Solution to the Practice Midterm Exam

(1) By subadditivity,

$$P(M \le 0) = P\left(\bigcup_{i=1}^{n} [X_i \le 0]\right) \le \sum_{i=1}^{n} P(X_i \le 0)$$
$$= n - \sum_{i=1}^{n} P(X_i > 0) < 1.$$

- (2) \mathcal{C} is a field: it contains \emptyset and Ω and is clearly closed under complements. If either A or B in \mathcal{C} are finite, then AB will be finite and lie in \mathcal{C} . If A and B are both infinite, then $(AB)^c = A^c \bigcup B^c$ will be finite, and again AB will lie in \mathcal{C} . So \mathcal{C} is closed under intersections. But \mathcal{C} is not closed under countable unions. For instance, the even numbers $E = \{2, 4, \ldots\}$ is not in \mathcal{C} but is the countable union $\bigcup_{k \geq 1} \{2k\}$ of sets in \mathcal{C} . Hence, \mathcal{C} is not a σ -field.
- (3) Yes, C is a σ -field. It contains \emptyset and Ω because $P(\emptyset) = 0$ and $P(\Omega) = 1$, and it is closed under complements because $P(B^c) = 1 P(B)$. Finally, suppose that B_n , $n \ge 1$, lie in C. If $P(B_n) = 0$ for all n, then by subadditivity

$$0 \le P\left(\bigcup_{n} B_{n}\right) \le \sum_{n} P(B_{n}) = 0,$$

so $P(\bigcup_n B_n) = 0$ and $\bigcup_n B_n \in \mathcal{C}$. If instead $P(B_k) = 1$ for some k, then by monotonicity

$$1 \ge P\left(\bigcup_n B_n\right) \ge P(B_k) = 1,$$

so $P(\bigcup_n B_n) = 1$ and again $\bigcup_n B_n \in \mathcal{C}$. Thus \mathcal{C} is closed under countable unions.

- (4) (a) Sets $S_2 = X^{-1}([\pi^2, \infty))$ and $S_4 = X^{-1}([0, 49])$ lie in $\sigma(X)$, but S_1 and S_3 are not in $\sigma(X)$. (b) $F(\{0\}) = P((-\infty, 0]) = 1/2$ and $F([1, \infty)) = P([1, \infty)) = 1/(2e)$.
- (5) Since

$$P(Y_n \ge c) = P(X_n \ge c \log n) = \frac{1}{n^c},$$

$$\sum_{n} P(Y_n \ge c) = \infty, \qquad c < 1;$$

and

$$\sum_{n} P(Y_n \ge c) < \infty, \qquad c > 1.$$

Hence $P(Y_n \ge c, \text{i.o.}) = 0$ for c > 1, and $P(Y_n \ge c, \text{i.o.}) = 1$ for c < 1. It follows that $\limsup Y_n = 1$ almost surely.

(6) (a) For $\epsilon \in (0, 1)$,

$$P(\inf_{n\geq 1} nX_n \geq \epsilon) = \prod_{n\geq 1} P(X_n \geq \epsilon/n) = \prod_{n\geq 1} \left(1 - \frac{\epsilon}{n}\right) = 0.$$

So by continuity, $P(\inf_{n\geq 1} nX_n > 0) = 0$. (b) By continuity,

$$P\left(\inf_{n\geq 1} n^2 X_n > 0\right) = \lim_{\epsilon \downarrow 0} P\left(\inf_{n\geq 1} n^2 X_n \geq \epsilon\right) = \lim_{\epsilon \downarrow 0} \prod_{n\geq 1} \left(1 - \frac{\epsilon}{n^2}\right) = 1.$$

(c) For $c \in (0, 1)$,

$$\sum_{n>1} P(n^2 X_n < c) = \sum_{n>1} \frac{c}{n^2} < \infty,$$

and so $P(n^2X_n < c, \text{i.o.}) = 0$. Hence $\liminf n^2X_n \ge c$ almost surely, and then by continuity, $\liminf n^2X_n = \infty$ almost surely.

(7) By dominated convergence,

$$nEh(1/(n^2Z^2)) = \int nh\left(\frac{1}{n^2z^2}\right)\phi(z) dz$$
$$= \int h\left(\frac{1}{x^2}\right)\phi(x/n) dx \to \frac{1}{\sqrt{2\pi}}\int h\left(\frac{1}{x^2}\right) dx.$$

(8) Since $F^2(t) = P(X \le t, Y \le t) = E[1_{[X \lor Y \le t]}]$, by Fubini's theorem

$$\int F^{2}(t)e^{-t} dt = E \int 1_{[X \vee Y \le t]}e^{-t} dt = E[e^{-X \vee Y}].$$

(9) Since $P(X < y) = E[1_{[X < y]}]$, by Fubini's theorem

$$\int_0^\infty P(X < y) \, dy = E \int_0^\infty 1_{[X < y]} e^{-y} \, dy = E \left[e^{-X^+} \right].$$

(10) If $X_n \stackrel{p}{\to} 0$, then $|X_n|/(1+|X_n|) \stackrel{p}{\to} 0$ as the function $x \rightsquigarrow |x|/(1+|x|)$ is continuous. Then $E[X_n|/(1+|X_n|)] \to 0$ by

Lebesgue dominated convergence. For the converse, for any $\epsilon>0$ we have

$$\frac{|X_n|}{1+|X_n|} \ge \frac{\epsilon}{1+\epsilon} 1_{|X_n| > \epsilon}.$$

Hence, if $E[|X_n|/(1+|X_n|)] \to 0$,

$$P(|X_n| > \epsilon) \le \frac{1+\epsilon}{\epsilon} E\left[\frac{|X_n|}{1+|X_n|}\right] \to 0.$$

(11) For any t > 0,

$$\sup_{n} E|c_{n}X_{n}|1_{[c_{n}X_{n}>t]} = \sup\{p_{n}c_{n}: c_{n} > t\}.$$

This tends to zero as $t \to \infty$ if and only if $p_n c_n \to 0$.