Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination May-2023 EE3CO37 / EE3CO13 / EX3CO13

Electrical Machines -II

Programme: B.Tech. Branch/Specialisation: EE/EX

Maximum Marks: 60 **Duration: 3 Hrs.**

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q. ne

		s) should be written in full instance. Notations and symbols have the	ead of only a, b, c or d. Assume suitable da eir usual meaning.	ta i	
Q.1	i.	Which axis undergoes shifting as a result of armature reaction?			
		(a) GNA	(b) MNA		
		(c) Both (a) and (b)	(d) Remain fixed	_	
	ii.	which of the following part i not in AC machine?	s used in construction of DC machine but	1	
		(a) Armature Winding	(b) Field Winding		
		(c) Commutator	(d) Shaft		
	iii.	**	peed, if accidently the field circuit is open	1	
		circuited, it becomes-	4) 70% 6 4 1		
			(b) 70% of rated		
			(d) 10% of rated	1	
	iv.	The speed of DC motor below rated speed is obtained by-			
		(a) Field control	(b) Armature control		
		(c) Both (a) and (b)	(d) Leakage flux control		
	v.	A leading power factor load on an alternator implies that its volta			
		regulation shall be			
		(a) Positive (b) Zero	(c) Infinite (d) Negative		
	vi.	An under excited alternator a	lways supplies	1	
		(a) Unity power factor curren			
		(b) Leading power factor curr			
		(c) Lagging power factor curr			
		(d) None of these			
		(a) I tolle of these			

P.T.O.

[2]

	vii.	Damper windings are used in synchr	onous machine to	1
		(a) Reduce vibrations	(b) Increase voltage fluctuations	
		(c) Damped out oscillations	(d) Both (a) and (c)	
	viii.	What are the probable causes of hunt	ting?	1
		(a) Sudden change in load		
		(b) Constant supply		
		(c) Sudden change in field current		
		(d) Both (a) and (c)		
	ix.	Synchronous motors are		1
		(a) Not self-starting	(b) Self-starting	
		(c) Single excited	(d) None of these	
	х.	The V-curves of a synchronous motor	or show relationship between	1
		(a) Armature current and supply volt	age	
		(b) AC armature current and DC field	d current	
		(c) Excitation current and back EMF	1	
		(d) Back EMF and AC armature curr	rent	
Q.2	i.	Describe the working principle of Do	C generator.	2
	ii.	Differentiate the single and doub	ole layer winding with suitable	3
		diagrams.		
	iii.	Illustrate in detail any two methods	of commutation improvements in	5
		DC machines.		
OR	iv.	Illustrate in detail any two methods of their characteristics.	of excitation of DC generators and	5
Q.3	i.	Classify DC motor speed control met with suitable diagram and equations.		4
	ii.	A 230 Volts DC motor no load current 1200 RPM. If full load current is 40 (a) Speed on full load		6
		(b) Percentage speed regulation.		
OR	iii.	Assume flux remain constant. Resist Explain in detail the Swinburne's efficiency. Support your answer with	test for estimation of DC motor	6
Q.4	i.	Discuss the excitation system in brushless excitation system in detail.		4

[3]	
-----	--

	ii.	Illustrate the synchronous impedance method for finding the voltage regulation of alternator with suitable diagram and equations.	6
OR	iii.	A three phase 4 pole, 24 slots alternator has its armature coils short circuited by one slot. Find distribution factor and pitch factor.	6
Q.5	i.	Classify the effect of varying excitation on synchronous generator with suitable phasor diagrams.	3
	ii.	Explain in detail slip test for determination of X_d and X_q for salient pole synchronous machine. Illustrate your answer with suitable diagrams and equations.	7
OR	iii.	Explain in detail the parallel operation and load sharing of two alternators with suitable diagram and equations.	7
Q.6		Attempt any two:	
	i.	Elaborate any two starting methods of synchronous motor.	5
	ii.	Draw and explain V curves and inverted V curves.	5
	iii.	Illustrate synchronous motor as power factor correcting device.	5

[4]

[1]

Marking Scheme

EE3CO37-EE3CO13-EX3CO13 (T) Electrical Machine-II

Q.1	i)	(b) MNA	1
	ii)	(c) Commutator	1
	iii)	(c) Dangerously high	1
	iv)	(b) Armature control	1
	v)	(d) Negative	1
	vi)	(b) Leading power factor current	1
	vii)	(d) Both (a) and (c)	1
	viii)	(d) Both (a) and (c)	1
	ix)	(a) not self-starting	1
	x)	(b) AC armature current and DC field current	1
Q.2	i.	working principle	2
C	ii.	single- and double-layer winding	1.5X2
	iii.	two methods of commutation improvements	2.5X2
OR	iv.	two methods of excitation	2.5X2
Q.3	i.	DC motor speed control methods. Explain on of them	2,2
4.0	ii.	find (a) speed on full load, (b) percentage speed regulation	3,3
OR	iii.	Explanation, suitable diagram and equations.	1.5,3,1.5
Q.4	i.	Excitation system. Explain brushless excitation system	2,2
	ii.	Explanation, suitable diagram and equations.	3,1.5X2
OR	iii.	Distribution factor and pitch factor.	3,3
Q.5	i.	effect of varying excitation	3
	ii.	Explanation, suitable diagram and equations.	3,2X2
OR	iii.	Explanation, suitable diagram and equations.	3,2X2
Q.6			
	i.	Elaborate any two starting methods of synchronous motor.	2X2.5
	ii.	Draw and explain V curves and inverted V curves.	2X2.5
	iii.	Illustrate synchronous motor as power factor correcting device.	5
