Blood Components

Dr.Durga Moratuwagama

Blood components

- At the end of this lecture student should be able to:
- List the different blood components
- Describe how these components are prepared, stored, half life and therapeutic applications
- Describe the complications of blood component administration.

Whole Blood

Indication

- Acute, active blood loss with hypovolaemia
- Massive transfusion

Administration

- Must be ABO and RhD compatible
 - Use blood administration set

Dosage

1 unit \rightarrow increase Hct 3 % or Hb 1 g / dL

Why components?

Meets specific requirement

Keep risk to a minimum

Maximize donor resources

Provide effective transfusion therapy

Blood Components

- **4** Types
- **Les Description**
- **4** Preparation
- **4** Storage & Transportation
- **4** Indication
- **Lange Dose**

Types of blood components

Cellular components :Red cells

Platelets

Granulocytes

Plasma components: FFP

Cryoprecipitate

Cryo poor plasma

Stored/frozen plasma

Plasma derivatives :Albumin

Immunoglobulins

Coagulation factors

Packed red cell

units with red blood cells and some plasma

with Anticoagulant -CPD

(Citrate/Phosphate/Dextrose)

Other additives: ACD/SAGAM

Packed Red Cells

250 - 350 ml

Plasma 30 %

PCV 70 %

Aim is to \uparrow O_2 carrying capacity

Indication

- Replacement of red cells in anaemic patients

Dosage 10 - 15 ml / kg

PRC 1 unit \rightarrow Hct 3 % or Hb 1g/dL

Leukocyte reduced red blood cell

Leukocyte depletion(LD)

• LD blood component =<5x10⁶ WBCs/unit

Prepared by leukocyte depletion filters

Leukocyte reduced red cells

Advantages

- Minimizes white cell immunization in patients (HLA alloimmunization)
- Prevention of FNHTR
- Reduces risk of CMV transfusion

Dosage

- same as PRC

Administration

- same as Whole Blood

Washed Red blood cells

- Washed with saline several times
- Resuspended in 100ml of normal saline

Indications

- Prevention of FNHTR
- Prevention of allergic & anaphylactic reactions

Ex:Transfusion dependent patients

Thal. / MDS

Washed Red blood cells

Disadvantages

- 20-25% loss of RBC
- Chance of contamination

Administration

- Preferably given within 4 hours
- If delayed may get risk of infections

Frozen Thawed RBCs

- Not used in Sri Lanka
- Can be kept for 8 10 yrs (Normal storage \cong 35 days)
- Auto transfusion
- To prevent HIV
- Rare blood groups
- Used immediately after thawing

Irradiated red cells

- Gamma –radiated to kill lymphocytes
- The lack of T-cells prevents graft –vs- host disease
- > Indications
- Severely immunocompromised patients'
- Bone marrow transplants
- Intrauterine transfusion
- Hodgkin Lymphoma
- Transfusions from blood relatives
-

I am at risk for transfusion related graft-verse-host disease

This patient requires irradiated blood and blood products only!

Leukocytes - Buffy Coat

Volume-50 ml WBC count-2.5 x 10 ⁹/ pack Granulocyte count-1.5 x 10 9/ pack Dose of buffy coat-at least 10 units RBC s 20 - 30 ml & Platelets HCT-60% may cause polycythaemia **Needs Grouping & DT** Group specific

Indications

- Neutropenic sepsis
- Temporary method
- Now G CSF is used
- Should be given as soon as prepared (can be kept for 24 h at 20-24 c)
 Disadvantages
- Needs repeated doses
- GVHD

