Partial Differential Equations I

January 8, 2024

Homework

Assigned exercises and concept maps. Graded by completion.

Presentations

Assigned topics; responsible for giving a class.

Definition: Partial Differential Equation(s) (PDE)

An identity relating an uknown function, its partial derivatives and its variables.

$$F(D^k u, ..., D^2 u, Du, u, x) = 0, \quad x \in U \subseteq \mathbb{R}^n$$

where U is an open subset of \mathbb{R}^n , $u:U\subset\mathbb{R}^n\to\mathbb{R}$, $Du=(\partial_{x_1}u_1,\ldots,\partial_{x_n}u)$.

Then $F: \mathbb{R}^{n^k} \times \cdots \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$, where F is given.

 $x = (x_1 ..., x_n)$ is (are) the independent variable(s).

u is the unknown function or dependent variable.

k is the order of the PDE.

Goal

Given a PDE, we consider

- Existence
- Uniqueness
- Stability

Recall: Multiindex Notation

 $\alpha = (\alpha_1, \dots, \alpha_n)$ a vector such that $\alpha_i \in \mathbb{Z}_{\geq 0}$. Then we say that α is a multiindex with order $|\alpha| = \alpha_1 + \dots + \alpha_n$.

Notation

$$u: U \subseteq \mathbb{R}^n \to \mathbb{R}, \ \alpha = (\alpha_1, \dots, \alpha_n).$$

 $u^{\alpha} := D^{\alpha} u = \partial_{x_n}^{\alpha_n} \cdots \partial_{x_1}^{\alpha_1} u, \text{ where } \partial^0 u = u.$

Definition: Linear Partial Differential Equation

A linear PDE of order k is of the form

$$(*)\sum_{|\alpha|=k}a_{\alpha}(x)D^{\alpha}u=f(x)$$

Remark

This means that *F* is multilinear in the first $n^k + n^{k-1} + \cdots$ variables.

Definition: Homogeneous Linear Partial Differential Equation

A linear given by (*) is homogeneous if $f(x) \equiv 0$. Otherwise, it is non-homogeneous.

Example 1: Linear Transport Equation

$$\nabla u \cdot (1, b) = u_t + b \cdot Du = f(t, x)$$

This is a linear PDE of order 1 on $\mathbb{R} \times \mathbb{R}^n \equiv \mathbb{R}^{n+1}$ where (t, x) are independent variables and u is dependent. Here, x is the spatial variable while t is time and Du represents the gradient. $\nabla u = (\partial_t u, \nabla u), \ b \cdot Du = \sum_{i=1}^n b_i \partial_{x_i} u, \ (b_1, \dots, b_n) \in \mathbb{R}^n$ is fixed.

Example 2: Laplace Equation

$$\Delta u := \sum_{i=1}^{n} \partial_{x_i} u = 0$$

This is a linear, homogeneous PDE of order 2.

Example 3: Poisson Equation

$$-\Delta u := f(u)$$

This is a nonlinear PDE of order 2.

Consider $f(u) = u^2$.

Example 4: Heat Equation (Diffusion Equation)

$$u_t - \Delta u = 0$$

This is a linear, homogeneous PDE of order 2.

Example 5: Wave Equation

$$u_{tt} - \Delta u = 0$$

This is a linear, homogeneous PDE of order 2.

Transport Equation

$$u:\mathbb{R}^n(0,\infty)\to\mathbb{R}$$
 given by

$$u_t + b \cdot Du = 0, \quad b \in \mathbb{R}^n$$

In order to get a solution, first assume that ther exists a "nice" (e.g. smooth, C^1 , differentiable, etc.) solution.

Step 1

Notice that the PDE is equivalent to

$$t = \begin{pmatrix} ((0, \infty), t) \\ (x, t) \\ \end{pmatrix}$$

 $\nabla u \cdot (b,1) = 0$

Step 2

Consider a curve on \mathbb{R}^{n+1} with velocity (1,b) which passes through (x,t). i.e.

$$\alpha(s) = (x + sb, t + s)$$

Notice $\alpha'(s) = (b, 1)$.

Then, let us study u along the curve $\alpha(s)$.

$$z(s) := u(\alpha(s))$$

Taking the derivative with respect to s,

$$z'(s) := \frac{d}{ds}(u \circ \alpha(s)) = \nabla u|_{\alpha(s)} \cdot \alpha'(s) = \nabla u|_{\alpha(s)} \cdot (b, 1) = 0$$

That is z'(s) = 0, z(s) is constant, and u along $\alpha(s)$ is constant.

Conclusion

If we know some value of u along $\alpha(s)$, then we know all values along $\alpha(s)$. If we have some value of u along every $\alpha(s)$, then we know u on $\mathbb{R}^n \times (0, \infty)$.

Transport Equation - Homogeneous Initial Value Problem

$$(*)\begin{cases} \nabla u \cdot (b,1) = 0, \quad \mathbb{R}^n \times (0,\infty) \\ u = g, \quad \mathbb{R}^n \times \{t = 0\} \end{cases}$$

Here, $g: \mathbb{R}^n \to \mathbb{R}$ is given.

Consider (x, t); we want to find $(x_0, 0)$.

We know $\alpha(s) = (x + sb, t + s) = (x_0, 0)$, therefore

$$\begin{cases} x + sb = x_0 & (1) \\ t + s = 0 \implies s = -t & (2) \end{cases}$$

Then, by replacing (2) in (1),

$$x_0 = x - tb$$

Then from the conclusion

$$u(x,t) = u(x_0,0) = g(x_0) = g(x-tb)$$

Therfore, u(x, t) := g(x - tb) ().

Remark

- 1. If there exists a regular (differentiable or C^1) solution u for *, then u should look like \P .
- 2. If g is (differentiable or C^1), then u defined by \P is a (differentiable or C^1) solution for my problem.

Homework

Show that ♥ satisfies *.

Transport Equation - Non-homogeneous Initial Value Problem

$$(*)\begin{cases} \nabla u \cdot (b,1) = f(x,t), & \mathbb{R}^n \times (0,\infty) \\ u = g, & \mathbb{R}^n \times \{t = 0\} \end{cases}$$

Where $g: \mathbb{R}^n \to \mathbb{R}$ and $f: \mathbb{R}^n \times (0, \infty) \to \mathbb{R}$ are given.

Solution

Notice that the PDE is equivalent to

$$\nabla u \cdot (b,1) = f(x,t)$$

Define the "characteristic curve"

$$\alpha(s) = (x + sb, t + s)$$

and

$$z(s) := u(\alpha(s))$$

Taking $\frac{d}{ds}$,

$$z'(s) = \nabla u|_{\alpha(s)} \cdot (b,1) = f(\alpha(s)) \Longrightarrow z'(s) = f(x+sb,t+s)(c)$$

Notice that c is an ordinary differential equation. Integrating from -t to 0.

$$\int_{-t}^{0} z'(s) \, ds = \int_{-t}^{0} f(x+sb,t+s) \, ds$$
$$z(0) - z(-t) = \int_{-t}^{0} f(x+sb,t+s) \, ds$$

Notice that z(0) = u(x, t) and $z(-t) = u(\alpha(-t)) = u(x - tb, 0)$.

$$u(x,t) = u(x-tb,0) + \int_{-t}^{0} f(x+sb,t+s) \, ds$$

Then

$$u(x,t) = g(x-tb) + \int_{-t}^{0} f(x+sb,t+s) \, ds$$

$$= \int_{\overline{s}=s+t}^{0} g(x-tb) + \int_{0}^{t} f(x+(\overline{s}-t)b,\overline{s}) \, d\overline{s}$$

$$= g(x-tb) + \int_{0}^{t} f(x+(s-t)b,s) \, ds$$

Remark: Method of Characteristics

Try to vert the PDE into an ODE and solve using characteristic curves.

January 10, 2024

Definition: Harmonic Function

If $u \in C^2$ such that $\Delta u = 0$, then u is a harmonic function.

Laplace Equation

Consider $u: U \subseteq \mathbb{R}^n \to \mathbb{R}$ with U open, then the homogeneous (Laplace) form is given by

$$\Delta u = 0$$

and the non-homogeneous (Poisson) form is

$$-\Delta u = f$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is given.

Remark / Exercise

The Laplace equation is invariant under translation and rotation.

That is, if $\Delta u(x) = 0$ and v(x) = u(x - y), then $\Delta v = 0$.

Similarly, if w(x) = u(O(x)) then $\Delta w = 0$ where O is an orthogonal matrix.

Fundamental Solution of the Laplace Equation

Remark: since the Laplace equation is invariant under rotation, we can consider a function in terms of the radius v(x) = v(|x|).

Recall $r = |x| = (x_1^2 + \dots + x_n^2)^{1/2}$.

Because of this remark, assume that u(x) = v(|x|) = v(r(x)) (*) where $v:(0,\infty) \to \mathbb{R}$.

Therefore, we need

$$\frac{\partial r}{\partial x_i} = \frac{1}{2} \cdot \frac{2x_i}{(x_1^2 + \dots + x_n^2)^{1/2}} = \frac{x_i}{r}$$

Replace (*) in the PDE

$$\frac{\partial u}{\partial x_i} = \frac{\partial}{\partial x_i} v(r(x)) = v'(r(x)) \cdot \frac{\partial r}{\partial x_i} = v'(r(x)) \cdot \frac{x_i}{r}$$

and

$$\frac{\partial^2 u}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(v'(r(x)) \cdot \frac{x_i}{r} \right)$$

$$= \frac{\partial}{\partial x_i} \left(v'(r(x)) \right) \cdot \frac{x_i}{r} + v'(r(x)) \cdot \frac{\partial}{\partial x_i} \left(\frac{x_i}{r} \right)$$

$$= v''(r(x)) \cdot \frac{x_i^2}{r^2} + v'(r(x)) \left[\frac{1}{r} + x_i \frac{\partial}{\partial x_i} (r) \right]$$

$$= v'' \frac{x_i^2}{r^2} + v' \left[\frac{1}{r} - \frac{x_i^2}{r^3} \right]$$

Thenm, summing across i,

$$\Delta u = v'' + v' \left[\frac{n}{r} + \frac{1}{r} \right] = 0$$

Then the PDE is equivalent to

$$v''(r) + \frac{v'}{r}(n-1) = 0 \; (\Box)$$

We need to find a solution for \Box .

$$v''(r) = \frac{(1-n)v'}{r}$$

Assume, without loss of generality, that $v' \neq 0$ such that

$$\frac{v''(r)}{v'(r)} = \frac{1-n}{r} \Longrightarrow (\log(|v'|))' = \frac{1-n}{r}$$

Then, integrating,

$$\log(|v'|) = (1-n)\log(r) + C = \log(r^{1-n}) + C$$

such that

$$|v'| = Cr^{1-n} \implies v' = Cr^{1-n} \implies v(r) = Cr^{1-n+1} + D = Cr^{2-n} + D$$

Definition: Fundamental Solution of the Laplace Equation

The function Φ given by

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \log |x|, & n = 2\\ \frac{1}{n(n-2)\alpha(n)} \cdot \frac{1}{|x|^{n-2}}, & n \ge 3 \end{cases}$$

where $\alpha(n)$ is the volume of the unit ball in \mathbb{R}^n is called the fundamental solution.

Remark

 Φ solves the Laplace equation away from 0.

Lemma: Estimates for the Fundamental Solution

• First Estimate $|D\Phi(x)| \le \frac{C}{|x|^{n-1}}$, for $x \ne 0$.

$$\frac{\partial \Phi}{\partial x_i} = C \frac{\partial}{\partial x_i} \left(\left| x \right|^{2-n} \right) = \frac{C(2-n)}{1-n} \left| x \right|^{2-n-1} \frac{\partial \left| x \right|}{\partial x_i} = \left| x \right|^{1-n} \cdot \frac{x_i}{\left| x \right|} = C x_i \left| x \right|^{-n}$$

Therefore

$$|D\Phi(x)| \le C|x||x|^{-n} \Longrightarrow |D\Phi(x)| \le C|X|^{1-n}$$

- Exercise Compute for n = 2.

• Second Estimate $|D^2\Phi(x)| \le \frac{C}{|x|^n}$, for $x \ne 0$.

$$\begin{split} \frac{\partial^2}{\partial x_J \partial x_i} \Phi &= C \frac{\partial}{\partial x_J} \left(x_i | x |^{-n} \right) \\ &= C \left[\delta_{iJ} | x |^{-n} + x_i \frac{\partial}{\partial x_J} | x |^{-n} \right] \\ &= C \left[\delta_{iJ} | x |^{-n} + (-n) \cdot \frac{x_i | x |^{-n-1} x_J}{|x|} \right] \\ &= C \left[\frac{\delta_{iJ} | x |}{|x|^n} + \frac{C x_i x_J}{|x|^{n+1}} \right] \end{split}$$

Then

$$\left|\frac{\partial\Phi}{\partial x_i\partial x_J}\right| \leq \frac{C}{|x|^n} + \frac{C|x_i||x_J|}{|x|^{n+2}} \leq \frac{2C}{|x|^n} = \frac{C}{|x|^n}$$

Then, we are done since

$$|D^2\Phi(x)| = \sqrt{\sum_J \left(\frac{\partial \Phi}{\partial x_i \partial x_J}\right)}$$

Poisson Equation

Motivation

Suppose we have $\Phi(x)$, the fundamental solution.

Then for an arbitrary, fixed element $y \in \mathbb{R}^n$, then we have $x \to \Phi(x - y)$ harmonic for $x \neq y$.

Consider $f: \mathbb{R}^n \to \mathbb{R}$ such that $y \to f(y)$ then $x \to f(y) \Phi(x-y)$ is similarly harmonic for $x \neq y$. Now, if given $\{y_1, \dots, y_m\}$ where $y_i \in \mathbb{R}^n$, then $x \to \sum_{i=1}^m f(y_i) \Phi(x-y_i)$ is harmonic $\forall x \neq \{y_1, \dots, y_m\}$.

Then, what happens if we consider

$$u(x) := \int_{\mathbb{D}^n} f(y) \Phi(x - y) \, dy \quad (\square_3)$$

Is u harmonic? No, since $\Delta\Phi(x-y)$ is not summable in \mathbb{R}^n we may not pass the limit into the integral. (to be covered later) However, since $\Delta\Phi(x-y)$ acts as δ_{xy} in distribution, this may solve the Poisson equation.

Remark / Exercise

Assume that $f \in C_C^2(\mathbb{R}^n)$ (i.e f is twice continuously differentiable with compact support on \mathbb{R}^n).

The function Φ is integrable near the singularity on compact sets.

Prove using spherical coordinates.

Therefore, u defined by \square_3 is well defined

$$|u| = \left| \int_{\mathbb{R}^n} f(y) \Phi(x - y) \, dy \right| = \left| \int_K \Phi(x - y) \, dy \right| < \infty$$

Theorem: Solving the Poisson Equation

If $f \in C_C^2(\mathbb{R}^n)$ and u is defined by \square_3 , then

1. $u \in C^2(\mathbb{R}^n)$

2. $-\Delta u = f$, in \mathbb{R}^n

· Proof of 1

Since Φ presents a problem at x=y but f is well behaved, we will change variables such that $\overline{y}=x-y$, $y=x-\overline{y}$, and $\frac{dy}{d\overline{y}}(-1)I_{m\times m}$ and then redefine $\overline{y}=y$.

$$u(x) = \int_{\mathbb{R}^n} f(y)\Phi(x-y) \, dy = \int_{\mathbb{R}^n} f(x-\overline{y})\Phi(\overline{y}) \, d\overline{y} = \int_{\mathbb{R}^n} f(x-y)\Phi(y) \, dy$$

In short, we have sent the problem from Φ to f.

Now, let us consider $e_i = (0, ..., 1, ..., 0)$.

Then for h > 0,

$$\frac{u(x+he_i)-u(x)}{h}=\frac{1}{h}\int_{\mathbb{R}^n}\Phi(y)[f(x+he_i-y)-f(x-y)]\,dy$$

Now, the limit as $h \to 0$

$$\lim_{h \to 0} \frac{u(x + he_i) - u(x)}{h} = \lim_{h \to 0} \int_{\mathbb{R}^n} \Phi(y) \left[\frac{f(x + he_i - y) - f(x - y)}{h} \right] dy$$
$$= \int_{\mathbb{R}^n} \Phi(y) \cdot \frac{\partial f(x - y)}{\partial x_i} dy$$

To justify passing the limit into the integral, take an arbitrary sequence $h_m \stackrel{m \to 0}{\longrightarrow} 0$ and consider

$$f_m(y) := H(h_m, y)$$

We want to consider

$$|H(h_m, y)| \le \Phi(y) \left[\frac{f(x + h_m e_i - y) - f(x - y)}{h} \right]$$

$$\le \Phi(y) f'(c)$$

Where c is along the curve between $f(x + h_m e_i - y)$ and f(x - y) and chosen by mean value theorem.

Exercise

$$|H(h_m, y)| \le \Phi(y) ||f'||_{L^{\infty}} \chi_{B(x,R)}(y)$$

Note that

$$C\int_{\mathbb{R}^n} |\Phi(y)| \chi_{B(x,R)}(y) \, dy = \int_{B(x,R)} |\Phi(y)| \, dy < \infty$$

- Exercise

Using the fact that a continuous function is uniformly continuous on a compact set, show that $u \in C^2(\mathbb{R}^n)$.

Dominated Convergence Theorem

If $f_m(x)$ such that $f_m(x) \xrightarrow[\text{pointwise}]{m \to \infty} f(x)$, and $|f_m(x)| \le g(x)$ for $g \in L^1$, then f is integrable and

$$\lim_{m\to\infty}\int f_m(x)\,dx=\int f(x)\,dx$$

January 17, 2024

Recall: Averages

$$f: \{1, \dots, n\} \to \mathbb{R}$$

 $i \to a(i)$

The average is given as $\frac{a(i)+\cdots+a(n)}{n}$. Then for $f:\Omega\to\mathbb{R}$, the average is given as

$$\frac{1}{|\Omega|} \int f(y) \, dy := \int_{\Omega} f \, d\mu$$

In our case, $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$

$$\oint_{B(x,n)} f \, d\mu \equiv \frac{1}{|B(x,n)|} \oint_{B(x,n)} f \, d\mu$$

$$\int_{\partial B(x,n)} f \, d\mu = \frac{1}{|\partial B(x,n)|} \int_{\partial B(x,b)} f \, d\mu$$

Theorem: Lebesgue Differentiation

$$u|x| = \lim_{r \to 0} \int_{B(x,n)} u \, d\mu = \lim_{r \to 0} \int_{\partial B(x,n)} u \, d\mu$$

Integration by Parts

$$\int_{\Omega} u \Delta v = -\int_{\Omega} \nabla u \cdot \nabla v + \int_{\partial \Omega} u \cdot \frac{\partial v}{\partial \eta}$$

$$\Omega$$

Recall: Poisson's PDE

$$f \in C_c^2 |\mathbb{R}^n|, \ u(x) = \int_{\mathbb{R}^n} \Phi(x - y) f(y) \ dy.$$

$$\Phi(x) = \left\{ \frac{1}{n(n-2)|\alpha(n)|} \frac{1}{|X|(n-2)} \right\}$$

$$u(x)" = \int_{\mathbb{R}^n} f(x-y)\Phi(y) \ dy$$

Part A

$$u \in C^2(\mathbb{R}^n)$$

Then

$$\frac{\partial u}{\partial x_1} = \int_{\mathbb{R}^n} \frac{\partial f}{\partial x_1} (x - y) \Phi(y) \, dy$$

$$\frac{\partial^2 u}{\partial x_1 x_T} = \int_{\mathbb{R}^n} \frac{\partial^2 f}{\partial x_1 x_T} (x - y) \Phi(y) \, dy$$

Notice that if we prove that

$$g(x) = \int_{\mathbb{R}^n} h(x - y) \Phi(y) \, dy$$

– where h is continuous with compact support – is continuous then we are done. Let us prove that g is continuous. Let $\varepsilon > 0$,

$$|g(x) - g(x_0)| \le \int_{\mathbb{R}^n} \Phi(y) |h(x - y) - h(x_0 - y)| dy$$

Without loss of generality, h has compact support on B(0,r) for some radius r. Therefore h(x,y) has compact support on B(x,r) and $h(x_0,y)$ has compact support on $B(x_0,r)$.

Consider $|x-x_0| < 1$, then $|h(x-y)-h(x_0-y)|$ has compact support on $B(x_0,r+1)$. Then

$$|g(x)-g(x_0)| \le \int_{B(x_0,r+1)} \Phi(y) |h(x-y)-h(x_0-y)| dy$$

Since h is continuous on a compact domain, it is uniformly continuous.

Therefore $\exists \delta > 0$ such that $|w - z| < \delta \implies |h(w) - h(z)| < \epsilon$.

