HIGHLY MOISTUREPROOF DRUG PACKING **MULTILAYERED SHEET**

Patent Number:

JP7178884

Publication date:

1995-07-18

Inventor(s):

MATSUI ICHIRO

Applicant(s):

SUMITOMO BAKELITE CO LTD

Requested Patent:

JP7178884

Application Number: JP19930324351 19931222

Priority Number(s):

IPC Classification:

B32B27/32; B65D75/34; A61J1/03

EC Classification:

Equivalents:

JP3043559B2

Abstract

PURPOSE:To obtain the multilayered sheet extremely well-balanced in physical properties such as moisture proof characteristics, transparency, rigidity, damage resistance, impact resistance, chemical resistance or water resistance, excellent in appearance and moldability at the time of the molding processing of a film or a sheet, good in oil resistance and eliminating a problem of a stress crack due to sebum by laminating a resin layer composed of polypropylene to at least the single surface of a resin layer composed of amorphous polyolefin. CONSTITUTION: A highly moisture proof drug packing multilayered sheet is constituted by laminating a resin composed of polypropylene (B) to at least the single surface of a resin layer composed of amorphous polyolefin (A) with thermal deformation temp. of 100 deg.C or lower.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-178884

(43)公開日 平成7年(1995)7月18日

(51) Int.CL⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

B32B 27/32

E 8115-4F

B65D 75/34

A 6 1 J 1/03

B 6 5 D 85/56

審査請求 未請求 請求項の数3 OL (全 6 頁)

(21)出願番号

特顏平5-324351

(71)出額人 000002141

(22)出顧日

平成5年(1993)12月22日

住友ペークライト株式会社 東京都品川区東品川2丁目5番8号

(72)発明者 松居 一郎

東京都千代田区内幸町1丁目2番2号 住

友ペークライト株式会社内

(54) 【発明の名称】 高防温薬品包装用多層シート

(57)【要約】

【目的】 熱変形温度が100℃以下の非晶性ポリオレフィン(A)からなる樹脂層の少なくとも片面にポリプロピレン(B)からなる樹脂層を積層することにより、防湿特性、透明性、剛性、耐傷付性、耐衝撃性、耐薬品性、耐水性等の物性のバランスがきわめて良好でかつ、フィルム、シート等成形加工時の外観及び成形性が優れ、さらに耐油性が良好であり皮脂等によるストレスクラックなどの問題無い新規な高防湿薬品包装用多層シートを提供すること。

【構成】 熱変形温度が100℃以下の非晶性ポリオレフィン(A)からなる樹脂層の少なくとも片面にポリプロピレン(B)からなる樹脂層を積層してなる高防湿薬品包装用多層シート。

【特許請求の範囲】

【請求項1】 熱変形温度が100℃以下の非晶性ポリ オレフィン(A)からなる樹脂層の少なくとも片面にポ リプロピレン(B)からなる樹脂層を積層してなること を特徴とする高防湿薬品包装用多層シート。

【請求項2】 非晶性ポリオレフィン(A)が、シクロ ベンタジェンないしその誘導体とノルボルナジェンない しその誘導体との付加反応物と、エチレン、ブタジエン 又はスチレン誘導体から選ばれた1種以上の不飽和単量 体との共重合体、又はその水素添加物である請求項1記 10 載の高防湿薬品包装用多層シート。

【請求項3】 非晶性ポリオレフィン(A)が、ジシク ロベンタジェンないしその誘導体とエチレンとの付加反 応物と、エチレン、ブタジエン又はスチレン誘導体から 選ばれた1種以上の不飽和単量体との共重合体であると とを特徴とする請求項1記載の高防湿薬品包装用多層シ **一卜。**

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、押出成形等によりシー 20 トあるいは、フィルム等として利用できる新規な高防湿 薬品包装用シートに関するものである。更に詳しくは外 観、成形性、防湿性、透明性、耐衝撃性、耐油性に優れ た新規なシートであり、一般にPTPと称される固形剤 包装用に使用される高防湿薬品包装用多層シートに関す るものである。

[0002]

