Sistemas de Inteligencia Artificial Métodos de Aprendizaje NO Supervisado

25 de abril de 2022

Aprendizaje No Supervisado

- Aprendizaje Supervisado vs. No Supervisado.
- Modelo de Kohonen: Mapas Auto-organizados.
- Modelo de Hopfield.
- Análisis de Componentes principales.
- Regla de Oja.

¿Qué es el Aprendizaje Automático?

- Un programa que aprende con la experiencia a realizar una tarea.
- Un programa que puede generalizar a partir de un conjunto de datos de entrenamiento.
- Un programa que, dado un conjunto de entrenamiento puede calcular parámetros para optimizar una función objetivo.

Aprendizaje Supervisado vs. No Supervisado

Aprendizaje Supervisado

Desarrolla modelos en los que los datos tienen **etiquetas previamente conocidas** que utilizamos para **entrenar** el modelo.

Aprendizaje Supervisado vs. No Supervisado

Aprendizaje Supervisado

Construyen modelos de predicción basándose en el conocimiento de la variable Respuesta del conjunto de entrenamiento.

Aprendizaje NO Supervisado

Construyen modelos de predicción cuando la variable Respuesta no es una información disponible.

Comenzamos con un ejemplo

Deseamos conocer cuáles son los factores relacionados con el riesgo de enfermedad coronaria.

Del conocimiento previo sabemos que el riesgo está relacionado con los siguientes factores:

- presión arterial
- edad
- obesidad
- tiempo desde que se ha diagnosticado hipertensión arterial
- el pulso
- stress

Ejemplo

Para una investigación se seleccionan al azar 20 pacientes hipertensos sobre los que se midieron las siguientes variables:

- X₁: Presión arterial media (mm Hg)
- X₂: Edad (años)
- X₃: Peso (Kg).
- X_4 : Superficie corporal (m^2)
- X₅: Duración de la Hipertensión (años)
- X₆: Pulso (pulsaciones/minuto)
- X_7 : Medida del stress.

Ejemplo Riesgo Cardíaco

La dimensión inicial del problema planteado es 7. Si consideramos 2 variables.

Figura: Presión vs Edad

Ejemplo Riesgo Cardíaco: Presión vs. Edad

¿Qué nos dice el gráfico?

- Dos individuos con representaciones próximas en este gráfico tendrán características similares en estas dos variables.
- Dos individuos alejados tendrán características diferentes en las mismas.

Representación tridimensional de las variables presión vs edad y peso

Figura: Presión vs Peso y Edad

Nos preguntamos

¿es posible definir un índice que cuantifique la situación de riesgo cardíaco de un paciente con hipertensión arterial... teniendo todas las variables en cuenta?

Aprendizaje NO Supervisado

¿Qué problemas queremos resolver?

- Agrupamiento
- Asociaciones
- Reducción de la dimensionalidad

Agrupamiento

¿Qué hacen?

 Agrupan observaciones de forma tal que el grado de similitud entre miembros del mismo grupo sea lo más fuerte posible.

Esto implica definir el concepto similitud.

Memorias Asociativas - Definición

Consiste en...

el almacenamiento y recuperación de información por asociación con otras informaciones.

En esta materia

Estudiaremos

métodos de aprendizaje no supervisado que se resuelvan con redes neuronales.

Recordatorio: Variables estandarizadas

Tenemos las variables $\{X_1, \dots X_p\}$, cada una posee n registros.

- La media de X_i : $\bar{X}_i = \frac{1}{n} \sum_{j=1}^n X_i^j$
- La desviación estándar de X_i : $s_i = \frac{1}{n} \sum_{i=1}^n (X_i^j \bar{X}_i)^2$
- Las variables estandarizadas:

$$\tilde{X}_i = \frac{X_i - \bar{X}_i}{s_i}$$

Ejemplo: Países de Europa

Country	Area	GDP	Inflation
Austria	83871	41600	3.5
Belgium	30528	37800	3.5
Bulgaria	110879	13800	4.2
Croatia	56594	18000	2.3

Variables del conjunto de datos

Figura: Datos en crudo y estandarizados

Variables estandarizadas vs. Normalizadas

Figura: Datos en crudo, estandarizados y normalizados

Referencias

- Metodo de Hopfield [1].
- Método de Kohonen [3, 4].
- Para todos los métodos [2].
- [1] McKay D.J.C. *Hopfield Networks*. Information Theory, Inference and Learning Algorithms, Cambridge, 2003.
- [2] Anders Krogh John Hertz and Richard Palmer. *Introduction to the Theory of Neural Computation*. Addison-Wesley, 1991.
- [3] T. Kohonen. Self-organized formation of topologically correct feature maps. *Biological Cybernetics*, 1(43):59–69, 1982.
- [4] T. Kohonen. The self-organizing map. *Neurocomputing*, pages 1–6, 1998.