МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, НГУ)

Факультет ФИЗИЧЕСКИЙ	
Кафедра <u>ФИЗИЧЕСКИ УСКОРИТЕЛЕЙ</u>	
Направление подготовки <u>03.03.02 ФИЗИКА</u>	
Образовательная программа: БАКАЛАВРИА	<u>AT</u>
выпускная квал	ификационная работа
Требушини	н Андрей Евгеньевич
(Фамили	я, Имя, Отчество автора)
Тема работы <u>Разработка рентгенооптичочереди проекта ЦКП «СКИФ»</u>	неских трактов экспериментальных станций первой
«К защите допущена»	
Заведующий кафедрой	Научный руководитель
доктор физмат. наук, профессор	канд. физмат. наук
гл. н.с. ИЯФ СО РАН	Помощник директора по перспективным проектам, ИЯФ СО РАН
Тельнов В., И./	Ракшун Я., В./ (фамилия И., О.) / (подпись, МП)
«»20г.	«»20г.
	Дата защиты: «»20г.

Оглавление

			лр.
Введен	ие		4
Глава 1	. Онд	цуляторное излучение	6
1.1	Излуч	нение релятивистского электрона в синусоидальном	
	магни	ттном поле	6
	1.1.1	Уравнение движения электрона в ондуляторе	6
	1.1.2	Решение уравнений Максвелла в прааксиальном	
		приближении	8
	1.1.3	Излучение планарного ондулятора	10
1.2	Излуч	нение высших гармоник	
		Амплитудный спектр высших гармоник	
		ондуляторного излучения в зависимости от	
		параметра ондуляторности	16
1.3	Заклю	очение к главе	17
Глава 2	. Про	ректирование рентгенооптических трактов для	
	Сиб	бирского Кольцевого Источника Фонтов	18
2.1	Введе	ение	18
2.2	Станц	ция 1-1 — «Микрофокус»	18
	2.2.1	Вставное устройство	18
	2.2.2	Оптика станции 1-1	19
2.3	Стані	ция 1-2 — «Структурная диагностика»	22
	2.3.1	Вставное устройство	22
	2.3.2	Оптика станции 1-2	22
2.4	Станг	ция 1-4 — «XAFS-спектроскопия и магнитный	
	дихро	ризм»	25
	2.4.1	Вставное устройство	25
	2.4.2	Излучение клинообразного ондулятора	26
	2.4.3	Оптика станции 1-4	29
Глава 3	. Зак	глючение	31

Список литературы	34
Список рисунков	36
Список таблиц	38
Приложение А. Единицы измерения потока фотонов	39
Приложение Б. Краткий обзор дифракции на кристаллах	40
Б.1 Симметричное брэгговское отражение от идеально кристалла	40
Б.2 Поглощательные способности кристаллов	41
Приложение В. Дополнительные графики	42
Приложение Г. Примеры программного кода	45
Г.1 Подраздел приложения	45

Введение

Данная работа посвящена разработке рентгенооптических трактов синхротронного источника ЦКП «СКИФ» — Центр Коллективного Пользования «Сибирский кольцевой источник фотонов». За последние три десятилетия мир увидел активное развитие специализированных источников синхротронного излучения и соответствующих методов исследования вещества с использованием синхротронного излучения в рентгеновском диапазоне. Главные параметры излучения, который достигаются на данных установках являются: высокий поток фотонов, направленность излучения в малый телесный угол, когерентность. Эти параметры крайне необходимы для проведения качественных экспериментов с революционными результатами в области химии, биологии, материаловедении, медицины и многих других отраслях науки и техники, [1].

Высокая востребованность данной работы заключается в том, что отечественная наука претерпевает стагнацию в области развития специализированных источников рентгеновского излучения. Проектируемый в Новосибирске синхротронный источник является первым на территории России специализированным источником с проектными параметрами не уступающими мировым установкам, таким, например, как: MAX-IV [3], NSLS-II [4], PETRA-III [5], Diamond [6] и д.р., а по некоторым данным с запасом превосходящих их [2].

Цель данной работы — разработка проекта станций первой очереди, вставными устройствами на которых являются сверхпроводящие ондуляторы. Это станции: 1-1 — «Микрофокус», 1-2 — «Структурная диагностика», 1-4 — «ХАFS-спектроскопия и магнитный дихроизм».

В разработку проекта входит ряд задач, которые выполнены в данной работе:

 Расчёт ондуляторного излучения с помощью численного моделирования, получение спектров и сечений пучка из указанных устройств, максимально обективно описывающих реальное излучение.

- Разработка оптических трактов: расчёт тепловых нагрузок, расчёт спектров и сечений пучка после прохождение оптических элементов.
- Разработка программного кода для реализации выше приведённых задач и удобному воспроизведению результатов расчётов любым участником проекта.

В работе даётся изложение теории ондуляторного излучения, необходимое для понимания основных моментов при проектировании станций, и далее по тексту приводятся результаты расчётов и основные концептуальные идеи по реализации пользовательских станций ЦКП «СКИФ».

Глава 1. Ондуляторное излучение

В этой части мы дадим вывод излучения релятивистского электрона в $r\omega$ -пространстве, движущегося в синусоидальном магнитном поле. Вывод замечателен тем, что даёт результаты из первых принципов — уравнений Максвелла, а точность используемых приближений можно наглядно проследить по ходу изложения. В выкладках мы следовали подходу разработанному в серии работ [7], [8], [9], [10]. В заключении главы, будет дан обзор на подход, который используется в симуляционном коде SRW [11], а также даны краткие описания других симуляционных кодов, которые активно используются в научном сообществе для расчёта синхротронного излечения.

1.1 Излучение релятивистского электрона в синусоидальном магнитном поле

1.1.1 Уравнение движения электрона в ондуляторе

Выведем спектр излучения ондулятора. Вывод начнём с уравнения движение релятивистского электрона в магнитном поле.

$$\vec{F} = e[\vec{v} \times \vec{B}],\tag{1.1}$$

где e — заряд электрона, а \vec{v} и \vec{B} — скорость частицы и магнитное поле, соответственно. Уравнение можно переписать в виде:

$$\frac{d\vec{p}}{dt} = \frac{e}{\gamma m_e} [\vec{v} \times \vec{B}],\tag{1.2}$$

где γ — лоренц фактор, появившийся из релятивистского импульса. Отложим ось z вдоль направления релятивистского движения электрона и будем считать, магнитное поле в ондуляторе $B_0\cos(k_w z)$ направлено вдоль оси y, где k_w связана с периодом ондулятора следующим образом $k_w=2\pi/\lambda_w$. После этого уравнение 1.2 можно переписать в виде:

$$\begin{cases}
\frac{d^2x}{dt^2} = -\frac{eB_0}{\gamma m_e} \frac{dz}{dt} \cos(k_w z) \\
\frac{d^2z}{dt^2} = \frac{eB_0}{\gamma m_e} \frac{dx}{dt} \cos(k_w z)
\end{cases}$$
(1.3)

далее, один раз интегрируя первое уравнение системы с заменой $dz=\beta c dt$, где $\beta=\|\vec{v}\|/c$, можно получить:

$$\frac{dx}{dt} = -\frac{eB_0}{\gamma m_e k_w} \sin(k_w z) \tag{1.4}$$

Введём коэффициент ондуляторности — $K=\frac{eB_0\lambda_u}{2\pi m_e c}$, который показывает угол отклонения траектории электрона от оси z.

