AMENDMENTS TO THE CLAIMS

Please amend the claims as follows:

l	1. (Original) An improved ac generator, said generator comprising:
2	an output winding having a pair of output terminals;
3	a center tap terminal located at the point of mean voltage differential between the two
1	output terminals of said output winding, wherein said center tap terminal is
5	grounded;
5	each of said output terminals of said output winding being connected to an input
7	terminal of said impedance load, wherein said impedance load is grounded.
1	2. (Original) An improved ac generator as in claim 1, wherein said generator is a
2	three phase generator having three output windings, and each of said output windings of said
3	generator is configured such that a center tap terminal is located at the point of mean voltage
1	differential between each of its two output terminals; each center tap terminal is grounded; and
5	each of said output terminals is connected to an input terminal of a three-phase impedance load.
1	3. (Original) A method for improving the performance of an electrical system which
2	includes an ac generator power source having an output winding between two output terminals,
3	said system being connected to an impedance load, said method comprising:
1	configuring said output winding of said generator such that it comprises a center tap
5	terminal located at the point of mean voltage differential between the two
5	output terminals of said output winding;

7	grounding said center tap terminal;
8	connecting each of said output terminals of said output winding to an input terminal
9	of said impedance load; and
10	grounding said ground terminal of said impedance load.
1	4. (Original) A method as in claim 3, wherein said generator is a three phase
2	generator having three output windings, said method comprising configuring each of said output
3	windings of said generator such that a center tap terminal is located at the point of mean voltage
4	differential between each of its two output terminals;
5	grounding each said center tap terminal;
6	connecting each of said output terminals of each said output winding to an input
7	terminal of a three phase impedance load; and
8	grounding each ground terminal of said impedance load.
1	5. (New) An AC power conditioning system comprising:
2	a transformer having
3	an input winding for receiving an AC input, and
4	an output winding inductively coupled to the input winding for supplying
5	a balanced AC output to a load, the output winding comprising
6	first and second conductors connected in series and bifilar wound;
7	<u>and</u>
8	a center tap terminal for coupling to an electrical ground, the center tap terminal
9	further coupled between the first and second conductors.

1	o. (14ew) The system of claim 3, wherein the input and output whichings of the
2	transformer are wound around a toroidal core.
1	7. (New) The system of claim 5, further comprising:
2	a line filter coupled to the output winding of the transformer, the line filter for
3	attenuating EMI and/or RFI noise.
1	8. (New) The system of claim 5, further comprising: a shield enclosing the transformer, the shield configured to be grounded.
1	9. (New) The system of claim 5, wherein the input and output windings have an
2	equal number of turns.
1	10. (New) The system of claim 5, wherein the impedance of the first conductor is
2	substantially equal to the impedance of the second conductor.
1	11. (New) The system of claim 5, wherein the input winding is coupled to an AC
2	power supply, the center tap terminal is grounded, and the output terminals are coupled to a
3	grounded load.
1	12. (New) The system of claim 5, wherein the load is an AC load.
1	13. (New) An AC power conditioning system comprising:

2	a transformer having an input winding and a bifilar wound output winding, the input
3	winding for receiving an AC input, and the output winding for supplying a
4	balanced AC output;
5	a pair of output terminals coupled to the output winding for supplying the balanced
6	AC output therefrom to a load; and
7	a center tap terminal for coupling to an electrical ground, the center tap terminal
8	further coupled to the output winding of the transformer at a point of mean
9	voltage differential between the output terminals of the output winding.
1	14. (New) The system of 13, wherein the transformer further includes a toroidal core
2	about which the input and output windings of the transformer are wound.
1	15. (New) The system of claim 13, further comprising:
2	a line filter coupled to the output winding of the transformer, the line filter for
3	attenuating EMI and/or RFI noise.
1	16. (New) The system of claim 13, further comprising:
2	a shield enclosing the transformer, the shield configured to be grounded.
1	17. (New) The system of claim 13, wherein the input winding is coupled to an AC
2	power supply, the center tap terminal is grounded, and the output terminals are coupled to a
3	grounded load.
1	18. (New) The system of claim 13, wherein the load is an AC load.

