Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Лабораторная работа №4

Комбинированное применение ключевых операций. Определение частоты короткого сигнала.

Выполнил		
студент гр. в $3530904/00030$		В.С. Баганов
Руководитель		
доцент, к.т.н.		В.С. Тутыгин
	«»_	202 г.

Санкт-Петербург 2023

Содержание

1.	Цис	Цифровая обработка коротких сигналов		
	1.1.	Цель р	р <mark>аботы</mark>	
	1.2.	Програ	амма работы	
	1.3.	Резуль	таты работы	
			Сравнение результатов, получаемых с помощью алгоритмов БПФ	
			и АКМ	
		1.3.2.	Статистические испытания комбинированного способа	
	1.4.	Вывод		
		1.4.1.	Листинг Matlab. lab4.m	
		1.4.2.	Листинг Matlab. lab4 statistica hist.m	

1. Цифровая обработка коротких сигналов

1.1. Цель работы

Цель данной работы — исследовать зависимость погрешности определения количества периодов короткого сигнала с нецелым количеством периодов от количества периодов и величины СКО шума на входе при использовании БПФ и аппроксимационно-корреляционного метода при использовании различных методов определения сходства: коэффициента ковариации и корреляции, суммы модулей суммы, квадратного корня из суммы квадратов разности, суммы модулей разности (нормы Минковского), суммы модулей суммы (нормы Поддорогина).

1.2. Программа работы

- 1. При исследовании эффекта увеличения точности определения количества периодов и частоты сигнала по сравнению с БПФ за счет дополнительных операций цифровой обработки произведите измерения (программа lab4) количества периодов сигнала в диапазоне количества периодов от K до K+1 с шагом 0.2 и постройте графики погрешности определения количества периодов сигнала на этом интервале с помощью БПФ и комбинированного способа.
- 2. При исследовании достижимой точности определения количества периодов и частоты сигнала комбинированным способом при различных уровнях зашумленности сигнала произведите оценку точности определения количества периодов и частоты сигнала в диапазоне количества периодов от К до K+1 с шагом 0.2 при значениях СКО шума от 0 до 0.2 с шагом 0.1. Для этого произведите статистические испытания (программа lab4_statistica), и вычислите значения среднеквадратической погрешности и величину доверительных интервалов определения для каждого значения количества периодов сигнала и каждого уровня шума.

1.3. Результаты работы

1.3.1. Сравнение результатов, получаемых с помощью алгоритмов БП Φ и AKM

Ниже приведены графики исходного короткого сигнала (менее 10 периодов), сигнала с шумом 0,1 и сигнала с шумом 0,2, которые будут подвергаться цифровой обработке, для решения поставленных задач в данной работе. График функции коэффициентов сходства исходного сигнала с эталонными не приводятся по причине того, что по ним не строится графики, а только точки, которые сложнее анализировать, поэтому ниже приведена таблица со значениями

Рисунок 1.1. Исходный сигнал

Рисунок 1.2. Сигнал с шумом 0,1

Рисунок 1.4. Caption

Рисунок 1.3. Сигнал с шумом 0,2

В качестве метода определения сходства использовалась норма Поддорогина с количеством периодов сигнала от 3 до 4 с шагом 0,2.

Получены следующие результаты:

CKO	Кол-во						
шума	периодов	Результаты цифровой обработки					
на входе	сигнала						
			ОТН_		OTH_		
		кп_БПФ	погрешность	$\kappa \Pi_{-} AKM$	погрешность		
			кп_БПФ		кп_АКМ		
0	3,00	3	0	3	0		
	3,20	3,0000	6,25	3,20	0,03		
	3,40	3,0000	11,7647	3,4000	1.3061e-14		
	3,60	4,0000	11,1111	3,6000	0		
	3,80	4,0000	5,2632	3,7993	0,0187		
	4,00	4,0000	0	4,0000	0		
0,1	3,00	3,0000	0	2,9999	0,0020		
	3,20	3,0000	6,2500	3,1937	0,1964		
	3,40	3,0000	11,7647	3,4075	0,2212		
	3,60	4,0000	11,1111	3,6060	0,1661		
	3,80	4,0000	5,2632	3,7993	0,0187		
	4,00	4,0000	0	3,9867	0,3333		
0,2	3,00	3,0000	0	3,0000	0		
	3,20	3,0000	6,2500	3,2008	0,0259		
	3,40	3,0000	11,7647	3,4000	1,3061e-14		
	3,60	4,0000	11,1111	3,6206	0,5728		
	3,80	4,0000	5,2632	3,7993	0,0187		
	4,00	4,0000	0	4,0133	0,3333		

Графическое сравнение погрешности для БПФ и АКМ:

