

Lab Objective

- Run standard U-Boot command
- Example of different U-Boot configurations
- Start GDB debugger in TF-A
- Example of TF-A modification for secure peripheral assignments

Linux command on the host

root@stm32mp1:/#

Linux command on the target

Enter U-Boot

wiki user guide

https://wiki.st.com/stm32mpu/index.php/U-Boot_overview

Open Terminal on Linux host and type;

minicom - D / dev/ttyACM0

Enter U-Boot by pressing any key at boot time of board

```
NAND: 0 MiB
MMC: STM32 SDMMC2: 0, STM32 SDMMC2: 1
In: serial
Out: serial
Err: serial
Net: eth0: ethernet@5800a000
Boot over mmc0!
Hit any key to stop autoboot: 0
STM32MP>
STM32MP>
STM32MP>
STM32MP>
STM32MP>
STM32MP>
STM32MP>
```


U-Boot standard commands

Show U-Boot standard commands:

help

Dump memory mapping

mmc part

```
STM32MP> mmc part
Partition Map for MMC device 0 -- Partition Type: EFI
        Start LBA
                        End LBA
Part
        Attributes
        Type GUID
        Partition GUID
                        0x00000221
                                         "fsbl1"
        attrs: 0x00000000000000000
                ebd0a0a2-b9e5-4433-87c0-68b6b72699c7
                8ef917d1-2c6f-4bd0-a5b2-331a19f91cb2
                                         "fsbl2"
        attrs: 0x00000000000000000
                ebd0a0a2-b9e5-4433-87c0-68b6b72699c7
               77877125-add0-4374-9e50-02cb591c9737
        0x00000422
                        0x00001421
                                         "ssbl"
        attrs: 0x00000000000000000
```

Read content of bootfs partition (partition 4)

ext2ls mmc 0:4

```
STM32MP> ext2ls mmc 0:4
<DIR>
            1024 .
<DIR>
            1024 ...
           12288 lost+found
<DIR>
         6569432 uImage
            1024 mmc0 str32mp157c-ed1 extlinux
<DIR>
           69558 stm32mp157c-dk2-a7-examples.dtb
           46180 splash.bmp
            1024 mmc0 stm32mp157c-dk2 extlinux
<DIR>
<DIR>
            1024 nor 0 stm32mp15/c-ev1 extlinux
           695:0 stm32mp157c-dk2.dtb
           74489 stm32mp157c-ev1-a7-examples.dtb
            1024 mmc1 stm32mp157c-ed1-optee extlinux
<DIR>
            1553 boot.scr.uima
<DIR>
            1024 mmc0 stm32mp157c-ev1-optee extlinux
            1024 mmc1 stm32mp157c-ed1 extlinux
<DIR>
<DIR>
            1024 mmc1_stm32mp157c-ev1-optee_extlinux
```


U-Boot - view board as usb mass storage of linux host

Set board as USB mass storage (use USB OTG type cable to Linux host)

ums 0 mmc 0

STM32MP>
STM32MP> ums 0 mmc 0
UMS: LUN 0, dev 0, hwpart 0, sector 0x0, count 0x1dacc00
/

(Board is halted in mass storage mode)

Then on linux host you can view the SD card partitions

Isblk

U-Boot - view board as USB mass storage of linux host

Then on linux host can observe the SD card contents

mount

mount | grep bootfs

Is /dev/disk/by-partlabel/

Is /media/\$USER

Is /media/\$USER/bootfs

```
osboxes@osboxes:~$ mount | grep bootts
/dev/sdb4 on /media/osboxes/bootfs type ext4 (rw,nosuid,nodev,relatime,data=orde
red,uhelper=udisks2)
osboxes@osboxes:~$ ls -l /dev/disk/by-partlabel/
total 0
lrwxrwxrwx 1 root root 10 May 14 04:57 bootfs -> ../../sdb4
lrwxrwxrwx 1 root root 10 May 14 04:57 fsbl1 -> ../../sdb1
lrwxrwxrwx 1 root root 10 May 14 04:57 fsbl2 -> ../../sdb2
lrwxrwxrwx 1 root root 10 May 14 04:57 rootfs -> ../../sdb6
lrwxrwxrwx 1 root root 10 May 14 04:57 ssbl -> ../../sdb3
lrwxrwxrwx 1 root root 10 May 14 04:57 userfs -> ../../sdb7
lrwxrwxrwx 1 root root 10 May 14 04:57 vendorfs -> ../../sdb5
osboxes@osboxes:~$ ls /media/$USER
bootfs rootfs userfs vendorfs
osboxes@osboxes:~$ ls /media/$USER/bootfs
boot.scr.uimg
                                     nand0 stm32mp157c-ev1 extlinux
lost+found
                                     nor0-mmc1_stm32mp157c-ev1_extlinux
mmc0_stm32mp157a-dk1_extlinux
                                     nor0_stm32mp157c-ev1_extlinux
mmc0_stm32mp157a-dk1-optee_extlinux splash.bmp
                                     stm32mp157a-dk1.dtb
mmc0_stm32mp157c-dk2_extlinux
mmc0_stm32mp157c-dk2-optee_extlinux stm32mp157c-dk2-a7-examples.dtb
mmc0 stm32mp157c-ed1 extlinux
                                     stm32mp157c-dk2.dtb
```


