

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1 1. (Currently amended) A computer program product-method for
- 2 computing interval parameter bounds from fallible measurements, comprising:
- 3 receiving a set of measurements z_1, \dots, z_n , wherein an observation model
- 4 describes each z_i as a function of a p -element vector parameter $\mathbf{x} = (x_1, \dots, x_p)$,
- 5 wherein receiving the set of measurements involves
- 6 receiving values for a set of conditions c_1, \dots, c_n under which the
- 7 corresponding observations z_i were made,
- 8 wherein equations in the system of nonlinear equations
- 9 account for the conditions c_i and are of the form $z_i - h(\mathbf{x} | c_i) = 0$
- 10 ($i=1, \dots, n$), and
- 11 wherein each condition c_i is not known precisely but is
- 12 contained within an interval c_i^l ;
- 13 storing the set of measurements z_1, \dots, z_n in a memory in a computer
- 14 system;
- 15 forming a system of nonlinear equations $z_i - h(\mathbf{x}) = 0$ ($i=1, \dots, n$) based on
- 16 the observation model; and
- 17 solving the system of nonlinear equations to determine interval parameter
- 18 bounds on \mathbf{x} .

1 2. (Currently amended) The computer program product-method of claim 1,
2 wherein the system of nonlinear equations is an “overdetermined system” in
3 which there are more equations than unknowns.

1 3. (Currently amended) The computer program product-method of claim 1,
2 wherein each measurement z_i is actually a q -element vector of measurements $\mathbf{z}_i =$
3 $(z_{i1}, \dots, z_{iq})^T$, and h is actually a q -element vector of functions $\mathbf{h} = (h_1, \dots, h_q)^T$.

1 4 (Canceled).

1 5. (Currently amended) The computer program product-method of claim 1
2 ~~claim 4~~, wherein each condition c_i is actually an r -element vector of conditions \mathbf{c}_i
3 $= (c_{i1}, \dots, c_{ir})^T$.

1 6 (Canceled).

1 7. (Currently amended) The computer program product-method of claim 1
2 ~~claim 4~~, wherein equations in the system of nonlinear equations are of the form z_i
3 $- h(\mathbf{x} | c_i) + \varepsilon^I(\mathbf{x}, c_i) = 0$ ($i=1, \dots, n$), which includes an error model $\varepsilon^I(\mathbf{x}, c_i)$ that
4 provides interval bounds on measurement errors for z_i .

1 8. (Currently amended) The computer program product-method of claim 7,
2 wherein if z_i is actually a q -element vector of measurements $\mathbf{z}_i = (z_{i1}, \dots, z_{iq})^T$, then
3 ε^I is actually a q -element vector $\boldsymbol{\varepsilon}^I = (\varepsilon_1, \dots, \varepsilon_q)^T$.

1 9. (Currently amended) The computer program product-method of claim 7,
2 wherein if there exists no solution to the system of nonlinear equations, the
3 method further comprises determining that at least one of the following is true:

4 at least one of the set of measurements z_i, \dots, z_n is faulty;
5 the observation model $h(\mathbf{x} | c_i)$ is false;
6 the error model $\varepsilon^l(\mathbf{x}, c_i)$ is false; and
7 the computational system used to compute interval bounds on elements of
8 \mathbf{x} is flawed.

1 10. (Currently amended) The computer program product method of claim
2 1, wherein solving the system of nonlinear equations involves:
3 linearizing the system of nonlinear equations to form a corresponding
4 system of linear equations; and
5 solving the system of linear equations.

1 11. (Currently amended) The computer program product method of claim
2 10, wherein solving the system of nonlinear equations involves using Gaussian
3 Elimination.

1 12. (Currently amended) A computer-readable storage medium storing
2 instructions that when executed by a computer cause the computer to perform a
3 method for computing interval parameter bounds from fallible measurements,
4 wherein the computer-readable storage medium includes magnetic storage
5 devices, optical storage devices, disk drives, magnetic tape, CDs (compact discs),
6 and DVDs (digital versatile discs or digital video discs), the method comprising:
7 receiving a set of measurements z_1, \dots, z_n , wherein an observation model
8 describes each z_i as a function of a p -element vector parameter $\mathbf{x} = (x_1, \dots, x_p)_1$
9 wherein receiving the set of measurements involves
10 receiving values for a set of conditions c_1, \dots, c_n under which the
11 corresponding observations z_i were made,

12 wherein equations in the system of nonlinear equations
13 account for the conditions c_i and are of the form $z_i - h(\mathbf{x} | c_i) = 0$
14 ($i=1, \dots, n$), and
15 wherein each condition c_i is not known precisely but is
16 contained within an interval c_i^l ;
17 storing the set of measurements z_1, \dots, z_n in a memory in a computer
18 system;
19 forming a system of nonlinear equations $z_i - h(\mathbf{x}) = 0$ ($i=1, \dots, n$) based on
20 the observation model; and
21 solving the system of nonlinear equations to determine interval parameter
22 bounds on \mathbf{x} .

1 13. (Original) The computer-readable storage medium of claim 12,
2 wherein the system of nonlinear equations is an “overdetermined system” in
3 which there are more equations than unknowns.

1 14. (Original) The computer-readable storage medium of claim 12,
2 wherein each measurement z_i is actually a q -element vector of measurements $\mathbf{z}_i =$
3 $(z_{i1}, \dots, z_{iq})^T$, and h is actually a q -element vector of functions $\mathbf{h} = (h_1, \dots, h_q)^T$.

