

Data Preservation

Daniel Faria, Jorge Oliveira, Gil Poiares-Oliveira

Data Preservation

I - Challenges

Learning Outcomes:

 Tackle the RDM challenges that arise in data preservation

Data Preservation

- The stage at which the only concern is long-term storage of relevant data (and eventual disposal of irrelevant data)
- It overlaps with **Data Sharing**: we can preserve data by depositing it in a public repository
 - In this chapter, we'll focus only on the local preservation scenario

Data Preservation

Challenges:

- Requirements & Relevance
- Volume, Duration & Accessibility
- Security
- Documentation & organization

Requirements & Relevance

- To identify what data to preserve (and for how long) you must consider:
 - **Requirements** for data preservation:
 - Legal or ethical (e.g. data from clinical trials)
 - Funders' (typically require data preservation for 5 or 10 years after the end of the project)
 - Institutional

Requirements & Relevance

- To identify what data to preserve (and for how long) you must consider:
 - The **relevance** of the data:
 - Value to society (scientifically, historically or culturally significant data)
 - Uniqueness and difficulty to re-generate
 - Potential for reuse

Requirements & Relevance

- Raw data are usually more relevant
- Intermediate data processing and analysis files can often be discarded, if they can be easily reproduced from the raw data (if the data processing and analysis workflow is preserved)
- Final result files may also be relevant
- Temporary or mutable data should generally not be selected for preservation

Volume, Duration & Accessibility

- The three main factors that determine storage costs:
 - Volume is dictated by the data and directly affects the required storage capacity
 - **Duration** is usually dictated by external requirements and is a factor due to the limited lifetime of storage media as well as the energy costs
 - Accessibility is dictated by the expected need to access the data in the future, which affects the choice of storage media

Volume, Duration & Accessibility

- Volume can be reduced by compressing the data, at the cost of accessibility
- Duration is less expensive if expected access is low:
 - HDD and SSD disks last longer
 - Tape becomes an option and is cheaper than disks
- Under accessibility we must also consider:
 - Expectancy of changes to the data (low at this stage)
 - Acceptable recovery time in case of disk failure

Security

- The fourth factor affecting storage costs
- "Standard" security includes disk redundancy and backups on tape
- If data is sensitive, data encryption is recommended as additional security
- If access to the data is restricted, accessibility costs will likely be higher

Documentation & Organization

- Data selected for preservation requires particular care with respect to both documentation and organisation
 - At the very least, the IT staff need to be able to identify the data and data owner
 - In case of an audit, the auditor needs to be able to identify and understand the data
 - The data owner needs to be able to identify and understand the data after a few years have passed

Documentation & Organization

- If we did a good job documenting and organizing the data during the previous stages, then little or no work is needed
- Include a README file at the head of the file structure describing the dataset and the file structure
 - Include links to protocols, workflows, and all relevant external references in the README file
 - Alternatively, protocols and workflows can be included in the file structure

Data Preservation

Thank You!

Questions?

Data Preservation

II - Hands-On

Learning Outcomes:

- Define data storage requirements
- Estimate data storage costs

Data Stewardship Wizard (DSW)

 A web tool for data management planning developed by DTL-NL (which we'll explore in more detail later)

- Includes a service to estimate storage costs:
 https://storage-costs-evaluator.ds-wizard.org/
- You can also get the source code from <u>https://github.com/ds-wizard/storage-costs-evaluator</u>

Group Exercise

- Open the DSW Storage Costs Evaluator at <u>https://storage-costs-evaluator.ds-wizard.org/</u>
- Use the tool to estimate the cost of data preservation for the mock project
 - Note that different datasets may have different storage needs, namely with respect to accessibility and security

Solution 1

1st - decide preservation time: assumed 5 years

Type of Data	Size	Cost
Clinical data and metadata	< 5 GB	21 313 €
RAW fastq	~40 TB	28 177 € or for free*
Analysed	~300 GB	26 957 €

*if deposited in public repository as it is created

Clinical Data & Metadata

- Minor occasional changes to data
- Tape backup w/ low frequency
- Flexible recovery time
- Privacy sensitive
- Authorized people access

RAW Data

- Few or no changes to data
- Tape backup w/ low frequency
- Flexible recovery time
- Privacy sensitive
- Authorized people access

Analysis Data

- Many changes / read of data
- Backup w/ high frequency
- High performance
- Privacy sensitive
- Authorized people access

Solution 2?

Can we have all these datasets in the same infrastructure?

Solution 2

It might be possible to create different storage solutions inside the same infrastructure and save some money:

Type of Data	Size	Cost
All project data	~ 41 TB	57 044 €

Solution 3

If we decide to submit all sequencing data to a public repository:

Type of Data	Size	Cost
All project data	< 500 GB	27 160 €

Data Preservation

Thank You!

Questions?

