

Introduction of parity-based computational models in total search problems

Faculty of Information Engineering, Computer Science and Statistics Bachelor's Degree in Computer Science

Simone Bianco

ID number 1986936

Advisor Co-Advisor

Prof. Nicola Galesi Prof. Massimo Lauria

Academic Year 2023/2024

Introduction of parity-based computational models in total search problems			
Bachelor's Thesis. Sapienza University of Rome © 2024 Simone Bianco. All rights reserved			
This thesis has been typeset by LATEX and the Sapthesis class. Author's email: bianco.simone@outlook.it			

TODO.

Contents

In	trod	uction	1
1	Pre	liminaries	2
	1.1	Computational models and Turing machines	2
	1.2	Complexity measures	4
2	Sea	rch problems	7
	2.1	Decision vs. Search	7
	2.2	The complexity classes FP, FNP and TFNP	9
	2.3	The TFNP hierarchy	12
	2.4	White-box TFNP	16
3	Bla	ck-box TFNP	20
	3.1	Oracles and decision trees	20
	3.2	Connections to Proof Complexity	23
	3.3	Reductions through CNF formulas	29
4	Par	ity in black-box TFNP	32
	4.1	Parity decision trees	32
	4.2	Linear resolution over \mathbb{F}_2	36
	4.3	Nullstellensatz	40
	4.4	Simulation of TreeRes $_{\oplus}$ in NS- \mathbb{F}_2	43
5	Not	ces	47
	5.1	Treelike Res and Nullstellensatz	47
	5.2	Treelike $Res(\oplus)$ and Nullstellensatz	48
A	rkno	wledgements	49

•	~ , ,
71	Contents
	JOHNOLIUS

Bibliography 50

Introduction

Chapter 1

Preliminaries

1.1 Computational models and Turing machines

Throughout history humans have been solving problems through a wide variety of models capable of computing a valid result, ranging from their own intellect to mechanical devices capable of solving problems. In particular, each computational model can be described as a list of sequential operations. Given the same initial conditions, these lists are expected to yield the same exact result each time the computation is executed.

In modern mathematics, this is described through the concept of **algorithm**, that being a finite list of unambiguous instructions that, given some set of initial conditions, can be performed to compute the answer to a given problem. Even though this is a straight forward definition for an algorithm, it isn't as "mathematically stable" as it seems: each computational model could have access to a different set of possible operations, meaning that the same problem could be solved by different kinds of algorithms. In 1950, Alan Turing was able to define a theoretical computational model capable of capturing the concept of computation itself through a simple - but sufficient - theoretical machine, i.e. the now called **Turing machine**. [AB09; Sip96]

A Turing machine is made of:

- A tape divided into cells, where each cell contains a symbol from a finite set called *alphabet*, usually assumed to contain only 0 and 1, or a special symbol \sqcup , namely the *blank character*. The tape is finite on the left side but infinite on the right side.
- A read-write head capable of reading and writing symbols on the tape. The head is always positioned on a single cell of the tape and is able to shift left and right one and only one cell per shift.
- A finite set of *states* that can be assumed by the machine. At all times the machine only knows its current state. The set contains at least one state that is capable of immediately halting the machine when reached (such states could be unreachable, making the machine go in an infinite loop).

• A finite set of *instructions* which, given the current state and the current cell read by the read-write head, dictate how the machine behaves. Each instruction tells the machine to do three things: replace the symbol of the current cell (which can be replaced with itself), move the head one cell to the left or one cell to the right and move from the current state to a new one (which can be the current state itself).

Initially, the machine's tape contains only an *input string*, while all the other infinite cells contain the blank character. At the end of the computation, the tape contains only the *output string*, which is the result of the computation.

Figure 1.1. A Turing Machine

The Church-Turing thesis states that it suffices to restrict attention to this single model since it can compute all computable mathematical functions with only a little loss of efficiency. This result is able to characterize the concept of algorithm through Turing machines themselves. [AB09]

Definition 1.1. A Turing machine is a 7-uple $M = (Q, F, \Gamma, \Sigma, q_0, \delta)$ where:

- Q is a finite set of states, $F \subseteq Q$ is a finite set of halting states and $q_0 \in Q$ is the initial state taken by the machine.
- Γ is a finite set of symbols, usually called the tape alphabet. The tape alphabet always contains the symbol \sqcup .
- Σ is a finite set of symbols, usually called the input alphabet, where $\Sigma \subseteq \Gamma \{\sqcup\}$. The input string can be formed only of these characters.
- $\delta: (Q-F) \times \Gamma \to Q \times \Gamma \times \{\mathsf{L},\mathsf{R}\}$ is a partial function, usually called the transition function, where L and R represents a left or right shift of the readwrite head. Intuitively, if $\delta(q,a) = (p,b,L)$ then when the machine is in state q and reads the symbol a on the current cell of the tape then it transitions to the state p, replaces the symbol a with b and moves the head to the left.

Turing proved the existence of an universal Turing machine, a TM that is capable of simulating any other Turing machine. This result shouldn't be a surprise: modern computers are nothing more than universal TMs that can execute any given algorithm. A generic computational model is said to be *Turing complete* when it is able to simulate an universal Turing machine. In other words, a Turing complete computational model is capable of performing every possible computation.

4 1. Preliminaries

1.2 Complexity measures

After being able to give a mathematically stable definition computation through Turing machines, researchers shifted their focus on understanding what problems are computable. In particular, they showed that some problems are **uncomputable** by proving that there cannot exist a Turing machine capable of carrying out their computation without going in infinite loops and never halting, such as Turing's famous *Halting problem*, i.e. determining if a machine will halt or not for a given input.

A "good" algorithm (or TM) should be able to solve the associated problem in an efficient way. But what does it mean for a TM to be *efficient*? To formally define this idea, computer scientists defined **complexity measures** to quantify the amount of computational resources needed by a Turing machine. An efficient TM should be able to solve a task with low computational resources. Above all, we are interested in studying the amount of steps needed and the amount of cells needed to achieve such computations. These two concepts are referred to as the *time complexity* and the *space complexity* of a Turing machine.

Definition 1.2. Given a Turing machine M, we define the time complexity and space complexity of M as the two functions $t, s : \mathbb{N} \to \mathbb{R}^+$ such that t(n) and s(n) are respectively the maximum number of steps and initially blank cells used by M to compute an input string of length n.

Time and space complexity are intrinsically related one to the other: time limits the amount of space and vice versa. Usually, these two measures are proportionally inverse: if we allow our algorithm to use more space then the computation can be sped up, while if we want a low amount of used space then the computation will require more steps. These reasons are enough to make both time and space an interesting measure to evaluate the efficiency of an algorithm.

Usually, larger inputs require a larger amount of computational resources, making the values t(n) and s(n) proportional to the size n of the input. For this reason, as the input size grows, we are interested in the asymptotic behavior of these measures. This concept is captured by the so called big-Oh notation.

Definition 1.3. Given two functions $f, g : \mathbb{N} \to \mathbb{R}^+$, we say that:

- 1. f is in big-Oh of g, written as f(n) = O(g(n)), if there are two values $c, N \in \mathbb{N}_{>0}$ such that $\forall n \geq N$ it holds that $f(n) \leq cg(n)$.
- 2. f is in Omega of g, written as $f(n) = \Omega(g(n))$, if there are two values $c, N \in \mathbb{N}_{>0}$ such that $\forall n \geq N$ it holds that $f(n) \geq cg(n)$.
- 3. f is in Theta of g, written as $f(n) = \Theta(g(n))$, if there are three values $c, d, N \in \mathbb{N}_{>0}$ such that $\forall n \geq N$ it holds that $cg(n) \leq f(n) \leq dg(n)$.

In other words, as the input size n grows the function f can dominate, be dominated or both by a function g, defining the *lower* and *upper* bounds of the value f(n). In particular, when $f(n) = \Theta(g(n))$ the two functions can be considered to be *almost* the same due to them following the same growth pattern. Additionally, its easy to see that $f(n) = \Omega(g(n))$ if and only if g(n) = O(f(n)) and likewise that $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Efficiency dictates wether a problem is actually feasible or not in the real world: if a problem is computable by a TM but it requires a immense amount of time or space to get to the result, then the computation is practically unachievable. These problems are often referred to as **intractable problems** [AB09; Sip96].

Complexity is generally measured in terms of asymptotic behavior. An algorithm is considered time efficient if it is able to compute the answer in at most a polynomial amount of time, i.e. in $O(n^k)$ time for some $k \in \mathbb{N}$. Likewise, it is considered space efficient if is able to compute the answer in at most a logarithmic amount of space, i.e. in $O(\log^k n)$ space for some $k \in \mathbb{N}$.

For example, consider the following informally defined Turing machine M which takes the binary encoding $\langle m \rangle$ of a natural number $m \in \mathbb{N}$ as the input string and returns $\langle m^2 \rangle$ as the output string. The computation made by M is achieved through repeatedly adding the value m.

 $M = \text{"Given the input string } \langle m \rangle$:

- 1. Copy the string $\langle m \rangle$ on a blank set of contiguous cells. This copied string will be referred to as the value k.
- 2. Copy the string $\langle m \rangle$ on a blank set of contiguous cells. This copied string will be referred to as the value y.
- 3. Repeat while the value k is bigger than 1:
 - 3. Copy the string $\langle y \rangle$ on a blank set of contiguous cells. This copied string will be referred to as the value x.
 - 4. Compute x + n and store the result on the space occupied by the string $\langle y \rangle$. In other words, compute $y \leftarrow x + n$.
 - 5. Compute k-1 and store the result on the space occupied by the string $\langle k \rangle$. In other words, compute $k \leftarrow k-1$.
- 6. Write \sqcup on all the cells on the tape, except for the cells of the string $\langle o \rangle$.
- 7. Halt the machine and return the output string $\langle o \rangle$."

We know that any natural number $m \in \mathbb{N}$ can be encoded in binary with $\log_2 m$ bits. This means that the length n of the input string $\langle m \rangle$ is $\log_2 m$.

Consider now the values k and o obtained in the computation. These values are natural numbers and they can clearly be expressed as a real multiple of the value m. This means that k, x, y = O(m) and thus they can be encoded with $O(\log m)$

6 1. Preliminaries

bits (asymptotic notation allows us to drop the subscript of the logarithm), thus our requiring $3 \cdot O(\log m)$ cells, which is asymptotically equivalent to $O(\log m)$ cells. We conclude that the space complexity of such TM is $O(\log m) = O(n)$.

To copy a string of length ℓ , the Turing machine needs copy ℓ cells but also requires to make additional shifts in order to repeatedly move from the original string to the copied one, making the total amount of steps required $O(\ell)$. In a similar fashion, binary addition (or subtraction) between two numbers a and b can be computed in $O(\log a + \log b)$ steps. Since we initially set k = m and the machine decrements the value of k by 1 on each iteration of the loop, the computations inside the loop get executed m-1 times. This means that the total number of steps of the loop is $O((m-1)\log m)$. By adding the initial two copy procedures, the total number of steps done by the machine is $O(2\log m + (m-1)\log m)$, which is asymptotically equivalent to $O(m\log m)$ cells. Thus, we conclude that the time complexity of such TM is $O(m\log m) = O(2^n n)$.

This implies that the example algorithm defined above is inefficient in both time and space, making repeated addition one of the worst ways to solve this task. But does this mean that the problem is intractable? Modern computers are able to square a number in milliseconds, so the answer to this question should clearly be no. In fact, even by implementing the column method for multiplying numbers usually taught to kids we could solve the problem in a very low amount of steps but a not-so efficient amount of space.

Efficiency is the lingering question that torments modern computer scientists. We know that some problems are computationally unattainable, but where is the line that separates tractable and intractable problems? What property defines problems that cannot be solved efficiently? Finding an answer to these questions may seem easy, but even after more than 70 years of research the question still persists in the mind of complexity theorists.

Chapter 2

Search problems

2.1 Decision vs. Search

For many years, the study of **decision problems** has been the main focus of computability theory. These problems can be described as a simple question with a $\langle yes \rangle$ or $\langle no \rangle$ answer, such as asking if some input object has got some property or not. Each decision problem can be described as a subset of given language Σ^* , where a string $\langle o \rangle$ that encodes an object o is in the subset if and only if the answer to the problem for that object is positive. Usually, a positive $\langle yes \rangle$ answer is represented by a 1, while a negative $\langle no \rangle$ answer is represented by a 0. For example, given the language \mathbb{N} , the question $\langle is\ n\ a\ prime\ number?\rangle$ is modeled by the decision problem PRIMES = $\{n \in \mathbb{N} \mid n \text{ is prime}\}$.

Definition 2.1. A decision problem for a property P is a subset L of a language Σ^* such that $L = \{x \in \Sigma^* \mid P(x) = 1\}.$

Any decidable problem can be decided by a Turing machine, meaning that for any input x of the language Σ^* the TM is capable of returning the answer 0 or 1. Decidability theory plays a core rule in math and computer science since most of problems can be modeled by it. However, by their own nature, decision problems are limited. Some problems require a more complex result then a simple yes-or-no answer. Instead of asking the question «does this object have the required property?», we may be more interested in the question «what gives this object the following property?». This type of questions are modeled by functional problems, i.e. any problem where an output that is more complex than a yes-or-no answer is expected for a given input. Functional problems are an "harder" type of problems, describing any possible type of computation achievable through the concept of computable function, even decidability itself (any decision problem is just a functional problem with only two possible outputs).

Formally, functional problems are described through the concept of relation: given a set of inputs X and a set of possible outputs Y, a functional problem is as a relation $R \subseteq X \times Y$ such that the pair (x,y) is in R if and only if y is the output to the input x for the given question.

For example, the question «what is the prime factorization of n?» is modeled by the functional problem FACTORING = $\{(n, (p_1, \dots, p_k)) \in \mathbb{N} \times \mathbb{N}^k \mid n = p_1 \cdot \dots \cdot p_k\}$.

We observe that questions like «is y a valid output for the input x?» are still modeled by decision problems due to them requiring a simple yes-or-no answer, while a function problem would ask the question «what is the output for the input x?». For example, the question «is p_1, \ldots, p_k the prime factorization of n?» corresponds to the decision problem FACTORIZATION_n = $\{(p_1, \ldots, p_k) \in \mathbb{N}^k \mid n = p_1 \cdot \ldots \cdot p_k\}$.

