## 이력서

작성일: 2023. 09. 10

| 성 명  | 윤대건        | 영문성명   | Daegun Yoon       |
|------|------------|--------|-------------------|
| 생년월일 | 1994.02.04 | E-mail | slashxp@naver.com |

|        | 구 분            | 입학년월    | 졸업년월    | 학교명                                  | 전공                                 | 졸업구분             |
|--------|----------------|---------|---------|--------------------------------------|------------------------------------|------------------|
|        | 고등학교           | 2009.03 | 2012.02 | 영동일고등학교                              | 자연계                                | 졸업               |
| 학<br>력 | 대학교            | 2013.03 | 2018.08 | 아주대학교                                | 소프트웨어및컴퓨터공학전공                      | 졸업               |
| 사      |                | 2018.09 | 2024.02 | 아주대학교                                | 인공지능전공                             | 졸업예정             |
| 항      | 대학원<br>(석박사통합) | 졸업논문    | _       | eserving Near-Optima<br>DNN Training | lity of Gradient Sparsification fo | or Data-Parallel |
|        |                | LAB.    | 병렬 및 분  | 산 처리 연구실, 지도                         | 교수: 오상윤, 홈페이지: https://            | wise.ajou.ac.kr/ |

# 주요 수행 프로젝트

| 회사 / 기관명 | 기간           | 프로젝트명                             |  |
|----------|--------------|-----------------------------------|--|
| 한국연구재단   | 2022.02 취제   | BK21+ 4단계, 대규모 분산 학습 가속을 위한 통신 최적 |  |
|          | 2022.03 ~ 현재 | 화 기법의 계산/통신 비효율성 개선               |  |

[담당업무 및 주요성과] 분산 딥러닝 Gradient sparsification 계산/통신 비용 최적화 기법 연구

- NeurIPS, MLSys 등에서 발표된 State-of-the-art Gradient sparsification 기법들의 한계점 분석
- 대규모 분산 학습을 위해 높은 확장성을 목표로 하는 고성능 Gradient sparsification 기법 설계
- SOTA, 제안 기법 구현 및 성능 검증 (PyTorch 기반)
- SCI급 학술지 논문 주저자 1편 채택
- BK21+ CS 분야 우수국제학술대회 논문 주저자 제출 (1편 채택, 1편 심사 중 Rebuttal 완료, 1편 2023.11 초 제출 예정)

| 회사 / 기관명      | 기간                | 프로젝트명                          |
|---------------|-------------------|--------------------------------|
| KISTI (한국과학기술 | 2022.02           | 거대 딥러닝 모델 분산 학습 속도 향상을 위한 샤드 데 |
| 정보연구원)        | 2022.03 ~ 2022.10 | 이터 병렬화 메모리 활용 최적화 및 통신 스케줄링 기법 |

[담당업무 및 주요성과] 고성능 GPU 클러스터 기반의 슈퍼컴퓨터에서 DeepSpeed와 FairScale 벤치마크 및 새

로운 Sharded data parallel 분산 학습 최적화 기법 설계

- Multidimensional benchmark 수행
  - 프레임워크={DeepSpeed: ZeRO 0, 1, 2, 3}, {FairScale: ZeRO 0, 2, 3}
  - 모델={이미지 생성 모델 DALL-E: original, 1B}, {자연어 처리 모델 T5: small, base, large}
  - GPU={V100 32GB NVLink: 1, 2, 4, 8대}, {A100 80GB NVLink: 1, 2, 4, 8대}
- 벤치마크 결과, 논문, 소스코드 분석을 통해 ZeRO의 메모리 관리 문제점 도출
- ZeRO의 메모리 비효율성을 개선하기 위한 파라미터 공유 스케줄 최적화 기법 설계

| 회사 / 기관명      | 기간                | 프로젝트명                           |
|---------------|-------------------|---------------------------------|
| KISTI (한국과학기술 | 2010.02 2010.10   | 초거대규모 CPU 기반 환경에서 딥러닝 응용의 12페타플 |
| 정보연구원)        | 2019.03 ~ 2019.10 | 롭스 병렬확장성 연구                     |

