AVAILABLE (

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-051432

(43) Date of publication of application: 20.02.1996

(51)Int.CI.

H04L 12/28

3/00 HO4M H040 3/00

(21)Application number: 06-187011

(71)Applicant: HITACHI LTD

(22)Date of filing:

09.08.1994

(72)Inventor: SAGARA KAZUHIKO

ENDO NOBORU TAKASE MASAHIKO

(54) ROUTE SELECTING SYSTEM

(57)Abstract:

PURPOSE: To select a route while considering call traffic characteristics and a call request band in an ATM network by comparing a call request band with a network line band, selecting receivable line and network topology and selecting a route maximizing line capacity from the combination of lines. CONSTITUTION: The number of idle virtual pathes (VP) and virtual channels (VC) are calculated for every virtual path (VP) and whether route selection is possible or not is judged (101). A call request band is removed from line bands on all links to find out remaining bands (102). If negative nodes exist in the remaining bands, a link between the negative nodes is removed to constitute new network topology (103). Then route selection is executed (104). All available routes from a start point up to an end point are selected at first, a link speed is found out by the use of the line bands on a link included in each route and a route having a maximum value out of the found line bands is selected as an optimum route.

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

 \geq

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平8-51432

(43)公開日 平成8年(1996)2月20日

(51) Int. C1. 6 H 0 4 L 12/2 H 0 4 M 3/0 H 0 4 Q 3/0	0 D	庁内整理番号 9466-5K	F I H 0 4	技術表示箇所 L 11/20 G
_			審査請求	未請求 請求項の数5 OL(全 6 頁)
(21)出願番号	特願平6-187011		(71)出願人	株式会社日立製作所
(22)出願日	平成6年(1994)8	3月9日	(72)発明者	東京都千代田区神田駿河台四丁目6番地 相良 和彦 東京都国分寺市東恋ケ窪1丁目280番地 杉 式会社日立製作所中央研究所内
			(72)発明者	
			(72)発明者	高瀬 晶彦 東京都国分寺市東恋ケ窪1丁目280番地 や 式会社日立製作所中央研究所内
			(74)代理人	、 弁理士

(54)【発明の名称】経路選択方式

(57)【要約】

【目的】ATM網での、呼のトラヒック特性と呼の要求 帯域を考慮して経路を選択する。

【構成】経路選択にあたって、(i) すべてのノードから呼の要求帯域を引きネットワークトポロジを再構築し、(ii) 各経路毎にボトルネックとなる回線容量を算出し、(iii) 上記の値の中から回線容量が最大となる経路を選択する。

【効果】空き回線容量最大の経路を選択することができ、網リゾースの有効活用が実現できる。また、呼の設定要求が発生した場合に、実時間に経路を設定することが可能である。

【特許請求の範囲】

【請求項1】複数のノードと各ノード間に論理的伝送路 が設定され、さらに各伝送路毎に回線容量が定義された ATMネットワークにおいて、始点から終点への経路を 選択する際に、経路の選択方式が、各ノード上の回線容 量から呼の要求帯域を除去し、ネットワークトポロジを 再構築するプロセスと、各経路毎にリンク測度を算出す るプロセスと、上記のリンク測度のうち最大値を持つ経 路を選択するプロセス、から構成されていることを特徴 とする最適経路選択方式。

【請求項2】請求項1において、ある経路に含まれるノ ードをni. nj、ノードni, nj間の回線容量をC i jとしたとき、リンク測度をCijの最小値とする最 適経路選択方式。

【請求項3】請求項1において、各ノード上の回線容量 から呼の要求帯域を除去し、負の回線容量が生じた場合 にはこのリンクを削除し、残されたすべての経路に対し て、ある経路上の回線容量の最小値を計算し、前記の値 の内最大値を有する経路を選択する最適経路選択方式。

【請求項4】請求項1において、最短経路アルゴリズ ム、ないし、この変形アルゴリズムを用いて、最大空き 回線経路を探索する最適経路選択方式。

【請求項5】請求項1において、各ノード上の回線容量 から呼の要求帯域を除去し、負の回線容量が生じた場合 にはこのリンクを削除し、残存回線容量の最小のリンク より順番に枝刈りを行うことにより最大空き回線経路を 探索することを特徴とする最適経路選択方式。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はATM (Asynchronous T 30 ransfer Mode) 網における経路選択方式に係り、特に、 トラヒック特性を考慮した経路選択方式に関する。

[0002]

【従来の技術】B-ISDN (Broadband Integrated S ervice Digital Network) の基幹技術として、固定長パ ケットのセルを非同期に転送するATM技術の開発が進 められている。コネクション型ATM網では呼設定要求 の発生した時点で、網の集中管理システムが最短経路を 選択し、経路テーブルを作成して各ノード(交換機、多 重化装置、クロスコネクトなど) に分配し、セルはこの 40 測度として、最小値関数min()を適用した。すなわ テーブルに従い経路を自己選択的に決定していた。

