

Privacy- and Data-Aware Smart Grid Communication

by Vitaly Ford

Ph.D. Candidate

Cybersecurity Education Research and Outreach Center

Tennessee Tech University

Advisor: Dr. Ambareen Siraj

Location: Rochester Institute of Technology

October 18, 2016

#whoami

- Ph.D. Candidate at Tennessee Tech, Research Assistant, CEROC
- Smart Grid security and cybersecurity education researcher
- Instructor: Principles of Computing
- Coach Southeast Collegiate Cyber Defense Competition and Collegiate Penetration Testing Competition
 - SE CCDC participant: 2014, 2015
 - Capture the Flag participant since 2012
- CyberEagles Club founder
- Mentor for undergraduate/graduate students

Outline

Smart Grid

- Advanced Metering Infrastructure (AMI)
- Smart Meter
- Characteristics
- Privacy and Security Issues
- Existing Solutions
- Privacy- and Data-Aware Scheme

Smart Grid Network Model: Big Picture

- Smart meters receive info about appliances from the hub at the house
- Smart meters send data to the aggregator
- Aggregator forwards data to the utility company

Advanced Metering Infrastructure (AMI)

- Meters gather data every second
- Two network models:
 - One-hop
 - Multi-hop

One-Hop AMI

Multi-Hop AMI

AMI Benefits

System Operation

Customer Service

Financial

AMI Benefits: System Operation

- Increased meter reading <u>accuracy</u>
- Easier energy theft detection due to real-time energy consumption data
 - Providing service to 3.3 million people, \$65 million was lost to fraud, 2015

https://www.sas.com/content/dam/SAS/en_us/doc/solutionbrief/utilities-detect-reduce-energy-theft-106064.pdf

Easier <u>outage management</u>
 due to two-way communication

AMI Benefits: Customer Service

- Early detection of meter failures
 - Due to two-way communication, utilities can monitor the meter status
- Variety of time-based rate options
 - Utility companies can change electricity price in real-time
 - Consumers can decrease their bills by using appliances when the cost is less
- Customer energy profiles
 - Access to energy profiles to see how we can utilize appliances more efficiently
 - Industries can detect if their big machines consume more energy due to failure

AMI Benefits: Financial Benefits for Utilities

- Reduced equipment maintenance cost
 - Most maintenance can be done remotely
- Faster restoration and shorter outages
 - Meters and smart devices provide real-time status information and locality so that utilities can easily pinpoint the problem and resolve it

Home Area Network (HAN)

HAN Model

- A unified hub collects data from home appliances and sends to a smart meter
- Each meter reads energy consumption, connecting to a unified hub via ZigBee
- Smart meters are organized in a mesh network connected to the meter data management service
- Example: if utility can turn air conditioners in the whole neighborhood at the same time, then it can decrease electricity fluctuations

Smart Meter

- Energy monitoring device
- Wireless technologies
- Two-way communication
 - Send granular data in real-time
 - Remote maintenance
 - Real-time pricing

Supply-Demand Problem

Demand-Response

Site Usage

Demand-Response Outlook (cont.)

- Direct load control
 - Allows utilities to turn specific appliances on and off during peak demand periods and critical events
 - Load management saves money for both utilities and customers by reducing the need for the generation capacity and minimizing the amount of energy a utility must purchase on the open market at peak demand periods

Outline

- Smart Grid
 - Advanced Metering Infrastructure (AMI)
 - Smart Meter
 - Characteristics
- Privacy and Security Issues
- Existing Solutions
- Privacy- and Data-Aware Scheme

Security Issues

- Denial of Service Attacks
- False-data Injections
- Man-in-the-middle Attacks
- Energy Fraud Attacks
- Authentication Attacks
- Disaggregation Attacks

Consumer Privacy Violation

- Burglary preparation
- Targeted advertising
- Stalkers may exploit the data to discover victim's home occupancy
- Risk assessment for insurance companies
- Parents "spying" on their children
- Landlords may determine if tenants violate the renting agreement
- Law enforcement agencies to discover illegal activities
- Businesses may analyze their competitors
- An employer can learn sleeping and eating habits of their employees

Profiling Consumer Energy Consumption

Ruzzelli, Antonio G., et al. "Real-time recognition and profiling of appliances through a single electricity sensor." 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON). IEEE, 2010.

Granular Energy Consumption Data

Active Power Signatures for 4 Appliances

Ruzzelli, Antonio G., et al. "Real-time recognition and profiling of appliances through a single electricity sensor." 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON). IEEE, 2010.

