Inference by Stochastic Optimization: A Free-Lunch Bootstrap

Jean-Jacques Forneron, Boston University Serena Ng, Columbia University and NBER November 16, 2019

Introduction: Challenging Inferences

- Extremum estimation: GMM, NLS, MLE, . . .
 - where computing the asymptotic variance is not tractable e.g. rely on transformed/generated data, multi-step estimation, complicated moments/likelihood
 - or counterfactuals st. Δ -method is challenging to implement

Introduction: Challenging Inferences

- Extremum estimation: GMM, NLS, MLE, . . .
 - where computing the asymptotic variance is not tractable e.g. rely on transformed/generated data, multi-step estimation, complicated moments/likelihood
 - or counterfactuals st. Δ -method is challenging to implement
- But estimation procedure needs to be repeated many times
 ⇒ rely on Bootstrap inference
 - common in structural estimation (IO, labour, macro, etc.)
- Classical Bootstrap: run the optimizer many times

Introduction: Challenging Inferences

- Extremum estimation: GMM, NLS, MLE, ...
 - where computing the asymptotic variance is not tractable e.g. rely on transformed/generated data, multi-step estimation, complicated moments/likelihood
 - or counterfactuals st. Δ -method is challenging to implement
- But estimation procedure needs to be repeated many times
 ⇒ rely on Bootstrap inference
 - common in structural estimation (IO, labour, macro, etc.)
- Classical Bootstrap: run the optimizer many times
- THIS PAPER: focused on a **Stochastic Newton-Raphson** algorithm, a single run produces
 - a consistent estimator by simple averaging
 - asymptotically valid Bootstrap draws (free-lunch)

The Setup

• Interested in the sample GMM/MLE/MD estimator:

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} Q_n(\theta)$$

 $Q_n(\cdot)$ is the sample objective function

The Setup

Interested in the sample GMM/MLE/MD estimator:

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} Q_n(\theta)$$

 $Q_n(\cdot)$ is the sample objective function

• Ideal Bootstrap sample:

$$\hat{\theta}_m^b = \operatorname{argmin}_{\theta \in \Theta} Q_m^{(b)}(\theta)$$

for $b=1,\ldots,B$, where $Q_m^{(b)}(\cdot)$ is an m out of n re-sampled objective (or re-weighted/multiplier)

The Setup

Interested in the sample GMM/MLE/MD estimator:

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} Q_n(\theta)$$

 $Q_n(\cdot)$ is the sample objective function

• Ideal Bootstrap sample:

$$\hat{\theta}_m^b = \operatorname{argmin}_{\theta \in \Theta} Q_m^{(b)}(\theta)$$

for $b=1,\ldots,B$, where $Q_m^{(b)}(\cdot)$ is an m out of n re-sampled objective (or re-weighted/multiplier)

Goal: a 2-in-1 procedure for estimation and inference

Algorithm: Stochastic Newton-Raphson

i. initialize: at θ^0 , given

Algorithm: Stochastic Newton-Raphson

- i. initialize: at θ^0 , given
- ii. for $b = 1, \ldots, B$ compute:

$$\theta^b = \theta^{b-1} - \gamma \cdot [H_m^{(b)}(\theta^{b-1})]^{-1} G_m^{(b)}(\theta^{b-1})$$

 $G_m^{(b)}, H_m^{(b)}$ re-sampled gradient, hessian; $m/n \to c \in (0, 1];$ $\gamma \in (0, 1]$ fixed learning rate

Algorithm: Stochastic Newton-Raphson

- i. initialize: at θ^0 , given
- ii. for $b = 1, \ldots, B$ compute:

$$\theta^b = \theta^{b-1} - \gamma \cdot [H_m^{(b)}(\theta^{b-1})]^{-1} G_m^{(b)}(\theta^{b-1})$$

 $G_m^{(b)}, H_m^{(b)}$ re-sampled gradient, hessian; $m/n \to c \in (0, 1]$; $\gamma \in (0, 1]$ fixed learning rate

iii.
$$\frac{1}{B} \sum_{b=1}^{B} \theta^b \simeq \hat{\theta}_n$$

Algorithm: Stochastic Newton-Raphson

- i. initialize: at θ^0 , given
- ii. for $b = 1, \ldots, B$ compute:

$$\theta^b = \theta^{b-1} - \gamma \cdot [H_m^{(b)}(\theta^{b-1})]^{-1} G_m^{(b)}(\theta^{b-1})$$

