第10章 数列

§ 10.1 数列的基本概念

10.1.1 相关概念

学习提纲与学习目标

- 1、数列的定义、通项公式和前 n 项和公式
- 2、数列前 n 项和公式与通项公式的关系
- 3、数列前n 项和公式和通项公式的求法
- 1. 数列的定义及其表示

按照一定顺序排列的一列数称为数列.数列的一般形式为: $a_1, a_2, \cdots, a_n, \cdots$, 简记为 $\{a_n\}$, 其中 a_n 称为数列的第n项。项数有限的数列称为**有穷数列**,项数无限的数列称为**无穷数列**。对于数列 $\{a_n\}$:

如对任意 $n \in N^*$, 总有 $a_{n+1} > a_n$, 则称 $\{a_n\}$ 为<mark>递增数列</mark>;

如对任意 $n \in N^*$, 总有 $a_{n+1} < a_n$, 则称 $\{a_n\}$ 为**递减数列**;

如对任意的 $n \in N^*$, 均有 $a_{n+1} = a_n$, 则称数列 $\{a_n\}$ 为常数列;

如存在正数 M ,使 $|a_n| \le M$ 对任意的 $n \in N^*$ 均成立,则称 $\{a_n\}$ 为**有界数列**;

如对任意正数 M, 总存在 a_n , 使得 $|a_n| > M$, 则称数列 $\{a_n\}$ 为无界数列;

如存在正整数 N, 使得对任意的 $n \in N^*$, 均有 $a_{n+N} = a_n$, 则称数列 $\{a_n\}$ 为周期数列。

从定义看,数列是定义域为正整数集 N^* (或其子集 $\{1,2,3,\cdots,n\}$)的一种**特殊的函数**。

对于数列 $\{a_n\}$,如果任意一项 a_n 均与它的前一项 a_{n-1} (或前几项)之间的关系可以用一个公式来表示,则称这个公式为该数列的**递推公式**,这样的数列称为**递推数列**。例如斐波拉契数列 $\{a_n\}$,其中 $a_1=a_2=1$, $a_n=a_{n-1}+a_{n-2}$ ($n\geq 3$),事实上,我们碰到的数列大多是递推数列。

2.数列的通项公式

如果数列 $\{a_n\}$ 的第n 项 a_n 与n之间可以用一个公式来表示,则称这个公式为数列 $\{a_n\}$ 的通项公式。例如,数列 $\{a_n\}$ 的第n 项为 2^{n-1} ,则 $a_n=2^{n-1}$ 叫数列 $\{a_n\}$ 的通项公式。

注意: (1) 并非每个数列都有通项公式,如数列 1, 1.4, 1.41, 1.414, …;

(2) 一个数列的通项公式有时是不唯一的,如数列: 1, 0, 1, 0, 1, 0, …它的通项公式可以是 $a_n = \frac{1+(-1)^{n+1}}{2}$,也可以是 $a_n = |\cos\frac{n+1}{2}\pi|$.

3.数列的前n项和公式

对于数列 $\{a_n\}$,我们称 $S_n = a_1 + a_2 + \cdots + a_n$ 为数列 $\{a_n\}$ 的**前**n 项和,如果 S_n 与n之间可 以用一个公式来表示,则称这个公式为数列 $\{a_n\}$ 的**前n项和公式。**显然, S_n 与 a_n 有如下关系:

$$a_n = \begin{cases} S_1, & n = 1 \\ S_n - S_{n-1} & (n \ge 2) \end{cases}$$

4、求数列通项公式的几种方法:

- (1) **累加法**: 对于 $a_{n+1}-a_n=f(n)$ 型,采用累加法,此时 $a_n = (a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + \dots + (a_2 - a_1) + a_1$
 - (2) 累乘法: 对于 $\frac{a_{n+1}}{a} = f(n)$ 型,采用累乘法,此时 $a_n = \frac{a_n}{a_{n+1}} \times \frac{a_{n-1}}{a_{n+2}} \times \cdots \times \frac{a_2}{a_1} \times a_1$
- (3) **待定系数法:** 对于 $a_{n+1} = pa_n + q(p \neq 0, 1, q \neq 0)$ 型,采用待定系数法转化为等比数列解 决.

