

colculate to 10 mine = 600 sec 1, 2, 3, 4, 7, 8, 9: bounday time step: $\Delta t = 10 \text{ sec}$. 5,6: internal mesh size: $\Delta x = \Delta y = 10 \text{ cm}$.

 $\int \frac{\alpha \Delta t}{\Delta x^2} = 0,00391$ etable

-> work Difference equations for each rode;

node 1: quanten volume element:

 $h_{\text{our}} \stackrel{\Delta \times}{=} \left(T_{00} - T_{i}^{i} \right) + h_{\text{potr}} \stackrel{\Delta \times}{=} \left(T_{0} - T_{i}^{i} \right) + h \stackrel{\Delta \times}{=} \left(\frac{T_{2}^{i} - T_{i}^{i}}{\Delta y} \right) + k \frac{\Delta \times}{=} \left(\frac{T_{2}^{i} - T_{i}^{i}}{\Delta y} \right) + k \frac{\Delta \times}{=} \left(\frac{T_{2}^{i} - T_{i}^{i}}{\Delta x} \right)$ $= \rho \underbrace{\Delta \times}_{=} \underbrace{\Delta \times}_{=} \underbrace{\Delta \times}_{=} C_{p} \left(\frac{T_{i}^{i} - T_{i}^{i}}{\Delta x} \right)$

node 7: hair $\Delta \times (T_{\infty} - T_{z}^{i}) + k \frac{\Delta y}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta y}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta x}{Z} \left(\frac{T_{z}^{i} - T_{z}^{i}}{\Delta x} \right) + k \frac{\Delta$

node 3: $A_{\text{ain}} \frac{\Delta x}{z} \left(\frac{\tau_{00} - \tau_{3}^{i}}{z} \right) + A_{\frac{\Delta y}{z}} \left(\frac{\tau_{z}^{i} - \tau_{3}^{i}}{\Delta x} \right) + A_{\frac{\Delta x}{z}} \left(\frac{\tau_{z}^{i} - \tau_{3}^{i}}{\Delta y} \right)$ $= P \frac{\Delta x}{z} \frac{\Delta y}{z} C_{p} \left(\frac{\tau_{3}^{i+1} - \tau_{3}^{i}}{\Delta t} \right)$

node 4: hunter Dy (Too - Tui) + h Dx (Tro-Tu) + h Ax (Ti-Tui) + k Ay (Ti-Tu)

Ay

Ay = PA (Ay Ax) x Cp x (Tq (+1-Th) nodes: kAx (Ti-Tsi)+kAy(Ti-Tsi)+kAx(Ti-Tsi)+ kAy(Ti-Tsi) $= \rho \left(\Delta x \Delta y \right) c_{\rho} \times \left(\frac{T_{s}^{i+1} - T_{s}^{i}}{\Delta t} \right)$ node 6: kAn (Tr'-Tr') + kAn (Tr'-Tr') + kAy (Tr'-Tr') = p (Ay Ax) Cp (To C+1-To) rode 7: hwater Ax (Too - T7') + hwater \(\frac{\Delta x}{2} \) (Too - T7') + \(\frac{\Delta x}{2} \) (Too - T7') $+ \frac{\Delta x}{2} \frac{(\tau_s^i - \tau_i^i)}{\Delta x} = \rho \left(\frac{\Delta x}{2}\right) \left(\rho \left(\frac{\tau_i^i \tau_i^i - \tau_i^i}{\Delta t}\right)\right)$ node 8: hwater Dx (Ta - Ts') + k \(\ta \) + + + + (Tq - Tg) = (Tg - Tg) node 9: hunter 1x (Tao-Tsi) + k 2x (Tsi-Tsi) + k 2x (Toi-Tsi) = D (Dx Dx) (To int Toi)

$$((0)(0,1)(15-71) + 120(\frac{0.1}{2})(\frac{73i-72i}{0.1}) + 120(\frac{0.1}{2})(\frac{7i-72i}{0.1}) + 120(\frac{0.1}{2})(\frac{7i-72i}{0.1}) + 120(\frac{0.1}{2})(\frac{7i-72i}{0.1})$$

	Node 3:
	$(10)(\frac{5.1}{2})(15-73) + (120)(\frac{0.1}{2})(\frac{72'-73'}{0.1}) + (120)(\frac{0.1}{2})(\frac{76'-73'}{0.1})$
	$= \int \frac{\Delta x}{2} \frac{\Delta y}{2} \left(\int \frac{T_3^{1+2} - T_3^{1}}{\sqrt{6}} \right)$
	But p Cp = 2 30690537.08
-	0.5(15-T3') + 60(Tz'-T3') + 60(Tz'-T3') = 7672.63 T3'+2 -7672.63 T3'
	7.5-0.5T3 + 60T2 - 60T3 + 60T8 - 60T3 = 7672.63T3 -7672.63T3
	-120.5T3 + 60Tz + 60Ts + 7.5 = 7672.63T3 - 7672.63T3
	7672.63 T3 i+2 = 7552.17 T3 i + 60 T2 i + 60 T6 i + 7.5
	73:+1 = 60 T2 + 7552.13 T3 + 60 16 + 7.5
	73 it 2 = 0.00782 Te' + 0.98429 T3 i + 0.00782 T6 i + 0.000980

$$(100)(0.1)(\frac{15}{4\pi} - \frac{1}{4}i) + (120)(\frac{0.1}{2})(\frac{1}{2}i - \frac{1}{4}i) + (120)(\frac{0.1}{2})(\frac{1}{2}i - \frac{1}{4}i)$$

$$+ (120)(0.1)(\frac{15i - \frac{1}{4}i}{0.1}) = p(\frac{5}{2})(\frac{5}{2})(\frac{5}{2})(\frac{7}{4}i + 1 - \frac{7}{4}i)$$

But pCp = = = 30690537.08

(50 - 10 Tq; + 60 Tr; - 60 Tq; + 60 Tr; - 60 Tq; + 120 Tq; - 120 Tq; = 15345.27 Tq;

150 + 15095.27 Tq' + 120Ts' + 60T, + 60T, = 15345.27 Tq'+1

T4 i+1 = 60T, + 15075.27 Ty + 120Ts + 60Ty + 150

T4 i+1 = 0.06391T, + 0.98371T4 + 0.00782Ts + 0.00391T7 + 0.000391T7

(120) (\frac{\si_1}{2}) (\frac{\tai_1 - \tai_1}{\si_1}) + (120) (\frac{\si_1}{2}) (\frac{\tai_2 - \tai_1}{\si_1}) + (120) (\si_1 - \tai_1)

= \frac{\si_2}{2} (p (\frac{\tai_1 + 1 - \tai_1}{10})

- pGp = 30690537.08

60 Tqi - 60 Tgi + 60 Tgi - 60 Tgi + 12 Tsi - 12 Tgi = (5345.27 Tgi - 15345.27 Tgi

15345.27 Tei+1 = 60Tz' + 12Ts' - 60Tei - 60Tei - 12Tei + 15745.27Tei + 60 Tqi

Toi+2 = 60T3' + 12T5' + 15213.277+60 T9'

Toi+1 = 0.00391 Tsi + 6.000782 Tsi + 0.991398 Tsi + 0.00371 Tgi

	4/ / 8.
	Node 8:
	(100/0.1) (15 - Toi) + (120) (0.1) (Toi-Toi) + (120/0.1) (Tsi-Toi)
	()
	$+(120)\left(\frac{0.1}{2}\right)\left(\frac{T_7i-T_8i}{2}\right) = p \frac{\Delta x}{7} \left(p \left(\frac{T_8i+2}{2}-T_8i\right)\right)$
	+(120)(2)(01)
	150 - 10Tgi + 60Tgi - 60Tgi + 120Tsi - 120Tgi + 60Tgi - 60Tgi
	= 15345.27 T8 i+2 - 15345.27 T8'
	15345.27 Toith = 120Tsi + 60Tri - 10Tri - 60Tri - 120Tri - 60Tri
	+ 15345.27 Tg + 60 Tg + 150
	78 it 2 = 120 T5' + 60 T7 i + (5075.2) T8 + 60 T9 i + 150
	78 15345.27
	78 + 1 : 0.007820 75' + 0.0039, T7' + 0.9837, T8' + 0.0039, T8
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	+ 150
_	

$\frac{1}{\sqrt{9^{i+1}}} = \frac{6076^{i} + 6078^{i} + 7567.6376^{i+75}}{7672.63}$		
$75 - 15 Tq^{i} + 60 Tq^{i} - 60 Tq^{i} + 60 Tq^{i} - 60 Tq^{i}$ $= 7672.63 Tq^{i+1} - 7672.63 Tq^{i}$ $7672.63 Tq^{i+1} = 60 Tq^{i} + 60 Tq^{i} - 60 Tq^{i} - 60 Tq^{i} + 7672.63 Tq^{i}$ $+ 75$ $Tq^{i+1} = \frac{60 Tq^{i} + 60 Tq^{i} + 7567.63 Tq^{i}}{7672.63}$		Node 9:
75 - (5)		$(100)(\frac{0.1}{2})(15-77)+(120)(\frac{0.1}{2})(\frac{78}{2}-77)+(120)(\frac{0.1}{2})(\frac{76}{2}-77)$
$= 7672.63 T_{q}^{i+1} - 7672.63 T_{q}^{i}$ $= 7672.63 T_{q}^{i+1} = 60 T_{6}^{i} + 60 T_{8}^{i} - 15 T_{q}^{i} - 60 T_{q}^{i} - 60 T_{q}^{i} + 7672.63 T_{q}^{i}$ $+ 75$ $= \frac{60 T_{6}^{i} + 60 T_{8}^{i} + 7567.63 T_{q}^{i} + 75}{7672.63}$		= p = 2 Cp (Tq i+1 - Tq i)
$7672.63 Tq^{i+2} = 60 T6^{i} + 60 T8^{i} - 15 T9^{i} - 60 T9^{i} + 7672.63 T9^{i} + 75$ $+ 75$ $\sqrt{79^{i+2}} = \frac{60 T6^{i} + 60 T8^{i} + 7567.6379^{i} + 75}{7672.63}$		
$\frac{1}{\sqrt{9^{i+1}}} = \frac{6076^{i} + 6078^{i} + 7567.6376^{i+75}}{7672.63}$		= 7672,63 Tqi+4 - 7672.63 Tqi
79 i+1 = 60 T8' + 7567.6379+ 75		7672.63 Tqi+1 = 60 T6' + 60 T8' - 15 T9' - 60 T9' + 7672.63 T9'
		+ 75
79 i+ 2 = 0.00782 Tei + 0.00782 Tei + 0.79631 Tqi + 0.00578		79 i+1 = 60 T8' + 7567.6379'+ 75
		79 i+ 1 = 0.00782 Toi + 0.00782 Toi + 0.98631 Toi + 0.00978
	1	