Solution

Class 12 - Mathematics

Inverse Trigonometric functions

Section A

1.
$$\tan^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right)$$
Put $x = a\sin\theta$
 $\tan^{-1}\left(\frac{a\sin\theta}{\sqrt{a^2-a^2\sin^2\theta}}\right)$
 $\tan^{-1}\left(\frac{a\sin\theta}{\sqrt{a^2(1-\sin^2\theta)}}\right)$
 $\tan^{-1}\left(\frac{a\sin\theta}{a\cos\theta}\right)$
 $\tan^{-1}(\tan\theta) = \theta$
 $= \sin^{-1}\left(\frac{x}{a}\right)$

2. Let
$$\cos ec^{-1}\left(-\sqrt{2}\right)=\theta$$
 $\cos ec\theta=-\sqrt{2}$
 $\theta\in\left[\frac{-\pi}{2},\frac{\pi}{2}\right]-\{0\}$
 $\cos ec\theta=\cos ec\left(\frac{-\pi}{4}\right)$
 $\theta=\frac{-\pi}{4}$

Principal value is $\frac{-\pi}{4}$

- 3. Given expression is: $\tan\left(\frac{\sin^{-1}x + \cos^{-1}x}{2}\right)$, when $x = \frac{\sqrt{3}}{2}$ $\Rightarrow \tan\left(\frac{\sin^{-1}x + \cos^{-1}x}{2}\right) = \tan\left(\frac{\sin^{-1}\frac{\sqrt{3}}{2} + \cos^{-1}\frac{\sqrt{3}}{2}}{2}\right)$ Now, we know that $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$ $\therefore \tan\left(\frac{\sin^{-1}x + \cos^{-1}x}{2}\right) = \tan\frac{\pi}{4} = 1$
- 4. Using this formula $\cot^{-1}(-x) = \pi \cot^{-1}(x)$, we have The value of $\cot^{-1}(-x)$ for all $x \in R$ in term of $\cot^{-1} x$ as $\pi \cot^{-1}(x)$.

5. As
$$\sec^{-1}(\sec x) = x$$

Provided $x \in [0,\pi] - \left\{\frac{\pi}{2}\right\}$
 \therefore we can write $\sec^{-1}\sec\left(\frac{\pi}{3}\right)$ as $\frac{\pi}{3}$

Section B

6. Let
$$\cos^{-1}\frac{5}{13} = y$$

$$\Rightarrow \cos^{-1}\frac{5}{13} = y \text{ where } y \in \left[0, \frac{\pi}{2}\right]$$
To find: $\sin\left(\cos^{-1}\frac{5}{13}\right) = \sin y$
As $\sin^2\theta + \cos^2\theta = 1$

$$\Rightarrow \sin y = \pm\sqrt{1 - \cos^2 y}$$
As $y \in \left[0, \frac{\pi}{2}\right]$

$$\Rightarrow \sin y = \sqrt{1 - \left(\frac{5}{13}\right)^2}$$

$$\Rightarrow \sin y = \sqrt{1 - \left(\frac{5}{13}\right)^2}$$

$$\Rightarrow \sin y = \sqrt{1 - \frac{25}{169}}$$

$$\Rightarrow \sin y = \sqrt{\frac{144}{169}}$$

$$\Rightarrow \sin y = \frac{12}{13}$$

$$\Rightarrow \sin \left[\cos^{-1}\left(\frac{5}{13}\right)\right] = \frac{12}{13}$$

Hence proved.

7. We have,

$$\tan^{-1}\left\{\sqrt{\frac{1-\cos x}{1+\cos x}}\right\} = \tan^{-1}\left\{\sqrt{\frac{2\sin^2\frac{x}{2}}{2\cos^2\frac{x}{2}}}\right\} = \tan^{-1}\left\{\sqrt{\tan^2\frac{x}{2}}\right\} = \tan^{-1}\left\{\left|\tan\frac{x}{2}\right|\right\} = \begin{cases} \tan^{-1}\left(-\tan\frac{x}{2}\right), & \text{if } -\pi < x < 0\\ \tan^{-1}\left(\tan\frac{x}{2}\right), & \text{if } 0 \le x < \pi\end{cases} = \begin{cases} \tan^{-1}\left\{\tan\left(-\frac{x}{2}\right)\right\} = -\frac{x}{2}, & \text{if } -\pi < x < 0\\ \tan^{-1}\left\{\tan\left(\frac{x}{2}\right)\right\} = \frac{x}{2}, & \text{if } 0 < x < \pi\end{cases}$$