设
$$a_{n+1}-r=p(a_n-r)$$
, 比较 $a_{n+1}-r=p(a_n-r)$ 和 $a_{n+1}=pa_n+q$, 知 $r=\frac{q}{1-p}$ 。

- (4) 公式法: 针对等比数列和等差数列
- (5) 特征根法: 针对一些特殊的递推数列(数竞考, 高考不考)。

5、数列前n项和 S_n 的几种方法:

(1) 裂项相消。常见的有

$$2\frac{1}{n(n+k)} = \frac{1}{k} (\frac{1}{n} - \frac{1}{n+k});$$

(3)
$$\frac{n}{(n+1)!} = \frac{1}{n!} - \frac{1}{(n+1)!}$$
; (4) $\frac{1}{\sqrt{n} + \sqrt{n+1}} = \sqrt{n+1} - \sqrt{n}$

$$4 \frac{1}{\sqrt{n} + \sqrt{n+1}} = \sqrt{n+1} - \sqrt{n}$$

$$(5) \frac{1}{(n+1)\sqrt{n} + n\sqrt{n+1}} = \frac{(n+1)\sqrt{n} - n\sqrt{n+1}}{(n+1)^2 n - n^2(n+1)} = \frac{(n+1)\sqrt{n} - n\sqrt{n+1}}{n(n+1)} = \frac{\sqrt{n}}{n} - \frac{\sqrt{n+1}}{n+1}$$

- (2) 错位相减; 比如差比数列
- (3) 倒序相加;比如等差数列求和

10.1.2 典型例题

例 1. 写出下列数列的一个通项公式

(1)
$$\frac{15}{2}$$
, $\frac{24}{5}$, $\frac{35}{10}$, $\frac{48}{17}$, $\frac{63}{26}$, ...,

- (2) $\sqrt{2}, \sqrt{5}, 2\sqrt{2}, \sqrt{11}, \cdots,$
- (3) 7,77,777,7777,...

【解】(1)
$$a_n = \frac{(n+3)^2 - 1}{n^2 + 1}$$
;

(2) 所给数列为 $\sqrt{2}$, $\sqrt{5}$, $\sqrt{8}$, $\sqrt{11}$,...,故其通项公式为: $a_n = \sqrt{3n-1}$;

(3) 所给数列为:
$$\frac{7}{9}(10-1), \frac{7}{9}(10^2-1), \frac{7}{9}(10^3-1), \dots$$
, 故 $a_n = \frac{7}{9} \times 999 \dots 9 = \frac{7}{9}(10^n-1)$

【注意】这三个数列的通项公式都不唯一。

例 2. (1) 已知数列 $\{a_n\}$ 的通项为 $a_n = 2n-7$,判断 $2m+7(m \in N)$ 是否为数列中的项?

(2) 数列
$$\{(n+2)(\frac{7}{8})^n\}$$
的最大项为第 k 项,则 $k=($)

A.5或6

B. 5

C. 6

D.4或5

【解】(1) 2m+7=2(m+7)-7; 因为 $m\in N$, 所以 $m+7\in N^*$, 满足通项公式的定义, 所以2m+7是数列 $\{a_n\}$ 中的项,事实上,是第m+7项。

(2) 由选项知 $n \ge 2$,所以假设 a_n 是最大项,则 $a_{n-1} \le a_n \ge a_{n+1}$,则

曲
$$(n+1)\left(\frac{7}{8}\right)^{n-1} \le (n+2)\left(\frac{7}{8}\right)^n \ge (n+3)\left(\frac{7}{8}\right)^{n+1}$$
,解得 $5 \le n \le 6$,

