HANDBOOK OF MARINE CRAFT HYDRODYNAMICS AND MOTION CONTROL

HANDBOOK OF MARINE CRAFT HYDRODYNAMICS AND MOTION CONTROL

Vademecum de Navium Motu Contra Aquas et de Motu Gubernando

Thor I. Fossen

Norwegian University of Science and Technology Trondheim, Norway

This edition first published 2011 © 2011, John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

Library of Congress Cataloguing-in-Publication Data

Fossen, Thor I.

Handbook of Marine Craft Hydrodynamics and Motion Control / Thor Fossen.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-119-99149-6 (hardback)

- 1. Ships-Hydrodynamics. 2. Stability of ships. 3. Motion control devices.
- 4. Automatic pilot (Ships). 5. Steering-gear. 6. Ships-Electronic equipment. I. Title.

VM156.F67 2011 623.8'1-dc22

2010054228

A catalogue record for this book is available from the British Library.

Print ISBN: 9781119991496 E-PDF ISBN: 9781119994121 O-Book ISBN: 9781119994138 E-Pub ISBN: 9781119998686 Mobi ISBN: 9781119998693

Set in 9/11pt Times by Thomson Digital, Noida, India.

This book is dedicated to my parents Gerd Kristine and Ole Johan Fossen and my family Heidi, Sindre and Lone Moa who have always been there for me.

Thor I. Fossen

Contents

About the Author					
Pr	Preface				
List of Tables					
I	Ma	rine C	Craft Hydrodynamics	1	
1	Intro	3			
	1.1	Classif	fication of Models	6	
	1.2	The C	lassical Models in Naval Architecture	7	
		1.2.1	Maneuvering Theory	9	
		1.2.2	Seakeeping Theory	11	
		1.2.3	Unified Theory	12	
	1.3	Fossen	a's Robot-Like Vectorial Model for Marine Craft	12	
2	Kine	15			
	2.1	16			
	2.2	Transformations between BODY and NED		20	
		2.2.1	Euler Angle Transformation	22	
		2.2.2	Unit Quaternions	27	
		2.2.3	Quaternions from Euler Angles	32	
		2.2.4	Euler Angles from Quaternions	33	
	2.3	Transf	formations between ECEF and NED	34	
		2.3.1	Longitude and Latitude Transformations	34	
		2.3.2	Longitude and Latitude from ECEF Coordinates	36	
		2.3.3	ECEF Coordinates from Longitude and Latitude	38	
	2.4 Transformations between BODY and FLOW		formations between BODY and FLOW	39	
		2.4.1	Definitions of Course, Heading and Sideslip Angles	39	
		2.4.2	Sideslip and Angle of Attack	41	
3	Rigi	45			
	3.1	45			
		3.1.1	n-Euler Equations of Motion about CG Translational Motion about CG	47	
		3.1.2	Rotational Motion about CG	48	
		313	Fauations of Motion about CG	49	

