Contents

	3
	13
	15

1

CONTENTS

Chapter 1

Real Analysis

```
(1.5)
                              \mathbf{y}(<, S) := \forall_{x,y \in S} (x < y \lor x = y \lor y < x)
                               \mathbf{y}(<, S) := \forall_{x, y, z \in S} ((x < y \land y < z) \implies x < z)
           (<,S) := OrderTrichotomy(<,S) \land OrderTransitivity(<,S)
(1.7)
                          \rho(E, S, <) := \underbrace{Order}(<, S) \land E \subset S \land \exists_{\beta \in S} \forall_{x \in E} (x \le \beta)
                           (E, S, \lessdot) := \underbrace{Order}(\lessdot, S) \land E \subset S \land \exists_{\beta \in S} \forall_{x \in E} (\beta \leq x)
                      (\beta, E, S, <) := Order(<, S) \land E \subset S \land \beta \in S \land \forall_{x \in E} (x \le \beta)
                      I(\beta, E, S, <) := Order(<, S) \land E \subset S \land \beta \in S \land \forall_{x \in E} (\beta \le x)
         \forall (\alpha, E, S, <) := UpperBound(\alpha, E, S, <) \land \forall_{\gamma} (\gamma < \alpha \implies \neg UpperBound(\gamma, E, S, <))
GLP(\alpha, E, S, <) := LowerBound(\alpha, E, S, <) \land \forall_{\beta} (\alpha < \beta \implies \neg LowerBound(\beta, E, S, <))
(1.10)
                perty(S,<) := \forall_E \Big( (\emptyset \neq E \subset S \land Bounded Above(E,S,<) \Big) \implies \exists_{\alpha \in S} \Big( LUB(\alpha,E,S,<) \Big) \Big)
GLBProperty(S,<) := \forall_E \Big( \big( \emptyset \neq E \subset S \land Bounded Below(E,S,<) \big) \implies \exists_{\alpha \in S} \big( GLB(\alpha,E,S,<) \big) \Big)
                                                                      LUBProperty(S, <) \implies GLBProperty(S, <)
   (1.1) \quad (\emptyset \neq B \subset S \land Bounded Below(B, S, <)) \implies \dots
       (1.1.1) Order(\langle S \rangle \land \exists_{\delta' \in S} (LowerBound(\delta', B, S, \langle S \rangle))
       (1.1.2) |B| = 1 \implies ...
           (1.1.2.1) \quad \exists_{u'}(u' \in B) \quad \blacksquare \ u := choice(\{u'|u' \in B\}) \quad \blacksquare \ B = \{u\}
           (1.1.2.2) \quad \mathbf{GLB}(u, B, S, <) \quad \blacksquare \quad \exists_{\epsilon_0 \in S} \left( \mathbf{GLB}(\epsilon_0, B, S, <) \right)
       (1.1.3) \quad |B| = 1 \implies \exists_{\epsilon_0 \in S} \left( \mathbf{GLB}(\epsilon_0, B, S, <) \right)
       (1.1.4) |B| \neq 1 \Longrightarrow \dots
          (1.1.4.1) \quad \forall_E \Big( \big( \emptyset \neq E \subset S \land Bounded Above(E, S, <) \big) \implies \exists_{\alpha \in S} \big( LUB(\alpha, E, S, <) \big) \Big)
           (1.1.4.2) L := \{s \in S | LowerBound(s, B, S, <)\}
           (1.1.4.3) \quad |B| > 1 \land OrderTrichotomy(<, S) \quad \blacksquare \quad \exists_{b_1' \in B} \exists_{b_0' \in B} (b_0' < b_1')
           (1.1.4.4) \quad b_1 := choice\Big(\{b_1' \in B | \exists_{b_0' \in B}(b_0' < b_1')\}\Big) \quad \blacksquare \neg LowerBound(b_1, B, S, <)
           (1.1.4.5) b_1 \notin L \square L \subset S
           (1.1.4.6) \quad \delta := choice(\{\delta' \in S | LowerBound(\delta', B, S, <)\}) \quad \blacksquare \quad \delta \in L \quad \blacksquare \quad \emptyset \neq L
                                                                                                                                                                                                                from: 1.1.4.5, 1.1.4.6
           (1.1.4.7) \emptyset \neq L \subset S
```

```
from: LowerBound, 1.1.4.2
wts: 1.1.4.10
           (1.1.4.8) \quad \forall_{v \in L} \left( \mathbf{LowerBound}(y, B, S, <) \right) \quad \blacksquare \quad \forall_{v \in L} \forall_{x \in B} (y \le x)
           (1.1.4.9) \quad \forall_{x \in B} \left( x \in S \land \forall_{y \in L} (y \le x) \right) \quad \blacksquare \quad \forall_{x \in B} \left( U pperBound(x, L, S, <) \right)
           (1.1.4.10) \quad \exists_{x \in S} (UpperBound(x, L, S, <)) \quad \blacksquare \quad Bounded Above(L, S, <)
                                                                                                                                                                                                                                     from: 1.1.4.7, 1.1.4.10
           (1.1.4.11) \emptyset \neq L \subset S \land Bounded Above(L, S, <)
           (1.1.4.12) \quad \exists_{\alpha' \in S} \left( LUB(\alpha', L, S, <) \right) \quad \blacksquare \quad \alpha := choice \left( \left\{ \alpha' \in S \mid \left( LUB(\alpha', L, S, <) \right) \right\} \right)
           (1.1.4.13) \quad \forall_{x} (x \in B \implies UpperBound(x, L, S, <))
           (1.1.4.14) \quad \forall_x (\neg UpperBound(x, L, S, <) \implies x \notin B)
           (1.1.4.15) \gamma < \alpha \implies \dots
               (1.1.4.15.1) \quad \neg UpperBound(\gamma, L, S, <) \quad \boxed{\gamma \notin B}
           (1.1.4.16) \quad \gamma < \alpha \implies \gamma \notin B \quad \boxed{\hspace{-0.1cm} \rule[-0.2cm]{0.4cm}{0.4cm}} \quad \gamma \geq \alpha
                                                                                                                                                                                                                                      from: Lower Bound
           (1.1.4.17) \quad \forall_{\gamma \in B} (\alpha \leq \gamma) \quad \blacksquare \quad LowerBound(\alpha, B, S, <)
           (1.1.4.18) \alpha < \beta \implies \dots
              (1.1.4.18.1) \quad \forall_{y \in L} (y \le \alpha < \beta) \quad \blacksquare \quad \forall_{y \in L} (y \ne \beta)
                                                                                                                                                                                                                                             from: 1.1.4.2
               (1.1.4.18.2) \beta \notin L \square \neg LowerBound(\beta, B, S, <)
           (1.1.4.19) \quad \alpha < \beta \implies \neg LowerBound(\beta, B, S, <) \quad \blacksquare \quad \forall_{\beta \in S} \left( \alpha < \beta \implies \neg LowerBound(\beta, B, S, <) \right)
           (1.1.4.20) \quad LowerBound(\alpha, B, S, <) \land \forall_{\beta \in S} (\alpha < \beta \implies \neg LowerBound(\beta, B, S, <))
           (1.1.4.21) \quad GLB(\alpha, B, S, <) \quad \blacksquare \quad \exists_{\epsilon_1 \in S} \left( GLB(\epsilon_1, B, S, <) \right)
       (1.1.5) |B| \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB(\epsilon_1, B, S, <))
       (1.1.6) \quad \left( |B| = 1 \implies \exists_{\epsilon_0 \in S} \left( GLB(\epsilon_0, B, S, <) \right) \right) \land \left( |B| \neq 1 \implies \exists_{\epsilon_1 \in S} \left( GLB(\epsilon_1, B, S, <) \right) \right)
       (1.1.7) \quad (|B| = 1 \lor |B| \ne 1) \implies \exists_{\epsilon \in S} (GLB(\epsilon, B, S, <)) \quad \blacksquare \quad \exists_{\epsilon \in S} (GLB(\epsilon, B, S, <))
   (1.2) \quad (\emptyset \neq B \subset S \land Bounded Below(B, S, <)) \implies \exists_{\varepsilon \in S} (GLB(\varepsilon, B, S, <))
   (1.3) \quad \forall_{B} \big( \big( \emptyset \neq B \subset S \land Bounded Below(B, S, <) \big) \implies \exists_{\epsilon \in S} \big( GLB(\epsilon, B, S, <) \big) \big)
   (1.4) GLBProperty(S, <)
(2) LUBProperty(S, <) \Longrightarrow GLBProperty(S, <)
```

