多項式の既約性判定法

七条 彰紀

2017年10月23日

定理 0.1 (Eisenstein's criterion)

$$f(x) = \sum_{0 \le k \le n} f_k x^k \in \mathbb{Z}[x]$$

について、ある素数 p が存在して、整数 f_0, f_1, \ldots, f_n が以下を満たすならば、f(x) は $\mathbb{Q}[x]$ の既約元である.

- 1. $i \neq n$ の場合は f_i は p で割り切れる.
- $2. f_n$ は p で割り切れない.
- $3. f_0$ は p^2 で割り切れない.

(証明). 多項式 g,h を f(x) = g(x)h(x) を満たすものとおき、多項式 f,g,h の各係数を

$$g(x) = \sum_{0 \le i \le n} g_i x^i, h(x) = \sum_{0 \le j \le n} h_j x^j$$

と置く. この時, 単純な計算で

$$f_k = \sum_{i+j=k} g_i h_j$$

が成り立つと分かる. 記法を簡単にするため, $\mathfrak{p}=(p)\subset\mathbb{Z}$ とおく. これが素イデアルであることを何度も使う.

 $\blacksquare g_0 \in \mathfrak{p}, h_0 \not\in \mathfrak{p}.$ f_0 を考える.

$$f_0 = g_0 h_0$$

前提条件 1. より f_0 は p の倍数である. さらに前提条件 3. から, f_0 には素因数として p がただ一つ含まれる. その p は g_0 か h_0 のどちらか一方に含まれている. そこで前提条件に加えて (*) $g_0 \in \mathfrak{p}, h_0 \not\in \mathfrak{p}$ を仮定する.

 $\blacksquare g_0, g_1, \dots, g_{n-1} \in \mathfrak{p}$. 帰納法で $g_0, g_1, \dots, g_{n-1} \in \mathfrak{p}$ を示す. まず, k = 1 で示す.

$$f_1 = g_0 h_1 + g_1 h_0 \in \mathfrak{p}$$

 \mathfrak{p} はイデアルだから $g_0h_1 \in \mathfrak{p}, h_0 \not\in \mathfrak{p}$. 特に \mathfrak{p} は素イデアルだから $g_1 \in \mathfrak{p}$. 次に, $0 \leq N+1 < n$ を満たす自然数 N について $g_0, g_1, \ldots, g_N \in \mathfrak{p}$ が成り立つとする.

$$f_{N+1} = g_{N+1}h_0 + g_Nh_1 + \sum_{1 \le j \le N+1} g_{N+1-j}h_j$$

そして前提条件 1. より $f_{N+1}\in\mathfrak{p}$ が成り立つ. 帰納法の仮定より, $g_Nh_1,\sum_{2\leq j\leq N+1}g_{N+1-j}h_j\in\mathfrak{p}$. 仮定 (*) より $h_0\not\in\mathfrak{p}$ だから $g_{N+1}\in\mathfrak{p}$.

 $\blacksquare g_n \notin \mathfrak{p}$. さて、最後に f_n を考える.

$$f_n = g_n h_0 + \sum_{1 \le j \le n} g_{n-j} h_j$$

前提条件 2. より $f_n \not\in \mathfrak{p}$. すでに示したとおり, $g_0, g_1, \ldots, g_{n-1} \in \mathfrak{p}$ が成り立つ.したがって,仮定 (*) と合わせて $g_n \not\in \mathfrak{p}$ が成立する.

■結論: $\deg g = n$. $0 \in \mathfrak{p}$ だから、このことから $g_n \neq 0$. よって $\deg g = n, \deg h = n - n = 0$. これで f の既約性が示された.

これと命題を組み合わせると、多くの多項式の既約性が示せる.

命題 0.2

多項式 $f(x) \in \mathbb{Z}[x]$ と任意の定数 a について、「f(x+a) が既約」と「f(x) が既約」は同値.

(証明). f(x) が既約だとする。定数 a に対し,1 次以上の多項式 g,h (これは a によって変化する)が存在して f(x+a)=g(x)h(x) が成り立つ (f(x+a) が既約でない) ならば,f(x)=g(x-a)h(x-a) となり,g(x-a),h(x-a) は一次以上の多項式。これは前提に矛盾。よって f(x+a) も既約。

f(x) が既約でないとする. すると 1 次以上の多項式 g,h が存在して f(x)=g(x)h(x) が成り立つが、 f(x+a)=g(x+a)h(x+a) となり、g(x+a),h(x+a) は一次以上の多項式. よって f(x+a) も既約でない.

次は有限体への還元を用いた判定法である.

定理 0.3 (Reduction Criterion in S.Lang "Algebra")

A,B を整域とし, $\phi:A\to B$ を準同型とする. さらに B の商体を L としておく. $f\in A[x]$ について以下が成り立つとき,f は A[x] の既約元 $^{\dagger 1}$ である.

- 1. $\phi(f) \neq 0$.
- 2. $\deg \phi(f) = \deg f$.
- $3. \phi(f)$ は L[x] の既約多項式.

(証明). f=gh $(g,h\in A[x])$ と分解できたとすると, $\phi(f)=\phi(g)\phi(h)$ となる.前提条件 3.より $\deg\phi(g)$ or $\deg\phi(h)=\deg\phi(f)$ であり,かつ $\deg\phi(g)\leq\deg g,\deg\phi(h)\leq\deg h$.これらと前提条件 2.より $\deg g$ or $\deg h=\deg\phi(f)=\deg f$.以上で主張が示せた.

系 0.4

 \mathbb{F}_q を位数 q の有限体とし、以下の準同型を定める.

$$\rho_q: \mathbb{Z}[x] \to \mathbb{F}_q[x]; \quad ax^n \mapsto (a \mod q)x^n.$$

 $f \in \mathbb{Q}[x]$ に適当に $d \in \mathbb{Z} \setminus \{0\}$ を掛けて $df \in \mathbb{Z}[x]$ とする. ある q について, $\rho_q(df)$ が既約ならば f は既約である.

^{†1} すなわち, f = qh かつ $\deg q, \deg h > 1$ であるような $q, h \in A[x]$ が存在しない.

例 0.5

 $n\in\mathbb{Z}\setminus\{0\}, f=x^3-nx^2+(n-3)x+1\in\mathbb{Z}[x]$ とする. $\rho_2(f)=x^3+nx^2+(n+1)x+1$ となる. $\rho_2(f)$ は 3 次多項式だから,1 次以上の因子を持つならば,そのうち少なくとも一つは 1 次式である.体 \mathbb{F}_2 上の 1 次式は丁度一つの零点を持つから, $\rho_2(f)$ も少なくとも一つ零点を持つ. しかし $\rho_2(f)(0)=1, \rho_2(f)(1)=1$ だから $\rho_2(f)$ は零点を持たない. これは矛盾であるから, $\rho_2(f)$ は $\mathbb{F}_2[x]$ の既約多項式である. そして系から,f は $\mathbb{Q}[x]$ の既約多項式である.

次もまた別の判定法である.

定理 **0.6** (Cohn's Criterion)

 $b \in \mathbb{Z}_{\geq 2}$ と $p(x) = a_k x^k + a_i((k-1))x^i((k-1)) + \cdots + a_1 x + a_0$ は $0 \leq a_i \leq b-1$ を満たすとする. p(b) が素数ならば、p(x) は $\mathbb{Z}[x]$ の既約元である.

証明は難しい. 詳細は https://www.wikiwand.com/en/Cohn's_irreducibility_criterion を参照のこと.