

MonkeyLearn

- Text classification

Two kinds of Models

Text Classifiers

Classify text into categories or tags, e.g. sentiment, topic, urgency.

Text Extractors

Extract data from a given text, e.g. keyword, names, emails

Text Classifiers

Limitation: input data has to be CSV or Excel format

Text Classifiers

Sentiment Analysis

Tags: positive, negative, neutral

Topic Detector

Tags: shipment, billing, return, inquiry

Urgency Detector

Tags: urgent, not urgent

Text Classifiers

Multiple Models Together

Keyword Extractor

Classifiers

Topic:

Order Issue

Sentiment:

Negative

Urgency:

Urgent

Terrible Service - I ordered a Playstation 4 and FIFA 19 from your store last week. I'm furious to find out that the tracking number doesn't work and my order might be lost. Please respond ASAP.

Extractors

Keywords:

terrible service, store, tracking number, order, ASAP, etc.

Products:

Playstation 4, FIFA 19

Train your own text classifier model

Upload data → define tags → tag data → test

Train your own keyword extractor model

Upload data \rightarrow define tags \rightarrow tag data \rightarrow test

Supported algorithms

- Naive Bayes
- SVM (Support Vector Machines)

Naive Bayes

- Probabilistic algorithm
 - Calculate the probability of each tag for a given text, and then output the tag with the highest one
- Laplace smoothing

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Text	Tag
"A great game"	Sports
"The election was over"	Not sports
"Very clean match"	Sports
"A clean but forgettable game"	Sports
"It was a close election"	Not sports

$$P(sports|a\ very\ close\ game) = \frac{P(a\ very\ close\ game|sports) \times P(sports)}{P(a\ very\ close\ game)}$$

$$P(a \, very \, close \, game) = P(a) \times P(very) \times P(close) \times P(game)$$

$P(a|Sports) \times P(very|Sports) \times 0 \times P(game|Sports)$

Laplace smoothing:

Word	P (word Sports)	P (word Not Sports)
а	(2 + 1) ÷ (11 + 14)	(1 + 1) ÷ (9 + 14)
very	(1 + 1) ÷ (11 + 14)	(0 + 1) ÷ (9 + 14)
close	(0 + 1) ÷ (11 + 14)	(1 + 1) ÷ (9 + 14)
game	(2 + 1) ÷ (11 + 14)	(0 + 1) ÷ (9 + 14)

```
P(Sports)
= 2.76 \times 10^{-5}
= 0.0000276 Classified as sport!
```

= 0.0000276 Classified as sport!

 $P(a | Not Sports) \times P(very|Not Sports) \times P(close|Not Sports) \times P(game|Not Sports) \times P(Not Sports) \\ = 0.572 \times 10^{-5} \\ = 0.00000572$

 $P(a|Sports) \times P(very|Sports) \times P(close|Sports) \times P(game|Sports) \times P(game$

SVM (Support Vector Machines)

Linear data

SVM (Support Vector Machines)

Nonlinear data

References

- Text classifiers & text extractors
 - https://www.youtube.com/watch?v=vHSadS-1wOA

- Naive Bayes
 - https://monkeylearn.com/text-classification-naive-bayes/
 - https://monkeylearn.com/blog/practical-explanation-naive-bayes-classifier/
- SVM
 - https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
 - https://monkeylearn.com/text-classification-support-vector-machines-svm/