U-Boot - update new splash screen

Set the board as usb mass storage (USB OTG type cable is connected to Linux host)

ums 0 mmc 0

Note: this should already be done from previous stage

Go to lab directory

cd \$HOME/Desktop/InputLabMaterial/Lab-BspCustomization/

Copy new splash screen file and synchronize storage

sudo cp splash.bmp/media/\$USER/bootfs/splash.bmp sync

Reboot the board ("Ctrl+C" closes the "ums 0 mmc 0" command)

reset

U-Boot - list Uboot environment variable

To see U-Boot all environment variables

printenv

To set U-Boot variable

setenv <variable_name> <variable_value>

Check the value of splashimage (the splash image load address)

printenv splashimage

U-Boot – observe kernel load address

Observe kernel load address

printenv kernel_addr_r

kernel_addr_r must be same as **load_address** in kernel building command line (reminded here) make ulmage vmlinux dtbs LOADADDR=**load_address**

U-Boot command to run the kernel

run bootcmd

STANDARD UBOOT (INFO)

Lab Boot Customization

U-Boot – how to modify kernel command line (information only)

- kernel command line can be modified via the file extlinux.conf on the board in directory
 - :/boot/mmc0_stm32mp157c-dk2_extlinux
- Kernel command line examples
- ✓ how to configure only one core: APPEND root=/dev/mmcblk0p6 rootwait rw console=ttySTM0,115200 maxcpus=0
- how to add dynamic debug or early debug: APPEND root=/dev/ mmcblk0p6 rootwait rw earlyprintk console=ttyS3,115200 loglevel=8 dyndbg="file drivers/pinctrl/* +p"

U-Boot – add new kernel configuration in extlinux.conf

In a Linux host terminal window

gedit \$HOME/Desktop/InputLabMaterial/Lab-BspCustomization/extlinux.conf &

Observe in extlinux.conf a new dtb configuration has been added in the following section:

LABEL stm32mp157c-dk2-iks01a2
KERNEL /ulmage
FDT /stm32mp157c-dk2-iks01a2.dtb
APPEND root=/dev/mmcblk0p6 rootwait rw console=ttySTM0,115200

This adds support for the X-NUCLEO-IKS01A2 - Motion MEMS and environmental sensor shield

U-Boot – add new kernel configuration in extlinux.conf

Set board as usb mass storage

STANDARD UBOOT (OPTIONAL)

ums 0 mmc 0

Open Linux host Terminal, Go to lab directory

cd \$HOME/Desktop/InputLabMaterial/Lab-BspCustomization/

Copy new kernel configuration to the board:

sudo cp extlinux.conf/media/\$USER/bootfs/mmc0_stm32mp157c-dk2_extlinux/extlinux.conf

Add new kernel configuration dtb to the board and synchronize storage:

```
sudo cp stm32mp157c-dk2-iks01a2.dtb /media/$USER/bootfs/sync
```

```
2mp157c-dk2_extlinux/extlinux.conf

/mmc0_stm32mp157c-dk2_extlinux/extlinux.conf

n 1 ms (762.7 KiB/s)

/mmc0_stm32mp157c-dk2_extlinux/../splash.bmp

to 3 ms (14.7 MiB/s)
```


Reboot target (black button)

Observe new kernel configuration choice

```
Helect the boot mode

1: stm32mp157c-dk2-sdcard

2: stm32mp157c-dk2-a7-examples-sdcard

3: stm32mp157c-dk2-n4-examples-sdcard

4: stm32mp157c-dk2-n4-examples-sdcard
```