Outline

- Smart Grid
 - Advanced Metering Infrastructure (AMI)
 - Smart Meter
 - Characteristics
- Privacy and Security Issues
- Existing Solutions
- Privacy- and Data-Aware Scheme

Consumer's Wish List

- Reduce bill
- Better service
- Manage energy consumption
- Select utility company that best fits their energy needs
- Preserve privacy

Utility's Wish List

- Meet consumer needs
- Bill consumers correctly
- Employ load monitoring
- Process fine-grained data for further analysis
- Manage and control smart meters
- Minimize outages

AMI Challenges

- Fine-grained data: transfer, storage, and analysis
- Limited computational resources
- Consumer privacy preservation
- Scalability
- Multiple energy providers

Existing Solutions

- Utility companies (UCs) utilize:
 - Collectors
 - Aggregators
 - Storage units
 - Trusted Third Party (TTP)

Standard Infrastructure

Disadvantages Associated with Standard Infrastructure

- Fine-grained data are directly stored at UC
- Privacy issues
- No scalability in case of several electricity providers (data will not be transferrable among providers)
- UC controls the data and can do whatever they want with them besides load monitoring, fraud detection, energy efficiency

Aggregation-based Infrastructure

Disadvantages Associated with Aggregation-based Infrastructure

- No fine-grained data storage
- No fine-grained data applications
- No analysis of consumer energy consumption

Infrastructure with a Storage Unit

Disadvantages Associated with Infrastructure with a Storage Unit

- Two parties (Storage/TTP & UC) have direct access to Smart Meter (SM)s
- To support scalability, Storage/TTP has to use the same connection lines to SMs as UC, increasing network load
- Storage is deployed by UC
- Consumers cannot see their historical energy consumption
- Not scalable for multiple providers

Outline

- Smart Grid
 - Advanced Metering Infrastructure (AMI)
 - Smart Meter
 - Characteristics
- Privacy and Security Issues
- Existing Solutions
- Privacy- and Data-Aware Scheme

Proposed Solution

- Apart from use of lightweight cryptography and consumer privacy preservation, other unique features
 - Scalability, no significant changes to the current grid
 - Fine-grained data analysis
 - Network load reduction
 - Only UC has a direct access to smart meters
 - Different consumer-oriented applications
 - Comparison of energy providers' prices
 - · Variable price rates for energy, reducing smart meter computational load
 - Aggregation is made out of AMI

Proposed Infrastructure

Role of Trusted Third Party

- Independent commercial cloud-based organization
- Responsibility
 - Store and analyze fine-grained data
 - Calculate the bill
 - Provide detailed analysis to consumers
 - Provide privacy-preserving analysis for utilities

UC-TTP and Consumer-TTP Interaction

- Utility company
 - Billing
 - Load monitoring
 - Support of different price ranges
 - Fraud detection
- Consumers
 - Consumption analysis
 - Comparison of UC's

Proposed Protocol

Communication Phases

- Registration phase
 - Utility Company (UC) serves as a key generation center
 - Smart meters and the Trusted Third Party (TTP) communicate to the utility company to obtain partial public/private keys
- Session key exchange phase
 - Smart meters and TTP exchange a session key
- Data transmission phase
 - Smart meters send encrypted energy readings to TTP via UC

Registration Phase

Session Key Exchange Phase

Data Transmission Phase

Consumer Authentication

Attack Vectors

- Utility company as an honest-but-curious adversary
- Wait-for-response attack by a utility company
- Trusted third party as an honest-but-curious adversary
- Man-in-the-middle attacks

Attacker: Utility Company

Wait-for-Response Attack Smart Meter (SM)

Attacker: Trusted Third Party

Attacker: MITM

Conclusion and Future Research

- Cyber-Physical Systems research: security, privacy, data mining
- Unified AMI Simulation Framework
- Vehicular Network Integration
- Relax the assumption that the utility company and TTP do not collude

Education: CTF Unplugged

- Mission 000: Background
- Mission 001: Reconnaissance
- Mission 010: Forensics
- Mission 011: Cryptography
- Mission 100: Reverse Engineering
- Mission 101: Steganography
- Mission 110: Web

V. Ford, A. Siraj, A. Haynes, and E. L. Brown, "Capture the Flag Unplugged: An Offline Cyber Competition", accepted at ACM SIGCSE 2017.

CyberEagles

- Cybersecurity Club at Tennessee Tech
- Seminars, speakers, competitions, conferences
- http://blogs.cae.tntech.edu/cybereagles/
- https://forum.cybereagles.club/

References

- 1. V. Ford, A. Siraj, and M. A. Rahman, "Secure and Efficient Protection of Consumer Privacy in Advanced Metering Infrastructure Supporting Fine-grained Data Analysis," Journal of Computer and System Sciences 83.1 (2017): 84-100.
- 2. V. Ford, A. Siraj, and W. Eberle, "Smart Grid Energy Fraud Detection Using Artificial Neural Networks," in *Proceedings of the 2014 IEEE Symposium Series on Computational Intelligence*, December 9-12, 2014.
- 3. V. Ford and A. Siraj, "Clustering of smart meter data for disaggregation," in *Proceedings of IEEE Global Conference on Signal and Information Processing*, December 3-5, 2013.
- 4. V. Ford, A. Siraj, A. Haynes, and E. L. Brown, "Capture the Flag Unplugged: An Offline Cyber Competition", accepted at ACM SIGCSE 2017.

Thank you!

http://i1-news.softpedia-static.com/images/news2/IT-Security-Memes-6.jpg?1373973589

http://vford.me

vford@tntech.edu