THE SYSTEMS UNIT: PROCESSING AND MEMORY

Application of Information and Communication Technologies

Dr. Muhammad Abdullah

Faculty of Computing and Information Technology (FCIT)
University of the Punjab, Lahore, Pakistan.

Learning Objectives

- Understand how data and programs are represented to a computer and be able to identify a few of the coding systems used to accomplish this.
- Explain the functions of the hardware components commonly found inside the system unit, such as the CPU, memory, buses, and expansion cards.
- 3. Describe how new peripheral devices or other hardware can be added to a computer.
- 4. Understand how the computer system's CPU and memory components process program instructions and data.
- 5. Name and evaluate several strategies that can be used today for speeding up the operations of a computer.
- 6. List some technologies that may be used in the future computers.

Overview

- This chapter covers:
 - Explain how computers represent data and program instructions.
 - Explain how the CPU and memory are arranged with other components inside the system unit.
 - Explain how a CPU performs processing tasks.
 - Identify strategies that can be used today to create faster and better computers in the future

Data and Program Representation

- Digital Data Representation
 - Coding Systems
 - Used to represent data and programs in a manner understood by the computer
 - Digital Computers
 - Can only understand two states, off and on (0 and 1)
 - Digital Data Representation
 - The process of representing data in digital form so it can be understood by a computer

Digital Data Representation

- Bit
 - The smallest unit of data that a binary computer can recognize (a single 1 or 0)
- Byte = 8 bits
 - Byte terminology used to express the size of documents and other files, programs, etc.
- Prefixes are often used to express larger quantities of bytes: kilobyte (KB), megabyte (MB), gigabyte (GB), terabyte (TB), etc.

Representing Numerical Data

- The Binary Numbering System
 - Numbering system
 - A way of representing numbers
 - Decimal numbering system
 - Uses 10 symbols (0-9)
 - Binary numbering system
 - Uses only two symbols (1 and 0) to represent all possible numbers
 - In both systems, the position of the digits determines the power to which the base number (such as 10 or 2) is raised

The Binary Numbering System

Coding Systems for Text-Based Data

- ASCII and EBCDIC
 - ASCII (American Standard Code for Information Interchange): coding system traditionally used with personal computers
 - EBCDIC (Extended Binary-Coded Decimal Interchange Code): developed by IBM, primarily for mainframe use

CHARACTER	ACSII
0	00110000
1	00110001
2	00110010
3	00110011
4	00110100
5	00110101
Α	01000001
В	01000010
С	01000011
D	01000100
E	01000101
F	01000110
+	00101011
!	00100001
#	00100011

FIGURE 2-4

Some extended ASCII code examples.

Coding Systems for Text-Based Data

- Unicode: newer code (32 bits per character is common); universal coding standard designed to represent text-based data written in any ancient or modern language
 - Replacing ASCII as the primary text-coding system

Coding Systems for Other Types of Data

- Graphics Data (still images such as photos or drawings)
 - Bitmapped images
 - Image made of up of a grid of small dots called pixels
 - Monochrome graphic can only be one of two colors
 - Requires just one bit for color storage
 - Images with more than two colors
 - Can use 4, 8, or 24 bits to store the color data for each pixel
 - More bits = more colors

Coding Systems for Other Types of Data

- Audio data: Must be in digital form in order to be stored on or processed by a computer
 - Often compressed when sent over the Internet
 - MP3 files
- Video data: Displayed using a collection of frames, each frame contains a still image
 - Amount of data can be substantial but can be compressed

Representing Software Programs

- Machine language
 - Binary-based language for representing computer programs the computer can execute directly
 - Early programs were written in machine language.
 - Today's programs still need to be translated into machine language in order to be understood by the computer
- Most programs are written in other programming languages
 - Language translators are used to translating the programs into machine language

Quick Quiz

- 1. Another way to say "one million bytes" is
 - a. one kilobyte
 - b. one gigabyte
 - c. one megabyte
- 2. True or False: MP3 files are stored using 0s and 1s.
- 3. The _____ numbering system is used by computers to perform mathematical computations.

