

NLP

- Sub-campo de data Science
- Analisar
- Compreender
- Derivar informação

Aplicações:

- Sumarização
- Tradução
- Análise semântica
- Reconhecimento de voz

Casos de sucesso

Pandas

Python for data analysis
Prakhar Amlathe
Utah State University

Introdução ao Pandas:

Panel Data System

Criado em 2008, atualmente mantido por Jeff Reback e colaboradores.

Principal pacote para análise de dados em python

Conceito opensource

Overview

- Python Library para data analysis similar a: R, MATLB, SAS
- Rich data structures com velocidade, facilidade e expressividade.
- Construída como front-end da NumPy
- Componentes chaves no Pandas : Duas novas estruturas de dados para Python

Series

DataFrame

Problemas em que panda é nosso amigo(a)...

- Munging data
- Cleaning data
- Analyzing data
- Modelling data
- Plotting graphs or Tabular displays of organized results.

Series: Pandas Data Structure

- Contém um vetor de dados (qualquer tipo de dados NumPy) com indices associados.
- O a N onde N = size -1

DataFrame: Pandas Data Structure

- Um dataFrame é uma estrutura tabular composta de linhas e colunas, similar a uma planilha ou tabela de banco de dados.
- Pode ser tratada como uma série de objetos compartilhando um mesmo índice

Out[3]:

	year	winning team	wins	losses
0	2010	CSK	15	5
1	2011	Delhi daredevils	12	3
2	2012	KKR	10	6
3	2013	Pune warriors	14	1
4	2014	Hyderabas sunrisers	11	4
5	2015	KKR	12	3

Operações realizáveis nas estruturas do pandas

Filtering

Summarizing

Group by – split apply combine

Merge, join, aggregate

Time series/
Data
functionality

Plotting with Matplotlib and many more...

Estudo de caso

505 opiniões sobre um determinado produto

Links úteis

- http://pandas.pydata.org/
- https://www.analyticsvidhya.com/blog/2016/01/12-pandas-techniques-python-data-manipulation/
- http://www.slideshare.net/maikroeder/pandas-16424935
- http://pandas.pydata.org/pandas-docs/stable/tutorials.html

Table 1: The three components of learning algorithms.

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search
Hyperplanes	Likelihood	Branch-and-bound
Naive Bayes	Posterior probability	Continuous optimization
Logistic regression	Information gain	Unconstrained
Decision trees	K-L divergence	Gradient descent
Sets of rules	Cost/Utility	Conjugate gradient
Propositional rules	Margin	Quasi-Newton methods
Logic programs	The same of the sa	Constrained
Neural networks		Linear programming
Graphical models		Quadratic programming
Bayesian networks		
Conditional random fields		

- Alguns conceitos importantes:
- Tokenização converter textos em tokens
- Tokens palavras presentes em um texto
- Objeto de texto Uma sentença ou frase

sudo easy_install pip Sudo pip install –U nltk

Import nltk nltk.download()

NLTK 3.2.4 documentation

NEXT | MODULES | INDEX

Natural Language Toolkit

NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to <u>over 50 corpora and lexical resources</u> such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-strength NLP libraries, and an active <u>discussion forum</u>.

- Inclui pelo menos três fases:
- Remoção de ruídos
- Normalização Lexica
- Padronização de objetos

Utilizando dicionário de "ruídos"

```
# Sample code to remove noisy words from a text
noise_list = ["is", "a", "this", "..."]
def _remove_noise(input_text):
   words = input_text.split()
    noise free words = [word for word in words if word not in noise list]
    noise_free_text = " ".join(noise_free_words)
    return noise_free_text
_remove_noise("this is a sample text")
>>> "sample text"
```

Normalização Léxica

Todas as formas abaixo tem um sentido: estudar

erúndio: estudando		
articípio passado: estudado		
	INDICATIVO	
Presente	Pretérito perfeito	Pretérito imperfeito
eu estudo tu estudas	eu estudei tu estudaste	eu estudava tu estudavas
ele/ela estuda	ele/ela estudou	ele/ela estudavas
nós estudamos	nós estudámos / estudamos	nós estudávamos
vós estudais	vós estudastes	vós estudáveis
eles/elas estudam	eles/elas estudaram	eles/elas estudavam
Pret. mais-que-perfeito	Futuro /	CONDICIONAL /
	Futuro do presente	Futuro do pretérito
eu estudara	eu estudarei	eu estudaria
tu estudaras	tu estudarás	tu estudarias
ele/ela estudara	ele/ela estudará	ele/ela estudaria
nós estudáramos	nós estudaremos	nós estudaríamos
vós estudáreis	vós estudareis	vós estudaríeis
eles/elas estudaram	eles/elas estudarão	eles/elas estudariam
	CONJUNTIVO SUBJUNTIVO (BR)	
Presente	Pretérito imperfeito	Futuro
que eu estude	se eu estudasse	quando eu estudar
que tu estudes	se tu estudasses	quando tu estudares
que ele/ela estude	se ele/ela estudasse	quando ele/ela estudar
que nos estudemos	se nós estudássemos	quando nós estudarmos
que vós estudeis	se vós estudásseis	quando vós estudardes
que eles/elas estudem	se eles/elas estudassem	quando eles/elas estudarem
IMPI	ERATIVO	
afirmativo	negativo	INFINITIVO PESSOAL
- octuda tu	não octudos tu	para estudar eu
estuda tu estude ele/ela	não estudes tu não estude ele/ela	para estudares tu
estude ele/ela estudemos nós	não estude ele/ela não estudemos nós	para estudar ele/ela para estudarmos nós
estudai vós	não estudeitos nos não estudeis vós	para estudarnos nos para estudardes vós
COLUMN TOO	TIMO COMMON TOO	para cotadardos ros

- NLP geralmente inclui as seguintes problemas:
- Classificação
- Rotulação
- Geração de sequência

- A visão moderna de NLP com Deep Learning pode ser resumida em 4 elementos básicos
 - Incorporar (Embeded)
 - Codificar (encoding)
 - Atenção
 - Predição

- Exemplo:
- o "O gato corre atrás do _____"
 Será que a próxima palavra é:
- "rato" ?
- "cachorro"?
- "carro"?

