1.
$$5 + \frac{1}{n}$$

[5]

2. $\frac{3}{n^2}$

[0] Calcolore i limiti $\left(\text{ple } N \to +\infty \right)$ $\frac{1}{2}$ delle successioni

23/9/2019

3. $\frac{5-n}{2n+1}$

FORMA INDETERMINATA -> non jons decidere

4. $2n^2 + 6n - 1$

 $[+\infty]$

5. $-n^3 + 2n^2 - 4$

 $[-\infty]$

6. $3 - \frac{2}{5n+1}$

[3]

- 1) $\lim_{m \to +\infty} \left(5 + \frac{1}{m}\right) = 5$

sulits qual é il risultats del limite!

Dars travare un'altra

- PICCOLA VERIFICA SPERIMENTALE

$$M = 100000 = > \frac{5 - 10.000}{2.10000} + 1$$

$$\frac{9.395}{20.001} = -0.49372... = -\frac{1}{2}$$

SULLE FORME INDETERMINATE Perché 👓 é una F.1.? Considerions le tre successioni 1) $a_n = \frac{n^2}{n}$ 2) $l_m = \frac{n}{n^2}$ 3) $c_n = \frac{5n}{n}$ Tutte e tre sons forme indeterminate del tips +00 1) lim $\frac{M^2}{M \rightarrow +\infty} = \lim_{M \rightarrow +\infty} M = +\infty$ 2) line $\frac{m}{m}$ = line $\frac{1}{m}$ = 0 3) line $\frac{5m}{m}$ = line $\frac{5}{m}$ = 5 Le tre successioni hams limiti diversi : in presense di forme indeterminate son si pro stabilire subits il limite, ma lisagna trovare un'altra strada. 1) $\lim_{m \to +\infty} (2m^2 + 6m - 1) = +\infty + \infty - 1 = +\infty$ 5) lim $(-m^3 + 2m^2 - 4) = -\infty + \infty - 4$ $m \to +\infty$ T.1. $= \lim_{N \to +\infty} N^{3} \left(-1 + \frac{2}{N} - \frac{4}{N^{3}}\right) = +\infty \cdot (-1) = -\infty$ $V = +\infty$

10.
$$\frac{n^2 - 5n + 1}{4n^2 - 3n + 5}$$
 [1]

11. $\frac{3n - 7}{8n^2 + 4n + 5}$ [0]

12. $\frac{3n - 7}{8n^2 + 4n + 5}$ [0]

13. $\frac{n^2 - 5n + 1}{4n^2 - 3n + 5}$ [1]

14. $\frac{5n + 1}{4n^2 - 3n + 5}$ [1]

15. $\frac{n^2 - 5n + 1}{4n^2 - 4n + 5}$ [1]

16. $\frac{n^2 - 5n + 1}{4n^2 - 4n + 5}$ [1]

17. $\frac{n^2 - 5n + 1}{4n^2 - 4n + 5}$ [1]

18. $\frac{n^2 - 5n + 1}{4n^2 - 4n + 5}$ [1]

19. $\frac{n^2 - 5n + 1}{4n^2 - 4n + 5}$ [1]

10. $\frac{n^2 - 5n + 1}{4n^2 - 4n + 5}$ [1]

11. $\frac{3n - 7}{4n^2 - 4n + 5}$ [2]

12. $\frac{n^2 - 6n + 1}{4n^2 - 4n + 5}$ [3]

13. $\frac{n^2 - 6n + 1}{4n^2 - 4n + 5}$ [4]

14. $\frac{n^2 - 5n + 1}{4n^2 - 4n + 5}$ [6]

15. $\frac{n^2 - 6n + 1}{4n^2 - 4n + 5}$ [7]

16. $\frac{n^2 - 6n + 1}{4n^2 - 4n + 5}$ [7]

17. $\frac{n^2 - 6n + 1}{4n^2 - 4n + 5}$ [8]

18. $\frac{n^2 - 6n + 1}{4n^2 - 4n + 5}$ [8]

19. $\frac{n^2 - 6n + 1}{4n^2 - 4n + 5}$ [9]

19. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

10. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

11. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

12. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

13. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

14. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

15. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

16. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

17. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

18. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

19. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

19. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

19. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

10. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

11. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

11. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 5}$ [9]

12. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 1}$ [1]

13. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 1}$ [1]

14. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 1}$ [1]

19. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 1}$ [1]

19. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 1}$ [1]

19. $\frac{n^2 - 6n + 1}{4n^2 - 3n + 1}$ [1]