Special Types of Predictor

Special Types of Predictors

So far we have treated the predictors as variables being observed on a **continuous** and **ordinal** scale, and then included them in a multiple regression model in simple additive form.

We now investigate other forms of predictor terms, specifically

- 1. polynomial terms;
- 2. interactions;
- 3. factor predictors.

Polynomial terms

For any continuous, ordinal predictor x_1 , we may consider polynomial terms

$$x_1^2, x_1^3, \dots, x_1^k$$

for integer $k \geq 2$, or more generally x_1^{α} for some real value $\alpha \neq 0$.

Convention: for $k \ge 0$, if we include x_1^k , we should also include

$$x_1^2, x_1^3, \dots, x_1^{k-1}$$

in the model.

In R, we write

$$lm(y \sim x1+I(x1^2)+I(x1^3))$$

where I () means 'identity' (i.e. "compute this as it is written").

Interactions

For any continuous, ordinal predictors x_1 , an *interaction* term allows for the **modification** of the effect of x_1 on outcome when x_2 is included in the model.

An interaction between x_1 and x_2 is denoted

$$x_1.x_2$$
 or $x_1:x_2$

and can be interpreted literally as a multiplication of the two terms.

Note: this is not the same as dependence (or correlation) between x_1 and x_2 .

Convention: If we include an interaction $x_1 : x_2$, we should also include the "main effects" x_1 and x_2 .

For two continuous predictors, the model written

$$X_1 + X_2 + X_1 : X_2$$

means "main effects plus interaction"; in terms of the conditional mean, we may have

$$\mathbb{E}_{Y_i|\mathbf{X}}[Y_i|\mathbf{x}_i] = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_{12} x_{i1} \cdot x_{i2}$$

that is, a p = 4 parameter model.

Writing this model as

$$\mathbb{E}_{Y_i|\mathbf{X}}[Y_i|\mathbf{x}_i] = \beta_0 + (\beta_1 + \beta_{12}x_{i2})x_{i1} + \beta_2x_{i2}$$

we see that the contribution of x_{i1} in the model is incorporated in the term

$$\beta_1 + \beta_{12}x_{i2}$$

that is, the "pure" effect of x_{i1} is captured by β_1 , and then this is augmented by the additional contribution due to the presence of x_{i2} in the model, captured by β_{12} .

In R, we write

$$lm(y \sim x1+x2+x1:x2)$$

for the main effect plus interaction model. We may also write this model

$$lm(y \sim x1*x2)$$

Higher-order interactions: we may include multiple-term interactions

$$X_1: X_2: X_3$$
 $X_1: X_2: X_3: X_4$

etc.

Convention: a model that contains a multi-way interaction involving k predictors should also include all the **lower order** interactions including the same predictors, and the k main effects.

For example, if you include $X_1 : X_2 : X_3$ you should also include

- $X_1, X_2 \text{ and } X_3;$
- $X_1: X_2, X_1: X_3 \text{ and } X_2: X_3.$

In R, we write

$$lm(y \sim x1 * x2 * x3)$$

for the model

$$1 + X_1 + X_2 + X_3 + X_1 : X_2 + X_1 : X_3 + X_2 : X_3 + X_1 : X_2 : X_3$$

but we could also write (say)

$$lm(y \sim x1 * x2 + x3)$$

for the model

$$1 + X_1 + X_2 + X_3 + X_1 : X_2$$

and so on.

In R, we may also write

$$lm(y \sim (x1+x2+x3)^2)$$

for the model

$$1 + X_1 + X_2 + X_3 + X_1 : X_2 + X_1 : X_3 + X_2 : X_3$$

that includes all main effects and all two-way interactions.

Factor predictors

A *factor predictor* is a predictor that takes discrete values on a nominal (i.e. non-ordered) scale. We can consider these discrete values as "labels".

- University attended: McGill, UT, UBC, ...
- pain relief treatment: Tylenol, Advil, aspirin, ...
- therapy type: pharmacologic, behavioural, surgical, ...

The possible values that a factor can take are termed *levels*.

These are non-numeric quantities; we must convert them to numeric values in order to fit them into the linear regression modelling framework.

Factor predictors (cont.)

Suppose predictor X_1 has M = L + 1 levels: we

- pick a "baseline" level of the factor (say level 1), and denote its modelled mean β_0 ;
- for levels 2,3,...,M, write the modelled mean as

$$\beta_{l+1} = \beta_0 + \beta_l^{C}$$
 $l = 1, 2, ..., M-1$.

