CS 188: Artificial Intelligence

Learning IV: Statistical learning & Naïve Bayes

Instructor: Stuart Russell and Dawn Song --- University of California, Berkeley

Recap: Linear regression

Berkeley house prices, 2009

Recap: Linear Regression

• What's the loss function?

• How to find w* to minimize loss function?

Recap: Linear Regression

- L2 loss function: sum of squared errors over all examples
 - Loss = $\Sigma_j (y_j h_w(x_j))^2 = \Sigma_j (y_j (w_0 + w_1 x_j))^2$
- Find w to minimize loss function (over N examples):
 - $w_1 = [N\Sigma_j x_j y_j (\Sigma_j x_j)(\Sigma_j y_j)]/[N\Sigma_j x_j^2 (\Sigma_j x_j)^2]$ and $w_0 = 1/N [\Sigma_j y_j w_1 \Sigma_j x_j]$
- For the general case where x is an n-dimensional vector
 - X is the data matrix (all the data, one example per row); y is the column of labels
 - $w^* = (X^T X)^{-1} X^T y$

Recap: Perceptron

- A threshold perceptron is a single unit that outputs
 - $y = h_w(x) = 1$ when w.x ≥ 0 = 0 when w.x < 0
- In the input vector space
 - Examples are points x
 - The equation w.x=0 defines a hyperplane
 - One side corresponds to y=1
 - Other corresponds to y=0
- Quiz:
 - What's the direction for w?

Recap: Perceptron learning rule

- If true $y \neq h_w(x)$ (an error), adjust the weights
- If w.x < 0 but the output should be y=1</p>
 - This is called a false negative
 - Should *increase* weights on *positive* inputs
 - Should decrease weights on negative inputs
- If w.x > 0 but the output should be y=0
 - This is called a false positive
 - Should decrease weights on positive inputs
 - Should increase weights on negative inputs
- The perceptron learning rule:
 - $\mathbf{w} \leftarrow \mathbf{w} + \alpha (\mathbf{y} \mathbf{h}_{\mathbf{w}}(\mathbf{x})) \mathbf{x}$

Perceptrons hopeless for XOR function

Basic questions

- Which hypothesis space H to choose?
- How to measure degree of fit?
- How to trade off degree of fit vs. complexity?
 - "Ockham's razor"
- How do we find a good h?
- How do we know if a good h will predict well?

Classical stats/ML: Minimize loss function

- Which hypothesis space H to choose?
 - E.g., linear combinations of features: $h_w(x) = w^Tx$
- How to measure degree of fit?
 - Loss function, e.g., squared error $\sum_{i} (y_i w^T x)^2$
- How to trade off degree of fit vs. complexity?
 - Regularization: complexity penalty, e.g., ||w||²
- How do we find a good h?
 - Optimization (closed-form, numerical); discrete search
- How do we know if a good h will predict well?
 - Try it and see (cross-validation, bootstrap, etc.)

Probabilistic: Max. likelihood, max. a priori

- Which hypothesis space H to choose?
 - Probability model $P(y \mid x,h)$, e.g., $Y \sim N(w^Tx,\sigma^2)$
- How to measure degree of fit?
 - Data likelihood $\Pi_i P(y_i \mid x_i, h)$
- How to trade off degree of fit vs. complexity?
 - Regularization or prior: $\operatorname{argmax}_{h} P(h) \prod_{i} P(y_{i} \mid x_{i}, h)$ (Max a Priori)
- How do we find a good h?
 - Optimization (closed-form, numerical); discrete search
- How do we know if a good h will predict well?
 - Empirical process theory (generalizes Chebyshev, CLT, PAC...);
 - Key assumption is (i)id

Bayesian: Computing posterior over H

- Which hypothesis space H to choose?
 - All hypotheses with nonzero a priori probability
- How to measure degree of fit?
 - Data probability, as for MLE/MAP
- How to trade off degree of fit vs. complexity?
 - Use prior, as for MAP
- How do we find a good h?
 - **Don't!** Bayes predictor $P(y|x,D) = \sum_{h} P(y|x,h) P(D|h) P(h)$
- How do we know if a good h will predict well?
 - Silly question! Bayesian prediction is optimal!!