[담당업무 및 주요성과] 대규모 CPU 클러스터에서 딥러닝 플랫폼 운용을 위한 최적화 연구

- 분산 딥러닝의 학습 속도 및 정확도 향상을 위한 레이어 별 통신, 비동기 통신 기반 SGD 등 분산 학습 최적화 기법 연구

| 회사 / 기관명      | 기간                | 프로젝트명                          |
|---------------|-------------------|--------------------------------|
| KISTI (한국과학기술 | 2010.00 2010.10   | 거대규모 인공신경망 학습 및 검증, 응용연구 활용을 위 |
| 정보연구원)        | 2018.09 ~ 2018.10 | 한 슈퍼컴퓨팅 환경에서의 병렬 플랫폼 최적화 연구    |

[담당업무 및 주요성과] 대규모 CPU 클러스터에서 딥러닝 응용 실행 시 제한요소 및 성능 저하 요소 도출 연구

- 대규모 데이터셋 벤치마크 결과를 분석하여 CPU 기반 딥러닝 응용에 적합한 메모리 및 네트워크 최적화 요소 도출

| 회사 / 기관명 | 기간           | 프로젝트명                          |
|----------|--------------|--------------------------------|
| 삼성디스플레이  | 2023.01 ~ 현재 | 고효율 HPC Job Scheduling 알고리즘 개발 |

[담당업무 및 주요성과] 삼성디스플레이의 해석 시뮬레이션이 구동되는 데이터 센터의 고성능컴퓨팅 환경에서 효율적인 작업 스케줄링을 가능하게 하는 알고리즘 개발

- 실제 데이터 센터의 컴퓨팅 리소스를 물리 코어 단위의 클러스터의 토폴로지로 표현하여 현업에서의 작업 스케줄링에 문제가 되는 요소 분석
- 데이터 센터에서 구동된 시뮬레이션들의 작업 로그를 데이터로 머신 러닝 및 데이터 마이닝을 수행하여 작업 스케줄링에 큰 영향력을 행사하는 요소 도출
- 실제 데이터 센터의 클러스터 토폴로지와 작업 로그를 기반으로 하여 실제 운용 상황에서의 리소스 점유

- 율 및 작업 대기시간을 재현하는 스케줄링 시뮬레이터 개발 (C++ 기반)
- 개발한 스케줄링 시뮬레이터에서 다양한 스케줄링 정책 (FCFS, SJF 등)을 적용하여 확인한 결과와 각 정책의 장단점을 분석하여 삼성디스플레이 데이터 센터에 특화된 스케줄링 알고리즘 설계 및 개발

| 회사 / 기관명 | 기간                | 프로젝트명                                  |
|----------|-------------------|----------------------------------------|
| 한국연구재단   | 2020.09 ~ 2022.02 | BK21+ 4단계, NVIDIA GPU 아키텍처의 Warp 기반 병렬 |
|          | 2020.09 ~ 2022.02 | 성을 고려한 고성능 그래프 알고리즘                    |

### [담당업무 및 주요성과] GPU 기반 고성능 BFS 알고리즘 개발

- ASPLOS, SC, HPDC, ATC에서 발표된 그래프 프레임워크 및 BFS 알고리즘들의 한계점 분석
- 그래프 알고리즘 고성능화 및 병렬화를 위해 활용해야 하는 GPU 아키텍처 요소 도출
- Warp 기반 고성능 Direction-optimizing BFS 알고리즘 설계
- 기존, 제안 기법 구현 및 성능 검증 (C++, CUDA 기반)
- SCI급 학술지 논문 주저자 2편 채택

# 전공 소개서

#### [연구 개요]

저는 아주대학교 일반대학원 인공지능학과 석박사통합과정으로 2018년 9월부터 현재까지 병렬 및 분산처리 분야의 다양한 주제로 연구를 수행해왔습니다. 학위 과정 중 1) 분산 시스템의 부하 균형을 위한 리소스 사용량 관리 및 핫 스팟 완화, 2) NVIDIA GPU 아키텍처의 Warp 기반 병렬성을 고려한 고성능 그래프 알고리즘, 3) 대규모 분산 학습 가속을 위한 통신 최적화 기법의 계산/통신 비효율성 개선의 순서로 연구를 수행했으며 연구 3은 제 대표 연구 주제입니다. 연구 1과 2를 수행하면서 얻은 경험과 인사이트를 기반으로연구 3에서의 계산 및 통신 비용을 줄이는 확장성 있는 분산 학습 통신 최적화 기법을 설계할 수 있었고,해당 기법은 부하 분산과 GPU 코어 병렬성을 활용하여 큰 성능 향상을 달성했습니다. 이러한 결과로부터 시 기술을 활용하는 다양한 과학기술 응용 개발에 필요한 대규모 분산 학습의 가속화 및 비용 절감으로 산업에서의 가치를 창출하는 데에 기여할 수 있을 것으로 기대하고 있습니다.