(1.12)

(1.14) $(x + y = x + z) \implies y = z$

 $(x + y = x) \implies y = 0$

(1) x + y = x = 0 + x = x + 0

from: AdditiveCancellati (2) y = 0

 $(x + y = 0) \implies y = -x$

from: AdditiveCancellation

x = -(-x)

(1) $0 = x + (-x) = (-x) + x \quad \blacksquare \quad 0 = (-x) + x$

(2) x = -(-x)

(1.15)

 $(x \neq 0 \land x * y = x * z) \implies y = z$

 $(x \neq 0 \land x * y = x) \implies y = 1$

 $(x \neq 0 \land x * y = 1) \implies y = 1/x$

 $(x \neq 0) \implies x = 1/(1/x)$

(1.16)

0 * x = 0

(1) 0 * x = (0 + 0) * x = 0 * x + 0 * x 0 * x = 0 * x + 0 * x

(2) 0 * x = 0

 $| n Domination | (x \neq 0 \land y \neq 0) \implies x * y \neq 0$

(1) $(x \neq 0 \land y \neq 0) \implies \dots$

 $(1.1) \quad (x * y = 0) \implies \dots$

 $(1.1.1) \quad \mathbb{1} = \mathbb{1} * \mathbb{1} = (x * (1/x)) * (y * (1/y)) = (x * y) * ((1/x) * (1/y)) = \mathbb{0} * ((1/x) * (1/y)) = \mathbb{0}$

 $(1.1.2) \quad \mathbb{1} = \mathbb{0} \land \mathbb{1} \neq \mathbb{0} \quad \blacksquare \perp$

 $(1.2) \quad (x * y = 0) \implies \bot \quad \blacksquare \quad x * y \neq 0$

(2) $(x \neq 0 \land y \neq 0) \implies x * y \neq 0$

(1) x * y + (-x) * y = (x + -x) * y = 0 * y = 0 x * y + (-x) * y = 0

 $(2) \quad (-x) * y = -(x * y)$

(3) x * y + x * (-y) = x * (y + -y) = x * 0 = 0 x * y + x * (-y) = 0

 $(4) \quad x * (-y) = -(x * y)$

(1.17)

 $\forall_{x,y,z \in F} (y < z \implies x + y < x + z) \land$ $\forall_{x,y,z \in F} (y < z \implies x + y < x + z) \land$ $\forall_{x,y \in F} ((x > 0 \land y > 0) \implies x * y > 0)$

(1.18)

