

Mark Scheme (Results)

June 2014

Pearson Edexcel GCE in Core Mathematics 4R (6666/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038470
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

SOME GENERAL PRINCIPLES FOR CORE MATHS MARKING

(But the particular mark scheme always takes precedence)

Method mark for solving 3 term quadratic:

Question Number	Scheme
3(b)	Factorising/Solving a quadratic equation is tested in Question 3(b).
	Method mark for solving a 3 term quadratic:
	1. Factorisation $(x^2 + bx + c) = (x + p)(x + q)$, where $ pq = c $, leading to $x =$ $(ax^2 + bx + c) = (mx \pm p)(nx \pm q)$, where $ pq = c $ and $ mn = a $, leading to $x =$
	2. Formula Attempt to use correct formula (with values for <i>a</i> , <i>b</i> and <i>c</i> .)
	3. Completing the square Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x =$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values (but refer to the mark scheme first... the application of this principle may vary). Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but will be lost if there is any mistake in the working.

Answers without working

The rubric says that these <u>may</u> gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.

These are not common. In clear cases, please deduct the <u>first</u> 2 A (or B) marks which <u>would have been lost</u> <u>by following the scheme</u>. (Note that 2 marks is the <u>maximum</u> misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).

Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

Question Number		Scheme		Marks
1. (a)	$\left\{ \frac{1}{\sqrt{9}} \right\}$	$\frac{1}{-10x} = \begin{cases} (9 - 10x)^{-\frac{1}{2}} \end{cases}$	$(9-10x)^{-\frac{1}{2}}$ or uses power of $-\frac{1}{2}$	B1
	= (9)	$\frac{\frac{1}{2}}{2} \left(1 - \frac{10x}{9} \right)^{-\frac{1}{2}} = \frac{1}{\underline{3}} \left(1 - \frac{10x}{9} \right)^{-\frac{1}{2}}$	$\frac{(9)^{-\frac{1}{2}}}{}$ or $\frac{1}{3}$	<u>B1</u>
	$=\left\{\frac{1}{3}\right\}$	$\Rightarrow \left[1 + \left(-\frac{1}{2} \right) (kx) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!} (kx)^2 + \dots \right]$	At least two correct terms. See notes	M1
	$= \left\{ \frac{1}{3} \right\}$	$\left[1 + \left(-\frac{1}{2}\right)\left(\frac{-10x}{9}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(\frac{-10x}{9}\right)^{2} + \dots\right]$		
] 5	$1 + \frac{5}{9}x + \frac{25}{54}x^2 + \dots$		
	$=\frac{1}{3}$	$+\frac{5}{27}x$; $+\frac{25}{162}x^2+$		A1; A1
(b)	$\frac{3+}{\sqrt{(9-)}}$	$\frac{x}{10x} = (3+x)(9-10x)^{-\frac{1}{2}}$		[5]
	$= (3+x)\left(\frac{1}{3} + \frac{5}{27}x + \left\{\frac{25}{162}x^2 + \right\}\right)$ Can be implied by later work See notes			
	Multiplies out to give exactly one constant term, exactly 2 terms in x and exactly 2 terms in x^2 . Ignore terms in x^3 . Can be implied.			
		$= 1 + \frac{8}{9}x + \frac{35}{54}x^2 + \dots$		A1 [3]
		Question 1 l	Notes	8
(a)	B1	Writes down $(9-10x)^{-\frac{1}{2}}$ or uses power of $-\frac{1}{2}$.		
		This mark can be implied by a constant term of (9	$(1)^{-\frac{1}{2}}$ or $\frac{1}{3}$.	
	$\underline{\mathbf{B1}}$ $(9)^{-\frac{1}{2}}$ or $\frac{1}{3}$ outside brackets or $\frac{1}{3}$ as candidate's constant term in their binomial expansion.			on.
	M1	M1 Expands $(+kx)^{-\frac{1}{2}}$ to give any 2 terms out of 3 terms simplified or an un-simplified,		
	$1 + \left(-\frac{1}{2}\right)(kx) \text{ or } \left(-\frac{1}{2}\right)(kx) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(kx)^2 \text{ or } 1 + \dots + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(kx)^2 \text{ , where } k \neq 1.$			$k \neq 1$.
	A1 $\frac{1}{3} + \frac{5}{27}x$ (simplified fractions)			
	A1	Accept only $\frac{25}{162}x^2$		

1. (a) ctd	Note	You cannot recover correct work for part (a) in part (b). i.e. if the correct answer to (a) appears as part of their solution in part (b), it cannot be credited in part (a).		
	SC	If a candidate would otherwise score A0A0 then allow Special Case 1st A1 for either		
		SC: $\frac{1}{3} \left[1 + \frac{5}{9}x; \dots \right]$ or SC: $\lambda \left[1 + \frac{5}{9}x + \frac{25}{54}x^2 + \dots \right]$ or SC: $\left[\lambda + \frac{5\lambda}{9}x + \frac{25\lambda}{54}x^2 + \dots \right]$		
		(where λ can be 1 or omitted), with each term in the [] is a simplified fraction		
	SC	Special case for the M1 mark		
	-	(1)		
		Award Special Case M1 for a correct simplified or un-simplified $1 + n(kx) + \frac{n(n-1)}{2!}(kx)^2$		
		expansion with a value of $n \neq -\frac{1}{2}$, $n \neq positive integer$ and a consistent (kx) . Note that (kx)		
		must be consistent (on the RHS, not necessarily the LHS) in a candidate's expansion. Note that $k \neq 1$.		
	Note	Candidates who write $\left\{ \frac{1}{3} \right\} \left[1 + \left(-\frac{1}{2} \right) \left(\frac{10x}{9} \right) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!} \left(\frac{10x}{9} \right)^2 + \dots \right]$		
		where $k = \frac{10}{9}$ and not $-\frac{10}{9}$ and achieve $\frac{1}{3} - \frac{5}{27}x$; $+\frac{25}{162}x^2 +$ will get B1B1M1A0A1.		
(b)				
(b)	M1	Writes down $(3 + x)$ (their part (a) answer, at least 2 of the 3 terms.)		
	Note	$(3+x)\left(\frac{1}{4}+\frac{5}{4}x+\right)$ or $(3+x)\left(\frac{1}{3}+\frac{5}{27}x+\frac{25}{162}x^2+\right)$ are fine for M1.		
	Note	This mark can also be implied by candidate multiplying out to find two terms (or coefficients) in x .		
	M1	Multiplies out to give exactly one constant term, exactly 2 terms in x and exactly 2 terms in x^2 .		
	Note	This M1 mark can be implied. You can also ignore x^3 terms.		
	A1	$1 + \frac{8}{9}x + \frac{35}{54}x^2 + \dots$		
		native Methods for part (a)		
	(native method 1: Candidates can apply an alternative form of the binomial expansion.		
	$\left\{ \frac{1}{\sqrt{9}} \right\}$	$\frac{1}{\overline{-10x}} = \begin{cases} (9 - 10x)^{-\frac{1}{2}} = (9)^{-\frac{1}{2}} + \left(-\frac{1}{2}\right)(9)^{-\frac{3}{2}}(-10x) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(9)^{-\frac{5}{2}}(-10x)^2 \end{cases}$		
	B 1	Writes down $(9-10x)^{-\frac{1}{2}}$ or uses power of $-\frac{1}{2}$.		
		2		
	B 1	$9^{-\frac{1}{2}}$ or $\frac{1}{3}$		
	M1	Any two of three (un-simplified or simplified) terms correct.		
	A1	$\left \frac{1}{3} + \frac{5}{27} x \right $		
		$\frac{25}{162}x^2$		
	A1	$\frac{1}{162}x^2$		

The terms in C need to be evaluated, so $^{-\frac{1}{2}}C_0(9)^{-\frac{1}{2}} + ^{-\frac{1}{2}}C_1(9)^{-\frac{3}{2}}(-10x) + ^{-\frac{1}{2}}C_2(9)^{-\frac{5}{2}}(-10x)^2$ without further working is B1B0M0A0A0.

