Introduction

Development of Secure Software Frank Piessens

Cyber security / computer security

- The art, science and engineering of protecting computer-related assets
- Such assets include:
 - Data, information
 - Computer hardware, software or services
 - Electronic communication
 - Computer-controlled physical world devices
 - ...
- Recent evolution of cyberspace has significantly increased the risk to such assets
- **Software security** is one of the key issues

Overview

- The evolution of cyberspace
- Examples of cybersecurity incidents
 - Malware, viruses, worms
 - Defacements
 - Jailbreaking, rooting
 - Data leaks
 - Online scams
- What are the underlying causes?
- Conclusion

More and more devices are connected to the Internet

- More and more devices are connected to the Internet
- These devices run more and more software
 - Estimated lines of code:
 - Very first Unix: 2.5K (1970)
 - Space Shuttle: 400K (1981)
 - MS Windows:
 - Windows 3.1: 3M (1992)
 - Windows 95: 11M (1995)
 - Windows 7: 40M (2009)
 - Android (2010): 12M
 - Debian/GNU Linux

https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

- Debian 2 (1998): 35M
- Debian 3 (2002): 140M
- Debian 8 (2015): 850M
- Debian 11 (2021): 1240M
- Google online services (2015): 2000M

Sources:

https://github.com/dspinellis/unix-history-repo/tree/Research-V1-Snapshot-Development https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlecomputers.html https://www.nytimes.com/1995/07/31/business/microsoft-s-mobilization-overview-windows-of-opportunity-for-microsoft.html https://www.gubatron.com/blog/2010/05/23/how-many-lines-of-code-does-it-take-to-create-the-android-os/https://sources.debian.org/stats/

- More and more devices are connected to the Internet
- These devices run more and more software
- Software applications can have billions of users

- More and more devices are connected to the Internet
- These devices run more and more software
- Software applications can have billions of users
- Software applications and devices are automatically triggered
 - Business integration and application-to-application connections
 - IoT apps connect IoT devices to online services and social media
 - "Send me an e-mail whenever I park my car with a map where I am parked"

- More and more devices are connected to the Internet
- These devices run more and more software
- Software applications can have billions of users
- Software applications and devices are automatically triggered
 - Business integration and application-to-application connections
 - IoT apps connect IoT devices to online services and social media
 - "Send me an e-mail whenever I park my car with a map where I am parked"
- The impact of software failures on our life grows more and more

Conclusions

- The ongoing trends of:
 - More computing devices,
 - with more and more software,
 - and more and more connectivity and users,
 - and an increasing impact on society and daily life lead to a substantial increase in risk
- The field of cybersecurity studies these risks and how to deal with them

Overview

- Examples of cybersecurity incidents
 - Malware, viruses, worms
 - Defacements
 - Jailbreaking, rooting
 - Data leaks
 - Online scams
- What are the underlying causes?
- Conclusion

Example 1: Malware

• Definitions:

- **Virus:** Computer program (typically harmful) that can infect other programs. Viruses can replicate and spread to other machines through physical carriers (e.g., USB sticks, floppy disks) or over the network (e.g., e-mail viruses).
- Worm: Self-replicating virus: no user action required to spread the infection
- Early history of malware:
 - First virus: 1982, Elk Cloner infects Apple II machines
 - First worm: 1988, Morris worm crashed 10% of the Internet

Slammer Worm (January 2003)

Source: The Spread of the Sapphire/Slammer Worm, by David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, Nicholas Weaver

Slammer Worm (January 2003)

Source: The Spread of the Sapphire/Slammer Worm, by David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, Nicholas Weaver

Stuxnet (2010)

- Stuxnet is a computer worm used as a cyber-weapon by the Americans/Israelis:
 - The worm spread stealthily trying to reach one of Iran's nuclear enrichment facilities
 - Once it reached the facility, it stealthily destroyed the centrifuges by manipulating their rotation speeds of the centrifuges
- Stuxnet showed how cyber-attacks could be used to do damage to physical infrastructure
- With the move to "internet-enable" industrial control systems and with the Internet-of-things, the reach of malware has expanded significantly

Malware: current trends

- Malware is developed by:
 - Criminals, for a variety of purposes:
 - Stealing banking credentials, sending spam, ransomware, denial-of-service attacks, crypto-mining, ...
 - Creation of botnets that can be "rented" on underground markets
 - Nation states, for:
 - Collecting intelligence
 - Cyber-offensive operations
- Some important recent incidents:
 - Malware developed by the NSA, and leaked by Russian(?) hackers is used by other actors:
 - Wannacry (May 2017): likely North Korea, ransomware(?)
 - NotPetya (June 2017): most expensive cyber-attack so far, a Russian attack on Ukraine
- Supply chain attacks further increase the scale and reach of malware
 - Attacks where the attacker compromises a component provided to the victim by a third-party
 - E.g., the SolarWinds hack in 2020

Ransomware (data from 2019)

