Objective & Overview of data

- Number of observations: 9612 entries
- Number of attributes: 27
- NULL values are present in REFERRAL_SOURCE for more than 10%
- REFERRAL_SOURCE also had a value of "Unknown".
- The given data set is almost balanced

• Active: 5394

• Terminated: 4218

 We have some data discrepancies that are discussed in the next slides

Overview:

Employee Attrition (also known as "employee churn") is a costly problem for companies. The true cost of replacing an employee can often be quite large. Understanding why and when employees are most likely to leave can lead to actions to improve employee retention as well as possibly planning new hiring in advance

Objective:

- What is the likelihood of an active employee leaving the company?
- What are the key indicators of an employee leaving the company?
- We will use this dataset to predict when employees are going to quit by understanding the main drivers of employee churn.

	ANNUAL_RATE	HRLY_RATE	JOBCODE	JOB_SATISFACTION	AGE	PERFORMANCE_RATING
count	9.612000e+03	9612.000000	9612.000000	9612.000000	9612.000000	9612.000000
mean	8.938563e+04	49.953808	51485.811174	2.757491	40.151581	3.002081
std	5.843344e+04	28.148113	22853.906872	1.411257	13.664378	1.406909
min	1.678600e+04	14.000000	10006.000000	1.000000	18.000000	1.000000
25%	5.085550e+04	32.000000	33534.000000	2.000000	28.000000	2.000000
50%	7.421050e+04	43.000000	52981.000000	3.000000	39.000000	3.000000
75%	1.088115e+05	59.000000	69401.000000	4.000000	52.000000	4.000000
max	1.250924e+06	608.000000	99793.000000	5.000000	64.000000	5.000000

Project-Process Map

Data
Wrangling

EDA

Feature
Engineering

Test | Train Split

Given Data set is almost balanced

Decision Tree

Naïve Bayes

KNN

Logistic Regression

Random Forest

EDA-Count of Status

- Slightly more attrition in female employees and Single employees
- Education level 5 have slightly more percentage of terminated employees
- Though AMINDS (ethnicity) are less in number, % of termination is high among them

% Terminated vs Ethnicity

EDA

- HIRE_MONTH has very little effect on percentage of terminated
- For an employees who changed just 2 teams has higher attrition rate when compared to others
- Employee who have job satisfaction: 1 or (very less) are likely to leave the company, which is quite intuitive

EDA

- Slightly more attrition in Disabled Veterans and Disabled Employee
- Performance rating 2 has more attrition when compared to others

EDA

- Employees for whom this is their first job seems to churn at a slightly lower rate of 42.8% than their counterparts at 44%
- Employees requiring travel seem to be churning at slightly higher rates than their counterparts

Data Discrepancy

•As we can see that Employee (3626639527) who is terminated in 2017 and not a rehire has a PREVYR_1 rating as 0 and PREVYR_2 as 1, which indicates that the employee was present in the company 2 years ago and data was collected in 2019

•Whereas the Employee (5127603797) who is terminated in 2014 and not a rehire has a PREVYR_1 rating as 0 and PREVYR_2 as 3, which indicated that the employee was present in the company 2 years ago and data was collected in 2016.

•Such discrepancies in the dataset creates ambiguity about the data collection year i.e. 2016 or 2019

EMP_ID	REHIRE	TERMINATION_YE AR	PERFORMANCE_RATI NG	PREVYR_ 1	PREVYR_ 2	PREVYR_ 3	PREVYR_ 4	PREVYR_ 5	EXPERIENCE_AT_COMP ANY
3626639527	FALSE	2017	1	0	1	0	0	0	2
5127603797	FALSE	2014	1	0	3	3	3	3	5

Correlation Matrix

- Each cell in the table shows the correlation between two variables
- Annual rate and hourly rate are highly correlated
- Experience (calculated variable) is correlated with all previous year ratings
- Surprisingly, Job satisfaction and Age are negatively correlated – This correlation is just spurious in nature

