## **Lecture 2: Machine Learning Concepts**

# COMP90049 Introduction to Machine Learning

Semester 2, 2020

Hadi Khorshidi, CIS

The presentation adapted from the slides prepared by Lea Frermann, CIS

Copyright @ University of Melbourne 2020

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm or any other means without written permission from the author.



**Basics of ML: Instances, Attributes** 

and Learning Paradigms

#### Roadmap

#### Last lecture

- Warm-up
- Housekeeping COMP90049
- Machine Learning

#### This lecture

- Terminology
- Basic concepts: instances, attributes and learning paradigms
- Python demo



## **Typical Workflow**







#### **Typical Workflow**

- 1. Identify task, collect data
- 2. Choose a good data representation (feature engineering)
- 3. Pick a suitable model and learning algorithm
- 4. Train the model
- 5. Evaluate your model (on a separate test data sets)
- 6. probably go back to previous steps.



#### **Terminology**

- The input to a machine learning system consists of:
  - Instances: the individual, independent examples of a concept also known as exemplars
  - Attributes: measuring aspects of an instance also known as features
  - Concepts: things that we aim to learn generally in the form of labels or classes



## Example: weather.nominal Dataset

| Outlook  | Temperature | Humidity | Windy        | Play |
|----------|-------------|----------|--------------|------|
| sunny    | hot         | high     | FALSE        | no   |
| sunny    | hot         | high     | TRUE         | no   |
| overcast | hot         | high     | <b>FALSE</b> | yes  |
| rainy    | mild        | high     | <b>FALSE</b> | yes  |
| rainy    | cool        | normal   | FALSE        | yes  |
| rainy    | cool        | normal   | TRUE         | no   |
| :        | :           | :        | :            | :    |
| •        | •           | •        | ·            | •    |



## Example: weather.nominal Dataset

| Outlook  | Temperature | Humidity | Windy | Play             |
|----------|-------------|----------|-------|------------------|
| sur ny   |             | 'Angh I  | TALE  |                  |
| surny    |             |          | TRUE  |                  |
| overcast | hot         | high     | FALSE | yes <sup>2</sup> |
| rainy    | mild        | high     | FALSE | yes              |
| rainy    | cool        | normal   | FALSE | yes              |
| rainy    | cool        | normal   | TRUE  | no               |
| •        | :           | :        | :     | :                |
|          |             |          |       |                  |



## Example: weather.nominal Dataset

| Outlook                 | Temperature        | Humidity | Windy | Play |
|-------------------------|--------------------|----------|-------|------|
| sunny                   | но                 | high     | FALSE | no   |
| suzury                  |                    | high     | TRUE  | no   |
| ove <mark>rc</mark> ast | hot                | high     | FALSE | yes  |
| ra                      | $_{ m n}$ d        | high     | FALSE | yes  |
| rainy                   | coal               | normal   | FALSE | yes  |
| rainy                   | c <del>log</del> l | normal   | TRUE  | no   |
| $\mathbf{E}_1$          | $\mathbb{E}_2$     | :        | :     | :    |





#### The MNIST digit classification data set

- How many instances do you see in this picture?
- What are these instances?
- How many features does each instance have?
- What could these features be?



## A Word on Supervision

- Supervised methods have prior knowledge of a closed set of classes and set out to discover and categorise new instances according to those classes
- Unsupervised do not have access to an invertory of classes, and instead discover groups of 'similar' examples in a given dataset



## What's a Concept?

- Styles of "concepts" that we aim to learn:
  - Classification learning: predicting a discrete class
  - Clustering:

grouping similar instances into clusters

- Regression:
  - predicting a numeric quantity
- · Association learning:

detecting associations between attribute values



## **Classification Learning**

- Scheme is provided with actual outcome or class
- The learning algorithm is provided with a set of classified training data
- Measure success on "held-out" data for which class labels are known (test data)
- · Classification learning is supervised







## **Example Predictions for weather.nominal**

| Outlook  | Temperature | Humidity | Windy | True Label | Classified |
|----------|-------------|----------|-------|------------|------------|
| sunny    | hot         | high     | FALSE | no         |            |
| sunny    | hot         | high     | TRUE  | no         |            |
| overcast | hot         | high     | FALSE | yes        |            |
| rainy    | mild        | high     | FALSE | yes        |            |
| rainy    | cool        | normal   | FALSE | yes        |            |
| rainy    | cool        | normal   | TRUE  | no         |            |
| overcast | cool        | normal   | TRUE  | yes        |            |
| sunny    | mild        | high     | FALSE | no         |            |
| sunny    | cool        | normal   | FALSE | yes        |            |
| rainy    | mild        | normal   | FALSE | yes        |            |
| sunny    | mild        | normal   | TRUE  | yes        | no         |
| overcast | mild        | high     | TRUE  | yes        | yes        |
| overcast | hot         | normal   | FALSE | yes        | yes        |
| rainy    | mild        | high     | TRUE  | no         | yes        |



## Clustering

- Finding groups of items that are similar
- Clustering is unsupervised the learner operates without a set of labelled training data
- The class of an example is not known ... or at least, not given to the learning algorithm
- Success often measured subjectively; evaluation is problematic



## Clustering over weather.nominal

|   | Outlook                                | Temperature            | Humidity                          | Windy                            | Play                           |
|---|----------------------------------------|------------------------|-----------------------------------|----------------------------------|--------------------------------|
| - | sunny sunny overcast rainy rainy rainy | hot hot mild cool cool | high high high high normal normal | FALSE TRUE FALSE FALSE TRUE TRUE | no / no / ves yes / ves / no : |



