# MSSPQ: Multiple Semantic Structure-Preserving Quantization for Cross-Modal Retrieval

Lei Zhu, Liewu Cai, Jiayu Song Xinghui Zhu, Chengyuan Zhang\*, Shichao Zhang\*

College of Information and Intelligence, Hunan Agricultural University Changsha, Hunan, P.R. China School of Computer Science and Engineering, Central South University Changsha, Hunan, P.R. China

## Content

- **♦** Motivation
- Related Work
- **Contribution**
- Problem Definition
- **♦** The Method
- **Experiment**
- **Conclusion**

## Motivation

we investigate how to capture multiple semantic correlation to boost cross-modal hashing learning.

## Related Work

According to the representation type of multimedia instances, cross-modal retrieval can be divided into two groups: real-valued representation based retrieval and binary representation (hash code) based retrieval.

- real-valued representation based retrieval
  - CCA, LDA
- binary representation based retrieval
  - MDCH

## Contributions

- I. A very efficient end-to-end cross-modal hashing framework, named MSSPQ
- II. A novel multiple deep semantic correlation learning method, which contains inter-modal pairwise correlation learning, intra-modal pairwise correlation learning, Cosine correlation learning and hashing learning.
- III. We conduct extensive experiments on three commonly used multimedia datasets to comprehensively evaluate the performance of our method.

#### Problem Definition

• Let  $O = \{ \langle I_i, T_i, L_i \rangle \}_{i=1}^n$  be a multimedia dataset containing n pairs of an image and a text with a category label, where  $\langle I_i, T_i, L_i \rangle$  denotes a triplet of i-th pair of image  $I_i$  and text  $T_i$  with their corresponding category label  $L_i$ . For Txt2Img retrieval:

$$R = \{I | I \in O, I^{'} \in O \setminus R, D_{H}(\Phi_{T}(T_{q}; \theta_{T}), \Phi_{I}(I; \theta_{I})) > D_{H}(\Phi_{T}(T_{q}; \theta_{T}), \Phi_{I}(I^{'}; \theta_{I}))\}$$

where R is the result set,  $\theta_T$  and  $\theta_I$  are the parameter vectors.  $D_H(\cdot, \cdot)$  is the Hamming distance function which is to measure the semantic similarity between two different modal objects in Hamming subspace. To realize the projections Txt2Img and Img2Txt, we propose a very efficient end-to-end cross-modal hashing framework, named MSSPQ, which aims to generate high-quality cross-modal hash codes by enhancing semantic similarity preserving.

#### The Framework



This model consists of three components: (1) cross-modal embedding; (2) hashing learning module; (3) multiple correlation learning module.

#### Cross-Modal Embedding

#### Image Feature Embedding



For image modality, ResNet34 is used to extract visual features.

#### Text Feature Embedding



For text modality, each sample is firstly encoded by BoW model, and then fed into a multi-scale fusion model.

• Multiple Correlation Learning



To capture comprehensive semantic correlation, multiple correlation loss, including inter-modal pairwise correlation loss, intra-modal pairwise correlation loss, as well as Cosine correlation loss are involved.

Inter-Modal Pairwise Correlation Loss: the pairwise correlation is implemented by negative log likelihood function of similarity probability, which is formulated as:

$$L_1 = -\sum_{i,j=1}^{n} (S_{ij}^{iT} \cdot \phi_{ij}^{iT} - \log(1 + e^{\phi_{ij}^{iT}}))$$

where  $S_{ij}^{IT} \in \{0,1\}$  denotes the similarity between image  $I_i$  and text  $T_j$ .  $\phi_{ij}^{IT} = \frac{1}{2}F_{i*}^TG_{j*}$  is the inner product of representations generated by V-Net and T-Net.

To capture comprehensive semantic correlation, multiple correlation loss, including inter-modal pairwise correlation loss, intra-modal pairwise correlation loss, as well as Cosine correlation loss are involved.