INFORMATION ONLY

Lab Boot Customization

Modify partition size (information only)

Modify Offset in tsv file to modify size of partition (see tsv example below)

#Opt	ld	Name	Type	IP .	Offset	Binary
-	0x01	fsbl1-boot	Binary	none	0x0	tf-a-stm32mp157c-ev1-trusted.stm32
-	0x03	ssbl-boot	Binary	none	0x0	u-boot-stm32mp157c-ev1-trusted.stm32
Р	0x04	fsbl1	Binary	nor0	0x00000000	tf-a-stm32mp157c-ev1-trusted.stm32
Р	0x05	fsbl2	Binary	nor0	0x00040000	tf-a-stm32mp157c-ev1-trusted.stm32
Р	0x06	ssbl	Binary	nor0	0x00080000	u-boot-stm32mp157c-ev1-trusted.stm32
PE	0x20	logo	Binary	nor0	0x00280000	none
PE	0x10	empty	Binary	nor0	0x002C0000	none
Р	0x21	bootfs	System	mmc1	0x00080000	st-image-bootfs-openstlinux-weston-stm32mp1.ext4
Р	0x22	vendorfs	FileSystem	mmc1	0x04080000	st-image-vendorfs-openstlinux-weston-stm32mp1.ext4
Р	0x23	rootfs	FileSystem	mmc1	0x05080000	st-image-weston-openstlinux-weston-stm32mp1.ext4
Р	0x24	userfs	FileSystem	mmc1	0x33F00000	st-image-userfs-openstlinux-weston-stm32mp1.ext4

INFORMATION ONLY

Lab Boot Customization

Boot time optimization (information only)

It is possible to optimize U-Boot time removing/modifying boot device list

Following macros are defined

```
CONFIG_PREBOOT
BOOT_TARGET_DEVICES
CONFIG_EXTRA_ENV_SETTINGS
```

By default U-Boot with parse all devices in given order from BOOT_TARGET_DEVICES list. It will look for extlinux.conf if it exists.

In u-boot-2018.11/include/configs/stm32mp1.h

```
/* default order is eMMC (SDMMC 1)/ NAND / SDCARD (SDMMC 0) / SDMMC2 */
#define BOOT_TARGET_DEVICES(func) \
    func(MMC, mmc, 1) \
    func(UBIFS, ubifs, 0) \
    func(MMC, mmc, 0) \
    func(MMC, mmc, 2) \
    func(PXE, pxe, na)
```


You can apply patch to U-Boot to modify these macros and can force to boot directly from the device you want.

Boot time optimization (information only)

 Further information about methodology will delivered in end of June2019 in the wiki article called:

https://wiki.st.com/stm32mpu/wiki/How_to_optimize_the_boot_time

ST DEMO (OPTIONAL)

Lab Boot Customization

TF-A GDB Debug: configure debug

TF-A is pre-built (See wiki articles)

STM32MP1 Developer Package - TF-A File:TF-A.README.HOW TO.txt

Debug scripts are already installed in \$HOME/gdbscripts

Wiki user guide articles:

GDB

Setup.gdb.txt

Path_env.gdb

Modify debug configuration for TF-A in Setup.gdb

set \$debug_phase = 1 <-debug TF-A fw set \$debug_mode = 0 <- debug from reset set \$debug_trusted_bootchain = 0

TF-A Gdb Debug: start openOCD connection to JTAG

OpenOCD connects to the JTAG through STLink probe

Open a new Linux host terminal window and prepare the environment to launch OpenOCD:

cd /local/STM32MP15-Ecosystem-v1.0.0/Developer-Package/SDK

source ./environment-setup-cortexa7t2hf-neon-vfpv4-openstlinux_weston-linux-gnueabi

**\$OECORE_NATIVE_SYSROOT/usr/bin/openocd -s \$OECORE_NATIVE_SYSROOT/usr/share/openocd/scripts **-f ./sysroots/x86_64-openstlinux_weston_sdk-linux/usr/share/openocd/scripts/board/stm32mp15x_dk2.cfg

'\' character prevents command execution after new line (command is too long to fit on single line)

TF-A Gdb Debug: start GDB connection to OpenOCD

Open new terminal window for GDB

GDB will connect to OpenOCD

cd \$HOME/gdbscripts/

source /local/STM32MP15-Ecosystem-v1.0.0/Developer-Package/SDK/environment-setup-cortexa7t2hf-\neon-vfpv4-openstlinux_weston-linux-gnueabi

