02.02.2007.

PRVA SKUPINA ZADATAKA

1.

- 1-1. Na diferencijsko pojačalo na slici priključeni su naponi $u_{g1} = -5\sin\omega t \text{ mV}$ i $u_{g2} = 15\sin\omega t \text{ mV}$. Koliki su zajednički napon u_z i iznos diferencijskog napona u_d ? (1bod):
 - a. $u_z = 5 \sin \omega t \text{ mV}$, $|u_d| = 10 \sin \omega t \text{ mV}$.
 - b. $u_z = 10 \sin \omega t \text{ mV}$, $|u_d| = 20 \sin \omega t \text{ mV}$
 - c. $u_z = 10 \sin \omega t \text{ mV}$, $|u_d| = 10 \sin \omega t \text{ mV}$
 - d. $u_z = 5\sin \omega t \text{ mV}, |u_d| = 20\sin \omega t \text{ mV}$
 - e. $u_z = 0 \text{ mV}$, $|u_d| = 10 \sin \omega t \text{ mV}$
- 1-2. U diferencijskom pojačalu A_{Vd} je pojačanje za diferencijski signal, a A_{Vz} je pojačanje za zajednički signal. Dobro diferencijsko pojačalo mora imati (1bod):
 - a. pojačanja nisu bitna,
 - b. mali iznos pojačanja $|A_{Vd}|$ i mali iznos pojačanja $|A_{Vz}|$,
 - c. mali iznos pojačanja $|A_{Vd}|$ i veliki iznos pojačanja $|A_{Vz}|$,
 - d. veliki iznos pojačanja $|A_{Vd}|$ i veliki iznos pojačanja $|A_{Vz}|$,
 - e. veliki iznos pojačanja $|A_{Vd}|$ i mali iznos pojačanja $|A_{Vz}|$.

2.

- 2-1. Na slici je prikazan sklop u kojem bipolarni tranzistor T_1 radi kao sklopka. Zadani su: struja $I_C=9.8~{\rm mA}$, $R_C=1~{\rm k}\Omega$ i $U_{CC}=10~{\rm V}$. Tranzistor T_1 radi u (1bod):
 - a. ne može se odrediti bez vrijednosti otpora R_B ,
 - b. ne može se odrediti bez vrijednosti ulaznog napona U_{UL} ,
 - c. zapornom području,
 - d. zasićenju,
 - e. normalnom radnom području.

- 2-2. Ukoliko se na izlaz sklopa iz prethodnog pitanja, tj. na izlazni napon $U_{IZ}(T_1)$, spoji isti takav sklop, izlazni napon na tom dodanom sklopu $U_{IZ}(T_2)$ bit će (1bod):
 - a. ne može se odrediti,
 - b. $U_{IZ}(T_2) = U_{CC}/2$,
 - c. $U_{IZ}(T_2) = U_{CC}$,
 - d. $U_{IZ}(T_2) = U_{\gamma}$,
 - e. $U_{IZ}(T_2) = U_{CEzaz}$.

3-1. Na kojem dijelu I-U karakteristike se može nalaziti radna točka Zenerove diode u stabilizatoru? (1bod):

3-2. Koliki moraju biti prijenosna funkcija u_{iz}/u_{nl} i izlazni otpor R_{iz} stabilizatora? (1bod):

- a. navedeni parametri nisu bitni za rad stabilizatora,
- b. $u_{iz}/u_{ul} \ll$, $R_{iz} \ll$,
- c. $u_{iz}/u_{ul} >>$, $R_{iz} <<$,
- d. $u_{iz} / u_{ul} <<, R_{iz} >>,$
- e. $u_{iz}/u_{ul} \approx 1$, $R_{iz} \gg 1$.

4.

4-1. Odrediti otpore otpornika R_1 i R_2 tako da iznos naponskog pojačanja bude $|A_V| = |u_{iz}/u_{ul}| = 50$, a ulazni otpor $R_{ul} = 10 \text{ k}\Omega$. Operacijsko pojačalo je idealno. (1bod)

Odgovor:

a. ne može se odrediti iz zadanih parametara

b.
$$R_{ul} = 5 \text{ k}\Omega$$
, $R_{ul} = 100 \Omega$

c.
$$R_{ul} = 5 \text{ k}\Omega$$
, $R_{ul} = 250 \text{ k}\Omega$

d.
$$R_{ul} = 10 \text{ k}\Omega$$
, $R_{ul} = 200 \Omega$

e.
$$R_{ul} = 10 \text{ k}\Omega$$
, $R_{ul} = 500 \text{ k}\Omega$

4-2. Za sklopove sa slika a i b usporediti iznose naponskih pojačanja $A_{V1} = u_{iz1}/u_{ul1}$ i $A_{V2} = u_{iz2}/u_{ul2}$, te ulazne otpore R_{ul1} i R_{ul2} . Operacijska pojačala su idealna. (1bod)

Odgovor:

a.
$$|A_{V2}| = |A_{V1}|, R_{u/2} < R_{u/1},$$

b.
$$|A_{V2}| > |A_{V1}|, R_{ul2} > R_{ul1},$$

c.
$$|A_{V2}| > |A_{V1}|, R_{u/2} < R_{u/1},$$

d.
$$|A_{V2}| < |A_{V1}|, R_{ul2} > R_{ul1},$$

e.
$$|A_{V2}| < |A_{V1}|, R_{ul2} < R_{ul1}$$
.

5.

5-1. Koliko iznosi izlazni napon za sklop komparatora na slici ako je ulazni napon -1V? (1bod):

- a. ovisi o R,
- b. + 1,4 V,
- c. + 1 V,
- d. 1 V,
- e. 1,4 V.

5-2. Ako se napon poveća sa -1V na +0,5V koliko će iznositi izlazni napon nakon promjene? (1bod):

- a. ovisi o R,
- b. + 1,4 V
- c. + 1 V
- d. 1 V,
- e. 1,4 V.

DRUGA SKUPINA ZADATAKA

ZADATAK.1.