Подставляя получившийся результат 1.4 во второе уравнение системы 1.3 и интегрируя с пределами от 0 до некоторого z_0 , получим систему:

$$\begin{cases}
\frac{dx}{dt} = -\frac{Kc}{\gamma}\sin(k_w z) \\
\frac{dz}{dt} = \beta c - \frac{K^2 c}{2\gamma^2 \beta}\sin^2(k_w z)
\end{cases}$$
(1.5)

Чтобы получить уравнение на траекторию частицы, ещё раз проинтегрируем оба уравнения и получим:

$$\begin{cases} x = \frac{Kc}{\gamma k_w \beta} \cos(k_w \overline{\beta} ct) \\ z = \overline{\beta} ct + \frac{K^2}{8\beta^2 \gamma^2 k_w} \sin(2k_w \overline{\beta} ct) \end{cases}$$
(1.6)

Здесь мы ввели обозначение $\overline{\beta}$, которое определяется как $\overline{\beta}c=\beta c\Big(1-\frac{K^2}{4\beta^2\gamma^2}\Big)$. Полученные решения мы будем использовать при интегрировании

 $4\beta^2\gamma^2$) уравнений Максвелла.

1.1.2 Решение уравнений Максвелла в прааксиальном приближении

Вывод спектра излучения будем проводить в $r\omega$ -пространстве. Начнём с уравнений Максвелла в вакууме:

$$\begin{cases} \nabla \cdot \vec{E} = 4\pi \rho \\ \nabla \cdot \vec{B} = 0 \end{cases}$$

$$[\nabla \times \vec{E}] = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

$$[\nabla \times \vec{B}] = \frac{4\pi}{c} \vec{j} + \frac{1}{c} \frac{\partial \vec{E}}{\partial t}$$
(1.7)

Из уравнений тривиально можно получить неоднородное волновое уравнение:

$$c^{2}\nabla^{2}\vec{E} - \frac{\partial^{2}\vec{E}}{\partial t^{2}} = 4\pi c^{2}\nabla\rho + 4\pi \frac{\partial\vec{j}}{\partial t}$$
 (1.8)

Это же уравнение перепишем в $r\omega$ -пространстве, определив преобразование Фурье следующим образом:

$$\vec{\tilde{E}}(r,\omega) = \int_{-\infty}^{\infty} dt \vec{E}(r,t) \exp[i\omega t]$$

$$\vec{E}(r,\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \vec{\tilde{E}}(r,t) \exp[-i\omega t]$$
(1.9)

Применив к уравнению 1.8, получим:

$$\omega^2 \vec{\tilde{E}} + c^2 \nabla^2 \vec{\tilde{E}} = 4\pi c^2 \nabla \tilde{\rho} - 4i\pi \omega \vec{\tilde{j}}$$
 (1.10)

Перепишем это уравнение в приближении медленно меняющейся амплитуды в сравнение с частотой осцилляций, что есть $\vec{\widetilde{E}}=\vec{E}\exp[i\omega z/c]$, в приближении $\frac{\partial |\vec{E}|}{\partial z}\ll \frac{\omega}{c}|\vec{E}|$. Где временная зависимость разложена до ну-

левого порядка малости, исходя из уравнения 1.6 получим:

$$c^{2}\left(\nabla^{2}\vec{\tilde{E}} + \frac{2i\omega}{c}\frac{\partial\vec{\tilde{E}}}{\partial z}\right)\exp[i\omega z/c] = 4\pi c^{2}\nabla\tilde{\rho} - 4i\pi\omega\vec{\tilde{j}}$$
 (1.11)

Для электрона движущегося в вакууме ток и плотность заряда выражается через дельта-функцию Дирака:

$$\rho(r,t) = -e\delta(\vec{r} - \vec{r'}(t)) = -\frac{e}{v_z(z)}\delta(\vec{r}_\perp - \vec{r'}_\perp(z))\delta(\frac{s(z)}{v} - t)$$

$$\vec{j}(r,t) = \vec{v}\rho(r,t)$$
(1.12)

В $r\omega$ -пространстве:

$$\widetilde{\rho}(r,\omega) = -\frac{e}{v_z(z)} \delta(\vec{r}_{\perp} - \vec{r'}_{\perp}(z)) \exp\left[\frac{iws(z)}{v}\right]$$

$$\widetilde{\vec{j}}(r,\omega) = \vec{v}\widetilde{\rho}(r,\omega)$$
(1.13)

Подставим фурье-образы плотности тока и заряда в уравнение 1.11:

$$\nabla^{2}\vec{\tilde{E}} + \frac{2i\omega}{c}\frac{\partial\vec{\tilde{E}}}{\partial z} = \frac{4\pi e}{v_{z}(z)}\exp\left[iw\left(\frac{s(z)}{v} - \frac{z}{c}\right)\right]\left(\frac{i\omega}{c^{2}}\vec{v}(z) - \nabla\right)\delta(\vec{r}_{\perp} - \vec{r'}_{\perp}(z))$$
(1.14)

Получившиеся уравнение является точным. Теперь мы можешь применить параксиальное приближение.

$$\nabla_{\perp}^{2} \vec{\tilde{E}}_{\perp} + \frac{2i\omega}{c} \frac{\partial \vec{\tilde{E}}_{\perp}}{\partial z} = \frac{4\pi e}{v_{z}(z)} \exp\left[iw\left(\frac{s(z)}{v} - \frac{z}{c}\right)\right] \left(\frac{i\omega}{c^{2}} \vec{v}_{\perp}(z) - \nabla_{\perp}\right) \delta(\vec{r}_{\perp} - \vec{r'}_{\perp}(z))$$
(1.15)

Перед нами неоднородное дифференциальное уравнение в частных производных, которое мы решим с помощью функции Грина. Для дифференциального оператора $\partial_t - k \nabla_{2D}^2$ функция Грина есть: $\frac{1}{4\pi kt} \exp\left[-\rho^2/4kt\right]$. В

частности для уравнения 1.15

$$G(z_0 - z'; \vec{r}_{\perp 0} - \vec{r'}_{\perp}) = -\frac{1}{4\pi(z_0 - z')} \exp\left[i\omega \frac{|\vec{r}_{\perp 0} - \vec{r'}_{\perp}|^2}{2c(z_0 - z')}\right]$$
(1.16)

Получим решение для функции распределения поля:

$$\vec{\tilde{E}}_{\perp}(z_0, \vec{r}_{\perp 0}, \omega) = -\frac{e}{c} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dz' d\vec{r'} \frac{1}{z_0 - z'} \left(\frac{i\omega}{c^2} \vec{v}_{\perp}(z') - \nabla'_{\perp} \right) \delta(\vec{r'}_{\perp} - \vec{r'}_{\perp}(z')) \times \exp \left[iw \left(\frac{|\vec{r}_{\perp 0} - \vec{r'}_{\perp}|^2}{2c(z_0 - z')} + \frac{s(z')}{v} - \frac{z'}{c} \right) \right]$$
(1.17)

Проинтегрировав по $d\vec{r'}$ получим общее решение уравнения 1.14 :

$$\vec{\tilde{E}}_{\perp}(z_{0}, \vec{r}_{\perp 0}, \omega) = -\frac{i\omega e}{c^{2}} \int_{-\infty}^{\infty} dz' \frac{1}{z_{0} - z'} \left(\frac{\vec{v}_{\perp}(z')}{c} - \frac{\vec{r}_{\perp 0} - \vec{r'}_{\perp}(z')}{(z_{0} - z')} \right) \times \exp \left[iw \left(\frac{|\vec{r}_{\perp 0} - \vec{r'}_{\perp}(z')|^{2}}{2c(z_{0} - z')} + \frac{s(z')}{v} - \frac{z'}{c} \right) \right].$$
(1.18)

Итого, мы получили распределение электромагнитного поля в точке наблюдения \vec{r}_0 , которое получит явный вид после интегрирования по траектории $\vec{r'}_{\perp}(z')$.

