

Institut Jean Lamour
PENSER LES MATÉRIAUX DE DEMAIN

Mise au Point de la Carbonitruration Gazeuse des Alliages 16NiCrMo13 et 23MnCrMo5 : Modélisation et Procédés

Walter Dal'Maz Silva 28 avril 2015

Directeur de Thèse

Thierry Belmonte

Sommaire

- Introduction
- Étude Bibliographique
- Résultats Expérimentaux
- Modélisation du Procédé
- Prochaines Démarches
- Publications et Présentations

Défi

Développement de matériaux d'ingénierie combinant ténacité et résistance à l'usure et à la fatigue mécanique.

Défi

Développement de matériaux d'ingénierie combinant ténacité et résistance à l'usure et à la fatigue mécanique.

But

Contribuer à la compréhension des phénomènes régissant la carbonitruration en phase austénitique à partir d'hydrocarbures et d'ammoniac des aciers faiblement alliés.

Défi

Développement de matériaux d'ingénierie combinant ténacité et résistance à l'usure et à la fatigue mécanique.

But

Contribuer à la compréhension des phénomènes régissant la carbonitruration en phase austénitique à partir d'hydrocarbures et d'ammoniac des aciers faiblement alliés.

Alliages

- ► 16NiCrMo13 : aéronautique.
- ▶ 23MnCrMo5 : automobile.

Méthode

Domaine gazeux «

Méthode

Domaine gazeux {

Méthode

Phénomènes d'interface

Domaine gazeux { Phénomènes d'interface Méthode Domaine solide

Domaine gazeux Cinétique chimique homogène Phénomènes d'interface Méthode Domaine solide {

Domaine gazeux Cinétique chimique homogène

Hydrodynamique Phénomènes d'interface Méthode

Domaine gazeux Cinétique chimique homogène

Hydrodynamique Phénomènes d'interface Méthode

Domaine gazeux Cinétique chimique homogène
Hydrodynamique Phénomènes d'interface Méthode

Métallurgie

Processus Gaz et Surface

Métallurgie

Processus Gaz et Surface

Rôles du C et N dans le matériau.

Métallurgie	Processus Gaz et Surface
Rôles du C et N dans le matériau.	Comportement cinétique des atmosphères.

Métallurgie	Processus Gaz et Surface
Rôles du C et N dans le matériau.	Comportement cinétique des atmosphères.

Cémentation (CO + H₂) et nitruration (NH₃ + N₂ + H₂)
$$\sim \approx 1173 \text{ K}$$

Métallurgie	Processus Gaz et Surface
Rôles du C et N dans le matériau.	Comportement cinétique des atmosphères.
Cémentation (CO + H_2) et nitruration (NH ₃ + N ₂ + H ₂) - \approx 1173 K	C_2H_2 et $NH_3 - T$ =800-1200 K et P ≈ 2026 Pa .

Métallurgie	Processus Gaz et Surface
Rôles du C et N dans le matériau.	Comportement cinétique des atmosphères.
Cémentation (CO + H_2) et nitruration (N H_3 + N_2 + H_2) – \approx 1173 K	C_2 H $_2$ et NH $_3$ − T=800-1200 K et P \approx 2026 Pa.
Microstructure, dureté, profils de diffusion, analyse des précipités	

Métallurgie	Processus Gaz et Surface
Rôles du C et N dans le matériau.	Comportement cinétique des atmosphères.
Cémentation (CO + H ₂) et nitruration (NH ₃ + N ₂ + H ₂) – \approx 1173 K	C_2H_2 et NH ₃ − T=800-1200 K et P≈ 2026 Pa.
Microstructure, dureté, profils de diffusion, analyse des précipités	Chromatographie et spectroscopie des produits issus de la pyrolyse des précurseurs

