Web Crawler Project - Task Documentation

Author: Bahy Helmi Hartoyo Putra (bahyhelmi97@gmail.com)

Generate Training Data

1. Prepare .csv that contain training data (websites), format the .csv as shown in this example dataset:

	merchant_name	website	label
0	CV.ASIATRIPINDONESIA	http://asiatrip.id/	APPROVED
1	Pt.BloomingLotusYoga	https://www.blooming-lotus-yoga.com	APPROVED
2	YayasanGreenSejahtera	https://greensejahterafoundation.com/	APPROVED
3	PTMatairTerraSolusi	http://www.matair.co.id	APPROVED
4	SimplyMii	https://www.simplymii.com/	APPROVED
5	Nyetak.ID	https://www.nyetak.id	APPROVED
6	nonandnik	https://nonandnik.com	APPROVED
7	YoYoMats	https://yoyomatsindonesia.myshopify.com	REJECTED
8	hiendguitar.com	http://hiendguitar.com/	APPROVED
9	Fipper	http://www.fippersandal.co.id	APPROVED

2. Run the batch processing API, change the input_file into your file:

3. Your train data will be available on *datasets/* directory under the *output_file* name.

Update Training Data

- 1. Open Modelling notebook.
- 2. Change this line (*df_cleaned.csv*) to your new generated training data.

```
In [69]: ## Change this to your new training data
df = pd.read_csv("df_cleaned.csv").iloc[:,1:]
df = df.drop_duplicates(subset='website')
```

3. Run all the cells. It will automatically dump the new model with your newest training dataset.

Changing Model

- 1. Open Modelling notebook.
- 2. Change this line to your desired classifier model.

```
In [88]: ## Gaussian Naive Bayes has a good ability to predict REJECTED websites, but it is hard to got a low FP Ra
te with this model.
## While XGBoost provides more reliable model with low FP rate and enough TP rate
## Though, it goes back to the business decision which rate is more important

model_choice = GaussianNB()
model_choice = BernoulliNB()
# model_choice = MultinomialNB()
# model_choice = XGBClassifier(**params)
```

3. Run all the cells. It will automatically dump the new model with your newest training dataset.

Set Timeout

- 1. Open <u>base_functions.py</u>.
- 2. Ctrl + F "timeout", set your desired timeout. Save. Reload the API.

Reference

- Source Code
- Beautifulsoup
- Selenium with Python
- Model Validation Notebook
- Hyperparameter Tuning Notebook