Chapter – 3 and 4: Coal, Petroleum and Combustion of Fuels

- People light candles and diyas wax and oil burn
- Wax and oil cannot be recovered back non-reversible chemical reaction
- Many other materials burn heat and light

Combustion

- Substance burns in air heat and light produced
- Conditions for combustion
 - o Combustible substance
 - Substance catch fire easily **fuels**
 - Primary condition
 - All fuels petrol, kerosene, LPG, CNG
 - Can be solid, liquid or gas
 - Substance does not burn **non-combustible**
 - o Supporter of combustion
 - Substance helps in combustion
 - Combustion not possible without supporter
 - Most cases oxygen
 - o Ignition temperature
 - Minimum temperature substance starts burning
 - Nothing catches fire below ignition temperature
 - Piece of wood low ignition than log of wood
- Light a candle cover it with glass candle goes off after some time oxygen used air supply cut-
- Light a cone of paper burn easily fill it with water and then light it does not burn easily water increases ignition temperature

Inflammable substances

- Some substance catch fire easily and rapidly
- Low ignition temperature littlest spark can ignite temperature store carefully

Types of combustion

- Depending on rate of combustion
 - Slow combustion
 - Moderate speed
 - Burning of coal, wood, candle
 - Fuel does not burn completely produce smoke
 - Digestion slow combustion 37⁰ C
 - o Rapid combustion
 - Burns short span of time almost complete combustion lots of heat and light
 - LPG in gas stove, oxyhydrogen flame in welding
 - o Spontaneous combustion
 - Catches fire as soon as ignition temperature reached

- White phosphorus burns at 35° C and above without heat source
- o Explosion -
 - Takes place suddenly evolution of heat, light, sound
 - Large amount of gas evolved
 - Fire crackers
- Depending on supporters of combustion
 - o Complete combustion
 - Sufficient oxygen substance burns completely
 - Produce carbon dioxide, water (vapour), heat and light blue flame
 - Incomplete combustion
 - Insufficient oxygen substance do not burn completely
 - Produce yellow flame carbon monoxide, soot (residue left over) pollute environment

Flame

- Different materials burn with different colour flames
- Candle yellow flame with smoke LPG (liquefied petroleum gas) blue flame
- Fuel ignited catches fire region it burns **flame**
- Colour depend on chemical substance burning or gases released
- All substance do not burn with flame
- Substance vapourise produce flame
- Matchstick wood gas released yellow flame
- Light a candle wax melts vapour rises upwards through wick (thread) yellow flame
- Charcoal so not vapourise no flame only glow

Parts of a candle flame

- Non-luminous zone
 - Outermost part
 - Complete combustion of carbon
 - Carbon dioxide and water vapour produced
 - Carbon dioxide no light added to flame
 - Hottest part very little light
 - o Flame colour blue
- Luminous zone
 - o Middle part
 - o This zone yellow colour of the flame
 - o Partial or incomplete combustion limited supply of oxygen

- Unburnt carbon particles produce smoke (soot)
- Not very hot
- Dark zone
 - Close to the wick
 - Unburnt carbon particles present here
 - o Coldest part presence of wax vapour
 - Innermost part
 - No oxygen wax does not burn
- Blue zone
 - o Base of the flame
 - o Burning of carbon monoxide

Fuel and its types

- Many substances wood, coal, petrol, diesel, charcoal, kerosene produce heat and light **fuel**
- Contains carbon and hydrogen
- Sufficient supply of oxygen lots of heat complete combustion
- Efficiency measured in **calorific value** amount of heat energy produced on complete combustion of a unit mass of fuel
- Unit kilojoules per kilogram (kJ/kg)
- Classification on the basis of source
 - Natural fuels
 - Primary fuels
 - Occur in nature used in same form
 - Coal, wood
 - Processed fuels
 - Secondary fuels
 - Some fuels cannot be used in raw form need to be processed chemical methods
 - Petrol, diesel, kerosene
- Classification on the basis of physical state
 - Solid fuels
 - Occur in solid state room temperature
 - Coal, wood, coke, paraffin wax (solid wax)
 - Produce smoke leave ash as residue
 - Liquid fuels
 - Occur in liquid state room temperature
 - Kerosene, spirit, petrol, diesel
 - No residue
 - Lower ignition temperature
 - Gaseous fuels
 - Occur in gaseous state room temperature
 - Compressed Natural Gas (CNG), coal gas, biogas
 - Very clean no smoke or ash
- Advantages of liquid or gas over solid fuels
 - o High calorific value

- o Low ignition temperature
- o **Burn completely** no residue little or no pollution
- Convenient to store solid fuels require lots of space
- o **Easy transportation** pipelines solid fuels are expensive to transport
- Rate of combustion can be controlled

Fossil fuels

- Formed by decomposition of remains of organisms buried deep inside earth over millions of years
- 1000s of years formation exhaustible limited quantity
- Imp. fossil fuels
 - o Coal
 - Made of carbon, hydrogen, oxygen
 - Found inside earth form of deposits
 - High temperature and pressure
 - Plants, animals die gets buried inside earth converted into coal over hundreds of thousands of years