Métallurgie	Processus Gaz et Surface
Rôles du C et N dans le matériau.	Comportement cinétique des atmosphères.
Cémentation (CO + H_2) et nitruration (NH ₃ + N ₂ + H ₂) - \approx 1173 K	C_2H_2 et NH ₃ – T=800-1200 K et P \approx 2026 Pa.
Microstructure, dureté, profils de diffusion, analyse des précipités	Chromatographie et spectroscopie des produits issus de la pyrolyse des précurseurs
Thermocalc ³ , Dictra ^{3,4}	

Métallurgie	Processus Gaz et Surface
Rôles du C et N dans le matériau.	Comportement cinétique des atmosphères.
Cémentation (CO + H_2) et nitruration (NH ₃ + N ₂ + H ₂) – \approx 1173 K	C_2H_2 et NH ₃ − T=800-1200 K et P≈ 2026 Pa.
Microstructure, dureté, profils de diffusion, analyse des précipités	Chromatographie et spectroscopie des produits issus de la pyrolyse des précurseurs
Thermocalc ³ , Dictra ^{3,4}	Fluent ^{1,2} et code développé pour le traitement du problème

Étude Bibliographique

Sujet de Recherche

Le comportement cinétique chimique de l'atmosphère détermine la méthode de contrôle utilisée pour la mise au point d'un procédé thermochimique.

Sujet de Recherche

Le comportement cinétique chimique de l'atmosphère détermine la méthode de contrôle utilisée pour la mise au point d'un procédé thermochimique.

Caractérisation des Atmosphères^{7–9}

Comportement

Sujet de Recherche

Le comportement cinétique chimique de l'atmosphère détermine la méthode de contrôle utilisée pour la mise au point d'un procédé thermochimique.

Caractérisation des Atmosphères^{7–9}

Équilibre : Cémentation – CO + $H_2^{22,23}$

Comportement

Sujet de Recherche

Le comportement cinétique chimique de l'atmosphère détermine la méthode de contrôle utilisée pour la mise au point d'un procédé thermochimique.

Caractérisation des Atmosphères^{7–9}

Équilibre : Cémentation – CO +
$$H_2^{22,23}$$

Comportement {

Pseudo-Équilibre : Nitruration – $NH_3 + N_2 + H_2^{22,23}$

Sujet de Recherche

Le comportement cinétique chimique de l'atmosphère détermine la méthode de contrôle utilisée pour la mise au point d'un procédé thermochimique.

Caractérisation des Atmosphères^{7–9}

$$Comportement \begin{cases} \text{\'e}quilibre: C\'ementation} - CO + H_2^{22,23} \\ Pseudo-\'equilibre: Nitruration - NH_3 + N_2 + H_2^{22,23} \\ Hors-\'equilibre \begin{cases} C\'ementation - Hydrocarbures^{11,14,25} \\ Nitruration \`a basse pression - NH_3 \end{cases}$$

► Implications de l'absence d'équilibre :

- Implications de l'absence d'équilibre :
 - i. soit consommation excessive de gaz pour obtenir une atmosphère saturée et avec forte pollution du four

- ► Implications de l'absence d'équilibre :
 - i. soit consommation excessive de gaz pour obtenir une atmosphère saturée et avec forte pollution du four
 - ii. soit le besoin de simulation couplée de l'hydrodynamique du four et cinétique chimique des précurseurs.

- ► Implications de l'absence d'équilibre :
 - i. soit consommation excessive de gaz pour obtenir une atmosphère saturée et avec forte pollution du four
 - ii. soit le besoin de simulation couplée de l'hydrodynamique du four et cinétique chimique des précurseurs.
- ► Le nombre important d'espèces qui doit être pris en compte empêche une telle simulation pour géométries complexes dans un temps raisonnable ^{5,11}.

- ► Implications de l'absence d'équilibre :
 - i. soit consommation excessive de gaz pour obtenir une atmosphère saturée et avec forte pollution du four
 - soit le besoin de simulation couplée de l'hydrodynamique du four et cinétique chimique des précurseurs.
- ► Le nombre important d'espèces qui doit être pris en compte empêche une telle simulation pour géométries complexes dans un temps raisonnable ^{5,11}.
- ▶ Plusieurs méthodes de simplification du problème chimique sont disponibles ^{5,16,20}.

