4.6 函数的定义与性质

- ■函数的定义
 - □函数定义
 - \square 从A到B的函数
 - □函数的像
- ■函数的性质
 - □函数的单射、满射、双射性
 - □构造双射函数
- 应用实例:问题描述

函数定义

定义 设 F 为二元关系,若 $\forall x \in \text{dom} F$ 都存在 唯一的 $y \in \text{ran} F$ 使 xFy 成立,则称 F 为函数. 对于函数F, 如果有 xFy, 则记作 y=F(x), 并称 y 为 F 在 x 的值.

例1
$$F_1 = \{\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \langle x_3, y_2 \rangle\}$$

 $F_2 = \{\langle x_1, y_1 \rangle, \langle x_1, y_2 \rangle\}$
 F_1 是函数, F_2 不是函数

м

函数相等

定义 设F, G为函数, 则

$$F = G \Leftrightarrow F \subseteq G \land G \subseteq F$$

如果两个函数 F和 G相等,一定满足下面两个条件:

- (1) dom F = dom G
- (2) $\forall x \in \text{dom} F = \text{dom} G$ 都有 F(x) = G(x)

实例 函数

$$F(x)=(x^2-1)/(x+1), G(x)=x-1$$

不相等, 因为 $dom F \subset dom G$.

从A到B的函数

定义 设A, B为集合, 如果 f为函数 dom f = A $ran f \subseteq B$, 则称 f 为从A到B的函数, 记作 f: $A \rightarrow B$.

实例

 $f: N \rightarrow N, f(x)=2x$ 是从 N 到 N 的函数 $g: N \rightarrow N, g(x)=2$ 也是从 N 到 N 的函数

$B \perp A$

定义 所有从 A 到 B 的函数的集合记作 B^A ,读作 "B上A",符号化表示为 B^A ={ $f \mid f: A \rightarrow B$ }。

计数:

 $|A|=m, |B|=n, \perp m, n>0, |B^A|=n^m.$

实例

例2 设 $A = \{1, 2, 3\}, B = \{a, b\}, 求 B^A$.

解
$$B^A = \{f_0, f_1, \dots, f_7\}$$
, 其中
$$f_0 = \{<1, a>, <2, a>, <3, a>\}, f_1 = \{<1, a>, <2, a>, <3, b>\}$$

$$f_2 = \{<1, a>, <2, b>, <3, a>\}, f_3 = \{<1, a>, <2, b>, <3, b>\}$$

$$f_4 = \{<1, b>, <2, a>, <3, a>\}, f_5 = \{<1, b>, <2, a>, <3, b>\}$$

$$f_6 = \{<1, b>, <2, b>, <3, a>\}, f_7 = \{<1, b>, <2, b>, <3, b>\}$$

M

函数的像

定义 设函数 $f: A \rightarrow B, A_1 \subseteq A$. A_1 在 f 下的像: $f(A_1) = \{f(x) \mid x \in A_1\}$ 函数的像 f(A)

注意: 函数值 $f(x) \in B$, 而像 $f(A_1) \subseteq B$.

例3 设
$$f: N \rightarrow N$$
, 且 $f(x) = \begin{cases} x/2 & \exists x \land A \land B \land A = \{0,1\}, B = \{2\}, 那么有 \end{cases}$ $f(A) = f(\{0,1\}) = \{f(0), f(1)\} = \{0,2\}$

100

函数的性质

定义 设 $f: A \rightarrow B$,

- (1) 若ran f = B, 则称 $f: A \rightarrow B$ 是满射的.
- (2) 若 $\forall y \in \text{ran} f$ 都存在唯一的 $x \in A$ 使得 f(x)=y, 则称 $f: A \rightarrow B$ 是单射的.
- (3) 若 $f: A \rightarrow B$ 既是满射又是单射的,则称 $f: A \rightarrow B$ 是双射的。

f满射意味着: $\forall y \in B$, 都存在 $x \in A$ 使得 f(x) = y. f 单射意味着: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

v.

实例

例4

判断下面函数是否为单射,满射,双射的,为什么?

