A Sieve-SMM Estimator for Dynamic Models

Jean-Jacques Forneron

May 17, 2019

Boston University

- Interested in a class of Non-Linear Dynamic Models
 - numerically complex to estimate
 - have to simulate from the model to estimate
 - common in many economic settings:
 DSGE, Dynamic Discrete Choice, Asset Pricing, ...
 - ⇒ this approach is called simulation-based estimation

- Interested in a class of Non-Linear Dynamic Models
 - numerically complex to estimate
 - have to simulate from the model to estimate
 - common in many economic settings:
 DSGE, Dynamic Discrete Choice, Asset Pricing, ...
 - ⇒ this approach is called simulation-based estimation
- Caveat: typically make strong assumptions to simulate
 - assume the distribution of the shocks is known

- Interested in a class of Non-Linear Dynamic Models
 - numerically complex to estimate
 - have to simulate from the model to estimate
 - common in many economic settings:
 DSGE, Dynamic Discrete Choice, Asset Pricing, ...
 - \Rightarrow this approach is called simulation-based estimation
- Caveat: typically make strong assumptions to simulate
 - assume the distribution of the shocks is known
- This paper: estimate parameters of the model and flexibly approximate the distribution of shocks
 - learn about the nature of risks rather than assuming it
 - methodological contribution: simple algorithm
 - theoretical contribution: theory with general dynamics

- Interested in a class of Non-Linear Dynamic Models
 - numerically complex to estimate
 - have to simulate from the model to estimate
 - common in many economic settings:
 DSGE, Dynamic Discrete Choice, Asset Pricing, ...
 - \Rightarrow this approach is called simulation-based estimation
- Caveat: typically make strong assumptions to simulate
 - assume the distribution of the shocks is known
- This paper: estimate parameters of the model and flexibly approximate the distribution of shocks
 - learn about the nature of risks rather than assuming it
 - methodological contribution: simple algorithm
 - theoretical contribution: theory with general dynamics

- Interested in a class of Non-Linear Dynamic Models
 - numerically complex to estimate
 - have to simulate from the model to estimate
 - common in many economic settings:
 DSGE, Dynamic Discrete Choice, Asset Pricing, ...
 - \Rightarrow this approach is called simulation-based estimation
- Caveat: typically make strong assumptions to simulate
 - assume the distribution of the shocks is known
- This paper: estimate parameters of the model and flexibly approximate the distribution of shocks
 - learn about the nature of risks rather than assuming it
 - methodological contribution: simple algorithm
 - theoretical contribution: theory with general dynamics

Non-Linear Dynamic Models:

$$y_t = g_{obs}(y_{t-1}, x_t, \theta, f, u_t)$$
 (observed)
 $u_t = g_{latent}(u_{t-1}, \theta, f, e_t), \quad e_t \stackrel{iid}{\sim} f$ (latent)

Non-Linear Dynamic Models:

$$y_t = g_{obs}(y_{t-1}, x_t, \theta, f, u_t)$$
 (observed)
 $u_t = g_{latent}(u_{t-1}, \theta, f, e_t), \quad e_t \stackrel{iid}{\sim} f$ (latent)

Non-Linear Dynamic Models:

$$y_t = g_{obs}(y_{t-1}, x_t, \theta, f, u_t)$$
 (observed)
 $u_t = g_{latent}(u_{t-1}, \theta, f, e_t), \quad e_t \stackrel{iid}{\sim} f$ (latent)

Non-Linear Dynamic Models:

$$y_t = g_{obs}(y_{t-1}, x_t, \theta, f, u_t)$$
 (observed)
 $u_t = g_{latent}(u_{t-1}, \theta, f, e_t), \quad e_t \stackrel{iid}{\sim} f$ (latent)

Non-Linear Dynamic Models:

$$y_t = g_{obs}(y_{t-1}, x_t, \theta, f, u_t)$$
 (observed)
 $u_t = g_{latent}(u_{t-1}, \theta, f, e_t), \quad e_t \stackrel{iid}{\sim} f$ (latent)

Non-Linear Dynamic Models:

$$y_t = g_{obs}(y_{t-1}, x_t, \theta, f, u_t)$$
 (observed)
 $u_t = g_{latent}(u_{t-1}, \theta, f, e_t), \quad e_t \stackrel{iid}{\sim} f$ (latent)

- Likelihood and moments intractable and hard to compute:
 - MLE and GMM not feasible

Non-Linear Dynamic Models:

$$y_t = g_{obs}(y_{t-1}, x_t, \theta, f, u_t)$$
 (observed)
 $u_t = g_{latent}(u_{t-1}, \theta, f, e_t), \quad e_t \stackrel{iid}{\sim} f$ (latent)

- Likelihood and moments intractable and hard to compute:
 - MLE and GMM not feasible
- Common in applications with e.g.:
 - unobserved latent variables (e.g. productivity, volatility)
 - and/or intractable policy function (e.g. dynamic programming)

Non-Linear Dynamic Models:

$$y_t = g_{obs}(y_{t-1}, x_t, \theta, f, u_t)$$
 (observed)
 $u_t = g_{latent}(u_{t-1}, \theta, f, e_t), \quad e_t \stackrel{iid}{\sim} f$ (latent)

- Likelihood and moments intractable and hard to compute:
 - MLE and GMM not feasible
- Common in applications with e.g.:
 - unobserved latent variables (e.g. productivity, volatility)
 - and/or intractable policy function (e.g. dynamic programming)

Non-Linear Dynamic Models:

$$y_t = g_{obs}(y_{t-1}, x_t, \theta, f, u_t)$$
 (observed)
 $u_t = g_{latent}(u_{t-1}, \theta, f, e_t), \quad e_t \stackrel{iid}{\sim} f$ (latent)

- Likelihood and moments intractable and hard to compute:
 - MLE and GMM not feasible
- Common in applications with e.g.:
 - unobserved latent variables (e.g. productivity, volatility)
 - and/or intractable policy function (e.g. dynamic programming)

- Summarize observables (y_t, x_t) with vector of moment $\hat{\psi}_n$
- Use a fully parameterized model (assume f known) to
 - i. Simulate $S \ge 1$ samples $(y_t^s(\theta), x_t)$
 - ii. Compute simulated moments $\hat{\psi}_n^s(\theta)$
 - iii. Match sample with average simulated moment $\hat{\psi}_n^S = \sum_s \hat{\psi}_n^s / S$

$$\hat{\theta}_n^{SMM} = \operatorname{argmin}_{\theta} \|\hat{\psi}_n - \hat{\psi}_n^{S}(\theta)\|$$

- ullet Summarize observables (y_t, x_t) with vector of moment $\hat{\psi}_n$
- Use a fully parameterized model (assume f known) to
 - i. Simulate $S \ge 1$ samples $(y_t^s(\theta), x_t)$
 - ii. Compute simulated moments $\hat{\psi}_n^s(\theta)$
 - iii. Match sample with average simulated moment $\hat{\psi}_n^S = \sum_s \hat{\psi}_n^s / S$

$$\hat{\theta}_n^{SMM} = \operatorname{argmin}_{\theta} \|\hat{\psi}_n - \hat{\psi}_n^{S}(\theta)\|$$

- Summarize observables (y_t, x_t) with vector of moment $\hat{\psi}_n$
- Use a fully parameterized model (assume f known) to
 - i. Simulate $S \geq 1$ samples $(y_t^s(\theta), x_t)$
 - ii. Compute simulated moments $\hat{\psi}_n^s(\theta)$
 - iii. Match sample with average simulated moment $\hat{\psi}_n^S = \sum_s \hat{\psi}_n^s / S$

$$\hat{\theta}_n^{SMM} = \operatorname{argmin}_{\theta} \|\hat{\psi}_n - \hat{\psi}_n^{S}(\theta)\|$$

- Summarize observables (y_t, x_t) with vector of moment $\hat{\psi}_n$
- Use a fully parameterized model (assume f known) to
 - i. Simulate $S \ge 1$ samples $(y_t^s(\theta), x_t)$
 - ii. Compute simulated moments $\hat{\psi}_n^s(\theta)$
 - iii. Match sample with average simulated moment $\hat{\psi}_n^S = \sum_s \hat{\psi}_n^s / S$

$$\hat{\theta}_n^{SMM} = \operatorname{argmin}_{\theta} \|\hat{\psi}_n - \hat{\psi}_n^{S}(\theta)\|$$

