Mathematical Statistics2 Tutoring2

Seung Bong Jung

Seoul National University

October 4, 2021

Consistency of MLE

• For a set of observations x_1, \ldots, x_n of a random sample X_1, \ldots, X_n from pdf $f(\cdot; \theta)$, we have log-likelihood (function)

$$l(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta).$$

- Suppose that the likelihood is twice continuously differentiable and $\Theta = \prod_{i=1}^k (a_i,b_i)$. For a given x, if $\dot{l}(\hat{\theta};x) = 0$ and $\ddot{l}(\theta;x)$ is negative definite for all $\theta \in \Theta$, then $\hat{\theta}$ is the unique MLE.
- Suppose that the likelihood is twice continuously differentiable and $\Theta = \prod_{i=1}^k (a_i,b_i)$. For a given x, if $\lim_{\theta \to \partial \Theta} l(\theta) = -\infty$ and the second derivative $\ddot{l}(\theta;x)$ is negative definite for all $\theta \in \Theta$, then the solution of the likelihood equation exists and is the unique MLE.

Consistency of MLE

- Suppose that we observe a random sample from P_{θ} in $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$. Assume that θ in Θ is identifiable and that P_{θ} have common support and $\Theta = \prod_{i=1}^k (a_i,b_i)$. Assume also that the likelihood is twice continuously differentiable, $\lim_{\theta \to \partial \Theta} l(\theta) = -\infty$, and $E_{\theta_0}(\log f(X_1;\theta))$ exists and is continuous with respect to θ . If $\dot{l}(\hat{\theta};x) = 0$ and $\ddot{l}(\theta;x)$ is negative definite for all $\theta \in \Theta$, the MLE of θ is consistent.
- Remark) Continuity of $E_{\theta_0}(\log f(X_1;\theta))$ for all $\theta \in \Theta$ and negative definiteness of $\ddot{l}(\theta;x)$ imply uniform convergence of $\frac{1}{n}l(\theta;x)$ to $E_{\theta_0}(\log f(X_1;\theta))$ in sense of probability. Pointwise convergence in probability is ensured by weak law of large numbers (WLLN).

Regularity conditions of MLE

Conditions for asymptotic normality of MLE

- **(R0)** The parameter θ is identifiable in Θ .
- **(R1)** The density $f(\cdot; \theta)$ have common support \mathfrak{X} .
- (R2) The parameter space is open in \mathbb{R}^d .
- (R3) The log-density pdf $\log f(x; \theta)$ is twice differentable as a function of θ for all $x \in \mathfrak{X}$.
- (R4) For any statistic $u(X_1, ..., X_n)$ with finite expectation, the integral

$$\mathsf{E}_{\theta}(u(X_1,\ldots,X_n)) = \int_{\mathfrak{X}^n} u(x_1,\ldots,x_n) \prod_{i=1}^n f(x_i;\theta) \prod_{i=1}^n dx_i$$

is twice differentiable under the integral sign.

Regularity conditions of MLE

Conditions for asymptotic normality of MLE

- **(R5)** The Fisher Information $I(\theta)$ exists and is invertible for all $\theta \in \Theta$.
- **(R6)** The likelihood equation $\dot{l}(\theta) = 0$ has the unique solution $\hat{\theta}$ and the solution is a consistent estimator of θ .
- (R7) For all $\theta \in \Theta$, there exists a function $M(\cdot)$ with $\mathsf{E}_{\theta}M(X_1) < \infty$ such that

$$\max_{\theta \in \Theta} \max_{1 \le h, i, j \le d} \left| \frac{\partial^3}{\partial \theta_h \partial \theta_j \partial \theta_j} \log f(X_1; \theta) \right| \le M(X_1), \mathsf{E}_{\theta} M(X_1) < \infty.$$

Under regular conditions (R0)-(R7),

$$\sqrt{n}(\hat{\theta} - \theta) \stackrel{\mathsf{d}}{\to} N(0, I(\theta)^{-1}).$$

Example: Logistic(θ , σ)

Let X_1, \ldots, X_n be a random sample from $\mathsf{Logistic}(\theta, \sigma)$, where $\theta \in \mathbb{R}$ and $\sigma > 0$.

- Then, MLE $\hat{\eta}$ of $\eta=(\theta,\sigma)$ exists and is a consistent estimator of η .
- $\sqrt{n}(\hat{\eta} \eta) \stackrel{d}{\rightarrow} N(0, V)$, where

$$V = \begin{pmatrix} 3\sigma^2 & 0\\ 0 & \frac{9}{\pi^2 + 3}\sigma^2 \end{pmatrix}.$$

• One may use the fact that $\int_{\mathbb{R}} x^2 \frac{e^{2x}}{(1+e^x)^4} dx = \frac{\pi^2}{18} - \frac{1}{3}$ to find the asymptotic distribution of $\sqrt{n}(\hat{\eta} - \eta)$.