Étude Bibliographique Atmosphères Hydrocarbures

▶ Méthode de simplification adoptée :

DRG – « Graphe Relationnel Orienté 16 ».

Étude Bibliographique Atmosphères Hydrocarbures

Méthode de simplification adoptée :

DRG – « Graphe Relationnel Orienté 16 ».

Mécanisme pour la pyrolyse de l'acétylène :

Norinaga *et collab*. ^{17,18} – 241 espèces et 903 réactions.

Étude Bibliographique Atmosphères Hydrocarbures

Méthode de simplification adoptée :

DRG – « Graphe Relationnel Orienté 16 ».

Mécanisme pour la pyrolyse de l'acétylène :

Norinaga et collab. ^{17,18} – 241 espèces et 903 réactions.

Mécanisme pour la pyrolyse de l'ammoniac :

Dirtu et collab. 6 – 11 espèces et 21 réactions.

Résultats Expérimentaux

Résultats Expérimentaux Réponse Métallurgique des Alliages Étudiés

► Microanalyses chimiques pour les profils de C et N.

- ▶ Microanalyses chimiques pour les profils de C et N.
- ► Simulation de l'azote résiduel en solution solide à l'aide de Thermocalc³.

- ► Microanalyses chimiques pour les profils de C et N.
- ► Simulation de l'azote résiduel en solution solide à l'aide de *Thermocalc*³.
- ► Modèle de durcissement par trempe : Norstrom ^{15,19}

$$H \propto \sqrt{x_i}.$$

- ► Microanalyses chimiques pour les profils de C et N.
- ► Simulation de l'azote résiduel en solution solide à l'aide de *Thermocalc*³.
- ▶ Modèle de durcissement par trempe : Norstrom ^{15,19}

$$H \propto \sqrt{x_i}$$
.

▶ Plateau de durcissement pour les deux alliages.

Réponses Métallurgiques Modèle de Norstrom

16NiCrMo13

Filiations de dureté similaires ont été obtenues pour la carbonitruration et la cémentation.

16NiCrMo13

Filiations de dureté similaires ont été obtenues pour la carbonitruration et la cémentation.

16NiCrMo13 Gain en dureté à 0,2 mm : de l'ordre de 150 HV.

Filiations de dureté similaires ont été obtenues pour la carbonitruration et la cémentation.

16NiCrMo13 Gain en dureté à 0,2 mm : de l'ordre de 150 HV.

Précipitation secondaire pendant le revenu de l'alliage nitruré.

16NiCrMo13	Filiations de dureté similaires ont été obtenues pour la carbonitruration et la cémentation. Gain en dureté à 0,2 mm : de l'ordre de 150 HV.
	Précipitation secondaire pendant le revenu de l'alliage nitruré.
	Pour une teneur élevée d'azote cet alliage a présenté un durcissement supérieur lors de la
23MnCrMo5	carbonitruration par rapport à la cémentation.

	Filiations de dureté similaires ont été obtenues pour la carbonitruration et la cémentation.
16NiCrMo13	Gain en dureté à 0,2 mm : de l'ordre de 150 HV.
	Précipitation secondaire pendant le revenu de l'alliage nitruré.
23MnCrMo5	Pour une teneur élevée d'azote cet alliage a présenté un durcissement supérieur lors de la carbonitruration par rapport à la cémentation.
	Gain en dureté à 0,2 mm : $\approx 150 \text{HV}$ (cémentation) et $\approx 220 \text{HV}$ (carbonitruration).

Résultats Expérimentaux Caractérisation des Atmosphères Employées

► Faibles nombres de Reynolds (Re ≈ 10): laminaire.

