Servomeccanismi 1

1. Il motore elettrico in corrente continua

Descrizione fisica

Il motore è contenuto in una *cassa* che in genere è cilindrica. Da una base del cilindro fuoriesce l'*albero motore*; sulla superficie laterale, in prossimità della base opposta, sporgono due *portaspazzole*. Dalla cassa emergono anche i conduttori per l'alimentazione, che possono essere 2, 4 o più fili o morsetti.

La cassa racchiude lo statore e il rotore. Lo *statore* è solidale con la cassa e ha lo scopo di produrre un campo magnetico stazionario, cioè che non varia nel tempo; nei motori di piccola potenza può essere costituito da una magnete permanente, altrimenti è un elettromagnete costituito da un nucleo internamente cavo con alcuni avvolgimenti di eccitazione. Qui supporremo che l'eccitazione non vari nel tempo.

Il *rotore*, detto anche *armatura*, è calettato sull'albero e può ruotare liberamente su cuscinetti fissati alle basi opposte della cassa. È costituito da un cilindro di materiale ferromagnetico, realizzato con lamelle circolari elettricamente isolate una dall'altra per ridurre le correnti parassite.

La superficie laterale del rotore è incisa da numerose *cave* equidistanti, nelle quali sono alloggiati i conduttori isolati che formano l'*avvolgimento d'armatura*. Questo è formato da numerose matasse di più spire che si estendono da una cava a quella diametralmente opposta; le matasse sono collegate alle lamelle del *collettore* e, tramite queste, in serie tra loro.

Il collettore ruota tra due *spazzole*, che sono solidali con la cassa e permettono il passaggio della corrente nell'avvolgimento d'armatura.

Principio di funzionamento

Lo statore crea un campo magnetico stazionario che, in prima approssimazione, supporremo uniforme. Consideriamo un conduttore A disposto lungo una cava rotorica e percorso da corrente continua: su questo conduttore agisce una forza perpendicolare al piano individuato dal campo e dalla corrente e questa forza, come mostra la figura, ha una componente tangente al rotore.

Questa componente tangenziale non fa ruotare il rotore, perché il suo momento rispetto all'asse è equilibrato da un momento opposto dovuto al conduttore B d'armatura simmetrico di quello considerato.

Per ottenere il movimento, la corrente in B deve avere verso opposto rispetto a quella in A; questo si ottiene con il collettore, che inverte il senso della corrente come mostra la figura.

Il collettore è costruito in modo tale che il piano delle spazzole divide l'avvolgimento d'armatura in due metà, percorse da correnti in verso opposto. In questo modo, tutti i momenti delle forze elettromagnetiche si sommano e al rotore viene applicata una coppia.

Prestazioni e limiti

I motori elettrici appena descritti possono erogare potenze che vanno da pochi milliwatt ai megawatt.

Ogni motore ha i seguenti limiti caratteristici:

- un limite massimo di velocità angolare, dovuto a problemi di commutazione sul collettore:
- un limite massimo di tensione d'alimentazione, dovuto all'isolamento dei conduttori e alla struttura del collettore;
- un limite massimo di coppia, dovuto alla saturazione del circuito magnetico d'armatura;
- un limite massimo di potenza elettrica assorbita, che dipende dalla velocità di rotazione e dalle modalità di raffreddamento.

Entro questi limiti, il motore elettrico trasforma l'energia elettrica in energia meccanica con un rendimento molto alto, che in prima approssimazione si può assumere unitario.

Modello matematico

Iniziando dagli aspetti meccanici, la coppia motrice C_m prodotta dal motore è, lontano dalla saturazione magnetica, proporzionale alla corrente d'armatura i:

$$C_m = K_m i$$

La coppia resistente è data da in genere da un termine costante C_d (coppia di disturbo) e dalla coppia dovuta all'attrito che si può assumere viscoso, cioè proporzionale secondo un coefficiente d'attrito F alla velocità angolare Ω :

$$C_r = C_d + F\Omega$$

Indicando con J il momento d'inerzia complessivo del rotore e del carico, l'equazione fondamentale della dinamica dà:

$$J\frac{d\Omega}{dt} = K_m i - F\Omega - C_d$$

Venendo ora al comportamento elettrico, il circuito d'armatura è, a rigore, a parametri distribuiti; tuttavia può essere approssimato a parametri concentrati attribuendogli una resistenza R, dovuta alla resistenza propria del conduttore e al collettore, in serie con un'induttanza L.

