SNV- CHIMIE I

EPREUVE FINALE (Durée 1H)

	T	
Nom:	Note	/20
Prénom :		
Matricule :Corrigé		
Section/groupe :		

Exercice 1(11,5pts)

Partie A

1-	Donner la constitution du noyau des éléments suivants :					
	51 V					

3X0,5

2- Compléter le tableau suivant :

Eléments	Configuration électronique		Période	Groupe et Sous groupe	Bloc
34 Se	1S ² 2S ² 2P ⁶ 3S ² 3P ⁶ 4S ² 3d ¹⁰ 4p ⁴ ou [18Ar] 4s ² 3d ¹⁰ 4p ⁴	0,5	0,25	VIA 0,25	P 0,25
37Rb	1S ² 2S ² 2P ⁶ 3S ² 3P ⁶ 4S ² 3d ¹⁰ 4p ⁶ 5S ¹ Ou [36Kr] 5S ¹		5	IA .	S
		0,5	0,25	0,25	0,25

3-Comparer l'électronégativité des éléments 34Se et 37Rb. Justifier.

L'évolution de l'Electronégativité (En) selon le tableau périodique est telle que :

En croit de gauche à droite, selon une période et de bas vers le haut selon un groupe donc :

 Donner les nombres quantiques de l'électron de plus haute énergie du Rubidium (37Rb).

L'électron de plus haute énergie du Rubidium est sur 5S : les 4 nombres quantiques sont :

0,75 (juste ou faux)

4- Quel est l'ion le plus stable que peut former le Rubidium (37Rb) ? Justifier.

Partie B

Soient les molécules suivantes : HNO2 , NF3 et SiO2

On donne: 1H, 7N, 8O, 9F, 14Si

1- Compléter le tableau ci-dessous :

Molécules	Diagramme de LEWIS	Hybridation de l'atome souligné		Géométrie de la molécule	
H <u>N</u> O ₂	N O	SP ²	AX ₂ E	Angulaire	
<u>N</u> F3	N—E	SP ³	AX ₃ E	Pyramide à base triangulaire	
<u>Si</u> O ₂	(o=si=)	SP	AX ₂	linéaire	
	(3x 0,5)	(3x0,25) (3x)	0,25) (3x 0,25)	

2- Réprésenter le moment dipolaire de la molécule SiO₂. Cette molécule est-elle polaire? Justifier. 0.75 +0.25

$$v_2$$
 v_1 $v_2=0$ v_1 $v_2=0$ molécule apolaire

EXERCICE 2 /(8,5 pts)

Soient les trois composés suivants :

- La lysine (molécule A), un acide aminé, est utilisée en nutrition pour équilibrer les régimes alimentaires. Nommer selon l'IUPAC la molécule A.
 - 'A): Acide 2,6-diaminohexanoïque 0,75
- 2. Représenter et nommer l'isomère A' de la molécule A ayant une isomérie de chaine.

acide de 2,5-diamino-4-methyll pentanoique

- a) Quel type de stéréoisomérie présente la molécule B ? Justifier
 O,75......stéréoisomérie géométrique éthylénique 'présence de C=C
 Avec 4 gpts différents
- b) Représenter les stéréoisomères de B en précisant leur configuration.
 - 0.5x2 pour la representation, 2 STEREOISOMERS Z et E 0.25x2

4.a) Quel type de liaison hydrogène peut donner l'isomère D ? Justifier.

La molécule D ne peut donner lieu qu'à une L.hydrogène intermoléculaire; pour la L.H intramoléculaire le cycle qui peut se former est à 7 chaînons donc instable. 0,75

b) Représenter l'isomère D' de D possédant une liaison hydrogène intramoléculaire et préciser la relation d'isomérie entre D et D'.

D et D' sont des isomères de position

5.a) Déterminer la configuration absolue du carbone asymétrique du composé E.

0,75 La configuration du C* est S

b) Représenter en Fischer l'énantiomère E' de E.

Enantiomère E' est de configuration R

c) La molécule E est-elle chirale ? Justifier.

0,5 La molécule E ne présente qu'un seul carbone asymétrique, elle est chirale.