Chapter 6: *P* **vs** *NP*

§6.1 Introduction

An algorithm has polynomial running time if there is a constant $c \ge 1$ such that for every input of length n, the algorithm takes $O(n^c)$ time.

§6.1 Introduction

An algorithm has polynomial running time if there is a constant $c \ge 1$ such that for every input of length n, the algorithm takes $O(n^c)$ time.

An algorithm has exponential running time if there is a constant $c \ge 1$ such that for every input of length n, the algorithm takes $O\left(2^{n^c}\right)$ time.

§6.1 Introduction

An algorithm has polynomial running time if there is a constant $c \ge 1$ such that for every input of length n, the algorithm takes $O(n^c)$ time.

An algorithm has exponential running time if there is a constant $c \ge 1$ such that for every input of length n, the algorithm takes $O\left(2^{n^c}\right)$ time.

Intuitively speaking,

polynomial means good, fast, efficient, easy, ...

exponential means bad, slow, "try all possible solutions", difficult, ...

A decision problem is a problem for which the answer is "yes" or "no".

P = set of all decision problems that can be solved in polynomial time

A decision problem is a problem for which the answer is "yes" or "no".

P = set of all decision problems that can be solved in polynomial time

Examples of problems that are in P:

Is a given input graph connected?

A decision problem is a problem for which the answer is "yes" or "no".

P = set of all decision problems that can be solved in polynomial time

Examples of problems that are in P:

- Is a given input graph connected?
- Is a given input graph bipartite?

A decision problem is a problem for which the answer is "yes" or "no".

P = set of all decision problems that can be solved in polynomial time

Examples of problems that are in P:

- Is a given input graph connected?
- Is a given input graph bipartite?
- Is a given input sequence sorted?

A decision problem is a problem for which the answer is "yes" or "no".

P = set of all decision problems that can be solved in polynomial time

Examples of problems that are in P:

- Is a given input graph connected?
- Is a given input graph bipartite?
- Is a given input sequence sorted?
- Does a given input graph contain an Euler cycle? An Euler cycle is a cycle that traverses each edge exactly once.

Other Problems HAM-CYCLE

input: An undirected graph G = (V, E) stored using adjacency lists.

question: Does G contain a Hamiltonian cycle? A *Hamiltonian cycle* is a cycle that traverses each vertex exactly once.

Other Problems HAM-CYCLE

input: An undirected graph G = (V, E) stored using adjacency lists.

question: Does G contain a Hamiltonian cycle? A *Hamiltonian cycle* is a cycle that traverses each vertex exactly once.

Other Problems HAM-CYCLE

input: An undirected graph G = (V, E) stored using adjacency lists.

question: Does G contain a Hamiltonian cycle? A *Hamiltonian cycle* is a cycle that traverses each vertex exactly once.

Not known if this problem is in P!

Traveling Salesman Problem (TSP)

input:

- A complete directed graph G = (V, E), where each edge $(u, v) \in E$ has a weight wt(u, v) > 0.
- An integer K.

question: Does G contain a Hamiltonian cycle of total weight at most K?

Traveling Salesman Problem (TSP)

input:

- A complete directed graph G = (V, E), where each edge $(u, v) \in E$ has a weight wt(u, v) > 0.
- An integer K.

question: Does G contain a Hamiltonian cycle of total weight at most K?

< ロ ト ← 個 ト ← 差 ト ← 差 ト 一 差 ・ 夕 Q (^)

Traveling Salesman Problem (TSP)

input:

- A complete directed graph G = (V, E), where each edge $(u, v) \in E$ has a weight wt(u, v) > 0.
- An integer K.

question: Does G contain a Hamiltonian cycle of total weight at most K?

K = 18

Not known if this problem is in *P*!

◆ロト ◆団ト ◆意ト ◆意ト ・意 ・ 夕久で

SUBSET-SUM

input: A set S of integers together with an integer t

question: Is there a subset S' of S such that

$$\sum_{x \in S'} x = t?$$

SUBSET-SUM

input: A set S of integers together with an integer t

question: Is there a subset S' of S such that

$$\sum_{x \in S'} x = t?$$

Example:

$$S = \{5, 7, 56, 23, 2902\}$$

 $t = 2963$

SUBSET-SUM

input: A set S of integers together with an integer t

question: Is there a subset S' of S such that

$$\sum_{x \in S'} x = t?$$

Example:

$$S = \{5, 7, 56, 23, 2902\}$$

 $t = 2963$

Yes!
$$S' = \{5, 56, 2902\}$$

SUBSET-SUM

input: A set S of integers together with an integer t

question: Is there a subset S' of S such that

$$\sum_{x \in S'} x = t?$$

Example:

$$S = \{5, 7, 56, 23, 2902\}$$

 $t = 2963$

Yes!
$$S' = \{5, 56, 2902\}$$

Not known if this problem is in P!