- ullet Summarize observables (y_t, x_t) with vector of moment $\hat{\psi}_n$
- Use a fully parameterized model (assume f known) to
 - i. Simulate $S \ge 1$ samples $(y_t^s(\theta), x_t)$
 - ii. Compute simulated moments $\hat{\psi}_n^s(\theta)$
 - iii. Match sample with average simulated moment $\hat{\psi}_n^S = \sum_s \hat{\psi}_n^s / S$

$$\hat{ heta}_n^{SMM} = \operatorname{argmin}_{ heta} \|\hat{\psi}_n - \hat{\psi}_n^{S}(heta)\|$$

- Vast existing literature (SMM, Indirect Inference, EMM)
 - Review, see e.g. Gouriéroux and Monfort (1996); Smith (2016)
- Limitations: requires a fully parametric model
 - \triangleright but economic models rarely informative about distribution f
 - \triangleright so that $\hat{\theta}_n^{SMM}$ may be sensitive to choice of f
 - \triangleright and f may also be of interest

- Recent work allows for more flexible parametric distributions in SMM estimation
- Flexibly approximate the first 3-4 moments to e.g.:
 - Model asymmetric shocks and their impact on business cycles, the yield curve (Ruge-Murcia, 2012, 2017)
 - Restore identification when first 2 moments are not enough (Gospodinov and Ng, 2015; Gospodinov et al., 2017)

- Recent work allows for more flexible parametric distributions in SMM estimation
- Flexibly approximate the first 3-4 moments to e.g.:
 - Model asymmetric shocks and their impact on business cycles, the yield curve (Ruge-Murcia, 2012, 2017)
 - Restore identification when first 2 moments are not enough (Gospodinov and Ng, 2015; Gospodinov et al., 2017)
- Pushing this idea further:
 - Look for a flexible parametric family which can approximate a large class of distributions
 - Need moments that are informative enough about θ + the entire distribution f

- Recent work allows for more flexible parametric distributions in SMM estimation
- Flexibly approximate the first 3-4 moments to e.g.:
 - Model asymmetric shocks and their impact on business cycles, the yield curve (Ruge-Murcia, 2012, 2017)
 - Restore identification when first 2 moments are not enough (Gospodinov and Ng, 2015; Gospodinov et al., 2017)
- Pushing this idea further:
 - Look for a flexible parametric family which can approximate a large class of distributions
 - Need moments that are informative enough about θ + the entire distribution f

- Recent work allows for more flexible parametric distributions in SMM estimation
- Flexibly approximate the first 3-4 moments to e.g.:
 - Model asymmetric shocks and their impact on business cycles, the yield curve (Ruge-Murcia, 2012, 2017)
 - Restore identification when first 2 moments are not enough (Gospodinov and Ng, 2015; Gospodinov et al., 2017)
- Pushing this idea further:
 - Look for a flexible parametric family which can approximate a large class of distributions
 - Need moments that are informative enough about θ + the entire distribution f

1. A Gaussian Mixture sieve

√ To approximate smooth densities:

$$f(e) \simeq \sum_{j=1}^{k(n)} \frac{\omega_j}{\sigma_j} \phi\left(\frac{e - \mu_j}{\sigma_j}\right)$$

• # of components $k(n) \nearrow$ with sample size n

1. A Gaussian Mixture sieve

√ To approximate smooth densities:

$$f(e) \simeq \sum_{j=1}^{k(n)} \frac{\omega_j}{\sigma_j} \phi\left(\frac{e - \mu_j}{\sigma_j}\right)$$

• # of components $k(n) \nearrow$ with sample size n

- 1. A Gaussian Mixture sieve
 - \checkmark To approximate smooth densities:

$$f(e) \simeq \sum_{j=1}^{k(n)} \frac{\omega_j}{\sigma_j} \phi\left(\frac{e - \mu_j}{\sigma_j}\right)$$

- # of components $k(n) \nearrow$ with sample size n
- 2. And a Moment Function: Characteristic Function (CF)

$$\hat{\psi}_n(\tau) = \frac{1}{n} \sum_{t=1}^n e^{i\tau'(\mathbf{y}_t, \mathbf{x}_t)}, \quad \mathbf{y}_t = (y_t, \dots, y_{t-L})$$

1. A Gaussian Mixture sieve

√ To approximate smooth densities:

$$f(e) \simeq \sum_{j=1}^{k(n)} \frac{\omega_j}{\sigma_j} \phi\left(\frac{e - \mu_j}{\sigma_j}\right)$$

- # of components $k(n) \nearrow$ with sample size n
- 2. And a Moment Function: Characteristic Function (CF)

$$\hat{\psi}_n(\tau) = \frac{1}{n} \sum_{t=1}^n e^{i\tau'(\mathbf{y}_t, \mathbf{x}_t)}, \quad \mathbf{y}_t = (y_t, \dots, y_{t-L})$$

ullet Infinite dim. moments: use all $au \in \mathbb{R}^{d_{\mathsf{y}} + d_{\mathsf{x}}}$

1. A Gaussian Mixture sieve

√ To approximate smooth densities:

$$f(e) \simeq \sum_{j=1}^{k(n)} \frac{\omega_j}{\sigma_j} \phi\left(\frac{e - \mu_j}{\sigma_j}\right)$$

- # of components $k(n) \nearrow$ with sample size n
- 2. And a Moment Function: Characteristic Function (CF)

$$\hat{\psi}_n(\tau) = \frac{1}{n} \sum_{t=1}^n e^{i\tau'(\mathbf{y}_t, \mathbf{x}_t)}, \quad \mathbf{y}_t = (y_t, \dots, y_{t-L})$$

 \checkmark Infinite dim. moments: identify the infinite dim. $\beta = (\theta, f)$

Main Results

- 1. Consistency + Rate of convergence + Asym. normality results
 - under low-level conditions on the data generating process
 - \bullet assuming $\beta=(\theta,f)$ identified by $\hat{\psi}_{\textit{n}}(\cdot)$

Main Results

- 1. Consistency + Rate of convergence + Asym. normality results
 - under low-level conditions on the data generating process
 - \bullet assuming $\beta=(\theta,f)$ identified by $\hat{\psi}_{\textit{n}}(\cdot)$
- 2. Allows for general dynamics
 - extends the existing sieve estimation theory

Main Results

- 1. Consistency + Rate of convergence + Asym. normality results
 - under low-level conditions on the data generating process
 - ullet assuming eta=(heta,f) identified by $\hat{\psi}_n(\cdot)$
- 2. Allows for general dynamics
 - · extends the existing sieve estimation theory
- 3. Inference is simple
 - compute SEs using Δ -method on $(\theta, \omega, \mu, \sigma)$ + Newey-West
 - SEs adapt to the rate of convergence

Algorithm: Computing the Sieve-SMM Estimator

Compute $\hat{\psi}_n$, the sample CF of the data:

$$\hat{\psi}_n(\tau) = \frac{1}{n} \sum_{t=1}^n e^{i\tau'(\mathbf{y}_t, \mathbf{x}_t)}, \quad \mathbf{y}_t = (y_t, \dots, y_{t-L})$$

Set k(n) number of mixture components

for
$$s = 1, ..., S$$
 do

Simulate $e_t^s \sim f_{\omega,u,\sigma}$ - Gaussian Mixture

Simulate y_t^s using DGP & shocks e_t^s

Compute $\hat{\psi}_n^s$, the CF of the simulated $(\mathbf{y}_t^s, \mathbf{x}_t)$

Compute
$$\hat{Q}_n^S(\theta, f_{\omega,\mu,\sigma}) = \int |\hat{\psi}_n(\tau) - \hat{\psi}_n^S(\tau, \theta, f_{\omega,\mu,\sigma})|^2 \pi(\tau) d\tau$$

Minimize \hat{Q}_n^S over $(\theta, \omega, \mu, \sigma)$

Algorithm: Computing the Sieve-SMM Estimator

Compute $\hat{\psi}_n$, the sample CF of the data:

$$\hat{\psi}_n(\tau) = \frac{1}{n} \sum_{t=1}^n e^{i\tau'(\mathbf{y}_t, \mathbf{x}_t)}, \quad \mathbf{y}_t = (y_t, \dots, y_{t-L})$$

