Examen partiel

Département de génie électrique et de génie informatique GEL-3000 – Électronique des composants intégrés

Le 10 mars 2015

Documentation permise : 1 feuille de notes recto verso et 1 calculatrice.

Durée de l'examen : 1 heure 50 (10h30 – 12h20).

1. (30 points) Questions à courts développements

Répondez aux questions suivantes :

- (a) Utilisez deux ampli-op et quelques résistances pour réaliser cette fonction : $v_0 = 2v_1 + v_2 4v_3 2v_4$. Indice : utilisez un ampli additionneur.
- (b) Le gain de boucle d'un oscillateur à déphasage est tel que

$$L(j\omega) = \frac{R_f/R}{(3 - 4\omega^2 C^2 R^2) + j(5\omega CR - \omega^3 C^3 R^3)}$$

Donnez l'expression de ω_0 en fonction de R et C, et celle de R_f en fonction de R qui garantiront des oscillations pour ce circuit.

- (c) Expliquez brièvement le fonctionnement du circuit montré à la Fig. 1 et dessinez sa tension de sortie v_0 pour une tension d'entrée v_i sinusoïdale, si $R_2 = 2R_1$.
- (d) Soit le circuit montré à la Fig. 2. Donnez la tension aux bornes de Z₅.

1

2. (30 points) Analyse de circuits

Le circuit suivant est utilisé pour amplifier un faible signal différentiel $v_{id} = v_{12}-v_{11}$.

Figure 4.

Note: 1) Les ampli-op A₁, A₂ et A₃ sont identiques; 2) L₊ = 0.5V, L₋ = -0.5V;
 3) l'amplificateur possède un TRMC de 100 dB;

Répondez aux questions suivantes en laissant toutes les traces de votre démarche :

- (a) Pour un signal différentiel de sortie maximum, déterminez le rapport signal à bruit d'entrée (SNR_i) si la tension de sortie en mode commun (V_{ocm}) est de 0.005 V_{pp} .
- (b) Déterminez la tension d'entrée maximum (V_{idmax}) si le gain en mode commun (A_{cm}) est de $0.01\ V/V$.
- (c) Supposez que le 1^{er} étage possède un gain de 10 V/V et que le 2^{ième} étage possède un gain unitaire. Calculez les valeurs de R_1 et R_3 si $R_2 = R_4 = 100$ k Ω .
- (d) Modélisez la tension de décalage V_{os} et les courants de polarisations I_{B1} , I_{B2} du premier étage (pour A_1 et A_2 uniquement) du circuit de la Figure 4 et donner l'expression de la tension de décalage à la sortie (v_o) du circuit. **Considérez le pire cas.**
- (e) Proposez une façon de diminuer l'impact des imperfections DC pour ce circuit.

3. (40 points) Conception d'un filtre passe-bande cascadé

Concevez un filtre passe-bande constitué de sections cascadées respectant les spécifications suivantes :

- Une section passe-bande d'ordre 2: Cette section possède une fréquence centrale de 15 kHz et une bande passante de 10 kHz. On la réalise à l'aide d'un filtre actif passe-bande d'ordre 2 de type circuit résonant avec inductance simulée de gain unitaire.
- Une section passe-haut d'ordre 4: Cette section est constituée de deux sections d'ordres 2, dont l'une est réalisée par le filtre passe bande décrit ci dessus. La deuxième section utilise un filtre actif passe-haut d'ordre 2 de type Sallen-Key de fréquence de coupure de $2\pi \times 10$ kHz et de gain unitaire. Le facteur de qualité Q est choisi de telle sorte que la réponse du filtre ne présente pas de dépassement.
- Note: utilisez uniquement des condos de 10 nF.
- a) Dessinez le schéma complet du filtre passe-bande par inductance simulée,
 calculez les valeurs de tous ses éléments passifs et donnez sa fonction de transfert.
- b) Dessinez le schéma complet du filtre passe-haut Sallen-Key, calculez les valeurs de tous ses éléments passifs et donnez sa fonction de transfert.
- c) On désire augmenter l'atténuation du filtre décrit ci dessus par au moins 15 dB dans la bande d'arrêt. Pour ce faire, on utilise un filtre Butterworth possédant les caractéristiques suivantes : $A_{max} = 0.1$ dB et $\omega_s = 2\pi \cdot 42$ kHz.
 - i. Déterminez l'ordre du filtre à concevoir.
 - ii. Donnez le polynôme à réaliser. Note : utilisez la Table A1.
 - iii. Suggérez une réalisation en cascade de ce filtre actif : dessinez le schéma complet du circuit sans assigner les valeurs des composants passifs.

