a) (21)2. · Zx = r = Cos (to to nx) + i Sn (to tonk)] n= Va2+62 = V(2)2 = 2. Zx = (2) = [Costo + 2 nk) + i Sen (+ 2 nk) | remplazando. K=0 ZK: (2) = [(2) = [(2) + 2 P(0)) + i Sen (1/2 + 2 P(0)) 7=(2)2[.co2(1/4)+iSen(1/4)] 20: (2) = [12 + ([2]]. = 1+1 -> primera ray.

$$R = 1.$$

$$2(n) = (2)^{\frac{1}{2}} \left[\cos \left(\frac{9_{2} + 2P}{2} \right) + i \operatorname{Sen} \left(\frac{9_{3} + 2P}{2} \right) \right]$$

$$2(n) = (2)^{\frac{1}{2}} \left[\cos \left(\frac{5P}{4} \right) + i \operatorname{Sen} \left(\frac{5P}{4} \right) \right]$$

$$2(n) = (2)^{\frac{1}{2}} \left[-\frac{\sqrt{2}}{2} + i \left(-\frac{\sqrt{2}}{2} \right) \right]$$

$$2(n) = -1 - i = \operatorname{Segunda raig}$$

$$b) (1 - \sqrt{3}i)^{\frac{1}{2}}$$

$$\frac{7}{2} = r_{2}$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3} = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3} = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3} = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3} = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3} = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3} = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3} = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3} = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3} = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3} = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3} = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3} = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3}i = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3}i = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3}i = \sqrt{4} = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3}i = \sqrt{4}i = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3}i = \sqrt{4}i = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3}i = \sqrt{4}i = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3}i = \sqrt{4}i = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3}i = \sqrt{4}i = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3}i = \sqrt{4}i = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3}i = \sqrt{4}i = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3}i = \sqrt{4}i = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3}i = \sqrt{4}i = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{1+3}i = \sqrt{4}i = 2$$

$$(1 - \sqrt{3}i)^{\frac{1}{2}} = \sqrt{4}i = 2$$

e)
$$(-1)^{\frac{1}{3}}$$
 $|2| = V$
 $|2| = V$

para
$$7 = 2$$
.

 $2(2) : \cos \left(\frac{2\pi(2)}{3}\right) + i \sin \left(\frac{2\pi(2)}{3}\right)$.

 $2(2) : \cos \left(\frac{4\pi}{3}\right) + i \sin \left(\frac{4\pi}{3}\right)$.

 $2(2) : -\frac{1}{2} + i \left(-\frac{\sqrt{3}}{2}\right) \Rightarrow tucura ray$.

4)
$$8^{6}$$
 $121 = 1 - 121 =$

para
$$\frac{2}{2}$$
.

 $2(n):(8)^6 \left[co \left(\frac{2n(2)}{6} \right) + i \sin \left(\frac{2n(2)}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[co \left(\frac{4n}{6} \right) + i \sin \left(\frac{4n}{6} \right) \right]$.

 $\frac{2}{2(n)}:(8)^2 \left[-\frac{i}{2} + i \left(\frac{\sqrt{3}}{3} \right) \right] = -\frac{\sqrt{2}}{2} + i \left(\frac{\sqrt{6}}{2} \right)$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(3)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(3)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(3)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(4)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(4)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(4)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(4)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(4)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(4)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(4)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(4)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(4)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(4)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(3)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(3)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(3)}{6} \right) + i \sin \left(\frac{2n/3}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(3)}{6} \right) + i \cos \left(\frac{2n(3)}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(3)}{6} \right) + i \cos \left(\frac{2n(3)}{6} \right) \right]$
 $\frac{2}{2(n)}:(8)^6 \left[cos \left(\frac{2n(3)}{6} \right) + i \cos \left(\frac{2n(3)}{6} \right) \right]$
 $\frac{2}{2}:(8)^6 \left[cos \left(\frac{2n(3)}{6} \right) + i \cos \left(\frac{2n(3)}{6} \right) \right]$
 $\frac{2}{2}:(8)^6 \left[cos \left(\frac{2n(3)}{6} \right) + i \cos \left(\frac{2n(3)}{6} \right) \right]$

```
72000 = (8)^{6} \left[ cop \left( \frac{2\pi(5)}{6} \right) + i Sm \left( \frac{2\pi(5)}{6} \right) \right]
2(5) = (8)^{6} \left[ cop \left( \frac{10\pi}{6} \right) + i Sm \left( \frac{10\pi}{6} \right) \right]
2(5) = (8)^{6} \left[ \frac{1}{2} + i \left( -\frac{13}{2} \right) \right] = \sqrt{2} - i \sqrt{6}
2(5) = (8)^{6} \left[ \frac{1}{2} + i \left( -\frac{13}{2} \right) \right] = \sqrt{2} - i \sqrt{6}
Sexta row
```