# 实外 CCF CSP2022-S模拟赛

(提高组:第5场)

时间: 2022年 10月 15日 8:00~12:00

题目引用: NOIP2018

| 题目名称    | 旅行         | 铺设道路     | 货币系统      | 赛道修建      |
|---------|------------|----------|-----------|-----------|
| 题目类型    | 传统型        | 传统型      | 传统型       | 传统型       |
| 目录      | travel     | road     | money     | track     |
| 可执行文件名  | travel     | road     | money     | track     |
| 输入文件名   | travel.in  | road.in  | money.in  | track.in  |
| 输出文件名   | travel.out | road.out | money.out | track.out |
| 每个测试点时限 | 1.0 秒      | 1.0 秒    | 1.0 秒     | 1.0 秒     |
| 内存限制    | 512 MB     | 512 MB   | 512MB     | 512MB     |
| 子任务数目   | 25         | 10       | 20        | 20        |
| 测试点是否等分 | 是          | 是        | 是         | 是         |

#### 提交源程序文件名

| 对于 C++ 语言    | travel.cpp | road.cpp | money.cpp | track.cpp |
|--------------|------------|----------|-----------|-----------|
| 对于 C 语言      | travel.c   | road.c   | money.c   | track.c   |
| 对于 Pascal 语言 | travel.pas | road.pas | money.pas | track.pas |

## 编译选项

| 对于 C++ 语言    | -02 |
|--------------|-----|
| 对于 C 语言      | -02 |
| 对于 Pascal 语言 | -02 |

## 注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题, 申述时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 7. 全国统一评测时采用的机器配置为: Inter(R) Core(TM) i7-8700K CPU @3.70GHz, 内存 32GB。上述时限以此配置为准。
- 8. 只提供 Linux 格式附加样例文件。
- 9. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

# 1. 旅行

#### (travel.cpp/c/pas)

#### 【问题描述】

小Y是一个爱好旅行的Oler。她来到X国,打算将各个城市都玩一遍。

小 Y 了解到,X 国的 n 个城市之间有 m 条双向道路。每条双向道路连接两个城市。不存在两条连接同一对城市的道路,也不存在一条连接一个城市和它本身的道路。并且,从任意一个城市出发,通过这些道路都可以到达任意一个其他城市。小 Y 只能通过这些道路从一个城市前往另一个城市。

小 Y 的旅行方案是这样的:任意选定一个城市作为起点,然后从起点开始,每次可以选择一条与当前城市相连的道路,走向一个**没有去过**的城市,或者沿着**第一次**访问该城市时经过的道路后退到上一个城市。当小 Y 回到起点时,她可以选择结束这次旅行或继续旅行。需要注意的是,小 Y 要求在旅行方案中,每个城市都被访问到。

为了让自己的旅行更有意义,小 Y 决定在每到达一个新的城市(包括起点)时,将它的编号记录下来。她知道这样会形成一个长度为n的序列。她希望这个序列的字典序最小,你能帮帮她吗?

对于两个长度均为n的序列 A 和 B,当且仅当存在一个正整数 x,满足以下条件时,我们说序列 A 的字典序小于 B。

- 对于任意正整数  $1 \le i < x$ ,序列 A 的第 i 个元素  $A_i$  和序列 B 的第 i 个元素  $B_i$  相同。
- 序列 A 的第 x 个元素的值小于序列 B 的第 x 个元素的值。

#### 【输入格式】

输入文件名为 travel.in。

输入文件共m+1行。第一行包含两个整数 $n, m(m \le n)$ ,中间用一个空格分隔。

接下来m行,每行包含两个整数u,v( $1 \le u,v \le n$ ),表示编号为u和v的城市之间有一条道路,两个整数之间用一个空格分隔。

#### 【输出格式】

输出文件名为 travel.out。

输出文件包含一行,n个整数,表示字典序最小的序列。相邻两个整数之间用一个空格分隔。

#### 【输入输出样例1】

| travel.in | travel.out  |  |
|-----------|-------------|--|
| 6 5       | 1 3 2 5 4 6 |  |
| 1 3       |             |  |
| 2 3       |             |  |
| 2 5       |             |  |
| 3 4       |             |  |
| 4 6       |             |  |
|           |             |  |

