Лабораторная работа №2

Матричные операции

Вариант 1

- 1 [0,5]. Запросить у пользователя ввод числа n. Проверить, что введенное число натуральное.
- 1. Создать вектор из всех нечетных чисел, делящихся на 9, из промежутка от 1 до n.
- 2. Построить матрицу размера $n \times n$, все элементы i—й строки которой равны i.
- 3. Создать матрицу B $n \times (n+1)$ вида

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Вытянуть матрицу B в вектор c. Заметьте, что все матрицы хранятся именно в таком вытянутом по столбцам виде, проверьте это. Присвоить переменной D последние 2 столбца матрицы B.

- 4. Создать два случайных вектора $1 \times n$ с распределением элементов хи-квадрат с m степенями свободы, вывести векторы, получающиеся перемножением и делением соответствующих элементов созданных векторов (поэлементные операции), использовать различные форматы вывода результата (не менее трёх).
- **2** [0,5]. Создать матрицу размера 7×7 , состоящую из случайных элементов с равномерным распределением среди натуральных чисел от 1 до 100, найти максимальный элемент на диагонали этой матрицы, найти максимальное и минимальное отношение произведения к сумме для строк этой матрицы, отсортировать строки матрицы в лексикографическом порядке (то есть строка $[a_1, a_2, a_3, \ldots, a_n]$ стоит в матрице выше строки $[b_1, b_2, b_3, \ldots, b_n]$, если $a_i = b_i$ при $i = 1, \ldots, k-1$ и $a_k < b_k$ для некоторого k).
- 3 [0,5]. Создать нулевую матрицу размером 10×12 , заменить элементы некоторого случайного ее блока размера 3×4 с нуля на единицу, присвоить элементам первого столбца значение, равное номеру строки, удалить строки с 4-ой по 6-ую.
- 4 [0,5]. Построить таблицу умножения всевозможных пар элементов таких, что первый элемент вектора X, а второй вектора Y. Например, при $X = [-1 \ 0 \ 1], Y = [2 \ 3 \ 5]$ ответ

$$\begin{bmatrix} -2 & -3 & -5 \\ 0 & 0 & 0 \\ 2 & 3 & 5 \end{bmatrix}$$

- **5** [0,5]. Запросить у пользователя ввод числа n. Проверить, что введенное число простое. Создать случайную матрицу $A \in \mathbb{R}^{n \times n}$ и вектор $b \in \mathbb{R}^{n \times 1}$, в случае, если A не вырождена, решить уравнение Ax = b (решить задачу не менее чем двумя способами и обязательно вставить проверку возможности решения и правильности решения).
- **6** [0,5]. Даны векторы a размерности n и b размерности m. Найти (самым эффективным способом) максимум функции $|a_i-b_j|$, где a_i элемент вектора a, b_j элемент вектора b. Функцию **abs** не использовать. **7** [0,5]. Пусть у нас задано n точек в пространстве \mathbb{R}^k в виде матрицы **double**[n,k]. Требуется построить
- 7 [0,5]. Пусть у нас задано n точек в пространстве \mathbb{R}^k в виде матрицы double[n,k]. Требуется построить матрицу double[n,n] расстояний между каждой парой точек.
 - 8 [0,5]. Построить матрицу, в которой по строкам записаны все *п*-мерные бинарные векторы.
- 9 [0,5]. Релизовать функцию $C = my_multiply(A,B)$, которая выполняет расчет значения C = AB по определению («строка на столбец»). Сравнить быстродействие этой функции и стандартного умножения матриц для матриц различной размерности. Построить график времени работы.
- 10 [0,5]. Реализовать замену в векторе $x \in \mathbb{R}^n$ всех компонент с номерами вида 2k+1 на k-е компоненты вектора $y \in \mathbb{R}^{n/2}$. Сравнить реализацию через вектор-индексы и цикл for для векторов различной размерности.
 - 11 [0,5]. Реализуйте функцию diag(A) через другие функции MatLaba.
- 12 [0,5]. Напишите функцию, которая находит средние значения (по одному направлению) с учётом NaN элементов матрицы. Для

$$X = \begin{bmatrix} NaN & 1 & 2\\ NaN & 0 & 6\\ 1 & 5 & NaN \end{bmatrix}$$

ответ [1, 2, 4].

13 []. Каждые три задания, выполненные в соответствии с Требованиями По Выполнению Практикума, приносят по одному баллу.

