COMPSCI 590N

Lecture 3: Classes and Representing Numbers

Roy J. Adams

College of Information and Computer Sciences University of Massachusetts Amherst

Outline

- 1 Modules and Objects
- 2 Intro to Numerical Computing

■ **Modules** are Python packages, usually a collection of functions and variable, that can be used in other programs.

- **Modules** are Python packages, usually a collection of functions and variable, that can be used in other programs.
- Load modules into your code using an **import** statement.

- **Modules** are Python packages, usually a collection of functions and variable, that can be used in other programs.
- Load modules into your code using an **import** statement.

- Modules are Python packages, usually a collection of functions and variable, that can be used in other programs.
- Load modules into your code using an **import** statement.

import <module_name> # imports a module

Python has a number of very useful built-in modules:

string: operations on strings.

Python has a number of very useful built-in modules:

- **string:** operations on strings.
- math: standard math functions such as: log, exp, sine, etc.

Python has a number of very useful built-in modules:

- **string:** operations on strings.
- math: standard math functions such as: log, exp, sine, etc.
- **itertools:** functions for manipulating sequences such as: combinations, permutations, cross product, etc.

Python has a number of very useful built-in modules:

- **string:** operations on strings.
- math: standard math functions such as: log, exp, sine, etc.
- **itertools:** functions for manipulating sequences such as: combinations, permutations, cross product, etc.

Python has a number of very useful built-in modules:

- **string:** operations on strings.
- **math:** standard math functions such as: log, exp, sine, etc.
- **itertools:** functions for manipulating sequences such as: combinations, permutations, cross product, etc.

DEMO

Object Oriented Programming

DEMO

Classes

Create new object types in Python by defining a **class**.

Classes

Create new object types in Python by defining a **class**.

```
class <class_name>:
def __init__(self, <args>):
    self. <member_variable> = <expression>
    <body>

def <member_function>(self, <args>):
    <body>
```

■ Objects, like functions, are a tool for organizing programs.

- Objects, like functions, are a tool for organizing programs.
- An object consists of:

- Objects, like functions, are a tool for organizing programs.
- An object consists of:
 - A collection of related information.

- Objects, like functions, are a tool for organizing programs.
- An object consists of:
 - **I** A collection of related information.
 - 2 A set of operations to manipulate and access that information.

- Objects, like functions, are a tool for organizing programs.
- An object consists of:
 - 1 A collection of related information.
 - 2 A set of operations to manipulate and access that information.
- The information is stored as *instance variables*.

- Objects, like functions, are a tool for organizing programs.
- An object consists of:
 - 1 A collection of related information.
 - 2 A set of operations to manipulate and access that information.
- The information is stored as *instance variables*.
- The operations are called *methods*.

- Objects, like functions, are a tool for organizing programs.
- An object consists of:
 - 1 A collection of related information.
 - 2 A set of operations to manipulate and access that information.
- The information is stored as *instance variables*.
- The operations are called *methods*.
- Collectively the methods and instance variables are called attributes.

- Objects, like functions, are a tool for organizing programs.
- An object consists of:
 - 1 A collection of related information.
 - 2 A set of operations to manipulate and access that information.
- The information is stored as *instance variables*.
- The operations are called *methods*.
- Collectively the methods and instance variables are called attributes.

- Objects, like functions, are a tool for organizing programs.
- An object consists of:
 - 1 A collection of related information.
 - 2 A set of operations to manipulate and access that information.
- The information is stored as *instance variables*.
- The operations are called *methods*.
- Collectively the methods and instance variables are called attributes.

Dog Example:

■ Instance variables:

- Objects, like functions, are a tool for organizing programs.
- An object consists of:
 - 1 A collection of related information.
 - 2 A set of operations to manipulate and access that information.
- The information is stored as *instance variables*.
- The operations are called *methods*.
- Collectively the methods and instance variables are called attributes.

Dog Example:

- **Instance variables:**
 - name and tricks

- Objects, like functions, are a tool for organizing programs.
- An object consists of:
 - 1 A collection of related information.
 - 2 A set of operations to manipulate and access that information.
- The information is stored as *instance variables*.
- The operations are called *methods*.
- Collectively the methods and instance variables are called attributes.

