INTRODUCTION AND LOGISTICS

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Instructor

- □ Mahdi Nazm Bojnordi
 - Assistant Professor of School of Computing
 - □ PhD degree in Electrical Engineering
- □ Research in Computer Architecture
 - Novel Memory Technologies
 - Energy-Efficient Computing
- □ Office Hours
 - Please email me for appointment
 - MEB 3418
- Class webpage: http://cs.utah.edu/~bojnordi/teaching.html

Teaching Assistants

- □ Anirban Nag
 - Email: anirban@cs.utah.edu
 - □ Office Hours: Monday 3:00-4:30 PM
 - MEB 2180
- □ Manikanth Miryala
 - Email: manikanth.miryala@utah.edu
 - Office Hours: Wednesday 10:00-11:30 AM
 - □ CADE Lab.

Resources and Requirements

- Textbook: Computer Architecture A
 Quantitative Approach 5th Edition, John Hennessy and David Patterson
- Pre-requisite:CS/ECE 3810 orequivalent

Course Expectation

- We use Canvas for homework submissions, grades, and homework announcements.
- □ Grading

	Fraction	Notes
Assingments	50%	Weekly homework assignments
Midterm Exam	20%	In-class, October 18th
Final Exam	30%	Wednesday, December 14th
Class Participation	0-10%	Questions and answers in class

□ Good news: we will drop your lowest assignment score.

Academic Integrity

- □ Do NOT cheat!!
 - Please read the Policy Statement on Academic Misconduct, carefully.
 - We have no tolerance for cheating
- Also, read to the College of Engineering Guidelines for disabilities, add, drop, appeals, etc.
- For more information, please refer to the important policies on the class webpage.

Why CS/ECE 6810?

- Need another qualifier/graduation requirement?
- □ You plan to become a Computer Architect?
- Understand what is inside a modern processor?
- Want to use the knowledge from this course in your own field of study?
- Understand the technology trends and recent developments for future computing?

Estimated Class Schedule

- □ Introduction and Performance Metrics
- Instruction Set Architecture and Pipelining
- □ Instruction-Level Parallelism
- Compiler Optimization
- Dynamic Instruction Scheduling
- □ Memory System Design
- Data Parallel Processors (VLIW and GPU)
- Interconnection Networks
- □ Embedded Systems

What is Computer Architecture?

Computer systems are everywhere ...

What is Computer Architecture?

What is inside modern processors ...

VLSI Circuits
Hardware Implementation

Software Applications OS and Compiler

What is Computer Architecture?

 Computer architecture is the glue between software and VLSI implementation

VLSI Circuits
Hardware Implementation

Software Applications OS and Compiler

Growth in Processor Performance

Source: Hennesy & Patterson Textbook

Growth in Processor Performance

- Main sources of the performance improvement
 - Enhanced underlying technology (semiconductor)
 - Faster and smaller transistors (Moore's Law)
 - Improvements in computer architecture
 - How to better utilize the additional resources to gain more power savings, functionalities, and processing speed.

What are New Challenges?

- □ Resources (transistors) on a processor chip?
 - Not really, billions of transistors on a single chip.
- Can we use all of the transistors?
 - Due to energy-efficiency limitations, only a fraction of the transistor can be turned on at the same time!
- □ Who is affected?
 - Server computers by the peak power
 - Mobile and wearables due to energy-efficiency