## From Strings to Things:

**Populating Knowledge Bases from Text** 

## Tim Finin University of Maryland, Baltimore County

Joint work with colleagues and students at the JHU Human Language Technology Center of Excellence And University of Maryland, Baltimore County

### TL;DR

I'll describe the NIST TAC **Knowledge Base Population** tasks and the **Kelvin**system we developed to participate in it

#### **NIST Text Analysis Conference**



- Annual evaluation workshops since 2008 on natural language processing & related applications with large test collections and common evaluation procedures
- Knowledge Base Population (KBP) tracks focus on building KBs from information extracted from text
  - Cold Start KBP: construct KB from text w/o using external KBs
  - Entity discovery & linking: cluster and link entity mentions
  - Slot filling
  - Slot filler validation
  - Sentiment
  - Events: discover and cluster events in text

http://nist.gov/tac

#### **2017 TAC Cold Start KBP**



- Read 90K documents: newswire articles & social media posts in English, Chinese and Spanish
- Find entity mentions, types & relations (optionally plus events & sentiment) using a shared schema
- Cluster entities & events in/across documents, link to reference KB if possible (which George Bush)
- Remove errors (Obama born in Illinois), draw sound inferences (Malia and Sasha sisters)
- Create graph with provenance (+ optional confidence score) in TAC format

#### **Cold Start?**





- Goal: reduce focus
   on popular entities
   common in newswire
- Start with empty KB
- All facts must be attested in text
- Can't use external KBs (e.g., Wikidata) or Web searches

#### 2017 TAC Cold Start KBP



<DOC id="APW ENG 20100325.0021" type="story" > RE <HEADLINE> Divorce attorney says Dennis Hopper is dying </HEADLINE> <DATELINE> LOS ANGELES 2010-03-25 00:15:51 UTC </DATELINE> **EV** <TEXT <P> Dennis Hopper's divorce attorney says in a court filing that the actor is dying and can't undergo chemotherapy as he battles prostate cancer. </P> <P> Attorney Joseph Mannis described the "Easy Rider" star's grave condition in a declaration filed Wednesday in Los Angeles Superior Court. </P> <P> Mannis and attorneys for Hopper's wife Victoria are fighting over when and whether to take the actor's deposition. </P>...

#### **2017 TAC Cold Start KBP**





Attorney Joseph Mannis described the "Easy Rider" star's grave condition in a declaration filed Wednesday in Los Angeles Superior Court.

SC </P>

Mannis and attorneys for Hopper's wife Victoria are fighting over when and whether to take the actor's deposition.

</P> ...





```
FB:m.02fn5
                                           PER
     <DOC id="APW ENG
 RE <HEADLINE>
     Divorce attorney says WIKI:Dennis Hopper
                                                          type
                                        link
     </HEADLINE>
                                              type
                                     link
     <DATELINE>
                                                      spouse
     LOS ANGELES 2010-0
                                mention
                     PERNIS Hopper" mention
:e00211 type
:e00211 link
                     FB:m.02fn5 0.95
:e00211 link motheral
                     WIKI:Dennis_Hopper
                                                               oria"
:e00211 mention
                     "Dennis Hopper" APW 021:185-197 1.0
                     "Hopper"
:e00211 mention
                                   APW 021:507-512
                                                      1.0
:e00211 mention
                     "Hopper"
                                APW 021:618-623
                                                     1001 in 0
                     "丹尼斯·霍珀" CMN_011:930-936
:e00211 mention
                                                      1.0
                     :e00217
                                   APW 021:521-528
                                                      1.0
:e00211 per:spouse
:e00217 per:spouse
                     :e00211
                                   APW 021:521-528
                                                      1.0
:e00211 per:age
                                   APW 021:521-528
```

## **KB Evaluation Methodology**



- Evaluating KBs extracted from 90K documents is non-trivial
- TAC's approach is simplified:
  - Fix the ontology of entity types and relations
  - Specify a serialization as triples + provenance
  - Sample a KB using a set of queries grounded in an entity mention found in a document
  - Get ground truth for queries and assess results
- Given a KB, we can then evaluate its precision and recall for a set of queries

## **KB Evaluation Methodology**



- A query: What schools were attended by children of entity mentioned in document #45611 at characters 401-412
  - That mention is *George Bush* which a system under test identifies as :e629 (i.e., G.H.W. Bush)
  - A query finds answer entities in a test system's graph (e.g., Yale, Harvard, Tulane, UT Austin, UVA ...) along with the provenance strings for the two relations
- Assessors determine good answers in corpus and check the submitted results' provenance

## **TAC Ontology**





- Entity types: PER (people), ORG (organizations), GPE (geopolitical entities), LOC (locations) and FAC (facilities)
- Entity mentions: both name & nominal mentions
- 41 relations (plus inverses): entity to entity/string
- 18 event types: plus 85 event argument relations
- 2 **sentiment relations** (plus inverses): entity to entity

## Kelvin

KELVIN: Knowledge Extraction,
 Linking, Validation and Inference



- Developed at the Human Language Technology
   Center of Excellence at JHU and used in TAC KBP (2010-17), EDL (2015-17) and other projects
- Takes English, Chinese & Spanish documents and produce a knowledge graph in several formats
- We'll review its monolingual pipeline, look at the multi-lingual use case

#### 1 Information Extraction





- Process documents in parallel on a grid
- Apply an ensemble of NLP tools (e.g., language ID, Serif, CoreNLP, ...) to find document-level mentions, entities, relations and events
- Produce an Apache Thrift object for each document with text and extracted data using Concrete, a common NLP schema

## 2 Integrating NLP data





Process Concrete objects in parallel to:

- Integrate data from tools (e.g., Serif, CoreNLP, OpenIE)
- Fix problems, e.g., trim mentions, find missed mentions, deconflict tangled mention chains, ...
- Extract relations from events (life.born => date and place of birth)
- Map relations found by open IE systems to TAC ontology ("is engineer at" => per:employee\_of)
- Map schema to our extended TAC ontology

30K ENG: 430K entities; 1.8M relations



## 3 Kripke: Cross-Doc Coref



- Cross-document co-reference creates initial
   KB from the document-level data
  - Identify that Barack Obama entity in DOC32 is same individual as Obama in DOC342, etc.
- Language agnostic; works well for ENG,
   CMN, SPA document collections
- Uses entity type and mention strings and context of co-mentioned entities
- Untrained, agglomerative clustering

30K ENG: 210K entities; 1.2M relations

## 4 Inference & adjudication





MAT

Reasoning to

- Delete relations violating ontology constraints
  - -Person can't be born in an organization
  - -Person can't be her own parent or spouse
- Infer missing relations
  - -Two people sharing a parent are siblings
  - -X born in place  $P_1$ ,  $P_1$  part of  $P_2 => X$  born in  $P_2$
  - -Person probably citizen of their country of birth
  - -A CFO is a per:top\_level\_employee



## **Entity Linking**



- Try to links entities to reference KB, a subset of Freebase with
  - -~4.5M entities and ~150M triples
  - Names and text in English, Spanish and Chinese
- Don't link if no matches, poor matches or ambiguous matches



## **KB-level merging rules**





KB

MAT

- Merge entities linked to same external KB entity
- Merge cities in same region with same name
- Highly discriminative relations give evidence of sameness
  - per:spouse is few to few
  - org:top\_level\_employee is few to few
- Merge PERs with similar names who were
  - Both married to the same person, or
  - Both CEOs of the same company, or ...

## **Slot Value Consolidation**





- **Problem:** too many values for some slots, especially for 'popular' entities, e.g.,
  - An entity with 2 per:city\_of\_birth values
  - Obama had ~100 per:employee\_of values
- Strategy: rank values and select best
  - Rank values by # of attesting docs and certainty scores
  - Choose best N values depending on relation type and distribution of frequency counts

30K ENG: 183K entities; 2.1M relations

## **Materialize KB versions**





- Generate TAC serialization for scoring
- Also encode KB in a database or graph store, e.g. the RDF/OWL Semantic Web languages or

## **Multilingual KBP**

 Many examples where facts from different languages combine to answer queries or support inference

**Q:** Who lives in the same city as *Bodo Elleke*?

A: Frank Ribery aka Franck Ribéry aka 里贝里



- Why we know both live in Munich:
  - 1. :e8 gpe:residents\_of\_city :e23 ENG\_3:3217-3235 ....said the younger **Bodo Elleke**, who was born in Schodack in 1930 and is now a retired architect who lives in Munich.
  - 2.:e8 gpe:residents\_of\_city :e25 CMN...0UTJ:292-361 拉霍伊在接受西班牙国家电台的采访时肯定, 今年的三位金球奖热门候选人中, 梅西"度过了一个出色的赛季", 而拜仁慕尼黑球员里贝里则"赢得了一切"
- Kripke merged entities with mentions *Frank Ribery*, *Franck Ribéry* & *里贝里*

## Monolingual to Multilingual Kelvin



Zoom in on our cross-doc co-ref step

• Concatenate document-level KBs to form a **DOC KB** as input to Kripke

- Kripke outputs a set of clusters defining an equivalence relation
- Merger uses CLUSTERS to combine DOC KB entities, yielding the initial KB
- We use the **DOC KB** and **CLUSTERS** from each language to create an initial multilingual KB



KB

MAT

trilingual KBs

- Run Kelvin on monolingual collections
- Translate entity mentions into English and recluster
- Run results thru rest of pipeline

**Trilingual KBP** 

 Kripke computes CLUSTERS for combined monolingual DOC KBS

- Optionally translates non-English mentions
- •Use all 4 CLUSTERS to merge entities in 3 DOC KBS

## **2016 TAC KBP Results**

- 2016 KBP results (2017 KBP results similar)
  - 1<sup>st</sup> or 2<sup>nd</sup> on XLING
  - 2<sup>nd</sup> or 4<sup>th</sup> on ENG depending on metric
  - 1<sup>st</sup> or 2<sup>nd</sup> on CMN depending on metric
  - We did poorly on SPA, finding few relations
- Lots of room for improvement for both precision and recall

#### The task is hard

Best 2017 system: F1=0.29 for English hop 0 aueries.



## **Current work 1: improving Kelvin**

- Upgrade components to use newer machine learning approaches
- Enhance Kripke entity clustering with more data (nominal mentions, embeddings)
- Add tensor-decomposition based learning to identify likely/unlikely relations
- Add other components to detect and fix "dubious facts"

## **Current work 2: cybersecurity**

UMBC is working with IBM on extracting cybersecurity information from text

- Describe entities, relations & events using UCO, the Unified Cybersecurity Ontology
  - Rich schema supports reasoning
  - Better data sharing, interoperability,
     integration and human understanding
  - Link to background knowledge graphs and common metadata models (CVE, Stix, Cybox...)
- Use graph to enhance analytics and machine learning for intrusion detection systems





#### **Lessons Learned**

- We always have to mind precision & recall
- Extracting information from text is inherently noisy; reading more text helps both
- Using machine learning at every level is important
- Making more use of probabilities will help
- Extracting information about a events is hard
- Modelling the temporal extent of relations is important, but still a challenge

# For more information, contact finin@umbc.edu