

A satellite with homespun electronics

April 2017

Problem Solution **Project Philosophy Team Achievements Tools** Roadmap **Current I+D process**

Problem

Solution
Project Philosophy
Team
Achievements
Tools
Roadmap
Current I+D process

PROBLEM

Classic Satellite Communications usual problems

High costs
Unaccessible
Private owners
Low bandwidth
Maintenance

Problem

Solution

Project Philosophy

Team

Achievements

Tools

Roadmap

Current I+D process

Problem Solution

Project Philosophy

Team
Achievements
Tools
Roadmap
Current I+D process

PROJECT PHILOSOPHY

Problem
Solution
Project Philosophy

Team

Achievements
Tools
Roadmap
Current I+D process

TEAM

Eduardo González Hernández

Héctor Melián Plasencia

Luis Herrera Medranda

Ernesto Padrón Velázquez

Goyo Regalado Pacheco

Dailos Díaz Lara

Problem
Solution
Project Philosophy
Team

Achievements

Tools
Roadmap
Current I+D process

RADIO STATION (SATELLITE TRACKER)

SATELLITE

MARK I - ALPHA 1

SATELLITE

MARK I - ALPHA 2

SATELLITE

MARK I - ALPHA 2

SATELLITE

MARK I - ALPHA 2

DOCUMENTATION (GitHub Repository)

Problem
Solution
Project Philosophy
Team
Achievements

Tools

Roadmap Current I+D process

TOOLS

COMMUNICATION

TOOLS

TEAMWORK

Google Drive

GitHub

MANAGEMENT

Google Calendar

Trello

TOOLS

DEVELOPMENT (SW & HW)

Editors and IDEs

Prog. Languages

Version Control

Operative Systems

Satellite & Tracker

Problem
Solution
Project Philosophy
Team
Achievements
Tools

Roadmap
Current I+D process

It is a long time project

2016

3D printed prototype

and shields

3D printed prototype

and shields

Structure &

and shields

Electronics design
3D printed prototype

Phase #2 - Payload development and testing.

2017

Research

Solar power & battery recharging systems

Phase #1 - Project definition and first developments.

Phase #2 - Payload development and testing.

Phase #3 - Official tests and certifications.

Phase #1 - Project definition and first developments.

Phase #2 - Payload development and testing.

Phase #3 - Official tests and certifications.

Phase #1 - Project definition and first developments.

Phase #2 - Payload development and testing.

Phase #3 - Official tests and certifications.

Phase #1 - Project definition and first developments.

Phase #2 - Payload development and testing.

Phase #3 - Official tests and certifications.

Phase #4 - **Satellite launching.**

INDEX

Problem
Solution
Project Philosophy
Team
Achievements
Tools
Roadmap

Current I+D process

CURRENT I+D PROCESS

CURRENT I+D PROCESS

boscoverysat@gmail.com

@boscoverysat

boscoverysat

boscoverysat.github.com

A satellite with homespun electronics

April 2017

Satellites' Orbits and Positioning

Based on HEIGHTs

Based on HEIGHTs

LOW EARTH ORBIT DATA:

Average speed: **7,8km/s (28.080km/h)**

Average orbit time: 99 minutes

Usual deployments: Scientific missions

Based on HEIGHTs

Missions deployed at LEO orbit

Based on HEIGHTs

Based on HEIGHTs

MIDDLE EARTH ORBIT DATA:

Average speed: **3,9km/s (14.040km/h)**

Average orbit time: 12 - 24 hours

Usual deployments: GPS (20.200km) and special use for regions tracking

Based on HEIGHTs

Missions deployed at MEO orbit

Based on HEIGHTs

Based on HEIGHTs

MIDDLE EARTH ORBIT DATA:

Average speed: 3,08km/s (11.088km/h) = Earth's rotation speed

Average orbit time: Years (geostationary orbit)