Note

1. (a) Alternative Method 2: Maclaurin Expansion Let $f(x) = \frac{1}{\sqrt{(9-10x)}}$ $\{f(x) = \} (9-10x)^{-\frac{1}{2}}$ $f''(x) = 75(9-10x)^{-\frac{5}{2}}$ $f''(x) = (-\frac{1}{2})(9-10x)^{-\frac{3}{2}}(-10)$ $\{f(x) = \frac{1}{3}, f'(0) = \frac{5}{27} \text{ and } f''(0) = \frac{75}{243} = \frac{25}{81}\}$ $f(x) = \frac{1}{3} + \frac{5}{27}x; + \frac{25}{162}x^2 + ...$ Al; Al

Question Number		Scheme	M	arks
2. (a)	Area ≈	Area $\approx \frac{1}{2} \times 0.5 ; \times \left[\frac{2 + 2(4.077 + 7.389 + 10.043) + 0}{2 + 2(4.077 + 7.389 + 10.043) + 0} \right]$		<u>M1</u>
	=	$\frac{1}{4} \times 45.018 = 11.2545 = 11.25 (2 \text{ dp})$ 11.25	A1	cao
(b)	Any one	Increase the number of strips Use more trapezia Make h smaller Increase the number of x and/or y values used Shorter /smaller intervals for x	B1	[3]
	•	More values of y . More intervals of x Increase n		[1]
(c)	{\int (2 -	$ (x)e^{2x} dx $, $ \begin{cases} u = 2 - x \implies \frac{du}{dx} = -1 \\ \frac{dv}{dx} = e^{2x} \implies v = \frac{1}{2}e^{2x} \end{cases} $		
	Either $(2-x)e^{2x} \to \pm \lambda(2-x)e^{2x} \pm \int \mu e^{2x} \{dx\}$			
	$= \frac{1}{2}(2-x)e^{2x} - \int -\frac{1}{2}e^{2x} \{dx\}$		A1	
	1	2 2		
	_	$-x)e^{2x} + \frac{1}{4}e^{2x}$ $\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$	A1	oe
		$\left\{ \left[\frac{1}{2} (2-x) e^{2x} + \frac{1}{4} e^{2x} \right]_{0}^{2} \right\}$		
	= (0+	$\frac{1}{4}e^4 - \left(\frac{1}{2}(2)e^0 + \frac{1}{4}e^0\right)$ Applies limits of 2 and 0 <i>to all terms</i> and subtracts the correct way round.	dM	
	$=\frac{1}{4}e^4$		A1	oe
		O42 2 N-4		[5] 9
(a)	B1	Outside brackets $\frac{1}{2} \times 0.5$ or $\frac{0.5}{2}$ or 0.25 or $\frac{1}{4}$.		
(4)				
	M1 Note	For structure of trapezium rule		
	A1	11.25 cao		
	Note Working must be seen to demonstrate the use of the trapezium rule. The actual area is 12.39 Note Award B1M1A1 for $\frac{0.5}{2}(2+0) + \frac{1}{2}(4.077 + 7.389 + 10.043) = 11.25$			7.51

	ı					
2. (a)	Brack	eting mistake: Unless the final answer implies that the calculation has been done correctly.				
contd	Award	B1M0A0 for $\frac{1}{2} \times 0.5 + 2 + 2(4.077 + 7.389 + 10.043) + 0$ (nb: answer of 45.268).				
	Alternative method for part (a): Adding individual trapezia					
	Area $\approx 0.5 \times \left[\frac{2 + 4.077}{2} + \frac{4.077 + 7.389}{2} + \frac{7.389 + 10.043}{2} + \frac{10.043 + 0}{2} \right] = 11.2545 = 11.25 \text{ (2 dp) cao}$ B1 0.5 and a divisor of 2 on all terms inside brackets.					
	M1	First and last ordinates once and the middle ordinates twice inside brackets ignoring the 2.				
	A1	11.25 cao				
(b)	B0	Give B0 for				
. ,		• smaller values of x and/or y.				
		use more decimal places				
		_				
(c)	M1	Either $(2-x)e^{2x} \to \pm \lambda(2-x)e^{2x} \pm \int \mu e^{2x} \left\{ dx \right\}$ or $\pm xe^{2x} \to \pm \lambda xe^{2x} \pm \int \mu e^{2x} \left\{ dx \right\}$				
	A1	$(2-x)e^{2x} \to \frac{1}{2}(2-x)e^{2x} - \int -\frac{1}{2}e^{2x} \{dx\} \text{ either un-simplified or simplified.}$				
	A1	Correct expression, i.e. $\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$ or $\frac{5}{4}e^{2x} - xe^{2x}$ (or equivalent)				
	dM1	which is dependent on the 1 st M1 mark being awarded.				
		Complete method of applying limits of 2 and 0 to all terms and subtracting the correct way round.				
	Note	Evidence of a proper consideration of the limit of 0 is needed for M1. So, just subtracting zero is M0.				
	A1 $\frac{1}{4}e^4 - \frac{5}{4}$ or $\frac{e^4 - 5}{4}$. Do not allow $\frac{1}{4}e^4 - \frac{5}{4}e^0$ unless simplified to give $\frac{1}{4}e^4 - \frac{5}{4}$					
	Note	12.39953751 without seeing $\frac{1}{4}e^4 - \frac{5}{4}$ is A0.				
	Note	12.39953751 from NO working is M0A0A0M0A0.				

Question Number	Scheme		Marks
3.	$x^2 + y^2 + 10x + 2y - 4xy = 10$		
(a)	$\left\{\frac{\cancel{x}}{\cancel{x}} \times \right\} \underbrace{2x + 2y\frac{dy}{dx} + 10 + 2\frac{dy}{dx}}_{} - \left(\underbrace{4y + 4x\frac{dy}{dx}}_{}\right) = \underbrace{0}$	See notes	M1 <u>A1</u> <u>M1</u>
	$2x + 10 - 4y + (2y + 2 - 4x)\frac{dy}{dx} = 0$	Dependent on the first M1 mark.	dM1
	$\frac{dy}{dx} = \frac{2x + 10 - 4y}{4x - 2y - 2}$		
	Simplifying gives $\frac{dy}{dx} = \frac{x+5-2y}{2x-y-1} \left\{ = \frac{-x-5+2y}{-2x+y+1} \right\}$		A1 cso oe
	(4		[5]
(b)	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \right\} x + 5 - 2y = 0$ So $x = 2y - 5$,		M1
	$(2y-5)^{2} + y^{2} + 10(2y-5) + 2y - 4(2y-5)y = 10$ $4y^{2} - 20y + 25 + y^{2} + 20y - 50 + 2y - 8y^{2} + 20y = 10$		M1
	gives $-3y^2 + 22y - 35 = 0$ or $3y^2 - 22y + 35 = 0$	$3y^2 - 22y + 35 = 0$ see notes	A1 oe
	(3y-7)(y-5) = 0 and $y =$	Method mark for solving a quadratic equation.	ddM1
	$y=\frac{7}{3},5$	$\left\{y=\right\}\frac{7}{3},5$	A1 cao [5]
	Alternative method for part (b)		[2]
(b)	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \right\} x + 5 - 2y = 0$		M1
	So $y = \frac{x+5}{2}$,		
	$x^{2} + \left(\frac{x+5}{2}\right)^{2} + 10x + 2\left(\frac{x+5}{2}\right) - 4x\left(\frac{x+5}{2}\right) = 10$		M1
	$x^{2} + \frac{x^{2} + 10x + 25}{4} + 10x + x + 5 - 2x^{2} - 10x = 10$		
	$4x^{2} + x^{2} + 10x + 25 + 40x + 4x + 20 - 8x^{2} - 40x = 40$ gives $-3x^{2} + 14x + 5 = 0 \text{ or } 3x^{2} - 14x - 5 = 0$	$3x^2 - 14x - 5 = 0$	A1 oe
	(3x+1)(x-5)=0, x=	see notes	
	$y = \frac{-\frac{1}{3} + 5}{2}, \frac{5 + 5}{2}$	Solves a quadratic and finds at least one value for y.	ddM1
	$y=\frac{7}{3},5$	$\left\{y=\right\}\frac{7}{3},5$	A1 cao
			[5] 10
			10

