Chapter 1: The Real and Complex Number Systems

Author: Meng-Gen Tsai Email: plover@gmail.com

Unless the contrary is explicitly stated, all numbers that are mentioned in these exercise are understood to be real.

Exercise 1.1. If r is a rational $(r \neq 0)$ and x is irrational, prove that r + x and rx are irrational.

Proof. Assume $r + x \in \mathbb{Q}$. \mathbb{Q} is a field, then $-r \in \mathbb{Q}$ for any $r \in \mathbb{Q}$. So $(-r) + (r+x) = (-r+r) + x = 0 + x = x \in \mathbb{Q}$, a contradiction.

Similarly, assume $rx \in \mathbb{Q}$. $r \in \mathbb{Q}$ with $r \neq 0$ implies that there exists an element $1/r \in \mathbb{Q}$ such that $r \cdot (1/r) = 1$. So $(1/r) \cdot (rx) = ((1/r) \cdot r) \cdot x = 1 \cdot x = x \in \mathbb{Q}$, a contradiction. \square

Exercise 1.2. Prove that there is no rational number whose square is 12.

Apply the argument in Example 1.1. Again we can examine this situation a little more closely. Let A be the set of all positive rational p such that $p^2 < 12$ and let B be the set of all positive rational p such that $p^2 > 12$. We might show that A contains no largest number and B contains no largest number again.

In fact, we can associate with each rational p > 0 the number

$$q = p - \frac{p^2 - 12}{p + 12} = \frac{12p + 12}{p + 12}.$$

Then

$$q^2 - 12 = \frac{132(p^2 - 12)}{(p+12)^2}.$$

If $p \in A$ then $p^2 - 12 < 0$, q > p and $q^2 < 12$. Thus $q \in A$. If $p \in B$ then $p^2 - 12 > 0$, 0 < q < p and $q^2 > 12$. Thus $q \in B$.

Proof (Example 1.1). We now show that the equation

$$p^2 = 12$$

is not satisfied by any rational p. If there were such a $p \in \mathbb{Q}$, we could write $p = \frac{m}{n}$ where $m, n \in \mathbb{Z}$ are relatively prime. Let us assume this is done. Then

$$p^2 = 12$$
 implies

$$m^2 = 12n^2.$$

This shows that $3 \mid m^2$. Hence $3 \mid m$ (since 3 is a prime in \mathbb{Z}), and so m^2 is divisible by 9. It follows that $12n^2$ is divisible by 9, so that $4n^2$ is divisible by 3, so that n^2 is divisible by 3, which implies that $3 \mid n$. That is, both m and n have a common factor 3 > 1, contrary to our choice of m and n. Hence $p^2 = 12$ is impossible for rational p. \square

Exercise 1.3. Prove Proposition 1.15.

Proposition 1.15. The axioms for multiplication imply the following statements.

- (a) If $x \neq 0$ and xy = xz then y = z.
- (b) If $x \neq 0$ and xy = x then y = 1.
- (c) If $x \neq 0$ and xy = 1 then y = 1/x.
- (d) If $x \neq 0$ then 1(1/x) = x.

Proof of (a). By the axioms for multiplication,

$$xy = xz, x \neq 0 \Longrightarrow \exists 1/x \in F, (1/x) \cdot (xy) = (1/x) \cdot (xz)$$
 (M5)

$$\Longrightarrow ((1/x)x)y = ((1/x)x)z \tag{M3}$$

$$\Longrightarrow (x(1/x))y = (x(1/x))z \tag{M2}$$

$$\implies 1y = 1z$$

$$\implies y = z.$$
 (M4)

Proof of (b). Let z = 1 in (a) and note that x1 = 1x = x ((M2)(M4)). \square

Proof of (c). Let z = 1/x in (a) and note that x(1/x) = 1 ((M5)). \square

Proof of (d). Since x(1/x) = (1/x)x = 1 ((M2)), by (c), x = 1/(1/x). \Box

Exercise 1.4. Let E be a nonempty subset of an ordered set; suppose α is a lower bound of E and β is an upper bound of E. Prove that $\alpha \leq \beta$.

Proof.

- (1) Since $E \neq \emptyset$, there is $y \in E$.
- (2) By the definition of the upper bound, $x \leq \beta$ for every $x \in E$. In particular, $y \leq \beta$.

