Note del corso di Geometria 1

Gabriel Antonio Videtta

22 marzo 2023

Decomposizione di Jordan e forma canonica di Jordan reale

Nota. Nel corso del documento, qualora non specificato, per f si intenderà un qualsiasi endomorfismo di V, dove V è uno spazio vettoriale di dimensione $n \in \mathbb{N}$. Inoltre per \mathbb{K} si intenderà, per semplicità, un campo algebricamente chiuso; altrimenti è sufficiente considerare un campo \mathbb{K} in cui i vari polinomi caratteristici esaminati si scompongono in fattori lineari.

Sia J la forma canonica di Jordan relativa a $f \in \text{End}(V)$ in una base \mathcal{B} . Allora è possibile decomporre tale matrice in una somma di due matrici D e N tali che:

- D è diagonale e in particolare contiene tutti gli autovalori di J;
- N è nilpotente ed è pari alla matrice ottenuta ignorando la diagonale di J;
- DN = ND, dacché le due matrici sono a blocchi diagonali.

Pertanto è possibile considerare gli endomorfismi $\delta = M_{\mathcal{B}}^{-1}(D)$ (diagonalizzabile) e $\nu = M_{\mathcal{B}}^{-1}(N)$ (nilpotente). Si osserva allora che questi endomorfismi sono tali che $f = \delta + \nu$ (decomposizione di Jordan di f).

Teorema. La decomposizione di Jordan di f è unica.

Dimostrazione. Per dimostrare che la decomposizione di Jordan è unica è sufficiente mostrare che, dati δ , δ' diagonalizzabili e ν , ν' nilpotenti tali che $f = \delta + \nu = \delta' + \nu'$, deve valere necessariamente che $\delta = \delta'$ e che $\nu = \nu'$. In particolare è sufficiente dimostrare che $\delta|_{\widetilde{V_{\lambda}}} = \delta'|_{\widetilde{V_{\lambda}}}$ per ogni autovalore λ di

f, dal momento che $V = \widetilde{V_{\lambda_1}} \oplus \cdots \oplus \widetilde{V_{\lambda_k}}$, dove k è il numero di autovalori distinti di f, e così le matrici associate dei due endomorfismi sarebbero uguali in una stessa base, da cui si concluderebbe che $\delta = \delta'$, e quindi che $\nu = \nu'$.

Si osserva innanzitutto che δ (e così tutti gli altri tre endomorfismi) commuta con f: $\delta \circ f = \delta \circ (\delta + \nu)$ = $(\delta + \nu) \circ \delta = f \circ \delta$. Da quest'ultimo

risultato consegue che $\widetilde{V_{\lambda}}$ è δ -invariante, dacché se f commuta con δ , anche $(f - \lambda \operatorname{Id})^n$ commuta con δ . Sia infatti $\underline{v} \in \widetilde{V_{\lambda}} = \operatorname{Ker}(f - \lambda \operatorname{Id})^n$, allora $(f - \lambda \operatorname{Id})^n(\delta(\underline{v})) = \delta((f - \lambda \operatorname{Id})^n(\underline{v})) = \delta(\underline{0}) = \underline{0} \implies \delta(\widetilde{V_{\lambda}}) \subseteq \widetilde{V_{\lambda}}$.

Si considerano allora gli endomorfismi $\delta|_{\widetilde{V_{\lambda}}}$, $\delta'|_{\widetilde{V_{\lambda}}}$, $\nu|_{\widetilde{V_{\lambda}}}$, $\nu'|_{\widetilde{V_{\lambda}}}$ \in $\operatorname{End}(\widetilde{V_{\lambda}})$. Dal momento che $\delta|_{\widetilde{V_{\lambda}}}$ e $\nu|_{\widetilde{V_{\lambda}}}$ commutano, esiste una base \mathcal{B}' di $\widetilde{V_{\lambda}}$ tale per cui i due endomorfismi sono triangolarizzabili simultaneamente. Inoltre, dal momento che $\delta|_{\widetilde{V_{\lambda}}}$ è una restrizione su δ , che è diagonalizzabile per ipotesi, anche quest'ultimo endomorfismo è diagonalizzabile; analogamente $\nu|_{\widetilde{V_{\lambda}}}$ è ancora nilpotente.

