# CS7267 - Dubai Housing

October 11, 2024

0.1 Name: Catherine Lennon

0.2 Class: CS7267 Machine Learning

0.3 Term: Spring 2024

0.4 Assignment 1

```
[20]: # IMPORTS
      import pandas as pd
      import matplotlib.pyplot as plt
      import numpy as np
      from pathlib import Path
      from pandas.plotting import scatter_matrix
      from sklearn.compose import ColumnTransformer
      from sklearn.preprocessing import StandardScaler, OneHotEncoder, OrdinalEncoder
      from sklearn.pipeline import Pipeline
      from sklearn.base import BaseEstimator, TransformerMixin
      from sklearn.linear_model import LinearRegression
      from sklearn.model_selection import StratifiedShuffleSplit
      from sklearn.model selection import train test split
      from sklearn.compose import make_column_selector, make_column_transformer
      from sklearn.pipeline import make_pipeline
      from sklearn.metrics import mean_squared_error
      from sklearn.linear model import Lasso
      from sklearn.model_selection import GridSearchCV
      from sklearn.ensemble import RandomForestRegressor
      # LOAD THE HOUSING DATA
      def load_housing_data():
          dubai = Path("/Users/catherinelennon/Downloads/dubai_apt.csv")
          # CHECK TO ENSURE THE FILE EXISTS
          if not dubai.is file():
              raise FileNotFoundError(f"File not found: {dubai}")
          return pd.read_csv(dubai)
```

```
# SET THE 'HOUSING' VARIABLE TO THE DATASET
      housing = load_housing_data()
      # SHOW THE DATA
      housing.head()
[20]:
              id
                            neighborhood
                                           latitude
                                                     longitude
                                                                   price \
      0 5528049
                         'Palm Jumeirah'
                                          25.113208
                                                     55.138932
                                                                2700000
                         'Palm Jumeirah'
      1 6008529
                                          25.106809
                                                     55.151201
                                                                 2850000
      2 6034542
                  'Jumeirah Lake Towers'
                                          25.063302
                                                     55.137728
                                                                 1150000
      3 6326063
                       'Culture Village'
                                          25.227295
                                                     55.341761
                                                                 2850000
      4 6356778
                         'Palm Jumeirah'
                                          25.114275
                                                     55.139764
                                                                 1729200
         size_in_sqft price_per_sqft no_of_bedrooms no_of_bathrooms quality ...
      0
                 1079
                              2502.32
                                                                      2
                                                                        Medium
      1
                 1582
                              1801.52
                                                    2
                                                                        Medium
      2
                 1951
                               589.44
                                                    3
                                                                      5 Medium ...
      3
                 2020
                              1410.89
                                                    2
                                                                      3
                                                                            Low ...
      4
                  507
                              3410.65
                                                    0
                                                                      1 Medium ...
         private pool
                       security
                                 shared_gym shared_pool shared_spa study \
                False
                          False
                                                   False
                                                                False False
      0
                                       True
                False
                          False
                                       True
                                                    True
                                                                False
                                                                      False
      1
      2
                False
                           True
                                       True
                                                    True
                                                                False
                                                                      False
                                                                False
      3
                False
                          False
                                      False
                                                   False
                                                                      False
      4
                False
                           True
                                       True
                                                    True
                                                                 True False
         vastu_compliant view_of_landmark view_of_water walk_in_closet
      0
                   False
                                     False
                                                      True
                                                                     False
                   False
                                     False
                                                      True
                                                                     False
      1
                                                                      True
      2
                   False
                                      True
                                                     True
      3
                   False
                                     False
                                                    False
                                                                     False
                   False
                                      True
                                                     True
                                                                     False
      [5 rows x 38 columns]
         Data Exploration
[21]: # EXPLORATION - LOOK AT THE VALUE COUNTS FOR THE NEIGHBORHOOD COLUMN
      housing["neighborhood"].value_counts()
[21]: 'Downtown Dubai'
                                             302
      'Dubai Marina'
                                             288
      'Jumeirah Village Circle'
                                             200
      'Palm Jumeirah'
                                             178
```

