Рубежный контроль №1

Садыков Марк, ИУ5-63Б

Тема: Технологии разведочного анализа и обработки данных.

Задача №2.

Для заданного набора данных проведите обработку пропусков в данных для одного категориального и одного количественного признака. Какие способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали? Какие признаки Вы будете использовать для дальнейшего построения моделей машинного обучения и почему?

Наборы данных: https://www.kaggle.com/rhuebner/human-resources-data-set (https://www.kaggle.com/rhuebner/human-resources-data-set)

In [5]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

In [6]:

```
data = pd.read_csv('HRDataset_v13.csv', sep=",")
```

In [7]:

data.head()

Out[7]:

	Employee_Name	EmplD	MarriedID	MaritalStatusID	GenderID	EmpStatusID	DeptII
0	Brown, Mia	1.103024e+09	1.0	1.0	0.0	1.0	1.0
1	LaRotonda, William	1.106027e+09	0.0	2.0	1.0	1.0	1.0
2	Steans, Tyrone	1.302053e+09	0.0	0.0	1.0	1.0	1.0
3	Howard, Estelle	1.211051e+09	1.0	1.0	0.0	1.0	1.0
4	Singh, Nan	1.307060e+09	0.0	0.0	0.0	1.0	1.0

5 rows × 35 columns

In [8]:

data.shape

Out[8]:

(401, 35)

•

In [9]:

data.dtypes

Out[9]:

Employee_Name	object
EmpID	float64
MarriedID	float64
MaritalStatusID	float64
GenderID	float64
EmpStatusID	float64
DeptID	float64
PerfScoreID	float64
FromDiversityJobFairID	float64
PayRate	float64
Termd	float64
PositionID	float64
Position	object
State	object
Zip	float64
DOB	object
Sex	object
MaritalDesc	object
CitizenDesc	object
HispanicLatino	object
RaceDesc	object
DateofHire	object
DateofTermination	object
TermReason	object
EmploymentStatus	object
Department	object
ManagerName	object
ManagerID	float64
RecruitmentSource	object
PerformanceScore	object
EngagementSurvey	float64
EmpSatisfaction	float64
SpecialProjectsCount	float64
LastPerformanceReview Date	object
DaysLateLast30	float64
dtype: object	
) J	

In [10]:

data.isnull().sum()

Out[10]:

Employee_Name	91
EmpID	91
MarriedID	91
MaritalStatusID	91
GenderID	91
EmpStatusID	91
DeptID	91
PerfScoreID	91
FromDiversityJobFairID	91
PayRate	91
Termd	91
PositionID	91
Position	91
State	91
Zip	91
DOB	91
Sex	91
MaritalDesc	91
CitizenDesc	91
HispanicLatino	91
RaceDesc	91
DateofHire	91
DateofTermination	298
TermReason	92
EmploymentStatus	91
Department	91
ManagerName	91
ManagerID	99
RecruitmentSource	91
PerformanceScore	91
EngagementSurvey	91
EmpSatisfaction	91
SpecialProjectsCount	91
LastPerformanceReview Date	194
DaysLateLast30	194
dtype: int64	194
utype. Into4	

Заполним пропуски столбца категориального признака "Пол".

In [11]:

data['GenderID']

Out[11]:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398	NaN NaN NaN NaN NaN NaN NaN NaN Na

```
399
       NaN
400
       NaN
Name: GenderID, Length: 401, dtype: float64
In [12]:
#проверка
data['GenderID'].unique()
Out[12]:
array([ 0., 1., nan])
In [13]:
from sklearn.impute import SimpleImputer
In [14]:
data[data['GenderID'].isnull()].shape[0]
Out[14]:
91
In [15]:
imp = SimpleImputer(missing values=np.nan, strategy='most frequent')
data['GenderID'] = imp.fit transform(data[['GenderID']])
In [16]:
#проверка столбца на пустые значения
data[data['GenderID'].isnull()].shape[0]
Out[16]:
0
In [17]:
#проверка
data['GenderID'].unique()
```

Out[17]:

```
array([0., 1.])
```

Заполним пропуски столбца количественного признака "Ставка оплаты".

