Bulletin of the Agricultural Chemical Society of Japan.

ABSTRACTS

The following samples were anal morafor their protein digestibibity, ether

TRANSACTIONS published in JAPANESE

(Pages refer to the Japanese originals of this volume unless otherwise noticed)

Biochemical Studies on "Sotetsu" (Cycar revoluta Thunb.). Part IX.

On the chemical constituent of the outer spermoderm of "Sotetsu"-seed. (pp. 505~506)

By Kotaro NISHIDA.

(Kagoshima Agricultural College, Received Apr. 7, 1938.)

An Improved Method to Determine the Digestibility of Protein in Fish Meal.

(pp. 507~511)

By Kokichi Oshima and Shinichi Itaya.

(From the Chemical Laboratory of the Hakodate College of Fisheries, Japan,
Received Apr. 10, 1938.)

The authors published in 1934 a new method to determine the digestibility of protein in fish meal, which is now improved as follows:—

In an Erlenmeyer's flask of $300 \, \text{cc}$ capacity mix 2 g fish meal, from which the oil has been extracted and which has been passed through a $0.5 \, \text{mm}$ sieve, $100 \, \text{cc}$ of $0.2 \, N$ HCl and $100 \, \text{cc}$ of 1.0% pepsin made by Parke, Davis and Co. in U. S. A., and close it with a cork.

The flask is kept in an incubator of 37~38°C for 44 hours with occational (five times are enough) shakings.

After the digestion, the content is filtered through a filter paper, washed with hot water and the residue is analyzed for its total nitrogen by Kjeldahl's method.

The nitrogen of pure protein in the original fish meal (oil extracted) is also determined by Barnstein's method.

The digestibility of the pure protein $=\frac{\text{Pure protein N-Residue N}}{\text{Pure protein N}} \times 100$.

May 1938

The Relation of the Qualities and the Manufacturing Method of Fish Meal and Scrap.

(pp. $512 \sim 517$)

By Kokichi Oshima and Shinichi Itaya.

(From the Chemical Laboratory of the Hakodate College of Fisheries, Japan, Received Apr. 10, 1938.)

The following samples were analyzed for their protein digestibiblity, ether extract, benzol extract, ammonia, total nitrogen, and hydrogen ion concentration of the water extract.

Method of	Raw m	naterial	Localities		
manufacture	Sardine	Other fishes	Foreign '	Domestic	
Sun dried (cooked)	Ct 7	Studies on	tantana Waato	7	
Steam dried	8		5	8	
Flame dried	4	dand a niu	6		
Vacuum dried	mabomzeck n	int of the oute	mitanos insim	nia ent nc	
Roasted	3 (808	(pp. 505~	_	3	

- 1. The steam dried meals have the best digestibility of the protein; the sun dried and vacuum dried meals the second, while the flame dried and the roasted meals have the least.
- 2. The ammonia content in the sundried meals is generally much higher than that in those made by machine.

Among the sun dried scraps the ammonia content conforms strictly in proportion to the grade of scraps, as classified by the official inspector.

- 3. The nitrogen content depends not on the method of manufacture, but on the kind of fishes used.
- 4. The hydrogen ion concentration of the water extract of fish meals shows no relation to the ammonium content, but has certain bearings to the kind of fishes used.
- 5. In regard to the centents of ammonia, total nitrogen, and the digestibility of protein in the sardine meals, made by machine, these produced in foreign countries are slightly better than those in the domestic products.

On the Oxidation and its Prevention of Vitamin A in Oils.

(pp. 518~524) By Y. Masuda.

(Agr. Chemical Laboratory, Hokkaido Imp. Univ., Received Mar. 31, 1938.)

Studies on the Action of Arginase on Canavanin and Arginine I.

The Identification of Canavanase and Arginase.

(pp. 525~531)

By Matsunosuke KITAGAWA and Yukio EGUCHI.
(Biochemical Laboratory, Department of Agriculture, Kyushu Imperial University, Fukuoka,
Received Apr. 8, 1938.)

Canavanin is hydrolysed into urea and canalin by a liver ferment, which was suggested to be a new ferment in the previous paper for the reason of the strict specificity of arginase and the characteristic structure of canavanin.

In this study, canavanase was known to be identical with arginase, considering the constancy of the ratio of activity of the two ferments in every case.

Ueber die Fabrikation des Alkohols aus rohen Bataten.

Fortgesetzte Mitteilung

 $(ss. 532 \sim 541)$

Von M. NAKANO, K. KOBAYASHI, und TAKESITA.

(The Department of Industry, Government Reserch Institute, Taiwan, Japan,
Received Apr. 11, 1938.)

Feeding Experiments with Decomposition Products of Proteins. (VIII).

Can Norleucine replace Lesyne in the Diet?

(pp. 542~544)

By Siro MAEDA.

(The Institute of Physical and Chemical Reserch,
Received May, 28, 1937.)