 $G_m^{(b)}, H_m^{(b)}$ re-sampled gradient, hessian; $m/n \to c \in (0, 1];$ $\gamma \in (0, 1]$ fixed learning rate

- iii. $\frac{1}{B} \sum_{b=1}^{B} \theta^b \simeq \hat{\theta}_n$
- iv. $var(\theta^b) \simeq \frac{\gamma^2}{1-[1-\gamma]^2} var(\hat{\theta}_n)$ (the asymptotic variance)

Outline

An Overview of Derivative-Based Methods

Asymptotic Results

Empirical Illustration

Application:

Sensitivity Analyses

Conclusion

An Overview of

Derivative-Based Methods

Gradient Descent and Newton-Raphson Methods

Algorithm: Newton-Raphson

- i. initialize: at θ^0 , given
- ii. for $b = 1, \ldots, B$ compute:

$$\theta^b = \theta^{b-1} - \underbrace{\gamma_b}_{\text{learning rate}} \cdot [H_n(\theta^{b-1})]^{-1} G_n(\theta^{b-1})$$

- Gradient-Descent: $\theta^b = \theta^{b-1} \gamma_b \cdot [H_n(\theta^{b-1})]^{-1} G_n(\theta^{b-1})$
- less costly, slow convergence when $\lambda_{\max}(H_n)/\lambda_{\min}(H_n)$ large

Illustration OLS regression

- OLS regression: $y_i = x_i'\theta + u_i$; $\gamma_b = \gamma$ fixed
- Newton-Raphson:

$$\theta^b - \hat{\theta}_n = (1 - \gamma)^b [\theta^0 - \hat{\theta}_n]$$

- for $\gamma_b=1$ convergence after one iteration
- Gradient Descent:

$$\theta^b - \hat{\theta}_n = (I - 2\gamma [\sum_i x_i x_i'/n])^b [\theta^0 - \hat{\theta}_n]$$

- very slow convergence when $\lambda_{\max}(X'X)/\lambda_{\min}(X'X)$ large

Stochastic Gradient Descent

- Full sample G_n , H_n costly to compute for n very large
- **Solution**: use a *minibatch* (small) of subsamples $m \ll n$
- In practice: m = 1 is popular

Algorithm: Stochastic Gradient-Descent

- i. initialize: at θ^0 , given
- ii. for $b = 1, \ldots, B$ compute:

$$\theta^b = \theta^{b-1} - \gamma_b \cdot G_{\mathbf{m}}^{(b)}(\theta^{b-1})$$

Simple Illustration: OLS estimation (m = 1)

- Mini-batch with m=1
- Stochatic Gradient Descent:

$$\theta^b - \hat{\theta}_n = (I - 2\gamma_b \underbrace{x_i^{(b)} x_i^{(b)\prime}}_{\text{noisy}}) (\theta^{b-1} - \hat{\theta}_n) - 2\gamma_b \underbrace{x_i^{(b)} \hat{u}_i^{(b)}}_{\text{noisy}}$$

Simple Illustration: OLS estimation (m = 1)

- Mini-batch with m=1
- Stochatic Gradient Descent:

$$\theta^{b} - \hat{\theta}_{n} = (I - 2\gamma_{b} \underbrace{x_{i}^{(b)} x_{i}^{(b)'}}_{\text{noisy}}) (\theta^{b-1} - \hat{\theta}_{n}) - 2\gamma_{b} \underbrace{x_{i}^{(b)} \hat{u}_{i}^{(b)}}_{\text{noisy}}$$

- For $\theta^b \stackrel{p^*}{\to} \hat{\theta}_n$ we need $\gamma_b \searrow 0$
 - fast enough so that $\mathbb{E}^\star \|2\gamma_b[x_i^{(b)}x_i^{(b)\prime}]\theta^{(b-1)}\|^2 o 0$
 - not too fast so that $\mathbb{E}^\star \| (1-2\gamma_b x_i^{(b)} x_i^{(b)\prime}) (\theta^{b-1} \hat{\theta}_n) \|^2 o 0$
 - \Rightarrow convergence can be very slow
 - in practice: adaptive methods (adagrad, RMSprop,...)

