MP309

Experiment 8

Half Wave Rectification

Name :- Patel Mihir Hemantkumar

Roll no. :- I18PH037

List of Figures

1	Rectification	3
2	Half Wave Rectification Circuit Diagram	3
3	Half Wave Rectification	4
4	Positive Half Cycle	4
5	Negative Half Cycle	4
6	Half Wave Rectifiers - Waveforms	5
7	Half Wave Rectifier Circuit	5
8	Circuit Connections	6
9	Controls	7
10	Oscilloscope Channel representation	7
11	$Half\ Wave\ Rectifier\ for\ Frequency = 1000Hz\ \dots\ \dots$	8
12	$Half\ Wave\ Rectifier\ for\ Frequency = 2000Hz\ \dots\ \dots$	9
13	$Half\ Wave\ Rectifier\ for\ Frequency = 3000Hz\ \dots\ \dots$	10
14	$Half\ Wave\ Rectifier\ for\ Frequency = 4000Hz\ \dots\ \dots$	11
15	$Half\ Wave\ Rectifier\ for\ Frequency = 5000Hz\ \dots\ \dots$	12
16	Calculation for $R_L = 100\Omega$	13
17	Calculation for $R_L = 200\Omega$	14
18	Calculation for $R_L = 300\Omega$	15
19	Calculation for $R_L = 400\Omega$	16
20	Calculation for $R_L = 500\Omega$	17
21	Calculation for $R_L = 600\Omega$	18
22	Calculation for $R_L = 700\Omega$	19
23	Calculation for $R_L = 800\Omega$	20
24	Calculation for $R_L = 900\Omega$	21
25	Calculation for $R_L = 1000\Omega$	22

Figure 1: A rectifier is a device that converts alternating current (AC) to direct current (DC), a process known as rectification. Rectifiers are essentially of two types – a half wave rectifier and a full wave rectifier.

Figure 2: Half Wave Rectification Circuit Diagram

Figure 3: Half Wave Rectification

Figure 4: Positive Half Cycle

Figure 5: Negative Half Cycle

Figure 6: Half Wave Rectifiers - Waveforms

Figure 7: Half Wave Rectifier Circuit

Figure 8: Circuit Connections

Figure 9: Controls

Oscilloscope

- * Channel 1(Input):
- * Channel 2(Output):

Figure 10: Oscilloscope Channel representation

Figure 11: $Half\ Wave\ Rectifier\ for\ Frequency=1000Hz$

 $Time\ Period = (1/frequency)$

i.e. $Time\ Period = (1/1000) = 1msec$

 $Amplitude \; (Volt/div) = 1V$

Figure 12: $Half\ Wave\ Rectifier\ for\ Frequency=2000Hz$

 $Time\ Period = (1/frequency)$

i.e. $Time\ Period = (1/2000) = 0.5 msec$

 $Amplitude \; (Volt/div) = 1V$

Figure 13: $Half\ Wave\ Rectifier\ for\ Frequency=3000Hz$

 $Time\ Period = (1/frequency)$

i.e. $Time\ Period = (1/3000) = 0.333msec$

 $Amplitude \; (Volt/div) = 1V$

Figure 14: $Half\ Wave\ Rectifier\ for\ Frequency=4000Hz$

 $Time\ Period = (1/frequency)$

i.e. $Time\ Period = (1/4000) = 0.25 msec$

 $Amplitude \; (Volt/div) = 1V$

Figure 15: $Half\ Wave\ Rectifier\ for\ Frequency = 5000Hz$

 $Time\ Period = (1/frequency)$

i.e. $Time\ Period = (1/5000) = 0.2msec$

 $Amplitude\ (Volt/div) = 1V$

Figure 16: Calculation for $R_L = 100\Omega$

 $V_{rms}=rac{V_m}{2},\,V_m$ is the peak voltage

$$V_{dc}=rac{V_m}{\pi}$$

 $V_{dc}=rac{V_m}{\pi}$ Ripple Factor= $rac{V_{ac}}{V_{dc}}$ Since, $V_{ac}=\sqrt{(V_{rms}^2-V_{dc}^2)}$

