Ciencias de Datos con R: Fundamentos Estadísticos

Ana M. Bianco, Jemina García y Mariela Sued.

Estimación No Paramétrica de la Densidad

Enfoque Paramétrico

- X v.a. continua con densidad f(x): queremos estimar f(x)
- Muestra Aleatoria: X_1, \ldots, X_n , i.i.d., $X_i \sim X$ donde $X_i \sim X$.
- Familia paramétrica: asumimos que f pertenece a una familia determinada y que sólo desconocemos sus parámetros

$$f \in \mathcal{M} = \{ f(\cdot, \theta), \theta \in \Theta \}.$$

Enfoque Paramétrico

- ullet X v.a. continua con densidad f(x): queremos estimar f(x)
- Muestra Aleatoria: X_1, \ldots, X_n , i.i.d., $X_i \sim X$ donde $X_i \sim X$.
- Familia paramétrica: asumimos que f pertenece a una familia determinada y que sólo desconocemos sus parámetros

$$f \in \mathcal{M} = \{ f(\cdot, \theta), \theta \in \Theta \}.$$

- Plug-in:
 - 1) $\widehat{\theta}_n$ estimador de θ
 - 2) En particular, $\widehat{\theta}_n$ EMV de θ

Enfoque Paramétrico

- X v.a. continua con densidad f(x): queremos estimar f(x)
- Muestra Aleatoria: X_1, \ldots, X_n , i.i.d., $X_i \sim X$ donde $X_i \sim X$.
- Familia paramétrica: asumimos que f pertenece a una familia determinada y que sólo desconocemos sus parámetros

$$f \in \mathcal{M} = \{ f(\cdot, \theta), \theta \in \Theta \}.$$

- Plug-in:
 - 1) $\widehat{\theta}_n$ estimador de θ

$$\Rightarrow \widehat{f} = f_{\widehat{\theta}}(x)$$

- 2) En particular, $\widehat{\theta}_n$ EMV de θ
- Así, por ejemplo:
 - $X \sim \mathcal{E}(\lambda), \ \hat{f}(x) = f_{\widehat{\lambda}}(x).$
 - $X \sim N(\mu, \sigma^2), \hat{f}(x) = f_{\widehat{\mu}, \widehat{\sigma}^2}(x).$

Ejemplo: Datos de Flux

 $\label{eq:hist} \begin{array}{ll} \mbox{hist} (\mbox{flux} , \mbox{freq=FALSE}, \mbox{ylim=c} (0\,,0\,.04)) \\ \mbox{curve} (\mbox{dgamma} (x\,, \mbox{ shape=alpha}.\mbox{MV}, \mbox{ rate} = \mbox{lambda}.\mbox{MV}) \, , \mbox{add=TRUE}, \\ \mbox{col="red"}, \mbox{lwd=2}, \mbox{main="Histograma_de_Flux"}) \end{array}$

Enfoque

X v.a. continua con densidad f(x)

Paramétrico: $X \sim F_{\theta}$

$$\hat{F}_{\theta} = \hat{F}_{\widehat{\theta}}$$

$$\widehat{f}(x) = f_{\widehat{\theta}}(x)$$

Enfoque

X v.a. continua con densidad f(x)

Paramétrico: $X \sim F_{\theta}$

No Paramétrico: $X \sim F$

$$\hat{F}_{\theta} = \hat{F}_{\widehat{\theta}}$$

$$\widehat{f}(x) = f_{\widehat{\theta}}(x)$$

$$\hat{F}_n =$$
 "la empírica"

$$\widehat{f}(x) = ?$$

Enfoque No Paramétrico

- X con densidad f(x): queremos estimar f(x)
- X_1, \ldots, X_n , i.i.d., $X_i \sim X$ donde $X_i \sim X$.
- ullet Queremos estimar f sin asumir una determinada forma: sólo asumimos que es f es suave.