Simple Illustration: OLS estimation (m = 1)

- Mini-batch with m=1
- Stochatic Gradient Descent:

$$\theta^b - \hat{\theta}_n = (I - 2\gamma_b \underbrace{x_i^{(b)} x_i^{(b)\prime}}_{\text{noisy}}) (\theta^{b-1} - \hat{\theta}_n) - 2\gamma_b \underbrace{x_i^{(b)} \hat{u}_i^{(b)}}_{\text{noisy}}$$

- For $\theta^b \stackrel{p^*}{\to} \hat{\theta}_n$ we need $\gamma_b \searrow 0$
 - fast enough so that $\mathbb{E}^* \|2\gamma_b[x_i^{(b)}x_i^{(b)\prime}]\theta^{(b-1)}\|^2 \to 0$
 - not too fast so that $\mathbb{E}^\star \| (1-2\gamma_b x_i^{(b)} x_i^{(b)\prime}) (\theta^{b-1} \hat{\theta}_n) \|^2 o 0$
 - \Rightarrow convergence can be very slow
 - in practice: adaptive methods (adagrad, RMSprop,...)
- **Stochatic Newton-Raphson**: $H_1^{(b)}$ often noisy/near singular

- e.g.
$$x_i = (1, x_{i,1})$$
, $x_{i,1} \sim Bernoulli(p)$
 $\Rightarrow x_i x_i'$ singular wp. 1 for any $p \in [0, 1]$

This Paper: S-NR with larger batches

- Three changes over S-GD:
 - a. re-introduce the Hessian $H_m^{(b)}(\theta^{b-1})$ (NR)
 - b. sample m out of n observations, $m/n \rightarrow c \in (0,1]$
 - c. fixed learning rate $\gamma_b = \gamma \in (0,1]$

Algorithm: Stochastic Newton-Raphson

- i. initialize: at θ^0 , given
- ii. for $b = 1, \ldots, B$ compute:

$$\theta^b = \theta^{b-1} - \gamma \cdot [H_m^{(b)}(\theta^{b-1})]^{-1} G_m^{(b)}(\theta^{b-1})$$

Simple Illustration: OLS estimation $(m/n \rightarrow c \in (0,1])$

• Stochatic Newton-Raphson:

$$\theta^b - \hat{\theta}_n = \underbrace{(1 - \gamma)(\theta^{b-1} - \hat{\theta}_n)}_{\text{deterministic cv.}} + \underbrace{\gamma(\hat{\theta}_m^{(b)} - \hat{\theta}_n)}_{\text{noise}}$$

Simple Illustration: OLS estimation $(m/n \rightarrow c \in (0,1])$

• Stochatic Newton-Raphson:

$$\theta^b - \hat{\theta}_n = \underbrace{(1 - \gamma)(\theta^{b-1} - \hat{\theta}_n)}_{\text{deterministic cv.}} + \underbrace{\gamma(\hat{\theta}_m^{(b)} - \hat{\theta}_n)}_{\text{noise}}$$

- For $\gamma = 1$, $\theta^b = \hat{\theta}_m^{(b)}$ the bootstrapped estimate
- $\theta^b \not\stackrel{\rho}{\to} \hat{\theta}_n$ with γ fixed but

 $\mathbb{E}^*(\theta^b) \simeq \hat{\theta}_n$ and $var^*(\theta^b) \simeq \frac{\gamma^2}{1 [1 \gamma]^2} var^*(\hat{\theta}_m^{(b)})$

Simple Illustration: OLS estimation $(m/n \rightarrow c \in (0,1])$

• Stochatic Newton-Raphson:

$$\theta^b - \hat{\theta}_n = \underbrace{(1 - \gamma)(\theta^{b-1} - \hat{\theta}_n)}_{\text{deterministic cv.}} + \underbrace{\gamma(\hat{\theta}_m^{(b)} - \hat{\theta}_n)}_{\text{noise}}$$

- For $\gamma = 1$, $\theta^b = \hat{\theta}_m^{(b)}$ the bootstrapped estimate
- $\theta^b \not\stackrel{\rho}{\to} \hat{\theta}_n$ with γ fixed but

 $\mathbb{E}^*(\theta^b) \simeq \hat{\theta}_n$ and $var^*(\theta^b) \simeq \frac{\gamma^2}{1-[1-\gamma]^2} var^*(\hat{\theta}_m^{(b)})$
- Now: extend this result to a class of non-linear models