 $\overline{(1)} \ x > 0 \implies \dots$


```
(1.19)
                                          OrderedField(\mathbb{Q}, +, *, <)
                    K(K, F, +, *) := Field(F, +, *) \land K \subset F \land Field(K, +, *)
                                       (K, F, +, *, <) := Ordered Field(F, +, *, <) \land K \subset F \land Ordered Field(K, +, *, <)
          (\alpha) := \emptyset \neq \alpha \subset \mathbb{Q}
             \begin{array}{l} \textbf{II}(\alpha) := \forall_{p \in \alpha} \forall_{q \in \mathbb{Q}} (q 
     := \{ \alpha \in \mathbb{Q} | CutI(\alpha) \wedge CutII(\alpha) \wedge CutIII(\alpha) \}
                            ryI \mid (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q 
(1) \quad (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies \dots
   (1.1) \quad \forall_{p' \in \alpha} \forall_{q' \in \mathbb{Q}} (q' < p' \implies q' \in \alpha)
    (1.2) \quad q 
    (1.3) \quad (q \notin \alpha) \implies \dots
       (1.3.1) q \ge p
        (1.3.2) \quad (q = p) \implies (p \in \alpha \land p \notin \alpha) \implies \bot \quad \blacksquare \quad q \neq p
        (1.3.3) \quad q \ge p \land q \ne p \quad \blacksquare \quad p < q
    (1.4) \quad q \notin \alpha \implies p < q \quad \blacksquare \quad p < q
(2) \quad (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q
                                          (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
(1) \quad (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies \dots
   (1.1) \quad \forall_{s' \in \alpha} \forall_{r' \in \mathbb{Q}} (r' < s' \implies r' \in \alpha)
   (1.2) \quad s \in \alpha \implies (r \in \mathbb{Q} \implies (r < s \implies r \in \alpha)) \quad \blacksquare \quad s \in \alpha \implies r \in \alpha
    (1.3) \quad r \notin \alpha \implies s \notin \alpha \quad \blacksquare \quad s \notin \alpha
(2) \quad (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
<_{\mathbb{R}}(\alpha,\beta) := \alpha,\beta \in \mathbb{R} \land \alpha \subset \beta
           \overline{\text{erTrichotomyOf } R} OrderTrichotomy(\mathbb{R}, <_{\mathbb{R}})
(1) (\alpha, \beta \in \mathbb{R}) \implies \dots
   (1.1) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \dots
        (1.1.1) \alpha \not\subset \beta \land \alpha \neq \beta
        (1.1.2) \quad \exists_{p'}(p' \in \alpha \land p' \notin \beta) \quad \blacksquare \quad p := choice(\{p' | p' \in \alpha \land p' \notin \beta\})
        (1.1.3) q \in \beta \implies \dots
         (1.1.3.1) \quad p, q \in \mathbb{Q}
                                                                                                                                                                                                                                                                       from: CutCorollaryI
            (1.1.3.2) q < p
             (1.1.3.3) q \in \alpha
        (1.1.4) \quad q \in \beta \implies q \in \alpha
       (1.1.5) \quad \forall_{q \in \beta} (q \in \alpha) \quad \blacksquare \quad \beta \subseteq \alpha
        (1.1.6) \quad \beta \subset \alpha \quad \blacksquare \quad \beta <_{\mathbb{R}} \quad \alpha
    (1.2) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \beta <_{\mathbb{R}} \alpha
    (1.3) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \lor (\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \quad \blacksquare (\beta <_{\mathbb{R}} \alpha) \lor (\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta)
    (1.4) \quad \alpha = \beta \implies \neg (\alpha <_{\mathbb{R}} \beta \lor \beta <_{\mathbb{R}} \alpha)
    (1.5) \quad \alpha <_{\mathbb{R}} \beta \implies \neg (\alpha = \beta \lor \beta <_{\mathbb{R}} \alpha)
   (1.6) \quad \beta \mathrel{<_{\mathbb{R}}} \alpha \implies \neg(\alpha = \beta \lor \alpha \mathrel{<_{\mathbb{R}}} \beta)
    (1.7) \quad \alpha <_{\mathbb{R}} \beta \underline{\vee} \alpha = \beta \underline{\vee} \alpha <_{\mathbb{R}} \beta
(2) \quad (\alpha, \beta \in \mathbb{R}) \implies (\alpha <_{\mathbb{R}} \beta \veebar \alpha = \beta \veebar \alpha <_{\mathbb{R}} \beta)
```