The model then becomes

$$\mathbb{E}_{Y_{i}|\mathbf{X}}[Y_{i}|\mathbf{x}_{i}] = \beta_{0} + \sum_{l=1}^{L} \beta_{l}^{C} \mathbb{1}_{j}(x_{i1}) = \begin{cases} \beta_{1} = \beta_{0} & l = 0\\ \beta_{2} = \beta_{0} + \beta_{1}^{C} & l = 1\\ \vdots & \vdots\\ \beta_{M} = \beta_{0} + \beta_{L}^{C} & l = L \end{cases}$$

Factor predictors (cont.)

Note that in each parameterization, the model contains M = L + 1parameters

$$\beta = (\beta_1, \beta_2, \dots, \beta_M)^{\top}$$

or

$$\beta = (\beta_1, \beta_2, \dots, \beta_M)^{\top}$$

$$\beta^{C} = (\beta_0, \beta_1^{C}, \beta_2^{C}, \dots, \beta_L^{C})^{\top}.$$

We have that $\beta^{C} = \mathbf{C}\beta$, where **C** is the $(M \times M)$ matrix

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -1 & 1 & 0 & \cdots & 0 & 0 \\ -1 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & 0 & 0 & \cdots & 1 & 0 \\ -1 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}.$$

In R, the default is to use the β^{C} 'contrast' parameterization.

Factor predictors (cont.)

In R we may define a factor directly

```
> x<-as.factor(rep(c('A','B','C','D'),3))</pre>
> x
 [1] A B C D A B C D A B C D
Levels: A B C D
or using the factor function
> x<-factor(rep(1:4,3),labels=c('A','B','C','D'))</pre>
> x
 [1] A B C D A B C D A B C D
Levels: A B C D
or using the gl function
> x<-gl(4,1,12,labels=c('A','B','C','D'))</pre>
> x
 [1] A B C D A B C D A B C D
```

Example

```
> x<-gl(4,1,12,labels=c('Levl','Lev2','Lev3','Lev4'))</pre>
> be<-c(2,3,-1,5)
> Cmat<-diag(1,4); Cmat[2:4,1]<--1
> Cmat.
     [,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] -1 1 0 0
[3,] -1 0 1 0
[4,] -1 0 0 1
> (beC<-Cmat %*% be)
     [,1]
[1,] 2
[2,] 1
[3,] -3
[4,] 3
> mean.vec<-be[as.numeric(x)]</pre>
> set.seed(4387)
> y<-rnorm(length(x), mean.vec, 1)</pre>
```

Example (cont.)

Example (cont.)

The parameters estimated here are

$$\beta_0, \beta_1^{\text{C}}, \beta_2^{\text{C}}, \beta_3^{\text{C}}$$

Combining factor predictors

Consider two predictors, X_1 , X_2 that have M_1 and M_2 levels respectively. The model

$$X_1 + X_2$$

says that the two factor predictors combine additively to affect the response. The full model formula is

$$\beta_0 + \underbrace{\sum_{j=1}^{M_1-1} \beta_{1j}^{\text{C}} \mathbb{1}_j(x_{i1})}_{\text{main effect of } X_1} + \underbrace{\sum_{l=1}^{M_2-1} \beta_{2l}^{\text{C}} \mathbb{1}_l(x_{i2})}_{\text{main effect of } X_2}$$

For each *i*, only **one** term in each summation is non-zero.

This model contains

$$1 + (M_1 - 1) + (M_2 - 1) = M_1 + M_2 - 1$$

parameters.

Combining factor predictors (cont.)

```
> (x1 < -a1(5,1,10))
 [1] 1 2 3 4 5 1 2 3 4 5
Levels: 1 2 3 4 5
> (x2 < -a1(2.5.10))
 [1] 1 1 1 1 1 2 2 2 2 2 2
Levels: 1 2
> be1<-c(-2,2,3,0,1)
> be2 < -c(0,2)
> mean.vec<-bel[as.numeric(x1)]+be2[as.numeric(x2)]</pre>
> set.seed(4387)
> y<-rnorm(length(x1), mean.vec, 1)</pre>
> data.frame(x1,x2,model.mean=mean.vec,y)
   x1 x2 model.mean
                  -2 -2.1454042
                   2 2.1055322
                   3 2.3923244
                   0 0.5941033
                   1 0.4083449
                   0 - 0.3870590
                   4 3.6522198
                   5 5.8149936
                   2 0.6793912
1.0
                   3 3.1493288
```

Combining factor predictors (cont.)