Set w = x - y and $z = x_0 - y$ such that $|w - z| = |x - x_0| < \delta$, then $|h(x - y) - h(x_0 - y)| < \epsilon$. Thus,

$$|g(x)-g(x_0)| \le \varepsilon \int_{B(x_0,r+1)} \Phi(y) dy$$

Part B

 $-\Delta u = f$

Letting $\varepsilon > 0$ and taking the Laplacian of both sides,

$$\Delta_{x}u(x) = \int_{\mathbb{R}^{n}} \Delta_{x}f(x-y)\Phi(y) dy$$

$$= \int_{B(0,\varepsilon)} \Delta_{x}f(x-y)\Phi(y) dy + \int_{\mathbb{R}^{n}\setminus B(0,\varepsilon)} \Delta_{x}f(x-y)\Phi(y) dy$$

Then

$$|I_{\varepsilon}| \leq \int_{B(0,\varepsilon)} |\Delta_{x} f(x-y)| \Phi(y) \, dy$$

$$\leq ||\nabla f||_{L^{\infty}} \int_{B(0,\varepsilon)} \Phi(y) \, dy$$

$$\leq c \int_{0}^{\varepsilon} \int_{\partial B(0,r)} \Phi(y) \, dS(y) \, dr$$

$$\leq c \int_{0}^{\varepsilon} \int_{\partial B(0,r)} \frac{1}{|y|^{n-2}} \, dS(y) \, dr$$

$$= c \int_{0}^{\varepsilon} \int_{\partial B(0,r)} \frac{1}{r^{n-2}} \, dS(y) \, dr$$

$$= c \int_{0}^{\varepsilon} \frac{1}{r^{n-2}} \int_{\partial B(0,r)} dS(y) \, dr$$

$$\leq c \int_{0}^{\varepsilon} \frac{r^{n-1}}{r^{n-2}} \, dr$$

$$c \int_{0}^{\varepsilon} r \, dr = c\varepsilon^{2}$$

As an exercise, attempt the same argument with n = 2. Therefore,

$$\Delta_x u = I_\varepsilon + J_\varepsilon$$

and $\lim_{\varepsilon \to 0} I_{\varepsilon} = 0$. Now, we need to control J_{ε} .

$$J_{\varepsilon} = \int_{\mathbb{R}^{n}} \Delta_{x} f(x - y) \Phi(y) \, dy$$

$$\Delta_{x} f(x - y) = \sum \frac{\partial^{2} f}{\partial x^{2}} f(x - y)$$

$$\frac{\partial f}{\partial x} (x - y) = \nabla f|_{z = (x - y)} \cdot e_{i} = \frac{\partial f}{\partial z_{i}} |_{z = (x - y)}$$

$$\frac{\partial^{2} f}{\partial x_{i}^{2}} = \frac{\partial^{2} f}{\partial z_{i}^{2}} |_{z = (x - y)}$$

$$\Delta_{y} f(x - y) = \sum \frac{\partial f^{2}}{\partial y_{i}} (x - y)$$
$$\frac{\partial f}{\partial y_{i}} (x - y) = \nabla f|_{z=(x-y)} \cdot -e_{i} = -\frac{\partial f}{\partial z_{i}}|_{z=(x-y)}$$
$$\frac{\partial^{2} f}{\partial y_{i}^{2}} = \frac{\partial^{2}}{\partial y_{i}^{2}}|_{z=x-y}$$

So

$$J_{\varepsilon} = \int_{\mathbb{R}^{n} \backslash B(0,\varepsilon)} \Delta_{y} f(x-y) \Phi(y) \, dy$$

$$= -\int_{\mathbb{R}^{n} \backslash B(0,\varepsilon)} \nabla_{y} f(x-y) \nabla \Phi(y) \, dy + \int_{\partial(\mathbb{R}^{n} \backslash B(0,\varepsilon))} \frac{\partial_{x} f}{\partial \eta} \Phi(y) \, dS(y)$$

and

$$\Delta_x u = I_\varepsilon + K_\varepsilon + L_\varepsilon$$

To control L_{ε} , since

$$|L_{\varepsilon}| \leq \int_{\partial B(0,\varepsilon)} \frac{|\partial f|}{\partial \eta} \Phi(y) \, dy$$

$$\leq \int_{\partial B(0,\varepsilon)} |\nabla f| \Phi(y) \, dy$$

$$\leq ||\nabla f||_{L^{\infty}} \int_{\partial B(0,\varepsilon)} \Phi(y) \, dy$$

$$\leq c \int_{\partial B(0,\varepsilon)} \frac{1}{|y|^{n-2}} \, dy$$

$$= \frac{c}{\varepsilon^{n-2}} \int_{\partial B(0,\varepsilon)} dy$$

$$\leq \frac{c\varepsilon^{n-1}}{\varepsilon^{n-2}}$$

$$= c\varepsilon$$

and
$$K_{\varepsilon}$$
, since $\frac{\partial \Phi}{\partial \eta} = \nabla \phi \cdot \eta = \frac{-y}{n\alpha(n)|y|^n} \cdot \eta = \frac{|y|^2}{n\alpha(n)|y|^n|y|} = \frac{1}{n\alpha(n)|y|^{n-1}}$

$$|K_{\varepsilon}| = -\int_{\mathbb{R}^{n} \backslash B(0,\varepsilon)} \nabla f(x-y) \nabla \Phi(y) \, dy$$

$$= \int_{\mathbb{R}^{n} \backslash B(0,\varepsilon)} f(x-y) \Delta_{y} \Phi(y) \, dy - \int_{\partial(\mathbb{R}^{n} \backslash B(0,\varepsilon))} f(x-y) \frac{\partial \Phi}{\partial \eta}$$

$$= -\int_{\partial B(0,\varepsilon)} f(x-y) \frac{\partial \Phi}{\partial \eta}$$

$$= -\int_{\partial B(0,\varepsilon)} f(x-y) \frac{1}{n\alpha(n)|y|^{n-1}} \, dS(y)$$

$$= -\frac{1}{n\alpha(n)\varepsilon^{n-1}} \int_{\partial B(0,\varepsilon)} f(x-y) \, dS(y)$$

$$= -\frac{1}{|\partial B(0,\varepsilon)|} \int_{\partial B(0,\varepsilon)} f(z) \, dS(z)$$

$$= \frac{1}{|\partial B(0,\varepsilon)|} \int_{\partial B(0,\varepsilon)} f(z) \, dz$$

$$= -\int_{\partial B(x,\varepsilon)} f(z) \, dz$$

Laplacian as a Distribution

$$-\Delta\Phi(y) = \delta(y)$$

Define the Dirac delta "function" as

$$\delta(y) = \begin{cases} \infty & y = 0 \\ 0 & y \neq 0 \end{cases}$$

such that $\int_{\mathbb{R}^n} \delta = 1$. Translate the Dirac delta as

$$\delta_x = \begin{cases} \infty & y = x \\ 0 & y \neq x \end{cases}$$

and recall that

$$\Delta u(x) = \Delta \left(\int_{\mathbb{R}^n} \Phi(x - y) f(y) \, dy \right)$$

$$= \int_{\mathbb{R}^n} \overline{\Delta \Phi(x - y)} f(y) \, dy$$

$$= -\int_{\mathbb{R}^n} \delta_x(y) f(y) \, dy$$

$$= -\int_{\mathbb{R}^n} \delta_x(y) f(x) \, dy$$

$$= -f(x) \int_{\mathbb{R}^n} \delta_x(y) \, dy$$

$$= -f(x)$$

Harmonic Functions

Suppose u is harmonic

 $u: \Omega \to \mathbb{R}^n$ harmonic.

Mean-value Formulas

Let *U* be an open set in \mathbb{R}^n , $u: U \to \mathbb{R}$ such that $\Delta u = 0$ in *U*. Then

$$u(x) = \int_{\partial B(0,r)} -u(y) \, dS(y)$$
$$= \int_{B(x,r)} u(y) \, dy$$

where $B(x,r) \subseteq U$. IMAGE HERE

Proof

Consider $\phi(r) = \frac{1}{|\partial B(x,r)|} \int_{\partial B(x,r)} u(y) \, dS(y)$. If $\phi'(r) = 0$, when we are done since that would make ϕ constant and $\phi(r) = \lim_{s \to 0} \phi(s) = u(x)$. Then

$$\phi(r) = \frac{1}{|\partial B(x,r)|} \int_{\partial B(x,r)} u(y) \, dS(y)$$

$$= \frac{1}{y=x+rz} \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B(0,1)} u(x+rz)r^{n-1} \, dS(z)$$

$$= \frac{1}{n\alpha(n)} \int_{\partial B(0,1)} u(x+rz) \, dS(z)$$

Therefore

$$\phi'(r) = \frac{1}{n\alpha(n)} \int_{\partial B(0,1)} \nabla u(x+rz) \cdot z \, dS(z)$$

$$= \frac{1}{|\partial B(0,r)|} \int_{\partial B(x,r)} \nabla u(y) \cdot \frac{y-x}{r} \, dS(y)$$

$$= \frac{1}{|\partial B(0,r)|} \int_{\partial B(x,r)} \nabla u(y) \cdot \eta \, dS(y)$$

$$= \frac{1}{|\partial B(0,r)|} \int_{\partial B(x,r)} \frac{\partial y}{\partial \eta} \, dS(y)$$

$$= \frac{1}{|\partial B(0,r)|} \int_{B(x,r)} \Delta u$$

$$= 0$$

January 22, 2024

Mean Value Formula

For $U \subseteq \mathbb{R}^n$, U open with $u: U \to \mathbb{R}$ such that $u \in C^2(U)$, $\Delta u = 0$, we have

$$u(x) = \begin{cases} \int_{\partial B(x,r)} u = \int_{B(x,r)} u \end{cases}$$

for all $B(x,r) \subseteq U$.

Recall that (a) was proven above by setting $\phi(r) = \oint_{\partial B(r)} u(y) \, dS(y)$ and showing $\phi'(r) = 0$. For (b), we again apply spherical coordinates such that

$$\int_{B(x,r)} u(y) \, dy = \int_0^r \int_{\partial B(x,s)} u(y) \, dS(y) ds$$

$$= \int_0^r |\partial B(x,s)| \int_{\partial B(x,s)} u(y) \, dS(y) \, ds$$

$$= u(x) \int_0^r |\partial B(x,s)| \, ds$$

$$= u(x) \int_0^r n\alpha(n) S^{n-1} \, ds$$

$$= \frac{u(x) n\alpha(n) S^n}{n} \Big|_0^r$$

$$= u(x) \frac{|B(x,r)|}{\alpha(n) r^n}$$

Converse

Recall that

$$\phi'(r) = \frac{1}{n\alpha(n)r^{n-1}} \int_{B(x,r)} \Delta u(y) \, dy$$

Suppose then that we do not know that $\Delta u = 0$ but we have

$$u(x) = \int_{\partial B(x,r)} u, \quad \forall B(x,r) \subseteq U$$

Then, necessarily, $\Delta u = 0$ in U.

• Proof Suppose, for sake of contradiction, that $\Delta u \neq 0$. Then, without loss of generality, there exists $y \in U$ such that $\Delta u(x) > 0$ for $x \in B(y, n) \subseteq U$. IMAGE HERE

$$\phi(r) = \int_{\partial B(x,r)} u(x) \, dS(x)$$

and

$$\phi'(r) = \frac{1}{n\alpha(n)r^{n-1}} \int_{B(y,r)} \Delta u(x) \, dS(x) > 0$$

which contradicts $\phi'(x) = 0$.

Strong Maximum Principle

Let $U \subseteq \mathbb{R}^n$ be a bounded open set, $u \in C^2(U) \cap C(\overline{U})$, $\Delta u = 0$ on U. Then

- 1. $\max_{\overline{U}}(u) = \max_{\partial U}(u)$.
- 2. If U is connected and u has its maximum in an interior point, then u is constant on \overline{U} .

IMAGE HERE - 2

Proof of A

Since $\partial U \subseteq \overline{U}$, $\max_{\partial U}(u) \leq \max_{\overline{U}}(u)$.

Let $x_0 \in \overline{U}$ such that $u(x_0) = \max_{\overline{U}}(u)$.

IMAGE HERE - 4

So either $x_0 \in \partial U$ or $x_0 \in U$.

Let U' be the connected component which contains x_0 . Then $x_0 \in U'$, so by part (b) u is constant on $\overline{U'}$. So

$$\max_{\overline{U}}(u) = u(x_0) = \max_{\partial U'}(u) \le \max_{\partial U}(u)$$

Proof of B

Then there exists $x_0 \in U$ such that $\max_{\overline{U}}(u) = u(x_0) = M$. Let us define $\Omega = \{y \in U : u(y) = M\}$. Then

- 1. $\Omega \neq \emptyset$, $B \setminus x_0 \in \Omega$.
- 2. Ω open set.

IMAGE HERE - 3

1. Ω is closed, since $\Omega = u^{-1}(\{M\})$.

It follows that $\Omega = U$ and, therefore, u(y) = M, $\forall y \in U$.

• Proof of 2 Let $y \in \Omega$, $y \in U$, u(y) = M. Then there exists $B(y, r) \subseteq U$, and

$$M = u(y) = \int_{B(y,r)} u(x) \, dS(x) \le M$$

Then

$$\int_{B(y,r)} u(x) \ dx = M$$

so u(x) = M, $\forall x \in B(y, r)$ and, therefore $B(y, r) \subseteq \Omega$ and Ω is open.

Remark: Boundedness Is Important

- 1. Consider f(x) = x on $\mathbb{R}_{>0}$.
- 2. IMAGE HERE 5

Remark: Strong Minimum Principle Is Equivalent

Consequences

- 1. Positivity of harmonic functions.
- 2. Uniqueness of the Poisson problem.

Corollary: Positivity of Harmonic Functions

Suppose that U is connected and $u: U \to \mathbb{R}$, $u \in C^2(U) \cap C(\overline{U})$ solves the following problem

$$\begin{cases} \Delta u = 0 & \text{on } U \\ u = g & \text{on } \partial U \end{cases}$$

If $g \ge 0$ on ∂U , then u is positive on U as long as g is positive in some point.

Proof

Assume $\exists x_0 \in \partial U$ where x_0 is the minimum. Then $u(x_0) = \min_{\overline{U}}(u)$ and, $\forall x \in U$,

$$0 \le u(x_0) = \min_{\overline{tt}}(u) \le u(x)$$

so u is non-negative. If u(x) = 0, then $u(x_0) = 0$ and the minimum is achieved in the interior. That would mean u(x) = 0, $\forall x \in \overline{U} \supseteq \partial U$ and g(x) = 0, $\forall x \in \partial U$ which would be a contradiction.

Theorem: Uniqueness of the Poisson Problem

Suppose $U \subseteq \mathbb{R}^n$ is open, connected and bounded. Then, there exists at most one solution to

$$(*) \begin{cases} -\Delta u = f & \text{in } U \\ u = g & \text{on } \partial U \end{cases}$$

where $u \in C^2(U) \cap C(\overline{U})$.

Proof

Let u_1 and u_2 be two solutions of *. Consider $w = u_1 - u_2$ and observe that

$$\Delta w = \Delta u_1 - \Delta u_2 = -f + f = 0$$
, in U

and $w|_{\partial U} = g - g = 0$ on ∂U . Therefore

$$\begin{cases} \Delta w = 0 & \text{in } U \\ w = 0 & \text{on } \partial U \end{cases}$$

By applying the minimum and maximum principles,

$$w(x_0) = \min_{\overline{U}}(w) \le w(x) \le \max_{U}(w) = w(x)$$

so w(x) = 0, $\forall x \in \overline{U}$ and therefore $u_1 = u_2$.

Example

Let's consider $f:\mathbb{C}\to\mathbb{C}$ analytic (i.e. $f(z)=\sum_{n=0}^\infty a_nz^n$ for $a_n,z\in\mathbb{C}$). Then

$$f(z) = u(z) + v(z)$$

If $\mathbb{C} \cong \mathbb{R}^2$.

$$f(x+y) = u(x,y) + v(x,y)$$

for $u : \mathbb{R}^2 \to \mathbb{R}$ and $v : \mathbb{R}^2 \to \mathbb{R}$. Claim: u and v are Harmonic.

$$u(x,y) + v(x,y) = \sum_{n=0}^{\infty} a_n (x+iy)^n$$

and

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \sum_{n=1}^{\infty} a_n n |x + iy|^{n-1}$$
$$\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} = \sum_{n=1}^{\infty} a_n n |x + iy|^{n-1} i$$

So

$$i\left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right) = \frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}$$

and

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
 and $\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x}$

Recall: Convolution and Smoothing

Let $U\subseteq\mathbb{R}^n$ be an open set. For $\varepsilon>0$, define $U_\varepsilon=\{x\in U:d(x,\partial U)>\varepsilon\}$. IMAGE HERE - 6 Define

$$\eta(x) \begin{cases} ce\left(\frac{1}{|x|^2 - 1}\right) & |x| < 1\\ 0 & |x| \ge 1 \end{cases}$$

with c such that $\int_{\mathbb{R}^n} \eta(x) dx = 1$, $\eta \in C^{\infty}(\mathbb{R}^n)$ IMAGE HERE - 7 Note that $\operatorname{supp}(\eta) = B(0,1)$ and take

$$\eta_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \eta\left(\frac{x}{\varepsilon}\right), \quad \eta_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$$

Then

$$\int_{\mathbb{R}^n} \eta_{\varepsilon}(x) \ dx = 1$$

and supp $(\eta_{\varepsilon}) \subseteq B(0, \varepsilon)$.

If f is locally integrable on U, define its mollification

$$f^{\varepsilon} = (x) = \int_{U} \eta_{\varepsilon}(x - y) f(y) dy \quad \forall x \in U_{\varepsilon}$$

January 24, 2024

Recall: Mollifiers

Define

$$\eta(x) = \begin{cases} ce\left(\frac{1}{|x|^2 - 1}\right) & |x| < 1\\ 0 & |x| \ge 1 \end{cases}$$

where $\eta \in C^{\infty}(\mathbb{R}^n)$, $\int_{\mathbb{R}^n} \eta(x) = 1$ and $\operatorname{supp}(\eta) \subseteq B(0,1)$. Then for $\varepsilon > 0$, $\eta_{\varepsilon}(x) = \frac{1}{\varepsilon} \left(\frac{x}{\varepsilon} \right)$ where $\eta_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$. So $\int_{\mathbb{R}^n} \eta_{\varepsilon}(x) = 1$ and $\operatorname{supp}(\eta_{\varepsilon}) \subseteq B(0,\varepsilon)$ Given f locally summable; $f: U \to \mathbb{R}$,

$$f^{\varepsilon}(x) := \int_{U} \eta_{\varepsilon}(x - y) f(y) \, dy \quad x \in U_{\varepsilon}$$
$$= \int_{B(x, \varepsilon)} \eta_{\varepsilon}(x - y) f(y) \, dy \quad x \in U_{\varepsilon}$$

Properties

- 1. $f^{\varepsilon} \in C^{\infty}(U_{\varepsilon})$.
- 2. $f^{\varepsilon} \xrightarrow[{\varepsilon} \to 0]{} f$ a.e.
- 3. If f continuous, then $f^{\varepsilon} \xrightarrow[\varepsilon \to 0]{} f$ uniformly on compact sets of U.

Theorem 6:

Let $u \in C(U)$ with $U \in \mathbb{R}^n$ open and such that u satisfies the mean-value property (i.e. $u(x) = \int_{\partial B(x,r)} u(y) \, dS(y)$, $\forall B(x,r) \subseteq U$), then $u \in C^{\infty}$.

Corollary

If $u \in C^2(U)$ is harmonic, then $u \in C^{\infty}(U)$.

Proof

Let us take $x_0 \in U$

IMAGE HERE - 1

Notice, that if we prove that $u = u_{\varepsilon}$ on U_{ε} then we are done.

Let $x \in U_{\varepsilon}$, and noticing that $\eta(x) = \eta(|x|)$,

$$u_{\varepsilon}(x) = \int_{B(x,\varepsilon)} \eta_{\varepsilon}(x-y)u(y) \, dy$$

$$= \frac{1}{\varepsilon^n} \int_{B(x,\varepsilon)} \eta \frac{|x-y|}{\varepsilon} u(y) \, dy$$

$$= \frac{1}{\varepsilon^n} \int_0^{\varepsilon} \int_{\partial B(x,r)} \eta \frac{|x-y|}{\varepsilon} u(y) \, dS(y) dr$$

$$= \frac{1}{\varepsilon^n} \int_0^{\varepsilon} \eta \frac{r}{\varepsilon} \int_{\partial B(x,r)} u(y) \, dS(y) dr$$

$$= \frac{1}{\varepsilon^n} \int_0^{\varepsilon} \eta \frac{r}{\varepsilon} \underbrace{|\partial B(x,r)|}_{|\partial B(0,r)|} u(x) \, dr$$

$$= \frac{u(x)}{\varepsilon^n} \int_0^{r} \eta \frac{r}{\varepsilon} \int_{\partial B(0,r)} dS(y) dr$$

$$= u(x) \int_0^{\varepsilon} \frac{1}{\varepsilon^n} \eta \frac{r}{\varepsilon} \, dS(y) dr$$

$$= u(x) \int_{B(0,\varepsilon)}^{\varepsilon} \eta_{\varepsilon}(y) \, dy = u(x)$$

Theorem 7: Local Estimates of Harmonic Functions

Suppose $u \in C^2(U)$ a harmonic function.