Modelos de linguagem são usados para coisas como processamento de voz, autocorreção de ortografia, etc.

- Um pouco depois de se começar a usar redes neurais para modelos de linguagem, percebeu-se se que era mais interessante colocar uma camada adicional -linear, de tamanho fixo- entre o vetor de features de cada palavra e as camadas da rede
- Para reduzir a dimensionalidade dos vetores de palavras e ter representações de tamanho fixo
- Essa camada foi chamada de *Embedding Layer*

01

Depois de projetada na camada de Embedding, cada palavra vira um vetor em um espaço vetorial.

02

Neste espaço, a proximidade entre vetores representa proximidade de padrão de uso, ou seja, palavras que são usadas no mesmo contexto ficam próximas umas das outras.

01

Em meados de 2010, foi identificado que embeddings poderiam ser usados para melhorar resultados de praticamente todas as tarefas normais de NLP, como tagueamento POS, SRL, NER,

classificação de textos, etc.

02

Em 2013, foi feito um estudo sobre a semântica desses vetores (chamados de *Word Embeddings*) e foi descoberto que eles eram tão bons que se podia até fazer operações aritméticas com eles.

03

Exemplo: a operação aritmética

- Embedding("king") Embedding("man") +
 Embedding("woman")
- Dá como resultado
 - Embedding("queen")

Embeded

 Intepretação depende do conjunto e não dos elementos pontuais (palavras)

• Exemplo:

- Eu vou passar neste curso, só que não !!!
- Eu vou passar roupa.

• Dois problemas:

- "só que não" contraria o sentido do início da frase
- "passar" tem sentidos diferentes em razão das outras palavras

Bag of Words (BoW)

- Sentença é a soma de palavras, e.g.
 - Conte as palavras
 - Presença/ausência
- Ignora estruturas semânticas
- Muito simples

Bag of Words - Desvantagens

- BoW funciona bem para textos simples ou formais
- Falha evidente: negação de sentido
- A negação é muito estudada como um contra-exemplo para os modelos BoW
- Exemplo:
- "O filme carece de inteligência e humor"
 - contém "inteligência" and "humor"
 - Um típico BoW classificaria como sentidmento positivo

Bag of Words - Desvantagens

- Existem negações simples e complexas
- Many possible forms of negation that cannot be listed a priori
 - "Não tem humor"
 - "Está faltando humor"
 - "Desprovido de humor"
- A ordem importa
 - "sem risos e com muitos momentos chatos"
 - "muitos risos e sem momentos chatos"
 - Mesmo BoW Mas sentimentos distintos

Embeded

- Feedforward neural networks
- Recurrent neural networks
- Backpropagation
- Assum que as entradas e saídas são vetores
- Como representar palavras em um vetor?

"One-Hot Encoding"

- Técnica "Naïve"
- Palavra = $w \in \mathbb{R}^n$, n = dom(V)

Exemplos

- V = ["dog", "bites", "man"]
- "dog bites man" = [[1,0,0],[0,1,0],[0,0,1]]
- "man bites dog" = [[0,0,1],[0,1,0],[1,0,0]]

```
from keras.utils import np_utils
from sklearn.preprocessing import LabelEncoder
import numpy as np
feature_labels = np.array([1, 1, 2, 3, 4, 3, 4])
encoder = LabelEncoder()
encoder.fit(feature labels)
feature labels = encoder.transform(feature labels)
feature_labels = np_utils.to_categorical(feature_labels)
1 1 1
array([[ 1., 0., 0., 0.],
[1., 0., 0., 0.]
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.],
[0., 0., 1., 0.],
[ 0., 0., 0., 1.]])
```

"One-Hot Encoding" Drawbacks

- Tamanho do vetor x tamanho do vocabulário
 - Pre-determinado
- "Out-of-Vocabulary"
 - Como tratar palavras não vistas no conjunto de teste?
 - Possível solução: "UNKNOWN" para representar palavras pouco usadas
- Problemas que persistem:
 - Eu gosto de redes neurais
 - Podemos inferior que gosto de REDES (de computador?)

John Rupert Firth

"You shall know a word by the company it keeps"

- -1957
- English linguist
- Muito Famoso em NLP
- Intepretação moderna: Co-ocorrência é um bom indicador de significado

"One-Hot Encoding" Drawbacks

 Tudo isso significa **BANCO**

> government debt problems turning into banking crises as has happened in saying that Europe needs unified banking regulation to replace the hodgepodge

> > These words will represent banking 7

Matriz de coocorrências

- Como representar palavras vizinhas?
 - Opção 1: documento inteiro
 - Opção 2: janela de vizinhança

