Normal subgroups!

Spencer Bagley

With many thanks to Matthew Macauley, http://www.math.clemson.edu/~macaule/

19 Feb 2025

Goals for today:

- 1. Define what normal subgroups are
- 2. See some examples
- 3. Learn some properties of normal subgroups

2 / 21

Review of last time!

Cosets!

Definition

If H < G, then a left coset is a set

$$xH = \{xh \mid h \in H\},\$$

for some fixed $x \in G$ called the representative.

Similarly, we can define a right coset as

$$Hx = \{ hx \mid h \in H \}.$$

Left vs. right cosets

- The **left coset** rH in D_4 : first go to r, then traverse all "H-paths".
- The right coset Hr in D_4 : first traverse all H-paths, then traverse the r-path.

$$rH = r\{1, f\} = \{r, rf\} = rf\{f, 1\} = rfH$$

$$rH = r\{1, f\} = \{r, rf\} = rf\{f, 1\} = rfH \qquad \qquad Hr = \{1, f\}r = \{r, r^3f\} = \{f, 1\}r^3f = Hr^3f$$

Because of our convention that arrows in a Cayley graph represent right multiplication:

- left cosets look like copies of the subgroup,
- right cosets are usually "scattered"

Key point

Left and right cosets are generally different.

Overview of left and right cosets of $\langle f \rangle$

- rH and Hr are different
- r^2H and Hr^2 are the same
- r^3H and Hr^3 are different

Properties of cosets

Proposition

For any subgroup $H \leq G$, the (left) cosets of H partition the group G: every element $g \in G$ lives in exactly one (left) coset of H. ((Left) cosets never overlap.)

Proposition

For any subgroup $H \leq G$, the (left) cosets are all the same size, which is therefore |H|.

Proposition

For any subgroup $H \leq G$, there are always the same number of left cosets as there are of right cosets.

Definition

The index of a subgroup H in G, written [G:H], is the number of cosets of H in G.

Lagrange's theorem

If H is a subgroup of a finite group G, then $|G| = [G : H] \cdot |H|$.

A different subgroup of D_4 , $N = \langle r \rangle$

Since this subgroup is already half of the big group, every left coset has to be a right coset.

$$fN = f\{1, r, r^2, r^3\} = \{f, fr, fr^2, fr^3\}$$

$$Nf = \{1, r, r^2, r^3\}f = \{f, rf, r^2f, r^3f\}$$

Informal definition

A subgroup for which every left coset is also a right coset is called normal.

Caveat!

Equality of cosets xK = Kx as sets is different from equality of elements xk = kx. Example here: $fr \in fN$ is different from $rf \in Nf$, but that's okay because $fr = r^3f$ shows up later in Nf.

Normal subgroups!

Normal subgroups!

Formal definition

A subgroup H is a normal subgroup of G if gH = Hg for all $g \in G$. We write $H \subseteq G$.

Equivalent definition

... if $gHg^{-1} = H$ for all $g \in G$. (More on this version later.)

Examples of normal sugroups

We've seen cases where we know a subgroup will be normal without having to check.

1. The subgroup H = G is always normal in G. The only left coset is also the only right coset:

$$eG = G = Ge$$

2. The subgroup $H = \{e\}$ is always normal. The left and right cosets are singleton sets:

$$gH = \{g\} = Hg$$

- 3. Subgroups H of index 2 are normal. The two cosets (left or right) are H and G-H.
- 4. Subgroups of abelian groups are always normal, because for any $H \leq G$,

$$aH = \{ah \mid h \in H\} = \{ha \mid h \in H\} = Ha.$$

- 5. The center Z(G) is always normal, for the same reason as above.
- 6. Relatedly, any subgroup of Z(G) is always normal.

Normal subgroups in D_4

From our explorations, we found:

- $\langle r \rangle \triangleleft D_4$ (because it has index 2!)
- $\langle r^2, f \rangle \triangleleft D_4 \text{ (index 2!)}$
- - (Also, it's the only guy who's a subgroup of 3 different groups)

Normalizers

Okay, well, if $H \leq G$ isn't normal, then a natural followup question is:

"How many left cosets of H are right cosets?"

Partition of G by the left cosets of H

Partition of G by the right cosets of H

- "Best case" scenario $(H \subseteq G)$: all of them
- "Worst case" scenario: only H (I mean for sure the identity coset eH = He)
- In general: somewhere between these two extremes

Definition

The normalizer of H, denoted $N_G(H)$, is the set of elements $g \in G$ such that gH = Hg:

$$N_G(H) = \{g \in G \mid gH = Hg\},\$$

i.e., the union of reps of left cosets that are also reps of right cosets.

