Robert (Robbie) Knowles MATH 135 Fall 2020: WA07

Q01a To start we apply the EEA to create the following table:

X	У	r	q
0	1	8050	0
1	0	1771	0
-4	1	966	4
5	-1	805	1
-9	2	161	1
50	-11	0	5

We can determine from the EEA table above that the $d = \gcd(1771, 8050) = r_5 = 161$. We know from LDET 1 that since 23 is not divisible by 161 (or d) does not divide 23, there will exists no integers x, y such that:

$$1771x + 8050y = 23$$

Q01b Before we begin we will replace y and -a, such that the following is equivalent:

$$1197x - 5145y + 42 \equiv 1197x - 5145(-a) + 42$$
$$\equiv 1197x + 5145a + 42$$

Now we will apply the EEA to create the following table (using the x, a equation):

X	a	r	q
0	1	5145	0
1	0	1197	0
-4	1	357	4
13	-3	126	3
-30	7	105	2
43	-10	21	1
-245	57	0	5

We can determine from the EEA table above that the $d = \gcd(1771, 8050) = r_6 = 21$. We know from LDET 1 that since 21|-42, integers solutions of x, a exist. The certificate of correctness we obtain from the EEA table is $s = x_6 = 43$ and $t = a_6 = -10$, such that:

$$x(s) + a(t) = 21$$

$$1197(43) + 5145(-10) = 21$$

Since a = -y, we can convert this formula back into x,y form (s = x_6 = 43, t = y_6 = - a_6 = 10):

$$x(s) - y(t) = 21$$

1197(43) - 5145(10) = 21

Multiplying this by -2 we get:

$$1197(-86) - 5145(-20) = -42$$

We also know from the LDET 2 that we can use the specific solution of $x_0 = -86$ and $y_0 = -20$ to get the set of all solutions:

$$\{(x,y): x = x_0 + \frac{t}{d}, y = y_0 - \frac{s}{d}\}$$
$$\{(x,y): x = -86 + 245n, y = -20 + 57n, n \in \mathbb{Z}\}$$