On the Alcohol-Manufacture from Jerusalem Artichoke (Part IV).

Alcoholic Fermentation of Jerusalem Artichoke.

(pp. 545~564)

By Toshinobu ASAI.

(Agricultural Chemical Laboratory, Morioka Agricultural College, Japan, Received March 9, 1938.)

Researches on "Tundrite". Part I.

Warping of artificial lumbers.

(pp. $565 \sim 572$)

By Saisuke Huzii.

(Kyoto Imperial University, Received Mar. 17, 1938.)

"Tundrite" is the commercial name of the artificial lumber (tex) made from the Tundra peat of Karahuto. The warping of several kinds of artificial lumbers and the methods to avoid such defects were studied and discussed.

Ueber die Gärungsmikroorganismen in Awamori-Bereitung (III).

Am wohlgeschmack teilnehmende Mikroorganismen und gemischte Vergärung.

(ss. 573~589)

Von R. NAKAZAWA und M. SIMO.

(The Department of Industry, Government Reserch Institute, Taiwan, Japan, Received Apr. 11, 1938.)

Oryzanin, "Antineuritic Vitamin."

Heber die Fabrikation des Alkohols aus robod Bal

VII. On the Activity of the Crystalline Vitamin B₁ and the International Standard.

(pp. 590~598)

By Sator OHDAKE and Teikichi YAMAGISHI.

(Agricultural Chemical Laboratory, Faculty of Agriculture, Imperial University of Tokyo. Recieved March 27, 1938.)

At the Second International Conference on Vitamin Standardisation, held in London in 1934, it has been proposed to compare the potency of the crystalline vitamin B₁ preparation with the Standard Adsorption Product with the aim of ultimately adopting the pure crystalline vitamin B₁ as the International Standard. A number of results concerning it have already been reported:—

Table 1. Activity of the crystalline vitamin B₁.

Authors	B ₁ crystals, equivalent to the International standard unit.	Methods.	
Ohdake & Yamagishi(2)	0.0015 mg	Rat growth & pigeon day-dose	
Waterman & Ammerman(3)	0.005 mg	Rat growth test	
Kinnersley & Peters(4)	0.002 mg	Pigeon day-dose & catatorulin test	
Jansen ⁽⁵⁾	0.003 mg	Rat curative test	
Leong & Harris(6)	0.0029 mg (Natural) 0.0028 mg (Synthetic)	Bradycardia	

- (1) League of Nations, Health Organisation (1934). Report of the Permanent Commission of Biological Standardisation (Geneva).
- (2) Ohdake & Yamagishi: -, Bull. Agr. Chem. Soc. Japan. 11, 5 (1935). Ibid. 11, 111 (1935).
- (3) Watermann & Ammerman: J. Nutrition. 10, 35 (1935).
- (4) Kinnersley & Peters: Biochem, J. 30, 985 (1936).
- (5) Jansen: Z. Vitamin Forsch. 5, 254 (1936).
- (6) Leong & Harris: Biochem, J. 29, 672 (1937).

No. 5.]

During the past few years, however, the chemical study on vitamin B_1 made a rapid progress and at last the synthetical process for the production of the pure vitamin B_1 was discovered. The National Institute of Medical Research, London, acting as the central laboratory of the Conference, obtained a sufficient quantity of the pure synthetic B_1 preparation from four different laboratories—I. G. Farbenindustrie Aktiengesellschaft., Merck & Co. Inc., E. Merck, and Hoffmann-la Roche & Co. — and proposed to compare its biological activity with the existing standard adsorption product for the purpose of adopting the synthetic crystalline product as the international standard.

In the present communication, four kinds of materials—(1) the International Standard Adsorption Product, (2) the synthetic vitamin B₁ crystals, the proposed new standard (3) Oryzanin crystals, the natural vitamin B₁ crystals isolated from rice polishings in this laboratory and (4) "Injectio Oryzanin Fortior, Decemplex" of Sankyo & Co., the commercial B₁ preparation containing 0.5 mg of the crystalline B₁ hydrochloride in 1 c.c.—were studied as to their B₁ activities by the three known methods—(A) rat growth (B) pigeons day dose and (C) pigeons curative tests, — and the results were compared with the international standard.

EXPERIMENTAL:

(A) Rat growth test.

