f(x) = x -3

Bennet Sloan

7 ; tretes

$$x_{m1} = x_m - f(x_m)$$
 $x_m = x_m - f'(x_m)$

$$= (x_n)(6x_n^5) - (x_n^6 - 3)$$

$$= (x_n)(6x_n^5) - (x_n^6 - 3)$$

$$= \left(\frac{5}{6}\right) \left(x_n + \frac{3/5}{x_n^5}\right)$$

of values shows (n+1)-(n) decreasing at a gundratic rate, converging faster as x - 0 x.

	P_1.	.m × P_2.m × P_3.m × +			Name 📤
	-	clear all;			ans
2	_	clc;			diffx
3					k
4	-	x(1)=2;	%Given x_0 = 2		x
5					₩ xr
			%For 7 iterates		
	-	$\mathbf{x}(k+1) = (5/6) * (\mathbf{x}(k) + ((3/5) / (\mathbf{x}(k)^5)));$	%Calculated via Newtons Method	-	
		L'end			
9					
10		format longe			
11		x.			
12					
13					
14		xr(1)=2;			
15		<pre>diffx=diff(x');</pre>			
16		□ 6-1 -1-2	9 E 7 it		
17			%For 7 iterates		
18 19		xr(k+1) = (5/6) * (diffx(k) + ((3/5) / (diffx(k)))	5))); scalculated via Newtons Method		
		- end			
20 21		format longe			
22		xr'			
23		XI.			
23					
_		TMP 1	,		
Со	mma	nd Window	(ூ	
				ூ	
	ans			•	
		=		€	
		= 2.000000000000000e+00		•	
		= 2.00000000000000000e+00 1.6822916666666667e+00		•	
		= 2.00000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00		•	
		= 2.00000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00		•	
		= 2.00000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00		•	
		= 2.00000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00		•	
		= 2.00000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00		•	
		2.000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00		•	
		2.000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00		•	
		2.000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00		•	
	ans	2.000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00		•	
	ans	2.000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00		•	
	ans	2.000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00		•	
	ans	2.000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00		•	
	ans	2.000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00		•	
	ans	= 2.0000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00 = 2.00000000000000000e+00 -1.547286487014126e+02 -5.870011818839581e+02 -4.950266193585587e+03 -3.446920610958366e+05		•	
	ans	= 2.000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00		•	
	ans	= 2.0000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00 = 2.00000000000000000e+00 -1.547286487014126e+02 -5.870011818839581e+02 -4.950266193585587e+03 -3.446920610958366e+05 -3.042887720150964e+09 -4.195991932388753e+17		•	
	ans	= 2.000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00		•	
	ans	= 2.0000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00 = 2.00000000000000000e+00 -1.547286487014126e+02 -5.870011818839581e+02 -4.950266193585587e+03 -3.446920610958366e+05 -3.042887720150964e+09 -4.195991932388753e+17		9	
	ans	= 2.0000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00 = 2.00000000000000000e+00 -1.547286487014126e+02 -5.870011818839581e+02 -4.950266193585587e+03 -3.446920610958366e+05 -3.042887720150964e+09 -4.195991932388753e+17		9	
	ans	= 2.0000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00 = 2.00000000000000000e+00 -1.547286487014126e+02 -5.870011818839581e+02 -4.950266193585587e+03 -3.446920610958366e+05 -3.042887720150964e+09 -4.195991932388753e+17		•	
	ans	= 2.0000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00 = 2.00000000000000000e+00 -1.547286487014126e+02 -5.870011818839581e+02 -4.950266193585587e+03 -3.446920610958366e+05 -3.042887720150964e+09 -4.195991932388753e+17		•	
	ans	= 2.0000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00 = 2.00000000000000000e+00 -1.547286487014126e+02 -5.870011818839581e+02 -4.950266193585587e+03 -3.446920610958366e+05 -3.042887720150964e+09 -4.195991932388753e+17		•	
	ans	= 2.0000000000000000e+00 1.682291666666667e+00 1.439017379444474e+00 1.280210024488632e+00 1.212241513001959e+00 1.201197248087276e+00 1.200937096145414e+00 1.200936955176044e+00 = 2.00000000000000000e+00 -1.547286487014126e+02 -5.870011818839581e+02 -4.950266193585587e+03 -3.446920610958366e+05 -3.042887720150964e+09 -4.195991932388753e+17		9	

[-0.3177;-0.2433;-0.15... 7 [2,1.6823,1.4390,1.280... [2,-154.7286,-587.001...

[2;-154.7286;-587.001...

Value

$$f(x) = x^{\delta} - 3, \quad x_{\circ} = 1, \quad x_{\circ} = 2, \quad 10 \text{ iterates}$$

$$x_{n_1} = x_n - (x'-3)^{\circ} \left[\frac{x_n - x_{n-1}}{(x_n'^{\circ}-3)^{\circ} - (x_{n-1}'^{\circ}-3)^{\circ}} \right], \quad n \ge 1$$

3.)
$$\cdot \cdot \cdot f(x) = x' - 3$$
 $x_{n,1} = Px_n + (1-P) - \frac{3}{x_n}$

From 1)
$$\rightarrow \left(\frac{5}{6}\right)(x_n + \frac{3/5}{x_n^5}) = Px_n + (1-P)\frac{3}{x_n^5}$$

$$= \frac{(5 \times 1) (x_n^5) - 3(5)}{6 \times 10^5} + \frac{3}{x_n^5}$$

Col 1

Value

10

[1;2;23.3686;-3.5982;6...

[1;-0.9683;0.0277;0.21...

[1,2,1.0317,1.0594,1.2...

[1,2,23.3686,-3.5982,6...

```
P_1.m × P_2.m × P_3.m × +
                                                                                                             Name A
       clear all;
                                                                                                            ans ans
2 -
       clc;
                                                                                                            ⊞ k
                                                                                                            p
x
 3
 4 -
                                               Let x_0 = 2
       x(1) = 2;
 5 -
       p=1/2;
 6
7 - for k=1:20
8 -
           x(k+1)=p*x(k)+(1-p)*(3/(x(k)^5)); %Calculated via Newtons Method
9 -
10
11 -
       format longe
12 -
       x'
       diff(x)
13 -
14
     - 8 (
       Part 1.)
16
17
           Yes it converges to alpha. With 3 iterates per decade convergence
           appears to be constant/linear.
18
19
       Part 2.)
           In the case of P=1/2, the sequence oscillates due to the
20
21
           derivative of iteration at alpha being negative. This leads to
22
           the error (x n - alpha) changing in sign as n varies.
      -8}
24
                                                                                                         0
Command Window
       2.077880595321859e+00
       1.077665020870714e+00
       1.570814994037035e+00
       9.422508320832296e-01
```

Value

20

0.5000

20x1 double

1x21 double

```
2.490694021353438e+00
       1.260996110745061e+00
       1.100957859680733e+00
       1.477816335256439e+00
       9.517166551621943e-01
  ans =
      -9.531250000000000e-01
       6.694984195303078e-01
      -7.574860402931115e-01
       1.370903591874298e+00
      -1.143042716818646e+00
       4.385886270138628e-02
      -8.381472200294260e-02
       1.828570243173104e-01
      -3.039092229106752e-01
       8.081346687414903e-01
      -8.446200384791468e-01
       1.088625768661589e+00
      -1.000215574451146e+00
       4.931499731663216e-01
      -6.285641619538057e-01
       1.548443189270209e+00
      -1.229697910608377e+00
      -1.600382510643283e-01
       3.768584755757063e-01
      -5.260996800942446e-01
fx >>
```