- 1-1. Uz napon na diodi U= -5 V kroz diodu teče struja iznosa | I | =1 pA. Kolika struja teče uz U=0,5 V. Uzeti $mU_{\tau}=25$ mV. (1bod)
- 1-2. Struja zasićenja diode iznosi I_s =1 nA. Koliki je dinamički otpor uz struju I=5 nA. Uzeti mU_T =25 mV. (1bod)
- 1-3. Uz napon na vanjskim priključcima U=0,55 V kroz diodu teče struja I=10 mA. Koliki je serijski otpor diode R_S , ako je struja zasićenja I_S =100 pA. Uzeti mU_T =25 mV. (1bod)

Odgovori:

1-1. (1bod) a. $I_D = 93 \, \mu A$, b. I_D =0,485 mA, c. I_D =0,253 mA,

e. $I_D=1$ mA.

d. I_D =0,179 mA,

(1bod) a. $r_d=10 \Omega$, b. r_d =4,17 M Ω , c. $r_d=15 \Omega$, d. r_d =4,31 M Ω , e. r_d =5 M Ω .

(1bod) a. $R_s = 12,5 \Omega$, b. $R_s=2,5 \Omega$, c. R_S =250 M Ω , d. R_S =55 Ω , e. R_S =8,95 Ω .

 I_D , [mA]

ZADATAK.2. Prijenosna karakteristika nekog MOSFET-a prikazana je na slici. Strujna konstanta MOSFET-a iznosi $|K| = 0.5 \text{ mA/V}^2$. Odrediti:

Odgovori:

- (1bod) a. p-kanalni obogaćeno-osiromašeni tip, b. p-kanalni, obogaćeni tip,
- d. p-kanalni, osiromašeni tip,
- c. n-kanalni, obogaćeni tip,
- e. n-kanalni, osiromašeni tip.
- 2-2. (1bod)
 - a. I_{DA} =0,125 mA, g_{mA} =0,625 mA/V
 - b. I_{DA} =0,1875 mA, g_{mA} =0,5 mA/V
 - c. I_{DA} =0,1875 mA, g_{mA} =0,75 mA/V
 - d. I_{DA} =0,25 mA, g_{mA} =0,75 mA/V
 - e. I_{DA} =0,25 mA, g_{mA} =0,5 mA/V
- 2-3. (1 bod)
- a. I_{DB} =2 mA, g_{mB} =2 mA/V
- b. I_{DB} =0,9375 mA, g_{mB} =0,75 mA/V
- c. I_{DB} =0,9375 mA, g_{mB} =1 mA/V
- d. $I_{DB}=1$ mA, $g_{mB}=1$ mA/V
- e. I_{DB} =1 mA, g_{mB} =0,75 mA/V

ZADATAK.3. Za pojačalu sa slike zadano je: $U_{CC}=15$ V, $R_g=500$ Ω , $R_I=180$ k Ω , $R_2=27$ k Ω , $R_C=5,6$ k Ω i $R_T=4,7$ k Ω . Parametri npn bipolamog tranzistora su $\beta \approx h_{fe} = 100$ i $U_y = 0.7$ V. Naponski ekvivalent temperature $U_T = 25$ mV.

- 3-2. Odrediti vrijednost otpornika R_E , ako je poznata struja I_{CQ} =1,01 mA.. (1 bod)
- 3-3. Odrediti dinamičke parametre g_m i r_{be} , ako je poznato I_{CO} =0,934 mA, U_{CEO} =8,744 V i R_E =1,1 k Ω . (1 bod)
- Odrediti naponsko pojačanje $A_{\nu}=u_{iz}/u_{ul}$, ako su poznati 3-4. dinamički parametri g_m =47,28 mA/V i r_{be} =2115 Ω , te R_E =820 Ω . (1 bod)
- 3-5. Odrediti ulazni otpor Rul, ako su poznati dinamički parametri g_m =47,28 mA/V i r_{be} =2115 Ω , te R_E =820 Ω . (1 bod)
- 3-6. Odrediti izlazni otpor Riz, ako su poznati dinamički parametri g_m =47,28 mA/V i r_{he} =2115 Ω , te R_{ε} =820 Ω . (1 bod)

Odgovori:

- (1 bod)
 - a. R_E =560 Ω ,
 - b. $R_{\rm E}$ =680 Ω ,
 - c. R_E =820 Ω ,
 - d. $R_E=1-k\Omega$, e. $R_E=1,1 \text{ k}\Omega$.
- 3-2.

(1 bod)

- a. $g_m = 53,73 \text{ mA/V}$, $r_{be} = 2678 \ \Omega$
- b. $g_m = 37,35 \text{ mA/V}$, $r_{be} = 2678 \ \Omega$
- c. $g_m = 37,35 \text{ mA/V}$, r_{be} =6782 Ω
- r_{be} =2678 Ω d. $g_m = 73,53 \text{ mA/V}$,
- e. $g_m = 73,53 \text{ mA/V}$, r_{be} =6782 Ω

3-3. (1 bod)

a. $A_{\nu}=120,82$, b. $A_{\nu}=82,12$,

c. $A_{\nu}=63,15$,

d. A_{ν} = - 82,12, e. A_{ν} = - 120,82. 3-4. (1 bod)

a. $R_{ul}=132,2 \Omega$,

b. $R_{ul}=202,8 \Omega$,

c. $R_{ul}=20,42 \Omega$, d. $R_{ul}=42,1 \Omega$,

e. $R_{u} = 82,02 \Omega$.

3-5. (1 bod)

a. $R_{iz}=3.9 \text{ k}\Omega$,

b. $R_{iz}=6.8 \text{ k}\Omega$,

c. $R_{iz}=4.7 \text{ k}\Omega$,

d. R_{iz} =5,6 k Ω ,

e. R_{iz} =8,2 k Ω .

