

模式识别 (Pattern Recognition)

广东工业大学集成电路学院 邢延

第一讲 绪论 (01 Introduction)

2024/9/20

- 模式识别实例
- 模式识别的基本概念
- 模式识别的历史与发展
- 模式识别的应用
- 课程管理

3

● 人脸识别

> 识别性别: 男/女

2024/9/20

● 人脸识别

> 识别年龄: 儿童/青少年/成年

2024/9/20

• 人脸识别

> 识别表情: 微笑/严肃

2024/9/20

• 人脸识别

> 综合识别: 微笑的女孩

2024/9/20

● 人脸识别

> 身份识别:是否为同一个人

● 人 识别 人脸

收集信息:

定位脸部,摆正,观察脸部,主要是五官、头发等

针对识别目标,提取关键特征:

性别: 五官比例、尺寸

年龄: 五官比例、尺寸、皱纹等

表情: 五官的位置、变形等

综合分析特征,分类判断:

对提取的关键特征综合分析,进行分类

识别结果

● 糖尿病视网膜病变(diabetic retinopathy, DR)诊断

- > 是糖尿病的严重并发症,是成年人视力下降,甚至致盲的主要原因。
- ▶ DR识别方法可预防DR的发生,有利于疾病的早期诊断和治疗,有效降低失明率。

无病变, 无黄斑水肿风险

病变等级1, 无黄斑水肿风险

病变等级2, 无黄斑水肿风险

病变等级3, 黄斑水肿风险等级2

2024/9/20

● 医生 识别 DR

收集信息:

视网膜影像、眼科检验报告

针对识别目标,提取关键特征:

微动脉瘤 (microaneurysm)

渗出物 (exudate)

黄斑 (macula) 等

综合分析特征, 分类判断:

对提取的关键特征综合分析,进 行分类

识别结果

● 商品评价的情感分类

> 客户对商品(含书、DVD和电子产品等)的评论有正面和负面两类。

手感超好, 而且黑色相比白色在转得时候不容易眼花, 找童年的记忆啦。

This product makes cleaning the razor much easier. The packaging is simple and it's easy to use.

正面评价

大家别买了 过度包装 赠品垃圾 影响清晰度一般 和我电脑下的rmvb竟然一样。

This blood pressure monitor worked well for 6 months until the cuff lost its elasticity making it impossible to tighten it securely enough. Now all I get is an error message when it tries to inflate.

负面评价

2024/9/20

● 商家 识别 商品评论情感

收集信息:

中英文评论文本

13

● SoC 电源网络静态压降预测

- > 静态电压降
 - ◆ 由于金属连线的自身电阻分压造成的,电流经过电源网络的时候会产生电压降,所以静态电压降主要跟电源网络结构有关,主要考虑电阻效应。
 - ◆ 严重的电压降将直接导致该单元的功能出错或失效,这对于设计是致命的。
- > 电压降分析方法
 - ◆ 对于全芯片的电压降分析,商业软件一般将物理设计抽象为数学模型,然后对大型线性 稀疏方程组求解,在上干亿节点的矩阵规模上求解通常需要数百小时的计算,这往往是 数字后端设计中最消耗资源的仿真环节。

图 1 先进工艺物理设计案例全局平面图

2024/9/20

● 商业软件 分析 静态电压降

15

- 计算机 识别 人脸、DR、商品评论情感、静态电压降预测
 - > 思考题
 - ◆ 计算机如何实现上述目标?
 - ◆ 什么技术能够实现计算机识别上述目标?
 - > 模式识别
 - ◆ 通过计算机技术自动地或半自动(人机交互、人机协作)地实现人类的识别过程。

● 模式(Pattern)

- 凡是人类能用其感官(视觉、听觉、嗅觉、味觉、触觉)直接或间接接受的外界信息;
- 为了让计算机执行识别任务,对识别对象进行抽象描述,建立其数学模型(广义的数学模型),这种抽象描述就是模式。

• 模式的例子

> 视觉: 图像、图形、视频

▶ 听觉: 声音、音频

> 嗅觉: 气味

> 味觉: 味道

> 触觉: 压力

• 事实真相

- 心理学的研究表明,人在摄取外界的五个感觉中,视觉获取的信息约占83%,听觉占11%。
- > 模式识别研究对象以视觉和听觉获取的模式为主。

● 模式识别

- 根据研究对象的特征或属性,利用以计算机为中心的机器系统,采用一定的分析算法确定对象的类别;
- > 这个系统应使分类识别的结果尽量符合真实情况。

- 特征矢量/样本/数据
 - 对识别对象进行定量地抽象,得到表征模式特征的一组数据,并用矢量表示。
- 特征空间/样本集/数据集
 - > 由模式的特征组成的空间。
- 例如: 鸢尾花数据集

