*Hidden Markov Models - Uma Breve Introdução

José Roberto S. de Moura

Coordenador do Núcleo de Pesquisa e Desenvolvimento da GAVB

Agenda

Motivação

Modelos de Markov

Cadeias de Markov

Exemplos

Implementação

Hidden Markov Models

Motivação

Alguns Exemplos de Uso

Applied Soft Computing Volume 60, November 2017, Pages 229-240

Energy Economics Volume 32, Issue 6, November 2010, Pages 1507-1519

Multivariate time series anomaly detection: A framework of Hidden Markov Models

linho Li 2 Witold Pedrum 2 5 C.S. El Johal Jamal 4 April 2017, 13(2): 757-773. doi: 10.3934/iimo.2016045 Forecasting oil price trends using wavelets and hidden Markov models

Edmundo G. de Souza e Silva * A 101, Luiz F.L. Legey * 101, Edmundo A. de Souza e Silva b 101

Hidden Markov models with threshold effects and their applications to oil price forecasting

Hidden Markov Models for the Prediction of Impending Faults

Modelos de Markov

Modelos de Markov

Modelos de Markov

Os Modelos de Markov são processos estocásticos nos quais o estado da variável aleatória no próximo instante de tempo depende apenas da saída da variável no instante atual.

O Princípio de Markov

Princípio de Markov

Um **processos estocástico** $S = \{R_1, R_2, \dots, R_n\}$, de estados $\{R_i\}_{i=1}^n$, será um processo de Markov se respeitar

$$Pr(R_{n+1} | R_1, ..., R_n) = Pr(R_{n+1} | R_n),$$

também chamada de propriedade de Markov.

Isso significa que o estado em que estaremos no próximo instante de tempo, depende apenas do estado atual.

Cadeias de Markov

Cadeias de Markov

O Modelo de Markov mais simple que nós temos são as Cadeias de Markov: pocessos de Markov com tempo discreto.

Dado um conjunto de observáveis $(x_1 ldots x_n)$, que obedeçam o princípio de Markov, então a distribuição de probabilidades conjunta para N observações fica

$$Pr(x_1...x_N) = Pr(x_1) \prod_{n=2}^{N} Pr(x_n | x_{n-1})$$

Representação Gráfica

Exemplo01: Moedas Justas

Vamos considerar o lançamento de uma moeda justa, o que significa que temos dois estados possíveis Head (H) e Tail (T). Como a moeda é justa, podemos transitar entre um estado e outro com uma probabilidade de 0.5, assim como se manter no atual.

Matriz de Transição:

$$A = \begin{bmatrix} P_{HH} & P_{HT} \\ P_{TH} & P_{TT} \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$

8

Exemplo 02: Modelo Epidemiológico

O modelo SIR (Sucetível - Infectado - Recupeado), é um dos modelos epidemiológicos mais simples que temos. Neste exemplo vamos considerar que não existe imunização, ou seja, após a pessoa se recuperar da doença, ela volta para o estado de sucetível. O modelo está exemplificado no diagrama abaixo.

Matriz de Transição:

$$A = \begin{bmatrix} P_{SS} & P_{SI} & P_{SR} \\ P_{IS} & P_{II} & P_{IR} \\ P_{RS} & P_{RI} & P_{RR} \end{bmatrix} = \begin{bmatrix} 0.9 & 0.1 & 0.0 \\ 0.0 & 0.7 & 0.3 \\ 1.0 & 0.0 & 0.0 \end{bmatrix}$$

9

Implementação

lr para a Implementação

Hidden Markov Models

MC de Ordem Suprior e Análise do Número de Parâmetros

MC de 2^a: MC onde o próximo estado depende tanto do atual, quanto do anterior

$$Pr(x_1...x_n) = Pr(x_1)Pr(x_2|x_1)\prod_{n=3}^{N}Pr(x_n|x_{n-1},x_{n-2}).$$

Nesse caso, temos que a d.p. conjunta de X_n , dados X_{n-1} e X_{n-2} , é independente de todas as demais observações.

Se tivermos que as observações são **variáveis discretas**, tendo K estados, então $Pr(X_n|X_{n-1})$ de uma MC de 1^a ordem, será especificada por um conjunto de K-1, para cada um dos K estados de X_{n-1} , o que nos dá um total de K(K-1) **parâmtros**

MC de Ordem M

Extendendo para uma MC de ordem M e usando o mesmo raciocínio que o anterior, chegamos a um número de

$$K^{M-1}(K-1)$$

parâmetros, ou seja, temos um crescimento exponencial.

Solução para *M* **grande**: Introdução de **variáveis latentes**.

Para cada observação x_n , associamos uma variável latente z.

Obs.: Quando as variáveis latentes formam uma MC de 1^a, elas formam uma classe de models chamada **modelos de espaço de estados**.

Exemplo: Jogo de Moedas Viciadas

Vamos considerar a situação em que temos duas moedas viciadas: M_1 e M_2 .

- $P(M_1) = P(M_2) = 0.5$
- M_1 : P(H) = 0.7 e P(T) = 0.3
- ★ M_2 : P(H) = 0.2 e P(T) = 0.8

