Eliminating Bias in Treatment Effect Estimates Arising from Adaptively Collected Data

János K. Divényi

Dec 20, 2019

Central European University, Emarsys

Outline

- 1. Introduction
- 2. Illustration of basic properties on a simple setup
- 3. Monte-Carlo simulation, main results

Introduction

Motivating example: online shop's pricing scheme

An online shop is considering to change its pricing scheme

Motivating example: online shop's pricing scheme

An online shop is considering to change its pricing scheme

- Innovation vs status quo
- Sequential arrival of subjects
- Experimenting is
 - cheap in terms of transactional costs
 - expensive in terms of opportunity costs

Motivating example: online shop's pricing scheme

An online shop is considering to change its pricing scheme

- Innovation vs status quo
- Sequential arrival of subjects
- Experimenting is
 - cheap in terms of transactional costs
 - expensive in terms of opportunity costs
- Two goals:
 - 1. profit
 - 2. treatment effect estimation

Standard solution: RCT & decide

- 1. Conduct a Randomized Controlled Trial (aka AB test) on an experimental sample
- 2. Measure the treatment effect
- 3. Apply the treatment onwards if the effect is positive

Standard solution: RCT & decide

- 1. Conduct a Randomized Controlled Trial (aka AB test) on an experimental sample
- 2. Measure the treatment effect
- 3. Apply the treatment onwards if the effect is positive

Treatment choice literature: Manski (2004), Dehejia (2005), Kitagawa & Tetenov (2018)

How to optimize which arm to pull in sequential decision-making?

Measure the rewards $\ \leftrightarrow$ Pull the highest

How to optimize which arm to pull in sequential decision-making?

Measure the rewards $\ \leftrightarrow$ Pull the highest

Exploration \leftrightarrow Exploitation Learning \leftrightarrow Earning

How to optimize which arm to pull in sequential decision-making?

Measure the rewards $\ \leftrightarrow$ Pull the highest

 ${\sf Exploration} \ \leftrightarrow \ {\sf Exploitation}$

 $\mathsf{Learning} \ \leftrightarrow \ \mathsf{Earning}$

Bandit literature: Thompson (1933), Robbins (1952), Bubeck & Cesa-Bianchi (2012), Szepesvári & Lattimore (2019), Slivkins (2019)

Relation to literature

Sequential experiments Kasy & Sautmann (2019)

Dynamic treatment allocation Perchet et al. (2016), Kock & Thyrsgaard (2018)

Estimation considerations in bandits Villar, Bowden & Wason (2015), Nie et al. (2018), Dimakopoulou, Athey & Imbens (2019), Hadad et al. (2019)

My contribution

How to balance between estimation (RCT) and allocation (bandit) goal

- Systematic simulation exercise.
- There is a trade-off between welfare and estimation goals.
- IPW with limited propensity scores extends the set of choices.

Illustration of basic properties

Formal setup

- Binary treatment W with constant effect $Y_i(1) = Y_i(0) + \tau$
- Fix population $\{Y_i(0)\}_{i=1}^n$, $Y(0) \sim \mathcal{N}(0,\sigma^2)$, arrival is random

Formal setup

- ullet Binary treatment W with constant effect $Y_i(1) = Y_i(0) + au$
- Fix population $\{Y_i(0)\}_{i=1}^n$, $Y(0) \sim \mathcal{N}(0, \sigma^2)$, arrival is random
- Goals
 - 1. find treatment rule $\pi:\{1,...,n\} o \{0,1\}$ that maximizes $\sum_i Y_i$
 - 2. estimate τ

Sequential arrival

- 1. A group of individuals $i \in B_j$ arrive, and they are assigned $(|B_j| = n_B)$
- 2. Outcomes $\{Y_i\}_{i \in B_i}$ are observed
- 3. A next group of individuals $i \in B_{i+1}$ arrive and steps 1-2 are repeated

Bandit approach: Adaptive data collection

Thompson sampling - an old heuristic suggested by Thompson (1933)

- 1. Assign the first batch with 50% probability to the treatment.
- 2. Derive beliefs for sampling means using normal density with calculated averages and their (known) standard deviations:

$$\mathcal{N}\left(\hat{\mu}_{w}^{(k)}, \frac{\sigma_{w}^{2(k)}}{n_{w}^{(k)}}\right)$$

3. Assign individuals to the treatment in the next batch by the probability that the treatment mean is higher than the control mean.

Parametrization

- au = 1 (normalization)
- ullet $\sigma=$ 10 (high signal-to-noise ratio)
- n = 10,000 in 10 batches $(n_B = 1,000)$

Parametrization

- $\tau = 1$ (normalization)
- $\sigma = 10$ (high signal-to-noise ratio)
- n = 10,000 in 10 batches $(n_B = 1,000)$
- I simulate assignment rules by randomizing the arrival, 20k runs

The bandits are adaptive (share of treated)...

...that results in higher total welfare

A price to pay: the implicit treatment effect estimator is biased

Control	Treatment
-0.10	1.00
-0.63	-1.49
0.33	0.03
0.12	0.00
	-0.10 -0.63 0.33

Intuition for the bias: asymmetric sampling due to adaptivity

Bias correction: Inverse Propensity Weighting (IPW)

 weight each observation by the probability of assigning them to the group they were actually assigned to (PS is estimated)

Bias correction: Inverse Propensity Weighting (IPW)

- weight each observation by the probability of assigning them to the group they were actually assigned to (PS is estimated)
- IPWE is the simple average of batch averages

Bias correction: Inverse Propensity Weighting (IPW)

- weight each observation by the probability of assigning them to the group they were actually assigned to (PS is estimated)
- IPWE is the simple average of batch averages

$$\hat{\tau}_{IPWE} = \frac{1}{n} \left(\sum_{i=1}^{n} \frac{Y_i W_i}{p_i} - \sum_{i=1}^{n} \frac{Y_i (1 - W_i)}{1 - p_i} \right)$$

$$= \frac{1}{n} \sum_{j=1}^{m} \left(\sum_{i \in B_j} \frac{Y_i W_i n_B}{\sum_{i \in B_j} W_i} - \sum_{i \in B_j} \frac{Y_i (1 - W_i) n_B}{\sum_{i \in B_j} (1 - W_i)} \right)$$

$$= \frac{1}{m} \sum_{j=1}^{m} \underbrace{\sum_{i \in B_j} Y_i W_i}_{\text{batch treated average}} - \frac{1}{m} \sum_{j=1}^{m} \underbrace{\sum_{i \in B_j} Y_i (1 - W_i)}_{\text{batch control average}}$$

IPW can even exacerbate the bias

	Control	Treatment
Mean	-0.12	1.00
Skewness	-0.44	-1.82
Std. dev.	1.89	0.04
MSE	3.59	0.00

Straight-forward strategies with unbiased treatment effect

• Use only the first batch of bandit for estimation: FBTE

Straight-forward strategies with unbiased treatment effect

- Use only the first batch of bandit for estimation: FBTE
- RCT & decide = "explore-then-commit": ETC

Welfare-estimation trade-off

Welfare-estimation trade-off

Welfare-estimation trade-off

Welfare-estimation trade-off - varying batch size

Welfare-estimation trade-off - varying batch size

Welfare-estimation trade-off - varying batch size

Solution: limited (capped) IPW

Solution: limited (capped) IPW

Different σ

Different n

Conclusion

Summary of results

- there is a trade-off between welfare and estimation goals
- "quick" bandit and IPW with limited propensity scores extends the set of choices
- especially if the problem is hard (large noise-to-signal ratio)

Thank you for your attention