

המחלקה למדעי המחשב המחשב מיד בתמוז תשפ"ה 10/07/2025

09:00-12:00

אלגברה לינארית 2 למדמ"ח

מועד א'

מרצים: ד"ר זהבה צבי, ד"ר ירמיהו מילר.

תשפ"ה סמסטר ב'

השאלון מכיל 6 עמודים (כולל עמוד זה).

בהצלחה!

הנחיות למדור בחינות שאלוני בחינה

- לשאלון הבחינה יש לצרף מחברת.
- ניתן להשתמש במחשבון מדעי לא גרפי עם צג קטן.

חומר עזר

. אמורפים שאלון. (A4 עמודים בפורמט (A4 עמודים הקורס (A4 עמודים הקורס).

אחר / הערות יש לענות על השאלות באופן הבא:

- יש לנמק היטב כל שלב של פתרון. תשובה ללא הסבר וללא נימוק, אפילו נכונה, לא תתקבל.
 - . יש לפתור 4 מתוך 5 השאלות הבאות. משקל כל שאלה 25 נקודות.
 - סדר התשובות אינו משנה, אך יש לרשום ליד כל תשובה את מספרה.
 - יש לרשום בראש המחברת איזה שאלות לבדוק.

שאלה 1 (25 נקודות)

(16 נק') (א

$$J=P^{-1}AP$$
 -כך ש- P כך ומטריצה הפיכה $A=\begin{pmatrix} 5 & 4 & 3 \\ -1 & 0 & -3 \\ 1 & -2 & 1 \end{pmatrix}$ נתונה מטריצה $A=\begin{pmatrix} 5 & 4 & 3 \\ -1 & 0 & -3 \\ 1 & -2 & 1 \end{pmatrix}$

ב) (3 נק')

 $p_B(x)=(x-1)^3(x-2)^3$ תהי מטריצה עבורה הפולינום האופייני הוא $B\in\mathbb{R}^{6 imes 6}$ והפולינום המינימלי הוא $m_B(x)=(x-1)^2(x-2)$ מצאו את כל צורות ז'ורדן האפשריות של

(3 נק')

 $\operatorname{tra}(A)=i$ המקיימת המקיימת מטריצה $A\in\mathbb{C}^{n\times n}$ הוכיחו או הפריכו: קיימת מטריצה

ד) (3 נק')

 $A^2=I$ אז $A\in\mathbb{C}^{n imes n}$ או הפריכו: אם הפריכו: אל לכסינה וכל הערכים העצמיים אל לכסינה או הוכיחו

שאלה 2 (25 נקודות)

א) נתונה העתקה ליניארית $T:\mathbb{R}^{2 imes2} o\mathbb{R}^{2 imes2}$ המוגדרת ע"י אונה העתקה ליניארית

$$T(A) = \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix} A$$

 $A \in \mathbb{R}^{2 imes 2}$ לכל מטריצה

האם ההעתקה ניתנת ללכסון? במידה וכן, מצאו בסיס שבו המטריצה המייצגת של ההעתקה היא מטריצה אלכסונית. במידה ולא, נמקו מדוע.

יהי ענו על הסעיפים בת"ל. ענו על הסעיפים ויהיו $\mathbb R$ ויהיו שלושה וקטורים שונים עונים $u_1,u_2,u_3\in V$ בת"ל. ענו על הסעיפים ב' וג' הבאים:

- בת"ל. $\{u_1,u_2,u_3,w\}$ המקיים $v \neq 0 \in V$ הוכיחו כי הקבוצה $\{u_1,u_2,u_3,w\}$ בת"ל.
 - . אינה אורתוגונלית. $\{u_1,u_2,u_3\}$ נתון כי $\{u_1,u_2,u_3\}$ אינה אורתוגונלית. $\langle u_1-u_3,u_2\rangle=\langle u_1+u_2,u_1\rangle$ אינה אורתוגונלית.

