

C: RS24

المملكة المغربية وزارة التحرب يسحة الحوط ليحة كتابة الدولة المكلفة بالتعليم المدرسي

المركز الوطنى للتقويم والامتحاثات

الامتحان الوطئى الموحد للبكالوريا -الدورة الاستدراكية 2008-الموضوع

9	المعامل:	الرياضيات	المسادة:
4س	مدة الإثجاز:	شعبة العلوم الرياضية (أ) و (ب)	الشعب (ة):

يسمح باستعمال الآلة الحاسبة

التمرين الأول: (3,5 نقط)

1 ن

0,5 ن

00,25ن

00,25

0,5ن

ن0,25

المستوى العقدي منسوب إلى معلم متعامد ممنظم مباشر (O, u, v).

 $z_1 = \frac{1+\sqrt{3}i}{2}z + \frac{\sqrt{3}+i}{2}$: حيث $M_1(z_1)$ بالنقطة M(z) بالنقطة و الذي يربط النقطة و النقطة النقطة عند النقطة النقطة النقطة و النقطة ا

 $F=h\circ r$ و التطبيق h الذي يربط النقطة M(z) بالنقطة M(z) بالنقطة M(z) حيث و التطبيق الذي يربط النقطة

المميزة به عناصر هما التطبيقين r و h وعناصر هما المميزة .

. a عدد عقدي معلوم مخالف للعدد a عدد a عدد α مخالف للعدد (2

D = F(C) و C = F(B) و B = F(A)

ا) بين أنه إذا كانت النقطة (X') هي صورة النقطة (M(z) بالتطبيق F فإن:

 $z'-i=2e^{i\frac{\pi x}{3}}(z-i)$

 $F(\Omega) = \Omega$: مي النقطة الوحيدة التي تحقق Ω في النقطة الوحيدة التي تحقق

3) أ) حدد بدلالة العدد العقدي a الأعداد العقدية b و c و b ألحاق النقط B و C و D على التوالي. 0.75ن

بن أن النقط Ω و A و D مستقيمية.

 $\{(B,4);(C,2);(D,1)\}$ هو مرجح النظمة المتزنة Ω النظمة المتزنة

د) حدد مجموعة النقط (A(a لكي تكون النقطة D تنتمي إلى المحور الحقيقي. ن0,25

التمرين الثاني: (4 نقط) نزود المجموعة \ بقانون التركيب الداخلي * المعرف بما يلي :

 $(\forall (x,y) \in \mathbb{R}^2)$; x * y = x + y - 3xy

 $(\forall (x,y) \in \mathbb{R}^2)$; (1-3x)(1-3y) = 1-3(x*y) : ا) تحقق ان (1) (1)

الامتحان الوطني الموحد للبكاا
(الثورة الاستدراكية 2008
الموضوع

الرياضيات المسادة:

الشعب (ة): شعبة العلوم الرياضية (أ) و (ب)

ب)بین آن $\left(\mathbb{R}\setminus\left\{\frac{1}{3}\right\},*\right)$ زمرة تبادلیة.

0.75ن

0,5ن

0,25ن

0,5ن

0,25ن

0,5ن

0,5ن

0,5ن

2) أ) بين أن التطبيق φ الذي يربط كل عدد حقيقي χ بالعدد الحقيقي

 (\mathbb{R}^+,\times) نحو (\mathbb{R}^+,\times) نحو (\mathbb{R}^+,\times) نحو $\phi(x)=1-3x$

 $\phi^{-1}\left(\mathbb{R}_{+}^{*}\right) = \left|-\infty, \frac{1}{3}\right| :$ بین ان (

 $\mathbb{R} \setminus \left\{\frac{1}{3}\right\}, *$ بين أن $\left(-\infty, \frac{1}{3}\right], *$ زمرة جزئية للزمرة $\left(-\infty, \frac{1}{3}\right], *$

 $\mathbf{x}^{(0)}=0$: نضع \mathbb{N} نضع $\mathbb{R}\setminus\left\{\frac{1}{3}\right\}$ عن المجموعة $\mathbb{R}\setminus\left\{\frac{1}{3}\right\}$

 $(\forall n \in \mathbb{N})$; $x^{(n+1)} = x^{(n)} * x$

 $\left\{ \forall x \in \mathbb{R} \setminus \left\{ \frac{1}{3} \right\} \right\}; \left(\forall n \in \mathbb{N} \right) ; \phi \left(x^{(n)} \right) = \left(\phi(x) \right)^n : \psi$ بين أن

ب) استنتج (x بدلالة x و n .

 $(\forall (x,y) \in \mathbb{R}^2)$; $xTy = x + y - \frac{1}{3}$

أ) بين أن : (R,T) زمرة تبادلية .

ب) بين أن : (R,T,*) جسم تبادلي.

التمرين الثالث: (2,5نقط)

يحتوي صندوق على أربع كرات:كرة بيضاء و ثلاث كرات حمراء غير قابلة للتمييز باللمس. نسحب عشوائيا كرة من الصندوق, نسجل لونها بثم نعيدها إلى الصندوق.

نجري نفس التجربة لمرات متتابعة إلى أن نحصل الأول مرة على كرتين متتابعتين من نفس اللون و نوقف التجربة.

ليكن X المتغير العشوائي الذي يساوي رتبة السحبة التي توقفت فيها التجربة.

