Name: _____ Klasse: _____

Elektronenpaarbindung

In Molekülen sind <u>Nichtmetall-Elemente</u> miteinander verbunden. Neben den ungeladenen Molekülen gibt es auch <u>Molekül-Ionen</u> wie z.B. SO_4^{2-} oder NO_3^{-} . In manchen Molekül-Ionen wie <u>KMnO_4</u> können neben Nichtmetall-Elementen auch <u>Metall-Elemente</u> enthalten sein.

Die Atome besitzen in ihrer äußersten Schale einfach besetzte <u>Atomorbitale</u>. Um eine stabile Elektronenkonfiguration, ein <u>Elektronenoktett</u>, zu erreichen, überlappen diese einfach besetzten <u>Atomorbitale</u> zu doppelt besetzten <u>Molekülorbitalen</u>. Die Elektronen darin bilden ein <u>bindendes Elektronenpaar</u>. Die Elektronen halten sich bevorzugt im Raum zwischen den beiden <u>Atomkernen</u> auf und binden infolge der <u>elektrostatischen</u> <u>Anziehung</u> die beiden Atome aneinander. Der Energiebetrag, der bei der Bildung dieser Bindung frei wird, heißt <u>Bindungsenthalpie</u>. Genau derselbe Energiebetrag muss aufgewendet werden, um die Bindung im Molekül wieder zu <u>spalten</u>.

Die Bindung in Molekülen und Molekül-Ionen heißt Elektronenpaarbindung, wird aber auch Atombindung oder kovalente Bindung genannt.

Im Gegensatz zur <u>Ionenbindung</u> ist die Elektronenpaarbindung räumlich gerichtet und führt deshalb zu Molekülen definierter Größe.

Die Elemente bilden in Abhängigkeit von der <u>Anzahl</u> ihrer einfach besetzten Atomorbitale unterschiedlich viele Bindungen zu anderen Atomen aus. Die Zahl der Elektronenpaare, die ein Atom mit anderen des Moleküls teilt, nennt man seine <u>Bindigkeit</u>.

Manche Elemente wie Sauerstoff oder Stickstoff können neben Einfachbindungen auch

Mehrfachbindungen ausbilden. Diese besitzen verkürzte Bindungslängen und erhöhte

Bindungsenthalpien .

Sind im Molekül Atome desselben Elements miteinander verbunden, ist die Bindung unpolar. Sind verschiedene Elemente im Molekül verbunden, unterscheiden sich diese in ihrer Fähigkeit, die bindenden Elektronen stärker an sich zu ziehen. Die Elemente besitzen unterschiedliche Elektronegativität. Die Elektronegativität steigt innerhalb einer Periode von links nach rechts und in der Hauptgruppe von unten nach oben. Das am stärksten elektronegative Element ist Fluor.