שאלה 3 (25 נקודות)

- א) (14 נקי) הוכיחו כי המטריצה $A=\begin{pmatrix}11&-8&4\\-8&-1&-2\\4&-2&-4\end{pmatrix}$ לכסינה אורתוגונלית ומצאו מטקיצה אורתוגונלית (16 נקי) הוכיחו כי המטריצה $A=\begin{pmatrix}11&-8&4\\4&-2&-4\end{pmatrix}$ נמקו היטב את תשובתכם. $P^tAP=D$ ש
- ב) אוניטרית אם ורק אם B לכסינה אוניטרית אמודה לעצמה אוניטרית פי מטריצה מטריצה אוניטרית $B\in\mathbb{C}^{n\times n}$ הוכיחו כי מטריצה $B^2=I$ ומקיימת

שאלה <u>4</u> (25 נקודות)

- - .|A| מטריצה מטריצה את מצאו את מצאו את מטריצה המקיימת $A\in\mathbb{C}^{n imes n}$ מטריצה מטריצה (6 נקודות מטריצה המקיימת און מטריצה המקיימת מטריצה המקיימת און מטריצה המקיימת מטריצה המטריצה המטריצה
- $A^2=I$ עבור $k\geq 1$ כלשהו. הוכיחו כי $A\in\mathbb{C}^{n imes n}$ מטריצה הרמיטית ונניח כי $A^k=I$ עבור
- וקטורים u_1,u_2 וכן $A\in\mathbb{R}^{n\times n}$ תהי שונים של א ערכים עצמיים אורית ויהיו ויהיו $A\in\mathbb{R}^{n\times n}$ תהי אורתו. אורתוגונליים. אורתוגונליים המתאימים ל- λ_1,λ_2 הוכיחו כי λ_1,λ_2 אורתוגונליים.

V אופרטור במרחב וקטורי T:V o V יהי (בקודות) אופרטור במרחב וקטורי

הוכיחו או הפריכו ע"י דוגמה נגדית את הענות הבאות:

- T שווה ל- שווה T אם אוניטרי אז הערך מוחלט של כל ערך עצמי של אוניטרי אז הערך מוחלט של אוניטרי אז אוניטרי אז הערך מוחלט של אוניטרי איניטרי איניטרי אוניטרי איניטרי איניטרי
 - ב) אם T צמוד לעצמו. T צמוד לעצמו.
 - . שמור. V_{λ} יהי V_{λ} יהי λ ערך עצמי של T, אז המרחב העצמי λ יהי λ יהי λ
 - . מדומה T אנטי הרמיטי, אז כל ערך עצמי של T מדומה טהור T

 $|\langle u, \mathbf{v} \rangle| \le ||u|| \cdot ||\mathbf{v}||$

 $||u + v|| \le ||u|| + ||v||$

 \mathbb{R} מרחב אוקלידי: מרחב מכפלה פנימית מעל

 $\mathbb C$ מרחב אוניטרי: מרחב מכפלה פנימית מעל

 $:\mathbb{R}$ מעל V מעל ווקטורי מכפלה פנימית במרחב $: \lambda \in \mathbb{R}$ ולכל סקלר $u, \mathbf{v}, w \in V$ לכל

$$\langle u, \mathbf{v} \rangle = \langle \mathbf{v}, u \rangle$$
 בימטריות: (1

$$\langle u+{\bf v},w\rangle=\langle u,w\rangle+\langle {\bf v},w\rangle$$
 ביניאריות: (2 $\langle \lambda u,{\bf v}\rangle=\lambda\,\langle u,{\bf v}\rangle$

$$\langle u,u \rangle \geq 0.$$
 ביות: (3
$$\langle u,u \rangle = 0 \quad \Leftrightarrow \quad u=0$$

 $:\mathbb{C}$ מעל V מעל ווקטורי מכפלה פנימית במרחב $\lambda \in \mathbb{C}$ ולכל סקלר $u, \mathbf{v}, w \in V$ לכל

$$\langle u, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, u \rangle}$$
 ברמיטיות:

$$\langle u+{f v},w
angle=\langle u,w
angle+\langle {f v},w
angle$$
 ניניאריות: (2
$$\langle \lambda u,{f v}
angle=\lambda\,\langle u,{f v}
angle$$

$$\langle u,u \rangle \geq 0$$
 ביות: (3
$$\langle u,u \rangle = 0 \quad \Leftrightarrow \quad u=0$$

