

Il Processore: i registri

- Il processore contiene al suo interno un certo numero di registri (unità di memoria estremamente veloci)
- Le dimensioni di un registro sono di pochi byte (4, 8)
- I registri contengono delle informazioni di necessità immediata per il processore
- · Esistono due tipi di registri:
 - i registri speciali utilizzati dalla UC per scopi particolari;
 - i registri di uso generale (registri aritmetici)

Il Processore: i registri speciali

- Program Counter: i bit del registro PC indicano l'indirizzo di una parola in RAM il cui contenuto rappresenta la prossima istruzione da eseguire
- Registro Istruzione: i bit del registro IR indicano l'istruzione appena letta dalla RAM e da decodificare
- Registro Indirizzi Memoria (MAR): i bit del registro MAR indicano l'indirizzo di una parola in RAM il cui contenuto deve essere letto o scritto dal processore

Il Processore: i registri speciali

- Registro Dati Memoria (MDR): i bit del registro MDR indicano una copia del contenuto di una parola in RAM letto dal processore o il valore di bit che devono essere scritti in RAM dal processore
- Registro di Stato (SR): i bit del registro SR indicano che una particolare condizione si è verificata a seguito dell'esecuzione di un'istruzione, ad esempio, se un'istruzione di somma genera un overflow allora la ALU scrive un certo valore nel registro SR.

Il Processore: i registri di uso generale

- I registri generali sono usati per l'esecuzione di istruzioni memorizzando, ad esempio:
 - il contenuto di una parola di memoria letto dal processore
 - il risultato di un'elaborazione sul contenuto di uno o più registri
 - gli operandi di un'istruzione artimetica

-

L'Unità Aritmetico-Logica

- L'Unità Aritmetico-Logica (ALU) è costituita da un insieme di circuiti in grado di svolgere le operazioni di tipo aritmetico e logico
- La ALU legge i dati contenuti all'interno dei registri generali, esegue le operazioni e memorizza il risultato in uno dei registri generali
- Vi sono circuiti in grado di eseguire la somma di due numeri binari contenuti in due registri e di depositare il risultato in un registro, circuiti in grado di eseguire il confronto tra due numeri

Come sono fatte le istruzioni

- · Che tipo di istruzioni può eseguire un processore
 - leggi la parola in RAM all'indirizzo 5 e mettila nel registro RO
 - scrivi il contenuto del registro R1 nella parola di memoria all'indirizzo y
 - somma il contenuto dei registri RO e R8 mettendo il risultato nel registro R4
 - inverti i bit del registro R6 mettendo il risultato in R2
 - trasla verso sinistra di una posizione i bit del registro R9 e scrivi il risultato nella parola di memoria il cui indirizzo è contenuto nel registro R6
 - cambia il contenuto del registro PC (istruzioni di salto)

_										
	_		_		_		_		_	

Come sono codificate le istruzioni

- · Le istruzioni che un processore può eseguire sono anch'esse rappresentate in formato digitale.
- · Si sceglie di usare un certo numero di bit e si fa corrispondere ad un'operazione una configurazione.
- · Si sceglie di usare un certo numero di bit e si fa corrispondere ad un registro una configurazione.
- A seconda dello spazio di indirizzamento, si sceglie di usare un certo numero di bit e si fa corrispondere ad un indirizzo una configurazione
- In questo modo, le istruzioni sono rappresentate in formato digitale e mantenute all'interno della RAM per essere prelevate (lette) ed eseguite dal processore.

Come sono codificate le istruzioni

 Istruzione che somma il contenuto del registro R3 con il contenuto del registro R8 e mette il risultato nel registro R13.
In linguaggio macchina scriveremmo

ADD R3,R8,R13

- Ipotizziamo di avere 16 registri in tutto e di avere una dimensione della parola di memoria di 16 bit (per cui un'istruzione è codificata con 16 bit)
- associo all'operazione ADD 4 bit fatti così: 1011
- associo 4 bit ad ogni indice di registro per cui ottengo per R3 (0011), per R8 (1000), per R13 (1101) per cui si ha che
- ADD R3,R8,R13 si codifica con 1011 0011 1000 1101

Il bus

- Problema: collegare le varie componenti (fisicamente separate) di un calcolatore, ad esempio, processore e memoria centrale
- Problema: come fa il processore a trasmettere alla RAM i bit che codificano l'indirizzo di una parola, il contenuto di un registro, etc.?
- Problema: come fa la RAM a trasmettere al processore i bit che sono contenuti in una parola di memoria?
- Collegare ogni componente a tutte le altre (costoso se ho molte componenti separate)
- Usare un unico collegamento condiviso

Bus di sistema: insieme di collegamenti (solitamente in rame) che connette tutti i componenti di un'architettura

Interazione tra processore e memoria

Stato dell'arte per PC

- Processori INTEL della famiglia Pentium
 - Pentium III (con frequenze di clock di oltre 1GHz)
 - Pentium IV (ottimale con RAM di tipo RDRAM con frequenze fino a 2 GHz)
- Processori AMD
- Processori Motorola (PowerPC, Processori per Macintosh)

•																											
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•