Model-based Causal Bayesian Optimization

Rishit Dagli¹, Scott Sussex², Anastasia Makarova², Andreas Krause²

¹University of Toronto ²ETH Zürich

March 16, 2023

Table of Contents

- Background
- 2 This Work
- Main Results
- 4 Summary
- Next Steps

МСВО

Table of Contents

- Background
- 2 This Work
- Main Results
- 4 Summary
- Mext Steps

мсво

• Optimizing an unknown function that is expensive to evaluate (like hyperparameter tuning).

- Optimizing an unknown function that is expensive to evaluate (like hyperparameter tuning).
- If the function is not expensive to evaluate, just sample at many points via grid search, numeric gradient estimation, and more.

- Optimizing an unknown function that is expensive to evaluate (like hyperparameter tuning).
- If the function is not expensive to evaluate, just sample at many points via grid search, numeric gradient estimation, and more.
- Idea: find the global optimum in a minimum number of steps.

- Optimizing an unknown function that is expensive to evaluate (like hyperparameter tuning).
- If the function is not expensive to evaluate, just sample at many points via grid search, numeric gradient estimation, and more.
- Idea: find the global optimum in a minimum number of steps.
- Incorporate prior belief and update the prior with (some) samples to get a posterior that is better at approximating.

• Acquisition function: $x_t = \operatorname{argmax}_x u(x|\mathcal{D}_{1:t-1})$

• Acquisition function: $x_t = \operatorname{argmax}_x u(x|\mathcal{D}_{1:t-1})$

- Acquisition function: $x_t = \operatorname{argmax}_x u(x \mid \mathcal{D}_{1:t-1})$
- $\mathcal{D}_{1:t-1} = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_{t-1}, y_{t-1}), \ t-1$ samples we already drew

- Acquisition function: $x_t = \operatorname{argmax}_x u(x \mid \mathcal{D}_{1:t-1})$
- $\mathcal{D}_{1:t-1}=(\mathbf{x}_1,y_1),\ldots,(\mathbf{x}_{t-1},y_{t-1}),\ t-1$ samples we already drew
- Obtain a noisy sample $y_t = f(\mathbf{x}_t) + \epsilon_t$ from objective

- Acquisition function: $x_t = \operatorname{argmax}_x u(x \mid \mathcal{D}_{1:t-1})$
- $\mathcal{D}_{1:t-1} = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_{t-1}, y_{t-1}), \ t-1$ samples we already drew
- Obtain a noisy sample $y_t = f(\mathbf{x}_t) + \epsilon_t$ from objective
- Add to previous samples and update GP, $\mathcal{D}_{1:t} = \mathcal{D}_{1:t-1}, (\mathbf{x}_t, y_t)$

5 / 21

- Acquisition function: $x_t = \operatorname{argmax}_x u(x \mid \mathcal{D}_{1:t-1})$
- $\mathcal{D}_{1:t-1} = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_{t-1}, y_{t-1}), \ t-1$ samples we already drew
- Obtain a noisy sample $y_t = f(\mathbf{x}_t) + \epsilon_t$ from objective
- Add to previous samples and update GP, $\mathcal{D}_{1:t} = \mathcal{D}_{1:t-1}, (\mathbf{x}_t, y_t)$
- Define $EI(\mathbf{x}) = \mathbb{E} \max(f(\mathbf{x}) f(\mathbf{x}^+), 0)$ where $f(\mathbf{x}^+)$ is the best sample so far

5 / 21

- Acquisition function: $x_t = \operatorname{argmax}_x u(x|\mathcal{D}_{1:t-1})$
- $\mathcal{D}_{1:t-1}=(\mathbf{x}_1,y_1),\ldots,(\mathbf{x}_{t-1},y_{t-1}),\ t-1$ samples we already drew
- Obtain a noisy sample $y_t = f(\mathbf{x}_t) + \epsilon_t$ from objective
- Add to previous samples and update GP, $\mathcal{D}_{1:t} = \mathcal{D}_{1:t-1}, (\mathbf{x}_t, y_t)$
- Define $El(\mathbf{x}) = \mathbb{E} \max(f(\mathbf{x}) f(\mathbf{x}^+), 0)$ where $f(\mathbf{x}^+)$ is the best sample so far
- Black Box Setup

