```
Yongzuan Wu
wu68
cs573
HW 4
Problem 1
(a)
```

We use the notation for treap analysis in the lecture notes.

We know that x_j is a proper ancestor of node x_i iff x_j is the minimal element in X(i,j). Also x_j is a proper ancestor of x_k iff x_j is the minimal element in X(j,k). Thus, x_j is a common ancestor of x_i and x_k iff x_j is the minimal element in X(i,k). The probability is $\frac{1}{k-i+1}$.

(b)

Let x_j be the deepest common ancestor of x_i and x_k , $i \leq j \leq k$. Then the length of the unique path from x_i to x_k is

```
path length= depth(x_i) + depth(x_k) - 2depth(x_j)
```

We take the expectation value according to the formula from the lecture nodes, i.e. $E[depth(x_i)] = H_i + H_{n-i+1} - 2$, then

```
E[\text{path length between node i and k}] = E[depth(x_i) + depth(x_k) - 2depth(x_j)]
= E[depth(x_i)] + E[depth(x_k)] - 2E[depth(x_j)]
= H_i + H_{n-i+1} - 2 + H_k + H_{n-k+1} - 2
+ \sum_{j=i}^k \frac{1}{i-k+1} (H_j + H_{n-j+1} - 2)
```