University of Greifswald Faculty of Mathematics and Natural Sciences Institute for Geographie and Geology

CODE DOCUMENTATION

Full Documentation of AlphaBetaSquared Class for Python

Greifswald April 17, 2025

Contents

1	Overview			
2	Class Description			
3	Met	lethods		
	3.1	init		
	3.2	_load_data		
	3.3	set_auto_display		
	3.4	set_save_plot		
	3.5	set_alphabeta_scale		
	3.6	calc_alpha		
	3.7	calc_beta		
	3.8	show		
	3.9	get_data		
	3.10	get_alpha		
	3.11	get_beta		
	3.12	operate_on		
	3.13	calc_distribution		
	3.14	plot_distribution		
	3.15	plot_alphabeta		
	3.16	save_data		
	3.17	export_data		

4 Usage Examples

5 Notes

References

1 Overview

The AlphaBetaSquared class is a Python utility designed for statistical analysis and visualization of particle size distributions from CSV data files. It computes key statistical parameters (α and β^2), fits log-normal distributions, and generates plots to visualize both size distributions and kinetic analysis after EBERL ET AL., 1998 (alpha-beta squared plots).

The class supports flexible data loading, customizable plotting, and data export functionalities, making it suitable for both interactive use (e.g., Jupyter notebooks) and batch processing.

2 Class Description

Class Definition

class AlphaBetaSquared():

Purpose

The AlphaBetaSquared class provides methods to:

- Load data from one or more CSV files.
- Calculate statistical metrics (α , β , maximum values, and log-normal fits).
- Visualize particle size distributions and α vs. β^2 plots.
- Export computed data to CSV files.

Attributes

- self.data: Dictionary storing loaded CSV data.
- self._alpha: Dictionary of computed α values.
- self._beta: Dictionary of computed β values.
- self._table_max: Dictionary of maximum values per column.
- self._lognorm_fits: Dictionary of log-normal fit parameters.
- self.auto_display: Boolean to control automatic plot display (default: False).
- self.alphabeta_scale: Boolean to scale α - β^2 plot limits (default: False).
- self.save_plot: Boolean to save plots to files (default: False).
- self.plot_config: Dictionary for plot formatting (partially implemented).
- self.__exportable_attributes: Tuple of attributes available for export.

3 METHODS Tobias Manzel

Dependencies

Package	Version	Installation Command
Python	≥ 3.8	conda install python=3.9.2
NumPy	1.23.x	pip install numpy==1.23.4
SciPy	1.9.x	pip install scipy==1.9.1
Matplotlib	3.6.x	<pre>pip install matplotlib==3.6.2</pre>
Pandas	2.1.x	pip install pandas==2.1.4
Diptest	0.9.x	pip install diptest==0.9.0

3 Methods

3.1 __init__

```
def ___init___(self, *args, plot_config=None)
```

Description: Initializes the class by loading data and computing statistical metrics.

Parameters:

- *args: Variable-length argument list of CSV file paths or a single list of paths.
- plot_config: Optional dictionary to customize plot appearance (default: None).

Behavior: Loads data, calculates α , β , maximum values, and log-normal fits, and sets up plotting attributes.

3.2 _load_data

```
def load data(self, args)
```

Description: Loads data from CSV files into a dictionary.

Parameters:

• args: Tuple of file paths or a single list of paths.

Returns: Dictionary with keys as table names (derived from filenames) and values as pandas.DataFrame objects.

3.3 set_auto_display

```
def set_auto_display(self, x)
```

Description: Sets the auto_display attribute.

Parameters:

• x: Boolean value.

3.4 set_save_plot

```
def set_save_plot(self, x)
```

Description: Sets the save_plot attribute.

Parameters:

• x: Boolean value.

3 METHODS Tobias Manzel

```
3.5 set_alphabeta_scale
```

```
def set_alphabeta_scale(self, x)
```

Description: Sets the alphabeta_scale attribute.

Parameters:

• x: Boolean value.

3.6 calc_alpha

```
def calc_alpha(self, x)
```

Description: Calculates the mean of the natural logarithm of the input data.

Parameters:

• x: Numeric array-like object.

Returns: Float representing α .

3.7 calc_beta

```
def calc_beta(self, x)
```

Description: Calculates the variance of the natural logarithm of the input data.

Parameters:

• x: Numeric array-like object.

Returns: Float representing β .

3.8 show

```
def show (self)
```

Description: Displays all active Matplotlib plots.

3.9 get_data

```
def get_data(self)
```

Returns: The self.data dictionary.

$3.10 \ \text{get_alpha}$

```
def get_alpha(self)
```

Returns: The self._alpha dictionary.

3.11 get_beta

```
def get_beta(self)
```

Returns: The self._beta dictionary.

3 METHODS Tobias Manzel

3.12 operate_on

def operate_on(self, data_dict, stat_func, result_attr, *args, **kwargs)

Description: Applies a statistical function to each column of each table in a data dictionary and stores results.

Parameters:

- data_dict: Dictionary of data tables.
- stat_func: Function to apply to each column.
- result_attr: Attribute name to store results.
- *args, **kwargs: Additional arguments for stat_func.

3.13 calc_distribution

def calc_distribution(self, bins=50, density=True, *args, **kwargs)

Description: Calculates histograms for particle size distributions.

Parameters:

- bins: Integer or array specifying bin edges (default: 50).
- density: Boolean to normalize histogram (default: True).
- *args, **kwargs: Additional arguments passed to histogram calculation.

3.14 plot_distribution

def plot_distribution(self, table_column_map=None)

Description: Plots particle size distributions with log-normal fits.

Parameters:

• table_column_map: Optional dictionary mapping table names to column lists (default: None).

Returns: List of matplotlib.figure.Figure objects.

Notes: Automatically calculates distributions if not already computed. Supports saving plots if self.save_plot is True.

3.15 plot_alphabeta

```
def plot alphabeta (self, *args, **kwargs)
```

Description: Generates an α vs. β^2 scatter plot with regression lines and kinetic regime annotations.

Parameters:

- *args: Optional table names or dictionary specifying tables to plot.
- **kwargs: Reserved for future extensions.

Returns: Tuple of matplotlib.figure.Figure and matplotlib.axes.Axes objects.

5 NOTES Tobias Manzel

3.16 save_data

```
def save_data(self, attr, *args, **kwargs)
```

Description: Saves a specified attribute's data to CSV files.

Parameters:

- attr: String name of the attribute to save.
- *args, **kwargs: Reserved for future extensions.

3.17 export_data

```
def export_data(self, *args, **kwargs)
```

Description: Exports specified or all exportable attributes to CSV files.

Parameters:

- *args: Optional attribute names to export.
- **kwargs: Reserved for future extensions.

4 Usage Examples

Basic Usage

```
obj = AlphaBetaSquared('data1.csv', 'data2.csv')
obj.plot_distribution()
obj.plot_alphabeta()
obj.export_data()
```

Custom Plotting

```
obj = AlphaBetaSquared('data.csv')
obj.set_auto_display(False)
figs = obj.plot_distribution({'table1': ['col1', 'col2']})
figs [0].get_axes()[0].set_title('Custom Title')
obj.show()
```

5 Notes

- The plot_config attribute is partially implemented and marked as a TODO.
- Invalid tables or columns in plotting methods are skipped with warnings.
- Set auto_display to False in Jupyter notebooks when manipulating returned figures.

References

Eberl, D., Drits, V., & Srodon, J. (1998). Deducing growth mechanisms for minerals from the shapes of crystal size distributions. *American journal of Science*, 298(6), 499–533.

List of Figures

List of Tables