ZADATAK.4. Parametri Zenerove diode su U_Z =6,7 V, I_{Zmin} =2 mA, P_{Zmix} =0,5 W i r_z =5 Ω. Faktor strujnog pojačanja tranzistora je $\beta \approx h_{fe}$ =150 i U_{BE} =0,7 V. Ulazni napon kreće se u granicama od 11 V do 19 V, a trošila otpor ima minimalni iznos od 270 Ω.

4-1. Odrediti izlazni napon U_{IZ} . (1 bod)

4-2. Odrediti minimalnu vrijednost otpora R_{Imin} . (1 bod)

4-3. Odrediti maksimalnu vrijednost otpora R_{lmax} . (1 bod)

4-4. Odrediti naponski faktor stabilizacije S_U . (1 bod)

4-5. Odrediti izlazni otpor stabilizatora R_{IZ} . (1bod)

Odgovori:

4-1. (1 bod)

4-2. (1 bod)

4-3. (1 bod)

4-4. (1 bod) a. $S_{I}=0,0020$ 4-5. (1 bod)

a. $U_{IZ}=6 \text{ V}$, b. $U_{IZ}=10,3 \text{ V}$, a. $R_{Imin}=1,6 \text{ k}\Omega$, b. $R_{Imin}=166 \Omega$, a. $R_{Imax} = 1112 \Omega$, b. $R_{Imax} = 8192 \Omega$, a. $S_U=0,00209$, b. $S_U=0,00249$, a. R_{IZ} =8,4 k Ω , b. R_{IZ} =2,844 k Ω ,

c. $U_{IZ}=7.4 \text{ V}$,

c. R_{Imin} =661 Ω ,

c. $R_{Imax} = 1392 \Omega$,

c. $S_U=0,00289$, d. $S_U=0,00129$, c. $R_{IZ}=8,4 \Omega$,

d. U_{IZ} =6,7 V, e. U_{IZ} =11 V. d. R_{Imin} =616 Ω, e. R_{Imin} =2,66 kΩ. d. $R_{Imax} = 1892 \Omega$, e. $R_{Imax} = 2892 \Omega$.

e. $S_U = 0.00129$,

d. R_{IZ} =2,844 Ω , e. R_{IZ} =266 Ω .

ZADATAK 5. Operacijska pojačala su idealna.

- 5-1. Odrediti vrijednost otpornika R_I , ako je izlazni napon U_{IZ2} = 2,9 V. Zadano je U_{UL} =2 V, R_2 =68 k Ω , R_3 =20 k Ω i R_4 =47 k Ω . (1 bod)
- 5-2. Odrediti vrijednost otpornika R_4 , ako je izlazni napon U_{IZI} = 8,28 V. Zadano je U_{UL} =1,5 V, R_1 =27 k Ω , R_2 =68 k Ω i R_3 =47 k Ω . (1 bod)
- 5-3. Odrediti vrijednost ulazno napona U_{UL} , ako je izlazni napon U_{IZI} =10 V. Zadano je R_I =33 k Ω , R_2 =68 k Ω , R_3 =33 k Ω , R_4 =56 k Ω . (1 bod)
- 5-4. Odrediti vrijednost napona U_{IZI} i U_{IZ2} . Zadano je U_{UL} = 2,1 V, R_{I} =27 k Ω , R_{2} =56 k Ω , R_{3} =39 k Ω i R_{4} =82 k Ω . (1 bod)

Odgovori:

5-1. (1 bod) a. $R_I = 33 \text{ k}\Omega$,

b. $R_I=39 \text{ k}\Omega$,

 R_I =68 k Ω .

5-2. (1 bod) a. R_4 =33 k

 $R_4=68 \text{ k}\Omega$.

5-3. (1 bod)

5-4. (1 bod)

a. $U_{IZI} = -13,51 \text{ V}, U_{IZ2} = -4,36 \text{ V},$

a. R_4 =33 k Ω , a. U_{UL} = -1,8 V, b. R_4 =39 k Ω , b. U_{UL} =1,8 V,

 U_{UL} =1,8 V, b. U_{IZI} =13,51 V, U_{IZ2} =4,36 V, U_{UL} = - 18 V, c. U_{IZI} = - 13,51 V, U_{IZ2} =4,36 V,

c. R_I =47 k Ω , c. R_A =47 k Ω , d. R_I =56 k Ω , d. R_A =56 k Ω ,

d. $U_{UL}=18 \text{ V}$, e. $U_{UL}=15 \text{ V}$, d. U_{IZI} = - 4,36 V, U_{IZ2} =13,51 V, e. U_{IZI} =4,36 V, U_{IZ2} = - 13,51 V. 09.02.2007.

PRVA SKUPINA ZADATAKA

1.

- 1-1. Zajednički i diferencijski napon diferencijskog pojačala sa slike su u_z =-15sin ω t mV i u_d =+10sin ω t mV. Koliki su naponi u_{g1} i u_{g2} ? U odgovorima nije bitan redoslijed ulaznih napona. (1bod):
 - a. +20sinωt mV i +10sinωt mV
 - b. -20sinot mV i -10sinot mV
 - c. -20sinot mV i -30sinot mV
 - d. +20sinωt mV i +30sinωt mV
 - e. -10sinωt mV i 0 mV
- 1-2. U diferencijskom pojačalu sa slike A_{Vd} je pojačanje za diferencijski signal, a A_{Vz} je pojačanje za zajednički signal. Uz pretpostavku da se statičke struje tranzistora ne mijenjaju, povećanjem otpora R_E (1bod):
 - a. smanjuje se iznos pojačanja $|A_{Vd}|$ i ne mijenja se iznos pojačanja $|A_{Vz}|$,
 - b. povećava se iznos pojačanja $|A_{Vd}|$ i ne mijenja se iznos pojačanja $|A_{Vz}|$,
 - c. povećava se iznos pojačanja $|A_{Vd}|$ i smanjuje se iznos pojačanja $|A_{Vz}|$,
 - d. ne mijenja se iznos pojačanja $|A_{Vd}|$ i povećava se iznos pojačanja $|A_{Vz}|$,
 - e. ne mijenja se iznos pojačanja $|A_{Vd}|$ i smanjuje se iznos pojačanja $|A_{Vz}|$.

