MAT1620-4: Cálculo II - 2do Semestre 2017 Profesor: Vania Ramírez - vrramire@mat.puc.cl Ayudante: Matías Henríquez - mjhenriquez@uc.cl

Ayudantía 7

Diferenciabilidad, Plano tangente, Aproximación Lineal y Regla de la Cadena

Problema 1. Encuentre una aproximación de primer orden para la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = x \sin(xy) + e^{xy}$ cerca del punto $\mathbf{x}_0 = (x_0, y_0) = (1, \pi)$.

Problema 2. Dada la función

$$f(x,y) = \begin{cases} \frac{xy^k}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- (a) Determine los valores de k de modo que la función f sea continua en el origen.
- (b) Determine los valores de k de modo que la función f sea diferenciable en el origen.

Problema 3. Considere las superficies en \mathbb{R}^3 dada por las ecuaciones:

$$y = f(x)$$
, $z^2 + 2xz + y = 0$

Determine la función f(x) si se sabe que ambas superficies tienen el mismo plano tangente en todo punto donde se intersectan.

Problema 4. Demuestre que todos los planos tangentes al cono $z = \sqrt{x^2 + y^2}$ pasan por el origen.

Problema 5. Resuelva:

(a) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f \in \mathcal{C}^1$. La sustitución:

$$u = x^2 - y \quad \land \quad v = x + y^2$$

transforma la función f(u, v) en F(x, y). Encuentre expresiones para F_x y F_{xy} .

- (b) Sea f(u, v, w) una función con derivadas parciales continuas de orden 1 y 2 y sea g(x, y) = f(x + y, x y, xy). Calcule $g_{xx} + g_{yy}$ en términos de derivadas de f(u, v, w).
- (c) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función de clase C^2 y sea $\gamma: \mathbb{R} \to \mathbb{R}^2$ una función dos veces derivable, $\gamma(t) = (x(t), y(t))$ con $\gamma(0) = (0, 0)$. Si se sabe que:

$$\frac{\partial f}{\partial x}(0,0) = 1, \quad \frac{\partial f}{\partial y}(0,0) = 2, \quad \frac{\partial^2 f}{\partial x^2}(0,0) = 0, \quad \frac{\partial^2 f}{\partial x \partial y}(0,0) = -3, \quad \frac{\partial^2 f}{\partial y^2}(0,0) = -2$$
$$x'(0) = 3, \quad y'(0) = 0, \quad x''(0) = 2, \quad y''(0) = 4$$

Calcule $\phi''(0)$ en donde $\phi(t) = f(\gamma(t))$.