Durante il moto, le spire del circuito d'armatura tagliano il campo magnetico statorico e quindi sono sede di una forza elettromotrice indotta e; questa e risulta proporzionale alla velocità angolare:

$$e = K_{m} \Omega$$

e il suo verso è tale da opporsi alla causa del moto. Se si trascurano le perdite, si può eguagliare la potenza elettrica così prodotta alla potenza meccanica che la crea:

$$ei = C_m \Omega$$

Ne segue:

$$K_m \Omega i = K_m i \Omega \implies K_m = K_m$$

 $K_m \Omega i = K_m i \Omega \implies K_m = K_m$ In conclusione, il circuito d'armatura viene così individuato:

L'equilibrio elettrico è dunque dato da:

$$v = Ri + L\frac{di}{dt} + K_m \Omega$$

In conclusione, il motore è descritto dalle seguenti equazioni:

$$J\frac{d\Omega}{dt} = -F\Omega + K_m i - C_d$$

$$L\frac{di}{dt} = -K_m \Omega - Ri + v$$

$$\frac{d\theta}{dt} = \Omega$$

La terza equazione introduce la posizione angolare θ dell'albero motore e va scritta se si vuole assumere come uscita del motore tale posizione anziché la velocità angolare.

Nel dominio delle trasformate, le prime due equazioni si scrivono:

$$(Js+F)\Omega = K_m i - C_d$$

$$(Ls+R)i=v-K_m\Omega$$

e corrispondono al seguente schema a blocchi:

Per i valori usuali dei parametri, questo sistema ha due poli reali negativi. Spesso il coefficiente d'attrito F e l'induttanza L risultano trascurabili; in tal caso lo schema a blocchi si semplifica così:

In tal caso, la funzione di trasferimento ingresso-uscita è:

$$\frac{\Omega}{v} = \frac{1}{K_m(1 + \frac{RJ}{K_m^2}s)}$$

mentre quella disturbo-uscita è:

$$\frac{\Omega}{C_d} = \frac{R}{K_m^2 (1 + \frac{RJ}{K_m^2} s)}$$

Lo schema a blocchi mostra chiaramente che il disturbo di coppia C_d entra in catena diretta prima di un integratore; di ciò bisogna tener conto nel soddisfare le specifiche sul comportamento a regime permanente del sistema.

2. Il potenziometro

Il potenziometro è costituito da un *elemento resistivo* sul quale scorre un *cursore*. Ai capi dell'elemento resistivo viene applicata una tensione *v*; tra uno di questi capi e il cursore viene prelevata la tensione d'uscita *y* che dipende dalla posizione *u* del cursore.

L'elemento resisitivo può avere forma lineare o circolare ed essere realizzato in modo da stabilire un legame lineare tra lo spostamento e la tensione d'uscita, o invece una dipendenza non lineare quale quella logaritmica o esponenziale. La figura seguente mostra la curva caratteritica di un potenziometro lineare ideale.

Nei sistemi di controllo sono usati quasi esclusivamente i potenziometri a caratteristica lineare; si tratta però di componenti diversi da quelli propri dell'elettronica di consumo, perché garantiscono proprietà meccaniche, precisione e affidabilità nettamente superiori.

L'elemento resistivo può essere costituito da un filo avvolto su supporto isolante o da un film di materiale opportuno.

