

Psychotherapieforschung

MSc Klinische Psychologie und Psychotherapie SoSe 2025

Prof. Dr. Dirk Ostwald

(4) Multizentrendesigns

Multizentren-Parallelgruppendesigns

Multizentren-Regressionsdesigns

Ein Multizentren-Simpson's Paradox-Beispiel

Selbstkontrollfragen

Multizentren-Parallelgruppendesigns

Multizentren-Regressionsdesigns

Ein Multizentren-Simpson's Paradox-Beispiel

Selbstkontrollfragen

Multizentrenstudie

Definition

- Zentrum = Klinik, Hochschulambulanz, Institut, Praxis
- Durchführung einer Studie an zwei oder mehr Zentren nach einem einheitlichen Protokoll

Motivation

- Rekrutierung höherer Proband:innenzahlen in kürzerer Zeit als bei einem Zentrum
- Höhere Übertragbarkeit auf verschiedene regionale Patient:innengruppen

Herausforderungen

- Höhere "Ähnlichkeit" von Daten innerhalb eines Zentrums als zwischen Zentren
- Variabilität in der Umsetzung des Studienprotokolls zwischen Zentren
- Variabilität in den Komorbiditäten der Patient:innen zwischen Zentren

Zu den Praktikalitäten einer Multizentrenstudie, siehe z.B. Friedman et al. (2015), Kapitel 21

Anwendungsbeispiel

Li et al. (2025) Supported Mindfulness-Based Self-Help Intervention as an Adjunctive Treatment for Rapid Symptom Change in Emotional Disorders: A Practice-Oriented Multicenter Randomized Controlled Trial

Research question

- · Rapid symptom relief is crucial for individuals with emotional disorders.
- Does a mindfulness-based self-help (MBSH) intervention provide rapid improvement?

Methods

- A randomized controlled trial was conducted on a sample of n = 302 patients from four centers.
- Participants were randomly assigned to either MBSH+TAU (n = 152) or TAU-only (n = 150).
- Assessments were conducted at baseline, week 3, week 5, after intervention and at 3-month follow-up.
- Primary outcomes included self-reported and clinician-reported anxiety and depression symptoms.

Results

The MBSH+TAU group achieved significantly greater improvements in all primary outcome measures as compared with TAU-only immediately after intervention (Cohen's d = 0.19-0.51).

Conclusion

MBSH offers a scalable and effective adjunctive treatment option for patients with emotional disorders.

Die Datenanalyse von Multizentrenstudien ist ein aktives Forschungsfeld

Localio et al. (2001)

- · An overview of dataanalytical adjustments for center in multicenter studies
- Disadvantages e.g. underpowered study designs, incorrect p-values

Tangri et al. (2010)

- · Localio et al. (2001) and others have advocated controlling for center effects
- ullet Only pprox 20 % of reviewed multicenter studies adjust for center effects

Brown and Prescott (2015)

- Center effect control by means of fixed center effects or fixed center-treatment interactions
- Center effect control by means of random center effects or random center-treatment interactions

Kahan and Morris (2012)

- · Comparison of fixed vs. random center effects (not center-treatment interactions)
- · Simulation of a wide variety of scenarios, random effects control generally superior

Edgar (2021)

- · Reanalysis of the CRASH-22 multicenter study using random center effects models
- Increase in power and decrease in bias in mean and standard error estimates

Multizentren-Parallelgruppendesigns

Multizentren-Regressionsdesigns

Ein Multizentren-Simpson's Paradox-Beispiel

Selbstkontrollfragen

Überblick

Treatmentgruppe und Kontrollgruppe in jedem Zentrum

- (1) Random-Center-Effect-Modell
 - Der Treatmenteffekt wird als Fixed-Effect modelliert
 - Der Zentreneffekt wird als additiver Random-Effect modelliert
 - ⇒ Treatment- und Kontrollgruppe können einen Zentren-spezifischen Intercept haben
 - ⇒ Der Treatmenteffekt wird in jedem Zentrum als identisch angenommen
- (2) Random-Center-by-Treatment-Interaction-Modell
 - Der Treatmenteffekt wird als Fixed-Effect modelliert.
 - Der Zentreneffekt wird als additiver Random-Effect modelliert
 - Der Zentreneffekt wird zusätzlich als zentren-spezifischer Treatmenteffekt modelliert
 - ⇒ Treatment- und Kontrollgruppe haben einen Zentren-spezifischen Intercept
 - \Rightarrow Treatment- und Kontrollgruppe haben einen Zentren-spezifischen Unterschied

(1) Random-Center-Effect-Modell

Strukturelle Form

Für Zentren i = 1, ..., k und Proband:innen $j = 1, ..., n_i$

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + b_{0i} + \varepsilon_{ij} \tag{1}$$

mit

- $x_{ij} := 0$ für Proband:in j in Zentrum i in Kontrollgruppe
- ullet $x_{ij} \coloneqq 1$ für Proband:in j in Zentrum i in Treatmentgruppe
- $\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$
- b_{0i} ~ N(0, σ²_b)

Parameterbedeutungen

- β_0 Erwartungswert der Kontrollgruppe über Zentren
- β_1 Ewartungswertunterschied zwischen Kontrollgruppe und Treatmentgruppe
- b_{0i} Erwartungswertunterschiede der Kontrollgruppen über Zentren
- σ_{ε}^2 Varianz zwischen Proband:innen
- σ_b^2 Varianz zwischen Zentren

(1) Random-Center-Effect-Modell

Designmatrixform

Beispielszenario

k=3 Zentren, $n_1=n_2=n_3=4$ Proband:innen pro Zentrum

 $m=rac{1}{2}n_i=2$ Proband:innen pro Zentrum für i=1,2,3

mit

$$\varepsilon \sim N\left(0_{12}, \sigma_{\varepsilon}^2 I_{12}\right) \text{ und } b \sim N\left(0_3, \sigma_b^2 I_3\right)$$
 (3)

(1) Random-Center-Effect-Modell

Datengeneration für ein Szenario mit k=4, m=5 und $n_i=10$ für i=1,...,k

```
library (MASS)
                                                                            # Normalverteilung
set.seed(0)
                                                                             # Zufallszahlengeneratorzustand
                                                                             # Anzahl Zentren
        = 4
                                                                             # Patient:innen pro Zentrum und Bedingung
        = 5
n i
        = 2*m
                                                                             # Anzahl Patient:inne pro Zentrum
        = k*2*m
                                                                             # Gesamtanzahl an Patient:innen
        = kronecker(matrix(c(1,1,0,1), ncol = 2), rep(1,m))
Хi
                                                                             # Treatment-Control Designmatrix
        = kronecker(rep(1,k), X_i)
Х
                                                                             # Fixed-Effects-Designmatrix
        = kronecker(diag(k), rep(1,n_i))
                                                                             # Random-Effects-Designmatrix
heta
        = matrix(c(5,2), nrow = 2)
                                                                             # Fived-Effects-Parameter
        = matrix(c(0,2,-2,0), nrow = k)
                                                                             # Random-Effects-Parameter (E(b) = 0!)
                                                                            # Varianzkomponente
s_eps
        = 1
        = mvrnorm(1, rep(0,n), s_eps*diag(n))
                                                                             # Fehlervektor
eps
        = X %*% beta + Z %*% b + eps
                                                                            # Datengeneration
        = kronecker(rep(1,k), kronecker(c(1:2), rep(1,m)))
                                                                             # Treatmentfaktor
TRM
CTR
        = kronecker(c(1:k), rep(1,n_i))
                                                                             # Centerfaktor
        = data.frame(TRM = as.factor(TRM), CTR = as.factor(CTR), OUT = y)
                                                                            # Dataframe
write.csv(D, "./4_Daten/mz-parallelgruppendesign-1.csv", row.names = FALSE) # Speichern
```

(1) Random-Center-Effect-Modell

Deskriptivstatistik für ein Szenario mit k=4, m=5 und $n_i=10$ für i=1,...,k

(1) Random-Center-Effect-Modell

Parameterschätzung für ein Szenario mit k=4, m=5 und $n_i=10$ für i=1,...,k

```
library(nlme)
                                                                               # nlme R Paket
           = read.csv("./4_Daten/mz-parallelgruppendesign-1.csv", head = T)
                                                                                # Dataframe
           = as.factor(D$TRM)
D$TRM
                                                                               # R Faktor Kodierung
D$CTR.
           = as.factor(D$CTR)
                                                                               # R Faktor Kodierung
           = lme(OUT ~ TRM, data = D, random = ~ 1 | CTR)
М
                                                                               # LMM Schätzung
           = model.matrix(M.D)
                                                                               # Fixed-Effects-Designmatrix
Х
           = model.matrix(~ M$groups[[1]] - 1)
                                                                               # Random-Effects-Designmatrix
beta hat
           = M$coefficients$fixed
                                                                                # Fived-Effects-Parameterschätzer
b_hat
           = M$coefficients$random$CTR
                                                                                # Random-Effects-Parameterschätzer
s_eps_hat
          = M$sigma**2
                                                                               # Varianzkomponentenschätzer
s b hat
           = diag(getVarCov(M))
                                                                               # Varianzkomponentenschätzer
```