When young albino rats of about $40\,\mathrm{g}$ body weight were fed on the standard artificial diet, free from B_1 , consisting of $60\,\%$ of purified starch, $20\,\%$ of purified casein, $15\,\%$ arachis oil and $5\,\%$ of McCollums salt mixture No 185, supplemented daily with three drops of cod liver oil and $0.4\,\mathrm{g}$ of autoclaved yeast, the body weight declined after a week (preliminary feeding) and the animals developed severe symptoms of B_1 deficiency usually in 4-5 weeks. (Control rats. Chart. 1)

- (1) The Standard Adsorption Product:— Young rats, showing declining growth on the above artificial diet for a week, when supplemented daily with 5 mg of the adsorption product, they recovered and remained healthy during 5 weeks though the supplement was still insufficient for maintaining the normal growth. By supplementing daily with 10 mg, rats maintained the normal growth, gaining 8.8 g per week in average for 5 weeks. When supplemented daily with 15 mg, the growth rate was still better. (Table 2. Chart 1.) The standard growth rate in the present experiment was observed to be 8-9 g per week in average. The comparatively poor rate is due to the temperature of the animal room which could not be maintained above 17~24°C through the extremely cold winter, when the experiment was conducted.
- (2) The synthetic B₁ crystals:— Rats fed on the same artificial diet, supplemented daily with 0.001 mg of the synthetic B₁ crystals, were perfectly healthy during 5 weeks and as to the effect on the growth rate, this amount was comparable with 5 mg of the adsorption product, and also with 0.001 mg of oryzanin crystals. With a daily dose of 0.002 mg, young rats maintained the standard

growth, gaining about 8.3 g per week in average for 5 weeks. (Table 2. Chart. 2)

- (3) Oryzanin crystals:— When supplemented daily with 0.001 mg of the natural B_1 crystals isolated from rice polishings, rats showed nearly the same growth rate as with 5 mg of the adsorption product. By giving daily 0.002 mg, they maintained the standard growth, gaining about 8.8 g per week in average for 5 weeks and result was comparable with that produced by 10 mg of the adsorption product or by 0.002 mg of the synthetic product. (Table 2. Chart. 3.) Thus we see that the synthetic B_1 crystals has nearly the same activity as the natural B_1 and 0.002 mg of both are approximately equivalent to the standard unit.
- (4) The commercial "Injectio Oryzanin Fortior":- It gave also the same result, 0.004 cc (=0.002 mg of the crystals) being required for the standard unit.

Table 2. Comparison of B₁ activity by the rat growth test;

	preparation containing	Number	Growth	Rate (per	week)
Materials Materials	Dose Indiana	of rats	Average	First	Fifth
	(mg)	OI Tats	5 weeks (g)	week (g)	week (g)
Leanuage Len	stempte set the bent	SUDDO STE	(8/		(8/
(1) The Standard Ad-	5.0	3	4.1	8.3	2.5
sorption product	10.0	6	8.8	10.8	8.6
	15.0	2	9.7	10.8	8.8
	0.0010	3	6.0	10.3	5.3
(2) The Synthetic B ₁	0.0015	Hodes to	7.8	10.0	7.0
Crystals (Proposed new standard)	0.0020	4 05	8.7	10.8	6.2
tel 18th to polemonics	0.0025	5	9.5	7.5	9.5
	0.0030	1	13.2	8.0	16.0
he animals developed	0.0010	3	5.0	10.3	1.5
(3) Oryzanin Crystals,	0.0015	3	7.0	11.7	4.0
the natural B ₁ iso- lated from rice	0,0020	1 104	8.8	11.4	9.7
polishings	0.0025	4	9.2	9.8	6.0
	0.0030	2	10.5	11.5	9.5
put vill affirmed tour	0.003 cc	4	6.9	9.1	1.8
	(=0.0015 mg hydrochloride)	eles cui	or Other Mary	within the	
(4) "Injectio Oryzanin	0.004 cc (=0.002 mg hydrochloride)	4	10.1	8.6	9,6
Fortior' of Sankyo & Co.	0.005 cc	2	10.4	13.0	6.3
	(=0.0025 mg hydrochloride)	ot bare	Was con	menino	
	0.006 cc (=0.003 mg hydrochloride)	met 3	11.7	8.0	16.3
		10 CAN S			

(Room temperature ---- 17~24°C)

The curative Day-dose was tested by the method of Kinnersley and Peters⁽¹⁾ and the results are summarised in the following table:-

⁽B) The curative "Day-dose" for pigeons.

⁽¹⁾ Kinnersley & Peters: Bioch. J. 19, 820 (1925).

Table 3. Comparison of B, activity by the Day-dose.

