Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Лабораторная работа №3

Цифровая фильтрация

Выполнил студент гр. в3530904/00030	В.С. Баганов
Руководитель доцент, к.т.н.	В.С. Тутыгин
	« » 202 г

 $ext{Caнкт-} \Pi$ етербург 2023

Содержание

1.	Цель работы. Цифровая фильтрация	3
2.	Программа работы	3
3.	Результаты работы	4
	3.1. График зависимости погрешности заданного сигнала от полосы пропуска-	
	ния фильтра.	4
	3.2. График зависимости $\delta = f(\xi)$ фильтра Чебышева 2-го и 3-го порядка	5
	3.3. График зависимости $\delta = f(\xi)$ фильтра Баттерворта	6
	3.4. График зависимости $\delta = f(\xi)$ Низкочастотного фильтра	7
	3.5. График зависимости $\delta = f(\xi)$ для оптимального фильтра Колмогорова-Винера.	. 7
4.	Графики зависимости бопт $=$ $f(\xi)$ для всех фильтров.	9
5.	Выводы	10
	5.1. Листинг Matlab. Фильтр Чебышёва (Chebishev)	12
	5.2. Листинг Matlab. Оптимальный фильтр Колмогорова-Винера (KolmVinfilter)	14
	5.3. Листинг Matlab. Фильтр скользящего среднего (Smoothing)	16
	5.4. Листинг Matlab. Медианный фильтр (Median)	18
	5.5. Листинг Matlab. Фильтр Чебышёва инверсный (Inv_Chebishev)	20
	5.6. Листинг Matlab. Линейный низкочастотный фильтр (Lowpass filter)	22
G	Приложение. Данные	23

1. Цель работы. Цифровая фильтрация

Цель данной работы — исследовать зависимость погрешности сигнала на выходе фильтра и коэффициент подавления шума от величины СКО шума на входе и от вида фильтра, найти оптимальное значение полосы пропускания каждого фильтра.

Сравнить эффективность типовых цифровых фильтров оптимального фильтра Колмогорова-Винера.

2. Программа работы

- 1. Определить зависимости погрешность заданного преподавателем сигнала на выходе фильтра от полосы пропускания фильтра при нескольких (от 0.1 до 0.5) значениях СКО шума ξ на входе.
- 2. Для каждого значения СКО шума ξ найти оптимальное значение полосы пропускания фильтра Нопт, при котором погрешность сигнала на выходе фильтра минимальна δ опт= δ (Нопт).
 - 3. Построить график зависимости бопт $= f(\xi)$.
- 4. Определить зависимости погрешность заданного преподавателем сигнала на выходе оптимального фильтра Колмогорова-Винера при нескольких (от 0.1 до 0.5) значениях СКО шума ξ на входе.
- 5. Построить график зависимости $\delta = f(\xi)$ для оптимального фильтра Колмогорова-Винера.
 - 6. Построить графики зависимости бопт = $f(\xi)$ для всех фильтров.

3. Результаты работы

3.1. График зависимости погрешности заданного сигнала от полосы пропускания фильтра.

График зависимости погрешности заданного сигнала от полосы пропускания фильтра Чебышева 2-го порядка. Поиск оптимального значения полосы пропускания для фильтра Чебышева 2-го порядка.

По причине того, что при замерах значения имели большой разброс, было принято решение взять среднее значение из 5 замеров. Средние значения представление на графике и в таблице. Все данные которые были собраны представлены в приложении к лаб. работы.

полоса пропускания фильтра	амплитуда шума 0.1	амплитуда шума 0.2	амплитуда шума 0.3	амплитуда шума 0.4	амплитуда шума 0.5
3	6,37846	6,39294	6,69086	6,56996	6,96022
5	0,88894	1,51912	2,38604	2,8963	3,93874
7	0,88686	1,77064	2,65772	3,33924	4,95502
9	1,02946	1,773	2,9914	3,96834	4,90074
12	1,16744	2,35542	3,65324	4,4056	6,02618
15	1,3465	2,72618	3,6599	5,08046	6,94166
17	1,43944	2,88328	4,42068	5,87438	7,0148
20	1,60118	3,155	4,60452	6,13472	7,59428
25	1,76328	3,3604	5,3081	7,30604	8,53872
30	1,85652	3,69608	5,99404	8,00252	9,44744
40	2,27224	4,53006	6,78664	8,929	11,126
50	2,54538	4,94024	7,62508	9,93914	13,38975
60	2,85504	5,73652	8,27524	11,0943	14,49536
70	3,22336	6,48764	9,31678	12,19116	15,29214
80	3,60332	6,80444	10,32558	13,44962	16,73168
90	3,85994	7,36166	11,0764	14,48628	18,24278
100	4,14688	7,92984	11,8411	15,82372	19,18932

Таблица оптимальных значений полосы пропускания фильтра Нопт, при которых погрешность сигнала на выходе фильтра минимальна.

полово пропусковния	амплитуда	амплитуда	амплитуда	амплитуда	амплитуда
полоса пропускания	шума 0.1	шума 0.2	шума 0.3	шума 0.4	шума 0.5
5	0,88894	1,51912	2,38604	2,8963	3,93874

3.2. График зависимости $\delta {=} f(\xi)$ фильтра Чебышева 2-го и 3-го порядка

Таблица зависимости погрешностей заданного преподавателем сигнала на выходе филь-

тра Чебышева 2-го порядка и Чебышева 3-го порядка при нескольких (от 0.1 до 0.5) значениях СКО шума ξ на входе.

Фильтр\шум	0,10	0,20	0,30	0,40	0,50
фильтр Чебышева 2-го порядка	0,89	1,52	2,39	2,90	3,94
фильтр Чебышева 3-го порядка	0,55	1,09	1,88	2,45	3,34

3.3. График зависимости $\delta = f(\xi)$ фильтра Баттерворта

Таблица зависимости погрешностей заданного преподавателем сигнала на выходе фильтра Баттерворта при нескольких (от 0.1 до 0.5) значениях СКО шума ξ на входе.

Фильтр\шум	0,10	0,20	0,30	0,40	0,50
фильтр Баттерворта	0,90	1,60	2,40	3,20	4,00

3.4. График зависимости $\delta {=} f(\xi)$ Низкочастотного фильтра

Таблица зависимости погрешностей заданного преподавателем сигнала на выходе Низкочастотного фильтра при нескольких (от 0.1 до 0.5) значениях СКО шума ξ на входе.

Фильтр\шум	0,10	$0,\!20$	0,30	0,40	0,50
Низкочастотный фильтр	2,10	4,00	5,30	6,50	7,50

3.5. График зависимости $\delta = f(\xi)$ для оптимального фильтра Колмогоров Винера.

Таблица зависимости погрешностей заданного преподавателем сигнала на выходе опти-

мального фильтра Колмогорова-Винера при нескольких (от 0.1 до 0.5) значениях СКО шума ξ на выходе.

Фильтр\шум	0,10	0,20	0,30	0,40	0,50
фильтр Колмогорова-Винера	0,12	0,34	0,41	0,67	0,90

4. Графики зависимости бопт = $f(\xi)$ для всех фильтров.

График зависимости погрешности фильтра Колмогорова-Винера при нескольких (от $0.1~{\rm дo}~0.5$) значениях СКО шума. Построение графиков зависимости для различных фильтров.

Фильтр\СКО шума	0,10	0,20	0,30	0,40	0,50
фильтр Колмогорова-Винера	0,12	0,34	0,41	0,67	0,90
фильтр Чебышева 2-го порядка	0,89	1,52	2,39	2,90	3,94
фильтр Чебышева 3-го порядка	0,55	1,09	1,88	2,45	3,34
фильтр Баттерворта	0,90	1,60	2,40	3,20	4,00
фильтр Низкочастотный	2,10	4,00	5,30	6,50	7,50

5. Выводы

На графике зависимости погрешности заданного сигнала от полосы пропускания фильтра видно, что фильтр Чебышева 2-го порядка имеет оптимальную полосу пропускания шириной окна 5-7, а дальше начинает сильно увеличиваться погрешность. На картинке выше видно, что фильтры Чебышева и Баттерворта имеют резкий спад в полосе перехода, следовательно у них буду четко выраженные границы оптимальной погрешности на выходе сигнала.