(1)
$$f: R \rightarrow R, f(x) = -x^2 + 2x - 1$$

(2)
$$f: Z^+ \to R, f(x) = \ln x, Z^+$$
为正整数集

(3)
$$f: \mathbb{R} \to \mathbb{Z}, f(x) = \lfloor x \rfloor$$

(4)
$$f: R \to R, f(x) = 2x+1$$

(5)
$$f: R^+ \to R^+$$
, $f(x) = (x^2+1)/x$, 其中 R^+ 为正实数集.

实例 (续)

- 解 (1) f: R \rightarrow R, $f(x)=-x^2+2x-1$ 在x=1取得极大值0. 既不单射也不满射.
 - (2) *f*: Z⁺→R, *f*(*x*)=ln*x* 单调上升, 是单射. 但不满射, ran*f*={ln1, ln2, ...}.
 - (3) $f: R \to Z, f(x) = \lfloor x \rfloor$ 满射, 但不单射, 例如 f(1.5) = f(1.2) = 1.
 - (4) $f: R \rightarrow R, f(x)=2x+1$ 满射、单射、双射, 因为它是单调的并且ran f=R.
 - (5) $f: R^+ \to R^+, f(x) = (x^2+1)/x$ 有极小值f(1)=2. 该函数既不单射也不满射.

w

构造从A到B的双射函数

有穷集之间的构造

```
例5 A=P(\{1,2,3\}), B=\{0,1\}^{\{1,2,3\}}
\mathbb{A} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.
 B=\{f_0,f_1,\ldots,f_7\},其中
f_0 = \{<1,0>,<2,0>,<3,0>\}, f_1 = \{<1,0>,<2,0>,<3,1>\},
f_2 = \{<1,0>,<2,1>,<3,0>\}, f_3 = \{<1,0>,<2,1>,<3,1>\},
f_4 = \{<1,1>,<2,0>,<3,0>\}, f_5 = \{<1,1>,<2,0>,<3,1>\},
f_6 = \{<1,1>,<2,1>,<3,0>\}, f_7 = \{<1,1>,<2,1>,<3,1>\}.
\Leftrightarrow f: A \rightarrow B,
       f(\emptyset)=f_0, f(\{1\})=f_1, f(\{2\})=f_2, f(\{3\})=f_3,
       f(\{1,2\})=f_4, f(\{1,3\})=f_5, f(\{2,3\})=f_6, f(\{1,2,3\})=f_7
```

.

构造从A到B的双射函数(续)

实数区间之间构造双射

构造方法: 直线方程

$$B=[1/4,1/2]$$

构造双射 $f:A \rightarrow B$

解

M

构造从A到B的双射函数(续)

A 与自然数集合之间构造双射

方法: 将A中元素排成有序图形, 然后从第一个元素开始 按照次序与自然数对应

例7 A=Z, B=N,构造双射 $f: A \rightarrow B$

将Z中元素以下列顺序排列并与N中元素对应:

Z:
$$0 -1 1 -2 2 -3 3 ...$$

 $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$
N: $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 ...$

则这种对应所表示的函数是:

$$f: \ \mathbf{Z} \to \mathbf{N}, f(x) = \begin{cases} 2x & \geq 0 \\ -2x - 1 & x < 0 \end{cases}$$

м

常函数、恒等函数、单调函数

- 1. 设f: $A \rightarrow B$, 若存在 $c \in B$ 使得 $\forall x \in A$ 都有 f(x)=c, 则称 f: $A \rightarrow B$ 是常函数.
- 2. 称 A 上的恒等关系 I_A 为 A 上的恒等函数, 对所有的 $x \in A$ 都有 $I_A(x)=x$.
- 3. 设 $f: R \to R$,如果对任意的 $x_1, x_2 \in R$, $x_1 < x_2$,就 有 $f(x_1) \le f(x_2)$,则称 f 为单调递增的,如果对任意的 $x_1, x_2 \in A$, $x_1 < x_2$,就有 $f(x_1) < f(x_2)$,则称 f 为 严格单调递增的.

