Spring 2018: STA 6448 Advanced Probability and Inference II Lecture 6

Yun Yang

Uniform laws of large numbers

Uniform convergence of CDFs

First example of a uniform law of large numbers.

Suppose X_1, \ldots, X_n are i.i.d. with CDF F. Define the empirical CDF as

$$\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{(-\infty, t]}(X_i)$$
 for all $t \in \mathbb{R}$.

Theorem (Glivenko-Cantelli)

Empirical CDF \widehat{F}_n is a strongly consistent estimator of the population CDF F,

$$\|\widehat{F}_n - F\|_{\infty} \stackrel{\textit{a.s.}}{\to} 0,$$

where $||F - G||_{\infty} = \sup_{t \in \mathbb{R}} |F(t) - G(t)|$ is the supreme norm of F - G.

Uniform convergence of CDFs

Why it is a uniform law of large numbers?

$$\|\widehat{F}_n - F\|_{\infty} = \sup_{t} \left| \mathbb{P}_n(X \le t) - \mathbb{P}(X \le t) \right| \stackrel{\text{a.s.}}{\to} 0,$$

where \mathbb{P}_n is the empirical measure

$$\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

For any fixed t, the LLN says that $\left|\mathbb{P}_n(X \leq t) - \mathbb{P}(X \leq t)\right| \stackrel{\text{a.s.}}{\to} 0$. The Glivenko-Cantelli theorem says that this happens uniformly over all $t \in \mathbb{R}$.

Application of Glivenko-Cantelli theorem

In many estimation problems, the quantity of interest can be formulated as $\theta(F)$, where the functional θ maps any CDF F to a real number $\theta(F)$.

Plug-in principle

Estimating $\theta(F)$ by replacing the unknown F with \widehat{F}_n , yielding a plug-in estimator $\theta(\widehat{F}_n)$.

Examples

- ▶ Mean: $\theta(F) = \int x dF(x)$, and $\theta(\widehat{F}_n) = n^{-1} \sum_{i=1}^n X_i$.
- ▶ Quantile: $\theta(F) = \int \{x : F(x) \ge \alpha\}$, the α -quantile, and

$$\theta(\widehat{F}_n) = \inf \Big\{ x : \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \le x) \ge \alpha \Big\}.$$

If θ is continuous w.r.t. $\|\cdot\|_{\infty}$, then we get $\theta(\widehat{F}_n) \stackrel{\text{a.s.}}{\to} \theta(F)$.

Empirical process

- Let \mathcal{F} be a class of integrable real-valued functions with domain \mathcal{X} .
- Let $X_1^n = (X_1, \dots, X_n)$ be a collection of i.i.d. samples from \mathbb{R} over \mathcal{X} .
- ▶ For any probability measure Q and function $f \in \mathcal{F}$, denote $Qf = \mathbb{E}_{X \sim Q}[f(X)]$.
- ▶ The stochastic process $\mathbb{P}_n \mathbb{P} = \{\mathbb{P}_n f \mathbb{P} f : f \in \mathcal{F}\}$ indexed by \mathcal{F} is called an empirical process over \mathcal{F} .
- Define random variable (measurability issue?)

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \left| \mathbb{P}_n f - \mathbb{P} f \right| = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n f(X_i) - \mathbb{E}[f] \right|.$$

Glivenko-Cantelli class

Definition

 \mathcal{F} is a Glivenko-Cantelli class for \mathbb{P} if

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \to 0$$
 in probability as $n \to \infty$.

Example: Empirical CDF

Consider the function class

$$\mathcal{F} = \{ \mathbb{I}_{(-\infty, t]}(\cdot) : t \in \mathbb{R} \}.$$

For each fixed t, we have $\mathbb{P}_n \mathbb{I}_{(-\infty,t]} = F_n(t)$ and $\mathbb{P} \mathbb{I}_{(-\infty,t]} = F(t)$. Therefore, the classical Glivenko-Cantelli theorem implies \mathcal{F} is a Glivenko-Cantelli class.

Note: not all classes of functions are Glivenko-Cantelli (counter-example?).

Empirical risk minimization

Variables of form $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}$ are ubiquitous in statistics.

- ▶ Given n i.i.d. samples $X_1^n = (X_1, \dots, X_n)$ from an unknown distribution \mathbb{P}
- ▶ Θ is the space of all prediction rules, hypotheses, or parameters
- ▶ We have a loss function $\ell(\theta, x)$ that measures how bad it is to choose $\theta \in \Theta$ when the outcome is x.