2.

- 2-1. Naponska prijenosna karakteristika neopterećenog invertora s bipolarnim tranzistorom prikazana je na slici. Zadane su vrijednosti: U_{CC} =10 V, U_{ULV} =1,1 V, U_{ULN} =0,7 V i U_{CEzas} =0,2 V. Kolika je vrijednost naponskog pojačanja u točki A (1bod):
 - a. 24,5
 - b. 32,6
 - c. ne može se odrediti
 - d. 32,6
 - e. 24,5
- 2-2. Ako bipolarni tranzistor radi u točki *B* idealne invertorske karakteristike na slici tada je on u (1bod):

- b. inverznom aktivnom području,
- c. normalnom aktivnom području,
- d. području zapiranja,
- e. području zasićenja.

3-1. I-U karakteristika diode iz stabilizatora dana je na slici. Koliki je iznos napona U_{IZ} i kolika je minimalna strija I_R ako se struja baze može mijenjati od 50 – 100 μ A? (1bod):

- a. 5,3V i 2,05 mA
- b. 5,3V i 1,1 mA
- c. 5,3V i 2,1 mA
- d. 6,7 V i 2,1 mA
- e. 6,7V i 1,1 mA
- 3-2. Koji odnosi vrijede za komponente ulaznog i izlaznog napona kod stabilizatora? (1bod):
 - a. $U_{UL} = U_{IZ} i u_{ul} > u_{iz}$
 - b. $U_{UL} > U_{IZ}$ i $u_{ul} < u_{iz}$
 - c. $U_{UL} < U_{IZ}$ i $u_{ul} > u_{iz}$
 - d. $U_{UL} > U_{IZ}$ i $u_{ul} > u_{iz}$
 - e. $U_{UL} < U_{IZ}$ i $u_{ul} < u_{iz}$
- 4.

4-1. U sklopu integratora na slici $R=1k\Omega$ i C=100nF i početni napon na kondenzatoru jednak je 0 V. Napon napajanja operacijskog pojačala je \pm 12 V. Na ulaz u sklop priključen je sinusni napon prema slici. Odrediti oblik izlaznog napona (1bod):

4-2. Ako kondenzator i otpornik zamjene mjesta, izlazni napon imat će oblik (1bod): Odgovor:

5.

- 5-1. Koliko iznosi izlazni napon za sklop komparatora na slici ako je ulazni napon -3V? Zadano je U_z =3,3V; U_D =0,7V (1bod):
 - a. + 1,4 V
 - b. -1,4 V
 - c. +.0,7 V
 - d. -4 V
 - e. +4 V

5-2. Ako se napon poveća sa -3V na +1,4V koliko će iznositi izlazni napon nakon promjene? (1bod):

- a. +1,4 V
- b. -1,4 V
- c. +0.7V
- d. -4 V
- e. +4 V

DRUGA SKUPINA ZADATAKA

ZADATAK.1.

- 1-1. Uz napon na diodi U= -5 V kroz diodu teče struja iznosa I = 10 pA. Kolika struja teče uz U=0,475 V. Uzeti $mU_T=25$ mV. (1bod)
- 1-2. Struja zasićenja diode iznosi I_s =1 nA. Koliki je dinamički otpor uz struju I=2,5 nA. Uzeti mU_T =25 mV. (1bod)
- 1-3. Uz napon na vanjskim priključcima U=0,525 V kroz diodu teče struja I=5 mA. Koliki je serijski otpor diode R_{S} , ako je struja zasićenja I_{S} =10 pA. Uzeti mU_{T} =25 mV. (1bod)

Odgovori:

- 1-1. (1bod) a. I_D =0,66 mA, b. $I_D = 65 \, \mu A$,
 - c. I_D =1,785 mA, d. I_D =4,85 mA,
 - e. $I_D=1$ mA.

- (1bod) $(a)_d=7,14 M\Omega$,
 - b. $r_d=8 \Omega$,
 - c. $r_d=10 \text{ M}\Omega$
 - d. r_d =16,7 M Ω ,
 - e. $r_d=12 \Omega$.

- (1bod) a.) R_S =25 Ω ,
 - ъ́. *R_s=*4,85 Ω,
 - c. R_S =105 M Ω ,

 I_D , [mA]

U_{GS}, [V]

- d. $R_S = 12,5 \Omega$,
- e. R_S =250 Ω .

Ups= - 1,5 V

ZADATAK.2. Prijenosna karakteristika nekog MOSFET-a prikazana je na slici. Strujna konstanta MOSFET-a iznosi $|K| = 0.25 \text{ mA/V}^2$. Pretpostaviti $\lambda = 0$. Odrediti:

- 2-1. tip MOSFET-a (1bod)
- 2-2. struju i strminu u točki A (1bod)
- 2-3. struju i strminu u točki B (1bod)

Odgovori:

- 2-1. 2-2. (1bod)

 - b. n-kanalni, obogaćeni tip,
 - c. p-kanalni, osiromašeni tip,
 - d. n-kanalni, osiromašeni tip,
 - e. p-kanalni, obogaćeni tip.
- (1bod)
- a. p-kanalni obogaćeno-osiromašeni tip, a. I_{DA} =- 93,75 μ A, g_{mA} =0,375 mA/V
 - b. I_{DA} = 93,75 μ A, g_{mA} =0,25 mA/V
 - c. I_{DA} =- 0,125 mA, g_{mA} =0,625 mA/V
 - d. I_{DA} =- 0,125 mA, g_{mA} =0,375 mA/V e. I_{DA} =- 0,125 mA, g_{mA} =0,25 mA/V
- (1 bod)
 - a. I_{DB} =- 0,5 mA, g_{mB} =0,5 mA/V
 - b. I_{DB} =- 0,5 mA, g_{mB} =0,375 mA/V
 - c. I_{DB} =- 1 mA, g_{mB} =1 mA/V
 - d. I_{DB} = 0,469 mA, g_{mB} =0,5 mA/V
 - e. I_{DB} =- 0,469 mA, g_{mB} =0,375 mA/V

ZADATAK.3. Za pojačalu sa slike zadano je: $U_{CC}=15$ V, $R_g=500$ Ω , $R_I=180$ k Ω , $R_Z=27$ k Ω , $R_C=5,6$ k Ω i $R_T=4,7$ k Ω . Parametri npn bipolarnog tranzistora su $\beta \approx h_f = 100$ i $U_f = 0.7$ V. Naponski ekvivalent temperature $U_T = 25$ mV.

