Stochastic Processes

March 23, 2023

目录

1	Review of Martingales	2
2	Markov Chains	9
3	Ergodic Theorem	4

1 Review of Martingales

- $(X_n)_{n>0}$ is L^2 -bounded martingale $\Rightarrow X_n$ converges in L^2 .
- $(X_n)_{n>0}$ is L^1 -bounded martingale $\Rightarrow X_n$ converges a.s.
- (1) + (2): If $(X_n)_{n\geq 0}$ is L^p -bounded martingale for p>1, then X_n converges in $L^{p'}$ for $p'\in [1,p)$.
- Statement is false when p=1. Example: $\Omega=[0,1), \mathscr{F}_n=\sigma\{[\frac{i}{2^n},\frac{i+1}{2^n})\}_{i=0}^{2^n-1}, X_n(\omega):=\begin{cases} 2^n & \omega\in[0,\frac{1}{2^n})\\ 0 & \text{otherwise} \end{cases}$.
- Let p > 1 and $(X_n)_{n \ge 0}$ be L^p bounded martingale w.r.t. \mathscr{F}_n . Then $\exists X \in L^p(\Omega, \mathscr{F}_\infty, P)$ s.t. $X_n \to X$ in L^p and a.s. and $X_n = \mathbb{E}(X|\mathscr{F}_n)$.
- Let $(Z_n)_{n\geq 0}$ be a nonnegative sub-martingale and $Z_n^* = \sup_{0\leq k\leq n} Z_k$, then $\mathbb{P}(Z_n^* > \lambda) \leq \frac{1}{\lambda} \mathbb{E}(Z_n 1_{\{Z_n^* > \lambda\}}) \leq \frac{1}{\lambda} \mathbb{E}Z_n$. Corollary: $\mathbb{P}(Z_n^* > \lambda) \leq \frac{1}{\lambda p} \mathbb{E}(Z_n^p 1_{\{Z_n^* > \lambda\}}) \leq \frac{1}{\lambda p} \mathbb{E}(Z_n^p)$.
- Doob's maximal inequality: Let $p > 1, \exists C = C_p$ s.t. \forall martingale $(X_n)_{n \geq 0}$, we have $\mathbb{E}|X_n^*|^p \leq C_p \mathbb{E}|X_n|^p$ where $|X_n^*| = \sup_{0 \leq k \leq n} \sup |X_k|$.
- If $(X_n)_{n\geq 0}$ is a martingale with $\sup_n \mathbb{E}(|X_n|\log(1+|X_n|)) < +\infty$, then X_n converges in L^1 .

 Proof $\mathbb{E}|X_n^*| = \int_0^{+\infty} \mathbb{P}(|X_n^*| > \lambda) d\lambda \leq 1 + \int_1^{+\infty} \frac{1}{\lambda} (\int_{|X_n^*| > \lambda} |X_n| d\mathbb{P}) d\lambda = 1 + \int_1^{+\infty} |X_n| 1_{X_n^* > 1} (\int_1^{X_n^*} \frac{1}{\lambda} d\lambda) d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \leq 1 + \mathbb{E}(|X_n|\log(X_n^* \vee 1)) \Rightarrow \mathbb{E}(X_n^* \vee 1) \leq 2 + \mathbb{E}(|X_n|\log(X_n^* \vee 1)).$ Since $x \log y \leq 10^{10}(2+x) \log(2+x) + \frac{y}{2}$ when x, y are large enough (insight: if $y >> x^2$ then $x \log y \leq \frac{y}{2}$; else $x \log y \leq 10^{10}(2+x) \log(2+x)$), $\mathbb{E}X_n^* \leq 10^{100}[1 + \mathbb{E}(|X_n| + 2) \log(|X_n| + 2)]$. Then use dominated convergence theorem.
- Two probability measures \mathbb{P} and \mathbb{Q} on (Ω, \mathscr{F}) , $\mathbb{Q} << \mathbb{P}$ on \mathscr{F}_n for every n and $M_n = \frac{d\mathbb{Q}|_{\mathscr{F}_n}}{d\mathbb{P}|_{\mathscr{F}_n}}$. $(M_n)_{n\geq 0}$ is a \mathbb{P} -martingale w.r.t. $(\mathscr{F}_n)_{n\geq 0}$. $\mathbb{Q} << \mathbb{P}$ on \mathscr{F}_∞ if and only if $M_n \to M$ in L^1 . $\mathbb{Q}(A) = \int_A M d\mathbb{P} + \mathbb{Q}(A \cap \{M = +\infty\})$. Proof Sufficiency. $\mathbb{Q} << \mathbb{P}$ on $\mathscr{F} = \mathscr{F}_\infty$, thus let $Z = \frac{d\mathbb{Q}|_{\mathscr{F}}}{d\mathbb{P}|_{\mathscr{F}}}$, we need to show M_n converges to Z in L^1 . $\forall A \in \mathscr{F}_n$, $\int_A M_n d\mathbb{P} = \mathbb{Q}(A) = \int_A Z d\mathbb{P} \Rightarrow M_n = \mathbb{E}(Z|\mathscr{F}_n)$. Thus M_n is uniformly integrable, thus converges in L^1 .

Necessity. Suppose $M_n \to M$ a.s. and in L^1 We need to show $M_n = \mathbb{E}(M|\mathscr{F}_n)$ and $M = \frac{d\mathbb{Q}}{d\mathbb{P}}$. It suffices to show $\mathbb{Q}(A) = \int_A M d\mathbb{P}$ for all $A \in \bigcup_n \mathscr{F}_n$. Suppose $A \in \mathscr{F}_N$. Then $\mathbb{Q}(A) = \int_A M_N d\mathbb{P} = \int_A M_{N+k} d\mathbb{P} \to \int_A M d\mathbb{P}$. By $\pi - \lambda$ theorem we can get the desired result.