Body-weight	Days	Body-weight at B ₁ -	Dose	Days	Day-dose
initial	to B ₁ -	deficiency		of	
(g)	deficiency	(g)	(mg)	cure	(mg)
tandard adsorp	otion produc	t (orally);	otest size souti	daily	within will
294	27	220	75.0	6	12.5
335	11	267	75.0	6	12.5
		204	75.0	.7.	10.7
382	32	220	75.0	6	12.5
305	32	208	50.0	7	7.2
				4	12.5
					10.0
	1	214	50.0	5	10.0
	The second second				10.98
ynthetic vitam	in B ₁ crysta	is (by injectio	n.);	tiels of	
282	16	179	0.01	2.5	0.004
					0.0016
				5	0.0033
				3	0.002
					0.0025
290	28	198	0.01	5	0.002
290	18	204	0.01	3	0.0033
					0.0025
300	24	225	0.01	4	0.0025
310	18	239	0.008	3	0.0026
					0.0026
					0.0026
				5	0.0016 0.0016
					0.004
306	21	227		4	0.002
324	19	237	0.008	4	0.002
age day dose					0.0026
nin crystals, t	he natural I	B ₁ (by injectio	n);		
330	19	269	0.01	5	0.002
290	21	192	0.01	4	0.0025
330	21	190	0.01	3	0.0033
302	15				0.0033
308	16	229	0.009	5	0.0018
4 747	20	(2) [(111111111111111111111111111111111111	33		
308	21	180	0.008	4	0.002
334	21 18	180 230	0.008 0.008	4	0.002
334 334	21 18 22	180 230 218	0.008 0.008 0.008	4 3	0.002 0.0026
334 334 349	21 18 22 12	180 230 218 242	0.008 0.008 0.008 0.008	3 3.5	0.002 0.0026 0.0023
334 334 349 330	21 18 22 12 17	180 230 218	0.008 0.008 0.008	4 3	0.002 0.0026 0.0023 0.002
334 334 349 330 age day dose	21 18 22 12 17	180 230 218 242 218	0.008 0.008 0.008 0.008	3 3.5	0.002 0.0026 0.0023
334 334 349 330 age day dose	21 18 22 12 17 Fortior" of	180 230 218 242 218 Sankyo & Co.	0.008 0.008 0.008 0.008 0.008 (by injection);	4 3 3.5 4	0.002 0.0026 0.0023 0.002
334 334 349 330 age day dose ctio Oryzanin	21 18 22 12 17 Fortior" of	180 230 218 242 218 Sankyo & Co.	0.008 0.008 0.008 0.008 0.008 (by injection);	4 3 3.5 4	0.002 0.0026 0.0023 0.002 0.0024
334 334 349 330 age day dose	21 18 22 12 17 Fortior" of	180 230 218 242 218 Sankyo & Co.	0.008 0.008 0.008 0.008 0.008 (by injection);	4 3 3.5 4	0.002 0.0026 0.0023 0.002
334 334 349 330 age day dose ctio Oryzanin 320 358 353	21 18 22 12 17 Fortior" of 22 32 32 32	180 230 218 242 218 Sankyo & Co.	0.008 0.008 0.008 0.008 0.008 (by injection); 0.02 cc (0.01 mg) 0.02 cc (0.01 mg) 0.02 cc (0.01 mg)	4 3 3.5 4 4 5 5	0.002 0.0026 0.0023 0.002 0.002 0.005 cc(0.0025 mg) 0.004 cc(0.002 mg) 0.004 cc(0.002 mg)
334 334 349 330 age day dose ctio Oryzanin 320 358	21 18 22 12 17 Fortior" of	180 230 218 242 218 Sankyo & Co.	0.008 0.008 0.008 0.008 0.008 (by injection); 0.02 cc (0.01 mg) 0.02 cc (0.01 mg)	4 3 3.5 4 4 5 5 3	0.002 0.0026 0.0023 0.002 0.002 0.005 cc(0.0025 mg) 0.004 cc(0.002 mg) 0.004 cc(0.002 mg) 0.0052 cc (0.0026 mg)
334 334 349 330 age day dose tio Oryzanin 320 358 353 343	21 18 22 12 17 Fortior" of 22 32 32 32 14	180 230 218 242 218 Sankyo & Co. 218 208 238 267	0.008 0.008 0.008 0.008 0.008 (by injection); 0.02 cc (0.01 mg) 0.02 cc (0.01 mg) 0.02 cc (0.01 mg) 0.02 cc (0.01 mg)	4 3 3.5 4 4 5 5 5 3 3 3	0.002 0.0026 0.0023 0.002 0.002 0.005 cc(0.0025 mg) 0.004 cc(0.002 mg)
	294 335 342 382 305 285 305 382 age day dose ynthetic vitam 282 310 285 325 325 325 312 290 324 300 310 310 310 310 310 345 345 320 306 324 age day dose nin crystals, t	tandard adsorption product 294	tandard adsorption product (orally); 294 27 220 335 11 267 342 27 204 382 32 220 305 32 220 305 32 192 305 18 173 382 27 214 age day dose ynthetic vitamin B ₁ crystals (by injection product (orally); 282 16 179 310 28 205 285 26 190 325 19 216 325 19 216 325 24 169 312 18 207 290 28 198 290 28 198 290 18 204 324 23 217 300 24 225 310 18 239 310 36 169 345 31 196 345 31 196 345 31 196 345 31 196 345 31 196 345 31 196 345 31 196 345 36 160 320 19 252 306 21 227 324 19 237 age day dose nin crystals, the natural B ₁ (by injection product of the produc	tandard adsorption product (orally); 294	tandard adsorption product (orally); 294

From the above results, it was observed that the synthetic B_i crystals possess nearly the same activity as the natural B_i crystals isolated from rice polishings and $0.0023 \, \text{mg}$ of it is equivalent to the standard unit.

