IA e ML Aplicados a Finanças

Prof. Leandro Maciel

AULA 10: Algoritmos Genéticos

Agenda

- Seleção de Carteiras
- 2 Algoritmos Genéticos
- 3 Bibliografia

Etapas em um processo de seleção de carteiras:

- 1. Selecionar n potenciais ativos (análise fundamentalista ou técnica);
- 2. Qual a proporção do capital (w_i) aplicar em cada ativo?
- 3. Objetivo? Maximizar retorno (R_p) ? Minimizar risco (σ_p) ?

$$\max_{w_1,...,w_n} \{R_p\} \quad \text{ou} \quad \min_{w_1,...,w_n} \{\sigma_p\}$$

s.a.
$$\sum_{i=1}^{n} w_i = 1$$
 carteira totalmente investida

$$0 \le w_i \le 1, \forall i$$
 posições compradas

- Formulação da função objetivo tem várias alternativas;
- Em finanças: trade-off risco-retorno;
- Carteira de Variância Mínima (CVM) → portfólio de menor risco;
- Objetivo é minimizar risco da carteira (desvio-padrão):

$$\min_{w_1,\ldots,w_n}\left\{\sigma_p\right\}$$

s.a.
$$\sum_{i=1}^n w_i = 1$$
 e $0 \leq w_i \leq 1, \forall i$

- Variável de decisão \rightarrow vetor do tipo $\mathbf{w} = (w_1, w_2, \dots, w_n);$
- Encontrar vetor de pesos que resulta na CVM;
- Há restrições nas variáveis (positividade);
- Função objetivo pode incluir as restrições:

$$\min_{w_1,\ldots,w_n} \left\{ \sigma_p + \lambda \left(\sum_{i=1}^n w_i - 1 \right)^2 \right\}$$

 $\lambda
ightarrow$ termo de penalização (em geral um valor grande) pprox 100

■ Problemas em técnicas baseadas em gradiente:

AGs (J. Holland, 1975 e D. Goldberg, 1989):

- Métodos de otimização inspirados na Teoria da Evolução (IA);
- Meta-heurística (processos cognitivos em decisões não aleatórias);

Teoria da Evolução de Darwin (Origem das Espécies, 1859):

- Indivíduos mais aptos sobrevivem no processo;
- Transmitem características para gerações futuras.

AGs e otimização:

- População de indivíduos → possíveis soluções (cromossomos);
- Indivíduos são "melhorados" (evoluem) de forma iterativa;
- Busca da solução do problema como um processo evolutivo;
- Seleção dos mais aptos + transmissão de características;
- Evolução resulta em indivíduos "mais aptos" (melhor solução).

- Etapas da otimização usando AGs:
 - 1. Gerar população inicial com indivíduos aleatórios;
 - 2. Avaliar indivíduos de acordo com uma função de fitness (objetivo);
 - 3. Selecionar mais aptos (com "melhor valor" da função objetivo);
 - 4. Nova população com base nos mais aptos (crossover e mutação);
 - 5. Repete o processo evolutivo (iteração etapa 2).

- Algoritmo de alto nível e poder computacional;
- Customizável para uma ampla quantidade de problemas;
- AGs diferem de acordo com:
 - 1. Forma de representação dos indivíduos;
 - 2. Estratégia de seleção;
 - 3. Operadores de busca (crossover e mutação).

1. Representação dos indivíduos:

- Cromossomo como uma possível solução da função objetivo;
- Objetivo é minimizar risco da carteira (CVM);
- Vetor de pesos que resulta na carteira de menor risco;
- **E**x.: $\mathbf{w} = \{0.2, 0.1, 0.4, 0.3\}$ é uma possível solução (vetor pesos);
- Representação por meio de números reais (ou bits);
- Gera-se uma população inicial de *N* indivíduos.

População Inicial (Possíveis Soluções)

2. Seleção:

- Escolher "mais aptos" para gerar cromossomos filhos (novas soluções);
- Indivíduos com melhor valor da função objetivo (melhor ajuste);
- Vetor de pesos que resultam em menor risco da carteira;
- Métodos de seleção:

Roleta \rightarrow ordena por aptidão de acordo com um **corte**;

Torneio \rightarrow amostra aleatória com os *n* melhores e repete processo.

