Niveau:

Tronc Commun

Caractéristiques de quelques dipôles passifs

Professeur:

DELAHI Mohamed

I) Qu'est ce qu'un dipôle passif

Définition:

- ☐ Un dipôle passif D ne peut pas fournir d'énergie.
- ☐ Un dipôle passif respecte la *convention récepteur*.

Exemples de dipôles passifs :

$\mathbf{D_{i}}$	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_4	
Nom	Résistance conducteur ohmique	V.D.R ou Varistance	L.D.R "Résistance photoélectrique"	Thermistance CTN et CTP	
	$\begin{array}{c c} A & & B \\ \hline & R & & \end{array}$	A B	A B	- T B	
Symbole					
Di	\mathbf{D}_5	\mathbf{D}_6	\mathbf{D}_7	\mathbf{D}_8	
Nom	Lampe	Diode	Diode électroluminescente	Diode Zener	
	A B	A B	A B	A B	
Symbole		The state of the s			

II) Caractéristiques des dipôles passifs

1) Définition:

La caractéristique courant-tension (ou tension-courant) d'un dipôle est la courbe reliant les variations de la tension U_{AB} à ses bornes en fonction de l'intensité du courant I qui le traverse

$$I_{AB} = f(U_{AB})$$
 ou $U_{AB} = g(I_{AB})$.

La caractéristique d'un dipôle passif passe toujours par l'origine des axes ($I=0 \Leftrightarrow U=0$)

2) Le rôle de la caractéristique :

Grâce à la caractéristique d'un dipôle électrique on peut prévoir le comportement du dipôle sans savoir sa composition interne.

3) Activité expérimentale de la caractéristique d'un dipôle passif :

Expérience:

- ✓ D'abord vérifier que le dipôle étudié est des dipôles passifs.
- ✓ On réalise le circuit électrique ci-dessous pour chaque dipôle passif étudié et note les résultats sur un tableau (la courant passe de A vers $B:I_{AB}>0$ et $U_{AB}>0$)
- ✓ On répète la même expérience mais en inversant les pôles du dipôle étudié et note les résultats sur un tableau (la courant passe de B vers $AB:I_{BA}>0$ et $U_{BA}>0$)

Montage avec diviseur de tension

Montage avec générateur adaptable

Tableaux de valeurs :

1) Dipôle étudié : Résistance ou conducteur ohmique.

4.1	3.5	3	2.6	2	1.5	0.98	0	U _{AB} (V)	1.
40	34	30	25	21	15	9.8	0	I _{AB} (mA)	
4.0	3.6	3	26	2	1.5	0.00	Λ	II. (X/)	R
7.0	3.0	3	2.6	Z	1.5	0.98	U	UBA(V)	لہا

La caractéristique du conducteur ohmique :

- ✓ Passe par l'origine des axes ($I=0 \Leftrightarrow U=0$)
- ✓ Linéaire ⇒ la tension et l'intensité sont proportionnelle.
- ✓ Symétrique ⇒ le comportement du dipôle est indépendant du sens du courant.

2) Dipôle étudié : Varistance ou V.D.R.'' Voltage Dependant Resistor''

2.5	2.3	2	1.7	1.5	1	0.5	0	Uab (V)	,U A
260	240	230	210	220	178	138	0	I _{AB} (mA)	
	2.31	2	1.7	1.5	1	0.5	0	U _{BA} (V)	

La caractéristique de la Varistance ou V.D.R:

- ✓ Passe par l'origine des axes ($I=0 \Leftrightarrow U=0$)
- ✓ non Linéaire ⇒ la tension et l'intensité ne sont pas proportionnelle.
- ✓ Symétrique ⇒ le comportement du dipôle est indépendant du sens du courant.

3) Dipôle étudié : Résistance photoélectrique ou L.D.R (Light Dépendant Resistor)

Conclusion:

La caractéristique de la Résistance photoélectrique ou L.D.R:

- ✓ Passe par l'origine des axes $(I=0 \Leftrightarrow U=0)$
- ✓ Linéaire ⇒ la tension et l'intensité sont proportionnelle.
- ✓ Symétrique ⇒ le comportement du dipôle est indépendant du sens du courant.

4) Dipôle étudié : Thermistance CTN

La thermistance est une résistance électrique qui varie en fonction de la température.

La caractéristique de la Thermistance :

- ✓ Passe par l'origine des axes ($I=0 \Leftrightarrow U=0$)
- ✓ Linéaire ⇒ la tension et l'intensité sont proportionnelle.
- ✓ Symétrique ⇒ le comportement du dipôle est indépendant du sens du courant.
- ✓ Il y à 2 types de thermistance :
 - la Thermistance C.T.N "la plus utilisé" : la résistance augmente lorsque la température diminue.
 - la Thermistance C.T.P: la résistance augmente lorsque la température augmente.