- Created a calculated variable called "EXPERIENCE_AT_COMPANY" – How many years of experience a person has in the past 5 years
- Logic for Experience:
 - If the previous year rating is not zero, then the employee worked for that year in the company.
 - Hence that year counts in employee's experience at the company

Calculated Variable: **EXPERIENCE_AT_COMPANY**

```
df['PREVYR 1 PRESENT'] = [1 if value > 0 else 0 for value in df['PREVYR 1']]
df['PREVYR 2 PRESENT'] = [1 if value > 0 else 0 for value in df['PREVYR 2']]
df['PREVYR 3 PRESENT'] = [1 if value > 0 else 0 for value in df['PREVYR 3']]
df['PREVYR 4 PRESENT'] = [1 if value > 0 else 0 for value in df['PREVYR 4']]
df['PREVYR 5 PRESENT'] = [1 if value > 0 else 0 for value in df['PREVYR 5']]
df['EXPERIENCE AT COMPANY'] = df['PREVYR 1 PRESENT'] + df['PREVYR 2 PRESENT']
```


Calculated Variable: Diversity of a Job group (Ethnicity)

- Created calculated variables
 "Diversity rate for a Job Group based
 on ethnicity" How diverse is a job
 group is
- Combined the Ethnicity Data frame to the Attrition data set on Job_Group

• Logic for Diversity rate:

```
Ethin_df=df.groupby(['JOB_GROUP']).apply(lambda x: pd.Series(dict(
    employee_cnt=x.EMP_ID.nunique(),
    terminated_cnt=x[x['STATUS']==1].EMP_ID.nunique(),
    terminated_rate=x[x['STATUS']==1].EMP_ID.nunique()/x.EMP_ID.nunique(),
    white_rate=x[x['ETHNICITY']=='WHITE'].EMP_ID.nunique()/x.EMP_ID.nunique(),
    asian_rate=x[x['ETHNICITY']=='ASIAN'].EMP_ID.nunique()/x.EMP_ID.nunique(),
    black_rate=x[x['ETHNICITY']=='BLACK'].EMP_ID.nunique()/x.EMP_ID.nunique(),
    hispa_rate=x[x['ETHNICITY']=='HISPA'].EMP_ID.nunique()/x.EMP_ID.nunique(),
))).reset_index()
Ethin_df.sort_values('employee_cnt',ascending=False)
```


'	JOB_GROUP	employee_cnt	terminated_cnt	terminated_rate	white_rate	asian_rate	black_rate	hispa_rate
	Production & Operations	1714.0	819.0	0.477830	0.601517	0.150525	0.119603	0.104434
	Marketing - Direct	849.0	542.0	0.638398	0.586572	0.141343	0.124853	0.124853
	Physical Flows	816.0	169.0	0.207108	0.601716	0.150735	0.115196	0.115196
	Finance	525.0	284.0	0.540952	0.634286	0.127619	0.097143	0.108571
	Human Resources	396.0	153.0	0.386364	0.580808	0.146465	0.121212	0.136364
	Customer Care	355.0	147.0	0.414085	0.639437	0.140845	0.109859	0.092958
	General Administration	343.0	166.0	0.483965	0.600583	0.177843	0.116618	0.072886
	Marketing - Global	296.0	111.0	0.375000	0.594595	0.135135	0.125000	0.131757
	R&I General Management	250.0	211.0	0.844000	0.612000	0.120000	0.124000	0.108000

Calculated Variable: COMBINED_JOB_GROUP

- Binned certain JOB_GROUP values into a broader group
- Exact binning mentioned in the last page of the report
- ** These values were used in the models but the accuracies did not improve, so we discarded them from the model and used them for EDA

