

Navee Project

Fashion products identification

Vassili Chesterkine Haoyi Han Carlos Santos García Nicolas Vitor Yuki Obara Yamakoshi Ke Zhang

Pôle Data Science - CentraleSupélec

Table of contents

- 1. Introduction
- 2. Problem statement
- 3. Conventional computer vision task
- 4. Representation learning
- 5. Other techniques
- 6. Preliminary results
- 7. Experiments and results

Introduction

- Few-shot learning (FSL): multiple applications e.g. character recognition, face detection for identification, etc.
 - Train models capable of classify objects with little data
- **Objective**: evaluate the possibility of using *pre-trained feature-extractors* to *categorize products* based on images with limited amounts of data
- Procedure
 - 1. Explored classical deep learning techniques to the Kaggle Fashion Dataset
 - 2. Few-shot learning techniques with few images per class

Problem statement - Few-shot classification task

Dataset:

$$D = (D_{support}, D_{query})$$

$$D_{support} = ((x_i, y_i)_{i \in I})$$

with $\forall i \in I$, x_i an image and y_i a label.

For every given value y of labels $\#\{i \in I \mid y_i = y\}$ is small, generally about 5.

N-way K-shot classification problem :

- N : number of classes
- K : number of samples per class
- Objective : find $\hat{h}_{N,K}: x_i \mapsto y_i$, based only on $D_{support}$.
- Evaluation : accuracy on D_{query}

Problem statement - Image retrieval task

- Idea: learn a representation of the images to cluster similar objects
- Given a query image and a support set of images from previously-unseen classes, retrieve all images of the support set that have the same label as the query image
- Train on D_{base} to learn the representation of images and use learned representation for FSL (similar to kNN)

Support dataset

Figure – Image retrieval task

Problem statement - Image retrieval task evaluation

Retrieval task: Evaluation by mean average precision (mAP)

• Average precision (AP): Compute for every sample (x_q, y_q) in D_{query} the average precision $AP(x_q)$ of a binary classifier that predicts whether or not each image x_s from the support dataset $D_{support}$ belongs to the same category y_q as x_q or not.

$$AP(x_q) = \sum_n (R_n - R_{n-1})P_n$$

where P_n and R_n are the precision and recall values at the n-th threshold.

• Mean average precision :

$$mAP = \frac{1}{\#D_{query}} \sum_{x_q \in D_{query}} AP(x_q)$$

Conventional computer vision task - Feature extraction

Feature extraction:

- Extract meaningful features from images for the process of classification
- 2 main approaches :
 - Convolutional Neural Networks: pre-trained models VGG16, ResNet-18 and ResNet-50
 - Histograms of Oriented Gradients: encode presence of edges and their direction by extracting location and orientation of gradients on the image

Figure – Oriented gradients obtained with a sock image from Kaggle dataset.

Figure – Kaggle Fashion Dataset

Conventional computer vision task - Multi-class classification

Multi-class classification:

- On CNNs: done automatically with fully-connected layers on top of the convolutional layers
- On HOG extractors: feature vectors pass through *k-nearest neighbors classifier* or *multi-layer perceptron*
- We also used ensemble learning techniques with multiple classifiers and finetuned pre-trained ResNet-50s

Representation learning - Introduction

Representation learning:

- Usage of "real" imperfect datasets of various product images from 7 brands, provided by Navee
- 3967 classes across 7 brands
- Learn a representation of images in an embedding space
- The chosen strategy should favor the creation of clusters of images from the same category

Figure – Examples of images in three Versace categories

Representation learning - Siamese Networks

Siamese Networks:

- Neural networks that contain two or more identical sub-networks, that share same characteristics and parameters
- Each sub-network is used to compute an embedding for an input, then all embeddings are compared with a loss function
- In sum, they learn a similarity function between inputs, which can be used to classify images with classes that were not in the training set

Representation learning - Loss functions

Contrastive loss:

• Uses pairs of inputs, positive (same class : y = 1) or negative (different classes : y = 0)

Contrastive loss expression

$$L = y \times d(x, x') + (1 - y) \times \max(0, m - d(x, x'))$$

with (x, x') an input pair of representations, d the Euclidean distance and m the margin.

