Solution to "Chapter 2: Basic tail and concentration bounds"

Jiaxin Hu

July 22, 2020

1 Summary

Theorem 1.1 (Markov's inequality). Let $X \geq 0$ be a random variable with finite mean. We have

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}, \quad \text{for all } t > 0.$$
 (1)

Theorem 1.2 (Chebyshev's inequality). Let $X \ge 0$ be a random variable with finite mean μ and finite variance. We have

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\operatorname{var}(X)}{t^2}, \quad \text{for all } t > 0.$$
 (2)

Theorem 1.3 (Markov's inequality for polynomial moments). Let X be a random variable. Suppose that the order k central moment of X exists. Applying Markov's inequality to the random variable $|X - \mu|^k$ yields

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\mathbb{E}\left[|X - \mu|^k\right]}{t^k}, \quad \text{for all } t > 0.$$

Theorem 1.4 (Chernoff bound). Let X be a random variable. Suppose that the moment generating function of X, denoted $\varphi_X(\lambda)$, exists in the neighborhood of 0; i.e., $\varphi_X(\lambda) = \mathbb{E}[e^{\lambda X}] < +\infty$, for all $\lambda \in (-b,b)$ with some b>0. Applying Markov's inequality to the random variable $Y=e^{\lambda(X-\mu)}$ yields

$$\mathbb{P}((X - \mu) \ge t) \le \frac{\mathbb{E}\left[e^{\lambda(X - \mu)}\right]}{e^{\lambda t}}, \quad \text{for all } \lambda \in (-b, b).$$

Optimizing the choice of λ for the tightest bound, we obtain the Chernoff bound

$$\mathbb{P}((X - \mu) \ge t) \le \inf_{\lambda \in [0, b)} \frac{\mathbb{E}\left[e^{\lambda(X - \mu)}\right]}{e^{\lambda t}}.$$

Theorem 1.5 (Hoeffding bound for bounded variable). Let X be a random variable with mean $\mu = \mathbb{E}(X)$. Suppose that $X \in [a,b]$ almost surely, where $a \leq b \in \mathbb{R}$ are two constants. Then, we have

$$\mathbb{E}[e^{\lambda X}] \le e^{\frac{s(b-a)^2}{8}}, \quad for \ all \ \lambda \in \mathbb{R}.$$

Consequently, the variable $X \sim \text{subG}\left(\frac{(b-a)^2}{4}\right)$.

Proof. See Exercise 2.4. \Box

Theorem 1.6 (Moment of sub-Gaussian variable). Let $X \sim \text{subG}(\sigma^2)$. For all integer $k \geq 1$, we have

$$\mathbb{E}[|X|^k] \le k2^{k/2} \sigma^k \Gamma(\frac{k}{2}),\tag{3}$$

where the Gamma function is defined as $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

Theorem 1.7 (One-sided Bernstein's inequality). Let X be a random variable. Suppose $X \leq b$ almost surely. We have

$$\mathbb{E}\left[e^{\lambda(X-\mathbb{E}[X])}\right] \le \exp\left\{\frac{\lambda^2 \mathbb{E}[X^2]/2}{1-b\lambda/3}\right\}, \quad \text{for all } \lambda \in [0,3/b).$$

Consequently, let X_i be independent variables, and $X_i \leq b$ almost surely, for all $i \in [n]$. We have

$$\mathbb{P}\left[\sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \ge n\delta\right] \le \exp\left\{-\frac{n\delta^2}{\sum_{i=1}^{n} \mathbb{E}[X_i^2]/n + b\delta/3}\right\}, \quad \text{for all } \delta \ge 0.$$
 (4)

Particularly, let X_i be independent nonnegative variables, for all $i \in [n]$. The equation (4) becomes

$$\mathbb{P}\left[\sum_{i=1}^{n} (Y_i - \mathbb{E}[Y_i]) \le n\delta\right] \le \exp\left\{-\frac{n\delta^2}{\sum_{i=1}^{n} \mathbb{E}[Y_i^2]/n}\right\}, \quad \text{for all } \delta \ge 0.$$
 (5)

Definition 1 (Bernstein's condition). Let X be a random variable with mean $\mu = \mathbb{E}[X]$ and variance $\sigma^2 = \text{var}(X)$. We say X satisfies the Bernstein's condition with parameter b if

$$\left| \mathbb{E}[(X - \mu)^k] \right| \le \frac{1}{2} k! \sigma^2 b^{k-2}, \text{ for } k = 3, 4, \dots$$

Note that every bounded random variable X satisfies the Bernstein's condition.

