Proteins

Structure/Sequence Relationship

Equus_caballus Elephas_maximus Homo_sapiens Physeter_catodon Physeter_catodon_HbA Physeter_catodon_HbB

Equus_caballus
Elephas_maximus
Homo_sapiens
Physeter_catodon_HbA
Physeter_catodon_HbA

Equus_caballus Elephas_maximus Homo_sapiens Physeter_catodon Physeter_catodon_HbA Physeter_catodon_HbB

-GLSDGEWQQVIAYWGKVEADIAGHGQEVLIRLPTGHPETLEKFDKFRHLKTEAEMKASE 59
-GLSDGEWELVILKTYGKVEADIFGHGEFVLUKRLFTGHPETLEKFDKFRHLKTEGEMKASE 59
MGLSDGEWGLVIAWWGKVEADIFGHGQEVLIRLFKGHEFTLEKFDFFHLKSEDEMKASE 50
MVLSSGEWGLVIAWWAKVEADIVAGHGQDILIRLFKSHPETLEKFDFFHLKTEAFKKASE
07
MLSDAGTKUKAWAKVGWHADOGAGALEKWFMSFSTKTYTSHF-DLG----HBST 53
VHLTGEEKSGLTALMAKVW--VEBIGGEALGHLWVFWTGFFEHFGLLSTADAVMGNP 58

PGDFGADAQGAMTKALELFRNDIAAKYKELGFQG 153
PAEFGADAQGAMKKALELFRNDIAAKYKELGFQG 154
PGDFGADAQGAMKALELFRNDIAAKYKELGFQG 154
PGNFGADAQGAMKALELFRNDIAAKYKELGFQG 154
PGNFFDANGALGFFRANGAKYKELGFQG 154
PGNFFDANGALGFFRANGAKYANALAMKYH------ 146
CKETPELGTATQKVVAGNANLAMKYH----- 146
"."."."."

Structure/Sequence Relationship

Equus_caballus
Elephas_maximus
Homo_sapiens
Physeter_catodon_HbA
Physeter_catodon_HbB

Equus_caballus Elephas_maximus Homo_sapiens Physeter_catodon_HbA Physeter_catodon_HbA

Equus_caballus Elephas_maximus Homo_sapiens Physeter_catodon_HbA Physeter_catodon_HbA

GLSDGEWQUVLNVWGKVEADIAGHOQEVLIRLFTGHESTLEKFDKFKHLKTEAEMKASE 59

-GLSDGEWELVLKTWGKVEADIFOHGEFVLVWELFTGHESTLEKFDKFKHLKTEAEMKASE 59

MGLSDGEWQLVLNVWGKVEADIFOHGOEVLIRLFKGHESTLEKFDKFKHLKSEDMMASE 60

MULSEGEWQLVLHWWAKVEADIFOHGOQEVLIRLFKSHESTLEKFDKFKHLKSEDMMASE 60

-VLSSADKTNYKAAMAKVGHHAADFGAEALEMPHMSF-STKTFSHF-DLG-----INST 53

VH.TGEEKSGLTALMAKVN--VERIGGAELGELLVVYWTORFFFEHSTDGLTADAVMKNIP 58

**:

**:

:*

:*

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**:*

**

PGDFGADAQGAMNKALELFRKDMASNYKELGFQG 154
PGNFGADAQGAMNKALELFRKDIAAKYKELGYQG 154
PGDFTPSVHASLDKFLASVSTVLTSKYR------ 141
GKEFTPELQTAYQKVVAGVANALAHKYH----- 146
:*.::*:

Structure/Sequence Relationship

Equus_caballus
Elephas_maximus
Homo_sapiens
Physeter_catodon_HbA
Physeter_catodon_HbB

Elephas_maximus
Homo_sapiens
Physeter_catodon
Physeter_catodon_HbA
Physeter_catodon_HbB

-GLSDGEWQQVLNVWGKVEADIAGHQQEVLIRLFTGH-ETLEKFDKFKHLKTEAEMKASE 59
-GLSDGEWELVLKTWGKVEADIPGHOGEVLIRLFTGH-ETLEKFDKFHLKTEGEMKASE 59
MGLSDGEWQLVLHVWGKVEADIPGHOQEVLIRLFKGH-ETLEKFDKFHLKSEDEWKASE 60
MVLSBGEWQLVLHVWAKVEADIPGHOQEVLIRLFKSH-ETLEKFDFFHLKTEAEWKASE 60
-VLSPADKTWKAAWAKVGSHAADFGAEALEMMYMSF-STKTYSSHF-DLG-----IBST 53
VLHIGGEEKSGLTALWAKVN--VENTGEFEHELDLSTADAWMNP 58
**:
CONSERVED