Set k(n) number of mixture components

for
$$s = 1, ..., S$$
 do

Simulate $e_t^s \sim f_{\omega,u,\sigma}$ - Gaussian Mixture

Simulate y_t^s using DGP & shocks e_t^s

Compute $\hat{\psi}_n^s$, the CF of the simulated $(\mathbf{y}_t^s, \mathbf{x}_t)$

Compute
$$\hat{Q}_n^S(\theta, f_{\omega,\mu,\sigma}) = \int |\hat{\psi}_n(\tau) - \hat{\psi}_n^S(\tau, \theta, f_{\omega,\mu,\sigma})|^2 \pi(\tau) d\tau$$

Minimize \hat{Q}_n^S over $(\theta, \omega, \mu, \sigma)$

Algorithm: Computing the Sieve-SMM Estimator

Compute $\hat{\psi}_n$, the sample CF of the data:

$$\hat{\psi}_n(\tau) = \frac{1}{n} \sum_{t=1}^n e^{i\tau'(\mathbf{y}_t, \mathbf{x}_t)}, \quad \mathbf{y}_t = (y_t, \dots, y_{t-L})$$

Set k(n) number of mixture components

for
$$s = 1, \ldots, S$$
 do

Simulate $e_t^s \sim f_{\omega,u,\sigma}$ - Gaussian Mixture

Simulate y_t^s using DGP & shocks e_t^s

Compute $\hat{\psi}_n^s$, the CF of the simulated $(\mathbf{y}_t^s, \mathbf{x}_t)$

Compute
$$\hat{Q}_n^S(\theta, f_{\omega,\mu,\sigma}) = \int |\hat{\psi}_n(\tau) - \hat{\psi}_n^S(\tau, \theta, f_{\omega,\mu,\sigma})|^2 \pi(\tau) d\tau$$

Minimize \hat{Q}_n^S over $(\theta, \omega, \mu, \sigma)$

Algorithm: Computing the Sieve-SMM Estimator

Compute $\hat{\psi}_n$, the sample CF of the data:

$$\hat{\psi}_n(\tau) = \frac{1}{n} \sum_{t=1}^n e^{i\tau'(\mathbf{y}_t, \mathbf{x}_t)}, \quad \mathbf{y}_t = (y_t, \dots, y_{t-L})$$

Set k(n) number of mixture components

for
$$s = 1, \ldots, S$$
 do

Simulate $e_t^s \sim f_{\omega,\mu,\sigma}$ - Gaussian Mixture

Simulate y_t^s using DGP & shocks e_t^s

Compute $\hat{\psi}_n^s$, the CF of the simulated $(\mathbf{y}_t^s, \mathbf{x}_t)$

Compute
$$\hat{Q}_{n}^{S}(\theta, f_{\omega,\mu,\sigma}) = \int |\hat{\psi}_{n}(\tau) - \hat{\psi}_{n}^{S}(\tau, \theta, f_{\omega,\mu,\sigma})|^{2} \pi(\tau) d\tau$$

Minimize \hat{Q}_{n}^{S} over $(\theta, \omega, \mu, \sigma)$

The Sieve-SMM Algorithm

Algorithm: Computing the Sieve-SMM Estimator

Compute $\hat{\psi}_n$, the sample CF of the data:

$$\hat{\psi}_n(\tau) = \frac{1}{n} \sum_{t=1}^n e^{i\tau'(\mathbf{y}_t, \mathbf{x}_t)}, \quad \mathbf{y}_t = (y_t, \dots, y_{t-L})$$

Set k(n) number of mixture components

for
$$s = 1, \ldots, S$$
 do

Simulate $e_t^s \sim f_{\omega,\mu,\sigma}$ - Gaussian Mixture

Simulate y_t^s using DGP & shocks e_t^s

Compute $\hat{\psi}_n^s$, the CF of the simulated $(\mathbf{y}_t^s, \mathbf{x}_t)$

end for

Compute
$$\hat{Q}_n^S(\theta, f_{\omega,\mu,\sigma}) = \int |\hat{\psi}_n(\tau) - \hat{\psi}_n^S(\tau, \theta, f_{\omega,\mu,\sigma})|^2 \pi(\tau) d\tau$$

Minimize \hat{Q}_n^S over $(\theta, \omega, \mu, \sigma)$

General Dynamics: A Non-Standard Problem

- Rich literature on Sieve-GMM and M-estimation (Chen, 2007)
- No result for Sieve + General Dynamics with Latent Variables
- Moments involve unobserved ut
- Requires a filtering step: $\hat{u}_1(\hat{u}_0, y_1, \beta)$, $\hat{u}_2(\hat{u}_1, y_2, \beta)$, ...

General Dynamics: A Non-Standard Problem

- Rich literature on Sieve-GMM and M-estimation (Chen, 2007)
- No result for Sieve + General Dynamics with Latent Variables
- Moments involve unobserved ut
- Requires a filtering step: $\hat{u}_1(\hat{u}_0, y_1, \beta)$, $\hat{u}_2(\hat{u}_1, y_2, \beta)$, . . .
- Non-standard setting because of:
 - i. nonstationarity: \hat{u}_0 fixed
 - ii. dependence properties of \hat{u}_t vary with β (\Rightarrow the results of Doukhan et al., 1995, do not apply)
 - iii. propagation and accumulation of the approximation bias

General Dynamics: A Non-Standard Problem

- Rich literature on Sieve-GMM and M-estimation (Chen, 2007)
- No result for Sieve + General Dynamics with Latent Variables
- Moments involve unobserved u_t
- Requires a filtering step: $\hat{u}_1(\hat{u}_0, y_1, \beta), \hat{u}_2(\hat{u}_1, y_2, \beta), \dots$
- Non-standard setting because of:
 - i. nonstationarity: \hat{u}_0 fixed
 - ii. dependence properties of \hat{u}_t vary with β (\Rightarrow the results of Doukhan et al., 1995, do not apply)
 - iii. propagation and accumulation of the approximation bias

This paper allows for:

- i. nonstationarity due to (y_0, u_0)
- ii. moments depend on full history $\psi_t(e_t^s, \ldots, e_1^s, x_t, \ldots, x_1, \beta)$
- iii. dependence properties can vary with eta
- vi. accumulation of the approximation bias

This paper allows for:

- i. nonstationarity due to (y_0, u_0)
- ii. moments depend on full history $\psi_t(e_t^s, \ldots, e_1^s, x_t, \ldots, x_1, \beta)$
- iii. dependence properties can vary with eta
- vi. accumulation of the approximation bias

It relies on

- 1. An inequality adapted from results of Andrews and Pollard (1994); Ben Hariz (2005) it requires
 - i. bounded moments $|\hat{\psi}_t(au)| \leq M$ (CF, CDF)
 - ii. and geometric ergodicity (as in Duffie and Singleton, 1993)
- 2. Conditions on the DGP to control the bias accumulation

This paper allows for:

- i. nonstationarity due to (y_0, u_0)
- ii. moments depend on full history $\psi_t(e_t^s, \dots, e_1^s, x_t, \dots, x_1, \beta)$
- iii. dependence properties can vary with eta
- vi. accumulation of the approximation bias

It relies on

- 1. An inequality adapted from results of Andrews and Pollard (1994); Ben Hariz (2005) it requires
 - i. bounded moments $|\hat{\psi}_t(\tau)| \leq M$ (CF, CDF)
 - ii. and geometric ergodicity (as in Duffie and Singleton, 1993)
- 2. Conditions on the DGP to control the bias accumulation

This paper allows for:

- i. nonstationarity due to (y_0, u_0)
- ii. moments depend on full history $\psi_t(e_t^s, \ldots, e_1^s, x_t, \ldots, x_1, \beta)$
- iii. dependence properties can vary with eta
- vi. accumulation of the approximation bias

It relies on

- 1. An inequality adapted from results of Andrews and Pollard (1994); Ben Hariz (2005) it requires
 - i. bounded moments $|\hat{\psi}_t(\tau)| \leq M$ (CF, CDF)
 - ii. and geometric ergodicity (as in Duffie and Singleton, 1993)
- 2. Conditions on the DGP to control the bias accumulation

Consistency - Assumptions (Common)

