Test Medium for the Growth of Nitrosomonas europaea

Article in Applied and Environmental Microbiology \cdot June 1985 DOI: 10.1128/AEM.49.5.1101-1107.1985 · Source: PubMed CITATIONS READS 40 1,267 4 authors, including: Chikashi Sato Jerald L Schnoor Idaho State University University of Iowa 68 PUBLICATIONS 1,475 CITATIONS 432 PUBLICATIONS 18,378 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Phytoremediation Research View project UIOWA Superfund Schnoor Project View project

Test Medium for the Growth of Nitrosomonas europaea

CHIKASHI SATO,* JERALD L. SCHNOOR, DONALD B. McDONALD, AND JON HUEY

Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242

Received 10 September 1984/Accepted 31 January 1985

A mineral medium for studying the growth of *Nitrosomonas europaea* was developed and examined. The medium was defined in terms of chemical speciation by using chemical equilibrium computer models. The medium significantly increased the metabolic activity of the organisms compared with previously developed media, yielding a specific growth rate as high as $3.0 \, \mathrm{day}^{-1}$ (generation time, $5.5 \, \mathrm{h}$). The specific growth rate was enhanced by increasing the inoculum and was linearly correlated with the inoculum-to-total-culture volume ratio on a semilog scale. A reproducible growth rate for *N. europaea* was obtained with this medium under controlled experimental conditions.

One of the most important features to be considered in the study of bacterial ecology is the choice of a proper medium. Ideally, studies should be carried out in a chemically defined growth medium to overcome difficulties in interpreting results which result when a complex or nonchemically defined medium, such as river water or wastewater, is used. Since the genus Nitrosomonas was first described by Winogradsky in the latter part of the nineteenth century, a number of media have been developed and used for studying the nitrifying bacteria (1, 8, 10–12, 14–18, 20, 24, 25, 27–30, 32, 33). However, there has been confusion and contradiction about the effects of various stimulating and inhibiting factors on the growth of the nitrifying bacteria. One of the problems which often obscure the interpretation of results is the lack of a standard test medium. To obtain maximum metabolic activity, enriched media may be recommended. On the other hand, minimal media may be necessary to minimize complex effects induced by medium constituents. As a result, a point of compromise must be found in developing a standard medium.

The purpose of this research was to develop a simple medium which would support high metabolic activity for *Nitrosomonas europaea*. In addition, an attempt was made to define the medium in terms of chemical speciation by using equilibrium computer models. The medium can be used for toxicity screening tests of various compounds. It is especially useful for investigating ionic and complexing effects. The use of computer-assisted chemical analysis for the medium also makes it possible to gain insight into the nutritional requirements of and the effects of toxic compounds on *N. europaea*.

MATERIALS AND METHODS

The growth medium for *N. europaea* was prepared as follows. A known volume of deionized, distilled water was sterilized by autoclaving and allowed to cool to room temperature. The medium was completed by aseptically adding nutrients in the form of concentrated stock solutions (Table 1). To prevent precipitation, the nutrient solutions, except iron, were autoclaved separately at 103 kPa (15 lb/in²) for 20 min. The iron solution was sterilized by filtration through membrane filters (0.2-µm pore size). The molar concentrations of the medium constituents are given in Table 2. Various amounts of (NH₄)₂SO₄ were added as a concentrated solution depending on the nature of the investigation being

carried out. The pH of the final solution was 8.5 ± 0.5 and was not adjusted further.

The original pure-culture strain of N. europaea ATCC 19718 was obtained from the American Type Culture Collection. Stock cultures were grown in medium containing 0.14 mM total ammonium in the dark at 25°C. Subcultures grown for 14 days were used to inoculate culture solutions. The size of the inoculum was 10 ml/liter of medium. No inoculum preparation was performed. Since the cultures were grown in a medium which was free of precipitates and which contained a low concentration of ammonium (in a reciprocating shaker operated at 80 oscillations per min), it seems likely that the organisms were uniformly dispersed in the culture medium. In addition, the amount of nitrite carried over to fresh medium was low (<1.4 µM). Mutation and subsequent variation in the nutrient requirements of the stock culture was considered unlikely (18). The culture was maintained on the proposed medium for 2 years with transfer every 14 days.

To validate the proposed medium, various combinations of nutrients were prepared in 500-ml Erlenmeyer flasks. Sterile $(NH_4)_2SO_4$ solution was then added to the medium at 3.57 mM. N. europaea was added to the medium at an inoculum-to-total-culture volume ratio (defined below) of 0.01. The flasks were capped with 150-ml beakers to avoid contamination but allow sufficient oxygen transfer into the medium. The initial concentrations of total ammonium and nitrite and the pH were measured immediately after mixing. Cultures were incubated in the dark at 25 \pm 0.25°C in a reciprocating shaker at 80 oscillations per min to provide a dissolved-oxygen concentration in excess of 2.0 mg/liter (6).

TABLE 1. Nutrient stock solutions

Nutrient	C	onen	Amt (ml) used per liter of medium	
Nutrient	g/liter	mM		
Phosphate buffer ^a		500	10	
Carbonate buffer ^b		600	10	
CaCl ₂ · 2H ₂ O	1.84	12.5	10	
$MgSO_4 \cdot 7H_2O$	250	1,000	2	
$FeSO_4 \cdot 7H_2O$	0.1	0.36	1	

^a 68.0 g of KH₂PO₄ and 87.1 g of K₂HPO₄ were dissolved separately in 1 liter of deionized, distilled water; the two solutions were mixed together in the proper amounts to give a pH of 8.2.

^{*} Corresponding author.

^b 50.4 g of NaHCO₃ and 63.6 g of Na₂CO₃ were dissolved separately in 1 liter of deionized, distilled water; the two solutions were mixed together in the proper amounts to give pH of 8.2.

1102 SATO ET AL. APPL. ENVIRON. MICROBIOL.

Control of the Contro

TABLE 2. Composition of medium

Constituent	Concn (mol/liter)		
Metals			
K ⁺	9.65×10^{-3}		
Na ⁺	6.06×10^{-3}		
Ca ²⁺	1.25×10^{-4}		
Mg^{2+}	2.00×10^{-3}		
Mg ²⁺ Fe ²⁺	3.60×10^{-7}		
Ligands			
CO ₃ ²⁻	6.00×10^{-3}		
PO_4^{3-}	5.00×10^{-3}		
Cl ^{-'}	2.50×10^{-4}		
SO_4^{2-a}	$1.99 \times 10^{-3} - 5.56 \times 10$		
NH_4^{+b}	$7.14 \times 10^{-5} - 9.4 \times 10^{-5}$		

 $[^]a$ The $SO_4^{\,2-}$ concentration varied with $NH_4^{\,+}$ concentration because $NH_4^{\,+}$ was added as $(NH_4)_2SO_4.$

The flasks were removed from the shaker every 12 to 24 h, depending on the activity of the organisms, and a small sample was removed from each flask with sterilized pipettes for measurement of the nitrite concentration. The effects of total ammonium and inoculum concentrations were investigated by the procedure described above, except that a series of media containing different total ammonium concentrations and different volumes of inoculum were prepared.

During the present study, the amount of nitrite produced was used as a measure of growth. This method was validated by Engel and Alexander (8), who presented nitrite concentration which corresponded with viable cell counts of N. europaea (see Fig. 1, inset). Loveless and Painter (18) stated that the greater sensitivity, simplicity, and accuracy of the nitrite determination make it a better choice than the estimation of cell carbon, mass, or number. They also stated that nitrite production is a true measure of growth for Nitrosomonas spp. at least up to 35.7 mM NO₂⁻. Values for the specific growth rate were obtained by measuring the slope of the straight-line portion of each semilog plot (log NO₂⁻ concentration versus time) and converting these values to the natural logarithm. The analytical procedures followed the recommended standard methods (2). Nitrite nitrogen was determined by the diazotization method with N-(1-naphthyl)ethylenediamine dihydrochloride. Ammonia nitrogen was determined by the Nesslerization method.

RESULTS AND DISCUSSION

The preliminary medium for N. europaea was prepared by the directions furnished by the American Type Culture Collection. This medium was then modified by trial and error. The final medium contains five major metals (Ca²⁺, Mg²⁺, Fe²⁺, K⁺, and Na⁺) and six inorganic ligands (CO₃²⁻, SO₄²⁻, Cl⁻, PO₄³⁻, NH₄⁺, and OH⁻). These medium constituents may exist as free ions, ion pairs, colloids, or precipitates as a result of hydrolysis, hydrolytic polymerization, and oxidation-reduction reactions. These species may be subject to adsorption to particulate matter and subsequent sedimentation. They complex with the inorganic ligands present in the medium. Therefore, defining the medium with respect to chemical speciation is important to understanding the nature of the medium and the nutritional requirements of N. europaea. Equilibrium calculations were performed with modified versions of the COMICS (23) and MINTEQ (9) computer models. COMICS is a relatively simple model which accounts for only a dissolved phase,

whereas MINTEQ is one of the most sophisticated computer models designed to calculate geochemical equilibria accounting for both liquid and solid phases. Table 3 lists the equilibria and equilibrium constants considered in COMICS. The thermodynamic data for MINTEQ are incorporated into its data base (9). Log activities of chemical species, calculated at a total ammonium concentration of 3.57 mM at a constant pH of 8.5, are presented in Table 4. Adsorption to a solid phase was not considered in the computations because it is likely that the chemical species exist in the medium as ionic or aqueous forms and that the ammonia ligands kept the metals from adsorbing strongly to the