Usual deployments: Communications and weather stellites

Based on HEIGHTs

Missions deployed at HEO orbit

Hispasat AG1

Meteosat

Power and Battery Recharge Subsystem

POWER AND BATTERY RECHARGE SUBSYSTEM

Facts

9,5 – 11 VDC/Side 50 – 60mA/Side

2 x 18650 Batt type 3,7V @ 5000mAh

POWER AND BATTERY RECHARGE SUBSYSTEM

Facts

9,5 – 11 VDC/Side 50 – 60mA/Side

2 x 18650 Batt type 3,7V @ 5000mAh

Fails

2 x TP4056 4,1V @ 1A Battery Charger

POWER AND BATTERY RECHARGE SUBSYSTEM

Facts

9,5 – 11 VDC/Side 50 – 60mA/Side

2 x 18650 Batt type 3,7V @ 5000mAh

Fails

2 x TP4056 4,1V @ 1A Battery Charger

Researching

MAX1873REEE Up to 4 Li+ Batts -40°C to +85°C

Environmental Sensors Subsystem

ENVIRONMENTAL SENSORS SUBSYSTEM

Facts

HTU21D Temperature

Battery, Cockpit, Side 1 - 6, Control Unit

BH1750L Light Intensity

Side 1-6

ENVIRONMENTAL SENSORS SUBSYSTEM

Facts

HTU21D Temperature

Battery, Cockpit, Side 1 - 6, Control Unit

BH1750L Light Intensity

Side 1-6

Issues

Multiple I2C devices with the same address.

ENVIRONMENTAL SENSORS SUBSYSTEM

Facts

HTU21D Temperature

Battery, Cockpit, Side 1 - 6, Control Unit

BH1750L Light Intensity

Side 1-6

Issues

Multiple I2C devices with the same address.

Researching

Multiplexing SDA wire.

Dual CMOS 4-channel analog multiplexer, demultiplexer.

Communications Subsystem

COMMUNICATIONS SUBSYSTEM

Facts

((A)) Telemetry & Configuration

UHF 430 - 440 MHz

((*)) Radio Communication

VHF 144 – 148 MHz

COMMUNICATIONS SUBSYSTEM

Facts

Telemetry & Configuration

UHF 430 – 440 MHz

Radio Communication

VHF 144 – 148 MHz

Issues

Buffer overflow on packages transmission for telemetry and configuration.

COMMUNICATIONS SUBSYSTEM

Facts

Telemetry & Configuration

UHF 430 - 440 MHz

Radio Communication

VHF 144 – 148 MHz

Issues

Buffer overflow on packages transmission for telemetry and configuration.

Researching

Error control by parity bits.

Antenna deploymen system.

Budget

TOTAL RESOURCES INVESTED UP TODAY

Electronics	190,00€
3D Printing	75,00 €
Mechanical components	25,00 €
Other materials	30,00 €

TOTAL AMOUNT

320,00 €

1.790 h

DEPLOYMENT BUDGET

60.000,00€

Unexpected expenses

2.500,00 €

TOTAL AMOUNT

73.000,00 €

Deployment environmental conditions

temperature

Temperature

electronics components

-40°C (-157°C)

85°C (120°C)

Temperature

printed circuits boards

-50°C (-157°C)

140°C (120°C)

FR-4 – Glass reinforced epoxy composite 1 oz copper thickness

Temperature

soldering materials

-190°C (-157°C)

183°C (120°C)

Sn60Pb40

Real deployed CubSat based projects on

Maybe...

But we are not alone.

50\$ Sat

Built by three amateur radio operators.

7 months in orbit.

Dniepper russian rocket.

www.50dollarsat.info

PicoDragon

Built by VNSC (Vietnam National Satellite Center)

In orbit during 4 months.

ISS

https://vnsc.org.vn/en/projects/profile-of-the-picodragon-satellite/

PhoneSat Series

Built by NASA.

Actually in orbit.

It's payload is an android phone.

Falcon 9.

phonesat.org

A satellite with homespun electronics

April 2017