	Question 3 Notes					
3. (a)	M1	Differentiates implicitly to include either $\pm 4x \frac{dy}{dx}$ or $y^2 \to 2y \frac{dy}{dx}$ or $2y \to 2\frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).				
	A1	$x^{2} + y^{2} + 10x + 2y \rightarrow 2x + 2y \frac{dy}{dx} + 10 + 2 \frac{dy}{dx}$ and $10 \rightarrow 0$				
	M1	$-4xy \rightarrow \pm 4y \pm 4x \frac{dy}{dx}$				
	Note	If an extra term appears then award 1 st A0.				
	Note	$2x + 2y\frac{dy}{dx} + 10 + 2\frac{dy}{dx} - 4y - 4x\frac{dy}{dx} \rightarrow 2x + 10 - 4y = -2y\frac{dy}{dx} - 2\frac{dy}{dx} + 4x\frac{dy}{dx}$				
	JN // 1	will get 1 st A1 (implied) as the "= 0" can be implied by rearrangement of their equation.				
	dM1	dependent on the first method mark being awarded.				
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$.				
	A1	$\frac{x+5-2y}{2x-y-1} \text{ or } \frac{-x-5+2y}{-2x+y+1} \text{ (must be simplified)}.$				
	cso:	If the candidate's solution is not completely correct, then do not give this mark.				
		dy dr				
(b)	M1	Sets the numerator of their $\frac{dy}{dx}$ equal to zero (or the denominator of their $\frac{dx}{dy}$ equal to zero) oe.				
	NOTE	If the numerator involves one variable only then <i>only</i> the 1 st M1 mark is possible in part (b).				
	M1 A1	Substitutes their x or their y into the printed equation to give an equation in one variable only. For obtaining either $-3v^2 + 22v - 35 = 0$ or $3v^2 - 22v + 35 = 0$				
	Note	For obtaining either $-3y^2 + 22y - 35 = 0$ or $3y^2 - 22y + 35 = 0$ This mark can also awarded for a correct three term equation, eg. either $-3y^2 + 22y = 35$				
	11010	$3y^2 - 22y = -35 \text{or} 3y^2 + 35 = 22y \text{ are all fine for A1.}$				
	ddM1	Dependent on the previous 2 M marks.				
		See notes at the beginning of the mark scheme: Method mark for solving a 3 term quadratic				
		$\bullet (3y - 7)(y - 5) = 0 \Rightarrow y = \dots$				
		$\bullet y = \frac{22 \pm \sqrt{(-22)^2 - 4(3)(35)}}{2(3)}$				
		• $y^2 - \frac{22}{3}y - \frac{35}{3} = 0 \implies \left(y - \frac{11}{3}\right)^2 - \frac{121}{9} + \frac{35}{3} = 0 \implies y = \dots$				
		• Or writes down at least one correct <i>y</i> - root from their quadratic equation. This is usually found from their calculator.				
	Note	If a candidate applies <i>the alternative method</i> then they also need to use their $y = \frac{x+5}{2}$				
		in order to find at least one value for y in order to gain the final M1.				
	A1	$y = \frac{7}{3}$, 5. cao. (2.33 or 2.3 without reference to $\frac{7}{3}$ or $2\frac{1}{3}$ is not allowed for this mark.)				
	Note	It is possible for a candidate who does not achieve full marks in part (a), (but has a correct numerator for $\frac{dy}{dx}$) to gain all 5 marks in part (b).				
		$\frac{dx}{dx}$				

Question Number	Scheme	Marks	
4. (a)	$\frac{25}{x^2(2x+1)} \equiv \frac{A}{x} + \frac{B}{x^2} + \frac{C}{(2x+1)}$		
	$x^{2}(2x+1)$ x x^{2} $(2x+1)$ At least one of "B" or "C" correct.	B1	
	Breaks up their partial fraction correctly into $B = 25$, $C = 100$	D1	
	three terms and both " B " = 25 and " C " = 100.	B1 cso	
	See notes. $25 = Ax(2x+1) + B(2x+1) + Cx^2$		
	$x = 0, \qquad 25 = B$		
	$x = -\frac{1}{2}$, $25 = \frac{1}{4}C \Rightarrow C = 100$ Writes down a correct identity and attempts to find the value of either one of "A", "B" or "C".	M1	
	x^2 terms: $0 = 2A + C$		
	$0 = 2A + 100 \implies A = -50$		
	$x^2: 0 = 2A + C, x: 0 = A + 2B,$ constant: $25 = B$		
	Correct value for "A" which is found using a		
	leading to $A = -50$ correct identity and follows from their partial fraction decomposition.	A1	
	$\left\{ \frac{25}{x^2(2x+1)} \equiv -\frac{50}{x} + \frac{25}{x^2} + \frac{100}{(2x+1)} \right\}$	[4]	
(b)	$V = \pi \int_{1}^{4} \left(\frac{5}{x\sqrt{(2x+1)}} \right)^{2} dx$ For $\pi \int \left(\frac{5}{x\sqrt{(2x+1)}} \right)^{2}$	B1	
(-)	$\int_{1} \left(x \sqrt{(2x+1)} \right)$ Ignore limits and dx. Can be implied.		
	For their partial fraction		
	$\left\{ \int \frac{25}{x^2 (2x+1)} \mathrm{d}x = \int -\frac{50}{x} + \frac{25}{x^2} + \frac{100}{(2x+1)} \mathrm{d}x \right\}$ Either $\pm \frac{A}{x} \to \pm a \ln x$ or $\pm a \ln kx$ or	M1 ~	
	$= -50 \ln x + \frac{25x^{-1}}{(-1)} + \frac{100}{2} \ln(2x+1) \left\{ + c \right\} \qquad \pm \frac{B}{x^2} \to \pm b x^{-1} \text{or} \frac{C}{(2x+1)} \to \pm c \ln(2x+1)$	A1ft	
	At least two terms correctly integrated All three terms correctly integrated.		
	$\left\{ \int_{1}^{4} \frac{25}{x^{2}(2x+1)} \mathrm{d}x = \left[-50\ln x - \frac{25}{x} + 50\ln(2x+1) \right]_{1}^{4} \right\}$	A1ft	
	$= \left(-50\ln 4 - \frac{25}{4} + 50\ln 9\right) - \left(0 - 25 + 50\ln 3\right)$ Applies limits of 4 and 1 and subtracts the correct way round.	dM1	
	$= 50\ln 9 - 50\ln 4 - 50\ln 3 - \frac{25}{4} + 25$		
	$= 50\ln\left(\frac{3}{4}\right) + \frac{75}{4}$		
	So, $V = \frac{75}{4}\pi + 50\pi \ln\left(\frac{3}{4}\right)$ or allow $\pi\left(\frac{75}{4} + 50\ln\left(\frac{3}{4}\right)\right)$	A1 oe	
		[6]	
		10	