经检验, $a_5 = a_6$, 故满足要求的k = 5或6,选A。

例 3. 已知定义在 R 上的函数 f(x) 是奇函数,且满足 f(3-x)=f(x), f(-1)=3,数列 $\{a_n\}$ 满足 $a_1=1$ 且 $a_n=n(a_{n+1}-a_n)(n\in N^*)$,则 $f(a_{36})+f(a_{37})=($)

A. -3

B -2

C

D. 3

【解】
$$a_n = n(a_{n+1} - a_n) \Rightarrow na_{n+1} = (n+1)a_n \Rightarrow \frac{a_{n+1}}{n+1} = \frac{a_n}{n} \Rightarrow \frac{a_{n+1}}{n+1} = \frac{a_n}{n} = \cdots = \frac{a_1}{1} = 1$$
 故 $a_n = n$;

另一方面, f(3-x)=f(x) ⇒ f(x) 的图像关于直线 $x=\frac{3}{2}$ 对称,同时 f(x) 是奇函数,因此其图像又关于原点 $\left(0,0\right)$ 对称,因此, f(x) 是周期 $T=4\left|\frac{3}{2}-0\right|=6$ 的周期函数,故

$$f(a_{36}) + f(a_{37}) = f(36) + f(37) = f(0) + f(1) = f(1) = -f(-1) = -3$$
, $\%$ A.

例 4. 在数列 $\{a_n\}$ 中, $a_1=3$, $a_{n+1}=a_n+\frac{1}{n(n+1)}$,则通项公式 $a_n=$ ______.

【解】由题意,

$$a_{n+1} - a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$
, the

$$a_2 - a_1 = \frac{1}{1} - \frac{1}{2} \tag{1}$$

$$a_3 - a_2 = \frac{1}{2} - \frac{1}{3} \tag{2}$$

.

$$a_n - a_{n-1} = \frac{1}{n-1} - \frac{1}{n}$$
 (n-1)

(1)+(2)+···+ (n-1),得
$$a_n - a_1 = 1 - \frac{1}{n}$$
,即 $a_n = a_1 + 1 - \frac{1}{n} = 4 - \frac{1}{n}$

例 5 (1) 已知数列
$$\{a_n\}$$
满足: $a_1=2, a_{n+1}=a_n+\ln(1+\frac{1}{n})$, 则其通项公式为_____

(2)(全国卷)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造卫星。为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列 $\{b_n\}$:

$$b_1 = 1 + \frac{1}{a_1}, b_2 = 1 + \frac{1}{a_1 + \frac{1}{a_2}}, b_3 = 1 + \frac{1}{a_1 + \frac{1}{a_2}}, \dots,$$
其中 $a_k \in N^* (k = 1, 2, \dots)$,以此类推,则

$$A.b_1 < b_5$$

$$B.b_3 < b_{\Omega}$$

$$C.b_6 < b_2$$

D.
$$b_{4} < b_{7}$$

【解】(1) 由
$$a_{n+1} = a_n + \ln(1 + \frac{1}{n})$$
,知

$$a_n - a_{n-1} = \ln \frac{n}{n-1}$$
, $a_{n-1} - a_{n-2} = \ln \frac{n-1}{n-2}$, \cdots , $a_2 - a_1 = \ln \frac{2}{1}$,

以上(n-1)个式子相加得,

$$a_n - a_1 = \ln \frac{n}{n-1} + \ln \frac{n-1}{n-2} + \dots + \ln \frac{2}{1} = \ln n$$
.

(2) 【巧解】取 $a_n = 1$,则 $b_1 = 2$, $b_2 = \frac{3}{2}$, $b_3 = \frac{5}{3}$,发现 b_n 的分子、分母成**斐波拉契**数列,故

$$b_4 = \frac{8}{5}, b_5 = \frac{13}{8}, b_6 = \frac{21}{13}, b_7 = \frac{34}{21}, b_8 = \frac{55}{34},$$
 显然选 D。

【常规】由数列 $\{b_n\}$ 的定义可得:

 $b_2 < b_4 < b_6 < b_8 < \dots < b_{2n} < \dots < b_{2m+1} < \dots < b_7 < b_5 < b_3 < b_1$,故选 D。

虽然一眼就可以排除 A, 甚至也能很快排除 C, 但要发现上面的规律并非易事。

例 6 (1) 已知数列 $\{a_n\}$ 的前 n 项和为 $S_n = 3^n - 1$,则它的通项公式为 $a_n = \underline{\hspace{1cm}}$.

