Différentiabilité ; Fonctions de plusieurs variables réelles

Denis Vekemans *

 \mathbb{R}^n est muni de l'une des trois normes usuelles $||.||_1, ||.||_2$ ou $||.||_{\infty}$.

$$||x||_1 = \sum_{i \le i \le n} |x_i| \; ; \; ||x||_2 = \sqrt{\sum_{i \le i \le n} x_i^2} \; ; \; ||x||_{\infty} = \sup_{i \le i \le n} |x_i|.$$

Toutes les normes de \mathbb{R}^n sont équivalentes.

1 Fonctions de plusieurs variables réelles

Fonction $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}^p$ (U est ouvert de \mathbb{R}^n).

Définition 1.1

f admet une **limite** en $a \in U$ s'il existe $l \in \mathbb{R}^p$ tel que

$$\forall \varepsilon > 0, \ \exists \alpha > 0, \ \forall x \in \mathbb{R}^n, ||x - a|| < \alpha \Longrightarrow ||f(x) - l|| < \varepsilon.$$

S'il existe, l est unique et on note $l = \lim_{x \to a}$.

• $\{f \mid \exists l, l = \lim_{x \to a} f\}$ est un \mathbb{R} -espace vectoriel; $\phi : f \mapsto \lim_{x \to a} f$ est linéaire.

Définition 1.2

f est **continue** en $a \in U$ si $\lim_{x\to a} f(x) = f(a)$. On note $f \in \mathcal{C}^0(a)$.

- $\{f | f \in \mathcal{C}^0(a)\}\$ est un \mathbb{R} -espace vectoriel.
- \bullet Si f est linéaire, f est continue (en particulier, si f est une projection, f est continue).

Définition 1.3

f admet des fonctions partielles associées à f au point $a = (a_1, \ldots, a_n) \in U$:

$$f_i^{(a)}: x_i \mapsto f(a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_n).$$

- f admet une limite au point $a \Longrightarrow f_i^{(a)}$ admet une limite en a_i . Mais la réciproque est fausse.
- $f \in \mathcal{C}^0(a) \Longrightarrow f_i^{(a)} \in \mathcal{C}^0(a_i)$. Mais la réciproque est fausse.

 $^{^*}$ Laboratoire de mathématiques pures et appliquées Joseph Liouville ; 50, rue Ferdinand Buisson BP 699 ; 62 228 Calais cedex ; France

Définition 1.4

f admet un **développement limité d'ordre** 2 en $a \in U$ si

$$\exists L$$
 forme linéaire, $\exists q$ forme quadratique, $f(a+h) = f(a) + L(h) + q(h) + \phi(h)$

avec
$$|\phi(h)| = o(||h||^2)$$
, i.e. $\exists (\alpha_1, \dots, \alpha_n, \omega_{1,1}, \omega_{1,2}, \dots, \omega_{n,n}) \in \mathbb{R}^{n + \frac{n(n+1)}{2}}$ tels que

$$f(a_1 + h_1, \dots, a_n + h_n) = f(a_1, \dots, a_n) + \sum_{1 \le i \le n} \alpha_i h_i + \sum_{1 \le i \le n} \omega_{i,j} h_i h_j + \phi(h)$$

avec $|\phi(h)| = o(||h||^2)$.

2 Différentielle

Fonction $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}^p$ (U est ouvert de \mathbb{R}^n).

Définition 2.1

f est **différentiable** en a (on note $f \in Diff(a)$) si

$$\exists L$$
 forme linéaire, $\forall h, \ f(a+h) = f(a) + L(h) + \phi(h)$

avec $|\phi(h)| = o(||h||)$.

De façon équivalente,

$$\forall \varepsilon > 0, \ \exists \alpha > 0, \ \forall h, ||h|| < \alpha \Longrightarrow ||f(a+h) - f(a) - L(h)|| < \varepsilon ||h||.$$

L'application L, si elle existe, est unique et est appelée la **différentielle** de f au point $a \in U$. On la note df_a .

Lorsque f est différentiable en $a \in U$ et que la différentielle de f est continue en $a \in U$, on dit que f est continûment différentiable en a (on note $f \in C^1(a)$).

- \bullet $L=df_a$ est linéaire de U dans \mathbb{R}^p . Mais attention, la différentiabilité et L ne dépendent pas du choix des normes.
 - $f \in Diff(a) \Longrightarrow f \in \mathcal{C}^0(a)$.
 - $\{f|\ f\in Diff(a)\}$ est un \mathbb{R} -espace vectoriel; $\phi:\mapsto df_a$ est linéaire.
 - $f \in \mathcal{C}^1(a) \iff df_a \in \mathcal{C}^0(a)$.