Theorem 1.8 (Bernstein-type bound). For any variable X satisfying the Bernstein's condition, we have

$$\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \le \exp\left\{\frac{\lambda^2 \sigma^2}{2(1-b|\lambda|)}\right\}, \quad \text{for all } |\lambda| \le \frac{1}{b},$$

and the concentration inequality

$$\mathbb{P}\left[|X - \mu| \ge t\right] \le 2 \exp\left\{-\frac{t^2}{2(\sigma^2 + bt)}\right\}, \quad \text{for all } t \ge 0.$$

2 Exercises

2.1 Exercise 2.1

(Tightness of inequalities.) The Markov's and Chebyshev's inequalities are not able to be improved in general.

- (a) Provide a random variable $X \geq 0$ that attains the equality in Markov's inequality (1).
- (b) Provide a random variable Y that attains the equality in Chebyshev's inequality (2).

Solution:

(a) For a given constant t > 0, we define a variable $Y_t = X - t\mathbb{1}[X \ge t]$, where $\mathbb{1}$ is the indicator function. Note that Y_t is a nonnegative variable. The Markov's inequality follows by taking the expectation to Y_t ,

$$\mathbb{E}[Y_t] = \mathbb{E}[X] - t\mathbb{P}[X \ge t] \ge 0.$$

Therefore, Markov's inequality meets the equality if and only if the expectation $\mathbb{E}[Y_t] = 0$. Since Y_t is nonnegative, we have $\mathbb{P}(Y_t = 0) = 1$. Note that $Y_t = 0$ if and only if X = 0 or X = t.

Hence, for the given constant t > 0, the nonnegative variable X with distribution $\mathbb{P}(X \in \{0, t\}) = 1$ attains the equality of Markov's inequality.

Similarly as in part (a)
(b) Chebyshev's inequality follows by applying Markov's inequality to the nonnegative random variable $Z = (X - \mathbb{E}[X])^2$. As in part (a), given a constant t > 0, the variable $Z = (X - \mathbb{E}[X])^2$ with distribution $\mathbb{P}(Z \in \{0, t^2\}) = 1$ attains the equality of the Markov's inequality for Z. Consequently, the variable X attains the equality of the Chebyshev's inequality for X. By transformation, the distribution of X satisfies the followings formula,

$$\mathbb{P}(X=x) = \begin{cases} p & \text{if } x = c, \\ \frac{1-p}{2} & \text{if } x = c - t \text{ or } x = c + t, \\ 0 & \text{otherwise }, \end{cases}$$

where $c \in \mathbb{R}$ is a constant and $p \in [0, 1]$.

Remark 1 (Tightness of Markov's inequality). Only a few variables attain the equalities in Markov's and Chebyshev's inequalities. In research, we should pay attention to the concentration bounds tighter than Markov's inequality.

2.2 Exercise 2.2

Lemma 1 (Standard normal distribution). Let $\phi(z)$ be the density function of a standard normal variable $Z \sim N(0,1)$. Then,

$$\phi'(z) + z\phi(z) = 0, (6)$$

and

$$\phi(z)\left(\frac{1}{z} - \frac{1}{z^3}\right) \le \mathbb{P}(Z \ge z) \le \phi(z)\left(\frac{1}{z} - \frac{1}{z^3} + \frac{3}{z^5}\right), \quad \text{for all } z > 0.$$
 (7)

Proof. First, we prove the equation (6).

The pdf of the standard normal distribution is

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right).$$

The equation (6) follows by taking the derivative of $\phi(z)$. Specifically,

$$\phi'(z) = -z\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{z^2}{2}\right) = -z\phi(z).$$

Next, we prove the equation (7).

