

Machine Learning - Sheet 7

Deadline: 12.07.2020 - 12:00

Task 1: MLP Bipartite Connections, Biases, Sigmoid Layers (9 Points) In this exercise, we focus on the most common components of artificial neural networks. In the following, let n, m, N be some natural numbers.

(1) (3 points) Full bipartite connection layer: Let $D \in \mathbb{R}^{N \times n}$ and $W \in \mathbb{R}^{n \times m}$ be two matrices. Suppose that in the forward pass, the matrix multiplication node gets D and W as inputs, and outputs their matrix product A := DW, that is, $A \in \mathbb{R}^{N \times m}$ with $A_{ij} := \sum_{q=1}^{n} D_{iq}W_{qj}$. In the backward pass, the node receives the backpropagated error $B \in \mathbb{R}^{N \times m}$ with $B_{ij} = \frac{\partial E}{\partial A_{ij}}$. Prove¹:

$$\frac{\partial A_{ij}}{\partial W_{kl}} = D_{ik}\delta_{jl}, \qquad \frac{\partial E}{\partial W_{kl}} = (D^{\top}B)_{kl}, \qquad \frac{\partial A_{ij}}{\partial D_{kl}} = \delta_{ik}W_{lj}, \qquad \frac{\partial E}{\partial D_{kl}} = (BW^{\top})_{kl}.$$

(2) (3 points) Bias layer: Suppose that $D \in \mathbb{R}^{N \times n}$ and $b \in \mathbb{R}^n$. Suppose that $A \in \mathbb{R}^{N \times n}$ with $A_{ij} = D_{ij} + b_j$. Let $B \in \mathbb{R}^{N \times n}$ be the backpropagated error, that is: $B_{ij} = \frac{\partial E}{\partial A_{ij}}$. Show:

$$\frac{\partial A_{ij}}{\partial D_{kl}} = \delta_{ik}\delta_{jl}, \qquad \frac{\partial E}{\partial D_{kl}} = B_{kl}, \qquad \frac{\partial A_{ij}}{\partial b_k} = \delta_{kj}, \qquad \frac{\partial E}{\partial b_k} = \sum_i B_{ik}.$$

(3) (3 points) **Sigmoid layer:** The input is $D \in \mathbb{R}^{N \times n}$. The activation is $A \in \mathbb{R}^{N \times n}$ with $A_{ij} := \sigma(D_{ij})$, where $\sigma(t) := 1/(1 + e^{-t})$ is the sigmoid function. Let $B \in \mathbb{R}^{N \times n}$ be the backpropagated error, i.e., $B_{ij} = \frac{\partial E}{\partial A_{ij}}$. Show that $\sigma'(t) = \sigma(t)(1 - \sigma(t))$, and $\frac{\partial E}{\partial D_{kl}} = B_{kl}A_{kl}(1 - A_{kl})$.

Task 2: Maximum Margin Hyperplane

(2 Points)

Show that the value ρ of the margin for the maximum-margin hyperplane is given by

$$\frac{1}{\rho^2} = \sum_{n=1}^{N} a_n,$$

where $\{a_n\}$ are given by maximizing

$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m y_n y_m k(\mathbf{x}_n, \mathbf{x}_m)$$

subject to the constraints $a_n \ge 0$, n = 1, ..., N, and $\sum_{n=1}^{N} a_n y_n = 0$.

¹ Here, δ_{ij} stands for the Kronecker Delta. This means: δ_{ij} is 1 iff i=j, and 0 otherwise. Hint: if $\xi(i)$ is some expression that depends on the index i, then $\sum_i \xi(i) \delta_{ij} = \xi(j)$.

Task 3: Support Vector Machines: Kernels

(9 Points)

For any non-empty set \mathcal{X} a kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is said to be *positive semi-definite*, if the following conditions hold for all $x_1, \ldots, x_m \in \mathcal{X}$:

- $k(x_i, x_j) = k(x_j, x_i)$ for all x_i, x_j (symmetry)
- $\forall c_1, \dots, c_m \in \mathbb{R}$: $\sum_{i,j=1}^m c_i c_j k(x_i, x_j) \ge 0$

Every positive semi-definite kernel can be represented as a dot product in a linear space, thus allowing for the *kernel trick*.

- (a) (2 points) Show that the dot product $k : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, k(x,y) := \sum_{i=1}^n x_i y_i$ is a positive semi-definite kernel.
- (b) (2 points) Show that the polynomial kernel $k : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, k(x,y) := (\sum_{i=1}^n x_i y_i)^2$ is a positive semi-definite kernel.

Now, we want to build more complex kernels from simpler ones. Suppose that we already know that if $k, k_1, k_2 : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ are kernels, then

- $k_1 + k_2$ (i.e, $(x, y) \mapsto k_1(x, y) + k_2(x, y)$)
- $k_1 \cdot k_2$ (i.e, $(x, y) \mapsto k_1(x, y) \cdot k_2(x, y)$)
- $\exp \circ k$ (i.e, $(x, y) \mapsto \exp(k(x, y))$)

are also kernels. Relying only on the definition of the kernel and these three "rules", show that the following functions are also kernels:

- (c) (1 point) Let $d \in \mathbb{N}$ be some exponent, and k a kernel. Show that k^d , i.e. $(x,y) \mapsto (k(x,y))^d$ is a kernel.
- (d) (2 points) Let $n \in \mathbb{N}$, $c_0, \ldots, c_n \in \mathbb{R}_{\geq 0}$, let k be a kernel. Show that $\sum_{i=0}^n c_i \cdot k^i$ is also a kernel.
- (e) (2 points) Let $f: \mathcal{X} \to \mathbb{R}$ an arbitrary function. Show that $(x,y) \mapsto f(x)k(x,y)f(y)$ is a kernel.