Deep Imbalanced Regression

Yuzhe Yang¹ Kaiwen Zha¹ Ying-Cong Chen¹ Hao Wang² Dina Katabi¹

¹MIT Computer Science & Artificial Intelligence Laboratory ²Department of Computer Science, Rutgers University ICML 2021

Presenter: Gianmarco Midena

26 November 2024

Overview

Continuous target value y

Problem Settings

- $\{(\mathbf{x}_i,y_i)\}_{i=1}^N$: training set
- $\mathbf{x}_i \in \mathbb{R}^d$: input
- $y_i \in \mathcal{Y}$: continuous label or target
- $b_i \in \mathcal{B}$: discrete label or target
- $\mathcal{Y} \subset \mathbb{R}$: continuous label space
- $\mathfrak{B} = \{1, \dots, M\} \subset \mathbb{Z}^+$: index space
 - lacktriangle divides $\mathcal Y$ into M groups (bins) with equal intervals $[t_j,t_{j+1})$
 - $\{[t_0, t_1), \ldots, [t_{M-1}, t_M)\}$: discrete label space
 - $t_k \in \mathcal{Y}$
 - minimum resolution
 - ★ e.g., $\delta y \triangleq t_{j+1} t_j = 1$ in age estimation
- $\hat{y}_i = g(\mathbf{z}_i) \in \mathbb{R}$: predicted continuous label
- $\mathbf{z}_i = f(\mathbf{x}_i; \theta) \in \mathbb{R}^{d'}$: learned representation
- θ : trainable model parameters

Evaluation

- Divide target space into disjoint regions (bins)
 - ► *Many-shot*: > 100 training examples
 - ▶ *Medium-shot*: 20-100 training examples
 - ► Few-shot: < 20 training examples
 - ► Zero-shot: 0 training examples
 - Inspired by Liu et al. 2019

Metrics

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- ► Pearson Correlation (PCC)
- Geometric Mean Error (GM)

$$GM = \sqrt[n]{\prod_{i=1}^{n} |y_i - \hat{y}_i|}$$

★ Pros: + fairness (uniformity) in prediction

Datasets - Overview

Dataset	Target type	Ta	arget rang	e E	Bin siz	e 1	Max bin density	/ I	Min bin densit	у #	Training set	1	# Val. set	# Test set
IMDB-WIKI-DIR	Age		0 - 186	T	1	1	7,149	ī	1	1	191,509	Τ	11,022	11,022
AgeDB-DIR	Age		0 - 101	T	1		353	Τ	1		12,208	T	2,140	2,140
STS-B-DIR	Text similarity score		0 - 5	Τ	0.1	Π	428	T	1		5,249	Τ	1,000	1,000
NYUD2-DIR	Depth		0.7 - 10	-	0.1		1.46×10^8	Ī	1.13×10^6	50,68	38 (3.51 × 10 ⁹) [-	654 (8.70 × 10 ⁵)
SHHS-DIR	Health condition score		0 - 100	Τ	1	Τ	275	T	0		1,892	Т	369	369

(Training) Datasets - Label Distributions

Label Distribution Smoothing (LDS)

Test Error on Categorical vs. Continuous Label Space

(a) CIFAR-100 (subsampled)

(b) IMDB-WIKI (subsampled)

The LDS Algorithm

Feature Distribution Smoothing (FDS)

- FDS improves feature statistics calibration:
 - High similarity only in neighbourhood
 - Gradually decreasing similarity as the target becomes smaller or larger

- FDS improves feature statistics calibration:
 - High similarity only in neighbourhood
 - ▶ Gradually decreasing similarity as the target becomes smaller or larger

- FDS improves feature statistics calibration:
 - High similarity only in neighbourhood
 - ▶ Gradually decreasing similarity as the target becomes smaller or larger

- FDS improves feature statistics calibration:
 - High similarity only in neighbourhood
 - ▶ Gradually decreasing similarity as the target becomes smaller or larger

Change of feature statistics w.r.t. epoch

- μ, Σ : Running mean and variance
- $oldsymbol{ ilde{\mu}}, ilde{oldsymbol{\Sigma}}$: Smoothed mean and variance

The FDS Algorithm

Baselines (1/2)

- Vanilla: neglects data imbalance
- Synthetic samples
 - ► SMOTER (Torgo et al. 2013)
 - Defines frequent and rare regions using label density.
 - 2 Creates synthetic samples for pre-defined rare regions by linearly interpolating both inputs and labels.
 - ▶ SMOGN (Branco et al. 2017): augments SMOTER with Gaussian noise
- Focal-R

$$\frac{1}{n} \sum_{i=1}^{n} \sigma(|\beta e_i|)^{\gamma} e_i$$

- ► Error-aware loss
- ▶ Maps the absolute error into [0, 1].
- e_i : L_1 error for the i-th sample
- \triangleright β , γ : hyper-parameters
- ▶ Inspired by Focal Loss (Lin 2017) for classification

Baselines (2/2)

- Regressor re-training (RRT)
 - Two-stage training
 - Train encoder
 - Re-train regressor with inverse re-weighting and frozen encoder.
 - ▶ Inspired by Kang et al. 2019
- Cost-sensitive re-weighting: re-weighting schemes based on label distribution
 - Inverse-frequency weighting (INV)
 - Square-root weighting variant (SQINV)

Results

Could LDS + FDS help when the label distribution is skewed with one or more Gaussian peaks?