[0003]

【発明が解決しようとする課題】しかし、上記の方法で は、複数のノードを経由して経路を選択する場合、ノー ド数が最小の経路が選択され、この経路の回線容量が呼 の要求帯域より小さい場合でも経路が選択されてしま

min(リンク1の帯域、リンク2の帯域、リンク3の帯域)

次に、上記で求めた回線帯域の内、最大値を持つ経路 を、最適経路として選択する。この後、網の集中管理シ ステムは、経路テーブルを作成し(105)、各ノード 50 12を用いて説明する。

う、といった問題点があった。また、呼のトラヒック特 性が考慮されておらず、リゾースの有効活用ができな い、といった問題点があった。

【0004】本発明の目的は、呼のトラヒック特性、特 に呼の要求帯域を考慮した経路選択方式を提供すること

[0005]

【課題を解決するための手段】上記の目的を達成するた めに、本発明では、呼の接続要求時に、まず呼の要求帯 10 域と網の回線帯域との比較を行い、次に受付可能な回線 (ノード間のリンク)とネットワークトポロジを選択 し、この回線の組合せの中から回線容量が最大となる経 路を選択する方式を用いた。また、最大経路を選択する 基準、すなわちリンク測度としては、1経路内の各ノー ド間の回線容量を比較し、この内最も回線容量の小さな ものをコストとすることにより、経路選択を行った。

[0006]

【作用】呼の接続時に、呼の要求帯域と網の回線帯域を 比較することにより、受付不能な経路が選択されること 20 が防止できた。また、必ずしも始点,終点間のダイレク トパスを選択することなく、空き回線容量の最大経路を 選択できるため、網リゾースの有効活用が実現できる。

[0007]

【実施例】図1は、経路選択アルゴリズムを示す。ノー ドはn個あり、各ノード間には論理的な回線(VP: Vi rtual Path)が設定され、各VP毎に回線帯域が定義さ れ、始点から終点へ経路を選択する場合を仮定する。始 めに、各VP毎に空き回線数VPおよびVC(Virtual Channel) を計算し、経路選択が可能か否かを判定する (101).

【0008】次に、すべてのリンク上の回線帯域より呼 の要求帯域を除去して、残存帯域を求める(102)。 そして、残存帯域が負のノードが存在した場合には、こ のノード間のリンクを除去し、新たなネットワークトポ ロジを構成する(103)。

【0009】次に、経路選択(104)を行う。始め に、始点から終点までの、全ての可能な経路を選択す る。次に、各経路毎に、経路に含まれるリンク上の回線 帯域を用いてリンク測度を求める。本実施例ではリンク ち、ある経路が、リンク1, リンク2, リンク3、から 構成される場合には、数1で与えられる最小値関数を計 算し、リンク内での最小回線帯域を求め、これを全ての 経路に対して計算する。

[0010]

【数1】

(数1) にテーブルを配布する(106)。機能ブロック4の計 算方式としては3通り考えられるが、これを図3から図

3

【0011】図2は、本発明で用いるATMトラヒック 方式である。始めに、コネクションレベルとして、呼の 設定要求を受け付ける(機能ブロック201)。設定要 求としては、要求帯域,ピークレート,平均レート,バ ースト長等がある。次に、図1で述べたアルゴリズムを 用いて、経路制御を行う(機能ブロック202)。この 後、コネクション受付制御を行う(機能ブロック20 3)。セルレベルの制御は、機能ブロック204に示す ように、使用パラメータ制御を行い申告したセルの違反 がないか否かを監視する。また、輻輳制御として、バッ ファ/キュー制御、リアクテイブ制御を行う。

【0012】図3に最適経路選択方式(1)の実施例を 示す。ノード数は、a, b, c, dの4個である。各ノ ード間には、回線帯域が定義されている。すなわち、 ab間 30Mbps, bc間 18Mbps cd間 20Mbps, da間 15Mbps ac間 10Mbps, bd間 3Mbpsである。ここで、Mbpsとはメガbit per secondを意 味する。又、始点をa,終点をcとし、呼の要求帯域を 5 M b p s とする (図3 (a))。次に図1の機能プロ

 $S_n = 1 + {}_{n-2}P_1 + {}_{n-2}P_2 + \cdots + {}_{n-2}P_{n-2}$

【0014】ここで、nPrは順列の個数を示し、ま た、第1項はダイレクトパスの個数、第2項は1点経由 の個数、第3項は2点経由の個数、等を示す。数2の計 算式のオーダは、数3であり、nが増加するに従い、経

 $O((n-2)! 2^{(n-2)})$

【0016】例えば、S7=326通り、S8=195 7通り、S9=13700通り、S10=109601通り等である。この様な場合には、経由する経路数を制 限することで、計算時間の短縮を行うことが可能であ る。すなわち、1点経由の場合、数4であり、また、2

[0018]

