Homework 1: Measure Theory

OSE Lab 2019, Jan Ertl Wouter van der Wielen

Exercise 1.3 (a) \mathcal{G}_1 is not an algebra (and hence not a σ -algebra). \mathcal{G}_1 is not closed under complements. Fix $a \in \mathbb{R}$ and let $A = (-\infty, a)$ be an open set in \mathbb{R} . Then $A^c = [a, \infty)$ is not an open set in \mathbb{R} . Therefore, we have that $A \in \mathcal{G}_1$ but $A^c \notin \mathcal{G}_1$, which violates the definition of an algebra.

- (b) \mathcal{G}_2 is an algebra but not a σ -algebra. We first show that \mathcal{G}_2 is an algebra. Let $a = b \in \mathbb{R}$. Then $(a, b] = \emptyset \in \mathcal{G}_2$. \mathcal{G}_2 is also closed under complements. To see this, fix $a, b \in \mathbb{R}$. Then $(a, b]^c = (-\infty, a] \cup (b, \infty) \in \mathcal{G}_2$. Furthermore, $(-\infty, b]^c = (b, \infty) \in \mathcal{G}_2$, and $(a, \infty)^c = (-\infty, a] \in \mathcal{G}_2$. Finally, observe that \mathcal{G}_2 is closed under finite unions. A finite union of intervals of the form $(a, b], (-\infty, b]$, and (a, ∞) still results in a finite union of intervals of the same form. Therefore, \mathcal{G}_2 is an algebra. However, \mathcal{G}_2 is not a σ -algebra. An infinite (countable) union of intervals of the form $(a, b], (-\infty, b]$, and (a, ∞) does not belong to \mathcal{G}_2 , by definition. Thus \mathcal{G}_2 is not a σ -algebra.
- (c) \mathcal{G}_3 is an algebra and a σ -algebra. The proof that $\emptyset \in \mathcal{G}_3$ and \mathcal{G}_3 is closed under complements is the same as the proof for \mathcal{G}_2 . However, \mathcal{G}_3 contains countable unions of intervals of the form $(a, b], (-\infty, b]$, and (a, ∞) by definition; therefore \mathcal{G}_3 is closed under countable unions and is a σ -algebra.

Exercise 1.7 Let X be a nonempty set and \mathcal{A} be a σ -algebra of X. The definition of a σ -algebra requires $\emptyset \in \mathcal{A}$. Furthermore, a σ -algebra is closed under complements, which implies that $\emptyset^c = X \in \mathcal{A}$. Therefore, to satisfy the definition, any σ -algebra must contain both \emptyset and X, so that the set $\{\emptyset, X\}$ is the smallest σ -algebra. The power set of X, $\mathcal{P}(X)$, is the largest possible σ -algebra because it contains all possible subset of X. Recall that a σ -algebra is a family of subsets of X. Therefore, the largest possible family of subsets of X contains all subsets of X, which is precisely $\mathcal{P}(X)$.

Exercise 1.10 Let $\{S_{\alpha}\}$ be a family of σ -algebras on X. We show that $\cap_{\alpha} S_{\alpha}$ is also a σ -algebra. Observe that $\emptyset \in S_{\alpha}$ for all α because $\{S_{\alpha}\}$ is a family of σ -algebras. Therefore, $\emptyset \in \cap_{\alpha} S_{\alpha}$.

Moreover, let $A \in \cap_{\alpha} S_{\alpha}$. Therefore, $A \in S_{\alpha}$ for all α . Each S_{α} is a σ -algebra, which implies that $A^c \in S_{\alpha}$ for all α . Therefore, $A^c \in \cap_{\alpha} S_{\alpha}$. Thus, $A \in \cap_{\alpha} S_{\alpha}$ implies $A^c \in \cap_{\alpha} S_{\alpha}$, so that $\cap_{\alpha} S_{\alpha}$ is closed under complements.

Finally, let $A_1, A_2, \ldots \in \cap_{\alpha} S_{\alpha}$. Therefore, $A_1, A_2, \ldots \in S_{\alpha}$ for all α . Each S_{α} is a σ -algebra, which implies that $\bigcup_{n=1}^{\infty} A_n \in S_{\alpha}$ for all α . Thus, $\bigcup_{n=1}^{\infty} A_n \in \cap_{\alpha} S_{\alpha}$, which shows that $\bigcap_{\alpha} S_{\alpha}$ is closed under countable unions.

