Experimental General Physics for Engineers II

Laboratory Report PHYS 194 summer 2022

Section: _L01____

F	erime		
-xr	erime	nt na	MP.
$ ^{\prime}$ $^{\prime}$	CHILL	iic iia	

Earth magnetic field

Student Name:	Talha Abdullah Punjabi	Student ID	201903446	

Date submitted: 13/6/2022

Table of results (1.25 pts)	
Graph (1.25 pts)	
Data analysis (2 pts)	
Discussion (0.5 pt)	
References	
Others	
Report Grade (5 pts)	

1. Geometry of the coil

Radius R of the coil: $R=10 \pm 0.1 cm$

Number of turns n of the coil: n= 10 turns

Permeability of free space μ_0 : $\mu_0 = 4\pi~10^{-7}$ Tm/A

2. Table of Results

[(A)	u(I) (A)	θ (°)	u(θ) (°)	θ (rad)	$u(\theta)$ (rad)	$\frac{1}{I}$ (A ⁻¹)	$ \begin{array}{c} u(\frac{1}{I}) \\ (A^{-1}) \end{array} $	$\cot(\theta)$	u(cot(θ))
0.04	±0.1	4	±1	0.070	±0.017	25	±625	14.30	±3.59
0.05	±0.1	5	±1	0.087	±0.017	20	±400	11.43	±2.30
0.06	±0.1	6	±1	0.104	±0.017	16.67	±277.8	9.51	±1.59
0.07	±0.1	7	±1	0.122	±0.017	14.28	±204	8.14	±1.17
0.08	±0.1	8	±1	0.140	±0.017	12.5	±156.2	7.12	±0.90

3. Graph of $\cot(\theta)$ vs. $\frac{1}{I}$ Plot $\cot(\theta)$ vs $\frac{1}{I}$ in Excel

- 4. Data analysis
- 4.1. Uncertainties on $\frac{1}{I}$ and $\cot(\theta)$

Show how you calculate $u(\frac{1}{7})$ and $u(\cot(\theta))$

$$\begin{array}{ll} U(I) = \pm 0.1 \; A & U(\theta) = \pm 1 \; degree = \pm \; pi \; /180 \; radian = \pm 0.017 \; rad \\ U(1/I) = sqrt \; ((d(1/I)/d(I) * U(I))^2) = sqrt \; ((-1/I^2) * U(I))^2) = sqrt \; ((0.1/0.04^2)^2) = \pm 62.5 \; (A^{-1}) \\ U(\cot(\theta)) = sqrt \; ((d(\cot(\theta))/d(\theta) * U(\theta))^2) = sqrt \; ((-csc^2(\theta) * U(\theta))^2) \\ &= sqrt \; ((-csc^2(0.07) * pi/180)^2) = \pm 3.58 \end{array}$$

4.2. Slope, intercept of the graph and their uncertainties

Give the values of the slope intercept and their uncertainties

```
Slope = 0.574779 \text{ A}

U(Slope) = \pm 0.000217 \text{ A}

Intercept = -0.06715

U(Intercept) = \pm 0.003961
```

4.3. Value of the horizontal component of the earth's magnetic field B_h

Calculate B_h based on the value of the slope of the graph and the geometry of the coil

$$\begin{array}{ll} cot \; (\theta) = B_h/A \; * \; 1/I \quad slope = B_h/A \\ A = \mu_0 n/2R \; is \; constant, \; A = 6.28 \; x \; 10^{-5} \; ((Tm/A)/m) \\ B_h = slope \; * \; A = 0.575 \; * \; 6.28 \; x \; 10^{-5} \; = \textbf{3.61} \; x \; \textbf{10}^{-5} \; \textbf{T} \\ \end{array}$$

4.4. Uncertainty on Bh.

Calculate $u(B_h)$ based on the value of the slope of the graph and the geometry of the coil. I.e. take u(R) into account in the calculation.

```
 U(B_h) = \operatorname{sqrt}((d(\operatorname{slope})^*1.257 \times 10^{-5}/2R)/d(\operatorname{slope})^*U(\operatorname{slope}))^2 + ((d(\operatorname{slope})^*1.257 \times 10^{-5}/2R)/d(R)^*U(R))^2) 
 = \operatorname{sqrt}((1.257 \times 10^{-5}/2R \times 0.0002)^2 + ((0.575 \times 1.257 \times 10^{-5}/2R^2 \times 0.001)^2) 
 = \operatorname{sqrt}((1.257 \times 10^{-8})^2 + (3.61 \times 10^{-7})^2) 
 = \pm 3.6 \times 10^{-7} \text{ T}
```

4.5. Comparison with the accepted value.

Compare your results to the commonly accepted value of B_{h.} in Doha.

```
| (Theoretical value – obtained value)/theoretical value | * 100 
= | (3.37 \times 10^{-5} - 3.61 \times 10^{5})/3.37 \times 10^{5} | * 100 = 7.16%
```

5. Discussion of the result

The results in agreement with what is expected with small margin of error. With a value error percentage 7.16% different from the actual value of B_h.

Sources of error can be due to human error and inaccuracy while observing the data and while measuring the angle.

The experiment was successful with an error percentage 7.16%

6. References