FART 3. EARTHQUARE RESISTANC

CODE

analysis and design of the joint shall be based on the strutand-tie method in accordance with Chapter 23 and (a) and (b) shall be satisfied:

- (a) Design joint shear strength determined in accordance with Chapter 23 shall not exceed ϕV_n calculated in accordance with 15.4.2.
- (b) Detailing requirements of 18.4.4.3 through 18.4.4.5 shall be satisfied.
- **18.4.4.3** Longitudinal reinforcement terminated in a joint shall extend to the far face of the joint core and shall be developed in tension in accordance with 18.8.5 and in compression in accordance with 25.4.9.
- **18.4.4.4** Spacing of joint transverse reinforcement s shall not exceed the lesser of 18.4.3.3(a) through (c) within the height of the deepest beam framing into the joint.
- **18.4.4.5** Where the top beam longitudinal reinforcement consists of headed deformed bars that terminate in the joint, the column shall extend above the top of the joint a distance at least the depth h of the joint. Alternatively, the beam reinforcement shall be enclosed by additional vertical joint reinforcement providing equivalent confinement to the top face of the joint.
- **18.4.4.6** Slab-column joints shall satisfy transverse reinforcement requirements of 15.3.2. Where slab-column joint transverse reinforcement is required, at least one layer of joint transverse reinforcement shall be placed between the top and bottom slab reinforcement.
- **18.4.4.7** Shear strength requirements for beam-column joints
- **18.4.4.7.1** Design shear strength of cast-in-place beam-column joints shall satisfy:

 $\phi V_n \ge V_u$

18.4.4.7.2 V_u of the joint shall be determined in accordance with 18.3.4.

COMMENTARY

the joint corners may not be effective. Therefore, the Code requires that joints in which the beam depth exceeds twice the column depth be designed using the strut-and-tie method of Chapter 23.

R18.4.4.3 Refer to R18.8.2.2.

R18.4.4.4 The maximum spacing of transverse reinforcement within a joint is consistent with the spacing limits for reinforcement in columns of intermediate moment frames.

R18.4.4.5 This provision refers to a knee joint in which beam reinforcement terminates with headed deformed bars. Such joints require confinement of the headed beam bars along the top face of the joint. This confinement can be provided by either (a) a column that extends above the top of the joint or (b) vertical reinforcement hooked around the beam top reinforcing bars and extending downward into the joint in addition to the column longitudinal reinforcement. Detailing guidance and design recommendations for vertical joint reinforcement may be found in ACI 352R.

18.4.4.7 Shear strength requirements for beam-column joints

R18.4.4.7.2 Factored joint shear force is determined assuming that beams framing into the joint develop end moments equal to their nominal moment strengths. Consequently, joint shear force generated by the flexural reinforcement is calculated for a stress of f_y in the reinforcement. This is consistent with 18.4.2 and 18.4.3 for determination of minimum design shear strength in beams and columns of intermediate moment frames.

18.4.4.7.3 ϕ shall be in accordance with 21.2.1 for shear.

