

MULTIPLE REGRESSION WITH INTERACTION TERMS

Luis Castro-de-Araujo^a 11/07/2022

Virginia Institute for Psychiatric and Behavioral Genetics

^a Post-doc T32. luis.araujo@vcuhealth.org

Multiple regression recap

Interaction terms

Visualizing interactions

Marginal effects

MULTIPLE REGRESSION RECAP

MULTIPLE LINEAR REGRESSION

 Extension of the simple linear regression model to two or more independent variables

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon$$

- Expression = Baseline + Age + Tissue + Sex + Error
- Partial Regression Coefficients: effect on the dependent variable when increasing the ith independent variable by 1 unit, holding all other predictors constant

CATEGORICAL INDEPENDENT VARIABLES

- Qualitative variables are easily incorporated in regression framework through dummy variables
- Simple example: sex can be coded as 0/1
- What if my categorical variable contains three levels:

$$x_1 = \begin{cases} 0 \text{ if } AA \\ 1 \text{ if } AG \\ 2 \text{ if } GG \end{cases}$$

CATEGORICAL INDEPENDENT VARIABLES

- Previous coding would result in colinearity
- Solution is to set up a series of dummy variable.
- for k levels you need k-1 dummy variables

$$x_1 = \begin{cases} 1 \text{ if AA} \\ 0 \text{ otherwise} \end{cases}$$
$$x_2 = \begin{cases} 1 \text{ if } AG \\ 0 \text{ otherwise} \end{cases}$$

	x1	x2
AA	1	0
AG	0	1
GG	0	0

ASSUMPTIONS

Validity Does the data we're modeling matches the problem we're actually trying to solve?

Representativeness Is the sample data used in the regression model representative of the population to which it will be applied? **Additivity and Linearity** The deterministic component of a regression model is a linear function of the separate predictors: $y = B_0 + B_1x_1 + ... + B_px_p$ **Independence of Errors** The errors from our model are independent. **Homoscedasticity** The errors from our model have equal variance. **Normality of Errors** The errors from our model are normally distributed.

MULTIVARIATE REGRESSION

houseprice = -27154 + 757 * sqft + 51867 * pool

 In our example, we model home prices as a function of both the size of the house (sqft) and whether or not it has a pool

- intercept: -\$27,154, the predicted average housing price for houses with all x_i = 0. Or the cost of houses with no pools and a square-footage of zero.
- coefficient of pool: \$51,867, average expected price difference in houses of the same size (in sqft) if they do or do not have a pool. In other words, we expect, on average, houses of the same size to cost \$51,867 more if they have a pool than if they do not.
- coefficient of sqft: \$757, average expected price difference in housing price for houses that have the same value of pool but differ in size by one square-foot.
- We assume the same slope for sqft. Hence, two lines. This isn't always a valid assumption to make.

BACK TO OUR HOUSING EXAMPLE, NOW WITH INTERACTIONS

- interaction term: -\$347, represents the difference in the slope for sqft, comparing houses that do and do not have pools. Visually, this represents the difference between the slopes of the two lines.
- intercept: -\$70,296, represents the predicted housing price for houses with no pools and a square-footage of zero.
- coefficient of pool: \$217,111, represents the average expected difference in houses of the same size (0 sqft) that differed in whether or not they had a pool. (It's not super useful since we don't have houses with 0 square-feet).
- coefficient of sqft: \$899, represents the average expected difference in housing price for houses that do not have a pool (pool= 0) but differ in size by one square-foot.

houseprice = -70296 + 899 * sqft + 217111 * pool - 347 * (sqft : pool)

 If we believe that the slope for sqft should differ between houses that do have pools and houses that do not, we can add an interaction term to our model, (sqft:pool).

INTERACTION TERMS

WHAT IS AN INTERACTION?

• An interaction is a predictor that is some combination of the other predictors.

CONSTRUCTING AN INTERACTION

- Interactions are often the product of two or more predictors.
- Can be written as,

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

CONDITIONAL VS. MARGINAL EFFECTS

- Conditional effects: the effect of a predictor on the response, holding all other predictors constant.
- Marginal effects: the effect of a predictor on the response, averaged over all values of the other predictors.

CONDITIONAL VS. MARGINAL EFFECTS

• If the conditional effects of X1 on Y at different levels of X2 are all the same then there is no interaction.

