Logika dla informatyków

Egzamin poprawkowy (pierwsza część)

24 lutego 2020 czas pisania: 90 minut

Zadanie 1 (2 punkty). Jeśli istnieją takie *spełnialne* formuły φ i ψ , że formuła $\varphi \wedge \neg \psi$ jest sprzeczna a formuła $\psi \Leftrightarrow (\neg \varphi)$ jest spełnialna, to w prostokąt poniżej wpisz dowolny przykład takich formuł. W przeciwnym przypadku wpisz dowód, że takie formuły nie istnieją.

 $\varphi=p,\,\psi=\top$

Zadanie 2 (2 punkty). Jeśli dla formuły $p \Leftrightarrow (\neg q \Leftrightarrow p)$ istnieje równoważna jej formuła zbudowana wyłącznie ze zmiennych zdaniowych, nawiasów oraz spójników "¬" oraz " \wedge ", to wpisz w prostokąt poniżej dowolną taką formułę. W przeciwnym razie wpisz słowo NIE.

 $\neg q$

Zadanie 3 (2 punkty). Jeżeli poniższe zbiory spójników są zupełne, to w odpowiedni prostokąt wpisz słowo TAK. W przeciwnym razie wpisz w prostokąt przykład formuły, która nie jest równoważna żadnej formule zbudowanej ze zmiennych zdaniowych i spójników z tego zbioru.

 $\{\neg\} \qquad \qquad p \vee q$

 $\{\lor,\land\}$

Zadanie 4 (2 punkty). Czy formuła $p \vee q$ jest logiczną konsekwencją zbioru $A = \{r \vee p, \neg r \vee q\}$? W prostokąt poniżej wpisz odpowiedź oraz dowód jej poprawności.

Tak. Weźmy dowolne wartościowanie σ spełniające A. Wtedy $\hat{\sigma}(r \vee p) = \mathsf{T}$ oraz $\hat{\sigma}(\neg r \vee q) = \mathsf{T}$. Rozpatrzmy dwa przypadki. Jeśli $\hat{\sigma}(r) = \mathsf{T}$, to wiedząc że $\hat{\sigma}(\neg r \vee q) = \mathsf{T}$ dostajemy $\sigma(q) = \mathsf{T}$, a zatem $\hat{\sigma}(r \vee q) = \mathsf{T}$. W przeciwnym przypadku $\hat{\sigma}(r) = \mathsf{F}$ i z faktu, że $\hat{\sigma}(r \vee p) = \mathsf{T}$ dostajemy $\hat{\sigma}(p) = \mathsf{T}$. Stąd ponownie $\hat{\sigma}(r \vee q) = \mathsf{T}$. Zatem $p \vee q$ jest logiczną konsekwencją zbioru A.

Zadanie 5 (2 punkty). W prostokąty poniżej wpisz dwie formuły w, odpowiednio, dysjunkcyjnej i koniunkcyjnej postaci normalnej, mające następującą tabelkę zero-jedynkową.

p	q	r	φ
Т	Т	Т	F
Т	Т	F	Т
Т	F	Т	Т
Т	F	F	Т
F	Т	T	F
F	Т	F	F
F	F	T	F
F	F	F	F

CNF:

 $p \wedge (\neg q \vee \neg r)$

DNF:

 $(p \land \neg q) \lor (p \land \neg r)$

Zadanie 10 (2 punkty). Niech $\{A_i\}_{i\in\mathbb{N}}$ będzie taką rodzina zbiorów, że $A_i=\{i,i+1\}$ dla $i\in\mathbb{N}$. W prostokąty poniżej wpisz, odpowiednio, najmniejszy i największy element zbioru X zdefiniowanego poniżej lub słowo "BRAK", jeśli odpowiedniego elementu nie ma.

$$X = \bigcup_{m=21}^{42} \bigcap_{n=m}^{m+1} A_n$$
 min $X =$ 22 max $X =$ 43

Zadanie 11 (2 punkty). W prostokąt poniżej wpisz formułę logiki pierwszego rzędu, która interpretowana w zbiorze liczb naturalnych mówi, że każda liczba naturalna nieparzysta i większa od 7 jest sumą trzech liczb nieparzystych. W rozwiązaniu możesz korzystać z symboli mnożenia ·, dodawania +, równości =, większości >, zmiennych oraz stałych 0, 1, 2 i 7. Powtarzającym się podwyrażeniom możesz przypisać nazwy i wykorzystać je w kolejnych wyrażeniach.

