

Trip-Based Public Transit Routing

Sascha Witt - sascha.witt@kit.edu

Institute of Theoretical Informatics – Algorithmics

Agenda

- Introduction
- Public Transit Routing
- Trip-Based Model and Algorithm
- Experiments
- Conclusion

Routing 101

A

3

Routing 101

Routing 101

Routing 101

Hierarchical

Public Transit Routing

Inherently time-dependent:
Travel times depend on departure time

Public Transit Routing

Inherently time-dependent:
Travel times depend on departure time

- Multiple natural problem variants
 - Earliest arrival queries
 - Profile (range) queries
 - Multi-criteria queries (e.g., number of transfers taken)

Terminology

Stops

Terminology

Connections

Time-Expanded Model

One vertex per event

Time-Expanded Model

- One vertex per event
- Plus transfer vertices

Time-Expanded Model

- One vertex per event
- Plus transfer vertices
- Transfer arcs obey minimum change times
- Extra arcs allow staying in vehicle

Time-Expanded Model

- One vertex per event
- Plus transfer vertices
- Transfer arcs obey minimum change times
- Extra arcs allow staying in vehicle
- Many vertices for each stop

Time-Dependent Model

One vertex per line at each stop

Time-Dependent Model

- One vertex per line at each stop
- Plus one transfer vertex per stop

Time-Dependent Model

- One vertex per line at each stop
- Plus one transfer vertex per stop
- Fewer vertices and edges

Time-Dependent Model

- One vertex per line at each stop
- Plus one transfer vertex per stop
- Fewer vertices and edges
- Edge weights replaced by functions

Karlsruhe Institute of Technology

Motivation

- Move emphasis from stops to trips
- Model transfers between trips explicitly

Motivation

- Move emphasis from stops to trips
- Model transfers between trips explicitly

- Query is similar to breadth-first search
- Levels correspond to number of transfers

Karlsruhe Institute of Technology

Motivation

- Move emphasis from stops to trips
- Model transfers between trips explicitly

- Query is similar to breadth-first search
- Levels correspond to number of transfers
- Footpaths etc. are handled during preprocessing

Preprocessing

Preprocessing

Karlsruhe Institute of Technology

Preprocessing

Compute transfers between trips

For each line, find the first reachable trip (arrival time + footpath length ≤ departure time)

Preprocessing

- For each line, find the first reachable trip (arrival time + footpath length \leq departure time)
- Huge number of transfers, not all of which are useful

Preprocessing

- For each line, find the first reachable trip (arrival time + footpath length \leq departure time)
- Huge number of transfers, not all of which are useful

Preprocessing

- For each line, find the first reachable trip (arrival time + footpath length \leq departure time)
- Huge number of transfers, not all of which are useful

Preprocessing

- For each line, find the first reachable trip (arrival time + footpath length \leq departure time)
- Huge number of transfers, not all of which are useful

Karlsruhe Institute of Technology

Preprocessing

Reduce number of transfers by eliminating redundant ones

Karlsruhe Institute of Technology

Preprocessing

- Reduce number of transfers by eliminating redundant ones
- Process trips backwards

Karlsruhe Institute of Technology

Preprocessing

- Reduce number of transfers by eliminating redundant ones
- Process trips backwards
- Keep track of which stops can be reached at what time

Karlsruhe Institute of Technology

Preprocessing

- Reduce number of transfers by eliminating redundant ones
- Process trips backwards
- Keep track of which stops can be reached at what time
- Evaluate transfers by checking if they improve arrival times

Karlsruhe Institute of Technology

Preprocessing

- Reduce number of transfers by eliminating redundant ones
- Process trips backwards
- Keep track of which stops can be reached at what time
- Evaluate transfers by checking if they improve arrival times
- Removes up to 90% of original transfers

Karlsruhe Institute of Technology

Query

Input: Source stop, target stop, departure time

Target

Karlsruhe Institute of Technology

Query

- Input: Source stop, target stop, departure time
- Identify trips reachable from the source

Target

		_	
dep.	line	trip	index
8:00	2	15	8
8:03	4	56	0
8:07	11	456	31
9:00	110	3256	6

Karlsruhe Institute of Technology

- Input: Source stop, target stop, departure time
- Identify trips reachable from the source
- Identify lines reaching the target

dep.	line	trip	index
8:00	2	15	8
8:03	4	56	0
8:07	11	456	31
9:00	110	3256	6

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

Query

Queue trips and mark as reached

Reached

3256

neacheu	E	Queu	
٠	range	trip	# tr.
15 8 16 8	8–12	15	0
17 8	0-14	56	0
	31–78	456	0
56 0 57 0	6–45	3256	0
456 31 457 31			

