Intro to Data Science - Final Group Project

Team Name: Lisbon

Team Members: Jessica Roman, Austin Zhang, Hana Ghattas, Jonah Crystal, Quinn Kerrigan, Tina Xu

Dec 4, 2023

Understanding Debt

Financial Institutions lend money in different forms to people, governments, organizations, other banks, etc. In exchange for the loan, they receive interest payments and are eventually paid back for the full amount of the loan, called the principal amount

Borrowers

Financial Institutions

Problem Identification

Data Analysis

Application

Ethics

Understanding Fixed Income

Fixed income is a type of investment that allows investors to lend money to institutions, in exchange for a promise to pay them back. In addition, the investors receive a flow of fixed payments

Financial Institutions

Investors / Lenders

Problem Identification

Data Analysis

Application

Ethics

Understanding Fixed Income

Putting these together, banks often package a variety of the loans that they issue into securities that are bought by investors. In this case, the fixed payments are made up of the interest payments on the debt

Borrowers

Financial Institutions

Investors / Lenders

Problem Identification

Data Analysis

Application

Ethics

Credit Risk

The debt is not always paid back. Sometimes individuals or organizations go bankrupt are not able to repay their debt. This is called default

Problem Identification

Data Analysis

Application

Ethics

Who Cares

Investors must accurately predict the probability of default in order to accurately price the loan

How to Assess Risk

Various factors are weighed to determine the likelihood of default, and in turn, to assess creditworthiness and set interest rates

Credit History and Payment Behavior

Employment Stability and Income Level

Debt-to-Income Ratio

Collateral

External Economic Conditions

Problem Identification

Data Analysis

Application

Ethics

The goal of the model is to predict if a person will default on a loan, so that lenders can find debt that is trading at a discount

The goal of the model is to predict if a person will default on a loan, so that lenders can find debt that is trading at a discount

People with homes generally have better credit & sampling bias in the data

ௐIvŧy|

Ethics

We considered four models

Linear Regression

KNN

Random Forest

Logistic Regression

Support Vector Machines

Assessment

Each model's result plotted in the ROC graph and evaluated with Area Under Curve

Assessment

Which one fits our criteria better?

Random Forest	Reference			
Prediction	0		1	
0	4471		347	
1	26		884	
Accuracy: 0.9349				

KNN	Reference			
Prediction	0		1	
0	4405		468	
1	57	798		
Accuracy: 0.9083				

FNR: 0.28

Key Criteria:

High Model Accuracy

Low False Negative Rate

> Appendix

Assessment

Random Forest is the final winner that beats the two criteria

Random Forest	Reference		
Prediction	0	1	
0	4471	347	
1	26	884	
Accuracy: 0.9349			

KNN	Reference		
Prediction	0	1	
0	4405	468	
1	57	798	
Accuracy: 0.9083			

Key Criteria:

High Model Accuracy

Low False Negative Rate

Implementation

Investors could use this model to appropriately price debt / packages of debt

Problem Identification

Data Analysis

Application

Ethics

Ethical Implications

Both data privacy and output fairness are crucial part of ethical implication of the model

Ethical Implications

Both Data Privacy and Output Fairness are crucial part of Ethical Implication of the model

Ethics Appendix

The goal of the model is to predict if a person will **default on a loan,** so that **lenders** can find debt that is trading at a discount

	person_age <int></int>		person_home_ownership <chr></chr>
1	22	59000	RENT
2	21	9600	OWN
3	25	9600	MORTGAGE
4	23	65500	RENT
5	24	54400	RENT
6	21	9900	OWN

person_emp_length <dbl></dbl>	loan_intent <chr></chr>	loan_grade <chr></chr>	loan_amnt <int></int>	loan_int_rate <dbl< th=""></dbl<>
123	PERSONAL	D	35000	16.02
5	EDUCATION	В	1000	11.14
1	MEDICAL	С	5500	12.87
4	MEDICAL	С	35000	15.23
8	MEDICAL	С	35000	14.27
2	VENTURE	Α	2500	7.14

	cb_person_default_on_file <fctr></fctr>	cb_person_cred_hist_length <int></int>
0.59	1	3
0.10	0	2
0.57	0	3
0.53	0	2
0.55	1	4
0.25	0	2

loan_status <fctr></fctr>
1
0
1
1
1
1

The structure of the data: Cols:

person_age (NUMERIC)
person_income (NUMERIC)
person_home_ownership (FACTOR)
Person_emp_length (NUMERIC)
loan_intent (FACTOR)
loan_grade (FACTOR)
loan_amnt (NUMERIC)
loan_int_rate (NUMERIC)

loan_status (0/1) = y loan_percent_income (NUMERIC) cb_person_default_on_file (0/1) cb_person_cred_hist_length (NUMERIC)

Problem Identification

Data Analysis

Application

Ethics

Additional Relationships

Some other histograms regarding frequencies of different columns. (<u>https://colab.research.google.com/drive/1DAUNbjThCl982-yP_dZO7vRI2YV2XQzZ?usp=sharing</u>)

Problem Identification Data Analysis Application Ethics Appendix