CONSCIVED

LEXENGTVUITALGG LIXKKGHHRAELEPLAGO MYKHLUPLYVLEFISDAITHYILKS IN 119

DIAKKGHTVUITALGG LIXKKGHHRAELEPLAGO MYKHLUPLYVLEFISDAITHYILKS IN 119

DIAKKGHTVUITALGG LIXKKGHHRAELEPLAGO MYKHLUPLYVLEFISDAITHYILKS IN 119

DIAKKHGHTVUITALGG LIXKKGHHRAELEPLAGS MYKHLUPLYVLEFISDAITHYILKS IN 120

DIAKKHGHTVUITALGG LIXKKGHHRAELEPLAGS MYKHLUPLYVLEFISDAITHYILKS IN 120

QVKGHGKVADALITAAVGHLUTLEPALASDLSDLAHKTLUPLYVLEFISDAITHYILKS IN 121

QVKGHGKVADALITAAVGHLUTLEPALASDLSDLAHKTLUPLYNFELKELLVITABAL 113

KYKKHGKGVADALITAAVGHLUTLEPALSDLSDLAHKTLUPLEPARLENLUVIVTABAL 113

KYKKHGKGVADALITAAVGHLUTLEPALSDLSDLAHKTLUPLEPARLENLUVIVTABAL 113 PGDFGADAQGAMTKALELFRNDIAAKYKELGFQG 153 PAEFGADAQGAMKKALELFRNDIAAKYKELGFQG 153 PGDFGADAQGAMNKALELFRKDMASNYKELGFQG 154

Conserved?

Structure/Sequence Relationship

To understand and manipulate protein sequence and structure we have to know:

- The 20 'naturally occurring' amino acids
- Their physical properties
- The nature of the peptide bond connecting them
- Possible modifications that can occur after synthesis

Amino Acid Properties

The Amino Acids

Amino acid	Three-letter abbreviation	One-letter abbreviation	Amino acid	Three-letter abbreviation	One-letter abbreviation
Alanine	Ala	A	Methionine	Met	M
Arginine	Arg	R	Phenylalanine	Phe	F
Asparagine	Asn	N	Proline	Pro	P
Aspartic Acid	Asp	D	Serine	Ser	S
Cysteine	Cys	C	Threonine	Thr	T
Glutamine	Gln	Q	Tryptophan	Trp	W
Glutamic Acid	Glu	E	Tyrosine	Tyr	Y
Glycine	Gly	G	Valine	Val	V
Histidine	His	H	Asparagine or	Asx	В
Isoleucine	Ile	I	aspartic acid		
Leucine	Leu	L	Glutamine or	Glx	Z
Lysine	Lys	K	glutamic acid		

☼ Know the code – Learn name, abbreviation and structure

Amide Containing Amino Acids

Cysteine

Properties of AAs

Main chain chirality
Side chain chirality
Main chain ionization
Side chain ionization
Mass
Absorbance
Hydrogen bond interactions
Salt bridge interactions

Structural implications - Thursday

Main Chain Chirality

Main Chain Chirality

Side Chain Chirality

Evaluating ionization state with pH $\&~\rm pK_a$

What is pH? $pH = -log_{10}[H^+] = log_{10}(1/[H^+])$ What is pK? $Consider a weak acid, \\ HA <-> H^+ + A^-$ The equilibrium constant, K_a , for this rxn is: $K_a = [H^+][A^-]/[HA]$ $pK_a = -logK_a = log(1/K_a) = log([HA]/[H^+][A^-])$

Evaluating ionization state with pH and pK

$$\begin{split} pH &= log \ (1/[H^+]) \\ pK_a &= log \ ([HA]/[H^+][A^-]) \\ &= log \ (1/[H^+]) + log \ ([HA]/[A^-]) \\ pK_a &= pH + log \ ([HA]/[A^-]) \\ when \ [HA] &= [A^-] \ i.e. \ the \ acid \ is 50\% \ protonated \\ (HA &<-> \ H^+ + A^-) \\ pK_a &= pH \end{split}$$

in other words...

pK_a is the pH at which the acid is 50% ionized

TABLE 3	5.4 pK _a va	lues of some ar	nino acids	
		pK_a	values (25°C)
Am	ino acid	α-COOH group	α-NH ₃ + group	Side chair
Alaı	nine	2.3	9.9	
Gly	cine	2.4	9.8	
Phe	nylalanine	1.8	9.1	
Seri	ne	2.1	9.2	
Vali	ne	2.3	9.6	
Asp	artic acid	2.0	10.0	3.9
Glu	tamic acid	2.2	9.7	4.3
Hist	tidine	1.8	9.2	6.0
Cys	teine	1.8	10.8	8.3
Tyre	osine	2.2	9.1	10.9
Lys	ine	2.2	9.2	10.8
Arg	inine	1.8	9.0	12.5

Why do we have to learn all this pl stuff?

