Домашняя работа № 2

Автор: Минеева Екатерина

Задача 1

Onucaние алгоритма «MatchingApprox»:

Начнем с пустого паросочетания. В цикле по всем ребрам будем каждое из них добавлять в паросочетание, если это возможно — то есть, если в текущем ребре (u, v) обе вершины не входят в паросочетание, построенное к этому моменту.

Докажем, что такой алгоритм построит паросочетание, отличающееся от максимального не более, чем в 2 раза.

▲ (Индукция по количеству ребер в исходном графе.)

База: Если ребро одно, то максимальное паросочетание состоит из этого ребра. Такое же паросочетание найдет и *MatchingApprox*.

Шаг: Предположим, что для любого графа, в котором < n ребер MatchingApprox находит паросочетание отличающееся по размеру от максимального не более, чем вдвое.

Пусть в графе G(V, E), |E| = n, $M = \{(u_1, v_1), (u_2, v_2), \dots (u_k, v_k)\}$ – паросочетание, найденное MatchingApprox. M^* – паросочетание максимального размера, $|M| = k^*$. Заметим, что k = 0 в том и только том случае, если в исходном графе нет ребер – в этом случае утвержение верно. Допустим, $k \neq 0$, рассмотрим ребро (u_k, v_k) – добавленное в паросочетание последним. Возможны 2 случая:

<u>1 случай:</u> $(u_k, v_k) \in M^*$. Рассмотрим граф G'(V', E'), где $V' = V \setminus \{u_k, v_k\}$, $E' = E \setminus ((\{u_k, v_k\} \times V) \cup (V \times \{u_k, v_k\}))$.

Паросочетание, которое найдет MatchingApprox это $M' = M \setminus \{(u_k, v_k)\}.$

Заметим, что $M'^* = M^* \setminus \{(u_k, v_k)\}$ — максимальное паросочетание для G'. Если бы это было не так, то существовало большее, чем M^* паросочетание для G. По предположению индукции (его можно применить, поскольку |E'| < |E|) получаем, что $2|M'| \ge |M'^*|$. При этом $|M'^*| = |M^*| - 1$, $|M'| = |M| - 1 \Rightarrow 2(|M| - 1) \ge |M^*| - 1 \Leftrightarrow 2|M| \ge |M^*| + 1 \ge |M^*|$. То есть утвердение верно и для G.

 $\underline{2}$ случай: $(u_k,v_k) \notin M^*$. Путь тогда $(u_k,v_k'), (u_k',v_k) \in M^*$. Рассмотрим граф G'(V',E'), где $V'=V\setminus\{u_k,v_k,u_k',v_k'\}, E'=E\setminus((\{u_k,v_k,u_k',v_k'\}\times V)\cup(V\times\{u_k,v_k,u_k',v_k'\}))$.

Пусть M' – паросочетание, которое найдет Matching Approx в G'. Заметим, что $|M'| \leq |M| - 1$: исключили вершины u_k, v_k , которые входили в одно ребро в M, и вершины v_k' и u_k' , каждая из которых могла быть концом одного из ребер в M. При этом $M'^* = M^* \setminus \{(u_k, v_k'), (u_k', v_k)\}$ – максимальное паросочетание в G'. Аналогично: предположим, что есть паросочетание большего размера в G', тогда и в G есть паросочетание большего размера. При этом $|M'^*| = |M^*| - 2$.

Поскольку |E'|<|E| к графу G' можно применить предположение индукции. $2|M'|\geq |M'^*|\Rightarrow 2(|M|-1)\geq 2|M'|\geq |M^*|-2\Rightarrow 2|M|\geq |M^*|$. То есть в этом случае утверждение для G тоже верно.

Детали реализации и оценка сложности:

Чтобы проверять, можно ли добавить очередное ребро в паросочетание, заведем булев массив used длины n, в котором $used[v_i] = true$, если вершина в паросочетании и false иначе. Тогда сложность работы алгоритма O(m). Памати затрачивается O(m+n)