Hyperbolic Geometry for Visualization

Mike Bailey mjb@cs.oregonstate.edu

Oregon State University

Zooming and Panning Around a Complex 2D Display

- Standard (Euclidean) geometry zooming forces much of the information off the screen
- This eliminates the context from the zoomed-in display
- This problem can be solved with hyperbolic methods if we are willing to give up Euclidean geometry

Computer Graphics

Usual Zooming in Euclidean Space

Zooming in Polar Hyperbolic Space

Polar Hyperbolic Equations

Overall theme: something divided by something a little bigger

Because
$$R' = \frac{R}{R + K}$$
 then:
$$\frac{\lim_{K \to 0} R' = 1}{\lim_{K \to \infty} R' = 0}$$

Polar Hyperbolic Equations Don't Actually Need to use Trig

$$R = \sqrt{X^2 + Y^2}$$

$$\Theta = \tan^{-1}(\frac{Y}{X})$$

$$R' = \frac{R}{R + K}$$
Coordinates moved to outer edge when K = 0

Coordinates moved to center when K = ∞

$$X' = R'\cos\Theta = \frac{R}{R+K} \times \frac{X}{R} = \frac{X}{R+K}$$

$$Y' = R' \sin \Theta = \frac{R}{R+K} \times \frac{Y}{R} = \frac{Y}{R+K}$$

Cartesian Hyperbolic Equations – Treat X and Y Independently

Cartesian **{**

$$X' = \frac{X}{\sqrt{X^2 + (K^2)}}$$

Coordinates moved to outer edge when K = 0

Coordinates moved to center when $K = \infty$

$$Y' = \frac{Y}{\sqrt{Y^2 + K^2}}$$

Zooming in Cartesian Hyperbolic Space

The Problem with T-Intersections

The Problem with T-Intersections

Your code computes the hyperbolic transformation here and here, and OpenGL draws a straight line between them. But, this point had its hyperbolic transformation computed separately, and doesn't match up with the straight line.

This kind of situation is called a T-intersection, and crops up all the time in computer graphics. \odot

A Solution to the T-Intersection Problem

Break this line up into several (many?) sub-pieces, and perform the Hyperbootic Transformation on each intermediate point.

$$P(t) = (1-t)P_0 + tP_1$$

t = 0., .01, .02, .03, ...

This makes that straight line into a curve, as it should

be. But, how many line segments should we use?

A More Elegant Approach is to Recursively Subdivide

```
void
DrawHyperbolicLine(P_0, P_1)
              Compute point A = \frac{P_0 + P_1}{2}
              Convert point A to Hyperbolic Coordinates, calling it A'
              Convert P<sub>0</sub> and P<sub>1</sub> to Hyperbolic Coordinates P<sub>0</sub>', P<sub>1</sub>'
              Compute point B' = \frac{P_0' + P_1'}{2}
              Compare A' and B
               if( they are "close enough" )
                             Draw the line P<sub>0</sub>'-P<sub>1</sub>'
              else
                             DrawHyperbolicLine(P_0, A);
                             DrawHyperbolicLine( A, P<sub>1</sub> );
```


Subdividing to render a curve correctly is a recurring theme in computer graphics.

Hyperbolic Corvallis (Streets, Buildings, Parks)

Kelley Engineering Center

Oregon State http://www.sott.net/articles/show/215021-Hyperbolic-map-of-the-internet-will-save-it-from-COLLAPSE

Computer Graphics