Contents

1	Sign	nal & Systems (Fundamental)	2
	1.1	Signal Definition	2
	1.2	Classification of Signals	3
		1.2.1 Dimensionality	3
		1.2.2 Time characteristics	3
		1.2.3 Value Characteristics	3
		1.2.4 Determinstic vs Random Signals	3
	1.3	Transformation of CT Signals	3
		1.3.1 Transformations	3
	1.4	Signal Characteristic	4
		1.4.1 Periodic signals	4
		1.4.2 Even and Odd Symmetry	5
		1.4.3 Average value and energy	5
	1.5	Exponential signals	5
	1.6	Sigularity functions	6
		1.6.1 Transformed rect functions	6
		1.6.2 Unit impulse function	6
		1.6.3 Practical impulse function	6
	1.7	Continuous-time system	6
		1.7.1 Classification of CT Systems	6
2	\mathbf{CT}	LTI Systems	8
	2.1	Introduction	8
	2.2	LTI system properties	8
		2.2.1 Properties of Convolution and Impulse Functions	8
	2.3		10
3	Fou	rier Series	10
	3.1		10
			11
	3.2	· · · · · · · · · · · · · · · · · · ·	11
			11
			11
		- · · · · · · · · · · · · · · · · · · ·	11
	3.3	· ·	11
	3.4	Synthesis	11
		· ·	12
			12
			12
	3.5		13
	3.6		13
		•	13
		3.6.2 Two-signal properties	15
		3.6.3 Parsecal's Relation for CT Periodic Signals	15

	3.7	Power density spectrum
		3.7.1 Rectangular Pulse train
	3.8	Fourier Series and LTI Systems
		3.8.1 Complex exponential signals
Į	Fou	rier Transform 16
	4.1	FT form FS
	4.2	Properties of CT FT
		4.2.1 Time-transformations
		4.2.2 Time shift
		4.2.3 Time scale
	4.3	Conjugation
		4.3.1 Hermitian symmetric
		4.3.2 Real and even
		4.3.3 Duality
		4.3.4 Time differentiation
		4.3.5 Frequency differentiation
	4.4	Convolution property

1 Signal & Systems (Fundamental)

1.1 Signal Definition

Definition 1.1.1 (Signal). Any "physical" quantity that varies with time or space (or other independent variables).

Example 1.1 (Ambulance Siren:).

$$s(t) = (1+t)\sin(2\pi[1000t + 10t^2 + 300\sin(2\pi t/2)]) \tag{1}$$

- \bullet (1 + t): amplitude term represents incresing loudness as ambulance approaches
- $\bullet~1000t:$ represents 1kHz siren oscillatione
- $10t^2$: increasing pitch due to the *Doppler effect* as the ambulance approaches.
- $300sim(2\pi 2t)$: the eeh-ooh-eeh-ohh periodic variation in pitch.

Definition 1.1.2 (Systems). A physical "devicec" that performs an operation on a signal.

Definition 1.1.3 (Signal Processing). Take some input signals and produce some related output signals.

Example 1.2 (audio amplifier).

$$S_{out}(t) = aS_{in}(t) \tag{2}$$

Emphasize on continuous-time of analog signals.

1.2 Classification of Signals

1.2.1 Dimensionality

- By the domain of the function, i.e. how many arguments a function has.
- By the dimension of the range of the function, i.e. the space of values the function can take.

1.2.2 Time characteristics

Definition 1.2.1 (Continuous-time Signal). A function defined for all times $t \in (-\infty, \infty)$, or at least some interval (a, b).

Classify signals by time characteristics

- Continuous-11:10 signals or analog signals
- Discrete-time signals

1.2.3 Value Characteristics

Definition 1.2.2 (continuous-valued signal or continuous-amplitude signal). Can take any value in some continuous interval.

Definition 1.2.3 (discrete-valued signal or discrete-amplitude signal). Only takes values from a discrete set of possible values.

1.2.4 Determinstic vs Random Signals

Definition 1.2.4 (Determinstic signals). Can be described by an explicit mathematical representation.

Definition 1.2.5 (Random signals). Evolve over time in an unpredictable manner.

