

# AlphaZero – najlepszy silnik szachowy

Krystian Kurek Wydział MiNI PW

#### Dlaczego to jest ciekawe?

- Najlepszy silnik szachowy pokonał ówczesnego mistrza.
- 2. Algorytm AlphaZero jest generyczny.
- 3. Cały trening opiera się tylko na graniu ze sobą.



#### Plan prezentacji

- 1. Zasady gry w szachy.
- 2. Monte-Carlo Tree Search.
- 3. Podstawy sztucznych sieci neuronowych.
- 4. Zasada działania AlphaZero.
- 5. Wyniki starcia z mistrzem.

#### Zasady gry w szachy

- Dwóch graczy,
- Kwadratowa plansza 8x8.
- 32 bierki, 6 unikalnych rodzajów bierek,
- Celem gry jest zmatowanie króla przeciwnika.



#### Skoczek





#### **Goniec**



#### **Hetman**





#### Król







#### Pionek 1/2





#### Pionek 2/2



# Mat



## Złożoność gry w szachy

- Liczba możliwych gier ok. 10<sup>120</sup> liczba
   Shannona
- Czynnik rozgałęzienia ok. 35





Możliwe do podjęcia akcje (ruchy)













#### **Monte-Carlo Tree Search**

- Wybór (ang. selection)
- Rozrost (ang. expansion)
- Symulacja (ang. playout)
- Propagacja wstecz (ang. backpropagation)

## Wybór

N – liczba wizyt w wierzchołku

V – wartość wierzchołka

 $\begin{array}{l} N_1=0 \\ V_1=0 \end{array} egin{array}{l} Q-\text{\'s}rednia warto\'s\'c wierzchołka} rac{V}{N} \\ V_1=0 \end{array} egin{array}{l} tego wierzchołka \end{array}$ 

$$\begin{pmatrix}
 N_2 = 0 \\
 V_2 = 0
\end{pmatrix}$$

$$N_3 = 0$$

$$V_3 = 0$$

## Symulacja

N – liczba wizyt w wierzchołku

V – wartość wierzchołka

Q – średnia wartość wierzchołka  $\frac{V}{N}$ 

 $N_1 = 0$  P – prawdopodobieństwo wybrania  $V_1 = 0$  tego wierzchołka





# Propagacja wstecz



N – liczba wizyt w wierzchołku

V – wartość wierzchołka

Q – średnia wartość wierzchołka  $\frac{V}{N}$ 

P – prawdopodobieństwo wybrania tego wierzchołka





# Wybór

N – liczba wizyt w wierzchołku

V – wartość wierzchołka

Q – średnia wartość wierzchołka  $\frac{V}{N}$ 

 $N_1 = 1$   $N_1 = 1$   $N_2 = 1$   $N_3 = 1$   $N_4 = 1$   $N_5 = 1$   $N_6 = 1$   $N_6$ 

$$N_1 = 1$$

$$V_1 = 1$$

$$\begin{pmatrix}
 N_2 = 1 \\
 V_2 = 1
\end{pmatrix}$$

$$U_2 = \frac{1}{1} + 0.4 \cdot 0.5 \cdot \frac{1}{1+1} = 1.1$$
  $U_3 = 0 + 0.4 \cdot 0.5 \cdot \frac{1}{1} = 0.2$ 

$$U_3 = 0 + 0.4 \cdot 0.5 \cdot \frac{1}{1} = 0.2$$

$$U = \frac{V}{N} + cP(s, a) \frac{\sqrt{\Sigma_b N(s, b)}}{1 + N(s, a)}$$

#### Rozrost

N – liczba wizyt w wierzchołku

V – wartość wierzchołka

Q – średnia wartość wierzchołka  $\frac{V}{N}$ 

 $N_1 = 0$  P – prawdopodobieństwo wybrania  $V_1 = 0$  tego wierzchołka





$$N_3 = 0$$

$$V_3 = 0$$

# Wybór

N – liczba wizyt w wierzchołku

V – wartość wierzchołka

Q – średnia wartość wierzchołka  $\frac{V}{N}$ 

 $N_1 = 0$   $P_-$  prawdopodobieństwo wybrania  $V_1 = 0$  tego wierzchołka





$$\begin{array}{c}
N_3 = 0 \\
V_3 = 0
\end{array}$$

# Symulacja

V = -0.7

N – liczba wizyt w wierzchołku

V – wartość wierzchołka

Q – średnia wartość wierzchołka  $\frac{V}{N}$ 

 $N_1 = 0$   $P_-$  prawdopodobieństwo wybrania  $V_1 = 0$  tego wierzchołka



# Propagacja wstecz

$$N_1 = 2$$
 $V_1 = 0.3$ 

N – liczba wizyt w wierzchołku

V – wartość wierzchołka

**Q** – średnia wartość wierzchołka  $\frac{V}{N}$ 

P – prawdopodobieństwo wybrania tego wierzchołka



$$N_3 = 0$$

$$V_3 = 0$$

# Wybór

N – liczba wizyt w wierzchołku

V – wartość wierzchołka

**Q** – średnia wartość wierzchołka  $\frac{V}{N}$ 

$$N_1 = 2$$
 P – prawdopodobieństwo wybrania tego  $V_1 = 0.3$ wierzchołka



$$N_3 = 0$$

$$V_3 = 0$$

$$N_4 = 1$$
  $N_5 = 0$   $N_5 = 0$   $N_5 = 0$ 

$$U = \frac{V}{N} + cP(s, a) \frac{\sqrt{\sum_b N(s, b)}}{1 + N(s, a)} \qquad U_2 = \frac{0.3}{2} + 0.4 \cdot 0.5 \cdot \frac{\sqrt{2}}{1 + 2} = 0.24$$

$$U_3 = 0 + 0.4 \cdot 0.5 \cdot \frac{\sqrt{2}}{1 + 0} = 0.28$$

$$U_2 = \frac{0.3}{2} + 0.4 \cdot 0.5 \cdot \frac{\sqrt{2}}{1+2} = 0.24$$

$$U_3 = 0 + 0.4 \cdot 0.5 \cdot \frac{\sqrt{2}}{1+0} = 0.28$$

# Wybór ruchu



Podczas treningu ruch wybierany jest losowo z rozkładu:

$$\pi(a|s) = \frac{N(s,a)^{\frac{1}{\tau}}}{\sum_{b} N(s,b)^{\frac{1}{\tau}}} \qquad \pi(s_2|s_1) = \frac{450}{800} = 0.5625$$
$$\pi(s_3|s_1) = \frac{350}{800} = 0.4375$$

Podczas gry turniejowej wybrany jest ruch z największym N.

#### **Temperatura**

• Przez pierwsze 30 ruchów  $\tau$  = 1 (zachęcenie do eksploracji)

$$\pi(s_2|s_1) = \frac{450}{800} = 0.5625$$
  $\pi(s_3|s_1) = \frac{350}{800} = 0.4375$ 

• Później  $\tau \to 0$  (wybieranie najlepszego ruchu zawsze)

```
1 x = np.array([450, 350])
2 calculate_probabilities(x, temperature=1)

[0.56, 0.44]
```

```
1 calculate_probabilities(x, temperature=0.01)
[1.0, 0.0]
```

#### Prosty przykład

Dane wejściowe: Numeryczne wartości dotyczące stanu pacjenta np. ciśnienie krwi.

Dane wyjściowe: Zmienna {-1, 1} mówiąca czy dany pacjent miał zawał w przeciągu miesiącu od badania.

$$x = [x_0, x_1, \dots, x_m]$$

$$y = -1$$

### Prosty przykład

Dane wejściowe:  $x=[x_0,x_1,\ldots,x_m]$ 

Dane wyjściowe: y=-1





#### Kot czy pies?

Spłaszczenie Dane wejściowe Warstwa konwolucyjna AlGeekProgrammer.com @ 2019 Warstwy w pełni połączone

Prawdopodobieństwa przynależności do danej klasy obliczone funkcją aktywacji softmax

Dane wyjściowe: Kot zakodowany jako [1, 0]

 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 

#### Zasada działania AlphaZero.

Sieć neuronowa



#### Zasada działania AlphaZero, wejście

Reprezentacja liczbowa stanu szachownicy



Pionki czarnego



| $\lceil 0 \rceil$ | 0                               | 0 |   | 0 | 0 | 0 | 0 |
|-------------------|---------------------------------|---|---|---|---|---|---|
| 1                 | 1                               | 1 | 0 | 1 | 1 | 1 | 1 |
| 0                 | 0                               | 0 |   | 0 | 0 | 0 | 0 |
| 0                 | 0                               | 0 | 1 | 0 | 0 | 0 | 0 |
| 0                 | 0                               | 0 | 0 | 0 | 0 | 0 | 0 |
| 0                 | 0                               | 0 | 0 | 0 | 0 | 0 | 0 |
| 0                 | 0<br>1<br>0<br>0<br>0<br>0<br>0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0                 | 0                               | 0 | 0 | 0 | 0 | 0 | 0 |

