# Hauptprozessor/CPU



## Stever-/Leitwerk

- steuert Befehlsverarbeitung

Goden decodieren interpretieren

- Befehldecoder



-> im Steuerwerk befinden sich 3 kleine Register (kleine sehr schnelle Speicher)

| Register             | Aufgabe                                 |
|----------------------|-----------------------------------------|
| Befehlsregister      | enthält aktuellen Maschinenbachl        |
| Befehlszähler        | enthält Adresse des nächsten<br>Befehls |
| Status-/Flagregister | enthält Status Operation                |

## Rechenwerk

- verarbeitet Befehle

- Arithmetic Logic Unit



# Speichercontroller - steuert Datenfluss



## Cache

| 11-Code  | im Kern        | 64-128LB  |
|----------|----------------|-----------|
| 12-Coche | oußerhalb Kern | 2564B-2mB |
| 13-Code  | " geteill      | 4256mB    |



# Abarbeitung eines Befehls



Von-Neumann-Zyhlus FETCH OPERANDS

**Hinweis:** Moderne Mikroprozessoren verwenden heutzutage getrennte Caches für Daten und Befehle und können deshalb als modifizierte Harvard-Prozessoren oder als Fast-Von-Neumann-Prozessoren bezeichnet werden, weshalb sie intern kaum noch etwas mit dem klassischen Von-Neumann-Zyklus gemein haben.

| 1. | <b>FETCH – Befehlsabruf</b> : Aus dem Speicher wird der nächste zu bearbeitende Befehl entsprechend der Adresse im Befehlszähler in das Befehlsregister geladen und der Befehlszähler wird um die Länge des Befehls erhöht. |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | <b>DECODE – Dekodierung:</b> Der Befehl wird durch das Steuerwerk in Schaltinstruktionen für das Rechenwerk aufgelöst.                                                                                                      |
| 3. | <b>FETCH OPERANDS – Operandenabruf:</b> Aus dem Speicher werden nun die Operanden geholt. Das sind die Werte, die durch den Befehl verändert werden sollen oder die als Parameter verwendet werden.                         |
| 4. | <b>EXECUTE – Befehlsausführung:</b> Eine arithmetische oder logische Operation wird vom Rechenwerk ausgeführt. Bei Sprungbefehlen und erfüllter Sprungbedingung wird an dieser Stelle der Befehlszähler verändert.          |
| 5. | WRITE BACK – Rückschreiben des Resultats: Sofern notwendig, wird das Ergebnis der Berechnung in den Speicher zurückgeschrieben.                                                                                             |

### Beispiel Intel i7 4770K (3,5 GHz):





Abb.21: Verpackung Intel i7 4770K

## **Computer-Architektur**

Das Konzept eines Universalrechners ist in den 1940ern entstanden und wurde nach seinem Erfinder, dem ungarischen Mathematiker **John von-Neumann**, benannt. Um als Universalrechner zu gelten, müssen PCs bestimmte Anforderungen erfüllen.

Bei einer von-Neumann-Architektur muss ein PC logisch und räumlich zerlegt sein. Das heißt für uns, dass unser Rechner nicht einfach eine einzige Platine ist, an die wir Strom anschließen. Ein Von-Neumann-Rechner beruht auf folgenden Komponenten, die bis heute in Computern verwendet werden:

- ALU (Arithmetic Logic Unit) Rechenwerk
   selten auch Zentraleinheit oder Prozessor genannt, führt Rechenoperationen und logische Verknüpfungen durch. (Die Begriffe Zentraleinheit und Prozessor werden im Allgemeinen in anderer Bedeutung verwendet.)
- Control Unit Steuerwerk oder Leitwerk interpretiert die Anweisungen eines Programms und verschaltet dementsprechend Datenquelle, -senke und notwendige ALU-Komponenten; das Steuerwerk regelt auch die Befehlsabfolge.
- BUS Bus System dient zur Kommunikation zwischen den einzelnen Komponenten (Steuerbus, Adressbus, Datenbus)
- Memory (RAM/Arbeitsspeicher) Speicherwerk
   speichert sowohl Programme als auch Daten, welche für das Rechenwerk zugänglich sind.
- I/O Unit Eingabe-/Ausgabewerk
   steuert die Ein- und Ausgabe von Daten, zum Anwender (Tastatur, Bildschirm) oder zu anderen Systemen (Schnittstellen).

Die Von-Neumann-Architektur hat nur einen Bus, der sowohl für Befehlsabrufe als auch für Datenübertragungen verwendet wird. Die Operationen müssen geplant werden, da sie nicht gleichzeitig ausgeführt werden können -> Stichwort Von-Neumann-Flaschenhals (Performance-Verringerungen von Prozessoren durch konkurrierende Daten- und Befehlscode-Zugriffe über einen gemeinsamen Bus)!



Schematischer Aufbau eines Von-Neumann-Rechners mit dem zugehörigen Bussystem

#### Harvard-Architektur:

- Computerarchitektur mit physisch getrennten Speicher- und Signalpfaden (mittels getrennter Bussysteme im System integriertfür Programmdaten und Anweisungen)
- separater Speicherplatz für Daten und Anweisungen, um sowohl Befehle aus dem Speicher abzurufen als auch Daten von einem Teil eines Computers zu einem anderen zu übertragen



Gegenüberstellung Von-Neumann- und Harvard-Architektur