Answers:

1) c; 2) True; 3) binary

- System unit:
 - The main case of a computer
 - Houses the processing hardware for a computer
 - Also contains storage devices, the power supply, and cooling fans
 - Houses the CPU, memory, interfaces to connect to peripheral devices (printers, etc), and other components such as CD/DVD drives
 - With a desktop computer, usually looks like a rectangular box

The Motherboard

- Computer chip
 - A very small piece of silicon or other semi-conducting material onto which integrated circuits are embedded
- Circuit board
 - A thin board containing computer chips and other electronic components
- System board
 - The main circuit board inside the system unit to which all devices must connect
- External devices (monitors, keyboards, mice, printers) typically connect by plugging into a port exposed through the exterior of the system unit
- Wireless devices connect through a transceiver or wireless networking technology (like Bluetooth)

Drive Bays

- Rectangular metal racks inside the system unit that house storage devices
 - Hard drive, CD/DVD drive, flash memory card reader
 - Connected to the motherboard with a cable

Processors

- The CPU (Central Processing Unit)
 - Circuitry and components packaged together and connected directly to the motherboard
 - Does the vast majority of processing for a computer
 - Also called a processor; called a microprocessor when talking about personal computers

- Dual-core CPU
 - Contains the processing components (cores) of two separate processors on a single CPU
- Quad-core CPU
 - Contains four cores
- Multi-core processors allow computers to work on more than one task at a time
- Typically, different CPUs for desktop computers, portable computers, servers, mobile devices, consumer devices, etc.
 - Personal computer CPU often made by Intel or AMD
 - Media tablets and mobile phones use processors made by other companies such as ARM

The CPU

FIGURE 2-8 CPUs. CPUs today typically have multiple cores.

cache memory

DESKTOP PROCESSORS

Typically have 2 to 4 cores and are designed for performance.

NOTEBOOK PROCESSORS

Typically have 2 to 4 cores and are designed for performance and increased battery life.

SERVER AND WORKSTATION PROCESSORS

Typically have at least 4 cores and are designed for very high performance.

NETBOOK PROCESSORS

Typically have 1 to 2 cores, are small in size, and are designed for extended battery life.

The CPU

TYPE OF PROCESSOR	NAME	NUMBER OF CORES	CLOCK	TOTAL CACHE MEMORY		
				LEVEL 1	LEVEL 2	LEVEL 3
DESKTOP	Intel Core i7 AMD Phenom II	4 2-4	2.66-3.33 GHz 2.4-3.2 GHz	64 KB* 128 KB*	256 KB* 512 KB*	8 MB 4-6 MB
SERVER/ WORKSTATION	Intel Xeon (5500 series) AMD Opteron (3rd generation)	2 or 4 4 or 6	1.86-3.2 GHz 2.0-3.1 GHz	64 KB* 128 KB*	256 KB* 512 KB*	4-8 MB 6 MB
NOTEBOOK	Intel Core 2 Mobile AMD Turion X2 Mobile	1, 2, or 4 2	1.06-3.06 GHz 2.0-2.5 GHz	64 KB* 128 KB*	1-12 MB 1-2 MB*	none none
NETBOOK	Intel Atom AMD Athlon Neo	1-2	800 MHz-2 GHz 1.6 MHz	56 KB* 128 KB*	512 KB* 512 KB*	none

*Per core

FIGURE 2-9

Some examples of current Intel and AMD CPUs.

- The GPU (graphics processing unit)
 - Takes care of the processing needed to display images (including still images, animations) on the screen
 - Can be located on the motherboard, on a video graphics board, on in the CPU package

Processing Speed

- CPU clock speed: One measurement of processing speed
 - Measured in megahertz (MHz) or gigahertz (GHz)
 - Higher CPU clock speed = more instructions processed per second
- Alternate measure of processing speed is the number of instructions a CPU can process per second
 - Megaflops, gigaflops, teraflops
- Benchmark tests: Can be used to evaluate overall processing speed

Word Size and Cache Memory

- Word size: The amount of data that a CPU can manipulate at one time
 - Typically 32 or 64 bits
- Cache memory: Special group of very fast memory chips located on or close to the CPU
 - Level 1 is fastest, then Level 2, then Level 3
 - More cache memory typically means faster processing
 - Usually internal cache (built into the CPU)
 - Often some cache dedicated to each core; may also have some shared cache accessible by any core