Even thought decision problems can indeed be modeled as functional problems whose outputs are only (yes) and (no), they aren't effectively a subset of functional problems due to them being defined in a different way. For example, the decision problem PRIMES can be converted into the functional problem $\{(n,b) \in \mathbb{N} \times \{0,1\} \mid b=1 \text{ if } n \text{ is prime, } b=0 \text{ otherwise}\}$, but they aren't effectively the same problem even thought they answer the same question.

Another important thing to notice is that even though the name implies a correlation to mathematical functions due to the concept of input-output being involved, the given definition also includes partial and multivalued functions, that being functions for which not all inputs have a corresponding output and functions for which one input can have more outputs. For these reasons, the term functional problem is considered to be slightly abused. In recent years, this issue was solved by the introduction of the more general term **search problems**, describing the idea of finding a valid output for the given input, better suiting the previous formal definition.

To give a more detailed definition of search problems, we assume that these problems all share the language $\{0,1\}^k$ for some $k \in \mathbb{N}$, describing all inputs as a sequence of bits. Since each problem could have inputs of different lengths, researches have defined search problems through the use of a sequence of relations rather than a single relation [BCE+98; RGR22; BFI23]. This also allows separation between different types of outputs based on the length of the inputs.

Definition 2.2. A search problem is a sequence $R = (R_n)_{n \in \mathbb{N}}$ of relations $R_n \subseteq \{0,1\}^n \times O_n$, one for each $n \in \mathbb{N}$, where each O_n is a finite set called outcome set.

Since it includes partial functions, this definition allows search problems to be "undefined" for some inputs, meaning that there is no answer for some inputs. A search problem is said to be **total** if for each R_n in the sequence it holds that $\forall x \in \{0,1\}^n$ there is an answer $y \in O_n$ such that $(x,y) \in R_n$. In other words, a total search problem has at least an output for all possible inputs, removing partial function from the context, while multivalued functions are still allowed. For example, FACTORING is a total non-multivalued search problem due to each natural number having a guaranteed unique prime factorization by the Fundamental Theorem of Arithmetic.

2.2 The complexity classes FP, FNP and TFNP

In complexity theory, decision problems are grouped in numerous categories, each defining its own subclass of problems. One of the most important subclasses is made of problems that can be **efficiently solved**. This class is referred to as P, i.e. the class of problems solvable by a Turing machine in polynomial time (see Chapter 1). Not all decision problems have been shown to be efficiently solvable, in fact some of them have been proven to be outside of P (again, see chapter Chapter 1). However, several problems for which there is currently no answer regardless wether or not they are efficiently solvable have been shown to be **efficiently verifiable**, meaning that there is a Turing machine called verifier that given an additional input c, namely the certificate, is capable of telling in polynomial time if the value g is the output of an input g.

Definition 2.3. A verifier for a decision problem L is a Turing machine V such that for each input $x \in \Sigma^*$ there is a certificate $c \in \Sigma^*$ for which V(x, c) = 1 if and only if $x \in L$.

The class of problems that are verifiable by a polynomial time verifier with certificates of polynomial length is referred to as NP. This class has been shown to be equivalent to the class of problems efficiently solvable by a non-deterministic Turing machine, a TM that on each step of the computation can choose between a set of possible actions, branching the computation. Originally, the class NP was defined through this type of TM - hence the name of the class being an abbreviation for non-deterministic polynomial time - but it quickly got replace with the verifier definition due to NTMs being only a theoretical computational model that is physically unrealizable [AB09]. For our purposes, we will consider the modern definition of NP.

By definition of these two classes, its easy to see that $P \subseteq NP$ since every problem that is efficiently solvable can also be efficiently verified. However, it is currently not known wether P = NP or not. The answer to this question is considered to be one of the most important questions in mathematics. In fact, if P = NP were to be true, a lot of key problems in mathematics that are currently only efficiently verifiable could be solved in a reasonable amount of time by a modern computer. On the other hand, a large number of current technologies are based on the assumption that $P \neq NP$. For example, cryptography assumes that for some cryptographic schemes it's easy to check that an encrypted string is the result of scheme being applied on an original message, which works as a certificate, and very hard to actually find the original message only through the encrypted string. If P = NP were proven false, we would have to reconsider a large portion of the modern world, even digital currencies themselves.

In the context of search problems, we define the class FP - $functional\ \mathsf{P}$ - as the class of search problems efficiently solvable by an algorithm and FNP - $functional\ \mathsf{NP}$ - as the class of search problems whose solutions are efficiently verifiable by a verifier.

Definition 2.4. We define FP as the set of search problems $R = (R_n)_{n \in \mathbb{N}}$ whereby $\forall n \in \mathbb{N}$ there is a polynomial time TM T_n such that $T_n(x) = y$ if and only if $(x,y) \in R_n$. We define FNP as the set of search problems $R = (R_n)_{n \in \mathbb{N}}$ whereby $\forall n \in \mathbb{N}$ there is a polynomial time verifier V_n such that $\exists w \in \{0,1\}^{\text{poly(n)}}$ for which $V_n(x,y,w) = 1$ if and only if $(x,y) \in R_n$.

An important remark to be made is that, even thought any decision problem can be transformed in search problem with only two possible output, since they are defined on two different types of problems it doesn't really make sense to say that $P \subseteq FP$ or that $NP \subseteq FNP$. However, an important result shows that it can hold that P = NP if and only if FP = FNP [BG94; DK14]. This implies that, even though search problems are by definition more complex than decision problems, answering one of the two questions would answer both of them.

Theorem 2.1. P = NP if and only if FP = FNP

Proof. Since each decision problem can be translated into a search problem with only two possible outcomes, we trivially get that if FP = FNP then P = NP.

Suppose now that P = NP. We already know that $FP \subseteq FNP$, so we have to show that $FP \subseteq FNP$. Let $R = (R_n)_{n \in \mathbb{N}} \in FNP$ be a search problem verifiable in polynomial time.

For each $n \in \mathbb{N}$, let L_n be the set of pairs (x,z) such that z is the prefix of an outcome zw for the problem R_n with input x, formally $L_n = \{(x,y) \mid \exists z \in \{0,1\}^k, k \leq n \text{ s.t. } (x,zw) \in R_n\}$. It's easy to see that $L_n \in \mathsf{NP}$ since each pair (x,z) is certified by the string zw itself and the correctness of this certificate can be polynomially verified given that $R \in \mathsf{FNP}$.

Since $L_n \in \mathsf{NP} = \mathsf{P}$, we know that there is a polynomial time algorithm $\mathsf{Partial}_n$ that decides L_n . Thus, for each $n \in \mathbb{N}$, we can construct the following polynomial time algorithm Solve_n which directly concludes that $R \in \mathsf{FP}$ and thus that $\mathsf{FNP} \subseteq \mathsf{FP}$.

```
function \operatorname{Solve}_n(x) y=\varepsilon 
ightharpoonup \varepsilon is the empty string while \operatorname{True} \operatorname{\mathbf{do}} if \operatorname{Partial}_n(x,y0)=\operatorname{True} \operatorname{\mathbf{then}} y=y0 else if \operatorname{Partial}_n(x,y1)=\operatorname{True} \operatorname{\mathbf{then}} y=y1 else return y end if end while end function
```

As discussed in the previous section, not all search problems are total, meaning that a solution could not exist for some inputs. A lot of real worlds problems have a guaranteed solution for each input, ranging from simple number functions to harder problems, making total search problems more interesting than non-total ones.

Definition 2.5. We define the class TFNP as the subset of FNP problems that are also total.

For simplicity, we assume that each search problem in FP is also total: since problems in FP are solvable in polynomial time, when a solution doesn't exist we can output a pre-chosen $(doesn't\ exist)$ solution, making the problem total. This assumption easily implies that $\mathsf{FP} \subseteq \mathsf{TFNP} \subseteq \mathsf{FNP}$, giving us a proper hierarchy. For natural reasons, this assumption wouldn't work for FNP problems: the only way to polynomially verify that a solution doesn't exist would be to solve the problem itself and find that there is no solution, implying that $\mathsf{FP} = \mathsf{FNP}$ would be trivially true.

Another way to view total search problems is through the lens of polynomial disqualification. In decisional problems, the class coNP contains all the problems whose complement is in NP. If the complementary problem is polynomially verifiable, this means that there is a polynomial verifier that can decide if an input doesn't have the required property, effectively disqualifying it. Proving that a decision problem is in coNP is also equivalent to proving that for each input of that problem there is no string that can certificate that the solution is correct. Researchers currently believe that NP \neq coNP, even though this is still an open question. If the answer to this question were proved to be negative, we would also have a direct answer to the P $\stackrel{?}{=}$ NP question: we know that if NP \neq coNP then P \neq NP [AB09; Sip96]

For search problems, we define the class FcoNP in the same way. In particular, the class TFNP corresponds to the class $F(NP \cap coNP)$, which contains search problems whose inputs can be certified or disqualified in polynomial time [MP91].

Proposition 2.1. TFNP = $F(NP \cap coNP)$

Proof. If $R = (R_n)_{n \in \mathbb{N}} \in \mathsf{TFNP}$ then we know that every input x has an output y. However, this means that the complementary problem \overline{R} is empty, meaning that each input is trivially verifiable in polynomial time and thus that $\overline{R} \in \mathsf{FNP}$. Hence, we conclude that $R \in \mathsf{F(NP} \cap \mathsf{coNP})$.

Vice versa, if $S \in \mathsf{F}(\mathsf{NP} \cap \mathsf{coNP})$ then trivially we have that $S \in \mathsf{FNP}$. Moreover, since $S \in \mathsf{F}(\mathsf{NP} \cap \mathsf{coNP})$ we know that each input x can be easily certified or disqualified in polynomial time, meaning that each input must have a solution polynomially verifiable and thus that $S \in \mathsf{TFNP}$.

2.3 The **TFNP** hierarchy

One of the most interesting aspects of computable (and uncomputable) problems is the ability to be transformed into another problem in order to achieve a solution. Suppose that we have an instance a of problem A and that we know an algorithm that transforms a into an instance b of a problem B such that a is a yes answer if and only if b is a yes answer. Then, by solving b we would get an answer to a. In computer science, this concept is know as **reduction**: a problem a is said to be reducible into a problem a, written as a if any instance a of a can be mapped into an instance a of a whose solution gives a solution to the former.

In decision problems, this concept is described trough *many-to-one mappings*, computable functions that map instances of the original problem to instances of the reduced problem.

Definition 2.6. A decision problem A is many-to-one reducible to a decision problem B, written as $A \leq_m B$, if there is a computable function f such that $x \in A$ if and only if $f(x) \in A$.

When a reduction can be efficiently computed by a TM with a time (or space) complexity that is in the order of to the complexity of B, the problem A can be solved by a machine that first computes the reduction and then solves the problem B, implying that the complexity of A is "as hard as" B, meaning that its complexity is in the order of the complexity of B. For example, if B is in P and the reduction $A \leq_m B$ can be computed in polynomial time then A also lies in P.

Reductions between decision problems map any (yes) answers of problem A to some (yes) answers of problem B and the same goes for (no) answers. In search problems, however, there is no concept of negative answer: even if a problem has only two possible outputs, both of them are still a solution. Some people could argue that an input for which there is no solution is a negative answer for such search problem. But how could we map inputs without solutions to other inputs without solution? What if one of the two problems involved is total and the other isn't? This clearly doesn't make sense. Even if it did make sense, we are only interested in finding solutions. We give the following definition of search problem reduction:

Definition 2.7. A search problem $R = (R_m)_{m \in \mathbb{N}}$, where $R_m \subseteq \{0, 1\}^m \times O_m$ is said to be many-to-one reducible to a search problem $S = (S_n)_{n \in \mathbb{N}}$, written as $R \leq_m S$, where $S_n \subseteq \{0, 1\}^n \times O'_n$, if for all $m \in \mathbb{N}$ there is an $n \in \mathbb{N}$ for which there is a function $f : \{0, 1\}^m \to \{0, 1\}^n$ and a function $g : \{0, 1\}^m \times O'_n \to O_m$ such that:

$$\forall x \in \{0,1\}^m \ (f(x),y) \in S \implies (x,g(x,y)) \in R$$

In other words, the function f maps inputs of R into inputs of S, while the function g maps solutions of S into solutions of R.

Reductions play a critical role in computer science. In particular, they allow us to define the concept of **completeness**, the property of an entire class of problems to be reduces into one specific problem from that very same class.

Definition 2.8. A problem B is said to be complete for a class of problems C if $B \in C$ and $\forall A \in C$ it holds that $A \leq_m B$.

Under some circumstances, if a complete problem is proven to have a specific property then that property gets automatically inherited by all the problems of the class. For example, if an NP-Complete problem is proven to be solvable in polynomial time, then every single problem inside NP would inherit this property, making the entire class collapse and giving an answer to the question P = NP. However, in order for this inheritance ability to hold, these reductions must still be efficient with respect to the complexity of the class. For example, for a problem B to be NP-Complete then any NP problem A must be reducible to B in polynomial time, since otherwise there would be no way of using the reduction to efficiently obtain solutions of A. The same reasoning also holds for the concept of completeness in the class FNP.

The most famous NP-Complete problem is the SAT problem, which asks «does this formula have an assignment that satisfies it?», first proven by Cook in 1971 [Coo71] and later by Levin in 1973 [Lev73]. In particular, Levin proved this result through the functional version of this complete problem, that being FSAT, modelling what he called universal sequential search problem. In fact, the functional versions can be used to prove that the decisional versions are complete and vice versa [BCE+98].

Proposition 2.2. The decisional problem A is NP-Complete if and only if the functional problem FA is FNP-Complete.

However, it is not known if there is a FNP-Complete problem that is also *total*. For example, the problem FSAT isn't total due to some formulas being unsatisfiable, thus there is no output assignment that satisfies them. Researchers believe that the existence of such problem is very unlikely since this total problem would be able to give a solution to problems that aren't total.

For these reasons, in the TFNP world the concept of completeness is studied under a different approach: instead of considering problems that are complete for the whole class, we consider important problems who have a lot of TFNP problems reducible to them. These important problems form additional subclasses of TFNP.

