Boosting Financial Trend Prediction with Twitter Mood Based on Hidden Markov Models

Yifu Huang

School of Computer Science, Fudan University huangyifu@fudan.edu.cn

COMP630030 Data Intensive Computing Project, 2013

Outline

- Introduction
- 2 Data
- Model
- 4 Experiment
- Discussion

Introduction

Financial Trend

- Focus on market index
 - DJIA, S&P500, ...
- Raw data
 - (Date, Open, High, Low, Close, Volume, Adj Close)
- Compute trend
 - $Trend_{t+1} = sign(Close_{t+1} Close_t)$

Financial Trend

- Focus on market index
 - DJIA, S&P500, ...
- Raw data
 - (Date, Open, High, Low, Close, Volume, Adj Close)
- Compute trend
 - $Trend_{t+1} = sign(Close_{t+1} Close_t)$

Financial Trend

- Focus on market index
 - DJIA, S&P500, ...
- Raw data
 - (Date, Open, High, Low, Close, Volume, Adj Close)
- Compute trend
 - $Trend_{t+1} = sign(Close_{t+1} Close_t)$

Twitter Mood

- Behavioral finance
 - Individual mood -> individual decision
 - Societies mood -> societies decision
- Societies mood measurement
 - Twitter, sense the world
- POMS Bipolar word list
 - Composed/anxious, agreeable/hostile, elated/depressed, confident/unsure, energetic/tired, clearheaded/confused
 - WordNet extend
 - Granger causality analysis

Twitter Mood

- Behavioral finance
 - Individual mood -> individual decision
 - Societies mood -> societies decision
- Societies mood measurement.
 - Twitter, sense the world
- POMS Bipolar word list
 - Composed/anxious, agreeable/hostile, elated/depressed, confident/unsure, energetic/tired, clearheaded/confused
 - WordNet extend
 - Granger causality analysis

Twitter Mood

- Behavioral finance
 - Individual mood -> individual decision
 - Societies mood -> societies decision
- Societies mood measurement
 - Twitter, sense the world
- POMS Bipolar word list
 - Composed/anxious, agreeable/hostile, elated/depressed, confident/unsure, energetic/tired, clearheaded/confused
 - WordNet extend
 - Granger causality analysis

Twitter Mood (cont.)

- Key idea
 - Twitter data is large, so map it to different nodes, extract poms vector from each tweet, and reduce them to overall poms index
- Map (offset, line, date, poms_individual)
 - Filter
 - Ignore {http:, www.}, hold {i feel, makes me, ...}
 - Stem
 - Agreed -> agree, disabled -> disable, ...
 - Analyze
 - Seren -> composed, shaki -> anxious, ...
- Reduce (date, poms_individual, date, poms_societies)
 - Average

Twitter Mood (cont.)

- Key idea
 - Twitter data is large, so map it to different nodes, extract poms vector from each tweet, and reduce them to overall poms index
- Map (offset, line, date, poms_individual)
 - Filter
 - Ignore {http:, www.}, hold {i feel, makes me, ...}
 - Stem
 - Agreed -> agree, disabled -> disable, ...
 - Analyze
 - Seren -> composed, shaki -> anxious, ...
- Reduce (date, poms individual, date, poms societies)
 - Average

Twitter Mood (cont.)

- Key idea
 - Twitter data is large, so map it to different nodes, extract poms vector from each tweet, and reduce them to overall poms index
- Map (offset, line, date, poms_individual)
 - Filter
 - Ignore {http:, www.}, hold {i feel, makes me, ...}
 - Stem
 - Agreed -> agree, disabled -> disable, ...
 - Analyze
 - Seren -> composed, shaki -> anxious, ...
- Reduce (date, poms individual, date, poms societies)
 - Average

Selective Prediction

- Not ignorance, but ignorance of ignorance is the death of knowledge
- Definition

$$Y_{t+1} = \begin{cases} F(X_t), & if \ G(X_t) = 1 \\ reject, & if \ G(X_t) = 0 \end{cases}$$

Evaluation

Hidden Markov Models

Definition

- $\lambda = \{N, M, \pi, A, B\}$
- N, state number
- M, observation number
- $\pi = \{\pi_1, \pi_2, ..., \pi_N\}$, initial probability
- $A = \{a_{ii} | i, j = 1, 2, ..., N\}$, state transfer probability
- $B = \{b_{ij} | i = 1, 2, ..., N, j = 1, 2, ..., M\}$, observation probability distribution

Hidden Markov Models (cont.)