Définition 2.2

On dit que f admet une **dérivée dans la direction** u (u est tel que ||u|| = 1), s'il existe $\lim_{\lambda \to 0} \frac{f(a+\lambda u)-f(a)}{\lambda} = \frac{\partial f}{\partial u}(a)$.

• Si $f \in Diff(a)$, alors f admet des dérivées dans toutes les directions et $\frac{\partial f}{\partial u}(a) = df_a(u)$. Mais la réciproque est fausse.

3 Exemples d'applications différentiables

- Si f est linéaire, $df_a = f$.
- Si $f: U \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^p$ est bilinéaire, $df_{a_1,a_2}(h_1,h_2) = f(a_1,h_2) + f(h_1,a_2)$.
- Si $f: U \subset \mathbb{R} \longrightarrow \mathbb{R}^p$, $f \in Diff(a) \iff f \in D(a)$ et $hf'(a) = df_a(h)$.
- Si $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}^p$, $f \in Diff(a) \iff \forall i, f_i \in Diff(a) \text{ et } df_a(h) = (df_{1a}(h), \dots, df_{pa}(h))$ avec $f = (f_1, \dots, f_p)$. Dans le cas particulier où $n = 1, f'(a) = (f'_1(a), \dots, f'_p(a))$.

4 Différentielle de la composée de deux applications

$$U \subset \mathbb{R}^n \xrightarrow{f} \mathbb{R}^p \xrightarrow{g} \mathbb{R}^q$$
.

Proposition 4.1

 $f \in Diff(a), g \in Diff(f(a)) \Longrightarrow g \circ f \in Diff(a)$ et

$$d(g \circ f)_a = dg_{f(a)} \circ df_a.$$

• $f \in \mathcal{C}^1(a), g \in \mathcal{C}^1(f(a)) \Longrightarrow g \circ f \in \mathcal{C}^1(a).$

5 Différentielle du produit et du quotient de deux applications

Proposition 5.1

Si $f \in Diff(a)$, $g \in Diff(a)$, alors $fg \in Diff(a)$ et

$$d(fg)_a = f(a)dg_a + g(a)df_a$$
.

Proposition 5.2

Si $f \in Diff(a)$, $g \in Diff(a)$ et si g ne s'annule pas dans un voisinage de a, alors $\frac{f}{g} \in Diff(a)$ et

$$d(\frac{f}{g})_a = \frac{g(a)df_a + f(a)dg_a}{(g(a))^2}.$$

6 Dérivées partielles

Définition 6.1

On dit que f admet une dérivée partielle d'indice i si $f_i^{(a)}$ est dérivable au point a_i .

$$\frac{\partial f}{\partial x_i}(a) = (f_i^{(a)})'(a_i) = \lim_{\rho \to 0} \frac{f(a_1, \dots, a_{i-1}, a_i + \rho, a_{i+1}, \dots, a_n) - f(a_1, \dots, a_n)}{\rho}.$$

- $f \in Diff(a) \Longrightarrow f$ admet en a des dérivées partielles à tous les indices et $df_a(h) = \sum_{1 \le i \le n} h_i \frac{\partial f}{\partial x_i}(a)$. Mais, la réciproque est fausse.
- f admet en a des dérivées partielles continues à tous les indices $\Longrightarrow f \in Diff(a)$. Mais, la réciproque est fausse.
 - $f \in \mathcal{C}^1(U) \iff \forall i, \frac{\partial f}{\partial x_i} \in \mathcal{C}^0(U)$.

7 Matrice jacobienne

Définition 7.1

 $J_f(a)$ donnée par

$$J_f(a) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & & \vdots \\ \frac{\partial f_p}{\partial x_1}(a) & \dots & \frac{\partial f_p}{\partial x_n}(a) \end{pmatrix},$$

est appelée matrice jacobienne de f au point a.

- Cas particuliers.
- $-p = 1, df_a(h) = \sum_{1 \le i \le n} h_i \frac{\partial f}{\partial x_i}(a).$
- $n = 1, f'(a) = \sum_{1 \le i \le n} f'_i(a)e_i.$
- $-n = p, \det(J_f(a)) = j_f(a) = \frac{D(f_1, \dots, f_n)}{D(x_1, \dots, x_n)}.$

Proposition 7.1

 $U \subset \mathbb{R}^n \xrightarrow{f} \mathbb{R}^p \xrightarrow{g} \mathbb{R}^q$. Si $f \in Diff(a)$ et si $g \in Diff(f(a))$.

$$J_{q \circ f}(a) = J_q(f(a)) \cdot J_f(a).$$

Proposition 7.2

$$\frac{\partial (g \circ f)_i}{\partial x_l}(a) = \sum_{1 \le k \le n} \frac{\partial g_i}{\partial f_k}(f(a)) \frac{\partial f_k}{\partial x_l}(a)$$

(formule de changement de variable).

