Phương trình đường thẳng và cách giải bài tập

A. Lí thuyết tổng họp

1. Các vecto của đường thẳng:

+) **Vecto chỉ phương:** Vecto \vec{u} được gọi là vecto chỉ phương của đường thẳng Δ nếu $\vec{u} \neq \vec{0}$ và giá của \vec{u} song song hoặc trùng với Δ .

+) **Vectơ pháp tuyến:** Vectơ \vec{n} được gọi là vectơ pháp tuyến của đường thẳng Δ nếu $\vec{n} \neq \vec{0}$ và \vec{n} vuông góc với vectơ chỉ phương của Δ .

+) Nhận xét:

- Nếu \vec{u} là một vectơ chỉ phương của đường thẳng Δ thì k \vec{u} $(k\neq 0)$ cũng là một vectơ chỉ phương của Δ .
- Nếu \vec{n} là một vectơ pháp tuyến của đường thẳng Δ thì k \vec{n} (k \neq 0) cũng là một vectơ pháp tuyến của Δ .
- Một đường thẳng hoàn toàn được xác định nếu biết một điểm và một vectơ chỉ phương hoặc một vectơ pháp tuyến của đường thẳng đó.
- Một đường thẳng có vô số vectơ chỉ phương, vô số vectơ pháp tuyến.

2. Phương trình tổng quát của đường thẳng:

+) Định nghĩa: Phương trình Δ : ax + by + c = 0 ($a^2 + b^2 \neq 0$) là phương trình tổng quát của đường thẳng Δ nhận \vec{n} (a; b) làm vecto pháp tuyến.

+) Các dạng đặc biệt:

 Δ : ax + c = 0, a \neq 0 \Rightarrow Δ song song với Oy hoặc trùng với Oy khi a = 1 và c = 0.

 Δ : ay + c = 0, a \neq 0 \Rightarrow Δ song song với Ox hoặc trùng với Ox khi a = 1 và c = 0.

 Δ : ax + by = 0, $a^2 + b^2 \neq 0 \implies \Delta$ đi qua gốc tọa độ O(0; 0)

3. Phương trình tham số của đường thẳng:

+) Định nghĩa: Hệ $\begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases}$, $a^2 + b^2 \neq 0$ là phương trình tham số của đường thẳng Δ đi qua điểm $A(x_0; y_0)$ và nhận vector $\vec{u}(a; b)$ làm vector chỉ phương, với t là tham số.

+) Chú ý:

Với mỗi $t \in \mathbb{R}$ thay vào phương trình tham số ta được một điểm $M(x; y) \in \Delta$ Một đường thẳng có vô số phương trình tham số.

- Phương trình chính tắc: $\frac{x-x_0}{a} = \frac{y-y_0}{b}$ (a.b $\neq 0$) là phương trình chính tắc của đường thẳng đi qua điểm M $(x_0; y_0)$ và nhận $\vec{u}(a; b)$ làm vecto chỉ phương.
- Phương trình đoạn chắn: Đường thẳng Δ cắt hai trục Ox và Oy lần lượt tại hai điểm A (a; 0), B (0; b) với $a.b \neq 0$ có phương trình đoạn chắn là $\frac{x}{a} + \frac{y}{b} = 1$.

4. Hệ số góc:

Phương trình đường thẳng Δ đi qua điểm $M(x_0;y_0)$ có hệ số góc k thỏa mãn: $y-y_0=k(x-x_0)$

- + Nếu Δ có vectơ chỉ phương $\vec{u} = (u_1; u_2)$ với $u_1 \neq 0$ thì hệ số góc của Δ là $k = \frac{u_2}{u_1}$
- + Nếu Δ có hệ số góc k thì Δ có vecto chỉ phương là $\vec{u} = (1;k)$

5. Vị trí tương đối của hai đường thẳng:

+) Xét hai đường thẳng $d_1: a_1x + b_1y + c_1 = 0$ và $d_2: a_2x + b_2y + c_2 = 0$ với $a_1^2 + b_1^2 \neq 0, a_2^2 + b_2^2 \neq 0$. Tọa độ giao điểm của hai đường thẳng đó là nghiệm của hệ phương trình:

$$\begin{cases} a_1 x + b_1 y + c_1 = 0 \\ a_2 x + b_2 y + c_2 = 0 \end{cases}$$
 (1)

Ta có các trường hợp sau:

TH1: Hệ (1) có duy nhất một nghiệm $(x_0; y_0) \Rightarrow d_1 \cap d_2$ tại M $(x_0; y_0)$