- Problem 1: probability computation
 - Forward backward algorithm
- Problem 2: state annotation
 - Viterbi algorithm
- Problem 3: model train
 - Baum-Welch algorithm

Selective HMM

- Model
 - Multiple Stream
 - Selectivity
 - Visit rate $v_i = \frac{1}{T} \sum_{t=1}^{T} \gamma_{ti}$
 - Risk rate $r_i = \frac{\frac{1}{T} \sum_{t=1,l_t \neq l_i}^{T} \gamma_{ti}}{v_i}$
 - Risk state set $RS = \{i_1,...,i+k | \sum_{j=1}^K v_{i_j} \le 1 C_B, \sum_{j=1}^{K+1} v_{i_j} > 1 C_B \}$
 - Scale

Train

- Train
 - Recursive refine

Predict

- Key idea
 - Random initialization number is large, so map selective HMM to different nodes, get error rate from each selective HMM after train and predict, and reduce them to overall error rate
- Map (offset, line, reject_bound, error_rate)
 - Train
 - Predict
 - Get error rate
- Reduce (reject_bound, error_rate, reject_bound, avg_error_rate)
 - Average

- Key idea
 - Random initialization number is large, so map selective HMM to different nodes, get error rate from each selective HMM after train and predict, and reduce them to overall error rate
- Map (offset, line, reject_bound, error_rate)
 - Train
 - Predict
 - Get error rate
- Reduce (reject_bound, error_rate, reject_bound, avg_error_rate)
 - Average

- Key idea
 - Random initialization number is large, so map selective HMM to different nodes, get error rate from each selective HMM after train and predict, and reduce them to overall error rate
- Map (offset, line, reject_bound, error_rate)
 - Train
 - Predict
 - Get error rate
- Reduce (reject_bound, error_rate, reject_bound, avg_error_rate)
 - Average

Setup

- Cluster
 - Hadoop 1.2.1
 - Masters:1, slaves:24
 - Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz
 - 4GB RAM
- Data
 - DJIA, 200906~200912, ~130day
 - Tweet, 200906~200912, ~50GB

Setup

- Cluster
 - Hadoop 1.2.1
 - Masters:1, slaves:24
 - Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz
 - 4GB RAM
- Data
 - DJIA, 200906~200912, ~130day
 - Tweet, 200906~200912, ~50GB

DJIA

POMS

Granger Causality Analysis

Lagged	Composed	Agreeable	Elated	Confident	Energetic	Clearheaded
Days		/Hostile				/Confused
1	0.723009776	0.512862214	0.9399375	0.880644906	0.857355253	0.342346356
2	0.86129301	0.166551184	0.8289756	0.576292251	0.933422157	0.310755746
3	0.434470424	0.062817907	0.9608715	0.455076866	0.993825935	0.377955186
4	0.435631775	0.127495831	0.9903607	0.637129619	0.803028135	0.514455259
5	0.593896982	0.212591485	0.9854185	0.534574688	0.755306207	0.708745583
6	0.630440149	0.206866576	0.9689204	0.656838808	0.557477213	0.738674666
7	0.694607494	0.107745913	0.9858471	0.688712317	0.577784406	0.851840215

Risk-Coverage Curve

Discussion

- Conclusion
 - Twitter mood can indeed improve prediction accuracy
 - Selective HMM outperforms linear regression
 - Selectivity can indeed control prediction accuracy
- Future Work
 - Risk-coverage curve of selective HMM should decrease monotonically

Discussion

- Conclusion
 - Twitter mood can indeed improve prediction accuracy
 - Selective HMM outperforms linear regression
 - Selectivity can indeed control prediction accuracy
- Future Work
 - Risk-coverage curve of selective HMM should decrease monotonically

References I

- [1] Selective Prediction of Financial Trends with Hidden Markov Models. NIPS2011.
- [2] Twitter Mood Predicts the Stock Market. JCS2011.
- [3] Data-Intensive Text Processing with MapReduce. 2010.
- [4] Hadoop: The Definitive Guide. 2012.