PS – Resolução dos Exercicios: Extração Liq-Liq

Felipe B. Pinto 61387 – MIEQB

22 de maio de 2024

Conteúdo

O .~ 1		0 .~ 0		
Questao I	2	Questao 2		6

Questão 1

Pretende-se extrair o ácido acético contido em $800\,\mathrm{g}$ de uma solução aquosa com 55% (percentagem mássica de ácido acético) ($T=20\,^\circ\mathrm{C}$), adicionando-se $400\,\mathrm{g}$ de éter isopropílico, sem variação de temperatura.

Dados: Para o sistema ternário éter isopropílico-água-ácido acético, as fases conjugadas têm a $20\,^\circ\text{C}$ as seguintes composições:

Fase Orgânica			Fase Aquosa		
Éter isopropilico	Ácido Acético	Água	Éter isopropilico	Ácido Acético	Água
98.80	0.00	1.20	0.80	0.00	99.20
87.50	10.00	2.50	1.70	5.00	93.30
76.20	20.00	3.80	2.10	10.00	87.90
60.00	30.00	10.00	2.50	15.00	82.50
39.00	41.50	19.50	3.30	25.00	71.70
27.50	45.00	27.50	3.50	30.00	66.50
19.70	46.80	33.50	4.20	35.00	60.80
13.00	46.00	41.00	5.60	40.00	54.40

Q1 a.

DeterDeterminar as composições e massas das fases em equilíbrio, depois da adição do éter

Resposta

Equilibrium

$$\begin{cases} \text{Feed} & x_F = 55\% \\ \text{Solvent} & y_F = 0\% \end{cases}$$

Finding midpoint M

$$x_{M,1}: m_F x_F + m_{S,1} y_{S,1} = m_{M,1} x_{M,1} = (m_F + m_{S,1}) x_{M,1} \implies$$

$$\implies x_{M,1} = \frac{m_F x_F + m_{S,1} y_{S,1}}{m_F + m_{S,1}} = \frac{800 * .55 + 400 * 0}{800 + 400} \cong 36.667\% \implies$$

$$\implies M \begin{cases} x_{M,1,EAc} \cong 36.7\% \\ x_{M,1,Ether} \cong 33\% \end{cases};$$

Extract and Raffinate Points

$$E_1 \begin{cases} y_{E,1,\text{HAc}} & \cong 40.0\% \\ y_{E,1,\text{Ether}} & \cong 41.5\% \end{cases}; \qquad R_1 \begin{cases} x_{R,1,\text{HAc}} & \cong 22.0\% \\ x_{R,1,\text{Ether}} & \cong 3.2\% \end{cases};$$

$$m_{E,1} \in m_{R,1}$$

 $m_{E,1} : m_{E,1} y_{E,1} + m_{R,1} x_{R,1} = m_{E,1} y_{E,1} + (m_{M,1} - m_{E,1}) x_{R,1} = m_{M,1} x_{M,1} \implies$
 $\implies = m_{E,1} = m_{M,1} \frac{x_{M,1} - x_{R,1}}{y_{E,1} - x_{R,1}} \cong 1200 \frac{0.367 - 0.220}{0.400 - 0.220} \cong 902.564 \,\mathrm{g};$

$$m_{R_1} = m_M - m_{E_1} \cong 1200 - 902.564 \cong 297.436 \,\mathrm{g}$$

Mixing operation - Calculations

RM

Level–Arm Rule

 m_E

$$egin{cases} ext{B.M. Global} & m_R+m_E=m_M \ ext{B.M. partial to C} & m_R\,x_R+m_E\,y_E=m_M\,x_M \end{cases} \Longrightarrow \ m_R & ar{ME} & x_M-y_E & m_R & ar{ME} & x_M-y_E \end{cases}$$

 m_M

 $ar{RE}$

Q1 b.

Para a remoção do ácido ainda existente na fase refinada obtida da operação anterior, adiciona-se éter isopropílico na proporção de 1:1. Determine as composições e as massas das novas fases em equilíbrio.

Resposta

$$x_{M,2}$$
:
 $m_{M,2} x_{M,2} = (m_{R,1} + m_{S,2}) x_{M,2} = 2 m_{R,1} x_{M,2} =$
 $= m_{R,1} x_{R,1} + m_{S,2} y_{S,2} = m_{R,1} (x_{R,1} + y_{S,2}) \Longrightarrow$
 $\Longrightarrow x_{M,2} = \frac{x_{R,1} + y_{S,2}}{2} \cong \frac{22.0 + 0}{2} \% = 11.0 \% \Longrightarrow$
 $R_2 \begin{cases} 7 \%_{\text{HAc}} \\ 2 \%_{\text{Ether}} \end{cases} ; \qquad E_2 \begin{cases} 14 \%_{\text{HAc}} \\ 83 \%_{\text{Ether}} \end{cases} ;$
 $14 \%_{\text{Water}} \end{cases} ; \qquad E_2 \begin{cases} 14 \%_{\text{HAc}} \\ 83 \%_{\text{Ether}} \end{cases} ;$

$$m_{E,2}$$
:
 $m_{M,2} x_{M,2} = (M_{R,1} + m_{S,2}) x_{M,2} = 2 M_{R,1} x_{M,2} =$
 $= m_{E,2} y_{E,2} + m_{R,2} x_{R,2} = m_{E,2} y_{E,2} + (m_{M,2} - m_{E,2}) x_{R,2} \implies$
 $\implies m_{E,2} = 2 M_{R,1} \frac{x_{M,2} - x_{R,2}}{y_{E,2} - x_{R,2}} = 2 * 297.436 \frac{11.0 - 7.0}{14.0 - 7.0} \cong$
 $\cong 339.927 \, \text{g} \implies$

$$\implies m_{R,2}$$
 $m_{R,2} = m_{M,2} - m_{E,2} \cong 2 * 297.436 - 339.927 \cong 254.945 \,\mathrm{g}$

