Room monitoring example using z64 processor

BY ANTONIO BERNARDINI

1 Project

1.1 Requirements

A room is monitored by four temperature sensors (therefore a SENSOR peripheral must be set up), which are driven by a z64 processor. The latter constantly checks that the average temperature value detected in the room is within the range $[T_{\min}, T_{\max}]$.

If the temperature does not fall within this range, the microprocessor sends an alarm signal to a specific peripheral (ALARM). The alarm signal used is the value 1 coded with 8 bits. If the temperature returns to the range $[T_{\min}, T_{\max}]$, the CPU transmits the value 0 to the peripheral.

The sensors return the measured temperature as a 16-bit integer, using tenths of a degree Celsius as the unit of measurement.

Write Assembly code to control temperature sensors and of the ALARM peripheral, using the interruption mechanism vectorized.

1.2 Implementation

1.2.1 Hardware

Below are the project choices:

- The temperature measurements of the four sensors are stored within a vector of four elements
- When the system starts, the four measures are forced to the center of the interval $[T_{\min}, T_{\max}]$
- The SENSOR is an input device consisting of a read-only register that contains the measured value
- If the temperature is negative, the sensor still returns the value 0
- ALARM is an output device, which activates/deactivates a siren flashing. A flip/flop connected
 to the least significant bit of the data bus turns the alarm on/off when set/reset.
- ALARM is a passive peripheral: it does not have a CU

The ALARM peripheral is represented as following:

Figure 1. The ALARM peripheral

The ${\tt SENSOR}$ peripheral is represented as following:

 $\begin{tabular}{ll} \textbf{Figure 2.} & The SENSOR peripheral \\ \end{tabular}$

1.2.2 Firmware

So, a possible firmware implementation can be found here.