PATVIRTINTA

Nacionalinio egzaminų centro direktoriaus 2008-06-25 įsakymu Nr. (1.3.)-V1-132

2008 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA

1-7 uždavinių atsakymai

Užd. Nr.	1	2	3	4	5	6	7
Ats.	В	\mathbf{E}	D	В	C	D	В

Kitų uždavinių sprendimo nurodymai ir atsakymai

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
8		3	
	1. 56000 Lt – 100%, x Lt – 70%, $x = 56000 \cdot 0.7 = 39200$ Lt. Ats.: 39200 Lt. 2. Po metų automobilio kaina buvo 39 200 Lt. Dar po šešerių metų: $39200 \cdot 0.85^6 \approx 14800$ Lt. Ats.: 14 800 Lt.	111	Už gautą teisingą atsakymą. Už teisingo sprendimo būdo pasirinkimą. Už gautą teisingą atsakymą.

Pastaba: Jeigu mokinys automobilio kainą po 7 metų apskaičiuoja kaip $56000 \cdot 0.85^7 \approx 18000$ Lt, jam skiriamas 1 taškas.

Užd.	Sprendimas/a	ıtsakymas	Taškai	Vertinimas
9			4	
	1. $5^{x-2} = 1$			
	$5^{x-2} = 5^0$			
	x - 2 = 0			
	x = 2		1	II × conto toisin co etcolumno
	Ats.: $x = 2$		• 1	Už gautą teisingą atsakymą.
	2. $(6-3x)\sqrt{0.2^x-25} =$	= 0		
	6 - 3x = 0	$\sqrt{0,2^x - 25} = 0$		
	-3x = -6	$0,2^x - 25 = 0$		
	x = 2	$5^{-x} = 5^2$		
		x = -2	• 2	Po vieną tašką už kiekvieną
	Apibrėžimo sritis:			teisingai išspręstą lygtį.
	$0,2^x-25\geq 0$			
	$5^{-x} \ge 5^2$			
	$-x \ge 2$			
	$x \le -2$		• 1	Už gautą teisingą atsakymą.
	Ats.: $x = -2$		1	OZ gada comiga disakyina.

Pastaba: Mokinys, spręsdamas 9.2 uždavinį, vietoj apibrėžimo srities, gali atlikti patikrą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
10		3	
	1. $\begin{cases} 2x - 5 > 0, \\ 3x + 1 > 0 \end{cases} \Rightarrow \begin{cases} x > 2, 5, \\ x > -\frac{1}{3} \Rightarrow x > 2, 5. \end{cases}$	• 1	Už teisingo sprendimo būdo pasirinkimą ir gautą teisingą atsakymą.
	2. $\log_{0,5}(2x-5) \le \log_{0,5}(3x+1) \Rightarrow$ $\begin{cases} 2x-5 \ge 3x+1, \\ x > 2,5 \end{cases} \Rightarrow \begin{cases} x \le -6, \\ x > 2,5 \end{cases} \Rightarrow$	• 1	Už teisingą nelygybių sistemos sudarymą.
	sprendinių nėra. Ats.: Sprendinių nėra.	• 1	Už gautą teisingą atsakymą.

Pastabos: 1. Jeigu mokinys, spręsdamas logaritminę nelygybę, nepakeičia nelygybės ženklo, bet toliau teisingai išsprendžia nelygybių sistemą $\begin{cases} x \geq -6 \\ x > 2,5 \end{cases} \Rightarrow x > 2,5$, jam skiriamas 1 taškas.

