

<u>Université de Bretagne Sud</u> <u>Département Mathématique Statistique et Informatique</u>

Sujet 8 Biostat : Comparaison des groupes de stents dans le traitement des lésions athéromateuses du trépied fémoral, en terme de thrombose à 2 ans

Juvénal OUBAMBA
Diamondra RAKOTONDRAZAKA
Victor VITEL

L3 Statistique

Projet réalisé à l'université de Bretagne sud du 06 Février au 10 Avril 2020

Sommaire

I.	Introduction	3
II.	Présentation de la méthodologie statistique utilisée	4
III.	Analyse Descriptive	4
III.1.1.	Recodage des variables	4
III.1.2.	Test de normalité (Shapiro)	4
III.1.3.	Test d'indépendance (Fisher)	5
III.1.4.	Représentation graphique	6
IV.	Analyse univariée	9
IV.1.1.	Calcule des odds-ratio	9
IV.1.2.	Choix des variables candidates au modèle multivarié	10
IV.1.3.	Sélection manuelle pas à pas descendante	11
IV.1.4.	Test des interactions (2 à 2)	11
IV.1.5.	Test d'adéquation du modèle final	12
IV.1.6.	Interprétation des OR	13
٧.	Conclusion	13
Annex	e	14
Diction	naire des variables	14
Table o	des tableaux	15
Table o	des granhiques	15

I. Introduction

Notre étude porte sur la pathologie concernant les artères de la jambe (artériopathie oblitérante des membres inférieurs). Les membres inférieurs reçoivent le sang du cœur par l'intermédiaire des artères, si les artères rétrécissent (sténose) ou se bouchent (thrombose) cela peut entraîner une gêne à la marche ou dans des cas plus grave des plaies des membres inférieurs, une réduction de l'espérance de vie et forcer l'amputation.

Artères pouvant être touchés par cette pathologie :

source :

https://www.fedecardio.org/Les-maladies-cardio-vasculaires/Les-pathologies-cardio-vasculaires/larteriopathie-obliterante

L'objectif ici est de comparer 2 méthodes de traitement endovasculaire effectuées sur deux groupes de patients atteints de lésions artérielles que peut proposer un chirurgien. Basé sur deux types de stents (petits ressorts métalliques que l'on dispose à l'intérieur d'une artère afin d'éviter un rétrécissement) :

- un stent dit « nu » en nitinol
- un stent dit « actif », en nitinol, enduit d'un médicament (au paclitaxel).

La variable à expliquer est thrombose_final, portant sur l'apparition ou non d'une thrombose (ici symptôme ou événement défavorable). La variable portant sur les 2 groupes de traitement est GROUP. Dans la base de données, si le stent est « nu » la variable GROUP prend la valeur M. Si ce n'est pas le cas, elle prend la valeur Z.

Ce projet se déclinera en cinq grandes étapes :

- Une recherche bibliographique sur la thématique.
- Une analyse de la qualité et de la cohérence des données.
- La création et le recodage de variables.
- L'analyse statistique des données.
- La rédaction d'un rapport.

II. Présentation de la méthodologie statistique utilisée

Dans la première partie, nous allons effectuer une analyse descriptive pour comparer les 2 groupes de patients. Dans cette analyse exploratoire nous allons étudier la distribution des variables quantitatives (test de normalité avec celui de Shapiro) et l'indépendance des variables qualitatives explicatives avec la variable GROUP (test de Fisher).

L'analyse univariée se fera avec le modèle de régression logistique simple, de la variable à expliquer en fonction de chaque variable. On regardera l'OR (odd-ratio) de la variable à expliquer avec la variable à expliquer selon une modalité prise en référence et son intervalle de confiance au niveau de 95%. On décidera qu'il y aura une association entre la variable explicative et la variable à expliquer selon le résultat du test de Wald.

