

厦门大学《概率统计I》课程试卷

学	院	系	年级	专业

主考教师: ____ 试卷类型: (A卷)

有可能使用的分位数: $t_{0.025}(8) = 1.860$, $t_{0.025}(8) = 2.306$, $t_{0.025}(9) = 2.262$, $t_{0.025}(13) = 2.1604$, $t_{0.025}(25) = 2.060$, $t_{0.025}(26) = 2.056$, $F_{0.05}(2,13) = 3.81$, $\chi^2_{0.05}(10) = 18.307$.

1. 分数 阅卷人

(10分) 假设 X_1, X_2, \cdots, X_n 是两两不相关的随机变量,有相同的数学期望 μ 和方差 σ^2 ,

(i) $S_n = X_1 + X_2 + \cdots + X_n$, 计算 S_n/n 的数学期望和方差;

(ii) $T_n = X_1 - X_2 + \dots + (-1)^{n-1} X_n$, 计算 T_n 的数学期望和方差;

(iii) 计算 S_n 与 T_n 的协方差。

(8分) 一位职工每天乘坐公交车上班,如果每天用于等车的时间服从均值为5 min的指数分布,估算他在324个工作日中用于上班的等车时间之和大于24h的概率。(结果

用正态分布的分布函数表示)

(10分)假设随机变量 X服从几何分布,

$$P{X = k} = (1 - p)^{k-1}p, \qquad k = 1, 2, \dots$$

 X_1, X_2, \cdots, X_n 是来自总体X的一组样本。计算p的矩估计和极大似然估计。

(15分) 抽样调查了5mm玻璃样本量为n = 9的样本,得到数据(单位: mm):

4.8 4.1 4.4 4.4 4.2 4.5 4.1 4.9 4.2

在显著性水平0.05之下,

- (i) 能否认为5mm玻璃厚度 μ 达到标准?
- (ii) 能够认为 $\mu \geq 4.8mm$?
- (iii) 在置信水平0.95下, 计算玻璃平均厚度的单侧置信上、下限。

(12分) 某高校为分析不同专业的人才培养情况,对毕业 生进行问卷调查,调查的满意度是他们对自己毕业后的 工作、收入等指标的平均,最高为6分,最低为1分。以

下是调查结果:

专业			满意	意度		
A	4.5	4.2	4.6	4.1	4.1	4.3
В	4.5	3.9	4.1	4.7	3.8	
C	4.4	4.3	5.2	4.9	5.2	

假设不同专业学生打分服从正态分布,并且其波动性不存在显著差异,在显著性水平0.05之下,

- (i) 能否认为A、B、C专业满意度存在显著差异?
- (ii) 能否认为A、B专业满意度存在显著差异?

(10分) 掷一枚骰子120次,在显著性水平 α 下给出判断骰子是否均匀的规则。

(10分)

以x和Y分别表示人的身高和臂长,测量了27名男生的身高 x_i 和臂长 Y_i 。经过计算,

 $\bar{x} = 174.7037$, $\bar{Y} = 172.4815$, $S_{xx} = 1165.6424$, $S_{xY} = 1083.8516$, $S_{YY} = 1774.7338$.

- (i) 计算Y关于x的回归方程 $\hat{y} = \hat{a} + \hat{b}x$
- (ii) b的置信水平为0.95的置信区间。

(10分) 甲有8万元可以投资两个项目。项目A需要投资至少5万,成功概率为0.8,失败概率为0.2,成功后收回本金并获利50%,失败将损失2万元。项目B需要投资至

少6万,成功概率为0.6,失败概率为0.4,成功后收回本金并获利70%,失败将损失3万元。假设甲总是将手中的资金全部用于投资,且只能对各项目投资一次。

- (i) 先投资A项目, 然后再投资B项目, 求平均收益;
- (ii) 先投资B项目, 然后再投资A项目, 求平均收益;
- (iii) 应该选择哪种决策。

9.

分数	阅卷人

(15分) 假设随机变量X的密度函数为

$$f(x) = \frac{1}{2\sigma} exp\left\{-\frac{|x-\mu|}{\sigma}\right\},$$

其中 $\sigma > 0$ 。 X_1, X_2, \cdots, X_n 是来自总体X的一组样本。

- (i) 计算 μ 和 σ 的矩估计;
- (ii) 证明 σ 的矩估计是一个相合估计。