Definition

For $X \sim \mathbb{P}$, the (population) risk is defined as $\mathcal{L}(\theta) = \mathbb{P} \ell(\theta, X)$.

We want to choose a $\theta \in \Theta$ that minimizes the population risk. Denote the minimizer by θ^* .

Empirical risk minimization

However, we cannot directly minimize the population risk $\mathcal{L}(\theta)$, since the underlying data generating distribution \mathbb{P} is unknown. Instead, we consider the following surrogate.

Definition

For X_1, \ldots, X_n i.i.d. from \mathbb{P} , the empirical risk is defined as

$$\mathcal{L}_n(\theta) = \mathbb{P}_n \ell(\theta, X) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, X_i).$$

Empirical risk minimization aims to minimize the empirical risk:

$$\widehat{\theta} \in \underset{\theta \in \Theta}{\operatorname{argmin}} \ \mathcal{L}_n(\theta).$$

We can quantify its performance via the excess risk

$$\mathcal{L}(\widehat{\theta}) - \inf_{\theta \in \Theta} \mathcal{L}(\theta).$$

Example: Maximum likelihood

- ▶ Suppose we have a family of distributions $\{\mathbb{P}_{\theta}: \theta \in \Theta\}$, each \mathbb{P}_{θ} admits a density p_{θ} .
- ▶ The true underlying distribution $\mathbb{P} = \mathbb{P}_{\theta^*}$ for some unknown parameter θ^*
- Define loss function

$$\ell(\theta, x) = \log \frac{p_{\theta^*}(x)}{p_{\theta}(x)}.$$

▶ The population risk is the Kullback-Leibler divergence between p_{θ^*} and p_{θ} ,

$$\mathbb{P}_{\theta^*} \log \frac{p_{\theta^*}}{p_{\theta}},$$

which attains minimum zero at $\theta = \theta^*$.

Empirical risk minimization corresponds to the MLE.

Example: Binary classification

- ▶ Have n i.i.d. samples $(X_i, Y_i) \in \mathcal{X} \times \{0, 1\}$ from some unknown distribution \mathbb{P} .
- ▶ Want to find a best prediction rule θ : $\mathcal{X} \to \{0,1\}$ to predict the binary part Y from X.
- ▶ The loss function is the 0-1 loss

$$\ell(\theta, (x, y)) = \mathbb{I}(\theta(x) \neq y).$$

► The population risk is the mis-classification probability $\mathbb{P}(\theta(X) \neq Y)$, which is minimized at the Bayes classifier

$$\theta^*(x) = \begin{cases} 0, & \text{if } \mathbb{P}(Y = 1 \,|\, X = x) \le \mathbb{P}(Y = 0 \,|\, X = x), \\ 1, & \text{if } \mathbb{P}(Y = 1 \,|\, X = x) > \mathbb{P}(Y = 0 \,|\, X = x). \end{cases}$$

▶ Empirical risk minimization chooses θ to minimize mis-classifications on the sample.

Control excess risk

Recall: θ^* is the population risk minimizer, and $\widehat{\theta}$ is the empirical risk minimizer.

Excess risk decomposition:

$$\mathcal{L}(\widehat{\theta}) - \inf_{\theta \in \Theta} \mathcal{L}(\theta) = \left[\mathcal{L}(\widehat{\theta}) - \mathcal{L}_n(\widehat{\theta}) \right] + \left[\mathcal{L}_n(\widehat{\theta}) - \mathcal{L}_n(\theta^*) \right] + \left[\mathcal{L}_n(\theta^*) - \mathcal{L}(\theta^*) \right].$$

The middle term is non-positive because $\widehat{\theta}$ is chosen to minimize \mathcal{L}_n . Therefore, we have

$$\mathcal{L}(\widehat{\theta}) - \inf_{\theta \in \Theta} \mathcal{L}(\theta) \leq 2 \sup_{\theta \in \Theta} \left| \mathcal{L}_n(\theta) - \mathcal{L}(\theta) \right| = 2 \| \mathbb{P}_n - \mathbb{P} \|_{\mathfrak{L}},$$

where $\mathfrak{L} = \{\ell(\theta, \cdot) : \theta \in \Theta\}.$

Rademacher complexity

For any fixed collection $x_1^n = (x_1, \dots, x_n)$ of points, consider the subset of \mathbb{R}^n given by

$$\mathcal{F}(x_1^n) = \Big\{ \big(f(x_1), \dots, f(x_n) \big) \ \Big| \ f \in \mathcal{F} \Big\}.$$

Recall that the Ramemacher complexity of this set (rescaled by n^{-1}) is defined by

$$\mathcal{R}\big(\mathcal{F}(x_1^n)/n\big) = \mathbb{E}_{\varepsilon}\Big[\sup_{f\in\mathcal{F}}\Big|\frac{1}{n}\sum_{i=1}^n\varepsilon_i f(x_i)\Big|\Big],$$

which is called the empirical Rademacher complexity.