viii Contents

	3.2	Newton–Euler Equations of Motion about CO	49			
		3.2.1 Translational Motion about CO	50			
		3.2.2 Rotational Motion about CO	50			
	3.3	Rigid-Body Equations of Motion	51			
		3.3.1 Nonlinear 6 DOF Rigid-Body Equations of Motion	51			
		3.3.2 Linearized 6 DOF Rigid-Body Equations of Motion	56			
4	Hyd	Hydrostatics				
	4.1	Restoring Forces for Underwater Vehicles	59			
		4.1.1 Hydrostatics of Submerged Vehicles	59			
	4.2	Restoring Forces for Surface Vessels	62			
		4.2.1 Hydrostatics of Floating Vessels	62			
		4.2.2 Linear (Small Angle) Theory for Boxed-Shaped Vessels	64			
		4.2.3 Computation of Metacenter Height for Surface Vessels	65			
	4.3	Load Conditions and Natural Periods	68			
		4.3.1 Decoupled Computation of Natural Periods	68			
		4.3.2 Computation of Natural Periods in a 6 DOF Coupled System	69			
		4.3.3 Natural Period as a Function of Load Condition	71			
	4.4	Ballast Systems	74			
		4.4.1 Conditions for Manual Pretrimming	76			
		4.4.2 Automatic Pretrimming using Feedback from z , ϕ and θ	78			
5	Seak	eeping Theory	81			
	5.1	Hydrodynamic Concepts and Potential Theory	82			
		5.1.1 Numerical Approaches and Hydrodynamic Codes	84			
	5.2	Seakeeping and Maneuvering Kinematics	85			
		5.2.1 Seakeeping Reference Frame	85			
		5.2.2 Transformation between BODY and SEAKEEPING	86			
	5.3	The Classical Frequency-Domain Model	90			
		5.3.1 Potential Coefficients and the Concept of Forced Oscillations	90			
		5.3.2 Frequency-Domain Seakeeping Models	93			
	5.4	Time-Domain Models including Fluid Memory Effects	96			
		5.4.1 Cummins Equation in SEAKEEPING Coordinates	96			
		5.4.2 Linear Time-Domain Seakeeping Equations in BODY Coordinates	99			
		5.4.3 Nonlinear Unified Seakeeping and Maneuvering Model with				
		Fluid Memory Effects	103			
	5.5	Case Study: Identification of Fluid Memory Effects	104			
		5.5.1 Frequency-Domain Identification using the MSS FDI Toolbox	104			
6	Man	euvering Theory	109			
	6.1	Rigid-Body Kinetics	110			
	6.2	Potential Coefficients	111			
		6.2.1 3 DOF Maneuvering Model	113			
		6.2.2 6 DOF Coupled Motions	113			
	6.3	Nonlinear Coriolis Forces due to Added Mass in a Rotating Coordinate System	115			
		6.3.1 Lagrangian Mechanics	115			
		6.3.2 Kirchhoff's Equations in Vector Form	116			
		6.3.3 Added Mass and Coriolis–Centripetal Forces due to the Rotation of BODY Relative to NED	117			
	6.4	Viscous Damping and Ocean Current Forces	117 122			
	0.4	VISCOUS DANIDING AND OCCAN CUITCHE FOICES	122			

Contents ix

		6.4.1	Linear Viscous Damping	123				
		6.4.2	Nonlinear Surge Damping	125				
		6.4.3	Cross-Flow Drag Principle	127				
	6.5	Maneu	ivering Equations	128				
		6.5.1	Hydrodynamic Mass–Damper–Spring System	128				
		6.5.2	Nonlinear Maneuvering Equations	130				
		6.5.3	Linearized Maneuvering Equations	131				
7	Mod	els for S	Ships, Offshore Structures and Underwater Vehicles	133				
	7.1	Maneu	vering Models (3 DOF)	133				
		7.1.1	Nonlinear Maneuvering Models Based on Surge Resistance and Cross-Flow Drag	136				
		7.1.2	Nonlinear Maneuvering Models Based on Second-order Modulus Functions	136				
		7.1.3	Nonlinear Maneuvering Models Based on Odd Functions	138				
		7.1.4	Linearized Maneuvering Models	140				
	7.2		ilot Models for Heading Control (1 DOF)	142				
		7.2.1	Second-Order Nomoto Model (Yaw Subsystem)	142				
		7.2.2	First-Order Nomoto Model (Yaw Subsystem)	143				
		7.2.3	Nonlinear Extensions of Nomoto's Model	145				
		7.2.4	Pivot Point (Yaw Rotation Point)	146				
		7.2.5	Nondimensional Maneuvering and Autopilot Models	148				
	7.3	DP Mo	odels (3 DOF)	152				
		7.3.1	Nonlinear DP Model using Current Coefficients	153				
		7.3.2	Linearized DP Model	157				
	7.4	Maneu	vering Models Including Roll (4 DOF)	158				
		7.4.1	The Nonlinear Model of Son and Nomoto	163				
		7.4.2	The Nonlinear Model of Blanke and Christensen	164				
		7.4.3	Nonlinear Model Based on Low-Aspect Ratio Wing Theory	165				
	7.5	Equation	ons of Motion (6 DOF)	167				
		7.5.1	Nonlinear 6 DOF Vector Representations in BODY and NED	167				
		7.5.2	Symmetry Considerations of the System Inertia Matrix	171				
		7.5.3	Linearized Equations of Motion (Vessel Parallel Coordinates)	173				
		7.5.4	Transforming the Equations of Motion to a Different Point	176				
		7.5.5	6 DOF Models for AUVs and ROVs	182				
		7.5.6	Longitudinal and Lateral Models for Submarines	183				
8	Envi	Environmental Forces and Moments						
	8.1	Wind I	Forces and Moments	188				
		8.1.1	Wind Forces and Moments on Marine Craft at Rest	188				
		8.1.2	Wind Forces and Moments on Moving Marine Craft	191				
		8.1.3	Wind Coefficients Based on Flow over a Helmholtz–Kirchhoff Plate	192				
		8.1.4	Wind Coefficients for Merchant Ships	194				
		8.1.5	Wind Coefficients for Very Large Crude Carriers	195				
		8.1.6	Wind Coefficients for Large Tankers and Medium-Sized Ships	195				
		8.1.7	Wind Coefficients for Moored Ships and Floating Structures	195				
	8.2		Forces and Moments	199				
		8.2.1	Sea State Descriptions	200				
		8.2.2	Wave Spectra	202				