- Eu gosto de redes neurais
- Eu gosto de linguagem natural
- Eu aprecio leitura

	Eu	gosto	de	redes	neurais	linguagem	natural	aprecio	leitura	
Eu	0	2	0	0	0	0	0	1	0	0
gosto	2	0	2	0	0	0	0	0	0	0
de	0	0	0	1	1	0	0	0	0	0
redes	0	0	0	0	0	1	0	0	0	0
neurais	0	0	0	0	0	0	0	0	0	1
linguagem	0	0	0	0	0	0	1	0	0	0
natural	0	0	0	0	0	0	0	0	0	0
aprecio	1	0	0	0	0	0	0	0	1	1
leitura	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	1	0	1	0

```
8 import numpy as np
 9 import matplotlib.pyplot as plt
11 #Eu gosto de redes neurais.
12 #Eu gosto de linguagem natural.
13 #Eu aprecio leitura.
14 la = np.linalg
15 palavras = ["Eu", "gosto", "de", "redes", "neurais", "linguagem", "natural", "aprecio", "leitura", "."]
16 X = np.array([[0,2,0,0,0,0,0,1,0,0],
                 [2,0,2,0,0,0,0,0,0,0],
17
                 [0,0,0,1,1,0,0,0,1,0],
                 [0,0,1,0,0,1,0,0,0,0],
                 [0,0,0,1,0,0,0,0,0,1],
                 [0,0,1,0,0,0,1,0,0,0],
                 [0,0,0,0,0,1,0,0,0,1],
                 [1,0,0,0,0,0,0,0,1,0],
                 [1,0,0,0,0,0,0,0,0,1],
25
                 [0,0,0,1,0,0,1,0,1,0]])
27 U,S,V = la.svd(X,full matrices=False)
28
30 axes = plt.gca()
31 axes.set xlim([-1,1])
32 axes.set_ylim([-1,1])
33 for i in xrange(len(palavras)):
       print U[i,0],U[i,1]
       plt.text(U[i,0],U[i,1],palavras[i])
```

$$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\intercal}$$

 $n \times k | k \times k | k \times k$ nxk Diagonal Orthogonal matrix matrix Orthogonal matrix

Latent semantic analysis studies documents in Bag-Of-Words format (1988).

i.e. Dada uma matriz T que codifica alguns documentos:

T_{ii} é a contagem da palavra j no document i.

M word features

Dado a bag-of-words T, calcular a fatorização T \approx U^T * V (e.g. a best L₂ approximation to T)

Fatores codificam contextos similares de documentos.

Fatores são linhas de V.

Se U e V são ortogonais, S é uma matriz de valores singulares. v = Vt é um "embedding" de um document no espaço latente. $t' = U^Tv = U^TVt$ é a decodificação de uma sentença.

 $t' = U^T v = U^T V t$ é a codificação da sentença.

Uma fatoração SVD fornece a melhor reconstrução possível do document a partir do espaço considerado.


```
8 import numpy as np
 9 import matplotlib.pyplot as plt
11 #Eu gosto de redes neurais.
12 #Eu gosto de linguagem natural.
13 #Eu aprecio leitura.
14 la = np.linalg
15 palavras = ["Eu", "gosto", "de", "redes", "neurais", "linguagem", "natural", "aprecio", "leitura", "."]
16 X = np.array([[0,2,0,0,0,0,0,1,0,0],
                 [2,0,2,0,0,0,0,0,0,0],
17
                 [0,0,0,1,1,0,0,0,1,0],
                 [0,0,1,0,0,1,0,0,0,0],
                 [0,0,0,1,0,0,0,0,0,1],
                 [0,0,1,0,0,0,1,0,0,0],
                 [0,0,0,0,0,1,0,0,0,1],
                 [1,0,0,0,0,0,0,0,1,0],
                 [1,0,0,0,0,0,0,0,0,1],
25
                 [0,0,0,1,0,0,1,0,1,0]])
27 U,S,V = la.svd(X,full matrices=False)
28
30 axes = plt.gca()
31 axes.set xlim([-1,1])
32 axes.set_ylim([-1,1])
33 for i in xrange(len(palavras)):
       print U[i,0],U[i,1]
       plt.text(U[i,0],U[i,1],palavras[i])
```


Representações modernas de NLP

01

Vetor de palavras devem ser significativos 02

Treinar uma rede neural para fazer tarefas simples 03

A camada oculta de uma rede neural é um detector de características 04

Usar a camada da rede neural como word embedding

Abordagens para representar palavras

Distribuição semântica (Count)

- Usado desde 90's
- Matriz esparsa de context PMI/PPMI
- Decomposição com SVD

Word Embeddings (Predict)

- Inspirado para deep learning
- word2vec (Mikolov et al., 2013)
- GloVe (Pennington et al., 2014)

Teoria subjacente: **The Distributional Hypothesis** (Harris, '54; Firth, '57) "Similar words occur in similar contexts"

Abordagens para representar palavras

Ambas abordagens:

- Fundamentos na mesma teoria de linguagens
- São matematicamente relacionadas
 - "Neural Word Embedding as Implicit Matrix Factorization" (NIPS 2014)

- Pq word embeddings são melhores?
 - "Don't Count, Predict!" (Baroni et al., ACL 2014)

Word Embeddings

Algoritmos novos

(objective + training method)

- Skip Grams + Negative Sampling
- CBOW + Hierarchical Softmax
- Noise Contrastive Estimation
- GloVe

• ..

Novos hyperparametros

(preprocessing, smoothing, etc.)

- Subsampling
- Dynamic Context Windows
- Context Distribution Smoothing
- Adding Context Vectors

• ..

O que realmente aprimora a performance?

- Definição de word embedding:
 - Vetor distribuído, denso, contínuo, de tamanho fixo, que representa uma palavra
 - Distribuído: cada conceito é representado por uma feature. Isso diminui a dimensionalidade necessária.
 - Denso: não esparso
 - Contínuo: não binário
 - Tamanho fixo: palavras projetadas no mesmo espaço para que possam ser separadas

- Rede neural treinada para prever context de palavras
- Considera poucos aspectos linguísticos

Word2Vec

Word2Vec

Método tradicional - Bag of Words	Word Embeddings
 Usa one hot encoding Cada palavra no vocabulário representada por uma posição em um vetor 	 Cada palavra possui uma posição no espaço (euclidiano por exemplo), onde é representada por um vetor de tamanho fixo
• Informação de context é pouco utilizada	 Aprendizado não-supervisionado
	 Por exemplo, "Hello" pode ser representado por: [0.4, -0.11, 0.55, 0.3 0.1, 0.02]

Male-Female

Verb tense

Country-Capital

vector[Queen] = vector[King] - vector[Man] + vector[Woman]

- Espresso? But I ordered a cappuccino!
- Don't worry, the cosine distance between them is so small that they are almost the same thing.

