# Lezione 8

Alessandro Ardizzoni

## Operazioni

Sia S un insieme. Definiamo l'insieme  $S^n$  per ogni  $n \in \mathbb{N}$  ponendo

$$S^0 := \{\emptyset\} = \text{ singoletto}$$

e per n > 0

$$S^n := S \times \cdots \times S \ (n \text{ volte}).$$

Un'operazione n-aria su S è una funzione

$$\omega: S^n \to S$$
.

Se n = 0,1,2 si dice anche operazione nullaria, unaria e binaria rispettivamente.

Una struttura algebrica è un insieme S, chiamato insieme soggiacente, munito di una o più operazioni  $\omega_1, \omega_2, \ldots, \omega_m$  che soddisfino certe proprietà. Useremo la notazione  $(S, \omega_1, \omega_2, \ldots, \omega_m)$  per indicarla.

#### Osservazione

- 1) Un'operazione nullaria su S è una funzione  $\omega: \{\emptyset\} \to S$  ed è quindi univocamente determinata dall'elemento  $\omega(\emptyset) \in S$ . Pertanto darsi un'operazione nullaria su S equivale a scegliere un elemento di S. Pertanto, in luogo della struttura algebrica  $(S, \omega)$  si scriverà in questo caso semplicemente  $(S, \omega(\emptyset))$ . Ad es.
  - Se  $\omega$  :  $\{\emptyset\} \to \mathbb{N}, \ \emptyset \mapsto 1$ , invece di  $(\mathbb{N}, \omega)$  si scrive  $(\mathbb{N}, 1)$ .
  - Se  $\omega$  :  $\{\emptyset\} \to \mathbb{Z}$ ,  $\emptyset \mapsto 0$ , invece di  $(\mathbb{Z}, \omega)$  si scrive  $(\mathbb{Z}, 0)$ .
- 2) Un'operazione unaria su S è una funzione  $\omega: S \to S$ . Ad esempio
  - $\mathbb{Z} \to \mathbb{Z}$ ,  $m \mapsto -m$ .
  - $\bullet \mathbb{Q} \setminus \{0\} \to \mathbb{Q} \setminus \{0\}, \ q \mapsto q^{-1},$
  - $\bullet \mathbb{N} \to \mathbb{N}, n \mapsto n^2$

In realtà, quando parleremo di operazioni, intenderemo per lo più delle operazioni binarie.

Un'operazione binaria su S (detta anche legge di composizione interna) è una funzione

$$*: S \times S \rightarrow S$$
.

L'immagine della coppia  $(a,b) \in S \times S$  tramite questa funzione è un elemento di S indicato col simbolo a\*b che si legge "a composto b" o "composizione di a e b". Scriveremo quindi

$$*: S \times S \rightarrow S$$
,  $(a,b) \mapsto a*b$ .

Un insieme S dotato di un'operazione (binaria) \* si chiama magma (oppure gruppoide) e si indica con il simbolo (S,\*). E' dunque un esempio di struttura algebrica.

## Le notazioni moltiplicativa e additiva

Si possono usare vari simboli per indicare le operazioni. Ad esempio:



Ce ne sono però due che sono usati più spesso e sono i seguenti.

- ①  $\cdot: S \times S \to S, (a,b) \mapsto a \cdot b$ . In questo caso l'operazione è detta moltiplicazione mentre  $a \cdot b$  è detto il "prodotto di  $a \in b$ " o anche "a per b". Si dice anche che viene usata la "notazione moltiplicativa".
- ②  $+: S \times S \to S, (a,b) \mapsto a+b$ . In questo caso l'operazione è detta addizione mentre a+b è detta la "somma di a e b" o anche "a più b". Si dice anche che viene usata la "notazione additiva".

### Esempio

Su N abbiamo sia la moltiplicazione che l'addizione

$$\cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad (a,b) \mapsto a \cdot b,$$
  
 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad (a,b) \mapsto a + b.$ 

Abbiamo dunque i due magmi  $(\mathbb{N},\cdot)$  e  $(\mathbb{N},+)$ . A volte considereremo entrambe le operazioni cioè la struttura algebrica  $(\mathbb{N},+,\cdot)$ .