- 1) Peak Current, $I_m = 2.9999mA$
- 2) Average DC Current, $I_{av} = I_m/\pi = 2.9999/3.1415 = 0.9549mA$
- 3) RMS Current, $I_{rms} = I_m/2 = 2.9999/2 = 1.4999mA = 1.5mA$
- 4) Input AC Power, $P_{ac} = I_{rms}^2 \times R_L = (1.5A)^2 \times 100\Omega \times 10^{-6}$
- i.e. $P_{ac} = 225 \times 10^{-4} W$
- 5) Output DC Power, $P_{dc} = I_{av}^2 \times R_L = (0.9549A)^2 \times 100\Omega \times 10^{-6}$
- i.e. $P_{dc} = 91.19 \times 10^{-4} W$
- 6) $Efficiency = P_{dc}/P_{ac} \times 100 = 40.52\%$
- 7) Ripple factor = $\sqrt{(I_{rms}/I_{av})^2 1} = \sqrt{((1.499 \times 10^{-3})/(0.954 \times 10^{-3}))^2 1}$
- i.e. $Ripple\ factor = 1.2090$

Figure 17: Calculation for $R_L = 200\Omega$

 $V_{rms}=rac{V_m}{2},\,V_m$ is the peak voltage

$$V_{dc}=rac{V_m}{\pi}$$

$$V_{dc}=rac{V_m}{\pi}$$
 Ripple Factor= $rac{V_{ac}}{V_{dc}}$ Since, $V_{ac}=\sqrt{(V_{rms}^2-V_{dc}^2)}$ Peak Current: 1.4999999946345703 mA

- 1) Peak Current, $I_m = 1.499mA$
- 2) Average DC Current, $I_{av} = I_m/\pi = 1.499/3.14 = 0.477 mA$
- 3) RMS Current, $I_{rms} = I_m/2 = 1.499/2 = 0.7495mA$
- 4) Input AC Power, $P_{ac} = I_{rms}^2 \times R_L = (0.7495A)^2 \times 200\Omega \times 10^{-6}$
- i.e. $P_{ac} = 1.123 \times 10^{-4} W$
- 5) Output DC Power, $P_{dc} = I_{av}^2 \times R_L = (0.477A)^2 \times 200\Omega \times 10^{-6}$
- i.e. $P_{dc} = 0.455 \times 10^{-4} W$
- 6) $Efficiency = P_{dc}/P_{ac} \times 100 = 40.5\%$
- 7) Ripple factor = $\sqrt{(I_{rms}/I_{av})^2 1} = \sqrt{((0.7495 \times 10^{-3})/(0.477 \times 10^{-3}))^2 1}$
- i.e. $Ripple\ factor = 1.20$

Figure 18: Calculation for $R_L = 300\Omega$

 $V_{rms}=rac{V_m}{2},\,V_m$ is the peak voltage

$$V_{dc} = rac{V_m}{\pi}$$

 $V_{dc}=rac{V_m}{\pi}$ Ripple Factor= $rac{V_{ac}}{V_{dc}}$ Since, $V_{ac}=\sqrt{(V_{rms}^2-V_{dc}^2)}$

