Previous Year Questions 2024

Q1: What should be added from the polynomial $x^2 - 5x + 4$, so that 3 is the zero of the resulting polynomial? (2024)

- (a) 1
- (b) 2
- (c)4
- (d) 5

Ans: (b)

 $\Rightarrow p = 2$

Let,
$$f(x) = x^2 - 5x + 4$$

Let p should be added to f(x) then 3 becomes zero of polynomia

So,
$$f(3) + p = 0$$

$$\Rightarrow 3^{2} - 5 \times 3 + 4 + p = 0$$

$$\Rightarrow 9 + 4 - 15 + p = 0$$

$$\Rightarrow -2 + p = 0$$

So. 2 should be added.

Q2: Find the zeroes of the quadratic polynomial x^2 – 15 and verify the relationship between the zeroes and the coefficients of the polynomial. (2024)

Ans:

$$x^2 - 15 = 0$$

$$x^2 = 15$$

$$x = \pm \sqrt{15}$$

Zeroes will be $\alpha = \sqrt{15}$, $\beta = -\sqrt{15}$

Verification: Given polynomial is $x^2 - 15$

On comparing above polynomial with

$$ax^2 + bx + c$$
, we have

$$a = 1, b = 0, c = -15$$

sum of zeros = $a + \beta$

$$=\sqrt{15}-\sqrt{15}=\frac{0}{7}=\frac{-b}{1}$$

Product of zeros = $\alpha\beta$

$$\sqrt{15} \times -\left(\sqrt{15}\right) = \frac{-15}{1} = \frac{c}{a}$$

Hence, verified.

Previous Year Questions 2023

Q3: The graph of y = p(x) is given, for a polynomial p(x). The number of zeroes of p(x)

from the graph is (2023)

- (a) 3
- (b) 1
- (c)2
 - (d)0

Ans: (b)

Here, y = p(x) touches the x-axis at one point

So, number of zeros is one.

Q4: If α , β are the zeroes of a polynomial $p(x) = x^2 + x - 1$, then $1/\alpha + 1/\beta$ equals to

- (2023)
- (a) 1
- (b)2
- (c) 1
- (d) 1/2

Ans: (a)

The polynomial is $p(x) = x^2 + x - 1$

Step 1: The relationships between the zeroes and coefficients:

Sum of zeroes
$$(\alpha + \beta)$$
: $-\frac{1}{a} = -\frac{1}{1}$

Product of zeroes
$$(\alpha \beta)$$
: $\frac{c}{a} = \frac{-1}{1} = -1$

Step 2: Simplify

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$$

Substitute the values:

$$\frac{\alpha + \beta}{\alpha \beta} = \frac{-1}{-1} = 1$$

Final Answer: (a) 1

Q5: If α , β are the zeroes of a polynomial $p(x) = x^2 - 1$, then the value of $(\alpha + \beta)$ is (2023)

- (a) 1
- (b) 2
- (c) -1
- (d)0

The polynomial is $p(x) = x^2 - 1$.

Step 2: Simplify:

$$-\frac{0}{1} = 0$$

Final Answer: (d) 0

- (a) 7/3
- (b) 7/3
- (c) 3/7
- (d) 3/7

Ans: (d)

The polynomial is $p(x) = 4x^2 - 3x - 7$.

Step 1: calculating sum and product of zeroes

Sum of zeroes
$$(\alpha + \beta)$$
: $\frac{b}{a} = \frac{(-3)}{4} = \frac{3}{4}$

Product of zeroes (αβ):

Step 2: Simplify
$$\frac{1}{\alpha} + \frac{1}{\alpha}$$

$$\frac{\alpha + \beta}{\alpha \beta} = \frac{4}{\frac{-7}{7}} = \frac{-3}{7}$$

Final Answer: (d)
$$-\frac{3}{7}$$

SUNRISE EDUCATION CENTRE by Er. Mohit Nariyani

+91 8827431647

Q7: If one zero of the polynomial $p(x) = 6x^2 + 37x - (k - 2)$ is reciprocal of the other,

Ans: We have.

