(19)日本国特許庁(JP)

(12)公開特許公報 (A)

4

(11)特許出願公開番号 特開2002-57526

(P2002-57526A) (43)公開日 平成14年2月22日(2002.2.22)

(51) Int. Cl. 7

識別記号

FΙ

テーマコート・

(参考)

H03B 5/32 H01L 41/09

H03B 5/32

E 5J079

H01L 41/08

U

審査請求 未請求 請求項の数5 OL (全13頁)

(21)出願番号

特願2001-154856(P2001-154856)

(22)出願日

平成13年5月24日(2001.5.24)

(31)優先権主張番号

特願2000-157550(P2000-157550)

(32)優先日

平成12年5月29日(2000.5.29)

(33)優先権主張国

日本 (JP)

(71)出願人 000001960

シチズン時計株式会社

東京都西東京市田無町六丁目1番12号

(72)発明者 中村 里克

東京都西東京市田無町六丁目1番12号 シ

チズン時計株式会社内

Fターム(参考) 5J079 AA04 BA12 BA17 BA44 BA47

DA12 FA14 FA15 FA17 FA21

FB03 GA04 GA09

(54) 【発明の名称】電圧制御水晶発振器

(57)【要約】

【課題】 集積化された電圧制御水晶発振器において、 可変容量素子の容量値の可変幅に対する発振周波数の可 変幅を改善することができる発振回路の回路定数の条件 を提示すること。

【解決手段】 (1) 水晶共振子、増幅器、負荷容量を備え、該負荷容量は半導体基板上に集積化された電圧制御可変容量素子および直流カット用容量素子を含む水晶発振器において、前記直流カット用容量素子の容量値C cutの、前記電圧制御可変容量素子の最大容量値Cv に対する比Ccut/Cvの値を、0.5以上且つ10よりも小さくしたこと。(2)また前記比の値を、0.5以上4以下の範囲としたこと。(3)更に前記比の値を、0.7以上1.8以下の範囲としたこと。(4)更に電圧制御可変容量素子の最大容量値Cvmaxを15pF以上且つ50pF以下の範囲としたこと。(5)更に電圧制御可変容量素子を、増幅器の入力側及び出力側の両側に設けること。

2

【特許請求の範囲】

【請求項1】 水晶振動子、増幅器及び負荷容量を有する電圧制御水晶発振器であって、前記負荷容量は、半導体基板上に集積化された電圧制御可変容量素子及び前記電圧制御可変容量素子に直列接続された直流カット用容量素子を含み、電圧制御可変容量素子の最大容量値Cvmaxと前記直流カット用容量素子の容量値Ccutとの比Ccut/Cvmaxは、0.5以上且つ10より小さいことを特徴とする電圧制御水晶発振器。

【請求項2】 前記比Ccut/Cvmaxは、0.5 以上且つ4以下であることを特徴とする請求項1の電圧 制御水晶発振器。

【請求項3】 前記比Ccut/Cvmaxは、0.7以上且つ1.8以下であることを特徴とする請求項1の電圧制御水晶発振器。

【請求項4】 前記電圧制御可変容量素子の最大容量値 Cvmaxは、15pF以上且つ50pF以下であるこ とを特徴とする請求項1ないし3のいずれかの電圧制御 水晶発振器。

【請求項5】 前記電圧制御可変容量素子は、前記増幅器の入力側及び出力側の両側に設けられていることを特徴とする請求項1ないし3のいずれかの電圧制御水晶発振器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は発振周波数を調節するために、電圧によって容量値を制御できる可変容量素 子を備えた水晶発振器に関する。

[0002]

【従来の技術】水晶振動子の発振周波数は非常に安定しており、水晶振動子の温度特性も優れており、また水晶振動子の製造も比較的容易であるため、水晶振動子を用いた水晶発振回路は高い実用性を備えている。そこで近年、水晶振動子と発振回路を一体化し、所定の電源電圧を与えるだけで所望の周波数を有するクロックを得ることができる水晶発振器が、広く用いられている。