- 3-1. Odrediti vrijednost otpornika R_E , ako je poznata struja I_{CQ} =1,18 mA.
- 3-2. Odrediti dinamičke parametre g_m i r_{be} , ako je poznato I_{CQ} =1,01 mA, U_{CEO} =8,34 V i R_E =1 k Ω . (1 bod)
- 3-3. Odrediti naponsko pojačanje $A_V = u_{i\nu}/u_{ul}$, ako su poznati dinamički parametri g_m =37,35 mA/V i r_{be} =2678 Ω , te R_E =1,1 k Ω . (1 bod)
- Odrediti ulazni otpor R_{ul} , ako su poznati dinamički parametri 3-4. $g_m=37,35 \text{ mA/V i } r_{be}=2678 \Omega$, te $R_E=1,1 \text{ k}\Omega$. (1 bod)
- 3-5. Odrediti izlazni otpor Riz, ako su poznati dinamički parametri g_m =37,35 mA/V i r_{be} =2678 Ω , te R_E =1,1 k Ω . (1 bod)

Odgovori:

- 3-1. (1 bod)
 - a. R_E =563 Ω ,
 - b. R_E =684 Ω ,
 - c. R_E =822 Ω ,
 - d. $R_E=1 \text{ k}\Omega$, e. $R_E=1,1 \text{ k}\Omega$.
- 3-2. (1 bod)
 - a. $g_m = 37,35 \text{ mA/V}$, r_{be} =2678 Ω
 - b. $g_m=40,4 \text{ mA/V}$, $r_{be}=2115 \Omega$
 - c. $g_m = 40,4 \text{ mA/V}$, r_{be} =2475 Ω
 - d. $g_m=47,28 \text{ mA/V}$, r_{be} =2475 Ω
 - e. $g_m=47,28 \text{ mA/V}$, r_{be} =2115 Ω

3-3.	(1	bod

a. $A_{\nu} = -63.2$

b. $A_{V}=95,4$

c. $A_{V} = -95,4$

d. A_{V} = - 128,1

e. $A_{\nu}=128,1$

3-4. (1 bod)

a. $R_{ul} = 82,02 \Omega$,

b. $R_{ul}=25,9 \Omega$,

c. $R_{ul}=42,1 \Omega$,

d. $R_{ul}=132,2 \Omega$,

e. $R_{ul}=204,2 \Omega$.

3-5. (1 bod)

a. $R_{iz}=6,8 \text{ k}\Omega$,

b. $R_{iz}=4,7 \text{ k}\Omega$,

c. R_{iz} =5,6 k Ω , d. R_{iz} =8,2 k Ω ,

e. $R_{iz}=3.9 \text{ k}\Omega$.

ZADATAK.4. Na izlazu stabilizatora, prikazanog slikom, izmjeren je napon 8,5 V. Ako na ulaz dovedeno napon između 13 i 20 V moramo koristiti otpornik R_I u granicama od 387 do 2840 Ω da bi stabilizator radio ispravno. Faktor strujnog pojačanja tranzistora je $\beta \approx h_{fe}=100$ i $U_{BE}=0,7$ V. $U_T=25$ mV. Otpor trošila je $R_T \ge 390$ Ω .

4-1. Odrediti napon Zenerove diode U_Z . (1 bod)

4-2. Odrediti minimalnu struju Zenerove diode I_{Zmin} , ako je U_Z =8,2 V. (1 bod)

4-3. Odrediti maksimalnu disipaciju snage na Zenerovoj diodi P_{Zmax} , ako je U_Z =8,2 V. (1 bod)

4-4. Odrediti naponski faktor stabilizacije S_U , ako su vrijednosti otpornika R_I =1,8 k Ω i R_T =820 Ω . Parametri Zenerove diode su U_Z =8,2 V, I_{Zmin} =1,2 mA, P_{Zmax} =750mW i r_z =3 Ω . (1 bod)

4-5. Odrediti naponski faktor stabilizacije S_U , ako su vrijednosti otpornika R_I =1,8 k Ω i R_I =820 Ω . Parametri Zenerove diode su U_Z =8,2 V, I_{Zmin} =1,2 mA, P_{Zmax} =750mW i r_z =3 Ω . (1bod)

Odgovori:

	4-1.	(1 bod)	4-2.	(1 bod)	4-3.	(1 bod)	4-4.	(1 bod)	4-5.	(1 bod)
	a.	U_Z =8,5 V,	a.	$I_{Zmin}=1$ mA,	a.	$P_{Zmax}=0.5W$,	a.	$S_U = 0,00166,$	a.	R_{IZ} =4,91 Ω ,
	b.	U_z =13 V,	b.	$I_{Zmin}=1,75 \text{ mA},$	b.	$P_{Zmax} = 0,125W,$	b.	$S_U = 0,00226,$	b.	$R_{IZ}=233 \Omega$,
	c.	U_Z =7,8 V,	c.	I_{Zmin} =1,25 mA,	c.	$P_{Zmax} = 0.25 W$,	c.	$S_U = 0,00266,$	c.	R_{IZ} =2,763 k Ω ,
	d.	U_Z =19,3 V,	d.	I_{Zmin} =2 mA,	đ.	$P_{Zmax} = 0.05 W$,	d.	$S_U = 0,00206,$	d.	R_{IZ} =2,763 Ω ,
	e.	$U_Z = 9,2 \text{ V}.$	e.	$I_{Zmin}=1,5$ mA.	e.	$P_{Zmax} = 0.75 W.$	e.	$S_U = 0,00106.$	e.	R_{IZ} =4,91 k Ω .

