Práctico 3 - Sistemas Lineales

En este práctico se analiza cómo obtener soluciones de un sistema lineal Ax = b

Ejercicio 1

Sea A una matriz de tamaño $n \times n$ no singular. Sea α la solución del sistema Ax = b. Para estimar α se propone la siguiente Iteración Estacionaria de orden uno:

$$\begin{cases} x^{k+1} = Qx^k + r & , k \ge 0 \\ x^0 \in \mathbb{R}^n \end{cases}$$
 (IE)

siendo r un vector fijo de \mathbb{R}^n y Q una matriz $n \times n$, tal que $\alpha = Q\alpha + r$.

En estas condiciones, demostrar que la sucesión $\{x^k\}_{k\in\mathbb{N}}$ converge a α para cualquier x^0 si y solamente si el radio espectral de Q es $\rho(Q) < 1$.

Ejercicio 2

- 1. Mostrar que el método de Jacobi es estacionario de orden uno, hallando la matriz Q_J y el vector r_J que permite expresarlo según la ecuación (??).
- 2. Dar una condición suficiente de convergencia al utilizar el método de Jacobi.
- 3. Sin hallar Q_J , indicar si Jacobi converge para las siguientes matrices:

$$A_1 = \begin{pmatrix} 4 & 1 & 2 \\ -1 & 5 & 2 \\ 0 & -2 & -10 \end{pmatrix} \quad A_2 = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 5 & 2 \\ 0 & -2 & -10 \end{pmatrix}$$

4. Verificar que la siguiente matriz no es diagonal dominante y sin embargo Jacobi es convergente:

$$A_3 = \begin{pmatrix} 5 & -3 \\ 8 & -5 \end{pmatrix}$$

5. Repetir los puntos anteriores para el metodo de Gauss-Seidel.

Ejercicio 3

Se considera el siguiente sistema lineal S:

$$\begin{cases} 5x - 3y = 2 \\ 8x - 5y = 3 \end{cases}$$

- 1. Resolverlo exactamente.
- 2. Estudiar la convergencia al aplicar los métodos de Jacobi y Gauss-Seidel. ¿Depende la convergencia del punto inicial?
- 3. Calcular el error cometido en los primeros tres pasos en ambos métodos.

4. Implementar programas Jacobi y GS que implementan los métodos de Jacobi y Gauss-Seidel. Introducir el Sistema S a ambos programas y comparar sus desempeños.

Ejercicio 4

El objetivo de este ejercicio es analizar qué ocurre con una sucesión x^k , generada mediante la iteración (??), en el caso en que Q es tal que $\rho(Q) \geq 1$.

- 1. Se define el error absoluto en el paso k-ésimo como: $e^k = x^k \alpha$, siendo α la solución del sistema Ax = b, con A invertible. Pruebe que $e^{k+1} = Qe^k$ y por lo tanto $e^k = Q^ke^0$, $\forall k \geq 0$.
- 2. Pruebe que si $e^0 \neq \vec{0}$ es vector propio de Q, asociado al valor propio λ , entonces $e^k = \lambda^k e^0$.
- 3. Pruebe que si existe algún λ valor propio de Q con:
 - a) $|\lambda| < 1$, entonces existe x^0 tal que la sucesión x^k converge a la solución α .
 - b) $|\lambda|=1$, entonces existe x^0 tal que $||e^k||_2$ se mantiene constante. En particular x^k no converge a la solución α .
 - c) $|\lambda| > 1$, entonces existe x^0 tal que $||e^k||_2 \to \infty$. Por lo tanto x^k no converge a la solución α .
- 4. Supongamos que $A=\begin{pmatrix}1&2&1\\2&1&1\\1&1&1\end{pmatrix}$ y $b=\begin{pmatrix}1\\0\\1\end{pmatrix}$, por lo que la solución es $\alpha=\begin{pmatrix}-1\\0\\2\end{pmatrix}$. Para el método de Jacobi:
 - a) Halle Q_J y pruebe que $\rho(Q_J) > 1$.
 - b) Pruebe que existe x^0 tal que la sucesión x^k converge a la solución α (no se pide hallar x^0).
 - c) Halle un x^0 tal que $||e^k||_2 \to \infty$ y por lo tanto x^k no converge a α .

Ejercicio 5

Se desea resolver el sistema lineal Ax = b, siendo A una matriz no singular de tamaño $n \times n$, y b un vector de \mathbb{R}^n .

- 1. Calcular la cantidad de operaciones necesarias para resolver el sistema lineal en forma exacta, utilizando el método de escalerización Gaussiana, junto con sustitución hacia atrás.
- 2. Explicar la descomposición LU de la matriz A. ¿Esta descomposición es única?
- 3. Calcular la cantidad de operaciones necesarias para resolver el sistema lineal en forma exacta, utilizando la descomposición LU junto con sustitución hacia adelante y hacia atrás.
- 4. Comparar ambos métodos directos de resolución, si se desea resolver m sistemas lineales con la misma matriz A pero distintos vectores independientes $\{b_1, \ldots, b_m\}$.
- 5. Implementar la descomposición LU y el método de escalerización Gaussiana.
- 6. Resolver el Sistema S definido anteriormente mediante ambos métodos.

Ejercicio 6

Se considera una matriz $A=(a_{ij})_{1\leq i,j\leq n}$ no singular de tamaño $n\times n$, que es tridiagonal $(a_{ij}=0$ siempre que |i-j|>1), y $b\in\mathbb{R}^n$ arbitrario.

1. Encontrar las matrices L y U correspondientes a la descomposición A=LU, en términos de las entradas no nulas de la matriz A.

- 2. Implementar el algoritmo de Thomas para resolver eficientemente el sistema Ax = b utilizando la descomposición LU.
- 3. Hallar analíticamente la cantidad de operaciones elementales que requiere la ejecución del algoritmo de Thomas.

Ejercicio 7

Se desea resolver la ecuación diferencial y''(x) + g(x)y(x) = f(x) con condiciones de borde $y(a) = \alpha$, $y(b) = \beta$ en el intervalo [a, b], siendo f y g dos funciones C^{∞} en el intervalo [a, b]. Se divide el intervalo [a, b] en N intervalos iguales de largo $h = \frac{b-a}{N}$.

- 1. Construir un sistema lineal, utilizando una estimación de la derivada del Práctico 1 y la identidad que debe cumplir y(x) en las abscisas $x_i = a + ih$, con $i \in \{0, 1, ..., N\}$.
- 2. Considere la ecuación diferencial anterior en el intervalo [a,b] = [0,5], cuando $f(x) = sen(x)(e^x 1)$, $g(x) = e^x$, $\alpha = 0$ y $\beta = sin(5)$. Demostrar que g(x) = sen(x) es la solución exacta.
- 3. Resolver la ecuación diferencial anterior mediante discretización, comparando con la solución exacta. Utilizar distintos valores para N.