Then $|D^{\alpha}u(x_0)| \leq \frac{C_k}{r^{n+k}}||u||_{L^1(B(x_0,r))}$, $B(x_0,r) \subseteq U$, where α is a multiindex of order k, $C_0 = \frac{1}{\alpha(n)}$ and $C_k = \frac{(2^{n+1}nk)^k}{\alpha(n)}$ for k = 1, 2, ...

We may take α since, by previous theorem, $u \in C^{\infty}(U)$.

Proof

By induction. Consider k = 0.

$$u(x_0) = \int_{B(x_0, r)} u(y) \, dy$$

$$= \frac{1}{\alpha(n)r^n} \int_{B(x_0, r)} u(y) \, dy$$

$$|u(x_0)| \le \frac{1}{\alpha(n)r^n} \int_{B(x_0, r)} |u(y)| \, dy$$

$$= \frac{C_0}{r^n} ||u||_{L^1(B(x_0, r))}$$

For k=1, if $|\alpha|=k=1$ then $D^{\alpha}u(X_0)=\frac{\partial u}{\partial x_i}(x)$ for $i=1,2,\ldots$. Notice that $\frac{\partial u}{\partial x_i}$ is also harmonic.

$$\Delta \frac{\partial u}{\partial x_i} = \sum_{t=1}^n \frac{\partial^2}{\partial x_t^2} \frac{\partial u}{\partial x_i}$$
$$= \frac{\partial}{\partial x_i} \sum_{t=1}^\infty \frac{\partial^2 u}{\partial x_t^2}$$

Applying the mean-value formula to $\frac{\partial u}{\partial x_i}(x_0)$ in B(x,r/2). IMAGE HERE - 2

$$\frac{\partial u}{\partial x_i}(x_0) = \int_{B(x_0, r/2)} \frac{\partial u}{\partial x_i}(y) \, dy$$
$$= \frac{2^n}{\alpha(n)r^n} \frac{\partial u}{\partial x_i}(y) \, dy$$

Recall $\int_{\Omega} w \Delta v = -\int_{\Omega} \nabla w \cdot \nabla v + \int_{\Omega} w \frac{\partial v}{\partial \eta}$.

$$= \frac{2^{n}}{\alpha(n)r^{n}} \int_{B(x_{0},r/2)} \nabla \underbrace{u(y)}_{w} \cdot \nabla \underbrace{y_{i}}_{v} dy$$

$$= \frac{2^{n}}{\alpha(n)r^{n}} \left[-\int_{B(x_{0},r/2)} u(y) \Delta y_{i} dy + \int_{\partial B(x_{0},r/2)} u(y) \frac{\partial y_{i}}{\partial \eta} \right]$$

Note that

$$\frac{\partial y_i}{\partial \eta} = \nabla y_i \cdot \eta = e_i \cdot \eta = \eta_i$$

and

$$\left| \frac{\partial y_i}{\partial \eta} \right| = |\eta_i| \le |\eta| = 1$$

So,

$$\left| \frac{\partial u}{\partial x_i} x_0 \right| \le \frac{2^n}{\alpha(n) r^n} \int_{\partial B(x_0, r/2)} |u(y)| \, dS(y)$$

$$= \frac{2^n n \alpha(n) \left(\frac{r}{2}\right)^{n-1}}{\alpha(n) r^n} ||u||_{L^{\infty}(\partial B(x_0, r/2))}$$

$$= \frac{2n}{r} \underbrace{||u||_{L^{\infty}(\partial B(x_0, r/2))}}_{*}$$

Let's analyze *.

Let $x \in \partial B(x_0, r/2)$, then $B(x, r/2) \subseteq B(x_0, r)$.

IMAGE HERE - 3

Then we may apply k = 0.

$$|u(x)| \le \frac{C_0}{\left(\frac{r}{2}\right)^n} ||u||_{L^1(B(x,r/2))}$$

$$\le \frac{C_0}{\left(\frac{r}{2}\right)^n} ||u||_{L^1(B(x_0,r))}$$

Then

$$\left| \frac{\partial u}{\partial x_i}(x_0) \right| \le \frac{2n}{r} \frac{C_0}{\left(\frac{r}{2}\right)^n} ||u||_{L^1(B(x_0,r))}$$

$$= \frac{2^{n+1}n}{r^{n+1}\alpha(n)} ||u||_{L^1(B(x_0,r))}$$

HOMEWORK: Induct for arbitrary k.

Theorem 8: Liouville's Theorem

Suppose $u:\mathbb{R}^n \to \mathbb{R}$ is harmonic and bounded. Then u is constant.

Proof

$$|D^{\alpha}u(x)| = \sqrt{\sum_{i=1}^{n} \left[\frac{\partial u}{\partial x_{i}}\right]^{2}} \leq \sum_{i=1}^{n} \left|\frac{\partial u}{\partial x_{i}}\right|$$

Let r > 0, $B(x, r) \subseteq \mathbb{R}^n$. Then, using estimates

$$\left|\frac{\partial u}{\partial x_i}(x)\right| \le \frac{C_1}{r^{n+1}} ||u||_{L^1(B(x,r))}$$

Therefore,

$$|D^{\alpha}u(x)| \leq \frac{nC_1}{r^{n+1}} ||u||_{L^1(B(x,r))}$$

$$= \frac{nC_1}{r^{n+1}} \int_{B(x,r)} |u(y)| dy$$

$$\leq \frac{nC_1}{r^{n+1}} ||u||_{L^{\infty}(B(x,r))} \alpha(n) r^n$$

$$= \frac{C||u||_{L^{\infty}(B(x,r))}}{r}$$

and

$$\left| \frac{\partial u}{\partial x_i}(x) \right| \le \frac{C||u||_{L^{\infty}(B(x,r))}}{r}$$

$$\left| \frac{\partial u}{\partial x_i}(x) \right| \le C||u||_{L^{\infty}(B(x,r))} \lim_{r \to \infty} \frac{1}{r} \Longrightarrow \frac{\partial u}{\partial x_i}(x) = 0 \Longrightarrow u = Ck$$

Theorem: Representation Formula

Recall: $f \in C_c^2(\mathbb{R}^n)$, $(*) - \Delta u = f$ in \mathbb{R}^n , we saw that

$$\tilde{u}(x): \int_{\mathbb{R}^n} \Phi(x-y) f(y) \ dy$$

solves *

Let us consider $u \in C^2(\mathbb{R}^n)$ solving $-\Delta u = f$ for $n \ge 3$ where $f \in C^2(\mathbb{R}^n)$ and u is bounded. Then $u(x) = \tilde{u}(x) + C = \int_{\mathbb{R}^n} \Phi(x - y) f(y) \, dy + C$.

Proof

Notice that if \tilde{u} is bounded, then we are done. Because we may consider $w=u-\tilde{u}$ on \mathbb{R}^n where

$$\Delta w = \Delta u - \Delta \tilde{u} = -f - (-f) = 0$$

Therefore w is bounded and, by Liouville's Theorem, w = C and $u - \tilde{u} = c \iff u = \tilde{u} + C$.

$$\begin{split} |\tilde{u}(x)| &\leq \int_{B(0,k)} \Phi(x-y) f(y) \, dy \\ &\leq ||f||_{L^{\infty}(\mathbb{R}^n)} \int_{B(0,k)} \Phi(x-y) \, dy \end{split}$$

If this is less than some C which does not depend on x, we are done.

Since $\Phi(x) \to 0$ for $|x| \to \infty$, for any $C_1 \exists \alpha$ such that if $|x| > \alpha$ then $|\Phi(x)| < C_1$.

IMAGE HERE - 4

 $\operatorname{dist}(x, B(0, k)) = \operatorname{dist}(x, y_0)$ where $y_0 \in \overline{B(0, k)}$.

IMAGE HERE - 5

There are two cases.

· Case 1

 $\mathsf{dist}(x,B(0,k)) \leq \alpha$

 $B(x,k) \subseteq B(0,\alpha+Ck)$

Let $y \in B(x, k)$, then |y - x| < k so $|x - y_0| < \alpha$.

Therefore $|y-y_0| \le k+\alpha \implies |y| \le k+\alpha+|y_0| = 2k+\alpha \implies y \in B(0,2k+\alpha)$. Then

$$||f||_{L^{\infty}(\mathbb{R}^n)} \int_{B(x,k)} \Phi(y) \, dy \le ||f||_{L^{\infty}(\mathbb{R}^n)} \int_{B(0,\alpha+2k)} \Phi(y) \, dy$$

HOMEWORK - Consider the other case.

January 29, 2024

Recall: Representation Formula

For $n \ge 3$.

$$\tilde{u}(x): \int_{\mathbb{R}^n} \Phi(x-y) f(y) \ dy$$

It is sufficient to show that \tilde{u} is bounded. Then

$$|\tilde{u}| \le C \int_{B(0,k)} \Phi(x-y) \, dy$$

 $\forall C_1, \exists \alpha \text{ such that } |z| \ge \alpha \implies |\Phi(z)| \le C_1.$

Case 2

For dist $(x, B(0, k)) \ge \alpha$, dist $(x, y) \ge \alpha$, $\forall y \in B(0, k)$. Then

$$|x - y| \ge \alpha$$

$$\frac{1}{|x - y|} \le \frac{1}{\alpha}$$

$$\frac{1}{|x - y|^{n-2}} \le \frac{1}{\alpha^{n-1}}$$

and

$$|\tilde{u}(x)| \le C \int_{B(0,k)} \frac{1}{|x-y|^{n-2}} dy \le \frac{C}{\alpha^{n-2}} \int_{B(0,k)} dy$$

Theorem 10: Harmonic Implies Analytic

Let $U \subseteq \mathbb{R}^n$ open, $u \in C^2(U)$ harmonic. Then u is analytic in U.

Proof

Let $x_0 \in U$. We want to prove that the power series converges to u(x) for x in a neighborhood around x_0 . Let $r= {\rm dist} \left(x_0, \frac{\partial U}{4}\right), \ M=\frac{1}{\alpha(n)r^n}||u||_{L^1(B(x_0,r))} \subset U.$ IMAGE HERE - 1

We want to analyze $x \in B(x_0, r)$.

Notice that $B(x,r) \le B(x_0,2r)$, and $z \in B(x,r)$ gives |z-x| < r so

$$|z - x_0| \le \underline{|z - x|} + \underline{|x - x_0|} \le 2r$$

Applying estimates on B(x, r), $|\alpha| = k$,

$$|D^{\alpha}u(x)| \le \frac{C_k}{r^{n+k}}||u||_{L^1(B(x,r))}$$

$$\le \frac{C_k}{r^{n+k}}||u||_{L^1(B(x_0,2r))}$$

and

$$\sup_{x \in B(x_0, r)} |D^{\alpha} u(x)| \le \frac{\left(2^{n+1} n k\right)^k}{\alpha(n) r^{n+k}} ||u||_{L^1(B(x_0, 2r))}$$

Notice, by Stirling's approximation or Taylor expansion, $\frac{k^k}{k!} < e^k$, $\forall k \ge 1$. So

$$|\alpha|^{|\alpha|} < e^{|\alpha|} |\alpha|!$$

and

$$n^{k} = \underbrace{(1 + \dots + 1)}_{\substack{n = \text{times}}} = \sum_{|\beta| = k} \frac{|\beta|!}{\beta!} \ge \frac{|\alpha|!}{\alpha!}$$

where $|\alpha|! \le \alpha! n^k$, $\beta = (\beta_1, ..., \beta_2)$ and $\beta! := \beta_1! \beta_2! \cdots \beta_n!$. Therefore

$$|\alpha|^{|\alpha|} \le e^{|\alpha|} |\alpha|! \le e^{|\alpha|} \alpha! n^k$$

and finally

$$(*)$$
 $k^k \le e^k \alpha! n^k$

Applying * to the above inequality,

$$\sup_{X \in B(x_0, r)} |D^{\alpha} u(x)| \le \frac{\left(2^{n+1} n\right)^k e^k \alpha! n^k}{\alpha(n) r^n r^k} ||u||_{L^1(B(x_0, 2r))}$$
$$\le \left(\frac{2^{n+1} n^2 e}{r}\right)^k \cdot \alpha! M$$

Let us analyze the Taylor expansion

$$\sum_{k=0}^{N} \sum_{|\alpha|=k} \frac{D^{\alpha} u(x_0)}{\alpha!} (x - x^0)^{\alpha}$$

Where $\alpha = (\alpha_1, ..., \alpha_n)$, $y \in \mathbb{R}^n$ and $y^{\alpha} = y_1^{\alpha_1} \cdots y_n^{\alpha_n}$.

Pick $|x-x_0| \le \frac{r}{2^{n+2}n^3e}$. We want to prove that the remainder $R_N(x) \xrightarrow[N \to \infty]{} 0$.

$$R_{N}(x) = u(x) - \sum_{k=0}^{N-1} \sum_{|\alpha|=k} \frac{D^{\alpha} u(x_{0})}{\alpha!} (x - x_{0})^{\alpha}$$

$$= \sum_{|\alpha|=N} \frac{D^{\alpha} u(x_{0} + t(x - x_{0}))(x - x_{0})^{\alpha}}{\alpha!}, \quad \text{for some } |t| \le 1$$

Using the remainder of the Taylor expansion with $g(t) = u(x_0 + t(x - x_0))$ for $g: I \to \mathbb{R}$. Homework: show this around t = 0 at t = 1.

Note that $u(x_0 + t(x - x_0))$ describes a straight long with $t = 0 \implies u(x_0)$ and $t = 1 \implies u(x)$. Notice also that $x_0 + t(x - x_0) \in B(x_0, r)$. Then, considering the superemum of the remainder,

$$|R_n(x)| \le \sum_{|\alpha|=N} \left(\frac{2^{n+1}n^2e}{r}\right)^N \cdot M\alpha! \cdot \frac{|(x-x_0)^{\alpha}|}{\alpha!}$$

Remark: for $\alpha = (\alpha_1, ..., \alpha_n)$ and $y = (y_1, ..., y_n)$,

$$\begin{aligned} |y^{\alpha}| &= |y_1^{\alpha_1} \cdots y_n^{\alpha_n}| \le |y_1|^{\alpha_1} \cdots |y_n|^{\alpha_n} \\ &\le |y|^{\alpha_1} \cdots |y|^{\alpha_n} \\ &= |y|^{\alpha_1 + \alpha_2 + \cdots + \alpha_n} \\ &= |y|^{\alpha} \end{aligned}$$

Therefore

$$|R_{n}(x)| \leq \sum_{|\alpha|=N} \left(\frac{2^{n+1}n^{2}e}{r}\right)^{N} \cdot M|x - x_{0}|^{N}$$

$$\leq M \cdot \sum_{|\alpha|=N} \left(\frac{2^{n+1}n^{2}e}{r}\right)^{N} \left(\frac{r}{2^{n+2}n^{3}e}\right)^{N}$$

$$= M \cdot \sum_{|\alpha|=N} \left(\frac{1}{2n}\right)^{N}$$

$$\leq M \left(\frac{1}{2n}\right)^{N} \sum_{|\alpha|=N}$$

$$\leq M \left(\frac{1}{2n}\right)^{N} n^{N}$$

$$= M \left(\frac{1}{2}\right)^{N}$$

Note that $\sum_{|\alpha|=N} (1) \le n^N$ since

$$\alpha = (\alpha_1, \dots, \alpha_n) = (\alpha_{1_N}, \dots, \alpha_{i_N}) = n^N$$

Theorem 11: Harnack's Inequality

Define $V\subset\subset U$ as "V totally contained in U" meaning \overline{V} compact and $V\subseteq\overline{V}\subseteq U$. IAMGE HERE - 2

Let *U* open and $u \in C^2(U)$ harmonic and non-negative.

Then for each connected open set $V \subset\subset U$

$$\sup_{V} u \le C \inf_{V} u$$

for some C that depends on V.

Remark

Then

$$\frac{1}{C}u(y) \le u(x) \le Cu(y), \quad \forall x, y \in V$$

Since

$$u(x) \le \sup_{V} u \le C \inf_{V} u \le C u(y)$$

and

$$\frac{1}{C}u(y) \le \frac{1}{C} \sup_{V} u \le \inf_{V} u \le u(x).$$

Proof

Take $r = \frac{\operatorname{dist}(v, \partial U)}{4} > 0$.

Case 1

Let us suppose that $x, y \in V$ such that |x - y| < r.

IMAGE HERE - 3

Notice $B(x,2r) \subseteq U$. Applying mean-value formulas,

$$u(x) = \int_{B(x,2r)} u = \frac{1}{\alpha(n)(2r)^n} \int_{B(x,2r)} u$$

But notice that $B(y,r) \subseteq B(x,2r)$, so

$$u(x) \ge \frac{1}{\alpha(n)2^n r^n} \int_{B(y,r)} u = \frac{1}{2^n} \int_{B(y,r)} u = \frac{1}{2^n} u(y)$$

That is, if $x, y \in V$ such that |x - y| < r, then $u(x) \ge \frac{1}{2^n} u(y)$ and, mutatis mutandis, $u(y) \ge \frac{1}{2^n} u(x)$.

• Case 2 Let us cover \overline{V} by an open covering of balls $\{B_i\}_{i=1}^N$ such that the radius of each ball is $\frac{r}{2}$ and $B_i \cap B_{i-1} \neq \emptyset$. IMAGE HERE - 4

Then $u(x) \ge \frac{1}{2^n} u(z) \frac{1}{2^n 2^n} u(y)$, so $u(x) \ge \frac{1}{2^{2n}} u(y)$.

In the same way, $u(y) \ge \frac{1}{2^{2n}}u(x)$.

IMAGE HERE - 5

For three balls, $u(x) \ge \frac{1}{2^{3n}} u(y)$ and $u(y) \ge \frac{1}{2^{3n}} u(x)$. Since we have a finite covering of N balls, the same strategy gives

$$u(x) \ge \frac{1}{2^{Nn}} u(y)$$

$$u(y) \ge \frac{1}{2^{Nn}} u(x)$$

and

$$\frac{1}{2^{Nn}} \le u(x)$$

Taking the supremum $y \in V$;

$$\sup_{y \in V} u(y) \le 2^{Nn} u(x)$$

taking the infemum $x \in V$

$$\inf_{x\in V}u(y)$$

Recap: Laplace Equation

- Fundemental Solution
 - Poisson Equation in \mathbb{R}^n
- · Mean-value Formulas
- · Properties
 - Strong Maximum / Minimum Principles
 - * Uniqueness of the Poisson Equation on Bounded Domains
 - Regularity
 - Derivative Estimates
 - Liouville's Theorem
 - * Representation Formula
 - · Uniqueness of the Poisson Equation up to a Constant on \mathbb{R}^n for Bounded Functions
 - Analyticity
 - Harnack's Inequality

Green's Functions

For U open and bounded, $\partial U \in C^1$.

Goal: We want to solve $-\Delta u = f$ on U and u = g on ∂U .

Recall: Green's Formula

$$\int_{\Omega} u \Delta v - v \Delta u = \int_{\partial \Omega} u \frac{\partial v}{\partial \eta} - v \frac{\partial u}{\partial \eta}$$

Obtaining Green's Formula

Let $x \in U$ and consider u(y), $\Phi(y-x)$ as functions of y. Let $\varepsilon > 0$ and consider $V_{\varepsilon} = U \setminus B_{\varepsilon}(x)$. Applying Green's formula; $\Omega = V_{\varepsilon}$,

$$\int_{V_{\varepsilon}} \underbrace{u(y) \Delta_{y} \Phi(y-x)}_{=0} - \Phi(y-x) \Delta_{y} u = \int_{\partial V_{\varepsilon}} u(y) \frac{\partial \Phi(y-x)}{\partial \eta} - \Phi(y-x) \frac{\partial u(y)}{\partial \eta}$$

IMAGE HERE - 6

January 31, 2024

Green's Functions

Goal is to solve for $U \subseteq \mathbb{R}^n$ open and bounded,

$$\begin{cases} -\Delta u = f, & \text{in } U \\ u = g, & \text{on } \partial U \end{cases}$$

by obtaining Green's function.

Let $x \in U$ and assume $u \in C^2(U)$, and consider u(y) and $\Phi(y-x)$.

Recall Green's formula $\int_{\Omega} u \Delta v - v \Delta u = \int_{\partial \Omega} u \frac{\partial u}{\partial \eta} - v \frac{\partial v}{\partial \eta}$.

