(19) B本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-49647

(43)公開日 平成5年(1993)3月2日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

A 6 1 B 17/36

3 3 0

7720-4C

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号

特願平3-211735

(22)出願日

平成3年(1991)8月23日

(71)出願人 000000376

オリンパス光学工業株式会社

東京都渋谷区橋ケ谷2丁目43番2号

(72)発明者 櫻井 友尚

東京都渋谷区幡ケ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(72)発明者 谷川 廣治

東京都渋谷区幡ケ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(72) 発明者 小林 至峰

東京都渋谷区幡ケ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(74)代理人 弁理士 鈴江 武彦

最終頁に続く

(54) 【発明の名称】 超音波手術装置

(57)【要約】

【目的】各ハンドピース単独のライフサイクルやメンテ ナンスの必要性についての情報も得て、個々のハンドビ ースの状態をモニターして判断することで、超音波手術 芸置の安全性を向上することを目的とする.

【構成】 ハンドピース1には、その振動子2の駆動使用 状態を検知する振動センサ6と、このモニタ情報を記録 する手段7と、この記録手段7の記憶情報を装置本体1 0に伝送する通信手段8と、これらを制御する手段9と を設けたものである。しかして、ハンドピース1の振動 子2の状態、例えば、トータルの使用時間や、電圧電流 入力に対する振動変換効率、使用中の発熱量などをモニ タ手段でモニタした結果を記録手段7に記録する。その ハンドピース1が、通信手段8によって装置本体10に 接続されたたとき、その装置本体10の制御手段9との 間でデータの伝送が行われ、そのハンドピース1の状態 が判断される。

【特許請求の範囲】

【請求項1】 起音波振動子で超音波プローブの充端を 起音波振動して生体組織を処置する複数種のハンドピー スと、これらより選択したハンドピースを接続してその ハンドビースを駆動制御する芸置本体とを偏えた超音波 手術装置において、

前記ハンドビースにはその超音波振動子の駆動使用状態 を検知するモニタ手段と、このモニタ情報を記録する手 段と、この記録手段の記憶情報を装置本体に伝送する通 とする超音波手術装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ハンドビースの超音波 プロープでの超音波振動により手術を行う超音波手術装 置に関する。

[0002]

【従来の技術】超音波プローブの先端を超音波振動させ てこれにより生体組織を破砕し、吸引除去する外科手術 装置が知られている。この外科手術装置は、弾力性に富 んだ組織、例えば血管や神経組織は、破砕されず温存さ れ、その他の組織が破砕されるという特徴をもち、この ため、肝臓の切除や脳外科の手術等において幅広く応用 されるようになってきている.

【0003】また、手術部位や手術の方法によって、形 状の異なる多くのハンドピースが用意されている。 例え ば微細な手術に有用な細径小形のハンドピースや、強力 な出力が得られる強力形ハンドピース等があり、これら を選択して使用できるようにした超音波手術装置が知ら れている.

【0004】この種の超音波手術装置において、選択使 用するハンドピースの種 類を判別する手段が組み込ま れ、その使用するハンドビースに適合した駆動条件で駆 動制御するための設定がなされる方式のものが提案され ている (例えばUSP第4.768.496号明細書、 DE3, 427, 517C等を参照)。

[0005]

[発明が解決しようとする課題] しかしながら、従来の ハンドピースの種別を判別する方式にあっては、ハンド ピースを個々に判別することができず、一般的なハンド ピースの種別を判別するにすぎない。したがって、各ハ ンドピース単独の性質、例えば、ライフサイクル(使用 した時間や劣化の状態)やメンテナンスの必要性につい ては、判断することができない。また、個々のハンドビ ースの振動動作の実際の状態を知ることもできない。 医 療機器においては、特に安全性が重要であり、ハンドビ ースが術中に故障するなどの事態が起きぬようしなけれ ばならない。

【0006】そこで、本発明は、各ハンドピース単独の、 動作状態、ライフサイクルやメンテナンスの必要性につ 50 される。

いての情報も得て、個々のハンドピースの状態をモニタ 一して判断することで、超音波手術装置の安全性を向上 させることを目的とするものである。

[0007]

