Class Notes Introduction to fluid mechanics

Chang-Mao Yang, 楊長茂

April 1, 2024

Contents

1	The	Equat	tion of Motion 2
	1.1	Introd	uction
		1.1.1	Euler's equation: 2
		1.1.2	Convective derivative
			1.1.2.1 Def
			1.1.2.2 Def
			1.1.2.3 Claim
			1.1.2.4 proof
			1.1.2.5 Note
		1.1.3	Continuity equation
		1.1.4	Heuristic proof of the Euler equation
		1.1.5	Lemma
			1.1.5.1 proof
		1.1.6	The Continuity Equation
	1.2	Proof	of Euler's Equation
		1.2.1	Balance of Momentum 1 (BM1)
		1.2.2	Balance of Momentum 2 (BM2)
		1.2.3	Balance of Momentum 3 (BM3)
	1.3	Equiva	alence between BM1, BM2 and BM3
		1.3.1	Lemma
			1.3.1.1 proof:
		1.3.2	Transport Theorem
			1.3.2.1 proof
		1.3.3	Def:
	1.4	Incom	pressible
	1.5	-	geneous
			1.5.0.1 Def:
			1.5.0.2 Example
	1.6	Conse	vation of Energy
	1.7		opic fluid
			Definition
			Lemma 27

		1.7.2.1 proof
	1.7.3	Bernoullis' Theorem
		1.7.3.1 Proof
		1.7.3.2 Example
1.8	Rotati	ion and Vorticity
	1.8.1	Proposition
		1.8.1.1 proof

1 The Equation of Motion

1.1 Introduction

1.1.1 Euler's equation:

Consider a fluid in a domain D in \mathbb{R}^n (n=2, n=3).

Let $x \in D$, and $\rho(\mathbf{x}, t)$, $\mathbf{u}(\mathbf{x}, t)$, $p(\mathbf{x}, t)$ be the fluid density, velocity vector field and the pressure at the point x and time t. Consider an infinitesimal element of the fluid of volumn ∂V located at point x at time t with mass $\delta m = \rho(\mathbf{x}, t)$, which is moving $\mathbf{u}(\mathbf{x}, t)$ and momentum $\delta m \cdot \mathbf{u}(\mathbf{x}, t)$

The normal force directed into the indeinetesmal volumn across a face of area δa is $\mathbf{n} \cdot p(\mathbf{x}, t) \cdot \delta a$

Note that the pressure is the magnitude of the torce per unit area or normal stress, imposed on the fluid from neighboring fluid elements.

1.1.2 Convective derivative

convective derivative 對流導數 / material derivative 物質導數 / advective derivative 隨流導數 / convective derivative 對流導數 / derivative following the motion 隨體導數 / hydrodynamic derivative 水動力導數 / Lagrange derivative 拉格朗日導數 / substantial derivative 隨質導數 Couvder a fluid particle moving in flaid, whose position \mathbf{x} at time t is $\mathbf{x}(t)$. Then

$$\frac{d\mathbf{x}(t)}{dt} = \dot{\mathbf{x}} = \mathbf{u}(\mathbf{x}(t), t) \tag{1}$$

Hence, if $f(\mathbf{x}, t)$ is a function on $D \times (0, T)$, then $f(\mathbf{x}(t), t)$ is the value if f at the moving fluid particle at $\mathbf{x}(t)$ at time t. We define the convective derivative of f:

$$\frac{Df(\mathbf{x},t)}{Dt} = \frac{\partial f(\mathbf{x},t)}{\partial t} + \dot{\mathbf{x}} \cdot \nabla f(\mathbf{x},t)
= f_t + \mathbf{u} \cdot \nabla f$$
(2)

where $\nabla f = f(f_x, f_y, f_z)$ and $\mathbf{u} = (u_1, u_2, u_3)$.

Hence, if $f(\mathbf{x},t)$ is a function on $D \times (0,T)$, then $f(\mathbf{x}(t),t)$ is the value of f at the moving fluid particle at $\mathbf{x}(t)$ at time t.

We define the convective derivative of f as:

$$\frac{Df(x,t)}{Dt} = \frac{\partial f}{\partial t} + \dot{\mathbf{x}}(t) \cdot \nabla f,
= f_t + \mathbf{u} \cdot \nabla f$$
(3)

where $\nabla f = (f_x, f_y, f_z)$ and $\mathbf{u} = (u_1, u_2, u_3)$.