x Contents

		8.2.3	Wave Amplitude Response Model	208			
		8.2.4	Wave Force Response Amplitude Operators	211			
		8.2.5	Motion Response Amplitude Operators	213			
		8.2.6	State-Space Models for Wave Responses	214			
	8.3	Ocean	Current Forces and Moments	221			
		8.3.1	3-D Irrotational Ocean Current Model	224			
		8.3.2	2-D Irrotational Ocean Current Model	224			
II	Mo	otion (Control	227			
9	Intro	Introduction					
	9.1	Histori	cal Remarks	229			
		9.1.1	The Gyroscope and its Contributions to Ship Control	230			
		9.1.2	Autopilots	231			
		9.1.3	, ,	231			
		9.1.4	Waypoint Tracking and Path-Following Control Systems	232			
	9.2		inciples of Guidance, Navigation and Control	232			
	9.3		nt Regulation, Trajectory-Tracking and Path-Following Control	235			
	9.4		l of Underactuated and Fully Actuated Craft	235			
		9.4.1	Configuration Space	236			
		9.4.2	Workspace and Control Objectives	237			
		9.4.3	Weathervaning of Underactuated Craft in a Uniform Force Field	238			
10		ance Sy		241			
	10.1	_	Tracking	242			
			Line-of-Sight Guidance	243			
			Pure Pursuit Guidance	244			
	10.2		Constant Bearing Guidance	244			
	10.2	-	ory Tracking	246			
			Reference Models for Trajectory Generation	248			
			Trajectory Generation using a Marine Craft Simulator	251 253			
	10.2		Optimal Trajectory Generation bllowing for Straight-Line Paths	253			
	10.5		Path Generation based on Waypoints	255			
			LOS Steering Laws	257			
	10.4		bllowing for Curved Paths	266			
	10.4		Path Generation using Interpolation Methods	267			
		10.4.1		278			
11	Sens	Sensor and Navigation Systems					
			ass and Notch Filtering	285 287			
		11.1.1	_	288			
		11.1.2	Cascaded Low-Pass and Notch Filtering	290			
	11.2		Gain Observer Design	292			
		11.2.1	Observability	292			
		11.2.2	Luenberger Observer	293			
		11.2.3	Case Study: Luenberger Observer for Heading Autopilots using only				
			Compass Measurements	294			