We write the upper tail probability of the standard normal variable as

$$\mathbb{P}(Z \ge z) = \int_{z}^{+\infty} \phi(t)dt = \int_{z}^{+\infty} -\frac{1}{t}\phi'(t)dt = \frac{1}{z}\phi(z) - \int_{z}^{+\infty} \frac{1}{t^{2}}\phi(t)dt, \tag{8}$$

where the second equality follows by the equation (6). Applying the equation (6) to the last term in equation (8) yields

$$\int_{z}^{+\infty} \frac{1}{t^{2}} \phi(t)dt = \int_{z}^{+\infty} \frac{1}{t^{3}} \phi'(t)dt = -\frac{1}{z^{3}} \phi(z) + \int_{z}^{+\infty} \frac{3}{t^{4}} \phi(t)dt \ge -\frac{1}{z^{3}} \phi(z)$$
(9)

Plugging the equation (9) into the equation (8), we obtain $\mathbb{P}(Z \geq z) \geq \phi(z) \left(\frac{1}{z} - \frac{1}{z^3}\right)$. Applying the equation (6) again to the equation (9) yields

$$\int_{z}^{+\infty} \frac{3}{t^{4}} \phi(t)dt = \int_{z}^{+\infty} -\frac{3}{t^{5}} \phi'(t)dt = \frac{3}{z^{5}} \phi(z) - \int_{z}^{+\infty} \frac{15}{t^{6}} \phi(t)dt \le \frac{3}{z^{5}} \phi(z). \tag{10}$$

Combing equations (8), (9) and (10), we obtain
$$\mathbb{P}(Z \geq z) \leq \phi(z) \left(\frac{1}{z} - \frac{1}{z^3} + \frac{3}{z^5}\right)$$
.

Remark 2. Direct calculation of tail probability for a univariate normal variable is hard. Equation (7) provides a numerical approximation to the tail probability. Particularly, the tail probability decays at the rate of $z^{-1}e^{-z^2/2}$ as $z \to +\infty$. The decay rate is faster than polynomial rate $\mathcal{O}(z^{-\alpha})$, for any $\alpha \geq 1$.

2.3 Exercise 2.3

Lemma 2 (Polynomial bound and Chernoff bound). Let $X \ge 0$ be a nonnegative variable. Suppose that the moment generating function of X, denoted $\varphi_X(\lambda)$, exists in the neighborhood of $\lambda = 0$. Given some $\delta > 0$, we have

$$\inf_{k \in \mathbb{Z}_+} \frac{\mathbb{E}[|X|^k]}{\delta^k} \le \inf_{\lambda > 0} \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \delta}}.$$
 (11)

Consequently, an optimized bound based on polynomial moments is always at least as good as the Chernoff upper bound.

Proof. By power series, we have

$$e^{\lambda X} = \sum_{k=0}^{+\infty} \frac{X^k \lambda^k}{k!}, \quad \text{for all } \lambda \in \mathbb{R}.$$
 (12)

Since the moment generating function $\varphi_X(\lambda)$ exists in the neighborhood of $\lambda = 0$, there exists a constant b > 0 such that

$$\mathbb{E}[e^{\lambda X}] = \sum_{k=0}^{+\infty} \frac{\mathbb{E}[|X|^k] \lambda^k}{k!} < +\infty, \quad \text{for all } \lambda \in (0, b).$$

Hence, the moment $\mathbb{E}[|X|^k]$ exists, for all $k \in \mathbb{Z}_+$. Applying power series (12) to the right hand side of equation (11) yields

$$\inf_{\lambda>0} \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \delta}} = \frac{\sum_{k=0}^{+\infty} \frac{\mathbb{E}[|X|^k] \lambda^k}{k!}}{\sum_{k=0}^{+\infty} \frac{\lambda^k \delta^k}{k!}}.$$
(13)

By Cauchy's third inequality, we have

$$\frac{\sum_{k=0}^{+\infty} \frac{\mathbb{E}[|X|^k] \lambda^k}{k!}}{\sum_{k=0}^{+\infty} \frac{\lambda^k \delta^k}{k!}} \ge \inf_{k \in \mathbb{Z}_+} \frac{\mathbb{E}[|X|^k]}{\delta^k}$$
(14)

Therefore, we obtain the equation (11) by combining the equation (13) with equation (14).

