Mostafa elTager

The Effect of Different Initialization Methods on VAEs for Modeling Cancer using RNA Genome Expressions

4

Background

Tamim, Abdelaal, Mohammed Charrout,

- Cancer hard to treat, need for personalized treatment plans
- Success with Variational Auto-**Encoders** (VAE)
- VAEs perform dimension reduction to find disentangled representations
- Initialization techniques set the weights of the nodes in the layers
- Initialization methods can **increase performance** of VAEs
- RNA genome expressions from **The** Cancer Genome Atlas (TCGA) [1]
- Samples include different cancer types

Research Question

Quantify the impact of different initialization methods.

Compare different VAE models to conclude if some models are more sensitive to initialization methods

Method

VAE models:

3

- VAE [2]
- IWEA [3] • InfoVAE [4]
- LogCoshVAE [5]

Initialization methods:

• Default PyTorch implementation:

• Normal:
$$u(-\sqrt{\frac{1}{\mathrm{fan_in}}}, \sqrt{\frac{1}{\mathrm{fan_in}}})$$

 $\mathcal{N}(0,1)$

• Uniform:

• Glorot Normal (Xavier normal):

$$\mathcal{N}(0, \sigma^2)$$

$$\sigma = gain \cdot \sqrt{\frac{2}{fan_in + fan_out}}$$

• Glorot Uniform (Xavier uniform)

$$\mathcal{U}(-a,a)$$

$$a = gain \cdot \sqrt{\frac{6}{fan_in + fan_out}}$$

Empirical analysis on the loss function of the validation set

Using a 80% 20% split for training and validation

Normalize the data and use only the 5000 most variable genes

Results

6

Conclusion

Using different normalization techniques does not influence results

VanillaVAE **most sensitive** to initialization methods

When using **one hidden layer**:

- Uniform performs best for VanillaVAE and InfoVAE
 Xavier Normal, Xavier Uniform & Default performs best for IWAE and LogCoshVAE

When using more hidden layers:

• Use Xavier Normal, Xavier Uniform & Default