ЛАБОРАТОРНАЯ РАБОТА №2

Матричные операции

Вариант 2

- 1 [0,5]. Запросить у пользователя ввод числа n. Проверить, что введенное число простое.
- 1. Создать вектор из всех нечетных чисел, делящихся на 7, из промежутка от 1 до n.
- 2. Построить матрицу размера $n \times n$, все элементы i—й строки которой равны i+1.
- 3. Создать матрицу $B(n+1) \times (n+1)$ вида

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Вытянуть матрицу B в вектор c. Заметьте, что все матрицы хранятся именно в таком вытянутом по столбцам виде, проверьте это. Присвоить переменной D последние 2 столбца матрицы B.

- 4. Создать два случайных вектора $1 \times n$ со стандартным нормальным распределением элементов, вывести векторы, получающиеся перемножением и делением соответствующих элементов созданных векторов (поэлементные операции), использовать различные форматы вывода результата (не менее трех).
- **2** [0,5]. Создать матрицу размера 4×9 , состоящую из случайных элементов с равномерным распределением среди натуральных чисел от 1 до 100, найти максимальный элемент на диагонали этой матрицы, найти максимальное и минимальное отношение произведения к сумме для строк этой матрицы, отсортировать строки матрицы в обратном лексикографическом порядке (то есть строка $[a_1, a_2, a_3, \ldots, a_n]$ стоит в матрице ниже строки $[b_1, b_2, b_3, \ldots, b_n]$, если $a_i = b_i$ при $i = 1, \ldots, k-1$ и $a_k < b_k$ для некоторого k).
- 3 [0,5]. Создать нулевую матрицу размером 10×12 , заменить элементы некоторой случайной её подматрицы размера 3×4 с нуля на двойку, присвоить элементам первой строки значение, равное номеру столбца, удалить строки с 2-ой по 5-ую.
- 4 [0,5]. Реализовать разбиение произвольной матрицы $A \in \mathbb{R}^{n \times m}$ на матрицы R, G, B по следующему правилу:

$$A = \begin{bmatrix} G_{11} & R_{11} & G_{12} & R_{12} & \dots \\ B_{11} & G_{21} & B_{12} & G_{22} & \dots \\ G_{31} & R_{21} & G_{32} & R_{22} & \dots \\ B_{21} & G_{41} & B_{22} & G_{42} & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$$

- **5** [0.5]. Для пар векторов $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$ построить матрицу $A \in \mathbb{R}^{nm \times 2}$, строки которой все пары декартова произведения $x \times y$.
- **6** [0.5]. Задан $3 \times n$ массив точек, интерперитуремый как координаты векторов $x_1, x_2, \ldots, x_n \in \mathbb{R}^3$. Построить матрицу $A \in \mathbb{R}^{n \times n}$, такую, что $a_{ij} = |x_i \times x_j|$ (модуль векторного произведения).
- 7 [0,5]. Даны векторы a размерности n и b размерности m. Найти (самым эффективным способом) максимум функции $|a_i-b_j|$, где a_i элемент вектора a, b_j элемент вектора b. Функцию abs не использовать. 8 [0,5]. Пусть у нас задано n точек в пространстве \mathbb{R}^k в виде матрицы double[n,k]. Требуется построить
- 8 [0,5]. Пусть у нас задано n точек в пространстве \mathbb{R}^k в виде матрицы double[n,k]. Требуется построить матрицу double[n,n] расстояний между каждой парой точек.
- 9 [0,5]. Релизовать функцию $C = my_add(A,B)$, которая выполняет сложение матриц C = A + B по определению. Сравнить быстродействие этой функции и стандартного сложения матриц для матриц различной размерности. Построить график времени работы.
- 10 [0,5]. Реализовать перестановку в векторе $x \in \mathbb{R}^n$: $(x_1, x_2, \dots, x_{n/2}) \leftrightarrow (x_{n/2+1}, \dots, x_n)$. Сравнить время работы для разных n решения этой задачи через вектор-индексы и через цикл for.
- 11 [0,5]. Сгенерировать все сочетания из n элементов по два, не используя специальных функций для работы с перестановками (т.е. реализовать функцию nchoosek(1:n, 2)).
- 12 [0,5]. Проверить, является ли вектор A симметричным. Например, векторы A = [3, 4, 5, 4, 3], A = [6, 6], A = [7] являются, а векторы A = [1, 2], A = [1, 2, 3, 4, 1] нет.
- 13 []. Каждые три задания, выполненные в соответствии с Требованиями По Выполнению Практикума, приносят по одному баллу.

