TRCCLAIMCLR, Claim Tag Clear Register

The TRCCLAIMCLR characteristics are:

Purpose

In conjunction with <u>TRCCLAIMSET</u>, provides Claim Tag bits that can be separately set and cleared to indicate whether functionality is in use by a debug agent.

For additional information, see the CoreSight Architecture Specification.

Configuration

AArch64 System register TRCCLAIMCLR bits [31:0] are architecturally mapped to External register TRCCLAIMCLR[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_SR is implemented. Otherwise, direct accesses to TRCCLAIMCLR are undefined.

Attributes

TRCCLAIMCLR is a 64-bit register.

Field descriptions

63	62	61	60	59	58	57	56	55	54	53	52	
CLR[31]	CLR[30]	CLR[29]	CLR[28]	CLR[27]	CLR[26]	CLR[25]	CLR[24]	CLR[23]	CLR[22]	CLR[21]	CLR[20]	C
31	30	29	28	27	26	25	24	23	22	21	20	

Bits [63:32]

Reserved, res0.

CLR[< m>], bit [m], for m = 31 to 0

Claim Tag Clear. Indicates the current status of Claim Tag bit < m >, and is used to clear Claim Tag bit < m > to 0.

Meaning		
On a read: Claim Tag bit		
<m> is not set.</m>		
On a write: Ignored.		

0b1	On a read: Claim Tag bit
	<m> is set.</m>
	On a write: Clear Claim tag
	bit $< m > to 0$.

The number of Claim Tag bits implemented is indicated in TRCCLAIMSET.

This bit reads-as-zero and ignores writes if m > the number of Claim Tag bits.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to 0.

Access to this field is **W1C**.

Accessing TRCCLAIMCLR

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCCLAIMCLR

op0	op1	CRn	CRm	op2	
0b10	0b001	0b0111	0b1001	0b110	

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.TRCCLAIM == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = TRCCLAIMCLR;
elsif PSTATE.EL == EL2 then
```

```
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = TRCCLAIMCLR;
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = TRCCLAIMCLR;
```

MSR TRCCLAIMCLR, <Xt>

op0	op1	CRn	CRm	op2	
0b10	0b001	0b0111	0b1001	0b110	

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) |
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.TRCCLAIM == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCCLAIMCLR = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR_EL2.TTA == '1' then
```

```
AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
else
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        TRCCLAIMCLR = X[t, 64];
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
    TRCCLAIMCLR = X[t, 64];
```

AArch32 Registers AArch64 Registers

AArch32 Instructions AArch64 Instructions

Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.