<u>Abstract</u>

The present invention therefore presents modules from which helical constraints can be built by very flexible strategies. The peptide bonds involved partially compensate the hydrophobic nature of the disulfide bonds, which are also included into the constraint strategy. Thus, the invention presents solutions, by means of which peptide bonds or closure of disulfide bridges can be used alternatively for closure of the constraint. This offers greater synthetic flexibility. Moreover, the peptide bonds are more hydrophilic than disulfide bridges alone and offer the advantage of better solubility of the product in an aqueous surrounding. It is possible to attach solvation tags like glycosyl moieties, polyethylenglycol or other suitable extensions or appendices to the helical constraint structure. Usually, such a hydrophilic helical constraint structure replaces two hydrophobic amino acid side chains and thus improves pharmacologic properties of the molecule.