Then, let $\varepsilon > 0$ and define $V_{\varepsilon}U \setminus B(x, \varepsilon)$.

IMAGE HERE - 1

By applying Green's Formula,

$$\int_{V_{\varepsilon}} u(y) \underbrace{\Delta \Phi(y-x)}_{0} - \Phi(y-x) \Delta u(y) = \int_{\partial V_{\varepsilon}} \underbrace{u \underbrace{\frac{\partial \Phi(y-x)}{\partial \eta}}_{\square_{1}} - \underbrace{\Phi(y-x)}_{\square_{2}} \underbrace{\frac{\partial u}{\partial \eta}}_{\square_{2}}$$

Notice that $\partial V_{\varepsilon} = \partial U \cup \partial B(x, \varepsilon)$.

Let us analyze \square along $\partial B(x, \varepsilon)$

For \square_2 along $\partial B(x, \varepsilon)$,

$$\left| \int_{\partial B(x,\varepsilon)} \Phi(y-x) \frac{\partial u(y)}{\partial \eta} \right| \le \sup_{\overline{U}} |\nabla U| \int_{\partial B(x,\varepsilon)} \Phi(y-x) \, dS(y)$$

$$= \frac{C}{\varepsilon^{n-2}} \int_{\partial B(x,\varepsilon)} dS(y)$$

$$= \frac{C\varepsilon^{n-1}}{\varepsilon^{-2}}$$

$$= c\varepsilon$$

Then $\lim_{\varepsilon \to 0} \int_{\partial B(x,\varepsilon)} \Box_2 = 0$.

Now, for \Box_1 along $\partial B(x,\varepsilon)$ and recalling $\nabla \Phi(z) = \frac{-z}{n\alpha(n)|z|^n}$ while $\eta(z) = \frac{-z}{|z|}$ such that

$$\frac{\partial \Phi}{\partial \eta}(z) = \nabla \Phi \cdot \eta = \frac{|z|^2}{n\alpha(n)|z|^{n+1}} = \frac{1}{n\alpha(n)|z|^{n-1}}$$

we have

$$\int_{\partial B(x,\varepsilon)} u(y) \frac{\partial \Phi(y-x)}{\partial \eta} dS(y) = \int_{\partial U(0,\varepsilon)} u(z+x) \frac{\partial \Phi(z)}{\partial \eta} |z| ds(z)$$

$$= \frac{1}{n\alpha(n)} \int_{\partial B(0,\varepsilon)} \frac{u(z+x)}{|z|^{n-1}} dS(z)$$

$$= \frac{1}{n\alpha(n)\varepsilon^{n-1}} \int_{\partial B(0,\varepsilon)} u(z+x) dS(z)$$

$$= \frac{1}{n\alpha(n)\varepsilon^{n-1}} \int_{\partial B(x,\varepsilon)} u(y) dS(y)$$

$$= \int_{\partial B(x,\varepsilon)} u(y) dS(y)$$

Then $\lim_{\varepsilon\to 0}\int_{\partial B(x,\varepsilon)}\Box_1=u(x)$. It follows, then, that

$$\int_{U} -\Phi(y-x)\Delta u(y) = \int_{\partial U} \underbrace{u \frac{\partial \Phi(y-x)}{\partial \eta}}_{\Box_{1}} - \underbrace{\Phi(y-x) \frac{\partial u}{\partial \eta}}_{\Box_{2}} + u(x)$$

That is

$$u(x) = -\int_{U} \Phi(y-x) \Delta u + \int_{\partial u} \Phi(y-x) \frac{\partial u}{\partial \eta} - u \frac{\partial \Phi(y-x)}{\partial \eta}$$

Notice that we have $-\Delta u = f$ in U and u = g on ∂U , but we will need $\frac{\partial u}{\partial \eta} \mid_{\partial U}$.

Definition: Corrector Function

Given a domain $U \subseteq \mathbb{R}^n$ open and bounded with $x \in U$, define the function $\phi^x(y)$ that satisfies the following

$$\begin{cases} \Delta \phi^{x}(y) = 0, & \text{in } U \\ \phi^{x}(y) = \Phi(y - x), & \text{on } y \in \partial U \end{cases}$$

Note that we do not know that such a function exists.

Green's Function Continued

Suppose that we have $\phi^x(y)$. Then, applying green's formula for u(y) and $\phi^x(y)$,

$$\int_{U} u \Delta \underbrace{\phi^{x}(y)}_{0} - \phi^{x}(y) \Delta u = \int_{\partial U} u \frac{\partial \phi^{x}(y)}{\partial \eta} - \underbrace{\phi^{x}(y) \frac{\partial u}{\partial \eta}}_{\Phi(y-x) \frac{\partial u}{\partial \eta}}$$

Then

$$\int_{\partial U} \Phi(y - x) \frac{\partial u}{\partial \eta} = \int_{\partial U} u \frac{\partial \phi^{x}(y)}{\partial \eta} + \int_{U} \phi^{x}(y) \Delta u$$

Replacing \square_3 in \square_4 ,

$$u(x) = -\int_{U} \Phi(y - x) \Delta u + \int_{\partial U} u \frac{\partial \phi^{x}(y)}{\partial \eta} + \int_{U} \phi^{x}(y) \Delta u - \int_{\partial U} u \frac{\partial \Phi(y - x)}{\partial \eta}$$

and, therefore,

$$u(x) = -\int_{U} \Delta u \left[\Phi(y - x) - \phi^{x}(y) \right] - \int_{\partial U} u \frac{\partial}{\partial \eta} \left[\Phi(y - x) - \phi^{x}(y) \right]$$

Definition: Green's Function

Given a domain $U \subseteq \mathbb{R}^n$, the Green's function for $x \in U$ is defined by

$$G(x,y) := \Phi(y-x) - \phi^{x}(y)$$

Theorem: Representation Formula

Suppose $U \subseteq \mathbb{R}^n$, and $u \in C^2(U)$ that solves

$$\begin{cases} -\Delta u = f, & \text{in } U \\ u = g, & \text{on } \partial U \end{cases}$$

Then,

$$u(x) = \int_{U} fG(x, y) - \int_{\partial U} g \frac{\partial G(x, y)}{\partial \eta}$$

Interpretation of the Green's Functions

$$\Delta_y G(x, y) = \Delta_y \Phi(y - x) - \underbrace{\Delta_y \phi^x(y)}_{0} = \delta^x(y)$$

and

$$G(x, y) = \Phi(y - x) - \phi^{x}(y) = 0, \quad y \in \partial U$$

That is, it is the Dirac delta on the interior which vanishes at the boundary.

Theorem: Symmetry of the Green's Function

For all $x, y \in U$, $x \neq y$, we want to show that G(x, y) = G(y, x).

Proof

Let $x, y \in U, x \neq y$.

Define V(z) := G(x, z) and W(z) := G(y, z).

Notice that $\Delta_z V = 0$ for $z \neq x$ and $\Delta_z W = 0$ for $w \neq y$ and V(z) = W(z) = 0 for $z \in \partial U$.

IMAGE HERE - 2

Then, let us consider $\varepsilon > 0$ and

$$\Omega_{\varepsilon} := U \setminus \left[B(x, \varepsilon) \right] \left[B(y, \varepsilon) \right]$$

Then

$$0 = \int_{\Omega_{\varepsilon}} W \underbrace{\Delta V}_{0} - V \underbrace{\Delta W}_{0} = \int_{\partial \Omega_{\varepsilon}} W \frac{\partial V}{\partial \eta} - V \frac{\partial W}{\partial \eta}$$
$$= \int_{\partial U} W \frac{\partial V}{\partial \eta} - V \frac{\partial W}{\partial \eta} + \int_{\partial B(x,\varepsilon)} W \frac{\partial V}{\partial \eta} - V \frac{\partial W}{\partial \eta} + \int_{\partial B(y,\varepsilon)} W \frac{\partial V}{\partial \eta} - V \frac{\partial W}{\partial \eta}$$

It follows that

$$\underbrace{\int_{\partial B(x,\varepsilon)} \underbrace{W \frac{\partial V}{\partial \eta} - V \frac{\partial W}{\partial \eta}}_{\Phi_1} = \underbrace{\int_{\partial B(y,\varepsilon)} V \frac{\partial W}{\partial \eta} - W \frac{\partial V}{\partial \eta}}_{\Phi_2}$$

Let us analyze (b), fixing $\varepsilon_0 > 0$ such that $\varepsilon < \varepsilon_0$

$$\left| \int_{B(x,\varepsilon)} V \frac{\partial W}{\partial \eta} \right| \le \sup_{z \in \partial B(x,\varepsilon)} |V(z)| \int_{B(x,\varepsilon)} \left| \frac{\partial W}{\partial \eta}(z) \right| dS(z)$$

$$\le \sup_{z \in \partial B(x,\varepsilon_0)} |\nabla W(z)| \int_{\partial B(x,\varepsilon)} dS(z)$$

$$\le C\varepsilon^{n-1} \sup_{z \in \partial B(x,\varepsilon)} |V(z)|$$

$$\le C\varepsilon^{n-1} \left(\frac{C}{\varepsilon^{n-2} + C} \right)$$

$$= C\varepsilon + C\varepsilon^{n-1}$$

Since, given $z \in \partial B(x, \varepsilon)$,

$$V(z) = G(x, z) = \Phi(z - x) - \phi^{x}(z)$$

we have

$$|V(z)| \le |\Phi(z-x)| + |\phi^{x}(z)|$$

$$\le \frac{C}{\varepsilon^{n-2}} + \sup_{z \in B(x,\varepsilon_0)} |\phi^{x}(z)|$$

Thus, we have $\lim_{\varepsilon \to 0} \int_{\partial B(x,\varepsilon)} V \frac{\partial W}{\partial \eta} = 0$. Let us analyze (a),

$$\int_{\partial B(x,\varepsilon)} W(z) \frac{\partial V}{\partial \eta}(z) \, dS(z) = \int_{\partial B(x,\varepsilon)} W(z) \left[\frac{\Phi(z-x)}{\partial \eta} - \frac{\partial \phi^{x}(z)}{\partial \eta} \right] dS(z)$$

$$= \int_{\partial B(x,\varepsilon)} W(z) \frac{\partial \Phi(z-x)}{\partial \eta} - W(z) \frac{\partial \phi^{x}(z)}{\partial \eta} \, dS(z)$$

Analyzing (h),

$$\left| \int_{\partial B(x,\varepsilon)} W(z) \frac{\partial \phi^{x}(z)}{\partial \eta} \right| \leq \sup_{\partial B(x,\varepsilon_{0})} |\nabla \phi^{x}(z)| |W(z)| \int_{\partial B(x,\varepsilon)} dS(z)$$

$$= C\varepsilon^{n-1}$$

Then $\lim_{\varepsilon \to 0} h = 0$ and

$$\lim_{\varepsilon \to 0} \int_{\partial B(x,\varepsilon)} W(z) \frac{\partial \Phi(z-x)}{\partial \eta} = W(x)$$

So $\lim_{\varepsilon \to 0} (a) = W(x)$. Then

$$\lim_{\varepsilon \to 0} \int_{\partial B(x,\varepsilon)} W \frac{\partial V}{\partial \eta} - V \frac{\partial W}{\partial \eta} = W(x)$$

Applying the same process,

$$\lim_{\varepsilon \to 0} \int_{\partial B(y,\varepsilon)} V \frac{\partial W}{\partial \eta} - W \frac{\partial V}{\partial \eta} = V(y)$$

Therefore W(x) = V(y) and G(y,x) = G(x,y).

Definition: Half Space

Define the half space $\mathbb{R}^n_+ = \{(x_1, ..., x_n) : x_n > 0. \}$ IMAGE HERE - 3

Definition: Reflection

For a $x = (x_1, ..., x_n) \in \mathbb{R}^n_+$, define its reflection $\tilde{x} = (x_1, ..., -x_n)$.

Green's Function in the Half Space

We want to find $\phi^{x}(y)$ that solves

$$(*) \begin{cases} \Delta \phi^{x}(y) = 0, & \text{in } \mathbb{R}^{n}_{+} \\ \phi^{x}(y) = \Phi(y - x), & y \in \partial \mathbb{R}^{n}_{+} \end{cases}$$

Let us consider $\phi^x(y) := \Phi(y - \tilde{x}), x, y \in \mathbb{R}^n_+$. Then $\phi^x(y)$ satisfies *. Then we can see that $\Delta \phi^x(y) = 0$.

Let $y \in \partial \mathbb{R}^n_+$ such that $y = (y_1, ..., y_{n-1}, 0)$. So

$$\phi^{x}(y) = \Phi(y - \bar{x})$$

$$= \Phi(|y - \bar{x}|)$$

$$= \Phi\left(\sqrt{(y_{1} - x_{1})^{2} + \dots + (y_{n-1} - x_{n-1})^{2} + (0 + x^{n})^{2}}\right)$$

$$= \Phi(|y - x|^{2})$$

$$= \Phi(y - x)$$

February 5, 2024

Recall: Green's Function

$$G(x, y) = \Phi(y - x) - \phi^{x}(y).$$

For $U \subset \mathbb{R}^{n}_{+}$, when

$$G(x, y) = \Phi(y - x) - \Phi(y - \tilde{x})$$

we proved that if $u \in C^2(\overline{U})$,

$$\begin{cases} -\Delta u = f, & U \\ u = g, & \partial U \end{cases}$$

then

$$u(x) = \int_{U} fG(x, y) \, dy - \int_{\partial U} g \frac{\partial G(x, y)}{\partial \eta} \, dS(y)$$

Let us consider

$$\begin{cases} \Delta u = 0, & \mathbb{R}^n_+ \\ u = g, & \partial \mathbb{R}^n_+ \end{cases}$$

such that

$$u(x) = -\int_{\partial \mathbb{R}^n} g \frac{\partial G(x, y)}{\partial \eta} dS(y)$$

Let us compute $\frac{\partial G}{\partial \eta}$. IMAGE HERE - 1 UPPER HALF SPACE WITH NORMAL VECOTR ETA Recall

$$\nabla \Phi(z) = \frac{-z}{n\alpha(n)|z|^n}$$
$$\frac{\partial \Phi(z)}{\partial z_n} = \frac{-z_n}{n\alpha(n)|z|^n}$$

so, since $y - \tilde{x}_n = y_n + x_n$,

$$\begin{split} \frac{\partial G}{\partial \eta} &= \nabla G(x, y) \cdot \eta \\ &= -\frac{\partial G(x, y)}{\partial y_{n+1}} \\ &= -\frac{\partial}{\partial y_{n+1}} (\Phi(y - x) - \Phi(y - \tilde{x})) \\ &= -\left[\frac{-(y_n - x_n)}{n\alpha(n)|y - x|^n} - \frac{-(y_n + x_n)}{n\alpha(n)|x - \tilde{x}|^n} \right] \end{split}$$

But recall that if $y \in \partial \mathbb{R}^n_+$, $|y - x| = |y - \tilde{x}|$. Then $y \in \partial \mathbb{R}^n_+$

$$\frac{\partial G(x,y)}{\partial \eta} = -\frac{1}{n\alpha(n)|y-x|^n} \left[-y_n + x_n + y_n + x_n \right] = -\frac{2x_n}{n\alpha(n)|y-x|^n}$$

Then

$$u(x) = \int_{\partial \mathbb{R}^n_+} \frac{g(y)2x_n}{n\alpha(n)|y-x|^n} dS(y)$$

Definition: Poisson Kernel

$$K(x,y) = \frac{2x_n}{n\alpha(n)|y-x|^n} = \frac{\partial G}{\partial y_n}$$

is called the Poisson Kernel and

$$u(x)\int_{\partial\mathbb{R}^n_+}g(x)K(x,y)\ dS(y)$$

is called the Poisson Formula.

Notice (HW): $\int_{\partial \mathbb{R}^n_+} K(x, y) \ dy = 1$, $\forall x \in \mathbb{R}^n_+$ (hint: apply spherical coordinates).

Theorem 14:

Define

$$(*) \quad u(x) = \int_{\partial \mathbb{R}^n_+} K(x, y) g(y) \, dS(y)$$

Suppose that $g \in C^{\infty}(\mathbb{R}^{n-1}) \cap L^{\infty}(\mathbb{R}^{n-1})$. Then

1.
$$u \in C^{\infty}(\mathbb{R}^n_+) \cap L^{\infty}(\mathbb{R}^n_+)$$
.

2.
$$\Delta u = 0$$
, \mathbb{R}^n_+ .

3.
$$\lim_{x \to x^0} u(x) = g(x^0), x \in \mathbb{R}^n_+, x^0 \in \partial \mathbb{R}^n_+$$

Proof

We know G(x, y) satisfies

$$\Delta_{\gamma}G(x,y)=\delta^{x}(y).$$

Notice that $y \to G(x, y)$ is harmonic for $x \neq y$.

Recall that G(x, y) = G(y, x), so $x \to G(x, y)$ is harmonic for $x \neq y$.

Then $x \to \frac{\partial G(x,y)}{\partial y_n}$ is harmonic $(*_2)$ for $x \neq y$ and for $y \in \partial \mathbb{R}^n_+$.

Homework: compute this directly.

Noticing that K is smooth when $x \neq y$, then

$$\frac{\partial u}{\partial x_i} = \int_{\partial \mathbb{R}^n} \frac{\partial}{\partial x_i} K(x, y) g(y) \, dS(y)$$

Homework: justify puting the limit inside the integral.

Homework: prove that $\frac{\partial u}{\partial x_i}$ is continuous.

By repeatedly taking derivaties, we see $u \in C^{\infty}(\mathbb{R}^n_+)$

Moreover,

$$\Delta_x u = \int_{\partial \mathbb{R}^n} \underbrace{\Delta_x K(x, y)}_{=0} g(y) \ dS(y) = 0$$

by $*_2$. Then

$$|u(x)| \leq \int_{\partial \mathbb{R}^n_+} |K(x,y)| |g(y)| \ dS(y) \leq ||g||_{L^{\infty}(\mathbb{R}^{n-1})} \underbrace{\int_{\partial \mathbb{R}^n_+} K(x,y) \ dS(y)}_{-1} < \infty$$

For part c, consider $x^0 \in \partial \mathbb{R}^n_+$ and $\varepsilon > 0$. Since $g \in C^{\infty}(\mathbb{R}^{n-1})$, let $\delta > 0$ such that $|y - x^0| < \delta \implies |g(y) - g(x^0)| < \varepsilon$ for $y \in \partial \mathbb{R}^n_+$. IMAGE HERE - 2 DELTA BALL AROUND X0 HALF DELTA BALL WITH X INSIDE

Now, let us consider $|x - x_0| < \frac{\delta}{2}$.

$$|u(x) - g(x^{0})| = \left| \int_{\partial \mathbb{R}^{n}_{+}} K(x, y) g(y) - K(x, y) g(x^{0}) dS(y) \right|$$

$$\leq \int_{\partial \mathbb{R}^{n}_{+}} K(x, y) \left| g(y) - g(x^{0}) \right| dS(y)$$

$$= \underbrace{\int_{\partial \mathbb{R}^{n}_{+} \cap B(x^{0}, \delta)} K(x, y) |g(y) - g(x^{0})| dS(y)}_{I} + \underbrace{\int_{\partial \mathbb{R}^{n}_{+} \cap B^{c}(x^{0}, \delta)} K(x, y) |g(y) - g(x^{0})| dS(y)}_{II}$$

Then

$$I \leq \varepsilon \int_{\partial \mathbb{R}^n_+ \cap B(x^0, \delta)} K(x, y) \leq \varepsilon$$

Now, we want to control II

$$\int_{\partial \mathbb{R}^n_+ \cap B^c(x^0, \delta)} K(x, y) |g(y) - g(x^0)| \, dS(y) \le C||g||_{L^{\infty}} \int_{\partial \mathbb{R}^n_+ \cap B^c(x^0, \delta)} K(x, y) |g(y) - g(x^0)| \, dS(y) \le C||g||_{L^{\infty}} \int_{\partial \mathbb{R}^n_+ \cap B^c(x^0, \delta)} \frac{x_n}{|x - y|^n} \, dS(y)$$

We want to control $|x^0-y|$ with something related to |x-y|. We know $|y-x^0|>\delta$ and we will consider $|x-x^0|<\frac{\delta}{2}$. So

$$|y-x^{0}| \le |y-x| + |x-x^{0}| \le |y-x| + \frac{\delta}{2} \le |y-x| + \frac{|y-x^{0}|}{2}$$

So $\frac{|y-x_0|}{2} \le |y-x|$ implies that $\frac{1}{|y-x|^n} \le \frac{2^n}{|y-x_0|^n}$. Therefore

$$\int_{\partial \mathbb{R}^n_+ \cap B^c(x^0, \delta)} K(x, y) |g(y) - g(x^0)| \, dS(y) \le C x_n \int_{\partial \mathbb{R}^n_+ \cap B^c(x^0, \delta)} \frac{1}{|y - x^0|^n} \, dS(y)$$

$$= \int_{\delta}^{\infty} \int_{\partial B^{n-1}(x^0, r)} \frac{1}{r^n} \, dS(y) dr$$

$$= C \int_{\delta}^{\infty} \frac{1}{r^n} r^{n-2} \, dr$$

$$= C \int_{\delta}^{\infty} \frac{1}{r^2} \, dr$$

$$= C(\frac{1}{r})|_{\delta}^{\infty}$$

$$= \frac{C}{\delta}$$

Then $II \leq \frac{Cx_n}{\delta}$. Now let us consider $|x - x^0| < \frac{\delta}{I}$ where $\frac{1}{I} < \varepsilon$. Then

$$II \leq \frac{C|x - x^0|}{\delta} \leq C\frac{\delta}{\delta I} \leq C\varepsilon$$

Energy Methods: Uniqueness

Consider the boundary value problem

(*)
$$\begin{cases} -\Delta u = f, & U, f \in C(U) \\ u = g, & \partial U, g \in C(\partial U) \end{cases}$$

with U open and bounded in \mathbb{R}^n , $u \in C^2(\overline{U})$ and $\partial U \in C^1$.

