

Laboratório de Sistemas Embarcados e Distribuídos

Desempenho

Revisão	Data	Responsável	Descrição
0.1	- X -	Prof. Cesar Zeferino	Primeira versão
0.2	03/2016	Prof. Cesar Zeferino	Revisão do modelo e atualização de conteúdo
0.3	03/2017	Prof. Cesar Zeferino	Atualização de conteúdo
0.4	06/2020	Prof. Cesar Zeferino	Atualização de referências

Observação: Este material foi produzido por pesquisadores do Laboratório de Sistemas Embarcados e Distribuídos (LEDS – Laboratory of Embedded and Distributed Systems) da Universidade do Vale do Itajaí e é destinado para uso em aulas ministradas por seus pesquisadores.

Objetivo

Apresentar e aplicar os conceitos básicos e as métricas para avaliação de desempenho de processadores e sistemas computacionais

Conteúdo

- Definições básicas
- Métricas de desempenho
- Avaliação de desempenho
- Benchmarks
- Lei de Amdahl

Bibliografia

□ PATTERSON, David A.; HENNESSY, John L. O papel da performance. In: _____. Organização e projeto de computadores: a interface hardware/software. 3. ed. Rio de Janeiro: Campus, 2005. cap. 2.

Introdução

Lista de abreviaturas e símbolos

- HW Hardware
- SW Software
- IS Instruction Set (Conjunto de Instruções)
- SO Sistema Operacional
- □ I/F Interface
- CPI Ciclos por instrução
- I, CContagem de instruções

Por que avaliar o desempenho?

- A eficiência de um sistema computacional depende do desempenho do HW
- É impossível determinar a velocidade de execução de um SW pela análise do conjunto de instruções (IS – Instruction Set)
- Para diferentes aplicações, precisa-se fazer diferentes medições de desempenho
- Ao escolher um computador é preciso entender como medir o desempenho e conhecer as limitações dessas medições

Desempenho = *Performance*

- Para entender porque um programa funciona de determinada maneira
- Porque um conjunto de instruções pode ser implementado para funcionar melhor do que outro
- Para saber como algum recurso (CPU, Memória, E/S) afeta o desempenho do computador

Qual automóvel tem melhor desempenho?

Qual automóvel tem melhor desempenho?

Qual automóvel tem melhor desempenho?

Definindo o desempenho

Qual aeronave tem melhor desempenho?

Aeoronave	Capacidade (Passageiros)
Boeing 777	375
Boeing 747	470
Concorde	132
Douglas DC-8-50	146

Definindo o desempenho

Qual aeronave tem melhor desempenho?

Aeoronave	Capacidade (Passageiros)	Autonomia (milhas)	Velocidade (mph)	Vazão de passageiros (Passageiros x mph)
Boeing 777	375	4.630	610	222.750
Boeing 747	470	4150	610	286.700
Concorde	132	4.000	1350	178.200
Douglas DC-8-50	146	8.720	544	79.424

Definindo o desempenho

- □ Desktop x CPD/TI (tempo de resposta x vazão)
 - O usuário de um desktop busca reduzir o tempo para executar um programa – tempo de resposta (ou tempo de execução)
 - □ O gerente de um CPD/TI quer maximizar a quantidade de tarefas executadas durante um dia – vazão
 - □ Tempo de resposta e vazão são métricas diferentes
 - O estudo do desempenho de CPU é focado no tempo de resposta enquanto que o do desempenho de E/S é focado na vazão

Desempenho em função do tempo de execução

Considerando um computador X

Desempenho
$$_{X} = \frac{1}{T_{\text{execução}_{X}}}$$

Considerando dois computadores X e Y

$$\frac{\text{Desempenho}_{x}}{\text{Desempenho}_{y}} = \frac{T_{\text{execução}_{y}}}{T_{\text{execução}_{x}}} = n$$

- Comparando o desempenho de X e Y
 - □ n > 1 Desempenho_x > Desempenho_y
 - \square n = 1 Desempenho_X = Desempenho_Y
 - □ n < 1 Desempenho_x < Desempenho_y