Causal Bayesian Optimization

 Exploit structural knowledge in the form of a causal graph specified by a DAG, assuming that actions can be modeled as interventions on a structural causal model

MCBO

Causal Bayesian Optimization

 Exploit structural knowledge in the form of a causal graph specified by a DAG, assuming that actions can be modeled as interventions on a structural causal model

6/21

Table of Contents

- Background
- 2 This Work
- Main Results
- 4 Summary
- Mext Steps

мсво

ullet \mathcal{GP} for learning the RKHS (\mathcal{H}_{k_i}) functions (f_0,\ldots,f_m)

- \mathcal{GP} for learning the RKHS (\mathcal{H}_{k_i}) functions (f_0, \ldots, f_m)
- \bullet Computing posterior \mathcal{GP} mean and variance:

8/21

- \mathcal{GP} for learning the RKHS (\mathcal{H}_{k_i}) functions (f_0, \ldots, f_m)
- Computing posterior \mathcal{GP} mean and variance:

$$\mu_{i,t}(z_i, a_i, I) = k_{i,t}(z_i, a_i, I)^{\top} (K_t + b_i^2 I)^{-1} \text{vec}(x_{i,1:t})$$

$$\sigma_{i,t}^{2}(z_{i}, a_{i}, I) = k_{i}((z_{i}, a_{i}, I); (z_{i}, a_{i}, I))$$
$$- k_{i,t}(z_{i}, a_{i}, I)^{T} (K_{t} + b_{i}^{2}I)^{-1} k_{i,t}(z_{i}, a_{i}, I)$$

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ 9000

8/21

- \mathcal{GP} for learning the RKHS (\mathcal{H}_{k_i}) functions (f_0, \ldots, f_m)
- Computing posterior \mathcal{GP} mean and variance:

$$\mu_{i,t}(z_i, a_i, I) = k_{i,t}(z_i, a_i, I)^{\top} (K_t + b_i^2 I)^{-1} \text{vec}(x_{i,1:t})$$

$$\frac{\sigma_{i,t}^{2}(z_{i},a_{i},I)}{-k_{i,t}(z_{i},a_{i},I)^{T}(K_{t}+b_{i}^{2}I)^{-1}k_{i,t}(z_{i},a_{i},I)}$$

- \mathcal{GP} for learning the RKHS(\mathcal{H}_{k_i}) functions (f_0, \ldots, f_m)
- Computing posterior \mathcal{GP} mean and variance:

$$\mu_{i,t}(z_i, a_i, I) = k_{i,t}(z_i, a_i, I)^{\top} (K_t + b_i^2 I)^{-1} \frac{\text{vec}(x_{i,1:t})}{\text{vec}(x_{i,1:t})}$$

$$\sigma_{i,t}^{2}(z_{i}, a_{i}, I) = k_{i}((z_{i}, a_{i}, I); (z_{i}, a_{i}, I))$$
$$- k_{i,t}(z_{i}, a_{i}, I)^{T} (K_{t} + b_{i}^{2}I)^{-1} k_{i,t}(z_{i}, a_{i}, I)$$

- \mathcal{GP} for learning the RKHS (\mathcal{H}_{k_i}) functions (f_0, \ldots, f_m)
- Computing posterior \mathcal{GP} mean and variance:

$$\mu_{i,t}(z_i, a_i, I) = k_{i,t}(z_i, a_i, I)^{\top} (K_t + b_i^2 I)^{-1} \text{vec}(x_{i,1:t})$$
variance proxy for w

$$\sigma_{i,t}^{2}(z_{i}, a_{i}, I) = k_{i}((z_{i}, a_{i}, I); (z_{i}, a_{i}, I))$$

$$- k_{i,t}(z_{i}, a_{i}, I)^{\top} (K_{t} + b_{i}^{2}I)^{-1} k_{i,t}(z_{i}, a_{i}, I)$$
variance proxy for w

