

Analog Discovery 2[™] Reference Manual

Revised September 14, 2015 This manual applies to the Analog Discovery 2 rev. C

Table of Contents

Tal	ole of Co	ntents .			
Ov	erview			•••••	3
1	Archit	ectural (Overvie	w and Block	Diagram 4
2	Scope			•••••	7
		I	D	G	
		В			
				0	
		D			
	С	G			
		ADO	С		
		Α			
		D			
			С		
3	Arbitra	ary Wav	eform G	Generator	23
	Α	G DAC			
	Α	G		0	
	Α	GΙ			
	Α	G O			
	Δ				

Α	G	С

4	Calibrat	tion Men	nory		•••••			••••••		30
5	Digital I	ı/o			•••••			•••••		31
6	Power S	Supplies	and Contro	ol	•••••			•••••		32
	E	3 P (
	Α		С							
			С							
	1	Р								
		Α								
		D								
			M							
7	USB Co	ntroller								45
8	FPGA	•••••								45
9	Features and Performances								46	
	Α	1								
	A	0	А		G					
		А	7		J					
	D	P	G							
	D		u							
		10								
	P									
	N	Α								
		_								
		Α								

0

F

V differential

Overview

The Digilent Analog Discovery developed in conjunction with Analog Devices is a multi

D Α

Α

D

D

BNC A BNC D D F Α

channel oscilloscope

The Analog Discovery 2.

AC DC MH Α HD D В А PIIC

Two programmable power supplies

D

В

Α

В

М D

hardware s features and limitations It is not intended to provide enough information to enable complete Α D

Figure 1. Analog Discovery 2 pinout diagram.

1 Architectural Overview and Block Diagram

Analog Input
Scope use S indexes to indicate they are related to the scope
Analog Output
AWG use AWG indexes and signals in the Digital
D
F

Power Supplies and Control

rtain naming conventions Analog voltages are prefixed with a V for IN M C A G B F ADC P N F **Analog Inputs/Scope Input Divider and Gain Control** Н **FPGA Buffer** Driver ADC O **Scope Reference and Offset** ADC **Arbitrary Outputs/AWG** DAC A G I/V Out Audio Oscillator **Clock Generator** Α ΑD DA Digital I/O **FPGA** D Р G

C D I A

Figure 2. Analog Discovery 2 block diagram.

C D I A P **6 51**

P **7 51**

L G
$$\frac{V_{mux}}{V_{in}} = \frac{R_6}{R_1 + R_4 + R_6} = 0.019 \tag{3}$$

$$|V_{in \, diff}| = |V_{in \, P} - V_{in \, N}| < 50V \tag{4}$$

H G
$$\frac{V_{mux}}{V_{in}} = \frac{R_4 + R_6}{R_1 + R_4 + R_6} = 0.212 \tag{5}$$

H G
$$\left| V_{in\,diff} \right| = \left| V_{in\,P} - V_{in\,N} \right|$$

$$< 7V$$
 (6)

Figure 3. Input divider and gain selection.

C D I A P **8 51**

2.2 Scope Buffer

A O A F

Figure 4. Scope buffer.

ΑD

```
FE
  Α
L
                   d bandwidth G
   V s slew rate G
Low noise nV H f
                          fA H f
                    kH
                                     kΗ
L
Ε
SFDR
       d c
             MH
L
             Α
             М ОР
```

C D I A

ΑD

$$-5.5V < V_{mux P}, V_{mux N} < 2.2V \tag{7}$$

$$-5.38V < V_{buf P}, V_{buf N} < 5.4V$$
 (8)

$$\frac{V_{buf}}{V_{mux}} = 1 \tag{9}$$

2.3 Scope Reference and Offset

Figure 5. Scope reference and offset.