- ► Faibles nombres de Reynolds (Re ≈ 10): laminaire.
- ▶ Mesure de la distribution de temps de séjour : détecteur FID.

- ► Faibles nombres de Reynolds (Re ≈ 10): laminaire.
- ▶ Mesure de la distribution de temps de séjour : détecteur FID.
- ► Chromatographie en phase gazeuse à la pression atmosphérique.

- ► Faibles nombres de Reynolds (Re ≈ 10): laminaire.
- ▶ Mesure de la distribution de temps de séjour : détecteur FID.
- Chromatographie en phase gazeuse à la pression atmosphérique.
- Mesures limitées aux hydrocarbures jusqu'à C3.

- ► Faibles nombres de Reynolds (Re ≈ 10): laminaire.
- ▶ Mesure de la distribution de temps de séjour : détecteur FID.
- ► Chromatographie en phase gazeuse à la pression atmosphérique.
- Mesures limitées aux hydrocarbures jusqu'à C3.
- ▶ Bilan de matière pour le carbone et pour l'hydrogène.

- ▶ Faibles nombres de Reynolds (Re ≈ 10) : laminaire.
- ▶ Mesure de la distribution de temps de séjour : détecteur FID.
- ► Chromatographie en phase gazeuse à la pression atmosphérique.
- Mesures limitées aux hydrocarbures jusqu'à C3.
- ▶ Bilan de matière pour le carbone et pour l'hydrogène.
- ► Estimation des espèces non mesurées.

Distribution de Temps de Séjour Densité de Probabilité

Distribution de Temps de Séjour Densité de Probabilité Normalisée

Distribution de Temps de Séjour Integrale de la Densité de Probabilité Normalisée

Distribution de Temps de Séjour Comportements Limites

Caractérisation des Atmosphères Hydrodynamique

► Réacteur avec comportement intermédiaire entre :

« Piston » et « Parfaitement Agité (RPA) ».

Caractérisation des Atmosphères Hydrodynamique

► Réacteur avec comportement intermédiaire entre :

« Piston » et « Parfaitement Agité (RPA) ».

► Comportement faiblement couplé au débit.

Caractérisation des Atmosphères Hydrodynamique

► Réacteur avec comportement intermédiaire entre :

« Piston » et « Parfaitement Agité (RPA) ».

- ► Comportement faiblement couplé au débit.
- ► Temps caractéristique de l'ordre de 600 s pour un débit de 500 cm³.mn⁻¹.

Pyrolyse de l'Acétylène Évolution avec la Température

Pyrolyse de l'Acétylène Apport en Carbone et Hydrogène

Pyrolyse de l'Acétylène Rapport ^C/H des Espèces Non-mesurées

Pyrolyse de l'Acétylène Rapport ^C/H des Espèces Non-mesurées

Pyrolyse de l'Acétylène Rapport ^C/H des Espèces Non-mesurées

Caractérisation des Atmosphères Composition

▶ Décomposition détectable de C₂H₂ à partir de 873 K.

Caractérisation des Atmosphères Composition

- ▶ Décomposition détectable de C₂H₂ à partir de 873 K.
- ▶ Moins de 30% du carbone injecté dans le réacteur est récupéré à la sortie quand la température est de l'ordre de 1173 K.

Caractérisation des Atmosphères Composition

- ► Décomposition détectable de C₂H₂ à partir de 873 K.
- ▶ Moins de 30% du carbone injecté dans le réacteur est récupéré à la sortie quand la température est de l'ordre de 1173 K.
- Le bilan de carbone (70 à 80%) se trouve sous forme d'hydrocarbures avec plus de 3 atomes de carbone et rapport ^C/H ≥ 3 (formation de HAP ou suie).

