DEEP LEARNING BOOTCAMP

Introduction to ML strategy

Kunwoo Park

Oct 10 2018

0. Table of Contents

Intoduction to ML strategy

- Why ML strategy
- Orthogonalization

Setting up your goal

- Single number evaluation metric
- Satisficing and optimizing metric
- Train/dev/test distributions
- Size of the dev and test
- When to change dev/test sets and metrics

Computing to human-level performance

- Why human level performance?
- Avoidable bias
- Understanding human-level performance
- Surpassing human level performance
- Improving your model performance

1. Intoduction to ML strategy

Why ML strategy

Motivating example

90%

Ideas:

- Collect more data
- Collect more diverse training set
- Train algorithm longer with gradient descent
- Try Adam instead of gradient descent
- Try bigger network
- Try smaller network

- Try dropout
- Add L₂ regularization
- · Network architecture
 - Activation functions
 - · # hidden units
 - ... Andrew Ng
- How to improve your algorithm effectively? Use ML strategy!!!

Orthogonalization

TV tuning example

Orthogonalization

Chain of assumptions in ML

Andrew Ng

2. Setting up your goal

Single number evaluation metric

Using a single number evaluation metric

Classifier	Precision	Recall	F1 Score
A	95%	90%	92.4%
В	98%	85%	91.0%

2 ++1 P+R

Precision: of the examples that your classifier recognizes as cats, What percentage actually are cats? TP/(TP+FP)

Recall (sensitivity): of all the images that really are cats, what percentage were correctly recognized by your classifier? TP/(TP+FN)

Satisficing and optimizing metric

Another cat classification example

lassifier	Accuracy	Running time
A	90%	80ms
В	92%	95ms
C	95%	1,500ms
	accuracy	
spear to	accuracy Curning Time 5	
xinize	accuracy	100 MS.

Train/dev/test distributions

Train/dev/test distributions

True story (details changed)

Optimizing on dev set on loan approvals for medium income zip codes

1 × -> y (repay loon?)

Tested on low income zip codes

Andrew Ng

Train/dev/test distributions

Guideline

Choose a dev set and test set to reflect data you expect to get in the future and consider important to do well on.

Same distribution

Size of dev and test sets

Size of dev and test sets

Size of test set

→ Set your test set to be big enough to give high confidence in the overall performance of your system.

When to change dev/test sets and metrics

When to change dev/test sets and metrics

Orthogonalization for cat pictures: anti-porn

- → 1. So far we've only discussed how to define a metric to evaluate classifiers. Place → → ♣
- → 2. Worry separately about how to do well on this metric.

When to change dev/test sets and metrics

Another example

Algorithm A: 3% error

✓ Algorithm B: 5% error ←

If doing well on your <u>metric + dev/test</u> set does not correspond to doing well on your application, change your metric and/or dev/test set.

Andrew Ng

3. Comparing to human level performance

Why human level performance?

- 1. because of advances in deep learning, machine learning algorithms become competitive with human-level performance.
- 2. workflow is much more efficient when you're trying to do something that humans can also do.

Why human level performance?

Comparing to human-level performance

after surpassing human level, the slope of how rapid the accuracy's going up, slows down.

- 1. Human-level performance is close to Bayesian optimal error so there is not much room to improve.
- 2. When performance is less than Human-level performance, you can try some tools to improve performance that are harder to use once you've surpassed human level performance.

Why human level performance?

Why compare to human-level performance

Humans are quite good at a lot of tasks. So long as ML is worse than humans, you can:

- Get labeled data from humans.

(x,y)

More data

- Gain insight from manual error analysis: Why did a person get this right?

Check misclassified example

Better analysis of bias/variance.

Bias and Variance

Avoidable bias

Cat classification example

Understanding human-level performance

Human-level error as a proxy for Bayes error

Medical image classification example:

Suppose:

- (a) Typical human 3 % error
- - (c) Experienced doctor 0.7 % error
- \rightarrow (d) Team of experienced doctors .. 0.5 % error \leftarrow

What is "human-level" error?

Boye enor 5 0.50/s

Understanding human-level performance

Human (prxy For Bayes 2 por) Avoidable bias	1% 0.7% 0.5%	1% 0.7% 0.5%	1% 0.7% 0.5%
Training error	5%	1%	0.7%
Dev error	6%	5%	0.8%

Surpassing human level performance

Surpassing human-level performance

Surpassing human level performance

Problems where ML significantly surpasses human-level performance

- -> Online advertising
- Product recommendations
- → Logistics (predicting transit time)
- > Loan approvals

Structul dota Not noted perception Lots of dota - Speech recognition
- Some inoge recognition
- Medul
- 18 CG, Skin cener,...

Improving your model performance

The two fundamental assumptions of supervised learning

1. You can fit the training set pretty well.

a Avoidable bias

2. The training set performance generalizes pretty well to the dev/test set. ~ Varione

Improving your model performance

Reducing (avoidable) bias and variance