[X=3] و [X=2] احسب احتمال كل حدث من الحدثين التاليين : [X=3] و

ان

الصفحة 3 الامتحان الوطني الموحد للبكالوريا 4	ـــادة: الرياضيات	
الامتحان الوطني الموحد للبكالوريا (الدورة الاستدراكية 2008) (الدورة الاستدراكية 888ع	سب (ة): شعبة العلوم الرياضية (أ) و (ب)	الشه
	2) ليكن k عدد صحيح طبيعي غير منعدم.	
$p_{2k} = \frac{5}{8} \left(\frac{3}{16}\right)^k$	أ)بين أن احتمال الحدث [X = 2k] هو	0,75ن
$p_{2k+1} = \left(\frac{3}{16}\right)^k \text{if} $	ب)بين أن احتمال الحدث [X = 2k + 1] ه	0,75ن
	التمرين الرابع: (10 نقط)	
ho=1 ہمایلي: $ ho=1$	I- نعتبر الدالة العددية f المعرفة على المجال	
	$\begin{cases} f(x) = \frac{\ln(1+2x)}{x} ; & x \neq 0 \\ f(0) = 2 \end{cases}$	
(O:[-]) . History and a significant of the contract of the con	f(0) = 2 المنحنى الممثل للدالة f في معلم و ليكن	
(0,1,1)	1) بين أن الدالة f متصلة في الصفر .	0,5
ا نعتبر الدالة العددية ha للمتغير الحقيقي x المعرفة على	2) لكل عدد حقيقي غير منعدم a من المجال 1	
$h_a(x) = (\ln(1+2a)-2a)x^2 - ($	$\ln(1+2x)-2x)a^2$ المجال I بما يلي:	
يوجد عدد حقيقي b محصور بين 0 و a بحيث:	ا)احسب $h_a(a)$ و $h_a(0)$ ثم استنتج أنه ب	
<u>In()</u>	$\frac{1+2a)-2a}{a^2} = \frac{-2}{1+2b}$	0,5
الصفر و أن : 1−2 = (0) . f'(0)	ب)استنتج أن الدالة f قابلة للاشتقاق في ا	0,75
جال {0} \I	 3) أ)بين أن الدالة f قابلة للاشتقاق على الم 	0,5
$g(x) = 2x - (1+2x)\ln(1+2x) \iff (\forall x \in I \setminus \{$	$\{0\}$); $f'(x) = \frac{g(x)}{x^2(1+2x)}$;	
(∀x	$g \in I \setminus \{0\}$; $g(x) < 0$: $g(x) < 0$	0,5
. 1	ج)استنتج تغيرات الدالة f على المجال]	0,25
أ أول هندسيا النتيجتين المحصل عليهما. $\lim_{x \to +\infty} f(x)$	(x) ا) احسب النهايتين (x) ايد النهايتين (4) الحسب النهايتين (4)	0,5

الصفحة 4 الامتحان الوطني الموحد للبكالوريا 4	ة : الرياضيات	الماد
الصفحة الامتحان الوطني الموحد للبكالوريا 4 4 (الدورة الاستدراكية 2008) الموضوع الموضو	 (ة): شعبة العلوم الرياضية (أ) و (ب) 	- الشعب
لمجال [1,2] بحيث : f(α) = 1)	ب)بين أنه يوجد عدد حقيقي وحيد $lpha$ من ا $lpha pprox 1,3 : (C)$ (ناخذ : $lpha pprox 1,3 = \ln(1+2x)$ و $J = [1,lpha] : (1+2x)$	0,5 0,5
$(\forall x \ge 1)$; $0 < \phi'(x) \le \frac{2}{3}$: ن ا و أن $\phi(J) \subset$	أ) بين الدالة $φ$ قابلة للاشتقاق على المجاآ $φ(α) = α$ و أن $y(α) = α$	0,5 0,75
$\left(\forall n \geq 0\right)$; $u_{n+1} = \ln(1+2u_n)$ و $u_0 = 1$	نعتبر المتتالية العددية $\left(u_n\right)_{n\in\mathbb{N}}$ المعرفة با $(orall n\geq 0)\;;\;u_n\in J\;)$	2 0,5
(∀n	≥ 0); $\left \mathbf{u}_{\mathbf{n}} - \alpha\right \leq \left(\frac{2}{3}\right)^{\mathbf{n}}$: بين آن	0,5
	ج)استنتج أن المتثالية $\left(u_{n}\right)_{n\in\mathbb{N}}$ متقاربة و	0,5
	خعتبر الدالة العددية F المعرفة على المجال	III
جال I ثم أحسب (F'(x	 أ)بين أن الدالة F قابلة للاشتقاق على الم ب)استنتج منحى تغيرات الدالة F على الم 	0,5 0,25
(∀x≥1); F	$(x) \ge \int_1^x \frac{\ln(1+2t)}{1+2t} dt$: بين أن (2	0,5
	$\lim_{x\to+\infty} F(x) = +\infty : 0$ $\lim_{x\to+\infty} F(x) = +\infty$	0,5
على اليمين في 1	ℓ نفترض أن الدالة F تقبل نهاية منتهية δ	
$(\tilde{\mathbf{r}}(\mathbf{r}) - \mathbf{r}(\mathbf{r}) + \mathbf{r} \cdot \mathbf{r})$	ونعتبر الدالة \widetilde{F} المعرفة على المجال ∞	
$(\forall x \in I)$; $F(x) - \ell \ge f(x) \left(x + \frac{1}{2}\right)$: ين أن	أ) باستعمال مبر هنة التزايدات المنتهية ب	0,5
	ب) استنتج أن الدالة $\widetilde{\mathrm{F}}$ غير قابلة للاشتقاق عا	0,5

EXCEL

 $\Leftrightarrow \left[z_1 = e^{i\frac{\pi}{3}}(z-i) + i\right]$ (1)

 $h(z_1)=z^{'}$: و لدينا كذلك

$$\Leftrightarrow$$
 $(z'-i)=-2(z_1-i)$

$$\stackrel{\text{(1)}}{\Leftrightarrow} \quad (z'-i) = -2e^{i\frac{\pi}{3}}(z-i)$$

$$-e^{i\frac{\pi}{3}} = -\cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right)$$

$$= \cos\left(\pi + \frac{\pi}{3}\right) + i\sin\left(\pi + \frac{\pi}{3}\right)$$

$$= \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right)$$

$$= e^{\frac{4i\pi}{3}}$$

$$(z^{'}-i)=2e^{\frac{4i\pi}{3}}(z-i)$$
 : إذن

لدبنا حسب السؤ ال(أ)

$$M \xrightarrow{F} M'$$

$$z \xrightarrow{} z' = 2e^{\frac{4i\pi}{3}}(z-i) + i$$

F(M) = M: نحل المعادلة

$$\iff z\left(2e^{\frac{4i\pi}{3}}-1\right)=2ie^{\frac{4i\pi}{3}}-i$$

$$\iff z\left(2e^{\frac{4i\pi}{3}} - 1\right) = i\left(2e^{\frac{4i\pi}{3}} - 1\right)$$

$$\Leftrightarrow z = i$$

$$\iff M \equiv \Omega$$

(-)(2)■

F(M)=M و بالتالي : Ω هي النقطة الوحيدة التي تحقق

F(A) = B : لدينا

$$\Leftrightarrow z_B - i = 2e^{\frac{4i\pi}{3}}(z_A - i)$$

$$\Leftrightarrow z_{R} = 2e^{\frac{4i\pi}{3}}(a-i) + i$$

$$\Leftrightarrow$$
 $z_B = 2\left(\frac{-1}{2} - i\frac{\sqrt{3}}{2}\right)(a-i) + i$

