На правах рукописи V / K x x x . x x x

Тощев Александр Сергеевич

Разработка эффективного подхода обработки производственных задач прикладного характера в области обслуживания программного обеспечения и информационной инфраструктуры предприятия на основе стохастического поиска, вероятностно-логических рассуждений и машинного обучения

Специальность 05.13.01 — «Системный анализ, управление и обработка информации (по отраслям)»

Диссертация на соискание учёной степени Кандидат технических наук

> Научный руководитель: уч. степень, уч. звание Елизаров А.М.

Оглавление

B	дение	4
1	ОСТАНОВКА ЗАДАЧИ ПОЛУЧЕНИЯ, АНАЛИЗА И ОБРАБОТКИ ЭКСПЕРТ-	
	ЮЙ ИНФОРМАЦИИ	6
	.1 Возникновение области	6
	.2 Ссылки	7
	.3 Формулы	8
	1.3.1 Ненумерованные одиночные формулы	8
	1.3.2 Ненумерованные многострочные формулы	8
	1.3.3 Нумерованные формулы	9
2	линное название главы, в которой мы смотрим на примеры того, как будут вер-	
	гаться изображения и списки	10
	.1 Одиночное изображение	10
	.2 Длинное название параграфа, в котором мы узнаём как сделать две картинки с общим	
	номером и названием	10
	.3 Пример вёрстки списков	10
3	ёрстка таблиц	12
	.1 Таблица обыкновенная	12
	.2 Параграф - два	12
	.3 Параграф с подпараграфами	12
	3.3.1 Подпараграф - один	12
	3.3.2 Подпараграф - два	12
3	тючение	13
C	сок литературы	14
C	сок рисунков	17
C	сок таблиц	18
Δ	язвание первого приложения	19

B	Очень длинное название второго приложения, в котором продемонстрирована ра-														
	бота с длинными таблицами	20													
	В.1 Подраздел приложения	20													
	В.2 Ещё один подраздел приложения	22													
	В.3 Очередной подраздел приложения	23													
	В 4 И ещё один подраздел приложения	23													

Введение

В настоящее время в области IT набрало большую популярность системы удаленной поддержки информационной инфраструктуры, так называемый «Аутсорсинг». Ввиду развития рынка компаниям становится невыгодно держать свой штат службы поддержки, и они отдают свою инфраструктуру сторонней компании. Ввиду возросшей интенсивности данного бизнеса возникла потребность автоматизации работы. В данном контексте рассматривается автоматизация обработки инцидентов, начиная с разбора инцидентов на естественном языке и заканчивая поиском решения и применением решения. Главными требованиями к системе являются

- 1. Обработка естественного языка
- 2. Возможность обучения
- 3. Общение с специалистом
- 4. Проведение логических рассуждений: аналогия, дедукция, индукция
- 5. Умения абстрагировать решение и экстраполировать его на другие решения

На данный момент многие компании ведут разработку подобных систем. Примером такой системы является набирающая популярность система IBM Watson [1]. Подобный класс система также называют вопросно-ответными системами. Другим примером является система Wolfram Alpha [2]. В данной работе был сделан акцент на попытку создания мыслящий системы на основе модели мышления Марвина Мински [3].

Целью данной работы является создание архитектуры и реализация базового прототипа программного комплекса обеспечивающего разбор и формализацию входного запроса пользователя и поиск решения данной проблемы.

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Исследовать целевую область
- 2. Вычислить возможность автоматизации целевой области
- 3. Исследовать модель мышления Марвина Мински
- 4. Адаптировать модель для прикладной реализации
- 5. Создать архитектуру приложения на основе модели

6. Реализовать прототип на основе архитектуры

Основные положения, выносимые на защиту:

- 1. Возможность автоматизации области предоставления удаленной поддержки информационной инфраструктуры
- 2. Прикладное применение модели мышления Марвина Мински для решения задачи автоматизации
- 3. Возможность программной реализации модели мышления Марвина Мински
- 4. Экстраполяция программной системы для других областей

Научная новизна:

- 1. Впервые была представлена реализация модели мышления Мински на практике
- 2. Была представлена новая модель данных для модели мышления
- 3. Было выполнено оригинальное исследование модели мышления ...

Научная и практическая значимость ...

Степень достоверности полученных результатов обеспечивается результатами выполнения тестов на контрольных примерах. Результаты находятся в соответствии с результатами, полученными другими авторами и экспертными системами

Апробация работы. Основные результаты работы докладывались на:

- RCDL-2014
- AINL-2013
- WCIT-2012

Личный вклад. Автор принимал активное участие в разработке архитектуры приложения, реализации прототипа, проработки теории, тестировании.