(2) 已知数列
$$\{a_n\}$$
满足: $a_1 = 1$, $a_n = \frac{n-1}{n} a_{n-1} (n \ge 2)$, 则该数列的通项公式为_____

【解】(1) 当
$$n \ge 2$$
 时, $a_n = S_n - S_{n-1} = (3^n - 1) - (3^{n-1} - 1) = 2 \cdot 3^{n-1}$;

当n=1时, $a_1=S_1=2$ 也满足 $a_n=2•3^{n-1}$

故数列 $\{a_n\}$ 的通项公式为 $a_n = 2 \cdot 3^{n-1}$

(2)
$$a_n = \frac{n-1}{n} a_{n-1} (n \ge 2)$$
, $a_n = (n-1) a_{n-1} a_{n-1}$

所以,
$$na_n = (n-1)a_{n-1} = (n-2)a_{n-2} = \cdots = 1 \times a_1 = 1$$
,故 $a_n = \frac{1}{n}$

例7 (1) 数列 $\{a_n\}$ 的前n 项积为 n^2 ,那么当 $n \ge 2$ 时, a_n 等于()

A.
$$2n-1$$
 B. n^2 C. $\frac{(n+1)^2}{n^2}$ D. $\frac{n^2}{(n-1)^2}$

(2) (多选)小明爬楼梯时一次上1或2个台阶,若爬上第n个台阶的方法数为 b_n ,则()

A.
$$b_7 = 21$$
 B. $b_1 + b_2 + b_3 + b_5 + b_7 = 51$

C.
$$b_1^2 + b_2^2 + ... + b_n^2 = b_n b_{n+1} - 1$$
 D. $b_{n-2} + b_{n+2} = 3b_n$

【解】(1) 由题意知: $a_1a_2a_3 \bullet \cdots \bullet a_n = n^2$, 故

$$n \ge 2$$
 时, $a_n = \frac{a_1 a_2 \cdot \dots \cdot a_{n-1} a_n}{a_1 a_2 \cdot \dots \cdot a_{n-2} a_{n-1}} = \frac{n^2}{(n-1)^2}$,选 D。

(2) 由题意知:
$$b_1 = 1, b_2 = 2, b_3 = 3, b_4 = 5, b_5 = 8$$
, …

∴ 当
$$n \ge 3$$
 时, $b_n = b_{n-1} + b_{n-2}$, ∴ $b_6 = 13, b_7 = 21$, A 正确;

$$b_1 + b_2 + b_3 + b_5 + b_7 = 1 + 2 + 3 + 8 + 21 = 35$$
, B \(\frac{1}{2}\);

$$\therefore b_1^2 = 1, b_2^2 = b_2(b_3 - b_1) = b_2b_3 - b_2b_1, \quad \therefore b_n^2 = b_n(b_{n+1} - b_{n-1}) = b_nb_{n+1} - b_nb_{n-1},$$

$$\therefore b_1^2 + b_2^2 + \ldots + b_n^2 = 1 - b_1 b_2 + b_n b_{n+1} = b_n b_{n+1} - 1, \ \ \subset \ \mathbb{E} 确;$$

$$\therefore b_{n-2} = b_n - b_{n-1}, b_{n+2} = b_n + b_{n+1} , \quad \therefore b_{n-2} + b_{n+2} = 2b_n + b_{n+1} - b_{n-1} = 3b_n , \quad \text{in } D \text{ in } ;$$

