Logica

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Ripasso di matematica	3						
	1.1 Relazioni	3						
	1.2 Sottoinsieme delle parti	3						
2	Introduzione							
3	Sintassi della logica proposizionale	3						
	3.1 Connettivi	3						
	3.2 Ausiliari	4						
	3.3 Simboli proposizionali	4						
	3.4 Altri simboli	4						
4	Principio di induzione	4						
•	4.1 Definizione induttiva formale dell'insieme <i>PROP</i>	5						
	1.1 Definizione inquisiva formate dell'inistente 1 1601	0						
5	Proprietà su un insieme	5						
	5.1 Principio di induzione sui numeri naturali \mathbb{N}	6						
6	Teorema del principio di induzione delle proprietà su $PROP$	6						
7	Definizione ricorsiva di funzioni su PROP	7						
	7.1 Definizione più precisa dell'esercizio 6.1	8						
8	Dimostrazione ricorsiva di rango e sottoformula	9						
	8.1 Applicazione della definizione di sottoformula	9						
9	Semantica delle formule proposizionali	10						
	9.1 Valutazione delle formule logiche	10						
	9.2 Valutazione atomica	11						
	9.3 Tavole di verità	11						
	9.3.1 Tavola di verità per \vee	11						
	9.3.2 Tavola di verità per \wedge	11						
	9.3.3 Tavola di verità per \rightarrow	12						
	9.4 Esempi di tabelle di verità	12						
	9.5 Formule privilegiate	12						
10	Struttura esercizi di semantica	13						
	10.1 Prova con il contromodello	14						
11	Soddisfacibilità della formula	14						
10	Consequence legice	1 5						
1 <i>2</i>	2 Conseguenza logica	15						
13 Convenzioni								
	13.1 Rimozione della parentesi nella sintassi	17						
	13 1 1 Esempi	18						

14 Definizione di sostituzione										
15 Connettivi derivati	19									
16 Relazione di equivalenza										
17 Tautologie notevoli										
18 RAA (Reductio ad absurdum)										
19 Formalizzazione della deduzione 2										
20 Deduzione naturale	24									
20.1 Regole dell'implicazione	25									
20.1.1 Eliminazione	25									
20.1.2 Introduzione	25									
20.1.3 Indebolimento	26									
20.1.4 Esercizi	26									
20.2 Regole dell'AND	27									
20.2.1 Introduzione	27									
20.2.2 Eliminazione a destra	28									
20.2.3 Eliminazione a sinistra	28									
20.2.4 Esercizi	28									
20.3 Regole del Bottom	29									
20.3.1 Ex falso	29									
20.3.2 Riduzione ad assurdo	30									
20.3.3 Dimostrazione per assurdo	30									
20.3.4 Esercizi	30									
20.4 Regole dell'OR	31									
20.4.1 Introduzione a destra	31									
20.4.2 Introduzione a sinistra	31									
20.4.3 Esercizi	31									
20.4.4 Eliminazione	31									
21 Prove dirette e indirette	33									

1 Ripasso di matematica

1.1 Relazioni

Prendendo in considerazione 2 insiemi A, B e una relazione $f \subseteq A \times B$ si definisce **dominio** l'insieme A e **codominio** l'insieme B. Il prodotto cartesiano è definito nel seguente modo:

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Ciò significa che si prende in considerazione una coppia ordinata di elementi formata da un elemento di A e uno di B. La relazione f è una funzione sse (se e solo se) $\forall a \in A \exists$ unico $b \in B$ si dice che: $(a,b) \in f$, oppure f(a) = b.

1.2 Sottoinsieme delle parti

Dato un insieme A si definisce sottoinsieme delle parti (scritto $\mathcal{P}(A)$ o 2^A) l'insieme di tutti i sottoinsiemi di A, cioè $2^A = x | x \subseteq A$.

Un esempio è il seguente:

$$A = \{3,5\}$$

$$2^A = \{\emptyset, \{3\}, \{5\}, \{3,5\}\}$$

 \emptyset è l'insieme vuoto, cio
è l'insieme che non contiene nessun elemento.

2 Introduzione

La logica ha lo scopo di formalizzare il ragionamento matematico che è caratterizzato dal concetto di dimostrazione senza ambiguità

3 Sintassi della logica proposizionale

La logica proposizionale è formata da simboli formali ben definiti e sono divisi in:

3.1 Connettivi

- ∨ Congiunzione, And logico
- A Disgiunzione, Or logico
- $\bullet\,$ \neg Negazione, Not logico (non connette niente, è solo una costante logica che equivale a 0 nella logica booleana)
- \perp Falso, Bottom, Assurdo
- $\bullet \rightarrow$ Implicazione, If-then

3.2 Ausiliari

• () Le parentesi non fanno parte della proposizione, ma servono solo a costruire il linguaggio

3.3 Simboli proposizionali

• p_n, q_n, ψ_n, \ldots Le lettere minuscole indicizzate vengono usate per indicare una proposizione (sono infiniti simboli numerabili)

3.4 Altri simboli

- | Tale che
- $\bullet \leftrightarrow Se e solo se$

Definizioni utili 3.1

- 1. Stringa: Una sequenza finita di simboli o caratteri
- 2. Infinito numerabile: Un insieme è infinito numerabile se è il più piccolo infinito possibile, cioè se è in corrispondenza biunivoca con l'insieme N

4 Principio di induzione

Il principio di induzione è un principio logico che permette di dimostrare che una proprietà è vera per tutti gli elementi di un insieme infinito numerabile.

Una prima definizione induttiva fatta in modo non formale, ma con frasi in italiano è la seguente:

L'insieme di proposizioni PROP è così definito induttivamente:

- 1. $\perp \rightarrow PROP$
- 2. se p è un simbolo proposizionale allora $p \in PROP$
- 3. (Caso induttivo) se $\alpha, \beta \in PROP$ allora $(\alpha \land \beta) \in PROP, (\alpha \lor \beta) \in PROP, (\alpha \to \beta) \in PROP, (\neg \alpha) \in PROP$
- 4. nient'altro appartiene a PROP

In questo modo è stato creato l'insieme PROP che contiene tutte le proposizioni che possono essere create usando gli unici simboli che abbiamo definito $(\wedge, \vee, \rightarrow, \neg)$.

Esempi di proposizioni corrette e scorrette:

•
$$(p_7 \rightarrow p_0) \in PROP$$

- $p_7 \rightarrow p_0 \notin PROP$ (mancano le parentesi)
- $((\bot \lor p_{32}) \land (\neg p_2)) \in PROP$
- $((\rightarrow \land \notin PROP)$
- $\neg\neg\bot\notin PROP$

4.1 Definizione induttiva formale dell'insieme PROP

Adesso l'insieme PROP viene definito in modo formale usando i simboli proposizionali.

