Advanced Risk Management

Week 3

Non-Normal Distributions; Extreme Value Theory

► Copyright statement

Outline

- Visualizing non-normality: histograms and QQ plots
- Filtered historical simulation
- Standardized Student's t distribution
- Skewed t distribution
- Extreme value theory

Non-normality

- One of the stylized facts of daily financial returns is that their distribution is not normal: more peaked and longer-tailed, and skewed.
- To a lesser extent, the same applies to shocks $z_t = R_t/\sigma_t$ after fitting GARCH model.
- This can be quantified by the sample skewness and excess kurtosis: for a series $\{x_t\}_{t=1}^T$,

$$SK = \frac{1}{T} \sum_{t=1}^{T} \left(\frac{x_t - \bar{x}}{s_x} \right)^3, \qquad EK = \frac{1}{T} \sum_{t=1}^{T} \left(\frac{x_t - \bar{x}}{s_x} \right)^4 - 3,$$

where \bar{x} and s_x^2 are the sample mean and variance.

• Jarque-Bera test for $H_0: x_t \sim N(\mu, \sigma^2)$:

$$JB = T\left(rac{SK^2}{6} + rac{EK^2}{24}
ight) \stackrel{H_0}{\sim} \chi_2^2.$$

Non-normality – example

- Consider again the daily (2001–2010) S&P 500 returns R_t , and the shocks z_t after fitting a GJR-GARCH model.
- For the returns, we have

$$SK = -0.124$$
, $EK = 8.212$, $JB = 7071 > 5.99$;

for the shocks, we find

$$SK = -0.349$$
, $EK = 1.057$, $JB = 808 > 5.99$.

May be visualized using a histogram, and comparing it to the normal distribution.

Visualizing non-normality - example

QQ plot

- Alternative visualization is the QQ-plot.
- First, sort data in ascending order, so $\{x_i, i = 1, ..., T\}$ satisfy

$$x_1 < x_2 < \ldots < x_{T-1} < x_T$$
.

- QQ plot is a scatter plot with, for each i = 1, ..., T:
 - \triangleright on the vertical axis: x_i ;
 - \triangleright on the horizontal axis: quantiles of theoretical N(0, 1) distribution:

$$\Phi_{p_i}^{-1}, \qquad p_i = \frac{i - 0.5}{T};$$

- ▶ under normality, we expect the points to lie close to the 45° line.
- Can also be applied to alternative theoretical distribution with cdf F: replace $\Phi_{p_i}^{-1}$ by $F_{D_i}^{-1}$.

QQ plot - example

Filtered historical simulation

• Consider again problem of obtaining Value at Risk in model

$$R_{PF,t+1} = \sigma_{PF,t+1} z_{t+1},$$

with $\sigma^2_{PF,t+1}$ obtained from RiskMetrics, GARCH, or extensions; hence $\hat{z}_{t+1} = R_{PF,t+1}/\hat{\sigma}_{PF,t+1}$.

- If \hat{z}_{t+1} has no autocorrelation (acf of \hat{z}_{t+1}) or volatility clustering (acf of \hat{z}_{t+1}^2), we may assume it to be i.i.d.
- Then we can approximate the distribution of \hat{z}_t by its histogram over the past m days, so

$$VaR_{t+1}^{p} = -\hat{\sigma}_{PF,t+1} Percentile(\{\hat{z}_{t-j}\}_{j=0}^{m-1}, 100p).$$

- So for p=0.01, replace $\Phi_{0.01}^{-1}=-2.33$ by its vertical coordinate in QQ-plot of $\{\hat{z}_{t-j}\}_{j=0}^{m-1}$.
- Extension to Expected Shortfall: $-\hat{\sigma}_{PF,t+1} \times$ average over pm exceedances \hat{z}_{t-j} .