2020 Midterm Problem1

Suppose X_1, \ldots, X_n are random sample from the distribution with p.d.f. f_{θ} , where

$$f_{\theta}(x) = \frac{1}{x\sqrt{2\pi\theta}} \exp\left(-\frac{1}{2\theta}(\log x - \theta)^2\right) I(0 < x < \infty).$$

- (a) Find a MLE $\hat{\theta}$ of θ .
- (b) Find Fisher's Information $I(\theta)$.

2020 Midterm Problem2

Suppose we observe data (X_i,Y_i) , $i=1,2,\ldots,n$ where $n\geq 2$. Assume that $Y_i\sim \operatorname{Exp}(\lambda_i)$ and Y_i 's are mutually independent, where $\mu_i=E[Y_i]=\lambda_i^{-1}=\exp(\alpha+\beta X_i)$. Further assume that $X_i\neq X_j$ if $i\neq j$. Show that the MLE of (α,β) exists and is unique.

2020 Midterm Problem3

Consider the following model.

$$Y_i = \theta + \epsilon_i, \quad i = 1, \dots, n,$$

where $\epsilon_i = c\eta_{i-1} + \eta_i$, $i=1,\ldots,n$, $\eta_0=0$, $\eta_i \overset{\text{i.i.d.}}{\sim} N(0,1)$, and 0 < c < 1 is constant.

- (a) Find a MLE $\hat{\theta}$ of θ .
- (b) Show that $\hat{\theta}$ is consistent.

2020 Midterm Problem5

Suppose that $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} Poi(\lambda)$. Assume that we cannot observe X_i but can observe whether $X_i = 0$ or $X_i > 0$.

- (a) Find a MLE $\hat{\lambda}$ of λ .
- (b) Find the case when $\hat{\lambda}$ does not exist and the probability that $\hat{\lambda}$ does not exist assuming λ_0 is true parameter of λ .

2018 Midterm Problem3

Let X_1, \ldots, X_n be i.i.d. with p.d.f. f_{θ_1, θ_2} $(0 < \theta_1, \theta_2)$, where

$$f_{\theta_1,\theta_2}(x) = \begin{cases} (\theta_1 + \theta_2)^{-1} e^{-x/\theta_1} & \text{if } x \ge 0\\ (\theta_1 + \theta_2)^{-1} e^{x/\theta_2} & \text{if } x < 0 \end{cases}.$$

- (a) Find a MLE $\hat{\theta}$ of $\theta = (\theta_1, \theta_2)^t$.
- (b) Find a 2-dimensional vector μ and 2×2 matrix Σ such that

$$\sqrt{n}(\hat{\theta} - \mu) \stackrel{\mathsf{d}}{\to} N(0, \Sigma).$$

One-step Approximation of MLE

• **Motivation)** If initial choice $\hat{\theta}^{[0]}$ lies in a $n^{-1/2}$ — neighborhood of the true parameter θ_0 in probability, then one-step update in Newton-Raphson iteration is enough.

$$\hat{\theta}^{[1]} = \hat{\theta}^{[0]} - \ddot{l}(\hat{\theta}^{[0]})^{-1}\dot{l}(\hat{\theta}^{[0]}).$$

Theorem 1

Under (R0)-(R7) and assuming $\hat{\theta}^{[0]} = \theta_0 + O_p(n^{-1/2})$ under P_{θ_0} ,

$$\sqrt{n}(\hat{\theta}^{[1]} - \theta_0) \stackrel{\textit{d}}{\rightarrow} N(0, I(\theta_0)^{-1})$$

in P_{θ_0} – probability.

Least Square Estimator

Consider the following model for

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon, \ \epsilon \sim N(0, \sigma^2)$$

for $p \ge 1$.

- $\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^{p+1}}{\operatorname{arg\,min}} \sum_{i=1}^{n} (Y_i \beta_0 \beta_1 x_{i1} \dots \beta_p x_{ip})^2 = \underset{\boldsymbol{\beta} \in \mathbb{R}^{p+1}}{\operatorname{arg\,min}} ||\mathbf{Y} \mathbf{X}\boldsymbol{\beta}||^2$ where $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)^t$, $\mathbf{X} = (\mathbf{1}, \mathbf{x_1}, \dots, \mathbf{x_p})$ and $\mathbf{x}_j = (x_{1j}, \dots, x_{nj})^t$.
- Denote the column space of X by C_X (the linear space in \mathbb{R}^n spanned by the columns of the matrix X.
- Then $\mathbf{X}\hat{\boldsymbol{\beta}} = \Pi(\mathbf{Y}|\mathcal{C}_{\mathbf{X}})$
- $oldsymbol{\circ}$ Least squared estimator: $\hat{oldsymbol{eta}} = (\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t\mathbf{Y}$

