# Vincoli di integrità Normalizzazione

A. Lorenzi, E. Cavalli
INFORMATICA PER ISTITUTI TECNICI TECNOLOGICI

# Integrità dei dati

# Integrità dei dati

#### **Studenti**

| <u>Matricola</u> | Cognome | Nome     | DataNascita            | CodScuola |
|------------------|---------|----------|------------------------|-----------|
| 545              | Rossi   | Maria    | NULL                   | 125       |
| 653              | Neri    | Anna     | 20-set-1994            | 125       |
| 768              | Verdi   | Giuseppe | 30-ott-1996            | NULL \    |
| 653              | Rossi   | Franco   | <b>32-ott-1994</b> 180 |           |
| 314              | Bruni   | Enrico   | 27-ott-1995            | 185       |

#### **Scuole**

| <u>Codice</u> | NomeScuola   |  |
|---------------|--------------|--|
| 125           | ITC Manzoni  |  |
| 180           | Liceo Dante  |  |
| 190           | Liceo Fermi  |  |
| NULL          | ITIS Galvani |  |

- Ci sono situazioni anomale che invalidano i dati
  - Chiave con valore nullo e chiavi duplicate
  - Valore di una data scorretto
  - Riferimento alla scuola mancante
  - Riferimento a scuola inesistente

E' un'anomalia solo se il campo è obbligatorio

# Regole di integrità

- Vincoli di chiave
  - La chiave primaria non può avere valore nullo
  - La chiave primaria non può essere duplicata
- Vincoli di tupla
  - Obbligatorietà dei dati
  - Vincoli di dominio dei dati (specifici del problema)
  - Correlazione interna fra campi del singolo record
- Vincoli di Integrità referenziale
  - Riguarda FK di una tabella e PK della tabella correlata
  - L'integrità referenziale richiede che per ogni valore non nullo della chiave esterna, esista un valore corrispondente della chiave primaria nella tabella associata

# Integrità referenziale

## Studenti

| <u>Matricola</u> | Cognome | Nome     | DataNascita | CodScuola |
|------------------|---------|----------|-------------|-----------|
| 545              | Rossi   | Maria    | NULL        | 125       |
| 653              | Neri    | Anna     | 20-set-1994 | 125       |
| 768              | Verdi   | Giuseppe | 30-ott-1996 | NULL      |
| 654              | Rossi   | Franco   | 31-ott-1994 | 180       |
| 314              | Bruni   | Enrico   | 27-ott-1995 | 185       |

#### Scuole

| <u>Codice</u> | NomeScuola   |
|---------------|--------------|
| 125           | ITC Manzoni  |
| 180           | Liceo Dante  |
| 190           | Liceo Fermi  |
| 185           | ITIS Galvani |

E' un'anomalia solo se il campo è obbligatorio

- Non si deve poter inserire una riga in Studenti con valore di CodScuola che non compare fra quelli di Codice in Scuole
- Non è possibile cancellare una scuola dalla tabella Scuole se ci sono righe nella tabella Studenti che si riferiscono ad essa
- Non si possono modificare i valori di Codice o di CodScuola se sono violate le regole di integrità referenziale

# Integrità referenziale e DBMS



## Normalizzazione

# Ridondanza e anomalie (1)

#### **Inventario** è una buona tabella?

 Il campo IndirizzoMagazzino è ripetuto per ogni codice magazzino in Inventario e ci sono dati ridondanti



- La ridondanza spreca spazio ma, peggio, è causa di anomalie:
  - Anomalia di aggiornamento
  - Anomalia di inserimento
  - Anomalia di cancellazione

# Ridondanza e anomalie (2)

Per evitare la ridondanza si scompone la tabella originale in:
 Inventario (Prodotto, Magazzino, Quantità)
 Negozi (CodiceMagazzino, IndirizzoMagazzino)





- Le due tabelle sono ricavate per proiezione dalla tabella di partenza
- La informazioni nella tabella originaria sono ricostruibili con:
   Inventario Join Negozi per Magazzino = CodiceMagazzino
- C'è un modo sistematico per capire se una tabella è una buona tabella?

