Organização de genomas fúngicos

Profa. Dra. Chirlei Glienke BIOGEMM-UFPR

Genomas eucarióticos - Conceitos básicos

Anatomia de um cromossomo eucariótico

Heterocromatina: cromatina densa

Eucromatina: cromatina menos densa

Telômeros e centrômeros

Sequencia telomérica de muitos eucariotos incluindo muitos fungos: TTAGGG Sequencia telomérica de *Sacharomyces cerevisae:* TG1-3/C1-3A)

Species	Sequence	Reference	
Neurospora crassa	TTAGGG	Schechtman 1990	
Fusarium oxysporum	TTAGGG	Powell and Kistler 1990	
Histoplasma	TTAGGG	Woods and Goldman	
capsulatum		1992	
Cladosporium fulvum	TTAGGG	Coleman et al. 1993	
Podospora anserina	TTAGGG	Javerzat et al. 1993	
Ustilago maydis	TTAGGG	Guzman and Sanchez 1994	
Magnaporthe grisea	TTAGGG	Farman and Leong 1995	
Pneumocystis carinii	TTAGGG	Underwood et al. 1996	
Aspergillus nidulans	TTAGGG	Bhattacharyya and Black- burn 1997	
Aspergillus oryzae	TTAGGGTCAACA	Kusumoto et al. 2003	
Cryptococcus	TTAG ₃₋₅	Edman 1992	
neoformans			
Schizosaccharomyces	T ₁₋₂ ACA ₀₋₁ C ₀₋₁ G ₁₋₆	Matsumoto et al. 1987	
pombe			
Saccharomyces	$TG_{2-3}(TG)_{1-6}$	Shampay et al. 1984	
cerevisiae			
Saccharomyces	TG ₂₋₃ (TG) ₁₋₆	Cohn et al. 1998	
exiguus			
Saccharomyces	TCTGGGTG	Cohn et al. 1998	
castellii,			
Saccharomyces	TCTGGGTG	Cohn et al. 1998	
dairenensis			
Saccharomyces	GACATGCGTACTGTGAGGTCT	Cohn et al. 1998	
kluyveri	GGGTG		
Candida albicans	TCTAACTTCTTGGTGTACGGA	McEachern and Hicks	
	TG	1993	
Candida	TACTGGTG	McEachern and Black-	
guilliermondii		bum 1994	
Candida glabrata	CTGTGGGGTCTGGGTG	McEachern and Black-	
		burn 1994	
Candida maltosa	CAGACTCGCTTGGTGTACGGA	McEachern and Black-	
	TG	bum 1994	
Candida tropicalis	TCACGATCATTGGTGTA(A/C)G	McEachern and Black-	
	GATG	burn 1994	
Candida	TGATTAGTTATGTGGTGTACG	McEachern and Black-	
pseudotropicalis	GATT	burn 1994	
Kluyveromyces lactis	TGATTAGGTATGTGGTGTACG	McEachern and Black-	
	GATT	burn 1994	

The sequence corresponding to the template region of the S. cerevisiae telomerase RNA, ACCACACCACACA, is also found in the Saccharomyces species S. paradoxus, S. cariocanus, S. mikatae, S. kudriavzevii, S. bayanus, and S. pastorianus (Dandjinou et al. 2004).

Sequências teloméricas em fungos

Topics in Current Genetics, Vol. 15
P. Sunnerhagen, J. Piškur (Eds.): Comparative Genomics
DOI 10.1007/4735_108 / Published online: 11 October 2005
© Springer-Verlag Berlin Heidelberg 2005

Figure 1. Overview of telomere structure. The terminal ends of mammalian chromosomes consist of an array of (TTAGGG)_n repeats ending with a 3' overhang of between 50 and 300 nt in length (A). This array is bound by many protein components including members of the shelterin complex, which anchors to the repeat array through Telomere Repeat binding Factors 1 & 2 (TRF1 and TRF2), binding repeats as a homodimer, and forming a complex with TIN2 (TRF1-interacting factor), RAP1 (Repressor Activator Protein 1), TPP1 and POT1 (Protection of Telomere 1) (A). The repeat array folds into a higher-order t-loop structure where the 3' overhang displaces a portion of the forward strand to create a d-loop, thereby sequestering the free chromosome end from the DNA repair machinery (B).

CENTRIC CHROMATIN

PERICENTRIC CHROMATIN

PERICENTRIC CHROMATIN

Fig 1. Five key determinants of centromere identity in pathogenic fungi.

