

目录 CONTENTS -

项目概述

Project Overview

实验结果

Experiment results

01

项目概述 Project Overview

项目概述

生成对抗网络(GAN)

Generative adversarial networks. 由生成器(Generator)和鉴别器 (Discriminator)组成。 二者通过一个对抗式的过程进行训练。直至生成器可以生成足以"以假乱真"的图片。

项目概述

图像生成

采用GAN及其变种网络,对图片内容的属性进行转换。例如从分割图像或手绘图变为实景图,低像素图像的复原,改变图像风格等。

- [1] Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[J]. arXiv preprint, 2017.
- [2] Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[J]. arXiv preprint arXiv:1703.10593, 2017.
- [3] Isola P, Zhu J Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks[J]. arXiv preprint, 2017.

项目概述

StarGAN

与传统的GAN不同,StarGAN只使用一个生成器,使图片从一种属性转换为多种属性,进行多域图片转换。

[1] Choi Y, Choi M, Kim M, et al. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation[J]. arXiv preprint arXiv:1711.09020, 2017.

02 算法流程 Algorithm flow

Algorithm flow

生成器 (Generator)

输入:图像+目标转换属性

输出:伪造的图像 (Fake Image)

$$\mathcal{L}_{rec} = \mathbb{E}_{x,c,c'}[||x - G(G(x,c),c')||_1],$$

Part	$Input \rightarrow Output \ Shape$	Layer Information		
Down-sampling	$(h, w, 3 + n_c) \to (h, w, 64)$	CONV-(N64, K7x7, S1, P3), IN, ReLU		
	$(h,w,64) \rightarrow (\tfrac{h}{2},\tfrac{w}{2},128)$	CONV-(N128, K4x4, S2, P1), IN, ReLU		
	$(\tfrac{h}{2},\tfrac{w}{2},128) \to (\tfrac{h}{4},\tfrac{w}{4},256)$	CONV-(N256, K4x4, S2, P1), IN, ReLU		
Bottleneck	$(\frac{h}{4}, \frac{w}{4}, 256) \rightarrow (\frac{h}{4}, \frac{w}{4}, 256)$	Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU		
	$(\tfrac{h}{4},\tfrac{w}{4},256) \to (\tfrac{h}{4},\tfrac{w}{4},256)$	Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU		
	$(\tfrac{h}{4},\tfrac{w}{4},256) \to (\tfrac{h}{4},\tfrac{w}{4},256)$	Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU		
	$(\tfrac{h}{4},\tfrac{w}{4},256) \to (\tfrac{h}{4},\tfrac{w}{4},256)$	Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU		
	$(\tfrac{h}{4},\tfrac{w}{4},256) \to (\tfrac{h}{4},\tfrac{w}{4},256)$	Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU		
	$(\tfrac{h}{4},\tfrac{w}{4},256) \to (\tfrac{h}{4},\tfrac{w}{4},256)$	Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU		
Up-sampling	$(\frac{h}{4}, \frac{w}{4}, 256) \rightarrow (\frac{h}{2}, \frac{w}{2}, 128)$	DECONV-(N128, K4x4, S2, P1), IN, ReLU		
	$(\tfrac{h}{2},\tfrac{w}{2},128) \rightarrow (h,w,64)$	DECONV-(N64, K4x4, S2, P1), IN, ReLU		
	$(h,w,64) \rightarrow (h,w,3)$	CONV-(N3, K7x7, S1, P3), Tanh		

生成器 (Generator)

输入:图像+目标转换属性

输出:伪造的图像 (Fake Image

判别器 (Discriminator)

输入:真实图像 or 伪造图像

输出:

- ①图像是真实图像的概率 (Real or Fake)
- ②图像的分类

$$\mathcal{L}_{adv} = \mathbb{E}_{x} \left[\log D_{src}(x) \right] + \\ \mathbb{E}_{x,c} \left[\log \left(1 - D_{src}(G(x,c)) \right], \right]$$
$$\mathcal{L}_{cls}^{r} = \mathbb{E}_{x,c'} \left[-\log D_{cls}(c'|x) \right],$$

