FUNDAMENTOS TEÓRICOS DA COMPUTAÇÃO

--- LINGUAGEM LIVRE DE CONTEXTO ---

Restrições no Autômato com Pilha

Seja $P = (Q, \Sigma, \Gamma, \delta, q, S)$ uma AP com as seguintes características:

- Não existe conjunto de estados de aceitação, por isso é que a "aceitação" será somente por pilha vazia;
- $\bullet \quad Q = \{q\}$
- δ só possui transições do tipo:
 - 1) $\delta(q, a, X) = (q, \varepsilon)$
 - 2) $\delta(q, a, X) = (q, BC)$, com $a \in \{\Sigma \cup \varepsilon\}$ e $A, B, C \in \Gamma$

Regra 1) diz que se estiver no estado q e ler um símbolo a, tendo X no topo da pilha, você permanece no estado q (só tem um estado mesmo), desempilha X e não empilha nada (ε) $\delta(q,a,X) \to (q,\varepsilon)$

A segunda regra é parecida com a primeira, só que, você empilha dois símbolos não terminais BC $\delta(q,a,X) \rightarrow (q,BC)$

Todo AP pode ser convertido para o formato acima

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's. O AP para a linguagem L será:

a, A; ε a, B; BB a, S; BS

b, S; AS b, A; AA b, B; ε ε, S; ε Considere $\omega = aabbab \in L$ $(q, aabbab, S) \Rightarrow$

Sem ler nada, ou lendo ε , só empilha o S

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's. O AP para a linguagem L será:

a, A; ε a, B; BB a, S; BS

b, S; AS b, A; AA b, B; ε ε, S; ε Considere $\omega = aabbab \in L$ $(q, aabbab, S) \Rightarrow$ $(q, abbab, BS) \Rightarrow$

> Lendo "a", e tendo S na pilha, desempilha o S e empilha B e S

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's. O AP para a linguagem L será:

b, S; AS b, A; AA b, B; ε ε, S; ε Considere $\omega = aabbab \in L$ $(q, aabbab, S) \Rightarrow$ $(q, abbab, BS) \Rightarrow$ $(q, bbab, BBS) \Rightarrow$

> Lendo "a", e tendo B na pilha, desempilha o B e empilha B e B

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's. O AP para a linguagem L será:


```
Considere \omega = aabbab \in L

(q, aabbab, S) \Rightarrow

(q, abbab, BS) \Rightarrow

(q, bbab, BBS) \Rightarrow

(q, bab, BS) \Rightarrow
```

Lendo "b", e tendo B na pilha, desempilha o B e empilha arepsilon

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's. O AP para a linguagem L será:

Considere
$$\omega = aabbab \in L$$

 $(q, aabbab, S) \Rightarrow$
 $(q, abbab, BS) \Rightarrow$
 $(q, bbab, BBS) \Rightarrow$
 $(q, bab, BS) \Rightarrow$
 $(q, ab, S) \Rightarrow$

Lendo "b", e tendo B na pilha, desempilha o B e empilha arepsilon

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's. O AP para a linguagem L será:

Considere
$$\omega = aabbab \in L$$

 $(q, aabbab, S) \Rightarrow$
 $(q, abbab, BS) \Rightarrow$
 $(q, bbab, BBS) \Rightarrow$
 $(q, bab, BS) \Rightarrow$
 $(q, ab, S) \Rightarrow$
 $(q, ab, S) \Rightarrow$

Lendo "a", e tendo S na pilha, desempilha o S e empilha B e S

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's. O AP para a linguagem L será:

Considere $\omega = aabbab \in L$ $(q, aabbab, S) \Rightarrow$ $(q, abbab, BS) \Rightarrow$ $(q, bbab, BBS) \Rightarrow$ $(q, bab, BS) \Rightarrow$ $(q, ab, S) \Rightarrow$ $(q, ab, S) \Rightarrow$ $(q, ab, S) \Rightarrow$ $(q, e, S) \Rightarrow$ Lendo "b", e tendo B na pilha,

desempilha o B e empilha arepsilon

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's. O AP para a linguagem L será:

Considere $\omega = aabbab \in L$ $(q, aabbab, S) \Rightarrow$ $(q, abbab, BS) \Rightarrow$ $(q, bbab, BBS) \Rightarrow$ $(q, bab, BS) \Rightarrow$ $(q, ab, S) \Rightarrow$ $(q, ab, S) \Rightarrow$ $(q, e, S) \Rightarrow$ $(q, e, S) \Rightarrow$

Lendo " ϵ ", e tendo \$ na pilha, desempilha o \$ e empilha ϵ . Cadeia aceita: leu toda a cadeia e a pilha $\acute{\epsilon}$ vazia

Transformação de AP em GLC

Transformação de AP em GLC

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's.

a, A; ε a, B; BB a, S; BS

b, S; AS b, A; AA b, B; ε ε, S; ε Para cada transição do tipo:

(1)
$$\delta(q, a, X) = (q, \varepsilon)$$
, adicionar $X \to a$

Ou seja, lê o símbolo (a), desempilha (X) e não empilha nada (ε)

Quais seriam as produções baseadas nas transições?

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's.