Confidence Region for β

- Recall that $\hat{\sigma}^2 = 1/(n-p-1)||\mathbf{Y} \mathbf{X}\hat{\boldsymbol{\beta}}||^2 = 1/n\mathsf{SSE}.$
- Distribution of $\hat{\boldsymbol{\beta}}$: $\hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^t\mathbf{X})^{-1})$ so that

$$(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^t \mathbf{X}^t \mathbf{X} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) / \sigma^2 \sim \chi^2(p+1).$$

- It can be shown that $SSE/\sigma^2 \sim \chi^2(n-p-1)$.
- Using the independence of $(\hat{\beta} \beta)^t (\mathbf{X}^t \mathbf{X})^{-1} (\hat{\beta} \beta)$ and SSE, one can see that $100(1 \alpha)\%$ confidence region for β is given by

$$\hat{\mathcal{I}} = \{ \boldsymbol{\beta} : (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^t (\mathbf{X}^t \mathbf{X})^{-1} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \le (p+1) \cdot \hat{\sigma}^2 \cdot F_{\alpha}(p+1, n-p-1) \}.$$

Least Square Estimator of Subvector β_2

Write $\beta^t = (\beta_1^t, \beta_2^t)$ and $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$, so that $\mathbf{X}\beta = \mathbf{X}_1\beta_1 + \mathbf{X}_2\beta_2$.

Orthogonal decomposition of the column space:

$$\mathcal{C}_{\mathbf{X}} = \mathcal{C}_{\mathbf{X}_1, \mathbf{X}_2 - \Pi_1 \mathbf{X}_2} = \mathcal{C}_{\mathbf{X}_1} \oplus \mathcal{C}_{\mathbf{X}_2 - \Pi_1 \mathbf{X}_2}$$

where $\Pi_1 = \mathbf{X}_1(\mathbf{X}_1^t\mathbf{X}_1)^{-1}\mathbf{X}_1^t$.

ullet Writing $\mathbf{X}_{2,\perp} = \mathbf{X}_2 - \Pi_1 \mathbf{X}_2$, we get

$$\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}_1[\hat{\boldsymbol{\beta}}_1 + (\mathbf{X}_1^t \mathbf{X}_1)^{-1} \mathbf{X}_1^t \mathbf{X}_2 \hat{\boldsymbol{\beta}}_2] + \mathbf{X}_{2,\perp} \hat{\boldsymbol{\beta}}_2$$
$$\Pi(\mathbf{Y}|\mathcal{C}_{\mathbf{X}}) = \Pi_1 \mathbf{Y} + \mathbf{X}_{2,\perp} (\mathbf{X}_{2,\perp}^t \mathbf{X}_{2,\perp})^{-1} \mathbf{X}_{2,\perp}^t \mathbf{Y}$$

This gives

$$\boldsymbol{\hat{\beta}}_1 = (\mathbf{X}_1^t \mathbf{X}_1)^{-1} \mathbf{X}_1^t (\mathbf{Y} - \mathbf{X}_2 \boldsymbol{\hat{\beta}}_2), \boldsymbol{\hat{\beta}}_2 = (\mathbf{X}_{2,\perp}^t \mathbf{X}_{2,\perp})^{-1} \mathbf{X}_{2,\perp}^t \mathbf{Y}.$$

Confidence Region for β_2

- Distribution of $\hat{\boldsymbol{\beta}}_2$: $(\mathbf{X}_{2,\perp}^t\mathbf{X}_{2,\perp})^{\frac{1}{2}}(\hat{\boldsymbol{\beta}}_2-\boldsymbol{\beta}_2)\sim N_q(\mathbf{0}_q,\sigma^2\mathbf{I}_q)$, so that $(\hat{\boldsymbol{\beta}}_2-\boldsymbol{\beta}_2)^t(\mathbf{X}_{2,\perp}^t\mathbf{X}_{2,\perp})(\hat{\boldsymbol{\beta}}_2-\boldsymbol{\beta}_2)\sim\sigma^2\chi^2(q)$
- Distribution of SSE: SSE $\sim \sigma^2 \chi^2 (n-p-1)$
- SSE and $(\hat{\beta}_1, \hat{\beta}_2)$ are independent.
- Similarly, $100(1-\alpha)\%$ confidence region for $\boldsymbol{\beta}$ is given by

$$\hat{\mathcal{I}} = \{ \boldsymbol{\beta}_2 : (\hat{\boldsymbol{\beta}}_2 - \boldsymbol{\beta}_2)^t \mathbf{X}_{2,\perp}^t \mathbf{X}_{2,\perp} (\hat{\boldsymbol{\beta}}_2 - \boldsymbol{\beta}_2) \le q \cdot \hat{\sigma}^2 \cdot F_{\alpha}(q, n - p - 1) \}.$$