TABLE 3. Equilibria considered with the COMICS model

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Reaction	log K
$\begin{array}{llllllllllllllllllllllllllllllllllll$	K ⁺ + Cl ⁻	-1.59
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$K^+ + SO_4^{2-} \leftrightharpoons KSO_4^-$	0.96
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$K^+ + H^+ + PO_4^{3-} \leftrightharpoons KHPO_4^-$	13.39
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Na^+ + CO_3^{2-} \Leftrightarrow NaCO_3^-$	1.27
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$2Na^+ + CO_2^{2-} \leftrightarrows Na_2CO_2$	0.67
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Na^+ + H^+ + CO_3^{2-} \Longrightarrow NaHCO_3$	10.08
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Na^+ + SO_4^{2-} \leftrightharpoons NaSO_4^-$	0.72
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$2Na^+ + SO_4^{2-} \Leftrightarrow Na_2SO_4$	1.51
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Na^+ + H_2O \Longrightarrow NaOH + H^+$	-14.7
$\begin{array}{llll} \text{Mg}^{2+} + 2\text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{MgB}_{2} \text{PO}_{4}^{+} & 21.01 \\ \text{Mg}^{2+} + \text{SO}_{4}^{2-} \leftrightarrows \text{MgSO}_{4} & 2.36 \\ \text{Mg}^{2+} + \text{H}_{2} \text{O} \leftrightarrows \text{MgOH}^{+} + \text{H}^{+} & -11.42 \\ \text{Fe}^{2+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{FeHPO}_{4} & 15.9 \\ \text{Fe}^{2+} + 2\text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{FeHPO}_{4}^{+} & 22.2 \\ \text{Fe}^{2+} + 2\text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{FeH}_{2} \text{PO}_{4}^{+} & 22.2 \\ \text{Fe}^{2+} + 2\text{H}^{-} + \text{PO}_{4}^{3-} \leftrightarrows \text{FeD}_{4}^{-} & 0.36 \\ \text{Fe}^{2+} + 2\text{Cl}^{-} \leftrightarrows \text{FeCl}_{1} & 0.40 \\ \text{Na}^{+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{NaHPO}_{4}^{-} & 13.5 \\ \text{Ca}^{2+} + 2\text{Cl}^{-} \leftrightarrows \text{FeCl}_{2} & 0.40 \\ \text{Na}^{+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{NaHPO}_{4}^{-} & 13.5 \\ \text{Ca}^{2+} + \text{CO}_{3}^{2-} \leftrightarrows \text{CaCO}_{3} & 3.2 \\ \text{Ca}^{2+} + \text{H}^{+} + \text{CO}_{3}^{2-} \leftrightarrows \text{CaHCO}_{3}^{+} & 11.6 \\ \text{Ca}^{2+} + \text{PO}_{4}^{3-} \leftrightarrows \text{CaPO}_{4}^{-} & 6.5 \\ \text{Ca}^{2+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{CaHPO}_{4}^{+} & 20.9 \\ \text{Ca}^{2+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{CaHPO}_{4}^{+} & 20.9 \\ \text{Ca}^{2+} + \text{H}_{9} \hookrightarrow \text{CaOH}^{+} + \text{H}^{+} & 12.6 \\ \text{Ca}^{2+} + \text{SO}_{4}^{2-} \leftrightarrows \text{MgCO}_{3} & 2.18 \\ \text{Mg}^{2+} + \text{CO}_{3}^{2-} \backsimeq \text{MgCO}_{3} & 2.18 \\ \text{Mg}^{2+} + \text{CO}_{3}^{2-} \backsimeq \text{MgCO}_{3} & 2.18 \\ \text{Mg}^{2+} + \text{H}^{+} + \text{CO}_{3}^{2-} \backsimeq \text{MgHCO}_{3}^{+} & 11.33 \\ 2\text{H}^{+} + \text{PO}_{4}^{3-} \backsimeq \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}$	$Na^+ + Cl^- \leftarrow NaCl$	-1.60
$\begin{array}{llll} \text{Mg}^{2+} + 2\text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{MgB}_{2} \text{PO}_{4}^{+} & 21.01 \\ \text{Mg}^{2+} + \text{SO}_{4}^{2-} \leftrightarrows \text{MgSO}_{4} & 2.36 \\ \text{Mg}^{2+} + \text{H}_{2} \text{O} \leftrightarrows \text{MgOH}^{+} + \text{H}^{+} & -11.42 \\ \text{Fe}^{2+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{FeHPO}_{4} & 15.9 \\ \text{Fe}^{2+} + 2\text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{FeHPO}_{4}^{+} & 22.2 \\ \text{Fe}^{2+} + 2\text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{FeH}_{2} \text{PO}_{4}^{+} & 22.2 \\ \text{Fe}^{2+} + 2\text{H}^{-} + \text{PO}_{4}^{3-} \leftrightarrows \text{FeD}_{4}^{-} & 0.36 \\ \text{Fe}^{2+} + 2\text{Cl}^{-} \leftrightarrows \text{FeCl}_{1} & 0.40 \\ \text{Na}^{+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{NaHPO}_{4}^{-} & 13.5 \\ \text{Ca}^{2+} + 2\text{Cl}^{-} \leftrightarrows \text{FeCl}_{2} & 0.40 \\ \text{Na}^{+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{NaHPO}_{4}^{-} & 13.5 \\ \text{Ca}^{2+} + \text{CO}_{3}^{2-} \leftrightarrows \text{CaCO}_{3} & 3.2 \\ \text{Ca}^{2+} + \text{H}^{+} + \text{CO}_{3}^{2-} \leftrightarrows \text{CaHCO}_{3}^{+} & 11.6 \\ \text{Ca}^{2+} + \text{PO}_{4}^{3-} \leftrightarrows \text{CaPO}_{4}^{-} & 6.5 \\ \text{Ca}^{2+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{CaHPO}_{4}^{+} & 20.9 \\ \text{Ca}^{2+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{CaHPO}_{4}^{+} & 20.9 \\ \text{Ca}^{2+} + \text{H}_{9} \hookrightarrow \text{CaOH}^{+} + \text{H}^{+} & 12.6 \\ \text{Ca}^{2+} + \text{SO}_{4}^{2-} \leftrightarrows \text{MgCO}_{3} & 2.18 \\ \text{Mg}^{2+} + \text{CO}_{3}^{2-} \backsimeq \text{MgCO}_{3} & 2.18 \\ \text{Mg}^{2+} + \text{CO}_{3}^{2-} \backsimeq \text{MgCO}_{3} & 2.18 \\ \text{Mg}^{2+} + \text{H}^{+} + \text{CO}_{3}^{2-} \backsimeq \text{MgHCO}_{3}^{+} & 11.33 \\ 2\text{H}^{+} + \text{PO}_{4}^{3-} \backsimeq \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}$	$Mg^{2+} + PO_4^{3-} \Leftrightarrow MgPO_4^{-}$	6.59
$\begin{array}{llll} \text{Mg}^{2+} + 2\text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{MgB}_{2} \text{PO}_{4}^{+} & 21.01 \\ \text{Mg}^{2+} + \text{SO}_{4}^{2-} \leftrightarrows \text{MgSO}_{4} & 2.36 \\ \text{Mg}^{2+} + \text{H}_{2} \text{O} \leftrightarrows \text{MgOH}^{+} + \text{H}^{+} & -11.42 \\ \text{Fe}^{2+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{FeHPO}_{4} & 15.9 \\ \text{Fe}^{2+} + 2\text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{FeHPO}_{4}^{+} & 22.2 \\ \text{Fe}^{2+} + 2\text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{FeH}_{2} \text{PO}_{4}^{+} & 22.2 \\ \text{Fe}^{2+} + 2\text{H}^{-} + \text{PO}_{4}^{3-} \leftrightarrows \text{FeD}_{4}^{-} & 0.36 \\ \text{Fe}^{2+} + 2\text{Cl}^{-} \leftrightarrows \text{FeCl}_{1} & 0.40 \\ \text{Na}^{+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{NaHPO}_{4}^{-} & 13.5 \\ \text{Ca}^{2+} + 2\text{Cl}^{-} \leftrightarrows \text{FeCl}_{2} & 0.40 \\ \text{Na}^{+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{NaHPO}_{4}^{-} & 13.5 \\ \text{Ca}^{2+} + \text{CO}_{3}^{2-} \leftrightarrows \text{CaCO}_{3} & 3.2 \\ \text{Ca}^{2+} + \text{H}^{+} + \text{CO}_{3}^{2-} \leftrightarrows \text{CaHCO}_{3}^{+} & 11.6 \\ \text{Ca}^{2+} + \text{PO}_{4}^{3-} \leftrightarrows \text{CaPO}_{4}^{-} & 6.5 \\ \text{Ca}^{2+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{CaHPO}_{4}^{+} & 20.9 \\ \text{Ca}^{2+} + \text{H}^{+} + \text{PO}_{4}^{3-} \leftrightarrows \text{CaHPO}_{4}^{+} & 20.9 \\ \text{Ca}^{2+} + \text{H}_{9} \hookrightarrow \text{CaOH}^{+} + \text{H}^{+} & 12.6 \\ \text{Ca}^{2+} + \text{SO}_{4}^{2-} \leftrightarrows \text{MgCO}_{3} & 2.18 \\ \text{Mg}^{2+} + \text{CO}_{3}^{2-} \backsimeq \text{MgCO}_{3} & 2.18 \\ \text{Mg}^{2+} + \text{CO}_{3}^{2-} \backsimeq \text{MgCO}_{3} & 2.18 \\ \text{Mg}^{2+} + \text{H}^{+} + \text{CO}_{3}^{2-} \backsimeq \text{MgHCO}_{3}^{+} & 11.33 \\ 2\text{H}^{+} + \text{PO}_{4}^{3-} \backsimeq \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2+} + \text{H}_{9} \circlearrowleft \text{FeOH}$	$Mg^{2+} + H^+ + PO_4^{3-} \Leftrightarrow MgHPO_4$	14.8
$\begin{array}{lll} M_0^{2^+} + H_2O \leftrightarrows M_0OH^+ + H^+ & -11.42 \\ Fe^{2^+} + H^+ + PO_4^{3^-} \leftrightarrows FeH_2PO_4^+ & 15.9 \\ Fe^{2^+} + 2H^+ + PO_4^{3^-} \leftrightarrows FeH_2PO_4^+ & 22.2 \\ Fe^{2^+} + SO_4^{2^-} \leftrightarrows FeSO_4 & 22.2 \\ Fe^{2^+} + Cl^- \leftrightarrows FeCl^+ & 0.36 \\ Fe^{2^+} + 2Cl^- \leftrightarrows FeCl_2 & 0.40 \\ N_0^+ + H^+ + PO_4^{3^-} \leftrightarrows NaHPO_4^- & 13.5 \\ Ca^{2^+} + CO_3^{2^-} \leftrightarrows CaCO_3 & 3.2 \\ Ca^{2^+} + H^+ + CO_3^{2^-} \leftrightarrows CaHCO_3^+ & 11.6 \\ Ca^{2^+} + PO_4^{3^-} \leftrightarrows CaPO_4^- & 15.0 \\ Ca^{2^+} + H^+ + PO_4^{3^-} \leftrightarrows CaH_2PO_4^+ & 20.9 \\ Ca^{2^+} + H_2O \leftrightarrows CaOH^+ + H^+ & 12.6 \\ Ca^{2^+} + SO_4^{2^-} \leftrightarrows CaSO_4 & 2.31 \\ Mg^{2^+} + CO_3^{2^-} \leftrightarrows MgCO_3 & 2.18 \\ Mg^{2^+} + H^+ + CO_3^{2^-} \leftrightarrows MgHCO_3^+ & 11.33 \\ 2H^+ + PO_4^{3^-} \leftrightarrows H_2PO_4^- & 19.53 \\ Fe^{2^+} + H_2O \leftrightarrows FeOH^+ + H^+ & -8.3 \\ Fe^{2^+} + H_2O \leftrightarrows FeOH_3^+ + 3H^+ & -32.0 \\ Fe^{2^+} + 3H_2O \leftrightarrows Fe(OH)_2 + 2H^+ & -46.4 \\ Fe^{2^+} + CO_3^{2^-} \leftrightarrows FeCO_3 & -5.31 \\ Fe^{2^+} + H^+ + CO_3^{2^-} \leftrightarrows FeHCO_3^+ & 10.3 \\ H^+ + CO_3^{2^-} \leftrightarrows FePO_4^- & 7.93 \\ H^+ + CO_3^{2^-} \leftrightarrows FePO_4^- & 7.93 \\ H^+ + CO_3^{2^-} \leftrightarrows H_2CO_3 & 16.7 \\ H^+ + PO_4^{3^-} \leftrightarrows H_2PO_4^- & 12.32 \\ 3H^+ + CO_3^{2^-} \leftrightarrows HCO_3^- & 10.3 \\ 2H^+ + CO_3^{2^-} \leftrightarrows HCO_3^- & 10.3 \\ 2H^+ + CO_3^{2^-} \leftrightarrows H_2CO_3 & 16.7 \\ H^+ + PO_4^{3^-} \leftrightarrows H_2PO_4^- & 12.32 \\ 3H^+ PO_4^{3^-} \leftrightarrows H_3PO_4 & 12.32 \\ 3H^+ PO_4^{3^-} \leftrightarrows H_3PO_4 & 12.32 \\ 3H^+ + CO_3^{2^-} \leftrightarrows H_2CO_3 & 16.7 \\ H^+ + SO_4^{2^-} \leftrightarrows H_3PO_4 & 12.32 \\ 3H^+ PO_4^{3^-} \leftrightarrows H_3PO_4 & 12.32 \\ 2H^+ + SO_4^{2^-} \leftrightarrows H_3CO_4 & -1.0 \\ Ca^{2^+} + NH_3 \leftrightarrows Ca(NH_3)_2^{2^+} & -0.2 \\ Ca^{2^+} + NH_3 \leftrightarrows Ca(NH_3)_2^{2^+} & -0.2 \\ Ca^{2^+} + 3NH_3 \leftrightarrows Ca(NH_3)_2^{2^+} & -0.2 \\ Mg^{2^+} + 2NH_3 \leftrightarrows Mg(NH_3)_2^{2^+} & -0.2 \\ Mg^{2^+} + 3NH_3 \leftrightarrows Mg(NH_3)_2^{2^+} & -0.2 \\ Mg^{2^+} + 3NH_3 \leftrightarrows Mg(NH_3)_2^{2^+} & -0.34 \\ Mg^{2^+} + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2^+} & -0.34 \\ Mg^{2^+} + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2^+} & -0.34 \\ Mg^{2^+} + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2^+} & -1.04 \\ Mg^{2^+} + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2^+} & -1.04 \\ Mg^{2^+} + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2^+} & -1.04 \\ $	$Mg^{2+} + 2H^+ + PO_4^{3-} \Leftrightarrow MgH_2PO_4^+$	21.01
$\begin{array}{lll} Fe^{2+} + H^{+} + PO_{4}^{3-} \leftrightarrows FeHPO_{4} \\ Fe^{2+} + 2H^{+} + PO_{4}^{3-} \leftrightarrows FeH_{2}PO_{4}^{+} \\ Fe^{2+} + SO_{4}^{2-} \leftrightarrows FeSO_{4} \\ Ee^{2+} + Cl^{-} \leftrightarrows FeCl^{+} \\ SO_{4}^{2-} \leftrightarrows FeSO_{4} \\ Fe^{2+} + Cl^{-} \leftrightarrows FeCl_{2} \\ Na^{+} + H^{+} + PO_{4}^{3-} \leftrightarrows NaHPO_{4}^{-} \\ Ca^{2+} + CO_{3}^{2-} \leftrightarrows CaCO_{3} \\ Ca^{2+} + CO_{3}^{2-} \leftrightarrows CaPO_{4}^{-} \\ Ca^{2+} + PO_{4}^{3-} \leftrightarrows CaPO_{4}^{-} \\ Ca^{2+} + H^{+} + PO_{4}^{3-} \leftrightarrows CaHPO_{4} \\ Ca^{2+} + H^{+} + PO_{4}^{3-} \leftrightarrows CaHPO_{4}^{+} \\ Ca^{2+} + H^{0} - SC_{4} + H^{+} \\ Ca^{2+} + CO_{3}^{2-} \leftrightarrows MgCO_{3} \\ Ca^{2+} + CO_{3}^{2-} \leftrightarrows FeCO_{3} \\ Ca^{2+} + CO_{3}^{2-} \maltese FeCO_{3} \\ Ca^{2+} + CO_{3}^{2-} \leftrightarrows FeCO_{3} \\ Ca^{2+} + CO_{3}^{2-} \backsimeq CO_{3} \\ Ca^{2$	$Mg^{2+} + SO_4^{2-} \Leftrightarrow MgSO_4$	
$ \begin{aligned} & \text{Fe}^{2+} + \text{SO}_4^{2-} \leftrightarrows \text{FeSO}_4 \\ & \text{Fe}^{2+} + \text{Cl}^- \leftrightarrows \text{FeCl}^+ \\ & \text{O.36} \\ & \text{Fe}^{2+} + 2 \text{Cl}^- \leftrightarrows \text{FeCl}_2 \\ & \text{Na}^+ + \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{NaHPO}_4^- \\ & \text{Ca}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{CaCO}_3 \\ & \text{Ca}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{CaHCO}_3^+ \\ & \text{Ca}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{CaPO}_4^- \\ & \text{Ca}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{CaPO}_4^- \\ & \text{Ca}^{2+} + \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{CaHPO}_4^+ \\ & \text{Ca}^{2+} + \text{H}^0 \circlearrowleft \text{CaOH}^+ + \text{H}^+ \\ & \text{Ca}^{2+} + \text{H}^0 \circlearrowleft \text{CaOH}^+ + \text{H}^+ \\ & \text{Ca}^{2+} + \text{H}^0 \circlearrowleft \text{CaOH}^+ + \text{H}^+ \\ & \text{Ca}^{2+} + \text{H}^0 \circlearrowleft \text{CaOH}^+ + \text{H}^+ \\ & \text{Ca}^{2+} + \text{SO}_4^{2-} \leftrightarrows \text{MgCO}_3 \\ & \text{Mg}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{MgCO}_3 \\ & \text{Mg}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{MgHOO}_3^+ \\ & \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Pe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Pe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Po}^{3-} \hookrightarrow \text{FeOO}^- \\ & \text{H}^+ + \text{CO}_3^{2-} \backsimeq \text{FeOO}^- \\ & \text{H}^+ + \text{CO}_3^{2-} \backsimeq \text{HPO}_4^{2-} \\ & \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^0 \circlearrowleft \text{SeOH}^+ \\ & \text{H}^+ + \text{CO}_3^{2-} \backsimeq \text{HPO}_4^{2-} \\ & \text{H}^0 \circlearrowleft \text{SeOH}^+ \\ & \text{H}^0 \hookrightarrow \text{SeOH}^+ \\ & $	$Mg^{2+} + H_2O \Leftrightarrow MgOH^+ + H^+$	
