1. Dana je matrika

$$A = \begin{bmatrix} 0 & 2 & 2 \\ 3 & 1 & -3 \\ -1 & -1 & 3 \end{bmatrix}.$$

- (a) Pokaži, da je $\mathbf{v} = [1,-1,0]^T$ lastni vektor matrike A in določi pripadajočo lastno vrednost.
- (b) Pokaži, da je $\lambda=4$ lastna vrednost matrike A in poišči pripadajoči lastni vektor.
- (c) Poišči še tretjo lastno vrednost in pripadajoč lastni vektor.

Rešitev: (a) v pripada lastni vrednosti $\lambda_1 = -2$.

- (b) $\lambda_2 = 4$ pripada lastni vektor $\mathbf{u} = [0, -1, 1]^T$.
- (c) $\lambda_3 = 2$ pripada lastni vektor $\mathbf{w} = [1, 0, 1]^T$.
- 2. Naj bo Z matrika (poševnega) zrcaljenja, tj. kvadratna matrika z lastnostjo $Z^2=I$.
 - (a) Kaj so lastne vrednosti te matrike? Kako bi opisal lastne podprostore, ki pripadajo tem lastnim vrednostim?
 - (b) Opiši geometrijski pomen lastnih podprostorov Z, če Z opisuje zrcaljenje preko ravnine (skozi $\mathbf{0}$) v \mathbb{R}^3 .
 - (c) Naj bo sedaj

$$Z = \frac{1}{3} \begin{bmatrix} 2 & 2 & 1 \\ 2 & -1 & -2 \\ 1 & -2 & 2 \end{bmatrix}.$$

Preveri, da je Z matrika zrcaljenja. Preko katerega podprostora zrcali? Ali sta oba lastna podprostora ortogonalna?

Rešitev: (a) Lastni vrednosti sta -1 in 1. Z zrcali preko lastnega podprostora za lastno vrednost 1 vzdolž lastnega podprostora za lastno vrednost -1.

- (b) Ta ravnina je lastni podprostor za lastno vrednost 1, premica skozi $\bf 0$ pravokotna na to ravnino pa lastni podprostor za lastno vrednost -1.
- (c) Zrcali preko ravnine skozi $\mathbf{0}$ z normalnim vektorjem $\mathbf{n} = [-1, 2, 1]^T$, lastna podprostora sta ortogonalna.
- 3. Poišči vse lastne vrednosti in pripadajoče lastne podprostore matrike

$$A = \begin{bmatrix} 1 & 1 & -3 & 1 \\ 0 & 2 & 0 & 0 \\ -1 & 1 & -1 & 1 \\ 2 & -2 & -3 & 0 \end{bmatrix}.$$

Rešitev: Lastni vrednosti sta $\lambda_{1,2} = -1$ ter $\lambda_{3,4} = 2$. Lastni podprostor za $\lambda_{1,2} = -1$ ima bazo $B_{1,2} = \{[1,0,1,1]^T\}$, lastni podprostor za $\lambda_{3,4} = 2$ pa bazo $B_{3,4} = \{[2,1,0,1]^T,[0,-1,0,1]^T\}$.

4. Množenje z matriko

$$R_{\phi} = \begin{bmatrix} \cos(\phi) - \sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix}$$

predstavlja zasuk vektorja v \mathbb{R}^2 za kot ϕ . (Kot med vektorjema \mathbf{v} in $R_{\phi}\mathbf{v}$ je ravno ϕ .) Poišči lastne vrednosti in pripadajoče lastne vektorje matrike R_{ϕ} . Rešitev: Lastni vrednosti sta $\lambda_{1,2}=e^{\pm i\phi}=\cos\phi\pm i\sin\phi$, pripadajoča lastna vektorja sta $\mathbf{v}_{1,2}=$

 $[\pm i, 1]^{\mathsf{T}}$.