Figure (edited) from Bengio, "Representation Learning and Deep Learning", July, 2012, UCLA

Arquitetura

- O treinamento pode utilizar duas abordagens:
- CBOW (continuous bag of words)
 - Treinamento para predizer uma palabra dado os vizinhos da janela
- Skip-Grams
 - Treinamento para predizer o contextoo dado uma palavra.

Arquitetura

Arquitetura

- Não tem função de ativação
- Camada de saída usa softmax.

Context windows

 Context can be anything – a surrounding n-gram, a randomly sampled set of words from a fixed size window around the word

For example, assume context is defined as the word following a word.

```
i.e. context(w_i) = w_{i+1}
```

Corpus: I ate the cat

Training Set: | ate, ate | the, the | cat, cat |.

- 1. eat apple
- 2. eat orange
- 3. eat | rice
- 4. drink|juice
- 5. drink | milk
- 6. drink | water
- 7. orange | juice
- 8. apple | juice
- 9. rice | milk
- 10.milk drink
- 11.water | drink
- 12.juice | drink

Treinamento:

- 1. Milk and Juice are drinks
- 2. Apples, Oranges and Rice can be eaten
- 3. Apples and Orange are also juices
- 4. Rice milk is a actually a type of milk!

Ideia intuitiva

Word2Vec Resultados interessantes

Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-Syntactic Word Relationship test set.

Type of relationship	Word Pair 1		Word Pair 2	
Common capital city	Athens	Greece	Oslo	Norway
All capital cities	Astana	Kazakhstan	Harare	Zimbabwe
Currency	Angola	kwanza	Iran	rial
City-in-state	Chicago	Illinois	Stockton	California
Man-Woman	brother	sister	grandson	granddaughter
Adjective to adverb	apparent	apparently	rapid	rapidly
Opposite	possibly	impossibly	ethical	unethical
Comparative	great	greater	tough	tougher
Superlative	easy	easiest	lucky	luckiest
Present Participle	think	thinking	read	reading
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian
Past tense	walking	walked	swimming	swam
Plural nouns	mouse	mice	dollar	dollars
Plural verbs	work	works	speak	speaks

Word2Vec Resultados interessantes

Interesting/Humorous Word2Vec Math

Input Equation	Closest Word	
King-Man+Woman	Queen	
Human-Animal	Ethics	
Library-Books	Hall	
Obama-USA+Russia	Putin	
President-Power	Prime Minister	

```
from gensim.models import KeyedVectors
# cria o modelo
pt_model = KeyedVectors.load_word2vec_format('wiki.pt.vec')
# Escolhe uma palavra de busca
find_similar_to = 'sabão'
# Busca por similaridade [default= top 10]
for similar_word in en_model.similar_by_word(find_similar_to):
  print("Palavras: {0}, Similarity: {1:.2f}".format(
    similar_word[0], similar_word[1]
  ))
```

```
# Saída
# Word: cars, Similarity: 0.83
# Word: automobile, Similarity: 0.72
# Word: truck, Similarity: 0.71
# Word: motorcar, Similarity: 0.70
# Word: vehicle, Similarity: 0.70
# Word: driver, Similarity: 0.69
# Word: drivecar, Similarity: 0.69
# Word: minivan, Similarity: 0.67
# Word: roadster, Similarity: 0.67
# Word: racecars, Similarity: 0.67
```

```
# Test words
word_add = ['dhaka', 'india']
word_sub = ['bangladesh']
# Word vector addition and subtraction
for resultant_word in en_model.most_similar(
  positive=word_add, negative=word_sub
):
  print("Word : {0} , Similarity: {1:.2f}".format(
    resultant_word[0], resultant_word[1]
  ))
```

Resultado da adição semântica: Políticos + dinheiro + Empreiteiras + Leis

```
Dimensão do vetor de palavras: 300
Palavra similar: politico, Grau de similaridade: 0.79
Palavra similar: politicas, Grau de similaridade: 0.77
Palavra similar: politica, Grau de similaridade: 0.77
Palavra similar: politicagens, Grau de similaridade: 0.74
Palavra similar: br/politica/politicos, Grau de similaridade: 0.72
Palavra similar: politicagem, Grau de similaridade: 0.72
Palavra similar: políticos, Grau de similaridade: 0.71
Palavra similar: desaparecidospoliticos, Grau de similaridade: 0.69
Palavra similar: politiche, Grau de similaridade: 0.67
Palavra similar: politici, Grau de similaridade: 0.67
Resultados adição: empreiteiros , Similaridade: 0.70
Resultados adição: empreiteira , Similaridade: 0.70
Resultados adição: licitações , Similaridade: 0.69
Resultados adição: propinas , Similaridade: 0.69
Resultados adição: desonerações , Similaridade: 0.68
Resultados adição: subvenções , Similaridade: 0.68
Resultados adição: empreiteiro , Similaridade: 0.66
Resultados adição: despesas , Similaridade: 0.66
pcfapeg@pcfapeg:~/Downloads/anderson/PLNS
```

www.deeeplearningbrasil.com.br

Word2Vec Vantagens

- Word2vec é apenas uma rede neural
- Equivalente a one-hot encoding
- ...então pq usar word2vec?
- Pre-training