\$OECORE_NATIVE_SYSROOT/usr/bin/arm-openstlinux_weston-linux-gnueabi/arm-openstlinux_weston-\linux-gnueabi-gdb-x=\$HOME/gdbscripts/Setup.gdb

ST DEMO (OPTIONAL)

Lab Boot Customization

TF-A GDB Debug :GDB debugging

GDB shows A7 is stopped at the beginning of "bl2_entrypoint()"

For all the command look in wiki at https://wiki.st.com/stm32mpu/index.php/GDB_commands

TF-A Gdb Debug :GDB debugging

Set breakpoints:

hb bl2_main

```
(gdb) hb bl2_main
Hardware assisted breakpoint 8 at 0x2ffe1670: file bl2/bl2_main.c, line 32.
(gdb) info breakpoint
Num Type Disp Enb Address What
7 breakpoint keep y 0x2ffda000 bl2/aarch32/bl2_el3_entrypoint.S:19
8 hw breakpoint keep y 0x2ffe1670 in bl2_main at bl2/bl2_main.c:32
```

Continue execution to next breakpoint:

cont

```
(gdb) cont
Continuing.
stm32mp15x.cpu0 rev 5, partnum c07, arch f, variant 0, implementor 41

Breakpoint 8, bl2_main () at bl2/bl2_main.c:32
32 NOTICE("BL2: %s\n", version_string);
(gdb) ■
```


TF-A Gdb Debug :GDB debugging

See the call stack with back trace:

```
bt
```

```
(gdb) bt
#0 bl2_main () at bl2/bl2_main.c:32
#1 0x2ffda108 in bl2_entrypoint () at bl2/aarch32/bl2_el3_entrypoint.S:51
```

Exit gdb:

q

TF-A Configure Peripheral assignments in ETZPC (security)

ETZPC device tree

https://wiki.st.com/stm32mpu/index.php/ETZPC_device_tree_configuration

look for etzpc configuration in

tf-a-stm32mp-2.0-r0/arm-trusted-firmware-2.0/fdts/stm32mp157c-security.dtsi

firewall is configured according to

tf-a-stm32mp-2.0-r0/arm-trusted-firmware-2.0/include/dt-bindings/soc/st,stm32-etzpc.h

Possible protections:

DECPROT_S_RW 0x0 -> Read/write Secure
DECPROT_NS_R_S_W 0x1 -> Non secure read / Read/write Secure
DECPROT_MCU_ISOLATION 0x2 -> MCU access only
DECPROT_NS_RW 0x3 -> Non secure read/write

TF-A Configure secure assignments in ETZPC example I2C4

Table 92. Programmable options according to resource type

I2C4 config is by default secure

from RM0436 - rev1

Resource type	0b00 (secured)	0b01 (Write secured)	0b10 (MCU isolation)	0b11 (non-secured)	
1: Securable	Prog (default)	Prog	No	Prog	
2: MCU isolation	No	No	Prog	Prog (default)	
3: Securable and MCU Isolation	Prog	Prog	Prog	Prog (default)	

Table 93. DECPROT assignment

Index	decprot bits	IP	Bus	Default	Bus master	Туре	Attributes
0	DECPROT0[1:0]	STGENC	APB4	0b00	-	1	Securable
1	DECPROT0[3:2]	BKPSRAM	AHB5	0b00	-	1	Securable
2	DECPROT0[5:4]	IWDG1	APB5	0b00	-	1	Securable
3	DECPROT0[7:6]	USART1	APB5	0b00	-	1	Securable
4	DECPROT0[9:8]	SPI6	APB5	0b00	-	1	Securable
5	DECPROT0[11:10]	I2C4	APB5	0b00	-	1	Securable

TF-A Configure secure assignments in ETZPC example I2C4

If I2C4 config is let in secure configuration U-Boot would freeze while accessing to i2C4 clock

In tf-a-stm32mp-2.0-r0/arm-trusted-firmware-2.0/fdts/stm32mp157a-dk1.dts included by

tf-a-stm32mp-2.0-r0/arm-trusted-firmware-2.0/fdts/stm32mp157c-dk2.dts

I2C4 is set to unsecure by the device tree line

DECPROT(STM32MP1_ETZPC_I2C4_ID, DECPROT_NS_RW, DECPROT_UNLOCK)