| 'Jumeirah Beach Residence'          | 116 |
|-------------------------------------|-----|
| 'Business Bay'                      | 97  |
| 'Jumeirah Lake Towers'              | 70  |
| 'Dubai Hills Estate'                | 53  |
| 'The Views'                         | 47  |
| Jumeirah                            | 39  |
| 'Dubai Creek Harbour (The Lagoons)' | 38  |
| 'Mohammed Bin Rashid City'          | 31  |
| DIFC                                | 31  |
| Greens                              | 30  |
| 'Dubai Harbour'                     | 30  |
| 'Motor City'                        | 27  |
| 'Town Square'                       | 27  |
| 'Dubai Sports City'                 | 25  |
| 'Al Furjan'                         | 23  |
| 'DAMAC Hills'                       | 21  |
| 'Old Town'                          | 17  |
| Meydan                              | 17  |
| 'City Walk'                         | 14  |
| 'Umm Suqeim'                        | 13  |
| 'Dubai Silicon Oasis'               | 12  |
| 'Dubai Land'                        | 11  |
| 'Culture Village'                   | 11  |
| Arjan                               | 11  |
| 'The Hills'                         | 11  |
| 'Al Barari'                         | 10  |
| 'Al Sufouh'                         | 8   |
| Bluewaters                          | 8   |
| 'Discovery Gardens'                 | 8   |
| 'World Trade Center'                | 8   |
| 'Dubai Production City (IMPZ)'      | 8   |
| 'Al Kifaf'                          | 7   |
| Mirdif                              | 6   |
| 'International City'                | 6   |
| Remraam                             | 6   |
| 'Dubai South (Dubai World Central)' | 5   |
| 'Dubai Festival City'               | 5   |
| 'Al Barsha'                         | 4   |
| Mudon                               | 4   |
| 'Barsha Heights (Tecom)'            | 4   |
| 'Falcon City of Wonders'            | 3   |
| 'Jumeirah Village Triangle'         | 3   |
| 'Jebel Ali'                         | 2   |
| 'Jumeirah Golf Estates'             | 2   |
| 'Green Community'                   | 2   |
| 'Dubai Healthcare City'             | 2   |
| 'Mina Rashid'                       | 1   |

```
'wasl gate' 1
'Dubai Residence Complex' 1
'Al Quoz' 1
```

Name: neighborhood, dtype: int64

```
[22]: # FIND THE MIN AND MAX VALUES FOR THE TARGET VARIABLE 'PRICE'
print(housing["price"].max())
print(housing["price"].min())
```

35000000 220000

```
[23]: # GENERATE HISTOGRAMS FOR QUANTITATIVE VARIABLES
housing.hist(bins=50, figsize=(12, 8))
plt.show()
```



CHECKMARK - As shown in Figure 2-11, use the Dubai dataset and create a geographical scatterplot.

```
[24]: housing.plot(kind="scatter", x="longitude", y="latitude", grid=True) plt.show()
```



```
[25]: # GENERATE CORRELATION MATRIX
corr_matrix = housing.corr()
```

CHECKMARK - Look for correlation. As shown in Figure 2-14, use the numerical attributes of the Dubai dataset and show the correlations among them.

```
[26]: attributes = ["price", "latitude", "longitude", "

o"size_in_sqft", "no_of_bedrooms", "no_of_bathrooms"]

scatter_matrix(housing[attributes], figsize=(12, 8))

plt.show()
```



[27]: # IDENTIFY THE MOST PROMISING CORRELATION
housing.plot(kind="scatter", x="size\_in\_sqft", y="price", alpha=0.1, grid=True)
plt.show()