- 1) Peak Current, $I_m = 0.999mA$
- 2) Average DC Current, $I_{av} = I_m/\pi = 0.999/3.14 = 0.318 mA$
- 3) RMS Current, $I_{rms} = I_m/2 = 0.999/2 = 0.4995mA$
- 4) Input AC Power, $P_{ac} = I_{rms}^2 \times R_L = (0.4995A)^2 \times 300\Omega \times 10^{-6}$
- i.e. $P_{ac} = 0.748 \times 10^{-4} W$
- 5) Output DC Power, $P_{dc} = I_{av}^2 \times R_L = (0.318A)^2 \times 300\Omega \times 10^{-6}$
- i.e. $P_{dc} = 0.303 \times 10^{-4} W$
- 6) $Efficiency = P_{dc}/P_{ac} \times 100 = 40.5\%$
- 7) Ripple factor = $\sqrt{(I_{rms}/I_{av})^2 1} = \sqrt{((0.4995 \times 10^{-3})/(0.318 \times 10^{-3}))^2 1}$
- i.e. $Ripple\ factor = 1.20$

Figure 19: Calculation for $R_L = 400\Omega$

 $V_{r\,m\,s} = rac{V_m}{2},\, V_m$ is the peak voltage

$$V_{dc}=rac{V_m}{\pi}$$

 $V_{dc}=rac{V_m}{\pi}$ Ripple Factor = $rac{V_{ac}}{V_{dc}}$ Since, $V_{ac}=\sqrt{(V_{r\,m\,s}^{\,2}\,V_{dc}^{\,2})}$

- 1) Peak Current, $I_m = 0.7499mA$
- 2) Average DC Current, $I_{av} = I_m/\pi = 0.7499/3.14 = 0.238mA$
- 3) RMS Current, $I_{rms} = I_m/2 = 0.7499/2 = 0.375mA$
- 4) Input AC Power, $P_{ac}=I_{rms}^2\times R_L=(0.375A)^2\times 400\Omega\times 10^{-6}$
- i.e. $P_{ac} = 0.562 \times 10^{-4} W$
- 5) Output DC Power, $P_{dc} = I_{av}^2 \times R_L = (0.238A)^2 \times 400 \times 10^{-6}$
- i.e. $P_{dc} = 0.226 \times 10^{-4} W$
- 6) $Efficiency = P_{dc}/P_{ac} \times 100 = 40.21\%$
- 7) Ripple factor = $\sqrt{(I_{rms}/I_{av})^2 1} = \sqrt{((0.375 \times 10^{-3})/(0.238 \times 10^{-3}))^2 1}$
- i.e. $Ripple\ factor = 1.21$

Figure 20: Calculation for $R_L = 500\Omega$

 $V_{r\,m\,s} \! = rac{V_m}{2}, \, V_m$ is the peak voltage

$$V_{dc}=rac{V_m}{\pi}$$

 $V_{dc}=rac{V_m}{\pi}$ Ripple Factor = $rac{V_{a\,c}}{V_{dc}}$ Since, $V_{a\,c}=\sqrt{(V_{r\,m\,s^{-}}^2\,V_{dc}^2)}$

Peak Current: 0.599999978538282

must

- 1) Peak Current, $I_m = 0.599mA$
- 2) Average DC Current, $I_{av}=I_m/\pi=0.599/3.14=0.190mA$
- 3) RMS Current, $I_{rms} = I_m/2 = 0.599/2 = 0.2995mA$
- 4) Input AC Power, $P_{ac}=I_{rms}^2\times R_L=(0.2995A)^2\times 500\Omega\times 10^{-6}$
- i.e. $P_{ac} = 44.85 \times 10^{-3} W$
- 5) Output DC Power, $P_{dc} = I_{av}^2 \times R_L = (0.19A)^2 \times 500\Omega \times 10^{-6}$
- i.e. $P_{dc} = 18.05 \times 10^{-6} W$
- 6) $Efficiency = P_{dc}/P_{ac} \times 100 = 40.24\%$
- 7) Ripple factor = $\sqrt{(I_{rms}/I_{av})^2 1} = \sqrt{((0.2995 \times 10^{-3})/(0.190 \times 10^{-3}))^2 1}$
- i.e. $Ripple\ factor = 1.21$

