Алгебра

Сидоров Дмитрий

Группа БПМИ 219

April 16, 2022

$N_{2}1$

Пусть G - группа всех невырожденных нижнетреугольных (2×2) -матриц с коэффициентами из \mathbb{R} . Докажите, что все содержащиеся в G матрицы вида $\begin{pmatrix} 1 & 0 \\ * & * \end{pmatrix}$ образуют нормальную подгруппу в G.

Доказательство:

Обозначим все содержащиеся в G матрицы вида $\begin{pmatrix} 1 & 0 \\ * & * \end{pmatrix}$ как подгруппу H (образуют подгруппу, тк $e \in H$, $\begin{pmatrix} 1 & 0 \\ * & * \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ * & * \end{pmatrix}$, те если $a,b \in H$, то $ab \in H$ и $\forall a = \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix} \in H$ $a^{-1} = \begin{pmatrix} \frac{b}{b} & 0 \\ -\frac{a}{b} & \frac{1}{b} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ * & * \end{pmatrix} \in H$). По определению подгруппа $H \subseteq G$ называется нормальной, если $ghg^{-1} \in H$ $\forall g \in G, \forall h \in H$. Тк G - группа всех невырожденных нижнетреугольных (2×2) -матриц c коэффициентами из \mathbb{R} , то $g = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$, $a,b,c \in \mathbb{R}$, $det g = a \cdot c \neq 0$, и тогда $g^{-1} = \frac{1}{ac} \begin{pmatrix} c & 0 \\ -b & a \end{pmatrix}$. При этом $h = \begin{pmatrix} 1 & 0 \\ x & y \end{pmatrix}$, $x,y \in R$. Тогда $ghg^{-1} = \frac{1}{ac} \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} 1 & 0 \\ c & d \end{pmatrix} \begin{pmatrix} c & 0 \\ -b & a \end{pmatrix} = \frac{1}{ac} \begin{pmatrix} a & 0 \\ b + cx & yc \end{pmatrix} \begin{pmatrix} c & 0 \\ -b & a \end{pmatrix} = \frac{1}{ac} \begin{pmatrix} ac & 0 \\ (b + cx)c - byc & yca \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ * & * \end{pmatrix} \in H \Rightarrow H \triangleleft G$

№2

Найдите все гомоморфизмы из группы \mathbb{Z}_{15} в группу \mathbb{Z}_{20} .

Решение:

По определению $\varphi: G \to F$ - гомоморфизм, если $\varphi(ab) = \varphi(a) \cdot \varphi(b) \ \forall a,b,\in G$. Пусть $f: \mathbb{Z}_{15} \to \mathbb{Z}_{20}$ - гомоморфизм. Известно, что \mathbb{Z}_{15} порождается 1, те $\mathbb{Z}_{15} = \langle \overline{1} \rangle$, тогда, если $f(\overline{1}) = \overline{a}$, то $f(\overline{l}) = f(\overline{1} + \overline{1} + \cdots + \overline{1})$ $(l \text{ раз}) = \overline{a} + \overline{a} + \cdots + \overline{a}$ (l раз), по свойству гомоморфизма) $= l \cdot \overline{a}$, поэтому, чтобы задать гомоморфизм, нужно показать, куда может переходить 1. Тк ord $\overline{1} = 15$, то ord $f(\overline{1}) = \overline{a}$ является делителем 15. Найдём все элементы из \mathbb{Z}_{20} , порядок которых делит 15. Это элементы $\overline{0}, \overline{4}, \overline{8}, \overline{12}, \overline{16}$. Проверим, что образуется гомоморфизм.

1)
$$f(\overline{1}) = \overline{0} \Rightarrow f(\overline{l}) = \overline{0} \ \forall \overline{l} \in \mathbb{Z}_{15}$$
 - гомоморфизм

2)
$$f(\overline{1}) = \overline{4} \Rightarrow f(\overline{l}) = \overline{4} \cdot \overline{l} \ \forall \overline{l} \in \mathbb{Z}_{15}$$
 - гомоморфизм (тк $f(\overline{l_1} + \overline{l_2}) = \overline{4} \ \overline{l_1} + \overline{4} \ \overline{l_2})) = f(\overline{l_1}) + f(\overline{l_2})$) Аналогично удовлетворяют $f(\overline{l}) = \overline{8} \cdot \overline{l}, f(\overline{l}) = \overline{12} \cdot \overline{l}, f(\overline{l}) = \overline{16} \cdot \overline{l} \ \forall \overline{l} \in \mathbb{Z}_{15}$.