2. Jeigu mokinys teisingai išsprendžia tik nelygybę $2x-5 \ge 3x+1 \Rightarrow x \le -6$ ir neatsižvelgia į apibrėžimo sritį, jam skiriamas 1 taškas.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
11		4	
	Jei Arūnas dirbo x val., tai Simas dirbo		
	x + 6 val., x > 0.		
	Arūnas per vieną valandą uždirbo $\frac{270}{x}$, o	• 1	Už kintamųjų įvedimą ir
	Simas $-\frac{480}{x+6} \Rightarrow$	1	teisingą abiejų stalių uždarbio per valandą išreiškimą.
	$\left \frac{270}{x} \cdot (x+6) \right = \frac{480}{x+6} \cdot x : 30.$	• 1	Už teisingos lygties sudarymą.
	Pažymėkime $\frac{x+6}{x} = t$, $t > 0$.	• 1	Už teisingą lygties sprendimą
	Tada $9t = \frac{16}{t} \Rightarrow t^2 = \frac{16}{9} \Rightarrow t = \frac{4}{3}$, nes $t > 0$.		(pvz. $16x^2 = 9(x+6)^2 \Rightarrow 4x = 3(x+6)$, nes
	$\frac{x+6}{x} = \frac{4}{3} \Rightarrow x = 18 \text{ val.}$		<i>x</i> > 0)
	Ats.: Simas dirbo 24 val., Arūnas – 18 val.	• 1	Už gautą teisingą atsakymą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
12		2	
	1 būdas.		
	$\begin{vmatrix} 1-x = x-1 \Rightarrow \\ 1-x \ge 0 \\ 1-x = x-1 \end{vmatrix} \text{ arba } \begin{cases} 1-x < 0 \\ x-1 = x-1 \end{cases}$ $\begin{cases} x \le 1 \\ x = 1 \end{cases} \begin{cases} x > 1 \\ 0x = 0 \end{cases} \Rightarrow$	• 1	Už teisingą lygties pakeitimą
	$\begin{cases} 1 - x \ge 0 \\ \text{arba} \end{cases} \begin{cases} 1 - x < 0 \end{cases}$	• 1	dviejų sistemų visuma.
	$1 - x = x - 1 \qquad x - 1 = x - 1$		
	$\int x \le 1 \qquad \qquad \int x > 1$		
	$\int x = 1$ $\int 0x = 0$		
	$x \ge 1$	• 1	Už gautą teisingą atsakymą.
	$Ats.: x \in [1; +\infty)$		

2 būdas. Kadangi reiškinio 1-x modulis	• 1	Už teisingo lygties sprendimo
lygus reiškiniui su priešingu ženklu, tai		būdo pasirinkimą.
reiškinio $1-x$ reikšmės neteigiamos:		
$1-x \le 0 \Rightarrow x \ge 1$.		***
$Ats.: x \in [1; +\infty).$	• 1	Už gautą teisingą atsakymą.
3 būdas. Brėžiame funkcijų		
y = 1 - x ir $y = x - 1$ grafikus.	1	TTV
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	• 1	Už teisingai nubraižytus
		funkcijų $y = 1 - x $ ir
1		y = x - 1 grafikus.
Funkcijų reikšmės sutampa kai $x \ge 1$.	a 1	Už gautą teisingą atsakymą.
Ats.: $x \in [1; +\infty)$.	▼ 1	Oz gautą teisnigą disakynią.
1100. N C [1, 1 00].		

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
13		6	
	1. $y = f(x) + f'(x_0)(x - x_0),$ f'(x) = -2x + 7, f'(3) = 1, f(3) = 2, y = 2 + (x - 3),	• 1	Už teisingai apskaičiuotą funkcijos išvestinės reikšmę taške, kai $x = 3$, ir gautą teisingą atsakymą.
	y = x - 1. 2. $y = x - 1$ kerta x ašį taške $A(1; 0)$; $-x^2 + 7x - 10 = 0$, $x^2 - 7x + 10 = 0$.	• 1	Už teisingai rastas taško <i>A</i> koordinates.
	D = 49 - 40 = 9, x = 2 ir $x = 5$ (netinka), B(2; 0). Ats.: A(1; 0), B(2; 0).	• 1	Už teisingai rastas taško <i>B</i> koordinates.
	3. $S = S_1 - S_2$, $S_1 = \frac{1}{2} \cdot 2 \cdot 2 = 2$ (arba $S_1 = \int_1^3 (x - 1) dx = 2$),	• 1	Už teisingo sprendimo būdo pasirinkimą.
	$S_2 = \int_2^3 \left(-x^2 + 7x - 10\right) dx = \frac{7}{6}.$ $S = 2 - \frac{7}{6} = \frac{5}{6}.$	• 1	Už teisingą ploto po kreive $y = -x^2 + 7x - 10$ užrašymą apibrėžtiniu integralu.
	$Ats.: S = \frac{5}{6}.$	• 1	Už gautą teisingą atsakymą.

