有限差分法解偏微分方程式

第一節 偏微分方程

已知二階偏微分方程

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial t} + C\frac{\partial^2 u}{\partial t^2} + f\left(x, t, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial t}\right) = 0$$

若 $B^2 - 4AC = 0$,則稱上式為<mark>拋物線型</mark>偏微分方程。

若 $B^2 - 4AC > 0$,則稱上式爲雙曲線型偏微分方程。

若 $B^2 - 4AC < 0$,則稱上式爲**橢圓型**偏微分方程。

第二節 Heat conduction 偏微分方程之數值解

Heat Conduction Equation :

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t} , \quad 0 < x < L , \quad t > 0$$

邊界條件與初始條件必須給定。

將 x 分成 n 段 $\Delta x = h = \frac{L}{n}$, 並取 t 方向增量 $k = \Delta t$

【方法一】顯性近似法:

考慮節點(i,j)處之差分公式:grid points: (x_i,t_j) , $u_{ij}=u(x_i,t_j)$

二階偏微分爲中央差分近似

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{\Delta x^2} \approx \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2}$$

一階偏微分爲前向差分近似

$$\frac{\partial u}{\partial t} \approx \frac{u_{i,j+1} - u_{i,j}}{\Delta t} \approx \frac{u_{i,j+1} - u_{i,j}}{k}$$

代入熱傳方程
$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$$
,得
$$\frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} = \frac{1}{\alpha^2} \frac{u_{i,j+1} - u_{i,j}}{k}$$

移項整理得

$$\frac{\alpha^{2}k}{h^{2}}(u_{i-1,j}-2u_{i,j}+u_{i+1,j})=u_{i,j+1}-u_{i,j}$$
令 $\alpha^{*}=\frac{\alpha^{2}k}{h^{2}}$ 代入,得節點 (i,j) 之有限差分近似公式
$$u_{i,j+1}=u_{i,j}+\alpha^{*}(u_{i-1,j}-2u_{i,j}+u_{i+1,j}), i=0,1,2,\cdots,n, j=0,1,2,\cdots$$

其中j=0爲初始條件, $u_{i,0}$ 爲給定。

移項得 PDE finite difference formula for the heat equation:

$$u_{i,j+1} = \alpha * u_{i-1,j} + (1 - 2\alpha *)u_{i,j} + \alpha * u_{i+1,j}$$

$$i=0$$
 及 $i=n$ 爲邊界條件, $u_{0,i}$, $u_{n,i}$ 爲給定。

If $0 < \alpha^* \le 0.5$, then the approximations $u_{i,j}$ converge to the solution u(x,t)

【方法二】隱性近似法:

考慮節點(i, j+1)處之差分公式

(注意隱性近(i,j+1)與顯性法(i,j)不同, j+1 line is to-be-determined)

二階偏微分爲中央差分近似,

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i-1,j+1} - 2u_{i,j+1} + u_{i+1,j+1}}{\Delta x^2} \approx \frac{u_{i-1,j+1} - 2u_{i,j+1} + u_{i+1,j+1}}{h^2}$$

一階偏微分爲前向差分近似

$$\frac{\partial u}{\partial t} \approx \frac{u_{i,j+1} - u_{i,j}}{\Delta t} \approx \frac{u_{i,j+1} - u_{i,j}}{k}$$

代入熱傳方程
$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$$
,得

$$\frac{u_{i-1,j+1} - 2u_{i,j+1} + u_{i+1,j+1}}{h^2} = \frac{1}{\alpha^2} \frac{u_{i,j+1} - u_{i,j}}{k}$$

移項整理得

$$-\frac{\alpha^2 k}{h^2} \left(u_{i-1,j+1} - 2u_{i,j+1} + u_{i+1,j+1} \right) + u_{i,j+1} = u_{i,j}$$

令
$$\alpha^* = \frac{\alpha^2 k}{h^2}$$
代入,得節點 $(i, j+1)$ 之有限差分近似公式

$$(1+2\alpha*)u_{i,j+1}-\alpha*(u_{i+1,j+1}+u_{i-1,j+1})=u_{i,j}$$
, $i=0,1,2,\dots,n$, $j=0,1,2,\dots$

