Spatial models in INLA

Elias T. Krainski

Jul-2017, Lavras/MG 62^a RBras & 17^o SEAGRO

Outline

- Smoothing in 2d
- 2 Besag variations

- Smoothing more
- 4 SPDE model
- 5 SPDE applications

Remember 1d: Laplacian for RW1

$$x_i - x_{i-1} \sim N(0, 1/(2\tau))$$
 is the same as

$$\pi(\mathbf{x}|\tau) \propto \tau^{(n-1)/2} \exp\left(-\frac{\tau}{2} \sum_{i=2}^{n} (x_i - x_{i-1})^2\right)$$
 (1)

$$= \tau^{(n-1)/2} \exp\left(-\frac{\tau}{2} \mathbf{x}^T \mathbf{R} \mathbf{x}\right) \tag{2}$$

Remember 1d: Laplacian for RW1

$$x_i - x_{i-1} \sim N(0, 1/(2\tau))$$
 is the same as

$$\pi(\mathbf{x}|\tau) \propto \tau^{(n-1)/2} \exp\left(-\frac{\tau}{2} \sum_{i=2}^{n} (x_i - x_{i-1})^2\right)$$

$$= \tau^{(n-1)/2} \exp\left(-\frac{\tau}{2} \mathbf{x}^T \mathbf{R} \mathbf{x}\right)$$
(2)

when

R is the Laplacian

Laplacian (Besag)

randon walk over areas $\pi(x_i|\mathbf{x}_{-i},\tau) \sim N(\frac{1}{n_i}\sum_{j\sim i}x_j,\frac{1}{n_i\tau})$

$$\pi(\boldsymbol{x}|\tau) \propto \tau^{(n-1)/2} \exp\left(-\frac{\tau}{2} \sum_{i}^{n} (x_i - \frac{1}{n_i} \sum_{j \sim i} x_j)^2\right)$$
 (3)

$$= \tau^{(n-1)/2} \exp \left(-\frac{\tau}{2} \sum_{j \sim i}^{n} (x_i - x_j)^2 \right)$$
 (4)

$$= \tau^{(n-1)/2} \exp\left(-\frac{\tau}{2} \mathbf{x}^T \mathbf{R} \mathbf{x}\right) \tag{5}$$

Laplacian (Besag)

randon walk over areas $\pi(x_i|\mathbf{x}_{-i},\tau) \sim N(\frac{1}{n_i}\sum_{j\sim i}x_j,\frac{1}{n_i\tau})$

$$\pi(\mathbf{x}|\tau) \propto \tau^{(n-1)/2} \exp\left(-\frac{\tau}{2} \sum_{i}^{n} (x_i - \frac{1}{n_i} \sum_{j \sim i} x_j)^2\right)$$
 (3)

$$= \tau^{(n-1)/2} \exp \left(-\frac{\tau}{2} \sum_{j \sim i}^{n} (x_i - x_j)^2\right)$$
 (4)

$$= \tau^{(n-1)/2} \exp\left(-\frac{\tau}{2} \mathbf{x}^T \mathbf{R} \mathbf{x}\right)$$
 (5)

when

$$\mathbf{R}_{ij} = \begin{cases} n_i & \text{if } i = j \\ -1 & \text{if } i \sim j \\ 0 & \text{otherwise} \end{cases}$$
 (6)

R is the Laplacian

Map example and the neighbourhood

Dimensions: 11 x 11

Spatial precision structure R

Outline

- 1 Smoothing in 2d
- 2 Besag variations

- 3 Smoothing more
- 4 SPDE model
- 5 SPDE applications

besagproper

$$\pi(\mathbf{x}_{i}|\mathbf{x}_{-i},\tau) \sim \mathcal{N}\left(\frac{1}{n_{i}+d}\sum_{j\sim i}\mathbf{x}_{j},\frac{1}{\tau(n_{i}+d)}\right)$$
$$\pi(\mathbf{x}|\tau) \propto \left(-\frac{\tau}{2}\mathbf{x}^{T}(\mathbf{D}+\mathbf{R})\mathbf{x}\right)$$
(7)

where

- d > 0 is an extra parameter
- D = diag(d, d, ..., d)
- R as before

besagproper2

$$\pi(\mathbf{x}_{i}|\mathbf{x}_{-i},\tau) \sim N(\frac{1}{n_{i}\lambda + (1-\lambda)} \sum_{j \sim i} \mathbf{x}_{j}, \frac{1}{\tau[n_{i}\lambda + (1-\lambda)]}) \text{ for } \lambda \in (0,1)$$