С ростом шума в сигнале растет и погрешность на выходе фитльтра.

При фильтрации заданного, гармонического, сигнала самым плохим (с большими погрешностями) оказался Низкочастотный фильтр.

Фильтр Чебышева 2-го порядка по величине минимальной погрешности уступает только фильтру Колмогорова-Виннера. Фильтр Чебышева 3-го порядка чуть лучше 2-го порядка. Можно предположить, что Фильтр Чебышева N-го порядка будет снижать минимальную погрешность, но не сильно.

При фильтрации заданного, гармонического, сигнала самым эффективным оказался фильтр Колмогорова-Виннера.

5.1. Листинг Matlab. Фильтр Чебышёва (Chebishev)

```
%Фильтр Чебышева
1
     clc:
2
     clear:
3
     A=1; %амплитуда сигнала
     Q=0.1; %амплитуда шума 0.1 вместо 0.001
     КР1=5;% - количество периодов первого сигнала
6
    % КР2=15;% - количество периодов второго сигнала
    КР2=15;% - количество периодов второго сигнала
    % N=1024; %количество точек расчета
9
    N=1024:
10
    NC=9; %полоса пропускания фильтра по уровню 0,7 амплитуды
11
    % выражена в количестве отчетов спектра БПФ, пропускаемых фильтром
12
    % остальные отсчеты (в частотном спектре!) будут ослабляться по амплитуде
13
     е=0.1;%параметр фильтра Чебышева
14
     q=randn(1,N); %генерация одномерного массива нормально распределенного
15
     for k=1:N % генерация сигнала и шума
16
     s(k) = A*sin(2*pi*KP1*k/N);%+ A*sin(2*pi*KP2*k/N);
     % x1(k)=(2*pi*(((k-1-N/2))/N));%%%%%%%
18
    % s(k)=abs(sin(x1(k)));
19
    x(k)=s(k)+Q*q(k); % суммирование сигнала и шума
     end
21
     figure
22
     plot(x);
23
     axis tight; %диапазон X и Y по осям точно соответствует Xmax и Kmax
24
     title('Зашумленный сигнал до фильтра');
25
     Y=fft(x,N); %δΠΦ сигнала с шумом
26
     i=1:N/2;
27
     figure
28
    % semilogy(i(1:200),2*abs(SS1(1:200)));
29
    %plot(i(1:100),2*abs(SS1(1:100)));
     plot(i(1:N/2),abs(Y(1:N/2)));
31
     title('Частотный спектр сигнала с шумом');
32
33
     for i=1:N;
34
     Tn=2*(i/NC)^2-1;%значение полинома Чебышёва 1 рода 2-го порядка
35
    % Tn=4*(i/NC)^3-3*(i/NC);%значение полинома Чебышёва 3-го порядка
36
    % Tn=8*(i/NC)^4-8*(i/NC)^2+1;%значение полинома Чебышёва 4-го порядка
37
    % Tn=16*(i/NC)^5-20*(i/NC)^3+5*(i/NC):%значение полинома Чебышёва 5-го
38
     → порядка
    H(i)=1/sqrt(1+e^2*Tn^2);%частотная характеристика фильтра Чебышева
39
40
    h=ifft(H);
41
      i=1:N;
      plot(i(1:20),abs(h(1:20))); %Импульсная характеристика фильтра
43
      title('Импульсная характеристика фильтра');
44
     i=1:200;
45
     figure
46
     plot(i,abs(H(1:200)));
47
    %semilogx(i,abs(H(1:200)));%то же, что и plot, но в логарифмическом
48
    %масштабе по Х
49
     grid on:
50
     title('Частотная хар-ка цифрового фильтра Чебышева');
51
52
     i=1:N;
53
    XX1=fft(x,N); %частотный спектр сигнала с шумом
54
    Z=ifft(XX1.*H);%свертка зашумленного сигнала с частотной хар-кой фильтра
```

```
XX2=fft(s,N);%частотный спектр сигнала
56
     Z2=ifft(XX2.*H);%свертка незашумленного сигнала с частотной хар-кой
57
     → фильтра
     DZ(i)=(2*real(Z(i))-2*real(Z2(i)))*100./(max(s)-min(s));%cлучайная
58
     → ПОГРЕШНОСТЬ
     DZ1(i)=(2*real(Z(i))-s(i))*100/(max(s)-min(s));%полная погрешность
59
     SKO random=std(DZ)
60
     SKO_total=std(DZ1)
61
     i=1:N;
62
     yy = A*sin((6.28*KP1*i/N));
63
     figure
64
     plot(i,x); %вывод сигнала до фильтра
65
     title('Сигнал до фильтра');
66
     xlabel('Номер отсчета'); % подпись по оси X
67
     ylabel('Амплитуда'); % подпись по оси Y
68
     axis tight; %диапазон X и Y по осям точно соответствует Xmax и Ymax
69
     hold on; % <mark>"удержание"</mark> окна вывода для вывода следующего графика
70
71
     i=1:N:
72
     plot(i,2*real(Z(1:N)),'r-'),grid; %вывод отфильтрованного сигнала
73
     %представление графика линией красного цвета, отображение сетки
74
     title('Сигнал до и после фильтра');%подпись названия графика
75
     hold off;
76
77
     i=1:N;
78
     figure
79
     plot(i.DZ(1:N)): %вывод случайной погрешности отфильтрованного сигнала
80
     title('Случайная погрешность отфильтрованного сигнала');
81
     ylabel('Случайная погрешность, %'); % подпись по оси Y
82
     axis tight:
83
     i=1:N;
84
     figure
85
     plot(i,DZ1(1:N)); %вывод случайной погрешности отфильтрованного сигнала
86
     title('Полная погрешность отфильтрованного сигнала');
87
     ylabel('Полная погрешность, %'); % подпись по оси Y
     axis tight;
89
90
     pause;
91
     close all;
```

