

TECHNICAL UNIVERSITY MUNICH

Master Thesis

Collection of Proofs

Lukas Retschmeier

TECHNICAL UNIVERSITY MUNICH

Master Thesis

Collection of Proofs

On Parametrized Semitotal Dominating Set

Author: Lukas Retschmeier Supervisor: Paloma T. Lima

Advisor: Professor

Submission Date:

I confirm that this master thesis is my own work and I have documented all sources and material used.	
Copenhagen,	Lukas Retschmeier

Abstract

Contents

Acknowledgments	iii
Abstract	iv
1 Proofs	1
List of Tables	3

1 Proofs

Theorem 1.0.1. *Semitotal Dominating Set is* $\omega[2]$ *hard for bipartite Graphs*

Proof. Given an bipartite Graph $G = (\{X \cup Y\}, E)$ where X and Y are Independent Sets, we construct a bipratite G' the following way:

- 1. For each vertex $x_i \in X$ we add a new vertex x_i' and add a edge (x_i, x_i') in between.
- 2. For each vertex $y_i \in Y$ we add a new vertex y_i' and add a edge (y_i, y_i') in between.
- 3. We add two P_1 's (u_m, d_m) , $m \in [2]$ and connect (d_1, x_i') and (d_2, y_i') with all vertices from X (Y resp.)

Observation: The constructed graph is clearly bipartite: Setting $X' = X \cup \{y_i, u_1\}$ and $Y' = Y \cup \{x_i, u_2\}$

Corollary 1.0.1.1. *G'* has a Semitotal Dominating Set of size k iff G has a Dominating Set of size k' = k + 1

As the G' can be constructed in O(m+n) and parameter k only increases about 1, this reduction is a FPT reduction.

As Dominating Set is already w[2] hard for Chordal Graphs (CITE) so is Semitotal Dominating Set.

Theorem 1.0.2. *Semitotal Dominating Set is* $\omega[2]$ *hard for Chordal Graphs*

List of Tables