【従来の技術】医薬品包装の分野で、固形剤包装用とし て一般に用いられているPTP包装用シートには、従来 からポリ塩化ビニール (以下、PVCと略記する) 樹脂 30 からなるシートが用いられている。PVC樹脂シートは PTP包装に要求される特性をほぼ満足する優れたシー トであるが、防湿特性が劣るため、防湿を必要とする製 剤に対しては、PTP包装をした後、さらにアルミ箔を 含む構成のフィルムによりピロー包装を行うか、あるい は、PVC樹脂シートにポリ塩化ビニリデン(以下、P VDCと略記する) 樹脂をコーティングした複合シート を用いることで防湿特性を補う方法がとられてきた。し かし、これらの方法は、工数が増えるほか、包材コスト のアップにつながる。また、最近の脱PVCの動向とP VC樹脂よりも防湿性が優れているということから、ポ リプロピレン (以下、PPと略記する) 樹脂からなるシ ートも用いられているが、成形性が悪いという欠点があ り、また高い防湿性の必要な製剤用途には使用に限界が あった。非晶性ポリオレフィンは、高い防湿特性および 透明性を有し、さらに電気的性質、機械的強度、成形 性、寸法安定性に優れた特性を持っているが、非常に脆 く、押出成形等により作製したシートあるいはフィルム は、実用的には耐衝撃性が不足しており、非晶性ポリオ レフィンの特性を損なわず強靭化することが望まれてい 50

る。又、非晶性ポリオレフィンは、非晶性であるが故に 耐油性が悪く、ストレスのかかった状態で皮脂等がシー ト表面につくと微細なクラックが生じるという欠点があ る。これらの欠点を改良の為、結晶性ポリマーとガラス 転移点の高いジシクロベンタジェンの開環重合体の水素 化物とを組み合わせた複合シートにする方法が特開平4 -272937に例示されているが、この発明の複合シ ートは耐衝撃性に優れるものの、成形性が悪く防湿性に 劣る結晶性樹脂がリッチなシートであり、又、成形しに くいガラス転移点の高いジシクロペンタジエンの開環重 合体の水素化物を組み合わせおり、高防湿薬品包装用シ ートとしては使用が困難なものであった。

[0003]

【発明が解決しようとする課題】本発明は、熱変形温度 が100℃以下の非晶性ポリオレフィン(A)からなる 樹脂層の少なくとも片面にポリプロピレン(B)からな る樹脂層を積層することにより、防湿特性、透明性、剛 性、耐傷付性、耐衝撃性、耐薬品性、耐水性等の物性の バランスがきわめて良好でかつ、フィルム、シート等成 形加工時の外観及び成形性が優れ、さらに耐油性が良好 であり皮脂等によるストレスクラックなどの問題無い新 規な高防湿薬品包装用多層シートを提供することを目的 とするものである。

[0004]

【課題を解決するための手段】本発明は、熱変形温度が 100℃以下の非晶性ポリオレフィン(A)からなる樹 脂層の少なくとも片面にポリプロピレン(B)からなる 樹脂層を積層してなることを特徴とする高防湿薬品包装 用多層シートに関するものである。ポリプロピレン

(B)層は耐油性の悪い非晶性ポリオレフィン(A)層 を、皮脂等によるストレスクラックから保護するための 層であり、片面のみに積層する場合は、PTP成形物に なった場合に外側にでる側に設けなければならない。本 発明における多層シートの製造方法としては、特に限定 するものではないが、数台の押出機により樹脂を溶融押 出して多層ダイ、あるいはフィードブロックに導いてシ ート化する共押出法や、各層を形成する単層のシートま たはフィルムを適当な接着剤を用いて貼り合わせるドラ イラミネート法、その他の方法が用いられる。なお、共 押出法により多層シートを形成する場合には、非晶性ポ リオレフィン(A)とポリプロピレン(B)との間に適 当な接着性樹脂層を設けたほうが好ましい。

【0005】本発明に、用いられる熱変形温度が100 ℃以下の非晶性ポリオレフィン(A)とは、環状オレフ ィン構造を有する重合体であり、その構造及び性質より 非晶性ポリオレフィンと言える。熱変形温度が100℃ 以下の非晶性ポリオレフィンの例としては、下記の様な ものが挙げられる。例えば、下記の一般式で表される非 晶性重合体である。