 $(3) \quad \forall_{\alpha,\beta \in \mathbb{R}} (\alpha <_{\mathbb{R}} \beta \vee \alpha = \beta \vee \alpha <_{\mathbb{R}} \beta)$ (4) $OrderTrichotomy(\mathbb{R}, <_{\mathbb{R}})$ $OrderTransitivity(\mathbb{R}, <_{\mathbb{R}})$ $\overline{(1)} \ (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots$ $(1.1) \quad (\alpha <_{\mathbb{R}} \beta \wedge \beta <_{\mathbb{R}} \gamma) \implies \dots$ $(1.1.1) \quad \alpha \subset \beta \land \beta \subset \gamma$ $(1.1.2) \quad \forall_{a \in \alpha} (a \in \beta) \land \forall_{b \in \beta} (b \in \gamma)$ $(1.1.3) \quad \forall_{\alpha \in \alpha} (\alpha \in \gamma) \quad \blacksquare \quad \alpha \subset \gamma \quad \blacksquare \quad \alpha <_{\mathbb{R}} \quad \gamma$ $(1.\overline{2}) \quad (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma$ $(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies \left((\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma \right)$ $(3) \quad \forall_{\alpha,\beta,\gamma\in\mathbb{R}} \left((\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma \right)$ (4) $OrderTransitivity(\mathbb{R}, <_{\mathbb{R}})$ $Order(<_{\mathbb{R}},\mathbb{R})$ $LUBProperty(\mathbb{R}, <_{\mathbb{R}})$ $(1) \quad (\emptyset \neq A \subset \mathbb{R} \land Bounded Above(A, \mathbb{R}, <_{\mathbb{R}})) \implies \dots$ $(1.1) \quad \gamma := \{ p \in \mathbb{Q} | \exists_{\alpha \in A} (p \in \alpha) \}$ $(1.2) \quad A \neq \emptyset \quad \blacksquare \quad \exists_{\alpha} (\alpha \in A) \quad \blacksquare \quad \alpha_0 := choice(\{\alpha \mid \alpha \in A\})$ $(1.3) \quad \alpha_0 \neq \emptyset \quad \blacksquare \ \exists_a (a \in \alpha_0) \quad \blacksquare \ a_0 := choice(\{a | a \in \alpha_0\}) \quad \blacksquare \ a_0 \in \gamma \quad \blacksquare \ \gamma \neq \emptyset$ (1.4) Bounded Above $(A, \mathbb{R}, <_{\mathbb{R}})$ $\blacksquare \exists_{\beta} (Upper Bound(\beta, A, \mathbb{R}, <_{\mathbb{R}}))$ $(1.5) \quad \beta_0 := choice(\{\beta | UpperBound(\beta, A, \mathbb{R}, <_{\mathbb{R}})\})$ $(1.6) \quad \underline{UpperBound}(\beta_0, A, \mathbb{R}, <_{\mathbb{R}}) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \subseteq \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} \forall_{\alpha \in A} (\alpha \in \beta_0)$ $(1.7) \quad (\alpha \in A \land a \in \alpha) \iff a \in \gamma \quad \blacksquare \quad \forall_{a \in \gamma} (a \in \beta_0) \quad \blacksquare \quad \gamma \subseteq \beta_0$ $(1.8) \quad \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subseteq \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subset \mathbb{Q}$ $(1.9) \quad \emptyset \neq \gamma \subset \mathbb{Q} \quad \blacksquare \quad CutI(\gamma)$ $(1.10) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies \dots$ $(1.10.1) \quad p \in \gamma \quad \blacksquare \ \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \ \alpha_1 := choice(\{\alpha \in A | p \in \alpha\})$ $(1.10.2) \quad p \in \alpha_1 \land q \in \mathbb{Q} \land q$ $(1.11) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies q \in \gamma \quad \blacksquare \quad \forall_{p \in \gamma} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \gamma) \quad \blacksquare \quad CutII(\gamma)$ $(1.12) \quad p \in \gamma \implies \dots$ $(1.12.1) \quad \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \quad \alpha_2 := choice(\{\alpha \in A | p \in \alpha\})$ $(1.12.2) \quad \alpha_2 \in \mathbb{R} \quad \blacksquare \quad CutII(\alpha_2) \quad \blacksquare \quad \exists_{r \in \alpha_2} (p < r) \quad \blacksquare \quad r_0 := choice(\{r \in \alpha_2 | p < r\})$ (1.12.3) $r_0 \in \alpha_2 \ \blacksquare \ r_0 \in \gamma$ $(1.1\overline{2.4}) \quad p < r_0 \quad \blacksquare \quad p < r_0 \land r_0 \in \gamma \quad \blacksquare \quad \exists_{r \in \gamma} (p < r)$ $(1.13) \quad p \in \gamma \implies \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad \forall_{p \in \gamma} \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad CutIII(\gamma)$ (1.14) $CutI(\gamma) \wedge CutII(\gamma) \wedge CutIII(\gamma) \mid \gamma \in \mathbb{R}$ $(1.15) \quad \forall_{\alpha \in A} (\alpha \subseteq \gamma) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma)$ $(1.16) \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma) \land \gamma \in \mathbb{R} \quad \blacksquare \quad UpperBound(\gamma, A, \mathbb{R}, <_{\mathbb{R}})$ $(1.17) \quad \delta <_{\mathbb{R}} \gamma \implies \dots$ $(1.17.1) \quad \delta \subset \gamma \quad \blacksquare \ \exists_s (s \in \gamma \land s \notin \delta) \quad \blacksquare \ s_0 := choice(\{s \in \mathbb{Q} | s \in \gamma \land s \notin \delta\})$ $(1.17.2) \quad s_0 \in \gamma \quad \blacksquare \ \exists_{\alpha \in A} (s_0 \in \alpha) \quad \blacksquare \ \alpha_3 := choice(\{\alpha \in A | s_0 \in \alpha\})$ $(1.17.3) \quad s_0 \in \alpha_3 \land s_0 \notin \delta \quad \blacksquare \quad \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)$ (1.17.4) $\delta \geq_{\mathbb{R}} \alpha_3 \implies \dots$ $(1.17.4.1) \quad \alpha_3 \subseteq \delta \quad \blacksquare \quad \forall_{s \in \mathbb{Q}} (s \in \alpha_3 \implies s \in \delta) \quad \blacksquare \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)$ $(1.17.4.2) \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \land \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \quad \blacksquare \ \bot$ $(1.17.5) \quad \delta \geq_{\mathbb{R}} \alpha_3 \implies \bot \quad \blacksquare \quad \delta <_{\mathbb{R}} \alpha_3 \quad \blacksquare \quad \exists_{\alpha \in A} (\delta <_{\mathbb{R}} \alpha) \quad \blacksquare \quad \exists_{\alpha \in A} (\neg (\alpha \leq_{\mathbb{R}} \delta))$