$$\Leftrightarrow$$
 $z_B = (1 + i\sqrt{3})(i - a) + i$

$$\Leftrightarrow z_B = i - a - \sqrt{3} - a\sqrt{3}i + i$$

$$\iff z_B = -(a + \sqrt{3}) + i(2 - a\sqrt{3})$$

 $r(M)=M_1$: ننطلق من الكتابة

$$\Leftrightarrow \quad z_1 = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)z + \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)$$

$$\iff z_1 = e^{i\frac{\pi}{3}}z + \left(\frac{\sqrt{3}}{2} + i - \frac{1}{2}i\right)$$

$$\Leftrightarrow z_1 = e^{i\frac{\pi}{3}}z + i - \left(\frac{-\sqrt{3}}{2} + \frac{1}{2}i\right)$$

$$\Leftrightarrow z_1 = e^{i\frac{\pi}{3}}z + e^{i\frac{\pi}{2}} - e^{i\frac{5\pi}{6}}$$

$$\Leftrightarrow z_1 = \left(e^{i\frac{\pi}{3}}z - e^{i\frac{5\pi}{6}}\right) + e^{i\frac{\pi}{2}}$$

$$\Leftrightarrow z_1 = \left(e^{i\frac{\pi}{3}}z - e^{i\frac{\pi}{2}}e^{i\frac{\pi}{3}}\right) + e^{i\frac{\pi}{2}}$$

$$\iff \left(z_1 - e^{i\frac{\pi}{2}}\right) = e^{i\frac{\pi}{3}} \left(z - e^{i\frac{\pi}{2}}\right)$$

$$\Leftrightarrow (z_1 - i) = e^{i\frac{\pi}{3}}(z - i)$$

$$\iff \overrightarrow{VM_1} = e^{i\frac{\pi}{3}} \overrightarrow{VM}$$

و بالتالي :
$$r$$
 دوران مركزه $V(i)$ و زاويته r .

$$h(M) = M_2$$
 : و لدينا كذلك

$$\Leftrightarrow$$
 $z_2 = -2z + 3i$

$$\Leftrightarrow$$
 $z_2 = -2z + 2i + i$

$$\Leftrightarrow z_2 = -2(z-i) + i$$

$$\Leftrightarrow$$
 $(z_2 - i) = -2(z - i)$

$$\Leftrightarrow \overrightarrow{VM_2} = -2\overrightarrow{VM}$$

$$-2$$
 و بالتالى h تحاكى مركزه $V(i)$ و نسبته

■(j)2 ننطلق من الشكل التالي :

$$F = hor$$

$$M \longrightarrow M_1 \longrightarrow M'$$

$$z \longrightarrow z_1 \longrightarrow z'$$

$$r(M)=M_1$$
: لدينا

$$\iff (z_1 - i) = e^{i\frac{\pi}{3}}(z - i)$$

أجوبة الدورة الاستدراكية 2018 من إعداد الأستاذ بدر الدين الفاتحي: (أصفحة: 38

(+)(1)■

 $\mathbb{R}\setminus\left\{\frac{1}{3}\right\}$ فانون تركيب داخلي في * قانون تركيب

 $\mathbb{R}\setminus\left\{\frac{1}{3}\right\}$ ليكن x و y عنصرين من x

$$\iff x \neq \frac{1}{3} \quad y \neq \frac{1}{3}$$

$$\Leftrightarrow (1-3x) \neq 0 \quad \text{o} \quad (1-3y) \neq 0$$

$$\Leftrightarrow$$
 $(1-3x)(1-3y) \neq 0$

$$\Leftrightarrow$$
 1 – 3($x * y$) \neq 0

$$\Leftrightarrow (x * y) \neq \frac{1}{3}$$

$$\iff$$
 $(x * y) \in \mathbb{R} \setminus \left\{\frac{1}{3}\right\}$

 $\mathbb{R} \setminus \left\{\frac{1}{3}\right\}$ الإذن * قانون تركيب داخلي في

 $\mathbb{R} \setminus \left\{\frac{1}{3}\right\}$ ليكن x و y و z ثلاثة عناصر من

$$x * (y * z) = x * (y + z - 3yz)$$
 :

$$= x + (y + z - 3yz) - 3x(y + z - 3yz)$$

$$= x + y + z - 3yz - 3xy - 3xz + 9xyz$$

$$(x * y) * z = (x + y - 3xy) * z : و لدينا = (x + y - 3xy) + z - 3z(x + y - 3xy) = x + y + z - 3yz - 3xy - 3xz + 9xyz$$

 $\mathbb{R}\setminus\left\{\frac{1}{3}\right\}$ و بالتالي : * قانون تجميعي في

$$x * y = x + y - 3xy$$
 : Levil | $= y + x - 3yx$ | $= y * x$

 $\mathbb{R}\setminus\left\{\frac{1}{3}\right\}$ إذن تبادلي في

 $\mathbb{R}\setminus\left\{\frac{1}{3}\right\}$ العنصر المحايد في البكن e العنصر المحايد في البكن عنصر البكن عنصر المحايد في البكن عنصر البكن عنصر البكن عنصر المحايد في البكن عنصر البكن عنصر البكن عنصر البكن عنصر المحايد في البكن عنصر البكن عنصر

$$\iff \forall x \in \mathbb{R} \setminus \left\{ \frac{1}{3} \right\} \; ; \; x * e = e * x = x$$

$$\Leftrightarrow x + e - 3xe = x$$

$$\Leftrightarrow e(1-3x)=0$$

$$(1-3x) \neq 0$$
 فإن $x \neq \frac{1}{2}$ بما أن

$$e=0$$
 : اذن

$$0 \neq \frac{1}{3}$$
: لأن $e \in \mathbb{R} \setminus \left\{\frac{1}{3}\right\}$ عن عن

F(C)=D و بنفس الطريقة ننطلق من الكتابتين F(B)=C و بنفس الطريقة ننطلق من الكتابتين

$$z_{C} = 2(\sqrt{3} - a) + i(2a\sqrt{3} + 3)$$

$$z_{D} = 8a - 7i$$

■(3)ب

$$rac{z_{\Omega}-z_{A}}{z_{D}-z_{A}}=rac{i-a}{8a-7i-a}=rac{-1}{7}\in\mathbb{R}$$
 البينا:

$$\iff (z_{\Omega} - z_{A}) = \frac{-1}{7}(z_{D} - z_{A})$$

$$\iff \overrightarrow{A\Omega} = \frac{-1}{7}\overrightarrow{AD}$$

و بالتالى : النقط A و Ω و D نقط مستقيمية .