1.3.2. Статистические испытания комбинированного способа

СКО шума на входе	Кол-во периодов сигнала	Результаты цифровой обработки		
		MO	σ, %	β, %
0	3,00	3	0	0
	3,20	3,2	1,16E-14	2,31E-14
	3,40	3,4	1,47E-14	2,93E-14
	3,60	3,6014	1,60E-14	3,20E-14
	3,80	3,7968	9,33E-15	1,87E-14
	4,00	4	0	0
0,1	3,00	3,0009	0,0075	0,0149
	3,20	3,1996	0,0073	0,0146
	3,40	3,3991	0,0076	0,0152
	3,60	3,6001	0,0075	0,0147
	3,80	3,8001	0,0075	0,0149
	4,00	4,0003	0,0074	0,0148
0,2	3,00	2,999	0,0119	0,0237
	3,20	3,2016	0,0113	0,0226
	3,40	3,4	0,0122	0,0243
	3,60	3,6001	0,0123	0,0245
	3,80	3,8014	0,0121	0,0242
	4,00	3,9996	0,012	0,0241

Графически зависимость погрешности вычисленного количества периодов от СКО шума на входе можно представить следующим образом.

Зависимость погрешности вычисленного количества периодов kp_AKM для СКО без шума

 Γ рафик зависимости среднеквадратической погрешности определения количества периодов и частоты сигнала от уровня зашумленности исходного сигнала при использовании AKM.

1.4. Вывод

Из полученных данных явно видно, что алгоритм БП Φ позволяет точно определять частоту сигнала лишь в случае целого количества периодов. В случае нечетного количества периодов погрешность данного метода может достигать 11,7647 %. Алгоритм АКМ же позволяет определять частоту с гораздо более высокой точностью. При этом относительная погрешность измерений, полученная с помощью БП Φ , практически не отличается при изменении СКО шума. В случае АКМ относительная погрешность измерений в целом также оказывается близка для различных уровней шума.

Статистические испытания алгоритма AKM показывают, что погрешность лежит в диапазоне от 0.0074 до 0.0075 для CKO=0,1 и от 0.012 до 0.0119 для CKO=0,2. При увеличении CKO шума увеличивается CKO отклонения.

