WUOLAH

soluciones_enero_teoria_2018.pdf

- 1° Cálculo
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación
 Universidad de Granada

Como aún estás en la portada, es momento de redes sociales. Cotilléanos y luego a estudiar.

Wuolah

Wuolah

Wuolah_apuntes

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

Cálculo 1º Grado en Ingeniería Informática Examen Final Curso 2017/2018

- 1. (1.5 puntos) Se considera la función definida como $f(x) = \arctan\left(\frac{\log(x)+1}{\log(x)}\right)$.
 - a) Determina su dominio natural.
 - b) Calcula el conjunto imagen de f.

Solución:

- a) Para que la función f esté bien definida, es preciso que x sea positiva y, además, que $\log(x) \neq 0$. Es decir, $x \neq 1$. Por tanto, el dominio natural de f es $\mathbb{R}^+ \setminus \{1\}$.
- b) La función f es una función continua y derivable (es composición de funciones continuas y derivables. Como el dominio no es un intervalo, para calcular la imagen hacemos la siguiente descomposición:

$$f\left(\mathbb{R}^+\setminus\{1\}\right)=f\left(\left]0,1\right[\right)\cup f\left(\left]1,+\infty\right[\right).$$

En cada uno de los intervalos en los que hemos descompuesto el dominio, vamos a utilizar las técnicas de cálculo diferencial para determinar monotonía y extremos de la función.

Comenzamos calculando la derivada de f:

$$f'(x) = \frac{\frac{\frac{1}{x}\log(x) - \frac{1}{x}(\log(x) + 1)}{\log(x)^2}}{1 + \left(\frac{\log(x) + 1}{\log(x)}\right)^2} = \frac{-1}{x\log(x)^2 \left(1 + \left(\frac{\log(x) + 1}{\log(x)}\right)^2\right)}.$$

Es claro que la derivada de f es siempre negativa, por lo que f es una función decreciente en cada uno de los dos intervalos en los que está definida. Por tanto, el conjunto imagen es:

$$f\left(\mathbb{R}^+\setminus\{1\}\right)=f\left(]0,1[\right)\cup f\left(]1,+\infty[\right)=\left|\lim_{x\to 1_-}f(x),\lim_{x\to 0}f(x)\right|\cup\left|\lim_{x\to +\infty}f(x),\lim_{x\to 1_+}f(x)\right|.$$

Nos ocupamos, entonces, de calcular estos límites:

$$\begin{split} x \to 1_- & \Rightarrow \frac{\log(x) + 1}{\log(x)} \to -\infty \ \Rightarrow \lim_{x \to 1_-} f(x) = -\frac{\pi}{2} \ ; \\ x \to 0 & \Rightarrow \frac{\log(x) + 1}{\log(x)} \to 1 \ \Rightarrow \lim_{x \to 0} f(x) = \frac{\pi}{4} \ ; \\ x \to +\infty & \Rightarrow \frac{\log(x) + 1}{\log(x)} \to 1 \ \Rightarrow \lim_{x \to +\infty} f(x) = \frac{\pi}{4} \ ; \\ x \to 1_+ & \Rightarrow \frac{\log(x) + 1}{\log(x)} \to +\infty \ \Rightarrow \lim_{x \to 1_+} f(x) = \frac{\pi}{2} \ . \end{split}$$

Concluimos que:

$$f\left(\mathbb{R}^+\setminus\{1\}\right) = \left]-\frac{\pi}{2}, \frac{\pi}{4}\left[\,\cup\,\right]\frac{\pi}{4}, \frac{\pi}{2}\left[\,.\right]$$

2. **(2.5 puntos)** Calcula:

a)
$$\lim_{x\to 0} \left(\operatorname{sen}(x) + e^{-x}\right)^{\frac{\cos(x)}{x^2}}$$
,

b)
$$\lim_{x \to 0} \frac{x \int_0^x e^{t^2} dt}{\int_0^x e^{t^2} \sin(t) dt}$$
.

Solución:

a) En primer lugar, como el límite de la función que aparece en la base es 1, y el exponente tiende a infinito, se presenta una indeterminación del tipo " 1^{∞} ".