Nous construirons dans un second temps le modèle multivarié à partir des variables significatives de l'analyse univariée, sur un modèle de régression logistique multiple et du test d'association de Wald. Nous sélectionnerons les variables à l'aide d'une sélection descendante manuelle sur le modèle complet. On cherchera ensuite s'il existe des interactions entre 2 variables explicatives à mettre dans le modèle final.

Enfin nous vérifierons que le modèle obtenu est adéquat avec le test de Hosmer et Lemeshow.

Dans notre étude, nous ne nous servirons pas des variables (détaillées dans l'annexe du dictionnaire des variables) concernant la date de la procédure de traitement, de l'anniversaire et du numéro de patient (DATEOFPROCEDURED1, DATEOFBIRTHD1, SUBJID), comme variables explicatives.

III. Analyse Descriptive

Une analyse descriptive a été réalisée sur l'ensemble de la base de données de l'étude par sous-groupes. Les résultats ont été exprimés par la moyenne et l'écart-type, médiane ou par le pourcentage.

III.1.1. Recodage des variables

Tout d'abord, nous avons créé des formats (chaînes de caractères) pour les variables qualitatives. Cela permet d'identifier leurs modalités qui sont, à la base associées visuellement à des nombres.

Nous avons aussi créé la variable AGE, à partir des dates d'anniversaire et de prise en charge des patients.

III.1.2. Test de normalité (Shapiro)

Variables	P Value
DURATION_PROCEDURE	<0,0001
ABI_J0	<0,0001
NBAXEJ0	<0,0001
AGE	0,2389

<u>Tableau 1 :</u> Résultats du test de normalité pour les variables quantitatives Seul la variable AGE suit une loi normale.

Voici les caractéristiques de ces variables quantitatives selon chaque groupe :

		GROUP							Total			
	М			Z								
	N	Moy	EcT	Médiane	N	Moy	EcT	Médiane	N	Moy	EcT	Médiane
age	85	67.6	11.8	67.0	86	70.6	11.7	71.0	171	69.1	11.8	68.0
DURATION_PROCEDURE	85	53.3	33.3	45.0	86	51.9	29.1	47.5	171	52.6	31.2	45.0
ABI_J0	85	0.7	0.2	0.7	86	0.7	0.2	0.7	171	0.7	0.2	0.7
NBAXEJ0	85	2.7	0.7	3.0	86	2.4	0.7	3.0	171	2.5	0.7	3.0

Tableau 2 : Caractéristiques des variables quantitatives selon chaque groupe

III.1.3. Test d'indépendance (Fisher)

Variables	P Value
GENDER	0.9011
AAP_J0	0.7562
ACE_J0	0.0897
ARTERIALHYPERTENSION	0.3088
CAD	0.2402
CHRONICRENALFAILURE	0.5926
DIABETE	0.0031
LOWERLIMBAMPUTATIONHISTORY **	0.4971
MANUAL_COMPRESSION	0.2772
MEMBER	0.8160
PROC_ARTERI_CLOSURE	0.6730
RUTHERFORD_J0 ***	0.6782
SMOKINGSTATUS	0.2777
TIA	0.6541
VACSULARSURGICALHISTORY	0.9597
claudic_IC	0.5865
obesity	0.5905
statine_J0	0.9674
tabac	0.1588

Tableau 3: Résultats du test d'indépendance pour les variables qualitatives avec GROUP

Seul le diabète n'est pas indépendant du groupe de traitement des patients. On voit en effet que dans le <u>graphique 2</u>, qu'en pourcentage du nombre de personne diabétique comparé à celui des personnes non diabétiques, est beaucoup plus élevé dans le groupe « M », alors qu'il est plus égalitaire dans le groupe « Z ».

^{**:} résultat du test exact de Fisher car 50% des cellules ont un effectif théorique inférieur à 5.

^{*** :} résultat du test ce Mantel-Haenszel car 50% des cellules ont un effectif théorique inférieur

à 5 et la variable à plus de 2 modalités.

