1 The function $\langle \cdot \rangle_n$

Consider the additive group $(\mathbb{Z}/n\mathbb{Z}, +, 0)^1$ and consider an element a. Define the function $<\cdot>: \mathbb{Z}/n\mathbb{Z} \to \wp(\mathbb{Z}/n\mathbb{Z})$, where $\wp(\mathbb{X})$ is the power set of \mathbb{X} .

Algorithm $1 < a >_n$

```
Require: a \in \mathbb{Z}/n\mathbb{Z}. If not, this is not a valid input.

S \leftarrow \{a\}

x \leftarrow (a + a \pmod{n})

while x \notin S do

S \leftarrow S \cup \{x\}

x \leftarrow (x + a \pmod{n})

end while

return S
```

It is clear that $<1>_n$ regenerates the set $\mathbb{Z}/n\mathbb{Z}$ for all $n\geq 2$.

Exercise:

Given a number $2 \le n \le 10$, how many $a \in \mathbb{Z}/n\mathbb{Z}$ satisfy the property $(< a>_n, +, 0) = (\mathbb{Z}/n\mathbb{Z}, +, 0)$? Can you find the answer for any $n \ge 2$?

 $^{^1 \}text{There}$ is an abuse of notation here, the operation + is $a+b \pmod n$ if the associated set is $\mathbb{Z}/n\mathbb{Z}$

Assignment $\mathbf{2}$

This is not evaluative.

```
Consider the two additive groups (\mathbb{Z}/2\mathbb{Z}, +, 0) and (\mathbb{Z}/4\mathbb{Z}, +, 0).
Observe \langle 1 \rangle_2 and \langle 2 \rangle_4 are both sets of cardinality 2.
Given the groups (\mathbb{Z}/8\mathbb{Z}, +, 0) and (\mathbb{Z}/16\mathbb{Z}, +, 0). Verify:
<1>_2, <2>_4, <4>_8, and <8>_{16} all have the same cardinality - that of 2.
```

In fact, given any k > 1, the set $(2^{k-1})_{2^k}$ in $\mathbb{Z}/2^k\mathbb{Z}$ has the cardinality of 2.

This sort of identification establishes that $\mathbb{Z}/2\mathbb{Z}$ can be identified as a subset² of $\mathbb{Z}/2^k\mathbb{Z}$ for all $k > 1^3$.

The descent.gif animation explores this identification pictorially.

Exercise:

Can you show that $\mathbb{Z}/4\mathbb{Z}$ can be identified in $\mathbb{Z}/2^k\mathbb{Z}$ for all k > 2? You can use the code in descent.txt on SAGE's online platform to visualize this pictorially.

Do all the subgroups of $\mathbb{Z}/2^n\mathbb{Z}$ look like $\mathbb{Z}/2^k\mathbb{Z}$ for some $0 \le k \le n$? Or are there subgroups that have been missed out?

 $^{^2{\}rm In}$ fact it's a subgroup! $^3{\rm Henceforth}~\mathbb{Z}/2^n\mathbb{Z}$ will be used for the tuple $(\mathbb{Z}/2^n\mathbb{Z},+,0)$