8 Difféomorphismes

 $f: U \subset \mathbb{R}^n \longrightarrow V \subset \mathbb{R}^n$. Dans cette section, p = n.

Définition 8.1

 Φ est un difféomorphisme si c'est une bijection différentiable ainsi que Φ^{-1} .

- Soit Φ est un difféomorphisme. Pour tout $a \in U$, la matrice jacobienne $J_{\Phi}(a)$ est inversible et $J_{\Phi^{-1}}(\Phi(a)) = (J_{\Phi}(a))^{-1}$.
 - Soit Φ est un difféomorphisme. Pour tout $a \in U$, le jacobien $j_{\phi}(a)$ ne s'annule pas et $j_{\Phi^{-1}}(\Phi(a)) = \frac{1}{j_{\Phi}(a)}$.

Définition 8.2

 Φ est un \mathcal{C}^1 -difféomorphisme si c'est une bijection de classe \mathcal{C}^1 ainsi que Φ^{-1} .

• Soit Φ est un \mathcal{C}^1 -difféomorphisme. Alors, l'application $a \mapsto j_{\phi}(a)$ est continue.

Proposition 8.1

THÉORÈME D'INVERSION LOCALE. Soit U un ouvert de \mathbb{R}^n , et $f:U\longrightarrow\mathbb{R}^n$ une application de classe \mathcal{C}^1 dans U telle que $J_f(a)$ soit inversible. Alors, il existe un voisinage W_1 de a et un voisinage W_2 de f(a) tel que la restriction de f à W_1 soit un \mathcal{C}^1 -difféomorphisme de W_1 sur W_2 .

9 Formule des accroissements finis

 $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$. Dans cette section, p = 1 et U est convexe.

Proposition 9.1

Si $f \in Diff(U)$, $\exists \theta \in]0,1[$ tel que

$$f(a+h) - f(a) = \sum_{1 \le i \le n} h_i \frac{\partial f}{\partial x_i} (a + \theta h)$$

Proposition 9.2

Si df est bornée (i.e. $\exists M \in \mathbb{R}^+$ tel que $\forall x \in U, |\frac{\partial f}{\partial x_i}(x)| \leq M$), alors

$$\exists K \in \mathbb{R}^+, \ \forall (a,b) \in U^2, |f(b) - f(a)| \le k||b - a||.$$

INÉGALITÉ DES ACCROISSEMENTS FINIS.

10 Dérivées successives, fonctions de classe C^k

 $f:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$. Dans cette section, p=1.

Définition 10.1

Si l'application $a \mapsto \frac{\partial f}{\partial x_i}(a)$ admet en a une dérivée partielle d'indice j, on la note $\frac{\partial^2 f}{\partial x_j \partial x_i}(a)$. C'est une dérivée partielle seconde de f en a.

Proposition 10.1

THÉORÈME DE SCHWARZ. Si f admet des dérivées partielles secondes $\frac{\partial^2 f}{\partial x_j \partial x_i}$ et $\frac{\partial^2 f}{\partial x_i \partial x_j}$ dans un voisinage de a et si ces dérivées partielles sont continues en a, alors

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial^2 f}{\partial x_j \partial x_i}(a).$$

Définition 10.2

On définit par récurrence les dérivées partielles successives si elles existent.

• Si f admet sur U des dérivées partielles continues jusqu'à l'ordre k, on dit que f est de classe C^k dans U. On peut alors intervertir l'ordre des dérivations.

11 Formules de Taylor-Lagrange et de Taylor-Young, développements limités

 $f: U \subset \mathbb{R}^3 \longrightarrow \mathbb{R}$. Dans cette section, n=3 et p=1.