### CHECKMARK - Print the correlation matrix as shown on page 67.

```
[28]: price
                                1.000000
      size_in_sqft
                                0.808595
     price_per_sqft
                                0.705538
                                0.514151
     no_of_bedrooms
     no_of_bathrooms
                                0.502263
      private_pool
                                0.325857
      latitude
                                0.206775
      bedrooms_per_bathroom
                                0.158321
      concierge
                                0.113217
     maid_room
                                0.109675
     private_gym
                                0.089794
      view_of_water
                                0.088400
     private_jacuzzi
                                0.073879
     private_garden
                                0.049032
```

```
unfurnished
                          0.029904
built_in_wardrobes
                          0.026963
maid_service
                          0.019678
central_ac
                          0.016365
view_of_landmark
                          0.015263
covered_parking
                          0.011251
balcony
                          0.006558
walk_in_closet
                         -0.003760
shared spa
                         -0.003985
longitude
                         -0.015395
kitchen_appliances
                         -0.021120
study
                         -0.023678
id
                         -0.035908
shared_gym
                         -0.058010
barbecue_area
                        -0.079268
shared_pool
                         -0.084076
vastu_compliant
                        -0.084158
security
                         -0.085007
networked
                        -0.085427
childrens_pool
                        -0.093513
childrens_play_area
                        -0.096506
lobby_in_building
                        -0.100234
pets_allowed
                         -0.115898
Name: price, dtype: float64
```

## 2 Prepare the Data for the Model

Data columns (total 38 columns):

Column

CHECKMARK - Drop the column price\_per\_sqft from the dataset and show  $(.\inf o()).$ 

```
(.IIIIO()).

[29]: # CHECK TO SEE WHETHER PRICE_PER_SQFT EXISTS
if 'price_per_sqft' in housing.columns:
    housing = housing.drop("price_per_sqft", axis=1)
else:
    print("'price_per_sqft' column not found in strat_train_set.")
    housing = housing.copy()

# COPY PRICE VARIABLE TO LABELS SET
housing_labels = housing["price"].copy()

# DISPLAY INFO
print(housing.info())
print(housing_labels.describe())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1905 entries, 0 to 1904
```

Non-Null Count Dtype

```
0
     id
                             1905 non-null
                                              int64
 1
     neighborhood
                             1905 non-null
                                              object
 2
     latitude
                             1905 non-null
                                              float64
 3
     longitude
                             1905 non-null
                                              float64
 4
     price
                             1905 non-null
                                              int64
 5
     size_in_sqft
                             1905 non-null
                                              int64
 6
     no_of_bedrooms
                             1905 non-null
                                              int64
 7
     no_of_bathrooms
                             1905 non-null
                                              int64
 8
     quality
                             1905 non-null
                                              object
 9
     maid_room
                             1905 non-null
                                              bool
     unfurnished
 10
                             1905 non-null
                                              bool
 11
                             1905 non-null
                                              bool
     balcony
     barbecue_area
                             1905 non-null
                                              bool
 13
     built_in_wardrobes
                             1905 non-null
                                              bool
                             1905 non-null
     central_ac
                                              bool
 15
     childrens_play_area
                             1905 non-null
                                              bool
     childrens_pool
                             1905 non-null
                                              bool
 16
 17
     concierge
                             1905 non-null
                                              bool
 18
     covered parking
                             1905 non-null
                                              bool
     kitchen_appliances
                             1905 non-null
                                              bool
 20
     lobby_in_building
                             1905 non-null
                                              bool
 21
     maid service
                             1905 non-null
                                              bool
 22
     networked
                             1905 non-null
                                              bool
 23
     pets_allowed
                             1905 non-null
                                              bool
 24
     private_garden
                             1905 non-null
                                              bool
 25
     private_gym
                             1905 non-null
                                              bool
 26
     private_jacuzzi
                             1905 non-null
                                              bool
 27
     private_pool
                             1905 non-null
                                              bool
 28
     security
                             1905 non-null
                                              bool
     shared_gym
 29
                             1905 non-null
                                              bool
 30
     shared_pool
                             1905 non-null
                                              bool
 31
     shared_spa
                             1905 non-null
                                              bool
 32
     study
                             1905 non-null
                                              bool
 33
     vastu compliant
                             1905 non-null
                                              bool
     view_of_landmark
 34
                             1905 non-null
                                              bool
     view_of_water
                             1905 non-null
                                              bool
 36
     walk_in_closet
                             1905 non-null
                                              bool
                                              float64
     bedrooms_per_bathroom
                             1905 non-null
dtypes: bool(28), float64(3), int64(5), object(2)
memory usage: 201.0+ KB
None
count
         1.905000e+03
mean
         2.085830e+06
std
         2.913200e+06
min
         2.200000e+05
25%
         8.900000e+05
50%
         1.400000e+06
```

```
75% 2.200000e+06
max 3.500000e+07
Name: price, dtype: float64
```