Notiamo invece che la sottrazione e la divisione

$$-: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad (a, b) \mapsto a - b$$
  
 $\div: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad (a, b) \mapsto a \div b$ 

non sono operazioni su  $\mathbb N$  perché non sono ben definite. Ad esempio  $1-2\notin\mathbb N$  e  $1\div 2\notin\mathbb N$ .

## Esempio

Poniamo

$$a*b:=\frac{ab}{2}$$
.

Non è un'operazione su  $\mathbb Z$  perché in generale  $a*b\notin\mathbb Z$  se  $a,b\in\mathbb Z$ . Ad esempio  $1*1=\frac{1}{2}\notin\mathbb Z$ .

## Esempio

Ecco altri esempi di magma (S,\*):

- Interi, razionali e reali con l'addizione:  $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+)$ ;
- Interi, razionali e reali con la sottrazione:  $(\mathbb{Z}, -), (\mathbb{Q}, -), (\mathbb{R}, -)$ ;
- Interi, razionali e reali con la moltiplicazione:  $(\mathbb{Z},\cdot), (\mathbb{Q},\cdot), (\mathbb{R},\cdot);$
- Razionali e reali positivi con la divisione:  $(\mathbb{Q}_{>0}, \div)$ ,  $(\mathbb{R}_{>0}, \div)$ ;
- L'insieme delle parti di S con l'unione:  $(P(S), \cup)$ ;
- L'insieme delle parti di S con l'intersezione:  $(P(S), \cap)$ .

#### Definizione

Consideriamo un magma (S,\*). Diremo che l'operazione \* è

- associativa se  $\forall a, b, c \in S$ , (a\*b)\*c = a\*(b\*c).
- commutativa se  $\forall a, b \in S, \ a * b = b * a$ .

Un elemento  $e \in S$  è detto un elemento neutro (rispetto a \*) se

$$\left( \begin{array}{c} (\mathbb{R}, \star) \text{ con} \\ \mathbb{R} \star \mathbb{Y} = \underbrace{\mathbb{R}}_{\mathbf{Z}} \end{array} \right] \begin{array}{c} \text{NON associativo} \\ \mathbb{R} \star \mathbb{Y} = \mathbb{R} \\ \mathbb{R} \star \mathbb{Y} = \mathbb{R} \\ \text{commutative} \end{array} \\ \forall a \in S, \ a*e = a = e*a.$$

Dato un elemento neutro e, un elemento  $a \in S$  si dice invertibile se

$$\exists b \in S, \ a*b = e = b*a.$$

In tal caso l'elemento b corrispondente è detto un inverso di a.

#### Osservazione

Se l'operazione \* è commutativa, le richieste per l'esistenza di un elemento neutro o di un inverso si dimezzano.

Sia S un insieme dotato di un'operazione. Se la notazione usata è quella moltiplicativa, l'elemento neutro si indica usualmente con il simbolo  $1_S$  o semplicemente 1 e prende il nome di identità oppure di unità di S. Generalmente la notazione additiva è riservata ad operazioni commutative. In tal caso l'elemento neutro si chiamo zero e si indica con il simbolo  $0_S$  o 0. Invece di "inverso" si parla di opposto.

## Esempio

Consideriamo  $(\mathbb{Z}, -)$ .

ASSOCIATIVITA'. Non vale perché  $(1-1)-1 \neq 1-(1-1)$ .

ELEMENTO NEUTRO. Se in  $(\mathbb{Z}, -)$  ci fosse un elemento neutro, diciamo e, allora per ogni  $n \in \mathbb{Z}$  si avrebbe n - e = n ed e - n = n da cui e = 0 e dunque -n = n. Quest'ultima uguaglianza implica n = 0 ma n era arbitrario e quindi siamo giunti ad un assurdo.

INVERSO. Se non c'è elemento neutro non c'è inverso.

COMMUTATIVITA'. La commutatività non vale perché  $1-0 \neq 0-1$ .

