Univariate Time Series Models

Taylor R. Brown

Last class

Last class we previewed some examples of univariate time series models.

- ► AR(1): $X_t \phi X_{t-1} = Z_t$
- ► MA(1): $X_t = Z_t + \theta Z_{t-1}$

Now we'll explore how to TODO

Linear Processes

Before we define linear processes, we define *B*: **the backshift operator**

$$BY_t = Y_{t-1}$$

We will take a complex polynomial, and think of it as a function of the backshift operator.

For example:

$$\psi(z) = 1 + \psi z + \psi_2 z^2 + \cdots$$
$$\psi(B) = 1 + \psi B + \psi_2 B^2 + \cdots$$

Linear Processes

The time series $\{X_t\}$ is a **linear process** if it has the representation

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j},$$

for all $t \in \mathbb{Z}$, where $Z_t \sim \mathsf{WN}(0, \sigma^2)$, and $\{\psi_j\}$ is a sequence of constants such that $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$ (i.e. they're absolutely summable)

Write this more concisely as

$$X_t = \psi(B)Z_t = \left(\sum_{j=-\infty}^{\infty} \psi_j B^j\right) Z_t.$$

Linear Processes

Some linear processes aren't always used in finance.

We don't always want to study models where X_t depends on future noise Z_{t+j} .

We can assume our model has all its future ψ_j coefficients set to 0.

$$X_t = (\cdots + 0B^{-1} + \psi_0 B^0 + \psi_j B^1 + \cdots) Z_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$$

This is an $MA(\infty)$ process, which is more general than the MA(1) we discussed yesterday.

An AR(1) can be written as a MA(∞) if $|\phi| < 1$.

When an AR process can be written as an MA process, we call the AR process **causal**.

$$X_t = \phi X_{t-1} + Z_t$$

$$\phi(B)X_t=Z_t$$

$$X_t = \phi^{-1}(B)Z_t$$

We just have to find the $\phi^{-1}(z)$ complex polynomial...

Call
$$\phi^{-1}(z) = \psi(z) = 1 + \psi_1 z + \psi_2 z^2 + \cdots$$

Solve

$$1 = (1 - \phi z)(1 + \psi_1 z + \psi_2 z^2 + \cdots)$$

- $ightharpoonup 0 = \psi_1 \phi$
- $0 = \psi_2 \phi \psi_1$
- etc. etc.

So

$$X_t = \sum_{i=0}^{\infty} \phi^j Z_{t-j}$$

and these coefficients are absolutely summable: $\sum_{i=-\infty}^{\infty} |\psi_i| < \infty$

An MA(1) can be written as an AR(∞) if $|\theta| < 1$.

When an MA process can be written as an AR process, we call the MA process **invertible**.

$$X_t = Z_t + \theta Z_{t-1}$$

$$X_t = \theta(B)Z_t$$

$$\theta^{-1}(B)X_t=Z_t$$

We just have to find the $\theta^{-1}(z) := \pi(z)$ complex polynomial, and verify that the coefficients are absolutely summable. TODO make this homework.

Why are Causality and Invertibility Important

Causality and Invertibility make the model identifiable.

For any model that doesn't satisfy these assumptions, you can always find a different model with different parameters, that has the **same** autocovariance function.

Also, a bunch of theorems will assume these conditions.

Also, they "make more sense" in the context of financial data.

ARMA models

The time series $\{X_t\}$ is an **ARMA(1,1)** process if it is stationary and it satisfies

$$X_t - \phi X_{t-1} = Z_t + \theta Z_{t-1},$$

where $\{Z_t\} \sim WN(0, \sigma^2)$ and $\phi + \theta \neq 0$.

It is causal and invertible if $|\phi| < 1$ and $|\theta| < 1$, respectively.

This can be written as $\phi(B)X_t = \theta(B)(Z_t)$

There are also ARMA(p,q) models, but we will focus on the cases where $p,q\in\{0,1\}$ for simplicity.

Restrictions on Parameters

Why $\phi + \theta \neq 0$? Say $|\phi| < 1$, then

$$X_{t} = \phi^{-1}(B)\theta(B)Z_{t}$$

$$= (1 + \phi B + \phi^{2}B^{2} + \phi^{3}B^{3} + \cdots)(1 + \theta B)Z_{t}$$

$$= [1 + (\theta + \phi)B + (\phi \theta + \phi^{2})B^{2} + (\phi^{2}\theta + \phi^{3})B^{3} \cdots]Z_{t}$$

$$= Z_{t} + \left[(\theta + \phi)\sum_{j=1}^{\infty} \phi^{j-1}B^{j} \right] Z_{t}$$

If $|\phi|>1$ then

$$X_t = -\theta \phi^{-1} Z_t - (\theta + \phi) \sum_{i=1}^{\infty} \phi^{-(j+1)} Z_{t+j}$$

The ARMA(1,1)

$$\phi(B)X_t = \theta(B)Z_t$$

has a zero mean. If you want to give it a nonzero mean, write it like this:

$$\phi(B)(X_t - \mu) = \theta(B)Z_t$$

not this

$$\phi(B)X_t + c = \theta(B)Z_t$$

If $\{X_t\}$ are some returns, estimating the mean is important because it's the average rate of return.