(C) The curative test for pigeons.

The curative daily dose was tested by the known technique on pigeons fed on the standard artificial diet, deficient in B₁, consisting of 60% of purified starch, 20% of purified casein, 15% of arachis oil, 5% of McCollums salt mixture No. 185, supplemented daily with 3 drops of cod liver oil and 0.4 g of autoclaved yeast, and the results were compared with that of the standard product.

- (1) The standard adsorption product:— When pigeons were fed on the artificial diet mentioned above, they developed severe symptoms of B_i deficiency usually in 4–5 weeks. By giving daily 20 mg of the adsorption product orally for a week, pigeons were cured completely in 1 day and the weight increased gradually to the last 7 th day, while daily doses of 10 mg or 15 mg were found to be insufficient. (Table 4. Chart 5)
- (2) The synthetic B₁ crystals:— By the subcutaneous injection in a daily dose of 0.004 mg, pigeons suffering from B₁ deficiency were cured perfectly in a day and their weight increased gradually toward the end of the experiment. (Table 4. Chart 6)
- (3) Oryzanin crystals: Pigeons suffering from B₁ deficiency on the artificial diet mentioned above, were perfectly cured in a day by the subcutaneous injection in a daily dose of 0.004 mg and increased in weight to the last 7 th day. A daily dose of 0.005 mg gave still better results. (Table 4. Chart 7)
- (4) Injectio Oryzanin Fortior:— The activity of the preparation was tested by injection in daily doses of $0.006\,\mathrm{cc}$ (=0.003 mg), $0.007\,\mathrm{cc}$ (=0.0035 mg), $0.008\,\mathrm{cc}$ (=0.004 mg) and $0.01\,\mathrm{cc}$ (=0.005 mg of the crystalline hydrochloride), respectively, on pigeons suffering from B_1 deficiency by feeding on the artificial diet, and $0.008\,\mathrm{cc}$ was proved to be the curative daily dose. (Table 4. Chart 8)

Table 4. B, activity by the curative test for pigeons.

Dose (mg) (1) The standard 10.0 15.0 20.0 30.0 (2) The synthetic	Number of pigeons adsorption pr	initial (g) roduct (by 362 383	Days to B ₁ -deficiency oral adn	(g)	y in days on);	330	Days to B ₁ - deficiency	Weight at next B ₁ -deficiency (g)				
10.0 15.0 20.0 30.0	3	362 383	26	247	not cured	330	2	213*				
15.0 20.0 30.0	Jo .	383	1 2	10	17	330	2	213*				
20.0 30.0	2		28	256	0 3							
30.0	1			450	3 days	250	5	231				
		373	27	260	1 ,,	280	7	246				
(2) The synthetic	1	395	28	291	1/2 ,,	332	7	299				
	(2) The synthetic B ₁ crystals (by injection);											
0.002	2	326	27	245	not cured,	died aft	er 5 days	39 942				
0.0025	3	332	31	238	not cured	244	4	224*				
0.003	3	376	35	309	1 day	285	2	282				
0.0035	3 8	371	32	273	4 hrs.	289	2	270				
0.004	3		32	272	3	294	5	274				

(3) Oryzanin crystals,	the natura	al B ₁ (by	injection); itse	nyl I	Anne	e-yearly	
0.0025	3	371	29	278	not cured	285	2	264*
0.0035	3	317	31	240	1/2 day	268	7	254
0.004	2	376	32	280	3 hrs	298	3	273
0.005	3	356	28	262	3 ,,	279	5	250
(4) "Injectio Oryzani	n Fortior'	of Sank	yo & Co.	(by inj	ection);	oulnu-F	ler soon	es ala
0.006 cc (=0.003 mg, hydrochloride)	3	316	30	227	1 day	239	4	222
0.007 cc (=0.0035 mg, hydrochloride)	2	348	32	256	1/2 ,,	279	3	235
0.008 cc (=0.004 mg, hydrochloride)	3	359	29	257	3 hrs	274	3	255
0.01 cc (=0.005 mg, hydrochloride)	2	325	29	255	3 ,,	283	7	250
17.43 14.99	Tilled	15-8	i.ls	31	12.27	*	g 100.00	died

The above results are summarised in the following table;

			and the same of th	Lat School Plant
Materials	Rat growth dose (mg)	Pigeon Day-dose (mg)	Pigeon curative dose (mg)	International standard unit (mg)
(1) The standard adsorption product	10.00	11.00	20.00	10.00
(2) The synthetic B ₁ crystals	0.002	0.0026	0.004	$0.002 \\ (0.002 - 0.0024)$
(3) Oryzanin, the natural B ₁ crystals	0.002	0.0024	0.004	0.002 (0.002-0.0022)
(4) "Injectio Oryzanin Fortior" of Sankyo & Co.	0.004 cc (=0.002 mg hydrochloride)	0.0048 cc (=0.0024 mg hydrochloride)	0.008 cc (=0.004 mg hydrochloride)	0.004 cc (=0.002 mg hydrochloride)

In the comparison of B_1 activity, it is concluded that the synthetic B_1 crystals which was proposed as a new standard has the same activity as the crystalline Oryzanin isolated from rice-polishings and $0.002 \, \text{mg}$ is approximately equivalent to the standard unit. For more accurate value, another method for B_1 determination should be studied further.