#### Regression

- Classification learning, but class is continuous (numeric prediction)
- · Learning is supervised
- Why is this distinct from Classification?
  - In Classification, we can exhaustively enumerate all possible labels for a given instance; a correct prediction entails mapping an instance to the label which is truly correct
  - In Regression, infinitely many labels are possible, we cannot conceivably enumerate them; a "correct" prediction is when the numeric value is acceptably close to the true value



## **Example Predictions for weather**

| Outlook  | Humidity | Windy | Play | Actual Temp | Classified Temp |
|----------|----------|-------|------|-------------|-----------------|
| sunny    | 85       | FALSE | no   | 85          |                 |
| sunny    | 90       | TRUE  | no   | 80          |                 |
| overcast | 86       | FALSE | yes  | 83          |                 |
| rainy    | 96       | FALSE | yes  | 70          |                 |
| rainy    | 80       | FALSE | yes  | 68          |                 |
| rainy    | 70       | TRUE  | no   | 65          |                 |
| overcast | 65       | TRUE  | yes  | 64          |                 |
| sunny    | 95       | FALSE | no   | 72          |                 |
| sunny    | 70       | FALSE | yes  | 69          |                 |
| rainy    | 80       | FALSE | yes  | 75          |                 |
| sunny    | 70       | TRUE  | yes  | 75          | 68.8            |
| overcast | 90       | TRUE  | yes  | 72          | 76.2            |
| overcast | 75       | FALSE | yes  | 81          | 70.6            |
| rainy    | 91       | TRUE  | no   | 71          | 76.5            |





#### The MNIST digit classification data set

- Design a classification task given this data set
- Could we perform clustering instead? What would change?
- Can you think of a meaningful regression task?



## **Instance Topology**

- Instances characterised as "feature vectors", defined by a predetermined set of attributes
- Input to learning scheme: set of instances/dataset
  - Flat file representation
  - No relationships between objects
  - No explicit relationship between attributes



#### What's in an Attribute?

- Each instance is described by a fixed feature vector
- Possible attribute types (levels of measurement):
  - 1. nominal
  - 2. ordinal
  - 3. continuous



#### **Nominal Quantities**

- Values are distinct symbols (e.g. {sunny,overcast,rainy})
  - values themselves serve only as labels or names
- Also called categorical, or discrete (NB. "discrete" implies an order which tends not to exist)
- No relation is implied among nominal values (no ordering or distance measure), and only equality tests can be performed
- Special case: dichotomy ("Boolean" attribute)



#### **Ordinal Quantities**

- An explicit order is imposed on the values (e.g. {hot,mild,cool} where hot > mild > cool)
- No distance between values defined and addition and subtraction don't make sense
- Example rule: temperature < hot →play = yes
- Distinction between nominal and ordinal not always clear (e.g. outlook)



#### **Continuous Quantities**

- Continuous quantities are real-valued attributes with a well-defined zero point and no explicit upper bound
- Example: attribute distance
  - Distance between an object and itself is zero
- All mathematical operations are allowed (of which addition, subtraction, scalar multiplication are most salient, but other operations are relevant in some contexts)



ML in the Wild

## **Attribute Types Used in Practice**

- Many data schemes/learners accommodate continuous attributes, and they are very commonly observed
- Many also support nominal attributes, and they are commonly observed
- Some support ordinal attributes, which are occasionally observed (but often treated as one of the other types)



## **Transforming Nominal to Boolean**

- Simple transformation allows nominal attribute with n values to be coded using n Boolean attributes ("one-hot")
- Example: attribute temperature

```
\begin{aligned} & \text{hot} = [1, 0, 0] \\ & \text{mild} = [0, 1, 0] \\ & \text{cool} = [0, 0, 1] \end{aligned}
```



## **Preparing the Input**

- Problem: different data sources (e.g. sales department, customer billing department, ...)
  - Differences: styles of record keeping, conventions, time periods, data aggregation, primary keys, errors
  - Data must be assembled, integrated, cleaned up
  - Data warehouse: consistent point of access
- External data/storage may be required
- Critical: type and level of data aggregation



#### **Missing Values**

- The number of attributes may vary in practice
  - missing values
  - inter-dependent attributes
- Missing values are prevalent in data analysis
  - Types: unknown, unrecorded, irrelevant
  - Reasons:
    - · malfunctioning equipment
    - · changes in experimental design
    - · collation of different datasets
    - · measurement not possible
- Missing value may have significance in itself (e.g. missing test in a medical examination)
- How to deal with missing values
  - Remove instances with missing values
  - missing may need to be coded discretely
  - Imputation



#### **Inaccurate Values**

- Cause: a given data mining application is often not known at the time logging is set up
- Result: errors and omissions that don't affect original purpose of data (e.g. age of customer)
- Typographical errors in nominal attributes →values need to be checked for consistency
- Typographical and measurement errors in numeric attributes →outliers need to be identified
- Errors may be deliberate (e.g. wrong post codes)



#### Getting to Know the Data

- Simple visualization tools are very useful
  - Nominal attributes: histograms (distribution consistent with background knowledge?)
  - Numeric attributes: scatter plots (any obvious outliers?)
- 2-D and 3-D plots show dependencies
- Need to consult domain experts
- Too much data to inspect? Take a sample!
- Imbalanced data? Re-sampling!
- You can never know your data too well



## **Coding Demo!**

#### Intended take-aways

- Jupyter Notebook
- Looking at a data set
- Reading in data
- Separating features from class labels (for each instance)



#### **Summary**

#### Today: Establishing common vocabulary

- What are instances, attributes and concepts?
- Learning paradigms: supervised and unsupervised
- · Concepts: Regression, Classification, Clustering
- · Attributes: types and encodings
- Python and Jupyter

Next: Probabilities (recap) and probabilistic modeling