Therefore, we have showed that $\cap_{\alpha} S_{\alpha}$ is indeed a σ -algebra.

Exercise 1.22 Let (X, \mathcal{S}, μ) be a measure space.

(a) Observe that we can write $B = (B \cap A^c) \cup (B \cap A) = (B \cap A^c) \cup A$, where the last inequality follows because $A \subset B$. By the definition of a measure, we have that $\mu(B) = \mu(B \cap A^c) + \mu(A)$, as $(B \cap A^c)$ and $(B \cap A) = A$ are clearly disjoint. Finally,

note that by definition, a measure is nonnegative, so $\mu(B \cap A^c) \geq 0$. Therefore, $\mu(B) \geq \mu(A)$.

(b) Let $A = \bigcup_{i=1}^{\infty} A_i$ and define $\{B_i\}_{i=1}^{\infty}$ as follows. Set $B_1 = A_1$, $B_2 = A_2 \cap A_1^c$, $B_3 = A_3 \cap (A_1 \cup A_2)^c$, and more generally, $B_i = A_i \cap (\bigcup_{n=1}^{i-1} A_i)^c$. Observe that $A = \bigcup_{i=1}^{\infty} B_i$. Also observe $B_i \subset A_i$, as we form B_i by intersecting A_i with other sets. Additionally, $B_i \cap B_j = \emptyset$ for all $i \neq j$, by construction. By monotonicity, proved above, we have that $\mu(B_i) \leq \mu(A_i)$. Therefore,

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \mu(\bigcup_{i=1}^{\infty} B_i) = \sum_{i=1}^{\infty} \mu(B_i) \le \sum_{i=1}^{\infty} \mu(A_i)$$

The second inequality follows by the disjointness of B_i and B_j for all $i \neq j$, and the fourth inequality follows by monotonicity.

Exercise 1.23 Let (X, \mathcal{S}, μ) be a measure space and $B \in \mathcal{S}$. Define $\lambda : \mathcal{S} \to [0, \infty]$ by $\lambda(A) = \mu(A \cap B)$. By the definition of λ , $\lambda(\emptyset) = \mu(\emptyset \cap B) = \mu(\emptyset) = 0$, because μ is a measure.

Next, fix $\{A_i\}_{i=1}^{\infty} \subset \mathcal{S}$ such that $A_i \cap A_j = \emptyset$ for all $i \neq j$. By the definition of λ ,

$$\lambda(\cup_{i=1}^{\infty} A_i) = \mu((\cup_{i=1}^{\infty} A_i) \cap B)$$

$$= \mu(\cup_{i=1}^{\infty} (A_i \cap B))$$

$$= \sum_{i=1}^{\infty} \mu(A_i \cap B)$$

$$= \sum_{i=1}^{\infty} \lambda(A_i \cap B)$$

The third equality follows because $A_i \cap A_j = \emptyset$ for all $i \neq j$ implies that $(A_i \cap B) \cap (A_j \cap B) = \emptyset$ for all $i \neq j$. Thus, as μ is a measure, we may break of the disjoint into a sum of the individual measures. Finally, the last inequality follows by the definition of λ .

Exercise 1.26 We use the following lemma in our proof:

Lemma 1. If
$$A_n \subset A_1$$
, then $\mu(A_1) - \mu(A_n) = \mu(A_1 \setminus A_n)$

Proof. We can write $A_1 = (A_1 \setminus A_n) \cup A_n$, which is a disjoint union, because $A_n \subset A_1$. Therefore, $\mu(A_1) = \mu(A_1 \setminus A_n) + \mu(A_n)$. The lemma follows.