Definition

Given random samples $X_1^n = (X_1, \dots, X_n)$, the Rademacher complexity of the function class \mathcal{F} is defined as

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_X \big[\mathcal{R} \big(\mathcal{F}(x_1^n)/n \big) \big] = \mathbb{E}_{X,\,\varepsilon} \Big[\sup_{f \in \mathcal{F}} \Big| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(X_i) \Big| \Big].$$

A uniform law via Rademacher complexity

Rademacher complexity characterizes the typical largest correlation between a random noise vector and any function in the class \mathcal{F} , thereby the "complexity" of \mathcal{F} .

Theorem

Let \mathcal{F} be a class of functions $f: \mathcal{X} \to \mathbb{R}$ that is uniformly bounded by b > 0. Then for all n > 0 and $\delta \ge 0$, we have

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \le 2 \,\mathcal{R}_n(\mathcal{F}) + \delta$$

with \mathbb{P} probability at least $1-2 \exp\left(-\frac{n\delta^2}{8b^2}\right)$. Consequently, $\mathcal{R}_n(\mathcal{F}) = o(1)$ implies \mathcal{F} to be Glivenko-Cantelli.

Proof step one: Concentration around mean

Consider the function

$$G(x_1,\ldots,x_n) = \sup_{f\in\mathcal{F}} \left|\frac{1}{n}\sum_{i=1}^n f(x_i)\right|.$$

It satisfies the bounded difference property: for all $x_1, \ldots, x_n, x_k' \in \mathbb{R}$,

$$|G(x_1,\ldots,x_n)-G(x_1,\ldots,x_{k-1},x'_k,x_{k+1},\ldots,x_n)| \leq \frac{2\|f\|_{\infty}}{n} \leq \frac{2b}{n}.$$

Therefore, the bounded difference inequality implies the following holds with probability at least $1-2\exp\left(-\frac{n\,t^2}{8b^2}\right)$,

$$\Big| \big| \| \mathbb{P}_n - \mathbb{P} \|_{\mathcal{F}} - \mathbb{E}[\| \mathbb{P}_n - \mathbb{P} \|_{\mathcal{F}}] \Big| \leq t, \quad \text{for any } t > 0.$$

Proof step two: Upper bound on mean

Applying the symmetrization technique.

Let (Y_1, \ldots, Y_n) be a second independent copy of (X_1, \ldots, X_n) . Then

$$\mathbb{E}[\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}] = \mathbb{E}_X \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \left\{ f(X_i) - \mathbb{E}_{Y_i}[f(Y_i)] \right\} \right| \right]$$

$$= \mathbb{E}_X \left[\sup_{f \in \mathcal{F}} \left| \mathbb{E}_Y \left[\frac{1}{n} \sum_{i=1}^n \left\{ f(X_i) - f(Y_i) \right\} \right] \right| \right]$$

$$\leq \mathbb{E}_{X,Y} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \left\{ f(X_i) - f(Y_i) \right\} \right| \right],$$

where the last step is due to Jensen's inequality.

Proof step two: Upper bound on mean

Let ε_i be i.i.d. Rademacher random variables.

For any $f\in\mathcal{F}$, random variable $\varepsilon_i(f(X_i)-f(Y_i))$ has the same distribution as $f(X_i)-f(Y_i)$. Consequently,

$$\mathbb{E}[\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}] \leq \mathbb{E}_{X,Y} \Big[\sup_{f \in \mathcal{F}} \Big| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \Big\{ f(X_i) - f(Y_i) \Big\} \Big| \Big]$$

$$\leq 2\mathbb{E}_{X,\varepsilon} \Big[\sup_{f \in \mathcal{F}} \Big| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(X_i) \Big| \Big] = 2\mathcal{R}_n(\mathcal{F}).$$