# Hotel Cancellation

Leo Shi



# Why do I want to study hotel?

Every year, thousands of thousands of tourists travelling around the world to visit some of the famous sightseeing, but at the same time, they need a place to live.

Sometimes, booking a hotel could be a very frustrated, where numerous factors has to be considered, such as locations, prices, and services. At the same time, bookings could be suddenly got cancelled for a lot of reasons, such as room adjustment, marketing and so on. In 2018, around 40% of the room got cancelled even after being reserved.



# **Dataset introduction and goals**

- There are two types of hotel: Resort hotel and city hotel.
- Conducted from July 2015 to August 2017
- I wanted to see that are the factors that would led their hotel room got cancelled after some room being reserved months ago.
- Initially, the dataset was containing 119390 rows of data and 32 variables
- Dataset was very clean enough, so there is no need to delete missing dataset
- But there is some adjustment on some of the dataset has been removed or being adjusted
- In the end, there are 18 variables remain for my project.

#### Variables introduction

- Hotel: the type of hotel that being booked (Resort or City)
- Is\_canceled: indicate that the hotel was being cancelled: 1 is Cancelled, 0 is not
- Lead\_time: number of days from reserved online to actual check-in or being cancelled
- Meal: type of meals that they previous booked (BB, FB, HB, SC)
- Market\_segment: means the way of divide their market to the guests
- Distribution\_channel: the way of the hotel distributed their room to the party that guest can able to book the room
- is\_repeated\_guests: Identify was a previously booked guests or not
- Matched: guests that has receive the same room that they initially reserved

#### Variables introduction continued

- Stays: Number of days that guests live
- People: Number of person within the group
- Previous\_cancellations: Number of previous bookings that were cancelled by the customer prior to the current booking
- Previous\_bookings\_not\_cancelled: Number of previous bookings not cancelled by the customer prior to the current booking
- Booking\_changes: number of bookings changes prior to the final reservation
- Deposit\_type: type of deposit prior to the booking
- Adr: Average Daily Rate as defined by dividing the sum of all lodging transactions by the total number of staying nights
- Reservation\_status: the status until now (Check-out or Cancelled)

#### Variables introduction continued

- Customer\_type: the way that group of guests booking their hotel
- Required\_car\_parking\_spaces: the number of parking slot need when guests made it to the hotel
- Total\_of\_special\_requests: the extra request that request by the hotel, such as extra bed, higher bed, wheelchair service, etc.)

|    | is_canceled | lead_time | meal  | market_segment | distribution_channel | is_repeated_guest                     | previous_cancellations | previous_bookings_not_canceled | booking_changes | deposit_type | days_in_waiting_list | customer_type | adr    | required_car_parking_spaces | total_of_special_requests |
|----|-------------|-----------|-------|----------------|----------------------|---------------------------------------|------------------------|--------------------------------|-----------------|--------------|----------------------|---------------|--------|-----------------------------|---------------------------|
| 1  | , Y         | 0 34      | 42 BB | Direct         | Direct               | 7                                     | 0 /                    | J /                            | s .             | 3 No Deposit | 7                    | 0 Transient   | 0.00   | j                           | 0                         |
| 2  | , y         | 0 7?      | 37 BB | Direct         | Direct               | 7                                     | 0 /                    | 3 /                            | 3               | 4 No Deposit |                      | 0 Transient   | 0.00   | ١                           | 0                         |
| 3  | , T         | 0         | 7 BB  | Direct         | Direct               | 7                                     | 0 /                    | 3 /                            | 3 /             | 0 No Deposit | 7                    | 0 Transient   | 75.00  | ١                           | 0                         |
| 4  | , y         | 0 1       | 13 BB | Corporate      | Corporate            | 7                                     | 0 /                    | J /                            | 3               | 0 No Deposit | 7                    | 0 Transient   | 75.00  | ١                           | 0                         |
| 5  | 7           | 0 1       | 14 BB | Online TA      | TA/TO •              | f                                     | 0 /                    | J /                            | 3               | 0 No Deposit | f                    | 0 Transient   | 98.00  | ١                           | 0 1                       |
| 6  | , V         | 0 1       | 14 BB | Online TA      | TA/TO                | 7                                     | 0 /                    | 3 /                            | 3               | 0 No Deposit | 7                    | 0 Transient   | 98.00  | ١                           | 0 1                       |
| 7  | Ÿ           | 0         | 0 BB  | Direct         | Direct               | 7                                     | 0 /                    | J /                            | 3               | 0 No Deposit |                      | 0 Transient   | 107.00 | J                           | 0 0                       |
| 8  | , T         | 0         | 9 FB  | Direct         | Direct               | · · · · · · · · · · · · · · · · · · · | 0 /                    | J /                            | 3 /             | 0 No Deposit | 7                    | 0 Transient   | 103.00 | J .                         | 0 1                       |
| 9  | 7           | 1 ε       | 85 BB | Online TA      | TA/TO                | 7                                     | 0 /                    | 3 /                            | 3 /             | 0 No Deposit |                      | 0 Transient   | 82.00  | ١                           | 0 1                       |
| 10 | 7           | 1 7       | 75 HB | Offline TA/TO  | TA/TO                | ſ                                     | 0 (                    | 3 /                            | 3 /             | 0 No Deposit | r                    | 0 Transient   | 105.50 | ١                           | 0 0                       |
| 11 | 7           | 1 2       | 23 BB | Online TA      | TA/TO                | 7                                     | 0 /                    | J /                            | 3               | 0 No Deposit | 7                    | 0 Transient   | 123.00 | j                           | 0 (                       |
| 12 | , y         | 0 7       | 35 HB | Online TA      | TA/TO                | f                                     | 0 /                    | 3 /                            | 3               | 0 No Deposit | f                    | 0 Transient   | 145.00 | ١                           | 0 0                       |
| 13 | , T         | 0 /       | 68 BB | Online TA      | TA/TO                | 7                                     | 0 /                    | 0 /                            | 0 /             | 0 No Deposit | 7                    | 0 Transient   | 97.00  | ٥                           | 0 3                       |