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 3 ■ 9 0 0 ○

- \mathcal{GP} for learning the RKHS(\mathcal{H}_{k_i}) functions (f_0, \ldots, f_m)
- Computing posterior \mathcal{GP} mean and variance:

$$\mu_{i,t}(z_i, a_i, I) = k_{i,t} (z_i, a_i, I)^{\top} (K_t + b_i^2 I)^{-1} \text{vec}(x_{i,1:t})$$

$$\sigma_{i,t}^{2}(z_{i}, a_{i}, I) = k_{i} ((z_{i}, a_{i}, I); (z_{i}, a_{i}, I)) - k_{i,t} (z_{i}, a_{i}, I)^{\top} (K_{t} + b_{i}^{2}I)^{-1} k_{i,t} (z_{i}, a_{i}, I)$$

$$[K_t]_{(t_1,l),(t_2,l')} = k_i((z_{i,t_1,l},a_{i,t_1,l},l);(z_{i,t_2,l'},a_{i,t_2,l'},l'))$$
$$k_{i,t}(z_i,a_i,l)^{\top} = [k_i((z_{i,1,1},a_{i,1,1},1);(z_i,a_i,l)),\ldots,$$
$$k_i((z_{i,t,d},a_{i,t,d},d);(z_i,a_i,l))]^{\top}$$

$$[K_t]_{(t_1,l),(t_2,l')} = k_i((z_{i,t_1,l}, a_{i,t_1,l}, l); (z_{i,t_2,l'}, a_{i,t_2,l'}, l'))$$

$$k_{i,t}(z_i, a_i, l)^{\top} = [k_i((z_{i,1,1}, a_{i,1,1}, 1); (z_i, a_i, l)), \dots,$$

$$k_i((z_{i,t,d}, a_{i,t,d}, d); (z_i, a_i, l))]^{\top}$$

ullet Single scalar-output \mathcal{GP} with kernel k for modeling all output components, but introduce the component index as part of the input space

Assumptions

Assumptions on f_i

Comes with the assumption that $f_i(\cdot)$ belongs to an RKHS space of smooth functions, $S = Z_i \times A_i$.

10/21

Assumptions

Assumptions on f_i

Comes with the assumption that $f_i(\cdot)$ belongs to an RKHS space of smooth functions, $S = Z_i \times A_i$.

Assumptions on the Norm

Comes with the assumption that the RKHS norm of $f_i(\cdot)$ is bounded $||f_i||_{k_i} \leq \mathcal{B}_i > 0$. Also $\implies L_f$ -Lipschitz continuous.

10 / 21

Optimistically pick interventions that yield the highest expected return among all system models that are still plausible given past observations.

$$a_{:,t} = \arg\max_{a \in \mathcal{A}} \max_{\tilde{F} \in \mathcal{M}_t} \mathbb{E}_w \left[y \, | \, \tilde{F}, a \right]$$

11/21

Optimistically pick interventions that yield the highest expected return among all system models that are still plausible given past observations.

$$a_{:,t} = \underset{a \in \mathcal{A}}{\operatorname{arg max}} \max_{\tilde{F} \in \mathcal{M}_t} \mathbb{E}_w \left[y \mid \tilde{F}, a \right]$$

set of functions with bounded RKHS norm

11/21

Optimistically pick interventions that yield the highest expected return among all system models that are still plausible given past observations.

$$a_{:,t} = \arg\max_{a \in \mathcal{A}} \max_{\tilde{F} \in \mathcal{M}_t} \mathbb{E}_w \left[y \, | \, \tilde{F}, a \right]$$

Requires reparameterization tricks

11/21

Optimistically pick interventions that yield the highest expected return among all system models that are still plausible given past observations.

$$a_{:,t} = \arg\max_{a \in \mathcal{A}} \max_{\tilde{F} \in \mathcal{M}_t} \mathbb{E}_w \left[y \, | \, \tilde{F}, a \right]$$

Requires reparameterization tricks

$$a_{:,t} = \arg\max_{a \in \mathcal{A}} \max_{\eta(\cdot)} \mathbb{E}_{w} \left[y \mid \tilde{F}, a \right]$$

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Optimistically pick interventions that yield the highest expected return among all system models that are still plausible given past observations.

$$a_{:,t} = \arg\max_{a \in \mathcal{A}} \max_{\tilde{F} \in \mathcal{M}_t} \mathbb{E}_w \left[y \, | \, \tilde{F}, a \right]$$