Word2Vec Desvantagens

- Ainda sujeita ao problema Out-of-vocabulary (OOV)
- Como gerar vetores de palavras desconhecidas?
- Como aprimorar a representação de palavras pouco usadas?
 - Usar "unknown"?

word2vec

- word2vec não é um simples algoritmo
- É um pacote de **software package** para representar palavras como vetores, contendo:
 - Dois modelos distintos
 - CBoW
 - Skip-Gram
 - Vários métodos de treinamento
 - Negative Sampling
 - Hierarchical Softmax
 - Um pipeline de pré-processamento rico
 - Dynamic Context Windows
 - Subsampling
 - Deleting Rare Words

word2vec

Negative sampling

$$\log \sigma(v'_{w_O}^{\top} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v'_{w_i}^{\top} v_{w_I}) \right]$$

 Note que a parte positiva modela a probabilidade de a palavra (wo) co-ocorrer com a palavra de saída (wi). A parte negativa está tentando minimizar a probabilidade esperada de uma palavra aleatória co-ocorrendo com a palavra de entrada.

Skip-Grams com Negative Sampling (SGNS)

Marco viu um pequeno vampiro peludo pendurado na árvore.

<u>words</u>	contexts
vampiro	peludo
vampiro	pequeno
vampiro	pendurado \nearrow D (data)
vampiro	na
•••	

Skip-Grams com Negative Sampling (SGNS)

- ullet SGNS procura um vetor $ec{w}$ para cada palavra w no vocabulário V_W
- Cada vetor tem d dimensões (e.g. d=100)
- ullet Efetivamente, ele aprende uma matriz W que representa V_W
- Ponto chave: matriz C do contexto dos vetores
- Em fato, cada palavra tem dois embeddings

"word2vec Explained..."
Goldberg & Levy, arXiv 2014

Skip-Grams com Negative Sampling (SGNS)

• Maximize: $\sigma(\vec{w} \cdot \vec{c})$

• c foi observada com w

<u>palavras</u> <u>contexto</u>

vampiro peludo

vampiro pequeno

vampiro segurando

vampiro no

Skip-Grams with Negative Sampling (SGNS)

• Maximize: $\sigma(\vec{w} \cdot \vec{c})$

• c foi observada com w

word	S	contexts

vampiro peludo

vampiro pequeno

vampiro segurando

vampiro no

• Minimize: $\sigma(\vec{w} \cdot \vec{c}')$

• *c'* com *w*

words contexts

vampiro Australia

vampiro virtual

vampiro o

vampiro 1985

Word2Vec

Sumário

- Objetivo simples (prever palavras vizinhas) permite aprender relações úteis
- Tarefas simples podem ser usadas para treinar representações para problemas complexos
- "You shall know a word by the company it keeps"

Global Vectors for Word Representation (GloVe)

Conceito

Usa razão de probabilidades de co-ocorrência, em vez de probabilidades de co-ocorrência em si

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

• Seja P (k | w) a probabilidade da palavra k aparecer no contexto da palavra w. Considere uma palavra fortemente relacionada ao gelo, mas não ao vapor, como o sólido. P (sólido / gelo) será relativamente alto, e P (sólido | vapor) será relativamente baixo. Assim, a proporção de P (sólido | gelo) / P (sólido | vapor) será grande. Se tomarmos uma palavra, como o gás relacionado ao vapor, mas não ao gelo, a proporção de P (gás | gelo) / P (gás | vapor) será pequena. Para uma palavra relacionada ao gelo e ao vapor, como a água, esperamos que a proporção seja próxima de uma. Também esperamos uma proporção próxima a uma palavra relacionada ao gelo e ao vapor.

GloVe – Algoritmo de treinamento

 Calcule a estatística e co-ocorrência na matriz X. Cada element Xij de uma matriz representa o quanto uma palavra i aparece no context da palavra j, porém ponderando a distância:

• Defina restrições para cada par de palavras:

$$w_i^T w_j + b_i + b_j = log(X_{ij})$$

w_i – vetor para a palavra principal,

w_i – vetor para o context

• Defina uma função de custo

$$J = \sum_{i=1}^V \sum_{j=1}^V \ f(X_{ij}) (w_i^T w_j + b_i + b_j - \log X_{ij})^2$$

GloVe – Algoritmo de treinamento

Figure 1: Weighting function f with $\alpha = 3/4$.

Word2Vec versus GloVe

Fonte: http://dsnotes.com/post/glove-enwiki/

Word2Vec versus GloVe

Fonte: http://dsnotes.com/post/glove-enwiki/

Doc2Vec

Le, Q. V., & Mikolov, T. (2014). Distributed representations of sentences and documents

- Extensão de Word2Vec: um document é considerado um palavra
- Como resultado, documentos são representados no espaço contínuo

Bag of Tricks for Efficient Text Classification

Fast text classification

BoW model on text classification and tag prediction

Starsmith (born Finlay Dow-Smith 8 July 1988 Bromley England) is a British songwriter producer remixer and DJ. He studied a classical music degree at the University of Surrey majoring in performance on saxophone. He has already received acclaim for the remixes he has created for Lady Gaga Robyn Timbaland Katy Perry Little Boots Passion Pit Paloma Faith Marina and the Diamonds and Frankmusik amongst many others.

Rikkavesi is a medium-sized lake in eastern Finland. At approximately 63 square kilometres (24 sq mi) it is the 66th largest lake in Finland. Rikkavesi is situated in the municipalities of Kaavi Outokumpu and Tuusniemi.Rikkavesi is 101 metres (331 ft) above the sea level. Kaavinjärvi and Rikkavesi are connected by the Kaavinkoski Canal. Ohtaans strait flows from Rikkavesi to Juojärvi.