1.54 2.10 2.66

TRM2

(2) Random-Center-by-Treatment-Interaction-Modell

Strukturelle Form

Für Zentren i = 1, ..., k und Proband:innen $j = 1, ..., n_i$

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + b_{0i} + b_{1i} x_{ij} + \varepsilon_{ij} \tag{4}$$

mit

- ullet $x_{ij} \coloneqq 0$ für Proband:in j in Zentrum i in Kontrollgruppe
- $x_{ij} := 1$ für Proband:in j in Zentrum i in Treatmentgruppe
- $\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$
- $b_{0i} \sim N(0, \sigma_k^2)$

Parameterbedeutungen

 β_0 Erwartungswert der Kontrollgruppe über Zentren

 β_1 Ewartungswertunterschied zwischen Kontrollgruppe und Treatmentgruppe

 b_{0i} Erwartungswertunterschied der Kontrollgruppen über Zentren

 b_{1i} Erwartungswertunterschiedunterschied zwischen Kontrollgruppe und Treatmentgruppe zwischen Zentren

Varianz zwischen Proband:innen

 σ_{ε}^{2} σ_{b}^{2} Varianz zwischen Zentren

(2) Random-Center-by-Treatment-Interaction-Modell

Designmatrixform

Beispielszenario

- k=3 Zentren, $n_1=n_2=n_3=4$ Proband:innen pro Zentrum
- $m=\frac{1}{2}n_i=2$ Proband:innen pro Zentrum für i=1,2,3

$$y = X\beta + Zb + \varepsilon$$

$$\begin{pmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{14} \\ y_{21} \\ y_{22} \\ y_{23} \\ y_{24} \\ y_{31} \\ y_{33} \\ y_{34} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 &$$

mit

$$\varepsilon \sim N\left(0_{12}, \sigma_{\varepsilon}^{2} I_{12}\right) \text{ und } b \sim N\left(0_{6}, \Sigma_{b}\right)$$
 (6)

(2) Random-Center-by-Treatment-Interaction-Modell

Datengeneration für ein Szenario mit k=4, m=5 und $n_i=10$ für i=1,...,k

```
library (MASS)
                                                                             # multivariate Normalverteilung
set.seed(0)
                                                                             # Zufallszahlengeneratorzustand
                                                                             # Anzahl Zentren
        = 5
                                                                            # Patient:innen pro Zentrum und Bedingung
                                                                             # Anzahl Patient:innen pro Zentrum
n i
        = 2*m
        = k*n i
                                                                             # Gesamtanzahl an Patient:innen
X_i
        = kronecker(matrix(c(1,1,0,1), ncol = 2), rep(1,m))
                                                                            # Treatment-Control Designmatrix
X
        = kronecker(rep(1,k), X_i)
                                                                             # Fixed-Effects-Designmatrix
                                                                            # Random-Effects-Designmatrix
        = kronecker(diag(k), X_i)
       = matrix(c(5,1), nrow = 2)
                                                                            # Fixed-Effects-Parameter
beta
        = matrix(c(0,2,-1,0,0,-2,1,0), nrow = 2*k)
                                                                            # Random-Effects-Parameter (E(b) = 0!)
s_eps
        = 1
                                                                             # Varianzkomponente
        = mvrnorm(1, rep(0,n), s_eps*diag(n))
                                                                             # Fehlervektor
eps
        = X %*% beta + Z %*% b + eps
                                                                             # Datengeneration
        = kronecker(rep(1,k), kronecker(c(1:2), rep(1,m)))
                                                                             # Treatmentfaktor
TRM
        = kronecker(c(1:k), rep(1,2*m))
CTR
                                                                             # Zentrumfaktor
        = data.frame(TRM = as.factor(TRM), CTR = as.factor(CTR), OUT = y)
                                                                            # Dataframe
write.csv(D, "./4_Daten/mz-parallelgruppendesign-2.csv", row.names = FALSE) # Speichern
```

(2) Random-Center-by-Treatment-Interaction-Modell

Deskriptivstatistik für ein Szenario mit k=4, m=5 und $n_i=10$ für i=1,...,k

(2) Random-Center-by-Treatment-Interaction-Modell

Parameterschätzung für ein Szenario mit k=4, m=5 und $n_i=10$ für i=1,...,k

```
library(nlme)
                                                                                # nlme R Paket
            = lmeControl(opt = "optim", maxIter = 200)
                                                                                # Anzahl an ReML Iterationen
ctrl
            = read.csv("./4_Daten/mz-parallelgruppendesign-2.csv", head = T)
                                                                                # Dataframe
D$TRM
            = as.factor(D$TRM)
                                                                                # R Faktor Kodierung
D$CTR
            = as.factor(D$CTR)
                                                                                # R Faktor Kodierung
            = lme(OUT ~ TRM, data = D, random = ~ TRM | CTR, control = ctrl)
                                                                                # LMM Schätzung
            = model.matrix(M.D)
                                                                                # Fixed-Effects-Designmatrix
            = model.matrix(~ M$groups[[1]] - 1)
                                                                                # Random-Effects-Designmatrix
           = M$coefficients$fixed
                                                                                # Fixed-Effects-Parameterschätzer
beta_hat
b hat
            = M$coefficients$random$CTR
                                                                                # Random-Effects-Parameterschätzer
s_eps_hat
           = M$sigma**2
                                                                                # Varianzkomponentenschätzer
            = diag(getVarCov(M))
s b hat
                                                                                # Varianzkomponentenschätzer
```

```
beta_hat : 5.01 1.1
b_hat : 0.55 1.05 -0.71 -0.28 -0.6 -1.69 0.76 0.92
sigsqr_b_hat : 0.66 1.79
sigsqr_eps_hat : 0.73

Approximate 95% confidence intervals

Fixed effects:

lower est. upper
(Intercept) 4.093 5.01 5.92
```

-0.367 1.10 2.56

TRM2

Theorem (Populationsparameterdarstellung eines Linear Mixed Models)

Gegeben sei ein Linear Mixed Model der Form

$$y = X\beta + Zb + \varepsilon. (7)$$

Wenn es eine Matrix $A \in \mathbb{R}^{q \times p}$ gibt, so dass

$$y = Zu + \varepsilon \text{ mit } u := A\beta + b, X := ZA \text{ und } u \sim N(A\beta, \Sigma_b) \text{ und } \varepsilon \sim N(0_n, \Sigma_\varepsilon)$$
 (8)

gilt, dann nennt man (8) die Populationsparameterdarstellung des Linear Mixed Models mit dem Populationsparametern $\beta \in \mathbb{R}^p$ und $\Sigma_h \in \mathbb{R}^{q \times q}$.

Bemerkungen

- In (8) denkt man sich u aus einer Population mit Erwartungswert $X\beta$ realisiert.
- Der Fixed-Effects-Pameter β parameterisiert dabei explizit den Erwartungswert dieser Population.
- Fixed-Effects-Parameter können also in diesem Fall als Populationserwartungswerte interpretiert werden.
- Random-Effects-Parameter dagegen entsprechen Abweichungen vom Populationserwartungswert.
- Die Fixed-Effects-Designmatrix ist hier eine Linearkombination der Random-Effects-Designmatrix.
- Das ganze funktioniert (nur), wenn es zu jedem Fixed-Effect auch einen Random-Effect gibt.
- Demidenko (2013), Kapitel 4.1 bezeichnet Modelle der Form (8) als Linear-Growth-Curve Modelle
- Wir setzen auch hier die Unabhängigkeit von u und ε implizit voraus.

Beweis

Wir nehmen an, dass es eine Matrix $A \in \mathbb{R}^{q \times p}$ gibt, so dass X = ZA. Mit dem Theorem zur linearen Transformation normalverteilter Zufallsvektoren gilt dann

$$\begin{split} y &= X\beta + Zb + \varepsilon & \text{ mit } b \sim N(0_q, \Sigma_b) \text{ und } \varepsilon \sim N(0_n, \Sigma_\varepsilon) \\ y &= ZA\beta + Zb + \varepsilon \text{ mit } b \sim N(0_q, \Sigma_b) \text{ und } \varepsilon \sim N(0_n, \Sigma_\varepsilon) \\ y &= Z(A\beta + b) + \varepsilon \text{ mit } b \sim N(0_q, \Sigma_b) \text{ und } \varepsilon \sim N(0_n, \Sigma_\varepsilon) \\ y &= Zu + \varepsilon & \text{mit } u \sim N(A\beta, \Sigma_b) \text{ und } \varepsilon \sim N(0_n, \Sigma_\varepsilon) \end{split} \tag{9}$$

wobei die letzte Aussage bezüglich u analog zur Aussage

$$y = X\beta + \varepsilon \text{ mit } \varepsilon \sim N(0_n, \sigma^2 I_n) \Leftrightarrow y \sim N(X\beta, \sigma^2 I_n) \tag{10}$$

bezüglich y und ihrer Begründung ist.