CHECKMARK - Prepare the datasets for training and testing (test\_size=0.2 and random\_state=42).

### 2.1 Pipeline Construction

CHECKMARK - Use at least StandardScaler for the numerical attributes and One-HotEncoder or OridinalEncoder for categorical attributes. Show your code for this Transformation pipeline.

```
[31]: # ---- PIPELINE CONSTRUCTION
    # DEFINE NUMERICAL AND CATEGORICAL COLUMNS
    numerical cols = ['latitude', 'longitude', 'size in sqft', 'no of bedrooms',
    categorical_cols_one_hot = ['neighborhood']
    categorical_cols_ordinal = ['quality']
    other_cols = ['id', 'maid_room', 'unfurnished', 'balcony', 'barbecue_area', _
    →'concierge', 'covered_parking', 'kitchen_appliances', 'lobby_in_building', 
    ⇔'view_of_water', 'walk_in_closet']
    # CREATE TRANSFORMATIONS FOR EACH TYPE
    numerical_pipeline = Pipeline([
       ('scaler', StandardScaler())
    ])
    categorical_pipeline_one_hot = Pipeline([
       ('onehot', OneHotEncoder(handle_unknown='ignore'))
    ])
    categorical_pipeline_ordinal = Pipeline([
       ('ordinal', OrdinalEncoder())
    ])
```

CHECKMARK - Train your model (.fit()) and show an example predictions and ground truth values as shown on the page 88.

[32]: lin\_reg = Pipeline([

('preprocessor', preprocessor),

```
('linear_regression', LinearRegression())
      ])
      # FIT PIPELINE TO TRAINING DATA
      lin_reg.fit(X_train, y_train)
[32]: Pipeline(steps=[('preprocessor',
                       ColumnTransformer(transformers=[('num',
                                                          Pipeline(steps=[('scaler',
      StandardScaler())]),
                                                          ['latitude', 'longitude',
                                                           'size_in_sqft',
                                                           'no_of_bedrooms',
                                                           'no_of_bathrooms']),
                                                         ('cat_one_hot',
                                                          Pipeline(steps=[('onehot',
      OneHotEncoder(handle_unknown='ignore'))]),
                                                          ['neighborhood']),
                                                         ('cat_ordinal',
                                                          Pipeline(steps=[('ordinal',
      OrdinalEncoder...
                                                           'concierge',
                                                           'covered_parking',
                                                           'kitchen appliances',
```

'lobby\_in\_building',

### 3 Fit the Model

CHECKMARK - Train your model (.fit()) and show an example predictions and ground truth values as shown on the page 88.