5.2. Листинг Matlab. Оптимальный фильтр Колмогорова-Винера (KolmVinfilter)

```
%Фильтр Колмогорова-Винера
1
2
     A=1; %амплитуда сигнала
3
     Q=0.5; %СКО шума
     N=1024; %количество точек расчета
    % kp1=5;%количество переиодов сигнала
     kp1=5;%количество переиодов сигнала
     q=Q*randn(1,N);%генерация одномерного массива нормально распределенного
     → шума с CKO=Q
     for k=1:N %цикл вычисления зашумленного сигнала
10
    %s1(k)=A*exp(-0.0003*(k-200)^2.0); %колоколообразный сигнал
11
     s(k)=A*sin(2*pi*kp1*k/N);%+A*sin(2*pi*kp2*k/N);%гармонический сигнал
    % x1(k)=(2*pi*(((k-1-N/2))/N));%%%%%%%
13
    %s(k)=abs(sin(x1(k)));
14
    % s(k)=x1(k)*exp(x1(k));
15
    % s1(k)=0; % сигнал прямоугольной формы
16
    % if (k>100) \delta(k<300) % сигнал прямоугольной формы
17
    % s1(k)=A;
18
    % end
19
    x(k)=s(k)+g(k); % суммирование сигнала и шума
20
    %x=s-mean(s)+q;%центрирование сигнала
22
     figure
23
     plot(x(1:N));
24
     title('Зашумленный сигнал до фильтра');
25
     axis tight;
26
27
     Y=fft(x,N)/N; %БПФ сигнала с шумом
28
     SS1=Y.*conj(Y)/N; %спектр мощности
29
     i=1:200:
30
     figure
31
    %plot(i,SS1(1:200));
32
     semilogy(i,SS1(1:200)); %вывод спектра мощности сигнала с шумом
33
     title('Частотный спектр сигнала с шумом');
35
     Y=fft(s,N)/N; %БПФ сигнала без шума
36
     SS1=Y.*conj(Y)/N; %спектр мощности сигнала без шума
37
38
     Y1=fft(q,N)/N; %БПФ шума
39
     SS2=Y1.*conj(Y1)/N; %спектр мощности шума
40
41
42
    H(i)=SS1(i)/(SS1(i)+SS2(i));%частотная характеристика оптимального
43
     → фильтра
     end
44
     i=1:200;
45
     figure
46
    %plot(i,abs(H(1:200)));
     semilogx(i,abs(H(1:200)));
48
    %hold on
49
     title('Частотная характеристика оптимального фильтра');
50
51
52
    XX1=fft(x,N); %частотный спектр сигнала с шумом
53
    Z=ifft(XX1.*H); % свертка зашумленного сигнала с частотной хар-кой фильтра
```

```
axis tight;
55
56
     figure
57
     plot(i,s(1:N)); %вывод незашумленного сигнала до фильтра сигнала
58
     title('Незашумленный сигнал до фильтра');
59
     axis tight;
60
     figure
61
     plot(i,Z(1:N)); %вывод отфильтрованного сигнала
62
     title('Сигнал после свертки с част. хар-кой опт. фильтра');
63
     axis tight;
64
     figure
65
     plot(i,x); %вывод сигнала до фильтра
     title('Сигнал до фильтра');
67
     xlabel('Номер отсчета'); % подпись по оси X
68
     ylabel('Амплитуда'); % подпись по оси Y
     axis tight; %диапазон X и Y по осям точно соответствует Xmax и Ymax
70
     hold on; % <mark>"удержание"</mark> окна вывода для вывода следующего графика
71
72
     i=1:N:
73
     plot(i,real(Z(1:N)), 'r-'), grid; %вывод отфильтрованного сигнала
74
     %представление графика линией красного цвета, отображение сетки
75
     title('Сигнал до и после фильтра'); % подпись названия графика
76
     hold off;
77
     i=1:N;
78
     DZ(i)=Z(i)-s(i);
79
     DZ1=DZ*100/(max(s)-min(s));
80
     SKO total=std(DZ1)
81
82
     i=1:N;
83
     figure
84
     plot(i,DZ1(1:N)); %вывод погрешности отфильтрованного сигнала
85
     title('Погрешность отфильтрованного сигнала');
86
     ylabel('Полная погрешность, %'); % подпись по оси Y
87
     axis tight;
88
89
     pause;
90
     close all;
91
     clear;
92
```

5.3. Листинг Matlab. Фильтр скользящего среднего (Smoothing)

```
%Фильтр медианный и скользящего среднего
1
    %выбор одного из двух фильтров - в строках 23 и 24
2
     clc:
3
     A=1; %амплитуда сигнала
     Q=0.5 ; %СКО шума
5
     КР1=5;% - количество периодов первого сигнала
6
    %КР2=15;% - количество периодов второго сигнала
     N=1024; %количество точек расчета
    W=3; %ширина окна сглаживания
9
10
     q=Q*randn(1,N); %генерация одномерного массива шума с CKO=Q
11
     H=(W+1)/2;%вычисление полуширины окна сглаживания
12
     for k=1:N % генерация сигнала и шума
13
     s(k) = A*sin(2*pi*KP1*k/N);
14
     15
     s(k)=x(k)*exp(x(k));
16
    % s(k)=exp(x(k)); %%%%%%%%
17
     x(k)=s(k)+g(k); % суммирование сигнала и шума
18
     end:
19
20
     for i=1:N-W %сглаживание зашумленного сигнала
     for j=1:W
22
     z(j)=x(j+i-1);
23
     end
24
     %y(i-1+H)=median(z);%вычисление медианы в скользящем окне
25
    y(i-1+H)=mean(z); %вычисление скользящего среднего
26
     end
27
     i=H:N-H;
28
     figure
29
     plot(i,y(i));
30
     title('Сигнал после сглаживания');
     for i=H:N-H %H - половина ширины окна сглаживания +0.5
32
     DZ(i)=s(i)-y(i);%уровень зашумления в сигнале после фильтра
33
     end
34
     DZ=DZ*100/(max(s)-min(s));%полная погрешность в %
35
    SKO_total=std(DZ)
36
37
     i=H:N-H;
     figure:
39
     plot(x);
40
     axis tight;
41
     xlabel('Номер отсчета'); % подпись по оси X
42
43
     title('Зашумленный сигнал до сглаживания');
44
     figure
45
     plot(i,y(H:N-H));
46
     title('Сигнал после сглаживания');
47
     xlabel('Номер отсчета'); % подпись по оси X
48
     axis tight:
49
    %hold off;
50
     figure
51
     plot(i,DZ(H:N-H)); %вывод погрешности отфильтрованного сигнала
52
     axis tight:
53
     title('Погрешность отфильтрованного сигнала');
54
     xlabel('Номер отсчета'); % подпись по оси X
55
    ylabel('Полная погрешность, %'); % подпись по оси Y
56
57
```

```
pause;
close all;
clear;
```

5.4. Листинг Matlab. Медианный фильтр (Median)

```
%Фильтр медианный и скользящего среднего
1
    %выбор одного из двух фильтров - в строках 23 и 24
2
     clc:
3
     A=1; %амплитуда сигнала
     Q=0.5 ; %СКО шума
5
     КР1=5;% - количество периодов первого сигнала
6
    %КР2=15;% - количество периодов второго сигнала
     N=1024; %количество точек расчета
    W=3; %ширина окна сглаживания
9
10
     q=Q*randn(1,N); %генерация одномерного массива шума с CKO=Q
11
     H=(W+1)/2;%вычисление полуширины окна сглаживания
12
     for k=1:N % генерация сигнала и шума
13
     s(k) = A*sin(2*pi*KP1*k/N);
     15
     s(k)=x(k)*exp(x(k));
16
    % s(k)=exp(x(k)); %%%%%%%%
17
     x(k)=s(k)+g(k); % суммирование сигнала и шума
18
     end:
19
20
     for i=1:N-W %сглаживание зашумленного сигнала
     for j=1:W
22
     z(j)=x(j+i-1);
23
     end
24
     %y(i-1+H)=median(z);%вычисление медианы в скользящем окне
25
    y(i-1+H)=mean(z); %вычисление скользящего среднего
26
     end
27
     i=H:N-H;
28
     figure
29
     plot(i,y(i));
30
     title('Сигнал после сглаживания');
     for i=H:N-H %H - половина ширины окна сглаживания +0.5
32
     DZ(i)=s(i)-y(i);%уровень зашумления в сигнале после фильтра
33
     end
34
     DZ=DZ*100/(max(s)-min(s));%полная погрешность в %
35
    SKO_total=std(DZ)
36
37
     i=H:N-H;
     figure;
39
     plot(x);
40
     axis tight;
41
     xlabel('Номер отсчета'); % подпись по оси X
42
43
     title('Зашумленный сигнал до сглаживания');
44
     figure
45
     plot(i,y(H:N-H));
46
     title('Сигнал после сглаживания');
47
     xlabel('Номер отсчета'); % подпись по оси X
48
     axis tight:
49
    %hold off;
50
     figure
51
     plot(i,DZ(H:N-H)); %вывод погрешности отфильтрованного сигнала
52
     axis tight:
53
     title('Погрешность отфильтрованного сигнала');
54
     xlabel('Номер отсчета'); % подпись по оси X
55
    ylabel('Полная погрешность, %'); % подпись по оси Y
56
57
```

```
pause;
close all;
clear;
```

