11-442 / 11-642 / 11-742: Search Engines

Evaluating Search Effectiveness

Jamie Callan Carnegie Mellon University callan@cs.cmu.edu

1

Overview of the Evaluation Unit

Introduction to evaluation

The Cranfield methodology

- Overview and introduction
- Test collections
- Metrics

Creating test collections

- Cranfield @ TREC and other evaluation forums
- Cranfield @ work

Evaluation in a dynamic environment

© 2021, Jamie Callar

2

The Cranfield Methodology: Creating Test Collections

Two methods of creating test collections are common

- 1. Developed by a community (e.g., a research community)
 - Usually designed to be useful for a long time ("reusable")
 - Must accommodate today's system(s) and future systems
 - Higher effort, higher expense
- 2. Developed by an organization (e.g., a company)
 - Usually designed to address specific needs
 - Usually lower effort, lower expense
 - Usually a short lifespan

3

© 2021, Jamie Callan

3

Cranfield@TREC

The U.S. National Institute of Standard and Technologies (NIST) supports scientific and commercial progress by defining state-of-the-art measurement capabilities

In 1992, NIST began providing resources for large-scale evaluation of text retrieval

- Annual production of tasks and test collections
- The Text REtrieval Conference (TREC)
 - An annual forum for comparison of methods and results
- Most TREC evaluation is based on the Cranfield methodology

4

© 2021, Jamie Callan

Cranfield@TREC

Each year, TREC defines a set of tasks ("tracks")

TREC 2019 tracks

- Complex answer: Integrate info from multiple sources
- Conversational assistance: Search in dialogue systems (e.g., Siri)
- Decision: Search that helps people make decisions (e.g., health)
- Deep learning: Train your neural system with a lot of data
- Fair ranking: Relevance + fairness (representativeness)
- Incident streams: Analyze social media in emergencies
- News: Search of news (Washington Post)
- Precision medicine: Link oncology patients to clinical trials

5

© 2021, Jamie Calla

5

Cranfield@TREC: Creating Test Collections

Most TREC tracks produce test collections

- The research community defines a task
 - E.g., Microblog retrieval
- NIST works with researchers to obtain a document collection
- NIST defines information needs and queries
 - Sometimes in collaboration with industry or other groups
- The research community identifies documents to be judged
 - Pooling: Run your favorite technique, submit your results
- NIST employees and/or participants judge the documents

6

© 2021, Jamie Callan

Cranfield@TREC: International Siblings

TREC is a community-driven approach to creating datasets

• NIST enables creation, but does not do all of the work itself

Other regions have adopted this approach to creating data

- CLEF (Europe)
 - Originally cross-lingual retrieval, now many other topics
- NTCIR (Japan)
 - Originally Asian languages, now also other topics
- FIRE (India)
 - Originally Indian languages, now also other topics

7

© 2021, Jamie Callan

7

Cranfield@TREC: Summary

TREC test collections are designed to be <u>reusable</u>

- The pool of judged documents is <u>large</u> and <u>diverse</u>
- Why is this important?
 - It enables accurate measurements for techniques that were not in the assessment pool
- (Most) TREC collections accommodate today's system(s) and future systems
- Reusability is an essential property of TREC collections

The lifespan of a typical TREC test collection is 5-10 years

• Some datasets have been used for 20+ years

© 2021, Jan

Overview of the Evaluation Unit

Introduction to evaluation

The Cranfield methodology

- Overview and introduction
- Test collections
- Metrics

Creating test collections

- Cranfield @ TREC and other evaluation forums
- Cranfield @ work

Evaluation in a dynamic environment

© 2021, Jamie Call

9

Cranfield@Work

TREC collections may not cover your particular needs

- E.g., because you use proprietary information
- E.g., because the source of information is new

You may need to create your own test collection

- This happens all the time
 - In industry
 - In research environments (such as ours)

What factors must you consider?

© 2021, Jamie Call

10

Cranfield@Work: How Many Information Needs Are Needed?

Suppose that you are building your own corpus ...how many information needs do you need?

- Typical heuristics
 - 25 provides a rough estimate
 - 50 is relatively reliable
 - 100 is reliable
 - 200 is very reliable

Are these heuristics valid? What is our goal?

- To calculate MAP reliably?
- To distinguish among systems reliably?