Parameter Estimation

Maximum Likelihood Parameter Estimation

- Estimating the distribution of a random variable
 - E.g., here is a coin; what is the probability θ of heads?
- Evidence $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_N$
 - E.g., three independent coin tosses X₁=heads, X₂=heads, X₃=tails

- Likelihood: probability of the evidence $P(x_1,...,x_N;\theta)$
- Maximum likelihood: What value θ_{MI} maximizes the likelihood?
- Log likelihood: $L(x; \theta) = \log P(x; \theta)$
 - E.g., $L(x; \theta) =$ ______
- ullet also maximizes the log likelihood and it's easier to differentiate
- $\partial L/\partial \theta =$ _____
- θ_{ML} = _____
- For h heads and t tails, $\theta_{MI} =$ _____

Maximum Likelihood Parameter Estimation

- Estimating the distribution of a random variable
 - E.g., here is a coin; what is the probability θ of heads?
- Evidence $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_N$
 - E.g., three independent coin tosses X₁=heads, X₂=heads, X₃=tails

- Likelihood: probability of the evidence $P(x_1,...,x_N;\theta)$
 - E.g., $P(X_1 = \text{heads}, X_2 = \text{heads}, X_3 = \text{tails}; \theta) = \theta^2(1-\dot{\theta})$
- Maximum likelihood: What value θ_{MI} maximizes the likelihood?
- Log likelihood: $L(x; \theta) = \log P(x; \theta)$
 - E.g., $L(\mathbf{x}; \theta) = 2 \log \theta + \log(1-\theta)$
- θ_{MI} also maximizes the log likelihood and it's easier to differentiate
- $\partial L/\partial \theta = 2/\theta 1/(1-\theta) = 0$
- $\theta_{MI} = 2/3$
- For h heads and t tails, $\theta_{MI} = h/(h+t)$

Unseen Events

Laplace Smoothing

• Suppose we see three heads: is a $\theta_{ML} = 0$ a reasonable estimate?

H H

- Laplace smoothing with strength α:
 - Pretend you saw every outcome α times before starting

 - $= (3+\alpha)/(3+2\alpha)$
 - In general, for a K-valued variable:

 - For $\alpha >> N$, θ_k tends to 1/K (uniform prior)
 - For $\alpha << N$, θ_k tends to N_k / N (ML estimate)

Probabilistic Classification

Example: Spam Filter

Input: an email

Output: spam/ham

- Get a large collection of example emails, each labeled "spam" or "ham"
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future emails

Words: FREE!

Text Patterns: \$dd, CAPS

Non-text: SenderInContacts

- ...

Dear Sir.

First, I must solicit your confidence in this transaction, this is by virture of its nature as being utterly confidencial and top secret. ...

99 MILLION EMAIL ADDRESSES FOR ONLY \$99

Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

Bayes net model for ham/spam

- Class C of a document is spam or ham, with prior P(C)
- Bag-of-words model: Each word W_i in the document is generated independently from a class-specific distribution P(W_i | C) over words
- This is an example of a naïve Bayes model

Inference for Naïve Bayes

- A Naïve Bayes model is a polytree, so solvable in linear time
- To compute posterior distribution for class C given a document:
- $P(C \mid W_1, ..., W_n) = \alpha P(C, W_1, ..., W_n) = \alpha P(C) \prod_i P(W_i \mid C)$
- I.e., multiply n+1 numbers, for each value of C, then normalize

Computing the class probabilities

	P(w spam)	P(w ham)	Cum LogSpam	Cum LogHam
Word	0.33333	0.66666	-1.1	-0.4

$$\alpha[e^{-76.0}, e^{-80.5}] = [0.989, 0.011]$$

Parameter learning for Naïve Bayes

- We need to estimate the following parameters:
 - $P(C) = [\theta_C, 1-\theta_C]$, the prior over classes
 - ML estimate: relative frequencies in training set
 - P(W_i | C), the distribution for each word position given the class
 - For the bag-of-words model, this is the same for all positions
 - Parameters are $\theta_{k|c} = P(W_i = k \mid C = c)$ for each class c and each dictionary entry k
 - E.g., $\theta_{\text{"you"|spam}} = 0.00881$ $\theta_{\text{"you"|ham}} = 0.00304$
 - Estimated by measuring frequency of occurrence in ham and spam
 - Need Laplace smoothing! Many dictionary words may not appear in training set