8. According to question, we have

$$\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right) = \tan^{-1}\left[\frac{\cos^{2}\frac{x}{2}-\sin^{2}\frac{x}{2}}{\cos^{2}\frac{x}{2}+\sin^{2}\frac{x}{2}-2\sin\frac{x}{2}\cos\frac{x}{2}}\right]$$

$$= \tan^{-1}\left[\frac{\left(\cos\frac{x}{2}+\sin\frac{x}{2}\right)\left(\cos\frac{x}{2}-\sin\frac{x}{2}\right)}{\left(\cos\frac{x}{2}-\sin\frac{x}{2}\right)^{2}}\right]$$

$$= \tan^{-1}\left[\frac{\cos\frac{x}{2}+\sin\frac{x}{2}}{\cos\frac{x}{2}-\sin\frac{x}{2}}\right]$$

$$= \tan^{-1}\left[\frac{1+\tan\frac{x}{2}}{1-\tan\frac{x}{2}}\right]$$

$$= \tan^{-1}\left[\tan\left(\frac{\pi}{4}+\frac{x}{2}\right)\right] = \frac{\pi}{4} + \frac{x}{2}$$

9. We have
$$\sin x - \cos^{-1} x = \frac{\pi}{6}$$

$$\Rightarrow \sin^{-1} x - \left(\frac{\pi}{2} - \sin^{-1} x\right) = \frac{\pi}{6}$$

$$\Rightarrow 2 \sin^{-1} x - \frac{\pi}{2} = \frac{\pi}{6} \Rightarrow 2 \sin^{-1} x = \frac{\pi}{2} + \frac{\pi}{6} \Rightarrow 2 \sin^{-1} x = \frac{3\pi + \pi}{6}$$

$$\Rightarrow \sin^{-1} x = \frac{4\pi}{6 \times 2} \Rightarrow \sin^{-1} x = \frac{\pi}{3}$$

$$\Rightarrow x = \sin \frac{\pi}{3}$$

$$\Rightarrow x = \frac{\sqrt{3}}{2}$$

10. We have,

$$\tan^{-1}x - \cot^{-1}x = \tan^{-1}\frac{1}{\sqrt{3}}$$

$$\Rightarrow \tan^{-1}x - \cot^{-1}x = \frac{\pi}{6} \dots (i)$$
 We know that
$$\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2} \dots (ii)$$
 Adding (i) and (ii), we get
$$2\tan^{-1}x = \frac{2\pi}{3}$$

$$\Rightarrow \tan^{-1}x = \frac{\pi}{3} \Rightarrow x = \tan\frac{\pi}{3} = \sqrt{3}$$

Section C

11. Here we need to find the value of x.

Now, given equation is $\tan^{-1} x + 2 \cot^{-1} x = \frac{2\pi}{3}$.

Therefore , the given equation can be written as $\tan^{-1}x + 2\tan^{-1}\left(\frac{1}{x}\right) = \frac{2\pi}{3}$ $\left[\because \cot^{-1}x = \tan^{-1}\frac{1}{x}, x > 0\right]$ $\Rightarrow \tan^{-1}x + \tan^{-1}\left(\frac{2\times\frac{1}{x}}{1-\frac{1}{x^2}}\right) = \frac{2\pi}{3}\left[\because 2\tan^{-1}x = \tan^{-1}\left(\frac{2x}{1-x^2}\right); -1 < x < 1\right]$ $\Rightarrow \tan^{-1}x + \tan^{-1}\left(\frac{\frac{2}{x}}{\frac{x^2-1}{x^2}}\right) = \frac{2\pi}{3}$

$$\Rightarrow \tan^{-1} x + \tan^{-1} \left(\frac{2x}{x^2 - 1}\right) = \frac{2\pi}{3}$$

$$\Rightarrow \tan^{-1} \left(\frac{x + \frac{2x}{x^2 - 1}}{1 - \frac{2x^2}{x^2 - 1}}\right) = \frac{2\pi}{3} \left[\because \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x + y}{1 - xy}\right); xy < 1\right]$$

$$\Rightarrow \frac{x^3 - x + 2x}{x^2 - 1 - 2x^2} = \tan \frac{2\pi}{3}$$

$$\Rightarrow \frac{x^2 + x}{-1 - x^2} = \tan \left(\pi - \frac{\pi}{3}\right) \Rightarrow \frac{x^3 + x}{-(1 + x^2)} = -\tan \frac{\pi}{3} \left[\because \tan(\pi - \theta) = -\tan \theta\right]$$

