Tutorial 2

Chapter 4

- 9. What is the magnitude of the diffracted wave off a $\lambda/50$ radius of curvature knife edge when the incident wave has magnitude 1 and a 15 degree shadow angle from the edge?
- 17. For a 5 GHz radar, what is the loss through a single concrete block wall?
- **18.** What is the additional range delay over free space for a wave propagating through two 12 inch thick walls with refractive index of 5?

Chapter 5

4. Consider two radar targets with polarization scattering matrices S1 and S2 as follows:

$$\mathbf{S}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{S}_2 = \begin{bmatrix} 1 & j \\ -j & -1 \end{bmatrix}$$

where j = $\sqrt{-1}$. Compute the parallel/cross-polarization ratio and the vertical/horizontal polarization ratio for each target. Which ratio could be used to discriminate between the two targets?

- 8. A radar collects Nt = 30 samples of clutter data having a decorrelation time τ_0 of 200 μ s. What is the number of uncorrelated samples N_i if the PRF is 1 kHz? Repeat for PRF = 5 kHz and 40 kHz.
- 10. Use equations (5.28) and (5.29) to confirm that a reflectivity $\eta = -92$ dB corresponds to a meteorological reflectivity of 23 dBz at S-band (3 GHz) as shown in Table 5-8.

TABLE 5-8 ■ Average Rain Reflectivity versus Frequency Band

		η , dB m $^{-1}$ Transmit frequency, GHz						
Z, dBz	Radar band: Type	S 3.0	C 5.6	X 9.3	Kս 15.0	K _a 35	W 95	mm 140
-12	Heavy stratus clouds				-100	-85	-69	-62
14	Drizzle, 0.25 mm/h	-102	-91	-81	-71	-58	-45*	-50*
23	Light rain, 1 mm/h	-92	-81.5	-72	-62	-49	-43*	-39*
32	Moderate rain, 4 mm/h	-83	-72	-62	-53	-41	-38*	-38*
41	Heavy rain, 16 mm/h	-73	-62	-53	-45	-33	-35*	-37*

^{*} Approximate

Source: From Nathanson [15] (with permission).

$$\eta = \frac{\pi^5 |K|^2}{\lambda^4} Z \tag{5.28}$$

$$Z (dBz) = 10 \log_{10}(10^{18}Z) = 10 \log_{10}(Z) + 180$$
 (5.29)

Chapter 6

- **14.** For an EM wave propagating toward a PEC surface, what happens to the impedance of the wave very close to the PEC surface?
- 15. In world of computational EM, if an aircraft model has its fuselage along the x axis and it wings parallel to the x-y plane, what spherical unit vectors correspond to horizontal and vertical polarization for an angle cut in the x-y plane?
- 22. In high-frequency scattering, why does the backscatter RCS usually vary so rapidly with target movement?