oducción Objetivos Partes Potencia Raíces Logaritmos Actividades Referencias

Operaciones superiores con números naturales

Potencias - Raíces - Logaritmos

Matemáticas

Grado 6

2022

ntroducción Objetivos Partes Potencia Raíces Logaritmos Actividades Referencias

Contenido

- 1 Introducción
- 2 Objetivos
- 3 Partes

- 4 Potencia
- 5 Raíces
- 6 Logaritmos
- 7 Actividades

2022

Introducción Objetivos Partes Potencia Raíces Logaritmos Actividades Referencias

●O O O OO OO OOO

Importancia de otras operaciones con naturales

Figura: Usos de la potencia (geometría), radicación (cinemática) y logaritmos (acústica).

Introducción Objetivos Partes Potencia Raíces Logaritmos Actividades Referencias

Importancia de otras operaciones con naturales

Sus usos

- Constituyen operaciones indispensables para el análisis matemático.
- Son operaciones requeridas en campos de conocimiento específico que facilitan el avance y desarrollo.
- Se llaman superiores porque son operaciones que simplifican algoritmos repetitivos y permiten agilizar ciertos cálculos.

Sus fundamentos

- Operaciones superiores: potenciación, radicación y logaritmación.
- Cada operación tiene su notación.
- Su manejo está basado en la multiplicación y división.
- Las tres operaciones están relacionadas.

Objetivos del tema

Propósito

Reconocer las operaciones superiores (potenciación, radicación y logaritmación) e identificar la notación de cada operación.

Desempeño

Calculo y propongo soluciones a problemas que usen operaciones superiores con números naturales.

$$I = 10\log_{10}\left[\frac{P}{P}\right]$$

Matemáticas G6

roducción Objetivos **Partes** Potencia Raíces Logaritmos Actividades Referencias

Partes y su significado

Cada operación tiene 3 partes bien definidas:

Base: El número de

trabajo o de aplicación.

Exponente: Indica la cantidad de veces que se opera

la base.

Resultado: El número final que

se obtiene luego del procedimiento; tiene nombre diferente en cada operación. Notación de las operaciones superiores [1]

 $2^3 = 8 \rightarrow Potencia$

 $\sqrt[3]{8} = 2 \rightarrow \text{Radicación}$

 $\log_{2} 8 = 3 \rightarrow Logaritmo$

6/17

Potenciación

¿Qué es?

Operación que consiste en hallar un resultado denominado **potencia** a partir de multiplicar tantas veces la base como lo indique el exponente (referencia [1, 2, 3]).

Exponente

Base
$$\leftarrow 2^{3} = 8$$
 \rightarrow Resultado

Figura: Partes de la potencia.

Ejemplo 1

Resolver 3⁴. Solución.

$$3^4 = \underbrace{3 \times 3 \times 3 \times 3}_{\text{Multiplicar 4 veces}} = 81$$

Ejemplo 2

Resolver 68. Solución.

$$6^8 = 1679616$$

Potenciación

Ejemplo 3: Exponente uno.

Resolver 29¹.

$$29^1 = 29$$

Cuando el exponente es 1, la potencia vale la misma base.

Ejemplo 4: Exponente cero.

Resolver 8⁰.

$$8^0 = 1$$

Cuando el exponente es 0, la potencia vale 1, *siempre y cuando la base no sea 0*.

Ejemplo 5: Error común I.

No se debe confundir la potencia con una multiplicación.
Solución.

$$2^4 = 2 \times 4 = 8$$
, Incorrecto! $2^4 = 2 \times 2 \times 2 \times 2 = 16$, Correcto!

Ejemplo 6: Error común II.

Tampoco se debe confundir con una suma.

$$2^4 = 2 + 2 + 2 + 2 = 8$$
, Incorrecto!

Matemáticas G6 Operaciones superiores 2022 8 / 17

Radicación

¿Qué es?

Consiste en hallar un <u>resultado</u> denominado **raíz** cuando son conocidas una potencia y el exponente. El símbolo para reconocer esta operación es y se llama *radical* (referencia [1, 2, 3]).

Índice (Exponente)

$$\sqrt[4]{rac{\sqrt[3]{8}}{\sqrt[8]{8}}}=2$$
 $ightarrow$ Resultado Radicando (Potencia)

Figura: Partes de la raíz.

Ejemplo 1

Hallar la raíz cuarta de 81, $\sqrt[4]{81}$. Solución.

$$\sqrt[4]{81} = 3$$
, porque $3^4 = 81$

Ejemplo 2

Resolver la raíz quinta de 1. Solución.

$$\sqrt[5]{1} = 1$$
, porque $1^5 = 1$

Ejemplo 3

Raíz cuarta de 10000. Solución. $\sqrt[4]{10000} = 10$

troducción Objetivos Partes Potencia **Raíces** Logaritmos Actividades Referencias

Radicación

Raíces inexactas

Muchos números naturales no tienen raíz exacta. En tal caso, se calcula la raíz con el natural más próximo junto con un resto.

Ejemplo 4: Raíces cuadradas inexactas.