Special situation: Suppose $\mathbb{P} \perp \mathbb{Q}$ on $\mathscr{F}(\exists E \text{ s.t. } \mathbb{P}(E) = 1, \mathbb{Q}(E^c) = 1)$ and $\mathbb{P} << \mathbb{Q}$ on \mathscr{F}_n . Then $\frac{1}{M_n}$ converges \mathbb{Q} -a.s. Let $\mathbb{R} = \frac{1}{2}(\mathbb{P} + \mathbb{Q}), \, \mathbb{P}, \mathbb{Q} << \mathbb{R}$ on $\mathscr{F}, \, \frac{\mathrm{d}\mathbb{P}|\mathscr{F}_n}{\mathrm{d}\mathbb{R}|\mathscr{F}_n} = \frac{2}{1+M_n} \to \frac{2M}{1+M}$ in $L^1(\mathbb{R}), \, \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{R}} = \frac{2M_n}{1+M_n} \to \frac{2}{1+M}$ in $L^1(\mathbb{R})$. Then $\mathbb{Q}(A) = \mathbb{Q}(A \cap E^c) = 1$ and $\mathbb{P}(A) = \mathbb{Q}(A \cap E^c) = 1$ and $\mathbb{P}(A) = 1$ and $\mathbb{P}(A$

General situation: $\mathbb{Q} = \mathbb{Q}_1 + \mathbb{Q}_2$, $\mathbb{Q}_1 << \mathbb{P}$, $\mathbb{Q}_2 \perp \mathbb{P}$ on \mathscr{F} . Therefore we can decompose M_n as $M_n = Y_n + Z_n$ where $Y_n \to Y$ in $L^1(\mathbb{P})$ and $Z_n \to 0$ \mathbb{P} -a.s. $\mathbb{Q}_1(A) = \int_A Y d\mathbb{P} = \int_A M d\mathbb{P}$. $\mathbb{Q}_2(A) = \mathbb{Q}_2(A \cap \{Z = +\infty\})$. Since Z = 0 \mathbb{P} -a.s., $M < +\infty$ \mathbb{P} -a.s. and $\mathbb{Q}_2(M = +\infty) = 1$, we have $\mathbb{Q}_2(A) = \mathbb{Q}(A \cap \{Z = +\infty\}) = \mathbb{Q}(A \cap \{M = +\infty\}) = \mathbb{Q}(A \cap \{M = +\infty\})$. To sum up, $\mathbb{Q}(A) = \int_A M d\mathbb{P} + \mathbb{Q}(A \cap \{M = +\infty\})$.

- Statement is false if $M_n \not\to M$ in L^1 . Example: $\Omega = \{\omega = (\omega_1, \cdots, \omega_n, \cdots) \in \{\pm 1\}^{\mathbb{N}}\}, X_n(\omega) = \omega_n$. X_n 's are i.i.d. under \mathbb{P} and \mathbb{Q} , but $\mathbb{P}(X_n = 1) = \frac{1}{2}, \mathbb{P}(X_n = -1) = \frac{1}{2}, \mathbb{Q}(X_n = 1) = \frac{1}{3}, \mathbb{Q}(X_n = -1) = \frac{2}{3}$. $\mathscr{F}_n = \sigma(X_1, \cdots, X_n)$. $\mathbb{P}(\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n X_k = 0) = 1, \mathbb{Q}(\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n X_k = -\frac{1}{3}) = 1$.
- Monotone class theorem for functions: Suppose \mathcal{A} us a π -system and \mathcal{H} be a class of functions from Ω to \mathbb{R} s.t. (1) $1_A \in \mathcal{H}$ for every $A \in \mathcal{A}$, (2) if $f, g \in \mathcal{H}$ then $af + bg \in \mathcal{H}$, (3) if $f_n \in \mathcal{H}$ and $f_n \uparrow f$ then $f \in \mathcal{H}$. Then all nonnegative $\sigma(\mathcal{A})$ -measurable functions are in \mathcal{H} .
- Let $(Y_n)_{n\geq 0}$ be i.i.d., nonnegative r.v.'s with $\mathbb{E}Y_k=1$. Then $M_n=\prod_{k=1}^n Y_k$ converges in L^1 iff $Y_n\equiv 1$. Otherwise $M_n\to 0$ a.s.

Proof Note that $\frac{1}{n}\log M_n = \frac{1}{n}\sum_{k=1}^n \log Y_k \to \mathbb{E}\log Y$ a.s. If $\mathbb{E}\log Y = 0$ then by Jensen's inequality we have $Y_n \equiv 1$ which means M_n converges in L^1 . If $\mathbb{E}\log Y < 0$ then $M_n \to 0$ a.s.

MARKOV CHAINS

• Kakutani's theorem: $M_n = \prod_{k=1}^n Y_k, Y_k \ge 0$ are independent, $\mathbb{E}Y_k = 1, \lambda_k = \mathbb{E}\sqrt{Y_k}$. (1) If $\prod_k \lambda_k > 0$, then $M_n \to M$ in L^1 ; (2) If $\prod_k \lambda_k = 0$, then $M_n \to 0$ a.s.

Proof Let $Z_n = \prod_{k=1}^n \frac{\sqrt{Y_k}}{\lambda_k}$. Then Z_n is a martingale and has an a.s. limit Z, and $M_n = (\prod_{k=1}^n \lambda_k)^2 Z_n^2$. If $\prod_k \lambda_k > 0$, then Z_n is L^2 bounded and then convergence in L^2 , which implies $M_n \to M$ in L^1 . If $\prod_k \lambda_k = 0$, it is obvious that $M_n \to 0$ a.s.