1.1.3 Излучение планарного ондулятора

В этой секции мы рассмотрим излучение планарного ондулятора, используя результаты 1.18 и 1.6. Сперва проанализируем получившиеся распределение поля 1.19: в случае ондулятора, член $(z_0-z')^{-1}$ можно разложить около z', что всегда верно для дальней зоны, так как размер ондулятора много меньше расстояния, с которого наблюдается излучения: $\lambda_w N \ll z_0$, где N число периодов ондулятора.

Воспользовавшись решениями 1.5 и 1.6 и помня $\vec{r}_{\perp 0}/z_0 = \vec{\theta}$, преобразуем уравнение 1.18 к виду:

$$\vec{\tilde{E}}_{\perp}(z_0, \vec{r}_{\perp 0}, \omega) = \frac{i\omega e}{c^2 z_0} \exp\left[i\frac{\omega \theta^2 z_0}{2c}\right] \int_{-\lambda_w N/2}^{\lambda_w N/2} dz' \exp[i\Phi_T] \left(\frac{K}{\gamma} \sin(k_w z) \vec{e}_x + \vec{\theta}\right)$$
(1.19)

Здесь мы отбросили члены первого и больших порядков малости по $1/z_0$. За Φ_T мы обозначили следующее выражение:

$$\Phi_T = \left(\frac{\omega}{2c\widetilde{\gamma}^2} + \frac{\omega\vec{\theta}^2}{2c}\right)z' - \frac{K^2}{8\gamma^2}\frac{\omega}{k_w c}\sin(2k_w z') - \frac{K\theta_x}{\gamma}\frac{\omega}{k_w c}\cos(k_w z'), \quad (1.20)$$

$$\mathbf{a}\,\widetilde{\gamma} = \frac{\gamma}{\sqrt{1 + K^2/2}}.$$

Пределы интегрирования ограничили длиной ондулятора от $-\lambda_w N/2$ до $\lambda_w N/2$, считая вклад в излучение ондулятора доминирующим над вкладами от остальных участков траектории. На этом шаге уже можно заметить, что излучение на оси будет линейно поляризованно. По ходу выкладок можно проследить, что это есть вклад токового члена из уравнения 1.10, вклад же плотности заряда или, как мы его назовём, градиентный член, даёт вариацию поляризации при наблюдении под некоторым углом θ к оси. Перепишем 1.19 в следующе виде:

$$\vec{\tilde{E}}_{\perp}(z_{0}, \vec{r}_{\perp 0}, \omega) = \frac{i\omega e}{c^{2}z_{0}} \exp\left[i\frac{\omega\theta^{2}z_{0}}{2c}\right] \sum_{m,n=-\infty}^{+\infty} J_{m}\left(-\frac{K^{2}}{8\gamma^{2}}\frac{\omega}{k_{w}c}\right) J_{n}\left(-\frac{K\theta_{x}}{\gamma}\frac{\omega}{k_{w}c}\right) \times \exp\left[\frac{i\pi n}{2}\right] \int_{-\lambda_{w}N/2}^{\lambda_{w}N/2} dz' \exp[i(2m+n)k_{w}z'] \left(\frac{K}{2i\gamma}\left(\exp[2ik_{w}z']-1\right)\vec{e_{x}} + \vec{\theta}\exp[ik_{w}z']\right) \times \exp\left[i\left(\frac{\Delta\omega}{\omega_{r}} + \frac{\omega\vec{\theta}^{2}}{2c}\right)z'\right],$$
(1.21)

Где мы ввели $\omega = \omega_r + \Delta \omega$, $\omega_r = 2c\widetilde{\gamma}^2 k_w$ и использовали формулу Якоби — Ангера:

$$\exp[iz\cos(\theta)] = \sum_{n=-\infty}^{\infty} i^n J_n(z) \exp[in\theta]$$

$$\exp[iz\sin(\theta)] = \sum_{n=-\infty}^{\infty} J_n(z) \exp[in\theta]$$
(1.22)

До сих пор мы пользовались только одним приближением при решении уравнения Максвелла — параксиальным приближением, теперь можем воспользоваться следующим параметром — количеством периодов ондулятора N. Для этого обратим внимание на первое слагаемое в фазовом множителе под интегралом и заметим, что если $k_w \frac{\Delta \omega}{\omega_r} + \frac{\omega \vec{\theta}^2}{2c} \ll k_w$, то фаза меняется медленно на одном периоде и не занулит интеграл. Отметим, что для резонанса об слагаемых должны быть много меньше единицы, т.е. $\frac{\Delta \omega}{\omega_r} \ll 1$ и $\frac{\omega \vec{\theta}^2}{2c} \ll 1$, последнее соотношение даёт углы наблюдения вблизи резонанса: $\theta \ll \frac{1}{\widetilde{\gamma}}$. Теперь необходимо обратить внимание на аргументы функций Бесселя, а именно:

$$u = -\frac{K^2}{8\gamma^2} \frac{\omega}{k_w c}$$

$$v = -\frac{K\theta_x}{\gamma} \frac{\omega}{k_w c} = -\frac{K\theta_x}{\gamma} \left(1 + \frac{\Delta\omega}{\omega_r}\right) 2\tilde{\gamma}^2 \lesssim \frac{2K\theta_x \tilde{\gamma}}{\sqrt{1 + K^2/2}} \lesssim \theta_x \tilde{\gamma} \ll 1$$
(1.23)

Зная, что $J_{\alpha}(x) \sim \sum_{n=0}^{\infty} x^{2n+\alpha}$, видим, что вклад нулевого порядка по $\theta_x \widetilde{\gamma}$, т.е. $J_{\alpha}(x) \sim 1$, даёт только функция Бесселя с индексом n=0. Здесь мы пока не учитываем градиентный член пропорциональный $\vec{\theta}$, таким образом из оставшихся фазовых множителей можно выписать условия на индекс m. Они определяются нулями в аргументах соответствующих фаз или m=-1 и m=0, оба оставшихся члена пропорциональны $\frac{K}{\gamma}$.

Теперь вернёмся к градиентному члену, вклад от которого занулиться при усреднении по длине ондулятора при n=0, этот вклад даст ненулевой вклад при n=1-2m, таким образом в ход пойдут следующие члены раз-

ложения $J_m(v)$. Однако, помня интересующий нас диапазон углов, члены разложения будут порядка $\theta_x v^m$, очевидно, что их вклады пренебрежимо малы, и вклад токового члена \vec{e}_x будет доминирующем. Учитывая вышесказанные приближения, перепишем 1.21

$$\vec{\tilde{E}}_{\perp}(z_0, \vec{r}_{\perp 0}, \omega) = \frac{\omega e}{2c^2 z_0} \frac{K}{\gamma} \exp\left[i\frac{\omega \theta^2 z_0}{2c}\right] \left(J_1(v) - J_0(v)\right) \vec{e}_x \times
\int_{-\lambda_w N/2}^{\lambda_w N/2} dz' \exp\left[i\left(k_w \frac{\Delta \omega}{\omega_r} + \frac{\omega \vec{\theta}^2}{2c}\right) z'\right],$$
(1.24)

Интеграл легко берётся:

$$\vec{\tilde{E}}_{\perp}(z_0, \vec{r}_{\perp 0}, \omega) = \frac{\omega e L K}{c^2 z_0} \gamma A_{JJ} \exp\left[i\frac{\omega \theta^2 z_0}{2c}\right] \operatorname{sinc}\left[\left(k_w \frac{\Delta \omega}{\omega_r} + \frac{\omega \vec{\theta}^2}{2c}\right) L/2\right] \vec{e}_x,$$
(1.25)

где введено обозначение: $A_{JJ}=J_1(v)-J_0(v)$. В итоге мы получили распределение поля в $r\omega$ -пространстве.