The polynomial is $p(x) = 6x^2 + 37x - (k - 2)$.

then find the value of k. (CBSE 2023)

Step 1: The relationship between the product of zeroes and coefficients:

Product of zeroes (
$$\alpha \beta$$
): $\frac{c}{a} = \frac{-(k-2)}{6}$

It is given that $\alpha\beta = 1$. Substitute this:

$$\frac{-(k-2)}{6}=1$$

Step 2: Solve for k:

Multiply both sides by 6:

$$-(k-2)=6$$

Simplify:

$$k - 2 = -6$$

$$k = -4$$

Final Answer: k = -4

SUNRISE EDUCATION CENTRE

by Er.Mohit Nariyani +91 8827431647

Previous Year Questions 2022

Q8: If one of the zeroes of a quadratic polynomial (k-1) x^2+kx+1 is - 3, then the value of k is (2022)

- (a) 4/3
- (b) 4/3
- (c) 2/3
- (d) 2/3

Ans: (a)

Given. -3 is a zero of quadratic polynomial $(k-1)^2 + kx + 1$.

$$(k-1)(-3)^2 + k(-3) + 1 = 0$$

$$\Rightarrow$$
 9k - 9 - 3k + 1 = 0 \Rightarrow 6k - 8 = 0

$$\Rightarrow$$
 k = 8/6

$$\Rightarrow$$
 k = 4/3

Q9: If the path traced by the car has zeroes at -1 and 2, then it is given by (2022)

(a)
$$x^2 + x + 2$$

(b)
$$x^2 - x + 2$$

(c)
$$x^2 - x - 2$$

(d)
$$x^2 + x - 2$$

Ans: (c)

The zeroes of the polynomial are -1 and 2.

Step 1: The polynomial with given zeroes is:

$$p(x) = a(x - \alpha)(x - \beta)$$

Substitute the zeroes $\alpha = -1$ and $\beta = 2$:

$$p(x) = a(x - (-1))(x - 2) = p(x) = a(x + 1)(x - 2)$$

Step 2: Expand the polynomial:

$$p(x) = a[(x)(x) + (x)(-2) + (1)(x) + (1)(-2)]$$

$$p(x) = a[x^2 - x - 2]$$

Step 3: Assuming a = 1:

$$p(x) = x^2 - x - 2$$

Final Answer: (c) $x^2 - x - 2$

Q10: The number of zeroes of the polynomial representing the whole curve, is (2022)

(a) 4

(b) 3

(c)2

(d) 1

Ans: (a)

Given curve cuts the x-axis at four distinct points.

So, number of zeroes will be 4.

Q11: The distance between C and G is (2022)

(a) 4 units

(b) 6 units 4

(c) 8 units

(d) 7 units

SUNRISE EDUCATION CENTRE by Er. Mohit Nariyani

_ Dy ELIMOHIL Namyan

 ${\bf Q12:} \ The\ quadratic\ polynomial,\ the\ sum\ of\ whose\ zeroes\ is\ -5\ and\ their\ product\ is\ 6.$

(2022)

(a)
$$x^2 + 5x + 6$$

(b)
$$x^2 - 5x + 6$$

(c)
$$x^2 - 5x - 6$$

(d)
$$-x^2 + 5x + 6$$

Ans: (a)

Let α , β be the zeroes of required polynomial p(x).

