

ICS 3213 Gestión de Operaciones

Clase 12: Sistemas PULL

Prof. Juan Carlos Ferrer - 2^{do} Semestre 2024

1

2

4

6

Producción Justo a Tiempo

- Conocida como "Just in Time" (JIT)
- Conjunto integrado de actividades diseñado para alcanzar altos volúmenes de producción usando bajos inventarios
- Obtener la cantidad correcta de bienes, en el lugar correcto, exactamente cuando se necesiten

JIT: ni antes ni después

Prof. Juan Carlos Ferrer ©2024

7

8

Filosofía JIT

- 1. Eliminación de pérdidas
- 2. Amplia visión de operaciones
- 3. Simplicidad
- 4. Mejoramiento continuo
- 5. Visibilidad
- 6. Flexibilidad

Prof. Juan Carlos Ferrer ©2024

11

1) Eliminación de pérdidas

- Pérdida es cualquier cosa que no agregue valor
 - > Material
 - > Energía
 - > Tiempo
 - > Espacio
- Algunas fuentes de pérdidas
 - > Producción no sincronizada
 - > Layouts ineficientes
 - > Acarreo innecesario de materiales
 - > Material de desecho, o productos defectuosos
 - > Inventario

Prof. Juan Carlos Ferrer ©2024

12

2) Visión amplia de operaciones

- Todos deben tener una amplia visión de la organización y trabajar con el mismo objetivo
- Hay que entender que operaciones es parte de un sistema más grande
- El objetivo es optimizar el sistema, no cada parte
 - > Evitar actitudes ciegas ("Este no es mi trabajo")
 - > Evitar sub-optimización

Prof. Juan Carlos Ferrer ©2024

13

3) Simplicidad

- Es fácil desarrollar soluciones complejas a los problemas, agregando pasos extras
- El objetivo es encontrar maneras más simples de hacer correctamente las cosas
 - > Menor probabilidad de olvidar algún paso
 - > Pocas oportunidades para cometer errores
 - > Más eficiente
- Pero requiere de mucha creatividad

Prof. Juan Carlos Ferrer ©2024

14

4) Mejoramiento continuo

- Visión tradicional
 - > "Esto ya está suficientemente bueno"
- Visión JIT
 - > "Si esto no está perfecto, hazlo mejor"

15

5) Visibilidad

- Pérdidas solo pueden ser eliminadas después de que son descubiertas
- Alto flujo esconde pérdidas
- JIT requiere de muy buena limpieza

16

6) Flexibilidad

- Fácil de hacer cambios de volumen
 - > Satisfacer demanda
- Fácil de cambiar de un producto a otro
 - > Construir un mix de productos sin desperdiciar tiempo con largos períodos de cambios

Prof. Juan Carlos Ferrer ©2024

17

18

(A) Manufactura JIT

- A diferencia de sistemas tradicionales, JIT tiene:
 - > Costos de setup más bajos
 - > Leadtimes de producción más cortos
- Objetivo ideal
 - > Producir productos con un tamaño de lote igual a 1
- Un sistema pull require de buena comunicación entre los centros de trabajo
 - > Kanban ("tarjeta" en japonés)

Prof. Juan Carlos Ferrer ©2024

20

¿Qué es Kanban?

- Un sistema de comunicación
 - En cada eslabón del sistema productivo, son las órdenes de los "clientes" las que generan producción en sus "proveedores", en el momento en que realmente se necesita esa producción y en las cantidades que realmente se necesitan.
- Un sistema Kanban requiere determinar el número de containers necesitados
- Trade-off entre inventario y rapidez de producción
 - > Muchos kanbans, alto inventario
 - > Pocos kanbans, el sistema no produce suficientemente rápido
- Cada container representa el tamaño de lote mínimo de producción
- A medida que el sistema se va poniendo más eficiente, el número de kanbans puede reducirse

Prof. Juan Carlos Ferrer ©2024

21

22

24

Número de Kanbans requerido

$$N = \frac{DT}{C}$$

N = número de containers

D = tasa de demanda en la estación anterior

T = lead time desde el proveedor

C = Tamaño del container

Prof. Juan Carlos Ferrer ©2024

25

Número de Kanbans requerido (Ejemplo)

Jordan Tucker trabaja en un centro productivo que hace aspirinas. Su trabajo es llenar las botellas de aspirina, y se espera que él procese 200 botellas por hora. Este centro usa un sistema de producción Kanban donde cada container aguanta 25 botellas. A Jordan le toman 30 minutos en recibir las botellas que necesita. ¿Cuántos Kanbans se necesitan para el proceso de llenado?

- D = 200 botellas por hora
- T = 0.5 horas
- C = 25 botellas por container
- N = DT/C = 4 kanbans

Prof. Juan Carlos Ferrer ©2024

26

Lote pequeño y rápido setup

- Eliminar inventario vía pequeños lotes de producción
- Esto reduce el leadtime
 - > Producir 10 unidades es más rápido que producir 1000
- Da una gran flexibilidad para responder a la demanda de los clientes
- Problema: Costos de setup
- JIT identificó formas de reducirlos
 - > Setup internos (requiere detener máquinas)
 - > Setup externos
- Esto requiere de mucha creatividad

27

Carga de trabajo uniforme en Planta

- Variaciones en la demanda genera ineficiencia
- JIT trata de "nivelar" la producción
 - > Mejor utilización de recursos

Weekly Production Required				
Α		10 units		
В		20 units		
C		5 units		
D		5 units		
E		10 units		
Traditional Production Plan				
Monday	Tuesday	Wednesday	Thursday	Friday
AAAAA	BBBBB	BBBBB	DDDDD	EEEEE
AAAAA	BBBBB	BBBBB	CCCCC	EEEEE
JIT Plan with Level Scheduling				
Monday	Tuesday	Wednesday	Thursday	Friday
AABBBB	AABBBB	AABBBB	AABBBB	AABBBB
CDEE	CDEE	CDEE	CDEE	CDEE

IVERSION CALL

Prof. Juan Carlos Ferrer ©202

28

(B) Calidad Total y JIT

- Ningún nivel de defecto es aceptable
 - > Calidad en procesos es la clave
- Toda la organización es responsable de la calidad
- Calidad en la fuente
 - > No basta con eliminar el problema si no se ataca su fuente
- Al implementar JIT comienza el mejoramiento continuo
 - Se rebajan inventarios de a poco; disminuyen los costos de setup y los tamaños de lote

Prof. Juan Carlos Ferrer ©2024

29

(C) Respeto a la gente

- En esta filosofía nada sería posible sin respeto a la gente
- JIT ofrece
 - > Seguridad laboral
 - > Empleo de muy largo plazo
 - > Alto nivel de responsabilidad
 - > Importantes bonos por buen desempeño
- Desarrollar buenas relaciones de largo plazo con proveedores

Prof. Juan Carlos Ferrer ©2024

30

Producción Ajustada (sin grasa)

• Conocida también como "Lean Production"

Energía total Energía empleada en un en procesos que proceso productivo agregan valor

- Cualquier problema en el sistema productivo generará atrasos, mala calidad, etc., o sea, PÉRDIDAS
- Eliminar "pérdidas" para alcanzar eficiencia

Prof. Juan Carlos Ferrer ©2024

31