Definition 2.9. Given TFNP problem S, we define the class S as the subset of TFNP problems efficiently reducible to the problem S in polynomial time, formally $S = \{R \in \mathsf{TFNP} \mid R \leq_m S \text{ in } O(n^k)\}$

The extensive study of TFNP classes has been successful in capturing the complexity of many branches of mathematics, such as problems from cryptography, game theory and economics are actually reducible to TFNP complete problems. Unexpectedly, a vast majority of total search problems can be characterized with very few subclasses, which form the **TFNP hierarchy**.

Each of these subclasses is characterized by a complete total search problem that describes an elementary question, such as determining if a mapping doesn't have collision or not - or equivalently, if a function is injective or not [RGR22; BFI23]. These complete problems are guaranteed to be total by the very *combinatorial principles* that dictate them:

- PLS (Polynomial Local Search): the class of search problems designed to model the process of finding the local optimum of a function or alteratively the class of problems whose solution is guaranteed by the «Every directed acyclic graph has a sink» principle. It is formally defined as the class of search problems that are polynomial-time reducible to the SINK-OF-DAG problem.
- PPP (Polynomial Pigeonhole Principle): the class of problems whose solution is guaranteed by the «*Every mapping from a set of* n+1 *elements to a set of* n *elements has a collision*» principle. It is defined as the class of problems that are polynomial-time reducible to the PIGEON problem.
- PPA (Polynomial Parity Argument): the class of problems whose solution is guaranteed by the «Every undirected graph with an odd-degree node must have another odd-degree node» principle. It is defined as the class of problems that are polynomial-time reducible to the LEAF problem
- PPADS (Polynomial Parity Argument Directed with Sink): the class of problems whose solution is guaranteed the «Every directed graph with a positively unbalanced node (out-degree > in-degree) must have a negatively unbalanced node» principle. It is defined as the class of problems that are polynomial-time reducible to the SINK-OF-LINE problem.
- SOPL (Sink of Potential Line): the class of problems that are polynomial-time reducible to the SINK-OF-POTENTIAL-LINE problem. It has been proven that $SOPL = PLS \cap PPADS$ [GHJ+22a]
- PPAD (Polynomial Parity Argument Directed): the class of problems whose solution is guaranteed the «Every directed graph with an unbalanced node must have another unbalanced node» principle. It is defined as the class of problems that are polynomial-time reducible to the END-OF-LINE problem.
- CLS (Continuous Local Search): the class of search problems designed to model the process of finding a local optimum of a continuous function over a continuous domain. It is defined as the class of problems that are polynomial-time reducible to the CONTINUOUS-LOCALPOINT problem. It has been proven that CLS = EOPL = PLS ∩ PPAD [FGH+22; GHJ+22a], where EOPL is the class of search problems that are polynomial-time reducible to the END-OF-POTENTIAL-LINE problem.

Figure 2.1. Hierarchy of the main total search problem subclasses. An arrow from class A to class B means that $A \subseteq B$.

Interestingly, lots of complex problems have been proven to be reducible to these basic problems. For example, the NASH problem relative to finding a Nash equilibrium of a given game has been shown to not only lie inside PPAD but also be PPAD-Complete [DGP06; CDT09]. One should ponder what it really means for a problem to be complex.

Proving any unconditional separation between these subclasses, which can be achieved by showing that one of them is not efficiently reducible to the other, would directly imply that $\mathsf{FP} \neq \mathsf{TFNP}$, answering the $\mathsf{P} \stackrel{?}{=} \mathsf{NP}$. By hardness of the question itself, finding such unconditional separation seems to be completely out of reach. However, it turns out that the TFNP model indeed has conditional separations, in particular relative to $\mathit{oracles}$ (see Chapter 3).

2.4 White-box TFNP

In computer science and engineering, systems and models are divided in two categories: white-box systems and black-box system. A system is said to be a **white-box** if its internal workings are known, meaning that given any input it is possible to know how the system achieves a result. Contrary, the computational process is unknown in a **black-box** system. Black-box models allow us to consider only the result for a given input, ignoring how that result is achieved. For example, a programmer uses both white-box and black-box systems: personal functions are white-boxes, while ready-to-go library functions are black-boxes.

Each TFNP problem can be analyzed through the lens of both white-box and black-box systems: in a white-box TFNP problem we're interested in how the problem gets verified (or solved if it's also in FP), while a black-box TFNP problem we're interested only in the verifiability (or computability) of the problem. Originally, these two models were characterized by solvability and verifiability through Turing machines [BG94; BCE+98]. In recent years, researchers have shifted to another characterizations: the white-box TFNP model is studied through protocols, while black-box TFNP is studied through decision trees [GHJ+22b; GKR+19; BFI23]. Any reader who has come this far will have asked himself the following question: why shift to other computational models? The answer is pretty straight forward: these two models are easier to work with. This shift of perspective allowed researchers to perform complex reasoning more easily, reaching otherwise unintuitive results. In this section we will briefly discuss protocols and the white-box model, while decision trees and the black-box model will be extensively discussed in the following chapter.

Suppose that we have two parties, namely Alice and Bob, who want to cooperate in order to achieve a common objective, like computing a function. In order to reach their goal, Alice and Bob must carry out separate computations, communicating the result to the other party in an pre-defined sequence of steps. This idea serves as groundwork for a definition of protocols, algorithms that dictate such alternations between computation and communications.

We give the following formal definition of protocol. [RYM+22]

Definition 2.10. Let X be Alice's input set and let Y be Bob's input set. A protocol π is a rooted directed binary tree whose leaves are associated to outputs and internal nodes are owned by either Alice or Bob, where the owner of v is noted by owner(v). Each leaf is labeled with an output $o \in O$, where O is the outcome set. Each internal node v is also associated to a function $g_v : Z \to \{0, 1\}$, where Z = X if owner(v) = A and Z = Y if owner(v) = B.

When given the input $(x, y) \in X \times Y$, the protocol computes the associated function of the current node (starting from the root), proceeding on the left child if the output is 0 and on the right child if the output is 1. When a leaf is reached, the protocol returns the associated output. The output of the protocol for a given input (x, y) is denoted with $\pi(x, y)$. A function f is said to be computed by the protocol π if for all inputs (x, y) it holds that $f(x, y) = \pi(x, y)$.

Figure 2.2. An example of a protocol of size 13 and depth 3 where the red nodes are owned by Alice and the blue nodes are owned by Bob. The green path shows the computation given by $f_{v_1}(x) = 0$, $f_{v_2}(y) = 1$ and $f_{v_5}(y) = 1$ for the input (x, y)

The complexity of protocols is measured in terms of their *size* and *depth*, that being the number of nodes of the protocol and the length of the longest directed path from the root node to a leaf. The **communication complexity** of a function f is defined as the depth of the smallest protocol that computes f, corresponding to the minimal number of bits that must be communicated by Alice and Bob to compute f for all possible inputs.

Protocols are clearly a Turing complete computational model: they are nothing more then an algorithm computed by two parties instead of one. Vice versa, a Turing machine can simulate a protocol by following the paths described by the protocol itself. This makes protocols a simple schematic way to define an algorithm. A protocol encodes all possible messages that may be sent by the parties during any conceivable conversation, producing the expected output. This means that a protocol always returns an answer for all possible inputs, making any function computed by a protocol total.

Furthermore, since the function processed by each step of the computation is explicitly defined and thus known, protocols are valid alternative to characterize white-box TFNP. In particular, for each TFNP problem R, we denote with R^{cc} the equivalent TFNP^{cc} problem, where cc stands for communication complexity. Due to them being defined on two inputs instead of one, communication search problems are defined on two sets of input values instead of one.

Definition 2.11. A communication search problem is a sequence $R = (R_n)_{n \in \mathbb{N}}$ of relations $R_n \subseteq \{0,1\}^n \times \{0,1\}^n \times O_n$, one for each $n \in \mathbb{N}$, where each O_n is a finite set called "outcome set".

A protocol is considered to be efficient when its communication complexity is polylogarithmic with respect to the bit-size of the inputs, i.e. equal to $O(\log^k n)$. This ensures that there is a Turing machine capable of simulating the protocol in polynomial time. We give the following definitions of FP^{cc} and FMP^{cc}

Definition 2.12. We define FP^{cc} as the set of communication search problems $R = (R_n)_{n \in \mathbb{N}}$ for which there exists a polylogarithmic depth protocol π_n such that $\pi_n(x,y) = z$ if and only if $((x,y),z) \in R_n$.

We define FNP^{cc} as the set of communication search problems $R = (R_n)_{n \in \mathbb{N}}$ for which there exists a polylogarithmic depth protocol V_n such that $V_n((x,y),z) = 1$ if and only if $((x,y),z) \in R_n$.

In this case, the certificate is the protocol itself: it defines a schema through which a Turing machine can verify the solution. The concept of reduction also applies to communication search problems, even though they require a pre-fixed value t of maximum amount of bits usable in the reduction, i.e. the maximum depth of the reduction protocol, which is necessary for computational reasons that we won't discuss. This allows us to define a t-bit TFNP cc hierarchy that follows the same identical structure as the standard one.

Definition 2.13. A communication search problem $R = (R_m)_{m \in \mathbb{N}}$, where $R_m \subseteq \{0,1\}^m \times \{0,1\}^m \times O_m$, is said to be many-to-one reducible into a search problem $S = (S_n)_{n \in \mathbb{N}}$, where $S_n \subseteq \{0,1\}^n \times \{0,1\}^n \times O'_n$, if for all $m \in \mathbb{N}$ there is an $n \in \mathbb{N}$ for which there are two functions $f_X, f_Y : \{0,1\}^m \to \{0,1\}^n$ and a t-bit protocol $g: (\{0,1\}^m \times \{0,1\}^n) \times O'_n \to O_m$ such that:

$$\forall (x,y) \in \{0,1\}^m \times \{0,1\}^m \ (f_X(x), f_Y(y), z) \in S \implies (x,y,\pi((x,y),z)) \in R$$

In other words, the functions f_X , f_Y map inputs of R into inputs of S, while the protocol q maps solutions of S into solutions of R.

One of the most interesting properties of communication search problems is the ability to be characterized by a single type of search problem: the **monotone Karchmer-Widgerson game**. The game has a simple objective: given two inputs with different outputs, Alice and Bob have to cooperate in order to find a bit that differs in the two inputs.

Definition 2.14. Given a Boolean function $f: \{0,1\}^n \to \{0,1\}$, we define the Karchmer-Wigderson game of f, denoted with KW(f), as the following communication problem: given the two inputs x and y, where f(x) = 0 and f(y) = 1, find an index $i \in [n]$ such that $x_i \neq y_i$.

If f is a monotone Boolean function, meaning that given two inputs x, y if $x \leq y$ then $f(x) \leq f(y)$, the monotone Karchmer-Widgerson game of f, denoted with mKW(f), finds an index $i \in [n]$ such that $x_i < y_i$.

A surprising result [Gál02; GKR+19] proved that any communication search problem is equivalent to the monotone KW game of some Boolean function. This result implies that TFNP^{cc} actually is the study of the monotone Karchmer-Widgerson game.

Lemma 2.1. For any communication search problem $R = (R_n)_{n \in \mathbb{N}}$, where $R_n \subseteq \{0,1\}^n \times \{0,1\}^n \times O_n$, in t-bit TFNP^{cc}, there is a function f on $2^t |O_n|$ variables such that R is communication equivalent to mKW(f) under t-bit mapping reductions.

These games where originally introduced in 1990 by Karchmer and Widgerson [KW88] to show how the communication complexity of a game for a function f is equal to the circuit complexity of a *Boolean circuit* that solves the game on f.

Theorem 2.2. Given a function $f: \{0,1\}^n \to \{0,1\}$, there is a circuit of depth d that computes f if and only if there is a protocol of depth d that solves KW(f). Moreover, if f is monotone, the circuit is monotone and the protocol solves mKW(f)

In this case, Boolean circuits are defined as sets of logical AND and logical OR gates connected by cables. Like protocols, Boolean circuits have been proven to be Turing complete due to Turing machines and circuits being capable of simulating each other up to a polynomial factor [Sip96]. Again, none should be dumbfounded by this result: any modern computer is actually just a large amount of Boolean gates wired together. We give the following definition of Boolean circuit. [RYM+22]

Definition 2.15. A Boolean circuit is a directed acyclic graph whose nodes, called gates, are associated with either input variables or Boolean operators. Each gate has an out-degree equal to 1 (except for the output gate who has out-degree 0) and in-degree equal to either 0 or 2. All 0 in-degree gates correspond to input variables, the negations of input variables or constant bits, while all 2 in-degree gates compute the logical AND or the logical OR of its given input variables or Boolean function.

Each gate v is associated with the Boolean function f_v computed by it. A function f is said to be computer by a circuit with output gate u if for all inputs $x \in \{0,1\}^n$ it holds that $f(x) = f_u(x)$.

Figure 2.3. A Boolean circuit of size 15 and depth 4 computing $x_1 \oplus x_2 \oplus x_3$.

The complexity of Boolean circuits is measured in terms of their *size* and depth, i.e. the number of gates of the circuit and the length of the longest directed path from an input gate to the output gate. However, differently from protocols, the **circuit complexity** of function f is defined as the size of the smallest Boolean circuit that computes it.

Karchmer and Widgerson's result allows us to characterize white-box TFNP in three ways: the study of communication search problems, the study of the monotone Karchmer-Widgerson game and the study of monotone Boolean circuits. This further extends the already known connections between search problems, communication complexity and circuit complexity, establishing that any result obtained in one of these fields can be in some way extended to the others.

Chapter 3

Black-box TFNP

3.1 Oracles and decision trees

In the previous chapter we have briefly shown how TFNP subclasses are defined in terms of basic existence principles that capture white-box total search problems solvable by protocols reducible to Karchmer-Widgerson games. From now on, we will shift our focus to the black-box model.

Black-boxes have been used by complexity theorists since early days, mostly through the concept of **oracle**, a device capable of instantly solving an instance of a designated problem. In particular, these problems may even be uncomputable, an assumption that allows us to view oracles as a magical devices. Turing machines can be allowed to query such oracles to an additional *oracle tape*. The machine writes a string on such tape, asking the oracle to solve the problem for that input. The output of the oracle is then written on the same tape, which can then be read by the Turing machine. Any query made to the oracle requires $\Theta(1)$ time, meaning that they don't influence the cost of the computation.

Definition 3.1. An oracle for a problem A is an external device that is capable of instantaneously solving an instance of A. An oracle Turing machine is a Turing machine provided with the ability of querying an oracle. We write M^A to describe a Turing machine provided with an oracle for the problem A.

Given a class \mathcal{C} and an oracle for a problem A, the *relativized version* of the class \mathcal{C} , written \mathcal{C}^A is the set of all problems of \mathcal{C} solvable (or verifiable) with access to the oracle of A. For example, $\mathsf{P}^{\mathrm{SAT}}$ is the class of problems solvable in polynomial time by a Turing machine with an oracle for the SAT problem. More generally, given two classes \mathcal{C}, \mathcal{B} , we write $\mathcal{C}^{\mathcal{B}}$ to denote the set of all problems of \mathcal{C} solvable (or verifiable) with access to an oracle for any problem that lies in \mathcal{B} . In other words, we have that $\mathcal{C}^{\mathcal{B}} = \bigcup_{A \in \mathcal{B}} \mathcal{C}^A$.

Oracles proved to be surprisingly useful for studying the relationship between P and NP by considering the relationship between P^A and NP^A for an oracle A. In a celebrated result [BGS75], Baker et al. showed that there are two problems A and B such that $P^A = NP^A$ and $P^B \neq NP^B$. This fact makes commonly used proof

techniques useless, meaning that any answer to the $P \stackrel{?}{=} NP$ question will require unconventional techniques, thus the hardness of the question.

Oracles provide a simple yet effective way to generalize the concept of reduction through the so called $Turing\ reductions$: if a Turing machine provided with an oracle for the problem B is capable of resolving a problem A then the problem A can be reduced to solving multiple instances of the problem B. When A is Turing reducible to B, we write $A \leq_T B$. Clearly, if the oracle machine M^B can solve A then any query to the oracle can be replaced with a call to a subroutine that solves B. This conversion is ofter referred to as de-relativization. Many-to-one reductions can be seen as a specific case of Turing reductions, where the machine makes exactly one query to the oracle and then returns the the output of such query.

In the particular case of total search problems, it was proven that the reducibility between search problems is strictly connected to the reducibility of their relativized versions up to all oracles [BCE+98].

Theorem 3.1. Given two search problems $R, S \in \mathsf{TFNP}$ and their relative classes it holds that $R \leq_m S$ if and only if $R^A \leq_m S^A$ for all oracles A.

This result implies that proving any relativized separation is equivalent to proving a non-relativized separation, allowing us to use the intuitive nature of oracles to rule out possible collapses in TFNP subclasses. Many TFNP subclasses have been proven to be different through separations between the respective query search problems. [RGR22; BFI23]

Definition 3.2. A query search problem is a sequence $R = (R_n)_{n \in \mathbb{N}}$ of relations $R_n \subseteq \{0,1\}^n \times O_n$, one for each $n \in \mathbb{N}$, where each O_n is a finite set called "outcome set"

A good eye will surely have noticed that the previous definition does not vary from the normal definition of search problems, unlike communication search problems. In fact, the only true difference between their computational models: query search problems are solved (or verified) through **decision trees**.

Definition 3.3 ([LNN+95]). A decision tree is a rooted directed binary tree whose nodes are associated with either an output value or an input Boolean variable. Each leaf is labeled with an output $o \in O$, where O is the outcome set. Each internal node is labeled by a variable and the two outgoing edges are labeled by the two possible values of that variable.

Decision trees can be viewed as nothing more than the black-box version of protocols: we don't care about who computes the next step or how they do it, we only care about the result being either a 0 or a 1 in order to proceed with the computation. In fact, like their white-box counterpart, decision trees encode all possible ways to obtain a result, making them *total*. Likewise, the complexity of a decision tree computing a function follows the same complexity measures as a protocol, i.e. its *size* and its *depth*. A function f is said to be computed by the decision tree T if for all inputs x it holds that f(x) = T(x).

Figure 3.1. An example of decision tree of size 13 and depth 3. The green path shows the computation made for the input x = 011.

Decision trees give an easier way to describe the computation of an oracle Turing machine: if M^B solves (or verifies) a problem A then the i-th query made by the procedure corresponds to a variable x_i for the decision tree where $x_i = 1$ if the query returns a positive result and 0 otherwise. In other words, the computation tree of an oracle Turing machine is actually a decision tree.

Proposition 3.1. Given a search problem $A \in \mathsf{TFNP}$, there is an oracle Turing machine M^B that solves (or verifies) A if and only if there is a decision tree that solves (or verifies) A.

The above proposition gives a strong result that allows us to characterize black-box TFNP through decision trees instead of oracles: any decision tree separation implies a relativized separation [RGR22; BFI23]. As in the communication complexity formulation, given a TFNP problem R, we denote with R^{dt} the equivalent TFNP problem, where dt stands for decision tree. We will omit this notation when the context makes it clear.

Definition 3.4. We define FP^{dt} as the set of query search problems $R = (R_n)_{n \in \mathbb{N}}$ for which there exists a polylogarithmic depth decision tree T_n such that $T_n(x) = y$ if and only if $(x,y) \in R_n$. Likewise, we define FNP^{dt} as the set of query search problems $R = (R_n)_{n \in \mathbb{N}}$ for which there exists a polylogarithmic depth decision tree T_y such that $T_y(x) = 1$ if and only if $(x,y) \in R_n$.

Like protocols, in query search problems the certificate is the verifying decision tree itself. Decision tree reductions are based on a more fine-grained definition, where the function that maps inputs of the first problem to inputs of the second problem is computed by many decision trees with output $\{0,1\}$.

Definition 3.5. A query search problem $R = (R_m)_{m \in \mathbb{N}}$, where $R_m \subseteq \{0, 1\}^m \times O_m$ is said to be many-to-one reducible to a query search problem $S = (S_n)_{n \in \mathbb{N}}$, where $S_n \subseteq \{0, 1\}^n \times O'_n$, if for all $m \in \mathbb{N}$ there is an $n \in \mathbb{N}$ for which there is sequence $T = (T_i)_{i \in [n]}$ of decision trees $T_i : \{0, 1\}^m \to \{0, 1\}$ and a decision tree $T_y^o : \{0, 1\}^m \to O_m$ for each $y \in O'_n$ such that:

$$\forall x \in \{0,1\}^m \ (T(x),y) \in S \implies (x,T^o_y(x)) \in R$$

where $T(x) := (T_1(x), \dots, T_n(x)).$

The difference in notation between T_1, \ldots, T_n and T_y^o underlines the fact that the former return a $\{0,1\}$ output, while the latter return an output in O_n . The *size* of the reduction is the number of input bits to S, that being n. The *depth* d of the reduction is the maximum depth of any tree involved in the reduction, meaning that

$$d = \max(\{\operatorname{depth}(T_i) : i \in [n]\} \cup \{\operatorname{depth}(T_y^o) : o \in O_m\})$$

The complexity of a reduction from R to S, written as S(R), is equal to the sum of the size and the minimal depth of a decision tree reduction from R to S.

$$S(R) := \min(\{\log m + \operatorname{depth}(T) : T\})$$

Definition 3.6. Given $S \in \mathsf{TFNP}^{dt}$, we define the class S^{dt} as the subset of TFNP^{dt} problems efficiently reducible through decision trees to the problem S, formally $S^{dt} = \{R \in \mathsf{TFNP} \mid S(R) = O(\log^k n)\}$

3.2 Connections to Proof Complexity

Like the white-box model, black-box total search problems can be studied under multiple lenses, such as **proof complexity**. This branch of complexity theory studies the complexity measures needed for a propositional formula to be proved by propositional proof systems, that being any system of rules that can prove the truthfulness of a propositional formula, i.e. a string made of logical operators applied on a set of n variables, such as $F = x_1 \wedge (x_1 \to \neg x_2 \vee x_3)$.

Any statement can be encoded by propositional formulas, which is either a tautology (a statement that is always true), a satisfiable formula (a statement that can be true or false based on the assignment) or an unsatisfiable formula (a statement that is always false). Proving that a formula F is a tautology is equivalent to proving that $\neg F$ is unsatisfiable.

Proof systems can be viewed as an algorithm that manipulates propositional formulas in order to produce a new one. When a formula G is derived by the formula F in the proof system S, we write $F \vdash G$. Proof systems must be sound: if $F \vdash G$ then G is a logical consequence of F, which means that $F \to G$ is a tautology. In 1979, Cook and Reckhow gave the following formal definition of propositional proof system often called Cook-Reckhow proof systems.

Definition 3.7. A propositional proof system (or pps) is a polynomial time computable surjective function $f: \Sigma^* \to \text{TAUT}$, where TAUT is the set of logical tautologies.

Given a formula $F \in \text{TAUT}$ a string $s \in \Sigma^*$ and a proof system f, we say that s encodes F for the pps f if it holds that f(s) = F. This idea justifies why we want proof systems to be surjective: any true statement must have a valid encoding in the proof system. This property is called *completeness* of the proof system.

The most studied proof system is resolution (or Res). Given a formula $F \in TAUT$, this proof system is able to prove that it is indeed a tautology by proving that

 $\neg F \in \text{UNSAT.}$ A conjunctive normal form (CNF) formula F is a conjunction of m clauses C_1, \ldots, C_m , where C_i is a disjunction of k_i literals, that being either a variable defined on F or its negation. For example, the following formula is in conjunctive normal form:

$$F = (x_1 \lor x_2 \lor \neg x_3 \lor x_4) \land (x_1 \lor \neg x_2) \land x_3$$

Any formula can be expressed as an equivalent CNF formula, making resolution a *complete* and *sound* proof system. Resolution proof are based on repeated applications of the following simple rule called the *resolution rule*:

$$\frac{C \vee x \qquad D \vee \neg x}{C \vee D}$$

Given a CNF formula $F = C_1 \wedge \ldots \wedge C_m$ and a clause C, we have that $F \vdash C$ if there is a sequence of clauses D_1, \ldots, D_k such that $D_k = C$ and each D_i in the sequence is either an axiom of F (meaning that $D_i = C_j$ for some j) or is obtained by applying the resolution rule on D_p and D_q for some p, q < i. Resolution is able to prove that a CNF formula $\neg F$ is unsatisfiable by deriving the empty clause \bot starting from the axioms of the formula itself. A Resolution proof is often referred to as a refutation.

Proposition 3.2. Given a CNF formula F, it holds that $F \in TAUT$ if and only if $\neg F$ is refuted by Resolution

Given the following unsatisfiable CNF formula $(y \lor z) \land (y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor z) \land \neg z$, a Resolution proof is given by:

 $D_1:$ $\neg z$ Axiom D_2 : $y \lor z$ Axiom D_3 : Res. on D_1, D_2 y $D_4: x \vee \neg y \vee z$ Axiom D_5 : $x \vee \neg y$ Res. on D_1, D_4 D_6 : $\neg x \lor z$ Axiom D_7 : Res. on D_1, D_6 D_8 : Res. on D_5, D_7 $\neg y$ D_9 : Res. on D_3, D_8 \perp

which can also be graphically expressed as:

Figure 3.2. Dag-like refutation of the previous formula

Through this representation, each refutation produces a directed acyclic graph (DAG), also knows as dag-like refutations. When each clause appears only once in a refutation, the latter is referred to as a tree-like refutation due to how the underlying graph is actually a tree.

Figure 3.3. Tree-like refutation of the previous formula

This subset of proofs defines a more specific proof system called *Tree-like Resolution* (or TreeRes). Generally, this type of refutations require proofs of exponential length compared to the number of variables defined on the formula itself. A standard result in proof complexity states that Resolution and Tree-like resolution are separated, meaning that some proofs are easy for the former and hard for the latter, making Resolution a stronger proof system.

Resolution has three main complexity measures: size, depth and width. The *size* of a Resolution proof is the total number of nodes appearing in the proof. The *depth* of a Resolution proof is the length of the longest path from an axiom to the empty clause. The *width* of a Resolution proof is the maximum number of literals appearing in a clause of the proof. For example, the proof shown in Figure 3.3 has size 9, depth 3 and width 3. These three complexity measures are highly related. For example, if a tree-like Resolution proof has depth d the size of such proof is $O(2^{d+1})$ since a d-depth tree can have at most 2^{d+1} nodes.

But why are we interested in proving or refusing propositional formulas? We discussed how the SAT problem is NP-Complete. This clearly implies that the problem \overline{SAT} is coNP-Complete. This fact can be used to show that $\overline{SAT} \leq_m \text{UNSAT} \leq_m \text{TAUT}$, implying that both UNSAT and TAUT are also coNP-Complete. Showing that any of these problems is also in NP would answer the NP $\stackrel{?}{=}$ coNP question.

Proof systems are essential to work on this question: given the encoding Π of a proof of F in a proof system, a verifier can follow the rules defined by the proof system in order to prove that F is indeed a tautology. In this case, Π serves as a certificate for F while the pps defines the verifier. We give the following equivalent definition of propositional proof system equivalent to the previous one.

Definition 3.8. A propositional proof system (or pps) is a polynomial verifier V such that $F \in TAUT$ if and only if there is a string $\Pi \in \Sigma^*$ such that $V(F, \Pi) = 1$.

On first glance, one could think that this definition implies that any complete and sound pps proves that TAUT \in NP. However, we must also consider the length of such proofs: in order to be an efficient verifier, the length of the certificates must be polynomially bounded by the length of F. In other words, it must hold that $|\Pi| = O(|F|^k)$ for some $k \in \mathbb{N}$. This means that in order to prove that $\mathsf{NP} \neq \mathsf{coNP}$ (which is equivalent to proving that TAUT \in NP) we must find a polynomially bounded proof system, a pps that uses only polynomially bounded proofs for all tautologies.

Proposition 3.3. There is a polynomially bounded proof system if and only if $NP \neq coNP$.

We already discussed how researches believe that $NP \neq coNP$ is the expected answer to the conjecture. In order to prove this, we would have to prove that there cannot be a polynomially bounded pps. Proving this statement is no easy task: we would have to prove that there is a particular formula F that strictly requires an exponential length encoding for every discovered and undiscovered proof system.

Even thought this result seems out of reach, proof complexity is highly related to other branches of complexity theory, including our case! In order to get to this relation between proof complexity and TFNP^{dt}, we will restrict our focus to CNF formulas: by construction, a CNF formula can be unsatisfiable if and only if for all assignments $\alpha(x_1, \ldots, x_n)$ there is a clause C_i that is false. It's easy to see this fact implies that any CNF formula gives rise to an associated search problem: finding a falsified clause inside the formula (if there is any) for each possible assignment.

