

Logic in Computer Science

Lecture 04
Semantics of Predicate Logic

Li Qin

Associate Professor

School of Software Engineering

Semantics of predicate logic

- **★** Models
- **★** Semantic entailment
- **★** Semantics of equality
- ★ Undecidability of predicate logic

In propositional logic, given the formula

$$(p \lor \neg q) \to (q \to p)$$

we can give it a truth value (T or F) based on a given valuation (assumed truth values for p and q).

What about the predicate logic formula

$$\forall x \exists y ((P(x) \lor \neg Q(y)) \to (Q(x) \to P(y)))$$

We could assign truth values to P(x) and Q(y) and, based on that, compute a truth value for the entire formula. However, in general, the variables express relationships between predicates, and the assignment of truth values to atoms cannot be done randomly.

Dealing with Quantifiers

Variables are placeholders for *any*, or *some*, unspecified concrete value.

- $\exists x \Phi$ We try to find some instance of x (some concrete value) such that Φ holds for that particular instance of x. If this succeeds, then $\exists x \Phi$ evaluates to T; otherwise (i.e. there is no concrete value of x that realizes Φ) the formula evaluates to F.
- $\forall x \Phi$ We try to show that for all possible instances of x, Φ evaluates to T. If this is successful, $\forall x \Phi$ evaluates to T; otherwise (i.e. if there exists some instance of x that does not realize Φ), the formula evaluates to F.

Models

Definition: Let \mathcal{F} be a set of function symbols and \mathcal{P} a set of predicate symbols, each symbol with a fixed number of required arguments. A *model* \mathcal{M} of the pair $(\mathcal{F}, \mathcal{P})$ consists of the following set of data:

- 1. A non-empty set A, the universe of concrete values;
- 2. for each $f \in \mathcal{F}$ with n arguments, a concrete function $f^{\mathcal{M}}: A^n \to A$; and
- 3. for each $P \in \mathcal{P}$ with *n* arguments, a subset $P^{\mathcal{M}} \subseteq A^n$ of tuples over *A*.

The distinction between f and $f^{\mathcal{M}}$, and between P and $P^{\mathcal{M}}$ is most important. f is a *symbol*, whereas $f^{\mathcal{M}}$ denotes a *concrete function*. Similarly, P is a *symbol*, whereas $P^{\mathcal{M}}$ is a *concrete subset* of A^n , for some natural number n.

Example — Real Numbers

Let $\mathcal{F} \stackrel{\text{def}}{=} \{+, *, -\}$ and $\mathcal{P} \stackrel{\text{def}}{=} \{=, \leq, <, \text{zero}\}$, where +, *, - take 2 arguments, and where $=, \leq, <$ are predicates with 2 arguments, and zero is a predicate with 1 argument.

The model \mathcal{M} :

- 1. The non-empty set *A* is the set of real numbers.
- 2. The function $+^{\mathcal{M}}$, $*^{\mathcal{M}}$, and $-^{\mathcal{M}}$ take two real numbers as arguments and return their sum, product, and difference, respectively.
- 3. The predicates $=^{\mathcal{M}}$, $\leq^{\mathcal{M}}$, and $<^{\mathcal{M}}$ model the relations equal to, less than, and strictly less than, respectively. The predicate $\mathsf{zero}^{\mathcal{M}}$ holds for r iff r equals to 0.

Example formula:

$$\forall x \forall y (\mathtt{zero}(y) \to x * y = y)$$

Example — Bit Strings

Let $\mathcal{F} \stackrel{\text{def}}{=} \{e, \cdot\}$, and $\mathcal{P} \stackrel{\text{def}}{=} \{\leq\}$, where e is a constant, \cdot is a function of 2 arguments and \leq is a predicate with 2 arguments.

The model \mathcal{M} :

- 1. A is the set of binary strings over the alphabet $\{0,1\}$, including the empty string ε .
- 2. The interpretation of $\cdot^{\mathfrak{M}}$ is the concatenation of strings.
- 3. $\leq^{\mathcal{M}}$ is the prefix ordering of strings, that is the set $\{(s_1, s_2) | s_1 \text{ is a prefix of } s_2\}$.

