of said compound:

T0320X

$$QR_9$$
 XR_3
 R_2
 QR_1
 QR_1
 QR_2
 QR_3
 QR_4
 QR_5
 QR_1
 QR_2
 QR_3
 QR_4
 QR_5
 Q

wherein:

 R_1 = H; C_1 - C_{12} straight-chain or branched alkyl; C_1 - C_{12} straight-chain or branched acyl; C_3 - C_8 cycloalkyl; or a cationic salt moiety;

 R_2 , R_3 = H, or C_1 - C_5 straight-chain or branched alkyl; or R_2 and R_3 taken together may represent O;

X = O, S, or CH₂;

---- represents any combination of a single bond, or a *cis* or *trans* double bond for the alpha (upper) chain; and a single bond or *trans* double bond for the omega (lower) chain;

 R_9 = H, C_1 - C_{10} straight-chain or branched alkyl, or C_1 - C_{10} straight-chain or branched acyl;

 $R_{11} = H$, C_1 - C_{10} straight-chain or branched alkyl, or C_1 - C_{10} straight-chain or branched acyl;

Y = O; or H and OR_{15} in either configuration wherein R_{15} = H, C_1 - C_{10} straight-chain or branched alkyl, or C_1 - C_{10} straight-chain or branched acyl; and

 $Z = Cl \text{ or } CF_3;$

with the proviso that when R_2 and R_3 taken together represent O, then $R_1 \neq C_1-C_{12}$ straight-chain or branched acyl; and when $R_2 = R_3 = H$, then $R_1 \neq a$ cationic salt moiety; and

with the further proviso that the following compound be excluded:

75. The method of claim 74, wherein for the compound (IV): R₂, R₃ taken together represent O;

 $X = CH_2$;

represents a *cis* double bond for the alpha (upper) chain and a *trans* double bond for the omega (lower) chain;

 R_9 and R_{11} = H; and

Y = OH in the alpha configuration and H in the beta configuration.

 $\frac{2}{26}$. The method of claim $\frac{2}{5}$, wherein for the compound (IV): $Z = CF_3$.

The method of claim 24, wherein: $R_2 = R_3 = H$, or R_2 and R_3 taken together represent O; X = O or CH_2 ; $R_9 = R_{11} = H$; Y = H and OR_{15} ; and $R_{15} = H$.

The method of claim 27, wherein: $R_1 = H$, C_1 - C_{12} straight chain or branched alkyl or cationic salt moiety; and R_2 and R_3 taken together represent O.

The method of claim 28, wherein the compound of formula (IV) is selected from the group consisting of 3-oxacloprostenol, 13,14-dihydrofluprostenol, and their pharmaceutically acceptable esters and salts.

30. The method of claim 27, wherein: $R_1 = H$ or C_1 - C_{12} straight chain or branched acyl; and $R_2 = R_3 = H$.

71. The method of claim 30, wherein the compound formula (IV) is 13,14-dihydrocloprostenol pivaloate.

33. The method of claim 32, wherein between about 0.1 and about 100 μg/eye of the compound is administered.

34. The method of claim 38, wherein between about 0.1 and about 10 μg/eye of the compound is administered.

A topical ophthalmic composition for the treatment of glaucoma and ocular hypertension comprising an ophthalmically acceptable carrier and a therapeutically effective amount of a compound having the absolute stereochemical structure of the following formula (IV), and being substantially free of the enantiomer of said compound:

structure of said of s

$$QR_{1}$$
 QR_{2}
 QR_{3}
 QR_{1}
 QR_{2}
 QR_{3}
 QR_{4}
 QR_{1}
 QR_{2}
 QR_{3}
 QR_{4}
 QR_{2}
 QR_{3}
 QR_{4}
 QR_{4}
 QR_{5}
 QR_{1}
 QR_{1}
 QR_{2}
 QR_{3}
 QR_{4}
 QR_{5}
 Q

wherein:

 R_1 = H; C_1 - C_{12} straight-chain or branched alkyl; C_1 - C_{12} straight-chain or branched acyl; C_3 - C_8 cycloalkyl; or a cationic salt moiety;

 R_2 , R_3 = H, or C_1 - C_5 straight-chain or branched alkyl; or R_2 and R_3 taken together may represent O;

X = O, S, or CH₂;

---- represents any combination of a single bond, or a *cis* or *trans* double bond for the alpha (upper) chain; and a single bond or *trans* double bond for the omega (lower) chain;

5

R₁₁ = H, C₁-C₁₀ straight-chain or branched alkyl, or C₁-C₁₀ straight-chain or branched acyl;

Y = O; or H and OR_{15} in either configuration wherein R_{15} = H, C_{1} - C_{10} straight-chain or branched alkyl, or C_1 - C_{10} straight-chain or branched acyl; and

 $Z = CI \text{ or } CF_3$;

with the proviso that when R_2 and R_3 taken together represent O, then $R_1 \neq C_1-C_{12}$ straight-chain or branched acyl; and when $R_2 = R_3 = H$, then $R_1 \neq a$ cationic salt moiety; and

with the further proviso that the following compound be excluded:

cyclopentane heptenol-5-cis-2-(3-αhydroxy-4-m-chlorophenoxy-1-transbutenyl)-3,5 dihydroxy, [1 $_{\alpha}$, 2 $_{\beta}$, 3 $_{\alpha}$, 5 $_{\alpha}$].

36. The composition of claim 35, wherein for the compound (IV):

R₂, R₃ taken together represent O;

--- represents a cis double bond for the alpha (upper) chain and a trans double bond for the omega (lower) chain;

 R_9 and R_{11} = H; and

Y = OH in the alpha configuration and H in the beta configuration.

The composition of claim 36, wherein for the compound (IV): $Z = CF_3$.

together represent O; X = O or CH_2 ; $R_9 = R_{11} = H$; Y = H and OR_{15} ; and $R_{15} = H$.