见选手目录下的 travel/travel1.in 和 travel/travel1.ans。

# 【输入输出样例2】

| travel.in | travel.out  |
|-----------|-------------|
| 6 6       | 1 3 2 4 5 6 |
| 1 3       |             |
| 2 3       |             |
| 2 5       |             |
| 3 4       |             |
| 4 5       |             |
| 4 6       |             |
|           |             |

见选手目录下的 travel/travel2.in 和 travel/travel2.ans。

# 【输入输出样例3】

见选手目录下的 travel/travel3.in 和 travel/travel3.ans。 这组样例满足 m=n-1。

# 【输入输出样例4】

见选手目录下的 travel/travel4.in 和 travel/travel4.ans。 这组样例满足 m=n 。

## 【数据规模与约定】

对于 100% 的数据和所有样例, $1 \le n \le 5000$  且 m = n - 1 或 m = n。对于不同的测试点,我们约定数据的规模如下:

| 测试点编号      | n =  | m = | 特殊性质          |  |
|------------|------|-----|---------------|--|
| 1, 2, 3    | 10   |     | 无             |  |
| 4, 5       | 100  |     | 无             |  |
| 6, 7, 8    | 1000 | 1   | 每个城市最多与两个城市相连 |  |
| 9, 10      | 1000 | n-1 | 无             |  |
| 11, 12, 13 | 5000 |     | 每个城市最多与三个城市相连 |  |
| 14, 15     | 5000 |     | 无             |  |
| 16, 17     | 10   |     | 无             |  |
| 18, 19     | 100  |     | 无             |  |
| 20, 21, 22 | 1000 | n   | 每个城市最多与两个城市相连 |  |
| 23, 24, 25 | 5000 |     | 无             |  |

# 2. 铺设道路

(road.cpp/c/pas)

#### 【问题描述】

春春是一名道路工程师,负责铺设一条长度为 n 的道路。

铺设道路的主要工作是填平下陷的地表。整段道路可以看作是 n 块首尾相连的区域,一开始,第 i 块区域下陷的深度为  $d_i$  。

春春每天可以选择一段连续区间 [L,R],填充这段区间中的每块区域,让其下陷深度减少1。在选择区间时,需要保证,区间内的每块区域在填充前下陷深度均不为0。

春春希望你能帮他设计一种方案,可以在最短的时间内将整段道路的下陷深度都变为 0。

## 【输入格式】

输入文件名为 road.in。

输入文件包含两行,第一行包含一个整数 n,表示道路的长度。

第二行包含 n 个整数,相邻两数间用一个空格隔开,第 i 个整数为  $d_i$  。

#### 【输出格式】

输出文件名为 road.out。

输出文件仅包含一个整数, 即最少需要多少天才能完成任务。

#### 【输入输出样例1】

| road.in     | road.out |  |
|-------------|----------|--|
| 6           | 9        |  |
| 4 3 2 5 3 5 |          |  |

见选手目录下的 road/road1.in 和 road/road1.ans。

#### 【样例解释】

一种可行的最佳方案是,依次选择:

[1,6], [1,6], [1,2], [1,1], [4,6], [4,4], [4,4], [6,6], [6,6].

#### 【输入输出样例2】

见选手目录下的 road/road2.in 和 road/road2.ans。

#### 【数据规模与约定】

对于 30% 的数据,  $1 \le n \le 10$ ;

对于 70% 的数据,  $1 \le n \le 1000$ ;

对于 100% 的数据, $1 \le n \le 100000$ , $0 \le d_i \le 10000$ 。

# 3. 货币系统

(money.cpp/c/pas)

#### 【问题描述】

在网友的国度中共有 n 种不同面额的货币,第 i 种货币的面额为 a[i],你可以假设每一种货币都有无穷多张。为了方便,我们把货币种数为 n、面额数组为 a[1..n] 的货币系统记作 (n,a)。