【課題を解決するための手段】前記課題を解決するため に本発明は、超音波振動子で超音波プローブの先端を超 音波振動して生体組織を処置する複数種のハンドピース と、これらより選択したハンドピースを接続してそのハ ンドピースを駆動制御する装置本体とを備えた超音波手 信手段と、これらを制御する手段とを設けたことを特徴 10 術装置において、前記ハンドビースには、その超音波振 動子の駆動使用状態を検知するモニタ手段と、このモニ 夕情報を記録する手段と、この記録手段の記憶情報を装 置本体に伝送する通信手段と、これらを制御する手段と を設けたものである。

[0008]

【作用】しかして、ハンドピースの超音波 振動子の状 態、例えば、トータルの使用時間や、電圧電流入力に対 する振動変換効率、使用中の発熱量などをモニタ手段で モニタした結果を記録手段に記録する。そのハンドピー スが、通信手段によって装置本体に接続されたたとき、 その装置本体の制御部との間でデータの伝送が行われ、 そのハンドピースの状態が判断される。

[0009]

【実施例】図1は、本発明の第1の実施例を示すもので ある。図1において、1はハンドピースであり、これに は、超音波振動を発生する振動子 2、前記超音波振動を 生体組織に導き処置をする先端部分を持つプローブ 3、 このプローブ3を覆うシース4、およびカバー5があ

【0010】さらに、ハンドピース1の内部には、振動 30 子2に取り付けられ、その振動子2の振動を検出する振 動センサ6、この振動センサ6で検出したデータを記録 する例えばメモリICなどの記録手段7、前記記録され たデータを後述する装置本体へ伝送する例えばシリアル データ通信手段8、これらを制御する例えばマイクロコ ンピュータなどよりなる制御手段9が組み込まれてい

【0011】一方、10は超音波駆動を行う装置本体で あり、この装置本体 1.0 の内部には、ハンドピース1と 通信する手段11、ハンドピース1内の振動子2を振動 させるための駆動回路12、駆動の状態や設定を表示及 び操作する手段13、これら各手段を制御する手段14 が組み込まれている。

【0012】次に、このように構成された超音波手術芸 置の動作を説明する。まず、選択したハンドビース1の コードのコネクタを装置本体10のレセプタクルに接続 する。これにより種類判別機構がその使用するハンドビ ース1の種類を判別し、その使用するハンドピースに適 合した駆動条件で駆動制御するための設定が自動的にな

-390-

【0013】このハンドピース1を作動させる場合には、前記装置本体10に接続したフットスイッチなどを操作すると、振動子2は、駆動回路12の電気信号によって超音波振動を発生し、プローブ3に圧進させてその先端部にて処置する。この際、振動子2上に設けられた振動センサ6がその振動を接知する。

【0014】そして、例えば、振動している時間を積算したデータを記録手段7に記録する。記録した結果は、シリアルデータ通信手段8によって装置本体10に伝達され、この装置本体10ではそのデータを基に振動子2<u>10</u>の状態を監視し、寿命と判断したならその振動子2への電力の供給を停止する旨を手段13に表示する。これによって、個々のハンドピース1の使用時間を確認でき、早期にメンテナンスなどの対応ができる。

【0015】この実施例において、データ通信は、ハンドピース1を装置本体10に接続した直後に行って、そのハンドピース1は使用を控えるよう警告するようにしてもよい。

【0016】また、この説明においての各手段は、そのハンドピース1の内部に設置してあるが、この限りでは 20なく、例えば前記コードのコネクタの部分に配してもよいものである。

【0017】さらに、通信する手段11を光ファイバによる手段にすれば、外部のノイズによる誤データ伝送が少なくなる。図2はその具体例を示す。すなわち、20はデータを光伝送にするためのデータ変換手段、21は電気信号を光に変換する光カップラ、22は光ファイバであり、ハンドビース1倒と装置本体10側にそれぞれを設けてある。

【0018】図3は、本発明の第2の実施例を示すもの 30 である。第1の実施例のものと同じ構成の部分には、同じ符号を付して、その説明を省略する。この実施例では、前述した振動センサ6の代わりに振動子2に加える駆動電圧とそれに流れる電流を検出するセンサ手段16 としたものである。

【0019】そして、このセンサ手段16によって前記 振動子2を振動させるための電力を加えられている時間 を積算したデータを記録手段7に記録する。このデータ をもとにして、振動子2の状態を判断する。

