## 高级计量经济学

理论经济学博士课程

Lecture 4: The Geometry of Linear Regression

#### 黄嘉平

工学博士 经济学博士 深圳大学中国经济特区研究中心 讲师

Office Email Website 粤海校区汇文楼1510 huangjp@szu.edu.cn https://huangjp.com

# 欧氏空间

#### 欧氏空间

#### **Euclidean Space**

n 维欧氏空间  $E^n$  是在 n 维实向量的集合  $\mathbb{R}^n$  中加入内积

$$\langle x, y \rangle = x \cdot y \equiv x^{\mathsf{T}} y$$
 for all  $x, y \in \mathbb{R}^n$ 

 $E^n$  中向量的长度:  $||x|| = (x^T x)^{1/2}$ 

内积与内角:  $\langle x, y \rangle = ||x|| ||y|| \cos \theta$ 

$$x,y$$
 平行时,则  $\langle x,y \rangle = ||x|| ||y||$ 

$$x,y$$
 互相垂直时(即正交 $x \perp y$ ),则  $\langle x,y \rangle = 0$ 



Cauchy-Schwartz inequality: 
$$|x^{T}y| \leq ||x|| ||y||$$
  $||x|| \leq ||x|| ||y||$ 

### 子空间

#### **Subspace**

 $E^n$  的子空间也是一个欧氏空间  $E^k$ ,  $k \leq n$ 。

基底(basis vectors)与张成(span)

若  $E^n$  中的 n 个向量  $x_1, ..., x_n$  线性独立,且任意  $y \in E^n$  可以写成  $x_1, ..., x_n$  的线性结合,则  $x_1, ..., x_n$  被称为  $E^n$  的基底, $E^n$  可以由  $x_1, ..., x_n$  张成,记作  $E^n = S(x_1, ..., x_n)$  。

 $S(x_1,...,x_k), x_1,...,x_k \in E^n, k \le n$ , 是由  $x_1,...,x_k$  张成的  $E^n$  的子空 间。

当矩阵  $X = [x_1 \ x_2 \ \cdots \ x_k]$  时, $S(x_1, ..., x_k)$  被称作 X 的列空间,记作 S(X)。

### 正交子空间

#### **Orthogonal Subspaces**

对于  $E^n$  的两个子空间  $S_1$  和  $S_2$ ,若任意  $v_1 \in S_1$ ,  $v_2 \in S_2$  的内积为零,则称  $S_1$  和  $S_2$  正交。

 $E^n$  中所有和 S(X) 正交的向量的集合  $S^{\perp}(X)$  被称作 S(X) 在  $E^n$  中的正交补空间,即

$$\mathcal{S}^{\perp}(X) = \{ y \in E^n \mid y \perp x \text{ for all } x \in \mathcal{S}(X) \}$$

维度: 空间的维度等于其基底的数量

$$\dim(E^n) = n$$
,  $\dim(\mathcal{S}(X)) = k \Rightarrow \dim(\mathcal{S}^{\perp}(X)) = n - k$ 



根据定义,任意的  $a\in\mathcal{S}(X)$  和任意的  $b\in\mathcal{S}^\perp(X)$  都满足  $a\perp b$ 





# 正交投影

### 正交投影

#### **Orthogonal Projection**

投影:将 $E^n$ 中的每一点和其子空间中的一点关联起来的函数,或映射(mapping)。这时要保持原本在子空间中的点不变。

正交投影:将 $E^n$ 的每一点映射到子空间中距离其最近的点。



绿色直线为正交投影

紫色直线为透视投影

#### 投影矩阵

#### **Projection Matrix**

$$\hat{u} = y - X\hat{\beta}$$

$$= y - X(X^{T}X)^{-1}X^{T}y$$

$$= (I - X(X^{T}X)^{-1}X^{T})y$$

令

$$\begin{aligned} \boldsymbol{P}_{X} &= \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top}, \\ \boldsymbol{M}_{X} &= \boldsymbol{I} - \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} = \boldsymbol{I} - \boldsymbol{P}_{X} \end{aligned}$$

则  $P_X y = X \hat{\beta}$  为 y 的 OLS 预测值  $\hat{y}$ ,  $M_X y = \hat{u}$  为 OLS 残差。

我们可以称  $P_X$  为投影矩阵,因其将 y 投影到子空间  $\mathcal{S}(X)$ ;称  $M_X$  为 残差生成矩阵(residual maker),因其将 y 投影到  $\mathcal{S}^{\perp}(X)$ 。

## 投影矩阵的性质

• 
$$P_X X = X(X^\top X)^{-1} X^\top X = X$$

• 
$$M_X X = (I - P_X)X = X - X = O$$
 (零矩阵)

- $P_X$  和  $M_X$  是对称矩阵 注意  $(A^T)^{-1} = (A^{-1})^T$
- $P_X$  和  $M_X$  是幂等矩阵 (idempotent matrix)

$$P_X^2 = X(X^{\top}X)^{-1}X^{\top}X(X^{\top}X)^{-1}X^{\top} = X(X^{\top}X)^{-1}X^{\top} = P_X$$
  