Bonne chance!

Benoit Gosselin

Aide mémoire

Full power bandwidth:

$$f_{M} \le \frac{SR}{2\pi V_{\text{omax}}}$$

Réponse en fréquence de l'ampli inverseur/non-inverseur:

$$\frac{V_{o}(s)}{V_{i}(s)} \cong \frac{1 + R_{2} / R_{1}}{1 + (s / \omega_{t}) \left(1 + \frac{R_{2}}{R_{1}}\right)}$$

On note que $\omega_t = A_0 \omega_b$ où ω_b est la fréquence de coupure de l'ampli-op en boucle ouverte.

Approximations de filtres

Figure A1.

Réponse Butterworth:

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \left(\frac{\omega}{\omega_p}\right)^{2N}}}$$

Réponse Chebyshev :

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \cos^2[N \cos^{-1}(\omega / \omega_p)]}}, \ \omega \le \omega_p$$

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \cosh^2[N \cosh^{-1}(\omega / \omega_p)]}}, \ \omega \ge \omega_p$$

L'atténuation $(|T(j\omega)|^{-1})$ d'un filtre à $\omega = \omega_s$:

$$A(j\omega_s) = -20\log\left[1/\sqrt{1+\varepsilon^2(\omega_s/\omega_p)^{2N}}\right]$$
$$= 10\log\left[1+\varepsilon^2(\omega_s/\omega_p)^{2N}\right]$$

Table A1. Réponse Butterworth: polynôme du dénominateur dénormalisé

n	Polynôme du dénominateur dénormalisé				
1	(1+s)				
2	$(1+1.414s+s^2)$				
3	$(1+s)(1+s+s^2)$				
4	$(1+0.765s+s^2)(1+1.848s+s^2)$				
5	$(1+s)(1+0.618s+s^2)(1+1.618s+s^2)$				
6	$(1+0.518s+s^2)(1+1.414s+s^2)(1+1.932s+s^2)$				
7	$(1+s)(1+0.445s+s^2)(1+1.247s+s^2)(1+1.802s+s^2)$				
8	$(1+0.390s+s^2)(1+1.111s+s^2)(1+1.663s+s^2)(1+1.962s+s^2)$				
9	$(1+s)(1+0.347s+s^2)(1+s+s^2)(1+1.532s+s^2)(1+1.879s+s^2)$				
10	$(1+0.313s+s^2)(1+0.908s+s^2)(1+1.414s+s^2)(1+1.782s+s^2)(1+1.975s+s^2)$				

Conception de filtres

Filtre passe-bas à base d'inductance simulée:

Figure A2.

$$T(s) = \frac{1/LC}{s^2 + s(1/RC) + (1/LC)} = \frac{KR_2 / C_4 C_6 R_1 R_3 R_5}{s^2 + s(1/R_6 C_6) + (R_2 / C_4 C_6 R_1 R_3 R_5)}$$

où $R = R_6$, $C = C_6$ et $L = C_4 R_5 R_3 R_1 / R_2$.

