

Created by Bryan Lizon Presented by Josh Brown

1x IDAC versus 2x IDACs for 3-wire RTDs

3-wire RTD using 1x IDAC**

errors

× Requires 2x

3-wire RTD using 2x IDACs**

resistance cancellation

✓ Automatic lead

× IDAC mismatch causes additional error

Two measurements using 3-wire RTD and 1x IDAC

ADC output code for a 3-wire RTD using 1x IDACs

$$ADC code = \frac{R_RTD^{**}}{R REF}$$

**If R_LEAD1 = R_LEAD3

Measuring VIN (3-wire RTD, 2x IDACs, LS R_REF)

 $\underline{VIN} = \underline{AINP} - \underline{AINN}$

 $VIN = V_LEAD1 + V_RTD - V_LEAD2$

- $V_LEAD1 = IDAC1 * R_LEAD1$
- $V_RTD = IDAC1 * R_RTD$
- $V_{LEAD2} = IDAC2 * R_{LEAD2}$

 $VIN = IDAC1 * (R_RTD + R_LEAD1) - IDAC2 * R_LEAD2$

ADC output code (3-wire RTD, 2x IDACs, LS R_REF)

$$VIN = IDAC1 * (R_RTD + R_LEAD1) - IDAC2 * R_LEAD2$$

 $V_REF = (IDAC1 + IDAC2) * R_REF$

$$ADC code = \frac{VIN}{V_REF}$$

$$= \frac{IDACI * (R_RTD + R_LEAD1) - IDACZ * R_LEAD2}{(IDAC1 + IDAC2) * R_REF}$$

$$= \frac{R_RTD + R_LEAD1 - R_LEAD2}{2 * R_REF}$$

$$= \frac{R_RTD}{2 * R_REF}$$
Assume
$$R_LEAD1 = R_LEAD2$$

$$= \frac{R_RTD}{2 * R_REF}$$

Understanding IDAC specifications

ADS124S08 IDAC parameters

	Parameter	Condition	MIN	TYP	MAX	Unit
Compliance voltage ensures both	Compliance voltage	10 μA to 750 μA, 0.1% deviation	AVSS		AVDD – 0.4	V
IDACs can maintain constant current		1 mA to 2 mA, 0.1% deviation	AVSS		AVDD – 0.6	V
	/ (J JDA 0)	$T_A = 25$ °C, 10 µA to 100 µA	-5%	0.7%	5%	
Ratiometric measurements allow		$T_A = 25^{\circ}C$, 250 µA to 2 mA	-3%	0.5%	3%	
relaxed absolute IDAC specifications	Temperature drift (each IDAC)	10 μA to 750 μA		20	120	nnm/°C
		1 mA to 2 mA		10	80	ppm/°C
	Current mismatch	T _A = 25°C, 10 μA to 100 μA		0.15%	0.8%	
	between	T _A = 25°C, 250 μA to 750 μA		0.10%	0.6%	
critical for 3-wire RTD systems using	IDACs	T _A = 25°C, 1 mA to 2 mA		0.07%	0.4%	
2x IDACs	Temperature drift	10 μA to 100 μA		3	25	nnm/°C
	matching between IDACs	250 μA to 2 mA		2	15	ppm/°C

How IDAC mismatch errors affect 3-wire RTDs

ADS124S08 IDAC parameters

Parameter	Condition	MIN TYP	MAX	Unit
Current mismatch between IDACs	$T_A = 25^{\circ}C$, 10 µA to 100 µA	0.15%	0.8%	
	T _A = 25°C, 250 μA to 750 μA	0.10%	0.6%	
	T _A = 25°C, 1 mA to 2 mA	0.07%	0.4%	

$$ADC code = \frac{VIN}{V_REF}$$

$$= \frac{IDAC1 * (R_RTD + R_LEAD) - IDAC2 * R_LEAD}{(IDAC1 + IDAC2) * R_REF}$$

IDAC mismatch error (
$$E_{IM}$$
)
$$E_{IM} = 1 - \frac{IDAC1}{IDAC2}$$

- IDAC1 = 500 μA
- IDAC2 = 503 μA
- Mismatch error = 0.006 (0.6%)