Random-Center-by-Treatment-Interaction-Modell in Populationsparameterform

Designmatrixform

Beispielszenario

- k=3 Zentren, $n_1=n_2=n_3=4$ Proband:innen pro Zentrum
- $\frac{1}{2}n_i$ Proband:innen pro Zentrum für i=1,2,3

Für $A := 1_k \otimes I_2 \in \mathbb{R}^{2k \times 2}$ gilt

Random-Center-by-Treatment-Interaction-Modell in Populationsparameterform

```
library (MASS)
                                                                            # multivariate Normalverteilung
set.seed(0)
                                                                            # Zufallszahlengeneratorzustand
       = 4
                                                                            # Anzahl Zentren
       = 5
                                                                            # Patient:innen pro Zentrum und Bedingung
       = k*2*m
                                                                            # Gesamtanzahl an Patient innen
Хi
       = kronecker(matrix(c(1,1,0,1), ncol = 2), rep(1,m))
                                                                            # Treatment-Control Designmatrix
Х
       = kronecker(rep(1,k), X_i)
                                                                            # Fixed-Effects-Designmatrix
       = kronecker(diag(k), X_i)
                                                                            # Random-Effects-Designmatrix
       = kronecker(rep(1,k),diag(2))
                                                                            # Random-2-Fixed-Matrix
       = matrix(c(5,1), nrow = 2)
                                                                            # Populationsparameter
beta
s b
       = 1
                                                                            # Populationsparameter
       = mvrnorm(1, A %*% beta, s_b*diag(k*2))
                                                                            # Zentrenspezifische Effekte
                                                                            # Varianzkomponente
s_eps
       = 1
       = mvrnorm(1, rep(0,n), s_eps*diag(n))
                                                                            # Fehlervektor
eps
v
       = Z %*% u + eps
                                                                            # Datengeneration
       = kronecker(rep(1,k), kronecker(c(1:2), rep(1,m)))
TRM
                                                                            # Treatmentfaktor
       = kronecker(c(1:k), rep(1,2*m))
CTR
                                                                            # Centerfaktor
       = data.frame(TRM = TRM, CTR = CTR, OUT = y)
                                                                            # Dataframe
write.csv(D, "./4 Daten/mz-parallelgruppendesign-3.csv", row.names = FALSE) # Speichern
```

Random-Center-by-Treatment-Interaction-Modell in Populationsparameterform

Deskriptivstatistik für ein Szenario mit k=4, m=2 und $n_i=10$ für i=1,...,k

```
library(dplyr)  # dplyr für einfache Datengruppierug

D = read.csv("./4_Daten/mz-parallelgruppendesign-3.csv")  # Dateneinlesen

DS = D %>% group_by(CTR, TRM) %>% summarise(av = mean(OUT, na.rm = TRUE),  # Group mean

sd = sd(OUT, na.rm = TRUE),  # Group standard deviation

.groups = "drop")  # Gruppierungsaufhebung

print(DS)  # Ausgabe
```

Random-Center-by-Treatment-Interaction-Modell in Populationsparameterform

Deskriptivstatistik für ein Szenario mit k=4, m=2 und $n_i=10$ für i=1,...,k

Multizentren-Parallelgruppendesigns

Multizentren-Regressionsdesigns

Ein Multizentren-Simpson's Paradox-Beispiel

Selbstkontrollfragen

Multizentren-Regressionsdesigns

Anwendungsbeispiel

- Nachweis einer Dosis-Wirkungs-Beziehung in der Depressionstherapie
- k = 4 vier Zentren (Hochschulambulanzen)
- $n_i = 10$ Proband:innen pro Zentrum i = 1, 2, 3, 4
- 24 Stunden Kognitive Verhaltenstherapie pro Patient:in in jedem Zentrum
- 1 bis 10 ACT Therapiekomponenten pro Patient:in als unabhängige Variable (UV)
- BDI-II-Reduktion als Primary Outcome / abhängige Variable (AV)

Bemerkungen

- Die unabhängige Variable modelliert hier explizit keine zeitabhängige Variable
- Zur Regression bei zeitabhängigen Variablen, siehe (5) Longitudinaldesigns

Datengeneration

```
library(MASS)
                                                                    # multivariate Normalverteilung
library (Matrix)
                                                                    # Blockdiagonalmatrizen
set.seed(0)
                                                                    # Zufallszahlengeneratorzustand
                                                                     # Anzahl Zentren
n_i
                                                                   # Patient:innen pro Zentrum
        = 5
       = k*n i
                                                                     # Gesamtanzahl an Patient:innen
        = 1:5
                                                                    # Anzahl ACT Komponenten
       = matrix(c(rep(1,n i), x), ncol = 2)
                                                                    # Zentrenspezifische Regressionsmatrizenarray
Xi
       = kronecker(rep(1,k), Xi)
Х
                                                                    # Fixed Effects Designmatrix
       = matrix(c(2,1), nrow = 2)
                                                                     # Fixed-Effects-Parameter
beta
        = kronecker(diag(k), Xi)
Z
                                                                    # Random-Effects-Designmatrix
s b
        = 2
                                                                    # Random Effects Varianzparameter
        = c(6,-1,-2,0.5,-2,1,-4,2)
                                                                     # Random-Effects Parameter
s_eps
       = 3
                                                                     # Varianzkomponente
eps
        = mvrnorm(1, rep(0,n), s_eps*diag(n))
                                                                    # Fehlervektor
        = X %*% beta + Z %*% b + eps
                                                                     # Datengeneration
HSA
        = kronecker(c(1:k), rep(1,n_i))
                                                                     # Hochschulambulanzfaktor
ACT
        = X[,2]
                                                                    # ACT-Anzahl-Regressor
        = data.frame(HSA = HSA, ACT = ACT, BDI = y)
                                                                     # Dataframe
write.csv(D, "./4_Daten/mz-regression-1.csv", row.names = FALSE)
                                                                    # Speichern
```


Multizentren-Regressionsdesigns

Überblick

Alle Multizentren-Regressionsmodelle modellieren Intercept und Slope als Fixed Effects

- (1) Random-Intercept-Only-Modell
 - Zusätztlich wird nur ein zufälliger zentrenspezifischer Intercept modelliert
- (2) Random-Slope-Only-Modell
 - Zusätztlich wird nur eine zufällige zentrenspezifischer Slope modelliert
- (3) Random-Intercept-and-Slope-Modell
 - Es werden zusätzlich zufällige zentrenspezifische Intercept und Slopes modelliert
 - Es ergibt sich eine Populationsparameterinterpretation für die Fixed-Effects

Multizentren-Regressionsdesigns

(1) Random-Intercept-Only-Modell

Strukturelle Form

Für Zentren i = 1, ..., k und Proband:innen $j = 1, ..., n_i$

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + b_{0i} + \varepsilon_{ij} \tag{12}$$

mit

- ${}^{\bullet}$ $x_{ij} \coloneqq \mathsf{Wert}$ der unabhängiven Variable für Proband:in j in Zentrum i
- $\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$
- $b_{0i} \sim N(0, \sigma_b^2)$

Parameterbedeutungen

 β_0 Erwartungswert der AV bei Wert der UV gleich 0

 β_1 Erwartungswert der Änderung der AV pro UV Änderung um 1 Einheit

Zentren-spezfische Abweichung der AV bei Wert der UV gleich 0 b_{0i}

 σ_b^2 σ_ε^2 Varianz der b_{0i} zwischen Zentren

Varianz der Datenpunkte innerhalb der Zentren

(1) Random-Intercept-Only-Modell

Designmatrixform für ein Szenario mit $k=4\,$

$$y = X\beta + Zb + \varepsilon$$

$$\Rightarrow \begin{pmatrix} y_{11} \\ \vdots \\ y_{1n_1} \\ y_{21} \\ \vdots \\ y_{2n_2} \\ y_{31} \\ \vdots \\ y_{3n_3} \\ y_{41} \\ \vdots \\ y_{4n_4} \end{pmatrix} = \begin{pmatrix} 1 & x_{11} \\ \vdots & \vdots \\ 1 & x_{1n_1} \\ 1 & x_{21} \\ \vdots & \vdots \\ 1 & x_{2n_2} \\ 1 & x_{31} \\ \vdots & \vdots \\ 1 & x_{3n_3} \\ y_{41} \\ \vdots \\ y_{4n_4} \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \varepsilon_{3n_3} \\ \varepsilon_{41} \\ \vdots \\ \varepsilon_{4n_4} \end{pmatrix}$$

$$(13)$$

mit

$$b \sim N(0_4, \Sigma_b) \text{ und } \sim N(0_{20}, \sigma_{\varepsilon}^2 I_{20})$$
 (14)