Parameter Meaning		Where people (used to) go awry		
β_0	Expected value of the DV when X1 and X2 ==0	People get this		
$eta_{ extsf{1}} \ eta_{ extsf{2}}$	Effect of X1 when X2 == 0 Effect of X2 when X1 == 0	Not marginal effects! Not marginal effects!		
eta_3	The addition to the conditional effect when both X! and X2 are 1	People just look at the significance of the interaction parameter and do not calculate the underlying marginal or conditional effects or standard errors		

IN THE PAST IT WAS COMMON TO SEE STANDARD ERRORS WRONGLY CALCULATED

- A common mistake that people make when interpreting interaction models is using the wrong standard errors.
- The standard errors that are printed in every regression table are the positive square roots of the diagonal elements of the variance- covariance matrix of β
- This does not matter anymore because of margins()

INTERACTION AND DUMMMY VARIABLE, IRIS flower DATA SET

$$petal.length_i = \beta_0 + \beta_1 sepal.length_i$$

LET'S IMPROVE THE MODEL?

Creating the dummy

$$setosa_i = \begin{cases} 1 \text{ if species of flower } i = setosa, \forall i \in [1, 150] \\ 0 \text{ otherwise} \end{cases}$$

$$versicolor_i = \begin{cases} 1 \text{ if species of flower } i = versicolor, \forall i \in [1, 150] \\ 0 \text{ otherwise} \end{cases}$$

Our formula is then

$$petal.length_i = \beta_0 + \beta_1 sepal.length_i + \beta_2 setosa_i + \beta_3 versicolor_i$$

BY SUBSTITUTION WE GET THREE LINES WITH SAME SLOPE

If it is setosa

$$\begin{split} peta\overline{l.length_i} &= \beta_0 + \beta_1 sepal.length_i + \beta_2 \text{ setosa }_i + \beta_3 \text{ versicolor }_i \\ &= \beta_0 + \beta_1 sepal.length_i + \beta_2 1 + \beta_3 0 \\ &= \beta_0 + \beta_1 sepal.length_i + \beta_2 \\ &= (\beta_0 + \beta_2) + \beta_1 sepal.length_i \end{split}$$

If it is versicolor

$$\begin{aligned} petal.length_i &= \beta_0 + \beta_1 sepal.length_i + \beta_2 \text{ setosa }_i + \beta_3 \text{ versicolor }_i \\ &= \beta_0 + \beta_1 sepal.length_i + \beta_2 0 + \beta_3 1 \\ &= \beta_0 + \beta_1 sepal.length_i + \beta_3 \\ &= (\beta_0 + \beta_3) + \beta_1 sepal.length_i \end{aligned}$$

If it is virginica

$$\begin{split} petal.length_i &= \beta_0 + \beta_1 sepal.length_i + \beta_2 \text{ setosa }_i + \beta_3 \text{ versicolor }_i \\ &= \beta_0 + \beta_1 sepal.length_i + \beta_2 0 + \beta_3 0 \\ &= \beta_0 + \beta_1 sepal.length_i \\ &= \beta_0 + \beta_1 sepal.length_i \end{split}$$

SAME SLOPE, DIFFERENT INTERCEPTS

Now we can add an interaction


```
petal.length_i = \beta_0 + \beta_1 sepal.length_i + \beta_2 setosa_i + \beta_3 versicolor_i + \beta_4 sepal.length_i setosa_i + \beta_5 sepal.length_i versicolor_i
```

- this will result in three unique lines depending on the species of the flower.
- both the intercepts and the slopes will be allowed to be different.

Does it make sense to retain the interaction?

#	A tibble: 6 x 5				
	term	${\tt estimate}$	std.error	statistic	p.value
	<chr></chr>	<db1></db1>	<db1></db1>	<db1></db1>	<dbl></dbl>
1	(Intercept)	0.803	0.531	1.51	0.133
2	Sepal.Length	0.132	0.106	1.24	0.216
3	Speciesversicolor	-0.618	0.684	-0.904	0.368
4	Speciesvirginica	-0.193	0.658	-0.293	0.770
5	${\tt Sepal.Length:Species versicolor}$	0.555	0.128	4.33	0.0000278
6	Sepal.Length:Speciesvirginica	0.618	0.121	5.11	0.00000100

DOES IT MAKE SENSE TO RETAIN THE INTERACTION?

broom::tidy(inter) |> kable()

term	estimate	std.error	statistic	p.value
(Intercept)	0.803	0.531	1.512	0.133
Sepal.Length	0.132	0.106	1.244	0.216
Speciesversicolor	-0.618	0.684	-0.904	0.368
Speciesvirginica	-0.193	0.658	-0.293	0.770
Sepal.Length:Speciesversicolor	0.555	0.128	4.330	0.000
Sepal.Length:Speciesvirginica	0.618	0.121	5.111	0.000

anova(nospecies, w_species, inter)

Analysis of Variance Table

Now we can add an interaction

$$\begin{split} \widehat{petal.length_i} &= \beta_0 + \beta_1 sepal.length_i + \beta_2 \ setosa_i + \beta_3 \ versicolor_i \\ &+ \beta_4 sepal.length_i \ setosa_i + \beta_5 sepal.length_i \ versicolor_i \end{split}$$

