• Earthquake Magnitude vs. Intensity:

- o Magnitude: physical size of the earthquake.
- o Intensity: strength of shaking caused by the earthquake.

• Magnitude Scales Overview:

- o First developed by Charles Richter in 1935.
 - Focused on regional comparisons in Southern California.
 - Used Wood-Anderson seismograph.
- Magnitude determined from largest amplitude on a seismogram, corrected for distance.

• Richter Scale:

- Example Calculation:
 - Seismogram shows P-wave and S-wave arrivals, S-P time: 24 seconds → Distance: 220 km, Peak amplitude: 23 mm → Magnitude: 5.0.
 - Amplitude at 100 km distance: 100 mm (Magnitude 5.0 = 100 mm at 100 km).
 - Smaller magnitudes (e.g., increment down to 4.0 = 2.3 mm) demonstrate logarithmic nature.
- o Limitations:
 - Difficult to apply globally.
 - Saturates around magnitude 6.

Local Magnitude Scales:

- Developed for specific regions (local use only for small earthquakes).
- Superseded by moment magnitude scale for larger earthquakes.

Moment Magnitude Scale (Mw):

- o Introduced in the 1970s.
- Based on seismic moment:
 - Seismic moment = rupture area × average slip × shear modulus.
- Advantages of moment magnitude:
 - Does not saturate, accurate for large earthquakes.
 - Easy calculation from modern data sources.

• Seismic Moment Explained:

- Units in Newton meters (Nm), relates to energy but is a torque measure.
- A significant increase in moment reflects a large increase in earthquake energy:
 - 1 unit increase in moment magnitude = \approx 31.6 times increase in seismic moment.

• Earthquake Size Classification:

Small: Magnitude 2-3

Moderate: Magnitude 4-5

Large: Magnitude 6-7

o Great: Magnitude > 8

• Rupture Area and Slip Relationship:

- Average slip correlates with rupture length.
 - Magnitude 6 → 10 km rupture, 30 cm slip.
 - Magnitude 7 → 60 km rupture, 1.5 m slip.

• Key Faults and Earthquake Potential:

- Cascadia Subduction Megathrust (capable of magnitude 9) vs. San Andreas Fault (limited to magnitude 8).
- The potential size of earthquakes governed by the fault rupture area.

• Earthquake Statistics (Gutenberg-Richter Law):

- Each unit increase in magnitude → tenfold decrease in frequency.
- Global averages:
 - ~10,000 mag 4 earthquakes/year.
 - ~1,000-2,000 mag 5 earthquakes/year.
 - ~100-200 mag 6 earthquakes/year.
 - ~10-20 mag 7 earthquakes/year.
 - 1-2 mag 8 earthquakes/year, 1-2 mag 9 in a decade.

• Foreshocks, Mainshocks, and Aftershocks:

- Mainshock: largest earthquake in a sequence.
- o Aftershocks: smaller earthquakes following the mainshock.
- Foreshocks: precede the mainshock, not always present.

Ridgecrest Sequence Analysis:

- o Example: July 3-6, 2019.
 - Initial sequence with magnitude 3.5 (foreshocks), followed by magnitude 6.4 (mainshock), then magnitude 7.1.
- Highlights the unpredictability of foreshocks and aftershocks and challenges in earthquake prediction.

Introduction to Seismic Intensity Scale

- Describes the strength of ground shaking from seismic waves.
- Intensity relates to earthquake effects at specific locations, while magnitude describes the earthquake itself.
- Single earthquake can cause different intensities at different locations; usually greater near epicenter (attenuation).

Modified Mercalli Intensity Scale (MMI)

- Developed by Guiseppe Mercalli in 1902 and modified in 1931.
- Uses Roman numerals to express perceived shaking levels.
 - MMI 1: Instrumental (not perceived by people).
 - MMI 3: Slight shaking (noticed but not recognized as an earthquake).
 - MMI 5: Rather strong (windows may break).

- MMI 7: Very strong (difficult to stand).
- MMI 9: Violent (some buildings may collapse).
- MMI 11: Extreme (few structures remain standing).

Iso-seismal Maps

- Connect areas of equal strength of shaking.
- Useful for estimating locations and magnitudes of historic earthquakes.
- Example: 1811 New Madrid earthquake intensity estimated from felt reports.

• Factors Affecting Intensity

- **Proximity to Population Centers**: Bias due to fewer settlers in the earthquake source region.
- Personal Account Exaggeration: Accounts may be exaggerated or speculative.
- Data Sources for Modern Earthquakes:
 - Accelerometers for strong shaking recording.
 - Felt reports collected via the internet (e.g., USGS "Did You Feel It?" service).

• Seismic Intensity Control Factors

Oirectivity Effect:

- Slip migration direction affects ground shaking.
- Example from 2016 Kaikoura earthquake where directivity amplified shaking.

Geographical Differences:

- Mineral Virginia 2011 vs. Mexicali 2009:
 - Mineral Virginia had broader felt reports despite similar magnitudes.
 - Eastern US has less fault activity, enabling wider felt earthquakes.

Depth of Earthquake:

- Ridgecrest (2019) vs. Anchorage (2018):
 - Ridgecrest was shallower and had higher peak intensities; localized shaking.
 - Anchorage was deeper with broader area of shaking but lower peak intensities.

Sedimentary Basins:

- Anchorage within Cook Inlet amplified shaking due to loose sediments.
- Basin amplification can prolong shaking duration and increase damage.

Examples of Basin Amplification and Liquefaction

Kathmandu, Nepal during Gorkha earthquake (2015):

• Resonance effects observed in GPS motions due to sedimentary basin.

• Puebla Earthquake (2017):

Strong shaking experienced 100 km from epicenter due to basin effects in Mexico City.

Liquefaction Effects

- Water-saturated soils lose strength when shaken.
- Damage observed in Anchorage (2018) linked to liquefaction, specifically in marshy areas.

Risk Evaluation for Victoria vs. Vancouver

- Victoria closer to subduction zone but built on solid bedrock.
- Vancouver constructed on softer sediment, likely experiencing more amplification effects.

• Types of Earthquakes Hazardous to Coastal BC

- Three categories explored:
 - Megathrust earthquakes (magnitude 8-9).
 - Intermediate depth intraslab earthquakes.
 - Shallow crustal earthquakes.
- Crustal earthquakes pose localized hazards while megathrust earthquakes present cumulative risks.

• Global Patterns of Earthquake Damage

- Majority of deadliest earthquakes (20th/21st centuries) involve shallow continental faults (magnitude 7-8).
- Subduction zone earthquakes, although larger, have resulted in fewer fatalities relative to continental earthquakes.