



José Javier Calvo Moratilla



## **Puntos**





### 1. Introducción



## 2. Trabajos relacionados

Classification of Human Emotions from Electroencephalogram (EEG) Signal using Deep Neural Network. (2017)

#### Input data:

Power Spectral Density (PSD) Frontal EEG Asymmetry

**Labels:** {Excitement, Meditation,Boredom, and Frustration}

A random forest model based classification scheme for neonatal amplitude-integrated EEG. (BIBM 2013)

#### Input data:

Minimum amplitude
Maximum amplitude
Mean value of amplitude
Percentage if the lower margin values
under 5 micro volts
Histograms FFT?

**Labels:** {Normal, abnormal}

Classification of EEG data for human mental state analysis using Random Forest Classifier (2018).

#### Input data:

mean
standard deviation
difference of maximum and minimum
of the preprocessed data

**Labels:** {concentration, meditation}



## 3. Cerebro, emociones





MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED.

Nivel fisiológico de activación del cerebro:

Valencia "Valencia positiva, alegría , Valencia negativa, ira, miedo"



Arousal alto, excitación intensa, Arousal bajo sueño profundo"

# 4. Preproceso de los datos

32 características EEG

Método de Welch

| Banda | Rango de frecuencias | Referencia                   |
|-------|----------------------|------------------------------|
| Delta | [1-4] Hz             | Niedermeyer & da Silva, 2012 |
| Theta | [4-8] Hz             | Niedermeyer & da Silva, 2012 |
| Alpha | [8-12] Hz            | Hans Berger, 1929            |
| Beta  | [12-25] Hz           | Niedermeyer & da Silva, 2012 |
| Gamma | > 25 Hz              | Dimigen, 2009                |

32 características Theta 32 características Alpha

32 características Beta 32 características Gamma



### 5. Random Forest





## 5.1 Resultados

Valence 0.65625

Arousal 0.625



# 6. KNN, SVM, PCA



## 6.1 Resultados





KNN SVM

0.625

0.583

KNN 0.6875 SVM 0.6666

# 7. Fully Connected





## 7.1 Resultados





### 8. Conclusiones

#### Random Forest

- Permite ver las características más significativas
  - RF Mejor método clásico para clasificar la "Valencia" (0.656)

#### KNN, SVM, PCA

- KNN Mejor método clásico para clasificar la "Arousal" (0.68)
- Se pueden conseguir mejores resultados reduciendo la dimensionalidad

### **Fully Connected**

- Peores resultados que los métodos clásicos
  - Valencia, Arousal diferentes parámetros
  - Solución, utilizar otras características más significativas para mejorar resultados



#### José Javier Calvo Moratilla

Jocalmo@upv.es