Assumption (Sieves, Identification, Dependence)

- Sieves: f smooth, ⊕ compact, . . .
- Identification: $\beta_0 = (\theta_0, f_0)$ unique minimizer
- Dependence: geometric ergodicity

Assumption (DGP)

• Decay Conditions effect of (y_{t-1}, u_{t-1}) on (y_{t+h}, u_{t+h}) decays geometrically in $h \ge 1$

Assumption (DGP)

• Decay Conditions - control the accumulation of the bias effect of (y_{t-1},u_{t-1}) on (y_{t+h},u_{t+h}) decays geometrically in $h\geq 1$

Assumption (DGP)

- Decay Conditions effect of (y_{t-1}, u_{t-1}) on (y_{t+h}, u_{t+h}) decays geometrically in $h \ge 1$
- Lipschitz in the Parameters small changes in β do not affect (y_t, u_t) too much

Assumption (DGP)

- Decay Conditions effect of (y_{t-1}, u_{t-1}) on (y_{t+h}, u_{t+h}) decays geometrically in $h \ge 1$
- Lipschitz in the Parameters simulations are well behaved small changes in β do not affect (y_t, u_t) too much

Assumption (DGP)

- Decay Conditions effect of (y_{t-1}, u_{t-1}) on (y_{t+h}, u_{t+h}) decays geometrically in $h \ge 1$
- Lipschitz in the Parameters small changes in β do not affect (y_t, u_t) too much
- Lipschitz in the Shocks small changes in e_t do not affect (y_t, u_t) too much

Assumption (DGP)

- Decay Conditions effect of (y_{t-1}, u_{t-1}) on (y_{t+h}, u_{t+h}) decays geometrically in $h \ge 1$
- Lipschitz in the Parameters small changes in β do not affect (y_t, u_t) too much
- Lipschitz in the Shocks drawing from a nonparametric density small changes in e_t do not affect (y_t, u_t) too much

Consistency - Theorem

Theorem (Consistency)

Suppose Assumptions Sieves, Identification, Dependence and DGP hold + technical conditions then:

$$\|\hat{\beta}_n - \beta_0\|_{TV,\infty} = o_p(1)$$

where
$$\|\hat{\beta}_n - \beta_0\|_{TV,\infty}$$
 is one of
$$\|\hat{\beta}_n - \beta_0\|_{TV} = \|\hat{\theta}_n - \theta_0\| + 0.5 \int |\hat{f}_n(e) - f_0(e)| de$$

$$\|\hat{\beta}_n - \beta_0\|_{\infty} = \|\hat{\theta}_n - \theta_0\| + \sup_e |\hat{f}_n(e) - f_0(e)|$$

$$\text{Bias}_n = \|\beta_0 - \Pi_{k(n)}\beta_0\|_{TV,\infty} = O(\log[k(n)]^{2r}/k(n)^r)$$

- $\Pi_{k(n)}\beta_0 = \text{mixture approximation}$
- r = smoothness of f
- Simplify dynamics: $y_t^s = g_{obs,t}(\theta, e_t^s, \dots, e_1^s)$

$$\mathsf{Bias}_n = \|\beta_0 - \Pi_{k(n)}\beta_0\|_{TV,\infty} = O(\log[k(n)]^{2r}/k(n)^r)$$

- $\Pi_{k(n)}\beta_0$ = mixture approximation
- r = smoothness of f
- Simplify dynamics: $y_t^s = g_{obs,t}(\theta, e_t^s, \dots, e_1^s)$

$$\mathrm{Bias}_n = \|\beta_0 - \Pi_{k(n)}\beta_0\|_{TV,\infty} = O(\log[k(n)]^{2r}/k(n)^r)$$

- $\Pi_{k(n)}\beta_0$ = mixture approximation
- r = smoothness of f
- Simplify dynamics: $y_t^s = g_{obs,t}(\theta, e_t^s, \dots, e_1^s)$
- Moments imply a direct bound

$$\begin{split} &\int |\mathbb{E}(\hat{\psi}_n^s(\tau,\beta_0) - \hat{\psi}_n^s(\tau,\pi_{k(n)}\beta_0))|^2 \pi(\tau) d\tau \\ &= \int \Big|\frac{1}{n} \sum_{t=1}^n \int e^{i\tau' g_{obs,t}(\theta_0,e_t,\dots,e_1)} \underbrace{\left[f_0^{\otimes t} - \Pi_{k(n)}f_0^{\otimes t}\right]}_{\text{appears t times}} de_t \dots de_1\Big|^2 \pi(\tau) d\tau \\ &\leq n^2 \times \|f_0 - \Pi_{k(n)}f_0\|_{TV}^2 \text{ (up to a constant)} \end{split}$$

$$\mathrm{Bias}_n = \|\beta_0 - \Pi_{k(n)}\beta_0\|_{TV,\infty} = O(\log[k(n)]^{2r}/k(n)^r)$$

- $\Pi_{k(n)}\beta_0$ = mixture approximation
- r = smoothness of f
- Simplify dynamics: $y_t^s = g_{obs,t}(\theta, e_t^s, \dots, e_1^s)$
- Moments imply a direct bound

$$\begin{split} &\int |\mathbb{E}(\hat{\psi}_n^s(\tau,\beta_0) - \hat{\psi}_n^s(\tau,\pi_{k(n)}\beta_0))|^2 \pi(\tau) d\tau \\ &= \int \Big|\frac{1}{n}\sum_{t=1}^n \int e^{i\tau'g_{obs,t}(\theta_0,e_t,\dots,e_1)} \underbrace{\left[f_0^{\otimes t} - \Pi_{k(n)}f_0^{\otimes t}\right]}_{\text{appears t times}} de_t\dots de_1\Big|^2 \pi(\tau) d\tau \\ &\leq n^2 \times \|f_0 - \Pi_{k(n)}f_0\|_{TV}^2 \text{ (up to a constant)} \end{split}$$

$$\mathrm{Bias}_n = \|\beta_0 - \Pi_{k(n)}\beta_0\|_{TV,\infty} = O(\log[k(n)]^{2r}/k(n)^r)$$

- $\Pi_{k(n)}\beta_0$ = mixture approximation
- r = smoothness of f
- Simplify dynamics: $y_t^s = g_{obs,t}(\theta, e_t^s, \dots, e_1^s)$
- Moments imply a direct bound

$$\begin{split} &\int |\mathbb{E}(\hat{\psi}_n^s(\tau,\beta_0) - \hat{\psi}_n^s(\tau,\pi_{k(n)}\beta_0))|^2 \pi(\tau) d\tau \\ &= \int \Big|\frac{1}{n}\sum_{t=1}^n \int e^{i\tau'g_{obs,t}(\theta_0,e_t,\dots,e_1)} \underbrace{\left[f_0^{\otimes t} - \Pi_{k(n)}f_0^{\otimes t}\right]}_{\text{appears t times}} de_t \dots de_1\Big|^2 \pi(\tau) d\tau \\ &\leq n^2 \times \|f_0 - \Pi_{k(n)}f_0\|_{TV}^2 \text{ (up to a constant)} \end{split}$$

$$\mathrm{Bias}_n = \|\beta_0 - \Pi_{k(n)}\beta_0\|_{TV,\infty} = O(\log[k(n)]^{2r}/k(n)^r)$$

- ullet $\Pi_{k(n)}eta_0=$ mixture approximation
- r = smoothness of f
- Simplify dynamics: $y_t^s = g_{obs,t}(\theta, e_t^s, \dots, e_1^s)$
- Moments imply a direct bound

$$\begin{split} &\int |\mathbb{E}(\hat{\psi}_n^s(\tau,\beta_0) - \hat{\psi}_n^s(\tau,\pi_{k(n)}\beta_0))|^2 \pi(\tau) d\tau \\ &= \int \Big|\frac{1}{n} \sum_{t=1}^n \int e^{i\tau'g_{obs,t}(\theta_0,e_t,\dots,e_1)} \underbrace{\left[f_0^{\otimes t} - \Pi_{k(n)}f_0^{\otimes t}\right]}_{\text{appears t times}} de_t \dots de_1\Big|^2 \pi(\tau) d\tau \\ &\leq n^2 \times \|f_0 - \Pi_{k(n)}f_0\|_{TV}^2 \text{ (up to a constant)} \end{split}$$