Define $B_n = A_1 \setminus A_n$ for $n \in \mathbb{N}$ and let $B = \bigcup_{n=1}^{\infty} B_n$. Observe that $\{B_n\}_{n=1}^{\infty}$ forms an increasing sequence because $A_n \supset A_{n+1}$ for all n is a decreasing sequence of sets. Let $A = \bigcap_{n=1}^{\infty} A_n$. Then,

$$\mu(A_1) - \mu(A) = \mu(A_1 - A)$$

$$= \mu(B)$$

$$= \lim_{n \to \infty} \mu(B_n)$$

$$= \lim_{n \to \infty} (\mu(A_1) - \mu(A_n))$$

Therefore, because $\mu(A_1) < \infty$, we may subtract $\mu(A_1)$ from both sides of the above sequence of equations to find that,

$$\mu(A) = \lim_{n \to \infty} \mu(A_n)$$

Exercise 2.10 Recall that μ^* is countably subadditive. Write $B \subset X$ as $B = (B \cap E) \cup (B \cap E^c)$. By countable subadditivity, we have that $\mu^*(B) \leq \mu^*(B \cap E) + \mu^*(B \cap E^c)$. Therefore, if $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c)$, then it follows that $\mu^*(B) \geq \mu^*(B \cap E) + \mu^*(B \cap E^c)$. Therefore, satisfying the equality condition implies the condition (*) in Theorem 2.8.

Exercise 2.14 Recall that $\sigma(\mathcal{O})$:= the smallest σ -algebra containing all open sets of X. We call $\sigma(\mathcal{O})$ the Borel σ -algebra of X written as $\mathcal{B}(X)$. Next, by the Carathéodory Construction, \mathcal{M} is a σ -algebra. Additionally, \mathcal{M} is the collection of all Lebesgue measurable sets. The collection of all Lebesgue measurable sets contains open sets. Therefore, because $\mathcal{B}(X)$ is defined as the intersection of all σ -algebra containing open sets, we must have that $\mathcal{B}(X) \subset \mathcal{M}$.

Exercise 3.1 Let $A = \{a_1, a_2, \ldots\}$ be a countable subset of the real line. Fix $\epsilon > 0$. We construct a sequence of intervals $\{I_n\}_{n=1}^{\infty}$ as follows. Let $I_1 = (a_1 - \frac{\epsilon}{2}, a_1 + \frac{\epsilon}{2})$, which has length ϵ . Similarly, let $I_2 = (a_2 - \frac{\epsilon}{4}, a_2 + \frac{\epsilon}{4})$, which has length $\frac{\epsilon}{2}$. For a general interval n, we write $I_n = (a_n - \frac{\epsilon}{2^n}, a_n + \frac{\epsilon}{2^n})$, which has length $\frac{\epsilon}{2^{n-1}}$. Now, the sum of the lengths of the intervals is,

$$\sum_{n=1}^{\infty} \frac{\epsilon}{2^{n-1}} = 2\epsilon$$

By definition, the Lebesgue (outer) measure of A is,

$$\mu(A) = \inf \left[\sum_{n=1}^{\infty} (d_n - c_n) : A \subset \bigcup_{n=1}^{\infty} (c_n, d_n) \right]$$

Above, we demonstrated an open cover of A such that the sum of the intervals is arbitrarily small. Therefore, the measure of this open cover is arbitrarily small (yet weakly positive) and hence 0. Thus, $\mu(A) = 0$.

Exercise 3.7

We show that the following conditions are equivalent:

- 1. $\{x \in X : f(x) < a\} \in \mathcal{M}$
- 2. $\{x \in X : f(x) \ge a\} \in \mathcal{M}$
 - (1) \Longrightarrow (2): Suppose $\{x \in X : f(x) < a\} \in \mathcal{M}$. Observe that $f^{-1}([a, \infty)) = (f^{-1}(-\infty, a))^c$. \mathcal{M} is closed under complements, therefore $f^{-1}([a, \infty)) \in \mathcal{M}$.
- 3. $\{x \in X : f(x) > a\} \in \mathcal{M}$
 - (2) \Longrightarrow (3): Suppose $\{x \in X : f(x) \geq a\} \in \mathcal{M}$. Observe that $f^{-1}((a, \infty)) = \bigcap_{n=1}^{\infty} f^{-1}([a \frac{1}{n}, \infty))$. By assumption, each of the sets in this intersection is in \mathcal{M} . \mathcal{M} is closed under countable intersections. Therefore, $f^{-1}(a, \infty) \in \mathcal{M}$.
- 4. $\{x \in X : f(x) \le a\} \in \mathcal{M}$
 - (3) \Longrightarrow (4): Suppose $\{x \in X : f(x) > a\} \in \mathcal{M}$. Observe that $f^{-1}((-\infty, a]) = (f^{-1}(a, \infty))^c$. \mathcal{M} is closed under complements, therefore $f^{-1}((-\infty, a]) \in \mathcal{M}$.
 - (4) \Longrightarrow (1): Suppose $\{x \in X : f(x) \leq a\} \in \mathcal{M}$. Observe that $f^{-1}((-\infty, a)) = \bigcap_{n=1}^{\infty} f^{-1}((-\infty, a + \frac{1}{n}))$. By assumption, each of the sets in this intersection is in \mathcal{M} . \mathcal{M} is closed under countable intersections. Therefore, $f^{-1}((a, \infty)) \in \mathcal{M}$.

