Fortgeschrittene Techniken der Kryptographie

Jürgen Fuß

Episode 1: Mathematische Werkzeuge

Notation

In dieser LVA wird "mod" in zwei verschiedenen Bedeutungen verwendet.

1. Als arithmetischer Operator wie in

$$17 \mod 3 = 2$$

berechnet "mod" den Rest bei der Division.

2. Als Kongruenzrelation wie in

$$7^{14} = 7 + 2 \pmod{10}$$

wird im Gegensatz dazu ausgesagt, dass diese Gleichung "modulo 10 stimmt". Alternativ wird auch das Relationensymbol \equiv_n verwendet:

$$7^{14} \equiv_{10} 7 + 2$$

${\sf Euklids}\ {\sf Algorithmus}$

Euklidscher Algorithmus

$$ggT(203, 112) = 7$$

Erweiterter Euklidscher Algorithmus

Satz

Seien $a, b \in \mathbb{Z}$. Dann gibt es ganze Zahlen x und y, so dass

$$\underline{\operatorname{ggT}(a,b)}=a\underline{x}+b\underline{y},$$

und der erweiterte Euklidische Algorithmus berechnet die Zahlen x und y.

Erweiterter Euklidscher Algorithmus

$$\mathsf{ggT}(203,112) = 7 = 203 \cdot 5 + 112 \cdot (-9)$$

$$203 = 203.1 + 111.0 \\
112 = 203.0 + 112.1 \\
91 \cdot 203.1 + 112.(-1) \\
21 = 203.(-1) + 112.2$$

si.py

Mit der Funktion extended_gcd() aus dem Modul si lassen sich diese Werte berechnen. Mit der Option verbose=1 werden auch alle Zwischenergebnisse angezeigt.

Euklids Algorithmus

Satz von Lamé, 1844

Sind a und b natürliche Zahlen, ist a > b und ist n die Bitlänge von b, so endet der Euklidsche Algorithmus zur Berechnung von ggT(a, b) nach spätestens $17 \cdot n$ Schritten.

Satz

Es sei c eine natürliche Zahl mit n Bit Länge. Für zufällig gewählte Zahlen a und b zwischen 1 und c ist die erwartete Anzahl an Schritten zur Berechnung von ggT(a,b) mit dem Euklidschen Algorithmus $0.584 \cdot n + 0.06$.

Da die Zahlen im Euklidschen Algorithmus stets kleiner werden, liegt der Hauptaufwand in den ersten Modulooperationen.

Die Eulersche Phi-Funktion

Die φ -Funktion

Definition

Für $n\in\mathbb{N}$ sei

$$\mathbb{Z}_n^* := \left\{ k \in \mathbb{Z} \, | \, 0 \leq k < n \text{ und } \operatorname{ggT}(n,k) = 1 \right\}.$$

Die Funktion

ggT(0,4)=4

$$\varphi: \mathbb{N} \to \mathbb{N}$$

$$n\mapsto \mid \mathbb{Z}_n^*\mid$$

$$\varphi(4) = 2$$
 $\varphi(5) = 4$

heißt Eulersche
$$\varphi$$
-Funktion.

Primer Modul p

Ist $p \in \mathbb{P}$, so lässt sich $\varphi(p)$ recht einfach berechnen. Da p keine Primfaktoren (außer sich selbst) besitzt, gilt für jede ganze Zahl $k \in \{1, \ldots, p-1\}$: ggT(p, k) = 1. Lediglich ggT(p, 0) = p > 1. Daher ist

$$\varphi(p) = p - 1.$$

$$\mathbb{Z}_{6}^{*} = \{1, 5\}$$

$$\mathbb{Z}_{42}^{*} = \{1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41\}$$

Biprimer Modul $n = p \cdot a$

▶
$$ggT(n, k) = q$$
: bei $k = q, 2q, 3q, ..., (p-1)q$.

38T(15, R) 5

Bei allen übrigen k (außer 0) ist ggT(n, k) = 1. Das sind

Hen ubrigen
$$k$$
 (außer 0) ist $ggI(n, k) = 1$. Das sind
$$(n-1) - (q-1) - (p-1) = pq - p - q + 1 = (p-1)(q-1).$$
alle außer 0 Vielfache von p Vielfache von q

Also ist

$$\underbrace{\varphi(p \cdot q) = (p-1)(q-1).}_{\varphi(p) = p-1}$$

Allgemeines n

Satz

Der Wert $\varphi(n)$ lässt sich effizient berechnen, wenn man die Primfaktorzerlegung von n kennt. Ist $n=p_1^{e_1}\cdots p_r^{e_r}$ die Primfaktorzerlegung von $n\in\mathbb{N}$, dann ist

$$\varphi(n) = n \cdot \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right).$$

$$N = 42 = 2 \cdot 3 \cdot 7$$

$$\varphi(42) = 42 \cdot \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{3}\right)$$

$$2^{1} \cdot 3^{1} \cdot 7^{1}$$

$$= 12$$

si.py

Mit der Funktion euler_phi() aus dem Modul si lässt sich $\varphi(n)$ berechnen, sofern n faktorisiert werden kann.

Faktorisieren muss sein

faktorisieren

$$p^2 + p(\varphi(n) - n - 1) + n = 0$$

Das bedeutet umgekehrt: Kann n nicht faktorisiert werden, so kann $\varphi(n)$ nicht bestimmt werden.

$$p^2 + p \cdot 17 + 2h = 0$$

$$P_{A/2} = \pm \int$$

Der chinesische Restsatz

Die Reduktion modulo n ist eine recht einfache Operation, schnell ergibt sich

$$42 \mod 3 = 0$$
 $42 \mod 4 = 2$
 $42 \mod 5 = 2$

Umgekehrt stellen wir uns jetzt die Frage, ob und wie sich aus den Gleichungen

$$z = 0 \pmod{3}$$

 $z = 2 \pmod{4}$
 $z = 2 \pmod{5}$
 $z = 2 \pmod{5}$
 $z = 2 \pmod{5}$

z bestimmen lässt. Schon wieder ein schwieriges Problem. Müssen wir hier probieren? Ist 42 die einzige Lösung?

