Задание 1

Назовем вершинной связностью графа $\kappa(G)$ минимальное число вершин графа, которое требуется удалить, чтобы граф потерял связность. Назовем реберной связностью графа $\lambda(G)$ минимальное число ребер графа, которое надо удалить, чтобы он потерял связность. Будем обозначать минимальную степень вершины графа как $\delta(G)$.

Вариант А

Постройте граф с указанными реберной и вершинной связностью, а также минимальной степенью вершины. $\kappa=3,\ \lambda=4,\ \delta=5$

Вариант В

Постройте граф с указанными реберной и вершинной связностью, а также минимальной степенью вершины. $\kappa=2,\ \lambda=5,\ \delta=5$

Вариант С

Постройте граф с указанными реберной и вершинной связностью, а также минимальной степенью вершины. $\kappa=4,\ \lambda=4,\ \delta=4$

Задание 2

Пусть G — связный граф, содержащий не менее трех вершин. Рассмотрим следующие утверждения.

- любые две вершины графа G лежат на реберно простом цикле;
- 2. любая вершина и любое ребро графа G лежат на реберно простом цикле;
- 3. любые два ребра графа G лежат на реберно простом цикле;
- 4. для любых двух вершин и любого ребра графа G существует реберно простой путь, соединяющий эти вершины и проходящий по этому ребру;
- для любых двух вершин и любого ребра графа G существует простой путь, соединяющий эти вершины и не проходящий по этому ребру;

Вариант D

Докажите, что $(1) \to (2)$.

Вариант Е

Докажите, что $(1) \to (3)$.

Вариант F

Докажите, что $(1) \to (4)$.

Вариант G

Докажите, что $(1) \to (5)$.

Вариант Н

Докажите, что $(2) \to (1)$.

Вариант I

Докажите, что $(3) \rightarrow (1)$.

Вариант J

Докажите, что $(4) \rightarrow (1)$.

Вариант К

Докажите, что $(5) \rightarrow (1)$.

Задание 3

Напомним, что сумма графов G+H образуется следующим образом: рядом изображаются графы G и H и каждая вершина G соединяется с каждой вершиной H.

Вариант L

Найдите число остовных деревьев графа $K_{3,2}$.

Вариант М

Найдите число остовных деревьев графа $C_4 + K_1$.

Вариант N

Найдите число остовных деревьев графа $K_3 + \overline{K_2}$.

Задание 4

Вариант О

Опишите все графы, которые содержат цикл, который является одновременно эйлеровым и гамильтоновым.

Вариант Р

Граф называется вершинным кактусом, если любая вершина лежит не более чем на одном простом цикле. Опишите все вершинные кактусы, которые являются эйлеровыми.

Вариант Q

Граф называется вершинным кактусом, если любая вершина лежит не более чем на одном простом цикле. Опишите все вершинные кактусы, которые являются гамальтоновыми.

Задание 5

Вариант R

Петя пытается нарисовать граф K_6 , минимальное число раз отрывая карандаш от бумаги. Сколько раз ему придется оторвать карандаш? Обоснуйте ваш ответ.

Вариант Ѕ

Петя пытается нарисовать граф $K_{3,4}$, минимальное число раз отрывая карандаш от бумаги. Сколько раз ему придется оторвать карандаш? Обоснуйте ваш ответ.

Вариант Т

Петя пытается нарисовать граф K_5 , не проводя рёбра через вершины, которые не являются их концами, и сделав минимальное число пересечений кривых, которые изображают рёбра. Какое минимальное число пересечений получится? Обоснуйте ваш ответ.

Вариант U

Петя пытается нарисовать граф $K_{3,3}$, не проводя рёбра через вершины, которые не являются их концами, и сделав минимальное число пересечений кривых, которые изображают рёбра. Какое минимальное число пересечений получится? Обоснуйте ваш ответ.

Задание 6

Постройте граф, у которого в декомпозиции Эдмондса-Галаи множество D имеет n компонент связности и содержит суммарно d вершин, множество A имеет a вершин и множество C имеет c вершин или докажите, что это невозможно.

Вариант V

(a)
$$n = 2$$
, $d = 6$, $a = 1$, $c = 6$ (6) $n = 1$, $d = 1$, $a = 1$, $c = 4$

Вариант W

(a)
$$n=4,\, d=5,\, a=4,\, c=3$$
 (б) $n=3,\, d=7,\, a=2,\, c=4$

Вариант Х

(a)
$$n = 4$$
, $d = 10$, $a = 2$, $c = 0$ (6) $n = 0$, $d = 0$, $a = 2$, $c = 8$