Definizione 4.1

L'insieme PROP è il più piccolo insieme X di stringhe tale che:

- 1. $\perp \in X$
- 2. $p \in X$ (Perchè è un simbolo proposizionale)
- 3. se $\alpha, \beta \in X$ allora $(\alpha \to \beta) \in X, (\alpha \lor \beta) \in X, (\alpha \land \beta) \in X, (\neg \alpha) \in X$

 p, α, β, \dots sono elementi proposizionali generici

AT= simboli proposizionali + \perp è l'insieme di tutte le proposizioni atomiche, cioè quelle che non contengono connettivi, sono quindi la più piccola parte non ulteriormente scomponibile

5 Proprietà su un insieme

Definito P un insieme di proprietà assunte da un insieme A si ha che:

- \bullet $P \subseteq A$
- $a \in A$ dove a è un elemento generico dell'insieme A

Si dice che a gode della proprietà P se $a \in P$.

Altri modi per dire che a gode della proprietà P sono:

- *P*(*a*)
- P[a] (per non creare confusione con le parentesi tonde che sono usate come simboli ausiliari per costruire il linguaggio)

$$P \subseteq PROP \quad \forall \alpha \in PROP . P(\alpha)$$

(il punto mette in evidenza ciè che viene dopo di esso e può anche essere omesso)

Esempio 5.1

Esempio di una proprietà sull'insieme \mathbb{N} :

 $P=\{n|n\in\mathbb{N}\ ed\ e\ pari\ \}\ essendo\ n\ un\ numero\ generico\ indica\ la\ proprietà\ di\ essere\ pari.$

$$\begin{array}{c} P[5] \times \\ P[4] \sqrt{\end{array}$$

5.1 Principio di induzione sui numeri naturali $\mathbb N$

 $P\subseteq \mathbb{N}$

- 1. Caso base: se P[0] e
- 2. Passo induttivo: se $\forall n \in \mathbb{N}(P[n] \Rightarrow P[n+1])$ allora $\forall n \in \mathbb{N}$. P[n]

Se si dimostra la proprietà per n e per il successivo (n+1), allora si dimostra che la proprietà è vera per tutti i numeri naturali. Si sfrutta il fatto che esiste un minimo a cui prima o poi si arriva.

Esercizio 5.1

Dimostra per induzione che:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

6 Teorema del principio di induzione delle proprietà su PROP

Definizione 6.1 $P \subseteq PROP$

- 1. Se $P[\alpha], \alpha \in AT$ e
- 2. Se $P[\alpha] \Rightarrow P[(\neg \alpha)] e$
- 3. se $P[\alpha]$ e $P[\beta] \Rightarrow P[(\alpha \land \beta)], P[(\alpha \lor \beta)P[(\alpha \to \beta)]$ allora $\forall \psi \in PROP$. $P[\psi]$

Con questo teorema si possono dimostrare intere proposizioni complesse dimostrando i pezzi più piccoli (sottoformule) come mostrato nella figura 1.

Figura 1: Dimostrazione di una formula complessa

Esercizio 6.1

Dimostra che ogni $\psi \in PROP$ ha un numero pari di parentesi usando il principio di induzione per dimostrare proprietà sintattiche sulla struttura delle formule.

 $P[\psi] \equiv \psi$ ha un numero pari di parentesi

- 1. Caso base $\psi \in AT$ quindi ψ ha 0 parentesi e quindi è pari: $P[\psi] \sqrt{}$
- 2. **Ipotesi induttiva** $\alpha, \beta \in PROP, P[\alpha], P[\beta]$? $P[(\alpha \rightarrow \beta)]$ (per α vale e per β vale, si sono aggiunte due parentesi, quindi la formula è ancora pari)
- 3. Passo induttivo $P[\alpha], P[\beta] \Rightarrow P[(\alpha \rightarrow \beta)], P[(\alpha \lor \beta)], P[(\alpha \land \beta)]$ allora $\forall \psi \in PROP$. $P[\psi]$

7 Definizione ricorsiva di funzioni su PROP

Definizione 7.1

Riprendendo l'esercizio 6.1 si definisce la funzione π che associa ad ogni formula proposizionale (equivalente di un input nell'informatica) un numero naturale (equivalente di un output nell'informatica). La funzione π quindi dopo aver dato in input un argomento (qualsiasi formula proposizionale atomica o complessa) restituisce in output il numero di parentesi che contiene la formula in input.

$$\pi: PROP \to \mathbb{N}$$

- 1. Caso base $\pi[\alpha] = 0$ se $\alpha \in AT$
- 2. **Ipotesi induttiva** $\pi[(\neg \alpha)] = \pi[\alpha] + 2$ In questo passaggio viene chiamata la funzione π dentro la funzione π stessa, quindi è una defini-

zione ricorsiva. In questo caso si aggiungono 2 parentesi al numero di parentesi di α $\pi[\alpha]$

3. Passo induttivo $\pi[(\alpha \to \beta)] = \pi[(\alpha \lor \beta)] = \pi[(\alpha \land \beta)] = \pi[\alpha] + \pi[\beta] + 2$ dove $\pi[\alpha]$ e $\pi[\beta]$ sono il numero di parentesi di α e β e si aggiungono 2 parentesi per il connettivo.

Di seguito ci sono 2 esempi in cui viene messa in pratica la funzione π definita sopra in modo da capire meglio come funziona.

Esempio 7.1

$$\pi[(p_2 \to p_1)] \stackrel{caso \ 3}{=} \pi[p_2] + \pi[p_1] + 2 \stackrel{caso \ 1}{=} 0 + 0 + 2 = 2$$

Esempio 7.2

$$\pi[(p_1 \lor (p_2 \lor p_1))] = (\pi[p_2] + \pi[p_1] + 2) + \pi[p_1] + 2 = (0 + 0 + 2) + 0 + 2 = 4$$

Tutte le funzioni definite ricorsivamente sono funzioni, ma non tutte le funzioni possono essere definite ricorsivamente.

7.1 Definizione più precisa dell'esercizio 6.1

Ogni $\alpha \in PROP$ ha un numero pari di parentesi: $\forall \alpha \in PROP \ P[\alpha] \stackrel{sse}{\Leftrightarrow} \pi[\alpha]$ è pari

- 1. $P[\alpha] \ \alpha \in AT$ se $\alpha \in AT \ \pi[\alpha] \stackrel{def}{=} 0$ quindi $\sqrt{}$
- 2. Suppongo che valga $P[\alpha], P[(\neg \alpha)]$?

 $P[\alpha] \Leftrightarrow \pi[\alpha]pari$ è pari perchè lo abbiamo supposto prima (consideriamo 0 come pari)

$$\pi[(\neg \alpha)] = \pi[\alpha] + 2$$
 è pari quindi $P[(\neg \alpha)] \checkmark$

Si può definire un simbolo nuovo che non vuole dire niente nel linguaggio proposizionale e gli si assegnano i connettivi possibili per non doverli più scrivere ogni volta. Per questo esercizio prendiamo in considerazione

$$\circ \in \{\rightarrow, \lor, \land\}$$

3. $(\alpha \circ \beta)$

suppongo $P[\alpha], P[\beta]$

allora $\pi[\alpha]$ e $\pi[\beta]$ sono pari

quindi
$$\pi[(\alpha \circ \beta)] = \pi[\alpha] + \pi[\beta] + 2$$
 (è pari)

Ho dimostrato per induzione che $\forall \psi \in PROP\ P[\psi]$

(\square è un simbolo che indica la fine della dimostrazione.)

8 Dimostrazione ricorsiva di rango e sottoformula

Il rango di una formula è il numero di connettivi che contiene.