- this will result in three unique lines depending on the species of the flower.
- both the intercepts and the slopes will be allowed to be different.
- ggplot geom_smooth does this by default if color is used

Now we can add an interaction


```
ggplot(iris, aes(x = Sepal.Length, y = Petal.Length, color = Species)
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
theme_luis()+
theme( legend.position = c(0.9, 0.15))
```


VISUALIZING INTERACTIONS

MTCARS DATA SET - REGRESSION OF SPEED ON WT*CYL


```
fit1 <- glm(qsec ~ wt*as.factor(cyl), data = mtcars)
summary(fit1)</pre>
```

 Note: not significant, but we will return to this later summary(margins(fit1))

Call:

glm(formula = qsec ~ wt * as.factor(cyl), data = mtcars)

Deviance Residuals:

Min 1Q Median 3Q Max -2.163 -0.796 0.280 0.665 2.134

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	14.829	1.500	9.88	0.0000000027	***
wt	1.885	0.639	2.95	0.0066	**
as.factor(cyl)6	-9.782	4.395	-2.23	0.0349	*
as.factor(cyl)8	-1.437	2.273	-0.63	0.5329	
wt:as.factor(cyl)6	2.263	1.464	1.55	0.1343	
wt:as.factor(cyl)8	-1.040	0.764	-1.36	0.1855	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 1.32)

Null deviance: 98.988 on 31 degrees of freedom Residual deviance: 34.398 on 26 degrees of freedom AIC: 107 1

REGRESSION OF MPG ON WT*CYL


```
fit <- glm(mpg ~ wt*as.factor(cyl), data = mtcars)
summary(fit)</pre>
```

```
glm(formula = mpg ~ wt * as.factor(cyl), data = mtcars)
Deviance Residuals:
  Min
           10 Median
                           30
                                 Max
-4.151 -1.380 -0.639
                               5.252
                       1.494
Coefficients:
                  Estimate Std. Error t value
                                                    Pr(>|t|)
(Intercept)
                     39.57
                                 3.19
                                       12.39 0.0000000000021 ***
                     -5.65
                                1.36
                                       -4.15
                                                     0.00031 ***
wt.
as.factor(cyl)6
                    -11.16
                                9.36
                                       -1.19
                                                     0.24358
as.factor(cv1)8
                    -15.70
                                4.84
                                       -3.24
                                                     0.00322 **
wt:as.factor(cyl)6
                      2.87
                                3.12
                                        0.92
                                                     0.36620
wt:as.factor(cv1)8
                      3.45
                                 1.63
                                        2.12
                                                     0.04344 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for gaussian family taken to be 6)

Null deviance: 1126.05 on 31 degrees of freedom Residual deviance: 155.89 on 26 degrees of freedom ATC: 155.5

Call:

REGRESSION OF MPG ON WT*CYL


```
pred <- ggpredict(fit, terms = c("wt", "cyl"))
plot(pred, add.data = TRUE)+
    theme_luis()+
    theme( legend.position = c(0.1, 0.15))</pre>
```


AN INTERACTION MAY NOT BE SIG ACROSS THE ENTIRE RANGE OF THE PREDICTOR

Let's see mpg ~ hp + wt

```
fit <- glm(mpg - hp*wt, data = mtcars)
pred <- ggpredict(fit, terms = c("hp", "wt"))
# plot(pred, add.data = TRUE) +
# theme_luis() +
# theme( legend.position = c(0.9, 0.85))
broom::tidy(fit) |> kable()
```

term	estimate	std.error	statistic	p.value
(Intercept)	49.808	3.605	13.82	0.000
hp	-0.120	0.025	-4.86	0.000
wt	-8.217	1.270	-6.47	0.000
hp:wt	0.028	0.007	3.75	0.001

Now, from what point the slope becomes non signficant?

JOHNSON-NEYMAN INTERVAL

```
jn <- johnson_neyman(fit, wt, hp , plot = TRUE)
jn</pre>
```


Now, from what point the slope becomes non signficant?

JOHNSON-NEYMAN INTERVAL Overlayed on data

THREE-WAY INTERACTIONS


```
fit <- glm(mpg - hp*wt*as.factor(cyl), data = mtcars)

