SURNAME:	NAI	<u>ме</u>		
STUDENT ID:		'	D1	
PROFESSOR:				
Question 1		Answers		
Complement (2C)	two numbers of 8 bits in 2's), perform the operations: X + Y ch case, indicate if the operation	X+Y =	Overflow:	
generates overflow $\mathbf{x} = 00111111$	w. 2c	X-Y =	Overflow:	
$\mathbf{Y} = 11000001$ Report the most relev				
Question 2				
	th table for the Boolean function:	$f(A, B, C) = A \times (B' \times C)$		
Report the most relevant steps				
Question 3				
	n characteristics of the main memonal storage), indicating memory size			

Question 4 (PROGRAMMING)

Write a C program that allows the management of a commercial warehouse.

The program must process the information contained in 2 different files:

- warehouse: It contains the list of available products in the warehouse using the format:

<Product Name> < Quantity>

- requests: It contains the list of requests for the products from the warehouse. It contains one <**Product Name>** per line

The filenames are passed as command line arguments. For example:

c:\> myprog warehouse.txt requests.txt

Where, the first argument is the filename of the warehouse and the second argument is the filename of the requests.

Consider the following assumptions:

- In the warehouse file, <Product Name> is maximum 15 characters without space, <Quantity> is an integer. They are separated by one space. In the requests file, <Product Name> is maximum 15 characters without space.
- The number of products in the warehouse is not known a priori, but at most it is 100.
- The number of requests in the requests file is not known a priori, but contains maximum 200 **distinct** products, one for each line.
- The product indicated in requests file may not be present in warehouse file, and the files content is always correct.

The program must:

- 1) Take into account the incoming requests from the requests file and update (reduce) the quantity of available products in the warehouse.
- 2) If a product is requested for a number of times higher than the warehouse stock, display a message showing the **additional quantity** of the product required by the stock for that product.
- 3) Check if there are products that are not present in the warehouse (i.e., whose name does not appear in the first file), displaying them in a list without quantities.
- 4) Replace the warehouse file with the new quantities of the products at the end of the process.

For example, in the files contain the following content:

warehouse.txt	requests.txt	warehouse.txt (After the execution)
Book 10	Book	Book 8
Toy 20	Toy	Toy 19
Bike 3	Bike	Bike 0
Ball 100	Ball	Ball 99
Tablet 20	Guitar	Tablet 20
Guitar 1	Ski	Guitar 0
	Bike	
	Ski	
	Bike	
	Book	
	Bike	
	Guitar	
	Guitar	
	Backsword	

Output from the previous example:

The excess quantity of Bike required is: 1
The excess quantity of Guitar required is: 2

The following products are not in the warehouse stock: Ski, Backsword.

SURNAME:	NA NA	ME		
STUDENT ID:		·		D2
PROFESSOR:				
Question 1		Ansv	wers	
Magnitude (SM), and X - Y . In ear generates overflow x = 00111111	SM	>	X+Y =	
$\mathbf{Y} = 11000001$ Report the most relev				
Question 2				
Determine the trut Report the most releva	th table for the Boolean function: ant steps	f(A, B	B, C) = A × (B' × C)'	
Question 3				
List and briefly exp	olain the steps of the instruction e	<u>kecutio</u>	n cycle in a microproc	essor.

Question 4 (PROGRAMMING)

Write a C program that allows the management of a commercial warehouse.

The program must process the information contained in 2 different files:

- warehouse: It contains the list of available products in the warehouse using the format:

<Product Name> < Quantity>

accesses: It contains the list, in order of time, of withdrawals and supplies of products at the warehouse, through a format that provides for each row:

Withdraw of a product: <Product Name>
Supply of a product: +<Product Name>

The filenames are passed as command line arguments. For example:

c:\> myprog warehouse.txt accesses.txt

Where, the first argument is the filename of the warehouse and the filename of accesses is the second.

Consider the following assumptions:

- In warehouse file, <Product Name> is maximum 15 characters without space, <Quantity> is an integer. They are separated by one space. In accesses file, <Product Name> is maximum 15 characters without space and there is no space between the '+' symbol indicating supply of a product and the <Product Name>.
- The number of products is not known a priori, but at most it is 100.
- The number withdraws and supplies in the accesses file is not known a priori. But the accesses file contains a maximum of 200 **distinct** products.
- The <**Product Name>** indicated in accesses file may not be present in warehouse file, and the files content is always correct.

The program must update the warehouse file appropriately:

- 1) Taking into account the incoming requests from the accesses file and update the quantity of available products according to the request is **withdraw** or **supply**.
- 2) Displaying the total number per product of unsuccessful withdraws in the case of insufficient quantity in the warehouse.
- 3) In case of supply after a failed withdraw, the quantity of the product must be updated without altering the previous failed withdraws.
- 4) Withdraws and supplies requests for **NOT** present products the warehouse must be ignored.
- 5) Replace the warehouse file with the final products and quantities after all withdraws and supplies in accesses file are processed.

For example, in the files contain the following content:

warehouse.txt	accesses.txt	EFFECT of each row in accesses.txt	warehouse.txt (After the execution)
Book 10 Toy 20 Bike 3 Ball 100 tablet 20 Guitar 2	Book +Toy Book Bike Bike Bike +Backsword Bike Bike +Bike Guitar Ski Guitar Guitar	Book 10 -> 9 Toy 20 -> 21 Book 9 -> 8 Bike 3 -> 2 Bike 2 -> 1 Bike 1 -> 0 (Supply Ignored) Failed withdraw Failed withdraw Bike 0 -> 1 Guitar 2 -> 1 (Withdraw Ignored) Guitar 1 -> 0 Failed withdraw	Book 8 Toy 21 Bike 1 Ball 100 tablet 20 Guitar 0

Output from the previous example:

Failed requests for the Bike: 2
Failed requests for the Guitar: 1