A. Ardizzoni Algebra 1 9 / 19

Vediamo nella seguente tabella alcuni esempi:

| (5,*)                              | Associatività | Elemento Neutro                                               | Inverso                                                                                 | Commutat. |
|------------------------------------|---------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------|
| $(\mathbb{Z},+)$                   | si            | si: è 0 $(n+0=n=0+n)$                                         | si: è l'opposto                                                                         | si        |
| $(\mathbb{Z},-)$                   | no            | no                                                            | no                                                                                      | no        |
| $(\mathbb{Z},\cdot)$               | si            | si: è 1 $(n \cdot 1 = n = 1 \cdot n)$                         | no                                                                                      | si        |
| $(\mathbb{Q}\setminus\{0\},\cdot)$ | si            | si: è 1                                                       | $\mathbf{Si} \ (\tfrac{a}{b} \cdot \tfrac{b}{a} = 1 = \tfrac{b}{a} \cdot \tfrac{a}{b})$ | si        |
| $(\mathbb{Q}_{>0}, \div)$          | no            | no                                                            | no                                                                                      | no        |
| $(P(S), \cup)$                     | si            | si: è $\emptyset$ $(A \cup \emptyset = A = \emptyset \cup A)$ | no (★)                                                                                  | si        |
| $(P(S),\cap)$                      | si            | si: è $S$ $(A \cap S = A = S \cap A)$                         | no                                                                                      | si        |

(★) Se in  $(P(S), \cup)$ , esistesse un inverso di  $A \in P(S)$ , diciamo B, allora risulterebbe  $A \cup B = \emptyset$  da cui  $A = B = \emptyset$ , assurdo.

### Esempio

Poniamo  $a*b:=a^b$ . E' un'operazione su  $\mathbb{N}\setminus\{0\}$  (la potenza) ma non è associativa. Altrimenti  $\forall a,b,c\in\mathbb{N}$  si avrebbe (a\*b)\*c=a\*(b\*c) cioé  $(a^b)^c=a^{b^c}$  ma questo non è vero:  $(2^1)^2=4\neq 2=2^{1^2}$ . Se ci fosse un elemento neutro e allora, per ogni  $a\in\mathbb{N}$ , si avrebbe e\*a=a, cioé  $e^a=a$ . In particolare, scegliendo a=1, si avrebbe  $e^1=1$  e dunque e=1. Ma allora dovrebbe valere, per ogni  $a\in\mathbb{N}$ , a=10 il che è falso.

Un magma può avere un unico elemento neutro

#### Proof.

Consideriamo un magma (S,\*) con elementi neutri e ed e'. Per definizione,  $\forall a,b \in S$  abbiamo a\*e=a=e\*a e b\*e'=b=e'\*b. Scegliendo a=e' e b=e otteniamo e'\*e=e'=e\*e' ed e\*e'=e=e'\*e. In particolare e'=e\*e'=e cioé e'=e.

Per questo diremo che e è l'elemento neutro di S, se esiste.

### Esempio

Dato un insieme A consideriamo l'insieme  $\mathscr{F}(A)$  delle funzioni  $A \to A$  e l'operazione  $\circ: \mathscr{F}(A) \times \mathscr{F}(A) \to \mathscr{F}(A), (f,g) \mapsto f \circ g$ , che a due funzioni associa la loro funzione composta. Abbiamo già osservato che la composizione di funzioni è associativa. Inoltre  $\mathrm{Id}_A$  è l'elemento neutro della composizione. Non tutte le funzioni  $f:A \to A$  sono invertibili (sappiamo che solo le biiettive lo sono). Inoltre in generale  $f \circ g \neq g \circ f$ , dunque non vale la commutatività.

#### Definizione

Sia (S,\*) un magma dotato di un elemento neutro  $e \in S$ . Sia  $a \in S$ .

- Un inverso sinistro di a è un  $s \in S$  tale che s \* a = e.
- Un inverso destro di a è un  $d \in S$  tale che a\*d = e.
- Un inverso bilatero di a è un  $b \in S$  tale che b\*a = e = a\*b (cioè un suo inverso sinistro e destro).

