Reg. No.							
		 -	_		-		

B.Tech/ M.Tech (Integrated) DEGREE EXAMINATION, MAY 2024

Fifth Semester

21CSC301T - FORMAL LANGUAGE AND AUTOMATA

(For the candidates admitted from the academic year 2022-2023 onwards)

Th. T			
-	n	10	٠.
7.4	v	23	

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over (i) to hall invigilator at the end of 40th minute.

(11)	Pa	art - B and Part - C should be answer	red in a	nswer booklet.			
Time:	3 Ноі	ırs			Max. I	Marl	ks: 75
$PART - A (20 \times 1 = 20 Marks)$						BL	CO
1	Α	Answer ALL					
1	. Au	tomata that can be used to devel	lop a l	earning model and is involved in	. 1	1	1
		cision making	(73)				
		Push down automata Finite automata		Linear bounded automata			
	(C)	r mite automata	(D)	Discrete automata			
2	. If t	If the number of states in NFA is N, then DFA can have maximum of					
		2 ^N states		N/2 states			
	(C)	2N states		N states		'	
			`. ′				
3	. Ala	anguage is regular if and only if			1	2	1
		accepted by DFA	(B)	accepted by PDA			
	(C)	accepted by LBA	(D)	accepted by Turing machine			
4.	Wh	ich of the following is not an exar	nple o	f finite state machine system	1	1	1
	(A)	Elevator mechanism		Combination locks			
	(C)	Traffic lights	(D)	Digital watches			
5.	In th	In the formal definition of CFG where G=(V, E, p, S), S represents					
	(A)	Accepting State		Starting Variable			
	(C)	Sensitive Grammar	(D)				
6.	A gr	A grammar with n parse trees where n>l is called					2
		Unambiguous		Ambiguous			
	(C)	Regular		Recursive			
7.	Whi	ch of the following is not a gramn	nar sin	unlification procedure?	1	1	2
	(A)	Removal of epsilon productions		Removal of unit productions			
		Removal of useless symbols	(D)	Removal of non-reachable states			
8.	Whic	ch of the following is an CNF?			-1	1	2
		A->Aw	(R)	A->x		-	_
	. ,	A>xw		A->Xw			
			S And I	4 5 2 5 77			

9.	The	data structure used in processing th	ie cha	racters of the string in PDA is	•	-	~
	(A)	Stack	(B)	Queue			
		List	(D)	Array			
10.	Iden	tify the most appropriate Language	acce	epted by DPDA is	1	2	3
				Context free language			
				Regular grammar			
11.	An a	attempt to reduce the input string	to th	ne start symbol of a grammar is	.1	1	3
	calle			_			
		Top-down parsing	` '	Bottom-up parsing			
	(C)	Syntactic parsing	(D)	Hybrid parsing			
12.	Whi	ch of the following is not a proper	ty of	CFL	1	2	3
	(A)	Kleene closure	(B)	Homomorphism			
		Intersection	(D)	Concatenation			
13.	Whi	ch of the following can accept eve	n pali	indrome over {a,b}	1	2	4
		Deterministic	(B)	Turing machine			
	` /	NDFA	(D)	Linear bounded automata			
14	A fu	ring machine has			1	1	4
1 11		Finite memory	(B)	Infinite memory			
	` '	No memory	(D)	Stack memory			
15	Typ	e 0 languages are called	۰.	,	1	1	4
15.		Recursive Enumerable (RE)	(B)	Regular expressions			
	` '	Context free language		Context free grammar			
16	In a	6-tuple TM defined by (Q, X, E, 5	5, CIO), F), X represents	1	1	4
10.		Tape alphabet					
	(C)		(D)	Final state			
17	Λn	roblem that can be validated in pol	lvnon	nial time is called .	1	2	5
1/.				P problem			
	` /	NP problem PCP problem	` /	None of the above			
	(U)	FCF problem	(1)	Trong of all doors		,	F
18.	Pos	t Correspondence problem is	·		1	1	5
	(A)	decidable decision problem	, ,	undecidable decision problem			
	(C)	not a decision problem	(D)	NP problem			
19	The	e problems in NP class has	•		1	1	5
	(A)	Deterministic algorithm	(B)	Non deterministic polynomial algorithm			
	(C)	Non polynomial algorithm	(D)	No solution			
20	Sul	oset sum problem is an ideal examp	ple of		1	2	5
20		P		NP			
		NP-hard) Undecidable			

$PART - B (5 \times 8 = 40 Marks)$ Answer ALL Questions

Marks BL CO PO

21. a. Construct a DFA that accepts odd number of I 's and even number of 0's.

(OR)

b. Convert the Regular expression into Epsilon-NFA for the string 3 $10 + (0 + 11)0^*1$.

22. a. Simplify the given grammar G:

3 2

S->aA/a/C

 $A - > aB/\epsilon$

B->aA

C->cCD

(OR)

b. Find leftmost, rightmost derivations and parse tree for w=+*-xyxy for the 3 production rule given below $E \rightarrow +EE / *EE / -EE / x / y$.

2

23. a. Design a PDA to accept $L = \{a^n b^m c^m dhn / m, n = 1\}$.

3 3

(OR)

b. Construct a PDA to accept $L = \{ww^R, w \in \{a, b\}\}$.

24. a. Prove that Union of two recursive languages is recursive. Also discuss the complement property.

(OR)

b. Construct a TM that accepts strings with "aba" as a substring on the input $\Sigma = \{a,b\}.$

25. a. Write short notes on NP hard and NP Complete. Express the relationship among them.

(OR)

b. Let $= \{0, 1\}$. Let A & B be strings. Find the instance of PCP.

825

S. No	List A (w _i)	List B (X _i)
1	1	111
2	10111	10
3	10	

$PART - C (1 \times 15 = 15 Marks)$ Answer ANY ONE Question

BL CO PO Marks

26. Obtain the code for <M, 1011> such that M [{qo, q, q2, q3, q4}), {0, 1}, $\{O,I,X,Y,B\}$, 5, qo B, $\{q4\}$] where \ddot{o} is

5 3 15

$$\begin{split} \delta\left(q_{0},0\right) &= (q_{1},X,R) \\ \delta\left(q_{0},y\right) &= (q_{3},Y,R) \\ \delta\left(q_{1},0\right) &= (q_{1},0,R) \\ \delta\left(q_{1},1\right) &= (q_{2},Y,L) \\ \delta\left(q_{1},Y\right) &= (q_{1},Y,R) \\ \ddot{o}\left(q_{2},0\right) &= (q_{2},0,L) \\ \delta\left(q_{2},X\right) &= (q_{0},X,R) \\ \delta\left(q_{2},Y\right) &= (q_{2},Y,L) \\ \delta\left(q_{3},Y\right) &= (q_{3},Y,R) \\ \delta\left(q_{3},R\right) &= (q_{4},B,R) \end{split}$$

Also design a TM which adds two numbers.

27. Construct a turing machine that accepts all palindromes over {0, 1}.

15 4 4

Page 4 of 4