	Question 4 Notes					
4. (a)	BE C	AREFUL! Candidates will assign <i>their own</i> "A, B and C" for this question.				
	B1	At least one of "B" or "C" are correct.				
	B1	Breaks up their partial fraction correctly into three terms and both " B " = 25 and " C " = 100.				
	Note					
	3.54	• the 2 nd B1 mark can follow from a correct identity.				
	M1	Writes down <i>a correct identity</i> (although this can be implied) and attempts to find the value of either				
		one of "A" or "B" or "C". This can be achieved by <i>either</i> substituting values into their identity <i>or</i>				
		comparing coefficients and solving the resulting equations simultaneously.				
	A1	Correct value for "A" which is found using a correct identity and follows from their partial fraction				
	decomposition.					
	Note	If a candidate does not give partial fraction decomposition then the final A1 mark can be awarded for				
		a correct "A" if a candidate writes out their partial fractions at the end.				
	Note					
	Note	A number of candidates will start this problem by writing out the correct identity and then attempt to find "A" or "B" or "C". Therefore the B1 marks can be awarded from this method.				
	Note	Award SC B1B0M0A0 for $\frac{25}{x^2(2x+1)} = \frac{B}{x^2} + \frac{C}{(2x+1)}$ leading to "B" = 25 or "C" = 100				
		$\lambda (2\lambda \pm 1) \lambda (2\lambda \pm 1)$				
(b)	B1	For a correct statement of $\pi \int \left(\frac{5}{x\sqrt{(2x+1)}}\right)^2$ or $\pi \int \frac{25}{x^2(2x+1)}$. Ignore limits and dx. Can be implied.				
		$\mathbf{J}\left(x\sqrt{(2x+1)}\right) \qquad \mathbf{J}\ x^2(2x+1)$				
	The π can only be recovered later from a correct expression.					
	For their partial fraction, (not $\sqrt{\text{their partial fraction}}$), where A, B, C are "their" part (a) constants					
$\begin{bmatrix} B & B & B & B \end{bmatrix}$						
M1 Either $\pm \frac{A}{x} \to \pm a \ln x$ or $\pm \frac{B}{x^2} \to \pm b x^{-1}$ or $\frac{C}{(2x+1)} \to \pm c \ln(2x+1)$.						
		$R o \sqrt{R}$				
	Note	$\sqrt{\frac{B}{x^2}} \to \frac{\sqrt{B}}{x}$ which integrates to $\sqrt{B} \ln x$ is not worthy of M1.				
	A1ft	At least two terms from any of $\pm \frac{A}{x}$ or $\pm \frac{B}{x^2}$ or $\frac{C}{(2x+1)}$ correctly integrated. Can be un-simplified.				
	A1ft	All 3 terms from $\pm \frac{A}{x}$, $\pm \frac{B}{x^2}$ and $\frac{C}{(2x+1)}$ correctly integrated. Can be un-simplified.				
	Note	The 1 st A1 and 2 nd A1 marks in part (b) are both follow through accuracy marks.				
	dM1	Dependent on the previous M mark. Applies limits of 4 and 1 and subtracts the correct way round.				
	A1	Final correct exact answer in the form $a + b \ln c$. i.e. either $\frac{75}{4}\pi + 50\pi \ln \left(\frac{3}{4}\right)$ or $50\pi \ln \left(\frac{3}{4}\right) + \frac{75}{4}\pi$				
		or $50\pi \ln\left(\frac{9}{12}\right) + \frac{75}{4}\pi$ or $\frac{75}{4}\pi - 50\pi \ln\left(\frac{4}{3}\right)$ or $\frac{75}{4}\pi + 25\pi \ln\left(\frac{9}{16}\right)$ etc.				
		Also allow $\pi\left(\frac{75}{4} + 50\ln\left(\frac{3}{4}\right)\right)$ or equivalent.				
	Note A candidate who achieves full marks in (a), but then mixes up the correct constants when writing					
	N T 4	their partial fraction can only achieve a maximum of B1M1A1A0M1A0 in part (b).				
	Note	The π in the volume formula is only required for the B1 mark and the final A1 mark.				

4. (b) Alternative method of integration $V = \pi \int_{1}^{4} \left(\frac{5}{x\sqrt{(2x+1)}}\right)^{2} dx$ $\int \frac{25}{x^{2}(2x+1)} dx \; ; \; u = \frac{1}{x} \Rightarrow \frac{du}{dx} = -\frac{1}{x^{2}}$ $= \int \frac{-25}{\left(\frac{2}{u}+1\right)} du = \int \frac{-25}{\left(\frac{2+u}{u}\right)} du = \int \frac{-25u}{(2+u)} du = -25 \int \frac{2+u-2}{(2+u)} du$ **B1** For $\pi \int \left(\frac{5}{x\sqrt{(2x+1)}} \right)^2$ Ignore limits and dx. Can be implied. Achieves $\pm \alpha \pm \frac{\beta}{(k+u)}$ and integrates to give $= -25 \int 1 - \frac{2}{(2+u)} du = -25 (u - 2\ln(2+u))$ **M1** either $\pm \alpha u$ or $\pm \beta \ln (k + u)$ Dependent on the M mark. Either -25u or $50\ln(2+u)$ $\left\{ \int_{1}^{4} \frac{25}{x^{2}(2x+1)} \, \mathrm{d}x = \left[-25u + 50\ln(2+u) \right]_{1}^{\frac{1}{4}} \right\}$ $-25 (u - 2 \ln(2 + u))$ **A1** $= \left(-\frac{25}{4} + 50\ln\left(\frac{9}{4}\right)\right) - \left(-25 + 50\ln 3\right)$ $= 50\ln\left(\frac{9}{4}\right) - 50\ln 3 - \frac{25}{4} + 25$ Applies limits of $\frac{1}{4}$ and 1 in u or 4 and 1 in x dM1in their integrated function and subtracts the correct way round. $= 50\ln\left(\frac{3}{4}\right) + \frac{75}{4}$ So, $V = \frac{75}{4}\pi + 50\pi \ln \left(\frac{3}{4}\right)$ A1 $\left[\frac{75}{4}\pi + 50\pi \ln \left(\frac{3}{4} \right) \text{ or allow } \pi \left(\frac{75}{4} + 50 \ln \left(\frac{3}{4} \right) \right) \right]$