:אי-שוויון קושי שוורץ

:אי-שוויון המשולש

$$u_1,\ldots,u_n$$
 היטל אורתוגונלי של ווקטור v אוקטור v היטל אורתוגונלי אורתוגונלי $P_U(\mathbf{v})=rac{\langle \mathbf{v},u_1
angle}{\|u_1\|^2}u_1+rac{\langle \mathbf{v},u_2
angle}{\|u_2\|^2}u_2+\cdots+rac{\langle \mathbf{v},u_n
angle}{\|u_n\|^2}u_n$.

תהליך גרם שמידט לבניית בסיס אורתוגונלי:

$$u_{2} = \mathbf{v}_{2} - \frac{\langle \mathbf{v}_{2}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1}$$

$$u_{3} = \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} - \frac{\langle \mathbf{v}_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} u_{2}$$

 $u_n = \mathbf{v}_n - \frac{\langle \mathbf{v}_n, u_1 \rangle}{\|u_1\|^2} u_1 - \frac{\langle \mathbf{v}_n, u_2 \rangle}{\|u_2\|^2} u_2 - \dots - \frac{\langle \mathbf{v}_n, u_{n-1} \rangle}{\|u_{n-1}\|^2} u_{n-1}$.

 $Au = \lambda u$

אם: $A\in\mathbb{F}^{n imes n}$ אם: ערך עצמי ו- $u\in\mathbb{F}^n$ ווקטור עצמי (u
eq 0) אם ווקטור עצמי ו $\lambda\in\mathbb{F}$

 $T(u) = \lambda u$

אם: T:V o V אופרטור עצמי (u
eq 0) אם: $u\in V$ אם: $\lambda\in\mathbb{F}$

 $p_A(\lambda) = |\lambda I - A|$

 $A \in \mathbb{F}^{n imes n}$ פולינום אופייני של מטריצה ריבועית

יכך ש: $u \neq 0$ כאשר $u \in \mathbb{F}^n$ כל וקטור λ הוא כל שיייך לערך ששייך ששייך לערך אשיי של מטריצה ריבועית $A \in \mathbb{F}^{n \times n}$ $Au = \lambda u$.

יכך שנייך עצמי $u \neq 0$ כאשר כל וקטור אופרטור $T: V \to V$ מרחב עצמי של אופרטור שטייך לערך עצמי לערך אופרטור $T(u) = \lambda u$.

בסיס אורתונורמלי:

יהי את מקיים א $\{b_1,\dots,b_n\}$ מסומן מסומלי, בסיס אורתונורמלי. בסיס מנימית מעל מכפלה מרחב עV $\langle b_i, b_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}, \quad 1 \leq i, j \leq n.$

:כל וקטור $u \in V$ ניתן לרשום בבסיס אורתונורמליי $b_i
angle b_i$

$$u = \sum_{i=1}^{n} \langle u, b_i \rangle b_i$$

סימון חלופי:

$$[u]_{B} = \begin{pmatrix} \langle u, b_{1} \rangle \\ \langle u, b_{2} \rangle \\ \vdots \\ \langle u, b_{i} \rangle \\ \vdots \\ \langle u, b_{n} \rangle \end{pmatrix}_{B}$$