在一个完善的货币系统中,每一个非负整数的金额  $\times$  都应该可以被表示出,即对每一个非负整数  $\times$ ,都存在 n 个非负整数 t[i] 满足  $a[i] \times t[i]$  的和为  $\times$ 。然而,在网友的国度中,**货币系统可能是不完善的**,即可能存在金额  $\times$  不能被该货币系统表示出。例如在货币系统 n=3, a=[2,5,9] 中,金额 1,3 就无法被表示出来。

两个货币系统 (n,a) 和 (m,b) 是等价的,当且仅当**对于任意非负整数 x,它要 么均可以被两个货币系统表出,要么不能被其中任何一个表出。** 

现在网友们打算简化一下货币系统。他们希望找到一个货币系统 (m,b),满足 (m,b) 与原来的货币系统 (n,a) 等价,且 m 尽可能的小。他们希望你来协助完成这个艰巨的任务:找到最小的 m。

#### 【输入格式】

输入文件名为 money.in。

输入文件的第一行包含一个整数 T,表示数据的组数。接下来按照如下格式分别给出 T 组数据。

每组数据的第一行包含一个正整数 n。接下来一行包含 n 个由空格隔开的正整数 a[i]。

#### 【输出格式】

输出文件名为 money.out。

输出文件共有 T 行,对于每组数据,输出一行一个正整数,表示所有与 (n,a) 等价的货币系统 (m,b) 中,最小的 m。

#### 【输入输出样例1】

| -         |  |
|-----------|--|
| money.out |  |
| 2         |  |
| 5         |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

见选手目录下的 money/money1.in 和 money/money1.ans。

#### 【输入输出样例1说明】

在第一组数据中,货币系统 (2, [3,10]) 和给出的货币系统 (n, a) 等价,并可以验证不存在 m < 2 的等价的货币系统,因此答案为 2。

在第二组数据中,可以验证不存在 m < n 的等价的货币系统,因此答案为 5。

# 【输入输出样例2】

见选手目录下的 money/money2.in 和 money/money2.ans。

# 【数据规模与约定】

| 测试点 | n   | $a_i$         | 测试点 | n     | $a_i$   |
|-----|-----|---------------|-----|-------|---------|
| 1   |     |               | 11  |       |         |
| 2   | = 2 |               | 12  | ≤ 13  | ≤ 16    |
| 3   |     |               | 13  |       |         |
| 4   |     |               | 14  |       |         |
| 5   | = 3 | <b>-</b> 1000 | 15  | ≤ 25  | ≤ 40    |
| 6   |     | ≤ 1000        | 16  |       |         |
| 7   | _ 1 |               | 17  | ≤ 100 | ≤ 25000 |
| 8   | = 4 |               | 18  |       |         |
| 9   | = 5 |               | 19  |       |         |
| 10  | = 5 |               | 20  |       |         |

对于 100% 的数据, 满足 1 ≤ T ≤ 20, n,a[i] ≥ 1。

# 4. 赛道修建

(track.cpp/c/pas)

#### 【问题描述】

C 城将要举办一系列的赛车比赛。在比赛前,需要在城内修建 m 条赛道。

C 城一共有n个路口,这些路口编号为1,2,...,n,有n-1条适合于修建赛道的双向通行的道路,每条道路连接着两个路口。其中,第i条道路连接的两个路口编号为 $a_i$ 和 $b_i$ ,该道路的长度为 $l_i$ 。借助这n-1条道路,从任何一个路口出发都能到达其他所有的路口。

一条赛道是一组互不相同的道路  $e_1, e_2, ..., e_k$ ,满足可以从某个路口出发,依次经过道路  $e_1, e_2, ..., e_k$ (每条道路经过一次,不允许调头)到达另一个路口。一条赛道的长度等于经过的各道路的长度之和。为保证安全,要求每条道路至多被一条赛道经过。

目前赛道修建的方案尚未确定。你的任务是设计一种赛道修建的方案,使得修建的 m条赛道中长度最小的赛道长度最大(即m条赛道中最短赛道的长度尽可能大)。

#### 【输入格式】

输入文件名为 track.in。

输入文件第一行包含两个由空格分隔的正整数 n, m,分别表示路口数及需要修建的 赛道数。

接下来 n-1 行,第 i 行包含三个正整数  $a_i,b_i,l_i$ ,表示第 i 条适合于修建赛道的道路连接的两个路口编号及道路长度。保证任意两个路口均可通过这 n-1 条道路相互到达。每行中相邻两数之间均由一个空格分隔。

