Universidad Nacional del Litoral			
Facultad de Ingeniería y Ciencias Hídricas			
Departamento de Informática			
Algoritmos y Estructuras de Datos			

Apellido y Nombre:	
Carrera:	DNI:

Algoritmos y Estructuras de Datos. 1er Parcial. Tema: **1b.** [22 de Abril de 2003]

$[{f Ej}.$	1]	[Tiempos de ejecución	(10 puntos)]	Dadas l	as funciones

- $T_1(n) = 0.3 \log_2(n) + 3n^2$
- $T_2(n) = n! + 2^n$
- $T_3(n) = 3^n + n^2$
- $T_4(n) = 0.5\sqrt{n} + 2n^{0.9}$

decir cuál de los siguientes ordenamientos es el correcto

- $T_2 < T_3 < T_4 < T_1$
- $T_3 < T_4 < T_1 < T_2$
- $T_4 < T_1 < T_3 < T_2$
- [Ej. 2] [Primitivas (15 puntos)] Escribir las funciones primitivas del TAD Lista con celdas simplemente enlazadas por cursores. Es decir, implementar en Pascal los siguientes procedimientos/funciones: INSERTA(x,p,L), LOCALIZA(x,L), RECUPERA(p,L), SUPRIME(p,L), SIGUIENTE(p,L), ANULA(L), PRIMERO(L), y FIN(L). [Nota: Se recomienda utilizar celda de encabezamiento. Puede usarse puntero a la última celda o no.]
- [Ej. 3] [Programación (total = 45 puntos)] Dada una secuencia de números $\{a_1, a_2, ..., a_n\}$, vamos a decir que su "máxima desviación", es la máxima diferencia (en valor absoluto) entre todos sus números: $\max_{j=1}^{n} a_j (\min_{j=1}^{n} a_j)$.
 - (a) [35 puntos] Escribir una función "function MAX_DEV_M(L:lista; m:integer) : integer;" que retorna el máximo de las máximas desviaciones de las subsecuencias de L de longitud m, es decir

$$\max_{\text{dev}_m(L)} = \max_{\text{max_dev}(a_1, a_2, \dots, a_m),$$

$$\max_{\text{dev}(a_2, a_3, \dots, a_{m+1}), \max_{\text{dev}(a_3, \dots, a_{m+2}), \dots, \max_{\text{dev}(a_{n-m+1}, \dots, a_n)}} (1$$

Por ejemplo, si L=(1,3,5,4,3,5), entonces MAX_DEV_N(L,3) debe retornar 4 ya que la máxima desviación se da en la primera subsecuencia (1,3,5) y es 4. Se sugiere el siguiente algoritmo, para cada posición p en la lista hallar la máxima desviación de los m elementos siguientes (incluyendo a p). Hallar la máxima de estas desviaciones. Utilizar las primitivas del TAD LISTA: INSERTA(x,p,L), RECUPERA(p,L), SUPRIME(p,L), SIGUIENTE(p,L), ANULA(L), PRIMERO(L), y FIN(L).

- (b) [5 puntos] Cual es el tiempo de ejecución, en el peor caso, si m=2, como función de n,
- (c) [5 puntos] Cual es el tiempo de ejecución en el peor caso, si m=n/2 (asumimos que n es par), como función de n.
- [Ej. 4] [Programación básica de pilas y colas (total = 20 puntos)] Escribir los siguientes procedimientos/funciones

Apellido y Nombre: DNI:		Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática		
[Llenar con	letra mayúscula de imprenta GRANDE]	Algoritmos y Estructuras de Datos		
	máximo de los elementos de una pila usa	cion MAXPILA(C:pila): integer" que retorna el ndo una pila auxiliar. Finalmente la pila debe ente. Usar las primitivas del TAD PILA: ANULA(P), P).		
	elementos de una cola de a 2, es decir el una cola auxiliar. Si la cola tiene un nún	procedure X2(var C: cola);" que invierte los primero con el 2do, el 3ro con el 4to, etc usando nero impar de elementos entonces el último queda ,4,3,2,5,6,7) entonces después de X2(C); debe		
	[Preguntas (total = 10 puntos, 2.5puntos "multiple choice", es decir marcar con una cru respuestas son intencionalmente "descabellada"			
	(a) El tiempo de ejecución de la función ANT el número de elementos en la lista)	ERIOR para listas $simplemente$ enlazadas es (n es		
	(b) El tiempo de ejecución de la función PON circulares es $(n \text{ es el número de eleme})$	E_EN_COLA para colas implementadas por arreglos ntos en la cola)		
	(c) La desventaja de la implementación del 3	TAD CORRESPONDENCIA por arreglos es que (N_d es es el número de elementos del dominio que tienen		
	el tamaño de la correspondencia e el tiempo de ejecución de CALCUL el tamaño de la correspondencia e el tiempo de ejecución de CALCUL	A(M,d,r) es $O(n)$.		
	(d) El tiempo de ejecución de la función CAL implementado por listas, en el peor caso es el número de elementos del dominio qu	es $(N_d$ es el número de elementos en el dominio, n		
	\square $O(1)$			