Übung 3

Aufgabe 1

 $T_1: T_0+$ Abschlussaxiom für Wertebereich + Gleichheitsaxiome

a)

/lnot = (a1, c4)

Gib Interpretation I an, die Modell von T_1 ist, aber nicht von $\neg = (a_1, c_4) \rightsquigarrow \neg = (a_1, c_4)$ nicht ableitbar (Satz von Gödel).

I. $Dom = Konst_A$ als Beispiel, ext wie angegeben ext(=) wie üblich. $K: Konst_A \Rightarrow Dom \text{ mit } k(c) = \begin{cases} a1, & \text{wenn } c = c4 \\ c, & \text{sonst} \end{cases}$.

Nach Konstruktion gilt:

- T_0 erfüllt
- Gleichheitsaxiom erfüllt, insbesondere = (a1, c4), da k(c4) = a1
- Abschlussaxiom erfüllt

Aber

b)

 $\neg do(a0)$

I. Dom wie oben, $\mathbf{k}=\mathrm{id},$ $ext(do)=\{m,q,d,a0\}$ I erfüllt T_2 , Gleichheits, Abschluss und Eindeutigkeitsaxiome Aber

Aufgabe 2

 f_1 : Sei ρ eine Belegung mit $\rho(X)=einbruch, \rho(Z)=pathologie. Dann gilt <math display="inline">(\rho(X), offen, \rho(Z)) \in ext(akte)$ Also gilt:

$$\vdash_{I,\rho} akte(X, of fen, Z)
nichtnicht \vdash_{I,\rho} akte(X, of fen, Z)
nicht \vdash_{I,\rho} \neg akte(X, of fen, Z)
nicht \vdash_{I,\rho} (\forall Z)(\neg akte(X, of fen, Z))
\vdash_{I,\rho} (\forall Z)(\neg akte(X, of fen, Z))
\vdash_{I,\rho} (\exists Z)(akte(X, of fen, Z))
\vdash_{I,\rho} (\exists X)(\exists Z)(akte(x, of fen, Z))$$

analog mit X

$$f_2$$
: Sei $f':=le(X_1,Y) \wedge le(X_2,Y)$.
Sei $f''_2=(X_1,X_2)$
Sei ρ eine Belegung.

1.Fall

$$\rho(X_1) = \rho(X_2)
\vDash_{I,\rho} f_2'
\vDash_{I,\rho} \neg f_2' \lor f_2''
\vDash_{I,\rho} f_2' \Rightarrow f_2''
(\forall X_1)(\forall X_2)(\forall Y)(le(X_1, Y) \land le(X_2, Y) \Rightarrow (X_1, X_2)$$
(4)

2. Fall $\rho(X_1) = \rho(X_2)$

Es gilt: $ext(le) = \{(skinner, mulder), (skinner, scully)\}$

Mit $\rho(X_1) = \rho(X_2)$ folgt:

$$nicht(X_{1}, Y) \in ext(le) \vee nicht(X_{2}, Y) \in ext(le)$$

$$nicht((X_{1}, Y) \in ext(le) \wedge (X_{2}, Y) \in ext(le)$$

$$nicht \vDash_{I,\rho} f'_{2}$$

$$\vDash_{I,\rho} \neg f'_{2} \vee f''_{2}$$

$$\vDash_{I,\rho} \neg f'_{2} \vee f''_{2}$$

$$\vDash_{I,\rho} \neg (\forall X_{1})(\forall X_{2})(\forall Y)(le(X_{1}, Y) \wedge le(X_{2}, Y) \Rightarrow = (X_{1}, X_{2}))$$

$$(5)$$

Aufgabe 3

 f_1 :

$$\vdash akte(krycek, of fen, psychologie)^{1}$$

$$\vdash (\exists Z)(akte(krycek, of fen, Z))$$

$$\vdash (\exists X)(\exists Z)(akte(X, of fen, Z))$$
(6)

