**Definice.** Říkáme, že číslo n dělí číslo m beze zbytku a píšeme  $n \mid m$ , když existuje celé číslo k takové, že  $n \cdot k = m$ .

#### Důkazy 1

Příklad 1 (Suma mocnin dvojky). Dokažte, že pro každé  $n \geq 0$  platí  $\sum_{i=0}^n 2^i = 2^{n+1} - 1$ .

Nejprve ukážeme, že výrok platí pro n=0. Máme tedy na levé straně rovnosti  $\sum_{i=0}^{0} 2^{i}=2^{0}=1$ . Na pravé straně  $2^{(0+1)} - 1 = 2 - 1 = 1$  a obě strany se tedy rovnají.

 ${\bf V}$ indukčním kroku budeme předpokládat, že výrok platí pro nějaké m. Tedy že pro m platí rovnost  $\sum_{i=0}^{m} 2^i = 2^{m+1} - 1$ . Nyní chceme ukázat, že výrok platí i pro následující člen, tedy pro m+1. Konkrétně chceme ukázat, že  $\sum_{i=0}^{m+1} 2^i = 2^{m+2} - 1$ . Jak toho docílíme?

Koukneme se, jak vypadá levá strana rovnice výše. Rozepsáním sumy na levé straně získáme výraz

$$\sum_{i=0}^{m+1} 2^{i} = \overbrace{2^{0} + 2^{1} + \dots + 2^{m}}^{\sum_{i=0}^{m} 2^{i}} + 2^{m+1}$$

a díkdy předpokladu víme, že platí rovnost  $\sum_{i=0}^{m} 2^i = 2^{m+1} - 1$  a tedy máme  $2^{m+1} + 2^{m+1} + 2^{m+1} = 2^{m+1} + 2^{m+1} - 1 = 2 \cdot 2^{m+1} - 1 = 2^{m+2} - 1$ , což jsme chtěli dokázat.

### Příklad 2 (Dělitelnost).

Indukcí dokažte, že pro každé  $n \geq 0$  platí 4 |  $(6n^2 + 2n).$ 

Nejprve si uvědomíme, že  $4 \mid (6n^2 + 2n)$  je ekvivalentný výroku  $\exists k \in \mathbb{Z} : 4k = 6n^2 + 2n$ .

Pro n=0 máme  $4\mid (6\cdot 0^2+2\cdot 0)$  tedy  $4\mid 0$  což platí, jelikož za hledané k můžeme zvolit 0 a platí, že  $4 \cdot 0 = 0$ . (Z toho je vidět i obecnější pozorování, že nulu dělí cokoliv.)

Nyní přichází na řadu indukční krok. Indukčním předpokladem pro nás bude, že pro nějaké m platí, že:  $4 \mid (6m^2 + 2m)$ . Tedy víme, že existuje l takové, že  $4l = 6m^2 + 2m$ .

Naším cílem bude ukázat, že  $4 \mid (6(m+1)^2+2(m+1))$ . Jinými slovy hledáme d takové, že  $(6(m+1)^2+2(m+1))$ 1)) = 4d. Rozepíšeme si tedy levou stranu rovnice na tvar  $6m^2 + 12m + 6 + 2m + 2 = 6m^2 + 2m + 12m + 8$ .

Díky předpokladu máme  $6m^2 + 2m + 12m + 8 = 4l + 4(3m) + 4 \cdot 2 = 4(l + 3m + 2)$ . Našli jsme tedy d=l+3m+2 takové, že  $4d=(6(m+1)^2+2(m+1))$ , což jsme chtěli dokázat.

# Příklad 3 (Šachovnice).

Mějme šachovnici o rozměru  $2^n \times 2^n$ , ve které chybí jedno libovolné políčko. Dokažte, že ji lze zcela pokrýt kostičkami tvaru písmene L (zabírající tři políčka).

Rukou psaný důkaz na poslední stránce dokumentu.

## Příklad 4 (Sudé $\times$ liché).

Dokažte, že pro každou neprázdnou n-prvkovou množinu platí, že počet všech jejích podmnožin sudé velikosti se rovná počtu všech jejích podmnožin liché velikosti.

Pro přehlednost si označme  $l_n$  počet lichých podmnožin libovolné n-prvkové množiny. Podobně označme  $s_n$  počet sudých podmnožin. (Píši zkrácené "lichá podmnožina" a myslím tím "podmnožina s lichým počtem prvků".)

Dobré je si uvědomit, že pro libovolné dvě n-prvkové množiny bude  $l_n$  stejné číslo. Tedy nezáleží, jestli množina obsahuje n čísel nebo n jablíček. Záleží čistě na počtu prvků. Stejný argument platí i pro  $s_n$ .

