Образовательный центр МГТУ им. Н.Э. Баумана

Выпускная квалификационная работа по курсу «Data Science»

Тема: Прогнозирование конечных свойств новых материалов (композиционных материалов)

Слушатель – Петров Павел Алексеевич

Данные: тип, значения, пропуски

Название	Файл	Тип данных	Непустых значений	Уникальных значений
Соотношение матрица- наполнител	X_bp	float64	1023	1014
Плотность, кг/м3	X_bp	float64	1023	1013
модуль упругости, ППа	X_bp	float64	1023	1020
Количество отвердителя, м.%	X_bp	float64	1023	1005
Содержание эпоксидных групп,%_2	X_bp	float64	1023	1004
Температура вспышки, С_2	X_bp	float64	1023	1003
Поверхностная плотность, г/м2	X_bp	float64	1023	1004
Модуль упругости при растяжении, ГПа	X_bp	float64	1023	1004
Прочность при растяжении, МПа	X_bp	float64	1023	1004
Потребление смолы, г/м2	X_bp	float64	1023	1003
Угол нашинки, град	X_nup	float64	1023	2
Шаг нашинын	X_nup	float64	1023	989
Плотность нашинки	X_nup	float64	1023	988

	Среднее	Стандартное отклонение	Минимум	Максимум	Медиана
Соотношение матрица-наполнитель	2,9304	0.9132	0.3894	5.5917	2.9069
Плотность, кг/м3	1975.7349	73,7292	1731.7646	2207,7735	1977.6217
модуль упругости, ГПа	739.9232	330.2316	2.4369	1911.5365	739.6643
Количество отвердителя, м.%	110.5708	28.2959	17,7403	198,9532	110.5648
Содержание эпоксидных групп, %_2	22.2444	2.4063	14.2550	33.0000	22.2307
Температура вспышки, С_2	285.8822	40.9433	100.0000	413,2734	285.8968
Поверхностная плотность, г/м2	482.7318	281 3147	0.6037	1399.5424	451.8644
Модуль упругости при растяжении, ГПа	73.3286	3,1190	64,0541	82,6821	73.2688
Прочность при растяжении, МПа	2466.9228	485.6280	1036.8566	3848,4367	2459.5245
Потребление смолы, г/м2	218.4231	59.7359	33.8030	414,5906	219.1989
Угол нашивки, град	44.2522	45.0158	0.0000	90.0000	0.0000
Шаг нашизки	6.8992	2.5635	0.0000	14,440.5	6.9161
Плотность нашивки	57.1539	12.3510	0.0000	103.9889	57.3419

Данные: гистограммы и диаграммы «ящик с усами»

Данные: матрица корреляции

Матрица:

- плотность, кг/м3
- модуль упругости, ГПа
- количество отвердителя, м.%
- содержание эпоксидных групп, %_2
 - температура вспышки, С_2
 - поверхностная плотность, г/м2
 - потребление смолы, г/м2

Композит:

- соотношение матрица-наполнитель
- модуль упругости при растяжении, ГПа
 прочность при растяжении, МПа

Наполнитель:

- угол нашивки, град
 - шаг нашивки
- плотность нашивки

Модель модуля упругости при растяжении

	R2	MAE	max_error
Ridge(alpha=80, positive=True, solver='lbfgs')	-0.016585	-2.494485	-7.850363
Lasso(alpha=0.05)	-0.012094	-2.500839	-7.965382
SVR(C=0.01, kernel='linear')	-0.017814	-2.500515	-8.061850
KNeighborsRegressor(n_neighbors=29)	-0.036593	-2.512539	-8.157406
DecisionTreeRegressor(max_depth=2, max_features=2, random_state=42)	-0.018267	-2.490189	-8.154902
RandomForestRegressor(bootstrap=False, criterion='absolute_error', max_depth=5, max_features=1, n_estimators=50, random_state=42)		-2.497013	-8.146335

Модель прочности при растяжении

	R2	MAE	max_error
LinearRegression	-0.014804	-391.262712	-1305.947015
Ridge	-0.014749	-391.248131	-1305.883895
Lasso	-0.013580	-390.926249	-1304.848543
SVR	-0.021077	-390.543237	-1279.655107
KNeighborsRegressor	-0.199452	-422.715060	-1379.897274
DecisionTreeRegressor	-1.097452	-561.980002	-1784.349498
RandomForestRegressor	-0.036247	-393.990948	-1325.856363
GradientBoostingRegressor	-0.033926	-398.082126	-1274.138037

	R2	MAE	max_error
Ridge(alpha=710, solver='lsqr')	-0.010113	-389.284538	-1291.069649
Lasso(alpha=20)	-0.010149	-389.214674	-1293.747766
SVR(C=0.02, kernel='linear')	-0.021227	-390.526504	-1279.607766
DecisionTreeRegressor(criterion='poisson', max_depth=3, max_features=10, random_state=42, splitter='random')	-0.014831	-388.216719	-1282.593572
GradientBoostingRegressor(max_depth=2, max_features=1, random_state=42)	0.009853	-386.455905	-1276.277562

