Counters

Dr. Noori Kim

For your demo, wire color convention

Red Power +

Black - Ground

Do not use Red and Black color of wires for other purpose. If this happens, demo mark will be deducted (-1 per each wrong color wire).

Introduction

Counters are used in many digital circuit applications. Such as Write memory address and Read memory address in FIFO. JK flip-flops can easily form the basis of a counter circuit. It should be easy to see that a JK flip-flop can easily form the basis of a counter circuit. In this lab, two counters will be implemented from JK flip-flops, one is synchronous counter and another is asynchronous counter.

Pre-lab

You will understand and implement synchronous and asynchronous counters using JK flip-flops. To complete this lab, your work must be checked by TAs during lab session and upload your report on the moddle. Failure to complete your demo will result in a reduction of the grade by 15% for the current lab.

1) J-K flip-flop is provided by 74109 logic gate IC. Figure 1 shows the internal architecture of 74109. Study 74109 by yourself (explain the chip's functionality).

Figure 1: 74109 Internal Block Diagram

An asynchronous counter implementation

A synchronous counter implementation

- An external CLK is applied to the first FF only
- Output of preceding FF is connected to the next FF's clk
- FFs are not clocked simultaneously
- Simple circuits
- Slow speed due to propagation delay
- A Freq divided by 2 circuit configuration

- All FFs are receiving external CLK simultaneously
- Complicate circuits
- Fast speed

In lab 7, we will implement Up-counters both Asynchronous and Synchronous types

Asynchronous counter implementations

Steps

- Decide the number of FFs (based on the counting limit) and a kind of FF
 - #: 4 bit=16 mod --> 4 FFs
 - Type: JK FF
- II. Draw the circuit: Very simple
 - Just feed preceding FFs output to the next FF clk
 - Use the frequency "divided by 2" property of FF

An asynchronous "up" counter → falling edge trigger: several ways to implement

Negative-edge triggered flip-flops, connecting the clock inputs to the Q outputs of the preceding flip-flops.

Positive-edge triggered flip-flops Connecting the clock inputs of positive-edge triggered J-K flip-flops to the Q' outputs of the preceding flip-flops. HIGH CLK $K_{cur} \overline{Q}$ $K_{cur} \overline{Q}$ CLK 0

A two-bit asynchronous counter

A three-bit asynchronous binary counter

https://www.ee.usyd.edu.au/tutorials/digital_tutorial/part2/counter02.html

A side bar: Asynchronous DOWN counters?

Positive edge triggering

Synchronous counter

Steps

- Decide the number of FFs (based on the states) and a kind of FF
 - i.e., 3 bits, JK FF
- II. Excitation table of FF (relates Q_t and Q_{t+1})
 - Next slide
- III. State diagram and circuit excitation table
- IV. Obtain simplified equations using K map
- V. Draw the logic diagram

JK flip-flops TT

Inputs		Output
J	K	Q_{t+1}
0	0	Q_t
0	1	0
1	0	1
1	1	~Q _t

Excitation table of JK FF

Status			
Present Q _t	Next Q _{t+1}	J	K
0	0	0	Х
0	1	1	X
1	0	X	1
1	1	X	0

Excitation table of T FF Excitation table of D FF

Sta		
Present Q _t	Next Q _{t+1}	T
0	0	0
0	1	1
1	0	1
1	1	0

Sta		
Present Q _t	Next Q _{t+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

III-1. State diagram (3 bits)

III-2. circuit excitation table

Present

111	001	
110	010	
101	011	
100		
	\rightarrow	Next

Q_2	Q_1	Q_0	Q ₂ *	Q_1^*	Q_0^*
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

J ₂	K ₂
0	K ₂
0	Χ
0	Χ
1	X
X	0
X	0
X	0
Χ	1

III-2. circuit excitation table

Present

000
110 010
101

Next

Q_2	Q_1	Q_0	Q ₂ *	Q_1^*	Q_0^*
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

J ₁	K ₁
0	X
1	Х
X	0
X	1
0	X
1	X
X	0
X	1

III-2. circuit excitation table

Present

111 000 001	
110 010	
101	

Next

Q_2	Q_1	Q_0	Q_2^*	Q_1^*	Q_0^*
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

J ₀	K _o
1	K ₀
X	1
1	Х
X	1
1	Х
X	1
1	Х
Χ	1

IV. Simplified equations using K map

Q_2	Q_1	Q_0	J ₂	K ₂	J_1	K ₁	J _o	K _o
0	0	0	0	Х	0	X	1	X
0	0	1	0	X	1	X	X	1
0	1	0	0	Х	X	0	1	Х
0	1	1	1	Х	X	1	Χ	1
1	0	0	Χ	0	0	X	1	Х
1	0	1	Χ	0	1	X	Χ	1
1	1	0	Χ	0	X	0	1	Х
1	1	1	Χ	1	Х	1	X	1

<u>For J</u> ₂							
Q_1Q_0 Q_2	00	01	11	10			
0	0	0	1	0			
1	X	X	X	X			

<u>For K₂</u>							
Q_1Q_0	00	01	11	10			
0	Х	Х	X	X			
1	0	0	1	0			

$$J_2 = Q_1 Q_0$$

$$K_2 = Q_1 Q_0$$

IV. Simplified equations using K map

Q_2	Q_1	Q_0	J ₂	K ₂	J_1	K ₁	J _o	K _o
0	0	0	0	Х	0	X	1	X
0	0	1	0	Х	1	X	X	1
0	1	0	0	Х	Χ	0	1	Х
0	1	1	1	Х	Χ	1	Х	1
1	0	0	Χ	0	0	Х	1	Х
1	0	1	Χ	0	1	Х	Х	1
1	1	0	Χ	0	Χ	0	1	Х
1	1	1	Х	1	Χ	1	Х	1

<u>For J₁</u>								
Q_1Q_0 Q_2	00	01	11	10				
0	0	1	X	X				
1	0	1	X	X				

<u>For K₁</u>							
Q_1Q_0 Q_2	00	01	11	10			
0	X	X	1	0			
1	X	X	1	0			

$$J_1 = Q_0$$

$$K_1 = Q_0$$

IV. Simplified equations using K map

Q_2	Q_1	Q_0	J ₂	K ₂	J ₁	K ₁	J _o	K _o
0	0	0	0	Х	0	Х	1	X
0	0	1	0	X	1	Х	Χ	1
0	1	0	0	Х	Χ	0	1	Х
0	1	1	1	X	Χ	1	Х	1
1	0	0	Х	0	0	Х	1	Х
1	0	1	Х	0	1	Х	Х	1
1	1	0	Х	0	Χ	0	1	Х
1	1	1	Χ	1	Χ	1	Х	1

<u>For J_o</u>							
Q_1Q_0	00	01	11	10			
0	1	X	X	1			
1	1	X	X	1			

<u>For K₀</u>							
Q_1Q_0 Q_2	00	01	11	10			
0	X	1	1	X			
1	X	1	1	X			

$$J_0 = 1$$

$$K_0=1$$

V. Draw a diagram

The synchronous mod 8 up counter