- 60 out of 100 Belgian companies polled were affected by a ransomware attack
- Average cost of recovering from an attack was estimated at \$760.000
- Approx. one quarter of victims pays the ransom
- Sources:
 - https://cybersecurity-bites.be/ict-beheer/anatomie-van-een-ransomware-aanval/
 - https://www.sophos.com/en-us/medialibrary/Gated-Assets/white-papers/sophos-the-stateof-ransomware-2020-wp.pdf

The SolarWinds hack (2020)

- Attackers compromised the build system of SolarWinds and planted a Trojan in network monitoring software developed by SolarWinds
- The trojanized software was distributed through the software updating mechanism to clients, where it could access confidential data
 - Among the victims were the US federal government, NATO and the European Parliament
 - The hackers had access to victim data for several months
- The attack is believed to be a foreign nation attack, most likely performed by the Russians
- More information:
 - https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach

Example 2: Defacements

- A defacement is an attack where the attacker modifies the appearance of a web site.
- Defacements are almost as old as the Web itself.
- Example: Unicef defacement (Jan 1998):

Defacements are still going strong

 After Ed Snowden's revelation in 2013 that NSA and GCHQ take advantage of smartphone apps

Defacements are still going strong

• Jan 2020, after the US takes out general Soleimani

This image taken Saturday shows the U.S. Federal Depository Library Program's website after a group claiming to be hackers from Iran breached it and posted messages vowing revenge for Washington's killing of top military commander Qasem Soleimani. (Federal Depository/AFP/Getty Images)

Defacements are still going strong

• Massive defacements accompanied the Russian invasion in Ukraine (Feb 24, 2022)

Example 3: Jailbreaking / rooting

- Jailbreaking or rooting refers to the act of escalating privileges on a "closed" device such as a smartphone or game console
- Users of these devices do this to, for instance:
 - Remove restrictions on the telecom carrier they can use
 - Bypass DRM restrictions or censorship
 - Customize the device to an extent not allowed by the closed device
- Time-to-first-jailbreak for various devices ranges between 0 days and 100-200 days.

The 2011 Sony hack

- Sony attempts to limit jailbreaking of the PlayStation by suing George Hotz (who published jailbreaking code online)
- This move leads to a massive retaliation by the hacker community:
 - Anonymous launches a series of Denial-Of-Service attacks
 - Unknown hackers break into various Sony networks and steal millions of users personal information
 - Sony is forced to shut down the PlayStation network for days

Example 4: Large scale data leaks

- Security incidents where a large amount of confidential data leaks to unauthorized parties, for instance:
 - Stealing of account databases by hackers
 - E.g., Data (including hashed passwords) for billions (!) of accounts were stolen from Yahoo in 2013/2014
 - https://haveibeenpwned.com/
 - The Facebook / Cambridge Analytica scandal
 - A survey app developed by Cambridge Analytica harvested data about Facebook users (with consent) as well as from their friends (without consent)
 - This data was used to influence elections, including the presidential elections in the US
 and the Brexit vote in the UK

World's Biggest Data Breaches & Hacks

Selected events over 30,000 records

World's Biggest Data Breaches & Hacks

Example 5: Online scams

Phishing:

- Stealing of credentials (usually for banking website) by means of mail and/or web site spoofing
- See the Pano 2021 documentary:
 - https://www.vrt.be/vrtnu/a-z/pano/2021/pano-s2021a7/

Catfishing:

- Creating a fake profile on a social networking service to compromise other users of that service, e.g., to blackmail them later
- Some famous cases of Belgian celebrities being catfished in 2020

Overview

- The evolution of cyberspace
- Examples of cybersecurity incidents
 - Malware, viruses, worms
 - Defacements
 - Jailbreaking, rooting
 - Data leaks
 - Online scams

- What are the underlying causes?
- Conclusion

Underlying causes

- We have discussed a wide range of examples of cybersecurity incidents
- Why can these incidents happen? What are the root causes? What are the weak links?
- Many answers are possible, but two weak links are widely acknowledged

Weak link 1 = People

- People are terrible from the point of view of security
 - Choice and management of passwords
 - Security configurations
 - Irresponsible behavior
 - Social engineering

Exploiting human weaknesses

2017 McAfee®

Most Dangerou
Celebrities™

1. AVRIL LAVIGNE

- 2. BRUNO MARS
- CARLY RAE JEPSEN
- 4. ZAYN MALIK
- 5. CELINE DION

CALVINILIADDIC

Don't let 4
cybercrimi 5
strike the 6
wrong cho 7
Use cautio 8
when sear 9
for your fo 10

2015 Most Dangerous Celebrities[™]

- 2 Luke Bryan
- 3 Usher
- 4 Britney Spears
- 5 Jay Z
- 6 Katy Perry
- 7 Amy Schumer
- 8 Betty White
- 9 Lorde
- Nina Dobrev

Based on the percentage of sites identified by McAfee® WebAdvisor as 'risky' which are included in the search results for a celebrity's name and commonly associated terms

Exploiting human weaknesses

- A good way to break into a large organization's network is to compromise key technical people (system administrators)
 - Getting their credentials
 - Getting them to do your bidding
- This can be achieved in many ways
 - Spear-phishing
 - Phishing attack tuned to a specific target
 - Bribing
 - Blackmail
 - •

Weak link 2 = software

- Software vulnerability =
 - A defect in software code (a bug) that can be exploited by an attacker to break some security objective of the software
- Around 100.000 such vulnerabilities listed in the Common Vulnerabilities and Exposures (CVE) list:
 - Buffer overflows, SQL injection, cross-site scripting, race conditions, sidechannel vulnerabilities, information leaks, incomplete access mediation, cross-site scripting, double free, . . .

Example: memory management vulnerabilities

- (aka: memory safety vulnerabilities)
- Some programming languages do not check the validity of memory accesses, and hence buggy programs can read or write memory areas they are not supposed to access
- Heartbleed (2014) was such a bug in OpenSSL, a popular cryptographic library
- Attackers could trigger out-of-bound reads, that could potentially leak cryptographic key material

Heartbleed initiated a trend of "marketing" vulnerabilities

Example vulnerability: Android Stagefright

- A bug in the Android operating system
 - Discovered in 2015, affected more than a billion devices
 - Present since 2010
- On a vulnerable system:
 - An attacker can do anything on the phone, just by sending a malicious MMS message

Example: structured output generation vulnerabilities

- (aka: injection vulnerabilities)
- Programs often construct structured output (e.g., SQL) using string concatenation
- When some of the strings can be chosen by an attacker, maliciously chosen values can change the structure of the output in unintended ways
- Examples: SQL injection, script injection (XSS), command injection, ...

Software vulnerabilities and exploitation

- A single vulnerability can possibly give an attacker complete control over a system
 - "Hacking", "Exploiting", "Pwning", ... a system
- This is a significant contributor to risk in cybersecurity
 - Your phone can be turned into a monitoring device
 - Your PC can be turned into a cyberweapon in the hands of someone else

Example: SQL injection attack

- How can simple "bugs" have such serious consequences?
- Let's look at a "simple" class of vulnerabilities

Zero-day vulnerabilities

- A zero-day vulnerability is a vulnerability in a hardware/software product that the manufacturer of the product is not aware of
- A zero-day in a widely used system is dangerous and powerful: it can be used to break into and control that system
- Consequently, these vulnerabilities have also become very valuable to various stakeholders:
 - Law enforcement / intelligence services: to get access to intelligence on criminals or other nations
 - The military: as cyberweapons
 - Criminals: to build malware
- What to do if you find one?

Sell it to manufacturer: Bug bounty programs

• E.g., Google Bug Hunters program:

- Brokers make it easy to enter such bug bounty programs:
 - https://www.intigriti.com/
 - https://www.hackerone.com/

Sell it as a weapon, e.g., Zerodium 2021

^{*} All payouts are subject to change or cancellation without notice. All trademarks are the property of their respective owners.

These practices raise interesting questions

- Is it legal to look for vulnerabilities?
 - It is important to find a good balance between:
 - Disallowing malicious attempts to break into a system
 - Supporting "ethical hacking", the process of looking for vulnerabilities in systems and disclosing them to the system owner so they can be fixed
- Is it legal to sell functional exploits? Should it be?
 - At some level, a functional exploit is like a weapon
 - Both in the US and in Europe, the practice of selling exploits seems to be tolerated
- For background on the legal issues surrounding ethical hacking in Belgium:
 - https://cybersecurity-bites.be/cyberwijs/security-researching-of-ethisch-hacken-interessant-voor-uw-onderneming/

Overview

- The evolution of cyberspace
- Examples of cybersecurity incidents
 - Malware, viruses, worms
 - Defacements
 - Jailbreaking, rooting
 - Data leaks
 - Online scams
- What are the underlying causes?

Conclusions

Conclusions

- Cybersecurity is a key concern for our always-online society
- Software vulnerabilities are an important underlying cause for cybersecurity failures
- The purpose of this course is to:
 - study these vulnerabilities in a number of important software systems
 - understand how to exploit these vulnerabilities
 - understand countermeasures that can be applied
- Recommended reading for a more systematic overview of the cyberthreat landscape:
 - Ross Anderson, Security Engineering (third edition), Chapter 2:
 - https://www.cl.cam.ac.uk/~rja14/Papers/SEv3-ch2-7sep.pdf

Practical organization of the course

• Theory:

- Live lectures, with best-effort to record and post on Toledo
- Mandatory and recommended reading material
- Course Overview in Toledo summarizes all the material covered

• Project:

 A "security game" where you practice some of the attack techniques we studied

• Grading:

- Theory (15 out of 20 points): written closed-book exam
- Project (5 out of 20 points): written report + oral defense