

Optocoupler, Phototransistor Output (Dual, Quad Channel)

Features

- Current Transfer Ratio at I_F = 10 mA
- Isolation Test Voltage, 5300 V_{RMS}

Agency Approvals

- UL File No. E52744 system Code H or J
- CSA 93751
- BSI IEC60950 IEC60965
- DIN EN 60747-5-2 (VDE0884)
 DIN EN 60747-5-5 pending
 Available with Option 1
- FIMKO

Description

The ILD1/ 2/ 5/ ILQ1/ 2/ 5 are optically coupled isolated pairs employing GaAs infrared LEDs and silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the drive while maintaining a high degree of electrical isolation between input and output. The ILD1/ 2/ 5/ ILQ1/ 2/ 5 are especially designed for driving medium-speed logic and can be used to eliminate troublesome ground loop and noise problems. Also these couplers can be used to replace relays and transformers in many digital interface applications such as CTR modulation.

The ILD1/ 2/5 has two isolated channels in a single DIP package and the ILQ1/ 2/5 has four isolated channels per package.

12 E

Quad Channel

i179012

Order Information

Part	Remarks
ILD1	CTR > 20 %, DIP-8
ILQ1	CTR > 20 %, DIP-16
ILD2	CTR > 100 %, DIP-8
ILQ2	CTR > 100 %, DIP-16
ILD5	CTR > 50 %, DIP-8
ILQ5	CTR > 50 %, DIP-16
ILD1-X007	CTR > 20 %, SMD-8 (option 7)
ILD1-X009	CTR > 20 %, SMD-8 (option 9)
ILD2-X006	CTR > 100 %, DIP-8 400 mil (option 6)
ILD2-X007	CTR > 100 %, SMD-8 (option 7)
ILD2-X009	CTR > 100 %, SMD-8 (option 9)
ILD5-X009	CTR > 50 %, SMD-8 (option 9)
ILQ1-X009	CTR > 20 %, SMD-16 (option 9)
ILQ2-X009	CTR > 100 %, SMD-16 (option 9)

For additional information on the available options refer to Option Information.

ILD1/2/5/ILQ1/2/5

Vishay Semiconductors

Absolute Maximum Ratings

 $T_{amb} = 25$ °C, unless otherwise specified

Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability.

Input

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V _R	6.0	V
Forward current		I _F	60	mA
Surge current		I _{FSM}	2.5	Α
Power dissipation		P _{diss}	100	mW
Derate linearly from 25 °C			1.3	mW/°C

Output

Parameter	Test condition	Part	Symbol	Value	Unit
Collector-emitter reverse voltage		ILD1	V _{CER}	50	V
		ILQ1	V _{CER}	50	V
		ILD2	V _{CER}	70	V
		ILQ2	V _{CER}	70	V
		ILD5	V _{CER}	70	V
		ILQ5	V _{CER}	70	V
Collector current			I _C	50	mA
	t < 1.0 ms		I _C	400	mA
Power dissipation			P _{diss}	200	mW
Derate linearly from 25 °C				2.6	mW/°C

Coupler

Parameter	Test condition	Symbol	Value	Unit
Isolation test voltage (between emitter and detector referred to standard climate 25 °C/ 50 % RH, DIN 50014)		V _{ISO}	5300	V _{RMS}
Creepage			≥ 7.0	mm
Clearance			≥ 7.0	mm
Isolation resistance	V_{IO} = 500 V, T_{amb} = 25 °C	R _{IO}	10 ¹²	Ω
	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	10 ¹¹	Ω
Package power dissipation		P _{tot}	250	mW
Derate linearly from 25 °C			3.3	mW/°C
Storage temperature		T _{stg}	- 40 to + 150	°C
Operating temperature		T _{amb}	- 40 to + 100	°C
Junction temperature		T _j	100	°C
Soldering temperature	2.0 mm from case bottom	T _{sld}	260	°C

www.vishay.com

Document Number 83646

Rev. 1.3, 10-Jun-04

Electrical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

Input

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward voltage	I _F = 60 mA	V _F		1.25	1.65	V
Reverse current	V _R = 6.0 V	I _R		0.01	10	μΑ
Capacitance	V _R = 0 V, f = 1.0 MHz	Co		25		pF
Thermal resistance, junction to lead		T _{thJL}		750		K/W