Other Problems CLIQUE

input: An undirected graph G = (V, E) together with an integer K question: Does G contain a clique (complete subgraph) with K vertices?

input: An undirected graph G = (V, E) together with an integer K

question: Does G contain a clique (complete subgraph) with K vertices?

input: An undirected graph G = (V, E) together with an integer K

question: Does G contain a clique (complete subgraph) with K vertices?

Not known if this problem is in *P*!

For each of the 4 previous problems,

• Not known if it can be solved in polynomial time.

For each of the 4 previous problems,

- Not known if it can be solved in polynomial time.
- If the answer to the question is YES, then
 - There is a "short" proof for this.

For each of the 4 previous problems,

- Not known if it can be solved in polynomial time.
- If the answer to the question is YES, then
 - There is a "short" proof for this.

Here, "short" means the length of the proof is "polynomial in the length of the input".

For each of the 4 previous problems,

- Not known if it can be solved in polynomial time.
- If the answer to the question is YES, then
 - There is a "short" proof for this.

Here, "short" means the length of the proof is "polynomial in the length of the input".

 If someone gives us such a short proof, then we can "easily" verify this proof.

For each of the 4 previous problems,

- Not known if it can be solved in polynomial time.
- If the answer to the question is YES, then
 - There is a "short" proof for this.

Here, "short" means the length of the proof is "polynomial in the length of the input".

 If someone gives us such a short proof, then we can "easily" verify this proof.

Here, "easily" means "in polynomial time".

proof/solution: sequence $v_1, ..., v_k$ of vertices.

proof/solution: sequence $v_1, ..., v_k$ of vertices.

proof/solution: sequence $v_1, ..., v_k$ of vertices.

- no duplicates in $v_1, ..., v_k$?

proof/solution: sequence $v_1, ..., v_k$ of vertices.

verification: $\bullet k = n$?

- no duplicates in $v_1, ..., v_k$?
- For each $1 \le i < k 1$, $\{v_i, v_{i+1}\}$ is an edge?

proof/solution: sequence $v_1, ..., v_k$ of vertices.

verification: $\bullet k = n$?

- no duplicates in $v_1, ..., v_k$?
- For each $1 \le i < k 1$, $\{v_i, v_{i+1}\}$ is an edge?
- $\{v_k, v_1\}$ is an edge?

TSP

proof/solution: sequence $v_1, ..., v_k$ of vertices.

TSP

proof/solution: sequence $v_1, ..., v_k$ of vertices.

TSP

proof/solution: sequence $v_1, ..., v_k$ of vertices.

- no duplicates in $v_1, ..., v_k$?

proof/solution: sequence $v_1, ..., v_k$ of vertices.

- no duplicates in $v_1, ..., v_k$?
- Do we have

$$\sum_{i=1}^{k-1} wt(v_i, v_{i+1}) + wt(v_k, v_1) \leq K?$$

SUBSET-SUM

proof/solution: A set S'.

SUBSET-SUM

proof/solution: A set S'.

verification: • Is S' a subset of S?

SUBSET-SUM

proof/solution: A set S'.

verification: • Is S' a subset of S?

Do we have

$$\sum_{x \in S'} x = t?$$

proof/solution: A set V'.

proof/solution: A set V'.

verification: • Is V' a subset of V?

proof/solution: A set V'.

verification: • Is V' a subset of V?

• Do we have |V'| = K?

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

proof/solution: A set V'.

verification:

- Is V' a subset of V?
- Do we have |V'| = K?
- For each $u, v \in V'$ such that $u \neq v$, is $\{u, v\}$ an edge in E?

For each of the 4 previous problems,

- Not known if it can be solved in polynomial time.
- If the answer to the question is YES, then
 - There is a "short" proof for this.

Here, "short" means the length of the proof is "polynomial in the length of the input".

 If someone gives us such a short proof, then we can "easily" verify this proof.

Here, "easily" means "in polynomial time".

A decision problem A is in NP if

- If for a given input I, the answer to the question A(I) is YES, then there exists a proof/solution/certificate C such that
 - C is short (polynomial size in the length of I)
 - In polynomial time, we can verify that C is a correct proof for the fact that A(I) = YES.

A decision problem A is in NP if

- If for a given input I, the answer to the question A(I) is YES, then there exists a proof/solution/certificate C such that
 - C is short (polynomial size in the length of I)
 - In polynomial time, we can verify that C is a correct proof for the fact that A(I) = YES.

NP stands for Nondeterministic Polynomial.

A decision problem A is in NP if

- If for a given input I, the answer to the question A(I) is YES, then there exists a proof/solution/certificate C such that
 - C is short (polynomial size in the length of I)
 - In polynomial time, we can verify that C is a correct proof for the fact that A(I) = YES.

NP stands for Nondeterministic Polynomial.

The following problems are in NP:

HAM-CYCLE, TSP, SUBSET-SUM, CLIQUE

