Serui mumeriee

1. Folonied auteui de couvergenta pentru seni en termeni pozitivi, sa se studieze naturo urma toculo seni.

i) $\sum_{n=1}^{\infty} \chi^{-\sqrt{n^2 \cdot \chi}}$ ii) $\sum_{n=1}^{\infty} \left(a \cdot \frac{n^2 + n + 1}{n^2} \right)^n$, a > 0

 $\frac{1}{1}$ $\frac{1}{2}$ $\frac{(an)^n}{n!}$, and $\frac{2}{1}$ $\frac{(2n-1)!!}{(2n)!!}$ $\frac{2}{n}$ $\frac{enn}{n}$ and $\frac{2}{n}$

Solutie i) $a_n = 7 - \sqrt{u^2 + r}$, Aprilicou cuit reportulei

lime $\frac{a_{m+1}}{a_{m}} = \lim_{n \to \infty} \frac{7}{7} - \sqrt{(n+1)^{2}-7} = \lim_{n \to \infty} \frac{7}{7} - \sqrt{u^{2}+2n-6}$ $= \frac{1}{7} \lim_{n \to \infty} (\sqrt{u^{2}-7} - \sqrt{u^{2}+2n-6}) = \frac{1}{7} \lim_{n \to \infty} \sqrt{\sqrt{u^{2}-7} + \sqrt{u^{2}+2n-6}}$ $= \frac{7}{10} \lim_{n \to \infty} (\sqrt{u^{2}-7} - \sqrt{u^{2}+2n-6}) = \frac{7}{10} \lim_{n \to \infty} \sqrt{\sqrt{u^{2}-7} + \sqrt{u^{2}+2n-6}}$

 $= \frac{1}{1000} \frac{-2n-1}{n(\sqrt{n-\frac{7}{u_1}} + \sqrt{1+\frac{2}{n}-\frac{6}{u_1}})} = \frac{1}{4} < 1$

=) Z 7 - Vuiz-7 couvergenta.

u') $o_m = \left(a \cdot \frac{m^2 + m + i}{m^2}\right)''$, a > 0. Helic. cu' i rodocius

line $\sqrt{a_n} = \lim_{n \to \infty} a \cdot \frac{n^2 + n + i}{n^2} = a$

I. Saco a < 1 => Zam couverpenta II saco a>1 => Zam diverpenta m>1

m>1

III soco a=1 cuit noclocimi nu decide noturo senei, fu exest coz, sena derrine $\sum_{n=1}^{\infty} \left(\frac{n^2+m+1}{n^2}\right)^n$

line $\left(\frac{n^2+m+p}{n^2}\right)^m = e = \sum_{n=1}^{\infty} \left(\frac{n^2+n+p}{n^2}\right)^m$ divergentà.

(19). - vineu

ui) Aplican out reportului. line $\frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{a^{n+1}(n+1)^{n+1}}{(n+1)!} \cdot \frac{M!}{a^{m} \cdot m} = a \lim_{n \to \infty} \left(\frac{m+1}{n}\right)^m = a \cdot e$ I. Daco ae <1 (=) acte at. Zan vouv. Il baco ae>1 (=) a>te at. Zan dire III. Daço a = te cuit reportului un decide noture seut. Ju acest eop seura devine $\sum_{m,n} \frac{u^m}{e^m \cdot m!}$ (divergentà vezi seminarul 3). iv) Adicou cuit roportuleu line ant = line (2011) !! (200)!! = 1 Aplicane cuit lui Raabe-Bechamel 2nt! like $m\left(\frac{q_n}{q_{n+1}}-1\right) = \lim_{n\to\infty} m \cdot \left(\frac{2n+2}{2n+1}-1\right) =$ = $\lim_{n\to\infty} m, \frac{2n+2-2n-1}{2n+1} = \lim_{n\to\infty} \frac{n}{2n+1} = \frac{1}{2} < 1$ =) $\sum_{n\to\infty} \frac{(2n-1)!!}{(2n)!!} diverpenta$ $v) \stackrel{\otimes}{\geq} a^{lnn}$ Anticou cut leu Raabe - Dechamol like $m \cdot \left(\frac{a_m}{a_{m+1}} - 1\right) = \lim_{n \to \infty} m \cdot \left(\frac{a^{lum}}{a^{lu(m+1)}} - 1\right) = \lim_{n \to \infty} m \cdot \left(\frac{a^{lum}}{a^{lu(m+1)}} - 1\right) = \lim_{n \to \infty} m \cdot \left(\frac{a^{lum}}{a^{lum}} - 1\right) = \lim_{n \to \infty} m \cdot \left(\frac{a^{lum}}{a^{lum}} - 1\right) = \lim_{n \to \infty} m \cdot \left(\frac{a^{lum}}{a^{lum}} - 1\right) = \lim_{n \to \infty} \frac{a^{lum}}{a^{lum}} - 1 = \lim_{n \to \infty} \frac{a^{lum}}{a^{lum}} = \lim_{n \to \infty} \frac{a^{lu$ = ln a · line lu $\left(\frac{\alpha}{n+1}\right)^n = -\ln \alpha$