In [23]:

```
from sklearn.impute import MissingIndicator
```

In [24]:

data['PayRate']

Out[24]:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	28.50 23.00 29.00 21.50 16.56 20.50 55.00
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 390 391 392 393 394 395 396 397 398	NaN

399 NaN 400 NaN

Name: PayRate, Length: 401, dtype: float64

In [25]:

empty_index = data[data['PayRate'].isnull()].index

In [26]:

data[data.index.isin(empty_index)]['PayRate']

Out[26]:

NaN

310

311 NaN 312 NaN 313 NaN 314 NaN 315 NaN 316 NaN 317 NaN 318 NaN 319 NaN 320 NaN 321 NaN 322 NaN 323 NaN 324 NaN 325 NaN 326 NaN 327 NaN 328 NaN 329 NaN 330 NaN 331 NaN 332 NaN 333 NaN 334 NaN 335 NaN 336 NaN 337 NaN NaN 338 339 NaN . . 371 NaN 372 NaN 373 NaN 374 NaN 375 NaN 376 NaN 377 NaN 378 NaN 379 NaN 380 NaN 381 NaN 382 NaN 383 NaN 384 NaN 385 NaN 386 NaN 387 NaN 388 NaN 389 NaN 390 NaN 391 NaN 392 NaN 393 NaN 394 NaN 395 NaN 396 NaN 397 NaN 398 NaN

399 NaN 400 NaN

Name: PayRate, Length: 91, dtype: float64

In [34]:

```
temp_data = data[['PayRate']]
indicator = MissingIndicator()
mask_missing_values_only = indicator.fit_transform(data[['PayRate']])
imp_num = SimpleImputer(strategy = 'median')
data[['PayRate']] = imp_num.fit_transform(data[['PayRate']])
```

In [35]:

```
#проверка столбца на пустые значения data[data['PayRate'].isnull()].shape[0]
```

Out[35]:

0

In [37]:

data['PayRate']

Out[37]:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	28.50 23.00 29.00 21.50 16.56 20.50 55.00 55
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398	24.00 24.00

399 24.00 400 24.00

Name: PayRate, Length: 401, dtype: float64

In [39]:

data.corr()

Out[39]:

	EmpID	MarriedID	MaritalStatusID	GenderID	EmpStatusID	Der
EmpID	1.000000	0.034146	0.112300	0.000119	-0.038664	0.192
MarriedID	0.034146	1.000000	0.163655	-0.023593	0.089000	-0.125
MaritalStatusID	0.112300	0.163655	1.000000	-0.025479	0.115255	0.011
GenderID	0.000119	-0.023593	-0.025479	1.000000	-0.024618	-0.046
EmpStatusID	-0.038664	0.089000	0.115255	-0.024618	1.000000	0.092
DeptID	0.192228	-0.125659	0.011966	-0.046189	0.092266	1.000
PerfScoreID	-0.019210	-0.045959	0.047773	-0.054915	-0.081250	-0.072
FromDiversityJobFairID	0.049055	-0.011468	0.041335	0.034872	0.188436	-0.129
PayRate	-0.020310	0.026342	-0.082459	0.206868	-0.214835	-0.202
Termd	-0.035483	0.071844	0.098774	-0.016471	0.955596	0.060
PositionID	0.007435	-0.028783	0.021703	-0.075992	0.222350	0.028
Zip	0.130735	-0.040212	0.010792	0.051408	-0.151348	0.291
ManagerID	0.045432	-0.092960	0.023278	-0.031737	0.233673	0.553
EngagementSurvey	-0.005720	0.019149	0.021298	-0.037021	-0.002734	-0.036
EmpSatisfaction	-0.017726	-0.126980	0.001990	-0.053138	0.010866	0.031
SpecialProjectsCount	-0.171329	0.056748	-0.051893	0.089131	-0.163831	-0.791
DaysLateLast30	NaN	NaN	NaN	NaN	NaN	١
1						•

In [38]:

sns.heatmap(data.corr())

Out[38]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fc304747810>

In [40]:

data['FromDiversityJobFairID'].unique()

Out[40]:

array([1., 0., nan])

В качестве целевого признака подходит FromDiversityJobFairID. Все признаки слабо коррелируют с целевым признаком, поэтому они не подходят для дальнейшего построения моделей машинного обучения.