TEMA D'ESAME

Domanda A

Si sintetizzi la funzione $F = [f_1, f_2, f_3]$ è così definita:

$$f_1 = \Sigma(0,1,3,6), \Delta(2,5)$$

$$f_2 = \Sigma(2,5), \Delta(1,3,6)$$

$$f_3 = \Sigma(1,3,5,6), \Delta(0,2)$$

A tale scopo si utilizzi il metodo di Quine-McCluskey per funzioni a più uscite, considerando il numero di letterali come metrica di valutazione. Si indichi infine il costo complessivo della funzione ottenuta.

Domanda B

Utilizzando il numero minimo di multiplexer a due ingressi – e comunque non più di 4 – si sintetizzi la funzione $f(a,b,c,d)=abc+c\bar{d}(\bar{a}+\bar{b})$.

Domanda C

Considerando le macchine a stati finiti completamente specificate, si definisca in modo formale la relazione di indistinguibilità fra stati e si dimostri che essa induce una partizione sull'insieme degli stati.

Domanda D

Una macchina a stati riceve una sequenza di bit b_t che interpreta come la codifica binaria di un numero intero positivo, in cui il bit b_0 è il più significativo. Al tempo t=0, il valore numerico è pertanto $B_0=[b_0]$, al tempo t=1 il valore diviene $B_1=[b_0b_1]=2B_0+b_1$, al tempo t=2 diviene $B_2=[b_0b_1b_2]=2B_1+b_2$ e così via. Si progetti una macchina di Moore che riceve in ingresso i bit b_t e ad ogni ciclo di clock produce come uscita il valore $z=B_t \mod 5$. Si disegni dapprima il diagramma di transizione di stato della macchina, quindi la si sintetizzi usando flipflop di tipo D. Per affrontare la soluzione si ricordi che $B_t \mod 5 = m$ implica che $B_t = 5n + m$ con n intero positivo.