Jelikož uvažujeme pouze neprázdné množiny, tak nutně  $n \ge 1$ . V základním kroku tedy máme jednoprv-kovou množinu  $\{x\}$  a jediné její podmnožiny jsou  $\{x\}$  a  $\{\} = \emptyset$ . Tedy  $l_1 = 1 = s_1$ .

V indukčním kroku budeme předpokládat, že pro nějaké m platí, že libovolná m-prvková množina splňuje, že  $l_m = s_m$ . Chceme ukázat, že za tohoto předpokladu bude platit také  $l_{m+1} = s_{m+1}$ .

Uvažme tedy libovolnou (m+1)-prvkovou množinu  $M=\{x_1,x_2,\ldots,x_m,x_{m+1}\}$  (tedy pro  $i\neq j$  máme  $x_i\neq x_j$ ).

Rozdělíme si podmnožiny na dvě skupiny dle toho, zda do nich náleží  $x_{m+1}$ , či nikoliv. Nejprve spočtěme, kolik má (m+1)-prvková množina lichých podmnožin neobsahujících prvek  $x_{m+1}$ . Tento počet odpovídá číslu  $l_m$ , jelikož všechny liché podmnožiny množiny  $\{x_1,\dots,x_m\}$  jistě neobsahují prvek  $x_{m+1}$  a zároveň jsou i podmnožinami množiny M.

Nyní však musíme ještě započítat všechny liché podmnožiny, které prvek  $x_{m+1}$  naopak obsahují. Takové množiny lze získat jako sudé podmnožiny  $\{x_0,\dots,x_m\}$ , ke kterým přidáme prvek  $x_{m+1}$ , čímž vznikne lichá podmnožina množiny M. Tento počet tedy odpovídá  $s_m$ .

Jelikož všechny liché podmnožiny množiny M buď obsahují prvek  $x_{m+1}$ , nebo ho neobsahují (žádná jiná možnost už není), tak jsme jistě započítali všechny liché podmnožiny množiny M a jejich počet je  $l_m + s_m$ . Můžeme tedy slavnostně prohlásit, že  $l_{m+1} = l_m + s_m$ .

Cvičení: Ukažte, že podobným argumentem lze odvodit, že  $s_{m+1}=s_m+l_m$ . Z toho pak plyne  $s_{m+1}=l_{m+1}$ , což jsme chtěli dokázat.

# Příklad 5 (Teleskopický součin).

Dokažte, že platí  $\prod_{i=1}^{n} \frac{i+1}{i} = n+1$  pro každé  $n \ge 1$ .

Stejný princip jako příklad 1, akorát místo sumy máme produkt. Tedy máme  $\prod_{i=1}^n = \frac{2}{1} \cdot \frac{3}{2} \cdot \dots \cdot \frac{n}{n-1} \cdot \frac{n+1}{n}$ .

Příklad 3 (Šachovnice).

Mějme šachovnici o rozměru  $2^n \times 2^n$ , ve které chybí jedno libovolné políčko. Dokažte, že ji lze zcela pokrýt kostičkami tvaru písmene **L** (zabírající tři políčka).

Pro n = 1 máme šachovnici 2 × 2, která lze pokrýt ať už je chybějící políčko kdekoliv:









V indukčním krohu buleme předpohládat, že pro nejaké m≥1 dokážeme úptvary B pokrýt šachovníci 2<sup>m</sup>×2<sup>m</sup> ve které libovolné políčko chybí.

Nyní chceme ukázat že umíme pokrýt šachovnici 2 × 2 , ve které může být díra kdekoliv. Například může taková šachovnice uppadat takto:



Všimneme si že šachovnice lze rozložit na čtyji menší



Z indukcního předpokladu víme, že šachovnicí 2 k 2 s libovolnou dírou umíme pokrýt. Tedy umíme pokrýt levý horní čtverec.

|  | )<br> |
|--|-------|

Jak ale pokryjeme ty zbylé čtuerce? My totiž umíme z předpokladu pokrýt jen šachovnice s dírami.

Tak si tam ty díry uděláme!



\* Důležité je si uvědomit , že si opravdu .

můžeme sami zvolit , kde tyto díry budou.

Předpohlad nám totiž žaručuje pokrytí 2 x 2 m

pro libovolnou požíci díry.

2 předpokladu celý zelený prostor dokážeme pokrýt. Jelikož jsme si díry zvolili chytře, tak do toho vzniklého prostředního úseku přesně zapadá útvar 8.



Takto jsme tody pokryli šachovnici 2 2 (co ž jsme chtěli ukázat. \* Také si uvědomme, že stejný postup by tungoval i kdyby první díra byla jinde.