$$\therefore \frac{x(1 + x^2)}{-(1 + x^2)} = -\sqrt{3} \left[\because \tan \frac{\pi}{3} = \sqrt{3}\right]$$

$$\Rightarrow x = \sqrt{3}$$

12. Put $x = tan\theta$

$$\Rightarrow \theta = \tan^{-1}(x)$$

$$\tan^{-1}\{\sqrt{1 + \tan^{2}\theta} - \tan\theta\}$$

$$= \tan^{-1}\{\sqrt{\sec^{2}\theta} - \tan\theta\}$$

$$= \tan^{-1}\{\sec\theta - \tan\theta\}$$

$$= \tan^{-1}\left\{\frac{1}{\cos\theta} - \frac{\sin\theta}{\cos\theta}\right\}$$

 $= \tan^{-1} \left\{ \frac{1 - \sin \theta}{\cos \theta} \right\}$ $\sin\theta = 2 \times \sin\frac{\theta}{2} \times \cos\frac{\theta}{2}$, $\cos\theta = \cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2}$, using these formulla

$$= \tan^{-1} \left\{ \frac{\sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2} - 2 \times \sin \frac{\theta}{2} \times \cos \frac{\theta}{2}}{\cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2}} \right\}$$

$$= \tan^{-1} \left\{ \frac{\left(\sin \frac{\theta}{2} - \cos \frac{\theta}{2}\right)^2}{\cos \frac{\theta}{2} - \sin \frac{\theta}{2}\right) \times \left(\cos \frac{\theta}{2} + \sin \frac{\theta}{2}\right)} \right\}$$

$$= \tan^{-1} \left\{ \frac{\left(\sin \frac{\theta}{2} - \cos \frac{\theta}{2}\right)}{\cos \frac{\theta}{2} + \sin \frac{\theta}{2}} \right\}$$

Dividing by $\cos \frac{\theta}{2}$ we get

$$= \tan^{-1} \left\{ \frac{\left(\frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}} - \frac{\cos\frac{\theta}{2}}{\cos\frac{\theta}{2}}\right)}{\left(\frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}} + \frac{\cos\frac{\theta}{2}}{\cos\frac{\theta}{2}}\right)} \right\}$$

$$= \tan^{-1} \left(\frac{1 - \tan\frac{\theta}{2}}{1 + \tan\frac{\theta}{2}}\right)$$

$$\tan^{-1} \left(\frac{\tan\frac{\pi}{4} - \tan\frac{\theta}{2}}{1 + \tan\frac{\pi}{4}\tan\frac{\theta}{2}}\right)$$

$$\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

$$= \tan^{-1} \left(\tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right)\right)$$

$$= \frac{\pi}{4} - \frac{\theta}{2}$$

$$=\frac{\pi}{4}-\frac{\tan^{-1}x}{2}$$

Therefore, the simplification of given equation is $\frac{\pi}{4} - \frac{\tan^{-1}x}{2}$

13. To solve this we use substitution

Let
$$\cos^{-1}\frac{4}{5}=x$$
 and $\tan^{-1}\frac{2}{3}=y$ $\Rightarrow \cos x=\frac{4}{5}$ and $\tan y=\frac{2}{3}$ where $\mathbf{x},\mathbf{y}\in\left[0,\frac{\pi}{2}\right]$

Now, LHS is reduced to:
$$tan(x+y)$$

$$\Rightarrow tan(x+y) = \frac{tan x + tan y}{1 - tan x \cdot tan y} ... equation (i)$$

As
$$an x = \sqrt{\sec^2 x - 1}$$
 where $extbf{x} \in \left[0, \frac{\pi}{2}\right]$

$$\Rightarrow \tan x = \sqrt{\frac{1}{\cos^2 x} - 1}$$

$$\Rightarrow \tan x = \sqrt{\left(\frac{5}{4}\right)^2 - 1}$$

$$\Rightarrow \tan x = \sqrt{\frac{9}{16}}$$

$$\Rightarrow \tan x = \frac{3}{4}$$

Now putting the values of tan x and tan y in equation (i)

$$\Rightarrow an(x+y) = \left(rac{rac{3}{4}+rac{2}{3}}{1-\left(rac{3}{4}
ight)\left(rac{2}{3}
ight)}
ight) \ \Rightarrow an(x+y) = rac{17}{6} \ = ext{RHS}$$

14. To prove: $\cos^{-1}(4x^3 - 3x) = 3\cos^{-1}x$, $\frac{1}{2} \le x \le 1$

Formula used: $\cos 3A = 4 \cos^3 A - 3 \cos A$

we will show LHS = RHS..