В следующем параграфе мы займёмся выводном влияния конечности эмиттанса на распределение излучения, чтобы облегчить выкладки мы введём нормализованные единицы.

$$\hat{E}_{\perp} = \frac{c^2 z_0 \gamma \widetilde{E}_{\perp}}{e \omega K L A_{JJ}}$$

$$\hat{\theta} = \theta \sqrt{\frac{\omega L}{c}}$$
(1.26)

$$\hat{z} = \frac{z}{L},$$

а также,

$$\hat{C} = CL = 2\pi N \frac{\Delta\omega}{\omega_r} \tag{1.27}$$

Теперь уравнения 1.25 и 1.28 могут быть переписаны в нормализованных единицах.

$$\hat{E}_{\perp} = e^{i\Phi} \int_{-1/2}^{1/2} dz' \exp\left[i\left(\hat{C} + \frac{\hat{\theta}^2}{2}\right)z'\right],\tag{1.28}$$

$$\hat{E}_{\perp} = e^{i\Phi} \operatorname{sinc}\left(\frac{\hat{C}}{2} + \frac{\hat{\theta}^2}{4}\right),\tag{1.29}$$

На рис. 1.1 и рис. 1.2 изображены угловые распределения излучения. Их структуру можно понять из рисунка 1.3. Конструктивная интерференция наблюдается на оси, где есть максимум интерференционной картины на резонансной частоте. Если произвести отрицательную сдвижку по частоте, то выполнение условия конструктивной интерференции: $n\lambda_{ph} = s_{ph} - \lambda_u \cos\theta$ будет наблюдаться при ненулевых углах наблюдения, и обратно, при положительной сдвижке частоты, интенсивность быстро падает, условие резонанса не может выполниться при меньших длинах волн на ненулевых углах, потому что в набег фазы на каждом периоде ондулятора, не укладывается целое число длин волн соответствующей гармоники излучения. Говорят, что электрон на каждом периоде ондулятора интерферирует сам с собой. Естественно, говорят о интерференции излучения, которое на оси обгоняет электрон на одну длину волны (или болеешее число волн, т.е. 1, 2, 3 и т.д.). На следующем периоде ондулятора, электрон снова излучает в фазе с излучённой на прошлом периоде волной. Важной характеристикой в при-

ложениях является проинтегрированный по углам $\hat{\theta}$ спектр излучения, см. рис. 1.4. В некотором смысле, у спектра появляется широкий хвост. Форма спектра и единицы измерения для некоторой конкретной задачи должны обсуждаться отдельно.

Рисунок 1.3 — Ондулятор как интерференционное устройство

Рисунок 1.4 — Проинтегрированный по углам спектр излучения. За $\hat{\theta}$ в легенде обозначены пределы интегрирования по углам

1.2 Излучение высших гармоник

1.2.1 Амплитудный спектр высших гармоник ондуляторного излучения в зависимости от параметра ондуляторности

В этом разделе мы дадим описание свойств излучения высших гармоник. Начнём с объяснения амплитудного спектра ондуляторного излучения. Понимание данного вопроса необходимо в виду того, что выбор конкретных параметров ондулятора, обычно говорят о параметре ондуляторности K, чрезвычайно важен для приложений. Выбор этого параметра напрямую влияет на состав спектра излучения и его амплитудное распределение. Следуя выкладками 1.25, где было введено обозначение A_{JJ} , и общей формуле для произвольной гармоники из [12] можно написать:

$$A_{JJ}(K) = \frac{n^2 K^2}{(1 + K^2/2)^2} \left[J_{\frac{1}{2}(k-1)} \left(\frac{nK^2}{4 + 2K^2} \right) - J_{\frac{1}{2}(k+1)} \left(\frac{nK^2}{4 + 2K^2} \right) \right]^2, (1.30)$$

Рисунок 1.5 — Амплитудный спектр гармоник в зависимости от параметра ондуляторности K

Графическое представление этой формулы в зависимости от параметра K показано на рис. 1.5. Спектр наглядно показывает зависимость амплитуд гармоник от параметра ондуляторности. На ондуляторах, где

планируется работать на низших гармониках, преимущественно выбираются малые K<2, если же стоят задачи, где используются более высокие гармоники, то параметр K выбирают в районе 2-2,5.

На рис. 1.6 и рис. 1.7 представлены примеры спектров ондуляторного излучения электронного пучка с бесконечно малым эмиттансом. Рисунки наглядно поясняют соображения изложенные выше по амплитудному составу ондуляторного спектра. Уже при при K=2,5 максимум амплитуды приходиться на 7-ую гармонику.

Рисунок 1.6 — Спектр ондулятора с Рисунок 1.7 — Спектр ондулятора с ондуляторностью K=2,5 ондуляторностью K=1

1.3 Заключение к главе

Глава 2. Проектирование рентгенооптических трактов для Сибирского Кольцевого Источника Фонтов

2.1 Введение

В данной главе мы рассмотрим схемы рентгенооптических трактов (станций) первой очереди Центра Коллективного Пользования СКИФ: от источников высокого энергетических фотонов — вставных устройств до деталей оптических компотен на билайне, — фильтров, монохроматоров, рентгеновских зеркал и линз. В этой главе, будут обсуждаться станции: 1-1 — «Микрофокус», 1-2 — «Структурная диагностика», 1-4 — «ХАFS-спектроскопия и магнитный дихроизм».

$\sigma_x, [m]$	$\sigma_{x'}, [rad]$	$\sigma_y, [m]$	$\sigma_{y'}, [rad]$
33.0×10^{-6}	2.65×10^{-6}	8.6×10^{-7}	5.0×10^{-7}
$\Delta E/E$	$\beta_x, [m]$	$\beta_y, [m]$	I,[mA]
8.6×10^{-4}	12.49	1.99	400

Таблица 2.1 Параметры накопительного кольца и электронного пучка в ондуляторном пустом промежутке

На всех указанных станциях будут использоваться сверхпроводящие ондуляторы разработки и производства ИЯФ СО РАН, см., например, [13] и [14]. Всё ондуляторы будут вводиться в пустой промежуток с геометрическими и угловыми размерами электронного пучка и бета функциями указанными в таблице 2.1.

2.2 Станция 1-1 — «Микрофокус»

2.2.1 Вставное устройство

Станция имеет вставное устройство с параметрами указанными в таб. 2.2. Выбора такого типа ондулятора объясняется тем, что на стан-

ции предполагается работать на довольно высоких гармониках, поэтому, согласно амплитудному спектру на рис 1.30, необходимо как можно далее сдвинуть максимум спектрального потока в сторону более высоких гармоник. На рис. 2.1 представлен спектр используемого ондулятора через

B(K), [T]	L,[m]	d, [mm]	фаз.ошиб.	Рабочие Гармоники 1-1
1.36(2.29)	2.3	18	≤ 3°	11, 13, 17, 23

Таблица 2.2

Параметры ондулятора для станции 1-1

конечную апертуру, видно, что рабочие гармоники подавлены на порядок по сравнению с фундаментальной гармоникой.

Рисунок 2.1 — Спектр с ондулятора с K=2,29 через апертуру 0,4 мм в логарифмическом масштабе (сверху) и в линейном (снизу) посчитанный в SPECTRA с учётом конечности эмиттанса и энергетического разброса

2.2.2 Оптика станции 1-1

Первостепенной задачей по расчёту оптики на рассматриваемой станции являлась оценка тепловых нагрузок на первые оптические элементы. На рис. 2.2 представлена оптическая схема станции в первом приближении без фокусирующих линз. После прохождения пучком апертуры, которая является угловым фильтром, излучение проходит алмазное окно, толщина которого $100\,$ мкм из расчёта $\approx 3\%$ поглощения на первой рабочей гармонике. Алмазные кристаллы являются хорошими фильтрами низких энергий.