- (3) Similarly, $y \ge \alpha$.
- (4) By (2)(3), $\alpha \le y \le \beta$ for some $y \in E$. In particular, $\alpha \le \beta$ (Definition 1.5(ii)).

Exercise 1.5. Let A be a nonempty set of real numbers which is bounded below. Let -A be the set of all numbers -x, where $x \in A$. Prove that

$$\inf A = -\sup(-A).$$

Proof. Let $\alpha = \inf A$ and $\beta = \sup(-A)$.

(1)

$$\begin{split} x \geq \alpha \ \, \forall x \in A \Longrightarrow -x \leq -\alpha \ \, \forall -x \in -A \\ \Longrightarrow -\alpha \ \, \text{is an upper bound of } -A \\ \Longrightarrow \beta \leq -\alpha \\ \Longrightarrow \alpha \leq -\beta \end{split}$$

(2)

$$-x \leq \beta \ \forall -x \in -A \Longrightarrow x \geq -\beta \ \forall x \in A$$

$$\Longrightarrow -\beta \text{ is a lower bound of } A$$

$$\Longrightarrow \alpha \geq -\beta$$

By (1)(2), $\alpha = -\beta$, or inf $A = -\sup(-A)$. \square

Exercise 1.6. Fix b > 1.

(a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that $(b^m)^{1/n} = (b^p)^{1/q}$.

Hence it makes sense to define $b^r = (b^m)^{1/n}$.

- (b) Prove that $b^{r+s} = b^r b^s$ if r and s are rational.
- (c) If x is real, define B(x) to be the set of all numbers b^t , where t is rational and $t \leq x$. Prove that

$$b^r = \sup B(r)$$

where r is rational. Hence it makes sense to define

$$b^x = \sup B(x)$$

for every real x.

(d) Prove that $b^{x+y} = b^x b^y$ for all real x and y.

Proof of (a).

(1) Define $k = mq = np \in \mathbb{Z}$ (since r = m/n = p/q). Notice that nq > 0 (since n > 0 and q > 0). So there is one and only one $y \in \mathbb{R}$ such that

$$y^{nq} = b^k$$

where b^k is defined in \mathbb{R} (Theorem 1.21).

(2) Show that $y = (b^m)^{1/n}$ and $y = (b^p)^{1/q}$ are solutions of $y^{nq} = b^k$. In fact,

$$((b^m)^{1/n})^{nq} = (b^m)^q = b^{mq} = b^k,$$

$$((b^p)^{1/q})^{nq} = (b^p)^n = b^{pn} = b^k.$$

(3) By (1)(2), the uniqueness of y shows that $(b^m)^{1/n} = (b^p)^{1/q}$, or the map $r \mapsto b^r$ is well-defined for $r \in \mathbb{Q}$.

Proof of (b). Write r = m/n and s = p/q where m, n, p, q are integers with n > 0, q > 0.

$$\begin{split} b^{r+s} &= b^{\frac{mq+np}{nq}} \\ &= (b^{mq} \cdot b^{np})^{\frac{1}{nq}} & (mq+np \in \mathbb{Z}) \\ &= (b^{mq})^{\frac{1}{nq}} \cdot (b^{np})^{\frac{1}{nq}} & (\text{Corollary to Theorem 1.21}) \\ &= b^{\frac{mq}{nq}} \cdot b^{\frac{np}{nq}} \\ &= b^{\frac{m}{n}} \cdot b^{\frac{n}{n}} & (\text{(a)}) \\ &= b^{r} \cdot b^{s}. \end{split}$$

Proof of (c).

- (1) Given any $r \in \mathbb{Q}^+$, $b^r > 1$ since b > 1 is given.
- (2) Given any $r, s \in \mathbb{Q}, b^r > b^s$ whenever r > s. In fact,

$$b^{r} = b^{r-s}b^{s} \tag{(b)}$$

$$> 1 \cdot b^{s} \tag{(1)}$$

$$= b^{s}.$$

(3) Given any $r \in \mathbb{Q}$, $b^t \leq b^r$ for any $t \in \mathbb{Q}$ whenever $t \leq r$. So $\sup B(r) \leq b^r$. Conversely, since $r \in B(r)$, $b^r \leq \sup B(r)$. So $b^r = \sup B(r)$.

