Data Science UA. Лекция 3. Exploratory Data Analysis

Январь 2017

Пару слов о домашнем задании

- 1. Где оно? :)
- 2. Не затягивайте до последнего дня.
- 3. Держите форму вопроса!
- 4. Качество данных важно. Качество тех из них, по которым дается ответ на поставленный вопрос критично.
- 5. Не выводите полные списки/DataFrame пользуйтесь .head() и лимитами в списках.
- 6. Отделяйте исследование данных от непосредственно домашней работы.
- 7. Пользуйтесь функционалом языка.
- 8. Приводите финальный результат.

Исследование данных

Не всегда понятно что мы ищем... пока мы это не найдем.

Анализ данных

Презентация, использование и контроль модели

Сбор и очистка данных

Построение модели данных

Антибиотики

Уилл Буртин, исследование 1951 года, незаданные вопросы

http://www.americanscientist.org/issues/pub/thats-funny

Эффективность антибиотиков

Bacteria	Penicillin	Antibiotic Streptomycin	Neomycin	Gram stain
Aerobacter aerogenes	870	1	1.6	122
Brucella abortus	1	2	0.02	12
Bacillus anthracis	0.001	0.01	0.007	+
Diplococcus pneumoniae	0.005	11	10	+
Escherichia coli	100	0.4	0.1	-
Klebsiella pneumoniae	850	1.2	1	-
Mycobacterium tuberculosis	800	5	2	1.7
Proteus vulgaris	3	0.1	0.1	-
Pseudomonas aeruginosa	850	2	0.4	-
Salmonella (Eberthella) typhosa	1	0.4	0.008	-
Salmonella schottmuelleri	10	0.8	0.09	1000
Staphylococcus albus	0.007	0.1	0.001	+
Staphylococcus aureus	0.03	0.03	0.001	+
Streptococcus fecalis	1	1	0.1	+
Streptococcus hemolyticus	0.001	14	10	+
Streptococcus viridans	0.005	10	40	+

https://gist.github.com/borgar/cd32f1d804951034b224#file-bacteria-csv

That's funny © Айзек Азимов

Величайшая ценность изображений в том, что они заставляют видеть то, чего вы не собирались увидеть.

Джон Таки

Цели визуализации

Коммуникативная (explanatory)

- 1. Представить данные и идеи
- 2. Донести и проинформировать
- Поддержать и аргументировать
- 4. Повлиять и убедить

Исследовательская (exploratory)

- 1. Исследовать данные
- 2. Проанализировать ситуацию
- 3. Определить следующие шаги
- 4. Вынести решение по вопросу

New York Times

http://www.smallmeans.com/new-york-times-infographics/

Яндекс

Визуализируйте (не) правильно!

Проблемы плохой визуализации

- 1. Неправильный выбор типа визуализации.
- 2. Перегруженность материалом.
- 3. 3D эффекты.
- 4. Просто ненужные эффекты.
- 5. Неправильные/неэффективные цвета.
- 6. Слишком мало информации.
- 7. Информация, которую предполагается сравнивать разнесена в пространстве.
- 8. Тысячи их!

Если после просмотра графика/диаграммы у вас возникает желание посмотреть исходные данные - визуализация провалилась в своей задаче.

Визуализируйте правильно!

Ключевые моменты:

- 1. Графическая целостность.
- 2. Простота.
- 3. Правильная форма.
- 4. Правильное использование цвета.
- 5. Целостность повествования.

Графическая целостность

Шкалы - честная координатная сетка, честное представление данных. Равные расстояния на визуализации должны означать равную разницу в данных.

https://flowingdata.com/2015/08/31/bar-chart-baselines-start-at-zero/

Простота

Отношение данные / чернила должно быть как можно больше. (c) Эдвард Тафти

https://en.wikipedia.org/wiki/Chartjunk

Сравнение - (столбчатая диаграмма) bar charts. Линейные графики подразумевают непрерывность

Тренды во времени, непрерывные данные - линейные графики.

Пропорции - пироги :). Круговая диаграмма. Колонки как вариант.

Корреляции - scatter plot (диаграмма рассеяния).

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Распределение - гистограмма.

Тренировка

	1.before	2.after	3.in_1_week
0	10	15	10
1	20	10	15
2	30	35	40
3	40	40	35

Эффективность восприятия

Эффективность восприятия

Правильное использование цвета

Рекомендуемые ресурсы

- 1. Сайты
 - a. https://flowingdata.com/
 - b. http://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3
 - c. http://www.datavis.ca/milestones/index.php?group=1950%2B
 - d. http://www.infovis-wiki.net/index.php?title=Visual_Variables

Книги

- а. Эдвард Тафти
 - Visual Display of quantitative information
 - ii. Envisioning information
 - iii. Visual explanations
- b. Стивен Фью
 - i. Show me the numbers
 - ii. Now you see it

Вопросы?

Домашнее задание

Seaborn - мощная библиотека для визуализации данных. Изучите ее базовый функционал и выведите график линейной регрессии по данным собранным в домашней работе №2. Подсказку можно найти в проверочном скрипте окружения.

Подумайте над следующими вопросами:

- О чем говорит наклон графика линейной модели?
- Как он соотносится с результатами полученными вами в предыдущем домашнем задании?
- Хорошо ли линейная аппроксимация подходит для ваших данных или видны систематические отклонения?

Copyrights

При оформлении слайдов использованы изображения с следующих страниц.

- https://flowingdata.com/
- http://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3
- http://www.datavis.ca/milestones/index.php?group=1950%2B
- http://www.infovis-wiki.net/index.php?title=Visual_Variables
- https://www.explainxkcd.com/wiki/index.php/1725:_Linear_Regression
- https://en.wikipedia.org/wiki/Pie_chart
- https://en.wikipedia.org/wiki/Histogram
- https://en.wikipedia.org/wiki/Line_chart
- http://www.bbc.co.uk/bitesize/ks3/maths/handling_data/representing_data/revision/2/
- http://www.excelcharts.com/blog/change-bad-charts-in-the-wikipedia/
- http://viz.wtf/
- https://www.123rf.com/photo_25442337_hand-lens-that-magnifies-a-needle-in-a-haystack.html