Enfoque No Paramétrico

- X con densidad f(x): queremos estimar f(x)
- X_1, \ldots, X_n , i.i.d., $X_i \sim X$ donde $X_i \sim X$.
- Queremos estimar f sin asumir una determinada forma: sólo asumimos que es f es suave.
- La forma más sencilla: Histograma

Histograma

$$X_1, \ldots, X_n$$
, i.i.d., $X_i \sim X$ donde $X_i \sim X$

• Sea A_j una partición de intervalos o clases acotados (bins) disjuntos tales que:

$$\mathbb{R} = \cup_j \mathcal{A}_j$$

• Para cada $x \in \mathcal{A}_j$

$$\widehat{f}(x) = \frac{\#\{X_i : X_i \in \mathcal{A}_j\}}{n|\mathcal{A}_j|}$$

con $|\mathcal{A}_j|$ ancho del bin \mathcal{A}_j

Histograma

$$X_1, \ldots, X_n$$
, i.i.d., $X_i \sim X$ donde $X_i \sim X$

• Sea A_j una partición de intervalos o clases acotados (bins) disjuntos tales que:

$$\mathbb{R} = \cup_j \mathcal{A}_j$$

• Para cada $x \in \mathcal{A}_j$

$$\widehat{f}(x) = \frac{\#\{X_i : X_i \in \mathcal{A}_j\}}{n|\mathcal{A}_j|}$$

con $|\mathcal{A}_j|$ ancho del bin \mathcal{A}_j

- El histograma requiere dos parámetros:
 - i) ancho del bin
 - ii) <u>punto inicial del primer bin</u>

Vamos a las tareas de Clase: items 1 a 3.

Ejemplo: datos simulados

Desventajas del histograma

- el estimador de la densidad depende del punto inicial de los bins: para un número de bins fijo, la forma puede cambiar moviendo la ubicación de los bins
- la densidad estimada no es suave, es escalonada y esto no es propio de la densidad sino de la herramienta de estimación
- por estas razones, el histograma es usado sólo para visualización

Busquemos otra idea...

 X_1, \ldots, X_n , i.i.d., $X_i \sim X$ donde $X_i \sim X$

- ullet X con densidad f(x): queremos estimar f(x)
- ullet Queremos estimar f sin asumir una determinada forma: sólo asumimos que es f es suave.

Busquemos otra idea...

$$X_1, \ldots, X_n$$
, i.i.d., $X_i \sim X$ donde $X_i \sim X$

- X con densidad f(x): queremos estimar f(x)
- ullet Queremos estimar f sin asumir una determinada forma: sólo asumimos que es f es suave.
- Idea frecuentista: por la LGN

$$\mathbb{P}\left(X \in (x-h, x+h)\right) \approx \frac{\#\{X_i \in (x-h, x+h)\}}{n}$$

Busquemos otra idea...

$$X_1, \ldots, X_n$$
, i.i.d., $X_i \sim X$ donde $X_i \sim X$

- X con densidad f(x): queremos estimar f(x)
- Queremos estimar f sin asumir una determinada forma: sólo asumimos que es f es suave.
- Idea frecuentista: por la LGN

$$\mathbb{P}(X \in (x - h, x + h)) \approx \frac{\#\{X_i \in (x - h, x + h)\}}{n}$$

$$\mathbb{P}(X \in (x - h, x + h)) = \int_{x - h}^{x + h} f(t) dt$$

Aproximando analíticamente...

•
$$\mathbb{P}(X \in (x-h,x+h)) = \int_{x-h}^{x+h} f(t) dt$$

• Si h es pequeño y f continua en x ,

Aproximando analíticamente...

