## 画像処理

画像の再構成,圧縮

宮崎大学 工学部 情報システム工学科

3年後期第7回

# 画像の再構成 (P.130)

投影像などの観測データから観測対象の画像を得る技術

- ▶ コンピュータ断層法 (X線 CT, MRI)
- ▶ マイクロ波ホログラム
- ▶ 合成開口径レーダ
- ▶ 電波望遠鏡

# コンピュータ断層法(X線CT)

- ▶ X線ビームを対象 物体に照射し透過 したビームを検知 器で測定
- ▶ 多方向の観測値から対象物体の各部位のX線吸収率を再構成







(c) 第3世代



(b) 第2世代



(d) 第4世代

## 投影データ

観測データは,ある方向の X線吸収率の線積分値

$$p(s,\theta) = \int_{L_{s,\theta}} f(x,y)dt$$
$$= \int_{-\infty}^{\infty} f(s\cos\theta - t\sin\theta, s\sin\theta + t\cos\theta)dt$$



 $p(s,\theta)$ : 観測投影データ f(x,y): X線吸収率の分布

#### フーリエ変換法

投影データの1次元フーリエ変換  $P(w,\theta)$  は,分布のフーリエ変換のある断面  $F(w\cos\theta,w\sin\theta)$ 



$$P(w,\theta) = \int_{-\infty}^{\infty} p(s,\theta) \exp(-2\pi j w s) ds$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \exp(-2\pi j (x w \cos \theta + y w \sin \theta)) dx dy$$

$$= F(w \cos \theta, w \sin \theta)$$

# フーリエ変換法の解釈

$$P(w,\theta) = F(w\cos\theta, w\sin\theta)$$





投影方向と等しいサイン波 的な濃度変化の場合

それ以外の場合(例1)

それ以外の場合(例2)

# 画像の圧縮 (P.71)

画像のデータ量

- ▶ テレビの画像1枚(静止画)720×480 画素 カラー画像1枚 = 1MBytes
- ▶ テレビの映像(動画) 毎秒 30 フレーム = 240Mbps

伝送路の容量

電話線: 64kbps

ADSL: 1.5M~50Mbps

光ファイバー: 100Mbps~1Gbps

⇒ 圧縮が必要

#### データ量の削減

1. データ間の相関関係の利用 例:隣同士の画素値は似ている 前後のフレーム同士の画素値は似ている

⇒相関関係を利用して、冗長な情報を削減(冗長度の削減)

の削減)

2. 人間が知覚できない情報も含む例:高周波成分は画質に影響しない

⇒ 知覚的に重要でない情報を無視(量子化)

3. データの発生確率は一定ではない 例:文書画像では「白」が「黒」よりはるかに多い ⇒ 発生確率に応じたデータ表現(符号割り当て)

## 画像圧縮の手順



- ▶ 冗長度の削減:予測符号化,変換符号化
- ▶ 量子化:量子化計数の制御,ジグザグ走査
- ▶ 符号割り当て:ハフマン符号化

#### 符号割り当て(ハフマン符号化)

- ▶ シンボル(画素値)を 0/1 のビット列で表現する
- ▶ シンボルの生起確率に応じて異なる長さのビット列を対応づける

符号語

シンボル生起確率 $a_3$ 0.35 $a_5$ 0.3 $a_1$ 0.2 $a_4$ 0.1 $a_2$ 0.05

#### 平均符号長

平均符号長 
$$\geq$$
 エントロピー  $L = \sum_{i=1}^{N} L_i \times P(a_i) \geq H = \sum_{i=1}^{N} \log \frac{1}{P(a_i)} \times P(a_i)$   $a_i$ : シンボル  $i$   $L_i$ : シンボル  $i$  のビット列長  $N$ : シンボルの種類  $H$ は $P(a_i) = \frac{1}{N}$ のとき最大

0.5

※シンボルの生起確率が偏っているほど平均符号長は短くできる

#### 冗長度の削減

ハフマン符号化 情報が偏って存在しているほど効率がよい

一般の画像

画素間に相関関係がある=情報がバラバラに存在 ⇒相関関係を減らして、情報を偏らせる(集中させる)

手法:予測符号化,変換符号化

#### 予測符号化

復号済の画素値から次に復号する画素値を推定 推定値との誤差情報のみを利用 空間方向の予測:隣接画素値により予測



時間方向の予測:隣接フレームの画素値により予測



# 予測符号化の効果







原画像

隣接画素との差分

画素値の分散が小さくなる =誤差情報を効率的に表現できる

#### 変換符号化

考え方1:データを周波数成分で表現する
『隣同士で画素値の変化が小さい』
= 低周波成分がほとんどの情報を含む
考え方2:データをベクトルの加重和で表現する
データをうまく表現するベクトルを利用
⇒ 少数のベクトルの係数がほとんどの情報を含む