Bit String Formulas

$$\forall x ((x \le x \cdot e) \land (x \cdot e \le x))$$

Every word is a prefix of itself concatenated with the empty word

$$\exists y \forall x (y \leq x)$$

There exists a word s that is the prefix of every word (in fact it is ϵ).

 $\forall x \exists y (y \leq x)$

Every word has a prefix.

 $\forall x \forall y \forall z ((x \le y) \to (x \cdot z \le y \cdot z))$

If s_1 is a prefix of s_2 , then s_1s_2 is a prefix of s_1s_3 (doesn't hold).

 $\neg \exists x \forall y ((x \le y) \to (y \le x))$

There is no word s such that whenever s is a prefix of some other word s_1 , it is the case that s_1 is a prefix of s as well.

Given a formula $\forall x \Phi$, or $\exists x \Phi$, we intend to check whether Φ holds for all, respectively some, value α in our model. We have no way of expressing this in our syntax.

We are forced to interpret formulas relative to an *environ-ment* (*look-up table*), that is, a mapping from variable symbols to concrete values.

$$l: \mathbf{var} \mapsto A$$

Definition (**Updated Look-Up Tables**): Let l be a look-up table $l : \mathbf{var} \mapsto A$, and let $a \in A$. We denote by $l[x \mapsto a]$ the look-up table which maps x to a and any other variable y to l(y).

The Satisfaction Relation

Definition: Given a model \mathcal{M} for a pair $(\mathcal{F}, \mathcal{P})$ and given an environment l, we define the *satisfaction relation*

$$\mathcal{M} \models_l \Phi$$

for each formula Φ over the pair $(\mathcal{F}, \mathcal{P})$ by structural induction on Φ . The denotation $\mathcal{M} \models_l \Phi$ says that Φ computes to T in the model \mathcal{M} wrt the environment l.

P: If Φ is of the form $P(t_1, t_2, ..., t_n)$, then we interpret the terms $t_1, t_2, ..., t_n$ in our set *A* by replacing all variables with their values according to *l*. In this way we compute concrete values $a_1, a_2, ..., a_n$ of *A* for each of these terms, where we interpret any function symbol $f \in \mathcal{F}$ by $f^{\mathcal{M}}$. Now $\mathcal{M} \models_l P(t_1, ..., t_n)$ holds iff $(a_1, ..., a_n) \in P^{\mathcal{M}}$.

 $\forall x$: The relation $\mathcal{M} \models_l \forall x \Psi$ holds iff $\mathcal{M} \models_{l[x \mapsto a]} \Psi$ holds for all $a \in A$.

 $\exists x$: The relation $\mathcal{M} \models_l \exists x \Psi$ holds iff $\mathcal{M} \models_{l[x \mapsto a]} \Psi$ holds for some $a \in A$.

 \neg : The relation $\mathcal{M} \models_l \neg \Psi$ holds iff it is not the case that $\mathcal{M} \models_l \Psi$ holds.

 \vee : The relation $\mathcal{M} \models_l \Psi_1 \vee \Psi_2$ iff $\mathcal{M} \models_l \Psi_1$ or $\mathcal{M} \models_l \Psi_2$ holds.

 \wedge : The relation $\mathcal{M} \models_l \Psi_1 \wedge \Psi_2$ iff $\mathcal{M} \models_l \Psi_1$ and $\mathcal{M} \models_l \Psi_2$ holds.

 \rightarrow : The relation $\mathcal{M} \models_l \Psi_1 \rightarrow \Psi_2$ iff $\mathcal{M} \models_l \Psi_2$ holds whenever $\mathcal{M} \models_l \Psi_1$ holds.

Let $\mathcal{F} \stackrel{\text{def}}{=} \{\text{alma}\}$ and $\mathcal{P} \stackrel{\text{def}}{=} \{\text{loves}\}$, where alma is a constant and loves is a predicate with two arguments. The model \mathcal{M} we choose here consists of the set $A \stackrel{\text{def}}{=} \{a,b,c\}$, the constant function alma $\stackrel{\mathcal{M}}{=} a$ and the predicate loves $\stackrel{\text{def}}{=} \{(a,a),(b,a),(c,a)\}$. We want to check whether the model \mathcal{M} satisfies

None of Alma's lovers' lovers love her.

