Name: Harshit Jain Access ID: hmj5262

Recitation: 8

Problem 0 Points:

Acknowledgements

- (a) I did not work in a group.
- (b) I did not consult without anyone my group members.
- (c) I did not consult any non-class materials.

Problem 1

Points:

Solving recurrences

$$T(n) = aT(n/b) + \Theta(n^d)$$

(a) Here, d = 1.3 and $\log_b a = \log_5 11 = 1.48$

So, $\log_b a > d$, we will use case-3 of Master's Theorem:

$$T(n) = \Theta(n^{\log_5 11}) = \Theta(n^{1.48})$$

(b) Here, d = 2.8 and $\log_b a = \log_2 6 = 2.58$

So, $d > \log_b a$, we will use case-1 of Master's Theorem:

$$T(n) = \theta(n^{2.8})$$

(c) Here, d = 0 and $\log_b a = \log_3 5 = 1.46$

So, $\log_b a > d$, we will use case-3 of Master's Theorem:

$$T(n) = \theta(n^{\log_3 5}) = \theta(n^{1.46})$$

(d) $T(n) = T(n-2) + \log(n)$

$$= [T(n-4) + \log(n-2)] + \log(n)$$

$$= [T(n-6) + \log(n-4)] + \log(n-2) + \log(n)$$

:

$$= [T(n-k) + \log(n - (k-2))] + \dots + \log(n-2) + \log(n)$$

let k = n,

$$= T(0) + \log(2) + \dots + \log(n)$$

$$= 1 + \log(n!)$$

$$\log(1) + \dots + \log(1) < \log(1) + \log(2) + \dots + \log(n) < \log(n) + \dots + \log(n) \to 0 < \log(n!) < \log(n^n)$$

$$= \underline{O(n\log(n))}$$

Problem 2

Points:

Sorted Array

```
def Search(low, high, A):
if (low == high):
    if (A[low] == low):
         return low
    else:
         return False
else:
    mid = (low + high)//2
    if (A[mid] == mid):
         return mid
    elif (A[mid] > mid):
         return Search(low, mid - 1, A)
    else:
         return Search(mid + 1, high, A)
```

Run-time Analysis : $O(\log(n))$

4

Problem 3

Points:

Linear Time Sorting