Polynômes - exercices supplémentaires

Exercice 1 ($^{\infty}$) Soit $P \in \mathbb{R}[X]$, et $x_0, \dots, x_n \in \mathbb{R}$. Montrer que le polynôme d'interpolation de P aux points x_0, \dots, x_n est le reste de la division euclidienne de P par $\prod_{i=0}^{n} (X - x_i)$.

Exercice 2 ($^{\circ}$) Soit $A, B \in \mathbb{K}[X]$ tels que $A^2 \mid B^2$. Montrer que $A \mid B$.

Exercice 3 ($^{\bigcirc}$) Montrer que le polynôme $nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n$ admet une racine triple. Application : déterminer les racines du polynôme $3X^5 - 5X^4 + 5X - 3$.

Exercice 4 Soit $P \in \mathbb{R}[X]$ scindé sur \mathbb{R} à racines simples, de degré supérieur ou égal à 2.

- 1) Montrer que P' est aussi scindé à racines simples réelles.
- 2) Montrer que le polynôme $P^2 + 1$ n'a que des racines simples dans \mathbb{C} .

Exercice 5 Trouver tous les $P \in \mathbb{C}[X]$ vérifiant P(0) = 0 et $P(X^2 + 1) = P(X)^2 + 1$.

Exercice 6 (Soit $x_0 = 0$ et x_1, \dots, x_n des réels tels que $x_0 < x_1 < \dots < x_n$. Soit y_0, \dots, y_n des réels et P le polynôme d'interpolation de Lagrange tel que $P(x_0) = y_0$ et pour tout $i \in [1, n]$, $P(x_i) = P(-x_i) = y_i$. Montrer que P est pair.

Exercice 7 ($\stackrel{\triangleright}{\triangleright}$) Soit $P, Q \in \mathbb{C}[X]$ premiers entre eux. Montrer que si r est racine double de $P^2 + Q^2$, alors r est racine de $P'^2 + Q'^2$.

Exercice 8 (\trianglerighteq) Soit $P \in \mathbb{R}[X]$ scindé de degré supérieur ou égal à 4. Montrer que si r est une racine au moins double de P'', alors r est racine au moins quadruple de P. Généraliser.