(ただし、式中nは1以上の正の整数、mは1以上の正 の整数、R1は水素原子、ハロゲン原子、CH2CH ,基、又はC。H、R、基を表し、R、は水素原子、炭化水 素基、アルコキシ基、ハロゲン化炭化水素基又はハロゲ ン原子を示す。また、Xはシクロペンタジエンないしそ の誘導体とノルボルナジエンないしその誘導体との付加 エンないしその誘導体とエチレンとの付加反応物を表 す。)

【0006】シクロペンタジエンないしその誘導体とノ ルボルナジェンないしその誘導体との付加反応物の水素 添加物、又はジシクロペンタジエンないしその誘導体と エチレンとの付加反応物の一般式は下記に示すものであ

【化1】

(ただし、式中nは1以上の正の整数であり、R1~R 12はそれぞれ独立に、水素原子、ハロゲン原子、及び炭 化水素基より選ばれる原子もしくは基を示し、R,~R 1.は、互いに結合して単環又は多環を形成していてもよ (.c.)

【0007】上記、シクロペンタジエンないしその誘導 体とノルボルナジエンないしその誘導体との付加反応物 の水素添加物、又はジシクロペンタジエンないしその誘 導体とエチレンとの付加反応物としては、例えば、テト ラシクロ-3-ドデセン、8-メチルテトラシクロ-3 -ドデセン、8-エチルテトラシクロ-3-ドデセン、 8-プロピルテトラシクロ-3-ドデセン、8-ブチル テトラシクロー3ードデセン、8-イソブチルテトラシ 40 クロー3ードデセン、8-ヘキシルテトラシクロー3-ドデセン、8-ステアリルテトラシクロ-3-ドデセ ン、5、10-ジメチルテトラシクロ-3-ドデセン、 2.10-ジメチルテトラシクロ-3-ドデセン、8, 9-ジメチルテトラシクロ-3-ドデセン、8-エチル -ジメチルテトラシクロ-3-ドデセン、2,7,9-トリメチルテトラシクロー3ードデセン、9-エチルー 2. 7-ジメチルテトラシクロー3-ドデセン、9-イ

ン、9、11、12-トリメチルテトラシクロ-3-ド デセン、9-エチル-11、12-ジメチルテトラシク ロー3ードデセン、9ーイソプチルー11, 12ージメ チルテトラシクロー3ードデセン、5,8,9,10-テトラメチルテトラシクロー3ードデセン、8-エチリ デンテトラシクロ-3-ドデセン、8-エチリデン-9 -メチルテトラシクロ-3-ドデセン、8-エチリデン -9-エチルテトラシクロ-3-ドデセン、8-エチリ デン-9-イソプロピルテトラシクロ-3-ドデセン、 反応物もしくはその水素添加物、又はジシクロペンタジ 10 8-エチリデン-9-ブチルテトラシクロ-3-ドデセ ン、8-n-プロビリデンテトラシクロ-3-ドデセ ン、8-n-プロピリデン-9-メチルテトラシクロー 3-ドデセン、8-n-プロピリデン-9-エチルテト ラシクロ-3-ドデセン、8-n-プロピリデン-9-イソプロビルテトラシクロ-3-ドデセン、8-n-プ ロビリデン-9-ブチルテトラシクロ-3-ドデセン、 8-イソプロピリデンテトラシクロ-3-ドデセン、8 - イソプロピリデン - 9 - メチルテトラシクロ - 3 - ド デセン、8-イソプロピリデン-9-エチルテトラシク 20 ロー3-ドデセン、8-イソプロピリデン-9-イソプ ロビルテトラシクロー3ードデセン、8ーイソプロビリ デン-9-ブチルテトラシクロ-3-ドデセン、8-ク ロロテトラシクロー3ードデセン、8-プロモテトラシ クロー3ードデセン、8-フルオロテトラシクロー3-ドデセン、8, 9-ジクロロテトラシクロ-3-ドデセ ン、ヘキサシクロー4ーヘプタデセン、12ーメチルへ キサシクロ-4-ヘプタデセン、12-エチルヘキサシ クロー4 - ヘプタデセン、12 - イソブチルヘキサシク u-4-430 2-イソブチルヘキサシクロ-4-ヘプタデセン、オク タシクロー5ードコセン、15ーメチルオクタシクロー 5-ドコセン、15-エチルオクタシクロ-5-ドコセ ン、ペンタシクロー4ーヘキサデセン、1,3ージメチ ルペンタシクロー4ーヘキサデセン、1,6ージメチル ペンタシクロー4-ヘキサデセン、15,16-ジメチ ルペンタシクロ-4-ヘキサデセン、ヘプタシクロ-5 -エイコセン、ヘプタシクロ-5-ヘンエイコセン、ペ ンタシクロー4ーペンタデセン、1,3ージメチルペン タシクロー4ーペンタデセン、1,6-ジメチルペンタ シクロー4ーペンタデセン、14,15ージメチルペン タシクロ-4-ペンタデセン、ペンタシクロ-4,10 -ペンタデカジェン等が挙げられる。また、スチレン誘 導体としては、例えばスチレン、 o - メチルスチレン、 m-メチルスチレン、p-メチルスチレン、α-メチル スチレン、o-クロルスチレン、m-クロルスチレン、 p-クロルスチレン、o-エチルスチレン、m-エチル スチレン、p-エチルスチレン、p-メトキシスチレ ン、p-クロロエチルスチレン、p-メチル-α-メチ ルスチレンなどが用いられる。なお、これらは2種類以 ソブチル-2.7-ジメチルテトラシクロ-3-ドデセ 50 上の混合物としても使用できる。なお、これらは2種類 5