Pastabos: 1. Jeigu mokinys, ieškodamas taškų A ir B koordinačių, teisingai užrašo tik x koordinates, jam skiriamas I taškas.

2. Jeigu mokinys spręsdamas 13.2 uždavinį neteisingai randa taškų A ir/ar B koordinates, tai ploto skaičiavimas vertinamas naudojantis 13.3 uždavinio vertinimo instrukcija.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
14	•	3	
	1 būdas. Sakykime, viena gegnės dalis x m, kita $6-x$ m. $x = 6-x$ $45^{\circ} = 30^{\circ}$	• 1	Už kintamųjų įvedimą ir teisingą sinusų teoremos pritaikymą. Už teisingą lygties sprendimą
	Pagal sinusų teoremą $\frac{6-x}{\sin 45^{\circ}} = \frac{x}{\sin 30^{\circ}},$ $6-x = \sqrt{2}x,$ $x = \frac{6}{1+\sqrt{2}}.$	-	ir gautą sprendinį.
	$x \approx 2.5$ m. Ats.: 2.5 m.	• 1	Už teisingai suapvalintą atsakymą.
	2 būdas. Sakykime, viena gegnės dalis x m, kita $6-x$ m. $x = \frac{6-x}{45^{\circ}}$	• 1	Už kintamųjų įvedimą ir stačiųjų trikampių elementų priklausomybių teisingą taikymą.
	Išvedame statmenį h . $h = \frac{\sqrt{2}x}{2} \text{ ir } h = \frac{1}{2}(6-x).$ $6-x = \sqrt{2}x,$		
	$x = \frac{6}{1 + \sqrt{2}}.$ $x \approx 2.5 \text{ m}.$	• 1	Už teisingą lygties sprendimą ir gautą sprendinį.
	Ats.: 2,5 m.	• 1	Už teisingai suapvalintą atsakymą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
15		4	
	1. $a_1 = 200$, $d = 100 \Rightarrow$		
	$S_5 = \frac{2 \cdot 200 + 4 \cdot 100}{2} \cdot 5 = 2000 \text{ ml.}$	• 1	Už gautą teisingą atsakymą.
	Ats.: 2000 ml.		
	2. $6,003 \text{ m}^3 = 6003000 \text{ ml}$	• 1	Už teisingą vandens kiekio
	$\frac{400 + (n-1)100}{2} \cdot n = 6003000 \Longrightarrow$		išreiškimą mililitrais.
	$n^2 + 3n - 120060 = 0 \Longrightarrow$	• 1	Už gautą teisingą kvadratinę lygtį.
	n = -348 arba $n = 345$.	• 1	Už gautus teisingus
			kvadratinės lygties
	Ats.: Po 345 valandų.		sprendinius, tenkinančius
			uždavinio sąlygą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
16		2	
	$(\sin(2x)-2)(\cos x-1) = 0$ $\sin(2x)-2 = 0$ arba $\cos x - 1 = 0$ $\sin(2x) = 2$ $\cos x = 1$	• 1	Už teisingą lygties užrašymą dviejų lygčių visuma.
	nėra sprendinių $x = 2 \pi k, k \in \mathbb{Z}$ Ats.: $x = 2 \pi k, k \in \mathbb{Z}$.	• 2	Po vieną tašką už kiekvieną teisingai gautą sprendinį.