Theorem 16: Uniquness

There exists at most one solution $u \in C^2(\overline{U})$ for *.

Proof

Let us suppose that \tilde{u} is another solution.

Then $w := u - \tilde{u}$ solves

$$\begin{cases} \Delta w = 0, & U, \ w \in C^{2}(\overline{U}) \\ w = 0, & \end{cases}$$

where

$$0 = \int_{U} w \Delta w = -\int_{U} |\nabla W|^{2} + \int_{\partial U} w \frac{\partial w}{\partial \eta}$$

$$0 = \int_{U} |\nabla w|^{2} \implies \nabla w = 0 \implies w = 0 \implies u = \tilde{u}$$

Definition: Energy Functional

Let us consider

$$A = \left\{ w \in C^2(\overline{U}) : W|_{\partial U} = g \right\}$$

for $g \in C(\partial U)$ and $f \in C(U)$.

Define the energy functional $I:A\to\mathbb{R}$ given by $I(w):=\int_U\frac{|\nabla w|^2}{2}-fw$.

Energy Methods: Dirichlet Principle

Calculus of variations applied to the Laplace equation.

Theorem:

Suppose $u \in C^2(\overline{U})$ is a solution to the problem

$$\Box \quad \begin{cases} -\Delta u = f, & U \\ u = g, & \partial U \end{cases}$$

Then,

$$(*) \quad I(u) = \min_{w \in A} \{I(w)\}$$

Moreover, if $u \in A$ such that * happens, then u satisfies \square .

Proof

 (\Longrightarrow) For $w \in A$,

$$0 = \int_{U} \underbrace{(-\Delta u - f)}_{=0} (u - w)$$

$$= \int_{U} -\Delta u (u - w) - \int_{U} f(u - w)$$

$$= \int_{U} \nabla (u - w) \cdot \nabla u - \underbrace{\int_{\partial U} (u - w) \cdot \frac{\partial u}{\partial \eta}}_{=0} - \int_{U} f(u - w)$$

$$= \int_{U} |\nabla u|^{2} - \int_{U} \nabla w \cdot \nabla u - \int_{U} f u + \int_{U} f w$$

Notice that, since $|a-b|^2 \ge 0$ implies $\frac{a^2+b^2}{2} \ge ab$,

$$\int_{U} \nabla w \cdot \nabla u \leq \int_{U} \left| \nabla w \right| \left| \nabla u \right| \leq \frac{1}{2} \int_{U} \left| \nabla w \right|^{2} + \frac{1}{2} \int_{U} \left| \nabla u \right|^{2}$$

Therefore

$$\begin{split} \int_{U} \left| \nabla u \right|^{2} - \int_{U} f u &= \int_{U} \nabla w \cdot \nabla u - \int_{U} f w \\ &\leq \int_{U} \frac{\left| \nabla w \right|^{2}}{2} + \int_{U} \frac{\left| \nabla u \right|^{2}}{2} - \int_{U} f w \\ &\int_{U} \frac{\left| \nabla u \right|^{2}}{2} - f u \leq \int_{U} \frac{\left| \nabla w \right|^{2}}{2} - f w \end{split}$$

Then

$$I(u) \le I(w), \quad \forall w \in A$$

 $B/u \in A$.

February 7, 2024

Recall: Energy Functional

For $U \subseteq \mathbb{R}^n$ bounded, $g \in C(\partial U)$, $f \in C(\overline{U})$

$$A = \left\{ w \in C^2(\overline{U}) : w|_{\partial U} = g \right\}$$

we have

$$I(w) \coloneqq \int_{U} \frac{1}{2} \left| \nabla w \right|^{2} - f w$$

Theorem:

Suppose $u \in A$ such that $I(u) = \min\{I(w) : w \in A\}$. Then u satisfies

$$\begin{cases} -\Delta u = f, & \text{in } U \\ u = g, & \text{on } \partial U \end{cases}$$

Proof

Consider $v \in C_c^{\infty}(U)$.

Define $i : \mathbb{R} \to \mathbb{R}$ such that $\tau \mapsto I(\tau) := I(u + \tau v)$.

Notice that $u + \tau v$ is a perturbation of u and, since $u + \tau v \in C^2(\overline{U})$ while $u + \tau v|_{\partial U} = u|_{\partial U} = g$, $u + \tau v \in A$. Then

$$i(0) = I(u) \leq I(u + \tau v) = i(\tau)$$

so *i* has a minimum point at $\tau = 0$. Compute

$$\begin{split} i(\tau) &= I(u + \tau v) \\ &= \int_{U} \frac{\left|\nabla (u + \tau v)\right|^{2}}{2} - f(u + \tau v) \\ &= \int_{U} \frac{\left|\nabla u\right|^{2}}{2} + \tau \langle \nabla u, \nabla v \rangle + \frac{\tau^{2} \left|\nabla v\right|^{2}}{2} - \int_{U} f u - \tau \int_{U} f v \\ &= \int_{U} \frac{\left|\nabla u\right|^{2}}{2} + \tau \int_{U} \langle \nabla u, \nabla v \rangle + \frac{\tau^{2}}{2} \int_{U} \left|\nabla v\right|^{2} - \int_{U} f u - \tau \int_{U} f v \end{split}$$

So i is a polynomial in τ , and

$$i'(0) = i'(\tau)_{\tau=0} = \left(\int_{U} \langle \nabla u, \nabla v \rangle + \tau \int_{U} |\nabla v|^{2} - \int_{U} f v \right)_{\tau=0}$$

So

$$0 = i'(0)$$

$$= \int_{U} \langle \nabla u, \nabla v \rangle - \int_{U} f v$$

$$= \int_{U} -\Delta u \cdot v + \underbrace{\int_{\partial U} \frac{\partial u}{\partial \eta} \cdot v}_{=0} - \int_{U} f v$$

$$= \int_{U} \underbrace{(-\Delta u - f)}_{=0} v$$

Since $0 = \int g v$, $\forall v \in C_c^{\infty}(U)$ requires $g \equiv 0$. Then $-\Delta u - f = 0$.

Heat Equation (Diffusion Equation)

The equations

$$(*)\begin{cases} u_t - \Delta u = 0, & \text{homogeneous case} \\ u_t - \Delta u = f, & \text{non-homogeneous case} \end{cases}$$

(note that $\Delta u = \Delta_x u$)

subject to some boundary and initial conditions $t \ge 0$ time and $x \in \mathbb{R}^n$, space variable, $x \in U$ and opsen set of \mathbb{R}^n . $u: U \times (0, \infty) \to \mathbb{R}$ defined as $(x, t) \mapsto u(x, t)$ with u unknown. IMAGE HERE - 1

Motivation: Fundamental Solution of the Heat Equation

We would like to have the following:

If u solves

$$\begin{cases} u_t - \Delta u = 0, & \mathbb{R}^n \times (0, \infty) \\ u(x, 0) = g(x), & \mathbb{R}^n \times \{0\} \end{cases}$$

then

$$u(x,t) = \int_{\mathbb{R}^n} G(x-y,t)g(y) \, dy$$

How do we get G? Let us suppose that $u(\tilde{x}, \tilde{t})$ solves

$$\begin{cases} u_{\tilde{t}} - \Delta_{\tilde{x}} u = 0 \\ u(\tilde{x}, 0) = g(\tilde{x}) \end{cases}$$

We would like to have invariance under dilation.

$$v(x,t) := u(\lambda x, \lambda^2 t)$$

Such that

$$v_{t} = \nabla U|_{(\lambda x, \lambda^{2} t)} - \frac{\partial}{\partial t} \begin{bmatrix} \lambda x \\ \lambda^{2} t \end{bmatrix}$$

$$= \lambda^{2} u_{\tilde{t}}(\lambda x, \lambda^{2} t)$$

$$v_{x_{i}} = \lambda u_{\tilde{x}_{i}}(\lambda x, \lambda^{2} t)$$

$$v_{x_{i}x_{i}} = \lambda^{2} u_{\tilde{x}_{i}\tilde{x}_{i}}(\lambda x, \lambda^{2} t)$$

Therefore

$$v_t - \Delta_x v = \lambda^2 u_{\tilde{t}} - \lambda^2 \Delta_{\tilde{x}} u = \lambda^2 (\underbrace{u_{\tilde{t}} - \Delta_{\tilde{x}} u}) = 0$$

with

$$v(x,0) = u(\lambda x,0) = g(\lambda x)$$

Then, applying the motivation,

$$v(x,t) = \int_{\mathbb{R}^n} G(x-y,t)g(\lambda y) dy = \int_{\mathbb{R}^n} G\left(x-\frac{z}{\lambda},t\right)g(z)\frac{dz}{\lambda^n}$$

On the other hand,

$$v(x,t) = u(\lambda x, \lambda^2 t) = \int_{\mathbb{R}^n} G(\lambda x - z, \lambda^2 t) g(z) dz$$

It follows that

$$\frac{1}{\lambda^n}G\left(\overbrace{x-\frac{z}{\lambda}}^{w},t\right) = G(\lambda x - z, \lambda^2 t)$$
$$\frac{1}{\lambda^n}G(w,t) = G(\lambda w, \lambda^2 t)$$

If $\lambda^2 t = 1$, then

$$G(w,t) = \frac{1}{t^{n/2}}G\left(\frac{1}{\sqrt{t}}w,1\right)$$

If we call $G\left(\frac{w}{\sqrt{t}},1\right) = v\left(\frac{w}{\sqrt{t}}\right)$, then we are looking at $G(w,t) = \frac{1}{t^{n/2}}v\left(\frac{w}{t^{1/2}}\right)$. So, we have motivation to define

$$u(x,t) = \frac{1}{t^{\alpha}} \nu \left(\frac{x}{t^{\beta}} \right)$$

for α , β appropriate and $\nu(\gamma): \mathbb{R}^n \to \mathbb{R}$.

Obtaining a Fundamental Solution to the Heat Equation

Let us compute u_t and $\Delta_x u$.

$$\begin{split} u_t &= \frac{\partial}{\partial t} \left(\frac{1}{t^{\alpha}} v \left(\frac{x}{t^{\beta}} \right) \right) \\ &= \frac{(-\alpha)}{t^{\alpha+1}} v \left(\frac{x}{t^{\beta}} \right) + \frac{1}{t^{\alpha}} \frac{\partial}{\partial t} \left(v \left(\frac{x}{t^{\beta}} \right) \right) \\ &= \frac{(-\alpha)}{t^{\alpha+1}} v \left(\frac{x}{t^{\beta}} \right) + \frac{1}{t^{\alpha}} \cdot \nabla v \big|_{\frac{x}{t^{\beta}}} \cdot \frac{\partial}{\partial t} \left(\frac{x}{t^{\beta}} \right) \\ u_t &= \frac{(-\alpha)}{t^{\alpha+1}} v \left(\frac{x}{t^{\beta}} \right) + \frac{(-\beta)}{t^{\alpha} t^{\beta+1}} \nabla v \big|_{\frac{x}{t^{\beta}}} \cdot x \quad \Box_1 \end{split}$$

and

$$\frac{\partial u}{\partial x_i} = \frac{1}{t^{\alpha}} \frac{\partial}{\partial x_i} \left(v \left(\frac{x}{t^{\beta}} \right) \right)$$

$$= \frac{1}{t^{\alpha}} \nabla v \big|_{\frac{x}{t^{\beta}}} \cdot \frac{\partial}{\partial x_i} \left(\frac{x}{t^{\beta}} \right)$$

$$= \frac{1}{t^{\alpha + \beta}} \frac{\partial v}{\partial x_i} \big|_{\frac{x}{t^{\beta}}}$$

while

$$\frac{\partial^2 u}{\partial x_i x_i} = \frac{1}{t^{\alpha + 2\beta}} \frac{\partial^2 v}{\partial x_i x_i} \Big|_{\frac{x}{t^{\beta}}} \quad \Box_2$$

Then, replacing \square_1 and \square_2 in *,

$$-\frac{\alpha}{t^{\alpha+1}} \nu \left(\frac{x}{t^{\beta}}\right) - \frac{\beta}{t^{\alpha+\beta+1}} \nabla \nu \left|_{\frac{x}{t^{\beta}}} \cdot x - \frac{1}{t^{\alpha+2\beta}} \Delta \nu \right|_{\frac{x}{t^{\beta}}} \stackrel{?}{=} 0$$

Set $y := \frac{x}{t^{\beta}}$

$$-\frac{\alpha}{t^{\alpha+1}}\nu(y) - \frac{\beta}{t^{\alpha+1}}\nabla\nu(y) \cdot y - \frac{1}{t^{\alpha+2\beta}}\Delta\nu(y) = 0$$

Multiplying through by $-t^{\alpha+1}$,

$$\alpha v(y) + \beta \nabla v(y) \cdot y + \frac{1}{t^{2\beta-1}} \Delta v(y) = 0$$

Let us assume that $2\beta - 1 = 0$ such that $\beta = \frac{1}{2}$, giving

$$\alpha v(y) + \frac{1}{2} \nabla v(y) \cdot y + \Delta v(y) = 0$$

Since the Laplacian is rotationally invariant, assume v(y) = w(|y|) for $w : \mathbb{R}^+ \to \mathbb{R}$. Recall that $\frac{\partial}{\partial y_i} |y| = \frac{\partial}{\partial y_i} \left(\sqrt{y_1^2 + \dots + y_n^2} \right) = \frac{y_i}{|y|}$. Now

$$\frac{\partial}{\partial y_i}v(y) = \frac{\partial}{\partial y_i}(w(|y|)) = w'(|y|) \cdot \frac{\partial}{\partial y_i}(|y|) = w'(|y|) \cdot \frac{y_i}{|y|}$$

$$\begin{split} \frac{\partial^{2} v(y)}{\partial y_{i} y_{i}} &= \frac{\partial}{\partial y_{i}} \left(w'(|y|) \right) \frac{y_{i}}{|y|} + w'(|y|) \cdot \frac{\partial}{\partial y_{i}} \left(\frac{y_{i}}{|y|} \right) \\ &= w''(|y|) \cdot \frac{y_{i}^{2}}{|y|^{2}} + w'(|y|) \left[\frac{1}{|y|} + y_{i} \frac{\partial}{\partial y_{i}} \left(\frac{1}{|y|} \right) \right] \\ &= w''(|y|) \frac{y_{i}^{2}}{|y|^{2}} + w'(|y|) \left[\frac{1}{|y|} - \frac{y_{i}^{2}}{|y|^{3}} \right] \end{split}$$

Replacing in the PDE of v,

$$0 = \alpha w(|y|) + \frac{1}{2} \frac{w'(|y|)y}{|y|} \cdot y + \sum_{i=1}^{n} w''(|y|) \frac{y_i^2}{|y|^2} + w'(|y|) \left[\frac{1}{|y|} - \frac{y_i^2}{|y|^3} \right]$$
$$= \alpha w(|y|) + \frac{1}{2} w'(|y|)|y| + w''(|y|) + w'(|y|) \left[\frac{n}{|y|} - \frac{1}{|y|} \right]$$

If |y| = r

$$0 = \alpha w(r) + \frac{1}{2}w'(r)r + w''(r) + w'(r)\frac{n-1}{r}$$

Take $\alpha = \frac{n}{2}$ and multiply through by r^{n-1} ,

$$0 = \frac{nr^{n-1}}{2}w(r) + \frac{r^n}{2}w'(r) + w''(r)r^{n-1} + w'(r)(n-1)r^{n-2}$$
$$= \frac{1}{2}[w(r)r^n]' + [w'(r)r^{n-1}]'$$

Then by the fundamental theorem of calculus, $w'(r)r^{n-1} + \frac{w(r)r^n}{2} = C$. We would like $w, w' \xrightarrow[r \to \infty]{} 0$. Then C = 0, so

$$w'(r)r^{n-1} = -\frac{w(r)r^n}{2}$$

Which gives

$$w' = \frac{-wr}{2} \iff \frac{w'}{w} = -\frac{r}{2} \iff (\ln(w))' = \frac{-r}{2} \iff \ln(w) = -\frac{r^2}{4} + d$$

and, finally,

$$w(r) = be^{-\frac{r^2}{4}}$$

Then define

$$u(x,t) := \frac{1}{t^{n/2}} v\left(\frac{x}{t^{1/2}}\right)$$

$$= \frac{1}{t^{n/2}} w\left(\left|\frac{x}{t^{1/2}}\right|\right)$$

$$= \frac{b}{t^{n/2}} e^{-\frac{1}{4}\left|\frac{x}{t^{1/2}}\right|^2}$$

$$= \frac{b}{t^{n/2}} e^{-\frac{1}{4t}|x|^2}$$

Where b is chosen such that the expression integrates to 1.

Definition: Fundamental Solution of the Heat Equation

The fundamental solution for the heat equation is given by

$$\begin{cases}
\Phi(x,t) = \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x|^2}{4t}}, & x \in \mathbb{R}^n, \ t > 0 \\
0, & x \in \mathbb{R}^n, \ t < 0
\end{cases}$$

where we have chosen $b = \frac{1}{(4\pi)^{n/2}}$.

IMAGE HERE - 2

Notice that these match in the limit away from the origin $(\lim_{(x,t)\to(x_0,0)} \Phi(x,t) = 0)$. Remark: $\Phi(x,t)$ has a unique singularity at (0,0).

February 12, 2024

Recall: Heat Equation

$$\Phi(x,t) = \begin{cases} \frac{b}{(t)^{n/2}} e^{\frac{-|x|^2}{4t}}; & t > 0, x \in \mathbb{R}^n \\ 0; & t < 0 \end{cases}$$

Remark: Φ is radial such that $\Phi(x, t) = \Phi(|x|, t)$.

Lemma:

For each t > 0,

$$\int_{\mathbb{R}^n} \Phi(x,t) \, dx = 1$$

Proof

$$\int_{\mathbb{R}^{n}} \Phi(x,t) dx = \frac{b}{t^{n/2}} \int_{\mathbb{R}^{n}} e^{-\frac{|x|^{2}}{4t}} dx$$

$$= \frac{b}{t^{n/2}} \int_{\mathbb{R}^{n}} e^{-\left|\frac{x}{2\sqrt{t}}\right|^{2}}$$

$$= \frac{b}{z = \frac{x}{2\sqrt{t}}} \int_{\mathbb{R}^{n}} e^{-\left|z^{2}\right|^{2}} (2\sqrt{t})^{n} dz$$

$$= b2^{n} \int_{\mathbb{R}^{n}} e^{-\left|z^{2}\right|^{2}} dz$$

$$= 2^{n} b \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-z_{1}^{2} - \cdots - z_{n}^{2}} dz_{1} \cdots dz_{n}$$

$$= 2^{n} b \left[\int_{-\infty}^{\infty} e^{-x} dx \right]^{n}$$

We need

$$A = \int_{-\infty}^{\infty} e^{-x^2} dx$$

$$A^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} dx dy$$

$$= \int_{\mathbb{R}^n} e^{-|z|^2} dz$$

$$= \int_0^{\infty} \int_{\partial B_r^2} e^{-r^2} dS(z) dr$$

$$= 2\pi \int_0^{\infty} e^{-r^2} r dr$$

$$= \pi \int_0^{\infty} e^{-s} ds$$

$$= -\pi (e^{-s}) \Big|_0^{\infty} = -\pi (0 - 1) = \pi$$

Therefore $A^2 = \pi$ and $A = \sqrt{\pi}$. So, picking $b = \frac{1}{(4\pi)^{n/2}}$,

$$\int_{\mathbb{R}^n} \Phi(x,t) \ dx = b2^n A^n = b2^n \pi^{n/2} = 1$$

Remark:

 Φ solves the Heat Equation, except at the point (x, t) = (0, 0).

