Movie Genre Classification

Alaa Shehab Bassant Ahmed

Problem Statement

- Multi labeled movie genre classification based on posters analysis, which is achieved through extracting some elements from the poster such as the color, facial expression, objects and many more.

Dataset

- Kaggle dataset, contains 45,466 image collected from TMDB.
- Each entry in dataset contains info about the movie
 As shown below.

	adult	budget	id	imdb_id	original_title	popularity	poster_path	release_date
0	False	30000000	862	tt0114709	Toy Story	21.9469	/rhIRbceoE9IR4veEXuwCC2wARtG.jpg	1995-10-30
1	False	65000000	8844	tt0113497	Jumanji	17.0155	/vzmL6fP7aPKNKPRTFnZmiUfciyV.jpg	1995-12-15
2	False	0	15602	tt0113228	Grumpier Old Men	11.7129	/6ksm1sjKMFLbO7UY2i6G1ju9SML.jpg	1995-12-22

Data preprocessing

- Removed entries with NAN -> release date, posters or genres
- Removed all Grayscale movies and movies earlier than 1980
- Resized images to (224, 224) RGB images
- Pre processed images by scaling

Total number of movies for training and validation after preprocessing are 31k

Baseline model (ResNet34)

- Trained on 31538 image
- Using Adam optimizer and loss function ->
 Binary cross-entropy

Results for baseline model

 After running 50 epochs model reached an accuracy of 88% on validation dataset and overfitted the data.

Split 2 of data - 15k

Proposed solutions

- Use ResNet18 / VGG16 to avoid overfitting data
- Use ResNet50 -> as recommended in some papers
- Increase dataset by data augmentation

Transfer learning using VGG16

- After running 50 epochs model was stuck at an accuracy of 89.35% on validation dataset.
- Running VGG16 on 300 epoch didn't change the results

Transfer learning using ResNet18

- Early stopping when reaching epoch 15 due to overfitting
- Accuracy reached for validation dataset 87%

Transfer learning using ResNet50

- Overfitting data
- Accuracy reached for validation dataset 89%

Custom Model

- Simple CNN model 11 layers
- 2 Maxpool layers
- 3 Dropout layers to avoid overfitting

Custom Model results

- Stuck at 89.35% validation
- Gradient vanishing

Data Augmentation

To increase and balance the dataset

- Random Zoom Augmentation
- Random Brightness Augmentation
- Random Rotation Augmentation

Total number of movies for training and validation after augmentation are 44182 image

Results after data augmentation &

normalization

ResNet34 reached better accuracy 90.34% with early stopping at epoch 12

Team contribution

Team contribution

Bassant

- Baseline model deployment
- Splitting dataset into train and validation
- Creating data generator
- Data augmentation

Alaa

- Baseline model deployment
- Splitting data into 4 splits (sorted/randomized data)
- Generating data/labels csv from downloaded images
- Custom model architecture and deployment

Conclusion

Before data augmentation:

- ResNet34 overfitted the data performing 99.9% on training and 88% on validation.
- VGG16 and the custom model achieved an accuracy of 91% on training and 89.35% on validation.
- Although ResNet34 was overfitting, it overcame the vanishing gradient problem, where both VGG16 and the custom model were stuck at 89.35% validation accuracy after running 300 epoch.

Conclusion

After augmentation and addition preprocessing

- VGG16 and custom model had no change in performance
- ResNet34 had the best validation accuracy of 90.34% after running 8 epochs (early stopping to avoid overfitting) using 2 data splits each of 22k image.

Observations

- Models performance was affected negatively by the following:
 - Splitting data into 2 splits instead of training on entire dataset.
 - Learning irrelevant features from the posters such as the words written on the poster
 - Having some images with bad resolution
 - Not having consistent data ex : cartoon/different culture movies removed from dataset.

Observations

- ResNet34 had best performance
 - Although it overfitted the data, it achieved the highest accuracy of 90.34%
 - Overcame problem of vanishing gradient due to using residual blocks

Future work

- Preprocessing data to remove low resolution images and inconsistent data
- Training 44k images in 1 pass without splitting is seen to have achieved better result than trying to split them and retraining using saved weights.
- Use GANs or variational AE to generate images and increase dataset instead of using keras ImageDataGenerator.

Demo

References

[1] The Movies Dataset. https://www.kaggle.com/ the movies datase [2] Kos, Pobar & Ipsic Automatic Movie Posters Classification into Genres.https://www.researchgate.net/publication/282196711 Automati c Movie Posters Classification into Genres [3] Nirman Dave, Hampshire college predicting movie genre from poster. https://github.com/nddave/Movie Genre Prediction/blob/master/paper/predicting movie genres paper. pdf [4] Chu & Guo Movie Genre Classification based on Poster Images https://www.cs.ccu.edu.tw/~wtchu/papers/2017MUSA chu.pdf [5] ResNet34 pre trained on imagenet and compatible with keras https://github.com/qubvel/classification models