

Enabling Heterogeneous HighPerformance Containerized Platforms

Dror Goldenberg, Liel Shoshan - Mellanox Technologies

ISC Container Workshop Frankfurt, June 2019

- Heterogeneous cluster architectures allows parallel computing that relies on CPU and GPU
- Used for HPC & ML
 - Leveraging high speed, low latency, smart interconnects to speed-up data computation
- GPUDirect RDMA technology improves GPU-GPU communication and eliminates CPU involvement
- Kubernetes serves as a useful way of distributing compute-intensive work across such clusters
- Containerizing compute-intensive applications poses challenges on configuration, deployment and orchestration of the required system devices

Challenges in Building a K8s HPC/ML Cluster

- Deploying a K8s HPC cluster requires installation of various device drivers, libraries and toolkits
 - On the node level
 - Nvidia Driver, CUDA toolkit, cuDNN, MLNX OFED, GPUDirect, Docker, K8s, etc.
 - On the orchestration level
 - Nvidia Device Plugin, RDMA Device Plugin, K8s CNI, Kubeflow, etc.
 - On the container level
 - Tensorflow, Horovod, MLNX_OFED, OpenMPI, etc.
- One of the biggest challenges is making all these code pieces up and running in an easy and consistent manner

The Solution

- The following projects speed up deployment time, while making cluster installation vastly simpler
 - DeepOps
 - Facilitates deployment of multi-node GPU and RDMA K8s clusters for ML and HPC environments
 - Employs best practices when setting storage and configuring authentication and user access
 - Kubeflow
 - Kubernetes-native platform for developing, orchestrating, deploying and running scalable and portable ML workloads
 - Provides a straightforward way to deploy best-of-breed open-source systems for ML to diverse infrastructures
 - Helps support reproducibility and collaboration in ML workflow lifecycles
 - MPI Operator
 - Makes it easy to run allreduce-style
 - Mellanox addons for DeepOps
 - Ansible playbook for MLNX_OFED, GPU Direct and K8s device plugin
- Reference deployment guides can be found on <u>community.Mellanox.com</u> and <u>docs.Mellanox.com</u>

K8s HPC Cluster

Master

Worker node

Performance Tests

Testing Environment

- Topology
 - Nodes
 - Deployment node
 - Master node
 - 4 x Worker nodes
 - Each node has 8 NVidia Tesla GPU cards and 4 Mellanox ConnectX-6 adapters
 - Containers
 - Each worker node runs 1 Pod
- Benchmark
 - TensorFlow v1.12.0
 - Type: Synthetic
 - Batch size: 32
 - Resnet50 model

Resnet50 Performance Results

Resnet50 Container Performance Results