Remark:

 Φ is infinitely differentiable on $\mathbb{R}^n \times (\delta, \infty)$, $\forall \delta > 0$.

Cauchy Problem (Initial Value Problem)

$$\begin{cases} u_t - \Delta_x u = 0, & \mathbb{R}^n \times (0, \infty) \\ u(x, 0) = g(x), & x \in \mathbb{R}^n \end{cases}$$

Recall $y \in \mathbb{R}^n$,

$$(x,t) \rightarrow \Phi(x-y)$$

solves the heat equation except at (y, 0). Define, $x \in \mathbb{R}^n$, t > 0,

$$(*) \quad u(x,t) = \int_{\mathbb{R}^n} \Phi(x-y,t) g(y) \, dy = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{\frac{-|x-y|^2}{4t}} g(y) \, dt$$

Theorem (#?): Solution to the Cauchy Problem

Assume $g \in C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$. Then u defined by * satisfies

1.
$$u \in C^{\infty}(\mathbb{R}^n \times (0, \infty))$$
.

2. $u_t(x,t) - \Delta_x(x,t) = 0, (x,t) \in \mathbb{R}^n \times (0,\infty).$

3.
$$\lim_{\substack{(x,t)\to(x_0,0)\\x\in\mathbb{R}^n,\ t>0}} u(x,t) = g(x_0),\ x_0\in\mathbb{R}^n.$$

Proof

Homework: justify putting the limit inside to prove (1). For (2), observe that

$$u_t - \Delta_x u(x,t) = \int_{\mathbb{R}^n} \underbrace{\left[\Phi_t(x-y,t) - \Delta_x \Phi(x-y,t)\right]}_{=0} g(y) \, dy$$

For (3), let $\varepsilon > 0$. Let $\delta > 0$ such that $|x - x_0| < \delta \implies |g(x) - g(x_0)| < \varepsilon$ (since g continuous). Then

$$|u(x,t) - g(x_0)| = \left| \int_{\mathbb{R}^n} \Phi(x - y, t) g(y) - g(x_0) \underbrace{\int_{\mathbb{R}^n} \Phi(x - y, t) \, dy}_{=1} \right|$$

$$\leq \int_{\mathbb{R}^n} \Phi(x - y, t) |g(y) - g(x_0)| \, dy$$

$$= \underbrace{\int_{B(x_0, \delta)} \Phi(x - y, t) |g(y) - g(x_0)| \, dy}_{I} + \underbrace{\int_{\mathbb{R}^n \setminus B(x_0, \delta)} \Phi(x - y, t) |g(y) - g(x_0)| \, dy}_{I}$$

Bounding I, $|y - x_0| < \delta \implies |g(y) - g(x_0)| < \varepsilon$ gives

$$I \le \varepsilon \underbrace{\int_{B(x_0,\delta)} \Phi(x-y,t) \, dy}_{\le 1} \le \varepsilon$$

Bounding J, assume $|x-x_0| < \frac{\delta}{2}$. Then

$$|J| \le ||g||_{L^{\infty}(\mathbb{R}^n)} \int_{\mathbb{R}^n \setminus B(x_0, \delta)} \Phi(x - y, t) \, dy$$

Now we want to compare |x-y| with $|x_0-y|$. Then, for $|x-x_0|<\frac{\delta}{2}$ and $|y-x_0|>\delta$,

$$|y - x_0| < |y - x| + |x - x_0| < |y - x| + \frac{\delta}{2} < |y - x| + \frac{|y - x_0|}{2}$$

so $\frac{|y-x_0|}{2} < |y-x|$. It follows that

$$\frac{|y - x_0|^2}{4} \le |y - x|^2$$

$$-\frac{|y - x|^2}{4t} \le -\frac{|y - x_0|^2}{16t}$$

$$e^{-\frac{|y - x|^2}{4t}} \le e^{-\frac{|y - x_0|^2}{16t}}$$

Then

$$|J| \le 2||g||_{L^{\infty}} \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n \setminus B(x_0, \delta)} e^{-\frac{|y - x_0|^2}{16t}} dy$$
$$= \frac{C}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n \setminus B(x_0, \delta)} e^{-\frac{1}{16} \left|\frac{y - x_0}{\sqrt{t}}\right|^2} dy$$

Letting $z = \frac{y - x_0}{\sqrt{t}}$ such that $\sqrt{t} \ dz = dy$,

$$|J| \le \frac{C}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n \backslash B(0,\delta/\sqrt{t})} e^{-\frac{|z|^2}{16}} \underbrace{(\sqrt{t})^n dz}_{dy}$$
$$= \frac{C}{(4\pi)^{n/2}} \int_{\mathbb{R}^n \backslash B(0,\delta/\sqrt{t})} e^{-\frac{|z|^2}{16}} dz$$

Let $\delta_2 > 0$ such that $\delta_2 = \max\left\{\frac{\delta}{2}, \delta^3\right\}$. If $|(x, t) - (x_0, 0) < \delta_2$,

$$t < \delta_2 < \delta^3$$

$$\sqrt{t} < \delta^{3/2}$$

$$\frac{1}{\delta^{3/2}} < \frac{1}{\sqrt{t}}$$

$$\frac{1}{\delta^{1/2}} < \frac{\delta}{\sqrt{t}}$$

so

$$B(0,1/\delta^{1/2}) \subseteq B(0,\delta/\sqrt{t})$$
 and $\mathbb{R}^n \setminus B(0,\delta/\sqrt{t}) \subseteq \mathbb{R}^n \setminus B(0,1/\delta^{1/2})$

Therefore,

$$|u| \le C \int_{\mathbb{R}^n \setminus B(0,1/\sqrt{\delta})} e^{-\frac{|z|^2}{16}} dz \to 0$$

Intepretation of Fundamental Solution for the Heat Equation

$$\begin{cases} \Phi_t - \Delta_x \Phi(x, t) = 0, & x \in \mathbb{R}^n, \ t > 0 \\ \Phi(x, 0) = \delta_0(x), & x \in \mathbb{R}^n \end{cases}$$

Then

$$u(x,t) = \int_{\mathbb{R}^n} \Phi(x-y,t)g(y) \, dy$$

if t = 0,

$$u(x,0) = \int_{\mathbb{R}^n} \Phi(x - y, 0) g(y) \, dy$$
$$= \int_{\mathbb{R}^n} \underbrace{\delta^x(y) g(y)}_{y = x} \, dy$$
$$= \int_{\mathbb{R}^n} \delta^x(y) g(x) \, dy$$
$$= g(x) \underbrace{\int_{\mathbb{R}^n} \delta^x(y) \, dy}_{=x} = g(x)$$

Remark: Infinite Propagation Speed

Let $g \in C(\mathbb{R}^n \cap L^{\infty}(\mathbb{R}^n)), g \ge 0, g \ne 0$. Then

$$u(x,t)\frac{1}{(4\pi t)^{n/2}}\int_{\mathbb{R}^n}e^{-\frac{|x-y|^2}{4t}}g(y)\,dy > 0, \quad \forall x \in \mathbb{R}^n, \ \forall t > 0$$

IMAGE HERE - 1

That is, the heat equation forces infinite propagation speed for disturbances.

Non-Homogeneous Heat Problem

$$(*_2) \begin{cases} u_t - \Delta_x u = f, & f : \mathbb{R}^n \times (0, \infty) \to \mathbb{R} \\ u(x, 0) = 0, & x \in \mathbb{R}^n \end{cases}$$

Motivation

Let $y \in \mathbb{R}^n$, s > 0. Then $(x, t) \to \Phi(x - y, t - s)$ solves the heat equation except at x = y and t = s. That is, it satisfies the equation on $\mathbb{R}^n \times (s, \infty)$.

Then for s fixed, define

$$(\Box) \quad u(x,t;s) := \int_{\mathbb{D}^n} \Phi(x-y,t-s) f(y;s) \, dy$$

which solves

$$\begin{cases} u_t(x,t;s) - \Delta_x u(x,t;s) = 0, & \mathbb{R}^n \times (s,\infty) \\ u(x,s;s) = f(x;s), & \mathbb{R}^n \times \{s\} \end{cases}$$

which is the IVP with $t = 0 \iff t = s$ and $g(y) \iff f(y; s)$.

Definition: Duhamel's Principle

If we integrate \square from 0 to t,

$$u(x,t) := \int_0^t u(x,t;s) \, ds$$

Let us consider,

$$(\square_2) \quad u(x,t) := \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) f(y;s) \, dy ds$$

as a candidate solution for $*_2$.

Theorem: Solution to the Non-Homogeneous Heat Equation

Suppose $f \in C_c^2((\mathbb{R}^n \times (0, \infty)))$ with compact support. If we define u by \square_2 , then

- 1. $u \in C_c^2(\mathbb{R}^n \times (0, \infty))$.
- 2. $u_t(x,t) \Delta_x u(x,t) = f(x,t); x \in \mathbb{R}^n, t > 0.$
- 3. $\lim_{\substack{(x,t)\to(x_0,0)\\x\in\mathbb{R}^n,\ t>0}} u(x,t) = 0, \ \forall x_0 \in \mathbb{R}^n.$

February 14, 2024

Recall: Non-Homogeneous Heat Equation

Given

$$\begin{cases} u_f - \Delta_x u = f(x, t), & f : \mathbb{R}^n \times (0, \infty) \to \mathbb{R} \\ u(x, 0) = 0 \end{cases}$$

we have a candidate solution from Duhamel's Principle.

$$(*) \quad u(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) f(y,s) \, dy ds$$
$$= \int_0^t \int_{\mathbb{R}^n} \frac{1}{(4\pi(t-s))^{n/2}} e^{-\frac{|x-y|^2}{4(t-s)}} f(y,s) \, dy ds$$

Note that unlike the homogeneous case, the integral approaches the singularity at (0,0) and we cannot pass a limit inside.

Theorem: Differentiation Under Moving Regions

Take $\Omega(t) \subseteq \mathbb{R}^n$ a nice region with nice boundaries $(\partial \Omega(t) \in \mathbb{C}^1$ and $t \in \mathbb{R}$) and F(z, t) smooth.

$$\frac{d}{dt}\left(\int_{\Omega(t)} F(x,t) dz\right) = \int_{\partial\Omega(t)} Fv\eta ds(z) + \int_{\partial\Omega(t)} F_t dz$$

where ν is the velocity vector on $\partial\Omega(t)$ and η is the unit outer normal.

Theorem:

Suppose $f \in C_1^2(\mathbb{R}^n \times (0, \infty))$ with compact support. Then, if u is defined by *,

1. $u \in C_1^2(\mathbb{R}^n \times (0, \infty))$.

2. $u_t - \Delta_x u = f(x, t); x \in \mathbb{R}^n, t > 0$

3. $\lim_{(x,t)\to(x_0,0)} u(x,t) = 0$ for $x \in \mathbb{R}^n$, t > 0, $\forall x_0 \in \mathbb{R}^n$.

Proof of 1

Since Φ has a singularity at (0,0), we cannot differentiate under the integral sign. Define $\overline{y} = x - y$ and $\overline{s} = t - s$, then $\frac{d\overline{s}}{ds} = -1$, $-d\overline{s} = ds$, and $\frac{d\overline{y}}{dy} = (-1)$. So

$$u(x,t) = -\int_{t}^{0} \int_{\mathbb{R}^{n}} \Phi(\overline{y},\overline{s}) f(x-\overline{y},t-\overline{s}) d\overline{y} d\overline{s}$$

Then, rewrite

$$u(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(y,s) f(x-y,t-s) \, dy ds$$

We may now justify passing the derivative of the space variable inside

$$\frac{\partial u}{\partial x_i} = \int_0^t \int_{\mathbb{R}^n} \Phi(y, s) \frac{\partial}{\partial x_i} f(x - y, t - s) \, dy ds$$

In the same way, justifying putting the limit inside, we have $\frac{\partial u}{\partial x_i}$ is continuous.

Now, apply the Differentiation Theorem for Moving Regions (above) where $\Omega(t) = \mathbb{R}^n \times [0, t]$. Define $F(y, s, t) := \Phi(y, s) f(x - y, t - s)$.

IMAGE HERE - 1

Then,

$$\frac{\partial}{\partial t}u(x,t) = \int_{\partial\Omega(t)} F(\overrightarrow{y}, \overrightarrow{s}, t) v \eta \, dS(y,s) + \int_0^t \int_{\mathbb{R}^n} \partial_t F(y, s, t) \, dy ds$$

$$= \int_{\mathbb{R}^n \times \{t\}} F(\overrightarrow{y}, \overrightarrow{s}, t) \, dS(y, s) + \int_0^t \int_{\mathbb{R}^n} \partial_t F(y, s, t) \, dy ds$$

$$= \int_{\mathbb{R}^n} F(y, t, t) \, dy + \int_0^t \int_{\mathbb{R}^n} \partial_t F(y, s, t) \, dy ds$$

Therefore

$$\frac{\partial u}{\partial t}(x,t) = \int_{\mathbb{R}^n} \Phi(y,t) f(x-y,0) \, dy + \int_0^t \int_{\mathbb{R}^n} \Phi(y,s) \partial_t f(x-y,t-s) \, dy ds$$

Homework: Prove that $\frac{\partial u}{\partial t}$ is continuous to complete the proof.

Proof of 2

$$u_{t} - \Delta_{x} u = \int_{\mathbb{R}^{n}} \Phi(y, t) f(x - y, 0) dy + \int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(y, s) [f(t - y, t - s) - \Delta_{x} f(x - y, t - s)] dy ds$$

Since Φ has a signularity, let $\varepsilon > 0$ and isolate

$$u_{t} - \Delta_{x} u = K + \underbrace{\int_{0}^{\varepsilon} \int_{\mathbb{R}^{n}} \Phi(y, s) \left[f_{t}(x - y, t - s) - \Delta_{x} f(x - y, t - s) \right] dy ds}_{J_{\varepsilon}} + \underbrace{\int_{\varepsilon}^{t} \int_{\mathbb{R}^{n}} \Phi(y, s) \left[f_{t}(x - y, t - s) - \Delta_{x} f(x - y, t - s) \right] dy ds}_{J_{\varepsilon}}$$

Controlling J_{ε} ,

$$|J_{\varepsilon}| \le (||f_t||_{L^{\infty}} + ||\nabla_x f||_{L^{\infty}}) \int_0^{\varepsilon} \int_{\mathbb{R}^n} \Phi(y, s) \, dy \, ds$$

$$\le C\varepsilon$$

So $J_{\varepsilon} \to 0$ as $\varepsilon \to 0$.

Controlling I_{ε} , using symmetry of t and s and x and y,

$$I_{\varepsilon} = -\int_{\varepsilon}^{t} \int_{\mathbb{R}^{n}} \Phi(y, s) \partial_{s} f(x - y, t - s) \, dy ds - \int_{\varepsilon}^{t} \Phi(y, s) \Delta_{y} f(x - y, t - s) \, dy ds$$

Recall that

$$\int_{U} u_{x_{i}} v = -\int_{U} u v_{x_{i}} + \int_{\partial U} u v \eta^{i}$$

where η^{-i} is the *i*th component of η . and

$$\int_{\Omega} u \Delta v - v \Delta u = \int_{\partial \Omega} u \frac{\partial v}{\partial \eta} - v \frac{\partial u}{\partial \eta}$$

So, integrating by parts,

$$I_{\varepsilon} = -\left[-\int_{\varepsilon}^{t} \int_{\mathbb{R}^{n}} \partial_{s} \Phi(y, s) f(x - y, t - s) \, dy ds + \int \int_{\partial(\mathbb{R}^{n} \times [\varepsilon, t])} \Phi(y, s) f(x - y, t - s) \eta^{n+1} \, dy ds \right]$$

$$-\int_{\varepsilon}^{t} \int_{\mathbb{R}^{n}} \Phi(y, s) \Delta_{y} f(x - y, t - s) \, dy ds$$

Since $\eta^{n+1} = 1$ and f has compact support, this gives

$$I_{\varepsilon} = \int_{0}^{t} \int_{\mathbb{R}^{n}} \partial_{s} \Phi(y, s) f(x - y, t - s) \, dy ds - K + \int_{\mathbb{R}^{n}} \Phi(y, \varepsilon) f(x - y, t - \varepsilon) \, dy ds$$
$$- \int_{\varepsilon}^{t} \Delta_{y} \phi(y, s) f(x - y, t - s) \, dy ds$$

Notice that the first and last summands solve the heat equation on $\mathbb{R}^n \times [\varepsilon, t]$. So

$$I_{\varepsilon} = -K + \int_{\mathbb{R}^n} \Phi(y, \varepsilon) f(x - y, t - \varepsilon) \, dy$$

Therefore

$$u_t - \Delta_x u = \lim_{\varepsilon \to 0} K + 0 - K + \int_{\mathbb{R}^n} \Phi(y, \varepsilon) f(x - y, t - \varepsilon) \, dy$$

Homework: prove that we may pass the limit inside.

$$u_t - \Delta_x u = \int_{\mathbb{R}^n} \Phi(y,0) f(x-y,t) \, dy$$
$$= \int_{\mathbb{R}^n} \delta^0(y) f(x-y,t) \, dy$$
$$= \int_{\mathbb{R}^n} \delta^0(y) f(x,t) \, dy$$
$$= f(x,t) \int_{\mathbb{R}^n} \delta^0(y) \, dy$$
$$= f(x,t)$$

Proof of 3

Write

$$|u(x,t)| \le ||f||_{L^{\infty}} \int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(y,s) \, dy \, ds \le ct$$

General Solution to the Heat Equation

If $f \in C_1^2(\mathbb{R}^n \times (0, \infty))$ and $g \in L^\infty(\mathbb{R}^n) \cap C(\mathbb{R}^n)$, then

$$u(x,t) := \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) f(y,s) \, dy ds + \int_{\mathbb{R}^n} \Phi(x-y,t) g(y) \, dy$$

is a solution for

$$\begin{cases} u_t - \Delta_x u = f(x, t) \\ u(x, 0) = g(x) \end{cases}$$

Mean-Value Formulas for the Heat Equation

Definition: Parabolic Cylinder

Let $U \subseteq \mathbb{R}^n$ be an open set and T > 0. The parabolic cylinder U_T is given by

$$U_T := U \times (0, T]$$

and the parabolic boundary is

$$\Gamma_T = \overline{U}_T - U_T$$

IMAGE HERE - 2

Motivation for Mean-Formulas

In the harmonic case,

$$\Phi(x) = \frac{c1}{|x|^{n-2}}; \quad n \ge 3$$

for x fixed and r fixed

$$\phi: \mathbb{R}^n \to \mathbb{R}$$
$$y \to \Phi(x - y)$$

Then the balls B(x, r) are the level surface of ϕ . See that

$$\phi^{-1}(c_0) = \{ y \in \mathbb{R}^n : \Phi(x - y) = c_0 \}$$

$$= \{ y \in \mathbb{R}^n : \frac{C}{|x - y|^{n - 2}} = c_0 \}$$

$$= \{ y \in \mathbb{R}^n : |x - y|^{n - 2} = \sqrt[n - 2]{\frac{c}{c_0}} \}$$

$$= \partial B\left(x, \sqrt[n - 2]{\frac{c}{c_0}}\right)$$

Then to get the mean-value formula, it is worth it to pay attention to the level surface of the fundemental solution of the heat equation.

February 26, 2024

Recall: Mean-Value Formula for Heat Equation

$$\Phi(x,t) = \begin{cases} \frac{1}{(4\pi t)^{n/2}} e^{\frac{|x|^2}{4t}} &, x \in \mathbb{R}^n, t > 0\\ 0 &, x \in \mathbb{R}^n, t < 0 \end{cases}$$

For $U \subset \mathbb{R}^n$ open and bounded, T > 0, $U_t = U \times (0, T]$, $\Gamma_T = \overline{U}_T - U_T$.

Definition: Heat Balls

Let $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, $r \in \mathbb{R}_+$. Defint the heat ball E as

$$E(x,t;r) = \{(y,s) \in \mathbb{R}^{n+1} : s \le t, \Phi(x-y,t-s) \ge 1/r^n\}$$

Remark 1

$$\frac{1}{4r^n} \int_{E(x,t;r)} \frac{|x-y|^2}{|t-s|^2} \, dy \, ds = 1$$

Do as homework.

Remark 2

 $\partial E(x, t; n)$, Φ is constant.

Theorem: Mean-Value Formulas

Let $u \in C_1^2(U_T)$ solves the heat equation. Then

$$u(x,t) = \frac{1}{4r^n} \int_{E(x,t;r)} u(y,s) \frac{|x-y|^2}{|t-s|^2} \, dy ds$$

for all $E(x, t; r) \subseteq U_T$.

Proof

Define

$$\phi(r) := \frac{1}{4r^n} \int_{E(x,t;r)} u(y,s) \frac{|x-y|^2}{|t-s|^2} \, dy ds$$

We want to prove ϕ constant with $\phi' = 0$.