We can estimate the mean with

$$\bar{X} = n^{-1} \sum_{i} X_{i}.$$

It is unbiased

$$E[\bar{X}] = n^{-1}(E[X_1] + \cdots + E[X_n]) = \mu$$

by linearity of $E[\cdot]$ and stationarity.

This assumes the window of data you're using are all distributed from the same model (i.e. no "regime shifts.")

The Sample Autocovariance

If we have a time series, knowing about the mean is great. However, we can increase the accuracy of our predictions if we also learn about the time structure via $\gamma(\cdot)$ or $\rho(\cdot)$.

Recall that

$$\hat{\gamma}(h) = n^{-1} \sum_{t=1}^{n-|h|} (X_{t+|h|} - \bar{X}_n)(X_t - \bar{X}_n)$$

and

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}.$$

The mean's mean squared error (MSE) is

$$\begin{split} \mathsf{MSE}(\bar{X}) &= \mathsf{Var}(\bar{X}) & \mathsf{defn} \\ &= \mathsf{Cov}\left(\sum_{i=1}^n n^{-1} X_i, \sum_{j=1}^n n^{-1} X_j\right) & \mathsf{defn} \\ &= n^{-2} \sum_{i=1}^n \sum_{j=1}^n \mathsf{Cov}(X_i, X_j) & \mathsf{bilinearity of cov} \\ &= n^{-2} \sum_{h=-(n-1)}^{n-1} (n-|h|) \gamma_X(h) & \mathsf{count diagonally : } h = i-j \\ &= n^{-1} \sum_h \left(1 - \frac{|h|}{n}\right) \gamma_X(h) \end{split}$$

As we get more and more data, if the data are from the same process, then the estimate of μ gets more and more precise.

For a fixed set of data, we can estimate the uncertainty of the estimate with the asymptotic variance. This expression is a function of the **autocovariance function**, which is an unknown quantity that needs to be estimated too.

In practice, estimating the mean return from historical data is *extremely tricky* because you never know if the mean is changing or if your model is true! Using a rolling window is common in practice, but you never really know how to choose the window size.

1.)

$$\mathsf{Var}(ar{X}) = n^{-1} \sum_{h=-(n-1)}^{(n-1)} \left(1 - rac{|h|}{n}
ight) \gamma_X(h) o 0$$

as $n \to \infty$ if $\gamma(h) \to 0$, and

2.)

$$n\mathsf{Var}(\bar{X}) o \sum_{h=-\infty}^{\infty} \gamma(h)$$

as $n o \infty$ if $\sum_{h=-\infty}^{\infty} |\gamma_X(h)| < \infty$

If our time series is weakly stationary then

$$\bar{X} \stackrel{\mathsf{approx.}}{\sim} \mathsf{Normal}\left(\mu, n^{-1} \sum_{h=-n}^{n} \gamma_X(h)\right).$$

for large n. Or, if we assume all our noise terms are Normally distributed, then

$$ar{X} \sim \mathsf{Normal}\left(\mu, n^{-1} \sum_{h=-n}^n \left(1 - rac{|h|}{n}
ight) \gamma_X(h)
ight)$$

exactly. However, we usually don't know the true autocovariance function.

We can estimate $V^2 = \sum_{h=-n}^n \left(1 - \frac{|h|}{n}\right) \gamma_X(h)$ with

$$\hat{V}^2 = \sum_{h=-\infty}^{n} \left(1 - \frac{|h|}{n}\right) \hat{\gamma}_X(h).$$

A $(1-\alpha)\%$ confidence interval is $\bar{x}\pm z_{\alpha/2}\sqrt{v^2/n}$, and a hypothesis test against the null of $H_0:\mu=0$ can use the test statistic $\sqrt{n}\bar{x}/\hat{v}$ (rejection region depends on the alternative hypothesis).

Consider the VXX exchange traded fund? Is it a good investment?

cumulative returns of VXX

The average return $\bar{X}=0.006153473$. It's positive, so that's a good start.

The confidence interval still covers 0, which isn't great.

```
> xbar - zAlphaOverTwo * sqrt(asympVar) #lower
[1] -0.0273102
> xbar + zAlphaOverTwo * sqrt(asympVar) #upper
[1] 0.03961714
```

```
What about \{\hat{\rho}(h)\}_{h>1} ?
```

```
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## [1] "VXX"
```


Sources:

Chapter 2.2,2.3,2.4 of Introduction to Time Series and Forecasting Brockwell/Davis