Given,
$$\alpha + \beta = -5$$
 and $\alpha.\beta = 6$

$$p(x)=k[x^2-(-5)x+6]=k[x^2+5x+6]$$

Thus, one of the polynomial which satisfy the given condition is $x^2 + 5x + 6$

by Er.Mohit Nariyan

+91 8827431647

Previous Year Questions 2021

Q13: If one zero of the quadratic polynomial $x^2 + 3x + k$ is 2 then find the value of k. (2021)

Ans: Given, polynomial is $f(x) = x^2 + 3x + k$

Since, 2 is zero of the polynomial f(x).

$$\therefore f(2) = 0$$

$$\Rightarrow$$
 f(2) =(2)² + 3 x 2 + k

$$\Rightarrow$$
 4+6+k=0

$$\Rightarrow$$
 k = -10

Previous Year Questions 2020

Q14: The degree of polynomial having zeroes -3 and 4 only is (2020)

- (a) 2
- (b) 1
- (c) more than 3
- (d) 3

Ans: (a)

Since, the polynomial has two zeroes only. So. the degree of the polynomial is 2.

Q15: If one of the zeroes of the quadratic polynomial $x^2 + 3x + k$ is 2. then the value of k is (2020)

- (a) 10
- (b) 10
- (c) -7
- (d) -2

Ans: (b)

Given, 2 is a zero of the polynomial

$$p(x) = x^2 + 3x + k$$

$$\therefore p(2) = 0$$

$$\Rightarrow$$
 (2)² + 3(2) + k = 0

$$\Rightarrow$$
 4 + 6 + k = 0 =

$$\Rightarrow$$
 10 + k = 0

whose zeroes is -5 and their product is Q16: The quadratic polynomial, the sum of

(a)
$$x^2 + 5x + 6$$

(b)
$$x^2 - 5x + 6$$

(c)
$$x^2$$
 - 5x - 6

(d)
$$-x^2 + 5x + 6$$

Ans: (a)

Let α , β be the zeroes of required polynomial p(x)

Given,
$$\alpha + \beta = -5$$
 and $\alpha\beta = 6$

$$p(x) = k[x^2 - (-5)x + 6]$$

$$= k[x^2 + 5x + 6]$$

Thus, one of the polynomial which satisfy the given condition is $x^2 + 5x + 6$.

Q17: Form a quadratic polynomial, the sum and product of whose zeroes are (-3) and 2 respectively. (CBSE 2020)

Ans: Let α , β be the zeroes of required polynomial Given, $\alpha + \beta = -3$ and $\alpha\beta = 2$

$$\therefore p(x) = k[x^2 = -(-3)x + 2] = k(x^2 + 3x + 2)$$

For
$$k = 1$$
, $p(x) = x^2 + 3x + 2$

Hence, one of the polynomial which satisfy the given condition is $x^2 + 3x + 2$.

Q18: The zeroes of the polynomial $x^2 - 3x - m(m + 3)$ are:

- (a) m, m + 3
- (b) -m, m + 3
- (c) m, (m + 3)
- (d) -m, -(m + 3) (CBSE 2020)

Ans: (b)

Given:

$$x^2 - 3x - m(m + 3) = 0$$

Let's find the zeroes by applying the quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Substitute into the formula:

$$x = rac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot (-m(m+3))}}{2 \cdot 1} \ x = rac{3 \pm \sqrt{9 + 4m(m+3)}}{2}$$

Simplify under the square root:

$$x = rac{3 \pm \sqrt{9 + 4m^2 + 12m}}{2} \ x = rac{3 \pm \sqrt{(2m+3)^2}}{2}$$

Taking the square root:

$$x=\frac{3\pm(2m+3)}{2}$$

So, the zeroes are -m and m + 3.

Thus, the correct answer is (b) -m, m + 3.

Previous Year Questions 2019

Q19: Find the value of k such that the polynomial x^2 - (k + 6)x + 2(2k - 1) has sum of its zeroes equal to half of their product. [Year 2019, 3 Marks]

The given polynomial is $x^2 - (k + 6)x + 2(2k - 1)$

According to the question

Sum of zeroes = 1/2(Product of Zeroes):

$$\Rightarrow$$
 k + 6 = 1/2 x 2 (2k - 1)

$$\Rightarrow$$
 k + 6 = 2k - 1

$$\Rightarrow$$
 k = 7