$$\pi(\mathbf{x}|\tau) \propto \left(-\frac{\tau}{2} \mathbf{x}^{T} [(1-\lambda)\mathbf{I} + \lambda \mathbf{R}] \mathbf{x}\right)$$
(8)

where

- also called Leroux's model
- **R** as before

$$\pi(\mathbf{x}_i|\mathbf{x}_{-i},\tau) \sim N(\frac{\beta}{\lambda_{\max}} \sum_{j}^{n} \mathbf{C}_{ij} \mathbf{x}_j, \frac{1}{\tau})$$

$$\pi(\mathbf{x}|\tau) \propto \left(-\frac{\tau}{2} \mathbf{x}^{T} (\mathbf{I} - \frac{\beta}{\lambda_{\max}} \mathbf{C}) \mathbf{x}\right)$$
(9)

where

- C is a structure matrix
 - example: the adjacency matrix
- λ_{max} is the biggest eigenvalue of ${\pmb C}$ to allows $\beta \in [0,1)$
- conditional variance is not local

Outline

- 1 Smoothing in 2d
- Besag variations

- 3 Smoothing more
- 4 SPDE model
- 5 SPDE applications

- Besag (and RW1) averages over 1st neighbours
- how to make it smoother?
 - average over 2nd order neighbours? NO
 - use Q^2 as precision? YES!
 - like what RW2 does

- Besag (and RW1) averages over 1st neighbours
- how to make it smoother?
 - average over 2nd order neighbours? NO
 - use Q^2 as precision? YES!
 - like what RW2 does

```
(r1 %*% r1)
## 10 x 10 sparse Matrix of class "dgCMatrix"
   [8.]
   [9.]
## [10.]
INLA:::inla.rw(n, order=2)
## 10 x 10 sparse Matrix of class "dgTMatrix"
   [8,]
           . . . . . 1 -4 5 -2
## [10,]
         . . . . . . . 1 -2 1
```


eliaskr@ufpr.br Spatial models / 25

Outline

- 1 Smoothing in 2d
- Besag variations

- 3 Smoothing more
- 4 SPDE model
- SPDE applications

Matérn covariance

The Stochastic Partial Differential Approach - SPDE

Fields with Matérn covariance are solutions to (SPDE):

$$(\kappa^2 - \Delta)^{\alpha/2} \xi(\mathbf{s}) = \tau \mathcal{W}(\mathbf{s})$$

- $\kappa > 0$: scale parameter
- $\alpha = \nu + d/2$: smoothness
- ullet Δ is the Laplacian

$$\Delta = \sum_{i=1}^{d} \frac{\partial^2}{\partial s_i^2}$$

The Stochastic Partial Differential Approach - SPDE

Fields with Matérn covariance are solutions to (SPDE):

$$(\kappa^2 - \Delta)^{\alpha/2} \xi(\mathbf{s}) = \tau \mathcal{W}(\mathbf{s})$$

- $\kappa > 0$: scale parameter
- $\alpha = \nu + d/2$: smoothness
- ullet Δ is the Laplacian

$$\Delta = \sum_{i=1}^{d} \frac{\partial^2}{\partial s_i^2}$$

- When d=2
 - $\alpha = 1$: CAR model
 - $\alpha = 2$: SAR model

Regular grid, d = 2

- $\alpha = 1$: $\mathbf{Q}_{1,\kappa} = \mathbf{K}_{\kappa} = \kappa^2 \mathbf{C} + \mathbf{G}$
- C = I, G = Laplacian (4 neighbours)

Laplacian-local pattern:

$$oldsymbol{Q}_{1,\kappa}$$
-local pattern

$$\begin{bmatrix} -1 \\ -1 & 4 & -1 \\ -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ -1 & 4+\kappa^2 & -1 \\ -1 & \end{bmatrix}$$

ullet is a scale parameter

Regular grid, d = 2

- $\alpha = 1$: $\mathbf{Q}_{1,\kappa} = \mathbf{K}_{\kappa} = \kappa^2 \mathbf{C} + \mathbf{G}$
- C = I, G = Laplacian (4 neighbours)

Laplacian-local pattern:

$$oldsymbol{Q}_{1,\kappa}$$
-local pattern

$$\begin{bmatrix} -1 \\ -1 & 4 & -1 \\ -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ -1 & 4+\kappa^2 & -1 \\ & -1 \end{bmatrix}$$