Aplicamos la regla del número e. Esto es, estudiamos el siguiente límite:

$$\lim_{x \to 0} \left(\operatorname{sen}(x) + e^{-x} \right)^{\frac{\cos(x)}{x^2}} = e^L \iff \lim_{x \to 0} \frac{\cos(x)}{x^2} \left(\operatorname{sen}(x) + e^{-x} - 1 \right) = L.$$

Para resolver el límite

$$\lim_{x \to 0} \frac{\cos(x)}{x^2} \left(\sec(x) + e^{-x} - 1 \right) = \lim_{x \to 0} \cos(x) \lim_{x \to 0} \frac{\sin(x) + e^{-x} - 1}{x^2}$$

El primer factor no presenta ninguna indeterminación (vale 1); pero el segundo factor es un límite que presenta una indeterminación del tipo "0/0", por lo que aplicamos la regla de L'Hôpital dos veces consecutivas. Nos queda entonces:

$$\lim_{x \to 0} \frac{\cos(x) - e^{-x}}{2x} = \lim_{x \to 0} \frac{-\sin(x) + e^{-x}}{2} = \frac{1}{2}$$

Por tanto, el límite que nos pedían es:

$$\lim_{x \to 0} \left(\text{sen}(x) + e^{-x} \right)^{\frac{\cos(x)}{x^2}} = e^{1/2} = \sqrt{e} \ .$$

b) Utilizando el Teorema Fundamental del Cálculo sabemos que, tanto la función $(f(x) = \int_0^x e^{t^2} dt)$ es continua y derivable ya que el integrando, e^{t^2} , es una función continua, como la función $(g(x) = \int_0^x e^{t^2} \sin(t) dt)$ es continua y derivable ya que el integrando, $e^{t^2} \sin(t)$, es una función continua. Además, gracias también al Teorema Fundamental del Cálculo, podemos calcular la derivada de f y la de g:

$$f'(x) = e^{x^2}$$
$$g'(x) = e^{x^2} \operatorname{sen}(x).$$

Si calculamos el límite en cero del numerador:

$$\lim_{x \to 0} x f(x) = 0 \cdot \int_0^0 e^{t^2} dt = 0$$

Y si calculamos el límite de denominador:

$$\lim_{x \to 0} g(x) = \int_0^0 e^{t^2} \operatorname{sen}(t) \, dt = 0$$

Estamos entonces ante una indeterminación del tipo "0/0". Por tanto, aplicando la regla de L'Hôpital:

$$\lim_{x \to 0} \frac{f(x) + x f'(x)}{g'(x)} = \lim_{x \to 0} \frac{\int_0^x e^{t^2} + x e^{x^2}}{e^{x^2} \operatorname{sen}(x)} = \lim_{x \to 0} \frac{1}{e^{x^2}} \lim_{x \to 0} \frac{\int_0^x e^{t^2} + x e^{x^2}}{\operatorname{sen}(x)}$$

El primer factor no presenta ninguna indeterminación (vale 1); pero el segundo factor es un límite que presenta una indeterminación del tipo "0/0", por lo que aplicamos la regla de L'Hôpital dos veces consecutivas. Nos queda entonces:

$$\lim_{x \to 0} \frac{\int_0^x e^{t^2} + x e^{x^2}}{\operatorname{sen}(x)} = \lim_{x \to 0} \frac{e^{x^2} + e^{x^2} + 2x^2 e^{x^2}}{\cos(x)} = 2$$

Concluimos entonces que:

$$\lim_{x \to 0} \frac{x \int_0^x e^{t^2} dt}{\int_0^x e^{t^2} \sin(t) dt} = 2$$

3. (1.5 puntos) Calcula, utilizando el polinomio de Taylor, el valor aproximado de $\frac{1}{e}$ con un error menor que 10^{-2} .

Solución: Consideramos la función $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$. Lo que se nos pide es el valor aproximado de $f(-1) = e^{-1} = \frac{1}{e}$ con un error menor que 10^{-2} .