1.3 Transformation of CT Signals

1.3.1 Transformations

- Time transformations
 - $\ \ Folding/reflecting/time-reversal$

$$y(t) = x(-t) \tag{3}$$

- Time-scaling

$$y(t) = x(at) (4)$$

- Time-shifting

$$y(t) = x(t - t_0) \tag{5}$$

General time transformations
 Involves all three of the above time transformations.

$$y(t) = x(at - b) = x(\frac{t - t_0}{w}) \tag{6}$$

where $t_0 = b/a$, w = 1/a

- Amplitude transformations
 - reverse

$$y(t) = -x(t) \tag{7}$$

- scaling

$$y(t) = ax(t) \tag{8}$$

- shifting

$$y(t) = x(t) + b (9)$$

• Differentiator

$$y(t) = \frac{d}{dt}x(t) \tag{10}$$

Example 1.3.

$$y(t) = -RC\frac{d}{dt}x(t) \tag{11}$$

• Integrator

$$y(t) = \int_{-\infty}^{t} x(\tau)d\tau \tag{12}$$

Example 1.4.

$$y(t) = -\frac{1}{RC} \int_{-\infty}^{t} x(\tau)d\tau \tag{13}$$

• Operation with two signals Sum or product at any point

1.4 Signal Characteristic

1.4.1 Periodic signals

$$x(t+T) = x(t)\forall t \tag{14}$$

if no T exists, called aperiodic.

Definition 1.4.1 (Fundamental Period). Smallest T_0 of T.

Theorem 1.4.1. With period T > 0,

$$x(t+nT) = x(t) (15)$$

Sum of two periodic signals

Suppose a value T > 0 satisfies $T = n_1 T_1$ and $T = n_2 T_2$ then, $\mathbf{x}(t)$ is periodic with period T.

Theorem 1.4.2. A sum of two periodic signals is period iff the ratio od their periods is rational.

1.4.2 Even and Odd Symmetry

Definition 1.4.2 (Even Symmetry). iff $x(-t) = x(t) \forall t$

Definition 1.4.3 (Odd Symmetry). iff $x(-t) = x(t) \forall t$

Even and Odd Components

We can decompose any signal into even and odd components:

$$x(t) = x_e(t) + x_o(t) \tag{16}$$

$$x_e(t) = \frac{1}{2}[x(t) + x(-t)], \quad x_o(t) = \frac{1}{2}[x(t) - x(-t)]$$
 (17)

1.4.3 Average value and energy

Definition 1.4.4 (Average Value).

$$A = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)dt \tag{18}$$

Definition 1.4.5 (Energy).

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt \tag{19}$$

Definition 1.4.6 (Average Power).

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \tag{20}$$

Definition 1.4.7 (Energy Signal). If E is finite, then x(t) is called energy signal and P = 0.

Definition 1.4.8 (Power Signal). If E is infinite and P is finite and nonzero, x(t) is called power signal.

1.5 Exponential signals

To be done

1.6 Sigularity functions

1.6.1 Transformed rect functions

 $rect(\frac{t-t_0}{T})$ centered ar t_0 with width T.

1.6.2 Unit impulse function

 $\delta(t)$, area is 1 and width is 0 relationships: $\delta(t) = \frac{d}{dt}u(t)$, $u(t) = \int_{-\infty}^{t} \delta(\tau)d\tau$ scaling property: $\delta(at+b) = \frac{1}{|a|}\delta(t+b/a)$

1.6.3 Practical impulse function

$$\delta_{\Delta}(t) = \begin{cases} \frac{1}{\Delta}, & 0 < t < \Delta \\ 0, & otherwise \end{cases}$$
 (21)

width approaches zero as $\Delta \to 0$; height approaches infinity as $\Delta \to 0$

$$\delta(t) = \lim_{\Delta \to 0} \delta_{\Delta}(t) \tag{22}$$

1.7 Continuous-time system

Definition 1.7.1 (Continuous-time(CT) System). a device that transforms input CT signal into another output CT signal.

$$y(\cdot) = \mathcal{T}(x(\cdot)) \tag{23}$$

Definition 1.7.2 (Input-output Relationship). Precisely defines how the output signal is related to the input signal.