Proposition 11.1

FORMULE DE TAYLOR-LAGRANGE. Si f est de classe C^{ρ} , alors il existe $\theta \in]0,1[$ tel que

$$f(a+h) - f(a) = \sum_{1 \le k \le \rho - 1} \frac{1}{k!} \sum_{\alpha_1 + \alpha_2 + \alpha_3 = k} \frac{k!}{\alpha_1! \alpha_2! \alpha_3!} h_1^{\alpha_1} h_2^{\alpha_2} h_3^{\alpha_3} \frac{\partial^k f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \partial x_3^{\alpha_3}} (a)$$

$$+ \frac{1}{\rho!} \sum_{\alpha_1 + \alpha_2 + \alpha_3 = \rho} \frac{\rho!}{\alpha_1! \alpha_2! \alpha_3!} h_1^{\alpha_1} h_2^{\alpha_2} h_3^{\alpha_3} \frac{\partial^\rho f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \partial x_3^{\alpha_3}} (a + \theta h).$$

Proposition 11.2

FORMULE DE TAYLOR-YOUNG. Si f est de classe \mathcal{C}^{ρ} , alors il existe une fonction ϕ telle que

$$f(a+h) - f(a) = \sum_{1 \le k \le \rho} \frac{1}{k!} \sum_{\alpha_1 + \alpha_2 + \alpha_3 = k} \frac{k!}{\alpha_1! \alpha_2! \alpha_3!} h_1^{\alpha_1} h_2^{\alpha_2} h_3^{\alpha_3} \frac{\partial^k f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \partial x_3^{\alpha_3}} (a) + \phi(h).$$

avec $|\phi(h)| = o(||h||^{\rho}).$

Proposition 11.3

Si f est de classe C^2 dans U, alors f admet en tout $a \in U$ un développement limité à l'ordre 2 fourni par la formule de Taylor-Young

$$f(a+h) = f(a) + L(h) + q(h) + o(||h||^2).$$

οù

$$L(h) = \left(h_1 \frac{\partial f}{\partial x_1} + h_2 \frac{\partial f}{\partial x_2} + h_3 \frac{\partial f}{\partial x_3}\right)(a)$$

et

$$q(h) = \frac{1}{2} \left(h_1^2 \frac{\partial^2 f}{\partial x_1^2} + h_2^2 \frac{\partial^2 f}{\partial x_2^2} + h_3^2 \frac{\partial f}{\partial x_2^2} + 2 \left[h_1 h_2 \frac{\partial^2 f}{\partial x_1 \partial x_2} + h_2 h_3 \frac{\partial^2 f}{\partial x_2 \partial x_3} + h_3 h_1 \frac{\partial f}{\partial x_3 \partial x_1} \right] \right) (a).$$

12 Extrema

 $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$. Dans cette section, p=1.

Définition 12.1

On dit que f admet un **maximum** (respectivement **minimum**) **relatif** en $a \in U$ s'il existe un voisinage V de a tel que

$$\forall x \in V, \ f(x) \leq f(a) \ (repsctivement \ f(x) \geq f(a)).$$

Le maximum (respectivement minimum) est dit **strict** si

$$\forall x \in V \setminus \{a\}, f(x) \neq f(a).$$

Proposition 12.1

Si f est exrtemum en a et différentiable en a, alors $df_a = 0$.

- En particulier, si $U = \mathbb{R}^n$, pour que f présente un extremum relatif en a, il est nécessaire que $\frac{\partial f}{\partial x_i}(a) = 0$. La réciproque est fausse.
- Cas où n=2. On suppose que f est une application de classe C^2 d'un ouvert U de \mathbb{R}^2 et $a\in U$ est choisi tel que $\frac{\partial f}{\partial x}(a)=\frac{\partial f}{\partial y}(a)=0$. On note alors $r(a)=\frac{\partial^2 f}{\partial x^2}(a),\ s(a)=\frac{\partial^2 f}{\partial x\partial y}(a)$ et $t(a)=\frac{\partial^2 f}{\partial y^2}(a)$ et $\delta(a)=(s^2-rt)(a)$.

- Si $\delta(a) < 0$, a est un **extremum relatif** pour f (maximum si r(a) < 0; minimum si r(a) > 0).
- Si $\delta(a) > 0$, a n'est pas un extremum relatif, mais un **col** pour f (tout voisinage de a contient x et y tels que f(x) < f(a) < f(y)).
- Si $\delta(a) = 0$, on ne peut conclure.

Cette discussion résume de l'étude de la signature de la forme quadratique

$$q(x,y) = r(a)x^{2} + 2s(a)xy + t(a)y^{2}.$$

13 Fonctions implicites

 $f: U \subset \mathbb{R}^3 \longrightarrow \mathbb{R}$. Dans cette section, n=3 et p=1.

