3.3 Soit $\varepsilon > 0$ un nombre positif quelconque (arbitrairement petit).

Il faut montrer qu'il existe
$$n_0 \in \mathbb{N}$$
 tel que pour tout $n \ge n_0$ on ait $|u_n - 2| < \varepsilon$.
$$|u_n - 2| = \left|\frac{2n-1}{n} - 2\right| = \left|\frac{2n-1}{n} - \frac{2n}{n}\right| = \left|-\frac{1}{n}\right| = \frac{1}{n}$$

En choisissant $n_0 \in \mathbb{N}$ avec $n_0 > \frac{1}{\varepsilon}$, alors on obtient pour tout $n \geqslant n_0$:

$$|u_n - 2| = \frac{1}{n} \leqslant \frac{1}{n_0} < \varepsilon.$$