Tacotron: End-to-end speech synthesizer

Mahshid Alinoori

Table of Contents

Introduction	01
Architecture	02
Experiments	03
Conclusion	04

Introduction

of various models for capturing linguistic features, acoustic features, and synthesizing which are trained independently.

They suffer from drawbacks such as compounded errors, feature engineering requirements, and more difficult application of conditioning.

End-to-end systems
makes all these
steps much easier,
they are more robust
to the error and can
be more adaptive to
new data.

Tacotron is introduced as a fully end-to-end system to overcome the limitations of previous models and does not need any pre-training and is trained from scratch.

Tacotron Architecture

Model: seq2seq with

attention

Consists of: an

encoder, an

attention-based

decoder, and a

post-processing net

Input: characters

Outputs: spectrogram

frames

CBHG Module

Used for: extracting presentation from sequences.

1D convolutional banks: K sets of 1-D filters and model local and contextual information similar to k-grams Highway layer: multi-layer highway networks to extract high-level features.

Bidirectional GRU RNN: for extracting sequential features

Encoder

Used for: extracting sequential representation of text

Input: character sequences represented as 1-hot vectors and embedded

Pre-net: used as non-linear transformation by a bottleneck layer with dropouts

CBHG: generates final encoder output

Decoder

Model: content-based tanh attention decoder Implemented as: GRUs with residual connections Input: concatenation of context vectors and attention RNN outputs
Output: 80-band mel-scale spectrogram
FC layer: The output layer of the decoder to predict multiple non-overlapping frames
Pre-net: non-linear transformation with drop-out

Post-processing

Used for: converting the seq2seq to a target that is finally synthesized into waveform and correcting prediction error for the frames Implemented as: a simple version of CBHG Output: spectral magnitude sampled on a linearly-scaled frequency Griffin-Lim Algorithm: used for generating the waveform from the spectrogram

Experiments

Dataset

North American English dataset with 24.6 hours of speech

Results

Vanilla model: poor aligning GRU encoder: noisier alignment No post-processing: more synthesis artifacts

Ablation Studies

4 studies using vanilla seq2seq model, a GRU encoder, removing post-processing net, and the complete version

MOS Tests

Crowdsourced by native speakers and compared to state-of-the-art is placed in-between with a 3.82 MOS

Conclusion

Tacotron is an end-to-end TTS model.

Takes character and outputs raw spectrogram.

Consists of an encoder, an attention-based decoder, and a post-processing network.

Benefit of better performance and tricks for speeding up training and inference.

Thanks!