Multizentren-Regressionsdesigns

(1) Random-Intercept-Only-Modell

```
library(nlme)
                                                             # R Paket.
                = read.csv("./4_Daten/mz-regression-1.csv") # Einlesen des Datensatzes
                = as.factor(D$HSA)
D$HSA
                                                             # Umwandlung numerischer Werte in R factor
                = lme(BDI ~ ACT, D, random = ~ 1 | HSA)
                                                             # Random-Intercept-Only LMM
                = model.matrix(M, D)
                                                             # Fixed-Effects-Designmatrix
                = model.matrix(~ M$groups[[1]] - 1)
                                                             # Random-Effects-Designmatrix
beta_hat
                = M$coefficients$fixed
                                                             # Fixed-Effects-Parameterschätzer
b hat
                = M$coefficients$random$HSA
                                                             # Random-Effects-Parameterschätzer
s_eps_hat
                = M$sigma**2
                                                             # Varianzkomponentenschätzer
s_b_hat
                = diag(getVarCov(M))
                                                             # Varianzkomponentenschätzer
```

Multizentren-Regressionsdesigns

(1) Random-Intercept-Only-Modell

Fixed-Effects-Designmatrix

```
(Intercept) ACT
                  3
10
11
12
                  3
13
14
15
16
17
18
19
20
attr(,"assign")
```

[1] 0 1

(1) Random-Intercept-Only-Modell

Random-Effects-Designmatrix

```
M$groups[[1]]1 M$groups[[1]]2 M$groups[[1]]3 M$groups[[1]]4
                                                                0
10
11
12
13
14
15
16
17
18
19
20
attr(, "assign")
[1] 1 1 1 1
attr(,"contrasts")
attr(,"contrasts") $ M$groups[[1]]
[1] "contr.treatment"
```

(1) Random-Intercept-Only-Modell

(1) Random-Intercept-Only-Modell

```
beta hat
            : 2.23 1.38
sigsqr_eps_hat : 4.71
sigsqr_b_hat : 2.85
b hat:
  (Intercept)
    0.7415643
   -1.8691530
   -0.3745826
    1.5021712
Variables Intercept \hat{eta}_0 + \hat{b}_{0i} der Ausgleichsgerade über Zentren
```

Identische Steigung $\hat{\beta}_1$ der Ausgleichsgerade über Zentren

(2) Random-Slope-Only-Modell

Strukturelle Form

Für Zentren i = 1, ..., k und Proband:innen $j = 1, ..., n_i$

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + b_{1i} x_{ij} + \varepsilon_{ij} \tag{15}$$

mit

- ullet $x_{ij} := \mathsf{Wert}$ der unabhängiven Variable für Proband:in j in Zentrum i
- $\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$
- $b_{1i} \sim N(0, \sigma_b^2)$

Parameterbedeutungen

- β_0 Erwartungswert der AV bei Wert der UV gleich 0
- β_1 Erwartungswert der Änderung der AV pro UV Änderung um 1 Einheit
- Zentren-spezfische Abweichung der erwarteten Änderung der AV pro UV Änderung um 1 Einheit b_{1i}
- σ_b^2 σ_ε^2 Varianz der $b_{1,i}$ zwischen Zentren
- Varianz der Datenpunkte innerhalb der Zentren

(2) Random-Slope-Only-Modell

Designmatrixform für ein Szenario mit $k=4\,$

$$y = X\beta + Zb + \varepsilon \Leftrightarrow$$

$$\begin{pmatrix} y_{11} \\ \vdots \\ y_{1n_1} \\ y_{21} \\ \vdots \\ y_{2n_2} \\ y_{31} \\ \vdots \\ y_{3n_3} \\ y_{41} \\ \vdots \\ y_{4n_4} \end{pmatrix} = \begin{pmatrix} 1 & x_{11} \\ \vdots & x_{1n_1} \\ 1 & x_{21} \\ \vdots & \vdots & \vdots \\ 1 & x_{2n_2} \\ 1 & x_{31} \\ \vdots & \vdots \\ 1 & x_{3n_3} \\ \vdots & \vdots \\ y_{4n_4} \end{pmatrix} + \begin{pmatrix} x_{11} & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ x_{1n_1} & 0 & 0 & 0 \\ 0 & x_{21} & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & x_{2n_2} & 0 & 0 \\ 0 & 0 & x_{31} & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & x_{3n_3} & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & x_{4n_4} \end{pmatrix} + \begin{pmatrix} \varepsilon_{11} \\ \vdots \\ \varepsilon_{1n_1} \\ \varepsilon_{21} \\ \vdots \\ \varepsilon_{2n_2} \\ \varepsilon_{31} \\ \vdots \\ \varepsilon_{3n_3} \\ \varepsilon_{41} \\ \vdots \\ \varepsilon_{4n_4} \end{pmatrix}$$

$$(16)$$

mit

$$b \sim N(0_4, \Sigma_b) \text{ und } \varepsilon \sim N(0_{20}, \sigma_\varepsilon^2 I_{20}) \tag{17} \label{eq:17}$$

(2) Random-Slope-Only-Modell

```
library(nlme)
                                                                # R Paket
               = read.csv("./4_Daten/mz-regression-1.csv")
                                                                # Einlesen des Datensatzes
D$HSA
                = as.factor(D$HSA)
                                                                # Umwandlung numerischer Werte in R factor
               = lme(BDI ~ ACT, D, random = ~ ACT - 1 | HSA)
                                                                # Random-Slope-Only-LMM
               = model.matrix(M, D)
                                                                # Fixed-Effects-Designmatrix
               = kronecker(diag(k), matrix(c(1:5), nrow = 5)) # Random-Effects-Designmatrix
               = M$coefficients$fixed
beta hat
                                                                # Fixed-Effects-Parameterschätzer
b_hat
               = M$coefficients$random$HSA
                                                                # Random-Effects-Parameterschätzer
s_eps_hat
               = M$sigma**2
                                                                # Varianzkomponentenschätzer
               = diag(getVarCov(M))
s b hat
                                                                # Varianzkomponentenschätzer
```

(2) Random-Slope-Only-Modell

Fixed-Effects-Designmatrix

```
(Intercept) ACT
                  3
10
11
12
                  3
13
14
15
16
17
18
19
20
attr(,"assign")
```

[1] 0 1

(2) Random-Slope-Only-Modell

Random-Effects-Designmatrix

```
[,1] [,2] [,3] [,4]
[1,]
               0
                          0
[2,]
               0
                    0
                          0
[3,]
[4,]
[5,]
[6,]
[7,]
[8,]
                         0
[9,]
                         0
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
```

(2) Random-Slope-Only-Modell

(2) Random-Slope-Only-Modell

0.67685951

Identisches Intercept $\hat{\beta}_0$ der Ausgleichsgerade über Zentren

Variable Steigung $\hat{eta}_1 + \hat{b}_{1i}$ der Ausgleichsgerade über Zentren ->

(3) Random-Intercept-and-Slope-Modell

Strukturelle Form

Für Zentren i = 1, ..., k und Proband:innen $j = 1, ..., n_i$

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + b_{0i} + b_{1i} x_{ij} + \varepsilon_{ij}$$
(18)

mit

- ullet $x_{ij} := \mathsf{Wert}$ der unabhängiven Variable für Proband:in j in Zentrum i
- ε_{ij} ~ N(0, σ_ε²)
- $b_{0i} \sim N(0, \sigma_{b_0}^2)$
- $b_{1i} \sim N(0, \sigma_{b_1}^2)$

Parameterbedeutungen

- β_0 Erwartungswert der AV bei Wert der UV gleich 0
- Erwartungswert der Änderung der AV pro UV Änderung um 1 Einheit β_1
- b_{0i} Zentren-spezfische Abweichung der AV bei Wert der UV gleich 0
- Zentren-spezfische Abweichung der erwarteten Änderung der AV pro UV Änderung um 1 Einheit
- b_{1i} $\sigma_{b_0}^2$ $\sigma_{b_1}^2$ σ_{ε}^2 Varianz der b_{0i} zwischen Zentren
- Varianz der b_{1i} zwischen Zentren
- Varianz der Datenpunkte innerhalb der Zentren