列名	说明	类型
SepalLength	花萼长度	float
SepalWidth	花萼宽度	float
PetalLength	花瓣长度	float
PetalWidth	花瓣宽度	float

1	[[5.1	3.5	1.4	0.2]
2	[4.9	3.	1.4	0.2]
3	[4.7	3.2	1.3	0.2]
4	[4.6	3.1	1.5	0.2]
5				
6	[6.7	3.	5.2	2.3]
7	[6.3	2.5	5.	1.9]
8	[6.5	3.	5.2	2.]
9	[6.2	3.4	5.4	2.3]
10	[5.9	3.	5.1	1.8]]

识别对象

个体:特征矢量/样本/数据

全体:特征空间/样本集/数据集

分类

> 模式识别的核心任务,即有监督学习。

◆例如: 图中所示鸢尾花属于哪一类

列名	说明	类型
SepalLength	花萼长度	float
SepalWidth	花萼定度	float
PetalLength	花瓣长度	float
PetalWidth	花櫛変度	float
Class	类别变量。0表示山鸢尾,1表示 变色鸢尾,2表示维吉尼亚鸢尾。	int

> 特点:数据有类别卷标 (Class label)

◆例如:表中的 "Class"

● 特征提取

- > 数据降维的一种方法
- > 例如:由图像到特征

● 特征选择

- > 数据降维的一种方法
- > 例如:由 四个特征到 两个特征

列名	说明	类型
SepalLength	花萼长度	float
SepalWidth	花萼定度	float
PetalLength	花瓣长度	float
PetalWidth	花柳変度	float
Class	类别变量。0表示山鸢尾,1表示 变色鸢尾,2表示维吉尼亚鸢尾。	int

列名	说明	类型	
PetalLength	花瓣长度	float	
PetalWidth	花瓣変度	float	
Class	类别变量。0表示山鸢尾。1表示	int	
	变色鸢尾, 2 表示维吉尼亚鸢尾。		

● 模式识别研究的主要内容

- > 分类算法
- > 特征提取算法
- > 特征选择算法
- > 数据预处理
- > 数据可视化
- > 等等

模式识别的历史与发展

• 模式识别技术的发展历史

模式识别 (Pattern Recognition, PR)

- The birth of smart programs
- 繁荣时期: 19世纪70-90年代
- 产生了多种经典的模式识别算法

机器学习 (Machine Learning, ML)

- Smart programs can learn from examples
- 起始于19世纪90年代,侧重于预测
- 产生了多种智能学习算法: 集成学习、强化学习、深度学习等

数据挖掘 (Data Mining, DM)

- Discovery unknown patterns from a large amount of data
- 起始于20世纪初,侧重于海量的数据
- 产生了多种新方法: 关联规则学习、社交网络学习、深度学习等等

模式识别的历史与发展

● 模式识别、机器学习、数据挖掘和人工智能

● 无处不在!!!

● 科学应用

- > 天文学 (Astronomy)
- > 地理地质、地理测绘 (Geology)
- ▶ 人造卫星数据分析 (Satellite data analysis) .
- 行星生物探测和分析 (Sensing for life and date analysis on remote planets)
- >

廣東工業大學 SUANBOONS LINVENSTY OF TECHNOLOGY

模式识别的应用

● 生命与行为科学应用

- > 人类学 (Anthropology) .
- > 考古学 (Archeology)
- ▶ 昆虫学 (Entomology)
- > 生物学、植物学、微生物学、生态学和动物学 (Biology, botany, microbiology, ecology, and zoology)
- > 心理学 (Psychology)
- > 控制论 (Cybernetics)
- ➢ 信息管理系统 (Information management systems)
- ▶ 教育学 (Education)
- **>**

● 工业应用

- > 字符识别 (Character recognition)
- > 过程控制 (Image controlled machines, process control)
- > 笔迹分析 (Signature analysis)
- ➢ 语音分析 (Speech analysis)
- ▶ 相片识别 (Photographic recognition)
- ▶ 矿物勘探 (Mineral exploration, subsurface analysis)
- > 多媒体和动画 (Multimedia and animation)
- > 电子玩具设计 (Electronic toys design)
- >