LHS =
$$\cos^{-1}(4x^3 - 3x)$$
 ...(i)

Let
$$x = \cos A$$
 (ii)

Substituting (ii) in (i),

LHS =
$$\cos^{-1}(4\cos^3 A - 3\cos A)$$

$$= \cos^{-1} (\cos 3A)$$

$$= 3A$$

From (ii),
$$A = \cos^{-1} x$$
,

$$3A = 3 \cos^{-1} x$$

Therefore, LHS = RHS

Hence proved

15.
$$\sin^{-1}(1-x) = \frac{\pi}{2} + 2\sin^{-1}x$$

 $(1-x) = \sin(\frac{\pi}{2} + 2\sin^{-1}x)$

$$1 - x = \cos(2\sin^{-1}x)$$

1 - x =
$$\cos 2(\sin^{-1}x) \left[\cos 2\theta = 1 - 2\sin^2\theta\right]$$

$$= 1 - 2\sin^2(\sin^{-1}x)$$

$$= 1 - 2[\sin(\sin^{-1}x)]^2$$

$$1 - x = 1 - 2x^2$$

$$2x^2 - x = 0$$

$$x(2x - 1) = 0$$

$$x = 0, x = \frac{1}{2}$$

Section D

16.
$$\tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right]$$

Put $x = \tan \theta$, $y = \tan \phi$
 $= \tan \frac{1}{2} \left[\sin^{-1} \frac{2 \tan \theta}{1+\tan^2 \theta} + \cos^{-1} \frac{1-\tan^2 \phi}{1+\tan^2 \phi} \right]$
 $= \tan \frac{1}{2} \left[\sin^{-1} (\sin 2\theta) + \cos^{-1} (\cos 2\phi) \right]$
 $= \tan \frac{1}{2} \left[2\theta + 2\phi \right]$
 $= \tan \frac{1}{2} 2(\theta + \phi)$
 $= \frac{\tan \theta + \tan \phi}{1-\tan \theta \cdot \tan \phi} = \frac{x+y}{1-xy}$

17. We have

$$\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5} = \tan^{-1}\frac{63}{16}$$
(i)

$$sin^{-1}\frac{5}{13} = x$$

 $\Rightarrow sin x = \frac{5}{13}$

And
$$\cos^2 x = 1 - \sin^2 x$$

= $1 - \frac{25}{169} = \frac{144}{169}$
 $\Rightarrow \cos x = \sqrt{\frac{144}{169}} = \frac{12}{13}$

$$\Rightarrow \cos x = \sqrt{\frac{169}{169}} = \frac{12}{13}$$

$$\therefore \tan x = \frac{\sin x}{\cos x} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12}$$
 ...(ii)

$$\Rightarrow \tan x = \frac{5}{12}$$
 ...(iii)

Again, Let

$$\cos^{-1}\frac{3}{5} = y \Rightarrow \cos y = \frac{3}{5}$$

$$\cos^{-1}\frac{3}{5} = y \Rightarrow \cos y = \frac{3}{5}$$

$$\therefore \sin y = \sqrt{1 - \cos^2 y}$$

$$= \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}}$$

$$\sin y = \sqrt{\frac{16}{25}} = \frac{4}{5}$$

$$\Rightarrow \tan y = \frac{\sin y}{\cos y} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3}$$
 ...(iv)

We know that,

$$an(x+y) = rac{ an x + an y}{1 - an x \cdot an y}$$

$$\Rightarrow an(x+y) = rac{rac{5}{12} + rac{4}{3}}{1 - rac{5}{12} \cdot rac{4}{3}} \Rightarrow an(x+y) = rac{rac{15 + 48}{36}}{rac{36 - 20}{36}}$$

$$\Rightarrow an(x+y) = rac{rac{60}{36}}{rac{16}{16}}$$

$$\Rightarrow an(x+y) = rac{63}{16}$$

$$\Rightarrow x + y = \tan^{-1} \frac{63}{16}$$

$$\Rightarrow \tan(x+y) = \frac{\frac{63}{36}}{\frac{16}{36}}$$

$$\Rightarrow \tan(x+y) = \frac{63}{16}$$

$$\Rightarrow x+y = \tan^{-1}\frac{63}{16}$$

$$\Rightarrow \tan^{-1}\frac{5}{12} + \tan^{-1}\frac{4}{3} = \tan^{-1}\frac{63}{16}$$
Hence proved

Hence proved.