- Experimental setup
 - Curated skewed label distributions with 1-4 Gaussian peaks on IMDB-WIKI-DIR
 - Compared with the vanilla model
- Findings
 - Robustness to distribution change
 - Brings improvement

Skewed label distribution with one Gaussian peak

Figure: MAE gains of LDS + FDS over the vanilla model.

• Performance gains, esp. for extrapolation & interpolation

Skewed label distribution with two Gaussian peaks

Figure: MAE gains of LDS + FDS over the vanilla model.

Performance gains, esp. for extrapolation & interpolation

Skewed label distribution with three Gaussian peaks

Figure: MAE gains of LDS + FDS over the vanilla model.

Performance gains, esp. for extrapolation & interpolation

Skewed label distribution with four Gaussian peaks

Figure: MAE gains of LDS + FDS over the vanilla model.

Performance gains, esp. for extrapolation & interpolation

Skewed label distribution with two Gaussian peaks on IMDB-WIKI-DIR

Metrics		MA	E↓			GN		
Shot	All	w/ data	Interp.	Extrap.	All	w/ data	Interp.	Extrap.
Vanilla	11.72	9.32	16.13	18.19	7.44	5.33	14.41	16.74
Vanilla + LDS	10.54	8.31	14.14	17.38	6.50	4.67	12.13	15.36
Vanilla + FDS	11.40	8.97	15.83	18.01	7.18	5.12	14.02	16.48
Vanilla + LDS + FDS	10.27	8.11	13.71	17.02	6.33	4.55	11.71	15.13
Ours (best) VS. VANILLA	+1.45	+1.21	+2.42	+1.17	+1.11	+0.78	+2.70	+1.61

Table: Interpolation & extrapolation results

• Best results by smoothing both label & feature distributions

Different skewed label distributions on IMDB-WIKI-DIR

Metrics				MAE			GM ↓							
Shot	All	Many	Med.	Few	Zero	Interp.	Extrap.	All	Many	Med.	Few	Zero	Interp.	Extrap.
1 peak:														
Vanilla	11.20	6.05	11.43	14.76	22.67	_	22.67	7.02	3.84	8.67	12.26	21.07	-	21.07
Vanilla + LDS	10.09	6.26	9.91	12.12	19.37	-	19.37	6.14	3.92	6.50	8.30	16.35	_	16.35
Vanilla + FDS	11.04	5.97	11.19	14.54	22.35	-	22.35	6.96	3.84	8.54	12.08	20.71	_	20.71
Vanilla + LDS + FDS	10.00	6.28	9.66	11.83	19.21	-	19.21	6.09	3.96	6.26	8.14	15.89	-	15.89
2 peaks:														
Vanilla	11.72	6.83	11.78	15.35	16.86	16.13	18.19	7.44	3.61	8.06	12.94	15.21	14.41	16.74
Vanilla + LDS	10.54	6.72	9.65	12.60	15.30	14.14	17.38	6.50	3.65	5.65	9.30	13.20	12.13	15.36
Vanilla + FDS	11.40	6.69	11.02	14.85	16.61	15.83	18.01	7.18	3.50	7.49	12.73	14.86	14.02	16.48
Vanilla + LDS + FDS	10.27	6.61	9.46	11.96	14.89	13.71	17.02	6.33	3.54	5.68	8.80	12.83	11.71	15.13
3 peaks:														
VANILLA	9.83	7.01	9.81	11.93	20.11	_	20.11	6.04	3.93	6.94	9.84	17.77	_	17.77
Vanilla + LDS	9.08	6.77	8.82	10.48	18.43	-	18.43	5.35	3.78	5.63	7.49	15.46	-	15.46
Vanilla + FDS	9.65	6.88	9.58	11.75	19.80	-	19.80	5.86	3.83	6.68	9.48	17.43	-	17.43
Vanilla + LDS + FDS	8.96	6.88	8.62	10.08	17.76	_	17.76	5.38	3.90	5.61	7.36	14.65	-	14.65
4 peaks:														
Vanilla	9.49	7.23	9.73	10.85	12.16	8.23	18.78	5.68	3.45	6.95	8.20	9.43	6.89	16.02
Vanilla + LDS	8.80	6.98	8.26	10.07	11.26	8.31	16.22	5.10	3.33	5.07	7.08	8.47	6.66	12.74
Vanilla + FDS	9.28	7.11	9.16	10.88	11.95	8.30	18.11	5.49	3.36	6.35	8.15	9.21	6.82	15.30
$\mathrm{Vanilla} + \textbf{LDS} + \textbf{FDS}$	8.76	7.07	8.23	9.54	11.13	8.05	16.32	5.05	3.36	5.07	6.56	8.30	6.34	13.10

References

- Branco, Paula, Luís Torgo, and Rita P Ribeiro (2017). "SMOGN: a pre-processing approach for imbalanced regression". In: First international workshop on learning with imbalanced domains: Theory and applications. PMLR, pp. 36–50.
- Kang, Bingyi et al. (2019). "Decoupling representation and classifier for long-tailed recognition". In: arXiv preprint arXiv:1910.09217.
- Lin, T (2017). "Focal Loss for Dense Object Detection". In: arXiv preprint arXiv:1708.02002.
- Liu, Ziwei et al. (2019). "Large-scale long-tailed recognition in an open world". In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2537–2546.
- Torgo, Luís et al. (2013). "Smote for regression". In: *Portuguese conference on artificial intelligence*. Springer, pp. 378–389.
- Yang, Yuzhe et al. (2021). "Delving into deep imbalanced regression". In: *International conference on machine learning*. PMLR, pp. 11842–11851.