Distribuciones Discretas

En todos los ejercicios de esta tarea aparecerá primero la probabilidad calculada usando Geogebra 6.0.535.0 — con su respectiva gráfica — y después la misma probabilidad calculada usando R (r-base 3.5.2-1 en Debian GNU/Linux).

Distribución de bernoulli

EJERCICIO 1 (0,5). Para la distribución Bernoulli, que es lo mismo que Binomial (1, θ), $P(X \le 0)$ cuando $\theta = 0.83$.

Solución. Por un lado, con los parámetros n=1 y p=0.83, Geogebra da una $P(X \le 0) = 0.17$ con el siguiente gráfico:

Por otro lado, en R, $P(X \le 0)$ es:

```
> pbinom(0, 1, 0.83, lower.tail = TRUE)
[1] 0.17
```

Distribución binomial

EJERCICIO 2 (1). Para la distribución Binomial (20, $\theta = 0.7$), $P(X \le 10)$ y $P(14 \le X \le 18)$.

Solución. Por un lado, con los parámetros n = 20 y p = 0.7, Geogebra da una $P(X \le 10) = 0.048$ con el gráfico

y P($14 \le X \le 18$) = 0.6004 con el gráfico

Por otro lado, en R, $P(X \le 10)$ es:

y $P(14 \le X \le 18)$:

```
> sum(dbinom(14:18, 20, 0.7))
[1] 0.6003726
```

EJERCICIO 3 (0,5). Para la distribución Binomial (20, $\theta = 0.2$), $P(X \le 4)$.

Solución. Por un lado, con los parámetros n=20 y p=0.2, Geogebra da una $P(X \le 4) = 0.6296$ con el siguiente gráfico:

```
pics/g3.png
```

Por otro lado, en R, $P(X \le 4)$ es:

```
> pbinom(4, 20, 0.2, lower.tail = TRUE)
[1] 0.6296483
```

EJERCICIO 4 (0,5). Para la distribución Binomial (30, θ = 0.1), $P(X \le 4)$.

Solución. Por un lado, con los parámetros n=30 y p=0.1, Geogebra da una $P(X \ge 4)=0.3526$ con el siguiente gráfico:

```
pics/g4.png
```

Por otro lado, en R, $P(X \ge 4)$ es:

```
> pbinom(3, 30, 0.1, lower.tail = FALSE)
[1] 0.3525608
```

EJERCICIO 5 (1). Para la distribución Binomial (30, $\theta = 0.6$), $P(X \le 18)$ y $P(X \ge 20)$.

Solución. Por un lado, con los parámetros n=30 y p=0.6, Geogebra da una $P(X \le 18) = 0.5689$ con el siguiente gráfico:

 $y P(X \ge 20) = 0.2915$ con el gráfico:

Por otro lado, en R, $P(X \le 18)$ es:

```
> pbinom(18, 30, 0.6, lower.tail = TRUE)
[1] 0.5689095
```

 $y P(X \ge 20)$:

> pbinom(19, 30, 0.6, lower.tail = FALSE)
[1] 0.2914719

Distribución geometrica

EJERCICIO 6 (0,25). Para la distribución geométrica (Pascal) $(1, \theta = 0.36)$, $P(X \le 4)$.

Solución. Por un lado, con los parámetros n=1 y p=0.36, Geogebra da una $P(X \le 4) = 0.8926$ con el siguiente gráfico:

Por otro lado, en R, $P(X \le 4)$ es:

EJERCICIO 7 (0,25). Para la distribución geométrica (Pascal) (1, $\theta = 0.72$), $P(X \ge 2)$.

Solución. Por un lado, con los parámetros n = 1 y p = 0.72, Geogebra da una $P(X \ge 2) = 0.0784$ con el siguiente gráfico:

Por otro lado, en R, $P(X \ge 2)$ es:

Distribución binomial negativa

EJERCICIO 8 (1). Para la distribución Binomial negativa (Pascal) (2, $\theta = 0.2$), $P(X \le 3)$ y $P(X \ge 15)$.

Solución. Por un lado, con los parámetros n=2 y p=0.2, Geogebra da una $P(X \le 3) = 0.2627$ con el siguiente gráfico:

y $P(X \ge 15) = 0.1407$ con el gráfico:

Por otro lado, en R, $P(X \le 3)$ es:

y P(X ≥ 15):

EJERCICIO 9. Para la distribución Binomial negativa (Pascal) $(8, \theta = 0.6)$, $P(X \le 4)$ y $P(X \ge 8)$.

Solución. Por un lado, con los parámetros n=8 y p=0.6, Geogebra da una $P(X \le 4)=0.4382$ con el siguiente gráfico:

 $y P(X \ge 8) = 0.2131$ con el gráfico:

Por otro lado, con R tenemos que $P(X \le 4)$:

 $y P(X \ge 8)$:

Distribución Poission

EJERCICIO 10 (1). Para la distribución Poisson ($\lambda=14$), $P(X \le 10)$ y $P(X \ge 16)$.

Solución. Por un lado, con el parámetro $\mu=14$, Geogebra da una $P(X \le 10) = 0.1757$ con el siguiente gráfico:

 $y P(X \ge 16) = 0.3306$ con el gráfico:

Por otro lado, en R, $P(X \le 10)$ es:

y P(X ≥ 16):

EJERCICIO 11 (1). Para la distribución Poisson ($\lambda = 34$), $P(X \le 40)$ y $P(X \ge 28)$.

Solución. Por un lado, con el parámetro $\mu=34$, Geogebra da una $P(X \le 40) = 0.8664$ con el siguiente gráfico:

y $P(X \ge 28) = 0.8694$ con el gráfico:

Por otro lado, en R, $P(X \le 40)$ es:

y P(X ≥ 28):

Distribución hipergeométrica

EJERCICIO 12. Para la distribución Hipergeométrica (600, 140, 20), $P(X \le 5)$ y $P(X \ge 6)$.

Solución. Por un lado, con los parámetros 'población = 600' 'n = 140' 'muestra = 20', Geogebra da una $P(X \le 5) = 0.6854$ con el siguiente gráfico:

y una $P(X \ge 6) = 0.3146$ con el gráfico:

Por otro lado, en R, $P(X \le 5)$ es:

y la $P(X \ge 6)$ es:

EJERCICIO 13. Para la distribución Hipergeométrica (600, 314, 50), $P(X \le 23)$ y $P(X \ge 30)$.

Solución. Por un lado, con los parámetros 'poblacion = 600' 'n = 314' 'muestra = 50', Geogebra da una $P(X \le 23) = 0.2151$ con el siguiente gráfico:

```
pics/g13-1.png
```

y una $P(X \ge 30) = 0.1621$ con el gráfico:

Por otro lado, en R, $P(X \le 23)$ es:

```
> phyper(23, 314, 600-314, 50, lower.tail = TRUE)
[1] 0.2150751
```

y la $P(X \ge 30)$ es:

```
> phyper(29, 314, 600-314, 50, lower.tail = FALSE)
[1] 0.1621491
```