• Series connection

$$x(t) \to \boxed{\mathcal{T}_1} \to \boxed{\mathcal{T}_2} \to y(t)$$
 (24)

$$y(t) = \mathcal{T}_2[\mathcal{T}_1[x(t)]] \tag{25}$$

• Parallel connection

$$y(t) = \mathcal{T}_1[x(t)] + \mathcal{T}_2[x(t)] \tag{26}$$

1.7.1 Classification of CT Systems

- Amplitude properties
 - A-1 linearity

$$\mathcal{T}[a_1x_1(t) + a_2x_2(t)] = a_1\mathcal{T}[x_1(t)] + a_2\mathcal{T}[x_2(t)] \tag{27}$$

Property

$$\mathcal{T}[ax(t)] = a\mathcal{T}[x(t)] \tag{28}$$

superpostion property

$$\mathcal{T}\left[\sum_{k=1}^{K} \mathcal{T}[x_k(t)]\right] \tag{29}$$

$$\mathcal{T}[\int x(t;v)dv] = \int \mathcal{T}[x(t;v)]dv \tag{30}$$

A-2 stability
 Satisfy BIBO

Definition 1.7.3 (Bounded-input Bounded-output (BIBO) stable). Every bounded input produces a bounded output

Triangle Inquality

$$\left|\sum_{n} a_n\right| \le \sum_{n} |a_n| \tag{31}$$

- invertibility

Definition 1.7.4 (invertible). each output signal is the response to only one input signal.

Property

$$\mathcal{T}^{-1}[\mathcal{T}[x(t)]] = x(t) \tag{32}$$

- Time properties
 - T-1 causality

Definition 1.7.5 (Casual System). The output y(t) at time t only depends on the present and (possibly) past inputs, not on future inputs.

Noncasual systems arise often when t is other variables than time, such as space.

- T-2 memory

Definition 1.7.6 (Static system or Memoryless System). The output y(t) at time t only depends on the current input x(t). Otherwise is a dynamic system.

 T-3 time-invariance Systems whose input-output behavior does not change with time

Definition 1.7.7 (Time Invariant).

$$x(t) \xrightarrow{\mathcal{T}} y(t)$$
 implies that $x(t - t_0) \xrightarrow{\mathcal{T}} y(t - t_0)$ (33)

2 CT LTI Systems

2.1 Introduction

Primary forcus: CT linear-time-variant (LTI) systems. Overview:

$$x(t) \rightarrow \boxed{LTI \ with \ imulse \ response \ h(t)} \rightarrow y(t) = x(t) * h(t)$$
 (34)

where $\delta(t) \xrightarrow{\mathcal{T}} h(t)$

Input-output relationships (given by convolution intergral):

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau \tag{35}$$

- Any system whose input and output can be discribed by the above form is LTI system
- An LTI system is completely described by its impulse response h(t)
- We can determine the response y(t) due to any input signal with impulse response.

2.2 LTI system properties

2.2.1 Properties of Convolution and Impulse Functions

• commutative property

$$x(t) * h(t) = h(t) * x(t)$$
 (36)

• associative property

$$[x(t) * h_1(t)] * h_2(t) = x(t) * [h_1(t) * h_2(t)]$$
(37)

• distributive property

•

$$x(t) * \delta(t) = x(t) \tag{38}$$

• delay property

$$x(t) * \delta(t - t_0) = x(t - t_0)$$
(39)

• If y(t) = x(t) * h(t), then $x(t - t_0) * h(t - t_1) = y(t - t_0 - t_1)$

there are four remaining properties in terms of h(t).

• T-1 casusality

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$
$$= \int_{0}^{\infty} h(\tau)x(t-\tau)d\tau + \int_{-\infty}^{0^{-}} h(\tau)x(t-\tau)d\tau$$

Definition 2.2.1 (LTI causal). An LTI system is causal iff its impulse response h(t) = 0 for all t < 0.

then using $\tau' = t - \tau$

$$y(t) = \int_0^\infty h(\tau)x(t-\tau)d\tau = \int_{-\infty}^t x(\tau')h(t-\tau')d\tau'$$
 (40)

• T-2 memory

Definition 2.2.2 (LTI memoyless). Iff its impulse response is $h(t) = a\delta(t)$. Otherwise is dynamic.

In this case, the response is y(t) = ax(t)There are two classes of dynamic systems:

Definition 2.2.3 (finite impulse response (FIR)). hash(t) that is nonzero only within some finite interval $t_1 < t < t_2$.

Definition 2.2.4 (infinite impulse response (IIR)). has h(t) that persists indefinitely.