Chinesischer Restsatz für zwei Gleichungen

Es seien $n_1, n_2 \in \mathbb{N}$, so dass $ggT(n_1, n_2) = 1$. Weiterhin seien $z_1, z_2 \in \mathbb{Z}$. Dann erhält man alle Lösungen des Restklassengleichungssystems

$$z = z_1 \pmod{n_1}$$

$$z = z_2 \pmod{n_2}$$

n, = 5 n, = 7

n=35

auf folgende Weise:

- 1. Berechne $n = n_1 \cdot n_2$.
- 2. Berechne mithilfe des erweiterten Euklidschen Algorithmus ganze Zahlen x_1 und x_2 , so dass $n_1(x_1) + n_2(x_2) = 1$.
- 3. Berechne

$$z := z_1 n_2 x_2 + z_2 n_1 x_1 \mod n.$$

Dieses z ist die eindeutige Lösung des Restklassengleichungssystems modulo n. Die Menge aller Lösungen ist $\{z+kn\mid k\in\mathbb{Z}\}.$

Chinesischer Restsatz für zwei Gleichungen (Probe)

ist Lösung des Gleichungssystems
$$z = z_1 n_2 x_2 + z_2 n_1 x_1 \mod n \pmod{n} \pmod{n_1 x_1 + n_2 x_2 = 1}.$$

$$z = z_1 \pmod{n_1}$$

$$z = z_2 \pmod{n_2},$$

denn

$$z = \overline{z_1 n_2 x_2 + z_2 n_1 x_1} = \overline{z_1} (n_2 x_2) = z_1 (1 - n_1 x_1) = z_1 \pmod{n_1} \text{ und}$$

$$z = z_1 n_2 x_2 + z_2 n_1 x_1 = z_2 n_1 x_1 = z_2 (1 - n_2 x_2) = z_2 \pmod{n_2}$$

Chinesischer Restsatz (I)

Es seien n_1, n_2, \ldots, n_s paarweise relativ prime natürliche Zahlen. Weiterhin seien $z_1, z_2, \ldots, z_s \in \mathbb{Z}$. Dann erhält man alle Lösungen des Restklassengleichungssystems

$$z = z_1 \pmod{n_1}$$

$$\vdots$$

$$z = z_s \pmod{n_s}$$

auf folgende Weise:

- 1. Berechne $n = n_1 \cdot n_2 \cdots n_s$. Modulo n ist die Lösung eindeutig.
- 2. Berechne für i = 1, ..., s die Zahlen

$$q_i := \frac{n}{n_i}$$
.

Chinesischer Restsatz (II)

3. Berechne für $i=1,\ldots,s$ das inverse Element r_i von q_i modulo n_i (mit dem erweiterten Euklidschen Algorithmus), also

$$r_i := q_i^{-1} \bmod n_i.$$

4. Berechne

$$z := z_1q_1r_1 + z_2q_2r_2 + \cdots + z_sq_sr_s \mod n.$$

Dieses z ist die eindeutige Lösung des Restklassengleichungssystems modulo n. Die Menge aller Lösungen ist $\{z+kn \mid k\in\mathbb{Z}\}$.

si.py

Mit der Funktion chinese_remainder() aus dem Modul si lässt sich dieses Restklassengleichungssystem lösen. Übergeben werden eine Liste mit den Moduln (3, 4 und 5) und eine Liste mit den Resten (0, 2 und 2).

```
> from si import chinese_remainder
> chinese_remainder([3,4,5], [0,2,2])
42
```


Die Sätze von Fermat und Euler

Der kleine Satz von Fermat

Kleiner Satz von Fermat

Ist $p \in \mathbb{P}$, ist $z \in \mathbb{Z}$ und ist ggT(z, p) = 1, dann gilt

Ist
$$p \in \mathbb{P}$$
, ist $z \in \mathbb{Z}$ und ist $ggT(z,p) = 1$, dann gilt
$$z^{p-1} = 1 \pmod{p}.$$

$$1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \dots \cdot (p-1) \pmod{p}$$

$$1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \dots \cdot (p-1) \pmod{p}$$

$$1 \cdot 2 \cdot 2 \cdot 3 \cdot 4 \cdot 2 \cdot 5 \cdot 2 \cdot \dots \cdot (p-1) \cdot 2 \pmod{p}$$

$$2^{p-1} \cdot 2^{p-1} \cdot 2^$$

Der Satz von Euler

Satz von Euler für $n = p \cdot q$

Sind $p, q \in \mathbb{P}$, n = pq und $z \in \mathbb{Z}$, dann gilt für alle $z \in \mathbb{Z}$ mit ggT(z, n) = 1:

Der Satz von Euler

Satz von Euler

Sind $n \in \mathbb{N}$ und $z \in \mathbb{Z}$ und ist ggT(z, n) = 1, dann gilt

$$z^{\varphi(n)} = 1 \pmod{n}$$
.

Korollar

Sind $n \in \mathbb{N}$ und $z, a, b \in \mathbb{Z}$ und ist ggT(z, n) = 1, dann gilt:

- 1. Ist $a = b \pmod{\varphi(n)}$, dann ist $z^a = z^b \pmod{n}$.
- 2. $z^a = z^{a \mod \varphi(n)} \pmod{n}$.

