MA5701 Optimización no Lineal

Profesor: Alejandro Jofré **Auxiliar:** Benjamín Vera Vera

Auxiliar 10

Descenso de Gradiente Estocástico 4 de julio de 2025

- **P1.** Sea $f: \mathbb{R}^n \to \mathbb{R}$ fuertemente convexa de parámetro m y L-suave. Consideremos un algoritmo que consiste en búsquedas de línea exactas a lo largo de direcciones aleatorias. El esquema para obtener la siguiente iteración x^+ desde x es el siguiente:
 - Escoger $v \sim \mathcal{N}(0, \sigma^2 I)$ independiente de las iteraciones previas.
 - Encontrar $t_{\min} = \operatorname{argmin}_t f(x + tv)$
 - Definir $x^+ = x + t_{\min}v$

El objetivo es probar que $\mathbb{E}[f(x^T) - f(x^*)] \leq \varepsilon$ siempre que

$$T \ge \frac{CnL}{m} \log \left(\frac{f(x^0) - f(x^*)}{\varepsilon} \right)$$

para algún C > 0. Para ello, proceda como sigue:

a) Pruebe que, dado $v \in \mathbb{R}^n, t > 0$ se tiene que

$$f(x+tv) \le f(x) + \nabla f^{\top} v + \frac{L}{2} t^2 ||v||^2.$$

- b) Para v fijo, minimice sobre t ambos lados y obtenga una cota para $f(x + t_{\min}v)$.
- c) Tomando esperanza a ambos lados sobre v, utilice que $\mathbb{E}[v_j^2/\|v\|^2]=\frac{1}{n}$ además de la cota conocida

$$\|\nabla f(x)\|^2 \ge 2m(f(x) - f(x^*))$$

para probar que

$$\mathbb{E}_{v}[f(x^{+}) - f(x^{*})] \le \left(1 - \frac{m}{nL}\right)(f(x) - f(x^{*})).$$

d) Concluya.