Housing Predictions: [ 405100. 420600. -688100. 1124000. 2934400.] Housing Actual: [2700000 2850000 1150000 2850000 1729200]

CHECKMARK - You will use two evaluation metrics: RMSE and the coefficient of determination ( $R^2$ , refer to sklearn.metrics.r2\_score). Show your results.

```
[34]: # CALCULATE MEAN SQUARED ERROR
lin_rmse = mean_squared_error(y_test, y_pred, squared=False)
print(f"Linear Regression RMSE: {lin_rmse}")

# CALCULATE R-SQUARED
r_squared = lin_reg.score(X_test, y_test)
print(f"Coefficient of Determination (R²) on Test Set: {r_squared}")
```

Linear Regression RMSE: 1418197.859999327 Coefficient of Determination ( $R^2$ ) on Test Set: 0.7495071472206976

CHECKMARK - You can further improve your system using ensemble models or any other models and fine-tuning. Show your approaches to any improvements.

3.0.1 LASSO: LASSO stands for Least Absolute Shrinkage and Selection Operato and is a regression analysis method for both variable selection and regularization. LASSO can both identify important features and discard irrelevant ones, which was my goal here. Unfortunately, it did not result in a meaningfully lower error or R-squared, even after using Grid Search to identify the best alpha.

```
[35]: # CREATE LASSO PIPELINE
      lasso_reg = Pipeline([
          ('preprocessor', preprocessor),
          ('lasso', Lasso(alpha=100, random_state=42))
      ])
      # FIT THE LASSO MODEL
      lasso_reg.fit(X_train, y_train)
      # CREATE PREDICTIONS
      y_pred_lasso = lasso_reg.predict(X_test)
      # LASSO RMSE
      lasso_rmse = mean_squared_error(y_test, y_pred_lasso, squared=False)
      print(f"Lasso Regression RMSE: {lasso_rmse}")
      # LASSO R-SQUARED
      r_squared_lasso = lasso_reg.score(X_test, y_test)
      print(f"Coefficient of Determination (R^2) with Lasso on Test Set:__
       →{r_squared_lasso}")
```

Lasso Regression RMSE: 1418197.859999327 Coefficient of Determination ( $R^2$ ) with Lasso on Test Set: 0.7521260787441864

/Users/catherinelennon/opt/anaconda3/lib/python3.9/sitepackages/sklearn/linear\_model/\_coordinate\_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.515e+15, tolerance: 1.306e+12
model = cd\_fast.enet\_coordinate\_descent(

```
test_rmse = mean_squared_error(y_test, y_pred, squared=False)
test_r_squared = best_model.score(X_test, y_test)
print(f"Test RMSE: {test_rmse}")
print(f"Test R2: {test_r_squared}")
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.127e+15, tolerance: 1.042e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.262e+15, tolerance: 1.212e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.172e+15, tolerance: 9.438e+11
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.221e+15, tolerance: 9.647e+11
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.184e+15, tolerance: 1.059e+12
 model = cd fast.enet coordinate descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.127e+15, tolerance: 1.042e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.262e+15, tolerance: 1.212e+12
 model = cd_fast.enet_coordinate_descent(
```

```
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.172e+15, tolerance: 9.438e+11
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.221e+15, tolerance: 9.647e+11
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.184e+15, tolerance: 1.059e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear model/ coordinate descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.127e+15, tolerance: 1.042e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.262e+15, tolerance: 1.212e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.172e+15, tolerance: 9.438e+11
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.220e+15, tolerance: 9.647e+11
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.184e+15, tolerance: 1.059e+12
 model = cd_fast.enet_coordinate_descent(
```

```
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.126e+15, tolerance: 1.042e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.261e+15, tolerance: 1.212e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.168e+15, tolerance: 9.438e+11
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear model/ coordinate descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.216e+15, tolerance: 9.647e+11
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.183e+15, tolerance: 1.059e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.113e+15, tolerance: 1.042e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.247e+15, tolerance: 1.212e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.112e+15, tolerance: 9.438e+11
 model = cd_fast.enet_coordinate_descent(
```

```
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.201e+15, tolerance: 9.647e+11
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.179e+15, tolerance: 1.059e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.100e+15, tolerance: 1.042e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear model/ coordinate descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.268e+15, tolerance: 1.212e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.124e+15, tolerance: 9.438e+11
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.119e+15, tolerance: 9.647e+11
 model = cd_fast.enet_coordinate_descent(
Best alpha: {'lasso alpha': 100}
Best cross-validation score (RMSE): 1510199.0083692225
Test RMSE: 1418197.859999327
Test R2: 0.7521260787441864
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.190e+15, tolerance: 1.059e+12
 model = cd_fast.enet_coordinate_descent(
/Users/catherinelennon/opt/anaconda3/lib/python3.9/site-
```

```
packages/sklearn/linear_model/_coordinate_descent.py:647: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations,
check the scale of the features or consider increasing regularisation. Duality
gap: 1.515e+15, tolerance: 1.306e+12
  model = cd_fast.enet_coordinate_descent(
```