【0003】電気通信等の分野において、複数の信号同士の同期を取ったり、通信搬送波にシステムクロックを同期させたりする場合には、水晶発振器の周波数をある範囲で可変することが求められる。水晶発振器の発振周 40 波数を可変するために、水晶振動子の負荷容量として、可変容量素子を用いることが一般に行われている。可変容量素子としては、その容量が、印加した直流電圧に従って変化するバリキャップ等が利用される。また、このような機能を備えた水晶発振器を、特に電圧制御水晶発振器と呼んでいる。

【0004】図1(a)は、従来の電圧制御水晶発振回の要求 路の構成の一例を示しており、図1(b)は水晶振動子がっての2端子等価回路を示している。図1(a)において、われる 1は水晶振動子、2は反転増幅器、3は発振回路の入力50しい。

端子、4は発振回路の出力端子、5はバッファ増幅器、6及び7は制御電圧印加端子、Rは抵抗、Cv は可変容量素子、Ccut は直流カット用容量素子、Cp 1、Cp 2は考えられる寄生容量をそれぞれ示している。なおこの回路が実際に動作するためには、発振回路の入力端子3に適切なバイアス電圧が印可されていることが必要であるが、本図においては、このバイアス電圧を印加する手段が、反転増幅器2に含まれているものとする。また図1(b)においてC0、L1、C1及びR1 は水晶振動子の等価回路定数であり、C0 は等価並列容量、L1 は等価直列インダクタンス、C1は等価直列容量、R1 は等価直列抵抗をそれぞれ示している。

【0005】図2は、図1(a)に示す電圧制御水晶発 振回路をIC化した場合における、集積化された負荷容 量部分(片側)の断面図である。図2において、10は シリコン基板、11~14は基板上に集積化された可変 容量素子であるバリキャップである。また、11は低濃 度拡散層である p - ウエル、12 は高濃度拡散層である p+領域、13は高濃度拡散層であるn+領域、14は 空乏層である。ここで、高濃度拡散層12は、アース電 位となっている。また、15は基板表面に形成されたフ ィールド酸化膜、16~18はフィールド酸化膜15の 上に集積化され、2層のポリシリコン層を有する直流カ ット用容量素子である。ここで、16、17は電極膜で あるポリシリコン膜、18は絶縁層である。また、19 はメタル配線であり、直流カット用容量素子と可変容量 素子とを直列に接続すると共に、抵抗R(図l(a)) とも接続している。なお、制御電圧は、抵抗 R (図1 (a))及びメタル配線19を介して、可変容量素子1 1~14に印加される。この制御電圧の大きさにより空 乏層 1 4 の深さが変化し、可変容量素子の容量値 (n+ 領域とp- 領域間の容量)が変化させられる。な お、直流カット容量素子の上側電極17は、メタル配線 (不図示)によって、入力端子3(図1(a))又は出 力端子4 (図1 (a)) と接続されている。また、破線 20は、後述する逆接続の場合のメタル配線である。逆 接続の場合には、メタル配線19に変わって、破線20 のメタル配線がなされる。また、逆接続の場合には、メ タル配線(不図示)によって、直流カット容量素子の下 側電極16が、入力端子3(図1(a))又は出力端子 4 (図1 (a)) と接続される。

[0006]

【発明が解決しようとする課題】電圧制御水晶発振器は、出力信号の安定性を確保しながら、ユーザーの要求する範囲で、周波数を可変させる必要がある。ユーザーの要求する周波数可変幅は、用途によって異なる。したがって、電圧制御水晶発振器が、幅広い用途で共通に使われるためには、周波数可変幅は極力大きいほうが望ましい。

【0007】周波数可変幅は、負荷容量の容量変化幅と 強い正の相関がある。したがって、負荷容量の容量変化 幅を極力大きくすることが、周波数可変幅を大きくする ための最も大切な条件となる。そこで、直流カット用容 量素子と可変容量素子との関係に注目する。電圧制御水 晶発振器の負荷容量値は、直列接続されている直流カッ ト用容量素子及び可変容量素子を合算した容量値とな る。したがって、可変容量素子の容量の変化を、負荷容 量の変化として最大限に活用するためには、固定値であ る直流カット用容量素子の容量値ができるだけ大きい方 10 が良い。

