Inan/2007/Q2

Neglect friction and mass of bars. State All Other Assumptions. Bar#1 is moved at constant velocity v=1 m/s The B-field is everywhere; linearly increases with time $B_0=1 \text{ wb/m}^2$

 How much power is dissipated in R₁ at t=2 s?
Does Bar#2 move as a result of the motion of Bar#1? If so, in what direction? What speed?

Inan/Quals/2008 Question 1

Circuit connected for some long time before t=0

Determine and sketch the load voltage $\mathcal{V}_{L}(t)$

Answer: Initially, $V_L(t)$ is 12 V. The switch closure launches a negative voltage wave towards the source, which is reflected at source end by the inductor (acting initially as open circuit).

The voltage $V_L(t)$ thus drops at t=0, and then drops again at t=2 ns, after which time it rises exponentially (as the inductor now charges) back to 12 V.

The time constant of the charging is $L/Z_0=0.1$ ns.

Determine direction & speed of motion (at steady state) for constant (same everywhere) magnetic field:

a) $B = \mathbf{a}_x B_0$ Answer: +z-direction

b) $B = \mathbf{a}_y B_0$ Answer: -x-direction

c) $\mathbf{B} = \mathbf{a}_z B_0$ Answer: -x-direction

Answer: The eventual speed of motion is determined by equating the induced emf to V_0 , e.g., (a) emf= Integral [(v x B)·dl]= v B_0 (3a) = V_0