Examen Física 2a avaluació 1r Batxillerat

1. (1 pt forces, 1 pt equacions (amb lletres), 1 pt resolució)

Quina serà l'acceleració del sistema? I cap on es mourà? Sabem que el coeficient cinètic de fricció és 0,3.

2. (3 pts)

El coeficient cinètic de fricció entre el terra i el bloc de la figura és 0,4.

 Calcula l'acceleració en cadascun dels casos següents si el bloc té una massa de 100 kg.

3. (1 pt)

Dos blocs situats sobre una superfície horitzontal llisa (fregament menyspreable) són empesos cap a la dreta per una força F. La força que el bloc de major massa exerceix sobre el de menor massa és:

4. (1 pt màquina Atwood, 2 pts l'altre sistema. (En tots dos escriure equacions amb lletres!))

Calcula l'acceleració i les tensions dels següents sistemes. Suposa que les cordes són inelàstiques i que no hi ha cap mena de fricció amb les politges.

5. (3 pts. Equacions amb lletres en tots casos!)

Un cos de 3 kg està lligat a l'extrem d'una corda de 2 m de llargada i gira en un pla vertical tal com pots observar en l'esquema del costat, tot fent 90 voltes en mig minut, sempre a la mateixa velocitat. Calcula la tensió que suporta la corda:

- a. En el punt més baix de la trajectòria.
- b. En el punt més alt de la trajectòria.
- c. En el punt mig de la trajectòria.

6. (2 pts)

Un objecte de 5 kg es deixa caure des de 20 m d'alçada.

- a. Amb quina velocitat arribarà a terra?
- b. A quina alçada estarà quan vagi a 10 m/s?

7. (3 pts)

Una vagoneta de 200 kg es troba sobre una via horitzontal i recta. Calcula el treball realitzat en els següents casos:

- a. Empentem amb una força de 100 N sense que la vagoneta es mogui.
- b. L'empentem fent 200 N de força en la direcció de la via i la vagoneta es mou 10 metres.
- c. Estirem pel costat de la via, formant un angle de 30 graus amb la direcció de la via, fent una força de 200 N i la vagoneta recorre 20 metres.

8. (1 pt balanç energia amb lletres. 1 pt resolució)

Sobre una superfície horitzontal disposem d'una molla de constant elàstica 3 N/m. Des d'un punt situat a 3 metres de la molla, li llancem un cos d'1 kg de massa amb una velocitat de 4 m/s.

a. Calcula la màxima compressió de la molla si el coeficient de fricció entre el cos i el terra és 0,1.

9. (2 pts)

Un cos de 8 kg de massa té una velocitat de 10 m/s i xoca frontalment amb un objecte de 12 kg que es troba aturat. Si el xoc és totalment inelàstic, calcula

- a. La velocitat del sistema després del xoc.
- b. La pèrdua d'energia en el procés.

10. (2 pts)

Per a mesurar la velocitat d'una bala es fa servir un pèndol balístic. La bala impacta contra un bloc molt més gran que penja del sostre. Després de l'impacte, el conjunt bala-bloc puja fins a una determinada altura.

- a. En l'impacte de la bala, es conserva a) la quantitat de moviment de la bala, b) la quantitat de moviment del bloc, c) la quantitat de moviment del conjunt.
- b. En el moviment de pujada del conjunt bala-bloc, es conserva a) la quantitat de moviment, b) l'energia mecànica, c) totes dues magnituds.

11. (1 pt plantejament sistema. 1 pt resolució)

Un objecte de 20 g de massa que porta una velocitat de 0,5 m/s xoca amb un segon objecte de 50 g i que té una velocitat de 0,2 m/s en el mateix sentit que el primer. Calcula les velocitats dels dos cossos després del xoc si aquest és completament elàstic.