$$IDAC1 = IDAC2 * (1 - E_{IM})$$

How IDAC mismatch affects 3-wire RTDs (LS R_REF)

$$ADC code = \frac{IDAC1 * (R_RTD + R_LEAD) - IDAC2 * R_LEAD}{(IDAC1 + IDAC2) * R_REF}$$

$$ADC code = \frac{IDAC2 * (1 - E_{IM}) * (R_RTD + R_LEAD) - IDAC2 * R_LEAD}{[IDAC2 * (1 - E_{IM}) + IDAC2] * R_REF}$$

IDAC mismatch error (E_{IM})

$$E_{IM} = 1 - \frac{IDAC1}{IDAC2}$$

 $IDAC1 = IDAC2 * (1 - E_{IM})$

$$ADC code = \frac{(R_RTD + R_LEAD - R_LEAD * E_{IM} - R_RTD * E_{IM}) - R_LEAD}{[(1 - E_{IM}) + 1] * R_REF}$$

ADC code =
$$\frac{R_RTD * (1 - E_{IM}) - R_LEAD * E_{IM}}{(2 - E_{IM}) * R_REF}$$

ADC code =
$$\frac{R_RTD * (1 - E_{IM})}{R_REF * (2 - E_{IM})} - \frac{R_LEAD * E_{IM}}{R_REF * (2 - E_{IM})}$$

How much ADC error does IDAC mismatch contribute?

Calculating ADC error due to E_{IM} (LS R_REF)

General form of the error equation

ADC error =
$$\left(\frac{\text{ADC code}_{\text{Mismatch}} - \text{ADC code}_{\text{Ideal}}}{\text{ADC code}_{\text{Ideal}}}\right) * 100\%$$

Apply system-specific expressions

$$ADC \ error = \left(\frac{\left[\frac{R_RTD * (1 - E_{IM})}{R_REF * (2 - E_{IM})} - \frac{R_LEAD * E_{IM}}{R_REF * (2 - E_{IM})} \right] - \left[\frac{R_RTD}{2 * R_REF} \right]}{\frac{R_RTD}{2 * R_REF}} \right) * 100\%$$

Divide out R REF

$$ADC \ error = \left(\frac{\left[\frac{R_RTD*(1-E_{IM})}{2-E_{IM}} - \frac{R_LEAD*E_{IM}}{2-E_{IM}}\right] - \left[\frac{R_RTD}{2}\right]}{\frac{R_RTD}{2}}\right) * 100\%$$

Multiply top and bottom by $\frac{2}{R_RTD}$ and simplify

ADC error =
$$\left(\frac{2 * (1 - E_{IM})}{2 - E_{IM}} - \frac{2 * R_LEAD * E_{IM}}{R_RTD * (2 - E_{IM})} - 1\right) * 100\%$$

Set the constant 1 = $\frac{2-E_{IM}}{2-E_{IM}}$

ADC error =
$$\left(\frac{2 - 2 * E_{IM}}{2 - E_{IM}} - \frac{2 * R_L EAD * E_{IM}}{R_R TD * (2 - E_{IM})} - \frac{2 - E_{IM}}{2 - E_{IM}}\right) * 100\%$$

Simplify and factor out the common variable $\frac{-E_{IM}}{2-E_{IM}}$

ADC error =
$$\frac{-E_{IM}}{2 - E_{IM}} * \left(1 + \frac{2 * R_LEAD}{R_RTD}\right) * 100\%$$

Measuring VIN (3-wire RTD, 2x IDACs, HS R_REF)

VIN = AINP - AINN

 $VIN = V_LEAD1 + V_RTD - V_LEAD2$

- $V_LEAD1 = IDAC1 * R_LEAD1$
- $V_RTD = IDAC1 * R_RTD$
- $V_{LEAD2} = IDAC2 * R_{LEAD2}$

 $VIN = IDAC1 * (R_RTD + R_LEAD1) - IDAC2 * R_LEAD2$

(same VIN equation as low-side R_REF configuration)

