1 Info

• karinachattah@unc.edu.ar

Temas:

- Cinemática y dinámica (mecánica)
- Campos eléctricos y magnéticos
- Circuitos
- Termodinámica

2 Measurements and magnitudes

Measurements seek to compare a prediction with an observation, so as to test a hypothesis. A magnitude is a number accompanied by a unit. Some magnitudes are:

- Length, measured in meters (*m*)
- Time, measured in seconds (s)
- Mass, measusred in kilograms (kg)
- Current, measured in ampers (A)
- Temperature, measured in kelvins (k)
- Matter, measured in moles (mol)

We consider 10^3 (e.g. kilometer) and 10^{-3} (e.g. milimiters) to be within human scale. We call mass, seconds and kilograms the *mechanical units*. We define the *force unit*, or Newton, as

$$[F] = N = kg \frac{m}{s^2}$$

and the Pascal unit as

$$[P] = Pa = \frac{N}{m^2}$$

We use scientific notation and terms which express quantities as powers of ten. For instance, 10^{12} is the tera, 10^3 the giga, etc.

The magnitudes hereby described are suited for algebraic manipulation. For instance, $m \times m = m^2$, and $s \times \frac{m}{s} = m$.

3 Vectors

Vectors are used to express position, displacement, velocity, force, acceleration, fields, etc. A vector \overrightarrow{A} (or sometimes \overrightarrow{a}) in the general sense has a direction (line), an orientation, and a length (or magnitude). A vector also has an application point, which denotes the point of origin of the vector. When saying $\overrightarrow{a} = \overrightarrow{b}$, we mean that \overrightarrow{a} and \overrightarrow{b} coincide in direction, magnitude and orientation, irrespective of their application point.

The scalar product is defined as the usual mapping in the space $\mathbb{R}^n \times \mathbb{R} \mapsto \mathbb{R}^n$. Intuitively, the scalar product $\lambda \overrightarrow{a}$ "streches" or "shrinks" a vector, depending on wheter $|\lambda| < 1$ or not, and the positivty or negativity of λ determines whether the vector inverts its direction or not. In general, $|\lambda \overrightarrow{a}| = |\lambda| |\overrightarrow{a}|$.

The sum of vectors, $\overrightarrow{a} + \overrightarrow{b}$, is a mapping $\mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}^n$. As usual, and in a graphical sense, the sum corresponds to the application of the parallelogram rule.

Parallelogram rule. Make \overrightarrow{a} and \overrightarrow{b} coincide in their point of application. From the tip of \overrightarrow{a} , draw a copy of \overrightarrow{b} , and from the tip of \overrightarrow{b} a copy of \overrightarrow{a} . The corner of the thus generated parallelogram is the tip of $\overrightarrow{a} + \overrightarrow{b}$.

Alternatively, from the tip of \overrightarrow{a} write \overrightarrow{b} . Then $\overrightarrow{a} + \overrightarrow{b}$ is the vector which goes from the point of application of \overrightarrow{a} to the tip of \overrightarrow{b} .

The sum of vectors is commutative, associative, and distributive with respect to scalar product.

If \overrightarrow{A} is a vector, we use A_x and A_y to denote the projection of the vector over the axis x or y, respectively. Using A_x and A_y one forms a rectangular triangle with sides A_x , A_y and a hypotenuse of length $|\overrightarrow{A}|$.

Let θ be the angle formed by \overrightarrow{A} with the x-axis. Then, using trigonometry,

$$\cos \theta = \frac{A_x}{|\overrightarrow{A}|}, \qquad \sin \theta = \frac{A_y}{|\overrightarrow{A}|}$$

from which one can find A_x , A_y assuming one knows θ . From this follows that $|\overrightarrow{A}|$ and θ fully determine all the information about the vector, insofar as the allow us to determine A_x , A_y . Conversely, knowing A_x and A_y is also sufficient to determine \overrightarrow{A} , insofar as

$$\left| \overrightarrow{A} \right| = \sqrt{A_x^2 + A_y^2}, \qquad \frac{A_y}{A_x} = \frac{\left| \overrightarrow{A} \right| \sin \theta}{\left| \overrightarrow{A} \right| \cos \theta} = \tan \theta \Rightarrow \theta = \arctan \left(\frac{A_y}{A_x} \right)$$

As convention, we use \hat{i} to denote the versor (vector of length 1) with direction parallel to the *x*-axis, and \hat{j} the versor with direction parallel to the *y*-axis.