 $M_X^2 = (I - P_X)(I - P_X) = I - 2P_X + P_X^2 = I - P_X = M_X$ 

• 
$$P_X M_X = M_X P_X = O$$

### 投影的值域与子空间

 $P_X$  的值域是  $\mathcal{S}(X)$  整体。 $M_X$  的值域是  $\mathcal{S}^{\perp}(X)$  整体。

- 1. 值域包含在子空间内: 对于任意的  $y \in \mathbb{R}^n$ ,  $P_X y = X \hat{\beta}$  是 X 的列的线性结合,因此  $P_X y \in \mathcal{S}(X)$ ;  $X^{\top} M_X y = X^{\top} M_X^{\top} y = (M_X X)^{\top} y = \mathbf{0}$ ,因此  $M_X y \in \mathcal{S}^{\perp}(X)$ 。
- 2. 子空间包含在值域内: S(X) 中的任意一点 x 都可以写成  $x = a_1x_1 + \cdots + a_kx_k = Xa$ ,因为  $P_Xx = P_XXa = Xa = x$ ,所以 S(X) 中所有的点都是其自身通过  $P_X$  得到的像。  $S^{\perp}(X)$  中的任意一点 z 都满足  $X^{\top}z = 0$ ,此时  $M_Xz = (I P_X)z = z P_Xz$ ,因为  $P_Xz = X(X^{\top}X)^{-1}X^{\top}z = 0$ ,所以  $M_Xz = z$ ,即  $S^{\perp}(X)$  中所有的点都是其自身通过  $M_X$  得到的像。

## 其他重要公式

标准方程 (normal equation)

$$X^{\mathsf{T}}\hat{u} = \mathbf{0}$$
  $\Leftrightarrow$   $X^{\mathsf{T}}(y - X\hat{eta}) = \mathbf{0}$   $\Leftrightarrow$   $X^{\mathsf{T}}X\hat{eta} = X^{\mathsf{T}}y$  与最小二乘法相同

• 线性模型的正交分解

由定义可知  $P_X + M_X = I$ ,因此

$$y = P_X y + M_X y = \hat{y} + \hat{u}$$

通过勾股定理可得  $||y||^2 = ||\hat{y}||^2 + ||\hat{u}||^2$ , 即 TSS = ESS + SSR

## 独立变量的线性变换

## 子空间 S(X) 的基底

#### S(X) 可以由不同的基底张成。

令 A 为  $k \times k$  的非奇异矩阵,即  $det(A) \neq 0$ ,A 可逆,则

$$XA = X[a_1 \ a_2 \ \dots \ a_k] = \begin{bmatrix} Xa_1 \ Xa_2 \ \dots \ Xa_k \end{bmatrix}$$

这里每个 $Xa_i$ 都是S(X)中的一点,因此由 $(Xa_1,Xa_2,...,Xa_k)$ 张成的子空间 $S(XA) \subseteq S(X)$ 。

任意的  $x \in S(X)$  都可以表达为  $x = Xb = XAA^{-1}b = (XA)(A^{-1}b)$ ,因此  $x \in XA$  的列的线性结合,即  $x \in S(XA)$ 。因此  $S(X) \subseteq S(XA)$ 。

最终可得 S(X) = S(XA)。

### 解释变量的线性变换

XA 可以看做线性回归中解释变量的线性变换。变换前后的投影矩阵  $P_X$  和  $P_{XA}$  代表同一正交投影。

$$P_{XA} = XA(A^{\top}X^{\top}XA)^{-1}A^{\top}X^{\top}$$

$$= XAA^{-1}(X^{\top}X)^{-1}(A^{\top})^{-1}A^{\top}X^{\top}$$

$$= X(X^{\top}X)^{-1}X^{\top}$$

$$= P_{X}$$

$$\Rightarrow M_{XA} = M_{X}, M_{XA}y = M_{X}y$$

$$\Rightarrow \hat{\beta}_{XA} = (A^{\top}X^{\top}XA)^{-1}A^{\top}X^{\top}y = A^{-1}(X^{\top}X)^{-1}(A^{\top})^{-1}A^{\top}X^{\top}y = A^{-1}\hat{\beta}_{X}$$

针对线性回归  $y = X\beta + u$ ,若将解释变量进行线性变换,则变换后的模型  $y = XA\beta + u$  和原模型的预测值相同,残差相同,但 OLS 估计值  $\hat{\beta}$  会发生变化。

## 解释变量的单位转换

由上一页的结论可导出:解释变量的单位转换不影响预测值和残差,但影响系数的估计值。

假设模型包含温度这一解释变量和常数项。温度的单位可以是摄氏(C)或华氏(F),二者的关系是  $F=32+\frac{9}{5}C$ 。令  $\iota$  代表要素为 1 的向量,则

$$\begin{bmatrix} \mathbf{i} & \mathbf{F} \end{bmatrix} = \begin{bmatrix} \mathbf{i} & \mathbf{C} \end{bmatrix} \begin{bmatrix} 1 & 32 \\ 0 & \frac{9}{5} \end{bmatrix}$$

即以摄氏记录的数据可以通过  $\begin{bmatrix} 1 & 32 \\ 0 & \frac{9}{5} \end{bmatrix}$  转换为华氏。若摄氏和华氏下的回归系数分别为  $[\beta_1 \ \beta_2]$  和  $[\alpha_1 \ \alpha_2]$ ,则可得  $\beta_1 = \alpha_1 + 32\alpha_2$ , $\beta_2 = \frac{9}{5}\alpha_2$ 。