Credit

4 Key Questions

What is a debt contract?

```
In []:
```


Why are debt contracts so prevalent?

```
In []:
```


When do debt markets fail?

```
In []:
```


Why do we need banks for credit?

```
In []:
```


Map

- 1. Financial contracts
- 2. The cheapness of debt
- 3. The failure of credit markets
- 4. The structure of credit markets

1. Financial Contracts

When an investor or a bank lends to an entrepreneur or a corporation, the agreement takes the form of a **financial contract**.

Designing such contracts requires balancing the borrower's **incentives to repay**, the lender's **willingness to finance**, and the **efficient use of resources**.

Ideal World

In a world of **complete information**, the two parties could write a **complete contingent contract** — specifying obligations and repayments for every possible future state of the world.

• Repayments could be perfectly linked to realized earnings.

Example: lender receives a fixed fraction of profit \rightarrow equitystyle contract.

• No default would occur, since payments automatically adjust to outcomes.

Real-World

However, real-world financial contracts differ markedly:

- (Most) Investments are made through **intermediaries**
- Some profitable investments do not get funded
- Repayments are typically fixed, not contingent on earnings.
- If earnings are insufficient → **default occurs**.
- Default triggers **costly procedures**: bankruptcy, foreclosure, asset seizure.

Stylized equity-style contract

Where R is the return from the financed project and R_E the return to the investor

Stylized debt contract

Where R is the return from the financed project and R_D the return to the investor

Overview of the Lecture

- 1. Why the standard debt contract dominates other financial contracts in credit?
- 2. Which market failures arise from credit contracts?
- 3. Why financial intermediation co-exists with direct market lending?

<u>Approach</u>: Study how different **information frictions** — costly verification, adverse selection, moral hazard — shape the **design of credit contracts** and the **role of intermediaries**.

Three guiding models

- 1. Why are **debt contracts** so prevalent?
 - → Townsend (1979): Costly state verification
- 2. What is wrong with debt contracts?
 - → Stiglitz & Weiss (1981): Credit rationing
- 3. Why do we need **banks** for credit?
 - → Holmström & Tirole (1997): Monitoring and intermediation

One common framework: <u>Information frictions</u>

Information Frictions and Credit

Type of Friction	Model	Main Problem	Technological Fix	Implication for Credit
Costly state verification	Townsend (1979)	Lender cannot freely observe project outcomes	Auditing	Debt contract minimizes verification cost
Adverse selection	Stiglitz & Weiss (1981)	Lender cannot observe borrower type	Screening	Credit rationing emerges
Moral hazard	Holmström & Tirole (1997)	Borrower actions unobservable	Monitoring	Banks add value through monitoring

2. The Cheapness of Debt

The Puzzle

Why do credit markets rely so heavily on **debt contracts**— a structure that often leads to costly defaults —
instead of contingent, equity-like contracts that could avoid them?

The Answer: Information Frictions

- Borrower actions and project outcomes are **not perfectly observable**.
- Information may be **private** or **non-verifiable**.
- Complete contingent contracts are therefore infeasible.
- Standard debt contracts emerge as a **constrained-efficient solution** once asymmetric information and incentive constraints are considered.

Costly-State Verification

The work of Townsend (1979) and Gale & Hellwig (1985) launched the **modern theory of financial contracting**.

It explains **why debt exists** — as the optimal response to **information frictions** and **costly verification** — and how incentives, participation, and efficiency jointly determine contract structure.

Setting

- Entrepreneur and investor write a contract where the investor provides financing for a project.
- The entrepreneur pays back an amount that depends on the state of the world (e.g. success / failure).
- The state of the world is **observed only by the entrepreneur**.
- The investor can observe it **only by incurring a monitoring cost**

costly state verification

Goal

Show that a **standard debt contract** is optimal:

Maximization of the entrepreneur's wealth subject to the participation of the investor.