1.4.1. Листинг Matlab. lab4.m

```
%Комбинированное использование ключевых операций ЦОС
1
     %Для повышения точности определения частоты
2
    %"короткого" сигнала используется комбинация
    %БПФ, кросскорреляции, сплайн-аппроксимации,передискретизации
    %В качестве показателя сравнения исходного и эталонных сигналов
    %предусмотрена возможность использования коэффициента ковариации,
     %коэффициента корреляции, суммы модулей разности (нормы Минковского),
    %суммы модулей суммы (нормы Поддорогина)
     clc:%очистка Command Window
10
     kt=1024; % количество отсчетов
11
     Q=0.2;%шvм
12
     kp=4.0%количество периодов сигнала
13
14
    %1. ГЕНЕРАЦИЯ МОДЕЛЬНОГО СИГНАЛА
15
     for i=1:kt %обнуление массива сигнала
16
     y(i)=0;
17
     end
18
     noise=randn(kt);
19
    %noise=wgn(kt,1,0);
     for i=1:kt %генерация модельного сигнала с экспоненциальной модуляцией
21
     w(i)=exp(-20*((i-kt/2)/kt)^2);
22
     y(i)=\sin(2*pi*kp*i/kt)*w(i);
23
     y(i)=y(i)+Q*noise(i);
24
25
     i=1:kt; %отображение модельного сигнала во временной области
26
     figure
27
     plot(i,y);
28
     axis tight;
29
     title('Original signal')
     xlabel('Sample number')
31
     %2. ФУНКЦИОНАЛЬНОЕ ПРЕОБРАЗОВАНИЕ (БПФ)
32
     bpfy=fft(y,kt);%БПФ
     bpf=bpfy.*conj(bpfy)/kt;%БПФ
34
    %нахождение макс. знач. функции БПФ для массива Y
35
     C=max(bpf);
36
     for i=1:kt %поиск количества периодов, соответствующих максимуму БПФ
37
     if (bpf(i)=C)
38
     kpbpf=(i-1);
39
     break
40
     end
41
     end
42
     kp_bpf=kpbpf
43
44
    %3. СОЗДАНИЕ ЭТАЛОНОВ И КРОССКОРРЕЛЯЦИЯ
45
     kp1=kpbpf;
46
     seach_area=0.8/kp1;%область поиска относит. kp_bpf
     for ki=1:3 %количество итераций
48
     shagkor=kp1*seach area/3;%шаг поиска
49
50
     for j=kp1-kp1*seach area:shagkor:kp1+kp1*seach area %цикл для создания 6
51
     → эталонов в окрестности приближенного
    «Значения количества периодов, определенных с помощью БПФ.
52
     k=k+1;
53
     xkor(k)=j;
54
     kor(k)=0;
55
     for i=1:kt
56
    x(i)=0;
```

```
58
     %Вычисление массивов эталонных сигналов
     for i=1:kt
60
     x(i)=sin(2*pi*j*i/kt)*w(i);
61
     end
62
     %вычисление средних значений модельного и эталонных сигналов
63
     x sr=mean(x);
64
     y_sr=mean(y);
65
     x sko=0;
66
     y sko=0;
67
     kor1(k)=0; % начальное значение показателя сравнения
68
     %вычисление показателя сравнения модельного и эталонных сигналов
69
     for i=1:kt
70
     % x sko=x sko+(x(i)-x sr)*(x(i)-x sr);
71
     % y_sko=y_sko+(y(i)-y_sr)*(y(i)-y_sr);
72
     % kor(k)=kor(k)+(x(i)-x_sr)*(y(i)-y_sr);%вычисление коэф. ковариации
73
     % sxy(i)=abs(x(i)-y(i));%вычисление модуля разности
74
     % kor1(k)=kor1(k)+sxy(i); %вычисление суммы модулей разности
75
     %(нормы Минковского)
76
      sxy(i)=abs(x(i)+y(i));%вычисление модуля суммы
77
      kor1(k)=kor1(k)+sxy(i); %вычисление суммы модулей суммы
     %(нормы Поддорогина)
79
80
     % kor1(k)=kor(k)/(sqrt(x_sko*y_sko));%вычисление коэф. корреляции
81
     end %конец цикла создания эталонов и вычисления массива коэф. корр.
82
83
     %СПЛАЙН-АППРОКСИМАЦИЯ И ПЕРЕДИСКРЕТИЗАЦИЯ
     xx=1:k;
     xi=1:0.1:k;
86
     r1=sin(xx); %только для тестирования сплайн-аппроксимации
87
     yint=interp1(xx,kor1,xi,'spline');% сплайн-аппроксимация коэф корреляции
89
     % apr=spaps(xkor,kor1,0.000001);
90
     figure
     % fnplt(apr)
92
     hold on
93
     plot(xkor,r1,'ro');
94
     hold off
95
96
     %НАХОЖДЕНИЕ УТОЧНЕННОГО ЗНАЧЕНИЯ КОЛИЧЕСТВА ПЕРИОДОВ СИГНАЛА
97
      cmax=max(yint); %нахождение максимума коэф. корр., ковар.,суммы модулей

→ CYMMЫ

     % cmax=min(yint); %нахождение минимума коэф. Минковского.
99
     for i=1:round((k-1)/0.1+1)
100
     if (yint(i)=cmax)
101
     kp int=kp1-kp1+seach area+(i-1)+shagkor/10; %уточненное значение частоты
102
     end
103
104
     seach_area=seach_area/2;
105
     kp1=kp_int;
106
     end
107
     res=kp1
108
109
     %Нахождение относительной погрешности
110
     %Нахождение относительной погрешности для БПФ
111
     otnositelnya_pogreshnost_bpf=abs((kp_bpf-kp)/kp)*100
112
     %СПЛАЙН-АППРОКСИМАЦИЯ И ПЕРЕДИСКРЕТИЗАЦИЯ
113
     %Нахождение относительной погрешности для АКМ:
114
     xx=1:k;
115
```

```
otnositelnya_pogreshnostr_akm=abs((kp_int-kp)/kp)*100

pause;
close all;%закрытие всех окон графического вывода
clear;%очистка Workspace
```