•
$$\mathbb{P}(X \in (x-h,x+h)) = \int_{x-h}^{x+h} f(t) dt$$

• Si h es pequeño y f continua en x ,

$$\int_{x-h}^{x+h} f(t) dt \approx 2hf(x)$$

$$X_1, \ldots, X_n$$
, i.i.d., $X_i \sim X$ donde $X_i \sim X$

•
$$\mathbb{P}(X \in (x-h,x+h)) \approx \frac{\#\{X_i \in (x-h,x+h)\}}{n}$$
 por la LGN

•
$$\mathbb{P}(X \in (x-h, x+h)) = \int_{x-h}^{x+h} f(t) dt$$

$$X_1, \ldots, X_n$$
, i.i.d., $X_i \sim X$ donde $X_i \sim X$

- $\mathbb{P}(X \in (x-h,x+h)) \approx \frac{\#\{X_i \in (x-h,x+h)\}}{n}$ por la LGN
- $\mathbb{P}(X \in (x-h, x+h)) = \int_{x-h}^{x+h} f(t) dt$
- ullet Si h es pequeño y f continua en x,

$$\mathbb{P}(X \in (x - h, x + h)) \approx 2h f(x)$$

 X_1, \ldots, X_n , i.i.d., $X_i \sim X$ donde $X_i \sim X$

- $\mathbb{P}(X \in (x-h,x+h)) \approx \frac{\#\{X_i \in (x-h,x+h)\}}{n}$ por la LGN
- $\mathbb{P}(X \in (x-h, x+h)) = \int_{x-h}^{x+h} f(t) dt$
- ullet Si h es pequeño y f continua en x,

$$\mathbb{P}\left(X \in (x - h, x + h)\right) \approx 2h f(x)$$

Entonces, podemos aproximar analíticamente

$$2h f(x) \approx \mathbb{P}\left(X \in (x - h, x + h)\right) \approx \frac{\#\{X_i \in (x - h, x + h)\}}{n}$$

 X_1, \ldots, X_n , i.i.d., $X_i \sim X$ donde $X_i \sim X$

- $\mathbb{P}(X \in (x-h,x+h)) \approx \frac{\#\{X_i \in (x-h,x+h)\}}{n}$ por la LGN
- $\mathbb{P}(X \in (x-h, x+h)) = \int_{x-h}^{x+h} f(t) dt$
- ullet Si h es pequeño y f continua en x,

$$\mathbb{P}\left(X \in (x - h, x + h)\right) \approx 2h f(x)$$

Entonces, podemos aproximar analíticamente

$$2h f(x) \approx \mathbb{P}\left(X \in (x - h, x + h)\right) \approx \frac{\#\{X_i \in (x - h, x + h)\}}{n}$$
$$f(x) \approx \frac{\#\{X_i \in (x - h, x + h)\}}{2h n}$$

