Code	303	JSA20102J	Course Name	DIGITAL LOGIC FUNI	DAMENTA	LS	644	Cours atego		С				Pro	fess	iona	l Co	re Co	ourse	е			4	T	P 2	C 5
227		site Courses Department	Nil Computer Applicat	Co-requisite Courses	Nil Data Bool	k / Codes/Star	ndards	Nil	Prog	gress	ive C	ours	es	Nil	22											
Course	Learnin	g Rationale (C	CLR): The purpose	of learning this course is to	:		10	Le	earni	ng					F	rogr	am L	_earn	ing (Dutco	mes	(PL	0)			
CLR-1 : To learn the concepts of basics of Digital Logics						1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
CLR-2	To im	part in-depth k	nowledge of Log <mark>ic Gate</mark>	S							-4			es			е									
CLR-3:	Under	stand the princ	ciples of boole <mark>an algebr</mark>	a		المطالب	N Pa	(E)	(%)	(%	b.,	ge	sto	iplin	an a	70 <u>00</u> 0	Knowledge		æ			8529			22	
CLR-4:	Basic	knowledge of	Combinational circuits a	nd it applications		- 1 - 1	Call I	(Bloom)				wlec	Concepts	Disciplin	edge	Specialization	Mou	-	Data	S	Skills	Skills			avior	D
CLR-5	Basic	knowledge of	sequential <mark>circuits a</mark> nd i	t applications			-	king	Proficiency	ainm		Kno	Application of Co	ted	edural Knowledge	ializ	77.00	eling	Interpret	Skills	ing	18332	8		Behi	arning
CLR-6:	Desig	n principles of	counters			-		Thinking		Atte		ndamental Knowledge				Spec	to Utilize	Modeling	100000000000000000000000000000000000000		Solving	Communication	I Skills	S	ofessional Behavior) Lea
	200				171	F Ja		of o	pected	pected	e.	dame	icati	nk with	edu	.⊑	ty to	.⊑	alyze,	restigative	oblem.	ımır	nalytical	Skills	essi	Long
Course	Learnin	g Outcomes (0	CLO): At the end of	this course, learners will be	e able to:			Level	Expe	Expe	-	Fun	Арр	Link	Proc	Skills	Ability	Skills	Ana	Inve	Prob	Con	Ana	ICT	Prof	Life
CLO-1:	CLO-1: Have a thorough Understanding of the Fundamentals of Digital Logic and it Fundamentals				3	80	70	4	Н	Н	М	-	-	-	-	-	Н	Н	-	-	М	Н	Н			
CLO-2	CLO-2: Understand the concepts of logic gates and its uses				3	85	75		Н	Н	Н	Н	Н	-	М	-	Н	Н	-	-	М	Н	Н			
CLO-3	CLO-3 : Real time applications of boolean algebra				3	75	70		Н	Н	М	Н	Н		М	-	Н	Н	-	-	М	Н	Н			
CLO-4	CLO-4 : Design and implementation knowledge of Combinational circuits				3	85	80	- 1	Н	Н	Н	-	-	112	112	2	Н	М	-	-	М	Н	Н			
CLO-5	Desig	n and impleme	entation <mark>knowled</mark> ge of se	equential circuits				3	85	75	200	Н	М	М	М	М	М	М	-	Н	Н	-	М	М	Н	Н
CLO-6	Real t	ime applicatioi	n of Conters		HALF.		12	3	80	70		Н	Н	М	19-	-) 	-	-	Н	Н	-	-	М	Н	Н
55655	ation our)		18	18			18				Τ	<u> </u>		į.	18		i		T				18			
		Number Syste	em and its types	Minterms and Maxterms		Combination	nal Logic -	Introd	ductio	on	Seo	uent	ial Ci	rcuit	- Intr	oduc	ction		Со	unter	s – I	ntroc	ductio	on		
S-1	200000000000000000000000000000000000000	Base convers	91.	Sum of Products	- 1.71	Designing of		Section 1							Count	p/2407										
S-2	SLO-1	Binary codes	and its types	Product of Sums methods	- M2	Adders : Qu Adders		-		H	Flip	Flip Flops - Introduction Classification of Counters														
	SLO-2	Code convers	sions	Conversions of SOP to PO	OS	Subtractors:	:Half, Full	Subtra	btractors RS Flip Flop Asynchronous			us Co	Counters													
5-5	SLO-1 Basics of Logic Gates and Derived SLO-2 Gates SLO-2 Basics of Logic Gates and Derived Using theorems Simplifying Boolean Expressions Using theorems		dder Circu	its	JK Flip Flop Synchro			chronous Counters																		
5-4	SLO-1				ubtractor (Circuit	cuits D Flip Flop Syn Vs Asyn Counters																			
			Laboratory 7 Adder	7: Half Add	der an	er and Full Laboratory 10: Implementation of DeMultiplexer Laboratory 13: Ri					ing Counters															
Karnaugh Man - Introduction and its			Multiplexer					T - I	Flip F	lop						Rip	ple (Coun	ters							