$$rac{4z_B+2z_C+z_D}{7}=rac{7i}{7}=z_\Omega$$
 : لينا

نستنتج إذن أن : النقطة Ω هي مرجح النظمة المتزنة :

 $\{(B,4);(C,2);(D,1)\}$

_(2)(<u>3</u>)■

a=x+iy : ونضع ونظلة من المحور الحقيقي ونضع نظلق من كون D

$$\Leftrightarrow z_D \in \mathbb{R}$$

$$\Leftrightarrow (8a - 7i) \in \mathbb{R}$$

$$\Leftrightarrow 8x + i(8y - 7) \in \mathbb{R}$$

$$\Leftrightarrow (8y - 7) = 0$$

$$\Leftrightarrow y = \frac{7}{8}$$

إذن مجموعة النقط A(a) التي من أجلها النقطة D تنتمي إلى المحور الحقيقي تشكل مستقيما موازيا للمحور الحقيقي. و معادلته : $y=rac{7}{8}$

التمرين الثاني: (4,0 ن)

_(j)**1**)■

$$1 - 3(x * y) = 1 - 3(x + y - 3xy)$$

$$= 1 - 3x - 3y + 9xy$$

$$= (1 - 3x) - 3y(1 - 3x)$$

$$= (1 - 3x)(1 - 3y)$$

أجوية الدورة الاستدراكية 2008 من إعداد الأستاذ بدر الدين الفاتحي: () رمضان 2012 الصفحة : 139

(+)(2)■

 $\varphi'(x) = -3 < 0$: Levil

إذن φ دالة تناقصية على Π

$$\varphi^{-1}(\mathbb{R}_{+}^{*}) = \varphi^{-1}(]0; +\infty[) : \varphi^{-1}(]0; +\infty[)$$

$$= \lim_{y \to +\infty} \varphi^{-1}(y) ; \varphi^{-1}(]0[$$

$$= \lim_{y \to +\infty} \left(\frac{1}{3} - \frac{y}{3}\right) ; \frac{1}{3}[$$

$$= \left]-\infty ; \frac{1}{3}[$$

$$\mathbb{R}\setminus\left\{\frac{1}{3}\right\}$$
 لدينا : $\left]-\infty;\frac{1}{3}\right[$ جزء غير فارغ من $\left[-\infty;\frac{1}{3}\right]$ $\left[-\infty;\frac{1}{3}\right]$ $\left[-\infty;\frac{1}{3}\right]$ $\left[-\infty;\frac{1}{3}\right]$ $\left[-\infty;\frac{1}{3}\right]$ ليكن x و y عنصرين من $\left[-\infty;\frac{1}{3}\right]$

$$x * y' = x * \left(\frac{-y}{1 - 3y}\right)$$
 : دينا $= x - \frac{y}{1 - 3y} + \frac{3xy}{1 - 3y}$ $= \frac{x(1 - 3y) - y + 3xy}{1 - 3y}$ $= \frac{x - y}{1 - 3y}$

 $y < \frac{1}{2}$ و $x < \frac{1}{2}$: إذن

3v < 1 و منه : 3x < 1

$$(1-3y) > 0$$
 و $3x - 3y < 1 - 3y$: إذْن : (1)

نصرب طرفي المتفاوتة (1) في العدد الموجب : $\left(\frac{1}{1-2v}\right)$ نحصل على :

$$\frac{3x - 3y}{1 - 3y} < 1$$

$$\Leftrightarrow \frac{x - y}{1 - 3y} < \frac{1}{3}$$

$$\Leftrightarrow \frac{x - y}{1 - 3y} \epsilon \left] -\infty; \frac{1}{3} \right[$$

$$\Leftrightarrow x * y' \epsilon \left] -\infty; \frac{1}{3} \right[$$

$$\left(\mathbb{R}\setminus\left\{rac{1}{3}
ight\};st
ight)$$
 و بالتالي : $\left(\left[-\infty;rac{1}{3}
ight];st
ight)$ زمرة جزئية للزمرة

* ليكن χ' مماثل χ بالنسبة لـ

التماثل:

EXCEL

لدبنا

$$\Leftrightarrow x * x' = x' * x = e$$

$$\Leftrightarrow x + x' - 3xx' = 0$$

$$\Leftrightarrow x'(1-3x)=-x$$

$$\Leftrightarrow x' = \frac{-x}{(1-3x)}$$

$$1 \neq 0 \implies 1 - 3x \neq -3x$$
 : و لدينا
$$\Leftrightarrow \frac{1}{1 - 3x} \neq \frac{-1}{3x}$$

$$\iff \frac{-x}{1-3x} \neq \frac{1}{3}$$

$$\Leftrightarrow \frac{-x}{1-3x} \in \mathbb{R} \setminus \left\{\frac{1}{3}\right\}$$

 $\mathbb{R}\setminus\left\{\frac{1}{3}\right\}$ في $\left\{\frac{-x}{1-3x}\right\}$ في $\mathbb{R}\setminus\left\{\frac{1}{3}\right\}$ في \mathbb{R} بالنسبة للقانون * ب

زمرة تبادلية .
$$\left(\mathbb{R}\setminus\left\{\frac{1}{3}\right\};*
ight)$$
 زمرة تبادلية .

-(j)(2)**■** $\left(\mathbb{R}\setminus\left\{\frac{1}{3}\right\};*\right) \xrightarrow{\varphi} \left(\mathbb{R}^*;\times\right)$

 $\mathbb{R}\setminus\left\{\frac{1}{2}\right\}$ ليكن x و y عنصرين من

$$\varphi(x*y) = 1 - 3(x*y) : لدينا$$

(1)

$$\varphi(x*y) = (1-3x)(1-3y) = \varphi(x) \times \varphi(y)$$

$$(\mathbb{R}^*; \times)$$
 نحو $(\mathbb{R} \setminus \left\{\frac{1}{3}\right\}; *)$ نحو φ نشاکل من φ

 \mathbb{R}^* نصر ا من ν

 $x=rac{1-y}{2}$ المعادلة $\varphi(x)=y$ ذات المجهول x تقبل حلا وحيدا و هو

$$(\mathbb{R}^*\,;\, imes)$$
 نحو $(\mathbb{R}\setminus\left\{rac{1}{3}
ight\};*)$ نحو φ نقابل من إذن φ

و تقابله العكسى $arphi^{-1}$ معرف بما يلى :

$$(\mathbb{R}^*; \times) \xrightarrow{\varphi^{-1}} \left(\mathbb{R} \setminus \left\{ \frac{1}{3} \right\}; * \right)$$

$$y \xrightarrow{\qquad \qquad } \frac{1 - y}{3}$$

 $x*(y \mid z) = (x*y) \mid (x*z)$: نستنتج إذن أن

(2)
$$\left(\mathbb{R},\mathsf{T}\right)$$
 زمرتان تبادلیتان. $\left(\mathbb{R}\setminus\left\{\frac{1}{3}\right\};*\right)$ و لدینا

إذن من (1) و (2) نستنتج أن $(\mathbb{R}, \mathsf{T}, *)$ جسم تبادلي .

