 onto e9 is called an isomorphism of e9 onto e9 onto e9 is called an isomorphism of e9 onto e

Theorem 8.6.4 Graphs G_1 and G_2 are isomorphic if and only if for some ordering of their vertices, their **adjacency matrices** (邻接矩阵) are equal.

Theorem 8.6.4 Graphs G_1 and G_2 are isomorphic if and only if for some ordering of their vertices, their adjacency matrices (邻接矩阵) are equal.

Corollary 8.6.5 Let G_1 and G_2 be **simple graphs**. The following are equivalent:

- (a) G_1 and G_2 are isomorphic.
- (b) There is a one-to-one, onto function f from the vertex set of G_1 to the vertex set of G_2 satisfying the following: Vertices v and w are adjacent in G_1 if and only if the vertices f(v) and f(w) are adjacent in G_2 .

How to prove that two simple graphs Graphs G_1 and G_2 are not isomorphic?

Find a property of G_1 that G_2 does not have but that G_2 would have if G_1 and G_2 were isomorphic. Such a property is called an **invariant** (不变量).

A property P is an invariant if whenever G_1 and G_2 are isomorphic graphs: If G_1 has property P, G_2 also has property P.

- If G_1 and G_2 are isomorphic, then G_1 and G_2 have the same number of edges and the same number of vertices.
- If k is a positive integer, "has a vertex of degree k" is an invariant.
- If l is a positive integer, "has a simple cycle of length l" is an invariant.

Determine whether the graphs G_1 and G_2 are isomorphic.

Determine whether the graphs G_1 and G_2 are isomorphic.

Definition 8.7.1 A graph is **planar** (平面图) if it can be drawn in the plane without its edges crossing.

Application: In designing printed circuits it is desirable to have as few lines cross as possible; thus the designer of printed circuits faces the problem of planarity.

Exercise 1 Show that the following graph is planar by redrawing it so that no edges cross.

Definition 8.7.1 A graph is **planar** (平面图) if it can be drawn in the plane without its edges crossing.

If a connected, planar graph is drawn in the plane, the plane is divided into contiguous regions called **faces** (**m**).

A face is characterized by the cycle that forms its boundary.

Face A is bounded by the cycle (5, 2, 3, 4, 5).

Theorem 8.7.9 Euler's Formula for Graphs (图的欧拉公式)

If G is a connected, planar graph with e edges, v vertices, and f faces, then

$$f = e - v + 2.$$

The graph has f = 4 faces, e = 8 edges, and v = 6 vertices.

$$f = e - v + 2$$
.

Face A is bounded by the cycle (5, 2, 3, 4, 5).

Theorem 8.7.9 Euler's Formula for Graphs (图的欧拉公式)

If G is a connected, planar graph with e edges, v vertices, and f faces, then

$$f = e - v + 2$$
.

Whether graph $K_{3,3}$ is planar?

$$2e \geq 4f$$

Definition 8.7.3 If a graph G has a vertex v of degree 2 and edges (v, v_1) and (v, v_2) with $v_1 \neq v_2$, we say that the edges (v, v_1) and (v, v_2) are in **series (**串联的**)**. A **series reduction (**串联约减**)** consists of deleting the vertex v from the graph G and replacing the edges (v, v_1) and (v, v_2) by the edge (v_1, v_2) . The resulting graph G is said to be obtained from G by a series reduction. By convention, G is said to be obtainable from itself by a series reduction.

Definition 8.7.3 If a graph G has a vertex v of degree 2 and edges (v, v_1) and (v, v_2) with $v_1 \neq v_2$, we say that the edges (v, v_1) and (v, v_2) are in **series (**串联的**)**. A **series reduction (**串联约减**)** consists of deleting the vertex v from the graph G and replacing the edges (v, v_1) and (v, v_2) by the edge (v_1, v_2) . The resulting graph G is said to be obtained from G by a series reduction. By convention, G is said to be obtainable from itself by a series reduction.

Definition 8.7.5 Graph G_1 and G_2 are homeomorphic (同胚的) if G_1 and G_2 can be reduced to isomorphic graphs by performing a sequence of series reductions.

Theorem 8.7.7 Kuratowski's Theorem 库拉托夫斯基定理 A graph G is planar if and only if G does not contain a subgraph homeomorphic to K_5 and $K_{3,3}$.

Example 8.7.8

Exercise 1 Show that in any simple, connected, planar graph, $e \le 3v - 6$.

Exercise 2 Give an example of a simple, connected, nonplanar graph for which $e \le 3v - 6$.

Show that each graph is not planar by finding a subgraph homeomorphic to either K_5 or $K_{3,3}$.

Show that each graph is not planar by finding a subgraph homeomorphic to either K_5 or $K_{3,3}$.

Show that each graph is not planar by finding a subgraph homeomorphic to either K_5 or $K_{3,3}$.

