Dinámica de la partícula

Leyes de Newton

1) Principio de inercia Σ F = 0

Toda partícula en reposo o MRU permanece en ese estado hasta que se le aplique una Fuerza.

- Velocidad es una función continua en el tiempo
- partícula puede estar en movimiento por mas que la suma de Fuerzas sea nula

Inercia: se opone al cambio de movimiento

- Masa es una medida de la inercia
- A mayor masa, mayor su resistencia a modificar su velocidad mayor inercia

Define un sistema de referencia inercial fijo a la tierra (definir un observador siempre)

2) Principio de masa

Cantidad de movimiento: $\vec{p} = m\vec{V}$

Como cambia en el tiempo la cantidad de movimiento: $\sum \frac{\vec{F} = \frac{d\vec{p}}{dt}}{\vec{F}}$

- o La resulta de las fuerzas que actúan
- Cuando la masa no es cte.

$$\underline{\mathsf{Impulso}}: \ \vec{J} = \int_{t_0}^t \blacksquare \vec{F} = \Delta \vec{p}$$

- Es igual a la variación de su cantidad de movimiento
- Es iqual a $\vec{l} = \vec{F} \Delta t$
- Cuando la masa esta

Relación entre masa e inercia I mayor masa: mayor Fuerza gravitatoria pero también es mayor su inercia (su resistencia a acelerarse)

- Mayor atracción gravitatoria se compensa con mayor masa inercial

Nota: no todos los sistemas de referencia son los mismos 🏻 sistema de referencia inerciales donde las leyes de Newton no son válidas.

- Un micro que frena I el objeto dentro del mismo acelera sin que actúe ninguna Fuerza debido a una interacción real.

3) Principio de interacción

Si una partícula A interactúa con una B aplicándole una fuerza F1, entonces B interactúa con A aplicando una fuerza F´1 con el mismo moduló y dirección, pero sentido contrario

D<mark>Surgen siempre de a pares</mark> (pares de interacción) DEstán <mark>aplicadas en cuerpos distintos</mark>.

Peso: Fuerza que la Tierra ejerce sobre la caja I su par de interacción es la Fuerza que la caja ejerce sobre la tierra (hacia arriba)

• Si separo la caja del pisoli interacción a distancia

Normal: Fuerza que la superficie ejerce sobre la caja 🛘 su par es una fuerza que la caja ejerce sobre la superficie.

Reacciones de vínculo

Vínculo: todo cuerpo que limita la dirección del movimiento de un punto material

Interacción gravitatoria

Normalmente P=m*g I Fuerza con la que la Tierra atrae al cuerpo

- A medida que me alejo de la tierra, la g<<<

interacción gravitatoria: No es constante, depende de la distancia entre las partículas interactuantes

$$\vec{F} = -G \frac{m_2 m_1}{r^2} \hat{r}$$

Tiro vertical con fuerza gravitatoria variable

Un cuerpo se encuentra en un campo gravitacional terrestre pero no cercano a la tierra II <u>aceleración a la que está sometido: variable</u>

$$\vec{F}grav = -\frac{mGM_T}{r^2}\hat{r} = m\vec{a}$$

$$GM_T * \left(\frac{1}{r(t)} - \frac{1}{r_0}\right) = \frac{1}{2} * (v(t)^2 + v_0^2)$$

¿Velocidad inicial de la masa para llegar a una altura r? 🛮 V final = 0 y despejo Vo

Velocidad de escape

Alguna velocidad inicial para la cual una vez arrojada la partícula se aleje indefinidamente de la Tierra y nunca regrese I donde la atracción de la gravedad sea nula

r----> infinito

$$V_{escape} = \sqrt{\frac{2GM_T}{R_T}}$$

Fuerza de rozamiento

Tienen relación con la rigurosidad de las superficies de contacto

- 1. Fuerzas de rozamiento estático: no hay desplazamiento entre las superficies de contacto
 - o Relacionada con la Normal 🛘 componentes de la fuerza de contacto
 - Es paralela a la superficie de contacto
 - o No tiene un valor único 🏻 aumenta a medida que aumento la intensidad de F

 $F_{max} = u_e N$ ----> valor máximo que alcanza

2. Fuerzas de rozamiento dinámico: cuerpos de mueven uno respecto del otro $F_{max}=u_dN$

Fuerza elástica

 $rac{ec{F}_e}{L} = -k\Deltaec{x}$ donde k es la cte. elástica (indica la dureza del resorte) y \Deltaec{x} es la deformación experimentada por el resorte

El signo negativo indica que la Fuerza tiene sentido contrario a la deformación del resorte (no quiere decir que sea "negativa")

 $\Delta \vec{x}$ es igual a $|x - l_0|$ donde l_0 es la longitud natural del resorte

Es conveniente elegir sistema de coordenadas donde el origen coincida con l_{0}

Leyes de Kepler

1) Primera ley

Todos los planetas se mueven en orbitas elípticas con el Sol en uno de los focos.

$$a^2 = b^2 + c^2$$
 $e = \frac{c}{a}$ excentricidad de la órbita

2) Segunda ley

Los planetas, en su recorrido, barren áreas iguales en el mismo tiempo II el planeta debe moverse lentamente cuando está alejado del sol y más rápidamente cuando está cercano a él.

<u>3) Tercera ley</u> Cuadrado del período de cualquier planeta = al cubo de la distancia media del planeta al sol

$$T^2 = \frac{4\pi^2 a^2}{Gm_s}$$