יהי B אופרטור. המצרטיצה המייצגת על פי בסיס דיהי T:V o V

$$[T]_{B} = \begin{pmatrix} \langle T(b_{1}), b_{1} \rangle & \langle T(b_{2}), b_{1} \rangle & \cdots & \langle T(b_{i}), b_{1} \rangle & \cdots & \langle T(b_{n}), b_{1} \rangle \\ \langle T(b_{1}), b_{2} \rangle & \langle T(b_{2}), b_{2} \rangle & \cdots & \langle T(b_{i}), b_{2} \rangle & \cdots & \langle T(b_{n}), b_{2} \rangle \\ \vdots & \vdots & & \vdots & & \vdots \\ \langle T(b_{1}), b_{i} \rangle & \langle T(b_{2}), b_{i} \rangle & \cdots & \langle T(b_{i}), b_{i} \rangle & \cdots & \langle T(b_{n}), b_{i} \rangle \\ \vdots & \vdots & & \vdots & & \vdots \\ \langle T(b_{1}), b_{n} \rangle & \langle T(b_{2}), b_{n} \rangle & \cdots & \langle T(b_{i}), b_{n} \rangle & \cdots & \langle T(b_{n}), b_{n} \rangle \end{pmatrix}.$$

 $[T]_{ij} = \langle T(b_j), b_i
angle$. היא הבסיס פי על פי המייצגת של המטריצה המייצגת של ij היא כלומר כלומר

ההגדרה של אופרטור הצמוד:

$$\langle T(u), w \rangle = \langle u, T^*(w) \rangle$$
 . (*1)

מההגדרה (1*) נובע:

$$\langle T^*(u), w \rangle = \langle u, T(w) \rangle \tag{*2}$$

 $\{b_1,\cdots,b_n\}$ נוסחה ל- $T^*(u)$ ו- $T^*(u)$ במונחי בסיס אורתונורמלי

$$T(u) = \sum_{i=1}^{n} \langle T(u), b_i \rangle b_i \tag{*3}$$

$$T^*(u) = \sum_{i=1}^n \langle u, T(b_i) \rangle b_i$$
 (*4)

משפט:

$$T^{**} = T \tag{*5}$$

משפט: המטריצה המייצגת של אופרטור אווד T^* נתונה ע"י משפט: $[T^*] = [T]^*$ (*6)

תהי $A \in \mathbb{F}^{n \times n}$ מטריצה ריבועית.

$$A=A^*$$
 :הרמיטית A אנטי-הרמיטית A אנטי-הרמיטית A אוניטרית A אוניטרית A אורתוגונלית A $AA^t=I=A^tA$: גורמלית A

A = [T] אופרטור המייצגת נסמן נסמן מרחב מעל מרחב מעל אופרטור אופרטור T: V o Vיהי

$$T=T^*$$
 אוד לעצמו: T צמוד לעצמו: $T^*=-T$ אנטי-הרמיטי: T אנטי-הרמיטי: T אוניטרי: T אוניטרי: T אוניטרי: T אוניטרי: T עורמלי: $T^*=T^*T$ \Leftrightarrow $AA^*=A^*A$

מטריצה D אלכסונית ומטריצה אוניטרית אם קיימת אוניטרית אם לכסינה אלכסונית אלכסונית אוניטרית אוניטרית

מטריצה D אלכסונית ומטריצה אורתוגונלית אם קיימת אם קיימת אורתוגונלית לכסינה $A\in\mathbb{F}^{n\times n}$ מטריצה אורתוגונלית אורתוגונלית אורתוגונלית אורתוגונלית אורתוגונלית אורתוגונלית האורתוגונלית אורתוגונלית אורתוגונלית

פתרונות

שאלה 1

שאלה 2

(N

$$T\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right) = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} \qquad \Rightarrow \quad [T(e_1)]_E = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \end{pmatrix}$$

$$T\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right) = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} \qquad \Rightarrow \quad [T(e_2)]_E = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \end{pmatrix}$$

$$T\left(\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\right) = \begin{pmatrix} -1 & 0 \\ -2 & 0 \end{pmatrix} \qquad \Rightarrow \quad [T(e_3)]_E = \begin{pmatrix} -1 \\ 0 \\ -2 \\ 0 \end{pmatrix}$$

$$T\left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right) = \begin{pmatrix} 0 & -1 \\ 0 & -2 \end{pmatrix} \qquad \Rightarrow \quad [T(e_4)]_E = \begin{pmatrix} 0 \\ -1 \\ 0 \\ -2 \end{pmatrix}$$