5.5. Листинг Matlab. Фильтр Чебышёва инверсный (Inv Chebishev)

```
%Фильтр Чебышёва инверсный
1
     clc:
2
     clear:
3
     A=1; %амплитуда сигнала
     Q=0.1; %амплитуда шума 0.1 вместо 0.001
    % КР1=5;% - количество периодов первого сигнала
    КР1=5;% - количество периодов первого сигнала
    %КР2=2;% - количество периодов второго сигнала
     КР2=15;% - количество периодов второго сигнала
9
    N=1024; %количество точек расчета
10
    NC=15:
11
    %NC - полоса пропускания фильтра по уровню 0,7 амплитуды
12
    % выражена в количестве отчетов спектра БПФ, пропускаемых фильтром
13
    % остальные отсчеты (в частотном спектре!) будут ослабляться по амплитуде
14
     е=0.1; %параметр фильтра Чебышёва %вместо 0.001
15
     q=Q*randn(1,N); %reнepaция одномерного массива нормально распределенного
16

→ шума с СКО=Q

     for k=1:N % генерация сигнала и шума
17
     s(k) = A*sin(2*pi*KP1*k/N);%+ A*sin(2*pi*KP2*k/N);
18
     x(k)=s(k)+q(k); % суммирование сигнала и шума
19
     end
20
     figure
     plot(x);
22
     axis tight; %диапазон X и Y по осям точно соответствует Xmax и Kmax
23
     title('Зашумленный сигнал до фильтра');
24
25
     Y=fft(x,N); %БПФ сигнала с шумом
26
     i=1:N/2:
27
     figure
28
    % semilogy(i(1:200),2*abs(SS1(1:200)));
29
    %plot(i(1:100),2*abs(SS1(1:100)));
30
     plot(i(1:N/2),abs(Y(1:N/2)));
31
     title('Частотный спектр сигнала с шумом');
32
33
     for i=1:N;
     Tn=2*(NC/i)^2-1;%значение полинома Чебышёва 1 рода 2-го порядка
35
    %H(i)=1/sqrt(1+e^2*Tn^2);%частотная характеристика фильтра Чебышёва
36
    H(i) = \sqrt{(e^2 \times Tn^2)/((1 + e^2 \times Tn^2))}; %частотная характеристика фильтра
37

    чебышёва инверсный

     end
38
    h=ifft(H);
39
     i=1:N;
40
     plot(i(1:20),abs(h(1:20))); %Импульсная характеристика фильтра
41
     title('Импульсная характеристика фильтра');
     i=1:200;
43
     figure
44
     plot(i,abs(H(1:200)));
45
    % semilogx(i,abs(H(1:200)));%то же, что и plot, но в логарифмическом
    %масштабе по X
47
48
     title('Частотная хар-ка цифрового фильтра инверсного Чебышёва');
49
50
     i=1:N;
51
    XX1=fft(x,N); %частотный спектр сигнала с шумом
52
     Z=ifft(XX1.*H);%свертка зашумленного сигнала с частотной хар-кой фильтра
    XX2=fft(s,N);%частотный спектр сигнала
54
```

```
Z2=ifft(XX2.*H);%свертка незашумленного сигнала с частотной хар-кой
55
     → фильтра
     DZ(i)=(2*real(Z(i))-2*real(Z2(i)))*100./(max(s)-min(s));%cлучайная
56
     → ПОГРЕШНОСТЬ
     DZ1(i)=(2*real(Z(i))-s(i))*100./(max(s)-min(s));%полная погрешность
57
     SKO random=std(DZ)
58
     SKO total=std(DZ1)
59
     i=1:N;
     yy=A*sin((6.28*KP1*i/N));
61
     figure
62
     plot(i,x); %вывод сигнала до фильтра
63
     title('Сигнал до фильтра');
64
     xlabel('Номер отсчета'); % подпись по оси X
65
     ylabel('Амплитуда'); % подпись по оси Y
66
     axis tight; %диапазон X и Y по осям точно соответствует Xmax и Ymax
67
     hold on; % <mark>"удержание"</mark> окна вывода для вывода следующего графика
68
69
     i=1:N:
70
     plot(i,2*real(Z(1:N)),'r-'),grid; %вывод отфильтрованного сигнала
71
     %представление графика линией красного цвета, отображение сетки
72
     title('Сигнал до и после фильтра');%подпись названия графика
73
     hold off;
74
75
     i=1:N;
76
     figure
77
     plot(i,DZ(1:N)); %вывод случайной погрешности отфильтрованного сигнала
78
     title('Случайная погрешность отфильтрованного сигнала'):
79
     ylabel('Случайная погрешность, %'); % подпись по оси Y
80
     axis tight;
     i=1:N;
82
     figure
83
     plot(i,DZ1(1:N)); %вывод случайной погрешности отфильтрованного сигнала
84
     title('Полная погрешность отфильтрованного сигнала');
85
     ylabel('Полная погрешность, %'); % подпись по оси Y
86
     axis tight;
87
88
     pause:
89
     close all;
QΩ
```

5.6. Листинг Matlab. Линейный низкочастотный фильтр (Lowpass filter)

```
%Низкочастотный фильтр 1-го порядка
1
2
     A=1; %амлитуда сигнала
     Q=0.5; %СКО шума
     KP1=5; % - количество периодов первого сигнала
     КР2=15;% количество периодов второго сигнала
     N=1024; %количество точек расчета
     NC=6;% полоса пропускания фильтра по уровню 0,7 8амплитуды
    % выражена в количестве отчетов спектра БПФ, пропускаемых фильтром
    % остальные отсчеты (в частотном спектре!) будут ослабляться по амплитуде
10
     q=Q*randn(1,N); %генерация одномерного массива шума. Q-СКО.
11
     for k=1:N % генерация сигнала и шума
12
     s(k) = A*cos(2*pi*KP1*k/N);%+ A*sin(2*pi*KP2*k/N);
     x(k)=s(k)+q(k); % суммирование сигнала и шума
14
15
     figure
16
     plot(x);
17
     axis tight; %диапазон X и Y по осям точно соответствует Xmax и Kmax
18
     title('Зашумленный сигнал до фильтра');
19
20
    Y=fft(x,N); \%Б\Pi\Phi сигнала с шумом
21
     i=1:N:
22
     figure
23
     %plot(i(1:200),2*abs(Y(1:200)));
24
     semilogy(i(1:200),2*abs(Y(1:200)));% то же, что и plot, но в
25
     → логарифмическом
    %масштабе по Х
     title('Частотный спектр сигнала с шумом');
27
     xlabel('Номер элемента массива частотного спектра');
28
    %pause;
29
30
     for i=1:N
31
     H(i)=1/((1+i/(NC))); %передаточная функция цифрового фильтра НЧ 1-го
     → порядка
    %в частотной области
33
     end
34
     h=ifft(H);
     i=1:N:
36
     plot(i(1:20),abs(h(1:20))); %Импульсная характеристика фильтра
37
     title('Импульсная характеристика фильтра');
     i=1:200;
39
     figure
40
    %plot(i,abs(H(1:200)));
41
     semilogx(i,abs(H(1:200)));%то же, что и plot, но в логарифмическом
42
     %масштабе по X
43
    %grid on;
44
     title('Частотная хар-ка цифрового НЧ-фильтра');
45
46
     i=1:N;
47
    XX1=fft(x,N); %частотный спектр сигнала с шумом
     Z=ifft(XX1.*H);%cвертка зашумленного сигнала с частотной хар-кой фильтра
49
    XX2=fft(s,N);%частотный спектр сигнала
50
    Z2=ifft(XX2.*H);%свертка незашумленного сигнала с частотной хар-кой
     → фильтра
     i=1:N;
```

```
DZ(i)=(2*real(Z(i))-2*real(Z2(i)))*100./(max(s)-min(s));%cлучайная
53
     → погрешность
     DZ1(i)=(2*real(Z(i))-s(i))*100./(max(s)-min(s));%полная погрешность
54
     SKO random=std(DZ)
55
     SKO_total=std(DZ1)
     i=1:N;
57
     figure
58
     plot(i,x); %вывод сигнала до фильтра
59
     title('Сигнал до фильтра');
60
     xlabel('Номер отсчета'); % подпись по оси X
61
     ylabel('Амплитуда'); % подпись по оси Y
62
     axis tight; %диапазон X и Y по осям точно соответствует Xmax и Ymax
63
     hold on; % "удержание" окна вывода для вывода следующего графика
64
     plot(i,2*real(Z(1:N)),'r-'),grid; %вывод отфильтрованного сигнала
65
     %представление графика линией красного цвета, отображение сетки
     title('Сигнал до и после фильтра');%подпись названия графика
67
     hold off;
68
69
     i=1:N;
70
     figure
71
     plot(i,DZ(1:N)); %вывод случайной погрешности отфильтрованного сигнала
72
     title('Случайная погрешность отфильтрованного сигнала');
73
     ylabel('Случайная погрешность, %'); % подпись по оси \
74
     axis tight;
75
     i=1:N;
76
     figure
77
     plot(i,DZ1(1:N)); %вывод случайной погрешности отфильтрованного сигнала
78
     title('Полная погрешность отфильтрованного сигнала');
79
     ylabel('Полная погрешность, %'<mark>); % подпись по оси Y</mark>
80
     axis tight;
81
82
     pause;
83
     close all;
84
     clear;
85
```