$$X_1,\ldots,X_n$$
, i.i.d., $X_i\sim X$ donde $X_i\sim X$

$$\widehat{f}(x) = \frac{\#\{X_i \in (x - h, x + h)\}}{2h \, n}$$

$$X_1,\ldots,X_n$$
, i.i.d., $X_i\sim X$ donde $X_i\sim X$

$$\widehat{f}(x) = \frac{\#\{X_i \in (x - h, x + h)\}}{2h \, n}$$

$$\widehat{f}(x) \ge 0$$

Notemos que

$$\widehat{f}(x) \ge 0$$

$$X_1, \ldots, X_n$$
, i.i.d., $X_i \sim X$ donde $X_i \sim X$

$$\widehat{f}(x) = \frac{\#\{X_i \in (x - h, x + h)\}}{2h \, n}$$

$$\bullet \widehat{f}(x) \ge 0 \qquad \bullet \int \widehat{f}(x) dx = 1$$

Notemos que

$$\widehat{f}(x) \ge 0$$
 • $\int \widehat{f}(x)dx =$

$$X_1, \ldots, X_n$$
, i.i.d., $X_i \sim X$ donde $X_i \sim X$

$$\widehat{f}(x) = \frac{\#\{X_i \in (x - h, x + h)\}}{2h \, n}$$

$$\bullet \widehat{f}(x) \ge 0 \qquad \bullet \int \widehat{f}(x) dx = 1$$

Notemos que

$$\widehat{f}(x) \ge 0$$
 • $\int \widehat{f}(x)dx =$

$$X_1, \ldots, X_n$$
, i.i.d., $X_i \sim X$ donde $X_i \sim X$

$$\widehat{f}(x) = \frac{\#\{X_i \in (x-h,x+h)\}}{2h\,n}$$

$$\bullet \widehat{f}(x) \ge 0 \qquad \bullet \int \widehat{f}(x) dx = 1$$

Notemos que

$$\widehat{f}(x) \ge 0 \qquad \bullet \int \widehat{f}(x) dx = 0$$

$$\hat{f}(x) = \frac{1}{2h \, n} \sum_{i=1}^{n} \mathcal{I}_{(x-h,x+h)}(X_i)$$

Estimador de Parzen

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} \frac{1}{2} \mathcal{I}_{[-1,1]} \left(\frac{x - X_i}{h} \right)$$

 X_1, \ldots, X_n , i.i.d., $X_i \sim X$ donde $X_i \sim X$

$$\widehat{f}(x) = \frac{\#\{X_i \in (x - h, x + h)\}}{2h \, n}$$

$$\bullet \widehat{f}(x) \ge 0 \qquad \bullet \int \widehat{f}(x) dx = 1$$

Notemos que

$$\widehat{f}(x) = \frac{1}{2h \, n} \sum_{i=1}^{n} \mathcal{I}_{(x-h,x+h)}(X_i)$$

Estimador de Parzen

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} \frac{1}{2} \mathcal{I}_{[-1,1]} \left(\frac{x - X_i}{h} \right)$$

• si
$$K(t) = \frac{1}{2}\mathcal{I}_{[-1,1]}(t)$$
 \Rightarrow

$$\widehat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right)$$

•
$$K(t) = \frac{1}{2}\mathcal{I}_{[-1,1]}(t)$$
 \Rightarrow $\widehat{f}(x) = \frac{1}{nh}\sum_{i=1}^{n} K\left(\frac{x-X_i}{h}\right)$

• K : núcleo • h : ventana

Vayamos a terminar las tareas de Clase: ítems 4 a 7.

Núcleos

Tipos de núcleos

- Núcleo Rectangular: $K(t) = \frac{1}{2}\mathcal{I}_{[-1,1]}(t)$
- Núcleo Triangular: $K(t) = (1-|t|)\mathcal{I}_{[-1,1]}(t)$
- Núcleo Gausssiano: $K(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}t^2}$
- \bullet Núcleo Epanechnikov: $K(t)=\frac{3}{4}(1-t^2)\mathcal{I}_{[-1,1]}(t)$

Núcleos

Estimadores de núcleos (Rosenblatt-Parzen)

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right)$$

- K núcleo: * $K \ge 0$ y * $\int K(x)dx = 1$.
- h: ventana o parámetro de suavizado
- Notemos que $\widehat{f}(x)$ depende de n, del núcleo K y de h

Comandos de R

```
nieve=scan()
126.4 82.4 78.1 51.1 90.9 76.2 104.5 ...

density(nieve, from=40, to=40, n=1, kernel="rectangular", bw=5)$y
[1] 0.003665716

pp.rec=density(nieve, kernel="rectangular", bw=5)
pp.nor=density(nieve, kernel="gaussian", bw=5)

plot(pp rec )
lines(pp.rec$x,pp.rec$y,type="l",col="black",lwd=2)
lines(pp.nor$x,pp.nor$y,type="l",col="red",lwd=2)
```


Estimadores de núcleos: Selección de ventana

En el gráfico anterior se muestra que la elección de la ventana es crucial.

- Una ventana h pequeña dará un estimador muy rugoso, con muchos picos y difícil de interpretar
- una ventana h grande sobresuaviza al estimador de la densidad y enmascara estructuras de los datos.

Interpretación del estimador de núcleos

Fuente: Tesis de Lic. en Cs. Matem. de Sofía Ruiz, 2016.