- A very strong (and fast) baseline, often on-par with SOTA approaches
- Ease of use is at the core of the library
 - ./fasttext supervised -input data/dbpedia.train -output data/dbpedia
 - ./fasttext test data/dbpedia.bin data/dbpedia.test

Model

Model probability of a label given a paragraph

feature for paragraph
$$\mathcal{P}$$
: $h_{\mathcal{P}}$ classifier for label l : v_l

$$p(l|\mathcal{P}) = \frac{e^{h_{\mathcal{P}}^{\top} v_l}}{\sum_{k=1}^{K} e^{h_{\mathcal{P}}^{\top} v_k}}$$

Paragraph feature

$$h_{\mathcal{P}} = \sum_{w \in \mathcal{P}} x_w$$

- Word vectors are latent and not useful per se
- If scarce supervised data, use pre-trained word vectors
- Fasttext é um classificador em cima de um modelo de sentença2vec e é isso.

n-grams

Possible to add higher-order features

I could listen to every track every minute of every day.

Avoid building n-gram dictionary

- Um vetor para uma palavra é feito a partir de uma soma de n grams caracteres.
- Por exemplo o vetor "apple" é uma soma de vetores de n-grams "<ap", "app", "appl", "apple", "apple>", "ppl", "pple", "pple>", "ple>", "ple>", "le>" (assumindo hyperparâmetros ngram[minn] sendo 3 e o maior ngram[maxn] sendo 6).

Glove x word2vec x Fasttext

- Glove trata cada palavra no corpus como uma entidade atômica e gera um vetor para cada palavra. Neste sentido, Glove é muito parecida com word2vec - ambas tratam as palavras como a unidade mais pequena para treinar.
- Fasttext, que é essencialmente uma extensão do modelo word2vec, trata cada palavra como composta de caracteres ngrams. Então, o vetor para uma palavra é feito da soma desses caracteres n gramas.
- Gerar melhores relações para palavras raras (mesmo que as palavras sejam raras, seu n gram ainda são compartilhados com outras palavras)
- Palavras fora de vocabulário eles podem construir o vetor para uma n gram, mesmo que a palavra não apareça no corpo de treinamento. Tanto a Glove como o word2vec não podem.

Sentiment analysis - performance

Model	AG	Sogou	DBP	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
BoW (Zhang et al., 2015)	88.8	92.9	96.6	92.2	58.0	68.9	54.6	90.4
ngrams (Zhang et al., 2015)	92.0	97.1	98.6	95.6	56.3	68.5	54.3	92.0
ngrams TFIDF (Zhang et al., 2015)	92.4	97.2	98.7	95.4	54.8	68.5	52.4	91.5
char-CNN (Zhang and LeCun, 2015)	87.2	95.1	98.3	94.7	62.0	71.2	59.5	94.5
char-CRNN (Xiao and Cho, 2016)	91.4	95.2	98.6	94.5	61.8	71.7	59.2	94.1
VDCNN (Conneau et al., 2016)	91.3	96.8	98.7	95.7	64.7	73.4	63.0	95.7
fastText, h = 10	91.5	93.9	98.1	93.8	60.4	72.0	55.8	91.2
fastText, h = 10, bigram	92.5	96.8	98.6	95.7	63.9	72.3	60.2	94.6

Table 1: Test accuracy [%] on sentiment datasets. FastText has been run with the same parameters for all the datasets. It has 10 hidden units and we evaluate it with and without bigrams. For char-CNN, we show the best reported numbers without data augmentation.

Sentiment analysis - runtime

	Zhang and LeCun (2015)		Conneau et al. (2016)			fastText		
	small char-CNN	big char-CNN	depth=9	depth=17	depth=29	h =	10, bigram	a
AG	1h	3h	24m	37m	51m		1s	
Sogou	_	-	25m	41m	56m		7s	
DBpedia	2h	5h	27m	44m	1h		2s	
Yelp P.	-	-	28m	43m	1h09		3s	
Yelp F.	-	-	29m	45m	1h12		4s	
Yah. A.	8h	1d	1h	1h33	2h		5s	
Amz. F.	2d	5d	2h45	4h20	7h		9 _S	
Amz. P.	2d	5d	2h45	4h25	7h		10s	

Table 2: Training time for a single epoch on sentiment analysis datasets compared to char-CNN and VDCNN.

Tag prediction

- Using Flickr Data
- Given an image caption
- Predict the most likely tag
- Sample outputs:

Input	Prediction
taiyoucon 2011 digitals: individuals digital photos from the anime convention taiyoucon 2011 in mesa, arizona. if you know the model and/or the character, please comment.	#cosplay
2012 twin cities pride 2012 twin cities pride parade	#minneapolis
beagle enjoys the snowfall	#snow

Model	prec@1	Running time		
Wiodei	precer	Train	Test	
Freq. baseline	2.2	-	-	
Tagspace, $h = 50$	30.1	3h8	6h	
Tagspace, $h = 200$	35.6	5h32	15h	
fastText, $h = 50$	31.2	6m40	48s	
fastText, h = 50, bigram	36.7	7m47	50s	
fastText, h = 200	41.1	10m34	1m29	
fastText, h = 200, bigran	n 46.1	13m38	1m37	

Table 5: Prec@1 on the test set for tag prediction on YFCC100M. We also report the training time and test time. Test time is reported for a single thread, while training uses 20 threads for both models.

