СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

- 1. Понятие случайной величины. Функция распределения
- 2. Дискретные случайные величины
- 3. Основные законы распределения дискретных СВ
- 4. Непрерывные случайные величины
- 5. Основные законы распределения непрерывных СВ
- 6. Числовые характеристики СВ
- 7. Понятие о законе больших чисел

1. Понятие случайной величины. Функция распределения

Под *случайной величиной* (СВ) будем понимать величину, которая в результате случайного эксперимента принимает одно и только одно возможное значение, которое заранее неизвестно и зависит от случайных причин.

Примеры: **a)** число очков, выпавших при однократном бросании игральной кости, есть CB, она может принять одно из значений: 1, 2, 3, 4, 5, 6;

- **б)** число успехов в n испытаниях в схеме Бернулли СВ, принимающая значения 0,1,...,n;
- **в)** число бракованных изделий в данной партии CB, принимающая целые значения от 0 до n, где n объем партии;
- **г)** прирост веса домашнего животного за месяц есть CB, которая может принять значение из некоторого промежутка.

Более строго, под CB понимают действительнозначную функцию ξ , определенную на множестве Ω элементарных событий, связанных c данным случайным экспериментом, и такую, что для любой системы B открытых интервалов, $B \subset \mathbf{R}$, существует $P(\omega \in \Omega : \xi(\omega) \in B)$ — вероятность того, что CB ξ примет значение из множества B.

Таким образом, для любой СВ ξ определена функция

$$F(x) = P(\xi < x), x \in \mathbb{R},$$

называемая ее функцией распределения и выражающая вероятность того, что $CB \xi$ примет значение, меньшее x. Под законом распределения CB будем понимать любое правило, позволяющее найти функцию распределения этой CB.

Основные свойства функции распределения СВ.

$$1.0 \le F(x) \le 1$$
, $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$.

- 2. F(x) неубывающая, непрерывная слева функция, т.е. $F(x_1) \le F(x_2)$ при $x_1 < x_2$ и $F(x-0) = F(x), x \in \mathbb{R}$.
 - 3. $P(\alpha \le \xi < \beta) = F(\beta) F(\alpha)$.
 - 4. $P(\xi = x_0) = F(x_0 + 0) F(x_0)$.

2. Дискретные случайные величины

Случайная величина называется *дискретной* (ДСВ), если множество ее возможных значений *конечно* или *счетно* (т. е. если все ее значения можно занумеровать).

Примеры. Дискретными СВ являются: число выпадений герба при n подбрасываниях монеты, число выстрелов до первого попадания в цель, число бракованных изделий в данной партии и т. д.

Для того чтобы задать ДСВ ξ , достаточно перечислить все ее возможные значения x_m , $m=1,2,\ldots$, и указать, с какими вероятностями p_m она их принимает.

Закон распределения ДСВ ξ удобно задать в виде таблицы, называемой *рядом распределения* этой СВ:

ξ	x_1	x_2	 \mathcal{X}_{m}	
P	p_1	p_2	 p_{m}	

(отметим, что $p_m \ge 0$, $p_1 + p_2 + \ldots + p_m + \ldots = 1 - y$ словие контроля). Отсюда получаем функцию распределения ДСВ:

$$F(x) = P(\xi < x) = \sum_{x_i < x} p_i, x \in \mathbb{R}.$$

График функции распределения ДСВ имеет ступенчатый вид, причем функция распределения терпит разрывы в точках x_m со скачками $p_m = P(\xi = x_m), \ m = 1, 2, \dots$

Математическое ожидание дискретной СВ ξ

$$M\xi = x_1p_1 + x_2p_2 + \dots + x_mp_m + \dots$$

(предполагается, что ряд в правой части этого равенства абсолютно сходится) характеризует среднее значение СВ ξ .

Дисперсия CB ξ — математическое ожидание квадрата отклонения CB от ее математического ожидания:

$$D\xi = M \left(\xi - M\xi\right)^2$$

характеризует разброс значений СВ вокруг ее математического ожидания.

Для вычисления дисперсии удобно использовать формулу

$$D\xi = M(\xi^2) - (M\xi)^2.$$

Для ДСВ ξ справедливо $M(\xi^2) = x_1^2 p_1 + x_2^2 p_2 + \ldots + x_m^2 p_m + \ldots$

Величина $\sigma_{\xi} = \sqrt{D\xi}$ – с*реднее квадратическое отклонение СВ* от ее математического ожидания.