Veamos en el pizarrón en un caso fácil que para que todo funcione bien deben pasar dos cosas:

- $\bullet h \longrightarrow 0$
- $nh \longrightarrow \infty$

Veamos en el pizarrón en un caso fácil que para que todo funcione bien deben pasar dos cosas:

- $\bullet h \longrightarrow 0$
- $nh \longrightarrow \infty$
- ullet Se puede probar que bajo condiciones generales del núcleo K

$$\mathsf{Sesgo}[\widehat{f}(x)] \ \approx \ \frac{h^2}{2} C_1(K) \ f''(x)$$

$$\mathbb{V}[\widehat{f}(x)] \ \approx \ \frac{1}{nh} C_2(K) \ f(x)$$

Veamos en el pizarrón en un caso fácil que para que todo funcione bien deben pasar dos cosas:

- $\bullet h \longrightarrow 0$
- $nh \longrightarrow \infty$
- ullet Se puede probar que bajo condiciones generales del núcleo K

$$\mathsf{Sesgo}[\widehat{f}(x)] \;\; \approx \;\; \frac{h^2}{2} C_1(K) \; f''(x)$$

$$\mathbb{V}[\widehat{f}(x)] \;\; \approx \;\; \frac{1}{nh} C_2(K) \; f(x)$$

• El sesgo es proporcional a $h^2 \Rightarrow$ elijamos h pequeña

Veamos en el pizarrón en un caso fácil que para que todo funcione bien deben pasar dos cosas:

- $\bullet h \longrightarrow 0$
- $nh \longrightarrow \infty$
- ullet Se puede probar que bajo condiciones generales del núcleo K

$$\mathsf{Sesgo}[\widehat{f}(x)] \;\; \approx \;\; \frac{h^2}{2} C_1(K) \; f''(x)$$

$$\mathbb{V}[\widehat{f}(x)] \;\; \approx \;\; \frac{1}{nh} C_2(K) \; f(x)$$

- El sesgo es proporcional a $h^2 \Rightarrow$ elijamos h pequeña
- El sesgo depende de f''(x) que mide la curvatura de f en x

Veamos en el pizarrón en un caso fácil que para que todo funcione bien deben pasar dos cosas:

- $\bullet h \longrightarrow 0$
- $nh \longrightarrow \infty$
- ullet Se puede probar que bajo condiciones generales del núcleo K

$$\operatorname{Sesgo}[\widehat{f}(x)] \approx \frac{h^2}{2}C_1(K) f''(x)$$

$$\mathbb{V}[\widehat{f}(x)] \approx \frac{1}{nh}C_2(K) f(x)$$

ullet La varianza dismimuye a medida que nh crece

Veamos en el pizarrón en un caso fácil que para que todo funcione bien deben pasar dos cosas:

- $\bullet h \longrightarrow 0$
- $nh \longrightarrow \infty$
- ullet Se puede probar que bajo condiciones generales del núcleo K

$$\operatorname{Sesgo}[\widehat{f}(x)] \approx \frac{h^2}{2}C_1(K) f''(x)$$

$$\mathbb{V}[\widehat{f}(x)] \approx \frac{1}{nh}C_2(K) f(x)$$

- ullet La varianza dismimuye a medida que nh crece
- ullet Para disminuir la varianza necesitamos h o n grandes.

Error Cuadrático Medio de $\widehat{f}(x)$

Compromiso Sesgo-Varianza

Tenemos que

$$\mathsf{ECM}[\widehat{f}(x)] = \mathsf{Sesgo}^2[\widehat{f}(x)] + \mathbb{V}[\widehat{f}(x)]$$

Por otro lado:

$$\operatorname{Sesgo}[\widehat{f}(x)] \approx \frac{h^2}{2} C_1(K) f''(x)$$

$$\mathbb{V}[\widehat{f}(x)] \approx \frac{1}{nh} C_2(K) f(x)$$

Error Cuadrático Medio de $\widehat{f}(x)$

Compromiso Sesgo-Varianza

Tenemos que

$$\mathsf{ECM}[\widehat{f}(x)] = \mathsf{Sesgo}^2[\widehat{f}(x)] + \mathbb{V}[\widehat{f}(x)]$$