#### 【输出格式】

输出文件名为 track.out。

输出共一行,包含一个整数,表示长度最小的赛道长度的最大值。

#### 【输入输出样例1】

| track.in | track.out |
|----------|-----------|
| 7 1      | 31        |
| 1 2 10   |           |
| 1 3 5    |           |
| 2 4 9    |           |
| 2 5 8    |           |
| 3 6 6    |           |
| 3 7 7    |           |
|          |           |

见选手目录下的 track/track1.in 与 track/track1.ans。

#### 【输入输出样例1说明】

所有路口及适合于修建赛道的道路如下图所示:



道路旁括号内的数字表示道路的编号,非括号内的数字表示道路长度。

需要修建 1 条赛道。可以修建经过第 3,1,2,6 条道路的赛道(从路口 4 到路口 7),则该赛道的长度为 9+10+5+7=31,为所有方案中的最大值。

#### 【输入输出样例 2】

| track.in | track.out |
|----------|-----------|
| 9 3      | 15        |
| 1 2 6    |           |
| 2 3 3    |           |
| 3 4 5    |           |
| 4 5 10   |           |
| 6 2 4    |           |
| 7 2 9    |           |
| 8 4 7    |           |
| 9 4 4    |           |
|          |           |

见选手目录下的 track/track2.in 与 track/track2.ans。

#### 【输入输出样例 2 说明】

所有路口及适合于修建赛道的道路如下图所示:



需要修建3条赛道。可以修建如下3条赛道:

- 1. 经过第 1,6 条道路的赛道(从路口 1 到路口 7),长度为 6+9=15;
- 2. 经过第5,2,3,8条道路的赛道(从路口6到路口9),长度为4+3+5+4=16;
- 3. 经过第 7,4 条道路的赛道(从路口 8 到路口 5),长度为 7 + 10 = 17。长度最小的赛道长度为 15,为所有方案中的最大值。

#### 【输入输出样例3】

见选手目录下的 track/track3.in 与 track/track3.ans。

# 【数据规模与约定】

所有测试数据的范围和特点如下表所示

| 测试点编号 | n             | m          | $a_i = 1$ | $b_i = a_i + 1$ | 分支不超过3 |
|-------|---------------|------------|-----------|-----------------|--------|
| 1     | ≤ 5           | = 1        | 否         | 否               | 是      |
| 2     | ≤ 10          | / m 1      | П         | 是               | 足      |
| 3     | ≤ 15          | $\leq n-1$ | 是         |                 | 否      |
| 4     | ≤ 1,000       |            | 否         |                 | 是      |
| 5     |               | = 1        | 是         | 否               |        |
| 6     | $\leq 30,000$ |            | 否         | 口               | 否      |
| 7     |               |            | 是         |                 | 口      |
| 8     | ≤ 50,000      |            | 足         |                 |        |
| 9     | ≤ 1,000       |            |           |                 |        |
| 10    | ≤ 30,000      |            |           | 是               |        |
| 11    | ≤ 50,000      |            |           |                 |        |
| 12    | ≤ 50          |            |           |                 | 是      |
| 13    |               | - n 1      | 否         | 否               | 定      |
| 14    | <b>~</b> 200  | $\leq n-1$ |           |                 |        |
| 15    | ≤ 200         |            |           |                 |        |
| 16    | < 1 000       | ]          |           |                 |        |
| 17    | ≤ 1,000       |            |           |                 |        |
| 18    | < 20.000      |            |           |                 | 不      |
| 19    | ≤ 30,000      |            |           |                 | 否      |
| 20    | ≤ 50,000      |            |           |                 |        |

其中,"分支不超过 3"的含义为:每个路口至多有 3 条道路与其相连。 对于所有的数据, $2 \le n \le 50,000$ , $1 \le m \le n - 1$ , $1 \le a_i$ ,  $b_i \le n$ ,  $1 \le l_i \le 10,000$ 。