Learning Objective: Electric Field and Potential Due to Point Charges

Problem 1. Two point charges with $q_1 = 20 \ \mu\text{C}$ and $q_2 = -40 \ \mu\text{C}$ are located in a free space at points with Cartesian coordinates (1, 3, -1) m and (-3, 1, -2) m, respectively.

- (a) Determine the force $\mathbf{F_1}$ acting on charge q_1 .
- (b) Find the electric field \mathbf{E} at (3, 1, -2) m.
- (c) Suppose a new point charge $q_3 = 80 \ \mu\text{C}$ is placed at (3, 1, -2) m, determine the force $\mathbf{F_3}$ acting on charge q_3 .

Learning Objective: Electric Field and Potential Due to Charge Distribution

Problem 2. A charge +Q is evenly spread along the x-axis from x=-L/2 to x=L/2.

- (a) Determine the line charge density ρ_l .
- (b) Derive an expression of the electric field **E** along the x-axis where a > L/2.
- (c) Derive an expression of the electric potential V along the x-axis where a > L/2.
- (d) Derive an expression of the electric field **E** at y = a where a > 0.

Problem 3. Consider a ring of radius r = a in the z = 0 plane, centered at the origin, has a uniform line charge density ρ_l . Another circular disk of radius r = a in the z = d plane (d > 0), centered at the origin, has a uniform surface charge density ρ_s .

- (a) Derive an expression of the electric field **E** along the z-axis where 0 < z < d.
- (b) Derive an expression of the electric field **E** along the z-axis where z > d.

Learning Objective: Gauss's Law

Problem 4. Consider a sphere of radius r = a centered at the origin has a uniform volume charge density ρ_v in a spherical coordinate.

- (a) Determine the electric field **E** for r > a.
- (b) Determine the electric field **E** for 0 < r < a.

Learning Objective: Capacitance

Problem 5. Consider an n-channel MOSFET with a gate oxide thickness of 10 nm, gate width of 25 μ m and gate length of 1 μ m. A non-zero gate-to-source voltage $V_{\rm GS}$ is applied. Use $\epsilon_{ox} = 3.9\epsilon_0$, $n_i = 1.5 \times 10^{10}$ cm⁻³ if needed.

- (a) Determine the gate capacitance of the MOSFET.
- (b) Determine the total charge at the gate.
- (c) Determine the electric field inside the oxide.