- Martingale LLN: Let $(M_n)_{n\geq 0}$ be a martingale s.t. $\sum_{k=1}^{+\infty} \frac{\mathbb{E}(M_k M_{k-1})^2}{k^2} < +\infty$. Then $\frac{M_n}{n} \to 0$ a.s. *Proof* Let $Y_n = \sum_{k=1}^n \frac{X_k}{k}$. Then $(Y_n)_{n\geq 0}$ is an L^2 bounded martingale, thus $Y_n \to Y$ a.s. Then use Kronecker's lemma.
- Martingale CLT: Let $(M_n)_{n\geq 0}$ be a martingale with $M_0=0$ and $\sigma_n^2=\sum_{k=1}^n\mathbb{E}X_k^2=\mathbb{E}\langle M\rangle_n$. Assume that $\frac{1}{\sigma_n^2} \max_{1 \leq k \leq n} (\mathbb{E}X_k^2) \to 0, \ \frac{1}{\sigma_n^2} \sum_{k=1}^n \mathbb{E}(X_k^2 1_{\{|X_k| > \epsilon \sigma_n\}} | \mathscr{F}_{k-1}) \xrightarrow{p} 0 \text{ for all } \epsilon > 0, \ \frac{1}{\sigma_n^2} \langle M \rangle_n \xrightarrow{p} 1. \text{ Then } \frac{M_n}{\sigma_n} \Rightarrow \mathcal{N}(0,1).$

Markov Chains

- Let $(X_n)_{n\geq 0}$ be a homogeneous Markov chain on a discrete space S. \mathbb{P}^x : law of $(X_n)_{n\geq 0}$ conditioned on $X_0=x$. $\mathbb{P}(X_{n+1} \in A | \mathscr{F}_n) = \mathbb{P}^{X_n}(X_1 \in A) = \mathbb{P}(X_1 \in A | X_0 = X_n). \ \mathbb{E}^x : \text{expectation under } \mathbb{P}^x. \ \mathbb{P}^x(X_1 = y) = p(x,y).$
- For every $f: S \to \mathbb{R}$ bounded, define $(\mathcal{P}f)(x) = \sum_{y \in S} p(x,y) f(y) = \mathbb{E}^x (f(X_1)), (\mathcal{L}f)(x) = \sum_{y \in S} p(x,y) f(y) \mathbb{E}^x (f(X_1)) = \mathbb{E}^x (f(X_1)), (\mathcal{L}f)(x) = \mathbb{E$ f(x). $\mathcal{L} = \mathcal{P} - \mathrm{id}$, the generator.
- Let $(X_n)_{n\geq 0}$ be a homogeneous Markov chain with generator \mathcal{L} . Then for every bounded $f:S\to\mathbb{R},\ M_n=0$ $f(X_n) - f(X_0) - \sum_{k=0}^{n-1} (\mathcal{L}f)(X_k)$ is a martingale. Conversely, let $(X_n)_{n\geq 0}$ be a process and \mathcal{L} be an operator on $\mathcal{B}(S)$ s.t. M_n^f is a martingale for every f, then $(X_n)_{n\geq 0}$ is a Markov chain with generator \mathcal{L} .
- Given operator \mathcal{L} on $\mathcal{B}(S)$, we say $f: S \to \mathbb{R}$ is (1) harmonic for \mathcal{L} if $\mathcal{L}f = 0$; (2) sub-harmonic for \mathcal{L} if $\mathcal{L}f \geq 0$; (3) super-harmonic for \mathcal{L} if $\mathcal{L}f \leq 0$.
- Let f be the generator of a Markov chain $(X_n)_{n\geq 0}$. Then f is (sub-/super-)harmonic $\Leftrightarrow f(X_n)_{n\geq 0}$ is a (sub-/super-) martingale.
- f is (sub-/super-)harmonic on $D \subset S$ if $\mathcal{L}f \geq / \leq / = 0$ on D. Let $\tau = \inf\{k \geq 0 : X_k \in D^c\}$, then $(f(X_{n \wedge \tau}))_{n \geq 0}$ is a (sub-/super)martingale.
- Maximum principle: Let $(X_n)_{n\geq 0}$ be a Markov chain and $D\subset S$ s.t. the stopping time $\tau=\inf\{k\geq 0,X_k\in D^c\}$ is a.s. finite. If f is bounded and sub-harmonic on D, then $\sup_{x \in D} f(x) \leq \sup_{x \in D^c} f(x)$.

Proof f is sub-harmonic implies $(f(X_{n \wedge \tau}))$ is a sub-martingale, hence for $x \in D$ we have $f(x) \leq \mathbb{E}^x(f(X_{n \wedge \tau})) \to \mathbb{E}^x(f(X_{\tau})) \leq \mathbb{E}^x(f(X_{\tau}))$ $\sup_{x \in D^c} f(x).$

• $A \subset S, \tau_A = \sup\{k \geq 0 : X_k \in A\}.$ (1) $u(x) = \mathbb{P}^x(\tau_A < +\infty) \Rightarrow \begin{cases} \mathcal{L}u = 0 & \text{on } A^c \\ u = 1 & \text{on } A \end{cases}$. (2) $u(x) = \mathbb{P}(\tau_A < \tau_B) \Rightarrow (1) = \mathbb{P}(\tau_A < \tau_B) \Rightarrow (2) = \mathbb{P}(\tau_A < \tau_B) \Rightarrow (3) = \mathbb{P}(\tau_A < \tau_B) \Rightarrow (4) = \mathbb{P}(\tau_A < \tau_B) \Rightarrow (4)$

$$\begin{cases} \mathcal{L}u = 0 & \text{on } (A \cup B)^c \\ u = 1 & \text{on } A \\ u = 0 & \text{on } B. \end{cases} (3) \ u(x) = \mathbb{E}^x[\tau_A] \Rightarrow \begin{cases} \mathcal{L}u = -1 & \text{on } A^c \\ u = 0 & \text{on } A \end{cases}.$$

