Université de Metz Département de Mathématiques

L3 Calcul formel

Feuille de TD n° 4

Exercice 1

Soit $n \in \mathbb{N}^*$. n est pseudo premier en base 2 si n est composé et si $2^n \equiv 2 \mod n$. Le premier de ces nombres est $341=11\times 31$. Le but de cet exercice est de montrer qu'il existe une infinité de nombres pseudo premiers en base 2.

- 1. Vérifier que 341 est un nombre pseudo premier en base 2.
- 2. Montrer que si n est pseudo premier en base 2 alors $2^n 1$ divise $2^{2^n 1} 2$.
- 3. Montrer que si n est composé alors $2^n 1$ l'est aussi.
- 4. En déduire qu'il existe une infinité de nombres pseudo premiers en base 2.

Exercice 2_

- 1. Montrer que 341 est pseudo premier en base 2 mais non en base 3.
- 2. Montrer que 91 est pseudo premier en base 3 mais non en base 2.

Exercice 3_

Soit a un entier ≥ 2 et p un nombre premier impair ne divisant pas a^2-1 .

Soit
$$n = \frac{a^{2p} - 1}{a^2 - 1}$$
.

- 1. Montrer que : 2/n 1, $p/a^{2p} a^2$ et p/n 1.
- 2. Montrer que : 2p/n 1 et $a^{2p} 1/a^{n-1} 1$.
- 3. Montrer que n est pseudo premier en base a.
- 4. Est ce que 341, qui est pseudo premier en base 2, est obtenu de cette façon?
- 5. Montrer que le nombre d'entiers pseudo premiers en base a est infini.

Exercice 4 (Extraits du Capes 2003) _____

- 1. Soit p un nombre premier et a un entier premier avec p. Montrer que $a^{\frac{p-1}{2}}$ est congru à 1 ou p-1 modulo p.
- 2. (a) Soit $n = \prod_{i=1}^{r} pi$ où $p_1, p_2, ..., p_r$ sont des nombres premiers deux à deux distincts tels que $p_i 1$ divise n 1 pour tout $i \in 1, ..., r$. Montrer que n est un nombre de Carmichaël.
 - (b) Application: montrer que 10585 est un nombre de Carmichaël.
- 3. Résoudre l'équation 85p -16q =1, où $(p,q) \in \mathbb{Z}^2$. Déterminer le plus petit nombre de Carmichaël divisible par 5 et 17.

Exercice 5

- 1. Montrer qu'un nombre de Carmichael est impair.
- 2. Soit p un nombre premier supérieur ou égal à 5 tel que 2p-1 et 3p-2 sont premiers. Montrer que n=p.(2p-1).(3p-2) est un nombre de Carmichael.

Exercice 6

- 1. Calculer les symboles de Legendre $\binom{26}{31}$ et $\binom{33}{37}$.
- 2. Résoudre $x^2 + 7x 2 \equiv 0 \mod 31$ puis $2x^2 + 5x 1 \equiv 0 \mod 37$.

Exercice 7 Les nombres de Mersenne ___

- 1. Soit a un entier > 1. Montrer que si $a^n 1$ est premier alors a = 2 et n est premier. Les nombres de la forme $2^p 1$ où p est premier sont les **nombres de Mersenne**, notés M_p .
- 2. Calculer M_p pour p = 2, 3, 5, 7, 11 et 13.
- 3. D'après la question 1, la primalité de M_p nécessite celle de p. Cette condition est-elle suffisante?
- 4. Le critère de primalité de Lucas-Lehmer se lit comme suit : " Soit p un nombre premier impair. Le nombre de Mersenne M_p est premier si et seulement si M_p divise S_{p-1} où $S_1=4$ et $S_{n+1}\equiv S_n^2-2$ $[M_p]$ ". Etudier la primalité de M_{13} .
- 5. Soit p un nombre premier impair et soit q un diviseur premier du nombre de Mersenne M_p .
 - (a) Montrer que $2^p \equiv 1$ [q]. Quel est l'ordre de 2 modulo q?
 - (b) Montrer que $2^{q-1} \equiv 1$ [q]. En déduire que q est de la forme $2kp+1, k \in \mathbb{N}$.
 - (c) Utiliser le (b) pour étudier la primalité du nombre de Mersenne M_{23} .
 - (d) Utiliser le (b) pour étudier la primalité du nombre de Mersenne M_{17} .
- 6. Soit p un nombre premier tel que $p \equiv 3$ [4]. Montrer que 2p + 1 est premier si et seulement si 2p + 1 divise M_p .
- 7. Montrer que si m et n sont des entiers premiers entre eux alors M_m et M_n sont également premiers entre eux.

Exercice 8 _

Tester la primalité de 1729 :

- 1. en utilisant le test de Fermat,
- 2. en utilisant le test de Miller-Rabin,
- 3. en utilisant le test de Solovay-Strassen.

Exercice 9 _

Soient a et b des entiers >1.

- 1. Montrer que si a est un résidu quadratique modulo b alors $\begin{pmatrix} a \\ \\ b \end{pmatrix} = 1$.
- 2. La réciproque est-elle vraie?