 f_2 : Es sei $K_{le} = \{(skinner, mulder), (skinnerscully)\}$

- 1) $(\forall X_1)(\forall Y_1)(le(X_1, Y_1) \Rightarrow (= (X_1, skinner) \land = (Y_1, mulder)) \lor (= (X_1, skinner) \land = (Y_1, scully))$
- 2) $(\forall X_2)(\forall Y_2)(le(X_2, Y_2) \Rightarrow (= (X_2, skinner) \cdots$
- 3) $(\forall X_1)(\forall Y_1)(\forall X_2)(\forall Y_2)(le(X_1, Y_1) \land (le(X_2, Y_2) \Rightarrow (= (X_1, skinner) \land = (Y_1, mulder)) \lor (= (X_1, skinner) \land = (Y_1, scully)) \land (= (X_2, skinner) \land = (Y_2, mulder)) \lor (= (X_2, skinner) \land = (Y_2, scully))$
- 4) $(\forall X_1)(\forall Y_1)(\forall X_2)(\forall Y_2)(le(X_1, Y_1) \land (le(X_2, Y_2) \Rightarrow = (X_1, skinner) \lor (= (X_1, skinner) \land = (X_2, skinner) \lor = (X_2, skinner)$
- 5) $\cdots le(X_1, Y_1) \wedge le(X_2, Y_2) \wedge (Y_1Y_2) \Rightarrow \cdots$
- 6) $(\forall X_1)(\forall X_2)(\forall Y)(le(X_1,Y) \land le(X_2,Y) \Rightarrow (=(X_1,skinner) \lor =(X_1,skinner) \land =$

$$(X_2, skinner) \lor = (X_2, skinner)$$

 $7) \cdot \cdot \cdot \Rightarrow (= (X_1, skinner) \land = (X_2, skinner)$
 $8) \cdot \cdot \cdot \Rightarrow (= (X_1, skinner) \land = (skinner, X_2)$
 $9) (\forall X_1)(\forall X_2)(\forall Y)(le(X_1, Y) \land le(X_2, Y) \Rightarrow = (X_1, X_2))$

Aufgabe 4

Überprüfen bei Existenzquantor und implikation oder bei allquantor und keine implikation ensteht oft unfug

$$(\forall s, w_1, f_1, w_2, f_2)((STUDENT(s, w_1, f_1) \land STUDENT(s, w_2, f_2)) \Rightarrow STUDENT(s, w_1, f_2))$$

Übung 4

Typ 5: $q_1(\cdots), \cdots, q_n(\cdots)$: —. (n ¿ 1) \sim ist ungenaues Wissen, disjunktive Information

Beispiel: BEARB(Black, Einbruch), BEARB(Black, Krycek):- . $(T_K \leadsto T_K')$ ¬BEARB(Black, Einbruch). In T_K wahr $\leadsto T_K'$ inkonsistent.

 \rightarrow **notwendig:** Abänderung des Vollständigkeitsaxioms: $\neg BEARB(Black, Einbruch)$ und $\neg BEARB(Black, Krycek)$ dürfen nicht mehr ableitbar sein.

Verändertes Vollständigkeitsaxiom

$$(\forall X)(\forall Y)(BEARB(X,Y) \Rightarrow \tag{7}$$

$$=(X, Scully) \land =(Y, Einbruch)) \lor$$
 (8)

$$= (X, Black) \land = (Y, Einbruch)) \lor \tag{9}$$

$$= (X, Black) \land = (Y, Krycek)) \lor \tag{10}$$

Füge T_K' das Literal ¬BEARB(Black, Einbruch) hinzu \Rightarrow BEARB(Black, Krycek) ableitbar.

Typ 6:

Beispiel ERM(X, Sonderermittlung), ERM(X, Psychologie) :- AKTE(V,W, Psychologie), BEARBEITER(X,V). Gilt nicht in T_K (s. Scully) \rightsquigarrow Hinzufügen führt zu inkonsistenten Theorie

Streichen von Tupeln als Option, Ergänzung des Vollständigkeitsaxioms:

$$(\forall V)(\forall W)(\forall X)(\forall Y)(ERM(X,Y) \Rightarrow (= (X,Black) \land = (Y,Sonderermittlung))$$

$$(11)$$

$$\lor \cdots \lor$$

$$\lor (= (Akte(V,W,Psychologie) \land BEARBEITET(X,V)) \land = (Y,Sonderermittlung))$$

$$(13)$$

$$\lor (= (Akte(V,W,Psychologie) \land BEARBEITET(X,V)) \land = (Y,Psychologie)))$$

