Particle spectrograph

Wave operator and propagator

Multiplicities
1
1
$_{\alpha}^{\prime} + 2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \sigma^{\alpha \beta}$ 1
$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} $ 3
ĸ
м
$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$
$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta = 0 - i(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}t^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}t^{\chi}_{\chi} - 5$
$3 \partial_{\delta} \partial_{\lambda} \partial_{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\lambda} \partial^{\alpha} \tau^{\chi \beta} -$
$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$
$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$
$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\chi} \sigma^{\delta \varepsilon}_{\delta}) == 0$
== (⁹

$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5 + 2k^2t_1}{(t_1 + 2k^2t_1)^2}$	
${\mathfrak l}_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$ $\frac{-2k^2r_5 + t_1}{(t_1 + 2k^2t_1)^2}$		0	$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$	
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i}{\sqrt{2} (k r_5 + k^3 r_5)}$	$\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	$\frac{6k^2r_5+t_1}{2(1+k^2)^2r_5t_1}$	0	0	0	0	
$\sigma_{1}^{\#2}$	$\frac{1}{\sqrt{2} \left(k^2 r_5 + k^4 r_5 \right)}$	$\frac{6k^2 r_5 + t_1}{2(k+k^3)^2 r_5 t_1}$	$-\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	0	0	0	0	
$\sigma_{1}^{\#1}_{\alpha\beta}$	$\frac{1}{k^2 r_5}$	$\frac{1}{\sqrt{2} \left(k^2 r_5 + k^4 r_5 \right)}$	$-\frac{i}{\sqrt{2}(kr_5+k^3r_5)}$	0	0	0	0	
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_{1}^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{lpha}$	

, ,#1 5#2 #1	
$(\partial_{\kappa}\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	
$r_{5}\left(\partial_{i}\omega_{\theta}^{\kappa}\partial^{\theta}\omega^{lpha_{i}}-\partial_{\theta}\omega_{i}^{\kappa}\partial^{\theta}\omega^{lpha_{i}}_{\alpha}-\left(\partial_{lpha}\omega^{lpha_{i} heta}-2\partial^{\theta}\omega^{lpha_{i}}_{lpha} ight)$	
$\omega_{\alpha\prime\theta} \left(\omega^{\alpha\prime\theta} + 2\partial^{\theta}f^{\alpha\prime} \right) + \omega_{\alpha\theta\prime} \left(\omega^{\alpha\prime\theta} + 4\partial^{\theta}f^{\alpha\prime} \right) \right) +$	
$\partial_{i}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime} + 2\partial_{\theta}f_{\alpha\prime}\partial^{\theta}f^{\alpha\prime} + \partial_{\theta}f_{\prime\alpha}\partial^{\theta}f^{\alpha\prime} +$	
$2 \omega_{\prime \theta \alpha} \partial^{\theta} f^{\alpha \prime} - 2 \partial_{\alpha} f_{\prime \theta} \partial^{\theta} f^{\alpha \prime} - 2 \partial_{\alpha} f_{\theta \prime} \partial^{\theta} f^{\alpha \prime} +$	
$3\partial_{i}f^{\theta}_{}\partial^{i}f^{\alpha}_{}-3\partial_{i}f^{\alpha i}\partial_{\theta}f_{}^{}+6\partial^{i}f^{\alpha}_{}\partial_{\theta}f_{}^{}$	
$rac{1}{3}t_1$ (3 $\omega^{lpha_\prime}_{\ lpha}\omega^{eta}_{,\ eta}$ -6 $\omega^{eta}_{lphaeta}\partial_{,f}{}^{lpha\prime}$ +6 $\omega^{eta}_{,\ eta}\partial^{\prime}f^{lpha}_{\ lpha}$ -	
$S == \iiint \{f^{\alpha\beta} \ \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + $	လ !!
Quadratic (free) action	Ŏnĭ

$f_0^{\#1}$	i √2 k	$-2k^2t$	0	0		U	υ ^{#1} 2 ⁺ αβ	$_{lphaeta}$ $f_{2}^{\#1}{}_{lphaeta}$ $\omega_{2}^{\#1}{}_{lphaeta\chi}$					$\tau_2^{\#1}$	$-\frac{2\bar{l}\sqrt{\sqrt{1+2k^2}}}{(1+2k^2)^2}$	4 k ²
$\omega_{0}^{\#1}$	$-t_1$	$\sqrt{2} kt_1$	0	0	$\omega_2^{\#1}$	$\dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt}{\sqrt{2}}$	<u>†1</u>		0		$\sigma_2^{\#1}$	$\frac{2}{(1+2k^2)^2t_1}$	2 i √2 k
3		<u> </u>				$\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t$	1	(0		4,0		
	$\omega_{0}^{\#1}$ \dagger	$f_{0}^{\#1}$ †	$f_{0}^{\#2}$ \dagger	$\omega_{0^{\text{-}}}^{\#1}\dagger$	$\omega_2^{\#1}$ †	αβχ	0	0		<u>t</u>	<u>1</u> 2			$\sigma_2^{\#1} +^{lphaeta}$	$\tau^{#1} + \alpha\beta$
			$y_{1}^{\#1}$		$\omega_{1}^{\#2}$	$f_{1}^{\#1}\alpha\beta$	$\omega_1^{\#}$	÷1 - α	ω_1^{\sharp}	‡2 - α	$f_{1}^{\#1}\alpha$	$f_{1}^{#2}\alpha$		#67	<i>‡</i> 1
$\omega_1^{\#}$	‡†α/	k^2	r ₅ +	<u>t</u> 1 6	$-\frac{t_1}{3\sqrt{2}}$	$-\frac{ikt_1}{3\sqrt{2}}$	()	()	0	0	$\sigma_{0^{\text{-}}}^{\#1}$	0	C
$\omega_1^{\#_2}$	² † ^α /				<u>t</u> 1 3	$\frac{ikt_1}{3}$	(0)	0	0	$ au_0^{\#2}$	0	C
$f_{1}^{\#}$	$f_{1}^{#1} + \alpha \beta$		$\frac{ikt_1}{3\sqrt{2}}$		$\frac{1}{3} \bar{l} k t_1$	$\frac{k^2t_1}{3}$	C	0)	0	0	$\tau_0^{\#1}$	$\frac{i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	2 k ²
ω	# <u>1</u> †	α	0		0	0	$k^2 r_5$	$k^2 r_5 - \frac{t_1}{2}$		<u>1</u>	0	īkt ₁		$\frac{1}{t_1} \left \frac{1}{1} \right $	<u> </u>
ω_{1}^{2}	#2 †'	α	0		0	0	$\frac{t}{}$	<u>1</u>	()	0	0	$\sigma_{0}^{\#1}$	$\frac{1}{1+2k^2)^2t}$	1 1/2 k
f	# <u>1</u> †	α	0		0	0	()	C)	0	0		- (1+	
f	#2 †'	α	0		0	0	−ā k	t_1	()	0	0		$\sigma_{0}^{\#1}$ †	r#1 +
														J	

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $r_5 > 0 \&\& t_1 < 0 || t_1 > 0$