Agenda

Intro to Machine Learning Linear Regression **Logistic Regression Decision Tree**

Categories of Machine Learning

Supervised Learning

Categories of Supervised Learning

Classification

Classification is the process of predicting the class of a new variable

This method is used to estimate the relationship between different entities

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited

Unsupervised Learning (Clustering)

Input Data with no class labels

Unsupervised Learning (Clustering)

Linear Regression

You are conducting a case-study on a set of college students to understand if students with high CGPA also get a high GRE score

Linear Regression

GRE.Score ‡	CGPA ‡
337	9.65
324	8.87
316	8.00
322	8.67
314	8.21
330	9.34
321	8.20
308	7.90
302	8.00
323	8.60

Case Study

Need of Regression Analysis

$$\sum (Y_0 - Y_P)^2 = 28$$

$$\sum (Y_0 - Y_P)^2 = 22$$

Best Fit Line

$$\sum (Y_0 - Y_P)^2 = 24$$

Logistic Regression

Logistic regression is used for classification Smoke(Yes/No) Cancer(Yes/No)

Logistic Regression

Decision Tree is used for both classification and Regression

