Intégration

GÉNÉRALITÉS

Exercice 1. Soit a < b deux réels et soit $f : [a, b] \to \mathbb{R}$ une fonction continue de signe constant. Montrer que $\int_{a}^{b} f(t)dt = 0 \Leftrightarrow f = 0.$

Exercice 2. Soient $f:[0,1]\to\mathbb{R}$ continue telle que $\int_0^1 f(t) dt = 0$. On note m le minimum de f et M son maximum sur [a,b]. Démontrer que $\int_0^1 f^2(t) dt \leq -mM$.

Exercice 3. Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue. Déterminer $\lim_{x \to 0^+} \frac{1}{x} \int_0^x f(t) dt$.

Exercice 4. Soient $(a,b) \in \mathbb{R}^2$ tel que $a < b, f : [a,b] \to \mathbb{R}$ continue et $n \in \mathbb{N}$ telle que

$$\forall k \in \{0, 1, ..., n\}, \int_{a}^{b} t^{k} f(t) dt = 0$$

- (1) Montrer que si $\int_{a}^{b} f(t)dt = 0$, alors f s'annule au moins une fois sur [a, b].
- (2) En considérant Q(t)f(t) où Q est un polynôme bien choisi, montrer que la fonction f s'annule au moins n+1 fois sur [a,b].

Exercice 5. Lemme de Gronwall. Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction continue telle qu'il existe k > 0 tel que:

$$\forall x \ge 0, \ f(x) \le k \int_0^x f(t)dt.$$

Montrer que f est identiquement nulle.

Suites de suites de fonctions sur un segment

Exercice 6. On pose $I_n = \int_0^{\pi/2} \sin^n x dt$. (i) Montrer que pour tout $n \in \mathbb{N}$, $nI_n = (n-1)I_{n-2}$.

- (ii) Montrer que (I_n) décroit, que nI_nI_{n-1} est constant et que $I_n \sim \sqrt{\frac{\pi}{2n}}$.

Exercice 7. Irrationalité de π . On suppose que $\pi = p/q$ avec $p,q \in \mathbb{N}^*$. Soit $f_n(x) = \frac{1}{n!}x^n(p-qx)^n$ et $I_n = \int_0^\pi f_n(x) \sin x dx$. (i) Montrer que pour tout $n \ge 0$, $I_n > 0$ et $\lim_{n \to +\infty} I_n = 0$. (ii) Montrer que pour tout $k \in \mathbb{N}$, $f_n^{(k)}(0) \in \mathbb{Z}$ et $f_n^{(k)}(p/q) \in \mathbb{Z}$ (on remarquera que $f_n(\frac{p}{q} - x) = f_n(x)$).

- (iii) En intégrant par parties, montrer que $I_n \in \mathbb{Z}$ et en déduire une contradiction.

Exercice 8. Soit n un entier non nul. Exprimer $I_{n,p} := \int_0^1 x^n (1-x)^p dx$ à l'aide de factorielles.

Exercice 9. On considère la suite (a_n) de fonctions définies sur \mathbb{R} par : $u_n(x) = \frac{n^2 - x^2}{(n^2 + r^2)^2}$.

- (i) Montrer que $\int_{0}^{+\infty} u_n(x)dx$ converge.
- (ii) Soit $a \ge 0$. Montrer : $\int_0^a u_n(x) dx = \frac{a}{n^2 + a^2}$. (On pourra faire une intégration par parties.) (iii) Montrer que la série $\sum u_n$ converge normalement sur [0, a].
- (iv) En déduire :

$$\int_0^a \left(\sum_{n=1}^{+\infty} u_n(x) \right) dx = \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2}.$$

Exercice 10. Montrer que pour toute fonction $f:[0,1]\to\mathbb{R}$ de classe $\mathcal{C}^1:$

$$\int_0^1 f(t)dt = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) + \frac{1}{2n} (f(1) - f(0)) + o\left(\frac{1}{n}\right).$$

(On pourra poser $F(x) = \int_0^x f(t)dt$, écrire $F(1) - F(0) = \sum_{k=0}^{n-1} \left(F\left(\frac{k+1}{n}\right) - F\left(\frac{k}{n}\right) \right)$ et montrer qu'il existe $\theta_{n,k} \in [k/n,(k+1)/n]$ tel que $F\left(\frac{k+1}{n}\right) - F\left(\frac{k}{n}\right) = \frac{1}{n}f(\frac{k}{n}) + \frac{1}{2n^2}f'(\theta_{n,k})$.)

Exercice 11. Soit f une fonction continue par morceaux définie sur [a,b]. On pose $I_n(f) = \int_a^b e^{int} f(t) dt$. Montrer que $\lim_{n\to+\infty} I_n(f) = 0$.