Definition 3.9. Given a CNF $F = C_1 \wedge \ldots \wedge C_m$ over n variables, we define Search(F) as the following search problem: given an input assignment $\alpha(x_1, \ldots, x_n)$, return an index i such that the assignment falsifies C_i .

This problem is usually referred to as the false clause search problem. When F is an unsatisfiable CNF formula, Search(F) is clearly a total search problem since for any input assignment there will always be an unsatisfied clause. Moreover, the search problem of any unsatisfiable formula can easily be solved (or verified) by a decision tree for any formula F: if the assignment $\alpha(x_1 = b_1, \ldots, x_n = b_2)$ falsifies the clause C_i , define a path $x_1 = b_1, \ldots, x_n = b_n$ on the decision tree and let C_i be the output of such path. In other words, for all $\neg F \in \text{TAUT}$ it holds that $\text{Search}(F) \in \text{TFNP}^{dt}$.

Figure 3.4. Decision tree for the previous unsatisfiable formula

In a similar fashion, we can show that any total query search problem R can be associated with the search problem of the formula F that describes the set of decision trees that verify R.

Consider a decision tree T made of the paths p_1, \ldots, p_k , each leading to the leaves ℓ_1, \ldots, ℓ_k . The DNF encoding of T, written as D(T), is the disjunction over the conjunction of the literals $\alpha_1, \ldots, \alpha_h$ along each of the accepting paths in T. In other words, we have that $D_T = p_1 \vee \ldots \vee p_k$ where each $p_i = \alpha_1 \wedge \ldots \wedge \alpha_h \wedge \ell_i$ is an accepting path of T. By De Morgan's theorem, $\neg D(T)$ is a CNF.

Proposition 3.4. Given a total query search problem $R \subseteq \{0,1\}^n \times O$, for each $n \in \mathbb{N}$ there exists an unsatisfiable CNF formula F_n defined over |O|-many variables such that $R_n = \operatorname{Search}(F_n)$. This formula is called canonical CNF encoding of R_n .

Proof. Since $R = (R_n)_{n \in \mathbb{N}} \in \mathsf{TFNP}^{dt}$, for each $y \in O_n$ there is a $\mathsf{polylog}(n)$ -depth decision tree T_y that verifies R_n . Consider the CNF $F_n := \bigwedge_{y \in O_n} \neg D(T_y)$. Since R is a total search problem, for each input x there is a valid output, implying that at least one tree T_y will have an accepting path, meaning that $D(T_y)$ with

input x accepts and therefore $\neg D(T_y)$ with input x rejects, concluding that F_n is

unsatisfiable. Moreover, this formulation also concludes that:

$$(x,y) \in R_n \iff (x,y) \in \operatorname{Search}(F_n)$$

and thus that $R_n = \operatorname{Search}(F_n)$.

This result clearly implies that $(R)_{n\in\mathbb{N}} = (\operatorname{Search}(F_n))_{n\in\mathbb{N}}$, where F_1, F_2, \ldots is a family of CNF formulas, and by extension that black-box TFNP is exactly the study of the false clause search problem. Like in the white-box case, the upshot is that it is sufficient to restrict our interests on the study of search problems associated to unsatisfiable CNF formulas.

Through this connection, Göös et al. [GKR+19] showed that many important proof systems are characterized by an associated TFNP^{dt} search problem and vice versa. Given a proof system P and an unsatisfiable CNF formula F, the **complexity** required by P to prove F is given by:

$$P(F) := \min\{\log \operatorname{size}(\Pi) + \deg(\Pi) : \Pi \text{ is a } P\text{-proof of } F\}$$

where $\operatorname{size}(\Pi)$ is the total number of symbols in Π and $\operatorname{deg}(\Pi)$ is the *degree* of Π associated to P, which varies from proof system to proof system. For example, in Tree-like Resolution the degree is the *depth* of the proof, while in Resolution the degree is the *width* of the proof. This degree measure will be specified for the proof systems analyzed in following sections.

To make things more readable, we will refer to Search(F) as S_F . Since each TFNP^{dt} problem is equivalent to S_F for some formula F, the complexity parameter defined above can be used to give another characterization of TFNP^{dt} problems.

Definition 3.10. We say that a proof system P characterizes a TFNP dt problem R (and reflexively that R characterizes P) if it holds that

$$R^{dt} = \{S_F : P(F) = \text{polylog}(n)\}$$

where $F = (F_i)_{i \in \mathbb{N}}$ is a family of formulas. In a stronger sense, it must hold that $R^{dt}(S_F) = \Theta(P(F))$.

Most of the TFNP subclasses discussed in previous sections has been shown to have a characterizing proof system:

- $\operatorname{FP}^{dt}(S_F) = \Theta(\operatorname{TreeRes}(F)) [\operatorname{LNN} + 95]$
- $PLS^{dt}(S_F) = \Theta(Res(F))$ [BKT14]
- $PPA^{dt}(S_F) = \Theta(\mathbb{F}_2\text{-NS}(F)) [GKR+19]$
- $PPADS^{dt}(S_F) = \Theta(unary-NS(F)) [GHJ+22b]$
- $PPAD^{dt}(S_F) = \Theta(unary-SA(F)) [GHJ+22b]$
- $SOPL^{dt}(S_F) = \Theta(RevRes(F)) [GHJ+22b]$
- $CLS^{dt}(S_F) = \Theta(RevResT(F)) [GHJ+22b]$

Figure 3.5. Black-box TFNP classes and their characterizing proof systems

3.3 Reductions through CNF formulas

In an intuitive way, the characterization given in the previous section shows that any TFNP^{dt} problem can be transformed into a proof system for refuting unsatisfiable CNF formulas of polylogarithmic width: since any TFNP^{dt} is equivalent to the search problem for some unsatisfiable CNF formula, any efficient decision tree reduction between problems is nothing more than an efficient proof in the characterizing proof system and vice versa. To formulae this idea, we introduce the concept of reductions between CNF formulas [BFI23].

Suppose that C is a clause over n variables and that $T = (T_i)_{i \in [n]}$ is a sequence of depth-d decision trees, where $T_i : \{0,1\}^m \to \{0,1\}$. We refer to C(T) as the CNF formula obtained by substituting each variable x_i in C with $D(T_i)$ and rewriting the result as a CNF, or more conveniently:

$$C(T) := \bigwedge_{i \in [n]} \bigwedge_{\substack{r : \text{rejecting} \\ \text{path of } T_i}} \neg r$$

Definition 3.11. Let $F = C_1 \wedge \ldots \wedge C_{m_F}$ be an unsatisfiable CNF over n_F variables. We say that a CNF formula H made of m_H clauses over n_H variables reduces to F via depth-d decision trees if there exist two sequences of depth-d

decision trees $T = (T_i)_{i \in [n_F]}$ and $T^o = (T_j^o)_{j \in [m_F]}$, where $T_i : \{0, 1\}^{n_H} \to \{0, 1\}$ and $T_j^o : \{0, 1\}^{n_H} \to [m_H]$, such that given the following formula:

$$F_H := \bigwedge_{j \in [m_F]} \bigwedge_{\substack{p : \text{path} \\ \text{in } T_j^o}} C_i(T) \vee \neg p$$

it holds that if F is unsatisfiable then F_H is unsatisfiable and by consequence that H is unsatisfiable.

In particular, we notice that F_H can also be written as a CNF by simply distributing each $\neg p$ inside $C_i(T)$. Each clause $C_i(T) \lor \neg p$ must be either tautological (since it could contain a variable and its negation) or a weakening of the corresponding clause of H - meaning that it is a formula Q such that $H \to Q$ - indexed by the label at the end of the path p. Moreover, we notice that through this formulation any depth-d decision tree reduction from S_H to S_F induces the search problem S_{F_H} . By construction, reductions between CNF formulas are just a formal way to say that reductions between search problems reduction are actually proof systems.

Definition 3.12. Given a problem $S_F \in \mathsf{TFNP}^{dt}$ the **canonical proof system** of such problem, written as P_F , is a proof system that refutes an unsatisfiable formula H over n_H variables if H is reducible to an instance of F over n_F variables.

A P_F -proof of H consists of the decision trees that make such reduction possible. The *size* of such proof is given by n_F , while the *degree* is given by the maximum depth among the involved decision trees. Hence, the P_F complexity of H is given by:

$$P_F(H) := \min\{\log \operatorname{size}(\Pi) + \operatorname{depth}(\Pi) : \Pi \text{ is a } P_F\text{-proof of } H\}$$

This definition directly implies that given $S_F \in \mathsf{TFNP}^{dt}$, the **characterizing proof** system of S_F^{dt} is equivalent to the canonical proof system P_F . Canonical proof systems are sound, since by construction any valid substitution of an unsatisfiable CNF formula is also unsatisfiable, and also efficiently verifiable, since it suffices to check that each of the clauses of F_H is either tautological or a weakening of a clause in H, which can both be done in polynomial time compared to the size of the proof.

The following theorem plays a crucial role in TFNP^{dt} characterization through proof complexity, stating that the proof system P_F has a short proof of H if and only if S_H efficiently reduces to S_F . In other words, an efficient proof of a formula in a characterizing proof system automatically gives an efficient reduction to the corresponding complete search problem.

Theorem 3.2. Let $S_F \in \mathsf{TFNP}^{dt}$ and let H be an unsatisfiable CNF formula. The two following results hold:

- 1. If H has a size s and depth d proof in P_F then S_H has a size O(s) and depth d reduction to S_F
- 2. If S_H has a size s and depth d decision tree reduction to S_F then H has a size $s2^{O(d)}$ and depth d proof in P_F

In particular, this implies that $S_F^{dt}(S_H) = \Theta(P_F(H))$.

Proof. Suppose that $T = (T_i)_{i \in [n_F]}$ and $T' = (T_j^o)_{j \in [m_F]}$ is a P_F proof of H of size s and depth d. Given any assignment α such that $(\alpha, i) \in S_F$, let C_i be the clause of F falsified by $T_1(\alpha), \ldots, T_{n_F}(\alpha)$ and let p be the path followed by $T_i^o(\alpha)$. It's easy to see that a clause of the formula $C_i(T) \vee \neg p$ must be falsified by α . In particular, such clause is also the weakening of the $T_i^o(\alpha)$ -th clause of H, concluding that $(\alpha, T_i^o(\alpha)) \in S_H$. In other words, the P_F proof of H corresponds to a reduction from S_H to S_F of size $n_F = O(s)$ and depth d.

Vice versa, suppose that $T=(T_i)_{i\in[n_F]}$ and $T'=(T_j^o)_{j\in[m_F]}$ is a decision tree reduction from S_H to S_F of size s and depth d. Then, we can construct F_H as previously described through the use of these decision trees. Let L be a clause of $C_i(T)$ for some $i\in[m_F]$ and let p be any path in T_i^o . If the formula $C_i(T)\vee\neg p$ is tautological, then it can be ignored since F_H is a CNF. Otherwise, let α be an assignment that falsifies $L\vee\neg p$. Then, it holds that $T_1(\alpha),\ldots,T_{n_F}(\alpha)$ falsifies $C_i(T)$ and that $T_i^o(\alpha)$ follows path p. Thus, the $T_i(\alpha)$ -th clause of $\neg H$ must also be false, implying that $L\vee\neg p$ is a weakening of such clause. This concludes that F_H is a P_F -proof of H of depth at most d (due to how F_H is constructed) and thus that the size is at most $s2^{O(d)}$.

Chapter 4

Parity in black-box TFNP

4.1 Parity decision trees

The concept of parity is extensively studied in computer science. In our case, we are interested in exploring parity through the lens of *linear forms modulo 2*, i.e being linear equations defined on n variables over the algebraic field \mathbb{F}_2 . In this field, each term can either be a 0 or a 1, with the defining characteristic that 1 + 1 = 0.

Definition 4.1. Given n variables x_1, \ldots, x_n , we define a **linear form** as a linear equation over \mathbb{F}_2 . In general, a linear form can be expressed as $\sum_{i=1}^n \alpha_i x_i$, where $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_2$

Intuitively, each sum in a linear form is nothing more than an application of the XOR operator: the linear form $x_1 + x_2$ is equal to 1 if and only if x_1 is different from x_2 (i.e. if $x_1 = 1$ and $x_2 = 0$ or if $x_1 = 0$ and $x_2 = 1$). Additionally, in \mathbb{F}_2 the concepts of addition and subtraction are equivalent: since 1 + 1 = 0, we easily get that 1 = -1. Through this properties, parity can be used to determine if two or more objects are equal or not. For example, consider the following system of linear forms:

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1 + x_2 + x_4 = 1 \\ x_1 + x_3 = 1 \end{cases}$$

By simplifying the linear system we get that:

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1 + x_2 + x_4 = 1 \\ x_1 + x_3 = 1 \end{cases} \longrightarrow \begin{cases} x_2 = 1 \\ x_1 + 1 + x_4 = 1 \\ x_1 + x_3 = 1 \end{cases} \longrightarrow \begin{cases} x_2 = 1 \\ x_1 = x_4 \\ x_1 = 1 + x_3 \end{cases}$$

which tells us that $x_2 = 1$ and $x_1 = x_4 \neq x_3$ must hold.

But what happens if we apply the concept of parity in decision trees? What if, instead of querying variables in order to know their value, we ask the parity of a set of values by querying linear forms? This idea gives rise to the extended model of parity decision trees.

Instead of being labeled by single variables, the nodes of a parity decision tree (PDT for short) are labeled by a linear form f. Each node has two outgoing edges, one labeled by f = 0 and the other labeled by f = 1. Every path from the root of the PDT to one of its nodes defines a system of linear forms given by all the labels of the edges on the path. In general, given the PDT T and a node v, we denote this system with Φ_v^T . Given an assignment $\alpha(x_1, \ldots, x_n)$, the output of a PDT is dictated by the parity queries made by each node.

Figure 4.1. An example of parity decision tree of size 13 and depth 3.

In the above example, the green path defines the following system of linear forms:

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + x_2 = 1 \\ x_2 = 1 \end{cases}$$

which once simplified corresponds to the assignment $x_0 = 0, x_2 = 1, x_3 = 1$. We define the class FP^{pdt} as the set of TFNP^{dt} problems that are efficiently solvable by a PDT, where the complexity measures are defined as in normal decision trees.