ZADATAK 5. Operacijska pojačala su idealna.

- 5-1. Odrediti vrijednost otpornika R_I , ako je izlazni napon U_{IZ2} =-4,51 V. Zadano je U_{UL} =2 V, R_2 =68 k Ω i R_3 =20 k Ω . (1 bod)
- 5-2. Odrediti vrijednost otpornika R_2 , ako je izlazni napon U_{IZI} =-1 V. Zadano je U_{UL} =1,5 V, R_I =27 k Ω i R_3 =68 k Ω . (1 bod)
- 5-3. Odrediti vrijednost ulazno napona U_{UL} , ako je izlazni napon U_{IZZ} =7,74 V. Zadano je R_I =27 k Ω , R_2 =56 k Ω i R_3 =39 k Ω . (1 bod)
- 5-4. Odrediti vrijednost napona U_{IZI} i U_{IZ2} . Zadano je U_{UL} =-2,1 V, R_I =27 k Ω , R_2 =56 k Ω i R_3 =39 k Ω . (1 bod)

Odgovori:

Ougovi	011.						
5-1.	(1 bod)	5-2.	(1 bod)	5-3.	(1 bod)	5-4.	(1 bod)
a.	R_I =39 k Ω ,	a.	R_2 =22 k Ω ,	a.	U_{UL} =2,2 V,	a.	U_{IZI} = -4,36 V, U_{IZZ} = -7,39 V
Ъ.	R_I =56 k Ω ,	ъ.	$R_2=20 \text{ k}\Omega$,	ъ.	U_{UL} =7,74,	ъ.	U_{IZI} =7,39 V, U_{IZ2} =4,36 V
c.	R_I =68 k Ω ,	c.	$R_2=18 \text{ k}\Omega$,	c.	U_{UL} =- 22 V,	c.	U_{IZI} = - 7,39 V, U_{IZZ} =4,36 V
d.	R_I =33 k Ω ,	d.	$R_2=27 \text{ k}\Omega$,	d.	U_{UL} =- 2,2 V,	d.	U_{IZI} = - 7,39 V, U_{IZ2} = - 4,36 V
e.	R_I =47 k Ω .	e.	$R_2=33 \text{ k}\Omega$.	e.	$U_{III} = 22 \text{ V}$	e.	$U_{rz}=4.36 \text{ V}$. $U_{rz}=7.39 \text{ V}$

22.02.2007.

PRVA SKUPINA ZADATAKA

1.

- 1-1. Na diferencijsko pojačalo na slici priključeni su naponi u_{gl} = 15 sin ω t mV i u_{g2} = 25 sin ω t mV. Koliki su zajednički napon u_z i iznos diferencijskog napona u_d ? (1bod):
 - a. $u_z = 0 \text{ mV}, |u_d| = 10 \sin \omega t \text{ mV}$
 - b. $u_z = 10 \sin \omega t \text{ mV}$, $|u_d| = 10 \sin \omega t \text{ mV}$
 - c. $u_z = 5 \sin \omega t \text{ mV}$, $|u_d| = 10 \sin \omega t \text{ mV}$
 - (d.) $u_z = 5 \sin \omega t \text{ mV}, |u_d| = 40 \sin \omega t \text{ mV}$
 - e. $u_z = 10 \sin \omega t \text{ mV}$, $|u_d| = 40 \sin \omega t \text{ mV}$
- 1-2. U simetričnom diferencijskom pojačalu sa slike definirana su pojačanja za asimetrične izlaze $A_{Vz1}=u_{iz1}/u_z$, $A_{Vz2}=u_{iz2}/u_z$, $A_{Vd1}=u_{iz1}/u_d$ i $A_{Vd2}=u_{iz2}/u_d$, te za simetrični izlaz $A_{Vz}=(u_{iz2}-u_{iz1})/u_z$ i $A_{Vd}=(u_{iz2}-u_{iz1})/u_d$. Uz $|A_{Vz1}|=|A_{Vz2}|=0$, 1 i $|A_{Vd1}|=|A_{Vd2}|=50$ iznosi pojačanja A_{Vz} i A_{Vd} su (1bod):
 - a. $|A_{Vz}|=0,2$ i $|A_{Vd}|=50$,
 - b. $|A_{Vz}|=0,1$ i $|A_{Vd}|=100$,
 - c. $|A_{Vz}|=0,2$ i $|A_{Vd}|=100$,
 - d. $|A_{Vz}|=0,1$ i $|A_{Vd}|=50$,
 - e. $|A_{Vz}|=0$ i $|A_{Vd}|=100$.

2.

2-1. Naponska prijenosna karakteristika neopterećenog invertora s bipolarnim tranzistorom prikazana je na slici. Zadane su vrijednosti: U_{CC} =10 V, U_{ULV} =1,1 V, U_{ULN} =0,7 V i U_{CEzas} =0,2 V. Kolika je vrijednost naponskog pojačanja u točki B (1bod):

- b. 24,5
- c. 32,6
- d. 24,5
- e. 0

- 2-2. Ako bipolarni tranzistor radi u točki A idealne invertorske karakteristike na slici tada je on u (1bod):
 - (a.) području zapiranja,
 - b. normalnom aktivnom području,
 - c. području zasićenja,
 - d. ne može se odrediti,
 - e. inverznom aktivnom području.

