

PROGRAMLAMA TEMELLERİ

Öğr. Gör. Erhan AKAGÜNDÜZ

PROBLEM ÇÖZME VE TEMEL KAVRAMLAR

- İnsanlık, varoluşundan beri çeşitli problemlerle karşılaşmış ve bu problemlere çözüm üretmeye çalışmıştır.
- Örneğin; bilgiyi kalıcı hâle getirmek için yazı bulunmuştur.
- Mağara duvarlarına ya da kil tabletlere yazılan çivi yazıları bilginin kalıcılığını sağlamış ancak taşıma güçlüğü ortaya çıkmıştır.
- Karşılaşılan bu probleme yeni çözümler geliştirilerek günümüzdeki kâğıt ve kalemler üretilmiştir.

PROBLEM ÇÖZME VE TEMEL KAVRAMLAR

- İnsanoğlu yaşamı boyunca çeşitli problemlerle karşılaşır.
- Günümüzde birçok problemi çözmek için bilgisayarlardan faydalanılır.
- Ancak bilgisayarlar problemi nasıl çözeceğini bilmez.
- Bir bilgisayarın problem çözebilmesi için işlem adımlarının belirlenmesi
 - > ve bunun bilgisayara yüklenmesi gerekmektedir.

PROBLEM ÇÖZME VE TEMEL KAVRAMLAR

- Problem: Karşılaşılabilecek soruna veya çözülmesi gereken duruma denir.
- 🔲 Örneğin;
 - Sınav esnasında kaleminizin ucunun bitmesi,
 - İnternetten alınan ayakkabının küçük gelmesi,
 - Okula geç kalınması,
 - Bilmediğimiz bir yere ilk defa gidilecek olunması vs. gibi
- Çözüm aranması gereken durumlar günlük hayatta karşılaşılabilecek problemlerdir.

- Bir problemi çözmesi beklenen alternatif yollar arasından en doğru olanı seçebilmeye problem çözme denir.
- Problemi ortaya koyma aşamasından, problemin çözümünün tamamlanmasına kadar geçen zaman ise problem çözme süreci olarak adlandırılır.
- Problemleri çözmek için genellikle iki farklı yöntem kullanılır:
 - 1. Deneme yanılma ya da tahminde bulunma yoluyla çözme
 - 2. Algoritma geliştirme yoluyla çözme

- Günlük hayatta karşılaşılan bazı problemler öngörülebilir olmadığı gibi bu problemlerin tek bir çözümü de yoktur.
- Bu gibi problemleri belli adımlar takip ederek çözmek mümkün değildir.
- ☐ Örneğin;
 - yemek pişirilirken ne kadar tuz koyulması gerektiği
 - ya da yemeğin ne kadar süre pişirilmesi gerektiği deneme yanılma yoluyla bulunabilir.
- Çünkü bu soruların cevabı kişiden kişiye değişiklik gösterecektir.

- Ancak bilgisayarlar aracılığıyla çözmek istediğimiz problemlerin çözüm adımlarının, önceden belirgin bir şekilde ortaya konulması gerekir.
- Bu amaçla hazırlanan yönergelere algoritma denir.
- Algoritma; bir problemi çözmek veya belirli bir işi yapmak için adım adım tanımlanmış işlemler kümesidir.
- □ Problem çözme sürecini kolaylaştırmak ve hata yapma ihtimalini azaltmak için öncelikle mevcut durumun problem olup olmadığına karar verilmeli ve problem net olarak ortaya konulmalıdır.

- Problem net olmalı,
- iyi analiz edilmeli,
- Uygun planlamalar yapılmalıdır.
- Çözüm için farklı yollar düşünülmeli,
- Bu yollar arasından en uygunu seçilmelidir.
- Problem çözüldükten sonra kontrol edilmelidir.

PROBLEM ÇÖZME SÜRECİ İŞLEM ADIMLARI

- 1. Problemi tanımlama: Problemin ne olduğu belirgin bir şekilde ortaya konulmalıdır.
- 2. Problemi anlama: Problemin kaynağının ne olduğu ve problem çözüldükten sonra beklenen faydalar belirlenmelidir. Bir problem ne kadar iyi anlaşılırsa çözümü o kadar kolay olacaktır.
- 3. Alternatif çözüm yollarını belirleme: Problemi çözmesi beklenen tüm alternatifler sıralanmalıdır.

PROBLEM ÇÖZME SÜRECİ İŞLEM ADIMLARI

- **4. En uygun çözümü seçme:** Bir önceki adımda belirlenen alternatifler arasından en uygun olanının seçilmesi gerekir.
 - Bunun için alternatiflerin artıları ve eksileri yazılabilir.
 - Çoğu zaman çözüme en hızlı ulaştıran alternatif doğru çözüm olarak görünse de bu durum her zaman geçerli değildir.
 - En hızlı çözümün güvenli olmadığı, maliyet açısından kabul edilebilir olmadığı ya da uzun ömürlü olmadığı durumlar ortaya çıkabilir.
 - Böyle durumlarda tüm faktörler göz önünde bulundurularak en uygun çözüm seçilmelidir.