Framework

Adapted from Tirole (2006), Chap. 3–7

Environment

Project

- ullet Investment I
- Returns R: random variable with density p(R) on $[0,+\infty)$

Entrepreneur

- ullet Own wealth A
- Needs to raise I-A from investor

Investors

- Funds > I
- Audit technology: reveal ${\cal R}$ at cost ${\cal K}$

Financial Contract

Specifies:

- The entrepreneur engages in project yielding return R and $\operatorname{\bf reports} \hat{R}$
- ullet The investor provides (I-A)
- Investor audits the reported return \hat{R} with probability $y(\hat{R})$

Entrepreneur payoff

$$w = y(\hat{R})w_0(\hat{R},R) + (1-y(\hat{R}))w_1(\hat{R},R)$$

Investor payoff

$$R_i = R - w(\hat{R}, R) - y(\hat{R})K$$

Timeline

- 1. Loan agreement
- 2. Investment is sunk
- 3. Income R is realized according to p(R)
- 4. Entrepreneur reports \hat{R}
- 5. Audit decision by investor
- 6. Repayment R_i to investor

Optimal Contract

The optimal contract maximizes the **entrepreneur's expected income**

$$\max_{y(\cdot),R_i(\cdot)} \; \mathbb{E}[w(\hat{R},R)]$$

Constraints

• [IC] Entrepreneur's incentive compatibility (truthful reporting)

$$w(R,R) = \max_{\hat{R}} \left\{ y(\hat{R})\, w_0(\hat{R},R) + \left(1-y(\hat{R})
ight)\, w_1(\hat{R},R)
ight\}$$

- ightarrow Reporting the true return ($R=\hat{R}$) maximizes w
- [IR] Investor's individual rationality (participation)

$$\mathbb{E}\left[R-w(R)-y(R)K
ight] \geq I-A$$

→ Investor at least breaks even

If perfect competition: zero profit

Standard Debt Contract

- ullet $D={
 m debt}$ payment
- $y(\hat{R})=0$ if $\hat{R}\geq D$ no audit
- $y(\hat{R}) = 1$ if $\hat{R} < D$ audit

Entrepreneur's payoff

$$w = \max(R - D, 0)$$

Investor's payoff

$$R_i = \min(R, D)$$

Standard Debt Contract

- D = debt payment
- $y(\hat{R})=0$ if $\hat{R}\geq D$ no audit
- $y(\hat{R}) = 1 \, \mathsf{if} \, \hat{R} < D$ audit

Entrepreneur's payoff

$$w = \max(R - D, 0)$$

Investor's payoff

$$R_i = \min(R, D)$$

Assuming $y(\hat{R})$ is binary for all \hat{R}

This debt contract is optimal

Proof

Step 1: Minimizing audit costs

As investors' break even (perfect competition), the [IR] constraint can be re-written:

$$\mathbb{E}\left[R-w(R)-\left(1-y(R)\right)K\right]=I-A,$$

• Isolate w(R) inside the expectation.

$$\mathbb{E}[w(R)] = \mathbb{E}[R - (1 - y(R))K] - (I - A) \tag{1}$$

$$= \mathbb{E}[R] - K\mathbb{E}[1 - y(R)] - (I - A) \tag{2}$$

ullet Constants: $\mathbb{E}[R]$, (I-A) and K>0

Therefore,

$$\max \mathbb{E}[w(R)] \iff \min \mathbb{E}[1 - y(R)].$$

 \downarrow

Goal: Minimize audit zone

Step 2: Regions of Returns

Define the following regions:

- \mathcal{R}_0 = no-audit zone
- \mathcal{R}_1 = audit zone

such that:

$$\mathcal{R}_0\cap\mathcal{R}_1=\emptyset, \qquad \mathcal{R}_0\cup\mathcal{R}_1=[0,\infty)$$

Step 3: Audit cost

Any [IC]-satisfying contract must have a **cutoff region** where the borrower repays a **fixed** amount whenever no audit occurs.

Why?

1. Flat Payments in No-Audit States

- ullet If repayments varied with R in no-audit states, borrower would underreport.
- Thus, all no-audit states must involve the same repayment F.

2. Cutoff Audit Rule

- Since borrower's incentive is always to under-report, audits should target low reports.
- Efficient rule: audit only when reported under a **threshold** F.

$$R-w(R)=F$$
 when $R\in\mathcal{R}_0$

Debt contract:

$$egin{aligned} R_i = R - w(R) = D & ext{when} & R \in \mathcal{R}_0^* \ & & \mathcal{R}_0^* = [D, \infty) & \& & \mathcal{R}_1^* = [0, D[] \end{aligned}$$

 \mathcal{R}_0^* is the largest possible no-audit region consistent with incentive compatibility.