- 3-1. I-U karakteristika diode korištene u stabilizatoru prikazana je na slici. Stabilizator ima $S_U=2\cdot 10^{-3}$. Uz $R_T=1$ kΩ i ulazni napon U_{UL} =15 V i U_{ulve} =1V odrediti izlazni napon (1bod):
 - U_{IZ} =15 V i U_{izvef} =1V,
 - U_{IZ} =9,3 V i U_{izvef} =2mV,

 - c. $U_{IZ} = 30 \text{ mV i } U_{izvef} = 2 \text{ mV},$ d. $U_{IZ} = 9,3 \text{ V i } U_{izvef} = 1 \text{ mV},$ e. $U_{IZ} = 9,3 \text{ V i } U_{izvef} U_{izvef} = 30 \text{ mV}.$

- 3-2. Koliki je iznos struje koja teče kroz diodu ako na izlazu dođe do kratkog spoja? (1bod):
 - a. 1 mA,
 - b. 3 mA,
 - 10 nA, c.
 - d. 30 nA,
 - struja kroz diodu. ne teče.

4.

4-1. U sklopu na slici R=1kΩ i C=100nF i početni napon na kondenzatoru jednak je 0 V. Napon napajanja operacijskog pojačala je ± 12 V. Na ulaz u sklop priključen je sinusni napon prema slici. Odrediti oblik izlaznog napona (1bod):

4-2. Ako umjesto kondenzatora u sklopu priključimo još jedan otpornik, izlazni napon imat će oblik (1bod):

- 5.
- 5-1. Koliko iznosi izlazni napon za sklop komparatora na slici ako je ulazni napon 1,5V? (1bod):
 - -1.4 V.

 - ovisi o R.

- 5-2. Ako se napon poveća sa -1,5V na + 1,5V koliko će iznositi izlazni napon nakon promjene? (1bod):
 - -1,4 V,a.)
 - b. -1 V,
 - + 1,4 V,c.
 - + 1 V,d. ovisi o R.

DRUGA SKUPINA ZADATAKA

ZADATAK.1. . Raspodjela manjinskih nosilaca za diodu s obje široke strane i dominantnom elektronskom komponentom struje, prikazana je na slici. Pokretljivost elektrona iznosi μ_n =600 cm²/Vs, a površina pn-spoja S=1 mm². Pretpstaviti m U_T =25 mV.

1-3. Izračunati dinamički otpor ako se usljed promjene napona struja kroz diodu promjeni na 5 mA. (1bod)

n_p [cm⁻³]

2,04·10¹²

4,2·10³

0 L_n=20

W_p X, [μm]

1-3. (1bod)
a)
$$r_d = 5 \Omega$$
,
b. $r_d = 25 \Omega$,
c. $r_d = 50 \Omega$,
d. $r_d = 100 \Omega$,
e. $r_d = 1 M\Omega$.

ZADATAK.2. Izlazna karakteristika nekog MOSFET-a prikazana je na slici. Napon praga iznosi U_{GS0} = - 1 V. Pretpostaviti λ =0.

- 2-1. Odrediti tip MOSFET-a. (1bod)
- 2-2. Odrediti strminu u točki A. (1bod)
- 2-3. Odrediti struju i strminu u točki B (1bod)

Odgovori:

2-1. (1bod)
a.
$$n$$
-kanalni, obogaćeni tip,
b. p -kanalni, osiromašeni tip,
d. n -kanalni, osiromašeni tip,
e. n -kanalni obogaćeno-osiromašeni tip.

2-2. (1bod)
a. $g_{mA} = 0,25 \text{ mA/V}$
b. $g_{mA} = 0,5 \text{ mA/V}$
c. $g_{mA} = 1 \text{ mA/V}$
d. $g_{mA} = 1,33 \text{ mA/V}$
e. $g_{mA} = 1,5 \text{ mA/V}$

2-3. (1 bod)
a.
$$y_{DB} = -1,25$$
 mA, $g_{mB} = 0,5$ mA/V
b. $I_{DB} = -1,25$ mA, $g_{mB} = 1,5$ mA/V
c. $I_{DB} = -1,5$ mA, $g_{mB} = 0,75$ mA/V
d. $I_{DB} = -2,25$ mA, $g_{mB} = 0,5$ mA/V
e. $I_{DB} = -2,25$ mA, $g_{mB} = 1,5$ mA/V

ZADATAK.3. Za pojačalu sa slike zadano je: U_{CC} =15 V, R_g =500 Ω, R_I =180 kΩ, R_2 =270 kΩ i R_T =4,7 kΩ. Parametri npn bipolarnog tranzistora su $\beta \approx h_{fc}$ =100 i U_{γ} =0,7 V. Naponski ekvivalent temperature U_T =25 mV.

- 3-1. Odrediti vrijednost otpornika R_E , ako je poznata struja I_{CQ} =1,232 mA. (1 bod)
- 3-2. Odrediti dinamičke parametre g_m i r_{be} , ako je poznato I_{CQ} =1,044 mA, U_{CEQ} =7,9 V i R_E =6,8 k Ω . (1 bod)
- 3-3. Odrediti naponsko pojačanje $A_v = u_{iz}/u_{ul}$, ako su poznati dinamički parametri $g_m = 35,46$ mA/V i $r_{be} = 2820$ Ω , te $R_E = 8,2$ k Ω . (1 bod)
- 3-4. Odrediti ulazni otpor R_{ul} , ako su poznati dinamički parametri g_m =35,46 mA/V i r_{be} =2820 Ω , te R_E =8,2 k Ω . (1 bod)
- 3-5. Odrediti izlazni otpor R_{iz} , ako su poznati dinamički parametri g_m =35,46 mA/V i r_{be} =2820 Ω , te R_E =8,2 k Ω . (1 bod)

Odgovori:

3-1. 3-2. (1 bod) (1 bod) $g_m = 41,75 \text{ mA/V},$ $r_{be} = 6782 \ \Omega$ R_E =3,9 k Ω , r_{be} =2395 Ω b. $R_E=4.7 \text{ k}\Omega$, $g_m = 41,75 \text{ mA/V},$ r_{be} =2395 Ω c. R_E =5,60 k Ω , c. $g_m = 75,41 \text{ mA/V}$, d. $g_m = 75,41 \text{ mA/V}$, r_{be} =6782 Ω $d. R_E=6,80 \text{ k}\Omega,$ e. $g_m = 35,43 \text{ mA/V}$, e. R_E =8,20 k Ω , r_{be} =2395 Ω

- 3-3. (1 bod) $A_{V} = -0.991$
 - $A_{V} = -106$ $A_{V} = 106$
 - $A_{V}=0,991$ $A_{V}=120,82$

- **3-4**. (1 bod)
 - $R_{ul}=27.8 \text{ k}\Omega$ $R_{ul}=79,7 \Omega$ $R_{ul}=79,7 \text{ k}\Omega$,
 - R_{ul} =2,75 k Ω , $R_{ul}=27.8 \Omega$.
- 3-5. (1 bod)
 - R_{iz} =32,7 k Ω , $R_{iz}=32,7 \Omega$
 - R_{iz} =8,2 k Ω ,
 - $R_{iz}=18,1 \Omega$
 - R_{iz} =5,6 k Ω .