לכן המטירצה המייצגת הסנדרטית היא

$$[T] = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 2 & 0 & -2 & 0 \\ 0 & 2 & 0 & -2 \end{pmatrix} .$$

הפולינום האופייני של T הוא:

$$p_{T}(x) = \begin{vmatrix} x - 1 & 0 & 1 & 0 \\ 0 & x - 1 & 0 & 1 \\ -2 & 0 & x + 2 & 0 \\ 0 & -2 & 0 & x + 2 \end{vmatrix}$$

$$= (x - 1)^{2}(x + 2)^{2} + 2(x - 1)(x + 2) + 2((x - 1)(x + 2) + 2)$$

$$= (x - 1)(x + 2)[(x - 1)(x + 2) + 2] + 2[(x - 1)(x + 2) + 2]$$

$$= [(x - 1)(x + 2) + 2]^{2}$$

$$= [x^{2} + x]^{2}$$

$$= [x(x + 1)]^{2}$$

$$= x^{2}(x + 1)^{2}.$$

 $\lambda=0$ מרחב עצמי של

$$\begin{aligned} \operatorname{Nul}\left(A - 0 \cdot I\right) &= \operatorname{Nul} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 2 & 0 & -2 & 0 \\ 0 & 2 & 0 & -2 \end{pmatrix} & \xrightarrow{R_3 \to R_3 - 2R_1} & \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & -2 \end{pmatrix} & \xrightarrow{R_4 \to R_4 - 2R_2} & \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ V_0 &= \operatorname{span} \left\{ u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\} \ . \end{aligned}$$

 $\lambda = -1$ מרחב עצמי של

$$\operatorname{Nul}(A+I) = \operatorname{Nul}\begin{pmatrix} 2 & 0 & -1 & 0 \\ 0 & 2 & 0 & -1 \\ 2 & 0 & -1 & 0 \\ 0 & 2 & 0 & -1 \end{pmatrix} \xrightarrow{R_3 \to R_3 - R_1} \begin{pmatrix} 2 & 0 & -1 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 \end{pmatrix} \xrightarrow{R_4 \to R_4 - R_2} \begin{pmatrix} 2 & 0 & -1 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$V_{-1} = \operatorname{span} \left\{ u_3 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \ u_4 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \end{pmatrix} \right\} \ .$$

לכן בסיס שבו במטריצה המייצגת של ההעתקה היא אלכסונית הוא:

$$w_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
, $w_2 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, $w_3 = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$, $w_4 = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$.

נוכיח כי

$$\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 + \alpha_4 w = 0 \tag{#}$$

מתקיים אם ונקבל המכפלה עם המכפלה נקח המכפלה מוקה. ראשית מ $lpha_1=lpha_2=lpha_3=lpha_4=0$ מתקיים אם ורק

$$\langle w, \alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 + \alpha_4 w \rangle = \langle w, 0 \rangle = 0$$
.

נשתמש בתכונת ליניאריות של המכפלה פנימית כדי להרחיב את האגף השמאול באפן הבא:

$$\langle w, \alpha_1 u_1 \rangle + \langle w, \alpha_2 u_2 \rangle + \langle w, \alpha_3 u_3 \rangle + \langle w, \alpha_4 w \rangle = 0 \tag{*1}$$

כעת נוציא את הסקלר החוץ בכל מכפלה פנימית, בהתאם עם התכונת ליניאריות ונקבל ש:

$$\alpha_1 \langle w, u_1 \rangle + \alpha_2 \langle w, u_2 \rangle + \alpha_3 \langle w, u_3 \rangle + \alpha_4 \langle w, w \rangle = 0 \tag{*2}$$