التمرين الثالث: (2,5 ن)

. و احتمال توقف التجربة في السحبة رقم p[X=2]

نستعمل نموذج الشجرة التالي:

و منه احتمال الحصول على كرتين من نفس اللون يساوي :

$$p[X = 2] = \left(\frac{1}{4} \times \frac{1}{4}\right) + \left(\frac{3}{4} \times \frac{3}{4}\right) = \left[\frac{5}{8}\right]$$

. p[X=3] هو احتمال توقف التجربة في السحبة رقم 3

الیکن x عنصرا من $\left\{\frac{1}{3}\right\}$ و n عندا صحیحا طبیعیا. $\varphi(x^{(n)}) = \varphi\left(\underbrace{x * x * \cdots * x}_{n \text{ odd}}\right) :$ $\Leftrightarrow \varphi(x^{(n)}) = \varphi(x) \times \varphi(x) \times \cdots \times \varphi(x)$ $\Leftrightarrow \varphi(x^{(n)}) = (\varphi(x))^n$

$$\varphi(x^{(n)}) = (\varphi(x))^n$$
 $\Leftrightarrow 1 - 3x^{(n)} = (1 - 3x)^n$
 $\Leftrightarrow x^{(n)} = \frac{1 - (1 - 3x)^n}{3}$

لدينا ٦ قانون تركيب داخلي في ١

$$\forall x, y \in \mathbb{R}$$
 ; $x + y - \frac{1}{3} \in \mathbb{R}$: \dot{y}

$$x \mid (y \mid z) = x \mid (x + y - \frac{1}{3})$$
 : المينا $= x + x + y - \frac{1}{3} - \frac{1}{3}$ $= (x \mid y) \mid z$

● إذن T قانون تجميعي في

$$\Leftrightarrow$$
 $x + e = e + x = x$. \mathbb{R} ليكن e العنصر المحايد لـ $x + e - \frac{1}{3} = x$ \Leftrightarrow $e = \frac{1}{3} \in \mathbb{R}$

 $_{\mathrm{L}}$ ليكن $_{\mathrm{L}}$ عنصرا من $_{\mathrm{R}}$ و $_{\mathrm{L}}$ مماثله بالنسبة لـ

$$\Leftrightarrow x \mid x' = x' \mid x = \frac{1}{3}$$

$$\Leftrightarrow x + x' - \frac{1}{3} = \frac{1}{3}$$

$$\Leftrightarrow x' = \left(\frac{2}{3} - x\right) \in \mathbb{R}$$

 \mathbb{R} ليكن x و y و z ثلاثة عناصر من

$$x * (y \mid z) = x * (y + z - \frac{1}{3})$$
 : الدينا $= 2x + y + z - 3(xy + xz) - \frac{1}{3}$

$$(x*y)$$
 \uparrow $(x*z) = (x+y-3xy)$ \uparrow $(x+z-3xz)$: و لدينا $=$ $2x+y+z-3(xy+xz)-\frac{1}{3}$

أجوبة الدورة الاستدراكية 2008 من إعداد الأستاذ بدر الدين الفاتحي: (

-**⊕**(2)■

بنفس الطريقة نفصل بين حالتين:

<u>الحالة الأولى:</u> توقفت التجربة إثر الحصول على كرتين بيضاوين و هذا ما يجسده التسلسل التالى:

و هذا يعني : أننا نحصل على k كرة حمراء و (k+1) كرة بيضاء.

$$\left(\frac{1}{4}\right)^{k+1} imes \left(\frac{3}{4}\right)^k$$
 : إذن احتمال هذه الحالة هو

<u>الحالة الثانية:</u> توقفت التجربة إثر الحصول على كرتين حمر اوين و هذا ما يجسده التسلسل التالى:

و هذا يعني : أننا نحصل على (k+1) كرة حمراء و k كرة بيضاء.

$$\left(\frac{1}{4}\right)^k \times \left(\frac{3}{4}\right)^{k+1}$$
 : إذن احتمال هذه الحالة هو

و بالتالي احتمال الحصول على كرتين من نفس اللون في (2k+1) = 2k السحبتين 2k

$$p[X = 2k + 1] = \left(\frac{1}{4}\right)^{k+1} \times \left(\frac{3}{4}\right)^{k} + \left(\frac{1}{4}\right)^{k} \times \left(\frac{3}{4}\right)^{k+1}$$

$$\iff p[X = 2k + 1] = \left(\frac{1}{4}\right)^k \times \left(\frac{3}{4}\right)^k \left(\frac{1}{4} + \frac{3}{4}\right)$$

$$\Leftrightarrow p[X=2k+1] = \left(\frac{3}{16}\right)^k$$

الصفحة: 142

$$p[X=3] = \left(\frac{1}{4} \times \frac{3}{4} \times \frac{3}{4}\right) + \left(\frac{3}{4} \times \frac{1}{4} \times \frac{1}{4}\right) = \boxed{\frac{3}{16}}$$
 : إذن

_(j)**(2**)■

هو احتمال الحصول على كرتين من نفس اللون في السحبتين p[X=2k] و 2k و 2k و 2k-1)

الحالة الأولى: توقفت التجربة إثر الحصول على كرتين بيضاوين و هذا ما يجسده التسلسل التالي:

و هذا يعني : أننا نحصل على (k+1) كرة بيضاء و (k-1) كرة حمراء.

$$\left(\left(rac{1}{4}
ight)^{k+1} imes\left(rac{3}{4}
ight)^{k-1}
ight)$$
: إذن احتمال هذه الحالة هو

الحالة الثانية: توقفت التجربة إثر الحصول على كرتين حمر اوين و هذا ما يجسده التسلسل التالي:

و هذا يعني : أننا نحصل على (k+1) كرة حمراء و (k-1) كرة بيضاء.

$$\left(\left(\frac{1}{4}\right)^{k-1} \times \left(\frac{3}{4}\right)^{k+1}\right)$$
 : إذن احتمال هذه الحالة هو