Модель соотношения матрица-наполнитель

Модель соотношения матрица-наполнитель

Модель соотношения матрица-наполнитель

IU

Модель соотношения матрица-наполнитель [Layer (type) Output Shape]

1	ik Ni ii		, a 1 .	D.	— Данные — Нейросеть с ранней	остановко
	Mildhada		11. In. I. A.	Miller Lin	1. 1. 1. 1.	\mathbb{M}
1	AN AM WALLA	Mar Andrew			Mach M. When & C	NA
1	Mr. A. Market Mark Ada	N I MIN MAN WALL	AA MALAMAA IN WAA	MAN	MAN A MININA	In .
П	1.1			A STATE OF THE STA		

Layer (type)		Shape	Param #
dense_1 (Dense)	(None,		312
dropout_1 (Dropout)	(None,	24)	0
dense_2 (Dense)	(None,	24)	600
dropout_2 (Dropout)	(None,	24)	0
dense_3 (Dense)	(None,	24)	600
dropout_3 (Dropout)	(None,	24)	0
dense_4 (Dense)	(None,	24)	600
dropout_4 (Dropout)	(None,	24)	0
dense_5 (Dense)	(None,	24)	600
dropout_5 (Dropout)	(None,	24)	0
dense_6 (Dense)	(None,	24)	600
dropout_6 (Dropout)	(None,	24)	0
dense_7 (Dense)	(None,	24)	600
dropout_7 (Dropout)	(None,	24)	0
dense_8 (Dense)	(None,	24)	600
dropout_8 (Dropout)	(None,	24)	0
out (Dense)	(None,	1)	25

Выпускная квалификационная работа по курсу «Data Science»

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Прогнозирование модуля упругости при растяжении и прочности при растяжении

Прогнозирование соотношения матрица-наполнитель

Соотношение матрица-наполнитель (0..6) 4 02912621369223

Плотность, кг/м3 (1700...2300) 1880.0

Модуль упругости, ГПа (2... 2000) 622.0

Количество отвердителя, м.% (17...200) 111.86

Содержание эпоксидных групп,%_2 (14...34) 22.2678571428571

Температура вспышки, С_2 (100...414) 284.615384615384

Поверхностная плотность, г/м2 (0.6...1400) 470.0

Потребление смолы, г/м2 (33...414) 220.0

Угол нашивки, град (0 или 90) 90.0

Шаг нашивки (0...15) [4.0

Плотность нашивки (0...104) 60.0

Отправить

Входиме переменные:

	Соотношение матрица-	Плотность, кг/	модуль упругости,	Количество отвердителя,	Содержание эпоксидных	Температура вспышки,	Поверхностная плотность,	Потребление смолы, г/	Угол нашивки,	Шаг	Плотность
	наполнитель	м3	ГПа	м.%	групп,%_2	С_2	г/м2	м2	град	нашивки	нашивки
0	4.029126	1880.0	622.0	111.86	22.267857	284.615385	470.0	220.0	90.0	4.0 6	0.0

Результат модели:

Модуль упругости при растижении, ГПа Прочность при растижении, МПа

Выпускная квалификационная работа по курсу «Data Science»

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Прогнозирование модуля упругости при растяжении и прочности при растяжении

Прогнозирование соотношения матрица-наполнитель

Прогнозирование соотношения матрица-наполнитель

Плотность, кг/м3 (1700... 2300) 1880.0

Модуль упругости, ГПа (2...2000) 622.0

Количество отвердителя, м.% (17...200) 111.86

Содержание эпоксидных групп,%_2 (14...34) 22 2678571428571

Tемпература вспышки, C_2 (100...414) 284 615384615384

Поверхностная плотность, г/м2 (0.6...1400) 470.0

Модуль упругости при растяжении, ГПа (64...83) 73.3333333333333

Прочность при растяжении, МПа (1036...3849) 2455.5555555555

Потребление смолы, г/м2 (33...414) 220 0

Угол нашивки, град (0 или 90) [90.0

Шаг нашивки (0...15) 4.0

Плотность нашивки (0...104) 60 0

Отправить

Входиме переменные:

Плотность, к	г/ модуль 3 упругости, ГПа	520,000,000,000,000,000,000,000		Температура вспышки, С_2		Поверхностная плотность, г/м2	Модуль упругости при растяжении, ГПа			Потребление смолы, г/м2	Угол нашивки, град	Шаг нашивки	Плотно наши	A
0 1880.0	622.0	111.86	22 267857	284.615385	470.0	73.3	13333	2455.555556	220.0		90.0	1.0	60.0	

Спасибо за внимание!

edu.bmstu.ru

+7 495 182-83-85

edu@bmstu.ru

Москва, Госпитальный переулок, д. 4-6, с.3