• A-2 stability Suppose x(t) is a bounded input signal $|x(t)| \leq M_x < \infty \ \forall t$.

$$|y(t)| = |\int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau|$$

$$\leq \int_{-\infty}^{\infty} |h(\tau)x(t-\tau)|d\tau \quad (trangle \ inequality)$$

$$= \int_{-\infty}^{\infty} |h(\tau)||x(t-\tau)|d\tau$$

$$\leq M_x \int_{-\infty}^{\infty} |h(\tau)|d\tau$$

So, sufficient condition:

$$\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty \tag{41}$$

Definition 2.2.5 (LTI BIBO stable). Iff its imppluse response is absolutely integrable, i.e. $\int_{-\infty}^{\infty} |h(t)| dt < \infty$

• A-3 invertibility Fact: if a system is LTI, then if it is also invertible, the inverse system is also LTI.

$$x(t) \to \boxed{LTI\ h(t)} \to y(t) \to \boxed{LTIh_i(t)} \to z(t) = x(t)$$
 (42)

The cascade of two LTI system is also LTI.

Definition 2.2.6 (LTI invertible). If the system is invertible, then

$$h(t) * h_i(t) = \delta(t) \tag{43}$$

2.3 Step response

A way to find the impluse response h(t) of an LTI system in practice.

3 Fourier Series

3.1 LTI system response for complex-exponential input signals

What happens when pass e^{st} through an LTI system

$$x(t) = e^{st} \to \boxed{LTI\ h(t)} \to y(t)$$
 (44)

By convolution integral:

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$
$$= \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)}d\tau$$
$$= e^{st} \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau$$

so,

$$x(t) = e^{st} \to \boxed{LTI\ h(t)} \to y(t) = e^{st}H(s)$$
 (45)

where,

$$H(s) := \int_{-\infty}^{\infty} h(t)e^{-st}dt$$
(46)

is the system **transfer function**. Also, H(s) is the Laplace transform of h(t). Remark: So the exponential signal passed through an LTI system produces the same exponential signal, but scaled by H(s).

An important case: $s = j\omega$

$$x(t) = e^{j\omega t} \to \boxed{LTI\ h(t)} \to y(t)$$
 (47)

$$y(t) = H(j\omega)e^{j\omega t} = |H(j\omega)|e^{j\angle H(j\omega)}e^{j\omega t} = |H(j\omega)|e^{j[\omega t + \angle H(j\omega)]}$$
(48)

- The quantity $H(j\omega)$ is called **frequency response** of the system, and is often just written $H(\omega)$
- In general $H(\omega)$ is complex, so both the magnitude and phase of the complex-exponential signals are affected.

3.1.1 Eigenfunction and eigenvalues

Definition 3.1.1 (eigenfucntion & eigenvalues). When a signal has the property that when passing through a system, it yields the same signal scaled by a (perhaps complex) constant, the signal is called an eigenfucntion and the scaling factor is called the eigenvalues.

- eigenfuction: e^{st}
- eigenvalues: H(s)

3.2 Preview

3.2.1 Euler's identity

$$e^{j\theta} = \cos\theta + j\sin\theta \tag{49}$$

$$\cos\theta = \frac{1}{2}(e^{j\theta} + e^{-j\theta}), \quad \sin\theta = \frac{1}{2j}(e^{j\theta} - e^{-j\theta})$$
 (50)

3.2.2 Multiplication in frequency domain

$$e^{j\omega t} \to \boxed{LTI\ h(t)} \to H(j\omega)e^{j\omega t}$$
 (51)

Thus, by linearity:

$$x(t) = \sum_{k=1}^{\infty} c_k e^{j\omega_0 kt} \to \boxed{LTI\ h(t)} \to y(t) = \sum_{k=1}^{\infty} c_k H(j\omega_0 k) e^{j\omega_0 kt}$$
 (52)

Convolution in time domain becomes multiplication in frequency domain.

3.2.3 Periodic signal

When an periodic signal is passed through an LTI system

- the output is also periodic
- the Fourier series of the output has coefficients $c_k H(j\omega_0 k)$, where the c_k are the Fourier series coefficients of the input signal.

3.3 Fourier Series

3.4 Synthesis

Definition 3.4.1 (Synthesis). A periodic signal x(t) with fundamental period T_0 has the following **Fourier Series** representation:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$
 (53)

called synthesis equation.