### 연구 1) 분산 시스템의 부하 균형을 위한 리소스 사용량 관리 및 핫 스팟 완화 (2018.09 ~ 2020.02) [연구 배경]

- 컨텐츠 기반 출판/구독 형식의 분산 메시징 시스템에서는 사용자가 전달받기를 원하는 정보가 구독의 형태로 서버에 저장되며, 해당하는 정보가 출판되면 서버에서 사용자에게 전송
- 특정 정보에 대한 수요가 많아지면 해당 서버들의 부하가 증가하여 정보에 대한 수요의 불균형으로 핫 스팟 발생
- 수요가 집중되는 정보의 구독 복제본을 여러 서버로 분산하여 핫 스팟을 완화할 수 있지만, 복제본의 수가 많아질수록 서버들의 메모리 사용량과 복제본을 담당하는 쓰레드의 수가 증가하여 비효율적인 리 소스 점유와 성능 감소 초래

### [연구 내용 및 결과]

- 본 연구에서는 분산 시스템 내의 서버들의 리소스 점유 상태와 각 정보에 대한 수요를 실시간으로 모 니터링하여 서버들에 배포되는 복제본의 수를 동적으로 조절함으로써 메모리/CPU 사용량 관리와 핫 스팟 완화 간의 균형을 최적화하는 기법 제안
- 본 연구를 수행한 결과로 정보의 복제본을 감소시켜 리소스 오버헤드가 감소하고 부하 분산으로 핫 스 팟을 완화하는 효과를 달성
- 본 연구를 통해 얻은 경험을 토대로 분산 환경의 HPC 클러스터에서 실행되는 병렬/분산 응용들의 리소스 사용 효율성 개선과 성능 향상을 위한 기술 개발에 기여할 수 있을 것으로 기대

### [관련 SCI급 주저자 논문 실적]

- [1] Daegun Yoon, Zhetao Li, Sangyoon Oh, "Balanced content space partitioning for pub/sub: a study on impact of varying partitioning granularity", The Journal of Supercomputing, Apr. 2021. (IF=3.3)
- [2] Daegun Yoon, Gyudong Park, Sangyoon Oh, "Exploring a system architecture of content-based publish/subscribe system for efficient on-the-fly data dissemination", Concurrency and Computation: Practice and Experience, Nov. 2020. (IF=2.0)

# 연구 2) NVIDIA GPU 아키텍처의 Warp 기반 병렬성을 고려한 고성능 그래프 알고리즘 (2020.03 ~ 2022.02)

### [연구 배경]

- 수많은 그래프 알고리즘들의 기본형인 BFS는 탐색 방법에 따라 Push 또는 Pull 기반의 알고리즘으로 구분되며, 각 탐색 방법은 그래프의 형태와 워크로드 상태에 따라 성능이 상이
- Direction-optimizing BFS는 Push와 Pull 중 현재 상태에 더 적합하다고 판단되는 방법을 선택하여 그래 프를 탐사하도록 하는 방법
- 기존 기법들은 실제 워크로드를 고려하지 않고 Push/Pull 선택을 그래프 데이터마다 튜닝한 조건에 의지하여 다양한 그래프 데이터에 대해 일관성 있는 고성능을 달성하기 어려움
- 기존 기법들은 Push/Pull의 설계 및 구현에서 GPU 기반 알고리즘에서 Atomic operation이 코어들의 병 렬성으로 얻는 성능 향상을 저하시킨다는 점과 Memory/Branch divergence 발생 가능성을 충분히 고려 하지 않아 성능 저하 발생

