

${\rm CS1801-PROGRAMMING\ IN\ C\ LAB} \\ {\rm MODEL\ LAB\ EXAMINATION\ QUESTION\ PAPER\ -\ SESSION\ 1} \\$

Question 1

1. Given a string, write a C program count the number of vowels, space and consonants.

Example:

Input: a programming

Output: Vowels: 4, Space: 1, Consonants: 8

Algorithm	Functions	\mathbf{DMA}	\mathbf{CLA}	${f File}$	BPBC	Total
(30 Marks)	(20 Marks)	(20 Marks)	(10 Marks)	(10 Marks)	(10 Marks)	(100 Marks)

${\rm CS1801-PROGRAMMING\ IN\ C\ LAB} \\ {\rm MODEL\ LAB\ EXAMINATION\ QUESTION\ PAPER\ -\ SESSION\ 1} \\$

Question 2

1. Write a C program to find the longest word in a given sentence.

Example:

Input: Programming in C is enjoyable

Output: Programming

Algorithm	Functions	\mathbf{DMA}	\mathbf{CLA}	${f File}$	BPBC	Total
(30 Marks)	(20 Marks)	(20 Marks)	(10 Marks)	(10 Marks)	(10 Marks)	(100 Marks)

${\rm CS1801-PROGRAMMING\ IN\ C\ LAB} \\ {\rm MODEL\ LAB\ EXAMINATION\ QUESTION\ PAPER\ -\ SESSION\ 1} \\$

Question 3

1. Write a C program to check if a given substring exists within a string and find its starting position. The last word in the string is the substring to search. If it does not exist, return -1.

Example:

Input: A programming gram

Output: Substring 'gram' is found at position: 3

Algorithm	Functions	\mathbf{DMA}	\mathbf{CLA}	File	BPBC	Total
(30 Marks)	(20 Marks)	(20 Marks)	(10 Marks)	(10 Marks)	(10 Marks)	(100 Marks)

${\rm CS1801-PROGRAMMING\ IN\ C\ LAB} \\ {\rm MODEL\ LAB\ EXAMINATION\ QUESTION\ PAPER\ -\ SESSION\ 1} \\$

Question 4

1. Write a C program to check if a given number 'n' digit number is an Armstrong number.

Example:

Input: 9474

Output: 9474 is an Armstrong number

Explanation: A number is Armstrong if the sum of its digits raised to the power of the

number of digits equals the number itself.

$$9^4 + 4^4 + 7^4 + 4^4 = 9474$$

Algorithm	Functions	DMA	CLA	File	BPBC	Total
(30 Marks)	(20 Marks)	(20 Marks)	(10 Marks)	(10 Marks)	(10 Marks)	(100 Marks)