ΑD A J Μ С Low quiescent current A maximum Output noise H to Vр Н В ΑD D DAC L DAC

MH

ADA M O A

Very low supply current A typical

L V maximum

O C

H P B

$$V_{refSC} = V_{ref1V2} \cdot \left(1 + \frac{R_{79}}{R_{80}}\right) = 2V$$
 (10)

$$0 \le V_{off SC} = V_{out AD5643} \cdot \left(1 + \frac{R_{77}}{R_{78}}\right) < 4.044V$$
 (11)

2.4 Scope Driver

ADA ADC

 $$\operatorname{MH}$$ E $$\operatorname{B}$$ HD H B HD MH Low input voltage noise nV H

A F LFC P

IC Error! Reference source not found.

D ADC
P ADC
A EF C OFF C

$$V_{Out+IC2A} = V_{CM} + \frac{AVCC1V8}{2} \cdot \frac{R_{23}}{R_{25}} = 0.9V + \frac{1.8V}{2} \cdot \frac{4.99K}{6.34K} = 1.6V$$
 (17)

D D ADC
$$-0.1V < V_{+ADA4940} = V_{-ADA4940} < 1.9V$$
 (18)

2.5 Clock Generator

Figure 7. Phase noise figure for the clock generator.

Figure 8. Clock generator.

2.6 Scope ADC

2.6.1 Analog Section

C D I A

D

D

C AC

 $-1V < V_{ADC\ diff} < 1V \tag{19}$

2.6.2 Digital Section

ADC FPGA

FPGA

CLKO C FPGA F

Figure 10. ADC - digital section.

2.7 Scope Signal Scaling

C G (3) (5) (9) (13) (14) (15)
$$Low \ Gain = \frac{V_{ADC \ diff}}{V_{in \ diff}} = 0.034$$

$$High \ Gain = \frac{V_{ADC \ diff}}{V_{in \ diff}} = 0.375$$
 (20)

C D I A P **17 51**

C ADC (19) V_{offsc} (11)

 $at Low Gain: -30V < V_{in diff} < 28.6V$ $at High Gain: -2.7V < V_{in diff} < 2.6V$ (21)

at Low Gain: $-25V < V_{in \, diff} < 25V$ at High Gain: $-2.5V < V_{in \, diff} < 2.5V$ (22)

(10)(11) (14)

 $-2V < V_{offSC} - V_{refSC} < 2.044V \tag{23}$

 $V_{off\ eq\ in}$

at Low Gain: $-59.3V < V_{off\ eq\ in} < 59.3V$

at High Gain: $-5.39V < V_{off eq in} < 5.39V$ (24)

 $V_{off\ eq\ in}$ $V_{in\ diff}$ (21) (22)

 $V_{off\ eq\ in}$ (24)

E ()(7)(8)(12) (19) IC

F E E L G H G Vin diff Vin CM $VinP \quad VinN$

linear range

O A D A

Figure 11. Scope input signal range.

C D I A P **19 51**

Figure 12. Scope input signal range.

$$VoffSc = 2.022V$$

$$VoffSc = 4.044V$$

$$VoffSc = 0V A$$

$$A$$

$$ADC$$

F

Α

C D I A P **20 51**

ADC

representation It is the user s responsibility to understand and avoid such situations

F L G F
$$V_{inP}, V_{inN}$$
 () F H G F (7) ()

$$-26V < V_{inP}, V_{inN} < 10V (25)$$

Α

$$-7.5V < V_{inDiff} < 7.5V \tag{26}$$

Ν

F

DC

Figure 13. Common mode input voltage limitation.

2.8 Scope Spectral Characteristics

- Low Gain (up)

- High Gain (down)

A F D D BNC $A \quad D \qquad \qquad H$

3 Arbitrary Waveform Generator

3.1 AWG DAC

Figure 15. DAC.

ADG

B MH

Low on resistance typica

Figure 16. DAC - gain set.