### [연구 내용 및 결과]

- 본 연구에서는 각 탐색 방법을 GPU 아키텍처에 적합하게 설계하여 병렬성을 최대 활용할 수 있도록
   하고, 탐색 방법을 워크로드 상태를 고려하여 선택하도록 하는 고도화된 알고리즘 제안
- 최근 Iteration에서의 Frontier (이전 Iteration에서 방문된 Vertex) 개수 변화를 모니터링하고 Frontier의 Variation과 Convexity에 기반하여 워크로드의 규모와 상태 판단
- 제안 기법은 워크로드의 규모가 클 때는 Atomic-free한 탐색 알고리즘을 선택하고, 규모가 작을 때는 Atomic operation 기반의 알고리즘을 선택
- Atomic-free한 알고리즘은 Warp 기반의 병렬성을 극대화하기 위해 Memory/Branch divergence 발생을 최소화하도록 설계
- 본 연구를 수행한 결과로 다양한 그래프 데이터들에서 기존 기법들에 비해 그래프 처리 성능이 크게 향상되었으며 특정 그래프 데이터에 종속되는 튜닝 없이 일관성 있는 고성능 달성
- 본 연구를 통해 얻은 GPU 기반의 병렬 프로그래밍 경험으로 고성능 GPU 클러스터에서의 거대모델 학습 최적화에 기여할 수 있을 것으로 기대

### [관련 SCI급 주저자 논문 실적]

- [3] Daegun Yoon, Minjoong Jeong, Sangyoon Oh, "WAVE: designing a heuristics-based three-way breadth-first search on GPUs", The Journal of Supercomputing, Nov. 2022. (IF=3.3)
- [4] Daegun Yoon, Sangyoon Oh, "SURF: Direction-Optimizing Breadth-First Search Using Workload State on GPUs", Sensors, Jun. 2022. (IF=3.9)

# 연구 3) 대규모 분산 학습 가속을 위한 통신 최적화 기법의 계산/통신 비효율성 개선 (2022.03 ~ 현재) [연구 배경]

- Gradient sparsification은 정보를 손실시키는 Lossy algorithm의 일종으로, Data-parallel 분산 학습에서 각 워커가 자신의 Mini-batch에서의 역전파로 계산된 로컬 Gradient tensor의 모든 Gradient를 Allreduce 하지 않고 극히 일부 Gradient만 통신으로 교환 (Sparse All-reduce)하는 통신 최적화 기법
- NeurIPS, MLSys 등에서 발표된 State-of-the-art Gradient sparsification 기법들의 논문들에서는 Sparse All-reduce가 적용된 SGD의 수렴을 이론적으로 설명하는 데에 많은 노력을 기울였지만, 여기에는 많은 이론적 가정이 포함되어 있고 알고리즘 측면에서의 한계로 실제 분산 학습에 실용적으로 적용되기 어려움
- 본 연구는 기존 기법들에서 발생하는 비용들을 크게 줄여 실제 산업의 제품들에 탑재되는 딥러닝 모델 개발 비용을 줄이는 데에 활용될 수 있도록 실용성에 초점을 둠
- 본 연구에서는 Gradient sparsification의 정보 손실로 인한 모델의 정확도 손실을 최소화하면서 최적화를 위한 추가적인 오버헤드 없이 계산 및 통신 비용을 크게 줄이는 확장성 있는 분산 학습을 가능하게하는 새로운 기법을 제안하는 것을 목표로 함

### [연구 내용 및 결과]

- 본 연구에서는 SOTA Gradient sparsification 기법들의 한계점을 알고리즘 측면에서 상세히 분석하여 계 산 및 통신 상 제약 사항으로 분류하고, 이를 해결하기 위해 새로운 형태의 Gradient sparsification 기 법인 DEFT를 제안
- DEFT는 기존 기법들에서 발생하는 계산 및 통신 제약 사항으로 분류된 총 6가지 한계점 (표 1)을 극복 하는 것을 목표로 설계

표 1 기존 Gradient sparsification 기법들과 제안 기법 DEFT의 계산 및 통신 측면 장단점

|                     |          | Communication-co | ion-constraints |        | Computation-constraints |            |
|---------------------|----------|------------------|-----------------|--------|-------------------------|------------|
| Sparsifier          | Gradient | Unpredictable    | Hyperparameter  | Worker | Gradient                | Additional |
|                     | build-up | density          | tuning          | idling | selection cost          | overhead   |
| Top-k               | Yes      | Yes              | No              | No     | Very high               | No         |
| CLT-k [R1]          | No       | No               | No              | Yes    | Very high               | No         |
| Hard-threshold [R2] | Yes      | Yes              | Yes             | No     | Very low                | No         |
| SIDCo [R3]          | Yes      | Yes              | No              | No     | Very low                | Very high  |
| DEFT (Proposed)     | No       | No               | No              | No     | Low                     | Very low   |