【0008】水晶発振回路が集積化される以前では、負 荷容量となる電圧可変容量素子及び直流カット用コンデ ンサは、ディスクリートな単体素子を用いていた。ま た、それら各素子の値は、他の素子に関係なく自由に選 択することができた。したがって、上述の考えに基づい て、直流カット用コンデンサの容量値Ccutは、可変 容量素子の最大容量値Cvmaxに対して十分大きく、 通常10倍以上の値が選択されていた。そして最近、水 晶発振回路の集積化が試みられるようになっても、上述 20 の考えが疑いを持たれずに踏襲されて、Ccut/Cv maxの値として、やはり10倍以上が回路設計上採用 されて来た。しかし本発明者は、この従来の考え方に疑 いを抱き、水晶発振器の改良の余地を探索するに至っ

【0009】本発明の目的は、集積化された水晶発振回 路を用いて構成した水晶発振器において、可変容量素子 の容量値の可変幅に対する発振周波数の可変幅を、従来 よりも改善することができる発振回路の回路的な条件を 提示することである。より詳細には、本発明の目的は、 発振周波数の可変幅を大きくすることができるCcut /Cvmaxの値の範囲、更には発振周波数の可変幅を 大きくするための効果的な回路条件を提示することであ る。

[0010]

【課題を解決するための手段】上記目的を達成するた め、本発明の電圧制御水晶発振器は次の特徴を備える。 (1) 水晶振動子、増幅器、負荷容量を有する電圧制御 水晶発振器であって、負荷容量は半導体基板上に集積化 された電圧制御可変容量素子及び電圧制御可変容量素子 40 に直列接続された直流カット用容量素子を含み、電圧制

御可変容量素子の最大容量値Cvmaxと直流カット用 容量素子の容量値Ccutとの比Ccut/Cvmax の値が、0.5以上且つ10より小さいこと。

【0011】さらに、本発明の電圧制御水晶発振器は、 以下の特徴を備えることが好ましい。

- (2) 比Ccut/Cvmaxの値を、0.5以上且つ 4以下の範囲としたこと。
- (3) 比Ccut/Cvmaxの値を、0.7以上且つ 1. 8以下の範囲としたこと。
- (4) 電圧制御可変容量素子の最大容量値Cvmax を、15pF以上且つ50pF以下の範囲としたこと。
- (5) 電圧制御可変容量素子は、増幅器の入力側及び出 力側の両側に設けられていること。

[0012]

【発明の実施の形態】集積化された直流カット用容量素 子の電極膜(図2のポリシリコン膜16)は、半導体基 板に対して必ず寄生容量 (浮遊容量) Cp2を持ち、そ の値は電極膜の占有面積にほぼ比例する。そこで、本発 明者は、直流カット用容量素子の容量値が大きくなるよ うに設計すると、大きな固定容量である寄生容量 Ср2 が可変容量素子Cv に並列に形成されてしまい、却っ て可変容量素子の周波数変化効果を減殺するであろうと 考えた。さらに、負荷容量が大きくなるほど、負荷容量 の変化量に対する周波数の変化量(容量可変量の周波数 への効き方)が小さくなる現象がある。したがって、集 積化する場合には、直流カット用容量素子の大きさを従 来例よりも小さくして、寄生容量の発生を抑えると、周 波数変化効果が大となるという優れた効果が発揮される と推測できる。

【0013】そこで、まず発振周波数の変化を表す数式 30 を明確に把握した。次に、発振周波数の変化を表す数式 に基づいて、発振回路の種々の回路定数を変化させなが ら、シミュレーションを行った。シミュレーションで は、発振周波数の可変幅を数値計算により求めた。以下 にまず使用した数式を掲げる。なお、本発明の実施の形 態において、集積化された直流カット用容量素子と電圧 制御可変容量素子の構造は図2に示したものを用い、発 振回路は図1に示したものを用いた。

【0014】電圧制御水晶発振器における発振周波数の 変化は式(1)によって、また負荷容量の値は式(2) によって表される。

$$\Delta f / f S = 1 + C 0 / (2 \gamma (C 0 + C L))$$
......(1)
$$2 C L = C p 1 + C c u t \times (C V + C p 2) / (C c u t + C V + C p 2)(2)$$