 $(1.17.6) \quad \neg \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \delta) \quad \blacksquare \quad \neg UpperBound(\delta, A, \mathbb{R}, <_{\mathbb{R}})$

```
(1.18) \quad \overline{\delta} <_{\mathbb{R}} \gamma \implies \neg \overline{U} \operatorname{pperBound}(\delta, \overline{A}, \overline{\mathbb{R}}, <_{\mathbb{R}})) \quad \blacksquare \quad \forall_{\delta} \left( \overline{\delta} <_{\mathbb{R}} \gamma \implies \neg \overline{U} \operatorname{pperBound}(\delta, \overline{A}, \overline{\mathbb{R}}, <_{\mathbb{R}}) \right)
        (1.19) \quad UpperBound(\gamma, A, \mathbb{R}, <_{\mathbb{R}}) \land \forall_{\delta} \left(\delta <_{\mathbb{R}} \gamma \implies \neg UpperBound(\delta, A, \mathbb{R}, <_{\mathbb{R}})\right)
        (1.20) \quad LUB(\gamma, A, \mathbb{R}, <_{\mathbb{R}}) \quad \blacksquare \quad \exists_{\gamma \in S} \left( LUB(\gamma, A, \mathbb{R}, <_{\mathbb{R}}) \right)
(2) \quad (\emptyset \neq A \subset \mathbb{R} \land Bounded Above(A, \mathbb{R}, <_{\mathbb{R}})) \implies \exists_{\gamma \in S} (LUB(\gamma, A, \mathbb{R}, <_{\mathbb{R}}))
(3) \quad \forall_{A} \left( \left( \emptyset \neq A \subset \mathbb{R} \land Bounded Above(A, \mathbb{R}, <_{\mathbb{R}}) \right) \implies \exists_{\gamma \in S} \left( LUB(\gamma, A, \mathbb{R}, <_{\mathbb{R}}) \right) \right) \quad \blacksquare \quad LUBProperty(\mathbb{R}, <_{\mathbb{R}})
          (\alpha, \beta) := \alpha, \beta \in \mathbb{R} \land (\alpha +_{\mathbb{R}} \beta) = \{r + s | r \in \alpha \land s \in \beta\}
         \mathbf{x} := \{x \in \mathbb{Q} | x < 0\}
    0InR \mid 0_{\mathbb{R}} \in \mathbb{R}
(1) \quad -1 \in 0_{\mathbb{R}} \land 1 \notin 0_{\mathbb{R}} \quad \blacksquare \emptyset \neq 0_{\mathbb{R}} \subseteq \mathbb{Q} \quad \blacksquare \quad CutI(0_{\mathbb{R}})
(2) \quad (x \in \mathbb{O}_{\mathbb{R}} \land y \in \mathbb{Q} \land y < x) \implies y < x < 0 \implies y < 0 \implies y \in \mathbb{O}_{\mathbb{R}} \quad \blacksquare \quad \forall_{x \in \mathbb{O}_{\mathbb{R}}} \forall_{y \in \mathbb{Q}} (y < x \implies y \in \mathbb{O}_{\mathbb{R}}) \quad \blacksquare \quad CutII(\mathbb{O}_{\mathbb{R}})
(3) \quad y := x/2 \quad \blacksquare \quad (x \in 0_{\mathbb{R}}) \implies (x < y < 0) \implies \exists_{y \in 0_{\mathbb{D}}} (x < y) \quad \blacksquare \quad \forall_{x \in 0_{\mathbb{D}}} \exists_{y \in 0_{\mathbb{D}}} (x < y) \quad \blacksquare \quad CutIII(0_{\mathbb{R}})
(4) CutI(0_{\mathbb{R}}) \wedge CutII(0_{\mathbb{R}}) \wedge CutIII(0_{\mathbb{R}}) \parallel 0_{\mathbb{R}} \in \mathbb{R}
                                                                                                                               (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
(1) (\alpha, \beta \in \mathbb{R}) \implies \dots
        (1.1) \quad (\alpha +_{\mathbb{R}} \beta) = \{r + s | r \in \alpha \land s \in \beta\}
        (1.2) \quad \emptyset \neq \alpha \subset \mathbb{Q} \land \emptyset \neq \beta \subset \mathbb{Q}
        (1.3) \quad \exists_a (a \in \alpha) \; ; \; \exists_b (b \in \beta) \quad \blacksquare \; a_0 \mathrel{\mathop:}= choice(\{a \mid a \in \alpha\}) \; ; \; b_0 \mathrel{\mathop:}= choice(\{b \mid b \in \beta\}) \quad \blacksquare \; a_0 + b_0 \in \alpha +_{\mathbb{R}} \beta = a_0 + b_0 = a_0 +_{\mathbb{R}} \beta = 
        (1.4) \quad \exists_{x} (x \notin \alpha) \; ; \; \exists_{y} (y \notin \beta) \quad \blacksquare \quad x_{0} \mathrel{\mathop:}= choice(\{x \mid x \notin \alpha\}) \; ; \; y_{0} \mathrel{\mathop:}= choice(\{y \mid y \notin \beta\})
        (1.5) \quad \forall_{r \in \alpha}(r < x_0) \; ; \; \forall_{s \in \beta}(s < y_0) \quad \blacksquare \quad \forall_{r \in \alpha} \forall_{s \in \beta}(r + s < x_0 + y_0) \quad \blacksquare \quad x_0 + y_0 \notin \alpha +_{\mathbb{R}} \beta
         (1.6) \quad \emptyset \neq \alpha +_{\mathbb{R}} \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI(\alpha +_{\mathbb{R}} \beta)
         (1.7) \quad (p \in \alpha +_{\mathbb{R}} \beta \wedge q \in \mathbb{Q} \wedge q < p) \implies \dots
               (1.7.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare (r_0, s_0) := choice((r, s) \in \alpha \times \beta | p = r + s)
               (1.7.2) \quad q 
                (1.7.3) \quad s_0 \in \beta \quad \blacksquare \quad q = (q - s_0) + s_0 \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad q \in \alpha +_{\mathbb{R}} \beta
         (1.8) \quad (p \in \alpha +_{\mathbb{R}} \beta \land q \in \mathbb{Q} \land q < p) \implies q \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad CutII(\alpha +_{\mathbb{R}} \beta)
        (1.9) p \in \alpha \implies ...
               (1.9.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare (r_1, s_1) := choice(\{(r, s) \in \alpha \times \beta | p = r + s\})
               (1.9.2) \quad r_1 \in \alpha \quad \blacksquare \quad \exists_{t \in \alpha} (r_1 < t) \quad \blacksquare \quad t_0 := choice(\{t \in \alpha | r_1 < t\})
                (1.9.3) \quad \overline{s_1 \in \beta} \quad \blacksquare \quad t + s_1 \in \overline{\alpha} +_{\mathbb{R}} \beta \land p = r_1 + \overline{s_1} < t + s_1 \quad \blacksquare \quad \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r)
         (1.10) \quad p \in \alpha \implies \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad CutIII(\alpha +_{\mathbb{R}} \beta)
         (1.11) \quad CutI(\alpha +_{\mathbb{R}} \beta) \wedge CutII(\alpha +_{\mathbb{R}} \beta) \wedge CutIII(\alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad \alpha +_{\mathbb{R}} \beta \in \mathbb{R}
 (2) \quad (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
```


(1) $\alpha +_{\mathbb{R}} \beta = \{r + s | r \in \alpha \land s \in \beta\} = \{s + r | s \in \beta \land r \in \alpha\} = \beta +_{\mathbb{R}} \alpha$

- (1) $(\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots$
 - $(1.1) \quad (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \{(a+b) + c \mid a \in \alpha \land b \in \beta \land c \in \gamma\} = \dots$
 - $(1.2) \quad \{a + (b+c) | a \in \alpha \land b \in \beta \land c \in \gamma\} = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)$
- $(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)$

