Fall 2019

CS6501: Topics in Human-Computer Interaction

http://seongkookheo.com/cs6501 fall2019

Haptics

Seongkook Heo Nov 12, 2019

Haptic Exploratory Procedure

LATERAL MOTION / PRESSURE / **TEXTURE HARDNESS** STATIC CONTACT / UNSUPPORTED **TEMPERATURE** HOLDING / WEIGHT ENCLOSURE / CONTOUR GLOBAL SHAPE, FOLLOWING / VOLUME GLOBAL SHAPE. **EXACT SHAPE** FUNCTION TEST / PART MOTION TEST / SPECIFIC **FUNCTION** PART MOTION

Klatzky, R. L., Lederman, S. J., Pellegrino, J., Doherty, S., McClosky, B., & Goodale, M. A. (1990). Procedures for haptic object exploration vs. manipulation. *Vision and action: The control of grasping*, 110-127.

Haptics

- Haptic: adj. relating to or based on the sense of touch
 - from the Greek haptesthai (to grasp, touch)

Cutaneous

Texture
Temperature
Slip
Vibration

Kinesthetic

Location Motion Force

Haptics

- Haptic: adj. relating to or based on the sense of touch
 - from the Greek haptesthai (to grasp, touch)

Kinesthetic

Location Motion Force

Brief History of Haptics Research

PHANToM Haptic Interface

6-DOF Force feedback

Accurate force up to 3.3N

Now Geomagic Touch

Applications

Simple notification / Feedback

Education and Training

Teleoperation

U.S. Air Force photo by Airman 1st Class Bailee A. Darbasie

Applications

Professional design and engineering

From 3D Systems Touch
https://www.3dsystems.com/haptics
-devices/touch

Entertainment

Thor's Hammer: An Ungrounded Force Feedback Device Utilizing Propeller-Induced Propulsive Force

Seongkook Heo1, Christina Chung2, Geehyuk Lee3, and Daniel Wigdor1

¹ DGP Lab, University of Toronto, Toronto, Ontario, Canada, {seongkook, daniel}@dgp.toronto.edu
² University of Toronto, Toronto, Ontario, Canada, chr.chung@mail.utoronto.ca
³ HCI Lab, KAIST, Daejeon, Republic of Korea, geehyuk@gmail.com

Figure 1. (a) Thor's Hammer held in a user's hand and (b) a close-up of the hammer. (c) The design of Thor's Hammer enables six motors and propellers to create 3-DOF force feedback of up to 4 N without grounding.

ABSTRACT

We present a new handheld haptic device, Thor's Hammer, which uses propeller propulsion to generate ungrounded, 3-DOF force feedback. Thor's Hammer has six motors and

INTRODUCTION

Virtual reality (VR) allows users to engage with compelling experiences in ways that are otherwise not possible. Advances in graphical processing, displays, IMU

Thank you!