Filtered historical simulation – example

Standardized Student's t distribution

- Instead of using the histogram, we may fit a more flexible distribution to shocks z_t .
- Student's t(d) distribution is symmetric around zero; has excess kurtosis but no skewness.
- For d > 2, its variance is d/(d-2); hence standardized $\tilde{t}(d)$ distribution, with density:

$$f_{\overline{t}(d)}(z;d) = C(d) \left(1 + \frac{z^2}{(d-2)}\right)^{-(d+1)/2}, \qquad C(d) = \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\sqrt{\pi(d-2)}}.$$

- Distribution has mean 0 and variance 1, skewness 0 and (if d > 4) excess kurtosis 6/(d-4).
- Hence easy estimate: $\hat{d} = 6/EK + 4$.

Standardized $\tilde{t}(d)$ densities

Standardized $\tilde{t}(d)$ densities – left tails

Standardized Student's t distribution – estimation

- Alternative to easy estimator of *d*: maximum likelihood.
- Two-step method: first estimate GARCH parameters by QMLE; then estimate d
 from

$$\max_{d} \sum_{t=1}^{T} \ln \left(f_{\tilde{t}(d)} \left(\hat{z}_{t}; d \right) \right).$$

One-step ML estimation, joint with GARCH parameters:

$$\max_{\omega,\alpha,\beta,d} \sum_{t=1}^{T} \ln \left(\frac{1}{\sigma_t} f_{t(d)} \left(\frac{R_t}{\sigma_t}; d \right) \right), \qquad \sigma_{t+1}^2 = \omega + \alpha R_t^2 + \beta \sigma_t^2.$$

• Python implementation: am = arch_model(R, p=1, o=1, q=1, dist='StudentsT')

GARCH estimation with *t* distribution – example

Vol Model:		GJR-GARCH		Log-Likelihood:		-3646.84
Distribution: Sta		andardized Student's t Mean Model				2514
			========			
					95.0% C	
mu					[-1.090e-02,5	
		Vol	atility Mo	del		
	coef	std err	t	P> t	95.0% C	onf. Int.
omega	9.0209e-03	3.573e-03	2.525	1.158e-02	[2.018e-03,1	.602e-02]
alpha[1]	0.0000	1.779e-02	0.000	1.000	[-3.487e-02,3	.487e-02]
gamma[1]	0.1277	1.888e-02	6.767	1.316e-11	[9.073e-02	, 0.165]
beta[1]	0.9276	1.946e-02	47.666	0.000	[0.889	, 0.966]
		Dist	ribution			
=======	coef	std err		P> +	95.0% Conf.	==== Int.
nu	10.7201	2.652	4.043	5.283e-05	[5.523, 15.	917]

QQ plot of shocks versus t(d) distribution

Standardized Student's t distribution – VaR and ES

• If $t_p^{-1}(d)$ is the pth quantile of the (non-standardized) t(d) distribution, then

$$\tilde{t}_p^{-1}(d) = \sqrt{\frac{d-2}{d}} t_p^{-1}(d).$$

• $t_p^{-1}(d)$ is available from programming languages (e.g. stats.t.ppf()); hence

$$VaR_{t+1}^{p} = -\sigma_{PF,t+1}\sqrt{\frac{d-2}{d}}t_{p}^{-1}(d).$$

Expected shortfall (some typing errors in book):

$$ES_{t+1}^p = \sigma_{PF,t+1} \left[\frac{C(d)}{p} \left(\frac{d-2}{d-1} \right) \left(1 + \frac{t_p^{-1}(d)^2}{d} \right)^{(1-d)/2} \right],$$

with C(d) as defined before.

Skewed *t* distribution

- To allow for skewness, the *t* distribution can be generalized in various ways.
- Asymmetric or skewed t distribution of Section 6.7 obtained by pasting together two t densities:

$$f_{asyt}(z;d,\lambda) = \left\{ egin{array}{l} B imes f_{\overline{t}(d)} \left(rac{B(z-m)}{1-\lambda};d
ight), & ext{if } z < m, \ \\ B imes f_{\overline{t}(d)} \left(rac{B(z-m)}{1+\lambda};d
ight), & ext{if } z \geq m, \end{array}
ight.$$

with:

- ▶ $\lambda \in (-1, 1)$ is the skewness parameter: $\lambda = 0$ gives $\tilde{t}(d)$;
- ▶ *m* is the mode of the distribution (at which point density has maximum);
- ▶ B is scale parameter needed to make variance equal to 1.