Por otro lado:

$$\mathsf{Sesgo}[\widehat{f}(x)] \ \approx \ \frac{h^2}{2} C_1(K) \ f''(x)$$

$$\mathbb{V}[\widehat{f}(x)] \ \approx \ \frac{1}{nh} C_2(K) \ f(x)$$

$$\Rightarrow \mathsf{ECM}[\widehat{f}(x)] \approx \frac{h^4}{4} C_1^2(K) (f''(x))^2 + \frac{1}{nh} C_2(K) f(x)$$

Si $h \longrightarrow 0$ y $nh \longrightarrow \infty$ $\widehat{f}(x)$ es un estimador consistente de f(x).

$$\widehat{f}_h(x)$$

Por lo que vimos, el efecto de la ventana sobre la estimación de la densidad puede ser crucial, por lo tanto haremos explícita esta dependencia, denotando

$$\widehat{f}_h(x)$$

al estimador basado en una ventana h.

Error Cuadrático Medio de $\widehat{f}_h(x)$

Compromiso Sesgo-Varianza

Tenemos que

$$\mathsf{ECM}[\widehat{f}_h(x)] = \mathsf{Sesgo}^2[\widehat{f}_h(x)] + \mathbb{V}[\widehat{f}_h(x)]$$

Por otro lado:

$$\mathsf{Sesgo}[\widehat{f}_h(x)] \;\; \approx \;\; \frac{h^2}{2} C_1(K) \; f''(x)$$

$$\mathbb{V}[\widehat{f}_h(x)] \;\; \approx \;\; \frac{1}{nh} C_2(K) \; f(x)$$

$$\Rightarrow \text{ECM}[\widehat{f}_h(x)] \approx \frac{h^4}{4}C_1^2(K) (f''(x))^2 + \frac{1}{nh}C_2(K) f(x)$$

Si $h \longrightarrow 0$ y $nh \longrightarrow \infty$ $\widehat{f}_h(x)$ es un estimador consistente de f(x).

Error Cuadrático Medio Integrado de $\widehat{f_h}$

Como medida global:

$$\mathsf{ECMI}[\widehat{f}_h] = \int \mathsf{ECM}[\widehat{f}_h(x)] dx$$

Integrando resulta:

$$\mathsf{ECMI}[\hat{f}_h(x)] \approx \frac{h^4}{4}C_1^2(K)\int (f''(x))^2 dx + \frac{1}{nh}C_2(K)$$

Error Cuadrático Medio Integrado de \widehat{f}_h

Como medida global:

$$\mathsf{ECMI}[\widehat{f}_h] = \int \mathsf{ECM}[\widehat{f}_h(x)] dx$$

Integrando resulta:

$$\mathsf{ECMI}[\hat{f}_h(x)] \approx \frac{h^4}{4}C_1^2(K)\int (f''(x))^2 dx + \frac{1}{nh}C_2(K)$$

Si llamamos $||g||_2^2 = \int g(t)^2 dt$

$$\mathsf{ECMI}[\widehat{f}_h(x)] \approx \frac{h^4}{4} C_1^2(K) \|f''\|_2^2 + \frac{1}{nh} \|K\|_2^2$$

Error Cuadrático Medio Integrado de \widehat{f}_h

$$\mathsf{ECMI}[\widehat{f}_h(x)] \approx \frac{h^4}{4} C_1^2(K) \|f''\|_2^2 + \frac{1}{nh} \|K\|_2^2$$

- Notemos que ECMI es una función de la ventana h.
- \bullet Derivando a ECMI respecto de h e igualando a 0, obtenemos que el valor de h que minimiza el ECMI es

$$h = \left\{ \frac{\|K\|_2^2}{C_1^2(K)\|f''\|_2^2 n} \right\}^{\frac{1}{5}}$$

Error Cuadrático Medio Integrado de \widehat{f}_h

$$\mathsf{ECMI}[\widehat{f}_h(x)] \approx \frac{h^4}{4} C_1^2(K) \|f''\|_2^2 + \frac{1}{nh} \|K\|_2^2$$