Homework

Prove that $N_G(H) \leq G$, and also that $H \leq N_G(H)$.

Tricks for spotting normal subgroups!

14 / 21

How to check if a subgroup is normal

If gH = Hg, then right-multiplying both sides by g^{-1} yields $gHg^{-1} = H$.

This gives us a new way to check whether a subgroup H is normal in G.

Useful remark

The following are equivalent ("TFAE") to a subgroup $H \leq G$ being normal:

(i)
$$gH = Hg$$
 for all $g \in G$;

(ii)
$$gHg^{-1} = H$$
 for all $g \in G$;

("only one conjugate subgroup")

(iii)
$$ghg^{-1} \in H$$
 for all $h \in H$, $g \in G$;

("closed under conjugation")

Proof

- (i) \Leftrightarrow (ii): Boringly obvious. (ii) \Rightarrow (iii): Also boringly obvious.
- $(iii) \Rightarrow (ii)$: Interesting; homework. :)

Sometimes, one of these methods is *much* easier than the others!

- to show $H \not \subseteq G$, find just one element $h \in H$ for which $ghg^{-1} \not \in H$ for some $g \in G$.
- if G has a unique subgroup of size |H|, then H must be normal. (Why?)

Conjugate subgroups

For a fixed element $g \in G$, the set

$$gHg^{-1} = \left\{ ghg^{-1} \mid h \in H \right\}$$

is called the conjugate of H by g.

Homework

For any $g \in G$, the conjugate gHg^{-1} is a subgroup of G.

Observation

 $|gHg^{-1}| = |H|$. (Proof: Look at the definition.)

Later, we'll prove that H and gHg^{-1} are isomorphic subgroups.

The subgroup lattice of A_4

I am highlighting the following three subgroups of A_4 :

$$N = \langle (12)(34), (13)(24) \rangle = \{e, (12)(34), (13)(24), (14)(23)\} \cong V_4$$

 $H = \langle (123) \rangle = \{e, (123), (132)\} \cong C_3$
 $K = \langle (12)(34) \rangle = \{e, (12)(34)\} \cong C_2$

Who could possibly be conjugate to N? to H? to K? Who could possibly be $N_{A_4}(N)$? $N_{A_4}(H)$? $N_{A_4}(K)$?

Two pretty good reasons why N is normal

Useful remark

The following are equivalent ("TFAE") to a subgroup $H \leq G$ being normal:

- (i) gH = Hg for all $g \in G$; ("left cosets are right cosets")
- (ii) $gHg^{-1} = H$ for all $g \in G$; ("only one conjugate subgroup")
- (iii) $ghg^{-1} \in H$ for all $h \in H$, $g \in G$; ("closed under conjugation")
 - 1. N is the only subgroup of its size in the subgroup lattice of A_4 , so definitely $qNq^{-1}=N$
 - 2. $N_{A_4}(N)$ has to be between N and A_4 in the lattice, so it's either N itself or all of A_4 .
 - \blacksquare So, pick something outside of N and see if it normalizes N.

19 Eeb 2025

Three subgroups of A_4

The normalizer of each subgroup consists of the elements in the blue left cosets.

Here, take a = (123), x = (12)(34), z = (13)(24), and b = (234).

(124)	(234)	(143)	(132)
(123)	(243)	(142)	(134)
	е	(12)(34)	(13)(24)	(14)(23)

 $[A_4: N_{A_4}(N)] = 1$ "normal"

(124)	(234)	(143) (132)
(123)	(243)	(142) (134)
е	(12)(34)	(13)(24) (14)(23)

 $[A_4:N_{A_4}(K)]=3$ "moderately unnormal"

(14)(23)	(142)	(143)
(13)(24)	(243)	(124)
(12)(34)	(134)	(234)
е	(123)	(132)

 $[A_4:N_{A_4}(H)]=4$ "fully unnormal"

The conjugacy class of a subgroup

Proposition

Conjugation is an equivalence relation on the set of subgroups of G.

Proof

We need to show that conjugacy is reflexive, symmetric, and transitive.

- Reflexive: $eHe^{-1} = H$.
- **Symmetric**: Suppose H is conjugate to K, by $aHa^{-1} = K$. Then K is conjugate to H:

$$a^{-1}Ka = a^{-1}(aHa^{-1})a = H.$$

Transitive: Suppose $aHa^{-1}=K$ and $bKb^{-1}=L$. Then H is conjugate to L:

$$(ba)H(ba)^{-1} = b(aHa^{-1})b^{-1} = bKb^{-1} = L.$$

Definition

The set of all subgroups conjugate to H is its conjugacy class, denoted

$$\mathsf{cl}_G(H) = \{gHg^{-1} \mid g \in G\}.$$

√

The end!