

#### BACKGROUND

High number of road traffic accidents

Over 3000 people dying on the world's roads every day

Can Data Science help to predict the Severity of Car Accidents?

**Development of Machine Learning Algorithms** 

Identification of the trend and patterns in the data
Benefiting from an automated mining process
The capacity present for the improvement

- Data Understanding and Preparation
  - Data Source
    - Provided by the SDOT Traffic Management Division
       Traffic Roads Group, Seattle (2004\_Present)
  - Data Balancing: Using resampling technique
  - Data Cleaning
    - Identify and handling of missing values
      - For numeric values by mean
      - □ For categorical values by the frequency
    - Conversion of categorical values to numeric values







|    | FEATURE        | DESCRIPTION                                                              |
|----|----------------|--------------------------------------------------------------------------|
| 1  | LONGITUDE      | Longitude                                                                |
| 2  | LATITUDE       | Latitude                                                                 |
| 3  | PERSONCOUNT    | Total number of people involved in the collision                         |
| 4  | VEHCOUNT       | The number of vehicles involved in the collision                         |
| 5  | JUNCTIONTYPE   | Category of junction at which collision took place                       |
| 6  | INATTENTIONIND | Whether or not collision was due to inattention                          |
| 7  | WEATHER        | A description of the weather conditions during the time of the collision |
| 8  | ROADCOND       | The condition of the road during the collision                           |
| 9  | LIGHTCOND      | The light conditions during the collision                                |
| 10 | SPEEDING       | Whether or not speeding was a factor in the collision                    |

- Dropping irrelevant information including:
  - The inter-organizational codes
  - Redundant descriptive values
  - Repeating values

### FEATURE SELECTION



The map with markers of the accident locations in Seattle (300 data points)

# EXPLANATORY DATA ANALYSIS\_1





# EXPLANATORY DATA ANALYSIS\_2







# EXPLANATORY DATA ANALYSIS\_4



- Normalization of the data
  - Using preprocessing standard scalar
- Splitting into train-test sets
  - 80% training set
  - 20% test set

Best K =8
Obtained KNN accuracy = 0.73

Modeling using K-Nearest Neighbors



### MODELING, EVALUATION AND TESTING\_1



- Other applied classification techniques
  - Decision Tree
    - □ Obtained Accuracy = 0.74
  - □ Logistic Regression
    - □ Obtained Accuracy = 0.7
  - Random Forest
    - □ Obtained Accuracy= 0.71

### MODELING, EVALUATION AND TESTING\_2



### MODELING, EVALUATION AND TESTING\_3



The dataset has been balanced and further prepared for the predictive modeling analysis.



Four classification algorithms are employed

K-Nearest Neighbors
Decision Tree
Logistic Regression
Random Forest





Evaluation and testing of the created models

Decision Tree has shown better accuracy and more computability for the given dataset.



Idea for future work

Development of the decision Tree to improvits accuracy

Addition of more data to the dataset to compensate for the missing values

Taking other factors such as the age of car drivers into account for the prediction of accident severity