Hoy

Arboles de decisión (CART: Classification and regression trees)

Arboles de clasificación

El algoritmo ID3

Expresividad

Árboles de regresión

juego de las 20 preguntas 20q. net

Vas a decidir si entras a un restaurante

Input: Output: Sí o No

juego de las 20 preguntas

20q.net

Vas a decidir si entras a un restaurante

Input:

Output: Sí o No

Lleno?

Tipo? Vegetaliono?

Lleno	Tipo	Veg	Entro
T	it	F	No
T		Ť	סע
F	Mex Mex	た	NO
, E	rapida	, T	5î
1	, s.p.,	,	
			l

Juego de las 20 preguntas: ¿ Por cual pregunta empieta?

No es iqual de eficiente emperar por cualquier pregunta

Aprendizaje de airboles de decisión Variable/característica)

- 1 Elige Mejor atributo (mejor respuesta)
- (2) "Prequeta"
- 3 Sique la rama de la respuesta
- Tr al paso 1 hasta encontrar respuesta

 j ojo hay differentes

 formar de terminar el psoceso

¿ Cómo elegir el mejor atributo?

Information Gain

Gain
$$(S, A) = Ent(S) - \sum \frac{|Sv|}{|S|} Ent(Sv)$$

Atribute

Ent(S)=
$$\sum_{i=1}^{\infty} p_i \log_2 p_i$$

En el taller ahondaremos

Una vez tiene el atributo decidido

¿ Cómo el arbol "Pregunta"?

El atributo reclamente tendrá valores numéricos y cada rama corresponderá a intervalos numéricos.

Ejemplo:

Lo que hace k es partir el ron junto de registros en 2

Supongamus que nuestra variable objetivo es binaria sí o no x

Menor utropia

Edad?

Para decidir K (como putir) se Utiliza una medida de "Impureza" Esta medida puede ser Entropy, Gini, entre otras

Ese valor k se convierte en la pregunta del arbol.

El algoritmo

ID3 (Iterative Dichotomy 3)

D Elegir el mejor otribut A

D Asignar al atributo A un nodo

D Para cada valor de A

Crear un nodo descendente

> Partir los datos de acuerdo a los valores

De Recursivamente hacer nuevos árboles para cada nodo descendente

D Si todos los elementos de un subconjunto true la misma clasificación, asignar esa clasificación a la hoja:

D Si un subconjunto es vacio, asignar la clasificación mas popular

¿ Cuándo para el proceso?

Todo ce clasificó
Correctamente
(todos los nodos
finales son hojas
Con etiquetas)

No hay ma's atributos

Se llega a un limite prestablecido para el modelo

Ej. Numero máximo de hojas Profundidad máxima

Asi luce el arbol con SKLearn

Expresividad de los asboles de decisión

Toda funcion en lógica proposicional se puede expresar como un arbol de decisión

AND	F	丁
F	F	F
T	F	T

XOR

Un airbol muy grande

Un airbol muy grande

Puede estar sobre ajustandose a los datos

Por eso suele ser conveniente que el arbol no cea tan grande.

Esto se hace de 2 muneras

1. Limitando la construcción del árbol mediante parámetros del algoritmo como (# max dehojas, profundidad máxima etc.)

2. Podando el árbol (Ahondaremos en el taller)

Árboles de Regression

La altura en cada región Rm se asigna como:

$$f(x) = \sum_{m=1}^{n} C_m T(x \in R_m)$$

$$promedio(yil xi \in R_m)$$

¿ Cómo encontrar la mejor partición?

min
j, s
$$\left[\begin{array}{c} min \\ (y_i - c_1)^2 + min \\ (z \times i \in R_2(j,s)) \end{array}\right]$$