Optimisation

Meta Heuristics

- Meta-heuristic algorithm general method to approach a solution space by smartly searching through a set of possibilities (search space).
 - They are nature inspired algorithms, commonly used where the problem exhibits dynamic nature, and exact solutions may not be possible.
 - They find near optimal solution, so the exact (perfect) solution is not given.

Multiverse Optimisation

- Inspired from physics (Cosmology); The multiverse theory
- Acc. to the multiverse theory more than one big bang equals more than one universe, i.e., Number of big bangs equals number of universes.
- Multiple universes interact and collide with each other, each universe is a candidate for a solution for our problem
 - Concepts
 - White Hole
 - Black Hole
 - Worm Hole

White Hole

- Exploration: Good solutions share their features with others.
- Generated when parallel universes collide with each other

Black Hole:

- Exploitation: Poor solutions absorb information from better ones.
- As normal black holes in physics they attract anything everything, in our case bad solutions

Wormholes

- Randomness: Solutions make random moves toward the best-known one.
- They link various sections of universes together information travels between universes through this path.

Rules

- Probability of a white hole increases as inflation rate increases.
- Probability of a black hole decreases as inflation rate increases.
 - Inflation rate is determined through a fitness function used for evaluation.
- Universes with higher inflation rate tend to send objects through white hole
- Universes with lower inflation rate tend to send objects through black hole

 Regardless of inflation rate objects in all universes may experience random movement towards best universe via wormholes

Mathematical Modelling

Roulette mechanism used to describe the model of white and black holes along with wormholes.

Model of Universe

$$egin{pmatrix} egin{pmatrix} x_1^1 & \cdots & x_1^d \ dots & \ddots & dots \ x_n^1 & \cdots & x_n^d \end{pmatrix}$$

 $d \implies \text{Number of Parameters}$

 $n \implies \text{Number of Universes}$

Wormhole existence probability - WEP

$$oldsymbol{WEP} = min + l * \left(rac{max - min}{L}
ight)$$

 $l \implies \text{current iteration}$

 $L \implies \max iteration$

$$min = 0.2, max = 1.0$$
 usually

Travelling Distance Rate - TDR

$$TDR = 1 - \left(rac{l^{1/p}}{L^{1/p}}
ight)$$

 $p \implies \text{Called exploitation accuracy usually } 6$

Algorithm

- We provide the population size and max iterations.
- It gives best universe its fitness value or inflation rate.
- Step 1: Initialise Parameters.
- Step 2: Compute fitness value for each universe select best universe.
- Step 3: Update WEP and TDR for each universe.
- Step 4: Select 1 universe among N by roulette wheel mechanism as white hole.

- Step 5: Use wormholes as a tunnel for object exchange between different universes.
- Step 6: Repeat until stopping criteria matched.

References

<u>Learn Multiverse Optimization Algorithm Example Step-by-Step Explanation ~xRay Pixy </u>

Multiverse Optimization Algorithm in Additive Manufacturing