Trabalho 01 Estrutura de Linguagens Ciência da Computação – UERJ Isabelle Barbalho FORTRAN

FORTRAN

(IBM Mathematical **FOR**mula **TRAN**slation System)

- Elaborado especificamente para aplicações científicas;
- Foi a primeira linguagem de programação imperativa. O primeiro compilador de FORTRAN foi desenvolvido para o IBM 704 em 1954-57 por uma equipe da IBM chefiada por John W. Backus.
- O FORTRAN foi um programa verdadeiramente revolucionário, antes dele todos os programas de computadores eram lentos, tendenciosos e originavam muitos erros.
- O Fortran permite a criação de programas que primam pela velocidade de execução. Daí reside seu uso em aplicações científicas computacionalmente intensivas como meteorologia, oceanografia, física, astronomia, geofísica, engenharia, economia etc.

Linha do Tempo (Resumida)

- 1977 O FORTRAN 77 incluía muitas novas características, que permitiram escrever e guardar mais facilmente programas estruturados.
- 1990 FORTRAN 90 trouxe uma novidade para o mundo das linguagens de programação: mecanismos para manipulação de arranjos.
- 2008 Versão mais atual.

Pontos Fortes/Fracos

- A sintaxe da linguagem é considerada arcaica relacionada a linguagens modernas.
- É difícil de escrever um loop for.
- Erros na escrita de apenas um carácter podem levar a erros durante o tempo de execução em vez de erros de compilação.
- Fortran 95 já possui comandos muito breves para efetuar operações matemáticas com matrizes e disposições de tipos.
- Grande parte do código é reutilizável. Por exemplo, se alguém criou uma rotina data em Fortran e disponibilizado ao público através da Internet, que o código pode ser facilmente incorporado em seu programa Fortran.

Classificação

- Linguagem Imperativa
- Linguagem de Alto Nível
- Compilada
- Estática
- Destinada para Computação Científica

Fortran 2003 (ISO/IEC 1539-1:2004)[12] : Desde 1997, o FORTRAN vem passando por um novo processo de revisão. O FORTRAN 2003 irá incorporar um conjunto de novos comandos que permitirão, entre outras coisas, o controle de exceções e programação orientada a objetos.

Fonte: Wikipedia

Comparações

Fotran

- Simples e fácil de entendimento quando em programas pequenos.
 Logo, difícil manutenção para programas maiores.
- Não é uma linguagem confiável, apenas verificação do tipo estático e falta manipulação de exceção.
- É também uma linguagem expressiva, de fácil utilização, embora não seja muito eficiente e não permite um acesso à máquina.

Linguagem C

- Característica semelhante a linguagem Fortran em relação a legibilidade.
- Não possui verificação de tipo portanto é uma linguagem flexível e ao mesmo tempo insegura.
- Alta expressividade (vasto conjunto de operadores)

Códigos Representativos

1) No Fortran o tipo da função deve ser declarado no programa principal, como se fosse uma variável comum:

volume = gas_ideal(T,P,3)

! volume recebe o valor gerado pela ! função gas_ideal

function gas_ideal(temp,press,n_mols) implicit none real temp,press,n_mols,gas_ideal gas_ideal = n_mols*8.314*temp/press return end 2) Usamos o comando 'dimension' para especificar os índices mínimos e máximos em cada direção:

```
integer a
dimension a(-3:1,3)
do i=-3,1
do j=1,3
a(i,j)=i**j
print 1,'a(',i,',',j,')=',a(i,j)
1 format(1x,sp,a,i3.2,a,i3.2 &
,a,i3.2)
enddo
enddo
enddo
end
```

Bibliografia

Livro Fortran Estruturado (Fortran 77)

Harry Farrer, Christiano Gonçalves, Eduardo Chaves, Frederico Ferreira Campos, Heilton Fábio, Marcos Augusto, Miriam Lourença

Links:

https://pt.wikipedia.org/wiki/Fortran

http://www.eq.uc.pt/~yoshida3/Fortra.html

http://www.eq.uc.pt/~batateu3/introd.html

http://www.inf.ufes.br/~thomas/fortran/tutorials/helder/fortran.pdf