- DEFT는 Sparse All-reduce의 대상이 될 Gradient를 선택하는 과정을 병렬화하고 학습에 참여하는 워커들 간의 부하 균형을 맞추는 새로운 Gradient sparsification 기법이며, 그림 1은 4단계의 과정으로 구성된 DEFT의 개요를 나타냄



그림 1 제안 기법 DEFT 개요

- 과정 1: Two-stage gradient vector partitioning (그림 2)
  - DNN 모델의 Gradient tensor를 1차원 벡터로 변환한 후 레이어 별로 분할
  - 분할된 벡터들 중 Threshold (= 모델의 Gradient 개수 / 워커의 수)보다 크기가 큰 벡터들은 워커의 수만큼 다시 분할

[Stage 1: Coarse-grained partitioning by layers]



그림 2 Two-stage gradient vector partitioning

- 과정 2: Local k assignment to layers (그림 3)
  - DNN 모델의 레이어 (분할된 벡터)들을 레이어의 Gradient norm 기준으로 정렬하여 값이 큰 레이어에 높은 우선순위를 부여
  - 높은 우선순위의 레이어들에서 더 많은 Gradient를 선택할 수 있도록 더 큰 k (선택되는 Gradient 개수)를 할당



- 과정 3: Layer allocation to workers (그림 4)

- Gradient selection을 위한 Top-k operation의 계산 복잡도  $O(n \log k)$ 를 기준으로 각 레이어의 계산 비용을 계산
- 워커들 간 Gradient selection 부하 균형을 고려하기 위해 각 레이어의 계산 비용을 기준으로 Binpacking 알고리즘을 이용하여 레이어들을 워커들에게 할당





 ${f 3b}$  Allocate layers to workers by  $c_x$  using bin-packing algorithm

#### [Allocated cost of each worker]



그림 4 Layer allocation to workers

- 과정 4: Layer-wise gradient selection (그림 5)
  - 각 워커는 자신이 할당받은 레이어들에서 Gradient selection을 수행
  - 병렬화된 Gradient selection으로 인해 계산 비용 크게 감소
  - 통신 트래픽을 증가시키는 문제인 Gradient build-up을 방지하여 Sparse All-reduce 통신 비용 크게 감소



그림 5 Layer-wise gradient selection

- 실험 환경
  - 하드웨어: 최대 8 노드, 각 노드는 4대의 NVIDIA Tesla V100 GPU 탑재 (CUDA 10.1)
  - 프레임워크: PyTorch 1.5, NCCL 2.4, Open MPI 4.0.5
  - 응용: Language modeling (LSTM & WikiText-2) (논문에서는 더 다양한 응용으로 실험)
  - 비교군: DEFT, Top-k, CLT-k, Non-sparsified
- 주요 실험 결과
  - Overall performance (그림 6a): 한 번의 Training iteration에서 소요된 Wall-clock-time을 측정한 것으로, DEFT는 계산 및 통신 비용이 크게 감소하여 기존 기법들에 비해 크게 향상된 학습 속도를 보임
  - Sparsification performance (그림 6b): DEFT는 Gradient build-up 등 통신 트래픽을 증가시키는 요소들을 방지하여 사용자가 요구한 수준의 통신 트래픽을 유지
  - Convergence performance (그림 6c): DEFT는 모델 업데이트에 유의미한 영향을 줄 수 있는 레이어 (Gradient norm이 큰 레이어)에서 더 많은 Gradient를 선택하여 기존 기법들과 비슷한 수준 수렴 성능을 보임
  - Scalability: 그림 7a는 DEFT의 병렬화된 Layer-wise gradient selection이 기존의 병렬화되지 않은 Top-k gradient selection에 비해 달성하는 속도 향상 (Speedup)이 워커의 수가 늘어날수록 더 증가하는 결과를 나타내며, 그림 7b는 워커의 수가 늘어나도 모델의 최종 정확도가 비슷한 수준으로 유지되는 결과를 나타냄







(a) Overall performance

(b) Sparsification performance

(c) Convergence performance

그림 6 DEFT와 기존 기법들의 성능 평가





- (a) 계산 비용 측면에서의 DEFT의 확장성
- 확장성 (b) 정확도 유지 측면에서의 DEFT의 확장성 그림 7 DEFT의 확장성 평가

- 기대 효과
  - 본 연구를 수행한 결과로 Sparse All-reduce에 필요한 계산/통신 비용을 크게 감소시켜 Gradient sparsification을 분산 학습에 실용적으로 적용할 수 있을 것으로 기대
  - 모델의 정확도 손실을 최소화하면서 비용 효율적인 Gradient sparsification을 거대 모델의 고성능 GPU 클러스터 기반 대규모 분산 학습에 적용하여 학습을 가속화함으로써 AI 기술을 활용하는 고성능 과학 기술 응용의 개발 비용 감소 및 품질 개선에 기여할 수 있을 것으로 기대