以上の混合物としても使用できる。

【0008】本発明において、溶融押出しに用いられる ポリプロピレン樹脂としては、プロピレンのホモポリマ −及びエチレンープロピレン共重合体、あるいはこれら のブレンド物の中から適当なものが用いられる。さら に、結晶核剤、石油樹脂等を適量添加しても差し支えな い。またドライラミネート等には、これらの樹脂から一 般に作製されるフィルムあるいはシートで、延伸されて いないものが好ましい。本発明に用いられる樹脂には、 必要に応じて基本的性質を損なわない範囲内で添加剤、 例えば染顔料、安定剤、可塑剤、帯電防止剤、紫外線吸 収剤、酸化防止剤、滑剤、充填剤または柔軟性を付与す るエラストマー等も添加することもできる。本発明のシ ートの全体厚みについては特に限定するものではない が、0.2~0.5mmの範囲であり、特に0.25~ 0.40mmの範囲がPTP用包材の厚みとしては適当 である。積層されるポリプロピレン(B)層の厚みにつ いても特に限定するものではないが、なるべく薄くした ほうがよく、好ましくは0.03mm以下である。とれ くなってしまい、必要とする防湿性が得られないことが ある。

・非晶性ポリオレフィン(A)

·ポリプロピレン(B)

・接着層

【0010】(比較例1)実施例1と同様の方法で非晶性ポリオレフィン(A)として、アベル APL650 309[三井石油化学(株)製]の0.3mm厚みの単層シートを作製した。

(比較例2) 実施例1と同様の方法で、非晶性ポリオレフィン(A)として、アベルAPL6515 [三井石油化学(株)製、熱変形温度125℃(ASTM D64818.6Kg/c)]を使用して0.24mm厚みのシートを作製し、その両面に無延伸ポリプロピレンフィルム [二村化学工業(株)製 太閤FC FHK2厚み0.025mm]をラミネートし、トータル0.3mmのシート作製した。

(比較例3) 実施例1と同様の方法で、非晶性ポリオレフィン(A)として、アベル APL6509 [三井石油化学(株)製]を使用して0.24mm厚みのシートを作製し、その両面に直鎖状低密度ポリエチレンフィルム [東京セロファン紙(株)製トーセロT.U.X. HCタイプ 厚み0.025mm]をラミネートし、0.3mmのシート作製した。

