

MOSFET

650V CoolMOS™ CE Power Transistor

CoolMOS™ is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies. CoolMOS™ CE is a price-performance optimized platform enabling to target cost sensitive applications in Consumer and Lighting markets by still meeting highest efficiency standards. The new series provides all benefits of a fast switching Superjunction MOSFET while not sacrificing ease of use and offering the best cost down performance ratio available on the market.

1 2 3

Features

- Extremely low losses due to very low FOM Rdson*Qg and Eoss
- Very high commutation ruggedness
- Easy to use/drive
- · Pb-free plating, Halogen free mold compound
- Qualified for standard grade applications

Potential applications

PC Silverbox, Adapters, LCD & PDP TV and indoor Lighting

Please note: For MOSFET paralleling the use of ferrite beads on the gate or separate totem poles is generally recommended.

Gate

<u> </u>							
Parameter	Value	Unit					
V _{DS} @ T _{j,max}	700	V					
R _{DS(on),max}	1000	mΩ					
I _{d.typ}	7.2	A					
Q _{g.typ}	15.3	nC					
I _{D,pulse}	12	А					
E _{oss} @400V	1.5	μJ					

Drain

Source

Type / Ordering Code	Package	Marking	Related Links
IPS65R1K0CE	PG-TO 251-3	65S1K0CE	see Appendix A

650V CoolMOS™ CE Power Transistor IPS65R1K0CE

Table of Contents

escription1
1aximum ratings
hermal characteristics4
lectrical characteristics 5
lectrical characteristics diagrams
est Circuits
ackage Outlines
ppendix A
evision History
rademarks
nisclaimer

650V CoolMOS™ CE Power Transistor IPS65R1K0CE

1 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 Maximum ratings

Davamatav	Cumbal		Value	s	l lm!#	Note / Took Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current ¹⁾	I _D	-	-	7.2 4.6	А	T _C =25°C T _C =100°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	12	Α	T _C =25°C	
Avalanche energy, single pulse	E AS	-	-	50	mJ	I _D =1A; V _{DD} =50V; see table 10	
Avalanche energy, repetitive	E AR	-	-	0.15	mJ	I _D =1A; V _{DD} =50V; see table 10	
Avalanche current, repetitive	I _{AR}	-	-	1.0	Α	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	50	V/ns	V _{DS} =0480V	
Gate source voltage (static)	V _{GS}	-20	-	20	V	static;	
Gate source voltage (dynamic)	V _{GS}	-30	-	30	V	AC (f>1 Hz)	
Power dissipation (TO252)	P _{tot}	-	-	68	W	T _C =25°C	
Storage temperature	$T_{ m stg}$	-55	-	150	°C	-	
Operating junction temperature	T _j	-55	-	150	°C	-	
Continuous diode forward current	Is	-	-	5.1	Α	T _C =25°C	
Diode pulse current ²⁾	I _{S,pulse}	-	-	12	Α	T _C =25°C	
Reverse diode dv/dt ³⁾	dv/dt	-	-	15	V/ns	$V_{\rm DS}$ =0400V, $I_{\rm SD}$ <= $I_{\rm S}$, $T_{\rm j}$ =25°C see table 8	
Maximum diode commutation speed	di _f /dt	-	-	500	A/μs	V_{DS} =0400V, I_{SD} <= I_{S} , T_{j} =25°C see table 8	

 $^{^{1)}}$ Limited by $T_{j\;max}.$ Maximum duty cycle D=0.50 $^{2)}$ Pulse width t_p limited by $T_{j,max}$ $^{3)}$ Identical low side and high side switch with identical \textit{R}_{G}

650V CoolMOS™ CE Power Transistor IPS65R1K0CE

2 Thermal characteristics

Table 3 Thermal characteristics

Devenuetor	Cumbal	Values			11:4	Note / Took Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Thermal resistance, junction - case (TO252)	R _{thJC}	-	-	1.85	°C/W	-	
Thermal resistance, junction - ambient	R _{thJA}	-	-	62	°C/W	leaded	
Soldering temperature, wavesoldering only allowed at leads	T _{sold}	-	-	260	°C	1.6mm (0.063 in.) from case for 10s	

650V CoolMOS™ CE Power Transistor IPS65R1K0CE

3 Electrical characteristics

at T_j=25°C, unless otherwise specified

Table 4 Static characteristics

Baramatan	Oh l		Values			N
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	650	-	-	V	V_{GS} =0V, I_D =1mA
Gate threshold voltage	V _{(GS)th}	2.5	3.0	3.5	V	$V_{DS}=V_{GS}$, $I_{D}=0.2$ mA
Zero gate voltage drain current	I _{DSS}	-	- 10	1 -	μΑ	V _{DS} =650, V _{GS} =0V, T _i =25°C V _{DS} =650, V _{GS} =0V, T _i =150°C
Gate-source leakage current	I _{GSS}	-	-	100	nA	V _{GS} =20V, V _{DS} =0V
Drain-source on-state resistance	R _{DS(on)}	-	0.86 2.22	1.00	Ω	V _{GS} =10V, I _D =1.5A, T _j =25°C V _{GS} =10V, I _D =1.5A, T _j =150°C
Gate resistance	R _G	-	5.5	-	Ω	f=1MHz, open drain