- Bound grows too fast! $n \times \text{Bias}_n \to \infty$
- ⇒ Use decay conditions to control the bias

• Sketch of the argument: take a shorter history $m \ll n$

$$\tilde{y}_{t}^{s} = g_{obs,t}(e_{t}^{s}, \dots, e_{t-m}^{s}, 0, \dots, 0)$$

- i. For \tilde{y}_t^s , the bias is $m \times \operatorname{Bias}_n \ll n \times \operatorname{Bias}_n$
- ii. The decay conditions imply that for some 0 $\leq \bar{\rho} < 1$

$$\mathbb{E}(\|y_t^{\mathfrak s} - \tilde{y}_t^{\mathfrak s}\|) \leq \bar{\rho}^m$$
 (up to a constant)

• Sketch of the argument: take a shorter history $m \ll n$

$$\tilde{y}_{t}^{s} = g_{obs,t}(e_{t}^{s}, \dots, e_{t-m}^{s}, 0, \dots, 0)$$

- i. For \tilde{y}_t^s , the bias is $m \times \operatorname{Bias}_n \ll n \times \operatorname{Bias}_n$
- ii. The decay conditions imply that for some 0 $\leq \bar{\rho} < 1$

$$\mathbb{E}(\|y_t^{\mathfrak s} - \tilde{y}_t^{\mathfrak s}\|) \leq \bar{\rho}^m \text{ (up to a constant)}$$

• Sketch of the argument: take a shorter history $m \ll n$

$$\tilde{y}_t^s = g_{obs,t}(e_t^s, \dots, e_{t-m}^s, 0, \dots, 0)$$

- i. For \tilde{y}_t^s , the bias is $m \times \operatorname{Bias}_n \ll n \times \operatorname{Bias}_n$
- ii. The decay conditions imply that for some 0 $\leq \bar{\rho} < 1$

$$\mathbb{E}(\|y_t^{\mathfrak s} - \tilde{y}_t^{\mathfrak s}\|) \leq \bar{\rho}^m$$
 (up to a constant)

• Sketch of the argument: take a shorter history $m \ll n$

$$\tilde{y}_t^s = g_{obs,t}(e_t^s, \dots, e_{t-m}^s, 0, \dots, 0)$$

- i. For \tilde{y}_t^s , the bias is $m \times \operatorname{Bias}_n \ll n \times \operatorname{Bias}_n$
- ii. The decay conditions imply that for some 0 $\leq \bar{\rho} < 1$

$$\mathbb{E}(\|y_t^s - ilde{y}_t^s\|) \leq ar{
ho}^m$$
 (up to a constant)

• Sketch of the argument: take a shorter history $m \ll n$

$$\tilde{y}_t^s = g_{obs,t}(e_t^s, \dots, e_{t-m}^s, 0, \dots, 0)$$

Two implications:

- i. For \tilde{y}_t^s , the bias is $m \times \text{Bias}_n \ll n \times \text{Bias}_n$
- ii. The decay conditions imply that for some $0 \leq \bar{\rho} < 1$

$$\mathbb{E}(\|y_t^s - \tilde{y}_t^s\|) \leq \bar{\rho}^m$$
 (up to a constant)

• Balance the two with $m = C_{\bar{\rho}} \times |\log[\mathsf{Bias}_n]|$:

$$\bar{\rho}^m + m \times \mathsf{Bias}_n = O(\mathsf{Bias}_n | \log[\mathsf{Bias}_n]|)$$

• Sketch of the argument: take a shorter history $m \ll n$

$$\tilde{y}_t^s = g_{obs,t}(e_t^s, \dots, e_{t-m}^s, 0, \dots, 0)$$

Two implications:

- i. For \tilde{y}_t^s , the bias is $m \times \text{Bias}_n \ll n \times \text{Bias}_n$
- ii. The decay conditions imply that for some $0 \leq \bar{\rho} < 1$

$$\mathbb{E}(\|y_t^s - \tilde{y}_t^s\|) \leq \bar{\rho}^m$$
 (up to a constant)

• Balance the two with $m = C_{\bar{\rho}} \times |\log[\mathsf{Bias}_n]|$:

$$\bar{\rho}^m + m \times \mathsf{Bias}_n = O(\mathsf{Bias}_n | \mathsf{log}[\mathsf{Bias}_n]|)$$

The dynamics inflate the bias by a log term:

$$\operatorname{\mathsf{Bias}}_n |\log[\operatorname{\mathsf{Bias}}_n]| = O\left(\log[k(n)]^{2r+1}/k(n)^r\right)$$

Theorem - Rate of Convergence

Theorem (Rate of Convergence)

Under previous assumptions:

$$\|\hat{\beta}_n - \beta_0\|_{weak} = O_p \left(\underbrace{\frac{\log[k(n)]^{2r+1}}{k(n)^r}}_{bias \times |\log(bias)|} + \underbrace{\frac{(k(n)\log[k(n)])^2}{\sqrt{n}}}_{variance}\right)$$

- $\|\cdot\|_{weak}$ of Ai and Chen (2003) with continuum of moments
 - Empirical Application:
 - if r = 2, optimal rate is $n^{-1/4}$ (up to a log term)
 - \Rightarrow slower than usual $n^{-2/5}$ rate.
 - \Rightarrow Require smoother densities at least $r \ge 3$ cont. derivatives.

Theorem - Asymptotic Normality

Theorem (Asymptotic Normality)

Suppose $\|\hat{\beta}_n - \beta_0\|_{weak} = o_p(n^{-1/4}) + undersmoothing + additional conditions (common) then:$

$$r_n\left(\phi(\hat{\beta}_n)-\phi(\beta_0)\right)\stackrel{d}{\to}\mathcal{N}(0,1)$$

for $r_n = \sqrt{n}/\sigma_n$, ϕ smooth functional

Depending on both $\hat{\psi}_n$ and ϕ , two cases:

- i. $\sigma_n \to \infty$: slower than \sqrt{n} -convergence
- ii. $\sigma_n \not\to \infty$: \sqrt{n} -convergence

Conclusion

- A Sieve-SMM estimator
 - extends SMM literature (semi-nonparametric)
 - and sieve literature (more general dynamics)

Conclusion

- A Sieve-SMM estimator
 - extends SMM literature (semi-nonparametric)
 - and sieve literature (more general dynamics)
- High-level conditions allow for other moments/bases/functions

Conclusion

- A Sieve-SMM estimator
 - extends SMM literature (semi-nonparametric)
 - and sieve literature (more general dynamics)
- High-level conditions allow for other moments/bases/functions
- Limitations & open questions:
 - bounded moments need more work for dynamic sieve-GMM
 - identification of (θ, f) hard to check, impossible to test
 - More efficient simulation methods: control variates and quasi-Monte Carlo integration

THANK YOU!

References

- Ai, C. and Chen, X. (2003). Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions. *Econometrica*, 71(6):1795–1843.
- Andrews, D. W. K. and Pollard, D. (1994). An Introduction to Functional Central Limit Theorems for Dependent Stochastic Processes. *International Statistical Review / Revue Internationale de Statistique*, 62(1):119.
- Ben Hariz, S. (2005). Uniform CLT for empirical process. *Stochastic Processes and their Applications*, 115(2):339–358.
- Blundell, R., Chen, X., and Kristensen, D. (2007). Semi-nonparametric IV estimation of shape-invariant engel curves. *Econometrica*, 75(6):1613–1669.
- Carrasco, M., Chernov, M., Florens, J.-P., and Ghysels, E. (2007). Efficient estimation of general dynamic models with a continuum of moment conditions. *Journal of Econometrics*, 140(2):529–573.
- Chen, X. (2007). Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models. In *Handbook of Econometrics*, volume 6, pages 5549–5632.

