# **Music Genre Classification**

Shreya Srivastava Carolene Priscilla Siga

18752 Project

#### **Content**

- Problem statement (1 slide)
- Data collection and pre-processing (up to 2 slides)
- Feature extraction (3 slides)
  - Including Data visualization (1 slide)
- Regression/classification/time series prediction (4 slides)
  - One of these methods should meet the performance specification
- Picture of the software code (up to 2 slides)
  - Explain each section of the code
- Slides explaining methods that are unfamiliar to the class (up to 4 slides)
- You can also include additional slides if they help explain the project better

#### **Problem statement**



We aim to classify the music audio files to their appropriate genres.



Classification results can support sociological and psychological research into how humans construct the notion of musical similarity and form harmonious groupings and how this compares to the objective truth.



We use <u>GTZAN</u> dataset which consists of 30-second segments of music from 10 different genres, each having 100 recordings (for a total of 1000).



#### **Feature extraction**

- We extracted 47 features from the audio files of the GTZAN dataset.
- Extracted information includes- Mel spectrogram, zero crossings, tempo,
  MFCC, Chroma value, root-mean-square value for each frame, spectral centroid, spectral bandwidth, spectral roll-off, harmonic, and percussive elements.
- Conducted Principal Component Analysis and visualized the same in a 2-D plane. Used the learnt model and found rolloff\_mean and zero\_crossings\_var to be influential features.
- We trained the K-means model with our extracted data and plotted the model with rolloff\_mean and zero\_crossings\_var as the x and y axes.

## **Feature extraction**





#### **Feature extraction**













#### Correlation Heatmap (for the MEAN variables)





## **Classification Results**

| Model Name                   | Test Accuracy |
|------------------------------|---------------|
| Logistic Regression          | 69.0%         |
| KNN Classifier               | 62.5%         |
| MLP Classifier               | 69.5%         |
| Support Vector Classifier    | 71.5%         |
| Random Forest Classifier     | 73.0%         |
| Bagging Classifier           | 63.5%         |
| Gradient Boosting Classifier | 71.0%         |
| AdaBoost Classifier          | 29.0%         |
| XGB Classifier               | 71.5%         |
| CatBoost Classifier          | 76.5%         |
|                              |               |

