

DATASHEET

JMS561 SuperSpeed USB To Dual SATA 6Gb/s Ports Bridge Controller

Document No.: PDS-16015 / Revision: 1.06 / Date: 08/19/2021

JMicron Technology Corporation

1F, No. 13, Innovation Road 1, Science-Based Industrial Park,

Hsinchu, Taiwan 300, R.O.C.

Tel: 886-3-5797389

Fax: 886-3-5799566

Website: http://www.jmicron.com

Copyright © 2021, JMicron Technology Corp. All Rights Reserved.

Printed in Taiwan 2021

JMicron and the JMicron Logo are trademarks of JMicron Technology Corporation in Taiwan and/or other countries.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use implantation or other life supports application where malfunction may result in injury or death to persons. The information contained in this document does not affect or change JMicron's product specification or warranties. Nothing in this document shall operate as an express or implied license or environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will JMicron be liable for damages arising directly or indirectly from any use of the information contained in this document.

For more information on JMicron products, please visit the JMicron web site at http://www.JMicron.com or send e-mail to sales@jmicron.com. For product application support, please send e-mail to fae@jmicron.com.

JMicron Technology Corporation

1F, No.13, Innovation Road 1, Science-Based Industrial Park, Hsinchu, Taiwan 300, R.O.C.

Tel: 886-3-5797389 Fax: 886-3-5799566

Revision History

Revision	Effective	Description of revision		A 4b	
number	date	Reference	Description of change	Author	
1.00	10/31/2013		Release revision 1.0.0	Mika Cheng	
			Updated performance benchmark		
			2. Updated GPIO description	Mika Cheng	
4.04	07/24/2014	./2014	3. Updated XIN/XOUT pin voltage	Miles Chang	
1.01			4. Updated VREG-IN and FB pin voltage	Mika Cheng	
			5. Updated SPI support list, add "Fudan		
				Microelectronics FM25F04A","Giga Device 25Q41BT"	
1.02	11/03/2015		Removed Minimum Junction Temperature	Mika Cheng	
1.03	11/15/2016		Removed SPI support and performance	Mika Cheng	
1.04	11/30/2016	Cover	Corrected typos	Leo Tsao	
1.05	10/25/2017	Figure 8	Corrected typos (part number)	Leo Tsao	
		Figure 4	Updated New Package dimension		
1.06	08/19/2021	Figure 7 Figure 8	Updated New part number Updated New Top view and Bottom view	Ming Hung Chen	

Table of Contents

Re	visior	n History	i
Та	ble of	Contents	ii
Fiç	gure L	ist	iv
Та	ble Li	st	V
1	Intro	duction	1
2	Feat	ures	1
3	Bloc	k diagram	2
4	Appl	ication examples	3
	4.1	USB 2.0 and USB 3.0 to two SATA 6Gb/s HDDs	3
	4.2	USB 2.0, USB 3.0 and eSATA to one SATA 6Gb/s HDDs	3
5	Pacl	kage dimension	4
6	Pacl	kage pin-out	5
	6.1	Pin assignment	5
	6.2	Pin type definition	
	6.3	Pin description	6
	6.4		11
		GPIO initial value	
7	Cloc	k and reset	12
	7.1	Crystal input	12
		Reset input	
8	Elec	trical characteristics	13
	8.1	Absolute maximum rating	13
	8.2	Operating voltage and temperature	13
	8.3	External clock source conditions	13
	8.4	Power Supply DC Characteristics	14
		I/O DC characteristics	15
	8.6	Power-on sequence	16
9	Proc	luct naming rule and order information	17
	9.1	Format of the part number	17
	9.2	Explanation of the part number	17
	03	Top mark	1.9

Figure List

Figure 1	Block diagram	2
Figure 2	USB 2.0 and USB 3.0 to two SATA 6Gb/s HDDs	3
Figure 3	USB 2.0, USB 3.0 and eSATA to one SATA 6Gb/s HDDs	3
Figure 4	Package outline drawing of QFN64 8x8	4
Figure 5	Pin assignment of JMS561	5
Figure 6	Power-on sequence	16
Figure 7	Format of the part number	17
Figure 8	Illustration of device top mark	18