#### Zasada działania AlphaZero, wejście 1

Reprezentacja liczbowa stanu szachownicy

6 rodzajów bierek pierwszego gracza 6 rodzajów bierek drugiego gracza

2 powtórzenia

historia 8 stanów szachownicy

112 macierzy 8x8

#### Zasada działania AlphaZero, wejście 1

Reprezentacja liczbowa stanu szachownicy

6 rodzajów bierek pierwszego gracza

6 rodzajów bierek drugiego gracza

2 powtórzenia

historia 8 stanów szachownicy

#### 112 macierzy 8x8

- 1 Kolor
- 1 Licznik ruchów
- 2 Możliwość zrobienia roszady długiej i krótkiej przez pierwszego gracza
- 2 Możliwość zrobienia roszady długiej i krótkiej przez drugiego gracza
- +1 Licznik ruchów bez postępu

119

Wejście: macierz 8x8x119

#### Zasada działania AlphaZero, wyjście 1

• Prawdopodobieństwa dla wszystkich możliwych ruchów; Im większe prawdopodobieństwo tym lepszy ruch.

$$v \in [-1, 1]$$

$$MSE = \frac{1}{N} \sum_{j=1}^{N} (\hat{y}_j - y_j)^2$$



#### Zasada działania AlphaZero, wyjście 2

• Wyjście 2: Prawdopodobieństwa dla wszystkich możliwych ruchów; Im większe prawdopodobieństwo tym lepszy ruch.



- 56 ruchów hetmana:
  - 8 kierunków: N, W, E, S, NE, NW, SW, SE
  - odległość od 1 do 7
- 8 ruchów skoczka
- 9 słabych promocji
  - 3 figury
  - 3 sposoby na wejścia na ostatnie pole

Nielegalne ruchy są filtrowane, a pozostałe prawdopodobieństwa normowane do 1

# Zasada działania AlphaZero, funkcja straty



#### Użycie danych wyjściowych sieci neuronowej

Konwolucyjna sieć neuronowa Wyjście 1: Przewidywany wynik partii z zakresu [-1, 1], gdzie 1 to wygrana, a -1 to przegrana.

Wartość zastąpiła wartość uzyskiwaną z symulacji partii losowymi ruchami.



Wyjście 2: Prawdopodobieństwa dla wszystkich możliwych ruchów; Im większe prawdopodobieństwo tym lepszy ruch. Za pomocą tych wartości oblicza się wielkość według, której wybiera się ruch badany w następnej iteracji.

$$U = \frac{V}{N} + cP(s, a) \frac{\sqrt{\Sigma_b N(s, b)}}{1 + N(s, a)}$$

#### Dodatkowe zachęcenie do eksploracji

$$P(s, a) = P(s, a)(1 - \epsilon) + \epsilon Dir(\alpha = \frac{1}{35} \approx 0.3)$$

$$\epsilon = 0.25$$

#### Architektura sieci neuronowej



41

#### Źródło danych wyjściowych sieci neuronowej





#### Źródło danych wyjściowych sieci neuronowej

Ruch A





, 1)

**Ruch B** 







**,-1**]

Ruch A



#### Schemat treningu w pigułce



V - Ocena pozycji P(s, a) – prawdopodobieństwa najlepszych ruchów

## Wyniki

| Game  | White     | Black     | Win | Draw | Loss |
|-------|-----------|-----------|-----|------|------|
| Chess | AlphaZero | Stockfish | 25  | 25   | 0    |
|       | Stockfish | AlphaZero | 3   | 47   | 0    |
| Shogi | AlphaZero | Elmo      | 43  | 2    | 5    |
|       | Elmo      | AlphaZero | 47  | 0    | 3    |
| Go    | AlphaZero | AG0 3-day | 31  | _    | 19   |
|       | AGO 3-day | AlphaZero | 29  | -    | 21   |

#### Wyniki



### Wyniki

| Program   | Chess   | Shogi   | Go  |  |
|-----------|---------|---------|-----|--|
| AlphaZero | 80k     | 40k     | 16k |  |
| Stockfish | 70,000k |         |     |  |
| Elmo      |         | 35,000k |     |  |

Table S4: Evaluation speed (positions/second) of *AlphaZero*, *Stockfish*, and *Elmo* in chess, shogi and Go.

## Ciekawostka: debiuty grane przez AlphaZero











# AlphaZero – najlepszy silnik szachowy

Krystian Kurek Wydział MiNI PW