ECN 514: Detection & Estimation Theory Assignment 1

Due date: Tuesday, 4th February 2024 (by midnight)

Dheeraj Kumar dheeraj.kumar@ece.iitr.ac.in

January 23, 2024

Maximum Marks: 100

- 1. Consider the problem of estimation of DC level in white noise using N measurements: x[n] = A + w[n], n = 0, 1, 2, ..., N 1
 - A is the parameter to be estimated
 - w[n] is the white Gaussian noise with pdf $\mathcal{N}(0, \sigma^2)$

consider the following four estimators of A

(a)
$$\hat{A}_1 = x[0]$$

(b)
$$\hat{A}_2 = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$$

(c)
$$\hat{A}_3 = \frac{1}{2 \times N} \sum_{n=0}^{N-1} x[n]$$

(d)
$$\hat{A}_4 = \frac{A^2}{A^2 + \frac{\sigma^2}{N}} \frac{1}{N} \sum_{n=0}^{N-1} x[n]$$

Write a Matlab/Python code to simulate these 4 estimators by generating N = 1000 realizations of x[n] considering A = 1 and $\sigma^2 = 0.1$.

- (a) Write code to plot the histogram bar plot of the four estimators (four plots for four different estimators) and plot a line connecting these bars as an approximation of their PDFs. (Marks: $4 \times 2.5 = 10$)
- (b) Theoretically determine the mean and variance of all four estimators. (Marks: 10)
- (c) Keeping $\sigma^2 = 0.1$, write the code to calculate and plot the MSE of all the four estimators for $A \in \{-25, -24, ..., 23, 24\}$. (Marks: 10)

- 2. Consider N observations: $\{x[0], x[1], ..., x[N-1]\}$, where x[n]'s are i.i.d. as $\mathcal{N}(0, \sigma^2)$. The objective is to estimate the value of σ^2 . Consider an estimator of variance to be $\hat{\sigma^2} = \frac{1}{N} \sum_{n=0}^{N-1} (x[n])^2$.
 - (a) Theoretically find the mean of $\hat{\sigma}^2$ and comment on its bias. (Marks: 5)
 - (b) Theoretically find the variance of $\hat{\sigma}^2$. (Marks: 5)
 - (c) Write a Matlab/Python code to simulate this estimator by generating N=100 realizations of x[n] considering $\sigma^2=1$. Plot the histogram bar plot of $\hat{\sigma^2}$ and plot a line connecting these bars as an approximation of their PDFs. Also compute and mention the mean and variance of $\hat{\sigma^2}$ based on the simulation. (Marks: 5+2.5)
 - (d) Perform the experiment for N=10000 realizations of x[n] and plot the histogram bar plot of $\hat{\sigma}^2$ and plot a line connecting these bars as an approximation of their PDFs. Also compute and mention the mean and variance of $\hat{\sigma}^2$ based on the simulation. (Marks: 5+2.5)
 - (e) If x[n]'s are i.i.d. as $\mathcal{N}(1, \sigma^2)$, what would be the theoretical mean and variance of $\hat{\sigma^2} = \frac{1}{N} \sum_{n=0}^{N-1} (x[n])^2$. (Marks: 5+5)
- 3. Consider a sinusoidal signal added with WGN with mean 0 and variance σ^2 : $x[n] = Acos(2\pi fn) + w[n]$, for n=0,1,...,N-1. Here, A is known and $0 < f < \frac{1}{2}$ is the parameter to be estimated.
 - (a) Theoretically compute the CRLB for the estimator \hat{f} of f. (Marks: 10)
 - (b) Write a Matlab/Python code to plot CRLB as a function of f for $A=1,\,\sigma^2=1$ for the following two values of N. (Marks: 5+5) i. N=10 ii. N=100
 - (c) Comment on the variations in CRLB for varying f. Can some frequencies be estimated more effectively than others? Why or why not? (Marks: 5)
- 4. Let $x[n] = Asin(2\pi f_0 n) + w[n]$ for n = 0, 1, ..., N 1. Here f_0 is fixed and known, A is the parameter to be estimated and w[n] is WGN with zero mean and σ^2 variance. Theoretically derive the BLUE for A and compute its variance. (Marks: 5+5)