Question Number		Scheme		Marks
5. (a)	From que	estion, $V = \frac{4}{3}\pi r^3$, $S = 4\pi r^2$, $\frac{dV}{dt} = 3$		
	,	$\left\{ \frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2 \right\}$	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2 \text{(Can be implied)}$	B1 oe
	$\left\{\frac{\mathrm{d}V}{\mathrm{d}r}\right.$	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \Rightarrow \left\{ (4\pi r^2) \frac{\mathrm{d}r}{\mathrm{d}t} = 3 \right.$	$\left(\text{Candidate's } \frac{\text{d}V}{\text{d}r}\right) \times \frac{\text{d}r}{\text{d}t} = 3$	M1 oe
	(**	$\frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}r} \Rightarrow \left\{ \frac{\mathrm{d}r}{\mathrm{d}t} = \left(3\right) \frac{1}{4\pi r^2}; \left\{ = \frac{3}{4\pi r^2} \right\}$	or $3 \div \text{Candidate's } \frac{dV}{dr}$;	
		$= 4 \mathrm{cm} \;, \; \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{3}{4\pi (4)^2} \; \left\{ = \frac{3}{64\pi} \right\}$	dependent on previous M1. see notes	dM1
	Hence,	$\frac{dr}{dt} = 0.01492077591(cm^2 s^{-1})$	anything that rounds to 0.0149	A1
				[4]
(b)	$\left\{ \frac{\mathrm{d}S}{\mathrm{d}t} = \frac{\mathrm{d}S}{\mathrm{d}S} \right\}$	$\frac{dS}{dr} \times \frac{dr}{dt} = $ $\Rightarrow \frac{dS}{dt} = 8\pi r \times \frac{3}{4\pi r^2} \left\{ \text{or } \frac{6}{r} \text{ or } 8\pi r \right\}$	$\times \times 0.0149$ $8\pi r \times \text{Candidate's } \frac{dr}{dt}$	M1; oe
	When $r = 4 \text{ cm}$, $\frac{dr}{dt} = 8\pi(4) \times \frac{3}{4\pi(4)^2}$ or $\frac{6}{4}$ or $8\pi(4) \times 0.0149$			
	Hence, $\frac{dS}{dt} = 1.5 \text{ (cm}^2 \text{ s}^{-1})$ anything that rounds to 1.5			
				[2] 6
		Question 5 N	fotes	
(a)	B1	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$ Can be implied by later working.		
	M1	Candidate's $\frac{dV}{dr}$ $\times \frac{dr}{dt} = 3$ or $3 \div$ Candidate's $\frac{dV}{dt}$	$\frac{\mathrm{d}V}{\mathrm{d}r}$	
	dM1	(dependent on the previous method mark)		
		Substitutes $r = 4$ into an expression which is a resu	alt of a quotient of "3" and their $\frac{dV}{dr}$.	
	A1	anything that rounds to 0.0149 (units are not requ	nired)	
(b)	M1	$8\pi r \times \text{Candidate's } \frac{dr}{dt}$		
	A1	anything that rounds to 1.5 (units are not required). Correct solution only.	
	Note	Using $\frac{dr}{dt} = 0.0149$ gives $\frac{dS}{dt} = 1.4979$ which	is fine for A1.	

Question Number	Scheme	Marks
6.	$l_1: \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}, l_2: \mathbf{r} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix} \overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ \overrightarrow{OB} = \begin{pmatrix} 4 \\ p \\ 3 \end{pmatrix} \qquad A \text{ lies on } l_1 \text{ and}$ $B \text{ lies on } l_2$	
(a)	$\{B \text{ lies on } l_2 \Rightarrow \mu = -1 \Rightarrow\} p = 5$ $p = 5$	B1
(b)	$ \{l_1 = l_2 \implies\} \begin{cases} \mathbf{i} : & 1 = 7 + 3\mu \\ \mathbf{j} : & 2 + 2\lambda = -5\mu \\ \mathbf{k} : & 3 - \lambda = 7 + 4\mu \end{cases} $	[1]
	e.g. i : $7 + 3\mu = 1$ Writes down an equation involving only one parameter.	M1
	So, $\mu = -2$ $\mu = -2$	A1
	Point of intersection is $\overrightarrow{OC} = \mathbf{i} + 10\mathbf{j} - \mathbf{k}$ $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$	B1
	Finds $\lambda = 4$ and either	
	 checks λ = 4 and μ = -2 is true for the third component. substitutes μ = -2 into l₁ to give i + 10j - k 	B1
	and substitutes $\lambda = 4$ into l_2 to give $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$	[A]
(b)	Alternative Method: Solving j and k simultaneously gives	[4]
	$8 = 14 + 3\mu$ or $23 + 3\lambda = 35$ Writes down an equation involving only one parameter.	M1
	So, $\mu = -2$ or $\lambda = 4$ Either $\mu = -2$ or $\lambda = 4$	A1
	Point of intersection is $\overrightarrow{OC} = \mathbf{i} + 10\mathbf{j} - \mathbf{k}$ $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$	B1
	Finds $\lambda = 4$ and either	
	• checks $\mu = -2$ is true for the i component.	B1
	• substitutes $\mu = -2$ into l_1 to give $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$	
	and substitutes $\lambda = 4$ into l_2 to give $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$	[4]
	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} -3 \end{pmatrix}$ An attempt to find both the	ניין
(c)	$\overrightarrow{AC} = \begin{pmatrix} 1 \\ 10 \\ -1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 8 \\ -4 \end{pmatrix}$ and $\overrightarrow{BC} = \begin{pmatrix} 1 \\ 10 \\ -1 \end{pmatrix} - \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix} = \begin{pmatrix} -3 \\ 5 \\ -4 \end{pmatrix}$ vectors $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$	M1
(c)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1411
	$\cos ACB = \frac{\overrightarrow{AC} \bullet \overrightarrow{BC}}{ \overrightarrow{AC} \cdot \overrightarrow{BC} } = \frac{\pm \left(\begin{pmatrix} 0 \\ 8 \\ -4 \end{pmatrix} \bullet \begin{pmatrix} -3 \\ 5 \\ -4 \end{pmatrix}\right)}{\sqrt{(0)^2 + (8)^2 + (-4)^2} \cdot \sqrt{(-3)^2 + (5)^2 + (-4)^2}}$ Applies dot product formula between their $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$ and their	
	$\frac{\pm \begin{pmatrix} 8 & 5 \\ -4 & -4 \end{pmatrix}}{\text{their } (\overrightarrow{AC} \text{ or } \overrightarrow{CA})}$	3.61
	$\cos ACB = \frac{AC \bullet BC}{ \overrightarrow{AC} \overrightarrow{BC} } = \frac{(-4)(-4)}{ (0)^2 + (8)^2 + (-4)^2 }$ and their	M1
	$ \overrightarrow{BC} \cdot \overrightarrow{BC} \qquad \sqrt{(0)^2 + (8)^2 + (-4)^2} \cdot \sqrt{(-3)^2 + (3)^2 + (-4)^2} $ $(\overrightarrow{BC} \text{ or } \overrightarrow{CB}).$	
	$\left\{\cos ACB = \frac{0 + 40 + 16}{\sqrt{80}.\sqrt{50}} = \frac{56}{\sqrt{4000}} \Rightarrow \right\} ACB = 27.69446 = 27.7 \text{ (3 sf)}$ Anything that rounds to 27.7	A1
		[3]
(d)	Area $ACB = \frac{1}{2} (\sqrt{80}) (\sqrt{50}) \sin 27.69446$ See notes Anything that rounds to 14.7	M1
	Anything that rounds to 14.7	A1 [2]
		[2] 10