其中 j=0 為初始條件, $u_{i,0}$ 為給定。

i=0 及i=n 爲邊界條件, $u_{0,i}$, $u_{n,i}$ 爲給定。

空間網格點: i = 0到i = n 各節點代入展開得

1. 當i=1,代入差分通式 $(1+2\alpha*)u_{i,j+1}-\alpha*(u_{i+1,j+1}+u_{i-1,j+1})=u_{i,j}$,得

$$(1+2\alpha*)u_{1,j+1}-\alpha*(u_{2,j+1}+u_{0,j+1})=u_{1,j}$$

移項得

$$(1+2\alpha*)u_{1,j+1}-\alpha*u_{2,j+1}=u_{1,j}+\alpha*u_{0,j+1}=u_{1,j}+\alpha*u_0$$

2. 當i = n - 1,代入差分通式 $(1 + 2\alpha *)u_{i,j+1} - \alpha *(u_{i+1,j+1} + u_{i-1,j+1}) = u_{i,j}$,得

$$(1+2\alpha*)u_{n-1,j+1}-\alpha*(u_{n,j+1}+u_{n-2,j+1})=u_{n-1,j}$$

移項得

$$(1+2\alpha*)u_{n-1,j+1}-\alpha*u_{n-2,j+1}=u_{n-1,j}+\alpha*u_{n,j+1}=u_{n-1,j}+\alpha*u_n$$

最後代入整理得矩陣形式如下:

$$\begin{bmatrix} 1 + 2\alpha * & -\alpha * & 0 & & 0 \\ -\alpha * & 1 + 2\alpha * & -\alpha * & \cdots & 0 \\ 0 & -\alpha * & 1 + 2\alpha * & & 0 \\ & \vdots & & \ddots & \\ 0 & 0 & 0 & & 1 + 2\alpha * \end{bmatrix} \begin{bmatrix} u_{1,j+1} \\ u_{2,j+1} \\ u_{3,j+1} \\ \vdots \\ u_{n-1,j+1} \end{bmatrix} = \begin{bmatrix} u_{1,j} + \alpha * u_0 \\ u_{2,j} \\ u_{3,j} \\ \vdots \\ u_{n-1,j} + \alpha * u_n \end{bmatrix}$$

【觀念】

- ※ 隱性法爲無條件穩定
- ※ 顯性法爲條件穩定 (α *≤0.5),時間網格距愈小愈好。

第三節 雙曲線型偏微分方程

Wave Equation:

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} , \quad 0 < x < L , \quad t > 0$$

邊界條件與初始條件必須給定。

將 x 分成 n 段 $\Delta x = h = \frac{L}{n}$, 並取 t 方向增量 $k = \Delta t$

考慮節點(i,j)處之差分公式

二階偏微分爲中央差分近似

$$\frac{\partial^{2} u}{\partial x^{2}} \approx \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{\Delta x^{2}} \approx \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^{2}}$$

及

$$\frac{\partial^{2} u}{\partial t^{2}} \approx \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{\Delta t^{2}} \approx \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{k^{2}}$$

代入波動方程
$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$
 , 得

$$\frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} = \frac{1}{c^2} \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{k^2}$$

移項整理得

$$\frac{c^2k^2}{h^2}\left(u_{i-1,j} - 2u_{i,j} + u_{i+1,j}\right) = u_{i,j-1} - 2u_{i,j} + u_{i,j+1}$$

令
$$\alpha^2 = \frac{c^2 k^2}{h^2}$$
代入,得節點 (i, j) 之有限差分近似公式

$$u_{i,j+1} = -u_{i,j-1} + 2u_{i,j} + \alpha^2 \left(u_{i-1,j} - 2u_{i,j} + u_{i+1,j} \right)$$

或

$$u_{i,j+1} = \alpha^2 (u_{i+1,j} + u_{i-1,j}) + 2(1 - \alpha^2) u_{i,j} - u_{i,j-1}$$
, $i = 0,1,2,\dots,n$, $j = 0,1,2,\dots$

其中
$$j=0$$
 爲初始條件, $u(x_i,0)=u_{i,0}=U_i$ 及 $\frac{\partial u}{\partial t}(x_i,0)=V_i$ 爲給定。代入得

$$u_{i,1} = \alpha^2 (u_{i+1,0} + u_{i-1,0}) + 2(1 - \alpha^2) u_{i,0} - u_{i,-1}$$

上式中有 $u_{i,-1}$ 項,此項計算可由初始條件 $\frac{\partial u}{\partial t}(t_0)=V_i$,利用中央差分近似一階微分值 ,即

$$\frac{\partial u}{\partial t} \big(t_0 \big) \approx \frac{-u_{i,-1} + u_{i,1}}{2\Delta t} = \frac{-u_{i,-1} + u_{i,1}}{2k} = V_i$$
 移項得

$$-u_{i,-1} = 2kV_i - u_{i,1}$$

$$i=0$$
 及 $i=n$ 爲邊界條件, $u_{0,j}$, $u_{n,j}$ 爲給定。

代回原差分近似式得

$$u_{i,1} = \alpha^2 (U_{i+1} + U_{i-1}) + 2(1 - \alpha^2)U_i + 2kV_i - u_{i,1}$$

