연구 현장의 생성 AI 활용 현황

Current Applications and Integration of Generative AI in Research Environments

이제현

Korea Institute of Energy Research

01 인공지능 관련 언론보도

• 2024 노벨 물리학상, 화학상

01 인공지능에 대한 오해

• 생성 AI를 사용해서 우리 연구를 효율화 할 수 있다.

• 생성 AI를 쓰면 연구자의 역량이 향상된다.

01 현장에서 인공지능이라 불리는 것들

한국에너지기술연구원 에너지AI·계산과학실 이제현 jehyun.lee@gmail.com

	특징 & 활용 예시	행정/사무	과학공학연구	프로그램	단점 or 주의사항
. 자동화 RPA	 사람의 노동을 자동으로 처리하여 대체 데이터 수집, 처리 뉴스, 논문 등 관심 소식 알림 	업무 효율화	실험 자동화 데이터 수집 ***	자체 개발	 다품종 소량: 개발자 부족 개발 난이도 높음 실험실 공간, 유지 보수 이슈
2. 데이터 분석	 데이터 패턴 인식을 통한 인사이트 발굴 통계 분석, 시각화, 데이터 결합/분리를 통한 분석 수행 데이터 적재, 관리, 변환 등 전처리 업무 포함 	통계분석 시각화	통계분석 시각화		 노동 집약적 전처리 데이터 양/품질 낮음 무결성, 결합성 부족 결측, 중복, 이상치
3. 계산 모델	 학습데이터: 없음 모델 제작: 물리/화학등 이론 모델 기반 전문가 제작 설명력 높은 예측 가능 자연과학 시뮬레이션 활용 		시뮬레이션	/\nsys	 고가의 도입/유지비용 모델에 내재된 가정의 한계 Al 대비 연산이 오래 걸림 Al 도입을 통한 단축 활발
4. 특화 AI	 학습데이터: 내부 데이터 + 공개 데이터 모델 제작: 누구나 가능 (오픈 소스 활용) 수치, 분류 등 새로운 입력값에 대한 예측값 출력 		특성 예측 실험 설계	earn () 활용 사안별 개발	다품종 소량: 개발자 부족 딥러닝 모델 개발시 GPU 필요 고가, 수급 기간 이슈 GPU 서버 운영 인력 필요
5. 생성 Al	학습데이터 : 공개 데이터 기반 모델 제작 : 대형 기업/기관, 국가 주도 소규모 업체, 개인은 소형 공개 모델 조정에 한해 가능	정보 수집 보고서 이해	정보 수집 논문 이해	Genspark NotebookLM	 부정확한 사실 답변 가능 hallucination 확률적 답변을 하여 재현성 낮음 상용모델: 기밀 데이터 활용 불가
	 글/그림/음악/영상생성 보편 이상 수준의 지식에 대한 답변 가능 추론 능력 활용 일부 의사결정 가능 	보고서작성	논문 작성 보고서 작성 코딩	\$ * ♦	• 공개모델: 고가 GPU & 운영인력 필수

• 업무관련 뉴스 메일링 서비스

■ [자동발송] 에너지기술 최신동향 □

■ 보낸사람: ■ "김덕환" <thekan@kier,re,kr> 주소록에 저장 | 수신차단하기 받는사람: jehyunlee@kier,re,kr

에너지 기술 관련 최신 뉴스

2024-10-14~2024-10-15

Data	

순번	기사명	출처
1	대체에너지 저장 가능한 극저온 터보 팽창기, 국내최초 개발	헬로디디
2	<프리즘> 2024 친환경 에너지 페스티벌 개최	동양일보
3	생산량 75배 괴물 촉매·휘는 태양전지반전 노린 에너지 新기술	머니투데이
4	한양대 방진호 교수 연구팀, 수소 생산 촉매 기술 새로운 들파구 제시	경기일보
5	[C테크나우]철강업계 탄소중립 숙제, '수소'에서 해답 찾는다	아시아경제
6	리창 중국 총리, '90조원' 베트남 고속철 프로젝트 참여 의지	아주경제
7	부산녹색환경지원센터, 탄소 중립 관련 설문 조사 진행	메트로경제
8	[MT시평]기후변화에 대응하는 모습	머니투데이
9	韓 연구팀, '이산화탄소→에틸렌 전환' 촉매 매커니즘 규명생성 효율 3배↑	이데일리
10	[정수종의 기후변화 이야기]기후위기시대, 인공지능의 빛과 그림자	경향신문

