COMP3206: Exercises on Matrix calculus for optimisation

Srinandan Dasmahapatra

2017/8

1 Learning the parameters of a Gaussian by Maximum Likelihood Estimation (MLE)

Estimation: Data $\mathfrak{X} = \{x^1, \dots, x^n, \dots x^N\}$ Find mean vector μ and variance-covariance matrix Σ .

Assuming data are drawn i.i.d. from Gaussian $\mathcal{N}(x|\mu,\Lambda)$, $\Lambda \triangleq \Sigma^{-1}$, the log likelihood $\mathcal{L}(\mu,\Lambda)$ is

$$\mathcal{L}(\boldsymbol{\mu},\boldsymbol{\Lambda}) = -\sum_{n=1}^{N} \frac{1}{2} (\boldsymbol{x}^n - \boldsymbol{\mu})^\mathsf{T} \boldsymbol{\Lambda} (\boldsymbol{x}^n - \boldsymbol{\mu}) + \frac{N}{2} \log \det(\boldsymbol{\Lambda}) + constant.$$

The exercises below will enable you to find the optimal mean and covariance matrix using maximum likelihood estimation.

• Optimal
$$\mu$$
: $\frac{\partial}{\partial \mu} \mathcal{L}(\mu, \Lambda) = 0 = \sum_n \Lambda (x^n - \mu)$

$$\sum_{n} \Lambda x^{n} = \sum_{n} \Lambda \mu = N \Lambda \mu \Rightarrow \mu = \frac{1}{N} \sum_{n} x^{n}.$$

• Optimal Λ : $\frac{\partial}{\partial \Lambda} \mathcal{L}(\mu, \Lambda) = 0$.

$$\Sigma = \Lambda^{-1} = \frac{1}{N} \sum_{n=1}^{N} (x^n - \mu)(x^n - \mu)^T.$$

1.1 Exercises

1. Verify that the log likelihood function for

$$p(\mathbf{x}^{\mathbf{n}}|\mathbf{\mu}, \mathbf{\Sigma}) = (\sqrt{(2\pi)^{p}|\mathbf{\Sigma}|})^{-1} \exp\left(-\frac{1}{2}(\mathbf{x}^{\mathbf{n}} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x}^{\mathbf{n}} - \mathbf{\mu})\right)$$

is as shown above.

2. For p × p matrices A, B with matrix elements $(A)_{ij} = a_{ij}$ and $(B)_{ij} = b_{ij}$, show that tr(AB)=tr(BA) by writing $tr(A) = \sum_i a_{ii}$ and the product of matrices as

$$(\mathbf{AB})_{ij} = \sum_{k} a_{ik} b_{kj}.$$

3. For $n \times p$ matrix A with matrix elements $(A)_{ij} = a_{ij}$, show that the sum of the squares of the matrix elements

$$\sum_{ij} \alpha_{ij}^2 = \text{tr}(\boldsymbol{A}\boldsymbol{A}^T), \text{ where tr is the matrix trace.}$$

4. For the Kronecker delta δ_{ij} defined as

$$\delta_{ij} = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{otherwise.} \end{cases}$$

show that

- (i) $\sum_{i} a_{ij} \delta_{kj} = a_{ik}$,
- (ii) The diagonal elements of the product of matrices A, B is $\sum_{jk} a_{ij} b_{jk} \delta_{ki}$,
- (iii) Trace tr(A) = $\sum_{ij} a_{ij} \delta_{ij}$,
- (iv) Make sure you grok $\frac{\partial}{\partial x_i} x_j = \delta_{ij}$.
- 5. For $p \times p$ matrix A with matrix elements $(A)_{ij} = a_{ij} \ 1 \leqslant i, j \leqslant p$ and vector $\mathbf{x} = (x_1, \dots, x_p)^T$ the i-th element of vector $(A\mathbf{x})$ is $(A\mathbf{x})_i = \sum_{j=1}^p a_{ij}x_j$. Show that $\frac{\partial}{\partial \mathbf{x}}(A\mathbf{x}) = A^T$ by writing out the indices explicitly:

$$\left(\frac{\partial}{\partial x}(Ax)\right)_{ij} = \frac{\partial}{\partial x_i}(Ax)_j = \frac{\partial}{\partial x_i}\sum_{k=1}^p \alpha_{jk}x_k.$$

6. Show, by writing out the matrix elements as above, that the gradient of the scalar quadratic form xAx is $\frac{\partial}{\partial x}x^TAx = (A + A^T)x$. *Hint:* the i-th matrix element of the gradient is

$$\frac{\partial}{\partial x_i} \left(\sum_{r,s=1}^p x_r a_{rs} x_s \right).$$

This should lead to the expression for the MLE of the mean.