Proposition 13.1

THÉORÈMES DES FONCTIONS IMPLICITES

Si $f \in \mathcal{C}^1(U)$, et que $(a,b,c) \in U$ est tel que f(a,b,c) = 0 et $\frac{\partial f}{\partial z}(a,b,c) \neq 0$, alors il existe un voisinage V de (a,b,c), un voisinage W de (a,b) et une fonction $\phi: W \longrightarrow \mathbb{R}$ de classe \mathcal{C}^1 vérifiant $c = \phi(a,b)$ et $(x,y,z) \in V$, $f(x,y,z) = 0 \iff (x,y) \in W$, $z = \phi(x,y)$, alors

$$\frac{\partial \phi}{\partial x}(x,y) = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}}(x,y,\phi(x,y)) \text{ et } \frac{\partial \phi}{\partial y}(x,y) = -\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial z}}(x,y,\phi(x,y)).$$

- Autrement dit, on peut résoudre localement l'équation f(x, y, z) = 0.
- Les relations concernant les dérivées partielles s'obtiennent par dérivation de la relation $f(x, y, \phi(x, y)) = 0$.

14 Gradient, divergence, laplacien, rotationnel

Soit U un ouvert d'un espace vectoriel euclidien E, de dimension 3.

Définition 14.1

Un champ scalaire défini sur U est un application $\phi: U \longrightarrow \mathbb{R}$. Un champ vectoriel défini sur U est un application $\vec{V}: U \longrightarrow E$.

- Ces définitions s'étendent à un espace affine euclidien moyennant le chiox d'une origine.
- On dit que le champ scalaire ou vectoriel est continu (respectivement différentiable, respectivement de classe C^k) si ϕ ou \vec{V} est continu (respectivement différentiable, respectivement de classe C^k).

14.1 Gradient d'un champ scalaire

 ϕ est un champ scalaire différentiable dans U.

Définition 14.2

Le vecteur $\frac{\partial \phi}{\partial \vec{i}}\vec{i} + \frac{\partial \phi}{\partial \vec{j}}\vec{j} + \frac{\partial \phi}{\partial \vec{k}}\vec{k}$ est indépendant de la base orthonormée $(\vec{i}, \vec{j}, \vec{k})$ choisie. On l'appelle le **gradient** du champ ϕ et on le note $\overrightarrow{\text{grad}} \phi$.

Proposition 14.1

Si $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ et qu'on note $\phi(\vec{u}) = \Phi(x, y, z)$, on a alors

$$\overrightarrow{\text{grad}} \ \phi = \frac{\partial \Phi}{\partial x} \vec{i} + \frac{\partial \Phi}{\partial y} \vec{j} + \frac{\partial \Phi}{\partial z} \vec{k}.$$

Propriétés du gradient.

- $-\phi \mapsto \overrightarrow{\operatorname{grad}} \phi$ est linéaire.
- Si ϕ_1 et ϕ_2 sont deux champs scalaires différentiables,

$$\overrightarrow{\operatorname{grad}} (\phi_1 \phi_2) = \phi_1 \overrightarrow{\operatorname{grad}} \phi_2 + \phi_2 \overrightarrow{\operatorname{grad}} \phi_1.$$

14.2 Divergence d'un champ vectoriel

 \vec{V} est un champ vectoriel différentiable dans U.

Définition 14.3

Le réel $\vec{i} \frac{\partial \vec{V}}{\partial \vec{i}} + \vec{j} \frac{\partial \vec{V}}{\partial \vec{j}} + \vec{k} \frac{\partial \vec{V}}{\partial \vec{k}}$ est indépendant de la base orthonormée $(\vec{i}, \vec{j}, \vec{k})$ choisie. On l'appelle **divergence** du champ \vec{V} et on le note div \vec{V} .

Proposition 14.2

Si $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ et qu'on note $\vec{V}(\vec{u}) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$, on a alors

$$\operatorname{div} \vec{V} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

Propriétés de la divergence.

- $-\vec{V} \mapsto \text{div } \vec{V} \text{ est linéaire.}$
- Si ϕ est un champ scalaire différentiable et si \vec{V} est un champ vectoriel différentiable,

$$\operatorname{div} (\phi \vec{V}) = \phi \operatorname{div} \vec{V} + \vec{V} \overrightarrow{\operatorname{grad}} \phi.$$

14.3 Laplacien d'un champ scalaire

 ϕ est un champ scalaire de classe \mathcal{C}^2 dans U.

Définition 14.4

Le réel $(\operatorname{div} \circ \overrightarrow{\operatorname{grad}})(\phi)$ est indépendant de la base orthonormée $(\vec{i}, \vec{j}, \vec{k})$ choisie. On l'appelle le **laplacien** du champ ϕ et on le note $\Delta \phi$.