Asymptotic Results

Assumptions: Q_n

Assumption (Sample Objective Function)

i.
$$\|H_n(\theta)^{-1}G_n(\theta)\|_2 \leq \overline{C}\|\theta - \hat{\theta}_n\|_2$$
,

ii.
$$\underline{C} \|\theta - \hat{\theta}_n\|_2^2 \le \langle \theta - \hat{\theta}_n, H_n(\theta)^{-1} G_n(\theta) \rangle$$
,

iii.
$$\underline{c}_H \leq \lambda_{\min}(H_n(\theta)^{-1}) \leq \lambda_{\max}(H_n(\theta)^{-1}) \leq \overline{C}_H$$
,

iv.
$$\|H_n(\theta) - H_n(\hat{\theta}_n)\|_2 \le C_{n,1} \times \|\theta - \hat{\theta}_n\|_2$$
,

v.
$$\|\sup_{\theta\in\Theta}G_n(\theta)\|_2\leq\overline{C}_n$$

Remark: conditions i-iii. imply strong convexity

Newton-Raphson

Lemma (Newton-Raphson)

Suppose Assumption 1 holds, then for $\gamma \in (0,1)$ small enough, $\exists \bar{\gamma} \in (0,1)$ such that for any θ^0 :

$$\|\theta_{NR}^b - \hat{\theta}_n\|_2 \leq (1 - \bar{\gamma})\|\theta^{b-1} - \hat{\theta}_n\|_2 \leq (1 - \bar{\gamma})^b\|\theta^0 - \hat{\theta}_n\|_2$$

Assumptions: $Q_m^{(b)}$

Assumption (Re-Sampled Objective Function)

Suppose the following holds uniformly over $\theta \in \Theta$:

i.
$$\|[H_m^{(b)}(\theta)]^{-1}[G_m^{(b)}(\theta) - G_m^{(b)}(\hat{\theta}_n) - H_m^{(b)}(\theta)(\theta - \hat{\theta}_n)]\|_2 \le C_{m,1} \times \|\theta - \hat{\theta}_n\|_2^2$$
,

ii.
$$\mathbb{E}^{\star}\left(\sup_{\theta\in\Theta}\|[H_n(\theta)]^{-1}-[H_m^{(b)}(\theta)]^{-1}\|_2^2\right)^{1/2}\leq C_{m,2}\times m^{-1/2}$$
,

iii.
$$\left[\mathbb{E}^{\star}\left(\sup_{\theta\in\Theta}\|H_n(\theta)-H_m^{(b)}(\theta)\|_2^2\right)\right]^{1/2}\leq C_{m,3}\times m^{-1/2}$$
,

iv.
$$\left[\mathbb{E}^{\star}\left(\sup_{\theta\in\Theta}\|\mathbb{G}_{m}^{(b)}(\theta)\|_{2}^{2}\right)\right]^{1/2}\leq\overline{C}$$
, for $\mathbb{G}_{m}^{(b)}(\theta)\stackrel{def}{=}\sqrt{m}[G_{m}^{(b)}(\theta)-G_{n}(\theta)]$.

where $C_{m,1/2/3}$ and $(C_n)_{n>1}$ are bounded above, $\overline{C} < +\infty$.

Stochastic Newton-Raphson: Asymptotic Linearization

Lemma (Linearization of the S-NR Markov-Chain)

Suppose Assumptions 1-3 hold, then for $\gamma \in (0,1)$ small enough, $\exists \bar{\gamma} \in (0,1)$ such that $\forall \theta^0$, uniformly in $b \geq 1$:

$$\mathbb{E}^{\star} \Big(\|\theta_{NR}^{b} - \hat{\theta}_{n} + \gamma \sum_{j=0}^{b-1} (1 - \gamma)^{j} \mathbb{Z}_{m}^{b-j} \|_{2}^{2} \Big)^{1/2}$$

$$\lesssim m^{-1} + b \rho^{b} [d_{0,n} + d_{0,n}^{2}]$$

where
$$\rho = \max(1 - \gamma, 1 - \bar{\gamma}) \in [0, 1)$$
; $d_{0,n} = \mathbb{E}^{\star} \left(\|\theta^0 - \hat{\theta}_n\|_2^2 \right)^{1/2}$ and $\mathbb{Z}_m^{b-j} = [H_n(\hat{\theta}_n)]^{-1} G_m^{(b-j)}(\hat{\theta}_n)$