Pastabos: 1. Sprendžiant lygtį pakanka bent vieną kartą paminėti, kad $k \in \mathbb{Z}$.

2. Jeigu mokinys teisingai išsprendęs dvi lygtis neteisingai užrašo uždavinio atsakymą, jam skiriami 2 taškai.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
17		4	
	1. Jei vektoriai \vec{m} ir \vec{n} statmeni, tai		
	$\vec{m} \cdot \vec{n} = 0 \Longrightarrow$	• 1	Už teisingo sprendimo būdo
	$\frac{1}{3} \cdot x + \frac{1}{4} \cdot \frac{1}{12} = 0 \Rightarrow$		pasirinkimą.
	3 1 12		
	$x = -\frac{1}{16}$.		
	$Ats.: x = -\frac{1}{16}.$	• 1	Už gautą teisingą atsakymą.
	2.		
	1 būdas. $\vec{p}\left(\frac{1}{3}a; \frac{1}{4}a\right)$.		
	Kadangi $ \vec{p} = 1$, tai	• 1	Už teisingo sprendimo būdo
			pasirinkimą.
	$\sqrt{\frac{1}{9}a^2 + \frac{1}{16}a^2} = 1,$		
	$\sqrt{\frac{25a^2}{144}} = 1,$		
	$\sqrt{\frac{144}{144}} = 1,$		
	a =2,4,		
	$a = \pm 2,4$.	• 1	Už gautą teisingą atsakymą.
	Ats.: $a = 2,4$ arba $a = -2,4$.		22 gaaaq toisingq atsartying.
		• 1	Už teisingo sprendimo būdo
	$ \rightarrow 1 \cdot 1 = 5$	- 1	pasirinkimą.
	$\left \overrightarrow{m} \right = \sqrt{\frac{1}{9} + \frac{1}{16}} = \frac{5}{12}$		
	$ a = \frac{12}{5}$		
]		
	$a = \pm 2.4$		
	Ats.: $a = 2,4$ arba $a = -2,4$.	• 1	Už gautą teisingą atsakymą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
18		3	
	1. (Lukas; Andrius)		
	$(2;5) \Rightarrow C_7^2 = 21,$	• 1	Už bent vieną teisingai
	$(3;4) \Rightarrow C_7^3 = 35,$		suskaičiuotą variantą.
	$(4;3) \Rightarrow C_7^4 = 35,$		
	$(5;2) \Rightarrow C_7^5 = 21.$		
	Iš viso siuntinius kurjeriai gali pasidalinti $21 \cdot 2 + 35 \cdot 2 = 112$ būdų.	• 1	Už gautą teisingą atsakymą.
	2. $P(A) = \frac{35}{112} = \frac{5}{16}$.	• 1	Už gautą teisingą atsakymą.
	Ats.: $\frac{5}{16}$.		

Pastaba. Jeigu mokinys suklysta skaičiuodamas 18.1 dalyje, bet teisingai taiko klasikinį tikimybės apibrėžimą 18.2 dalyje, jam skiriamas 1 taškas.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
19		6	
	1. $\triangle BOD \sim \triangle ECD$ (pagal du kampus) \Rightarrow	• 1	Už pastebėjimą ir teisingą
	$\frac{BO}{EC} = \frac{OD}{CD} \Rightarrow$		pagrindimą, kad trikampiai
			panašūs.
	$\frac{3+3t}{1,8} = \frac{l+t}{l} \Longrightarrow$	1	
		• 1	Už teisingos proporcijos su kintamaisiais <i>t</i> ir <i>l</i> sudarymą.
	$l(t) = \frac{1.8t}{1.2 + 3t}, 0 \le t \le 3.$	• 1	Už gautą teisingą šešėlio ilgio išraiška.
	2. $l'(t) = \frac{2,16}{(1,2+3t)^2}$,	• 1	Už teisingai surastą funkcijos $l(t)$ išvestinę.
	$l'(t) > 0$ su visomis $0 \le t \le 3$ reikšmėmis	• 1	
	$\Rightarrow l(t)$ reikšmės intervale $0 \le t \le 3$ didėja.	- 1	Už teisingą pagrindimą, kad funkcijos $l(t)$ reikšmės didėja
	Didžiausią reikšmę funkcija $l(t)$ įgis		su visomis $0 \le t \le 3$.
	intervalo gale, t. y. kai $t = 3$ s	• 1	Už gautą teisingą atsakymą.
	<i>Ats.</i> : Po 3 s.		

