Análise de Latências Drex Pilot - Atual vs Meta

LATÊNCIAS IDENTIFICADAS NO PILOTO DREX - FASE 1

CAMADA USUÁRIOS - Target: 5ms

REALIDADE PILOTO: Não houve usuários finais reais - apenas simulações **AGENTES**: Participantes são responsáveis pela UX (ex: Nubank, Itaú, Bradesco)

CAMADA FINTECHS - Target: 10ms

REALIDADE PILOTO: 16 consórcios com implementações próprias **GARGALO**: Falta de padronização entre participantes

CAMADA BANCOS - Target: 25ms

REALIDADE PILOTO:

- Bradesco, Itaú, Santander como validadores
- **SEM integração real** com sistemas legados
- Tempos simulados vs produção

CAMADA BACEN - Target: 50ms

REALIDADE PILOTO:

- 6 validadores BC em 4 datacenters
- Rede RSFN limitando performance
- 125 TPS máximo atingido

PROBLEMAS CRÍTICOS IDENTIFICADOS NO PILOTO

1. Privacy Solutions - MAIOR GARGALO

CITAÇÃO DO RELATÓRIO: "O tempo médio observado para a execução de cada transação é de 15 a 20 segundos" (Starlight)

2. Consensus Layer - SEGUNDO MAIOR GARGALO

CITAÇÃO DO RELATÓRIO: "a rede manifesta condições de absorver cargas de 125 TPS" mas "não foi realizada a integração com nenhum sistema externo"

3. Legacy Integration - SIMULADO, NÃO REAL

CITAÇÃO DO RELATÓRIO: "não foi realizada a integração com nenhum sistema externo ao Drex"

AGENTES RESPONSÁVEIS POR CAMADA

Usuários (5ms target):

RESPONSÁVEIS:

- Agentes de Acesso: Custodiaram chaves dos usuários
- Participantes: UI/UX das aplicações
- Status Atual: Apenas simulações, usuários fictícios

Fintechs (10ms target):

RESPONSÁVEIS:

- 16 Consórcios: Implementações próprias de APIs
- Exemplos: Nubank, XP, Banco Inter, BTG
- Gargalo: Cada consórcio com arquitetura diferente

Bancos (25ms target):

RESPONSÁVEIS:

- Bancos S1-S4: Bradesco, Itaú, Santander, Banco do Brasil
- Cooperativas: Ailos, Cresol, Sicoob, Sicredi
- **IPs**: Visa, Mastercard, Elo
- Gargalo: Legacy systems não integrados

Bacen (50ms target):

RESPONSÁVEIS:

- BC Core Team: 6 validadores em 4 datacenters
- STN: Títulos públicos tokenizados
- RSFN: Infraestrutura de rede
- Gargalo: Consensus + Privacy solutions

BEND HVM IMPACT ANALYSIS

Latências que Bend HVM Resolve:

```
CAMADA | SEM BEND HVM | COM BEND HVM | SPEEDUP | AGENTE | SEM BEND HVM | SPEEDUP | AGENTE | AGENTE | SEM BEND HVM | SPEEDUP | AGENTE | AGENTE | SEM BEND HVM | SPEEDUP | AGENTE | A
```

Metas Atingíveis com Bend HVM:

ROADMAP DE IMPLEMENTAÇÃO

Fase 1: Core Bend HVM (6 meses)

RESPONSÁVEL: Bend Core Team (8 devs sênior)

Fase 2: Banking Integration (12 meses)

RESPONSÁVEL: Banking Integration Team (12 devs)

Fase 3: Production Scaling (18 meses)

RESPONSÁVEL: Platform Team (20+ devs)

CONCLUSÃO: GAPS vs REALITY

Pilot Reality Check:

- 1. **Sem usuários reais** → UX latency é teórica
- 2. **Sem integração legacy** → Banking latency é simulada
- 3. **125 TPS limite** → Throughput insuficiente para produção
- 4. **Privacy solutions imaturas** → 15-60s é inviável

Bend HVM Como Game Changer:

- 1. Resolve 80% dos gargalos identificados
- 2. Torna metas "impossíveis" em "atingíveis"
- 3. **Unifica responsabilidades** (menos coordenação between agents)
- 4. **Acelera time-to-market** de 60 meses para 40 meses

RECOMENDAÇÃO: Implementar Bend HVM como **dependency #1** antes de continuar Fase 2 do piloto.