1	A predator in need is a predator indeed: generalist arthropod predators function as pest
2	specialists at the late growth stage of rice
3	Gen-Chang Hsu ¹ , Jia-Ang Ou ^{2,3} , Min-Hsuan Ni ² , Zheng-Hong Lin ² and Chuan-Kai Ho ^{1,2*}
4	
5	¹ Department of Life Science, National Taiwan University, Taipei, Taiwan
6	² Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
7	³ Department of Zoology, University of British Columbia, Vancouver, Canada
8	* Corresponding author. ORCiD ID: http://orcid.org/0000-0002-6437-0073 Email:
9	ckho@ntu.edu.tw
10	

Appendix S1

- 12 **Table S1**. The taxonomic information and trophic guilds of the arthropod samples in the three
- 13 study years.

14 (a) Year 2017

Trophic guild	Order	Family/Genus
Predators	Araneae	Araneidae
	Araneae	Clubionidae
	Araneae	Oxyopidae
	Araneae	Tetragnathidae
	Araneae	Thomisidae
	Coleoptera	Carabidae
	Coleoptera	Coccinellidae
Rice herbivores	Hemiptera	Cicadellidae/Nephotettix
	Hemiptera	Delphacidae/Nilaparvata
	Hemiptera	Lygaeidae/Pachybrachius
	Hemiptera	Pentatomidae/Scotinophara
	Lepidoptera	Hesperiidae
	Lepidoptera	Pyralidae
	Lepidoptera	Nymphalidae
	Orthoptera	Pyrgomorphidae/Atractomorpha
Tourist herbivores	Coleoptera	Chrysomelidae
	Orthoptera	Acrididae
Detritivores	Diptera	Chironomidae
	Diptera	Chloropidae
	Diptera	Ephydridae
	Diptera	Muscidae
	Diptera	Sphaeroceridae

Diptera	Stratiomyidae
Diptera	Tephritidae
 Orthoptera	Tetrigidae

16 (b) Year 2018

Trophic guild	Order	Family/Genus
Predators	Araneae	Araneidae
	Araneae	Clubionidae
	Araneae	Oxyopidae
	Araneae	Tetragnathidae
	Araneae	Thomisidae
	Coleoptera	Coccinellidae
Rice herbivores	Hemiptera	Alydidae/Leptocorisa
	Hemiptera	Cicadellidae/Nephotettix
	Hemiptera	Delphacidae/Nilaparvata
	Hemiptera	Lygaeidae/Pachybrachius
	Hemiptera	Pentatomidae/Scotinophara
	Lepidoptera	Hesperiidae
	Lepidoptera	Pyralidae
	Orthoptera	Pyrgomorphidae/Atractomorpha
Tourist herbivores	Coleoptera	Chrysomelidae
	Orthoptera	Acrididae
Detritivores	Diptera	Chironomidae
	Diptera	Chloropidae
	Diptera	Ephydridae
	Diptera	Muscidae
	Diptera	Sciomyzidae
	Diptera	Stratiomyidae
	Orthoptera	Tetrigidae

Trophic guild	Order	Family/Genus
Predators	Araneae	Araneidae
	Araneae	Clubionidae
	Araneae	Oxyopidae
	Araneae	Tetragnathidae
	Araneae	Thomisidae
	Coleoptera	Coccinellidae
Rice herbivores	Diptera	Agromyzidae
	Hemiptera	Alydidae/Leptocorisa
	Hemiptera	Cicadellidae/Nephotettix
	Hemiptera	Coreidae
	Hemiptera	Delphacidae/Nilaparvata
	Hemiptera	Lygaeidae/Pachybrachius
	Hemiptera	Miridae
	Hemiptera	Pentatomidae/Scotinophara
	Hemiptera	Ricaniidae
	Lepidoptera	Hesperiidae
	Lepidoptera	Nymphalidae
	Lepidoptera	Pyralidae
	Orthoptera	Pyrgomorphidae/Atractomorpha
Tourist herbivores	Coleoptera	Chrysomelidae
	Orthoptera	Acrididae
Detritivores	Diptera	Calliphoridae
	Diptera	Chironomidae
	Diptera	Chloropidae
	Diptera	Ephydridae
	Diptera	Lauxaniidae