Dog Example:

- **Instance variables:**
 - name and tricks
- Methods:

- Objects, like functions, are a tool for organizing programs.
- An object consists of:
 - 1 A collection of related information.
 - 2 A set of operations to manipulate and access that information.
- The information is stored as *instance variables*.
- The operations are called *methods*.
- Collectively the methods and instance variables are called attributes.

Dog Example:

- Instance variables:
 - name and tricks
- Methods:
 - bark, teach_trick, and do_trick

Outline

- 1 Modules and Objects
- 2 Intro to Numerical Computing

Numerical Computing

Numerical computing is the approximation of continuous values and functions on a computer with finite precision.

Before we can approximate functions, we need to represent numbers:

Before we can approximate functions, we need to represent numbers:

■ The set of integers is countably infinite.

Before we can approximate functions, we need to represent numbers:

- The set of integers is countably infinite.
- The set of real numbers is continuous and uncountably infinite.

Before we can approximate functions, we need to represent numbers:

- The set of integers is countably infinite.
- The set of real numbers is continuous and uncountably infinite.
- But the set of numbers representable by a computer is finite...

Given a fixed number of bits (usually 32 or 64), we can create the following mapping:

Given a fixed number of bits (usually 32 or 64), we can create the following mapping:

integral number	bit representation
0	00000000
1	00000001
2	00000010
3	00000011
4	00000100
:	:
254	11111110
255	11111111

Given a fixed number of bits (usually 32 or 64), we can create the following mapping:

integral number	bit representation
0	00000000
1	00000001
2	00000010
3	00000011
4	00000100
:	:
254	11111110
255	11111111

Shift the mapping to store negative numbers: $0000000_2 = -125$ and $11111111_2 = 126$.

Binary Integers

Given n bits, $b_1, ..., b_n \in \{0, 1\}$, we map binary values to integer values as follows:

$$(b_n b_{n-1} ... b_2 b_1 b_0)_2 = \sum_{i=0}^n b_i 2^i = x$$

Integer Representation

Binary Integers

Given n bits, $b_1, ..., b_n \in \{0, 1\}$, we map binary values to integer values as follows:

$$(b_n b_{n-1} ... b_2 b_1 b_0)_2 = \sum_{i=0}^n b_i 2^i = x$$

For example:

$$0101_2 = 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5$$

Fixed Point

$$1.23 = \frac{12300}{d}$$

Fixed Point

Represent real numbers as integers that are scaled by a fixed scaling factor, d. For example: Let d = 1000, then

$$1.23 = \frac{12300}{d}$$

■ This is equivalent to shifting the decimal.

Fixed Point

$$1.23 = \frac{12300}{d}$$

- This is equivalent to shifting the decimal.
- \blacksquare d is usually a multiple of 2.

Fixed Point

$$1.23 = \frac{12300}{d}$$

- This is equivalent to shifting the decimal.
- \blacksquare d is usually a multiple of 2.
- Restricted by the range of representable integers.

Fixed Point

$$1.23 = \frac{12300}{d}$$

- This is equivalent to shifting the decimal.
- \blacksquare d is usually a multiple of 2.
- Restricted by the range of representable integers.
- **Observation:** Between 0 and 1, we would usually like a finer discretization, but between 1000 and 1001, we may be ok with a rough discretization.

Floating Point

Rewrite a number, x, in scientific notation $x = a \cdot 10^b$. Then, x can be stored by storing a as a fixed point and b as an integer. Floating point numbers use a fixed number of digits for a, known as the *mantissa*, and b, known as the *exponent*:

Floating Point

Rewrite a number, x, in scientific notation $x = a \cdot 10^b$. Then, x can be stored by storing a as a fixed point and b as an integer. Floating point numbers use a fixed number of digits for a, known as the *mantissa*, and b, known as the *exponent*:

х	а	b
123.456	1.23456	2
100000	1.00000	5
0.00025	2.50000	-4

Floating Point

Rewrite a number, x, in scientific notation $x = a \cdot 10^b$. Then, x can be stored by storing a as a fixed point and b as an integer. Floating point numbers use a fixed number of digits for a, known as the *mantissa*, and b, known as the *exponent*:

x	а	b
123.456	1.23456	2
100000	1.00000	5
0.00025	2.50000	-4

 Floating point numbers naturally have finer granularity nearer zero.

■ Typically, 54 bits are used for the mantissa and 10 bits are used for the exponent.

