5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (1)

Radiometrische Größe	Formel	Photometrische Größe	Formel
Strahlungsenergie Q_e , Strahlungsmenge [radiant energy; J]	$Q_{\rm e} = n \cdot h \cdot f$	Lichtmenge Q_v [luminous energy; lm·s]	$Q_{v} = \int \phi_{v} \cdot dt$
Strahlungsleistung [radiant power; W], Strahlungsfluss ϕ_e [radiant flux]	$\phi_{ m e} = rac{{ m d}Q_{ m e}}{{ m d}t}$	Lichtstrom ϕ_v [(luminous) flux ; lm]	$\phi_{v} = k_{max} \cdot V(\lambda) \cdot \phi_{e}$
Strahl(ungs)stärke I_e [radiant intensity; W/sr]	$I_{\rm e}=rac{{\sf d}\phi_{ m e}}{{\sf d}arOmega}$	Lichtstärke I_v [(luminous) intensity; cd]	$I_{_{_{oldsymbol{ u}}}}=rac{d\phi_{_{\!$
Strahldichte L_e [radiance; W/(sr·m²)]	$L_{\rm e} = \frac{{ m d}I_{ m e}}{{ m d}A_{ m \perp}}$	Leuchtdichte L_v [luminance, brightness; cd/m^2]	$L_{v} = \frac{dI_{v}}{dA_{\perp}}$
Strahlungsflussdichte [radiant exitance; W/m^2], spezifische Ausstrahlung M_e [radiant emittance], (Intensität I)	$M_{\rm e} = rac{{\sf d}\phi_{ m e}}{{\sf d}A_{ m l}}$	Spezifische M _v Lichtausstrahlung [luminous exitance; lx]	$M_{\rm v}=rac{{ m d}\phi_{ m v}}{{ m d}A_{ m l}}$
Bestrahlungsstärke <i>E</i> _e [irradiance; W/m²]	$E_{\rm e} = \frac{d\phi_{\rm e} \cdot \cos\alpha_{\rm 2}}{dA_{\rm 2}}$	Beleuchtungsstärke E _v [illuminance; lx]	$E_{v} = \frac{d\phi_{v} \cdot \cos \alpha_{2}}{dA_{2}}$

Wichtige radiometrische und photometrische Größen

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (2)

Äußerer Photoeffekt

$$E_{\rm kin} = h \cdot f - W_{\rm A}$$

⇒ Messung der

Beleuchtungsstärke E_{v}

Kennlinie einer Photozelle

[J. Niebuhr,G. Lindner: Physikalische Messtechnik mit Sensoren]

Sekundärelektronenvervielfacher

[J. Niebuhr,G. Lindner: Physikalische Messtechnik mit Sensoren]

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (3)

Applikation von Photovervielfachern: Spektroskopie

links: Gerätetechnischer Aufbau unten: Emissionsspektrum

[Ruhruniversität Bochum]

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (4)

Applikation von Photovervielfachern: Nachtsichtgerät (Prinzip)

[K. Bammel: Wenn die Nacht zum Tage wird]

Bild des **Phosphorschirms**

[www.nachtoptik.de]

Aktives Nachtsichtgerät [www.bushnell.com]

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (5)

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (6)

Strahlungsabsorption im Halbleiter:

$$\phi_{e}(\lambda, x) = \phi_{e}(\lambda, 0) \cdot e^{-\alpha(\lambda) \cdot x}$$

Innerer Photoeffekt im Bändermodell:

b)

a: undotierter Halbleiter

b: p-dotierter Halbleiter

c: n-dotierter Halbleiter

[J. Niebuhr, G. Lindner: Physikalische Messtechnik mit Sensoren]

Absorptionslänge von Photonen in Silizium

[L. Strüder, C. von Zanthier]

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (7)

Photostrom (Kurzschlussstrom)

$$I_{\mathsf{K}} = I_{\mathsf{ph}} = \frac{n}{t} \cdot \mathbf{e} \cdot \eta(\lambda) = \frac{\phi(\lambda) \cdot \mathbf{e}}{h \cdot f} \cdot \eta(\lambda)$$

 \Rightarrow Bestimmung der Beleuchtungsstärke $E_{_{
m V}}$

Se-Photoelement (Prinzip)

[E. Schrüfer: Elektrische Messtechnik]

- 1: Metallelektrode (transparent)
- 2: CdS-Schicht
- 3: Se-Schicht (dazwischen: **Sperrschicht**)
- 4: Trägermetall
- 5: Kontaktring

Si-Photoelement (Prinzip)

[E. Schrüfer: Elektrischer Messtechnik]

- 1: p-Bahngebiet
- 2: Sperrschicht
- 3: n-Bahngebiet
- 4: Kontaktierung
- 5: Kontaktierung

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (8)

Kennlinienfeld der Si-Photodiode BPW20

[E. Schrüfer: Elektrische Messtechnik]

Lateraleffekt-Photodiode

[E. Schrüfer: Elektrische Messtechnik]

A1, A2: p-Kontakte K: n-Kontakt

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (9)

MOS-Pixelaufbau eines CCD-Sensors [L. Strüder, C. von Zanthier]

Quanteneffizienz verschiedener CCD-Typen

[Apogee Instruments Inc.]

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (10)

VDD

Signal-

VDD

ausgang

T2

FD

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (11)

Prüflinge einer Ski-Montage-Teilautomatisierung

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (12)

Ski-Montage-Teilautomatisierungssystem mit Prüfling (Detailansicht)

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (13)

Dreidimensionale Lageerkennung zur Roboterführung (links) und Unterstützung von Schiedsrichterentscheidungen (rechts)

[OUISS, www.ingenieur.de]

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (14)

Radioaktive Zerfallsarten: Alpha-Zerfall, Beta-Zerfall, Gamma-Zerfall

[W. Koelzer: Lexikon zur Kernenergie]

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (15)

Wechselwirkung von γ -Strahlung mit Materie: Photoeffekt (< 1 MeV), Compton-Streuung (0,2 ... 8 MeV), Paarbildung (> 1 MeV)

[W. Koelzer: Lexikon zur Kernenergie]

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (16)

U-I-Charakteristik von Ionisationsdetektoren

[E. Schiessle: Industriesensorik]

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (17)

Ionisationskammer

[E. Schrüfer: Elektrische Messtechnik]

- 1: Außenelektrode
- 2: Innenelektrode
- 3: Gasfüllung
- 4: Schutzring

Geiger-Müller-Zählrohr

[E. Schiessle: Industriesensorik]

Stabdosimeter

[W. Koelzer: Lexikon zur Kernenergie]

5.3 SENSORPRINZIPIEN DER UMWANDLUNG ELEKTROMAGNETISCHER STRAHLUNG (18)

Anwendung Füllstandsmessung

[E. Schiessle: Industriesensorik]

Anwendung Dichtemessung

[E. Schiessle: Industriesensorik]