Definições e Propriedades P1 Introdução a Topologia

Yuri Kosfeld

Abril 2025

Definição (**Distância**). Seja M um conjunto. Uma **distância** em M é uma função $d: M \times M \to [0, \infty)$ que satisfaz as seguintes propriedades:

- 1. d(x,x) = 0 para todo $x \in M$.
- 2. d(x,y) > 0 para todos $x, y \in M$ com $x \neq y$.
- 3. d(x,y) = d(y,x) para todos $x, y \in M$.
- 4. $d(x,z) \le d(x,y) + d(y,z)$ para todos $x, y, z \in M$.

Definição (Bola Aberta). Sejam (M, d) um espaço métrico, $x \in M$ e $\varepsilon > 0$. Definimos a bola aberta centrada em x e de raio ε como:

$$B(x,\varepsilon) = \{ y \in M \mid d(x,y) < \varepsilon \}$$

Definição (Bola da distância induzida).

$$B_A(x,\varepsilon) = \{ y \in A \mid d_A(x,y) < \varepsilon \}$$

$$B_A(x,\varepsilon) = B(x,\varepsilon) \cap A$$

Definição (Conjunto Aberto). $U \subset M$ é conjunto aberto se $\forall x \in U \ \exists \varepsilon > 0 \ tal \ que \ B(x, \varepsilon) \subset U$.

Definição (Vizinhança). U aberto tal que $x \in U$.

Definição (**Topologia**). Seja (M, d) espaço metrico, dizemos que **topologia** é a familia de todos os subconjuntos abertos de M.

$$\mathcal{T} = \{ U \subset M \mid U \ \acute{e} \ aberto \}$$

Definição (Aberto EM). Dizemos que U é aberto em $A \Leftrightarrow \exists V$ aberto em M tal que $U = V \cap A$.

Definição (Ponto de Interior). Dizemos que $x \in A$ é um ponto de interior de A se existir U vizinhança de x tal que $U \subset A$. Temos então int(A).

Proposição. Valem:

- 1. $int(A) \subset A$.
- 2. int(int(A)) = int(A)

3. $int(A \cap B) = int(A) \cap int(B)$

4.
$$int(A \cup B) \subset int(A) \cup int(B)$$

Definição (**Ponto Limite**). Seja (M, d) espaço metrico e $A \subset M$. Dizemos que $x \in M$ é **ponto limite** de A, se $\forall \varepsilon > 0$ temos que $B(x, \varepsilon) \cap A \setminus x \neq \emptyset$. Conjunto de todos os pontos limites de A: A'.

Definição (Ponto Isolado). Dizemos que x é ponto isolado de A, se $x \in A \setminus A'$, ou seja, $\exists \varepsilon > 0$ tal que $B(x,\varepsilon) \cap A \setminus x = \emptyset$

Definição (Conjunto Fechado). Dizemos que $F \subset M$ é um conjunto fechado se $F' \subset F$.

Proposição. (M, d) espaço metrico e $A \subset M$. A é aberto $\Leftrightarrow A^c$ é fechado.

Definição (Fecho). Definimos o fecho de um conjunto A como $\overline{A} = A \cup A'$.

Proposição. Valem:

1.
$$x \in \overline{A} \Leftrightarrow \forall \varepsilon > 0 \ B(x, \varepsilon) \cap A \neq \emptyset$$

2.
$$F \notin fechado \Leftrightarrow \overline{F} = F$$

Definição (**Denso**). (M, d) espaço metrico, $A \subset M$. Dizemos que A é **denso** se $\overline{A} = M$.