Modélisation du Procédé

Système d'équations pour le modèle cinétique élémentaire zérodimensionnel :

Équations

Système d'équations pour le modèle cinétique élémentaire zérodimensionnel :

Système d'équations pour le modèle cinétique élémentaire zérodimensionnel :

Système d'équations pour le modèle cinétique élémentaire zérodimensionnel :

$$\begin{split} \text{\'equations} \left\{ \begin{split} \frac{\partial Y_i}{\partial t} &= \frac{\dot{\omega}_i}{\rho} & \text{Esp\`eces} \\ \frac{\partial T}{\partial t} &= \frac{1}{\rho c_p} \sum_{k=1}^{N_{espec}} h_k \dot{\omega}_k & \text{\'energie} \end{split} \right. \end{split}$$

Où la vitesse de formation d'une espèce est donnée par :

$$\dot{\omega}_i = M_i \sum_{k=1}^{N_{reac}} (\nu_{ik}'' - \nu_{ik}') \mathbb{C}_k \left[k_{fk} \prod_{j=1}^{N_{espec}} \left(\frac{Y_j \rho}{M_j} \right)^{\nu_{jk}'} - k_{bk} \prod_{j=1}^{N_{espec}} \left(\frac{Y_j \rho}{M_j} \right)^{\nu_{jk}''} \right]$$

► Code développé dans les langages C++ et Python avec les librairies TChem²¹, Cantera¹⁰ et CVode¹³.

- ► Code développé dans les langages C++ et Python avec les librairies TChem²¹, Cantera¹⁰ et CVode¹³.
- Code validé à partir de reproduction des résultats de Norinaga et Deutschmann 18.

- ► Code développé dans les langages C++ et Python avec les librairies TChem²¹, Cantera¹⁰ et CVode¹³.
- Code validé à partir de reproduction des résultats de Norinaga et Deutschmann 18.
- Possibilité de réaliser l'analyse de sensibilité par rapport aux concentrations des espèces²⁴.

- ► Code développé dans les langages C++ et Python avec les librairies TChem²¹, Cantera¹⁰ et CVode¹³.
- Code validé à partir de reproduction des résultats de Norinaga et Deutschmann 18.
- Possibilité de réaliser l'analyse de sensibilité par rapport aux concentrations des espèces²⁴.
- ► Modèles de réacteur parfaitement agité et piston.

- ► Code développé dans les langages C++ et Python avec les librairies TChem²¹, Cantera¹⁰ et CVode¹³.
- Code validé à partir de reproduction des résultats de Norinaga et Deutschmann 18.
- Possibilité de réaliser l'analyse de sensibilité par rapport aux concentrations des espèces²⁴.
- ▶ Modèles de réacteur parfaitement agité et piston.
- ► Mécanisme réduit de Graf¹² comparé aux résultats expérimentaux.

Modélisation des Atmosphères Réponse Temporelle – Réacteur Piston à 1173 K

Modélisation des Atmosphères Évolution de la Masse Molaire Moyenne à 1173 K

Modélisation des Atmosphères Réponse Temporelle – Réacteur Agité Ouvert à 1173 K

Utilisation des Données de DTS Réacteur avec Profil de Température

Conversion

DTS + Modèle de Mélange + Cinétique

Utilisation des Données de DTS Réacteur avec Profil de Température

Conversion

DTS + Modèle de Mélange + Cinétique

Tableau: Comparaison entre mesures expérimentales et simulation. Zone isotherme à 1173 K.

	H_2	CH_4	C_2H_2	C_2H_4
Mesuré	$1,1\times10^{-2}$	$8,1\times10^{-4}$	$4,9\times10^{-3}$	$7,2\times10^{-4}$
S.D.	$1,2 \times 10^{-2}$	$1,0\times10^{-3}$	$3,3\times10^{-3}$	$7,9 \times 10^{-4}$

Étape	Code	Simulation
Solution zéro-dimensionnelle : homogène		
Analyse de sensibilité : homogène		
Solution zéro-dimensionnelle : homogène et		
hétérogène		
Simplification des modèles cinétiques		
Simulation 2-D avec <i>Fluent</i> ^{1,2}		

