MISOLLAR

Ikki vektorning skalyar koʻpaytmasi. Vektorlarning uzunligi va ikki vektor orasidagi burchak

- 1. \vec{a} , \vec{b} vektorlar orasidagi burchak $\varphi = \frac{2\pi}{3}$ va $|\vec{a}| = 4$, $|\vec{b}| = 4$ ga teng bo'lsa, \vec{a}^2 , \vec{b}^2 , $(\vec{a} + \vec{b})^2$, $(\vec{a} \vec{b})^2$, $(\vec{a} \vec{b})^2$, $(\vec{a} 2\vec{b})(\vec{a} + 2\vec{b})$ larni hisoblang.
- $2. \overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}$ vektorlar va $|\overrightarrow{a}| = 2, |\overrightarrow{b}| = 4$, $\varphi = \frac{\pi}{3}$ lar berilgan. *AOB* uchburchakning *OA* tomoni va *OM* medianasi orasidagi α burchakni hisoblang.
- 3. ABCD to 'g'ri to 'rtburchakning A(1,-2,2); B(1,4,0); C(-4,1,1); D(-5,-5,3) uchlari berilgan. Uning diagonallari orasidagi α burchakni hisoblang.
- 4. $\vec{a} = \{4, -2, -4\}; \vec{b} = \{6, -3, 2\}$ vektorlar berilgan. $\vec{a}\vec{b}, \vec{a}, \vec{b}, (\vec{a} + \vec{b}), (\vec{a} \vec{b})^2$ $(2\vec{a} 3\vec{b})(\vec{a} + 2\vec{b})$ larni hisoblang.
- 5. ABC uchburchakning A(-1,-2,4); B(-4,-2,0); C(3,-2,1) uchlari berilgan. B uchining tashqi burchagini toping.
- 6. α ning qanday qiymatida $\vec{a} = \alpha \vec{i} 3\vec{j} + 2\vec{k}$ va $\vec{b} = \vec{i} + 2\vec{j} \alpha \vec{k}$ vektorlar oʻzaro perpendikular boʻladi.
- 7. $\vec{a}\vec{b} = 3$ shartni qanoatlantiruvchi $\vec{a} = \{2,1,-1\}$ vektorga kollinear boʻlgan \vec{b} vektorning koordinatalarini toping.
- 8. Yoyilmalarda $|\vec{p}| = 2\sqrt{2}$, $|\vec{q}| = 4$ va $\varphi = \frac{\pi}{2}$ ekanligi ma'lum bo'lsa, $\vec{a} = 5\vec{p} + 2\vec{q}$ va $\vec{b} = \vec{p} 3\vec{q}$ vektorlarga yasalgan parallelogram diagonallarining uzunligi hisoblansin.
- 9. $\vec{a}(3,1)$ va $\vec{b}(1,3)$ vektorlarga qurilgan parallelogram diagonallarining uzunliklari yig'indisini toping.
- 10. Agar $|\vec{a}| = 6$, $|\vec{a} + \vec{b}| = 11$ va $|\vec{a} \vec{b}| = 7$ bo'lsa, $|\vec{b}|$ ning qiymatini toping.
- 11. $\overrightarrow{AB}(-3,0,2)$ va $\overrightarrow{AC}(7,-2,2)$ vektorlar \overrightarrow{ABC} uchburchakning tomonlaridir. Shu uchburchakning \overrightarrow{AN} medianasi uzunligini toping.
- 12. $|\vec{a}| = 3$, $|\vec{b}| = 4$. $|\vec{a}| = 3$ vektorlar orasidagi burchak 60° ga teng. λ ning qanday qiymatida $(\vec{a} \lambda \vec{b})$ vektor \vec{a} vektorga perpendikulyar boʻladi?
- 13. Agar M(1,1); N(2,3) va K(-1,2) boʻlsa, MNK uchburchakning eng katta burchagini toping.
- $14.\vec{a} = 2\vec{i} + \vec{j}$ va $\vec{b} = -2\vec{j} + \vec{k}$ vektorlarga yasalgan parallelogrammning diagonallari orasidagi burchakni toping.
- 15. \vec{i} , \vec{j} , \vec{k} koordinata oʻqlari boʻylab yoʻnalgan birlik vektorlar va $\vec{a} = 5\vec{i} + \sqrt{2}\vec{j} 3\vec{k}$ boʻlsa, \vec{a} va \vec{i} vektorlar orasidagi burchakning kosinusini toping.

- 16. Uchta $\vec{a} = \{2,4\}$, $\vec{b} = \{-3,1\}$, $\vec{c} = \{5,-2\}$ vektor berilgan. 1) $2\vec{a} + 3\vec{b} 5\vec{c}$ 2) $\vec{a} + 24\vec{b} + 14\vec{c}$ vektorlar topilsin.
- 17. Uchta $\vec{a} = \{5,3\}; \vec{b} = \{2,0\}; \vec{c} = \{4,2\}$ vektor berilgan. \vec{b} vektorning boshini \vec{a} vektorning oxiri bilan \vec{b} vektorning oxiri bilan \vec{c} vektorning boshini tutashtirdirganda \vec{a} , \vec{b} , \vec{c} vektorlar uchburchak hosil qilinsin.
- 18. Quyidagi hollarning har birida \vec{C} vektorni \vec{a} va \vec{b} vektorlarning chiziqli kombinatsiyasi shaklida ifodalang:

1)
$$\vec{a} = \{4, -2\}; \vec{b} = \{3, 5\}; \vec{c} = \{1, -7\}$$

2)
$$\vec{a} = \{5,4\}; \vec{b} = \{-3,0\}; \vec{c} = \{19,8\}$$

3)
$$\vec{a} = \{i-6,2\}; \vec{b} = \{4,7\}; \vec{c} = \{9,-3\}$$

- 19. $\vec{a} = \{6, -8\}$ vektor berilgan. \vec{a} ga kolinear va: 1) \vec{a} bilan bir xil yoʻnalgan; 2) \vec{a} bilan qarama-qarshi yoʻnalgan birlik vektor topilsin.
- 20. Uchta $\vec{a} = \{5,7,2\}; \vec{b} = \{3,0,4\}; \vec{c} = \{-6,1,-1\}$ vektor berilgan.
- 1) $3\vec{a} 2\vec{b} + \vec{c}$
- 2) $5\vec{a} + 6\vec{b} + 4\vec{c}$ vektorlar topilsin.
- 21. Quyidagi hollarning har birida \vec{d} vektorni \vec{a} , \vec{b} , \vec{c} vektorlarning chiziqli kombinatsiyasi shaklida ifodalang:

1)
$$\vec{a} = \{2,3,1\}; \vec{b} = \{5,7,0\}; \vec{c} = \{3,-2,4\}; \vec{d} = \{4,12,-3\}$$

2)
$$\vec{a} = \{5, -2, 0\}; \vec{b} = \{0, -3, 4\}; \vec{c} = \{-6, 0, 1\}; \vec{d} = \{25, -22, 16\}$$

3)
$$\vec{a} = \{3,5,6\}; \vec{b} = \{2,-7,1\}; \vec{c} = \{12,0,6\}; \vec{d} = \{0,20,18\}$$

- 22. $\vec{a}(3,5,7)$; $\vec{b}(-2,6,1)$ va $\vec{c}(2,-4,0)$ vektorlar uchun: $1)\vec{a}\vec{b}$, $2)\vec{a}\vec{c}$, $3)\vec{b}\vec{c}$, $4)(2\vec{a}-\vec{b})(3\vec{b}+\vec{c})$, $(3\vec{a}+2\vec{c})(2\vec{b}-c)$ skalyar koʻpaytmasini hisoblang.
- 23.Koordinatalari bilan berilgan $\vec{a}(6,-8); \vec{b}(12,9); \vec{c}(2,-5); \vec{d}(3,7); \vec{m}(-2,6); \vec{n}(3,-9)$ vektorlar orasidagi $1)\vec{a} \vec{b}; 2)\vec{c} \vec{d}; 3)\vec{m} \vec{n}$ ni toping.
- 24. Koordinatalari bilan berilgan $\vec{a}(8,4,1); \vec{b}(2,-2,1); \vec{c}(2,5,4); \vec{d}(6,0,-3)$ vektorlar orasidagi $1)\vec{a} \hat{b}; 2)\vec{c} \hat{d}$ ni toping.
- $25. |\vec{a}| = 8, |\vec{b}| = 5, (\vec{a} \hat{b}) = 60^{\circ}$ berilgan bo'lsa, \vec{a} va \vec{b} vektorlarning skalyar ko'paytmasini toping.