Contents xi

	11.3	Kalman	Filter Design	296
		11.3.1	Discrete-Time Kalman Filter	296
		11.3.2	Continuous-Time Kalman Filter	297
		11.3.3	Extended Kalman Filter	298
		11.3.4	Corrector–Predictor Representation for Nonlinear Observers	299
		11.3.5	Case Study: Kalman Filter for Heading Autopilots using only Compass	
			Measurements	300
		11.3.6	Case Study: Kalman Filter for Dynamic Positioning Systems using GNSS and	
			Compass Measurements	304
	11.4	Nonline	ar Passive Observer Designs	310
		11.4.1	Case Study: Passive Observer for Dynamic Positioning using GNSS and	
			Compass Measurements	311
		11.4.2	Case Study: Passive Observer for Heading Autopilots using only	
			Compass Measurements	319
		11.4.3	Case Study: Passive Observer for Heading Autopilots using both	
			Compass and Rate Measurements	327
	11.5	Integrat	ion Filters for IMU and Global Navigation Satellite Systems	328
		11.5.1	Integration Filter for Position and Linear Velocity	332
		11.5.2	Accelerometer and Compass Aided Attitude Observer	336
		11.5.3	Attitude Observer using Gravitational and Magnetic Field Directions	340
12	Motio	on Contr	rol Systems	343
	12.1		oop Stability and Maneuverability	343
		12.1.1		344
		12.1.2	Maneuverability	353
	12.2		ntrol and Acceleration Feedback	365
		12.2.1	Linear Mass–Damper–Spring Systems	365
		12.2.2	Acceleration Feedback	370
		12.2.3	PID Control with Acceleration Feedback	372
		12.2.4	MIMO Nonlinear PID Control with Acceleration Feedback	375
		12.2.5	Case Study: Heading Autopilot for Ships and Underwater Vehicles	377
		12.2.6	Case Study: Heading Autopilot with Acceleration Feedback for Ships and	
			Underwater Vehicles	384
		12.2.7	Case Study: Linear Cross-Tracking System for Ships and Underwater	
			Vehicles	385
		12.2.8	Case Study: LOS Path-Following Control for Ships and Underwater	
			Vehicles	387
		12.2.9	Case Study: Path-Following Control for Ships and Underwater Vehicles	
			using Serret-Frenet Coordinates	389
		12.2.10	Case Study: Dynamic Positioning Control System for Ships and Floating	
			Structures	391
		12.2.11	Case Study: Position Mooring Control System for Ships and Floating	
			Structures	396
	12.3		Allocation	398
		12.3.1	Actuator Models	398
		12.3.2	Unconstrained Control Allocation for Nonrotatable Actuators	404
		12.3.3	Constrained Control Allocation for Nonrotatable Actuators	405
		12.3.4	Constrained Control Allocation for Azimuth Thrusters	408
		12.3.5	Case Study: DP Control Allocation System	411

xii Contents

13	Adva	nced Mo	otion Control Systems	417
	13.1	Linear (Quadratic Optimal Control	418
		13.1.1	Linear Quadratic Regulator	418
		13.1.2	LQR Design for Trajectory Tracking and Integral Action	420
		13.1.3	General Solution of the LQ Trajectory-Tracking Problem	421
		13.1.4	Case Study: Optimal Heading Autopilot for Ships and Underwater Vehicles	429
		13.1.5	Case Study: Optimal Fin and Rudder-Roll Damping Systems for Ships	433
		13.1.6	Case Study: Optimal Dynamic Positioning System for Ships and	
			Floating Structures	446
	13.2	State Fe	edback Linearization	451
		13.2.1	Decoupling in the BODY Frame (Velocity Control)	451
		13.2.2	Decoupling in the NED Frame (Position and Attitude Control)	452
		13.2.3	Case Study: Feedback Linearizing Speed Controller for Ships and	
			Underwater Vehicles	454
		13.2.4		455
		13.2.5	Case Study: MIMO Adaptive Feedback Linearizing Controller for Ships	
			and Underwater Vehicles	455
	13.3	_	or Backstepping	457
			A Brief History of Backstepping	458
		13.3.2	The Main Idea of Integrator Backstepping	458
		13.3.3	Backstepping of SISO Mass–Damper–Spring Systems	465
		13.3.4	Integral Action by Constant Parameter Adaptation	469
		13.3.5	Integrator Augmentation Technique	472
			Case Study: Backstepping of MIMO Mass–Damper–Spring Systems	475
		13.3.7	Case Study: MIMO Backstepping for Fully Actuated Ships	480
		13.3.8	Case Study: MIMO Backstepping Design with Acceleration Feedback for Fully Actuated Ships	484
		13.3.9	Case Study: Nonlinear Separation Principle for PD Controller–Observer	101
		10.0.7	Design	487
		13.3.10	Case Study: Weather Optimal Position Control for Ships and Floating	
			Structures	491
		13.3.11	Case Study: Heading Autopilot for Ships and Underwater Vehicles	509
			Case Study: Path-Following Controller for Underactuated Marine Craft	512
	13.4		Mode Control	519
		13.4.1	SISO Sliding-Mode Control	519
		13.4.2	Sliding-Mode Control using the Eigenvalue Decomposition	522
		13.4.3	Case Study: Heading Autopilot for Ships and Underwater Vehicles	525
		13.4.4	Case Study: Pitch and Depth Autopilot for Underwater Vehicles	526
Αp	peno	lices		529
		. ~	1.00	
A			ability Theory	531
	A.1		ov Stability for Autonomous Systems	531
		A.1.1	Stability and Convergence	531
		A.1.2	Lyapunov's Direct Method	532
		A.1.3	Krasovskii–LaSalle's Theorem	533
		A.1.4	Global Exponential Stability	534

Contents	xiii
----------	------

	A.2	Lyapuı	nov Stability of Nonautonomous Systems	535
		A.2.1	Barbălat's Lemma	535
		A.2.2	LaSalle–Yoshizawa's Theorem	536
		A.2.3	Matrosov's Theorem	536
		A.2.4	UGAS when Backstepping with Integral Action	537
В	Num	541		
	B.1	Discre	tization of Continuous-Time Systems	541
		B.1.1	Linear State-Space Models	541
		B.1.2	Nonlinear State-Space Models	543
	B.2	Numer	rical Integration Methods	544
		B.2.1	Euler's Method	545
		B.2.2	Adams-Bashford's Second-Order Method	546
		B.2.3	Runge–Kutta Second-Order Method	547
		B.2.4	Runge–Kutta Fourth-Order Method	547
	B.3	Numer	rical Differentiation	547
Re	efere	549		
In	567			

About the Author

Professor Thor I. Fossen received an MSc degree in Marine Technology in 1987 from the Norwegian University of Science and Technology (NTNU) and a PhD in Engineering Cybernetics from NTNU in 1991. In the period 1989–1990 he pursued postgraduate studies in aerodynamics and flight control as a Fulbright Scholar at the University of Washington, Seattle. His expertise is in the fields of hydrodynamics, naval architecture, robotics, marine and flight control systems, guidance systems, navigation systems and nonlinear control theory. In 1993 he was appointed as a Professor of Guidance and Control at NTNU. He is one of the founders of the company Marine Cybernetics where he was the Vice President R&D in the period 2002-2007. He is the author of Guidance and Control of Ocean Vehicles (John Wiley & Sons, Ltd, 1994) and co-author of New Directions in Nonlinear Observer Design (Springer Verlag, 1999) and Parametric Resonance in Dynamical Systems (Springer Verlag, 2011). Professor Fossen has been instrumental in the development of several industrial autopilot, path-following and dynamic positioning (DP) systems. He has also experience in nonlinear state estimators for marine craft and automotive systems as well as strapdown GNSS/INS navigation systems. He has been involved in the design of the SeaLaunch trim and heel correction systems. He received the Automatica Prize Paper Award in 2002 for a concept for weather optimal positioning control of marine craft. He is currently head of automatic control at the Centre for Ships and Ocean Structures (CESOS), Norwegian Centre of Excellence, and a Professor of Guidance and Control in the Department of Engineering Cybernetics, NTNU.

Preface

The main motivation for writing this book was to collect new results on hydrodynamic modeling, guidance, navigation and control of marine craft that have been developed since I published my first book:

Fossen, T. I. (1994). *Guidance and Control of Ocean Vehicles*. John Wiley & Sons, Ltd. Chichester, UK. ISBN 0-471-94113-1.

The Wiley book from 1994 was the first attempt to bring hydrodynamic modeling and control system design into a unified notation for modeling, simulation and control. My first book also contains state-of-the-art control design methods for ships and underwater vehicles up to 1994. In the period 1994–2002 a great deal of work was done on nonlinear control of marine craft. This work resulted in many useful results and lecture notes, which have been collected and published in a second book entitled *Marine Control Systems: Guidance, Navigation and Control of Ships and Underwater Vehicles.* The 1st edition was published in 2002 and it was used as the main textbook in my course on Guidance and Control at the Norwegian University of Science and Technology (NTNU). Instead of making a 2nd edition of the book, I decided to write the *Handbook of Marine Craft Hydrodynamics and Motion Control* and merge the most important results from my previous two books with recent results.