Intégrales généralisées

Exercice 12. Soit $f:[0,+\infty[\to\mathbb{R}]]$ une fonction continue par morceaux.

- (i) A-t-on $(\int_0^{+\infty} f(t)dt \text{ converge}) \Rightarrow \lim_{x \to +\infty} f(x) = 0$?
- (ii) Montrer que si $f: \mathbb{R}^+ \to \mathbb{R}$ est uniformément continue et que $\int_0^{+\infty} f(t)dt$ converge alors f a pour limite 0 en $+\infty$.

Exercice 13. Soit $f:[0,+\infty[\to \mathbb{R}$ une fonction continue, positive et décroissante. On pose $g:[0,+\infty[$ $[0,+\infty[\to \mathbb{R} \text{ donn\'ee par }$

$$q(x) = f(x)\sin x$$

Montrer que les intégrabilités de f et de g sont équivalentes.

Exercice 14.

(i) Soit (f_n) la suite de fonctions de \mathbb{R}^+ dans \mathbb{R} définie par :

$$\begin{cases} f_n(x) = \frac{1}{n} & \text{si } x \in [n^2 - n, n^2 + n] \\ f_n(x) = 0 & \text{sinon.} \end{cases}$$

Montrer que la suite (f_n) converge uniformément vers 0. A-t-on : $\lim_{n\to+\infty} \int_0^{+\infty} f_n(t)dt = 0$?

(ii) Soit $f_n = [0,1] \to \mathbb{R}^+$ définie par

$$\begin{cases} f_n(x) = nx^{n-1} \text{ si } x \in [0, 1[\\ f_n(1) = 0. \end{cases}$$

Montrer que la suite (f_n) converge simplement vers la fonction nulle sur [0,1]. A-t-on: $\lim_{n\to+\infty} \int_0^1 f_n(t)dt = 0$?

Exercice 15. Montrer que l'intégrale $\int_0^{+\infty} \frac{|\sin(t)|}{t} dt$ est divergente mais que l'intégrale $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ est convergente.

Exercice 16. Soient a et b deux réels. Discuter en fonction de a et b la nature de l'intégrale

Problèmes d'interversion de limites

Exercice 17. On considère la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définies sur \mathbb{R} par $f_n(x) = \frac{x}{(1+x^2)^n}$.

- (i) Montrer que la suite (f_n) converge simplement vers la fonction nulle sur \mathbb{R} .
- (ii) La convergence est-elle uniforme sur \mathbb{R} ?
- (iii) Montrer que $\lim_{n\to+\infty} \int_0^{+\infty} f_n(x) dx = 0$.

INTÉGRALES DÉPENDANT D'UN PARAMÈTRE

Exercice 18. Soit $F(x) = \int_0^x e^{-u^2} du$ et $G(x) = \int_0^1 \frac{e^{-(t^2+1)x^2}}{t^2+1} dt$.

- (i) Montrer que la fonction G est dérivable sur \mathbb{R} et exprimer G en fonction de F. (ii) En déduire la valeur de $\int_0^{+\infty} e^{-t^2} dt$.

Exercice 19. Soit, pour $x \in \mathbb{R}$, $F(x) = \int_0^{\pi} \cos(x \sin(t)) dt$.

- (i) Montrer que F est continue sur \mathbb{R} .
- (ii) Montrer que F est dérivable sur \mathbb{R} et exprimer F' puis F'' sous forme intégrale.
- (iii) Montrer que F est solution de l'équation de Bessel xF''(x) + F'(x) + xF(x) = 0. (On pourra calculer la dérivée par rapport à t de $\sin(x\sin(t))$.)

Exercice 20. [Transformée de Laplace] Soit f une fonction continue de $[0, +\infty[$ dans \mathbb{R} . On suppose qu'il existe a > 0 et A > 0 tels que :

$$\forall t \ge 0, \ |f(t)| \le Ae^{-at}.$$

On définit la fonction F par $F(x) = \int_0^{+\infty} f(t)e^{-xt}dt$. (i) Montrer que F est dérivable sur $]a, +\infty[$ et exprimer F' sous forme intégrale.

- (ii) On suppose que f admet une limite en $+\infty$. Montrer que :

$$\lim_{x \to 0} xF(x) = \lim_{x \to +\infty} f(x).$$

(iii) On suppose que f' admet une limite en $+\infty$. On pose $G(x) = \int_0^{+\infty} f'(t)e^{-xt}dt$. Démontrer : G(x) = xF(x) - f(0).

Problèmes de densité

Exercice 21.