Any other contract that satisfies **[IC]** and **[IR]** must audit at least as often: $\mathcal{R}_0 \subseteq \mathcal{R}_0^*$.

Hence the expected audit cost is (weakly) lower than any other contract.

Step 4: Investor payoff

Debt contract payoff: $(\mathcal{R}_0^*, \mathcal{R}_1^*)$

$$R_i = \left\{ egin{aligned} R - w(R) = D, & ext{if } R \in \mathcal{R}_0^*, \ R - K, & ext{if } R \in \mathcal{R}_1^*. \end{aligned}
ight.$$

Assume any other **arbitrary contract**: $(\mathcal{R}_0, \mathcal{R}_1)$

- For $R \in \mathcal{R}_1 \cap \mathcal{R}_0^*$
 - Arbitrary contract audit | Debt contract no audit
 - But the repayment under no-audit is constant at D → Same repayment but arbitrary contract pays audit cost
- For $R \in \mathcal{R}_1 \cap \mathcal{R}_1^*$
 - Arbitrary contract audit | Debt contract audit → Same return

The debt contract, when auditing, extracts the maximum enforceable amount R-K (the project's realized return minus audit cost).

No alternative contract can give the investor more.

Step 5: Entrepreneur payoff

Given competitive investors, the [IR] constraint binds: $\mathbb{E}[R_i] = I - A$.

If the investor gets the same expected payoff but with lower audit cost, the entrepreneur receives the higher expected income.

Debt → fewer audits → smaller total verification cost → larger borrower surplus

Discussion

Intuition Recap

In presence of **costly state verification**:

- **Debt contracts** emerge naturally as the **cheapest funding contract**:
 - Flat payments in good states (no audit).
 - Audits only in bad states (defaults).
- **Default is not a system failure** it is part of the optimal contract when verification is costly.

Why Alternatives Fail

Alternative	Why It Fails	
Equity-like contract (repayment depends on profits)	Requires verifying R in every state $ ightarrow$ too costly	
Variable repayment in no-audit states	Breaks incentive compatibility (borrower lies)	
Random audits	Wasteful, not targeted at incentive problem	
	\downarrow	

Debt minimizes verification costs while preserving incentives.

Policy and Market Implications

- **Efficient bankruptcy systems** → reduce verification costs.
- Collateral registries & credit bureaus → improve verification and enforcement.
- Auditing and accounting standards → lower information asymmetry.
- **Development finance:** where verification/enforcement is costly, credit markets remain underdeveloped.

Technological Fix: Reducing Verification Costs

Technologies that make **performance observable in real time** (data-sharing, digital payments, IoT, blockchain) push markets **closer to the optimal design** by:

- Reducing audit frequency or cost.
- Allowing more state-contingent (equity-like) payoffs.
- Expanding access to credit.

Applications

Setting	Mechanism	Effect
Fintech lenders (e.g., Shopify Capital, Stripe)	Real-time revenue data	Lower verification cost → more flexible contracts
Smart contracts / Blockchain	Automated on-chain verification	Replaces manual auditing
DeFi lending	No verification possible	Requires over-collateralization

3. The Failure of Credit Markets

Credit Markets ≠ Standard Markets

In most markets, **prices clear**

Supply and Demand: Excess demand → price rises → market equilibrates

In **credit markets**, however, **raising the interest rate** changes **who borrows**, not only **how much**.

The price (interest rate) itself affects the **risk composition** of borrowers.

Why? Information Asymmetry and Adverse Selection

- Borrowers differ in **riskiness** and **project quality**, but lenders **cannot observe** this before lending.
- Higher interest rates drive out safer borrowers, leaving a riskier applicant pool —
 a case of adverse selection.

When Prices Stop Working: Credit rationing

- Because of adverse selection the lender's **expected return** may **decline** when the interest rate rises.
- At some point, it becomes unprofitable to raise rates further even if loan demand exceeds supply.

<u>Credit rationing</u> → A market where some borrowers remain creditworthy but unfunded

A Model of Credit Rationing

The Stiglitz-Weiss (1981) model

- Showed formally how asymmetric information can produce a non-clearing equilibrium
- → Market failure in the credit market.
 - Formalized the concept of **credit rationing**:
 - Banks keep interest rates below market-clearing levels
 - Limit quantity rather than raise prices.

