Задание 5.

Друзья останутся без подарков?

 $\it Условие.$ Известно, что $\it n$ друзей собрались и решили отправить письма Деду Морозу. У каждого есть 11 конверт и 11 письмо. Потом ребята всё перемешали и стали класть письма в конверты. Сколько в среднем писем попадёт в свой конверт?

Pemenue. Введем ξ — случайная величина количества писем, которые попали в свой конверт после перемещивания.

Дополнительно, введем ξ_i , где $i \in \{1, \dots, n\}$ – случайная величина, которая принимает значение 1, если в i-ый конверт попало свое письмо, и 0, если в i-ый конверт попало не свое письмо.

Очевидно, что $\xi = \xi_1 + \dots + \xi_n$. Тогда найдем распределение случайных величин $\xi_i \ \forall i \in \{1, \dots, n\}$: понятно, что нужное письмо попадет в i-ый конверт с вероятностью $p_1 = \frac{1}{n}$, поскольку из n писем нужное всего одно, также, понятно что нужное письмо не попадет в i-ый конверт с вероятностью $p_2 = \frac{n-1}{n}$, поскольку из n писем не подходящих в i-ый конверт писем всего n-1 штука. Тогда $\forall i \in \{1, \dots, n\}$ случайная величина ξ_i имеет распределение:

ξ_i	0	1
p	$\frac{n-1}{n}$	$\frac{1}{n}$

Теперь $\forall i \in \{1, \dots, n\}$ мы можем вычислить математическое ожидание случайной величины ξ_i :

$$\mathbb{E}\xi_i = 0 \cdot \frac{n-1}{n} + 1 \cdot \frac{1}{n} = \frac{1}{n}$$

Теперь, воспользуемся тем, что ξ_i одинаково распределены $\forall i \in \{1, \dots, n\}$, и тем, что матожидание суммы равно сумме матожиданий и найдем $\mathbb{E}\xi$:

$$\mathbb{E}\xi = \mathbb{E}\left(\xi_1 + \dots + \xi_n\right) = \mathbb{E}\xi_1 + \dots + \mathbb{E}\xi_n = n \cdot \mathbb{E}\xi_i = n \cdot \frac{1}{n} = 1$$

Таким образом, поскольку $\mathbb{E}\xi = 1$, то в среднем ровно одно письмо попадет в свой конверт. \square