A1b Vectors and Matrices: Example Sheet 2

Michaelmas 2015

Corrections and suggestions should be emailed to N.Peake@damtp.cam.ac.uk.

- 1. In the following, the indices i, j, k, l take the values 1, 2, 3, and the summation convention applies. In particular, $n_i n_i = 1$; i.e., n_i are the components of a unit vector \mathbf{n} .
 - (a) Simplify the following expressions:

$$\delta_{ij}a_j$$
, $\delta_{ij}\delta_{jk}$, $\delta_{ij}\delta_{ji}$, $\delta_{ij}n_in_j$, $\varepsilon_{ijk}\delta_{jk}$, $\varepsilon_{ijk}\varepsilon_{ijl}$, $\varepsilon_{ijk}\varepsilon_{ikj}$, $\varepsilon_{ijk}(\mathbf{a}\times\mathbf{b})_k$.

- (b) Given that $A_{ij} = \varepsilon_{ijk} a_k$ (for all i, j), show that $2a_k = \varepsilon_{kij} A_{ij}$ (for all k).
- (c) Show that $\varepsilon_{ijk}s_{ij}=0$ (for all k) if and only if $s_{ij}=s_{ji}$ (for all i,j).
- (d) Given that $N_{ij} = \delta_{ij} \varepsilon_{ijk} n_k + n_i n_j$ and $M_{ij} = \delta_{ij} + \varepsilon_{ijk} n_k$, show that $N_{ij} M_{jk} = 2\delta_{ik}$.
- 2. Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} be fixed vectors in \mathbb{R}^3 . In each of cases (i) and (ii) find all vectors \mathbf{r} such that

(i)
$$\mathbf{r} + \mathbf{r} \times \mathbf{d} = \mathbf{c}$$
, (ii) $\mathbf{r} + (\mathbf{r} \cdot \mathbf{a}) \mathbf{b} = \mathbf{c}$.

In (ii) consider separately the $\mathbf{a} \cdot \mathbf{b} \neq -1$ and $\mathbf{a} \cdot \mathbf{b} = -1$ subcases.

Hint: given \mathbf{r}_0 solving (ii) for $\mathbf{a} \cdot \mathbf{b} = -1$, show that $\mathbf{r}_0 + \lambda \mathbf{b}$ is another solution for an arbitrary scalar λ .

3. In \mathbb{R}^3 show that the straight line through the points **a** and **b** has equation

$$\mathbf{r} = (1 - \lambda)\mathbf{a} + \lambda \mathbf{b},$$

and that the plane through the points \mathbf{a}, \mathbf{b} and \mathbf{c} has the equation

$$\mathbf{r} = (1 - \mu - \nu)\mathbf{a} + \mu\mathbf{b} + \nu\mathbf{c},$$

where λ, μ and ν are scalars. Obtain forms of these equations that do not involve λ, μ, ν .

4. (a) Let λ be a scalar, and let \mathbf{m}, \mathbf{u} and \mathbf{a} be fixed vectors in \mathbb{R}^3 such that $\mathbf{m} \cdot \mathbf{u} = 0$ and $\mathbf{a} \cdot \mathbf{u} \neq 0$. Show that the straight line $\mathbf{r} \times \mathbf{u} = \mathbf{m}$ meets the plane $\mathbf{r} \cdot \mathbf{a} = \lambda$ in the point

$$\mathbf{r} = \frac{\mathbf{a} \times \mathbf{m} + \lambda \mathbf{u}}{\mathbf{a} \cdot \mathbf{u}}.$$

Explain in detail the geometrical meaning of the condition $\mathbf{a} \cdot \mathbf{u} \neq 0$.

(b) In \mathbb{R}^3 show that if \mathbf{r} lies in the planes $\mathbf{r} \cdot \mathbf{a} = \lambda$ and $\mathbf{r} \cdot \mathbf{b} = \mu$, for fixed non-zero vectors \mathbf{a} and \mathbf{b} , and scalars λ and μ , show that

$$\mathbf{r} \times (\mathbf{a} \times \mathbf{b}) = \mu \mathbf{a} - \lambda \mathbf{b}$$
 (**

Conversely, given $\mathbf{a} \times \mathbf{b} \neq \mathbf{0}$, show that (*) implies both $\mathbf{r} \cdot \mathbf{a} = \lambda$ and $\mathbf{r} \cdot \mathbf{b} = \mu$. Hence deduce that the intersection of two non-parallel planes is a line. Comment on the case in which $\mathbf{a} \times \mathbf{b} = \mathbf{0}$.

5. Let **n** be a unit vector in \mathbb{R}^3 . Identify the image and kernel (null space) of each of the following linear maps $\mathbb{R}^3 \to \mathbb{R}^3$:

(a)
$$\mathcal{T}: \mathbf{x} \mapsto \mathbf{x}' = \mathbf{x} - (\mathbf{x} \cdot \mathbf{n}) \mathbf{n}$$
, (b) $\mathcal{Q}: \mathbf{x} \mapsto \mathbf{x}' = \mathbf{n} \times \mathbf{x}$.

Show that $\mathcal{T}^2 = \mathcal{T}$ and interpret the map \mathcal{T} geometrically. Interpret the maps \mathcal{Q}^2 and $\mathcal{Q}^3 + \mathcal{Q}$, and show that $\mathcal{Q}^4 = \mathcal{T}$.

