TECHNISCHE UNIVERSITÄT DARMSTADT FACHGEBIET THEORETISCHE INFORMATIK

PROE JOHANNES BUCHMANN NABIL ALKEILANI ALKADRI NINA BINDEL PATRICK STRUCK

Algorithmen und Datenstrukturen

SoSe 2018

2. Lösungsblatt — 23.04.2018

P1 Merge-Sort

Illustrieren Sie die Operation von Merge-Sort auf dem Array $A = \langle 14, 9, 5, 8, 11, 4, 21, 7 \rangle$.

Lösung. Zunächst wird das Array *A* in Subarrays der Länge 1 unterteilt. Diese werden dann durch wiederholte Anwendung von Merge wie folgt zusammengesetzt.

P2 Komplexitätsklassen

1. Tragen Sie für die folgenden Funktionen die korrekten Komplexitätsklassen ein.

f(n)	O()	
$5000 + 0.0001n^3 + 37n^2$	O()
$30n^{1.5} + 12n \lg n$	O()
n lg n	O()
$n \lg n^2$	0()
$n^2 \lg n$	0()
$n \lg n^3$	0()
$n^3 \lg n$	0()
$3\log_8 n + \log_2 \log_2 \log_2 n$	0()
$100n\log_3 n + n^3 + 100n$	0()

Lösung.

f(n)	O()
$5000 + 0.0001n^3 + 37n^2$	$O(n^3)$
$30n^{1.5} + 12n \lg n$	$O(n^{1.5})$
nlgn	$O(n \lg n)$
$n \lg n^2$	$O(n \lg n)$
$n^2 \lg n$	$O(n^2 \lg n)$
$n \lg n^3$	O(nlgn)
$n^3 \lg n$	$O(n^3 \lg n)$
$3\log_8 n + \log_2 \log_2 \log_2 n$	$O(\lg n)$
$100n\log_3 n + n^3 + 100n$	$O(n^3)$

2. Tragen Sie für die folgenden Aussagen jeweils ein ob sie WAHR oder FALSCH sind. Falls eine Aussage falsch ist, tragen Sie die korrekte Formel ein.

Aussage	W oder F	korrekte Formel
O(f+g) = O(f) + O(g)		
$O(f \cdot g) = O(f) \cdot O(g)$		
Wenn $f \in O(g)$ und $h \in O(g)$, dann $f \in O(h)$		
$5n + 8n^2 + 100n^3 \in O(n^5)$		
$5n + 8n^2 + 100n^3 \in O(n^2 \lg n)$		

Lösung.

Aussage	W oder F	korrekte Formel
O(f+g) = O(f) + O(g)	F	$O(f+g) = \max\{O(f), O(g)\}$
$O(f \cdot g) = O(f) \cdot O(g)$	W	
Wenn $f \in O(g)$ und $h \in O(g)$, dann $f \in O(h)$	F	Wenn $f \in O(g)$ und $g \in O(h)$, dann $f \in O(h)$
$5n + 8n^2 + 100n^3 \in O(n^5)$	W	
$5n + 8n^2 + 100n^3 \in O(n^2 \lg n)$	F	$5n + 8n^2 + 100n^3 \in O(n^3)$
	•	

P3 Rekurrenzgleichung

a) Beweisen Sie die Aussage "Die Lösung von T(n) = T(n/2) + 1 liegt in $O(\log n)$ " zunächst durch Induktion (für den Fall $n = 2^k$) und anschließend den allgemeinen Fall mit Hilfe des Mastertheorems.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) can be bounded asymptotically as follows.

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
- b) Geben Sie Beispiele für alle Fälle des Mastertheorems an und zeigen Sie, dass es sich tatsächlich um solche Fälle handelt.

Lösung.

- a) 1. Sei $n = 2^k$. Wir beweisen die Aussage durch Induktion nach k.
 - Induktionsanfang k = 1: $T(2^1) = T(2) = c_0 \le c \cdot \lg 2$, wobei c > 1.
 - Induktionsannahme $T(2^k) \le c \cdot \lg 2^k$
 - Induktionsschritt $k \rightarrow k + 1$:

$$T(2^{k+1}) = T(2^k) + 1 \le c \cdot \lg 2^k + 1 \le c \lg 2^k + c \lg 2 = c \lg 2^{k+1}.$$

Dabei benutzen wir bei (1) die Induktionsannahme.

Damit gilt: $T(n) = O(\lg n)$ für $n = 2^k$.