References ii

- Chen, X. and Liao, Z. (2015). Sieve semiparametric two-step GMM under weak dependence. *Journal of Econometrics*, 189(1):163–186.
- Chen, X. and Pouzo, D. (2015). Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models. *Econometrica*, 83(3):1013–1079.
- Doukhan, P., Massart, P., and Rio, E. (1995). Invariance principles for absolutely regular empirical processes. Annales de l'Institut Henri Poincaré, section B, tome 31(2):393–427.
- Duffie, D. and Singleton, K. J. (1993). Simulated Moments Estimation of Markov Models of Asset Prices. *Econometrica*, 61(4):929.
- Gospodinov, N., Komunjer, I., and Ng, S. (2017). Simulated minimum distance estimation of dynamic models with errors-in-variables. *Journal of Econometrics*, 200(2):181–193.
- Gospodinov, N. and Ng, S. (2015). Minimum Distance Estimation of Possibly Noninvertible Moving Average Models. *Journal of Business & Economic Statistics*, 33(3):403–417.
- Gouriéroux, C. and Monfort, A. (1996). Simulation-based Econometric Methods. CORE lectures. Oxford University Press.

References iii

- Ruge-Murcia, F. (2012). Estimating nonlinear DSGE models by the simulated method of moments: With an application to business cycles. *Journal of Economic Dynamics and Control*, 36(6):914–938.
- Ruge-Murcia, F. (2017). Skewness Risk and Bond Prices. *Journal of Applied Econometrics*, 32(2):379–400.
- Smith, A. A. (2016). Indirect Inference. In The New Palgrave Dictionary of Economics, pages 1–6. Palgrave Macmillan UK, London.

Drawing from a Gaussian Mixtures

- Draw $v_t^s \overset{iid}{\sim} \mathcal{U}_{[0,1]}$ and $Z_{t,1}^s, \ldots, Z_{t,k(n)}^s \overset{iid}{\sim} \mathcal{N}(0,1)$
- Compute

$$e_{t}^{s} = \sum_{j=1}^{k(n)} \mathbb{1}_{\nu_{t}^{s} \in \left[\sum_{l=0}^{j-1} \omega_{l}, \sum_{l=0}^{j} \omega_{l}\right]} \left(\mu_{j} + \sigma_{j} Z_{t,j}^{s}\right)$$

Then

$$e_t^s \sim \sum_{j=1}^{k(n)} \frac{\omega_j}{\sigma_j} \phi\left(\frac{e-\mu_j}{\sigma_j}\right) = f_{\omega,\mu,\sigma}$$

- Keep v_t^s , $Z_{t,i}^s$ fixed during optimization!
- \bullet Discontinuities due to $\mathbbm{1}_{(\cdot)}$ but standard derivative-free optimizers (Nelder-Mead) work well

Approximation Properties of Gaussian Mixtures

Lemma (Approximation Rate)

Suppose $f = f_1 \times \cdots \times f_{d_e}$ with each f_j such that:

- Smoothness: f_j is $r \ge 2$ times cont. differentiable
- Tails: $f_j(e) \le e^{-a|e|^b}$ (up to a constant) for some a, b > 0

There exists a mixture $\Pi_{k(n)}f = \Pi_{k(n)}f_1 \times \cdots \times \Pi_{k(n)}f_{d_e}$ with

- Bandwith: $\sigma_j \ge \sigma_{k(n)} = O(\log[k(n)]^{2/b}/k(n))$
- Bounds: $\mu_j \in [-\mu_{k(n)}, \mu_{k(n)}], \ \mu_{k(n)} = O(\log[k]^{1/b})$

such that

$$\|f - \Pi_{k(n)}f\|_{TV,\infty} = O(\log[k(n)]^{2r/b}/k(n)^r)$$
 Main

Allowing for Student Like Tails

• Add two tail components to the density: f_L , f_R such that:

$$f_L(e, \xi_L) = (2 + \xi_L) \frac{-e^{1+\xi_L}}{[1 - e^{2+\xi_L}]^2}$$
 for $e \le 0$
 $f_R(e, \xi_R) = (2 + \xi_R) \frac{e^{1+\xi_R}}{[1 + e^{2+\xi_R}]^2}$ for $e \ge 0$

• To simulate, draw ν_L , $\nu_R \sim \mathcal{U}_{[0,1]}$:

$$Z_L = -(1/\nu_L - 1)^{1/(2+\xi_L)}, \quad Z_R = (1/\nu_R - 1)^{1/(2+\xi_R)}$$

• The left and right tail indices are $3 + \xi_L$ and $3 + \xi_R$

L²-Smoothness of Mixture Draws

Lemma (L^2 -Smoothness)

For $|\mu_j|$ and $|\tilde{\mu}_j| \leq \bar{\mu}_{k(n)}$, $|\sigma_j|$ and $|\tilde{\sigma}_j| \leq \bar{\sigma}$, let

$$\begin{split} e_{t}^{s} &= \sum_{j=1}^{k(n)} \mathbb{1}_{\nu_{t}^{s} \in \left[\sum_{l=0}^{j-1} \omega_{l}, \sum_{l=0}^{j} \omega_{l}\right]} \left(\mu_{j} + \sigma_{j} Z_{t,j}^{s}\right) \\ \tilde{e}_{t}^{s} &= \sum_{i=1}^{k(n)} \mathbb{1}_{\nu_{t}^{s} \in \left[\sum_{l=0}^{j-1} \tilde{\omega}_{l}, \sum_{l=0}^{j} \tilde{\omega}_{l}\right]} \left(\tilde{\mu}_{j} + \tilde{\sigma}_{j} Z_{t,j}^{s}\right) \end{split}$$

If $\mathbb{E}(|Z^s_{t,j}|^2) \leq C_Z^2 < \infty$ then there exists a finite constant C which only depends on C_Z such that:

$$\mathbb{E}\left(\sup_{\|(\omega,\mu,\sigma)-(\tilde{\omega},\tilde{\mu},\tilde{\sigma})\|_{2}\leq\delta}\left|\mathsf{e}_{t}^{s}-\tilde{e}_{t}^{s}\right|^{2}\right)^{1/2}\leq C\left(1+\bar{\mu}_{k(n)}+\bar{\sigma}+k(n)\right)\delta^{1/2}.$$

Identification of the SV Model

$$y_t = \mu_y + \rho_y y_{t-1} + \sigma_t e_{t,1}, \quad e_{t,1} \stackrel{iid}{\sim} f$$

$$\sigma_t^2 = \mu_\sigma + \rho_\sigma \sigma_{t-1}^2 + \kappa_\sigma e_{t,2}$$

- Suppose $\mathbf{y}_t = (y_t, y_{t-1}, y_{t-2}) \ (L \ge 2)$
- If $\mathbb{E}(\hat{\psi}_n^s(\tau, \beta_1)) = \mathbb{E}(\hat{\psi}_n^s(\tau, \beta_2))$ for all τ
- Then for any $\ell_1, \ell_2, \ell_3 \geq 0$

$$\mathbb{E}_{\beta_1}(y_t^{\ell_1}y_{t-1}^{\ell_2}y_{t-2}^{\ell_3}) = \mathbb{E}_{\beta_2}(y_t^{\ell_1}y_{t-1}^{\ell_2}y_{t-2}^{\ell_3})$$

- Using $(\ell_1,\ell_2,\ell_3)=(1,0,0)$, (2,0,0), (1,1,0), (2,2,0), (2,0,2) implies θ identified if $\rho_\sigma\neq 0$
- Then for $\ell_2, \ell_3 = 0$, pick $\ell_1 = 3, 4, 5, \ldots$ if f_y, f have analytic MGF then f identified

Weak Norm of Ai and Chen (2003)

- Infinite dim. space: not all norms are equivalent
- Easier to derive results in norm related to \hat{Q}_n^s around β_0 :

$$\|\beta_1 - \beta_2\|_{\textit{weak}}^2 = \int \left| \frac{d\mathbb{E}(\hat{\psi}_n^s(\tau,\beta_0))}{d\beta} [\beta_1 - \beta_2] \right|^2 \pi(\tau) d\tau$$

• Then derive cv. rate in strong norm $\|\cdot\|_{TV,\infty}$ using:

$$\|\hat{\beta}_n - \beta_0\|_{\mathit{TV},\infty} \leq \underbrace{\|\hat{\beta}_n - \Pi_{k(n)}\beta_0\|_{\mathit{TV},\infty}}_{\mathsf{approximation bias}}$$

$$+\underbrace{\|\hat{\beta}_{n} - \Pi_{k(n)}\beta_{0}\|_{\textit{weak}}}_{\textit{cv. rate in weak norm}} \times \underbrace{\sup_{\mathcal{B}_{k(n)}, \|\beta - \Pi_{k(n)}\beta_{0}\|_{\textit{weak}} \neq 0} \frac{\|\beta - \Pi_{k(n)}\beta_{0}\|_{\textit{TV}, \infty}}{\|\beta - \Pi_{k(n)}\beta_{0}\|_{\textit{weak}}}}_{\textit{measure of ill-posedness}}$$