- ullet is a scale parameter
- \rightarrow Sparse precision Q !!!
- remember: $(\kappa^2 \Delta)^{\alpha/2} \xi(s) = \tau \mathcal{W}(s)$
- \rightarrow $(Q_{1,\kappa})^{1/2}\xi$ = independent noise
- 'effective' range (0.139) $\approx \sqrt{8 \nu / \kappa}$

 $\mathsf{bigger}\ \alpha \to \mathbf{\textit{Q}}\ \mathsf{less}\ \mathsf{sparse} \to \mathsf{smoother}$

•
$$\alpha = 1$$
: $Q_{1,\kappa} = K_{\kappa} = \kappa^2 C + G$

•
$$\alpha = 2$$
: $\mathbf{Q}_{2,\kappa} = \mathbf{K}_{\kappa} \mathbf{C}^{-1} \mathbf{K}_{\kappa}$

•
$$\alpha = 3, 4, ...$$
: $\mathbf{Q}_{\alpha, \kappa} = \mathbf{K}_{\kappa} \mathbf{C}^{-1} \mathbf{Q}_{\alpha - 2, \kappa} \mathbf{C}^{-1} \mathbf{K}_{\kappa}$

Irregular grid \rightarrow Finite Element Method - FEM \rightarrow mesh

Irregular grid \rightarrow Finite Element Method - FEM \rightarrow mesh

- $\xi(s) \approx \sum_{k=1}^{m} \psi_k(s) w_k = A\xi(v,$
- ψ_k : basis functions,
- w_k : weights

Irregular grid \rightarrow Finite Element Method - FEM \rightarrow mesh

- $\xi(s) \approx \sum_{k=1}^{m} \psi_k(s) w_k = A\xi(v)$
- ψ_k : basis functions,
- w_k : weights

Outline

- 1 Smoothing in 2d
- Besag variations

- 3 Smoothing more
- 4 SPDE model
- 5 SPDE applications

Bivariate and misaligned

- $x(s_j) = x_j$: covariate at n_x locations s_j
- $y(s_i) = y_j$: response at n_y locations s_i
- can be partially or totally misalined

eliaskr@ufpr.br Spatial models / 25

Point-process: log-Cox

- regular grid free approach
- $\lambda(s)$: intensity function
- $\log(\lambda(s)) = \xi(s)$
- $\log(\pi(y|\lambda)) =$

$$|\Omega| - \int_{\Omega} \mathsf{e}^{\xi(\boldsymbol{s})} d\boldsymbol{s} + \sum_{i=1}^{n} \xi(\boldsymbol{s}_i)$$

$$pprox c - oldsymbol{w}^T \mathrm{e}^{\xi(oldsymbol{v})} + \mathbf{1}^T oldsymbol{A} \xi(oldsymbol{v}))$$

 ${m w}$ is $\tilde{{m C}}_{ii}$ for non-boundary ${m v}_i$

Point-process: log-Cox

- regular grid free approach
- $\lambda(s)$: intensity function
- $\log(\lambda(s)) = \xi(s)$
- $\log(\pi(y|\lambda)) =$

$$|\Omega| - \int_{\Omega} e^{\xi(s)} ds + \sum_{i=1}^{n} \xi(s_i)$$

$$pprox c - oldsymbol{w}^T \mathrm{e}^{\xi(oldsymbol{v})} + \mathbf{1}^T oldsymbol{A} \xi(oldsymbol{v}))$$

 \boldsymbol{w} is $\tilde{\boldsymbol{C}}_{ii}$ for non-boundary \boldsymbol{v}_i

Preferential sampling

- joint model for locations and marks
- test if sampling locations are preferential
- log-Cox model for locations

1d: Continuous time-series

 \rightarrow lowering time dimension

Non-stationary

- parametric way
- basis/covariates B

•
$$\log(\tau_i) = {\pmb B}_0^{(au)} + \sum_{j=1}^p {\pmb B}_{i,j}^{(au)} \theta_j^{(au)}$$

•
$$\log(\kappa_i) = \boldsymbol{B}_0^{(\kappa)} + \sum_{j=1}^p \boldsymbol{B}_{i,j}^{(\kappa)} \theta_j^{(\kappa)}$$

```
spde <- inla.spde2.matern( mesh=..., B.tau=...,
B.kappa=..., ...)</pre>
```