Environment

Project

- ullet Investment I
- ullet Returns R

NEW: projects can be of **different risk types** θ

Conditional distribution of returns:

$$R \mid heta \sim F(\cdot \mid heta),$$

where a higher θ implies a **mean-preserving spread** (riskier project).

Entrepreneur/Borrower

- ullet Own wealth A
- Associates with a project of risk type heta
- Needs to raise I-A from investor

Investors

- Funds > I
- Requires renayment D (principal + interest)

Riskiness of projects

Borrower participation

Outside option π_0

$$\mathbb{E}[\max\{R-D,0\}\mid heta]\geq \pi_0.$$

Define $\operatorname{cutoff} \operatorname{type} \theta^*(D)$ such that

$$\mathbb{E}[\max\{R-D,0\}\mid heta^*(D)]=\pi_0$$

Result: Borrower type θ participates iif $\theta \geq \theta^*$

<u>Key</u>: Safer borrowers exit as D increases

$$rac{d heta^*(D)}{dD}>0$$

Benchmark: Perfect Information

Suppose the bank can observe each borrower's type θ .

Then, it would offer a **type-specific contract** $D(\theta)$ that maximizes expected profit:

$$\max_{D(heta)} \ \Pi(D(heta) \mid heta) = \mathbb{E}[\min\{D(heta), R\} \mid heta] - (I - A)$$

subject to borrower participation:

$$\mathbb{E}[\max\{R-D(heta),0\}\mid heta]\geq \pi_0.$$

Because the lender can price risk perfectly, **each type** gets a distinct rate or face value $D(\theta)$.

- There is **no adverse selection**: the bank faces only project risk.
- The market **clears through prices** (interest rates differentiate across borrowers).

Information Asymmetry: Adverse Selection

Information asymmetry: θ is hidden - only known to the borrower.

The bank cannot price each type separately — it must offer a single contract (D) to a mixed pool of applicants.

• Per-loan expected profit (conditional on type θ):

$$\Pi(D \mid \theta) = \mathbb{E}[\min\{D,R\} \mid \theta] - (I - A)$$

Applicant pool at face value D:

Borrowers with
$$\theta > \theta^*(D)$$

• Average (pool) expected profit:

$$E\Pi(D) = \mathbb{E}_{ heta > heta^*(D)} \Big[\mathbb{E}[\min\{D,R\} \mid heta] \Big] - (I-A).$$

Equilibrium - Credit Rationing

The bank's **expected profit curve** $E\Pi(D)$ reflects two opposing forces:

- Direct effect (price effect): raising ${\cal D}$ increases revenue per loan.
- Composition effect (selection): higher D drives out safer borrowers (raises $\theta^*(D)$), worsening the pool.

Let
$$r=D-I$$

As D (price) rises:

- $E\Pi(D)$ first **increases** (direct effect dominates),
- then **decreases** (composition effect dominates).

 $E\Pi(D)$ is inverted-U shaped.

Let D^* be the profit-maximizing face value:

$$\left.rac{dE\Pi(D)}{dD}
ight|_{D^*}=0, \qquad \left.rac{d^2E\Pi(D)}{dD^2}
ight|_{D^*}<0.$$

If at D^* , loan demand exceeds supply (many applicants still want loans), banks do not increase D further — doing so would **reduce expected profit** (worse selection).

Credit Rationing

With continuum of types

Let
$$r^st = D^st - I$$

Hence,

- Banks do not increase the rate; they ration: lend a fixed quantity at D^{*} and reject the marginal applicants.
- Some borrowers remain creditworthy but unfunded.
- The **market fails** to clear via price adjustment.
- This outcome is **credit rationing**.

Key message:

With adverse selection, the profit-maximizing rate does not clear the market.

Credit rationing is an **equilibrium** outcome.

Discussion

The Stiglitz–Weiss model shows that:

- Information asymmetries make bank profit a **non-monotonic function of interest** rates.
- Optimal lending rate D^* does not clear the market.
- Credit rationing is an equilibrium phenomenon rooted in adverse selection.

Implications

- Banks prefer to ration credit at D^* rather than raise rates further.
- Explains why even solvent, willing borrowers can be denied loans.
- Highlights role of **collateral**, **covenants**, **relationship lending** to reduce adverse selection.

Why It Was Such an Impactful Discovery

Classical view (before 1981):

In competitive markets, excess demand is eliminated by raising prices. By analogy, if too many borrowers wanted credit, interest rates should rise until demand = supply.