ただし fS は水晶振動子の直列共振周波数、CL は負荷容量、Δf/fSは周波数変化率を表す。

【0015】シミュレーションでは、標準的と考えられ る回路定数を標準値として設定し、各定数の1つを標準

負荷容量及び周波数変化率 Δ f / f s を計算した。ま た、横軸にCcut /Cvの比の値を1~12の範囲 で示し、縦軸には周波数可変幅 (Cvmaxの場合の△ f/fsと、Cminiの場合の Δf/fsとの差)をpp 値の前後に変化させて、式 (2) 及び式 (1) に基づき 50 m単位で表してグラフ化した。また他の変化させた回路 定数はパラメータとした。

【0016】なお図1 (a) の発振回路は入力側と出力側の双方にCv とCcut を持っている。以下のシミュレーションでは、特に回路の非対称性を検討した図11と図12を除き、両側(入力側及び出力側)の負荷容量が同じ構造と特性を持ち、両側の可変容量はフルに変化させるものとした。なお、各定数が、Cvmax=30pF、Cvmin=3pF、Cp1=3pF、Cp2=Ccut の7%、C0=3pF及Uy (C0/C1) = 280の場合を標準条件とした。

【0017】以下にシミュレーションの結果を図示する。なお個々の計算を記述することは省略する。各図の曲線のうちの少なくとも1本は、上記標準条件の曲線となっている。

【0018】図3は、周波数可変幅(ppm)とCcut/Cvmaxとの関係を、可変容量素子の最大容量値Cvmaxをパラメータとして表したグラフである。図3では、可変容量素子の最大容量値Cvmaxを5種類に変化させている。なお最小容量値Cvminは、それぞれのCvmaxの10%に設定した。また各曲線のピークを点線で結んでその位置の変化も示している。以下の各図についても同じである。

【0019】図3に示すように、どの曲線においても、Cvmaxが変化しても曲線の形は大きくは変化しない。また、どの曲線においても、従来用いられていたCcut/Cvmaxが10以上では、周波数可変幅はごく小さな値である。そして、各曲線の周波数可変幅のピークは、Ccut/Cvmaxが0.8~1.6の範囲であって、これは従来予想もしていなかったような小さな値の範囲である。

【0020】図4は、周波数可変幅(ppm)とCcut/Cvmaxとの関係を、図3と同様に可変容量素子の最大容量値Cvmaxをパラメータとして表したグラフである。ただし、Cvminは3pFの一定値としている。図4に示すように、どの曲線においても、Cvmaxが変化しても曲線の形は大きくは変化しない。また、各曲線の周波数可変幅のピークは、Ccut/Cvmaxが0.7~1.7の範囲で現れている。本図で特徴的なのは、Ccut/Cvmaxの値が増えるにつれてvmaxの値の大きいものと小さいものとの間で周波数可変幅の値に逆転が起ることである。このことは周波数可変幅の値に逆転が起ることである。このことは周波数可変幅に対して寄生容量Cp2の影響がいかに大きいかを物語る良い例である。

【0021】図5は、周波数可変幅(ppm)とCcut/Cvmaxとの関係を、可変容量素子の最小容量値Cvminをパラメータとして表したグラフである。ただし、Cvmaxは、30pFの一定値とし、Cvminを2~5pFの範囲で変化させている。図5において、各曲線はよく揃った形をしており、横軸上のピーク位置の移動も少ない。また、各曲線の周波数可変幅のピ 50

-クは、C c u t / C v m a x が 1 . 1 \sim 1 . 4 の範囲で現れている。

【0022】図6は、周波数可変幅(ppm)とCcut/Cvmaxとの関係を、寄生容量Cplをパラメータとして表したグラフである。ただし、寄生容量Cplは2~5pFの間で変化させている。寄生容量Cplは、増幅器のゲート容量、水晶振動子の接続パッドや配線の浮遊容量等を合算したものであり、Ccut とCvの直列容量をバイパスするので、周波数可変幅を減2のように働く。また、各曲線の周波数可変幅のピークは、Ccut/Cvmaxが1.1~1.4の範囲で現れている。