ADC output code (3-wire RTD, 2x IDACs, HS R_REF)

$$VIN = IDAC1 * (R_RTD + R_LEAD1) - IDAC2 * R_LEAD2$$

$$V_REF = IDAC1 * R_REF$$

$$ADC code = \frac{VIN}{V_REF}$$

$$= \frac{IDACT * (R_RTD + R_LEAD1) - IDAC2 * R_LEAD2}{(IDAC1) * R_REF}$$

$$= \frac{R_RTD + R_LEAD1 - R_LEAD2}{R_REF}$$

$$= \frac{R_RTD}{R_REF}$$
Assume
$$R_LEAD1 = R_LEAD2$$

$$R_LEAD1 = R_LEAD2$$

What if IDAC1 ≠ IDAC2?

How IDAC mismatch affects 3-wire RTDs (HS R_REF)

 $ADC code = \frac{IDAC1 * (R_RTD + R_LEAD) - IDAC2 * R_LEAD}{IDAC1 * R_REF}$

ADC code =
$$\frac{\text{IDAC2} * (1 - E_{\text{IM}}) * (R_{\text{R}}TD + R_{\text{L}}EAD) - (IDAC2 * R_{\text{L}}EAD)}{[IDAC2 * (1 - E_{\text{IM}})] * R_{\text{R}}EF}$$

IDAC mismatch error (E_{IM})

$$E_{IM} = 1 - \frac{IDAC1}{IDAC2}$$

$$IDAC1 = IDAC2 * (1 - E_{IM})$$

$$ADC \ code = \frac{R_RTD - R_RTD * E_{IM} - R_LEAD * E_{IM} + R_LEAD - R_LEAD}{(1 - E_{IM}) * R_REF}$$

ADC code =
$$\frac{R_RTD * (1 - E_{IM})}{R REF * (1 - E_{IM})} - \frac{R_LEAD * E_{IM}}{(1 - E_{IM}) * R REF}$$

ADC code =
$$\frac{R_RTD}{R_REF} - \frac{R_LEAD * E_{IM}}{R_REF * (1 - E_{IM})}$$

How much ADC error does IDAC mismatch contribute?

Calculating ADC error due to E_{IM} (HS R_REF)

General form of the error equation

ADC error =
$$\left(\frac{ADC \text{ code}_{Mismatch} - ADC \text{ code}_{Ideal}}{ADC \text{ code}_{Ideal}}\right) * 100\%$$

Apply system-specific expressions

ADC error =
$$\frac{\left[\frac{R_RTD}{R_REF} - \frac{R_LEAD * E_{IM}}{R_REF * (1 - E_{IM})}\right] - \left[\frac{R_RTD}{R_REF}\right]}{\frac{R_RTD}{R_REF}} * 100\%$$

Divide out R_REF

ADC error =
$$\left(\frac{\left[R_RTD + \frac{R_LEAD * E_{IM}}{1 - E_{IM}}\right] - R_RTD}{R_RTD}\right) * 100\%$$

Divide each term by R_RTD

ADC error =
$$\left(\left[\frac{R_RTD}{R_RTD} + \frac{R_LEAD * E_{IM}}{R_RTD * (1 - E_{IM})} \right] - \frac{R_RTD}{R_RTD} \right) * 100\%$$

Simplify

ADC error =
$$\frac{E_{IM}}{1 - E_{IM}} * \left(\frac{R_L EAD}{R_R TD}\right) * 100\%$$

Comparing errors due to E_{IM} (LS R_REF & HS R_REF)

