Worksheet

Completeness

Exercise 1. Let $\mathcal{M}^c = \langle W^c, R^c, V^c \rangle$ be the canonical model for \mathbf{K} , and let $w \in W^c$. Suppose that $\Diamond \varphi \in w$. Let $v^- = \{\varphi\} \cup \{\psi \mid \Box \psi \in w\}$.

- 1. Prove that v^- is consistent.
- 2. Let v be a maximal consisten extending v^- . Prove that wR^cv .

Exercise 2. Let **K4** be the axiomatic system **K** extended with the axiom $\Diamond \Diamond p \to \Diamond p$. Let \mathcal{M}^c be the canonical model for **K4**. Prove that R^c is transitive.

Exercise 3. Prove that when a pure formula is valid in a frame, it defines a first order property over a signature without unary predicate symbols. Hint, use ST.

Exercise 4. Let $\mathcal{M} = \langle W, R, V \rangle$ be named and φ pure. Prove that if for all pure instances ψ of φ , $\mathcal{M} \models \psi$, then $\langle W, R \rangle \models \psi$.

Exercise 5. Prove that the formula Bridge: $\lozenge i \land @_i p \to \lozenge p$ is a theorem of K_h (i.e., give a syntactic proof in the axiomatic system). Hint, prove the contrapositive using the modal theorem $(\lozenge q \land \Box p) \to \lozenge (q \land p)$ and the Introduction and Back axioms).

Exercise 6. Let Γ be a K_h -MCS. for each nominal i we defined $\Delta_i = \{ \varphi \mid @_i \varphi \in \Gamma \}$. Prove that

- 1. If $k \in \Gamma$ then $\Delta_k = \Gamma$.
- 2. Δ_i is a K_h -MCS that contains i.
- 3. For any nominal i, j, if $i \in \Delta_j$ then $\Delta_i = \Delta_j$.

Exercise 7. Let Δ be a normal hybrid logic extending $\mathbf{K}_h + \mathbf{R}$. Let Σ be a Δ -MCS and $\mathcal{M}^c = \langle W^c, R^c, V^c \rangle$ be the canonical model we defined for Σ .

- Prove that \mathcal{M}^c is a hybrid model, i.e., prove that nominals are interpreted as singletons.
- Prove the Truth Lemma for \mathcal{M}^c .