UBA-CBC FÍSICA 03 1er. PARCIAL 2do. C 2012									TEMA AA				
APELLIDO:			Reservado para corrección. Corrector:										
NOMBRES:			P1a	P1b	P2a	P2b	P3a	P3b	E4	E5	E6	E7	Nota
D.N.I.:													
Email:													
Sede:	MaVi 14-17hs	AULA:	COMISIÓN:				CORRECTOR:				Hoja 1 de:		

Resuelva los problemas (P) en otras hojas que debe entregar. Las 4 preguntas (E) TIENEN SÓLO UNA RESPUESTA CORRECTA. Indicar la opción elegida con sólo una cruz en tinta azul o negra en los casilleros de la grilla adjunta a cada pregunta. NO SE ACEPTAN DESAROLLOS O RESPUESTAS EN LÁPIZ. En los casos en los que sea necesario utilice |g|=10 m/s². (CS-SA)

P 1.

Una catapulta ubicada sobre el suelo lanza una piedra contra el muro vertical de un castillo que se encuentra a 50 m de distancia. La piedra hace impacto en el muro a una altura de 5 m sobre el suelo, y en el momento del impacto su velocidad es perpendicular al muro.

- a) Calcular el tiempo de vuelo de la piedra y las componentes de su velocidad en el impacto.
- b) Calcular el módulo y el ángulo de la velocidad de la piedra cuando es lanzada.

Resuelto acá.

P 2.

Un buque navega a 36 km/h en aguas calmas (es decir en reposo respecto de tierra), cuando desde la cubierta de popa se suelta una carga pesada. La carga alcanza el agua luego de 2 segundos.

- a) Calcular la altura de la cubierta por encima del agua.
- b) Calcular las componentes de la velocidad de la carga al llegar al agua desde un sistema de referencia fijo a tierra y desde un sistema fijo al buque, indicando los respectivos orígenes y sentidos de los ejes.

Resuelto acá.

P 3.

Una máquina tira de una cuerda para levantar verticalmente un cuerpo de masa m = 12 kg, de manera que la velocidad del mismo aumenta uniformemente de 0 a 6 m/s en los primeros 3 segundos, luego se mantiene constante durante 5 segundos, y finalmente disminuye a razón de 3 m/s cada segundo durante dos segundos

- a) Graficar la altura del cuerpo en función del tiempo.
- b) Graficar la tensión de la cuerda como función del tiempo.

Resuelto acá.

E 1.

Un chico que se encuentra sobre un puente a una altura de 35 m sobre el fondo de un barranco arroja una piedra de masa 0,2 kg con una velocidad inicial de 10 m/s formando un ángulo de 45º con la horizontal. Decir cuál de las siguientes afirmaciones es la única correcta:

- □ Cuando la piedra llega a su altura máxima su velocidad es nula.
- □ Cuando la piedra llega a su altura máxima el módulo de su velocidad es de 10 m/s.
- □ Cuando la piedra llega a su altura máxima el módulo de su velocidad es 7,07 m/s.
- □ Cuando la piedra llega al fondo del barranco su velocidad es un vector vertical.
- □ Cuando la piedra llega al fondo del barranco su velocidad forma 45° con la horizontal.
- □ Cuando la piedra llega al fondo del barranco el módulo de su velocidad es 10 m/s.

Resuelto acá.

E 2.

Un cuerpo de masa 6 kg se apoya sobre un plano inclinado (ver la figura). Para mantenerlo en reposo se le aplica una fuerza F formando un ángulo β con el plano. (Dato: $\alpha = \beta = 37^{\circ}$). Si N es el módulo de la normal ejercida por el plano inclinado, indicar cuál es la única afirmación correcta:

□ N = 6 Newtons

□ N = 60 Newtons

□ N = 48 Newtons

□ N = 4,8 Newtons

□ N = 36 Newtons

□ N = 21 Newtons

Resuelto acá.

E 3

Dos cuerpos A y B unidos por una soga descienden verticalmente con movimiento uniforme. Indicar cuál de las siguientes afirmaciones es la única correcta:

- □ La velocidad es constante porque las tensiones que actúan sobre cada cuerpo son iguales y opuestas.
- □ La velocidad de ambos cuerpos es la misma porque la masa de la soga es despreciable.
- □ Los cuerpos descienden sin acelerar porque las tensiones son mayores que los pesos.
- □ El movimiento es uniforme porque la fuerza resultante sobre cada cuerpo es nula.
- □ Si la velocidad es constante la masa de la soga no puede ser despreciable.
- □ El movimiento es uniforme porque la aceleración de la gravedad es constante.

Resuelto acá.

F 4

Un cuerpo de 80 kilogramos está apoyado sobre una balanza ubicada en el piso de un ascensor que Desciende verticalmente aumentando su velocidad a razón de 2 m/s cada segundo. Indicar cuál de las siguientes afirmaciones es la única correcta:

- □ La balanza marca 80 kgf.
- □ La balanza marca 8 kgf.
- □ La balanza marca 96 kgf.
- □ La balanza marca 64 kgf.
- □ La balanza marca 640 kgf.
- □ La balanza marca 800 kgf.

Resuelto acá (caso e)).