Intra-Modal Pairwise Correlation Loss: we utilize intra-modal pairwise correlation learning to training the cross-modal embedding model:

$$L_{2}^{I} = -\sum_{i,j=1}^{n} (S_{ij}^{II} \cdot \phi_{ij}^{II} - \log(1 + e^{\phi_{ij}^{II}}))$$

$$L_{2}^{T} = -\sum_{i,j=1}^{n} (S_{ij}^{TT} \cdot \phi_{ij}^{TT} - \log(1 + e^{\phi_{ij}^{TT}}))$$

where  $L^{I}$  denotes the intra-modal pairwise correlation loss for image modality,  $L^{T}$  denotes the intra-modal pairwise correlation loss for text modality.

To capture comprehensive semantic correlation, multiple correlation loss, including inter-modal pairwise correlation loss, intra-modal pairwise correlation loss, as well as Cosine correlation loss are involved.

Cosine Correlation Loss: the cosine similarity between sample labels and the cosine similarity between sample features are defined as:

$$S_{ij}^{c} = \frac{I_{i*}}{\|I_{i*}\|_{F}^{2}} \cdot \frac{I_{j*}^{T}}{\|I_{j*}\|_{F}^{2}} \qquad Cos(F_{i*}, G_{j*}) = \frac{F_{i*}}{\|F_{i*}\|_{F}^{2}} \cdot \frac{G_{j*}^{T}}{\|G_{j*}\|_{F}^{2}}$$

Thus, the inter-modal label pairwise Cosine similarity loss can be defined as:

$$L_3 = \sum_{i,j=1}^{n} (S_{ij}^c - Cos(F_{i*}, G_{j*}))^2$$

To capture comprehensive semantic correlation, multiple correlation loss, including inter-modal pairwise correlation loss, intra-modal pairwise correlation loss, as well as Cosine correlation loss are involved.

Cosine Correlation Loss: To preserve more semantic Cosine similarity between samples within modality, the intra-modal label pairwise Cosine similarity loss can be defined as  $L_4 = L_4^I + L_4^T$ :

$$L_{4}^{I} = \sum_{i,j=1}^{n} (S_{ij}^{c} - Cos(F_{i*}, F_{j*}))^{2}$$

$$L_4^T = \sum_{i,j=1}^n (S_{ij}^c - Cos(G_{i*}, F_{j*}))^2$$

Minimizing  $L_3$  and  $L_4$  can learn more multiple label Cosine similarity so as to preserve much more semantic structure information.

#### • Hashing Learning

For cross-modal representations F and G, we utilize a sign function  $sign(\cdot)$  to generate binary hash codes, namely,  $H^I = sign(F)$  and  $H^T = sign(G)$ . Using the same hash code for different modalities can improve the training effect, in this article we set  $H^I = H^T = H$ . To make the approximate hash code output by the V-Net and T-Net similar to the binary representation, we define quantization loss  $L_5$  as follows:

 $L_5 = ||H - F||_F^2 + ||H - G||_F^2$ 

Overall, the total objective function is:

$$\underset{H,\theta_{I},\theta_{T}}{\text{arg min }} L_{total} = L_{1} + L_{2} + \lambda(L_{3} + L_{4}) + L_{5}$$

$$s. t. H \in \{-1, +1\}^{n \times k}$$

#### Datasets

- **NUS-WIDE**
- II. MS COCO
- III. MIRFLICKR-25K
- Baselines SCM, SEPH, PRDH, CMHH, CHN, DCMH, MLCAH









#### **NUS-WIDE**









#### MS COCO









MIRFlickr-25k

• The results (mAP) on NUS-WIDE

|            | NUS-WIDE |         |         |         |         |         |  |
|------------|----------|---------|---------|---------|---------|---------|--|
| Methods    | Img2Txt  |         |         | Txt2Img |         |         |  |
|            | 16 bits  | 32 bits | 64 bits | 16 bits | 32 bits | 64 bits |  |
| SCM [43]   | 0.4626   | 0.4792  | 0.4886  | 0.4261  | 0.4372  | 0.4478  |  |
| SEPH [17]  | 0.4796   | 0.4858  | 0.4906  | 0.6078  | 0.6022  | 0.6288  |  |
| PRDH [37]  | 0.5918   | 0.6058  | 0.6116  | 0.6155  | 0.6284  | 0.6342  |  |
| CMHH [2]   | 0.5531   | 0.5698  | 0.5920  | 0.5738  | 0.5782  | 0.5882  |  |
| CHN [3]    | 0.5754   | 0.5966  | 0.6015  | 0.5816  | 0.5967  | 0.5992  |  |
| DCMH [14]  | 0.5445   | 0.5597  | 0.5802  | 0.5793  | 0.5922  | 0.6014  |  |
| MLCAH [18] | 0.6440   | 0.6410  | 0.6430  | 0.6620  | 0.6730  | 0.6870  |  |
| MSSPQ      | 0.6346   | 0.6478  | 0.6615  | 0.6312  | 0.6631  | 0.6882  |  |