1.1.2.1 Def.

For any vector filed $\mathbf{F} = (F_1, F_2, \dots, F_n)$ on D, we let

$$\int_{D} \mathbf{F} dV = \left(\int_{D} F_{1} dV, \int_{D} F_{2} dV, \dots, \int_{D} F_{n} dV \right). \tag{4}$$

1.1.2.2 Def.

We will assume that D is a smooth domain, i.e. for any $x_0 \in \partial D$, $\mathbb{R}^n = (x', x_n), n = 2, 3$ $\exists \delta_0 > 0$ and a smooth function $\varphi : \mathbb{R}^{n-1} \to \mathbb{R}$, s.t.

$$\partial D \cap B(x_0, \delta_0) = \{ (x', \varphi(x')) : ||x'|| < \delta_0, x' \in \mathbb{R}^{n-1} \} \cap B(x_0, \delta_0)$$
 (5)

and

$$D \cap B(x_0, \delta_0) = \{(x', x_n) : x_n > \varphi(x'), x' \in \mathbb{R}^{n-1}, ||x'|| < \delta_0\} \cap B(x_0, \delta_0)$$
 (6)

1.1.2.3 Claim

Conside the volume δV of an element of mass δm , which moves in the fluid by the fluid motion

$$\frac{d(\delta V)}{dt} = (\nabla \cdot \mathbf{u})(\mathbf{x}, t) \cdot \delta V \quad \text{as} \quad \delta x_1, \delta x_2, \delta x_3 \to 0, \tag{7}$$

where $\nabla \cdot \mathbf{u} = \operatorname{div} \mathbf{u} = \sum_{i=1}^{3} \frac{\partial u_i}{\partial x_i}, \mathbf{u} = (u_1, u_2, u_3).$

1.1.2.4 proof

$$\frac{d(\delta V)}{dt} = \frac{d}{dt}(\delta x_1, \delta x_2, \delta x_3)
= \frac{d(\delta x_1)}{dt} \delta x_2 \delta x_3 + \frac{d(\delta x_2)}{dt} \delta x_1 \delta x_3 + \frac{d(\delta x_3)}{dt} \delta x_1 \delta x_2$$
(8)

For the first term

$$\frac{d(\delta x_1)}{dt} \approx u_1 \left(x_1 + \frac{\delta x_1}{2}, x_2, x_3 \right) - u_1 \left(x_1 - \frac{\delta x_1}{2}, x_2, x_3 \right)
= \frac{\partial u_1}{\partial x_1} (\xi_1, x_2, x_3) \delta x_1, \quad \text{fot some } \xi_1 \in \left(x_1 - \frac{\delta x_1}{2}, x_1 + \frac{\delta x_1}{2} \right)$$
(9)

then

$$\frac{d(\delta x_1)}{dt} \delta x_2 \delta x_3 \to \frac{\partial u_1}{\partial x_1} (x_1, x_2, x_3) \delta x_1 \delta x_2 \delta x_3, \quad \text{as } \delta x_1, \delta x_2, \delta x_3 \to 0$$
 (10)

Similarly

$$\frac{d(\delta x_2)}{dt} \delta x_2 \delta x_3 \to \frac{\partial u_2}{\partial x_1} (x_1, x_2, x_3) \delta x_1 \delta x_2 \delta x_3, \quad \text{as } \delta x_1, \delta x_2, \delta x_3 \to 0$$
 (11)

and

$$\frac{d(\delta x_3)}{dt} \delta x_2 \delta x_3 \to \frac{\partial u_3}{\partial x_1} (x_1, x_2, x_3) \delta x_1 \delta x_2 \delta x_3, \quad \text{as } \delta x_1, \delta x_2, \delta x_3 \to 0$$
 (12)

so that

$$\frac{d(\delta V)}{dt} = \left(\frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3}\right) \delta x_1 \delta x_2 \delta x_3 = (\nabla \cdot \mathbf{u}) \delta V \tag{13}$$

1.1.2.5 Note

tagged porton of fluid particle

Consider a a tagged (marked) portion Σ of fluid with center of mass at $(x_1(s), x_2(s), x_3(s))$ at time s. Let m(x) and V(s) be the mass and volumn of this portion Σ of fluid at time s. The portion of fluid particle moves aling with fluid. see as (2/21 fig1)

For a time t > 0, suppose at time t, the tagged portion Σ of fluid particles is a cube centered at (x_1, x_2, x_3) with side lengh ℓ_1, ℓ_2, ℓ_3 , see as (2/21 fig2 - textbook p.4), where

$$P_1(s) = \left(x_1(s) - \frac{\ell_1(s)}{2}, x_2(s), x_3(s)\right)$$

$$P_2(s) = \left(x_1(s) + \frac{\ell_1(s)}{2}, x_2(s), x_3(s)\right)$$
(14)

