Towards Cyclic Implicit Complexity

Continuity, Computability, Constructivity 2021

Special session in honour of Ulrich Berger

Gianluca Curzi
University of Birmingham

joint work with Anupam Das (University of Birmingham)

What is this presentation about?

Figure: From "Introduction to cyclic proofs" (Brotherston 2008).

- Goal: cyclic proof systems to capture complexity classes in the style of ICC.
- Some motivations:
 - cyclic proofs subsume recursion;
 - relatively new topic;
 - hard to tame complexity.

- Cyclic proofs
- 2 ICC and safe recursion
- 3 A cyclic proof system based on safe recursion
- Safety and nesting
- Characterizing FPTIME and FELEMENTARY

Non-wellfounded proofs

Inductive vs non-wellfounded proofs:

Non-wellfounded proofs to reason about μ-calculus (e.g. [Dax, Hofmann and Lange 06], [Niwinski and Walukiewicz 96]), (co)induction (e.g. [Brotherston and Simpson 11]), Kleene algebra (e.g. [Das and Pous 17, 18]), linear logic (e.g. [Baelde, Doumane and Saurin 16]), continuous cut-elimination (e.g. [Mints 75] and [Fortier and Santocanale 13]).

▶ **Problem**. Any formula is derivable!

$$\begin{array}{c}
\vdots \\
\text{cut} \xrightarrow{\Rightarrow A} \xrightarrow{\text{id}} \overline{A \Rightarrow A} \\
\xrightarrow{\text{cut}} \xrightarrow{\Rightarrow A} \xrightarrow{\text{id}} \overline{A \Rightarrow A} \\
\xrightarrow{\Rightarrow A}$$

Progressiveness criterion = global criterion to guarantee consistency

▶ **Problem**. Any formula is derivable!

$$\begin{array}{c}
\vdots \\
\Rightarrow A \quad \overline{A \Rightarrow A} \\
\xrightarrow{\text{cut}} \Rightarrow A \quad \overline{A \Rightarrow A} \\
\Rightarrow A
\end{array}$$

▶ Progressiveness criterion = global criterion to guarantee consistency.

Cyclic proofs

- Cyclic proofs = only finitely many distinct subproofs.
- Cycle normal form = finite, "circular" presentation of a cyclic proof.

- Cyclic proofs
- 2 ICC and safe recursion
- 3 A cyclic proof system based on safe recursion
- Safety and nesting
- **5** Characterizing **FPTIME** and **FELEMENTARY**

Implicit computational complexity (ICC)

Implicit computational complexity (ICC) = characterize complexity classes by means of languages/calculi without explicit reference to machine models or external resource bounds.

Originates in the 90's with the Bellantoni and Cook's paper on safe recursion.

Pervasive notion of stratification: data are organized into strata (Bellantoni's safe recursion, Leivant's predicative/ramified/tiered recursion).

- Function algebra B characterizing FPTIME [Bellantoni and Cook 92].
- ► Two successors: $s_0x = 2x$ and $s_1x = 2x + 1$.
- Function arguments partitioned into normal and safe:

$$f(x_1,\ldots,x_n;y_1,\ldots,y_m)$$

Safe recursion on notation:

$$f(0, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$$

$$f(s_0x, \vec{x}; \vec{y}) = h_0(x, \vec{x}; \vec{y}, f(x, \vec{x}; \vec{y}))$$

$$f(s_1x, \vec{x}; \vec{y}) = h_1(x, \vec{x}; \vec{y}, f(x, \vec{x}; \vec{y}))$$

Idea. Recursive calls only in the safe zone

- ► Function algebra B characterizing **FPTIME** [Bellantoni and Cook 92].
- ▶ Two successors: $s_0x = 2x$ and $s_1x = 2x + 1$.
- Function arguments partitioned into normal and safe:

$$f(x_1,\ldots,x_n;y_1,\ldots,y_m)$$

Safe recursion on notation:

$$f(0, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$$

$$f(s_0 x, \vec{x}; \vec{y}) = h_0(x, \vec{x}; \vec{y}, f(x, \vec{x}; \vec{y}))$$

$$f(s_1 x, \vec{x}; \vec{y}) = h_1(x, \vec{x}; \vec{y}, f(x, \vec{x}; \vec{y}))$$