Remark 3. Applying different functions g(X) to the Markov's inequality leads to different bounds for the tail probability of variable X. Equation (11) implies that optimized polynomial bound is at least as tight as the Chernoff bound, provided that the moment generating function of X exsits.

2.4 Exercise 2.4

In Exercise 2.4, we prove Theorem 1.5, the Hoeffding bound for a bounded variable.

Proof. Let X be a bounded random variable, and $X \in [a, b]$ almost surely, where $a \leq b \in \mathbb{R}$ are two constants. Let $\mu = \mathbb{E}[X]$. Define the function

$$g(\lambda) = \log \mathbb{E}[e^{\lambda X}], \quad \text{for all } \lambda \in \mathbb{R}.$$

Applying Taylor Expansion to $g(\lambda)$ at 0, we have

$$g(\lambda) = g(0) + g'(0)\lambda + \frac{g''(\lambda_0)}{2}\lambda^2, \text{ where } \lambda_0 = t\lambda, \text{ for some } t \in [0, 1].$$
 (15)

In equation (15), the term $g(0) = \log \mathbb{E}[e^0] = 0$. By power series (12), we obtain the first derivative $g'(\lambda)$ as follows,

$$g'(\lambda) = \left(\log \sum_{k=0}^{n} \frac{\lambda^{k}}{k!} \mathbb{E}[X^{k}]\right)'$$

$$= \sum_{k=0}^{n} \frac{\lambda^{k}}{k!} \mathbb{E}[X^{(k+1)}] / \sum_{k=0}^{n} \frac{\lambda^{k}}{k!} \mathbb{E}[X^{k}]$$

$$= \frac{\mathbb{E}[Xe^{\lambda X}]}{\mathbb{E}[e^{\lambda X}]}.$$
(16)

Therefore, $g'(0) = \mathbb{E}[X] = \mu$. Taking the derivative to equation (16), we obtain the second-order derivative $g''(\lambda)$ as follows,

$$g''(\lambda) = \sum_{k=0}^{n} \frac{\lambda^{k}}{k!} \mathbb{E}[X^{(k+2)}] / \sum_{k=0}^{n} \frac{\lambda^{k}}{k!} \mathbb{E}[X^{k}] - \left(\sum_{k=0}^{n} \frac{\lambda^{k}}{k!} \mathbb{E}[X^{(k+1)}] / \sum_{k=0}^{n} \frac{\lambda^{k}}{k!} \mathbb{E}[X^{k}]\right)^{2}$$
$$= \frac{\mathbb{E}[X^{2}e^{\lambda X}]}{\mathbb{E}[e^{\lambda X}]} - \left(\frac{\mathbb{E}[Xe^{\lambda X}]}{\mathbb{E}[e^{\lambda X}]}\right)^{2}.$$

We interpret the second-order derivative $g''(\lambda)$ as the variance of X with the re-weighted distribution $dP' = e^{\lambda X}/\mathbb{E}[e^{\lambda X}]dP_X$, where P_X is the distribution of X. Taking integral of 1 with respect to dP', we have

$$\int_{-\infty}^{+\infty} dP' = \int_{-\infty}^{+\infty} \frac{e^{\lambda X}}{\mathbb{E}[e^{\lambda X}]} dP_X = 1,$$

which implies that the function P' is a valid probability distribution. Under all possible re-weighted distributions, the variance of X is upper bounded as follows,

$$var(X) = var(X - \frac{a+b}{2}) \le \mathbb{E}[(X - \frac{a+b}{2})^2] \le \frac{(b-a)^2}{4},$$

where the term $\frac{(b-a)^2}{4}$ follows by letting X supported on the boundaries a and b only. Hence, the second-order derivative $g''(\lambda) \leq \frac{(b-a)^2}{4}$. We plug the results of g' and g'' into the equation (15). Then,

$$g(\lambda) = g(0) + g'(0)\lambda + \frac{g''(\lambda_0)}{2}\lambda^2 \le 0 + \lambda\mu + \frac{(b-a)^2}{8}\lambda^2.$$
 (17)