In R:

```
> summary(lm(y \sim x1+x2))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
          -2.2216 0.6962 -3.191 0.03319 *
x12
           4.1451
                      0.8988 4.612 0.00994 **
x13
           5.3699 0.8988 5.974 0.00394 **
x14
           1.9030 0.8988 2.117 0.10167
x15
           3.0451
                      0.8988 3.388 0.02759 *
x2.2
           1.9108
                      0.5685 3.361 0.02827 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 0.8988 on 4 degrees of freedom
Multiple R-squared: 0.9305, Adjusted R-squared: 0.8437
F-statistic: 10.71 on 5 and 4 DF, p-value: 0.01967
```

Interactions and factor predictors

An interaction term between X_1 and X_2 now introduces

$$(M_1-1)\times (M_2-1)$$

new parameters that modify the effect of **each level** of each predictor on the outcome. For the model

$$X_1 + X_2 + X_1 : X_2$$

the full model formula is

$$\beta_{0} + \underbrace{\sum_{j=1}^{M_{1}-1} \beta_{1j}^{\text{C}} \mathbb{1}_{j}(x_{i1})}_{\text{main effect of } X_{1}} + \underbrace{\sum_{l=1}^{M_{2}-1} \beta_{2l}^{\text{C}} \mathbb{1}_{l}(x_{i2})}_{\text{main effect of } X_{2}} + \underbrace{\sum_{j=1}^{M_{1}-1} \sum_{l=1}^{M_{2}-1} \beta_{12jl}^{\text{C}} \mathbb{1}_{j}(x_{i1}) \mathbb{1}_{l}(x_{i2})}_{\text{interaction}}$$

For each data point, only one term in each summation is non-zero.

Compare this with the model without the interaction

$$X_1 + X_2$$

the full model formula is

$$\beta_0 + \sum_{j=1}^{M_1-1} \beta_{1j}^{\mathsf{C}} \mathbb{1}_j(x_{i1}) + \sum_{l=1}^{M_2-1} \beta_{2l}^{\mathsf{C}} \mathbb{1}_l(x_{i2})$$

that is, with each parameter β_{12il}^{C} set to zero in the previous formula.

For higher order interactions, the number of extra parameters is multiplied up; with an interaction between k predictors, we introduce

$$(M_1-1)\times (M_2-1)\times \cdots (M_k-1)$$

new parameters.

An interaction between a **numeric** predictor X_1 and a factor predictor X_2 taking M levels introduces (M-1) new parameters that describe how the expected outcome changes as a function of X_1 at each non-baseline level of the factor. For example, consider the model

$$X_1 + X_2 + X_1 : X_2$$

This model says that the expected outcome depends on both X_1 and X_2 , but that the effect of X_1 is **modified** in the presence of X_2 . The full model formula is

$$\beta_0 + \underbrace{\beta_1 x_{i1}}_{\text{baseline slope}} + \sum_{j=1}^{M_2-1} \beta_{2j}^{\text{C}} \mathbb{1}_j(x_{i2}) + \underbrace{\sum_{j=1}^{M_2-1} \beta_{12j}^{\text{C}} x_{i1} \mathbb{1}_j(x_{i2})}_{\text{modified slope}}$$

Contrast this with the model

$$X_1 + X_2$$

which says that X_1 has the same effect for all levels of the factor predictor X_2 (that is, the effect of the two predictors is additive. The full model formula is

$$\beta_0 + \beta_1 x_{i1} + \sum_{j=1}^{M_2-1} \beta_{2j}^{\text{C}} \mathbb{1}_j(x_{i2})$$

That is, there is a single slope parameter β_1 , but different intercepts for each of the levels of X_2 .

That is, in the baseline group, the expectation is

$$\beta_0 + \beta_1 x_{i1}$$

whereas at the lth level of the factor predictor, the expectation is

$$(\beta_0 + \beta_{0l}^{C}) + (\beta_1 + \beta_{1l}^{C})x_{i1}$$

that is, the intercept and slope are changed from baseline.