02 Linear Predictor

Roadmap

Linear predictors

Loss minimization

Stochastic gradient descent

Learning as optimization

Optimization problem

Objective: $\min_{\mathbf{w} \in \mathbb{R}^d} \operatorname{TrainLoss}(\mathbf{w})$

 $\mathbf{w} \in \mathbb{R}^2$

[gradient plot]

How to optimize?

Definition: gradient

The gradient $\nabla_{\mathbf{w}} \operatorname{TrainLoss}(\mathbf{w})$ is the direction that increase the loss most.

Algorithm: gradient descent

Initialize
$$\mathbf{w} = [0, \dots, 0]$$

For $t = 1, \dots, T$:
$$\mathbf{w} \leftarrow \mathbf{w} - \underbrace{\eta}_{\text{step size}} \underbrace{\nabla_{\mathbf{w}} \text{TrainLoss}(\mathbf{w})}_{\text{gradient}}$$

Least squares regression

Objective function:

TrainLoss(
$$\mathbf{w}$$
) = $\frac{1}{|\mathcal{D}_{\text{train}}|} \sum_{(x,y) \in \mathcal{D}_{\text{train}}} (\mathbf{w} \cdot \phi(x) - y)^2$

• Gradient (use chain rule):

$$\nabla_{\mathbf{w}} \operatorname{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\operatorname{train}}|} \sum_{(x,y) \in \mathcal{D}_{\operatorname{train}}} 2(\underbrace{\mathbf{w} \cdot \phi(x) - y}_{\operatorname{predict-target}}) \phi(x)$$

[live solution]

Gradient descent is slow

TrainLoss(
$$\mathbf{w}$$
) = $\frac{1}{|\mathcal{D}_{\text{train}}|} \sum_{(x,y) \in \mathcal{D}_{\text{train}}} \text{Loss}(x, y, \mathbf{w})$

Gradient descent:

$$\mathbf{w} \longleftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \operatorname{TrainLoss}(\mathbf{w})$$

Problem: each iteration requires going over all training examples—expensive when have lots of data!

Stochastic gradient descent

TrainLoss(
$$\mathbf{w}$$
) = $\frac{1}{|\mathcal{D}_{\text{train}}|} \sum_{(x,y) \in \mathcal{D}_{\text{train}}} \text{Loss}(x, y, \mathbf{w})$

Gradient descent (GD): $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \operatorname{TrainLoss}(\mathbf{w})$

Stochastic Gradient descent (SGD):

For each
$$(x,y) \in \mathcal{D}_{\mathsf{train}}$$
:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \mathsf{Loss}(x, y, \mathbf{w})$$

Key idea: stochastic updates

It's not about quality, it's about quantity.

Step size

$$\mathbf{w} \longleftarrow w - \underbrace{\eta}_{\text{step size}} \nabla_{\mathbf{w}} \text{Loss}(x, y, \mathbf{w})$$

Question: what should η be?

- Strategies:
 - Constant: $\eta = 0.1$
 - Decreasing: $\eta = 1/\sqrt{\#}$ updates made so far

Summary so far

Linear predictors:

$$f_{\mathbf{w}}(x)$$
 based on score $\mathbf{w} \cdot \phi(x)$

Loss minimization: learning as optimization

$$\min_{\mathbf{w} \in \mathbb{R}^d} \text{TrainLoss}(\mathbf{w})$$

Stochastic gradient descent: optimization algorithm

$$\mathbf{w} \longleftarrow w - \eta \nabla_{\mathbf{w}} \operatorname{Loss}(x, y, \mathbf{w})$$

Done for linear regression; what about classification?

Zero-one loss

Problems:

- Gradient of Loss₀₋₁ is 0 everywhere, SGD not applicable
- Loss0-1 is insensitive to how badly model messed up

Support vector machines*

$$Loss_{hinge}(x, y, \mathbf{w}) = \max\{1 - (\mathbf{w} \cdot \phi(x))y, 0\}$$

- Intuition: hinge loss upper bounds 0-1 loss, has non-trivial gradient
- Try to increase margin if less than 1

A gradient exercise

Problem: Gradient of hinge loss

Compute the gradient of

$$Loss_{hinge}(x, y, \mathbf{w}) = \max\{1 - (\mathbf{w} \cdot \phi(x))y, 0\}$$

[Blackboard]

Logistic loss

$$Loss_{logistic}(x, y, \mathbf{w}) = log(1 + e^{-(w \cdot \phi(x))y})$$

Intuition: Try to increase margin even when it already exceeds 1

Summary so far

$$\underbrace{\mathbf{w} \cdot \phi(x)}_{\text{score}}$$

	Classification	Linear regression
Predictor $f_{\mathbf{w}}$	sign(score)	score
Relate to correct y	$margin\; \big(score y\big)$	residual (score $-y$)
Loss functions	zero-one hinge logistic	squared absolute deviation
Algorithm	SGD	SGD

Framework

Next lecture

Linear predictors:

$$f_{\mathbf{w}}(x)$$
 based on score $\mathbf{w} \cdot \phi(x)$

Which feature vector $\phi(x)$ to use?

Loss minimization:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \text{ TrainLoss}(\mathbf{w})$$

How do we **generalize** beyond the training set?