Proposition 14.3

Si $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ et qu'on note $\phi(\vec{u}) = \Phi(x, y, z)$, on a alors

$$\Delta \phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2}.$$

Propriétés du laplacien.

- $-\phi \mapsto \Delta \phi$ est linéaire.
- Si ϕ_1 et ϕ_2 sont deux champs scalaires de classe \mathcal{C}^2 ,

$$\Delta(\phi_1\phi_2) = \phi_1\Delta\phi_2 + \phi_2\Delta\phi_1 + 2\overrightarrow{\text{grad}} \phi_1\overrightarrow{\text{grad}} \phi_2.$$

14.4 Laplacien d'un champ vectoriel

 \vec{V} est un champ vectoriel de classe C^2 dans U.

Définition 14.5

Le vecteur $(\overrightarrow{grad} \circ div)(\overrightarrow{V})$ est indépendant de la base orthonormée $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ choisie. On l'appelle le **laplacien** du champ \overrightarrow{V} et on le note $\Delta \overrightarrow{V}$.

Proposition 14.4

Si $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ et qu'on note $\vec{V}(\vec{u}) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$, on a alors

$$\Delta \vec{V} = \Delta P \vec{i} + \Delta Q \vec{i} + \Delta R \vec{k}.$$

Propriétés du laplacien.

- $\vec{V} \mapsto \Delta \vec{V}$ est linéaire.
- Si ϕ est un champ scalaire de classe \mathcal{C}^2 et si \vec{V} est un champ vectoriel de classe \mathcal{C}^2 ,

$$\Delta(\phi \vec{V}) = \phi \Delta \vec{V} + \vec{V} \Delta \phi + 2 \text{div} \vec{V} \overrightarrow{\text{grad}} \phi.$$

14.5 Rotationnel d'un champ vectoriel

E est, dans cette sous-section, orienté. \vec{V} est un champ vectoriel différentiable dans U.

Définition 14.6

Le vecteur $(\vec{i} \wedge \frac{\partial \vec{V}}{\partial \vec{i}}) + (\vec{j} \wedge \frac{\partial \vec{V}}{\partial \vec{j}}) + (\vec{k} \wedge \frac{\partial \vec{V}}{\partial \vec{k}})$ est indépendant de la base orthonormée $(\vec{i}, \vec{j}, \vec{k})$ choisie. On l'appelle le **rotationnel** du champ \vec{V} et on le note rot \vec{V} .

Proposition 14.5

Si $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ et qu'on note $\vec{V}(\vec{u}) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$, on a alors

$$\overrightarrow{rot} \overrightarrow{V} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \overrightarrow{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \overrightarrow{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \overrightarrow{k} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \wedge \begin{pmatrix} P \\ Q \\ R \end{pmatrix}.$$

Propriétés du rotationnel.

- $-\vec{V} \mapsto \overrightarrow{rot} \vec{\vec{V}}$ est linéaire.
- Si ϕ est un champ scalaire différentiable et si \vec{V} est un champ vectoriel différentiable,

$$\overrightarrow{rot} \ (\overrightarrow{\phi V}) = \overrightarrow{\phi rot} \ \overrightarrow{V} + \overrightarrow{grad} \ \overrightarrow{\phi} \wedge \overrightarrow{V}.$$

15 Champ de gradient, champ de rotationnel

Définition 15.1

Un champ vectoriel \vec{V} défini sur un ouvert connexe U est un **champ de gradient** s'il existe un champ scalaire ϕ différentiable sur U (appelé **potentiel scalaire** de \vec{V}), tel que $\vec{V} = \overrightarrow{\text{grad}} \phi$.

- Deux potentiels scalaires de \vec{V} diffèrent d'une constante. Pour tout réel λ , l'ensemble des points M tels que $\phi(M) = \lambda$ est appelée surface équipotentielle.
 - Si $V \in \mathcal{C}^1(U)$, la condition rot $\overrightarrow{V} = 0$ est nécessaire pour que \overrightarrow{V} soit un champ de gradient car

$$\overrightarrow{\operatorname{rot}} \overrightarrow{\operatorname{grad}} \phi = 0.$$

Cette condition devient suffisante lorsque U est convexe.

• Si $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ et qu'on note $\vec{V}(\vec{u}) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$, la condition précédente (i.e. rot $\vec{V} = 0$) équivaut à

$$\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} = 0 \; ; \; \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} = 0 \; ; \; \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0.$$

• Dans la pratique, si \vec{V} vérifie rot $\vec{V}=0$, on écrit $\frac{\partial \phi}{\partial x}=P$, $\frac{\partial \phi}{\partial y}=Q$ et $\frac{\partial \phi}{\partial z}=R$, puis on intègre l'une des équations pour obtenir par exemple, $\phi(x)=\int_{x_0}^x P(t,y,z)dt+\lambda(y,z)$ que l'on dérive pour écrire $Q=\frac{\partial \phi}{\partial y}$, ce qui donne une condition sur λ .