Si osserva dunque che $M_{\mathcal{B}'}(f|_{\widetilde{V_{\lambda}}}) = M_{\mathcal{B}'}(\delta|_{\widetilde{V_{\lambda}}}) + M_{\mathcal{B}'}(\nu|_{\widetilde{V_{\lambda}}})$: la diagonale di $M'_{\mathcal{B}}(\nu|_{\widetilde{V_{\lambda}}})$ è nulla, e $M_{\mathcal{B}'}(f|_{\widetilde{V_{\lambda}}})$, poiché somma di due matrici triangolari superiori, è una matrice triangolare superiore. Allora la diagonale di $M_{\mathcal{B}'}(f|_{\widetilde{V_{\lambda}}})$ raccoglie l'unico autovalore λ di $f|_{\widetilde{V_{\lambda}}}$, che dunque è l'unico autovalore anche di $\delta|_{\widetilde{V_{\lambda}}}$. In particolare, poiché $\delta|_{\widetilde{V_{\lambda}}}$ è diagonalizzabile, vale che $\delta|_{\widetilde{V_{\lambda}}} = \lambda \mathrm{Id}$. Analogamente $\delta'|_{\widetilde{V_{\lambda}}} = \lambda \mathrm{Id}$, e quindi $\delta|_{\widetilde{V_{\lambda}}} = \delta'|_{\widetilde{V_{\lambda}}}$, da cui anche $\nu|_{\widetilde{V_{\lambda}}} = \nu'|_{\widetilde{V_{\lambda}}}$. Si conclude dunque che le coppie di endomorfismi sono uguali su ogni restrizione, e quindi che $\delta = \delta'$ e $\nu = \nu'$.

Sia adesso $V=\mathbb{R}^n$. Si consideri allora la forma canonica di Jordan di f su \mathbb{C} (ossia estendendo, qualora necessario, il campo a \mathbb{C}) e sia \mathcal{B} una base di Jordan per f. Sia α un autovalore di f in $\mathbb{C}\setminus\mathbb{R}$. Allora, dacché $p_f\in\mathbb{R}[\lambda]$, anche $\overline{\alpha}$ è un autovalore di f. In particolare, vi è un isomorfismo tra $\widetilde{V_{\alpha}}$ e $\widetilde{V_{\alpha}}$ (rappresentato proprio dall'operazione di coniugio). Quindi i blocchi di Jordan relativi ad α e ad $\overline{\alpha}$ sono gli stessi, benché coniugati.

Sia ora \mathcal{B}' una base ordinata di Jordan per $f|_{\widetilde{V_{\alpha}}}$, allora $\overline{\mathcal{B}'}$ è anch'essa una base ordinata di Jordan per $f|_{\widetilde{V_{\alpha}}}$. Si consideri dunque $W=\widetilde{V_{\alpha}}\oplus\widetilde{V_{\alpha}}$ e la restrizione $\varphi=f|_W$. Si osserva che la forma canonica di φ si ottiene estraendo i singoli blocchi relativi ad α e $\overline{\alpha}$ dalla forma canonica di f. Se

 $\mathcal{B}' = \{\underline{v_1},...,\underline{v_k}\}$, si considera $\mathcal{B}'' = \{\Re(\underline{v_1}),\Im(\underline{v_1}),...,\Re(\underline{v_k}),\Im(\underline{v_k})\}$, ossia i vettori tali che $\underline{v_i} = \Re(\underline{v_i}) + i\Im(\underline{v_i})$. Questi vettori soddisfano due particolari proprietà:

•
$$\Re(\underline{v_i}) = \frac{\underline{v_i} + \overline{v_i}}{2}$$
,

•
$$\Im(\underline{v_i}) = \frac{\underline{v_i} - \overline{v_i}}{2i} \underbrace{\underbrace{\underbrace{v_i} - \overline{v_i}}_{\frac{1}{i} = -i} - \frac{\underline{v_i} - \overline{v_i}}{2}i}.$$