Основная тепловая нагрузка с первых гармоник снимается входным алмазным окном. Более детальное описание поглощательных свойств алмазных кристаллов можно найти в приложении к данной работе Б.1. После алмаз-

Рисунок 2.2 — Оптическая схема станции 1-1

ного окна излучение разделяется алмазными C(111) монохроматорами на рабочие подстанции, прямой пучок падает на кремниевый Si(111) двукристальный монохроматор. Поглощённые удельные мощности на каждом из представленных оптических элементах можно найти на рис. 2.3. Полезно

Рисунок 2.3 — Спектр электронного пучка с нулевым эмиттансом падающий на алмазное окно — розовый цвет, излучение падающее на двукристалльный монохроматор — чёрный цвет

сравнить расчёты связанные с полной падающей мощность на первый оптический элемент с одним из результатов встроенной функции в SRW по расчёту полной мощности, результаты этих расчётов приведены на рис. В.1. Необходимо отметить, что эти расчёты 2.3 и рис. В.1 независимы и совпадают, а незначительное отличие заключается лишь в том, что интегрирование на рис. 2.3 велось не по полному спектру, а лишь до энергии 60 кэВ, что не может привести ошибкам в расчётах, так как были не учтены фотоны с

энергиями больше 60 кэВ, однако они являются прозрачными для большинства оптических элементов и не вносят значительного вклада в тепловые нагрузки.

Итого, результаты расчётов:

$\sigma_x, [mm]$	$\sigma_y, [mm]$	$\sigma_x, [\mu rad]$	$\sigma_y, [\mu rad]$
0.106	0.095	4.255	3.792
0.101	0.093	4.037	3.727
0.097	0.097	3.892	3.888
0.105	0.116	4.215	4.642
	0.106 0.101 0.097	0.106 0.095 0.101 0.093 0.097 0.097	0.106 0.095 4.255 0.101 0.093 4.037 0.097 0.097 3.892

Таблица 2.3

Сечение пучка на входе в первую апертуру (25 м)

n_{harm}	$ heta_{cr}, grad$	$d_{eff}, \mu m$	S_{proj}, mm
11	-77.984	480	0.503
13	-79.854	568	0.579
23	-84.284	1004	0.976
17	-84.921	0	1.098

Таблица 2.4

Номер гармоники, ориентация кристалла, эффективная толщина алмазного монохроматора, проекция пучка(горизонтальная)

n_{harm}	$\sigma_x, [mm]$	$\sigma_y, [mm]$	$\sigma_x, [\mu rad]$	$\sigma_y, [\mu rad]$
11	0.106	0.095	4.255	3.792
13	0.101	0.093	4.037	3.727
17	0.097	0.097	3.892	3.888
23	0.105	0.116	4.215	4.642

Таблица 2.5

Сечение пучка после монохроматоров

$\overline{n_{harm}}$	E, eV	$\lambda, [nm]$	ph/s	ph/s/0.1%	$\Delta E/E$
11	14461	0.0857	1.61e+08	1.79e+08	6.22e-05
13	17091	0.0725	8.82e+07	8.38e+07	6.16e-05
17	22350	0.0555	3.29e+07	2.42e+07	6.07e-05
23	30238	0.0410	9.07e+06	4.61e+06	6.51e-05

Таблица 2.6

Потоки фотонов после соответствующих монохроматоров

2.3 Станция 1-2 — «Структурная диагностика»

2.3.1 Вставное устройство

На станции 1-2 используется сверхпроводящий ондулятор с параметром ондуляторности K=1.54. На станции, в отличии от 1-1, предполагается работать на более низких гармониках, этим объясняется выбор указанного параметра K, амплитудный спектр смещён в сторону фундаментальной гармоники. В таблице 2.7 приведены основные характеристики используемого ондулятора, а на рис. 2.4 показан спектр этого ондулятора через конечную апертуру.

B(K), [T]	L, [m]	d, [mm]	фаз.ошиб.	Рабочие Гармоники 1-2
1.06(1.54)	2	15.6	≤ 3°	5, 7, 9, 13

Таблица 2.7

Параметры ондулятора для станции 1-2

2.3.2 Оптика станции 1-2

Оптическая схема станции, в смысле алгоритма расчётов, аналогична станции 1-1, с одним лишь отличием в том, что используется другой тип ондулятора и более низкие рабочие гармоники. На рис. 2.5 приведена схема станции, совпадающая по структуре со той же схемой для 1-1. На рис. 2.6 приведены удельные тепловые нагрузки на элементы станции. Такое же как

Рисунок 2.4 — Спектр с ондулятора с K=1,54 через апертуру 0,4 мм в логарифмическом масштабе (сверху) и в линейном (снизу) посчитанный в SPECTRA с учётом конечности эмиттанса и энергетического разброса

Рисунок 2.5 — Оптическая схема станции 1-2

и для 1-1 сравнение результатов расчёта полной падающей удельной мощности на первый оптический элемент можно найти на рис. В.2 в приложении к работе.

Рисунок 2.6 — Спектр электронного пучка с нулевым эмиттансом падающий на алмазное окно — розовый цвет, тот же излучение падающее на двукристалльный монохроматор — чёрный цвет

Итого, результаты расчётов:

$\sigma_x, [mm]$	$\sigma_y, [mm]$	$\sigma_x, [\mu rad]$	$\sigma_y, [\mu rad]$
0.124	0.109	4.947	4.376
0.110	0.093	4.410	3.727
0.101	0.083	4.056	3.319
0.092	0.072	3.697	2.870
	0.124 0.110 0.101	0.124 0.109 0.110 0.093 0.101 0.083	0.124 0.109 4.947 0.110 0.093 4.410 0.101 0.083 4.056

Таблица 2.8

Сечение пучка на входе в первую апертуру (25 м)

n_{harm}	$\theta_{cr}, grad$	$d_{eff}, \mu m$	S_{proj}, mm
5	-76.063	415	0.500
7	-83.509	0	1.131
9	-82.309	747	0.779
13	-84.683	1079	1.080

Таблица 2.9

Номер гармоники, ориентация кристалла, эффективная толщина алмазного монохроматора, проекция пучка(горизонтальная)

n_{harm}	$\sigma_x, [mm]$	$\sigma_y, [mm]$	$\sigma_x, [\mu rad]$	$\sigma_y, [\mu rad]$
5	0.124	0.109	4.947	4.376
7	0.110	0.093	4.410	3.727
9	0.101	0.083	4.056	3.319
13	0.092	0.072	3.697	2.870

Таблица 2.10

Сечение пучка после монохроматоров

$\overline{n_{harm}}$	E, eV	$\lambda, [nm]$	ph/s	ph/s/0.1%	$\Delta E/E$
5	12499	0.0992	2.54e+08	3.29e+08	6.17e-05
7	17498	0.0709	1.79e+08	1.40e + 08	7.28e-05
9	22498	0.0551	5.00e+07	5.30e+07	4.20e-05
13	32497	0.0382	4.30e+07	8.67e+06	1.53e-04

Таблица 2.11

Потоки фотонов после соответствующих монохроматоров

2.4 Станция 1-4 — «XAFS-спектроскопия и магнитный дихроизм»

2.4.1 Вставное устройство

На вставное устройство станции 1-4 накладываются довольно жёсткие условия, так как на этой станции планируется реализовать две техники XAFS спектроскопии — обычный EXAS и quick-EXAS. Последняя техника требует довольно широкого спектра до 1-1.2 кэВ, что не может быть реализованно с помощью обычного планарного ондулятора, ширина спектра которого, определяется количеством периодов и равна порядка: $\Delta \omega/\omega = 10^{-2}$. Для уширения спектра ондуляторного излучения используют так называемую технику тэперинга, изменение магнитного поля некоторым способом или длины периодов ондулятора вдоль траектории электронного пучка(ссылка).

