Q1.

Write the meaning of these sentences in first order logic. You may ignore temporal and aspectual semantics for the moment.

- (1) a. Every student who is tired is happy.
 - b. Every tired student is happy.
 - c. Every successful student is tired.
 - d. John ate only two apples. (Hint: you can use the two place predicate *notid*, meaning 'not identical' or 'not the same individual as'.)

Solution:

- a. $\forall x.student'x \land tired'x \rightarrow happy'x$
- b. $\forall x.student'x \land tired'x \rightarrow happy'x$
- c. $\forall x.succ's tudent'x \rightarrow tired'x$ succ' is a function that maps a property to another property. It's internal semantics is hard to define, but for now we make sure that it is not an intersective adjective like tired.
- d. $\exists x \exists y.apple'x \land apple'y \land ate'xjohn' \land ate'yjohn' \land notid'xy \land \forall z.apple'z \land ate'zjohn' \rightarrow id'zy \lor id'zx$

Q2.

Let the operator \circ be left associative. (For associativity you can consult the lambda calculus notes Section 3, item B, or the Wikipedia article on 'operator associativity'.

Eliminate all the eliminable parenthesis in the following:

(2) a. $((a \circ b) \circ c)$ b. $(a \circ (b \circ (c \circ d)))$ c. $(a \circ ((b \circ c) \circ d))$

Solution:

- a. $a \circ b \circ c$
- b. $a \circ (b \circ (c \circ d))$
- c. $a \circ (b \circ c \circ d)$

Restore the following to fully parenthesized form.

- (3) a. $a \circ b \circ c \circ d$ b. $a \circ b \circ (c \circ d)$
 - c. $a \circ (b \circ c) \circ d$

Solution:

a.
$$(((a \circ b) \circ c) \circ d)$$

- b. $((a \circ b) \circ (c \circ d))$
- c. $((a \circ (b \circ c)) \circ d)$