11

© 2021, Jamie Callan

11

Cranfield@Work: How Many Information Needs Are Needed?

Evaluation based on a few information needs is unreliable

Info Needs	MAP	Standard Deviation	95% Confidence Interval	Indri Gov2
5	0.172	0.039	[0.095, 0.250]	BOW queries
10	0.276	0.020	[0.238, 0.315]	1
25	0.265	0.029	[0.208, 0.321]	
50	0.260	0.020	[0.221, 0.299]	The
100	0.290	0.014	[0.263, 0.317]	population
148	0.287	0.014	[0.259, 0.315]	changes

Usually 50 information needs is considered "good enough"

• 100-200 information needs is considered very reliable

12

© 2021, Jamie Callan

Cranfield@Work: Confidence Intervals

Example

- MAP = 0.283
- N = 25 (information needs)
- Standard deviation = 0.025
- $CI_{95\%} = [Mean ZValue_{95\%} \times StdDev, Mean + ZValue_{95\%} \times StdDev]$ = $[0.283 - 1.96 \times 0.025, 0.283 + 1.96 \times 0.025]$ = [0.234, 0.332]
 - -95% of samples will have MAP $\in [0.234, 0.332]$
 - It does not mean that the true MAP \in [0.234, 0.332]

© 2021, Jamie Call

13

Cranfield@Work: How Many Information Needs Are Needed?

Usually 50 information needs is considered "good enough"

- Good enough to identify the <u>best system</u> relatively reliably
- Maybe <u>not</u> good enough to provide a <u>reliable estimate of MAP</u>
- 100-200 information needs is considered very reliable

Industry often uses hundreds of information needs (queries)

Why this difference?

- Researchers have fewer resources
- Small differences can be important to industry, but are less useful to researchers

© 202

Cranfield@Work: Reliability of Relevance Assessments

A relevant document is one that <u>a person</u> judges as <u>useful</u> in the context of a specific information need

• Does it matter that people judge relevance differently?

Common complaint: The relevance judgments don't measure my system fairly

- Because the assessor made mistakes on some documents
- Because some highly-ranked documents were not judged
 - And thus are considered non-relevant by trec eval

Is this complaint justified?

© 2021, Jamie Calla

15

Cranfield@Work: How Do Three TREC Assessors Compare?

Cranfield@Work: Does it Matter Which Assessments You Use?

Switching assessments affects objective evaluations

- Precision, Recall, MRR, R-Prec, ...
- Objective evaluations describe the user experience

Does switching assessments affect comparative evaluations?

- system A vs. system B
- system A vs. system A'

A study used TREC data to answer this question

© 2021, Jamie Calla

17

Cranfield@Work: Does it Matter Which Assessments You Use?

Use TREC assessments to generate 100,000 artificial assessors

- A₁: Relevant if A₁ calls it relevant
- ...
- A₄: Relevant if A₁ and A₂ and A₃ call it relevant ("union")
- A₅: Relevant if A₁ or A₂ or A₃ call it relevant ("intersection")
- A₆: Use A₁ for q₁, A₂ for all other queries
- ...

Use each artificial assessor to rank systems (n rankings)

- Compare the rankings produced by each set of assessments
- How well do they agree about which systems are best/worst?

(Voorhees, 1998)

Cranfield@Work: Does it Matter Which Assessments You Use?

19

Cranfield@Work: Does it Matter Which Assessments You Use?

Significant overlap in the bars, so this looks bad ... is it?

System rankings are very similar with different assessments

- On average, swap 3% of entries to convert between rankings
- Most swaps are between systems that have $\Delta MAP < 1\%$
- Probability of a swap is very low if \triangle MAP is ≥ 0.05

Systems tend to move together

- A set of assessments affects most systems in the same way
 - "Easy" assessors, "hard" assessors

(Voorhees, 1998)

Cranfield@Work: Creating Test Collections

So, you're evaluating search engines for some organization...