B and m are chosen as function of λ , so if $\lambda = 0$, then m = 0 and B = 1.

• Notation in the book: $d = d_1$, $\lambda = d_2$, m = -A/B.

Skewed t distribution

Figure 6.4 The asymmetric *t* distribution.

Extreme value theory

- EVT is branch of statistics concerned with distribution of extremes (minima and maxima).
- Dutch contributions, historically related to analysis of required height of sea dikes.
- Requires i.i.d. observations, hence applied to shocks z_t , not returns R_t .
- Let $x_t = -z_t$, and define u > 0. We want to characterize right tail of distribution, for $x_t > u$:

$$F_u(y) = \Pr(x_t \leq u + y | x_t > u) = \frac{\Pr(u < x_t \leq u + y)}{\Pr(x_t > u)}, \quad y > 0.$$

• Pickands-Balkema-de Haan theorem: for large class of distributions of x_t ,

$$\lim_{u\to\infty} F_u(y) = GPD(y;\xi,\beta) = \left\{ \begin{array}{ll} 1 - (1+\xi y/\beta)^{-1/\xi}, & \text{if } \xi\neq 0, \\ 1 - \exp(-y/\beta), & \text{if } \xi=0. \end{array} \right.,$$

where β is a scale parameter, and ξ is the tail index.

• $\xi > 0$ implies heavy tails (e.g., Student's $t(d) \Rightarrow \xi = 1/d$).

Hill estimator

- One approach to estimating ξ (and β) is by MLE, using only observations $x_t = -z_t$ satisfying $x_t > u$.
- Simpler estimator uses approximation of distribution of x_t in the right tail (only valid for $\xi > 0$):

$$F(x) = \Pr(x_t \leq x) \approx 1 - cx^{-1/\xi}.$$

• MLE for this distribution is the Hill estimator:

$$\hat{\xi} = \frac{1}{T_u} \sum_{i=1}^{T_u} \ln \left(\frac{x_i}{u} \right),\,$$

where $x_i = -z_i, i = 1, \dots, T_u$ are the largest T_u observations, all exceeding u.

- In practice, u is chosen to keep fraction T_u/T of data characterizing the tail;
 - ▶ at the minimum, T_u/T should be larger than p if we need VaR_{t+1}^p .

VaR and ES based on EVT

• Simpler approximate distribution with $F(u) = 1 - T_u/T$ imposed gives

$$\Pr(z_t < -x) = \Pr(x_t > x) = \frac{T_u}{T} \left(\frac{x}{u}\right)^{-1/\xi};$$

setting this equal to p and solving for x gives

$$VaR_{t+1}^p = \sigma_{t+1}u\left(rac{p}{T_u/T}
ight)^{-\xi}.$$

Using same approximation,

$$\frac{\mathit{ES}^p_{t+1}}{\mathit{VaR}^p_{t+1}} = \frac{1}{1-\xi}.$$

VaR and ES based on *t* distribution and EVT – example

• Student's t(d): estimate $\hat{d} = 10.7$ implies

$$VaR_{t+1}^{0.01} = \sigma_{PF,t+1} \times 2.46,$$

 $ES_{t+1}^{0.01} = \sigma_{PF,t+1} \times 2.98.$

The fraction of exceedances is 1.11%.

ullet EVT: estimate $\hat{\xi}=0.19$ implies

$$VaR_{t+1}^{0.01} = \sigma_{PF,t+1} \times 2.54,$$

 $ES_{t+1}^{0.01} = \sigma_{PF,t+1} \times 3.13.$

The fraction of exceedances is 0.88%.

Copyright statement

Figure 4.6 on Slide 18 has been extracted from:

Christoffersen, P. F. (2012), *Elements of Financial Risk Management*, Second Edition. Waltham (MA): Academic Press. ISBN 978-0-12-374448-7.

► Back to first slide