

## \* RF Exposure

## 1. Regulation

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

Limits for Maximum Permissive Exposure: RF exposure is calculated.

| Frequency Range                                       | Electric Field<br>Strength [V/m] | Magnetic Field<br>Strength [A/m] | Power Density [mW/cm²] | Averaging Time [minute] |
|-------------------------------------------------------|----------------------------------|----------------------------------|------------------------|-------------------------|
| Limits for General Population / Uncontrolled Exposure |                                  |                                  |                        |                         |
| 0.3 ~ 1.34                                            | 614                              | 1.63                             | *(100)                 | 30                      |
| 1.34 ~ 30                                             | 824 /f                           | 2.19/f                           | $*(180/f^2)$           | 30                      |
| 30 ~ 300                                              | 27.5                             | 0.073                            | 0.2                    | 30                      |
| 300 ~ 1500                                            | /                                | /                                | f/1500                 | 30                      |
| 1500 ~ 15000                                          | /                                | /                                | 1.0                    | 30                      |

f=frequency in  $\mathbb{M}_{\mathbb{Z}}$ , \*= plane-wave equivalent power density

## MPE (Maximum Permissive Exposure) Prediction

Predication of MPE limit at a given distance: Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2 \quad (\Rightarrow R = \sqrt{PG/4\pi S})$$

S=power density [mW/cm²]

P=Power input to antenna [mW]

G=Power gain of the antenna in the direction of interest relative to an isotropic radiator

R= distance to the center of radiation of the antenna [cm]

| EUT: Maximum peak output power = 2.04 [mW](= 3.10 dBm) Antenna gain= 2.24(= 3.5 [dBi]) |                                                                                                        |  |  |  |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|
| 100 mW, at 20 cm from an antenna 6 [dBi]                                               | $S = PG/4\pi R^2 = 100 \times 3.98 / (4 \times \pi \times 400)$ $= 0.079 18 [mW/cm^2] < 1.0 [mW/cm^2]$ |  |  |  |
| 2.04 mW, at 20 cm from an antenna 3.5 [dBi]                                            | $S = PG/4\pi R^2 = 0.000 \ 91 \ [mW/cm^2] < 1.0 \ [mW/cm^2]$                                           |  |  |  |
| 2.04 mW, at 2.5 cm from an antenna 3.5 [dBi]                                           | $S = PG/4\pi R^2 = 0.058 \ 20 \ [mW/cm^2] < 1.0 \ [mW/cm^2]$                                           |  |  |  |

## 2. RF Exposure Compliance Issue

The information should be included in the user's manual:

This appliance and its antenna must not be co-located or operation in conjunction with any other antenna or transmitter. A minimum separation distance of 20 cm must be maintained between the antenna and the person for this appliance to satisfy the RF exposure requirements.