

Powering A Mercury Bot

Batteries The Energy Source of Champions!

- Fact: every Mercury bot has been powered by batteries
- Battery selection is of primary importance
 - Strongly influences (-ed by) motor selection in single battery bots
- Battery Selection Can Effect
 - Computing platform
 - Motor and servo performance
 - Sensor performance

A Few Things to Consider

- Cost
- Voltage
- Required run time
- Charging complexity
- Capacity
- Weight
- The efficiency of electronics attached to the battery
- The worst case!

Power System Diagram

Current Consumption: Electronics

Estimated Current Consumption				
Sharp Sensor Ityp	0.03			
Hbridge Iq	0.06			
PIC MCU Ityp	0.05			
Pi Cam Ityp	0.25			
Rpi Stress Ityp	0.75			
Wifi Module Stress Ityp	0.245			
Total Zeph 5V Sys Ityp	1.505			

MERCULE urrent Consumption: Servos

- Not generally specified
- Analog servos usually require less current than digital when in motion
 - Correspondingly lower performance
- Rule of thumb: standard servo stall current ~1A
 - More likely to stall than motors during testing
- 2 servos = 2A

MERCURGUETE Consumption: Motors

- A Typical Mercury Bot
 - Weighs 15 lbs
 - Expected to climb a 30° incline @ 1m/s²
 - Has four 2.78" dia. wheels
 - Moves at 1m/s
 - Operates around 30 min between charging
- BoE* per Motor Torque, Current @ 65% eff.
 - 80 oz-in, where stall torque 320 400 oz-in
 - 1.3 A

^{*} https://www.robotshop.com/community/blog/show/drive-motor-sizing-tool

Some Good Motors

	PO (cics & Election Motor Type		No-Load Speed @ Rated Voltage	Approximate Stall Torque @ Rated Voltage	With Encoder	Pololu Without Encoder
12 V	high-power (HP)		10,200 RPM	5.5 oz-in	1:1 HP 12V w/encoder	
			2250 RPM	23 oz-in	4.4:1 HP 12V w/encoder	4.4:1 HP 12V
			1030 RPM	44 oz-in	9.7:1 HP 12V w/encoder	9.7:1 HP 12V
		5.6 A	500 RPM	85 oz-in	20.4:1 HP 12V w/encoder	20.4:1 HP 12V
		5.0 A	290 RPM	120 oz-in	34:1 HP 12V w/encoder	34:1 HP 12V
			210 RPM	165 oz-in	47:1 HP 12V w/encoder	47:1 HP 12V
			130 RPM	240 oz-in	75:1 HP 12V w/encoder	<u>75:1 HP 12V</u>
			100 RPM	300 oz-in	99:1 HP 12V w/encoder	99:1 HP 12V

^{*}Don't forget to fuse properly!

LERCURY Total Current Consumption

$$I_{total} = I_{electronics} + I_{servos} + I_{motors}$$

$$I_{total} = 1.5 + 2 + 4(1.3)$$

 $I_{total} \triangleq 8.7A$

Battery Capacity

- · Chate Time to discharge cell to cut off voltage
 - Unitsare h^{-1}
 - •• 11thr=11C

 - 5hr=θ2C
- Multiply by capacity to get amount of time a battery can supply a given current until discharged (around 1V for NiMH)
 Example: 1000 mAh at 2C (30 minute discharge time):
 Example: 1000 mAh at 2C (30 minute discharge time):

$$2A = 1000mAh * \frac{1}{0.5h}$$

Battery Selection

BUILT-TO-ORDER ITEM

Order Now! Build Lead Time: 3-7 Business Days

PRODUCT HIGHLIGHTS

- Chemistry Ni-MH
- Nominal Voltage (V) 12
- Capacity (mAh) 4200
- Max Continuous Discharge Current 30A
- Weight 1.5lbs
- Dimension 223 x 48 x 25mm (LxWxT)
- Connector Standard Tamiya Connector

show Less

Battery Selection

Form1: Battery rated perfori

No	Description	Specification	S MAN IN S MAN IN S MAN IN S MAN		
1	Nominal voltage	1.2 V	5000 5000 5000		
2	Nominal capacity	5000mAh			
3	Minimum capacity	4600mAh			
4	Standard charge	460mA (0.1C) × 16 hrs	Ta=0~40°C		
5	Rapid charge	0.5C×2.1hrs approx.	-△V= 5mV/cell		
6	Trickle charge	0.05C-0.1C	Ta=0~40°C		
7	Standard discharge	920mA (0.2C)	Ta=0~60°C		
8	Discharge cut-off voltage	1.0V			
9	Maximum discharging current	30A (Cut-off voltage 0.9V)	Discharge time≥8.8min		
10	Storage temperature	≤1 month -20°C~45°C			
		≤3 months -20°C ~40°C	The best temperature range is 10°C-25°C		
		≤1 year -20°C~30°C			
11	Typical weight(approximate)	69.0g			

Battery Capacity

- 2C for 4600 mAh battery
 - 9.2A > 8.7A
 - It's good!

References

All About Batteries

https://learn.adafruit.com/all-about-batteries/

What is C-Rate

https://batteryuniversity.com/learn/article/what is the c rate

How to Calculate Battery Run-time

https://batteryuniversity.com/index.php/learn/article/bu 503 how to calculate battery runtime

A Guide to Understanding Battery Specifications

http://web.mit.edu/evt/summary_battery_specifications.pdf

Drive Motor Sizing Tool

https://www.robotshop.com/community/blog/show/drive-motor-sizing-tool