III.1.4. Représentation graphique

Pour décrire les caractéristiques des patients de chaque groupe, il nous a été pertinent de représenter à l'aide de boxplots l'âge en fonction des modalités de chaque variable qualitative dans chaque groupe comme ici par exemple, l'âge en fonction du sexe :

Graphique 1 : Age des patients en fonction de leurs sexes

Les moyennes d'âges des 2 groupes sont très similaires et les femmes sont généralement plus âgées que les hommes.

Nous avons également représenté les effectifs de modalités de chaque variable qualitative, en fonction de chaque groupe, comme par exemple le diabète qui d'après le test d'indépendance, dépend du groupe de traitement des patients :

Graphique 2 : Répartition des personnes diabétiques pour chaque groupe de stents

Voici de manière détaillée, les effectifs des modalités des variables qualitatives pour chaque

groupe:

	GROUP				TOTAL	
		М		Z		
	N	%	N	%	N	%
MEMBER						
left	40	47.1	42	48.8	82	48.0
right	45	52.9	44	51.2	89	52.0
TOTAL	85	100	86	100	171	100
PROC_ARTERI_CLOSURE						
non	29	34.1	32	37.2	61	35.7
oui	56	65.9	54	62.8	110	64.3
TOTAL	85	100	86	100	171	100
RUTHERFORD_J0						
claudication légère	14	16.5	16	18.6	30	17.5
claudication modérée	56	65.9	52	60.5	108	63.2
douleur au repos	12	14.1	12	14.0	24	14.0
ulcère artériel et gangrène	3	3.5	6	7.0	9	5.3
TOTAL	85	100	86	100	171	100
SMOKINGSTATUS						
jamais ou >3ans	43	50.6	56	65.1	99	57.9
ancien fumeur <3ans	14	16.5	10	11.6	24	14.0
fumeur actuel <40 pa	17	20.0	11	12.8	28	16.4
fumeur actuel >40 pa	11	12.9	9	10.5	20	11.7
TOTAL	85	100	86	100	171	100
TIA						
non	76	89.4	75	87.2	151	88.3
oui	9	10.6	11	12.8	20	11.7
TOTAL	85	100	86	100	171	100
VACSULARSURGICALHISTORY						
non	59	69.4	60	69.8	119	69.6
oui	26	30.6	26	30.2	52	30.4
TOTAL	85	100	86	100	171	100

		GR	TOTAL			
		M	Z			
	N	%	N	%	N	%
GENDER						
FEMALE	23	27.1	24	27.9	47	27.5
MALE	62	72.9	62	72.1	124	72.5
TOTAL	85	100	86	100	171	100
AAP_J0						
non	7	8.2	6	7.0	13	7.6
oui	78	91.8	80	93.0	158	92.4
TOTAL	85	100	86	100	171	100
ACE_J0						
non	53	62.4	64	74.4	117	68.4
oui	32	37.6	22	25.6	54	31.6
TOTAL	85	100	86	100	171	100
ARTERIALHYPERTENSION						
non	33	38.8	27	31.4	60	35.1
oui	52	61.2	59	68.6	111	64.9
TOTAL	85	100	86	100	171	100

	GROUP				TOTAL	
		М		Z		
	N	%	N	%	N	%
CAD						
non	51	60.0	59	68.6	110	64.3
oui	34	40.0	27	31.4	61	35.7
TOTAL	85	100	86	100	171	100
CHRONICRENALFAILURE						
non	79	92.9	78	90.7	157	91.8
oui	6	7.1	8	9.3	14	8.2
TOTAL	85	100	86	100	171	100
DIABETE						
non	63	74.1	45	52.3	108	63.2
oui	22	25.9	41	47.7	63	36.8
TOTAL	85	100	86	100	171	100
LOWERLIMBAMPUTATIONHISTORY						
non	84	98.8	86	100	170	99.4
oui	1	1.2			1	0.6
TOTAL	85	100	86	100	171	100
MANUAL_COMPRESSION						
non	54	63.5	47	54.7	101	59.1
oui	31	36.5	39	45.3	70	40.9
TOTAL	85	100	86	100	171	100

