Exercices corrigés de cinétique chimique

Série 1

Exercice 1:

 \overline{A} 270 °C, le chlorure de sulfuryle SO_2Cl_2 noté A se dissocie totalement selon l'équation bilan $SO_2Cl_2(g) = SO_2(g) + Cl_2(g)$

Tous les constituants sont gazeux et assimilés à des gaz parfaits.

Dans un récipient de volume constant, préalablement vide, on introduit du chlorure de sulfuryle et on porte le tout à 270 °C. On suit l'évolution de la réaction par mesure de la pression totale P dans le récipient, on obtient les résultats suivants.

t (min)	0	50	100	150	200	250
P (Pa)	40786	43985	46784	49450	51982	54248

- En supposant une cinétique d'ordre 1, donner l'expression de la pression partielle P_A de chlorure de sulfuryle en fonction de la pression initiale notée P₀ de la constante de vitesse k et du temps t.
 - Montrer que : $P_A = 2 P_0 P$
 - Vérifier que les résultats expérimentaux sont conformes à une cinétique d'ordre 1.
 Calculer la constante de vitesse k.
 - Calculer le temps de demi-réaction à 270 °C.
- On donne le temps de demi-réaction obtenu pour deux températures d'étude T₁ = 280 °C; t½(1) = 187,00 min. T₂ = 330 °C; t½(2) = 4,21 min. En déduire l'énergie d'activation de la réaction.
- 3. On admet l'intervention d'un mécanisme radicalaire :

$$SO_2Cl_2 --> SO_2Cl^* + Cl^* k_1$$

$$SO_2Cl* --> SO_2 + Cl* k_2$$

$$SO_2Cl_2 + Cl^*--> SO_2Cl^* + Cl_2 k_3$$

$$SO_2C1* + C1*--> SO_2 + Cl_2 k_4$$

k₁, k₂, k₃, k₄ sont les constantes de vitesse associées aux étapes élémentaires.

- Etablir en appliquant l'approximation des états quasi -stationnaires aux intermédiaires SO_2Cl^* et Cl^* , l'expression des concentrations molaires de ces espéces en fonction des constantes de vitesse k_1, k_2, k_3, k_4 et, éventuellement, des concentrations molaires des espéces chimiques intervenant dans l'équation bilan.
- En déduire la loi de vitesse de la réaction étudiée.

Exercice 2:

Le chlorure d'hydrogène (B) réagit sur le cyclohexène (A) avec formation de chlorocyclohexane (C), selon la réaction :

 $C_6H_{10} + HCl \longrightarrow C_6H_{11}Cl$ schématisé par : A +B $\longrightarrow C$

On réalise une série d'expériences à 25°C, où l'on mesure la vitesse initiale v_0 de la réaction en fonction des concentrations molaires initiales [A]₀ en cyclohexène et [B]₀ en chlorure d'hydrogène dans le milieu réactionnel. Les diverses espèces sont dans un solvant approprié et le volume réactionnel est constant et égal à 1 litre. Les résultats sont rassemblés dans le tableau ci dessous :

expérience	1	2	3	4	
[A] ₀ mol/L	0,470	0,470	0,470	0,313	
$[B]_0 mol/L$	0,235	0,328	0,448	0,448	
v ₀ mol s ⁻¹	15,7 10-9	30,6 10-9	57,1 10-9	38 10 ⁻⁹	

- On désigne respectivement par p et q les ordres partiels initiaux de la réaction par rapport au cyclohexène A et au chlorure d'hydrogène B. Exprimer la loi de vitesse initiale de cette réaction en fonction de p et q.
- 2. Déterminer p
- 3. Déterminer q, puis l'ordre global de la réaction.
- Calculer la constante de vitesse de la réaction.
- On réalise dans les conditions précédentes (volume réactionnel constant de 1 litre) un mélange contenant 0,470 mol.L⁻¹ de cyclohexène et 0,470 mol.L⁻¹ de chlorure d'hydrogène.
- 6. Si l'ordre global de la réaction est égal à 3, établir la loi de vitesse de la réaction en fonction de la concentration molaire [A] en cyclohexène à la date t, et l'intégrer.
- 7. En déduire le temps de demi réaction t_½ (calcul littéral puis application numérique).

Exercice 3:

Le pentaoxyde de diazote N_2O_5 gazeux se transforme par chauffage dans un récipient de volume constant en dioxyde d'azote NO_2 et dioxygène O_2 .

 Montrer que les valeurs expérimentales suivantes exprimant la pression de N₂O₅ en fonction du temps à 45 °C sont compatibles avec une cinétique du premier ordre en N₂O₅. Calculer numériquement la constante de vitesse k.

t (min)	0	10	20	40	60	80	100	120
p(mmHg)	348	247	185	105	58	33	18	10

2. Le mécanisme de cette réaction semble correspondre aux étapes suivantes:

 $N_2O_5 = NO_2 + NO_3$ k_1 dans le sens direct et k_2 dans le sens indirect $NO_2 + NO_3 \rightarrow NO_2 + NO + O_2$ k_3 $NO + N_2O_5 \rightarrow 3$ NO_2 k_4

Montrer que ce mécanisme est compatible avec la loi de vitesse expérimentale et proposer une relation liant k à k₁, k₂ et k₃. On admet que les espèces NO et NO₃ sont des intermédiaires réactionnels auxquels on peut appliquer l'AEQS

Exercice 4:

1) Dans une première expérience on réalise dans les conditions appropriées, une étude cinétique de la réaction (1) suivante (solvant H_2O ; T=298~K):

(1)
$$CrO_{2(aq)}^{2+} \xrightarrow{k_1} Cr_{(aq)}^{2+} + O_{2(aq)}$$

La réaction a pour constante de vitesse $k_1=2,5.10^{-4}~s^{-1}$. À l'instant $t_1=10^3~s$ la concentration en ion CrO_2^{2+} est : $[CrO_2^{2+}]_{t_1}=1,5.10^{-4}~mol.L^{-1}$. \rightarrow Quel est l'ordre de cette réaction?

- 2) Calculer la concentration initiale en CrO_2^{2+} ?
- Déterminer le temps de demi-réaction τ_{1/2}, en secondes, pour la réaction (1).
- 4) Dans une deuxième expérience on effectue, dans les conditions appropriées, l'étude cinétique de la réaction (2) suivante (solvant H_2O ; $T=298\ K$):

(2)
$$Cr_{(aq)}^{2+} + O_{2(aq)} \xrightarrow{-k_2} CrO_{2(aq)}^{2+}$$

Les conditions initiales sont : $[Cr^{2+}]_0 = [O_2]_0 = 1, 5.10^{-4} \ mol.L^{-1}$. La réaction, a pour constante de vitesse $k_2 = 1, 6.10^8 \ mol^{-1}.L.s^{-1}$.

- \rightarrow Déterminer l'ordre global de cette réaction, ainsi que son temps de demi-réaction $\tau_{1/2}$, en secondes.
- 5) En supposant que les ordres partiels en Cr^{2+} et O_2 sont identique pour la réaction (2), déterminer la constante d'équilibre $K_3 = \frac{[CrO_2^{2+}]}{[Cr^{2+}][O_2]}$ de la réaction (3) suivante :

(3)
$$Cr_{(\mathsf{aq})}^{2+} + O_{2(\mathsf{aq})} \xrightarrow[k_1]{k_2} CrO_{2(\mathsf{aq})}^{2+}$$