1	19. (New) A method for producing a balanced AC power output from an AC power
2	input, the method comprising:
3	receiving the AC power input in a first winding;
4	inductively coupling the first winding to a bifilar wound second winding for inducing
5	an electrical current therein, the second winding having a pair of output
6	terminals on which the balanced AC power is presented; and
7	electrically grounding the second winding at a point of mean voltage differential
8	between the output terminals of the second winding.
1	20. (New) The method of claim 19, further comprising:
2	coupling the output terminals of the second winding to a grounded AC load to
3	provide the balanced AC power thereto, the grounded AC load designed to
4	receive unbalanced AC power from a neutral grounded conductor and an
5	ungrounded conductor.
1	21. (New) The method of claim 20, wherein the output terminals are coupled to the
2	load by a line filter for attenuating EMI and/or RFI noise.
1	22. (New) The method of claim 19, wherein the first and second windings are
2	inductively counled at least in part by a toroidal core

1	23. (New) A method for installing an isolation transformer to produce a balanced AC
2	power output from an AC power input, the isolation transformer including an input winding and
3	an output winding, the method comprising:
4	coupling the input winding to the AC power input;
5	coupling a pair of output terminals of the output winding to a load for providing the
6	balanced AC power output thereto, wherein the output winding is bifilar
7	wound; and
8	electrically grounding the output winding at a point of mean voltage differential
9	between the output terminals of the output winding.
1	24. (New) The method of claim 23, further comprising:
2	coupling a line filter between the output terminals and the load, for attenuating EMI
3	and/or RFI noise.
1	25. (New) The method of claim 23, wherein the transformer includes a toroidal core
2	about which the input and output windings of the transformer are wound.
1	26. (New) An AC generator for supplying symmetrical AC power with respect to an
2	electrical ground, the AC generator comprising:
3	an output winding configured to receive inductive energy;
4	a pair of output terminals for supplying AC power to a load, the output terminals
5	coupled to the output winding; and

6	a center tap terminal for coupling to an electrical ground, the center tap terminal
7	further coupled to the output winding between the pair of output terminals so
8	as to substantially equally divide the voltage between the output terminals
9	during operation of the AC generator.
1	27. (New) The generator of claim 26, wherein the center tap terminal is coupled to an
2	electrical ground, and the output terminals are coupled to a grounded load.
1	28. (New) The generator of claim 26, wherein the output winding is bifilar wound.
1	29. (New) The system of claim 26, wherein the center tap terminal is grounded, and
2	the output terminals are coupled to a grounded load.
1	30. (New) A three-phase AC generator comprising:
2	three output windings, each output winding configured to receive inductive energy;
3	a pair of output terminals coupled to each output winding; and
4	a center tap terminal for coupling to an electrical ground, the center tap terminal
5	further coupled to each output winding between its output terminals so as to
6	substantially equally divide the voltage between the output terminals during
7	operation of the AC generator.

31. (New) The generator of claim 30, wherein each output winding is bifilar wound.

1

1	32. (New) The generator of claim 30, wherein the three output windings are 120
2	degrees out of phase.
1	33. (New) A method for generating balanced AC power, the method comprising:
2	inductively driving an output winding of a generator to produce an electrical current
3	therein, the output winding coupled to a pair of output terminals for supplying
4	the balanced AC power;
5	coupling the output terminals to a load to provide electrical power thereto; and
6	electrically grounding the output winding at a point of mean voltage differential
7	between the output terminals of the output winding.
1	34. (New) The method of claim 33, wherein the output winding is bifilar wound.
1	35. (New) The method of claim 33, further comprising:
2	coupling a line filter between the output terminals and the load, for attenuating EMI
3	and/or RFI noise.