1 15 (Canceled).

1 16. (Currently amended) The computer-readable storage medium of claim
2 12-claim 15, wherein each condition c_i is actually an r -element vector of
3 conditions $\mathbf{c}_i = (c_{i1}, \dots, c_{ir})^T$.

1 17 (Canceled).

1 18. (Currently amended) The computer-readable storage medium of claim
2 12-claim 15, wherein equations in the system of nonlinear equations are of the
3 form,

4 $z_i - h(\mathbf{x} | c_i) + \varepsilon^I(\mathbf{x}, c_i) = 0$ ($i=1, \dots, n$), which includes an error model $\varepsilon^I(\mathbf{x}, c_i)$ that
5 provides interval bounds on measurement errors for z_i .

1 19. (Original) The computer-readable storage medium of claim 18,
2 wherein if z_i is actually a q -element vector of measurements $\mathbf{z}_i = (z_{i1}, \dots, z_{iq})^T$, then
3 ε^I is actually a q -element vector $\varepsilon^I = (\varepsilon_1, \dots, \varepsilon_q)^T$.

1 20. (Original) The computer-readable storage medium of claim 18,
2 wherein if there exists no solution to the system of nonlinear equations, the
3 method further comprises determining that at least one of the following is true:

4 at least one of the set of measurements z_1, \dots, z_n is faulty;
5 the observation model $h(\mathbf{x} | c_i)$ is false;
6 the error model $\varepsilon^I(\mathbf{x}, c_i)$ is false; and
7 the computational system used to compute interval bounds on elements of
8 \mathbf{x} is flawed.

1 21. (Original) The computer-readable storage medium of claim 12,
2 wherein solving the system of nonlinear equations involves:
3 linearizing the system of nonlinear equations to form a corresponding
4 system of linear equations; and
5 solving the system of linear equations.

1 22. (Original) The computer-readable storage medium of claim 21,
2 wherein solving the system of nonlinear equations involves using Gaussian
3 Elimination.

1 23. (Currently amended) An apparatus that computes interval parameter
2 bounds from fallible measurements, comprising:
3 a receiving mechanism configured to receive a set of measurements
4 z_1, \dots, z_n , wherein an observation model describes each z_i as a function of a
5 p -element vector parameter $\mathbf{x} = (x_1, \dots, x_p)$,
6 wherein receiving the set of measurements involves
7 receiving values for a set of conditions c_1, \dots, c_n under which the
8 corresponding observations z_i were made,
9 wherein equations in the system of nonlinear equations
10 account for the conditions c_i and are of the form $z_i - h(\mathbf{x} | c_i) = 0$
11 ($i=1, \dots, n$), and
12 wherein each condition c_i is not known precisely but is
13 contained within an interval c_i^l ;
14 a memory in a computer system for storing the set of measurements
15 z_1, \dots, z_n ;
16 an equation forming mechanism configured to form a system of nonlinear
17 equations $z_i - h(\mathbf{x}) = 0$ ($i=1, \dots, n$) based on the observation model; and
18 a solver configured to solve the system of nonlinear equations to determine
19 interval parameter bounds on \mathbf{x} .

1 24. (Original) The apparatus of claim 23, wherein the system of nonlinear
2 equations is an “overdetermined system” in which there are more equations than
3 unknowns.

1 25. (Original) The apparatus of claim 23, wherein each measurement z_i is
2 actually a q -element vector of measurements $\mathbf{z}_i = (z_{i1}, \dots, z_{iq})^T$, and h is actually a
3 q -element vector of functions $\mathbf{h} = (h_1, \dots, h_q)^T$.

1 26 (Canceled).

1 27. (Currently amended) The apparatus of claim 23-claim 26, wherein each
2 condition c_i is actually an r -element vector of conditions $\mathbf{c}_i = (c_{i1}, \dots, c_{ir})^T$.

1 28 (Canceled).

1 29. (Currently amended) The apparatus of claim 23-claim 26, wherein
2 equations in the system of nonlinear equations are of the form $z_i - h(\mathbf{x} | c_i) + \varepsilon^l(\mathbf{x},$
3 $c_i) = 0$ ($i=1, \dots, n$), which includes an error model $\varepsilon^l(\mathbf{x}, c_i)$ that provides interval
4 bounds on measurement errors for z_i .

1 30. (Original) The apparatus of claim 29, wherein if z_i is actually a q -
2 element vector of measurements $\mathbf{z}_i = (z_{i1}, \dots, z_{iq})^T$, then ε^l is actually a q -element
3 vector $\varepsilon^l = (\varepsilon_1, \dots, \varepsilon_q)^T$.

1 31. (Original) The apparatus of claim 29, wherein if there exists no
2 solution to the system of nonlinear equations, the solver is configured to
3 determine that at least one of the following is true:
4 at least one of the set of measurements z_i, \dots, z_n is faulty;
5 the observation model $h(\mathbf{x} | c_i)$ is false;
6 the error model $\varepsilon^l(\mathbf{x}, c_i)$ is false; and
7 the computational system used to compute interval bounds on elements of
8 \mathbf{x} is flawed.

1 32. (Original) The apparatus of claim 23, wherein the solver is configured
2 to:

3 linearize the system of nonlinear equations to form a corresponding system
4 of linear equations; and to
5 solve the system of linear equations.

1 33. (Original) The apparatus of claim 32, wherein the solver is configured
2 to solve the system of nonlinear equations using Gaussian Elimination.