E.T.S. de INGENIERÍA INFORMÁTICA

Curso 2022/2023

Estructuras Algebraicas para la Computación

Relación 8 de Ejercicios

1. Los prerrequisitos en las asignaturas de una carrera universitaria constituyen un orden parcial. Se dice que $a \leq b$ si es necesario acabar con éxito la asignatura a para poder terminar con éxito la asignatura b (enunciado así, la relación \leq es reflexiva). Considera los prerrequisitos para las asignaturas de Matemáticas (Mat)

Asignaturas	Prerrequisitos
Mat 101	Ninguno
Mat 201	Mat 101
Mat 250	Mat 101
Mat 251	Mat 250
Mat 340	Mat 201
Mat 341	Mat 340
Mat 450	Mat 201, Mat 250
Mat 500	Mat 450, Mat 251

- a) Dibuja el diagrama de Hasse correspondiente.
- b) Si un estudiante quiere cursar las 8 asignaturas, pero sólo una por semestre, ¿qué asignaturas debe cursar en su primer semestre? ¿Y en el último?
- c) Suponiendo que quiere cursar Mat 250 en su primer año (primer o segundo semestre) y Mat 340 en su último curso (séptimo u octavo semestre), halla todas las formas en que puede cursar las ocho asignaturas.
- 2. En los siguientes apartados determina si el diagrama de Hasse representa un retículo ordenado

En caso afirmativo, estudia si es complementado y si es distributivo.

3. Para los siguientes diagramas de Hasse, justifica que (\mathcal{A}, \preceq) no es un retículo y que (\mathcal{M}, \preceq) es un retículo no distributivo. Estudia si (\mathcal{M}, \preceq) es complementado.

- 4. Sea D_{60} el conjunto de todos los divisores de 60 con la relación divisibilidad
 - a) Dibuja su diagrama de Hasse y determina sus átomos y su elementos u-irreducibles.
 - b) Expresa 60, 12 y 20 mediante elementos u-irreducibles. ¿Las expresiones son únicas?
 - c) Determina los elementos que tienen complemento.
- 5. Consideramos el conjunto parcialmente ordenado $T = \{a, b, c, d, e, f\}$ con el orden dado por el siguiente diagrama de Hasse

a) Determina los elementos destacables de los siguientes subconjuntos:

$$B_1 = \{a, b, c\}, \qquad B_2 = \{c, d\}, \qquad B_3 = \{d, e\}$$

- b) Define un orden total que sea compatible con el orden parcial dado.
- 6. Sean $\mathcal{B}_1 = D_{2310}$ y $\mathcal{B}_2 = \mathcal{P}(\{a, b, c, d, e\})$. Definimos $f: \mathcal{B}_1 \to \mathcal{B}_2$ de modo que

$$f(2) = \{a\}$$
 $f(3) = \{b\}$ $f(5) = \{c\}$ $f(7) = \{d\}$ $f(11) = \{e\}$

- a) Determina f(35), f(110), f(210) y f(330) para que f sea isomorfismo de Álgebras de Boole.
- b) ¿Cuántos isomorfismos diferentes se pueden definir entre \mathcal{B}_1 y \mathcal{B}_2 ?
- 7. Encuentra un conjunto S tal que $\mathcal{P}(S)$ y \mathbb{B}^5 sean isomorfos como álgebras de Boole.
- 8. Justifica si existe un entero $n \leq 200$ tal que \mathcal{D}_n y $\mathcal{F}(\mathbb{B}^2, \mathbb{B})$ son álgebras de Boole isomorfas.
- 9. Halla la forma normal disyuntiva de la función booleana $F: \mathbb{B}^3 \to \mathbb{B}$ dada en forma conjuntiva

$$F(x, y, z) = (x + y + z)(x + y + \overline{z})(x + \overline{y} + \overline{z})$$

10. Sean las expresiones booleanas

$$E_1(x,y,z) = \overline{x+\overline{z}} + \overline{y} \cdot z + \overline{y+z}$$
 y $E_2(x,y,z) = \overline{x\cdot z + y\cdot \overline{z}} + \overline{y}$

- a) Determina si $E_1(x, y, z)$ y $E_2(x, y, z)$ son equivalentes.
- b) Estudia si mediante la expresión booleana E_2 se puede especificar la función booleana

$$F(x, y, z) = \overline{x}z + \overline{y}$$

- c) Halla la forma normal disyuntiva y la forma normal conjuntiva de la función booleana que se puede especificar mediante la expresión booleana $E_1(x, y, z)$.
- 11. Demuestra o refuta:
 - a) Todo conjunto ordenado es un retículo.
 - b) Si \mathcal{L} es un retículo finito, entonces es acotado.
 - c) Si \mathcal{L} es un retículo complementado, entonces es un álgebra de Boole.
 - d) Si \mathcal{A} es un álgebra de Boole y $x, y, z \in \mathcal{A}$ son tales que x + y = x + z, entonces y = z.

- 12. En un álgebra de Boole \mathcal{A} se define la operación \oplus (xor) de la siguiente manera: $a \oplus b = a\overline{b} + \overline{a}b$.
 - a) Determina $a \oplus a$, $a \oplus 0$, $a \oplus 1$ y $a \oplus \overline{a}$.
 - b) Demuestra o refuta cada una de las siguientes afirmaciones
 - i) $a \oplus b = b \oplus a$
- ii) $a \oplus (b \oplus c) = (a \oplus b) \oplus c$
- iii) $a \oplus b = \overline{a} \oplus \overline{b}$
- iv) $a \oplus bc = (a \oplus b)(a \oplus c)$
- $v) \quad a(b \oplus c) = ab \oplus ac$
- vi) $\overline{a \oplus b} = \overline{a} \oplus b = a \oplus \overline{b}$
- vii) $a \oplus b = 0 \Rightarrow a = b$ viii) $a \oplus b = a \oplus c \Rightarrow b = c$