

Shoggoth: Towards Efficient Edge-Cloud Collaborative Real-Time Video Inference via Adaptive Online Learning

Liang Wang¹, Kai Lu¹, Nan Zhang², Xiaoyang Qu², Jianzong Wang², Jiguang Wan¹, Guokuan Li¹, Jing Xiao²

¹Huazhong University of Science and Technology, China ²Ping An Technology (Shenzhen) Co., Ltd., China

JULY 9-13, 2023

MOSCONE WEST CENTER
SAN FRANCISCO, CA, USA

Outline

- Background and Motivation
- Shoggoth
- Evaluation
- Conclusion

Background

Video analytics is ubiquitous

- Real-time video analytics prefer edge devices
 - Reduce Latency
 - Minimize Bandwidth
 - Increase Scalability

Motivation

- Edge devices are resource-constrained
- Only specialized lightweight models can be deployed
 - Fewer weights and shallower architectures
 - Identify limited amount of object appearances, object classes, and scenes.
 - Vulnerable to data drift

Lightweight models on edge devices are not that accurate!

Challenge of Data Drift

- Why does data drift occur?
 - Real-time video scenes vary over time
- How does data drift lead to accuracy drop?
 - Domain Shift a lightweight model trained on daytime images does not work well when it encounters night
 - Class Distribution Shift the dynamic, timeevolving distribution results in objects of different class distributions are difficult to distinguish for the lightweight model

(a) Domain Shift

(b) Class Distribution Shift

Outline

- Background and Motivation
- Shoggoth
- Evaluation
- Conclusion

Existing Solution - Model Retraining

○Frame Sampling → Manual Labeling → Retraining → Updating Model

O Drawbacks:

- Manual labor required
- Not responsive
- Hard to determine retraining frequency

Shoggoth - Adaptive Online Learning

- Online labeling (Cloud)
 - Label sample frames with the large teacher model
- Adaptive training (Edge)
 - Fine-tune the lightweight model
 - Adapt for scene change
- Adaptive frame sampling
 - Adjust the sampling rate
 - Increase robustness and reduce bandwidth

Adaptive Training

- Execute on edge devices
- Address catastrophic forgetting
- Key Insights:
 - Forgetting occurs in the classification head, needs tuning for accuracy
 - Early layers stable and reusable post sufficient pre-training
 - Replay memory stores activation volumes, not raw input images

Adaptive Training Schema of Object Detector

Adaptive Training

- Replay Memory Management
 - Memory updates occur after each adaptive training
 - Random current image subset replaces random replay memory subset
 - All images stored if memory isn't full
 - Equal chance of batch sampling storage in memory
- Training Control
 - Constant replay ratio in each mini-batch
 - Every training batch contains N images and the replay memory includes M images, in a mini-batch of size K, only $\frac{K \times N}{N+M}$ images need to travel across the red layers
 - Weights frozen after first batch to address slow-down

Adaptive Training Schema of Object Detector

Adaptive Frame Sampling

- Models need adaptive training frequency to handle scene variations stably
- Frame sampling rate impacts training frequency
- Adaptive frame sampling adjusts the rate based on
 - Degree of video scene changes
 - Inference accuracy
 - Resource usage

Adaptive Frame Sampling

φ: the change rate over time for video frames

α: the inference accuracy of the current model

 λ : the resource utilization of the edge device

Adjusting the sampling rate

Outline

- Background and Motivation
- Shoggoth
- Evaluation
- Conclusion

Evaluation Setup

- Real-time video object detection as our evaluated workload
- Comparisons
 - o Edge-Only: Edge model without video-specific customization; all inferences on the edge device
 - Cloud-Only: All frames uploaded to the cloud for detection and results
 - Prompt: Shoggoth without adaptive sampling; fixed 2 fps sampling rate; model adaptation happens promptly and regularly
 - o Adaptive Model Streaming (AMS): Knowledge distillation in the cloud for model adaption; updated student model sent to edge device

Datasets	UA-DETRAC, KITTI (Car only) and Waymo Open
DNN models	YOLOv4 with Resnet18 backbone (Edge) Mask R-CNN with ResNeXt-101 (Cloud)
Platforms	NVIDIA Jetson TX2 (Edge) NVIDIA V100 GPU (Cloud)
Metrics	uplink and downlink bandwidth mAP@0.5 (mean Average Precision, and Intersection over Union = 0.5)

Overall Improvements

- Comparison of different strategies on three datasets
 - 15%–20% accuracy improvement compared to the edge-only
 - o require 24 × less uplink bandwidth to achieve similar accuracy to the cloud-only

Dataset	Metric	Edge-Only	Cloud-Only	Prompt	AMS	Shoggoth
UA-DETRAC [20]	Up/Down Bandwidth (Kbps)	0/0	3257/3539	303/22	151/226	135/10
	mAP@0.5 (%)	34.2	58.9	48.3	51.6	53.5
KITTI [21]	Up/Down Bandwidth (Kbps)	0/0	2184/2437	179/10	94/203	91/5
	mAP@0.5 (%)	56.8	78.0	71.4	72.8	74.7
Waymo Open [22]	Up/Down Bandwidth (Kbps)	0/0	2687/2880	278/15	127/207	112/8
	mAP@0.5 (%)	47.5	64.7	61.5	59.1	61.9

Impact of Adaptive Training

Average FPS overall for different strategies (left) and FPS over time (right)

omAP (%) and training time (in seconds) of different methods

Method	mAP	Training Time				
		Forward	Backward	Overall		
Ours (Baseline)	53.5	17.8	0.8	18.6		
Input	49.6	536.2	31.6	567.8		
Completely Freezing	50.7	17.8	0.7	18.5		
Conv5_4	52.3	20.2	5.8	26.0		
No Replay Memory	45.6	95.7	6.2	101.9		

Impact of Adaptive Frame Sampling

Sensitivity to different sampling rates

$rate \rightarrow$	0.1	0.2	0.4	0.8	1.6	2.0	Adaptive
Up BW (Kbps) Average IoU	19 0.483	36 0.524	61 0.556	122 0.623	249 0.612	307 0.597	0.640
						,	
						4	
			High Sampling Rates Cause Overfitting			Bes Accur	

Cumulative Distribution of mAP Improvement

ODF of mAP gain vs. Edge-Only across all frames for other strategies

Outline

- Background and Motivation
- Shoggoth
- Evaluation
- Conclusion

Conclusion

- Shoggoth is an efficient edge-cloud collaborative architecture designed to improve inference performance on real-time videos of changing scenes
 - Online knowledge distillation enhance model accuracy suffering from data drift
 - Adaptive training adapt models under limited computational power
 - Adaptive sampling increase robustness and reduce bandwidth
- Outperform state-of-the-art solutions in the trade-off between low latency and high accuracy

Thanks!