【0011】実施例1~3 および比較例1~3のシート について下記に示す方法で評価を行った。

* [0009]

【実施例】以下実施例により、本発明を説明するが、とれは単なる例示であり、本発明はこれに限定されるものではない。

(実施例1、2) 非晶性ポリオレフィン(A) の原材料として、アベルAPL6509 [三井石油化学(株)製、熱変形温度72℃(ASTM D648 18.6Kg/cm²)]を使用してダイ押出法により、溶融押出しし、厚み0.24および0.27mmの単層シートを作製した。上記単層シートに、無延伸ポリプロピレンフィルム [二村化学工業(株)製 太閤FC FHK2 厚み0.025mm]を、0.24mm厚のシートには両面に(実施例1)、0.27mm厚のシートには片面に(実施例2)、ウレタン系接着剤を介して、ドライラミネート法でラミネートし、トータル0.3mm厚の多層シートを作製した。

である。積層されるポリプロピレン (B) 層の厚みにつ (実施例3) 非晶性ポリオレフィン (A) 樹脂、ポリプいても特に限定するものではないが、なるべく薄くした ロピレン (B) 樹脂、および接着層として、下記材料を ほうがよく、好ましくは0.03mm以下である。これ 用い (B) /接着層/ (A) /接着層/ (B) の構成の 以上厚くなると非晶性ポリオレフィン (A) の厚みが薄 20 0.3mm厚みの多層シートを共押出法により作製し くなってしまい、必要とする防湿性が得られないことが た。なお、各層厚みは、0.02/0.01/0.24 ある。 * /0.01/0.02mmとした。

アベル APL6509 (三井石油化学(株)製) UPポリプロ FM-321 (ユニオンポリマー(株)製)

APL6509: FM-321

=50:50重量%のブレンド物

(防湿性) J I S − Z O 2 O 8 に基づいて条件B、即ち 0 温度 4 O °C、相対湿度 9 O %で測定した。

(耐ストレスクラック)シート(1)を40mm×15 0mmの短冊状にカットし、図1に示すコの字型の治具 にアーチ形にセットし、アーチの頂上部(▼印)に「皮 脂」を塗布、シートの変化を目視で観察した。変化のな い物を○、クラックの生じた物を×とした。

(デュポン衝撃試験) JIS-K-7211に準拠した 方法で、23℃及び-20℃で測定した。

(PTP成型機適性)PTP成型機(シー・ケー・ディー社製 FBP-M2)を用い、成形温度を110℃か 6125℃まで5℃毎に変えて成形テストを行い、成形性について、成形部全体の厚みがほぼ均一なものを○、偏肉の激しいものを×、またその中間を△として判定した。また、成形温度を120℃とし、成型機を約10分間停止した後に再運転した場合におけるトラブルの有無を調べた。特に問題のないものを○、シート伸び、熱盤への付着等の問題の生じたものを×として判定した。以上の評価結果を表1に示した。

[0012]

表 1

			実 施 例			比較例		
			1	2	3	1	2	3
透湿度 (g/m² · 24Hr/0. 3mm)			0. 27	0. 25	0. 26	0. 24	0.30	0. 27
耐ストレスクラック			0	0	0	×	0	0
デュポン衝撃値 (Kg・cm)		23℃ -20℃	1 5 6	14	13	7 2	14	15
PTP 成型機 機械適性	成形性	110℃ 115℃ 120℃ 125℃	4000	4000	Δ 0 0	Δ 0 0 x	× × × Δ	Δ ** ** **
	機械停止後 の復帰性		0	. 0	0	×	0	×

※ 比較例3のシートは熱盤に付着して、成形出来なかった。

表1から総合的みて、本発明のシートは高防湿薬品包装用シートとして優れた特性を有している。

[0013]

【発明の効果】本発明による高防湿薬品包装用多層シートは、通常の熱可塑性シートに用いられている加工方法、例えば押出成形、ドライラミネート等により、容易*

*にシート等に加工され、防湿特性、透明性、剛性、耐傷 付性、耐衝撃性、耐薬品性、耐水性等の物性のバランス がきわめて良好でかつ、フィルム、シート等成形加工時 の外観及び成形性が優れ、さらに耐油性が良好であり皮 脂等によるストレスクラックなどの問題無い新規な高防 湿薬品包装用多層シートである。