Notice that, for any vector \overrightarrow{A} , A_x is \hat{i} times A_x , and A_y is \hat{j} times A_y , which means

$$\overrightarrow{A} = A_x \hat{i} + A_y \hat{j}$$

When writing \overrightarrow{A} in this way, we say we write it in term of its components x, y. In terms of linear algebra, it's not hard to see that we are simply expressing that \hat{i} , \hat{j} form a basis of \mathbb{R}^2 . Thus, it is equivalent to write

$$A_x = |\overrightarrow{A}| \cos \theta, \qquad A_y = |\overrightarrow{A}| \sin \theta$$

and

$$\overrightarrow{A} = |\overrightarrow{A}| (\cos\theta \,\hat{i} + \sin\theta \,\hat{j})$$

From this follows as well that

$$\overrightarrow{A} + \overrightarrow{B} = (A_x \hat{i} + A_y \hat{j}) + (B_x \hat{i} + B_y \hat{j})$$
$$= \hat{i} (A_x + B_x) + \hat{j} (A_y + B_y)$$

which means the sum of vectors has as components the sum of the components.

The scalar product of two vectors, $\overrightarrow{A} \cdot \overrightarrow{B}$, is a scalar defined as

$$\overrightarrow{A} \cdot \overrightarrow{B} = |\overrightarrow{A}| |\overrightarrow{B}| \cos \theta$$

where θ is the angle formed by the two vectors. The scalar product is positive if $\cos \theta$ is positive, which occurs for $0 < \theta \le 90$. It is negative if $\cos \theta$ is negative, i.e. if $90 < \theta \le 180$. Clearly, $\overrightarrow{A} \cdot \overrightarrow{B} = 0 \iff \theta = 90$.

In general, from the definition follows that

$$\overrightarrow{A} \cdot \overrightarrow{B} = A_x B_x + A_y B_y$$

The vectorial product $\overrightarrow{A} \times \overrightarrow{B}$ is a vector perpendicular to the plane formed by \overrightarrow{A} and \overrightarrow{B} . Its module is $|\overrightarrow{A}| |\overrightarrow{B}| \sin \theta$, and its direction is given by what's called the right-hand rule.

3.1 Excercises

(2) Sean los vectores $\overrightarrow{A} = 2\hat{i} + 3\hat{j} \overrightarrow{B} = 4\hat{i} - 2\hat{j}$ y $\overrightarrow{C} = -\hat{i} + \hat{j}$. Determinar la magnitud y el ángulo (representación polar) de los vectores resultantes $\overrightarrow{D} = \overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}$ y $\overrightarrow{E} = \overrightarrow{A} + \overrightarrow{B} - \overrightarrow{C}$. Resolver analítica y gráficamente.

(Analytical solution.) We'll use A_x , A_y to denote the components of the vector \overrightarrow{A} , and same for all other vectors. We know the components of \overrightarrow{D} are

$$D_x = A_x + B_x + C_x = 2 + 4 - 1 = 5,$$
 $D_y = 3 - 2 + 1 = 2$

from which readily follows that $|D| = \sqrt{5^2 + 2^2} = \sqrt{29} \approx 5.385$. Similarly,

$$E_x = 2 + 4 + 1 = 7,$$
 $E_y = 3 - 2 - 1 = 0$

from which follows that $|E| = \sqrt{7^2} = 7$.

Now, we must recall that

$$\theta_{\overrightarrow{Z}} = \arctan\left(\frac{Z_y}{Z_x}\right)$$

for any \overrightarrow{Z} .

We need not memorize this: it is trigonometrically clear that $Z_x = \cos \theta_{\overrightarrow{Z}} |\overrightarrow{Z}|$ and $Z_y = \sin \theta_{\overrightarrow{Z}} |\overrightarrow{Z}|$, and therefore

$$\frac{Z_y}{Z_x} = \tan \theta$$

And arctan is the inverse of tan. Anyhow, for \overrightarrow{E} and \overrightarrow{D} we have

$$\theta_{\vec{E}} = \arctan\left(\frac{E_y}{E_x}\right) = \arctan\left(0\right) = 0$$

$$\theta_{\overrightarrow{D}} = \arctan\left(\frac{D_y}{D_x}\right) = \arctan\left(\frac{2}{5}\right) \approx 0.38$$

(3) Can two vectors of different magnitud be combined and yield zero? What about three?

