

Página Principal / Mis cursos / FII-PARCIALES / Parciales del 2do C 2020 / 3°Parcial 2C2020 FII - 8202-6203-6204 (06-03-2021)

Pregunta

Respuesta guardada

Puntúa como 1,00 Una espira circular de radio R rota con una velocidad angular ω en un campo magnético uniforme B, como se muestra en la figura. Si la fem ϵ inducida en la espira es ϵ_0 sen(ω t), entonces la velocidad angular de la espira es:

Seleccione una:

- \bigcirc a. $\mathcal{E}_0/(B2\pi R)$
- O b. Ninguna de las otras respuestas
- O c. No respondo
- O d. $2\pi \mathcal{E}_0/BR$
- \odot e. $\varepsilon_0/(B\pi R^2)$
- O f. $(\mathcal{E}_0)^2/(2BR^2)$

Pregunta

Respuesta guardada

Puntúa como 1,00 Tres espiras de material conductor y un observador están ubicados como muestra la figura. Desde el punto de vista del observador, la corriente *I* que circula por la espira B tiene sentido horario. Las espiras A y C no se mueven, mientras que la espira B se mueve con velocidad **v** en el sentido indicado. El observador podrá afirmar que

Seleccione una:

- a. No respondo
- b. En la espira A se induce una corriente en sentido horario y en la C la corriente inducida tiene sentido antihorario.
- c. Ninguna de las otras respuestas
- O d. En la espira C se induce una corriente en sentido antihorario y en la A no circula corriente inducida.
- e. En la espira A se induce una corriente en sentido antihorario y en la C la corriente inducida tiene sentido horario.
- f. En las espiras A y C se inducen corrientes de sentido antihorario.

Pregunta 10

Respuesta guardada

Puntúa como 1,00 En un circuito RLC serie alimentado con la red de Argentina, se miden los valores eficaces de tensión V_L =644,35 V; V_C =435,24 V, V_R =68,37 V. Sabiendo que R=100 Ω , El módulo y fase de la corriente eficaz con respecto de la tensión son, aproximadamente:

Seleccione una:

- \bigcirc a. I=0,68 A, φ = -71,89°
- O b. I=0,96 A, φ = -71,89°
- c. No respondo
- O d. I=0,96 A, φ = 71,89°
- e. l=0,68 A, φ = 71,89°
- O f. Ninguna de las otras respuestas es correcta

Pregunta 11

Respuesta guardada

Puntúa como 1,00 En una zona donde existe un campo magnético B = $0.3 \cdot \exp(-t/0.25 \text{ seg})$ T î + $0.2 \cdot \exp(-t/0.25 \text{ seg})$ T ĵ se introduce una bobina rectangular de 3 espiras de lados 8 cm y 10 cm y de resistencia total R = 1.5Ω que yace en el plano xz. El sentido (visto desde arriba, es decir desde el eje y positivo) y valor de la corriente en la bobina en t = 0.5 s es aproximadamente:

Seleccione una:

- O a. 1.73 mA en sentido horario
- O b. Ninguna de las otras respuestas es correcta
- o c. 0.58 mA en sentido anti-horario
- O d. No respondo
- O e. 1.73 mA en sentido anti-horario
- f. 3.12 mA en sentido horario

Pregunta **12**

Respuesta guardada

Puntúa como 1,00 Indique cuál de los siguientes cuatro gráficos corresponde a la corriente normalizada $\frac{i(t)}{V_0/R}$ de un circuito RC serie, con el capacitor inicialmente descargado, al conectarse a una pila:

Seleccione una:

O a. Ninguna de las otras respuestas

O d. No respondo

Pregunta 13

Respuesta guardada

Puntúa como 1,00 Una bobina cuadrada de 12 vueltas, cada una de 1 cm de lado, rota a una velocidad angular $\omega=250$ radianes por segundo en un campo magnético uniforme de 0,3 T como se muestra en la figura. Considere que en t = 0 la normal al plano de la bobina \hat{n} tiene la dirección \hat{i} (la situación mostrada en la figura es para un t cualquiera, no corresponde a t = 0). Si la resistencia de la bobina es de 5 Ω , ¿cuál será la magnitud de la corriente inducida en miliamperes? (Despreciar la autoinductancia de la bobina)

Seleccione una:

- a. 90 sen ωt
- O b. No respondo
- O c. Ninguna de las otras respuestas es correcta
- d. 18 sen ωt
- e. 90 cos ωt
- O f. 1,5 sen ωt

Pregunta **14**

Respuesta guardada

Puntúa como 1,00 Se tiene un solenoide muy largo de radio a=12~cm y con número de vueltas por unidad de longitud n=2000/m. En el interior del solenoide hay aire y existe una espira circular de radio b=8~cm cuyo plano forma un ángulo $\alpha=60^\circ$ respecto al eje del solenoide. La inductancia mutua entre el solenoide y la espira es igual a:

\$

Seleccione una:

- O a. $M = 9,847 \cdot 10^{-5} H$
- O b. $M = 2,526 \cdot 10^{-5} H$
- O c. Ninguna de las otras respuestas
- O d. $M = 4,376 \cdot 10^{-5} \text{ H}$
- \bullet e. M = 1,094 10⁻³ H
- O f. No respondo

Avisos

Ir a...