Resolver $\sqrt{80}$.

Solución. $\sqrt{80}$ no tiene raíz cuadrada exacta porque $8^2 = 64$ y $9^2 = 81$. Así, la raíz cuadrada más próxima de 80 es 8 y el resto es 80 - 64 = 16; lo anterior se escribe

 $\sqrt{80} = 8 \text{ con resto } 16$

Matemáticas G6 Operaciones superiores 2022 10 / 17

roducción Objetivos Partes Potencia Raíces **Logaritmos** Actividades Referencias

Logaritmación

¿Qué es?

Consiste en hallar un <u>resultado</u> denominado **logaritmo** cuando son conocidas la potencia y la base, es decir, es una operación donde se halla el exponente. El símbolo usado en la operación es log (referencia [1, 2, 3]).

Potencia $\log_{2} \overset{\wedge}{8} = 3 o \mathsf{Resultado}$

Base

Figura: Se lee el logaritmo de 8 en base 2.

Ejemplo 1

Hallar el logaritmo de 81 en base 3.

Solución.

$$\log_3 81 = 4$$
, porque $3^4 = 81$

Ejemplo 2

Hallar el logaritmo de 32 en base 2.

Solución.

$$\log_2 32 = 5$$
, porque $2^5 = 32$

roducción Objetivos Partes Potencia Raíces **Logaritmos** Actividades Referencias

Logaritmación

Logaritmos de mayor uso: los decimales

También llamados de logaritmos de *Briggs*. Usan la base 10 y por convenio no se escribe el número de la base en el símbolo,

$$log 10 = 1$$
, porque $10^1 = 10$
 $log 1000 = 3$, porque $10^3 = 1000$

Ejemplo 3: logaritmo de 1

Resolver log₇1.

Solución. Puesto que $7^0 = 1$

$$log_7 1 = 0$$

Para cualquier base (diferente de 0), el logaritmo de 1 es 0.

Matemáticas G6 Operaciones superiores 2022 12 / 17

troducción Objetivos Partes Potencia Raíces Logaritmos **Actividades** Referencias O O O OO OO **●**

Actividad 11

Hallar las potencias; ordenar de mayor a menor los resultados y descubrir el nombre de un animal.

R	М	G	I	Н	Α	0
11 ³	3 ⁶	2 ⁵	21 ²	100 ²	1 ⁸	15 ³
=	=	=	=	=	=	=

- 2 Si cada persona tuvo 2 padres, 4 abuelos, 8 bisabuelos, etc.. Es decir, tiene 2 antepasados de hace 1 generación, 4 de hace 2 generaciones, 8 hace 3 generaciones y así sucesivamente:
 - ¿Cuántos antepasados de hace 6 generaciones tiene cada persona?
 - ¿Cuántos antepasados de hace 8 generaciones tiene cada persona?
 - ¿Cuántos antepasados de hace 16 generaciones tiene cada persona?

troducción Objetivos Partes Potencia Raíces Logaritmos Actividades Referencias

Actividad 12

- En cada ejercicio, calcular la raíz cuadrada inexacta y comprobar el resultado:
 - a) $\sqrt{98}$
 - b) $\sqrt{33}$
 - c) √363
 - d) $\sqrt{820}$
- Hallar la raíz cúbica junto con su verificación de 343, 125, 1000, 1728.
- Un piso en forma cuadrada tiene 729 baldosas ¿Cuántas baldosas tiene el piso por cada lado?

troducción Objetivos Partes Potencia Raíces Logarítmos Actividades Referencias

Actividad 14

Una aplicación de los logaritmos se da en sismología para relacionar la magnitud de un terremoto y el área de afectación, durante y después del evento. Si se asume que el lugar donde ocurre el terremoto tiene forma cuadrada, la magnitud es 4 más el logaritmo decimal del área, o sea:

$$M = 4 + \log A$$

Según lo anterior, completar la tabla hallando el área solicitada (lado×lado) y luego tomar el logaritmo agregado cuatro para calcular la magnitud del terremoto

Lado(km)	Área(km²)	Magnitud	Descripción
1			Ligero
10			Fuerte
100			Cataclismo
1000			Apocalíptico
10000			D.N.A.F

Matemáticas G6 Operaciones superiores 2022 15 / 17

ntroducción Objetivos Partes Potencia Raíces Logaritmos **Actividades** Referencias

¡Obrigado pela atenção!

Página web:

https://mikemolina.github.io/repoedu

Matemáticas G6 Operaciones superiores 2022 16 / 17

troducción Objetivos Partes Potencia Raíces Logaritmos Actividades **Referencias**

Referencias I

Jesús Ramos y Ludwig Ortiz. Supermat 6. Voluntad, 2000.

Jeison Cárdenas. Potencia, radicación y logaritmo. https://www.youtube.com/watch?v=v60PN7XQpVQ. Consultado 28 abr 2022, 2015.

Mates Fáciles. Radicacion, logaritmacion y potenciacion. https://lasmatesfaciles.com/2019/09/11/radicacion-logaritmacion-y-potenciacion/. Consultado 29 abr 2022. 2019.