$ \begin{aligned} & \text{Fe}^{2+} + \text{SO}_4^{2-} \leftrightarrows \text{FeSO}_4 \\ & \text{Fe}^{2+} + \text{Cl}^- \leftrightarrows \text{FeCl}^+ \\ & \text{O.36} \\ & \text{Fe}^{2+} + 2 \text{Cl}^- \leftrightarrows \text{FeCl}_2 \\ & \text{Na}^+ + \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{NaHPO}_4^- \\ & \text{Ca}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{CaCO}_3 \\ & \text{Ca}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{CaHCO}_3^+ \\ & \text{Ca}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{CaPO}_4^- \\ & \text{Ca}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{CaPO}_4^- \\ & \text{Ca}^{2+} + \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{CaHPO}_4^+ \\ & \text{Ca}^{2+} + \text{H}^0 \circlearrowleft \text{CaOH}^+ + \text{H}^+ \\ & \text{Ca}^{2+} + \text{H}^0 \circlearrowleft \text{CaOH}^+ + \text{H}^+ \\ & \text{Ca}^{2+} + \text{H}^0 \circlearrowleft \text{CaOH}^+ + \text{H}^+ \\ & \text{Ca}^{2+} + \text{H}^0 \circlearrowleft \text{CaOH}^+ + \text{H}^+ \\ & \text{Ca}^{2+} + \text{SO}_4^{2-} \leftrightarrows \text{MgCO}_3 \\ & \text{Mg}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{MgCO}_3 \\ & \text{Mg}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{MgHOO}_3^+ \\ & \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Pe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Pe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Po}^{3-} \hookrightarrow \text{FeOO}^- \\ & \text{H}^+ + \text{CO}_3^{2-} \backsimeq \text{FeOO}^- \\ & \text{H}^+ + \text{CO}_3^{2-} \backsimeq \text{HPO}_4^{2-} \\ & \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^0 \circlearrowleft \text{SeOH}^+ \\ & \text{H}^+ + \text{CO}_3^{2-} \backsimeq \text{HPO}_4^{2-} \\ & \text{H}^0 \circlearrowleft \text{SeOH}^+ \\ & \text{H}^0 \hookrightarrow \text{SeOH}^+ \\ & $	$Fe^{2+} + H^+ + PO_4^{3-} \Longrightarrow FeHPO_4$	15.9
$ \begin{aligned} & \text{Fe}^{2+} + \text{SO}_4^{2-} \leftrightarrows \text{FeSO}_4 \\ & \text{Fe}^{2+} + \text{Cl}^- \leftrightarrows \text{FeCl}^+ \\ & \text{O.36} \\ & \text{Fe}^{2+} + 2 \text{Cl}^- \leftrightarrows \text{FeCl}_2 \\ & \text{Na}^+ + \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{NaHPO}_4^- \\ & \text{Ca}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{CaCO}_3 \\ & \text{Ca}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{CaHCO}_3^+ \\ & \text{Ca}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{CaPO}_4^- \\ & \text{Ca}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{CaPO}_4^- \\ & \text{Ca}^{2+} + \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{CaHPO}_4^+ \\ & \text{Ca}^{2+} + \text{H}^0 \circlearrowleft \text{CaOH}^+ + \text{H}^+ \\ & \text{Ca}^{2+} + \text{H}^0 \circlearrowleft \text{CaOH}^+ + \text{H}^+ \\ & \text{Ca}^{2+} + \text{H}^0 \circlearrowleft \text{CaOH}^+ + \text{H}^+ \\ & \text{Ca}^{2+} + \text{H}^0 \circlearrowleft \text{CaOH}^+ + \text{H}^+ \\ & \text{Ca}^{2+} + \text{SO}_4^{2-} \leftrightarrows \text{MgCO}_3 \\ & \text{Mg}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{MgCO}_3 \\ & \text{Mg}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{MgHOO}_3^+ \\ & \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Pe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Pe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Fe}^{2+} + \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^+ \\ & \text{Po}^{3-} \hookrightarrow \text{FeOO}^- \\ & \text{H}^+ + \text{CO}_3^{2-} \backsimeq \text{FeOO}^- \\ & \text{H}^+ + \text{CO}_3^{2-} \backsimeq \text{HPO}_4^{2-} \\ & \text{H}^0 \circlearrowleft \text{SeOH}^+ + \text{H}^0 \circlearrowleft \text{SeOH}^+ \\ & \text{H}^+ + \text{CO}_3^{2-} \backsimeq \text{HPO}_4^{2-} \\ & \text{H}^0 \circlearrowleft \text{SeOH}^+ \\ & \text{H}^0 \hookrightarrow \text{SeOH}^+ \\ & $	$Fe^{2+} + 2H^{+} + PO_4^{3-} \Leftrightarrow FeH_2PO_4^{+}$	
$\begin{array}{lll} Fe^{2+} + 2Cl^{-} \leftrightarrows FeCl_{2} & 0.40 \\ Na^{+} + H^{+} + PO_{4}^{3-} \leftrightarrows NaHPO_{4}^{-} & 13.5 \\ Ca^{2+} + CO_{3}^{2-} \leftrightarrows CaCO_{3} & 3.2 \\ Ca^{2+} + H^{+} + CO_{3}^{2-} \leftrightarrows CaHCO_{3}^{+} & 11.6 \\ Ca^{2+} + PO_{4}^{3-} \leftrightarrows CaPO_{4}^{-} & 6.5 \\ Ca^{2+} + H^{+} + PO_{4}^{3-} \leftrightarrows CaHPO_{4} & 15.0 \\ Ca^{2+} + 2H^{+} + PO_{4}^{3-} \leftrightarrows CaH_{2}PO_{4}^{+} & 20.9 \\ Ca^{2+} + H_{2}0 \leftrightarrows CaOH^{+} + H^{+} & 12.6 \\ Ca^{2+} + SO_{4}^{2-} \leftrightarrows CaSO_{4} & 2.31 \\ Mg^{2+} + CO_{3}^{2-} \leftrightarrows MgCO_{3} & 2.18 \\ Mg^{2+} + H^{+} + CO_{3}^{2-} \leftrightarrows MgHCO_{3}^{+} & 11.33 \\ 2H^{+} + PO_{4}^{3-} \leftrightarrows H_{2}PO_{4}^{-} & 19.53 \\ Fe^{2+} + H_{2}0 \leftrightarrows FeOH^{+} + H^{+} & -8.3 \\ Fe^{2+} + 2H_{2}0 \leftrightarrows Fe(OH)_{2} + 2H^{+} & -18.9 \\ Fe^{2+} + 3H_{2}0 \leftrightarrows Fe(OH)_{3}^{-} + 3H^{+} & -32.0 \\ Fe^{2+} + 4H_{2}0 \leftrightarrows FeCO_{3} & -5.31 \\ Fe^{2+} + H^{+} + CO_{3}^{2-} \leftrightarrows FeHCO_{3}^{+} & 13.05 \\ Fe^{2+} + PO_{4}^{3-} \leftrightarrows FePO_{4}^{-} & 7.93 \\ H^{+} + CO_{3}^{2-} \leftrightarrows H_{2}CO_{3} & 16.7 \\ H^{+} + PO_{4}^{3-} \leftrightarrows H_{2}PO_{4}^{-} & 19.32 \\ 2H^{+} + CO_{3}^{2-} \leftrightarrows H_{2}CO_{3} & 16.7 \\ H^{+} + PO_{4}^{3-} \leftrightarrows H_{2}PO_{4}^{-} & 12.32 \\ 2H^{+} + CO_{3}^{2-} \leftrightarrows H_{2}CO_{3} & 16.7 \\ H^{+} + PO_{4}^{3-} \leftrightarrows H_{2}PO_{4}^{-} & 12.32 \\ 2H^{+} + CO_{3}^{2-} \leftrightarrows H_{2}CO_{3} & 16.7 \\ H^{+} + PO_{4}^{3-} \leftrightarrows H_{2}PO_{4}^{-} & 2.0 \\ 2H^{+} + SO_{4}^{2-} \leftrightarrows H_{2}SO_{4} & -1.0 \\ Ca^{2+} + NH_{3} \leftrightarrows Ca(NH_{3})_{2}^{2+} & -0.8 \\ Ca^{2+} + 3NH_{3} \leftrightarrows Ca(NH_{3})_{2}^{2+} & -0.8 \\ Ca^{2+} + 3NH_{3} \leftrightarrows Ca(NH_{3})_{2}^{2+} & -0.8 \\ Ca^{2+} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2+} & -0.08 \\ Mg^{2+} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2+} & -0.08 \\ Mg^{2+} + 2NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2+} & -0.08 \\ Mg^{2+} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2+} & -0.08 \\ Mg^{2+} + 4NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2+} & -0.08 \\ Mg^{2+} + 4NH_$	$Fe^{2+} + SO_4^{2-} \leftrightharpoons FeSO_4$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Fe^{2+} + Cl^- \Leftrightarrow FeCl^+$	
$\begin{array}{lll} \text{Ca}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{CaCO}_3 & 3.2 \\ \text{Ca}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{CaHCO}_3^+ & 11.6 \\ \text{Ca}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{CaPO}_4^- & 6.5 \\ \text{Ca}^{2+} + \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{CaHPO}_4 & 15.0 \\ \text{Ca}^{2+} + \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{CaHPO}_4^+ & 20.9 \\ \text{Ca}^{2+} + \text{H}_20 \leftrightarrows \text{CaOH}^+ + \text{H}^+ & 12.6 \\ \text{Ca}^{2+} + \text{SO}_4^{2-} \leftrightarrows \text{CaSO}_4 & 2.31 \\ \text{Mg}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{MgCO}_3 & 2.18 \\ \text{Mg}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{MgHCO}_3^+ & 11.33 \\ 2\text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H}_2\text{PO}_4^- & 19.53 \\ \text{Fe}^{2+} + \text{H}_20 \leftrightarrows \text{FeOH}^+ + \text{H}^+ & -8.3 \\ \text{Fe}^{2+} + \text{H}_20 \leftrightarrows \text{Fe(OH)}_2 + 2\text{H}^+ & -18.9 \\ \text{Fe}^{2+} + 3\text{H}_20 \leftrightarrows \text{Fe(OH)}_3^- + 3\text{H}^+ & -32.0 \\ \text{Fe}^{2+} + 4\text{H}_20 \leftrightarrows \text{Fe(OH)}_4^{2-} + 4\text{H}^+ & -46.4 \\ \text{Fe}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{FeCO}_3 & -5.31 \\ \text{Fe}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{FeHCO}_3^+ & 13.05 \\ \text{Fe}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{FePO}_4^- & 7.93 \\ \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{HCO}_3^- & 10.3 \\ 2\text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{HCO}_3^- & 10.3 \\ 2\text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{HCO}_3^- & 10.3 \\ 2\text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H3PO}_4 & 21.7 \\ \text{H}^+ + \text{CO}_4^{3-} \leftrightarrows \text{H3PO}_4 & 21.7 \\ \text{H}^+ + \text{CI} \leftrightarrows \text{HCI} & -6.1 \\ \text{H}^+ + \text{SO}_4^{2-} \leftrightarrows \text{H2SO}_4 & -1.0 \\ \text{Ca}^{2+} + \text{NH}_3 \leftrightarrows \text{Ca(NH}_3)^{2+} & -0.2 \\ \text{Ca}^{2+} + 2\text{NH}_3 \leftrightarrows \text{Ca(NH}_3)^{2+} & -0.2 \\ \text{Ca}^{2+} + 3\text{NH}_3 \leftrightarrows \text{Ca(NH}_3)^{2+} & -0.2 \\ \text{Ca}^{2+} + 3\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.2 \\ \text{Mg}^{2+} + 3\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.34 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -1.04 \\ \end{array}$	$Fe^{2+} + 2Cl^- \Leftrightarrow FeCl_2$	
$\begin{array}{lll} \text{Ca}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{Ca} \text{HCO}_3^+ & 11.6 \\ \text{Ca}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{Ca} \text{PO}_4^- & 6.5 \\ \text{Ca}^{2+} + \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{Ca} \text{HPO}_4 & 15.0 \\ \text{Ca}^{2+} + 2\text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{Ca} \text{H2} \text{PO}_4^+ & 20.9 \\ \text{Ca}^{2+} + \text{H}_0 \leftrightarrows \text{Ca} \text{OH}^+ + \text{H}^+ & 12.6 \\ \text{Ca}^{2+} + \text{SO}_4^{2-} \leftrightarrows \text{CaSO}_4 & 2.31 \\ \text{Mg}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{Mg} \text{CO}_3 & 2.18 \\ \text{Mg}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{Mg} \text{HCO}_3^+ & 11.33 \\ 2\text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H2} \text{PO}_4^- & 19.53 \\ \text{Fe}^{2+} + \text{H2}_0 \leftrightarrows \text{Fe} \text{COH}_2 + 2\text{H}^+ & -8.3 \\ \text{Fe}^{2+} + 2\text{H2}_0 \leftrightarrows \text{Fe} \text{COH}_2 + 2\text{H}^+ & -8.3 \\ \text{Fe}^{2+} + 2\text{H2}_0 \leftrightarrows \text{Fe} \text{COH}_3^- + 3\text{H}^+ & -32.0 \\ \text{Fe}^{2+} + 4\text{H2}_0 \leftrightarrows \text{Fe} \text{COH}_3^- + 4\text{H}^+ & -46.4 \\ \text{Fe}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{Fe} \text{CO}_3 & -5.31 \\ \text{Fe}^{2+} + \text{H}^+ \text{CO}_3^{2-} \leftrightarrows \text{Fe} \text{HCO}_3^+ & 13.05 \\ \text{Fe}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{Fe} \text{PO}_4^- & 7.93 \\ \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2} \text{CO}_3 & 16.7 \\ \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2} \text{CO}_3 & 16.7 \\ \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H2} \text{PO}_4^{2-} & 12.32 \\ 3\text{H}^+ \text{PO}_4^{3-} \leftrightarrows \text{H2} \text{PO}_4^{2-} & 12.32 \\ 3\text{H}^+ \text{PO}_4^{3-} \leftrightarrows \text{H2} \text{NO}_4 & 21.7 \\ \text{H}^+ + \text{CI} \leftrightarrows \text{HC} & -6.1 \\ \text{H}^+ + \text{SO}_4^{2-} \leftrightarrows \text{H2} \text{SO}_4 & -1.0 \\ \text{Ca}^{2+} + \text{NH}_3 \leftrightarrows \text{Ca} \text{NH}_3^{2+} & -0.2 \\ \text{Ca}^{2+} + 2\text{NH}_3 \leftrightarrows \text{Ca} \text{NH}_3^{2+} & -0.2 \\ \text{Ca}^{2+} + 2\text{NH}_3 \leftrightarrows \text{Ca} \text{NH}_3^{2+} & -0.2 \\ \text{Ca}^{2+} + 2\text{NH}_3 \leftrightarrows \text{Mg} \text{NH}_3^{2+} & -2.7 \\ \text{Mg}^{2+} + 2\text{NH}_3 \leftrightarrows \text{Mg} \text{NH}_3^{2+} & -0.08 \\ \text{Mg}^{2+} + 3\text{NH}_3 \leftrightarrows \text{Mg} \text{NH}_3^{2+} & -0.08 \\ \text{Mg}^{2+} + 3\text{NH}_3 \leftrightarrows \text{Mg} \text{NH}_3^{2+} & -0.08 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg} \text{NH}_3^{2+} & -0.08 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg} \text{NH}_3^{2+} & -0.03 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg} \text{NH}_3^{2+} & -0.03 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg} \text{NH}_3^{2+} & -1.04 \\ \end{array}$	$Na^+ + H^+ + PO_4^{3-} \Longrightarrow NaHPO_4^-$	