• Any nonnegative solution v to $\begin{cases} \mathcal{L}v = 0 & \text{on } A^c \\ v = 1 & \text{on } A \end{cases}$ satisfies $v \geq u$. Furthermore, if $u \equiv 1$, then $\exists 1$ bounded solution to $\begin{cases} \mathcal{L}v = 0 & \text{on } A^c \\ v = f & \text{on } A \end{cases}$ with $v(x) = \mathbb{E}^x(f(X_{\tau_A}))$.

to
$$\begin{cases} \mathcal{L}v = 0 & \text{on } A^c \\ v = f & \text{on } A \end{cases} \text{ with } v(x) = \mathbb{E}^x(f(X_{\tau_A})).$$

Proof Let v(x) be a non-negative solution, then $v(X_{n \wedge \tau_A})_{n \geq 0}$ is a martingale. $v(x) = \mathbb{E}^x v(X_{n \wedge \tau_A}) = \mathbb{E}^x v(X_{n \wedge \tau_A}) 1_{\tau_A < \infty} + \mathbb{E}^x v(X_{n \wedge \tau_A}) 1_{\tau_A < \infty}$ $\mathbb{E}^x v(X_{n \wedge \tau_A}) 1_{\tau_A = \infty} \ge \mathbb{E}v(X_{n \wedge \tau_A}) 1_{\tau_A < \infty}. \text{ Let } n \to \infty \text{ and by Fatou's lemma, we have } v(x) \ge \mathbb{E}^x v(X_{\tau_A}) 1_{\tau_A < \infty} = \mathbb{P}^x (\tau_A < \infty) = \mathbb{E}v(X_{\tau_A}) 1_{\tau_A < \infty}$ u(x). If $u(x) \equiv 1$ and v(x) is bounded, then by bounded convergence theorem, $v(x) = \mathbb{E}^x v(X_{n \wedge \tau_A}) \to \mathbb{E}^x v(X_{\tau_A}) = \mathbb{E}^x f(X_{\tau_A})$.

3

ERGODIC THEOREM

• Doob's h-transform: Let h be nonnegative, harmonic with $h(x_0) = 1$ for some $x_0 \in S$. Then $(h(X_n))_{n \geq 0}$ is a martingale with $\mathbb{E}^{\mathbb{P}^{x_0}}(h(X_n)) = 1$. Then $\exists 1$ measure \mathbb{Q}^h on \mathscr{F}_{∞} s.t. $\frac{d\mathbb{Q}^h}{d\mathbb{P}^{x_0}|_{\mathscr{F}_n}} = h(X_n), \forall n \geq 0$. $\mathbb{Q}^h(X_0 = x_0) = 1$, $(X_n)_{n \geq 0}$ never visits the set $D = \{x : h(x) = 0\}$. Under \mathbb{Q}^h , $(X_n)_{n \geq 0}$ is again a Markov chain on $S \setminus D$ with transition probability $q(x,y) = \frac{p(x,y)h(y)}{h(x)}$ (or equivalently, $(\mathcal{L}^h f)(x) = \frac{1}{h(x)}(\mathcal{L}(hf))(x)$).

Proof The first two props are trivial. $\mathbb{Q}(X_{n+1}=y|\mathscr{F}_n)=\frac{\mathbb{Q}(X_{n+1}=y,X_n=x_n,\cdots,X_0=x_0)}{\mathbb{Q}(X_n=x_n,\cdots,X_0=x_0)}=\frac{\int_{\{X_{n+1}=y,X_n=x_n,\cdots,X_0=x_0\}}h(X_{n+1})\mathrm{d}\mathbb{P}^{x_0}}{\int_{\{X_n=x_n,\cdots,X_0=x_0\}}h(X_n)\mathrm{d}\mathbb{P}^{x_0}}=\frac{h(y)\mathbb{P}^{x_0}(X_{n+1}=y,X_n=x_n,\cdots,X_0=x_0)}{h(x_n)\mathbb{P}^{x_0}(X_n=x_n,\cdots,X_0=x_0)}=\frac{h(y)p(x_n,y)}{h(x_n)}.$ Next we show $M_n^f:=f(X_n)-f(X_0)-\sum_{k=0}^{n-1}(\mathcal{L}^hf)(X_k)$ is a \mathbb{Q} -martingale for any bounded f. Let $Z_n=\mathbb{E}^{\mathbb{Q}}f(X_{n+1})|\mathscr{F}_n.$ $\forall A\in\mathscr{F}_n, \int_A Z_nh(X_n)\mathrm{d}\mathbb{P}^{x_0}=\int_A Z_n\mathrm{d}\mathbb{Q}=\int_A f(X_{n+1})\mathrm{d}\mathbb{Q}=\int_A f(X_{n+1})h(X_{n+1})\mathrm{d}\mathbb{P}^{x_0}=\mathbb{E}^{\mathbb{P}^{x_0}}[\mathbb{E}^{\mathbb{P}^{x_0}}(f(X_{n+1})h(X_{n+1})\mathbb{I}_A|\mathscr{F}_n)]=\mathbb{E}^{\mathbb{P}^{x_0}}[1_A\mathbb{E}^{\mathbb{P}^{x_0}}(f(X_{n+1})h(X_{n+1})|\mathscr{F}_n)]=\int_A \mathcal{P}(hf)(X_n)\mathrm{d}\mathbb{P}^{x_0}.$ Thus $Z_n=\frac{\mathcal{P}(hf)(X_n)}{h(X_n)}$ only depends on X_n , i.e. $(X_n)_{n\geq 0}$ is a MC on \mathbb{Q} with generator \mathcal{L}^h .

