CS 38, PS 7

Codename: Jambul

June 1, 2023

1 Problem 1

Proof. Denote the systems

$$P_1 = \begin{cases} y^T A = c^T \iff A^T y = c, \\ y^T \ge 0 \end{cases} \quad P_2 = \begin{cases} Ax \le 0, \\ c^T x > 0 \end{cases}.$$

Set $B = A^T$ so we may write the systems as

$$P_1 = \begin{cases} By = c, \\ y^T \ge 0 \end{cases} \quad P_2 = \begin{cases} B^T x \le 0, \\ c^T x > 0 \end{cases}$$

We can now see how to apply LP strong duality in order to complete the proof. Consider the primal-dual pair

$$\mathcal{P} = \begin{cases} \min 0y \\ \text{s.t. } By = c, \\ y \ge 0 \end{cases} \quad \mathcal{D} = \begin{cases} \max c^T x \\ \text{s.t. } B^T x \le 0 \end{cases}.$$

Taking x=0, we can see that \mathcal{D} is trivially feasible. Suppose that \mathcal{P} is infeasible. Then it must be the case that \mathcal{D} is unbounded, since otherwise we would have that \mathcal{D} is feasible and bounded, which would imply from strong duality that \mathcal{P} and \mathcal{D} have equivalent optimal values. This would be a contradiction, since \mathcal{P} is assumed to be infeasible. However, if \mathcal{D} then must be unbounded and feasible, then clearly we can find x such that $c^T x > 0$ and $B^T x \leq 0$, meaning that it cannot be the case that both P_1 and P_2 are infeasible.

Now suppose that \mathcal{P} is feasible. Then there exists $y \in \mathbb{R}^n$ such that $By = c, y \geq 0$. Since \mathcal{P} will then need to be bounded to satisfy its constraints (By = c), we have that \mathcal{P} is feasible and bounded, so its optimal value must match that of \mathcal{D} . The optimal value of \mathcal{P} will be 0, since \mathcal{P} seeks to minimize 0y. Thus \mathcal{D} will have to have that its optimal value is $c^Tx = 0$. However, this would imply that $c^Tx \neq 0$, and thus if P_1 is feasible, then P_2 is not.

2 Problem 2

Algorithm 1. We will use Ford-Fulkerson algorithm for max flows to solve the problem.

- 1. Create a new directed graph G' = (V', E') from G = (V, E), so $(u, v) \in E \implies (u, v), (v, u) \in E'$.
- 2. Set all edge capacities in G' to 1.
- 3. Pick an arbitrary node $v \in V'$ and compute the maximum flow g(v, w) from v to each $w \in V' \setminus \{v\}$.
- 4. Return $\min_{w \in V', w \neq v} \{g(v, w)\}.$

Proof of correctness. Let $c = \min_{w \in V', w \neq v} \{g(v, w)\}$. We must show that c is equal to the edge connectivity (let this be k) of G.

Let H be the subset of edges in E such that removal of H, where H has size k, from G will disconnect G into two non-empty subgraphs $G_1' = (V_1', E_1'), G_2' = (V_2', E_2')$. Now take any $v \in V_1', w \in V_2'$. Let g(v, w) then be the calculated max flow from v to w with all edge capacities in E' set to 1.

From the max-flow min-cut theorem, then, we know that g(v,w) will also be the size of a min cut between vertices v and w. Note furthermore that the size of a min cut between these two vertices is at most k, since if it takes at minimum k edges to get G_1', G_2' from G, then a min cut (and thus a max flow) between v and w should be of size less than or equal to k. From this observation, we now have that $c \leq g(v, w) \leq k$.

However, it must also be the case that $c \geq k$, since otherwise there exists a cut of G with size smaller than k, which would be a contradiction. Thus we have that in fact c = g(v, w) = k, as desired.

Complexity. G' has |V| vertices and 2|E| edges. It then solves a max-flow problem from v to every other $w \in V' \setminus \{v\}$, so it solves |V| - 1 max-flow problems on a network with $\mathcal{O}(|V|)$ vertices and $\mathcal{O}(|E|)$ edges.