Übungsblatt 3 Nicht-Determinismus, Potenzmengenkonstruktion

HTWG-Konstanz

Gesundheitsinformatik / Angewandte Informatik - WS24/25 Theoretische (Grundlagen der) Informatik

Prof. Dr. Renato Dambe

30/31.10.2024

Aufgabe 1

Nehmen Sie sich nochmal Übungsblatt 2 zur Hand und prüfen Sie, welche der dort aufgeführten Endlichen Automaten deterministisch und welche nicht deterministisch sind.

Aufgabe 2

Gegeben ist der folgende Endliche Automat mit $S = \{S_1, S_2, S_3\}, \Sigma = \{a, b\}, s_0 = S_1, F = \{S_3\}, Übergangsrelationen <math>\delta$ siehe Schaubild,

- a) Stellen Sie den Nichtdeterministischen Endlichen Automaten in tabellarischer Form dar.
- b) Wandeln Sie den Automaten mithilfe der Potenzmengenkonstruktion in einen Deterministischen Endlichen Automaten um.

a) a b
S1 S2 S2 S2 {S2,S3}
S3 - -

S2 S23

<u>S123</u>

Aufgabe 3

Gegeben ist der folgende Nichtdeterministische Endliche Automat (NEA) mit $S = \{A, B, C, D\}, \Sigma = \{a, b, c\}, s_0 = A, F = \{B, D\}, Übergangsrelationen <math>\delta$ siehe Schaubild,

Wandeln Sie diesen in einen Deterministischen Endlichen Automaten (DEA) um. Verwenden Sie Dazu die Potenzmengenkonstruktion.

Aufgabe 4

Gegeben ist der folgende Nichtdeterministische Endliche Automat (NEA) mit $S = \{A, B, C, D\}$, $\Sigma = \{a, b, c\}$, $s_0 = A$, $F = \{C, D\}$, Übergangsrelationen δ siehe Schaubild,

Wandeln Sie diesen in einen Deterministischen Endlichen Automaten (DEA) um. Verwenden Sie Dazu die Potenzmengenkonstruktion.

	a	b	С		a	b	С
A B C	Α	{B,C}	D	Ø	-	-	-
	D	Α	-	A	Α	BC	D
	D	-	{A,C}	<u>B</u> _	D	Α	-
D	-	C	-	C	D	-	AC
				D	-	C	-
				<u>AB</u>	AD	ABC	D
				AC	AD	BC	ACD
				AD	Α	BC	D
				BC	D	Α	AC
				BD	D	AC	-
				CD	D	C	AC
				ACD	AD	BC	ACD
				ABC	AD	ABC	ACD
				BCD	D	AC	AC
				ABCD	AD	ABC	ACD

a A - B {C,D} C D D -	b {A,B} A - B	c C - A {C,D}		Ø A B CIDIAB A A DICIBO BOD BOD BOD BOD BOD BOD BOD BOD BOD B	a CD D - CD CD CD CD CD CD CD CD	b - AB A - B AB AB AB AB AB AB AB AB AB	C C A CD C AC CD A CD A CD ACD ACD ACD A
Start	A C	a a	b	B B			

Aufgabe 5

Gegeben ist der folgende Nichtdeterministische Endliche Automat (NEA) mit $S = \{A, B, C\}, \Sigma = \{a, b\}, s_0 = A, F = \{C\}, Übergangsrelationen <math>\delta$ siehe Schaubild,

Wandeln Sie diesen in einen Deterministischen Endlichen Automaten (DEA) um. Verwenden Sie Dazu die Potenzmengenkonstruktion.

Aufgabe 5 habe ich leider nicht geschafft. Ich werde sie als Klausurvorbereitung nutzen.