Field Addition I dentity $OfR \mid (lpha \in \mathbb{R}) \implies 0_{\mathbb{R}} +_{\mathbb{R}} lpha = lpha$

```
\overline{(1) \quad \alpha \in \mathbb{R} \implies \dots}
    (1.1) (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies \dots
        (1.1.1) \quad s < 0 \quad \blacksquare \quad r + s < r + 0 = r \quad \blacksquare \quad r + s < r \quad \blacksquare \quad r + s \in \alpha
    (1.2) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies r + s \in \alpha \quad \blacksquare \quad \forall_{r \in \alpha} \forall_{s \in 0_{\mathbb{D}}} (r + s \in \alpha)
    (1.3) \quad (r \in \alpha \land \overline{s} \in 0_{\mathbb{R}}) \iff (r + s \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}} (p \in \alpha) \quad \boxed{\blacksquare} \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha
    (1.4) p \in \alpha \implies \dots
        (1.4.1) \quad \exists_{r \in \alpha} (p < r) \quad \blacksquare \quad r_2 := choice(\{r \in \alpha | p < r\})
        (1.4.2) \quad p < r_2 \quad \blacksquare \quad p - r_2 < r_2 - r_2 = 0 \quad \blacksquare \quad (p - r_2) < 0 \quad \blacksquare \quad (p - r_2) \in 0_{\mathbb{R}}
        (1.4.3) \quad r_2 \in \alpha \quad \blacksquare \quad p = r_2 + (p - r_2) \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
     (1.5) \quad p \in \alpha \implies p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{p \in \alpha} (p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
    (1.6) \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha \wedge \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
(2) \quad \alpha \in \mathbb{R} \implies 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
                                                                         (\alpha \in \mathbb{R}) \implies \exists_{-\alpha \in \mathbb{R}} \left( \alpha +_{\mathbb{R}} (-\alpha) = 0_{\mathbb{R}} \right)
(1) \alpha \in \mathbb{R} \implies \dots
    (1.1) \quad \beta := \{ p \in \mathbb{Q} | \exists_{r > 0} (-p - r \notin \alpha) \}
    (1.2) \quad \alpha \subset \mathbb{Q} \quad \blacksquare \quad \exists_{s \in \mathbb{Q}} (s \notin \alpha) \quad \blacksquare \quad s_0 := choice(\{s \mid s \notin \alpha\}) \quad \blacksquare \quad p_0 := -s_0 - 1
    (1.3) \quad -p_0 \overline{-1} = -(-s_0 - 1) - 1 = s_0 \not \in \alpha \quad \blacksquare \quad -p_0 - 1 \not \in \alpha \quad \blacksquare \quad \exists_{r > 0} (-p_0 - r \not \in \alpha) \quad \blacksquare \quad p_0 \in \beta
    (1.4) \quad \emptyset \neq \alpha \quad \blacksquare \quad \exists_{q \in \alpha} \quad \blacksquare \quad q_0 := choice(\{q \in \mathbb{Q} | q \in \alpha\})
    (1.5) r > 0 \Longrightarrow \dots
        (1.5.1) \quad q_0 \in \alpha \quad \blacksquare \quad -(-q_0) - r = q_0 - r < q_0 \quad \blacksquare \quad -(-q_0) - r < q_0 \quad \blacksquare \quad -(-q_0) - r \in \alpha
    (1.6) \quad \forall_{r>0} \left( -(-q_0) - r \in \alpha \right) \quad \blacksquare \quad \neg \exists_{r>0} \left( -(-q_0) - r \notin \alpha \right) \quad \blacksquare \quad -q_0 \notin \beta
    (1.7) \quad \emptyset \neq \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI(\beta)
     (1.8) \quad (p \in \beta \land q \in \mathbb{Q} \land q < p) \implies \dots
        (1.8.1) \quad p \in \beta \quad \blacksquare \quad \exists_{r>0} (-p-r \notin \alpha) \quad \blacksquare \quad r_0 := choice(\{r>0|-p-r \notin \alpha\})
         (1.8.2) \quad q 
         (1.8.3) \quad -q - r \notin \alpha \quad \blacksquare \quad q \in \beta
     (1.9) \quad (p \in \beta \land q \in \mathbb{Q} \land q < p) \implies q \in \beta \quad \blacksquare \quad \forall_{p \in \beta} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \beta) \quad \blacksquare \quad CutII(\beta)
     (1.10) p \in \beta \implies \dots
         (1.10.1) \quad p \in \beta \quad \blacksquare \quad \exists_{r>0} (-p-r \notin \alpha) \quad \blacksquare \quad r_1 := choice(\{r>0|-p-r \notin \alpha\})
         (1.10.2) \quad t_0 := p + (r_1/2)
         (1.10.3) r_1 > 0   r_1/2 > 0
         (1.10.4) \quad t_0 > t_0 - (r_1/2) = p \quad \blacksquare \quad t_0 > p
         (1.10.5) \quad -t_0 - (r_1/2) = -(p + (r_1/2)) - (r_1/2) = -p - r_1
         (1.10.6) \quad -p - r_1 \notin \alpha \quad \blacksquare \quad -t_0 - (r_1/2) \notin \alpha \quad \blacksquare \quad \exists_{r>0} (-t_0 - r \notin \alpha) \quad \blacksquare \quad t_0 \in \beta
         (1.10.7) \quad t_0 > p \land t_0 \in \beta \quad \blacksquare \quad \exists_{t \in \beta} (p < t)
     (1.11) \quad p \in \beta \implies \exists_{t \in \beta} (p < t) \quad \blacksquare \quad \forall_{p \in \beta} \exists_{t \in \beta} (p < t) \quad \blacksquare \quad CutIII(\beta)
     (1.12) \quad CutI(\beta) \wedge CutII(\beta) \wedge CutIII(\beta) \quad \blacksquare \quad \beta \in \mathbb{R}
     (1.13) \quad (r \in \alpha \land s \in \beta) \implies \dots
         (1.13.1) \quad s \in \beta \quad \blacksquare \ \exists_{t>0} (-s-t \notin \alpha) \quad \blacksquare \ t_1 := choice(\{t>0|-s-t \notin \alpha\}) \quad \blacksquare \ -s-t_1 < -s
         (1.13.2) \quad \alpha \in \mathbb{R} \land s, t_1 \in \mathbb{Q} \land -s - t_1 < -s \land -s - t_1 \notin \alpha \quad \blacksquare \quad -s \notin \alpha
         (1.13.3) \quad \alpha \in \mathbb{R} \land r \in \alpha \land -s \notin \alpha \quad \blacksquare \quad r < -s \quad \blacksquare \quad r + s < 0 \quad \blacksquare \quad r + s \in 0_{\mathbb{R}}
     (1.14) \quad (r \in \alpha \land s \in \beta) \implies r + s \in 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{(r,s) \in \alpha \times \beta} (r + s \in 0_{\mathbb{R}}) \quad \blacksquare \quad \alpha +_{\mathbb{R}} \quad \beta \subseteq 0_{\mathbb{R}}
     (1.15) \quad v \in 0_{\mathbb{R}} \implies \dots
         (1.15.1) v < 0 \quad w_0 := -v/2 \quad w > 0
                                                                                                                                                                                                                                                from: ARCHIMEDEANPROPERTYOFQ + LUB??
         (1.15.2) \quad \exists_{n \in \mathbb{Z}} (nw_0 \in \alpha \land (n+1)w_0 \notin \alpha) \quad \blacksquare \quad n_0 := choice(\{n \in \mathbb{Z} | nw_0 \in \alpha \land (n+1)w_0 \notin \alpha\})