Platelet Rich Plasma

Platelet Concentrate

Random donor Platelets

Whole blood 1 unit

Platelet Concentrate 1 unit

 \geq 5.5 x 10¹⁰ platelets in 50 - 70 ml of plasma

Single donor platelets
1 Donor
Apheresis

Platelet concentrate

≥ 3 x 10¹¹ platelets in ~ 300 ml of plasma

Platelets apheresis

Random Donor Platelet

Volume 45 – 65 ml

Single Donor Platelet

Volume ~ 300 ml

Shelf life-5 days

Should be kept in a shaker with continuous agitation

• Temperature-20-24°C

 Function deteriorates during storage

Indications

Treatment of bleeding due to

- > Thrombocytopenia
- Platelet Dysfunction

Contraindications

- > TTP
- > HUS
- > HIT

PLATELET CONCENTRATE

- Dosage
 - 1 unit of PC / 10 kg B.W.
 - Increment will be less in
 - Splenomegaly
 - DIC
 - Septicemia

1 unit of PC -> Platelet 5000-10,000 / ul

PLATELET CONCENTRATE

Administration

- should be ABO compatible (No Rh Ag on platelets)
- @ Avoid Rh D+RDP transfusion to a Rh-women in child bearing age(why?)
- Use blood administration set
- Must not be refrigerated

Single Donor Platelet/Apheresis

- Indication
 - same as random PC

- Dosage
 Usually 1pack of SDP = 1 therapeutic dose
- Administration
 same as random PC

Plasma Components

- Fresh Frozen Plasma
- Frozen Plasma :- Aged plasma

Cryoremoved plasma

Cryoprecipitate

Fresh Frozen Plasma

Frozen Plasma

plasma separated & frozen in 6-8 hours of blood collection

4volume ~ 250-300 ml

+ maximum level of <u>labile</u> and <u>non-labile</u> clotting factors (about 1 IU per ml) ■ Plasma separated from whole blood at anytime during storage

Contain all <u>non-labile</u> coagulation factors

Indication

- Replacement of coagulation factors when specific factor concentrate is not available-V, X, XI
- Replacement of multiple coagulation factor deficiencies:-liver disease, reversal of warfarin effect, Massive transfusion
- DIC
- TTP

Not indicated for

- Volume expansion
- * Immunoglobulin replacement
- Nutritional support
- * Wound healing

Precaution

- Acute allergic reaction are common
- Anaphylactic reaction may occur
- Volume overload-TACO

Dosage

Initial dose of 15 - 20 ml / kg

Administration

- Must be ABO compatible
- Infuse as soon as possible after thawing (within 6 hrs)
- using standard blood administration set
- Once thawed should not be reused as FFP after refreezing

CRYOPRECIPITATE

Cryoprecipitate is the

cold insoluble portion

of plasma that

precipitate when

FFP is thawed

Cryoprecipitate 1 unit (Volume ~ 10 - 15 ml)

Cryoprecipitate 1 unit contains

- F VIII:c
 80 150 IU
- Fibrinogen 150 250 mg
- F XIII (20-30% of WB level)
- (40-70% of WB level) vWF

CRYOPRECIPITATE

Indication

- **Factor VIII (haemophilia A)
- *von Willebrand Disease
- ** Quantitative and Qualitative Fibrinogen Deficiency: Hypo/Dysfibrinogenaemia/DIC/Liver failure/Massive transfusion
- * Factor XIII deficiency

CRYOPRECIPITATE

Administration

- Dose of Cryo is based on the desired target level of the specific factor to be replaced
- Group specificity not necessary
- No compatibility testing required
- After thawing & pooling, infuse as soon as possible through blood admin. set
- must be infused within 6 hours of thawing

STORAGE AND SHELF LIFE OF BLOOD COMPONENTS

COMPONENT	STORAGE TEMPERATURE	SHELF LIFE
Whole blood	I-6° C	35 days
RBCs	I-6° C	35-42 days
Platelets	20-24° C	5 days
FFP	<-18° C	I year
Cryoprecipitate	<-18° C	I year

Whole blood Red cells Granulocytes **Platelets** Plasma Fractionated (Fresh) frozen products plasma (F(FP) F Vlla* **Immune** Clabulin F VIII* Albumin Cryo Cryoprecipitate supernatant plasma (CSP) FIX* * Now available as recombinant products

Summary

- Blood component vs Whole blood
- Cellular and plasma components
- Storage and half life
- > Indications
- > Adverse effects

Thank you