DESIGNING A NEW PROGRAMMING LANGUAGE

ASSIGNMENT PRINCIPLES OF PROGRAMMING LANGUAGES (CS F301/IS F301)

SHIKHAR VASHISTH 2012C6PS436P UTKARSH PATHRABE 2012A7PS034P

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

DOMAIN OF PROGRAMMING LANGUAGE

- For simplifying use, maintenance and automation of daily need equipments in houses, hostels, hospitals, traffic signals, prisons etc. as compared to designing with other available programming languages.
- Allows one to define all equipments along with their states and operations and to design hierarchical model of whole system. It has provision of automating certain processes. Also allows one to control all equipments individually or in groups through specifically designed command line instructions.

PROBLEMS SOLVED BY THIS LANGUAGE

Language can be used to computerize domains like-

- Managing various equipments of house like door, electronic equipments (fan, light sources, cleaner, television, air conditioners etc.) and allows them to work according to the sensors response or user commands. For example, one can program the fire alarm to ring automatically if heat sensor in kitchen detects high temperature. Similarly, allows to automatically switch off all electronic equipments if no one is present in the room.
- In hostels, language can be used to automatically switch OFF/ON lamp, fan
 in the room by detecting the presence of person in the room with the help
 of a sensor. It can also be used to program solar water heater to
 automatically switch ON when the sensor detects the temperature falling
 below a certain specified temperature.
- In prison, language can be used to automate alarm signals if prison break is detected. Sensors can be installed in every prison compartment to detect the presence of prisoners during specified time.
- The language can be used to manage general equipments in hospital like fan, lamp, TV etc. by the patient to put them ON or OFF as per his/her wish without the need to move around by enabling commands through sound input.
- For managing traffic on crossing. One can program sensors on road to detect over speeding vehicles and taking required actions. On crossings wait time can be changed according to traffic density at a given time.
- In factories, one can program various machines for doing their specific tasks and raising alarm when flaw in process is detected.

The language allows to write code performing such complex operations with less lines of code compared to the other programming languages available for these domains.

PROGRAMMING FEATURES OF THIS LANGUAGE

Declarative

o Allows to directly instruct the language what needs to be done.

Procedural

 Statements inside 'AUTOMATE' (periodic function) block are executed in a sequential manner.

Object Oriented

 Language allows to define every component as object that have data fields and associated methods.

Event driven

 Flow of programs is determined by events defined by user (e.g. Sensor output)

Structured

 Follows structured programming principles such as use of block structures and for loop in contrast to using simple tests and jumps.

Readable

 Syntax of language is such that it can be easily understood just by reading.

Writable

Syntax of language is very similar to English language.

Abstraction

 Language allows to define complex processes and structures in an abstract way.

Support for parallelism

 Commands and automated processes defined through the language can be executed in parallel to improve performance and the support for this would be inherently provided by the interpreter.

TOKENS USED IN LANGUAGE

Keywords:

ABSTRACT_TYPE It defines type of objects which can contain other concrete type objects. They

themselves don't have states and operations

CLASS It defines common states and operations which are inherited by concrete

object types.

TYPE It defines concrete object type.

AUTOMATE To define processes which needs to get re-executed after certain time.

COMMAND To issue command to devices

DISPLAY Used to display message on console

Data types:

REAL Equivalent to double data type in C
INTEGER Equivalent to integer data type in C
LIST For storing possible values of type's state

STRING For storing strings like in Java

Special Operators:

-> Equivalent to dot (.) operator in C

<- Assignment operator

& Refers to the parent of the object

Sets refresh rate for the automated processUsed to define parameters of the functions

like func _ , _ takes two parameters.
Used to specify start of indentation

<TYPE> List all objects of specified TYPE in domain |CLASS| List all objects of specified CLASS in domain

BETWEEN Takes two arguments after it, which are super types of the list of arguments

before it and gives us the objects from the list which are common in both the

parameters after it.

EXCEPT Takes one argument after it which needs to be excluded from the list of

arguments before it.

IN For specifying domain in command

() Used to declare an array of concrete type containing specified objects

Like LAMP: bulb(5) declares an array of type LAMP of size 5.

For single line comment

Conditional constructs:

IF condition THEN

Statements

ELSEIF condition THEN

Statements

ELSE

Statements

ENDIF

Looping constructs:

FOR variable IN list DO Statements

ENDFOR

Comparison Operator:

- < Less than
- > Greater than
- <= less than equal to
- >= greater than equal to
- = equal
- != not equal

Arithmetic Operators:

- + Addition
- Subtraction
- * Multiplication
- / Division
- % Modulo
- ^ Exponentiation

Logical Operators:

AND Evaluates to true if both conditions are true

OR Evaluates to true if any one or both conditions are true

NOT Negates the condition

- Attribute names of concrete type should begin with an underscore (_)
- AUTOMATE syntax:

AUTOMATE process_name: domain(s)(separated by commas) @Refresh_rate(in ms) Statements

ENDAUTOMATE

SCENARIO-1: HOUSE

# Abstract Data Types for holding concrete objects	YPE INITIALIZATION************************************
ABSTRACT_TYPE HOUSE	
ABSTRACT_TYPE FLOOR	
ABSTRACT_TYPE ROOM	
ABSTRACT_TYPE GARDEN	
#*************************************	NTIALIZATION************************************

#Defining mobile class

#Stores the information about position

#Orders object of mobile class to go to given location

CLASS MOBILE:

Goto _

_Position ABSTRACT_TYPE

#Defining concrete objects

TYPE FAN: ELECTRONIC #Defining type fan of electronic class

_Speed INTEGER #Stores current speed of fan
SpeedUp #Increases the speed of fan by 1
SpeedDown #Decreases the speed of fan by 1

TYPE LAMP: ELECTRONIC #Defining type lamp of electronic class

TYPE DOOR: #Defining type door class

_State LIST[OPEN, CLOSE] #Stores the state of door either OPEN or CLOSE

Open #Opens the door Close #Closes the door

TYPE ALARM: ELECTRONIC #Defining type alarm of electronic class

RingOn #Rings the alarm

RingOff #Stops the ringing of alarm

TYPE CLEANER: ELECTRONIC, MOBILE #Defining type cleaner of electronic and mobile type

StartCleaning #Order cleaner to start cleaning

TYPE TV: ELECTRONIC #Defining type television of electronic class

_ChannelNumber INTEGER #Stores current channel of tv
_VolumeLevel INTEGER #Stores current volume level of tv
ChannelUp #Increases the channel number by 1
ChannelDown #Decreases the channel number by 1
VolumeUp #Increases the volume level by 1
VolumeDown #Decreases the volume level by 1

TYPE FIRE_DETECTOR: ELECTRONIC #Defining type fire sensor of electronic class

_Temperature REAL #Stores the temperature detected by sensor GetTemperature #Gets the temperature from surroundings

TYPE PRESENCE DETECTOR: ELECTRONIC #Defining type presence detector of electronic type

_Presence LIST[HUMAN_PRESENT, NO_HUMAN, OWNER]#Stores information about surroundings

GetPresence #Gets information about surroundings

TYPE LIGHT_DETECTOR: ELECTRONIC #Defining type light detector of electronic type

_LightIntensity REAL #Stores the light intensity detected

GetLightIntensity #Gets the light intensity from surroundings

HOUSE: MyHouse #Defining the Architecture of House

DOOR: Main_gate #House has one main gate **PRESENCE_DETECTOR**: Owner_detect #HOUSE has a sensor which can detect presence **CLEANER**: Cleaner1 #HOUSE has one cleaner named as Cleaner1

FLOOR: Top floor #House has a Top floor

DOOR: Door1 #Top floor has an entry door

ROOM: Hall #Top floor has one hall

DOOR: Door1, Door2 #Hall's door1 links it to Top floor and door2 to kitchen

FAN: Fan1, Fan2 #Hall has two fans

LAMP: Tubelight,Bulb#Hall has tube light and bulbTV: LG_tv#Hall has a televisionPRESENCE_DETECTOR: Human_detect#Hall has a presence sensor

ROOM: Kitchen #Top floor has a Kitchen

DOOR: Door2 #Kitchen has a door2 which links it to Hall

FAN: Fan1 #Kitchen has one fan

LAMP: Cfl #Kitchen has one CFL light

FIRE_DETECTOR: Fire_detect #Kitchen has a fire sensor

PRESENCE_DETECTOR: Human_detect #Kitchen has a presence sensor

ALARM: Alm1 #Kitchen has an alarm

FLOOR: Ground_floor #House has a ground floor

DOOR: Door3 #Ground floor has entry door

ROOM: Dining_room #Ground floor has dining room

DOOR: Door3,Door4 #Dining room's door3 links to ground floor and door4 to common room

FAN: Fan1 #Dining room has a fan

LAMP: Tubelight #Dining room has a tube light

PRESENCE_DETECTOR: Human detect #Dining room has a presence sensor

ROOM: Common_room #Ground floor has common room

DOOR: Door4 #Common room's door4 links it to Dining room

FAN: Fan1 #Common room has a fan LAMP: Bulb #Common room has a bulb

PRESENCE_DETECTOR: Human_detect #Common room has a presence sensor

GARDEN: Front_garden #House has a garden

LIGHT_DETECTOR:Daytime_detect#Garden has a light sensorLAMP:Bulb(4)#Garden has 4 bulbs

#Programs the fire sensor installed in kitchen to get temperature (in degree Fahrenheit) from surroundings after every 500ms and raise alarm if temperature is greater than 70 degree Celsius.

```
AUTOMATE FIRE_DETECTION: Kitchen @ 500
Fire_detect GetTemperature
REAL X <- Fire_detect->_Temperature
X <- (X - 32)*5/9
IF X > 70 THEN
Alm1 RingOn
ELSE
Alm1 RingOff
ENDIF
ENDAUTOMATE
```

#Programs the presence sensor of all rooms of top floor and ground floor to get information about surroundings after every 1sec and switch off all electronic devices if no human is present in that room

```
AUTOMATE PRESENCE_DETECTION: Top_floor,Ground_floor @ 1000

<PRESENCE_DETECTOR> GetPresence

IF PRESENCE_DETECTOR _Presence = NO_HUMAN THEN

| ELECTRONIC | SwitchOff

ENDIF

ENDAUTOMATE
```

#Programs the presence sensor installed outside the house to get information about surroundings after every 1sec and opens the main gate if detects the presence of owner.

```
AUTOMATE ENTRY_DETECTION: HOUSE @ 1000

Owner_detect GetPresence

IF Owner_detect _Presence = OWNER THEN

Main_gate Open

ENDIF

ENDAUTOMATE
```

#Programs the light sensor to get light intensity of surrounding after every half hour and turn off garden lights if its day else switch them ON if its night

```
AUTOMATE GARDEN_LIGHTS: Front_garden @ 1800000

Daytime_detect GetLightIntensity

IF Daytime_detect _LightIntensity < 100 THEN

<LAMP> SwitchOn

ELSE

<LAMP> SwitchOff

ENDIF

ENDAUTOMATE
```



```
#Opens the Main_gate
COMMAND: Open Main_gate
#Opens all doors of Ground floor
COMMAND: Open <DOOR> IN Ground_floor
#Opens all doors except Main_gate
COMMAND: Open <DOOR> EXCEPT Main_gate
#Among all doors it will open door between Hall and Kitchen
COMMAND: Open <DOOR> BETWEEN Hall,Kitchen
#Commands cleaner1 to turn on, go to the hall and start cleaning
COMMAND: Cleaner1 SwitchOn AND Goto Hall AND StartCleaning
#Switches off all electronic equipments in the house
COMMAND: |ELECTRONIC| SwitchOff
#Opens all doors of the house except the main gate
COMMAND:
      FOR X IN MyHouse-> < DOOR> DO
             IF X = MyHouse->Main_gate THEN
                   X Close
             ELSE
                   X Open
             ENDIF
      ENDFOR
```

SCENARIO-2: HOSTEL

PE INITIALIZATION*******************	
ABSTRACT_TYPE ROOM	
#*************************************	
#Defining Electronic class #Stores the state of electronic device either ON or OFF #Switches on the electronic device #Switches off the electronic device	

#Defining concrete objects

TYPE FAN: ELECTRONIC #Defining type fan of electronic class

_Speed INTEGER #Stores current speed of fan
SpeedUp #Increases the speed of fan by 1
SpeedDown #Decreases the speed of fan by 1

TYPE LAMP: ELECTRONIC #Defining type lamp of electronic class

TYPE DOOR: #Defining type door class

State LIST[OPEN, CLOSE] #Stores the state of door either OPEN or CLOSE

Open #Opens the door Close #Closes the door

TYPE TV: ELECTRONIC #Defining type television of electronic class

_ChannelNumber INTEGER #Stores current channel of tv
_VolumeLevel INTEGER #Stores current volume level of tv
ChannelUp #Increases the channel number by 1
ChannelDown #Decreases the channel number by 1
VolumeUp #Increases the volume level by 1
VolumeDown #Decreases the volume level by 1

TYPE COOLER: ELECTRONIC

_FanSpeed INTEGER #Stores current speed of fan
_WaterLevel REAL #Stores the water level of water
_PumpState LIST [ON, OFF] #Stores the state of pump
SpeedUp #Increases the volume level by 1
SpeedDown #Decreases the channel number by 1

PumpOn #Switches on the pump
PumpOff #Switches off the pump

TYPE ELECTRIC LOAD SENSOR: ELECTRONIC

_ElectricLoad REAL #Stores the value of electric load
GetElectricLoad #Gets the value of current electric load

TYPE PRESENCE_SENSOR: ELECTRONIC #Defining type presence detector of electronic type

_Presence LIST[HUMAN_PRESENT, NO_HUMAN, OWNER]#Stores information about surroundings

GetPresence #Gets information about surroundings

TYPE LIGHT_SENSOR: ELECTRONIC #Defining type light detector of electronic type

_LightIntensity REAL #Stores the light intensity detected

GetLightIntensity #Gets the light intensity from surroundings

TYPE TEMP_SENSOR: ELECTRONIC #Defining type temperature detector of electronic type

_Temperature REAL #Stores the temperature detected
GetTemperature #Gets the temperature of surroundings

TYPE SOLAR_HEATER: ELECTRONIC #Defining solar heater of electronic type

HOSTEL: Gandhi_bhawan
DOOR: Main_gate
LAMP: OutsideLights

LIGHT_SENSOR: Daytime_detect TEMP_SENSOR: Temp_detect SOLAR_HEATER: Solar_heater

 $\textbf{FLOOR} : Ground_floor$

ROOM: Room101

DOOR: Door_101

FAN: Fan

LAMP: Tubelight, Bulb

PRESENCE_SENSOR: Presence_101
ELECTRIC_LOAD_SENSOR: ELoad_101

ROOM: Room102

DOOR: Door_102

FAN: Fan

LAMP: Tubelight, Bulb

PRESENCE_SENSOR: Presence_102
ELECTRIC_LOAD_SENSOR: ELoad_102

ROOM: Room103

DOOR: Door_103

FAN: Fan

LAMP: Tubelight, Bulb

PRESENCE_SENSOR: Presence_103
ELECTRIC_LOAD_SENSOR: ELoad_103

FLOOR: Top floor

ROOM: Common_room

DOOR: Door_common1, Door_common2

FAN: Fan1, Fan2, Fan3 COOLER: Cooler TV: LG_Tv

LAMP: Tube1,Tube2,Bulb

PRESENCE_SENSOR: Presence_common

ROOM: Room201

DOOR: Door_201

FAN: Fan

LAMP: Tubelight, Bulb

PRESENCE_SENSOR: Presence_201
ELECTRIC_LOAD_SENSOR: ELoad_201

ROOM: Room202

DOOR: Door_202

FAN: Fan

LAMP: Tubelight, Bulb

PRESENCE_SENSOR: Presence_202
ELECTRIC_LOAD_SENSOR: ELoad_202

#Programs the presence sensor of all rooms of top floor and ground floor to get information about surroundings after every 1sec and switch off all electronic devices if no human is present in that room

#Programs the solar water heater to turn on and off automatically depending upon the temperature detected by the temperature sensor.

```
AUTOMATE SOLAR_CONTROL: Gandhi_bhawan @ 500

Temp_detect GetTemperature

REAL X <- Temp_detect->_Temperature

IF X < 15 THEN

Solar_heater SwitchOn

ELSE IF X > 30 THEN

Solar_heater SwitchOff

ENDIF

ENDAUTOMATE
```

#Programs the light sensor to get light intensity of surrounding after every half hour and turn off outside lights if its day else switch them ON if its night

#Programs the electric load detecting sensors to automatically switch off all electronic devices of the room where load has exceeded certain limit and displays the name of room on the console of admin.

```
AUTOMATE ELECTRIC_LOAD_DETECTION: Gandhi_bhawan @ 50000

FOR X IN <ELECTRIC_LOAD_SENSOR> DO

X GetElectricLoad

IF X->_ElectricLoad > 1000 THEN

&X->|ELECTRONIC| SwitchOff

DISPLAY &X + " has exceeded Electric load limit."

ENDIF

ENDFOR

ENDAUTOMATE
```


#Command closes all doors of entire bhawan and turns off all electronic devices

COMMAND: Close <DOOR> **AND** SwitchOff |ELECTRONIC|

#Command opens all doors and switches on all fans on top floor of bhawan.

COMMAND: Open <DOOR> **AND** SwitchOn <FAN> **IN** Top_floor

#Command to open both doors of common room and to switch on cooler, TV, all lights and all fans of common room.

COMMAND: Open Door_common1, Door_common2 AND

SwitchOn Cooler **AND**SwitchOn LG_Tv **AND**SwitchOn <LAMP> **AND**

SwitchOn <FAN> IN Common_room

#Command to print the list of all rooms along with their current electric load.

COMMAND: FOR X IN <ROOM> DO

X -> <ELECTRIC_LOAD_SENSOR> GetElectricLoad

DISPLAY X + ": " + X -> <ELECTRIC_LOAD_SENSOR> -> _ElectricLoad

ENDFOR