Definition 4.2. We define FP^{pdt} as the set of query search problems $R = (R_n)_{n \in \mathbb{N}}$ for which there exists a polylogarithmic depth PDT T_n such that $T_n(x) = y$ if and only if $(x, y) \in R_n$.

It's easy to see that $\mathsf{FP}^{dt} \subseteq \mathsf{FP}^{pdt}$ since any decision tree is just a PDT with all the queries defined only on one variable. Any PDT can be converted into a normal decision tree simply by "splitting" each linear query. Given a node v labeled with the linear form $f + x_i$, let u and w be the children of v respectively given by $f + x_i = 0$ and $f + x_i = 1$. Let T_u and T_w be the two subtrees with root u and w.

Figure 4.2. The initial subtree of a parity decision tree

We replace v with the node v' labeled with the linear form x_i and introduce two new nodes u', w' such that u' is the child of v' when $x_i = 0$ and w' is the child of v' when $x_i = 1$. We label u' with the linear form f and let a copy of T_u be the children of u' when f = 0, while a copy of T_w is the children of u' when f = 1. Symmetrically, we label w' with the linear form f and let a copy of T_w be the children of w' when f = 0, while a copy of T_u is the children of w' when f = 1.

Figure 4.3. The subtree after the splitting process

By repeating this process until all queries are defined on a single variable, we obtain a decision tree equivalent to the original PDT. This final decision tree has exponential size and polynomial depth, which *may not* be the smallest possible decision tree that solves the search problem solved by the initial PDT. However, we can easily prove that parity decision trees are indeed much stronger than decision trees.

Proposition 4.1. $\mathsf{FP}^{dt} \subsetneq \mathsf{FP}^{pdt}$

Proof. Consider the search problem of determining the parity of n variables for a given assignment α . This problem can be solved by a PDT that makes single query on all n variables. By applying the splitting process on such tree, we get a decision tree of size 2^n and depth n. It's easy to see that the resulting decision tree is the smallest possible tree that can solve this search problem.

Since a system of linear forms can have multiple solutions, many assignments could be mapped to the same output. However, some systems could also be unsatisfiable, meaning that the node cannot is unreachable by any assignment. When this happens we say that the node is **degenerate**.

Like normal decision trees, PDTs can be used to solve the false clause search problem associated with any unsatisfiable CNF. A parity decision tree for a CNF formula F is a PDT defined on the same variables of F where for each leaf v one of the following conditions holds:

- 1. The leaf is degenerate
- 2. The leaf refutes a clause C of F, meaning that the system Φ_v^T is satisfiable and every one of its solutions falsifies C
- 3. The leaf satisfies a clause C of F, meaning that the system Φ_v^T has only one solution and it also satisfies C

Figure 4.4. A parity decision tree for $(x \lor y) \land (\neg x \lor \neg y) \land (\neg x \lor y) \land (x \lor \neg y)$

We observe that if a node doesn't meet any of the previous conditions then it cannot be a leaf node. Moreover, we also observe that the system associated with the root of any PDT is always satisfiable due to it containing no linear forms. Since we are interested in studying PDTs for refusing unsatisfiable CNF formulas, the third case will never be true for any leaf. However, we still need a way to exclude the first case since an unsatisfiable system cannot be associated with any assignment. Luckily, each degenerate PDT can be conveniently converted into a non-degenerate one through a very simple process [IS20].

Proposition 4.2. Let F be an unsatisfiable CNF formula. If S_F can be solved with a degenerate PDT of size s and depth d, it can also be solved with a non-degenerate PDT of size at most s and depth at most d.

Proof. Let T be a degenerate PDT of size s and depth d that solves S_F . Let U be the set of degenerate nodes of T. Notice that since Φ_r^T is empty, thus always satisfiable, we know that $r \notin U$. Consider the node $u \in U$ with the minimal distance from the root r. Since u is not the root of T, there must be two vertices p and s such that p is the parent of u and s is the sibling of u.

We notice that Φ_s^T must be satisfiable: if we assume that this is not true then both Φ_s^T and Φ_u^T would be unsatisfiable, which can be true only if Φ_p^T is also unsatisfiable,

but we chose w as the node in U with minimal distance. Since Φ_s^T is satisfiable, the label $f = \alpha$ on the edge (p, s) must be already contained inside the system Φ_p^T , meaning that each assignment that satisfies Φ_p^T also satisfies Φ_s^T .

We construct a new PDT T' by removing the subtree T_u with root u from the initial PDT T and by contracting the edge (p, s), merging the two the nodes p and s into a single node v. In other words, the subtree T_u gets removed and the children of s become the new children of p. Each assignment that satisfies Φ_p^T also satisfies $\Phi_v^{T'}$, concluding that T' also solves S_F . By repeating the process until U is empty, we get a non-degenerate PDT that solves S_F of size at most s and depth at most s.

4.2 Linear resolution over \mathbb{F}_2

Once we have defined the class FP^{pdt} , we are interested in finding a proof system that characterizes it. Consider a system Φ of linear forms defined on \mathbb{F}_2 . This system can be viewed as the conjunction of the linear forms that it describes:

$$\begin{cases} f_1 = \alpha_1 \\ f_2 = \alpha_2 \\ \vdots \\ f_k = \alpha_k \end{cases} \iff (f_1 = \alpha_1) \land (f_2 = \alpha_2) \land \dots \land (f_k = \alpha_k)$$

We can rewrite these conjunctions as a negation of a disjunction:

$$\bigwedge_{i=1}^{k} (f_i = \alpha_i) \iff \neg \bigvee_{i=1}^{k} \neg (f_i = \alpha_i) \iff \neg \bigvee_{i=1}^{k} (f_i = 1 + \alpha_i)$$

which implies that the negation of the system is equivalent to a set of disjunctions:

$$\neg \bigwedge_{i=0}^{k} (f_1 = \alpha_1) \iff \bigvee_{i=0}^{k} (f_1 = 1 + \alpha_1)$$

We say that such set of disjunction is a **linear clause**. More generally, a *linear CNF formula* over \mathbb{F}_n is a conjunction of linear clauses defined on \mathbb{F}_n .

Definition 4.3. A linear CNF formula is a conjunction of m disjunctions of linear equations over \mathbb{F}_n .

$$\bigwedge_{i=1}^{m} \bigvee_{j=1}^{k_i} (f_j = \alpha_j)$$

Linear CNF formulas can assume a complex structure such as the following:

$$((x_1 + x_2 = 0) \lor (x_1 = 1)) \land ((x_2 + x_3 + x_4 = 3) \lor (x_2 + x_4 = 0))$$

We define **linear Resolution over** \mathbb{F}_n (or ResLin(\mathbb{F}_n)), an extension of standard Resolution (see Chapter 3) based on the following two rules:

- 1. Resolution rule: given two linear clauses $(f = 0) \vee C$ and $(f = 1) \vee D$ defined on \mathbb{F}_n , we can derive the linear clause $C \vee D$
- 2. Weakening rule: given a linear clause C, we can derive any linear clause D such that $C \Longrightarrow D$.

Like in normal resolution, in $\operatorname{ResLin}(\mathbb{F}_n)$ any derivation of a linear clause C from a linear CNF F is a sequence of linear clauses that ends with C, where every clause is either an axiom of F or it can be derived from previous clauses through one of the two derivation rules. A linear CNF is unsatisfiable if and only if the empty linear clause can be derived from it. Furthermore, each clause in a derivation is used at most once we say that the derivation has a tree-like structure.

Any standard CNF formula can be described as a linear CNF formula over \mathbb{F}_2 simply by treating each clause as a disjunction of linear forms made of a single term. For example, the CNF $(x_1 \vee \neg x_2) \wedge (\neg x_3 + x_1)$ can be written as the following linear CNF formula:

$$((x_1 = 1) \lor (x_2 = 0)) \land ((x_3 = 0) \lor (x_1 = 1))$$

We call this the *linear encoding* of a CNF. From now on, we will restrict our interests to linear resolution over \mathbb{F}_2 , also called *parity resolution* (or Res_{\oplus}).

The weakening rule makes this proof system powerful thanks to how semantical implications can be used as "shortcuts". For example, consider the following linear CNF:

$$(x = 1) \land (x + y = 1) \land ((x = 0) \lor (y = 1))$$

By rewriting the last linear clause as negation of a conjunction, we notice that:

$$(x = 0) \lor (y = 1) \equiv \neg ((x = 1) \land (y = 0))$$

By simple substitution we get that:

$$\neg((x=1) \land (y=0)) \implies \neg((x=1) \land (x+y=1))$$

which is equivalent to:

$$\neg((x=1) \land (x+y=1)) \equiv (x=0) \lor (x+y=0)$$

concluding that $(x = 0) \lor (y = 1) \models (x = 0) \lor (x + y = 0)$. Proceeding with the resolution rule, we get the following tree-like refutation:

Figure 4.5. TreeRes_⊕-proof of the previous linear CNF formula

It was shown that the weakening rule can be simulated through these simple three rules [IS20]:

- 1. Simplification rule: given a linear clause $C \vee (0 = 1)$, we can derive the linear clause C
- 2. Syntactic weakening: given a linear clause C, we can derive the linear clause $C \vee (f = \alpha)$
- 3. Addition rule: given a linear clause $C \vee (f = \alpha) \vee (g = \beta)$, we can derive the linear clause $C \vee (f = \alpha) \vee (g = \beta)$

Proposition 4.3. Any clause obtainable through the weakening rule can also be obtained through a sequence of applications of the previous three rules and vice versa.

This result makes working with the weakening rule easier: any a clause D derived through k applications of these three rules starting from a clause C is automatically a weakening of C, implying that we can replace those k applications with one single use of the weakening rule.

We will now show that Res_{\oplus} tree-like proofs and parity decision trees can be viewed as two sides of the same coin. In fact, any tree-like $\mathsf{Res}(\oplus)$ refutation of a linear CNF F can be used to construct an (almost) equivalent PDT that solves S_F and vice versa [IS20].

Lemma 4.1. Let F be an linear CNF formula. If there is a TreeRes $_{\oplus}$ refutation of F with size s and depth d, there also is a PDT of size at most s and depth at most d that solves S_F .

Proof. Let T be the proof tree that refutes F. We label each edge of T whose associated clauses involve a resolution rule, while all the other weakening edges remain unlabeled. In particular, if a resolution rule is applied to the clauses $(f = 0) \vee D_1$ and $(f = 1) \vee D_2$ obtaining the clause $D_1 \vee D_2$, we label the edge from the first to the third with f = 1, while the other edge is labeled with f = 0.

By induction on the depth of a vertex of T, we show that the clause written in v contradicts the system Φ_v^T . The root node contains the empty clause and is labeled by an empty system, making the statement trivially true. Assume now that the statement holds for a generic node v. We have to show that the hypothesis also holds for its children u and w.

Suppose that v is the result of a resolution rule application, where $D_1 \vee D_2$ is the clause inside v. Assume that u is the node that contains $(f=0) \vee D_1$ while w contains $(f=1) \vee D_2$. By inductive hypothesis, we know that $D_1 \vee D_2$ contradicts the system Φ_v^T and equivalently that the system $\neg(\neg D_1 \wedge \neg D_2)$ contradicts Φ_v^T . This means that se of equalities in D_1 contradict Φ_v^T . Moreover, we know that $\Phi_u^T = \Phi_v^T \wedge (f=1)$, concluding that $(f=0) \vee D_1$ contradicts Φ_u^T . Likewise, we can show that $(f=1) \vee D_2$ contradicts Φ_v^T .

Suppose now that v is the result of a weakening rule, where u is the only child. Since (v,u) is unlabeled, we get that $\Phi_v^T = \Phi_u^T$. Furthermore, since v is the result of a weakening applied to u, we know that the clause in u semantically implies the clause in v, but by inductive hypothesis we know that the clause in v contradicts the system Φ_v^T , meaning that u must also contradict the system $\Phi_v^T = \Phi_u^T$. Finally, if v is a leaf then the statement is trivially true since it refutes a clause of F.

By contracting all the unlabeled edges given by the weakening rules, we get a parity decision tree that solves S_F . Due to this final step, the size of the PDT is at most s and its depth is at most d.

Figure 4.6. The PDT obtained from the proof shown in Figure 4.5

Lemma 4.2. Let F be an linear CNF formula. If there is a PDT of size s and depth d that solves S_F , there also is a tree-like TreeRes $_{\oplus}$ refutation of F with size at most 2s, depth at most d+1 and the weakening rule applied only to the leaves.

Proof. Let T be a PDT of size s and depth d that solved S_F . By Proposition 4.2, we assume that T is non-degenerate. We label every node v of T with the negation of its associated linear system. In other words, every node v is labeled with the linear clause $\neg \Phi_v^T$. Clearly, every node is a result of the resolution rule being applied on it's children, where the root node is the empty clause.

Since T is a PDT that solves S_F , each leaf refutes a linear clause of F. Hence, for each leaf u we have that $\Phi_u^T \Longrightarrow \neg C$ for some linear clause C of F, which equivalently means that $C \Longrightarrow \neg \Phi_u^T$, concluding that the linear clause of each leaf is actually a weakening of a clause of F. Then, for each leaf u we can add a new

neighbor node w and label it with the clause C, where the edge (w, u) becomes an application of the weakening rule. This process increases the depth of the tree by 1 and increases the size by at most s.

Figure 4.7. TreeRes_⊕-proof obtained from the PDT shown in Figure 4.6

We conclude that problems efficiently solvable parity decision trees are indeed characterized by tree-like linear resolution over \mathbb{F}_2 .

Theorem 4.1. $\mathsf{FP}^{pdt}(S_F) = \Theta(\mathsf{TreeRes}_{\oplus}(F))$

4.3 Nullstellensatz

In 1893, the mathematician Hilbert proved a theorem that established the basis of algebraic geometry, a field that studies the relations between algebra and geometry. This theorem is now known as Hilbert's *Nullstellensatz* (german for *zero-locus theorem*).

The weak Nullstellensatz, a corollary of the stronger theorem, states that given m polynomials p_1, \ldots, p_m defined on $F[x_1, \ldots, x_n]$, where \mathbb{F} is a generic algebraic field, the system $p_1(x) = p_2(x) = \ldots = p_m(x) = 0$ is unsolvable if and only if there are m polynomials g_1, \ldots, g_m defined on $F[x_1, \ldots, x_n]$ such that $\sum_{i=1}^m g_i p_i = 1$.