5) Dipôle étudié : Lampe incandescente

4.9	3.8	3	1.8	1	0.70	0.25	0	Uab (V)	^^
0.22	0.2	0.18	0.14	0.1	0.08	0.04	0	I _{AB} (A)	
4.9	3.8	3	1.8	1	0.70	0.25	0	U _{BA} (V)	4
0.21	0.2	0.18	0.14	0.1	0.08	0.04	0	$I_{BA}(A)$	В

Conclusion:

La caractéristique de la lampe:

- ✓ Passe par l'origine des axes ($I=0 \Leftrightarrow U=0$)
- ✓ Non Linéaire ⇒ la tension et l'intensité sont proportionnelle.
- ✓ Symétrique ⇒ le comportement du dipôle est indépendant du sens du courant.

6) Dipôle étudié : Diode à semi-conducteur au germanium ou au silicium.

Le premier dispositif capable de laisser passer le courant électrique dans un sens, tout en le bloquant dans l'autre, fut découvert en 1874 par Karl Ferdinand Braun.

1.2	1	0.7	0.6	0.4	0.2	0	U _{AB} (V)	†≛
42	20	3.5	0	0	0	0	I _{AB} (mA)	\perp
1.2	1	0.8	0.6	0.4	0.2	0	U _{BA} (V)	Ť
0	0	0	0	0	0	0	I _{BA} (mA)	B

La caractéristique de la Diode :

- ✓ Passe par l'origine des axes $(I=0 \Leftrightarrow U=0)$
- ✓ Non Linéaire ⇒ la tension et l'intensité ne sont pas proportionnelle.
- ✓ Non Symétrique ⇒ le comportement du dipôle dépendant du sens du courant.
- ✓ Chaque diode est caractérisée par la tension seuil U_S exemple 0,3 V pour les diodes au germanium et 0,7 V pour les diodes au silicium.

✓ Dans le sens bloqué :

$$U_{BA} \neq 0 \Rightarrow I_{BA} = 0$$

Diode bloquée

✓ Dans le sens passant :

$$0 \le U_{AB} < U_{S} \implies I_{AB} = 0$$

Diode bloquée

$$U_{AB} \ge U_S \implies I_{AB} \ne 0$$

Diode passante

Exercice:

Dans le circuit ci-dessous, le générateur est lié en série avec une diode dont la caractéristique est donnée par la figure $N^{\circ}1$ et un conducteur ohmique de résistance R. on donne $U_{PN}=1,5~V$

- 1) Donner l'expression de I l'intensité du courant électrique en fonction de U_{PN} , R et U_{BN} .
- 2) on donne I = 25 mA:
 - 2-1/ Donner la tension sous la quelle fonctionne la diode.
 - 2-2/ Calculer R la résistance du conducteur ohmique

Réponse :			
		• • • • • • • • • • • • • • • • • • • •	

7) Dipôle étudié : Diode Zener.

Contrairement à une diode conventionnelle qui ne laisse passer le courant électrique que dans un seul sens, *le sens direct*, les diodes Zener sont conçues de façon à laisser également passer le courant dans le sens inverse, mais ceci uniquement si la tension à ses bornes est plus élevée que le seuil U_Z (tension Zener)..

0.8	0.7	0.6	0.5	0.3	0.2	0	Uab (V)
50	0	0	0	0	0	0	I _{AB} (mA)
	6.2	6	4	3	1	0	U _{BA} (V)
	80	40	0	0	0	0	I _{BA} (mA)

La caractéristique de la Diode Zener :

- ✓ Passe par l'origine des axes $(I=0 \Leftrightarrow U=0)$
- ✓ Non Linéaire ⇒ la tension et l'intensité ne sont pas proportionnelle.
- ✓ Non Symétrique ⇒ le comportement du dipôle dépendant du sens du courant.
- ✓ Chaque diode Zener est caractérisée par la tension seuil U_S et la tension Zener U_Z ($U_Z > U_S$).
- ✓ Dans le sens bloqué :

$$0 \le U_{_{BA}} < U_{_{Z}} \implies I_{_{BA}} = 0$$
 Diode bloquée

$$U_{BA} \ge U_{Z} \implies I_{BA} \ne 0$$
 Diode passante

✓ Dans le sens passant :

$$0 \le U_{AB} < Us \implies I_{AB} = 0$$
 Diode bloquée

$$U_{AB} \ge U_S \implies I_{AB} \ne 0$$
 Diode passante