具体例:フーリエ変換,離散コサイン変換,KL展開など

# 変換符号化の効果



適切な変換をすることにより, データを少数の係数で表現可能

#### 量子化

一般に,画素値/予測誤差/変換係数は 広い値域をもつ、実数になる可能性がある そのまま符号化すると,データ量が増えてしまう

量子化 = 数段階の整数値によりデータを表現

画質の劣化を抑える工夫

画像の特性: 高周波成分の寄与は小さい

人間の知覚特性: 高周波は知覚しにくい

低周波は2~7bit,高周波は1~2bit 程度に量子化する

※量子化により非可逆圧縮となる

# 量子化の例

| DCT 結果                |                        |                         |                      |                      |                      |                      |                      |  |  |  |  |  |
|-----------------------|------------------------|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|--|--|--|--|
| 186                   | -18                    | 15                      | -9                   | 23                   | -9                   | -14                  | 19                   |  |  |  |  |  |
| 21                    | -34                    | 26                      | -9                   | -11                  | 11                   | 14                   | 7                    |  |  |  |  |  |
| -10                   | -24                    | -2                      | 6                    | -18                  | 3                    | -20                  | -1                   |  |  |  |  |  |
| -8                    | -5                     | 14                      | -15                  | -8                   | -3                   | -3                   | 8                    |  |  |  |  |  |
| -3                    | 10                     | 8                       | 1                    | -11                  | 18                   | 18                   | 15                   |  |  |  |  |  |
| 4                     | -2                     | -18                     | 8                    | 8                    | -4                   | 1                    | -7                   |  |  |  |  |  |
| 9                     | 1                      | -3                      | 4                    | -1                   | -7                   | -1                   | -2                   |  |  |  |  |  |
| 0                     | -8                     | -2                      | 2                    | 1                    | 4                    | -6                   | 0                    |  |  |  |  |  |
| 量子化テーブル               |                        |                         |                      |                      |                      |                      |                      |  |  |  |  |  |
| 量子化                   | ヒテーフ                   | ブル                      |                      |                      |                      |                      |                      |  |  |  |  |  |
| 量子(<br>8              | ヒテーフ<br>6              | ブル<br>5                 | 8                    | 12                   | 20                   | 26                   | 30                   |  |  |  |  |  |
|                       |                        |                         | 8<br>10              | 12<br>13             | 20<br>29             | 26<br>30             | 30<br>28             |  |  |  |  |  |
| 8                     | 6                      | 5                       |                      |                      |                      |                      |                      |  |  |  |  |  |
| 8<br>6                | 6                      | 5<br>7                  | 10                   | 13                   | 29                   | 30                   | 28                   |  |  |  |  |  |
| 8<br>6<br>7           | 6<br>6<br>7            | 5<br>7<br>8             | 10<br>12             | 13<br>20             | 29<br>29             | 30<br>35             | 28<br>28             |  |  |  |  |  |
| 8<br>6<br>7<br>7      | 6<br>6<br>7<br>9       | 5<br>7<br>8<br>11       | 10<br>12<br>15       | 13<br>20<br>26       | 29<br>29<br>44       | 30<br>35<br>40       | 28<br>28<br>31       |  |  |  |  |  |
| 8<br>6<br>7<br>7<br>9 | 6<br>6<br>7<br>9<br>11 | 5<br>7<br>8<br>11<br>19 | 10<br>12<br>15<br>28 | 13<br>20<br>26<br>34 | 29<br>29<br>44<br>55 | 30<br>35<br>40<br>52 | 28<br>28<br>31<br>39 |  |  |  |  |  |

#### 量子化結果

| 重于化結果 |    |    |    |    |   |    |   |  |  |  |
|-------|----|----|----|----|---|----|---|--|--|--|
| 23    | -3 | 3  | -1 | 2  | 0 | -1 | 1 |  |  |  |
| 4     | -6 | 4  | -1 | -1 | 0 | 0  | 0 |  |  |  |
| -1    | -3 | 0  | 1  | -1 | 0 | -1 | 0 |  |  |  |
| -1    | -1 | 1  | -1 | 0  | 0 | 0  | 0 |  |  |  |
| 0     | 1  | 0  | 0  | 0  | 0 | 0  | 0 |  |  |  |
| 0     | 0  | -1 | 0  | 0  | 0 | 0  | 0 |  |  |  |
| 0     | 0  | 0  | 0  | 0  | 0 | 0  | 0 |  |  |  |
| 0     | 0  | 0  | 0  | 0  | 0 | 0  | 0 |  |  |  |
|       |    |    |    |    |   |    |   |  |  |  |



#### まとめ

#### 画像の再構成

- ▶ コンピュータ断層法
- ▶ 断層像の再構成
- ▶ フーリエ変換法

#### 画像の圧縮

- ▶ 冗長度の削減
- ▶ 量子化
- ▶ 符号割り当て