This weaker version of the theorem has been used to define an algebraic proof system, that being a proof system based on polynomial algebra. Intuitively, these proof systems are based on the idea of showing that a set of polynomials p_1, \ldots, p_m , called axioms, doesn't share a common root, which serves as a proof for the polynomials. In this case, a Nullstellensatz proof is given by the set of polynomials g_1, \ldots, g_m through which we get that $\sum_{i=1}^m g_i p_i = 1$ [DMN+21].

4.3 Nullstellensatz 41

Any CNF formula can be translated to an algebraic encoding, a set of polynomials p_1, \ldots, p_m for which the CNF formula is unsatisfiable if and only if there is a Nullstellensatz proof for p_1, \ldots, p_m . Given the clause $C = \bigvee_{i=1}^k x_i \vee \bigvee_{j=1}^h \neg y_j$, the algebraic encoding of C, written as p_C , is given by $p_C := \prod_{i=1}^k x_i \cdot \prod_{j=1}^h (1-y_j)$.

The algebraic encoding of a CNF formula $F = C_1 \wedge \ldots \wedge C_m$ is given by the set of polynomial equations $p_F = \{p_{C_1} = 0, \ldots, p_{C_m} = 0, x_1^2 - x_1 = 0, \ldots, x_n^2 - x_n = 0\}$. These last polynomials are necessary in order to impose that the values of x_1, \ldots, x_n are either a 0 or a 1. A Nullstellensatz refutation for F is given by the polynomials $g_1, \ldots, g_m, h_1, \ldots, h_n$ such that:

$$\sum_{i=1}^{m} g_i p_{C_i} + \sum_{j=1}^{m} h_j (x_j^2 - x_j) = 1$$

To clear things up, we notice that through this formulation the concept of truthfulness is inverted: the boolean values 0 and 1 respectively correspond to the algebraic values 1 and 0. For example, the boolean clause C evaluates to 1 when at least a literal inside it evaluates to 1, while a algebraic clause evaluates to 0 when at least a literal inside it evaluates to 0. Likewise, in order for the CNF F to be satisfied by an assignment x each clause must evaluate to 1, while in Nullstellensatz the polynomials inside p_F must all evaluate to 0.

$$\begin{array}{cccc}
0 & \longleftrightarrow & 1 \\
1 & \longleftrightarrow & 0 \\
x_i & \longleftrightarrow & x_i \\
\neg x_i & \longleftrightarrow & 1 - x_i \\
C \lor D & \longleftrightarrow & C \cdot D \\
C \land D & \longleftrightarrow & C + D
\end{array}$$

Figure 4.8. Mappings from boolean encoding to algebraic encoding

When a polynomial q can be derived from a set of axioms P, we write $P \vdash q$. If F is a CNF formula and $P \vdash 1$ then we get a Nullstellensatz refutation.

Consider the following CNF formula:

$$x_1 \wedge (\neg x_1 \vee x_2) \wedge (\neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4) \wedge x_4$$

The algebraic encoding is given by $p_1 = x_1$, $p_i = (1 - x_{i-1})x_i$ when $2 \le i \le 4$ and $p_5 = 1 - x_4$. In order to refute this CNF, we have to find the polynomials $g_1, \ldots, g_5, h_1, \ldots, h_4$ through which

$$\sum_{i=1}^{5} g_i p_i + \sum_{j=1}^{4} h_j (x_j^2 - x_j) = 1$$

To simplify things, we let $h_1, \ldots, h_4 = 0$ in order to have $\sum_{j=1}^4 h_j(x_j^2 - x_j) = 0$.

Let g_1, \ldots, g_5 be equal to:

$$g_{1} = x_{2}x_{3}x_{4}$$

$$g_{2} = x_{3}x_{4}$$

$$g_{3} = x_{4}$$

$$g_{4} = 1$$

$$g_{5} = 1$$

We easily get that:

$$\sum_{i=1}^{5} g_i p_i = x_1 x_2 x_3 x_4 + (1 - x_1) x_2 x_3 x_4 + (1 - x_2) x_3 x_4 + (1 - x_3) x_4 + (1 - x_4)$$

$$= x_2 x_3 x_4 + (1 - x_2) x_3 x_4 + (1 - x_3) x_4 + (1 - x_4)$$

$$= x_3 x_4 + (1 - x_3) x_4 + (1 - x_4)$$

$$= x_4 + (1 - x_4)$$

$$= 1$$

concluding that $P_F \ \vdash \ 1$ and thus proving that the CNF is unsatisfiable. In Nullstellensatz, the *size* of a proof is the total number of monomials of the polynomials that make the proof, i.e. the total number of terms in the sum once fully expanded without simplifying any addition (or subtraction). The *degree* of the proof is the maximum degree of any polynomial $g_i p_i$ or $h_j(x^j + x_j)$. For example, the polynomial $(1-x_1)(1-x_2)x_2x_3$ has size 4 and degree 4 since $(1-x_1)(1-x_2)x_2x_3 = x_2x_3-x_2^2x_3-x_1x_2x_3+x_1x_2^2x_3$. The previous proof example has size 1+2+2+2+2=9 and degree 4.

Nullstellensatz's degree measure vaguely resembles Resolution's width measure. For example, the algebraic encoding a CNF clause C of width w clearly has degree w. Moreover, it's easy to see that a degree upper bound d for the Nullstellensatz refutation of a CNF formula defined on n variables implies a size upper bound of $O(n^{O(d)})$. This result enables us to restrict our interest to the degree of the proof.

Proposition 4.4. Given a CNF formula F defined on n variables, if $P_F \stackrel{\mathsf{NS}}{\vdash} 1$ with degree O(d) then the size of the proof is $n^{O(d)}$.

A common result shows that in Nullstellensatz proofs we can assume that polynomials are multilinear (short for multivariate and linear), meaning that each variable of each term has algebraic multiplicity equal to at most. For example, the polynomial xy + yz is multilinear, while x^2y isn't. This assumption affects the degree of the proof only by a constant factor, which is negligible, allowing us to work easier.

After defining the class FP^{pdt} and proving that $\mathsf{TreeRes}_{\oplus}$ characterizes it, we're interested in studying where this class lies in the TFNP^{dt} hierarchy. It is a well known fact that was shown that $\mathsf{TreeRes}_{\oplus}$ can efficiently simulate $\mathsf{TreeRes}$ but the reverse doesn't hold due to the hardness of simulating weakening rules.

This result also follows in a more natural way from our result $\mathsf{FP}^{dt} \subsetneq \mathsf{FP}^{pdt}$. Parity makes PDTs stronger than decision trees, but how much stronger?

We know that tree-like linear resolution over \mathbb{F}_2 is based on linear forms defined on \mathbb{F}_2 . Since Nullstellensatz over \mathbb{F}_2 also works with polynomials over \mathbb{F}_2 , our intuition was to show that these two proof systems are somehow related one another.

Initially, our first hypothesis was that $\mathsf{TreeRes}_{\oplus}$ is a very powerful tool even capable of efficiently simulating \mathbb{F}_2 -NS. We tried to prove this result by showing that $\mathsf{PPA}^{dt} \subseteq \mathsf{FP}^{pdt}$, which appeared to be out of reach. In a seminal paper [IS20], Itsykson and Sokolov discussed how $\mathsf{TreeRes}_{\oplus}$ cannot efficiently simulate regular Resolution (or RegRes), a restricted proof system derived from Resolution. Due to any regular Resolution proof also being a Resolution proof, this result also implies that $\mathsf{TreeRes}_{\oplus}$ cannot efficiently simulate Res . Thanks to Theorem 3.2 and the fact that $\mathsf{PLS}^{dt}(S_F) = \Theta(\mathsf{Res}(F))$, we conclude the following black-box separation.

Proposition 4.5. $PLS^{dt} \not\subseteq FP^{pdt}$

This result rings a bell: looks like PDTs actually aren't that strong. We quickly shifted our prospective on our previous study on relationships with Nullstellensatz, trying to show that the simulation holds in the other direction. Indeed, we were capable of proving that any TreeRes $_{\oplus}$ can be converted into a small \mathbb{F}_2 -NS proof, providing us a black-box inclusion for our new class.

4.4 Simulation of TreeRes_{\oplus} in NS- \mathbb{F}_2

We prove that Nullstellensatz over \mathbb{F}_2 is capable of efficiently simulating TreeRes \oplus . Given the linear clause $C = \bigvee_{i=1}^k (f_i = \alpha_i)$, the algebraic encoding of C, written as p_C , is given by $p_C := \prod_{i=1}^k (f_i + a_i)$. The algebraic encoding of a linear CNF formula $F = C_1 \wedge \ldots \wedge C_m$ is given by the set of polynomial equations $p_F = \{p_{C_1} = 0, \ldots, p_{C_m} = 0, x_1^2 - x_1 = 0, \ldots, x_n^2 - x_n = 0\}$.

To achieve our result, we first convert the TreeRes $_{\oplus}$ proof into an (almost) equivalent proof through the method shown in Chapter 4 and then balance the degree of the \mathbb{F}_2 – NS proof obtained from the tree-like proof.

The balancing process is obtained through a well-known result called $\frac{1}{2}$, $\frac{2}{3}$ lemma [LSH65] which is commonly used to show that protocols and tree-like circuits (or formulas) can be balanced, meaning that for any tree of size s there is an equivalent tree of size $s^{O(1)}$ and degree $O(\log s)$.

Lemma 4.3. If T is a binary tree of size s > 1 then there is a node v such that the subtree T_v has size between $\left\lfloor \frac{1}{3}s \right\rfloor$ and $\left\lceil \frac{2}{3}s \right\rceil$.

Proof. Let r be the radix of T and let ℓ be a leaf of T with the longest possible path $r \to \ell$. Let v_1, \ldots, v_k be the nodes of such path, where $r = v_1$ and $\ell = v_k$. For each index i such that $1 \le i \le k$, let $a_i b_i$ be the two children of v_i .

Claim 4.3.1. For any index i, if T_{v_i} has size at least $\left\lfloor \frac{1}{3}s \right\rfloor$ then for some index j, where $i \leq j \leq k$, it holds that T_{v_j} has size between $\left\lfloor \frac{1}{3}s \right\rfloor$ and $\left\lceil \frac{2}{3}s \right\rceil$.

Proof of the claim. If T_{v_i} has also size less than $\left\lceil \frac{2}{3}s \right\rceil$ then we are done. Otherwise, since $T_{v_i} = \{v_i\} \cup T_{a_i} \cup T_{b_i}$, one between the subtrees T_{a_i}, T_{b_i} must have size at least $\left\lfloor \frac{1}{2} \lceil 2 \rceil 3s - 1$, meaning that it has size at least $\left\lfloor \frac{1}{3}s \right\rfloor$. If this subtree has also a size at most $\left\lceil \frac{2}{3}s \right\rceil$ then we are done. Instead, if this doesn't hold for both subtrees, we can repeat the process (assuming that $v_{i+1} := a_i$ without loss of generality) since we know that $T_{v_{i+1}}$ has size greater than $\left\lfloor \frac{1}{3}s \right\rfloor$.

By way of contradiction, suppose that this process never finds a subtree with size at most $\left\lceil \frac{2}{3}s \right\rceil$. Then, this would mean that it also holds for $v_k = \ell$. However, since ℓ is a leaf, we know that T_{v_ℓ} must have size 1, which is definitely at most $\left\lceil \frac{2}{3}s \right\rceil$ for any value of s, giving a contradiction. Thus, there must be a node that terminates the process.

Since $T_{v_1} = \{r\} \cup T_{a_1} \cup T_{b_1}$, we know that for both of these subtrees must have at least $\left|\frac{1}{3}s\right|$. By assuming that $a_1 = v_2$, the claim concludes the proof of the lemma.

We'll now show a way to simulate the Resolution rule through \mathbb{F}_2 -Nullstellensatz by converting two NS refutations $P_1 \vdash 1$ and $P_2 \vdash 1$, where P_1 and P_2 are disjoint into a refutation $P_1, P_2 \vdash 1$ with degree equal to the degree of the two initial refutations. To lighten up notation, we will drop the NS for the following .

Lemma 4.4. Given two disjoint axiom sets P_1, P_2 , if $P_1, p \vdash 1$ with degree d_1 and $P_2, 1-p \vdash 1$ with degree d_2 then $P_1, P_2 \vdash 1$ with degree $d_1 + d_2$.

Proof. Assume that $P_1 = \{p_1, \ldots, p_m\}$ and $P_2 = \{q_1, \ldots, q_k\}$ and let $p_{m+1} = p$ and $q_{k+1} = 1 - p$. By hypothesis, we know that

$$\sum_{i=1}^{m+1} g_i p_i + \sum_{j=1}^{n} a_j (x_j^2 - x_j) = 1$$

for some $g_1, \ldots, g_{m+1}, a_1, \ldots, a_n$, implying that:

$$\sum_{i=1}^{m} g_i p_i + \sum_{j=1}^{n} a_j (x_j^2 - x_j) = 1 - g_{m+1} p_{m+1} = 1 - g_{m+1} p$$

Likewise, we know that:

$$\sum_{i=1}^{k+1} r_i p_i + \sum_{j=1}^{n} b_j (x_j^2 - x_j) = 1$$

for some $r_1, \ldots, r_{k+1}, b_1, \ldots, b_n$, implying that:

$$\sum_{i=1}^{k} r_i p_i + \sum_{j=1}^{n} b_j (x_j^2 - x_j) = 1 - r_{k+1} q_{k+1} = 1 - r_{k+1} (1 - p)$$

We notice that:

$$(1-p)\left(\sum_{i=1}^{m} g_i p_i + \sum_{j=1}^{n} a_j (x_j^2 - x_j)\right) = (1-p)(1 - g_{m+1}p)$$

$$= 1 - g_{m+1}p - p + g_{m+1}p^2$$

$$= 1 - p$$

In the last step, we used the fact that, due to multilinearity it holds that $p^2 = p$. Proceeding in a similar way we get that:

$$p\left(\sum_{i=1}^{k} r_{i} p_{i} + \sum_{j=1}^{n} b_{j} (x_{j}^{2} - x_{j})\right) = p$$

Let s_1, \ldots, s_{m+k} be defined as:

$$s_i = \begin{cases} g_i(1-p) & \text{if } 1 \le i \le m \\ r_i p & \text{if } m+1 \le i \le k \end{cases}$$

while h_1, \ldots, h_n are defined as $h_j = a_j(1-p) + b_j p$.