Questão 2

Pretende-se recuperar acetona de uma solução aquosa a $30\,^{\circ}$ C usando acetato de etilo, $CH_3COOCH_2CH_3$, como solvente. A corrente de alimentação, contendo 25% de acetona e 75% de água, entra no topo da coluna de extracção a um caudal de $250\,\mathrm{kg/h}$. O solvente, puro, entra na base a um caudal de $97\,\mathrm{kg/h}$. Deseja-se um produto refinado com 10% de acetona. Calcule:

Dados de equilíbrio:

Acetato de etilo	Acetona	Água
7.4	0.0	92.6
8.0	7.6	84.4
9.9	16.1	74.0
11.9	21.1	67.0
13.6	24.3	62.1
15.5	27.0	57.5
17.4	29.2	53.4
19.2	31.1	49.7
24.0	33.8	42.2
25.5	34.6	39.9
29.0	36.0	35.0
36.7	37.0	26.3
44.4	36.1	19.5
47.6	35.0	17.4
55.0	32.0	13.0
62.5	27.5	10.0
70.0	22.4	7.6
77.0	17.0	6.0
83.7	11.2	5.1
96.5	0.0	3.5

Fase organica:		rase Aquosa:			
Acetato de etilo	Acetona	Água	Acetato de etilo	Acetona	Água
91.0	4.8	4.2	8.3	3.2	88.5
85.6	9.4	5.0	8.0	6.0	86.0
80.5	13.5	6.0	8.3	9.5	82.2
77.2	16.6	6.2	9.2	12.8	78.0
73.0	20.0	7.0	9.8	14.8	75.4
70.0	22.4	7.6	10.2	17.5	72.3
65.0	26.0	9.0	12.2	19.8	68.0
62.0	27.8	10.2	11.8	21.2	67.0
54.0	32.6	13.4	15.0	26.4	58.6

Acetato de etilo

• Densidade (liq): $0.897 \,\mathrm{g/cm^3}$

• Ponto de Ebulição: 77°C

A concentração e o caudal da corrente de extracto

Resposta

$$egin{cases} AcEt: & ext{Acetato de Etilo} \ Ac: & ext{Acetona} \ H: & ext{Agua} \end{cases}$$

$$S: \begin{cases} y_S = 0 \\ 0\%_{\text{Ac}} \\ 100\%_{\text{AcEt}} \\ 0\%_{\text{H}_2\text{O}} \end{cases}; \qquad F: \begin{cases} y_F = 0.75 \\ 25\%_{\text{Ac}} \\ 0\%_{\text{AcEt}} \\ 75\%_{\text{H}_2\text{O}} \end{cases}; \qquad R_n: \begin{cases} y_{R,n} = 0.75 \\ 10\%_{\text{Ac}} \\ 8.6\%_{\text{AcEt}} \\ 81.4\%_{\text{H}_2\text{O}} \end{cases}$$

$$x_{M,1}$$
:
 $m_{M,1} x_{M,1} = (m_F + m_{S,1}) x_{M,1} =$
 $= m_F x_F + m_{S,1} y_{S,1} \Longrightarrow$
 $\Longrightarrow x_{M,1} = \frac{m_F x_F + m_{S,1} y_{S,1}}{m_F + m_{S,1}} = \frac{250 * 0.25 + 97 * 0}{250 + 97} \cong$
 $\cong 18.012 \%_{Ac} \Longrightarrow$

$$\implies E_1: \begin{cases} y_{E,1} = 0.30 \\ 30 \%_{Ac} \\ 58.5 \%_{AcEt} \\ 11.5 \%_{H_2O} \end{cases} ;$$

$$m_{E,1}:$$
 $m_{E,1} y_{E,1} + m_{R,n} x_{R,n} = m_{E,1} y_{E,1} + (m_{M,1} - m_{E,1}) x_{R,n} =$
 $= m_{M,1} x_{M,1} \implies$
 $\implies m_{E,1} = m_{M,1} \frac{x_{M,1} - x_{R,n}}{y_{E,1} - x_{R,n}} \cong$
 $\cong (250 + 97) \frac{0.180 - 0.10}{0.30 - 0.10} \cong 139.000 \,\text{kg/h} \implies$
 $\implies m_{R,n} \cong 250 + 97 - 139.000 \cong 208.000 \,\text{kg/h}$

Q2 b.

O número de andares de equilíbrio necessários para esta separação.

Resposta

$$\Delta$$
:

$$F + S = E_1 + R_{n,p} \Longrightarrow$$

$$\implies \Delta = F - E_1 = R_{n,p} - S_1 = R_i - E_{i+1}$$

Equilibrium Diagram for the system: Water, Kerosene, Nicotine

Equilibrium Diagram for the system: Water, Acetone, Ethyl acetate