$n^2 - 4n + 1$

【0019】図1で示した機能ブロック4は、周知の最 短経路選択アルゴリズム(ダイクストラ法、(E.W.Dijk stra: A note on two problems in connection with gra phs, Numerische Mathematik, Vol. 1, 1959, pp. 269-27 1))を変形することにより解くことができる。

【0020】図4から図6に最短経路選択方式(2)の 実施例を示す。図4(a)は、各リンクの回線容量から 呼の要求帯域を引いた後の値を示す。始めに、始点aに つながっているすべてのノードを求め、このノードに始 点からの回線容量を記す。本例の場合、ノードbが5, ノードcが15,ノードdが20である。この中で、ノ ードdの回線容量が最大であるので、ノードdを確定 し、確定ライン7を引く(図4(b))。次に、確定さ れたノードdにつながっているすべてのノードを求め、 このノードに始点からの回線容量を記す。例えば、経路 a→d→b′の場合には、min(20, 10)を計算

ック102,103に従い、各ノードから呼の要求帯域 を除去する。この場合、bd間の帯域が負となるので、 このノードをネットワークトポロジから除去する(図3 (b))。この後、各経路毎に、min()を計算す る。すなわち、本例の場合、

min(5) = 5経路 a→c m i n (25, 13) = 13経路 a→b→c m i n (10, 15) = 10経路 a→d→c であるので、経路 a → b → c で空き回線帯域が最大とな り、a→b→cが最適経路となる(図3 (c))。ま た、従来アルゴリズムでは、経路内のノード数が最小な ダイレクトパスa→cが選択されたが、本発明により、 空き回線帯域が最大の経路を選択することが可能であ り、網リゾースの有効活用が実現できる。本方式の場 合、各経路毎にmin()を計算する必要があるが、 一般にノード数がn個の場合、全ての経路数Snは、数 2で与えられる。

[0013]

【数2】

(数2)

路数は爆発的に増加する。

[0015]

【数3】

(数3)

点経由の場合、数5であり、いずれも実時間内に計算可 能である。

[0017]

【数4】

(数4)

【数5】

(数5)

し、ノードb' に10の値を書く。

【0021】次に、各ノード毎に値の大きな方を選択 し、不要な経路を除去する。すなわち、本例ではノード b′とc′を選択し、ノードbとcを除去する。この後 ノードbとcの回線容量を比較すると、cの方が大きい のでcを確定し、確定ライン7を引き直す(図5)。次 にノードc につながっているノードb′を選び、b と b′を比較することにより、ノードbを確定する(図 6)。この結果、始点から終点への経路はa→d→cと すれば良いことがわかる。本方式を用いることにより、 最適経路選択方式(1)よりも効率的に経路を求めるこ とができる。

【0022】図7から図12に、図1の機能ブロック4 の他の実施例を示す。本例では、枝刈り法(pruning) を用いる。図7に、呼の要求帯域除去後の各ノード間の 回線帯域を示す。ノードは5個あり、始点はa,終点は 5

dである。始めに、回線容量の最も小さなリンク c e を除去する(図 8)。次に、回線容量の小さなリンク c d を除去する(図 9)。同様に、リンク b c, a e, b d を除去する(図 1 0 および図 1 1)。最後にリンク a d を除去することにより、a からd への最短経路が選択される。本例では、a → b → e → d が選択された(図 1 2)。本方式では、枝刈りの際に、集中管理システムによりネットワークトポロジの確認が必要であるが、最適選択方式(2)とほぼ同様の速度で経路を探索することが可能である。

【0023】尚、上記の実施例ではノード数が4ないし 5の場合を説明したが、より多数のノード数の場合に も、本方式が適用できる。

[0024]

【発明の効果】本発明によれば、ATM網の空き回線容量最大の経路を選択することができ、網リゾースの有効活用が実現できる。また、呼の設定要求が発生した場合に、実時間に経路を設定することが可能である。

【図面の簡単な説明】

【図1】本発明の経路選択アルゴリズムを示すフローチ 20 セート。

【図2】ATMトラヒック制御方式を示すフローチャート。

6 【図3】経路選択方式(1)を示す説明図。

【図4】経路選択方式(2)の第1ステップを示す説明 図。

【図5】経路選択方式(2)の第2ステップを示す説明 図

【図6】経路選択方式(2)の第3ステップを示す説明 図。

【図7】経路選択方式(3)の第1ステップを示す説明 図。

10 【図8】経路選択方式(3)の第2ステップを示す説明図。

【図9】経路選択方式(3)の第3ステップを示す説明 図。

【図10】経路選択方式(3)の第4ステップを示す説明図。

【図11】経路選択方式(3)の第5ステップを示す説 ・明図。

【図12】経路選択方式(3)の第6ステップを示す説明図。

0 【符号の説明】

1, 2, 3, 4, 5, 6…機能ブロック、7…確定ライン。

[図11]

図11

[図12]

図12

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.