Para cada transição do tipo: (1) $\delta(q, a, X) = (q, \varepsilon)$, adicionar $X \to a$

Ou seja, lê o símbolo (a), desempilha (X) e não empilha nada (ε)

$$A \to a$$

$$B \to b$$

$$S \to \varepsilon$$

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's.

b, S; AS b, A; AA b, B; ε ε, S; ε Para cada transição do tipo:

(2)
$$\delta(q, a, X) = (q, BC)$$
, adicionar $X \to aBC$

Ou seja, lê o símbolo (a), desempilha (X) e empilha dois símbolos não terminais (BC)

Quais seriam as produções baseadas nas transições?

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's.

b, S; AS b, A; AA b, B; ε ε, S; ε Para cada transição do tipo:

(2)
$$\delta(q, a, X) = (q, BC)$$
, adicionar $X \to aBC$

Ou seja, lê o símbolo (a), desempilha (X) e empilha dois símbolos não terminais (BC)

$$B \rightarrow aBB$$

$$S \rightarrow aBS$$

$$S \rightarrow bAS$$

$$A \rightarrow bAA$$

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's.

b, S; AS b, A; AA b, B; ε ε, S; ε Para cada transição do tipo:

(3) Adicionar $S \to \varepsilon$, porque a linguagem aceita a cadeia vazia

A única regra de produção seria $S \to \varepsilon$ que já tinha sido incluída anteriormente

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's.

b, S; AS b, A; AA b, B; ε ε, S; ε O resultado é que a GLC será:

$$G = (\{S, A, B\}, \{a, b\}, P, S)$$

$$P: S \to aBS \mid bAS \mid \varepsilon$$

$$A \to bAA \mid a$$

$$B \to aBB \mid b$$

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's.

b, S; AS b, A; AA b, B; ε ε, S; ε

Derivando mas à esquerda:

$$S \to aBS \mid bAS \mid \varepsilon$$

$$A \to bAA \mid a$$

$$B \to aBB \mid b$$

$$S \Rightarrow aBS$$

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's.

b, S; AS b, A; AA b, B; ε ε, S; ε Derivando mas à esquerda:

$$S \rightarrow aBS \mid bAS \mid \varepsilon$$

$$A \rightarrow bAA \mid a$$

$$B \rightarrow aBB \mid b$$

$$S \Rightarrow aBS \Rightarrow abS$$

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's.

b, S; AS b, A; AA b, B; ε ε, S; ε

Derivando mas à esquerda:

$$S \rightarrow aBS \mid bAS \mid \varepsilon$$

$$A \rightarrow bAA \mid a$$

$$B \rightarrow aBB \mid b$$

$$S \Rightarrow aBS \Rightarrow abS \Rightarrow abbAS$$

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's.

b, S; AS b, A; AA b, B; ε ε, S; ε

Derivando mas à esquerda:

$$S \rightarrow aBS \mid bAS \mid \varepsilon$$

 $A \rightarrow bAA \mid a$
 $B \rightarrow aBB \mid b$

$$S \Rightarrow aBS \Rightarrow abS \Rightarrow abbAS$$

\Rightarrow abbbAAS

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's.

b, S; AS b, A; AA b, B; ε ε, S; ε

Derivando mas à esquerda:

$$S \rightarrow aBS \mid bAS \mid \varepsilon$$

 $A \rightarrow bAA \mid \alpha$
 $B \rightarrow aBB \mid b$

$$S \Rightarrow aBS \Rightarrow abS \Rightarrow abbAS$$

\Rightarrow abbbAAS \Rightarrow abbbAAS

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's.

b, S; AS b, A; AA b, B; ε ε, S; ε

Derivando mas à esquerda:

$$S \rightarrow aBS \mid bAS \mid \varepsilon$$

 $A \rightarrow bAA \mid \alpha$
 $B \rightarrow aBB \mid b$

$$S \Rightarrow aBS \Rightarrow abS \Rightarrow abbAS$$

\Rightarrow abbbAAS \Rightarrow abbbaAS \Rightarrow abbbaAS

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's.

b, S; AS b, A; AA b, B; ε ε, S; ε

Derivando mas à esquerda:

$$S \rightarrow aBS \mid bAS \mid \varepsilon$$

$$A \rightarrow bAA \mid a$$

$$B \rightarrow aBB \mid b$$

$$S \Rightarrow aBS \Rightarrow abS \Rightarrow abbAS$$

 $\Rightarrow abbbAAS \Rightarrow abbbaAS \Rightarrow abbbaaS$
 $\Rightarrow abbbaa\varepsilon$

Considere $L = \{\omega : |\omega|_a = |\omega|_b\}$, isto é, ω possui o mesmo número de a's e b's.

b, S; AS b, A; AA b, B; ε ε, S; ε

Derivando mas à esquerda:

$$S \rightarrow aBS \mid bAS \mid \varepsilon$$

 $A \rightarrow bAA \mid a$
 $B \rightarrow aBB \mid b$

$$S \Rightarrow aBS \Rightarrow abS \Rightarrow abbAS$$

\Rightarrow abbbAAS \Rightarrow abbbaAS \Rightarrow abbbaAS
\Rightarrow abbbaa

Com isso, mostramos que os AP's são equivalentes às GLC's e que, portanto, reconhecem a classe das LLC's