Table List

Table 1	Pin type definition	6
Table 2	Pin description – Serial ATA interface	6
Table 3	Pin description – USB 3.1 Gen 1 interface	7
Table 4	Pin description – USB 2.0 interface	8
Table 5	Pin description – Crystal interface	8
Table 6	Pin description – Switching regulator interface	9
Table 7	Pin description – Control and GPIO interface	9
Table 8	Pin description – Power supply interface	11
Table 9	Absolute maximum rating	13
Table 10	Operating voltage and temperature	13
Table 11	External clock source conditions	13
Table 12	Power dissipation – USB 2.0 to SATAx2 @S0 state	14
Table 13	Power dissipation – USB 2.0 to SATAx2 @S4 state	14
Table 14	Power dissipation – USB 3.0 to SATAx2 U0 state	14
Table 15	Power dissipation – USB 3.0 to SATAx2 U3 state	
Table 16		
Table 17	Power-on timing requirements	16
Table 18	Explanation of the part number	17

1 Introduction

JMS561 is a SuperSpeed USB 5Gb/s to dual SATA 6Gb/s bridge controller, which also supports various application configurations. It provides hardware RAID0 (striping) and RAID1 (mirror) over USB 2.0/USB 3.0/eSATA. There are flexible GPIOs for customized functions.

JMS561 complies with both USB Mass Storage Class Bulk-Only Transport (BOT) specification and USB Attached SCSI Protocol (UASP) specification. In addition to excellent system compatibilities, it also achieves high performance and low power consumption by advanced low power process.

2 Features

- Complies with Serial ATA International Organization: Serial ATA Revision 3.1
- Complies with Universal Serial Bus 3.0 Specification Revision 1.0
- Complies with USB Mass Storage Class Bulk-Only Transport (BOT) Rev. 1.0 Specification
- Complies with USB Attached SCSI Protocol (UASP) Rev. 1.0 Specification
- Supports USB Super-Speed/High-Speed/Full-Speed Operation
- Supports USB 2.0/USB 3.0 power saving mode
- Supports multi LUNs for USB 2.0/USB 3.0
- Supports port multiplier for eSATA
- Supports hardware RAID0 (striping) and RAID1 (mirror) over USB 2.0/USB 3.0/eSATA
- Flexible GPIOs for customized functions
- Provides a hardware control PWM
- Provides software utilities for downloading the upgraded firmware code under USB2.0/USB3.0/eSATA
- Designed for Windows 7, Windows 8.1, Windows 10, MAC 10.9 or later versions
- 30MHz external crystal
- An embedded 3.3V to 1.2V voltage regulator
- An embedded 5.0V to 3.3V voltage regulator
- QFN 64 package

3 Block diagram

Figure 1 Block diagram

4 Application examples

4.1 USB 2.0 and USB 3.0 to two SATA 6Gb/s HDDs

Figure 2 USB 2.0 and USB 3.0 to two SATA 6Gb/s HDDs

4.2 USB 2.0, USB 3.0 and eSATA to one SATA 6Gb/s HDDs

Figure 3 USB 2.0, USB 3.0 and eSATA to one SATA 6Gb/s HDDs

5 Package dimension

Figure 4 Package outline drawing of QFN64 8x8

6 Package pin-out

Pin assignment

6.2 Pin type definition

Table 1 Pin type definition

Pin type	Definition				
Α	Analog				
D	Digital				
I	Input				
О	Output				
IO Bi-directional					
L Internal weak pull-low (Max. 164 kΩ, Typical 96 kΩ, Min. 61 kΩ)					
H Internal weak pull-high (Max. 141 kΩ, Typical 93 kΩ, Min. 66 kΩ)					

6.3 Pin description

6.3.1 Serial ATA interface

Table 2 Pin description – Serial ATA interface

Signal Name	QFN 64	Туре	Description
S0_RXP	38	Al	SATA Port RX+ Signal. A 10nF capacitor should be connected between this pin and SATA connector.
S0_RXN	39	Al	SATA Port RX- Signal. A 10nF capacitor should be connected between this pin and SATA connector.
S0_TXP	42	AO	SATA Port TX+ Signal. A 10nF capacitor should be connected between this pin and SATA connector.
S0_TXN	41	AO	SATA Port TX- Signal. A 10nF capacitor should be connected between this pin and SATA connector.
S1_RXP	44	AI	SATA Port RX+ Signal. A 10nF capacitor should be connected between this pin and SATA connector.
S1_RXN	45	AI	SATA Port RX- Signal. A 10nF capacitor should be connected between this pin and SATA connector.
S1_TXP	48	АО	SATA Port TX+ Signal. A 10nF capacitor should be connected between this pin and SATA connector.

Signal Name	QFN 64	Туре	Description
S1_TXN	47	АО	SATA Port TX- Signal. A 10nF capacitor should be connected between this pin and SATA connector.
REXT	36	AI	External Reference Resistance. A $12K\Omega\pm1\%$ external resistor should be connected to this pin.

6.3.2 USB 3.0 interface

 Table 3
 Pin description – USB 3.1 Gen 1 interface

Signal Name	QFN 64	Туре	Description
SSRXP	31	AI	Super Speed RX+ Signal.
SSRXN	30	AI	Super Speed RX- Signal.
SSTXP	28	AO	Super Speed TX+ Signal. A 100nF capacitor should be connected between this pin and USB connector.
SSTXN	27	АО	Super Speed TX- Signal. A 100nF capacitor should be connected between this pin and USB connector.
SSREXT	25	Al	External Reference Resistance. A 12KΩ±1% external resistor should be connected to this pin.

6.3.3 USB 2.0 interface

Table 4 Pin description - USB 2.0 interface

Signal Name	QFN 64	Туре	Description
DM	23	AIO	USB 2.0 Bus D- Signal.
DP	24	AIO	USB 2.0 Bus D+ Signal.
LDO_5V_IN	21	Al	5V to 3.3V LDO Power Input. This pin should be connected to the 5V input or USB connector 5V.
LDO_3V_ OUT	22	AO	Capacitance for internal LDO of USB 2.0. A capacitance to ground is recommended on this pin. The value should be 1uF. The output voltage range is 3.3V ±10%.
VBUS_ SENSE	16	Al	USB 2.0/USB 3.0 Cable Power Input This pin should be connected to USB connector 5V.

6.3.4 Crystal interface

Table 5 Pin description – Crystal interface

Signal Name	QFN 64 Type	Description
XIN	35 AI	Crystal Input/Oscillator Input. It is connected to a 30MHz crystal or crystal oscillator. The variation range should be ±30ppm. And the input voltage should range in 3.3V±5%.
XOUT	34 AO	Crystal Output. It is connected to a crystal. While crystal oscillator is applied, this pin should be reserved as No Connection (NC). The output variation range is around ±30ppm (input dependent). And the output voltage range is 3.3V±5% (input dependent).

6.3.5 Switching regulator interface

Table 6 Pin description – Switching regulator interface

Signal Name	QFN 64	Туре	Description
VREG-GND	58,59	Al	Switching Regulator Ground.
VREG-OUT	60,61	AO	Switch Output Pin. An external inductor should be connected to this pin.
VREG-IN	62,63	AI	Switching Regulator 3.3V Power Supply.
FB	64	AI	Feedback pin which is connected to 1V2 core voltage.

6.3.6 Control and GPIO interface

Table 7 Pin description – Control and GPIO interface

Signal Name	QFN 64	Туре	Description
RST#	54	DIS	System Global Reset Input. Active-low to reset the entire chip. An external RC should be connected to this pin. Please refer to the following section for detailed description.
TESTEN	56	DIS	MP Test Mode Enable. This pin is reserved for IC mass production testing. Please set this pin to low under normal operation.
GPIO[0]	3	DIOH	8051 UART Output / GPIO [0]. This pin only preserves for SATA side UART function.
GPIO[1]	1	DIOH	Buzzer Output / GPIO [1]. This pin only preserves for buzzer function.
GPIO[2]	18	DIOH	Primary Serial Flash (CE) / GPIO [2] This pin only preserves for SPI chip enable.
GPIO[3]	19	DIOH	FAN OUT / GPIO [3]. This pin only preserves for FAN function.
GPIO[4]	7	DIOH	RAID SET Button / GPIO [4] This pin can be set hardware RAID mode by RAID mode set0 and RAID set 1 push after 3 seconds.
GPIO[5]	6	DIOH	RAID MODE SET 0 / GPIO [5] This pin can be set RAID mode with GPIO 7.

Signal Name	QFN 64	Туре	Description					
GPIO[6]	2	DIOH	8051 UART Output / GPIO [6] This pin only preserves for USB side UART function.					
GPI0[7]	5	DIOH	RAID MODE SET 1 / GPIO [7] This pin can be set hardware RAID mode with GPIO 5. PM RAID 0 RAID 1 LARGE GPIO 5 H L H L GPIO 7 H L H					
GPIO[8]	8	DIOH	HDD 1 Power control / GPIO [8]. This pin only preserves for enable hard drive power.					
GPIO[9]	50	DIOH	HDD 0 Power control / GPIO [9]. This pin only preserves for enable hard drive power.					
GPIO[10]	53	DIOH	ERR & Identify LED 0 / GPIO [10]. This pin can be programmed by customized firmware.					
GPIO[11]	55	DIOH	GPIO [11]. This pin can be programmed by customized firmware.					
GPIO[12]	11	DIOH	GPIO [12]. This pin can be programmed by customized firmware.					
GPIO[13]	15	DIOH	GPIO [13] This pin can be programmed as special function or normal GPIO function.					
GPIO[14]	9	DIOH	ERR & Identify LED 1 / GPIO [14]. This pin can be programmed by customized firmware.					
GPIO[15]	13	DIOH	GPIO [15] This pin can be programmed as special function or normal GPIO function.					
GPIO[16]	14	DIOH	GPIO [16] This pin can be programmed as special function or normal GPIO function.					
GPIO[17]	49	DIOH	GPIO [17]. This pin only preserves for FAN function.					

6.3.7 Power supply

Table 8 Pin description – Power supply interface

Signal Name	QFN 64	Туре	Description
vcco	10,52	Р	Digital I/O Power Supply.
vсск	4,12,17 20,51,57	Р	Digital Core Power Supply.
AVDDH	26,33,43	Р	Analog I/O Power Supply.
AVDDL	29,32,37 40,46	Р	Analog Core Power Supply.

6.4 LED indicator

If user has an application for LED function, please contact JMicron's AE before PCB layout...

6.5 GPIO initial value

All GPIOs set as input mode with pull-high resistor while in reset.

7 Clock and reset

7.1 Crystal input

Single crystal input (30MHz) is needed.

7.2 Reset input

The reset input pin is the Schmitt trigger input pin. All functions will be initialized by reset except the Analog Power-On Reset Circuit depending on the Power on-off.

.

8 Electrical characteristics

8.1 Absolute maximum rating

Table 9 Absolute maximum rating

Parameter	Symbol	Condition	Min	Max	Unit
Digital I/O power supply	VCCO _(ABS)		-0.3	3.47	V
Digital core power supply	VCCK _(ABS)		-0.3	1.26	V
Analog I/O power supply	AVDDH _(ABS)		-0.3	3.47	V
Analog core power supply	AVDDL _(ABS)		-0.3	1.26	V
USB VBUS power supply	VBUS		-0.3	5.5	V
Digital I/O input voltage	V _{I(D)}		-0.3	3.47	V
Storage Temperature	TSTORAGE		-40	150	°C

8.2 Operating voltage and temperature

Table 10 Operating voltage and temperature

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital I/O power supply	VCCO		3.13	3.3	3.47	V
Digital core power supply	VCCK		1.14	1.2	1.26	V
Analog I/O power supply	AVDDH		3.13	3.3	3.47	V
Analog core power supply	AVDDL		1.14	1.2	1.26	V
Digital I/O input voltage	V _{I(D)}		0	3.3	3.47	V
Ambient operation temperature	TA		0		70	°C
Junction Temperature	TJ				125	°C

8.3 External clock source conditions

Table 11 External clock source conditions

Parameter	Symbol	Condition	Min	Typical	Max	Unit
External reference clock				30		MHz
Clock Duty Cycle			45	50	55	%

8.4 Power Supply DC Characteristics

The maximum and minimum values are measured at the max and min power supply levels respectively.