[SNE Press] 리튬이차전지 장비시장 2023년 20조원에서 2035년 83조원 육박 예상

■ [자동발송] 에너지기술 최신동향 📮

■ 보낸사람: □ "김덕환" 〈thekan@kier,re,kr〉 주소록에 저장 │ 수신차단하기

받는사람: jehyunlee@kier,re,kr

에너지 기술 관련 최신 뉴스

2024-10-02~2024-10-03

Data from bigkinds.or.kr

		Duta Irom biginius.o
순번	기사명	출처
1	전남, 재생에너지 특화 '70kV급 신송전 시스템' 선점 나선다.	서울경제
2	韓해상풍력 투자한 비그림 "해외자본 많다? 기술력 높일 기회"	중앙일보
3	"굴착기 회사가 왜? 반드시 개발해야 하니까요" HD현대 '수소엔진' 벌써 러브콜 [히든 스팟]	헤럴드경제
4	전남도, 솔라시도 발전 방안 모색	남도일보
5	에너지기업 '그린미네랄', 초격차 스타트업 1000+ 프로젝트 선정	서울경제
6	지앤지테크놀러지, 지열시스템 '지오썸 하이브리드' 美 특허 취득	머니투데이
7	울산시, '암모니아 벙커링 규제자유특구' 후보특구 선정	메트로경제
8	한미 연구팀, 안정성 높고 수명 3배 향상 리튬금속전지 기능성 첨가제 개발	전자신문
9	[기후위기 대응, 북유럽 흐름을 읽다] 지구를 지키는 '그린 어게인' 재활용에서 답을 찾다	강원도민일보
10	11차 전력수급기본계획에 결박된 '기후정의' [왜냐면]	한겨레

[IEA Report] Global Hydrogen Review 2024

국제 에너지 기구(IEA)의 연례 간행물인 '글로벌 수소 리뷰'는 전 세계 수소 생산 및 수요, 인프라 개발, 무역, 정책, 규제, 투자 및 혁신 등 주요 분야의 진행 상황을 추적합니다. 이 보고서는 청정 에너지 장관 회의 수소 이니셔티브의 결과물로, 에너지 부문 이해관계자들에게 수소의 현황과 미래 전망을 알리는 데 목적이 있습니다. 수소가국제 에너지 및 기후 목표 달성에 기여할 수 있는 잠재력에 중점을 두고, 의사 결정자들이 투자 유치 및 수소 기술 배치를 촉진하는 전략을 조정할 수 있도록 돕습니다. 올해 보고서는 라틴 아메리카에 특별히 초점을 맞추고, 해당 지역의 저탄소 수소 프로젝트의 최근 발전과 수요 창출 및 프로젝트 실행을 위한 방안을 분석합니다. 또한, 다양한 수소 공급망과 관련된 온실가스 배출량을 상세히 평가합니다.

02 자동화

• 연구책임자 역량증빙, 참여연구원 정보 취합

• 작년 이맘때

2023년 10월 31일 . @

• 연구계획서를 쓰다가

- 왜 일일이 생년월일, 이메일을 넣어야 하지?
- 왜 일일이 내가 출판한 논문, 발표한 학회, 출원하고 등록된 특허를 넣어야 하지?
- 왜 내가 수행했고 수행하고 있는 과제 이름, 금액, 참여율, 연구기간을 찾아다녀야 하지?
- 이름만 클릭하면 자동으로 시스템에서 가져와서 붙여주는 시스템이 왜 없지?
- 누가 만들고 계실까?
- 연구계에는 20년 전이랑 똑같은 상황이 한 두 개가 아니다.
- 이런 시스템을 만드는 게 자기 일이 아니라고 생각하시는 분들.
- 이래서 안되고 저래서 안되는 규정으로 덧칠하시는 분들.
- 가끔 헐크나 슈렉같은 사람이 나와서 좀 찢어주면 좋을텐데.
- 밤은 샐 수 있는데 쓸데없이 밤새는 건 싫다.