Seleção Mais Aptos

3. Operadores genéticos:

- Seleção gera uma população de potenciais cromossomos pais;
- Cromossomos parentais aleatórios para aplicar operadores;
- Operadores genéticos: crossover e mutação;
- Produz filhos até completar o tamanho da população;
- Tamanho da população se mantém o mesmo nas gerações.

Operadores de crossover:

- Aplicado a um par de cromossomos para gerar filhos;
- Objetivo é herdar características dos pais. Exemplo:

$$filho = \frac{\left(parental_1 + parental_2\right)}{2}
ightarrow {\sf crossover}$$
 média aritmética

 $\blacksquare \mbox{ Para os pais } \{0.2, 0.1, 0.3, 0.4\} \mbox{ e } \{0.15, 0.22, 0.08, 0.65\} :$

$$filho = \{0.175, 0.16, 0.19, 0.525\}$$

Outros operadores de crossover:

$$\mathit{filho} = \sqrt{\mathit{parental}_1 \cdot \mathit{parental}_2} o \mathsf{crossover}$$
 média geométrica

$$filho = parental_1 + \beta(parental_2 - parental_1) \rightarrow crossover BLX-\alpha$$

 β aleatório em $[-\alpha,1+\alpha],\alpha\to {\rm parâmetro}$ de controle de diversidade

- Crossover é aplicado de acordo com uma probabilidade;
- Taxa de Crossover → geralmente entre 60-90%;
- Decisão de aplicar crossover se baseia em $r \in [0,1]$ aleatório:

Se r < taxa de crossover, então operador é aplicado;

Caso contrário, filhos se tornam iguais aos pais;

Mecanismo permite que boas soluções sejam preservadas.

Operadores de mutação:

- Operador aplicado apenas nos cromossomos filhos;
- Objetivo de aumentar a variabilidade da população;
- Uniforme \rightarrow substitui parâmetro por número aleatório: $filho = \mathcal{U}[a,b]$;
- \blacksquare Operador destrutivo, portanto, aplicado a uma taxa baixa ($\approx 0-20\%$).

$$\{0.15, 0.1, 0.2, 0.425\} \rightarrow \textbf{muta} \\ \textbf{ção} \rightarrow \{0.15, 0.1, \textbf{0.30}, 0.425\} \sim \mathcal{U}[0, 1]$$

- Processo de evolução se repete sequencialmente;
- Critérios de parada (busca): máximo iterações ou convergência;
- AGs são métodos especialistas: cada problema uma parametrização;
- Diversos operadores de seleção, crossover e mutação;
- Convergência para máximo ou mínimo global.

■ Pseudo-código geral para AGs:

Algotimos Genéticos	
1.	$Pop(t) \leftarrow$ população de cromossomos na geração t
2.	$t \leftarrow 1$
3.	Inicializar $Pop(t)$
4.	Avaliar $Pop(t)$ (aplicar na função fitness/objetivo)
5.	while critério de parada não for satisfeito do
6.	$t \leftarrow t + 1$
7.	Selecionar $Pop(t)$ a partir de $Pop(t-1)$
8.	Aplicar crossover sobre $Pop(t)$
9.	Aplicar mutação sobre $Pop(t)$
10.	Avaliar $Pop(t)$
11.	end while

- Método implementado em R no pacote "AG";
- Exemplo computacional na seleção de carteiras...

Outras meta-heurísticas de otimização em IA:

- Evolução Diferencial (Differential Evolution);
- Colônia de Formigas (Ant Colony);
- Abelhas (Bee Optimization);
- Enxame de partículas (Particle Swarm);
- Cardumes (Fish Swarm).

- Resumo do curso...
 - regressão, previsão, classificação e otimização;
 - outros métodos de IA e ML;
 - aprendizagem não supervisionada e problemas de agrupamento;
 - conhecimento para potencial de aplicações.

3. Bibliografia

HOLLAND, John H. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, 1975 (2nd Edition, MIT Press, 1992).

Prof. Leandro Maciel

leandromaciel@usp.br