$\begin{array}{lll} \text{Ca}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{CaPO}_4^- & 6.5 \\ \text{Ca}^{2+} + \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{CaHPO}_4^+ & 20.9 \\ \text{Ca}^{2+} + 2\text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{CaH}_2\text{PO}_4^+ & 20.9 \\ \text{Ca}^{2+} + 12.0 \leftrightarrows \text{CaOM}^+ + \text{H}^+ & 12.6 \\ \text{Ca}^{2+} + 8O_4^{2-} \leftrightarrows \text{CaSO}_4 & 2.31 \\ \text{Mg}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{MgCO}_3 & 2.18 \\ \text{Mg}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{MgHCO}_3^+ & 11.33 \\ 2\text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H}_2\text{PO}_4^- & 19.53 \\ \text{Fe}^{2+} + 12.0 \leftrightarrows \text{FeOM}^+ + \text{H}^+ & -8.3 \\ \text{Fe}^{2+} + 212.0 \leftrightarrows \text{Fe(OH)}_2 + 2\text{H}^+ & -32.0 \\ \text{Fe}^{2+} + 314.0 \leftrightarrows \text{Fe(OH)}_3^- + 3\text{H}^+ & -32.0 \\ \text{Fe}^{2+} + 412.0 \leftrightarrows \text{Fe(OH)}_3^- + 4\text{H}^+ & -46.4 \\ \text{Fe}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{FeCO}_3 & -5.31 \\ \text{Fe}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{FeHO}_3^+ & 13.05 \\ \text{Fe}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{FeDO}_4^- & 7.93 \\ \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2O}_3^- & 10.3 \\ 2\text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2O}_3^- & 10.3 \\ 2\text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2O}_3^- & 10.3 \\ 2\text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2O}_3^- & 12.32 \\ 3\text{H}^+ \text{PO}_4^{3-} \leftrightarrows \text{H3PO}_4 & 21.7 \\ \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H3PO}_4 & 21.7 \\ \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2O}_3^- & 2.0 \\ 2\text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H3O}_4^- & 2.0 \\ 2\text{H}^+ + \text{CO}_3^{2-} \leftrightharpoons \text{H3O}_4^{2-} & 2.0 \\ 2\text{H}^+ + \text{CO}_3^{2-} \leftrightharpoons \text{H3O}_4^- & 2.0 \\ 2\text{H}^+ + \text{CO}_3^{2-} \leftrightharpoons \text{H3O}_4^- & 2.0 \\ 2\text{H}^+ + \text{CO}_3^{2-} \leftrightharpoons \text{H3O}_4^+ & 2.0 \\ 2\text{H}^+ + \text{CO}_3^{2-} \leftrightharpoons \text{H3O}_4^+ & 2.0 \\ 2H$	$Ca^{2+} + CO_3^{2-} \leftrightharpoons CaCO_3$	3.2
$\begin{array}{lll} \text{Ca}^{2+} + \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{Ca} \text{HPO}_4 \\ \text{Ca}^{2+} + 2\text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{Ca} \text{H}_2 \text{PO}_4^+ \\ \text{Ca}^{2+} + 2\text{H}_2 \text{O} \leftrightarrows \text{Ca} \text{OH}^+ + \text{H}^+ \\ \text{12.6} \\ \text{Ca}^{2+} + \text{SO}_4^{2-} \leftrightarrows \text{Ca} \text{SO}_4 \\ \text{Mg}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{Mg} \text{CO}_3 \\ \text{2.18} \\ \text{Mg}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{Mg} \text{HCO}_3^+ \\ \text{11.33} \\ 2\text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H}_2 \text{PO}_4^- \\ \text{19.53} \\ \text{Fe}^{2+} + \text{H}_2 \text{O} \leftrightarrows \text{Fe} \text{OH}^+ + \text{H}^+ \\ \text{-8.3} \\ \text{Fe}^{2+} + 2\text{H}_2 \text{O} \leftrightarrows \text{Fe} \text{COH}_2 + 2\text{H}^+ \\ \text{-18.9} \\ \text{Fe}^{2+} + 3\text{H}_3 \text{O} \leftrightarrows \text{Fe} \text{COH}_3^- + 3\text{H}^+ \\ \text{-22.0} \\ \text{Fe}^{2+} + 4\text{H}_2 \text{O} \backsimeq \text{Fe} \text{COH}_3^- + 4\text{H}^+ \\ \text{-46.4} \\ \text{Fe}^{2+} + \text{CO}_3^{2-} \backsimeq \text{Fe} \text{CO}_3 \\ \text{Fe}^{2+} + \text{H}^+ \text{CO}_3^{2-} \backsimeq \text{Fe} \text{HCO}_3^+ \\ \text{Fe}^{2+} + \text{PO}_4^{3-} \backsimeq \text{Fe} \text{FeO}_4^- \\ \text{7.93} \\ \text{H}^+ + \text{CO}_3^{2-} \backsimeq \text{HCO}_3^- \\ \text{10.3} \\ 2\text{H}^+ + \text{CO}_3^{2-} \backsimeq \text{HCO}_3^- \\ \text{10.3} \\ 2\text{H}^+ + \text{CO}_3^{2-} \backsimeq \text{H2CO}_3 \\ \text{16.7} \\ \text{H}^+ + \text{PO}_4^{3-} \backsimeq \text{H2CO}_3 \\ \text{16.7} \\ \text{H}^+ + \text{PO}_4^{3-} \backsimeq \text{H2CO}_3 \\ \text{16.7} \\ \text{H}^+ + \text{PO}_4^{3-} \backsimeq \text{H2CO}_3 \\ \text{16.7} \\ \text{H}^+ + \text{CO}_3^{2-} \backsimeq \text{H2CO}_3 \\ \text{16.7} \\ \text{H}^+ + \text{CO}_4^{2-} \backsimeq \text{H2CO}_3 \\ \text{16.7} \\ \text{10.3} \\ \text{21.7} \\ \text{10.3} \\ \text{21.7} \\ \text{10.3} \\ \text{22.1} \\ \text{22.0} \\ \text{23.1} \\ \text{23.1} \\ \text{23.2} $	$Ca^{2+} + H^+ + CO_3^{2-} \Longrightarrow CaHCO_3^+$	
$\begin{array}{llll} \text{Ca}^{2+} + \text{H}_20 \leftrightarrows \text{CaOH}^+ + \text{H}^+ & 12.6 \\ \text{Ca}^{2+} + \text{SO}_4^{2-} \leftrightarrows \text{CaSO}_4 & 2.31 \\ \text{Mg}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{MgCO}_3 & 2.18 \\ \text{Mg}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{MgHCO}_3^+ & 11.33 \\ 2\text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H}_2\text{PO}_4^- & 19.53 \\ \text{Fe}^{2+} + \text{H}_20 \leftrightarrows \text{FeOH}^+ + \text{H}^+ & -8.3 \\ \text{Fe}^{2+} + 2\text{H}_20 \leftrightarrows \text{Fe(OH)}_2 + 2\text{H}^+ & -18.9 \\ \text{Fe}^{2+} + 3\text{H}_20 \leftrightarrows \text{Fe(OH)}_3^- + 3\text{H}^+ & -32.0 \\ \text{Fe}^{2+} + 4\text{H}_20 \leftrightarrows \text{Fe(OH)}_4^{2-} + 4\text{H}^+ & -46.4 \\ \text{Fe}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{FeCO}_3 & -5.31 \\ \text{Fe}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{FeHCO}_3^+ & 13.05 \\ \text{Fe}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{FePO}_4^- & 7.93 \\ \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{CO}_4^{3-} \backsimeq \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{CO}_4^{3-}$	$Ca^{2+} + PO_4^{3-} \Leftrightarrow CaPO_4^{-}$	
$\begin{array}{llll} \text{Ca}^{2+} + \text{H}_20 \leftrightarrows \text{CaOH}^+ + \text{H}^+ & 12.6 \\ \text{Ca}^{2+} + \text{SO}_4^{2-} \leftrightarrows \text{CaSO}_4 & 2.31 \\ \text{Mg}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{MgCO}_3 & 2.18 \\ \text{Mg}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{MgHCO}_3^+ & 11.33 \\ 2\text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H}_2\text{PO}_4^- & 19.53 \\ \text{Fe}^{2+} + \text{H}_20 \leftrightarrows \text{FeOH}^+ + \text{H}^+ & -8.3 \\ \text{Fe}^{2+} + 2\text{H}_20 \leftrightarrows \text{Fe(OH)}_2 + 2\text{H}^+ & -18.9 \\ \text{Fe}^{2+} + 3\text{H}_20 \leftrightarrows \text{Fe(OH)}_3^- + 3\text{H}^+ & -32.0 \\ \text{Fe}^{2+} + 4\text{H}_20 \leftrightarrows \text{Fe(OH)}_4^{2-} + 4\text{H}^+ & -46.4 \\ \text{Fe}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{FeCO}_3 & -5.31 \\ \text{Fe}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{FeHCO}_3^+ & 13.05 \\ \text{Fe}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{FePO}_4^- & 7.93 \\ \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{CO}_4^{3-} \backsimeq \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{CO}_4^{3-}$	$Ca^{2+} + H^{+} + PO_4^{3-} \Leftrightarrow CaHPO_4$	
$\begin{array}{llll} \text{Ca}^{2+} + \text{SO}_4^{2-} \leftrightarrows \text{CaSO}_4 & 2.31 \\ \text{Mg}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{MgCO}_3 & 2.18 \\ \text{Mg}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{MgHCO}_3^+ & 11.33 \\ 2\text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H}_2\text{PO}_4^- & 19.53 \\ \text{Fe}^{2+} + \text{H}_20 \leftrightarrows \text{FeOH}^+ + \text{H}^+ & -8.3 \\ \text{Fe}^{2+} + 2\text{H}_20 \leftrightarrows \text{Fe(OH)}_2 + 2\text{H}^+ & -18.9 \\ \text{Fe}^{2+} + 3\text{H}_20 \leftrightarrows \text{Fe(OH)}_3^- + 3\text{H}^+ & -32.0 \\ \text{Fe}^{2+} + 4\text{H}_20 \leftrightarrows \text{Fe(OH)}_4^{2-} + 4\text{H}^+ & -46.4 \\ \text{Fe}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{FeCO}_3 & -5.31 \\ \text{Fe}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{FeHCO}_3^+ & 13.05 \\ \text{Fe}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{FePO}_4^- & 7.93 \\ \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H2CO}_3 & 16.7 \\ \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H3PO}_4 & 21.7 \\ \text{H}^+ + \text{CI} \leftrightarrows \text{HCI} & -6.1 \\ \text{H}^+ + \text{SO}_4^{2-} \leftrightarrows \text{H2SO}_4 & 21.7 \\ \text{H}^+ + \text{CI} \leftrightarrows \text{HCI} & -6.1 \\ \text{Ca}^{2+} + \text{NH}_3 \leftrightarrows \text{Ca(NH}_3)^{2+} & -0.2 \\ \text{Ca}^{2+} + 2\text{NH}_3 \leftrightarrows \text{Ca(NH}_3)^{2+} & -0.8 \\ \text{Ca}^{2+} + 3\text{NH}_3 \leftrightarrows \text{Ca(NH}_3)^{2+} & -0.8 \\ \text{Ca}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.08 \\ \text{Mg}^{2+} + 2\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.08 \\ \text{Mg}^{2+} + 3\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.08 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.08 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.03 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.34 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.34 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.03 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.04 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.03 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.03 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.04 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -0.03 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg(NH}_3)^{2+} & -1.04 \\ \end{array}$	$Ca^{2+} + 2H^{+} + PO_4^{3-} \Leftrightarrow CaH_2PO_4^{+}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Ca^{2+} + H_20 \leftrightarrows CaOH^+ + H^+$	
$\begin{array}{lll} \text{Mg}^{2^{+}} + \text{H}^{+} + \text{CO}_{3}^{2^{-}} \leftrightarrows \text{Mg}\text{HCO}_{3}^{+} & 11.33 \\ 2\text{H}^{+} + \text{PO}_{4}^{3^{-}} \leftrightarrows \text{H}_{2}\text{PO}_{4}^{-} & 19.53 \\ \text{Fe}^{2^{+}} + \text{H}_{2}0 \leftrightarrows \text{Fe}\text{OH}^{+} + \text{H}^{+} & -8.3 \\ \text{Fe}^{2^{+}} + 2\text{H}_{2}0 \leftrightarrows \text{Fe}\text{(OH)}_{2} + 2\text{H}^{+} & -18.9 \\ \text{Fe}^{2^{+}} + 3\text{H}_{2}0 \leftrightarrows \text{Fe}\text{(OH)}_{3}^{-} + 3\text{H}^{+} & -32.0 \\ \text{Fe}^{2^{+}} + 4\text{H}_{2}0 \leftrightarrows \text{Fe}\text{(OH)}_{3}^{-} + 4\text{H}^{+} & -46.4 \\ \text{Fe}^{2^{+}} + \text{CO}_{3}^{2^{-}} \leftrightarrows \text{Fe}\text{CO}_{3} & -5.31 \\ \text{Fe}^{2^{+}} + \text{H}^{+} + \text{CO}_{3}^{2^{-}} \leftrightarrows \text{Fe}\text{PO}_{4}^{-} & 7.93 \\ \text{H}^{+} + \text{CO}_{3}^{2^{-}} \leftrightarrows \text{Fe}\text{PO}_{4}^{-} & 7.93 \\ \text{H}^{+} + \text{CO}_{3}^{2^{-}} \leftrightarrows \text{H}_{2}\text{CO}_{3} & 16.7 \\ \text{H}^{+} + \text{PO}_{4}^{3^{-}} \leftrightarrows \text{H}_{2}\text{CO}_{3} & 16.7 \\ \text{H}^{+} + \text{PO}_{4}^{3^{-}} \leftrightarrows \text{H}_{2}\text{CO}_{3} & 16.7 \\ \text{H}^{+} + \text{CO}_{3}^{2^{-}} \leftrightarrows \text{H}_{2}\text{CO}_{3} & 16.7 \\ \text{H}^{+} + \text{CO}_{3}^{2^{-}} \leftrightarrows \text{H}_{2}\text{CO}_{3} & 16.7 \\ \text{H}^{+} + \text{PO}_{4}^{3^{-}} \leftrightarrows \text{H}_{3}\text{PO}_{4} & 21.7 \\ \text{H}^{+} + \text{CO}_{3}^{2^{-}} \leftrightarrows \text{H}_{2}\text{CO}_{3} & 16.7 \\ \text{H}^{+} + \text{PO}_{4}^{3^{-}} \backsimeq \text{H}_{3}\text{PO}_{4} & 21.7 \\ \text{H}^{+} + \text{CO}_{3}^{2^{-}} \leftrightarrows \text{H}_{3}\text{PO}_{4} & 21.7 \\ \text{H}^{+} + \text{CO}_{3}^{2^{-}} \backsimeq \text{H}_{3}\text{PO}_{4} & -6.1 \\ \text{Ca}^{2^{+}} + \text{NH}_{3} \backsimeq \text{Ca}\text{NH}_{3}^{2^{+}} & -0.2 \\ \text{Ca}^{2^{+}} + 2\text{NH}_{3} \backsimeq \text{Ca}\text{NH}_{3}^{2^{+}} & -0.2 \\ \text{Ca}^{2^{+}} + 3\text{NH}_{3} \backsimeq \text{Ca}\text{(NH}_{3})_{3}^{2^{+}} & -0.2 \\ \text{Ca}^{2^{+}} + 2\text{NH}_{3} \backsimeq \text{Mg}\text{NH}_{3}^{2^{+}} & -0.08 \\ \text{Mg}^{2^{+}} + 3\text{NH}_{3} \backsimeq \text{Mg}(\text{NH}_{3})_{3}^{2^{+}} & -0.08 \\ \text{Mg}^{2^{+}} + 3\text{NH}_{3} \backsimeq \text{Mg}(\text{NH}_{3})_{3}^{2^{+}} & -0.03 \\ \text{Mg}^{2^{+}} + 4\text{NH}_{3} \backsimeq \text{Mg}(\text{NH}_{3})_{3}^{2^{+}} & -0.04 \\ \text{Mg}^{2^{+}} + 4\text{NH}_{3} \backsimeq \text{Mg}(\text{NH}_{3})_{3}^{2^{+}} & -1.04 \\ \end{array}$	$Ca^{2+} + SO_4^{2-} \Leftrightarrow CaSO_4$	
