VERMES MIKLÓS Fizikaverseny

I. forduló 2012. február 27.

XI. osztály

JAVÍTÓKULCS

I. feladat

Minél több rezgés idejét mérni, ahonnan $T=\frac{t}{n}$. A méréseket megismételni és átlagot számolni. 1 p A periódus ideje a) ábra esetén: $T=2\pi\sqrt{\frac{m}{k}}$ 1 p

A b) ábra esetében a két rúgó (nyújtott illetve összenyomott) azonos irányítású és nagyságú erővel hat.

A rendszer párhuzamos kötéssel egyenértékű, ahol a $k_e = 2k$ és a periódus $T = \sqrt{\frac{m}{2k}}$ 1 p

A c) ábra esetén ha a rendszert magára hagyják, a tömegközéppont sebessége állandó marad és tehetetlenségi rendszernek tekinthető. Ebben az esetben két, l/2 hosszúságú rugóhoz kötött, kiskocsi rezgőmozgásának periódusát kell meghatározni 1 p

Mivel a $k \sim 1/l$, a fele hosszúságú rugók állandója $k_1 = k_2 = 2k$ 1 p

A periódus idők
$$T_1 = T_2 = 2\pi \sqrt{\frac{m}{2k}}$$

Ha az egyik kiskocsi tömegét megduplázzuk, a tömegközéppont eltolódik és két különböző hosszúságú $(k_1 \sim 1/l_1)$ és $k_2 \sim 1/l_2$) rugóval dolgozunk 1 p

Mivel $ml_1=2ml_2$ és $l_1+l_2=l$ \Rightarrow $l_1=2l/3$ és $l_2=l/3$, így a rugóállandók

$$k_1 = 3k/2$$
 és $k_2 = 3k$

A periódusidők
$$T_1 = 2\pi \sqrt{\frac{2m}{3k}}$$
 és $T_2 = 2\pi \sqrt{\frac{2m}{3k}}$ egyenlőek.

II. feladat

A sebesség a legnagyobb, amikor a gyorsulás a=0, vagyis $mg=ky_0 \Rightarrow y_0=\frac{m}{k}g$ 1 p

Az energia megmaradásának törvényéből
$$\Rightarrow mg(h+y_0) = \frac{ky_0^2}{2} + \frac{mv_{\text{max}}^2}{2}$$

Mivel a maximális megnyúlás
$$2h \Rightarrow mg3h = \frac{k4h^2}{2}$$
 ahonnan $\frac{m}{k} = \frac{2h}{3g}$, így $y_0 = \frac{2h}{3}$

A legnagyobb sebesség
$$v_{\text{max}} = 2\sqrt{\frac{2gh}{3}} = 22,86m/s$$
 1 p

(A rezgőmozgás jellemzőivel is kiszámítható v_{max} : Az amplitúdó $A=2h-y_0=\frac{4h}{3}$ és $v_{\text{max}}=2\sqrt{\frac{2gh}{3}}$)

1 p

Az esési időt (a legalacsonyabbik pontig) három tagból áll:

(1) A szabadesési idő
$$h$$
 távolságon $t_1 = \sqrt{\frac{2h}{g}} = 2,02s$

- (2) A további esés rugalmas erő hatására történik és első részben az $y_0 = A/2$ távolságot teszi meg az egyensúlyi helyzetéig. Az $y_0 = A \cdot \sin(\omega \cdot t)$ következik $t_2 = T/12$ 1 p
- (3) Végül egy negyed periódus $t_3 = T/4$ következik a legalsó helyzetig

De
$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{2h}{3g}} = 7{,}33s$$

Így az esési idő
$$t = t_1 + t_2 + t_3 = 2,02 + 0,61 + 1,83 = 4,46s$$
 1 p

III. feladat

- a) transzverzális hullámok, $\lambda = v \cdot T = 27cm$ 2 p
- b) A két hullám összetevődik, azonos fázisú rezgések esetén $A_{\rm max}=2A$, ellentétes fázisú rezgéseknél $A_{\rm min}=0$ 2 p
- c) Az x_3 hosszabbik ágban a fal felé haladó hullám interferál a visszavert hullámokkal és állóhullámok jönnek létre 2 p
- A csomópontok $k\frac{\lambda}{2}$ távolságokra, míg az orsópontok $(2k+1)\frac{\lambda}{2}$ távolságra keletkeznek 2 p
- A hullámforrások ellentétes fázisú rezgései esetén az x_3 ágban nem keletkeznek hullámok 2 p