

## Introduction to N65 RC Extraction Techfile

V1.0d

**PDKD** 

Mar. 2007



### **Outline**

- N65 RC techfiles deployment
- Introduction of N65 BEOL modeling
- Corner modeling



## N65 RC techfile official release summary

- Please refer to pdf file in the same release package, N65\_RCtechfile\_summary\_Mar07.pdf for detailed download information.
- Some latest RC techfiles are under developing and not released to TSMC ONLINE yet. If you can not find the latest version at TSMC ONLINE, please consult with your TSMC account support team.



### **Supported EDA Tools for N65**

- Star-RCXT (5 corners)
- Fire & Ice (5 corners)
- Assura-RCX (5 corners)
- Calibre xRC (5 corners)
- Quartz-RC (5 corners)
- Quickcap (5 corners) by special request currently

## **Technical Support Information**

 Please contact TSMC account, field technical support team or customer engineer if any issues



### LP and Gplus RC Tech Files

- Currently TSMC provides N65LP and N65Gplus RC tech files for various process flavors.
  - N65LP RC techfile for LP process.
  - N65Gplus RC techfile for both Gplus and G processes.
  - The interconnect model for various CLN65 processes are the same, except poly CD bias and Rsh.
- Poly CD bias of typical corner for various processes are listed as below:

| N65 Interconnect Model Difference |       |       |  |
|-----------------------------------|-------|-------|--|
| Process Type POLY CD bias POLY R  |       |       |  |
| LP                                | 0.059 | 14.95 |  |
| G                                 | 0.047 | 15.3  |  |
| G+                                | 0.041 | 15.3  |  |





## Influence of Poly CD Bias

The maximum differences between various processes are located at minimum drawn width and space:

| SPICE v1.0                           |       |                    |                    |                   |
|--------------------------------------|-------|--------------------|--------------------|-------------------|
| Capacitance unit: fF/um              |       | w:0.06um, s:0.12um | w:0.06um, s:0.24um | w:0.1um, s:0.24um |
| Structure A<br>PO1-FOX<br>Total C    | N65LP | 0.192 (9.09%)      | 0.125 (2.46%)      | 0.134 (2.29%)     |
|                                      | N65G  | 0.176 (0%)         | 0.122 (0%)         | 0.131 (0%)        |
|                                      | N65G+ | 0.170 (-3.41%)     | 0.117 (-4.10%)     | 0.129 (-1.53%)    |
| Structure A<br>PO1-FOX<br>Coupled C  | N65LP | 0.0810 (10.66%)    | 0.0419 (3.97%)     | 0.0441 (2.80%)    |
|                                      | N65G  | 0.0732 (0%)        | 0.0403 (0%)        | 0.0429 (0%)       |
|                                      | N65G+ | 0.0702 (-4.10%)    | 0.0383 (-4.96%)    | 0.042 (-2.10%)    |
| Structure B<br>M1-PO1-FOX<br>Total C | N65LP | 0.198 (10.00%)     | 0.142 (4.41%)      | 0.157 (3.97%)     |
|                                      | N65G  | 0.180 (0%)         | 0.136 (0%)         | 0.151 (0%)        |
|                                      | N65G+ | 0.175 (-2.78%)     | 0.133 (-2.21%)     | 0.149 (-1.32%)    |
| Structure B<br>M2-PO1-FOX<br>Total C | N65LP | 0.189 (10.53%)     | 0.124 (5.08%)      | 0.134 (3.88%)     |
|                                      | N65G  | 0.171 (0%)         | 0.118 (0%)         | 0.129 (0%)        |
|                                      | N65G+ | 0.166 (-2.92%)     | 0.117 (-0.85%)     | 0.127 (-1.55%)    |