**Exploratory Data Analysis: Categorical** 















# EDA for room initially reserved vs actual received







# **EDA for numerical variables**









### **Correlation Matrix**



# What analysis I did use?

- I decided to use the generalized regression model analysis to determine factors that would most significantly affect people that forced to cancel their hotel room prior to check in.
- I decided to use full and reduced model to see what would be the best linear prediction that would predict the outcome of hotel cancellation.

```
Warning: glm.fit: fitted probabilities numerically
glm(formula = is_canceled ~ ., family = binomial, data = Hotel_bookings2)
        -0.7444 -0.3047
Coefficients:
                                 Estimate Std. Error z value Pr(>|z|)
(Intercept)
                               -4.129e+00 1.838e-01 -22.465
lead time
                                3.579e-03 9.309e-05
mealFB
                                          1.083e-01
                                                       7.331 2.28e-13
mealHB
                               -8.222e-02 2.647e-02
                                                      -3.106 0.001894
mea1SC
mealUndefined
market_segmentComplementary
                                7.987e-01
                                           2.254e-01
                                          1.765e-01
market_segmentCorporate
market_segmentDirect
                                2.113e-01 1.960e-01
market segmentGroups
market_segmentOffline TA/TO
                               -3.656e-01 1.852e-01
                                                      -1.975 0.048306
market_segmentOnline TA
                                9.168e-01 1.845e-01
distribution_channelDirect
                               -5.964e-01
                                           9.542e-02
distribution_channelGDS
distribution_channelTA/TO
                               -1.870e-01
                                           7.108e-02
distribution_channelUndefined
                               1.941e+03
                                           7.673e+05
is repeated quest
                               -6.213e-01
                                           8.553e-02
previous_cancellations
                                2.724e+00 6.051e-02
previous_bookings_not_canceled -4.914e-01 2.526e-02 -19.452
booking_changes
                               -3.421e-01
                                          1.524e-02 -22.456
deposit_typeNon Refund
                                          1.127e-01
deposit_typeRefundable
                                           2.149e-01
days_in_waiting_list
                               -1.653e-04 4.812e-04
customer_typeGroup
                               -1.212e-01
                                          1.713e-01
                                                      -0.707 0.479324
                                8.585e-01 5.356e-02
customer_typeTransient
                                3.931e-01 5.699e-02
customer_typeTransient-Party
required_car_parking_spaces
                               -1.953e+03 7.673e+05
total_of_special_requests
                                          1.152e-02 -61.488
matched1
                                          4.031e-02
stays
                                           3.128e-03
people
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
Residual deviance: 99685
                          on 119354
 (4 observations deleted due to missingness)
AIC: 99749
Number of Fisher Scoring iterations: 12
```