3.0.2 Random Forest Regression: Given LASSO did not improve my results, I decided to try a Random Forest Regressor, which meaningfully improved my results. The random forest regressor constructs multiple decision trees during training and outputs the average decision of the individual trees.

```
[37]: # CREATE RANDOM FOREST PIPELINE
      random_forest_reg = RandomForestRegressor(random_state=42)
      rf_pipeline = Pipeline([
          ('preprocessor', preprocessor), # Assuming 'preprocessor' is your existing
       ⇔preprocessing pipeline
          ('rf', RandomForestRegressor(random_state=42))
      ])
      # FIT THE MODEL
      rf_pipeline.fit(X_train, y_train)
      # CREATE PREDICTIONS
      y_pred_rf = rf_pipeline.predict(X_test)
      # CALCULATE RMSE AND R-SQUARED
      rf_rmse = mean_squared_error(y_test, y_pred_rf, squared=False)
      rf_r_squared = rf_pipeline.score(X_test, y_test)
      print(f"Random Forest RMSE: {rf_rmse}")
      print(f"Random Forest R2: {rf_r_squared}")
      # HYPERPARAMETER TUNING
      param_grid = {
          'rf_n_estimators': [100, 200, 300],
          'rf__max_features': ['auto', 'sqrt'],
          'rf__max_depth': [10, 20, 30]
      }
      grid_search_rf = GridSearchCV(rf_pipeline, param_grid, cv=5,__
       ⇔scoring='neg_mean_squared_error')
      grid_search_rf.fit(X_train, y_train)
      print("Best parameters:", grid_search_rf.best_params_)
```

Random Forest RMSE: 982110.6633413924
Random Forest R<sup>2</sup>: 0.881128419061192
Best parameters: {'rf\_max\_depth': 20, 'rf\_max\_features': 'auto',

```
'rf_n_estimators': 200}
```

```
[38]: # CREATE NEW RANDOM FOREST PIPELINE
     rf_pipeline = Pipeline([
         ('preprocessor', preprocessor),
         ('rf', RandomForestRegressor(n_estimators=300, max_features='auto', __
      ])
     # FIT THE MODEL
     rf_pipeline.fit(X_train, y_train)
     # USE GRID RF TO GET BEST ESTIMATORS
     best_rf_pipeline = grid_search_rf.best_estimator_
     best_rf_pipeline.fit(X_train, y_train)
     # CREATE PREDICTIONS
     y_pred_rf = best_rf_pipeline.predict(X_test)
     # CALCULATE RMSE AND R-SQUARED FOR RANDOM FOREST
     rf_rmse = mean_squared_error(y_test, y_pred_rf, squared=False)
     rf_r_squared = best_rf_pipeline.score(X_test, y_test)
     print(f"Random Forest RMSE with Best Parameters: {rf_rmse}")
     print(f"Random Forest R2 with Best Parameters: {rf_r_squared}")
```

Random Forest RMSE with Best Parameters: 957670.8797682557 Random Forest R<sup>2</sup> with Best Parameters: 0.8869710353368904