Through simple algebra we get that:

$$\sum_{i=1}^{m+k} s_i p_i + \sum_{j=1}^n h_j (x_j^2 - x_j) =$$

$$(1-p) \left(\sum_{i=1}^m g_i p_i + \sum_{j=1}^n a_j (x_j^2 - x_j) \right) + p \left(\sum_{i=1}^k r_i p_i + \sum_{j=1}^n b_j (x_j^2 - x_j) \right) =$$

$$(1-p)(1-g_{m+1}p) + p (1-r_{k+1}(1-p)) = p+1-p=1$$

concluding that $\Pi := \{s_1, \dots, s_{m+k}, h_1, \dots, h_n\}$ is a proof of $P_1 \cup P_2$ with degree $d_1 + d_2$.

Proposition 4.6. Given a set of axioms P, if $P \stackrel{\mathsf{NS}}{\vdash} q$ with degree d then $P, 1-q \stackrel{\mathsf{NS}}{\vdash} 1$ with the same degree.

Proof. Since $P \vdash_d^{\mathsf{NS}} q$, we know that $\exists g_1, \ldots, g_m, h_1, \ldots, h_n \in \mathbb{F}[x_1, \ldots, x_n]$ such that:

$$\sum_{i=1}^{m} g_i p_i + \sum_{j=1}^{n} h_j (x_j^2 - x_j) = q$$

where deg(q) = d.

Let $p_{m+1} := 1 - q$ and $P' = P \cup \{p_{m+1} = 0\}$. We define $g'_1, \dots, g'_m, g'_{m+1}$ as:

$$g_i' = \begin{cases} 1 & \text{if } i = m+1 \\ g_i & \text{otherwise} \end{cases}$$

With simple algebra we get that:

$$\sum_{i=1}^{m+1} g_i' p_i + \sum_{j=1}^n h_j (x_j^2 - x_j) = g_{m+1}' p_{m+1} + \sum_{i=1}^m g_i' p_i + \sum_{j=1}^n h_j (x_j^2 - x_j) = (1 - q) + q = 1$$

thus $\pi = \{g_1', \dots, g_{m+1}', h_1, \dots, h_n\}$ is a proof of P. Moreover, since $\deg(q) = d$ implies that $\deg(g_{m+1}'p_{m+1}) = d$, it's easy to see that $\deg(\pi) = d$ holds, concluding that $P, 1 - q \vdash_d^{\mathsf{NS}} 1$

Chapter 5

Notes

5.1 Treelike Res and Nullstellensatz

Definition 5.1 (\mathbb{F}_2 -NS encoding of Res). Given a Res linear clause $C = \bigvee_{i=0}^{k_1} x_i \vee \bigvee_{j=0}^{k_2} \overline{x_j}$, the \mathbb{F}_2 -NS encoding of C is defined as $\operatorname{enc}(C) := \prod_{i=0}^{k_1} x_i \cdot \prod_{j=0}^{k_2} (1-x_j)$.

In general, a $\mathsf{Res}(\oplus)$ formula $F = C_1 \wedge \ldots \wedge C_m$ defined on the variables x_1, \ldots, x_n gets encoded in \mathbb{F}_2 -NS as the set of axioms $P_F = \{ \mathrm{enc}(C_i) = 0 \mid 1 \leq i \leq m \} \cup \{ x_j^2 - x_j = 0 \mid 1 \leq j \leq n \}$.

Theorem 5.1. Let F be an unsatisfiable CNF. If T is $Res(\oplus)$ refutation of F of size s then there is NS refutation of F of degree $O(\log(s))$.

Proof. Let $F = C_1 \wedge \cdots \wedge C_n$. We proceed by strong induction on the size s.

If s=1 then the T contains only the empty clause \bot , meaning that it also is one of the starting clauses and thus one of the axioms. We notice that $\operatorname{enc}(\bot)=1$, which easily concludes that $\bot \vdash_0^{\mathsf{NS}} 1$.

Suppose now that s > 1. Let \mathcal{L} be axioms of T. Since T is a binary tree, by Lemma 4.3 we know that there is a clause C_k , i.e. a node, of T such that T_{C_k} has size between $\left|\frac{1}{3}s\right|$ and $\left[\frac{2}{3}s\right]$.

Let $T' = (T - T_{C_k}) \cup \{C_k\}$. Due to the size of T_{C_k} , we get that T' has size between $\left\lfloor \frac{1}{3}s \right\rfloor + 1$ and $\left\lceil \frac{2}{3}s \right\rceil + 1$. Moreover, we notice that since T is a treelike refutation it holds that T_{C_k} and T' work with different clauses (except C_k), thus their axioms are disjoint. Let $\mathcal{L}_1, \mathcal{L}_2$ be the two sets of axioms respectively used by T_{C_k} and T'.

By construction, we notice that T_{C_k} derives the clause C_k using the axioms \mathcal{L}_1 , while T_{C_k} derives the clause \bot using the axioms \mathcal{L}_2, C_k . Thus, since T_{C_k} and T' have size lower than s, by induction hypothesis we get that $\operatorname{enc}(\mathcal{L}_1) \vdash^{\mathsf{NS}}_{c_1 \cdot \log s} \operatorname{enc}(C_k)$ and $\operatorname{enc}(\mathcal{L}_2), \operatorname{enc}(C_k) \vdash^{\mathsf{NS}}_{c_2 \cdot \log s} 1$ for some constants c_1, c_2 . By Proposition 4.6 we easily conclude that $\operatorname{enc}(\mathcal{L}_1), (1 - \operatorname{enc}(C_k)) \vdash^{\mathsf{NS}}_{c_1 \cdot \log s} 1$ and, by Lemma 4.4,

48 5. Notes

that $\operatorname{enc}(\mathcal{L}_1), \operatorname{enc}(\mathcal{L}_2) \vdash_{(c_1+c_2)\cdot \log s}^{\mathsf{NS}} 1$. Finally, since $\mathcal{L}_1 \cup \mathcal{L}_2 = \mathcal{L}$, we get that $\operatorname{enc}(\mathcal{L}) \vdash_{(c_1+c_2)\cdot \log s}^{\mathsf{NS}} 1$, meaning that \mathcal{L} has a NS refutation of degree $O(\log s)$.

5.2 Treelike $Res(\oplus)$ and Nullstellensatz

Definition 5.2 (\mathbb{F}_2 -NS encoding of $\mathsf{Res}(\oplus)$). Given a $\mathsf{Res}(\oplus)$ linear clause $C = \bigvee_{i=0}^k (\ell_i = \alpha_i)$, the \mathbb{F}_2 -NS encoding of C is defined as $\mathsf{enc}_{\oplus}(C) := \prod_{i=0}^k (\alpha - \ell_i)$.

In general, a $\mathsf{Res}(\oplus)$ formula $F = C_1 \wedge \ldots \wedge C_m$ defined on the variables x_1, \ldots, x_n gets encoded in \mathbb{F}_2 -NS as the set of axioms $P_F = \{ \mathrm{enc}_{\oplus}(C_i) = 0 \mid 1 \leq i \leq m \} \cup \{ x_j^2 - x_j = 0 \mid 1 \leq j \leq n \}.$

Theorem 5.2 ($[res_parity]$).

- 1. Every tree-like $Res(\oplus)$ proof of an unsatisfiable formula F may be translated to a parity decision tree for F without increasing the size of the tree.
- 2. Every parity decision tree for an unsatisfiable linear CNF may be translated into a tree-like Res(⊕) proof and the size of the resulting proof is at most twice the size of the parity decision tree (and where the weakening is applied only to the axioms).

Corollary 5.1. Every tree-like $Res(\oplus)$ proof of an unsatisfiable formula F can be converted to a tree-like $Res(\oplus)$ proof of at most double the size and with weakening applied only to the axioms.

Acknowledgements

No idea

Bibliography

- [AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. 1st. USA: Cambridge University Press, 2009. ISBN: 0521424267.
- [BCE+98] Paul Beame, Stephen Cook, Jeff Edmonds, et al. "The Relative Complexity of NP Search Problems". In: Journal of Computer and System Sciences 57.1 (1998), pp. 3–19. ISSN: 0022-0000. DOI: 10.1006/jcss. 1998.1575.
- [BFI23] Sam Buss, Noah Fleming, and Russell Impagliazzo. "TFNP Characterizations of Proof Systems and Monotone Circuits". In: 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). 2023, 30:1–30:40. DOI: 10.4230/LIPIcs.ITCS.2023.30.
- [BG94] Mihir Bellare and Shafi Goldwasser. "The Complexity of Decision Versus Search". In: *SIAM Journal on Computing* 23.1 (1994), pp. 97–119. DOI: 10.1137/S0097539792228289.
- [BGS75] Theodore Baker, John Gill, and Robert Solovay. "Relativizations of the P?= NP Question". In: SIAM Journal on Computing 4.4 (1975), pp. 431–442. DOI: 10.1137/0204037. URL: https://doi.org/10.1137/0204037.
- [BKT14] SAMUEL R. BUSS, LESZEK ALEKSANDER KOŁODZIEJCZYK, and NEIL THAPEN. "FRAGMENTS OF APPROXIMATE COUNT-ING". In: *The Journal of Symbolic Logic* 79.2 (2014), pp. 496–525. ISSN: 00224812, 19435886. URL: http://www.jstor.org/stable/43303745 (visited on 09/03/2024).
- [CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. "Settling the complexity of computing two-player Nash equilibria". In: *J. ACM* 56.3 (May 2009). ISSN: 0004-5411. DOI: 10.1145/1516512.1516516. URL: https://doi.org/10.1145/1516512.1516516.
- [Coo71] Stephen A. Cook. "The complexity of theorem-proving procedures". In: Proceedings of the Third Annual ACM Symposium on Theory of Computing. STOC '71. Shaker Heights, Ohio, USA: Association for Computing Machinery, 1971, pp. 151–158. ISBN: 9781450374644. DOI: 10.1145/800157.805047. URL: https://doi.org/10.1145/800157.805047.

Bibliography 51

[DGP06] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. "The complexity of computing a Nash equilibrium". In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing. STOC '06. Seattle, WA, USA: Association for Computing Machinery, 2006, pp. 71–78. ISBN: 1595931341. DOI: 10.1145/1132516. 1132527. URL: https://doi.org/10.1145/1132516.1132527.

- [DK14] Ding-Zhu Du and Ker-I Ko. "Models of Computation and Complexity Classes". In: *Theory of Computational Complexity*. 2014. Chap. 1, pp. 1–44. ISBN: 9781118595091. DOI: 10.1002/9781118595091.ch1.
- [DMN+21] Susanna F. De Rezende, Or Meir, Jakob Nordström, et al. "Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling". In: Comput. Complex. 30.1 (June 2021). ISSN: 1016-3328. DOI: 10.1007/s00037-020-00201-y. URL: https://doi.org/10.1007/s00037-020-00201-y.
- [FGH+22] John Fearnley, Paul Goldberg, Alexandros Hollender, et al. "The Complexity of Gradient Descent". In: J.~ACM~70.1 (Dec. 2022). ISSN: 0004-5411. DOI: 10.1145/3568163.
- [Gál02] Anna Gál. "A characterization of span program size and improved lower bounds for monotone span programs". In: *Comput. Complex*. (May 2002), pp. 277–296. DOI: 10.1007/s000370100001.
- [GHJ+22a] Mika Göös, Alexandros Hollender, Siddhartha Jain, et al. "Further collapses in TFNP". In: *Proceedings of the 37th Computational Complexity Conference*. CCC '22. Philadelphia, Pennsylvania: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2022. ISBN: 9783959772419. DOI: 10.4230/LIPIcs.CCC.2022.33.
- [GHJ+22b] Mika Göös, Alexandros Hollender, Siddhartha Jain, et al. "Separations in Proof Complexity and TFNP". In: 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS). 2022, pp. 1150–1161. DOI: 10.1109/F0CS54457.2022.00111.
- [GKR+19] Mika Göös, Pritish Kamath, Robert Robere, et al. "Adventures in Monotone Complexity and TFNP". In: 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). 2019, 38:1–38:19. DOI: 10.4230/LIPIcs.ITCS.2019.38.
- [IS20] Dmitry Itsykson and Dmitry Sokolov. "Resolution over linear equations modulo two". In: Annals of Pure and Applied Logic 171.1 (2020), p. 102722. ISSN: 0168-0072. DOI: https://doi.org/10.1016/j.apal. 2019.102722. URL: https://www.sciencedirect.com/science/article/pii/S0168007219300855.
- [KW88] Mauricio Karchmer and Avi Wigderson. "Monotone circuits for connectivity require super-logarithmic depth". In: *Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing.* STOC '88. Chicago, Illinois, USA: Association for Computing Machinery, 1988, pp. 539–550. ISBN: 0897912640. DOI: 10.1145/62212.62265.

52 Bibliography

[Lev73] Leonid A. Levin. "Universal Sequential Search Problems". In: Problems of Information Transmission 9.3 (1973). URL: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=914&option_lang=eng#forwardlinks.

- [LNN+95] László Lovász, Moni Naor, Ilan Newman, et al. "Search Problems in the Decision Tree Model". In: *SIAM J. Discret. Math.* 8.1 (Feb. 1995), pp. 119–132. ISSN: 0895-4801. DOI: 10.1137/S0895480192233867.
- [LSH65] P. M. Lewis, R. E. Stearns, and J. Hartmanis. "Memory bounds for recognition of context-free and context-sensitive languages". In: 6th Annual Symposium on Switching Circuit Theory and Logical Design (SWCT 1965). 1965, pp. 191–202. DOI: 10.1109/FOCS.1965.14.
- [MP91] Nimrod Megiddo and Christos H. Papadimitriou. "On total functions, existence theorems and computational complexity". In: *Theoretical Computer Science* 81.2 (1991), pp. 317–324. ISSN: 0304-3975. DOI: 10.1016/0304-3975(91)90200-L.
- [RGR22] Susanna F. de Rezende, Mika Göös, and Robert Robere. "Proofs, Circuits, and Communication". In: ArXiv abs/2202.08909 (2022).
- [RYM+22] Anup Rao, Amir Yehudayoff, A Mir, et al. "Communication Complexity and Applications". In: 2022.
- [Sip96] Michael Sipser. Introduction to the Theory of Computation. 1st. International Thomson Publishing, 1996. ISBN: 053494728X.