

5.	Ref.: 7805594		Pontos: 0,00 / 1,00
----	---------------	--	---------------------

Considerando que em uma estrutura do tipo lista circular simplesmente encadeada e com nó cabeça, a inserção ocorre sempre no início da lista, quais são os passos para realizar a inserção de um novo nó?

Percorrer a lista até o último nó, apontar o último nó para o novo nó, apontar o novo nó para o último nó.

☐ ✔ Apontar o novo nó para o seguinte ao nó cabeça, apontar o nó cabeça para o novo nó.

Percorrer a lista até o último nó, apontar o último nó para o novo nó, apontar o novo nó para o nó cabeça.

Apontar o nó cabeça para o novo nó, apontar o novo nó para nulo.

🛚 🗱 💥 Apontar o novo nó para o nó cabeça, apontar o nó cabeça para o novo nó.

6. Ref.: 7805536 Pontos: **0,00 / 1,00**

Seja a operação de busca de chaves em uma Árvore B. Na seguinte árvore B abaixo, o resultado da sequência de chaves visitadas até encontrar a chave **S** é:

□ N-X-S.

□ N-U-S.

🗷 🗱 N-R-S.

□ ✓ N-Q-S.□ N-T-S.

7. Ref.: 7805562

Pontos: 1,00 / 1,00

Árvores de busca são estruturas de dados que permitem armazenar e recuperar informações de maneira eficiente. Marque a opção correta sobre árvores perfeitamente balanceadas:

Toda árvore balanceada é estruturada em zig-zag.

Toda árvore balanceada tem altura proporcional à O(n).

Toda árvore balanceada tem altura maior 3.

▼ Toda árvore perfeitamente balanceada tem altura proporcional a log n.

Toda árvore balanceada é complexa.

8. Ref.: 7805543

Pontos: 1,00 / 1,00

As árvores binárias de busca são especializações das árvores binárias que permitem uma melhor organização dos algoritmos de busca. Sobre a inserção de uma nova chave em uma árvore binária de busca é correto afirmar que:

A complexidade da inserção é sempre O(n), independentemente da altura da árvore.

	Para determinar a posição da nova chave é necessário calcular o percurso em ordem simétrica da árvore obtida. Com este percurso, verifica-se se a sequência está ordenada em ordem crescente. Caso esteja, a posição da nova chave está correta. O algoritmo de inserção em árvores binárias de busca é estático, isto é, é necessário recalcular toda árvore para inserir uma nova chave. Toda nova chave é inserida obrigatoriamente na raiz. Todas as chaves são inseridas em folhas, a posição da folha é determinada pela busca.		
7408 - ÁRVORES EM PHYTON			
9.	Pontos: 0,00 / 1,00		
Seja a seguinte árvore binária de busca, marque a alternativa correta:			
	A árvore binária de busca acima possui 4 nós folhas e 2 raízes. O certo em uma árvore binária de busca é que os nós possuam no mínimo grau 3. Logo, essa regra não é respeitada na árvore acima.		
X X			
□ •	em relação à raiz. Todos os nós da árvore binária estão corretamente dispostos na árvore, respeitando as regras conceituais de árvores binárias de busca.		
10.	Pontos: 1,00 / 1,00		
Seja a função de percurso <i>in-ordem</i> em Python. Marque a opção que apresenta a complexidade de execução:			
X ❖	A complexidade computacional do algoritmo para percurso em ordem simétrica é $O(n)$. A complexidade computacional do algoritmo para percurso em ordem simétrica é $O(1)$.		

A complexidade computacional do algoritmo para percurso em ordem simétrica constante.

A complexidade computacional do algoritmo para percurso em ordem simétrica é $O(\log n)$.

A complexidade computacional do algoritmo para percurso em ordem simétrica é $O(n \log n)$.