6. Приложение. Данные

```
+=============++
    Q = 0.1:
2
    KP1=5:
3
    +=========+
4
    NC=3
    SKO_random = 0.5032; SKO_total = 6.2747
    SKO random = 0.4521; SKO total = 6.4159
    SKO_random = 0.6375; SKO_total = 6.5473
    SKO_random = 0.7399; SKO_total = 6.3272
10
    NC=5
11
    SKO_random = 0.5924; SKO_total = 0.8829
12
    SKO_random = 0.5787; SKO_total = 0.9368
13
    SKO random = 0.6732; SKO total = 0.8242
14
    SKO random = 0.7077; SKO total = 0.9436
15
    SKO_random = 0.6503; SKO_total = 0.8572
16
17
    NC=7
18
    SKO_random = 0.8791; SKO_total = 0.8799
19
    SKO_random = 1.0183; SKO_total = 1.0169
```

```
SKO random = 0.8916; SKO total = 0.8885
21
     SKO_random = 0.8340; SKO_total = 0.8357
22
     SKO_random = 0.8102; SKO_total = 0.8133
23
24
     NC=9
25
     SKO_random = 0.9756; SKO_total = 0.9755
26
     SKO random = 1.0869; SKO total = 1.0870
27
     SKO random = 0.9753; SKO total = 0.9740
28
     SKO_random = 1.0024; SKO_total = 1.0020
29
     SKO_random = 1.1085; SKO_total = 1.1088
30
31
     NC=12:
32
     SKO_random = 1.2524; SKO_total = 1.2529
33
     SKO_random = 1.2648; SKO_total = 1.2634
34
     SKO_random = 1.1912; SKO_total = 1.1938
35
     SKO_random = 1.1095; SKO_total = 1.1103
36
     SKO_random = 1.0153; SKO_total = 1.0168
37
38
     NC=15
39
     SKO_random = 1.3925; SKO_total = 1.3979
40
     SKO random = 1.5698; SKO total = 1.5667
41
     SKO random = 1.3205; SKO total = 1.3230
42
     SKO random = 1.1742; SKO total = 1.1805
43
     SKO_random = 1.2694; SKO_total = 1.2644
44
45
     NC=17
46
     SKO_random = 1.4740; SKO_total = 1.4752
47
     SKO_random = 1.5361; SKO_total = 1.5349
48
     SKO_random = 1.3989; SKO_total = 1.3960
49
     SKO random = 1.3926; SKO total = 1.3946
50
     SKO random = 1.3932; SKO total = 1.3965
51
52
     NC=20
53
     SKO_random = 1.5506; SKO_total = 1.5520
54
     SKO_random = 1.7345; SKO_total = 1.7353
55
     SKO_random = 1.5598; SKO_total = 1.5641
56
     SKO_random = 1.4997; SKO_total = 1.5020
57
     SKO random = 1.6525; SKO total = 1.6525
58
59
     NC=25
60
     SKO random = 1.8340; SKO total = 1.8347
61
     62
     SKO_random = 1.7727; SKO_total = 1.7756
63
     SKO_random = 1.7441; SKO_total = 1.7451
     SKO_random = 1.6237; SKO_total = 1.6253
65
66
    NC=30
67
     SKO_random = 1.9370; SKO_total = 1.9369
     SKO_random = 1.8468; SKO_total = 1.8468
69
     SKO_random = 1.8569; SKO_total = 1.8567
70
     SKO_random = 1.7868; SKO_total = 1.7874
71
     SKO random = 1.8546; SKO total = 1.8548
72
73
     NC=40
74
     SKO_random = 2.3487; SKO_total = 2.3536
75
     SKO_random = 2.2595; SKO_total = 2.2554
76
     SKO_random = 2.2468; SKO_total = 2.2574
77
     SKO_random = 2.1795; SKO_total = 2.1812
78
     SKO_random = 2.3161; SKO_total = 2.3136
79
80
```

```
NC=50:
81
     SKO_random = 2.4288; SKO_total = 2.4535
82
     SKO_random = 2.4598; SKO_total = 2.4949
83
     SKO_random = 2.4726; SKO_total = 2.4804
84
     SKO_random = 2.6102; SKO_total = 2.6290
85
     SKO_random = 2.6490; SKO_total = 2.6691
86
87
     NC=60;
88
     SKO_random = 2.8281; SKO_total = 2.8800
89
     SKO_random = 2.7759; SKO_total = 2.7881
90
     SKO_random = 2.7759; SKO_total = 2.7881
91
     SKO_random = 2.9562; SKO_total = 2.9789
92
     SKO_random = 2.8124; SKO_total = 2.8401
93
94
     NC=70;
95
     SKO_random = 3.0865; SKO_total = 3.1223
96
     SKO_random = 3.3197; SKO_total = 3.3761
97
     SKO random = 3.2321; SKO total = 3.3170
98
     SKO_random = 3.1861; SKO_total = 3.1717
99
     SKO_random = 3.0572; SKO_total = 3.1297
100
101
     NC=80:
102
     SKO random = 3.5385; SKO total = 3.6807
103
     SKO_random = 3.3886; SKO_total = 3.5750
104
     SKO_random = 3.3886; SKO_total = 3.5750
105
     SKO_random = 3.5195; SKO_total = 3.6465
106
     SKO_random = 3.4353; SKO_total = 3.5394
107
108
     NC=90;
109
     SKO random = 3.4353; SKO total = 3.5394
110
     SKO random = 3.7185; SKO total = 3.9139
111
     SKO_random = 3.7185; SKO_total = 3.9139
112
     SKO_random = 3.7185; SKO_total = 3.9139
113
     SKO_random = 3.7893; SKO_total = 4.0186
114
115
     NC=100:
116
     SKO_random = 3.8329; SKO_total = 4.1076
117
     SKO random = 3.7513; SKO total = 3.9933
118
     SKO random = 3.8488; SKO total = 4.1880
119
     SKO random = 3.9453; SKO total = 4.2252
120
     SKO random = 3.9135; SKO total = 4.2203
121
122
123
124
     125
     Q = 0.2;
126
     KP1=5:
127
     NC=3
129
     SKO_random = 1.0063; SKO_total = 6.195
130
     SKO_random = 0.9042; SKO_total = 6.4708
131
     SKO_random = 0.9042; SKO_total = 6.4708
     SKO random = 1.1837; SKO total = 6.3276
133
     SKO_random = 0.8660; SKO_total = 6.5005
134
135
     NC=5
136
     SKO_random = 1.3456; SKO_total = 1.5280
137
     SKO_random = 1.2959; SKO_total = 1.4442
138
     SKO_random = 1.3594; SKO_total = 1.4874
139
     SKO_random = 1.2320; SKO_total = 1.4649
140
```

```
SKO_random = 1.5240; SKO_total = 1.6711
141
142
143
     SKO_random = 1.9553; SKO_total = 1.9547
144
     SKO_random = 1.7568; SKO_total = 1.7578
145
     SKO_random = 1.9736; SKO_total = 1.9708
146
     SKO random = 1.6811; SKO total = 1.6868
147
     SKO random = 1.4812; SKO total = 1.4831
148
149
     NC=9
150
     SKO_random = 1.7197; SKO_total = 1.7189
151
     SKO_random = 1.9628; SKO_total = 1.9626
152
     SKO_random = 1.8458; SKO_total = 1.8461
153
     SKO_random = 1.6701; SKO_total = 1.6687
154
     SKO_random = 1.6701; SKO_total = 1.6687
155
156
     NC=12;
157
     SKO random = 2.2480; SKO total = 2.2469
158
     SKO_random = 2.4375; SKO_total = 2.4368
159
     SKO_random = 2.2269; SKO_total = 2.2293
160