Idea. Recursive calls only in the safe zone

- ► Function algebra B characterizing **FPTIME** [Bellantoni and Cook 92].
- ▶ Two successors: $s_0x = 2x$ and $s_1x = 2x + 1$.
- Function arguments partitioned into normal and safe:

$$f(x_1,\ldots,x_n;y_1,\ldots,y_m)$$

Safe recursion on notation:

$$f(0, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$$

$$f(s_0x, \vec{x}; \vec{y}) = h_0(x, \vec{x}; \vec{y}, f(x, \vec{x}; \vec{y}))$$

$$f(s_1x, \vec{x}; \vec{y}) = h_1(x, \vec{x}; \vec{y}, f(x, \vec{x}; \vec{y}))$$

Idea. Recursive calls only in the safe zone

- ► Function algebra B characterizing **FPTIME** [Bellantoni and Cook 92].
- ▶ Two successors: $s_0x = 2x$ and $s_1x = 2x + 1$.
- Function arguments partitioned into normal and safe:

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n; y_1,\ldots,y_m)$$

Safe recursion on notation:

$$f(0, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$$

$$f(s_0x, \vec{x}; \vec{y}) = h_0(x, \vec{x}; \vec{y}, f(x, \vec{x}; \vec{y}))$$

$$f(s_1x, \vec{x}; \vec{y}) = h_1(x, \vec{x}; \vec{y}, f(x, \vec{x}; \vec{y}))$$

Idea. Recursive calls only in the safe zone:

- Cyclic proofs
- 2 ICC and safe recursion
- 3 A cyclic proof system based on safe recursion
- Safety and nesting
- Characterizing FPTIME and FELEMENTARY

Non-wellfounded version of B

▶ Formulas $A, B, C \in \{N, \square N\}$ and contexts $\Gamma, \Delta = A_1, \dots, A_n$.

▶ Non-wellfounded proofs generated by the following rules:

Semantics of non-wellfounded proofs for B

$$f_{\mathcal{D}}(;) := 0$$

$$f_{\mathcal{D}}(;) := s_{i}x$$

$$f_{\mathcal{D}}(;x) := s_{i}x$$

$$f_{\mathcal{D}}(;x) := f_{\mathcal{D}_{1}}(\vec{x};\vec{y}, f_{\mathcal{D}_{0}}(\vec{x};\vec{y}))$$

$$f_{\mathcal{D}}(\vec{x};\vec{y}) := f_{\mathcal{D}_{1}}(\vec{x};\vec{y}, f_{\mathcal{D}_{0}}(\vec{x};\vec{y}))$$

$$f_{\mathcal{D}}(\vec{x};\vec{y}) := f_{\mathcal{D}_{1}}(f_{\mathcal{D}_{0}}(\vec{x};\vec{y}), \vec{x};\vec{y})$$

$$f_{\mathcal{D}}(\vec{x};\vec{y}) := f_{\mathcal{D}_{1}}(f_{\mathcal{D}_{0}}(\vec{x};\vec{y}), \vec{x};\vec{y})$$

$$f_{\mathcal{D}}(\vec{x};\vec{y}) := f_{\mathcal{D}_{1}}(f_{\mathcal{D}_{0}}(\vec{x};\vec{y}), \vec{x};\vec{y})$$

$$f_{\mathcal{D}}(s_{0}x, \vec{x};\vec{y}) := f_{\mathcal{D}_{1}}(x, \vec{x};\vec{y})$$

$$f_{\mathcal{D}}(s_{1}x, \vec{x};\vec{y}) := f_{\mathcal{D}_{1}}(x, \vec{x};\vec{y})$$

$$f_{\mathcal{D}}(s_{1}x, \vec{x};\vec{y}) := f_{\mathcal{D}_{2}}(x, \vec{x};\vec{y})$$

Cyclicity

Cyclic proof = finitely many distinct subproofs.