类似可以定义单调递减 和严格单调递减 的函数.

v

集合的特征函数

4. 设 A 为集合, $\forall A' \subseteq A$, A' 的 特征函数 $\chi_{A'}$: $A \rightarrow \{0,1\}$ 定义为

$$\chi_{A'}(a) = \begin{cases} 1, & a \in A' \\ 0, & a \in A - A' \end{cases}$$

实例 集合: $X = \{A, B, C, D, E, F, G, H\}$,

子集: $T = \{A, C, F, G, H\}$

T的特征函数 χ_T :

x A B C D E F G H $\chi_T(x)$ 1 0 1 0 0 1 1 1

100

自然映射

5. 设R是A上的等价关系,令

 $g: A \rightarrow A/R$

 $g(a) = [a], \forall a \in A$

称 g 是从 A 到商集 A/R 的自然映射.

实例

例8 (1) A的每一个子集A'都对应于一个特征函数,不同的子集对应于不同的特征函数. 例如 $A=\{a,b,c\}$,则有

$$\chi_{\varnothing} = \{ \langle a, 0 \rangle, \langle b, 0 \rangle, \langle c, 0 \rangle \},$$

$$\chi_{\{a,b\}} = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 0 \rangle \}$$

(2) 给定集合 A, A上不同的等价关系确定不同的自然映射, 其中恒等关系确定的自然映射是双射, 其他的自然映射一般来说是满射. 例如

$$A = \{1, 2, 3\}, R = \{<1,2>,<2,1>\} \cup I_A$$

 $g(1) = g(2) = \{1,2\}, g(3) = \{3\}$

100

4.7 函数的复合与反函数

- ■函数的复合
 - □函数复合的定理
 - □函数复合的性质
- ■反函数
 - □反函数存在的条件
 - □反函数的性质

м

函数复合的定理

- 定理 设F, G是函数,则FoG也是函数,且满足
 - (1) $\operatorname{dom}(F \circ G) = \{ x \mid x \in \operatorname{dom}G \land G(x) \in \operatorname{dom}F \}$
 - (2) $\forall x \in \text{dom}(F \circ G)$ 有 $F \circ G(x) = F(G(x))$
- 推论1 设F, G, H为函数, 则 ($F \circ G$) $\circ H$ 和 $F \circ (G \circ H)$ 都是函数, 且 ($F \circ G$) $\circ H = F \circ (G \circ H)$
- 推论2 设 $f: A \rightarrow B, g: B \rightarrow C, 则 g \circ f: A \rightarrow C, 且$ $\forall x \in A$ 都有 $g \circ f(x) = g(f(x)).$

函数复合运算的性质

- 定理 设 $f: A \rightarrow B, g: B \rightarrow C.$
 - (1) 如果 $f: A \rightarrow B, g: B \rightarrow C$ 都是满射的,则 $g \circ f: A \rightarrow C$ 也是满射的.
 - (2) 如果 $f: A \rightarrow B, g: B \rightarrow C$ 都是单射的,则 $g \circ f: A \rightarrow C$ 也是单射的.
 - (3) 如果 $f: A \rightarrow B, g: B \rightarrow C$ 都是双射的,则 $g \circ f: A \rightarrow C$ 也是双射的.
- 证 (1) $\forall c \in C$, 由 $g: B \rightarrow C$ 的满射性, $\exists b \in B$ 使得 g(b)=c. 对这个b, 由 $f: A \rightarrow B$ 的满射性, $\exists a \in A$ 使得 f(a)=b. 由合成定理有 $g \circ f(a)=g(f(a))=g(b)=c$ 从而证明了 $g \circ f: A \rightarrow C$ 是满射的.

函数复合运算的性质

(2) 假设存在 $x_1, x_2 \in A$ 使得 $g \circ f(x_1) = g \circ f(x_2)$ 由合成定理有 $g(f(x_1)) = g(f(x_2))$. 因为 $g \colon B \to C$ 是单射的,故 $f(x_1) = f(x_2)$. 又由于 $f \colon A \to B$ 也是单射的,所以 $x_1 = x_2$. 从而证明 $g \circ f \colon A \to C$ 是单射的. (3) 由 (1) 和 (2) 得证.

