No se permite el uso de ningún tipo de material Todas las respuestas deben estar justificadas

Ejercicio 1. (2 puntos) Sean

$$a_n = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}$$
 y $b_n = \log n$,

donde "log" representa el logaritmo neperiano. Calcular $\lim_{n} \frac{a_n}{b_n}$.

Ejercicio 2. (2 puntos) Sea $C \subset \mathbb{R}$ un subconjunto cerrado de \mathbb{R} y fr(C) su frontera. Probar que

$$fr(C) \subset C$$
.

Indicación: se puede usar que ${\cal C}$ contiene a todos sus puntos de acumulación.

Ejercicio 3. (2 puntos) Calcular justificadamente el número de raíces reales de la ecuación

$$x^2 - \cos x - x \sin x = 0.$$

Ejercicio 4. (2 puntos) Calcular el polinomio de Taylor de grado menor o igual que 3 en el punto x=0 de la función

$$f(x) = e^x \log(1+x).$$

("log" representa el logaritmo neperiano.)

Ejercicio 5. (2 puntos)

- a) Sea $\sum a_n$ una serie de números reales. ¿Qué es una reordenación de $\sum a_n$?
- b) Sea $\sum a_n$ una serie absolutamente convergente con $a_n \neq -1$ para todo n. Estudiar el carácter de la serie

$$\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}.$$

¿Qué se puede decir del carácter de las reordenaciones de la serie $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$?

Tiempo: 2 horas