TH2: Hệ (1) có vô số nghiệm \Rightarrow d₁ trùng với d₂

TH3: Hệ (1) vô nghiệm $\Rightarrow d_1//d_2$

+) Chú ý: Với $a_2, b_2, c_2 \neq 0$ ta có:

$$d_1 \cap d_2 \Leftrightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

$$d_1 / / d_2 \Leftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$d_1 \equiv d_2 \Leftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

6. Góc giữa hai đường thẳng:

+ Cho hai đường thẳng $d_1: a_1x + b_1y + c_1 = 0$ có vecto pháp tuyến $\overrightarrow{n_1}$ và $d_2: a_2x + b_2y + c_2 = 0$ có vecto pháp tuyến $\overrightarrow{n_2}$ với $a_1^2 + b_1^2 \neq 0, a_2^2 + b_2^2 \neq 0$, góc giữa hai đường thẳng đó được kí hiệu là (d_1, d_2) , (d_1, d_2) luôn nhỏ hơn hoặc bằng 90° . Đặt $\alpha = (d_1, d_2)$ ta có:

$$\cos \alpha = \left| \cos \left(\overrightarrow{n_1}, \overrightarrow{n_2} \right) \right| = \frac{\left| a_1 a_2 + b_1 b_2 \right|}{\sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2}}$$

+ Chú ý:

$$d_1 \perp d_2 \Leftrightarrow \overrightarrow{n_1} \perp \overrightarrow{n_2} \Leftrightarrow a_1 a_2 + b_1 b_2 = 0$$

Nếu d_1 và d_2 có phương trình đường thẳng là $y=k_1x+m_1$ và $y=k_2x+m_2$ thì $d_1\perp d_2 \Leftrightarrow k_1.k_2=-1$

7. Khoảng cách từ một điểm đến một đường thẳng:

Trong mặt phẳng Oxy cho đường thẳng Δ có phương trình ax + by + c = 0 và điểm $M(x_0;y_0)$. Khoảng cách từ điểm M đến đường thẳng Δ được kí hiệu là d (M,Δ) và tính bằng công thức:

$$d(M,\Delta) = \frac{\left|ax_0 + by_0 + c\right|}{\sqrt{a^2 + b^2}}.$$

B. Các dạng bài.

Dạng 1: Cách viết các dạng phương trình đường thẳng.

Phương pháp giải:

- a) Cách viết phương trình tổng quát của đường thẳng Δ
- + Tìm vectơ pháp tuyến $\vec{n}(a;b)$ của đường thẳng Δ
- + Tìm một điểm M $(x_0; y_0)$ thuộc Δ
- + Viết phương trình Δ theo công thức: $a(x-x_0)+b(y-y_0)=0$
- + Biến đổi thành dạng ax + by + c = 0

Nếu đường thẳng Δ_1 song song với đường thẳng Δ_2 : ax + by + c = 0 thì Δ_1 có phương trình tổng quát ax + by + c' = 0, $c \neq c'$.

Nếu đường thẳng Δ_1 vuông góc với đường thẳng Δ_2 : ax + by + c = 0 thì Δ_1 có phương trình tổng quát -bx + ay + c' = 0, $c \neq c'$.

- b) Cách viết phương trình tham số của đường thẳng Δ
- + Tìm vecto chỉ phương $\vec{u} = (u_1; u_2)$ của đường thẳng Δ
- + Tìm một điểm M $\left(x_{_{0}};y_{_{0}}\right)$ thuộc Δ
- + Viết phương trình tham số: $\begin{cases} x = x_0 + u_1 t \\ y = y_0 + u_2 t \end{cases}$

Nếu Δ có hệ số góc k thì Δ có vecto chỉ phương $\vec{u} = (1;k)$

Nếu Δ có vecto pháp tuyến $\vec{n}(a;b)$ thì Δ có vecto chỉ phương $\vec{u}=(-b;a)$ hoặc $\vec{u}=(b;-a)$ và ngược lại.

c) Cách viết phương trình chính tắc của đường thẳng Δ . (chỉ áp dụng khi có vecto chỉ phương \vec{u} = (a;b) với a.b \neq 0)

- + Tìm vecto chỉ phương $\vec{u} = (a;b)$ (a.b $\neq 0$) của đường thẳng Δ
- + Tìm một điểm M $(x_0; y_0)$ thuộc Δ
- + Viết phương trình chính tắc: $\frac{x x_0}{a} = \frac{y y_0}{b}$
- d) Cách viết phương trình đoạn chắn của đường thẳng Δ (chỉ áp dụng khi đường thẳng cắt hai trục Ox, Oy)
- + Tìm hai giao điểm của Δ với trục Ox, Oy lần lượt là A(a; 0), B(0; b)
- + Viết phương trình đoạn chắn $\frac{x}{a} + \frac{y}{b} = 1$ (a.b $\neq 0$).