【0023】図7は、周波数可変幅(ppm)とCcu t/Cvmaxとの関係を、寄生容量Cp2をパラメー タとして表したグラフである。ただし、寄生容量Cp2 は、直流カット用容量Ccut の5%~9%の範囲で 変化させている。寄生容量Cp2は、図2に示す如く、 Ccutの電極とシリコン基板10との間の容量が主体 である。したがって、ICの断面構造が同じならCcu tの電極面積に比例する。また、Cp2はCvを直接バ イパスするので曲線の形への影響が大きい。各曲線の周 波数可変幅のピークは、Ccut/Cvmaxが1.0 ~1. 3の範囲で現れている。Cp2の影響は、Ccu t/Cvmaxの値の大きいところ(即ちCcutが大 きい場合)ほど大きく現れる。即ち、Ccut/Cvm a x の値の大きいところでは、周波数可変幅の絶対値の 減殺効果が特に大きく、従来例の範囲(Ccut/Cv maxの値が10以上)では実は極めて大きな負の影響 があったことがわかる。

10024】図8は、周波数可変幅(ppm)とCcut/Cvmaxとの関係を、yをパラメータとして表したグラフである。yは、水晶振動子の等価直列容量C1に対する並列容量C0の比である。各曲線の形は、他の図における曲線の形と良く似ている。また、各曲線の周波数可変幅のピークは、Ccut/Cvmaxが1.17で、yに対して(本例ではC0が一定なので、実はC1の変化に対して)不変である。

【0025】図9は、周波数可変幅(ppm)とCcut/Cvmaxとの関係を、並列容量C0をパラメータとして表したグラフである。各曲線の形は、他の図における曲線の形と良く似ている。各曲線の形状もピーク位置も他の図とよく似ている。各曲線の周波数可変幅のピークは、Ccut/Cvmaxが0.9~1.3の範囲で現れている。

【0026】図10は、周波数可変幅(ppm)とCcut/Cvmaxとの関係を、Cp3をパラメータとして表したグラフである。ただし、Cp3は、1pFの場合と、0pFの場合の2通りのみを示している。Cp3は、図1(a)のCp2と同じ位置に並列に追加される固定的な(即ちCcut に比例しない)寄生容量であ

ると定義され、主体はCcut-Cv-R間の配線に生 ずる僅かな浮遊容量である。Cp3を考えた場合には、 周波数可変幅は無論低減するが、その低減幅はわずかで あり曲線の形には大きな影響を与えない。

【0027】図11は、発振回路の入力側及び出力側に 設けた可変容量素子の最大容量値を異ならせた場合を、 標準条件(両側の可変容量素子のCvmaxを両方とも 30pFとした場合)と比較したグラフである。そのと き、一方のCvmax=40pF、他方のCvmax= 20pFとした。結果的に、入出力側が非対称である と、Ccut/Cvmax=2.7付近を境にして、曲 線の上下が入れ替わるが、曲線の形状の差はほとんど認 められない。

【0028】図12は、可変容量素子を発振回路の入力 側又は出力側の一方だけに設け、他方を固定容量素子と した場合を、標準条件(両側に可変容量素子を設けた場 合)と比較したグラフである。一方の可変容量素子は標 準条件と同一、他方の固定容量素子は10pFとした。 片側のみに可変容量素子を設けた場合には、周波数可変 容量素子を設けた場合の曲線の形状、及び曲線のピーク

 $2CL = (CV \times Cout) / (CV + Cout) + Cpl + Cp$

2 (3)

【0030】シミュレーションの結果をごく概観的に述 べる。

- (1) 各曲線の形状は、周波数変化幅について差異はあ るが、互いに類似しており、特異な形状は現れない。
- (2) Ccut/Cvmaxの値が、従来用いられてい た10以上よりもかなり小さい値の場合に (ただしС c ut/Cvmaxの値がほぼ0.3より小さい場合を除 30 く)、周波数可変幅は従来よりも著しく改善される。
- (3) 各曲線の周波数可変幅のピークは、Ccut/C vmaxの値がほぼ0.7~1.8の範囲に現れる。