	Question 6: Alternative Methods for		
6. (c)	Alternative Method 1: Using the direction vectors of Line 1 and Lin	<u>e 2</u>	
	$\mathbf{d_1} = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}, \mathbf{d_2} = \begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix}$		
	$\cos \theta = \frac{\mathbf{d_1} \cdot \mathbf{d_1}}{ \mathbf{d_1} \cdot \mathbf{d_2} } = \frac{\begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix}}{\sqrt{(0)^2 + (2)^2 + (-1)^2} \cdot \sqrt{(3)^2 + (-5)^2 + (4)^2}}$	Applies dot product formula between their $\mathbf{d_1}$ and $\mathbf{d_2}$	M2
	$\left\{\cos\theta = \frac{0 - 10 - 4}{\sqrt{5}.\sqrt{50}} = \frac{-7\sqrt{10}}{25} \Longrightarrow\right\} \theta = 152.3054385$ Angle $ACB = 180 - 152.3054385 = 27.69446145 = 27.7 (3 sf)$	Anything that rounds to 27.7	A1
			[3]
	Alternative Method 2: The Cosine Rule $\overrightarrow{AC} = \begin{pmatrix} 1 \\ 10 \\ -1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 8 \\ -4 \end{pmatrix} \text{ and } \overrightarrow{BC} = \begin{pmatrix} 1 \\ 10 \\ -1 \end{pmatrix} - \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix} = \begin{pmatrix} -3 \\ 5 \\ -4 \end{pmatrix}$	An attempt to find both the vectors $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$ and $(\overrightarrow{BC} \text{ or } \overrightarrow{CB})$.	M1
	Also $\overrightarrow{AB} = \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix}$		
	Note $ \overrightarrow{AC} = \sqrt{80}$, $ \overrightarrow{BC} = \sqrt{50}$ and $ \overrightarrow{AB} = \sqrt{18}$		
	$\left(\sqrt{18}\right)^2 = \left(\sqrt{80}\right)^2 + \left(\sqrt{50}\right)^2 - 2\left(\sqrt{80}\right)\left(\sqrt{50}\right)\cos\theta$	Applies the cosine rule the correct way round.	M1 oe
	$\left\{ \cos \theta = \frac{7\sqrt{10}}{25} \right\} \Rightarrow \theta = 27.69446145 = 27.7 (3 \text{ sf})$	Anything that rounds to 27.7	A1
			[3]
	Alternative Method 3: Vector Cross Product		
	Only apply this scheme if it is clear that a candidate is applying a vec		•
	(1) (1) (0) (1) (4) (-3)	An attempt to find both the	
	$\overrightarrow{AC} = \begin{vmatrix} 1 \\ 10 \end{vmatrix} - \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 8 \\ 8 \end{vmatrix}$ and $\overrightarrow{BC} = \begin{vmatrix} 1 \\ 10 \end{vmatrix} - \begin{vmatrix} 4 \\ 5 \end{vmatrix} = \begin{vmatrix} 5 \\ 5 \end{vmatrix}$	vectors $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$	M1
		and $(\overrightarrow{BC} \text{ or } \overrightarrow{CB})$.	
	$ \overrightarrow{AC} \times \overrightarrow{BC} = \begin{pmatrix} 0 \\ 8 \\ -4 \end{pmatrix} \times \begin{pmatrix} -3 \\ 5 \\ -4 \end{pmatrix} = \left\{ \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 8 & -4 \\ -3 & 5 & -4 \end{pmatrix} = 24\mathbf{i} + 12\mathbf{j} + 24\mathbf{k} \right\} $	Full method for applying the vector cross product formula between	M1
	$\sqrt{(24)^2 + (12)^2 + (12)^2}$	their $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$	
	$\sin ACB = \frac{\sqrt{(24)^2 + (12)^2 + (12)^2}}{\sqrt{(0)^2 + (8)^2 + (-4)^2} \cdot \sqrt{(-3)^2 + (5)^2 + (-4)^2}}$	and their $(\overrightarrow{BC} \text{ or } \overrightarrow{CB})$.	
	$\left\{ \sin ACB = \frac{\sqrt{864}}{\sqrt{80}.\sqrt{50}} = \frac{3\sqrt{15}}{25} \Rightarrow \right\} \theta = 27.69446145 = 27.7 (3 \text{ sf})$	Anything that rounds to 27.7	A1
			[3]

		Question 6 Notes		
6. (a)	B1	p = 5 (Ignore working.)		
(b)		Method 1		
	M1	Writes down an equation involving only one parameter.		
		This equation will usually be $7 + 3\mu = 1$ which is found from equating the i components of l_1 and l_2 .		
	A1	Finds $\mu = -2$		
	B1	Point of intersection of $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$. Allow $(1, 10, -1)$ or $\begin{pmatrix} 1 \\ 10 \\ -1 \end{pmatrix}$.		
	B1	Finds $\lambda = 4$ and either		
		• checks $\lambda = 4$ and $\mu = -2$ is true for the third component.		
		• substitutes $\mu = -2$ into l_1 to give $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$ and substitutes $\lambda = 4$ into l_2 to give		
		$\mathbf{i} + 10\mathbf{j} - \mathbf{k}$		
(b)		Alternative Method		
	M1	Writes down an equation involving only one parameter.		
		Solving the j and k components simultaneously will usually give either $8 = 14 + 3\mu$ or $23 + 3\lambda = 35$		
	A1	Finds either $\mu = -2$ or $\lambda = 4$		
	B1	Point of intersection of $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$. Allow $(1, 10, -1)$ or $\begin{pmatrix} 1 \\ 10 \\ -1 \end{pmatrix}$.		
		Finds $\lambda = 4$ and either		
		• checks $\mu = -2$ is true for the i component.		
	B 1	• substitutes $\mu = -2$ into l_1 to give $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$		
		and substitutes $\lambda = 4$ into l_2 to give $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$		
(c)	M1	An attempt to find both the vectors $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$ and $(\overrightarrow{BC} \text{ or } \overrightarrow{CB})$ by subtracting.		
	M1	Applies dot product formula between their $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$ and their $(\overrightarrow{BC} \text{ or } \overrightarrow{CB})$.		
	A1	anything that rounds to 27.7		
	Note	An answer of 0.48336 in radians without the correct answer in degrees is A0.		
	Note	Some candidates will apply the dot product formula between vectors which are the wrong way		
		round and achieve 152.3054385°. If they give the acute equivalent of awrt 27.7 then award A1.		
		1		
(d)	M1	$\frac{1}{2}$ (their length AC) (their length BC) \sin (their 27.7° from part (c))		
	A1	anything that rounds to 14.7. Also allow $6\sqrt{6}$.		
	Note	Area $ACB = \frac{1}{2} (\sqrt{80}) (\sqrt{50}) \sin(152.3054385^{\circ}) = \text{awrt } 14.7 \text{ is M1A1.}$		