#### VIF for full model

| 11                             | GVIF         | Df | $GVIF^{(1/(2*Df))}$ |
|--------------------------------|--------------|----|---------------------|
| lead_time                      | 1.298135e+00 | 1  | 1.139357            |
| meal                           | 1.377405e+00 | 4  | 1.040837            |
| market_segment                 | 6.903104e+01 | 6  | 1.423160            |
| distribution_channel           | 5.170651e+07 | 4  | 9.208590            |
| is_repeated_guest              | 1.325286e+00 | 1  | 1.151211            |
| previous_cancellations         | 1.545963e+00 | 1  | 1.243367            |
| previous_bookings_not_canceled | 1.624514e+00 | 1  | 1.274564            |
| booking_changes                | 1.034910e+00 | 1  | 1.017305            |
| deposit_type                   | 1.082540e+00 | 2  | 1.020025            |
| days_in_waiting_list           | 1.072591e+00 | 1  | 1.035660            |
| customer_type                  | 2.209880e+00 | 3  | 1.141287            |
| adr                            | 1.475681e+00 | 1  | 1.214776            |
| required_car_parking_spaces    | 2.053906e+06 | 1  | 1433.145342         |
| total_of_special_requests      | 1.184319e+00 | 1  | 1.088264            |
| stays                          | 1.158580e+00 | 1  | 1.076374            |
| people                         | 1.314950e+00 | 1  | 1.146713            |
| matched                        | 1.016251e+00 | 1  | 1.008093            |
|                                |              |    |                     |

From the VIF, I noticed that market segment, distribution channel and parking spaces required has a multicollinearity above 5, which means that it is poorly estimated of estimators, which would contain bias of determining the factors

#### **Reduced Model**

I decided to select the significant factors that selected from our full model to be used as our reduced model and remove the categories that has a VIF value that above 5.

```
qlm(formula = is_canceled ~ lead_time + meal + is_repeated_quest +
    previous_cancellations + previous_bookings_not_canceled +
    booking_changes + customer_type + adr + total_of_special_requests +
    stavs + people + matched, family = binomial, data = Hotel_bookings2)
Deviance Residuals:
             1Q Median
-8.4904 -0.8436 -0.3956
                          0.8898
coefficients:
                                Estimate Std. Error z value Pr(>|z|)
(Intercept)
                              -4.202e+00 6.808e-02 -61.715 < 2e-16 ***
lead time
                               5.956e-03 7.705e-05 77.293 < 2e-16 ***
mealFR
                               8.563e-01 8.741e-02 9.796 < 2e-16 ***
mealHB
                              -2.216e-01 2.330e-02 -9.510
mealsc
                              1.022e-01 2.367e-02 4.317 1.58e-05 ***
mealundefined
                              -3.287e-01 8.238e-02 -3.990 6.60e-05 ***
is_repeated_quest
                              -1.182e+00 8.364e-02 -14.133 < 2e-16
previous cancellations
                              3.104e+00 5.690e-02 54.550 < 2e-16 ***
previous bookings not canceled -6.041e-01 2.617e-02 -23.085 < 2e-16 ***
booking_changes
                              -5.239e-01 1.550e-02 -33.790 < 2e-16 ***
customer_typeGroup
                              -2.166e-02 1.640e-01 -0.132 0.894950
customer_typeTransient
                              1.484e+00 5.229e-02 28.372 < 2e-16 ***
customer typeTransient-Party 2.029e-01 5.462e-02
                                                    3.714 0.000204 ***
                               3.569e-03 1.676e-04 21.301 < 2e-16 ***
total_of_special_requests
                              -7.997e-01 1.061e-02 -75.370 < 2e-16 ***
                              -1.142e-02 2.958e-03 -3.861 0.000113 ***
stays
people
                              4.653e-03 1.039e-02
                                                     0.448 0.654263
matched1
                              2.089e+00 3.842e-02 54.363 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 157390 on 119385 degrees of freedom
Residual deviance: 118986 on 119368 degrees of freedom
 (4 observations deleted due to missingness)
AIC: 119022
Number of Fisher Scoring iterations: 8
```

#### Which one is better reduced or full?

```
Analysis of Deviance Table

Model 1: is_canceled ~ lead_time + meal + market_segment + distribution_channel + is_repeated_guest + previous_cancellations + previous_bookings_not_canceled + booking_changes + deposit_type + days_in_waiting_list + customer_type + adr + required_car_parking_spaces + total_of_special_requests + stays + people + matched

Model 2: is_canceled ~ lead_time + meal + is_repeated_guest + previous_cancellations + previous_bookings_not_canceled + booking_changes + customer_type + adr + total_of_special_requests + stays + people + matched

Resid. Df Resid. Dev Df Deviance

1 119354 99685
2 119368 118986 -14 -19301
```

By typing the code anova(full\_model, reduced\_model), I determine that the reduced model is a better selection to determine the factors of hotel cancellations.