【0031】基準周波数の合わせ込み偏差及び温度によ る周波数偏差等の一般的な条件を全て考慮に入れた場 合、水晶発振器の周波数安定度の業界標準は、±50p pmである。したがって、特別な場合を除いて、電圧可 変水晶発振器は、最低でも100ppm以上の周波数可 変幅を確保しなくてはならない。このことを念頭におい てシミュレーション結果を考察すると、Ccut/Cv maxの値が0. 2以上且つ10より小さければ上記最 低条件を満たすことがわかる。

【0032】ただしこの範囲であっても比の値が極端に 小さい部分は実際の製品には適さない。なぜならば実際 の製品における容量値には一定量のバラツキを見込む必 要があり、このバラツキに対して比の値が極端に小さい 部分の可変量の変化があまりに急峻だからである。この ことを考慮に入れるとCcut/Cvmaxの比の値は可変幅 の変化量があまり急峻でない 0. 5以上が適当である。

【0033】上記した発振器自身の安定度を確保した上 50

の位置は、両側に可変容量素子を設けたの場合と類似し ている。ここでは、比較のために片側にのみ可変容量素 子を設けた場合についてシミュレーションを行った。し かしながら、1チップに集積化して発振器を作成する場 合には、片側にのみ可変容量素子を設けても、部品点数 が削減されるわけではない。したがって、周波数可変幅 の狭い片側にのみ可変容量素子を設けた回路構成が用い られることは、実際にはほとんどないと思われる。

【0029】図13は、逆接続の場合と、標準条件の場 10 合とを比較したグラフである。逆接続とは、メタル配線 19 (図2参照) の代わりに、メタル配線20 (図2に 破線で示す)で、ポリシリコン膜17を接続した場合を 言う。また、他の回路素子は、標準値を用いている。さ らに、本例におけるCL は、(2)式に代わり、以下 の(3)式で表される。なお、標準条件(順接続)と は、メタル配線19で、ポリシリコン膜16を接続した 場合を言う。図13に示すように、両曲線はほとんど重 なってしまい(逆接続場合の曲線が、ほんの少しだけ下 側に位置している) 実質的な差は無かった。このことは 幅の絶対値は半減する。しかしながら、片側のみに可変 20 有効なCcut/Cvmax比が発振回路ICの構造に あまり影響されないことを示す事例となっている。

で、どのくらいの周波数可変幅が必要かは各アプリケー ションによって異なるが、周波数可変幅が±100pp m以上であれば、現存するほとんどのアプリケーション に適応が可能であると考えられる。したがって、±10 0 p p m以上の周波数可変幅が、電圧制御発振器におけ る一つの標準値となっている。各グラフにおいて、20 ○ p p m以上の周波数可変幅が確保できるC c u t / C vmaxの値は、0.4~4.0の範囲であることが理 解できる。ただし下限値としては前述したのと同様の理 由で 0.5以上が適当である。

【0034】さらにCcut/Cvmaxの値を、各グ ラフにおける曲線のピーク値付近に設定した場合には2 50 p p m を超える周波数可変幅を得ることが可能であ る。各グラフにおける曲線のピークは、Ccut/Cv maxの値が0.7~1.8の範囲にすべて現れている ことがわかる。またどのグラフにおいても上記比の範囲 内では250ppm以上の周波数可変幅が確保できてお り、広い周波数可変幅を得るための最適の条件であるこ とが理解できる。

【0035】従来、こうした広い周波数可変幅をもった 電圧制御水晶発振器は、ディスクリート部品によっての み構成することができたため、外形が大きく、また特殊 な部品や回路構成を用いるため高価であった。しかなが ら、本発明によれば、小型且つ低価格で、広い周波数可 変幅をもった電圧制御発振器を提供することが可能にな

【0036】今回のシュミレーションにおいては、各パ

ラメータの値は標準的に得られると思われる範囲のもの を用いているため、実際に集積回路を設計・製造するに あたってCcut/Cvmaxの値として上述した範囲のもの を選択することは、広い周波数可変幅を得るためにきわ めて有効であるといえる。

