

CS 553 CRYPTOGRAPHY

Crypto Explainers Linear Cryptanalysis Sypher00A

Instructor Dr. Dhiman Saha

$$\alpha = (1, 0, 0, 1), \beta = (0, 0, 1, 0)$$

$$m \xrightarrow{k_0} u \xrightarrow{s} v \xrightarrow{k_1}$$

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S[x]	f	е	b	С	6	d	7	8	0	3	9	а	4	2	1	5
$\alpha \cdot x$	0	1	0	1	0	1	0	1	1	0	1	0	1	0	1	0

$$p = ?$$

$$\Pr\left[\alpha \cdot x = \beta \cdot S[x]\right] = \frac{2}{16}$$

$$1 - \beta \cdot S[x]$$

or
$$\Pr\left[\alpha \cdot x \oplus 1 = \beta \cdot S[x]\right] = \frac{14}{16}$$

► Linear Characteristic:

$$9 \xrightarrow{S} 2$$

►
$$LAT(9,2) = -6$$

	1	2	3	4	5	6	7	8	9	а	b	С	d	e	f
1	-2	-	2	-	-2	4	-2	2	4	2	-	-2	-	2	-
2	2	-2		-2			2	2	4		2	4	-2	-2	
3	4	2	2	-2	2					2	-2	-2	-2		4
4		-2	2	2	-2			-4		2	2	2	2		4
5	-2	2		2	4		2	-2	4		-2		2	-2	
6	-2		2		2	4	2	2	-4	2		2		-2	
7				4		-4					4		4		
8		-2	2	-4		2	2	-4		-2	-2			2	-2
9	-2	-6			2	-2		2			-2	-2			2
a	-2		-6	-2		2		-2		2			-2		2
b				2	-2	2	-2			-4	-4	2	-2	-2	2
С				-2	-2	-2	-2			4	-4	2	2	-2	-2
d	-2		2	2		-2		-2		2			-6		-2
е	2	-2			2	2	-4	-2			2	-2		-4	-2
f	-4	2	2	-4		-2	-2			-2	2			-2	2

► Implication

$$\Pr\left[9 \xrightarrow{S} 2\right] = \Pr\left[9 \cdot x = 2 \cdot S[x]\right]$$
$$= \left(\frac{-6}{16} + \frac{1}{2}\right) = \frac{1}{8} \, \mathbb{Q}$$

► So, we take the complement event:

$$9 \cdot x \oplus 1 = 2 \cdot S[x]$$

► For Sypher00A, ⇒

$$\Pr\left[(9\cdot m)\oplus(2\cdot c)\oplus\mathbf{1}\right]=(9\cdot k_0)\oplus(2\cdot k_1)=\frac{7}{8}$$

$$\alpha = 9, \beta = 2,$$

Procedure

- \blacktriangleright Initialize counters T_0 and T_1 to 0
- ► Request the encryptions of *N* known plaintexts.
- For each plaintext-ciphertext pair, we compute the **left-hand** side of the equation: $(9 \cdot m) \oplus (2 \cdot c) \oplus 1$,
 - ► Which is either 0 or 1.
- ▶ Gives an estimate for the value of $(9 \cdot k_0) \oplus (2 \cdot k_1)$
- $ightharpoonup T_0++$ if LHS evaluates to 0; T_1++ if LHS evaluates to 1

$$m = 0, c = 6$$

LHS =
$$(\alpha \cdot \mathbf{m}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 0) \oplus (2 \cdot 6) \oplus 1$
= $0 \Longrightarrow \boxed{\mathsf{T}_0 + +}$

$$m = 1, c = 0$$

LHS =
$$(\alpha \cdot \mathbf{m}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 1) \oplus (2 \cdot 0) \oplus 1$
= $0 \Longrightarrow \boxed{\top_0 + +}$

 T_0

Т

$$m = 2, c = 1$$

LHS =
$$(\alpha \cdot \mathbf{m}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 2) \oplus (2 \cdot 1) \oplus 1$
= $1 \implies \boxed{\top_1 + +}$

$$\mathsf{T}_0$$

$$m = 3, c = 5$$

LHS =
$$(\alpha \cdot \mathbf{m}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 3) \oplus (2 \cdot 5) \oplus 1$
= $0 \implies \boxed{\mathsf{T}_0 + +}$