(4) Given any $x \in \mathbb{R}$. We can always find $r, s \in \mathbb{Q}$ such that r < x < s. Therefore, $r \in B(x)$ and B(s) is an upper bound of B(x). So there is a least upper bound $\sup B(x)$ for B(x), i.e., $b^r = \sup B(r)$ is well-defined.

Lemma. If x is real, define B'(x) to be the set of all numbers b^t , where t is rational and t < x. Prove that $\sup B'(x) = \sup B(x)$ for all $x \in \mathbb{R}$.

Proof of Lemma (Reductio ad absurdum). It suffices to show that $\sup B'(r) = \sup B(r) = b^r$ for all $r \in \mathbb{Q}$. (The case $x \in \mathbb{R} - \mathbb{Q}$ is nothing to do.) Clearly, $\sup B'(r) \leq b^r$. If $\alpha = \sup B'(r) < b^r$, then for $\frac{b^r}{\alpha} > 1$ there is $n > (b-1)/\left(\frac{b^r}{\alpha} - 1\right)$ such that

$$b^{\frac{1}{n}} < \frac{b^r}{\alpha}$$

(Exercise 1.7(c)). So $\alpha < b^{r-\frac{1}{n}}$. Therefore, $b^{r-\frac{1}{n}} \in B'(r)$ since $r - \frac{1}{n} \in \mathbb{Q}$, or we find an element in B'(r) such that is greater than α , contrary to the maximality of α . \square

Proof of (d). Apply Lemma to use B(x) or B'(x) interchangeably.

(1) Show that

$$\sup B'(x+y) \le \sup B'(x) \sup B'(y).$$

Given any $b^t \in B'(x+y)$ such that t < x+y. There are rational numbers r,s such that $r < x, \ s < y$ and t = r+s. (Rewrite t < x+y as t-y < x. So there is a rational number r such that t-y < r < x. Let s = t-r < y.) (Here we use B'(x+y) instead of B(x+y) to ensure the existence of r and s. That is, if $0 = -\sqrt{2} + \sqrt{2}$, we cannot find rational numbers $r \le -\sqrt{2}$ and $s \le \sqrt{2}$ such that r+s=0.) Therefore,

$$b^t = b^{r+s} = b^r b^s \le \sup B'(x) \sup B'(y)$$

(by (b)). Take supremum, $\sup B'(x+y) \le \sup B'(x) \sup B'(y)$.

(2) Show that

$$\sup B'(x+y) \ge \sup B'(x) \sup B'(y).$$

Given any $b^r \in B'(x)$, $b^s \in B'(y)$. r < x and s < y. So $b^r b^s = b^{r+s} \in B'(x+y)$ (by (b)). So $b^r b^s \le \sup B'(x+y)$. So

$$b^r \le \frac{\sup B'(x+y)}{b^s}$$

since $b^s>0$ for any $s\in\mathbb{Q}$. Here $\frac{\sup B'(x+y)}{b^s}$ is an upper bound for B'(x). So

$$\sup B'(x) \le \frac{\sup B'(x+y)}{b^s},$$

or $b^s \leq \frac{\sup B'(x+y)}{B'(x)}$. Use the same argument again,

$$\sup B'(y) \le \frac{\sup B'(x+y)}{\sup B'(x)}$$

or $\sup B'(x) \sup B'(y) \le \sup B'(x+y)$.

By (1)(2), $\sup B'(x) \sup B'(y) = \sup B'(x+y) \text{ or } b^x b^y = b^{x+y}$. \square

Exercise 1.7. Fix b > 1, y > 0, and prove that there is a unique real x such that $b^x = y$, by completing the following outline. (This x is called the logarithm of y to the base b).

- (a) For any positive integer n, $b^n 1 \ge n(b-1)$.
- (b) Hence $b-1 > n(b^{\frac{1}{n}}-1)$.
- (c) If t > 1 and $n > \frac{b-1}{t-1}$, then $b^{\frac{1}{n}} < t$.
- (d) If w is such that $b^w < y$, then $b^{w+\frac{1}{n}} < y$ for sufficiently large n; to see this, apply part (c) with $t = y \cdot b^{-w}$.
- (e) If $b^w > y$, then $b^{w-\frac{1}{n}} > y$ for sufficiently large n.
- (f) Let A be the set of all w such that $b^w < y$, and show that $x = \sup A$ satisfies $b^x = y$.
- (g) Prove that this x is unique.