Ответ: $f(\bar{l}) = \overline{0}, f(\bar{l}) = \overline{4}, f(\bar{l}) = \overline{8} \cdot \bar{l}, f(\bar{l}) = \overline{12} \cdot \bar{l}, f(\bar{l}) = \overline{16} \cdot \bar{l} \quad \forall \bar{l} \in \mathbb{Z}_{15}$.

№3

Пусть H - подгруппа всех элементов конечного порядка в группе ($\mathbb{C}\setminus\{0\}$, \times). Докажите, что $H\simeq\mathbb{Q}/\mathbb{Z}$, где группы \mathbb{Q} и \mathbb{Z} рассматриваются с операцией сложения.

Доказательство:

По теореме о гомоморфизме для групп $G/\mathrm{Ker}\varphi\simeq\mathrm{Im}\varphi$. Кроме того, по определению изоморфизм - гомоморфизм $\varphi:G\to F$, если φ - биекция $(\varphi:G\to F$ - гомоморфизм, если $\varphi(ab)=\varphi(a)\cdot\varphi(b)\ \forall a,b,\in G)$. Пусть $\varphi:Q\to\mathbb{C}\setminus\{0\}$ (будем рациональному x сопоставлять $e^{2\pi ix}$, получим получим гомоморфизм из Q с операцие сложения в $(\mathbb{C}\setminus\{0\},\times)$). Покажем, что $\mathrm{Ker}\varphi$ совпадает с \mathbb{Z} . Если $x\in\mathrm{Ker}\varphi$, то $e^{2\pi ix}=\cos(2\pi x)+i\sin(2\pi x)=1\Rightarrow x\in\mathbb{Z}$.

Покажем, что $\text{Im}\varphi$ совпадает с H. Пусть $q \in \mathbb{Q}$, тогда $q = \frac{m}{n}, \ m \in \mathbb{Z}, n \in \mathbb{N}$. Тогда, если каждому рациональному числу x сопоставляется комплексное число $e^{2\pi i x}$, то q сопоставляется число $e^{2\pi i \frac{m}{n}}$, значит, тк $(e^{2\pi i \frac{m}{n}})^n = 1$, то любой элемент образа имеет конечный порядок. Если же $h \in H$, те h - элемент конечного порядка в группе ($\mathbb{C}\setminus\{0\},\times$), то для некоторого $n \in \mathbb{N}$ $h^n = 1$, а значит $h = e^{2\pi i \frac{k}{n}}$, $0 \le k < n$ (формула корня n-ой степени из 1). Таким образом, $\text{Im}\varphi$ совпадает с H.

Итого, $\operatorname{Ker}\varphi$ совпадает с \mathbb{Z} , $\operatorname{Im}\varphi$ совпадает с H, а значит по теореме о гомоморфизме для групп $H\simeq \mathbb{Q}/\mathbb{Z}$.

№4

Пусть $m, n \in \mathbb{N}$. Докажите что следующие условия эквивалентны:

- 1) m, n взаимно просты
- 2) для всякой группы G, всякой подгруппы $A \subseteq G$ порядка m и всякой подгруппы $B \subseteq G$ порядка n выполняется условие $A \cap B = \{e\}$.

Доказательство:

Докажем, что 2) следует из 1). Если порядок A равен m, а порядок B равен n, то для $x \in A \cap B$ выполняется $x^m = x^n = \{e\} \Rightarrow x = \{e\}$, если m, n взаимно просты.

Теперь докажем, что 1) следует из 2). Пусть m,n не взаимно просты и НОД $(m,n) \neq 1$. Пусть G - циклическая группа с порядком mn, x - образующий элемент. Тогда, если взять подгруппу $A = \langle x^n \rangle$ (порядок равен m) и подгруппу $B = \langle x^m \rangle$ (порядок равен n), то $A \cap B = \langle x^{\text{НОК}(m,n)} \rangle$ (порядок равен НОД $(m,n) \neq 1$, тк НОК $(m,n) \cdot$ НОД(m,n) = mn) \Rightarrow не выполняется условие $A \cap B = \{e\}$. Значит 2) не выполняется для всякой группы G и всяких подгрупп $A \subseteq G$ и $B \subseteq G$ с порядками m,n соотв. Таким образом, если $\overline{1} \to \overline{2}$, то $2 \to 1$.

Таким образом, если 1) следует из 2) и 2) следует из 1), то 1) и 2) эквивалентны.