- 6. Give a geometrical description of the images and kernels of each of the linear maps of \mathbb{R}^3
 - (a) $(x, y, z) \mapsto (x + 2y + z, x + 2y + z, 2x + 4y + 2z),$
 - (b) $(x, y, z) \mapsto (x + 2y + 3z, x y + z, x + 5y + 5z)$.
- 7. A linear map $\mathcal{A}: \mathbb{R}^4 \to \mathbb{R}^4$ is defined by $\mathbf{x} \mapsto \mathsf{A}\mathbf{x}$ where

$$A = \begin{pmatrix} a & a & b & a \\ a & a & b & 0 \\ a & b & a & b \\ a & b & a & 0 \end{pmatrix}.$$

Find the kernel and image of A for all real values of a and b.

8. A linear map $S: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by

$$\mathbf{x} \mapsto \mathbf{x}' = \mathbf{x} + \lambda(\mathbf{b} \cdot \mathbf{x}) \mathbf{a}$$
,

where λ is a scalar, and **a** and **b** are fixed, orthogonal unit vectors. By considering its effect on the vectors **a** and **b**, show that \mathcal{S} describes a shear in the direction of **a**. Let $S(\lambda, \mathbf{a}, \mathbf{b})$ be the matrix with entries S_{ij} such that $x'_i = S_{ij}x_j$. Obtain an expression for S_{ij} in terms of the components of **a** and **b** and hence find the matrix $S(\lambda, \mathbf{a}, \mathbf{b})$. Evaluate its determinant[‡], and hence deduce that \mathcal{S} is an area-preserving map.

9. The linear map $\mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$\mathbf{x} \mapsto \mathbf{x}' = \cos \theta \, \mathbf{x} + (\mathbf{x} \cdot \mathbf{n}) \, (1 - \cos \theta) \, \mathbf{n} - \sin \theta \, (\mathbf{x} \times \mathbf{n})$$
 (†)

describes a rotation by angle θ in a positive sense about the unit vector **n**. Verify this by considering the case of **n** = (0,0,1).

Show that (†) can be written in matrix form as

$$\mathbf{x} \mapsto \mathbf{x}' = \mathsf{R}(\mathbf{n}, \theta) \, \mathbf{x}$$

where $R(\mathbf{n}, \theta)$ is a matrix with entries R_{ij} which you should find explicitly in terms of $\delta_{ij}, \varepsilon_{ijk}$, etc. Hence show that

$$R_{ii} = 2\cos\theta + 1$$
 , $\varepsilon_{ijk}R_{jk} = -2n_i\sin\theta$.

Given that $R(\mathbf{n}, \theta)$ is the matrix

$$\frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix},$$

determine θ and \mathbf{n} .

10. Give examples of 2×2 real matrices representing the following transformations in \mathbb{R}^2 : (a) reflection, (b) dilatation (enlargement), (c) shear, and (d) rotation. Which of these types of transformation are always represented by a 2×2 matrix with determinant +1?

If maps \mathcal{A} and \mathcal{B} are both shears, will \mathcal{AB} be the same as \mathcal{BA} in general? Justify your answer.

- 11. Suppose that A and B are both Hermitian matrices. Show that AB + BA is Hermitian. Also show that AB is Hermitian if and only if A and B commute.
- *12. Let $R(\mathbf{n}, \theta)$ be the matrix defined by the linear map (†) of question 9, and let $\mathbf{i}, \mathbf{j}, \mathbf{k}$ be the standard mutually orthogonal unit vectors in \mathbb{R}^3 .
 - (a) Show that the matrix $R(\mathbf{i}, \frac{\pi}{2})R(\mathbf{j}, \frac{\pi}{2})$ is orthogonal, has determinant one, and is not equal to the matrix $R(\mathbf{j}, \frac{\pi}{2})R(\mathbf{i}, \frac{\pi}{2})$.
 - (b) Reflection in a plane through the origin in \mathbb{R}^3 , with unit normal \mathbf{n} , is a linear map such that

$$\mathbf{x} \mapsto \mathbf{x}' = \mathbf{x} - 2(\mathbf{x} \cdot \mathbf{n}) \mathbf{n}.$$

In matrix notation $\mathbf{x}' = \mathsf{H}(\mathbf{n}) \mathbf{x}$ for matrix $\mathsf{H}(\mathbf{n})$. Show by geometrical and algebraic means that the map $\mathbf{x} \mapsto \mathbf{x}' = -\mathsf{H}(\mathbf{n})\mathbf{x}$, describes a rotation of angle π about \mathbf{n} .

(c) A vector \mathbf{x} has components (x,y,z) in a (Cartesian) coordinate system S. It has components (x',y',z') in a coordinate system S' obtained from S by anti-clockwise rotation through angle α about axis \mathbf{k} . Show, geometrically, that the components in coordinate system S' are related to those in S by

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \mathsf{R}(\mathbf{k}, -\alpha) \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

(d) Given that

$$\mathbf{n}_{\pm} = \cos\left(\frac{1}{2}\theta\right) \mathbf{i} \pm \sin\left(\frac{1}{2}\theta\right) \mathbf{j},$$

prove that

$$H(\mathbf{i}) H(\mathbf{n}_{-}) = H(\mathbf{n}_{+}) H(\mathbf{i}) = R(\mathbf{k}, \theta),$$

and give diagrams to exhibit the geometrical meaning of this result.

[‡] You may need to return to this question if determinants have not been covered yet.