Data Structure and Algorithms-II

Analyzing Algorithms

The Course

- Purpose: a rigorous introduction to the design and analysis of algorithms
 - Not a programming course
 - Not a math course, either

- Textbook: *Introduction to Algorithms* (3rd edition) Cormen, Leiserson, Rivest, and Stein
 - An excellent reference you should own

What is a Data Structure?

- Data is a collection of facts, such as values, numbers, words, measurements, or observations.
- Structure means a set of rules that holds the data together.
- A data structure is a particular way of storing and organizing data in a computer so that it can be used **efficiently**.
 - Different kinds of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks.
 - Data Structures provide a means to manage huge amount of data efficiently.
 - Usually, efficient data structures are a key to designing efficient algorithms.
 - Data structures can be nested.

Types of Data Structures

- Data structures are classified as either
 - Linear (*e.g*, arrays, linked lists), or
 - Nonlinear (*e.g*, trees, graphs, etc.)
- A data structure is said to be linear if it satisfies the following four conditions
 - There is a unique element called the first
 - There is a unique element called the last
 - Every element, except the last, has a unique successor
 - Every element, except the first, has a unique predecessor
- There are two ways of representing a linear data structure in memory
 - By means of sequential memory locations (arrays)
 - By means of pointers or links (linked lists)

What is an Algorithm?

- An algorithm is a sequence of computational steps that solves a well-specified computational problem.
 - An algorithm is said to be correct if, for every input instance, it halts with the correct output
 - An incorrect algorithm might not halt at all on some input instances, or it might halt with other than the desired output.

What is a Program?

- A program is the expression of an algorithm in a programming language
- A set of instructions which the computer will follow to solve a problem

Define a Problem, and Solve It

• Problem:

Description of Input-Output relationship

• Algorithm:

■ A sequence of computational steps that transform the input into the output.

• Data Structure:

An organized method of storing and retrieving data.

Our Task:

■ Given a problem, design a *correct* and *good* algorithm that solves it.

Define a Problem, and Solve It

Problem: Input is a sequence of integers stored in an array. Output the minimum.

What do we Analyze?

- Correctness
 - Does the input/output relation match algorithm requirement?
- Amount of work done (complexity)
 - Basic operations to do task
- Amount of space used
 - Memory used
- Simplicity, clarity
 - Verification and implementation.
- Optimality
 - Is it impossible to do better?

Analyzing Algorithms

- Asymptotic Notation
- Analyzing Runtime

Asymptotic Analysis

- The term asymptotic means approaching a value (e.g. infinity).
 - $T_1(n) = 10^{10}n^2$
 - $T_2(n) = 10^{-8}n^3$
 - If the max value of n is 10^8 then T_2 is cheaper than T_1
 - However if $n \to \infty$, T_1 is cheaper [Asymptotic]
 - Therefore, asymptotically, $T_1(n) \le T_2(n)$

Asymptotic Analysis

- Worst case
 - Provides an upper bound on running time
 - An absolute guarantee of required resources
- Average case
 - Provides the expected running time
 - Very useful, but treat with care: what is "average"?
 - Random (equally likely) inputs
 - Real-life inputs
- Best case

Upper Bound Notation

- We say InsertionSort's run time is $O(n^2)$
 - Properly we should say run time is in $O(n^2)$
 - Read O as "Big-O" (you'll also hear it as "order")
- In general a function
 - f(n) is O(g(n)) if there exist positive constants c and n_0 such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$
- Formally
 - $O(g(n)) = \{ f(n) : \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c \cdot g(n) \ \forall \ n \ge n_0 \}$

Upper Bound Notation

We say g(n) is an asymptotic upper bound for f(n)

Insertion Sort is $O(n^2)$

Proof

- The run-time is $an^2 + bn + c$
 - o If any of a, b, and c are less than 0, replace the constant with its absolute value
- $an^2 + bn + c$ $\leq (a + b + c)n^2 + (a + b + c)n + (a + b + c)$ $\leq 3(a + b + c)n^2$ for $n \geq 1$ Let c' = 3(a + b + c) and let $n_0 = 1$. Then $an^2 + bn + c$ $\leq c' n^2$ for $n \geq 1$ Thus $an^2 + bn + c$ $= O(n^2)$.