综上,选ACD。

例 8. 数列 $\{a_n\}$ 的通项公式 $a_n = \frac{1}{\sqrt{n} + \sqrt{n+1}}$, 则该数列的前 () 项之和等于 **9** 。

【解】
$$a_n = \frac{1}{\sqrt{n} + \sqrt{n+1}} = \frac{\sqrt{n+1} - \sqrt{n}}{(\sqrt{n} + \sqrt{n+1})(\sqrt{n+1} - \sqrt{n})} = \sqrt{n+1} - \sqrt{n}$$

所以,
$$S_n = \sqrt{2} - \sqrt{1} + \sqrt{3} - \sqrt{2} + ... + \sqrt{n+1} - \sqrt{n} = \sqrt{n+1} - 1$$

【解】令
$$a_n = \frac{1}{n\sqrt{n+1} + (n+1)\sqrt{n}}$$
, S_n 为数列 $\{a_n\}$ 的前 n 项和,则

$$\frac{1}{1\sqrt{2} + 2\sqrt{1}} + \frac{1}{2\sqrt{3} + 3\sqrt{2}} + \dots + \frac{1}{2019\sqrt{2020} + 2020\sqrt{2019}} = S_{2019}$$

由于
$$a_n = \frac{1}{\sqrt{n}\sqrt{n+1}(\sqrt{n}+\sqrt{n+1})} = \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}} = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}$$
, 故

原式=
$$S_{2019} = (\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}}) + (\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}) + \dots + (\frac{1}{\sqrt{2019}} - \frac{1}{\sqrt{2020}})$$

$$= 1 - \frac{1}{\sqrt{2020}} = 1 - \frac{\sqrt{2020}}{2020}$$

即所求式子的值为
$$1-\frac{\sqrt{2020}}{2020}$$
。

例 10.已知数列 $\left\{a_n\right\}$ 的前 n 项和 $S_n=1-5+9-13+...+(-1)^{n-1}(4n-3)$,求 $S_{15}+S_{22}-S_{31}$ 的值。

【解】根据 S_n 的特点,我们对n是奇数还是偶数分开讨论。易知

$$S_{2k} = (1-5)+(9-13)+\cdots+=-4k$$
,

$$S_{2k-1} = 1 + (-5+9) + (-13+17) + \dots + = 4k-3$$

故
$$S_{15} = 29$$
, $S_{22} = -44$, $S_{31} = 61$;

故,
$$S_{15} + S_{22} - S_{31} = -76$$

例 11.设 a_1, a_2, \cdots, a_{50} 是在 -1,0,1 这三个整数中取值的数列,若 $a_1+a_2+\cdots+a_{50}=9$ 且 $(a_1+1)^2+(a_2+1)^2+\cdots+(a_{50}+1)^2=107 \ , \ \ \square \ a_1,a_2,\cdots,a_{50}$ 当中取零的项共有()

【解】
$$(a_1+1)^2+(a_2+1)^2+\cdots+(a_{50}+1)^2$$

$$= a_1^2 + a_2^2 + \dots + a_{50}^2 + 2(a_1 + a_2 + \dots + a_{50}) + 50 = 107$$

$$\therefore a_1^2 + a_2^2 + \dots + a_{50}^2 = 39 ,$$

 $\therefore a_1, a_2, \dots, a_{50}$ 中取零的项应为 50-39=11 (个), 故选 A.

例 12.数列 $\{a_n\}$ 满足: $a_1=1$,且对任意的 $m,n\in N^*$ 都有: $a_{m+n}=a_m+a_n+mn$,则

$$\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_{2020}} = ($$

$$A \frac{2019}{2020}$$

B.
$$\frac{2019}{1010}$$

C.
$$\frac{2020}{2021}$$
 D. $\frac{4040}{2021}$

D.
$$\frac{4040}{2021}$$

【解】
$$\Leftrightarrow m=1$$
, 得 $a_{n+1}=a_1+a_n+n$, $\therefore a_{n+1}-a_n=n+1$,

累加得: $a_n = (a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + \dots + (a_2 - a_1) + a_1 = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$;

所以
$$\frac{1}{a_n} = \frac{2}{n(n+1)} = 2\left(\frac{1}{n} - \frac{1}{n+1}\right)$$

于是:
$$\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_{2020}} = 2[(\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{2020} - \frac{1}{2021})]$$

$$=2(\frac{1}{1}-\frac{1}{2021})=\frac{4040}{2021}$$
, 选D.