Desempenho relativo

Exemplo – Compare o desempenho de A e B

Dados

$$T_{\text{execução}_A} = 10 \text{ s}$$

$$T_{\text{execução}_B} = 15 \text{ s}$$

logo

$$\frac{\text{Desempenho}_{A}}{\text{Desempenho}_{B}} = \frac{T_{\text{execução}_{B}}}{T_{\text{execução}_{A}}} = \frac{15}{10} = 1.5$$

ou seja

- □ A é 1,5 vezes mais rápido que B
- B é 1,5 vezes mais lento que A
- Terminologia
 - Melhora-se o desempenho aumentando-o
 - □ Melhora-se o tempo de resposta diminuindo-o

Detalhamento: Tempo Real

- Em muitas aplicações, o desempenho é caracterizado por limitações de tempo real e certos eventos específicos da aplicação precisam ocorrer dentro de um período limitado
- Existem dois tipos básicos de limitações de tempo real
 - □ Tempo real crítico Hard RT (ex. ABS)
 - □ A CPU que controla o ABS precisa responder dentro de um tempo rígido partir do momento que ele recebe um sinal indicando que as rodas estão travadas
 - □ Tempo real não-crítico Soft RT (ex. DVD player)
 - □ Ao manipular quadros de vídeo em um sistema de reprodução de DVD, é aceitável descartar um quadro se isso ocorrer muito raramente

Métricas de desempenho

- □ Tempo de execução
 - Tempo total para completar uma tarefa
 - Inclui tempo de CPU, acesso ao HD, atividade de E/S, overhead do sistema operacional
 - Medido em segundos por programa
 - Também chamado de Tempo de resposta, Tempo de relógio ou Tempo decorrido

Métricas de desempenho

- Tempo de execução da CPU (ou tempo de CPU)
 - □ Tempo que a CPU gasta para uma tarefa específica
 - Importante em sistemas multitarefa
 - Pode ser dividido em
 - ☐ Tempo de CPU do usuário
 - Tempo de CPU do sistema
- Importante
 - O desempenho do sistema refere-se ao tempo de execução
 - O desempenho da CPU refere-se ao tempo da CPU

Revisão: Clock

Sinal de clock

- Terminologia
 - T = ciclo ou período de relógio (medido em segundos)
 - f = frequência ou velocidade do relógio (medida em Hertz)
- Importante

Desempenho da CPU e seus fatores

Estimando o tempo de execução da CPU

$$T_{\text{execuçãoda CPU}_{\text{para um programa}}} = \text{Ciclos da CPU}_{\text{para um programa}} \times T_{\text{clock}}$$

ou

$$T_{\text{execuçãoda CPU}_{\text{para um programa}}} = \frac{\text{Ciclos da CPU}_{\text{para um programa}}}{f_{\text{clock}}}$$

- Para melhorar o desempenho da CPU
 - Reduzir o número de ciclos para a execução do programa ou
 - Reduzir o tempo do ciclo de clock (período do clock), ou seja, aumentar a frequência do clock

Calculando o número de ciclos de clock da CPU

Estimando o número de ciclos de clock da CPU

Ciclos da CPU_{para um programa} = Instruções _{para um programa} × Ciclos por instrução

- Instruções para um programa (I ou C)
 - É o número de instruções executadas pelo programa
- Ciclos por instrução (CPI)
 - Número médio de ciclos de relógio gastos pelas instruções
 - Varia de programa para programa
 - Permite comparar duas implementações (organizações) de um mesmo conjunto de instruções (arquitetura)

Reescrevendo a equação para estimar o número de ciclos de clock da CPU

Ciclos da
$$CPU_{para \, um \, programa} = I \times CPI$$

- Os valores de I e de CPI podem ser determinados por meio de uma simulação detalhada ou pelo uso de contadores de HW na CPU
- A equação do tempo de execução da CPU pode ser reescrita como

$$T_{\text{execuçãoda CPU}} = I \times CPI \times T_{\text{clock}}$$

Usando a equação do desempenho

Considerando duas organizações (A e B) para a mesma arquitetura executando um determinado programa com I instruções, qual é a mais rápida?

Dados: CPU_A CPU_B $T_{clock_A} = 250 \, ps$ $T_{clock_B} = 500 \, ps$ $CPI_A = 2,0$ $CPI_B = 1,2$

1º) Calculando o número de ciclos de CPU

Ciclosda $CPU_A = I \times 2,0$

Ciclosda CPU_B =I×1,2

2º) Calculando o tempo de CPU

$$T_{\text{execuçãoda CPU}_A} = \text{Ciclos da CPU}_A \times T_{\text{clock}_A} = I \times 2.0 \times 250 \text{ ps} = 500 \times I \text{ ps}$$

$$T_{\text{execuçãoda CPU}_B} = \text{Ciclos da CPU}_B \times T_{\text{clock}_B} = I \times 1,2 \times 500 \text{ ps} = 600 \times I \text{ ps}$$

3º) Determinando a relação de desempenho

$$\frac{\text{Desempenho}_{\text{CPU}_A}}{\text{Desempenho}_{\text{CPU}_B}} = \frac{T_{\text{execução}_B}}{T_{\text{execução}_A}} = \frac{600 \times I \text{ ps}}{500 \times I \text{ ps}} = 1,2$$

Conclusão:

 O computador A é 1,2 vezes (20%) mais rápido do que o computador B

Ciclos de clock da CPU baseado nas classes de instrução

Se for possível determinar o CPI e o número de instruções para cada classe de instrução, então o cálculo do número do número de ciclos de clock pode ser mais preciso

Ciclos da
$$CPU_{para um programa} = \sum_{i=1}^{n} (I_i \times CPI_i)$$

onde

- I_i: Contagem de instruções para instruções da classe i (no livro é utilizado C_i)
- CPI_i: CPI para instruções da classe i

Componentes básicos do desempenho (T_{execução da CPU})

Componentes do desempenho	Unidade de medida	
Tempo de execução da CPU para um programa	Segundos para o programa	
Contagem de instruções (I ou C)	Instruções executadas p/ o programa	
Ciclos de clock por instrução (CPI)	Número médio de ciclos por instrução	
Tempo do ciclo de clock	Segundos por ciclo de clock	

$$T_{\text{execuçãoda CPU}} = I \times CPI \times T_{\text{clock}}$$

ou seja

$$T_{\text{execuçãoda CPU}} = \frac{Segundos}{Programa} = \frac{Instruções}{Programa} \times \frac{Ciclos de clock}{Instrução} \times \frac{Segundos}{Ciclo de clock}$$

Reflete quantas instruções o processador executa em um segundo

Taxa execuçãodeinstruções =
$$\frac{I}{T_{execuçãoda CPU}}$$

 Também pode ser obtida pelo CPI e pelo período (ou frequência) do relógio

Taxa
$$_{\text{execuçãodeinstruções}} = \frac{1}{\text{CPI} \times \text{T}_{\text{clock}}} = \frac{\text{f}_{\text{clock}}}{\text{CPI}}$$

As unidades da taxa de execução das instruções são o IPS e o FLOPS

- MIPS (Milhões de Instruções por Segundo)
 - Considera o número de instruções executadas, independentemente da classe da instrução
 - Especifica o desempenho de maneira inversa ao tempo de execução (quanto mais MIPS, melhor)

- MIPS (Milhões de Instruções por Segundo)
 - Limitações
 - ■Não leva em conta as capacidades das instruções e não se pode comparar computadores com arquiteturas diferentes
 - □ Varia entre diferentes programas em um mesmo computador; logo, um computador não pode ter um índice MIPS único
 - □ Pode sofrer com anomalias, variando com o inverso do desempenho ver Patterson e Hennesy (2005, p. 203-204)

- MIPS (Milhões de Instruções por Segundo)
 - Exemplos

Processador	MIPS	Fclk (MHz)
UNIVAC I	0,002	2,25
Zilog Z80	0,580	4
Intel 8086	0,75	10
Microchip PIC16F	5,0	20
ARM Cortex-M3	125,0	100
Intel Core i7 6950X	317.900,0	3000

□ Lista completa em (com linha de tempo)

http://en.wikipedia.org/wiki/Instructions_per_second

- □ FLOPS (Operações de Ponto Flutuante por Segundo)
 - □ Considera apenas as instruções aritméticas (+, −, × e ÷) que realizam operações sobre números reais representados na notação de ponto flutuante com precisão simples ou dupla (float, real, double, double precision)
 - □ Não leva em conta instruções de transferência e de controle
 - Unidades típicas: MFLOPS e GFLOPS

- □ FLOPS (Operações de Ponto Flutuante por Segundo)
 - Limitações
 - Não tem consistência assegurada entre máquinas diferentes, pois algumas, por exemplo, possuem instruções como raiz quadrada e seno em hardware, enquanto outras não e precisam realizar várias operações de ponto flutuante
 - Instruções de ponto flutuante variam em complexidade e em ciclos de execução. Um programa com 100% de somas em PF terá um índice de MFLOPS maior que um programa com 100% de divisões em PF

Entendendo o desempenho de programas

Componentes de SW ou HW	Afeta o quê?	Como?
Algoritmo	I CPI (possivelmente)	O algoritmo determina o número de instruções e pode favorecer instruções com CPI maior
Linguagem de programação	I CPI	A instruções da linguagem são traduzidas para instru-ções de máquina, afetando a contagem de instruções Linguagens com maior abstração de dados (ex. Java) exigem chamadas indiretas que usam instruções com CPI maior
Compilador	I CPI	Ao efetuar a tradução do programa, o compilador determina as instruções de máquina que serão usadas, afetando o CPI e a contagem de instruções
Arquitetura (conjunto de instruções)	I CPI T _{clock}	A arquitetura determina as instruções disponíveis para execução do programa e, portanto, a contagem de instruções e o CPI. A arquitetura também restringe a implementação, o que impacta na frequência de operação do clock e, portanto, no seu período

Avaliando o desempenho

- Definições básicas
 - Workload (carga de trabalho)
 - É um conjunto de programas que é a coleção real das aplicações executadas por um usuário (ou é construído a partir dos programas reais para representar essa coleção)
 - Benchmark
 - É uma coleção de programas escolhidos especificamente para realizar a avaliação de desempenho de um computador

Avaliando o desempenho

- Definições básicas
 - ☐ Tipos básicos de benchmark
 - Sintético: Coleção de programas que procuram reproduzir características de aplicações reais
 - □ Real: Coleção de programas baseada em aplicações reais (ex. compiladores, codificadores,...)

Avaliando o desempenho

- Quando não usar programas reais?
 - □ Benchmarks sintéticos pequenos são mais adequados nas fases iniciais do projeto pois
 - muitas vezes ainda não existem compiladores e a tradução de programas tem que ser manual
 - podem ser traduzidos e simulados mais facilmente

Avaliando o desempenho

- Benchmarks para os diferentes tipos de sistemas
 - Desktop: foco no desempenho da CPU (ex. SPEC CPU) ou da execução de uma tarefa (ex. jogos)
 - Servidores
 - □ Científicos: foco no desempenho da CPU
 - Outros: foco no desempenho para Web, compartilhamento de arquivos e banco de dados
 - Sistemas embutidos (embarcados): usa-se aplicações reais ou segmentos delas (ex. EEMBC) - http://www.eembc.org/home.php

Avaliação de desempenho

- Princípio da reprodutibilidade
 - Uma medição de desempenho deve poder ser reproduzida (duplicada) por outra pessoa
 - Os experimentos de medição devem gerar um relatório em que constem informações sobre a plataforma (HW+SW) utilizada
 - O relatório também deve informar quais entradas (dados) foram utilizadas nos experimentos, pois elas tem impacto no fluxo de execução dos programas

Descrição de um sistema em um relatório de desempenho

Hardware				
Fabricante	Dell			
Modelo	Precision Wokstation 360			
CPU	Intel Pentium 4 (barramento 800 MHz)			
CPU MHz	3200			
FPU	Integrado			
CPU(s) habilitada(s)	1			
CPU(s) possível(is)	1			
Em paralelo	Não			
Cache L1	12KB (I) + 8 KB (D)			
Cache L2	512 KB (I+D)			
Cache L3	2 MB (I+D)			
Memória RAM	4 x 512 MB ECC DDR400 SDRAM CL3			
Disco rígido	1 x 90 GB ATA/1000 7200 RPM			

Descrição de um sistema em um relatório de desempenho

Software			
Sistema operacional	Windows XP Professional SP1		
Compilador	Intel C++ Compiler (20030202Z) Microsoft Visual Studio.NET (7.0.9466) MicroQuill SmartHeap Library 6.01		
Sistema de arquivos	NTFS		
Estado do sistema	padrão		

- A descrição do sistema pode ainda ser complementada com notas a respeito de flags especiais usados para
 - portabilidade
 - otimização
 - tuning
 - temporização básica
 - biblioteca especial
 - configuração da BIOS
 - entre outros

Comparando e resumindo o desempenho

Exemplo

	Computador A	Computador B	
T _{execuçãoprograma1}	1	10	
T _{execuçãoprograma2}	1000	100	
T _{execução_{total}}	1001	110	

Afirmativas válidas

- A é 10 vezes mais rápido do que B para o programa 1
- □ B é 10 vezes mais rápido do que A para o programa 2

mas, considerando os dois programas juntos

$$\frac{Desempenho_B}{Desempenho_A} = \frac{T_{execução_A}}{T_{execução_B}} = \frac{1001}{110} = 9,1$$

B é 9,1 vezes mais rápido do que A

Benchmarks SPEC

- SPEC System Perfomance Evaluation Corporation
 - Organização fundada (em 1989) e patrocinada por fabricantes de computador (<u>http://www.spec.org</u>)
 - Visa criar benchmarks padronizados para avaliar sistemas computacionais, usando aplicações reais e requisitos de relatório rigidamente especificados
 - Inclui benchmarks específicos para avaliação de
 - CPU
 - Gráficos
 - Computação de alto desempenho
 - Computação orientada a objetos
 - Aplicações Java
 - Modelos cliente-servidor
 - Sistemas de e-mail
 - □ Sistemas de arquivo
 - Servidores web
 - Computação em nuvem

Tempo médio de execução

- Considerando n programas em um workload pode-se calcular o tempo médio para execução dos programas que o compõem
- A média aritmética padrão considera que todos são executados com a mesma frequência (1/n)

$$T_{\text{m\'edio de execução}} = \frac{1}{n} \times \sum_{i=1}^{n} T_{\text{execuç\~aq}_{\text{programa}}}$$

Tempo médio de execução

A média aritmética ponderada considera que cada programa pode ser executado com uma frequência diferente que representa um percentual específico da carga de trabalho

$$T_{\text{m\'edio de execuç\~ao}} = \sum_{i=1}^{n} (w_i \times T_{\text{execuç\~ao}_{\text{programa i}}})$$

w_i indica a frequência do programa i no workload (ex. 0,8 ou 80%)

Benchmark SPEC CPU2000

Incluía 12 programas de inteiros e 14 de ponto flutuante para avaliação de desempenho de CPU, com base no tempo de execução do sistema

Benchmarks de inteiros		Benchmark	Benchmarks de ponto flutuante		
gzip	eon	wupwise	EQUAKE		
vpr	perlbmk	swim	facerec		
gcc	gap	mgrid	amoo		
mcf	vortex	applu	lucas		
crafty	bzip2	mesa	fma3d		
parser	twolf	galgel	sixtrack		
		art	apsi		

Razão SPEC

- As medições de tempo de execução são normalizadas em relação a uma estação de trabalho Sun Ultra 5_10 com CPU de 300 MHz
- CINT2000: média geométrica das razões SPEC de inteiros
- CFP2000: média geométrica das razões SPEC de ponto flutuante

Benchmark SPEC CPU2000

Avaliações SPEC CINT2000 e CFP 2000 para Pentium III e Pentium IV com diferentes clocks

Benchmark SPEC CPU2006

- Versão mais atual
- Inclui 12 programas de inteiros e 19 de ponto flutuante
- Métricas
 - SPECspeed: usada para comparar a capacidade de um computador em executar tarefas únicas
 - SPECrate: mede a vazão (ou taxa) de execução de múltiplas tarefas
- Preço (V1.2): U\$800,00

Benchmark SPECweb

- Histórico
 - 1996, primeiro benchmark para medir desempenho de servidores Web
 - □ 1999, SPECweb99
 - □ 2005, SPECweb2005
 - 2009, SPECweb2009 (descontinuado em 01/2012)

- Características do SPECweb99
 - Mede o número máximo de conexões que um sistema funcionando como um servidor Web consegue executar
 - Depende de uma ampla medida de características de sistemas, incluindo o sistema de disco e a rede

Benchmark SPECweb

- Características do SPECweb2005
 - Mede sessões de usuário simultâneas
 - Implementações PHP e JSP incluídas
 - Inclui múltiplas cargas de trabalho padronizadas atendendo as principais necessidades do mercado
 - □Home Banking (HTTPS), E-commerce (HTTP and HTTPS), e Support (HTTP)
 - Simula o funcionamento das caches dos browsers
- Características do SPECweb2009
 - Versão atualizada do SPECweb2005

Benchmark SPECweb

 Desempenho do SPECweb99 para diversos sistemas Dell PowerEdge usando as versões Xeon (c/ suporte a multiprocessamento) dos processadores Intel

Sistema	CPU	No. de HDs	No. de CPUs	No. de redes	Clock (GHz)	Resultado
1550/1000	Pentium III	2	2	2	1,00	2765
1650	Pentium III	3	2	1	1,40	1910
2500	Pentium III	8	2	4	1,13	3435
2550	Pentium III	1	2	1	1,26	1454
2650	Pentium 4 Xeon	5	2	4	3,06	5698
4600	Pentium 4 Xeon	10	2	4	2,20	4615
6400/700	Pentium III Xeon	5	4	4	0,70	4200
6600	Pentium 4 Xeon MP	8	4	8	2,00	6700
8450/700	Pentium III Xeon	7	8	8	0,70	8001

- 1º benchmark para medir desempenho de infraestrutura de computação em nuvem
- Foco no desempenho de laaS (Infrastruccture-as-a-Service) de plataformas de computação em nuvem, públicas ou privadas
- Procura estressar a infraestrutura usando cargas de trabalho intensivas em I/O e CPU
- □ **Preço (V.1.1):** U\$ 2000,00

kW

- Site: https://www.top500.org/
- □ Lista de 11/2016: https://www.top500.org/lists/2016/11/

#	Local	Sistema	Cores	Rmax Tflop/s	Rpeak Tflop/s	
1	National Superson with a	Sunway TaihuLight -	10.649.600	93.014,6	125.435,9	1
1	National Supercomputing	Sunway MPP Sunway	10.649.600	•		•

- 15.371 oupercomputing Sulliway MFF, Sulliway SW26010 260C 1.45GHz. Center in Wuxi China Sunway **NRCPC** 3.120.000 **National Super** Tianhe-2 (MilkyWay-2) -33.862,7 54.902,4 Computer Center TH-IVB-FEP Cluster, Intel
- 17.808 in Guangzhou Xeon E5-2692 12C China 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P **NUDT**
- 560.640 17.590,0 27.112,5 8.209 DOE/SC/Oak **Titan** - Cray XK7 , Ridge National Opteron 6274 16C
- 2.200GHz, Cray Gemini Laboratory **United States** interconnect, NVIDIA K20x

- Site: https://www.top500.org/
- Lista de 11/2016: https://www.top500.org/lists/2016/11/

#	Local	Sistema	Cores	Rmax Tflop/s	Rpeak Tflop/s	kW
1	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10.649.600	93.014,6	125.435,9	15.371
				:	:	
364	Laboratório Nacional de Computação Científica Brazil	Santos Dumont GPU - Bullx B710, Intel Xeon E5-2695v2 12C 2.4GHz, Infiniband FDR, Nvidia K40 Bull, Atos Group	10.692	456,8	657,8	371

Desempenho e eficiência do consumo

Eficiência relativa de consumo

Lei de Amdahl

 Permite evidenciar a aceleração (ganho) de desempenho de um computador após a melhoria de alguma de suas características

$$Aceleração = \frac{T_{execução_{antigo}}}{T_{execução_{novo}}}$$

$$\mathsf{T}_{\mathsf{execu} \zeta \tilde{\mathsf{aq}}_{\mathsf{novo}}} = \mathsf{T}_{\mathsf{execu} \zeta \tilde{\mathsf{aq}}_{\mathsf{antigo}}} \times \left[\mathsf{Parcela}_{\mathsf{n}\tilde{\mathsf{ao}}\mathsf{-usada}} + \frac{\mathsf{Parcela}_{\mathsf{usada}}}{\mathsf{Acelera} \zeta \tilde{\mathsf{ao}}_{\mathsf{usada}}}\right]$$

Resumo das equações

Desempenho

Desempenho
$$_{X} = \frac{1}{T_{\text{execução}_{X}}}$$

$$\frac{Desempenho_{X}}{Desempenho_{Y}} = \frac{T_{execução_{Y}}}{T_{execução_{X}}} = n$$

Tempo de execução da CPU

$$T_{\text{execuçãoda CPU}_{\text{para um programa}}} = \text{Ciclos da CPU}_{\text{para um programa}} \times T_{\text{clock}}$$

Taxa de execução de instruções

Taxa
$$_{\text{execuçãodeinstruções}} = \frac{1}{\text{CPI} \times \text{T}_{\text{clock}}} = \frac{\text{f}_{\text{clock}}}{\text{CPI}}$$

- Nosso programa favorito é executado em 10 segundos no computador A, que possui um relógio de 4GHz. Estamos tentando ajudar um projetista de computador a construir uma nova máquina B, que execute esse programa em 6 segundos.
- O projetista determinou que um aumento substancial na velocidade de relógio é possível, mas esse aumento afetará o restante do projeto da CPU, fazendo com que o computador B exija 1,2 vez mais ciclos de clock do que o computador A para esse programa.
- Que velocidade de relógio devemos pedir para que o projetista almeje?

- Suponha que tenhamos duas implementações da mesma arquitetura do conjunto de instruções (ISA). Para um determinado programa,
 - □ A máquina A tem um tempo de ciclo de clock de 250 ps e uma CPI de 2,0
 - □ A máquina B tem um tempo de ciclo de clock de 500 ps e uma CPI de 1,2
- Que máquina é mais rápida para esse programa e o quanto?
- Se duas máquinas possuem a mesma ISA, qual de nossas quantidades (por exemplo, velocidade de relógio, CPI, tempo de execução, número de instruções, MIPS) será sempre idêntica?

- Um projetista de compilador está tentando decidir entre duas sequências de código para um determinada máquina. Baseado na implementação de hardware, existem três classes diferentes de instruções: Classe A, Classe B e Classe C, e elas exigem um, dois e três ciclos, respectivamente.
- A primeira sequência de código possui 5 instruções:
 2 de A, 1 de B e 2 de C
- □ A segunda sequência possui 6 instruções:
 4 de A, 1 de B e 1 de C
- Que sequência será mais rápida? O quanto mais rápida? Qual é a CPI para cada sequência?

- Dois compiladores diferentes estão sendo testados para uma máquina de 4GHz com três classes diferentes de instruções: Classe A, Classe B e Classe C, e elas exigem um, dois e três ciclos, respectivamente. Ambos os compiladores são usados para produzir código para um grande software.
- O código do primeiro compilador usa 5 milhões de instruções da Classe A, 1 milhão de instruções da Classe B e 1 milhão de instruções da Classe C.
- O código do segundo compilador usa 10 milhões de instruções da Classe A, 1 milhão de instruções da Classe B e 1 milhão de instruções da Classe C.
- Que sequência será mais rápida de acordo com o MIPS? Que sequência será mais rápida de acordo com o tempo de execução?

- Suponha que, ao executar um dado programa, um computador gaste 90% do seu tempo tratando um tipo especial de cálculo, e que seus fabricantes façam uma mudança que melhore o seu desempenho, naquele tipo de cálculo, por um fator de 10.
- Se o programa demorava, originalmente, 50 segundos para ser executado, qual será o seu tempo de execução depois da modificação?
- Qual é a aceleração do sistema novo em relação ao sistema antigo?

$$T_{\text{execução}_{\text{novo}}} = T_{\text{execução}_{\text{antigo}}} \times \left[\text{Parcela}_{\text{não-usada}} + \frac{\text{Parcela}_{\text{usada}}}{\text{Aceleração}_{\text{usada}}} \right]$$

$$Aceleração = \frac{T_{execução_{antigo}}}{T_{execução_{hovo}}} = \frac{1}{\begin{bmatrix} Parcela_{não-usada} + \frac{Parcela_{usada}}{Aceleração_{usada}} \end{bmatrix}}$$