Bus Width, Bus Speed, and Bandwidth

Bus

- An electronic path over which data can travel
- Found inside the CPU and on the motherboard

Bus width

- The number of wires in the bus over which data can travel
- Bus width and speed determine the throughput (or bandwidth) of the bus
- The amount of data that can be transferred by the bus in a given time period

- Refers to chip-based storage located inside the system unit
- Storage refers to the amount of long-term storage available to a computer, refers to chip-based storage
- RAM (random access memory): Computer's main memory
 - Consists of chips arranged on a circuit board called a memory module plugged into the motherboard
 - Stores essential parts of an operating system, programs, and data the computer is currently using
 - Adequate RAM is needed to run programs
 - Volatile: Contents of RAM is lost when the computer is shut off
 - Most personal computers use SD-RAM
 - ROM and flash memory are non-volatile
 - Measured in bytes Amount installed depends on the CPU and operating system being used
 - Most personal computers use SD-RAM
 - MRAM and PRAM non-volatile RAM under development

- Each location in memory has an address
 - Each location typically holds one byte
 - Computer system sets up and maintains directory tables to facilitate retrieval of the data

FIGURE 2-12

Each location in memory has a unique

Memory addressing.

address, just like mailboxes at the post office.

Programs and blocks of data are almost always too big to fit in a single address. A directory keeps track of the first address used to store each program and data block, as well as the number of addresses each block spans.

opyright © 2015 Cengage Learning*

- Registers:
 - High-speed memory built into the CPU
 - Used to store data and intermediary results during processing
 - Fastest type of memory
- ROM (read-only memory):
 - Non-volatile chips located on the motherboard into which data or programs have been permanently stored
 - Retrieved by the computer when needed
 - Being replaced with flash memory for firmware
- Flash memory:
 - Type of Nonvolatile memory chips that can be used for storage
 - Have begun to replace ROM for storing system information
 - Now stores firmware for personal computers and other devices
 - Built into many types of devices (media tablets, mobile phones, and digital cameras) for user storage

Cooling Components

Fans

- Fans used on most personal computers to help cool the CPU and system unit
- Heat is an ongoing problem for CPU and computer manufacturers
 - Can damage components
 - Cooler chips run faster

Heat Sinks

 Small components typically made out of aluminum with fins that help to dissipate heat

Cooling Components

- Cooling Systems
 - Liquid cooling systems
 - Cool the computer with liquid-filled tubes
- Immersion cooling
 - Hardware is actually submerged into units filled with a liquid cooling solution
- Notebook cooling stand
 - Cools the underside of a notebook computer
- -Other cooling methods, such as ion pump cooling systems, are under development

Fans, Heat Sinks, and Other Cooling Components

Expansion

- Expansion Slots, Expansion Cards, and Express Card Modules
 - Expansion Slot
 - A location on the motherboard into which expansion cards are inserted
- Expansion Card
 - A circuit board inserted into an expansion slot
 - Used to add additional functionality or to attach a peripheral device
- Express Card Modules
 - Designed to add additional functionality to notebooks

Expansion

PCIe EXPANSION CARDS (for desktop computers) EXPRESSCARD MODULES (for portable computers) USB ADAPTERS (for any device with an available USB port)

FIGURE 2-14

Types of expansion.

Buses

Bus

- An electronic path within a computer over which data travels
 - Located within the CPU and etched onto the motherboard
- Expansion Bus
 - Connects the CPU to peripheral (typically input and output) devices
- Memory Bus
 - Connects CPU directly to RAM
- Frontside Bus (FSB)
 - Connects CPU to the chipset that connects the CPU to the rest of the bus architecture

Buses

- PCI and PCI Express (PCIe) Bus
 - PCI has been one of the most common types
 - Today, PCI Express bus, which is extremely fast, has replaced the PCI bus
- Universal Serial Bus (USB)
 - Extremely versatile
 - Allows 127 different devices to connect to a computer via a single USB port
- FireWire Bus
 - Developed by Apple to connect multimedia devices to a computer

Ports and Connectors

Port

- A connector on the exterior of a computer's system unit to which a device may be attached
- Typical desktop computer ports include:
 - Power connector, Firewire, VGA monitor, Network, USB, Audio, and HDMI
- Others include IrDA and Bluetooth ports, eSATA ports, Thunderbolt ports (Apple devices)
- Most computers support the Plug and Play standard

Ports and Connectors

FIGURE 2-16

Typical ports for desktop computers and examples of connectors.