Requires reparameterization tricks

$$a_{:,t} = \arg\max_{a \in \mathcal{A}} \max_{\eta(\cdot)} \mathbb{E}_w \left[y \, | \, \tilde{F}, a \right]$$

choosing optimistic but plausible models given the confidence bounds

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ト ・ 恵 ・ からぐ

11/21

Implementing Soft Interventions

Require: Parameters $\{\beta_t\}_{t\geq 1}, \Omega$, prior means $\mu_{i,0}=0$, kernel functions

$$k_{i,0} \ \forall i \in [0,\ldots,m]$$

- 1: **for** t = 1, 2, ... **do**
- 2: Construct confidence bounds
- 3: Select $a_t \in \arg\max_{a \in \mathcal{A}} \max_{\eta(\cdot)} \mathbb{E}[y \mid \{\tilde{f}\}, a]$
- 4: Observe samples $\{z_{i,t}, x_{i,t}\}_{i=0}^m$
- 5: Use \mathcal{D}_t to update posterior $\{\mu_{i,t}(\cdot), \sigma_{i,t}^2(\cdot)\}_{i=0}^m$
- 6: end for

◆ロト ◆団ト ◆豆ト ◆豆 ・ りへで

12/21

Hard Interventions?

 \bullet Naturally generalizes to hard interventions, perform the combinatorial optimization over the set of nodes ${\cal I}$

MCBO

Hard Interventions?

- \bullet Naturally generalizes to hard interventions, perform the combinatorial optimization over the set of nodes ${\cal I}$
- \bullet $|\mathcal{I}|$ being large is a problem but for many such use cases this is not the case

13 / 21

Hard Interventions?

- \bullet Naturally generalizes to hard interventions, perform the combinatorial optimization over the set of nodes ${\cal I}$
- ullet | \mathcal{I} | being large is a problem but for many such use cases this is not the case

For practical use-cases with large $|\mathcal{I}|$

Minimal intervention set (Lee et al., 2019) to prune sets of intervention targets that contain redundant interventions.

13 / 21

Implementing Hard Interventions

Require: Parameters $\{\beta_t\}_{t\geq 1}, \Omega$, prior means $\mu_{i,0}=0$, kernel functions

$$k_{i,0} \ \forall i \in [0,\ldots,m]$$

- 1: **for** t = 1, 2, ... **do**
- 2: Construct confidence bounds
- 3: Select $I, a_I \in \operatorname{arg\,max}_{I,a_I} \operatorname{max}_{\eta} \mathbb{E}[y \mid \{\tilde{f}\}, do(X_I = a_I)]$
- 4: Observe samples $\{z_{i,t}, x_{i,t}\}_{i=0}^m$
- 5: Use \mathcal{D}_t to update posterior $\{\mu_{i,t}(\cdot), \sigma_{i,t}^2(\cdot)\}_{i=0}^m$
- 6: end for

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

14 / 21

Table of Contents

- Background
- 2 This Work
- Main Results
- 4 Summary
- Mext Steps

мсво

Main Results

MCBO March 16, 2023 16 / 21

Table of Contents

- Background
- 2 This Work
- Main Results
- Summary
- Mext Steps

мсво

 MCBO: a model-based algorithm for CBO that can be applied with very generic classes of interventions

MCBO

- MCBO: a model-based algorithm for CBO that can be applied with very generic classes of interventions
- Combines models in two lines of literature, causal BayesOpt that considered "hard interventions", BO for function networks that considered "soft interventions

18 / 21

- MCBO: a model-based algorithm for CBO that can be applied with very generic classes of interventions
- Combines models in two lines of literature, causal BayesOpt that considered "hard interventions", BO for function networks that considered "soft interventions
- Can be efficiently implemented with popular gradient-based optimizers

18 / 21

- MCBO: a model-based algorithm for CBO that can be applied with very generic classes of interventions
- Combines models in two lines of literature, causal BayesOpt that considered "hard interventions", BO for function networks that considered "soft interventions
- Can be efficiently implemented with popular gradient-based optimizers
- Potentially exponential improvement in cumulative regret, with respect to the number of actions, compared to standard BO, first sublinear cumulative regret bound for CBO

18 / 21

Table of Contents

- Background
- 2 This Work
- Main Results
- 4 Summary
- Next Steps

МСВО

Next Steps

- Assumes no unobserved confounding
- More real-world applications
- ullet Heuristics or choices for how modeling η changes performance

Thank You