REDES DE COMPUTADORES

Mário Antunes

mario.antunes@ipleiria.pt

Outubro de 2019

Modelo de comunicação TCP/IP

MAC Sublayer

Data Encapsulation

- Frame delimiting
- Addressing
- Error detection

Media Access Control

- Control of frame placement on and off the media
- Media recovery

Ethernet

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Ethernet MAC Sublayer

Três funções principais:

Frame delimiting – início de frame + sincronização

Addressing – Endereço físico - MAC address

 Error detection – cyclic redundancy check (<u>CRC</u>) do conteúdo da frame Ethernet.

Ethernet Operation MAC Sublayer (cont.)

Medium Acess Control

- Colocar o conteúdo da frame no meio físico
- Receber o conteúdo de uma frame do meio físico
- Comunicar diretamente com a camada física
- Colisão: quando vários equipamentos tentam aceder ao meio físico

Controlo de acesso ao meio = Carrier Sense Multiple Access (CSMA)

- 1. Estação deteta se o meio físico transporta algum sinal
- 2. Se não = transmite
- 3. Se duas estações transmitem em simultâneo = colisão

Ethernet Encapsulation

- Early versions of Ethernet were slow at 10 Mb/s.
- Now operate at 10 Gb/s and faster.
- Ethernet frame structure adds <u>headers</u> and <u>trailers</u> to encapsulate the message being sent.
- Ethernet II is the Ethernet frame format used in TCP/IP networks.

- Ethernet II and IEEE 802.3 standards define the minimum frame size as 64 bytes and the maximum as 1518 bytes
- Less than 64 bytes in length is considered a "collision fragment" or "runt frame"
- If size of a transmitted frame is less than the minimum or greater than the maximum, the receiving device drops the frame
- At the physical layer, different versions of Ethernet vary in their method for detecting and placing data on the media

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Introduction to the Ethernet Frame

IEEE 802.3						
7 Preamble	1 Start of Frame Delimiter	6 Destinatio n Address	6 Source Address	2 Length	46 to 1500 802.2 Header and Data	4 Frame Check Sequence

Preamble and Start
Frame Delimiter Fields –
Used for synchronization
between the sending and
receiving devices.

Length/Type Field –
Defines the exact length of the frame's data field; describes which protocol is implemented.

Fields – Contains the encapsulated data from a higher layer, an IPv4 packet.

Data and Pad

Preamble + SFD = 8 bytes

<mark>. 10101010 10101010 10101010 10101010 10101010 10101010 10101010 10101010</mark>11

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Ethernet Operation

MAC Address: Ethernet Identity

- Layer 2 Ethernet MAC address is a <u>48-bit binary</u> value expressed as <u>12 hexadecimal digits</u>.
- IEEE requires a vendor to follow these rules:
 - Must use that vendor's assigned OUI as the first 3 bytes.
 - All MAC addresses with the same OUI must be assigned a unique value in the last 3 bytes.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Endereço MAC - representação

Exemplo:

```
      00100100
      11100101
      10110010
      00100110
      00001001
      01001110

      0010 0100
      1110 0101
      1011 0010
      0010 0110
      0000 1001
      0100 1110
```

```
2 4 : E 5 : B 2 : 2 6 : 0 9 : 4 E
```

Endereço MAC = 48 bits

Representação "column-hexadecimal" = 12 símbolos em hexadecimal

1 símbolo hexadecimal = 4 bits

Introduction to the Ethernet Frame (cont.)

7 1 6 6 2 46 to 1500 4 Preamble Start of Frame Delimiter Delimiter Delimiter Start of Delimiter Delimiter Delimiter Start of Preamble Start of Delimiter Delimiter Delimiter Delim	IEEE 802.3						
	7 Preamble	Frame	Destinatio	Source		802.2 Header and	

Frame Check Sequence Field

Used to detect errors in a frame with cyclic redundancy check (4 bytes); if calculations match at source and receiver, no error occurred.

CRC-32 bits detects if changes in the header occured in transit.

sentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 11

Ethernet MAC MAC Address Representations

```
Ethernet adapter Ethernet 2:
  Connection-specific DNS Suffix . : IPLeiria.pt
  Description . . . . . . . . : Intel(R) Ethernet Connection I219-V #2
  Physical Address. . . . . . . : B8-6B-23-D0-8E-C6
  DHCP Enabled. . . . . . . . . : Yes
  Autoconfiguration Enabled . . . . : Yes
  IPv6 Address. . . . . . . . . : 2001:690:2060:0:3096:3e7c:cdff:da2e(Preferred)
  Temporary IPv6 Address. . . . . : 2001:690:2060:0:5038:ff2c:2b7d:f214(Deprecated)
  Temporary IPv6 Address. . . . . : 2001:690:2060:0:701c:36d3:362d:da7b(Preferred)
  Link-local IPv6 Address . . . . : fe80::3096:3e7c:cdff:da2e%15(Preferred)
  IPv4 Address. . . . . . . . . . . . . . . . . 10.20.5.11(Preferred)
  Lease Obtained. . . . . . . . . . . . . . . . 29 de agosto de 2017 13:54:30
  Lease Expires . . . . . . . . . . 5 de outubro de 2153 21:06:20
  Default Gateway . . . . . . . : fe80::2d0:4ff:fe72:3fc%15
                                     10.20.5.254
  DHCP Server . . . . . . . . . : 172.20.1.250
  DHCPv6 IAID . . . . . . . . . : 263744291
  DHCPv6 Client DUID. . . . . . . : 00-01-00-01-1F-EF-1E-AF-B8-6B-23-D0-8E-C6
  DNS Servers . . . . . . . . . . . . . . 172.20.1.12
                                     172.20.1.11
                                    172.20.1.10
  NetBIOS over Tcpip. . . . . . : Disabled
Wireless LAN adapter Wi-Fi 2:
  Media State . . . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix . : funcionarios.ipleiria.pt
  Description . . . . . . . . : Intel(R) Dual Band Wireless-AC 8260 #2
  Physical Address. . . . . . . : 44-85-00-26-1F-42
  DHCP Enabled. . . . . . . . . : Yes
  Autoconfiguration Enabled . . . . : Yes
```

With Dashes 00-60-2F-3A-07-BC

With Colons 00:60:2F:3A:07:BC

With Periods 0060.2F3A.07BC

ipconfig /all

Unicast MAC Address

sentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 13

Ethernet MAC

Broadcast MAC Address

sentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 14

Ethernet MAC Multicast MAC Address

End-to-End Connectivity, MAC, and IP

IP Packet Encapsulated in an Ethernet Frame

Destination MAC Address BB:BB:BB:BB:BB	Source MAC Address AA:AA:AA:AA:AA	Source IP Address 10.0.0.1	Destination IP Address 192.168.1.5	Data	Trailer
A switch examines MAC addresses.					

Destination MAC Address BB:BB:BB:BB:BB	Source MAC Address AA:AA:AA:AA:AA		Destination IP Address 192.168.1.5	Data	Trailer
		A router exam addresses.	ines IP		

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

ARP Purpose

 Sending node needs a way to find the MAC address of the destination for a given Ethernet link

The ARP protocol provides two basic functions:

- Resolving IPv4 addresses to MAC addresses
- Maintaining a table of mappings

entation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 17

Introduction to ARP (cont.)

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

18

ARP Operation

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 19

ARP Operation (cont.)

ARP Operation (cont.)

entation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 21

ARP Operation (cont.)

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

ARP

ARP Functions/Operation (cont.)

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

ARP Tables on Networking Devices

```
Router#show ip arp
                         Age
Protocol Address
                        (min)
                               Hardware Addr
                                                      Interface
                                                Type
Internet 172.16.233.229
                               0000.0c59.f892
                                               ARPA
                                                      Ethernet0/0
                                                      Ethernet0/0
Internet 172.16.233.218
                               0000.0c07.ac00
                                               ARPA
                                                      Ethernet0/0
Internet 172.16.168.11
                               0000.0c63.1300
                                               ARPA
Internet 172.16.168.254
                                                      Ethernet0/0
                               0000.0c36.6965
                                               ARPA
```

```
C: \>arp -a
Interface: 192.168.1.67 --- 0xa
 Internet Address
                        Physical Address
                                              Type
 192.168.1.254
                        64-0f-29-0d-36-91
                                              dynamic
 192,168,1,255
                        ff-ff-ff-ff-ff
                                              static
 224.0.0.22
                        01-00-5e-00-00-16
                                              static
 224.0.0.251
                        01-00-5e-00-00-fb
                                              static
 224.0.0.252
                        01-00-5e-00-00-fc
                                              static
  255,255,255,255
                        ff-ff-ff-ff-ff
                                              static
```

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 24

ARP Issues

How ARP Can Create Problems

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 25

ARP Issues

Mitigating ARP Problems

ntation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 20

Switching

Switch MAC Address Table

27

ntation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Switching Auto-MDIX

entation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 28

Switching

Frame Forwarding Methods on Cisco Switches

Store-and-forward

A store-and-forward switch receives the entire frame, and computes the CRC. If the CRC is valid, the switch looks up the destination address, which determines the outgoing interface. The frame is then forwarded out the correct port.

Cut-through

A cut-through switch forwards the frame before it is entirely received. At a minimum, the destination address of the frame must be read before the frame can be forwarded.

tation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 29

Fixed or Modular

Fixed versus Modular Configuration (cont.)

Fixed Configuration Switches

Features and options are limited to those that originally come with the switch.

Stackable Configuration Switches

Modular Configuration Switches

The chassis accepts line cards that contain the ports.

entation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Layer 3 Switching

Layer 2 versus Layer 3 Switching

ntation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 31