Layer	$Input \rightarrow Output \ Shape$	Layer Information	
Input Layer	$(h,w,3) \to (\tfrac{h}{2},\tfrac{w}{2},64)$	CONV-(N64, K4x4, S2, P1), Leaky ReLU	
Hidden Layer	$(\tfrac{h}{2}, \tfrac{w}{2}, 64) \rightarrow (\tfrac{h}{4}, \tfrac{w}{4}, 128)$	CONV-(N128, K4x4, S2, P1), Leaky ReLU	
Hidden Layer	$(\tfrac{h}{4}, \tfrac{w}{4}, 128) \to (\tfrac{h}{8}, \tfrac{w}{8}, 256)$	CONV-(N256, K4x4, S2, P1), Leaky ReLU	
Hidden Layer	$(\tfrac{h}{8},\tfrac{w}{8},256) \rightarrow (\tfrac{h}{16},\tfrac{w}{16},512)$	CONV-(N512, K4x4, S2, P1), Leaky ReLU	
Hidden Layer	$\left(\tfrac{h}{16},\tfrac{w}{16},512\right) \rightarrow \left(\tfrac{h}{32},\tfrac{w}{32},1024\right)$	CONV-(N1024, K4x4, S2, P1), Leaky ReLU	
Hidden Layer	$(\tfrac{h}{32},\tfrac{w}{32},1024) \rightarrow (\tfrac{h}{64},\tfrac{w}{64},2048)$	CONV-(N2048, K4x4, S2, P1), Leaky ReLU	
Output Layer (D_{src})	$(\tfrac{h}{64},\tfrac{w}{64},2048) \rightarrow (\tfrac{h}{64},\tfrac{w}{64},1)$	CONV-(N1, K3x3, S1, P1)	
Output Layer (D_{cls})	$(\frac{h}{64},\frac{w}{64},2048)\rightarrow (1,1,n_d)$	CONV-(N(n_d), K $\frac{h}{64}$ x $\frac{w}{64}$, S1, P0)	

判别器 (Discriminator)

输入:真实图像 or 伪造图像

输出:

①图像是真实图像的概率 (Real or Fake)

②图像的分类

整体流程图

$$\mathcal{L}_D = -\mathcal{L}_{adv} + \lambda_{cls} \, \mathcal{L}_{cls}^r,$$

$$\mathcal{L}_G = \mathcal{L}_{adv} + \lambda_{cls} \, \mathcal{L}_{cls}^f + \lambda_{rec} \, \mathcal{L}_{rec},$$

- ① 头发颜色
- ②眼睛转换
- ③表情转换
- ④动漫与素描转换

实验结果

① 头发颜色转换

输入图像	黑发	金发	棕发	改变性别	变老
A SO E	35	30	3	J.	20
96	75			6	90
		e a			
9	900	9	19	T	

① 头发颜色转换

输入图像	黑发	金发	棕发	变老	改变性别
1	(F. 3)	(A)	(F)		1
		(2)			
The state of the s		(20)			Con and and and and and and and and and an
	9		9		

① 头发颜色转换

② 眼睛转换

② 眼睛转换

训练数据集:celebA

输入图像 单眼皮 双眼皮 闭眼

实验结果

③表情转换

训练数据集:CK+

③ 表情转换

训练数据集:CK+

惊讶

④动漫与素描的转换

训练数据集:自制数据集

来源: https://www.anime-planet.com

数量:90000

预处理得到人物的素描图

训练:80000

测试:10000

④动漫与素描的转换

训练数据集:自制数据集

④动漫与素描的转换

训练数据集:自制数据集

④动漫与素描的转换

训练数据集:自制数据集

04 项目总结 Project summary

项目总结

- StarGAN: 使用单一生成器和单一鉴别器进行多域图像转换
- 项目中存在的问题: ①缺少训练数据集 ②训练时间长
- 未来展望: ① 制定适合不同训练数据集的目标函数
 - ② 调参 (调整不同目标函数的权重)

谢谢观看

Thanks for watching

于遨波 陈志鸿