11 - Naive Bayes

Text Classification

- **input** a document d and a fixed set of classes $C = \{c_1, c_2, ..., c_i\}$
- ullet output a predicted class $c\in C$
- classification methods hand-coded rules
 - rules based on combinations of words or other features
 - o accuracy can be high, if rules carefully refined by expert
 - o but building and maintaining these rules is expensive
- *classification methods supervised machine learning
 - \circ **input** a document d, a fixed set of classes $C=\{c_1,c_2,...,c_j\}$, and a training set of m hand-labeled documents $(d_1,c_1),...,(d_m,c_m)$
 - \circ **output** a learned classifier $\gamma:d\Rightarrow c$
 - o any kind of classifier
 - naive bayes
 - logistic regression
 - neural networks
 - k-nearest neighbors
 - etc

Naive Bayes Classifier

- intuition for Naive Bayes simple classification method based on Bayes rule
 - orelies on very simple representation of document, bag of words
- ullet Bayes' Rule for a document d and a class c, $P(c|d) = rac{P(d|c)P(c)}{P(d)}$
- Naive Bayes Classifier
 - MAP = most likely class
 - $colonized o c_{MAP} = rg \max{(c \in C) P(c|d)}$
 - o using Bayes' Rule, can simplify to
 - $colon c_{MAP} = rg \max{(c \in C)P(d|c)P(c)}$
 - \circ where P(d|c) is the *likelihood* and P(c) is the *prior*
 - \circ d can be represented as features $x_1,...,x_n$
 - $\circ \ O(|X|^n imes |C|)$ parameters
 - could only be estimated if a very, very large number of training examples was available
 - we can just count the relative frequencies in a corpus

Multinomial Naive Bayes

- independence assumptions $P(x_1, x_2, ..., x_n | c)$
- bag of words assumption assume position does not matter
- **conditional independence** assume the feature probabilities $P(x_i|c_j)$ are independent given the class c

$$P(x_1, x_2, ..., x_n | c) = P(x_1 | c) imes P(x_2 | c) imes P(x_3 | c) imes ... imes P(x_n | c)$$

- $c_{NB} = rg \max \left(c \in C \right) \Pi(x \in X) \ P(x|c)$
- problem with multiplying lots of probabilities
 - can result in floating point underflow
 - o solution use logs since multiplications become additions
 - taking log does not change the ranking of classes
 - linear model max of a sum of weights, so it is a linear function of the inputs
- Naive Bayes is a linear classifier

Learning

• first attempt - use MLE with the frequencies in the data

$$_{\circ}\;P(w_{i}|c_{j})=rac{count(w_{i},c_{j})}{\Sigma(w\in V)\;count(w,c_{j})}$$

- \circ fraction of times word w_i appears among all words in documents of topic c_j
- \circ create *mega-document* for topic j by concatenating all docs in this topic
 - use frequency of w in mega-document
- o problem what if we have seen no training documents with a word classified in a class?
 - we will get 0
 - cannot condition away zero probabilities no matter what
 - solution Laplace Add-1 smoothing, same idea as with Markov assumptions, add one to all counts
- unknown words what do we do with them that appear in the test data but not in the training data or vocabulary?
 - ignore them remove from test document, pretend they were not there
 - do not include any probability for them at all
 - building an unknown word model does not help, knowing which class has more unknown words is not generally helpful
- stop words very frequent words like "the" and "a"
 - some systems ignore them
 - but usually does not help
 - sort vocabulary by word frequency in a training set
 - call the top 10 or 50 words the stopword list
 - remove all stop words from both training and test sets, as if they were never there to begin with

Relationship to Language Modeling

- generative model of NB graph of the words that are classified to a specific class
- NB classifiers can use any sort of feature
 - o i.e. URL, email address, dictionaries, network features
 - we use **only** word features
 - we use **all** of the words in the text, not a subset
 - o then NB has an important similarity to language modeling

• each class = a unigram language model

- \circ assigning each word: P(word|c)
- \circ assigning each sentence: $P(s|c) = \Pi \ P(word|c)$
- o example: each word and their probability it is positive class
 - I = 0.1, love = 0.1, this = 0.05, fun = 0.01, film = 0.1
 - P(sentence | positive) = 0.1 x 0.1 x 0.05 x 0.01 x 0.1 = 0.0000005
- example: using positive class from previous and given new negative class, which one assigns the higher probability to sentence?
 - negative: I = 0.2, love = 0.001, this = 0.01, fun = 0.005, film = 0.1
 - P(sentence | negative) = 10^{-9}
 - P(sentence | positive) > P(sentence | negative)

Naive Bayes Evaluation

• 2 by 2 confusion matrix

gold standard labels

		gold positive	<u> </u>	
system output	system positive	true positive	false positive	$\mathbf{precision} = \frac{tp}{tp + fp}$
labels	system negative	false negative	the second secon	
		$\mathbf{recall} = \frac{\mathbf{tp}}{\mathbf{tp} + \mathbf{fn}}$		$accuracy = \frac{tp+tn}{tp+fp+tn+fn}$

- (
- accuracy do not use as the evaluation metric
 - o useless, does not return what we are looking for
 - can get amazing accuracy for very dumb labeling that is not very representative of the data as a whole
 - use precision and recall instead
- **precision** percent of items the system detected (i.e. items the system labeled as positive) that are positive (according to human gold labels)
 - $\circ \ precision = rac{true \ positives}{true \ positives + false \ positives}$
- recall percent of items actually present in the input that were correctly identified by the system
 - $\circ \; recall = rac{true \; positives}{true \; positives + false \; negatives}$

- precision and recall, not accuracy, emphasize true positives finding the things that we are supposed to be looking for
- combined measure F a single number that combines both precision and recall

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

 \circ almost always use balanced F_1 (eta=1)

•
$$F_1 = \frac{2PR}{P+R}$$

Cross-Validation

- devsets development test sets
- train on training set, tune on devset, report on test set
 - avoids overfitting tuning to the test set
 - more conservative estimate of performance
 - paradox want as much data as possible for training and as much for dev, so how do you split it?
- cross-validation multiple splits
 - pool results over splits, compute pooled dev performance

Harms in Classification

- can have biases in classifiers that perpetuate negative stereotypes against a certain group of people, etc
 - or censorship of discussion about a group of people
- · causes of harms
 - problems in the training data, ML systems known to amplify biases in their training data
 - problems in the human labels
 - problems in the resources used (like lexicons)
 - problems in the model architecture (like what the model is trained to optimize)
- mitigation of these harms is an open research area
- model cards for each algorithm you release, document:
 - training algorithms and parameters
 - training data sources, motivation, and preprocessing
 - evaluation data sources, motivation, and preprocessing
 - intended use and users
 - model performance across different demographic or other groups and environmental situations