Proof of (a).

$$b^{n} - 1 = (b-1)(b^{n-1} + b^{n-2} + \dots + 1)$$

$$\geq (b-1)(1^{n-1} + 1^{n-2} + \dots + 1)$$

$$= (b-1)n.$$

The equality holds if and only if n = 1. (Or proved by the induction.)

Proof of (b). Put $b \mapsto b^{\frac{1}{n}}$ in (a). \square

Proof of (c). Since $n > \frac{b-1}{t-1}$ and (b), $n(t-1) > b-1 \ge n(b^{\frac{1}{n}}-1)$. Cancel n on the both sides, $t-1 > b^{\frac{1}{n}}-1$ or $b^{\frac{1}{n}} < t$. \square

Proof of (d). Let $t = y \cdot b^{-w} > 1$. By (c), $b^{\frac{1}{n}} < y \cdot b^{-w}$ for $n > \frac{b-1}{y \cdot b^{-w}-1}$, or $b^{w+\frac{1}{n}} < y$ for $n > \frac{b-1}{y \cdot b^{-w}-1}$. \square

Proof of (e). Similar to (d). Let $t = y^{-1} \cdot b^w > 1$. By (c), $b^{\frac{1}{n}} < y^{-1} \cdot b^w$ for $n > \frac{b-1}{y^{-1} \cdot b^w - 1}$, or $b^{w + \frac{1}{n}} > y$ for $n > \frac{b-1}{y^{-1} \cdot b^w - 1}$. \square

Proof of (f). $x = \sup A < \infty$ by (a). (As $n > \frac{y-1}{b-1}$, $b^n > y$.) So there are only three possible cases.

- (1) $b^x < y$. By (d), $b^{x+\frac{1}{n}} < y$ for sufficiently large n, contrary to the maximality of x.
- (2) $b^x > y$. By (e), $b^{x-\frac{1}{n}} > y$ for sufficiently large n, contrary to the maximality of x.
- (3) By (1)(2), $b^x = y$ holds.

Proof of (g)(Reductio ad absurdum). If there were another real $x' \neq x$ such that $b^{x'} = y$, then x' > x or x' < x. For the case x' > x, $y = b^{x'} = b^x b^{x'-x} > b^x = y$, which is absurd. For the case x' < x, $y = b^x = b^{x'} b^{x-x'} > b^{x'} = y$, which is absurd too. \Box

Exercise 1.8. Prove that no order can be defined in the complex field that turns it into an ordered field. (Hint: -1 is a square.)

Proof (Reductio ad absurdum). If \mathbb{C} were an ordered field, consider the complex number $i = \sqrt{-1}$.

- (1) $i \neq 0$. If i were 0, then $i \cdot i = 0 \cdot i$ or -1 = 0, or 1 = 0, contrary to 1 > 0 (Proposition 1.18).
- (2) Since $i \neq 0$, we have $i^2 > 0$ (Proposition 1.18). So -1 > 0, or 1 < 0, contrary to the fact 1 > 0 (Proposition 1.18).

Supplement $(x^2 > 0 \text{ if } x \neq 0)$. Show that the only automorphism of \mathbb{R} is the identity. (Hint: If σ is an automorphism, show that $\sigma|_{\mathbb{Q}} = id$, and if a > 0, then $\sigma(a) > 0$).

It is an interesting fact that there are infinitely many automorphisms of \mathbb{C} , even thought $[\mathbb{C} : \mathbb{R}] = 2$. Why is this fact not a contradiction to this problem?

Exercise 1.9. Suppose z = a + bi, w = c + di. Define z < w if a < c, and also if a = c but b < d. Prove that this turns the set of all complex numbers into an ordered set. (This type of order relation is called a dictionary order, or lexicographic order, for obvious reasons.) Does this ordered set have the

least-upper-bound property?

Proof.

- (1) Show that \mathbb{C} is an ordered set.
 - (a) Show that if x = a + bi, $y = c + di \in \mathbb{C}$ then one and only one of the statements x < y, x = y, y < x is true. Since \mathbb{R} is an ordered set, then one and only one of the statements a < c, a = c, c < a is true.
 - (i) a < c. Hence x < y (in the sense of the dictionary order).
 - (ii) a = c. Again since \mathbb{R} is an ordered set, then one and only one of the statements b < d, b = d, d < b is true. That is, one and only one of the statements x < y, x = y, y < x is true (in the sense of the dictionary order).
 - (iii) c < a. Hence y < x (in the sense of the dictionary order).