Публикации. Основные результаты по теме диссертации изложены в XX печатных изданиях [4-8], X из которых изданы в журналах, рекомендованных ВАК [4-6], XX — в тезисах докладов [7,8].

Объем и структура работы. Диссертация состоит из введения, четырех глав, заключения и двух приложений. Полный объем диссертации составляет XXX страница с XX рисунками и XX таблицами. Список литературы содержит XXX наименований.

Глава 1

ПОСТАНОВКА ЗАДАЧИ ПОЛУЧЕНИЯ, АНАЛИЗА И ОБРАБОТКИ ЭКСПЕРТНОЙ ИНФОРМАЦИИ

1.1. Возникновение области

В настоящее время в области IT набрало большую популярность системы удаленной поддержки информационной инфраструктуры, так называемый «Аутсорсинг». Ввиду развития рынка компаниям становится невыгодно держать свой штат службы поддержки, и они отдают свою инфраструктуру сторонней компании. Большинство проблем, которые решает удаленная служба поддержки носят весьма тривиальный характер:

- Установить приложение
- Переустановить приложение
- Решить проблему с доступом к тому или иному ресурсу

Данные проблемы решают специалисты технической поддержки. Обычно техническая поддержка делится на несколько линий:

- 1. Первая линия. Решение уже известных, задокументированных проблем, работа напрямую с пользователем
- 2. Вторая линия. Решение ранее неизвестных проблем
- 3. Третья линия. Решение сложных и нетривиальных проблем
- 4. Четвертая линия. Решение архитектурных проблем инфраструктуры

Каждая линия поддержки представлена специалистами. В среднем команда, обслуживающая одного заказчика насчитывает 60 человек. Процентное соотношение специалистов разных линий поддержки отображено на Диаграмме 1.1

Рисунок 1.1: Диаграмма

Работа специалиста 1 линии поддержки состоит из множества рутинных и простых задач. На Диаграмме 1.2 показано соотношение разных типов проблем, встречающихся во время работы поддержки

Рисунок 1.2: Диаграмма Соотношение типов проблем

1.2. Ссылки

Сошлёмся на библиографию. Одна ссылка: [4]. Две ссылки: [5,6]. Много ссылок: [7–23]. И ещё немного ссылок: [24–36].

Сошлёмся на приложения: Приложение А, Приложение В.2.

Сошлёмся на формулу: формула (1.1).

Сошлёмся на изображение: рисунок 2.2.

1.3. Формулы

Благодаря пакету icomma, $I=T_EX$ одинаково хорошо воспринимает в качестве десятичного разделителя и запятую (3,1415), и точку (3.1415).

1.3.1. Ненумерованные одиночные формулы

Вот так может выглядеть формула, которую необходимо вставить в строку по тексту: $x \approx \sin x$ при $x \to 0$.

А вот так выглядит ненумерованая отдельностоящая формула с подстрочными и надстрочными индексами:

$$(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$$

При использовании дробей формулы могут получаться очень высокие:

$$\frac{1}{\sqrt(2) + \frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \cdots}}}$$

В формулах можно использовать греческие буквы:

 $\alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta\iota\kappa\lambda mu\nu\xi\pi\varpi\rho\varrho\sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega$

1.3.2. Ненумерованные многострочные формулы

Вот так можно написать две формулы, не нумеруя их, чтобы знаки равно были строго друг под другом:

$$egin{array}{lll} f_W &=& \min \left(1, \max \left(0, rac{W_{soil}/W_{max}}{W_{crit}}
ight)
ight), \ f_T &=& \min \left(1, \max \left(0, rac{T_s/T_{melt}}{T_{crit}}
ight)
ight), \end{array}$$

Можно использовать разные математические алфавиты:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

UBCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Посмотрим на систему уравнений на примере аттрактора Лоренца:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$

А для вёрстки матриц удобно использовать многоточия:

$$\begin{pmatrix}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\end{pmatrix}$$

1.3.3. Нумерованные формулы

А вот так пишется нумерованая формула:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{1.1}$$

Нумерованых формул может быть несколько:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{1.2}$$

В последствии на формулы (1.1) и (1.2) можно ссылаться.

Глава 2

Длинное название главы, в которой мы смотрим на примеры того, как будут верстаться изображения и списки

2.1. Одиночное изображение

Рисунок 2.1: ТеХ.