• T_0 : fundamental period

• ω_0 : fundamental frequency. $\omega_0 = 2\pi/T_0$

• c_k : Fourier coefficients

• $k\omega_0$: the kth harmonic

Analysis equation

Compute the Fourier coefficients by the following formula,

$$c_k = \frac{1}{T_0} \int_{T_0} x(t)e^{-jk\omega_0 t} dt, k = 0, \pm 1$$
 (54)

 \int_{T_0} denotes the integration over one period. Note that for k = 0, we get the average value or DC value of the signal:

$$c_0 = \frac{1}{T_0} \int_{T_0} x(t)dt \tag{55}$$

Definition 3.4.2 (Fourier series of periodic CT signal).

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}, synthesis equatio$$
 (56)

$$c_k = \frac{1}{T_0} \int_{T_0} x(t)e^{-jk\omega_0 t} dt, k = 0, \pm 1, \ analysis equation$$
 (57)

The above is called the exponential form of Fourier series. And can be applied to complex-value signals.

Hermitian symmetry

There two other FS forms that are useful for real signals. To derive these forms, we first need the following fact:

Definition 3.4.3 (Hermitian symmetry). If x(t) is real, then $c_{-k} = c_k^*$

Trigonometric forms of FS

Although exponential form is useful, often we want a real representation.

Definition 3.4.4 (Combined trigonometric form).

$$x(t) = c_0 + \sum_{k=1}^{\infty} 2|c_k|\cos(k\omega_0 t + \theta_k)$$
(58)

where

$$c_k = |c_k|e^{j\theta_k} \tag{59}$$

How to derive this:

- if x(t) is real, $c_{-k} = c_k^*$
- thus if $c_k = |c_k|e^{j\theta_k}$ then $c_{-k} = |c_k|e^{-j\theta_k}$, where $\theta_k = \angle c_k$

Definition 3.4.5 (Trigonometric form).

$$x(t) = c_0 + 2\sum_{k=1}^{\infty} A_k \cos(k\omega_0 t) - B_k \sin(k\omega_0 t)$$
(60)

where $A_k = Real(c_k), B_k = Imag(c_k).$

3.5 Convergence of Fourier Series

In practice we use finite series approximation:

$$x_N(t) = \sum_{k=-N}^{N} c_k e^{jk\omega_0 t}$$

$$\tag{61}$$

The error signal:

$$e_N(t) := x(t) - x_N(t)$$
 (62)

Definition 3.5.1 (Dirichlet conditions). Following conditions:

• x(t) bounded, or absolutely integrable:

$$\int_{T_0} |x(t)| dt < \infty \tag{63}$$

- has a finite number of max and min in each period
- has at most a finite number of finite discontinuities over one period.

With this condition

$$e_N(t) \to 0 \text{ as } N \to \infty$$
 (64)

3.6 Properties of CT Fourier series

3.6.1 One-signal properties (Fourier series transformations)

From signal x(t)

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$
 (65)

transform(by a time or amplitude transformation) to form y(t), when y(t) is also periodic, can also express y(t) by a FS:

$$y(t) = \sum_{k=-\infty}^{\infty} d_k e^{jk\omega_1 t}$$
 (66)

where ω_1 is the fundamental frequency of y(t), and may not equal to ω_0 . While we don't want to recompute everything, so we need to know the properties.

Amplitude transformations

$$d_k = \begin{cases} b + ac_0, & k = 0\\ ac_k, & k \neq 0 \end{cases}$$

$$(67)$$

General time transformations

$$y(t) = ax(t) = b (68)$$

$$y(t) = x(at+b) = \sum_{k=-\infty}^{\infty} d_k e^{jk\omega_1 t}$$
(69)

$$d_k = c_k e^{jk\omega_0 b} (70)$$

where $\omega_1 = a\omega_0$

Time reversal

$$y(t) = x(-t) \tag{71}$$

$$d_k = c_{-k} \tag{72}$$

Time shifting

$$y(t) = x(t = t_0) \tag{73}$$

$$d_k = c_k e^{-jk\omega_0 t_0} \tag{74}$$

Conjugation

$$y(t) = [x(t)]^* \tag{75}$$

$$d_k = c_{-k}^* \tag{76}$$

Complex modulation(frequency shift)

$$y(t) = x(t)e^{j\omega_0 tN} \tag{77}$$

$$d_k = c_{k-N} \tag{78}$$

meaning that the coefficients are all shifted by N.