ZADATAK.4. Na izlazu stabilizatora, prikazanog slikom, izmjeren je napon 9 V. Ako na ulaz dovedeno napon između 15 i 25 V moramo koristiti otpornik R_1 u granicama od 198 do 2430 Ω da bi stabilizator radio ispravno. Faktor strujnog pojačanja tranzistora je $\beta \approx h_{fe} = 150$ i $U_{BE} = 0.7$ V. $U_{T} = 25$ mV. Otpor trošila je $R_T \ge 330 \Omega$.

- 4-1. Odrediti napon Zenerove diode U_Z . (1 bod)
- 4-2. Odrediti minimalnu struju Zenerove diode I_{Zmin} , ako je U_Z =9,7 V.
- 4-3. Odrediti maksimalnu disipaciju snage na Zenerovoj diodi P_{Zmax} , ako je U_z =9,7 V. (1 bod)
- 4-4. Odrediti naponski faktor stabilizacije S_U , ako su vrijednosti otpornika R_I =1,2 k Ω i R_T =680 Ω . Parametri Zenerove diode su U_Z =9,7 V, I_{Zmin} =1,5 mA, P_{Zmax} =0,5 W i r_z =5 Ω . (1 bod)
- 4-5. Odrediti naponski faktor stabilizacije S_U , ako su vrijednosti otpornika R_I =1,2 k Ω i R_T =680 Ω . Parametri Zenerove diode su U_z =9,7 V, I_{Zmin} =1,5 mA, P_{Zmax} =0,5 W i r_z =3 Ω . (1bod)

- 4-1. (1 bod)
- a. $U_z=9 \text{ V}$
- (b) U_z =9,7 V C.
- U_z =10,4 V
- $U_z = 25,7 \text{ V}$ d. U_z =14,3 V
- 4-2.
 - (1 bod) a. $I_{Zmin}=1 \text{ mA}$
 - b. I_{Zmin} =1,25 mA
 - $I_{Zmin}=1,5 \text{ mA}$ C.
 - d. $I_{Zmin}=1,27 \text{ mA}$ (e.) $I_{Zmin}=2$ mA
- **4-3**. (1 bod)
 - a. $P_{Zmax} = 0.25 \text{ W}$ b. $P_{Zmax}=0,5 \text{ W}$
- C. $P_{Zmax} = 0.75 \text{ W}$ $P_{Zmax}=1$ W
- P_{Zmax} =2,5 W
- (1 bod)
- $S_U = 0.00415$ $S_U = 0,00214$
 - c. $S_U = 0,00485$ S_U =0,00315
 - $S_U = 0,00514$

 u_{BE} i_{IZ} **↑**i_Β u_{UL} ÌΖ

- 4-5. (1 bod)
- R_{IZ} =1,935 k Ω
 - R_{IZ} =1,935 Ω
- R_{IZ} =8,42 Ω
- R_{IZ} =8,42 k Ω R_{IZ} =2,66 Ω

ZADATAK 5. Operacijska pojačala su idealna.

- 5-1. Odrediti naponsko pojačanje $A_V = u_u l / u_{iz}$. Zadano je $R_I = 6,8$ k Ω , $R_2 = 68$ k Ω , $R_3 = 68$ k Ω i $R_4 = 6,8$ k Ω . (1 bod)
- 5-2. Odrediti ulazni otpor R_{ul} . Zadano je R_1 =6,8 k Ω , R_2 =68 k Ω , R_3 =68 k Ω i R_4 =6,8 k Ω . (1 bod)
- 5-3. Odrediti vrijednost ulazno napona U_{UL} , ako je izlazni napon U_{IZ} 12 V. Zadano je R_I -68 k Ω , R_2 -68 k Ω , R_3 =68 k Ω i R_4 =6,8 k Ω . (1 bod)
- 5-4. Odrediti vrijednost napona U_{IZ} . Zadano je U_{UL} = 2 V, R_I =68 k Ω , R_2 =68 k Ω , R_3 =68 k Ω i R_4 =68 k Ω . (1 bod)

Odgovori:

- 5-1. (1 bod) a. $A_{\nu}=12$
 - b. *A*_{*V*}=102 c. $A_{\nu}=120$
 - d. A_{ν} = 102
 - (e.) A_{ν} = 120
- 5-2. (1 bod)
 - R_{ul} =68 k Ω , $R_{ul}=6.8 \text{ k}\Omega$
 - $R_{u}=34 \text{ k}\Omega$
 - $R_{ul}=3,4 \text{ k}\Omega$ e. $R_{ul}=6,18 \text{ k}\Omega$.
- 5-3.
 - (1 bod) a. $U_{UL} = -1 \text{ V}$,
 - b. $U_{UL} = -0.1 \text{ V}$,
 - C. $U_{UL}=1$ V, \overline{d} . $U_{UL}=0,1 \text{ V}$,
 - e. $U_{UL} = -4 \text{ V}$.
- (1 bod)
- U_{IZ} = 6 V
- $U_{IZ}=6 \text{ V}$
- U_{IZ} = 240 V
- U_{IZ} =240 V
- e. U_{IZ} = 204 V