1. Opérations sur les ensembles - Cardinal

Opérations sur les ensembles

1.1. Déterminer les ensembles suivants :

$$\bigcup_{n\in\mathbb{N}^\star} \left[0,1-\frac{1}{n}\right], \ \bigcap_{n\in\mathbb{N}^\star} \left[0,\frac{1}{n}\right[, \ \bigcup_{n\in\mathbb{N}^\star} \left[\frac{1}{n},1+\frac{1}{n}\right], \ \bigcup_{k\in\mathbb{N}^\star} \bigcap_{n\in\mathbb{N}^\star} \left[k-\frac{1}{n},k+\frac{1}{n}\right].$$

1.2. Soient f et f_n , $n \in \mathbb{N}$ des applications d'un ensemble E dans \mathbb{R} . Interpréter l'ensemble suivant :

$$\bigcap_{n \in \mathbb{N}^*} \bigcup_{k \in \mathbb{N}^*} \bigcap_{i \geqslant k} \left\{ x \in E, |f_i(x) - f(x)| \leqslant \frac{1}{n} \right\}.$$

- **1.3.** Donner un exemple de suite $(A_n)_{n\in\mathbb{N}}$ d'ensembles fermés non vides de \mathbb{R} , décroissante pour l'inclusion, telle que $\bigcap_n A_n = \emptyset$.
- **1.4.** Soient E, F deux ensembles, et f une application de E dans F.
 - Montrer que pour toute partie $B \subset F$, $f^{-1}(B^c) = f^{-1}(B)^c$. Donner des conditions nécessaires et suffisantes sur f
 - (i) pour avoir $f(A^c) \subset f(A)^c$ pour tout $A \subset E$;
 - (ii) pour avoir $f(A)^c \subset f(A^c)$ pour tout $A \subset E$.

Donner un exemple d'application f et d'ensemble $A \subset E$ tels qu'aucune des deux inclusions ci-dessus n'est satisfaite.

• Soient $(A_i)_{i\in I}$ et $(B_i)_{i\in I}$ des familles de parties respectivement de E et de F. Montrer que :

$$f^{-1}(\bigcup_{i} B_{i}) = \bigcup_{i} f^{-1}(B_{i}), f^{-1}(\bigcap_{i} B_{i}) = \bigcap_{i} f^{-1}(B_{i}), f(\bigcup_{i} A_{i}) = \bigcup_{i} f(A_{i}), f(\bigcap_{i} A_{i}) \subset \bigcap_{i} f(A_{i}).$$

Montrer que la dernière inclusion est en général stricte et qu'il y a égalité si f est injective.

Cardinal - dénombrabilité

- **1.5.** Soit E un ensemble infini dénombrable.
 - 1. Montrer que l'ensemble des parties finies de E est dénombrable.
 - 2. Montrer que l'ensemble des parties infinies de E n'est pas dénombrable.
- **1.6.** Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction croissante.
 - 1. Montrer que f admet des limites finies à gauche et à droite en tout point.
 - 2. Montrer que l'ensemble des points de discontinuité de f est dénombrable.
- 1.7. 1. Montrer que tout ouvert de \mathbb{R}^d est union dénombrable de pavés ouverts.
 - 2. Montrer que tout ouvert de $\mathbb R$ est union dénombrable disjointe d'intervalles ouverts.
- **1.8.** 1. Quel est le cardinal de $\mathbb{R}^{\mathbb{N}}$? De $\mathbb{N}^{\mathbb{N}}$?
 - 2. Quel est le cardinal des ouverts de \mathbb{R} ?
 - 3. Quel est le cardinal des fonctions continues de \mathbb{R} dans \mathbb{R} ?