定理 设 $f: A \rightarrow B$,则 $f = f \circ I_B = I_A \circ f$

反函数存在的条件

任给函数 F, 它的逆 F^{-1} 不一定是函数, 是二元关系. 实例: $F=\{\langle a,b \rangle,\langle c,b \rangle\}$, $F^{-1}=\{\langle b,a \rangle,\langle b,c \rangle\}$

任给单射函数 $f: A \rightarrow B$, 则 f^{-1} 是函数, 且是从 ranf 到 A的双射函数, 但不一定是从 B 到 A 的双射函数.

实例:
$$f: \mathbb{N} \to \mathbb{N}$$
, $f(x) = 2x$, $f^{-1}: \operatorname{ran} f \to \mathbb{N}$, $f^{-1}(x) = x/2$

м

反函数

定理 设 $f: A \rightarrow B$ 是双射的,则 $f^{-1}: B \rightarrow A$ 也是双射的. 证 因为 f 是函数, 所以 f^{-1} 是关系, 且 $dom f^{-1} = ran f = B$, $ran f^{-1} = dom f = A$, 对于任意的 $y \in B = \text{dom } f^{-1}$, 假设有 $x_1, x_2 \in A$ 使得 $< y, x_1 > \in f^{-1} \land < y, x_2 > \in f^{-1}$ 成立,则由逆的定义有 $< x_1, y> \in f \land < x_2, y> \in f$ 根据 f 的单射性可得 $x_1 = x_2$, 从而证明了 f^{-1} 是函数,且是 满射的. 下面证明 f^{-1} 的单射性. 若存在 $y_1, y_2 \in B$ 使得 $f^{-1}(y_1) = f^{-1}(y_2) = x$, 从而有 $<_{y_1,x}>\in f^{-1}\land<_{y_2,x}>\in f^{-1}$ $\Rightarrow \langle x, y_1 \rangle \in f \land \langle x, y_2 \rangle \in f \Rightarrow y_1 = y_2$

反函数的定义及性质

对于双射函数 $f: A \rightarrow B$, 称 $f^{-1}: B \rightarrow A$ 是它的反函数.

反函数的性质 定理 设 $f: A \rightarrow B$ 是双射的,则 $f^{-1} \circ f = I_B, f \circ f^{-1} = I_A$

对于双射函数 $f: A \rightarrow A$,有 $f^{-1} \circ f = f \circ f^{-1} = I_A$

.

函数复合与反函数的计算

例设
$$f: R \rightarrow R, g: R \rightarrow R$$

$$f(x) = \begin{cases} x^2 & x \ge 3 \\ -2 & x < 3 \end{cases}$$

$$g(x) = x + 2$$

求 $f \circ g, g \circ f$. 如果 $f \cap g$ 存在反函数, 求出它们的反函数.

$$\mathbf{f} \circ g : \mathbf{R} \to \mathbf{R} \qquad g \circ f : \mathbf{R} \to \mathbf{R}$$

$$g \circ f(x) = \begin{cases} x^2 + 2 & x \ge 3 \\ 0 & x < 3 \end{cases} \qquad f \circ g(x) = \begin{cases} (x+2)^2 & x \ge 1 \\ -2 & x < 1 \end{cases}$$

f: R \rightarrow R不是双射的,不存在反函数.g: R \rightarrow R是双射的,它的反函数是 g^{-1} : R \rightarrow R, $g^{-1}(x) = x-2$

M

问题描述——多机调度

问题:

有2台机器 c_1, c_2 ;

6项任务 $t_1, t_2, ..., t_6$. 每项任务的加工时间分别为:

 $l(t_1)=l(t_3)=l(t_5)=l(t_6)=1, l(t_2)=l(t_4)=2$

任务之间的顺序约束是:

任务t3只有在t6和t5完成之后才能开始加工;

任务 t_2 只有在 t_6 , t_5 和 t_4 都完成后才能开始加工;

任务4,只有在4,和4,完成之后才能开始加工.

调度: 任务安排在机器上加工的方案

截止时间:开始时刻0,最后停止加工机器的停机时刻

.