Pastaba: Jeigu mokinys, spręsdamas 19.2 uždavinį, nustato, kad funkcija l(t) kritinių taškų intervale $0 \le t \le 3$ neturi, ir teisingai nustato, kad funkcija didžiausią reikšmę įgyja, kai t=3 s, jam skiriami visi taškai.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
20		3	
	1. Sakykime, skirtingi natūralieji skaičiai yra a, b, c ir d . Tada visos galimos skirtingos sumos yra $a+b, b+c, c+d, a+c, a+d, b+d$. (Pvz.: Jei skaičiai yra 1,2,4 ir 10, tai visos šešios sumos skirtingos: 3,5,11,6,12,14.) <i>Ats.:</i> 6 skirtingos sumos.	• 1	Už gautą teisingą atsakymą (pvz., $C_4^2 = 6$, galimų variantų perrinkimas, galimybių medis).

2.		
1 būdas. (a+b)+(b+c)+(c+d)+(a+c)+(a+d)+	• 1	Už teisingo sprendimo būdo
+(b+d)=3(a+b+c+d), 17+18+20+21+23+26=125.		pasirinkimą.
Kadangi 125 nėra dalus iš 3 skaičius, tai duotieji skaičiai negali būti sumomis. <i>Ats.:</i> Negali.	• 1	Už gautą teisingą išvadą.
2 būdas.		
Sakykime, $a < b < c < d$. Tada		
$\begin{cases} a+b=17, & (1) \\ a+c=18, & (2) \\ c+d=26, & (3) \end{cases} \Rightarrow$	• 1	Už teisingo sprendimo būdo
b+d=23, (4)		pasirinkimą.
$(2)-(1) \Rightarrow c-b=1,$		
$(3)-(4) \Rightarrow c-b=3.$		
Gavome prieštaravimą.	- 1	Liž gauta taisinga ičvoda
Ats.: Negali.	• 1	Už gautą teisingą išvadą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
21	•	3	
	$ \begin{array}{c} D_1 \\ C_1 \\ A_1 \\ B \end{array} $		
	Per tris taškus visada galime išvesti tik vieną plokštumą (pvz., ABC). Tada taškas D nepriklauso tai plokštumai (galima nubraižyti piramidę). Sakykime, A_1 , B_1 , C_1 ir D_1 yra atitinkamai AB , BC , CD ir DA vidurio taškai.	• 1	Už pagrindimą, kad trys taškai visada priklauso vienai plokštumai (pvz., keturi taškai gali būti piramidės viršūnės) arba už teisingai nubrėžtą
	$ \begin{vmatrix} A_1B_1 & \text{yra } \Delta ABC & \text{vidurio linija} \\ D_1C_1 & \text{yra } \Delta ADC & \text{vidurio linija} \end{vmatrix} \Rightarrow $	• 1	piramidę (brėžiama erdvinė figūra). Už trikampio vidurio linijos
	$\Rightarrow A_1B_1 \parallel AC \text{ ir } D_1C_1 \parallel AC \Rightarrow$ $D_1C_1 \parallel A_1B_1 \Rightarrow \text{atkarpos} D_1C_1 \text{ir} A_1B_1$ priklauso vienai plokštumai $\Rightarrow D_1, C_1, A_1$ ir $B_1 \text{ priklauso vienai plokštumai.}$	• 1	lygiagretumo savybės taikymą. Už teisingą pagrindimą, kad taškai priklauso vienai plokštumai.