- An irreducible Markov chain $(X_n)_{n\geq 0}$ (1) is transient if $\exists x$ and $A\subset S$ s.t. $\mathbb{P}(\tau_A<\infty|X_0=x)<1$; (2) is recurrent if \exists a finite set $A\subset S$ s.t. $\mathbb{P}(\tau_A<\infty)=1$ for all $x\in S$. (3) is positive recurrent if \exists a finite set $A\subset S$ s.t. $\mathbb{E}(\tau_A)<\infty$ for all $x\in S$.
- Foster-Lyapunov criterion: An irreducible MC on a countable state space S (1) is transient iff $\exists v : S \to \mathbb{R}^+$ and $A \subset S$ non-empty s.t. $\mathcal{L}v \leq 0$ on A^c and $v(x) < \inf_{y \in A} v(y)$ for some $x \in A^c$; (2) is recurrent iff $\exists v : S \to \mathbb{R}^+$ s.t. $\mathcal{L}v \leq 0$ on A^c where A is a finite set and $\{x : v(x) \leq N\}$ is finite for every N; (3) is positive recurrent iff $\exists v : S \to \mathbb{R}^+$, $A \subset S$ finite, $\exists \epsilon > 0$ s.t. $\mathcal{L}v \leq -\epsilon$ on A^c and $\sum_{y \in S} p(x, y)V(y) < +\infty$ for all $x \in A$.

Proof (1) $v(X_{n \wedge \tau_A})_{n \geq 0}$ is a super-martingale, hence $v(x) \geq \mathbb{E}v(X_{n \wedge \tau_A}) \geq \mathbb{E}v(X_{n \wedge \tau_A})1_{\tau_A < \infty}$. Let $n \to \infty$ we know $v(x) \geq \mathbb{E}v(X_{\tau_A}1_{\tau_A < \infty}) \geq (\inf_{y \in A}v(y))\mathbb{P}^x(\tau_A < \infty) \Rightarrow \mathbb{P}^x(\tau_A < \infty) < \frac{v(x)}{\inf_{y \in A}v(y)} < 1$. (2) On $\{\tau_A = \infty\}$, $\limsup_{n \to \infty}v(X_{n \wedge \tau_A}) = +\infty$ a.s. Since $(v(X_{n \wedge \tau_A}))_{n \geq 0}$ is a nonnegative super-martingale, hence converges a.s., therefore $\lim_{n \to \infty}v(X_{n \wedge \tau_A}) = +\infty$ a.s. Note that $v(x) \geq \mathbb{E}v(X_{n \wedge \tau_A})1_{\tau_A = \infty}$. Since LHS is a finite number, we have $\mathbb{P}^x(\tau_A = \infty) = 0$. (3) $\mathbb{E}v(X_{n \wedge \tau_A})|\mathscr{F}_{n-1} \leq v(X_{(n-1) \wedge \tau_A}) - \epsilon 1_{\tau_A \geq n}$. Taking expectation on the both sides, $\mathbb{E}v(X_{n \wedge \tau_A}) \leq \mathbb{E}v(X_{(n-1) \wedge \tau_A}) - \epsilon \mathbb{E}^x 1_{\tau_A \geq n} \leq \cdots \leq v(x) - \epsilon \sum_{k=1}^n \mathbb{P}^x(\tau_A \geq k) \leq \frac{v(x)}{\epsilon} < \infty$.

Conversely, (1) Let $v(x) = \mathbb{P}^x(\tau_A < \infty)$. (2) Let $u(x) = \mathbb{P}^x(\tau_B < \tau_A)$. We have shown that if $x \in (A \cup B)^c$ then $\mathcal{L}u \leq 0$. When $x \in B$, $(\mathcal{L}u)(x) = \sum_{y \in S} p(x,y)u(y) - 1 \leq 0$. Take $B_N \downarrow \emptyset$ s.t. B_N^c is finite for every N. Via a diagonal argument $\Rightarrow \exists$ subsequence $\{N_k\}$ s.t. $v(x) := \sum_{k \geq 1} \mathbb{P}^x(\tau_{B_{N_k}} < \tau_A) < +\infty$ for every $x \in S$. (3) Let $v(x) = \mathbb{E}^x(\tau_A)$.

- e.g. $h(x) = \frac{\mathbb{P}^x(\tau_A < \tau_B)}{\mathbb{P}^x(\tau_A < \tau_B)}$ is harmonic on $(A \cup B)^c$ with $h(x_0) = 1(x_0 \in (A \cup B)^c)$. Then $\forall x, y \in (A \cup B)^c$, $q(x, y) = \frac{h(y)p(x,y)}{h(x)} = \frac{\mathbb{P}^y(\tau_A < \tau_B)p(x,y)}{\mathbb{P}^x(\tau_A < \tau_B)} = \frac{\mathbb{P}^x(X_1 = y, \tau_A < \tau_B)}{\mathbb{P}^x(\tau_A < \tau_B)} = \mathbb{P}^x(X_1 = y | \tau_A < \tau_B)$.
- e.g. \mathbb{P} is simple symmetric random walk on \mathbb{Z} starting from $X_0 = 0$. Question: what is the law of $(X_n)_{n \geq 0}$ conditioned on $X_n \geq 0$ for all n? Let $\tau_k = \inf\{n \geq 0, X_n = k\}$. On $\{\tau_N < \tau_{-1}\}, \frac{h(y)}{h(x)} = \frac{\mathbb{P}^y(\tau_N < \tau_{-1})}{\mathbb{P}^x(\tau_N < \tau_{-1})} = \frac{y+1}{x+1}$. Thus $q_N(x,y) = \frac{1}{2} \frac{y+1}{x+1}, |x-y| = 1, x \in \{0, \dots, N-1\} \Rightarrow q(x,y) = \frac{1}{2} \frac{y+1}{x+1}, x \geq 0, |x-y| = 1$.