Bootstrap behaviour of the S-NR draws

Theorem (Convergence in Distribution)

Suppose Assumptions 1-3 hold, let $\mathbb{Z}_m^b = [H_n(\hat{\theta}_n)]^{-1} G_m^{(b)}(\hat{\theta}_n)$ and $\Sigma_n = var^*(\mathbb{Z}_m^b)$. Suppose $0 < \underline{\lambda} \le \lambda_{\min}(\Sigma_n) \le \overline{\lambda} \le \lambda_{\max}(\Sigma_n) < +\infty$, and conditions on the characteristic function of \mathbb{Z}_m^b hold then:

$$\sqrt{m}\Sigma_n^{-1/2}(\theta^b - \hat{\theta}_n) \overset{d^*}{\to} \mathcal{N}\left(0, \frac{\gamma^2}{1 - [1 - \gamma]^2}I\right),$$

as $m, b \to \infty$; if $\log(m)/b \to 0$ and $d_{0,n} = O(1)$, n/m = O(1).

Empirical Illustration

Simple Example: Mroz (1987) Probit model

• Probit model: $\mathbb{P}(y_i = 1 | x_i) = \Phi(x_i'\theta)$

(0.006)

 SNR_m

• Sample of n=753 observations, $m=n, \gamma=0.3$

(0.020)

(0.026)

- *SNR*_{np/m}: iid re-sampling and multiplier Bootstrap
- Compare $\hat{\theta}_{n.MLE}$, asym. & boot. standard errors with SNR

	nwifeinc	educ	exper	exper2	age	kidslt6	kidsge6	constant
$\hat{\theta}_{n,MLE}$	-0.012	0.131	0.123	-0.002	-0.053	-0.868	0.036	0.270
Asym.	(0.005)	(0.025)	(0.019)	(0.001)	(0.008)	(0.119)	(0.043)	(0.509)
$\bar{ heta}_{n,boot}$	-0.012	0.134	0.124	-0.002	-0.054	-0.883	0.036	0.275
Boot.	(0.005)	(0.027)	(0.020)	(0.001)	(0.009)	(0.122)	(0.046)	(0.524)
SNR_{np}	-0.012	0.133	0.123	-0.002	-0.053	-0.873	0.038	0.263
	(0.005)	(0.026)	(0.019)	(0.001)	(0.010)	(0.119)	(0.046)	(0.510)
	-0.012	0.132	0.123	-0.002	-0.053	-0.872	0.036	0.267

(0.001)

(800.0)

(0.119)

(0.046)

(0.512)

Simple Example: Mroz (1987) Probit model

red: $\hat{\theta}_n$; black/blue: SNR with iid/multiplier Bootstrap

Application:

Sensitivity Analyses

Influential Observations

• Influential observations:

a subset $\mathcal{I} \subset \{1, \dots, n\}$ of the data which impacts the conclusions significantly

- e.g. leads to very different point estimates or standard errors
 - outliers
 - leverage points
 - ...
- Idea: under H_0 (no influential observations) removing $\mathcal I$ during the iterations should not significantly affect the Markov-Chain
- Under H_1 (influential observations) should lead to a structural break in the levels/variance

Simple Example: IBES

- Institutional Brokers' Estimate System (IBES)
- Large database of analyst earnings estimates vs. realized
- Predictive regression:

$$y_i^{\text{actual}} = \theta_0 + \theta_1 y_i^{\text{medest}} + e_i$$

- medest = median estimate
- Rational expectations: $\theta_0 \simeq 0, \theta_1 \simeq 1$
- Experiment: remove the 2% most influential obs. & compare
- n = 9,278 firms, t = 01/1985 12/2017
- $\gamma = 0.8$; m = 6,000 (re-sample firms)

Simple Example: IBES - Full Sample

Simple Example: IBES - Without Outliers

Main Example: PSID Income Dynamics

- Panel Study of Income Dynamics (PSID)
- Moffitt and Zhang (2018) earnings volatility
- 3,508 males (36,403 person-year obs.)
- Model permanent and transitory components:

$$y_{iat} = \alpha_t \mu_{ia} + \beta_t \nu_{ia}$$

$$\mu_{ia} = \mu_{i0} + \sum_{s=1}^{a} \omega_{is}$$

$$\nu_{ia} = \varepsilon_{ia} + \sum_{s=1}^{a-1} \psi_{a,a-s} \varepsilon_{is}, \quad a \ge 2$$