Definizione 8.1

 $Considerato\ r\ il\ rango\ di\ una\ proposizione$

$$r: PROP \to \mathbb{N}$$

1.
$$r[\psi] = 0$$
 se $\psi \in AT$

2.
$$r[(\neg \psi)] = 1 + r[\psi]$$

3.
$$r[(\psi \circ \gamma)] = 1 + max(r[\psi], r[\gamma]) \quad \circ \in \{ \lor, \land, \to \}$$

La sottoformula è una formula che è contenuta in un'altra formula più grande.

Definizione 8.2

 $Considerata\ sub\ la\ sotto formula\ di\ una\ proposizione$

$$sub: PROP \rightarrow 2^{PROP}$$

1.
$$sub[\alpha] \ \alpha = ((p_2 \vee p_1) \vee p_0)$$

2.
$$sub[\alpha] = {\alpha, p_2, p_0, (p_2 \vee p_1)}$$

8.1 Applicazione della definizione di sottoformula

1.
$$sub[\psi] = {\psi}$$
 se $\psi \in AT$

2.
$$sub[(\neg \psi)] = \{(\neg \psi)\} \cup sub[\psi]$$

3.
$$sub[(\psi \to \gamma)] = \{(\psi \circ \gamma)\} \cup sub[\psi] \cup sub[\gamma]$$

Teorema 1 Vogliamo dimostrare per induzione su β :

Se $\alpha \in sub[\beta]$ e $\alpha \neq \beta$ (dove α è una sottoformula propria, cioè vengono considerate tutte le sottoformule di β tranne β stessa) allora $r[\alpha] < r[\beta]$

1. Caso base $\beta \in AT$

 β non ha sottoformule proprie, quindi α non può essere una sottoformula propria di β . Essendo falsa la premessa la tesi è vera.

2. Se $\beta = (\neg \beta_1)$: se $\alpha \in sub[\beta]$ e $\alpha \neq \beta$ allora $\alpha \in sub[\beta_1]$ e si dimostra $r[\alpha] \leq r[\beta_1]$ (ipotesi induttiva)

(a)
$$\alpha \in sub[\beta_1]$$
 e $\alpha \neq \beta_1$ per ipotesi induttiva $r[\alpha] < r[\beta_1]$

(b)
$$\alpha = \beta_1 \ r[\alpha] = r[\beta_1]$$

 $r[\alpha] \le r[\beta_1]$

Quindi

$$r[(\neg \overset{\beta}{\beta}_1)] \stackrel{def}{=} {}^r 1 + r[\beta_1] \ge 1 + r[\alpha] > r[\alpha]$$

Quindi

$$r[\alpha] < r[\beta]$$

3. Caso induttivo

 $\beta = (\beta_1 \to \beta_2)$ se α è sottoformula di β e $\alpha \neq \beta$ allora $\alpha \in sub[\beta_1]$ o $\alpha \in sub[\beta_2]$

(a) se $\alpha \in sub[\beta_1]$ (ipotesi induttiva)

i. Se
$$\alpha \neq \beta_1 \Rightarrow r[\alpha] \leq r[\beta_1]$$

ii. Se
$$\alpha = \beta_1 \Rightarrow r[\alpha] = r[\beta_1]$$

Da $\Im(a)i$ e $\Im(a)ii$ si ricava $r[\alpha] \le r[\beta_1]$

(b) se $\alpha \in sub[\beta_2]$

i. Se
$$\alpha \neq \beta_2 \Rightarrow r[\alpha] \leq r[\beta_2]$$

ii. Se
$$\alpha = \beta_2 \Rightarrow r[\alpha] = r[\beta_2]$$

Da $\Im(b)i$ e $\Im(b)ii$ si ricava $r[\alpha] \le r[\beta_2]$

$$r[(\beta_1 \xrightarrow{\beta} \beta_2)] = 1 + \max\{r[\beta_1], r[\beta_2]\} \geq 1 + \max\{r[\alpha], r[\alpha]\} \geq 1 + r[\alpha] > r[\alpha]$$

9 Semantica delle formule proposizionali

Considerando una formula α si associano 2 possibli valori:

- Vero (1)
- Falso (0)

9.1 Valutazione delle formule logiche

$$V: PROP \to \{0, 1\}$$

 $V(p_1) = ? 0 \text{ o } 1$

Esempio 9.1

Le seguenti funzioni non sono valide:

- $V(\alpha) = V(\neg \alpha)$
- $V(\alpha) = 0 \ \forall \alpha$

 $V: PROP \rightarrow \{0,1\}$ è una valutazione se:

1.
$$V(\alpha \wedge \beta) = 1 \leftrightarrow V(\alpha) = 1 \& V(\beta) = 1$$

2.
$$V(\alpha \vee \beta) = 1 \leftrightarrow V(\alpha) = 1$$
 or $V(\beta) = 1$

3.
$$V(\neg \alpha) = 1$$

4.
$$V(\bot) = 0$$

5.
$$V(\alpha \to \beta) = 1 \leftrightarrow [V(\alpha) = 1 \Rightarrow V(\beta) = 1]$$

5.2
$$V(\alpha \to \beta) = 1 \leftrightarrow V(\alpha) = 0 \text{ or } V(\beta) = 1$$

9.2 Valutazione atomica

v è detta valutazione (atomica) se:

$$v: AT \to \{0,1\} \ \mathrm{e} \ v(\bot) = 0$$

Definizione 9.1

Teorema:

Data una valutazione atomica v esiste ed è unica una valutazione

$$[|\cdot|]_v{}^a: PROP \rightarrow \{0,1\}$$

tale che:

$$[|\alpha|]_v = V(\alpha) \ per \ \alpha \in AT$$

9.3 Tavole di verità

Il valore di verità di una formula è determinato (universalmente) dal valore dei suoi atomi.

9.3.1 Tavola di verità per \lor

$$[|(\alpha \vee \beta)]_v = 1 \leftrightarrow [|\alpha|]_v = 1 \text{ or } [|\beta|]_v = 1$$

α	β	$\alpha \vee \beta$
0	0	0
0	1	1
1	0	1
1	1	1

9.3.2 Tavola di verità per \wedge

$$\begin{array}{c|cccc} \alpha & \beta & \alpha \wedge \beta \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

 $[^]a[|\cdot|]$ sono parentesi denotazionali, cioè indicano che stiamo valutando il valore della valutazione, quindi della semantica

9.3.3 Tavola di verità per ightarrow

$$\begin{array}{c|cccc} \alpha & \beta & \alpha \to \beta \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

9.4 Esempi di tabelle di verità

Esempio 9.2

$$\alpha = ((p_2 \to p_1) \lor p_2)$$

$$\begin{array}{c|c|c|c} p_1 & p_2 & (p_1 \to p_2) & ((p_2 \to p_1) \lor p_2) \\ \hline 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}$$

A ogni riga corrisponde una valutazione atomica: $v_1[p_1] = 0, v_1[p_2] = 0$ ecc...

Esercizio 9.1

Valutare: $[|\alpha|]_{v_1}$ dell'esercizio precedente:

$$\begin{split} [|(p_2 \to p_1)|]_{v_1} &= 1 \leftrightarrow [|p_2|]_{v_1} \stackrel{punto 5.2}{=} 0 \ or \ [|p_1|]_{v_1} = 1 \\ [|((p_2 \to p_1) \lor p_2)|]_{v_1} &= 1 \leftrightarrow [|(p_2 \to p_1)|]_{v_1} = 1; \ or \ [|p_2|]_{v_1} = 1 \end{split}$$

Esercizio 9.2 (A casa)

 $Valutare [|\alpha|]_{v_2}$

9.5 Formule privilegiate

Teorema 2 $\phi \in PROP$ sia $\phi^{AT} = \{p | p \in AT \& p \ \hat{e} \ in \ \phi\}$ Siano v_1 e v_2 valutazioni atomiche tali che: $\forall p \in \phi^{AT}$ $v_1[p] = v_2[p]$ allora $[|\phi|]_{v_1} = [|\phi|]_{v_2}$

Definizione 9.2

 $\alpha \in PROP$ è detta **tautologia** se per ogni valutazione v: $[|\alpha|]_v = 1$ $\models \phi$ indica una formula privilegiata (di cui fa parte la tautologia)

 $\forall v[|\alpha|]_v=1$ è una formula privilegiata? |= α

- Sì \Rightarrow dimostro **per ogni** v che $[|\alpha|]_v = 1 \ (\forall^1)$
- No \Rightarrow esibisco una specifica valutazione tale che $[|\alpha|]_v = 0 \ (\exists^2)$

10 Struttura esercizi di semantica

Esercizio 10.1

Vogliamo dimostrare una formula che implica se stessa:

$$\models (\alpha \to \alpha)$$

$$\forall v \cdot [|(\alpha \to \alpha)]_v = 1$$

$$[|(\alpha \to \alpha)]_v = 1 \stackrel{def}{\Leftrightarrow} [|\alpha|]_v = 0 \text{ or } [|\alpha|]_v = 1$$

Esercizio 10.2

 $Vogliamo\ dimostrare:$

$$\models ((\alpha \land \beta) \to \alpha)$$

$$\forall v \cdot [|((\alpha \land \beta) \to \alpha|)]_v = 1 \Leftrightarrow$$

$$[|(\alpha \land \beta)]_v = 0 \text{ or } [|\alpha|]_v = 1 \Leftrightarrow$$

$$([|\alpha|]_v = 0 \text{ or } [|\beta|]_v = 0) \text{ or } [|\alpha|]_v = 1$$

Esercizio 10.3

Vogliamo dimostrare:

$$\begin{split} &\models (\alpha \to (\beta \to \alpha)) \\ \forall v \; . \; [|(\alpha \to (\beta \to \alpha))]_v = 1 \Leftrightarrow \\ &[|\alpha|]_v = 0 \; or \; [|(\beta \to \alpha)|] = 1 \Leftrightarrow \\ &[|\alpha|]_v = 0 \; or \; ([|\beta|]_v = 0 \; or \; [|\alpha|]_v = 1) \end{split}$$

Ho tutte le possibilità per α ([$|\alpha|$] $_v=0$, [$|\alpha|$] $_v=1$), quindi la formula è vera.

¹Per far si che sia vero dobbiamo dimostrare che sia vero per ogni elemento

²Per far si che sia falso dobbiamo dismostrare che almeno una valutazione sia falsa (controesempio)

10.1 Prova con il contromodello

Esercizio 10.4

È vero che la seguente formula è una tautologia? NO Ragiona sullo stesso esercizio, ma se ci fosse \vee

$$\models (\alpha \to (\alpha \land \beta))$$

Bisogna trovare un'istanza di α e β e una valutazione v. Assumo che α sia p_0 e β sia p_1

$$\exists v \ t.c. \ [|p_0 \to (p_0 \land p_1)]_v = 0$$

Per assegnare i valori a p_0 e p_1 si può anche usare la tabella di verità della formula intera.

$$v[p_0] = 1 \ v[p_1] = 0$$

(Contromodello) 1 non può implicare 0

Verifichiamo che sia vero che esca il contromodello

$$[|(p_0 \to (p_0 \land p_1))|]_v = 0 \Leftrightarrow$$

$$p_0 = \delta \quad (p_0 \land p_1) = \gamma$$

$$(|\delta \to \gamma) = 0$$

$$[|p_0|]_v = 1 \& [|(p_0 \land p_1)|]_v = 0 \Leftrightarrow$$

$$[|p_0|]_v = 1 \& ([|p_0|]_v = 0 \text{ or } [|p_1|]_v = 0)$$

 $[|p_0|]_v = 1$ è vero e anche il pezzo dopo \mathcal{E} , quindi è tutto vero.

11 Soddisfacibilità della formula

Si definisce:

• $\alpha \in PROP$ è soddisfacibile se esiste v:

$$[|\alpha|]_v = 1$$

• α non è soddisfacibile quando non esiste:

$$\not\exists v \ t.c. \ [|\alpha|]_v = 1$$

 Γ insieme formule proposizionali

 Γ è soddisfacibile quando:

$$\exists v \ t.c. \ \forall \phi \in \Gamma \ [|\phi|]_v = 1$$

12 Conseguenza logica

 $\mathrm{Ipotesi} \to \mathrm{tesi}$

 Γ, E, Δ Insiemi arbitrari di formule α, β, γ

$$\overset{ipotesi}{\Gamma} \models \overset{tesi}{\alpha}$$

Si può leggere in più modi:

- Da Γ segue semanticamente α
- α è conseguenza logica/semantica di Γ

Definizione 12.1

La verità dell'ipotesi fa conseguire la verità della tesi.

$$\Gamma \models \alpha \ sse \ \forall v \ se \ \forall \phi \in \Gamma \ allora \ [|\phi|]_v = 1 \ allora \ [|\alpha|]_v = 1$$

Le denotazione dell'insieme vuol dire che tutte le formule dell'insieme sono vere.

$$[|\Gamma|]_v = 1 \Leftrightarrow \forall \alpha \in \Gamma \ [|\alpha|]_v = 1 \Rightarrow [|\alpha|]_v = 1$$

$$\Gamma \models \alpha \Leftrightarrow \forall v \; [|\Gamma|]_v = 1 \\ allora[|\alpha|]_v = 1$$

La seguente formula vuol dire che esiste almeno una formula falsa nell'insieme Γ

$$[|\Gamma|]_v \neq 1$$

Che è diverso dal dire:

$$[|\Gamma|]_v = 0$$

Che significa che tutte le formule di Γ valgono 0.

Esercizio 12.1 (easy)

Vogliamo provare:

$$(\alpha \wedge \beta) \models \alpha$$

Applico la definizione e prendo una valutazione generica

$$[|(\alpha \wedge \beta)|]_v = 1 \Rightarrow [|\alpha|]_v = 1$$

 $\label{thm:connectivi} Usiamo\ le\ definizioni\ semantiche\ dei\ connectivi\ per\ valutare\ la\ prima\ parte\ dell'espressione$

$$[|(\alpha \wedge \beta)|]_v = 1 \Leftrightarrow [|\alpha|]_v = 1 \& [|\beta|]_v = 1 \Rightarrow [|\alpha|]_v = 1$$

Esercizio 12.2

Definiamo un insieme separando con la virgola le formule che lo compongono a

$$(\alpha \to \beta), \ \alpha \models \beta$$

$$\forall v. \ [|(\alpha \to \beta), \ \alpha|]_v = 1 \Rightarrow [|\beta|]_v = 1$$

$$[|(\alpha \to \beta), \alpha|]_v = 1 \Leftrightarrow$$

$$[|\alpha \to \beta|]_v = 1 \& \ [|\alpha|]_v = 1 \Leftrightarrow$$

$$([|\alpha|]_v = 0 \ or \ [|\beta|]_v = 1) \& \ [|\alpha|]_v = 1 \Rightarrow$$

$$[|\beta|]_v = 1$$

^aEquivale a dire: $\Gamma = \{\beta_1, \beta_2, \ldots\}$ la virgola vuol dire $\Gamma \cup \Delta \models \alpha$ o $\alpha \wedge \beta$

Esercizio 12.3 (a casa)

$$\Gamma, \alpha \models \beta \Rightarrow \Gamma \models \alpha \rightarrow \beta$$

$$\Gamma, \alpha \models \beta \stackrel{def}{\Leftrightarrow} \forall v. [|(\Gamma, \alpha)|]_v = 1 \Rightarrow [|\beta|]_v = 1 \Leftrightarrow$$

Per la definizione di implicazione:

$$\forall v. [|\Gamma, \alpha|]_v \neq 1 \ opure [|\beta|]_v = 1 \Leftrightarrow$$

$$\forall v. [|\Gamma|]_v \neq 1 \ oppure [|\alpha|] = 0 \ oppure [|\beta|]_v = 1 \Leftrightarrow$$

Non a o b è la definizione dell'implica:

$$\forall v. [|\Gamma|]_v \neq 1 \text{ or } [|\alpha \rightarrow \beta|]_v = 1 \Leftrightarrow$$

Applicando di nuovo la definizione di implicazione:

$$\forall v. [|\Gamma|]_v = 1 \Rightarrow [|\alpha \rightarrow \beta|]_v = 1 \stackrel{def}{\Leftrightarrow}$$

Quest'ultima è la definizione di consequenza logica:

$$\Gamma \models \alpha \rightarrow \beta$$

Esercizio 12.4 (a casa)

$$\phi \models \psi \lor \phi$$

Esercizio 12.5 (a casa)

Risolvi con tavole di verità:

$$\models (p \to (q \to r)) \to ((p \to q) \to (p \to r))$$

p q r	$q \rightarrow r$	$p \rightarrow q$	$p \rightarrow r$	$p \to (q \to r)$	$(p \to q) \to (p \to r)$			
0 0 0	1	1	1	0	1			
$0 \ 0 \ 1$	0	1	0	1	1			
$0 \ 1 \ 0$	1	0	1	0	0			
0 1 1	1	0	0	0	1			
1 0 0	1	1	1	1	1			
1 0 1	0	1	1	1	1			
1 1 0	1	1	1	1	1			
1 1 1	1	1	1	1	1			
$(p \to (q \to r)) \to ((p \to q) \to (p \to r))$								
0								

La valutazione sulla formula finale non è sempre vera, quindi la formula non è una tautologia.

Esercizio 12.6

$$\Gamma, \alpha, \beta \models \alpha \land \beta$$

Prendiamo una v generica

$$\forall v.([|\Gamma, \alpha, \beta|]_v = 1 \Rightarrow [|\alpha \land \beta|]_v = 1)$$

$$([|\Gamma|]_v = 1 \& [|\alpha|]_v = 1 \& [|\beta|]_v = 1) \Rightarrow$$

$$([|\Gamma|]_v = 1 \& [|(\alpha \land \beta)|]_v = 1) \Rightarrow [|\alpha \land \beta|]_v = 1$$

13 Convenzioni

13.1 Rimozione della parentesi nella sintassi

Le parentesi possono essere omesse per rendere più leggibile la formula senza cambiare la sintassi.

- 1. Omettiamo, quando possibile (ovvero quando non c'è ambiguità sintattica), alcune parentesi: $(\alpha \to \beta) \Rightarrow \alpha \to \beta$
- 2. Per ripristinare le parentesi servono precedenze tra i connettivi.
 - $\bullet\,\,\neg$ ha la precedenza più alta
 - Dopo la negazione vengono: \land e \lor :

$$\alpha \vee \beta \wedge \gamma$$

$$(\alpha \vee \beta) \wedge \gamma \neq \alpha \vee (\beta \wedge \gamma)$$

Bisogna quindi specificare la struttura della formula quando si usano \vee e \wedge .

 \bullet Poi viene $\rightarrow,$ che associa a destra, cioè:

$$\alpha_1 \to \alpha_2 \to \alpha_3 == \alpha_1 \to (\alpha_2 \to \alpha_3)$$

13.1.1 Esempi

$$\gamma \to \neg \alpha \lor \beta$$

Diventa:

$$\gamma \to (\neg \alpha) \vee \beta$$

Diventa:

$$\gamma \to ((\neg \alpha) \lor \beta)$$

Diventa:

$$(\gamma \to ((\neg \alpha) \lor \beta))$$

14 Definizione di sostituzione

Definizione 14.1

$$\phi \in PROP \ \phi[\psi/p] \ \psi \in PROP$$

 $p \ e$ un simbolo proposizionale che **occorre**^a in ϕ

- $\phi[\psi/p] = \bot$ se $\phi = \bot$
- $\phi[\psi/p] = \phi$ se $\phi \in AT$ e $\phi \neq p$ (non c'è la p, quindi non sostituisco niente)
- $\bullet \ \phi[\psi/p] = \psi \ \phi = p$
- $(\neg \phi)[\psi/p] = \neg(\phi[\psi/p])$
- $(\phi_1 \circ \phi_2)[\psi/p] = (\phi_1[\psi/p] \circ \phi_2[\psi/p]) \circ \in \{\land, \lor, \to\}$

^aL' **occorrenza** è il numero di volte in cui appare una formula:

$$\phi = ((p_1 \to (p_5 \lor p_1)) \land p_3)$$

Per osservare le occorrenze scrivo il simbolo + la posizione in cui appare (il numero del carattere ad esempio):

$$(p_1,2),(p_1,7)$$

Quindi se si vuole sostituire p_1 :

$$\phi[\psi/p_1] = ((\psi \to (p_5 \lor \psi)) \land p_3))$$

15 Connettivi derivati

Deriviamo \leftrightarrow che finora abbiamo usato semanticamente come \Leftrightarrow

$$\alpha \leftrightarrow \beta = (\alpha \to \beta) \land (\beta \to \alpha)$$

Teorema 3 Due formule equivalenti si comportano nello stesso modo davanti alla sostituzione:

$$se \models \phi_1 \leftrightarrow \phi_2 = (\models (\phi_1 \rightarrow \phi_2) \land (\models (\phi_2 \rightarrow \phi_1)))$$

allora

$$\models \psi[\phi_1/p] \leftrightarrow \psi[\phi_2/p]$$

.

$$\models \alpha \leftrightarrow \beta$$

Vuol dire che

$$\alpha \approx \beta$$

Esercizio 15.1 (a casa)

(basta fare l'unfolding di \leftrightarrow) Lemma che va a sancire la semantica del se e solo se

$$[|\phi \leftrightarrow \psi|]_v = 1 \Leftrightarrow [|\phi|]_v = [|\psi|]_v$$

La semantica di \leftrightarrow è vera quando entrambi gli elementi sono uguali.

$$[|\phi \to \psi|]_v = 1\&[|\psi \to \phi|]_v \Leftrightarrow$$

$$([|\phi|]_v = 0 \text{ or } [|\psi|]_v = 1) \& ([|\psi|]_v = 0 \text{ or } [|\phi|]_v = 1)$$

Vero quando ϕ e ψ valutano allo stesso valore.

16 Relazione di equivalenza

Una relazione è di equivalenza quando si impongono delle proprietà.

- 1. $\forall x \in A \quad xRx \text{ (riflessività)}$
- 2. $\forall a, b, c \in A \quad (aRb \& bRc) \text{ (transitività)}$
- 3. $\forall a, b \in A \quad aRb \Rightarrow bRa \text{ (simmetria)}$

$$A \quad R \subseteq A \times A$$

R è detta relazione di equivalenza sse: $(x,y) \in R$, si può scrivere anche xRy

$$\approx \subset PROP \times PROP$$

$$\phi \approx \psi \stackrel{def}{\Leftrightarrow} \models \phi \leftrightarrow \psi$$

Teorema 4 Si può dimostrare che \approx è una relazione di equivalenza

1. Riflessività:

$$\begin{split} \forall \phi \in PROP \quad \phi \; \approx \; \phi \\ \models \phi \leftrightarrow \phi \Leftrightarrow \forall v. \; [|(\phi \rightarrow \phi) \land (\phi \rightarrow \phi)|]_v = 1 \\ \Leftrightarrow \forall v. \; [|\phi \rightarrow \phi|]_v = 1 \Leftrightarrow \\ \forall v. \; ([|\phi|]_v = 0 \; or \; [|\phi|]_v = 1) \end{split}$$

2. Simmetria:

$$\forall \phi, \psi \in PROP \quad \phi \approx \psi \Rightarrow \psi \approx \phi$$

Presa una v generica:

$$\begin{split} [|\phi \leftrightarrow \psi|]_v &= 1 \Leftrightarrow [|(\phi \to \psi) \land (\psi \to \phi|)]_v = 1 \Leftrightarrow \\ [|(\phi \to \psi)|]_v &= 1 \& [|\psi \to \phi|]_v = 1 \Leftrightarrow \\ [|(\psi \to \phi) \land (\phi \to \psi)|]_v &= 1 \Leftrightarrow \psi \approx \phi \end{split}$$

3. Transitività:

$$\forall \phi, \psi, \gamma ((\phi \approx \psi \& \psi \approx \gamma) \rightarrow (\phi \approx \gamma))$$

$$\forall v.[|\phi \leftrightarrow \psi|]_v = 1 \ \& \ [|\psi \leftrightarrow \gamma|]_v = 1 \Rightarrow [|\phi \to \gamma|]_v = 1$$

Il risultato segue dal lemma: $[|\alpha \leftrightarrow \beta|]_v = 1 \Leftrightarrow [|\alpha|]_v = [|\beta|]_v$ A casa applica il lemma.

17 Tautologie notevoli

- 1. $\models \neg(\phi \land \psi) \leftrightarrow (\neg \phi \lor \neg \psi)$ Prima legge di **De Morgan**
- 2. $\models \neg(\phi \lor \psi) \leftrightarrow (\neg \phi \land \neg \psi)$ Seconda legge di **De Morgan**
- 3. $\models \phi \leftrightarrow \neg \neg \phi$ Negazione involutiva
- 4. $\models (\phi \land \psi) \leftrightarrow (\psi \land \phi)$ Commutatività
- 5. $\models (\phi \lor \psi) \leftrightarrow (\psi \lor \phi)$ Commutatività
- 6. $\models \phi \land (\psi \lor \gamma) \leftrightarrow ((\phi \land \psi) \lor (\phi \land \gamma))$ Distributività
- 7. $\models \phi \lor (\psi \land \gamma) \leftrightarrow ((\phi \lor \psi) \land (\phi \lor \gamma))$ Distributività
- 8. $\models \phi \lor (\psi \lor \gamma) \leftrightarrow (\phi \lor \psi) \lor \gamma$ Associatività per AND
- 9. $\models \phi \land (\psi \land \gamma) \leftrightarrow (\phi \land \psi) \land \gamma$ Associatività per OR

Esercizio 17.1

Dimostrazione della seconda legge di De Morgan:

$$\begin{split} & \models \neg(\phi \lor \psi) \to (\neg \phi \land \neg \psi) \\ \forall v. \ [|\neg(\phi \lor \psi) \to (\neg \phi \land \neg \psi)|]_v = 1 \Leftrightarrow \\ & ([|\neg(\phi \lor \psi)|]_v = 0 \ or \ [|\neg \phi \land \neg \psi|]_v = 1) \Leftrightarrow \\ & ([|\phi \lor \psi|]_v = 1 \ or \ ([|\neg \phi]_v = 1 \ \& \ [|\neg \psi|]_v = 1)) \Leftrightarrow \\ & ([|\phi|]_v = 1 \ or \ [|\psi|]_v = 1 \ or \ ([|\phi|]_v = 0 \ \& \ [|\psi|]_v = 0)) \Leftrightarrow \end{split}$$

 $Tutti\ i\ casi \Rightarrow\ OK\ \Box$

Esercizio 17.2

$$\begin{split} &\models \neg(\phi \lor \psi) \leftrightarrow (\neg \phi \land \neg \psi) \\ &\forall v. \ [|\neg(\phi \lor \psi)|]_v = 1 \Leftrightarrow \\ &[|(\phi \lor \psi)|]_v = 0 \Leftrightarrow \\ &[|\phi|]_v = 0 \& \ [|\psi|]_v = 0 \Leftrightarrow \\ &[|\neg \phi|]_v = 1 \& \ [|\neg \psi|]_v = 1 \Leftrightarrow \\ &[|(\neg \phi \land \neg \psi)|]_v = 1 \end{split}$$

Esercizio 17.3

Modulus Ponens

$$(\underbrace{\Gamma \models \alpha \to \beta}_{1} \& \underbrace{\Gamma \models \alpha}_{2}) \Rightarrow \Gamma \models \beta$$

Per la definizione di conseguenza logica:

$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\alpha \rightarrow \beta|]_v = 1) \&$$

$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\gamma|]_v = 1)$$

$$\Leftrightarrow \forall v. ([|\Gamma|]_v = 1 \Rightarrow ([|\alpha|]_v = 1 \Rightarrow [|\beta|]_v = 1)) \Leftrightarrow$$

Definizioni utili 17.1

$$a \Rightarrow b \Rightarrow c$$

È uguale a dire:

$$(a \land b) \Rightarrow c$$

$$\forall v. ([|\Gamma|]_v = 1 \& [|\alpha|]_v = 1) \Rightarrow [|\beta|]_v = 1 \Leftrightarrow$$

$$\forall v. ([|\Gamma|]_v \neq 1 \text{ or } [|\alpha|]_v = 0) \text{ or } [|\beta|]_v = 1 \Leftrightarrow$$

$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\gamma|]_v = 1) \Leftrightarrow$$

$$\forall v. ([|\Gamma|]_v \neq 1 \text{ or } [|\gamma|]_v = 1)$$

Si mettono insieme $\forall v. 1 \& 2$

$$\forall v. ([|\Gamma|]_v \neq 1 \text{ or } [|\alpha|]_v = 1) \& ([|\Gamma|]_v \neq 1 \text{ or } [|\gamma|]_v = 0 \text{ or } [|\beta|]_v = 1)$$
$$\forall v. ([|\Gamma|]_v \neq 1 \text{ or } [|\beta|]_v = 1)])$$

È la definizione di conseguenza logica ($\neg \alpha \lor \beta$), quindi:

$$\forall v. \ [|\Gamma|]_v = 1 \Rightarrow [|\beta|]_v = 1$$

$$\Gamma \models \beta$$

$$\square$$

18 RAA (Reductio ad absurdum)

È un principio di tecnica di dimostrazione, cioè quella per assurdo.

$$\Gamma, \neg \alpha \models \bot \Rightarrow \Gamma \models \alpha$$

Prendiamo un insieme generico Δ

$$\begin{split} \Delta &\models \neg \qquad [|\neg|]_v = 0 \\ \forall v. \ [|\Delta|]_v = 1 \Rightarrow [|\bot|]_v = 1 \Leftrightarrow \\ \underbrace{[|\Delta|]_v \neq 1}_{\forall v. \ \exists \gamma \in \Delta \ t.c. \ [|\gamma|]_v = 0} or \ \underbrace{[|\bot|]_v = 1}_{\times} \end{split}$$

Se un insieme è falso, vuol dire che è insoddisfacibile:

$$\Delta \models \bot$$

 Δ è insoddisfacibile

Se
$$\Gamma \cup \{\neg \alpha\}$$
 insoddisfacibile allora $\Gamma \models \alpha$

Definizione 18.1

Si può interpretare la negazione di una formula nel seguente modo:

$$\neg \alpha \stackrel{def}{\Leftrightarrow} \alpha \to \bot$$

$$(*): \ \Gamma, \alpha \models \beta \Rightarrow \Gamma \models \alpha \rightarrow \beta$$

$$\Gamma, \neg \alpha \models \bot \stackrel{(*)}{\Rightarrow} \Gamma \models \neg \alpha \rightarrow \bot$$

Per definizione di negazione:

$$\underbrace{(\alpha \to \bot)}_{\neg \alpha} \to \bot$$

Quindi:

$$\Gamma \models \neg \neg \alpha$$

Per la definizione di conseguenza logica:

$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\neg \neg \alpha|]_v = 1)$$
$$[|\neg \neg \alpha|]_v = [|\alpha|]_v$$
$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\alpha|]_v = 1)$$
$$\Gamma \vDash \alpha \ (modus \ nonens)$$

19 Formalizzazione della deduzione

Il simbolo che si utilizza è: $\Gamma \vdash \alpha$ e vuol dire che da Γ si deduce α .

Definizione 19.1

- **Dedurre**: vuol dire riuscire a dimostrare qualcosa partendo da un insieme di ipotesi.
- Ipotesi: ciò che assumo essere vero
- Tesi: ciò che voglio dimostrare a partire dalle ipotesi

Si ha quindi un **sistema deduttivo** formato da **regole logiche** che trasformano le formule in altre formule.

20 Deduzione naturale

È una deduzione che si basa su regole logiche che applichiamo naturalmente. La struttura della deduzione naturale è la seguente:

$$D \\ tesi \\ dimostrazione/derivazione$$

È un concetto generico in matematica e nel linguaggio formale.

$$\Gamma, \neg, \alpha \models \bot \Rightarrow \Gamma \models \alpha$$

Introduciamo il sistema di deduzinoe naturale:

Prendiamo un sottosistema di connettivi:

$$\{\rightarrow, \land, \vec{\bot}\}$$

Si usano $D, \pi, D_1 \dots \overline{D}$ per indicare una dimostrazione generica.

$$D_{\alpha} D_{\beta}$$

Le lettere sotto la D sono fatti dimostrati.

Per indicare l'insieme delle ipotesi usate nella dimostrazione ${\cal D}$ si usa:

Definizione 20.1

Quando una formula sola viene usata come ipotesi è anche tesi (se la assumo, vuol dire che è vera). È anche la più piccola dimostrazione possibile.

Per ciascun connettivo si hanno 2 regole:

- 1. Regola di **eliminazione**
- 2. Regola di **introduzione**

20.1 Regole dell'implicazione

20.1.1 Eliminazione

Si utilizza il metoo Modus Ponens³

$$\begin{array}{cc} D_1 & D_2 \\ \alpha & \alpha \to \beta \end{array} \longrightarrow E$$

20.1.2 Introduzione

La seguente notazione \overline{D} vuol dire che tra le ipotesi potrebbe esserci α :

$$\frac{D}{\beta}$$

$$\frac{D}{\beta}$$

$$\frac{D}{\beta}$$

$$\frac{1}{\alpha \to \beta}$$

Le parentesi quadre indicano che abbiamo utilizzato α , ed è quindi "scaricata", cioè visto che è già stata utilizzata non fa più parte delle ipotesi. L'asterisco, invece è un indice che mostra su quale ipotesi è stata applicata la regola.

$$hp(\overline{D}) = hp(D)/\{\alpha\}$$

 $^{3[|\}alpha|]_v = 1 \ (\alpha \to \beta) \models \beta$

Esempio 20.1

Quando scarico α devo scaricare tutte le occorrenze

$$\mathop{D}_{\gamma}^{\underline{\alpha},\beta,\delta,\underline{\alpha}...}$$

20.1.3 Indebolimento

La seguente dimostrazione è accettata anche se α è stata scaricata.

$$\begin{array}{c} \stackrel{[\alpha]}{D} \\ \hline \alpha \to \beta \end{array} \to I^*$$

Questa dimostrazione prende il nome di **indebolimento**. "Lego" la verità di α a quella di β anche se non avevo α .

Ad esempio:

$$[|\beta|]_v = 1 \Rightarrow \underbrace{[|\alpha \to \beta|]_v}_{[|\alpha|]_v = 0 \text{ or } [|\beta|]_v = 1} = 1$$

La struttura di una derivazione è la seguente:

- α, β, \dots
- compongo D_1, \ldots, D_k attraverso le regole $(\to E, \to I)$
- nient'altro è derivazione

20.1.4 Esercizi

Esercizio 20.1

$$\vdash \alpha \to \alpha \quad \vdash = \operatorname{derivabilit\grave{a}}$$

$$\frac{[a]^1}{\alpha \to \alpha} \quad \to I^1$$

 α è sia ipotesi che conclusione di D

Esercizio 20.2

$$\begin{split} \vdash \alpha \to (\beta \to \alpha) \\ \frac{[\alpha]^1}{\beta \to \alpha} &\to I \ (indebolimento) \\ \frac{\alpha}{\alpha \to (\beta \to \alpha)} &\to I^1 \end{split}$$

Alla fine della derivazione tutte le ipotesi devono essere scaricate

Esercizio 20.3 (hard)

Definizione 20.2

$$\vdash \alpha$$

 α è un teorema se esiste una derivazione D tale che:

$$\underbrace{hp(D) = \emptyset}$$

cancellate tutte le ipotesi nel proc. deduttivo

20.2 Regole dell'AND

20.2.1 Introduzione

$$\begin{array}{cc} D_1 & D_2 \\ \hline \alpha & \beta \end{array} \quad \land I$$

20.2.2 Eliminazione a destra

$$\begin{array}{c} D \\ -\alpha \wedge \beta \\ -\alpha \end{array} \wedge E_1$$

20.2.3 Eliminazione a sinistra

$$\frac{D}{\alpha \wedge \beta} \quad \wedge E_2$$

20.2.4 Esercizi

Esercizio 20.4

Esercizio 20.5

$$\vdash \alpha \to \beta \to (\alpha \land \beta)$$

$$\frac{[\alpha]^2 \quad [\beta]^1}{\alpha \land \beta} \land I$$

$$\frac{\beta \to (\alpha \land \beta)}{\alpha \to \beta \to (\alpha \land \beta)} \to I^1$$

$$\frac{\beta \to (\alpha \land \beta)}{\alpha \to \beta \to (\alpha \land \beta)} \to I^2$$

Esempio 20.2

$$\begin{array}{c} \vdash \alpha \to \neg \neg \alpha \\ \\ \grave{e} \ equivalente \ a: \\ \\ \vdash \alpha \to ((\alpha \to \neg) \to \neg) \\ \\ \hline \\ \dfrac{[\alpha]^2 \quad [\alpha \to \bot]^1}{\bot} \to E \\ \\ \dfrac{\bot}{(\alpha \to \bot) \to \bot} \to I^1 \\ \\ \dfrac{(\alpha \to \bot) \to \bot}{\alpha \to ((\alpha \to \neg) \to \bot)} \to I^2 \end{array}$$

20.3 Regole del Bottom

20.3.1 Ex falso

$$D$$
 A
 I
 A

Si può aggiungere qualsiasi formula dal bottom utilizzando questa regola. (Dimostrazione per assurdo)

20.3.2 Riduzione ad assurdo

$$\begin{array}{ccc}
[\neg \alpha]^* \\
& \\
\bot \\
& \\
\alpha
\end{array}
RAA^*$$

20.3.3 Dimostrazione per assurdo

Voglio dimostrare P:

- 1. assumo P sia falso
- 2. se da 1. arrivo a una contraddizione allora P è vero

20.3.4 Esercizi

Esempio 20.3

La riduzione ad assurdo è equivalente a:

$$\frac{\dots}{\alpha \vee \neg \alpha} \perp I$$

per la regola del **terzo escluso** (tertium non datur)

Esempio 20.4

Derivazione del terzo escluso

$$\begin{array}{c|c} & [\alpha]^1 \\ \hline & (\alpha \vee \neg \alpha) \end{array} & \vee I_1 \\ \hline & & [\neg(\alpha \vee \neg \alpha)]^2 \\ \hline & & \bot \\ \hline & & -\alpha \end{array} & \to I^1 \\ \hline & & & \vee I^1 \end{array}$$

$$\begin{array}{c|c} \alpha \vee \neg \alpha & [\neg (\alpha \vee \neg \alpha)]^2 \\ \hline & \bot \\ \hline & \alpha \vee \neg \alpha \end{array} \to E$$

20.4 Regole dell'OR

20.4.1 Introduzione a destra

$$\frac{D_{\alpha}}{\alpha \vee \beta} \quad \forall I_1$$

20.4.2 Introduzione a sinistra

$$\frac{D_{\alpha}}{-\beta \vee \alpha} \quad \forall I_2$$

20.4.3 Esercizi

Esercizio 20.7

Esercizio 20.8 (a casa)

$$\vdash (\alpha \lor \beta) \to (\alpha \lor \beta) \lor \gamma$$

$$\frac{[(\alpha \lor \beta)]^{1}}{(\alpha \lor \beta) \lor \gamma} \lor I_{2}$$

$$\frac{(\alpha \lor \beta) \to (\alpha \lor \beta) \lor \gamma}{(\alpha \lor \beta) \to \gamma} \to I^{1}$$

20.4.4 Eliminazione

$$\begin{array}{ccc} D & \stackrel{[\alpha]^*}{D} & \stackrel{[\beta]^*}{D} \\ \alpha \vee \beta & \stackrel{\gamma}{\gamma} & \stackrel{\gamma}{\gamma} \end{array}$$

$$B \vee \alpha$$
 $\vee E^*$

Si implementa alla regola il ragionamento per casi

- 1. $P \Rightarrow R$
- 2. $Q \Rightarrow R$
- 3. 1. + 2. (se riesco a provare entrambi i casi) P or $Q \Rightarrow R$

Esempio 20.5

$$\Gamma, \alpha \models \gamma \& \Delta, \beta \models \gamma \& E \models \alpha \lor \beta$$

 $\Rightarrow \Gamma, \Delta, E \models \gamma$

Esempio 20.6

$$\begin{split} E &= \{\alpha \vee \beta\} \\ \Gamma, \alpha &\models \gamma &\& \Delta, \beta \models \gamma &\& \alpha \vee \beta \models \alpha \vee \beta \\ &\Rightarrow \Gamma, \Delta, \alpha \vee \beta \models \gamma \end{split}$$

Semanticamente:

$$[|\alpha \vee \beta|]_v = 1$$

ci si può chiedere cosa succede a livello di tautologie, è vero che?:

$$\models \alpha \lor \beta \Rightarrow \models \alpha \ or \ \models \beta$$

non è vero. Perchè:

$$\begin{split} &\models \alpha \vee \beta \overset{def}{\Leftrightarrow} \forall v. \ [|\alpha \vee \beta|]_v = 1 \Leftrightarrow \\ &\forall v. \ ([|\alpha|]_v = 1 \ oppure \ [|\beta|]_v = 1) \\ &\quad \alpha = p \qquad \beta = \neg p \\ &\models p \vee \neg p \Leftrightarrow \forall v. \ (v(p) = 1 \ or \ v(p) = 0) \ \checkmark \\ &\models p \Leftrightarrow \forall v. \ v(p) = 1 \ \times \\ &\models \neg p \Leftrightarrow \forall v. \ v(p) = 0 \ \times \end{split}$$

Esempio 20.7

Per dimostrare $\alpha \lor \beta \to \gamma$ devo trovare D_1 e D_2 e poi scaricare le assunzioni $(\alpha \lor \beta)$.

Esercizio 20.9

$$\begin{array}{c|c}
 & \vdash \alpha \lor \beta \to \beta \lor \alpha \\
\hline
 & [\alpha]^1 & \lor I_2 & [\beta]^1 \\
\hline
 & \beta \lor \alpha & \lor I_1
\end{array}$$

$$\begin{array}{c|c}
 & \downarrow I_1 \\
\hline
 & \beta \lor \alpha \\
\hline
 & (\alpha \lor \beta) \to (\beta \lor \alpha) & \to I^2
\end{array}$$

Esercizio 20.10

21 Prove dirette e indirette