Exercise 3.10 We prove $\min(f, g)$, $\max(f, g)$ and |f| directly from the definition of measurable functions and use results from Exercise 3.7 to rewrite the condition for measurability in equivalent forms to make the proofs easier.

- 1. Consider F(f(x) + g(x)) = f(x) + g(x). Then F is continuous and by part 4 of Theorem 3.9, measurable. Therefore, f + g is measurable.
- 2. Consdier F(f(x) + g(x)) = f(x)g(x). Then F is continuous and by part 4 of Theorem 3.9, measurable. Therefore, $f \cdot g$ is measurable.
- 3. Because f and g are measurable functions on (X, \mathcal{M}) , we have that for all $a \in \mathbb{R}$, $\{x \in X : f(x) < a\} \in \mathcal{M}$ and $\{x \in X : g(x) < a\} \in \mathcal{M}$. Therefore, it follows that $\{x \in X : \max(f(x), g(x)) < a\} = \{x \in X : f(x) < a\} \cap \{x \in X : g(x) < a\}$. \mathcal{M} is closed under countable intersections, therefore, $\{x \in X : \max(f(x), g(x)) < a\} \in \mathcal{M}$, so that $\max(f(x), g(x))$ is measurable.
- 4. The proof that $\min(f,g)$ is measurable is analogous to the proof of (3). The key observation here is that $\{x \in X : \min(f(x), g(x)) > a\} = \{x \in X : f(x) > a\} \cap \{x \in X : g(x) > a\}$. \mathcal{M} is closed under countable intersections, therefore, $\{x \in X : \min(f(x), g(x)) > a\} \in \mathcal{M}$, so that $\min(f(x), g(x))$ is measurable.
- 5. Observe that $\{x \in X : |f(x)| > a\} = \{x \in X : f(x) < -a\} \cup \{x \in X : f(x) > a\}$. Both of these sets are in \mathcal{M} . \mathcal{M} is closed under countable unions, therefore, $\{x \in X : |f(x)| > a\} \in \mathcal{M}$, so that |f(x)| is measurable.

Exercise 3.17 Let f be bounded, and fix $\epsilon > 0$. Then, there exists an $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in X$. Therefore, $x \in E_i^M$ for some i and all $x \in X$. Observe

that there is an $N \in \mathbb{R}$ and $N \geq M$ such that $\frac{1}{2^N} < \epsilon$. Therefore, for all $x \in X$ and $n \geq N$, $||s_n(x) - f(x)|| < \epsilon$. Therefore, the convergence in part (1) of Theorem 3.13 is uniform.

Exercise 4.13 To show that $f \in \mathcal{L}^1(\mu, E)$, we must show that both $\int_E f^+ d\mu$ and $\int_E f^- d\mu$ are finite.

Recall that $||f|| = f^+ + f^-$. Also note that $0 \le f^+$ and $0 \le f^-$ by definition. Because ||f|| < M on E, then $0 \le f^+ < M$ and $0 \le f^- < M$ on E. Then, because $\mu(E) < \infty$, we have that,

$$\int_{E} f^{+} d\mu < M\mu(E) < \infty$$

$$\int_{E} f^{-} d\mu < M\mu(E) < \infty$$

Therefore, both $\int_E f^+ d\mu$ and $\int_E f^- d\mu$ are finite. Hence, by definition, $f \in \mathcal{L}^1(\mu, E)$.

