

Lineare Algebra für Informatik - Woche 3

Cosmin Aprodu

Technische Universität München

Online, 29 Apr 2021

Vektorräume

Eine Menge V ist ein K-**Vektorraum** zusammen mit zwei Abbildungen $\oplus : V \times V \to V, (v, w) \mapsto v \oplus w$ und $\odot : K \times V \to V, (a, v) \mapsto a \odot v$, so dass folgende Axiome gelten:

- (1) (V, \oplus) ist eine kommutative (abelsche) Gruppe.
- (2) Für alle $a \in K$ und $v, w \in V$ gilt:

$$a \odot (v \oplus w) = a \odot v \oplus a \odot w$$

(3) Für alle $a, b \in K$ und $v \in V$ gilt:

$$(a+b) \odot v = a \odot v \oplus b \odot v$$

(4) Für alle $a, b \in K$ und $v \in V$ gilt:

$$(a \cdot b) \odot v = a \odot (b \odot v)$$

(5) Für alle $v \in V$ gilt:

$$1 \odot v = v, 1 \in K$$

Vektorräume (2)

Sei V ein Vektorraum und $V = \{0\}$, dann heißt V **Nullraum**.

Bemerkung: Sei V ein L-Vektorraum und $K \subseteq L$, dann ist V ein K-Vektorraum. Außerdem, ist K immer ein K-Vektorraum.

 \rightarrow Für jede zwei Körper K und L s.d. $K \subset L$, ist L ein K-Vektorraum.

Beispiel: $\mathbb{R} \subseteq \mathbb{C} \Rightarrow \mathbb{C}$ ist ein \mathbb{R} -Vektorraum, $\mathbb{Q} \subseteq \mathbb{R} \Rightarrow \mathbb{R}$ ist ein \mathbb{Q} -Vektorraum, ...

Sei V ein K-Vektorraum. Eine Teilmenge $U \subseteq V$ heißt **Untervektorraum** (auch Unterraum, Teilraum), falls gelten:

- **(1)** $U \neq \emptyset$.
- (2) Für $v, w \in U$ ist auch $v \oplus w \in U$.
- (3) Für $a \in K$ und $v \in U$ gilt $a \odot v \in U$.

Vektorräume (3)

Sei V ein K-Vektorraum und $S \subseteq V$ eine Teilmenge. Wir betrachten die Menge $M := \{U \subseteq V \mid U \text{ Unterraum und } S \subseteq U\}$ und bilden:

$$\langle \mathcal{S} \rangle := \bigcap_{U \in M} U$$

 $\rightarrow \langle S \rangle$ heißt der von S erzeugte Unterraum. Falls $S = \{v_1, \dots, v_n\}$ endlich ist, dann schreiben wir $\langle S \rangle$ auch als $\langle v_1, \dots, v_n \rangle$.

Sei V ein K-Vektorraum, U_1 , U_2 Unterräume und $S = U_1 \cup U_2$. Dann gilt:

$$\langle S \rangle = U_1 + U_2$$
, wobei $U_1 + U_2 := \{ v + w \mid v \in U_1, w \in U_2 \}$

Bemerkung: $\langle S \rangle$ ist der kleinste Unterraum von V, der S enthält.

Linearkombinationen - Grundbegriffe

Sei $v_1, \ldots, v_n \in V$ Vektoren. Ein Vektor $v \in V$ heißt **Linearkombination** von v_1, \ldots, v_n , falls es Skalare $a_1, \ldots, a_n \in K$ gibt mit:

$$v = a_1 \cdot v_1 + \ldots + a_n \cdot v_n$$
 (im Allgemeinen: $v = a_1 \odot v_1 \oplus \ldots \oplus a_n \odot v_n$)

 \rightarrow Sei $\mathbf{0} \in V$ und $0 \in K$. Die Vektoren heißen **linear unabhängig**, falls für alle a_1, \dots, a_n folgende Implikation gilt:

$$a_1 \cdot v_1 + \ldots + a_n \cdot v_n = \mathbf{0} \implies a_1 = 0, \ldots, a_n = 0$$

Bemerkung: Folgenden Begriffe können wir mit Hilfe von Linearkombinationen erneut definieren:

- $\langle S \rangle = \{ v \in V \mid v \text{ ist Linearkombination von S} \}$
- $\langle v_1, \ldots, v_n \rangle = \{ \sum_{i=1}^n a_i v_i \mid a_1, \ldots, a_n \in K \}$