לכן (*2) שווים ל- k=1,2,3 לכל $\langle u_k,w\rangle=0$

$$\alpha_4 \langle w, w \rangle = 0 \tag{*3}$$

(#) ממשוואה (**) ש- $lpha_4=0$ נעיב (*3) נתון בשאלה כי $(w,w) \neq 0 \leftarrow w \neq 0$ נובע ממשוואה (**) נובע בשאלה כי $(w,w) \neq 0 \leftarrow w \neq 0$ נובע משוואה (**) נוקבל ש-

$$\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = 0 \tag{*4}$$

אבל נתון בשאלה כי השלושה וקטורים u_1,u_2,u_3 הם בלתי תלויים לינארית לכן (*4) מתקיים אם ורק אם . $lpha_1=lpha_2=lpha_3=0$

הוכחנו כי (#) מתקיים אם ורק אם $\alpha_1=\alpha_2=\alpha_3=\alpha_4=0$ הוכחנו כי (#) מתקיים אם ורק אם u_1,u_2,u_3,w הוכחנו כי (#) הם בלתי תלויים ליניארית.

שאלה 3

(16 נק') א

$$A = \begin{pmatrix} 11 & -8 & 4 \\ -8 & -1 & -2 \\ 4 & -2 & -4 \end{pmatrix} \quad \Rightarrow \quad A^t = \begin{pmatrix} 11 & -8 & 4 \\ -8 & -1 & -2 \\ 4 & -2 & -4 \end{pmatrix} = A$$

. סימטרית אורתוגונלית אורתוגונלית $A \Leftarrow A^t = A$

$$p_{A}(x) = |xI - A|$$

$$= \begin{vmatrix} x - 11 & 8 & -4 \\ 8 & x + 1 & 2 \\ -4 & 2 & x + 4 \end{vmatrix}$$

$$= (x - 11) \begin{vmatrix} x + 1 & 2 \\ 2 & x + 4 \end{vmatrix} - 8 \begin{vmatrix} 8 & 2 \\ -4 & x + 4 \end{vmatrix} + 4 \begin{vmatrix} 8 & x + 1 \\ -4 & 2 \end{vmatrix}$$

$$= (x - 11) (x^{2} + 5x) - 8 (8x + 40) - 4 (4x + 20)$$

$$= x(x - 11) (x + 5) - 64 (x + 5) - 16 (x + 5)$$

$$= x(x - 11) (x + 5) - 80 (x + 5)$$

$$= (x^{2} - 11x - 80) (x + 5)$$

$$= (x - 16) (x + 5) (x + 5)$$

$$= (x - 16) (x + 5)^{2}$$

$\lambda=16$ מרחב עצמי של

$$\operatorname{Nul}(A-16I) = \begin{pmatrix} -5 & -8 & 4 \\ -8 & -17 & -2 \\ 4 & -2 & -20 \end{pmatrix} \xrightarrow{R_2 \to 5R_2 - 8R_1} \begin{pmatrix} -5 & -8 & 4 \\ 0 & -21 & -42 \\ 0 & -42 & -84 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - 2R_2} \begin{pmatrix} -5 & -8 & 4 \\ 0 & -21 & -42 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \to \frac{-1}{21}R_2} \begin{pmatrix} -5 & -8 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1 + 8R_2} \begin{pmatrix} -5 & 0 & 20 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 \to \frac{-1}{5}R_1} \begin{pmatrix} 1 & 0 & -4 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 \to \frac{-1}{5} R_1} \begin{pmatrix} 1 & 0 & -4 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$V_{16} = \operatorname{span}\left\{ \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} \right\} \setminus \{0\}$$

$\lambda = -5$ מרחב עצמי של

$$\operatorname{Nul}(A+5I) = \begin{pmatrix} 16 & -8 & 4 \\ -8 & 4 & -2 \\ 4 & -2 & 1 \end{pmatrix} \xrightarrow{\substack{R_2 \to 2R_2 + R_1 \\ R_3 \to 4R_3 - R_1 \\ }} \begin{pmatrix} 16 & -8 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 \to \frac{1}{4}R_1} \left(\begin{array}{ccc} 4 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

$$V_{-5} = \operatorname{span} \left\{ \begin{pmatrix} 1/2 \\ 1 \\ 0 \end{pmatrix} , \begin{pmatrix} -1/4 \\ 0 \\ 1 \end{pmatrix} \right\} \backslash \{0\} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} , \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} \right\} \backslash \{0\}$$

נסמן

$$\mathbf{v}_1 = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$$
 , $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$.