The zero vector is the only vector with magnitude zero. Let \overrightarrow{A} , \overrightarrow{B} arbitrary vectors. Then

$$\left|\overrightarrow{A} + \overrightarrow{B}\right| = \sqrt{(A_x + B_x)^2 + (A_y + B_y)^2}$$

which is zero if and only if

$$(A_x + B_x)^2 + (A_y + B_y)^2 = 0$$

This only holds if $A_x + B_x = A_y + B_y = 0$. But

$$A_x + B_x = 0 \Rightarrow A_x = -B_x,$$
 $A_y + B_y = 0 \Rightarrow A_y = -B_y$

But then

$$|A| = \sqrt{A_x^2 + A_y^2} = \sqrt{(-B_x)^2 + (-B_y)^2} = \sqrt{B_x^2 + B_y^2} = |B|$$

$$\therefore |\overrightarrow{A} + \overrightarrow{B}| = 0 \iff |\overrightarrow{A}| = |\overrightarrow{B}|.$$

It is simple to see that three vectors of different magnitude can add to zero.

Assume $A + B + C = 2\hat{i} + \hat{j}$ and $A = 6\hat{i} - 3\hat{j}$, $B = 2\hat{i} + 5\hat{j}$. Find the components of C. Solve analytically and graphically.

We know

$$6 + 2 + C_x = 2$$
, $-3 + 5 + C_y = 1$

from which follows that $C_x = -6$, $C_y = -1$.

(5) A and B have a magnitud of 3m, 4m respectively. The angle between them is $\theta = 30$ degrees. Find their scalar product.

Their scalar product is

$$(|B|\cos\theta)|A|$$

Recall that

Angle in degrees = Angle in radians
$$\cdot \frac{180}{\pi}$$

Thus, thirty degrees equates to $30\frac{\pi}{180}\approx 0.523$ radians. Then the scalar product is

$$4\cos(0.523) \times 3 \approx 10.395$$

(6) Find the angle between $A = 4\hat{i} + 3\hat{j}$ and $B = 6\hat{i} - 3\hat{j}$.

Recall that

$$A \cdot B = |A| |B| \cos \theta$$

where θ is the angle between the vectors. This readily entails that

$$\frac{A \cdot B}{|A| \, |B|} = \cos \theta$$

or equivalently that

$$\theta = \arccos\left(\frac{A \cdot B}{|A| |B|}\right)$$

Now, $A \cdot B = 4 \times 6 + 3 \times -3 = 24 - 9 = 15$ and $|A| |B| = 5 \cdot 6.708 = 33.541$.

Therefore,

$$\theta = \arccos\left(\frac{15}{33.541}\right) = \arccos(0.447) = 1.107$$

(7) Let $\overrightarrow{v} = \left(\frac{1}{3}, \frac{2}{3}\right)$ be the vector of components. Find the components of the vector of module 5 whose direction and orientation (sentido) are those of the given vector.

Assume $\overrightarrow{x} = (x_1, x_2)$ is of magnitude 5. Any vector whose direction and orientation are the same than those of \overrightarrow{v} is "a stretching" of \overrightarrow{v} . In other words, for \overrightarrow{x} to satisfy the requirements, we must have

$$\vec{x} = \lambda \vec{y} \tag{1}$$

for some $\lambda \in \mathbb{R}$. (Furthermore, $\lambda > 0$ since otherwise orientation is not preserved.)

Now, from equation (1) follows that

$$\|\vec{x}\| = \lambda \|\vec{y}\| \tag{2}$$

since the magnitude of a scaled vector is the scaled magnitude of the vector. Equation (2) simplifies to

$$\|\vec{x}\| = \lambda \sqrt{1/9 + 4/9} = \frac{\lambda \sqrt{5}}{3}$$
 (3)

From this readily follows that $\frac{3}{\sqrt{5}} ||\vec{x}|| = \lambda$. But it is a hypothesis that $||\vec{x}|| = 5$. Therefore,

$$\lambda = \frac{3}{\sqrt{5}} \cdot 5 = \frac{15}{\sqrt{5}} \tag{4}$$

In other words,

$$\vec{x} = \frac{15}{\sqrt{5}}\vec{v} \tag{5}$$

which is ugly but can be simplified.

- (8) Write the expression of the vector product $\vec{c} = \vec{u} \times \vec{v}$ in the following cases:
 - 1. \vec{u} , \vec{v} are coplanar. Provide a graphical interpretation.
 - 2. $\vec{u} = 2\hat{i} 3\hat{j} + \hat{k}$ and $\vec{v} = -3\hat{i} + \hat{j} + 2\hat{k}$. Find the module of the resulting vector \vec{c} in two different ways.
- (1) Two vectors are coplanar if there is a plane which contains them both. A plane is a subset of \mathbb{R}^2 projected onto