Bike Share Demand Forecasting Methods

Chance Robinson and Kebur Fantahun

11/22/2021

Contents

1	Intr	roduction	2
2	Dat	ta Analysis	3
3	Met	thods	23
	3.1	ARMA Model	23
	3.2	Vector Auto-Regressive (VAR) Model	26
	3.3	Neural Network Model	32
	3.4	Ensemble Model	34
4	Res	sults	36
	4.1	7 Day Forecast	36
	4.2	1 Day Forecast	37
5	App	pendix	38
	5.1	Solution One	38
	5.2	Solution Two	38

1 Introduction

Bike rentals where the customer can pick up and drop off a bike at their leisure at several locations has become popular. This dataset outlines attributes related to the travel of customers. Data gathered by the rental companies includes things like the date, temperature, count of users, humidity and more. The collection of attributes has the potential to assist researchers in developing an understanding of the mobility in a city.

2 Data Analysis

The data collected for this project consists of hourly bike share rentals from January 1st, 2011 through December 31st, 2012.

There are 12 columns provided in the train.csv data set with 10,886 observations. The test.csv data set has 6,493 records, or roughly 37% of the overall combined samples from the two files. This is due to the fact that the training data consist of the first 19 days of each month and the test the remaining 11~12 days. The test set does not include the response variables for casual, registered or total users.

Column Name	Type	Description
1. datetime	Character	YYYY-MM-DD HH24 (example: 2011-01-01 04:00:00)
2. season	Integer	(1-4)
3. holiday	Integer	(0 or 1)
4. workingday	Integer	(0 or 1)
5. weather	Integer	(1-4)
6. temp	Float	temperature in Celsius
7. atemp	Float	"feels like" temperature in Celsius
8. humidity	Integer	relative humidity
9. windspeed	Float	wind speed
10. casual	Integer	count of casual users
11. registered	Integer	count of registered users
12. count	Integer	count of total users (primary response variable)

Var1	Freq
Min.	1.0000
1st Qu.	42.0000
Median	145.0000
Mean	191.5741
3rd Qu.	284.0000
Max.	977.0000

Histogram of Hourly Bike Count

The response variable of count appears to be heavily right-skewed, with the median value at ~ 145 users. Additional summary statistics are show below.

June appears to be the month with heaviest demand.

It also appears to show relatively few outliers compared to months like January.

Bar Plot of Average Hourly Bike Rentals by Season

Fall appears to have more rentals on average than the other seasons.

The 5pm hour clearly has the highest peak compared to the other hours of the day.

Box Plot of Bike Rentals by Hour

As expected, more riders are out when the weather is great, or better than average.

Note the small spread of riders when the weather was listed as poor, even though the averages were consistent with other categories.

Surprisingly, whether or not the day was on a working day or not had little affect on the mean or median.

The same was true for the day falling on a holiday, it appeared to have little affect on the counts.

Box Plot of Bike Rentals by Holiday

Feature 1	Feature 2	Correlation Coefficient
temp	atemp	0.9849481
registered	count	0.9709481
casual	count	0.6904136
casual	registered	0.4972497
$_{\text{temp}}$	casual	0.4670971
atemp	casual	0.4620665
$_{ m temp}$	count	0.3944536
atemp	count	0.3897844
$_{ m temp}$	registered	0.3185713
atemp	registered	0.3146354
windspeed	count	0.1013695
humidity	registered	-0.2654579
humidity	count	-0.3173715
humidity	windspeed	-0.3186070
humidity	casual	-0.3481869

The plot below shows a strong correlation between casual, registered and total (count) users. We will use count as the primary response variable for our modeling, and discard the other response variables.

Note that temp and atemp are also closely related to one another as would be expected.

Line Chart of Counts by Tempurature

Line Chart of Counts by 'Feels Like' Tempurature

Line Chart of Counts by Wind Speed

Line Chart of Counts by Humidity

Hourly Rental Trends for June 1st – June 19th, 2012

- 3 Methods
- 3.1 ARMA Model

7 Day Forecast (ARMA)

1 Day Forecast (ARMA)

3.2 Vector Auto-Regressive (VAR) Model

3.2.1 Cross-Correlation

Temperature

train.2012.june\$temp & train.2012.june\$count

Humidity

train.2012.june\$humidity & train.2012.june\$count

Weather

train.2012.june\$weather & train.2012.june\$count

Hour

train.2012.june\$hour & train.2012.june\$count

3.2.2 7 Day Forecast

7 Day Forecast (VAR)

3.2.3 1 Day Forecast

1 Day Forecast (VAR)

3.3 Neural Network Model

3.3.1 7 Day Forecast

7 Day Forecast (MLP)

3.3.2 1 Day Forecast

1 Day Forecast (MLP)

3.4 Ensemble Model

3.4.1 7 Day Forecast

	Actual	Predicted (ARMA)	Predicted (VAR)	Predicted (MLP)	Predicted (Ensemble)
289	34	21	1	98	50
290	28	9	1	79	40
291	4	95	1	29	15
292	8	134	1	35	18
293	10	113	1	33	17
294	40	158	1	50	26

3.4.2 1 Day Forecast

	Actual	Predicted (ARMA)	Predicted (VAR)	Predicted (MLP)	Predicted (Ensemble)
433	35	6	1	46	23
434	14	1	1	31	16
435	15	98	1	24	12
436	8	114	1	30	15
437	10	105	1	31	16
438	37	125	1	48	24

4 Results

4.1 7 Day Forecast

4.1.1 ASE

Model	ASE
ARMA	29009.292
VAR	12496.690
MLP	5856.042
Ensemble	6067.696

4.1.2 RMSE

Model	RMSE
ARMA	170.32114
VAR	111.78860
MLP	76.52478
Ensemble	77.89542

4.2 1 Day Forecast

4.2.1 ASE

Model	ASE
ARMA	9397.958
VAR	5498.958
MLP	9417.125
Ensemble	6446.292

4.2.2 RMSE

Model	RMSE
ARMA	96.94307
VAR	74.15496
MLP	97.04187
Ensemble	80.28880

5 Appendix

5.1 Solution One

Log Transform the response variable

5.2 Solution Two

Use all monthly data leading up to June 2012