2.2. Длинное название параграфа, в котором мы узнаём как сделать две картинки с общим номером и названием

А это две картинки под общим номером и названием:

2.3. Пример вёрстки списков

Нумерованный список:

- 1. Первый пункт.
- 2. Второй пункт.

Рисунок 2.2: Очень длинная подпись к изображению, на котором представлены две фотографии Дональда Кнута

3. Третий пункт.

Маркированный список:

- Первый пункт.
- Второй пункт.
- Третий пункт.

Вложенные списки:

- Имеется маркированный список.
 - 1. В нём лежит нумерованный список,
 - 2. в котором
 - лежит ещё один маркированный список.

Глава 3

Вёрстка таблиц

3.1. Таблица обыкновенная

Так размещается таблица:

Таблица 3.1: Название таблицы

Месяц	T_{min} , K	T_{max} , K	$(T_{max}-T_{min})$, K
Декабрь	253.575	257.778	4.203
Январь	262.431	263.214	0.783
Февраль	261.184	260.381	-0.803

3.2. Параграф - два

Некоторый текст.

3.3. Параграф с подпараграфами

3.3.1. Подпараграф - один

Некоторый текст.

3.3.2. Подпараграф - два

Некоторый текст.

Заключение

Основные результаты работы заключаются в следующем.

- 1. На основе анализа ...
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало ...
- 4. Для выполнения поставленных задач был создан ...

И какая-нибудь заключающая фраза.

Список литературы

- 1. Wikipedia. IBM Watson. web. 2014. https://ru.wikipedia.org/wiki/IBM_Watson.
- 2. Wolfram. Wolfram Alpha. web. 2014. 00. http://www.wolframalpha.com/.
- 3. Minsky Marvin. The Emotion Machine. Simon & Schuster, 2006.
- 4. *Сычёв М. С.* История Астраханвского казачьего войска: учебное пособие. Астрахань: Волга, 2009. 231 с.
- 5. Соколов А. Н., Сердобинцев К. С. Гражданское общество: проблемы формирования и развития (философский и юридический аспекты): монография / Под ред. В. М. Бочарова. Астрахань: Калиниградский ЮИ МВД России, 2009. 218 с.
- 6. *Гайдаенко Т. А.* Маркетинговое управление: принципы управленческих решений и российская практика. 3-е изд, перераб. и доп. изд. М.: Эксмо: МИРБИС, 2008. 508 с.
- 7. Лермонтов Михаил Юрьевич. Собрание сочинений: в 4 т. М.: Терра-Кн. клуб, 2009. 4 т.
- 8. Управление бизнесом: сборник статей. Нижний новгород: Изд-во Нижегородского университета, 2009. 243 с.
- 9. *Борозда И. В., Воронин Н. И., В. Бушманов А.* Лечение сочетанных повреждений таза. Владивосток: Дальнаука, 2009. 195 с.
- 10. Маркетинговые исследования в строительстве: учебное пособие для студентов специальности «Менеджемент организаций» / О. В. Михненков, И. З. Коготкова, Е. В. Генкин, Г. Я. Сороко.
 М.: Государственный университет управления, 2005. 59 с.
- 11. Конституция Российской Федерации: офиц. текст. М.: Маркетинг, 2001. 39 с.
- 12. Семейный кодекс Российской Федерации: [федер. закон: принят Гос. Думой 8 дек. 1995 г.: по состоянию на 3 янв. 2001 г.]. СПб.: Стаун-кантри, 2001. 94 с.
- 13. ГОСТ Р 7.0.53-2007 Система стандартов по информации, библиотечному и издательскому делу. Издания. Международный стандартный книжный номер. Использование и издательское оформление. М.: Стандартинформ, 2007. 5 с.

