SHEET 11: UNIFORM CONTINUITY AND INTEGRATION

We will now consider a notion of continuity that is stronger than ordinary continuity.

Definition 11.1. Let $f: A \longrightarrow \mathbb{R}$ be a function. We say that f is uniformly continuous if for all $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x, y \in A$

if
$$|x - y| < \delta$$
, then $|f(x) - f(y)| < \epsilon$.

Theorem 11.2. If f is uniformly continuous, then f is continuous.

Proof. Let f be uniformly continuous, then we know that for $\epsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in A$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$. This is a more general case of Theorem 9.21, so we have that f is clearly continuous by 9.21 as we can simply fix $a \in A$ to reach 9.21.

Exercise 11.3. Determine with proof whether the following functions f are uniformly continuous on the given intervals A:

- 1. $f(x) = x^2$ on $A = \mathbb{R}$
- 2. $f(x) = x^2$ on A = (-2, 2)
- 3. $f(x) = \frac{1}{x}$ on $A = (0, +\infty)$
- 4. $f(x) = \frac{1}{x}$ on $A = [1, +\infty)$
- 5. $f(x) = \sqrt{x}$ on $A = [0, +\infty)$
- 6. $f(x) = \sqrt{x}$ on $A = [1, +\infty)$

Proof. 1. Let $f(x) = x^2$ for $f: \mathbb{R} \to \mathbb{R}$. Assume f is uniformly continuous, let $\epsilon = 1$, then we have that there exists $\delta > 0$ such that for all $x, y \in A$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$ by 11.1. Let $x = \frac{\epsilon}{\delta}$, $y = \frac{\epsilon}{\delta} + \frac{\delta}{2}$. Then simplifying $|x - y| < \delta$, we have that $\frac{\delta}{2} < \delta$ which is true for $\delta > 0$. It follows then by 11.1 that $|f(x) - f(x + \frac{\delta}{2})| < \epsilon$. Simplifying, we get that $|-\epsilon - \frac{\delta^2}{4}| < \epsilon$ for $\delta, \epsilon > 0$, so it follows that $\epsilon + \frac{\delta^2}{4} < \epsilon$ which is false because $\delta > 0$. Tus, this is a contradiction, and f is not uniformly continuous.

- 2. Let $f(x) = x^2$ for $f: (-2,2) \to \mathbb{R}$. Let $\epsilon > 0$ be arbitrary, and let $\delta = \frac{\epsilon}{4}$. It follows then that for $x, y \in (-2, 2)$, $|x - y| < \frac{\epsilon}{4}$ implies that $|x^2 - y^2| < \epsilon$. Rearranging $|x^2 - y^2| < \epsilon$, we get that $|x - y| < \frac{\epsilon}{|x + y|}$. So we have that for $x, y \in (-2, 2)$, if $|x - y| < \frac{\epsilon}{4}$, then $|x - y| < \frac{\epsilon}{|x + y|}$. Note that for $x, y \in (-2, 2)$, we know that $0 \le |x+y| < 4$. Thus we know that if $|x-y| < \frac{\epsilon}{4}$, then $|x-y|<\frac{\epsilon}{|x+y|}$. In the case that |x+y|=0, then we have that x=0,y=0, so we know that $|x^2 - y^2| < \epsilon$ for $\epsilon > 0$. Thus we have shown that f is uniformly continuous by 11.1.
- 3. Let $f(x) = \frac{1}{x}$ for $f: (0, +\infty) \to \mathbb{R}$. Assume that f is uniformly continuous 4. Let $f(x) = \frac{1}{x}$ for $f: [1, +\infty) \to \mathbb{R}$. Let $\epsilon > 0$ be arbitrary and let $\delta = \frac{\epsilon}{2}$. Assume that

for $x,y\in [1,+\infty)$ that $|x-y|<\frac{\epsilon}{2}$. Then we have that $|x-y|<\epsilon$, because $\epsilon>0$. Note that $x,y\geq 1$, so we know that |xy|>1, so $\epsilon|xy|>\epsilon$. It follows then that $|x-y|<\epsilon|xy|$. Dividing by |xy|, we have that $\frac{|x-y|}{|xy|}<\epsilon$. Simplifying, we have that $|f(x)-f(y)|<\epsilon$, so by 11.1 we know that f is uniformly continuous.