(3) Random-Intercept-and-Slope-Modell

Designmatrixform für ein Szenario mit k=4

$$y = X\beta + Zb + \varepsilon \Leftrightarrow$$

$$\begin{pmatrix} y_{11} \\ \vdots \\ y_{1n_1} \\ y_{21} \\ \vdots \\ y_{2n_2} \\ y_{31} \\ \vdots \\ y_{3n_3} \\ y_{41} \\ \vdots \\ y_{4n_4} \end{pmatrix} = \begin{pmatrix} 1 & x_{11} \\ \vdots & x_{1n_1} \\ 1 & x_{21} \\ \vdots & \vdots \\ 1 & x_{2n_2} \\ 1 & x_{31} \\ \vdots & \vdots \\ 1 & x_{3n_3} \\ \vdots \\ y_{4n_4} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} 1 & x_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 1 & x_{1n_1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & x_{21} & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 1 & x_{2n_2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & x_{3n_3} & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 1 & x_{3n_3} & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & x_{4n_4} \end{pmatrix} \begin{pmatrix} \varepsilon_{11} \\ \vdots \\ \varepsilon_{1n_1} \\ \varepsilon_{21} \\ \vdots \\ \varepsilon_{2n_2} \\ \varepsilon_{31} \\ \vdots \\ \varepsilon_{3n_3} \\ \varepsilon_{41} \\ \vdots \\ \varepsilon_{4n_4} \end{pmatrix}$$

mit

$$b \sim N(0_8, \Sigma_b) \text{ und } \sim N(0_n, \sigma_\varepsilon^2 I_n)$$
 (20)

(3) Random-Intercept-and-Slope-Modell

```
library(nlme)
                                                                         # R Paket
            = read.csv("./4 Daten/mz-regression-1.csv")
                                                                         # Einlesen des Datensatzes
            = as.factor(D$HSA)
D$HSA
                                                                         # Umwandlung numerischer Werte in R factor
            = lme(BDI ~ ACT, D, random = ~ ACT | HSA)
                                                                        # Random-Intercept-and-Slope LMM
            = model.matrix(M, D)
                                                                        # Fixed-Effects-Designmatrix
            = kronecker(diag(k), matrix(c(rep(1,5), c(1:5)), nrow = 5)) # Random-Effects-Designmatrix
beta_hat
            = M$coefficients$fixed
                                                                         # Fixed-Effects-Parameterschätzer
b hat
            = M$coefficients$random$HSA
                                                                         # Random-Effects-Parameterschätzer
s_eps_hat
            = M$sigma**2
                                                                        # Varianzkomponentenschätzer
s_b_hat
            = diag(getVarCov(M))
                                                                        # Varianzkomponentenschätzer
```

(3) Random-Intercept-and-Slope-Modell

Fixed-Effects-Designmatrix

```
(Intercept) ACT
                  3
10
11
12
                  3
13
14
15
16
17
18
19
20
attr(,"assign")
```

[1] 0 1

(3) Random-Intercept-and-Slope-Modell

Random-Effects-Designmatrix

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,]
                                           0
                                                0
[2,]
                     0
                          0
                                           0
                                                0
[3,]
                                                0
[4,]
                                                0
ſ5.1
               5
[6,]
                                           0
         0
                                0
                                                0
[7,]
                                                0
[8,]
                                                0
[9,]
                                                0
         0
                                0
                                           0
Γ10.7
[11,]
                                                0
[12,]
[13,]
                                                0
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
                                                4
[20,]
```

(3) Random-Intercept-and-Slope-Modell

(3) Random-Intercept-and-Slope-Modell

```
beta_hat : 2.23 1.38
sigsqr_eps_hat : 1.78
```

sigsqr_b_hat : 13.39 1.46

b_hat:

(Intercept) ACT
1 3.801795 -0.9829715
2 -3.168384 0.3132948
3 1.958989 -0.8124797
4 -2.592400 1.4821563

Variables Intercept $\hat{eta}_0 + \hat{b}_{0i}$ der Ausgleichsgerade über Zentren

Variable Steigung $\hat{\beta}_1 + \hat{b}_{1i}$ der Ausgleichsgerade über Zentren

Aber: Populationsparameterschätzung von β_0 und β_1

Motivation

Multizentren-Parallelgruppendesigns

Multizentren-Regressionsdesigns

Ein Multizentren-Simpson's Paradox-Beispiel

Selbstkontroll fragen

Anwendungsbeispiel

- Dosis-Wirkungs-Studie zum Effekt von ACT Komponentenanzahl auf Depressionssymptomatik
- Multizentrendesign mit k=4 Hochschulambulanzen mit jeweils $n_i=5$ Patient:innen
- Zufällige Zusammentstellung der ACT Komponentenanzahl in jeder Hochschulambulanz
- Pre-Post-BDI-II Differenz BDI als primäres Ergebnismaß (Positive Werte = Reduktion)
- HSA: Hochschulambulanz, ACT: ACT Komponentenanzahl, BDI: Pre-Post-BDI-II Differenz

Datengeneration

```
# Datengeneration
library (MASS)
                                                                     # mMltivariate Normalverteilung
library (Matrix)
                                                                     # Blockdiagonalmatrizen
set.seed(0)
                                                                     # Zufallszahlengeneratorzustand
                                                                     # Anzahl Zentren
            = 5
                                                                     # Anzahl Patient:innen pro Zentrum
n i
            = k*n_i
                                                                     # Gesamtanzahl an Patient:innen
            = matrix(rep(NaN,n), ncol = k)
                                                                     # Anzahl ACT Komponenten Array
            = round(runif(n i, min = 10, max = 20))
x[.1]
                                                                     # Anzahl ACT Komponenten HSA 1
x[,2]
            = round(runif(n_i, min = 15, max = 25))
                                                                     # Anzahl ACT Komponenten HSA 2
x[.3]
            = round(runif(n_i, min = 20, max = 30))
                                                                     # Anzahl ACT Komponenten HSA 3
x[,4]
            = round(runif(n_i, min = 25, max = 35))
                                                                     # Anzahl ACT Komponenten HSA 4
Χi
            = array(rep(NaN,n*2), dim = c (n_i,2,k))
                                                                     # Zentrenspezifische Regressionsmatrizenarray
for(i in 1:k){
                                                                     # Zentreniterationen
    Xi[,,i] = matrix(c(rep(1,n_i),x[,i]), ncol = 2)
                                                                     # Zentrumspezifische Regressionmatrix
            = rbind(Xi[,,1],Xi[,,2],Xi[,,3],Xi[,,4])
Х
                                                                     # Fixed-Effects-Designmatrix
            = matrix(c(5,1), nrow = 2)
                                                                     # Fixed-Effects-Parameter
beta
            = as.matrix(bdiag(Xi[,,1],Xi[,,2],Xi[,,3],Xi[,,4]))
                                                                     # Random-Effects-Designmatrix
            = matrix(c(15,0,5,0,-5,0,-15,0))
                                                                     # Random-Effects-Parameter
s_eps
            = 15
                                                                     # Varianzkomponente
            = mvrnorm(1,rep(0,n), s_eps*diag(n))
eps
                                                                     # Fehlervektor
            = X %*% beta + Z %*% b + eps
                                                                     # Datengeneration
            = kronecker(c(1,2,3,4), rep(1,n i))
HSA
                                                                     # Hochschulambulanzfaktor
            = data.frame(HSA = HSA, ACT = X[,2], BDI = y)
                                                                     # Dataframe
write.csv(D, "./4_Daten/mz-regression-2.csv", row.names = FALSE)
                                                                     # Speichern
```

Datensatz

HSA	ACT	BDI
1	19	39
1	13	28
1	14	31
1	16	40
1	19	41
2	17	27
2	24	37
2	24	35
2	22	33
2	21	30
3	21	16
3	22	24
3	22	19
3	27	28
3	24	22
4	33	22
4	30	19
4	32	18
4	35	22
4	29	22

Datendeskription

Wir wenden auf diesen Datensatz nacheinander folgende Modelle an

- (1) Einfache lineare Regression für den ACT Effekt
- (2) Einfaktorielle Varianzanalyse für den HSA Effekt
- (3) Gruppenspezifische einfache lineare Regressionsmodelle für die ACT Effekte
- (4) Multizentren-Regressionsmodell mit Random-Intercept-Only
- (5) Multizentren-Regressionsmodell mit Random-Intercept-and-Slope

Insbesondere das erste und das letzte Modell bieten unterschiedliche Interpretationen

Dieser inhärente Widerspruch ist ein Beispiel für das Simpson's Paradox (Blyth (1972))

(1) Einfache lineare Regression für den ACT Effekt

Wir vernachlässigen zunächst die Gruppenstruktur (Hochschulambulanzvariation) des Datensatzes.

Strukturelle Form

Für Proband:innen i = 1, ..., n

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{21}$$

mit

- ullet $x_i := \mathsf{Anzahl}\ \mathsf{der}\ \mathsf{ACT}\ \mathsf{Komponenten}\ \mathsf{in}\ \mathsf{der}\ \mathsf{Therapie}\ \mathsf{von}\ \mathsf{Proband} \mathsf{:in}\ i$
- $\varepsilon_i \sim N(0, \sigma^2)$

Parameterbedeutungen

- β_0 Erwartungswert der BDI-II-Reduktion bei 0 ACT Komponenten
- β_1 $\;\;$ Erwartungswert der BDI-II-Reduktion pro 1 ACT Komponente
- σ^2 Varianz zwischen Proband:innen über Zentren

(1) Einfache lineare Regression für den ACT Effekt

Designmatrixform

$$y = X\beta + \varepsilon \Leftrightarrow \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \\ y_8 \\ y_9 \\ y_{10} \\ y_{11} \\ y_{12} \\ y_{13} \\ y_{14} \\ y_{15} \\ y_{10} \\ 1 \\ x_{11} \\ y_{12} \\ y_{13} \\ y_{14} \\ y_{15} \\ 1 \\ 1 \\ x_{15} \\ y_{16} \\ y_{17} \\ y_{18} \\ y_{19} \\ y_{20} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ x_2 \\ x_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \\ \varepsilon_7 \\ \varepsilon_8 \\ \varepsilon_9 \\ \varepsilon_9 \\ \varepsilon_{10} \\ \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{13} \\ \varepsilon_{14} \\ \varepsilon_{15} \\ \varepsilon_{16} \\ \varepsilon_{17} \\ \varepsilon_{18} \\ \varepsilon_{19} \\ \varepsilon_{20} \end{pmatrix}$$
 mit $\varepsilon \sim N(0_{20}, \sigma^2 I_{20})$ (22)

(1) Einfache lineare Regression für den ACT Effekt

