OLAP

Z FITwiki

Obsah

- 1 OLAP vs. OLTP
- 2 Konceptuální schéma OLAP
 - 2.1 OLAP operace
 - 2.2 Reprezentace multidimenzionálních dat ve 2D
 - 2.2.1 Dynamická tabulka (DT)
 - 2.2.2 Kontingenční tabulka (KT)
- 3 Získávání dat
 - 3.1 Získávání (Extraction)
 - 3.2 Čištění (Transformation)
 - 3.3 Natažení (Loading)
 - 3.3.1 Plné natažení dat
 - 3.3.2 Obnova (aktualizace) dat
- 4 Datová skladiště
 - 4.1 Architektura
 - 4.1.1 Relational OLAP (ROLAP)
 - 4.1.2 Multidimensional OLAP (MOLAP)

OLAP vs. OLTP

OLTP (On-Line Transaction Processing)

- slouží pro každodenní operace
- zaměřené na přesné uchovávání aktuálních dat
- krátké jednoduché ACID transakce
- velké množství změn relativně jednoduchých dat
- strukturované a opakující se dotazy
- velikost řádově jednotky až desítky GB
- metrika průchodnost transakcí
- probíhá nad operačními DB
 - důraz na konzistenci a možnost zotavení
 - výkonné pro jednotlivé operace, pomalé pro komplexní agregované dotazy

OLAP (On-Line Analytical Processing)

- slouží k podpoře rozhodování
- pracuje s konsolidovanými agregovanými daty z heterogenních zdrojů (operační DB i několik různých, pomocné soubory text, CSV, excel)
- malé množství změn složitých dat
- velká intenzita jedinečných a složitých dotazů
- důraz na sumarizaci a konsolidaci dat, ne na přesnost jednotlivých záznamů
- průchodnost dotazů mnohem důležitější, nežli spolehlivé zpracování transakce
- velikost řádově stovky GB až jednotky TB
- metrika průchodnost dotazů, odezva
- pracuje nad datovými skladišti
 - databáze sloužící k podpoře rozhodování, která je uložena odděleně od operační databáze
 - data typicky ukládána multidimenzionálně (dimenze často hierarchické)
 - ukládají i všechna historická data
 - vyžadují speciální organizaci dat, přístupové a implementační metody

Konceptuální schéma OLAP

Multidimenzionální pohled

- oblíbený pohled na data
- množina číselných měr umístěných v multidimenzionálním prostoru
- dimenze např. čas prodeje, místo prodeje, prodejce, produkt
- dimenze hierarchické (čas prodeje může být organizován jako den-měsíc-čtvrtletí-rok, produkt jako produktkategorie-výrobce)
- každá dimenze může být hierarchicky popsána množinou atributů (například dimenze Výrobek může sestávat ze čtyř atributů: kategorie a resort, roku výroby a průměrného zisku)

Agregace

 agregace podle jedné nebo více dimenzí (např. výpočet a hodnocení celkového prodeje pro každou zemi (nebo na každý rok))

Porovnání

porovnání několika hodnot agregovaných podle stejných dimenzí (např. prodeje a rozpočtu)

OLAP operace

Roll-up(vyrolování)

vzrůst úrovně agregace (tj. další agregace nad daty)

Drill-down (zavrtání)

snížení úrovně agregace a zvýšení detailu podle jedné nebo více dimenzí hierarchie

Slice & dice (seříznutí)

výběr projekce (zobrazujeme jen část dat)

Pivoting (přetočení)

přeorientování vícedimenzionálního pohledu na data

■ počet pohledů je k! (k je počet dimenzí)

Reprezentace multidimenzionálních dat ve 2D

• například pro tisk, zobrazení na monitoru, ...

Dynamická tabulka (DT)

- od společnosti Vema
- rozdělena na sloupce dimenzí a sloupce faktů
- hierarchie dimenzí není dimenze jsou ploché
- řádek tvoří uspořádanou n-tici dimenzních a faktových položek
- sloupce klíčů lze zaměňovat a třídit pivoting
- zakrýváním klíčových sloupců lze zvyšovat a snižovat agregaci roll-up, drill-down
- všechny sloupce lze zneviditelnit, případně nastavit filtry slice & dice
- prostorově náročnější, avšak jsou vidět všechny agregační i dimenzní položky

Kontingenční tabulka (KT)

- od společnosti MS
- řádky i sloupce jsou dimenze (hierarchické)
- fakta jsou průsečíky dimenzí
- fakt je proto v zásadě pouze jediný, více faktů se v průsečíku hůře zobrazuje, řeší se to záložkami nebo více sloupci, což je nepřehledné
- dimenze lze přesunovat a zaměňovat pivoting
- zakrýváním hierarchie dimenzí lze zvyšovat a snižovat agregaci roll-up,drill-down
- všechny sloupce lze zneviditelnit nebo nevyužívat slice & dice
- prostorově méně náročná, avšak nejsou vidět všechny faktové položky a hierarchie dimenzí může být nepřehledná

	Α	В	С	D	Е	F	G	Н	- 1	J	K	L
1												
2												
3	Součet z celkem		nákl. nejvyšší 🔽	nákl. vyšší 🔻	nákl. základní 🔽							
			1	1				Celkem	1 2		Celkem	Celkový
4											z 2	součet
		11 Celkem z 11 12 Celke							21	Celkem		
5							m z 12			z 21		
6	splatnost -	firma 🔽	111	112		121			211			
7	1.1.2002	A	44567		44567			44567				44567
8	Celkem z 1.1.2002		44567		44567			44567				44567
9	1.1.2003	В		11000	11000			11000				11000
10		С				12000	12000	12000				12000
11	Celkem z 1.1.2003			11000	11000	12000	12000	23000				23000
12	1.2.2003	А	84732		84732			84732				84732
13	Celkem z 1.2.2003		84732		84732			84732				84732
14	12.4.2003	A	76355		76355			76355				76355
15	Celkern z 12.4.2003		76355		76355			76355				76355
16	1.1.2004	D							13000			13000
17	Celkem z 1.1.2004								13000	13000	13000	13000
18	Celkový součet		205654	11000	216654	12000	12000	228654	13000	13000	13000	241654