The authors wish to express their sincere thanks to Prof. U. Suzuki for his kind advice and to Sankyo & Co. for the financial aid to this work. They are also indebted to Messrs. M. Kamada und T. Hayakawa for their kind help in the curative test.

(Tokyo, March 25th. 1938)

On the Soil Type in Manchuria.

Part I. The brown forest soil in north-eastern Manchuria.

(pp. 599~606)

By R. KAWASHIMA.

(Agricultural Chemical Laboratory, the Kyushu Imperial University, Received Apr. 7, 1938.)

I. Iyasaka brown forest soil.

Iyasaka is a village settled by Japanese in 1933 and is situated in lat. 46° 25′ N. and long. 130° 40′ E. The arable land is mostly a brown forest soil podzolized only a slight extent, and its parent material is principally sedimentary rocks of paleozoic formation. The data described under, are all expressed in dry basis except pH-value.

The clay fraction in fine soil below 2 mm in diameter is given in table I.

279 3 235	11 4 1	Table 1. Clay content.				
Layer	A ₁	A ₂	0% A3 8	B ₁	B ₂	
Thickness (cm)	16	16	12	16	40	
Clay, <0.01 mm	48.40	48.68	49.97	55.30	56.70	
Clay, <0.001 mm	12.90	12.46	15.85	17.43	14.99	

Table I. Clay content.

As is seen in the table, there is observed some moving down of clay particles in the profile.

Some analytical data on fine soil are given in table II. The exchange capacity and exchangeable calcium are expressed as mg. eq. per 100 g.

Layer	Loss on ignition	Total N.	P H ₂ O	H KCl	Daiku- hara acidity (y ₁ ×3)	Hydroly acidity (y1)	Exchange capacity	Ex- change- able Ca	% of Ca
A ₁	10.54	0.33	5.62	4.98	0.4	20.3	26.64	20.14	75.6
A_2	6.26	0.15	5.38	4.42	1.6	18.8	18.91	12.73	67.3
A_3	4.84	0.09	5.46	4.32	2.0	16.9	17.47	11.23	64.3
B ₁	4.46	0.06	5.48	4.17	4.5	13.5	19.34	12.65	65.4
B ₂	5.33	0.05	5.48	4.15	5.8	14.1	26.65	17.51	65.7

Table II. Some analytical data on fine soil.

As in the table II, the pH-values of aqueous suspension and percentage saturation in calcium show a fair uniformity between each layers.

The colloidal clays ($<0.001 \, \mathrm{mm}$ ϕ) were separated and analysed. The total contents of silica and sesquioxides and their molecular ratios are given in table III. In addition, the loss on ignition and exchange capacity are added together.

Table III. Some analytical data on colloidal clay.

Layer	Loss on ignition	Exchange capacity (m, eq.)	SiO ₂	Al ₂ O ₃	$\mathrm{Fe_2O_3}$	$\frac{\mathrm{SiO_2}}{\mathrm{Al_2O_3}}$	$\frac{\mathrm{SiO_2}}{\mathrm{R_2O_3}}$	$\frac{\mathrm{Fe_2O_3}}{\mathrm{Al_2O_3}}$
A_1	23.60	76.39	38.69	16.44	7.70	3.99	3.07	0.30
- A ₂	15.69	63.06	45.84	19.40	8.70	4.01	3.11	0.29
A_3	14.63	60.76	46.73	19.71	9.23	4.02	3.09	0.30
$\mathbf{B_{1}}$	11.49	56.70	46.38	22.85	10.10	3.59	2.80	0.28
\mathbb{B}_2	11.56	58.60	48.44	20.72	10.67	3.96	2.98	0.33

The high loss on ignition and exchange capacity in A_1 are partly attributable on the presence of some humus. The silica-alumina ratio in B_1 is the smallest, and that means some accumulation of sesquioxides in this layer. But as the differences in the magnitude of SiO_2/Al_2O_3 and SiO_2/R_2O_3 between each layers are insignificant, there can be assumed a fairly good similarity of composition between these colloidal clays.

II. Neian brown forest soil.

Neian is situated about 309 km. southward of Iyasaka, and the parent material of this brown forest soil is basalt. The soils were treated quite similar with the Iyasaka soils, and the analytical results are given in the following tables.

Table I. Clay content.

Layer	Thickness cm	Clay. <0.01 mm	Clay. <0.001 mm		
A	75	40.54	8.80 AT		
B _i	70	42.14	8.78		

Table II. Some analytical data on fine soil.