### [관련 SCI급 주저자 논문 실적]

- [5] Daegun Yoon, Sangyoon Oh, "DEFT: Exploiting Gradient Norm Difference between Model Layers for Scalable Gradient Sparsification", 52nd International Conference on Parallel Processing (ICPP 2023), Aug. 2023. (BK21+ CS 분야 우수국제학술대회 인정 Impact Factor 2)
- [6] Daegun Yoon, Minjoong Jeong, Sangyoon Oh, "SAGE: toward on-the-fly gradient compression ratio scaling", The Journal of Supercomputing, Feb. 2023. (IF=3.3)

### [참고문헌]

- [R1] Chia-Yu Chen, Jiamin Ni, Songtao Li, Xiaodong Cui, Pin-Yu Chen, Xiao Sun, Naigang Wang, Swagath Venkataramani, Vijayalakshmi Viji Srinivasan, Wei Zhang, Kailash Gopalakrishnan, "Scalecom: Scalable sparsified gradient compression for communication-efficient distributed training", 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Dec. 2020.
- [R2] Atal Sahu, Aritra Dutta, Ahmed M Abdelmoniem, Trambak Banerjee, Marco Canini, Panos Kalnis, "Rethinking gradient sparsification as total error minimization", 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Dec. 2021.
- [R3] Ahmed M Abdelmoniem, Ahmed Elzanaty, Mohamed-Slim Alouini, Marco Canini, "An efficient statistical-based gradient compression technique for distributed training systems", 4th Conference on Machine Learning and Systems (MLSys 2021), Apr. 2021.

# 연구실적

요약 SCI급 주저자 논문:6편

SCI급 공저자 논문 : 2편

**기타 논문: 15회** (국내: 10회, 해외: 5회)

**특허 : 2건** (국내: 2건, 해외: 0건)

## [SCI급 주저자 논문] 6편

| 논문명                                                         | 학회/저널명                                    | Impact Factor |
|-------------------------------------------------------------|-------------------------------------------|---------------|
| DEFT: Exploiting Gradient Norm Difference between Model     | 52nd International Conference on Parallel |               |
|                                                             | Processing (ICPP 2023) [BK21+ CS 분야 우수국제  | 2.0           |
| Layers for Scalable Gradient Sparsification                 | 학술대회 인정 Impact Factor 2]                  |               |
| SAGE: toward on-the-fly gradient compression ratio scaling  | The Journal of Supercomputing             | 3.3           |
| WAVE: designing a heuristics-based three-way breadth-first  | The lowered of Congress with a            | 3.3           |
| search on GPUs                                              | The Journal of Supercomputing             | 3.3           |
| SURF: Direction-Optimizing Breadth-First Search Using       | Sensors                                   | 3.9           |
| Workload State on GPUs                                      | sensors                                   | 5.9           |
| Balanced content space partitioning for pub/sub: a study on | The leavest of Company of the s           | 2.2           |
| impact of varying partitioning granularity                  | The Journal of Supercomputing             | 3.3           |
| Exploring a system architecture of content-based            |                                           |               |
| publish/subscribe system for efficient on-the-fly data      | Concurrency and Computation: Practice and | 2.0           |
| dissemination                                               | Experience                                |               |

## [SCI급 공저자 논문] 2편

| 논문명                                                        | 학회/저널명                                        | Impact Factor |  |
|------------------------------------------------------------|-----------------------------------------------|---------------|--|
| AMBLE: Adjusting Mini-Batch and Local Epoch for Federated  | Journal of Parallel and Distributed Computing | 3.8           |  |
| Learning with Heterogeneous Devices                        | Journal of Parallel and Distributed Computing |               |  |
| Mitigating Cold Start Problem in Serverless Computing with | Company                                       | 2.0           |  |
| Function Fusion                                            | Sensors                                       | 3.9           |  |