		GR	TOTAL			
		М		Z		
	N	%	N	N %		%
claudic_IC						
non	70	82.4	68	79.1	138	80.7
oui	15	17.6	18	20.9	33	19.3
TOTAL	85	100	86	100	171	100
obesity						
non	31	36.5	28	32.6	59	34.5
oui	54	63.5	58	67.4	112	65.5
TOTAL	85	100	86	100	171	100
statine_J0						
non	19	22.4	19	22.1	38	22.2
oui	66	77.6	67	77.9	133	77.8
TOTAL	85	100	86	100	171	100
tabac						
non	57	67.1	66	76.7	123	71.9
oui	28	32.9	20	23.3	48	28.1
TOTAL	85	100	86	100	171	100

Tableau 4 : Effectifs des modalités des variables qualitatives pour chaque groupe

IV. Analyse univariée

IV.1.1. Calcul des odds-ratio

Dans l'analyse univariée nous mettons en évidence le lien de chaque variable explicative et la variable d'intérêt Y (thrombose_final) à un seuil de significativité fixé à 0,20.

Cette analyse a été faite par une régression logistique simple, la référence prise pour Y est l'apparition de la thrombose qui est un événement défavorable (modalité de référence : « oui »).

Cette modélisation a donc permis de quantifier la relation entre le fait d'avoir une thrombose et chacune des variables explicatives, avec le calcul des Odds ratio (OR) leur et intervalles de confiance (IC) à 95% et la p-value, dans le but de déterminer les variables retenues pour intégrer le modèle multivarié.

Si l'OR d'une modalité d'une variable est supérieur à 1, cela signifie que cette modalité augmente le risque de présenter l'événement (Y) par rapport à la modalité prise comme référence. Ce risque est nul si l'OR vaut 1, et diminue plus il est inférieur à 1

Variables	OR	IC	P Value
AAP_J0 **	1 ,185	0,249 ; 5,643	0.8316
ACE_J0 **	0,751	0,311 ; 1,815	0.5248
ARTERIALHYPERTENSION **	0,654	0,293 ; 1,459	0.2993
CAD **	0,490	0,197 ; 1,220	0.1255
CHRONICRENALFAILURE **	0,340	0,043 ; 2,700	0.3073
DIABETE **	1,643	0,741 ; 3,644	0.2218
DYSLIPIDEMIA **	1,130	0,480 ; 2,661	0.7800
LOWERLIMBAMPUTATIONHISTORY **	<0,001	<0,001;>999,999	0.9904
MANUAL_COMPRESSION **	0,954	0,427 ; 2,131	0.9086
PROC_ARTERI_CLOSURE **	1,133	0,493 ; 2,607	0.7684
TIA **	2,268	0,793 ; 6,488	0.1268
VACSULARSURGICALHISTORY **	0,516	0,197 ; 1,350	0.1778
claudic_IC **	1,056	0,393 ; 2,835	0.9146
obesity **	0,891	0,393 ; 2,025	0.7837
statine_J0 **	0,604	0,250 ; 1,458	0.2624
tabac **	0,918	0,378 ; 2,232	0.8506
RUTHERFORD_JO (référence : « claudication légère ») claudication modérée vs claudication légère douleur au repos vs claudication légère	2,657 1,629	1,025 : 6,887 0,463 ; 5,725	0.2167
ulcère artériel et gangrène vs claudication légère GENDER (référence : « FEMALE »)	3,429 1.689	0,372 ; 31,589 0.734 ; 3.886	0.2180
MEMBER (référence : « left »)	0.798	0.361 ; 1.765	0.5775
SMOKINGSTATUS (référence : « jamais ou >3ans ») ancien fumeur <3ans vs jamais ou >3ans	0,578	0,199 ; 1,682	0,7711
·	0,887	0,294 ; 2,678	
fumeur actuel <40 pa vs jamais ou >3ans fumeur actuel >40 pa vs jamais ou >3ans	1,092	0,286 ; 4,167	
GROUP (référence : « Z »)	1,365	0,617 ; 3,019	0,4430
ABI_J0	4,130	0,416 ; 40,964	0,2257
DURATION_PROCEDURE	1,000	0,987 ; 1,012	0,9690
NBAXEJ0	0,885	0,500 ; 1,564	0,6734
** . lo référence price est « qui »	, n volu		

** : la référence prise est « oui »

____: p-value <= 0.25

Tableau 5 : Odds-ratio de chaque variable avec y

On gardera les mêmes références pour la suite.