By (i)(ii)(iii), the result is established.

- (b) Show that if x = a + bi, y = c + di, $z = e + fi \in \mathbb{C}$, if x < y and y < z, then x < z. Observe that if x < y (resp. y < z) then $a \le c$ (resp. $c \le e$). Therefore, $a \le c \le e$. Thus, there are only two possible cases.
 - (i) Not every equality holds. a < e or x < z (in the sense of the dictionary order).
 - (ii) Every equality holds. a = c = e. Since x < y (resp. y < z), b < d (resp. d < f). So b < d < f, or x < z (in the sense of the dictionary order).

In any case, x < z if x < y and y < z.

By (a)(b), \mathbb{C} is an ordered set (Definition 1.5).

(2) Show that has no least-upper-bound property. Assume \mathbb{C} has the least-upper-bound property. Consider

$$E = \{0\} \subset \mathbb{C}$$
.

- (a) E is bounded by $0 \in \mathbb{C}$. Thus E has the least upper bound $\alpha = a + bi \in \mathbb{C}$ where $a, b \in \mathbb{R}$. Here $a \ge 0$. (In fact a = 0.)
- (b) Set $\gamma = a + (b-1)i < a + bi = \alpha$. Note that $a \ge 0$ and thus γ is an upper bound of E, contrary to minimality of α .

Thus \mathbb{C} has no least-upper-bound property although E has the least upper bound (=0) in \mathbb{R} .

Exercise 1.10. Suppose z = a + bi, w = u + vi, and

$$a = \left(\frac{|w| + u}{2}\right)^{\frac{1}{2}}, b = \left(\frac{|w| - u}{2}\right)^{\frac{1}{2}}.$$

Prove that $z^2 = w$ if $v \ge 0$ and that $(\overline{z})^2 = w$ if $v \le 0$. Conclude that every complex number (with one exception!) has two complex square roots.

Proof.

(1)

$$\begin{split} z^2 &= (a^2 - b^2) + 2abi \\ &= \left(\frac{|w| + u}{2} - \frac{|w| - u}{2}\right) + 2\left(\frac{|w| + u}{2} \cdot \frac{|w| - u}{2}\right)^{\frac{1}{2}}i \\ &= u + (|w|^2 - u^2)^{\frac{1}{2}}i \\ &= u + (v^2)^{\frac{1}{2}}i \\ &= u + |v|i. \end{split}$$

Therefore, $z^2 = w$ if v > 0. $z^2 = \overline{w}$ if v < 0, or $(\overline{z})^2 = w$ if v < 0.

- (2) Every complex number w has two has two complex square roots z and -z.
 - (a) When $w \neq 0$, two square roots are distinct.
 - (b) When w = 0, two square roots are identical, or there is only one square root for w = 0.

Exercise 1.11. If z is a complex number, prove that there exists an $r \ge 0$ and a complex number w with |w| = 1 such that z = rw. Are w and r always uniquely determined by z?

To decide r and w in the relation z = rw, it is natural to take absolute values on the both sides. That is, |z| = r|w| = r.

Proof. Let $r = |z| \ge 0$.

- (1) $r \neq 0$. Define $w = \frac{z}{r} \in \mathbb{C}$. $|w| = \frac{|z|}{r} = 1$. In this case w and r are uniquely determined.
- (2) r = 0 (or z = 0). Define $w = e^{ix} = \cos x + i \sin x$ for any $x \in \mathbb{R}$. |w| = 1. Here r is uniquely determined but w is not uniquely determined.

