Your name Here:

CSCI 2824 – Relations

1. Determine whether each of the following relations $R \subseteq A \times A$, where A is the set of all CU students, is reflexive, symmetric, transitive, and/or an equivalence relation. Briefly justify each conclusion.

- (a) $(a,b) \in R$ if and only if a shares at least one class with b.
- (b) $(a,b) \in R$ if and only if a has a higher GPA than b.
- (c) $(a,b) \in R$ if and only if a lives in the same home as b.

- 2. Consider the relation $R = \{(1,1), (2,2), (3,3), (3,1), (3,4), (4,4), (4,1), (4,3)\}$, where $R \subseteq A \times A$, with $A = \{1,2,3,4\}$.
 - (a) Draw the graph of R. **Note**: If possible, it is good practice to organize your graph such that all directed edges are non-intersecting.
 - (b) Is the relation R reflexive? Symmetric? Transitive? An equivalence relation? Fully justify your responses.
 - (c) The **complement** of a relation $R \subseteq A \times A$ is defined as $\overline{R} = (A \times A) R$.
 - i. What is the set \overline{R} for R as defined in this problem?
 - ii. Is the following statement true or false? Briefly justify your conclusion. "A relation R is symmetric if and only if its complement \overline{R} is symmetric."

Do the proof of example 3 on page 609 in your OWN WORDS AND METHODS. You can ake this more straightforward I believe. Notice the "if and only if" elements. You may use efinition and Theorems from page 240-241.	1