▶ Idea. Cyclicity = computability.

Example. A cyclic proof \mathcal{D} :

$$f_{\mathcal{D}}(\mathbf{x}; y) := f_{\mathcal{D}}(\mathbf{x}; s_0 y)$$

Progressiveness

- ▶ Progressive proof = every infinite branch contains a $\square N$ -thread with infinitely many principal formulas of the rule cond \square .
- **Example.** A progressing proof:

$$\underset{\mathsf{cond}_{\square}}{\operatorname{id}} \frac{\overset{\mathsf{cond}_{\square}}{N \Rightarrow N} \overset{\mathsf{cond}_{\square}}{\overset{\mathsf{N}}{\Rightarrow N}} \overset{\mathsf{N}}{\longrightarrow} \overset{\mathsf{N}}{N \Rightarrow N}}{\overset{\mathsf{N}}{\Rightarrow N}} \overset{\mathsf{cond}_{\square}}{\overset{\mathsf{N}}{\Rightarrow N}} \overset{\mathsf{N}}{\longrightarrow} \overset{\mathsf{N}}{N \Rightarrow N} \overset{\mathsf{N}}{\longrightarrow} \overset{\mathsf{N}}{N \Rightarrow N}$$

$$f_{\mathcal{D}}(0; y) = y$$

$$f_{\mathcal{D}}(s_0 x; y) = s_0(f_{\mathcal{D}}(x; y))$$

$$f_{\mathcal{D}}(s_1 x; y) = s_1(f_{\mathcal{D}}(x; y))$$

▶ Idea. Progressiveness = totality.

- Cyclic proofs
- 2 ICC and safe recursion
- 3 A cyclic proof system based on safe recursion
- Safety and nesting
- 5 Characterizing FPTIME and FELEMENTARY

Safety

- Problem. Modalities are not enough to enforce stratification in an non-wellfounded setting.
- **Example.** A cyclic progressing proof \mathcal{D} for primitive recursion (on notation):

$$f_{\mathcal{D}}(0, \vec{x};) = f_{\mathcal{D}_0}(\vec{x};)$$

$$f_{\mathcal{D}}(s_0 x, \vec{x};) = f_{\mathcal{D}_1}(x, \vec{x}, f(x, \vec{x});)$$

$$f_{\mathcal{D}}(s_1 x, \vec{x};) = f_{\mathcal{D}_2}(x, \vec{x}, f(x, \vec{x};);)$$

- Safe proof = any branch crosses finitely many cut

 -steps.
- Cyclic proof system NCB = cyclic progressing safe proofs.

Safety

- Problem. Modalities are not enough to enforce stratification in an non-wellfounded setting.
- **Example.** A cyclic progressing proof \mathcal{D} for primitive recursion (on notation):

$$f_{\mathcal{D}}(0, \vec{x};) = f_{\mathcal{D}_0}(\vec{x};)$$

$$f_{\mathcal{D}}(s_0 x, \vec{x};) = f_{\mathcal{D}_1}(x, \vec{x}, f(x, \vec{x});)$$

$$f_{\mathcal{D}}(s_1 x, \vec{x};) = f_{\mathcal{D}_2}(x, \vec{x}, f(x, \vec{x};);)$$

- Cyclic proof system NCB = cyclic progressing safe proofs.