dat <- ggpredict(fit, terms = c("hp", "wt", "cyl"))
plot(dat, ci = FALSE)+
    theme( legend.position = c(0.9, 0.85))</pre>
```


THE SUMMARY

broom::tidy(fit) |> kable()

term	estimate	std.error	statistic	p.value
(Intercept)	34.972	10.883	3.213	0.004
hp	0.042	0.129	0.324	0.750
wt	0.054	5.010	0.011	0.991
as.factor(cyl)6	-2.340	77.278	-0.030	0.976
as.factor(cyl)8	5.829	42.608	0.137	0.893
hp:wt	-0.062	0.058	-1.068	0.298
hp:as.factor(cyl)6	-0.064	0.660	-0.098	0.923
hp:as.factor(cyl)8	-0.120	0.227	-0.527	0.604
wt:as.factor(cyl)6	-3.321	27.372	-0.121	0.905
wt:as.factor(cyl)8	-6.168	12.492	-0.494	0.627
hp:wt:as.factor(cyl)6	0.062	0.236	0.264	0.794
hp:wt:as.factor(cyl)8	0.080	0.078	1.026	0.317

MARGINAL EFFECTS

MARGINAL EFFECTS

- Marginal effects: the effect of a predictor on the response, averaged over all values of the other predictors.
- also, the instantaneous effect of "x" on "y". Calculated with a derivative of x in respect to y, expressed mathematically as dy/dx.
 - the "instantaneous rate of change of y with respect to x.

WHAT ARE THE MARGINAL EFFECTS FOR mpg ~ hp*wt


```
fit_m <- margins(fit2)
summary(fit_m)</pre>
```

```
factor AME SE z p lower upper hp -0.0305 0.0075 -4.0661 0.0000 -0.0452 -0.0158 wt -4.1316 0.5296 -7.8021 0.0000 -5.1696 -3.0937
```

• Interpretation: for each unit increase of mpg an average reduction of ${\tt hp}$ 3% is expected.

PLOTTING THE MARGINAL EFFECTS

CAN WE PLOT THE CONDITIONAL EFFECTS TOO?

ODDITIES OF INTERACTIONS IN LINEAR REGRESSIONS

- At the beginning I said, keep the interaction that is significant, but¹
 - In the conversion to probabilities (AME) the interaction may not be significant anymore, or worse
 - The interaction may be significant in the AME, but not in the original model

¹Bruin, "Deciphering Interactions in Logistic Regression," *Introduction to SAS. UCLA: Statistical Consulting Group.*; Vanhove, 2019, "Interactions in Logistic Regression Models," (2019).

Example when the conditional is not significant while the AME is

speed on wt*cyl

fit1 <- glm(qsec - wt*as.factor(cyl), data = mtcars)
broom::tidy(fit1) |> kable()

term	estimate	std.error	statistic	p.value
(Intercept)	14.83	1.500	9.884	0.000
wt	1.89	0.639	2.951	0.007
as.factor(cyl)6	-9.78	4.395	-2.226	0.035
as.factor(cyl)8	-1.44	2.273	-0.632	0.533
wt:as.factor(cyl)6	2.26	1.464	1.546	0.134
wt:as.factor(cyl)8	-1.04	0.764	-1.360	0.185

summary(margins(fit1)) |> kable()

factor	AME	SE	z	р	lower	upper
cyl6	-2.50	0.825	-3.03	0.002	-4.12	-0.884
cyl8	-4.78	0.823	-5.81	0.000	-6.39	-3.169
wt	1.93	0.406	4.74	0.000	1.13	2.721

IN OPENMX, MAXIMUM LIKELIHOOD


```
library(umx)

model <- "
    mpg - hp*hp + wt*wt
    moderation := hp*wt
"

m1 <- umxRAM(model, data = mtcars)
m1 <- umxCI(m1)
umxSummary(m1, std = T)</pre>
```

Table 8: Parameter loadings for model 'm1'

	name	Std.Estimate	Std.SE	CI	type
5	hp_with_wt	0.66	0.1	0.66 [0.46, 0.85]	Manifest Cov
1	hp	-0.36	0.1	-0.36 [-0.56, -0.17]	Manifest path
2	wt	-0.63	0.09	-0.63 [-0.81, -0.45]	Manifest path
7	one_to_mpg	6.28	0.7	6.28 [4.91, 7.64]	Mean
8	one_to_hp	2.17	0.32	2.17 [1.54, 2.81]	Mean
9	one_to_wt	3.34	0.45	3.34 [2.45, 4.23]	Mean
3	mpg_with_mpg	0.17	0.06	0.17 [0.06, 0.28]	Residual
4	hp_with_hp	1.00	0	1 [1, 1]	Residual
6	wt_with_wt	1.00	0	1 [1, 1]	Residual

Model Fit: Chi2(0) = 0, p = 1.000; CFI = 1; TLI = 1; RMSEA = 0 Algebra'moderation' = 0.123Cl95[0.074, 0.173]. p-value < 0.001

CONCLUSION

- We started reviewing multiple regression
- Then discussed the syntax and interpretation of parameters when an interaction term is included
- Finally, we discussed how to extract the marginal effects of the interaction term
- Luckly the package margins() makes this extremely simple.

ACKNOWLEDGEMENTS

Team

- Charles Gardner (2015)
- Brad Verhulst (2013)
- Joshua Pritkin.
- Rob Kirkpatrick.
- Michael C Neale.
- NIH grant no R01 DA049867 and 5T32MH-020030

Contact

• THANK YOU