Artificial Intelligence Lab - 4

Aim: Implementation and Analysis of DFS and BFS for an application

DETECTING CYCLE IN DIRECTED GRAPHS USING DEPTH-FIRST-SEARCH (DFS)

Algorithm:

- 1. Mark the source_node as visited.
- 2. Mark the source_node as in_path node.
- 3. **For** all the adjacent nodes to the source_node do
- 4. **If** the adjacent node has been marked as in_path node, **then**
- 5. Cycle found. Return.
- 6. If the adjacent node has not been visited, then
- 7. **Detect Cycle** (adjacent node)
- 8. Now that we are backtracking unmark the source_node in in_path as it might be revisited.

Code:

```
from collections import defaultdict
class Graph:
    def init (self, nodes : int):
        self.adjlist = defaultdict(list)
        self.nodes = nodes
        self.visited = [False] * nodes
        self.inpath = [False] * nodes
        self.cycle_present = False
    def AddEdge (self, src : int, dst : int, bidirectional : bool):
        self.adjlist[src].append(dst)
        if bidirectional:
            self.adjlist[dst].append(src)
    def DetectCycle (self, src : int):
        self.visited[src] = True
        self.inpath[src] = True
        for adj_node in self.adjlist[src]:
            if self.inpath[adj node] == True:
                self.cycle present = True
                return
            elif self.visited[adj node] == False:
                self.DetectCycle (adj node)
        self.inpath[src] = False
    def MarkUnvisited (self):
        self.visited = [False] * nodes
    def CyclePresent (self):
        return self.cycle_present
def main():
    nodes = 7
    g1 directed = Graph(nodes)
    g1 directed.AddEdge(0, 1, False)
    g1_directed.AddEdge(0, 2, False)
    g1_directed.AddEdge(1, 4, False)
    g1 directed.AddEdge(2, 3, False)
    g1 directed.AddEdge(3, 1, False)
```

```
g1_directed.AddEdge(3, 5, False)
    g1_directed.AddEdge(4, 6, False)
    g1 directed.AddEdge(5, 4, False)
    g1 directed.AddEdge(6, 5, False)
    g1 directed.DetectCycle(0)
    if g1_directed.CyclePresent() == True:
       print("Cycle found in g1")
    else:
       print("Cycle not found g1")
    nodes = 5
    g2 directed = Graph(nodes)
    g2_directed.AddEdge(0, 1, False)
    g2_directed.AddEdge(0, 2, False)
    g2_directed.AddEdge(2, 3, False)
    g2_directed.AddEdge(3, 4, False)
    g2_directed.AddEdge(4, 1, False)
    g2_directed.DetectCycle(0)
    if g2_directed.CyclePresent() == True:
        print("Cycle found in g2")
    else:
        print("Cycle not found in g2")
if __name__ == "__main__":
    main()
```

Output:

SHORTEST PATH IN A BINARY MAZE

Algorithm:

- 1. We start from the source cell and calls BFS procedure.
- 2. We maintain a queue to store the coordinates of the matrix and initialize it with the source cell.
- 3. We also maintain a Boolean array visited of same size as our input matrix and initialize all its elements to false.
 - 1. We LOOP till queue is not empty
 - 2. Dequeue front cell from the queue
 - 3. Return if the destination coordinates have reached.
 - 4. For each of its four adjacent cells, if the value is 1 and they are not visited yet, we enqueue it in the queue and also mark them as visited.

Code:

```
from collections import deque
ROW = 9
COL = 10

class Point:
    def __init__(self,x: int, y: int):
        self.x = x
        self.y = y

class queueNode:
    def __init__(self,pt: Point, dist: int):
        self.pt = pt
        self.dist = dist

def isValid(row: int, col: int):
        return (row >= 0) and (row < ROW) and (col >= 0) and (col < COL)

rowNum = [-1, 0, 0, 1]
colNum = [0, -1, 1, 0]</pre>
```

```
def BFS(mat, src: Point, dest: Point):
    if mat[src.x][src.y]!=1 or mat[dest.x][dest.y]!=1:
        return -1
    visited = [[False for i in range(COL)]
                       for j in range(ROW)]
    visited[src.x][src.y] = True
    q = deque()
    s = queueNode(src,0)
    q.append(s)
    while q:
        curr = q.popleft()
        pt = curr.pt
        if pt.x == dest.x and pt.y == dest.y:
            return curr.dist
        for i in range(4):
            row = pt.x + rowNum[i]
            col = pt.y + colNum[i]
            if (isValid(row,col) and
               mat[row][col] == 1 and
                not visited[row][col]):
                visited[row][col] = True
                Adjcell = queueNode(Point(row,col),
                                    curr.dist+1)
                q.append(Adjcell)
    return -1
# Driver code
def main():
    mat = [[1, 0, 1, 1, 1, 1, 0, 1, 1, 1],
           [ 1, 0, 1, 0, 1, 1, 1, 0, 1, 1 ],
           [ 1, 1, 1, 0, 1, 1, 0, 1, 0, 1],
           [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ],
           [ 1, 1, 1, 0, 1, 1, 1, 0, 1, 0 ],
           [ 1, 0, 1, 1, 1, 1, 0, 1, 0, 0 ],
           [ 1, 0, 0, 0, 0, 0, 0, 0, 1 ],
           [ 1, 0, 1, 1, 1, 1, 0, 1, 1, 1 ],
           [ 1, 1, 0, 0, 0, 0, 1, 0, 0, 1 ]]
```

```
source = Point(0,0)
dest = Point(3,4)

dist = BFS(mat,source,dest)

if dist!=-1:
    print("Least cost is",dist)
else:
    print("No path")
main()
```

Output:

١,	RA1911003010646
	Akshat Agarwal
	STUDY BUDDIES"
	(1, to 100 0 0 1 100
	Astificial Intelligence Lab-4
_	Lab-4
_	
_	Aim: Implementation of DFS & BFS
	DFS- Whether the graph has cycle or not
	Jay 1505 50 000
F	Problem Formulation : Crupy and the
	with edge velationally and discrete graph
	is all characters we have to find if there
	of any age in the graph. Which means that
П	can be found such that the
-	Problem formulation: Given a directed graph with edge relationship, we have to find if there is any cycle in the graph. Which means that if any path as can be found such that the same node ropeats again while following the edges.
	edgel.
	Pall 010
-	Problem Solving:
	110, 10
	while doing a depth-first search traversal we
	keep track of the nodes buited in the current
	While doing a depth-first search traversal, we keep track of the moder writed in the current traversal point in addition to the first of all the
	path, if we come to a node that was alread.
	path, if we come to a node that was already marked visited then we have found a cycle.
_	V 1
	(O) -> (2) (P) (F) (O) (D)
_	3
	Y Y
	$(y) \leftarrow (5)$
	Travers le con de con
	[Faversal: 01234]
	Traversal: 0146523 No wille dat 1)
	The sque calle cted
	Cycle detected

BFS - Maze Problem
Problem Formulation:
We will be given a maze with starting and end point specified. There will be only one covert path to greath the end point. We have to find the correct path.
Problem Solving:
The maze will be taken in the form of MxM matrix with only two values friling them. I for a movable spot and O for the unreadbable spots, i.e., the walls of the maze.
We will start from the default left top corner & fraverse towards the destination point. As we seach a deadend we will revert back & traverse in a different path
cello
Many Control of the C