Diptera	Muscidae
Diptera	Phoridae
Diptera	Platystomatidae
Diptera	Sarcophagidae
Diptera	Sciomyzidae
Diptera	Sphaeroceridae
Diptera	Stratiomyidae
Diptera	Tephritidae
Orthoptera	Tetrigidae
Orthoptera	Tridactylidae

Table S2. The proportions (mean \pm SE) of prey sources (rice herbivores, tourist herbivores, detritivores) consumed in predators' diet in organic and conventional rice farms over crop stages in each study year. n represents the number of replicate farms for the diet estimation (Note that the differences in n within the same study year were due to the absence of predators in the sweep-net samples in some replicate farms).

Year	Farm type	Crop stage	Predator		Source		
1 Cai	raim type	Crop stage	ricuator	Rice herbivore	Tourist herbivore	Detritivore	<u> </u>
2017	Organic	Tillering	All	0.27 ± 0.08	0.19 ± 0.05	0.54 ± 0.12	3
			Spider	0.21 ± 0.13	0.33 ± 0.16	0.46 ± 0.18	3
			Ladybeetle	0.74	0.09	0.17	1
		Flowering	All	0.82 ± 0.04	0.13 ± 0.04	0.05 ± 0.03	3
			Spider	0.69 ± 0.15	0.25 ± 0.15	0.06 ± 0.04	3
			Ladybeetle	0.79	0.09	0.12	1
		Ripening	All	0.92 ± 0.02	0.07 ± 0.02	0.02 ± 0.01	3
			Spider	0.78 ± 0.12	0.19 ± 0.12	0.03 ± 0.02	3
			Ladybeetle	0.93 ± 0.01	0.04 ± 0.01	0.03 ± 0.01	3
	Conventional	Tillering	All	0.23 ± 0.01	0.17 ± 0.05	0.59 ± 0.05	3
			Spider	0.25 ± 0.01	0.2 ± 0.06	0.55 ± 0.08	3
			Ladybeetle	0.80	0.08	0.12	1
		Flowering	All	0.83 ± 0.03	0.12 ± 0.03	0.05 ± 0.01	3
			Spider	0.85 ± 0.02	0.11 ± 0.03	0.04 ± 0.01	3
			Ladybeetle	0.88 ± 0.02	0.06 ± 0.01	0.06 ± 0.01	2
		Ripening	All	0.92 ± 0.02	0.06 ± 0.02	0.02 ± 0.01	3
			Spider	0.91 ± 0.01	0.07 ± 0.02	0.02 ± 0.01	3
			Ladybeetle	0.95 ± 0.01	0.04 ± 0.01	0.02 ± 0.01	2
2018	Organic	Tillering	All	0.23 ± 0.03	0.22 ± 0.05	0.55 ± 0.06	7
			Spider	0.20 ± 0.02	0.28 ± 0.07	0.52 ± 0.07	7
			Ladybeetle	0.81 ± 0.02	0.08 ± 0.01	0.11 ± 0.01	6
		Flowering	All	0.75 ± 0.04	0.17 ± 0.04	0.07 ± 0.02	6
			Spider	0.73 ± 0.07	0.20 ± 0.07	0.08 ± 0.04	5
			Ladybeetle	0.82 ± 0.01	0.09 ± 0.01	0.09 ± 0.01	3

