CSC4200/5200 - COMPUTER NETWORKING

INTRODUCTION

Instructor: Susmit Shannigrahi sshannigrahi@tntech.edu

Welcome

- Class website: https://csc4200.github.io/
 - Syllabus
 - Grading policies
 - Homework and assignments
 - First homework and programming assignment already posted
- Instructor: Susmit Shannigrahi
 - Office hours: Monday 11 AM 1 PM, Wednesday 2:30-3:30 PM
 - Email:sshannigrahi@tntech.edu
- GTA: David Reddick
 - Office hours: TBA
 - Email: dereddick42@students.tntech.edu

Grading

- Homework 10%
- Project 1 5%
- Project 2 15%
- Project 3 + Demo 20%
- Midterm 25%
- Final (Comprehensive) 25%

5200 - Extra reading and presentation requirements.

- Pick a topic, read research papers, prepare a 10 minute presentation
- Discuss with the instructor by end of the first week -(08/30)

Policies

- One late submission allowed, no questions asked
 - Use it wisely
 - Max 7 days late
- Other late submissions
 - 7 days max
 - Flat 50% deducted
 - No exceptions!
- No make-up exams.
 - Your responsibility to find conflicts and work with the instructor to resolve them

Exams

- One midterm, one final.
- Final is comprehensive.
- One double sided cheat sheet is allowed for both the midterm and the final
 - Is not going to help if you don't understand the fundamentals

Programming Assignments

- Must run on Google Cloud Vms Ubuntu-18.04
- First assignment is individual. Second and third are group projects.
- Third assignment would require a Raspberry PI
 - You will need to buy one. We will provide the exact specification.
- C++/Python
 - C is allowed
 - If you want to use other languages, talk to the GTA/Instructor

Cheating Policy

- If you cheat, you will fail the class!
 - Regardless of what you cheated in
 - Don't do it.
- You will also be reported for academic misconduct
 - http://catalog.tntech.edu/content.php? catoid=18&navoid=3312

To the more exciting stuff....

Questions so far?

Chapter 1: Fundamentals

- Networking is ubiquitous
 - What did you use it for today?

- First things first:
 - Terminology
 - Basic tools
 - What does it take to build an Internet?

Links, Nodes, Network, Internet

- You can view the network as a graph
- Each device (a phone, a computer) is a node
- Each connection is a link
 - Wires = real links
 - Bluetooth, Radio, Infrared = virtual links
- Nodes + links = a network
 - Many connected networks = Internet

Links, Nodes, Cloud, Routers, Switches

Client and Server

- My laptop with a browser = client
 - It requests a service
 - Email, chat, video, youtube
- A node running a program that serves the requests = server
 - Runs a service
 - Chat, video, messaging
- A node can both be a client and a server

Connectivity

- Point to Point
- Multiple access
- Wireless

A Network and the Internet

Circuit Switching – Old telephone networks

Operator, get me the navy

- Build physical wire:
 - Guaranteed resources
 - Great for voice

Why change?

Circuit Switching – TDM and FDM

What are the problems?

Packet Switching

- Packets are low level components
- Multiple kind of traffic with different requirements
 - Gaming vs Phone
- Dumb network How do you ensure quality of service?
- End points must be smart

But What is a Packet?

- Self-contained data unit
- Has two parts (generally)
 - Control information
 - Payload
- How do we transmit a dictionary?

Network Architecture

- What are the requirements from a network?
- Architecture = High-level blueprint
 - Protocols = Building blocks of the architecture
 - Layering = Break down the problem in smaller pieces

Application programs

Process-to-process channels

Host-to-host connectivity

Hardware

Network Layers

- Makes it easier to divide functionality
- Hides implementation details
- What else?

IP Suite

Network Topology

Data Flow

wikipedia

Next Steps

- Read Chapter 1
- Homework 1 has posted due on next Monday 09/02
 - Substantial hands-on component, start ASAP
- Project 1 has posted due on 09/15
- Next lecture Network performance basics