و بالتالي احتمال الحصول على كرتين من نفس اللون في $(2k-1) \ \, \text{ (2k) e}$

$$p[X = 2k] = \left(\frac{1}{4}\right)^{k+1} \times \left(\frac{3}{4}\right)^{k-1} + \left(\frac{1}{4}\right)^{k-1} \times \left(\frac{3}{4}\right)^{k+1}$$

$$\Leftrightarrow p[X=2k] = \left(\frac{1}{4}\right)^{k-1} \times \left(\frac{3}{4}\right)^{k-1} \left(\left(\frac{1}{4}\right)^2 + \left(\frac{3}{4}\right)^2\right)$$

$$\Leftrightarrow p[X=2k] = \left(\frac{3}{16}\right)^{k-1} \times \left(\frac{5}{8}\right)^{k}$$

من إعداد الأستاذ بدر الدين الفاتحي: () مضان 2012

(j)(3)(I)■

لدينا f دالة قابلة للإشتقاق على $\{0\}\setminus I$ لأنها مجموع دوال اعتيادية قابلة للإشتقاق على $\{0\}\setminus I$.

$$f'(x) = \left(\frac{\frac{2x}{1+2x} - \ln(1+2x)}{x^2}\right) :$$

$$\Leftrightarrow f'(x) = \left(\frac{2x - (1+2x)\ln(1+2x)}{x^2(1+2x)}\right)$$

$$\Leftrightarrow \left(f'(x) = \frac{g(x)}{x^2(1+2x)}\right)$$

-(3)(I)■

. I دالة معرفة و متصلة و قابلة للإشتقاق على g

$$g^{'}(x) = 2 - \left(2\ln(1+2x) + \frac{2(1+2x)}{(1+2x)}\right)$$
 و لدينا كذلك $= -2\ln(1+2x)$

$$g^{'}(x) = 0$$
 فين $x = 0$ إذا كان $x = 0$ فين $x > 0$ إذا كان $x > 0$ فين $x > 0$ إذا كان $x < 0$ فيان $x < 0$ إذا كان $x < 0$ فيان $x < 0$

$$\lim_{x \to \frac{-1}{2}^{+}} g(x) = \lim_{x \to \frac{-1}{2}^{+}} 2x - (1+2x)\ln(1+2x) : \frac{1}{2}$$

$$= -1 - \lim_{x \to \frac{-1}{2}^{+}} (1+2x)\ln(1+2x)$$

$$= -1 - \lim_{u \to 0^{+}} u \ln(u)$$

$$= -1 - 0$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} 2x - (1+2x)\ln(1+2x)$$

$$= \lim_{x \to +\infty} x\left(2 - \left(\frac{1}{x} + 2\right)\ln(1+2x)\right)$$

$$= (+\infty)(-\infty)$$

$$= -\infty$$

التمرين الرابع: (10 ن)

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(\frac{\ln(1+2x)}{x} \right) = \lim_{\substack{u \to 1 \\ u=1+2x}} \left(\frac{2\ln u}{u-1} \right)$$

$$= 2\lim_{\substack{u \to 1 \\ \text{Restriction Excellent Times COCALINE STOCKMENT Times COCALING STOCHMENT TIMES COCALI$$

$$\left((\forall x_0 > 0) \;\;\; ; \;\;\; \lim_{x \to x_0} \left(\frac{\ln x - \ln x_0}{x - x_0} \right) = \frac{1}{x_0} \;\;\;
ight)$$
 الأنه لدينا

إذن f دالة متصلة في الصفر.

_(j)(2)(I)■

$$h_a(a) = (\ln(1+2a) - 2a)a^2 - (\ln(1+2a) - 2a)a^2 = 0$$

$$h_a(0) = -(\ln(1))a^2 = 0$$

. [0,a] على الله متصلة و قابلة للإشتقاق على الله و بما أن

$$h_a(0) = h_a(a) \$$

 $h_a^{'}(b)=0$: بحيث]0,a[بحيث يوجد عنصر b بنام برهنة رول يوجد عنصر

$$\Leftrightarrow 2(\ln(1+2a)-2a)b = a^2\left(-2+\frac{2}{1+2b}\right)$$

$$\iff \frac{\ln(1+2a)-2a}{a^2} = \frac{-2}{1+2b}$$

$$\lim_{x \to 0} \left(\frac{f(x) - f(0)}{x - 0} \right) = \lim_{x \to 0} \left(\frac{\ln(1 + 2x) - 2x}{x^2} \right)$$
: Limit

$$= \lim_{\substack{a \to 0 \\ a = x}} \left(\frac{\ln(1+2a) - 2a}{a^2} \right)$$

a < b < 0: لدينا حسب السؤال () يوجد b مرتبط بa < b < 0

$$\frac{\ln(1+2a)-2a}{a^2} = \frac{-2}{1+2b}$$

إذا كان a يؤول إلى الصفر فإن b يؤول كذلك إلى الصفر

$$a < b < 0$$
 : التأطير و ذلك بسبب التأطير

و بالتالي النهاية تصبح:

$$\lim_{a \to 0} \left(\frac{\ln(1+2a) - 2a}{a^2} \right) = \lim_{b \to 0} \left(\frac{-2}{1+2b} \right) = -2 \in \mathbb{R}$$

$$f^{'}(0)=-2$$
 إذن f دالة قابلة للإشتقاق في الصفر و

أجوبة الدورة الاستدراكية 2008 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان 2012 الصفحة : 143

 $[1;2] \subset \left[\frac{-1}{2};+\infty\right[$ الأن f الأن f الذن f الذن f تقابل من f تقابل من f نحو صورته f نحو منه f تقابل من f نحو صورته الفرا

 $[0,8\ ;\ 1,1]$ نحو [1;2] نحو تقابل من

و بما أن العدد 1 ينتمي إلى المجال [1,1] ; 0,8

[1;2] من المجال واحدا بالتقابل f من المجال

 $\exists ! \; lpha \; \epsilon \; [1;2] \; : \; \; f(lpha) = 1 \; : \;$ أو بتعبير رياضياتي جميل

-(j)(1)(II)■

I عبارة عن مركب دالتين قابلتين للإشتقاق على الدالة ϕ

. I فابلة للإشتقاق على arphi

$$\varphi'(x) = \frac{2}{1+2x} :$$
و لدينا

 $6 \le 2 + 4x$: $x \ge 1$: لدينا من أجل

$$\Leftrightarrow 6 \le 2(1+2x)$$

$$\Leftrightarrow \frac{2}{1+2x} \le \frac{2}{3}$$

$$\Leftrightarrow \varphi'(x) \le \frac{2}{3}$$
 (1)

 $x>rac{-1}{2}$: إذن $x \in I$ و لدينا كذلك

 $\frac{2}{1+2x} > 0$: إذن 1+2x > 0

(2) $\varphi'(x) > 0$: يعني

من (1) و (2) نستنتج أن :

$$(\forall x \ge 1) \; ; \; 0 < \varphi'(x) \le \frac{2}{3}$$

نستنتج جدول تغيرات الدالة g كما يلي .