#### **Final model selection:**

Model 2: is\_canceled ~ lead\_time + meal + is\_repeated\_guest + previous\_cancellations + previous\_bookings\_not\_canceled + booking\_changes + customer\_type + adr + total\_of\_special\_requests + stays + people + matched

```
coefficients:
                               Estimate Std. Error z value Pr(>|z|)
                              -4.202e+00 6.808e-02 -61.715 < 2e-16 ***
(Intercept)
lead time
                              5.956e-03 7.705e-05 77.293 < 2e-16 ***
mealFB
                              8.563e-01 8.741e-02 9.796 < 2e-16 ***
meal HB
                             -2.216e-01 2.330e-02 -9.510 < 2e-16 ***
mealsc
                              1.022e-01 2.367e-02 4.317 1.58e-05 ***
mealUndefined
                             -3.287e-01 8.238e-02 -3.990 6.60e-05 ***
is_repeated_quest
                             -1.182e+00 8.364e-02 -14.133 < 2e-16 ***
previous cancellations
                              3.104e+00 5.690e-02 54.550 < 2e-16 ***
previous_bookings_not_canceled -6.041e-01 2.617e-02 -23.085 < 2e-16 ***
booking_changes
                             -5.239e-01 1.550e-02 -33.790 < 2e-16 ***
customer_typeGroup
                             -2.166e-02 1.640e-01 -0.132 0.894950
customer_typeTransient
                              1.484e+00 5.229e-02 28.372 < 2e-16 ***
customer_typeTransient-Party 2.029e-01 5.462e-02 3.714 0.000204
                              3.569e-03 1.676e-04 21.301 < 2e-16 ***
total_of_special_requests
                             -7.997e-01 1.061e-02 -75.370 < 2e-16 ***
                             -1.142e-02 2.958e-03 -3.861 0.000113 ***
stays
people
                             4.653e-03 1.039e-02 0.448 0.654263
                              2.089e+00 3.842e-02 54.363 < 2e-16 ***
matched1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 157390 on 119385 degrees of freedom
Residual deviance: 118986 on 119368 degrees of freedom
 (4 observations deleted due to missingness)
AIC: 119022
Number of Fisher Scoring iterations: 8
```

#### VIF and Durbin-Watson test

I notice that the p-value is 0, which is less than alpha value of 0.05, I can conclude that I will reject the null hypothesis that using reduced model is a better predictor, conclude that the residuals in this regression model are autocorrelated.

|                                           | GVIF     | Df | GVIF^(1/(2*Df)) |  |  |  |  |
|-------------------------------------------|----------|----|-----------------|--|--|--|--|
| lead_time                                 | 1.172163 | 1  | 1.082665        |  |  |  |  |
| meal                                      | 1.180464 | 4  | 1.020955        |  |  |  |  |
| is_repeated_guest                         | 1.285010 | 1  | 1.133583        |  |  |  |  |
| previous_cancellations                    | 1.472305 | 1  | 1.213386        |  |  |  |  |
| previous_bookings_not_canceled            | 1.499041 | 1  | 1.224353        |  |  |  |  |
| booking_changes                           | 1.020656 | 1  | 1.010275        |  |  |  |  |
| customer_type                             | 1.350050 | 3  | 1.051296        |  |  |  |  |
| adr                                       | 1.278021 | 1  | 1.130496        |  |  |  |  |
| total_of_special_requests                 | 1.072047 | 1  | 1.035397        |  |  |  |  |
| stays                                     | 1.128518 | 1  | 1.062317        |  |  |  |  |
| people                                    | 1.220434 | 1  | 1.104733        |  |  |  |  |
| matched                                   | 1.013263 | 1  | 1.006609        |  |  |  |  |
| lag Autocorrelation D-W Statistic p-value |          |    |                 |  |  |  |  |
| 1 0.7600409 0.479                         | 9015     | 0  |                 |  |  |  |  |
| Alternative hypothesis: rho != 0          |          |    |                 |  |  |  |  |
| Arternative hypothesis. Tho :-            | - 0      |    |                 |  |  |  |  |

# **Testing AUC plot**

 Using the AUC function, we get 0.8182, so that means that 81.82% of my dataset has been well fitted into our dataset.

```
#AUC
prediction <- predict(reduced_model, test, type="response")
roc_object <- roc(test$is_canceled, prediction)
auc(roc_object)

Setting levels: control = 0, case = 1
Setting direction: controls < cases
Area under the curve: 0.8182
```

# Residual plot and cook's distance





# **Assumption testing**



#### So what is our conclusion and limitation

- Very surprised to see there are 12 significant factors that led to their room cancelled.
- It was surprised, but at the same time, it was factual, because we will always heard a lot of reasons that they decided to cancelled their room.
- I believe that I would try to work a dataset that with even numbers of hotel type between City and Resort, and at the same time, try to keep the raw data as much as possible.
- I might find a similar hotel booking from like two to three years ago and do a comparison to this that to discover the trend of hotel cancellation for these few years.

# Thank for your watching!