In particolare \mathcal{B}'' è un base di W, dal momento che gli elementi di \mathcal{B}'' generano W e sono tanti quanto la dimensione di W, ossia 2k. Si ponga $\alpha = a + bi$. Se v_i è autovettore si conclude che:

•
$$f(\Re(\underline{v_i})) = \frac{1}{2} \left(f(\underline{v_i}) + f(\overline{v_i}) \right) = \frac{1}{2} \left(\alpha \underline{v_i} + \overline{\alpha v_i} \right) = \frac{1}{2} \left(a\underline{v_i} + bi\underline{v_i} + a\overline{v_i} - bi\overline{v_i} \right) = a\frac{v_i + \overline{v_i}}{2} + b\frac{v_i - \overline{v_i}}{2} i = a\Re(\underline{v_i}) - b\Im(\underline{v_i}),$$

•
$$f(\Im(v_i)) = \frac{1}{2i} \left(f(\underline{v_i}) - f(\overline{v_i}) \right) = \frac{1}{2i} \left(\alpha \underline{v_i} - \overline{\alpha v_i} \right) = \frac{1}{2i} \left(a\underline{v_i} + bi\underline{v_i} - a\overline{v_i} + bi\overline{v_i} \right) = b\frac{\underline{v_i} + \overline{v_i}}{2} + a\frac{\underline{v_i} - \overline{v_i}}{2i} = b\Re(\underline{v_i}) + a\Im(\underline{v_i}).$$

Altrimenti, se non lo è:

$$\begin{array}{lll} \bullet & f(\Re(\underline{v_i})) & = & \frac{1}{2} \left(f(\underline{v_i}) + f(\overline{v_i}) \right) & = & \frac{1}{2} \left(\alpha \underline{v_i} + \underline{v_{i-1}} + \overline{\alpha v_i} + \overline{v_{i-1}} \right) & = \\ & \frac{1}{2} \left(a\underline{v_i} + bi\underline{v_i} + a\overline{v_i} - bi\overline{v_i} \right) + \Re(\underline{v_{i-1}}) & = & a\frac{v_i + \overline{v_i}}{2} + b\frac{v_i - \overline{v_i}}{2}i + \Re(\underline{v_{i-1}}) & = \\ & a\Re(\underline{v_i}) - b\Im(\underline{v_i}) + \Re(\underline{v_{i-1}}), \end{array}$$

•
$$f(\Im(\underline{v_i})) = \frac{1}{2i} \left(f(\underline{v_i}) - f(\overline{v_i}) \right) = \frac{1}{2i} \left(\alpha \underline{v_i} + \underline{v_{i-1}} - \overline{\alpha} \underline{v_i} - \overline{v_{i-1}} \right) = \frac{1}{2i} \left(a\underline{v_i} + bi\underline{v_i} - a\overline{v_i} + bi\overline{v_i} \right) + \Im(\underline{v_{i-1}}) = b\frac{v_i + \overline{v_i}}{2} + a\frac{v_i - \overline{v_i}}{2i} + \Im(\underline{v_{i-1}}) = b\Re(\underline{v_i}) + a\Im(\underline{v_i}) + \Im(\underline{v_{i-1}}).$$

Quindi la matrice associata nella base \mathcal{B}'' è la stessa di f relativa ad α dove si amplifica la matrice sostituendo ad α la matrice $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ e ad 1 la

matrice
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

isomorfo a
$$\mathbb C$$
 secondo la mappa $\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mapsto a + bi.$

 $^{^1{\}rm Si}$ è in seguito utilizzato più volte l'identità $f(\overline{\underline{v_i}}) = \overline{f(\underline{v_i})}.$

²Si verifica facilmente che lo spazio delle matrici $\left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in M(2,\mathbb{R}) \mid a,b \in \mathbb{R} \right\}$ è

Esempio. Si consideri la matrice
$$M=\begin{pmatrix} 1+i & 1 & 0 & 0 \\ 0 & 1+i & 0 & 0 \\ 0 & 0 & 1-i & 1 \\ 0 & 0 & 0 & 1-i \end{pmatrix}$$
. Si

osserva che M è composta da due blocchi che sono uno il blocco coniugato

dell'altro. Quindi
$$M$$
 è simile alla matrice reale
$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$