$\begin{array}{lll} 2H^{+} + PQ_{4}^{3-} \leftrightarrows H_{2}PO_{4}^{-} & 19.53 \\ Fe^{2+} + H_{2}0 \leftrightarrows FeOH^{+} + H^{+} & -8.3 \\ Fe^{2+} + 2H_{2}0 \leftrightarrows Fe(OH)_{2} + 2H^{+} & -18.9 \\ Fe^{2+} + 3H_{2}0 \leftrightarrows Fe(OH)_{3}^{-} + 3H^{+} & -32.0 \\ Fe^{2+} + 4H_{2}0 \leftrightarrows Fe(OH)_{4}^{2-} + 4H^{+} & -46.4 \\ Fe^{2+} + CO_{3}^{-} \leftrightarrows FeCO_{3} & -5.31 \\ Fe^{2+} + H^{+} + CO_{3}^{-} \leftrightarrows FeHCO_{3}^{+} & 13.05 \\ Fe^{2+} + PO_{4}^{3-} \leftrightarrows FeO_{4}^{-} & 7.93 \\ H^{+} + CO_{3}^{2-} \leftrightarrows H_{2}CO_{3} & 16.7 \\ H^{+} + PO_{4}^{3-} \leftrightarrows H_{2}CO_{3} & 16.7 \\ H^{+} + PO_{4}^{3-} \leftrightarrows H_{2}CO_{3} & 16.7 \\ H^{+} + FO_{4}^{3-} \leftrightarrows H_{2}CO_{4} & 21.7 \\ H^{+} + CI^{-} \leftrightarrows HCI & -6.1 \\ H^{+} + SO_{4}^{2-} \leftrightarrows H_{2}SO_{4} & -1.0 \\ Ca^{2+} + NH_{3} \leftrightarrows Ca(NH_{3})_{2}^{2+} & -0.8 \\ Ca^{2+} + 3NH_{3} \leftrightarrows Ca(NH_{3})_{4}^{2+} & -2.7 \\ Mg^{2+} + NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2+} & -0.8 \\ Mg^{2+} + 2NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2+} & -0.08 \\ Mg^{2+} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2+} & -0.08 \\ Mg^{2+} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2+} & -0.08 \\ Mg^{2+} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2+} & -0.08 \\ Mg^{2+} + 4NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2+} & -0.08 \\ Mg$	$Mg^{2+} + CO_3^{2-} \Leftrightarrow MgCO_3$	
$ \begin{array}{llll} Fe^{2+} & + H_20 \leftrightarrows FeOH^+ + H^+ & -8.3 \\ Fe^{2+} & + 2H_20 \leftrightarrows Fe(OH)_2 + 2H^+ & -18.9 \\ Fe^{2+} & + 3H_20 \leftrightarrows Fe(OH)_3^- + 3H^+ & -32.0 \\ Fe^{2+} & + 4H_20 \leftrightarrows Fe(OH)_4^{2-} + 4H^+ & -46.4 \\ Fe^{2+} & + CO_3^{2-} \leftrightarrows FeCO_3 & -5.31 \\ Fe^{2+} & + H^+ & + CO_3^{2-} \leftrightarrows FeHCO_3^+ & 13.05 \\ Fe^{2+} & + H^+ & + CO_3^{2-} \leftrightarrows FePO_4^- & 7.93 \\ H^+ & + CO_3^{2-} \leftrightarrows H_2CO_3 & 16.7 \\ H^+ & + CO_3^{2-} \leftrightarrows H_2CO_3 & 16.7 \\ H^+ & + PO_4^{3-} \leftrightarrows H_2CO_3 & 16.7 \\ H^+ & + PO_4^{3-} \leftrightarrows H_2CO_3 & 16.7 \\ H^+ & + CO_3^{2-} \leftrightarrows H_2CO_3 & 16.7 \\ H^+ & + SO_4^{2-} \leftrightarrows H_2CO_3 & 16.7 \\ H^+ & + SO_4^{2-} \leftrightarrows H_2CO_3 & 16.7 \\ H^+ & + CO_3^{2-} \leftrightarrows H_2CO_3 & 16.7 \\ H^+ & + CO_3^{2-} \leftrightarrows H_2CO_3 & 16.7 \\ H^+ & + CO_3^{2-} \leftrightarrows H_2CO_3 & 16.7 \\ H^- & + CO_3^{2-} \rightarrowtail H_2CO_3 & 16.7 \\ H^- & + CO_3^{2-} \rightarrowtail H_2CO_3 & 16.7 \\ H^- & + CO_3^{2-} \TeX H_2CO_3 & 16.7 \\ H^- & + CO_3^{2-} \TeX H_2CO_3 & 16.7 \\ H^- & + CO_3^{2-} \TeX H_2CO_3 & 16.7 \\ H^- & + CO_3^{2-} \TeX H_2CO_3 & 16.7 \\ H^- & + CO_3^{2-} \TeX H_2CO_3 & 16.7 \\ H^- $	$Mg^2 + H + CO_3^2 \Leftrightarrow MgHCO_3^+$	
$ \begin{array}{llll} Fe^{2+} & + 2H_20 \leftrightarrows Fe(OH)_2 + 2H^+ & -18.9 \\ Fe^{2+} & + 3H_20 \leftrightarrows Fe(OH)_3^- + 3H^+ & -32.0 \\ Fe^{2+} & + 4H_20 \leftrightarrows Fe(OH)_4^{2-} + 4H^+ & -46.4 \\ Fe^{2+} & + CO_3^{2-} \leftrightarrows FeCO_3 & -5.31 \\ Fe^{2+} & + H^+ & + CO_3^{2-} \leftrightarrows FeHCO_3^+ & 13.05 \\ Fe^{2+} & + PO_4^{3-} \leftrightarrows FePO_4^- & 7.93 \\ H^+ & + CO_3^{2-} \leftrightarrows HCO_3^- & 10.3 \\ 2H^+ & + CO_3^{2-} \leftrightarrows H_2CO_3 & 16.7 \\ H^+ & + PO_4^{3-} \leftrightarrows H_2CO_3 & 16.7 \\ H^+ & + PO_4^{3-} \leftrightarrows H_2O_4 & 21.7 \\ H^+ & + CI^- \leftrightarrows HCI & -6.1 \\ H^+ & + SO_4^{2-} \leftrightarrows HSO_4^- & 2.0 \\ 2H^+ & + SO_4^{2-} \leftrightarrows H_2SO_4 & -1.0 \\ Ca^{2+} & + NH_3 \leftrightarrows Ca(NH_3)_2^{2+} & -0.8 \\ Ca^{2+} & + 3NH_3 \leftrightarrows Ca(NH_3)_2^{2+} & -0.8 \\ Ca^{2+} & + 4NH_3 \leftrightarrows Ca(NH_3)_2^{2+} & -2.7 \\ Mg^{2+} & + NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.28 \\ Mg^{2+} & + 2NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.08 \\ Mg^{2+} & + 3NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.08 \\ Mg^{2+} & + 3NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.08 \\ Mg^{2+} & + 3NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.08 \\ Mg^{2+} & + 4NH_3 \circlearrowleft Mg(NH_3)_2^{2+} & -0.08 \\ Mg^{2+} & + 4NH_3 \end{dcases} Mg(NH_3)_2^{2+} & -0.08 \\ Mg^{2+} & + 4NH_3 \circlearrowleft Mg(NH_3)_2^{2+} & $	$2H + PO_4$ $\Leftrightarrow H_2PO_4$	
$\begin{array}{lll} Fe^{2+} & 3H_20 \leftrightarrows Fe(OH)_3^- + 3H^+ & -32.0 \\ Fe^{2+} & 4H_20 \leftrightarrows Fe(OH)_4^{2-} + 4H^+ & -46.4 \\ Fe^{2+} & + CO_3^{2-} \leftrightarrows FeCO_3 & -5.31 \\ Fe^{2+} & + H^+ & + CO_3^{2-} \leftrightarrows FeHCO_3^+ & 13.05 \\ Fe^{2+} & + PO_4^{3-} \leftrightarrows FePO_4^- & 7.93 \\ H^+ & + CO_3^{2-} \leftrightarrows H2CO_3 & 16.7 \\ H^+ & + CO_3^{2-} \leftrightarrows H2CO_3 & 16.7 \\ H^+ & + PO_4^{3-} \leftrightarrows H2CO_3 & 16.7 \\ H^+ & + PO_4^{3-} \leftrightarrows H2CO_3 & 16.7 \\ H^+ & + PO_4^{3-} \leftrightarrows H2CO_3 & 16.7 \\ H^+ & + CI \leftrightarrows HCI & -6.1 \\ H^+ & + CI \hookrightarrow HCI & -6.1 \\ H^+ & + SO_4^{2-} \leftrightarrows H2SO_4 & -1.0 \\ Ca^{2+} & + NH_3 \leftrightarrows CaNH_3^{2+} & -0.2 \\ Ca^{2+} & + 2NH_3 \leftrightarrows Ca(NH_3)_2^{2+} & -0.8 \\ Ca^{2+} & + 3NH_3 \leftrightarrows Ca(NH_3)_2^{2+} & -0.8 \\ Ca^{2+} & + 4NH_3 \leftrightarrows Ca(NH_3)_4^{2+} & -2.7 \\ Mg^{2+} & + NH_3 \leftrightarrows MgNH_3^{2+} & 0.23 \\ Mg^{2+} & + 3NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.08 \\ Mg^{2+} & + 3NH_3 \leftrightarrows Mg(NH_3)_3^{2+} & -0.08 \\ Mg^{2+} & + 3NH_3 \leftrightarrows Mg(NH_3)_3^{2+} & -0.08 \\ Mg^{2+} & + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.08 \\ Mg^{2+} & + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.34 \\ Mg^{2+} & + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.34 \\ Mg^{2+} & + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.34 \\ Mg^{2+} & + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.34 \\ Mg^{2+} & + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.34 \\ Mg^{2+} & + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.34 \\ Mg^{2+} & + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.34 \\ Mg^{2+} & + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -1.04 \\ \end{array}$	$Fe^{2} + H_{2}U \Longrightarrow FeUH' + H'$	
$\begin{array}{lll} Fe^{2+} + 4H_20 \leftrightarrows Fe(OH)_4^{2-} + 4H^+ & -46.4 \\ Fe^{2+} + CO_3^{2-} \leftrightarrows FeCO_3 & -5.31 \\ Fe^{2+} + H^+ + CO_3^{2-} \leftrightarrows FeHCO_3^+ & 13.05 \\ Fe^{2+} + PO_4^{3-} \leftrightarrows FePO_4^- & 7.93 \\ H^+ + CO_3^{2-} \leftrightarrows H2CO_3^- & 10.3 \\ 2H^+ + CO_3^{2-} \leftrightarrows H2CO_3 & 16.7 \\ H^+ + PO_4^{3-} \leftrightarrows HPO_4^{2-} & 12.32 \\ 3H^+ PO_4^{3-} \leftrightarrows H3PO_4 & 21.7 \\ H^+ + CI^- \leftrightarrows HCI & -6.1 \\ H^+ + SO_4^{2-} \leftrightarrows H2SO_4 & 2.0 \\ 2H^+ + SO_4^{2-} \leftrightarrows H2SO_4 & -1.0 \\ Ca^{2+} + NH_3 \leftrightarrows Ca(NH_3)^{2+} & -0.2 \\ Ca^{2+} + 2NH_3 \leftrightarrows Ca(NH_3)^{2+} & -0.8 \\ Ca^{2+} + 3NH_3 \leftrightarrows Ca(NH_3)^{2+} & -2.7 \\ Mg^{2+} + NH_3 \leftrightarrows MgNH_3^{2+} & 0.23 \\ Mg^{2+} + 2NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.08 \\ Mg^{2+} + 3NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.08 \\ Mg^{2+} + 3NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.08 \\ Mg^{2+} + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -0.34 \\ Mg^{2+} + 4NH_3 \leftrightarrows Mg(NH_3)_2^{2+} & -1.04 \\ \end{array}$	$Fe^{-1} + 2H_2O \Longrightarrow Fe(OH)_2 + 2H^2$	
$ \begin{aligned} & \text{Fe}^{2+} + \text{CO}_3^{2-} \leftrightarrows \text{FeCO}_3 \\ & \text{Fe}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{FeHCO}_3^+ \\ & \text{Fe}^{2+} + \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{FePO}_4^- \end{aligned} \qquad .7.93 \\ & \text{Fe}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{FePO}_4^- \end{aligned} \qquad .10.3 \\ & \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H}_2\text{CO}_3 \\ & \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H}_2\text{CO}_3 \end{aligned} \qquad .16.7 \\ & \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{HPO}_4^{2-} \end{aligned} \qquad .12.32 \\ & \text{3H}^+ \text{PO}_4^{3-} \leftrightarrows \text{H}_3\text{PO}_4 \end{aligned} \qquad .21.7 \\ & \text{H}^+ + \text{CI}^- \leftrightarrows \text{HCI} \\ & \text{H}^+ + \text{SO}_4^{2-} \leftrightarrows \text{HSO}_4 \end{aligned} \qquad .20 \\ & \text{2H}^+ + \text{SO}_4^{2-} \leftrightarrows \text{HSO}_4 \end{aligned} \qquad .20 \\ & \text{Ca}^{2+} + \text{NH}_3 \leftrightarrows \text{Ca}(\text{NH}_3)^{2+} \\ & \text{Ca}^{2+} + \text{NH}_3 \leftrightarrows \text{Ca}(\text{NH}_3)^{2+} \end{aligned} \qquad .20 \\ & \text{Ca}^{2+} + 2\text{NH}_3 \leftrightarrows \text{Ca}(\text{NH}_3)^{2+} \\ & \text{Ca}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Ca}(\text{NH}_3)^{2+} \end{aligned} \qquad .23 \\ & \text{Mg}^{2+} + 2\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)^{2+} \\ & \text{Mg}^{2+} + 2\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)^{2+} \\ & \text{Mg}^{2+} + 3\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)^{2+} \\ & \text{Mg}^{2+} + 3\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)^{2+} \\ & \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)^{2+} \\ & \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)^{2+} \\ & \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)^{2+} \end{aligned} \qquad .20 $	$Fe^{-2} + 3H_2U \Longrightarrow Fe(OH)_3 + 3H$	
$ \begin{aligned} & \text{Fe}^{2^{+}} + \text{H}^{+} + \text{CO}_{3}^{2^{-}} \leftrightarrows \text{FeHCO}_{3}^{+} \\ & \text{FePO}_{4}^{-} \\ & \text{FePO}_{4}^{-} \end{aligned} \qquad \begin{array}{c} & \text{13.05} \\ & \text{Fe}^{2^{+}} + \text{PO}_{4}^{3^{-}} \leftrightarrows \text{FePO}_{4}^{-} \\ & \text{10.3} \end{aligned} \\ & \text{H}^{+} + \text{CO}_{3}^{2^{-}} \leftrightarrows \text{HCO}_{3}^{-} \\ & \text{10.3} \end{aligned} \\ & 2\text{H}^{+} + \text{CO}_{3}^{2^{-}} \leftrightarrows \text{H2CO}_{3} \\ & \text{16.7} \end{aligned} \qquad \begin{array}{c} & \text{16.7} \\ & \text{16.7} \\ & \text{12.32} \end{aligned} \\ & 3\text{H}^{+} \text{PO}_{4}^{3^{-}} \leftrightarrows \text{H2O}_{4}^{2^{-}} \\ & \text{12.32} \end{aligned} \\ & 3\text{H}^{+} \text{PO}_{4}^{3^{-}} \leftrightarrows \text{H2O}_{4}^{-} \\ & \text{12.32} \end{aligned} \\ & 3\text{H}^{+} \text{PO}_{4}^{3^{-}} \leftrightarrows \text{H2O}_{4}^{-} \\ & \text{12.32} \end{aligned} \\ & 3\text{H}^{+} \text{PO}_{4}^{3^{-}} \leftrightarrows \text{H2O}_{4}^{-} \\ & \text{12.32} \end{aligned} \\ & 3\text{H}^{+} \text{PO}_{4}^{3^{-}} \leftrightarrows \text{H2O}_{4}^{-} \\ & \text{12.32} \end{aligned} \\ & 2\text{11.7} \\ & \text{H}^{+} + \text{SO}_{4}^{2^{-}} \leftrightarrows \text{H2O}_{4}^{-} \\ & \text{2.0} \end{aligned} \\ & 2\text{H}^{+} + \text{SO}_{4}^{2^{-}} \leftrightarrows \text{H2O}_{4}^{-} \\ & \text{10.0} \end{aligned} \\ & \text{Ca}^{2^{+}} + \text{NH}_{3} \leftrightarrows \text{CaNH}_{3}^{2^{+}} \\ & \text{10.0} \end{aligned} \\ & \text{Ca}^{2^{+}} + \text{NH}_{3} \leftrightarrows \text{CaNH}_{3}^{2^{+}} \\ & \text{10.23} \end{aligned} \\ & \text{Ca}^{2^{+}} + \text{3NH}_{3} \leftrightarrows \text{Ca(NH}_{3})_{2}^{2^{+}} \\ & \text{10.23} \\ & \text{Mg}^{2^{+}} + \text{3NH}_{3} \leftrightarrows \text{Mg(NH}_{3})_{2}^{2^{+}} \\ & \text{10.08} \end{aligned} \\ & \text{Mg}^{2^{+}} + \text{2NH}_{3} \leftrightarrows \text{Mg(NH}_{3})_{2}^{2^{+}} \\ & \text{10.08} \end{aligned} $	$Fe^{-} + 4H_{2}U \implies Fe(UH)_{4}^{-} + 4H^{-}$	