Output

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Collector-emitter capacitance	V _{CE} = 5.0 V, f = 1.0 MHz	C _{CE}		6.8		pF
Collector-emitter leakage current	V _{VCE} = 10 V	I _{CEO}		5.0	50	nA
Saturation voltage, collector- emitter	$I_{CE} = 1.0 \text{ mA}, I_{B} = 20 \mu\text{A}$	V _{CESAT}		0.25	0.4	V
DC forward current gain	$V_{CE} = 10 \text{ V}, I_{B} = 20 \mu\text{A}$	HFE	200	650	1800	
DC forward current gain saturated	$V_{CE} = 0.4 \text{ V}, I_{B} = 20 \mu\text{A}$	HFE _{sat}	120	400	600	
Thermal resistance, junction to lead		R _{thjl}		500		K/W

Coupler

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Capacitance (input-output)	V _{IO} = 0 V, f = 1.0 MHz	C _{IO}		0.8		pF

Current Transfer Ratio

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Current Transfer Ratio (collector-emitter saturated)	$I_F = 10 \text{ mA}, V_{CE} = 0.4 \text{ V}$	ILD1 ILQ1	CTR _{CEsat}		75		%
		ILD2 ILQ2	CTR _{CEsat}		170		%
		ILD5 ILQ5	CTR _{CEsat}		100		%
Current Transfer Ratio (collector-emitter)	$I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	ILD1 ILQ1	CTR _{CE}	20	80	300	%
		ILD2 ILQ2	CTR _{CE}	100	200	500	%
		ILD5 ILQ5	CTR _{CE}	50	130	400	%

Document Number 83646 www.vishay.com

ILD1/2/5/ILQ1/2/5

Vishay Semiconductors

Switching Non-saturated

Parameter	Current	Delay	Rise time	Storage	Fall time	Propagation H-L	Propagation L-H
Test condition			$V_{CE} = 5.0$	V , $R_L = 75 Ω, 50$	% of V _{PP}		
Symbol	I _F	t _D	t _r	t _S	t _f	t _{PHL}	t _{PLH}
Unit	mA	μs	μs	μs	μs	μs	μs
ILD1 ILQ1	20	0.8	1.9	0.2	1.4	0.7	1.4
ILD2 ILQ2	5.0	1.7	2.6	0.4	2.2	1.2	2.3
ILD5 ILQ5	10	1.7	2.6	0.4	2.2	1.1	2.5

Switching Saturated

Parameter	Current	Delay	Rise time	Storage	Fall time	Propagation H-L	Propagation L-H
Test condition			$V_{CE} = 0.4 \text{ V, R}_{L} =$	= 1.0 k Ω , $V_{CC} = 5$.0 V, V _{TH} = 1.5 V		
Symbol	Ι _Ε	t _D	t _r	t _S	t _f	t _{PHL}	t _{PLH}
Unit	mA	μs	μs	μs	μs	μs	μs
ILD1 ILQ1	20	0.8	1.2	7.4	7.6	1.6	8.6
ILD2 ILQ2	5.0	1.0	2.0	5.4	13.5	5.4	7.4
ILD5 ILQ5	10	1.7	7.0	4.6	20	2.6	7.2

Common Mode Transient Immunity

	<u>-</u>					
Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Common mode rejection, output high	$V_{CM} = 50 V_{P-P}, R_L = 1.0 k\Omega,$ $I_F = 0 mA$	CM _H		5000		V/µs
Common mode rejection, output low	$V_{CM} = 50 V_{P-P} R_L = 1.0 k\Omega,$ $I_F = 10 mA$	CM _L		5000		V/µs
Common mode coupling capacitance		C _{CM}		0.01		pF

Document Number 83646 www.vishay.com Rev. 1.3, 10-Jun-04

iild1_01

Vishay Semiconductors

Typical Characteristics ($T_{amb} = 25$ °C unless otherwise specified)

Figure 1. Non-saturated Switching Schematic

Figure 3. Saturated Switching Schematic

Figure 2. Non-saturated Switching Timing

Figure 4. Saturated Switching Timing

Document Number 83646 Rev. 1.3, 10-Jun-04

Figure 5. Normalized Non-Saturated and Saturated CTR vs. LED Current

Figure 8. Normalized Non-Saturated and Saturated CTR vs. LED Current

Figure 6. Normalized Non-Saturated and Saturated CTR vs. LED Current

Figure 9. Normalized Non-Saturated and Saturated CTR vs. LED Current

Figure 7. Normalized Non-Saturated and Saturated CTR vs. LED Current

Figure 10. Collector-Emitter Current vs. Temperature and LED Current

Figure 11. Collector-Emitter Leakage Current vs.Temp.

Figure 12. Propagation Delay vs. Collector Load Resistor

Package Dimensions in Inches (mm)

VISHAY

Package Dimensions in Inches (mm)

i178007

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Document Number 83646 www.vishay.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.