

Help sandipan_dey >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Calendar</u> <u>Discussion</u> <u>Notes</u>

☆ Course / Unit 1: Functions of two variables / Recitation 1: Structured worked examples

Next >

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

□ Bookmark this page

< Previous

Recitation due Aug 4, 2021 20:30 IST Completed

Practice

It turns out that the function whose level curves we have been analyzing in this recitation is defined by

$$T\left(x,y\right) =xy. \tag{2.36}$$

Complete the following computations and compare them to your answers on the previous page.

Compute partial derivatives

2/2 points (graded)

Given T(x,y) = xy, compute:

$$T_{y}\left(x,y
ight) =igg|_{\mathsf{X}}$$
 Answer: X

? INPUT HELP

Submit

You have used 1 of 15 attempts

1 Answers are displayed within the problem

Evaluate partial derivatives 1

4/4 points (graded)

Using your answers for $T_{x}\left(x,y\right)$ and $T_{y}\left(x,y\right)$ above, compute the following:

Discuss in the forum how these value relate to the change in temperature.

Submit

You have used 1 of 15 attempts

1 Answers are displayed within the problem

Evaluate partial derivatives 2

4/4 points (graded)

Using your answers for $T_{x}\left(x,y
ight)$ and $T_{y}\left(x,y
ight)$ above, compute the following:

Submit

You have used 1 of 15 attempts

1 Answers are displayed within the problem

Question: Do your answers agree with your reasoning from the level curves from the previous page?

18. Computation checks

Topic: Unit 1: Functions of two variables / 18. Computation checks

Hide Discussion

Add a Post

Show all posts 🕶	by recent activ	rity 🗸
Surprise suprise, the answers agree perfectly! I really loved this exercise. Going to the graph, trying to reason where to go and how, then noticing the number of le	evel curves I'm cr	2
Level Curves Reading Unclear but derivatives computation is straightforward I found the level curves reading questions very tricky and unsound. I don't know how to see the relation between the	e computations a	1
Relation of Partial Derivative to Contour Plots As you move along either the x- or the y-axis, the closer the level curves, the greater the magnitude of the derivative	<u>/e. Again, as you</u>	3
▼ Typo?		2
Reflection Yes, they do. As mentioned in the video, the closer together the contour lines are, the faster the change will be. Wit	<u>h derivatives, th</u>	1
Change of temperature It's easy to spot some obvious correlation between curves when looking at the level curves plot when you have calc	culated partial de	1
<u>mine do</u>	alculator 6	Hide

Previous

Next Up: Lecture 2: Linear approximations and tangent planes

41 min + 12 activities

© All Rights Reserved

>

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>