Étape	Code	Simulation
Solution zéro-dimensionnelle : homogène		
Analyse de sensibilité : homogène		
Solution zéro-dimensionnelle : homogène et		
hétérogène		
Simplification des modèles cinétiques		
Simulation 2-D avec <i>Fluent</i> ^{1,2}		

Étape	Code	Simulation
Solution zéro-dimensionnelle : homogène		
Analyse de sensibilité : homogène		
Solution zéro-dimensionnelle : homogène et		
hétérogène		
Simplification des modèles cinétiques		
Simulation 2-D avec Fluent ^{1,2}		

Étape	Code	Simulation
Solution zéro-dimensionnelle : homogène		
Analyse de sensibilité : homogène		
, ,		
Solution zéro-dimensionnelle : homogène et hétérogène		
Simplification des modèles cinétiques		
Simulation 2-D avec <i>Fluent</i> ^{1,2}		

Étape	Code	Simulation
Solution zéro-dimensionnelle : homogène		
Analyse de sensibilité : homogène		
Solution zéro-dimensionnelle : homogène et hétérogène		
Simplification des modèles cinétiques		
Simulation 2-D avec Fluent ^{1,2}		

Étape	Code	Simulation
Solution zéro-dimensionnelle : homogène		
Analyse de sensibilité : homogène		
Solution zéro-dimensionnelle : homogène et hétérogène		
Simplification des modèles cinétiques		
Simulation 2-D avec Fluent ^{1,2}		

Étape	Code	Simulation
Solution zéro-dimensionnelle : homogène		
Analyse de sensibilité : homogène		
Solution zéro-dimensionnelle : homogène et hétérogène		
Simplification des modèles cinétiques		
Simulation 2-D avec Fluent ^{1,2}		

Étape	Code	Simulation
Solution zéro-dimensionnelle : homogène		
Analyse de sensibilité : homogène		
Solution zéro-dimensionnelle : homogène et hétérogène		
Simplification des modèles cinétiques		
Simulation 2-D avec Fluent ^{1,2}		

Étape	Code	Simulation
Solution zéro-dimensionnelle : homogène		
Analyse de sensibilité : homogène		
Solution zéro-dimensionnelle : homogène et		
hétérogène Simplification des modèles cinétiques		
Simulation 2-D avec <i>Fluent</i> ^{1,2}		

Étape	Code	Simulation
Solution zéro-dimensionnelle : homogène		
Analyse de sensibilité : homogène		
Solution zéro-dimensionnelle : homogène et hétérogène		
Simplification des modèles cinétiques		
Simulation 2-D avec Fluent ^{1,2}		

Étape	Code	Simulation
Solution zéro-dimensionnelle : homogène		
Analyse de sensibilité : homogène		
Solution zéro-dimensionnelle : homogène et hétérogène		
Simplification des modèles cinétiques		
Simulation 2-D avec <i>Fluent</i> ^{1,2}		

Activité Durée Prévue

Activité	Durée Prévue
Modélisation des processus de surface.	03/2015 - 07/2015

Activité	Durée Prévue
Modélisation des processus de surface.	03/2015 - 07/2015
Mesure par spectroscopie infrarouge des espèces formées avec et en absence d'un échantillon métallique.	05/2015 - 06/2015

Activité	Durée Prévue
Modélisation des processus de surface.	03/2015 - 07/2015
Mesure par spectroscopie infrarouge des espèces formées avec et en absence d'un échantillon métallique.	05/2015 - 06/2015
Suivi de la pyrolyse du C ₂ H ₂ et du NH ₃ à basse pression par chromatographie.	07/2015 - 08/2015

Activité	Durée Prévue
Modélisation des processus de surface.	03/2015 - 07/2015
Mesure par spectroscopie infrarouge des espèces formées avec et en absence d'un échantillon métallique.	05/2015 - 06/2015
Suivi de la pyrolyse du C ₂ H ₂ et du NH ₃ à basse pression par chromatographie.	07/2015 - 08/2015
Essais de carbonitruration à basse pression.	08/2015 - 10/2015