PROBLEM ÇÖZME SÜRECİ İŞLEM ADIMLARI

- 5. Çözümü uygulama: Bir önceki adımda belirlenen çözüm yöntemi kullanılarak problemi çözme işi gerçekleştirilir. Çözüm adımlarının kafa karışıklığına yol açmayacak bir şekilde ortaya konulması gerekir.
- 6. Çözümü test etme: Uygulanan çözümün beklentileri yerine getirip getirmediği test edilmelidir. Uygulanan çözümün hataları varsa bunları gidermek için önceki işlem basamaklarına dönülmesi gerekebilir.

PROBLEM ÇÖZMEDE TEMEL İŞLEMLER

- Bilgisayarlar, tüm işlemleri matematiksel hesaplamalar yaparak gerçekleştirir.
- Bu nedenle problem çözmede kullanılabilecek temel matematiksel işlem ve kavramları bilmek gerekir.
- Bunlar aritmetiksel, mantıksal ve karşılaştırma operatörleridir.
- Operatörler; önceden tanımlanmış birtakım matematiksel ya da mantıksal işlemleri yapmak için kullanılan özel karakter ya da karakterler topluluğudur (Algan, 2008).

ARİTMETİKSEL OPERATÖRLER

Toplama, çıkarma, çarpma, bölme, üs alma ve mod alma gibi matematik işlemlerinin yapıldığı operatörlerdir.

Operatörün Adı	Sembolü	Örnek
Toplama	+	4 + 5
Çıkarma	-	10 - 2
Çarpma	*	4 * 3
Bölme	/	4 / 2
Üs Alma	**	7 ** 2
Mod Alma	%	6 % 3

Mod alma

Bir sayının başka bir sayıya bölümünden kalan sayıdır.

Örneğin;

6%3=0 iken

5%3=2 sonucunu verir.

KARŞILAŞTIRMA OPERATÖRLERİ

- Karşılaştırma işlemi yapılması gereken durumlarda kullanılan operatörlerdir.
- Bu operatörler, karşılaştırma sonunda true (doğru) veya false (yanlış) değeri döndürür.

Operatörün Adı	Sembolü	Örnek
Eşittir	==	isim == "furkan"
Eşit Değildir	!=	isim!= "furkan"
Büyüktür	>	sayi > 25
Küçüktür	<	18 < sayi
Büyük Eşittir	>=	6 >= yas
Küçük Eşittir	<=	yas <= 6

- "ve", "veya", "değil" gibi mantıksal işlemleri yapan operatörlerdir.
- "ve" operatörü; iki veya daha fazla koşulun tümünün doğru olduğu durumlarda "doğru" sonucunu veren operatördür. Günlük hayattaki kullanımıyla aynıdır.
- Örneğin; makarna yapmak için su, tuz, yağ ve makarna gerekir. Bunlardan herhangi biri olmadan makarna yapılamaz.

- "veya" operatöründe; iki veya daha fazla koşuldan en az birinin doğru olması durumunda sonuç "doğru" olur. Bu da günlük hayatta kullandığımız gibidir.
- Orneğin bir havuzu boşaltmak için kırmızı, yeşil ve mavi renkte üç farklı musluğumuz olsun.
- Havuzun boşalması için kırmızı musluğu veya yeşil musluğu veya mavi musluğu açmamız yeterli olacaktır.
- Dilersek iki ya da üç musluğu aynı anda açarak da havuzu boşaltabiliriz.

- "değil" operatörü ise mantıksal bir durumu tersine çevirir.
- Sonucu "doğru" olan bir mantıksal sınamayı "yanlış"a,
- Sonucu **"yanlış"** olan bir mantıksal sınamayı ise **"doğru"**ya çevirir. Günlük hayattaki olumsuzluk ifadelerine karşılık gelir.
- Örneğin; meyve alırken pazarcıya "Sağlamlarından ver." diyebiliriz. "Çürüklerinden verme." deseler de pazarcı yine aynı şeyi anlayacaktır.
- Çünkü bir meyve ya çürük ya da sağlam olur.
- lkinci ifadede kullanılan olumsuzluk ekinin koşulu tersine çevirdiğine dikkat ediniz.

Operatör Adı	Sembolü	Örnek
ve (and)	and	a<4 and a>8
veya (or)	or	a<4 or a<3
değil (not)	not	not(a==b)

Mantıksal Operatörlerin Doğruluk Tablosunda Gösterilişi

ve			
α	b	a and b	
1	1	1	
0	1	0	
1	0	0	
0	0	0	

veya			
а	b	a or b	
1	1	1	
0	1	1	
1	0	1	
0	0	0	

değil		
а	a'	
1	0	
0	1	