$ \begin{aligned} & \text{Fe}^{2+} + \text{PO}_4^{3-} \leftrightarrows \text{FePO}_4^{-} \\ & \text{H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{HCO}_3^{-} \\ & \text{2H}^+ + \text{CO}_3^{2-} \leftrightarrows \text{H2CO}_3 \\ & \text{16.7} \\ & \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H2CO}_3 \\ & \text{16.7} \\ & \text{H}^+ + \text{PO}_4^{3-} \leftrightarrows \text{H3PO}_4 \\ & \text{12.32} \\ & \text{3H}^+ \text{PO}_4^{3-} \leftrightarrows \text{H3PO}_4 \\ & \text{H}^+ + \text{Cl}^- \leftrightarrows \text{HCl} \\ & \text{-6.1} \\ & \text{H}^+ + \text{SO}_4^{2-} \leftrightarrows \text{HSO}_4^{-} \\ & \text{20} \\ & \text{2H}^+ + \text{SO}_4^{2-} \leftrightarrows \text{H2SO}_4 \\ & \text{-1.0} \\ & \text{Ca}^{2+} + \text{NH}_3 \leftrightarrows \text{Ca}(\text{NH}_3)_2^{2+} \\ & \text{-0.2} \\ & \text{Ca}^{2+} + 2\text{NH}_3 \leftrightarrows \text{Ca}(\text{NH}_3)_2^{2+} \\ & \text{-0.8} \\ & \text{Ca}^{2+} + 3\text{NH}_3 \leftrightarrows \text{Ca}(\text{NH}_3)_3^{2+} \\ & \text{-2.7} \\ & \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)_2^{2+} \\ & \text{-0.08} \\ & \text{Mg}^{2+} + 2\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)_2^{2+} \\ & \text{-0.08} \\ & \text{Mg}^{2+} + 3\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)_2^{2+} \\ & \text{-0.08} \\ & \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)_2^{2+} \\ & \text{-0.08} \\ & \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)_2^{2+} \\ & \text{-0.08} \\ & \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)_2^{2+} \\ & \text{-0.08} \\ & \text{-0.34} \\ & \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)_2^{2+} \\ & \text{-0.04} \end{aligned}$	$Fe^{-} + CO_3^{-} \Rightarrow FeCO_3$	
$\begin{array}{lll} H^{+} + PO_{4}^{3^{-}} \leftrightarrows HPO_{4}^{2^{-}} & 12.32 \\ 3H^{+} PO_{4}^{3^{-}} \leftrightarrows H_{3}PO_{4} & 21.7 \\ H^{+} + CI^{-} \leftrightarrows HCI & -6.1 \\ H^{+} + SO_{4}^{2^{-}} \leftrightarrows HSO_{4}^{-} & 2.0 \\ 2H^{+} + SO_{4}^{2^{-}} \leftrightarrows H2SO_{4} & -1.0 \\ Ca^{2^{+}} + NH_{3} \leftrightarrows CaNH_{3}^{2^{+}} & -0.2 \\ Ca^{2^{+}} + 2NH_{3} \leftrightarrows Ca(NH_{3})_{2}^{2^{+}} & -0.8 \\ Ca^{2^{+}} + 3NH_{3} \leftrightarrows Ca(NH_{3})_{4}^{2^{+}} & -2.7 \\ Mg^{2^{+}} + NH_{3} \leftrightarrows MgNH_{3}^{2^{+}} & 0.23 \\ Mg^{2^{+}} + 2NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2^{+}} & -0.08 \\ Mg^{2^{+}} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{3}^{2^{+}} & -0.08 \\ Mg^{2^{+}} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{4}^{2^{+}} & -0.34 \\ Mg^{2^{+}} + 4NH_{3} \leftrightarrows Mg(NH_{3})_{4}^{2^{+}} & -0.34 \\ Mg^{2^{+}} + 4NH_{3} \leftrightarrows Mg(NH_{3})_{4}^{2^{+}} & -1.04 \\ \end{array}$	$F_{0}^{2+} + F_{0}^{3-} \leftarrow F_{0}^{2-} = F_{0}^{2+} + F_{0}^{3-} \leftarrow F_{0}^{3-} = F_{$	
$\begin{array}{lll} H^{+} + PO_{4}^{3^{-}} \leftrightarrows HPO_{4}^{2^{-}} & 12.32 \\ 3H^{+} PO_{4}^{3^{-}} \leftrightarrows H_{3}PO_{4} & 21.7 \\ H^{+} + CI^{-} \leftrightarrows HCI & -6.1 \\ H^{+} + SO_{4}^{2^{-}} \leftrightarrows HSO_{4}^{-} & 2.0 \\ 2H^{+} + SO_{4}^{2^{-}} \leftrightarrows H2SO_{4} & -1.0 \\ Ca^{2^{+}} + NH_{3} \leftrightarrows CaNH_{3}^{2^{+}} & -0.2 \\ Ca^{2^{+}} + 2NH_{3} \leftrightarrows Ca(NH_{3})_{2}^{2^{+}} & -0.8 \\ Ca^{2^{+}} + 3NH_{3} \leftrightarrows Ca(NH_{3})_{4}^{2^{+}} & -2.7 \\ Mg^{2^{+}} + NH_{3} \leftrightarrows MgNH_{3}^{2^{+}} & 0.23 \\ Mg^{2^{+}} + 2NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2^{+}} & -0.08 \\ Mg^{2^{+}} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{3}^{2^{+}} & -0.08 \\ Mg^{2^{+}} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{4}^{2^{+}} & -0.34 \\ Mg^{2^{+}} + 4NH_{3} \leftrightarrows Mg(NH_{3})_{4}^{2^{+}} & -0.34 \\ Mg^{2^{+}} + 4NH_{3} \leftrightarrows Mg(NH_{3})_{4}^{2^{+}} & -1.04 \\ \end{array}$	$\begin{array}{c} re + rO_4 \implies rerO_4 \\ u + rO_2 - \leftarrow uCO_{-} \end{array}$	
$\begin{array}{lll} H^{+} + PO_{4}^{3^{-}} \leftrightarrows HPO_{4}^{2^{-}} & 12.32 \\ 3H^{+} PO_{4}^{3^{-}} \leftrightarrows H_{3}PO_{4} & 21.7 \\ H^{+} + CI^{-} \leftrightarrows HCI & -6.1 \\ H^{+} + SO_{4}^{2^{-}} \leftrightarrows HSO_{4}^{-} & 2.0 \\ 2H^{+} + SO_{4}^{2^{-}} \leftrightarrows H2SO_{4} & -1.0 \\ Ca^{2^{+}} + NH_{3} \leftrightarrows CaNH_{3}^{2^{+}} & -0.2 \\ Ca^{2^{+}} + 2NH_{3} \leftrightarrows Ca(NH_{3})_{2}^{2^{+}} & -0.8 \\ Ca^{2^{+}} + 3NH_{3} \leftrightarrows Ca(NH_{3})_{4}^{2^{+}} & -2.7 \\ Mg^{2^{+}} + NH_{3} \leftrightarrows MgNH_{3}^{2^{+}} & 0.23 \\ Mg^{2^{+}} + 2NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2^{+}} & -0.08 \\ Mg^{2^{+}} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{3}^{2^{+}} & -0.08 \\ Mg^{2^{+}} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{4}^{2^{+}} & -0.34 \\ Mg^{2^{+}} + 4NH_{3} \leftrightarrows Mg(NH_{3})_{4}^{2^{+}} & -0.34 \\ Mg^{2^{+}} + 4NH_{3} \leftrightarrows Mg(NH_{3})_{4}^{2^{+}} & -1.04 \\ \end{array}$	$ \begin{array}{ccc} \Pi & + & \text{CO}_3 & \rightarrow & \text{HCO}_3 \\ 2\Pi^+ & + & \text{CO}_2^- & \leftarrow & \text{HCO}_3 \end{array} $	
$\begin{array}{lll} 3H^{+} \ PO_{4}^{\ 3-} \leftrightarrows \ H_{3}PO_{4} & 21.7 \\ H^{+} \ + \ Cl^{-} \leftrightarrows \ HCl & -6.1 \\ H^{+} \ + \ SO_{4}^{\ 2-} \leftrightarrows \ HSO_{4}^{-} & 2.0 \\ 2H^{+} \ + \ SO_{4}^{\ 2-} \leftrightarrows \ H_{2}SO_{4} & -1.0 \\ Ca^{2+} \ + \ NH_{3} \leftrightarrows \ Ca(NH_{3})^{2+} & -0.2 \\ Ca^{2+} \ + \ 2NH_{3} \leftrightarrows \ Ca(NH_{3})^{2+} & -0.8 \\ Ca^{2+} \ + \ 3NH_{3} \leftrightarrows \ Ca(NH_{3})^{2+} & -1.6 \\ Ca^{2+} \ + \ 4NH_{3} \leftrightarrows \ Ca(NH_{3})^{2+} & -2.7 \\ Mg^{2+} \ + \ NH_{3} \leftrightarrows \ Mg(NH_{3})^{2+} & 0.23 \\ Mg^{2+} \ + \ 2NH_{3} \leftrightarrows \ Mg(NH_{3})^{2+} & -0.08 \\ Mg^{2+} \ + \ 3NH_{3} \leftrightarrows \ Mg(NH_{3})^{2+} & -0.08 \\ Mg^{2+} \ + \ 4NH_{3} \leftrightarrows \ Mg(NH_{3})^{2+} & -0.34 \\ Mg^{2+} \ + \ 4NH_{3} \leftrightarrows \ Mg(NH_{3})^{2+} & -0.34 \\ Mg^{2+} \ + \ 4NH_{3} \leftrightarrows \ Mg(NH_{3})^{2+} & -1.04 \\ \end{array}$	$\begin{array}{ccc} 211 & + & CO_3 & \rightarrow & \Pi_2CO_3 \\ H^+ & DO & ^{3-} \leftarrow & DDO & ^{2-} \end{array}$	
$\begin{array}{lll} H^{+} + SO_{4}^{2-} \leftrightarrows HSO_{4}^{-} & 2.0 \\ 2H^{+} + SO_{4}^{2-} \leftrightarrows H_{2}SO_{4} & -1.0 \\ Ca^{2+} + NH_{3} \leftrightarrows CaNH_{3}^{2+} & -0.2 \\ Ca^{2+} + 2NH_{3} \leftrightarrows Ca(NH_{3})_{2}^{2+} & -0.8 \\ Ca^{2+} + 3NH_{3} \leftrightarrows Ca(NH_{3})_{3}^{2+} & -1.6 \\ Ca^{2+} + 4NH_{3} \leftrightarrows Ca(NH_{3})_{4}^{2+} & -2.7 \\ Mg^{2+} + NH_{3} \leftrightarrows MgNH_{3}^{2+} & 0.23 \\ Mg^{2+} + 2NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2+} & -0.08 \\ Mg^{2+} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{3}^{2+} & -0.34 \\ Mg^{2+} + 4NH_{3} \leftrightarrows Mg(NH_{3})_{4}^{2+} & -0.34 \\ Mg^{2+} + 4NH_{3} \leftrightarrows Mg(NH_{3})_{4}^{2+} & -1.04 \\ \end{array}$	$3H^+ PO \stackrel{3-}{\leftarrow} H PO$	
$\begin{array}{lll} H^{+} + SO_{4}^{2-} \leftrightarrows HSO_{4}^{-} & 2.0 \\ 2H^{+} + SO_{4}^{2-} \leftrightarrows H_{2}SO_{4} & -1.0 \\ Ca^{2+} + NH_{3} \leftrightarrows CaNH_{3}^{2+} & -0.2 \\ Ca^{2+} + 2NH_{3} \leftrightarrows Ca(NH_{3})_{2}^{2+} & -0.8 \\ Ca^{2+} + 3NH_{3} \leftrightarrows Ca(NH_{3})_{3}^{2+} & -1.6 \\ Ca^{2+} + 4NH_{3} \leftrightarrows Ca(NH_{3})_{4}^{2+} & -2.7 \\ Mg^{2+} + NH_{3} \leftrightarrows MgNH_{3}^{2+} & 0.23 \\ Mg^{2+} + 2NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2+} & -0.08 \\ Mg^{2+} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{3}^{2+} & -0.34 \\ Mg^{2+} + 4NH_{3} \leftrightarrows Mg(NH_{3})_{4}^{2+} & -0.34 \\ Mg^{2+} + 4NH_{3} \leftrightarrows Mg(NH_{3})_{4}^{2+} & -1.04 \\ \end{array}$	H ⁺ + Cl ⁻ ← HCl	
$\begin{array}{lll} 2H^{+} + SO_{4}^{2-} \leftrightarrows H_{2}SO_{4} & -1.0 \\ Ca^{2+} + NH_{3} \leftrightarrows CaNH_{3}^{2+} & -0.2 \\ Ca^{2+} + 2NH_{3} \leftrightarrows Ca(NH_{3})_{2}^{2+} & -0.8 \\ Ca^{2+} + 3NH_{3} \leftrightarrows Ca(NH_{3})_{3}^{2+} & -1.6 \\ Ca^{2+} + 4NH_{3} \leftrightarrows Ca(NH_{3})_{4}^{2+} & -2.7 \\ Mg^{2+} + NH_{3} \leftrightarrows MgNH_{3}^{2+} & 0.23 \\ Mg^{2+} + 2NH_{3} \leftrightarrows Mg(NH_{3})_{2}^{2+} & -0.08 \\ Mg^{2+} + 3NH_{3} \leftrightarrows Mg(NH_{3})_{3}^{2+} & -0.34 \\ Mg^{2+} + 4NH_{3} \leftrightarrows Mg(NH_{3})_{4}^{2+} & -1.04 \\ \end{array}$	$H^+ + SO^2 - \leftrightarrows HSO^-$	
$\begin{array}{lll} \text{Ca}^{2^{+}} + \text{NH}_{3} \leftrightarrows \text{CaNH}_{3}^{2^{+}} & -0.2 \\ \text{Ca}^{2^{+}} + 2\text{NH}_{3} \leftrightarrows \text{Ca}(\text{NH}_{3})_{2}^{2^{+}} & -0.8 \\ \text{Ca}^{2^{+}} + 3\text{NH}_{3} \leftrightarrows \text{Ca}(\text{NH}_{3})_{3}^{2^{+}} & -1.6 \\ \text{Ca}^{2^{+}} + 4\text{NH}_{3} \leftrightarrows \text{Ca}(\text{NH}_{3})_{4}^{2^{+}} & -2.7 \\ \text{Mg}^{2^{+}} + \text{NH}_{3} \leftrightarrows \text{MgNH}_{3}^{2^{+}} & 0.23 \\ \text{Mg}^{2^{+}} + 2\text{NH}_{3} \leftrightarrows \text{Mg}(\text{NH}_{3})_{2}^{2^{+}} & -0.08 \\ \text{Mg}^{2^{+}} + 3\text{NH}_{3} \leftrightarrows \text{Mg}(\text{NH}_{3})_{3}^{2^{+}} & -0.34 \\ \text{Mg}^{2^{+}} + 4\text{NH}_{3} \leftrightarrows \text{Mg}(\text{NH}_{3})_{4}^{2^{+}} & -1.04 \\ \end{array}$	$2H^+ + SO_2^{2-} \leftarrow H_2SO_2$	
$\begin{array}{lll} \text{Ca}^{2^{+}} + 2\text{NH}_{3} \leftrightarrows \text{Ca}(\text{NH}_{3})_{2}^{2^{+}} & -0.8 \\ \text{Ca}^{2^{+}} + 3\text{NH}_{3} \leftrightarrows \text{Ca}(\text{NH}_{3})_{3}^{2^{+}} & -1.6 \\ \text{Ca}^{2^{+}} + 4\text{NH}_{3} \leftrightarrows \text{Ca}(\text{NH}_{3})_{4}^{2^{+}} & -2.7 \\ \text{Mg}^{2^{+}} + \text{NH}_{3} \leftrightarrows \text{Mg}\text{NH}_{3}^{2^{+}} & 0.23 \\ \text{Mg}^{2^{+}} + 2\text{NH}_{3} \leftrightarrows \text{Mg}(\text{NH}_{3})_{2}^{2^{+}} & -0.08 \\ \text{Mg}^{2^{+}} + 3\text{NH}_{3} \leftrightarrows \text{Mg}(\text{NH}_{3})_{3}^{2^{+}} & -0.34 \\ \text{Mg}^{2^{+}} + 4\text{NH}_{3} \leftrightarrows \text{Mg}(\text{NH}_{3})_{4}^{2^{+}} & -1.04 \\ \end{array}$	$Ca^{2+} + NH_1 \leftrightharpoons CaNH_2^{2+}$	
$\begin{array}{lll} \text{Ca}^{2+} + 3\text{NH}_3 \leftrightarrows \text{Ca}(\text{NH}_3)_3^{2+} & -1.6 \\ \text{Ca}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Ca}(\text{NH}_3)_4^{2+} & -2.7 \\ \text{Mg}^{2+} + \text{NH}_3 \leftrightarrows \text{Mg}\text{NH}_3^{2+} & 0.23 \\ \text{Mg}^{2+} + 2\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)_2^{2+} & -0.08 \\ \text{Mg}^{2+} + 3\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)_3^{2+} & -0.34 \\ \text{Mg}^{2+} + 4\text{NH}_3 \leftrightarrows \text{Mg}(\text{NH}_3)_4^{2+} & -1.04 \\ \end{array}$	$Ca^{2+} + 2NH_2 \leftrightharpoons Ca(NH_2)_2^{2+}$	
$\begin{array}{lll} \text{Ca}^{2^{+}} + 4\text{NH}_{3} \leftrightarrows \text{Ca}(\text{NH}_{3})_{4}^{2^{+}} & -2.7 \\ \text{Mg}^{2^{+}} + \text{NH}_{3} \leftrightarrows \text{Mg}\text{NH}_{3}^{2^{+}} & 0.23 \\ \text{Mg}^{2^{+}} + 2\text{NH}_{3} \leftrightarrows \text{Mg}(\text{NH}_{3})_{2}^{2^{+}} & -0.08 \\ \text{Mg}^{2^{+}} + 3\text{NH}_{3} \leftrightarrows \text{Mg}(\text{NH}_{3})_{3}^{2^{+}} & -0.34 \\ \text{Mg}^{2^{+}} + 4\text{NH}_{3} \leftrightarrows \text{Mg}(\text{NH}_{3})_{4}^{2^{+}} & -1.04 \end{array}$	$Ca^{2+} + 3NH_3 \Leftrightarrow Ca(NH_3)_2^{2+}$	
$Mg^{2^+} + NH_3 \leftrightharpoons MgNH_3^{2^+}$ 0.23 $Mg^{2^+} + 2NH_3 \leftrightharpoons Mg(NH_3)_2^{2^+}$ -0.08 $Mg^{2^+} + 3NH_3 \leftrightharpoons Mg(NH_3)_3^{2^+}$ -0.34 $Mg^{2^+} + 4NH_3 \leftrightharpoons Mg(NH_3)_4^{2^+}$ -1.04	$Ca^{2+} + 4NH_3 \leftrightharpoons Ca(NH_3)_4^{2+}$	
$Mg^{2+} + 2NH_3 \leftrightharpoons Mg(NH_3)_2^{2+}$ -0.08 $Mg^{2+} + 3NH_3 \leftrightharpoons Mg(NH_3)_3^{2+}$ -0.34 $Mg^{2+} + 4NH_3 \leftrightharpoons Mg(NH_3)_4^{2+}$ -1.04	$Mo^{2+} + NH_3 \leftrightharpoons MoNH_3^{2+}$	
$Mg^{2^+} + 3NH_3 = Mg(NH_3)_3^{2^+}$ -0.34 $Mg^{2^+} + 4NH_3 = Mg(NH_3)_4^{2^+}$ -1.04	$Mg^{2+} + 2NH_3 \Leftrightarrow Mg(NH_3)_2^{2+}$	
$Mg^{2+} + 4NH_3 \leftrightharpoons Mg(NH_3)_4^{2+}$ -1.04	$Mg^{2+} + 3NH_3 \leftrightharpoons Mg(NH_3)_3^{2+}$	
$H^{+} + NH_{3} \Rightarrow NH_{4}^{+}$ 9.26	$Mg^{2+} + 4NH_3 \Leftrightarrow Mg(NH_3)_4^{2+}$	
	$H^+ + NH_3 \leftrightharpoons NH_4^+$	9.26

