Mask Operation

Example for 3x3 mask operator

$$g[i,j] = Ap_1 + Bp_2 + Cp_3 + Dp_4 + Ep_5 + Fp_6 + Gp_7 + Hp_8 + Ip_9 (3.3)$$

Convolution operations

Mask Operations on Images

0	1	3	4	5	7	8	9
9	3	4	5	3	2	6	7
5	6	5	7	6	4	5	8
5	8	0	9	5	5	5	3
2	2	9	6	4	6	9	2
4	5	3	8	3	0	9	6
7	7	7	7	2	2	4	7

1/2	1/3	1/4
1/9	1/9	1/9
1/5	1/6	1/7

$$I(x) = 0 \times \frac{1}{2} + 1 \times \frac{1}{3} + 3 \times \frac{1}{4} + 9 \times \frac{1}{9} + 3 \times \frac{1}{9} + 4 \times \frac{1}{9} + 5 \times \frac{1}{5} + 6 \times \frac{1}{6} + 5 \times \frac{1}{7}$$

$$I(y) = 2 \times \frac{1}{2} + 2 \times \frac{1}{3} + 9 \times \frac{1}{4} + 4 \times \frac{1}{9} + 5 \times \frac{1}{9} + 3 \times \frac{1}{9} + 7 \times \frac{1}{5} + 7 \times \frac{1}{6} + 7 \times \frac{1}{7}$$

Weighted Moving Average

- Can add weights to our moving average
- Weights [1, 1, 1, 1, 1] / 5

Weighted Moving Average

Non-uniform weights [1, 4, 6, 4, 1] / 16

F[x,y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
			90	90	90	90	90		0
			90	90	90	90	90		0
			90		90	90	90		0
0	0	0	90	90	90	90	90	0	0
			0	0	0	0	0		0
		90							0
		0							0

	10	20	30	30	30	20	10	
	20	40	60	60	60	40	20	
	30	60	90	90	90	60	30	
	30	50	80	80	90	60	30	
	30	50	80	80	90	60	30	
	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10						

Generalization of moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the filter kernel

What are the weights for a 3x3 moving average?

1	1	1	1
_ _	1	1	1
9	1	1	1

"box filter"

Defining convolution

 Let f be the image and g be the kernel. The output of convolving f with g is denoted f * g.

$$(f * g)[m,n] = \sum_{k,l} f[m-k,n-l]g[k,l]$$

- Convention: kernel is "flipped"
- MATLAB: conv2 vs. filter2 (also imfilter)

Operations on Pictures

Mask Operation = Convolution Operation

- Convolution
 - A linear filtering process using the filter m

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(a,b)m(x-a,y-b)dadb$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} m(a,b)f(x-a,y-b)dadb$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x-a,y-b)m(a,b)dadb$$

$$= (f*m)(x,y)$$

$$= (m*f)(x,y)$$

I. Noise Reduction

1a) Averaging

Example: Smoothing by Averaging

0	0	0
0	1	0
0	0	0

Original

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

0	0	0
0	0	1
0	0	0

?

Original

Original

0	0	0
0	0	1
0	0	0

Shifted left By 1 pixel

Original

1	1	1	1
<u> </u>	1	1	1
9	1	1	1

?

Original

Blur (with a box filter)

Original

(Note that filter sums to 1)

0	0	0
0	2	0
0	0	0

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before after

Mask for Gaussian Function

$$h[i,j] = e^{-\frac{(i^2+j^2)}{2\sigma^2}}$$

• σ值越大,平滑程度越好,但同時也造成影像

特徵模糊,一般取σ=1~10。

• When $\sigma=1$, the mask becomes

_		_
7	\vee	7
J	\wedge	J

h[i,j]	-2	-1	0	1	2
-2	0.018	0.082	0.135	0.082	0.018
-1	0.082	0.368	0.607	0.368	0.082
0	0.135	0.607	1.000	0.607	0.135
1	0.082	0.368	0.607	0.368	0.082
2	0.018	0.082	0.135	0.082	0.018

Gaussian Mask

Mask for Gaussian Function

- Integer mask will be better for computation
- Choose the minimum of h[i,j] to normalize

$$c = \frac{h[-2,-2]}{0.018} = \frac{1}{0.018} = 56$$

[i,j]	-2	-1	0	1	2
-2	1	5	8	5	1
-1	5	21	34	21	5
0	8	34	56	34	8
1	5	21	34	21	5
2	1	5	8	5	1

Integer mask for Gaussian function

Mask for Gaussian Function

- Sum of the weights should be 1
- Normalization by $\sum_{i=-2}^{2} \sum_{j=-2}^{2} h[i,j] = 352$
- EX:

$$g[i,j] = \frac{1}{352} (f[i,j] \otimes h[i,j])$$

(a) Image

(b) $\sigma=1$

(c) $\sigma=5$

Edge detection

Winter in Kraków photographed by Marcin Ryczek

Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Origin of edges

Edges are caused by a variety of factors:

Source: Steve Seitz

Characterizing edges

An edge is a place of rapid change in the image intensity function

Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

To implement above as convolution, what would be the associated filter?