- ...how do you build them a test collection?
- 1. Collect a large set of representative documents
 - -Easy
- 2. Collect a set of representative information needs
 - At least 25, preferably 50-100
- 3. Translate each information need into a set of queries
 - At least several queries per information need

© 2021, Jamie Calla

21

Cranfield@Work: Building Your Own Test Collection

- 4. Run each query against each search engine
 - Save the top N documents
 - Preferably at least 50 documents per query
- 5. Pool all results for an information need
 - Different queries, different engines
 - Sort them into random order
- 6. Have a person judge each document
 - One person judges all documents for one information need
 - » Important!: The work can't be split among people
 - Ideally, the judge created the information need

© 2021, Jamie Cal

22

Overview of the Evaluation Unit

Introduction to evaluation

The Cranfield methodology

- Overview and introduction
- Test collections
- Metrics

Creating test collections

- Cranfield @ TREC and other evaluation forums
- Cranfield @ work

Evaluation in a dynamic environment

© 2021. Jamie Cal

23

Evaluation in a Dynamic Environment

Web search engines do use the Cranfield methodology

They have use trained assessors, similar to NIST

But, they also use other metrics and methodologies...

- It would be too expensive to apply the Cranfield methodology to a large percentage of query volume
- Information needs for most queries are unknown
- The document collection is dynamic
- Clicks are not relevance judgments

© 2021, Jamie Cal

24

Evaluation in a Dynamic Environment: Interleaved Testing Procedure

One trial

- User submits query
- Select two rankers ("A" and "B")
- Ranking₁ $d_1 d_6 d_4 d_3 d_8 \cdots$ Ranking_{Interleaved} $d_2 d_5 d_9 d_7 d_{10} \cdots$ Ranking₂
 Ranking₂
- Interleave the rankings produced by "A" and "B"
- Track the user's clicks on the interleaved document ranking
- When the user stops clicking
 - Assign credit to "A" and "B" based on clicks
 - Declare "A" or "B" the winner of this trial

Repeat until enough trials are collected

• Each trial is a different query and a different user

25

© 2021, Jamie Callan

25

Evaluation in a Dynamic Environment: Interleaved Testing

Requirements for an interleaving procedure

- The user should not notice it
- It should be robust to user biases
- It shouldn't alter the search experience
- It should lead to user behavior that reflects user preferences

We consider two interleaving methods

- Balanced interleaving
- Team-draft interleaving

There are other methods, but this gives you the general idea

26

© 2021, Jamie Callan

```
Input: Rankings A = (a_1, a_2, \dots) and B = (b_1, b_2, \dots) I \leftarrow (); k_a \leftarrow 1; k_b \leftarrow 1; AFirst \leftarrow RandomBit() \dots decide which ranking gets priority while (k_a \leq |A|) \land (k_b \leq |B|) do if not at end of A or B if (k_a < k_b) \lor ((k_a = k_b) \land (AFirst = 1)) then if A[k_a] \notin I then I \leftarrow I + A[k_a] \dots append next A result k_a \leftarrow k_a + 1 else if B[k_b] \notin I then I \leftarrow I + B[k_b] \dots append next B result k_b \leftarrow k_b + 1 end if end while Output: Interleaved ranking I
```

- Decide (once) which method goes first
- When a duplicate document is found, increment the counter
 - But, the document is not added to the interleaved ranking

(Chapelle et al, 2012)

© 2021, Jamie Callar

27

Evaluation in a Dynamic Environment: Balanced Interleaving

27

Without duplicates

With duplicates

2021, Jamie Callan

Assume that people read from top to bottom

- They click on documents that look interesting
- They stop when they are satisfied or frustrated

At each rank, each method contributes about 50% of the documents

- Fair: Each method has an equal opportunity to present documents
- A random clicker would click equally on documents from each method

29

Evaluation in a Dynamic Environment: Balanced Interleaving

Given an interleaved ranking I with clicks C

• c_{max}: Rank of the <u>last click</u> (the last document viewed)

Use rankings to depth $k = min\{j: (i_{c_{max}} = a_j) \lor (i_{c_{max}} = b_j)\}$

- $\{a_1,..,a_k\}$ \cup $\{b_1,..,b_k\}$ covers all does in $\{i_1,..,i_{c_{max}}\}$
- # clicks_a=| c_j : $i_{c_j} \in \{a_1, ..., a_k\}$ | clicks on a's top k
 # clicks_b=| c_j : $i_{c_j} \in \{b_1, ..., b_k\}$ | clicks on b's top k