Ví dụ minh họa:

Bài 1: Cho đường thẳng d cắt trục Ox, Oy tại hai điểm A(0; 5) và B(6; 0). Viết phương trình tổng quát và phương trình đoạn chắn của đường thẳng d.

Lời giải:

Vì A(0; 5) và B(6; 0) thuộc đường thẳng d nên ta có \overrightarrow{AB} là vecto chỉ phương của đường thẳng d.

$$\overrightarrow{AB} = (6-0;0-5) = (6;-5)$$

 \Rightarrow Vecto pháp tuyến của d là $\vec{n} = (5,6)$

Chọn điểm A(0; 5) thuộc đường thẳng d, ta có phương trình tổng quát của đường thẳng d:

$$5.(x-0) + 6.(y-5) = 0$$

$$\Leftrightarrow$$
 5x + 6y - 30 = 0

Vì đường thẳng d cắt trục Ox, Oy lần lượt tại hai điểm A(0; 5) và B(6; 0) nên ta có phương trình đoạn chắn: $\frac{x}{6} + \frac{y}{5} = 1$.

Bài 2: Cho đường thẳng d đi qua hai điểm M(5; 8) và N(3; 1). Viết phương trình tham số và phương trình chính tắc của đường thẳng d.

Lời giải:

Vì M(5; 8) và N(3; 1) thuộc đường thẳng d nên ta có \overrightarrow{MN} là vecto chỉ phương của đường thẳng d, có \overrightarrow{MN} = (3 – 5; 1 – 8) = (-2; -7)

Chọn điểm N(3;1) thuộc đường thẳng d ta có phương trình tham số của đường thẳng d: $\begin{cases} x=3-2t \\ y=1-7t \end{cases}$

Chọn điểm M(5; 8) thuộc đường thẳng d ta có phương trình chính tắc của đường thẳng d: $\frac{x-5}{-2} = \frac{y-8}{-7}$

Dạng 2: Vị trí tương đối giữa hai đường thẳng.

Phương pháp giải:

Áp dụng lí thuyết về vị trí tương đối giữa hai đường thẳng: $d_1: a_1x + b_1y + c_1 = 0$ và $d_2: a_2x + b_2y + c_2 = 0$ với $a_1^2 + b_1^2 \neq 0, a_2^2 + b_2^2 \neq 0$.

Tọa độ giao điểm của hai đường thẳng đó là nghiệm của hệ phương trình:

$$\begin{cases} a_1 x + b_1 y + c_1 = 0 \\ a_2 x + b_2 y + c_2 = 0 \end{cases}$$
 (1)

Với $a_2, b_2, c_2 \neq 0$ ta có:

$$d_1 \cap d_2 \Leftrightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

$$d_1 / / d_2 \Leftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$d_1 \equiv d_2 \Leftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Ví dụ minh họa:

Bài 1: Xét vị trí tương đối của hai đường thẳng sau:

a)
$$d_1: 4x - 10y + 1 = 0$$
 và $d_2: x + y + 2 = 0$

b)
$$d_3:12x-6y+10=0$$
 và $d_4:2x-y+5=0$

c) $d_5:8x+10y-12=0$ và $d_6:4x+5y-6=0$.

Lời giải:

a) Xét hai đường thẳng $d_1: 4x - 10y + 1 = 0$ và $d_2: x + y + 2 = 0$ có:

$$\frac{4}{1} \neq \frac{-10}{1} \implies d_1 \text{ và } d_2 \text{ cắt nhau.}$$

b) Xét hai đường thẳng $d_3:12x-6y+10=0$ và $d_4:2x-y+5=0$ có:

$$\frac{12}{2} = \frac{-6}{-1} = 6 \neq \frac{10}{5} = 2 \implies d_3//d_4$$

c) Xét hai đường thẳng $d_5: 8x + 10y - 12 = 0$ và $d_6: 4x + 5y - 6 = 0$ có:

$$\frac{8}{4} = \frac{10}{5} = \frac{-12}{-6} = 2 \implies d_5 \equiv d_6.$$

Bài 2: Cho hai đường thẳng: $d_1: x-2y+5=0$ và $d_2: 3x-y=0$. Tìm tọa độ giao điểm của d_1 và d_2 .