En este caso vamos a calcular el polinomio de Taylor de la función f de orden n y con centro en cero que es :

$$P_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}.$$

El valor aproximado que vamos buscando será el obtenido cuando evaluemos en x = -1.

Utilizando la fórmula de Taylor sabemos que existe un valor $c \in]-1,0[$ verificando

$$f(-1) = 1 + (-1) + \frac{1}{2!} + \frac{(-1)}{3!} + \dots + \frac{(-1)^n}{n!} + R_n(-1)$$

donde $R_n(x)$ representa el resto de Taylor de la función exponencial de orden n, y por tanto

$$R_n(-1) = \frac{e^c (-1)^{n+1}}{(n+1)!} \Rightarrow \text{error} = |R_n(-1)| = \left| \frac{e^c (-1)^{n+1}}{(n+1)!} \right| = \frac{e^c}{(n+1)!}.$$

Entonces, sólo nos queda encontrar el n suficiente para que $|R_n(-1)|$ sea menor que 10^{-2} . Como c < 0, entonces $e^c < 1$. Luego, si encontramos el natural suficiente para que

$$\frac{1}{(n+1)!} < 10^{-2} \iff (n+1)! > 100$$

y para ello basta que $n \ge 4$.

El valor aproximado que se nos pide es: $\frac{1}{e} \approx 1 - 1 + \frac{1}{2} + \frac{-1}{6} + \frac{1}{24} = 0,375$.

4. (2 puntos) Calcula:

$$a) \int \frac{\cos^2(x)}{\sin^6(x)} dx \,,$$

$$b) \int \log\left(x + \sqrt{1 + x^2}\right) dx .$$

Solución:

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

Sabe que eres un héroe navideño.

http://bit.ly/navidad-wuolah

a) Para calcular la integral dada vamos a calcular, en primer lugar, una primitiva del integrando. Se trata de una primitiva de tipo trigonométrico, donde el integrando es una función racional en sen(x) y cos(x), y además, es par en ambas funciones. Por tanto, aplicamos el cambio de variable adecuado a este tipo de integrandos. Esto es, t = tan(x):

$$\int \frac{\cos^2(x)}{\sin^6(x)} dx = \begin{bmatrix} t = \tan(x) \Rightarrow dx = \frac{dt}{1+t^2} \\ \cos(x) = \frac{1}{\sqrt{1+t^2}} \\ \sin(x) = \frac{t}{t} \end{bmatrix}$$

$$= \int \frac{\frac{1}{1+t^2}}{\frac{t^6}{(1+t^2)^3}} \frac{1}{1+t^2} dt = \int \frac{1+t^2}{t^6} dt = \int \frac{1}{t^6} dt + \int \frac{1}{t^4} dt$$

$$= -\frac{1}{5t^5} - \frac{1}{3t^3} + C = -\frac{1}{5\tan(x)^5} - \frac{1}{3\tan(x)^3} + C.$$

b) Aplicamos el método de integración por partes:

$$\int \log \left(x + \sqrt{1 + x^2} \right) dx =$$

$$\left[u = \log \left(x + \sqrt{1 + x^2} \right) dx \Rightarrow du = \frac{1 + \frac{x}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} dx = \frac{\frac{x + \sqrt{1 + x^2}}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} dx = \frac{1}{\sqrt{1 + x^2}} dx \right]$$

$$= x \log(x + \sqrt{1 + x^2}) - \int \frac{x}{\sqrt{1 + x^2}} dx$$

$$= x \log(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2} + C$$

Hay que notar que la integral que nos ha quedado es de tipo inmediato.

5. **(1.25 puntos)** Estudia la convergencia y, en su caso, el límite de la sucesión definida por recurrencia de la siguiente forma:

$$x_1 = -1/3, x_{n+1} = \frac{-1}{x_n + 2}, \forall n \in \mathbb{N}.$$

Solución:

a) Si la sucesión fuera convergente a x entonces

$$\lim_{n\to\infty} x_n = x, \quad \mathbf{y} \quad \lim_{n\to\infty} x_{n+1} = x;$$

por tanto

$$x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \frac{-1}{x_n + 2} = \frac{-1}{x + 2}.$$

Así que si la sucesión tiene límite, éste tiene que verificar la ecuación $x = \frac{-1}{x+2}$. Resolvemos la ecuación:

$$x = \frac{-1}{x+2} \implies x^2 + 2x = -1 \implies x^2 + 2x + 1 = 0 \implies (x+1)^2 = 0 \implies x = -1$$
.