5. Let
$$f(x) = \sqrt{(x)}$$
 for $f : [0, +\infty]$.
6.

Exercise 11.4. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $f(x) = x^n$, for $n \in \mathbb{N}$. Show that f is uniformly continuous if, and only if, n = 1.

Challenge: Let $p : \mathbb{R} \to \mathbb{R}$ be a polynomial with real coefficients. Show that p is uniformly continuous on \mathbb{R} if and only if $\deg(p) \leq 1$.

There is no deadline for the Challenge problem. Once a student has a solution he/she should present it to Sarah or Laurie and we will then schedule a class presentation of it.

Proof. Let f be uniformly continuous. Assume that $n \geq 2$ and let $\epsilon = 1$. Then by the definition of uniform continuity, we know there exists $\delta > 0$ such that we can choose x and $y = x + \frac{\delta}{2}$. $|x - y| = \frac{\delta}{2} < \delta$, so we have by uniform continuity that $|f(x) - f(y)| < \epsilon$. It follows then that $|f(x) - f(x + \frac{\delta}{2})| < 1$ for any $x \in \mathbb{R}$. So we have that $|x^n - (x + \frac{\delta}{2})^n| < 1$. Expanding, we get that $x^{n-1}(\frac{\delta}{2}) + \cdots + x(\frac{\delta}{2})^{n-1} + \frac{delta}{2}^n < 1$. Note that all terms are positive, so if we let $x = \frac{1}{\frac{\delta}{2}}^{n-1}$, then we get that 1 + p < 1 where p is some positive value. This is a contradiction, so we know that if f is uniformly continuous, then n = 1.

Let f(x) = x, then we have that for $\epsilon > 0$, choose $\delta = \frac{\epsilon}{2}$. Then we know that for any $x, y \in \mathbb{R}$, if $|x - y| < \frac{\epsilon}{2}$, then clearly $|x - y| < \frac{\epsilon}{2} < \epsilon$, so by definition of uniform continuity we have that f is uniformly continuous.

Exercise 11.5. Let f and g be uniformly continuous on $A \subset \mathbb{R}$. Show that:

- 1. The function f + g is uniformly continuous on A.
- 2. For any constant $c \in \mathbb{R}$, the function $c \cdot f$ is uniformly continuous on A.

We will now prove that continuous functions with compact domain are automatically uniformly continuous. To this end, first consider:

Lemma 11.6. Let $f: A \longrightarrow \mathbb{R}$ be continuous. Fix $\epsilon > 0$. By the definition of continuity, for each $p \in A$ there exists $\delta(p) > 0$ such that for all $x \in A$

if
$$|x - p| < \delta(p)$$
, then $|f(x) - f(p)| < \frac{\epsilon}{2}$.

For each $p \in A$, define $U(p) = \{x \in \mathbb{R} \mid |x - p| < \frac{1}{2}\delta(p)\}$. Then the collection $\{U(p) \mid p \in A\}$ is an open cover of A.

Theorem 11.7. Suppose that $X \subset \mathbb{R}$ is compact and $f: X \longrightarrow \mathbb{R}$ is continuous. Then f is uniformly continuous.

Corollary 11.8. Suppose that $f:[a,b] \longrightarrow \mathbb{R}$ is continuous. Then f is uniformly continuous.

Definition 11.9. We say that a function $f: A \to \mathbb{R}$ is bounded if f(A) is a bounded subset of \mathbb{R} .

Theorem 11.10. Suppose that $X \subset \mathbb{R}$ is compact and $f: X \longrightarrow \mathbb{R}$ is continuous. Then f is bounded.

Exercise 11.11. Show that if f and g are bounded on A and uniformly continuous on A, then fg is uniformly continuous on A.

We are now ready to turn to integration.

Definition 11.12. A partition of the interval [a, b] is a finite set of points in [a, b] that includes a and b:

$$a = t_0 < t_1 < \dots < t_{n-1} < t_n = b.$$

If P and Q are partitions of the interval [a,b] and $P \subset Q$, we refer to Q as a refinement of P.

