Scalable Modeling of Multivariate Longitudinal Data: Prediction of Chronic Kidney Disease Progression

Joseph Futoma 1 , Mark Sendak 2,3 , C. Blake Cameron MD 3,4 , Katherine Heller 1

 1 Dept. of Statistical Science, 2 Institute for Health Innovation, 3 School of Medicine, 4 Division of Nephrology Duke University

Figure 1: 15-year course of patient who experienced CKD rapid progression, other serious health events.

Motivation

- Chronic Kidney Disease (CKD): progressive loss of kidney function; high morbidity.
- Diagnosed using eGFR: extremely noisy estimate of kidney function.
- Systematically underdiagnosed; progression can be slowed/halted if detected early.
- < 10% with moderate CKD, < 50% with advanced CKD aware of illness.
- Kidney function trajectory more important than eGFR value / CKD stage.
- Goal: flexible model for multivariate longitudinal clinical data.

Electronic Health Records (EHRs)

- Stores information captured about patients during encounters with health system.
- ICD-9 diagnosis codes: structured, hierarchical, primarily for billing, subjective.
- Laboratory test results: objective clinical data.
- Many inherent limitations and problems to working with live EHR data.

Figure 2: Monthly counts for different lab names for Serum Creatinine, 1996-2015.

Proposed Model

- Hierarchical latent variable model: capture dependencies between lab trajectories.
- $\vec{y_{ip}}$: observed values for patient i, lab/biomarker $p = 1, \ldots, P$. $\vec{y_i}$: all labs.
- Assume independence in conditional likelihood $(z_i, b_i, c_i \text{ latents for person } i)$:

$$p(\vec{y_i}|z_i, b_i, c_i; x_i) = \prod_{p=1}^{P} p(\vec{y_{ip}}|z_i, b_i, c_i; x_i)$$

- Model for a Single Trajectory:
- Population component: Fixed intercept from baseline covariates.
- Subpopulation component: Latent subpopulation $z_i \in \{1, \ldots, G\}$, unique B-spline trajectory.
- Individual component: Random intercept, slope (long-term individual deviations).
- Structured noise component: Transient trends in trajectory, GP with OU kernel.

$$y_{ip}(t) \sim N(\mu_{ip}(t), \sigma_p^2) \tag{1}$$

 $\mu_{ip}(t) \sim \mathcal{GP}(\Lambda^{(p)}x_i + \Phi_z(t)^{\top}\beta_{z_{in}}^{(p)} + \Phi_l(t)^{\top}b_{ip}, K_p)$ (2)

 $K_p(t, t') = a_p^2 \exp\{-l_p^{-1}|t - t'|\} \tag{3}$

- Inducing Dependence:
 - Induce dependence among mean functions $\mu_{ip}(t)$ in two ways:

1 Long-term deviations (random intercepts, slopes) b_{ip} correlated via joint multivariate normal:

$$\vec{b_i} = (b_{i1}, \dots, b_{iP})^{\top} \sim N(0, \Sigma_b). \tag{4}$$

2 Subtypes/clusters per lab z_{ip} correlated via mixture of multinomials:

$$z_{ip}|c_i \sim \text{Multinomial}(\Psi_{c_i}^{(p)})$$
 (5)

$$c_i \sim \text{Multinomial}(\pi_i), \ \pi_{ig} = \frac{e^{w_g^{\top} x_i}}{\sum_{g'=1}^G e^{w_{g'}^{\top} x_i}}$$
 (6)

- Inference: Fit joint model with stochastic variational inference.
 - Mean field variational distribution, for now.
 - Lower bound has closed form; automatic differentiation for gradients.

Results

- 44,519 patients with at least moderate stage CKD, 5+ eGFR values. Other labs:
 - Serum Albumin, Bicarbonate, Calcium, Phosphorus; Urine Albumin/Creatinine Ratio.
- Processing: mean in monthly bins; t = 0: first eGFR < 60.
- Given trained model, predict future labs given labs up to t for each test patient.
- Evaluation: Mean Absolute Error on held-out lab values.
- Baseline: (Schulam & Saria, NIPS 2015) for a single trajectory.

Predictions with data up to			t = 1			t = 2			t=4	
Lab	Model	(1,2]	(2,4]	(4, 8]	(8, 19]	(2,4]	(4, 8]	(8, 19]	(4,8]	(8,19]
eGFR	Schulam	8.86*	10.43*	12.05	13.69	8.84***	11.08**	13.23^{*}	9.39***	12.29^{*}
	Proposed	9.12	10.67	12.28	14.21	9.26	11.73	13.99	10.12	13.07
Serum Alb.	Schulam	0.59	0.79	1.09	1.53	0.60	0.88	1.28	0.63	0.96
	Proposed	0.34***	0.39***	0.47***	0.63***	0.35***	0.45^{***}	0.63***	0.40***	0.58***
Serum Bicarb.	Schulam	1.92	2.06	2.13	2.31	1.93	2.06	2.21	1.89	2.14
	Proposed	1.87	1.97	2.04	2.31	1.89	1.99	2.31	1.87	2.24
Serum Calc.	Schulam	0.74	1.02	1.62	2.89	0.72	1.26	2.27	0.85	1.53
	Proposed	0.37***	0.44***	0.58***	0.80***	0.39***	0.54***	0.80***	0.46***	0.73^{***}
Serum Phos.	Schulam	1.02	1.35	1.46	1.44	1.17	1.36	1.34	1.13	1.15
	Proposed	0.57***	0.68***	0.88***	1.23	0.65***	0.88***	1.25	0.82***	1.23
Urine ACR	Schulam	1.17	1.30	1.44	1.64	1.14	1.30	1.53	1.11	1.41
	Proposed	0.92***	1.02***	1.17^{***}	1.44	0.96***	1.13^{*}	1.45	1.02	1.42

Table 1: Mean Absolute Errors across all labs from 10 fold cross validation. Bold indicates p-value from one-sided, paired t-test comparing methods was < .05. *,**,*** indicate p < .01, < .001, < .0001, respectively.

CKD Rounding Application

Figure 3: Snapshots from our CKD rounding application (with synthetic data). **Top**: pre-rounding table of patients, with risk scores, flags. **Middle**: patient data, other relevant info to possibly make an intervention. **Bottom**: list of tasks for each group at rounds.

Conclusion

- Novel model for multivariate longitudinal clinical data; scales well.
- Adds value as a clinical decision support tool, supplement clinical "gestalt"
- Future work: more flexible models; joint model with events (e.g. admissions).