Taking the exponentiation on both sides of the inequality (17), we have

$$\mathbb{E}[e^{\lambda X}] = \exp(g(\lambda)) \le e^{\mu \lambda + \frac{(b-a)^2}{8}\lambda^2}.$$
 (18)

The equation (18) implies that X is a sub-Gaussian variable with at most $\sigma = \frac{(b-a)}{2}$.

Remark 4. For any bounded random variable X supported on [a, b], X is a sub-gaussian variable with parameter at most $\sigma^2 = (b-a)^2/4$. All the properties for sub-Gaussian variables apply to the bounded variables.

2.5 Exercise 2.5

Lemma 3 (Sub-Gaussian bounds and means/variance). Let X be a random variable such that

$$\mathbb{E}[e^{\lambda X}] \le e^{\frac{\lambda^2 \sigma^2}{2} + \mu \lambda}, \quad \text{for all } \lambda \in \mathbb{R}.$$
 (19)

Then, $\mathbb{E}[X] = \mu$ and $\operatorname{var}(X) \leq \sigma^2$.

Proof. By equation (19), the moment generating function of X, denoted $\varphi_X(\lambda)$, exists in the neighborhood of $\lambda = 0$. Hence, the mean and variance of X exist. For all λ in the neighborhood of $\lambda = 0$, applying power series on both sides of equation (19) yields

$$\lambda \mathbb{E}[X] + \frac{\lambda^2}{2} \mathbb{E}[X^2] + o(\lambda^2) \le \mu \lambda + \frac{\lambda^2 \sigma^2 + \lambda^2 \mu^2}{2} + o(\lambda^2). \tag{20}$$

Dividing by $\lambda > 0$ on both sides of equation (20) and letting $\lambda \to 0^+$, we have $\mathbb{E}(X) \le \mu$. Dividing by $\lambda < 0$ on both sides of equation (20) and letting $\lambda \to 0^-$, we have $\mathbb{E}(X) \ge \mu$. Therefore, we obtain the mean $\mathbb{E}[X] = \mu$. Then, we divide $2/\lambda^2$ on both sides of equation (20), for $\lambda \ne 0$. The term $\mathbb{E}[X]\lambda$ and $\mu\lambda$ are cancelled. We have $\mathbb{E}[X^2] \le \sigma^2 + \mu^2$, and thus the $\operatorname{var}(X) \le \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \sigma^2$. \square

Question: Let σ_{min}^2 denote the smallest possible σ satisfying the inequality (19). Is it true that $var(X) = \sigma_{min}^2$?

Solution: The statement that $var(X) = \sigma_{min}^2$ is not necessarily true. Recall the function $g(\lambda)$ in Exercise 2.4. By the results in Exercise 2.4, the equation (19) is equal to

$$g''(\lambda) \le \sigma^2$$
, for all $\lambda \in \mathbb{R}$,

where $g''(\lambda)$ is the variance of X with the re-weighted distribution defined in Exercise 2.4. Therefore, we have $\max_{\lambda} g''(\lambda) = \sigma_{min}^2$. Note that g''(0) = var(X). To let the equality $\text{var}(X) = \sigma_{min}^2$ hold, we need to show that $\max_{\lambda} g''(\lambda) = g''(0)$ holds for X.

However, the statement $\max_{\lambda} g''(\lambda) = g''(0)$ is not necessarily true. A counter example is below. Consider a random variable $Y \sim Ber(1/3)$. The variance of Y is var(Y) = 2/9. Let $\lambda = 1$. The re-weighted distribution dP' is

$$P'(Y=0) = \frac{2}{3\mathbb{E}[e^Y]}$$
 and $P'(Y=1) = \frac{e}{3\mathbb{E}[e^Y]}$, where $\mathbb{E}[e^Y] = \frac{2}{3} + \frac{e}{3}$.