Lời giải:

Xét tỉ số: $\frac{1}{3} \neq \frac{-2}{-1} \Rightarrow d_1 \cap d_2$. Gọi tọa độ giao điểm của d_1 và d_2 là M(x; y) với x và y là nghiệm của hệ phương trình:

$$\begin{cases} x - 2y + 5 = 0 \\ 3x - y = 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y = -5 \\ 3x - y = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 3 \end{cases}$$

Vậy $d_1 \cap d_2$ tại M (1; 3).

Dạng 3: Tính góc giữa hai đường thẳng.

Phương pháp giải:

Áp dụng lí thuyết về góc giữa hai đường thẳng:

- Cho hai đường thẳng $d_1: a_1x + b_1y + c_1 = 0$ có vecto pháp tuyến $\overrightarrow{n_1}$ và $d_2: a_2x + b_2y + c_2 = 0$ có vecto pháp tuyến $\overrightarrow{n_2}$ với $a_1^2 + b_1^2 \neq 0, a_2^2 + b_2^2 \neq 0$, góc

giữa hai đường thẳng được kí hiệu là (d_1,d_2) , (d_1,d_2) luôn nhỏ hơn hoặc bằng 90° Đặt $\alpha = (d_1,d_2)$ ta có:

$$\cos \alpha = \left| \cos \left(\overrightarrow{n_1}, \overrightarrow{n_2} \right) \right| = \frac{\left| a_1 a_2 + b_1 b_2 \right|}{\sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2}}$$

- Chú ý:

$$d_1 \perp d_2 \Leftrightarrow \overrightarrow{n_1} \perp \overrightarrow{n_2} \Leftrightarrow a_1 a_2 + b_1 b_2 = 0$$

 $d_1 \perp d_2 \Leftrightarrow \overrightarrow{u_1} \perp \overrightarrow{u_2} \Leftrightarrow x_1 x_2 + y_1 y_2 = 0 \text{ v\'oi } \overrightarrow{u_1} = (x_1; y_1) \text{ là vecto chỉ phương của } d_1,$ $\overrightarrow{u_2} = (x_2; y_2) \text{ là vecto chỉ phương của } d_2.$

Nếu d_1 và d_2 có phương trình đường thẳng là $y=k_1x+m_1$ và $y=k_2x+m_2$ thì $d_1\perp d_2 \Leftrightarrow k_1.k_2=-1$

Ví dụ minh họa:

Bài 1: Cho hai đường thẳng $d: \begin{cases} x=7-2t \\ y=5-t \end{cases}$ và d': $\begin{cases} x=1+t' \\ y=2+3t' \end{cases}$. Xác định số đo góc giữa d và d'.

Lời giải:

Xét d:
$$\begin{cases} x = 7 - 2t \\ y = 5 - t \end{cases}$$
 ta có vecto chỉ phương của d là $\vec{u} = (-2; -1)$

 \Rightarrow Vecto pháp tuyến của d là $\vec{n} = (1; -2)$.

Xét d':
$$\begin{cases} x = 1 + t' \\ y = 2 + 3t' \end{cases}$$
 ta có vecto chỉ phương của d' là $\overrightarrow{u}' = (1; 3)$

 \Rightarrow Vecto pháp tuyến của d' là $\overrightarrow{n}' = (-3; 1)$.

Ta có:

$$\cos(\mathbf{d}, \mathbf{d}') = \left| \cos(\vec{\mathbf{n}}, \vec{\mathbf{n}'}) \right| = \frac{\left| -2.1 + (-1).3 \right|}{\sqrt{(-2)^2 + 1^2} \cdot \sqrt{(-1)^2 + 3^2}} = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}}$$

Góc giữa hai đường thẳng luôn nhỏ hơn hoặc bằng $90^{\circ} \Rightarrow (d, d') = 45^{\circ}$.

Bài 2: Cho hai đường thẳng d: 4x - 2y + 6 = 0 và d': x + 2y + 1 = 0. Xác định số đo góc giữa d và d'.

Lời giải:

Xét d: 4x - 2y + 6 = 0 ta có vecto pháp tuyến của d là $\vec{n} = (4; -2)$

Xét d': x + 2y + 1 = 0 ta có vecto pháp tuyến của d' là $\overrightarrow{n}' = (1; 2)$

Ta có: $\vec{n} \cdot \vec{n}' = 4.1 + (-2).2 = 0$

 $\Rightarrow d \perp d'$

 \Rightarrow (d,d') = 90°

Dạng 4: Khoảng cách từ một điểm đến một đường thẳng.