3.2 AWG Reference and Offset

A F A G IC AD A J A DAC

Figure 17. DAC - Reference voltages.

$$V_{ref1V_AWG} = V_{ref1V2_AWG} \cdot \frac{R_{41}}{R_{39} + R_{41}} = 1V$$
 (27)

 $\mathsf{B} \qquad \qquad \mathsf{I} \qquad \qquad \mathsf{A} \;\; \mathsf{G}$

F DAC

$$I_{outAWGFS} = 32 \cdot \frac{V_{ref1V_AWG}}{R_{set}}$$
 (28)

 $\mathsf{F} \; \mathsf{H} \; \mathsf{G}$

$$I_{outAWGFS_HG} = 32 \cdot \frac{1V}{8k\Omega} = 4mA$$
 (29)

F L G

$$I_{outAWGFS_HG} = 32 \cdot \frac{1V}{32k\Omega} = 1mA \tag{30}$$

A AD Q DAC DC A G
F E E

• L DAC
• M
• P A G DC

Figure 18. DAC - Offset voltages.

F IC

$$V_{offAWGFS} = V_{SET_USRFS}$$

= $V_{ref1V2AWG} = 1.2V$ (31)

4.3 AWG IV

IC 15 in

Figure 19. AWG I/V and out.

I AD

• L

H d bandwidth G

V s slew rate

• G B MH

• Low noise nV H

• L A

• Low distortion d c H RL k

•

•

$$\begin{aligned} V_{Audio} &= I_{outAWGP} \cdot R_{148} - I_{outAWGN} \cdot R_{142} = \\ &= (1 - 2 \cdot \{A_U\}) \cdot I_{outAWGFS} \cdot R_{142} = \{A_B\} \cdot I_{outAWGFS} \cdot R_{142} \end{aligned} \tag{32}$$

$$\{A_U\} = \frac{D}{2^N} \in [0 \dots 1); -normalized \ unipolar \ DAC \ input \ number \\ \{A_B\} = (1-2 \cdot \{A_U\}) \in [-1 \dots 1); -normalized \ bipolar \ DAC \ input \ number \ (binary \ offset) \\ D \in [0 \dots 2^{14}) = [0 \dots 2^{14}-1]; -integer \ unipolar \ DAC \ input \ number$$
 (33)

$$-V_{AudioFS} \le V_{Audio} < -V_{AudioFS} \tag{34}$$

H G L G

$$V_{AudioFS_HG} = I_{outAWGFS_HG} \cdot R_{142} = 496 \text{mV}$$

$$V_{AudioFS_LG} = I_{outAWGFS_LG} \cdot R_{142} = 124 \text{mV}$$
(35)

3.4 AWG Out

IC16 in

F A G AD

• FE A

• Stable for gains for High C L

• H H d G

•

• Low noise nV H fA H

•

•

• L FD B MH

• L A

• L 0

M IC

$$\frac{1}{R_{140}} + \frac{1}{R_{141}} + \frac{1}{R_{144}} = \frac{1}{R_{147}} + \frac{1}{R_{149}} \tag{36}$$

$$V_{outAWG} = -V_{Audio} \cdot \frac{R_{141}}{R_{144}} + \left(2 \cdot V_{offAWG} - V_{ref1V2AWG}\right) \cdot \frac{R_{141}}{R_{140}}$$
(37)

(37)

$$-5.45V < -5V < V_{ACoutAWG_HG} < 5V < 5.45V$$

$$-1.36V < 1.25V < V_{ACoutAWG_LG} < 1.25V < 1.36V$$
(38)

L A

L G H G

(37) DC A G L G

H G

$$-5.5V < 5V < V_{DCoutAWG} < 5V < 5.5V$$
 (39)

AD $\pm 5.5V$ AC DC (37)

$$-5.5V < 5V < V_{outAWG} < 5V < 5.5V$$
 (40)

O bolded (38) (39) (40)

P C

3.5 Audio

 $\mathsf{A} \qquad \qquad \mathsf{A} \quad \mathsf{G} \qquad \mathsf{F} \qquad \mathsf{A} \mathsf{D}$

•

• H /

• L A

• Low supply current A Amp

•

Α

 $V_{outIC18} = -2 \cdot V_{Audio} + 1.5V \tag{41}$

$$V_{AudioJack} = -2 \cdot V_{Audio}$$

$$-992mV < V_{AudioJack} < 992mV (High Gain)$$

$$-248mV < V_{AudioJack} < 248mV (Low Gain)$$
(42)

Figure 20. Audio.