We usually write partitions as ordered lists $P = \{t_0, t_1, \dots, t_n\}$ with $t_{i-1} < t_i$ for each $i = 1, \dots, n$.

Definition 11.13. Suppose that $f:[a,b] \longrightarrow \mathbb{R}$ is bounded and that $P = \{t_0, t_1, \dots, t_n\}$ is a partition of [a,b]. Define:

$$m_i = \inf\{f(x) \mid t_{i-1} \le x \le t_i\}$$

 $M_i = \sup\{f(x) \mid t_{i-1} \le x \le t_i\}.$

The *lower sum* of f for the partition P is the number:

$$L(f, P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}).$$

The *upper sum* of f for the partition P is the number:

$$U(f, P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1}).$$

Notice that it is always the case that $L(f, P) \leq U(f, P)$.

Lemma 11.14. Suppose that P and Q are partitions of [a,b] and that Q is a refinement of P. Then:

$$L(f,P) \leq L(f,Q) \quad and \quad U(f,P) \geq U(f,Q).$$

Theorem 11.15. Let P_1 and P_2 be partitions of [a,b] and suppose that $f:[a,b] \longrightarrow \mathbb{R}$ is bounded. Then:

$$L(f, P_1) \le U(f, P_2).$$

Definition 11.16. Let $f:[a,b]\to\mathbb{R}$ be bounded. We define:

$$L(f) = \sup\{L(f, P) \mid P \text{ is a partition of } [a, b]\}\$$

 $U(f) = \inf\{U(f, P) \mid P \text{ is a partition of } [a, b]\}\$

to be, respectively, the *lower integral* and *upper integral* of f from a to b.

Exercise 11.17. Why do L(f) and U(f) exist? Find a function f for which L(f) = U(f). Find a function f for which $L(f) \neq U(f)$. Is there a relationship between L(f) and U(f) in general?

Definition 11.18. Let $f:[a,b] \longrightarrow \mathbb{R}$ be bounded. We say that f is *integrable* on [a,b] if L(f) = U(f). In this case, the common value L(f) = U(f) is called the *integral* of f from a to b and we write it as:

$$\int_a^b f$$
.

When we want to display the variable of integration, we write the integral as follows, including the symbol dx to indicate that variable of integration:

$$\int_{a}^{b} f(x) \, dx.$$

For example, if $f(x) = x^2$, we would write $\int_a^b x^2 dx$ but not $\int_a^b x^2$.

Theorem 11.19. Let $f: [a,b] \longrightarrow \mathbb{R}$ be bounded. Then f is integrable if and only if for every $\epsilon > 0$ there exists a partition P of [a,b] such that

$$U(f, P) - L(f, P) < \epsilon.$$

Theorem 11.20. If $f: [a,b] \longrightarrow \mathbb{R}$ is continuous, then f is integrable.

(Hint: Use theorem 11.19 and uniform continuity.)

Exercise 11.21. Fix $c \in \mathbb{R}$ and let $f : [a, b] \to \mathbb{R}$ be defined by f(x) = c, for each $x \in [a, b]$. Show that f is integrable on [a, b] and that $\int_a^b f = c(b - a)$.

Exercise 11.22. Define $f:[0,b]\to\mathbb{R}$ by the formula f(x)=x. Show that f is integrable on [0,b] and that $\int_0^b f=\frac{b^2}{2}$.

Exercise 11.23. Show that the converse of theorem 11.20 is false in general.

Exercise 11.24. Let $f:[0,1]\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Show that f is not integrable on [0,1]. Compute the upper and lower integrals of f on [0,1].

Theorem 11.25. Let a < b < c. A function $f: [a, c] \longrightarrow \mathbb{R}$ is integrable on [a, c] if and only if f is integrable on [a, b] and [b, c]. When f is integrable on [a, c], we have

$$\int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f.$$

If b < a, we define

$$\int_{a}^{b} f = -\int_{b}^{a} f,$$

whenever the latter integral exists. With this notational convention, it follows that the equation

$$\int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f$$

always holds, regardless of the ordering of a, b and c, whenever f is integrable on the largest of the three intervals.