移項得

$$2u_{i,1} = \alpha^2 (U_{i+1} + U_{i-1}) + 2(1 - \alpha^2)U_i + 2kV_i$$

或

$$u_{i,1} = \frac{\alpha^2}{2} (U_{i+1} + U_{i-1}) + (1 - \alpha^2) U_i + kV_i$$

第四節 橢圓型偏微分方程

Lapace Equation:

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad 0 < x < a \quad 0 < y < b$$

Poisson's Equation:

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y), \quad 0 < x < a, \quad 0 < y < b, \quad f(x, y)$$
 爲給定之 source function •

Helmholtz's Equation:

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + g(x, y)u = f(x, y) \cdot 0 < x < a \cdot 0 < y < b$$

將 x 分成 n 段 $\Delta x = h = \frac{L}{n}$, 並取 y 方向增量 $k = \Delta y$

考慮節點(i,j)處之差分公式

二階偏微分爲中央差分近似

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{\Delta x^2} \approx \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2}$$

及

$$\frac{\partial^2 u}{\partial y^2} \approx \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{\Delta y^2} \approx \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{k^2}$$

代入 Laplace 方程
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
,得

$$\nabla^2 u_{i,j} = \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} + \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{k^2}$$

移項整理得

$$\nabla^2 u_{i,j} = \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} + \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{k^2}$$

令 $r = \frac{k}{h}$ 代入,得節點(i, j)之有限差分近似公式

$$\nabla^2 u_{i,j} = \frac{r^2 u_{i-1,j} - 2r^2 u_{i,j} + r^2 u_{i+1,j}}{r^2 h^2} + \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{r^2 h^2}$$

或

$$\nabla^2 u_{i,j} = \frac{r^2 u_{i-1,j} + r^2 u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 2(1 + r^2) u_{i,j}}{r^2 h^2}$$

$$i = 0,1,2,\dots,n$$
, $j = 0,1,2,\dots,n$

當
$$\Delta x = \Delta y$$
及 $r = 1$,代入得

$$\nabla^2 u_{i,j} = \frac{u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j}}{h^2}$$

Therefore,
$$u_{i,j} = \frac{u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1}}{4}$$

The "relaxation" method can be used to find the results.

Boundary Conditions

Dirichlet: The values of **only** the function, u, are specified on a boundary.

Neumann: The values of only the normal derivatives of the function are gives on

a boundary.

Cauchy: The values of both the function and its normal derivative are specified

on the same boundary.

			TYPE OF PDE	
Type of boundary condition		Elliptic (Poisson's equation) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \rho(x,y)$ Equilibrium distribution	Parabolic (Heat conduction) $\frac{\partial T}{\partial t} = -D \frac{\partial^2 T}{\partial x^2}$ Diffusion	Hyperbolic The wave equation $\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$ Wave propagation
Dirichlet or Neumann on	OPEN Surface	Not enough	UNIQUE, STABLE solution in one direction only	Not enough
	CLOSED Surface	UNIQUE, STABLE solution	Too much	Too much
Cauchy on	OPEN Surface	Unphysical results	Too much	UNIQUE, STABLE solution
	CLOSED Surface	Too much	Too much	Too much

Table 22.1 Boundary conditions appropriate to PDEs

Finite difference expressions:

Forward difference
$$\frac{\partial u}{\partial x} \bigg|_{(x_i y_j)} \approx \frac{(u_{i+1,j} - u_{ij})}{\Delta x} + \mathcal{O}(\Delta x)$$

$$\frac{\partial^2 u}{\partial x^2} \bigg|_{(x_i y_j)} \approx \frac{(u_{i+2,j} - 2u_{i+1,j} + u_{ij})}{(\Delta x)^2} + \mathcal{O}(\Delta x)$$
 Central difference
$$\frac{\partial u}{\partial x} \bigg|_{(x_i y_j)} \approx \frac{(u_{i+1,j} - u_{i-1,j})}{2\Delta x} + \mathcal{O}(\Delta x^2)$$

$$\frac{\partial^2 u}{\partial x^2} \bigg|_{(x_i y_j)} \approx \frac{(u_{i+1,j} - 2u_{ij} + u_{i-1,j})}{(\Delta x)^2} + \mathcal{O}(\Delta x^2)$$