## [기타 논문] **15편** (국내: 10편, 해외: 5편)

| 논문명                                                  | 저자구분   | 학회/저널명                            | 국내/해외 |
|------------------------------------------------------|--------|-----------------------------------|-------|
| 연합학습 기법들의 성능평가를 지원하는 이기종 기반의 실험                      | ודנדיה | 2023 한국통신학회 하계학술대회                | ال ال |
| 플랫폼 설계                                               | 공저자    | 2023 안국공신약외 아게약출내외                | 국내    |
|                                                      |        | 5th IPDPS Workshop on Scalable    |       |
| Can hierarchical client clustering mitigate the data | 공저자    | Deep Learning over Parallel and   | 해외    |
| heterogeneity effect in federated learning?          |        | Distributed Infrastructure (ScaDL |       |

|                                                                                                                         |     | 2023)                                                                         |    |
|-------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------|----|
| 연합학습에서의 보안 취약점 분석                                                                                                       | 공저자 | 2023 한국통신학회 동계학술대회                                                            | 국내 |
| Empirical Analysis on Top-k Gradient Sparsification for<br>Distributed Deep Learning in a Supercomputing Environment    | 주저자 | 8th International Conference on Next Generation Computing (ICNGC 2022)        | 해외 |
| 전술망의 라우팅 성능 개선을 위한 성능 지표 분석 기반 정책<br>엔진 설계                                                                              | 주저자 | 한국통신학회 논문지                                                                    | 국내 |
| SDN 정책엔진의 사용자 모듈을 위한 분석 요청 정의 언어                                                                                        | 공저자 | 한국통신학회 논문지                                                                    | 국내 |
| 재난 대응 기계학습 모델의 Data Drift 문제에 대한 MLOps 기<br>반 대응 기법                                                                     | 공저자 | 2022 한국차세대컴퓨팅학회 춘계학<br>술대회                                                    | 국내 |
| Traversing Large Road Networks on GPUs with Breadth-First Search                                                        | 주저자 | 7th International Conference on Next Generation Computing (ICNGC 2021)        | 해외 |
| 전술망 성능 개량을 위한 정책 엔진 인터페이스 설계                                                                                            | 주저자 | 2021 한국군사과학기술학회 종합학<br>술대회                                                    | 국내 |
| Imitation learning for VM placement problem using demonstration data generated by heuristics                            | 공저자 | 17th International Conference on<br>Data Science (ICDATA 2021)                | 해외 |
| Software-Defined Network에서의 Conflict Resolution을 위한<br>정책엔진 구조 및 전략 분석                                                  | 주저자 | 2020 한국통신학회 하계종합학술발<br>표회                                                     | 국내 |
| CPartition: a Correlation-Based Space Partitioning for Content-<br>Based Publish/Subscribe Systems with Skewed Workload | 주저자 | 7th International Conference on Big  Data and Smart Computing  (BigComp 2020) | 해외 |
| 동종 운영체제 환경에서의 가상 머신 마이그레이션 성능 분석                                                                                        | 주저자 | 2018 한국정보과학회 한국컴퓨터종<br>합학술대회                                                  | 국내 |
| 온라인 뉴스, 댓글, 사용자 특성 파악을 위한 감정 분석 시스<br>템 제작                                                                              | 주저자 | 2018 한국통신학회 동계종합학술발<br>표회                                                     | 국내 |
| 가상 AUTOSAR Platform 상에서의 Traction Control System 설계 및 시뮬레이션 방법                                                          | 공저자 | 2016 한국정보과학회 한국컴퓨터종<br>합학술대회                                                  | 국내 |

## **[특허] 2건** (국내: 2건, 해외: 0건)

| 특허명                   | 등록일<br>발명자<br>(출원일) | 등록일          | 등록번호                          | 국내/해외 |
|-----------------------|---------------------|--------------|-------------------------------|-------|
|                       |                     | (출원번호)       | 구분                            |       |
| 워크로드 규모 분석에 따른 적응형 그  | 오상윤, 윤대             | 2023.06.07   | 1035422410000 (1020220004444) | ال ال |
| 래프 탐색 장치 및 방법         | 건                   | (2023.01.12) | 1025423110000 (1020230004444) | 국내    |
| 이벤트 공간 분할 방법 및 장치, 컴퓨 | 박민호, 오상             | 2022.07.29   |                               |       |
| 터 판독 가능한 기록 매체 및 컴퓨터  | 윤, 윤대건,             |              | 1024287490000 (1020210075518) | 국내    |
| 프로그램                  | 함재현                 | (2021.06.10) |                               |       |