Homological Algebra

Ikhan Choi

May 26, 2024

Contents

Ι	Derived categories	2
1	Derived functors	3
2	Differential graded categories	4
	2.1 Chain complexes	4
	2.2 Triangulated categories	4
3		5
II	Homotopical algebra	6
4	Model categories	7
	4.1 Model structures	7
	4.2 Quillen functors	8
	4.3 Examples of model structures	8
5	Simplicial categories	9
	5.1 Simplicial sets	9
	5.2 Simplicial model categories	9
6	Infinity categories	10
	6.1 Simplicial sets	10
	6.2 Kan complexes	10
	6.3 Stable infinity categories	10

Part I Derived categories

Derived functors

Differential graded categories

2.1 Chain complexes

2.1. Let \mathcal{A} and \mathcal{B} be abelian categories and suppose \mathcal{A} has enough injectives, that is, every object $A \in \mathcal{A}$ admits a monomorphism $A \to I$ for an injective object I. Let $\mathcal{F} : \mathcal{A} \to \mathcal{B}$ be a left-exact functor.

derived category of differential graded category.

2.2 Triangulated categories

2.2 (Triangulated categories). A *triangulated category* is an additive functor \mathcal{D} together with a translation functor $\mathcal{D} \to \mathcal{D}: X \mapsto X[1]$, which is an equivalence of categories, and a collection of distinguished triangles

Part II Homotopical algebra

Model categories

4.1 Model structures

- **4.1** (Model structures). Let \mathcal{C} be a category. We say a pair $(\mathcal{A}, \mathcal{B})$ of subcategories of \mathcal{C} is a functorial weak factorization system if
 - (i) for $i \in Mor(A)$ and $p \in Mor(B)$ there exists $h \in Mor(C)$ such that the following commutes:

$$\begin{array}{ccc}
A & \xrightarrow{f} & X \\
\downarrow \downarrow & & \downarrow p \\
B & \xrightarrow{g} & Y.
\end{array}$$
(lifting)

(ii) there are functors $\alpha: \mathcal{C} \to \mathcal{A}$ and $\beta: \mathcal{C} \to \mathcal{B}$ such that for $f \in \text{Mor}(\mathcal{C})$ the following commutes:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
& & & \\
\alpha(f) & & & \\
M & & & \\
\end{array}$$
(factorization)

Following the definition of Hovey, a *model structure* on C is a three subcategories of C called *weak equivalences*, *cofibrations*, and *fibrations* such that

- (i) the weak equivalences satisfy the two-out-of-three law,
- (ii) cofibrations and acyclic fibrations form a functorial weak factorization system,
- (iii) acyclic cofibrations and fibrations form a functorial weak factorization system.

We denote by W the subcategory of weak equivalences. A *model category* is a category with small limits and colimits equipped with a model structure.

cofibrant and fibrant replacements.

- (a) retract closedness
- (b)
- **4.2** (Homotopy category of a model category). left homotopy and right homotopy, cofibrant-fibrant objects.
- **4.3** (Derived categories and derived functors). For a functor $F: \mathcal{C} \to \mathcal{D}$ between model categories, a *left derived functor* $LF: h\mathcal{C} \to \mathcal{D}$ is defined as the right Kan extension of F with respect to $\mathcal{C} \to h\mathcal{C}$. It may not exist in general, but there is an equivalent condition which can be easily investigated.

4.2 Quillen functors

4.3 Examples of model structures

- **4.4** (Model structures on chain complexes). projective and Hurewicz(chain homotopy) model structures on non-negative chain complexes
- **4.5** (Model structures on topological spaces). Serre and Hurewicz model structures monoidal, simplicial, pointed, stable model categories

Simplicial categories

5.1 Simplicial sets

Simplicial methods convert a differential graded category to a simplicial category via the Dold-Kan correspondence, so that a model structure on the differential graded category becomes simplicial. In a simplicial model category we can expand simplicial resolutions explicitly.

- 5.1 (Simplicial sets).
- **5.2** (Simplicial complexes). A *simplicial complex* is a set K of non-empty finite subsets of a set V which is closed under subsets. If V is linearly ordered, then we say K is ordered. To every ordered simplicial complex one can associate a simplicial setas follows. Let K_n be the set of all ordered tuples (v_0, \dots, v_n) such that $v_0 \leq \dots \leq v_n$ and $\{v_0, \dots, v_n\} \in K$. Then, for each morphism $\alpha : [n] \to [m]$ in Δ , we can define $\alpha^* : K_m \to K_n$.
- **5.3** (Dold-Kan correspondence). The Dold-Kan correspondence states that $\mathcal{A}_{\Delta} \to \operatorname{Ch}_{\geq 0}(\mathcal{A})$ is a categorical equivalence for an abelian category \mathcal{A} .

Two descriptions for normalized Moore complexes:

$$0 \to N_{\bullet}(A) \to C_{\bullet}(A) \to D_{\bullet}(A) \to 0.$$

Eilenberg-Maclane functor $K: Ch(\mathbb{Z}) \to sAb$ as the right adjoint for the functor N_{\bullet} .

$$\text{Top} \xrightarrow{\text{Sing}} \text{sSet} \xrightarrow{R[\cdot]} \text{sMod}_R \xrightarrow{C_{\bullet} \text{ or } N_{\bullet}} \text{Ch}(R) \xrightarrow{H_n} \text{Mod}_R$$

5.2 Simplicial model categories

5.4 (Model structures on simplicial sets). Kan and Joyal model structures

Via the Dold-Kan correspondence $A_{\Delta} \cong \mathrm{Ch}_{\geq 0}(\mathcal{A})$, the Kan model structure corresponds to the projective model structures

Infinity categories

6.1 Simplicial sets

Two representative examples: nerves and Kan complexes infinity categories as simplicially enriched categories

- **6.1** (Nerves). For an ordinary category as a nerve, two morphisms are homotopic only if they are identical.
- **6.2** (Kan complexes). A geometric model for infinity groupoids. In a Kan complex, including Sing of a topological space, every morphism is invertible up to homotopy. Infinity groupoids are usually considered as "spaces".

6.2 Kan complexes

The *infinity category of spaces*, denoted by Spc, is defined as the homotopy-coherent nerve of the category Kan of Kan complexes.

6.3 Stable infinity categories

examples of stable infinity category: the infinity category of spectra, the dervied category of an abelian category

- 6.3. A stable infinity category is an infinity category such that
 - (i) there is a zero object,
 - (ii) every morphism admits a fiber and cofiber,
- (iii) a triangle is a fiber sequence if and only if it is a cofiber sequence.

It is known that its homotopy category is tricngulated.

- **6.4** (Triangulated categories).
- **6.5** (Differential graded category).