Из определения следует, что $D\xi \ge 0$, $\sigma_{\xi} \ge 0$ для любой CB.

3. Основные законы распределения дискретных СВ

Приведем некоторые законы распределения дискретных СВ.

1. СВ ξ имеет *биномиальное распределение* с параметрами n и p, если она принимает значения 0, 1, 2, ..., n с вероятностями

$$P(\xi = m) = C_n^m p^m q^{n-m}, m = 0, 1, 2, ..., n,$$
где 0

Биномиальный закон распределения имеет место в том случае, когда СВ ξ выражает число появлений события A (число успехов) при n независимых испытаниях в схеме Бернулли.

Математическое ожидание и дисперсия СВ ξ , распределенной по биномиальному закону, вычисляются по формулам: $M\xi = np$, $D\xi = npq$.

2. Дискретная СВ ξ имеет *распределение Пуассона* с параметром a, если она принимает значения 0, 1, 2, ..., n, ... с вероятностями

$$P(\xi = m) = \frac{a^m}{m!}e^{-a}, m = 0, 1, 2, ..., n,$$

Математическое ожидание и дисперсия СВ ξ , распределенной по закону Пуассона, равны $M\xi = D\xi = a$.

Закон распределения Пуассона (закон редких явлений) является хорошим приближением для биномиального распределения при

4. Непрерывные случайные величины

Случайная величина называется **непрерывной** (HCB), если ее функция распределения $F(x) = P(\xi < x)$ непрерывна на всей числовой оси. НСВ принимает все значения из некоторого интервала или системы интервалов на числовой оси. Вероятность того, что НСВ примет фиксированное значение, равна нулю, т. е. $P(\xi = x_0) = 0$.

Примеры. Непрерывными СВ являются, например, время безотказной работы прибора; дальность полета снаряда; прибыль фирмы; расход электроэнергии на предприятии за месяц; вес новорожденного; ошибка измерения и т. п.

Особый интерес вызывают HCB, имеющие плотность распределения. Закон распределения такой HCB обычно задают функцией или плотностью распределения.

Функция p(x) называется **плотностью распределения вероятностей** НСВ ξ с функцией распределения F(x), если

$$F(x) = \int_{-\infty}^{x} p(x) dx$$
, откуда $p(x) = F'(x)$, $x \in \mathbb{R}$.

Основные свойства плотности распределения НСВ.

1. $p(x) \ge 0$ при всех $x \in \mathbf{R}$.

$$2. \int_{-\infty}^{+\infty} p(x) dx = 1.$$

Геометрически это означает, что график плотности распределения лежит не ниже оси Ox и площадь под графиком плотности равна единице.

3. Вероятности попадания НСВ ξ в интервал, отрезок или полуинтервал с одними и теми же концами одинаковы и равны

$$P(\alpha \le \xi \le \beta) = P(\alpha < \xi \le \beta) = P(\alpha < \xi < \beta) =$$

$$= P(\alpha \le \xi < \beta) = \int_{\alpha}^{\beta} p(x) dx = F(\beta) - F(\alpha).$$

Геометрически вероятность $P(\alpha \le \xi \le \beta)$ представляет собой площадь криволинейной трапеции, ограниченной графиком плотности 4

вероятности, осью абсцисс и отрезками прямых $x = \alpha$ и $x = \beta$.

Математическое ожидание $M\xi$ **и дисперсия** $D\xi$ **НСВ** ξ определяются по формулам

$$M\xi = \int_{-\infty}^{+\infty} x \, p(x) dx, \quad D\xi = \int_{-\infty}^{+\infty} (x - M\xi)^2 \, p(x) dx,$$

где интегралы предполагаются абсолютно сходящимися.

На практике для вычисления дисперсии зачастую удобно использовать формулу $D\xi = M\left(\xi^2\right) - \left(M\xi\right)^2$, при этом

$$M(\xi^2) = \int_{-\infty}^{+\infty} x^2 p(x) dx.$$

5. Основные законы распределения непрерывных СВ

Приведем некоторые законы распределения непрерывных СВ.