## Forme normali

 Criteri che definiscono le condizioni che devono essere soddisfatte per evitare situazioni anomale: forme normali

 1NF richieste di base per il modello relazionale

 2NF, 3NF, BCNF anomalie da dipendenze funzionali

 4NF anomalie per dipendenze multivalore

•

1NF 3NF **BCNF** 4NF 5NF

\*\* Ci interessano: 1NF, 2NF, 3NF

## **Definizioni**

- Chiave o chiave primaria è l'insieme di uno o più attributi che identificano in modo univoco una riga della tabella
- Chiave candidata è ogni insieme minimale di attributi che possono svolgere la funzione di chiave (ci possono essere molte chiavi candidate, ma una sola chiave primaria)
- Attributo non-chiave è un campo che non fa parte della chiave primaria
- Esempio:

Inventario (Numero, Prodotto, Magazzino, Quantità, Indirizzo Magazzino )

- Numero è chiave candidata
- { Prodotto, Magazzino } è chiave candidata
- { Prodotto, Magazzino, Quantità } non è chiave candidata; un insieme di attributi come questo si dice superchiave

# Dipendenze funzionali (1)

Si ha dipendenza funzionale tra attributi quando il valore di uno o più attributi A determina univocamente il valore di un attributo B e si indica con: A → B. Si dice che A determina funzionalmente B, o che:

- B dipende funzionalmente da A
- A è un determinante per B

```
Inventario (Numero, Prodotto, Magazzino, Quantità, Indirizzo Magazzino)
Numero → (Prodotto, Magazzino, Quantità, Indirizzo Magazzino)
(Prodotto, Magazzino) → (Numero, Quantità, Indirizzo Magazzino)
Magazzino → Indirizzo Magazzino
```

 Una chiave candidata di una relazione è determinante per ogni attributo della relazione. Viceversa un determinante per ogni attributo di una relazione, è chiave candidata per la relazione stessa.

# Dipendenze funzionali (2)

| IDProdotto | Descrizione        | Reparto            | Compratore |  |
|------------|--------------------|--------------------|------------|--|
| 1001       | Pinne piccole      | Mare               | Enrico     |  |
| 1002       | Pinne medie        | Mare               | Enrico     |  |
| 1010       | Maschera media     | Mare               | Mary       |  |
| 1011       | Maschera grande    | Mare               | Mary       |  |
| 2010       | Tenda igloo        | Camping            | Gianni     |  |
| 2012       | Tenda doppio igloo | Camping            | Gianni     |  |
| 2050       | Sci fondo          | Montagna           | Damiano    |  |
| 2051       | Sci discesa        | discesa Montagna D |            |  |

Scoprire le dipendenze funzionali non è facile!
Si tratta di un'attività simile alla progettazione concettuale dei dati

IDProdotto → Descrizione

IDProdotto → Reparto

IDProdotto → Compratore

- IDProdotto → (Descrizione, Reparto, Compratore)
- Descrizione → (IDProdotto, Reparto, Compratore)
- Compratore → Reparto

# Dipendenze funzionali (3)

Dipendenti (Matricola, Nome, Cognome, Stipendio, CodiceCapo, NomeCapo)

Matricola → (Nome, Cognome, Stipendio, CodiceCapo)

CodiceCapo → NomeCapo

Matricola → NomeCapo transitivamente

Matricola → (Nome, Cognome, Stipendio, CodiceCapo, NomeCapo)

Matricola è chiave per **Dipendenti** 

Si ha dipendenza transitiva tra attributi quando un attributo A determina B e B determina C; si dice allora che C dipende transitivamente da A:

A → B e B → C allora A → C transitivamente

## **Prima Forma Normale 1NF**

#### Prima forma normale

- Tutte le righe hanno lo stesso numero di attributi e contengono informazioni di una (sola) entità
- I valori delle colonne rappresentano informazioni elementari (non ci sono informazioni di gruppo)
- Tutti i valori in una colonna sono del medesimo tipo
- Non ci possono essere righe duplicate, quindi ci deve essere un attributo o un insieme di attributi con la funzione di chiave primaria
- L'ordine delle colonne non è rilevante (perché le colonne hanno un'intestazione)
- L'ordine delle righe non è rilevante

## Seconda Forma Normale 2NF

Una relazione è in **seconda forma normale** (2FN) quando è in prima forma normale e tutti i suoi attributi non-chiave dipendono dall'intera chiave e non da una parte della chiave

Inventario (Prodotto, Magazzino, Quantità, IndirizzoMagazzino) {Prodotto, Magazzino} è chiave per Inventario

Magazzino → IndirizzoMagazzino ⊗⊗

Violazione alla 2NF

1) Si costruisce una tabella con gli attributi di ⊗⊗

Magazzini ( Magazzino, Indirizzo Magazzino )