Formation of coal

- Started 300 million years ago
- Plants, animals forest died and buried due to cyclone, earthquake, other natural disasters
- High temperature, high pressure, absence of air organic matter decompose
 oxygen, hydrogen removed leaving carbon
- High temperature, pressure carbon turned to stone-like residue **coal**
- This process carbonization
- Coal occurs in 3 forms
 - Anthracite
 - o Highest calorific value
 - Cleanest form 90 % carbon
 - Hard coal
 - Great depths 6000 metres

• Bituminous coal

- o 75 % carbon
- Used for domestic purpose soft coal
- \circ Depths 3000-6000 metres

• Lignite

- o 60-70 % carbon
- Catches fire easily brown colour
- o Causes pollution contain Sulphur
- Source lots of other compounds and fuels
- Obtained by destructive distillation heated in absence of air at 1000⁰ C
- Products of destructive distillation
 - Coal tar
 - o Black thick drops during distillation

- o Source imp. compounds benzene, phenol, naphthalene
- O Used in synthetic dyes, paints, explosives, plastic

Coal gas

- o Contain hydrogen, methane, carbon monoxide, other gases
- Used as a fuel many industries near coal processing plants

Coke

- o Residue from distillation
- Non-polluting fuel
- Used for production of gaseous fuels
 - $C + H_2O \rightarrow CO + H_2$ (water gas)
 - $2C + O_2 + 4N_2 \rightarrow 2CO + 4N_2$ (producer gas)
- o Almost purest form of carbon
- Tough and porous
- Used in manufacturing of steel and extraction of many metals

• Ammonium compounds

- o Mixture of compounds
- Form ammoniacal liquor dissolved in water used in manufacture of fertilisers

o Petroleum

- Petra rock oleum oil
- Found in rocks mixture of solid, liquid, gaseous hydrocarbons

Formation of petroleum

- Formed from remains of dead sea animals
- Bodies got covered in layers of sand
- Over 1000s of years bodies converted to liquid **petroleum** absence of air, high temperature, pressure
- Dark, viscous, foul-smelling liquid crude oil
- Many useful compounds obtained by fractional distillation separation of substances – different boiling points
- This process refining of petroleum
- Products
 - Petroleum gas
 - o Liquefied Petroleum Gas (LPG) most common domestic fuel
 - Very less air pollution compared to other fuels

o LPG – used to run vehicles

• Gasoline

- o Petrol obtained from it
- Used as fuel in motors
- Also used for dry cleaning clothes

Kerosene

- o Commonly used as domestic fuel
- Also used in jet engines
- o Lighting petromax (lantern) in villages absence of electricity

• Light oil

- o Diesel obtained from it
- Used as fuel in motors
- Also used in generators produce electricity

Heavy oil

- O Used in production of various chemicals
- Also used to heat boilers and furnaces

Residue

o Paraffin wax, lubricating oil, asphalt – derived from residue

Natural gas

- Fossil fuel stored under high pressure as Compressed Natural Gas (CNG)
- Contains mainly methane (95 %)
- Occurs deep under earth alone or with oil
- Sometimes obtained as by-product mining of petroleum
- Advantages
 - Higher calorific value than other fuels
 - No toxic gas, smoke on burning better fuel for transport vehicles
 - \circ CH₄ + 2O₂ \rightarrow CO₂ + 2H₂O
 - Burns readily to produce heat
 - Easy to transport direct pipelines

Characteristics of an ideal fuel

- Choice of efficient fuel depend on purpose household, vehicles, industries
- Imp. properties ideal fuel –

- o High calorific value
- o Moderate ignition temperature
- No pollution neither harmful gases nor any residue
- o Easily available and economical
- o Easy to transport and store
- o Burning rate moderate
- o Easy to handle

Pollution due to combustion of fuels

- All fuels including fossil fuels produce carbon dioxide and water vapour on combustion
- No fuel 100 % pure produce other gases Sulphur dioxide, Nitrogen dioxide
- Insufficient supply of oxygen incomplete combustion produce Carbon monoxide highly toxic (poisonous)
- Carbon monoxide combines with haemoglobin stopping supply of oxygen poisoning can cause death
- Carbon dioxide released in atmosphere absorb infrared radiation raises temperature global warming
- Harmful gases combine with rain form acid rain soil and water pollution

Judicious use of fossil fuels

- Fossil fuels limited non-renewable cannot be used again
- Millions of years formation
- Advancement in technology increasing consumption
- Everyone's duty and responsibility use them wisely
- Non-conventional sources also available
- Solar, wind, ocean energy
- Wise use can be done through
 - o Preventing wastage in kitchen
 - Stove higher efficiency
 - Lighting only after all items ready use pressure cooker cover vessel while cooking
 - Clean stove regularly improve functioning
 - Use public transport
 - o Switch off electrical appliances when not in use