Course on Proof Theory - Lecture 2

Exercises - Soundness, completeness and other metalogical results

Gianluca Curzi, Marianna Girlando

University of Birmingham

Midlands Graduate School Nottingham, 10-14 April 2022

Exercises for Lecture 2

1. Show that axiom HF5. is valid $(x \notin FV(A))$:

$$(\forall x(A \rightarrow B)) \rightarrow (A \rightarrow \forall xB)$$

2. Show that the inference rule gen preserves validity:

gen
$$\frac{A}{\forall x.A}$$

Exercises for Lecture 2

- 3. For a set of formulas Γ , if $\Gamma \not\models \bot$ then Γ is satisfiable. Why?
- 4. For a set of formulas Γ , show that the following are equivalent:
 - ▶ If $A \notin \Gamma$, then $\Gamma \cup A$ is not consistent.
 - ▶ For all formulas A, either $A \in \Gamma$ or $A \notin \Gamma$
- 5. Show that the following forms of consistency are equivalent:
 - ⊳Γ⊬⊥
 - \triangleright There is no formula A such that $\Gamma \vdash A$ and $\Gamma \vdash \neg A$
 - \triangleright There is a formula A such that $\Gamma \not\vdash A$
- 6. In Lindenbaum Lemma, prove that every Γ_k in the construction is consistent.

Exercises for Lecture 2

7. **(Difficult)** A graph is a structure $\mathfrak{G} = \langle V, E \rangle$ such that $E \subseteq V \times V$. For $k \in \mathbb{N}$ we say that \mathfrak{G} is k-colourable if there is a function $c: V \to \{1, \dots, k\}$ such that, whenever $(u, v) \in E$ then $c(u) \neq c(v)$.

Using the compactness theorem, show that a (possibly infinite) graph is k-colourable iff every finite subgraph of it is k-colourable.