Measure of III-Posedness

Local measure of ill-posedness of Blundell et al. (2007)

$$\tau_{n} = \sup_{\mathcal{B}_{k(n)}, \|\beta - \Pi_{k(n)}\beta_{0}\|_{weak} \neq 0} \frac{\|\beta - \Pi_{k(n)}\beta_{0}\|_{TV, \infty}}{\|\beta - \Pi_{k(n)}\beta_{0}\|_{weak}}$$

In the paper: simple example

$$\tau_{TV,n} = O(k(n)), \quad \tau_{TV,n} = O(k(n)^2)$$

Also derive upper-bounds in the general case:

$$\tau_{TV,n} \le \lambda_n^{-1/2} k(n), \quad \tau_{\infty,n} \le \lambda_n^{-1/2} k(n)^2$$

• Where λ_n is the smallest eigenvalue of:

$$\int \frac{d\mathbb{E}(\hat{\psi}_n^s(\tau,\Pi_{k(n)}\beta_0))}{d(\theta,\omega,\mu,\sigma)'} \overline{\frac{d\mathbb{E}(\hat{\psi}_n^s(\tau,\Pi_{k(n)}\beta_0))}{d(\theta,\omega,\mu,\sigma)}} \pi(\tau) d\tau$$

ullet It can be computed numerically using \hat{eta}_n and $\hat{\psi}_n^s$

Faster Rate of cv. with $S \to \infty$

• If can simulate a long sequence $y_1^s, \ldots, y_{n \times S}^s$ then variance becomes:

$$\max\left(\frac{1}{\sqrt{n}},\,\frac{(k(n)\log[k(n)])^2}{\sqrt{n\mathcal{S}}}\right)$$

• For $S = k(n)^4$ and $k(n) = O(n^{1/2r})$ get:

$$\|\hat{\beta}_n - \beta_0\|_{weak} = O(1/\sqrt{n})$$

- But in practice
 - $\|\hat{\beta}_n \beta_0\|_{TV,\infty}$ slower
 - Computationally demanding: n=1,000 and r=2 $\Rightarrow k(n) \simeq 5$ and S>600
- In general: $S \ge 1$ can shift the bias/variance tradeoff

Optimal Number of Mixture Components k(n)

• In theory optimal k(n):

$$\mathsf{Bias}_n \times |\log(\mathsf{Bias}_n)| \asymp \mathsf{Variance}$$

- Suggests $k(n) \approx n^{-1/(4+2r)}$
 - e.g. r = 2, $k(n) \approx n^{-1/8}$
- In practice:
 - i. Monte-Carlo Simulations
 - ii. Information Criterion (AIC/BIC):

$$\hat{Q}_n^{\mathcal{S}}(\hat{\beta}_n) + \frac{(k(n)\log[k(n)])^4}{n} \simeq \mathsf{Bias}_n^2 \times |\log(\mathsf{Bias}_n)|^2 + \mathsf{Variance}^2$$

Standard Errors σ_n

• Standard Errors σ_n formula

$$\sigma_n^2 = n \mathbb{E}\left(\left[\int Real\left(\psi_\beta(\tau, \mathbf{v}_n^*)\overline{\left[\psi_n^s(\tau, \beta_0) - \hat{\psi}_n(\tau)\right]}\right)\right]^2\right)$$

where v_n^* : sieve repr. computed using $\hat{\psi}_n^s$ and $\hat{\beta}_n$ (as in Chen and Pouzo, 2015). $\psi_\beta = d\hat{\psi}_n^s/d\beta$

- LR variance computed using either
 - i. Newey-West estimator
 - ii. or the Block Bootstrap

(Chen and Liao, 2015; Carrasco et al., 2007)

• More specific result:

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \stackrel{d}{\to} \mathcal{N}(0, V)$$

Under additional restrictions

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \stackrel{d}{\to} \mathcal{N}(0, V)$$

- Under additional restrictions
 - i. g_{obs} , g_{latent} only depend on f via e_t + smooth in θ + no x_t
 - ii. $\mathbb{E}(\mathbf{y_t})$, $\mathbb{V}(\mathbf{y_t})$ do not depend on f
 - iii. The following matrix has full rank

$$\mathbb{E}_{\theta_0, f_0} \left(\frac{d\mathbf{y}_t^s}{d\theta'} \begin{bmatrix} (1, \mathbf{y}_t^{s\prime}) \otimes I_{d_{\mathbf{y}}} \end{bmatrix} \right)$$

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \stackrel{d}{\to} \mathcal{N}(0, V)$$

- Under additional restrictions
 - i. g_{obs} , g_{latent} only depend on f via e_t + smooth in θ + no x_t
 - ii. $\mathbb{E}(\mathbf{y_t})$, $\mathbb{V}(\mathbf{y_t})$ do not depend on f
 - iii. The following matrix has full rank

$$\mathbb{E}_{\theta_0, f_0} \left(\frac{d\mathbf{y}_t^s}{d\theta'} \begin{bmatrix} (1, \mathbf{y}_t^{s\prime}) \otimes I_{d_{\mathbf{y}}} \end{bmatrix} \right)$$

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \stackrel{d}{\to} \mathcal{N}(0, V)$$

- Under additional restrictions
 - i. g_{obs} , g_{latent} only depend on f via e_t + smooth in θ + no x_t
 - ii. $\mathbb{E}(\mathbf{y_t})$, $\mathbb{V}(\mathbf{y_t})$ do not depend on f
 - iii. The following matrix has full rank

$$\mathbb{E}_{\theta_0, f_0} \left(\frac{d\mathbf{y}_t^s}{d\theta'} \begin{bmatrix} (1, \mathbf{y}_t^{s\prime}) \otimes I_{d_{\mathbf{y}}} \end{bmatrix} \right)$$

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \stackrel{d}{\to} \mathcal{N}(0, V)$$

- Under additional restrictions
 - i. g_{obs} , g_{latent} only depend on f via e_t + smooth in θ + no x_t
 - ii. $\mathbb{E}(\mathbf{y_t})$, $\mathbb{V}(\mathbf{y_t})$ do not depend on f
 - iii. The following matrix has full rank

$$\mathbb{E}_{\theta_0,f_0}\left(\frac{d\mathbf{y}_t^s}{d\theta'}\begin{bmatrix} (1, \mathbf{y}_t^{s'}) \otimes I_{d_y} \end{bmatrix}\right)$$

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \stackrel{d}{\to} \mathcal{N}(0, V)$$

- Under additional restrictions
 - i. g_{obs} , g_{latent} only depend on f via e_t + smooth in θ + no x_t
 - ii. $\mathbb{E}(\mathbf{y_t})$, $\mathbb{V}(\mathbf{y_t})$ do not depend on f
 - iii. The following matrix has full rank

$$\mathbb{E}_{\theta_0, f_0} \left(\frac{d\mathbf{y}_t^s}{d\theta'} \begin{bmatrix} (1, \mathbf{y}_t^{s\prime}) \otimes I_{d_y} \end{bmatrix} \right)$$

- e.g. Stochastic Volatility model (estimate only ρ_y , ρ_σ)
 - i. holds by construction
 - ii. holds by restriction: $\mathbb{E}(e_{t,1})=0$, $\mathbb{V}(e_{t,1})=1$
 - iii. holds if $\mu_{\sigma} \neq 0$ and $\rho_{\sigma} \neq 0$

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \stackrel{d}{\to} \mathcal{N}(0, V)$$

- Under additional restrictions
 - i. g_{obs} , g_{latent} only depend on f via e_t + smooth in θ + no x_t
 - ii. $\mathbb{E}(\mathbf{y_t})$, $\mathbb{V}(\mathbf{y_t})$ do not depend on f
 - iii. The following matrix has full rank

$$\mathbb{E}_{\theta_0, f_0} \left(\frac{d\mathbf{y}_t^s}{d\theta'} \begin{bmatrix} (1, \mathbf{y}_t^{s\prime}) \otimes I_{d_y} \end{bmatrix} \right)$$