```
D
           = read.csv("./4_Daten/mz-regression-2.csv")
                                                            # Einlesen des Datensatzes
           = lm(BDI ~ ACT, D)
                                                            # Einfache lineare Regression
           = summary(M)
S
                                                            # Modellschätzungsresultate
Х
           = model.matrix(M)
                                                            # Designmatrix
           = as.matrix(M$coefficients)
beta hat
                                                            # Betaparameterschätzer
sigsqr_hat = S$sigma**2
                                                            # Varianzparameterschätzer
```

Designmatrix

```
(Intercept) ACT
            1 19
            1 13
3
            1 14
            1 16
            1 19
            1 17
7
            1 24
            1 24
            1 22
10
            1 21
            1 21
11
12
            1 22
13
            1 22
14
            1 27
15
            1 24
            1 33
16
17
            1 30
18
            1 32
19
            1 35
20
            1 29
attr(, "assign")
[1] 0 1
```

(1) Einfache lineare Regression für den ACT Effekt

(1) Einfache lineare Regression für den ACT Effekt

beta_hat : 43.2 -0.67

sigsqr_hat: 47.88

Keine Berücksichtigung der Gruppenstruktur (Hochschulambulanzvariation)

 \hat{eta}_1 legt eine Abnahme der BDI-II-Reduktion mit ACT Komponentenanzahl nahe

Daten zeigen aber einen Anstieg der BDI-II-Reduktion mit ACT Komponentenanzahl für jede HSA

Das Modell ist für den betrachteten Anwendungsfall sicherlich nicht ideal

(2) Einfaktorielle Varianzanalyse für den HSA Effekt

Wir vernachlässigen den Effekt der Therapiedauer und betrachten lediglich den Effekt der Hochschulambulanz

Strukturelle Form

Für Hochschulambulanzen i=1,...,k und Proband:innen $j=1,...,n_i$

$$y_{1j} = \mu_0 + \varepsilon_{1j} \text{ und } y_{ij} = \mu_0 + \alpha_i + \varepsilon_{ij} \text{ für } i = 2, 3, 4$$
 (23)

mit

•
$$\varepsilon_{ij} \sim N(0, \sigma^2)$$

Parameterbedeutungen

- μ_0 Erwartungswert für die BDI-II-Reduktion in der Referenzgruppe HSA 1
- α_2 Erwartungswertdifferenz für die BDI-II-Reduktion zwischen HSA 2 und HSA 1
- α_3 Erwartungswertdifferenz für die BDI-II-Reduktion zwischen HSA 3 und HSA 1
- $lpha_4$ Erwartungswertdifferenz für die BDI-II-Reduktion zwischen HSA 4 und HSA 1
- σ^2 Varianz zwischen Proband:innen

(2) Einfaktorielle Varianzanalyse für den HSA Effekt

Designmatrixform

$$y = X\beta + \varepsilon \Leftrightarrow \begin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{14} \\ y_{15} \\ y_{21} \\ y_{22} \\ y_{23} \\ y_{24} \\ y_{33} \\ y_{34} \\ y_{33} \\ y_{33} \\ y_{34} \\ y_{35} \\ y_{31} \\ y_{35} \\ y_{41} \\ y_{42} \\ y_{43} \\ y_{44} \\ y_{44} \\ y_{45} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 2 & \alpha_{3} \\ \alpha_{4} \\ y_{45} \\ y_{41} \\ y_{42} \\ y_{43} \\ y_{44} \\ y_{44} \\ y_{45} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{21} \\ \varepsilon_{22} \\ \varepsilon_{23} \\ \varepsilon_{24} \\ \varepsilon_{33} \\ \varepsilon_{34} \\ \varepsilon_{35} \\ \varepsilon_{41} \\ \varepsilon_{42} \\ \varepsilon_{43} \\ \varepsilon_{44} \\ \varepsilon_{44} \\ \varepsilon_{44} \\ \varepsilon_{44} \\ \varepsilon_{45} \\ \varepsilon_{41} \\ \varepsilon_{42} \\ \varepsilon_{43} \\ \varepsilon_{44} \\ \varepsilon_{44} \\ \varepsilon_{45} \\ \varepsilon_{44} \\ \varepsilon_{45} \\ \varepsilon_{44} \\ \varepsilon_{45} \\ \varepsilon_{44} \\ \varepsilon_{45} \\ \varepsilon_{45} \\ \varepsilon_{46} \\ \varepsilon$$

(2) Einfaktorielle Varianzanalyse für den HSA Effekt

```
= read.csv("./4_Daten/mz-regression-2.csv")
                                                            # Einlesen des Datensatzes
D
D$HSA
           = as.factor(D$HSA)
                                                            # Umwandlung numerischer Werte in R factor
М
           = lm(BDI ~ HSA, D)
                                                            # Einfache lineare Regression
           = summary(M)
                                                            # Modellschätzungsresultate
           = model.matrix(M)
                                                            # Designmatrix
           = as.matrix(M$coefficients)
                                                            # Betaparameterschätzer
beta_hat
sigsqr_hat = S$sigma**2
                                                            # Varianzparameterschätzer
```

Designmatrix

