# Einführung in die Mathematik für Informatiker Lineare Algebra

Prof. Dr. Ulrike Baumann www.math.tu-dresden.de/~baumann

5.11.2018

## Die Lineare Algebra ist die Theorie der Vektorräume (und der linearen Abbildungen).

- Definition Vektor, Vektorraum
  2B ({(1/2)|2a.bek}) = Symbol für Addition, □ symbol für Staden-deiblichen) • Beispiele für Vektorräume
- Rechenregeln f
  ür Vektoren
- Untervektorräume

#### Definition Vektorraum

Sei K ein Körper.

Ein K-Vektorraum  $(V; +, (k \mid k \in K))$  (kurz: K-Vektorraum V) besteht aus einer

- Menge V, ≠∅
- einer Addition + und  $: \bigvee \times \bigvee \Rightarrow \bigcup : (\bigvee_{i}, \bigvee_{k}) \rightarrow \bigvee_{i} \biguplus \bigvee_{k} (\bigvee_{i \neq V_{k}})$

Kurt

• einer Skalarmultiplikation  $(k \mid k \in K)$ ,  $k \times \sqrt{\Rightarrow V} : (k, v) \Rightarrow \ker (kv)$ 

für die <u>die Eigenschaften</u> (V1) bis (V10) erfüllt sind.

Man spricht auch von einem Vektorraum über dem Körper K.

Die Elemente eines Vektorraums nennt man Vektoren.

Für  $K = \mathbb{R}$  heißt V reeller Vektorraum.

Für  $K = \mathbb{C}$  heißt V komplexer Vektorraum.

Ulrike Baumann

Lineare Algebra

## Vektorraum-Axiome

- (V1) Für je zwei Elemente  $v_1, v_2 \in V$  ist  $v_1 + v_2$  ein eindeutig bestimmtes Element von *V*.
- (V2) Es gilt  $v_1 + (v_2 + v_3) = (v_1 + v_2) + v_3$  für alle  $v_1, v_2, v_3 \in V$ .
- (V3) Es gilt  $v_1 + v_2 = v_2 + v_1$  für alle  $v_1, v_2 \in V$ .
- (V4) Es gibt ein Element 0 in V (Nullvektor) mit 0 + v = v + 0 = v für alle  $v \in V$ .
- (V5) Es gibt zu jedem  $v \in V$  ein Element -v in V mit v + (-v) = (-v) + v = 0.
- (V6) Für jedes  $k \in K$  und jedes  $v \in V$  ist kv ein eindeutig bestimmtes Element von V.
- (V7) Es gilt 1v = v für alle  $v \in V$ . When I des einselmat des kinjans
- (V8) Es gilt  $(k_1k_2)v = k_1(k_2v)$  für alle  $k_1, k_2 \in K$  und alle  $v \in V$ .
- (V9) Es gilt  $(k_1 + k_2)v = k_1v + k_2v$  für alle  $k_1, k_2 \in K$  und alle  $v \in V$ .
- (V10) Es gilt  $k(v_1 + v_2) = kv_1 + kv_2$  für alle  $k \in K$  und alle  $v_1, v_2 \in V$ .

Bem. [V7] Kann nicht weggelassen werden (V3) Kam weggelassen werden. (Kann aus den restlichen Axione hergeleitet werden Bem Orck OveV Rem Dor Nullveftor isk in jeden VR endering bestimmt, dan Annahne: O1, O2 Seien Wulliektoren und 0, 402 Ox = O, + Ox = O, Video Video Analme falsch

## Rechenregeln für Vektoren

Es sei V ein K-Vektorraum,  $0_K$  das Nullelement des Körpers K und  $0_V$  der Nullvektor aus V.

Dann gilt für alle Vektoren  $v \in V$  und alle Skalare  $k \in K$ :

(R1) 
$$0_K v = 0_V$$
 (kurz:  $0v = 0$ )

(R2) 
$$k0_V = 0_V$$
 (kurz:  $k0 = 0$ )

(R3) 
$$kv = 0_V \Rightarrow k = 0_K \text{ oder } v = 0_V \text{ (kurz: } k = 0 \text{ oder } v = 0)$$

(R4) 
$$(-k)v = -(kv)$$
, insbesondere:  $(-1)v = -v$ 



## Beispiele für Vektorräume

- $K^{m \times n}$  mit der Matrizenadditition und Skalarmultiplikation über dem Körper K 0 = Nullmatrix  $O_{max}$
- ullet  $\mathbb{R}^n:=\mathbb{R}^{n\times 1}, \quad \mathbb{C}^n:=\mathbb{C}^{n\times 1}, \quad \mathsf{GF}(2)^n:=\mathsf{GF}(2)^{n\times 1}$
- $\mathbb{R}$ ,  $\mathbb{C}$ , GF(2), allgemein: Körper K  $k! = \left\{ \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} \mid k_1 k_2 \dots k_n \right\} \quad \text{2.3 } \mathbb{R}^n$
- Linearcodes (Codierungstheorie)
- C[a, b]
   Die Vektoren sind reellwertige Funktionen, die auf dem reellen Intervall [a, b] stetig sind.
- $\mathcal{P}(M)$  für jede Menge M mit der Addition  $A + B := A \triangle B = A A$

VR von Abildungen. f: A>K nullvoktor f: A>K a>> Beziehungen: RDVR reeller VR. C> VR Konplexer VR Bom. (V. 4) ABELSche Gruppe +. 2-stalige - Stellige Operation 1V,4,(KKGK)) 

## Untervektorräume

- Det.
- Eine Teilmenge *U* eines *K*-Vektorraums *V* heißt Untervektorraum von *V*, wenn gilt:
  - (U1) U enthält den Nullvektor 0 von V.
  - (U2) Aus  $u_1 \in U$  und  $u_2 \in U$  folgt  $u_1 + u_2 \in U$ .
  - (U3) Aus  $k \in K$  und  $u \in U$  folgt  $ku \in U$ .
- Ein Untervektorraum eines K-Vektorraums V ist wieder ein K-Vektorraum (mit den Einschränkungen der Operationen von V auf U).
- Jeder Vektorraum V enthält die trivialen Untervektorräume {0} und V.
- Der Untervektorraum {0} des Vektorraums V wird <u>Nullraum</u> genannt.

# Aufgespannter Untervektorraum Span(T)

- Der Durchschnitt von Untervektorräumen des Vektorraums V ist ein Untervektorraum von V.
- Zu jeder Teilmenge T ⊆ V gibt es einen kleinsten Untervektorraum, der alle Elemente von T enthält.
   Insbesondere ist der Nullraum der kleinste Untervektorraum, der die leere Menge enthält.
- Sei V ein K-Vektorraum und T ⊆ V.
   Man nennt den kleinsten Untervektorraum von V,
   der alle Elemente von T enthält,
   den von T aufgespannten Untervektorraum von V.

Dieser Untervektorraum wird mit  $\underline{Span}(T)$  bezeichnet.