Selection

What is the selection problem?

It is the problem of finding the kth smallest key in an array of keys.

- smallest key: k = 1
- largest key: k = n
- median key: k = n/2

Solutions

- † Find smallest, Find second smallest, ..., Find k'th smallest O(kn) time \Longrightarrow total: $O(n^2)$
- † (1) Sort the array
 - (2) find the key in the k'th place
 - $\implies O(n \log n)$

Selection by partition

```
Select(X, L, R, k)
```

```
\begin{array}{l} \textit{begin} \\ \textit{if } L < R \textit{ then} \\ \textit{M} := \textit{partition}(X, L, R) \\ \textit{if } (M - L + 1) > k \textit{ then} \\ \textit{Select}(X, L, M - 1, k) \\ \textit{else if } (M - L + 1) < k \textit{ then} \\ \textit{Select}(X, M + 1, R, k - (M - L + 1)) \end{array}
```

Call Select(X, 1, n, k)

end

The kth smallest key is in the kth place of X

Complexity: worst case

$$T(n) = O(n^2)$$

Complexity: average case

$$T(n) = n - 1 + \frac{1}{n} \sum_{i=1}^{n} T(i-1)$$

With an analysis similar to that of quicksort, we can show that T(n) = O(n).

Note: If
$$T(n) = n - 1 + \frac{2}{n} \sum_{i=1}^{n} T(i-1)$$
, then $T(n) = O(n \log n)$.

Do we really need to use sorting?

Can we do better than $O(n \log n)$ in worst case?

A selection algorithm

Input: S: a set of n keys

k: an integer such that $1 \le k \le n$

Output: the kth smallest key in S.

Method: Select(S, k)

1. Divide the keys in S into sets of five each and find the median of each set.

2. Let M be the set of all medians.

Find the median m^* of M. (How? Recursively!)

Select $(M, \lceil |M|/2 \rceil)$ |M| = n/5

 \implies all keys in $C \leq m^*$ and all keys in $B \geq m^*$

Number of keys in $A \cup B \cup D \le$

$$\leq \frac{2}{5}n + (\frac{3}{5}n)/2 = \frac{2}{5}n + \frac{3}{10}n = \frac{7}{10}n.$$

Similarly, number of keys in $A \cup C \cup D \leq \frac{7}{10}n$.

3. Construct

$$S_1 = C \cup \{x | x \in A \cup D \text{ and } x \leq m^*\} \cup \{m^*\}$$

 $S_2 = B \cup \{x | x \in A \cup D \text{ and } x > m^*\}$

4.

If $k = |S_1|$ then

 m^* is the kth smallest key.

else if $k < |S_1|$ then

$$Select(S_1, k)$$

$$(|S_1| \le \frac{7}{10}n)$$

else $(k > |S_1|)$

$$Select(S_2, k - |S_1|)$$

$$(|S_2| \le \frac{7}{10}n)$$

Complexity (worst case)

Step 1) $\frac{6}{5}n$ key comparisons

Step 2) $T(\frac{n}{5})$ key comparisons

Step 3) $\frac{2}{5}n$ key comparisons

Step 4) $T(\frac{7}{10}n)$ key comparisons

Time complexity:

$$T(n) \le 6, \quad n \le 5$$

$$T(n) = \frac{6}{5}n + T(\frac{1}{5}n) + \frac{2}{5}n + T(\frac{7}{10}n), \quad n > 5$$

We can solve it by guessing: $T(n) \le 16n$

Proof:

 $n \leq 5$, obvious.

Assume it is true for all integers less than n.

$$T(n) = \frac{6}{5}n + T(\frac{1}{5}n) + \frac{2}{5}n + T(\frac{7}{10}n)$$

$$\leq 1.2n + 0.2n \times 16 + 0.4n + 0.7n \times 16$$

$$= 1.6n + 0.2n \times 16 + 0.7n \times 16$$

$$= 16n$$

Find the median of a set of five keys (with 6 comparisons)

 x_1, x_2, x_3, x_4, x_5

(1) $X_1 : X_2$ (2) $X_3 : X_4$

 X_3

 X_4

 $X_1 : X_3$ (3)

 $X_1 \geq X_2 \\$

 X_1 \geq X₂

 X_1

 $\stackrel{\geq}{X_3}$ $\stackrel{\geq}{X_4}$

X₁ is out

 $X_2:X_5$ (4)

 $\begin{array}{c} X_2 \\ \geq \\ X_5 \end{array}$

(5) $X_2:X_3$

 X_3

 $\begin{array}{c} X_3 \geq X_4 \\ \geq \\ X_2 \\ \geq \\ X_5 \end{array}$

X₃ is out

 $X_2: X_4$ (6)

 $\begin{array}{c} X_2 \\ \geq \\ X_4 \end{array}$

 $X_2 \ge X_4$ \ge X_5 OR

 X_4 ≥ X₂ ≥ X₅

X₄ is median