- e.g. Stochastic Volatility model (estimate only ρ_y , ρ_σ)
 - i. holds by construction
 - ii. holds by restriction: $\mathbb{E}(e_{t,1})=0$, $\mathbb{V}(e_{t,1})=1$
 - iii. holds if $\mu_{\sigma} \neq 0$ and $\rho_{\sigma} \neq 0$

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \stackrel{d}{\to} \mathcal{N}(0, V)$$

- Under additional restrictions
 - i. g_{obs} , g_{latent} only depend on f via e_t + smooth in θ + no x_t
 - ii. $\mathbb{E}(\mathbf{y_t})$, $\mathbb{V}(\mathbf{y_t})$ do not depend on f
 - iii. The following matrix has full rank

$$\mathbb{E}_{\theta_0, f_0} \left(\frac{d\mathbf{y}_t^s}{d\theta'} \begin{bmatrix} (1, \mathbf{y}_t^{s\prime}) \otimes I_{d_{\mathbf{y}}} \end{bmatrix} \right)$$

- e.g. Stochastic Volatility model (estimate only ρ_y , ρ_σ)
 - i. holds by construction
 - ii. holds by restriction: $\mathbb{E}(e_{t,1}) = 0$, $\mathbb{V}(e_{t,1}) = 1$
 - iii. holds if $\mu_{\sigma} \neq 0$ and $\rho_{\sigma} \neq 0$

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \stackrel{d}{\to} \mathcal{N}(0, V)$$

- Under additional restrictions
 - i. g_{obs} , g_{latent} only depend on f via e_t + smooth in θ + no x_t
 - ii. $\mathbb{E}(\mathbf{y_t})$, $\mathbb{V}(\mathbf{y_t})$ do not depend on f
 - iii. The following matrix has full rank

$$\mathbb{E}_{\theta_0, f_0} \left(\frac{d\mathbf{y}_t^s}{d\theta'} \begin{bmatrix} (1, \mathbf{y}_t^{s\prime}) \otimes I_{d_y} \end{bmatrix} \right)$$

- e.g. Stochastic Volatility model (estimate only ρ_y , ρ_σ)
 - i. holds by construction
 - ii. holds by restriction: $\mathbb{E}(e_{t,1})=0$, $\mathbb{V}(e_{t,1})=1$
 - iii. holds if $\mu_{\sigma} \neq 0$ and $\rho_{\sigma} \neq 0$

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \stackrel{d}{\to} \mathcal{N}(0, V)$$

- Under additional restrictions
 - i. g_{obs} , g_{latent} only depend on f via e_t + smooth in θ + no x_t
 - ii. $\mathbb{E}(\mathbf{y_t})$, $\mathbb{V}(\mathbf{y_t})$ do not depend on f
 - iii. The following matrix has full rank

$$\mathbb{E}_{\theta_0, f_0} \left(\frac{d\mathbf{y}_t^s}{d\theta'} \begin{bmatrix} (1, \mathbf{y}_t^{s\prime}) \otimes I_{d_y} \end{bmatrix} \right)$$

- e.g. Stochastic Volatility model (estimate only ρ_{γ} , ρ_{σ})
 - i. holds by construction
 - ii. holds by restriction: $\mathbb{E}(e_{t,1})=0$, $\mathbb{V}(e_{t,1})=1$
 - iii. holds if $\mu_{\sigma} \neq 0$ and $\rho_{\sigma} \neq 0$

Short Panels

Theorem (Short Panels)

Suppose y_t is generated by either

$$y_{j,t} = g_{obs}(x_{j,t}, \beta, u_{j,t}) u_{j,t} = g_{latent}(u_{j,t-1}, \beta, e_{j,t})$$
 (1)

or

$$y_{j,t} = g_{obs}(y_{j,t-1}, x_{j,t}, \beta, e_{j,t})$$
 (2)

where $e_{j,t} \stackrel{\text{iid}}{\sim} f$ + technical cond. Then the main results hold with

$$\|\hat{\beta}_n - \beta_0\|_{weak} = O_p \left(\frac{\log[k(n)]^{2r+1}}{k(n)^r} + \frac{\sqrt{k(n)\log[k(n)]}}{\sqrt{n}} \right)$$

Short Panels: Example

Dynamic Tobit Model

$$\begin{aligned} y_{j,t} &= (x_{j,t}'\theta_1 + u_{j,t}) \mathbb{1}_{x_{j,t}'\theta_1 + u_{j,t} \ge 0} \\ u_{j,t} &= \rho_u u_{j,t-1} + e_{j,t}, \quad e_{j,t} \stackrel{iid}{\sim} f \end{aligned}$$

- Applications: Labor supply
- Quantities of interest include e.g.
 - ullet $\mathbb{P}(y_{j,t}>0|x,y_{j,t-1}=0)$ (re)-entering the labor force
 - $\partial_{x_{j,t}}\mathbb{P}(y_{j,t}>0|x,y_{j,t-1}=0)$ marginal effects of covariates on (re)-entering the labor force

Auxiliary Variables

Theorem (Using Auxiliary Variables)

Suppose

$$\begin{split} z_t^{\text{aux}} &= g_{\text{aux},t}(y_t, \dots, y_1, x_t, \dots, x_1, \hat{\eta}_n^{\text{aux}}) \\ z_t^{s,\text{aux}} &= g_{\text{aux},t}(y_t^s, \dots, y_1^s, x_t, \dots, x_1, \hat{\eta}_n^{\text{aux}}) \end{split}$$

with $\hat{\eta}_n^{aux}$ CAN + computed from (y_t, x_t) with $g_{aux,t}$ Lipschitz in η^{aux} and

$$\|g_{\mathsf{aux},t}(y,x,\eta^{\mathsf{aux}}) - g_{\mathsf{aux},t}(\tilde{y},x,\eta^{\mathsf{aux}})\| \le \sum_{j=1}^{t} \rho_{j} \|y_{j} - \tilde{y}_{j}\|$$

and (Summability) $\sum_{j=1}^{\infty} \rho_j < \infty$ + additional cond. then the main results hold.

Auxiliary Variables: Example

• GARCH(1,1) filtered volatility for the SV model:

$$\sigma_t^{2,\mathrm{aux}} = \mu^{\mathrm{aux}} + \alpha_1^{\mathrm{aux}} \sigma_{t-1}^{2,\mathrm{aux}} + \alpha_2^{\mathrm{aux}} y_t^2$$

- Summability cond. implied by $|\alpha_1^{\mathit{aux}}| \leq \overline{\alpha} < 1$.
- Instead of just lags $\mathbf{y}_t = (y_t, \dots, y_{t-L})$, $\hat{\sigma}_t^{2,aux}$ add information in CF from the whole history:

$$\hat{\sigma}_t^{2,aux} = g_{aux,t}(y_t, \dots, y_1; \hat{\eta}^{aux})$$

Second Empirical Application: USD/GBP Exchange Rate Data

- January 2000 December 2016: 5,447 daily observations
- Data Generating Process:

$$y_t = \mu_y + \sigma_t e_{t,1},$$
 $e_{t,1} \stackrel{iid}{\sim} f$ $\log(\sigma_t) = \rho_\sigma \log(\sigma_{t-1}) + \kappa_\sigma e_{t,2},$ $e_{t,2} \stackrel{iid}{\sim} \mathcal{N}(0,1)$

- with the restriction $e_{t,1} \sim (0, \sigma^2)$
- Estimates: parametric Gibbs Sampling, Sieve-SMM Gaussian Mixture and Gaussian Mixture + Tails

Second Empirical Application: Estimates

Exchange Rate: Density and log-Density Estimates

Note: solid line: Gaussian density, dotted line: Gaussian mixture, dashed: Gaussian and tails mixture.

Second Empirical Application: Estimates

		0	σ_{7}
		ρ_z	
Bayesian	Estimate	0.24	1.31
	95% CI	[0.16, 0.34]	[1.21, 1.41]
Sieve-SMM	Estimate	0.96	0.22
	95% CI	[0.59, 0.99]	[0.06, 0.83]
Sieve-SMM Tails	Estimate	0.97	0.19
	95% CI	[0.62, 0.99]	[0.05, 0.79]

Note: CI is the credible interval for the Bayesian and the confidence interval for the frequentist estimates.