     SKO_random = 2.3729; SKO_total = 2.3704
161
     SKO_random = 2.4933; SKO_total = 2.4937
162
163
     NC=15
164
     SKO_random = 2.7851; SKO_total = 2.7901
165
     SKO_random = 3.1396; SKO_total = 3.1362
166
     SKO_random = 2.6411; SKO_total = 2.6431
167
     SKO_random = 2.3485; SKO_total = 2.3543
168
     SKO random = 2.7106; SKO total = 2.7072
169
170
171
     SKO_random = 2.8537; SKO_total = 2.8548
172
     SKO_random = 2.7534; SKO_total = 2.7478
173
     SKO_random = 2.9480; SKO_total = 2.9488
174
     SKO_random = 3.0723; SKO_total = 3.0706
175
     SKO_random = 2.7978; SKO_total = 2.7944
176
177
     NC=20
178
     SKO_random = 3.0198; SKO_total = 3.0213
179
     SKO random = 3.0560; SKO total = 3.0586
180
     SKO random = 3.1013; SKO total = 3.1022
181
     SKO_random = 3.4691; SKO_total = 3.4694
182
     SKO_random = 3.1196; SKO_total = 3.1235
183
184
     NC=25
185
     SKO random = 3.3595; SKO total = 3.3604
186
     SKO_random = 3.3595; SKO_total = 3.3604
187
     SKO_random = 3.3595; SKO_total = 3.3604
     SKO_random = 3.3595; SKO_total = 3.3604
189
     SKO_random = 3.3595; SKO_total = 3.3604
190
191
     NC=30
192
     SKO random = 3.6253; SKO total = 3.6251
193
     SKO random = 3.8739; SKO total = 3.8739
194
     SKO_random = 3.6936; SKO_total = 3.6936
195
     SKO_random = 3.7138; SKO_total = 3.7136
196
     SKO_random = 3.5736; SKO_total = 3.5742
197
198
     NC = 40
199
200
     SKO_random = 4.3812; SKO_total = 4.3862
```

```
SKO random = 4.6974; SKO total = 4.7010
201
     SKO_random = 4.6974; SKO_total = 4.7010
202
     SKO_random = 4.4936; SKO_total = 4.5028
203
     SKO_random = 4.3590; SKO_total = 4.3593
204
205
     NC=50;
206
     SKO random = 5.2861; SKO total = 5.2819
207
     SKO random = 4.6159; SKO total = 4.6496
208
     SKO_random = 4.8576; SKO_total = 4.8755
209
     SKO_random = 4.9197; SKO_total = 4.9480
210
     SKO_random = 4.9452; SKO_total = 4.9462
211
212
     NC=60;
213
     SKO_random = 5.8115; SKO_total = 5.8376
214
     SKO random = 5.8240; SKO total = 5.8525
215
     SKO_random = 5.6562; SKO_total = 5.6910
216
     SKO_random = 5.5518; SKO_total = 5.5462
217
     SKO random = 5.7118; SKO total = 5.7553
218
219
     NC=70:
220
     SKO random = 6.4485; SKO total = 6.4681
221
     SKO random = 6.4485; SKO total = 6.4681
222
     SKO random = 6.6394; SKO total = 6.6631
223
     SKO_random = 6.4642; SKO_total = 6.5159
224
     SKO_random = 6.3723; SKO_total = 6.3230
225
226
     NC=80;
227
     SKO_random = 7.0771; SKO_total = 7.1619
228
     SKO_random = 6.5653; SKO_total = 6.6143
229
     SKO random = 6.4690; SKO total = 6.4909
230
     SKO random = 6.7100; SKO total = 6.8053
231
     SKO_random = 6.8942; SKO_total = 6.9498
232
233
     NC=90;
234
     SKO_random = 7.3474; SKO_total = 7.4614
235
     SKO_random = 7.2918; SKO_total = 7.4476
236
     SKO_random = 7.1095; SKO_total = 7.2085
237
     SKO random = 7.3789; SKO total = 7.4987
238
     SKO_random = 7.0522; SKO_total = 7.1921
239
240
     NC=100:
241
     SKO random = 7.6033; SKO total = 7.7437
242
     SKO_random = 7.6910; SKO_total = 7.8151
243
     SKO_random = 7.6297; SKO_total = 7.7752
244
     SKO_random = 8.2224; SKO_total = 8.3643
245
     SKO_random = 7.8468; SKO_total = 7.9509
246
247
249
250
251
     +============+
253
     0 = 0.3:
254
     KP1=5;
255
     +=============+
256
     NC=3
257
     SKO_random = 1.6469; SKO_total = 6.5428
258
     SKO_random = 1.4005; SKO_total = 6.6001
259
     SKO_random = 1.8501; SKO_total = 6.4216
260
```

```
SKO random = 1.2700; SKO total = 6.8679
261
     SKO_random = 1.9126; SKO_total = 7.0219
262
263
     NC=5
264
     SKO_random = 2.8795; SKO_total = 2.8613
265
     SKO_random = 2.8795; SKO_total = 2.8613
266
     SKO random = 1.7360; SKO total = 1.9775
267
     SKO random = 2.0196; SKO total = 2.0064
268
     SKO_random = 2.1232; SKO_total = 2.2237
269
270
     NC=7
271
     SKO_random = 2.4289; SKO_total = 2.4228
272
     SKO_random = 2.6372; SKO_total = 2.6377
273
     SKO_random = 3.0550; SKO_total = 3.0533
274
     SKO_random = 2.6748; SKO_total = 2.6713
275
     SKO_random = 2.5021; SKO_total = 2.5035
276
277
     NC=9
278
     SKO random = 2.8389; SKO total = 2.8381
279
     SKO_random = 2.9268; SKO_total = 2.9266
280
     SKO random = 3.2608; SKO total = 3.2609
281
     SKO random = 2.9258; SKO total = 2.9245
282
     SKO random = 3.0073; SKO total = 3.0069
283
284
     NC=12;
285
     SKO_random = 3.8111; SKO_total = 3.8108
286
     SKO_random = 3.7571; SKO_total = 3.7575
287
     SKO_random = 3.7943; SKO_total = 3.7928
288
     SKO_random = 3.5735; SKO_total = 3.5760
     SKO random = 3.3284; SKO total = 3.3291
290
291
     NC=15
292
     SKO_random = 3.5117; SKO_total = 3.5144
293
     SKO_random = 3.5117; SKO_total = 3.5144
294
     SKO_random = 3.7573; SKO_total = 3.7569
295
     SKO_random = 3.7573; SKO_total = 3.7569
296
     SKO_random = 3.7573; SKO_total = 3.7569
297
298
     NC=17
299
     SKO random = 4.0908; SKO total = 4.0885
300
     SKO random = 4.3821; SKO total = 4.3808
301
     SKO_random = 4.4489; SKO_total = 4.4543
302
     SKO_random = 4.9342; SKO_total = 4.9304
303
     SKO random = 4.2473; SKO total = 4.2494
305
306
     SKO_random = 4.2528; SKO_total = 4.2583
307
     SKO_random = 4.8402; SKO_total = 4.8368
     SKO_random = 4.6649; SKO_total = 4.6658
309
     SKO_random = 4.6799; SKO_total = 4.6787
310
     SKO_random = 4.5882; SKO_total = 4.5830
311
312
     NC=25
313
     SKO random = 5.4509; SKO total = 5.4511
314
     SKO_random = 5.6114; SKO_total = 5.6104
315
     SKO_random = 5.2022; SKO_total = 5.2004
316
     SKO_random = 5.0598; SKO_total = 5.0605