Translation into predicate logic:

$$\forall x \forall y (\texttt{loves}(x, \texttt{alma}) \land \texttt{loves}(y, x) \rightarrow \neg \texttt{loves}(y, \texttt{alma}))$$

The model \mathcal{M} does not satisfy the formula. However, if we change the interpretation of loves to be loves $\mathcal{M} = \{(b, a), (c, b)\}$, then the new model satisfies the formula above.

Definition: Let $\Phi_1, \Phi_2, \dots, \Phi_n, \Psi$, be formulas in predicate logic. Then, $\Phi_1, \Phi_2, \dots, \Phi_n \models \Psi$ denotes that, whenever $\mathcal{M} \models_l \Phi_i$, $1 \leq i \leq n$, then $\mathcal{M} \models_l \Phi$, for all models \mathcal{M} and look-up tables l.

The = symbol is overloaded.

 $\mathcal{M} \models \Phi$ denotes *satisfiability*

 $\Phi_1, \dots, \Phi_n \models \Psi$ denotes semantic entailment

$$\forall x (P(x) \to Q(x)) \models \forall x P(x) \to \forall x Q(x)$$

Let \mathcal{M} be a model satisfying $\forall x (P(x) \to Q(x))$. We need to show that \mathcal{M} satisfies $\forall x P(x) \to \forall x Q(x)$ as well. On inspecting the definition of $\mathcal{M} \models \Psi_1 \to \Psi_2$, we see that we are done if not every element of A satisfies P. Otherwise, every element does satisfy P. But since \mathcal{M} satisfies $\forall x (P(x) \to Q(x))$, the latter forces every element of our model to satisfy Q as well. By combining these 2 cases (i.e. either all elements or \mathcal{M} satisfy P, or not), we have shown that \mathcal{M} satisfies $\forall x P(x) \to \forall x Q(x)$.

$$\forall x P(x) \rightarrow \forall x Q(x) \models \forall x (P(x) \rightarrow Q(x))$$

This sequent doesn't hold. Indeed, let \mathcal{M}' be a model that satisfies $\forall x P(x) \rightarrow \forall x Q(x)$. If A' is its underlying set and $P^{\mathcal{M}'}$ and $Q^{\mathcal{M}'}$ are the corresponding interpretations of P and Q, then $\mathcal{M}' \models \forall x P(x) \rightarrow \forall x Q(x)$ simply says that, if $P^{\mathcal{M}'}$ equals A', then $Q^{\mathcal{M}'}$ must equal A' as well. However, if $P^{\mathcal{M}'}$ does not equal A', then this implication is vacuously true. It is now easy to construct a counterexample.

$$A' \stackrel{def}{=} \{a,b\}, P^{\mathcal{M}'} \stackrel{def}{=} \{a\}, \text{ and } Q^{\mathcal{M}'} \stackrel{def}{=} \{b\}. \text{ Then}$$
 $\mathcal{M}' \models \forall x P(x) \rightarrow \forall x Q(x)$

holds, while

$$\mathcal{M}' \models \forall x (P(x) \to Q(x))$$

doesn't hold.

Semantics of Equality

Most models have natural interpretations, but semantic entailment

$$\Phi_1,\ldots,\Phi_n\models\Psi$$

really depends on all the possible models, even those that do not make sense. This means that a predicate may have any interpretation.

However, there is a famous exception: *equality*. The equality predicate must always be interpreted as the equality relation on the set A. If, for example, $A = \{a, b, c\}$, then $=^{\mathcal{M}}$ is $\{(a, a), (b, b), (c, c)\}$.

Undecidability of Predicate Logic

Decidability:

- Given a sequent $\Phi_1, \dots, \Phi_n \models \Psi$, is it possible to know whether there is a proof for it. *Answer*: NO.
- Given a semantic entailment sequent $\Phi_1, \ldots, \Phi_n \models \Psi$, is it possible to know if it holds? *Answer*: NO.

Soundness:

• If we have a proof of $\Phi_1, \dots \Phi_n \vdash \Psi$ hold? *Answer:* YES.

Correctness:

• If we know that $\Phi_1, \dots, \Phi_n \models \Psi$ holds, is there a proof of $\Phi_1, \dots, \Phi_n \vdash \Psi$? *Answer:* YES.

Completeness = Corectness + Decidability. Predicate logic is undecidable, and therefore incomplete.