1. НСВ ξ имеет *равномерное распределение* на отрезке [a; b], если ее плотность распределения постоянна на этом отрезке, а вне его равна нулю:

$$p(x) = \begin{cases} \frac{1}{b-a} & \text{при} \quad x \in [a;b], \\ 0 & \text{при} \quad x \notin [a;b]. \end{cases}$$

Функция распределения равномерно распределенной на [a; b] СВ имеет вид

$$F(x) = \begin{cases} 0 & \text{при} \quad x < a, \\ \frac{1}{b-a} & \text{при} \quad x \in [a;b], \\ 1 & \text{при} \quad x > b, \end{cases}$$

а вероятность попадания этой CB в некоторый интервал, лежащий внутри отрезка [a; b], зависит только от длины этого интервала и не зависит от его положения:

$$P(x_1 < \xi < x_2) = \int_{x_1}^{x_2} p(x) dx = \frac{x_2 - x_1}{b - a},$$
 если $a \le x_1 < x_2 \le b$.

Числовые характеристики равномерного распределения:

$$M\xi = \frac{a+b}{2}$$
, $D\xi = \frac{(b-a)^2}{12}$, $\sigma_{\xi} = \frac{b-a}{2\sqrt{3}}$.

Примерами равномерно распределенных СВ могут служить: время ожидания пассажиром транспорта, курсирующего с определенным интервалом; ошибка округления числа до ближайшего целого.

2. НСВ ξ имеет *показательное (экспоненциальное) распределение* с параметром $\lambda > 0$, если ее плотность распределения имеет вид

$$p(x) = \begin{cases} \lambda e^{-\lambda x} & \text{при} \quad x \ge 0, \\ 0 & \text{при} \quad x < 0. \end{cases}$$

Функция показательного распределения имеет вид

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{при} \quad x \ge 0, \\ 0 & \text{при} \quad x < 0. \end{cases}$$

Числовые характеристики показательного распределения:

$$M\xi = \frac{1}{\lambda}, \quad D\xi = \frac{1}{\lambda^2}, \quad \sigma_{\xi} = \frac{1}{\lambda}.$$

Показательное распределение является одним из основных в теории массового обслуживания и теории надежности. Примером СВ, имеющей показательное распределение, является время ожидания редких явлений: время между двумя вызовами на АТС, продолжительность безотказной работы приборов и т. д.

3. Распределение НСВ ξ называется *нормальным* (или *распреде- лением Гаусса*) с параметрами a и $\sigma > 0$: $\xi \in N(a, \sigma)$, если плотность распределения вероятностей имеет вид

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}, \quad x \in (-\infty, +\infty).$$

Параметры a и σ имеют смысл математического ожидания и среднего квадратического отклонения CB ξ : $M\xi = a$, $D\xi = \sigma^2$.

График плотности нормального распределения изображен на рис. 1 и называется кривой Гаусса.

Функция распределения СВ ξ , имеющей нормальное распределением с параметрами a и σ , выражается через функцию Лапласа $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int\limits_0^x e^{-t^2/2} dt$ следующим образом:

$$F(x) = \frac{1}{2} + \Phi\left(\frac{x-a}{\sigma}\right),\,$$

а вероятность попадания CB ξ на заданный интервал (α, β) вычисляется по формуле

$$P(\alpha < \xi < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right).$$

Рис. 1. График плотности нормального распределения

В силу непрерывности СВ эта формула справедлива как со строгими, так и с нестрогими знаками неравенств.

Вероятность того, что СВ ξ , распределенная нормально с параметрами a и σ , отклонится от своего математического ожидания менее, чем на δ , определяется соотношением

$$P(|\xi - a| < \delta) = 2\Phi\left(\frac{\delta}{\sigma}\right).$$

Полагая δ =3 σ , получим

$$P(|\xi - a| < 3\sigma) = 2\Phi(3) \approx 2 \cdot 0,49865 = 0,9973 \approx 1.$$

Правило «трех сигм» для нормального распределения. Если СВ ξ распределена нормально с параметрами a и σ , то попадание ее в интервал $(a-3\sigma,a+3\sigma)$ является практически достоверным событием и, стало быть, вероятность противоположного события ничтожно мала и на практике таким событием пренебрегают.

