Вычислительная математика

Раевский Григорий, группа 3.2

23.03.2024

Отчет по лабораторной работе 2

Содержание

Описание численного метода	2
Диаграмма	3
Листинг кода	5
Примеры работы программы	7
Стандартный случай	7
Нулевая строка	7
Матрица не положительно определенная	8
Несимметричная матрица	8
Матрица с нулями	8
Выводы	10

Описание численного метода

Решение с помощью разложения Холецкого — метод решения системы уравнений с использованием симметричной положительно определенной матрицы. Основан на разложении матрицы A (определяющей коэффициенты в системе СЛАУ) на нижнюю треугольную матрицу L. Таким образом, $A = LL^T$, где L^T — транспонированная треугольная матрица.

Для каждого элемента l_{ij} суммируется произведения соответствующих пар элементов из предыдущих строк матрицы L, после чего из суммы вычитается a_{ij} . Во время вычисления элементы, стоящие на главной оси матрицы A вычисляются в матрице L, как $l_{ii} = \sqrt{a_{ii} - sum}$, где l_{ii} - i-й элемент диагонали L матрицы, a_{ii} - диагональный элемент матрицы A, а sum - сумма произведения предыдущих пар элементов матрицы L. Так же, если i=j, то необходима проверка матрицы на положительную определенность.

Когда матрица L получена, решаются 2 системы: Ly = b и $L^Tx = y$ из которых и получаются исходные значения для x и y в уравнении.

Диаграмма

Листинг кода

```
def solveByCholeskyDecomposition(n, matrix):
    L = [[0.0] * n for _ in range(n)]

for i in range(n):
    for j in range(i+1):
        sum = 0

for k in range(j):
        sum+= L[i][k]*L[j][k]

if (i == j):
    if (matrix[i][i] - sum <= 0):</pre>
```

```
11
                              Solution.isSolutionExists = False
12
                              return
                          L[i][j] = math.sqrt(matrix[i][i]-sum)
13
                     else:
14
                          if (L[j][j] == 0):
                              Solution.isSolutionExists = False
16
17
                              return
                          L[i][j] = (matrix[i][j]-sum) / L[j][j]
18
             #print("L: \n")
             #print(L)
20
21
22
            y = [0 \text{ for } \_ \text{ in } range(n)]
23
             for i in range (n):
                 sum = 0
24
                for j in range(i):
25
                     sum += L[i][j] * y[j]
26
27
                 y[i] = (matrix[i][-1]-sum) /L[i][i]
28
            #print(y)
29
30
            x = [0 \text{ for } \_ \text{ in } range(n)]
31
             for i in range(n-1,-1,-1):
32
                 sum = 0
33
                 for j in range(i+1,n):
34
                     sum += L[j][i] *x[j]
35
36
                x[i] = (y[i]-sum)/L[i][i]
            #print(x)
37
            result = x+y
38
39
             return result
```

Примеры работы программы

Стандартный случай

stdin:

```
1 3
2 4 12 -16 1
3 12 37 -43 2
4 -16 -43 98 3
```

stdout:

Матрица положительная и симметрична \rightarrow метод отработал корректно.

Нулевая строка

stdin:

```
1 2 2 2 1 0 3 3 3 0 0 4
```

stdout:

```
1 The system has no roots of equations or has an infinite set of them.
```

2 строка состоит полностью из нулей (за исключением b_2). Это происходит из-за того, что, матрица вырожденная.

Матрица не положительно определенная

stdin:

```
1 2
2 -4 12 2
3 12 37 1
```

stdout:

```
The system has no roots of equations or has an infinite set of them.
```

Программа обнаружила, что матрица не является положительно определенной, а значит решение методом Холецкого не возможно.

Несимметричная матрица

stdin:

```
1 2
2 4 16 2
3 12 37 1
```

stdout:

```
1 15.5
2 -5.0
3 1.0
4 -5.0
```

Хоть матрица и не является симметричной, программа отработала корректно и нашла значения x_i и y_i .

Матрица с нулями

stdin:

stdout:

```
1 0.25
2 2.0
3 1.0000000000000000000000000000000
4 1.0
5 0.5
6 2.0
7 1.7320508075688774
8 2.0
```

Программа посчитала значения x_i и y_i даже в матрице с нулями. Это возможно, так как это не противоречит условиям работы алгоритма.

Выводы

Программа стабильно отрабатывает на данных, если они удовлетворяют условиям возможности решения СЛАУ с использованием метода Холецкого. Однако она не способна выполнить расчет, если входные данные нарушают эти требования (например у матрицы с отрицательными элементами невозможно посчитать код для элемента).

По сравнению с методом Холецкого, метод Гаусса менее требователен к матрице, а так же прост в реализации. Однако он обладает высокой алгоритмической сложностью $(O(n^3))$ и может быть неточным из-за накопления ошибок. Метод Холецкого же в зависимости от реализации может быть более быстрым. Он так же имеет меньше проблем с численной стабильностью, так как имеет меньшее количество вычислений. С другой стороны, он более требователен к матрице, так как работает только с симметричными положительными матрицами, а это ограничивает его применимость.

Моя реализация метода обладает алгоритмической сложностью $O(n^3)$ (самая затратная операция — вычисление матрицы L). Метод Холецкого так же