Stiglitz & Weiss (1981):

- Showed that in credit markets, raising interest rates changes *who* borrows, not just *how much*.
- Higher rates drive safe borrowers out, leaving a riskier pool (adverse selection).
- Expected bank profit is an inverted-U in the interest rate → banks may stop lending before the market clears.
- This means credit rationing is an equilibrium outcome, not a temporary imperfection.

Impact (together with Akerlof 1970):

- Akerlof's *Market for Lemons*: price affects the quality of goods traded.
- Stiglitz-Weiss: interest rates affect the quality of borrowers.
- Together, these papers reshaped economics by showing how information asymmetries lead to persistent market failures.

What the Model Explains in Practice

Financial exclusion: Some creditworthy borrowers are systematically denied loans (e.g., SMEs, low-income households).

Underinvestment in innovation: Innovative projects are harder to evaluate → more likely to be rationed.

Explains why banks prefer lending against collateral (mortgages) rather than financing startups.

Persistence of informal credit markets: When banks ration, borrowers turn to moneylenders or payday lenders, often at exorbitant rates.

Structural inequality: Borrowers without collateral, reputation, or long relationships with banks are most likely to be excluded.

Why credit markets look different from goods markets: In goods markets, prices usually clear demand. In credit markets, queues, rejections, and "no" are common.

Interventions

Screening and information tools:

- Credit registries, credit bureaus, big data credit scoring.
- Better borrower information reduces adverse selection.

Collateral and covenants:

• Lenders use assets and contractual restrictions to screen and align incentives.

Relationship lending:

• Long-term interactions between bank and borrower reduce information asymmetry.

Public interventions:

- Loan guarantees (e.g., for SMEs).
- Targeted credit programs (student loans, housing finance).

Policy Implications

Justification for regulation and intervention:

- Market failures in credit justify government involvement.
- Explains the existence of development banks, credit guarantee schemes, and subsidized lending.

Financial stability link:

- Rationing shows banks will not necessarily raise rates in response to stress → instead, they may cut lending ("credit crunch").
- Connects to procyclicality of bank lending during crises.

Distributional effects:

- Credit rationing disproportionately affects marginalized groups, creating inequality of opportunity.
- Policies promoting financial inclusion (e.g., open banking, digital ID) have efficiency and equity benefits.

Modern Issues and Fintech

Fintech credit scoring:

- Use of alternative data (e.g., transaction histories, mobile phone data) reduces information gaps.
- Can mitigate adverse selection, expand credit access.

Peer-to-peer and platform lending:

- Platforms claim to overcome rationing by better matching of borrowers and investors.
- But information asymmetry and selection issues persist (ratings, defaults).

Stablecoins and DeFi lending:

- Collateral-based lending dominates (e.g., overcollateralized crypto loans).
- Illustrates persistence of rationing: without information about borrower quality, only fully collateralized loans are feasible.

Policy debates today:

- Open Banking and data portability as tools to reduce information frictions.
- Balancing **financial inclusion** with **privacy**.

4. The Structure of Credit Markets

So far:

- Townsend (1979) → Costly state verification → why debt contracts arise.
- Stiglitz & Weiss (1981) → Adverse selection → why credit rationing occurs.

Now \rightarrow a third question:

Why do banks exist, and why do they coexist with direct market investors?

In reality, we observe **segmentation** in financing:

- Large, established, transparent firms → access **capital markets**.
- Smaller, opaque, riskier firms → rely on **banks**.
- Some firms → **credit constrained** or excluded.

During crises, this segmentation widens leading to **credit crunch** phenomenon.

The Core Problem: Moral Hazard

Many investment projects require **effort** from the entrepreneur/borrower and **monitoring** of the investor to succeed.

- **Effort** increases expected returns but is **not observable** by outsiders.
- If the entrepreneur can enjoy **private benefits** from **shirking** → may not exert effort

 \downarrow

Moral hazard: unobservable actions distort incentives and funding decisions.

This information friction explains the **boundary between banks and markets** and allows to address:

- Which firms **borrow directly** from investors?
- Which rely on **intermediated (bank) finance**?
- Which cannot obtain finance at all?
- → A **micro-foundation** for the structure of the financial system:

Banks arise to mitigate incentive problems that markets alone cannot solve.