Without loss of generality, set x = 0, t = 0 such that E(r) := E(0, 0, r). Then

$$\phi(r) = \frac{1}{4r^n} \int_{E(r)} u(y, s) \frac{|y|^2}{s^2} dy ds$$

Rescaling by $y = r\overline{y}$ and $s = r^2\overline{s}$,

$$\phi(r) = \frac{1}{4r^n} \int_{E(1)} \int u(r\overline{y}, r^2\overline{s}) \frac{r^2|\overline{y}|^2}{r^4\overline{s}^2} r^n r^2 d\overline{y} d\overline{s}$$
$$= \frac{1}{4} \int_{E(1)} \int \frac{|\overline{y}|^2}{\overline{s}^2} d\overline{y} d\overline{s}$$

Where we have E(1) because $(y,s) \in E(r) = E(0,0,r), s \le 0, \frac{1}{(4\pi(-s))^{n/2}} e^{\frac{-|-y|^2}{4(-s)}} \ge \frac{1}{r^n}$.

So
$$r^2 \overline{s} \le 0$$
 and $\frac{1}{4\pi(-r^2 \overline{s})^{n/2}} e^{\frac{-|-r\overline{y}|^2}{4(-r^2 \overline{s})}} \ge \frac{1}{r^n}$.

Therefore

$$\overline{s} \le 0$$
 and $\frac{1}{4\pi(-\overline{s}))^{n/2}}e^{\frac{-|-\overline{y}|^2}{4(-\overline{s})}} \ge 1$

Reindexing $\overline{y} = y$ and $\overline{s} = s$,

$$\begin{split} 4\phi'(r) &= \int\limits_{E(1)} \left[Du|_{(ry,r^2s)} \cdot \binom{y}{2rs} \right] \frac{|y|^2}{s^2} \, dy ds \\ &= \int\limits_{E(1)} \left[\sum\limits_{i=1}^n \frac{\partial u}{\partial y_i}|_{(ry,r^2s)} y_i + \frac{\partial u}{\partial s} 2rs \right] \frac{|y|^2}{s^2} \, dy ds \\ &= \int\limits_{E(1)} \frac{|y|^2}{s^2} \sum\limits_{i=1}^n \frac{\partial u}{\partial y_i}|_{(ry,r^2s)} y_i \, dy ds + 2 \int\limits_{E(1)} \frac{\partial u}{\partial s} r \frac{|y|^2}{s} \, dy ds \end{split}$$

Then, again applying the change of variables,

$$4\phi'(r) = \int_{E(r)} \frac{|\overline{y}|^2 r^4}{r^2 \overline{s}^2} \sum_{i=1}^n \frac{\partial u}{\partial y_i} \frac{\overline{y}_i}{r} \frac{d\overline{y}}{r^n} \frac{d\overline{s}}{r^2} + 2 \int_{E(r)} \frac{\partial u}{\partial s} \frac{r |\overline{y}|^2}{r^2} \frac{r^2}{\overline{s}} \frac{d\overline{y}}{r^n} \frac{d\overline{s}}{r^2}$$

$$= \underbrace{\frac{|y|^2}{r^{n+1}} \int_{E(r)} \int_{s=1}^{s} \frac{1}{s^2} \sum_{i=1}^n \frac{\partial u}{\partial y_i} y_i \, dy ds}_{A} + \underbrace{\frac{2}{r^{n+1}} \int_{E(r)} \int_{E(r)} \frac{\partial u}{\partial s} \frac{|y|^2}{s} \, dy ds}_{B}$$

We want to analyze *B*. Let us introduce the notation

$$\psi(y,s) = \frac{-n}{2}\log(-4\pi s) + \frac{|y|^2}{4s} + n\log(n)$$

• Lemma 1 $\psi(y,s) = 0, (y,s) \in \partial E(r).$

- Proof

If
$$(y,s) \in \partial E(r)$$
, $\Phi(-y,-s) = \frac{1}{r^n}$, $\frac{1}{(4\pi(-s))^{n/2}}e^{\frac{-|-y|^2}{4(-s)}} = \frac{1}{r^n}$. Therefore

$$r^{n} = (4\pi(-s))^{n/2} e^{\frac{|-y|^{2}}{4(-s)}} = e^{\log((4\pi(-s))^{n/2} e^{\frac{|-y|^{2}}{4(-s)}})}$$

So

$$n\log(r) = \frac{n}{2}\log(4\pi(-s)) - \frac{-|-y|^2}{4s}$$

Lemma 2

$$\frac{\partial \psi}{\partial y_i} = \frac{2y_i}{4s} = \frac{y_i}{2s}.$$

- Proof

$$4\sum_{i} \frac{\partial \psi}{\partial y_i} y_i = \frac{2|y|^2}{s}$$

 Analyzing B Then, integrating by parts,

$$\begin{split} B &= \frac{4}{r^{n+1}} \int\limits_{E(r)} \frac{\partial u}{\partial s} \sum_{i} \frac{\partial \psi}{\partial y_{i}} y_{i} \, dy ds \\ &= \frac{4}{r^{n+1}} \sum_{i} \left[\int\limits_{E(r)} \frac{\partial}{\partial y_{i}} \left(\frac{\partial u}{\partial s} y_{i} \right) \psi \, dy ds + \int\limits_{\partial E(r)}^{=0} \frac{\partial u}{\partial s} y_{i} \psi \eta^{i} \right] \\ &= \frac{4}{r^{n+1}} \sum_{i} \int\limits_{E(r)} \int\limits_{E(r)} \psi \left[\frac{\partial u}{\partial s} + y_{i} \frac{\partial^{2} u}{\partial y_{i} \partial s} \right] dy ds \end{split}$$

Then, again integrating by parts,

$$B = \underbrace{-\frac{4}{r^{n+1}} \sum_{i} \int_{E(r)} \psi \frac{\partial u}{\partial s} \, dy ds}_{C} - \frac{4}{r^{n+1}} \sum_{i} \int_{E(r)} \psi y_{i} \frac{\partial^{2} u}{\partial y_{i} \partial s} \, dy ds$$

$$= C - \frac{4}{r^{n+1}} \sum_{i} \left[-\int_{E(r)} y_{i} \frac{\partial \psi}{\partial s} \frac{\partial u}{\partial y_{i}} \, dy s + \int_{\partial E(r)} \psi y_{i} \frac{\partial u}{\partial y_{i}} \eta^{s} \right]$$

$$= C - \frac{4}{r^{n+1}} \sum_{i} \int_{E(r)} y_{i} \frac{\partial u}{\partial y_{i}} \left[\frac{n}{2s} + \frac{|y|^{2}}{4s^{2}} \right] dy ds$$

Since $-\int_{E(r)} \sum_{i} y_{i} \frac{\partial u}{\partial y_{i}} \frac{|y|^{2}}{4s^{2}} = -A$, we have

$$B = -\frac{4n}{r^{n+1}} \int_{E(r)} \psi \frac{\partial u}{\partial s} \, dy ds - \frac{4}{r^{n+1}} \sum_{i} \int_{E(r)} y_i \frac{\partial u}{\partial y_i} \frac{n}{2s} \, dy ds - A$$

So, since u solves the heat equation, we have $\Delta u = \frac{\partial u}{\partial s}$ and may integrate by parts

$$\begin{split} 4\phi'(r) &= -\frac{4n}{r^{n+1}} \int_{E(r)} \psi \frac{\partial u}{\partial s} \, dy ds - \frac{4}{r^{n+1}} \sum_{i} \int_{E(r)} y_{i} \frac{\partial u}{\partial y_{i}} \frac{n}{2s} \, dy ds \\ &= -\frac{4n}{r^{n+1}} \left[\int_{E(r)} \nabla \psi \cdot \nabla u \, dy ds + \overbrace{\int_{\partial E(r)} \psi \frac{\partial u}{\partial \eta}}^{=0} \right] - \frac{4}{r^{n+1}} \sum_{i} \int_{E(r)} y_{i} \frac{\partial u}{\partial y_{i}} \frac{n}{2s} \, dy ds \\ &= 0 \end{split}$$

Then we have $\phi'(r) = 0$ and $\phi(r)$ constant. We know

$$\phi(r) = \lim_{t \to 0} \phi(t)$$

$$= \lim_{t \to 0} \frac{1}{4} \int_{E(1)} u(ty, ts^{2}) \frac{|y|^{2}}{s^{2}} dy ds$$

$$= \frac{1}{4} \int_{E(1)} u(0, 0) \frac{|y|^{2}}{s^{2}} dy ds$$

$$= u(0, 0) \frac{1}{4} \int_{E(1)} \frac{|y|^{2}}{|s|^{2}} dy ds$$

$$= u(0, 0)$$

Theorem: Strong Maximum Principle for Heat Equation

Let U be bounded, $u \in C_1^2(U_T) \cap C(\overline{U}_T)$ that satisfies the heat equation.

- 1. $\max_{\overline{U}_T} u = \max_{\Gamma_T} u$.
- 2. If U is connected and $(x_0, t_0) \in U_T$ such that $u(x_0, t_0) = \max_{\overline{U}_T} u$, then u is constant in \overline{U}_{t_0} . IMAGE HERE 1 CYLINDER to Ut0

Proof of 2

Let $(x_0, t_0) \in U_T$ such that $u(x_0, t_0) = \max_{\overline{U}_T} u := M$. Pick r small enough such that $E(x_0, t_0; r) \subseteq U_T$. IMAGE HERE - 2 BALL IN CYLINDER Then, applying the mean-value formula,

$$M = \frac{1}{4r^n} \int_{E(x_0, t_0; r)} u(y, s) \frac{|x_0 - y|^2}{|t_0 - s|^2} dy ds$$

$$\leq \frac{M}{4r^n} \int_{E(x_0, t_0; r)} \frac{|x_0 - y|^2}{|t_0 - s|} dy ds$$

$$= M$$

Therefore u(y, s) = M, $\forall (y, s) \in E(x_0, t_0; r)$.

• Part A Let $(y_0, s_0) \in U_T$ such that we may connect (x_0, t_0) and (y_0, s_0) with a line L where $L \subseteq U_T$. Then u = M on L.

February 28, 2024

Recall: Strong Maximum Principle

Let $u \in C_1^2(U_T) \cap C(\overline{U}_T)$, where $U_T = U \times [0, T]$, solve the heat equation. Then

- 1. $\max_{\overline{U}_T} u = \max_{\Gamma_T} u$
- 2. If U is connected and if $\exists (x_0, t_0) \in U_T$ such that $\max_{\overline{U}_T} u = u(x_0, t_0)$, then u constant on \overline{U}_{t_0}

Proof of 2

Let $(x_0, t_0) \in U_T$, $M = \max_{\overline{U}_T} = u(x_0, t_0)$.

Using mean-value formula, we proved $\exists r > 0$ such that u = M is constant on $E(x_0, t_0; r)$.

· Part A

Let (y_0, s_0) , $s_0 < t_0$, such that (y_0, s_0) and (x_0, t_0) are connected by a line $L \subseteq U_T$.

So $\Omega = \{s \ge s_0 : u(x, t) = M, \forall (x, t) \in L, s \le t \le t_0\}$ is nonempty since $t_0 \in \Omega$

We know $\inf(\Omega)$ exists and, since u is continuous, $\min(\Omega)$ exists.

Set $r_0 := \min\{\Omega\}$. From the construction, $s_0 \le r_0$.

We want to show that $s_0 = r_0$.

Suppose $s_0 < r_0$. Then $\exists z_0 \in U$ such that $M = u(z_0, r_0) \in L \subset U_T$.

IMAGE HERE - 1

Applying the argument from the beginning, $\exists r$ such that u = M on $E(z_0, r_0; r)$.

But $E(z_0, r_0; r)$ contains points on $L \cap \{r_0 - \sigma \le t \le r_0\}$, for some $\sigma > 0$.

This implies that $r_0 - \sigma \in \Omega$ which contradicts the assumption that r_0 was the minimum of Ω .

Therefore, $u(y_0, s_0) = M = \max_{\overline{U}_T} u$.

Part B

Let $x \in U$, $t < t_0$.

Since U is connected, there exists a finite set of points $x_0, \ldots, x_m = x$ such that the line connected x_i with x_{i-1} is contained in U.

Then we may define a finite set of times, $t_0 > t_1 > \cdots > t_m = t$ such that the straight line L_i connecting (x_i, t_i) and (x_{i-1}, t_{i-1}) is totally contained in U_T .

Then, applying Part A on each L_i , we have u(x, t) = M.

Proof of 1

Trivially, $\max_{\Gamma_T} u \leq \max_{\overline{U}_T} u$.

Assume that U is connected, and let $(x_0, t_0) \in \overline{U}_T$ be such that $u(x_0, t_0) = \max_{\overline{U}_T} u$.

If $(x_0, t_0) \in \Gamma_T$, then $\max_{\overline{U}_T} = u(x_0, t_0) \le \max_{\Gamma_t} u$.

If $(x_0, t_0) \in U_T$, then, using 2, $u = \max_{\overline{U}_T} u$ is constant on \overline{U}_{t_0} .

Then we may pick $(x_1, t_0) \in \overline{U}_{t_0}$ and $x_1 \in \partial U$ such that

$$M=u(x_0,t_0)=u(x_1,t_0)\leq \max_{\Gamma_{t_0}}u\leq \max_{\Gamma_T}u$$

If U is not connected, we may take $U = \bigcup_{i \in \Lambda} U_i$,

$$\max_{\Gamma_T} u = \max_{i \in \Lambda} \{ \max_{\Gamma_T^i} u \} = \max_{i \in \Lambda} \{ \max_{\overline{U}} u \} = \max_{\overline{U}} u$$

Remark: Strong Minimum

Given that strong maximum principle, we have also the strong minimum principle.

Remark: Infinite Propagation Speed for Disturbances on Bounded Domains

Let U be bounded and connected, and $u \in C_1^2(U_T) \cap C(\overline{U}_T)$ which solves

$$\begin{cases} u_t - \Delta u = 0 \\ u \ge 0 \quad \text{on } \partial U \times [0, T] \\ u = g \quad \text{on } U \times \{0\} \end{cases}$$

If g is postive, where $g(x) \ge 0$, $\forall x$ and $\exists x_1$ for $g(x_1) > 0$, then u(x,t) > 0, $\forall (x,t) \in U_T$.

Proof

By the strong minimum principle,

$$u(x,t) \ge \min_{\overline{U}_T} u = \min_{\Gamma_T} u \ge 0$$

If $u(x,t) = 0 = \min_{\overline{U}_x} u$, then u is constant on \overline{U}_t which contradicts the assumption that g is positive.

Theorem 5: Uniquness on Bounded Domains

Let $g \in C(\Gamma_T)$ and $f \in C(U_T)$ with U bounded and connected. Then there exists at most one solution $u \in C^2_1(U_T) \cap C(\overline{U}_T)$ satisfying

$$(*)\begin{cases} u_t - \Delta u = f & U_T \\ u = g & \Gamma_T \end{cases}$$

Proof

Suppose that u, \tilde{u} solve *. Then

$$(u-\tilde{u})_t - \Delta(u-\tilde{u}) = (u_t - \Delta u) - (\tilde{u}_t - \Delta \tilde{u}) = f - f = 0$$

Then $u - \tilde{u} \equiv 0$ on Γ_T . Applying the strong maximum and minimum principles to extend to \overline{U}_T , we have

$$u - \tilde{u} \equiv 0 \iff u = \tilde{u}$$

Theorem 6: Strong Maximum (Supremum) Principle for Unbounded Domains

Let $u \in C_1^2(\mathbb{R}^n \times [0, T]) \cap C(\overline{\mathbb{R}^n \times (0, T]})$ satisfy

$$\begin{cases} u_t - \Delta u = 0, & \mathbb{R}^n \times (0, T] \\ u = g, & \mathbb{R}^n \times \{0\} \end{cases}$$

61

with $|u(x,t)| \le Ae^{a|x|^2}$ for some $A, a \ge 0$. Then, $\sup_{\mathbb{R}^n \times (0,T]} u = \sup g$.

Proof

Trivially, $\sup g \leq \sup_{\mathbb{R}^n \times \lceil 0, T \rangle} u$.

Part 1

Assume 4aT < 1, then for some $\varepsilon > 0$ $4a(T + \varepsilon) < 1$. For $y \in \mathbb{R}^n$, $\mu > 0$,

$$v(x,t) := u(x,t) - \frac{\mu e^{\frac{|x-y|^2}{4(T+\varepsilon-t)}}}{(T+\varepsilon-t)^{n/2}}; \quad x \in \mathbb{R}^n, t > 0$$

Notice that $v_t - \Delta v = 0$.

IMAGE HERE - 2

Then let r > 0 and let us consider $U = B_r(y)$ bounded.

Then we may apply the strong maximum principle for bounded domains to the function v.

$$U_T = B_r(y) \times (0, T]$$

$$\Gamma_T = (\partial B_r(y) \times (0, T]) \cup (B_r(y) \times \{0\})$$

Then $\max_{\Gamma_T} v = \max_{\overline{U}_T} u$. We need to analyze v on Γ_T . Consider $B_r(y) \times \{0\}$ and v(x,0) where $x \in B_r(y)$.

$$u(x,0) - \frac{\mu e^{\frac{|x-y|^2}{4(T+\varepsilon)}}}{(T+\varepsilon)^{n/2}} \le u(x,0) = g(x)$$

Let |x - y| = r,

$$v(x,t) = u(x,t) - \frac{\mu e^{\frac{r^2}{4(T+\varepsilon-t)}}}{(t+\varepsilon-t^{n/2})}$$

$$\leq Ae^{a(|y|+r)^2} - \frac{\mu e^{\frac{r^2}{4(T+\varepsilon-t)}}}{(T+\varepsilon-t)^{n/2}}$$

We know $T - \varepsilon - t \le T + \varepsilon$, so

$$(T+\varepsilon-t)^{n/2} \le (T+\varepsilon)^{n/2}$$
$$-\frac{\mu}{(T+\varepsilon-t)^{n/2}} \le -\frac{\mu}{(T+\varepsilon)^{n/2}} \le 0$$

and

$$\frac{4(T+\varepsilon-t)}{r^2} \le \frac{4(T+\varepsilon)}{r^2}$$
$$e^{\frac{r^2}{4(T+\varepsilon-t)}} \ge e^{\frac{r^2}{4(T+\varepsilon)}}$$

Therefore

$$\frac{-\mu e^{\frac{r^2}{4(T+\varepsilon-t)}}}{(T+\varepsilon-t)^{n/2}} \le \frac{-\mu e^{\frac{r^2}{4(T+\varepsilon)}}}{(T+\varepsilon)^{n/2}}$$

and

$$v(x,t) \le Ae^{a(|y|+r)^2} - \frac{\mu e^{\frac{r^2}{4(T+\varepsilon)}}}{(T+\varepsilon)^{n/2}}$$

Then for $a < \frac{1}{4(T+\varepsilon)}$, there exists γ such that $a + \gamma = \frac{1}{4(T+\varepsilon)}$. So

$$v(x,t) \le Ae^{a(|y|+r)^2} - \mu e^{r^2(a+\gamma)} (4(a+\gamma))^{n/2}$$

If $\sup g = \infty$, we are done. Otherwise, we claim that $\exists r$ big enough such that $v(x, t) \le \sup g$. Idea: we want $r^2(a+\gamma) >> a(|y|+r)^2$, for r big enough. Write

$$(a+\gamma) > a\left(\frac{|y|}{r} + 1\right)^2 \ge a\left(\frac{|y|}{r} + 1\right)$$

and

$$\gamma > \frac{a|y|}{r}$$

March 4, 2024

Notation

The disjoint union between A and B is denoted $A \cup B$.

The interior of U is denoted $\overset{\circ}{U}$.

Recall: Strong Maximum Principle of the Cauchy Problem

Let $u \in C_1^2(\mathbb{R}^n \times (0, t]) \cap C(\mathbb{R}^n \times [0, t])$ satisfy

$$\begin{cases} u_t - \Delta u = 0 & \mathbb{R}^n \times (0, t] \\ u = g & \mathbb{R}^n \times \{0\} \end{cases}$$

with $u(x,t) \le Ae^{a|x|^2}$, A, a > 0 constants. Then

$$\frac{\sup}{\mathbb{R}^n \times (0,T]} = \sup g$$

Proof

Trivially, $\sup g \leq \sup_{\mathbb{R}^n \times [0,T]} u$.

• Part 1 Let us assume 4aT < 1 and, for ε small enough, $4a(T + \varepsilon) < 1$. Then for $y \in \mathbb{R}^n$, $\mu > 0$, define

$$v(x,t) := u(x,t) - \frac{\mu e^{\frac{|x-y|^2}{4(T+\varepsilon-t)}}}{(T+\varepsilon-t)^{n/2}}; \quad x \in \mathbb{R}^n, t > 0$$

Notice that ν satisfies $\nu_t - \Delta \nu = 0$.