^b The range of total ammonium (NH₃ plus NH₄⁺) concentrations tested is shown.

culture flasks. It can be seen (Table 4) that the results from COMICS and MINTEQ were in general agreement. Table 5 summarizes the percent distribution of the major components as computed by MINTEQ.

The medium was examined by varying the concentration of one constituent while holding the concentration of all other medium components constant. Once the concentration

TABLE 4. Computed medium composition

	log activity			
Chemical species	MINTEQ	COMICS		
NH ₄ ⁺	-2.59	-2.61		
K ⁺	-2.09	-2.12		
Ca ²⁺	-4.53	-2.12 -4.53		
Mg ²⁺	-3.39	-3.31		
Na ⁺	-2.29	-2.32		
Fe ²⁺	-18.01	-2.32 -8.10		
Fe ³⁺	-19.04	-6.10 "		
CO ₃ ²⁻	-4.66			
PO ₄ ³⁻	-6.55	-7.21		
SO ₄ ²⁻	-2.74	-2.89		
Cl ⁻	-3.67	-3.70		
HPO ₄ ²⁻	-2.70	-3.39		
H ₂ PO ₄	-2.70 -4.00	-3.39 -4.68		
$NH_3 (aq)^b$	-3.33	-3.37		
NH ₄ SO ₄	-3.33 -4.22	-3.37		
MgOH ⁺				
MgCO ₃ (aq)	-6.67 -5.07	-6.23 -5.55		
MgHCO ₃ (aq)	-5.07 -5.15	-5.55 -4.90		
MgSO ₄ (aq)		-4.90 -3.84		
	-3.88			
MgPO ₄ ⁻	-3.34	-3.93 -6.51		
MgH ₂ PO ₄ ⁺	-5.87			
MgHPO ₄ (aq)	-3.21	-4.22		
CaOH+	-8.63	-8.63		
CaHCO ₃ ⁺	-6.34	-5.85		
CaCO ₃ (aq)	-6.03	-5.75		
CaSO ₄ (aq)	-4.96	-5.11		
CaHPO ₄ (aq)	-4.49	-5.24 5.24		
CaPO ₄ ⁻	-4.62	-5.24		
CaH ₂ PO ₄ ⁺ NaCO ₃ ⁻	-7.12 5.69	-7.84 5.47		
NaHCO ₃ (aq)	-5.68 5.27	-5.47		
NaSO ₄	-5.37	-7.48		
	-4.33 -4.70	-4.49 -4.53		
NaHPO₄¯ KSO₄¯	-4.70 -3.99	-4.35 -4.05		
	-3.99 -4.50			
KHPO₄ ⁻ FeOH ⁺		-4.44 7.00		
Fe(OH) ₃	-19.01	-7.90		
	-23.51	-14.60		
FeSO ₄ (aq) FeH ₂ PO ₄ ⁺	-18.50	-8.79		
$Fe(OH)_2$ (aq)	-19.30 -21.58	-10.11 -10.00		
FeHPO ₄ (aq)				
FeOH ²⁺	-17.11	-7.91		
	-12.73 -16.31	_		
FeHPO ₄ ⁺		_		
FeSO ₄ ⁺ FeCl ²⁺	-17.86	_		
FeCl ₂ ⁺	-21.23 -24.26	_		
	-24.26 -28.93			
FeCl ₃ (aq)		_		
Fe(OH) (og)	-7.71 -7.14			
Fe(OH) -	-7.14 -6.64	_		
Fe(OH) ₄ ⁻ FeH ₂ PO ₄ ²⁺	-6.64 -17.61	_		
Fe(SO ₄) ₂	-17.61	_		
$Fe_2(OH)_2^{4+}$	-19.11			
1 63(011)3	-24.03			
Fe ₃ (OH) ₄ ⁵⁺	$-29.42 \\ -2.83$	-2.62		
HCO ₃ ⁻	-2.83 -4.98			
H_2CO_3 (aq)		-4.66 -9.39		
HSO ₄	-9.26	-9.39		

^a —, Computation was not performed.

TABLE 5. Distribution of medium components

Component	Species	% Distribution			
NH ₄ ⁺	NH ₄ ⁺	85.2			
	NH ₃ (aq)"	12.9			
	NH ₄ SO ₄	1.9			
K ⁺	K ⁺	98.4			
	KSO₄⁻	1.2			
Ca ²⁺	Ca ²⁺	42.0			
	CaHPO ₄ (aq)	25.7			
	CaPO ₄	22.4			
	CaSO ₄ (aq)	8.7			
Mg ²⁺	Mg ²⁺	35.9			
	$MgPO_4^-$	26.2)			
	MgHPO ₄ (aq)	30.4			
	MgSO ₄ (aq)	6.6			
Na ⁺	Na ⁺	98.6			
Fe ²⁺	Fe ²⁺	17.5			
	FeOH ⁺	1.1			
	FeHPO ₄ (aq)	77.7			
	FeSO ₄ (aq)	3.1			
Cl ⁻	Cl	100.0			
PO ₄ ³⁻	HPO ₄ ²⁻	72.6			
	$H_2PO_4^-$	2.3			
	$MgPO_4^-$	10.5			
	MgHPO₄ (aq)	12.2			
SO_4^{2-}	SO ₄ ²⁻	89.8			
	MgSO ₄ (aq)	3.5			
	NaSO ₄ -	1.4			
	KSO₄ [−]	3.1			
_	NH ₄ SO ₄ -	1.8			
CO_3^{2-}	CO_3^{2-}	2.2			
	HCO ₃ -	95.8			
Fe ³⁺	Fe(OH) ₂ ⁺	6.3			
	$Fe(OH)_3$ (aq)	20.0			
	Fe(OH) ₄	73.7			

^a aq, Aqueous.

of one medium constituent was validated, the concentration of another was varied. The order in which the constituents were tested was Fe^{2+} , Mg^{2+} , Ca^{2+} , CO_3^{2-} , and PO_4^{3-} . Table 6 shows the various combinations of nutrients and the specific growth rates measured. The results showed that the proposed concentrations of the medium constituents should not limit the growth of N. europaea and that the highest concentration (250 mM) of CaCl₂ · 2H₂O tested retarded its growth. It was observed that high levels of phosphate (>5 mM) and carbonate (>6 mM) buffers at higher pH (>8.8) caused marked precipitation in the medium. This observation is in general agreement with the computed saturation indices (9). The saturation indices for calcite and dolomite increased from -0.3 (undersaturation) at pH 8.75 to +0.1(supersaturation) at pH 9.0 and from -0.2 at pH 8.5 to +0.6at pH 8.75, respectively. The possibility of apatite precipitation in the proposed medium was indicated by computation, but precipitates were not observed in solution except after several days. Precipitate formation did not occur in any sample during the period when growth rates were determined. In this experiment, an extremely small number of organisms were introduced into the medium so that adsorption of metals onto bacterial cells was minimal in the early stage of growth. To summarize the experimental conditions, the pH was relatively constant, precipitation and adsorption were minimal, and chemical speciation was approximately fixed in the early stage of growth. Under these conditions, the initial medium conditions can be defined by a simple chemical equilibrium model such as COMICS. In a more complex medium, in which the sorption characteristics of

^b aq, Aqueous.

