Contrôle d'analyse I N°2

Durée: 1 heure 45 minutes. Barème sur 15 points.

NOM:	
	Groupe
PRENOM.	

- 1. Le chemin décrit ci-dessous est constitué
 - de l'arc de cercle A_0B_0 de centre O et de rayon $OA_0 = R$ et du segment vertical B_0A_1 ,
 - de l'arc de cercle A_1B_1 de centre O et de rayon OA_1 et du segment vertical B_1A_2 ,

Déterminer, en fonction de α et de R, la longueur du chemin ainsi défini.

3 pts

2. On considère la fonction f définie par

$$f(x) = \begin{cases} \frac{1 - \sqrt{2x - 1}}{x - 1} & \text{si } x \neq 1 \\ -1 & \text{si } x = 1. \end{cases}$$

- a) Calculer, à l'aide de la définition, le nombre dérivé de f en $x_0=1$.
- b) La fonction dérivée de la fonction f est-elle continue en $x_0=1$? Justifier rigoureusement votre réponse.

5 pts

3. Soient f une fonction dérivable en $x_0=2$, Γ_1 la courbe d'équation y=f(x) et t_1 la tangente à Γ_1 en $x_0=2$.

$$t_1: \ 3x - 2y - 4 = 0.$$

Soient g la fonction définie par $g(x) = \operatorname{Arctg}(x)$, Γ_2 la courbe d'équation $y = g \circ f(x)$ et t_2 la tangente à Γ_2 en $x_0 = 2$.

- a) Déterminer les coordonnées du point de contact entre t_1 et Γ_1 .
- b) Déterminer l'équation cartésienne de t_2 .

3,5 pts

4. Dans le plan Oxy, on considère la courbe Γ définie par la relation implicite

$$\lambda\left(2-y\right)+\sin\left[\,x\,(y-2)^2\,\right]+x\,y^2+4=0\,,\quad \text{ où } \lambda \ \text{ est un paramètre réel}.$$

Déterminer λ de sorte que la courbe Γ admette au point $T(x_T,2) \in \Gamma$ une tangente passant par l'origine.

3,5 pts