例 13.数列 $\{a_n\}$ 满足: $a_1 = 2019$, $a_n - a_n \cdot a_{n+1} = 1$, I_n 表示 $\{a_n\}$ 的前 n 项之积,则 $I_{2020} = \underline{\hspace{1cm}}$

【解】
$$a_n - a_n \cdot a_{n+1} = 1 \Rightarrow a_{n+1} = \frac{a_n - 1}{a_n}$$
 , 故 $a_2 = \frac{2018}{2019}$, $a_3 = \frac{-1}{2018}$, $a_4 = 2019$,

因此 $\{a_n\}$ 是周期为 3 的周期数列,考虑到 $a_1 \cdot a_2 \cdot a_3 = -1$,且 $2020 = 673 \times 3 + 1$,

故
$$I_{2020} = (-1)^{673} a_1 = -2019$$

【另解】
$$a_n - a_n \cdot a_{n+1} = 1$$

例 14.已知数列
$$\left\{a_n\right\}$$
的前 n 项和为 S_n ,且 $a_n=\frac{n•2^n-2^{n+1}}{\left(n+1\right)\left(n^2+2n\right)}\left(n\in N_+\right)$,求 S_n ?

【解】:
$$a_n = \frac{n \cdot 2^n - 2^{n+1}}{(n+1)(n^2 + 2n)} = \frac{n \cdot 2^n - 2^{n+1}}{n(n+1)(n+2)} = \frac{2^n}{(n+1)(n+2)} - \frac{2^{n+1}}{n(n+1)(n+2)}$$

$$= \frac{2^n}{(n+1)(n+2)} - \frac{2^n}{n+1} \cdot (\frac{1}{n} - \frac{1}{n+2}) = \frac{2^{n+1}}{(n+1)(n+2)} - \frac{2^n}{n(n+1)}, \text{ if}$$

$$S_n = (\frac{2^2}{2 \times 3} - \frac{2}{1 \times 2}) + (\frac{2^3}{3 \times 4} - \frac{2^2}{2 \times 3}) + \dots + (\frac{2^{n+1}}{(n+1)(n+2)} - \frac{2^n}{n(n+1)}) = \frac{2^{n+1}}{(n+1)(n+2)} - 1$$

例 15.设数列 $\left\{a_n\right\}$ 满足 $a_1=1,a_2=4,a_3=9,a_n=a_{n-1}+a_{n-2}-a_{n-3},n=4,5,\cdots$,求 a_{2021} 的值。

【解】.易知
$$a_2 - a_1 = 3$$
; $a_3 - a_2 = 5$,且. $a_n - a_{n-1} = a_{n-2} - a_{n-3} (n \ge 4)$;

故,
$$a_{2n}-a_{2n-1}=3$$
, $a_{2n+1}-a_{2n}=5$,从而 $a_{2n+1}-a_{2n-1}=8$;

所以,
$$a_{2021} = (a_{2021} - a_{2019}) + (a_{2019} - a_{2017}) + \dots + (a_3 - a_1) + a_1 = 8 \times 1010 + 1 = 8081$$
。

例 16.已知正数数列 $\left\{a_n\right\}$ 的前 n 项和 $S_n, a_1=1$,且点 $(\sqrt{a_n+S_n}, S_{n+1})$ 在函数 $y=x^2+1$ 的图像上。

- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 若数列 $\{b_n\}$ 满足 $b_1=1,b_{n+1}=b_n+2^{a_n}$, 求证: $b_nb_{n+2}< b_{n+1}^2$