 Ω

dep.	line	trip	index
8:00	2	15	8
8:03	4	56	0
8:07	11	456	31
9:00	110	3256	6

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

- Queue trips and mark as reached
- Process queue

Queue		Reach	ned	
# tr.	trip	range	15	0
0	15	8–12	16	8 8
0	56	0–14	17	8 8
0	456	31–78		•
0	3256	6–45	56 57	0
			456 457	31 31
			3256	6

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

- Queue trips and mark as reached
- Process queue
- Examine transfers

Reached	е	Queue	
 15 8	range	trip	# tr.
15 8 16 8 17 8	8–12	15	0
17 8	0–14	56	0
· · ·	31–78	456	0
56 0 57 0	6–45	3256	0
456 31 457 31			
3256 6			

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

- Queue trips and mark as reached
- Process queue
- Examine transfers
 - Compare against label

	Queu	е		Reach	ned
# tr.	trip	range	•	15	0
0	15	8–12		16	8 8
0	56	0–14		17	8
0	456	31–78			_
0	3256	6–45		56	0
U	3230	0-45		57	0
				456	31
				457	31

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

Query

- Queue trips and mark as reached
- Process queue
- Examine transfers
 - Compare against label

	Queu	е	Reach	ned
# tr.	trip	range	15	
0	15	8–12	15 16	8 8
0	56	0–14	17	8
0	456	31–78		•
0	3256	6–45	56 57	0
			456	31
			457	31
			457	JI
			3256	6

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

11

- Queue trips and mark as reached
- Process queue
- Examine transfers
 - Compare against label
 - Queue newly reached trips

eached	Rea	Queue			
15 0	1.5	range	trip	# tr.	
15 8 16 8		8–12	15	0	
16 8 17 8		0–14	56	0	
 50 (31–78	456	0	
56 (57 (6–45	3256	0	
		17–31	457	1	
56 31	456				
57 17	457				
58 17	458				

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

- Queue trips and mark as reached
- Process queue
- Examine transfers
 - Compare against label
 - Queue newly reached trips
 - Output a journey if target is reached

Queue				Reach	ned
# tr.	trip	range		15	
0	15	8–12		15 16	8 8
0	56	0–14		17	8
0	456	31–78		· · ·	^
0	3256	6–45		56 57	0
1	457	17–31			U
1	218	14–23		218	14
				456 457 458	31 17 17

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

- Queue trips and mark as reached
- Process queue
- Examine transfers
 - Compare against label
 - Queue newly reached trips
 - Output a journey if target is reached

ched	Reac	е	Queue			
. 0	15	range	trip	# tr.		
8	16	8–12	15	0		
	17	0–14	56	0		
	 50	31–78	456	0		
0	56 57	6-45	3256	0		
	57	17–31	457	1		
14	218	14–23	218	1		
31	456					

_			
	line	index	footpath
•	3	8	
	8	17	4 min
	27	3	4 min

 $arrival_time(218, 17) = 9:24 \Longrightarrow Arrival at 9:28 after 1 transfer$

Query

Panchad

- Queue trips and mark as reached
- Process queue
- **Examine transfers**
 - Compare against label
 - Queue newly reached trips
 - Output a journey if target is reached
- Continue until queue is empty

iea	Reaci	e	Queue			
8	15	range	trip	# tr.		
8	16	8–12	15	0		
8	17	0–14	56	0		
^		31–78	456	0		
0	56 57	6–45	3256	0		
·		17–31	457	1		
14	218	14–23	218	1		
31 17 17	456 457 458					

 Ω

line	index	footpath
3	8	_
8	17	4 min
27	3	4 min

Arrival at 9:28 after 1 transfer

- Queue trips and mark as reached
- Process queue
- Examine transfers
 - Compare against label
 - Queue newly reached trips
 - Output a journey if target is reached
- Continue until queue is empty
- Skip trips that cannot improve the currently best arrival time

departure_time(1302, 8) = 9:32 > 9:28

Queue			Reacl	ned
# tr.	trip	range	15	. 0
1	1302	8–45	16	8
1	2871	3–11	17	8 8
2	512	0–19		•
2	1523	19–88	56 57	0
2	43	13–15		
2	44	4–53	218	14
			456 457 458	31 17 17
			3256	6