I baco - lua > 1 (=) $a < \frac{1}{e}$ $a \cdot \sum_{n \neq 1}^{\infty} e^{nn}$ couv. Il Daco aste at. Za en n divergenta III. Daco a = te at cuit · lui R.D. mu decide moture senti. In accest coof, senia devine: $\sum_{n=1}^{\infty} \frac{1}{e^{4nn}} = \sum_{n=1}^{\infty} \frac{1}{n} \text{ divergenta}.$ Obs: Accean prob post f repolitation utilizand cuiterial Logaritruic Tre Dan o seuie en termeni Gozidivi a.i. . Daco l>1 at 2 on couv. bace les at zon dire. Saco l=1 rue puteur deside meture senti en ent. defaituit. Aplican evil loganitanic Ex: Z4-lun3 - line lu 4 lu n = line 3 lorn lu 4

N-100 lun = n-100 lune N-100 lun =3 lu4 71 =) Zy-lun3 couverpental 2. Sà « studieze couvergenta semilor: $(i) \sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{n+2} \qquad (i) \sum_{n=1}^{\infty} (-1)^{n-1} \cdot \left[\frac{(2n-1)!!}{(2n)!!} \right]^2$

Solutive i)
$$a_{m} = \frac{1}{n+2}$$
 $\frac{a_{m+1}}{a_{m}} \cdot (n+2) < 1.2$)

 $a_{m+1} < a_{m} > a_{m} > a_{m} > \dots$
 $a_{m+2} < a_{m+3} < a_{m+3} < a_{m+3} < a_{m+4} > \dots$
 $a_{m+1} < a_{m+2} < a_{m+3} < a_{m+4} > \dots$
 $a_{m+1} = \frac{(2m-1)!!}{(2m)!!}$
 $a_{m+1} = \frac{(2m-1)!!}{(2m)!!}$
 $a_{m+1} = \frac{(2m+1)!!}{(2m)!!}$
 $a_{m+1} = \frac{(2m+1)!!}{(2m)!!}$
 $a_{m+1} = \frac{(2m+1)!!}{(2m)!!}$
 $a_{m+1} = \frac{(2m+1)!!}{(2m)!!}$
 $a_{m+1} = \frac{(2m-1)!!}{(2m)!!}$
 $a_{m+1} = \frac{(2m-1)!!}{(2m)!!}$
 $a_{m+2} = \frac{a_{m+4}}{(2m)!}$
 $a_{m+3} = \frac{a_{m+4}}{(2m)!}$
 $a_{m+4} = \frac{a_{m+4}}{(2m)!}$
 $a_{m+4} = \frac{a_{m+4}}{(2m)!}$
 $a_{m+4} = \frac{a_{m+4}}{(2m)!}$
 $a_{m+4} = a_{m+4}$
 $a_{m+4} = a$

3. Sà æ studier couvergente alesolutà ji couvergente seints:

i)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{2m+1}{n(m+1)}$$
 \widetilde{u}') $\sum_{n=1}^{\infty} (-1)^{m+1} \cdot \frac{1}{n\sqrt{n}}$

Solutive i) o pt. couvergente alisolutà: 210n/

$$\frac{\sum_{i=1}^{\infty} |(-i)^{mH} \cdot \frac{2m+1}{m(m+1)}|}{\sum_{i=1}^{\infty} \frac{2m+1}{n^2+m}} = \frac{\sum_{i=1}^{\infty} \frac{2m+1}{n^2+m}}{\sum_{i=1}^{\infty} \frac{2m+1}{n^2+m}}$$

$$b_n = \frac{2m+1}{n^2+m} = \frac{m(2+\frac{1}{n})}{n^2(n+\frac{1}{n})} = \frac{1}{n} \cdot \frac{2+\frac{1}{n}}{1+\frac{1}{n}}$$

Fre con = 1

line
$$\frac{bn}{cn} = \lim_{n \to \infty} \frac{1}{2^n} \frac{2^n + \frac{1}{n}}{1 + \frac{1}{n}} = 2$$

=).
$$\sum_{n\geq 1} (-1)^n \cdot \frac{2n+1}{n(n+1)}$$
 dans este absolut couverpenta (1)

.. stud, cour seviei.

$$b_m = \frac{2m+1}{m(m+1)} > 0$$
 (de ainteit).

cut.

S (-1)^{m+1}. $\frac{2m+1}{n(m+1)}$ este couvergenta (2)

Leibnif $\frac{2m+1}{n(m+1)}$

Sin (1) of (2) >)
$$\sum_{n \geq 1} (-1)^{n+1} \cdot \frac{2n+1}{n(n+1)}$$
 ste Deeur'courrespental.

4. Sa se studieze conveyenta sena: