TokenFlow: Consistent Diffusion Features for Consistent Video Editing

ICLR 2024

20240501

Jaihoon Kim

KAIST Visual AI Group

Key Ideas

Stage 1:

- Obtain $\{X_1^T, ..., X_n^T\}$ using DDIM inversion and extract feature maps from the SA of the U-Net
- Compute the correspondences using the nearest-neighbor search

$$\gamma^{i\pm}[p] = rg \min_{q} \mathcal{D}\left(\phi(oldsymbol{x}^i)[p], \phi(oldsymbol{x}^{i\pm})[q]
ight)$$

Key Ideas

Stage 2:

- Randomly sample keyframes and compute the extend-attention

$$\text{ExtAttn}\Big(\boldsymbol{Q}^{i}; [\boldsymbol{K}^{i_{1}}, \dots \boldsymbol{K}^{i_{k}}]\Big) = \text{Softmax}\bigg(\frac{\boldsymbol{Q}^{i} \left[\boldsymbol{K}^{i_{1}}, \dots \boldsymbol{K}^{i_{k}}\right]^{T}}{\sqrt{d}}\bigg)$$

$$\phi(\boldsymbol{J}^{i}) = \boldsymbol{\hat{A}} \cdot [\boldsymbol{V}^{i_{1}}, \dots \boldsymbol{V}^{i_{k}}] \quad \text{where} \quad \boldsymbol{\hat{A}} = \text{ExtAttn}\bigg(\boldsymbol{Q}^{i}; [\boldsymbol{K}^{i_{1}}, \dots \boldsymbol{K}^{i_{k}}]\bigg)$$

Key Ideas

Stage 2:

- Propagate outputs of extended-attention module to the rest of the frames using the correspondences

$$\mathcal{F}_{\gamma}(\mathbf{T}_{base}, i, p) = w_i \cdot \phi(\mathbf{J}^{i+})[\gamma^{i+}[p]] + (1 - w_i) \cdot \phi(\mathbf{J}^{i-})[\gamma^{i-}[p]]$$

- One-step denoise the entire frames

Results

PnP-Diffusion: Framewise editing

Fate-Zero, Text2Video-Zero, Re-render a video: Self-attention inflation

Tune-a-Video, Gen-1: Trains on video dataset

	Warp-err ↓	User preference	CLIP
	$(\times 10^{-3})$	of our method	score ↑
LDM recon.	2.0	_	0.23
PnP-Diffusion	11.3	$ar{94\%}^{-}$	$\lceil \overline{0}.\overline{3}\overline{3} \rceil$
Text2Video-Zero	12.5	78%	0.33
Tune-a-Video	30.0	82%	0.31
Fate-Zero	6.9	71%	0.32
Gen1	_	70%	0.32
Rerender-a-Video	1.8	71%	0.32
Ours w joint attention	5.9	$^{-}$ $^{-}$ $^{-}$ $\bar{9}0\%^{-}$ $^{-}$ $^{-}$	$\lceil \overline{0}.\overline{3}\overline{3} \rceil$
Ours w/o rand keyframes	3.7	_	0.33
Ours	3.0	_	0.33

Results

Figure 7: Limitations. Our method edits the video according to the feature correspondences of the original video, hence it cannot handle edits that requires structure deviations.