Zadanie: PRM Permutacja

Warsztaty ILO, grupa olimpijska, dzień 13. Dostępna pamięć: 128 MB.

Przemek ma permutację n liczb, ale chciałby, żeby zostało dokładnie k z tych liczb. Wypisał sobie podciąg k-elementowy tej permutacji, który ma zostać na koniec. Aby otrzymać ten podciąg, może wybrać sobie jakiś przedział, a następnie usunąć z niego najmniejszą liczbę w tym przedziałe. Dostaje za to tyle punktów, ile w przedziałe było liczb. Może on tę operację wykonywać wielokrotnie.

Ile maksymalnie punktów może zdobyć po sprowadzeniu permutacji początkowej do jej k-elementowego podciągu?

Wejście

W pierwszym i jedynym wierszu wejścia znajdują się dwie liczby całkowite $n, k \ (1 \le k \le n \le 5 \cdot 10^5)$, oznaczające kolejno liczbę elementów permutacji oraz ile liczb na koniec ma pozostać.

W drugim wierszu znajduje się n różnych liczb a_1, a_2, \ldots, a_n $(1 \le a_i \le n)$, będących permutacją początkową.

W trzecim wierszu znajduje się k różnych liczb $b_1, b_2, \dots b_k$ $(1 \le b_i \le n)$, będących końcowym podciągiem permutacji początkowej. Możesz założyć, że jest to poprawny podciąg, tzn. da się usunąć pewne elementy z początkowej permutacji, aby osiągnąć ten ciąg elementów.

Wyjście

Na wyjściu należy wypisać jedną liczbę, oznaczającą maksymalną liczbę punktów, jakie może zdobyć Przemek.

Przykład

Dla danych wejściowych:

poprawnym wynikiem jest:

10 5

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$n \le 1000$	30
2	brak dodatkowych założeń	70

30