Activité Durée Prévue

Activité	Durée Prévue
Analyse par microscopie électronique en transmission des précipités formés lors du revenu des échantillons nitrurés et carbonitrurés.	07/2015 - 12/2015

Prochaines Démarches

Activité	Durée Prévue
Analyse par microscopie électronique en transmission des précipités formés lors du revenu des échantillons nitrurés et carbonitrurés.	07/2015 - 12/2015
Simplification des modèles cinétiques pour emploi en simulations CFD.	08/2015 - 02/2016

Prochaines Démarches

Activité	Durée Prévue
Analyse par microscopie électronique en transmission des précipités formés lors du revenu des échantillons nitrurés et carbonitrurés.	07/2015 - 12/2015
Simplification des modèles cinétiques pour emploi en simulations CFD.	08/2015 - 02/2016
Rédaction de publications à partir des résultats obtenus.	03/2015 - 04/2016

Publications et Présentations

Publications et Présentations

- Rapport d'avancement de première année de thèse livré à l'IRT M2P: Mise au Point de la Carbonitruration Gazeuse des Alliages 16NiCrMo13 et 23MnCrMo5: Modélisation et Procédés.
- Présentation orale intitulée « Thermochemical treatments of alloys 16NiCrMo13 and 23MnCrMo5 : the roles of carbon and nitrogen on metallurgical response to carbonitriding » acceptée pour le « 22éme Congrès de l'IFHTSE » à Venise, le 20 à 22 mai 2015. Auteurs : Walter Dal'Maz Silva, Jacky Dulcy, Grégory Michel, Pascal Lamesle et Thierry Belmonte.

Publications et Présentations

Publication intitulée « The roles of carbon and nitrogen on metallurgical response of chromium-bearing low allow steels » rédigée et en vérification finale pour soumission au journal « Materials Science and Engineering A ». Auteurs : Walter Dal'Maz Silva, Jacky Dulcy, Grégory Michel, Pascal Lamesle et Thierry Belmonte.

Merci de Votre Attention!

Références

Références I

- 1. 2012, *ANSYS FLUENT Theory Guide*, ANSYS Inc., Canonsburg, PA, USA.
- 2. 2012, ANSYS FLUENT User's Guide, ANSYS Inc., Canonsburg, PA, USA.
- 3. ANDERSSON, J.-O., T. HELANDER, L. HÖGLUND, P. SHI et B. SUNDMAN. 2002, «Thermo-calc & dictra, computational tools for materials science », *CALPHAD*, vol. 26, n° 2, p. 273–312.
- BORGENSTAM, A., A. ENGSTRÖM, L. HÖGLUND et J. A. GREN. 2000, « Dictra, a tool for simulation of diffusional transformations in alloys », *Journal of Phase Equilibria*, vol. 21, no 3, p. 269–280.

Références II

- COLES, T. M. K. 2011, Model Simplification of Chemical Kinetics Systems Under Uncertainty, mémoire de maîtrise, Massachusetts Institute of Technology.
- 6. DIRTU, D., L. ODOCHIAN, A. PUI et I. HUMELNICU. 2006, «Thermal decomposition of ammonia. n2h4 - an intermediate reaction product », *Central European Journal of Chemistry*.
- 7. DULCY, J. et M. GANTOIS. 2007, « Théorie des traitements thermochimiques cémentation. carburation », *Techniques de l'Ingénieur*.
- 8. DULCY, J. et M. GANTOIS. 2012, « Formation et durcissement de la couche de diffusion en nitruration et nitrocarburation systèmes fer-chrome-azote et fer-chrome-azote-carbone », *Techniques de l'Ingénieur*.

