

Verifying the system implementation

1. Using analytical methods:

Task name	Execution time	X number of times to come within the hyperperiod	Total execution time within the hyperperiod
Button_1_Monitor	0.0075 ms	2	0.015 ms
Button_2_Monitor	0.0075 ms	2	0.015 ms
Periodic_Transmitter	0.2 ms	1	0.2 ms
Uart_Receiver	0.3 ms	5	1.3 ms
Load_1_Simulation	5 ms	10	50 ms
Load_2_Simulation	12 ms	1	12 ms

- > Hyperperiod = 100 ms
- > Cpu load = ((0.015 + 0.015 + 0.2 + 1.3 + 50 +12) / 100) * 100 = 63.73 ms
- > Schedulability using URM method

$$\sum_{k=1}^{n} \frac{C_k}{T_k} \le U_{RM} = n(2^{\frac{1}{n}} - 1)$$

$$0.6373 < 0.7347 = (6 * (2^{(1/6)} - 1))$$

$$w_i(t) = e_i + \sum_{k=1}^{i-1} \left\lceil \frac{t}{p_k} \right\rceil e_k \quad \text{for } 0 < t \le p_i$$

Task name Arranged from the lowest period to highest	Calculation	Result	Schedulability
Load_1_Simulation	$W_{10} = 5 + 0 = 5$	5 < 10	Schedulable
Uart_Receive	$W_{20} = 0.3 + (20/10)*5 = 10.3$	10.3 < 20	Schedulable
Button_1_Monitor	W ₅₀ = 0.0075 + (50/10)*5 + (50/20)*0.3 = 25.75	25.75 < 50	Schedulable
Button_2_Monitor	W ₅₀ = 0.0075 + (50/10)*5 + (50/20)*0.3 + (50/50)*0.0075 = 25.765	25.765 < 50	Schedulable
Periodic_Transmitter	W ₁₀₀ = 0.2 + (100/10)*5 + (100/20)*0.3 + (100/50)*0.0075 + (100/50)*0.0075 = 51.73	51.73 < 100	Schedulable
Load_1_Simulation	W ₁₀₀ = 12 + (100/10)*5 + (100/20)*0.3 + (100/50)*0.0075 + (100/50)*0.0075 + (100/100)*0.2 = 63.73	63.73 < 100	Schedulable

AS expected, the results indicate a successful implementation.

2. Using Simso offline simulator:

3. Using Keil simulator in run-time

Button_1_Simulator (task 1)

Button 2 Simulator (task 2)

Periodic_Transmitter (task 3)

Uart_Receiver (task 4)

Load 1 Simulation (task 5)

Load_2_Simulation (task 6)

Idel_Task

me	Value	Туре	
→ v task_1_in_time	0x004EB836	int	
ask_1_out_time	0x004EB838	int	
ask_1_total_time	0x00000B9F	int	
ask_2_in_time	0x004EB838	int	
ask_2_out_time	0x004EB839	int	
ask_2_total_time	0x00000BCA	int	
ask_3_in_time	0x004EAF0A	int	
ask_3_out_time	0x004EAF17	int	
task_3_total_time	0x00002F40	int	
task_4_in_time	0x004EBA8C	int	
→ v task_4_out_time	0x004EBA9A	int	
···· ✓ task_4_total_time		int	
···· ✓ task_5_in_time	0x004EB706	int	
···· ✓ task_5_out_time	0x004EB836	int	
···· ♦ task_5_total_time	0x0027CD4C	int	
···· ✓ task_6_in_time	0x004EAED9	int	
v task_6_out_time	0x004EAF09	int	
→ task_6_total_time	0x0009BBF3	int	
system_time	0x004EB95D	int	
cpu_load	64	int	
<enter expression=""></enter>			

AT THE END, ALL THE RESULTS INDICATE A SUCCESSFUL IMPLEMENTATION.