Teoría de la Detección de Señales

Manuel Torres Acosta

Índice

Tarea	1
Situación original	2
Misma sensibilidad, distinta regla de decisión	4
Misma regla de decisión, distinta sensibilidad	5
Tarea voluntaria	6

Tarea

La tarea de ésta semana consiste en ver cómo la variación de determinados parámetros del observador modifica su patrón de respuesta en una tarea de detección de señales.

Situación original

Aplicamos el código con los parámetros dados en clase $X_c = 2$ y d' = 1. En primer lugar, generamos los datos de respuesta según las especificaciones.

```
Pa < -0.15866; Pe < -1 - Pa; Pfa < -0.023; Prc < -1 - Pfa
Za \leftarrow qnorm(Pa, mean = 0, sd = 1)
Ze \leftarrow qnorm(Pe, mean = 0,sd = 1)
Zfa \leftarrow qnorm(Pfa, mean = 0, sd = 1)
Zrc \leftarrow qnorm(Prc, mean = 0, sd = 1)
dPrima <- Za - Zfa
C \leftarrow -1 / 2 * (Za + Zfa) #Observador ideal
beta <- exp (dPrima ★ C)
GeneraDatos <- function(meanR, meanS,</pre>
                            zFrom = -5, zTo = 5, zBy = 0.01) {
  Z <- seq(from = zFrom,
            to = zTo,
            by = zBy)
  df <- data.frame(</pre>
    Z = Z
    Zacum = pnorm(Z),
    Zden0 = dnorm(Z, mean = meanR, sd = 1),
    Zden1 = dnorm(Z, mean = meanS, sd = 1)
  df <- round(df, 5)
  colnames(df) <- c("Z", "F(X)", "f(x/r)", "f(x/s)")
  return (df)
}
df <- GeneraDatos (meanR = 0,</pre>
                     meanS = 0 + dPrima)
#Encontramos el valor de Z asociado a los valores
#f(x/s) y f(x/r) que hacen que la operacion
\#f(x/s) / f(x/r) se aproxime mas a beta
Temp \leftarrow df(x/s) / df(x/r)
Xc <- df$\frac{$\text{Z}[\text{which}(\text{abs}(\text{Temp} - \text{beta}) == \text{min}(\text{abs}(\text{Temp} - \text{beta}),</pre>
                                                na.rm = TRUE))
```

```
DatosGrafico <- df[c("Z", "f(x/r)", "f(x/s)")]
DatosGrafico <- melt(DatosGrafico, id.vars = "Z")

ggplot(DatosGrafico, aes(x = Z, y = value, colour = variable)) +
   geom_line(aes(colour = variable)) +
   geom_vline(xintercept = Xc) +
   theme(text = element_text(size = PlotFont))</pre>
```


En éste caso tenemos un observador conservador, es decir, tiende a dar respuesta cuando está seguro de que está presente la señal.

$$P_a = 0.15866, P_e = 0.84134, P_{fa} = 0.023, P_{rc} = 0.977$$
 $X_c = 2, d' = 0.9954129$

Misma sensibilidad, distinta regla de decisión

```
dPrima <- 0.9954129

df <- GeneraDatos(meanR = 0, meanS = 0 + dPrima)

Xc <- 0.7

Pa <- 1 - pnorm(Xc, mean = dPrima, sd = 1)
Pe <- pnorm(Xc, mean = dPrima, sd = 1)
Pfa <- 1 - pnorm(Xc, mean = 0, sd = 1)
Prc <- pnorm(Xc, mean = 0, sd = 1)

DatosGrafico <- df[c("Z", "f(x/r)", "f(x/s)")]
DatosGrafico <- melt(DatosGrafico, id.vars = "Z")

ggplot(DatosGrafico, aes(x = Z, y = value, colour = variable)) +
    geom_line(aes(colour = variable)) +
    geom_vline(xintercept = Xc) +
    theme(text = element_text(size = PlotFont))</pre>
```


En éste caso el observador tiende a dar respuesta más que el anterior. Por tanto, tiene más aciertos y menos omisiones (errores), pero también más falsas alarmas y menos rechazos correctos, presenta por tanto un criterio más liberal.

$$P_a = 0.6161608, P_e = 0.3838392, P_{fa} = 0.2419637, P_{rc} = 0.7580363$$

$$X_c = 0.7, d' = 0.9954129$$

Misma regla de decisión, distinta sensibilidad

```
dPrima <- 2.54

df <- GeneraDatos(meanR = 0, meanS = 0 + dPrima)

Xc <- 2

Pa <- 1 - pnorm(Xc, mean = dPrima, sd = 1)
Pe <- pnorm(Xc, mean = dPrima, sd = 1)
Pfa <- 1 - pnorm(Xc, mean = 0, sd = 1)
Prc <- pnorm(Xc, mean = 0, sd = 1)

DatosGrafico <- df[c("Z", "f(x/r)", "f(x/s)")]
DatosGrafico <- melt(DatosGrafico, id.vars = "Z")

ggplot(DatosGrafico, aes(x = Z, y = value, colour = variable)) +
   geom_line(aes(colour = variable)) +
   geom_vline(xintercept = Xc) +
   theme(text = element_text(size = PlotFont))</pre>
```


En éste caso el observador discrimina mucho mejor entre la señal y el ruido, por lo que aumentan sus aciertos y rechazos correctos. Al mantener un criterio de respuesta conservador reduce las falsas alarmas con respecto al observador ideal, pero comete más omisiones.

$$P_a = 0.7054015$$
, $P_e = 0.2945985$, $P_{fa} = 0.0227501$, $P_{rc} = 0.9772499$ $X_c = 2$, $d' = 2.54$

Tarea voluntaria

Representamos los datos para un participante que consigue 900 aciertos y 300 falsas alarmas.

```
Pa <- 900 / 1000 ; Pe <- 1 - Pa
Pfa <- 300 / 1000 ; Prc <- 1 - Pfa
Za \leftarrow qnorm(Pa, mean = 0, sd = 1)
Ze \leftarrow qnorm(Pe, mean = 0, sd = 1)
Zfa \leftarrow qnorm(Pfa, mean = 0, sd = 1)
Zrc \leftarrow qnorm(Prc, mean = 0, sd = 1)
dPrima <- Za - Zfa
C \leftarrow -1 / 2 * (Za + Zfa) #Observador ideal
beta <- exp(dPrima ★ C)
df <- GeneraDatos (meanR = 0,</pre>
                      meanS = 0 + dPrima)
Temp \leftarrow df(x/s) / df(x/r)
Xc <- df$\frac{$\text{Z}[\text{which}(\text{abs}(\text{Temp} - \text{beta}) == \text{min}(\text{abs}(\text{Temp} - \text{beta}),</pre>
                                                   na.rm = TRUE))
DatosGrafico \leftarrow df[c("Z", "f(x/r)", "f(x/s)")]
DatosGrafico <- melt (DatosGrafico, id.vars = "Z")</pre>
ggplot (DatosGrafico, aes (x = Z, y = value, colour = variable)) +
  geom_line(aes(colour = variable)) +
  geom_vline(xintercept = Xc) +
  theme(text = element_text(size = PlotFont))
  0.4-
  0.3-
                                                                           variable
value value
  0.1-
  0.0
                      -2.5
                                      0.0
Z
      -5.0
                                                     2.5
                                                                     5.0
```

$$X_c = 0.52, d' = 1.8059521$$

 $P_a = 0.9$, $P_e = 0.1$, $P_{fa} = 0.3$, $P_{rc} = 0.7$