Question Number	Scheme	Marks
7.	$\frac{dN}{dt} = \frac{(kt-1)(5000-N)}{t}, t > 0, \ 0 < N < 5000$	
(a)	$\int \frac{1}{5000 - N} dN = \int \frac{(kt - 1)}{t} dt \qquad \left\{ \text{or} = \int \left(k - \frac{1}{t} \right) dt \right\}$ See notes	B1
	$-\ln(5000 - N) = kt - \ln t; +c$ See notes	M1 A1; A1
	then eg either or or or $t + c = \ln(5000 - N) - \ln t$ $t + c = \ln t - \ln(5000 - N)$ $t + c = \ln t - \ln(5000 - N)$	
	$-kt + c = \ln(5000 - N) - \ln t \qquad kt + c = \ln t - \ln(5000 - N) \qquad \ln(5000 - N) = -kt + \ln t + c$	
	$-kt + c = \ln\left(\frac{5000 - N}{t}\right) \qquad kt + c = \ln\left(\frac{t}{5000 - N}\right) \qquad 5000 - N = e^{-kt + \ln t + c}$	
	$e^{-kt+c} = \frac{5000-N}{t}$ $e^{kt+c} = \frac{t}{5000-N}$ $5000-N=te^{-kt+c}$	
	leading to $N = 5000 - Ate^{-kt}$ with no incorrect working/statements . See notes	A1 * cso
	([5]
(b)	$\{t = 1, N = 1200 \Rightarrow\}$ 1200 = 5000 - Ae^{-k} At least one correct statement written	B1
	$\{t = 2, N = 1800 \Rightarrow\}$ $1800 = 5000 - 2Ae^{-2k}$ down using the boundary conditions	
	So $Ae^{-k} = 3800$	
	and $2Ae^{-2k} = 3200$ or $Ae^{-2k} = 1600$	
	Eg. $\frac{e^{-k}}{2e^{-2k}} = \frac{3800}{3200}$ or $\frac{2e^{-2k}}{e^{-k}} = \frac{3200}{3800}$ An attempt to eliminate A by producing an equation in only k.	M1
	26 3200 6 3000	
	So $\frac{1}{2}e^k = \frac{3800}{3200}$ or $2e^{-k} = \frac{3200}{3800}$	
	At least one of $A = 9025$ cao	
	$k = \ln\left(\frac{7600}{3200}\right)$ or equivalent $\left\{\text{eg } k = \ln\left(\frac{19}{8}\right)\right\}$ or $k = \ln\left(\frac{7600}{3200}\right)$ or exact equivalent	A1
	(3200) of $\kappa = \ln\left(\frac{3200}{3200}\right)$ of exact equivalent	
	Both $A = 9025$ cao	
	$\left\{ A = 3800(e^k) = 3800\left(\frac{19}{8}\right) \Rightarrow \right\} A = 9025$ or $k = \ln\left(\frac{7600}{3200}\right)$ or exact equivalent	A1
	(3200)	F 43
	Alternative Method for the M1 mark in (b)	[4]
	$e^{-k} = \frac{3800}{A}$	
	$2A\left(\frac{3800}{A}\right)^2 = 3200$ An attempt to eliminate k by producing an equation in only A	M1
	by producing an equation in only A	1,11
	(19)	
(c)	$\left\{ t = 5, \ N = 5000 - 9025(5)e^{-5\ln\left(\frac{19}{8}\right)} \right\}$	
	J	
	N = 4402.828401 = 4400 (fish) (nearest 100) anything that rounds to 4400	B1
		[1] 10
		10

	Question 7 Notes			
7. (a)	B1	Separates variables as shown. dN and dt should be in the correct positions, though this mark can be		
	D1	implied by later working. Ignore the integral signs.		
	M1	Either $\pm \lambda \ln(5000 - N)$ or $\pm \lambda \ln(N - 5000)$ or $kt - \ln t$ where $\lambda \neq 0$ is a constant.		
	A1	For $-\ln(5000 - N) = kt - \ln t$ or $\ln(5000 - N) = -kt + \ln t$ or $-\frac{1}{k}\ln(5000 - N) = t - \frac{1}{k}\ln t$ oe		
	A1	which is dependent on the 1 st M1 mark being awarded.		
		For applying a constant of integration, eg. $+c$ or $+\ln e^c$ or $+\ln c$ or A to their integrated equation		
	Note	+ c can be on either side of their equation for the 2 nd A1 mark.		
	A1	Uses a constant of integration eg. " c " or " $\ln e^{c}$ " " $\ln c$ " or and applies a fully correct method to		
		prove the result $N = 5000 - Ate^{-kt}$ with no incorrect working seen. (Correct solution only.)		
	NOTE	IMPORTANT		
		There needs to be an intermediate stage of justifying the A and the e^{-kt} in Ate^{-kt} by for example		
		• either $5000 - N = e^{\ln t - kt + c}$		
		• or $5000 - N = t e^{-kt + c}$		
		$\bullet \mathbf{or} \qquad 5000 - N = t \mathrm{e}^{-kt} \mathrm{e}^{c}$		
		or equivalent needs to be stated before achieving $N = 5000 - Ate^{-kt}$		
(b)	D1	A.1. (5.41 1200 5000 4 -k (1.1.) 1000 5000 24 -2k (1.1.)		
(0)	B1	At least one of either $1200 = 5000 - Ae^{-k}$ (or equivalent) or $1800 = 5000 - 2Ae^{-2k}$ (or equivalent)		
	M1	 Either an attempt to eliminate A by producing an equation in only k. or an attempt to eliminate k by producing an equation in only A 		
	A1	At least one of $A = 9025$ cao or $k = \ln\left(\frac{7600}{3200}\right)$ or equivalent		
	A1	Both $A = 9025$ cao or $k = \ln\left(\frac{7600}{3200}\right)$ or equivalent		
	Note	Alternative correct values for k are $k = \ln\left(\frac{19}{8}\right)$ or $k = -\ln\left(\frac{8}{19}\right)$ or $k = \ln 7600 - \ln 3200$		
		or $k = -\ln\left(\frac{3800}{9025}\right)$ or equivalent.		
	Note	k = 0.8649 without a correct exact equivalent is A0.		
(c)	B1	anything that rounds to 4400		

Question Number	Scheme		Marks
8.	$x = t - 4\sin t, \qquad y = 1 - 2\cos t,$	$-\frac{2\pi}{3} \leqslant t \leqslant \frac{2\pi}{3}$ $A(k,1)$ lies on the curve, $k > 0$	
(a)	{When $y = 1$,} $1 = 1 - 2\cos t \Rightarrow t = 1$ $k \text{ (or } x) = \frac{\pi}{2} - 4\sin\left(\frac{\pi}{2}\right)$ or $x = 1$	$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	M1
	$\left\{ \text{When } t = -\frac{\pi}{2}, k > 0, \right\} \text{ so } k = 4 - \frac{\pi}{2}, k > 0, $	$\frac{\pi}{2} \text{ or } \frac{8-\pi}{2}$ $x \text{ or } k = 4 - \frac{\pi}{2}$	A1 [2]
(b)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 1 - 4\cos t$, $\frac{\mathrm{d}y}{\mathrm{d}t} = 2\sin t$	dt = dt	B1
(0)	$dt = 1 + 4\cos t$, $dt = 2\sin t$	Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct.	B1
	So, $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\sin t}{1 - 4\cos t}$	Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$	M1;
	$2\sin\left(-\frac{\pi}{2}\right)$	and substitutes their t into their dy	,
	At $t = -\frac{\pi}{2}$, $\frac{dy}{dx} = \frac{2\sin\left(-\frac{\pi}{2}\right)}{1 - 4\cos\left(-\frac{\pi}{2}\right)}$	$correct value for \frac{dy}{dx} of -2$	A1 cao cso
(c)	$\frac{2\sin t}{1 - 4\cos t} = -\frac{1}{2}$		[4] M1
	gives $4\sin t - 4\cos t = 6$		A1
	So $4\sqrt{2}\sin\left(t-\frac{\pi}{4}\right)$; = -1 or -4		M1; A1
	$t = \sin^{-1}\left(\frac{-1}{4\sqrt{2}}\right) + \frac{\pi}{4} \text{or} t = \cos^{-1}\left(\frac{1}{4\sqrt{2}}\right) + \frac{\pi}{4}$	$S^{-1}\left(\frac{1}{4\sqrt{2}}\right) - \frac{\pi}{4}$ See notes	dM1
	t = 0.6076875626 =	0.6077 (4 dp) anything that rounds to 0.6077	A1 [6]
		Question 8 Notes	12
	VERY IMPORTANT		
(c)	NOTE Candidates who state $t =$	= 0.6077 with no intermediate working from $4\sin t - 4\cos t = -$	-1
	will get 2 nd M0, 2 nd A0, 3)
	They will not express 4	$-\sin t - 4\cos t$ as either $4\sqrt{2}\sin\left(t - \frac{\pi}{4}\right)$ or $-4\sqrt{2}\cos\left(t + \frac{\pi}{4}\right)$	
		Ilternative method to achieve $t = 0.6077$	/
	NOTE Alternative methods for	part (c) are given on the next page.	