- Notemos que ECMI es una función de la ventana h.
- \bullet Derivando a ECMI respecto de h e igualando a 0, obtenemos que el valor de h que minimiza el ECMI es

$$h = \left\{ \frac{\|K\|_2^2}{C_1^2(K) \|f''\|_2^2 n} \right\}^{\frac{1}{5}} \sim n^{-\frac{1}{5}}$$

Selección de h: Regla de Silverman

El ECMI $[\widehat{f}_h(x)]$ se minimiza en

$$h = \left\{ \frac{\|K\|_2^2}{C_1^2(K)\|f''\|_2^2 n} \right\}^{\frac{1}{5}}$$

• Silverman propone reemplazar a $\|f''\|_2^2$ por su valor cuando f es normal:

$$||f''||_2^2 = \sigma^{-5} \frac{3}{8\sqrt{\pi}} \approx 0.212 \ \sigma^{-5}$$

y a σ por un estimador $\widehat{\sigma}$

Selección de h: Regla de Silverman

El ECMI $[\widehat{f}_h(x)]$ se minimiza en

$$h = \left\{ \frac{\|K\|_2^2}{C_1^2(K)\|f''\|_2^2 n} \right\}^{\frac{1}{5}}$$

• Silverman propone reemplazar a $\|f''\|_2^2$ por su valor cuando f es normal:

$$||f''||_2^2 = \sigma^{-5} \frac{3}{8\sqrt{\pi}} \approx 0.212 \ \sigma^{-5}$$

y a σ por un estimador $\widehat{\sigma}$

$$h_{Sil} = \left(\frac{4\widehat{\sigma}^5}{3 n}\right)^{\frac{1}{5}} \approx 1.06 \,\widehat{\sigma} \, n^{-\frac{1}{5}}$$

- ullet Si f es normal, la ventana h_{Sil} es óptima.
- ullet Si f no es normal, h_{Sil} dará una ventana no muy alejada de la óptima cuando la distribución no es muy diferente a la normal.

Selección de h: Regla de Silverman

$$h_{Sil} = \left(\frac{4\widehat{\sigma}^5}{3 n}\right)^{\frac{1}{5}} \approx 1.06 \,\widehat{\sigma} \, n^{-\frac{1}{5}}$$

• σ puede estimarse por S (sd(datos) en R).

0

- σ puede estimarse por la distancia intercuartil IQR (IQR(datos) en R). Para que coincida con σ bajo la distribución normal debe dividirse por 1.349
- La ventana óptima de acuerdo a la regla de Silverman resulta:

$$h_{Sil} = 1.06 \min(S, \frac{IQR}{1.349}) n^{-\frac{1}{5}}$$

Convalidación Cruzada por Máxima Verosimilitud (CV)

- El EMV de h es degenerado: da $h_{MV}=0$, resultando una densidad que da masa 1 a cada uno de los datos.
- Alternativa: maximimizar una pseudo-verosimilutd computada sacando de los datos una observación a la vez (leave-one-out cross-validation).

Si observamos los datos x_1, \ldots, x_n

$$h_{MV}^* = \operatorname{argmax}_h \left\{ \frac{1}{n} \sum_{i=1}^n \log \widehat{f}_h^{(-i)}(x_i) \right\}$$

siendo $\widehat{f}_h^{(-i)}(x_i)$ la densidad estimada en el punto x_i sin utilizar al punto x_i :

$$\widehat{f}_h^{(-i)}(x_i) = \frac{1}{(n-1)h} \sum_{j \neq i} K\left(\frac{x_i - x_j}{h}\right)$$

• En general, buscamos el máximo sobre una grilla h_1, \ldots, h_q y luego, eventualmente, se refina.