1104 SATO ET AL. Appl. Environ. Microbiol.

TABLE 6. Various compositons of the medium" and the specific growth rates measured

Constituents varied	Phosphate buffer (mM)	Carbonate buffer (mM)	$CaCl_2 \cdot 2H_2O$ (μ M)	$\begin{array}{c} MgSO_4 + 7H_2O \\ (mM) \end{array}$	FeSO ₄ · 7H ₂ O (µM)	Initial pH	μ (day ⁻¹)
Iron and calcium	20	12	12.5	3	0.18	8.4	1.9
non and calcium	20	1-	12.5		0.36	8.4	1.9
			12.5		0.90	8.4	2.0
			12.5		1.80	8.4	2.0
			25		0.18	8.4	2.1
			25		0.36	8.4	$2.0 (2.4)^b$
			25		0.90	8.4	2.2
			25		1.80	8.4	2.0
			62.5		0.18	8.5	2.0
			62.5		0.36	8.5	2.1
			62.5		0.90	8.4	2.0
			62.5		1.80	8.5	2.0
					0.18	8.4	1.8
			125		0.36	8.5	2.0 (2.2)
			125		0.90	8.5	2.0 (2.2)
			125			8.3 8.4	2.0
			125		1.80	8.4	2.1
Magnesium and calcium	20	12	62.5	1	0.36	8.4	2.2
			62.5	2		8.4	2.2
			62.5	3		8.4	2.4 (2.0)
			62.5	4		8.4	2.2
			125	0.5		8.5	2.1
			125	1		8.5	2.3
			125	2		8.5	2.2
			125	3		8.5	2.2 (2.0)
			125	4		8.4	2.0
			250	0.5		8.5	1.3
			250 250	1		8.5	1.8
			250 250	2		8.4	1.9
				3		8.4	1.8
			250 250	4		8.4	1.6
			230	4		0.4	1.0
Phosphate and carbonate buffers	10	3	125	2	0.36	8.0	2.1
riiospilate and caroonate ouners	10	6	123	-	0.00	8.3	2.3 (2.1)
	10	12				8.6	2.2
	10	18				8.7	2.2
	10	24				9.0	2.2
	20	3				8.0	2.2
	20	6				8.3	2.2
						8.4	2.3
	20	12				8.6	2.2
	20	18				8.8	2.1
	20	24				8.2	2.1
	30	6				8.4	2.2
	30	12					
	30	18				8.7	2.1
	30	24				8.8	2.1
Phosphate buffer	2.5	6	125	2	0.36	8.3	1.9
rnospnate buller	5°	6°	125°	$\overline{2}^{c}$	0.36°	8.3	2.1

[&]quot; For each variation studied, the concentrations of the other constituents were held constant and are shown only in the first line for each section. For all experiments (n=42), $\overline{\chi}=2.1$, \pm 0.1 day 1 (standard deviation) for specific growth rate. Data from the media containing 250 μ M CaCl₂ · 2H₂O were not used to calculate the mean or standard deviation because this high concentration retarded growth.

medium components onto particulate matter and bacterial cells are important, defining the medium becomes more difficult and requires a more sophisticated model such as MINTEQ. Because sorption trends are dependent on the characteristics of the metals, ligands, and particulate matter present in the medium (4, 34), a great deal of effort may be required to obtain the necessary input data. Although there has been considerable controversy over the effect of particulate matter on the growth of *N. europaea* (7, 13), there is an advantage to using a clear rather than a suspended medium

in simplifying measurement of the chemical equilibria of the medium.

The presence of adequate concentrations of substrate and organisms is important in obtaining a high and consistent growth rate. There is now an immense body of literature on the effects of total ammonium concentration on nitrifying bacteria (26). Substrate and product inhibitions occur at high concentrations. Unionized ammonia and nitrous acid are more toxic than their ionized forms (3). The levels of substrate which have been reported to inhibit ammonia

^b Numbers in parentheses indicate replicate experiment.

^c These concentrations are proposed for the medium.

FIG. 1. Nitrite formation during growth of *N. europaea*. The medium contained 4% inoculum and 7.8 mM total ammonium. Inset: Logarithmic plot of viable cells and nitrite concentration during the growth of *N. europaea* (reproduced from reference 8).

oxidation are >75 mM total ammonium (>2.1 mM ammonia) at pH 7.7 (19), 0.71 to 10.7 mM ammonia (3), and >0.71 mM ammonia (21). The wide range of toxicities reported is primarily due to different test conditions (i.e., Nitrosomonas species, medium, pH, temperature). To assess the effect of total ammonium, several batch experiments were conducted in which the initial concentration of total ammonium was varied from 0 to 263 mM (40 mM ammonia). Results from several batch runs indicated that N. europaea could tolerate high total ammonium concentrations. Growth was not inhibited by total ammonium concentrations of up to 71 mM (10.7 mM ammonia), but a total ammonium concentration of 263 mM (40 mM ammonia) reduced the specific growth rate significantly. The results also indicated that the specific growth rate was weakly dependent on the total ammonium concentration in the range between 1.4 and 71 mM. Theoretical calculations indicate that the concentration of unionized nitrous acid in the medium should not increase to the toxic levels (16 to 200 µM) reported by Anthonisen et al. (3) during the period when growth rates are determined if the organisms are grown at ≤7.1 mM total ammonium. At higher concentrations, however, unionized nitrous acid may reach toxic concentrations in the later stages of growth.

It has been shown that the number of nitrifying bacteria present in a system influences the nitrification rate (5, 26, 31, 35). In the present experiment, an extremely small number of organisms were introduced into the medium, and thus accurate determination of the number of organisms was difficult. To simplify the technique, it was defined in terms of fraction of inoculum volume (inoculum-to-total-culture volume ratio), F, where F equals the inoculum volume transferred (in milliliters) divided by the total culture volume (in milliliters).

To investigate the influence of inoculum volume on the growth of N. europaea, experiments were performed with total ammonium concentrations between 0 and 7.8 mM (0 to 110 mg/liter as N). Figure 1 shows a logarithmic plot of nitrite formation by N. europaea (F = 0.04) in a medium

containing 7.8 mM total ammonium. The inset is a reproduction of the plot of viable N. europaea cells and nitrite concentration reported by Engel and Alexander (8), which shows a good correspondence between nitrite formation and viable cell count during the growth of N. europaea. The effects of both total ammonium concentration and inoculum volume on the specific growth rate, μ, are shown in Fig. 2. In a control culture containing no ammonium, no growth was evident. The specific growth rate increased as the inoculum volume fraction, F, was increased. At an inoculum volume fraction of 0.04 and a total ammonium concentration of 7.8 mM, the specific growth rate reached $3.0 \,\mathrm{day^{-1}}$ (Fig. 1). This is a considerably higher value than any previously reported for the growth of Nitrosomonas spp. (22). The data also indicated that the specific growth rate was less dependent on F (zero-order relationship) when F was 0.01 or higher. However, at a lower F, the specific growth rate decreased significantly, indicating a pseudo-first-order relationship. Although it appeared that the specific growth rate was enhanced by increasing the number of organisms, the fact that some of the medium from the stock culture was transferred along with the organisms suggests that such stimulation may have been caused, at least in part, by substances present in the inoculum medium. Another point of interest is that the plots of specific growth rate versus log F gave linear relationships (r > 0.95) with a similar slope.

To serve as a useful research tool, a successful test medium must be capable of furnishing consistent results under given experimental conditions. At a total ammonium concentration of 1.5 mM and an F of 0.01, the mean specific growth rate (standard deviation) obtained from five experiments was 2.1 ± 0.2 day⁻¹. This and similar media are consistently able to yield high specific growth rates with minimal variation (Table 6). Since the use of culture media containing large quantities of insoluble constituents complicates studies of nutrition and biochemistry in *Nitrosomonas* spp. (8), the proposed clear medium can be effectively used as a test medium in studies of N. europaea. It is hoped that

1106 SATO ET AL. APPL. ENVIRON. MICROBIOL.

FIG. 2. Effect of inoculum volume on specific growth rate, with the amount of nitrite produced used as a measure of growth.

the medium can be used for toxicity screening tests for various compounds, especially for ionic and complexing compounds.

In conclusion, a medium for high metabolic activity and growth of N. europaea ATCC 19718 was developed and examined for nutritional requirements. The concentrations of the medium constituents satisfied the requirements of the organisms. The initial condition of the medium was defined in terms of chemical speciation by using two chemical equilibrium models. The medium significantly increased the activity of the bacteria compared with previously developed media, giving a specific growth rate as high as 3.0 day⁻¹ (generation time, 5.5 h). The medium provided reproducible data under controlled conditions. The specific growth rate was influenced by the inoculum volume at low concentrations, but was less dependent on inoculum concentration above an inoculum-to-total-culture volume ratio (F) of 0.01. The specific growth rate was linearly correlated with the inoculum-to-total-culture volume ratio on a semilog scale within the range of F values tested.

ACKNOWLEDGMENTS

We thank James C. Lin for his assistance in computing the chemical speciations and Werner Stumm for advice on defining the medium via equilibrium calculations.

The study was sponsored by the Office of Water Research and Technology, the Iowa State Water Resources Research Institute, under grant A-071IA.

LITERATURE CITED

- Alexander, M., and F. E. Clark. 1965. Nitrifying bacteria, p. 1467-1483. In C. A. Black (ed.), Methods in soil analysis, part 2. American Society of Agronomy, Madison, Wis.
- American Public Health Association. 1976. Standard methods for the examination of water and waste water, 14th ed. American Public Health Association, Inc., New York.
- Anthonisen, A. C., R. C. Loehr, T. B. S. Prakasam, and E. G. Srinath. 1976. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 48:835–852.
- Davis, J. A., and J. O. Leckie. 1978. Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides. Environ. Sci. Technol. 12:1309-1315.
- 5. DeMarco, J., J. M. Kurbiel, M. Symons, and G. Robeck. 1967.

- Influence of environmental factors on the nitrogen cycle in water. J. Am. Water Works Assoc. **59**:580-592.
- Downing, A. L., T. G. Tomlinson, and G. A. Truesdale. 1964. Effect of inhibitions on nitrification in the activated-sludge process. J. Inst. Sewage Purif., p.537-554.
- Engel, M. S., and M. Alexander. 1958. Culture of *Nitrosomonas europaea* in media free of insoluble constituents. Nature (London) 181:136.
- Engel, M. S., and M. Alexander. 1958. Growth and autotrophic metabolism of *Nitrosomonas europaea*. J. Bacteriol. 76:217–222.
- 9. Felmy, A. R., and E. A. Jenne. 1983. MINTEQ: a computer program for calculating aqueous geochemical equilibria. Battelle, Pacific Northwest Laboratories, Richland, Wash.
- Gundersen, K. 1957. Preservation of *Nitrosomonas*. Nature (London) 179:789.
- 11. Hall, E. R., and K. L. Murphy. 1980. Estimation of nitrifying biomass and kinetics in wastewater. Water Res. 14:297-304.
- Hockenbury, M. R., and C. P. L. Grady. 1977. Inhibition of nitrification-effects of selected organic compounds. J. Water Pollut. Control Fed. 49:768-777.
- Kholdebarin, B., and J. J. Oertli. 1977. Effect of suspended particles and their size on nitrification in surface water. J. Water Pollut. Control Fed. 49:1693–1697.
- 14. Kokufuta, E., W. Matsumoto, and I. Nakamura. 1982. Immobilization of *Nitrosomonas europaea* cells with polyelectrolyte complex. Biotechnol. Bioeng. 24:1591–1603.
- Krümmel, A., and H. Harms. 1982. Effect of organic matter on growth and cell yield of ammonia-oxidizing bacteria. Arch. Microbiol. 133:50-54.
- Lees, H. 1952. The biochemistry of the nitrifying organisms. I. The ammonia-oxidizing systems of *Nitrosomonas*. Biochem. J. 52:134–139.
- 17. Lewis, R. F., and D. Pramer. 1958. Isolation of *Nitrosomonas* in pure culture. J. Bacteriol. 76:524-528.
- Loveless, J. E., and H. A. Painter. 1968. The influence of metal ion concentrations and pH value on the growth of a Nitrosomonas strain isolated from activated sludge. J. Gen. Microbiol. 52:1-14.
- Lozinov, A. B., and V. A. Ermachenko. 1959. NH₄⁺ oxidation by nitrite bacteria as a function of certain factors of the medium. I. The effect of (NH₄)₂SO₄ concentration. Microbiology (Washington, D.C.) 28:674-679.
- 20. Meiklejohn, J. 1950. The isolation of *Nitrosomonas europaea* in pure culture. J. Gen. Microbiol. 4:185–190.
- Neufeld, R. D., A. J. Hill, and D. O. Adekoya. 1980. Phenol and free ammonia inhibition to Nitrosomonas activity. Water Res.

- 14:1695-1703.
- 22. Painter, H. A. 1977. Microbial transformations of inorganic nitrogen. Prog. Water Technol. 8:3-29.
- Perrin, D. D., and I. G. Sayce. 1967. Computer calculation of equilibrium concentrations in mixtures of metal ions and complexing species. Talanta 14:833-842.
- 24. Rodina, A. G. 1972. Methods in aquatic microbiology, p. 251-322. University Park Press, Baltimore.
- Salvas, P. L., and B. F. Taylor. 1984. Effect of pyridine compounds on ammonia oxidation by autotrophic nitrifying bacteria and *Methylosinus trichosporium* OB36. Curr. Microbiol. 10:53-56.
- Sharma, B., and R. C. Ahlert. 1977. Nitrification and nitrogen removal. Water Res. 11:897-925.
- 27. Shieh, W. K., and E. J. La Motta. 1979. Effect of initial substrate concentration on the rate of nitrification in a batch experiment. Biotechnol. Bioeng. 21:201-211.
- Skinner, F. A., and N. Walker. 1961. Growth of Nitrosomonas europaea in batch and continuous culture. Arch. Mikrobiol. 38:339-349.
- 29. Smith, E. D., R. M. Sweazy, D. M. Wells, M. L. Peoples, R. C.

- Baskett, and R. G. Ramsey. 1977. Development of an unconventional approach to nitrification-denitrification. Water Resources Center publication no. WRC-77-3. Texas Technological College, Lubbock, Tex.
- 30. Soriano, S., and N. Walker. 1968. Isolation of ammonia-oxidizing autotrophic bacteria. J. Appl. Bacteriol. 31:493-497.
- Srna, R. F., and A. Baggaley. 1975. Kinetic response of perturbed marine nitrification systems. J. Water Pollut. Control Fed. 47:472-486.
- 32. Tomlinson, T. G., A. G. Boon, and C. N. A. Trotman. 1966. Inhibition of nitrification in the activated sludge process of sewage disposal. J. Appl. Bacteriol. 29:266-291.
- Van Ginkel, C. G., J. Tramper, K. C. A. M. Luyben, and A. Klapwijk. 1983. Characterization of *Nitrosomonas europaea* immobilized in calcium alginate. Enzyme Microb. Technol. 5:297-303.
- Vuceta, J., and J. J. Morgan. 1978. Chemical modeling of trace metals in fresh waters: role of complexation and adsorption. Environ. Sci. Technol. 12:1303-1309.
- Wong-Chong, G. M., and R. C. Loehr. 1975. The kinetics of microbial nitrification. Water Res. 9:1099-1106.