$$\forall x \ (np(x) \land x > 7) \rightarrow (\exists x_1 \exists x_2 \exists x_3 \ np(x_1) \land np(x_2) \land np(x_3) \land x = x_1 + x_2 + x_3),$$
gdzie $np(x) := \neg (\exists y \ x = 2 \cdot y).$

Zadanie 12 (2 punkty). Przypomnijmy, że symetryczne domknięcie relacji R to najmniejsza relacja symetryczna zawierająca R. Czy prawdą jest, że symetryczne domknięcie relacji przechodniej jest relacją przechodnią? Odpowiedź na pytanie wraz z dowodem poprawności wpisz w prostokąt poniżej.

Nie. Rozpatrzmy relację $R = \{\langle 1,2 \rangle\}$ na zbiorze $X = \{1,2\}$. Oczywiście R jest przechodnia. Natomiast symetryczne domknięcie relacji R, to relacja $S = \{\langle 1,2 \rangle, \langle 2,1 \rangle\}$, która przechodnia nie jest (bo np. zachodzi 1S2 oraz 2S1 ale nie zachodzi 1S1).

Zadanie 13 (2 punkty). Niech funkcja $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ będzie zadana wzorem $f(n,m) = 2^n(2m+1)$. W prostokąty poniżej wpisz obliczone wartości obrazów i przeciwobrazów:

$$f[\mathbb{N} imes \mathbb{N}]$$
 $\mathbb{N} \setminus \{0\}$ $f^{-1}[\mathbb{N}]$ $\mathbb{N} imes \mathbb{N}$

Zadanie 14 (2 punkty). Niech $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ będzie określona wzorem $f(x,y) = \langle x+y, x^2+y^2 \rangle$. Jeśli istnieje funkcja odwrotna do f, to w prostokąt poniżej wpisz wyrażenie definiujące tę funkcję. W przeciwnym przypadku wpisz dowód, że funkcja odwrotna nie istnieje.

Funkcja f nie posiada funkcji odwrotnej, bo nie jest "na". Zauważmy, że dla dowolnych $x, y \in \mathbb{R}$ druga współrzędna f(x, y) jest nieujemna, więc nie istnieje taka para $\langle x, y \rangle$, że $f(x, y) = \langle 0, -1 \rangle$.

Zadanie 15 (2 punkty). Wpisz w puste pola poniższej tabelki moce podanych zbiorów.

$\bigcup_{k=1}^{\infty} \mathbb{N}^k$	$\mathcal{P}(\{21,42\}) \times \emptyset$	$(\mathbb{N} \times \mathbb{Z}) \setminus \mathbb{N}$	$\{\mathbb{N},0\}\cup\{0,42\}$	$\{21,42\}^{\mathbb{N}}$	$\mathbb{Q}\cap[21,42]$	$\mathcal{P}(\mathbb{N}) \times \mathbb{Q}$
\aleph_0	0	\aleph_0	3	¢	\aleph_0	c

Zadanie 16 (2 punkty). Niech P = [0,1]. Czy istnieje taki zbiór $X \subseteq \mathbb{R}$, że $|X| = |P \cap X| = |X \setminus P| = |\mathbb{R} \setminus X| = |X \times P| = \mathfrak{c}$? W prostokąt poniżej wpisz taki zbiór X, bądź dowód, że taki zbiór nie istnieje.

$$X = \left[\frac{1}{2}, \frac{3}{2}\right]$$

Zadanie 17 (2 punkty). Jeśli istnieje taka relacja równoważności \approx na zbiorze mocy \mathfrak{c} , która ma \mathfrak{c} klas abstrakcji i każda klasa abstrakcji ma moc \aleph_0 , to w prostokąt poniżej wpisz dowolny przykład takiej relacji. W przeciwnym przypadku wpisz dowód, że taka relacja nie istnieje.

$$pprox \subseteq (\mathbb{R} \times \mathbb{N})^2,$$
 $\langle x, n \rangle pprox \langle y, m
angle ext{ gdy } x = y$