Filtre passe-bande à base d'inductance simulée:

Figure A3.

$$T(s) = \frac{s / CR}{s^2 + s(1/RC) + (1/LC)} = \frac{Ks / C_6 R_6}{s^2 + s(1/R_6 C_6) + (R_2 / C_4 C_6 R_1 R_3 R_5)}$$

où $R = R_6$, $C = C_6$ et $L = C_4 R_5 R_3 R_1 / R_2$.

Filtre Sallen-Key passe-bas:

Figure A4.

$$T(s) = \frac{aKG_{1}G_{2} / C^{2}}{s^{2} + s[G_{1} + G_{2}(2 - K)] / C + G_{1}G_{2} / C^{2}} = \frac{a_{0}}{s^{2} + s(\omega_{0} / Q) + \omega_{0}^{2}}$$
où
$$Q = \sqrt{G_{1}G_{2}} / [G_{1} + G_{2}(2 - K)]$$

Par ailleurs, si $R_1 = R_2 = R$, on obtient K = 3-1/Q.

Or,
$$K = 1 + R_B/R_A$$
, soit $R_B = (2 - 1/Q)R_A$.

Fonctions d'ordre 1 :

Filter Type and T(s)	s-Plane Singularities	Bode Plot for T	Passive Realization	Op Amp–RC Realization
(a) Low pass (LP) $T(s) = \frac{a_0}{s + \omega_0}$	jω O at ∞	$20 \log \frac{ T , dB}{ \omega_0 } - 20 \frac{dB}{decade}$ $0 \qquad \omega_0 \qquad \omega(\log)$	$ \begin{array}{c c} C & R & C & C \\ \hline V_i & C & V_o \\ \hline CR & = \frac{1}{\omega_0} \\ DC & gain & = 1 \end{array} $	R_{1} R_{2} R_{1} R_{2} R_{3} R_{4} R_{5} R_{2} R_{2} R_{2} R_{3} R_{4} R_{5} R_{2} R_{4} R_{5} R_{5} R_{6} R_{2} R_{6} R_{7} R_{7} R_{7} R_{7} R_{7} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{7} R_{7
(b) High pass (HP) $T(s) = \frac{a_1 s}{s + \omega_0}$	$ \begin{array}{c} \downarrow \\ \downarrow \\$	$ \begin{array}{c c} & T , dB \\ 20 \log a_1 & +20 \frac{dB}{decade} \\ 0 & \omega_0 & \omega(\log) \end{array} $	C + V_i - $CR = \frac{1}{\omega_0}$ High-frequency gain = 1	$R_1 = \frac{R_2}{W_0}$ $CR_1 = \frac{1}{\omega_0}$ R_2 V_0 R_1 R_2 R_2 R_3 R_4 R_2 R_4 R_2 R_4 R_2 R_4 R_7 R_8 R_9 R
(c) General $T(s) = \frac{a_1 s + a_0}{s + \omega_0}$	$ \begin{array}{c c} & j\omega \\ \hline & \omega_0 \\ \hline & a_0 \\ \hline & a_1 \end{array} $	$20 \log \frac{ a_0 }{ a_0 } - 20 \frac{dB}{decade}$ $20 \log \frac{ a_1 }{ a_0 } - \frac{1}{ a_0 } \frac{dB}{decade}$ $10 \log \frac{ a_1 }{ a_0 } - \frac{1}{ a_0 } \frac{dB}{decade}$	$C_{1} = \frac{C_{1}}{R_{1}}$ $C_{1} + C_{2} \cdot (R_{1} /\!\!/ R_{2}) = \frac{1}{\omega_{0}}$ $C_{1}R_{1} = \frac{a_{1}}{a_{0}}$ $DC \text{ gain} = \frac{R_{2}}{R_{1} + R_{2}}$ $HF \text{ gain} = \frac{C_{1}}{C_{1} + C_{2}}$	R_1 R_2 C_1 R_2 C_2 R_1 R_2 R_2 R_3 R_4 R_4 R_5 R_5 R_7

Fonctions d'ordre 2 :