1.4.2. Листинг Matlab. lab4 statistica hist.m

```
%Программа определения частоты короткого сигнала
1
2
    %Для повышения точности определения количества периодов и частоты
3
    %короткого сигнала используется комбинация
    %БПФ, кросскорреляции, сплайн-аппроксимации,передискретизации
    % и итерационное уточнение количества периодов
6
    %Предусмотрена возможность использования в качестве показателя
    %сравнения исходного и эталонных сигналов коэффициента ковариации,
    %коэффициента корреляции, суммы модулей разности (нормы Минковского),
     %суммы модулей суммы (нормы Поддорогина)
10
    «Время работы программы при 1024 испытаниях - 1 мин. 20 сек.
11
12
     kt=1024; % количество отсчетов
13
     shum=0.2 ;%шум
14
     kp=4.0;%количество периодов сигнала
15
     clc;%очистка Command Window
17
     for i4=1:1024 %количество испытаний
18
    %1. ГЕНЕРАЦИЯ МОДЕЛЬНОГО СИГНАЛА
19
     for i=1:kt %обнуление массива сигнала
20
     y(i)=0;
21
     end
22
    %ГЕНЕРАЦИЯ НОРМАЛЬНОГО И БЕЛОГО ШУМА
23
     noise=randn(1024);
24
    %noise=wgn(kt,1,0);
25
     for i=1:kt %генерация модельного сигнала
26
    w(i)=exp(-20*((i-kt/2)/kt)^2);
27
     v(i)=cos(2*pi*kp*i/kt)*w(i);
28
     y(i)=y(i)+shum*noise(i);
29
     end
30
     i=1:kt; %отображение модельного сигнала во временной области
31
32
    %2. ФУНКЦИОНАЛЬНОЕ ПРЕОБРАЗОВАНИЕ (БПФ)
33
     bpfy=fft(y,kt);%БПФ
34
     bpf=bpfy.*conj(bpfy)/kt;%БПФ
35
36
    %нахождение макс. знач. функции БПФ для массива Y
37
     C=max(bpf);
38
     for i=1:kt %поиск количества периодов, соответствующих максимуму БПФ
39
     if (bpf(i)=C)
40
     kpbpf=(i-1);
41
     break
42
     end
43
     end
44
     kp bpf=kpbpf;
45
    %3. СОЗДАНИЕ ЭТАЛОНОВ И КРОССКОРРЕЛЯЦИЯ
46
    kp1=kpbpf;
47
     search_area=0.8/kp;%начальная область поиска относит. kp_bpf
48
     for i3=1:3 %задание количества итераций
49
     shagkor=kp1*search_area/3;%шаг поиска
50
```

```
k=0:
51
     for j=kp1-kp1*search area:shagkor:kp1+kp1*search area %цикл для создания
     → 6 эталонов в окрестности приближенного
     %значения количества периодов, определенных с помощью БПФ.
53
     k=k+1;
54
     xkor(k)=j;
55
     kor(k)=0;
56
     for i=1:kt
57
     x(i)=0;
     end
59
     %Вычисление массивов эталонных сигналов
60
     for i=1:kt
61
     x(i)=cos(2*pi*j*i/kt)*w(i);
62
63
     %вычисление средних значений модельного и эталонных сигналов
64
     x_sr=mean(x);
     y sr=mean(y);
66
     x sko=0;
67
     y_sko=0;
68
     kor1(k)=0; % начальное значение показателя близости
69
     %вычисление показателя сравнения модельного и эталонных сигналов
70
     for i=1:kt
71
     72
     y_sko=y_sko+(y(i)-y_sr)*(y(i)-y_sr);
73
     % kor(k)=kor(k)+(x(i)-x_sr)*(y(i)-y_sr);%вычисление коэф.ковариации
74
     % sxy(i)=abs(x(i)-y(i));%вычисление модуля разности !
75
     % sxy(i) = (x(i)-y(i))^2; %вычисление квадрата разности !
76
     sxy(i)=abs(x(i)+y(i));%вычисление модуля суммы !
     kor(k)=kor(k)+sxy(i); %вычисление суммы модулей разности, суммы
     % квадратов разности, суммы нормы Минковского и Поддорогина !
79
     end
80
      kor1(k)=kor(k);%вычисление коэф. близости (кроме коэф. корр.)
81
     % kor1(k)=kor(k)/(sqrt(x sko*y sko));%вычисление коэф. корреляции
82
     end %конец цикла создания эталонов и вычисления массива коэф. корр.
83
     %СПЛАЙН-ИНТЕРПОЛЯЦИЯ И ПЕРЕДИСКРЕТИЗАЦИЯ
84
     xx=1:k;
85
     xi=1:0.1:k:
86
     yint=interp1(xx,kor1,xi,'spline');% сплайн-аппроксимация коэф корреляции
87
     r1=kor;
88
     %%apr=csaps(xx,r1);
89
     % apr=spaps(xkor,kor,0.00000001);%%%%%%%%%%%%%%%
91
     %НАХОЖДЕНИЕ УТОЧНЕННОГО ЗНАЧЕНИЯ КОЛИЧЕСТВА ПЕРИОДОВ СИГНАЛА
92
     cmax=max(yint); %нахождение максимума коэф. ковар., коэф. корр., коэф.
93
     → Поддорогина
     % cmax=min(vint); %нахождение миниимума коэф.Минковского и суммы
94
     → квадратов разности.
     for i=1:round((k-1)/0.1+1)
95
     if (yint(i)=cmax)
96
     kp_int=kp1-kp1*search_area+(i-1)*shagkor/10; %уточненное значение частоты
97
     end
98
     kp1=kp_int;%очередное приближение количества периодов
100
     search area=search area/2; %сокращение области поиска
101
     end %конец цикла по количеству итераций
102
     kp2(i4)=kp int;
103
     end %конец цикла стат.испытаний
104
     MO1=mean(kp2)
105
     SK01=std(kp2)
106
```