Le nombre de 3 variables à sélectionner pour le modèle final, est jugé insuffisant donc nous prenons ici, les variables ayant une p-value inférieures ou égales à 25% au test de Wald.

IV.1.2. Choix des variables candidates au modèle multivarié

Pour identifier les variables à conserver dans le modèle multivarié, nous avons effectué une sélection descendante manuelle des variables ayant une p-value <=0.25 lors de l'analyse univariée et la variable GROUP. On garde la variable GROUP peu importe sa p-value, car on veut construire un modèle qui permet d'expliquer pour Y en ajustant sur le groupe d'appartenance des individus (il y a 2 groupes : ceux ayant eu un traitement avec le stent actif et ceux ayant eu un traitement avec le stent nu) et sur les autres facteurs qui influent Y.

IV.1.3. Sélection manuelle pas à pas descendante

On a retiré une à une, à partir de celle ayant la p-value la plus élevée, les variables non significatives (p-value<0.05).

Mais si en retirant une variable lors de la sélection, au moins un des coefficients β restants évoluent sensiblement (variation > 10%), on garde la variable car on la considérera comme un facteur de confusion.

Etape	Variable ayant la p- value la plus élevée (>0.05)	P Value	Variation (>10%) d'un coefficient suite au retrait de la variable	Conservation de la variable
1	GROUP	0.7783	RUTHERFORD_J0 (« claudication modérée ») 13.04%	oui
2	CAD	0.3507	RUTHERFORD_J0 (« douleur au repos ») 65.79%	oui
3	GENDER	0.2962	RUTHERFORD_J0 (« douleur au repos ») 68.89%	oui
4	TIA	0.2260	RUTHERFORD_J0 (« douleur au repos ») 75.45%	oui
5	ABI_J0	0.1985	RUTHERFORD_J0 (« douleur au repos ») 532.5%	oui
6	RUTHERFORD_J0	0.1876	ABI_J0 56.11%	oui
7	VACSULARSURGICALHIST ORY	0.1783	ABI_J0 10.06%	oui
8	DIABETE	0.1567	RUTHERFORD_J0 (« douleur au repos ») 111.19%	oui

Tableau 6 : Sélection descendante

IV.1.4. Test des interactions (2 à 2)

Après la sélection descendante, nous avons analysé l'interaction des variables restantes (deux à deux). Dans le but de vérifier que le lien entre une variable explicative et la variable d'intérêt ne dépend pas du lien entre une variable explicative et une autre.

Variables	CAD	DIABETE	TIA	VACSULARSURGI CALHISTORY	RUTHERFORD_ J0	GENDER	ABI_J0	GROUP
CAD								
DIABETE	0.4231							
TIA	0.0715	0.0672						
VACSULARSURG	0.5598	0.9482	0.7161					
ICALHISTORY								
RUTHERFORD_J	0.9910	0.7736	0.8773	0.9894				
0								
GENDER	0.8808	0.3172	0.4103	0.6358	0.4653			
ABI_J0	0.2863	0.2829	0.1863	0.7045	0.2358	0.6445		
GROUP	0.6403	0.5971	0.5142	0.5630	0.8074	0.0569	0.8744	

Tableau 7 : Résultats des tests d'association de Wald sur les interactions 2 à 2 possibles

On ne garde aucune interaction dans le modèle final, car les p-value sont supérieures à 0.05.