```
(Intercept) HSA2 HSA3 HSA4
                   O
                        0
                        0
                              0
                              0
                              0
                              0
                        0
                              0
7
                              0
                        0
                              0
                        0
                              0
10
                              0
11
                              0
12
                              0
13
                   0
                        1
                              0
14
15
                   0
                        1
                              0
16
                   0
                        0
                              1
17
                              1
18
              1
                   0
                              1
19
20
                              1
attr(, "assign")
[1] 0 1 1 1
attr(, "contrasts")
attr(, "contrasts") $HSA
[1] "contr.treatment"
```

(2) Einfaktorielle Varianzanalyse für den HSA Effekt

(2) Einfaktorielle Varianzanalyse für den HSA Effekt

beta_hat : 35.94 -3.54 -14.17 -15.51

sigsqr_hat: 18.97

Keine Berücksichtigung der Anzahl an ACT Komponenten

Das Modell ist vor dem Hintergrund der Forschungsfrage nicht sinnvoll

 $\mathsf{HSA}\ 2$, $\mathsf{HSA}\ 3$ und $\mathsf{HSA}\ 4$ haben einer geringere Symptomereduktionserwartung als $\mathsf{HSA}\ 1$

(3) Gruppenspezifische einfache lineare Regressionsmodelle für die ACT Effekte

Wir betrachten jede der Hochschulambulanzen einzeln.

Strukturelle Form

Für Hochschulambulanzen i=1,...,k und Proband:innen $j=1,...,n_i$

$$y_{i_j} = \beta_{i_0} + \beta_{i_1} x_{i_j} + \varepsilon_{i_j} \tag{25}$$

mit

- $x_{i_j} \coloneqq \mathsf{Anzahl} \ \mathsf{der} \ \mathsf{ACT} \ \mathsf{Komponenten} \ \mathsf{in} \ \mathsf{der} \ \mathsf{Therapie} \ \mathsf{von} \ \mathsf{Proband:in} \ j \ \mathsf{in} \ \mathsf{Hochschulambulanz} \ i$
- $\varepsilon_{i_i} \sim N(0, \sigma_i^2)$

Parameterbedeutungen für i = 1, ..., k

- - i1 Erwartungswert der BDI-II-Reduktion pro 1 ACT Komponente in Hochschulambulanz i
- σ_i^2 Varianz zwischen Proband:innen in Hochschulambulanz i

(3) Gruppenspezifische einfache lineare Regressionsmodelle für die ACT Effekte

Designmatrixform

$$y_1 = X_1\beta_1 + \varepsilon_1 \Leftrightarrow \begin{pmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{14} \\ y_{15} \end{pmatrix} = \begin{pmatrix} 1 & x_{11} \\ 1 & x_{12} \\ 1 & x_{13} \\ 1 & x_{14} \\ 1 & x_{15} \end{pmatrix} \begin{pmatrix} \beta_{10} \\ \beta_{11} \end{pmatrix} + \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{14} \\ \varepsilon_{15} \end{pmatrix} \text{ mit } \varepsilon_1 \sim N(0_5, \sigma_1^2 I_5) \tag{26}$$

$$y_{2} = X_{2}\beta_{2} + \varepsilon_{2} \Leftrightarrow \begin{pmatrix} y_{2} \\ y_{2} \\ y_{23} \\ y_{24} \\ y_{25} \end{pmatrix} = \begin{pmatrix} 1 & x_{2} \\ 1 & x_{22} \\ 1 & x_{23} \\ 1 & x_{24} \\ 1 & x_{25} \end{pmatrix} \begin{pmatrix} \beta_{2}_{0} \\ \beta_{2}_{1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{2}_{1} \\ \varepsilon_{2}_{2} \\ \varepsilon_{23} \\ \varepsilon_{24} \\ \varepsilon_{25} \end{pmatrix} \text{ mit } \varepsilon_{2} \sim N(0_{5}, \sigma_{2}^{2}I_{5})$$
 (27)

$$y_{3} = X_{3}\beta_{3} + \varepsilon_{3} \Leftrightarrow \begin{pmatrix} y_{3_{1}} \\ y_{3_{2}} \\ y_{3_{3}} \\ y_{3_{4}} \\ y_{3_{5}} \end{pmatrix} = \begin{pmatrix} 1 & x_{3_{1}} \\ 1 & x_{3_{2}} \\ 1 & x_{3_{3}} \\ 1 & x_{3_{4}} \\ 1 & x_{3_{5}} \end{pmatrix} \begin{pmatrix} \beta_{3_{0}} \\ \beta_{3_{1}} \\ \beta_{3_{1}} \end{pmatrix} + \begin{pmatrix} \varepsilon_{3_{1}} \\ \varepsilon_{3_{2}} \\ \varepsilon_{3_{2}} \\ \varepsilon_{3_{4}} \\ \varepsilon_{3_{5}} \end{pmatrix}$$
 mit $\varepsilon_{3} \sim N(0_{5}, \sigma_{3}^{2}I_{5})$ (28)

$$y_4 = X_4 \beta_4 + \varepsilon_4 \Leftrightarrow \begin{pmatrix} y_{4_1} \\ y_{4_2} \\ y_{4_3} \\ y_{4_4} \\ y_{4_5} \end{pmatrix} = \begin{pmatrix} 1 & x_{4_1} \\ 1 & x_{4_2} \\ 1 & x_{4_3} \\ 1 & x_{4_5} \\ 1 & x_{4_5} \end{pmatrix} \begin{pmatrix} \beta_{4_0} \\ \beta_{4_1} \\ \beta_{4_1} \\ + \begin{pmatrix} \varepsilon_{4_1} \\ \varepsilon_{4_2} \\ \varepsilon_{4_3} \\ \varepsilon_{4_4} \\ \varepsilon_{4_5} \end{pmatrix} \text{ mit } \varepsilon_4 \sim N(0_5, \sigma_4^2 I_5)$$
 (29)

(3) Gruppenspezifische einfache lineare Regressionsmodelle für die ACT Effekte

```
library(nlme)
            = read.csv("./4_Daten/mz-regression-2.csv")
                                                            # Einlesen des Datensatzes
           = lmList(BDI ~ ACT | HSA, D)
М
                                                            # gruppenspezifische ELRs
           = list()
                                                            # Liste für Modelschätzungsresultate
           = list()
                                                            # Liste für Designmatrizen
           = list()
beta hat
                                                            # Liste für beta_hat
sigsqr_hat = list()
                                                            # Liste für Varianzparameterschätzer
for(i in 1:length(M)){
                                                            # Gruppeniterationen
   S[[i]]
                       = summary(M[[i]])
                                                            # Modellschätzungsresultate
   XIIII
                       = model.matrix(M[[i]])
                                                            # Designmatrix
   beta_hat[[i]]
                       = as.matrix(M[[i]]$coefficients)
                                                            # Betaparameterschätzer
                       = S[[i]]$sigma**2}
   sigsqr_hat[[i]]
                                                            # Varianzparameterschätzer
```

BDI ~ ACT | HSA ist eine erweiterte R Formel, die BDI und ACT anhand der Level des Faktors HSA partitioniert!

(3) Gruppenspezifische einfache lineare Regressionsmodelle für die ACT Effekte

Designmatrizen

```
(Intercept) ACT
            1 13
             14
            1 16
            1 19
attr(, "assign")
[1] 0 1
   (Intercept) ACT
7
            1 24
            1 24
            1 22
            1 21
attr(,"assign")
[1] 0 1
   (Intercept) ACT
11
             1 21
12
            1 22
13
            1 22
14
             1 27
15
            1 24
attr(,"assign")
[1] 0 1
   (Intercept) ACT
16
             1 33
17
             1 30
18
            1 32
            1 35
19
20
            1 29
attr(,"assign")
[1] 0 1
```

(3) Gruppenspezifische einfache lineare Regressionsmodelle für die ACT Effekte

(3) Gruppenspezifische einfache lineare Regressionsmodelle für die ACT Effekte

```
HSA 1 beta_hat : 5.57 1.87 sigsqr_hat: 9.84

HSA 2 beta_hat : 3.75 1.33 sigsqr_hat: 2.05

HSA 3 beta_hat : -16.8 1.66 sigsqr_hat: 6.98

HSA 4 beta_hat : 14.35 0.19 sigsqr_hat: 5.45
```

Die BDI-II-Reduktion in jeder HSA mit steigender ACT Komponentenanzahl wird deutlich

Dies entspricht der Intuition bei HSA-spezifischer Dateninspektion.

Es wird kein HSA-übergreifender Therapiestundenanzahleffekt bestimmt.

Es wird kein Maß für die Varianz der Effekt zwischen den Hochschulambulanzen bestimmt.

(4) Multizentren-Regressionsmodell mit Random-Intercept-Only

Strukturelle Form

Für Hochschulambulanzen i = 1, 2, 3, 4 und Proband:innen j = 1, 2, 3, 4, 5

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + b_{0i} + \varepsilon_{ij} \tag{30}$$

mit

- ullet $x_{ij} := \mathsf{Anzahl}$ ACT Komponenten für Proband:in j und Hochschulambulanz i
- $\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$
- b_{0i} ~ N(0, σ²_L)

Parameterbedeutungen

- β_0 Erwartungswert der BDI-II-Reduktion bei 0 ACT Komponenten
- β_1 Erwartungswert der BDI-II-Reduktion pro 1 ACT Komponente
- Hochschulambulanz-spezifische Abweichung der BDI-II-Reduktion bei 0 ACT Komponenten b_{0i}
- σ_b^2 σ_ϵ^2 Varianz der b_{0i} zwischen Hochschulambulanzen
 - Varianz der Datenpunkte innerhalb der Hochschulambulanzen

(4) Multizentren-Regressionsmodell mit Random-Intercept-Only

Designmatrixform

$$y = X\beta + Zb + \varepsilon$$

$$\begin{pmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{14} \\ y_{15} \\ y_{21} \\ y_{22} \\ y_{23} \\ y_{24} \\ y_{25} \\ y_{31} \\ y_{32} \\ y_{33} \\ y_{34} \\ y_{35} \\ y_{41} \\ y_{42} \\ y_{43} \\ y_{44} \\ y_{45} \end{pmatrix} = \begin{pmatrix} 1 & x_{11} \\ 1 & x_{13} \\ 1 & x_{14} \\ 1 & x_{15} \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0$$

(4) Multizentren-Regressionsmodell mit Random-Intercept-Only