The method that gets the most clicks wins the trial

Aggregate results for all trials to find the best ranker

$$\Delta(A,B) = \frac{wins(A) + 0.5 \times ties(A,B)}{wins(A) + wins(B) + ties(A,B)}$$

$$\begin{array}{cccc}
\underline{I} & \underline{C} \\
i_1 & & \\
i_2 & c_1 \\
i_3 & & \\
i_5 & c_2 \\
i_6 & & \\
i_7 & & \\
i_8 & c_{max} \\
i_9 & & \\
\vdots & & \\
\end{array}$$

(Chapelle et al, 2012)

Example

- Clicked: ✓
- $c_{max}=3$
 - Rank of last clicked doc
- k=2
 - Min depth needed to find <u>last</u> clicked doc in R₁ or R₂
- # clicks_{R1}=1
- # clicks_{R2}=2

R₂ wins this trial

		111	puı	mierieaved	
		Ran	king	Ranking	
	Rank	R_1 R_2		R ₁ first	
	1	a	b	a	
k=2	=2 <u>2 b e</u>		b ✓		
	3	c	a	e ✓	
	4	d	f	c	
	5	g	g	d	
	6	h	h	f	
	:	:	:	:	

Interleaved

(Chapelle et al, 2012)

© 2021, Jamie Callan

31

Evaluation in a Dynamic Environment: Balanced Interleaving

Example

- Clicked: ✓
- $c_{max}=3$
 - Rank of last clicked doc
- k=2
 - Min depth needed to find <u>last</u> clicked doc in R₁ or R₂
- # clicks_{R1}=1
- # clicks $_{R_2}$ =2

R₂ wins this trial

		լ ութաւ լ		Intericaved		
		Ranking		Ranking		
	Rank	R_1	R_2	R ₂ first		
	1	a	b	b ✓		
k=2	2	b	<u>e</u>	a		
	3	c	a	e ✓		
	4	d	f	c		
	5	g	g	f		
	6	h	h	d		
	:	:	:	:		

Input

Interleaved

(Chapelle et al, 2012)

© 2021, Jamie Cal

32

Example

- Clicked: ✓
- $c_{max} = 5$
 - Rank of last clicked doc
- k=4
 - Min depth needed to find <u>last</u> clicked doc in R₁ or R₂
- # clicks $_{R_1}$ =2
- # clicks_{R2}=2

This trial is a tie

		mput		mieneaved		
		Ranking		Ranking		
	Rank	$R_1 R_2$		R ₁ first		
	1	a c		a 🗸		
	2	b	a	С		
	3	c	i	ь		
k=4	4 d	b	i ✓			
	5	e	g	d ✓		
	6	f	e	e		
	:	:	:	:		

Input Interleaved

(Chapelle et al, 2012)

© 2021, Jamie Callan

33

Evaluation in a Dynamic Environment: Interleaving

Interleaving is repeated for many trials

Query	User	First Ranker	Winner
buy ipad	Hongyu	R_2	R_1
deep learning tutorial	Vallari	R_1	R ₁
pittsburgh weather	Arpita	R ₂	Tie
shoes	Varshini	R_2	R ₁
gifts for mom	Qing	R_1	R_2
: : :		:	:

Tally results from all trials to declare a winner

$$\Delta(R_1, R_2) = \frac{wins(R_1) + 0.5 \times ties(R_1, R_2)}{wins(R_1) + wins(R_2) + ties(R_1, R_2)}$$

 R_1 wins if $\Delta(R_1, R_2) > 0.5$

34

© 2021, Jamie Callan

Balanced Interleaving can behave unexpectedly

- Suppose a user clicks on just <u>one</u> result randomly
- $\frac{3}{4}$ of the outcomes favor R_2

Why?

- 3/4 of the documents are ranked higher by R₂ than R₁
- Cutoff k considers too little information

	Input Ranking		Balanced					
			R_1	R_2		R_1 f	irst	t
Rank	R_1	R_2	first	first	✓	\mathbf{C}_{\max}	k	Win
1	a	b	a	ь	a	1	1	R_1
2	b	c	b	a	ь	2	1	R_2
3	c	d	c	c	c	3	2	R_2
4	d	a	d	d	d	4	3	R_2

(Chapelle et al, 2012)

© 2021, Jamie Callar

35

Evaluation in a Dynamic Environment: Team-Draft Interleaving

- On each round, randomize which method goes first
- When a duplicate document is encountered, skip to the next