         (1.15.3) \quad p_0 := -(n_0 + 2)w_0 \quad \blacksquare \quad -p_0 - w_0 = (n_0 + 2)w_0 - w_0 = (n_0 + 1)w_0 \notin \alpha \quad \blacksquare \quad -p_0 - w_0 \notin \alpha \quad \blacksquare \quad p_0 \in \beta
         (1.15.4) \quad n_0 w_0 \in \alpha \land p_0 \in \beta \quad \blacksquare \quad n_0 w_0 + p_0 = n_0 (-v/2) + -(n_0 + 2) - v/2 = v \in \alpha +_{\mathbb{R}} \beta
```

```
(1.16) \quad v \in 0_{\mathbb{R}} \implies v \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \forall_{v \in 0_{\mathbb{R}}} (v \in \alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad 0_{\mathbb{R}} \subseteq \alpha +_{\mathbb{R}} \beta
    (1.17) \quad \alpha +_{\mathbb{R}} \beta \subseteq 0_{\mathbb{R}} \wedge 0_{\mathbb{R}} \subseteq \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \alpha +_{\mathbb{R}} \beta = 0_{\mathbb{R}}
    (1.18) \quad \beta \in \mathbb{R} \land \alpha +_{\mathbb{R}} \beta = 0_{\mathbb{R}} \quad \blacksquare \quad \exists_{-\alpha \in \mathbb{R}} (\alpha +_{\mathbb{R}} (-\alpha) = 0_{\mathbb{R}})
(2) \quad \alpha \in \mathbb{R} \implies \exists_{-\alpha \in \mathbb{R}} \left( \alpha +_{\mathbb{R}} (-\alpha) = 0_{\mathbb{R}} \right)
      (\alpha, \beta) :=
\mathbf{1}_{m} := \{x \in \mathbb{Q} | x < 1\}
                            0_{\mathbb{R}} \neq 1_{\mathbb{R}}
                      1_{\mathbb{R}} \in \mathbb{R}
                                                                                         (\alpha, \beta \in \mathbb{R}) \implies ((\alpha *_{\mathbb{R}} \beta) \in \mathbb{R})
                                                                                                         (\alpha, \beta \in \mathbb{R}) \implies (\alpha *_{\mathbb{R}} \beta = \beta *_{\mathbb{R}} \alpha)
                                                                                                       (\alpha, \beta, \gamma \in \mathbb{R}) \implies \left( (\alpha *_{\mathbb{R}} \beta) *_{\mathbb{R}} \gamma = \alpha *_{\mathbb{R}} (\beta *_{\mathbb{R}} \gamma) \right)
                                                                                            (\alpha \in \mathbb{R}) \implies 1_{\mathbb{R}} *_{\mathbb{R}} \alpha = \alpha
                                                                                          (\alpha \in \mathbb{R}) \implies \exists_{1/\alpha \in \mathbb{R}} (\alpha *_{\mathbb{R}} (1/\alpha) = 1_{\mathbb{R}})
                                                                          (\alpha, \beta, \gamma \in \mathbb{R}) \implies \gamma *_{\mathbb{R}} (\alpha +_{\mathbb{R}} \beta) = \gamma *_{\mathbb{R}} \alpha + \gamma *_{\mathbb{R}} \beta
                                                            OrderedField(\mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}}, <_{\mathbb{R}})
        := \{ \{ r \in \mathbb{Q} | r < q \} | q \in \mathbb{Q} \}
                                                               || CR || Ordered Subfield(\mathbb{Q}_{\mathbb{R}}, \mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}}, <_{\mathbb{R}})||
                                            \exists_{\mathbb{R}} (LUBProperty(\mathbb{R}, <_{\mathbb{R}}) \land OrderedSubfield(\mathbb{Q}, \mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}}, <_{\mathbb{R}}))
(1.20)
                                                                          \forall_{x,y \in \mathbb{R}} (x > 0 \implies \exists_{n \in \mathbb{N}^+} (nx > y))
(1) (x, y \in \mathbb{R} \land x > 0) \implies \dots
    (1.1) \quad A := \{ nx | n \in \mathbb{N}^+ \} \quad \blacksquare \emptyset \neq A \subset \mathbb{R}
    (1.2) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \implies \dots
         (1.2.1) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \quad \blacksquare \quad \forall_{n \in \mathbb{N}^+} (nx \le y)
         (1.2.2) UpperBound(y, A, \mathbb{R}, <) \mid BoundedAbove(A, \mathbb{R}, <)
         (1.2.3) \quad LUBProperty(\mathbb{R},<) \land \emptyset \neq A \subset \mathbb{R} \land Bounded Above(A,\mathbb{R},<) \quad \blacksquare \ \exists_{\alpha \in \mathbb{R}} (LUB(\alpha,A,\mathbb{R},<))
         (1.2.4) \quad \alpha_0 := choice(\{\alpha \in \mathbb{R} | LUB(\alpha, A, \mathbb{R}, <)\})
         (1.2.6) \quad LUB(\alpha_0, A, \mathbb{R}, <) \land \alpha_0 - x < \alpha_0 \quad \blacksquare \quad \neg UpperBound(\alpha_0 - x, A, \mathbb{R}, <)
         (1.2.7) \quad \exists_{c \in A} (\alpha_0 - x < c) \quad \blacksquare \ c_0 := choice(\{c \in A | \alpha_0 - x < c\})
         \boxed{(1.2.8) \quad c_0 \in A \quad \blacksquare \ \exists_{m \in \mathbb{N}^+} (mx = c_0) \quad \blacksquare \ m_0 := choice(\{m \in \mathbb{N}^+ | mx = c_0\})}
         (1.2.9) \quad \alpha_0 - x < c_0 = m_0 x \quad \blacksquare \quad \alpha_0 - x < m_0 x \quad \blacksquare \quad \alpha_0 < (m_0 + 1)x
         (1.2.10) \quad m_0 + 1 \in \mathbb{N}^+ \quad \blacksquare \quad (m_0 + 1)x \in A
         (1.2.11) \quad \alpha_0 < (m_0 + 1)x \land (m_0 + 1)x \in A \quad \blacksquare \ \exists_{c \in A} (\overline{\alpha_0} < c)
         (1.2.12) \quad LUB(\alpha_0, A, \mathbb{R}, <) \quad \blacksquare \quad UpperBound(\alpha_0, A, \mathbb{R}, <) \quad \blacksquare \quad \forall_{c \in A} (c \leq \alpha_0) \quad \blacksquare \quad \neg \exists_{c \in A} (\alpha_0 < c) 
         (1.2.13) \quad \exists_{c \in A} (\alpha_0 < c) \land \neg \exists_{c \in A} (\alpha_0 < c) \quad \blacksquare \perp
    (1.3) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \implies \bot \quad \blacksquare \quad \exists_{n \in \mathbb{N}^+} (nx > y)
(2) \quad (x, y \in \mathbb{R} \land x > 0) \implies \exists_{n \in \mathbb{N}^+} (nx > y) \quad \blacksquare \quad \forall_{x, y \in \mathbb{R}} \left( x > 0 \implies \exists_{n \in \mathbb{N}^+} (nx > y) \right)
 \boxed{\textbf{ODenseInR}} \quad \forall_{x,y \in \mathbb{R}} \left( x < y \implies \exists_{p \in \mathbb{Q}} (x < p < y) \right)
(1) (x, y \in \mathbb{R} \land x < y) \implies \dots
    (1.1) \quad x < y \quad \blacksquare \quad y - x > 0 \quad \blacksquare \quad \exists_{n \in \mathbb{N}^+} (n(y - x) > 1) \quad \blacksquare \quad n_0 := choice(\{n \in \mathbb{N}^+ | n(y - x) > 1\}) \quad \blacksquare \quad n_0(y - x) > 1
```