【0037】各パラメータに対し今回選択した範囲外の 数値を入力した場合には、周波数可変幅やCcut/Cyma xの比のピーク値が上述したものとは異なってくること も考えられるが、今回のシュミレーションにおいて各図 における曲線の形が非常に似通っており、特異的なカー ブが存在しないことを考えれば、そのような場合でも上 述したCcut/Cvmaxの値の範囲を選択することが広い 周波数可変幅を確保するために有効であることは変わり がない。

【0038】また今回のシュミレーションにおいては、 説明が複雑になることを避けるため、すべて単一のパラ メータの値だけを変化させている。複数のパラメータを 標準値から変化させた場合には、周波数可変幅やCcut /Cvmaxの比のピーク値が上述したものとは異なってく ることも考えられるが、今回のシュミレーションにおい 20 て各図における曲線の形が非常に似通っており、特異的 なカーブが存在しないことを考えれば、そのような場合 でも上述したCcut/Cvmaxの値の範囲を選択すること が広い周波数可変幅を確保するために有効であることは 変わりがない。

【0039】図3のグラフのパラメータ(Ccut/C vmaxを固定したときのCvmaxの値)は、可変容 量素子と直流カット容量素子の面積だけで調節できるた め、他のパラメータと異なり、任意の値を取ることが可 能である。しかしながら、図3で示した範囲以外の値 (図示せず)では、ピーク値においても大きな周波数可 変幅を得ることができないため、Cvmaxの値は、図 3に示した15pF~50pFの範囲が望ましい。

【0040】なお図1 (a) の回路を基本として、条件 を様々に振った実際の集積回路(テストチップ)を作 り、周波数可変幅を測定したところ、上記したシミュレ ーションと非常に良く一致する結果が得られた。

【0041】図2と異なった、可変容量素子の他の構造 例を図14に示す。なお、図14では、可変容量素子部 分のIC構造の断面図を示している。図14では、可変 40 容量素子はバリキャップであるが、シリコン基板10を p基板としたためウエルがなくなっている。

【0042】可変容量素子の更に他の構造例を図15に 示す。図15において、可変容量素子は、バリキャップ ではなく、MOS-Cと呼ばれる素子であって、MOS トランジスタのゲート容量を可変容量として利用したも のである。図15において、21は酸化膜、22は電極 膜である。図15は、n基板を採用しているが、p基板 でも構成することができる。

流カット用容量素子は必要であり、それには寄生容量が 伴う。したがって、図14及び図15に示す例にも、本 発明が適用可能であることは明確である。

【0044】以上本発明の実施の形態について述べた が、本発明における回路定数及び水晶振動子の等価回路 定数の標準値は、例示したものに限定されるものではな い。また、対象となる回路の構成や集積回路の構造も、 必ずしも図1、図2に示したものに限定されるものでは ない。例えば、各種のカット、振動姿態、又は2端子以 上の端子を有する水晶振動子があり、それらに対応した 最適な発振回路が存在する。本発明は、負荷容量の電圧 変化によって発振周波数を制御する構成の発振回路に対 して基本的に適用可能である。さらに、水晶以外の圧電 材よりなる振動子も、図1(b)に示すような等価回路 で表すことができるので、本発明の水晶振動子と置換す ることが可能である。

[0045]

【発明の効果】(1)本発明の電圧制御水晶発振器で は、集積化された直流カット用容量素子の容量値を従来 よりも小さい値とすることにより、従来よりも広い周波 数可変幅を得ることができた。したがって、本発明の電 圧制御水晶発振器は、より多くのアプリケーションに対 して使用することが可能となった。さらに、本発明の電 圧制御水晶発振器は、直流カット用容量素子の集積回路 上での占有面積を小さく抑えることができるので、水晶 振動子を含む水晶発振器を製造する上及び組立調整する 上で極めて大きい利点を有する。

【0046】本発明の電圧制御水晶発振器では、(2) Ccut/Cvmaxの値を0.5~4の範囲とするこ とにより、条件が悪い場合でも、200ppmを超える 周波数可変幅を得ることが可能になる。また、(3) C c u t/C v m a x の値を 0. 7~1. 8 の範囲とする ことにより、周波数可変幅のピーク値又はピーク値に近 い値が確実に得られ、設計上最大の周波数可変幅を得る ことができる。さらに、(4)Cvmaxを15~50 pFの範囲とすることにより、大きな周波数可変幅を確 保することが可能となる。