Figure 21: Calculation for $R_L = 600\Omega$

 $V_{r\,m\,s} = rac{V_m}{2},\, V_m$ is the peak voltage

$$V_{dc} = rac{V_m}{\pi}$$

 $V_{dc}=rac{V_m}{\pi}$ Ripple Factor = $rac{V_{a\,c}}{V_{dc}}$ Since, $V_{a\,c}=\sqrt{(V_{r\,m\,s}^{\,2}\,V_{dc}^{\,2})}$

- 1) Peak Current, $I_m = 0.499mA$
- 2) Average DC Current, $I_{av} = I_m/\pi = 0.499/3.14 = 0.1589mA$
- 3) RMS Current, $I_{rms} = I_m/2 = 0.499/2 = 0.249mA$
- 4) Input AC Power, $P_{ac}=I_{rms}^2\times R_L=(0.249A)^2\times 600\Omega\times 10^{-6}$
- i.e. $P_{ac} = 37.2 \times 10^{-6} W$
- 5) Output DC Power, $P_{dc} = I_{av}^2 \times R_L = (0.1589A)^2 \times 600\Omega \times 10^{-6}$
- i.e. $P_{dc} = 15.14 \times 10^{-6} W$
- 6) $Efficiency = P_{dc}/P_{ac} \times 100 = 40.7\%$
- 7) Ripple factor = $\sqrt{(I_{rms}/I_{av})^2 1} = \sqrt{((0.249 \times 10^{-3})/(0.1589 \times 10^{-3}))^2 1}$
- i.e. $Ripple\ factor = 1.20$

Figure 22: Calculation for $R_L = 700\Omega$

 $V_{r\,m\,s} \! = rac{V_m}{2},\, V_m$ is the peak voltage

$$V_{dc}=rac{V_m}{\pi}$$

 $V_{dc}=rac{V_m}{\pi}$ Ripple Factor = $rac{V_{a\,c}}{V_{dc}}$ Since, $V_{a\,c}=\sqrt{(V_{r\,m\,s}^{\,2}\,V_{dc}^{\,2})}$

- 1) Peak Current, $I_m = 0.428mA$
- 2) Average DC Current, $I_{av} = I_m/\pi = 0.428/3.14 = 0.136 mA$
- 3) RMS Current, $I_{rms} = I_m/2 = 0.428/2 = 0.214mA$
- 4) Input AC Power, $P_{ac} = I_{rms}^2 \times R_L = (0.214A)^2 \times 700\Omega \times 10^{-6}$
- i.e. $P_{ac} = 32.05 \times 10^{-6} W$
- 5) Output DC Power, $P_{dc} = I_{av}^2 \times R_L = (0.136A)^2 \times 700\Omega \times 10^{-6}$
- i.e. $P_{dc} = 12.94 \times 10^{-6} W$
- 6) $Efficiency = P_{dc}/P_{ac} \times 100 = 40.3\%$
- 7) Ripple factor = $\sqrt{(I_{rms}/I_{av})^2 1} = \sqrt{((0.214 \times 10^{-3})/(0.136 \times 10^{-3}))^2 1}$
- i.e. $Ripple\ factor = 1.21$

Figure 23: Calculation for $R_L = 800\Omega$

 $V_{r\,m\,s} = rac{V_m}{2},\, V_m$ is the peak voltage

$$V_{dc}=rac{V_m}{\pi}$$

 $V_{dc}=rac{V_m}{\pi}$ Ripple Factor = $rac{V_{a\,c}}{V_{dc}}$ Since, $V_{a\,c}=\sqrt{(V_{r\,m\,s^-}^2V_{dc}^2)}$

