Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109- Quiz #4

2023/03/16

Student Number: _				
1 Suppose V and V	V are 2-dimensional vector spaces	try to construct $T \in$	$\mathcal{L}(V W)$ such that t	he matrix of 7

1. Suppose V and W are 2-dimensional vector spaces, try to construct $T \in \mathcal{L}(V, W)$ such that the matrix of T with respect to a basis of V and a basis of W satisfies $(\mathcal{M}(T))^2 = 0$ and $\mathcal{M}(T) \neq 0$.

设 V 和 W 均是 2 维向量空间,构造 $T\in\mathcal{L}(V,W)$,使得 T 在 V 的一组基和 W 的一组基下的矩阵满足 $(\mathcal{M}(T))^2=0$ 且 $\mathcal{M}(T)\neq 0$.

Proof. Let v_1, v_2 be a basis of V, w_1, w_2 be a basis of W. Suppose a map $T: V \to W$ satisfies $Tv_1 = w_2$, $Tv_2 = 0$. It's easy to check $T \in \mathcal{L}(V, W)$.

Then $\forall v \in V$, $\exists a_1, a_2 \in \mathcal{F}$, s.t. $v = a_1v_1 + a_2v_2$, then $Tv = a_1w_2$, the matrix of T w.r.t. bases v_1, v_2 and w_1, w_2 is

$$\mathcal{M}(T) = \left(\begin{array}{cc} 0 & 0\\ 1 & 0 \end{array}\right)$$

then $\mathcal{M}(T)$ satisfies the condition above.

2. Are \mathbb{R}^2 and \mathbb{C}^2 isomorphic as vector spaces? If they are isomorphic, please give the proof; if not, please give the reason.

请问 \mathbf{R}^2 和 \mathbf{C}^2 作为向量空间是否同构? 如果是,请给出证明;如果不是,请说明理由.

Proof. They may not be isomorphic. Since \mathbb{R}^2 is a vector space over \mathbb{R} , \mathbb{C}^2 is a vector space over \mathbb{C} , their are not isomorphic.