На станции будет использоваться сверхпроводящий ондулятор с возможность производить сканирование по спектру. Магнитное поле может меняться в широких пределах, посредствам подстройки тока в обмотках сверхпроводящего устройства. Параметры такого ондулятор см. в таблице 2.12. Помимо этого, на ондулятор накладывается условие того, что ра-

B(K), [T]	L, [m]	d, [mm]	фаз.ошиб.	Рабочие Гармоники
0.65 - 1.37(1.1 - 2.3)	2.3	18	≤ 3°	3 - 13

Таблица 2.12

Параметры ондулятора для станции 1-4

бочие гармоники должны перекрываться, чтобы предоставить пользователям вести непрерывное сканирование по энергии в диапазоне от 4 кэВ до 40 кэВ. На рис. 2.7 представлен спектр с указанными выше K ондулятора, показано эффективное перекрытие рабочих гармоник с большим запасом.

Рисунок 2.7 — Спектр ондулятора для 1-4 с параметром K меняющемся в диапазоне от 1.1-2.3

Рисунок 2.8 — Спектр с ондулятора с K=2.23 через апертуру 1 мм в логарифмическом масштабе (сверху) и в линейном (снизу) посчитанный в SPECTRA с учётом конечности эмиттанса и энергетического разброса

2.4.2 Излучение клинообразного ондулятора

В этой секции мы рассмотрим излучение планарного ондулятора специальной конструкции, который может доставить широкий спектр. Идея состоит в том, что разбить ондулятор на несколько секций с различным магнитным полем в каждой из них 2.9. Такая расстановка, в первом прибли-

Рисунок 2.9 — Ондулятор состоящий из малых ондуляторных секций.

жении, предполагалось должна дать набор резонансов, которые сольются в один сплошной спектр. Однако, более детальное рассмотрение показало, что в зависимости от фазы электрона между сегментами, могут проявляться интерференционные эффекты, которые в значительной степени будут изменять форму спектра.

Выкладки можно начать с модифицированного интеграла 1.28,

$$\vec{\tilde{E}}_{\perp}(z_0, \vec{r}_{\perp 0}, \omega) = \frac{\omega e A_{JJ} K}{2c^2 z_0} \int_{-\lambda_w N/2}^{\lambda_w N/2} dz' \exp[iCz'] \vec{e}_x, \qquad (2.1)$$

Здесь, для простоты изложения, излучение рассматривается на оси, т.е. $\theta=0$ от уединённого электрона. В случае секционного ондулятора коэффициент ондуляторности меняется вдоль ондулятора, поэтому $K=K_0+n\Delta K$, а также $C=C_0+n\Delta C$, где n— это номер секции. Где ΔC введено следующим образом, помня $\omega_r=2c\widetilde{\gamma}^2k_w$:

$$C = k_w \frac{\Delta \omega}{\omega_r} = \frac{\Delta \omega_r}{2c\gamma} \left(1 + \frac{(K_0 + n\Delta K)^2}{2} \right) \approx \frac{\Delta \omega_r}{2c\gamma} \left(1 + \frac{K_0^2}{2} (1 + \frac{n\Delta K}{K_0}) \right) = C_0 + \Delta C$$
(2.2)

Секций, для определённости, мы возьмём пять, и для удобства нумерацию будем вести -2, -1, ..., 2. Поэтому интеграл можно переписать в виде:

$$\vec{\tilde{E}}_{\perp}(z_0, \vec{r}_{\perp 0}, \omega) = \frac{\omega e A_{JJ}}{2c^2 \gamma z_0} \sum_{n=-2}^{2} (K_0 + n\Delta K) \int_{(2n+1)L_s/2}^{(2n-1)L_s/2} dz' \exp[i(C_0 + n\Delta C)z'] \vec{e}_x,$$
(2.3)

Взяв интеграл, получим:

$$\vec{\tilde{E}}_{\perp}(z_0, \vec{r}_{\perp 0}, \omega) = \frac{\omega e A_{JJ} L}{2c^2 \gamma z_0} \sum_{n=-2}^{2} (K_0 + n\Delta K) \operatorname{sinc}(\hat{C}/2) e^{in(C_0 + n\Delta C)L} \vec{e}_x,$$
(2.4)

Возведя в квадрат, получим интенсивность:

$$\widetilde{I} = \left(\frac{\omega e A_{JJ} L}{2c^2 \gamma z_0}\right)^2 \left[\sum_{n=-2}^2 (K_0 + n\Delta K)^2 \operatorname{sinc}^2(\hat{C}_0 + n\Delta \hat{C}/2) + \sum_{\substack{n,m=-2\\n\neq m}}^2 K_0^2 \left(1 + n\frac{\Delta K}{K_0} + m\frac{\Delta K}{K_0}\right) \operatorname{sinc}^2(\hat{C}/2) e^{i(n-m)\hat{C}_0 + (n^2 - m^2)\Delta \hat{C}} \right],$$
(2.5)

Полученное выражение можно проинтерпретировать следующим образом: первая сумма есть сумма сдвинутых по соответствующим резонансам ${\rm sinc}^2$ функций, вторая сумма отображает интерференцию между различными секциями ондулятора. Данная комбинация приводит к колебаниями в спектре, как показано на рис. 2.10 синими пунктирными линиями, чёрной линией отмечена сумма ${\rm sinc}^2$ функций без учёта интерференционных слагаемых. На рис. 2.11 показан характерный спектр секционного ондулятора

0.00

Рисунок 2.10 — Аналитический результат для электронного пучка с бесконечно малым эмиттансом

Рисунок 2.11 — Симуляция в коде SRW для электронного пучка с бесконечно малым эмиттансом

посчитанного при помощи симуляционного кода SRW. Далее на рис. 2.12 представлен спектр с учётом эмиттанса и энергетического разброса в пуч-

Рисунок 2.12 — Спектр секционного ондулятора проинтегрированного по конечной апертуре — 1 мм с учётом конечности эмиттанса и энергетического разброса

2.4.3 Оптика станции 1-4

На рис. ?? представленна оптическая схема станции реализации EXAS спектроскопии, которая состоит из двукристального монохроматора и далее системы зеркал Kirkpatrick-Baez для фокусировки излучения на образец. Для реализации quick-EXAS спектроскопии будет использоваться отдельный монохроматор, но т.к. на данный момент нет консенсуса по концепции ондулятора для этой техники, в данной работе оптическая схема для указанного метода рассматриваться не будет.

Рисунок 2.16 — Оптическая схема станции 1-4

Глава 3. Заключение

В рукописи были представлены первые результаты по проектированию станций первой очереди ЦКП «СКИФ». Приведённые результаты активно используются проектным офисом ЦКП «СКИФ» и при необходимости уточняются. Разработанный подход, а именно — использование программной среды для проектирования, позволил создать надёжную базу для дальнейших расчётов с использование современных вычислительных возможностей. Ниже по пунктам приведены основные результаты:

- Приведены спектры излучения ондуляторов для станций 1-1 и 1-2, получены сечения пучка излучения на выходе каждого из оптических элементов.
- Для каждой из станций посчитаны удельные тепловые нагрузки на каждый из оптических элементов.
- Для станции 1-4 посчитан спектр ондулятора для EXAF спектроскопии. Просчитана оптическая система: сечение пучка на выходе из каждого оптических элементов.
- Для станции 1-4, для техники quick-EXAS спектроскопии, приведены возможные способы уширения спектра: секционный ондулятор и линейный тэперинг. Аналитически объяснена форма спектра для секционного ондулятора, результат подтверждён численным моделированием.