Exercise 4.14 We prove the contrapositive of this statement. To that end, suppose there exists a measurable set $\hat{E} \subset E$ such that f is infinite on \hat{E} . Here, we assume that f reaches positive infinity (without loss of generality, the proof for negative infinity or mixed between positive and negative infinity is analogous). It follows that,

$$\infty = \int_{\hat{E}} f d\mu \le \int_{E} f d\mu \le \int_{E} ||f|| d\mu$$

The first inequality is proved below. However, this implies that $f \notin \mathcal{L}^1(\mu, E)$.

Exercise 4.15 Let $f,g \in \mathcal{L}^1(\mu,E)$. Define the set of simple functions $B(f) = \{s : 0 \le s \le f, s \text{ simple, measurable}\}$. Let $f \le g$. If follows that $f^+ \le g^+$ and $f^- \ge g^-$. Then, we have that $B(f^+) \subset B(g^+)$ and $B(g^-) \subset B(f^-)$. These two relationships imply that $\int_E f^+ d\mu \le \int_E g^+ d\mu$ and $\int_E f^- d\mu \ge \int_E g^- d\mu$. Then by the definition of the Lebesgue integral, we observe that,

$$\int_{E} f d\mu = \int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu \le \int_{E} g^{+} d\mu - \int_{E} g^{-} d\mu = \int_{E} g d\mu$$

Therefore,

$$\int_{E} f d\mu \le \int_{E} g d\mu$$

Exercise 4.16 Fix a simple function $s(x) = \sum_{i=1}^{N} c_i \chi_{E_i}$, where $E_i \in \mathcal{M}$. Let $A \subset E \in \mathcal{M}$. Then, by the monotonicity of measures, we have that $\mu(A \cap E_i) \leq \mu(E \cap E_i)$ for all i. Therefore, combining this result with Definition 4.1, we have that,

$$\int_{A} s d\mu = \sum_{i=1}^{N} c_{i} \mu(A \cap E_{i}) \le \sum_{i=1}^{N} c_{i} \mu(E \cap E_{i}) = \int_{E} s d\mu$$
 (1)

Now, it follows that,

$$\int_A f d\mu = \sup \left[\int_A s d\mu : 0 \le s \le f, s \text{ simple, measurable} \right]$$

and

$$\int_E f d\mu = \sup \left[\int_E s d\mu : 0 \le s \le f, s \text{ simple, measurable} \right]$$

Now because our choice of s was arbitrary, we have by Equation (1) that,

$$\int_{A} f d\mu \le \int_{E} f d\mu \tag{2}$$

Because $f \in \mathscr{L}^1(\mu, E)$, by definition we have that $\int_E ||f|| d\mu < \infty$. Therefore, $\int_E f d\mu < \infty$. Finally, it follows that $\int_A f d\mu < \infty$, which in turn implies $\int_A f^+ d\mu < \infty$ and $\int_A f^- d\mu < \infty$, so that $f \in \mathscr{L}^1(\mu, A)$.

Exercise 4.21 Let $A, B \in \mathcal{M}$, $B \subset A$, $\mu(A - B) = 0$, and $f \in \mathcal{L}^1$. Then, by Proposition 4.6. we have that,

$$\int_{A-B} f d\mu = 0.$$

Recall that f^+ and f^- are non-negative \mathcal{M} -measurable functions because $f \in \mathcal{L}^1$. By Theorem 4.19, we have that $\mu_1(A) = \int_A f^+ d\mu$ and $\mu_2(A) = \int_A f^- d\mu$ are measures on \mathcal{M} . Therefore, by the definition of the Lesbesgue integral,

$$\int_{A} f d\mu = \int_{A} f^{+} d\mu - \int_{A} f^{-} d\mu = \mu_{1}(A) - \mu_{2}(A)$$

Now, consider the disjoint union $A = (A - B) \cup B$. Because both $\mu_1(A)$ and $\mu_2(A)$ are measures, we have that $\mu_i(A) = \mu_i(A - B) + \mu_i(B)$ for i = 1, 2, because measures are additively separable on disjoint sets. Therefore, we have that $\mu_i(A) = \mu_i(B)$ for i = 1, 2 because $\mu(A - B) = 0$. Therefore,

$$\int_{A} f d\mu = \mu_1(B) - \mu_2(B) = \int_{B} f d\mu$$

This result clearly implies that

$$\int_{A} f d\mu \le \int_{B} f d\mu$$