We assume that Σ remain a cube for $s \approx t$ with side length, $\ell_1(s), \ell_2(s), \ell_3(s)$, then $V(s) = \ell_1(s) \cdot \ell_2(s) \cdot \ell_3(s)$

$$\frac{dV(s)}{ds}\bigg|_{s=t} = \frac{d\ell_1(s)}{ds}\bigg|_{s=t} \ell_2(s)\ell_3(s) + \frac{d\ell_2(s)}{ds}\bigg|_{s=t} \ell_1(s)\ell_3(s) + \frac{d\ell_3(s)}{ds}\bigg|_{s=t} \ell_1(s)\ell_2(s) \tag{15}$$

where

$$\frac{d\ell_1(s)}{ds} = u_1(P_2(t), t) - u_1(P_1(t), t)
= u_1\left(x_1(s) + \frac{\ell_1(s)}{2}, x_2(s), x_3(s), t\right) - u_1\left(x_1(s) - \frac{\ell_1(s)}{2}, x_2(s), x_3(s), t\right)
\approx \frac{\partial u_1}{\partial x_1}(x_1, x_2, x_3, t) \cdot \ell_1$$
(16)

Similarly

$$\frac{d\ell_i}{ds}\bigg|_{s=t} = \frac{\partial u_i}{\partial x_i} (x_1, x_2, x_3) \cdot \ell_i, \quad \forall i = 1, 2, 3.$$
(17)

Now we write $\frac{d}{ds}\bigg|_{s=t} = \frac{d}{dt}$, combinded with equation

1.1.3 Continuity equation

Let $\rho(\mathbf{x}, t)$ be the density of fluid at time s.Since M(s) = const., $\forall s > 0$ and $\frac{dM(s)}{ds} = 0$, $\forall s > 0$. Therefore, since it is similar to the cube, the density is

$$\rho(\mathbf{x}, s) \approx \frac{M(s)}{V(s)} \tag{18}$$

and the derevative is

$$\frac{d}{ds}\rho(\mathbf{x},s)\bigg|_{s=t} \approx \frac{d}{ds} \frac{M(s)}{V(s)}\bigg|_{s=t}$$

$$= \frac{M'(s)V(s) - M(s)V'(s)}{V^{2}(s)}\bigg|_{s=t}$$

$$= \frac{0 - M(s)\frac{d}{ds}V(s)}{V^{2}(s)}\bigg|_{s=t}$$

$$= -\frac{M(s)(\operatorname{div}\mathbf{u})V(s)}{V^{2}(s)}\bigg|_{s=t}$$

$$= -\frac{M(s)}{V(s)}(\operatorname{div}\mathbf{u}(s))\bigg|_{s=t}$$

$$= -\rho(\mathbf{x}(s), s)(\operatorname{div}\mathbf{u}(s))\bigg|_{s=t}$$
(19)

we get

$$-\frac{d}{dt}\rho(\mathbf{x}(t),t) = \rho \cdot (\nabla \cdot \mathbf{u}(t))$$
(20)

On the other hand, by chain rule

$$\frac{d}{dt}\rho(\mathbf{x}(t),t) = \rho_t + (\nabla\rho) \cdot \mathbf{u}(t)$$
(21)

combining together we have

$$\Rightarrow \rho_t + (\nabla \rho) \cdot \mathbf{u} = \rho \cdot (\nabla \cdot \mathbf{u})$$

$$\Rightarrow \rho_t + (\nabla \rho) \cdot \mathbf{u} - \rho \cdot (\nabla \cdot \mathbf{u}) = 0$$

$$\Rightarrow \rho_t + \nabla \cdot (\rho \mathbf{u}) = 0$$
(22)

and the equation $\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0$ is called the *contunuity equation*.

1.1.4 Heuristic proof of the Euler equation

In the ansense of an externally applied forces, the net force \mathbf{F} , acting on δV , is due to the pressure field.

Write $\mathbf{F} = (F_1, F_2, F_3)$, we get

$$\mathbf{F}(x_1, x_2, x_3, t) \approx \left(P\left(x_1 - \frac{\delta x_1}{2}, x_2, x_3, t\right) - P\left(x_1 + \frac{\delta x_1}{2}, x_2, x_3, t\right) \right) \delta x_2 \delta x_3$$

$$= -\frac{\partial P}{\partial x_1} (\zeta_1, x_2, x_3, t) \delta x_1 \delta x_2 \delta x_3, \quad \delta x_1, \delta x_2, \delta x_3 \to 0$$

$$= \frac{\partial P}{\partial x_1} (\zeta_1, x_2, x_3, t) \delta V$$
(23)

for some $\zeta_1 \in \left(x_1 - \frac{\delta x_1}{2}, x_1 + \frac{\delta x_1}{2}\right)$.