Новизна работы заключается, во-первых в активном и структурированном использовании программного окружения и современных языков программирования в разработке ренгенооптических трактов на синхротронном источнике, нам не удалось найти подобных работ в российском научном сообществе.

Во-вторых, в работе рассматривается моделирование перспективных источников излучения — сверхпроводящих ондуляторов, что является новой вехой в источниках синхротронного излучения в 20-30-ые годы XXI века.

В-третьих, рассмотрен технически принципиально новый способ уширения спектра ондуляторного излучения, приведено его теоретическое

объяснение и дано математическое моделирование излучения электронного пучка из указанной магнитной структуры.

В дальнейшие планы по разработке пользовательских станций входит:

- Более детальное численное моделирование оптических элементов станций.
- Расчёт тепловых нагрузок на оптические элементы с учётом пространственного распределения мощности на поверхности оптического элемента.
- Расчёт влияния устойчивости оптической системы к механическим подвижкам.
- Создание математической модели реалистично описывающей распределение магнитных полей в ондуляторе. Написание кода для численного моделирования излучения электронного пучка в этих магнитных структурах.

Благодарности

Автор рукописи считает своим долгом выразить благодарности людям, которые способствовали написанию этого труда и поддерживали его на пути получения степени бакалавра в Новосибирском Государственном Университете по специальности физика.

Во-первых, выражаю благодарность моему научному руководителю **Якову Валерьевичу Ракшуну** за возможность работать в передовом проекте СО РАН, поддержке моих инициатив и подаче бесценных советов по работе в проектном офисе ЦКП «СКИФ»

Не могу не высказать глубокую признательность моим наставникам: **Евгению Салдину** за его терпеливые ответы на мои вопросы по теории синхротронного излучения и чуткие наставления в выборе моей специализации, **Dr Svitozar Serkez** и **Dr Gianluca Geloni** за бесценный вклад в приобретении мной всех необходимых навыков работы и возможности стажироваться в их исследовательской группе на European XFEL.

Тельнову Валерию Ивановичу, **Никитину Сергею Алексеевичу** и **Никитиной Людмиле Константиновне** за помощь в переводе на Кафедру Ускорителей, их бесценные советы и поддержку.

Хочу выразить благодарность всему преподавательскому составу Новосибирского Государственного Университета и отдельно преподавателями Кафедры Ускорителей за их нелёгкий труд.

В заключении, выражаю благодарность моим родителям: **Евгению Требушинину** и **Татьяне Требушининой** за их поддержку и вдохновение на упорный труд, а так же **Александре Голубевой**.

Список литературы

- 1. *Willmott Philip*. An introduction to synchrotron radiation: techniques and applications. Wiley, 2019.
- Radiation-Generating Devices for Domestic Sources of Synchrotron Radiation with Extremely Low Emittance / AV Zorin, NA Mezentsev, KV Zolotarev, VA Shkaruba // Bulletin of the Russian Academy of Sciences: Physics. 2019. Vol. 83, no. 2. Pp. 121–123.
- 3. MAX IV. MAX IV Detailed Design Report. 2010.
- 4. *Dierker S.* NSLS-II Preliminary Design Report. 2007. 11.
- 5. Tech. Rep.: / Klaus Balewski, R Rohlsberger, H Franz et al.: 2004.
- 6. Source DIAMOND Synchrotron Light. Report of the Design Specification // CCLRC, June. 2002.
- 7. Paraxial Green's functions in synchrotron radiation theory / Gianluca Geloni, Evgeni Saldin, Evgeni Schneidmiller, Mikhail Yurkov // arXiv preprint physics/0502120. 2005.
- 8. Fourier treatment of near-field synchrotron radiation theory / Gianluca Geloni, Evgeni Saldin, Evgeni Schneidmiller, Mikhail Yurkov // Optics communications. 2007. Vol. 276, no. 1. Pp. 167–179.
- 9. *Geloni Gianluca, Kocharyan Vitali, Saldin Evgeni*. Brightness of synchrotron radiation from undulators and bending magnets // *Journal of synchrotron radiation*. 2015. Vol. 22, no. 2. Pp. 288–316.
- 10. Fourier optics treatment of classical relativistic electrodynamics / Gianluca Geloni, Evgeni Saldin, Evgeni Schneidmiller, Mikhail Yurkov // arXiv preprint physics/0608145. 2006.
- 11. *Chubar O, Elleaume P*. Proceedings of the 6th European Particle Accelerator Conference, Stockholm, 1998. 1998.
- 12. Wiedemann Helmut. Particle accelerator physics. Springer, 2015.

- 13. Short-Period Superconducting Undulator Coils With Neutral Poles: Test Results / Alexey Bragin, Sergey Khruschev, Vladimir Lev et al. // *IEEE Transactions on Applied Superconductivity*. 2018. Vol. 28, no. 4. Pp. 1–4.
- 14. Gluskin Efim, Mezentsev Nikolai. Superconducting Wigglers and Undulators // Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications. 2019. Pp. 1–51.
- 15. Als-Nielsen Jens, McMorrow Des. Elements of modern X-ray physics. John Wiley & Sons, 2011.
- 16. Grating monochromator for soft X-ray self-seeding the European XFEL / Svitozar Serkez, Gianluca Geloni, Vitali Kocharyan, Evgeni Saldin // arXiv preprint arXiv:1303.1392. 2013.
- 17. *Serkez Svitozar*. Design and Optimization of the Grating Monochromator for Soft X-Ray Self-Seeding FELs. 2015.
- 18. Goodman Joseph W. Statistical optics. John Wiley & Sons, 2015.
- 19. *Goodman Joseph W*. Introduction to Fourier optics. Roberts and Company Publishers, 2005.
- 20. *Trebushinin Andrei*. SKIF beamlines. SRW code extension. 2019. https://github.com/TrebAndrew/thesis_andrei/tree/dev.
- 21. *Authier André*. Dynamical theory of X-ray diffraction. Wiley Online Library, 2006. Pp. 626–646.

Список рисунков

1.1	Угловое распределение поля при отрицательной сдвижке	
	частоты	14
1.2	Угловое распределение поля при положительной сдвижке	
	частоты	14
1.3	Ондулятор как интерференционное устройство	15
1.4	Проинтегрированный по углам спектр излучения. За $\hat{ heta}$ в	
	легенде обозначены пределы интегрирования по углам	15
1.5	Амплитудный спектр гармоник в зависимости от параметра	
	ондуляторности K	16
1.6	Спектр ондулятора с ондуляторностью $K=2,5$	17
1.7	Спектр ондулятора с ондуляторностью $K=1$	17
2.1	Спектр с ондулятора с $K=2,\!29$ через апертуру $0,\!4$ мм в	
	логарифмическом масштабе (сверху) и в линейном (снизу)	
	посчитанный в SPECTRA с учётом конечности эмиттанса и	
	энергетического разброса	19
2.2	Оптическая схема станции 1-1	20
2.3	Спектр электронного пучка с нулевым эмиттансом	
	падающий на алмазное окно — розовый цвет, излучение	
	падающее на двукристалльный монохроматор — чёрный цвет	20
2.4	Спектр с ондулятора с $K=1{,}54$ через апертуру $0{,}4$ мм в	
	логарифмическом масштабе (сверху) и в линейном (снизу)	
	посчитанный в SPECTRA с учётом конечности эмиттанса и	
	энергетического разброса	23
2.5	Оптическая схема станции 1-2	23
2.6	Спектр электронного пучка с нулевым эмиттансом	
	падающий на алмазное окно — розовый цвет, тот же	
	излучение падающее на двукристалльный монохроматор —	
	чёрный цвет	23
2.7	Спектр ондулятора для 1-4 с параметром K меняющемся в	
	лиапазоне от $1.1 - 2.3$	26