• The results (mAP) on MS COCO

| Methods    | MS COCO<br>Img2Txt |         |         | Txt2Img |         |         |  |
|------------|--------------------|---------|---------|---------|---------|---------|--|
|            | 16 bits            | 32 bits | 64 bits | 16 bits | 32 bits | 64 bits |  |
| SCM [43]   | 0.3601             | 0.3574  | 0.3562  | 0.4118  | 0.4183  | 0.4345  |  |
| SEPH [17]  | 0.4295             | 0.4353  | 0.4726  | 0.4348  | 0.4606  | 0.5195  |  |
| PRDH [37]  | 0.5538             | 0.5672  | 0.5572  | 0.5122  | 0.5190  | 0.5404  |  |
| CMHH [2]   | 0.5463             | 0.5675  | 0.5674  | 0.4884  | 0.4554  | 0.4846  |  |
| CHN [3]    | 0.5763             | 0.5822  | 0.5805  | 0.5198  | 0.5320  | 0.5409  |  |
| DCMH [14]  | 0.5229             | 0.5438  | 0.5419  | 0.4883  | 0.4942  | 0.5145  |  |
| MLCAH [18] | 0.5700             | 0.5620  | 0.5620  | 0.5440  | 0.5470  | 0.5940  |  |
| MSSPQ      | 0.5710             | 0.5881  | 0.5862  | 0.5472  | 0.5630  | 0.5985  |  |

• The results (mAP) on MIRFLICKR-25k

|                 | MIRFLICKR-25k |         |         |         |         |         |  |
|-----------------|---------------|---------|---------|---------|---------|---------|--|
| Methods         | Img2Txt       |         |         | Txt2Img |         |         |  |
|                 | 16 bits       | 32 bits | 64 bits | 16 bits | 32 bits | 64 bits |  |
| SCM [43]        | 0.6354        | 0.6407  | 0.6556  | 0.6340  | 0.6458  | 0.6541  |  |
| SEPH [17]       | 0.6740        | 0.6813  | 0.6830  | 0.7139  | 0.7252  | 0.7294  |  |
| PRDH [37]       | 0.6952        | 0.7072  | 0.7108  | 0.7626  | 0.7718  | 0.7755  |  |
| <b>CMHH</b> [2] | 0.7334        | 0.7280  | 0.7441  | 0.7320  | 0.7182  | 0.7276  |  |
| CHN [3]         | 0.7504        | 0.7495  | 0.7461  | 0.7776  | 0.7772  | 0.7798  |  |
| DCMH [14]       | 0.7406        | 0.7415  | 0.7434  | 0.7617  | 0.7716  | 0.7748  |  |
| MLCAH [18]      | 0.7960        | 0.8080  | 0.8150  | 0.7940  | 0.8050  | 0.8010  |  |
| MSSPQ           | 0.7868        | 0.8011  | 0.8172  | 0.7946  | 0.7885  | 0.8022  |  |

• The PR-Curves on NUS-WIDE, MS COCO and MIRFLICKR-25k



## Conclusion

- This article proposes an efficient end-to-end cross-modal hashing learning method, termed as Multiple Semantic Structure-Preserving Quantization (MSSPQ).
- Our method considers multiple semantic correlation learning across different modalities for realizing semantic similarity structure-preserving.
- Extensive experiments are conducted on three commonly used multimedia dataset show that the proposed MSSPQ achieves state-of-the-art performance.

# Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (62072166, 61836016, 61672177).

# Thank You!