2) Si costruisce una seconda tabella con gli attributi di **Inventario** togliendo quelli di ⊗⊗ e integrati con l'attributo *Magazzino* per avere un collegamento con **Magazzini** 

Inventario1 ( Prodotto, Magazzino, Quantità )

# Algoritmo di scomposizione

## Algoritmo di scomposizione di una relazione T

- 1. Si identificano tutte le dipendenze funzionali e le chiavi candidate di T
- **2.** Se c'è una dipendenza funzionale che viola le regole di normalizzazione:
  - a. si costruisce una nuova tabella con tutti gli attributi della dipendenza funzionale considerata
  - **b.** il determinante della dipendenza funzionale è la chiave primaria della tabella definita in **a**.
  - c. si costruisce una seconda tabella rimuovendo dalla tabella di partenza tutti gli attributi che sono determinati dalla dipendenza funzionale in esame
- **3.** Si ripete il passo **2.** sino a che non ci sono più violazioni alle regole di normalizzazione

# Esempio di scomposizione 2NF

Inventario (Prodotto, Magazzino, Qta, NomeProdotto, IndirizzoMagazzino)

Dipendenze funzionali:

- 1. {Prodotto, Magazzino} → (Qta, NomeProdotto, IndirizzoMagazzino)
- 2. Prodotto → NomeProdotto

3. Magazzino → IndirizzoMagazzino

 $\otimes$ 

 $\otimes \otimes$ 

Violazioni alla 2NF

- {Prodotto, Magazzino} è chiave per **Inventario**
- Prodotti ( <u>Prodotto</u>, NomeProdotto )
  Inventario1 ( <u>Prodotto</u>, <u>Magazzino</u>, Qta, IndirizzoMagazzino )

Finito?

Magazzini ( <u>Magazzino</u>, IndirizzoMagazzino )
 Inventario2 ( <u>Prodotto</u>, <u>Magazzino</u>, Qta )

Prodotti ( <u>Prodotto</u>, NomeProdotto )

Magazzini ( <u>Magazzino</u>, IndirizzoMagazzino )

Inventario2 ( <u>Prodotto</u>, <u>Magazzino</u>, Qta )

## **Terza Forma Normale 3NF**

Una relazione è in **terza forma normale** (3FN) quando è in seconda forma normale e tutti gli attributi non-chiave dipendono direttamente dalla chiave, quindi non hanno dipendenze **transitive** dalla chiave

Studenti (Nome, Scuola, TelefonoScuola)

| 1 | Nome      | Ŧ | Scuola -      | TelefonoScuc - |
|---|-----------|---|---------------|----------------|
|   | Bedoni    |   | Liceo Fermi   | 045-2345613    |
|   | Bianchi   |   | ITC Paleari   | 02-2538469     |
|   | Galli     |   | ITIS Leonardo | 011-3377659    |
|   | Leoni     |   | Liceo Dante   | 06-3845287     |
|   | Lorenzini |   | ITIS Galvani  | 081-5416875    |
|   | Negri     |   | Liceo Dante   | 06-3845287     |
|   | Rossi     |   | ITC Paleari   | 02-2538469     |
|   | Verdi     |   | Liceo Dante   | 06-3845287     |

### Dipendenze funzionali:

- 1. Nome → (Scuola, TelefonoScuola)
- 2. Scuola → TelefonoScuola ⊗

Violazione alla 3NF

Nome è chiave per Studenti

Scuole ( Scuola, TelefonoScuola )
Studenti1 ( Nome, Scuola )

# Esempio di scomposizione 3NF

Dipendenti (Matr, Cognome, Nome, CodRep, NomeRep, CodCittà, NomeCittà)

Dipendenze funzionali:

- 1. Matr → (Cognome, Nome, CodRep, NomeRep, CodCittà, NomeCittà)
- 2. CodRep → NomeRep

3. CodCittà → NomeCittà

 $\otimes$ 

Violazioni alla 3NF

Matr è chiave per **Dipendenti** 

- Reparti ( <u>CodRep</u>, NomeRep )
  Dipendenti1 ( <u>Matr</u>, Cognome, Nome, *CodRep*, CodCittà, NomeCittà )
- ⊗⊗ Città (CodCittà, NomeCittà)
  Dipendenti2 (Matr, Cognome, Nome, CodRep, CodCittà)

Finito?

Reparti ( <u>CodRep</u>, NomeRep )
Città ( <u>CodCittà</u>, NomeCittà )
Dipendenti2 ( Matr, Cognome, Nome, *CodRep*, *CodCittà* )