Bezugsysteme und Relativgeschwindigkeit

- 1. Auf dem Bahnsteig des Naunhofer Bahnhofs steht eine Person und wartet auf den nächsten Zug nach Leipzig. Während dessen fährt ein Zug durch den Bahnhof mit einer Geschwindigkeit von $80 \, \frac{\mathrm{km}}{\mathrm{h}}$. Eine weiter Person läuft auf dem Bahnsteig mit $5 \, \frac{\mathrm{km}}{\mathrm{h}}$ entlang der Fahrtrichtung des Zuges.
 - a) Gib die Geschwindigkeiten der Personen und des Zuges bzgl. des Bahnsteigs an.
 - b) Berechne die Geschwindigkeiten der Personen bzgl. des Zuges.
 - c) Berechne die Geschwindigkeiten des Zuges und der stehenden Person bzgl. der laufenden Person.
- 2. Ein Auto fährt mit 50 km/h eine Straße entlang und überholt einen mit 15 km/h fahrenden Radfahrer. In entgegengesetzter Richtung läuft ein Fußgänger mit 1,4 m/s.
 - a) Berechne die Relativgeschwindigkeit des Fußgängers und dem Auto bzgl. des Radfahrers.
 - b) Berechne die Relativgeschwindigkeit des Radfahrersund und dem Auto bzgl. Fußgängers.
- 3. Auf der Parthe fährt ein kleines Boot mit einer Geschwindigkeit von 3 $\frac{m}{s}$. Entlang der Fahrtrichtung des Bootes fährt ein Fahrradfahrer mit einer Geschwindigkeit von $20 \frac{km}{h}$. Ihm entgegen kommt ein Jogger gelaufen ($v=10 \frac{km}{h}$).
 - a) Berechne die Geschwindigkeit des Joggers und des Radfahrers bzgl. des Bootes.
 - b) Berechne die Geschwindigkeit des Bootes und des Joggers bzgl. des Radfahrers.
- 4. Cuxhaven und der Hamburger Hafen sind rund 100 km voneinander entfernt. In diesem Bereich hat die Elbe im Durchschnitt eine Fließgeschwindigkeit von 5 km/h (abhängig von Ebbe und Flut). Von Cuxhaven nach Hamburg fährt ein großes Containerschiff mit einer Geschwindigkeit von ca. $22 \, \frac{\mathrm{km}}{\mathrm{h}}$ (12 kn) gegenüber der Landschaft. Das Wasser der Elbe fließt flussabwärts von Hamburg in Richtung Cuxhaven. Neben dem Fluss fährt ein Radfahrer flussabwärts mit einer Geschwindigkeit von $25 \, \frac{\mathrm{km}}{\mathrm{h}}$ gegenüber der Landschaft. Außerdem joggt ein Sportler flussaufwärts auf Höhe des Schiffs mit einer Geschwindigkeit von $10 \, \frac{\mathrm{km}}{\mathrm{h}}$.

Berechne die Geschwindigkeit des Schiffes, des Joggers und des Radfahrers bzgl. der Elbströmung.

5. Ein Zug soll mit der Geschwindigkeit von 125 km/h fahren. Ein Fahrgast läuft im Zug nach vorn zum Speisewagen mit einer Geschwindigkeit von 3 km/h. Ihm rennt ein Kind entgegen, dessen Geschwindigkeit 7 km/h beträgt. Ergänze folgende Tabelle.

Körper	Bahnhof	Zug	Fahrgast	Kind
Bezugssystem				
Bahnhof	х			
Zug	-125 km/h	х		
Fahrgast		-3 km/h	х	
Kind		7 km/h		х