Références III

- 9. GANTOIS, M. et J. DULCY. 2010, « Théorie des traitements thermochimiques nitruration nitrocarburation systèmes binaire et ternaire fer-azote et fer-azote-carbone couche de combinaison », *Techniques de l'Ingénieur*.
- GOODWIN, D. G., H. K. MOFFAT et R. L. SPETH. 2014, « Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes », http://www.cantera.org. Version 2.1.2.
- 11. GOROCKIEWICZ, R. 2011, « The kinetics of low-pressure carburizing of low alloy steels », *Vacuum*, vol. 86, p. 448–451.
- 12. GRAF, F. 2007, *Pyrolyse- unf Aufkohlungsverhalten von C*₂*H*₂ bei der Vakuumaufkohlung von Stahl, thèse de doctorat, Universität Karlsruhe (TH).

Références IV

- 13. HINDMARSH, A. C., P. N. BROWN, K. E. GRANT, S. L. LEE, R. SERBAN, D. E. SHUMAKER et C. S. WOODWARD. 2005, « SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers », *ACM Transactions on Mathematical Software*, vol. 31, n° 3, p. 363–396.
- 14. KHAN, R. U. 2008, *Vacumm Gas Carburizing Fate of Hydrocarbons*, thèse de doctorat, Universität Karlsruhe (TH).
- 15. KRAUSS, G. 1999, «Martensite in steel: strength and structure», *Materials Science and Engineering:* A, vol. 273–275, n° 0, doi: http://dx.doi.org/10.1016/S0921-5093(99)00288-9, p. 40 57, ISSN 0921-5093.

Références V

- Lu, T. et C. K. Law. 2005, «A directed relation graph method for mechanism reduction», *Proceedings of the Combustion Institute*, vol. 30, n° 1, doi: http://dx.doi.org/10.1016/j.proci.2004.08.145, p. 1333 – 1341, ISSN 1540-7489.
- 17. NORINAGA, K., O. DEUTSCHMANN, N. SAEGUSA et J. ICHIRO HAYASHI. 2009, « Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry », *Journal of Analytical and Applied Pyrolysis*, vol. 86, no 1, doi:http://dx.doi.org/10.1016/j.jaap.2009.05.001, p. 148 160, ISSN 0165-2370.

Références VI

- 18. NORINAGA, K. et O.DEUTCHMANN. 2007, « Detailed kinetic modeling of gas-phase reactions in the chemical vapor deposition of carbon from light hydrocarbons », *Industrial and Engineering Chemistry Research*, vol. 46, no. 11, p. 3547–3557.
- 19. NORSTROM, L.-A. 1976, « On the yield strength of quenched low-carbon martensite », *Scandinavian Journal of Metallurgy*, vol. 5, p. 159–165.
- 20. PEPIOT-DESJARDINS, P. et H. PITSCH. 2008, « An efficient error-propagation-based reduction method for large chemical kinetic mechanisms », *Combustion and Flame*, vol. 154, nº 1–2, doi:http://dx.doi.org/10.1016/j.combustflame.2007.10.020, p. 67 81, ISSN 0010-2180.

Références VII

- 21. SAFTA, C., H. NAJM et O. KNIO. 2011, *TChem A Software Toolkit for the Analysis of Complex Kinetic Models*, Sandia Corporation, Canonsburg, PA, USA.
- 22. SLYCKE, J. et T. ERICSSON. 1981, « A study of reactions occurring during the carbonitriding process », *Journal of Heat Treatment*, vol. 2, p. 3–19.
- 23. SLYCKE, J. et T. ERICSSON. 1981, « A study of reactions occurring during the carbonitriding process part ii », *Journal of Heat Treatment*, vol. 2, p. 97–112.
- 24. Turányi, T. et T. Bérces. 1989, « Reaction rate analysis of complex kinetic systems », *International Journal of Chemical Kinetics*, vol. 21, p. 83–99.

25. YADA, K. et O. WATANABE. 2013, « Reactive flow simulation of vacuum carburizing by acetylene gas », *Computers and Fluids*, vol. 79, p. 65–76.