Intro To Static Timing Analysis

Introduction

 FPGA Flow and ASIC Design Flow share a lot of similar processes

Timing Closure

- Timing closure is the process of satisfying timing constraints through design and netlist modifications
- Designers should achieve Timing Closure
 - Style of Digital System Design
 - Optimization process that meet timing constraints (This is automated, so designer doesn't have control of this)
 - This is where design automation engineers play their role
 - Optimizations occur at Partitioning, Placement, and Routing
 - Timing-Driven Implementations <u>minimizes</u> Signal Delays

Example

Static Timing Analysis

- Main delay concerns in sequential circuits
 - Gate delays are due to gate transitions
 - Wire delays are due to signal propagation along wires
 - Clock skew is due to the difference in time the sequential elements activate

Terminologies

Setup Time - the time the data has to arrive before the clock to ensure correct sampling.

Terminologies

• **Hold Time** -the time the data has to be stable after the clock to ensure correct sampling.

Terminologies

- Required Time (R₁) represents the time by which data has to be present at that node
 - Determined by the Clock Frequency
- Arrival Time (A,) represents the time at which the data arrives at the
 - Determined by Wire Delay and Gate Delay
- Setup Slack = R_t A_t
 - Commonly called as Slack
- Hold Slack = A_t R_t

Example -Arrival Time

- Assumptions:
 - All inputs arrive at time 0
 - All gate delays = 1
 - All wire delays = 0
- Question: Arrival time of each gate? Circuit delay?

Example -Arrival Time

- Assumptions:
 - All inputs arrive at time 0
 - All gate delays = 1
 - All wire delays = 0
- Question: Arrival time of each gate? Circuit delay?

Example -Required Time

- Assumptions:
 - All inputs arrive at time 0
 - All gate delays = 1, wire delay = 0
 - Clock period = 7
- Question: maximum required time (RT) of each gate? (i.e., if the gate output is generated later than RT, clk period is violated)

Example -Required Time

- Assumptions:
 - All inputs arrive at time 0
 - All gate delays = 1, wire delay = 0
 - Clock period = 7
- Question: maximum required time (RT) of each gate? (i.e., if the gate output is generated later than RT, clk period is violated)

Example -Slack

- Assumptions:
 - All inputs arrive at time 0
 - All gate delays = 1, wire delay = 0
 - Clock period = 7
- Question: What is the maximum amount of delay each gate can be slower not to violate timing?

Example -Slack

- Assumptions:
 - All inputs arrive at time 0
 - All gate delays = 1, wire delay = 0
 - Clock period = 7
- Question: What is the maximum amount of delay each gate can be slower not to violate timing?

Implications

- Negative slack at any output means the circuit does not meet timing
- Positive slack at all outputs means the circuit meets timing

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	5.631 ns	Worst Hold Slack (WHS):	0.116 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	43	Total Number of Endpoints:	43	Total Number of Endpoints:	23
All war and distant and a					

How to Achieve Timing Closure?

- Timing Corrections Include
 - Gate Sizing
 - Buffer Insertion
 - Netlist Re-Construction
 - Cloning: duplicating gates
 - Redesign of fanin or fanout tree: changing the topology of gates
 - Swapping communicative pins: changing the connections
 - Gate decomposition: e.g., changing AND-OR to NAND-NAND
 - Boolean restructuring: e.g., applying Boolean laws to change circuit gates

EE4301 - Digital Systems Design using Programmable Logic - Summer 2023

END

Any Questions?