【図面の簡単な説明】

【図1】耐ストレスクラックの測定方法を示す断面図。

【図1】

【手続補正書】

【提出日】平成6年1月14日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0001

【補正方法】変更

【補正内容】

[0001]

【産業上の利用分野】本発明は、押出成形等によりシー トあるいは、フィルム等として利用できる新規な高防湿 薬品包装用多層シートに関するものである。更に詳しく は外観、成形性、防湿性、透明性、耐衝撃性、耐油性に 優れた新規なシートであり、一般にPTPと称される固 形剤包装用に使用される高防湿薬品包装用多層シートに 関するものである。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0002

【補正方法】変更

【補正内容】

[0002]

【従来の技術】医薬品包装の分野で、固形剤包装用とし て一般に用いられているPTP包装用シートには、従来 からポリ塩化ビニール (以下、PVCと略記する) 樹脂 からなるシートが用いられている。PVC樹脂シートは PTP包装に要求される特性をほぼ満足する優れたシー トであるが、防湿特性が劣るため、防湿を必要とする製 剤に対しては、PTP包装をした後、さらにアルミ箔を 含む構成のフィルムによりピロー包装を行うか、あるい は、PVC樹脂シートにポリ塩化ビニリデン(以下、P VDCと略記する) 樹脂をコーティングした複合シート を用いることで防湿特性を補う方法がとられてきた。し かし、これらの方法は、工数が増えるほか、包材コスト のアップにつながる。また、最近の脱PVCの動向とP VC樹脂よりも防湿性が優れているということから、ポ リプロピレン(以下、PPと略記する)樹脂からなるシ ートも用いられているが、成形性が悪いという欠点があ り、また高い防湿性の必要な製剤用途には使用に限界が あった。非晶性ポリオレフィンは、高い防湿特性および 透明性を有し、さらに電気的性質、機械的強度、成形

性、寸法安定性に優れた特性を持っているが、非晶性で あるが故に耐油性が悪く、ストレスのかかった状態で皮 脂等がシート表面につくと微細なクラックが生じるとい う欠点がある。これらの欠点を改良の為、結晶性ポリマ ーとガラス転移点の高いジシクロベンタジェンの開環重 合体の水素化物とを組み合わせた複合シートにする方法 が特開平4-272937に例示されているが、との発 明の複合シートは耐衝撃性に優れるものの、成形性が悪 く防湿性に劣る結晶性樹脂がリッチなシートであり、 又、成形しにくいガラス転移点の高いジシクロペンタジ エンの開環重合体の水素化物を組み合わせおり、高防湿

薬品包装用シートとしては使用が困難なものであった。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0011

【補正方法】変更

【補正内容】

【0011】実施例1~3および比較例1~3のシート について下記に示す方法で評価を行った。

(防湿性) JIS-Z0208に基づいて条件B、即ち 温度40℃、相対湿度90%で測定した。

(耐ストレスクラック) シート (1) を40mm×15 mmの短冊状にカットし、図1に示すコの字型の治具に アーチ形にセットし、アーチの頂上部 (▼印) に「皮 脂」を塗布、シートの変化を目視で観察した。変化のな い物を○、クラックの生じた物を×とした。

(デュポン衝撃試験) JIS-K-7211に準拠した 方法で、23℃及び-20℃で測定した。

(PTP成型機適性) PTP成型機 (シー・ケー・ディ -社製 FBP-M2)を用い、成形温度を110℃か ら125℃まで5℃毎に変えて成形テストを行い、成形 性について、成形部全体の厚みがほぼ均一なものを〇、 偏肉の激しいものを×、またその中間を△として判定し た。また、成形温度を120℃とし、成型機を約10分 間停止した後に再運転した場合におけるトラブルの有無 を調べた。特に問題のないものを○、シート伸び、熱盤 への付着等の問題の生じたものを×として判定した。以 上の評価結果を表1に示した。