7. The partial derivative of the quadratic form xAx with respect to A can be evaluated for each matrix element a_{ij} , $1 \le i, j \le p$:

$$\frac{\partial}{\partial a_{ij}} \left(\sum_{r,s=1}^p x_r a_{rs} x_s \right).$$

Show that the result is xx^T (a $p \times p$ matrix).

8. Remember that the determinant of a matrix can be written as a sum

$$det(A) = \sum_{i=1}^p \alpha_{ij} cof(\alpha_{ij})$$

where $cof(a_{ij})$ is $(-1)^{i+j}$ times the determinant of the submatrix of **A** obtained by deleting the i-th row and j-th column. In particular, $cof(a_{ij})$ does not contain a_{ij} . Show that

$$\left(\frac{\partial}{\partial A}\ln\det A\right)_{ij} = \frac{\partial}{\partial\alpha_{ij}}\ln\left(\sum_{s=1}^p\alpha_{rs}\mathrm{cof}(\alpha_{rs})\right) = \left(A^{-1}\right)_{ij}.$$

This and the previous problem should help you derive the MLE of the covariance matrix.

2 Regularised linear regression

In regression problems, we have been minimising the residual sum of errors (RSS) with respect to the parameters θ that are the weight vectors w in

$$f(\mathbf{x}; \mathbf{w}) = w_0 + \sum_{i=1}^p w_i \phi_i(\mathbf{x}).$$

If we introduce $x_0 = 1$, we can write, for each data point $(x^n, y^n) = (1, x_1^n, \dots, x_p^n, y^n)$, and the RSS is

RSS =
$$\sum_{n=1}^{N} (r^n)^2 = \sum_{n=1}^{N} (y^n - f(x^n; w))^2$$
.

When we introduce a L₂ regularisation term $||w||_2 = w^T w$ for the weights w, the minimisation is then over a loss function $\ell(w)$:

$$\ell(\mathbf{w}) = -\mathcal{L}(\mathbf{w}) = \sum_{n=1}^{N} (\mathbf{y}^n - \mathbf{f}(\mathbf{x}^n; \mathbf{w}))^2 + \lambda \mathbf{w}^\mathsf{T} \mathbf{w},$$

where λ controls the trade-off between where the data wants the learnt functions to go and how small the modeller wants to keep $\|w\|_2$. Minimising $\ell(w)$ is equivalent to maximising $\mathcal{L}(w)$. This L₂ regularised version of linear regression is called **ridge regression**.

2.1 Exercises

I. Take the gradient of the loss function $\ell(w)$ with respect to the weight vector w and set it equal to zero. For each vector component w_i compute

$$\frac{\partial}{\partial w_i} \sum_{n=1}^{N} \left(y^n - \sum_{j=0}^{p} w_j \phi_j(x^n) \right) \left(y^n - \sum_{k=0}^{p} w_k \phi_k(x^n) \right) + \lambda \sum_{j,k=0}^{p} w_j w_k \delta_{jk}.$$

Show that the derivative reduces to -2 multiplied by

$$\sum_{n=1}^{N} \left\{ \phi_i(x^n) y^n - \sum_{j=0}^{p} (w_j + \lambda \delta_{ij}) \phi_j(x^n) \phi_i(x^n) \right\},\,$$

a quantity that we will set to zero for max/minimisation.

2. Keep in mind that the data index n in the superscript is a row index while the i, j, k indices for weights stand for columns. Introduce the matrix Φ with matrix elements $(\Phi)_{nj} = \varphi_j(x^n)$. Also, the column vector of y values is y. Use this to rewrite the above as a matrix equation

$$\Phi^{\mathsf{T}} \mathbf{y} = (\Phi^{\mathsf{T}} \Phi + \lambda \mathbb{I}) \mathbf{w} \Rightarrow \mathbf{w} = (\Phi^{\mathsf{T}} \Phi + \lambda \mathbb{I})^{-1} \Phi^{\mathsf{T}} \mathbf{y}.$$

3. Identify the negative of the loss function $\ell(w)$ with the quantity you worked with for the maximum likelihood estimation problem for the Gaussian. Think about the correspondence. The $\lambda ||w||_2$ term becomes a prior distribution on weights in a Bayesian interpretation.