Sequencias repetitivas em centrômeros de Verticillium dahliae

Sequencias repetitivas: dispersas e in tandem

Organização da cromatina de eucariotos – estrutura e função

Mecanismos epigenéticos

- 1. Metilação do DNA
- 2. Modificação das histonas
- 3. Modificação por RNAi

Metilação de DNA

SAM: S-adenosil-metionina (doador do grupo metil)

SAH: S-adenosil-homocisteína

DNMT: DNA metiltransferase

Metilação do DNA

Ocorre no carbono 5
 de uma citosina que
 geralmente precede
 uma guanina (CpG)

Modificação de histonas

Enzimas: histonas acetilases (HATs) histonas desacetilases (HDs ou HDACs)

Modificação de histonas

Modificação de histonas

Regiões da cromatina transcricionalmente ativas tendem a estar hiperacetiladas e hipometiladas.

Organização de genes eucariotos

Organização de genes eucariotos

Estrutura de genes eucarióticos

Recomposição de mRNA - remoção de íntrons

Sítios canônicos e não canônicos de splicing em animais, fungos e plantas

Table 1. Splice site combination frequencies in animals, fungi, and plants. Only the most frequent combinations are displayed here, and all minor non-canonical splice site combinations are summarized as one group ("Others"). A full list of all splice site combinations is available (Files S1 and S2).

	GT-AG	GC-AG	AT-AC	Others
Animals	98.334%	0.983%	0.106%	0.577%
Fungi	98.715%	1.009%	0.019%	0.257%
Plants	97.886%	1.488%	0.092%	0.534%
All	98.265%	1.074%	0.101%	0.560%

Sítios adjacentes ao sítio de splicing GA-AG

Figure 2. Flanking positions of GA-AG splice site combinations in *Eurytemora affinis* (**a**,**b**) and *Oikopleura dioica* (**c**,**d**). All splice site combinations (**a**,**c**) as well as all 5795 with RNA-Seq data supported splice site combinations (**b**,**d**) of these two species were investigated. Seven exonic and seven intronic positions are displayed at the 5' and 3' splice sites. Underlined bases represent the terminal dinucleotides of the intron, i.e., the 5' and 3' splice site.

Recomposição de mRNA – remoção de íntrons

- Ocorre no núcleo
- Mediado pelo spliceosomo
- Unidades do spliceosomo:
 - Ribonucleoproteínas
 - Proteínas e RNAs

Recomposição de mRNA - remoção de íntrons

Estrutura e organização de mRNA

Variação entre genes do mesmo organismo

Genomas – variação inter e intra grupos taxonômicos

Genomas de fungos fitopatogênicos

Variação em tamanho de genoma, sequências repetitivas, número de cromossomos, número de genes e compartimentalização

Diversidade de TEs entre genomas de fungos

Fig 7. Phylogeny and repeat content of eighteen fungal species. Maximum-likelihood phylogeny inferred with RAxML based on 551 genes and 100 bootstraps. Percentages of assembly gaps are shown near to each bar. Dashed lines are used to align each branch to the tip.

Silenciamento de transposons

Compartimentos do genoma x core genoma

NATURE REVIEWS | MICROBIOLOGY VOLUME 15 | DECEMBER 2017 | 757

Mareike Möller and Eva H. Stukenbrock - doi:10.1038/nrmicro.2017.76

Compartimentalização de genomas - Efetores

- Podem ser encontrados:
 - dispersos no genoma associação com elementos repetitivos
 - organizados em clusters no genoma em regiões específicas compartimentalização
- Compartimentalização do genoma implicações:
 - Em nível funcional: co-regulação
 - Sequencias regulatórias compartilhadas
 - Regulação epigenética
 - Em nível evolutivo
 - Clusters podem ser co-transferidos horizontalmente como uma unidade de função
 - Co-segregação de alelos
 - Alta taxa de mutação

Conceito two-speed

- Housekeeping genes (HG)
 - Conservados seleção

- Não HG
 - Exemplos:
 - efetores
 - metabolismo secundário
 - Rápida evolução Isolados da mesma espécie:
 - Apenas moderada sintenia (colinearidade de genes)
 - Frequente polimorfismo gênico e cromossômico

Conceito Genomas two-speed (Doing et al., 2015)

- Presença de compartimentalização física do genoma
- Diferentes taxas de evolução nos dois compartimentos
 - Taxa de mutação por unidade de tempo
- Genomas de fungos fitopatogênicos:
 - Compartimentalizados
 - Arquitetura de genoma mosaico regiões:
 - densas em genes (genes housekeeping conservados) e pobres em sequencias repetitivas
 - Esparsas em genes e ricas em regiões repetitivas, contendo genes associados a virulência de rápida evolução
 - Presença de AT-rich isochores e cromossomos acessórios

Variações do conceito

MOLECULAR PLANT PATHOLOGY (2019) **20**(1), 3–7 DOI: 10.1111/mpp.12738

Dinâmica de cromossomos acessórios

Exemplo de região acessória e de core genoma no mesmo cromossomo