נפעיל האלגוריתם של גרם שמידט כדי למצוא בסיס אורתוגונלי:

$$u_{1} = \mathbf{v}_{1} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} .$$

$$u_{2} = \mathbf{v}_{2} - \frac{\langle \mathbf{v}_{2}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} - \frac{0}{21} \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$$

$$u_{3} = \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} - \frac{\langle \mathbf{v}_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} u_{2} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} - \frac{0}{21} \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} - \frac{-1}{17} \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} = \frac{1}{17} \begin{pmatrix} 16 \\ 34 \\ 4 \end{pmatrix}$$

לכן מצאנו בסיס אורתוגונלי:

$$u_1 = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$, $u_3 = \begin{pmatrix} 8 \\ 17 \\ 2 \end{pmatrix}$.

בסיס אורתונוגמלי:

$$\hat{u}_1 = \frac{1}{\sqrt{21}} \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$$
, $\hat{u}_2 = \frac{1}{\sqrt{17}} \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$, $\hat{u}_3 = \frac{1}{\sqrt{357}} \begin{pmatrix} 8 \\ 17 \\ 2 \end{pmatrix}$.

\Leftarrow כיוון

נניח כי B צמודה לעצמה וגם B אוניטרית.

$$.BB^* = I$$
 וגם $B = B^* \Leftarrow$ (1)

ממשפט הלכסון אוניטרית לכסינה אוניטרית נורמלית אוניטרית נורמלית אוניטרית אוניטרית ממשפט לכסינה אוניטרית פורמלית מכיוון ש- $B \Leftarrow$

(3)

$$BB$$
 $\stackrel{B}{=}$ $\stackrel{(1)}{=}$ BB^* $\stackrel{(1)}{=}$ אוניטרי BB^* $\stackrel{(1)}{=}$ BB^*

לכן $B^2=I$ כנדרש.

כנדרש.

 \Rightarrow כיוון

. נניח כי $B^2=I$ וגם B לכסינבה אוניטרית

$$AB=QDQ^*$$
 -וגם קיימת Q אוניטרית ו- $B^2=I$ אלכסונית כך ש $B^2=I$

(2)

$$I=B^2=QDQ^*QDQ^*=QD^2Q^*\quad \Rightarrow \quad D^2=Q^*IQ=Q^*Q=I\ .$$

 $\lambda_i = \pm 1$ כשאר $D = \operatorname{diag}\left(\lambda_1, \quad \cdots \quad \lambda_n\right)$ לכן

 $D=D^* \Leftarrow D$ ממשית ואלכסונית ממשית ואלכסונית $D \Leftarrow D$

(4) לכן

$$B^* \stackrel{(1)}{=} (QDQ^*)^* = QD^*Q^* \stackrel{(3)}{=} QDQ^* = B$$

לכן $B=B^*$ ולכן $B=B^*$

(5)

$$BB^* \stackrel{(1)}{=} QDQ^*(QDQ^*)^* = QDQ^*QD^*Q = QDD^*Q \stackrel{(3)}{=} QD^2Q^* \stackrel{(2)}{=} QQ^* = I$$

לכן B אוניטרית, כנדרש.

שאלה 4

שאלה 5

אט ערך עצמי של Tהשייך לוקטור עצמי איי ז"א גניח ש- א זוניח אופרטור אופרטור אופרטור אופרטור אוניטרי, ונניח איי ז"א די אופרטור איייע אייייע איייע א

$$\langle T({
m v}), T({
m v})
angle = \langle \lambda {
m v}, \lambda {
m v}
angle \qquad (T$$
 וקטור עצמי עצמי על וקטור אוקטור פנימית) ב $\lambda \langle {
m v}, \lambda {
m v}
angle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}
angle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}
angle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}
angle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}
angle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}
angle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}
angle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}
angle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}
angle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}
angle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}
angle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}
angle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}
angle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}) \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v} \rangle \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}) \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}) \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}) \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}) \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}) \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}) \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}) \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}) \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}) \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}) \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}) \qquad ({
m dist} \lambda \langle {
m v}, \lambda {
m v}) \qquad ({
m dist} \lambda \langle {
m v},$