(Chapelle et al, 2012)

© 2021, Jamie Call

Evaluation in a Dynamic Environment: Team Draft Interleaving

Without duplicates

With duplicates

37

Evaluation in a Dynamic Environment: Team-Draft Interleaving

Consider an interleaved ranking I with clicks C

Clicks attributed to each method are

The method that gets the most clicks wins the trial

Aggregate results for all trials to find the best ranker

$$\Delta(A,B) = \frac{wins(A) + 0.5 \times ties(A,B)}{wins(A) + wins(B) + ties(A,B)}$$

 R_1 wins if $\Delta(R_1, R_2) > 0.5$

<u>I</u> <u>C</u> \mathbf{i}_1

 i_2 c_1 i_3

 i_4

 i_8 c_3

(Chapelle et al, 2012)

Evaluation in a Dynamic Environment: Team-Draft Interleaving

Team-Draft can behave unexpectedly

- Suppose a query has 3 intents
 - 49% of the users: a is relevant
 - 49% of the users: b is relevant
 - -2% of the users: c is relevant

	Input Ranking		Interleaved
Rank	R_1 R_2		Ranking
1	a	b	ь
2	b	c	a
3	:	:	c

R1 satisfies 98% of search intents with the top 2 results

- But, if people click on just one result randomly, R₂ wins 51% of trials
 - This is an artifact of how duplicates are handled
 - Only the method that suggested the document higher gets credit
 - » R₁ gets credit for a, and R₂ gets credit for b and c

(Chapelle et al, 2012)

© 2021, Jamie Calla

39

Evaluation in a Dynamic Environment: Team-Draft Interleaving

Team-Draft can behave unexpectedly

- Suppose a query has 3 intents
 - 49% of the users: a is relevant
 - 49% of the users: b is relevant
 - -2% of the users: c is relevant

		Inp Ranl		Team R ₁	Draft R_2
				First	First
	Rank	R_1	R_2		
	1	a	b	a	ь
	2	b	c	ь	a
•	top32 r	esult	s :	С	С

R1 satisfies 98% of search intents with the top32 results

- But, if people click on just one result randomly, R2 wins 51% of trials
 - This is an artifact of how duplicates are handled
 - Only the method that suggested the document higher gets credit
 - » R₁ gets credit for a, and R₂ gets credit for b and c

(Chapelle et al, 2012)

© 2021, Jamie Cal

Evaluation in a Dynamic Environment: Does Interleaving Agree With Assessors?

A large evaluation was done with ArXiv.org, Bing, and Yahoo

- ArXiv: 700K academic articles, scientific users, 70K searches
 - Ranking functions created by degrading a baseline
- Bing: Team-Draft interleaving on a % of US traffic
 - Five pairs of proprietary ranking functions, 220K searches
 - 12,000 queries were also manually assessed (5-point scale)
- Yahoo: Balanced interleaving on a % of US traffic
 - All pairs of four proprietary ranking functions, 20M searches
 - -2,000 queries were also manually assessed

(Chapelle et al, 2012)

© 2021, Jamie Callar

41

Evaluation in a Dynamic Environment: Does Interleaving Agree With Assessors?

ArXiv.org

• Interleaving identifies the better ranker (usually w/ significance)

Bing & Yahoo

- When assessors find a significant difference, interleaving agrees
- Interleaving may find a difference significant that assessors don't

Often interleaving can provide statistically significant results where manual assessments cannot

• A "small" number of manually-assessed queries

(Chapelle et al, 2012)

© 2021, Jamie Callar

42

Evaluation in a Dynamic Environment: Does Interleaving Agree With Assessors?

Interleaving identifies the best ranker

... does it also indicate the magnitude of the difference?

- Bing
 - 0.88 correlation w/ NDCG@5 (Team-Draft) - 0.69 correlation w/ MAP (Team-Draft)
- Yahoo
 - 0.70 correlation w/ DCG@5 (Balanced)

Note that the number of queries affects the error bars

- 12,000 queries for Bing
- 2,000 queries for Yahoo

(Chapelle et al, 2012)

© 2021, Jamie Callan

43

Evaluation in a Dynamic Environment: Metrics

Dynamic environments often use metrics based on user behavior

- Abandonment rate: % of queries that receive no clicks
- Reformulation rate: % of queries that are reformulated
- Queries per session: Session == Information need
- pSAT-clicks: % of documents with dwell time > 30 seconds
- pSkip: % of documents that are skipped
- Clicks per query, Clicks@1
- Max Reciprocal Rank, Mean Reciprocal Rank
- Time to First Click, Time to Last Click

(Chapelle et al, 2012)

© 2021, Jamie Calla

Evaluation in a Dynamic Environment: Does Interleaving Agree With Behavior?

