

Predictive Maintenance for Automatic Production Systems

CSE 495 Final Presentation

Abdurrahman BULUT

Supervisor: Pr. Dr. İbrahim SOĞUKPINAR June 2023

Contents

- Introduction
- Data Preprocessing
- Classification
- Cross-Validation
- Website
- Project Timeline
- Success Criterias
- Resources

Project Definition

Preprocessing

Data Processing

- Data Integration
- Outlier Detection
- Label Encoding
- Feature Expansion

```
get_outlier_counts(data , 0.999999995)

> 0.0s

age     0
volt     0
rotate     0
pressure     2
vibration     0
failure     0
dtype: int64
```


Classification

Classifier	Accuracy	Precision	Recall	F1 Score		
Random Forest	0.8987	0.8411	0.8987	0.8663		
SVM	0.9005	0.811	0.9005	0.8534		
Logistic Regression	0.8978	0.8385	0.8978	0.8605		
Decision Tree	0.8378	0.8454	0.8378	0.8415		
KNN	0.9014	0.8557	0.9014	0.862		
ANINI	0.0000					
ANN	0.9006					

Cross-Validation

Model	Cross-Validation Scores	Mean CV Accuracy	Recall	F1 Score
Random Forest	[0.892, 0.885, 0.889, 0.887, 0.891]	0.889	0.8987	0.8663
SVM	[0.896, 0.896, 0.896, 0.897, 0.897]	0.896	0.9005	0.8534
Logistic Regression	[0.894, 0.892, 0.892, 0.896, 0.896]	0.894	0.8978	0.8605
Decision Tree	[0.825, 0.818, 0.829, 0.824, 0.827]	0.825	0.8378	0.8415
KNN	[0.891, 0.892, 0.893, 0.891, 0.893]	0.892	0.9014	0.862

Website

Predictive Maintenance

Age
0

Voit
0

Pressure
0

Rotation
0

Vibration
0

Vibration
UPLOAD FILE

Age: Age of the machine
Volt: Voltage value of the machine
Pressure: Pressure value of the machine
Rotation: Rotation value of the machine
Vibration: Vibration value of the machine

Enter values about each related part and click Predict button. If your file has multiple data of a machine, the program will check all components but you will see only first row data in input fields.

Website

Roadmap

	March			April			May				June					
	Week 1	Week 2	Week 3	Week 4	1st Meeting	Week 2	Week 3	Week 4	Week 1	Week 2	2nd Meeting	Week 4	Week 1	Week 2	Week 3	3rd and Demo
Understanding the project's needs																
Planning		•								N.						
Literature Review																
Data collection																
Data Processing, modelling and Model Training						_										
Website Development																
Integration the model into the Android app													_		.v	
Evaluation && Approving																
Report																

Success Criterias

The success rate of the created model is at least %80

Calculation of analysis results in less than 20 miliseconds

2 file types should be supported to upload the data. (.xlsx - .csv)

Resources

- "Microsoft Azure Predictive Maintenance", ARNAB, "https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-predictive-maintenance"
- "Predictive Maintenance using Machine Learning", Medini Kumar Bora,
 "https://medium.com/@Medini_2020/predictive-maintenance-using-machine-learning-3d8b 62d5df8e"
- "Artificial intelligence for fault diagnosis of rotating machinery: A review,
 "https://www.researchgate.net/publication/326742898_Artificial_intelligence_for_fault_diagnosis_of_rotating_machinery_A_review"
- "Fault Handling in Industry 4.0: Definition, Process and Applications", "https://www.mdpi.com/1424-8220/22/6/2205"
- "An Industry 4.0 Dataset of Contextual Faults in a Smart Factory",
 "https://www.sciencedirect.com/science/article/pii/S1877050921003148?via%3Dihub"

