Theoretische Aufgaben

Aufgabe 1

Listing 1: Aufgabe 1

```
reverse(list 1)

//falls Liste 0 oder 1 Element enthält

if list.size <= 1

return 1

// Schleife startet mit zweitem Element der Liste.

// 'next' ist der Zeiger auf das nächste Feld,

// die Funktion zeigeAuf() ermittelt die Adresse des Elements.

for i=1 to l.size

l[i].next = zeigeAuf(l[i-1])

return l
```

Aufgabe 2

Listing 2: Aufgabe 2

```
void enqueue (element e)
14 // Wir brauchen 'tail', um in linearer Zeit Elemente hinzufügen zu können.
15 //Da die Listenelemente gemäss Aufgabe nebst 'key' nur das Feld 'next'
_{16}|//besitzt, wird dieses verwendet, um auf das vorherige Element zu zeigen.
18 //Zeiger des neuen Elements auf NULL setzen
19 e.next = NULL
20
  //Element vor tail soll auf e zeigen
  (tail.next).next = zeigeAuf(e)
22
  //tail soll auf e zeigen
  tail.next = zeigeAuf(e)
25
27 element dequeue()
  //Wenn Liste leer, NULL zurückgeben und nichts verändern
 if tail.next = head
    return NULL
30
31
_{32} element k = head.next
| head.next = zeigeAuf((head.next).next)
34
35 // Wenn letztes vorhandenes Element entfernt werden soll:
36 //Durch obere Anweisung wurde head.next bereits auf NULL
  //gesetzt. Nun muss noch tail auf head zeigen:
 if head.next = NULL
38
    tail.next = zeigeAuf(head)
39
41 return k
```

```
\begin{split} & \texttt{Start:} \; \{ (\text{head}) \leftarrow (\text{tail}) \} \\ & \texttt{ENQUEUE}(3) \colon \{ (\text{head}) \rightarrow 3 \leftarrow (\text{tail}) \} \\ & \texttt{ENQUEUE}(5) \colon \{ (\text{head}) \rightarrow 3 \rightarrow 5 \leftarrow (\text{tail}) \} \\ & \texttt{DEQUEUE}() \colon \{ (\text{head}) \rightarrow 5 \leftarrow (\text{tail}) \}, \, \text{return 3} \\ & \texttt{ENQUEUE}(2) \colon \{ (\text{head}) \rightarrow 5 \rightarrow 2 \leftarrow (\text{tail}) \} \\ & \texttt{DEQUEUE}() \colon \{ (\text{head}) \rightarrow 2 \leftarrow (\text{tail}) \}, \, \text{return 5} \\ & \texttt{ENQUEUE}(8) \colon \{ (\text{head}) \rightarrow 2 \rightarrow 8 \leftarrow (\text{tail}) \} \\ & \texttt{ENQUEUE}(9) \colon \{ (\text{head}) \rightarrow 2 \rightarrow 8 \rightarrow 9 \leftarrow (\text{tail}) \} \\ & \texttt{DEQUEUE}() \colon \{ (\text{head}) \rightarrow 8 \rightarrow 9 \leftarrow (\text{tail}) \}, \, \text{return 2} \\ & \texttt{DEQUEUE}() \colon \{ (\text{head}) \rightarrow 9 \leftarrow (\text{tail}) \}, \, \text{return 8} \\ & \texttt{DEQUEUE}() \colon \{ (\text{head}) \leftarrow (\text{tail}) \}, \, \text{return NULL} \\ & \texttt{Ende:} \; \{ (\text{head}) \leftarrow (\text{tail}) \} \end{split}
```

Aufgabe 3

Listing 3: Aufgabe 3

```
output (node n)
print n.key

if n.left-child != NULL
output (n.left-child)

if n.right-sibling != NULL
output (n.right-sibling)
```

Aufgabe 4

Listing 4: Aufgabe 4

```
output(node n)

while stack != empty

print n

if n.left-child != NULL

stack.push(n.left-child)

if n.right-sibling != NULL

stack.push(n.right-sibling)

n=stack.pop
```

Praktische Aufgaben

Aufgabe 1

Siehe Anhang KDTreeVisualization.java.

Aufgabe 2

Siehe Anhang KDTreeVisualization.java. Ausgabe *Visualize KD Tree*:

Aufgabe 3

Parameter	listSearch	tree Search
x=100, n=200	$36 \mathrm{ms}$	8ms
x=200, n=400	92ms	11ms
x=300, n=600	241ms	$10 \mathrm{ms}$
x=400, n=800	517ms	$13 \mathrm{ms}$
x=500, n=1000	977ms	$14 \mathrm{ms}$
x=600, n=1200	$1655 \mathrm{ms}$	16ms
x=700, n=1400	$2569 \mathrm{ms}$	$13 \mathrm{ms}$
x=800, n=1600	$3836 \mathrm{ms}$	15ms
x=900, n=1800	$5766 \mathrm{ms}$	16ms
x=1000, n=2000	$8693 \mathrm{ms}$	21ms

Da die beiden Faktoren x und n, respektive Gesamtanzahl Punkt und zu suchende Punkte einander beinflussen, kann keine genaue Vorhersage getroffen werden. Die Grafik lässt aber vermuten, dass sich die beiden Laufzeitfunktionen $\Theta(n)$ resp. $\Theta(log(n))$ annähern.