There are lots of applications leveraging formatted I/O. One practical use is to compute students scores. Suppose you are a teacher of some course, and you want to evaluate your students according to their class attendance, practice, and exam score. The final score is determined by the weighted sum in which the weights for these activities are 0.1, 0.3, and 0.6, respectively. To examine the performance on each activity, a common method is the mean value, which is the sum of all values under a certain activity over the number of students.

Your goal is to write a program to compile the input scores in a table.

Requirement: use integer expression for field width and precision.

Input

The input has several cases and ends with a single 0. Each case contains an integer $3 \le n \le 100$, which denotes the number of students in the course, and n tuples of scores, which represent the scores of attendance, practice, and exam, respectively.

Output

For each case, output the received scores, the final scores, and their average according to the sample output format. Note that two consecutive tables should be separated by a line. For floating-point numbers, please round **down** to two decimal places.

Sample Input	Sample Ou	tput			
18 83 50 98	Index	Attendance	Practice	====== Exam 	Final Score
79 1 93	00001	 83	50	98	82.10
34 37 34	00002	79	1	93	64.00
56 93 76	00003	34	37	34	34.90
5 62 48	00004	56	93	76	79.10
81 0 13	00005	5	62	48	47.90
41 55 55	00006	81	0	13	15.90
42 62 11	00007	41	55	55	53.60
77 24 78	80000	42	62	11	29.40
52 43 96	00009	77	24	78	61.70
73 40 13	00010 00011	52 73	43 40	96 13	75.70 27.10
75 72 18	00011	75 75	72	18	39.90
10 17 32	00012	10	17	32	25.30
12 95 69	00014	12	95	69	71.10
31 40 88	00015	31	40	88	67.90
85 90 97	00016	85	90	97	93.70
89 90 45	00017	89	90	45	62.90
53 14 51	00018	53	14	51	40.10
JJ 17 J1	======			======	
0	Mean ======	54.33 	49.16	56.38 ======	54.01