Exercise 1.12. If z_1, \ldots, z_n are complex, prove that

$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|.$$

Proof. Use mathematical induction on n. n=2 is established by Theorem 1.33 (e). Suppose the inequality holds on n=k, then n=k+1 we again apply Theorem 1.33 (e) to get the result, say

$$|z_1 + z_2 + \dots + z_k + z_{k+1}| \le |z_1 + z_2 + \dots + z_k| + |z_{k+1}|$$

 $\le |z_1| + |z_2| + \dots + |z_k| + |z_{k+1}|$

Supplement. If $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^k$, then

$$|x_1 + x_2 + \dots + x_n| \le |x_1| + |x_2| + \dots + |x_n|.$$

Here we might use Theorem 1.37 (e) to prove it. Since the norm $|\cdot|$ on \mathbb{C} is the same as the norm on \mathbb{R}^2 , we might prove this supplement first and then set k=2 on $\mathbb{R}^k=\mathbb{R}^2$ to give another proof of Exercise 1.12.

Exercise 1.13. If x, y are complex, prove that

$$||x| - |y|| \le |x - y|.$$

We can show f(x) = |x| is uniformly continuous in \mathbb{R} by using this inequality.

Proof (Exercise 1.12). Since

$$|y| \le |x| + |y - x| = |x| + |x - y|$$

 $|x| \le |y| + |x - y|,$

we have

$$-|x - y| \le |x| - |y| \le |x - y|,$$

or

$$||x| - |y|| \le |x - y|.$$

Exercise 1.14. If z is a complex number such that |z| = 1, that is, such that $z\overline{z} = 1$, compute

$$|1+z|^2 + |1-z|^2$$
.

Proof $(|z|^2 = z\overline{z})$.

$$|1+z|^2 = (1+z)\overline{(1+z)} = (1+z)(1+\overline{z}) = 1+z+\overline{z}+z\overline{z}$$
$$|1-z|^2 = (1-z)\overline{(1-z)} = (1+z)(1-\overline{z}) = 1-z-\overline{z}+z\overline{z}$$
$$|1+z|^2+|1-z|^2 = 2+2z\overline{z} = 2+2=4.$$

Proof (Exercise 1.17). Regard \mathbb{C} as \mathbb{R}^2 . Then put $\mathbf{x}=1,\mathbf{y}=z$ in the parallelogram law (Exercise 1.17) to get

$$|1+z|^2 + |1-z|^2 = 2|1|^2 + 2|z|^2 = 4.$$

Exercise 1.15. Under what conditions does equality hold in the Schwarz inequality?

Theorem 1.35 (Schwarz inequality). If a_1, \ldots, a_n and b_1, \ldots, b_n are complex numbers, then

$$\left| \sum_{j=1}^{n} a_j \overline{b_j} \right|^2 \le \sum_{j=1}^{n} |a_j|^2 \sum_{j=1}^{n} |b_j|^2.$$

In fact, the Lagrange's identity for complex numbers shows

$$\left| \sum_{k=1}^{n} a_k \overline{b_k} \right|^2 = \sum_{k=1}^{n} |a_k|^2 \sum_{k=1}^{n} |b_k|^2 - \sum_{1 \le k < j \le n} |a_k b_j - a_j b_k|^2.$$

In general, the Binet-Cauchy identity shows

$$\sum_{1 \le k < j \le n} (a_k b_j - a_j b_k) (A_k B_j - A_j B_k)$$

$$= \left(\sum_{k=1}^n a_k A_k\right) \left(\sum_{k=1}^n b_k B_k\right) - \left(\sum_{k=1}^n a_k B_k\right) \left(\sum_{k=1}^n b_k A_k\right).$$

Proof of Binet-Cauchy identity.

$$\begin{split} &\sum_{1 \leq k < j \leq n} (a_k b_j - a_j b_k) (A_k B_j - A_j B_k) \\ &= \sum_{1 \leq k < j \leq n} (a_k b_j A_k B_j + a_j b_k A_j B_k) - \sum_{1 \leq k < j \leq n} (a_k b_j A_j B_k - a_j b_k A_k B_j) \\ &= \sum_{1 \leq k < j \leq n} (a_k A_k b_j B_j + a_j A_j b_k B_k) - \sum_{1 \leq k < j \leq n} (a_k B_k b_j A_j + a_j B_j b_k A_k) \\ &= \sum_{1 \leq k \neq j \leq n} a_k A_k b_j B_j - \sum_{1 \leq k \neq j \leq n} a_k B_k b_j A_j \\ &= \sum_{1 \leq k, j \leq n} a_k A_k b_j B_j - \sum_{1 \leq k, j \leq n} a_k B_k b_j A_j \\ &\text{(since } a_k A_k b_j B_j - a_k B_k b_j A_j = 0 \text{ as } k = j) \\ &= \left(\sum_{k=1}^n a_k A_k\right) \left(\sum_{j=1}^n b_j B_j\right) - \left(\sum_{k=1}^n a_k B_k\right) \left(\sum_{j=1}^n b_j A_j\right) \\ &= \left(\sum_{k=1}^n a_k A_k\right) \left(\sum_{k=1}^n b_k B_k\right) - \left(\sum_{k=1}^n a_k B_k\right) \left(\sum_{k=1}^n b_k A_k\right). \end{split}$$

