Heart Data Analysis (Unsupervised)

Objective of the analysis

The objective of this analysis is to be able to define a model to predict if a patient can have an heart attack based on some heart parameters

Description of the data set

For this project I'm going to use a Data Set representing Heart Attack classification. Each case of heart attack has some parameters:

- 1. age age in years
- 2. sex sex (1 = male; 0 = female)
- 3. cp chest pain type (1 = typical angina; 2 = atypical angina; 3 = non-anginal pain; 0 = asymptomatic)
- 4. trestbps resting blood pressure (in mm Hg on admission to the hospital)
- 5. chol serum cholesterol in mg/dl
- 6. fbs fasting blood sugar > 120 mg/dl (1 = true; 0 = false)
- 7. restecg resting electrocardiographic results (1 = normal; 2 = having ST-T wave abnormality; 0 = hypertrophy)
- 8. thalach maximum heart rate achieved
- 9. exang exercise induced angina (1 = yes; 0 = no)
- 10. oldpeak ST depression induced by exercise relative to rest
- 11. slope the slope of the peak exercise ST segment (2 = upsloping; 1 = flat; 0 = downsloping)
- 12. ca number of major vessels (0-3) colored by fluoroscopy
- 13. thal 2 = normal; 1 = fixed defect; 3 = reversible defect
- 14. num the predicted attribute diagnosis of heart disease (angiographic disease status)

(Value 0 = < diameter narrowing; Value 1 = > 50% diameter narrowing)

Data Describe

1 #Numerical Data 2 Heart Data.describe()														↑ ↓ ⊕ 目 ‡ 🖟	
	age	sex	trtbps	chol	fbs	thalachh	exng	oldpeak	caa	output	restecg_hypetrophic	restecg_normal	restecg_abnormal	cp_asympt	
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.	
mean	54.366337	0.683168	131.623762	246.264026	0.148515	149.646865	0.326733	1.039604	0.729373	0.544554	0.485149	0.501650	0.013201	0	
std	9.082101	0.466011	17.538143	51.830751	0.356198	22.905161	0.469794	1.161075	1.022606	0.498835	0.500606	0.500824	0.114325	0	
min	29.000000	0.000000	94.000000	126.000000	0.000000	71.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0	
25%	47.500000	0.000000	120.000000	211.000000	0.000000	133.500000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0	
50%	55.000000	1.000000	130.000000	240.000000	0.000000	153.000000	0.000000	0.800000	0.000000	1.000000	0.000000	1.000000	0.000000	0	
75%	61.000000	1.000000	140.000000	274.500000	0.000000	166.000000	1.000000	1.600000	1.000000	1.000000	1.000000	1.000000	0.000000	1.	
max	77.000000	1.000000	200.000000	564.000000	1.000000	202.000000	1.000000	6.200000	4.000000	1.000000	1.000000	1.000000	1.000000	1	
4															

Numerical Data

Numerical Data Distribution.

Train models

- Fit a **K-means clustering** model with two clusters and
- Fit 2 Agglomerative clustering models with two clusters (ward-link and complete-link clustering)
- Compare the results to those obtained by K-means with regards to wine color by reporting the number of red and white observations in each cluster for both K-means and agglomerative clustering.
- Visualize the **dendrogram** produced by agglomerative clustering

Kmeans

```
km = KMeans(n_clusters=2, random_state=42)
 km = km.fit(data[feature_columns])
 data['kmeans'] = km.predict(data[feature_columns])
 (data[['output','kmeans']]
  .groupby(['kmeans','output'])
  .size()
  .to_frame()
  .rename(columns={0:'number'}))
 ✓ 0.1s
                 number
        output
kmeans
     0
              0
                      21
                     128
              0
                     117
              1
                     37
```

Agglomerative Clustering

Agglomerative Vs Kmeans Comparison

```
# Comparing AgglomerativeClustering with KMeans
(data[['output', 'agglom_complete', 'agglom_ward', 'kmeans']]
 .groupby(['output', 'agglom_complete', 'agglom_ward', 'kmeans'])
 .size()
 .to_frame()
 .rename(columns={0:'number'}))
                                                number
output agglom_complete agglom_ward kmeans
    0
                      0
                                    0
                                             0
                                                      3
                                                     90
                                             0
                                                     18
                                                     26
                      0
                                    0
                                             0
                                                     15
                                                     28
                                             0
                                                    112
                                                      9
                                             0
```

Dendrogram

Conclusions

Comparing the results seems that i have better results with **Kmeans** and A**gglomerative Ward Clustering** even if my dataset is very small , maybe i should have used a larger dataset to have a very significative clustering.