	Question 8: Alterna	ative Methods for Part (c)	
8. (c)	Alternative Method 1:		- <u></u> -
	$\frac{2\sin t}{1 - 4\cos t} = -\frac{1}{2}$	Sets their $\frac{dy}{dx} = -\frac{1}{2}$	M1
	eg. $\left(\frac{2\sin t}{1 - 4\cos t}\right)^2 = \frac{1}{4}$ or $(4\sin t)^2 = (4\cos t - 1)^2$ or $(4\sin t + 1)^2 = (4\cos t)^2$ etc.	Squaring to give a correct equation. This mark can be implied by a "squared" correct equation.	A1
		Note: You can also give 1^{st} A1 in this method for $4\sin t - 4\cos t = -1$ as in the main scheme.	
	Squares their ed	quation, applies $\sin^2 t + \cos^2 t = 1$ and achieves a	
	•	equation of the form $\pm a\cos^2 t \pm b\cos t \pm c = 0$	M1
	-	$t \pm b\cos t = \pm c$ where $a \neq 0, b \neq 0$ and $c \neq 0$.	1,11
	• Either $32\cos^2 t - 8\cos t - 15 = 0$	$t = b \cos t = \pm c$ where $u \neq 0, b \neq 0$ and $c \neq 0$.	
	• or $32\sin^2 t + 8\sin t - 15 = 0$	For a correct three term quadratic equation.	A1
	• Either $\cos t = \frac{8 \pm \sqrt{1984}}{64} = \frac{1 + \sqrt{31}}{8} \implies t = \frac{1 + \sqrt{31}}{8}$	which is dependent on the 2 nd M1 mark. Uses correct algebraic	dM1
	• or $\sin t = \frac{-8 \pm \sqrt{1984}}{64} = \frac{-1 \pm \sqrt{31}}{8} \Rightarrow t = 0.6076875626 = 0.6077 (4 dp)$	processes to give $t =$ anything that rounds to 0.6077	A1
			[6]
8. (c)	Alternative Method 2:		
	$\frac{2\sin t}{1 - 4\cos t} = -\frac{1}{2}$	Sets their $\frac{dy}{dx} = -\frac{1}{2}$	M1
	eg. $(4\sin t - 4\cos t)^2 = (-1)^2$	Squaring to give a correct equation. This mark can be implied by a correct equation. Note: You can also give 1^{st} A1 in this method for $4\sin t - 4\cos t = -1$ as in the main scheme.	A1
	So $16\sin^2 t - 32\sin t \cos t + 16\cos^2 t = 1$		
	leading to $16 - 16\sin 2t = 1$	Squares their equation, applies both $\sin^2 t + \cos^2 t = 1$ and $\sin 2t = 2\sin t \cos t$ and then achieves an equation of the form $\pm a \pm b \sin 2t = \pm c$	M1
		$16 - 16\sin 2t = 1$ or equivalent.	A1
	$\left\{\sin 2t = \frac{15}{16} \Rightarrow \right\} \ t = \frac{\sin^{-1}(\dots)}{2}$	which is dependent on the 2^{nd} M1 mark. Uses correct algebraic processes to give $t =$	dM1
	t = 0.6076875626 = 0.6077 (4 dp)	anything that rounds to 0.6077	A1 [6]
	1		l

		Question 8 Notes
8. (a)	M1	Sets $y = 1$ to find t and uses their t to find x .
	Note	M1 can be implied by either x or $k = 4 - \frac{\pi}{2}$ or 2.429 or $\frac{\pi}{2} - 4$ or -2.429
	A1	$x \text{ or } k = 4 - \frac{\pi}{2} \text{ or } \frac{8 - \pi}{2}$
	Note	A decimal answer of 2.429 (without a correct exact answer) is A0.
	Note	Allow A1 for a candidate using $t = \frac{\pi}{2}$ to find $x = \frac{\pi}{2} - 4$ and then stating that k must be $4 - \frac{\pi}{2}$ o.e.
(b)	B 1	At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this mark can be implied from their working.
	B 1	Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark can be implied from their working.
	M1	Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ and attempts to substitute their t into their expression for $\frac{dy}{dx}$.
	Note	This mark may be implied by their final answer.
		i.e. $\frac{dy}{dx} = \frac{2\sin t}{1 - 4\cos t}$ followed by an answer of -2 (from $t = -\frac{\pi}{2}$) or 2 (from $t = \frac{\pi}{2}$)
	Note	Applying $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ is M0, even if they state $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$.
	A1	Using $t = -\frac{\pi}{2}$ and not $t = \frac{3\pi}{2}$ to find a correct $\frac{dy}{dx}$ of -2 by correct solution only.
(c)		4
	NOTE	If a candidate uses an incorrect $\frac{dy}{dx}$ expression in part (c) then the accuracy marks are not obtainable.
	1 st M1	Sets their $\frac{dy}{dx} = -\frac{1}{2}$
	1st A1	Rearranges to give the correct equation with $\sin t$ and $\cos t$ on the same side.
		eg. $4\sin t - 4\cos t = -1$ or $4\cos t - 4\sin t = 1$ or $\sin t - \cos t = -\frac{1}{4}$ or $\cos t - \sin t = \frac{1}{4}$
		or $4\sin t - 4\cos t + 1 = 0$ or $4\cos t - 4\sin t - 1 = 0$ or $\sin t - \cos t + \frac{1}{4} = 0$ etc. are fine for A1.
	2 nd M1	Rewrites $\pm \lambda \sin t \pm \mu \cos t$ in the form of either $R\cos(t \pm \alpha)$ or $R\sin(t \pm \alpha)$
		where $R \neq 1$ or 0 and $\alpha \neq 0$
	2 nd A1	Correct equation. Eg. $4\sqrt{2}\sin\left(t-\frac{\pi}{4}\right) = -1$ or $-4\sqrt{2}\cos\left(t+\frac{\pi}{4}\right) = -1$
		or $\sqrt{2}\sin\left(t-\frac{\pi}{4}\right) = -\frac{1}{4}$ or $\sqrt{2}\cos\left(t+\frac{\pi}{4}\right) = \frac{1}{4}$, etc.
	Note	Unless recovered, give A0 for $4\sqrt{2}\sin(t-45^{\circ}) = -1$ or $-4\sqrt{2}\cos(t+45^{\circ}) = -1$, etc.
	3 rd M1	which is dependent on the 2^{nd} M1 mark. Uses correct algebraic processes to give $t =$
	4 th A1	anything that rounds to 0.6077
	N T .	2π 2π
	Note	Do not give the final A1 mark in (c) if there any extra solutions given in the range $-\frac{2\pi}{3} \le t \le \frac{2\pi}{3}$.
	Note	You can give the final A1 mark in (c) if extra solutions are given outside of $-\frac{2\pi}{3} \leqslant t \leqslant \frac{2\pi}{3}$.