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

Arrival at 9:28 after 1 transfer

- Process queue
- Examine transfers
 - Compare against label
 - Queue newly reached trips
 - Output a journey if target is reached
- Continue until queue is empty
- Skip trips that cannot improve the currently best arrival time

Queue				Reach	ned
# tr.	trip	range	_	15	0
1	2871	3–11		16	8 8 8
2	512	0–19		17	8
2	1523	19–88			•
2	43	13–15		56 57	0
2	44	4-53			U
				218	14
				456 457 458	31 17 17

line	index	footpath	
3	8		
8	17	4 min	
27	3	4 min	

Arrival at 9:28 after 1 transfer

	London	Germany
Stops	20 764	249 724
Trips	129 263	2 389 253
Connections	4 991 130	46 116 453
Footpaths	45 624	100 470
Lines (Routes)	2 161	232 644
Transfers (full)	121 339 213	1 826 424 894
Transfers (reduced)	19 502 791	186 296 771
Space consumption	115.5 MiB	1 140.9 MiB

	London	Germany
Stops	20 764	249 724
Trips	129 263	2 389 253
Connections	4 991 130	46 116 453
Footpaths	45 624	100 470
Lines (Routes)	2 1 6 1	232 644
Transfers (full)	121 339 213	1826424894
Transfers (reduced)	19 502 791	186 296 771
Space consumption	115.5 MiB	1 140.9 MiB

Transfer	Preprocessing Times*			
Computation	3 s	37 s		
Reduction	27 s	183 s		
Total	30 s	220 s		

^{*} Dual 8-core Intel Xeon E5-2650 v2, 2.6 GHz, 128 GB DDR3-1600, 20MB L3, 16 threads

Comparison

algorithm	instance	stops (⋅10 ³)	conn. (·10 ⁶)	tansfers Droi	prep. (h)	query (ms)
Trip-Based	London	20.8	5.0	• 0	< 0.1	1.2
Transfer Patterns	Madrid	4.6	4.8	• 0	185.0	3.1
Public Transit Labeling	London	20.8	5.1	• 0	49.3	0.03
RAPTOR	London	20.8	5.1	• 0		5.4
Connection Scan	London	20.8	4.9	0 0		1.8
Contraction Hierarchies	Europe (LD)	30.5	1.7	0 0	< 0.1	0.3
Trip-Based	Germany	249.7	46.1	• 0	< 0.1	40.8
Transfer Patterns	Germany	248.4	13.9	• 0	372.0	0.3
Connection Scan	Germany	252.4	46.2	0 0		298.6
Accelerated Conn. Scan	Germany	252.4	46.2	0 0	0.2	8.7
Trip-Based	London	20.8	5.0	• •	< 0.1	70.0
Transfer Patterns	Madrid	4.6	4.8	• •	185.0	3.1
rRAPTOR	London	20.8	5.1	• •		922.0
Connection Scan	London	20.8	4.9	• •	_	466.0
Trip-Based	Germany	249.7	46.1	• •	< 0.1	301.7
Transfer Patterns	Germany	248.4	13.9	• •	372.0	5.0
Accelerated Conn. Scan	Germany	252.4	46.2	0 •	0.2	171.0

Dual 8-core Intel Xeon E5-2650 v2, 2.6 GHz, 128 GB DDR3-1600, 20MB L3

Running times by distance

Earliest Arrival Query

Profile Query

Conclusion

- Novel algorithm for routing in public transit networks
- Focused on trips and transfers between them
- Fine-grained modeling
- Competitive performance

Conclusion

- Novel algorithm for routing in public transit networks
- Focused on trips and transfers between them
- Fine-grained modeling
- Competitive performance
- Explore trip hierarchies (and other speedup techniques)
- Enable partial recomputing of transfers for dynamic scenarios
- Exploit periodicity (preprocessing and storage)
- Allow more criteria (financial cost, walking distance, ...)

Conclusion

- Novel algorithm for routing in public transit networks
- Focused on trips and transfers between them
- Fine-grained modeling
- Competitive performance
- Explore trip hierarchies (and other speedup techniques)
- Enable partial recomputing of transfers for dynamic scenarios
- Exploit periodicity (preprocessing and storage)
- Allow more criteria (financial cost, walking distance, ...)
- Technical Report at http://arxiv.org/abs/1504.07149