Il potenziometro più comune è contenuto in una cassa cilindrica da cui fuoriesce un asse per il collegamento meccanico e tre capicorda per le connessioni elettriche. L'asse ruota su cuscinetti e può non avere alcun arresto; in tal caso i valori della tensione d'uscita si ripetono ogni 360°. Esiste una piccola *zona morta*, ampia pochi gradi, in cui il cursore non è in contatto con l'elemento resistivo e quindi l'uscita è nulla o comunque inaffidabile.

Il comportamento reale dei potenziometri si discosta da quello ideale per più motivi. In primo luogo, quando l'angolo di rotazione è nullo la tensione d'uscita y non è esattamente zero, ma assume un piccolo valore dipendente dalle resistenze di contatto e dalle soluzioni costruttive. Per motivi analoghi, quando l'angolo di rotazione è massimo l'uscita rimane leggermente al di sotto della tensione d'alimentazione v.

Inoltre il legame tra ingresso e uscita si discosta da quello lineare a causa delle imprecisioni costruttive.

Ogni potenziometro ha una dissipazione massima, che in genere è di pochi watt, e una tensione di alimentazione massima, che può raggiungere le centinaia di volt.

Il potenziometro è un trasduttore di posizione, lineare o angolare.

3. Progetto di un asservimento di posizione

Specifiche

Si vuole progettare un asservimento di posizione con le seguenti caratteristiche:

- 1 l'ingresso è una tensione compresa tra $\pm 10v$;
- 2 l'uscita è la posizione angolare di un asse compresa tra $\pm \pi$ rispetto a una posizione di riferimento:
- 3 il legame desiderato tra ingresso e uscita a regime permanente è di diretta proporzionalità, con la massima escursione dell'uscita corrispondente alla massima escursione dell'ingresso;
- 4 sull'asse è calettato un carico con momento d'inerzia di 12 N·m²;
- 5 il sistema deve essere di tipo ≥ 1 con errore a regime $e_r \leq 0.033$;
- 6 il margine di fase m_{ϕ} deve essere $\geq 40^{\circ}$.

Scelta e caratteristiche dei componenti

Si sceglie un motore elettrico a corrente continua con statore a magnete permanente avente le seguenti caratteristiche:

potenza e tensioni nominali: 100W a 12v

valori massimi di tensione e corrente: 18v @ 14A per 20 secondi

momento d'inerzia rotorico $J = 8 \text{ N} \cdot \text{m}^2$

resistenza d'armatura $R = 0.5 \Omega$

 $K_m = 1 \text{ Nm/A}$

induttanza d'armatura L = 2,1 mH

coefficiente d'attrito F = 0.02 Nms/rad

Il trasduttore di posizione sarà un potenziometro avente le seguenti caratteristiche:

resistenza 10 kΩ

dissipazione massima 1 W

tensione massima 100 v

precisione 0,01%

La precisione è migliore dell'errore a regime specificato del 3,3%, quindi il potenziometro è adatto al sistema da progettare.

Sintesi del sistema di controllo

La specifica 3 implica $K_d = 0.1\pi$ rad/v. Il motore prescelto ha L ed F trascurabili e quindi è modellato dal seguente schema a blocchi:

La sua funzione di trasferimento tensione/posizione è:

$$\frac{\theta}{v} = \frac{1}{s(1+10s)}$$

Il potenziometro viene collegato elettricamente e meccanicamente come mostra la figura seguente:

Collegamento elettrico	Collegamento meccanico	
Retroazione	Potenziometro Carico	Motore

Con la ddp di 20v e supponendo di non prelevare corrente dal cursore, la potenza continua dissipata nel potenziometro vale

$$P = \frac{20^2}{10^4} = 0.04 \,\mathrm{W}$$

ben al di sotto della dissipazione massima ammessa.

La funzione di trasferimento posizione/tensione del potenziometro, nei limiti di una rotazione di $\pm\pi$ circa rispetto alla posizione centrale, è

$$H = \frac{10}{\pi}$$
 v/rad \Rightarrow $H = \frac{1}{K_d}$

Questa uguaglianza è frutto della scelta di alimentare il potenziometro proprio con ± 10 v, che è l'escursione massima dell'ingresso. Alimentandolo con tensioni diverse, si sarebbe dovuto introdurre un blocco amplificatore o attenuatore per ottenere K_d .

