PHY 107 Vector/Scalar

Mohammad Murshed Department of Math and Physics

October 2, 2018

OUTLINE

- Vector and Scalar
- Displacement Vector
- Adding vectors geometrically/Properties of vector addition
- Head to tail arrangement
- Components of vectors
- Unit vectors
- Adding Vectors by components
- Multiplication
- Scalar Product
- Vector Product

Vector and Scalar

A **vector** is a direction in a space of some specific dimension Vector quantity has both magnitude and direction e.g. velocity, displacement...Such quantity is represented by the use of an overhead arrow e.g. \overrightarrow{V}

Scalar quantity has magnitude only e.g. speed, temperature...

Displacement Vector

It is a vector to denote the change in position of a particle. It tells us NOTHING about the path taken by the particle.

Adding vectors geometrically/Properties of vector addition

2 important properties of vector addition:

Commutative Law: the order of addition does NOT matter $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$

Associative Law: In case of more than 2 vectors , we can group them in any order.

$$(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$$

Head to tail arrangement

Vectors can be added/subtracted, but they need to be of the same kind.

Components of vectors

$$\vec{d} = d_x \hat{l} + d_y \hat{l}$$

A component of a vector is the projection of the vector on an axis.

Unit vectors

A unit vector is a vector of magnitude 1 and points in a particular direction

The unit vectors point along axes.

Adding vectors by components

Let us say we have two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} :
$$\overrightarrow{a} = a_x \hat{i} + a_y \hat{j}$$

$$\overrightarrow{b} = b_x \hat{i} + b_y \hat{j}$$
Find $\overrightarrow{r} = \overrightarrow{a} + \overrightarrow{b}$

$$\overrightarrow{r} = (a_x + b_x)\hat{i} + (a_y + b_y)\hat{j}$$

$$a=2i + 4j$$
; $b=3i + 7j$; $a+b=5i + 11j$

Multiplication

Multiplying a vector by a scalar

 $\overrightarrow{k} = s\overrightarrow{a}$

if s is +ve, then \overrightarrow{k} has the same direction as \overrightarrow{a} if s is -ve, then \overrightarrow{k} has the opposite direction as \overrightarrow{a}

Multiplying a vector by a vector

SCALAR PRODUCT: gives you a scalar VECTOR PRODUCT: gives you a vector

Scalar Product

The scalar product of vectors \overrightarrow{a} and \overrightarrow{b} is: \overrightarrow{a} . $\overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \phi$

Both ϕ and (360 $-\phi$) would give the same scalar product

$$\begin{array}{c|ccc}
\phi & \overrightarrow{a} \cdot \overrightarrow{b} \\
\hline
0 & ab (Max) \\
90 & 0
\end{array}$$

90 deg means orthogonal

Scalar Product

$$a=3i+4j$$
; $b=2i-5j$; $a.b=?$

Commutative Law applies to a scalar product

$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$

In UNIT vector notation (2D):

$$\overrightarrow{a} \cdot \overrightarrow{b} = (a_x \hat{i} + a_y \hat{j}) \cdot (b_x \hat{i} + b_y j) = a_x b_x + a_y b_y$$

$$a.b = 3(2) + 4(-5) = 6 + -20 = -14$$

Vector Product

The vector product of \overrightarrow{a} and \overrightarrow{b} $(\overrightarrow{a} \times \overrightarrow{b})$ gives a third vector \overrightarrow{c} of magnitude

 $c=absin\phi$

 ϕ : smaller of the two angles between \overrightarrow{a} and \overrightarrow{b} since $sin(\phi) \neq sin(360 - \phi)$

Note that ϕ and (360 - ϕ) would give different vector products

ϕ	$ \overrightarrow{a} X \overrightarrow{b} $
0	0
90	ab

Vector Product

How to determine the direction of the third vector?

Right hand rule: Sweep your fingers (starting with the first vector)

towards the second vector, then the thumb points to the third direction

$$(\overrightarrow{a} X \overrightarrow{b}) = -(\overrightarrow{b} X \overrightarrow{a})$$

Vector Product

In UNIT vector notation (3D):

$$\overrightarrow{a} \times \overrightarrow{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \times (b_x \hat{i} + b_y \hat{j} + b_z \hat{k})$$

$$= a_x b_x (\hat{i} \times \hat{i}) + a_x b_y (\hat{i} \times \hat{j}) + a_x b_z (\hat{i} \times \hat{k}) + a_y b_x (\hat{j} \times \hat{i}) + a_y b_y (\hat{j} \times \hat{j}) + a_y b_z (\hat{j} \times \hat{k}) + a_z b_x (\hat{k} \times \hat{i}) + a_z b_y (\hat{k} \times \hat{j}) + a_z b_z (\hat{k} \times \hat{k})$$

$$= (a_y b_z - a_z b_y) \hat{i} + (a_z b_x - a_x b_z) \hat{j} + (a_x b_y - a_y b_x) \hat{k}$$

$$\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k};$$

$$\mathbf{b} = -\mathbf{i} + 5\mathbf{j} + 8\mathbf{k}; \ \mathbf{a} \times \mathbf{b} = \mathbf{i} + \mathbf{j} + \mathbf{k}$$

Reference

Fundamentals of Physics by Halliday and Resnick