Définition 15.2

Un champ vectoriel \vec{V} défini sur un ouvert connexe U est un **champ de rotationnel** s'il existe un champ vectoriel $\vec{\Omega}$ différentiable sur U (appelé **potentiel vecteur** de \vec{V}), tel que $\vec{V} = \overrightarrow{\text{rot } \vec{\Omega}}$.

- \bullet Deux potentiels vecteurs de \vec{V} diffèrent d'un gradient.
- ullet Si $V\in\mathcal{C}^1(U),$ la condition div $\vec{V}=0$ est nécessaire pour que \vec{V} soit un champ de rotationnel car

$$\overrightarrow{\text{div rot } \vec{\Omega}} = 0.$$

• Dans la pratique, pour déterminer les potentiels vecteurs $\vec{\Omega} = P\vec{i} + Q\vec{j} + R\vec{k}$, on cherche une solution particulière $\vec{\Omega_0}$ dont on fixe arbitrairement l'une des composantes à 0, puis $\vec{\Omega_0} + \overrightarrow{\text{grad}} \phi$ (où ϕ est un champ scalaire arbitraire de classe C^2) est aussi un potentiel vecteur.

16 Formes différentielles de degré un

 $U \subset \mathbb{R}^n$.

Définition 16.1

Une forme différentielle de degré un sur U est une application ω de U dans l'ensemble des applications linéaires de \mathbb{R}^n dans \mathbb{R} . Soit $a \in U$ et $h = (dx_1, \dots, dx_n) \in \mathbb{R}^n$, on a:

$$\omega(a)(h) = \sum_{1 \le i \le n} P_i(a) dx_i.$$

- Pour que la forme différentielle ω soit de classe \mathcal{C}^k dans U, il faut et il suffit que chaque P_i le soit.
- Si $f:U\longrightarrow \mathbb{R}$ est différentiable dans U, l'application $df:a\mapsto df_a$ est un exemple de forme différentielle de degré un.

Définition 16.2

Une forme différentielle ω est **exacte** sur U s'il existe f de classe \mathcal{C}^1 dans U telle que $df = \omega$ (f est une primitive de ω et si U est connexe, deux primitives de ω diffèrent d'une constante).

Définition 16.3

Une forme différentielle $\omega = Pdx + Qdy + Rdz$ de degré 1 et de classe \mathcal{C}^1 dans U est **fermée** si

$$\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} = 0 \; ; \; \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} = 0 \; ; \; \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0.$$

- \bullet Toute forme exacte est fermée. La réciproque est vraie si U est convexe.
- Si on regarde P, Q et R comme les composantes d'un champ vectoriel $\vec{V} = P\vec{i} + Q\vec{j} + R\vec{k}$, alors
- $-\omega$ est fermée $\Longleftrightarrow \overrightarrow{rot} \overrightarrow{\vec{V}} = \vec{0}$.
- ω est exacte et ϕ est une primitive de $\omega \iff \vec{V}$ est un champ de gradient et ϕ est un potentiel scalaire de \vec{V} .

Définition 16.4

Un champ scalaire μ est un facteur intégrant de la forme différentielle ω si la forme $\mu\omega$ est fermée.

Définition 16.5

 $\omega = Pdx + Qdy$ est une forme différentielle de degré un et de classe \mathcal{C}^1 dans U, W un ouvert de \mathbb{R}^2 et $\phi : W \Longrightarrow U$ un changement de variables admissible (\mathcal{C}^1 -difféomorphisme) donné par x = f(u, v) et y = g(u, v). On appelle **image transposée de la forme** ω par ϕ la forme

$$\phi^*(\omega) = P(\phi(u,v)) \left(\frac{\partial f}{\partial u} du + \frac{\partial f}{\partial v} dv \right) + Q(\phi(u,v)) \left(\frac{\partial g}{\partial u} du + \frac{\partial g}{\partial v} dv \right)$$
$$= [(P \circ \phi) \frac{\partial f}{\partial u} + (Q \circ \phi) \frac{\partial g}{\partial u}] du + [(P \circ \phi) \frac{\partial f}{\partial v} + (Q \circ \phi) \frac{\partial g}{\partial v}] dv$$

• $\phi^*(\omega)$ est de classe \mathcal{C}^1 dans W. $\phi^*(\omega_1 + \omega_2) = \phi^*(\omega_1) + \phi^*(\omega_2)$. $(\phi \circ \psi)^* = \psi^* \circ \phi^*$.