진심 공감합니다. ㅜㅠ 구글스칼라는 알아서 제가 출판한 논문인지도 묻고 찾아주던 데...;; 웹에 있는 내용은 좀 긁어와주면 좋을 것 같아요!

48주 슬퍼요 답글 달기 😥

Jehyun Lee

Yeji Choi 이 시스템이 아직까지 없다는게 너무 이상해요 ㅠ.ㅠ

48주 좋아요 답글달기

유럽쪽에서는 ORCID 만들고 거기다 입력하게 하고, 연구자 ID만 받아서 관리하더라 구요. 여기서 필드값 받아오는 것만 잘 관리해서 쓰면 복잡한 시스템 없이도 잘 쓸텐 데 아쉽습니다. 모든 자료를 hwp로 문서화하면서 정보를 뭉개는 현상이 사라져야겠 죠..

48주 좋아요 답글달기 3🗘

전태균 하던 대로 하는 게 문제라는 생각을 하기 어려운 게 사실이죠...

48주 좋아요 답글 달기

계산 모델

• 소재 물성, 유체 계산 – DFT, Molecular Dynamics, CFD, ···

에너지연, 세계 최고 효율 차세대 태양전지 개발 24.02.21. "혹한에도 끄떡없다"이차전지용 하이브리드 전극 소재 개발 24.08.13

https://zdnet.co.kr/view/?no=20240221132238

https://news.heraldcorp.com/view.php?ud=20240813050075

02 에너지연 Al 활용 현황

• 소재 물성, 유체 계산 – DFT, Molecular Dynamics, CFD, ···

• 촉매 개발

에너지연, 무인·로봇 촉매 평가 실험실 문 연다 22.12.01.

온실가스 처리 2배 증가한 고안정성 나노 촉매 개발 23.02.27.

https://news.bbsi.co.kr/news/articleView.html?idxno=3101035

https://www.hellodd.com/news/articleView.html?idxno=98852

가설 생성 & 검증 → 지식 생산

Sparkes et al: Automated Experimentation 2010, 2:1 http://www.aejournal.net/content/2/1/1

REVIEW Open Access

Towards Robot Scientists for autonomous scientific discovery

Andrew Sparkes*¹, Wayne Aubrey¹, Emma Byrne³, Amanda Clare¹, Muhammed N Khan¹, Maria Liakata¹, Magdalena Markham², Jem Rowland¹, Larisa N Soldatova¹, Kenneth E Whelan¹, Michael Young² and Ross D King¹

02 자율화 실험실

가설 생성 & 검증 → 지식 생산

02 자율화 실험실

• 특화 AI = 다품종 소량 전문 제품

이름	기능	유형
ASKOS @CASP	AI 기반 합성 경로 설계 SW	Open Source Github
Reaxys	화학반응 DB	Commercial Elsevier
Reaxys API	화학반응 데이터 수집 인터페이스	Commercial Elsevier
RDKit	화학반응 템플릿 추출 및 적용	Open Source Github
Robotic Flow Chemistry Platform	연속 흐름 합성 실험 가동화 플랫폼	자체 개발
Continuous Flow Piston Pumps	화학 물질의 연속적 공급 을 위한 펌프	Commercial

02 자율화 실험실

• 특화 AI = 다품종 소량 전문 제품

비용 cost: lack of interim options	 상용 자동화 장비의 가격이 매우 높음 ex. 세포 배양 자동화 > \$1M 연구는 산업/임상 환경에 비해 타당성 입증이 어려움 중간급 자동화 솔루션이 부족함: 비싼 자동화 vs 저렴한 노동집약 양자택일
연구 자동화 정당화 justifying automation in research	- 성공 여부 측정이 어려워 투자를 받기 어려움 - 자동화가 연구 성과에 미치는 영향이 명확하지 않음
연구실 공간 laboratory space	 적지 않은 공간을 차지함. 기존 장비와 함께 사용시 훨씬 큰 공간 부족 문제 유발 장비 사용 및 공간 문제로 인한 연구원 간 갈등 발생 가능
과정 변동성 process variability	 실험 프로토콜 변동이 잦아 표준화된 자동화 솔루션 개발이 어려움 맞춤형 시스템 필요시 비용 및 시간 소요가 큼
혁신 저해 innovation inhabitation	- 한 번 세팅된 장비는 설정 변경이 어려움 - 프로토콜 수정이나 신규 아이디어 반영이 어려워 탐구 유연성이 제한됨
오용 및 숨겨진 오류 incorrect application & hidden errors	- 잘못 적용될 경우 효율성 감소 및 오류 확산 가능성 존재
고용 불안 야기 및 숙련도 저해 workforce impact	 반복적 수작업 연구자들에게 일자리에 대한 영향을 유발함. 신입 인력의 업무 숙달이 저해될 수 있음.
자동화 이점 과장에 따른 실망 overstating the benefits of automation	- 신기술의 이점이 과장되어, 비현실적인 기대와 실망을 초래할 수 있음.