3.6 AWG Spectral Characteristics

Figure 21. AWG spectral characteristic.

4 Calibration Memory

CMM A D C AC CMM C G

• N

•

•

DC G O C C
C M A D F C F
C D

F C

F A D

5 Digital VO

F D IO J A D

G FPGAIO A D D IO FPGA LO

Α

P C D FPGA E D N P C

and parasitical capacitance of the Schottky diodes pF and FPGA pins pF limit the bandwidth of the

F P C

I L CMO I O

Figure 22. Digital I/O.

6 Power Supplies and Control

6.1 USB Power Control

A F A D B B

C D I A P **32 51**


```
HIGH IC ON
IC P GD
    4.\,\mathbf{11}V = \mathbf{400}mV \cdot \frac{R_{248} + R_{249} + R_{273}}{R_{249} + R_{273}} < V_{ext} < 400mV \cdot \frac{R_{248} + R_{249} + R_{273}}{R_{273}} = 5.\,76V
                                                                       (43)
                                              External
                                                                  Racing OFF USB
  Α
       D
                                        USB
OFF
     Racing
     Racing OFF
                                  FPGA
                           P GD HIGH
     USB OFF
                                  FPGA
               P GD LO
     USB
                                    IC
                                         ON IC OFF
                                               P GD HIGH
     Racing
                                               BP C IC
              BP C
                 IC
                        ON
       D
                                                                    FPGA
                                    F
                                               D
                                                    Racing
     External
                                                    DC
                                                              IC
                         (43) P GD HIGH F
                                                                    ВР
     C IC
                              B B B IC
      ON FPGA
                             EN B
                                                               Q OFF IC ON
ΑР
                                       P GD LO Racing OFF
         Α
                            USB OFF
P GD HIGH F
                                         FPGA
                                                               USB Racing
                                                   FPGA
                               Racing P GD HIGH F
BP C IC OFF
           DC
                                                            External
            EN B HIGH
                               F
            USB Racing External
Н
                                    External
                                                         0
                          B FPGA
                                         USB OFF
                 EN B
                            FPGA A
                                                              USB
A ADM
         H C
                                                                    В
            USB Racing
                            IC
                                 F
        ADM
```

C D I A

(44)

ADC

IME

Н

USB Racing IC

В

$$I_{limit} = \frac{100mV}{R_{173}} = \frac{100mV}{0.1\Omega} = 1A$$

F

$$t_{fault} = 21.7[ms/\mu F] \cdot C_{80} = 21.7[ms/\mu F] \cdot 0.47\mu F = 10.2ms$$
 (45)

I

 I_{limit} t_{fault} IC QAA

$$t_{cool} = 550[ms/\mu F] \cdot C_{80} = 550 \left[\frac{ms}{\mu F} \right] \cdot 0.47 \mu F = 258.5 ms$$
 (46)

$$\frac{dI_{limit}}{dt} = \frac{10\mu A}{C_{81}} \cdot \frac{1}{10 \cdot R_{173}} = 212 \frac{mA}{ms}$$
 (47)

 I_{limit}

 t_{fault}

IC **External** Racing

$$I_{limit} = \frac{100mV}{R_{247}} = \frac{100mV}{0.036\Omega} = 2.78A$$
(48)

 t_{fault} t_{cool} IC

$$\frac{dI_{limit}}{dt} = \frac{10\mu A}{C_{432}} \cdot \frac{1}{10 \cdot R_{247}} = 591 \frac{mA}{ms}$$
 (49)

0

Α D

E D

С

6.2 Analog Supply Control

ADP

- Low RDSon of m
- |
- •
- O
- LC P

Figure 1. Analog supply control.

