Binary Classification Using (tensor) LDA

Awais Bajwa, Shinho Kang, Omar Gutiérrez

July 20, 2017

Outline

Linear Discriminant Analysis

Tensor Linear Discriminant Analysis

Linear Discriminant Analysis

- ► **Task**: Implement a binary classifier for car detection.
- Using (conventional) Linear Discriminant Analysis.

Steps

- ightharpoonup Calculate mean μ
 - ▶ For class 0, class 1, and for the overall dataset
- Calculate covariance matrix
 - \triangleright S_B and S_W
- Calculate projector matrix w

Determine w

w is a projection vector that maximally separates the data

$$\mathbf{w} = \arg\max_{w} \frac{\mathbf{w}^{T} S_{B} \mathbf{w}}{\mathbf{w}^{T} S_{w} \mathbf{w}} \quad (1)$$

Plot from S_W

Figure 1: Plot from S_W

Plot from S_B

Figure 2: Plot from S_B

Plot from w

Figure 3: Plot from w

Result

Figure 4: Result from LDA

Precision and recall

$$Precision = rac{tp}{tp + fp}$$
 $Recall = rac{tp}{tp + fn}$

(2)

(3)

Precision and recall

Figure 5: Precision and recall

Tensor Linear Discriminant Analysis

- ► **Task**: Implement a binary classifier for car detection.
- Using Tensor Linear Discriminant Analysis.

Tensor W output

Determine a projector w

$$y(X) = \begin{cases} +1, & \text{if } w^T x \ge \theta \\ -1, & \text{otherwise} \end{cases}$$
(4)