- 2. In der Notation des Mastertheorems haben wir a=1, b=2 und f(n)=1. Damit gilt $f(n)=\Theta(1)=\Theta(n^{\log_b a})$. Nach Teil 2 des Mastertheorems gilt also $T(n)=\Theta(n^{\log_b a}\log n)=\Theta(\log n)$.
- b) 1. Fall: T(n) = 4T(n/2) + 2n. Es gilt a = 4, b = 2 und $f(n) = \Theta(n) = O(n^{\log_b a \epsilon})$ für $\epsilon = 1/2$. Damit gilt $T(n) = \Theta(n^2)$.
 - 2. Fall: T(n) = 2T(n/2) + n. Es gilt a = b = 2 und $f(n) = \Theta(n) = \Theta(n^{\log_b a})$. Damit gilt $T(n) = \Theta(n \log n)$.
 - 3. Fall: $T(n) = 2T(n/4) + n^2$. Es gilt a = 2, b = 4 und $f(n) = \Theta(n^2) = \Omega(n^{\log_b a + \epsilon})$ mit $\epsilon = 1$. Weiterhin ist $a \cdot f(n/b) = n^2/8 \le \frac{1}{4}f(n)$. Damit gilt $T(n) = \Theta(n^2)$.

H1 Komplexitätsklassen

Zeigen Sie die folgende Aussage:

$$o(g(n)) \cap \omega(g(n)) = \emptyset.$$

Lösung. Wir nehmen an, dass $o(g(n)) \cap \omega(g(n)) \neq \emptyset$. Das heißt, wir nehmen an, dass eine Funktion $f \in o(g(n)) \cap \omega(g(n))$ existiert. Sei nun c > 0 eine Konstante. Dann existiert wegen $f \in o(g(n))$ ein $n_0 \in \mathbb{N}$, sodass $0 \le f(n) < c \cdot g(n)$ für alle $n \ge n_0$. Da auch gilt $f \in \omega(g(n))$, existiert außerdem ein $n_1 \in \mathbb{N}$, sodass $0 \le c \cdot g(n) < f(n)$ für alle $n \ge n_1$.

Sei nun $n' = \max\{n_0, n_1\}$. Dann gilt insbesondere $f(n) < c \cdot g(n)$ und $c \cdot g(n) < f(n)$ für alle $n \ge n'$ was zu einem Widerspruch (f(n) > f(n)) führt. Daher war unsere Annahme falsch und es gilt

$$o(g(n)) \cap \omega(g(n)) = \emptyset.$$

H2 Komplexitätsklassen

Beweisen Sie: für zwei Funktionen f und g gilt $f(n) \in \Theta(g(n))$ genau dann wenn $f(n) \in O(g(n))$ und $f(n) \in \Omega(g(n))$. **Lösung.** Um die Aussage zu beweisen, zeigen wir zwei Teilaussagen (zwei "Richtungen"):

- (i) Sei $f(n) \in \Theta(g(n))$. Dann gilt $f(n) \in O(g(n))$ und $f(n) \in \Omega(g(n))$.
- (ii) Sei $f(n) \in \Omega(g(n))$ und $f(n) \in O(g(n))$. Dann gilt $f(n) \in \Theta(g(n))$.

Beweis von (i):

Sei $f(n) \in \Theta(g(n))$. Nach Definition von $\Theta(g(n))$ existieren die Konstanten c_1, c_2, n_0 , sodass für alle $n \ge n_0$ gilt:

$$0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$
.

Mit c_1 und n_0 haben wir zwei Konstanten gefunden, sodass gilt $0 \le c_1 \cdot g(n) \le f(n)$ für alle $n \ge n_0$. Das bedeutet $f \in \Omega(g(n))$.

Gleichzeitig haben wir mit c_2 und n_0 zwei Konstanten gefunden, sodass gilt $0 \le f(n) \le c_2 \cdot g(n)$ für alle $n \ge n_0$. Das bedeutet $f \in O(g(n))$.

Beweis von (ii):

Sei nun $f(n) \in \Omega(g(n))$ und $f(n) \in O(g(n))$. Dann existieren Konstanten c_1, c_2, n_1, n_2 mit

$$0 \le c_1 \cdot g(n) \le f(n)$$
 für alle $n \ge n_1$, da $f(n) \in \Omega(g(n))$

und

$$0 \le f(n) \le c_2 \cdot g(n)$$
 für alle $n \ge n_2$, da $f(n) \in O(g(n))$.

Wir wählen $n_0 = \max\{n_1, n_2\}$. Damit gilt für alle $n \ge n_0$: $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$. Das bedeutet, dass gilt $f(n) \in \Theta(g(n))$.