- Typically, 54 bits are used for the mantissa and 10 bits are used for the exponent.
- This results in:

- Typically, 54 bits are used for the mantissa and 10 bits are used for the exponent.
- This results in:
 - The largest possible float is $\approx 10^{308}$.

- Typically, 54 bits are used for the mantissa and 10 bits are used for the exponent.
- This results in:
 - The largest possible float is $\approx 10^{308}$.
 - The smallest possible float is $\approx 10^{-308}$.

- Typically, 54 bits are used for the mantissa and 10 bits are used for the exponent.
- This results in:
 - The largest possible float is $\approx 10^{308}$.
 - The smallest possible float is $\approx 10^{-308}$.
 - The distance between 1.0 and the next largest number is $\approx 10^{-16}$.

- Typically, 54 bits are used for the mantissa and 10 bits are used for the exponent.
- This results in:
 - The largest possible float is $\approx 10^{308}$.
 - The smallest possible float is $\approx 10^{-308}$.
 - The distance between 1.0 and the next largest number is $\approx 10^{-16}$.
- Because we can only represent finite numbers, we must rely on rounding and approximation which can lead to errors if you are not careful.

Overflow

Overflow occurs when an expression results in a number that is too **large** to be represented.

Overflow

Overflow occurs when an expression results in a number that is too large to be represented.

Underflow

Underflow occurs when an expression results in a number that is too **small** to be represented.

Overflow

Overflow occurs when an expression results in a number that is too large to be represented.

Underflow

Underflow occurs when an expression results in a number that is too **small** to be represented.

Demo

■ Not all decimal numbers are representable using a binary, floating point representation.

- Not all decimal numbers are representable using a binary, floating point representation.
- Example: 0.1

- Not all decimal numbers are representable using a binary, floating point representation.
- Example: 0.1
- The set of representable numbers is not closed under standard arithmetic. That is, adding, subtracting, multiplying, or dividing representable numbers may result in an unrepresentable number.

- Not all decimal numbers are representable using a binary, floating point representation.
- Example: 0.1
- The set of representable numbers is not closed under standard arithmetic. That is, adding, subtracting, multiplying, or dividing representable numbers may result in an unrepresentable number.
- **Example:** 1.0/10.0 = 0.1

- Not all decimal numbers are representable using a binary, floating point representation.
- Example: 0.1
- The set of representable numbers is not closed under standard arithmetic. That is, adding, subtracting, multiplying, or dividing representable numbers may result in an unrepresentable number.
- **Example:** 1.0/10.0 = 0.1

- Not all decimal numbers are representable using a binary, floating point representation.
- Example: 0.1
- The set of representable numbers is not closed under standard arithmetic. That is, adding, subtracting, multiplying, or dividing representable numbers may result in an unrepresentable number.
- **Example:** 1.0/10.0 = 0.1

Demo

 Scale your variables or work in log space to avoid overflow and underflow.

- Scale your variables or work in log space to avoid overflow and underflow.
- Avoid using == to compare floating point numbers. Instead compare with a tolerance: $|x y| < \epsilon$

- Scale your variables or work in log space to avoid overflow and underflow.
- Avoid using == to compare floating point numbers. Instead compare with a tolerance: $|x y| < \epsilon$

- Scale your variables or work in log space to avoid overflow and underflow.
- Avoid using == to compare floating point numbers. Instead compare with a tolerance: $|x y| < \epsilon$

Demo

Can a 10^{-16} make a difference?

Can a 10^{-16} make a difference?

Patriot Missile Failure

Missile defense system failed to target an incoming missile due to a rounding error.

Can a 10^{-16} make a difference?

Patriot Missile Failure

- Missile defense system failed to target an incoming missile due to a rounding error.
- The error was caused by counting time in tenths of seconds (+= 0.1).

Can a 10^{-16} make a difference?

Patriot Missile Failure

- Missile defense system failed to target an incoming missile due to a rounding error.
- The error was caused by counting time in tenths of seconds (+= 0.1).
- As in our demo, this resulted in accumulating errors because 0.1 is not representable.

Can a 10^{-16} make a difference?

Patriot Missile Failure

- Missile defense system failed to target an incoming missile due to a rounding error.
- The error was caused by counting time in tenths of seconds (+= 0.1).
- As in our demo, this resulted in accumulating errors because 0.1 is not representable.
- Incorrect timestamps were then used to incorrectly calculate distance and speed of an incoming missile.