3 Ergodic Theorem

- Basic setup: a measurable map $T:(\Omega,\mathscr{F})\to(\Omega,\mathscr{F})$. Examples: (1) circle rotations: $\Omega=\mathbb{R}/\mathbb{Z}, T:x\mapsto x+\alpha$; (2) doubling map: $\Omega=\mathbb{R}/\mathbb{Z}, x\mapsto 2x$; (3) shift map: $\Omega=S^{\mathbb{N}}, (T\omega)_n=\omega_{n+1}$.
- Let $T:(\Omega,\mathscr{F})\to (\Omega,\mathscr{F})$ measurable and \mathbb{P} be a probability measure on (Ω,\mathscr{F}) . We say T is measure-preserving if $\mathbb{P}(T^{-1}(A))=\mathbb{P}(A)$ for every $A\in\mathscr{F}$ (or $\mathbb{P}\circ T^{-1}=\mathbb{P}$).
- Question: what if we define by $\mathbb{P}(T(A)) = \mathbb{P}(A)$ for every $A \in \mathscr{F}$ instead? $\mathbb{P} \circ T = \mathbb{P} \Rightarrow \mathbb{P} \circ T^{-1} = \mathbb{P}$ while the converse proposition is false.
- $(X_n)_{n\geq 0}$ be i.i.d. $\sim \mu$. We can build $(\Omega, \mathscr{F}, \mathbb{P})$ and $X_n : \Omega \to \mathbb{R}$ measurable s.t. $(X_n)_{n\geq 0}$ i.i.d. $\sim \mu$ under \mathbb{P} : (1) $\Omega = \mathbb{R}^{\mathbb{N}} = \{\omega : \omega = (\omega_0, \omega_1, \cdots)\};$ (2) $X_n(\omega) = \omega_n$; (3) $\mathscr{F} = \sigma(X_0, X_1, \cdots, X_n, \cdots);$ (4) $\mathbb{P} = \mu^{\otimes \mathbb{N}}$. It is easy to show that the shift map is measure-preserving: \mathscr{F} is generated by sets of the form $A = \{\omega_{k_1} \in I_1, \cdots, \omega_{k_N} \in I_N\},$ $T^{-1}(A) = \{\omega : (T\omega)_{k_1} \in I_1, \cdots, (T\omega)_{k_N} \in I_N\} = \{\omega : \omega_{k_1+1} \in I_1, \cdots, \omega_{k_N+1} \in I_N\}.$ Key: the only thing used is that $(X_{k_1}, \cdots, X_{k_N}) \stackrel{\text{law}}{=} (X_{k_1+1}, \cdots, X_{k_N+1})$ for every N and every k_1, \cdots, k_N .

ERGODIC THEOREM

- A sequence of random variables is stationary if $(X_n)_{n\in J}\stackrel{\text{law}}{=} (X_{n+k})_{n\in J}$ for all k and finite set J.
- Let $T:(\Omega, \mathscr{F}, \mathbb{P}) \to (\Omega, \mathscr{F}, \mathbb{P})$ be measure-preserving and $X:\Omega \to \mathbb{R}$ be measurable. Then $X_n(\omega):=X(T^n\omega)$ defines a stationary sequence.

Proof It suffices to show that for every N, every $I_1, \dots, I_N \subset \mathbb{R}$ and every $k_1 < k_2 < \dots < k_N$, we have $\mathbb{P}(X_{k_1} \in I_1, \dots, X_{k_N} \in I_N) = \mathbb{P}(X_{k_1+1} \in I_1, \dots, X_{k_N+1} \in I_N)$. $\mathbb{P}(\{\omega : X_{k_1}(\omega) \in I_1, \dots, X_{k_N}(\omega) \in I_N\}) = \mathbb{P}(T^{-1}\{\omega : X_{k_1}(\omega) \in I_1, \dots, X_{k_N}(\omega) \in I_N\}) = \mathbb{P}(\{\omega : X_{k_1}(T\omega) \in I_1, \dots, X_{k_N}(T\omega) \in I_N\})$.

- Let $(\Omega, \mathscr{F}, \mathbb{P}, T)$ be a measure-preserving system. (1) A set $A \in \mathscr{F}$ is invariant if $\mathbb{P}(A \triangle T^{-1}(A)) = 0$. (2) A random variable $X : \Omega \to \mathbb{R}$ is invariant if $X = X \circ T$ \mathbb{P} -a.e.
- The collection of invariant sets $\mathcal{I} = \{A \in \mathcal{F} : A \text{ is invariant}\}\$ is a σ -algebra and $X : \Omega \to \mathbb{R}$ is invariant iff it is \mathcal{I} -measurable.
- We say $T:(\Omega,\mathscr{F},\mathbb{P})\to(\Omega,\mathscr{F},\mathbb{P})$ measurable-preserving is ergodic if $\mathbb{P}(A)=0$ or 1 for all $A\in\mathcal{I}$.
- Let $T:(\Omega,\mathscr{F},\mathbb{P})\to (\Omega,\mathscr{F},\mathbb{P})$ be measure preserving and $f\in L^p(p\geq 1)$. Then $\frac{1}{N}\sum_{k=0}^{N-1}f\circ T^K\to \mathbb{E}(f|\mathcal{I})$ a.s. and in L^p . In particular, $\mathbb{E}(f|\mathcal{I})=\mathbb{E}f$ if T is ergodic.

Proof We first show convergence in L^p .

Lemma 1 If $(\Omega, \mathscr{F}, \mathbb{P}, T)$ is a measure-preserving system and $X \in L^1(\Omega, \mathscr{F}, \mathbb{P})$. Then $\int_{\Omega} X d\mathbb{P} = \int_{\Omega} X \circ T d\mathbb{P}$. In fact, $||X||_{L^p} = ||X \circ T||_{L^p}$, $p \in [1, +\infty]$.

Proof Take
$$X = 1_A$$
. LHS = $\mathbb{P}(A) = \mathbb{P}(T^{-1}(A)) = \int_{\Omega} 1_A(T\omega) d\mathbb{P}$.

Let $\mathcal{U}_T: L^p(\Omega, \mathscr{F}, \mathbb{P}) \to L^p(\Omega, \mathscr{F}, \mathbb{P})$ be defined by $(\mathcal{U}_T f)(\omega) := f(T\omega)$ (or $\mathcal{U}_T f = f \circ T$).

For p = 2, $\mathcal{U}_T : L^2 \to L^2$ is an isometry in the sense that $\langle f, g \rangle = \langle \mathcal{U}_T f, \mathcal{U}_T g \rangle$. LHS $= \frac{1}{N} \sum_{k=0}^n \mathcal{U}_T^k f$, $f = \mathbb{E}(f|\mathcal{I}) + (f - \mathbb{E}(f|\mathcal{I}))$ \Rightarrow LHS $= \underbrace{\mathbb{E}(f|\mathcal{I})}_{\text{Ker}(\mathcal{U}_T - \text{id})} + \frac{1}{N} \sum_{k=0}^N \mathcal{U}_T^k (f - \mathbb{E}(f|\mathcal{I}))$. Since $\mathcal{H} = \text{Ker}(A) \oplus \overline{\text{Im}(A^*)}$, $\exists g \in \mathcal{H} \text{ s.t. } ||f - \mathbb{E}(f|\mathcal{I}) - (\mathcal{U}_T^* - \text{Id})g|| < \epsilon$.

Lemma 2 Let $A: \mathcal{H} \to \mathcal{H}$ be an isometry. If Af = f, then $A^*f = f$.

$$Proof \ \langle A*f,g\rangle = \langle f,Ag\rangle = \langle Af,Ag\rangle = \langle f,g\rangle$$

Proposition 1 $\mathcal{H} = \operatorname{Ker}(A^*) \oplus \overline{\operatorname{Im}(A)}$.

Proof We show that $\operatorname{Ker}(A^*) = (\operatorname{Im}(A))^{\perp}$. (i) $f \in \operatorname{Ker}(A^*) \Rightarrow A^*f = 0 \Rightarrow \langle f, Ag \rangle = \langle A^*f, g \rangle = 0$. (ii) $f \in (\operatorname{Im}(A))^{\perp} \Rightarrow \langle f, Ag \rangle = 0$ for all $g \in \mathcal{H} \Rightarrow \langle A * f, g \rangle = 0$ for all $g \in \mathcal{H} \Rightarrow A^*f = 0$.

 $\mathcal{H} = L^{2}(\omega, \mathscr{F}, \mathbb{P}) = \operatorname{Ker}(\mathcal{U}_{T}^{*} - \operatorname{Id}) + \overline{\operatorname{Im}(\mathcal{U}_{T} - \operatorname{Id})}. \Rightarrow \forall f \in \mathscr{H}, \forall \epsilon > 0, \exists g, h \in \mathscr{H} \text{ s.t. } ||h||_{L^{2}} < \epsilon \text{ and } f = \mathbb{E}(f|\mathcal{I}) + (\mathcal{U} - \operatorname{Id})g + h \Rightarrow \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{U}_{T}^{k} f = \mathbb{E}(f|\mathcal{I}) + \underbrace{\frac{1}{N} (\mathcal{U}_{T}^{N} g - g)}_{||\cdot||_{L^{2}} \leq \frac{1}{N} ||g||_{L^{2}} \to 0} + \underbrace{\frac{1}{N} \sum_{k=0}^{N-1} \mathcal{U}_{T}^{k} h}_{||\cdot||_{L^{2}} \leq \epsilon} = \lim \sup_{N \to \infty} ||\frac{1}{N} \sum_{k=0}^{N-1} \mathcal{U}_{T}^{k} f - \mathbb{E}(f|\mathcal{I})||_{L^{2}} < \epsilon.$

For $p \neq 2$, let $S_N f = \sum_{k=0}^{N-1} f \circ T^k$ and $A_N f = \frac{1}{N} S_N f$.

(1) If $f \in L^{\infty}$, then $||A_N f||_{L^{\infty}} \le ||f||_{L^{\infty}}, ||A_N f - \mathbb{E}(f|\mathcal{I})||_{L^2} \to 0 \Rightarrow A_N f \to \mathbb{E}(f|\mathcal{I}) \text{ in } L^p \text{ for every } p \in [1, +\infty) \text{ (for } p \ge 2, ||A_N f - \mathbb{E}(f|\mathcal{I})||_{L^p}^p \le ||f||_{L^{\infty}}^{p-2} ||A_N f - \mathbb{E}(f|\mathcal{I})||_{L^2}^2; \text{ for } 1 \le p < 2, ||A_N f - \mathbb{E}(f|\mathcal{I})||_{L^p}^p \le ||A_N f - \mathbb{E}(f|\mathcal{I})||_{L^2}^p ||1||_{L^2}^{2-p}).$

(2) If $f \in L^p(p \ge 1)$, then $\forall \epsilon > 0, \exists g \in L^{\infty}$ s.t $||f - g||_{L^p} < \epsilon$,

$$||A_N f - \mathbb{E}(f|\mathcal{I})||_{L^p} \leq \underbrace{||A_N (f-g)||_{L^p}}_{<\epsilon} + \underbrace{||A_N g - \mathbb{E}(g|\mathcal{I})||_{L^p}}_{\to 0 \text{ as } N \to +\infty} + \underbrace{||\mathbb{E}(g-f|\mathcal{I})||_{L^p}}_{<\epsilon} \Rightarrow \forall \epsilon > 0, \lim \sup_{N \to \infty} ||A_N f - \mathbb{E}(f|\mathcal{I})||_{L^p} < 2\epsilon.$$

We next show convergence a.s.