6.3 User Supply Control

IC F ADM

- C
- G
- G P FE
- 1
- A
- F
- A
- P OA
- F
- A 0
- LFC P
- Q OP

IC F

FPGA

D **USB Racing** E ILIM LO FPGA I E IC

$$V_{Iset} = \frac{\frac{V_{cap}}{R_{253}}}{\frac{1}{R_{253}} + \frac{1}{R_{254}} + \frac{1}{R_{255}}} = \frac{\frac{3.6V}{10k\Omega}}{\frac{1}{10k\Omega} + \frac{1}{1.74k\Omega} + \frac{1}{22.6k\Omega}} = 0.5V$$
 (50)

$$I_{limit} = \frac{V_{Iset}}{40 \cdot R_{21}} = \frac{0.5V}{40 \cdot 0.043\Omega} = 290mA \tag{51}$$

Figure 25. User supplies control.

D External OFF E ILIM H FPGA I E IC

$$V_{Iset} = \frac{V_{cap} \cdot R_{255}}{R_{253} + R_{255}} = \frac{3.6V \cdot 22.6k\Omega}{10k\Omega + 22.6k\Omega} = 2.5V$$
 (52)

$$I_{limit} = \frac{V_{Iset}}{40 \cdot R_{21}} = \frac{2.5V}{40 \cdot 0.043\Omega} = 1.45A$$
 (53)

 I_{limit}

$$t_{fault} = 21.7[ms/\mu F] \cdot C_{170} = 21.7[ms/\mu F] \cdot 4.7\mu F = 102ms$$
 (54)

I I_{limit} t_{fault} IC Q A

$$t_{cool} = 550[ms/\mu F] \cdot C_{80} = 550[ms/\mu F] \cdot 4.7\mu F = 2.585s$$
 (55)

C N L

 I_{limit} t_{fault}

(51) (53) A

USB Only | External

User Voltage Supplies 6.4

ADP С B B DC DC

H MH P M

IC A B Ε Ε IC B

> $V_{+IC46A} = \frac{\frac{V_{OUT+_USR}}{R_{188}} + \frac{V_{SET+_USR}}{R_{193}}}{\frac{1}{R_{188}} + \frac{1}{R_{193}}} = V_{-IC46A} = \frac{\frac{V_{FB}}{R_{266}}}{\frac{1}{R_{265}} + \frac{1}{R_{266}}}$ $V_{+IC46B} = \frac{\frac{V_{OUT-_USR}}{R_{187}} + \frac{V_{FB}}{R_{270}}}{\frac{1}{R_{190}} + \frac{1}{R_{270}}} = V_{-IC46B} = \frac{\frac{V_{SET-_USR}}{R_{190}}}{\frac{1}{R_{72}} + \frac{1}{R_{190}}}$ (56)

$$V_{+IC46B} = \frac{\frac{V_{OUT-USR}}{R_{187}} + \frac{V_{FB}}{R_{270}}}{\frac{1}{R_{187}} + \frac{1}{R_{270}}} = V_{-IC46B} = \frac{\frac{V_{SET-USR}}{R_{190}}}{\frac{1}{R_{72}} + \frac{1}{R_{190}}}$$
(57)

$$\frac{1}{R_{188}} + \frac{1}{R_{193}} = \frac{1}{R_{265}} + \frac{1}{R_{266}} \tag{58}$$

$$\frac{1}{R_{187}} + \frac{1}{R_{270}} = \frac{1}{R_{72}} + \frac{1}{R_{190}} \tag{59}$$

