

Linear classifiers

- Describe inputs using "feature vectors" in \mathbb{R}^d .
- Linear classifier: $w \in \mathbb{R}^d$ (weight vector) and $\theta \in \mathbb{R}$ (threshold)

$$f_{w,\theta}(x) = \begin{cases} +1, & \langle x, w \rangle > \theta \\ -1, & \langle x, w \rangle \leq \theta \end{cases}$$

Linear classifiers

Homogeneous linear classifiers

• Homogeneous linear classifier: $w \in \mathbb{R}^d$ (weight vector)

$$f_w(x) = f_{w,0}(x) = \begin{cases} +1, & \langle x, w \rangle > 0 \\ -1, & \langle x, w \rangle \le 0 \end{cases}$$

w must at positive side!!!

Homogeneous linear classifiers

Lifting non-homogeneous linear classifiers

- Suppose $f_{w, \theta}$ is a non-homogeneous linear classifier in \mathbb{R}^d
- Map weight vector and threshold to $\widetilde{w} := (w, -\theta) \in \mathbb{R}^{d+1}$
- Map feature vectors x to $(x, 1) \in \mathbb{R}^{d+1}$
- $f_{\widetilde{w},0}$ is equivalent homogeneous linear classifier in \mathbb{R}^{d+1}

Perceptron (Rosenblatt, '58)

Input: training data *S*

- Let $w_1 = \vec{0}$.
- For t = 1, 2, ...:
 - If there is $(x_t, y_t) \in S$ such that $f_{w_t}(x_t) \neq y_t$, then:
 - Update: $w_{t+1} \coloneqq w_t + y_t x_t$
 - Else: return w_t

predict at=-1

predict
$$a_t = -1$$

Correct label $Y_t = +1$

When $:= W_t + Y_t X_t$

predict at=+1

predict at=+1

Correct label Y==-

Separable data

- Training data S from $\mathbb{R}^d \times \{-1, +1\}$
- Assume some $w_{\star} \in \mathbb{R}^d$ satisfies

$$y\langle x, w_{\star} \rangle > 0$$

for all $(x, y) \in S$.

Separable data

- Training data S from $\mathbb{R}^d \times \{-1, +1\}$
- Assume some $w_\star \in \mathbb{R}^d$ satisfies

$$y\langle x, w_{\star} \rangle > 0$$

for all $(x, y) \in S$.

Margins

- Training data S from $\mathbb{R}^d \times \{-1, +1\}$
- Define the margin of *S* to be

find out the cloest point, and then adjust the llw*ll to get the max margin.

$$\gamma = \gamma(S) \coloneqq \max_{\|w_{\star}\| \le 1(x,y) \in S} \min_{y \le x, w_{\star} > 0} y \langle x, w_{\star} \rangle.$$

the margin is also decided

by IIw*II

find the w* with maximum margin(margin is the shortest distance from hyperplane to any point)

there is no wrong classification case!!!

Margins-based analysis of Perceptron

- Training data S from $\mathbb{R}^d \times \{-1, +1\}$
- Assume S is separable with margin $\gamma > 0$ (as witnessed by w_{\star}).
- Also, let $R \coloneqq \max_{(x,y) \in S} ||x||$.
- Does Perceptron terminate?
- After how many updates?

Main idea of analysis

• Track the (cosine of the) angle between w_t and w_{\star} :

$$\frac{\langle w_{\star}, w_{t} \rangle}{\|w_{\star}\| \|w_{t}\|}$$

• With each update from w_t to w_{t+1} , how does this quantity change?

Margins-based analysis of Perceptron

Suppose Perceptron makes an update in iteration t.

This is positive

$$\langle w_{\star}, w_{t+1} \rangle = \langle w_{\star}, w_t + y_t x_t \rangle \geq \langle w_{\star}, w_t \rangle + \gamma \text{ W* is a linear classifier could correctly classify all samples in the set.}$$

$$||w_{t+1}||^2 = ||w_t||^2 + 2\langle w_t, y_t x_t \rangle + ||y_t x_t||^2 \le ||w_t||^2 + R^2$$

R is the max length of any feature vector.

negative ca

cause it's a false classification~~

Could be very small~~

Margins-based analysis of Perceptron

Suppose Perceptron makes T updates.

$$\langle w_{\star}, w_{T+1} \rangle \geq T \gamma$$

$$\langle w_{\star}, w_{T+1} \rangle \le ||w_{\star}|| \cdot ||w_{T+1}|| \le R\sqrt{T}$$

Conclusion: number of updates must satisfy

no matter the sequence, must satisfy this. $T \leq \left(\frac{R}{\gamma}\right)^2 . \quad \text{If the sample is separable, we have the upper bound over $T$$$\sim$-could be calculated!}$