	JOB_GROUP	COMBINED_JOB_GROUP
0	Plant & Facilities Maintenance	Manufacturing & Production
1	Customer Care	Business
2	Customer Care	Business
3	Finance	Finance
4	Marketing - Direct	Marketing
5	Physical Flows	Manufacturing & Production
6	Marketing - Direct	Marketing
7	Finance	Finance
8	Tax	Finance
9	General Administration	General
10	Production & Operations	Manufacturing & Production
11	R&I Development/Pre-Develpmnt	Research & Development
12	Sourcing	Human Resources
13	IT Business Applications	IT
14	Production & Operations	Manufacturing & Production
15	Human Resources	Human Resources
16	Promotional Purchasing	Marketing
17	Creative Service/Copy	Research & Development
18	Sourcing	Human Resources
19	R&I Development/Pre-Develpmnt	Research & Development

Calculated Variable: **DISCRETIZED_AGE**

- Discretized age in ranges of 5 years starting from 18
- More than 60 years discretized to "60 or above"

Code for Age Discretization:

```
discretized age = []
for age in df['AGE']:
    if age >= 18 and age <= 23:
        discretized age.append('18-23')
    elif age > 23 and age <= 29:
        discretized age.append('24-29')
    elif age > 29 and age <= 35:
        discretized age.append('30-35')
    elif age > 35 and age <= 41:
        discretized age.append('36-41')
    elif age > 41 and age <= 47:
        discretized age.append('41-47')
    elif age > 47 and age <= 53:
        discretized age.append('48-53')
    elif age > 53 and age <= 59:
        discretized age.append('54-59')
    elif age > 59:
        discretized age.append('60 or above')
df['DISCRETIZED AGE'] = discretized age
```

Sample output:

	AGE	DISCRETIZED_AGE
0	35	30-35
1	18	18-23
2	18	18-23
3	50	48-53
4	34	30-35
5	31	30-35
6	39	36-41
7	21	18-23

AGE DISCRETIZED AGE

Calculated Variable: DISCRETIZED_ANNUAL_RATE

- Discretized ANNUAL_RATE to LOW, MEDIUM, HIGH, and VERY HIGH
- Discretization based on quantiles because it is evenly distributed by number of employees as per slide number 2

Code for Annual rate Discretization:

```
quantiled_annual_rate = df['ANNUAL_RATE'].quantile([0.25,0.5,0.75])
discretized_annual_rate_list = []
for annual_rate in df['ANNUAL_RATE']:
    if quantiled_annual_rate[0.25] > annual_rate:
        discretized_annual_rate[0.25] <= annual_rate and quantiled_annual_rate[0.50] > annual_rate:
        discretized_annual_rate_list.append('MEDIUM')
    elif quantiled_annual_rate[0.50] <= annual_rate and quantiled_annual_rate[0.75] > annual_rate:
        discretized_annual_rate[0.75] <= annual_rate:
        discretized_annual_rate[0.75] <= annual_rate:
        discretized_annual_rate[0.75] <= annual_rate:
        discretized_annual_rate[0.75] = annual_rate:
        discretized_annual_rate[0.75] = annual_rate:
        discretized_annual_rate[0.75] = discretized_annual_rate_list</pre>
```

Sample output:

DISCRETIZED_ANNUAL_RATE	ANNUAL_RATE	
LOW	33615	0
MEDIUM	70675	1
LOW	34320	2
HIGH	103199	3
VERY HIGH	141801	4
LOW	31615	5
HIGH	91425	6
VERY HIGH	189200	7
VERY HIGH	144069	8
VERY HIGH	205811	9

Dimensionality Reduction— Principal Component Analysis (PCA)

- PCA is defined as an orthogonal linear transformation technique that transforms the data into a new coordinate system.
- It is used to emphasize variation and bring out strong patterns in a dataset

```
explained_variance = pca.explained_variance_ratio_
explained_variance
```

```
array([0.033, 0.032, 0.020, 0.018, 0.017, 0.017, 0.017, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.012, 0.011, 0.011, 0.011, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.009, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000])
```

Scatter plot of the training data projected on the 1st and 2nd principal components

Dimensionality
Reduction—
Principal
Component
Analysis (PCA)

- PCA analysis is done on the dataset after excluding TERMINATION_YEAR and EMP_ID.
- We used label encoding where the hierarchy is important such as for discretized age, job satisfaction etc.
- One-hot encoding where the hierarchy is not important such as for marital status, job group etc.
- Total 116 columns (including the encoded columns). By looking at the variance ratio distribution bar plot and the scree plot we can infer that selecting 80 components out of 116 would be ideal to explain 80% of the variance in the data set
- It does not make much of a difference in performance after dropping just about 10 columns. So according to our analysis, we discard applying PCA to our data before using classification algorithms.