Question

- Is InsertionSort $O(n^3)$?
- Is InsertionSort O(n)?

Lower Bound Notation

- We say InsertionSort's run time is $\Omega(n)$
- In general a function
 - f(n) is $\Omega(g(n))$ if \exists positive constants c and n_0 such that $0 \le c \cdot g(n) \le f(n) \ \forall \ n \ge n_0$
- Proof:
 - Suppose run time is an + b
 - Assume a and b are positive
 - $an \le an + b$

Lower Bound Notation

We say g(n) is an asymptotic lower bound for f(n)

Asymptotic Tight Bound

• A function f(n) is $\Theta(g(n))$ if \exists positive constants $c_1, c_2,$ and n_0 such that

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n \ge n_0$$

- Theorem
 - f(n) is $\Theta(g(n))$ iff f(n) is both O(g(n)) and $\Omega(g(n))$
 - Proof:

Asymptotic Tight Bound

We say g(n) is an asymptotic tight bound for f(n)

For large input sizes, constant terms are insignificant

Program A with running time $T_A(n) = 100n$

Program *B* with running time $T_B(n) = 2n^2$

Function	Descriptor	Big-Oh
c	Constant	O(1)
logn	Logarithmic	O(log n)
n	Linear	O(n)
n log n	$n \log n$	O(n log n)
n^2	Quadratic	$O(n^2)$
n^3	Cubic	$O(n^3)$
n^k	Polynomial	$O(n^k)$
2^n	Exponential	O(2 ⁿ)
n!	Factorial	O(n!)

Other Asymptotic Notations

• A function f(n) is o(g(n)) if \exists positive constants c and n_0 such that

$$f(n) < c \ g(n) \ \forall \ n \ge n_0$$

• A function f(n) is $\omega(g(n))$ if \exists positive constants c and n_0 such that

$$c g(n) < f(n) \forall n \ge n_0$$

- Intuitively,
 - *o*() is like <

 \bullet ω () is like >

 \blacksquare Θ () is like =

■ *O*() is like ≤

 Ω () is like \geq

Other Asymptotic Notations

- Assume: $T(n) = 5n^3 + 4n + 1$, $g(n) = n^3$
 - T(n) is $O(n^3)$
 - T(n) is $\Omega(n^3)$
 - T(n) is $\Theta(n^3)$
 - T(n) is $O(n^7)$
 - T(n) is $\Theta(n^2)$

Exact cost analysis

best and worst case analysis

- Consider Line 3. How many times the line 3 executes?
 - Best case: 0
 - Worst case: *n*
 - Average case:

```
for i in 1 to n:
    if array[i]%3 == 0:
        print(array[i])
```

$$\frac{1}{n}\sum_{1}^{n}i = \frac{1}{n}\frac{n(n-1)}{2} = \frac{n-1}{2}$$

The running time of this algorithm therefore belongs to both $\Omega(n)$ and O(n), which means it is in O(n)

```
1     for i in 1 to n:
2         if array[i]%3 == 0:
3         print(array[i])
```

- Consider Line 3. How many times the line 3 executes?
 - Best case: 0
 - Worst case: *n*
 - Average case:

$$\frac{1}{n}\sum_{1}^{n}i = \frac{1}{n}\frac{n(n-1)}{2} = \frac{n-1}{2}$$

What is the time complexity of the code? Derive the best and worst case run-time and express in *O* notation.