## Simulation data of Poly CD Bias on



| Olu | OCI |  |
|-----|-----|--|

| RC extraction                         |                          |                |        |         |         |
|---------------------------------------|--------------------------|----------------|--------|---------|---------|
| l I                                   | Backend techfile         |                | CLN65G | CLN65G+ | CLN65LP |
|                                       | Versio                   | on             | V1.0   | V0.1    | V1.0    |
|                                       | Library n                | ame            | CLN65G |         |         |
|                                       | Document                 | No.            | N/A    |         |         |
| Sp                                    | Spice model version      |                | V1.0   |         |         |
|                                       | Vt                       |                | SVT    |         |         |
| C                                     | perating v               | oltage         |        | 1.0V    |         |
|                                       | TT/250                   | C              | ratio  | ratio   | ratio   |
|                                       | Leakage                  | INVD1          | 1.00   | 1.00    | 1.00    |
| Cells                                 | Delay                    | INVD1          | 1.00   | 1.01    | 1.04    |
|                                       | Internal                 | INVD1          | 1.00   | 0.99    | 1.01    |
|                                       | Rise path frequency(GHz) |                | 1.00   | 1.01    | 0.98    |
| 21 cells path                         | Fall path                | frequency(GHz) | 1.00   | 1.00    | 0.97    |
|                                       |                          | Average        | 1.00   | 1.01    | 0.97    |
|                                       | Rise path                | power(nW/MHz)  | 1.00   | 0.99    | 1.03    |
| 21 cells path                         | Fall path                | power(nW/MHz)  | 1.00   | 0.99    | 1.04    |
|                                       |                          | Average        | 1.00   | 0.99    | 1.03    |
| 11osc                                 | FO1                      | INVD0          | 1.00   | 0.99    | 1.04    |
| TTOSC                                 | FO3                      | INVD0          | 1.00   | 1.00    | 1.05    |
|                                       | delay                    | INV            | 1.00   | 1.00    | 1.03    |
| 11 cell with                          | power                    | INV            | 1.00   | 1.00    | 1.04    |
| interconnect                          | freq                     | REG            | 1.00   | 1.00    | 0.98    |
|                                       | power                    | REG            | 1.00   | 1.00    | 1.03    |
| Impact analysis are made by TSMC/SCLP |                          |                |        |         |         |

\*Impact analysis are made by TSMC/SCLP.



## Introduction of N65 BEOL modeling

- What are the differences of BEOL modeling methodology between N65 and N90 ?
  - In N90, the thickness of metal layers was modeled by a linear equation which is a function of density.
    - $T_{si} = aD + b$
  - In N65, the thickness( $T_{si}$ ) is now modeled by a polynomial equation which is a function of density and drawn width.
    - $T_{si}/T_{minW\ minS} 1 = a * D^4 + b * D^3 + c * D^2 + d * D + e$
    - lacktriangle where a, b, c, d and e are also polynomials and be the function of drawn width
  - Detailed information please find the Spice Document as well



## **Corner Modeling**

- Typical corner
- C worst corner
- C best corner
- RC worst corner
- RC best corner

# Process Variation Parameters in Corner Modeling



- Metal width variation (W)
- Metal thickness variation (T)
- IMD thickness variation (D)





#### **RC Corner Skew Definition**

- There are 5 corners defined in N65 RC tech files
  - Typical
  - C worst corner (max width, max thickness, min IMD thickness)
  - C best corner (min width, min thickness, max IMD thickness)
  - RC worst corner (min width, min thickness, min IMD thickness)
  - RC best corner (max width, max thickness, max IMD thickness)

|          | Width (W) | Thickness (T) | IMD thickness (D) |
|----------|-----------|---------------|-------------------|
| Typical  | typ       | typ           | typ               |
| C worst  | max(+)    | max(+)        | min(-)            |
| C best   | min(-)    | min(-)        | max(+)            |
| RC worst | min(-)    | min(-)        | min(-)            |
| RC best  | max(+)    | max(+)        | max(+)            |

# **Interconnect Corners: Capacitance Dominant**





## **Interconnect Corners: Resistance Dominant**