מצד שני

$$\langle T({
m v}),T({
m v})
angle=\langle {
m v},T^*T({
m v})
angle$$
 (הגדרה של אופרטור הצמוד
$$=\langle {
m v},I({
m v})
angle$$
 (אוניטרי T)
$$=\langle {
m v},{
m v}\rangle$$

נשווה ביניהם:

$$\lambda \bar{\lambda} \, \langle {
m v}, {
m v}
angle = \langle {
m v}, {
m v}
angle \quad \Rightarrow \quad (\lambda \cdot \bar{\lambda} - 1) \, \langle {
m v}, {
m v}
angle = 0 \; .$$
 . $|\lambda|^2 = 1 \Leftarrow \lambda \bar{\lambda} = 1 \Leftarrow (\lambda \cdot \bar{\lambda} - 1) = 0 \Leftarrow \langle {
m v}, {
m v}
angle \neq 0 \Leftarrow {
m v} \neq 0 \Leftarrow {
m v}$ וקטור עצמי v

ב) הטענה לא נכונה. דוגמה נגדית:

האופרטור $T:\mathbb{R}^2 o \mathbb{R}^2$ המוגדר:

$$T(u) = Au$$
, $A = \begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix}$

 $u \in \mathbb{R}^2$ לכל

$$[T] = \begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} , \qquad [T]^* = \begin{pmatrix} 0 & 1 \\ -i & 0 \end{pmatrix}$$
$$[T][T]^* = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = [T][T]^*$$

לכן T לא צמוד לעצמו. $[T] \neq [T]^*$ לכן לורמלי אבל

מתקיים $u \in V_\lambda$ אם ערך עצמי של T אזי לכל וקטור עצמי λ אם λ

$$T(u) = \lambda u \in \operatorname{span} \{u\} \subseteq V_{\lambda}$$

 $T(u) \in V_{\lambda}$ מתקיים $u \in V_{\lambda}$ לכן לכל

(ל נק') (ד

שיטה 1

נניח ש- T השייך לוקטור עצמי יע ז"א גער ערך עצמי אופרטור צמוד לעצמו, ונניח אופרטור איינע איינע איינע איינער אופרטור איינע א

מצד שני

$$\langle T(\mathbf{v}),\mathbf{v} \rangle = \langle \mathbf{v},T^*(\mathbf{v}) \rangle$$
 (ד. הצמוד) אופרטור הצמוד) אנטי-הרמיטי) אנטי-הרמיטי (ד. אנטי-הרמיטי) אנטי-הרמיטי (ד. אנטי-הרמיטי) אנטי-הרמיטי (ד. וקטור עצמי של \mathbf{v}) אוקטור עצמי של (ד. עצמי של מכפלה פנימית) (ד. אנימית) אופריות חלקית של מכפלה פנימית)

נשווה ביניהם:

$$\lambda \left< \mathbf{v}, \mathbf{v} \right> = -\bar{\lambda} \left< \mathbf{v}, \mathbf{v} \right> \quad \Rightarrow \quad (\lambda + \bar{\lambda}) \left< \mathbf{v}, \mathbf{v} \right> = 0 \; .$$

$$.\lambda = -\bar{\lambda} \Leftarrow (\lambda + \bar{\lambda}) = 0 \Leftarrow \left< \mathbf{v}, \mathbf{v} \right> \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftrightarrow \mathbf{v} \neq 0 \Leftrightarrow$$

שיטה 2

כל אופרטור ניתן לרשום בצורה

$$T = T_1 + T_2$$

. כאשר T_1 אופרטור הרמיטי ו- אופרטור אנטי-הרמיטי ז"א אופרטור הרמיטי וו- ז"א אופרטור אנטי

$$T^* = T_1 - T_2$$