● 医学应用

- > 染色体分组、放色性同位素检查
- > X线断层摄影技术
- > 心电图分析
- > 脑电图分析
- > 药物作用分析
- > 染色体遗传分析
- **>**

• 农业应用

- > 农作物产量分析
- > 土壤分析
- > 农作物生产过程监控
- > 农作物病虫害防治
- > 地球资源监测
- >

● 政府领域的应用

- > 气象监测
- > 智慧管理
- > 公共突发事件监测
- > 灾害预警
- >

● 军事领域的应用

- > 精确制导
- > 无人侦察机
- > 航空航天飞行器
- > 激光武器
- >

- 集成电路设计与制造领域的应用
 - > EDA设计流程的智能优化

基于多任务学习的物理设计多指标协同预测

- 集成电路设计与制造领域的应用
 - > 半导体器件的AI辅助建模与仿真

模式识别的应用

- 集成电路设计与制造领域的应用
 - > AI驱动的软硬件协同设计

高性能低功耗的机器人运动控制和定位导航专用芯片框图

● 教学目标

- 1)理解模式识别系统的概念与原理,理解和掌握主要的模式识别方法;能够针对实际的模式识别问题,选取合适的开发工具,构建仿真实验系统。
- 2) 通过综合考虑算法原理、数据特点、开发工具局限性等因素, 能够对实验结果进行分析和解释,得到合理有效的结论。
- 3) 能够查阅相关文献,了解模式识别技术的发展趋势和研究热点, 结合仿真实验的方案和结果,完成课程报告。
- > 4) 能够自主学习模式识别领域的新技术、新方法。

● 课堂教学内容与进度安排

- > 绪论: 2学时 (第4周)
- > 经典模式识别算法: 8 学时
 - ◆ 基于距离的分类器及分类器性能评估 (第5周)
 - ◆ 朴素贝叶斯分类器及高斯过程分类器 (第6周)
 - ◆ 人工神经网络分类器及支持向量机 (第7周)
 - ◆ 决策树及回归树 (第8周)
- 特征提取: 2学时(第10周))
 - ◆ 图像的特征提取
 - ◆ 文本的特征提取
- > 分类器集成: 2学时 (第12周)
- 深度学习: 4学时(第14、16周)
- 课程小结: 2学时 (第19周)
- 翻转课堂: 12学时 (第9周、11周、13周、15周、17周、18周)

● 参考教材

- > 《机器学习》,周志华著,清华大学出版社,2016 (西瓜书)
- > 《机器学习公式详解》第二版,谢文睿等著,人民邮电出版社,2023 (南瓜书)
- > 《动手学深度学习(Pytorch版)》(网页版: https://zh-v2.d2l.ai/)
- 《百面机器学习-算法工程师带你去面试》,诸葛越等著,人民邮电出版社,2018.(适合中级以上读者)
- 《百面深度学习-算法工程师带你去面试》,诸葛越等著,人民邮电出版社,2020.(适合中级以上读者)
- Pattern Classification, Richard O Duda, 2nd Edition. 2002. (有电子版),被誉为PR领域的圣经,京东上有中文翻译版售卖。

● 主要学术期刊

- **> 模式识别与人工智能**
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- > Pattern Recognition
- International Journal of Pattern Recognition and Artificial Intelligence
- Pattern Analysis and Applications
- > Pattern Recognition Letters
- > International Journal of Document Analysis and Recognition
- > IEEE Transactions on Neural Networks
- > Neural Computation
- Neural Networks
- > Intelligent Data Analysis
- > IEEE Transactions on Pattern Analysis and Machine Intelligence
- IEEE Transactions on Fuzzy Systems
- > IEEE Transactions on Systems, Man and Cybernetics

● 主要在线资源

- > 专知: https://www.zhuanzhi.ai/
 - ◆ 由中科院模式识别国家开放实验室运维, 含免费和付费信息。
- > KDD Nuggets: Data Mining, Web Mining, Text Mining, and Knowledge Discovery http://www.kdnuggets.com/index.html
 - ◆ 国外非盈利机构运营,所有信息免费。
- > 百度、知乎等
 - ◆ 有很多实例讲解
 - ◆ 注意: 不保证正确性

● 本课程在线资源

- > 华为云: https://www.huaweicloud.com/
 - ◆ 每个同学都需要申请华为云账号
- > 华为"智能基座"产教融合协同育人基地
 - ♦ https://edu.huaweicloud.com/roadmap/colleges.html

• 课程任务

- > 任务1: 注册华为云账号
 - ◆注册华为云账号:
 - https://www.huaweicloud.com/
 - 每个人注册自己的华为云账号(用手机号注册,账号请用自己的学号)