Proof of Lagrange's identity. Put $(a_k, b_k, A_k, B_k) \mapsto (a_k, b_k, \overline{a_k}, \overline{b_k})$ in the Binet-Cauchy identity. \square

Proof of Schwarz inequality (Lagrange's identity). Notice the term

$$\sum_{1 \le k < j \le n} |a_k b_j - a_j b_k|^2 \ge 0.$$

Write $\mathbf{a} = (a_1, \dots, a_n)$ and $\mathbf{b} = (b_1, \dots, b_n)$ as two vectors in the vector space \mathbb{C}^n over \mathbb{C} . Back to the exercise now.

Proof (Lagrange's identity). $\sum_{1 \leq k < j \leq n} |a_k b_j - a_j b_k|^2 = 0 \iff a_k b_j = a_j b_k$ for any $1 \leq k < j \leq n$. The equality holds in the Schwarz inequality \iff **a** and **b** are linearly dependent. \square

Proof (Theorem 1.35). The equality holds in the Schwarz inequality. $\iff B = 0$ or the term $\sum |Ba_j - Cb_j|^2$ in the proof of Theorem 1.35 is $0. \iff \mathbf{b} = \mathbf{0}$ or $\mathbf{a} = c\mathbf{b}$ for some $c \in \mathbb{C}$. $\iff \mathbf{a}$ and \mathbf{b} are linearly dependent. \square

Exercise 1.17. Prove that

$$|\mathbf{x} + \mathbf{y}|^2 + |\mathbf{x} - \mathbf{y}|^2 = 2|\mathbf{x}|^2 + 2|\mathbf{y}|^2$$

if $\mathbf{x} \in \mathbb{R}^k$ and $\mathbf{y} \in \mathbb{R}^k$. Interpret this geometrically, as a statement about parallelograms.

Proof.

$$|\mathbf{x} + \mathbf{y}|^2 + |\mathbf{x} - \mathbf{y}|^2$$

$$= (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y}) + (\mathbf{x} - \mathbf{y}) \cdot (\mathbf{x} - \mathbf{y})$$

$$= (\mathbf{x} \cdot \mathbf{x} + 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y}) + (\mathbf{x} \cdot \mathbf{x} - 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y})$$

$$= 2\mathbf{x} \cdot \mathbf{x} + 2\mathbf{y} \cdot \mathbf{y}$$

$$= 2|\mathbf{x}|^2 + 2|\mathbf{y}|^2.$$

Interpret this geometrically, the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals.

If the parallelogram is a rectangle, the two diagonals are of equal lengths, so that the statement reduces to the Pythagorean theorem. \Box

Exercise 1.18. If $k \geq 2$ and $\mathbf{x} \in \mathbb{R}^k$, prove that there exists $\mathbf{y} \in \mathbb{R}^k$ such that $\mathbf{y} \neq 0$ but $\mathbf{x} \cdot \mathbf{y} = 0$. Is this also true if k = 1?

Proof.

- (1) There are only two possible cases.
 - (a) $\exists i \text{ such that } x_i = 0$. Let $\mathbf{y} = (0, \dots, 0, 1, 0, \dots, 0) \neq 0$ whose entries are all 0 except for a 1 in the *i*-th position. So $\mathbf{x} \cdot \mathbf{y} = 0 + \dots + 0 = 0$.
 - (b) $\forall i, x_i \neq 0$. Since $k \geq 2$, we can define $\mathbf{y} = (x_2, -x_1, 0, \dots, 0) \neq 0$. So $\mathbf{x} \cdot \mathbf{y} = x_1 x_2 + x_2 (-x_1) + 0 + \dots + 0 = 0$.
- (2) It is not true for k = 1 since $\mathbb{R}^1 = \mathbb{R}$ is a field.