

Continuum mechanics

Continuum mechanics

Chapter 2

- (Piecewise) continuous fields of fluid (macroscopic) properties $\vec{V}(x, y, z, t)$, ...
- Exercise: What is the advantage and limitation of continuum approach? See continuum hypothesis section of fluid mechanics page in wikipedia
- Homogeneous system: (t) instead of (x, y, z, t)
- Fluid (macroscopic) properties:
 - Primary: Determined by basic principles, e.g., Velocity $(\vec{V}(x,y,z,t))$, pressure (p(x,y,z,t)), temperature (T(x,y,z,t)),
 - Thermophysical: Determined using empirical and semiempirical laws, e.g., viscosity ($\mu(x, y, z, t)$), specific heat capacity ($c_n(x, y, z, t)$), ...

 By E. Aman

Dimensions and units Description of a property $length(L) \leftarrow qualitative$ 10 (in) quantitative dimension ← Property – ──→ value (unit) **Dimension Qualitative description (type)** Primary: Length (L), time (T), mass (M) or force (F), temperature (Θ) , ... **Secondary: Combinations of primary** Dimensional homogrnity Determination of the dimension of a new property Necessary condition for the validity of a physical By E. Amani Chapter 2 relation

Viscosity

- Newtonian law of viscosity (Stokes empirical law)
 - Laminar flow
 - Straight parallel flow
 - Newtonian fluids

$$\frac{\text{deformation}}{\text{rate}} \frac{\delta \theta}{\delta t} = \frac{\tan \delta \theta}{\delta t} = \frac{[(u + \delta u)\delta t - u\delta t]/\delta y}{\delta t} = \frac{\delta u}{\delta y}$$

Chapter 2

Surface tension

Demonstration

Chapter 2

By E. Amani

Surface tension

- Macroscopic effects
 - Distributed very close to a fluid-fluid interface
 - Considered only when the interface is cut in the free-body diagram
 - Exerted as the resultant force on the interface fluid element
 - Force per unit length (surface tension coefficient, $\sigma(N/m)$) on a curve on the interface
 - Tangent to the intefrace
 - Normal to the chosen curve
 - σ depends on the material of the two fluids in contact, temperature, and pressure

Chapter 2

By E. Amani

Surface tension

Pressure jump across a fluid-fluid interface

$$\Delta p = p^{+} - p^{-} = \sigma \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} \right)$$
 (9.2)
principal
radii of curvature

- Exercise: Using Eq. (9.2), calculate the pressure difference across a soap bubble.
- For a large free surface: $R_1 = R_2 \rightarrow \infty$; $p^+ p^- \rightarrow 0$

Chapter 2 By E. Amani