For r > 0, define $U = B_r(y)$. Consider U_{T_i} and appy the maximum principle for bounded domains

$$\max_{\overline{U}_T} v = \max_{\Gamma_T} v$$

• Part 2

Analyzing ν on Γ_T . Note that

$$\Gamma_T = (\partial B(y, r) \times [0, T]) \cup \underbrace{(B(y, r) \times \{0\})}_{\nu(x, 0) \leq g(x)}$$

If |x - y| = r, we proved that for r big enough such that $v(x, t) \le \sup_{\mathbb{R}^n} g$,

$$v(y,t) \le \max_{\overline{U}_T} v = \max_{\Gamma_T} v \le \sup_{\mathbb{R}^n} g, \quad \forall t \in [0,T]$$

Then if $\mu \rightarrow 0$,

$$v(y,t) \leq \sup_{\mathbb{R}^n} g, \quad \forall t \in [0,T]$$

Therefore,

$$\sup_{\overline{U}_T} u(y,t) \le \sup_{\mathbb{R}^n} g$$

That is, if $T < \frac{1}{4a}$, the maximum is achieved at T = 0.

• Part 3

If $4aT \ge 1$, we will divide [0, T] into subintervals such that each subinterval has length smaller than $\frac{1}{4a}$. Then

$$\sup_{\mathbb{R}^{n}\times[0,T]} u = \sup\{\sup_{\mathbb{R}^{n}\times[0,T_{1}]} \sup_{\mathbb{R}^{n}\times[T_{1},T_{2}]} u, \dots, \sup_{\mathbb{R}^{n}\times[T_{n-1},T_{n}]} u\}$$

$$= \sup\{\sup_{\mathbb{R}^{n}\times\{0\}} \sup_{\mathbb{R}^{n}\times\{T_{1}\}} u, \dots, \sup_{\mathbb{R}^{n}\times\{T_{n-1}\}} u\}$$

$$\leq \sup\{\sup_{x\in\mathbb{R}^{n}} \sup_{\mathbb{R}^{n}\times[0,T_{1}]} u, \dots, \sup_{\mathbb{R}^{n}\times[T_{n-2},T_{n-1}]} u\}$$

$$\leq \sup g$$

Theorem: Uniqueness of the Cauchy Problem

Let $g \in C(\mathbb{R}^n)$, $f \in C(\mathbb{R}^n \times [0, T])$. Then there is at most one solution to

$$\begin{cases} u_t - \Delta u, & C(\mathbb{R}^n \times [0, T]) \\ u = g, & \mathbb{R}^n \times \{0\} \end{cases}$$

such that $|u(x,t)| \le Ae^{a|x|^2}$ for constants a > 0, A > 0.

Proof

Homework.

Homework

Show that the general solution satisfies this uniqueness property.

Theorem: Smoothness of the Heat Equation

Let $u \in C_1^2(U_T)$ satisfy the heat equation. Then $u \in C^{\infty}(U_T)$ $(u \in C^{\infty}(\mathring{U}_T))$.

Proof: Step 1

IMAGE HERE - 2

Take

$$c(x, t; r) = \{(y, s) : |x - y| \le r, t - r^2 \le s \le t\}$$

for $(x_0, t_0) \in \overset{\circ}{U}_T$. Then

$$C := C(x_0, t_0; r)$$

$$C' := C\left(x_0, t_0; \frac{3}{4}r\right)$$

$$C'' := C\left(x_0, t_0 \frac{r}{2}\right)$$

IMAGE HERE - 3

Let $\zeta \in C^{\infty}$ be a cutoff function such that

$$\begin{cases} 0 \leq \zeta \leq 1, & C \\ \zeta = 1, & C' \\ \zeta = 0 & \text{near parabolic boundary of } C \end{cases}$$

IMAGE HERE - 4

We may extend $\zeta = 0$ outside of C. Remark: ζ_t , $\nabla \zeta$, $\Delta \zeta$, \mathbb{R}^{n+1} vanishes outside C.

Proof: Step 2

Suppose $w \in C^{\infty}(U_T)$ and define

$$v(x,t) := w(x,t)\zeta(x,t), \quad x \in \mathbb{R}^n, 0 \le t \le t_0$$

We have

$$\begin{split} v_t &= w_t \zeta + w \zeta_t \\ \frac{\partial v}{\partial x_i} &= w_{x_i} \zeta + w \zeta_i \\ \frac{\partial v^2}{\partial^2 x_i} &= w_{x_i x_i} \zeta + w_{x_i} \zeta_{x_i} + w_{x_i} \zeta_{x_i} + w \zeta_{x_i x_i} \end{split}$$

and

$$\Delta v = \zeta \Delta w + 2 \langle \nabla w, \nabla \zeta \rangle + w \Delta \zeta$$

So define

$$w_t \zeta + w \zeta_t - \zeta \Delta w - 2 \langle \nabla w, \nabla \zeta \rangle - w \Delta \zeta := \tilde{f}$$

such that

(*)
$$\begin{cases} v_t - \Delta v = \tilde{f} \\ v(x,0) = 0, \quad \mathbb{R}^n \times \{0\} \end{cases}$$

Notice that \tilde{f} has compact support on $\mathbb{R}^n \times [0, t_0]$. Then by Theorem 2 (existence), we have

$$\tilde{v}(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) \tilde{f}(y,s) \, dy ds$$

also solves (*).

Claim: $|v|, |\tilde{v}| \le A$ for some constant A.

$$|v(x,t)| \le |w(x,t)||\zeta(x,t)| \le |w(x,t)|\chi_C(x,t) \le A'$$

$$|\tilde{v}(x,t)| \leq \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) |\tilde{f}(y,s)| \, dy ds \leq \tilde{A} \int_0^1 \Phi(x-y,t-s) \, dy ds \leq \tilde{A} t_0 \leq A''$$

Set $A = \max\{A', A''\}$. Then $A \le Ae^{|x|^2}$ and, trivially, v and \tilde{v} satisfy the growth control. By the strong maximum principle, we have uniqueness of solutions and conclude $v = \tilde{v}$. So

$$v(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) \tilde{f}(y,s) \, dy ds$$

Proof: Step 3

For $(x,t) \in C'' \subset C'$ given $w \in C^{\infty}(U_T)$ solves the heat equation on $C, \zeta = 1$ while $\zeta, \zeta_t, \Delta \zeta$ have support in C. Therefore

$$w(x,t) = v(x,t)$$

$$= \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) \tilde{f}(y,s) \, dy ds$$

$$= \int_0^t \Phi(x-y,t-s) [w_t \zeta + w \zeta_t - \zeta \Delta w - 2 \langle \nabla w, \nabla \zeta \rangle - w \Delta \zeta] \, dy ds$$

If W solves the heat equation, $w_t \zeta - \zeta \Delta w = \zeta (w_t - \Delta w) = 0$. So for $(x, t) \in C''$.

$$w(x,t) = \int_{C} \Phi(x-y,t-s) \left[w\zeta_{t} - 2\langle \nabla w, \nabla \zeta \rangle - w\Delta \zeta \right] dyds$$

Notice that we do not have problems around the singularity (x, t), because $w\zeta_t - 2\langle \nabla w, \nabla \zeta \rangle - w\Delta \zeta$ vanishes around (x, t) since $\zeta = 1$ on C'.

Let us analyze

$$\int_{C} \Phi(x-y,t-s) \langle \nabla w, \nabla \zeta \rangle \, dy ds = \sum_{i=1}^{n} \int_{t-r^{2}}^{t} \int_{B(x_{0},r)} \Phi \frac{\partial \zeta}{\partial y_{i}} \frac{\partial w}{\partial y_{i}} \, dy ds$$

$$= \sum_{i=1}^{n} \int_{t-r^{2}}^{t} \left[-\int_{B(x_{0},r)} \frac{\partial}{\partial y_{i}} \left(\Phi \frac{\partial \zeta}{\partial y_{i}} \right) w \, dy + \int_{\partial B(x_{0},r)} \Phi \frac{\partial \zeta}{\partial y_{i}} w \eta^{i} \, dy \right] ds$$

Where the latter term is zero since $\zeta = 0$ near the parabolic boundary.

$$\int_{C} \Phi(x - y, t - s) \langle \nabla w, \nabla \zeta \rangle \, dy ds = \sum_{i=1}^{n} \int_{t-r^{2}}^{t} \int_{B(x_{0}, r)} w \left[\frac{\partial \Phi}{\partial y_{i}} \frac{\partial \zeta}{\partial y_{i}} - \Phi \frac{\partial^{2} \zeta}{\partial y_{i}^{2}} \right] dy ds$$

$$= \int_{C} w \langle \nabla \Phi, \nabla \zeta \rangle - w \Phi \Delta \zeta \, dy ds$$

So

$$w(x,t) = \int_{C} \Phi w \zeta_{t} - \phi w \Delta \zeta - 2w \langle \nabla \Phi, \nabla \zeta \rangle + 2w \Phi \Delta \zeta \, dy ds$$
$$= \int_{C} \Phi w \zeta_{t} + \phi w \Delta \zeta - 2w \langle \nabla \Phi, \nabla \zeta \rangle \, dy ds$$

Proof: Step 4

Then, define

$$u^{\varepsilon} := \eta_{\varepsilon} * u, \quad (U_T)_{\varepsilon}$$

the convolution on \mathbb{R}^{n+1} .

IMAGE HERE - 5

We know u^{ε} is smooth. Moreover, by properties of convolution, u^{ε} satisfies the heat equation. Applying Step 3 to u^{ε} ,

$$u^{\varepsilon}(x,t) = \int_{C} u^{\varepsilon}(y,s) \left[\Phi \zeta_{t} + \Phi \Delta \zeta - 2 \langle \nabla \Phi, \nabla \zeta \rangle \right] dy ds$$

When $\varepsilon \to 0$,

$$u(x,t) = \int_C u(y,s)K(x,t,y,s) \, dyds$$

To be continued.

March 6, 2024

Theorem: Smoothness Continued

If $u \in C_1^2(U_T)$ solves the heat equation, then $u \in C^{\infty}(U_T)$ $(u \in C^{\infty}(U_T))$.

Proof

Let $(x_0, t_0) \in \overset{\circ}{U}_T$ and ζ a cutoff function satisfying

$$\begin{cases} 0 \leq \zeta \leq 1, & C \\ \zeta = 1, & C' \\ \zeta = 0, & \text{near the boundary} \end{cases}$$

Notice that ζ_s , $\nabla \zeta$, $\Delta \zeta = 0$ on C'. For $\varepsilon > 0$

$$u^{\varepsilon}(x,t) = \int_{C} u^{\varepsilon}(y,s)K(x,t,y,s) \,dyds, \quad \forall (x,t) \in C''$$

where

$$K(x, t, y, s) = \Phi(x - y, t - s)(\zeta_s - \Delta_y \zeta) - 2\nabla \Phi(x - y, t - s)\nabla \zeta$$

Let $\varepsilon > 0$,

$$u(x,t) = \int_C u(y,s)K(x,t,y,s) \, dyds, \quad \forall (x,t) \in C''$$
$$= \int_{C-C'} u(y,s)K(x,t,y,s) \, dyds, \quad \forall (x,t) \in C''$$

Notice that u is smooth on C''. If we can prove that $K(\cdot, \cdot, y, s)$ is smooth on C'' for each $(y, s) \in C \setminus C'$ IMAGE HERE - 1

But that's true because (y, s) is far from the neighborhood around (x, t), $\forall (x, t) \in C''$

We have proven than $\forall (x_0, t_0) \in \overset{\circ}{U}_T$, u is smooth on $C(x_0, t_0; \frac{r}{2}) := C''$.

Then we are done, because $\forall (x_1, t_1) \in \overset{\circ}{U}_T$, $\exists (x_0, t_0) \in \overset{\circ}{U}_T$ such that $(x_1, t_1) \in C\left(x_0, t_0; \frac{r}{2}\right)$.

Theorem 9: Estimates on Derivatives

There exist constants C_{kl} for every pair of integers k, l = 0, 1, 2, ... such that

$$\max_{C\left(x,t;\frac{r}{2}\right)} \left| D_{x}^{k} D_{t}^{l} u(x,t) \right| \leq \frac{C_{kl}}{r^{k+2l+n+2}} ||u||_{L^{1}(C(x,t;r))}$$

for all cylinders $C(x, t; r) \subseteq U_T$ and u any solution of the heat equation on U_T . Note that k should be understood as the order of the appropriate multiindex.

Proof

Without loss of generality, let us assume that (x,t)=(0,0) and $C(1):=C(0,0;1)\subseteq U_T$. If $C\left(\frac{1}{2}\right)=C\left(0,0;\frac{1}{2}\right)$, using the same technique as in the proof of smoothness,

$$u(x,t) = \int_{C(1)} K(x,t,y,s) u(y,s) \, dy ds, \quad \forall (x,t) \in C\left(\frac{1}{2}\right)$$

For *K* a smooth function,

$$|D_x^k D_t^l| \le C_{kl} \int_{C(1)} |u(y,s)| \, dy ds, \quad \forall (\tilde{x}, \tilde{t}) \in C\left(\frac{1}{2}\right)$$

Taking the maximum gives

$$\max_{C(\frac{1}{2})} |D_x^k D_t^l u(x,t)| \le C_{kl} ||u||_{L^1(C(1))}$$

Let u satisfy the heat equation on U_T , $C(r) \subseteq U_T$. Then define

$$v(x,t) := u(\overrightarrow{rx}, \overrightarrow{r^2t})$$

where ν satisfies the heat equation on $C(1) \subseteq \tilde{U}_T$. Then by the above computation

$$\max_{C\left(\frac{1}{2}\right)} |D_{x}^{k} D_{t}^{l} v| \leq C_{kl} ||v||_{L^{1}(C(1))}$$

We may analyze

$$D_{x}^{k}D_{t}^{l}v(x,t) = D_{x}^{k}D_{t}^{l}u(rx,r^{2}t)$$

$$= D_{x}^{k} [(r^{2})^{l}D_{s}^{l}u(rx,r^{2}t)]$$

$$= r^{2l}r^{k}D_{y}^{k}D_{s}^{l}u|_{(rx,r^{2}t)}$$

and

$$\begin{aligned} ||v||_{L^{1}(C(1))} &= \int_{C(1)} |v(x,t)| \, dxdt \\ &= \int_{\tilde{y}=rx} \int_{C(r)} \left| v\left(\frac{\tilde{y}}{r}, \frac{\tilde{s}}{r^{2}}\right) \right| \, \frac{d\tilde{y}d\tilde{s}}{r^{n}r^{2}} \\ &= \frac{1}{r^{n+2}} \int_{C(r)} |u(\tilde{y}, \tilde{s})| \, d\tilde{y}d\tilde{s} \end{aligned}$$

therefore

(*)
$$\max_{C(\frac{r}{2})} |D_x^k D_t^l u| \le \frac{C_{kl}}{r^{2l+k+n+2}} ||u||_{L^1(C(r))}$$

Remark:

Recall that if u was harmonic,

$$|D^k u(x_0)| \le \frac{C_k}{r^{n+k}} ||u||_{L^1(B(x_0,r))}$$

such that $B(x_0, r) \subseteq U$.

Moreover, recall that $\frac{1}{r^{n+k}}$ was important in proving that u was analytic.

Let us examine

$$n+1+k+l \le k+2l+n+2$$

For r small, $\frac{1}{r}$ is big, so

$$\frac{1}{r^{n+1+k+l}} \le \frac{1}{r^{k+2l+n+2}}$$

Then the estimate (*) is not good enough to expect that u is analytic when u solves the heat equation.

Remark:

Let us instead consider t_0 fixed and $\phi_u: x \to u(x, t_0)$ where u satisfies the heat equation. Then

$$|D_x^k u| \le \frac{C_{k0}}{r^{k+n+2}} ||u||_{L^1(C(x,t;r))}$$

Heuristically, we may consider replacing

$$||u||_{L^1(C(x,t;r))} \sim r^2 ||u||_{L^1(B(x,r))}$$

IMAGE HERE - 2

Then we can expect ϕ_u is analytic.

Energy Methods for the Heat Equation

Take $f \in C(U_T)$, $g \in C(\Gamma_T)$, and consider

$$(*) \begin{cases} u_t - \Delta u = f, & U_T \\ u = g, & \Gamma_T \end{cases}$$

with U bounded and open in \mathbb{R}^n and $\partial U \in C^1$.

Theorem: Uniqueness in Energy Methods

With the previous conditions, there exists at most one solution $u \in C_1^2(\overline{U}_T)$ of the problem (*).

Proof

Suppose there are two solutions u_1 and u_2 of (*), then $w = u_1 - u_2$ solves

$$\begin{cases} w_t - \Delta w = 0, & U_T \\ w = 0, & \Gamma_T \end{cases}$$

where $W \in C_1^2(\overline{U}_T)$. Then define $e:[0,T] \to \mathbb{R}^+$ as

$$0 \le e(t) := \int_{U} w^2(x, t) dx$$

where

$$e(0) = \int_{U} w^{2}(x,0) dx = 0$$

Taking the derivative

$$e'(t) = \int_{U} 2w(x,t)w_{t}(x,t) dx$$

$$= 2 \int_{U} w\Delta_{x}w(x,t) dx$$

$$= 2 \left[-\int_{U} |\nabla w|^{2} dx + \int_{\partial U} w \frac{\partial w}{\partial \eta} dy \right]$$

therefore $e'(t) \le 0$ and e is nonincreasing such that $e(0) \ge e(t)$. Then it must be the case that e(t) = 0, $\forall t \in [0, T]$ and w = 0.

Method of Characteristics

We want to study F(Du, u, x) = 0 for $u : U \to \mathbb{R}$ with u unknown and where $F : \mathbb{R}^n \times \mathbb{R} \times U \to \mathbb{R}$ is smooth given some boundary data u = g on $\Gamma \subseteq \partial U$.

We will refer to this problem as (*) below.

Note that *F* is a first order, nonlinear PDE.

The idea is to convert the PDE into an ODE by analyzing u along appropriate curves.

Recall: Transport Equation

$$Du \cdot (b,1) = f(x,t)$$

we found $\alpha(s) = (x + sb, t + s)$ were nice because it converts the PDE to

$$u(\alpha(s)) = z'(s) = f(x+sb, t+s)$$

Notation

Write $F(p, z, x) : \mathbb{R}^n \times \mathbb{R} \times U \to \mathbb{R}$, then

$$D_p F = (F_{p_1}, \dots, F_{p_n})$$

$$D_z F = F_z$$

$$D_x F = (F_{x_1}, \dots, F_{x_n})$$

Let $x \in U$ and $x_0 \in \Gamma$. Then let C be a curve linking x with x_0 parameterized by

$$x(s) = (x_1(s), ..., x_n(s)) : [0, 1] \to U \subseteq \mathbb{R}^n$$

If $u \in C^2$ is a solution of (*), then write

$$z(s) := u(x(s))$$

$$p(s) := Du(x(s))$$

$$p_i(s) := \frac{\partial u}{\partial x_i} u(x(s))$$

Finding the Characteristic Equation

We want to find an appropriate x(s). Take

$$\frac{d}{ds}p_{i}(s) = \frac{d}{ds} \left(\frac{\partial}{\partial x_{i}} u(x(s)) \right)$$

$$= D \left(\frac{\partial}{\partial x_{i}} \right) \cdot \frac{d}{ds} x(s)$$

$$= \left[\frac{\partial^{2} u}{\partial x_{1} x_{i}}, \dots, \frac{\partial^{2} u}{\partial x_{n} x_{i}} \right] \cdot [x_{1}(s), \dots, x_{n}(s)]$$

$$= \sum_{j=1}^{n} \frac{\partial^{2} u}{\partial x_{j} \partial x_{i}} (x(s)) x_{j}'(s)$$

and

$$\frac{\partial}{\partial x_{i}}F(Du, u, x) = DF|_{(Du, u, x)} \cdot \frac{\partial}{\partial x_{i}}[Du, u, x]$$

$$= \begin{bmatrix} F_{p_{1}} \\ \vdots \\ F_{p_{n}} \\ F_{z} \\ F_{x_{1}} \\ \vdots \\ F_{x_{n}} \end{bmatrix} \cdot \left[\frac{\partial^{2} u}{\partial x_{i}x_{1}}, \dots, \frac{\partial^{2} u}{\partial x_{i}x_{n}}, \frac{\partial u}{\partial x_{i}}, e_{i} \right]$$

$$= \sum_{j=1}^{n} F_{p_{j}}(Du, u, x) \frac{\partial^{2} u(x)}{\partial x_{i}\partial x_{j}} + F_{z}(Du, u, x) \frac{\partial u}{\partial x_{i}} + F_{x_{i}}(Du, u, x)$$

$$= 0$$