泛函分析提纲

Author: 秦宇轩 (QIN Yuxuan) 最后更新于 2025-10-20

Contents

1.	拓扑空间简介	. 1
	完备度量空间	
3.	拓扑向量空间	. 1
	3.1. 基本定义	. 1
	3.2. 半赋范空间	
	3.3. 局部凸空间	. 3

这是一份泛函分析提纲(不是笔记!),仅包含我认为重要的结论。

参考书目: 许全华《泛函分析讲义》。

1. 拓扑空间简介

TODO

2. 完备度量空间

TODO

3. 拓扑向量空间

3.1. 基本定义

拓扑向量空间:加法和数乘在拓扑意义下连续的向量空间。

Definition 3.1.1 (两种神秘集合)

设 E 是数域 \mathbb{F} 上的向量空间, $A \subset E$ 是子集 (不必是子空间!), 则定义:

- **平衡集**: 若取任意标量 $|\lambda| \le 1$, 对任意 $x \in A$ 有 $\lambda x \in A$, 则称 A 平衡;
- **吸收集**: 若取任意 $x \in A$, 存在 $\alpha > 0$, 对任意标量 $|\lambda| \le \alpha$ 有 $\lambda x \in A$, 则称 A 吸收。

Remark

- 对任意集合,取内部保持凸性;
- 对于 0 附近的集合,取内部保持平衡性。

3.2. 半赋范空间

半赋范空间就是配备了**半范数拓扑**的**向量空间**,因此,本节所出现的空间不都是拓扑向量空间,请注意定义。

Definition 3.2.1 (半范数)

设 $E \neq \mathbb{F}$ 上的向量空间, 且 $p: E \to \mathbb{F}$ 是线性泛函, 若:

• **非负**: 对任意 $x \in E$, 有 $p(x) \ge 0$;

• 正定: 对任意 $x \in E, \lambda \in \mathbb{F}, \ \ \ \ \ \ p(\lambda x) = |\lambda| \ p(x);$

· 三角不等式;

则称 p 是一个半范数。

和范数一样, 半范数能诱导拓扑, 但是半范数的性质决定了诱导拓扑的性质不会很好, 具体而言:

Proposition 3.2.2 (Hausdorff 等价于范数)

半范数 p 诱导的拓扑 Hausdorff, 当且仅当 p 是范数。

正是如此,我们常常考虑一族半范数所诱导的拓扑,希望能得到 Hausdorff 拓扑。具体而言,考虑定义在 E 上的一族半范数 $\{p_i\}_{i\in I}$,定义这族半范数所诱导的拓扑为 τ :对任意 $O\subset E$,定义 $O\in \tau$ 当且仅当存在指标集 Λ 使得

$$O = \bigcup_{\alpha \in \Lambda} B_i(x_i, r_i),$$

其中, $B_i(x_i, r_i)$ 是 p_i 诱导拓扑中的开球。

但是这样可能会得到不相容的开集:按定义,我们需要验证开集公理,任意并公理是显然的,问题出在有限交公理。

因此,我们需要对半范数族加一些限制。

Definition 3.2.3 (定向半范数族诱导的拓扑)

如果 $\{p_i\}$ 是一族**定向的**半范数,则上文所述的联合拓扑良定义。

对于一般的半范数族, 我们有办法让它成为定向族:

Definition 3.2.4 (半范数族的定向化)

设 E 是向量空间,对 E 上一族(任意规模的)半范数 $\{p_i\}_{i\in I}$,我们可以加入一些新的半范数,使其成为一个定向集,具体构造如下:

对于任意有限子集 $J \subset I$,定义一个新的半范数 q_I ,对 $x \in E$,令

$$q_{J(x)} \coloneqq \max_{j \in J} p_j(x).$$

可以验证,这样的到的东西仍是半范数,并且是 $\{p_j\}_{j\in J}$ 的上界。

因此, 我们得到了原族的定向化:

$$\left\{ p_{j}\right\} \bigcup\{q_{J}:J\subset I\text{ }\mathbf{f}\mathbb{R}\}.$$

Definition 3.2.5 (一般半范数族诱导的拓扑)

指其定向化后诱导的拓扑。

Remark

半范数族 $\{p_i\}$ 所诱导的拓扑 Hausdorff $\Longleftrightarrow \{p_i\}$ 可分点,即对任意 $x \neq 0$,存在 p_i 使 $p_i(x) \neq 0$.

有了半范数族诱导的拓扑以后, 我们的向量空间具备了双重结构, 我们希望拓扑结构和代数结构相容, 所幸的确如此:

Theorem 3.2.6 (半范数族诱导的拓扑结构与代数结构相容)

TODO

Definition 3.2.7 (半赋范空间)

向量空间 E 配备一族半范数 $\{p_i\}$ 拓扑, 就称为半赋范空间, 记为 $(E, \{p_i\})$

Theorem 3.2.8 (半赋范空间的凸邻域基)

半赋范空间 $(E, \{p_i\})$ 的原点有一组凸邻域基。

Proof. 我们可以直接写出来这组凸邻域基:原点附近的全体开球。

Remark

半赋范空间的积仍然是半赋范空间。

Proof. TODO

3.3. 局部凸空间

上节提到,半赋范空间的原点具备凸邻域基,本节证明其逆命题也成立。

Definition 3.3.1 (局部凸空间)

若拓扑向量空间 E 的原点有一组凸邻域基,则称其为局部凸空间。

Theorem 3.3.2 (局部凸空间有美妙的原点邻域基)