نلاحظ حسب هذا الجدول أن الدالة g متصلة على I و تقبل 0 كقيمة قصوية

 $(\forall x \in I)$; $g(x) \leq 0$: إذن

 $\forall x \in I \setminus \{0\} \; ; \; g(x) < 0$: و بالتالي

_(<u>c</u>)(3)(I)■

$$f^{'}(x) = \frac{g(x)}{x^2(1+2x)}$$
: لدينا

(1+2x) و g(x) و متعلقة بإشارتي g(x) و متعلقة إشارة

و هو ما نلخصه في الجدول التالي :

x	<u>-1</u>	0		+∞
g(x)	_	0	_	
(1+2x)	0 +	1	+	
f'(x)	_		_	
f	+∞	2		→ 0

_(j)(4)(I)■

$$\lim_{\substack{x \to -1^+ \\ x \to \frac{1}{2}}} f(x) = \lim_{\substack{u \to 0^+ \\ u = 2r + 1}} \left(\frac{2 \ln u}{u - 1} \right) = \frac{2(-\infty)}{(-1)} = +\infty$$

 $\chi=rac{-1}{2}$ إذن المستقيم ذو المعادلة $\chi=rac{-1}{2}$ مقارب عمودي للمنحنى

$$\lim_{x \to +\infty} f(x) = \lim_{\substack{u \to +\infty \\ u = 2x + 1}} \left(\frac{2 \ln u}{u - 1} \right) : \text{ which is } f(x) = \lim_{\substack{u \to +\infty \\ u = 2x + 1}} 2 \left(\frac{\ln u}{u} \right) \left(\frac{u}{u - 1} \right) = 0$$

. $+\infty$ إذن محور الأفاصيل مقارب أفقي للمنحنى ((B)) بجوار

$$(u_n \in J :$$
و بما أن $u_n \geq 1 :$ و بما أن

$$c \geq 1$$
 : يعني $c > u_n \geq 1$: فإن

$$0 < \varphi'(c) \le \frac{2}{3}$$
 : و منه

$$|\varphi'(c)| \leq \frac{2}{3}$$
 يعني :

: نصر بطر في هذه المتفاوتة في العدد الموجب $|u_n - lpha|$ نحصل على

$$\Leftrightarrow |\varphi'(c)||u_n - \alpha| \le \frac{2}{3}|u_n - \alpha|$$

$$\Leftrightarrow |u_{n+1} - \alpha| \le \frac{2}{3} |u_n - \alpha|$$

: نجد (n-1) نجد

$$\Leftrightarrow |u_n - \alpha| \le \frac{2}{3} |u_{n-1} - \alpha|$$

$$\le \frac{2}{3} \frac{2}{3} |u_{n-2} - \alpha|$$

$$\le \frac{2}{3} \frac{2}{3} \frac{2}{3} |u_{n-3} - \alpha|$$

$$\leq \left(\frac{2}{3}\right)^n |u_0 - \alpha|$$

$$(3) \left| |u_n - \alpha| \le \left(\frac{2}{3}\right)^n |u_0 - \alpha| \right| : نِذَنَ$$

 $-\alpha < 0$: يعنى $\alpha > 0$ دينا

 $|1 - \alpha| < 1$ و منه : $1 - \alpha < 1$

 $|u_0 - \alpha| < 1$:

$$(4)\left[\left(\frac{2}{3}\right)^n|u_0-\alpha|\leq \left(\frac{2}{3}\right)^n\right] : 0$$
 و منه :

من (3) و (4) نستنتج أن :

$$(\forall n \ge 0) \; ; \; |u_n - \alpha| \le \left(\frac{2}{3}\right)^n$$

<u>-</u>(2)(II)■

$$(orall n\geq 0)$$
 ; $|u_n-lpha|\leq \left(rac{2}{3}
ight)^n$: بما أن $\lim_{n imes }\left(rac{2}{3}
ight)^n=0$ و

(لأنها متتالية هندسية أساسها موجب و أصغر من 1)

 $\lim |u_n - \alpha| = 0$: إذن

$$\lim_{n \to \infty} u_n = \alpha \qquad : \dot{\varrho}$$

 $f(\alpha)=1$: (4)(ا) السؤال السؤال

 $\Leftrightarrow \frac{\ln(1+2\alpha)}{\alpha} = 1$ α $| \Leftrightarrow \ln(1+2\alpha) = \alpha$

I و لدينا : $\varphi'(x) = \frac{2}{1+2x} > 0$ دللة تزايدية قطعا على

 $\varphi([1;\alpha]) = [\varphi(1); \varphi(\alpha)] = [\ln 3; \alpha]$

 $[\ln 3 ; \alpha] \approx [1,1 ; \alpha] \subset [1;\alpha]$: و لدينا

 $\varphi(J) \subset J$: إذن

(j)(2)(II)■

باستعمال البرهان بالترجع

 $u_0=1$ ϵ [1; α] = J : n=0 لدينا : من أجل

 $(\forall n \geq 0)$; $u_n \in J$: نفترض أنه

 $\varphi(u_n) \in \varphi(J)$: إذن

 $\varphi(u_n) \in J$: فإن $\varphi(J) \subset J$: و بما ان

 $u_{n+1} \in J$: و منه $\ln(1+2u_n) \in J$: يعني

 $(\forall n \geq 0)$; $u_n \in J$: و بالتالي

(→)(2)(II)**■**

I لدينا الدالة ϕ قابلة للإستقاق على المجال

نستطيع إذن تطبيق مبرهنة التزايدات المنتهية على أي مجال يوجد ضمن ا

lpha نختار المجال الذي طرفاه u_n و

 $\frac{\varphi(u_n)-\varphi(\alpha)}{u_n-\alpha}=\varphi'(c)$: غير عصور بين u_n و u_n يوجد c محصور بين يوجد

$$\left| \Rightarrow \left| \frac{\varphi(u_n) - \varphi(\alpha)}{u_n - \alpha} \right| = |\varphi'(c)|$$

$$\Rightarrow |\varphi(u_n) - \varphi(\alpha)| = |\varphi'(c)||u_n - \alpha|$$

لدينا حسب السؤال: ■(١١)(1)(1)

 $(\forall x \ge 1) \; ; \; 0 < \varphi'(x) \le \frac{2}{2}$

من إعداد الأستاذ بدر الدين الفاتحى: (

أجوبة الدورة الاستدراكية 2008

الصفحة : 145

ڲ۠ڡڡڲۮڡڲٛۅڡڲ؈ۿ۞۩ڿۿڡڲۿڡڲڰڡۅڲۿڡڲۿڡڰڰ؈ۿ۞۩ۅڲۿڡڲۿڡڰ

-(j)(1)(III)■

. I دالة متصلة على f : السابقة السابقة على المينا حسب الأسئلة السابقة

 $x \in I$: بحیث [0,x] بحیث f متصلة علی أي مجال علی شكل F'(x) = f(x) بحیث f بحیث f منه f تقبل دالة أصلیة f بحیث بحیث f

و منه F قابلة للإشتقاق على المجال I .

—(•)(1)(III)■

نعلم أن : f(x)>0 : نعلم أن : $(\forall x \in I) \; ; \; f'(x)>0 \; :$ إذن : I دالة تز ايدية قطعا على F

(j)(2)(III)**■**

(*) $(\forall t \ge 1) ; \frac{1}{t} \ge \frac{1}{2t+1}$: لينا

 $(\forall t \geq 1)$; $2t+1 \geq 3 > 1$: ولدينا

 $(\forall t \geq 1)$; $\ln(2t+1) > 0$: نِذِن

: نحسل على المتفاوتة (*) في العدد الموجب $\ln(2t+1)$ نحصل على

 $\frac{\ln(2t+1)}{t} > \frac{\ln(2t+1)}{2t+1}$

 $\Rightarrow \int_{1}^{x} \left(\frac{\ln(2t+1)}{t} \right) dt \ge \int_{1}^{x} \left(\frac{\ln(2t+1)}{2t+1} \right) dt$

 $\Rightarrow \int_{1}^{x} f(t) dt \ge \int_{1}^{x} \left(\frac{\ln(2t+1)}{2t+1} \right) dt$

 $\Rightarrow \left[F(x) - \int_{1}^{x} f(x) dt \ge \int_{1}^{x} \left(\frac{\ln(2t+1)}{2t+1} \right) dt \right] (\star)$

[0;1] لدينا f متصلة على

إذن التكامل : يُعَبِّرُ عن قياس لمساحة موجبة $\int_1^x f(x) \, dt$

 $-\int_1^x f(x) dt \le 0$ و منه: $\int_1^x f(x) dt \ge 0$

 $(\star\star)$ $\left[F(x) - \int_{1}^{x} f(x) dt \leq F(x) \right]$: يعني

من (*) و (**) نستنتج أن :

 $(\forall x \ge 1) \; ; \; F(x) \ge \int_1^x \left(\frac{\ln(2t+1)}{2t+1}\right) dt$

–(+)(2)(III)■

 $[(\ln(1+2t))^{2}]' = \frac{4\ln(1+2t)}{(1+2t)} :$ لاحظ أن

 $\Rightarrow \int_{1}^{x} \left(\frac{\ln(1+2t)}{(1+2t)} \right) dt = \frac{1}{4} [(\ln(1+2t))^{2}]_{1}^{x}$ $\Rightarrow \int_{1}^{x} \left(\frac{\ln(1+2t)}{(1+2t)} \right) dt = \frac{1}{4} ((\ln(1+2x))^{2} - (\ln 3)^{2})$

 $\lim_{x \to +\infty} \left(\frac{1}{4} ((\ln(1+2x))^2 - (\ln 3)^2) \right) = +\infty$: و بما أن : $\lim_{x \to +\infty} F(x) = +\infty$: فإنه بالضرورة لدينا :

و ذلك بسبب المتفاوتة التالية:

 $(\forall x \ge 1) \; ; \; F(x) \ge \int_1^x \left(\frac{\ln(2t+1)}{2t+1}\right) dt$

-(j)(3)(III)■

EXCEL

 $x \in I$: بحيث $\left[\frac{-1}{2}; x \right]$ بحيث $\widetilde{x} \in I$ بعتبر المجال $\widetilde{x} : \widetilde{x}$ درالة على المحال $\widetilde{x} : \widetilde{x}$

 $\left[\frac{-1}{2};\chi\right]$ دالة معرفة و متصلة على المجال \widetilde{F} : لدينا

لأن : F متصلة على I و F متصلة على اليمين في $\frac{1}{2}$ حسب الإفتراض

I و لدينا كذلك \tilde{F} قابلة للإشتقاق على X ; X قابلة للإشتقاق على X الذن حسب مبر هنة التزايدات المنتهية :

 $\Leftrightarrow \exists c \in \left] \frac{-1}{2} ; x \right[; \frac{\tilde{F}(x) - \tilde{F}\left(\frac{-1}{2}\right)}{x - \left(\frac{-1}{2}\right)} = \tilde{F}'(c)$

 \Leftrightarrow $\exists c \in \left] \frac{-1}{2}; x \right[; \frac{F(x) - \ell}{x + \frac{1}{2}} = f(c)$

 $\exists c \in \left[\frac{-1}{2} ; x \right[; (F(x) - \ell) = f(c) \left(x + \frac{1}{2} \right) \right] (\sharp)$

x>c يعني : $c \in \left[\frac{-1}{2}; x\right[$ يعني :

ب سیب من جهه آخری . $\frac{1}{2}$; x یعنی . $\frac{1}{2}$ و منه : f(x) < f(c) یات تناقصیة .

 $\left(x + \frac{1}{2}\right) f(x) < \left(x + \frac{1}{2}\right) f(c) : \dot{\psi}$ اِذَنِ

و منه باستعمال النتيجة (#) نحصل على :

 $F(x) - \ell \ge f(x) \left(x + \frac{1}{2} \right) \quad (*)$

(III

 $\left(\frac{F(x) - \ell}{x + \frac{1}{2}}\right) \ge f(x) \quad : صبح :$ المتفاوتة (*) نصبح

 $\lim_{x \to \frac{-1}{2}} f(x) = +\infty$: و نعلم أن

 $-\frac{1}{2}$: غير قابلة للإشتقاق على اليمين في F : و بالتالي

ر مضان 2012

من اعداد الأستاذ بدر الدين الفاتحي:

جوبة الدورة الاستدراكية 2008