Condition	ADC	Comment			
Condition	Low-side R_REF High-side R_REF		Comment		
General form	$= \frac{-E_{IM}}{2 - E_{IM}} * \left(1 + \frac{2 * R_LEAD}{R_RTD}\right) * 100\%$	$= \frac{E_{IM}}{1 - E_{IM}} * \left(\frac{R_LEAD}{R_RTD}\right) * 100\%$			
E _{IM} is small (<2%)	$\approx \frac{-E_{IM}}{2} * \left(1 + \frac{2 * R_LEAD}{R_RTD}\right) * 100\%$	$\approx E_{IM} * \left(\frac{R_LEAD}{R_RTD}\right) * 100\%$	Typical E _{IM} values are very small e.g. ADS124S08 = 0.15%		
R_RTD ≈ R_LEAD	$\approx -\frac{3}{2} * E_{IM} * 100\%$	≈ E _{IM} * 100%	When R_RTD is small, the LS R_REF error due to E _{IM} is 1.5x larger compared to the HS R_REF		
R_RTD >> R_LEAD	$\approx -\frac{1}{2} * E_{IM} * 100\%$	≈ 0%	When R_RTD is large, a HS R_REF has virtually no error due to E _{IM}		

Plotting errors due to E_{IM} (LS R_REF & HS R_REF)

Low-side R_REF	High-side R_REF		
$= \frac{-E_{IM}}{2 - E_{IM}} * \left(1 + \frac{2 * R_LEAD}{R_RTD}\right) * 100\% \approx -\frac{1}{2} * E_{IM} * 100\%$	$= \frac{E_{IM}}{1 - E_{IM}} * \left(\frac{R_LEAD}{R_RTD}\right) * 100\% \approx 0\%$		

Choose high-side R REF if possible

How IDAC chop works (LS R_REF)

Calculating the IDAC chop result

General form of the error equation

$$ADC\ code = \frac{Measurement \#1 + Measurement \#2}{2}$$

Apply system-specific expressions

$$ADC \ code = \frac{\left(\frac{\text{IDAC1} * (R_RTD + R_LEAD1) - IDAC2 * R_LEAD2}{R_REF * (IDAC1 + IDAC2)} + \frac{\text{IDAC2} * (R_RTD + R_LEAD1) - IDAC1 * R_LEAD2}{R_REF * (IDAC1 + IDAC2)}\right)}{2}$$

Combine all IDAC1 and IDAC2 terms

$$ADC\ code = \frac{\text{IDAC1} * (R_RTD + R_LEAD1 - R_LEAD2) + \text{IDAC2} * (R_RTD + R_LEAD1 - RLEAD2)}{2 * R_REF * (IDAC1 + IDAC2)}$$

Factor out the (R_RTD + R_LEAD1 - R_LEAD2) term

$$ADC \ code = \frac{(R_RTD + \underline{R} \ LEAD1 - R_LEAD2) * (IDAC1 + IDAC2)}{2 * R_REF * (IDAC1 + IDAC2)}$$

Simplify assuming R LEAD1 = R LEAD2

$$ADC \ code = \frac{R_RTD * (IDAC1 + IDAC2)}{2 * R_REF * (IDAC1 + IDAC2)}$$

Reduces to ideal ADC output code equation

$$ADC \ code = \frac{R_RTD}{2 * R_REF}$$

Thanks for your time! Please try the quiz.

Quiz: Challenges with 3-wire RTD systems

- 1. (T/F) Measuring 3-wire RTDs using one IDAC generally has lower error compared to using two IDACs because the two IDAC method introduces IDAC mismatch errors.
 - a) True
 - b) False
- 2. When measuring 3-wire RTDs using two IDACs, which configuration has the lowest error?
 - a) Low-side reference configuration
 - b) High-side reference configuration
- 3. (T/F) Measuring 3-wire RTDs using two IDACs is faster compared to using one IDAC because the two IDAC method only requires one measurement.
 - a) True
 - b) False

Quiz: Challenges with 3-wire RTD systems

- 4. What is IDAC chop used for?
 - a) It is used to effectively cut the IDAC into multiple equal sized pieces
 - b) It is a method used on single IDAC measurements where the IDAC is pulse-width modulated
 - c) It is used to remove IDAC mismatch in 3-wire, two IDAC systems by taking one measurement, then swapping the position of the IDACs, taking another measurement, and finally averaging the results
- 5. What is the disadvantage of IDAC chop?
 - a) Two measurements are required, which increases measurement time
 - b) It always requires an external multiplexer
 - c) It can lead to uncontrolled oscillations

Thanks for your time!

© Copyright 2023 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's Terms of Use, viewable at TI.com

