Adversarial examples

Recall the process by which we "invert" an image classifier:

Our optimization becomes

$$\mathbf{x} = \underset{\mathbf{x}}{\operatorname{argmin}} \mathcal{L}^{(i)}$$

subject to
 $\hat{\mathbf{y}}^{(i)} = \mathbf{y}^{(0)}$

which we solved via the derivative of the loss with respect to the inputs

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}}$$

That is, we are

- starting with $\mathbf{x} = \mathbf{x}^{(0)}$
- modifying **x**
- to derive an input ${\bf x}$ that causes the NN to predict $\hat{y}={\bf y}^{(0)}$ with highest probability

We are inverting the output.

We originally specified initializing the image with with $\mathbf{x} = \mathbf{x}^{(0)}$ where $\mathbf{x}^{(0)}$ was either random noise or all black image.

What would happen if

- we initialized $\mathbf{x} = \mathbf{x}^{(i')}$
- where $y^{(0)} \neq y^{(i')}$?

That is: our initial image is from class $\mathbf{y}^{(i')}$ but we give an objective target of $\mathbf{y}^{(0)} \neq \mathbf{y}^{(i')}$

Gradient ascent would create an output

- classified as $\mathbf{y}^{(0)}$
- by modifying an image that is *not* from this class

The \mathbf{x} created is called an *Adversarial Example* as it was intentionally created to cause misclassificatio.

Adversarial examples in action:

What class is this?

What about this?

What class is this?

toaster (99.9%)

It's almost certainly a toaster!

Your eye can't pick up the difference: that's a real-world problem!

Here is the difference between the two images.

Adversarial Cat to Toaster

What harm can this do?

Adversarial Stop Sign

So what ? Adversarial Examples 2

"Speed Limit 45"

Eykholt et. all, https://arxiv.org/pdf/1707.08945.pdf

Robust Physical-World Attacks on Deep Learning Models (https://arxiv.org/abs/1707.08945)

Recall the fundamental assumption of Machine Learning:					
	 an example from the test set is drawn from the same distribution as the training set 				
	In the case of Adversarial Examples, this condition is not satisfied.				

- Adversarial training
 - augment training set with adversarial images
 - but attacks are very robust
 - if this is some artifact that can signal fakery
 - adjust your Cost function to penalize for creating the artifact!

- Can create adversarial example
 - without manipulating training set
 - without manipulating the trained classifier's weights
 - without access to the classifier!
 - black box versus white box attacks
- It turns out that an adversarial example that can fool several classifiers
 - is also good at fooling a (time-limited) human!

Adversarial Reprogramming

We can extend the Gradient Ascent method to perform even bigger tricks:

Getting a Classifier for Task 1 to do something completely different!

Can we get an ImageNet Classifier to count squares? Imagenet

- does not have squares as an input image
- or numbers as an output class

This is called Adversarial Reprogramming.

Can I hijack your phone by showing it an image?

Adversarial Reprogramming

Gamaleldin, et. all: https://arxiv.org/abs/1806.11146

Here's a pictorial to describe the process:

Adversarial Reprogramming Hijacking a NN

We refer to our original classifier as solving the Source task.

Our goal is to get the classifier to solve the Target task.

The first issue to address:

- the $(\boldsymbol{x^{(i)}},\boldsymbol{y^{(i)}})$ pairs of the Source task come from a different domain than that of the Target task

 $\mathbf{X}_{\text{source}}, \mathbf{y}_{\text{source}}$: examples for Source task

 \mathbf{X}_{target} , \mathbf{y}_{target} : examples for Target task

We create a simple function h_f to map an $\mathbf{x} \in \mathbf{X}_{\text{target}}$ to an $\mathbf{x} \in \mathbf{X}_{\text{source}}$.

This ensures that the input to the Source task is of the right "type".

Adversarial Reprogramming

Adversarial Program

 ${\it h_f}$ simply embeds the Target input into an image, which is the domain of the Source task.

Similarly, we create a function h_{g} to map the Target label to a Source Label.

This will ensure that the output of the Source task is of the right type.

Adversarial Reprogramming

\mathbf{y}_{adv}	У
1 square	tench
2 squares	goldfish
3 squares	white shark
4 squares	tiger shark
5 squares	hammerhead
6 squares	electric ray
7 squares	stingray
8 squares	cock
9 squares	hen
10 squares	ostrich

Finally, the Cost function to optimize

$$\mathbf{W} = \underset{\mathbf{W}}{\operatorname{argmin}} - \log(p(h_g(\mathbf{y}_t) \mid \tilde{\mathbf{X}}_{\text{source}})) + \lambda ||\mathbf{W}||^2$$

where

$$\tilde{\mathbf{X}}_{\text{source}} = h_f(\mathbf{W}, \mathbf{X}_{\text{target}})$$

 $h_f: \mathbf{y}_{\text{target}} \mapsto \mathbf{y}_{\text{source}} \text{map source } X \text{to target } X$

 $h_g: \mathbf{y}_{\text{target}} \mapsto \mathbf{y}_{\text{source}} \quad \text{map source label y to target label}$

- ullet Given an input in the Target domain $old X_{target}$
- Transform it into an input $\tilde{\mathbf{X}}_{source}$ in the Source domain.
- Use the Source Classifier to predict $ilde{\mathbf{X}}_{source}$ a label in the Source domain
 - The correct label in the Target domain is \mathbf{y}_t
 - This maps to label \$h_g(\y_t) in the Source domain

So we are trying to

- maximize the likelihood that the Source classifier creates the encoding for the correct Target label
- ullet subject to constraining the weights f W (the "frame" into which the Target input is placed)

How do we find the frame ${f W}$ that "reprograms" the Source Classifier ? By training it of course! Just plain old ML.

Misaligned objectives

We have framed the problem of Deep Learning as one of defining a Cost function that meets your objectives.

This is not as easy as it sound.

Consider the difference between

- "Maximize profit"
- "Maximize profit subject to legal and ethical constraints"

We (hopefully) don't have to state the additional constraints to a human -- we take it for granted.

Not so with a machine that has not been trained with additional objectives.

Al Safety

- Al Safety = Harmed caused by Al
- Some causes:
 - Biased training data
 - Polar bears
 - Objective functions not fully aligned with human goals
 - Consider
 - Maximize reward
 - Maximize reward subject to legal and moral norms
 - Reward Hacking in Reinforcement Learning


```
In [ ]: print("Done")
```