Statistical Analysis of Text - a mini-course Text classification

Mattias Villani

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

Overview

- **■** Text classification
- Regularization
- R's tm package (demo) [TMPackageDemo.R]

Supervised classification

- Predict the class label $s \in S$ using a set of features.
- Feature = Explanatory variable = Predictor = Covariate
- Binary classification: $s \in \{0, 1\}$
 - ▶ Movie reviews: $S = \{pos, neg\}$
 - ightharpoonup E-mail spam: $S = \{Spam, Ham\}$
 - ▶ Bankruptcy: $S = \{Not bankrupt, Bankrupt\}$
- Multi-class classification: $s \in \{1, 2, ..., K\}$
 - ▶ Topic categorization of web pages:
 S = {'News',' Sports',' Entertainment'}
 - ▶ POS-tagging: $S = \{VB,JJ,NN,...,DT\}$

Supervised classification, cont.

- Example data:
 - ▶ Larry Wall, born in British Columbia, Canada, is the original creator of the programming language Perl. Born in 1956, Larry went to ...
 - ▶ Bjarne Stroustrup is a 62-years old computer scientist ...

Person	Income	Age	Single	Payment remarks	Bankrupt
Larry	10	58	Yes	Yes	Yes
Bjarne	15	62	No	Yes	No
:	:	:	÷	i i	:
Guido	27	56	No	No	No

Classification: construct prediction machine

Features \rightarrow Class label

■ More generally:

 $\mathsf{Features} \to \mathsf{Pr}(\mathsf{Class\ label}|\mathsf{Features})$

Features from text documents

- Any quantity computed from a document can used as a feature:
 - Presence/absence of individual words
 - Number of times an individual word is used
 - Presence/absence of pairs of words
 - Presence/absence of individual bigrams
 - Lexical diversity
 - Word counts
 - ▶ Number of web links from document, possibly weighted by Page Rank.
 - etc etc

Document	has('ball')	has('EU')	has('political_arena')	wordlen	Lex. Div.	Topic
Article1	Yes	No	No	4.1	5.4	Sports
Article2	No	No	No	6.5	13.4	Sports
:	:	:		:	:	:
ArticleN	No	No	Yes	7.4	11.1	News

Constructing clever discriminating features is the name of the gamel

Supervised learning for classification

The Bayesian classifier

Bayesian classification

$$\underset{s \in S}{\operatorname{argmax}} p(s|x)$$

where $x = (x_1, ..., x_n)$ is a feature vector.

■ By Bayes' theorem

$$p(s|x) = \frac{p(x|s)p(s)}{p(x)} \propto p(x|s)p(s)$$

Bayesian classification

$$\underset{s \in S}{\operatorname{argmax}} p(x|s)p(s)$$

- p(s) can be easily estimated from training data by relative frequencies.
- **Main problem:** Even with binary features [has(word)] the outcome space of p(x|s) is huge (=data are sparse).

Naive Bayes

Naive Bayes (NB): features are assumed independent

$$p(x|s) = \prod_{j=1}^{n} p(x_j|s)$$

Naive Bayes solution

$$\underset{s \in S}{\operatorname{argmax}} \left[\prod_{j=1}^{n} p(x_{j}|s) \right] p(s)$$

With binary features, $p(x_j|s)$ can be easily estimated by

$$\hat{p}(x_j|s) = \frac{C(x_j,s)}{C(s)}$$

Example: $s = \text{news}, x_i = \text{has}('\text{ball'})$

$$\hat{\rho} \, (\mathsf{has}(\mathsf{ball}) | \mathsf{news}) = \frac{\mathsf{Number of news articles containing the word 'ball'}}{\mathsf{Number of news articles}}$$

Naive Bayes

- Continuous features (e.g. lexical diversity) can be handled by:
 - Replacing continous feature with several binary features (1 ≤lexDiv < 2, 2 ≤lexDiv ≤ 10 and lexDiv > 10)
 - Estimating $p(x_j|s)$ by a density estimator (e.g. kernel estimator)
- Finding the most discriminatory features. Sort from largest to smallest

$$\frac{p(x_j|s=pos)}{p(x_j|s=neg)} \text{ for } j=1,...,n.$$

- Problem with NB: features are seldom independent ⇒ double-counting the evidence of individual features.
- Advantages of NB: simple and fast, yet often surprising accurate classifications.