Line	Worst	Best
1		
2		
3		
4		
5		
Asymp totic		

Line	Worst	Best
1	$c_1.\left(\frac{n}{5}+1\right)$	c ₁ . 1
2	$c_2.\frac{n}{5}$	c ₂ . 1
3	c ₃ .0	c ₃ .1
4	$c_4.\frac{n}{5}*(\log_2 n+1)$	c ₄ . 0
5	$c_5.\frac{n}{5}*\log_2 n$	c ₅ . 0
Asymp totic	$O(n \log_2 n)$	0(1)

Observe Line I

- value of $i: n, n-5, n-10, \dots$ until less than 0
- therefore, runs $\frac{n}{5} + 1$ times

Observe Line 4

- value of i: 1, 2, 4, 8, ..., n
- value of $i: 2^0, 2^1, 2^2, 2^3, ..., 2^x$
- $x = \log_2 n$
- Therefore, inner statements of loop in line 4 runs $\log_2 n + 1 + 1$ times

The running time of this algorithm therefore belongs to both $\Omega(1)$ and O(nlgn)

$$\log_4 n = \log_{2^2} n = \frac{1}{2} * \log_2 n$$

Derive the running-time equations and express in "O" notation

Line	Worst	Best
I		
2		
3		
4		
5		
Asym ptotic		

$$\log_4 n = \log_{2^2} n = \frac{1}{2} * \log_2 n$$

Line	Worst	Best
Ι	n/3+1	
2	n/3	
3	0	
4	$\frac{n}{3}.\left(\log_4 n + 1\right)$	
5	$\frac{n}{3}$. $\log_4 n$	
Asym ptotic	$O(n \log_2 n)$	0(1)

Observe Line 4

- value of $i: \frac{n}{4^0}, \frac{n}{4}, \frac{n}{4^2}, \frac{n}{4^3}, \dots, 1(\frac{n}{4^x})$
- $x = \log_4 n$
- Therefore, inner statements of loop in line 4 runs $log_4 n + 1 + 1$ times

The running time of this algorithm therefore belongs to both $\Omega(1)$ and O(nlgn)

Derive the running-time equations and express in "O" notation

Line	Worst	Best
I		
2		
3		
Asym ptotic		

Derive the running-time equations and express in "O" notation

Line	Worst	Best
I		
2		
3		
4		
5		
Asym ptotic		

Practice

Question Patterns

- Derive the best and worst-case running-time equations and express them in O notation.
- Derive the exact cost equation and express it in O notation
- Provide best and worst-case examples

- Which picture shows the asymptotic tight bound?
- Show that $f(n) = an^3 + bn^2 + cn + d$ is $O(n^3)$
- Show that $f(n) = an^2 + bn + c$ is not O(n)
- Show that $f(n) = an^2 + bn + c$ is $O(n^3)$
- Show that $f(n) = an^2 + bn + c$ is $\Theta(n^2)$

- What is the time complexity of the code?
- Derive the exact cost equation and express in O notation

```
int i, j, k = 0;
for (i=n/2; i<=n; i++) {
    for (j=2; j<=n; j=j*2) {
        k = k + n/2;
    }
}</pre>
```

- What is the time complexity of the code?
- Derive the exact cost equation and express in O notation

- What is the time complexity of the code?
- Derive the exact cost equation and express in O notation

```
for (i=n/2; i<=n; i++) {
             for (j=2; j<=n; j=j*2) {</pre>
                 k = k + n/2;
 4
 5
 6
       for (i \leftarrow n; i >= 0; i = i - 5) do {
             if (A[i] < 100) then
 8
                 break;
 9
             for (k \leftarrow 1; k \le n; k = k \times 2) do
10
                 print A[k];
11
12
       for (i \leftarrow n; i >= 0; i=i-3) do {
             if (A[i] < 100) then
13
14
                 break;
15
             for (k \leftarrow n; k>=1; k=k/4) do
16
                 print A[k];
17
```

Resources

- https://www.cs.auckland.ac.nz/courses/compsci220s1t/lectures/lecturen-otes/GG-lectures/BigOhexamples.pdf
- http://www.cs.utsa.edu/~bylander/cs3233/big-oh.pdf
- https://youtu.be/FEnwM-iDb2g
- https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array/11227902#11227902