Нормальное распределение имеет большое теоретическое и прикладное значение. В частности, считается, что погрешности измерения различных физических величин, ошибки, порожденные большим количеством случайных причин, распределены по нормальному закону. Кроме того, нормальный закон распределения является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях, что делает нормальное распределение исключительным в ТВ и ее приложениях.

6. Числовые характеристики СВ

Наиболее используемыми числовыми характеристиками СВ являются:

- 1) математическое ожидание $M\xi$, определенное выше, которое характеризует среднее значение (центр рассеивания) СВ ξ ;
- 2) дисперсия $D\xi = M(\xi M\xi)^2$, которая характеризует величину рассеивания значений СВ вокруг ее математического ожидания;
- 3) среднее квадратическое отклонение $\sigma_{\xi} = \sqrt{D\xi}$, которое (в отличие от дисперсии) имеет размерность СВ ξ , что оказывается более удобным в приложениях ТВ, например, в математической статистике.

Приведем основные свойства.

Свойства математического ожидания:

- 1. Математическое ожидание постоянной равно этой постоянной: Mc=c, если c=const.
- 2. Постоянный множитель выносится за знак математического ожидания: $M(c\xi) = cM\xi$.
 - 3. Математическое ожидание суммы СВ равно сумме их матема-

тических ожиданий: $M(\xi + \eta) = M\xi + M\eta$.

4. Математическое ожидание произведения *независимых* СВ равно произведению их математических ожиданий: $M(\xi \eta) = M \xi \cdot M \eta$. (СВ ξ и η называются *независимыми*, если для любых $x, y \in \mathbb{R}$ события $\{\xi < x\}$ и $\{\eta < y\}$ независимы.)

Свойства дисперсии:

- 1. Дисперсия постоянной равна нулю: Dc=0, если c=const.
- 2. Дисперсия неотрицательна: $D\xi \ge 0$.
- 3. Постоянный множитель выносится за знак дисперсии в квадрате: $D(c\xi) = c^2 D\xi$.
- 4. Дисперсия суммы *независимых* СВ равна сумме их дисперсий: $D(\xi + \eta) = D\xi + D\eta$.
- 5. Дисперсия разности *независимых* СВ равна *сумме* их дисперсий: $D(\xi \eta) = D\xi + D\eta$.

Из других числовых характеристик СВ отметим:

 $M\xi^k$ – начальные моменты k-го порядка,

 $M(\xi - M\xi)^k$ – центральные моменты k -го порядка.

Таким образом, математическое ожидание является начальным моментом первого, а дисперсия — центральным моментом второго порядков.

В заключение приведем важнейшие числовые характеристики для основных законов распределения.

Числовые характеристики основных законов распределения

№	Распределение	$M\xi$	$D\xi$	$\sigma_{\!\scriptscriptstyle \mathcal{E}}$
Π/Π				Ŋ
1.	Биномиальное (с параметрами n и p)	np	npq	\sqrt{npq}
2.	Пуассона (с параметром a)	а	a	a
3.	Pавномерное на [a; b]	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{b-a}{2\sqrt{3}}$
4.	Показательное (с параметром λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{1}{\lambda}$
5.	Нормальное (Гаусса) с параметрами a и σ	а	σ^2	σ

7. Понятие о законе больших чисел

Последовательность СВ $\xi_1, \xi_2, ..., \xi_n, ...$ сходится по вероятности к числу a: $\xi_n \xrightarrow{P} a$, если для любого $\varepsilon > 0$ вероятность события $\{|\xi_n - a| < \varepsilon\}$ при $n \to \infty$ стремится к единице, т. е. $\lim_{n \to \infty} P(|\xi_n - a| < \varepsilon) = 1$.

Закон больших чисел в форме Я. Бернулли. Относительная частота появления события A в n независимых испытаниях, в каждом из которых это событие появляется с одной и той же вероятностью p, при неограниченном увеличении числа испытаний n сходится по вероятности p этого события: $\frac{m}{n} \xrightarrow{p} p$ при $n \to \infty$.

Закон больших чисел в форме Бернулли является теоретическим обоснованием статистического метода задания вероятности, согласно которому вероятность события можно оценить относительной частотой $\frac{m}{n}$ появления этого события при достаточно большом числе n независимых испытаний.