

Extended slopes

Artem Amirkhanov @ SBG Användarträff 2018 artem.amirkhanov@leica-geosystems.com

Extended slippery slopes

Artem Amirkhanov @ SBG Användarträff 2018 artem.amirkhanov@leica-geosystems.com

Goals

- Follow through the algorithm design process
- Demonstrate challenges and hidden complexity
- Discuss advantages and limitations of implementation

Input

It's that simple

It's that simple ... NOT

Slope in corners?

Non-convex boundaries?

Holes?

Disjoint boundaries?

Disjoint non-convex boundaries with holes?

Offset boundary step-by-step

- Offset boundary step-by-step
- Seed points around model

- Offset boundary step-by-step
- Seed points around model
- Use existing computational geometry algorithm

- Offset boundary step-by-step
- Seed points around model
- Use existing computational geometry algorithm
- Implement custom algorithm

Attempt #1: use Voronoi diagrams

- Subdivide space into cells
- Points in each cell are closest to one element (point/segment)
- Only need to calculate heights

- Named after Georgy Voronoi
- Dual problem to Delaunay triangulation

Attempt #1: use Voronoi diagrams

- Subdivide space into cells
- Points in each cell are closest to one element (point/segment)
- Only need to calculate heights

- Named after Georgy Voronoi
- Dual problem to Delaunay triangulation

Failed: trying to solve 3D problem in 2D

Failed: trying to solve 3D problem in 2D

Attempt #2: custom algorithm

- After Voronoi disaster: looking for short-cuts
- But shortcuts did not cut it

Attempt #2: custom algorithm

- Build slope as a graph (similar to Voronoi but works in 3D)
- Crop infinite edges
- Triangulate each graph cell

Works for 2.5D geometries

Handles merge points

- Less points/triangles
- Exact

Other advantages and limitations

- Handles holes
- Implements miter corners
- Round and chamfered corners extensions are possible

- Disjoint geometries not supported (but can be added)
- Fails with large height differences

Poll:

"Do you need extended slopes to support ...?"

- Not flat geometries (2.5D)
- Non-convex boundaries
- Holes
- Round corners
- Chamfered corners
- Custom requests?