```
library(nlme)
                                                            # R Paket
                = read.csv("./4_Daten/mz-regression-2.csv") # Einlesen des Datensatzes
D$HSA
                = as.factor(D$HSA)
                                                            # Umwandlung numerischer Werte in R factor
                = lme(BDI ~ ACT, D, random = ~ 1 | HSA)
                                                            # LMM vom Einfache Lineare Regressionstyp
                = model.matrix(M, D)
                                                            # Fixed-Effects-Designmatrix
                = model.matrix(~ M$groups[[1]] - 1)
                                                            # Random-Effects-Designmatrix
beta_hat
                = M$coefficients$fixed
                                                            # Fixed-Effects-Parameterschätzer
                                                             # Random-Effects-Parameterschätzer
b hat
                = M$coefficients$random$HSA
s_eps_hat
                = M$sigma**2
                                                            # Varianzkomponentenschätzer
s_b_hat
                = diag(getVarCov(M))
                                                            # Varianzkomponentenschätzer
```

(4) Multizentren-Regressionsmodell mit Random-Intercept-Only

Fixed-Effects-Designmatrix

```
(Intercept) ACT
1
3
               14
               16
             1 17
             1 24
             1 22
10
             1 21
11
             1 21
12
             1 22
13
             1 22
14
             1 27
15
             1 24
16
               33
17
             1 30
             1 32
18
19
               35
             1 29
attr(, "assign")
[1] 0 1
```

(4) Multizentren-Regressionsmodell mit Random-Intercept-Only

Random-Effects-Designmatrix

```
M$groups[[1]]1 M$groups[[1]]2 M$groups[[1]]3 M$groups[[1]]4
10
11
12
13
14
15
16
17
19
attr(,"assign")
attr(, "contrasts")
attr(, "contrasts") $ M$groups[[1]]
[1] "contr.treatment"
```

Psychotherapieforschung | © 2025 Dirk Ostwald CC BY 4.0 | Folie 78

(4) Multizentren-Regressionsmodell mit Random-Intercept-Only

(4) Multizentren-Regressionsmodell mit Random-Intercept-Only

```
beta_hat : -0.87 1.23

sigsqr_eps_hat : 7.65

sigsqr_b_hat : 228.4

b_hat:

(Intercept)

1 16.792256

2 6.689060

3 -5.828815

4 -17.652501
```

Die Zunahme der BDI-II Reduktion über HSAs mit steigender ACT Komponentenanzahl wird deutlich

Die Annahme, dass die BDI-II Reduktionsrate über HSAs gleich ist, mag etwas stark sein

(5) Multizentren-Regressionsmodell mit Random-Intercept-and-Slope

Strukturelle Form

Für Hochschulambulanzen i = 1, 2, 3, 4 und Proband:innen i = 1, 2, 3, 4, 5

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \beta_{0i} + \beta_{1i} x_{ij} + \varepsilon_{ij}$$

$$\tag{32}$$

mit

- ullet $x_{ij} \coloneqq$ Anzahl der ACT Komponenten in der Therapie von Proband:in j in Hochschulambulanz i
- $\beta_{0i} \sim N(0, \sigma_{h_0}^2)$ und $\beta_{1i} \sim N(0, \sigma_{h_1}^2)$
- ε_{ii} ~ N(0, σ_ε²)

Parameterbedeutungen

- β_0 Erwartungswert der BDI-II-Reduktion bei 0 ACT Komponenten
- β_1 Erwartungswert der BDI-II-Reduktion pro 1 ACT Komponente
- Hochschulambulanz-spezifische Abweichung der BDI-II-Reduktion bei 0 ACT Komponenten b_{0i}
- Hochschulambulanz-spezifische Abweichung der BDI-II-Reduktion pro 1 ACT Komponente b_{1i}
- Varianz der b_{0i} zwischen Hochschulambulanzen
- $\sigma_{b_0}^2$ $\sigma_{b_1}^2$ σ_{ε}^2 Varianz der b1, wischen Hochschulambulanzen
- Varianz der Datenpunkte innerhalb der Hochschulambulanzen

(5) Multizentren-Regressionsmodell mit Random-Intercept-and-Slope

Designmatrixform

mit

$$b \sim N\left(0_8, \Sigma_b\right) \text{ und } \varepsilon \sim N(0_{20}, \sigma^2 I_{20})$$
 (35)

(5) Multizentren-Regressionsmodell mit Random-Intercept-and-Slope

```
library(nlme)
                                                                           # R Paket
ctrl
                = lmeControl(opt = "optim", maxIter = 100)
                                                                           # Anzahl an ReML Iterationen
                = read.csv("./4_Daten/mz-regression-2.csv")
                                                                           # Einlesen des Datensatzes
D$HSA
                = as.factor(D$HSA)
                                                                           # Umwandlung numerischer Werte in R factor
                = lme(BDI ~ ACT, D, random = ~ ACT | HSA, control = ctrl) # LMM vom Einfache Lineare Regressionstyp
                = model.matrix(M,D)
                                                                           # Fixed-Effects-Designmatrix
beta_hat
                = M$coefficients$fixed
                                                                           # Fixed-Effects-Parameterschätzer
b hat
                = M$coefficients$random
                                                                           # Random-Effects-Parameterschätzer
s_eps_hat
                = M$sigma**2
                                                                           # Varianzkomponentenschätzer
s_b_hat
                = diag(getVarCov(M))
                                                                           # Varianzkomponentenschätzer
```

(5) Multizentren-Regressionsmodell mit Random-Intercept-and-Slope

Multizentren-Regressionsmodell mit Random-Intercept-and-Slope

```
beta_hat : 1.74 1.21
sigsqr_b_hat : 14.25 0.25
```

 $sigsqr_eps_hat: 6.03$

b_hat

\$HSA

	(Intercept)	ACT
1	4.438574	0.6167610
2	1.116603	0.1531704
3	-2.062339	-0.2545769
4	-3.492838	-0.5153544

Die BDI-II-Reduktion über HSAs mit steigender ACT Komponentenanzahl wird deutlich

Die BDI-II-Reduktionsraten varriieren nicht unabhängig über HSAs

Motivation

Multizentren-Parallel gruppen designs

Multizentren-Regressionsdesigns

Ein Multizentren-Simpson's Paradox-Beispiel

Selbstkontrollfragen

Selbstkontrollfragen

- 1. Erläutern Sie die Definition, die Motivation und die Herausforderungen einer Multizentrenstudie,
- 2. Erläutern Sie das Random-Center-Effect-Modell für Multizentren-Parallelgruppendesigns
- 3. Erläutern Sie das Random-Center-by-Treatment-Interaction-Modell für Multizentren-Parallelgruppendesigns.
- 4. Geben Sie das Theorem zur Populationsparameterdarstellung eines LLMs wieder.
- 5. Erläutern Sie die Bedeutung des Theorems zur Populationsparameterdarstellung eines LMMs wieder.
- 6. Erläutern Sie das Random-Intercept-Only-Modell für Multizentren-Regressionsdesigns.
- 7. Erläutern Sie das Random-Slope-Only-Modell für Multizentren-Regressionsdesigns.
- 8. Erläutern Sie das Random-Intercept-and-Slope-Modell für Multizentren-Regressionsdesigns.

Referenzen |

- Blyth, Colin R. 1972. "On Simpson's Paradox and the Sure-Thing Principle." Journal of the American Statistical Association 67 (338): 364–66. https://doi.org/10.1080/01621459.1972.10482387.
- Brown, Helen, and Robin Prescott. 2015. Applied Mixed Models in Medicine. 3rd ed. Wiley.
- Demidenko, Eugene. 2013. *Mixed Models: Theory and Applications with R.* 2. ed. Wiley Series in Probability and Statistics. Hoboken, NJ: Wiley.
- Edgar, Kate. 2021. "Including Random Centre Effects in Design, Analysis and Presentation of Multi-Centre Trials."
- Friedman, Lawrence M., Curt D. Furberg, David L. DeMets, David M. Reboussin, and Christopher B. Granger. 2015.
 Fundamentals of Clinical Trials. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-18539-2.
- Kahan, Brennan C, and Tim P Morris. 2012. "Analysis of Multicentre Trials with Continuous Outcomes: When and How Should We Account for Centre Effects?"
- Li, Yanjuan, Yi Zhang, Chun Wang, Jia Luo, Yang Yu, Shixing Feng, Chunxue Wang, et al. 2025. "Supported Mindfulness-Based Self-Help Intervention as an Adjunctive Treatment for Rapid Symptom Change in Emotional Disorders: A Practice-Oriented Multicenter Randomized Controlled Trial." *Psychotherapy and Psychosomatics*, January, 1–11. https://doi.org/10.1159/000542937.
- Localio, A. Russell, Jesse A. Berlin, Thomas R. Ten Have, and Stephen E. Kimmel. 2001. "Adjustments for Center in Multicenter Studies: An Overview." Annals of Internal Medicine 135 (2): 112–23. https://doi.org/10.7326/ 0003-4819-135-2-200107170-00012.
- Tangri, Navdeep, Georgios D. Kitsios, Shi Hann Su, and David M. Kent. 2010. "Accounting for Center Effects in Multicenter Trials." Epidemiology 21 (6): 912–13. https://doi.org/10.1097/ede.0b013e3181f56fc0.