Resumiendo, si existe el límite, este debe ser -1.

- b) Empezamos estudiando la monotonía de la sucesión. Aplicando la fórmula de recurrencia, comprobamos que $x_2 = \frac{-1}{-1/3+2} = \frac{-3}{5} \le \frac{-1}{3} = x_1$. Para comprobar que la sucesión dada es monótona decreciente, comprobamos por inducción que $x_n \ge x_{n+1}$, $\forall n \in \mathbb{N}$:
 - Para n = 1, acabamos de ver que $x_1 \ge x_2$.
 - Hipótesis de inducción: Suponemos que $x_n \ge x_{n+1}$.
 - Comprobamos que $x_{n+1} \ge x_{n+2}$. En efecto, si partimos de la hipótesis de inducción:

$$x_n \ge x_{n+1} \implies 2 + x_n \ge 2 + x_{n+1}$$
 (es cierto ya que sumamos 2 a ambos miembros)
 $\Rightarrow \frac{1}{2 + x_n} \le \frac{1}{2 + x_{n+1}}$ (es cierto ya que invertimos ambos miembros)
 $\Rightarrow \frac{-1}{2 + x_n} \ge \frac{-1}{2 + x_{n+1}}$ (es cierto ya que cambiamos el signo a ambos miembros)
 $\Rightarrow x_{n+1} \ge x_{n+2}$.

Por tanto, la sucesión es monótona decreciente.

- c) Al ser decreciente, ya sabemos que la sucesión está acotada superiormente por el $x_1 = -1/3$. Veamos ahora que la sucesión está minorada por -1. Lo vamos a hacer por inducción:
 - Para n = 1, es evidente que $x_1 = -1/3 \ge -1$.
 - Hipótesis de inducción: Suponemos que $x_n \ge -1$.
 - Comprobamos que $x_{n+1} \ge -1$. En efecto, si partimos de la hipótesis de inducción:

$$x_n \ge -1 \Rightarrow 2 + x_n \ge 1 \Rightarrow \frac{1}{x_n + 2} \le 1 \Rightarrow \frac{-1}{x_n + 2} \ge -1 \Rightarrow x_{n+1} \ge -1.$$

Concluimos entonces afirmando que, en efecto, está minorada por -1.

En resumen, hemos demostrado que la sucesión es monótona y acotada y, por tanto, convergente. El posible límite que habíamos calculado (x = -1) es, de hecho, el límite de la sucesión.

6. (1.25 punto) Estudia la convergencia de la serie $\sum \left(1 + \frac{1}{\log(n^2)}\right)^{n \log(n)}$.

Solución: Aplicamos el criterio de la raíz.

$$\sqrt[n]{\left(1 + \frac{1}{\log(n^2)}\right)^{n\log(n)}} = \left(1 + \frac{1}{\log(n^2)}\right)^{\frac{n\log(n)}{n}} = \left(1 + \frac{1}{\log(n^2)}\right)^{\log(n)}$$

Esta sucesión presenta una indeterminación del tipo " 1^{∞} "; por tanto, aplicamos la regla del número e:

$$(\log(n))\left[1 + \frac{1}{\log(n^2)} - 1\right] = (\log(n))\left[\frac{1}{\log(n^2)}\right]$$
$$= \frac{\log(n)}{\log(n^2)} = \frac{\log(n)}{2\log(n)} = \frac{1}{2} \xrightarrow{n \to \infty} 1/2$$

Con lo que:

$$\lim_{n\to\infty}\sqrt[n]{\left(1+\frac{1}{\log(n^2)}\right)^{n\log(n)}}=\lim_{n\to\infty}\left(1+\frac{1}{\log(n^2)}\right)^{\log(n)}=e^{1/2}>1,$$

de lo que se deduce que la serie dada es divergente.

Granada, a 17 de enero de 2018