- Remember: a protein's function depends on its structure
- A protein's structure, as you will see in the next class, depends on its charge (pl)
- A protein's pl depends on the pK_a of all its amino acids

Side Chain Ionization

Group	Acid	-	Base	Typical pK_a^*
Terminal α-carboxyl group	P O H	-	- C - O	3.1
Aspartic acid Glutamic acid	, c . o . H	_	, c o	4.1
Histidine	H. H.	_	N _H	6.0
Terminal α-amino group	-N-H	\longrightarrow	$-N_{\widetilde{A}}^{H}$	8.0
Cysteine	-s ^H	-	—S	8.3
Tyrosine -	○ -0	H		10.9
Lysine	-N-H	=	$-N_{H}$	10.8
Arginine	H + N-H	\rightarrow	H N-E	12.5

Amino Acid pKa Values

pKa values depend on the environment:

A nearby positive charge will shift pKa values down (resulting in less positive charge) A nearby negative charge will shift pKa values up (resulting in less negative charge)

A low dielectric environment (hydrophobic protein core) will:

Shift the pKa value of a basic group down (less charge) Shift the pKa value of an acidic group up (less charge)

Calculating pKa shifts in a protein is difficult

Coulomb's Law (F=q_1q_2/4 $\pi\epsilon R^2$)

 $\epsilon \ (protein \ core) \approx 4, \quad \epsilon \ (water) \approx 80$

Protein Isoelectric Point

The Isoelectric point (pI) is the pH value at which the net charge of the protein will be zero

The pI can be measured using isoelectric focusing gels

The pI can be estimated by using the standard pKa values for all of the relevant* ionizable groups in a protein

See http://ca.expasy.org/tools/pi_tool.html

Amino Acid Masses

			Monoisotopic	Average Mass
A	Ala	C ₃ H ₅ ON	71.03711	71.0788
R	Arg	$C_6H_{12}ON_4$	156.10111	156.1875
N	Asn	$C_4H_6O_2N_2$	114.04293	114.1038
D	Asp	C ₄ H ₅ O ₅ N	115.02694	115.0886
С	Cys	C ₃ H ₃ ONS	103.00919	103.1388
E	Glu	C ₃ H ₂ O ₃ N	129.04259	129.1155
Q	Gln	$C_5H_8O_2N_2$	128.05858	128.1307
G	Gly	C2H3ON	57.02146	57.0519
Н	His	C ₆ H ₇ ON ₃	137.05891	137.1411
I	lle	C ₆ H ₁₁ ON	113.08406	113.1594
L	Leu	$C_6H_{11}ON$	113.08406	113.1594
K	Lys	$C_6H_{12}ON_2$	128.09496	128.1741
M	Met	C ₅ H ₉ ONS	131.04049	131.1926
F	Phe	C ₉ H ₉ ON	147.06841	147.1766
P	Pro	C ₅ H ₂ ON	97.05276	97.1167
S	Ser	C ₃ H ₅ O ₂ N	87.03203	87.0782
T	Thr	C ₄ H ₇ O ₂ N	101.04768	101.1051
w	Trp	$C_{11}H_{10}ON_2$	186.07931	186.2132
Y	Tyr	$C_9H_9O_2N$	163.06333	163.1760
V	Val	C₅H₀ON	99.06841	99.1326

Assumes amino acids are linked by peptide bonds (H₂O removed)

e http://ca.expasy.org/tools/pi_tool.html

AbsorbanceBeer's Law $A = \epsilon \, t \, 1$ A = absorbance $\epsilon = \text{extinction coefficient } (M^{-1} \, \text{cm}^{-1})$ $\epsilon = \text{concentration } (M)$ 1 = pathlength (cm)Absorbance at 280 nm usually used for protein quantification $\text{Note: Cysteine absorbs at 280 nm if disulfide bonded } (\epsilon = 60 \, \text{M}^{-1} \, \text{cm}^{-1})$ $\epsilon \, (\text{Tyr}) \approx 5690 \, \text{M}^{-1} \, \text{cm}^{-1}$ $\epsilon \, (\text{Tyr}) \approx 1280 \, \text{M}^{-1} \, \text{cm}^{-1}$ See http://ca.expasy.org/tools/protparam.html

^{*}Remember: only one amino- and one carboxy- terminus

Parameters for the Unmodified Physiological L-alpha-Amino Acids			
Amino Acid	3-Letter Code	1-Letter Code	Hydrophobicity
Alanine	Ala	A	0.616
Cysteine	Cys	С	0.680
Aspartate	Asp	D	0.028
Glutamate	Glu	E	0.043
Phenylalanine	Phe	F	1.00
Glycine	Gly	G	0.501
Histidine	His	Н	0.165
Isoleucine	Ile	I	0.943
Lysine	Lys	К	0.283
Leucine	Leu	L	0.943
Methionine	Met	M	0.738
Asparagine	Asn	N	0.236
Proline	Pro	P	0.711
Glutamine	Gln	Q	0.251
Arginine	Arg	R	0.000
Serine	Ser	S	0.359
Threonine	The	T	0.450
Valine	Val	v	0.825
Tryptophan	Trp	w	0.878
Tyrosine	Туг	Y	0.880

http://psyche.uthct.edu/shaun/SBlack/aagrease.html

Hydrogen Bond	l Interactions
---------------	----------------

Side chains of W, Y, S, T, N, Q, D, E, K, R

Salt Bridge Interactions

Charge – charge interactions
Typically between (D or E) and (K, R or H)

Posttranslational Modifications Aparticle (Ann. 19) Aparticle (Ann. 19

Next Class Protein Structure