Interleaving does not predict changes in user behavior well

- E.g., Queries per Session, Abandonment Rate, ...
- It predicts Clicks@1, but only with very large numbers of queries
 - The Yahoo experiment

(Chapelle et al, 2012)

© 2021, Jamie Callan

45

Evaluation in a Dynamic Environment: How Many Queries Are Needed?

To achieve 95% confidence

- ArXiv.org: About 200K queries
- Yahoo:
 - Rankers of different quality: A few hundred thousand queries
 - Rankers of similar quality: A few million queries

Interleaving reaches significance faster than Clicks@1

• 1 hour for interleaving vs. 1 day for Clicks@1

(Chapelle et al, 2012)

© 2021, Jamie Callan

46

Evaluation in a Dynamic Environment

More sophisticated methods of counting clicks improve the sensitivity and convergence rates for Team-Draft Interleaving

- Not covered due to lack of time
- This is an active research topic

© 2021, Jamie Callan

47

Overview of the Evaluation Unit

Introduction to evaluation

The Cranfield methodology

- Overview and introduction
- Test collections
- Metrics

Creating test collections

- Cranfield @ TREC and other evaluation forums
- Cranfield @ work

Evaluation in a dynamic environment

48

© 2021, Jamie Callan

Overview of the Evaluation Unit: Cranfield vs. Interleaved Evaluation

We focused more on Cranfield than interleaving ... why?

- Cranfield is more established
 - It has been used for years and is well-understood
- Cranfield supports a wide variety of metrics
 - It provides better information about ranking behavior
- Cranfield can be used in most situations
 - Interleaving requires query traffic that you may not have

However, interleaving is a powerful tool, when you can use it

• Inexpensive, adaptive, sensitive to small differences

49

© 2021, Jamie Callan

49

Overview of the Evaluation Unit: Cranfield vs. Interleaved Evaluation

Use the method that has the properties you need

Property	<u>Cranfield</u>	Interleave
Relevance = satisfying an information need	Y	Y
The assessor has the information need	Usually	Y
Requires human assessors	Y	N
Requires a large amount of query traffic	N	Y
Supports a variety of metrics	Y	Y
Sensitive to small differences among methods	N	Y
Reusable test collections	If desired	N
Dynamic test collections	N	Y
Quickly test new methods	If desired	Y

50

© 2021, Jamie Callan

Next Semester...

This course will be offered next semester

I will need Teaching Assistants

• 8-12 hours/week × 7 weeks ("grading weeks")

• 3-5 hours/week × 9 weeks (office hours, piazza)

Please send me email if you are interested in being a TA

• I will start TA interviews after grades are posted (probably Monday, May 10 or Tuesday, May 11)

51

For More Information

- C. Buckley and E. M. Voorhees. "Evaluating evaluation measure stability." Proceedings of SIGIR 2000. pp. 33-40. 2000.
- C. Buckley and E. M. Voorhees. "Retrieval evaluation with incomplete information." Proceedings of SIGIR 2004. pp. 25-32. 2004.
- O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale validation and analysis of interleaved search evaluation. Transactions on Information Systems, 30(1). 2012.
- E. M. Voorhees. "Variations in relevance judgements and the measurement of retrieval effectiveness." Proceedings of SIGIR '98. pp. 315- 323. 1998.
- E. M. Voorhees. "Evaluation by highly relevant documents." Proceedings of SIGIR 2001. pp. 74-82. 2001.
- E. M. Voorhees and C. Buckley. "The effect of topic set size on retrieval experiment error." Proceedings of SIGIR 2002. pp. 316-323. 2002.
- M. Sanderson and J. Zobel. "Information retrieval system evaluation: Effort, sensitivity, and reliability." Proceedings of SIGIR 2005. pp. 162-169.

52