317
     SKO_random = 5.2168; SKO_total = 5.2181
318
319
     NC=30
320
```

```
SKO random = 6.4512; SKO total = 6.4512
321
     SKO_random = 5.8573; SKO_total = 5.8571
322
     SKO_random = 5.5337; SKO_total = 5.5336
323
     SKO_random = 6.1428; SKO_total = 6.1429
324
     SKO_random = 5.9855; SKO_total = 5.9854
325
326
     NC=40
327
     SKO random = 7.1195; SKO total = 7.1250
328
     SKO_random = 6.9142; SKO_total = 6.9078
329
     SKO_random = 6.7722; SKO_total = 6.7712
330
     SKO_random = 6.4618; SKO_total = 6.4593
331
     SKO_random = 6.6698; SKO_total = 6.6699
332
333
     NC=50;
334
     SKO random = 7.4935; SKO total = 7.4872
335
     SKO_random = 7.4065; SKO_total = 7.4363
336
     SKO_random = 7.5284; SKO_total = 7.5401
337
     SKO random = 7.9340; SKO total = 7.9429
338
     SKO random = 7.7284; SKO total = 7.7189
339
340
     NC=60:
341
     SKO_random = 8.3757; SKO_total = 8.4126
342
     SKO random = 8.2211; SKO total = 8.2294
343
     SKO_random = 8.8256; SKO_total = 8.8204
344
     SKO_random = 7.6740; SKO_total = 7.7277
345
     SKO_random = 8.1573; SKO_total = 8.1861
346
347
     NC=70;
348
     SKO random = 8.9279; SKO total = 8.9985
     SKO random = 9.0549; SKO total = 9.0670
350
     SKO random = 9.5694; SKO total = 9.6050
351
     SKO_random = 9.5112; SKO_total = 9.5503
352
     SKO_random = 9.3157; SKO_total = 9.3631
353
     SKO_random = 9.1844; SKO_total = 9.1765
354
355
     NC=80;
356
     SKO_random =10.1797; SKO_total =10.2675
357
     SKO random =10.4523; SKO total =10.4739
358
     SKO_random = 9.9967; SKO_total =10.0261
359
     SKO random =10.0938; SKO total =10.0903
360
     SKO random =10.7432; SKO total =10.7701
361
362
     NC=90:
363
     SKO random =11.0320; SKO total =10.9641
     SKO_random =10.7075; SKO_total =10.7775
365
     SKO_random =11.3909; SKO_total =11.4863
366
     SKO_random =10.9012; SKO_total =11.0500
367
     SKO_random =10.9743; SKO_total =11.1041
369
     NC=100;
370
     SKO_random =12.1020; SKO_total =12.2123
371
     SKO_random =11.8351; SKO_total =11.8727
     SKO random =12.0985; SKO total =12.2470
373
     SKO random =11.4988; SKO total =11.5787
374
     SKO_random =11.2539; SKO_total =11.2948
375
376
377
378
     +=========+
379
     Q = 0.4;
```

```
KP1=5;
381
     +==============++
382
     NC=3
383
     SKO_random =1.6690; SKO_total =6.2232
384
     SKO_random =2.9597; SKO_total =6.6409
385
     SKO_random =1.5653; SKO_total =7.0395
386
     SKO random =1.6690; SKO total =6.2232
387
     SKO random =1.8700; SKO total =6.7230
388
     NC=5
390
     SKO random =2.6012; SKO total =2.6299
391
     SKO_random =2.6977; SKO_total =2.6173
392
     SKO_random =2.7558; SKO_total =2.8289
393
     394
     SKO_random =2.9752; SKO_total =2.9515
395
396
     NC=7
397
     SKO random =3.3362; SKO total =3.3375
398
     SKO random =3.2409; SKO total =3.2435
399
     SKO_random =3.2935; SKO_total =3.2942
400
     SKO_random =3.2766; SKO_total =3.2809
     SKO_random =3.5385; SKO_total =3.5401
402
403
     NC=9
404
     SKO random =4.4338; SKO total =4.4341
405
     SKO_random =4.4108; SKO_total =4.4118
406
     SKO_random =3.9636; SKO_total =3.9618
407
     SKO_random =3.5960; SKO_total =3.5955
408
     SKO random =3.4394; SKO total =3.4385
410
     NC=12:
411
     SKO_random =4.6821; SKO_total =4.6824
412
     SKO_random =4.3842; SKO_total =4.3839
413
     SKO_random =4.1436; SKO_total =4.1456
414
     SKO_random =4.3255; SKO_total =4.3212
415
     SKO_random =4.4960; SKO_total =4.4949
416
417
     NC=15
418
     SKO random =5.4638; SKO total =5.4625
419
     SKO random =5.1217; SKO total =5.1264
420
     SKO random =5.1744; SKO total =5.1782
421
     SKO_random =4.9995; SKO_total =4.9916
422
     SKO_random =4.6472; SKO_total =4.6436
423
424
     NC=17
425
     SKO_random =5.7624; SKO_total =5.7555
426
     SKO_random =5.5493; SKO_total =5.5515
427
     SKO_random =5.8748; SKO_total =5.8730
     SKO_random =6.1537; SKO_total =6.1514
429
     SKO_random =6.0439; SKO_total =6.0405
430
431
     NC=20
     SKO random =5.8256; SKO total =5.8308
433
     SKO random =6.0453; SKO total =6.0400
434
     SKO_random =6.3643; SKO_total =6.3667
435
     SKO_random =6.4321; SKO_total =6.4337
436
     SKO random =5.9967; SKO total =6.0024
437
438
439
     SKO_random =7.8978; SKO_total =7.9041
440
```

```
SKO_random =6.7560; SKO_total =6.7560
441
     SKO_random =7.3892; SKO_total =7.3876
442
     443
     SKO_random =7.5055; SKO_total =7.5025
444
445
     NC=30
446
     SKO random =7.9093; SKO total =7.9094
447
     SKO random =7.7865; SKO total =7.7871
448
     SKO_random =8.0500; SKO_total =8.0498
449
     SKO_random =8.1986; SKO_total =8.1983
450
     SKO_random =8.0680; SKO_total =8.0680
451
452
     NC=40
453
     SKO_random =8.4294; SKO_total =8.4337
454
     SKO_random =9.0631; SKO_total =9.0536
455
     SKO_random =9.1613; SKO_total =9.1616
456
     SKO_random =8.4766; SKO_total =8.4666
457
     SKO random =9.5208; SKO total =9.5295
458
     SKO random =9.3686; SKO total =9.3701
459
460
     NC=50;
461
     SKO random =9.8039; SKO total =9.7946
462
     SKO_random =10.2621; SKO_total =10.2621
463
     SKO_random =9.9478; SKO_total =9.9715
464
     SKO_random =9.8774; SKO_total =9.8807
465
     SKO_random =9.7808; SKO_total =9.7868
466
467
     NC=60;
468
     SKO random =11.6291; SKO total =11.6488
469
     SKO random =10.6178; SKO total =10.6245
470
     SKO_random =11.0245; SKO_total =10.9889
471
     SKO_random =10.9238; SKO_total =10.9294
472
     SKO_random =11.2791; SKO_total =11.2799
473
474
     NC=70;
475
     SKO_random =12.7172; SKO_total =12.7578
476