● 课程任务

- ▶ 任务2: 自学Python编程、复习数学基础
 - ◆安装Anaconda集成开发工具包
 - **◆安装Pycharm开发工具**
 - **◆自学华为云免费课程**
 - Python入门篇 AI基础课程-数学基础知识
 - Python进阶篇
 - ◆学习时间为4-9周,并于10月28日前将以下文档打包(命名:学号+姓名)交给学委,由学委总打包(命名:班级+PR慕课学习)发给课程助教
 - 课程完成情况截图 (见后页例子)
 - 学习笔记、习题、练习、思考题、编程练习等

● 课程任务

➤ 任务2:自学Python编程

● 课程任务

- > 任务3: 翻转课堂
 - ◆ 12个学时
 - ◆ 小组任务
 - 分组模板见相关文档
 - 建议翻转课堂和课程项目的小组成员一致

◆ 要求

- 指定题目(含数据预处理、特征选择、回归问题、深度学习、其它扩展内容)
- 自学相关知识
- 完成 PPT + Jupyter Notebook文档
- 课堂展示与讨论
- 准备时间:两周 (从指派任务到课堂展示)
- 演示时长20分钟(不要超时),问答环节5分钟,老师点评5分钟

● 课程任务

> 任务3: 翻转课堂

◆ 时间安排

- 第7周周一发布第一批题目, 第9周周一展示
- 第9周周一发布第二批题目,第11周周一展示
- 第11周周一发布第三批题目,第13周周一展示
- 第13周周一发布第四批题目,第15周周一展示
- 第15周周一发布第五批题目,第17周周一展示
- 第16周周一发布第六批题目,第18周周一展示

◆ 文档提交时间

- 组长负责将文档电子版在展示完成当天发到课程QQ群共享。

• 课程任务

- > 任务4:课程项目
- > 可选项目
 - ◆ 图像识别
 - 人脸图像识别 (FR)
 - 视网膜病变识别 (DR)
 - ◆ 文本分类
 - 商品评价的情感分析 (SA)
 - ◆ AI-EDA
 - **待定**
 - ◆ 自选题目
 - 尽快与老师联系,以便确定是否合适,必须经老师同意
 - **◆** 项目任务规定最低要求
 - 完成最低要求(完整系统、基本算法、分类结果高于随机猜的性能) Pass
 - 做的更多更好 加分

● 课程任务

- > 任务4:课程项目
- > 分组要求及小组任务
 - ◆ 4-5人一组(个别情况下可以6人一组)(参见模板)
 - 集成2201班: 37人分7组
 - 集成2202班: 35人分7组
 - 创新2022班: 24人分5组
 - ◆ 每组一个组长, 一个题目 (组名: 集成2022-01_组长名, 集成2022-01_组长名, 集成创新2022_组长名)
 - ◆ 确定项目的模式识别任务
 - ◆ 确定每个成员的任务(不能重复,允许少量交叠,要求每个同学必须将模式识别过程完整地走一遍)
 - ◆课程报告 (参见模板)

● 课程任务

- > 任务4:课程项目
- > 模式识别问题和分类目标的确定、难度分析
 - ◆ 模式识别仿真系统的构建、开发工具及开源库的选取、分类器性能评价
 - ◆ 经典模式识别算法的原理、实验结果分析与比较
 - ◆ 改进/深度/集成 模式识别算法的原理、实验结果分析与比较
 - ◆参考文献
 - **◆ 成员分工与贡献率**
 - ◆ 项目源码要求上传至github并公开,课程报告中给出源码网址

• 课程任务

- > 任务4:课程项目
- > 文档提交时间
 - ◆分组Excel表提交
 - 第六周周一 (9月30日) 17:00前由学委负责将电子版发到老师的QQ邮箱
 - ◆课程报告提交
 - 第19周周一(12月30日)17:00 前由学委将电子版收齐打包后发到老师的 QQ邮箱

• 课程评分

▶ 自学课程 (个人) : 20%

> 翻转课堂 (小组):20%

▶ 课程报告(小组与个人): 60%

• 联系方式

> 邢延老师

◆Email: 841756628@qq.com

◆Tel: 13416456412

◆理学馆605-4室

◆课程Q群:

> 研究生助教: 曾如诗

扫一扫二维码,加入群聊

Python安装和使用 – 自主学习

- Anaconda安装
 - > 参见安装文档
- JupyterNotebook的使用和Python编程语言学习
 - > 课程任务2