$$V_{OUT+_USR} = V_{FB} \cdot \frac{R_{188}}{R_{266}} - V_{SET+_{USR}} \cdot \frac{R_{188}}{R_{193}} = 5.33V - 4.87 \cdot V_{SET+_USR}$$
 (60)

$$V_{OUT+_USR} = V_{FB} \cdot \frac{R_{188}}{R_{266}} - V_{SET+_{USR}} \cdot \frac{R_{188}}{R_{193}} = 5.33V - 4.87 \cdot V_{SET+_USR}$$

$$V_{OUT-_USR} = -V_{FB} \cdot \frac{R_{187}}{R_{270}} + V_{SET-_USR} \cdot \frac{R_{187}}{R_{190}} = -5.33V + 4.87 \cdot V_{SET-_USR}$$
(61)

$$V_{FB} = 1.235V \ typical \tag{62}$$

IC

$$0 < V_{SET+\ USR}, V_{SET-\ USR} < 1.2V \tag{63}$$

$$-0.51V \le V_{OUT+USR} < 5.33V \tag{64}$$

$$0.51V \ge V_{OUT+_{USR}} > -5.33V \tag{65}$$

mponents tolerances After calibration the WaveForms SW only allows

E FPGA

Ε

Figure 26. User power supplies.

6.5 Internal Power Supplies

6.5.1 Analog Supplies

A F

F F A MH D DC DC LC P M

Figure 27. 3.3V internal analog power supply.

Figure 28. 1.8V internal analog power supply.

- I
 P
 MH
 LC P
 F
 I
 C

B B N AN D I B B ADP

ADP ADP

- A
- •
- MH
- H
- C
- O IN
- A PFM P M
- I MO FE
- |
- LO O OCP D
- A O

O FB

$$\frac{R_{180}}{R_{181}} = \frac{-V_{out} - V_{ref}}{V_{ref}} \tag{66}$$

C $R_{181} = 10.2k\Omega$

$$R_{180} = \frac{3.3V - 0.8V}{0.8V} \cdot 10.2k\Omega = 31.87k\Omega$$
 (67)

 $R_{180} = 31.6k\Omega$

Figure 29. 3.3V internal analog power supply.

F C <u>ADP</u>
DC DC B C
O

F C C

 $\frac{R_{184}}{R_{185}} = \frac{V_{out} - V_{ref}}{V_{ref}} \tag{68}$

 $C R_{185} = 13.7k\Omega$

0

$$R_{184} = \frac{5.5V - 1.235V}{1.235V} \cdot 13.7k\Omega = 47.31k\Omega$$
 (69)

 $R_{184} = 47.5k\Omega$

Figure 31. ±5.5V internal analog supplies.

Figure 32. 1V internal digital supply.

6.5.2 Digital Supplies

F **ADP FPGA** Α m integrated OSFETs m and IN MH PFM P M С LO O P OCP LFC P

D

Figure 31. 1V internal digital supply.

F AMH B B DC DC C

- •
- A typical quiescent current
- H operation enables H inductor
- •
- F
- F
- I
- •
- E
- 0
- _
- •
- •
- •
- C PCB

Figure 32. 3.3V internal digital supply.

I

F <u>ADP</u> F O A MH
D DC DC MH

ADP

- |
- P
- Typical quiescent current A
- •
- |
- (
- Ultralow shutdown current A typical
- F P M P M P M P M

Figure 33. 1.8V internal digital supply.

6.6 Temperature Measurement

- •
- Temperature range to
- C C
- MB I C
- Temperature conversion time s typical
- •
- P A

Figure 2. Temperature measurement.