Exemple: si ϕ est la transposition polaire $x = \rho \cos \theta$ et $y = \rho \sin \theta$,

- $-\omega_1 = xdy ydx; \ \phi^*(\omega_1) = \rho^2 d\theta.$
- $-\omega_2 = xdx + ydy; \ \phi^*(\omega_2) = \rho d\rho.$

17 Intégrales curvilignes

Définition 17.1

Soit $\omega = Pdx + Qdy + Rdz$ une forme différentielle de degré un, continue dans un ouvert $U \subset \mathbb{R}^3$ et $\overrightarrow{\gamma} = ([a,b], \overrightarrow{F})$ un arc géométrique orienté de classe \mathcal{C}^1 , dont le support Γ est contenu dans U.

Si
$$\vec{F}: t \mapsto \vec{F}(t) = f_1(t)\vec{i} + f_2(t)\vec{j} + f_3(t)\vec{k}$$
, alors l'intégrale

$$\int_{a}^{b} [P(\vec{F}(t))f_1'(t) + Q(\vec{F}(t))f_2'(t) + R(\vec{F}(t))f_3'(t)]dt$$

ne dépend pas du choix de la paramétrisation de γ et on l'appelle **intégrale de la forme différentielle** ω sur l'arc orienté $\overset{\hookrightarrow}{\gamma}$ ou **intégrale curviligne** selon $\overset{\hookrightarrow}{\gamma}$ (notée $\int_{\overset{\hookrightarrow}{\gamma}}\omega$).

- $\bullet \int_{-\stackrel{\hookrightarrow}{\gamma}} \omega = \int_{\stackrel{\hookrightarrow}{\gamma}} \omega.$
- Si $\overset{\longleftarrow}{\gamma}$ est \mathcal{C}^1 par morceaux, il est réunion finie d'arcs $\overset{\longleftarrow}{\gamma}_i$ de classe \mathcal{C}^1 et on définit l'intégrale de ω par $\int_{\overset{\longleftarrow}{\gamma}}\omega=\sum_{1\leq i\leq n}\int_{\overset{\longleftarrow}{\gamma}_i}\omega$.

Définition 17.2

Si (P,Q,R) sont regardées comme composantes du champ vectoriel $\vec{V} = P\vec{i} + Q\vec{j} + R\vec{k}$, on note alors $\int_{\overrightarrow{\gamma}} \omega = \int_{\overrightarrow{\gamma}} \vec{V} \, d\vec{M}$ et on dit que c'est la **circulation** du champ vectoriel \vec{V} le long de l'arc orienté $\overrightarrow{\gamma}$.

- $\bullet \stackrel{\hookleftarrow}{\gamma}$ étant fixé, $\omega \mapsto \int_{\stackrel{\hookleftarrow}{\gamma}} \omega$ est linéaire.
- $|\int_{\overrightarrow{\gamma}} \overrightarrow{V} \overrightarrow{dM}| \leq l(\gamma) \sup_{M \in \Gamma} ||\overrightarrow{V}(M)||$ où $l(\gamma)$ est la longueur de l'arc γ .
- Si $\phi^*(\omega)$ désigne la transposée de la forme ω , on a $\int_{\phi(\overset{\leadsto}{\gamma})}\omega=\int_{\overset{\leadsto}{\gamma}}\phi^*(\omega)$ où $\phi(\overset{\leadsto}{\gamma})$ est l'image par ϕ de l'arc ω .
- Si ω est une forme différentielle exacte dans U, $\int_{\overrightarrow{\gamma}}\omega$ ne dépend que des extrémités de l'arc $\overset{\smile}{\gamma}$ et $\int_{\overset{\smile}{\gamma}}\omega=\phi(B)-\phi(A)$ où ϕ est une primitive de ω (i.e. $d\phi=\omega$) et A et B les extrémités de l'arc (i.e. $\overrightarrow{OA}=\overrightarrow{F}(a)$ et $\overrightarrow{OB}=\overrightarrow{F}(b)$). En particulier, si ω est une forme différentielle exacte et si l'arc $\overset{\smile}{\gamma}$ est fermé (i.e. A=B), $\int_{\overset{\smile}{\gamma}}\omega=0$.

Références

[1] M. Serfati, Exercices de mathématiques. 3. Analyse II, Belin, Collection DIA, 1987.