- Palavras são construídas por caracteres
 - Gera modelos a partir de palavras conhecidas
 - Expressões semelhantes compartilham modelos similares
 - Resolve o problema OOV

- Dos Santos and Zadrozny (2014) Learning Charact level Representations for Part-of-Speech Tagging
- Convoluções sobre os caracteres
- Janela fixa

- Kim, Jernite, Sontag, and Rush (2015)
 Character-Aware Neural Language
 Models
- Utiliza convolução, LSTM

- Cao and Rei (2016) A Joint Model for Word Embedding and Word Morphology
- Mesmo objetivo da word2vec, porém com caracteres
- LSTM Bi-directional

Modelo capaz de inferior origem das palavras

Figure 3: An illustration of the attention model (start and end of word symbols omitted). The root morpheme contributes the most to predicting the context, and is upweighted. In contrast, another potential split is inaccurate, and predicts the wrong context words. This is downweighted.

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

Socher, Perelygin, Wy, Chuang, Manning, Ng, and Potts (2013)

Recursive Compositionality

- Frases são combinadas recursivamente
- Positivo e negative podem ser negados

Recursive Sentiment Calculations

Duas sentenças similares

Character-level Convolutional Networks for Text Classification

Zhang, Zhao and LeCun (2016)

- Algumas soluções utilizam estruturas
 - Caracteres
 - Palavras
 - Frases
 - Sentenças
 - Parágrafos
 - Documentos
- LeCun usa convolução sobre caracteres
 - Estrutura pode ser "aprendida"
 - Sem necessidade de tokenizing/parsing/tagging/etc.

Convolução

$$h(y) = \sum_{x=1}^{k} f(x) \cdot g(y \cdot d - x + c)$$

1D Convolution

$$h(y) = \max_{x=1}^{k} g(y \cdot d - x + c)$$

1D Pooling

Data Augmentation

- Data augmentation em NLP
 - Troque palavras por sinônimos
 - LibreOffice thesaurus
 - LibreOffice thesaurus construída a partir da WordNet

Convolução 1D

Estado da arte

Dynamic
 Convolutional
 Neural Network –
 DCNN - 2015

A Convolutional Neural Network for Modelling Sentences

Nal Kalchbrenner Edward Grefenstette Phil Blunsom

{nal.kalchbrenner, edward.grefenstette, phil.blunsom}@cs.ox.ac.uk

Department of Computer Science

University of Oxford

Convolução 1D

Sentença

Convolução 1D

k-Max Pooling

k-Max Pooling

- k características mais ativas
- Preserva a ordem
- Insensitiva para posições
- Pode detector múltiplas ocorrências

Dynamic k-Max Pooling

$$k_l = \max(k_{top}, \lceil \frac{L-l}{L}s \rceil)$$

```
S = tamanho da sentença = 18 K1 = 12 K2 = 6 K3 = 3 K3 = 3 K4 = 18 K5 = 18 K5 = 18 K5 = 18 K6 = 1
```

K-Max Pooling

• Importante: linhas diferentes são independentes

Twitter Sentiment Prediction with Distant Supervision

- Data set gigante de tweets
- Tweet é rotulato como positive ou negative

Classifier	Accuracy (%)
SVM	81.6
BINB	82.7
MAXENT	83.0
MAX-TDNN	78.8
NBoW	80.9
DCNN	87.4

Sentiment Prediction in Movie Reviews

- Predizer sentiment de comentário de filme -Stanford Sentiment Treebank
- Saída é binária para o experiment 1
 ("positive", "negative") e de multipla classes
 no 2 "negative, somewhat negative, neutral,
 somewhat positive, positive"

TRAINING	8544	
DEVELOPMENT	1101	
TEST	2210	

TRAINING	6920
DEVELOPMENT	872
TEST	1821

Classifier	Fine-grained (%)	Binary (%)
NB	41.0	81.8
BINB	41.9	83.1
SVM	40.7	79.4
RECNTN	45.7	85.4
MAX-TDNN	37.4	77.1
NBoW	42.4	80.5
DCNN	48.5	86.8

Question Type Classification

- TREC question dataset
- Seis diferentes tipos de questões

Classifier	Features	Acc. (%)
HIER	unigram, POS, head chunks NE, semantic relations	91.0
MAXENT	unigram, bigram, trigram POS, chunks, NE, supertags CCG parser, WordNet	92.6
MAXENT	unigram, bigram, trigram POS, wh-word, head word word shape, parser hypernyms, WordNet	93.6
SVM	unigram, POS, wh-word head word, parser hypernyms, WordNet 60 hand-coded rules	95.0
MAX-TDNN	unsupervised vectors	84.4
NBoW	unsupervised vectors	88.2
DCNN	unsupervised vectors	93.0

- Classificar posts provenientes de 20 diferentes grupos de notícias,
- As categorias são bastante semanticamente distintas e, portanto, terão palavras bastante diferentes associadas a elas.

comp.sys.ibm.pc.hardware comp.graphics comp.os.ms-windows.misc comp.sys.mac.hardware comp.windows.x rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey

Exemplo completo: https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html

- Converter as amostras de texto no conjunto de dados em seqüências de índices de palavras.
- Preparar uma "matriz de incorporação" que conterá no índice i o vetor de incorporação para a palavra índice i em nosso índice de palavras.
- Carregar a matriz "embeded" em uma camada da rede neural, configurada para congelar (seus pesos, os vetores de incorporação, não serão atualizados durante o treinamento).
- Construa uma rede neural convolutiva 1D, terminando em uma saída de softmax para 20 categorias.