Decision Tree

Decision Trees (DTs) are non-parametric supervised learning method used for <u>classification</u> and <u>regression</u>. The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.

KNN

KNN is a supervised machine learning algorithm that relies on labeled input data to learn a function that produces an appropriate output when given new unlabeled data.

We have checked the Accuracies for K values ranging from 3 – 19. The Elbow curve starts at 7, therefore we choose K=7 as our final value

62.76% Accuracy

Advantages:

- The algorithm is simple and easy to implement.
- There's no need to tune several parameters
- The algorithm is versatile. It can be used for classification & regression

Logistic Regression

Logistic regression is a statistical model that in its basic form uses a logistic function to model a binary dependent variable, in this case (Active or Terminated)

71.64% Accuracy

Random Forest

The random forest is a classification algorithm consisting of many decision trees. It uses bagging and feature randomness while building individual trees. It tries to create an uncorrelated forest of trees whose predictions by a committee is more accurate than that of any individual tree.

Hyper Parameter Tuning with Grid search and K-fold Cross Validation

K-fold Cross Validation **Top 10 Features** Random Forest HRLY_RATE JOBCODE EXPERIENCE_AT_COMPANY 0.06 JOB_GROUP_Physical Flows 0.05 AGE 0.04 tree T PREVYR 1 PREVYR 5 PREVYR 2 0.04 JOB_GROUP_R&I General Management PREVYR 4 0.03 Representation Only

Naïve Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying 0.8 Bayes' theorem with the "naive" assumption of conditional independence between every pair of features given the value of the class variable

 $P(A|B) = \frac{P(B|A) P(A)}{P(B)}$

using Bayesian probability terminology, the above equation can be written as

60.64% Accuracy

Representation Only

Receiver Operating Characteristic (ROC) Curve

Model Comparison Table

Rank	Model	Accuracy
1	Random Forest	74.45%
2	Logistic Regression	71.64%
3	Decision Tree	68.79%
4	KNN	62.76%
5	Naïve Bayes	60.64%

Conclusion

Based on the implementation of various models along with hyper parameter tuning, grid search with k-fold cross validation, we found that boosting algorithms predict with maximum accuracy

We inferred that most important factors that cause attrition are Job_Groups, Performance ratings of previous years, Job code, Experience and Annual rate which are inline with the general intuitions

If we had more data like Year Joined, Distance from home, Number of companies worked at, Years since last promotion etc , we can get more accurate predictions

Some job groups had 100% attrition which implies that these job group could have been shut down. We could make better predictions had we had more data, as this is one of the important factors in many algorithms

References:

- Lectures and Notes by Professor Christopher
- Larose, D. T., & Larose, C. D. (2014). Discovering knowledge in data: An introduction to data mining. Hoboken: Wiley.
- Galarnyk, M. (2020, May 01). PCA using Python (scikit-learn). Retrieved May 03, 2020, from https://towardsdatascience.com/pca-using-python-scikit-learn-e653f8989e60
- Chauhan, N. (2020, April 18). Real world implementation of Logistic Regression.
 Retrieved May 03, 2020, from
 https://towardsdatascience.com/real-world-implementation-of-logistic-regression-5136cefb8125
- Swaminathan, S. (2019, January 18). Logistic Regression Detailed Overview.
 Retrieved May 03, 2020, from
 https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da430
 3bc
- S, Y. (2019, September 13). An Introduction to Naïve Bayes Classifier. Retrieved May 03, 2020, from https://towardsdatascience.com/introduction-to-na%C3%AFve-bayes-classifier-fa 59e3e24aaf