Differentiation and convolution

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon, y)}{\varepsilon} - \frac{f(x, y)}{\varepsilon} \right) \qquad \frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}$$

$$I(x) \approx \frac{f(x) - f(x-1)}{1} \approx \frac{f(x+1) - f(x)}{1} \approx \frac{f(x+1) - f(x-1)}{2}$$

$$I_x(x,y) \approx \frac{f(x+1,y) - f(x-1,y)}{2}$$

$$I_{y}(x,y) \approx \frac{f(x,y+1) - f(x,y-1)}{2}$$

Differentiation and convolution

$$\begin{split} I_{x}(x,y) &\approx \frac{f(x+1,y) - f(x-1,y)}{2} \\ &= 0 \times f(x-1,y-1) + 0 \times f(x,y-1) + 0 \times f(x+1,y-1) + \\ &\frac{-1}{2} \times f(x-1,y) + 0 \times f(x,y) + \frac{1}{2} \times f(x+1,y) + \\ &0 \times f(x-1,y+1) + 0 \times f(x,y+1) + 0 \times f(x+1,y+1) \end{split}$$

f(x-1,y-1)	f(x,y-1)	f(x+11,y-1)		
f(x-1,y)	f(x,y)	f(x+1,y)		
f(x-1,y+1)	f(x,y+1)	f(x+11,y+1)		
			-	

0	0	0	
-1/2	0	1/2	
0	0	0	

Differentiation and convolution

$$\begin{split} I_{y}(x,y) &\approx \frac{f(x,y+1) - f(x,y-1)}{2} \\ &= 0 \times f(x-1,y-1) + \frac{-1}{2} \times f(x,y-1) + 0 \times f(x+1,y-1) + \\ 0 \times f(x-1,y) &+ 0 \times f(x,y) &+ 0 \times f(x+1,y) + \\ 0 \times f(x-1,y+1) + \frac{1}{2} \times f(x,y+1) &+ 0 \times f(x+1,y+1) \end{split}$$

f(x-1,y-1)	f(x,y-1)	f(x+11,y-1)		
f(x-1,y)	f(x,y)	f(x+1,y)		
f(x-1,y+1)	f(x,y+1)	f(x+11,y+1)		

0	-1/2	0	
0	0	0	
0	1/2	0	

Partial derivatives of an image

 $\frac{\partial f(x,y)}{\partial x}$

Which shows changes with respect to x?

Finite differences

Edge detection

Gradients operations:

-1	0	1
-1	0	1
-1	0	1

-1	-1	-1
0	0	0
1	1	1

Sobel operator

Edge的法向量角度:

$$\theta = \arctan(\frac{I_y}{I_x})$$

Finite difference filters

Other approximations of derivative filters exist:

Prewitt:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

Sobel:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Properties of Gradient

The gradients of I(x, y) are $I_x(x, y)$ and $I_y(x, y)$

For a new position $(x + \Delta \cos \theta, y + \Delta \sin \theta)$,

by Tayler's expansion, we have

$$I(x + \Delta \cos \theta, y + \Delta \sin \theta) \cong I(x, y) + \Delta \cos \theta I_x(x, y) + \Delta \sin \theta I_y(x, y)$$

Set $v = (\Delta \cos \theta, \Delta \sin \theta)$ and $\nabla I = (I_x, I_y)$.

$$\Rightarrow I(x + \Delta \cos \theta, y + \Delta \sin \theta) - I(x, y) \cong \langle v, \nabla I \rangle = |v| |\nabla I| \cos \alpha$$

 α : the angle between ν and ∇I

$$\alpha = 0 \Longrightarrow \langle v, \nabla I \rangle$$
 is maximized

 \Rightarrow v and ∇ I are the same orientation

$$< v, \nabla I >$$
is maximized

 $\Rightarrow \nabla I$ is *vertical* to edge orientation

$$\nabla I = (\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}) = (I_x, I_y)$$

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

• The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Effects of noise

Consider a single row or column of the image

Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

• To find edges, look for peaks in $\frac{d}{dx}(f*g)$

Source: S. Seitz

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:

Source: S. Seitz

Derivative of Gaussian filter

Are these filters separable?

Derivative of Gaussian filter

Which one finds horizontal/vertical edges?

Scale of Gaussian derivative filter

Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales"

Review: Smoothing vs. derivative filters

Smoothing filters

- Gaussian: remove "high-frequency" components;
 "low-pass" filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - One: constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - Zero: no response in constant regions
- High absolute value at points of high contrast

original image

norm of the gradient

thresholding

How to turn these thick regions of the gradient into curves?

thresholding

Non-maximum suppression

Check if pixel is local maximum along gradient direction, select single max across width of the edge

requires checking interpolated pixels p and r

Problem:
pixels along
this edge
didn't
survive the
thresholding

thinning (non-maximum suppression)

Hysteresis thresholding

Use a high threshold to start edge curves, and a low threshold to continue them.

Source: Steve Seitz

Hysteresis thresholding

original image

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

Source: L. Fei-Fei

Recap: Canny edge detector

- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

```
MATLAB: edge(image, 'canny');
```

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Edge detection is just the beginning...

image

gradient magnitude

Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Low-level edges vs. perceived contours

Background

Texture

Shadows