12

- $(1.7) \quad m_0 := choice(\{m \in \mathbb{Z} \mid -m_2 < m < m_1 \land m 1 \le n_0 x < m\}) \quad \blacksquare \quad -m_2 < m_0 < m_1 \land m_0 1 \le n_0 x < m_0$
- $(1.8) \quad (n_0(y-x) > 1) \land (m_0 1 \le n_0 x < m_0) \quad \blacksquare \quad n_0 x < m_0 \le 1 + n_0 x < n_0 y \quad \blacksquare \quad n_0 x < m_0 < n_0 y$
- $(1.9) \quad n_0 \in \mathbb{N}^+ \quad \blacksquare \ n_0 > 0 \quad \blacksquare \ x < m_0/n_0 < y$
- $(1.10) \quad m_0, n_0 \in \mathbb{Z} \quad \blacksquare \quad m_0/n_0 \in \mathbb{Q}$
- $(1.11) \quad m_0/n_0 \in \mathbb{Q} \land x < m_0/n_0 < y \quad \blacksquare \ \exists_{p \in \mathbb{Q}} (x < p < y)$
- $(2) \quad (x, y \in \mathbb{R} \land x < y) \implies \exists_{p \in \mathbb{Q}} (x < p < y) \quad \blacksquare \quad \forall_{x, y \in \mathbb{R}} \exists_{p \in \mathbb{Q}} (x < p < y)$

(1.21)

$$\forall_{0 < x \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \exists !_{0 < y \in \mathbb{R}} (y^n = x)$$

- $\overline{(1) \quad 0 < y_1 < y_2 \implies 0 < y_1^n < y_2^n \text{ UNIQUENESS ...}}$
- $(2) (0 < x \in \mathbb{R} \land 0 < n \in \mathbb{Z}) \implies \dots$
 - (2.1) $E := \{t \in \mathbb{R} | t > 0 \land t^n < x\}$
 - $(2.2) \quad t_0 := x/(1+x) \quad \blacksquare \quad 0 < t_0 < 1 \land t_0 = x/(1+x) < x \quad \blacksquare \quad t_0 > 0 \land t_0^n \le t_0 < x$
 - (2.3) 123123
- $(3) \quad E := \{t \in \mathbb{R} | t > 0 \wedge t^n < x\}$

TODO: - MORE EXPLICIT MODUS PONENS ON OrderTrichotomyR ??? - name all properties - hyperlink all definitions ???

Chapter 2

Abstract Algebra

```
Relation(f,X) := f \subseteq X \\ Function(f,X,Y) := X \neq \emptyset \neq Y \land Relation(f,X \times Y) \land \forall_{x \in X} \exists !_{y \in Y}((x,y) \in f) \\ \hline (Function(f,X,Y) \land A \subseteq X \land B \subseteq Y) \implies \dots \\ \hline (1) \quad Domain(f) := X; Codomain(f) := Y \\ \hline (2) \quad Image(f,A) := \{f(a)|a \in A\}; Preimage(f,B) := \{a|f(a) \in B\} \\ \hline (3) \quad Range(f) := Image(Domain(f)) \\ \hline Injective(f,X,Y) := Function(f,X,Y) \land \forall_{x_1,x_2 \in X}(x_1 \neq x_2 \implies f(x_1) \neq f(x_2)) \\ Surjective(f,X,Y) := Function(f,X,Y) \land \forall_{y \in Y} \exists_{x \in X}(y = f(x)) \\ Bijective(f,X,Y) := Injective(f,X,Y) \land Surjective(f,X,Y) \\ \hline \end{tabular}
```

TODO: Definition properties Surjective Equivalent: $(Range(f) = Codomain(f)) \implies Surjective(f)$

Chapter 3

Linear Algebra

```
A_{square} = B_{sym} + C_{skewsym} A + A^{T} = B_{sym} A - A^{T} = B_{skewsym} A = (1/2)(A + A^{T}) + (1/2)(A - A^{T}) (AB)^{-1} = B^{-1}A^{-1}
AB * \dots \dots \dots
(ABC)^{-1} = C^{-1}B^{-1}A^{-1}
A^{1}23123
TODO PROOFS
```