A questo punto la struttura del sistema di controllo è la seguente:

Si è finora tenuto conto delle specifiche da 1 a 4. Venendo alla specifica 5, il sistema è già di tipo 1 per la presenza dell'integrazione (polo nell'origine) dovuta al legame velocità/posizione; per soddisfare la specifica sull'errore a regime permanente si deve avere:

$$K_G \ge \frac{K_d^2}{e_r} = \frac{0.01\pi^2}{0.033} \cong 2.99$$

Si sceglie $K_G = 3$.

Si tracciano ora i diagrammi di Bode della funzione di trasferimento a ciclo aperto, cioè di

$$3 \cdot \frac{1}{s(1+10s)} \cdot H(s) \cong \frac{10}{s(1+10s)}$$

I diagrammi mostrano che il margine di fase è di 6°; per portarlo a valori maggiori di 40° si ricorre ad una rete anticipatrice. Dai diagrammi di tale rete si vede che una rete con m = 4 dà

un incremento di fase che raggiunge i 37° in $\omega \tau = 2$; corrispondentemente, però, incrementa i moduli di circa 6 dB.

Si può disporre la rete in modo che il punto $\omega \tau = 2$ cada proprio dove la curva dei moduli tracciata vale -6dB; in questo modo il punto $\omega \tau = 2$ verrà a coincidere con la pulsazione di attraversamento ω_t e si conseguirà il massimo anticipo di fase possibile con la rete scelta.

Procedendo in questo modo, si vede dal diagramma che M = -6dB si ha per $\omega = 1.4$; si ottiene così:

$$1.4\tau = 2 \implies \tau \cong 1.43$$

 $1,4\tau=2 \Rightarrow \tau \cong 1,43$ Risulta così determinata la G:

$$G(s) = \frac{3(1+1,43s)}{1+0,36s}$$

Il sistema di controllo risulta dunque essere:

Per verifica si tracciano i diagrammi di Bode della funzione di trasferimento a ciclo aperto:

$$F(s) = \frac{3(1+1,43s) \cdot 3,18}{s(1+0,36s)(1+10s)} \cong \frac{10(1+1,43s)}{s(1+0,36s)(1+10s)}$$

Il margine di fase risulta essere di circa 41°; dunque tutte le specifiche sono soddisfatte.

Progetto del controllore

Il controllore sarà costituito da un amplificatore differenziale che realizza il sommatore, da una rete elettrica anticipatrice e da un amplificatore di potenza in grado di pilotare il motore. Eccetto quest'ultimo, il circuito sarà realizzato con amplificatori operazionali.

La figura seguente mostra una possibile soluzione circuitale:

I due buffer sono inseguitori di tensione a guadagno unitario ed hanno lo scopo di offrire un'elevata impedenza ai segnali d'ingresso *v* e di retroazione *r* proveniente dal potenziometro.

Il sommatore è un amplificatore differenziale che ha guadagno *A* dato da:

$$A = \frac{R2}{R1} = \frac{R4}{R3}$$

 $A = \frac{R2}{R1} = \frac{R4}{R3}$ Conviene progettarlo in modo da ottenere anche il guadagno desiderato 3, ponendo, ad esempio:

$$R2 = R4 = 30 \text{ k}\Omega$$

 $R1 = R3 = 10 \text{ k}\Omega$

La rete anticipatrice ha funzione di trasferimento data da:

$$\frac{1 + C1R6s}{1 + \frac{C1R6R5}{R5 + R6}s}$$

Si può scegliere, ad esempio:

C1 = 1
$$\mu$$
F
R6 = 1,43 M Ω
R5 = 0,48 M Ω

L'uscita di questo circuito dovrà pilotare un amplificatore in cc in grado di alimentare il motore, quindi capace di erogare picchi di almeno 20v a 15A. Conviene acquistare questo componente da catalogo.