A Model of Monitoring Effort

Holmstrom and Tirole (1997) provide a unified framework showing that:

- 1. Moral hazard (hidden effort) limits the pledgeable income of projects.
- 2. **Monitoring** can relax this constraint but at a **cost**.
- 3. The optimal allocation features a **coexistence** of:
 - Market-financed projects (self-enforcing effort),
 - Bank-financed projects (monitoring needed),
 - Unfunded projects (inefficient due to severe moral hazard).

This paper was a foundation for theories of:

- Financial intermediation (banks as delegated monitors),
- Capital structure (internal vs external finance),
- Credit cycles and financial amplification (via limited pledgeability).
- Basel-style capital regulation (bank skin in the game),
- Corporate finance hierarchy: internal → bank → market financing.

Key idea:

Banks and markets coexist because they address different incentive problems.

Financial structure is not arbitrary — it reflects the **nature of information and monitoring** in the economy.

Environment

Project

ullet Investment I

NEW:

 Returns R \in $\{R_H,$ $R_L\}$

Project outcome depends on $\mbox{\bf effort}\ e$

Effort	Success probability	Return if success	Return if failure
High effort ($e=1$)	p_H	R_H	0
Low effort $(e = 0)$ (shirking)	$p_L < p_H$	$R_L < R_H$	0

Entrepreneur/Borrower

- ullet Own wealth A
- ullet Needs to raise I-A from investor
- Choses to exert effort *e*
 - When shirking (e=0): gets **private benefit** B

Investor (direct market)

- Funds > I
- Requires repayment D (principal + interest)
- Cannot observe e ex ante

Bank (intermediary)

- Same financing as investor
- Monitoring technology: B=0 at cost ${\cal K}$

NPV assumptions:

$$p_H R_H > I > p_L R_L$$

→ The project is socially efficient **only with high effort**.

Entrepreneur's expected payoff

Limited liability: Let D be the repayment due **in success** and nothing is paid in failure.

Expected payoff

$$\mathbb{E}[w] = egin{cases} p_H(R_H - D) & ext{if } e = 1 \ p_L(R_L - D) + B & ext{if } e = 0 \end{cases}$$

Incentive Compatibility

Without Monitoring

[IC] Effort is **incentive-compatible** iff

$$p_H(R_H-D) \ \geq \ p_L(R_L-D) + B.$$

• Rearranging:

$$ig(p_H R_H - p_L R_Lig) - (p_H - p_L) D \ \geq \ B,$$

→ There is a **maximum face value** that can be charged to the entrepreneur while keeping consistent with effort:

$$D_{ ext{max}} \ = \ rac{p_H R_H - p_L R_L - B}{p_H - p_L}.$$

• For $D>D_{
m max}$, the entrepeneur prefers to shirk.

Direct Market Funding

Investor expected payoff:

When $D < D_{max}$: investors expect to receive $p_H D$ (since effort is exerted under [IC]).

Feasibility of direct funding:

• Market finance is feasible if **there exists** $D \leq D_{\max}$ such that

$$p_H D \geq I - A$$
.

• A **necessary condition** is therefore that:

$$p_H D_{ ext{max}} \ \geq \ I - A \quad \Longleftrightarrow \quad A \geq I - p_H rac{p_H R_H - p_L R_L - B}{p_H - p_L} = A_M$$

Where A_M defines the **minimum capital for market finance**:

 \rightarrow If $A \geq A_M$, effort is self-enforcing and **direct market funding** is possible.

Bank Funding

A bank can monitor at cost K>0 and **prevent shirking**

- The [IC] constraint is no longer binding for the monitored loan
- B = 0

Bank's expected profit

$$\Pi_B(D) = p_H D - (I - A) - K.$$

Feasibility of bank funding:

ullet Bank funding is feasible with monitoring if there exists D such that

$$p_H D - K \geq I - A.$$

• A **necessary condition** is therefore that:

$$A>A_B = I-p_HR_H+K.$$

Where A_B is the **minimum capital** needed for **bank finance** (monitored loan).

The bank chooses the largest feasible repayment, $D=R_H$, to minimize the required own capital while respecting limited liability $D < R_H$).

ightarrow If $A_B \leq A$, effort is monitored and **bank funding** is possible.