Layer	Loss on ignition	Total N %	P H ₂ O	H KCI	Daiku- hara acidity (y ₁ ×3)	Hydroly acidity (y ₁)	Exchange capacity (m, eq.)	Exchange- able Ca (m, eq.)	% of Ca
Α.	6.50	0.08	6.78	5.48	0.3	6.6	30.68	23.54	76.7
Bi	6.01	0.03	6.35	4.93	0.6	7.2	31.91	23.66	74.2

Table III. Some analytical data on colloidal clay.

Layer	Loss on ignition	Exchange capacity (m. eq.)	SiO ₂	Al ₂ O ₂	Fe ₂ O ₃ %	$\begin{array}{ c c }\hline SiO_2\\\hline Al_2O_3\end{array}$	$\frac{\mathrm{SiO_2}}{\mathrm{Al_2O_3}}$	$\frac{\mathrm{Fe_2O_3}}{\mathrm{Al_2O_3}}$
A	11.62	62.51	48.15	21.70	10.59	3.76	2.87	0.31
$\mathbf{B_{i}}$	10.45	60.50	48.47	21.24	10.50	3.87	2.94	0.32

The results in above three tables denote that there appear no signs of podzolization in this typically developed Neian brown forest soil. This soil is the same type as Prof. Stremme's brauner Gesteinswaldboden.

Fibre of Flowers of Typha Latifolia L.

(pp. $607 \sim 608$)

By Yoshijiro KIHARA.

(Agricultural Chemical Laboratory, Tokyo Imperial University, Received Mar. 31, 1938.)

The flowers of Typha latifolia L. is a fine smooth fibre having 0.007 mm of

width and 5 mm of the length. The supplies the state of the length.

The analysis of fibre was as follows;

Moisture	12.87%	Total soluble carbohydrate	23.38%
Total cellulose	41.45%	Alcohol-benzene extract	1.55%
α-cellulose	69.04%	Ether extactives	1.76%
β-cellulose	14.64%	Total N	0.92%
γ-cellulose	16.32%	Crude protein	5.75%
Pentose	22.11%	Ash	6.87%

The carbohydrate in the fibre consisted of a kind of hemicellulose which could not be extracted with various solvents.

It was hydrolyzed with dilute acid into arabinose. It was identified as benzylphenylhydrazin and phenylosazone. It showed no naphthoresorcin reaction.

When the fibre was digested with 8% NaOH at 160° for 6 hrs., a gray soft pulp was obtained.

The properties of the pulp were as follows;

α-cellulose	83.41	Ash	8.83
β-cellulose	5.64	Copper value (Brady's method)	0.07

It was easily bleached by the bleaching powder and did not give the lignin test.

Studies on the Mucilage from Rhodophyceae.

- I. Isolation of the Mucilage from 3 Species of Chondrus.
- II. The Chemical Nature of the Mucilage from Chondrus ocellatus Holmes.

(pp. 609~625)

By T. Mori and Y. Tutiya.

(Laboratory of Chemistry of Marine Products, Tokyo Imperial University, Received Apr. 7, 1938.)

Chemical Studies on Japanese Coccidae. (XVIII).

Summary of the Reports I—XVII.

(pp. 626~633)

By M. KAWANO and R. MARUYAMA. (Laboratory of Ohsaka Factory of Sankyo Co. Ltd., Received Mar. 17, 1938.)

Untersuchungen über den Abbau von Acetoin durch Mikroben. (3).

Über den Abbau-Mechanismus von Acetoin.

(ss. 634~641)

Von Yukio Tomiyasu.

(Aus dem Agrikulturchemischen Institut der Kaiserlichen Kyushu-Universität, Eingegangen am 31, 3, 1938,) Untersuhungen über den Mechanismus von Acetoin-Abbau durch Bacillus lactis aerogenes führten zu folgenden Ergebnissen.

Als Abbauprodukt wurde nur Essigsäure festgestellt. Äthylalkohol sowie Acetaldehyd wurden nicht nachgewiesen. Es wurde weiter bestätigt, dass Äthylalkohol sowie Acetaldehyd durch die ruhenden Bakterien ziemlich schnell verbraucht werden, dagegen nicht die Essigsäure. Als Bildungsweise der Essigsäure aus Acetoin kamen zunächst folgende zwei Möglichkeiten in Betracht:

$$CH_3CHOH \cdot CO \cdot CH_3 + O_2 \rightarrow 2CH_3COOH \cdots (1)$$

Es ist klar geworden, dass der Acetoin-Abbau mit dem reinen oxydativen Vorgang nichts zu tun hat, 1. weil der Sauerstoff ohne Einfluss auf den Abbau ist, d.h. der Abbau findet auch glatt im streng anaerobenen Zustand statt, 2. weil die Ausbeute des Abbauproduktes zu gering ist. Die Ausbeute an Essigsäure beträgt nach Formel (1) berechnet nur etwa 35% der Theorie, dagegen etwa 70% nach Formel (2). Was die Ursache der geringeren Ausbeute anbelangt, so ergeben sich aus den verschiedenartig angestellten Versuchen folgende Antworten:

Die Ausbeute der Säure wird um so grösser, je kürzer die Kulturdauer ist; die Bakterien atmen das Acetoin sehr leicht; der Acetoin-Abbau wird durch ein Antiseptikum stark verhindert.

