Análise e Programação Orientada a Objetos

Sistemas de Informação

Unidade II – Parte IV

Modelagem de Estados

Projetando o Sistema

Prof. Marciel de Liz Santos

Introdução

- Objetos do mundo real se encontram em estados particulares a cada momento.
 - uma jarra está cheia de líquido
 - uma pessoa está cansada.
- Da mesma forma, cada objeto participante de um sistema de software orientado a objetos se encontra em um estado particular.
- Um objeto muda de estado quando acontece algum evento interno ou externo ao sistema.

Introdução

- Ciclo de vida de um objeto: as sequências de estados que pode passar durante a sua vida em resposta a eventos, em conjunto com as respostas a esses eventos, ou seja:
 - os estados possíveis (exemplo estado civil: solteiro, casado, ...)
 - as transições de estado possíveis (exemplo: pode passar de solteiro para casado, mas não o contrário ☺)
 - os eventos que causam essas transições (exemplo: o casamento implica a passagem ao estado de casado)
 - as ações do objeto em resposta a esses eventos (ex: despedida de solteiro)

Introdução

- O diagrama da UML que permite observar quais os possíveis estados dos objetos de uma classe, os eventos que causa a transição de um estado para o outro e a realização de operações resultantes é o **diagrama de transição de estado** (DTE). (statechart)
- Portanto, um DTE é útil para modelar o comportamento e o ciclo de vida de um objeto
- Objeto como máquina de estados

 Objetos da mesma classe têm o mesmo ciclo de vida, basta construir um diagrama de estados por classe relevante

Diagrama de transição de estado

- A UML tem um conjunto rico de notações para desenhar um DTE.
 - Estados
 - Transições
 - Eventos
 - Ações
 - Atividades
 - Transições internas
 - Estados aninhados
 - Estados concorrentes

Estado

- Um **estado** é uma condição ou situação na vida de um objeto, durante a qual o objeto satisfaz alguma condição, realiza alguma atividade ou espera por algum evento
- Exemplo (relativamente ao estado civil de uma pessoa): solteira, casada, ...
- um telefone está no estado "ocioso", após o fone ter sido colocado no gancho e até que o mesmo seja retirado novamente do gancho
- Cada estado de um objeto é determinado pelos valores dos seus atributos e (ou) pelas suas ligações com outros objetos.

Exemplos:

- "o atributo reservado deste objeto livro tem valor verdadeiro".
- "uma conta bancária passa para o vermelho quando o seu saldo fica negativo".
- Representado graficamente por um retângulo com cantos arredondados.

Estado inicial e final

- O estado inicial indica o estado de um objeto quando ele é criado. Só pode haver um estado inicial em um DTE.
 - Essa restrição serve para definir a partir de que ponto um DTE deve começar a ser lido.
- O estado final é representado como um círculo "eclipsado" e indica o fim do ciclo de vida de um objeto.
 - Este estado é opcional e pode haver mais de um estado final em um DTE.

Transições

- Uma **transição** é um relacionamento entre dois estados, indicando que, quando um evento ocorre o objeto passa do estado anterior para o estado subseqüente.
 - Ex.: quando ocorre o evento "tira do gancho", o telefone sofre uma **transição** do estado "ocioso" para o estado "ativo".
- quando uma transição entre estados ocorre, diz-se que a transição foi disparada
- Uma transição pode ser rotulada com uma expressão da seguinte forma:

evento (lista-parâmetros) [guarda] /

- Guarda expaessão de valor lógico que condiciona o disparo de uma transição.
 - Uma transição que não possui condição de guarda é sempre disparada quando o evento ocorre.

Transições

- Uma transição pode ter multiplos estados-origem e estados-destino, mas não é comum este tipo de utilização.
- Transições internas
 - Eventos que exigem uma resposta do objeto mas não provocam uma mudança de estado.
 - Ex: help / mostrarHelp()
- Auto-Transições ou Transições Reflexivas 2.
- Evento que não provoca mudança de estado, mas provoca a interrupção do estado corrente, obrigando à sua reentrada.

Eventos

- Um evento é ocorrência de um estímulo em algum ponto no tempo e que pode corresponder a uma transição de estado:
 - aparelho telefônico é tirado do gancho
 - pedido foi realizado
 - mouse pressionado / cd inserido no drive
- Os eventos relevantes a um sistema de software podem ser classificados em quatro tipos:
 - 1. Evento de chamada: recebimento de uma mensagem de outro objeto (solicitação de serviço de um objeto a outro).
 - 2. Evento de sinal: recebimento de um sinal. A diferença básica entre o evento de sinal e o evento de chamada é que neste último o objeto que envia a mensagem fica esperando a execução da mesma

Eventos

- 3. Evento temporal: passagem de um intervalo de tempo predefinido.
 - Um evento temporal é especificado com a cláusula **after** seguida de um parâmetro que especifica um intervalo de tempo.
 - Ex: **after(30 segundos)**: indica que a transição correspondente será disparada 30 segundos após o objeto ter entrado no estado atual.
- 4. Evento de mudança: uma condição que se torna verdadeira. É representado por uma expressão de valor lógico (verdadeiro ou falso) e é especificado utilizando-se a cláusula when.
 - Ex: when(saldo > 0): significa que a transição é disparada quando o valor do atributo saldo for positivo.
 - Eventos temporais também podem ser definidos utilizando-se a cláusula when.
 - when(data = 13/07/2002)
 - when(horário = 00:00h)

Exemplo (Conta Bancária)

Ações

- Ao transitar de um estado para outro, um objeto pode realizar uma ou mais **ações**.
- Computação atômica execução não interrompível.
 - Podem ser associadas a estados e transições
 - Num estado
 - Ações de entrada: entry / ação
 - equivale a associar a ação a cada transição que entra no estado
 - Ações de saída : exit / ação
 - equivale a associar a ação a cada transição que sai do estado
 - Outras ações internas: evento / ação

Ações (Exemplo)

Digitando senha

entry/definirEco(cInvisivel)

caractere(c)/tratarCaractere(c)

ajuda/exibir Ajuda(invisível)

exit/definirEco(cVisivel)

Ações (Exemplo)

Atividades

- Semelhantes a ações, atividades são algo que deve ser executado
- Computação não atômica execução interrompível
 Uma atividade só pode estar associada a um estado
- Especificadas pela cláusula "do"
 - Sequência de ações : "do / oper1(); oper2();..."

Notação Básica (Resumo)

Exemplo (Jogo Xadrez)

Estado inicial

(criação do objecto e início da máquina de estados)

Estado final

(fim da máquina de estados e destruição do objecto)

Estado Aninhados

 Vários estados de um diagrama (e transições entre esses estados) podem ser agrupados num único estado composto

Exemplo (Estado Civil)

Estados Concorrentes

 Um estado (estado composto) pode ser dividido em duas ou mais regiões concorrentes, separadas por linhas a tracejadas, representando subestados concorrentes (que , por sua vez, têm normalmente subestados sequenciais)

Ponto de Junção

- Pode ser que o próximo estado de um objeto varie de acordo com uma condição.
 - Se o valor da condição for verdadeiro, o objeto vai para um estado E1; se o valor for falso, o objeto vai para outro estado E2.
 - É como se a transição tivesse bifurcações, e cada transição de saída da bifurcação tivesse uma condição de guarda.
- Essa situação pode ser representada em um DTE através de um ponto de junção
- Pontos de junção permitem que duas ou mais transições compartilhem uma "trajetória de transições".

Ponto de Junção

Exemplo (estados de uma publicação)