2.8	Спектр с ондулятора с $K=2.23$ через апертуру $1{ m MM}$ в	
	логарифмическом масштабе (сверху) и в линейном (снизу)	
	посчитанный в SPECTRA с учётом конечности эмиттанса и	
	энергетического разброса	26
2.9	Ондулятор состоящий из малых ондуляторных секций	27
2.10	Аналитический результат для электронного пучка с	
	бесконечно малым эмиттансом	28
2.11	Симуляция в коде SRW для электронного пучка с	
	бесконечно малым эмиттансом	28
2.12	Спектр секционного ондулятора проинтегрированного по	
	конечной апертуре — 1 мм с учётом конечности эмиттанса	
	и энергетического разброса	29
2.13	Сечение пучка до апертуры	30
2.14	Сечение пучка после DCM	30
2.15	Сечение пучка около фокуса зеркал	30
2.16	Оптическая схема станции 1-4	30
Б.1	Кривая брегга для алмаза на разных энергиях	41
Б.2	Кривая брегга для кремния на разных энергиях	41
B.1	Плотность мощности для используемого ондулятора и его	
	срезы на оси x и y через точку максимума распределения и	
	спектр уединённого электрона (правый нижний)	42
B.2	Плотность мощности для используемого ондулятора и его	
	срезы на оси x и y через точку максимума распределения и	
	спектр уединённого электрона (правый нижний)	43
B.3	Плотность мощности для используемого ондулятора и его	
	срезы на оси x и y через точку максимума распределения и	
	спектр уединённого электрона (правый нижний)	44

Список таблиц

2.1	Параметры накопительного кольца и электронного пучка в	
	ондуляторном пустом промежутке	18
2.2	Параметры ондулятора для станции 1-1	
2.3	Сечение пучка на входе в первую апертуру (25 м)	21
2.4	Номер гармоники, ориентация кристалла, эффективная	
	толщина алмазного монохроматора, проекция	
	пучка(горизонтальная)	21
2.5	Сечение пучка после монохроматоров	21
2.6	Потоки фотонов после соответствующих монохроматоров	22
2.7	Параметры ондулятора для станции 1-2	22
2.8	Сечение пучка на входе в первую апертуру (25 м)	24
2.9	Номер гармоники, ориентация кристалла, эффективная	
	толщина алмазного монохроматора, проекция	
	пучка(горизонтальная)	24
2.10	Сечение пучка после монохроматоров	24
2.11	Потоки фотонов после соответствующих монохроматоров	24
2.12	Параметры ондулятора для станции 1-4	25

Приложение А

Единицы измерения потока фотонов

В области синхротронного излучения приняты специфические единицы измерения потока фотонов:

$$\Phi = \frac{\gamma}{\text{cek} \cdot 0.1\% \text{bw} \cdot \text{mm}^2} \tag{A.1}$$

Для удобства пользователей этого излучения, была введено необычное единица 0.1% bw, что можно интерпретировать следующим образом, — это количество фотонов попавшее в полосу пропускания шириной 0.1% на некоторой фиксированной энергии гамма-квантов, т.е., например, для энергии 1000 эВ ширина полосы будет в диапазоне 999,5-1000,5 эВ. Данная единица была введена, для удобства оценок потоков, после прохождения излучения через кристаллические монохроматоры и решёточные монохроматоры, полосы пропускания которых как раз составляют порядка $10^{-3}-10^{-4}$.

Иногда возникает потребность, для удобства, перевести эти единицы, например, к следующему виду:

$$\Phi = \frac{\gamma}{\text{cek} \cdot 3B \cdot \text{mm}^2} \tag{A.2}$$

Сделать это можно следующим образом, необходимо поточено умножить спектральное распределение на множитель $\frac{0.1\% \cdot E_{\gamma}}{1 \mbox{\footnotesize 3}B}$, что даст необходимые единицы измерения. Далее, спектр можно привести к:

$$\Phi = \frac{W}{1 \cdot 3B \cdot MM^2},\tag{A.3}$$

Так спектральное распределение легко интегрировать, чтобы получить, например, полную плотность мощности излучения и делать оценки тепловых нагрузок на оптические элементы.

Приложение Б

Краткий обзор дифракции на кристаллах

В этой главе мы кратко дадим основные результаты кинетической и динамической теории дифракции. Основные кристаллы используемы на источниках синхротронного излучения — это Si (кремний), C (алмаз) и реже Ge (германий). Виду кубической кристаллической решётки эти кристаллы относительно просты при рассмотрение динамики отражение и преломления на кристаллических плоскостях. Для нас важны такие свойства кристаллов, как способность преобразовать относительно широкой спектр ондуляторного излучения в излучение с относительной монохроматичностью до $\Delta E/E \sim 10^{-4}$. Также мы дадим основную информация по поглощательным способностям кристаллов

Б.1 Симметричное брэгговское отражение от идеально кристалла

Длины волн, которые отвечают резонансу при отражении падающего под углом θ к плоскости кристалла излучения, даётся законом Брэгга:

$$m\lambda = 2d\sin\theta,\tag{5.1}$$

где d — расстояние между плоскостями от которых происходит отражение, m — некоторое положительно целое число. Однако динамическая и кинематическая теории дифракции уточнаю данные результат и вносят конечную угловую и/или по энергии ширину, в которую кристалл может принять излучение, а также некоторый сдвиг, относительно предполагаемого брэгговского угла. Кривая, которая описывает отражательную способность кристалла, называется кривой Дарвина, именно она определяет угловой и/или энергетический акцептанс излучения. На рис. Б.1 показаны характерные кривые отражение для алмаза и кремния. По ним видно, чем больше энергия подающего пучка излучения, тем кривая уже и ближе к даваемому законом брэгга углу. При расчёте кристаллов монохроматоров этот факт необходимо учитывать, для эффективной работы кристалла и уменьшения

Рисунок Б.1 — Кривая брегга для алмаза на разных энергиях

Рисунок Б.2 — Кривая брегга для кремния на разных энергиях

тепловых нагрузок, угловая расходимость кристалла должна входить в акцептанс кристалла, иначе излучение поглотится в кристалле, что крайне нежелательно. Кривые ассиметричны по правому краю, теория дифракции объясняет данный факт большим поглощением на низких энергиях.

В целом, данной информации достаточно, чтобы иметь первое представление о разработке оптических трактов синхротронного излучения. Для дальнейшего чтения и углубления знаний в данном вопросе могут быть полезны следующие книги [15], [21].

Б.2 Поглощательные способности кристаллов

Одним из полезных применений кристаллов в рентгеновском диапазоне есть их фильтрующая способность, отрезать низкие энергии, в особенности для алмазных кристаллов, которые, по мимо всего, имеют хорошую теплопроводность, что способствуют быстрому теплоотводу. На рис. Б.2 представлена кривая поглощения 100 мкм кристалла алмаза. Подобные кристаллы устанавливают перед первыми оптическими элементами, что в значительной степени снижает тепловые нагрузки, подавляя низшие гармоники, в нашем случае ондуляторного излучения.

Приложение В

Дополнительные графики

Рисунок В.1 — Плотность мощности для используемого ондулятора и его срезы на оси x и y через точку максимума распределения и спектр уединённого электрона (правый нижний)

Рисунок В.2 — Плотность мощности для используемого ондулятора и его срезы на оси x и y через точку максимума распределения и спектр уединённого электрона (правый нижний)

Рисунок В.3 — Плотность мощности для используемого ондулятора и его срезы на оси x и y через точку максимума распределения и спектр уединённого электрона (правый нижний)

Приложение Г

Примеры программного кода

Г.1 Подраздел приложения