Chapitre 17

I Exercice 1

Table des matières

Ι	Exercice 1	1
II	Exercice 2	2
III	Exercice 4	3
IV	Exercice 8	3

Première partie

Exercice 1

- 1. On sait que $\dim(\mathcal{M}_{1,3}(\mathbb{R}))=3$. Or, on n'a que 2 vecteurs. Ils ne peuvent donc pas former une base.
- 2. La famille (u,v) est une base de F car $F=\mathrm{Vect}(u,v)$ u et v colinéaires ? Soient $a,b\in\mathbb{R}.$

$$(0) = au + bv \iff \begin{cases} 0 = a + 3b \\ 0 = 2a + 2b \\ 0 = 3a + b \end{cases}$$

$$\iff \begin{cases} a = -3b \\ a = -\frac{1}{3}b \\ a = b \end{cases}$$

$$\iff a = b = 0$$

Donc dim(F) = 2

3. On cherche $a,b\in\mathbb{R}$ tels que x=au+bv

II Exercice 2

$$au + bv = x \iff \begin{cases} a + 3b = 1\\ 2a + 2b = 4\\ 3a + b = 7 \end{cases}$$

$$\iff \begin{cases} a + b = 2\\ 2b = -1\\ 2a = 5 \end{cases}$$

$$\iff \begin{cases} a = \frac{5}{2}\\ b = -\frac{1}{2}\\ a + b = 2 \end{cases}$$

Donc, $x \in F$ et $x = \frac{5}{3}u - \frac{1}{2}v$

4. On cherche $a, b \in \mathbb{R}$ tels que y = au + bv

$$au + bv = y \iff \begin{cases} -1 = a + 3b \\ 3 = a + b \\ 9 = 3a + b \end{cases}$$

$$\iff \begin{cases} -4 = 2b \\ 6 = 2a \\ 3 = a + b \end{cases}$$

$$\iff \begin{cases} a = 3 \\ b = -2 \\ a + b = 1 = 3 \end{cases}$$

Deuxième partie

Exercice 2

On a

$$\begin{cases} u = 3e_1 + e_2 + 6e_3 = \begin{pmatrix} 3 & 1 & 6 \end{pmatrix} \\ v = e_1 + e_2 + 4e_3 = \begin{pmatrix} 1 & 1 & 4 \end{pmatrix} \\ w = e_1 + 0e_2 + me_3 = \begin{pmatrix} 1 & 0 & m \end{pmatrix} \end{cases}$$

Soient $a, b \in \mathbb{R}$.

IV Exercice 8

$$w = au + bv \iff \begin{cases} 1 = 3a + b \\ a = -b \\ m = 6a + 4b \end{cases}$$
$$\iff \begin{cases} b = -\frac{1}{2} \\ a = \frac{1}{2} \\ m = 2a = 1 \end{cases}$$

Donc u, v et w sont linéairement indépendants si et seulement si $m \neq 1$.

Troisième partie

Exercice 4

On a

$$\begin{cases} a = (0, 1, -1, 2) \\ b = (1, 3, 0, 2) \\ c = (2, 1, -3, 4) \\ d = (0, 0, 2, 1) \\ e = (-1, 1, 0, 3) \end{cases}$$

On cherche $x, y \in \mathbb{R}$ tels que c = ax + by

$$c = ax + by \iff \begin{cases} y = 2\\ x = 3y - 1 = 5\\ -3 = -x = -5:\\ 4 = x + y = 2 + 5 = 7: 4 \end{cases}$$

Donc, a, b et c sont linéairements indépendants et donc $\dim(F) = 3$

On cherche $\lambda \in \mathbb{R}$ tel que $d = \lambda e$.

$$d = \lambda e \iff \begin{cases} 0 = \lambda \\ 2 = 0 \times \lambda = 0 : \not \downarrow 1 = 3\lambda = 0 : \not \downarrow \end{cases}$$

Donc e et f sont linéairements indépendants et donc $\dim(G) = 2$

Quatrième partie

Exercice 8

" $\Leftarrow=$ " Soient F, G, U tels que

$$F \oplus U = E = G \oplus U$$

IV Exercice 8

Donc,

$$\dim(F) + \dim(U) = \dim(E)$$

$$\dim(G) + \dim(U) = \dim(E)$$

Donc, $\dim(F) = \dim(G)$

" \Longrightarrow " On raisonne par récurrence sur la $\operatorname{codim}(F) = \dim(E) - \dim(F)$

— Soient F et G deux hyperplans de E

 $F \cup G \neq E$ d'après l'exercice classique suivant :

 $F \cup G$ sous-espace vectoriel de $E \iff F \subset G$ ou $G \subset F$

Solution de l'exercice :

" <= "

$$F \subset G \implies F \cup G = G$$

 $G \subset F \implies F \cup G = F$

" \Longrightarrow " On suppose $G \not\subset F$. Soit $u \in F$. Soit $v \in G \setminus F$. $u + v \in F \cup G$ car $F \cup G$ est un sous-espace vectoriel de E. Si $u + v \in F$, alors $v = u + v - u \in F \not$

Si
$$u + v \in F$$
, alors $v = \underbrace{u + v}_{\in F} - \underbrace{u}_{\in F} \notin F$
Si $u + v \in G$, alors $u = \underbrace{u + v}_{\in G} - \underbrace{v}_{\in G} \notin G$

Donc $F \subset G$

Soit $u \in E \setminus (F \cup G)$. $u \neq 0$ donc $\langle u \rangle$ est de dimension 1. $\langle u \rangle \cap F = \{0\}$ donc $F \oplus \langle u \rangle = E$ $\langle u \rangle \cap G = \{0\}$ donc $G \oplus \langle u \rangle = E$

— Soit $n \in \mathbb{N}_*$ tels que pour tous F et G sous-espaces vectoriels de E de codimension n, F et G ont un supplémentaire commun. Soient F et G de codimension n+1. De nouveau, $F \cup G \neq E$. Soit $u \in E \setminus (F \cup G)$. $\langle u \rangle \cap F = \{0\}$. On pose $F' = F \oplus \langle u \rangle$. dim $(F') = \dim(F) + 1$ donc $\operatorname{codim}(F') = n$ De même, $\langle u \rangle \cap G = \{0\}$. On pose $G' = G \oplus \langle u \rangle$ donc $\operatorname{codim}(G') = n$ Soit U un supplémentaire commun à F' et G'. On pose $U' = \langle u \rangle \oplus U$

$$E = F' \oplus U$$

$$= F \oplus \langle u \rangle \oplus U \qquad = F \oplus U'$$

$$E = G' \oplus U$$

$$= G \oplus \langle u \rangle \oplus U \qquad = G \oplus U'$$