- 26. \vec{c} va \vec{d} birlik vektor va $(\vec{c} \ \vec{d}) = 135^{\circ}$ berilgan bo'lsa, \vec{c} va \vec{d} vektorlarning skalyar ko'paytmasini toping.
- 27. $|\vec{c}| = 3, |\vec{d}| = 7$, $|\vec{c}| |\vec{d}|$ berilgan bo'lsa, $|\vec{c}|$ va $|\vec{d}|$ vektorlarning skalyar ko'paytmasini toping.
- 28. \vec{a} va \vec{b} vektorlar oʻzaro $\varphi = \frac{2\pi}{3}$ burchak tashkil qiladi. $|\vec{a}| = 3, |\vec{b}| = 4$ boʻlsa, quyidagilarni hisoblang: $1)\vec{a}\vec{b}$; $2)\vec{a}^2$; $3)\vec{b}^2$; $4)(\vec{a}+\vec{b})^2$; $5)(\vec{a}-\vec{b})^2$; $6)(3\vec{a}+2\vec{b})^2$; $7)(2\vec{a}-3\vec{b})^2$; $8)(3\vec{a}-2\vec{b})(\vec{a}+2\vec{b})$.
- 29. \vec{a} va \vec{b} vektorlar oʻzaro perpendikulyar, \vec{c} vektor ularning har biri bilan $\varphi = \frac{\pi}{3}$ burchak hosil qilib, $|\vec{a}| = 3, |\vec{b}| = 5, |\vec{c}| = 8$ ga teng boʻlsa, quyidagilarni hisoblang: $1)(3\vec{a} 2\vec{b})(\vec{b} + 3\vec{c})$; $2)(\vec{a} + \vec{b} + \vec{c})^2$; $3)(\vec{a} + 2\vec{b} 3\vec{c})^2$; $4)(\vec{a} + \vec{b} \vec{c})(\vec{a} + \vec{b} + \vec{c})$; $5)(2\vec{a} \vec{b} + 3\vec{c})(2\vec{a} + \vec{b} 3\vec{c})$.
- 30. A(-1,3,-7); B(2,-1,5) va C(0,-1,5) nuqtalar berilgan bo'lsa, $1)\sqrt{\overrightarrow{AB}^2}$; $2)\sqrt{\overrightarrow{AC}^2}$; $3)\sqrt{\overrightarrow{BC}^2}$; $4)(2\overrightarrow{AB}-\overrightarrow{CB})(2\overrightarrow{BC}+\overrightarrow{BA})$; $5)(3\overrightarrow{AB}-2\overrightarrow{CB})(3\overrightarrow{BC}+2\overrightarrow{AC})$ ifodalarni hisoblang.
- 31. ABC uchburchak tomonlarining uzunliklari berilgan: |BC| = 5, |CA| = 6, |AB| = 7 bo'lsa, |BA| = 7 bo'lsa, |BA| = 7 vektorlarning skalyar ko'paytmasi topilsin.
- 32. \vec{a} , \vec{b} va \vec{c} vektorlar, $\vec{a} + \vec{b} + \vec{c} = 0$ shart bilan quyidagilar $|\vec{a}| = 3$, $|\vec{b}| = 1$, $|\vec{c}| = 4$ berilgan bo'lsa, $\vec{a}\vec{b} + \vec{b}\vec{c} + \vec{c}\vec{a}$ ni hisoblang.
- 33. \vec{a} , \vec{b} va \vec{c} vektorlar bir-birlari bilan 60° ga teng boʻlgan burchak tashkil qilsa, hamda $|\vec{a}| = 4$, $|\vec{b}| = 2$, $|\vec{c}| = 6$ berilgan boʻlsa, $\vec{p} = \vec{a} + \vec{b} + \vec{c}$ vektorning modulini aniqlang.