### Secure index for numeric data

Lecture 8

## Risk model

Assume that client, user are trusted.



# Representing an integer

- k-prefix string: k high bits are fixed, and w-k low are free by pattern  $\{0/1\}^k \{*\}^{w-k}$ .
- k-bit string represents a set of 2<sup>w-k</sup> strings with the same high k bits. For example 1\*\*={100, 101, 110, 111}.
- Given x∈N, a family of prefix for x is defined by F(x)=F(b<sub>1</sub>...b<sub>w</sub>)={b<sub>1</sub>...b<sub>w-i+1</sub>\*\*\*}<sub>i</sub>. For example F(12)=F(1100)={1100, 110\*, 11\*\*, 1\*\*\*, \*\*\*\*}.
- Given an integer x and a prefix P,  $x \in P \Leftrightarrow P \in F(x)$ .

## Representing a range

- S([a,b]) is the smallest set of prefix  $P_i$  such that  $\bigcup_i P_i = [a, b]$ . For example S([11,15])={1011,11\*\*}.
- Given x and [a,b],  $x \in [a,b] \Leftrightarrow F(x) \cap S([a,b]) \neq \emptyset$ .
- Given prefix P. N(P) is bit string such that for all pair of prefix P1 and P2, P1=P2⇔N(P1)=N(P2).
- There are many definitions for N. This is a definition:  $N(b_1...b_k^*...^*)=b_1...b_k^*1_{k+1}0...0_{w+1}$ .
- Given x and [a,b],  $x \in [a,b] \Leftrightarrow N(F(x) \cap N(S[a,b]) \neq \emptyset$ .

# Example: check if $12 \in [11,15]$



### **Protocols**

#### Submit data (t, list)

- 1. Sort(list):  $d_0 < d_1 < ... < d_{n+1}$ .
- 2. Compute  $\{S[d_i, d_{i+1}]\}_{i=0,...,n}$ .
- 3. Compute  $\{N(S[d_i,d_{i+1}])\}_i$ .
- 5. Encrypt  $\{c_i = E(d_i)\}_i$ .
- 6. Send to server  $\{(c_i, H(N(S[d_i, d_{i+1}])))\}_{i}$

### Query Q(t,[a,b]), $d_0 < a \le b < d_{n+1}$ .

- 1. Compute F(a), F(b).
- 2. Compute N(F(a)), N(F(b)).
- 3. Compute H(N(F(a)), N(F(b)).
- 4. Compute  $\{H(N(S[d_i,d_{i+1}]))\}_i$ . 4. Send  $\{t,H(N(F(a)),H(N(F(b)))\}_i$

### **Query processing**

(exercise)