Zadanie 18 (2 punkty). Rozważmy funkcje $f: C \to B^A$ i $g: A \times B \to C$ oraz elementy $a \in A, b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne, jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C) jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(b) nie jest poprawne, bo nie dla wszystkich zbiorów A, B i C jest $b \in C$. Jeśli wyrażenie jest poprawne, to przez jego typ rozumiemy zbiór do którego należy element oznaczany przez to wyrażenie. Np. typem wyrażenia f(c) jest B^A . W prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne, wpisz odpowiedni typ wyrażenia. W pozostałe prostokąty wpisz słowo "NIE". Operator \circ oznacza składanie funkcji.

$$g(a,b)$$
 C $(g(a,b))(c)$ NIE $(f(c))(a)$ B $f(b)$ NIE $(f\circ g)(a,b)$ B^A $((f\circ g)(a,b))(b)$ NIE

Zadanie 19 (2 punkty). Powiemy, że zbiory (P_1, \leq_1) oraz (P_2, \leq_2) są podobnie uporządkowane, jeżeli istnieje taka bijekcja $f: P_1 \to P_2$, że dla wszystkich $x, y \in P_1$ jest $x \leq_1 y$ wtedy i tylko wtedy gdy $f(x) \leq_2 f(y)$. Czy zbiory (\mathbb{N}, \leq) oraz (\mathbb{R}, \leq) z naturalnymi porządkami są podobnie uporządkowane? Jeśli tak, to w prostokąt poniżej wpisz dowolną taką bijekcję. W przeciwnym przypadku wpisz dowód, że te zbiory nie są podobnie uporządkowane.

Zbiory $\mathbb N$ i $\mathbb R$ nie są nie są równoliczne, więc nie istnieje żadna bijekcja pomiędzy nimi. Zatem $(\mathbb N,\leq)$ oraz $(\mathbb R,\leq)$ nie są podobnie uporządkowane.

Zadanie 20 (2 punkty). W tym zadaniu f,g są symbolami funkcyjnymi, a,b są symbolami stałych, natomiast x,y i z są zmiennymi. W prostokąty obok tych spośród podanych par termów, które są unifikowalne, wpisz najogólniejsze unifikatory tych termów. W prostokąty obok termów, które nie są unifikowalne, wpisz słowo "NIE".

$$f(f(x,x),z) \stackrel{?}{=} f(y,b) \qquad [y/f(x,x),\ z/b] \qquad g(y,f(y,x)) \stackrel{?}{=} g(g(y,a),x) \qquad \text{NIE}$$

$$f(g(x,a),y) \stackrel{?}{=} f(y,g(x,b)) \qquad \text{NIE} \qquad g(f(f(x,x),x),x) \stackrel{?}{=} g(y,a) \qquad [x/a,\ y/f(f(a,a),a)]$$

	Numer indeksu:	WZORCOWY
Oddane zadania:		

Logika dla informatyków

Egzamin poprawkowy (część druga)

6 lutego 2020 czas pisania: 120 minut

Każde z poniższych zadań będzie oceniane w skali od -4 do 20 punktów.¹

Zadanie 21. Powiemy, że funkcja $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ jest *rozszerzająca*, gdy dla dowolnego $A \in \mathcal{P}(\mathbb{N})$ zachodzi $A \subseteq f(A)$. Pokaż, że zbiór wszystkich funkcji rozszerzających jest mocy 2^c (czyli, że jest równoliczny ze zbiorem $\mathcal{P}(\mathbb{R})$).

Wskazówka: Możesz skorzystać z faktu, że $\mathbb{N} \sim \mathbb{P}$ dla $\mathbb{P} = \{2n \mid n \in \mathbb{N}\}.$

Zadanie 22. Wykaż, że istnieje dokładnie jedna funkcja $f: \mathbb{N} \to \mathbb{N}$ spełniająca dla wszelkich $n, m \in \mathbb{N}$ równania f(1) = 1 oraz f(n+m) = f(m) + f(n) + 2nm.

Zadanie 23. Pokaż, że istnieje taki zbiór uporządkowany (P, \leq) , że:

- $P \mod \operatorname{moc} \mathfrak{c}$,
- porządek ≤ jest liniowy,
- P ma element największy oraz element najmniejszy,
- każdy element poza największym ma następnik oraz
- każdy element poza najmniejszym ma poprzednik.

 $^{^1{\}rm Algorytm}$ oceniania oddanych zadań jest następujący: najpierw zadanie jest ocenione w skali od 0 do 24 punktów, a następnie od wyniku zostają odjęte 4 punkty. Osoba, która nie oddaje rozwiązania zadania otrzymuje za to zadanie 0 punktów.