The variance of Y with dP' is $2/3\mathbb{E}[e^Y] \times e/3\mathbb{E}[e^Y] = 0.2442 > 2/9$. Therefore, we have $\operatorname{var}(Y) < g''(1) \leq \max_{\lambda} g''(\lambda) = \sigma_{\min}^2$. The statement $\max_{\lambda} g''(\lambda) = g''(0)$ is not true for this variable Y.

Remark 5. Parameters of a sub-Gaussian distribution provide the exact value of the mean and an upper bound of the variance; i.e., $\mathbb{E}[X] = \mu$ and $\text{var}(X) \leq \sigma^2$. Suppose the moment generating function of variable X exists over the entire real interval. The tail distribution of X is always bounded by a sub-Gaussian distribution with a proper choice of σ^2 .

2.6 Exercise 2.6

Lemma 4 (Lower bounds on squared sub-Gaussians). Let $\{X_i\}_{i=1}^n$ be an i.i.d. sequence of zero-mean sub-Gaussian variables with parameter σ . The normalized sum $Z_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ satisfies

$$\mathbb{P}[Z_n - \mathbb{E}[Z_n] \le \sigma^2 \delta] \le e^{-n\delta^2/16}, \quad \text{for all } \delta \ge 0.$$
 (21)

The equation (21) implies that the lower tail of the sum of squared sub-Gaussian variables behaves in a sub-Gaussian way.

Proof. Since X_i^2 are i.i.d. nonnegative variables, we apply the equation (5) to the variables $\{X_i^2\}_{i=1}^n$. Then, we have

$$\mathbb{P}\left[\sum_{i=1}^{n} (X_i^2 - \mathbb{E}[X_i^2]) \le n\sigma^2\delta\right] \le \exp\left\{-\frac{n\delta^2\sigma^4}{\mathbb{E}[X_1^4]}\right\}, \quad \text{for all } \delta \ge 0.$$
 (22)

By equation (3), we have

$$\mathbb{E}[X_1^4] \le 16\sigma^4. \tag{23}$$

Combing equations (22), (23) and the definition of Z_n , we obtain

$$\mathbb{P}[Z_n - \mathbb{E}[Z_n] \le \sigma^2 \delta] \le \exp\left\{-\frac{n\delta^2}{16}\right\}, \text{ for all } \delta \ge 0.$$

Remark 6. Equation (21) implies that the lower tail of the sum of squared sub-Gaussian variables behaves in a sub-Gaussian way. In following sections, we will show that the variable $Z_n - \mathbb{E}[Z_n]$ in Lemma 4 is a sub-exponential variable.

Exercise 2.7

Lemma 5 (Bennett's inequality). Let $X_1,...,X_n$ be a sequence of independent zero-mean random variables with $|X_i| \leq b$ and $\operatorname{var}(X_i) = \sigma_i^2$, for all $i \in [n]$. Then, we have Bennett's inequality

$$\mathbb{P}\left[\sum_{i=1}^{n} X_i \ge n\delta\right] \le \exp\left\{-\frac{n\sigma^2}{b^2} h\left(\frac{b\delta}{\sigma^2}\right)\right\}, \quad \text{for all } \delta \ge 0,$$

where $\sigma^2 = \frac{1}{n} \sum_{i=1}^n \sigma_i^2$ and $h(t) := (1+t) \log(1+t) - t$ supported on $t \ge 0$.

Proof. First, we consider the moment generating function of X_i , for all $i \in [n]$.

