BCC361 – Redes de Computadores

Universidade Federal de Ouro Preto Departamento de Ciência da Computação

Prof. Reinaldo Fortes
www.decom.ufop.br/reinaldo
2017/01

Trabalho Prático: Camada de Rede

1

- Camada Física: Especifica como transmitir os bits por diferentes tipos de mídia como sinais elétricos (ou outro semelhante);
- Camada de Enlace: Trata de como enviar mensagens de tamanho definido entre computadores conectados, com níveis de confiabilidade especificados;

Camada Física (1/3):

- Envio de uma sequência de bits entre dois hosts.
- Duas formas de modulação:
 - Padrão: os bits são mantidos conforme a mensagem original.
 - Codificação 4B/5B: Cada 4 bits são mapeados para uma sequência de 5 bits (conforme slide 71 da Camada Física).

Multiplexação:

- A Camada Física poderá ser configurada para multiplexar o fluxo de dados transmitidos.
- Para tal será utilizada uma multiplexação por divisão de tempo (simulada pelo número de bits transmitidos).
- O número de conexões ("CANAIS") é um parâmetro de entrada e o funcionamento será definido pela equipe.

- Camada Física (2/3):
 - Simulação de Erros:
 - Erro de bit: cada bit terá uma probabilidade de X% de ser transmitido com erro.
 - Erro de inserção de bit: a cada bit uma probabilidade l% de inserir um bit aleatório após o bit.
 - Rajada de Erros: a cada bit uma probabilidade R% de se iniciar uma rajada de erros.
 - A rajada de erros deve ocorrer por um tempo aleatório entre Rmin e Rmax (número de bits).
 - Durante uma rajada de erros a probabilidade de erro em bit aumenta em duas vezes.

- Camada Física (3/3):
 - Cada host poderá possuir mais de uma interface de rede.
 - Cada interface de rede se comunica com outro host (simularemos uma rede ponto a ponto) através de sockets.
 - Dois tipos de sockets: TCP e UDP.
 - Ambos devem ser implementados.
 - Na definição de uma simulação serão especificados os tipos de socket a serem utilizados.

- Camada de Enlace (1/1):
 - Encapsula pacotes em quadros e solicita a transmissão pela camada física.
 - Implementar dois códigos de detecção de erro.
 - Implementar o código de hamming.
 - O tipo de tratamento de erro na camada de enlace deve ser configurável.
 - Implementar os dois protocolos de janela deslizante.
 - Simulação de perda de quadro: uma probabilidade P% de o quadro ser perdido, ou seja, "não chegar ao destino".

decom
departamento
de computação

Layer Name of unit exchanged

Camada de Rede: Cuida de como combinar vários enlaces nas redes, e redes de redes, de modo a enviar pacotes entre computadores distantes;

Tarefas

- Encapsula "mensagens" em Pacotes e solicita o dos pacotes para a Camada de Enlace.
- Simula uma rede "completa" definida por um grafo de entrada.
- Conhece a origem e o destino das "mensagens", que correspondem a nós da rede.
- Realiza o roteamento das mensagens, definindo para qual "interface" de rede um pacote deve ser entregue na camada de enlace.
- Simula "perda" de enlaces (arestas) ou hosts (nós) do grafo:
 - A cada intervalo de tempo, uma probabilidade A de "perder" uma aresta e uma probabilidade N de "perder" um nó.
 - Na condição de "perda" define um tempo aleatório para o retorno da aresta ou nó.

Tarefas

- Representação da rede (entrada inicial):
 - Definição do grafo: nós e arestas.
 - Definição de informações de cada aresta:
 - IP e Porta real que representa a interface de rede
 - Definição de informações de simulação:
 - IP da interface de rede simulada
 - "Peso" de cada aresta

	Enlace				Estado					Pacotes					
Α		В			С			D			Е			F	
Seq.		Seq.			Seq.			Seq.			Seq.			Seq.	
TTL		TTL			TTL			TTL			TTL			TTL	
B 4		Α	4		В	2		С	3		Α	5		В	6
E 5		С	2		D	3		F	7		O	1		D	7
		F	6		Е	1					F	8		Е	8

10

Tarefas

- Implementar os algoritmos de roteamento:
 - Vetor de distâncias.
 - Estado de enlace.
- Isso envolve gerenciar as tabelas de roteamento:
 - Criar pacotes para atualizar as tabelas.
 - Implementar algoritmo de caminho mais curto.
 - Entre outras preocupações...

FIM!

12