Relatório Técnico

1. Descrição do Problema

O **World Risk Index (WRI)** é um indicador global que avalia a probabilidade de um país ser afetado por desastres naturais, considerando sua exposição, vulnerabilidade e capacidade de enfrentamento e adaptação. Com as mudanças climáticas e o aumento de eventos extremos, prever o WRI torna-se crucial para o planejamento estratégico e ações preventivas.

Este projeto tem como objetivo **prever o WRI com base em indicadores socioambientais**, utilizando algoritmos de aprendizado de máquina.

2. Metodologia

a) Coleta e Pré-processamento de Dados

- Fonte: CSV com dados de diversos países.
- Variáveis preditoras:
 - ✓ Exposure
 - ✓ Vulnerability
 - ✓ Susceptibility
 - ✓ Lack of Coping Capabilities
 - ✓ Lack of Adaptive Capacities
- Variável-alvo: WRI
- Etapas realizadas:
 - ✓ Verificação e remoção de valores nulos
 - ✓ Análise de correlação entre variáveis
 - ✓ Visualizações gráficas para compreensão dos dados

b) Divisão dos Dados

- Treinamento: 70%
- Teste: 30%
- Validação cruzada (5-fold) aplicada para maior confiabilidade

c) Modelos Utilizados

- Random Forest Regressor: modelo baseado em árvores de decisão em conjunto (ensemble).
- XGBoost Regressor: algoritmo de boosting altamente eficiente.

d) Métricas de Avaliação

- R² (coeficiente de determinação)
- RMSE (erro quadrático médio)
- MAE (erro absoluto médio)

3. Resultados Obtidos

Modelo	R ²	RMSE	MAE
Random Forest	0.98	0.78	0.19
XGBoost	0.96	1.06	0.24

Validação cruzada (XGBoost): R² médio: 0.9824

- O modelo **XGBoost** demonstrou melhor desempenho, sendo o mais adequado para a previsão do índice.
- As variáveis com maior impacto na predição foram:
 - ✓ Vulnerability
 - ✓ Exposure
 - ✓ Lack of Coping Capabilities

4. Conclusões

- O modelo **Random Forest** apresentou o melhor desempenho nos dados de teste, com maior R² e menores erros.
- O modelo **XGBoost**, apesar de ter desempenho levemente inferior nos dados de teste, demonstrou excelente consistência na validação cruzada, com R² médio de 0.9824.
- Ambos os modelos se mostraram eficazes e confiáveis para a tarefa de previsão do WRI.

A utilização dessas abordagens permite que governos, ONGs e organizações internacionais:

- Antecipem riscos em regiões vulneráveis
- Planejem ações preventivas com base em dados concretos
- Priorizem investimentos em infraestrutura e mitigação de riscos