3

$$m = 4, c = 7$$

LHS =
$$(\alpha \cdot \mathbf{m}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 4) \oplus (2 \cdot 7) \oplus 1$
= $0 \implies \boxed{\mathsf{T}_0 + +}$

$$m = 5, c = 4$$

LHS =
$$(\alpha \cdot \mathbf{m}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 5) \oplus (2 \cdot 4) \oplus 1$
= $0 \implies \boxed{\mathsf{T}_0 + +}$

$$M = 6, c = H$$

LHS =
$$(\alpha \cdot \mathbf{m}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 6) \oplus (2 \cdot 14) \oplus 1$
= $0 \implies \boxed{\mathsf{T}_0 + +}$

$$m = 1, c = 13$$

LHS =
$$(\alpha \cdot \mathbf{m}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 7) \oplus (2 \cdot 13) \oplus 1$
= $0 \implies \boxed{\mathsf{T}_0 + +}$

$$m = 8, c = 9$$

LHS =
$$(\alpha \cdot \mathbf{m}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 8) \oplus (2 \cdot 9) \oplus 1$
= $0 \Longrightarrow \boxed{\mathsf{T}_0 + +}$

$$m = 9, c = 2$$

LHS =
$$(\alpha \cdot \mathbf{m}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 9) \oplus (2 \cdot 2) \oplus 1$
= $0 \Longrightarrow \boxed{\top_0 + +}$

$$m = 10, c = 12$$

LHS =
$$(\alpha \cdot \mathbf{m}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 10) \oplus (2 \cdot 12) \oplus 1$
= $0 \Longrightarrow \boxed{\mathsf{T}_0 + +}$

$$M = 1, c = 3$$

LHS =
$$(\alpha \cdot \mathbf{m}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 11) \oplus (2 \cdot 3) \oplus 1$
= $0 \implies \boxed{\mathsf{T}_0 + +}$

$$m = 12, c = 10$$

LHS =
$$(\alpha \cdot m) \oplus (\beta \cdot c) \oplus 1$$

= $(9 \cdot 12) \oplus (2 \cdot 10) \oplus 1$
= $1 \implies T_1 + +$

Т

$$m = 13, c = 1$$

LHS =
$$(\alpha \cdot \mathbf{M}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 13) \oplus (2 \cdot 11) \oplus 1$
= $0 \Longrightarrow \boxed{\mathsf{T}_0 + +}$

12

11

2

$$M = H, c = 8$$

LHS =
$$(\alpha \cdot \mathbf{m}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 14) \oplus (2 \cdot 8) \oplus 1$
= $0 \implies \boxed{\mathsf{T}_0 + +}$

$$m = 15, c = 15$$

LHS =
$$(\alpha \cdot \mathbf{M}) \oplus (\beta \cdot \mathbf{c}) \oplus 1$$

= $(9 \cdot 15) \oplus (2 \cdot 15) \oplus 1$
= $0 \Longrightarrow \boxed{\mathsf{T}_0 + +}$

۱۱ —

2

- $ightharpoonup RHS = (\alpha \cdot k_0) \oplus (\beta \cdot k_1) \stackrel{?}{=} 0/1$
- Key-bit estimation correct with prob. $\frac{14}{16}$
- ▶ What to expect at T_0/T_1 after N KP encryptions

If
$$(\alpha \cdot k_0) \oplus (\beta \cdot k_1) = 1$$

$$T_0 \leftarrow \frac{2N}{16} \qquad T_1 \leftarrow \frac{14N}{16}$$

If
$$(\alpha \cdot k_0) \oplus (\beta \cdot k_1) = 0$$

$$T_0 \leftarrow \frac{14N}{16} \qquad T_1 \leftarrow \frac{2N}{16}$$

Here,
$$N = 16$$

$$T_0 T_1$$

- \blacktriangleright Verifying any one counter say, T_0
 - ► Reveals one bit \rightarrow ($\alpha \cdot k_0$) \oplus ($\beta \cdot k_1$)
 - Attack Outcome $\rightarrow (9 \cdot k_0) \oplus (2 \cdot k_1) = 0$

All at a glance!

m	С	$(9\cdot m)\oplus (2\cdot c)\oplus 1$	T_0	T_1	Remarks
0	6	0	1	0	T_0 + +
1	0	0	2	0	$T_0 + +$
2	1	1	2	1	T_1 + +
3	5	0	3	1	T_0 + +
4	7	0	4	1	$T_0 + +$
5	4	0	5	1	$T_0 + +$
6	14	0	6	1	$T_0 + +$
7	13	0	7	1	$T_0 + +$
8	9	0	8	1	$T_0 + +$
9	2	0	9	1	$T_0 + +$
10	12	0	10	1	$T_0 + +$
11	3	0	10	1	$T_0 + +$
12	10	1	11	2	T_1 + +
13	11	0	12	2	$T_0 + +$
14	8	0	13	2	$T_0 + +$
15	15	0	14	2	$T_0 + +$

- ► Every group needs to generate the Hawk-Eye Table from last slide using their own oracles for (*m*, *c*) pairs and submit in the **notebook**.
- You are free to choose any of the masks you used for the In-Class assignment.