8.4.1 USB 2.0 to SATAx2 mode

8.4.1.1 @S0 state

Table 12 Power dissipation – USB 2.0 to SATAx2 @S0 state

Parameter	Symbol	Condition	Min	Typical	Max	Unit
3.3V	VCCO and ACDDH	Operate @3.3V	40.5	48.6	56.0	mA
1.2V	VCCK and AVDDL	Operate @1.2V	325.4	328.3	332.4	mA

8.4.1.2 @S4 state

Table 13 Power dissipation – USB 2.0 to SATAx2 @S4 state

Parameter	Symbol	Condition	Min	Typical	Max	Unit
3.3V	VCCO and ACDDH	Operate @3.3V	2.0	3.0	4.0	mA
1.2V	VCCK and AVDDL	Operate @1.2V	2.0	3.0	4.0	mA

8.4.2 USB 3.0 to SATAx2 mode

8.4.2.1 U0 state (Operation)

 Table 14
 Power dissipation – USB 3.0 to SATAx2 U0 state

Parameter	Symbol	Condition	Min	Typical	Max	Unit
3.3V	VCCO and ACDDH	Operate @3.3V	45.9	53.9	61.3	mA
1.2V	VCCK and AVDDL	Operate @1.2V	450.6	455.4	477.7	mA

8.4.2.2 U3 state (Suspend)

 Table 15
 Power dissipation – USB 3.0 to SATAx2 U3 state

Parameter	Symbol	Condition	Min	Typical	Max	Unit
3.3V	VCCO and ACDDH	Operate @3.3V	3.0	3.0	3.1	mA
1.2V	VCCK and AVDDL	Operate @1.2V	7.0	7.0	7.1	mA

8.5 I/O DC characteristics

Table 16 I/O DC characteristics

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Input low voltage	VIL				0.7	V
Input high voltage	V _{IH}		1.5			V
Output low voltage	Vol				0.3	V
Output high voltage	Vон		1.9			V

8.6 Power-on sequence

The Power-On sequence rules are defined in this section. Designers should follow all the rules for external power designs. Detailed explanations are listed as below.

The recommended power sequence and timing requirements are listed in Table 24.

Figure 6 Power-on sequence

Time **Minimum** Maximum T1 0.0 ms 10 ms T2 0.0 ms 10. ms T3 0.0 ms 8 ms T4 0.0 ms 8 ms T5 67 ms

Table 17 Power-on timing requirements

The RESET timing constrain is based on the external RC reset circuits. In order to control the charge and discharge time for RC circuits, minimum and maximum requirements are listed. If designers apply timing control chip to control the reset signal, the only requirement will be minimum value. In other words, the maximum value can be skipped without problems.

9 Product naming rule and order information

9.1 Format of the part number

The part number consists of the information of provider, product category, device number, package type, material type, product grade (operating temperature), mask ROM version and device version. Format of the part number is illustrated in Figure 7 below.

Figure 7 Format of the part number

9.2 Explanation of the part number

Table 25 explains each portion of the part number defined in Figure 7.

Table 18 Explanation of the part number

Section	Length	Purpose	Code(s)	Meaning
а	2 digits	Brand name	JM	JM icron
b	1 digit	Product category	S	SuperSpeed USB
С	3 digits	Device number	561	Serial number assigned randomly to form the device name "JMS561" in conjunction with brand name and product category.
d	1 digit	Package type	Q	QFN
е	1 digit	Material & grade	G	RoHS compliant G reen product with JEDEC MSL3 and commercial grade with the operating ambient temperature ranged from 0 to 70°C.
f	1 digit	Internal bonding type	Α	Wire bonding option A
g	2 digit	Version of mask ROM	А3	Version A3
h	1 digit	Version of the IC	Α	Version A

9.3 Top mark

Each device has its unique top mark containing information of the provider, device name, part number, manufacturing date code, lot number and pin 1 identifier. The top mark of each device is illustrated in Figure 8.

Figure 8 Illustration of device top mark