By Newton's second law, the equation of motion for the elemnet of fund mass δm , at point $\mathbf{x}(t)$ is

$$\frac{d}{dt} \left(\delta m \cdot \mathbf{u}(\mathbf{x}, t) \right) = \mathbf{F} = -(\nabla P) \delta V \tag{24}$$

also

$$\frac{d}{dt} \left(\delta m \cdot \mathbf{u}(\mathbf{x}, t) \right) = \delta m \frac{d}{dt} \mathbf{u}(\mathbf{x}, t) = \delta m \left(\mathbf{u}_t + (\nabla \cdot \mathbf{u}) \right) \mathbf{u}$$
 (25)

then

$$\delta m \left(\mathbf{u}_t + (\nabla \cdot \mathbf{u}) \right) \mathbf{u} = -(\nabla P) \delta V$$

$$\mathbf{u}_t + (\nabla \cdot \mathbf{u}) \mathbf{u} = -(\nabla P) \frac{\delta V}{\delta m} = -(\nabla P) \frac{1}{\delta m / \delta V}$$
(26)

we get a equation

$$\mathbf{u}_t + (\nabla \cdot \mathbf{u}) \,\mathbf{u} = -\frac{\nabla P}{\rho} \tag{27}$$

called Euler's equation.

Notice that
$$(\nabla \cdot \mathbf{u}) \ \mathbf{u} = \left(\sum_{i=0}^{3} u_{i} \frac{\partial}{\partial x_{i}}\right) \mathbf{u}$$

$$= \left(u_{1} \frac{\partial}{\partial x_{1}} + u_{2} \frac{\partial}{\partial x_{2}} + u_{3} \frac{\partial}{\partial x_{3}}\right) \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix}$$

$$= \begin{pmatrix} \left(u_{1} \frac{\partial}{\partial x_{1}} + u_{2} \frac{\partial}{\partial x_{2}} + u_{3} \frac{\partial}{\partial x_{3}}\right) u_{1} \\ \left(u_{1} \frac{\partial}{\partial x_{1}} + u_{2} \frac{\partial}{\partial x_{2}} + u_{3} \frac{\partial}{\partial x_{3}}\right) u_{2} \\ \left(u_{1} \frac{\partial}{\partial x_{1}} + u_{2} \frac{\partial}{\partial x_{2}} + u_{3} \frac{\partial}{\partial x_{3}}\right) u_{3} \end{pmatrix}$$

$$(28)$$

1.1.5 Lemma

Let D be a bounded domain and $F: \bar{D} \times [0, a_0] \to \mathbb{R}$ be a smooth function (or C^{∞}), then

$$\frac{d}{dt} \int_{D} F(x,t) dx = \int_{D} \frac{dF(x,t)}{dt} dx \tag{29}$$

1.1.5.1 proof

we have

$$\frac{d}{dt} \int_{D} F(x,t) dx = \lim_{\Delta t \to 0} \left[\frac{1}{\Delta t} \int_{D} F(x,t+\Delta t) dx - \frac{d}{dt} \int_{D} F(x,t) dx \right]
= \lim_{\Delta t \to 0} \frac{d}{dt} \int_{D} \frac{F(x,t+\Delta t) - F(x,t)}{\Delta t} dx
= \text{By M.V.T.}$$

$$= \lim_{\Delta t \to 0} \int_{D} \frac{\frac{\partial}{\partial t} F(x,\xi) \Delta t}{\Delta t} dx, \quad \text{for some } \xi, \text{ where } t < \xi < t + \Delta
= \lim_{\Delta t \to 0} \int_{D} \frac{\partial}{\partial t} F(x,\xi) dx$$
(30)

Denote,
$$\frac{\partial}{\partial t}F(x,t) = F_t(x,t)$$
 and $\frac{\partial^2}{\partial t^2}F(x,t) = F_{tt}(x,t)$, so
$$\left|\frac{1}{\Delta t}\int_D [F(x,t+\Delta t) - F(x,t)] - \int_D \frac{\partial}{\partial t}F(x,t)dx\right|$$

$$= \left|\int_D F_t(x,\xi)dx - \int_D F_t(x,\xi)dx\right|$$

$$= \operatorname{By} \operatorname{MVT}$$

$$= \left|\int_D [F_t(x,\xi) - F_t(x,t)]\right|dx$$

$$= \operatorname{By} \operatorname{MVT}$$

$$= \left|\int_D F_{tt}(x,z)(t-\xi)dz\right|, \quad z \text{ between } t \text{ and } \xi$$

$$\leq M|t-\xi||D| \to 0, \quad \text{where } |D| \text{ is volumn of } D$$
where $M = \sup_{(x,t) \in D \times (0,a)} F_{tt}(x,t)$.