Credit Market Structure

Co-existence condition

$$A_M > A_B \quad \Longleftrightarrow \quad p_H rac{p_L(R_H - R_L) + B}{p_H - p_L} > K.$$

As long as the monitoring cost is **not too high**, monitoring is valuable because it **expands** the feasible set:

$$A_B < A_M$$

But bank monitoring costs K so banking loans are costlier \rightarrow Banks optimally fund the **intermediate region** where monitoring is necessary yet efficient.

Case	Effort enforcement	Monitoring?	Capital condition	Funding source
Market finance	Self-enforced	No	$A \geq A_M$	Direct market investors
Bank finance	Needs enforcement	Yes (cost K	$A_B \leq A \ < A_M$	Bank (monitored)
No finance	Not profitable even with monitoring	_	$A < A_B$	Project not funded

Economic Interpretation

- **Positive NPV** requires high effort; otherwise, expected value is insufficient.
- With enough entrepreneur capital ($A \geq A_M$) \rightarrow markets can fund directly.
- With intermediate capital ($A_B \leq A < A_M$), effort would fail without discipline; **banks** pay K to monitor and restore feasibility.
- With **low capital** $(A < A_B)$, the project remains unviable even with monitoring \rightarrow no funding.

Bottom line:

Markets fund well-capitalized projects; banks fund monitorable-but-risky ones; bad projects remain unfunded.

This explains the **coexistence** of banks and markets under moral hazard.

Discussion

Paper Impact

- A **foundational contribution** to the modern theory of **financial intermediation**.
- Provided a **microeconomic justification** for why banks and markets coexist:
 - Banks = *delegated monitors* under moral hazard.
 - Markets = arm's-length financiers when incentives are self-enforcing.

The paper reframed finance as a problem of **information governance**, not just capital allocation.

Conceptual Breakthroughs

• Introduced the notion of **pledgeable income**:

Only the part of project returns consistent with incentives can be pledged to investors.

- Explained the **hierarchy of finance**:
 - 1. Internal finance (self-enforcing),
 - 2. Intermediated finance (requires monitoring),
 - 3. Market finance (transparent, large-scale).
- Linked firm size, transparency, and financing mode:
 - Small, opaque → bank-dependent.
 - Large, visible → market-based.

Monitoring as Information Production

- In Holmström & Tirole (1997), banks **monitor borrowers** to prevent shirking.
- Monitoring does not only enforce effort it also generates information and data about:
 - borrower performance,
 - business viability,
 - repayment behavior.

In modern terms: **monitoring = data production** about creditworthiness and operations.

The Private Nature of Monitoring Data

- The information a bank collects through monitoring is **proprietary**.
- It represents **private capital** in the form of data:
 - costly to produce,
 - and difficult for competitors to replicate.
- This informational advantage can **lock customers in**:
 - Borrowers may stay with their bank because the bank knows them best.
 - Competing lenders cannot easily assess risk without similar data.
- → Private information → informational rents → market power.

Policy Implication: Open Data and Interoperability

- From a **social efficiency** perspective, data about borrower quality is **non-rival** once produced, it could improve credit allocation if shared.
- However, private ownership of monitoring data leads to under-sharing and barriers to entry.

This motivates **open data policies** such as:

- Open Banking / Open Finance: regulated data-sharing between financial institutions to enable competition and switching.
- Standardized APIs and interoperability frameworks: reduce information asymmetry while preserving privacy and security.

Economic Trade-Off

Open Data Policies

Benefit	Cost	
Reduces switching costs and enhances competition	Weakens private incentives to monitor and collect data	
Improves market contestability	Unravelling: may reduce banks' willingness to lend to no-data borrowers	

The policy challenge:

Balance the benefits of open access to data with the need to preserve **monitoring incentives** that sustain credit to informationally intensive sectors.

Modern Relevance

AI and machine learning

Technologies to **detect** patterns of shirking or misuse of funds (reduce moral hazard). As such they can **reduce the cost of monitoring** (K) thereby **expanding further access** to monitored credit

Data-driven economy

Monitoring rents are becoming data rents.

- Fintechs and BigTechs enter credit markets not through capital, but through informational advantage.
- Open banking and data portability are policy tools designed to:
 - lower barriers to entry,
 - prevent informational monopolies,
 - and reintroduce competition in the monitoring layer of finance.

The underlying principle remains Holmström–Tirole's insight:

- Information is costly to produce and privately valuable
- Public policy must decide when to privatize it and when to share it.