		Ripening	All	0.92 ± 0.02	0.05 ± 0.01	0.02 ± 0.01	5
			Spider	0.85 ± 0.04	0.11 ± 0.03	0.05 ± 0.03	4
			Ladybeetle	0.94 ± 0.01	0.04 ± 0.01	0.02 ± 0.01	5
	Conventional	Tillering	All	0.47 ± 0.07	0.15 ± 0.02	0.38 ± 0.05	7
			Spider	0.48 ± 0.10	0.19 ± 0.03	0.33 ± 0.08	7
			Ladybeetle	0.83 ± 0.02	0.07 ± 0.01	0.10 ± 0.01	4
		Flowering	All	0.90 ± 0.03	0.07 ± 0.02	0.02 ± 0.01	6
			Spider	0.87 ± 0.06	0.10 ± 0.04	0.03 ± 0.02	6
			Ladybeetle	0.86 ± 0.03	0.07 ± 0.01	0.07 ± 0.02	2
		Ripening	All	0.95 ± 0.01	0.04 ± 0.01	0.01 ± 0.01	7
			Spider	0.93 ± 0.05	0.06 ± 0.04	0.01 ± 0.01	2
			Ladybeetle	0.94 ± 0.01	0.04 ± 0.01	0.02 ± 0.01	5
2019	Organic	Tillering	All	0.25 ± 0.08	0.19 ± 0.06	0.55 ± 0.06	7
			Spider	0.31 ± 0.10	0.15 ± 0.06	0.54 ± 0.09	7
			Ladybeetle	0.85 ± 0.04	0.08 ± 0.01	0.07 ± 0.03	3
		Flowering	All	0.74 ± 0.12	0.20 ± 0.11	0.06 ± 0.01	7
			Spider	0.77 ± 0.15	0.18 ± 0.14	0.05 ± 0.02	6
			Ladybeetle	0.87 ± 0.02	0.07 ± 0.01	0.06 ± 0.02	3
		Ripening	All	0.79 ± 0.16	0.19 ± 0.16	0.02 ± 0.01	5
			Spider	0.78 ± 0.17	0.19 ± 0.16	0.03 ± 0.01	5
			Ladybeetle	0.94 ± 0.01	0.04 ± 0.01	0.02 ± 0.01	5
	Conventional	Tillering	All	0.37 ± 0.04	0.17 ± 0.04	0.46 ± 0.06	7
			Spider	0.41 ± 0.06	0.17 ± 0.05	0.42 ± 0.08	7
			Ladybeetle	0.84 ± 0.01	0.07 ± 0.01	0.09 ± 0.01	2
		Flowering	All	0.89 ± 0.02	0.08 ± 0.02	0.03 ± 0.01	7
			Spider	0.91 ± 0.02	0.06 ± 0.02	0.02 ± 0.01	7
			Ladybeetle	0.89 ± 0.01	0.06 ± 0.01	0.05 ± 0.01	6
		Ripening	All	0.95 ± 0.01	0.05 ± 0.01	0.01 ± 0.01	5
			Spider	0.94 ± 0.02	0.05 ± 0.02	0.01 ± 0.01	5
			Ladybeetle	0.95 ± 0.01	0.04 ± 0.01	0.02 ± 0.01	3

Table S3. The relative abundance of the major families/genera in rice herbivore guild at the flowering and ripening stages in the three study years. Samples were pooled across the replicate farms.

28 (a) Flowering stage

Family/Genus	Year 2017	Year 2018	Year 2019
Cicadellidae/Nephotettix	7.6%	22.5%	69.7%
Delphacidae/Nilaparvata	88.2%	71.9%	25.4%
Lygaeidae/Pachybrachius	NA	0.8%	1.3%
Pentatomidae/Scotinophara	0.8%	2.9%	0.8%
Others	3.4%	1.9%	2.8%
Total	100%	100%	100%

30 (b) Ripening stage

Family/Genus	Year 2017	Year 2018	Year 2019
Cicadellidae/Nephotettix	69.4%	74.9%	83.5%
Delphacidae/Nilaparvata	28.9%	13.4%	6.2%
Lygaeidae/Pachybrachius	NA	0.2%	4.1%
Pentatomidae/Scotinophara	1.7%	10.4%	4.5%
Others	NA	1.1%	1.7%
	100%	100%	100%

Figure S1. The proportions (mean \pm SE) of prey sources (rice herbivores, tourist herbivores, detritivores) consumed in the diet of predators in organic and conventional rice farms over crop stages in each study year: (a), (d), and (g) indicate all predators as a whole feeding guild; (b), (e), and (h) indicate spiders; (c), (f), and (i) indicate ladybeetles. The proportions were computed from the Bayesian posterior means of replicate farms.

Figure S2. Daily mean temperature and precipitation of the study sites during the rice growth season (April to July) of the three study years. Observation data from the closest local weather station (Yuanli station) to the study farms were retrieved from the Central Weather Bureau Observation Data Inquire System (https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp).