

Gagner au Monopoly par les chaînes de Markov

Minko Benjamin

Promoteur: M. Segers Johan

Université catholique de Louvain Faculté des sciences École de Mathématique 2020–2021

Plan De Travail

Application sur le jeu de Monopoly

Autres applications des chaînes de Markov

Propriété de Markov

Probabilité et matrice de transition

Règle du jeu

Règle du jeu

Modélisation

Distribution d'une chaîne de Markov

Convergence vers le régime stationnaire

Recherche de la distribution stationnaire

Résultats

Autres applications des chaînes de Markov

- 1. Biologie : épidémiologie.
- 2. Reconnaissance de la parole.
- 3. Reconnaissance de l'écriture.
- 4. Etc...

Pour définir une chaîne de Markov nous avons besoin de...

Un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, une suite de variables aléatoires $(X_n)_{n\geq 0}$ à valeurs dans un espace d'états S.

Propriété de Markov

Définition:

Considérons l'espace d'états S, et l'espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. Une suite de variables aléatoires $(X_n)_{n\geq 0}$ à valeurs dans S est une chaîne de Markov ou processus de Markov si pour tout $i_0, i_1, \ldots, i_{n+1} \in S$:

$$\mathbb{P}[X_{n+1} = i_{n+1} \mid X_0 = i_0, X_1 = i_1, \dots, X_n = i_n]$$

= $\mathbb{P}[X_{n+1} = i_{n+1} \mid X_n = i_n].$

Si j'ai bien compris, une chaîne de Markov est un phénomène dont son état dans le futur, ne dépend que de son état dans le cas présent.

Plateau de jeu

Probabilité de transition

Définition:

On considère l'espace d'états S, et i, j des éléments de S. On appelle probabilité de transition d'un état i à un état j à l'instant n le nombre non négatif $p_n(i,j)$, défini par :

$$p_n(i,j) = \mathbb{P}[X_{n+1} = j \mid X_n = i], \quad n \ge 0,$$
 (1)

et on dit qu'une chaîne de Markov est homogène si :

$$p_n(i,j) = p(i,j) = \mathbb{P}[X_{n+1} = j \mid X_n = i], \quad n \ge 0.$$
 (2)

Déplacements :

Le joueur avance suivant le nombre obtenu par la somme du lancer des deux dés.

$$q(2) = q(12) = 1/36,$$

$$q(3) = q(11) = 2/36,$$

$$q(4) = q(10) = 3/36,$$

$$q(5) = q(9) = 4/36,$$

$$q(6) = q(8) = 5/36,$$

$$q(7) = 6/36,$$

$$q(i) = 0 \text{ pour les autres } i.$$

Matrice de transition

Définition:

Considérons l'espace d'états S. Étant donnée une chaîne de Markov $(X_n)_{n\geq 0}$, on lui associe une matrice de transition

$$P = \{p(i,j)\}_{i,j \in S}.$$

La matrice de transition P est une matrice carré de taille $\operatorname{card}(S) \times \operatorname{card}(S)$. Sa taille est finie ou infinie selon que S soit fini ou infini.

Matrice stochastique

Proposition

La matrice de Transition $P = \{p_{ij}\}_{i,j \in S}$ associée à une chaîne de Markov $(X_n)_{n \geq 0}$ à valeurs dans S est stochastique, c'est à dire :

$$\sum_{i \in S} p(i,j) = 1 \ , \ i \in S \ et \ p(i,j) \ge 0.$$

Démonstration.

$$p(i,j) = \mathbb{P}[X_{n+1} = j \mid X_n = i] \ge 0.$$

$$\sum_{j \in S} p(i,j) = \frac{\sum_{j \in S} \mathbb{P}\big[\{X_{n+1} = j\} \cap \{X_n = i\}\big]}{\mathbb{P}\big[X_n = i\big]} = \frac{\mathbb{P}\big[X_n = i\big]}{\mathbb{P}\big[X_n = i\big]} = 1.$$

Donc pour le Monopoly, nous devons trouver la matrice de transition P contenant les probabilités de transiter d'une case à une autre!!

C'est ça?

Plateau annoté du Monopoly

Règles du jeu :

- 1. Cartes chance (7, 22, 36): 7/16 cartes de déplacement qui envoient le joueur aux cases 39, 0, 24, 11, 15, 10, 33, 19, et 4.
- 2. Cartes caisse de communauté (2, 17, 33): 4/16 cartes de déplacement qui envoient le joueur aux cases 0, 10, 1, 5, 25, 35.
- 3. Aller en prison : soit via la case 30, soit via une carte spéciale ou en faisant 3 doubles consécutifs.
- 4. Sortie de prison : faire un double ou payer l'amende, après 3 tours.

Plateau annoté du Monopoly

Règles du jeu : ajout des cases virtuelles.

• case prison: simple visite en case 10. En 42, le joueur se trouve en prison pour au plus trois tours. En 41, le joueur se trouve en prison pour au plus deux tours. En 40, le joueur sort de prison au prochain tour.

Hummm!!! La règle qui donne le choix au joueur de payer une amende ou de faire un double ne pose pas problème?

Introduction du paramètre a:

Le joueur a une probabilité a de payer l'amende, et donc une probabilité 1-a de de ne pas la payer.

Modélisation

Modèle:

- 1. Chaîne homogène $(X_n)_{n\geq 0}$: ensemble de positions du joueur après n lancers de dés.
- 2. $S = \{0, 1, 2, \dots, 29, 31, \dots, 42\}.$
- 3. Matrice stochastique $P = \{p_{ij}\}_{i,j \in S}$ de taille 42×42 , pour a = 1/1000.

Ok, désolé mais je ne comprends pas... Où veux-tu en venir? C'est quoi l'idée derrière tout ça?

Loi d'une chaîne de Markov

Définition:

Soit $(X_n)_{n\geq 0}$ une chaîne de Markov à valeur dans S. La loi initiale d'une chaîne de Markov X_0 à valeur dans l'espace d'états S est le nombre α tel que :

$$\alpha_i = \mathbb{P}[X_0 = i], \text{ pour tout } i \in S.$$

On parle de loi stationnaire ou régime stationnaire et on la note π lorsque

$$\pi_j = \mathbb{P}[X_n = j] = \sum_{i \in S} \alpha_i p_{ij}^{(n)} = \mathbb{P}[X_0 = j], \ j \in S, \ n = 0, 1, 2 \dots$$

Convergence vers le régime stationnaire

<u>Théorème</u>:

Soit $(X_n)_{n\geq 0}$ une chaîne de Markov irréductible, récurrente positive et apériodique, à valeurs dans l'espace d'états S de loi initiale α . Alors pour tout état $i \in S$,

$$\lim_{n \to +\infty} \mathbb{P}[X_n = i] = \pi_i,$$

où π est l'unique probabilité stationnaire de la chaîne.

Vérification des hypothèses

Irréductible:

• La chaîne est irréductible si à un instant donné, on peut transiter d'un état à un autre : on dit que les états communiquent.

 P^3 ne contient aucun 0.

Récurrente positive :

• Elle est récurrente positive si pour tout état i, la probabilité de retourner d'un état i partant de lui-même à un temps fini est égale à 1.

Tous les états communiquent.

Apériodique:

• La période t_i de l'état $i \in S$ est par définition

$$t_i = PGCD\{n \ge 1: p_{ii}^{(n)} > 0\},\$$

avec pour convention $t_i = +\infty$ si un tel n n'existe pas. Si $t_i = 1$, l'état i est apériodique.

En particulier, deux états i et j qui communiquent ont la même période.

On peut revenir en 0 (case GO) après seulement un lancer de dés.

Plateau de jeu

- 1. Irréductible.
- 2. Récurrente positive.
- 3. Apériodique.
- $4. \ \ Unique probabilit\'e station naire.$

Probabilités des propriétés les plus visitées a=0.001

Probabilité	propriété	N'
0.02956	AVENUE HENRI-MARTIN	24
0.02823	BOULEVARD SAINT-MICHEL	18
0.02819	GARE DE LYON	15
0.02783	PLACE PIGALLE	19
0.02694	GARE DU NORD	25
0.02685	AVENUE MOZART	16
0.02581	AVENUE MATIGNON	21
0.02541	BOULEVARD DE LA VILLETTE	11
0.02538	FAUBOURG SAINT-HONORÉ	26
0.02526	PLACE DE LA BOURSE	27
0.02526	BOULEVARD MALSHERBES	23
0.02524	AVENUE DE BRETEUIL	31
0.02498	COMPAGNIE DE DISTRIBUTION DES EAUX	28
0.02474	RUE DE LA FAYETTE	29
0.02459	AVENUE FOCH	32
0.02456	RUE DE LA PAIX	39
0.02452	BOULEVARD DE BELLEVILLE	1
0.02440	RUE DE PARADIS	14
0.02391	GARE SAINT-LAZARE	35
0.02324	COMPAGNIE DE DISTRIBUTION D'ÉLECTRICITÉ	12
0.02323	BOULEVARD DES CAPUCINES	34
0.02258	GARE MONTPARNASSE	5
0.02203	RUE DE COURCELLES	8
0.02180	RUE DE VAUGIRARD	6
0.02176	AVENUE DE NEUILLY	13
0.02162	AVENUE DE LA RÉPUBLIQUE	9
0.02083	RUE LECOURBE	3
0.02016	AVENUE DES CHAMPS-ÉLYSÉES	37

Figure – Barplot des couleurs les plus visitées pour a=1/1000

Tableau de rentabilités des propriétés par ordre décroissant pour a=0.001: en plaçant 4 maisons sur chaque rue.

Propriété	Rentabilité	N°
Orange	0.037278	16,18,19
Bleu Ciel	0.031565	6,8,9
Violet	0.030950	11,13,14
Rouge	0.030444	21,23,24
Marron	0.028860	1,3
Jaune	0.028141	26,27,29
Bleu Foncé	0.027212	37,39
Gares	0.025406	5,15,25,35
Vert	0.025325	31,32,34

Tableau de rentabilités des propriétés par ordre décroissant pour a=0.001 : en plaçant un hotel sur chaque rue.

Propriété	Rentabilité	N°
Orange	0.055917	16,18,19
Bleu Ciel	0.047348	6,8,9
Violet	0.046425	11,13,14
Rouge	0.045666	21,23,24
Jaune	0.042212	26,27,29
Vert	0.037988	31,32,34
Marron	0.028860	1,3
Bleu Foncé	0.027212	37,39

J'ai essayé et ça marche!!