(i) Démontrer que la fonction $\lambda_1: \mathbb{R} \to \mathbb{R}$ définie par

$$\lambda_1(x) = \begin{cases} 0 & \text{si } x \le 0\\ e^{-1/x} & \text{sinon} \end{cases}$$

est de classe C^{∞} , nulle pour $x \leq 0$, strictement positive pour x > 0.

- (ii) Démontrer qu'il existe une fonction $\lambda_2 : \mathbb{R} \to \mathbb{R}$, positive, non identiquement nulle, de classe \mathcal{C}^{∞} , à support contenu dans l'intervalle fermé [0, 1].
- (iii) Démontrer qu'il existe une fonction $\lambda_3: \mathbb{R} \to \mathbb{R}$, de classe \mathcal{C}^{∞} , à valeurs dans [0,1], telle que $\lambda_3(x) = 0$ pour $x \leq 0$, $\lambda_3(x) = 1$ pour $x \geq 1$. On pourra considérer la fonction définie sur [0,1] par $(\int_0^x \lambda_2(t)dt)/(\int_0^1 \lambda_2(t)dt)$. (iv) Soient h et k des nombres réels tels que 0 < h < k. Démontrer qu'il existe une fonction $\lambda_4 : \mathbb{R} \to \mathbb{R}$,
- de classe \mathcal{C}^{∞} , à valeurs dans [0,1], dont le support est contenu dans [-h,h], et qui vaut 1 sur [-k,k].
- (v) En conclure que l'adhérence de $\mathcal{C}_c^{\infty}(\mathbb{R})$ dans $L^1(\mathbb{R})$ contient les indicatrices d'intervalles ouverts bornés. (On rappelle que pour $k \geq 0$, $\mathcal{C}_c^k(\mathbb{R})$ désigne l'espace des fonctions de classe \mathcal{C}^k sur \mathbb{R} , à support compact.)

Exercice 22. Soient f et g deux fonctions intégrables sur \mathbb{R} . Le produit de convolution de f et g est défini par

$$f \star g(x) = \int_{\mathbb{R}} f(u)g(x - u) \ du.$$

- (i) Montrer que $f \star g$ est intégrable sur \mathbb{R} .
- (ii) Montrer que le produit de convolution est associatif.
- (iii) On suppose qu'il existe un entier k tel que g soit une fonction \mathcal{C}^k à support compact. Montrer que $f \star g$ est de classe \mathcal{C}^k sur \mathbb{R} et calculer $(f \star g)^p$ pour tout entier $p \in \{0, \dots, k\}$.

Exercice 23. Soit g_0 la fonction définie sur \mathbb{R} par

$$g_0(x) = \begin{cases} \exp\left(\frac{1}{1-x^2}\right) & \text{si } x \in]-1,1[\\ 0 & \text{si } |x| \ge 1 \end{cases}.$$

- (i) Montrer rapidement que g_0 est de classe \mathcal{C}^{∞} .
- (ii) Montrer que la fonction g définie par

$$g(x) = \frac{\int_{-1}^{x} g_0(t) dt}{\int_{-1}^{1} g_0(t) dt}$$

est de classe \mathcal{C}^{∞} , positive ou nulle à support dans [-1,1] et d'intégrale égale à 1.

- (iii) Pour tout entier n, on définit g_n par $g_n(x) = ng(nx)$. Montrer que si φ est une fonction continue à support compact dans \mathbb{R} , la suite $\varphi \star g_n$ converge uniformément vers φ sur \mathbb{R} .
- (iv) En déduire que les fonctions \mathcal{C}^{∞} forment un ensemble dense dans L^1 .

Transformation de Fourier

Exercice 24. Soient f et g deux fonctions intégrables. On a

$$\int_{\mathbb{R}} \hat{f}(t)g(t) dt = \int_{\mathbb{R}} f(t)\hat{g}(t) dt.$$

Exercice 25. Calculer la transformée de Fourier de la fonction $x \mapsto e^{-\alpha x^2}$, avec $\alpha > 0$. Existe-t-il une valeur de α pour laquelle la fonction et sa transformée de Fourier sont égales?

Exercice 26.

- (i) Calculer la transformée de Fourier de la fonction indicatrice d'un intervalle.
- (ii) Pour $n \in \mathbb{N}^*$, soit g_n la fonction indicatrice de [-n,n) et h la fonction indicatrice de [-1,1]. Calculer explicitement $g_n * h$. Montrer que $g_n * h$ est la transformée de Fourier d'une fonction f_n que l'on déterminera.
- (iii) Montrer que $f_n \in L^1(\mathbb{R})$ et que $\lim_{n \to \infty} ||f_n||_1 = +\infty$. (iv) En déduire que l'application $f \to \hat{f}$ envoie $L^1(\mathbb{R})$ dans un sous-espace propre de $\mathcal{C}_c^0(\mathbb{R})$.