Proof. Let f be integrable on [a,c]. Then by Theorem 11.19, we know that for any $\epsilon > 0$, $U(f,P_0) - L(f,P_0) < \epsilon$ for some partition $P_0 = \{a,t_1,t_2,\cdots,t_{n-1},c\}$ of [a,c]. Let $P = \{a,t_1,t_2,\cdots,t_{n-1},c\} \cup \{b\}$ be a partition of [a,c]. Then we define partitions $Q = \{a,t_1,t_2,\cdots,b\}$ and $R = \{b,\cdots,t_{n-1},c\}$. By Definition 11.13 and properties of sums, we know that L(f,P) = L(f,Q) + L(f,R) and that U(f,P) = U(f,Q) + U(f,R). We also have that $U(f,P) - L(f,P) < \epsilon$ so substuting we have that $[U(f,Q) + U(f,R)] - [L(f,Q) + L(f,R)] < \epsilon$. Note that both terms are positive, as U(f,Q) > L(f,Q) and U(f,R) > L(f,R). Thus we have that $U(f,Q) - L(f,Q) < \epsilon$ and similarly that $U(f,R) - L(f,R) < \epsilon$. So we have by 11.19 that f is integrable on [a,b] and [b,c].

Let f be integrable on [a,b] and [b,c] and let $\epsilon > 0$ be arbitrary. Choose $\epsilon' = \frac{\epsilon}{2}$. Then by 11.19, we get that $U(f,Q) - L(f,Q) < \epsilon'$ and that $U(f,R) - L(f,R) < \epsilon'$ for some partitions Q and R. Combining, we have that $U(f,Q) - L(f,Q) + U(f,R) - L(f,R) < 2\epsilon' = \epsilon$. Let $P = Q \cup R$, then it follows that $U(f,P) - L(f,P) < \epsilon$, so we have by 11.19 that f is integrable on [a,c].

Theorem 11.26. Suppose that f and g are integrable functions on [a,b] and that $c \in \mathbb{R}$ is a constant. Then f+g and cf are integrable on [a,b] and

(i)
$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g,$$

(ii)
$$\int_a^b c \cdot f = c \int_a^b f.$$

Theorem 11.27. Suppose that f is integrable on [a,b] and that there exists numbers m and M such that:

$$m \le f(x) \le M$$
 for all $x \in [a, b]$.

Then:

$$m(b-a) \le \int_a^b f \le M(b-a).$$

Proof. Let P be any partition of [a,b]. We write $P = \{t_0, t_1, \dots, t_n\}$ for $n \in \mathbb{N}$. Then we know that $L(f,P) \leq L(f) \leq \sum_{i=1}^n M_i(t_i,t_{i-1}) \leq M(b-a)$. f is integrable, so $L(f) = \int_a^b$. It follows then that $\int_a^b f \leq M(b-a)$. Without loss of generality, the same argument can be used to show that $m(b-a) \leq \int_a^b f$ using U(f) and U(f,P).

Theorem 11.28. Suppose that f is integrable on [a,b]. Define $F:[a,b] \longrightarrow \mathbb{R}$ by

$$F(x) = \int_{a}^{x} f$$

Then F is continuous.

Proof. Let $F(x) = \int_a^x f$ and suppose that f is integrable on [a,b]. Then choose $\epsilon > 0$. We take two cases, where x > c and x < c (note that if x = c, then $|x - c| < \delta$ and $|F(x) - F(c)| < \epsilon$ will always be true and so f will be continuous).

Case 1: Let x > c, then we let $\delta = \frac{\epsilon}{M}$ for M such that $f(x) \leq M$. Now let $|x - c| < \frac{\epsilon}{M}$. It follows then that x > c so $M(x - c) < \epsilon$. We know by 11.26 and 11.27 that $|F(x) - F(c)| = |\int_{c}^{x} f| < M(x - c) < \epsilon$. So we have that f is continuous by definition.

Case 2: Let x < c, then we let $\delta = \frac{\epsilon}{m}$ for m such that $m \le f(x)$. Now let $|x - c| < \frac{\epsilon}{m}$. It follows then that x < c so $m(c - x) < \epsilon$. x < c, so we know by 11.25, 11.26, and 11.27 that $|F(x) - F(c)| = \int_x^c f \le m(c - x) < \epsilon$. So we have that f is continuous by definition. \square