Лабораторная работа №2

Матричные операции

Вариант 3

- 1 [0,5]. Запросить у пользователя ввод числа n. Проверить, что введенное число простое.
 - 1. Создать вектор из всех нечетных чисел, делящихся на 7, из промежутка от 1 до n.
 - 2. Построить матрицу размера $n \times n$, все элементы i—й строки которой равны i+1.
 - 3. Создать матрицу $B(n+1) \times (n+1)$ вида

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Вытянуть матрицу B в вектор c. Заметьте, что все матрицы хранятся именно в таком вытянутом по столбцам виде, проверьте это. Присвоить переменной D последние 2 столбца матрицы B.

- 4. Создать два случайных вектора $1 \times n$ с нормальным распределением элементов с параметрами (a, σ^2) , вывести векторы, получающиеся перемножением и делением соответствующих элементов созданных векторов (поэлементные операции), использовать различные форматы вывода результата (не менее трех).
- **2** [0,5]. Создать матрицу размера 9×11 , состоящую из случайных элементов с нормальным распределением с параметрами a=9, $\sigma^2=0.001$, найти элемент с максимальным модулем на диагонали этой матрицы, найти максимальное и минимальное отношение произведения к сумме для столбцов этой матрицы, отсортировать строки матрицы в обратном лексикографическом порядке (то есть строка $[a_1,a_2,a_3,\ldots,a_n]$ стоит в матрице ниже строки $[b_1,b_2,b_3,\ldots,b_n]$, если $a_i=b_i$ при $i=1,\ldots,k-1$ и $a_k< b_k$ для некоторого k).
- $\mathbf{3}$ [0,5]. Создать нулевую матрицу размером 3×5 , заменить элементы некоторой случайной её подматрицы порядка 2 с нуля на двойку, присвоить элементам первой строки значение, равное номеру столбца, удалить строки с 1-ой по 3-ую.
- 4 [0,5]. Предложить три способа создания матрицы A размера $(2n+1) \times (2n+1)$, где $n \geqslant 5$, следующего вида:

$$A = \{a_{ij}\}, \ a_{ij} = \begin{cases} 10, & i = 1 \text{ или } (2n+1), \ j - \text{чётное}, \\ 10, & i - \text{чётное}, \ j = 1 \text{ или } (2n+1), \\ 30, & (i,j) = \{(n,n), (n+2,n), (n,n+2), (n+2,n+2)\}, \\ 50, & (i,j) = \{(n+1,n+1), \\ 0, & \text{иначе}. \end{cases}$$

- **5** [0,5]. Задан массив $2 \times n$ координат точек на плоскости. Построить матрицу $A \in \mathbb{R}^{n \times n}$, в позиции (i,j) которой будет стоять псевдоскалярное произведение i-го и j-го вектора $(x \bullet y = x_1y_2 x_2y_1)$.
- **6** [0,5]. Даны векторы a размерности n и b размерности m. Найти (самым эффективным способом) максимум функции $|a_i-b_j|$, где a_i элемент вектора a, b_j элемент вектора b. Функцию abs не использовать.
- 7 [0,5]. В каждом столбце матрицы X есть ненулевой элемент. Найти порядковые номера (в столбце) и значения всех первых ненулевых элементов каждого столбца.
- 8 [0,5]. Пусть у нас задано n точек в пространстве \mathbb{R}^k в виде матрицы double[n,k]. Требуется построить матрицу double[n,n] расстояний между каждой парой точек.
- **9** [0,5]. Релизовать функцию $c = my_prod(x,y)$, которая выполняет скалярное умножение векторов $c = \langle x,y \rangle$ по определению (церез цикл). Сравнить быстродействие этой функции и команды x*y, для векторов различной размерности. Построить график времени работы.
- 10 [0,5]. Реализовать замену в матрице A ее подматрицы с нечётными столбцами и чётными строками на случайную двумя способами: через вектор-индексы и цикл **for**. Сравнить время выполнения этой операции для матриц различной размерности.
 - 11 [0,5]. Реализуйте присваивание D = rot90(C), не используя функции rot90.
- 12 [0,5]. Применяя функцию Matlab ismember, реализовать ее версию с ключом 'rows' для матрицы с неотрицательными целочисленными элементами (можно использовать функцию ismember без ключа и функцию sub2ind).
- 13 []. Каждые три задания, выполненные в соответствии с Требованиями По Выполнению Практикума, приносят по одному баллу.