Phương pháp giải:

Áp dụng lí thuyết về khoảng cách từ một điểm đến một đường thẳng: Trong mặt phẳng Oxy, đường thẳng Δ có phương trình ax + by + c = 0 và điểm M $\left(x_0;y_0\right)$. Khoảng cách từ điểm M đến đường thẳng Δ được kí hiệu là d (M, Δ), tính bằng công thức:

$$d(M,\Delta) = \frac{\left|ax_0 + by_0 + c\right|}{\sqrt{a^2 + b^2}}.$$

Ví dụ minh họa:

Bài 1: Tìm bán kính của đường tròn tâm C(-2; -2). Biết đường tròn tiếp xúc với đường thẳng $\Delta: 5x + 12y - 10 = 0$.

Lời giải:

Vì đường tròn tiếp xúc với đường thẳng $\Delta: 5x + 12y - 10 = 0$ nên ta có bán kính của đường tròn bằng khoảng từ tâm C đến đường thẳng Δ . Ta có:

R = d(C,
$$\Delta$$
) = $\frac{|5.(-2)+12(-2)-10|}{\sqrt{5^2+12^2}} = \frac{44}{13}$.

Bài 2: Cho điểm A (3; 6). Tìm khoảng cách từ A đến đường thẳng d: $\begin{cases} x = 4 - 3t \\ y = 7 + 2t \end{cases}$

Lời giải:

Xét đường thẳng d: $\begin{cases} x = 4 - 3t \\ y = 7 + 2t \end{cases}$ ta có vecto chỉ phương của d là $\vec{u} = (-3; 2)$

 \Rightarrow vecto pháp tuyến của d là $\vec{n} = (2; 3)$

Chọn điểm M (4; 7) thuộc d ta có phương trình tổng quát của d là:

$$2.(x-4) + 3.(y-7) = 0$$

$$\Leftrightarrow 2x - 8 + 3y - 21 = 0$$

$$\Leftrightarrow$$
 2x + 3y - 29 = 0

Khoảng cách từ A (3; 6) đến đường thẳng d là:

$$d(A,d) = \frac{|2.3 + 3.6 - 29|}{\sqrt{2^2 + 3^2}} = \frac{5}{\sqrt{13}}.$$

C. Bài tập tự luyện.

Bài 1: Viết phương trình tổng quát của đường thẳng d biết d đi qua 2 điểm A (3; 5) và B (4; 6).

Đáp án: d: -x + y = 2

Bài 2: Viết phương trình tham số của đường thẳng d' biết d' đi qua 2 điểm A (2; 7) và B (0; 5).

Đáp án: d':
$$\begin{cases} x = 2 - 2t \\ y = 7 - 2t \end{cases}$$

Bài 3: Viết phương trình chính tắc của đường thẳng d đi qua hai điểm M (1; 6) và N (2; 3)

Đáp án: d:
$$\frac{x-1}{1} = \frac{y-6}{-3}$$

Bài 4: Viết phương trình đoạn chắn của đường thẳng d biết d song song với đường thẳng d': 4x - 3y + 2 = 0 và d đi qua điểm (2; 3)

Đáp án: d:
$$4x - 3y + 1 = 0$$

Bài 5: Xét vị trí tương đối giữa đường thẳng d: 3x - 5y + 2 = 0 và đường thẳng d': 3x - 5y = 0.

Đáp án: d // d'

Bài 6: Cho đường thẳng d: 2x - 6y + 3 = 0 và đường thẳng d': x - m + 7 = 0. Tìm m để d // d'.

Đáp án: m = 3

Bài 7: Cho hai đường thẳng d: 6x - y = 0 và d': 2x + 8y - 1 = 0. Tìm tọa độ giao điểm I của d và d'.

Đáp số:
$$I\left(\frac{1}{50}; \frac{3}{25}\right)$$

Bài 8: Cho hai đường thẳng d: 8x - 3y + 2 = 0 và d': x = 4. Tìm số đo góc giữa d và d'.

Đáp án: $(d,d') = 20^{\circ}33'$

Bài 9: Cho điểm A (4; 7) và đường thẳng d': x - 6 = 0. Tìm khoảng cách từ A đến đường thẳng d.

Đáp án: d(A, d') = 2

Bài 10: Cho đường thẳng d: $\begin{cases} x=2+2t\\ y=3+t \end{cases}$. Tìm m để khoảng cách giữa A (2; m) và đường thẳng d là 5.

Đáp số:
$$m = \frac{3 - 5\sqrt{5}}{2}$$