Theory of Computation Slides based on Michael Sipser's Textbook

Moses A. Boudourides¹

Visiting Associate Professor of Computer Science Haverford College

1 Moses.Boudourides@cs.haverford.edu

Section 1.2

Nondeterminism

January 25, 2022

Definition of Nondeterministic Finite Automata (NFA), I

Definition: A Nondeterministic Finite Automaton

A nondeterministic finite automaton (NFA) is a 5–tuple $(Q, \Sigma, q_0, F, \delta)$, where

- ightharpoonup Q is a finite set called the **states**,
- \triangleright Σ is a finite set called the **alphabet**,
- ▶ $q_0 \in Q$ is the start state,
- ▶ $F \subseteq Q$ is the **set of accepting** or (**final**) **states**, and
- ▶ $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$ is the **transition** function, where $\mathcal{P}(Q)$ denotes the **power set** of the set of states Q.

For any element q of Q and any symbol $\sigma \in \Sigma$, we interpret $\delta(q, \sigma)$ as the set of states to which the NFA moves, when it is in state q and receives the input σ , or, if $\sigma = \varepsilon$, the set of states other than q to which the NFA can move from state q without receiving any input symbol.

Definition of Nondeterministic Finite Automata (NFA), II

Remarks on the Definition of NFA

- ▶ **Nondeterminism**: a string may follow more than one paths.
- \triangleright ε -moves: a state can follow from a different state without receiving (reading) any input.
- ▶ **Empty states**: since the range of the transition function is the power set, a pair (q, σ) may be mapped to \varnothing and, thus, there would be no arrow moving out of q labeled with σ .

Definition: ε -Closures of States

For any state p of a NFA, the ε -closure of p is defined to be a set denoted as $\varepsilon(p)$ consisting of all states q such that there is a path of arrows from p to q such that all the arrows of this path are labeled with ε . Notice that always $p \in \varepsilon(p)$ is true.

Equivalence of NFAs and DFAs

Theorem: Equivalence of NFAs and DFAs

Two FA are said **equivalent** if they recognize the same language.

Every NFA corresponds to an equivalent DFA.

Algorithm for the Reduction of NFA to DFA

► Construct a table with the following columns:

```
\boxed{q \mid \delta(q,a) \mid \delta(q,b) \mid \delta(q,\varepsilon) \mid \varepsilon(q) \mid \delta(\varepsilon(q),a) \mid \delta(\varepsilon(q),b) \mid \varepsilon(\delta(\varepsilon(q),a)) \mid \varepsilon(\delta(\varepsilon(q),b))}
```

- ▶ If the NFA is without ε -moves, use only the first three columns!
- ► Concatenating notation of states:
 - ► Use subscripts of states!
- ▶ Underline final states in the table.
- ▶ Draw the equivalent DFA from the last two columns of the table.

Example: Reduction of NFA without ε -moves to DFA

q	$\delta(q,a)$	$\delta(q,b)$
0	01	0
1	Ø	2
2	Ø	3
3	Ø	Ø

Example: Reduction of NFA with ε -moves to DFA

q	$\delta(q,a)$	$\delta(q,b)$	$\delta(q, arepsilon)$	$\varepsilon(q)$	$\delta(\varepsilon(q), a)$	$\delta(\varepsilon(q),b)$	$\varepsilon(\delta(\varepsilon(q),a))$	$\varepsilon(\delta(\varepsilon(q),b))$
1	Ø	2	3	13	1	2	<u>13</u>	2
2	23	3	Ø	2	23	3	23	3
3	1	Ø	Ø	3	1	Ø	<u>13</u>	Ø

Union of two FAs

If $L_1 = L(N_1)$ and $L_2 = L(N_2)$, then $L_1 \cup L_2$ is recognized (accepted) by the NFA N, i.e., $L_1 \cup L_2 = L(N)$.

Concatenation of two FAs

If $L_1 = L(N_1)$ and $L_2 = L(N_2)$, then $L_1 \circ L_2$ is recognized (accepted) by the NFA N, i.e., $L_1 \circ L_2 = L(N)$.

The Star of a FA

If $L_1 = L(N_1)$, then L_1^* is recognized (accepted) by the NFA N, i.e., $L_1^* = L(N)$.