     SKO_random =11.7274; SKO_total =11.7374
477
     SKO random =11.7616; SKO total =11.7643
478
     SKO_random =12.2905; SKO_total =12.3221
479
     SKO random =12.3535; SKO total =12.3742
481
     NC=80:
482
     SKO_random =13.6566; SKO_total =13.7155
483
     SKO_random =13.8744; SKO_total =13.8573
484
     485
     SKO_random =13.4775; SKO_total =13.5090
486
     SKO_random =13.1524; SKO_total =13.2543
487
     NC=90;
489
     SKO_random =14.0277; SKO_total =14.0983
490
     SKO_random =14.2485; SKO_total =14.3079
491
     SKO_random =14.6522; SKO_total =14.6640
492
     SKO random =14.5450; SKO total =14.6241
493
     SKO random =14.6765; SKO total =14.7371
494
     SKO_random =15.0121; SKO_total =15.0617
495
496
     NC=100;
497
     SKO_random =15.0101; SKO_total =15.0584
498
     SKO_random =15.8717; SKO_total =15.9176
499
     SKO_random =15.9390; SKO_total =15.9788
```

```
SKO random =15.1904; SKO total =15.3082
501
     SKO_random =16.7351; SKO_total =16.8556
502
     SKO_random =15.5650; SKO_total =15.6828
503
504
505
506
507
508
     +============++
509
     Q=0.5;
510
     KP1=5:
511
     +============+
512
     NC=3
513
     SKO_random = 2.1047; SKO_total = 6.5492
514
     SKO random = 3.8840; SKO total = 7.1935
515
     SKO_random = 2.4314; SKO_total = 6.7406
516
     SKO_random = 3.8697; SKO_total = 7.0889
517
     SKO random = 2.1560; SKO total = 7.2289
518
519
     NC=5
520
     SKO random = 4.1288; SKO total = 4.2740
521
     SKO random = 3.7164; SKO total = 3.7919
522
     SKO random = 4.0959; SKO total = 4.1125
523
     SKO_random = 3.5722; SKO_total = 3.6412
524
     SKO_random = 3.7720; SKO_total = 3.8741
526
527
     SKO_random = 5.7578; SKO_total = 5.7632
528
     SKO_random = 4.6666; SKO_total = 4.6681
     SKO random = 5.6338; SKO total = 5.6352
530
     SKO random = 4.1412; SKO total = 4.1339
531
     SKO_random = 4.5708; SKO_total = 4.5747
532
533
     NC=9
534
     SKO_random = 5.0822; SKO_total = 5.0845
535
     SKO_random = 5.0240; SKO_total = 5.0240
536
     SKO_random = 4.7564; SKO_total = 4.7547
537
     SKO random = 4.6605; SKO total = 4.6609
538
     SKO random = 4.9803; SKO total = 4.9796
539
540
     NC=12:
541
     SKO random = 6.2535; SKO total = 6.2483
542
     SKO_random = 5.4607; SKO_total = 5.4575
543
     SKO_random = 6.1886; SKO_total = 6.1885
544
     SKO_random = 6.5371; SKO_total = 6.5405
545
     SKO_random = 5.6958; SKO_total = 5.6961
546
547
     NC=15
     SKO_random = 7.1192; SKO_total = 7.1117
549
     SKO_random 6.1287; SKO_total = 6.1271
550
     SKO_random 6.3150; SKO_total = 6.3157
551
     SKO random = 7.0155; SKO total = 7.0164
552
     SKO random = 6.7026; SKO total = 6.6969
553
554
     NC=17
555
     SKO_random = 7.2164; SKO_total = 7.2155
     SKO_random = 6.8305; SKO_total = 6.8244
557
     SKO_random = 6.9642; SKO_total = 6.9712
558
     SKO_random = 6.9754; SKO_total = 6.9736
559
     SKO_random = 7.0943; SKO_total = 7.0893
```

```
561
     NC=20
     SKO_random = 7.2846; SKO_total = 7.2974
563
     564
     SKO_random = 7.0315; SKO_total = 7.0290
565
     SKO_random = 7.8516; SKO_total = 7.8514
566
     SKO random = 8.1123; SKO total = 8.1022
567
568
     NC=25
569
     SKO_random = 8.7957; SKO_total = 8.7985
570
     SKO_random = 8.5014; SKO_total = 8.5020
571
     572
     SKO_random = 8.5001; SKO_total = 8.4979
573
     SKO_random = 8.8018; SKO_total = 8.7967
574
575
     NC=30
576
     SKO_random = 9.6059; SKO_total = 9.6068
577
     SKO random = 9.1637; SKO total = 9.1634
578
     SKO_random = 9.5142; SKO_total = 9.5145
579
     SKO_random = 9.8370; SKO_total = 9.8372
580
     SKO random = 9.1150; SKO total = 9.1153
581
582
     NC=40
583
     SKO_random =10.8779; SKO_total =10.8818
     SKO_random =11.4947; SKO_total =11.4855
585
     SKO_random =11.7233; SKO_total =11.7175
586
     SKO_random =11.1289; SKO_total =11.1260
587
     SKO_random =11.4574; SKO_total =11.4670
588
     SKO random =11.5831; SKO total =11.5964
590
     NC=50:
591
     SKO_random =12.3674; SKO_total =12.3797
592
     SKO_random =13.2088; SKO_total =13.2280
593
     SKO_random =12.5688; SKO_total =12.5637
594
     SKO_random =12.5500; SKO_total =12.5415
595
     SKO_random =13.5294; SKO_total =13.5515
596
     SKO_random =12.8066; SKO_total =12.8054
597
598
     NC=60:
599
     SKO random =14.1448; SKO total =14.1394
600
     SKO random =13.8896; SKO total =13.8786
601
     SKO_random =14.2767; SKO_total =14.2513
602
     SKO_random =14.6135; SKO_total =14.6650
603
     SKO random =15.5721; SKO total =15.5425
604
605
606
607
     SKO_random =14.4146; SKO_total =14.4476
     SKO_random =15.9943; SKO_total =16.0110
     SKO_random =14.7613; SKO_total =14.7425
609
     SKO_random =15.8581; SKO_total =15.8841
610
     SKO_random =15.3762; SKO_total =15.3755
611
     SKO random =16.2715; SKO total =16.2514
612
613
     NC=80:
614
     SKO_random =17.0639; SKO_total =17.1080
615
     SKO_random =17.0716; SKO_total =17.1570
616
     SKO_random =16.8914; SKO_total =16.8378
617
     SKO_random =16.3895; SKO_total =16.4210
618
     SKO_random =16.1013; SKO_total =16.1346
619
620
```

```
NC=90;
621
      SKO_random =17.9378; SKO_total =18.0264
622
      SKO_random =17.6949; SKO_total =17.7005
623
      SKO_random =18.3477; SKO_total =18.3717
624
      SKO_random =18.0882; SKO_total =18.0964
625
      SKO_random =18.8956; SKO_total =19.0189
626
627
      NC=100;
628
      SKO_random =18.7728; SKO_total =18.9262
629
      SKO_random =19.5564; SKO_total =19.5764
SKO_random =19.8899; SKO_total =19.9440
SKO_random =18.8198; SKO_total =18.8280
630
631
632
      SKO_random =18.6391; SKO_total =18.672
633
```