Differentiation

$$y(t) = \frac{d}{dt}x(t) \tag{79}$$

$$d_k = jk\omega_0 c_k, \ k \neq 0 \tag{80}$$

3.6.2 Two-signal properties

Multiplication

$$c_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l} \tag{81}$$

this is called discrete convolution.

Circular convolution

$$y(t) = \frac{1}{T_0} \int_{T_0} x_1(t-\tau)x_2(\tau)d\tau$$
 (82)

$$d_k = a_k b_k \tag{83}$$

3.6.3 Parsecal's Relation for CT Periodic Signals

$$P = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |c_k|^2$$
 (84)

3.7 Power density spectrum

A plot that shows how much power the signal has in each frequency component $k\omega_0$. It is a plot of component power $|c_k|^2$ vs frequency $k\omega_0$

3.7.1 Rectangular Pulse train

For $x(t) = \sum_{n=-\infty}^{\infty} rect(\frac{t-nT_0}{w})$, its FS:

$$c_k = \frac{w}{T_0} sinc(kw \frac{\omega_0}{2\pi}) \tag{85}$$

where the sine cardinal function is:

$$sinc(x) := \begin{cases} \frac{sin\pi x}{\pi x}, & x \neq 0\\ 1, & x = 0 \end{cases}$$
(86)

3.8 Fourier Series and LTI Systems

3.8.1 Complex exponential signals

$$x(t) = e^{j\omega t} \rightarrow \boxed{LTI\ h(t)} \rightarrow = H(j\omega)e^{j\omega t} = |H(j\omega)|e^{j(\omega t + \angle H(j\omega))}$$
 (87)

Mathematical review

Polar form:

$$z = |z|e^{j\theta}, \quad |z| = \sqrt{x^2 + y^2}, \ \theta \tag{88}$$

4 Fourier Transform

For an aperiodic signal f(t), derive the following relationships:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{j\omega t} d\omega, \ F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$
 (89)

The functions f(t) and F(t) are called Fourier transform pairs and we write

$$f(t) \stackrel{\mathcal{F}}{\leftrightarrow} F(t)$$
 (90)

4.1 FT form FS

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \stackrel{\mathcal{F}}{\leftrightarrow} X(\omega) = \sum_{k=-\infty}^{\infty} c_k 2\pi \delta(\omega - k\omega_0)$$
 (91)

4.2 Properties of CT FT

4.2.1 Time-transformations

$$f(at+b) \stackrel{\mathcal{F}}{\leftrightarrow} \frac{1}{|a|} e^{j\omega b/a} F(\omega/a)$$
 (92)

4.2.2 Time shift

$$f(t - t_0) \stackrel{\mathcal{F}}{\leftrightarrow} e^{-j\omega t_0} F(\omega) \tag{93}$$

4.2.3 Time scale

$$f(at) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{|a|} F(\omega/a)$$
 (94)

4.3 Conjugation

$$f^*(t) \stackrel{\mathcal{F}}{\leftrightarrow} F^*(-\omega)$$
 (95)

4.3.1 Hermitian symmetric

if f(t) is real,

$$F(\omega) = F^*(-\omega) \tag{96}$$

4.3.2 Real and even

- If f(t) is real and even, F(t) is also real and even
- If f(t) is real and odd, F(t) is purely imaginary and odd.

4.3.3 Duality

FT pairs has the following dual relationship.

$$x(t) = F(t) \stackrel{\mathcal{F}}{\leftrightarrow} X(\omega) = 2\pi f(-\omega)$$
 (97)

4.3.4 Time differentiation

$$\frac{d^k}{dt^k}f(t) \stackrel{\mathcal{F}}{\leftrightarrow} (j\omega)^k F(\omega) \tag{98}$$

4.3.5 Frequency differentiation

$$(-jt)^n f(t) \stackrel{\mathcal{F}}{\leftrightarrow} \frac{d^n}{d\omega^n} F(\omega) \tag{99}$$

4.4 Convolution property

$$y(t) = h(t) * x(t) \stackrel{\mathcal{F}}{\leftrightarrow} Y(\omega) = H(\omega)X()$$
 (100)