#### Osservazione

Se  $b \in S$  è un inverso bilatero di a allora b\*a = e = a\*b e dunque a è invertibile e b è quello che abbiamo chiamato "un inverso di a".

#### Definizione

Un semigruppo è un magma (M,\*) dove \* è associativa. Un monoide è un semigruppo (M,\*) in cui esiste l'elemento neutro rispetto a \*. Diremo anche che (M,\*,e) è un monoide, se vogliamo mettere in evidenza l'elemento neutro (si tratta di una struttura algebrica dove e si intende come un'operazione nullaria).

Un monoide (M,\*) si dice commutativo o abeliano (tributo al matematico norvegese Niels Henrik Abel) se \* è commutativa.

Vediamo ora alcuni esempi di semigruppi e monoidi.

## Esempio

- $(\mathbb{N} \setminus \{0\}, +)$  è un semigruppo ma non un monoide;
- $(\mathbb{N},+)$ ,  $(\mathbb{N},\cdot)$  sono monoidi commutativi;
- $(\mathbb{Z},+)$ ,  $(\mathbb{Z},\cdot)$ ,  $(\mathbb{Q}\setminus\{0\},\cdot)$ ,  $(P(S),\cup)$ ,  $(P(S),\cap)$ , sono monoidi commutativi;
- dato un insieme A, l'insieme  $\mathscr{F}(A)$  delle funzioni  $f:A\to A$  è un monoide non commutativo rispetto a  $\circ$ .

A. Ardizzoni Algebra 1 13 / 19

Sia (M,\*,e) un monoide. Se  $a \in M$  ha un inverso sinistro ed uno destro allora essi coincidono cioé a è invertibile. Inoltre se un elemento ha un inverso, questo è unico.

#### Proof.

Se  $a \in M$  ha un inverso sinistro s ed uno destro d, allora s = s \* e = s \* (a \* d) = (s \* a) \* d = e \* d = d.

Se un elemento  $a \in M$  ha due inversi, essi saranno in particolare sia inversi sinistri che destri e quindi dovranno coincidere.

Abbiamo dimostrato che in un monoide  $(M,\cdot,e)$  se un elemento  $a\in M$  ha un inverso  $b\in M$ , allora questo è unico. Diremo allora che b è l'inverso di a e lo indicheremo con  $a^{-1}$ . Se il monoide è in notazione additiva, l'inverso si chiama l'opposto di a e lo indicheremo con a.

In notazione moltiplicativa  $x \cdot y^{-1}$  si indica anche con x/y se l'operazione è commutativa. Similmente, in notazione additiva in luogo di x + (-y) si scrive più semplicemente x - y.

Per alleggerire la notazione, useremo d'ora in poi la notazione moltiplicativa per un operazione binaria non necessariamente associativa. Sia dunque  $(X,\cdot)$  un semigruppo. Allora, per la proprietà associativa, la composizione di n elementi  $x_1,\ldots,x_n$  si può denotare semplicemente come  $x_1\cdot x_2\cdot \cdots \cdot x_n$ , omettendo le parentesi.

#### Osservazione

In particolare per  $n \in \mathbb{N} \setminus \{0\}$  è possibile definire la potenza n-esima di un elemento  $x \in X$  ponendo  $x^1 := x$  e  $x^n := x^{n-1} \cdot x$  se n > 1. Quindi

$$x^n := \underbrace{x \cdot \cdots \cdot x}_{n \text{ volte}}.$$

Se inoltre  $(X,\cdot,1)$  è un monoide si può includere anche il caso n=0 ponendo

$$x^0 = 1$$
.

Risultano quindi definite, per un monoide, tutte le potenze  $x^n$  con  $n \in \mathbb{N}$ .

Sia  $(X,\cdot)$  un monoide e  $x \in X$ . Per ogni  $n,m \in \mathbb{N}$  si ha

- a)  $x^{n+m} = x^n \cdot x^m$ :
- b)  $(x^n)^m = x^{nm}$ .