Part I of the book covers both maneuvering and seakeeping theory and it is explained in detail how the equations of motion can be derived for both cases using both frequency- and time-domain formulations. This includes transformations from the frequency to the time domain and the explanation of fluid-memory effects. A great effort has been made in the development of kinematic equations for effective representation of the equations of motion in seakeeping, body, inertial and geographical coordinates. This is very confusing in the existing literature on hydrodynamics and the need to explain this properly motivated me to find a unifying notation for marine and mechanical systems. This was done in the period 2002–2010 and it is inspired by the elegant formulation used in robotics where systems are represented in a vectorial notation. The new results on maneuvering and seakeeping are joint work with *Professor Tristan Perez*, University of Newcastle, Australia. The work with Professor Perez has resulted in several joint publications and I am grateful to him for numerous interesting discussions on hydrodynamic modeling and control. He should also be thanked for proofreading parts of the manuscript.

Part II of the book covers guidance systems, navigation systems, state estimators and control of marine craft. This second part of the book focuses on state-of-the-art methods for feedback control such as PID control design for linear and nonlinear systems as well as control allocation methods. A chapter with more advanced topics, such as optimal control theory, backstepping, feedback linearization and sliding-mode control, is included for the advanced reader. Case studies and applications are treated at the end of each chapter. The control systems based on PID and optimal control theory are designed with a complexity similar to those used in many industrial systems. The more advanced methods using nonlinear theory are included so the user can compare linear and nonlinear design techniques before a final implementation is

xviii Preface

made. Many references to existing systems are included so control system vendors can easily find articles describing state-of-the art design methods for marine craft.

The arrangement of the subject matter in major parts can be seen from the following diagram:

Part II: Chapters 9-13 Part I: Chapters 1-8

Most of the results in the book have been developed at the Department of Engineering Cybernetics and the Centre of Ships and Ocean Structures, NTNU, in close cooperation with my former doctoral students, Ola-Erik Fjellstad, Trygve Lauvdal, Jann Peter Strand, Jan Fredrik Hansen, Bjørnar Vik, Svein P. Berge, Mehrdad P. Fard, Karl-Petter Lindegaard, Ole Morten Aamo, Roger Skjetne, Ivar-Andre Flakstad Ihle, Andrew Ross, Gullik A. Jensen and Morten Breivik, in the period 1991–2010. We have been a productive team, and have written hundreds of international publications in this period. Our joint efforts have resulted in several patents and industrial implementations. Morten Breivik has contributed with many important results on guidance systems (Chapter 10) and he should also be thanked for proofreading parts of the manuscript. Bjarne Stenberg should be thanked for creating the artistic front and back covers of the book and many other graphical illustrations. Finally, Stewart Clark, Senior Consultant, NTNU, should be thanked for his assistance with the English language. The book project has been sponsored by The Norwegian Research Council through the Center of Ships and Ocean Structures, Norwegian Center of Excellence at NTNU.

Thor I. Fossen www.wiley.com/go/fossen_marine

List of Tables

2.1	The notation of SNAME (1950) for marine vessels	16
2.2	WGS-84 parameters	36
7.1	Parameters for a cargo ship and a fully loaded oil tanker	145
7.2	Normalization variables used for the prime and bis systems	149
7.3	6 DOF normalization variables	151
8.1	Air density as a function of temperature	190
8.2	Definition of Beaufort numbers (Price and Bishop, 1974)	190
8.3	Coefficients of lateral and longitudinal resistance, cross-force and rolling moment	
	(Blendermann, 1994)	192
8.4	Wind force parameters in surge, sway and yaw (Isherwood, 1972)	196
8.5	Definition of sea state (SS) codes (Price and Bishop, 1974). Notice that the percentage	
	probability for SS codes 0, 1 and 2 is summarized	200
11.1	Discrete-time Kalman filter	297
11.2	Continuous-time Kalman filter	297
11.3	Discrete-time extended Kalman filter (EKF)	299
11.4	Alternative choices of attitude update laws	339
12.1	Routh array	351
12.2	PID and acceleration feedback pole-placement algorithm	374
12.3	Definition of actuators and control variables	398
13.1	Eigenvalues, damping ratios and frequencies for the RRD control system	439
13.2	Criteria for effectiveness of the crew (Faltinsen, 1990)	443
A.1	Classification of theorems for stability and convergence	532