$$(14)$$

A3

```
a) (\forall X)(\forall Y)(\forall Z)(\neg(AKTE(X, offen, Z) \land AKTE(X, geloest, Z)))
b) (\exists X)(\exists Y)(LTD\_ERMITTLER(X, Y)).
Versuch: LTD_ERMITTLER(X,Y) :- . // Funktioniert nicht, weil X=Y möglich
c) Typ 4: 2 mal
d) (\forall E)(AKTE(Krycek, offen, E) \Rightarrow BEARBEITET(Mulder, Krycek)) (Typ
4)
e) (\forall N)(\forall A)(ERMITTLER(N, A) \Rightarrow (= (A, Sonderermittlung) \lor (\exists M)(LERM(N, M)) \lor (\exists F)(BEARBEITET(N, F)))) f) (\forall N)(\forall F)(BEARR(N, F) \Rightarrow (\exists E)(AKTE(F, offen, E)))
(\forall N)(\forall F)(BEARR(N, F) \Rightarrow \neg(\exists E)(AKTE(F, geloest, E)))
```

$\ddot{\mathrm{U}}\mathrm{bung}~4/5$

Aufgabe 1

a)

$$\tau_1(M) = \{x - 1/x \in M, x \neq 1\}$$
. Fixpunkt: \emptyset

b)

Bei Hannes nachsehen

c)

$$\tau_3(M) = R \setminus M$$
Sei $R = \{1\}, A = \{2\}, B = \{1, 2\}, \text{ also } A \subseteq B$
 $\tau_3(A) = \{1\}\tau_3(B) = \emptyset \text{ also } \tau_3(A) \subseteq \tau_3(B)$
 $R = \emptyset \leadsto \tau_3(\emptyset) = \emptyset \leadsto \emptyset \text{ ist Fixpunkt}$
 $R = \emptyset, m \in M \leadsto m \not\in \tau_3(M) \leadsto \tau_3(M) \not= M$

d)

$$tau_4(M) = \{1\} \cup \{2x/x \in M\}$$

$$A \subseteq B, a \in tau_4(A) \leadsto a = 1 \text{oder}(\exists a' \in M)(a = 2a') \leadsto (\exists a \in B)(a = 2a') \leadsto a' \in tau_4(B)$$

$$\{1\} \cup \{2^i/i \ge 0\} = \{1\} \cup \{2 \cdot 1\} \cup \{2 \cdot 2x/x = 2^i, i \ge 0\} = \{1\} \cup \{2\} \cup \{2x/x = 2^i, i \ge 1\} = \{2x/x = 2^i, i \ge 0\}$$

Aufgabe 2

1)

$$I_1 \cap I_2$$

 $r: q(\cdots): -p_1(\cdots), \cdots, p_m(\cdots) \in P_R$

Fall 1
$$p_1(\cdots), \cdots, p_m(\cdots) \in I_1, q(\cdots) \in I_1$$

 $(\exists p_i(\cdots))(j \in \{1, \cdots, m\} \land p_j \notin I_2) \leadsto I_1 \cap I_2$ erfüllt r, da nicht alle $p_j \in I_1 \cap I_2$

Fall 2
$$p_1(\cdots), \cdots, p_m(\cdots), q(\cdots) \in I_1, I_2$$

Alles drin, kein Problem

Fall 3
$$\{p_{i_1}(\cdots), \cdots, p_{i_k}\} \subseteq \{p_1(\cdots), \cdots, p_m(\cdots)\}$$
 von I_1 erfüllt. \rightsquigarrow höchstens $p_{i_1}(\cdots), \cdots, p_{i_k}$ von $I_1 \cap I_2$ erfüllt \Rightarrow r von $I_1 \cap I_2$ erfüllt.

2)

Gegenbeispiel: p(i) : -p(a), p(b).

 $ext_{I_1}(p) = \{p(a)\}, ext_{I_2}(p) = \{p(b)\}, ext_{I_1 \cup I_2}(p) = \{p(a), p(b)\}$ p(c) müsste drin sein, fehlt aber, daher kein Modell.

3)

√

4)

Gegenbeispiel:

 $P=\{p(a)\}$ Belegung ρ , es gilt aber $\emptyset\neq p(a)$. Ein Programm mit einem Fakt drin, führt zu einem nicht leeren Herbrand Universum

5)

Siehe Hannes