Contents

Ba	asic Functions 2	
	Types of basic functions	2
	Nature of exponential functions	2
	Nature of linear functions	2
	Nature of exponential functions in terms of a variable base	2
	Nature of logarithmic function	3
	Nature of special functions	3
	Derivation on Operations on exponential functions in terms of constant base	3
	Expression for Operations on exponential functions in terms of constant base	3
	Derivation on Operations on linear functions	4
	Expression for Operations on linear functions	4
	Derivation on Operations on exponential functions in terms of variable base	4
	Expression for Operations on exponential functions in terms of variable base	4
	Derivation on Operations of logarithmic functions	5
	Expression for Operations of logarithmic functions	5
	Expression for Special functions	5

Basic Functions

Types of basic functions

The types of basic functions that can be expressed in terms of operations of functions are

- · Exponential functions in terms of constant base
- Linear functions
- · Exponential functions in terms of variable base
- Logarithmic functions
- Special Functions

Nature of exponential functions

- · A exponential function has a constant base.
- · The power of an exponential function is variable.
- $\boldsymbol{\cdot}$ The expression for exponential function is expressed as

 $f(x) = a^x$

Nature of linear functions

- A linear function has a term on x.
- The term in x of a linear function is in the power of 1.
- $\boldsymbol{\cdot}$ The expression for linear function is expressed as

f(x)

f(x) = kx

Nature of exponential functions in terms of a variable base

- · A exponential function in terms of a variable base has a constant power.
- · The expression for exponential functions in terms of variable base is expressed as

 $f(x) = x^n$

Nature of logarithmic function

- A logarithmic function is an inverse function.
- The function of which the logarithmic function is a inverse of is exponential function.
- · The expression for logarithmic function is

.

$$f(x) = \log_a(x)$$

Nature of special functions

- · A special function in operation of basic function is a special case.
- The expression for special function in operations of basic function is

$$f(x) = \begin{cases} 1 + x^n \\ 1 - x^n \end{cases}$$

Derivation on Operations on exponential functions in terms of constant base

$$f(x) = a^{x}$$

$$f(y) = a^{y}$$

$$f(x+y) = a^{x+y}$$

$$f(x+y) = a^{x} \times a^{y}$$

Expression for Operations on exponential functions in terms of constant base

• A expression for the operation with a function satisfying relation in terms of a constant base is

$$f(x+y) = f(x)f(y) \implies f(x) = a^x$$

Derivation on Operations on linear functions

$$f(x) = kx$$

$$f(y) = ky$$

$$f(x+y) = k(x+y)$$

$$f(x+y) = kx + ky$$

Expression for Operations on linear functions

• The expression for the operation with a function satisfying relation in terms of linear function is

 $f(x+y) = f(x) + f(y) \implies f(x) = kx$

Derivation on Operations on exponential functions in terms of variable base

$$f(x) = x^{n}$$

$$f(y) = y^{n}$$

$$f(xy) = (xy)^{n}$$

$$f(x+y) = x^{n} \times y^{n}$$

Expression for Operations on exponential functions in terms of variable base

• The expression for the operation with a function satisfying relation in terms of exponential function with variable base is

 $f(xy) = f(x) \times f(y) \implies f(x) = x^n$

Derivation on Operations of logarithmic functions

$$f(x) = \log_a(x)$$

$$f(y) = \log_a(y)$$

$$f(xy) = \log_a(xy)$$

$$f(xy) = \log_a(x) + \log_a(y)$$

Expression for Operations of logarithmic functions

• The expression for the operation with a function satisfying the relation in terms of logarithmic functions is

$$f(xy) = f(x) + f(y) \implies f(x) = \log_a(x)$$

Expression for Special functions

• The expression for special functions is

$$f(x) \times f(\frac{1}{x}) = f(x) + f(\frac{1}{x}) \implies f(x) = \begin{cases} 1 + x^n \\ 1 - x^n \end{cases}$$