• $a = age \in [24, 54]$

Empirics

- De-trend the data using OLS with polynomial regressors
- Aggregate residual autocovariances by age-group
- Match sample with model-based autocovariance matrix
- Warning:
 - original paper estimates 11 variance parameters
 - we only estimate 4 because of identification issues

$$var(\mu_{i,0}): \nu_0$$

 $var(\omega_{ir}): \delta_0, \delta_1$
 $var(\varepsilon_{ir}): \gamma_0, \gamma_1, k$
 $\psi_{a,a-r}: \mathcal{K}, \lambda_1, \mathcal{M}, \mathcal{M}, \mathcal{M}$

Goal: Are the results sensitive to particular age groups?

Influence: estimates without 24-28 age group

Influence: estimates without 29-33 age group

Influence: estimates without 34-38 age group

Influence: estimates without 39-43 age group

Influence: estimates without 44-48 age group

Influence: estimates without 49-54 age group

Influence of individual age-groups

Conclusion

Conclusion

- SNR: simultaneous estimation and Bootstrapping
- Appealing for two-step estimators with complicated variance
- Potential avenues of research:
 - Stochastic quasi-Newton Methods (S-BFGS)
 computationally very attractive
 - Alternative sampling schemes look for theoretical guarantees in non-convex settings

References

- Andrews, D. W. K. (2002). Higher-Order Improvements of a Computationally Attractive k-Step Bootstrap for Extremum Estimators. <u>Econometrica</u>, 70(1):119–162.
- Armstrong, T. B., Bertanha, M., and Hong, H. (2014). A fast resample method for parametric and semiparametric models. Journal of Econometrics, 179(2):128–133.
- Bach, F. and Moulines, E. (2011). Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning. Nips.
- Byrd, R. H., Hansen, S. L., Nocedal, J., and Singer, Y. (2016). A Stochastic Quasi-Newton Method for Large-Scale Optimization. <u>SIAM Journal on</u> Optimization, 26(2):1008–1031.
- Chernozhukov, V. and Hong, H. (2003). An MCMC approach to classical estimation. Journal of Econometrics, 115(2):293–346.
- Davidson, R. and MacKinnon, J. G. (1999). Bootstrap Testing in Nonlinear Models. International Economic Review, 40(2):487–508.

References ii

- Dvoretzky, A. (1956). On stochastic approximation. Technical report, Columbia University New York City United States.
- Honoré, B. E. and Hu, L. (2017). Poor (Wo)man's Bootstrap. <u>Econometrica</u>, 85(4):1277–1301.
- Kline, P. and Santos, A. (2012). A Score Based Approach to Wild Bootstrap Inference. Journal of Econometric Methods, 1(1).
- Li, T., Kyrillidis, A., Liu, L., and Caramanis, C. (2018). Approximate Newton-based statistical inference using only stochastic gradients.
- Mandt, S., Hoffman, M. D., and Blei, D. M. (2017). Stochastic gradient descent as approximate bayesian inference. <u>The Journal of Machine Learning Research</u>, 18(1):4873–4907.
- Moffitt, R. and Zhang, S. (2018). Income Volatility and the PSID: Past Research and New Results. AEA Papers and Proceedings.
- Moritz, P., Nishihara, R., and Jordan, M. (2016). A Linearly-Convergent Stochastic
 L-BFGS Algorithm. In Gretton, A. and Robert, C. C., editors, <u>Proceedings of the</u>
 19th International Conference on Artificial Intelligence and Statistics, volume 51 of
 Proceedings of Machine Learning Research, pages 249–258, Cadiz, Spain. PMLR.

References iii

- Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of stochastic approximation by averaging. SIAM Journal on Control and Optimization, 30(4):838–855.
- Robbins, H. and Monro, S. (1951). A Stochastic Approximation Method. <u>The Annals of Mathematical Statistics</u>, 22(3):400–407.
- Ruppert, D. (1988). Efficient estimators from a slowly convergent Robbins-Monro procedure. School of Oper. Res. and Ind. Eng., Cornell Univ., Ithaca, NY, Tech. Rep, 781.