【0020】これによれば、ハンドピース1を小型化す 40 るため機構的な振動センサ6が取り付けられない場合でも、微小電子部品による電圧や電流を検出するセンサ手段16によってその振動子2の動作の有無を検出できるから、第1の実施例の場合と同様な作用効果が得られる。

【0021】図4は本発明の第3の実施例を示すものである。第1の実施例のものと同じ構成の部分には、同じ符号を付して、その説明を省略する。この第3の実施例では、前記振動センサ6と前記電圧電流センサ手段16の両方を設けてある。

【0022】そして、電圧電流センサ手段16で、振動子2へ供給している電力を検出し、さらに振動センサ6によってその実際の振動の大きさを検出する。それらの結果を制御手段9で演算することで、振動子2への入力電力に対する機械振動への変換効率を得て、それを記録しておく。装置本体10個では、過去の記録結果と、現在の使用状態のデータを受け、その振動子2の状態を判断するようにする。これによって、個々のハンドピース1の振動子2の、振動変換効率の変化を監視することができ、その振動子2の寿命やメンテナンスの必要性を判断できる。

【0023】図5は本発明の第4の実施例を示すものである。第1の実施例のものと同じ構成の部分には、同じ符号を付して、その説明を省略する。この第4の実施例は前記振動子2の動作状態を検出するために温度センサ17を設けたものである。

【0024】これにおいては、振動駆動回路から送られる電力によって振動子2が振動する際、その振動の際に発生する熱を温度センサ17で検出する。振動子2において、入力される電力は、接接振動と熱に変換されるわけであるが、振動子2が正常であれば、その発熱量は、ほとんど発生しない。また、不具な状態であれば、振動への変換効率が悪化して発熱量が多くなる。これらのデータを記録手段に記録しておく。芸置本体10側で、過去の記録されたデータと現駆動時のデータを得て、その振動子2の状態を判断する。

【0025】これによって、振動子2の状態の変化を監視できる。さらに、振動子2の突発的な異常により駆動中、振動子2が高熱となった場合でも、それを検知して判別し、駆動電力を止めるよう通信することで、使用中の安全性を向上できる。

【0026】なお、本発明は、以上の説明の限りではなく、例えば、振動センサは振幅センサとし、振動子がある一定振幅以上に駆動されてしまったなら、振動子の故障の原因になるため、振幅を弱めるよう駆動装置へ信号を送るようにしてもよい。あるいは発熱センサの情報から、振動子を冷却する必要性を判断したならプローブを冷却するために送られる液水の量を増すようにしてもよい。

【0027】また、ハンドピース個々を装置側が判別し、使用する者の設定条件を装置側で記憶、またはバンドピース内の記録手段に記憶させておいて、使用開始その条件を復活させることで、セットアップを容易にすることもできるようになる。

[0028]

【発明の効果】以上の説明のように、本発明によれば、使用するハンドピースを値々に判別し、また各振動子の状態をモニターし、またそれを記録しておくので、その個々のハンドピースの使用状況や状態を判断できる。し たがって、振動子のメンテナンスの必要性や寿命を確認

5

できる。さらに新中でのトラブルを未然に防ぐことができ、安全性を向上する。

【図面の簡単な説明】

【図1】本発明の第1の実施例に係る超音波手術装置の 機略的な構成の説明図。

【図2】本発明の第1の実施例に係る超音波手術装置の変形例の概略的な構成の説明図。

【図3】本発明の第2の実施例に係る超音波手術装置におけるハンドピースの接路的な構成の説明図。

【図4】本発明の第3の実施例に係る超音波手術装置に 10

おけるハンドビースの接略的な構成の説明図。

【図 5】本発明の第4の実施例に係る超音波手術装置に おけるハンドピースの概略的な構成の説明図。

【行号の説明】

1…ハンドビース、2…振動子、3…プローブ、4…シース、5…カバー、6…振動センサ、7…記録手段、8 …シリアルデータ通信手段、9…制御手段、10…装置本体、11…通信する手段、12…駆動回路、16…電圧電流センサ手段、17…温度センサ。

フロントページの続き

(72) 発明者 肘井 一也

東京都渋谷区幡ケ谷2丁目43番2号 オリンパス光学工業株式会社内

(72) 発明者 永住 英夫

東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内