

Departamento de Matemática

Multivariate Analysis

Master in Mathematics and Applications

 1^{st} Exam 1^{st} Semester -2012/2013 Duration: 3 hours 07/01/2013 - 3 pm

Please justify conveniently your answers

Group I 4.5 points

- 1. The random vector $(X, Y)^t$ has bivariate normal distribution with Var(X) = Var(Y). Show that (1.5) X + Y and X Y are independent random variables.
- 2. Let X_1 and X_2 be two independent random vectors, where $X_i \sim \mathcal{N}_p(\mu_i, \Sigma)$, i = 1, 2. Consider two independent random samples, with sizes n_1 e n_2 from each population.
 - (a) Prove that $\frac{n_1 n_2}{n_1 + n_2} (\bar{\boldsymbol{X}}_1 \bar{\boldsymbol{X}}_2 (\boldsymbol{\mu}_1 \boldsymbol{\mu}_2))^t \boldsymbol{\Sigma}^{-1} (\bar{\boldsymbol{X}}_1 \bar{\boldsymbol{X}}_2 (\boldsymbol{\mu}_1 \boldsymbol{\mu}_2)) \sim \chi^2_{(p)}.$
 - (b) A phycologist wants to compare two groups of people, characterized by three random variables $\mathbf{X} = (X_1, X_2, X_3)^t$, representing intelligence tests. Group 1 is formed by people $(n_1 = 20)$ who do not present a senile factor, and group 2 by those $(n_2 = 30)$ presenting a senile factor, having obtained $\bar{\mathbf{x}}_1 = (23.5, 30.3, 40.4)^t$, $\bar{\mathbf{x}}_2 = (25.5, 31.7, 42.3)^t$.

If we admit that the random vectors X_1 and X_2 in each group have multivariate normal distributions with the same covariance matrix:

$$\Sigma = \begin{pmatrix} 10 & 6 & 0 \\ & 12 & 6 \\ & & 10 \end{pmatrix}, \quad \Sigma^{-1} = \begin{pmatrix} 0.1750 & -0.1250 & 0.0750 \\ & 0.2083 & -0.1250 \\ & & 0.1750 \end{pmatrix},$$

test if the on average the two group have equal results on the 3 performed intelligence tests. State the hypotheses, test statistic, decision rule, and conclusion. Decide based on the p-value.

Group II 5.5 points

Let U_1 and U_2 be two independent random variables with standard normal distribution. Suppose that $\mathbf{X} = (U_1, U_2, U_1 + U_2, U_1 - U_2)^t$.

- 1. Compute the correlation matrix of X, R. (1.5)
- 2. How many standardized principal components are of interest? Note that the non trivial eigenvalues (1.0) of \mathbf{R} are $\lambda_1 = \lambda_2 = 2$.
- 3. Show that the first two eigenvectors of \mathbf{R} are $\mathbf{\gamma}_1 = (\frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2}, 0)^t$ and $\mathbf{\gamma}_2 = (\frac{1}{2}, -\frac{1}{2}, 0, \frac{\sqrt{2}}{2})^t$, respectively.
- 4. Write and interpret the first two standardized principal components. (1.5)

Group III 6.0 points

In a consumer-preference study, a random sample of customers were asked to rate several attributes of a new product. The responses, on a 7-point semantic differential scale, were tabulated and the attribute correlation matrix constructed. The five variables under study are: X_1 - Taste, X_2 - Good buy for money, X_3 - Flavor, X_4 - Suitable for snack, and X_5 - Provides lots of energy. The original factor loadings (obtained by the principal components method and standardized variables) and the Varimax rotated factor loadings are shown in the following table:

	Estimated factor loadings		Rotated estimated factor loadings	
	f_1	f_2	f_1^*	f_2^*
Taste	0.56	0.82	0.02	0.99
Good buy for money	0.78	-0.52	0.94	-0.01
Flavor	0.65	0.75	0.13	0.98
Suitable for snack	0.94	-0.10	0.84	0.43
Provides lots of energy	0.80	-0.54	0.97	-0.02
Cumulative proportion				
of total (standardize)	0.574	0.935	0.507	0.935
sample variance explained				

- 1. Compute the communalities and the specific variances for the original solution. Comment the (1.0) results.
- 2. Estimate the sample correlation matrix? (1.0)
- 3. What is the solution leading to the easiest interpretation? Based on that choice, give an interpretation of each factor.
- 4. Obtain the two first sample principal components and interpret them. (2.0)
- 5. Compare the results obtained by factor analysis and principal component analysis. (1.0)

Group IV 4.0 points

An observation x comes from one of the two populations with prior probabilities P(Y=0)=0.6, P(Y=1)=0.4, and $X|Y=j\sim Binomial(10,q_j)$, where $j=0,1,\ q_0=0.3$, and $q_1=0.5$.

- 1. Obtain the classification rule that minimizes the total probability of misclassification. (2.0)
- 2. Calculate the total probability of misclassification, associated with the previous classification rule. (1.5)
- 3. Classify an item characterized by $x_0 = 5$. (0.5)