Maximum ergodic theorem $f \in L^1(\Omega, \mathscr{F}, \mathbb{P}), S_n = \sum_{k=0}^{n-1} f \circ T^k, M_n = \max\{S_1, \cdots, S_n\}.$ Then $\int_{\{M_n \geq 0\}} f(\omega) \mathbb{P}(d\omega) \geq 0.$

 $Proof \ M_{n-1}(T\omega) = \max\{S_1(T\omega), \cdots, S_{n-1}(T\omega)\} = \max\{S_2(\omega), S_n(\omega)\} - f(\omega) \Rightarrow \max\{0, M_{n-1}(T\omega)\} = M_n(\omega) - f(\omega) \Rightarrow f(\omega) = M_n(\omega) - \max\{0, M_{n-1}(T\omega)\}. \ \int_{\{M_n > 0\}} f d\mathbb{P} = \int_{\{M_n > 0\}} M_n d\mathbb{P} - \int_{\{M_n > 0\}} \max\{0, M_{n-1}(T\omega)\} d\mathbb{P} = \int_{\{M_n > 0\}} M_n d\mathbb{P} - \int_{\{M_n > 0\}} M_n d\mathbb{P} - \int_{\{M_n > 0\}} M_n d\mathbb{P} - \int_{\{M_n \geq 0\}} M_n d\mathbb{P} - \int_{\{M_n \geq$

Corollary 1 $\mathbb{P}(\omega : \sup_{n>1} (A_n f)(\omega) > \lambda) \leq \frac{\mathbb{E}|f|}{\lambda}$.

Proof Let
$$E_N = \{\omega : \sup_{1 \le n \le N} (A_n f)(\omega) > \lambda\} = \{\omega : \sup_{1 \le n \le N} (A_n (f - \lambda))(\omega) > 0\} = \{\omega : \sup_{1 \le n \le N} (S_n (f - \lambda))(\omega) > 0\}.$$

 $E_N \uparrow E = \{\omega : \sup_{n \ge 1} (A_n f)(\omega) > \lambda\}.$ $\int_{E_n} (f - \lambda) d\mathbb{P} \ge 0 \Rightarrow \mathbb{P}(E_n) \le \frac{\int_{E_n} f d\mathbb{P}}{\lambda} \le \frac{\mathbb{E}|f|}{\lambda} \Rightarrow \mathbb{P}(E) \le \frac{\mathbb{E}|f|}{\lambda}.$

ERGODIC THEOREM

Goal: $f \in L^1$ (for finite measure \mathbb{P} , $L^p \subset L^1$), need to show $\frac{1}{N} \sum_{k=0}^{N-1} f \circ T^k \to f$ a.s.

- (1) If $f \in L^2$ is \mathcal{I} -measurable, then $A_N f = f = \mathbb{E}(f|\mathcal{I})$ a.s.
- (2) If $f = (\mathcal{U}_T \operatorname{Id})g$ for some $g \in L^{\infty}$, then $(A_N f)(\omega) = \frac{1}{N}(g(T^N \omega) g(\omega)) \leq \frac{2||g||_{L^{\infty}}}{N} \to 0$. Check $\mathbb{E}((\mathcal{U}_T \operatorname{Id})g|\mathcal{I}) = 0 : \forall A \in \mathcal{I}, \int_A (g \circ T g) d\mathbb{P} = \int_{T^{-1}(A)} g \circ T d\mathbb{P} \int_A g d\mathbb{P} = \int_A g d\mathbb{P} \int_A g d\mathbb{P} = 0$.
- (3) $\Lambda = \{ f = \mathbb{E}(f_0|\mathcal{I}) + (\mathcal{U}_T \operatorname{Id})g : f_0 \in L^2, g \in L^\infty \}$ is dense in L^1 . If $f \in L^1$, then $\exists f_j \in \Lambda$ s.t. $f_j \to f$ in L^1 . We need to show $\mathbb{P}(\limsup_{N \to \infty} |A_N f \mathbb{E}(f|\mathcal{I})| > \epsilon) = 0$. $|A_N f \mathbb{E}(f|\mathcal{I})| \le |A_N (f f_j)| + \underbrace{|A_N f_j \mathbb{E}(f_j|\mathcal{I})|}_{==0} + |\mathbb{E}(f_j f|\mathcal{I})| \Rightarrow \mathbb{E}(f_j f_j)$

 $\mathbb{P}(\limsup_{N\to\infty}|A_Nf - \mathbb{E}(f|\mathcal{I})| > \epsilon) \leq \mathbb{P}(\limsup_{N\to+\infty}|A_N(f-f_j)| > \frac{\epsilon}{2}) + \mathbb{P}(|\mathbb{E}(f_j - f|\mathcal{I})| > \frac{\epsilon}{2}) \leq \frac{2\mathbb{E}|f_j - f|}{\epsilon} + \frac{2\mathbb{E}|f_j - f|}{\epsilon} \to 0. \quad \Box$

• Kingman's subadditive ergodic theorem: Let $(\Omega, \mathscr{F}, \mathbb{P}, T)$ be a measure-preserving space and $\{g_n\} \in L^1$ subadditive in the sense that $g_{n+m} \leq g_n + g_m \circ T^n$ for every n, m. Then (1) $\lim_{n \to \infty} \frac{\mathbb{E}(g_n)}{n} \to \inf_{k \geq 1} \frac{\mathbb{E}(g_k)}{k}$ (possibly $-\infty$); (2) $\frac{g_n}{n}$ convergence a.s. to F where F is \mathcal{I} -measurable and $\mathbb{E}F = \inf_{k \geq 1} \frac{\mathbb{E}(g_k)}{k}$; (3) If $\mathbb{E}F > -\infty$, then the convergence is also in L^1 .

Proof Recall an elementary version. If $\{a_n\} \in \mathbb{R}$ s.t. $a_{n+m} \leq a_n + a_m, \forall n, m,$ then $\frac{a_n}{n} \to \inf_{k \geq 1} \frac{a_k}{k}$ as $n \to \infty$.