Category Theory

Paolo Bettelini

Contents

1	Cat	tegory
	1.1	Composition or Transitivity
	1.2	Identity or Reflexivity
	1.3	Associativity
2	Hor	momorphisms
	2.1	Epimorphisms
	2.2	Monomorphisms
	2.3	Isomorphisms
	2.4	Homomorphism sets
3	Typ	pes of elements
	3.1	Void
	3.2	
4		pes of categories
	4.1	Thin categories
		4.1.1 Order categories
	4.2	Monoid
	4.3	Kleisli category

1 Category

A category consists of *objects* and *morphism* or *arrows*.

An arrow has a beginning and an ending, and it goes from one object to another.

Objects serve the purpose of marking the beginning and ending of a morphism.

$$\bigcap a \longrightarrow b \longrightarrow \text{An example of objects and morphisms}$$

The set of morphisms of a category C is denoted hom(C) and the set of objects ob(C).

1.1 Composition or Transitivity

Composition is a property that says that if there is an arrow from a to b, and an arrow from b to c, there must exist an arrow from a to c.

$$a \xrightarrow{f \circ g} b \xrightarrow{g} c$$

1.2 Identity or Reflexivity

For every object there is an identity arrow.

$$a \bigcirc \mathrm{id}_a$$

The composition of an arrow with an identity is the arrow itself

$$a \xrightarrow{f} b \operatorname{id}_b$$

$$f \circ \mathrm{id}_b = f$$

and also vice versa

$$id_b \circ f = f$$

1.3 Associativity

Compositions have the associative property

$$h\circ (g\circ f)=(h\circ g)\circ f$$

2 Homomorphisms

A homomorphism is a map between two structures of the same type.

2.1 Epimorphisms

An epimorphism is a **surjective** morphism.

We can define surjectivity only in terms of morphisms.

Consider a morphism $f: a \to b$ which maps elements of a onto b. Let's also define the morphisms g_1 and g_2 which map elements from b to c. The domain of g_1 and g_2 is the codomain of f. These two functions act as f for object in the image of f, but may map objects differently for objects in the codomain of f but outside the image of f. If the morphism is surjective, hence if the codomain and the image of f are the same, then g_1 and g_2 will always act as f.

$$a \xrightarrow{f} b \xrightarrow{g_1} c$$

formally,

$$\forall c \forall g_1, g_2 : b \rightarrow c, g_1 \circ f = g_2 \circ f \Rightarrow g_1 = g_2$$

An epimorphism is labelled with \rightarrow .

2.2 Monomorphisms

An epimorphism is an **injective** morphism.

$$c \xrightarrow{g_1} a \xrightarrow{f} b$$

A morphism $f: a \to b$ is a monomorphism if

$$\forall c \, \forall g_1, g_2 : c \to a, f \circ g_1 = f \circ g_2 \Rightarrow g_1 = g_2$$

A monomorphism is labelled with \hookrightarrow .

2.3 Isomorphisms

An isomorphism is a **bijective** morphism (mono and epic, but not every mono and epic is an isomorphism).

A morphism $f: a \to b$ is invertible if there is a function g that goes from b to a

$$b: b \to a$$

such that

$$g \circ f = \mathrm{id}_b$$

$$f \circ g = \mathrm{id}_a$$

$$a \xrightarrow{f} b$$

An isomorphism is labelled with $\stackrel{\sim}{\rightarrow}$.

2.4 Homomorphism sets

A hom-set is a set of all morphisms from an object to another of a category C. It is denoted as

$$C(a, b)$$

 $\operatorname{Hom}_C(a, b)$
 $\operatorname{Hom}(a, b)$

Note

$$\operatorname{Hom}(a,b) \neq \operatorname{Hom}(b,a)$$

3 Types of elements

3.1 Void

The void element is equivalent to the logical **false**. It is impossible to construct. This, functions that take void as an argument are impossible to call.

3.2 Singleton

A singleton is a single empty tuple element and is equivalent to the logical **true**. It can be constructed from nothing.

4 Types of categories

4.1 Thin categories

A thin category is a category in which each pair of objects has either 0 or 1 morphism. Every hom-set of a thin category has either 1 or 0 elements.

4.1.1 Order categories

An order category is a thin category where morphisms represent relationships.

For example, here we have an equality relationship

$$a \xrightarrow{\leq} b$$

The relationship must be reflexive since there must exist an identity morphsim.

$$\leq \bigcap a$$

It must also be composable and associative. The relations may for example be preorders, partial orders or total orders.

4.2 Monoid

A monoid is a category with a single object. It is equivalent to a set closed under an associative binary operation.

4.3 Kleisli category