경험자의 솔루션 제안

- 저비용, 모듈식 자동화 솔루션 개발
- 과학자와 엔지니어 간 협력 증진
- 인간의 창의성과 자동화를 함께 수용할 수 있는 혁신 문화 조성
- 연구원들에게 자동화 활용에 필요한자원 및 교육 제공

03 생성 Al 현황

• 말만 잘 하는 ChatGPT → 다중 감각으로 추론하는 설치형 LLM

03 생성 AI 현황

• 말만 잘 하는 ChatGPT → 다중 감각으로 추론하는 설치형 LLM

04 내가쓸수있는생성AI

04 custom GPT

04

custom GPT

04 custom GPT

custom GPT 만들기 1. 조건문 Instruction

custom GPT 2. Knowledge

custom GPT 2. Knowledge

custom GPT 3. Knowledge에 Code 탑재

논문봇 실행

1. 연구 목적

• Research Purpose: 니켈 함량이 높은 NMC(니켈, 망간, 코발트) 계열 양극재의 공침 합성 과정에서의 주요 매개변수 및 입자 특성 제어 방법을 연구하여 고성능 리튬 이온 배터리 양극재를 개발하는 것입니다.

2. 학문적 및 산업적 기여

- Academic Contribution: 리튬 이온 배터리용 양극재의 합성에 있어 중요한 매개변수를 구체적으로 분석하고 공침법을 통한 최적화를 제시함으로써 배터리 성능 향상에 기여합니다.
- Industrial Contribution: 니켈이 풍부한 양극재를 대량 생산할 때 필요한 합성 조건을 명확히 제시하여 고에너지 밀도 배터리의 상업적 생산에 중요한 정보를 제공합니다.

3. 사용된 방법론

- Co-precipitation: 공침법을 이용하여 니켈, 망간, 코발트 기반 금속 수산화물 전구체를 합성하는 방법입니다. 주로 pH, 반응 시간, 반응 온도 등의 조건을 제어합니다.
- Calcination: 리튬 소스와 금속 수산화물 전구체를 함께 소성하여 NMC 산화물을 형성하는 방법입니다.

4. 연구의 독창성

• Optimal Conditions: 니켈 비율이 높은 ♪ '` 'C 양극재의 합성 시 최적의 pH, 온도, 반응 시간 등 다양한 변수를 제시함으로써 합성 최적화에 기여.

● 메시지 논문봇

논문봇 실행

• 논문봇, 물성봇, 플랏봇, 딴지봇

KIER EnergyAI에서 인기

내 워크스페이스에서 가장 인기 GPT

1

논문봇 논문 읽고 주요 내용 훑어주기 (v0.15) 작성자: Jehyun Lee • ② 2582

딴지봇 논리적 약점을 공격해드립니다. 기꺼이. 작성자: Jehyun Lee • Ø 1225

3

플랏봇

데이터와 함께 주문하시면 한글을 포함해 그려드립니다. (v0.15)

작성자: Jehyun Lee · @ 780

물성봇

소재 연구 논문이나 보고서를 주시면, 데이 터를 정리해 드립니다.

작성자: Jehyun Lee · 여 553

에너지연에서는 왜 이런 일이 벌어질까?

• 괴로워하는 실무자가 있음

분야에 무관하게

고통을 감각하고

동료에게 지지받는

의지와 능력 약간

• 경영진의 의지와 제도적, 물질적 지원이 있음

감사합니다