Exercise session 3*

for the lecture "Adding Geometry: Euclidean Random Assignment Problems (ERAPs) and extensions,

featuring a crash course on point processes"

Nesin Mathematics Village, Turkey, 29/07/2024–4/08/2024

Matteo D'Achille

Exercise 1 ()** (HOLE PROBABILITY) Consider a Poisson Point Process (PPP) $\mathbf{X} = (X_i \; ; \; i \geq 1)$ of points in the plane with intensity measure $\text{Leb}_{\mathbb{R}^2}$. Let D_1 be the unit disk, C_1 the unit circle, and P_n a regular n-gon inscribed in C_1 for $n \geq 3$. Let $\mathcal{R}_n = D_1 \setminus P_n$ (see Fig. 1 for n = 5).

Fig. 1: The region \mathcal{R}_5 is shaded in blue.

What is the smallest n s.t. the probability that no point of \mathbf{X} falls into \mathcal{R}_n is greater than $\frac{1}{2}$?

Exercise 2 ()** (QUADRATIC ERAP ON THE UNIT INTERVAL) Consider the ERAP with uniform disorder over the unit interval [0,1] with p=2.

Taking inspiration from Exercise 1 of Session 2, prove that

$$\mathbb{E}[\mathcal{H}_{\text{opt}}] = \frac{1}{3} \frac{n}{n+1} .$$

^{*}Latest version (July 31, 2024) available electronically at: https://matteodachille.github.io/teaching

[†]matteo.dachille@universite-paris-saclay.fr, solutions welcome!