Exercise 2: Principle Component Analysis

1. figo = tr (QTGTSGQ) = tr (QTQ.GTSG) = tr (GTSG). Vorthogonal matrix QERE

thus,
$$S = \frac{1}{n-1} U \Sigma^2 U^{T}$$
. $y = U^{T}g$. so, $||y|| = 1$

therefore,
$$f(g) = \frac{1}{n+1} g^T U \mathcal{I}^2 U^T g = \frac{1}{n+1} \frac{1}{n+1} y_i^2 \lambda_i^2 \leq \frac{1}{n+1} \lambda_i^2$$
.

note that, the equivalence condition is
$$V^{T}g = e$$

i.e $g = Ve_1$. is the first principal component vector of the data.

3. Note that. the columns of V, $\{u_i = Ve_i\}_{i=1}^d$, are the orthonormal basis of IR^d .

then, $\{g \in IR^d : with | |g|| = 1$. $g = \frac{1}{2}a_iu_i$ and $\frac{1}{4}a_i^2 = 1$.

since
$$(g_1, g) = 0$$
, we have $(x_1, g) = a_1 = 0$.

So,
$$f(g) = \frac{1}{n_1} \stackrel{d}{\underset{i=1}{\sum}} a_i^2 \lambda_i^2 \stackrel{d}{\underset{i}{\sum}} = \frac{1}{n_1} \lambda_i^2$$

re 92 = Vez the second principal component vector of the data.

4. the first K principal component vector is Vex.

5.
$$f(g_k) = \frac{1}{n+1} \hat{\chi}_k$$

Exercise 5: Grid World with a Given Policy

azt	مولح											a 3	v.25A
0.7	0.8	0.05										1.55	k47
	0.15	吡										24	2000
0.05			0.3		کا ٥٠							0.5	۵.39
		0.7		0.3							DIC . 1	1	DIC - C.1 - 1 058
			7.0		0-			0.7			$ \alpha $, $P(S_i=S_i)=\frac{1}{11}$	1.5	$PIS_{2}=S_{1})=\frac{1}{4}\left \frac{\alpha_{5}R}{\alpha_{7}I}\right $
					0-7	225	0.05					t	1.382
				0.7		0.7	欧					1.65	I RUA
					0.05			0.25				0.3	0.17
						0.05		20,0	-1		†	1-1	7414
							ο,T			1		17	7.82

2.10)
$$P(S_1 = S_2) = \frac{1}{\sqrt{2}} m_{ij}$$
. $\forall i = 1, 2, ..., 1$.

then
$$P_1 = \frac{1}{4}Mu$$
. $P_2 = Mp_1 = \frac{1}{4}M^2u$.

(b).
$$P(S_t = s_i) = [+M^t u]_i = +e^T M^t u$$
. $i=1,2,...,9$.

3.
$$\sqrt{(s_i)} = 0.9^4 \times 100 = 65.61$$

$$V^{\dagger}(S_2) = 0.9^3 \times 150 = 72.9$$

$$V^{\mathfrak{T}} \mid S_{8}) = l \sigma_{0}$$

Exercise 7: Value Iteration and Policy Iteration

$$Q(s,a) = H(s,a) + \gamma \max_{\alpha} Q(\delta(s,a), \alpha')$$

$$= \| V^* - V^{k+1} \|_{\infty} \le y \| V^* - V^k \|_{\infty}$$

$= H(s, \alpha) + y Q^{T}(\overline{s}(s, \alpha), \overline{H}(s))$.
$V^{\dagger}(s) = R(s) + \gamma \sum_{s \in S} P(s' \mid s, \eta(s)) V^{\dagger}(s'). \qquad V^{\dagger} = R + \gamma P^{\dagger} V^{\dagger}.$
16). V 1/s) = R1s) + y = P(s'1s, T'is)) V 1/s').
$V^{T'}(s) = R_{(s)} + \gamma \max_{\alpha \in A} \sum_{s \in S} P(s' s, T'(s)) V^{T}(s')$
> R ₁₅₎ + y \(\sum_{siec} \) P (s' s , \(\pi \) \) \(\V \) \(\T s' \)
= V ^T الى)