T1D & T2D Methylation Analysis

Jen Zeiger & Emily Baranowski

T1D Introduction

- -Autoimmune disease caused by genetic & non-genetic factors
- -Leads to destruction of insulin-secreting pancreatic islet beta cells by the immune system
- -Characterized by insulin deficiency, due to beta cell loss

DiMeglio, Linda A et al. "Type 1 diabetes." Lancet (London, England) vol. 391,10138 (2018): 2449-2462

Identification of Type 1 Diabetes—Associated DNA Methylation Variable Positions That Precede Disease Diagnosis

Hypothesis - Epigenetic variation may contribute to the non-genetic factors of T1D, such variation may affect immune effector cell function/disease susceptibility

Previous studies have found that monozygotic (MZ) twins can be epigenetically discordant

→ MZ Twins - 50% change of a T1D affected co-twin developing the disease as well, even though they are genetically identical

Method: DNA methylation profiling with Illumina 27K

Genome-wide DNA methylation analysis of CD14+ monocytes from MZ twins discordant for T1D

→ CD14+ monocytes give rise to macrophages associated with islet cell destruction/insulin deficiency

Illumina 27k allows for DNA methylation measurements at 27,458 different CpG sites across the genome

→ Examined methylation differences between T1D vs Unaffected MZ twins to identify T1D methylation variable positions (MVPs)

Results

T1D—specific methylation variable positions (T1D—MVPs) in the T1D—affected co-twins were identified

R Analysis

Step 1 Step 2 Step 3 Step 4 (ongoing)

Grouped samples into:

- T1D/Unaffected
 Discordant Twins
 CD4 tissue vs
 Normal MZ Twins
 CD4 tissue
- 2. T1D CD4 tissue vs T1D CD14+ monocytes

Ran R script through GEO2R (available via NCBI)

Modified R script to reflect chosen data / graphs

Attempting to run Quality Control on chosen data, but having issues with this:'(

T1D/Unaffected Discordant Twins CD4 tissue vs Normal MZ Twins CD4 tissue

GEO Dataset contained CD4 tissue samples from MZ twins discordant for T1D as well as normal MZ twins

- → Article results mainly discussed CD14+ monocytes despite data for CD4 tissue being present
- Comparison made to determine if differences exist between different twin types

Volcano Plot

Top 10 Differentially Expressed Genes

T1D CD4 tissue vs T1D CD14+ monocytes

GEO Dataset contained T1D CD4 tissue samples and CD14+ monocyte samples from the same twin with T1D

- → Article did not mention any differences between CD4 and CD14+ T1D samples despite data being present for both tissue types
- → Comparison made to determine if differences exist between different tissue types within patients with T1D

Volcano Plot

Top 10 Differentially Expressed Genes

T2D Introduction

- -Diabetes caused by muscle / fat / liver cells becoming resistant to insulin
- -Cells do not take in enough sugar; pancreas does not produce enough insulin to regulate blood sugar levels
- -As with T1D, there are both genetic and non-genetic factors that lead to disease

Methylated DNA Immunoprecipitation (MeDIP) using a custom type 2 diabetes and related phenotypes array

Integrated Genetic and Epigenetic Analysis Identifies Haplotype-Specific Methylation in the *FTO* Type 2 Diabetes and Obesity Susceptibility Locus

Hypothesis = Genotype - epigenotype interactions may underlie the aetiopathogenesis of T2D.

Method: NimbleGen human 385k tiling array & MeDIP

NimbleGen tiling array is used to probe intensively for sequences that are known to exist in a contiguous region; 385k array can tile up to that many 50 to 75-mer probes.

MeDIP, or methylation DNA immunoprecipitation, is performed to quantify DNA methylation.

Results

Table 1

Average Methylation in Association SNP LD blocks by Genotype.

					Average Methylation			
Chr	LD Block		Genotyped SNP	Gene/Locus	11	12	22	<i>p</i> -value
1	120236149	120398430	rs2934381	NOTCH2	0.496	0.495	0.502	0.187
2	43529937	43617946	rs7578597	THADA	0.492	0.512	0.504	0.564
3	12298413	12372392	rs1801282	PPARG	0.512	0.509	0.511	0.640
3	64673853	64705161	rs4607103	ADAMTS9	0.477	0.472	0.481	0.760
3	186971576	187031377	rs4402960	IGF2BP2	0.502	0.493	0.502	0.016
4	6317902	6363877	rs10010131	WFS1	0.581	0.604	0.590	0.982
7	28147081	28175361	rs864745	JAZF1	0.501	0.492	0.494	0.317
8	118252732	118254914	rs13266634	SLC30A8	0.333	0.350	0.303	0.865
9	22122209	22126489	rs10811661	CDKN2A/CDKN2B	0.543	0.512	0.512	0.389
10	12367941	12368040	rs12779790	CDC123/CAMK1D	0.611	0.590	0.671	0.913
10	94426831	94467199	rs1111875	HHEX/IDE	0.480	0.483	0.483	0.369
11	17350649	17365206	rs5219	KCNJ11	0.501	0.502	0.498	0.540
12	69942990	69949369	rs7961581	TSPAN8	0.457	0.461	0.470	0.289
16	52357008	52402988	rs8050136	FTO	0.497	0.510	0.531	9.397′10
17	33170413	33182480	rs757210	HNF1B	0.423	0.430	0.427	0.382

Bell et. al. (2010). Integrated Genetic and Epigenetic Analysis Identifies Haplotype-Specific Methylation in the *FTO* Type 2 Diabetes and Obesity Susceptibility Locus. *PLOS One*, *5*(11), e14040. doi: 10.1371/journal.pone.0014040

R Analysis / Workflow

Step 1 Step 2 Step 3 Step 4 / Current

Grouped samples into control or $T2D \rightarrow 60$ samples total = 30 control, 30 case

Ran R script through GEO2R (available via NCBI) Modified R script to reflect chosen data / graphs

Attempted to run "qcreport" on data; currently having issues with this :(

Volcano Plot

Histogram of adjusted P-values and Limma Plot

Next Step

Quality control in R-

```
# read in the sample sheet for the experiment
targets <- read.metharray.sheet(dataDirectory, pattern="SampleSheet.csv")</pre>
```

Issue - dataDirectory - 'base not found' error message pops up

This step needs to be done before the quality control

Final Remarks

- -Comparison between the T1D discordant twins and normal MZ twins showed that 9 of the 10 top differentially expressed genes had CpG sites present. Looking at CpG methylation differences between T1D and control subjects was part of the initial proposal.
- -Comparison between T2D and control (from that same study) did not show any significant difference in differentially expressed genes
- -Unfortunately, data between T1D and T2D is too different to compare the two with each other
- -Will troubleshoot QC issue and hopefully resolve! :)