S 7- 18	SLO-1 SLO-2	Laboratory 3:Laws of Boolean Expressions	Laboratory 6: Implementation fo Binary Addition and Subtraction	Laboratory 9: Implementation of Multiplexer	Laboratory 12: Four Bit Binary Shift Counters	Laboratory 15: Implementation of DOWN Counter
16		Laws of Intersection, Union, Absorption, Involution, Demorgan's Theorems	Various Representation of Binary Numbers	Programmable Logic Array	Design of Parallel to serial	Types of RAM
	SLO-2	Laura of latera estima Illaina				
15	SLO-1	Laws and Theorems	Binary Subtractions	Programmable Array Logic	Parallel-to-Serial Shift Register	Types of ROM
14	SLO-2	Duality Principle, Complements	Binary Addition	Code Conversions	Design of Serial to Parallel	Memory Addressing
11	SLO-1	Boolean Functions	Boolean Arithmetic - Introduction	Checksum	Serial-to-Parallel Shift Register	Magnetic Memories
13	SLO-2	Implementing Circuits from Boolean Expressions	Determination Prime Implicant Method	Parity Checker	Shift Registers Operations	Basic terms and ideas
12	SLO-1	Evaluating Logic Circuits	Don't Care conditions	Parity Generator	Four-bit Serial in Serial Out Shift register	Memory – Introduction
1- 2	SLO-2	Gate. NOR as Universal Gate	Expressions using theorems	Full Subtractor	Shift Registers and Serial Transfer	DOWN Counter
3	SLO-1	Laboratory2: NAND as Universal	Laboratory 5-Simplifying Boolean	Laboratory 8:Half Subtractor and	Laboratory 11: Implementation of	Laboratory 14: Implementation of
10	SLO-1 SLO-2	Logical Operations AND OR NOT	Four Variable K-Map	Decoder	Shift Registers	Shift Counters
3	SLO-2	L AND OD NOT	E W. C. LL. IV.M.	D	Olim Delia	01.00
.9	SLO-1	Boolean Algebra - Introduction	Two and Three Variable K-Map	Encoder	Registers Architecture	Ring Counter
-8	SLO-2					
	SLO-1	Duality of Logic Gate Representation	Rules for constructing K-Map	De Multiplexer	Master Slave Flip Flop	UP DOWN Counters
	SLO-2	Universality of NOR Gate	Types of K-Map	Implementation of a Boolean expression using a Multiplexer	Edge Triggered	MOD Counters

Lograina	1.	AnanthiSheshasaayee, J.G. Sheshasaayee, (2005), "Digital Logic Fundamentals, Margham	3.	Leach.D.P&Malvino.A.P, (2002), "Digital Principles and Applications", FifthEdition,
Learning		Publications		TMH
Resources	2.	Vijayendran. V, (2003), "Digital Fundamentals", S.V. Publishers	4.	MorisMano.M,(2001), "Digital Logic and Computer Design", Fourth Edition, Pearson

Level			Final Examination								
	Bloom's Level of Thinking	CLA - 1 (10%)		CLA - 2 (10%)		CLA -	3 (20%)	CLA - 4	l (10%)#	(50% weightage)	
	Level of Tilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Laural 4	Remember	200/	200/	450/	150/	150/	150/	150/	15%	15%	15%
evel 1	Understand	20%	20%	15%	15%	15%	15%	15%			13 /0
	Apply	200/	200/	200/	200/	200/	200/	200/	200/	200/	200/
evel 2	Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
evel 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	150/	150/	15%
-evel 3	Create	10 %	10%	1576	15%	1376	15%	15%	15%	15%	1376
	Total	10	0 %	100	0 %	10	0 %	100	0 %	100	0 %

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers											
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts									
Mr.G.Muruganandam, Group Project Manager, HCL Technologies, Chennai	Dr. S. Gopinathan, Professor, University of Madras, Chennai	Mr. M. Ramesh, SRM IST									
Mr.M. Hemachandar, Tech Lead, Wipro Limited, Chennai		Mrs. P. Yogalakshmi, SRM IST									

