Una revisión del curso y inferencia Bayesiana

Modelos Bayesianos con aplicaciones ecológicas Dr. Cole Monnahan University of Concepción, Chile Enero, 2019

Conceptos importantes

- La inferencia Bayesiana es un paradigma diferente que la frecuentista
- Las probabilidades son grados de creencia
- Se actualiza la creencia a priori con los datos
- La incertidumbre se cuantifica mediante probabilidades
- Calculo de las probabilidades se requiere integración
 - Pinned Tweet
 - \mathfrak{Michael Betancourt} @betanalpha · 5 Jan 2017

 Remember that using Bayes' Theorem doesn't make you a Bayesian. Quantifying uncertainty with probability makes you a Bayesian.

Componentes de la regla de Bayes

- P(θ)="Prior": la incertidumbre antes de experimento o conocimiento de un experto
- P(y|θ)="Likelihood": la verosimilitud de los datos dado los parámetros – lo mismo como clásica
- P(y) = Una constante que no se puede calcular
- P(θ|y) = "Posterior": la creencia que resulta de la combinación de dos fuentes da información: prior y datos.
 - Es una distribución de probabilidad
 - La usamos para hacer inferencia

Resumen de las diferencias de los paradigmas de inferencia.

	Frequentist	Bayesiana
Que es estimado?	P(Y H) Datos dado el hipótesis	P(H Y) Hipótesis dado los datos
La definición de probabilidad	frecuencias (infinitas) relativas de eventos	Grado de creencia
Fuentes de la información	Solo los datos	Los datos y información a priori
La definición de los parámetros	Estimaciones de cantidades "verdaderas"	Variables aleatorias estadísticas
Método de inferencia	Máximo verosimilitud	Integración (de posteriori)

Ellison 2004

Las ventajas de inferencia Bayesiana

- Hay respuestas intuitivas: los parámetros son distribuciones de probabilidad.
- Poder formalmente incorporar conocimiento antes del experimento
- Las suposiciones asintóticas no son necesarios
- La estimación de los modelos jerárquicos es natural y fácil
- Análisis de decisión: Poder calcular probabilidades de las consecuencias de varias acciones. (Punt and Hilborn 1997)

Desventajas

- Toma mas tiempo para estimar
- En general, la especificación de los priors
 - Poder ser sensitivo para la transformación de los parámetros. (e.g., Thorson and Cope 2017, Maunder 2003)
 - Poder ser difícil determinar apropiados "priors"
 - P.ej., no hay "uninformative priors"
- Es sensible a las transformaciones de los parámetros (Punt and Hilborn (1997)).

Construyendo modelos Bayesianos

- Gelman et al (2014) recomiende tres pasos básicos:
- Hacer un modelo colectivo por todos los cantidades (datos y parámetros) del problema
- Condicionar el modelo a los datos observados y estimar la probabilidad a posteriori
- 3. Evaluar el ajuste, realizar si necesario, y después hacer inferencia (calcular probabilidades).

Modelos jerárquicos

- MJ requiere integración para hacer inferencia
- Es difícil con máximo verosimilitud
- Pero natural con métodos Bayesianos
- Porque MCMC ya está integrando!
- MJ son herramientas muy poderosa y eran difícil de ajustar...
- Hasta software como Stan/JAGS que son flexibles para construir modelos arbitrarios

Consejo I

- Les recomiendo usar R para simular datos que son similares que los reales
- Después, los ajusta con JAGS/Stan para saber si el software funciona como piensas
- Usa prior predictive distribution para entender el efecto de las priors en el modelo
- Usa posterior predictive distribution para chequear que el modelo es bueno

Consejo II

- Usa algunas versiones de la prior, y plotea las priors vs posterior
- Comienza con JAGS y usa Stan cuando el análisis es demasiado lento
- Es tu responsabilidad asegurar convergencia. Usa Rhat y ESS.
- Un análisis Bayesiano toma mucho tiempo
- Comienza con un modelo simple y agrega complexidad lentamente

Referencias: Inferencia Bayesiana

- Gelman et al (2014)
- Korner-Nievergelt et al. (2015)
- Hooten and Hobbs (2015)
- Punt and Hilborn (1997)

Referencias: Modelos jerarquicos

- Royle and Dorazio (2008)
- Thorson and Minto (2015)
- Gelman et al. (2006)

Stan

- https://betanalpha.github.io/writing/
- rstanarm (<u>https://cran.r-</u> <u>project.org/web/packages/rstanarm/vignettes/</u> <u>rstanarm.html</u>)
- https://mc-stan.org/users/documentation/
- https://mcstan.org/users/documentation/tutorials.html
- Stan functionality in TMB and ADMB;
 Monnahan and Kristensen (2018)

References

Hooten, M. B. and N. T. Hobbs (2015). "A guide to Bayesian model selection for ecologists." <u>Ecological Monographs 85(1): 3-28.</u>

Gelman, A., J. B. Carlin, et al. (2014). <u>Bayesian data analysis, Taylor & Francis.</u>

Punt, A. E. and R. Hilborn (1997). "Fisheries stock assessment and decision analysis: The Bayesian approach." Reviews in Fish Biology and Fisheries 7(1): 35-63.

Korner-Nievergelt, F., T. Roth, et al. (2015). <u>Bayesian data analysis in ecology using linear models with R, BUGS, and Stan: including comparisons to frequentist statistics, Academic Press.</u>

Thorson, J. T. and C. Minto (2015). "Mixed effects: a unifying framework for statistical modelling in fisheries biology." <u>ICES Journal of Marine Science</u> **72(5): 1245-1256.**

Royle, J. A. and R. M. Dorazio (2008). <u>Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities, Academic Press.</u>

Gelman, Andrew, and Jennifer Hill. *Data analysis using regression and multilevel/hierarchical models*. Cambridge university press, 2006.

Monnahan, C. C. and K. Kristensen (2018). "No-U-turn sampling for fast Bayesian inference in ADMB and TMB: Introducing the adnuts and tmbstan R packages." Plos One 13(5): e0197954.