【図面の簡単な説明】

【図1】(a)は本発明の実施形態においても用いられ る水晶発振回路の一例を示し、(b)は水晶振動子の2 端子等価回路を示している。

【図2】本発明の実施形態においても用いられる集積化 した水晶発振回路における負荷容量部分の断面図の一例 を示す。

【図3】比Ccut/Cvmaxに対する水晶発振回路 の周波数可変幅の変化を表すグラフで、可変容量素子の 大きさをパラメータとし、可変容量の最大値Cmaxと 最小値Cminの比を一定としたものである。

【図4】比Ccut/Cvmax比に対する水晶発振回 【0043】なお、図14及び図15に示す例でも、直 50 路の周波数可変幅の変化を表すグラフで、可変容量素子

の大きさをパラメータとし、可変容量の最小値Cmin を一定としたものである。

【図5】比Ccut/Cvmaxに対する水晶発振回路 の周波数可変幅の変化を表すグラフで、可変容量の最小 値Cmin の大きさをパラメータとしたものである。

【図6】比Ccut/Cvmaxに対する水晶発振回路 の周波数可変幅の変化を表すグラフで、寄生容量 C p 1 の大きさをパラメータとしたものである。

【図7】比Ccut/Cvmaxに対する水晶発振回路 の周波数可変幅の変化を表すグラフで、寄生容量 C p 2 10 4 出力端子 の大きさをパラメータとしたものである。

【図8】比Ccut/Cvmaxに対する水晶発振回路 の周波数可変幅の変化を表すグラフで、水晶振動子の等 価直列容量に対する並列容量の比γの大きさをパラメー タとしたものである。

【図9】比Ccut/Cvmaxに対する水晶発振回路 の周波数可変幅の変化を表すグラフで、水晶振動子の並 列容量C0 の大きさをパラメータとしたものである。

【図10】比Ccut/Cvmaxに対する水晶発振回 路の周波数可変幅の変化を表すグラフで、配線に起因す 20 る固定的な寄生容量Cp3の有無を比較したものであ る。

【図11】比Ccut/Cvmaxに対する水晶発振回 路の周波数可変幅の変化を表すグラフで、発振回路の入 出力側の可変容量の大きさが異なる場合を示したもので ある。

【図12】比Ccut/Cvmaxに対する水晶発振回 路の周波数可変幅の変化を表すグラフで、可変容量素子 を発振回路の入出力側の一方のみに設けた場合と双方に 設けた場合とを比較したものである。

【図13】比Ccut/Cvmaxに対する水晶発振回 路の周波数可変幅の変化を表すグラフで、可変容量素子 を直流カット用容量素子の異なる電極側に接続した場合 を比較したものである。

【図14】本発明の実施の形態の一例においても用い得

る、集積化した水晶発振回路における負荷容量部分の他 の例の断面図である。

【図15】本発明の実施の形態の一例においても用い得 る、集積化した水晶発振回路における負荷容量部分の更 に他の例の断面図である。

【符号の説明】

- 1 水晶振動子
- 2 増幅器
- 3 入力端子
- - 5 バッファ増幅器
 - 6、7 制御電圧印加端子
 - R 入力抵抗
 - Cv 可変容量素子

Ccut 直流カット用容量素子

Cpl、Cp2 寄生容量

- CO、L1、C1、R1 水晶振動子の等価回路定数
- C0 並列容量
- L1 等価直列インダクタンス
- C1 等価直列容量
 - R1 等価直列抵抗
 - 10 シリコン基板
 - 11、12、13、14 可変容量素子
 - 1 1 p- ウエル
 - 12 p+ 領域
 - 1 3 n + 領域
 - 14 空乏層
 - 15 フィールド酸化膜
 - 16、17、18 直流カット用容量素子
- 30 16、17 ポリシリコン膜
 - 18 絶縁層
 - 19 メタル配線
 - 21 酸化膜
 - 22 電極膜

【図1】

【図2】

【図14】

【図4】

【図15】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

[図11]

[図12]

【図13】

