

STACKING

What is stacking?

Benefit of stacking

How stacking works

Stacking in bagging's perspective

Stacking with reinforcement learning

Meta learning

Code

WHAT IS STACKING?

STACKING IS AN ENSEMBLE LEARNING
TECHNIQUE THAT COMBINES MULTIPLE
MACHINE LEARNING MODELS TO IMPROVE
PREDICTIVE PERFORMANCE. IT WORKS BY
TRAINING A "META-MODEL" TO LEARN HOW TO
BEST COMBINE THE PREDICTIONS FROM
SEVERAL BASE MODELS.

BENEFIT OF STACKING

	Benefit of stacking
Supervised learning	Improve predictive performance(Improve generalization)(Robustness to overfitting)Adaptability
Reinforcement learning	Improve policy performanceAdaptability

- Boostrapping
- Training multiple models
- Predictions
- Meta-learner
- Final prediction

The Process of Stacking

STACKING IN BAGGING'S PERSPECTIVE

STACKING IN BAGGING'S PERSPECTIVE

- More ready to adopt to new concept (new data distribution)
- Stacking mechanism in adoptation is like changing original data distribution of base model to new data distribution.

STACKING IN BAGGING'S PERSPECTIVE

STACKING WITH SUPERVISED LEARNING

Classification

Regression

STACKING WITH SL -CLASSIFICATION

STACKING WITH SL -REGRESSION

STACKING WITH REINFORCEMENT LEARNING


```
mirror object to mirror
mirror_object
peration == "MIRROR_X":
mirror_mod.use_x = True
mirror_mod.use_y = False
mirror_mod.use_z = False
 _operation == "MIRROR_Y"
Irror_mod.use_x = False
lrror_mod.use_y = True
 lrror_mod.use_z = False
 _operation == "MIRROR_Z";
 Irror_mod.use_x = False
 lrror_mod.use_y = False
 lrror_mod.use_z = True
 selection at the end -add
  _ob.select= 1
  er ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modifier
   irror ob.select = 0
  bpy.context.selected_ob
  mta.objects[one.name].se
 pint("please select exactle
  OPERATOR CLASSES ----
   vpes.Operator):
    X mirror to the selected
   ject.mirror_mirror_x"
 ext.active_object is not
```

CODE

• Stacking – SL.ipynb

REFERENCE

- https://www.analyticsvidhya.com/blog/2023/01/ensemble-learning-methods-bagging-boosting-and-stacking/
- https://machinelearningmastery.com/meta-learning-in-machine-learning/
- https://commons.wikimedia.org/wiki/File:ML_dataset_training_validation_test_sets.png