两个调度方案

M

问题描述

■ 集合

任务集 $T=\{t_1, t_2, ..., t_n\}, n \in \mathbb{Z}^+$ 机器集 $M=\{c_1, c_2, ..., c_m\}, m \in \mathbb{Z}^+$ 时间集 N

■函数和关系

加工时间——函数 $l:T\to Z^+$.

顺序约束 $R \longrightarrow T$ 上的偏序关系,定义为

 $R=\{\langle t_i,t_j\rangle | t_i,t_j\in T,i=j$ 或 t_i 完成后 t_j 才可以开始加工}

M

问题描述 (续)

- ■可行调度
 - □ 分配到机器:

T 的 划分 $\pi=\{T_1, T_2, ..., T_m\}$, 划分块 T_j 是T 的非空子集,由安排在机器 c_i 上加工的所有任务组成.

□每个机器上的任务开始时间

 $\forall T_j \in \pi$,存在调度函数 $\sigma_j: T_j \to \mathbb{N}$, 满足以下条件:

(1) 任意时刻 i,每台机器上正在加工至多1个任务 $\forall i$, $0 \le i \le D$,

 $|\{t_k | t_k \in T_j, \sigma_j(t_k) \le i < \sigma_j(t_k) + l(t_k)\}| \le 1, j = 1, 2, ..., m$

(2) 任务的安排满足偏序约束

 $\forall t_i \in T_i, t_j \in T_j, \langle t_i, t_j \rangle \in R \Leftrightarrow \sigma_i(t_i) + l(t_i) \leq \sigma_j(t_j) \ i, j=1, 2, ..., m$

问题描述 (续)

机器j的停止时间

$$D_j = \max\{\sigma_j(t_k) | t_k \in T_j\} + l(t_k)$$

所有任务的截止时间

$$D=\max\{D_j | j=1,2,...,m\}.$$

我们的问题就是确定使得D达到最小的可行调度.

闲置状态 *i* 请求状态 *r* 访问状态 *w*

$$s_0 = \langle i_1, i_2 \rangle$$
, $s_1 = \langle r_1, i_2 \rangle$,
 $s_2 = \langle w_1, i_2 \rangle$, $s_3 = \langle r_1, r_2 \rangle$,
 $s_4 = \langle w_1, r_2 \rangle$, $s_5 = \langle i_1, r_2 \rangle$,
 $s_6 = \langle i_1, w_2 \rangle$, $s_7 = \langle r_1, w_2 \rangle$,

$$S = \{i_1, r_1, w_1\} \times \{i_2, r_2, w_2\} - \{\langle w_1, w_2 \rangle\} = \{s_0, s_1, \dots, s_7\}$$

安全性: $\neg(w_1 \land w_2)$,任何时刻至多一个进程访问资源.

活性: $r_1 \rightarrow \Diamond w_1$, 任何进程对资源的需求总会满足

Marie

投诉处理流程描述

 T_1 : 登记;

 T_4 : 过期处理;

 T_7 检查处理结果;

 T_2 寄出调查表;

 T_5 : 投诉评估;

 T_8 : 归档保存.

 T_3 : 调查表处理;

 T_6 处理投诉;

м

形式化描述

 WF_net 是三元组(P,T,F),其中P是库所集合,T是变迁集合,F 称为流关系.满足以下条件:

- (1) $P \cap T = \emptyset$;
- (2) $P \cup T \neq \emptyset$;
- (3) $F \subseteq P \times T \cup T \times P$;
- (4) $\operatorname{dom} F \cup \operatorname{ran} F = P \cup T$,其中 $\operatorname{dom} F = \{x \mid \exists y (\langle x, y \rangle \in F)\}$, $\operatorname{ran} F = \{y \mid \exists x (\langle x, y \rangle \in F)\}$;
- (5) 存在起始库所 $i \in P$, $\bullet i = \emptyset$, $\bullet i = \{j \mid \langle j,i \rangle \in F\}$ 称为i的前集;
- (6) 存在终止库所 $o \in P$, $o = \emptyset$, $o = \{j \mid \langle o,j \rangle \in F\}$ 称为o的后集;
- (7) 每个结点 $x \in P \cup T$,都处在从 i 到 o 的一条路径上.