Natural Language Processing

Яковенко Ольга

NLP tasks

Unsupervised (без учителя)	Supervised (с учителем)
Topic modelling	Topic recognition
Language modelling	Sentiment recognition
• Поиск похожих	Spelling error detection + correction
	Machine translation
	Intent recognition
	■ Spam detection

NLP tasks

Supervised (с учителем)
Topic recognition
Sentiment recognition
Spelling error detection + correction
Machine translation
Intent recognition
Spam detection

Sentiment recognition

Распознавание эмоциональности высказывания:

- ▶ Позитивное/негативное/нейтральное;
- Разновидности негативного (расизм, политика, уничижение соц и нац меньшинств, ...)/нейтральное...

Подходы к решению

Признаковое представление одного сэмпла	Модель классификации
1D вектор, представляющий целый текст (BoW, Tf-idf, ycpeднённые word2vec, bag of word2vec)	Logistic Regression или Multilayer Perceptron
Матрица размера (max_n_words, feature_vector_size) - настаканные друг на друга эмбеддинги слов для представления текста (фиксированного размера)	Convolutional Neural Network
Матрица размера (n_words, feature_vector_size) - настаканные друг на друга эмбеддинги слов для представления текста (переменного размера)	Recurrent Neural Network

Задание

Как будет выглядеть матрица признаков в первом, втором и третьем случае?

Признаковое представление одного сэмпла

1D вектор, представляющий целый текст (BoW, Tf-idf, ycpeднённые word2vec, bag of word2vec)

Матрица размера (max_n_words, feature_vector_size) - настаканные друг на друга эмбеддинги слов для представления текста (фиксированного размера)

Матрица размера (n_words, feature_vector_size) - настаканные друг на друга эмбеддинги слов для представления текста (переменного размера)

Convolutional Neural Network (Свёрточная Нейронная Сеть)

Convolutional Neural Network (Свёрточная Нейронная Сеть)

KERAS & TENSORFLOW

Определение типа модели

Добавление слоя свёртки

Добавление слоя подвыборки

Добавление обычного слоя с 1000 нейронами

https://adventuresinmachinelearning.com/keras-tutorial-cnn-11-lines/

Convolutional Neural Network (Свёрточная Нейронная Сеть)

https://www.aclweb.org/anthology/D14-1181

Практика

https://github.com/DinoTheDinosaur/russian_sentiment_edu/blob/master/notebooks/Logistic_Regression_BoW.ipynb