#### Proof.

Si può fare per induzione su *m* oppure intuitivamente:

$$x^{n+m} = \underbrace{x \cdot \dots \cdot x}_{n+m \text{ volte}} = \underbrace{x \cdot \dots \cdot x}_{n \text{ volte}} \cdot \underbrace{x \cdot \dots \cdot x}_{m \text{ volte}} = x^n \cdot x^m.$$

$$x^{nm} = \underbrace{x \cdots x}_{nm \text{ volte}} = \underbrace{x \cdots x}_{n \text{ volte}} \cdots \underbrace{x \cdots x}_{n \text{ volte}} = \underbrace{x^{n} \cdots x^{n}}_{m \text{ volte}} = (x^{n})^{m}.$$

Se  $(X,\cdot)$  è un monoide <u>commutativo</u> allora per ogni  $x,y\in X$  e per ogni  $n\in\mathbb{N}$ 

$$(x \cdot y)^n = x^n \cdot y^n.$$

Proof.

Si ha

$$(x \cdot y)^n = \underbrace{(x \cdot y) \cdot (x \cdot y) \cdot \cdots \cdot (x \cdot y)}_{n \text{ volte}}.$$

Applicando ripetutamente la proprietà commutativa si possono portare tutte le x a sinistra di tutte le y, ottenendo il risultato. Ad esempio  $(x \cdot y)^2 = x \cdot y \cdot x \cdot y = x \cdot x \cdot y \cdot y = x^2 \cdot y^2$ .

## Tavola di Cayley

Se  $S = \{x_1, x_2, x_3, \ldots, x_n\}$  è un insieme finito, un'operazione · su S può essere rappresentata mediante una Tavola di Cayley, che mostra tutti i possibili prodotti degli elementi di S. Gli elementi di S vengono riportati in riga (rossa in figura) e in colonna (blu) ai margini di una tabella (gialla). Poi all'incrocio tra la i-esima riga e la j-esima colonna scriveremo  $x_i \cdot x_j$ . Ad esempio, nel caso  $S = \{x_1, x_2, x_3\}$  si ha la seguente Tavola di Cayley:

|                       | $x_1$           | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> |
|-----------------------|-----------------|-----------------------|-----------------------|
| <i>x</i> <sub>1</sub> | $x_1 \cdot x_1$ | $x_1 \cdot x_2$       | $x_1 \cdot x_3$       |
| <i>x</i> <sub>2</sub> | $x_2 \cdot x_1$ | $x_2 \cdot x_2$       | $x_2 \cdot x_3$       |
| <i>X</i> 3            | $x_3 \cdot x_1$ | $x_3 \cdot x_2$       | $x_3 \cdot x_3$       |

Questa tavola consente di controllare se  $\cdot$  è associativa verificando la condizione caso per caso. Possiamo fare però altre considerazioni.

Discutiamole su un esempio concreto

| Sia $S = \{a, b, c\}$ e sia · definita dalla tavola di Cay |
|------------------------------------------------------------|
|------------------------------------------------------------|

|   | а | Ь | С |
|---|---|---|---|
| а | а | b | С |
| b | b | С | a |
| С | С | а | b |

- è commutativa se la matrice gialla è simmetrica rispetto alla diagonale principale. Nell'esempio di sopra lo è.
- Se la colonna blu è uguale ad una certa colonna gialla che sta sotto ad un certo elemento  $e \in S$  e lo stesso vale per la riga rossa e per una riga gialla accanto ad e, allora e è un elemento neutro. Nell'esempio a è l'elemento neutro di S (la riga gialla accanto ad a è uguale alla riga rossa e la colonna gialla sotto a è uguale alla colonna blu).
- Se ogni colonna gialla contiene l'elemento neutro almeno una volta allora ogni elemento di *S* ha un inverso sinistro.
- Se ogni riga gialla contiene l'elemento neutro almeno una volta allora ogni elemento di S ha un inverso destro. Nell'esempio, a, b, c hanno inversi rispettivamente a, c, b.