- 14. *Разумовский В. А., Андреев Д. А.* Управление маркетинговыми исследованиями в регионе. М., 2002. 210 с. Деп. в ИНИОН Рос. акад. наук 15.02.02, № 139876.
- 15. *Лагкуева Ирина Владимировна*. Особенности регулирования труда творческих работников театров: дис. ... канд. юрид. наук: 12.00.05. М., 2009. 168 с.
- 16. *Покровский Андрей Владимирович*. Устранимые особенности решений эллиптических уравнений: дис. ... д-ра физ.-мат. наук: 01.01.01. М., 2008. 178 с.
- 17. *Сиротко Владимир Викторович*. Медико-социальные аспекты городского травматизма в современных условиях : автореф. дис. ... канд. мед. наук : 14.00.33. М., 2006. 26 с.
- 18. *Лукина Валентина Александровна*. Творческая история «Записок охотника» И. С. Тургенева: автореф. дис. ... канд. филол. наук: 10.01.01. СПб., 2006. 26 с.
- 19. *Загорюев А. Л.* Методология и методы изучения военно-профессиональной направленности подростков: отчёт о НИР. Екатеринбург, 2008. 102 с.
- 20. Художественная энциклопедия зарубежного классического искусства [Электронный ресурс]. М.: Большая Рос. энкцикл., 1996. 1 электрон. опт. диск (CD-ROM).
- 21. *Насырова* Г. А. Модели государственного регулирования страховой деятельности [Электронный ресурс] // *Вестник Финансовой академии*. 2003. № 4. Режим доступа: http://vestnik.fa.ru/4(28)2003/4.html.
- 22. *Берестова Т. Ф.* Поисковые инструмены библиотеки // *Библиография.* 2006. № 4. C. 19.
- 23. *Кригер И.* Бумага терпит // *Новая газета*. 2009. 1 июля.
- 24. *Adams Peter*. The title of the work // *The name of the journal*. 1993. 7. Vol. 4, no. 2. Pp. 201–213. An optional note.
- 25. *Babington Peter*. The title of the work. 3 edition. The address: The name of the publisher, 1993. 7. Vol. 4 of 10. An optional note.
- 26. Caxton Peter. The title of the work. How it was published, The address of the publisher, 1993.— 7. An optional note.
- 27. *Draper Peter*. The title of the work // The title of the book / Ed. by The editor; The organization. Vol. 4 of 5. The address of the publisher: The publisher, 1993. 7. P. 213. An optional note.
- 28. *Eston Peter*. The title of the work // Book title. 3 edition. The address of the publisher: The name of the publisher, 1993. 7. Vol. 4 of 5. Pp. 201–213. An optional note.

- 29. *Farindon Peter*. The title of the work // The title of the book / Ed. by The editor. The address of the publisher: The name of the publisher, 1993. 7. Vol. 4 of 5. Pp. 201–213. An optional note.
- 30. *Gainsford Peter.* The title of the work. The organization, The address of the publisher, 3 edition, 1993. 7. An optional note.
- 31. *Harwood Peter*. The title of the work. Master's thesis, The school where the thesis was written, The address of the publisher, 1993. 7. An optional note.
- 32. *Isley Peter*. The title of the work. How it was published. 1993. 7. An optional note.
- 33. *Joslin Peter*. The title of the work: Ph.D. thesis / The school where the thesis was written. The address of the publisher, 1993. 7. An optional note.
- 34. The title of the work / Ed. by Peter Kidwelly; The organization. Vol. 4 of 5, The address of the publisher, 1993. 7. The name of the publisher. An optional note.
- 35. *Lambert Peter*. The title of the work: Tech. Rep. 2. The address of the publisher: The institution that published, 1993. 7. An optional note.
- 36. Marcheford Peter. The title of the work. An optional note.

Список рисунков

1.1	Диаграмма	7
1.2	Диаграмма Соотношение типов проблем	7
2.1	TeX	10
2.2	Очень длинная подпись к изображению, на котором представлены две фотографии	
	Лональла Кнута	11

Список таблиц

3 1	Название таблицы	í																		1	2
J. I	Trasballine radsingbi		 •		•	•		•		•		•		•						- 1	_

Приложение А

Название первого приложения

Некоторый текст.

Приложение В

Очень длинное название второго приложения, в котором продемонстрирована работа с длинными таблицами

В.1. Подраздел приложения

Вот размещается длинная таблица:

Параметр	Умолч.	Тип	Описание
&INP		,	
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
			продолжение следует

Параметр	Умолч.	Тип	(продолжение) Описание
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
mars	0	int	экватора 1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
KICK	1	1111	 генерация белого шума (p_s = const)
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
		·	1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
	-	1114	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
mare	0	int	экватора
&SURFPAR		int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
MUN	1	1111	продолжение следует

			(продолжение)
Параметр	Умолч.	Тип	Описание
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
	_		1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
	_		1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
111011	-	1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
KICK		1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	зкватора 1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
KICK	1	IIIL	0. инициализация оез шума ($p_s = const$) 1: генерация белого шума
			2: генерация белого шума симметрично относительно
100.000		int	экватора
mars	0	int	1: инициализация модели для планеты Марс

В.2. Ещё один подраздел приложения

Нужно больше подразделов приложения!

В.З. Очередной подраздел приложения

Нужно больше подразделов приложения!

В.4. И ещё один подраздел приложения

Нужно больше подразделов приложения!