Multinomial regression

Logistic regression (Maximum Entropy/MaxEnt):

$$p(s = 1|x) = \frac{\exp(x'\beta)}{1 + \exp(x'\beta)}$$

- Classification rule: Choose s = 0 if p(s|x) < 0.5 otherwise choose s=1.
- ___ ... at least when consequences of different choices of s are the same. Loss/Utility function.
- Multinomial regression for multi-class data with K classes

$$p(s = s_j | \mathbf{x}) = \frac{\exp(\mathbf{x}' \beta_j)}{\sum_{k=1}^{K} \exp(\mathbf{x}' \beta_k)}$$

Classification

$$\underset{s \in \{s_1, \dots s_K\}}{\operatorname{argmax}} p(s|x)$$

- $P \times (S-1)$ number of coefficients
- Classification with text data is like any multi-class regression

Regularization - Variable selection

- Select a subset of the covariates.
- Old school: Forward and backward selection.
- New school: Bayesian variable selection.
- For each β_i introduce binary indicator I_i such that

$$I_i=1$$
 if covariate is in the model, that is $\beta_i \neq 0$ $I_i=0$ if covariate is in the model, that is $\beta_i=0$

- Use Markov Chain Monte Carlo (MCMC) simulation to approximate $Pr(I_i|Data)$ for each i.
- Example $S = \{\text{News}, \text{Sports}\}$. $\Pr(\text{News}|x)$.

	has('ball')	has('EU')	has('political_arena')	wordlen	Lex. Div.
$Pr(I_i Data)$	0.2	0.90	0.99	0.01	0.85

Regularization - Shrinkage

- **EXECUTE:** Keep all covariates, but **shrink** their β-coefficient to zero.
- Penalized likelihood

$$L_{Ridge}(\beta) = LogLik(\beta) - \lambda \beta' \beta$$

where λ is the penalty parameter.

- Maximize $L_{Ridge}(\beta)$ with respect to β . Trade-off of fit $(LogLik(\beta))$ against complexity penalty $\beta'\beta$.
- Ridge regression if regression is linear.
- The penalty can be motivated as a Bayesian prior $\beta_i \stackrel{iid}{\sim} N(0, \lambda^{-1})$.
- λ can be estimated by cross-validation or Bayesian methods.

Lasso - Shrinkage and variable selection

Replace Ridge penalty

$$L_{Ridge}(\beta) = LogLik(\beta) - \lambda \sum_{j=1}^{n} \beta_j^2$$

by

$$L_{Lasso}(\beta) = LogLik(\beta) - \lambda \sum_{j=1}^{n} |\beta_j|$$

- The β that maximizes $L_{Lasso}(\beta)$ is called the Lasso estimator.
- Some parameters are shrunked exactly to zero ⇒ Lasso does both shrinkage and variable selection.
- Lasso penalty is equivalent to a double exponential prior

$$p(\beta_i) = \frac{\lambda}{2} \exp(\lambda |\beta_i - 0|)$$

Support vector machines

- One of the best off-the-shelf classifiers around.
- Finds the line in covariate space that maximally separates the two classes.
- When the points are not linearly separable: add a slack-variable $\xi_i > 0$ for each observation. Allow misclassification, but make it costly.
- Non-linear separing curves can be obtained by basis expansion (think about adding x^2 , x^3 and so on)
- The kernel trick makes it possible to handle many covariates.
- Drawback: not so easily extended to multi-class.
- svm function in R-package e1071 [or nltk.classify.svm]

Linear SVMs

Regression trees and random forest

- Binary partitioning tree.
- At each internal node decide:
 - Which covariate to split on
 - Where to split the covariate ($X_j < c$. Trivial for binary covariates)
- The optimal splitting variables and split-points are chosen to minimize the mis-classification rate (or other similar measures).
- Random forest (RF) predicts using an average of many small trees.
- Each tree in RF is grown on a random subset of variables. Makes it possible to handle many covariates. Parallel.
- Advantage of RF: better predictions than trees.
- RF harder to interpret, but provide variable importance scores.
- R packages: tree and rpart (trees), randomForest (RF).

Regression trees

Evaluating a classifier: Accuracy and Error

Confusion matrix:

		Truth		
		Spam	Not Spam	
Decision	Spam	tp	fp	
	Not Spam	fn	tn	

- tp = true positive, fp = false positive
- fn = false negative, tn = true negative
- Accuracy is the proportion of correctly classified items

Accuracy =
$$\frac{tp + tn}{tp + tn + fn + fp}$$

Error is the proportion of wrongly classified items

$$Error = 1-Accuracy$$

Accuracy can be misleading

Accuracy is problematic when to is large. High accuracy can then be obtained by not acting at all!

		Truth		
		Spam	Not Spam	
Choice	Spam	0	0	
	Not Spam	100	900	

Evaluating a classifier: the F-measure

Confusion matrix:

		Truth		
		Spam	Good	
Choice	Spam	tp	fp	
	Good	fn	tn	

Precision = proportion of selected items that the system got right

$$Precision = \frac{tp}{tp+fp}$$

Recall = proportion of spam that the system classified as spam

$$\mathsf{Recall} = \frac{\mathsf{tp}}{\mathsf{tp} + \mathsf{fn}}$$

F-measure is a harmonic mean between Precision and Recall

$$F = \frac{1}{\alpha \frac{1}{Precision} + (1 - \alpha) \frac{1}{Recall}}$$