Ports and Connectors

- Portable computers have ports similar to desktop computers, but often not as many
- Smartphones and mobile devices have more limited expansion capabilities
 - Usually have a USB port, HDMI port, and/or flash memory card slot
 - Flash memory cards often use the Secure Digital (SD) format
 - MiniSD and microSD cars are smaller than regular SD cards

Ports and Connectors

NOTEBOOK COMPUTERS

MOBILE DEVICES

FIGURE 2-18

Typical ports for portable computers.

Quick Quiz

- 1. Which type of memory is erased when the power goes out?
 - a. ROM
 - b. RAM
 - c. flash memory
- 2. True or False: The CPU can also be called the motherboard.
- 3. A(n) electronic path within a computer over which data travels is called a(n) _____.

Answers:

1) b; 2) False; 3) bus

How the CPU Works

- CPU (Central Processing Unit)
 - Consists of a variety of circuitry and components packaged together
 - Transistor: Key element of the microprocessor
 - Made of semi-conductor material that acts like a switch controlling the flow of electrons inside a chip
 - Today's CPUs contain hundreds of millions of transistors; the number doubles about every 18 months (Moore's Law)

Inside the Industry Box

- Moore's Law
 - In 1965, Gordon Moore predicted that the number of transistors per square inch on chips had doubled every two years and that trend would continue
 - Moore's Law is still relevant today for processors as well as other computer components

How the CPU Works

- Typical CPU Components
 - Arithmetic/Logic Unit (ALU)
 - Performs arithmetic involving integers and logical operations
 - Floating Point Unit (FPU)
 - Performs decimal arithmetic
 - Control Unit
 - Coordinates and controls activities within a CPU core
 - Prefetch Unit
 - Attempts to retrieve data and instructions before they are needed for processing in order to avoid delays

How the CPU Works

- Decode Unit
 - Translates instructions from the prefetch unit so they are understood by the control unit, ALU, and FPU
- Registers and Internal Cache Memory
 - Store data and instructions needed by the CPU
- Bus Interface Unit
 - Allows the core to communicate with other CPU components

Typical CPU Components

The System Clock and the Machine Cycle

- System Clock
 - Small quartz crystal on the motherboard
 - Timing mechanism within the computer system that synchronizes the computer's operations
 - Sends out a signal on a regular basis to all computer components
 - Each signal is a cycle
 - Number of cycles per second is measured in hertz (Hz)
 - One megahertz = one million ticks of the system clock

The System Clock and the Machine Cycle

- Many PC system clocks run at 200 MHz
- Computers can run at a multiple or fraction of the system clock speed
- A CPU clock speed of 2 GHz means the CPU clock "ticks" 10 times during each system clock tick
- During each CPU clock tick, one or more pieces of microcode are processed
- A CPU with a higher clock speed processes more instructions per second than the same CPU with a lower CPU clock speed

The System Clock and the Machine Cycle

Machine cycle

- The series of operations involved in the execution of a single machine level instruction
- Fetch: The program instruction is fetched

 Decode: The instructions are decoded so the control unit, ALU, and FPU can understand them

- Execute: The instructions are carried out
- Store: The original data or the result from the ALU or FPU execution is stored in the CPU's registers

Making Computers Faster and Better Now and in the Future

- Improving the Performance of Your System Today
 - Add more memory
 - Perform system maintenance
 - Uninstall programs properly
 - Remove unnecessary programs from the Startup list
 - Consider placing large files not needed regularly on external storage
 - Delete temporary files
 - Error check and defrag the hard drive periodically
 - Scan for viruses and spyware continually
 - Clean out dust once or twice a year
 - Buy a larger or second hard drive
 - Upgrade your Internet connection
 - Upgrade your video graphics card

