Let ϕ be the faithful normal state generating Fix(T) and let U be a family of unitary eigenvectors of A' pertaining to the eigenvalues in H (see D-III, Remark 1.11). If u_1 , u_2 then

$$\phi(u_1u_2^*) = \phi(T_0(t)'(u_1u_2^*)) = e^{(\eta_1-\eta_2)t} \phi(u_1u_2^*)$$
.

Therefore

$$\phi(u_1u_2^*) = \begin{cases} 0 & \text{if } \eta_1 \neq \eta_2 \\ 1 & \text{if } \eta_1 = \eta_2 \end{cases}$$

Hence $\phi(u_1u_2^*) = \phi(u_2^*u_1)$ from which it follows that $\tau := \phi_{\mid N}$ is a faithful normal trace.

<u>Remarks</u> 3.6. (a) Since $QM_{\star} = N_{\star}$ and Q'M = N, where N_{\star} is as in D-III, Proposition 1.12, it follows from general duality theory that $(N_{\star})' = N$.

- (b) If $\psi \in N_{\star}$ then $|\psi| \in N_{\star}$. To see this note that $Q\psi = \psi$ and Q is an identity preserving Schwarz map. Then the assertion follows from D-III, Proposition 1.4.
- (c) If $\psi \in N_{\star}$, then $|T_{O}(t)\psi| = T_{O}(t)|\psi|$ for all $t \in \mathbb{R}$. This follows immediately from the fact that $T_{O}(t)$ ' is a *-automorphismus on N .
- (d) Let us add a few words concerning the structure of N: If T is irreducible and K is the semigroup kernel of $T^- \subseteq L_w(M_\star)$, then

$$(S \rightarrow S'): K \rightarrow L((N, \sigma(N, N_{\star})))$$

is a representation of the compact, Abelian group K as group of *-automorphism such that the fixed space is one dimensional. Therefore we are able to apply the results of [Olesen-Pedersen-Takesaki (1980)]. There are three possibilities for N:

- (i) $N = L^{\infty}(K, dm)$ and $T_{\mid N}$ is the translation group on N.
- (ii) N \cong R where R is the (unique) hyperfinite factor of typ II₁. In that case (the image of) K is approximately inner on R [1.c., Theorem 5.8].