- 1) Peak Current, $I_m = 0.3749mA$
- 2) Average DC Current, $I_{av}=I_m/\pi=0.3749/3.14=0.119mA$
- 3) RMS Current, $I_{rms} = I_m/2 = 0.3749/2 = 0.187mA$
- 4) Input AC Power, $P_{ac}=I_{rms}^2\times R_L=(0.187A)^2\times 800\Omega\times 10^{-6}$
- i.e. $P_{ac} = 27.97 \times 10^{-6} W$
- 5) Output DC Power, $P_{dc} = I_{av}^2 \times R_L = (0.3749A)^2 \times 800\Omega \times 10^{-6}$
- i.e. $P_{dc} = 11.32 \times 10^{-6} W$
- 6) $Efficiency = P_{dc}/P_{ac} \times 100 = 40.4\%$
- 7) Ripple factor = $\sqrt{(I_{rms}/I_{av})^2 1} = \sqrt{((0.187 \times 10^{-3})/(0.119 \times 10^{-3}))^2 1}$
- i.e. $Ripple\ factor = 1.20$

Figure 24: Calculation for $R_L = 900\Omega$

 $V_{r\,m\,s} = rac{V_m}{2},\, V_m$ is the peak voltage

$$V_{dc}=rac{V_m}{\pi}$$

 $V_{dc}=rac{V_m}{\pi}$ Ripple Factor = $rac{V_{a\,c}}{V_{dc}}$ Since, $V_{a\,c}=\sqrt{(V_{r\,m\,s^-}^2V_{dc}^2)}$

- 1) Peak Current, $I_m = 0.333mA$
- 2) Average DC Current, $I_{av}=I_m/\pi=0.333/3.14=0.106mA$
- 3) RMS Current, $I_{rms} = I_m/2 = 0.333/2 = 0.1665mA$
- 4) Input AC Power, $P_{ac}=I_{rms}^2\times R_L=(0.1665A)^2\times 900\Omega\times 10^{-6}$
- i.e. $P_{ac} = 24.95 \times 10^{-6} W$
- 5) Output DC Power, $P_{dc} = I_{av}^2 \times R_L = (0.106A)^2 \times 900\Omega \times 10^{-6}$
- i.e. $P_{dc} = 10.11 \times 10^{-6} W$
- 6) $Efficiency = P_{dc}/P_{ac} \times 100 = 40.5\%$
- 7) Ripple factor = $\sqrt{(I_{rms}/I_{av})^2 1} = \sqrt{((0.1665 \times 10^{-3})/(0.106 \times 10^{-3}))^2 1}$
- i.e. $Ripple\ factor = 1.2$

Figure 25: Calculation for $R_L=1000\Omega$

 $V_{r\,m\,s} = rac{V_m}{2},\, V_m$ is the peak voltage

$$V_{dc}=rac{V_m}{\pi}$$

 $V_{dc}=rac{V_m}{\pi}$ Ripple Factor = $rac{V_{a\,c}}{V_{dc}}$ Since, $V_{a\,c}=\sqrt{(V_{r\,m\,s^*}^{\,2}\,V_{dc}^{\,2})}$

- 1) Peak Current, $I_m = 0.299mA$
- 2) Average DC Current, $I_{av} = I_m/\pi = 0.299/3.14 = 0.095mA$
- 3) RMS Current, $I_{rms} = I_m/2 = 0.299/2 = 0.149mA$
- 4) Input AC Power, $P_{ac} = I_{rms}^2 \times R_L = (0.149A)^2 \times 1000\Omega \times 10^{-6}$
- i.e. $P_{ac} = 22.5 \times 10^{-6} W$
- 5) Output DC Power, $P_{dc} = I_{av}^2 \times R_L = (0.095)^2 \times 1000\Omega \times 10^{-6}$
- i.e. $P_{dc} = 9.025 \times 10^{-6} W$
- 6) $Efficiency = P_{dc}/P_{ac} \times 100 = 40.3\%$
- 7) Ripple factor = $\sqrt{(I_{rms}/I_{av})^2 1} = \sqrt{((0.149 \times 10^{-3})/(0.095 \times 10^{-3}))^2 1}$
- i.e. $Ripple\ factor = 1.2$