 Calcular um índice de palavras-chave para embeddings conhecidos (GloVe, word2Vec, etc)

```
embeddings_index = {}
f = open(os.path.join(GLOVE_DIR, 'glove.6B.100d.txt'))
for line in f:
    values = line.split()
    word = values[0]
    coefs = np.asarray(values[1:], dtype='float32')
    embeddings_index[word] = coefs
f.close()

print('Found %s word vectors.' % len(embeddings_index))
```

```
embedding_matrix = np.zeros((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
    embedding_vector = embeddings_index.get(word)
    if embedding_vector is not None:
        # words not found in embedding index will be all-zeros.
        embedding_matrix[i] = embedding_vector
```

 Imcorpore a camada na rede neural

Rede completa

```
sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
embedded_sequences = embedding_layer(sequence_input)
x = Conv1D(128, 5, activation='relu')(embedded sequences)
x = MaxPooling1D(5)(x)
x = Conv1D(128, 5, activation='relu')(x)
x = MaxPooling1D(5)(x)
x = Conv1D(128, 5, activation='relu')(x)
x = MaxPooling1D(35)(x) # global max pooling
x = Flatten()(x)
x = Dense(128, activation='relu')(x)
preds = Dense(len(labels index), activation='softmax')(x)
model = Model(sequence_input, preds)
model.compile(loss='categorical_crossentropy',
              optimizer='rmsprop',
              metrics=['acc'])
# happy learning!
model.fit(x_train, y_train, validation_data=(x_val, y_val),
          epochs=2, batch size=128)
```

Sem corpus

```
embedding_layer = Embedding(len(word_index) + 1,
                            EMBEDDING_DIM,
                            input_length=MAX_SEQUENCE_LENGTH)
```

Curiosidade...

This network is trained on pairs of sentences a, b with a similarity

label y.

Parameters are shared between the two networks.

From "Siamese Recurrent Architectures for Learning Sentence Similarity" Jonas Mueller, Aditya Thyagarajan, AAAI-2016

The network is trained on Semeval similar sentence pairs, expanded by substituting for random words using WordNet (a dataset of synonyms). Results:

Method	r	ρ	MSE
Illinois-LH	0.7993	0.7538	0.3692
(Lai and Hockenmaier 2014)			
UNAL-NLP	0.8070	0.7489	0.3550
(Jimenez et al. 2014)			
Meaning Factory	0.8268	0.7721	0.3224
(Bjerva et al. 2014)			
ECNU	0.8414	_	_
(Zhao, Zhu, and Lan 2014)			
Skip-thought+COCO	0.8655	0.7995	0.2561
(Kiros et al. 2015)			
Dependency Tree-LSTM	0.8676	0.8083	0.2532
(Tai, Socher, and Manning 2015)			
ConvNet	0.8686	0.8047	0.2606
(He, Gimpel, and Lin 2015)			
MaLSTM	0.8822	0.8345	0.2286

From "Siamese Recurrent Architectures for Learning Sentence Similarity" Jonas Mueller, Aditya Thyagarajan, AAAI-2016

The network is trained on Semeval similar sentence pairs, expanded by substituting for random words using WordNet (a dataset of synonyms). Results:

Method	r	ρ	MSE
Illinois-LH	0.7993	0.7538	0.3692
(Lai and Hockenmaier 2014)			
UNAL-NLP	0.8070	0.7489	0.3550
(Jimenez et al. 2014)			
Meaning Factory	0.8268	0.7721	0.3224
(Bjerva et al. 2014)			
ECNU	0.8414	_	_
(Zhao, Zhu, and Lan 2014)			
Skip-thought+COCO (Kiros et al. 2015)	0.8655	0.7995	0.2561
Dependency Tree-LSTM	0.8676	0.8083	0.2532
(Tai, Socher, and Manning 20	15)		
ConvNet	0.8686	0.8047	0.2606
(He, Gimpel, and Lin 2015)			
MaLSTM	0.8822	0.8345	0.2286

r = Pearson correlation, ρ = Spearman's rank correlation.

Tutoriais

- Socher Tutorial (2013)
 - Video: http://techtalks.tv/events/312/573/
 - Slides: http://lxmls.it.pt/2014/socher-lxmls.pdf
- Liang Tutorial (ICML 2015)
 - Video: http://videolectures.net/icml2015 liang language understanding/
 - Slides: http://icml.cc/2015/tutorials/icml2015-nlu-tutorial.pdf

Bibliotecas para NLP

- Natural Language Toolkit (NLTK): The complete toolkit for all NLP techniques.
- Pattern A web mining module for the with tools for NLP and machine learning.
- TextBlob Easy to use nl p tools API, built on top of NLTK and Pattern.
- spaCy Industrial strength N LP with Python and Cython.
- Gensim Topic Modelling for Humans
- Stanford Core NLP NLP services and packages by Stanford NLP Group.

Bibliotecas para NLP

- Dica de leitura:
- https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html

Referências

- Tai, Socher, and Manning (2015) Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks https://arxiv.org/pdf/1503.00075v3.pdf
- Mikolov et al. (2013) Efficient Estimation of Word Representations in Vector Space https://arxiv.org/pdf/1301.3781v3.pdf
- Socher et al. (2013) Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank http://nlp.stanford.edu/~socherr/EMNLP2013 RNTN.pdf
- Bowman et al. (2016) A Fast Unified Model for Parsing and Sentence Understanding https://arxiv.org/pdf/1603.06021.pdf

Referências (continued)

- Dos Santos and Zadrozny (2014) Learning Character-level Representations for Part-of-Speech Tagging http://jmlr.org/proceedings/papers/v32/santos14.pdf
- Kim, Jernite, Sontag, and Rush (2015) Character-Aware Neural Language Models https://arxiv.org/pdf/1508.06615.pdf
- Cao and Rei (2016) A Joint Model for Word Embedding and Word Morphology https://aclweb.org/anthology/W/W16/W16-1603.pdf
- Irsoy and Cardie (2014) Deep recursive neural networks for compositionality in language https://www.cs.cornell.edu/~oirsoy/files/nips14drsv.pdf

O curso está terminando...

Mas ainda teremos:

- Reinforcement
- •GAN's