Nesting

- ▶ **Problem**. NCB can express **nested recursion**.
- **Example.** A cyclic progressing safe proof for the **exponential** function $\exp(x)(y) = 2^{2^{|x|}} \cdot y$:

$$\underset{\mathsf{cond}_{\square}}{\overset{\mathsf{s}_{0}}{\overset{\mathsf{cond}_{\square}}{\overset{\mathsf{N}}{\Rightarrow} N}}} \overset{\mathsf{cond}_{\square}}{\overset{\mathsf{N}}{\Rightarrow} N} \overset{\bullet}{\overset{\mathsf{cond}_{\square}}{\overset{\mathsf{N}}{\Rightarrow} N}} \overset{\bullet}{\overset{\mathsf{cond}_{\square}}{\overset{\mathsf{N}}{\Rightarrow} N}} \overset{\bullet}{\overset{\mathsf{cond}_{\square}}{\overset{\mathsf{N}}{\Rightarrow} N}} \overset{\bullet}{\overset{\mathsf{N}}{\Rightarrow} N} \overset{\overset{\mathsf{N}$$

```
\exp(\mathbf{0}; y) = s_0 y

\exp(s_0 x; y) = \exp(x; \exp(x; y))

\exp(s_1 x; y) = \exp(x; \exp(x; y))
```

- ightharpoonup Left-leaning proof = any branch goes right at a cut_N-step only finitely often
- ightharpoonup Cyclic proof system CB = cyclic progressing safe left-leaning proofs.

Nesting

- ▶ **Problem**. NCB can express **nested recursion**.
- **Example.** A cyclic progressing safe proof for the **exponential** function $\exp(x)(y) = 2^{2^{|x|}} \cdot y$:

```
\exp(0; y) = s_0 y

\exp(s_0 x; y) = \exp(x; \exp(x; y))

\exp(s_1 x; y) = \exp(x; \exp(x; y))
```

- ▶ Left-leaning proof = any branch goes right at a cut_N-step only finitely often.
- ► Cyclic proof system CB = cyclic progressing safe left-leaning proofs.

Hofmann's type system SLR

▶ Two function spaces: $\square A \rightarrow B \pmod{A}$ and $A \multimap B \pmod{A}$.

▶ Safe linear recursion operator (with $A \Box$ -free):

$$\operatorname{rec}_{A}: \square N \to \underbrace{(\square N \to A \multimap A)}_{h} \to A \to A$$

where $f(x) = rec_A(x, h, g)$ means:

$$f(0) = g$$

 $f(s_0x) = h(x, f(x))$
 $f(s_1x) = h(x, f(x))$

► SLR captures exactly **FPTIME**.

Nesting and abstraction complexity

Nested recursion in SLR if higher-order types are not handled linearly:

$$\begin{array}{lll} A & = & N \rightarrow N \\ g & = & \mathsf{s}_0 \\ h & = & \lambda x : \square N. \lambda u : N \rightarrow N. \lambda y : N. u(uy) & : \square N \rightarrow A \rightarrow A \rightarrow A \end{array}$$

$$\exp(x; y) = \operatorname{rec}_A(x, h, g)(y)$$

► Takeaway. Type n cyclic proofs can represent type n+1 recursion [Das 21].

Nesting and abstraction complexity

Nested recursion in SLR if higher-order types are not handled linearly:

$$\begin{array}{lll} A & = & N \to N \\ g & = & s_0 & : A \\ h & = & \lambda x : \Box N. \lambda u : N \to N. \lambda y : N. u(uy) & : \Box N \to A \to A \to A \end{array}$$

$$\exp(x; y) = \operatorname{rec}_A(x, h, g)(y)$$

▶ **Takeaway**. Type n cyclic proofs can represent type n+1 recursion [Das 21].

- Cyclic proofs
- 2 ICC and safe recursion
- 3 A cyclic proof system based on safe recursion
- Safety and nesting
- **5** Characterizing **FPTIME** and **FELEMENTARY**

Results and perspectives

Characterization results:

- ► Theorem. NCB captures exactly FELEMENTARY.
- ► Theorem. CB captures exactly **FPTIME**.

Conclusions and future directions:

- ► CB = circular version of B
- ► NCB = generalization of B to nested safe recursion schemes
- ▶ Higher-order version of cyclic proof systems based on Hofmann's SLR?
- Cyclic proof systems to characterize other complexity classes, like FPSPACE, ALOGTIME, NC?

Thank you! Questions?