7 USB Controller

В

• Programming the FPGA FPGA A D

D BJAG A

• Data exchange A

D B MB B

8 FPGA

A D ______FPGA C L L

• C MH MH B MH

A D L A

• A AM FM A G

• D

•

• P

PC

• C PC

B D AM FPGA M
F AM

A F E

E

• MH

• E

• E AM FM

• F

• C A L A P G

9.3 Logic Analyzer

• 10

• M P K

L CMO

• M

•

• C A L A P G

• I PIIC A P

• C

9.4 Digital Pattern Generator

• 10

• M P

• A

• C K

•

• D

• C

9.5 Digital VO

• 10

• L CMO

• PC I O

• C

9.6 Power Supplies

• B

• A A A

9.7 Network Analyzerxliv

• MH

• I H MH

•

• A

ullet B N N

9.8 Voltmetersxlviii

• A

• A DC AC M M

•

• Δ

9.9 Spectrum Analyzer^{li}

• P FF C

• [

•

. D

• •

• M B B

C

• C FD N HD

• D

9.10 Other Features

• B

Н В

• G

•

• C

• H

• N MA LAB MA LAB

•

		L A P D IO	G	D	10	P G	
		СМО			г	r G	
		L A P	G	D	10		
		D IO			F	P G	
		СМО					
		L A P	G	D	10		
		D I O CMO			ŀ	P G	
		CMO					
	N	5					
Н		ne analog signal input pa	th for rough scal	ing Digit	tal Zooming	is used fo	or multiple sc
		A D					
			Α	D	BNC		В
	MH F						
A	F				ADC	Н	
P D			F D N	./	F I	M	
Б	D M	FPGA	1 D IV	"	' '	141	
	D IO		A G			??	? ? A .? ?? ?? ? P ? A .??? F !? ?


```
F
                                                     PC
                                   F
                                                      РС
          10
                                                                                       10
  Α
    F
                                                                        G
                                                                                       10
                                         G
                                                         10
                                                                              10
                  10
                                    Н
  D
                                                     F
                                                           D
                                                                                  Μ
        L
            Α
                                   FPGA
       D
             Μ
                     A G
        D
                         D
                                                             FPGA
                                         D
                                   Α
              Α
                   D
        D
                          D
                                                              FPGA
                                       Α
                                             D
                           D
         D
                                                              FPGA
                          D
                                   Ν
                                             D
                           D
                                                                                  FPGA A
                                   F
                                                     PC
                                                  РС
                       FPGA
                                   F
                                                     PC
          10
                                                                                        10
   Α
                                                                        Α
                                                                        G
                                                                                       Ι0
                                  Р
                                        G
                                                         10
                                                                              10
                  10
                                    Н
                           FPGA
   D
                G
                                                          F
                                                               D
                                                                     Μ
                                                                                      Μ
       D
                                   FPGA
             Μ
                    A G
                             Ρ
                                   G
                                                      PC
                                   F
                                  F
                                                    PC
 Α
         10
                                                                                      10
                                                                                              F
                                                                   L
                                                                       Α
                                                              G
                                                                              Ι Ο
                        G
                                        10
                                                             10
                                                                                               10
               Н
                                  F
                                                    PC
                                   F
                                                     PC
                                   F
                                                         A G
     Ν
            Α
                                            Α
                                                                         Α
                                                                              1
                                                                                     A G
N
                                                       Н
                                          В
                       Α
Α
                 В
                                  F
                                                    PC
                                   F
                                                     PC
                                   F
                                                     PC
                                                        Н
                                                                                             F
                             F
                                      Α
                                            ١
                Ν
                       Α
                                      Α
В
                                                            В
                                                     PC
                                 F
                                                   PC
                                  F
                                                             Н
            Α
                                           Α
   F
B
                         Ν
                                                                        В
                                                      Α
                                  F
                                                    PC
                                  F
                                                    PC
                                  F
                                                    PC
                                  F
                                                    РС
```


				F		PC	
				F		PC	
				F		PC	
				F		PC	
D			D	N			FPGA
				Α	D		
	Α	D					
D			D	N			FPGA
				Α	D		
	Α	D					
				F		PC	
				F		PC	