Оглавление

1 Общий алгоритм решения

 $\mathbf{2}$

Глава 1

Общий алгоритм решения

Алгоритм.

- 1. ОДЗ:
 - (а) Школьное ОДЗ (подкоренные выражения, знаменатели, логарифмы)
 - (b) В зависимости от вида уравнения:
 - Если уравнение содержит y', пишем $x \not\equiv C$
 - Если уравнение в симметрической форме, находим особые точки (в них уравнения нет):

$$\begin{cases} M(x,y) = 0\\ N(x,y) = 0 \end{cases}$$

- (c) Плохие границы (G^* и B^*):
 - Нули множителей при производной
- (d) Хорошие границы $(\widehat{G} \ \text{и} \ \widehat{B})$:
 - Нестрогие неравенства в школьном ОДЗ (равенства из них)
- 2. Определяем тип уравнения
- 3. Решаем в соответствии с алгоритмом для нужного типа
- 4. Характеризуем граничные решения:
 - Теоремы единственности (если применимы)
 - Пусть $y=\psi(x)$ граничное решение, а $y=\varphi(x,C)$ общее Ищем C_* такое, что $\forall x_* \quad \psi(x_*)=\varphi(x_*,C_*)$
 - Если C_* нашлось и конечно, то решение особое (т. к. из граничного решения в каждой точке выходит общее)
 - Если C_* не нашлось или бесконечное, то решение частное
- 5. Решаем ЗК

Особые случаи.

- 1. Замена переменных:
 - Выписываем три замены:
 - (а) Прямая:

$$x = u(x, y),$$
 $y = v(x, y)$

(b) Производная (если необходимо) или дифференциал:

$$x' = ..., y' = ...$$
 или $dx = ..., dy = ...$

(с) Обратная:

$$u = ..., v = ...$$

- Пишем ОДЗ и на прямую и на обратную замены Если оно меньше \widetilde{G} или \widetilde{B} , то:
 - Если "отрезается" часть \widehat{G} или \widehat{B} (хорошей границы), то это может быть граничным решением нужно проверять отдельно
 - Если в ОДЗ входят неравенства вида $u \succ 0$, то см. пункт 2

2. Полуплоскости

Применяется, если:

- В ОДЗ на замену входят неравенства вида $u(x) \succ 0$
- \bullet В ходе решения получили множителем sign x

Порядок действий:

(a) Проверяем инвариантность **исходного** уравнения относительно u или x

Примечание. Если получили несколько "знакозависимых" переменных, то проверяем инвариантность относительно обеих сразу. Если её нет, то относительно каждой по отдельности

Замечание. Здесь надо учитывать, что $y' = \frac{\mathrm{d}\,x}{\mathrm{d}\,y}$, т. е. y' не инвариантна относительно x

- Если инвариантность есть:
 - і. Пишем "Пусть u > 0" или "Пусть x > 0"
 - іі. Решаем в этом случае
 - ііі. Пишем "Сделаем замену $x=-\tilde{x}$. Так как уравнение инвариантно относительно u (или x), получим то же самое уравнение"
 - iv. В ответе вместо x пишем |x| (или |u| вместо u)
- Если инвариантности нет:
 - В случае u(x) ≻ 0 в ОДЗ:
 - i. Пишем "Пусть u > 0"
 - іі. Решаем в этом случае
 - ііі. Пишем "Пусть u < 0"
 - iv. Решаем в этом случае
 - v. В ответ попадают оба решения (каждое со своей ОДЗ)
 - В случае sign x:
 - і. Обозачаем $\sigma \coloneqq \operatorname{sign} x$
 - ii. Решаем, считая σ за константу
 - ііі. В ответе σ не должно быть (скорее всего, она будет множителем при |x| тогда просто пишем x)
- 3. Все логарифмы собираем под один. Константу заносим туда же:

$$\ln x + \ln y + C = \ln(xyC)$$

- 4. Чтобы корень назвать новой буквой, надо, чтобы подкоренное выражение **линейно** зависело от старой переменной
- 5. Чтобы проинтегрировать рациональную дробь, её нужно разложить на простейшие