Table 5 Dynamic characteristics

Barranatan	0	Values			T		
Parameter	Symbol	Min.	Тур. Мах.		Unit	Note / Test Condition	
Input capacitance	Ciss	-	328	-	pF	V _{GS} =0V, V _{DS} =100V, f=1MHz	
Output capacitance	Coss	-	23	-	pF	V _{GS} =0V, V _{DS} =100V, f=1MHz	
Effective output capacitance, energy related ¹⁾	C _{o(er)}	-	14	-	pF	V _{GS} =0V, V _{DS} =0480V	
Effective output capacitance, time related ²⁾	C _{o(tr)}	-	58.5	-	pF	I_D =constant, V_{GS} =0V, V_{DS} =0480V	
Turn-on delay time	$t_{\sf d(on)}$	-	6.6	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =2.2A, $R_{\rm G}$ =10.2 Ω ; see table 9	
Rise time	t _r	-	5.2	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =2.2A, $R_{\rm G}$ =10.2 Ω ; see table 9	
Turn-off delay time	$t_{ m d(off)}$	-	41	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =2.2A, $R_{\rm G}$ =10.2 Ω ; see table 9	
Fall time	t _f	-	13.6	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13 V, $I_{\rm D}$ =2.2A, $R_{\rm G}$ =10.2 Ω ; see table 9	

Table 6 Gate charge characteristics

Parameter	Cumbal		Values		Unit	Note / Test Condition	
	Symbol	Min.	Тур.	Max.	Unit		
Gate to source charge	Q_{gs}	-	1.8	-	nC	V_{DD} =480V, I_{D} =2.2A, V_{GS} =0 to 10V	
Gate to drain charge	$Q_{ m gd}$	-	8	-	nC	V_{DD} =480V, I_{D} =2.2A, V_{GS} =0 to 10V	
Gate charge total	Q_g	-	15.3	-	nC	V_{DD} =480V, I_{D} =2.2A, V_{GS} =0 to 10V	
Gate plateau voltage	V _{plateau}	-	5.4	-	V	V_{DD} =480V, I_{D} =2.2A, V_{GS} =0 to 10V	

 $^{^{1)}}$ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% $V_{\text{o(BR)DSS}}$ $^{2)}$ $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% $V_{\text{o(BR)DSS}}$

650V CoolMOS™ CE Power Transistor

Table 7 Reverse diode characteristics

Parameter	Symbol	Values		Unit	Note / Test Condition	
raiailletei	Symbol	Min.	Тур.	Max.	Offic	Note / Test Condition
Diode forward voltage	V _{SD}	-	0.9	-	V	V _{GS} =0V, I _F =2.2A, T _j =25°C
Reverse recovery time	t _{rr}	-	226	-	ns	V_R =400V, I_F =2.2A, di_F/dt =100A/ μ s; see table 8
Reverse recovery charge	Qrr	-	1.3	-	μC	V_R =400V, I_F =2.2A, di_F/dt =100A/ μ s; see table 8
Peak reverse recovery current	I _{rrm}	-	9.9	-	Α	V_R =400V, I_F =2.2A, di_F/dt =100A/ μ s; see table 8

4 Electrical characteristics diagrams

5 Test Circuits

Table 8 Diode characteristics

Table 9 Switching times

Table 10 Unclamped inductive load

6 Package Outlines

NOTES:

- 1. STANDARD QUALITY GRADE
- 2. ALL DIMENSIONS REFER TO JEDEC STANDARD TO-251 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

DIM	MILLIN	IETERS	INC	IES	
DIW	MIN	MAX	MIN	MAX	
Α	2.20	2.40	0.087	0.094	
A1	0.90	1.14	0.035	0.045	
b	0.64	0.89	0.025	0.035	
b2	0.65	1.15	0.026	0.045	
b4	5.20	5.50	0.205	0.217	
С	0.46	0.60	0.018	0.024	
c2	0.46	0.60	0.018	0.024	
D	5.98	6.22	0.235	0.245	
D1	5.00	5.60	0.197	0.220	
E	6.35	6.73	0.250	0.265	
E1	4.63	5.21	0.182	0.205	
е	2	.29	0.090		
e1	4	.57	0.1	80	
N		3		3	
L	3.30	3.60	0.130	0.142	
L1	0.85	1.25	0.033	0.049	
L2	0.88	1.28	0.035	0.050	

Figure 1 Outline PG-TO 251-3, dimensions in mm/inches

650V CoolMOS™ CE Power Transistor IPS65R1K0CE

7 Appendix A

Table 11 Related Links

• IFX CoolMOS™ CE Webpage: www.infineon.com

• IFX CoolMOS[™] CE application note: www.infineon.com

• IFX CoolMOS™ CE simulation model: www.infineon.com

• IFX Design tools: www.infineon.com

650V CoolMOS™ CE Power Transistor

Revision History

IPS65R1K0CE

Revision: 2017-07-25, Rev. 2.2

Previous Revision

Revision	Date	Subjects (major changes since last revision)				
2.0	2014-09-25	Release of final version				
2.1	2016-03-31	Modified Id, Rthjc. Modified SOA and Zthjc Curves				
2.2	2017-07-25	Updated package drawing on page 12				

Trademarks of Infineon Technologies AG

 $AURIX^{\intercal}, C166^{\intercal}, CanPAK^{\intercal}, CIPOS^{\intercal}, CoolGaN^{\intercal}, CoolMOS^{\intercal}, CoolSet^{\intercal}, CoolSet^{\intercal}, CoolSet^{\intercal}, CoolSet^{\intercal}, Corecontrol^{\intercal}, Crossave^{\intercal}, Dave^{\intercal}, Di-Pol^{\intercal}, DrBlade^{\intercal}, EasyPIM^{\intercal}, EconoBRIDGE^{\intercal}, EconoDual^{\intercal}, EconoPlol^{\intercal}, EconoPlol^{$

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: **erratum@infineon.com**

Published by Infineon Technologies AG 81726 München, Germany © 2017 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IPS65R1K0CEAKMA1 IPS65R1K0CEAKMA2