Related Literatures

Computationally Attractive Bootstrap:

Davidson and MacKinnon (1999); Andrews (2002); Kline and Santos (2012); Armstrong et al. (2014); Honoré and Hu (2017),... k-step re-sampling at a converged estimate of $\hat{\theta}_n$

• Stochastic Derivative-Based Optimization:

Robbins and Monro (1951); Dvoretzky (1956); Ruppert (1988); Polyak and Juditsky (1992),[...], Bach and Moulines (2011); Moritz et al. (2016); Mandt et al. (2017),... interested in optimization on very large or online data sets

• Stochastic Optimization and Inference:

Chernozhukov and Hong (2003),...

MCMC similar to Simulated Annealing with a fixed temperature; (quasi)-posterior distribution asymptotically valid for inference

PSID Income Dynamics and Outlier Trimming

- Common empirical practice: remove extreme observations
- Here: the authors of the original paper trimmed the top and bottom 1% observations in each age-time group
 - are the results sensitive to the level of trimming?
- We look at a range of trimming levels: 0, 0.5, 1, 1.5 and 2%

Influence of trimming: no trimming

Influence of trimming: trim 0.5%

Influence of trimming: trim 1% (baseline)

Influence of trimming: trim 1.5%

Influence of trimming: trim 2%

Influence of trimming

Simple Illustration: OLS estimation by Newton-Raphson

- OLS regression: $y_i = x_i'\theta + u_i$
- Sample objective: $Q_n(\theta) = \sum_{i=1}^n (y_i x_i'\theta)^2 / n$, $G_n(\theta) = -2 \sum_i x_i (y_i x_i'\theta) / n$, $H_n(\theta) = -2 \sum_i x_i x_i' / n$
- Newton-Raphson Iterations:

$$\theta^{b} = \theta^{b-1} + \gamma_{b} \left(\sum_{i} x_{i} x_{i}' \right)^{-1} \left[\sum_{i} \left(x_{i} y_{i} - \theta^{b-1} x_{i} x_{i}' \right) \right]$$
$$= (1 - \gamma_{b}) \theta^{b-1} + \gamma_{b} \hat{\theta}_{n}$$

- For $\gamma_b = 1$ convergence after one iteration
- For $\gamma_b = \gamma \in (0,1]$ fixed, the error $\theta^b \hat{\theta}_n$ is:

$$\theta^b - \hat{\theta}_n = (1 - \gamma)^b [\theta^0 - \hat{\theta}_n]$$

Simple Illustration: OLS estimation by Gradient-Descent

• Gradient Descent Iterations:

$$\theta^{b} = \theta^{b-1} + 2\gamma_{b} \sum_{i} x_{i} [y_{i} - x_{i}' \theta^{b-1}] / n$$

$$= (I - 2\gamma_{b} \sum_{i} x_{i} x_{i}' / n) \theta^{b-1} + 2\gamma_{b} [\sum_{i} x_{i} x_{i}' / n] \hat{\theta}_{n}$$

• Re-write the error $\theta^b - \hat{\theta}_n$ as:

$$\theta^b - \hat{\theta}_n = (I - 2\gamma_b [\sum_i x_i x_i'/n])(\theta^{b-1} - \hat{\theta}_n)$$

• For $\gamma_b = \gamma \le \lambda_{\max}(\sum_i x_i x_i'/n)/2$ fixed, the error $\theta^b - \hat{\theta}_n$ is:

$$\theta^b - \hat{\theta}_n = (I - 2\gamma [\sum_i x_i x_i'/n])^b [\theta^0 - \hat{\theta}_n]$$

• Convergence after one iteration in one direction if $\gamma = \lambda_{\max}(\sum_i x_i x_i'/n)/2$

Issues with Mini-Batch Stochastic Newton-Raphson

- Deterministic case: $\theta^b_{NR} \to \hat{\theta}_n$ faster than $\theta^b_{GD} \to \hat{\theta}_n$
- Why is S-GD more popular than S-NR?
 - need to compute $[H_1^{(b)}(\theta)]^{-1}$ often (near)-singular
 - e.g. $x_i = (1, x_{i,1})$, $x_{i,1} \sim Bernoulli(p)$ $\Rightarrow x_i x_i'$ singular wp. 1 for any $p \in [0, 1]$
- ⇒ mini-batch S-NR can be infeasible/unstable
 - some solutions:
 - use more observations for H (Byrd et al., 2016; Li et al., 2018)
 - use accumulated gradient for scaling: adagrad, RMSprop,...