Získávání dat

data - surová data (8)

- informace interpretovaná data (8 den v měsíci)
- znalost informace zařazená do souvislostí (8 je den v měsíci kdy prodal konkrétní produkt)
- data se získávají z mnoha různých zdrojů (různá kvalita, různě reprezentace, různé formáty)
- spojují se data z mnoha operačních databází a externích zdrojů
- data musí být sjednocena (získání, čistění, integrování dat)
- data se obnovují periodicky (pravidelný přesun dat k archivaci v datovém skladišti)

Získávání (Extraction)

datové extrakce z cizích zdrojů obvykle implementovány pomocí tzv. gateways a standardních rozhraní

Čištění (Transformation)

- ošetřuje nekonzistentnost dat
 - různé typy polí
 - různé názvy polí
 - různá sémantika polí (stejná pole různé sémantiky)
 - chybějící položky (povinné/volitelné položky)
 - různá integritní omezení

Data migration

• prostředky data migration dovolují aplikovat jednoduchá pravidla transformace (např. přepiš řetězec gender na sex)

Data scrubing (drhnutí dat)

- užívají specifické znalosti o dané doméně
- aplikují syntaktický pohled na problém
- často provádějí syntaktickou analýzu dat a vyhledávací techniky.

Data auditing

- umožňují odhalovat pravidla a vztahy (nebo signalizovat porušení stávajících pravidel) při prohlížení dat
- aplikují sémantický pohled na problém
- jsou vlastně variantou prostředků dolování dat
- například může takový prostředek odhalit podezřelý vzorek (založený na statistické analýze)

Natažení (Loading)

- typicky používány dávkové utility
- Problém: sekvenční natažení vyžaduje dlouhý čas (dny, týdny), ale datové skladiště může být off-line pouze po krátkou dobu (přes noc)

Preprocessing při natažení

- kontrola integritních omezení,
- třídění,
- sumarizace, agregace
- budování indexů a nebo např. materializovaných pohledů

Plné natažení dat

- nová data se natahují kompletně do nové DB
- během budování nové DB je stále k dispozici stará DB
- po natažení je stará DB nahrazena novou

Checkpointy

při havárii během natažení je možné proces restartovat od posledního checkpoitu

Obnova (aktualizace) dat

• šíření změn zdrojových dat na data ve skladišti (otázkou je jak často)

Replikace

pokud zdrojová DB podporuje replikaci je možné toho využít pro šíření změn do datového skladiště

- **Data shiping** replikace při níž je tabulka datového skladiště obsluhována jako vzdálený snímek zdrojové tabulky. Existuje trigger reagující na změnu zdrojové tabulky, který provede přesun dat do tabulky v datovém skladišti.
- Transaction shipping Na straně zdroje je sledován logovací soubor transakcí, aby se zjistily změny v replikované tabulce a takové záznamy jsou přeneseny do replikačního serveru, který zabalí odpovídající transakci tak, aby byla schopna změnit replikovanou stranu. Nepotřebuje triggery (nezatěžuje zdrojovou DB).

Datová skladiště

Datovým skladem nazýváme technologii

- natažení
- uložení a
- poskytování

dat pro podporu rozhodování prováděnou analýzou informací

Architektura

- Datové trhy (Data mart) podmnožiny datového skladiště poskytující data jednotlivým oddělením
- extrahování dat z mnoha operačních databází a externích zdrojů
- čištění, transformování a integrování těchto dat
- periodická obnova datového skladiště tak, aby odrážel změny ve zdrojích a mazání dat z datového skladiště, nejčastěji do pomalejší archivní paměti
- Prezentace multidimenzionálního pohledu na data různým koncovým prostředkům:
 - dotazovací prostředky
 - generátory zpráv
 - analytické prostředky

- prostředky dolování dat (data mining)
- Repository pro ukládání a správu metadat (katalogu) a pro monitorování a administraci systému datového skladiště

Servery datových skladišť

- kvůli zrychlení užívají redundantní struktury, jako jsou:
 - indexy
 - materializované (datově uložené) pohledy

Relational OLAP (ROLAP)

- datová skladiště nad klasickými nebo rozšířenými relačními DB
- data uložena v relačních DB
- speciální SQL podpora pro multidimenzionální dotazování

Hvězdicové schéma

- užívá většina datových skladišť k reprezentaci multidimensionálního modelu
- jedna tabulka hodnot
- jedna tabulka pro každou dimenzi (sloupce odpovídají atributům dimenze)
- Každá n-tice v tabulce hodnot sestává z ukazatele do každé dimenze, který poskytuje jeho multidimensionální souřadnice.

Sněhová vločka (snowflake)

• hierarchie dimenzí je explicitně reprezentována normalizováním tabulek dimenzí

Sumarizační tabulky

- obsahují předagregovaná data
- v nejjednodušším případě odpovídají předagregovaná data agregování tabulky hodnot podle jedné nebo více vybraných dimenzí

Multidimensional OLAP (MOLAP)

ukládají data přímo multidimenzionálně

- používají speciální datové struktury (řídké matice)
- velké paměťové nároky

Citováno z "http://wiki.fituska.eu/index.php?title=OLAP&oldid=12405"

Kategorie: Státnice 2011 | Pokročilé informační systémy

■ Stránka byla naposledy editována 19. 6. 2014 v 15:12.