Binaural Scene Classification with Time-Frequency Scattering and Deep Convolutional Networks

Vincent Lostanlen École normale supérieure 45 rue d'Ulm, 75005 Paris, France

Abstract—The abstract goes here.

I. INTRODUCTION

Classification of acoustic scenes is only made possible by integrating signal information over a long temporal context. Whereas a few seconds are often sufficient to recognize a speaker, a musical instrument, or a genre, it may require up to 30 seconds to disambiguate closely related acoustic scenes.

II. TIME-FREQUENCY SCATTERING

Let $\psi[t]$ an analytic band-pass filter of dimensionless frequency ξ and bandwidth ξ/Q . A filter bank of wavelets is built by dilating ψ according to a geometric sequence of scales $2^{-k_1/Q}$, where the log-frequency index k_1 takes integer values in the interval $[0;K_1[$. We denote by $\psi_{k_1}[t]$ the resulting wavelets. In all subsequent experiments, ψ is designed as a Gammatone wavelet of quality factor Q=4, so as to approximate the properties of the human cochlea. The wavelet transform of an audio signal x[t] is obtained by convolution with all wavelets: $y_1[t,k_1]=(x^{t}\psi_{k_1})[t]$. Applying pointwise complex modulus to y_1 yields the wavelet scalogram $x_1[t,k_1]=|y_1[t,k_1]|$, indexed by time t and log-frequency k_1 .

$$y_2[t, k_1, k_2] = (x_1 *^{t, k_1} \Psi_{k_2})[t, k_1]$$
 (1)

where the two-dimensional filter $\Psi_{\mathbf{k_2}}[t,k_1]$ is either a temporal low-pass filter $\phi[t]$, a oriented edge detector in the time-frequency plane $(\psi_{\alpha}[t] \times \psi_{\beta}[k_1])$, or $(\psi_{\alpha}[t] \times \phi[k_1])$.

$$\mathbf{W_2}[t, k_1, k_2] = \alpha \psi(\alpha t) \times |\beta| \psi(\beta k_1) \tag{2}$$

III. DEEP CONVOLUTIONAL NETWORKS

$$\boldsymbol{x}[t] = r \times \boldsymbol{x}^{\mathsf{L}}[t] + (1 - r) \times \boldsymbol{x}^{\mathsf{R}}[t], \tag{3}$$

where r is drawn uniformly at random in the interval [0, 1].

IV. CONCLUSION

The conclusion goes here.

This work is supported by the ERC InvariantClass grant 320959.