DEVOIR À LA MAISON 4 Inégalités de Cauchy-Schwarz et applications

À rendre pour le mercredi 16 octobre 2019

En travaillant ce DM, vous vous entraînerez à chercher : c'est et ce doit être le plus important pour vous.

Augustin-Louis Cauchy (1789 – 1857)

Hermann Schwarz (1843 – 1921)

Inégalités de Cauchy-Schwarz et applications

Notations

- Dans tout ce problème, a et b sont des nombres réels tels que a < b. On travaillera souvent sur [a, b].
- On note $\mathscr{C}([a,b],\mathbb{R})$ l'ensemble des fonctions continues définies sur [a,b] à valeurs dans \mathbb{R} .

Résultats admis

On admettra la construction de l'intégrale $\int_a^b f(t) dt$ pour $f \in \mathcal{C}([a,b],\mathbb{R})$. Cette intégrale vérifie les propriétés suivantes :

• elle est linéaire : si $f, g \in \mathcal{C}([a, b], \mathbb{R})$ et $\lambda \in \mathbb{R}$, on a

$$\int_a^b f(t) + \lambda g(t) dt = \int_a^b f(t) dt + \lambda \int_a^b g(t) dt;$$

• elle est positive : $si\ f \in \mathscr{C}([a,b],\mathbb{R})$ et $si\ f \geqslant 0$, on a

$$\int_a^b f(t) \, \mathrm{d}t \geqslant 0 \; ;$$

• elle est croissante : si $f, g \in \mathcal{C}([a, b], \mathbb{R})$ et si $f \leqslant g$, on a

$$\int_{a}^{b} f(t) dt \leqslant \int_{a}^{b} g(t) dt.$$

La croissance de l'intégrale est une conséquence immédiate de sa linéarité et de sa positivité.

But de ce problème

Le but de ce problème est de démontrer les théorèmes suivants :

Théorème (Cauchy-Schwarz en dimension n)

Soit $n \in \mathbb{N}^*$ et soient $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in \mathbb{R}^n$.

Alors, on a

$$\left| \sum_{i=1}^{n} a_i b_i \right| \leqslant \sqrt{\sum_{i=1}^{n} a_i^2} \times \sqrt{\sum_{i=1}^{n} b_i^2}. \tag{CS}_n$$

Théorème (Cauchy-Schwarz intégral)

Soient $f, g \in \mathscr{C}([a, b], \mathbb{R})$.

Alors, on a

$$\left| \int_{a}^{b} f(t)g(t) \, \mathrm{d}t \right| \leqslant \sqrt{\int_{a}^{b} f^{2}(t) \, \mathrm{d}t} \times \sqrt{\int_{a}^{b} f^{2}(t) \, \mathrm{d}t}$$
 (CS_{int})

et d'en voir quelques applications.

I. Une première preuve de (CS_n)

1. Soient $A, B, \alpha, \beta \in \mathbb{R}$. Montrer que

$$(AB + \alpha\beta)^2 \leqslant (A^2 + \alpha^2)(B^2 + \beta^2).$$

On pourra raisonner par équivalences, en prenant soin de bien rédiger son raisonnement. Pour $n \in \mathbb{N}^*$, on note P(n) l'assertion

$$\forall (a_1, \dots, a_n), (b_1, \dots, b_n) \in \mathbb{R}^n, \ \sum_{i=1}^n a_i b_i \leqslant \sqrt{\sum_{i=1}^n a_i^2} \times \sqrt{\sum_{i=1}^n b_i^2}$$
».

- **2.** a) Montrer que P(1) est vraie.
 - b) Montrer que P(2) est vraie.
 - c) Montrer, en utilisant P(2), que

$$\forall n \in \mathbb{N}^*, \ P(n) \implies P(n+1).$$

d) En déduire que le théorème de Cauchy-Schwarz en dimension n est vrai.

II. Une deuxième preuve de (CS_n)

Soit $n \in \mathbb{N}^*$ et soient $(a_i)_{1 \leqslant i \leqslant n}$ et $(b_i)_{1 \leqslant i \leqslant n}$ dans \mathbb{R}^n .

3. Montrer que

$$\left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right) = \left(\sum_{i=1}^{n} a_i b_i\right)^2 + \frac{1}{2} \sum_{1 \le i, j \le n} (a_i b_j - a_j b_i)^2.$$

- 4. En déduire que le théorème de Cauchy-Schwarz en dimension n est vrai.
- 5. On suppose $(b_1, \ldots, b_n) \neq (0, \ldots, 0)$. Montrer que

$$\left| \sum_{i=1}^{n} a_i b_i \right| = \sqrt{\sum_{i=1}^{n} a_i^2} \times \sqrt{\sum_{i=1}^{n} b_i^2} \implies \exists \lambda \in \mathbb{R} : \forall i \in [1, n], a_i = \lambda b_i.$$

On dit dans ce cas qu'on est dans le cas d'égalité dans l'inégalité de Cauchy-Schwarz.

III. Une preuve de (CS_{int}) et une troisième preuve de (CS_n)

6. Soient $A, B, C \in \mathbb{R}$ tels que A > 0. On note $\Delta := B^2 - 4AC$. Montrer que

$$\forall x \in \mathbb{R}, \ Ax^2 + Bx + C \geqslant 0 \iff \Delta \leqslant 0.$$

On attend une preuve qui n'utilise aucun résultat de cours.

- 7. Soient $f, g \in \mathscr{C}([a, b], \mathbb{R})$.
 - a) En considérant l'application

$$\varphi: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \int_{a}^{b} (f(t) + xg(t))^{2} dt \end{array} \right.,$$

montrer que

$$\left(\int_a^b f(t)g(t)\,\mathrm{d}t\right)^2 - \int_a^b f^2(t)\,\mathrm{d}t \times \int_a^b g^2(t)\,\mathrm{d}t \leqslant 0.$$

- b) En déduire ($\mathbf{CS}_{\mathrm{int}}$).
- 8. En vous inspirant de la question précédente, redémontrez (\mathbf{CS}_n) .

IV. Applications

Dans cette partie, on fixe $n \in \mathbb{N}^*$. On pourra admettre les inégalités (\mathbf{CS}_n) et (\mathbf{CS}_{int}) . Les questions suivantes sont indépendantes les unes des autres.

9. a) Montrer que

$$n^2 \leqslant \left(\sum_{k=1}^n \sqrt{k}\right)^2 \leqslant \frac{n^2(n+1)}{2}.$$

b) Montrer que

$$\left(\sum_{k=1}^{n} k\sqrt{k}\right)^{2} \leqslant \frac{n^{2}(n+1)^{2}(2n+1)}{12}.$$

10. a) Soient $a_1, \ldots, a_n > 0$. Montrer que $\left(\sum_{k=1}^n a_k\right) \left(\sum_{k=1}^n \frac{1}{a_k}\right) \geqslant n^2$.

b) En déduire que
$$\sum_{k=1}^{n} \frac{1}{k^2} \ge \frac{6n}{(n+1)(2n+1)}$$
.

11. Soient $a_1, \ldots, a_n \in \mathbb{R}$. Montrer que

$$\sum_{i=1}^{n} a_i \leqslant \sqrt{n} \sqrt{\sum_{i=1}^{n} a_i^2}$$

12. Soit $f \in \mathscr{C}([0,1], \mathbb{R}_+^*)$. Montrer que

$$\int_0^1 \frac{1}{f(t)} \, \mathrm{d}t \geqslant \frac{1}{\int_0^1 f(t) \, \mathrm{d}t}.$$