【解】(1): 由题意知:

$$S_{n+1} = (\sqrt{a_n + S_n})^2 + 1 = a_n + S_n + 1 \Rightarrow S_{n+1} - S_n = a_n + 1 \Rightarrow a_{n+1} - a_n = 1$$

$$\text{tx}, \quad a_n = (a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + \dots + (a_2 - a_1) + a_1 = n ,$$

即数列 $\{a_n\}$ 的通项公式为 $a_n = n$

(2) 证明: 由 (1) 知: $b_{n+1} = b_n + 2^n$, 故

$$\begin{split} &b_n b_{n+2} < b_{n+1}^2 \Leftrightarrow b_n (b_{n+1} + 2^{n+1}) < b_{n+1}^2 \Leftrightarrow b_n (b_n + 2^n + 2^{n+1}) < (b_n + 2^n)^2 \\ &\Leftrightarrow b_n^2 + 2^n b_n + 2^{n+1} b_n < b_n^2 + 2^{n+1} b_n + 2^{2n} \Leftrightarrow 2^n b_n < 2^{2n} \Leftrightarrow b_n < 2^n \;, \;\; \text{下证:} \;\; b_n < 2^n \;; \\ &\text{事实上,} \;\; \text{如有某个k} \;\;, \;\; 使得 \, b_k \geq 2^k \;, \;\; \text{则} \end{split}$$

$$b_{k-1}=b_k-2^{k-1}\geq 2^k-2^{k-1}=2^{k-1}\ ,\ \$$
进而有 $b_{k-2}\geq 2^{k-2}\ ,\ \cdots,\ b_1\geq 2^1\ ,\$ 也即 $b_1\geq 2\ ,\$ 此与 $b_1=1$ 矛盾,

故,对任意 $n \in N^*$,均有 $b_n < 2^n$;综上,原不等式成立。证毕。

例 17. 已知数列
$$\left\{a_n\right\}$$
满足: $a_1=1, a_{n+1}=\frac{1}{2}a_n+\frac{n}{2^{n+1}}(n\in N^*).$

(1)求数列
$$\{a_n\}$$
的通项公式

(2)证明:
$$\frac{1}{2^{n-1}} \le a_n \le 1$$

【解】(1)由
$$a_{n+1} = \frac{1}{2}a_n + \frac{n}{2^{n+1}}$$
,得 $2^{n+1}a_{n+1} = 2^n a_n + n$

$$\Leftrightarrow b_n = 2^n a_n$$
, $\coprod b_{n+1} - b_n = n$, $\coprod b_1 = 2a_1 = 2$,

所以
$$b_n = b_1 + (b_2 - b_1) + \dots + (b_{n-1} - b_{n-2}) + (b_n - b_{n-1})$$

$$= 2 + [1 + 2 + \dots + (n-1)] = 2 + \frac{n(n-1)}{2}$$

即
$$2^n a_n = 2 + \frac{1}{2} n(n-1)$$
,所以 $a_n = (n^2 - n + 4) \cdot (\frac{1}{2})^{n+1}$

(2)证明: 由(1)知:
$$a_n = (n^2 - n + 4) \cdot (\frac{1}{2})^{n+1}$$
,

因
$$n^2 - n \ge 0$$
 $(n \in N^*)$,故 $a_n \ge 4 \cdot (\frac{1}{2})^{n+1} = \frac{1}{2^{n-1}}$

$$\mathbb{Z}\frac{a_{n+1}}{a_n} = \frac{(n+1)^2 - (n+1) + 4}{2(n^2 - n + 4)} = \frac{n^2 + n + 4}{2n^2 - 2n + 8} = 1 + \frac{-n^2 + 3n - 4}{2n^2 - 2n + 8} < 1,$$

故
$$\{a_n\}$$
为递减数列,故 $a_n \le a_1 = 1$ 。综上, $\frac{1}{2^{n-1}} \le a_n \le 1$