Triplet loss:

• Uses triplets of inputs, an anchor sample x^a , a positive sample x^p (same class as the anchor) and a negative sample x^n (different class)

Triplet loss expression

$$L(x^{a}, x^{p}, x^{n}) = \left[d(x^{a}, x^{p}) + m - d(x^{a}, x^{n})\right]_{\perp}$$

Idea: push similar images close together and dissimilar images far from another in the embedding space

Representation learning - Triplet selection

Triplet selection:

- Only a selection of useful triplets is used for computing gradients, not all of them (too computationally intensive)
- Selecting semi-hard or hard triplets has a huge impact on performance
- Implementation: Given a mini-batch, we would compute all losses and select the top k % of greatest losses to compute gradients on, where k is a hyper-parameter that we selected
- Used in lieu of proper online selection because of computational power constraints

Figure – Types of triplets

Representation learning - Classification using embeddings

Classification using embeddings: using the outputs of the embedding functions, we can use these representations to classify unseen images, using 2 different methods:

- k-Nearest Neighbors (kNN): Use the embeddings of all images to identify the class of a given query image, based on kNN strategy
- Perceptron: Use an perceptron to classify images based on the embeddings, with only 1 hidden layer

Figure – Structure of the MLP : d is the dimension of the embeddings, h is the dimension of the hidden layer and n is the number of classes of the query set

Other techniques - Model-Agnostic Meta-Learning

Figure – Illustration of MAML training.

Model-Agnostic Meta-Learning:

- Algorithm to train a model on multiple learning tasks, for it to solve new learning tasks using only few training samples and few gradient descent steps
- Model-agnostic : any model that uses *gradient descent* can be utilized
- Training dataset : composed of Tasks, where each $Task \mathcal{T}_i$ is a N-way K-shot classification problem on its own, with a query image and a support set
- Training :
 - 1. For each $Task \mathcal{T}_i$, copy current parameter vector θ and do gradient descent to achieve θ'_i
 - 2. Update θ using gradient descent to minimize sum of losses $\mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$

Other techniques - Prototypical Networks

 $\label{eq:Figure-Illustration} Figure-Illustration of prototypical networks in the embedding space.$

Prototypical Networks:

• Learns to attribute a "prototypical" central point to each class in the embedding space

$$c_k = \frac{1}{|S_k|} \sum_{(x_i, y_i) \in S_k} f_{\phi}(x_i),$$

with S_k as the subset of support set for k-th class and f_{ϕ} as the encoder function.

 Classifies the query image by choosing the class whose prototype has minimal distance to the query's embedding

Preliminary results

Preliminary results:

- Pre-trained embeddings and HOG extractors had excellent performance on Kaggle data (especially HOG + MLP)
- Ensemble of 3 ResNet-50s also improved performance

	masterCategory	subCategory	articleType
ResNet-50	98%	94%	82%
HOG + kNN	98%	91%	80%

Table – Test accuracies obtained with the two main methods for Kaggle dataset images.

Experiments and results - Methodology

Methodology:

- Training on all brands images besides 50 articles from Versace and all images from Givenchy
- Checking retrieval performances on Versace support dataset (N=50)
- Checking retrieval performances on Givenchy support dataset (N=309)
- Data augmentation was applied

Experiments and results - Hyperparameter search

Figure – mAP on Versace suggests the relevance of using middle-sized models - an example of the explorations made.

Hyperparameter search:

- After testing, an optimal value was found for learning rate λ, p_{mining} and d on Siamese networks
- p_{same} and m were also explored, but weren't influential in results
- For CNNs, finetuning the whole pre-trained ResNet yielded the best result

Experiments and results - Retrieval task final results

Retrieval task final results:

Results on Versace (N = 50) and Givenchy (N = 309) support datasets. Only first 50 epochs are plotted, but contrastive loss was trained for another 40 epochs.

Experiments and results - Retrieval task final results

Prototypical network's results:

mAP	20-way	60-way	60-way
(%)	1-shot	1-shot	5-shot
VERSACE	26.46	24.97	28.29
Burberry	10.81	10.59	10.60
D&G	15.83	16.30	None
YSL	29.83	29.14	None

Table – mAP obtained using Prototypical Networks for VERSACE, Burberry, D&G and YSL on different FSL parameters

Prototypical Network's final results:

- Evaluated independently and respectively on four different brands, using a different methodology from other FSL models
- No apparent differences when changing the number of ways or shots
- Fail to obtain good enough results

Factors that may influence the training:

- Accessories & Ornaments
- Colour
- Encoder function

Experiments and results - Few-shot classification task 1/2

Few-shot classification task: in average, our networks have boosted by 23% the classification performance of our network on Versace's unseen data

Experiments and results - Few-shot classification task 2/2

MAML's final results:

- Evaluated on Versace, using the same methodology as other FSL model's
- Overall better performance than classical non-FSL methods, like pre-trained ResNet-18
- But fails to surpass other models

Conclusion

Conclusion:

- Explored computer vision techniques
- Proposed the use of siamese networks with margin losses to perform few-shot classification
- Obtained superior retrieval performance to existing deep learning off-the-shelf methods.
- Explored popular few-shot learning techniques

Further ideas:

 Self-supervised learning techniques could provide more data to build proper embeddings from

mAP Pipeline

Figure – Precision-recall curve

Givenchy few-shot classification

Ensemble

