ELEC 533: Homework 5

Due on: Please check online

Professor Behnaam Aazhang, MWF 11:00 AM - 11:50 AM

Problem 1

With fixed λ for each integer $n \geq \lambda$, let $X_{1,n}, X_{2,n}, ..., X_{n,n}$ be independent random variables such that $P[X_{i,n} = 1] = \frac{\lambda}{n}$ and $P[X_{i,n} = 0] = 1 - \frac{\lambda}{n}$. Let $Y_n = X_{1,n} + X_{2,n} + ... + X_{n,n}$.

- a) Find Φ_{Y_n} , the characteristic function of Y_n .
- b) Find the limit of Φ_{Y_n} as n tends to ∞ . What distribution does it correspond to?

Problem 2

Suppose g is a function from \mathbb{R} to \mathbb{R} with the following properties:

- i) g is continuous and increasing
- ii) $g(x) \le 1 \quad \forall \ x \ge 0$
- iii) q(0) = 0
- a) Suppose X is a r.v. (random variable). Show that $\mathcal{P}(|x| > b) \geq \mathbb{E}[g(x)] g(b) \ \forall \ b \geq 0$
- b) Suppose $\{X_i\}_{i=1}^{\infty}$ is a sequence of r.v. Show that $\{X_i\}_{i=1}^{\infty}$ converges i.P. to r.v. X if and only if $\lim_{i\to\infty} \mathbb{E}[g(|X_i-X|)]=0$

Problem 3

Suppose $\underline{X} \sim \mathcal{N}(\mu, \Sigma)$,

- a) Show that $E[X] = \mu$ and $cov(X, X) = \Sigma$
- b) Show that $A\underline{X} + \underline{b} \sim \mathcal{N}(A\mu + \underline{b}, A \cdot \Sigma \cdot A^T)$.
- c) Suppose $\Sigma > 0$ and $\Sigma = CC^T$ where C is invertible. Show that $C^{-1}(\underline{X} \mu) \sim \mathcal{N}(\underline{0}, I)$.

Problem 4

- a) The random variables X_i are independent, with identical Cauchy densities $f_{X_i}(x) = \frac{\alpha/\pi}{\alpha^2 + x^2}, x \in \mathbb{R}$. Show that the density of their sample mean $\underline{X} = \frac{(X_1 + X_2 + ... + X_n)}{n}$ is also Cauchy.
- b) Explain why CLT (Central Limit Theorem) does not hold for this sequence.