Making Computers Faster and Better Now and in the Future

- Strategies for Making Faster and Better Computers
 - Improved Architecture
 - Smaller components, faster bus speeds, multiple CPU cores, support for virtualization
- Improved Materials
 - Flexible electronic components
 - Copper, high-k, graphene chip

Making Computers Faster and Better Now and in the Future

- Pipelining
 - Allows multiple instructions to be processed at one time
- Multiprocessing and Parallel Processing
 - Use multiple processors to speed up the processing

Pipelining

Stages

Fetch	Decode	Execute	Store	Fetch	Decode	Execute	١
Instruction	Instruction	Instruction	Result	Instruction	Instruction	Instruction	ı
1	1	1	Instruction 1	2	2	2	ı

Stages

Fetch Instruction 1	Fetch Instruction 2	Fetch Instruction 3	Fetch Instruction 4	Fetch Instruction 5	Fetch Instruction 6	Fetch Instruction 7	
	Decode Instruction 1	Decode Instruction 2	Decode Instruction 3	Decode Instruction 4	Decode Instruction 5	Decode Instruction 6	
		Execute Instruction 1	Execute Instruction 2	Execute Instruction 3	Execute Instruction 4	Execute Instruction 5	
			Store Result Instruction 1	Store Result Instruction 2	Store Result Instruction 3	Store Result Instruction 4	

WITHOUT PIPELINING

Without pipelining, an instruction finishes an entire machine cycle before another instruction is started.

WITH PIPELINING

With pipelining, a new instruction is started when the preceding instruction moves to the next stage of the pipeline.

FIGURE 2-24

Pipelining. Pipelining streamlines the machine cycle by executing different stages of multiple instructions at the same time so that the different parts of the CPU are idle less often.

- Nanotechnology
 - The science of creating tiny computers and components less than 100 nanometers in size
 - Carbon nanotubes (CNTs) used in many products today
 - Nanofilters and nanosensors
 - Future applications may be built by working at the individual atomic and molecular levels

FIGURE 2-25
Carbon nanotubes.

This light bulb is powered and held in place by two carbon nanotube fibers.

- Quantum Computing
 - Applies the principles of quantum physics and quantum mechanics to computers
 - Utilizes atoms or nuclei working together as quantum bits (qubits)
 - Qubits function simultaneously as the computer's processor and memory and can represent more than two states
 - Expected to be used for specialized applications, such as encryption and codebreaking

FIGURE 2-2

Quantum computers.
The vial of liquid shown here contains the 7-qubit computer used by IBM researchers in 2001 to perform the most complicated computation by a quantum computer to date—factoring the number 1.5.

- Optical Computing
 - Uses light, from laser beams or infrared beams, to perform digital computations
 - Opto-electronic computers use both optical and electronic components
- Silicon Photonics
 - The process of making optical devices using silicon manufacturing techniques
 - Possible low-cost solution to future data-intensive computing applications—telemedicine, cloud data centers

- Tera-Scale Computing
 - The ability to process one trillion floating-point operations per second (teraflops)
 - Terascale research is focusing on creating multi-core processors with tens to hundreds of cores
 - Intel has created a Single-chip Cloud Computer which contains 48 cores on one silicon chip
 - Expected to be needed for future applications

- 3D Chips
 - Contain transistors that are layered to cut down on the surface area require
 - Created by layering individual silicon wafers on top of one another
 - Being used with memory, flash memory, and CPUs

FIGURE 2-28

3D chips. In this 3D transistor, the electrical current (represented by the yellow dots) flows on three sides of a vertical fin.

Quick Quiz

- 1. Optical computers use which of the following to transmit and process data?
 - a. Liquid
 - b. Light
 - c. Silicon
- 2. True or False: If your computer is running slowly, adding more memory might speed it up.
- 3. A quantum bit is known as a(n)

Answers:

1) b; 2) True; 3) qubit

Summary

- Data and Program Representation
- Inside the System Unit
- How the CPU Works
- Making Computers Faster and Better Now and In the Future

Credit

This lecture notes are based on the following resources:

 Chapter 2, Understanding Computers: Today and Tomorrow by Deborah Morley and Charles S. Parker,