Analog to Digital Conversions

Author: Marvo Odds

Introduction

Perception

• Humans perceive the world in analog/continuous proportions

Analog Signals

 Voltage, current, or physical quantities that vary with time

Digital Signals

 Represents data as a sequence of discrete values

ADC

 Converts our analog world into a form countable by computers (digital)

Digitization

ADC Digitization

• Ratio of an input and reference value expressed in a digital value

Digitization Process

- Quantization:
 - Input signal is subdivided into n intervals
- Encoding
 - Each interval assigned to a certain value

Digitization cont...

Digitization

- 2^(N) = n
 - If n = 8 then N = 3. ADC will represent those 8 quantization levels with 3 bits
- Resolution (LSB)
 - o LSB:
 - Smallest change in input signal the ADC can measure
 - If starting in middle of 1 quantization level, you must change input signal by ½ LSB to enter the next level
 - o In terms of voltage
 - Each Input voltage inside a resolution range will be converted to a specific binary #
 - Resolution = Voltage Range / 2^(n)
 - $20 \text{ mV} / 2^{(16)} = .305 \times 10^{(-6)}$

1	
Input Voltage (mV) (Real Value)	Binary (Base 2) Value
-10 000 to -9 999.695	0000000000000000
5121	244
	11111111111111
0.0 to +0.305	1000000000000000
5576	1000000000000001
529%	994
+9 999.695 to +10 000	111111111111111

Transfer Function of an ADC

Unipolar ADCs:

• ADCs that only handle positive inputs

Bipolar ADCs:

• ADCs that can handle negative and positive

Ideal Transfer Function

- Does not take into account errors
- Most considered errors
 - Offset Error
 - o Gain Error
 - Non-Linearity Error

Offset Error

- Difference between the measured and ideal function
 - Starting at 0 point on the x-axis
- Constant error at each point in curve. Can be corrected easily
 - ADCs offer adjustment and calibration settings for offset

Gain Error

Gain Error

- Difference between midpoint of the final step of the ideal function from the midpoint of the actual function
 - Offset error is accounted for first

Full Scale Error

• Sum of offset and gain error

Correction

Both errors can be eliminated by ADC calibration settings

Non-Linearity Errors

- Error Causation
 - Appear when endpoints of real and ideal curves match due to gain and offset calibration
 - Represented with curvatures in the transfer function lines
- Types of Nonlinearity Error
 - Differential (DNL)
 - o Integral (INL)

DNL

- DNL = (W(k) Wideal) / Wideal
 - o deviation from the ideal output step size for a given input range
 - Not defined by 1st and last transitions
 - Due to offset and gain errors being calibrated out
 - W(k) = width of current binary numbers level
 - Wideal = ideal width of the binary level
- DNL Example
 - \circ DNL (001) = (W(001) 1) / 1 = .125
 - Code 1 or 001 is .125 LSB larger than the ideal step size
- Negative DNL
 - Represents a missing code. No input value produces the code.
 Step size = 0
 - Non-Ideal code transitions
- Ideal Code Widths
 - o DNL = 0

INL

INL

- Difference between actual straight line transfer curve and the measured curve
 - Measured in the middle of a step
- Also defined as cumulative effect of DNL errors

Why is it Important

- Digital value must be consistently and accurately hit for certain ADC applications
 - Audio applications

$$INL[m] = \sum_{i=1}^{m-1} DNL[i]$$

$$INL(3) = DNL(1) + DNL(2) = +0.125 LSB + 0.25 LSB = +0.375 LSB$$

Other Types of Error

- reference-voltage noise
 - o noise on analog reference can cause inaccurate digital conversions
- analog-input signal noise
 - high-frequency signal variations affect the signal source
- analog-signal source resistance
 - Impedance/resistance between the pin and signal source may cause a voltage drop
- temperature influence
 - Offset error drift and gain error drift

Sampling Depth

Sampling/bit depth and resolution

- Sampling Depth: Number of quantization intervals (n)
- Resolution: # of bits needed to create the number of quantization intervals
 - o If n = 8 and $2^{(N)} = n$
 - ADC has a 3 bit resolution

Quantization Error

Quantization

 Process of mapping infinite amount of values to a finite amount of values

Quantization Error

 Difference between analog signal & closest digital value at each sampling instant

Quantization Noise

- Noise introduced by quantization error (distortion)
- Higher resolutions yield less noise
- SNR = 6.02N + 1.77 for sinusoidal signals
 - o N = 12, SNR = 74.01 dB
 - \circ N = 16, SNR = 98.09 dB

Sampling Rate

Sample Rate

• How often we sample the input signal

Aliasing or Sampling Error

- Nyquist: Sample at least twice as fast as the highest frequency
 - Goal: Sample at least twice in each cycle or signal distorts at lower frequencies.
- If not met, digital signal will be not resemble original signal (aliasing)
- Aliased signals can not be corrected through filtering

Sampled 6 times per period

Sampled 2 times per period

Not sampled enough

Anti-Aliasing Filters

- Anti Aliasing Filters
 - low pass filter with the cutoff frequency set to Nyquist frequency
- Purpose:
 - Remove all frequency content greater than
 Nyquist frequency that would be aliased
- Calculating Values
 - Set 3 dB cutoff to correspond to smallest
 Nyquist frequency in your system

References

- 1. Arar, Steve. "Understanding ADC Differential Nonlinearity (DNL) Error Technical Articles." All About Circuits, 9 Dec. 2022, https://www.allaboutcircuits.com/technical-articles/understanding-analog-to-digital-converter-differential-nonlinearity-dnl-error/.
- 2. "How to Increase the Analog-to-Digital Converter Accuracy in an ... NXP." How to Increase the Analog-to-Digital Converter Accuracy in an Application, Freescale Semiconductor, Inc., Jan. 2016, https://www.nxp.com/docs/en/application-note/AN5250.pdf.
- 3. "A/D Basics." A/D Conversion, McGill University, https://www.medicine.mcgill.ca/physio/vlab/biomed-signals/atodvlab.htm#:~:text=The%20sampling%20interval.
- 4. Author Cadence PCB Solutions, et al. "Anti-Aliasing Filter Design and Applications in Sampling." Anti-Aliasing Filter Design and Applications in Sampling, AuthorCADENCE PCB SOLUTIONS, 13 Oct. 2022,

 https://resources.pcb.cadence.com/blog/2020.anti-aliasing-filter-design-and-applications-in
 - https://resources.pcb.cadence.com/blog/2020-anti-aliasing-filter-design-and-applications-in-sampling.