Геома для Стажёров

- $\boxed{2}$ Внутри выпуклого четырёхугольника ABCD расположены четыре окружности одного радиуса так, что они имеют общую точку и каждая из них вписана в один из углов четырёхугольника. Докажите, что четырёхугольник ABCD вписанный.
- [3] Окружность ω описана около остроугольного треугольника ABC. На стороне AB выбрана точка D, а на стороне BC точка E так, что $AC \parallel DE$. Точки P и Q на меньшей дуге AC окружности ω таковы, что $DP \parallel EQ$. Лучи QA и PC пересекают прямую DE в точках X и Y соответственно. Докажите, что $\angle XBY + \angle PBQ = 180^\circ$.
- 4 В окружности ω с центром в точке O провели непересекающиеся хорды AB и CD так, что $\angle AOB = \angle COD = 120^\circ$. Касательная к ω в точке A пересекает луч CD в точке X, а касательная к ω в точке B пересекает луч DC в точке Y. Прямая l проходит через центры окружностей, описанных около треугольников DOX и COY . Докажите, что l касается ω .
- [5] Дан остроугольный треугольник ABC, в котором AB < AC. Пусть M и N середины сторон AB и AC соответственно, а D основание высоты, проведенной из A. На отрезке MN нашлась точка K такая, что BK = CK. Луч KD пересекает окружность ω , описанную около треугольника ABC, в точке Q. Докажите, что точки C, N, K и Q лежат на одной окружности.
- [6] Треугольник ABC, в котором AB > AC, вписан в окружность с центром в точке O. В нём проведены высоты AA_0 и BB_0 , и BB_0 повторно пересекает описанную окружность в точке N. Пусть M середина отрезка AB. Докажите, что если $\angle OBN = \angle NBC$, то прямые AA_0 , ON и MB_0 пересекаются в одной точке.
- Та на сторонах AB и AC треугольника ABC выбраны точки P и Q соответственно так, что $PQ \parallel BC$. Отрезки BQ и CP пересекаются в точке O. Точка A' симметрична точке A относительно прямой BC. Отрезок A'O пересекает окружность ω , описанную около треугольника APQ, в точке S. Докажите, что окружность, описанная около треугольника BSC, касается окружности ω .