MYSORE COLLEGE OF ENGINEERING AND MANAGEMENT

(Affiliated to VTU, Belagavi, Approved by AICTE, New Delhi and Govt. of Karnataka) 1072, T. Narasipura Road, Near Big Banyan Tree, Chikkahalli, Mysore-570028

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (ACADEMIC YEAR 2023-24)

RECORD BOOK

SUBJECT: INTERNET OF THINGS
SUB CODE: 18CS81

SEMESTER: VIII

As per Outcome Based Education (OBE)

And

Choice Based Credit System (CBCS)

(Effective from the academic year 2018 -2019)

Name	: .	•••	•••	• • •	• • •	• •	• •	• •	••	••	•	• •	••	• •	• •	••	•	• •	•	• •	•	• •	•	•	••	•	••	•
USN:	•••	• • •	•••	•••					•	•••	••		•			•						•	• •				•	••

MYSORE COLLEGE OF ENGINEERING AND MANAGEMENT

(Affiliated to VTU, Belagavi, Approved by AICTE, New Delhi and Govt. of Karnataka) 1072, T. Narasipura Road, Near Big Banyan Tree, Chikkahalli, Mysore-570028

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CERTIFICATE

This is certify that Mr./Ms./Mrs
Bearing University Seat Number
Has satisfactorily completed the Laboratory Experiments in
practical
In the Semester of B.E course, during the academic year 2023-
2024 as prescribed by the Visvesvaraya technological University, Belgaum.

Name & Signature of the Staff

Signature of the HOD

INDEX

Sl.No.	Experiments	Page No.	
1	Program 1: Transmit a string using UART		
2	Program 2 : Point-to-Point communication of two		
2	Motes over the radio frequency		
3	Program 3: Multi-point to single point communication		
	over the radio frequency LAN (Sub-netting)		
4	Program 4: I2C protocol study		
5	Program 5 : Reading Temperature and Relative		
	Humidity value from the sensor		

NODE MCU Pin Diagram

Expt-1

Aim: Transmit a string using UART

```
int incomingByte = 0; // for incoming serial data
void setup() {
                            // opens serial port, sets data rate to 9600 bps
    Serial.begin(9600);
}
void loop() {
    // send data only when you receive data:
    if (Serial.available() > 0) {
       // read the incoming byte:
       incomingByte = Serial.read();
       // say what you got:
       Serial.print("I received: ");
        Serial.println(incomingByte, HEX);
    }
}
```

Expt - 2

AIM: Point-to-Point communication of two Motes over the radio frequency.

```
#include <ESP8266WiFi.h>
// Replace these with your WiFi network settings
const char* hotspot = "INSPIRON15R 3661"; //replace this with your WiFi network name
const char* password = "csedeptbjp"; //replace this with your WiFi network password
void setup()
{
 delay(1000);
 Serial.begin(115200);
 WiFi.begin(hotspot, password);
 Serial.println();
 Serial.print("Connecting");
 while (WiFi.status() != WL_CONNECTED)
 delay(500);
 Serial.print(".");
 Serial.println("success!");
 Serial.print("IP Address is: ");
 Serial.println(WiFi.localIP());
}
void loop() {
}
```

Expt-3

AIM: Multi-point to single point communication of Motes over the radio frequency LAN (Sub-netting).

Circuit Diagram

ESP8266 Server Setup

ESP8266 Client (Station)


```
// Remove the password parameter, if you want the AP (Access Point) to be open
 WiFi.softAP(ssid, password);
 IPAddress IP = WiFi.softAPIP();
 Serial.print("AP IP address: ");
 Serial.println(IP);
 server.on("/temperature", HTTP_GET, [](AsyncWebServerRequest *request){
 request->send_P(200, "text/plain", readTemp().c_str());
 });
 server.on("/humidity", HTTP_GET, [](AsyncWebServerRequest *request){
 request->send_P(200, "text/plain", readHumi().c_str());
 server.on("/pressure", HTTP GET, [](AsyncWebServerRequest *request){
 request->send_P(200, "text/plain", readPres().c_str());
 });
 bool status;
 // default settings
 // (you can also pass in a Wire library object like &Wire2)
 status = bme.begin(0x76);
 if (!status) {
 Serial.println("Could not find a valid BME280 sensor, check wiring!");
  while (1);
 // Start serverserver.begin();
void loop(){
}
```

Expt-4

AIM: I2C protocol study

Circuit Diagram


```
void setup()
{
    pinMode(D2, OUTPUT); // Initialize the LED pin as an output
}
// the loop function runs over and over again forever
void loop() {
    digitalWrite(D2, LOW); // Turn the LED on (Note that LOW is the voltage level
    // but actually the LED is on; this is because
    // it is active low on the ESP-01)
    delay(2000); // Wait for a second
    digitalWrite(D2, HIGH); // Turn the LED off by making the voltage HIGH
    delay(2000); // Wait for two seconds (to demonstrate the active low LED)
}
```

Expt-5

AIM: Reading Temperature and Relative Humidity value

from the sensor

Circuit Diagram


```
#include "DHT.h" // including the library of DHT11 temperature and humidity sensor
#define DHTTYPE DHT11 // DHT 11
#define dht_dpin 0
DHT dht(dht_dpin, DHTTYPE);
void setup(void)
{
 dht.begin();
 Serial.begin(9600);
 Serial.println("Humidity and temperature\n\n");
 delay(700);
}
void loop() {
 float h = dht.readHumidity();
  float t = dht.readTemperature();
 Serial.print("Current humidity = ");
 Serial.print(h);
 Serial.print("% ");
 Serial.print("temperature = ");
 Serial.print(t);
 Serial.println("C ");
 delay(800);
}
```