IV.1.5. Test d'adéquation du modèle final

Sur la base du test de Hosmer et Lemeshow, nous allons tester si le modèle obtenu est adéquat. Si la p-value est supérieure à 0.05, on considèrera le modèle comme adéquat. On obtient une p-value égale à 0.7424, donc le modèle est adéquat. De plus l'aire sous la courbe de ROC de ce modèle, est plutôt de 1 (0.6981) :

Graphique 3: Courbe ROC

Présentation du modèle final et des OR :

Voici le modèle final obtenu après la sélection descendante, et de la recherche 2 à 2 d'interactions entre variables :

Analyse des effets Type 3								
Effet	DDL	Khi-2 de Wald	Pr > khi-2					
CAD	1	0.8709	0.3507					
DIABETE	1	2.0055	0.1567					
TIA	1	1.4660	0.2260					
VACSULARSURGICALHIST	1	1.8120	0.1783					
RUTHERFORD_J0	3	4.7926	0.1876					
GENDER	1	1.0912	0.2962					
ABI_J0	1	1.6536	0.1985					
GROUP	1	0.0792	0.7783					

Tableau 8 : Modèle final

Estimation du rapport de cotes						
Effet	Estimation du point	Intervalle de confiance de Wald à95%				
CAD non vs oui	0.620	0.228	1.691			
DIABETE non vs oui	1.979	0.769	5.087			
TIA non vs oui	2.020	0.647	6.302			
VACSULARSURGICALHIST non vs oui	0.484	0.169	1.392			
RUTHERFORD_J0 claudication modérée vs claudication légère	2.728	0.991	7.507			
RUTHERFORD_J0 douleur au repos vs claudication légère	2.955	0.693	12.607			
RUTHERFORD_J0 ulcère artériel et gangrène vs claudication légère	5.701	0.542	59.974			
GENDER MALE vs FEMALE	1.644	0.647	4.181			
ABI_J0	5.532	0.408	75.024			
GROUP M vs Z	1.133	0.476	2.696			

<u>Tableau 9 :</u> OR avec y des variables du modèle final

IV.1.6. Interprétation des OR

Facteurs positifs:

D'après les données avoir le diabète, des antécédents d'AVC ischémique et être une femme, réduisent le risque d'avoir une thrombose.

Facteurs à risque :

Avoir eu antécédents de chirurgie vasculaire, une cardiopathie ischémique, une claudication plus que légère, de la douleur au repos (au niveau de la jambe) et un ulcère artériel ou une gangrène (comparé à une personne ayant une claudication légère), augmentent les chances d'avoir une thrombose.

Plus l'indice de pression systolique augmente, plus il y a des risques de présenter cette pathologie.

Et concernant les patients masculins et ceux ayant été opéré dans le groupe de stents nu, comparé à ceux du groupe opéré avec les stents actifs, ont tendance à avoir un résultat négatif au traitement endovasculaire.

v. Conclusion

Afin de mener à bien cette étude, il a fallu passer par plusieurs étapes en commençant par le retraitement des variables, l'analyse descriptive sur l'ensemble de données, une analyse univariée puis multivariée en effectuant différents tests.

Deux points (facteurs positifs et facteurs à risque), sont soulignés dans l'interprétation des OR.

Avoir le diabète, des antécédents d'ACV ischémique et être une femme sont des facteurs positifs qui réduisent le risque d'avoir une thrombose.

Alors qu'être un homme, avoir eu antécédents de chirurgie vasculaire, une cardiopathie ischémique, une claudication plus que légère, et un ulcère artériel sont les facteurs à risque qui augmentent les chances d'avoir une thrombose.

Pour finir les patients ayant l'intervention chirurgical dans le groupe de stents nu ont, comparé à ceux du groupe de stents actif, tendance à avoir un résultat négatif au traitement endovasculaire.

C'est donc le traitement avec le stent actif qui sera préconisé au chirurgien.

Annexe
Dictionnaire des variables

Variables	Туре	Description	Modalités
SUBJID	identifiant		
MEMBER	qualitatif	Coté ou est posé le stent	left; right
DATEOFBIRTHD1	date	Date de naissance du patient	
GENDER	qualitatif	Sexe du patient	MALE ;FEMALE
obesity	qualitatif	Patient atteint d'obésité	0(non) ;1(oui)
SMOKINGSTATUS			
ARTERIALHYPERTENSION	qualitatif	Hypertension artérielle chez le patient	0(non) ;1(oui)
DIABETE	qualitatif	Patient diabétique	0(non) ;1(oui)
CHRONICRENALFAILURE	qualitatif	Maladie rénale chronique	0(non) ;1(oui)
DYSLIPIDEMIA	qualitatif	Dyslipidémie (concentration trop élevée de triglycérides et de LDL cholestérol dans le sang)	0(non) ;1(oui)
TIA	qualitatif	Antécédents d'AVC ischémique ou d'attaque ischémique transitoire	0(non) ;1(oui)
tabac	qualitatif	Patient fumeur	0(non) ;1(oui)
CAD	qualitatif	Cardiopathie ischémique (ensemble de troubles consécutifs à l'insuffisance d'apports en oxygène au muscle cardiaque)	0(non) ;1(oui)
VACSULARSURGICALHISTOR Y	qualitatif	Antécédents de chirurgie vasculaire	0(non) ;1(oui)
DATEOFPROCEDURED1	date	Date de la procédure	
DURATION_PROCEDURE	quantitatif	Durée de la procédure	Mesurée en jour
MANUAL_COMPRESSION	qualitatif	Procédure de compression manuelle	0(non) ;1(oui)
PROC_ARTERI_CLOSURE	qualitatif	Procédure de fermeture vasculaire	0(non) ;1(oui)
LOWERLIMBAMPUTATIONHI STORY	qualitatif	Antécédents d'amputation d'un membre inférieur	0(non) ;1(oui)

RUTHERFORD_J0	qualitatif	Classification de Rutherford	0(Asymptomatique) 1 (claudication légère) 2 (claudication modérée) 3 (claudication modérée) 4 (douleur au repos ischémique) 5 (perte de tissu mineure) 6 (perte de tissu importante)
claudic_IC	qualitatif	Claudicant/ischémie critique	0(non) ;1(oui)
ABI_JO	quantitatif	indice de pression cheville- brachiale (le rapport entre la pression artérielle à la cheville et la pression artérielle dans le haut du bras)	
NBAXEJO	quantitatif	nombre d'axes tibial perméable	
statine_J0	qualitatif	Statine à l'inclusion (médicament pour baisser la cholestérolémie)	0(non) ;1(oui)
ACE_J0	qualitatif	ACE à l'inclusion (médicament utilisé principalement pour le traitement de l'hypertension artérielle et de l'insuffisance cardiaque)	0(non) ;1(oui)
AAP_J0	qualitatif	AAP à l'inclusion (médicament qui diminue l'agrégation plaquettaire et inhibe la formation du thrombus)	0(non) ;1(oui)
GROUP	qualitatif	Type de stent posé	1(nu/M) ; 2(actif en nitinol/Z)
thrombose_final	qualitatif	Apparition d'une thrombose	0(non) ;1(oui)
AGE	quantitatif	Age du patient	

Table des tableaux

- Tableau 1 : Résultat du test de normalité pour les variables quantitatives
- Tableau 2 : Caractéristiques des variables quantitatives selon chaque groupe
- Tableau 3 : Résultats du test d'indépendance pour les variables qualitatives avec GROUP
- Tableau 4 : Effectifs des modalités des variables qualitatives pour chaque groupe
- Tableau 5 : Odds-ratio de chaque variable avec y
- Tableau 6 : Sélection descendante
- Tableau 7 : Résultats des tests d'association de Wald sur les interactions 2 à 2 possibles
- Tableau 8 : Modèle final
- Tableau 9 : OR avec y des variables du modèle final

Table des graphiques

Graphique 1 : Age des patients en fonction de leurs sexes

Graphique 2 : Répartition des personnes diabétiques pour chaque groupe de stents

Graphique 3: Courbe ROC