GR5058 Assignment 3

Due: Tuesday, November 20, 2018 by 6PM

Prediction with Linear Models

Download the (in)famous crime dataset via

You can get more information about this dataset from https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime. Split the dataset into training and testing using the createDataPartition function in the **caret** package after calling set.seed() using the number at the bottom of this page.

Use the following methods via the train function in the **caret** package: plsr, lm. Model the ViolentCrimesPerPop variable in the training data.frame, but you can include interactions, polynomials, and / or new variables that you construct from the other variables. Then use the predict function with newdata = testing to generate \hat{y}_i for each observation in the testing data.frame. Calculate the mean squared error between \hat{y} from y in the testing data.frame. Which function and model produces the lowest mean squared error?

Classification of Binary Outcomes

Dowload the loans.rds file from the course server to your working directory and load it into R via

```
loans <- readRDS("loans.rds")
str(loans, max.level = 1)</pre>
```

In these data, the outcome of interest is whether a personal loan was approved by a bank. The variables are

- Amount . Requested: The proposed amount for the loan
- Debt.To.Income.Ratio: The ratio of the applicant's debt (excluding mortgages and the proposed loan) payments each month to the applicant's stated monthly income
- Zip.Code: The 3-digit zip code of the applicant
- State: The state where the applicant lives
- Employment.Length: The number of years that the applicant has worked at the same job. 10 indicates at least ten years, 0 indicates less than one year, and -1 indicates unemployed.
- y: A binary variable indicating whether the loan was approved

Use the createDataPartition function in the **caret** package to split the data into a training set and a testing set. Use the following R functions: glmnet, glm. Estimate classification models for y in the training data as a function of other variables in the dataset, possibly including interactions, polynomials, and / or variables you construct. Predict y in the testing dataset. You can use a threshold of 0.5 to classify observations in the testing dataset as being approved for a loan or not. Using the proportion of correct classifications in the testing dataset as your criterion, which function and model performs best?