Theory of Automata and Formal Language Lecture-26

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj June 4, 2021

Greibach Normal Form (GNF)

A CFG is said to be in Greibach normal form if all the production rules are of the following form:

$$\mathsf{A}{\to}\,\mathsf{a}\gamma$$
 , where $\gamma\in\mathsf{V}^*$, $\mathsf{a}\in\Sigma$ and $\mathsf{A}{\in}\mathsf{V}.$

Lemma-1

Let $A \to B\gamma$ be an A-production and let B-productions are $B \to \beta_1 |\beta_2|.....|\beta_n$. Then $A \to B\gamma$ production is replaced by the following rules:-

$$A \rightarrow \beta_1 \gamma |\beta_2 \gamma| \dots |\beta_n \gamma|$$

Lemma-2

Let the set of A-productions be $A \to A\alpha_1 |A\alpha_2| \dots |A\alpha_m|\beta_1 |\beta_2| \dots |\beta_n|$ (β_i 's do not start with A). Then we replace the rules $A \to A\alpha_1 |A\alpha_2| \dots |\beta_n|$ by the following procedure:-

Add new variable Z to the grammar. And the set of A-production are

$$A \rightarrow \beta_1 |\beta_2| \dots |\beta_n|$$

$$A \rightarrow \beta_1 Z |\beta_2 Z| \dots |\beta_n Z$$

The set of Z-productions are

$$Z \rightarrow \alpha_1 |\alpha_2| \dots |\alpha_m|$$

$$Z \rightarrow \alpha_1 Z |\alpha_2 Z| \dots |\alpha_m Z|$$

Reduction to Greibach Normal Form

Step-1: Construct the given grammar into CNF. Next, we rename the variables as A_1, A_2, \dots, A_n with $S = A_1$.

Step-2: Consider the production rules which are of the following form

 $A_i \rightarrow A_i \gamma$, where jii and $\gamma \in V^*$

Apply the lemma-1 in these rules until $j \ge i$.

Step-3: Consider the production rules which are of the following form

 $A_i
ightarrow A_i \gamma$, where j = i and $\gamma \in V^*$

Apply the lemma-2 in these rules until $j \ge i$.

Step-4: Consider the production rules which are not in GNF. Apply lemma-1 in all these rules. After this, the resultant grammar will be in GNF.

Example: Convert the following grammar into GNF.

- 1. $S \rightarrow AB$, $A \rightarrow BS/b$, $B \rightarrow SA/a$.
- 2. $S \rightarrow AA/a$, $A \rightarrow SS/b$.
- 3. $E\rightarrow E+T/T$, $T\rightarrow T^*F/F$, $F\rightarrow (E)/a$,
- 4. $S \rightarrow ABb/a$, $A \rightarrow aaA$, $B \rightarrow bAb$.
- 5. $S \rightarrow SS$, $S \rightarrow 0S1/01$, $B \rightarrow SA/a$.

Exercise

- 1. Eliminate the useless production from the following grammar $S\rightarrow a/aA/B/C$, $A\rightarrow aB/\epsilon$, $B\rightarrow aA$, $C\rightarrow cCD$, $D\rightarrow ddd$,.
- 2. Eliminate all the ϵ -productions from the following grammar:-S \rightarrow AaB/aaB, A \rightarrow ϵ , B \rightarrow bbA/ ϵ
- 3. Remove all unit productions, all useless productions and all ϵ -productions from the grammar $S \rightarrow aA/aBB$, $A \rightarrow aaA/\epsilon$, $B \rightarrow bB/bbC$, $C \rightarrow B$.
- 4. Transform the following grammar into CNF S \rightarrow abAB, A \rightarrow bAB/ ϵ , B \rightarrow BAa/A/ ϵ .
- 5. Transform the following grammar into CNF $S \rightarrow AB/aB$, $A \rightarrow aab/\epsilon$, $B \rightarrow bbA$.