By the power series, for all $i \in [n]$, we have

"deduction" is a special term

reserved for "deductive proof"
$$\mathbb{E}\left[e^{\lambda X_i}\right] = \sum_{k=0}^{+\infty} \frac{\lambda^k \mathbb{E}[X_i^k]}{k!} = 1 + 0 + \sum_{k=2}^{+\infty} \frac{\lambda^k \mathbb{E}[X_i^k]}{k!} \le \exp\left\{\sum_{k=2}^{+\infty} \frac{\lambda^k \mathbb{E}[X_i^k]}{k!}\right\},\tag{24}$$

where the 0 is deduced from $\mathbb{E}[X_i] = 0$, and the last inequality follows by $1 + x \le e^x$. By $|X_i| < b$, we obtain an upper bound of the sum term in equation (24) as follows

> $\sum_{i=0}^{+\infty} \frac{\lambda^k \mathbb{E}[X_i^k]}{k!} \leq \sum_{i=0}^{+\infty} \frac{\lambda^k \mathbb{E}[X_i^2 | X_i|^{k-2}]}{k!} \leq \sum_{i=0}^{+\infty} \frac{\lambda^k \sigma_i^2 b^{k-2}}{k!} = \sigma_i^2 \left(\frac{e^{\lambda b} - 1 - \lambda b}{b^2} \right).$ (25)

Combing the equation (24) with equation (25), we find an upper bound of the moment generating function of $\sum_{i=1}^{n} X_i$. That is obtain the following

$$\mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_i}\right] = \prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_i}\right] \le \exp\left\{n\sigma^2\left(\frac{e^{\lambda b} - 1 - \lambda b}{b^2}\right)\right\},\tag{26}$$

where $\sigma^2 = \frac{1}{n} \sum_{i=1}^n \sigma_i^2$. Combing the Chernoff bound with equation (26), the upper tail of $\sum_{i=1}^n X_i$ follows

$$\mathbb{P}\left[\sum_{i=1}^{n} X_{i} \geq n\delta\right] \leq \exp\left\{n\sigma^{2}\left(\frac{e^{\lambda b} - 1 - \lambda b}{b^{2}}\right) - \lambda n\delta\right\}$$

$$= \exp\left\{\frac{n\sigma^{2}}{b^{2}}\left(e^{\lambda b} - \lambda b - \lambda \frac{\delta b^{2}}{\sigma^{2}} - 1\right)\right\}, \quad \text{for all } \delta \geq 0. \tag{27}$$

The upper bound (27) achieves the minimum when lambda = by the first-order condition of minimization.

By the first-order condition of minimization, the λ that satisfies $\lambda b = \log \left(1 + \frac{\delta b}{\sigma^2}\right)$ minimizes the term $\left(e^{\lambda b} - \lambda b - \lambda \frac{\delta b^2}{\sigma^2} - 1\right)$. Plugging $\lambda b = \log\left(1 + \frac{\delta b}{\sigma^2}\right)$ into the equation (27), we obtain the Bennett's inequality

$$\mathbb{P}\left[\sum_{i=1}^{n} X_i \ge n\delta\right] \le \exp\left\{-\frac{n\sigma^2}{b^2} h\left(\frac{b\delta}{\sigma^2}\right)\right\}, \quad \text{for all } \delta \ge 0,$$
(28)

where $h(t) := (1+t)\log(1+t) - t$ supported on $t \ge 0$.

Further, we show that the Bennett's inequality is at least as good as the Bernstein's inequality.

The Bernstein's inequality for $\sum_{i=1}^{n} X_i$ is

$$\mathbb{P}\left[\sum_{i=1}^{n} X_i \ge n\delta\right] \le \exp\left\{\frac{-3n\delta^2}{(2b\delta + 6\sigma^2)}\right\} = \exp\left\{-\frac{n\sigma^2}{b^2}g\left(\frac{b\delta}{\sigma^2}\right)\right\}. \tag{29}$$

where $g(t) := \frac{3t^2}{2t+6}$, for all $t \ge 0$. Since $g(t) \le h(t)$ holds for all $t \ge 0$, we conclude that the Bennett's inequality (28) is at least as good as Bernstein's inequality (29).

Remark 7. So far, we have three inequalities that control the tail of bounded variables: Hoeffding's inequality, Bernstein's inequality, and Bennett's inequality. Particularly, Hoeffding's inequality implies the sub-Gaussianity of bounded variables. As the proof for Lemma 5 shows, Bennett's inequality is at least as good as the Bernstein's inequality, for all bounded variables.

random variables