Fermion Operators

Contents

1	Anticommutation	2
2	Wavefunction operator	3
3	Position operator	4
4	Exchange energy	5
5	Energy matrix	6
6	Superposition of eigenstates	8

1 Anticommutation

Consider the following eigenstates of a hypothetical quantum system.¹

$$|00\rangle = (1\ 0\ 0\ 0)^{\dagger}$$
 no fermions $|10\rangle = (0\ 1\ 0\ 0)^{\dagger}$ one fermion in state 1 $|01\rangle = (0\ 0\ 1\ 0)^{\dagger}$ one fermion in state 2 $|11\rangle = (0\ 0\ 0\ 1)^{\dagger}$ two fermions, one in state 1, one in state 2

Creation and annihilation operators are formed from outer products of state vectors. Sign changes make the operators antisymmetric.

$$\hat{b}_1^\dagger = |10\rangle\langle 00| - |11\rangle\langle 01| \qquad \text{Create one fermion in state 1}$$

$$\hat{b}_1 = |00\rangle\langle 10| - |01\rangle\langle 11| \qquad \text{Annihilate one fermion in state 1}$$

$$\hat{b}_2^\dagger = |01\rangle\langle 00| + |11\rangle\langle 10| \qquad \text{Create one fermion in state 2}$$

$$\hat{b}_2 = |00\rangle\langle 01| + |10\rangle\langle 11| \qquad \text{Annihilate one fermion in state 2}$$

The operators in matrix form.

$$\hat{b}_1^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix} \quad \hat{b}_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \hat{b}_2^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \quad \hat{b}_2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Verify anticommutation relations of the operators.

$$\hat{b}_j\hat{b}_k + \hat{b}_k\hat{b}_j = 0$$

$$\hat{b}_i^{\dagger} \hat{b}_k^{\dagger} + \hat{b}_k^{\dagger} \hat{b}_i^{\dagger} = 0$$

$$\hat{b}_j \hat{b}_k^{\dagger} + \hat{b}_k^{\dagger} \hat{b}_j = \delta_{jk}$$

¹Adapted from problem 16.1.1 of "Quantum Mechanics for Scientists and Engineers." https://ee.stanford.edu/~dabm/QMbook.html

2 Wavefunction operator

Consider the following eigenstates of a hypothetical quantum system.²

 $|00\rangle = (1\ 0\ 0\ 0)^{\dagger}$ no fermions $|10\rangle = (0\ 1\ 0\ 0)^{\dagger}$ one fermion in state ϕ_1 $|01\rangle = (0\ 0\ 1\ 0)^{\dagger}$ one fermion in state ϕ_2 $|11\rangle = (0\ 0\ 0\ 1)^{\dagger}$ two fermions, one in state ϕ_1 , one in state ϕ_2

Let fermion states ϕ_n be modeled by a one dimensional box of length L.

$$\phi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

Creation and annihilation operators are formed from outer products of state vectors. Sign changes make the operators antisymmetric.

$$\begin{split} \hat{b}_1^\dagger &= |10\rangle\langle 00| - |11\rangle\langle 01| & \text{Create one fermion in state } \phi_1 \\ \hat{b}_1 &= |00\rangle\langle 10| - |01\rangle\langle 11| & \text{Annihilate one fermion in state } \phi_1 \\ \hat{b}_2^\dagger &= |01\rangle\langle 00| + |11\rangle\langle 10| & \text{Create one fermion in state } \phi_2 \\ \hat{b}_2 &= |00\rangle\langle 01| + |10\rangle\langle 11| & \text{Annihilate one fermion in state } \phi_2 \end{split}$$

Given the wavefunction operator

$$\hat{\psi} = \frac{1}{\sqrt{2}} \sum_{n,m} \phi_n(x) \phi_m(y) \hat{b}_n \hat{b}_m$$

show that

$$\hat{\psi}|11\rangle = \frac{1}{\sqrt{2}} (\phi_1(x)\phi_2(y) - \phi_1(y)\phi_2(x))|00\rangle$$

²Adapted from problem 16.2.1 of "Quantum Mechanics for Scientists and Engineers." https://ee.stanford.edu/~dabm/QMbook.html

3 Position operator

Consider the following eigenstates of a hypothetical quantum system.

 $|00\rangle = (1\ 0\ 0\ 0)^{\dagger}$ no fermions $|10\rangle = (0\ 1\ 0\ 0)^{\dagger}$ one fermion in state ϕ_1 $|01\rangle = (0\ 0\ 1\ 0)^{\dagger}$ one fermion in state ϕ_2 $|11\rangle = (0\ 0\ 0\ 1)^{\dagger}$ two fermions, one in state ϕ_1 , one in state ϕ_2

Let fermion states ϕ_n be modeled by a one dimensional box of length L.

$$\phi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

Creation and annihilation operators are formed from outer products of state vectors. Sign changes make the operators antisymmetric.

$$\begin{split} \hat{b}_1^\dagger &= |10\rangle\langle 00| - |11\rangle\langle 01| & \text{Create one fermion in state } \phi_1 \\ \hat{b}_1 &= |00\rangle\langle 10| - |01\rangle\langle 11| & \text{Annihilate one fermion in state } \phi_1 \\ \hat{b}_2^\dagger &= |01\rangle\langle 00| + |11\rangle\langle 10| & \text{Create one fermion in state } \phi_2 \\ \hat{b}_2 &= |00\rangle\langle 01| + |10\rangle\langle 11| & \text{Annihilate one fermion in state } \phi_2 \end{split}$$

Let \hat{r} be the position operator

$$\hat{r} = \sum_{n,m} r_{nm} \hat{b}_n^{\dagger} \hat{b}_m$$

where

$$r_{nm} = \int_0^L \phi_n^*(x) x \phi_m(x) \, dx$$

Note that for a one dimensional box

$$r_{nn} = \langle x \rangle = \frac{1}{2}L$$

Verify that

$$\langle 10|\hat{r}|10\rangle = r_{11}$$
$$\langle 10|\hat{r}|01\rangle = r_{12}$$
$$\langle 01|\hat{r}|10\rangle = r_{21}$$
$$\langle 01|\hat{r}|01\rangle = r_{22}$$

4 Exchange energy

Let $\psi(x,y)$ be the antisymmetrized wave function for two electrons in a box of length L.

$$\psi(x,y) = \frac{1}{\sqrt{2}} (\phi_1(x)\phi_2(y) - \phi_1(y)\phi_2(x))$$

$$\phi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

For $L = 10^{-9}$ meter the expected potential energy is

$$V = \frac{e^2}{4\pi\epsilon_0} \int_0^L \int_0^L \frac{\psi^*(x,y)\psi(x,y)}{|x-y|} dx dy = 4.67 \,\text{eV}$$

Next calculate the potential energy for a wave function that is not antisymmetrized.

$$V_0 = \frac{e^2}{4\pi\epsilon_0} \int_0^L \int_0^L \frac{\phi_1^*(x)\phi_2^*(y)\phi_1(x)\phi_2(y)}{|x-y|} dx dy = 12.80 \,\text{eV}$$

The difference is the exchange energy.

$$V_{ex} = V - V_0 = -8.13 \,\text{eV}$$

Note that the formula for V_0 has a singularity at x = y. The computed value shown above is the result of an arbitrary cutoff in numerical integration. The actual value of V_0 goes to infinity.

Note also that there is a singularity at x = y in the formula for V. However, due to antisymmetry we have $\psi(x, x) = 0$ and hence the integral converges.

We are left to ponder the reality of exchange energy since it cannot be computed.

5 Energy matrix

Consider a system with the following eigenstates.

$$|0\rangle = (1\ 0\ 0\ 0)^{\dagger}$$
 no electrons

$$|1\rangle = (0\ 1\ 0\ 0)^{\dagger}$$
 one electron in state ϕ_1

$$|1\rangle = (0\ 1\ 0\ 0)^{\dagger}$$
 one electron in state ϕ_1
 $|2\rangle = (0\ 0\ 1\ 0)^{\dagger}$ one electron in state ϕ_2

$$|3\rangle = (0\ 0\ 0\ 1)^{\dagger}$$
 two electrons, one in state ϕ_1 , one in state ϕ_2

Let electron states ϕ_n be modeled by a one dimensional box of length L.

$$\phi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

Let $|\xi\rangle$ be an arbitrary normalized state vector.

$$|\xi\rangle = c_0|0\rangle + c_1|1\rangle + c_2|2\rangle + c_3|3\rangle, \qquad \langle \xi|\xi\rangle = 1$$

Let us determine an energy matrix \hat{E} such that the expected energy $\langle E \rangle$ in state $|\xi\rangle$ is

$$\langle E \rangle = \langle \xi | \hat{E} | \xi \rangle$$

Energy matrix \hat{E} is the sum of kinetic and potential energy matrices.

$$\hat{E} = \hat{K} + \hat{V}$$

Kinetic energy matrix \hat{K} can be computed from energy eigenvalues of the box model.

$$\hat{K} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & E_1 & 0 & 0 \\ 0 & 0 & E_2 & 0 \\ 0 & 0 & 0 & E_1 + E_2 \end{pmatrix}, \qquad E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}$$

Potential energy matrix \hat{V} has one entry due to Coulomb interaction in the two electron state.

Let $\psi(x,y)$ be the antisymmetrized wavefunction of the two electrons.

$$\psi(x,y) = \frac{1}{\sqrt{2}} (\phi_1(x)\phi_2(y) - \phi_1(y)\phi_2(x))$$

Then

$$V = \frac{e^2}{4\pi\epsilon_0} \int_0^L \int_0^L \psi^*(x, y) \left(\frac{1}{|x - y|}\right) \psi(x, y) \, dx \, dy$$

Let us now choose $L=10^{-9}$ meters and compute numerical values. For \hat{K} we have

$$\hat{K} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.38 \,\text{eV} & 0 & 0 \\ 0 & 0 & 1.50 \,\text{eV} & 0 \\ 0 & 0 & 0 & 1.88 \,\text{eV} \end{pmatrix}$$

Computing V by numerical integration we have

Hence

$$\hat{E} = \hat{K} + \hat{V} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.38 \,\text{eV} & 0 & 0 \\ 0 & 0 & 1.50 \,\text{eV} & 0 \\ 0 & 0 & 0 & 6.55 \,\text{eV} \end{pmatrix}$$

6 Superposition of eigenstates

Consider a system with the following eigenstates.

 $|0\rangle = (1\ 0\ 0\ 0)^{\dagger}$ no electrons

 $|1\rangle = (0\ 1\ 0\ 0)^{\dagger}$ one electron in state ϕ_1

 $|2\rangle = (0\ 0\ 1\ 0)^{\dagger}$ one electron in state ϕ_2

 $|3\rangle = (0\ 0\ 0\ 1)^{\dagger}$ two electrons, one in state ϕ_1 , one in state ϕ_2

Then for the wavefunction basis

$$\phi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

and for $L = 10^{-9}$ meters we have

$$\hat{E} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.38 \,\text{eV} & 0 & 0 \\ 0 & 0 & 1.50 \,\text{eV} & 0 \\ 0 & 0 & 0 & 6.55 \,\text{eV} \end{pmatrix}$$

Let $|\xi\rangle$ be the state vector

$$|\xi\rangle = \frac{1}{2}|0\rangle + \frac{1}{2}|1\rangle + \frac{1}{2}|2\rangle + \frac{1}{2}|3\rangle = \begin{pmatrix} 1/2\\1/2\\1/2\\1/2 \end{pmatrix}$$

The expected energy is

$$\langle \xi | \hat{E} | \xi \rangle = \frac{0 \,\text{eV}}{4} + \frac{0.38 \,\text{eV}}{4} + \frac{1.50 \,\text{eV}}{4} + \frac{6.55 \,\text{eV}}{4} = 2.11 \,\text{eV}$$

For the system we are considering, the result of a single measurement is either 0 eV, 0.38 eV, 1.50 eV, or 6.55 eV. The value 2.11 eV is the expected average across multiple measurements. Recall that a measurement causes the system to exit state $|\xi\rangle$ and enter an eigenstate $|0\rangle$, $|1\rangle$, $|2\rangle$, or $|3\rangle$ corresponding to the measured eigenvalue. The system must be put back in state $|\xi\rangle$ before the next measurement.

To use a slot machine analogy, state $|\xi\rangle$ is like the wheels spinning. Observing the system makes the wheels stop. The stopped wheels are in an eigenstate $|0\rangle$, $|1\rangle$, $|2\rangle$, or $|3\rangle$. Once they are stopped the wheels don't change, they remain in the same eigenstate. You have to pull the lever to get the wheels spinning again.