Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Рубежный контроль №1 по дисциплине «Методы машинного обучения» Вариант №1

Выполнил: студент группы ИУ5-23М Богомолов Д. Н. Богомолов Дмитрий ИУ5-23М РК 1 по дисциплине Методы машинного обучения Вариант 1 (задача 1, boxplot, датасет boston)

```
[0]: import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt
```

```
[32]: from sklearn.datasets import load_boston
X, y = load_boston(return_X_y=True)
print(X.shape)
(506, 13)
```

(506, 13)

[32]: (506, 13)

Создание Pandas Dataframe

```
[34]: data = make_dataframe(load_boston) #Создание датафрейма data.head() #Вывод первых 5 строк
```

[34]:	CRIM	ZN	INDUS	CHAS	NOX		TAX	PTRATIO	В	LSTAT
	<pre></pre>	18.0	2.31	0.0	0.538		296.0	15.3	396.90	4.98
	24.0	10.0	2.3.	0.0	0.550	•••	270.0	13.3	370.70	11.70
	1 0.02731	0.0	7.07	0.0	0.469		242.0	17.8	396.90	9.14
	∠ 21.6									
	2 0.02729	0.0	7.07	0.0	0.469		242.0	17.8	392.83	4.03
	→ 34.7									
	3 0.03237	0.0	2.18	0.0	0.458		222.0	18.7	394.63	2.94
	→ 33.4									
	4 0.06905	0.0	2.18	0.0	0.458		222.0	18.7	396.90	5.33
	→ 36.2									

[5 rows x 14 columns]

Поиск пустых значений в колонках

```
[35]: for col in data.columns:

# Количество пустых значений

temp_null_count = data[data[col].isnull()].shape[0]

print("{} - {}".format(col, temp_null_count))

#Пустых значений не обнаружено
```

CRIM - 0
ZN - 0
INDUS - 0
CHAS - 0
NOX - 0
RM - 0
AGE - 0
DIS - 0
RAD - 0
TAX - 0
PTRATIO - 0
B - 0
LSTAT - 0
target - 0

[36]: data.describe() #Описательные статистики

[36]:		CRIM	ZN	INDUS		В	LSTAT	
	target							
	count	506.000000	506.000000	506.000000		506.000000	506.000000	
	506.00	0000						
	mean	3.613524	11.363636	11.136779		356.674032	12.653063	
	22.532	806						
	std	8.601545	23.322453	6.860353	•••	91.294864	7.141062	
	9.197104							
	min	0.006320	0.000000	0.460000	•••	0.320000	1.730000	
	5.0000	00						
	25% 0.082045		0.000000	5.190000	•••	375.377500	6.950000	
	17.025	000						
	50%	0.256510	0.000000	9.690000	•••	391.440000	11.360000	
	21.200000							
	75 %	3.677083	12.500000	18.100000	•••	396.225000	16.955000	
	25.000	000						
	max	88.976200	100.000000	27.740000	•••	396.900000	37.970000	
	50.00000							

[8 rows x 14 columns]

Распределениие значений целевого признака

```
[37]: fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data["target"])
```

[37]: <matplotlib.axes._subplots.AxesSubplot at 0x7fcff7006390>

Распределение похоже на нормальное Парные диаграммы для понимания общей картины

[38]: sns.pairplot(data)

[38]: <seaborn.axisgrid.PairGrid at 0x7fcff7849908>

Находим почти линейную зависимость между значениями двух колонок с содержанием "выбросов"

```
[39]: fig, ax = plt.subplots(figsize=(10,10)) sns.scatterplot(ax=ax, x="RM", y="target", data=data)
```

[39]: <matplotlib.axes._subplots.AxesSubplot at 0x7fcff2cea668>

[0]: sns.violinplot(x=data["INDUS"])

[0]: <matplotlib.axes._subplots.AxesSubplot at 0x7f39e74599e8>

По violin plot видим, что распределение бимодальное.

Задание для ИУ5-23M (boxplot для колонки с возрастом)

[40]: sns.boxplot(y=data["AGE"])

[40]: <matplotlib.axes._subplots.AxesSubplot at 0x7fcff2fefc18>

Корреляционный анализ

Построим корреляционную матрицу

[41]: data.corr()

[41]:	CRIM	ZN	INDUS	 В	LSTAT	target
CRIM	1.000000	-0.200469	0.406583	 -0.385064	0.455621	-0.388305
ZN	-0.200469	1.000000	-0.533828	 0.175520	-0.412995	0.360445
INDUS	0.406583	-0.533828	1.000000	 -0.356977	0.603800	-0.483725
CHAS	-0.055892	-0.042697	0.062938	 0.048788	-0.053929	0.175260
NOX	0.420972	-0.516604	0.763651	 -0.380051	0.590879	-0.427321
RM	-0.219247	0.311991	-0.391676	 0.128069	-0.613808	0.695360

```
AGE
         0.352734 -0.569537
                                          ... -0.273534
                                                        0.602339 -0.376955
                               0.644779
DIS
         -0.379670
                    0.664408 -0.708027
                                             0.291512 -0.496996
                                                                   0.249929
RAD
         0.625505 -0.311948
                               0.595129
                                          ... -0.444413
                                                        0.488676 -0.381626
TAX
         0.582764 -0.314563
                               0.720760
                                          ... -0.441808
                                                        0.543993
                                                                 -0.468536
                                          ... -0.177383
PTRATIO
         0.289946 -0.391679
                               0.383248
                                                        0.374044 -0.507787
         -0.385064
                    0.175520 -0.356977
                                             1.000000 -0.366087
                                                                  0.333461
В
LSTAT
         0.455621 -0.412995
                                                        1.000000 -0.737663
                               0.603800
                                            -0.366087
        -0.388305
                    0.360445 -0.483725
                                             0.333461 -0.737663
                                                                   1.000000
target
```

[14 rows x 14 columns]

Также построим матрицу корреляций по Пирсону

```
[42]: # Треугольный вариант матрицы Пирсона
mask = np.zeros_like(data.corr(), dtype=np.bool)
mask[np.tril_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt=".1f")
```

[42]: <matplotlib.axes._subplots.AxesSubplot at 0x7fcff2b41978>

Выявлена корреляция между показателями RAD и TAX Использовав Solar correlation map, получаем ту же зависимость