Diese Ergebnisse führten mich zu der Schlussfolgerung, dass das Acetoin in der üblichen Kultur am Anfang hauptsächlich nach Formel (3) aerobisch verzehrt wird, solange genügend Sauerstoff im Medium vorhanden ist; und sodann wenn der Sauerstoff spärlich geworden ist, wird das Acetoin nach Formel (2) fermentativ abgebaut. In der Zwischenperiode beider Stadien finden zweierlei, im bestimmten Verhältnis zueinander stehende Abbauvorgänge statt.

$$CH_3CHOH \cdot CO \cdot CH_3 + 50_2 \rightarrow 4CO_2 + 4H_2O$$
(3)

Untersuchungen über den Abbau von Acetoin durch Mikroben. (4).

Eine Klassifikation der Bakterien der Coli-Aerogenes Gruppe, unter Berücksichtigung ihrer Fähigkeit des Auf-und Abbaues von Acetoin.

sib nem sado oz demonificació n (ss. 642~644) sado do a contra final describir de la contra del la contra del la contra del la contra de la contra del la contra de la contra de la contra del la contra

Shrould at motor A tope Won Yukio Tomiyasu

(Aus dem Agrikulturchemischen Institut der Kaiserlichen Kyushu-Universität, Eingegangen am 31, 3, 1938.)

In beiden vorstehenden Arbeiten habe ich mitgeteilt, dass nur einige Bakterienstämme der Acetoin-produzierenden Aerogenes-Gruppe die Abbau-Fähigkeit des Acetoins besitzen, dass dagegen den Nicht-Acetoinbildnern (Coli-Gruppe) überhaupt diese Fähigkeit fehlt. Um diese Tatsache sicher festzustellen, wurden 297 Bakterienstämme der Coli-Aerogenes Gruppe zu den Versuchen verwendet, wovon 266 Stämme von neuem aus verschiedenen Materialien nach der Vorschrift von Bergey (Manual of Determinative Bacteriology, 1930) isoliert wurden. (Tabelle 1)

Untersuhungen über den Mechanin alledaT

Material (13)	distance in mines	Nr. d. isolierten Bakterienstämme.	
Material Material	Nr. d. Materialien.	Aerogenes-Gruppe	Coli-Gruppe 10200 A
Menschen	Als land dangsweis	ichyd doron die ro cht die Casigsdor	alkonor sowie Acetal werden, dagegen ni
Pferde	Möglich eiten in B	3	Acetoin leathen zuni
Hunde Kot	To the state of th	O+JHO OO HOL	10
Ratten	10 + 11000 H04-0	0	D.HO 14
Boden o maniou ma	Total	tun hatel, weil	Lin ablain superior
2 ustand state o we	Total	48	218

Das Ergebnis der Versuche war wie folgt. (Tabelle 2)

Tabelle 2.

Probe A sib a	Reaktion	Nr. d. Bakt Aerogenes-Gruppe	cerienstämme be and riota
Acetoin-Aufbau	positiv	erhinde 15.	Anaiz a 0 lingo lin A
Acetoin-Abbau	nebuna negativ	am Anteng hauptanend Sau88stoff im	wird, solar 246 genüg
Methylrot Methylrot		h geworden ist, who vischen , t e indesbeid	abgebaut. Olu dem Z
Citrat	positiv negativ	Total HOLD HOL	241
Cellobiose	positiv negativ	49	30 236

Aus der Tabelle ist ersichtlich, dass die Bakterien der Coli-Gruppe überhaupt keine Auf- und Abbau-Fahigkeit besitzen, während einige von den Bakterien der Aerogenes-Gruppe beide Fahigkeiten, und andere nur die Abbau-Fähigkeit besitzen. Somit dürfte man die Bakterien der Aerogenes-Gruppe auf Grund ihrer Abbau-Fähigkeit von Acetoin noch weiter in zwei Arten klassifizieren, so dass man die Bakterien der Coli-Aerogenes Gruppe nach dem Verhalten gegen Acetoin in folgende drei Arten klassifizieren können wird.

Tabelle 3.

Bakterien A.	Auf bau-Fähigkeit	Abbau-Fähigkeit	Nr. d. verwendeten Stämme
Aerogenes A (Abbau-Typen)	statistasit testais oid	Den enter Tates	15 15 15
,, B (Unabbau-Typen)	den Verstehen ver	porepre Grundur en	36
Coli	lien mich der Von	chiedeann Materia	246