1 Séance 3 fév 2021

Définition 1. Une relation d'équivalence $\sim sur$ un ensemble $E: \sim \subseteq E \times E$

- 1. reflexivité: $\forall x \in E : x \sim x$
- 2. symétrie: $\forall (x, y) \in E^2$: $(x \sim y) \Rightarrow (y \sim x)$
- 3. transitivité: $\forall (x, y, z) \in E^3$: $(x \sim y) \land (y \sim z) \Rightarrow (x \sim z)$

Exercice. (Ch1 Ex0.1) Relation d'équivalence? Si oui, déterminer les cl d'éq & quotient

- 1. $(\mathbb{R}, <)$.
- 2. (\mathbb{Z}, \sim) où $x \sim y \Leftrightarrow |x y| < 1$.
- 3. (\mathbb{Z}, \sim) où $x \sim y \Leftrightarrow 2 \mid x y$ (pour $a, b \in \mathbb{Z}$, $a \mid b$ si'il existe $c \in \mathbb{Z}$ t.q. b = ac)
- 4. $(\{0,1\},\neq)$.
- 5. (\mathbb{R}^2, \sim) où $(x, y) \sim (x', y') \Leftrightarrow x = x'$.

Solution.

- 1. $0 \le 1$ mais $1 \not\le 0$, donc \le n'est pas une rel d'éq.
- 2. $|0-1| \le 1$, $|1-2| \le 2$ mais $|0-2| \not \le 1$, donc $|\cdot \cdot| \le 1$ n'est pas une relation d'éq.
- 3. Oui: 0 est pair; si x-y est pair, alors y-x l'est aussi; si x-y,y-z sont pairs, alors x-z=(x-y)+(y-z) est pair. Il y a 2 cls d'éq: {pairs}, {impairs}}. L'ensemble quotient: $\mathbb{Z}/2\mathbb{Z}=\{\{\text{pairs}\}, \{\text{impairs}\}\}$
- 4. Ce n'est pas réflexive: 0 = 0.
- 5. Oui. Les cls d'éq: $C_x := \{(x, y) \mid y \in \mathbb{R}\}$ « les droites verticales ». L'ensemble quotient: $\{C_x \mid x \in \mathbb{R}\}$. On peut identifier C_x avec $x \in \mathbb{R}$.

Pour tout $(x, y) \in \mathbb{R}^2$, les éléments $(x', y') \sim (x, y)$ ssi x = x'.

Exemple 2. Pour \mathbb{R} , la relation $x \sim y \iff x - y \in \mathbb{Q}$ est une relation d'éq. Pour tout $x \in \mathbb{R}$, $C_x := x + \mathbb{Q} = \{x + r \mid r \in \mathbb{Q}\}$. Il n'y pas de forme très simplifié pour cet ensemble quotient.

Définition 3. Un ensemble E de foncs $\mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ est dit universellement stable ssi

- 1. (limite d'une suite) $\forall (f_n) \in E^{\mathbb{N}} : (\forall x \in \mathbb{R}^d : \lim_{n \to \infty} f_n(x) = f(x)) \Longrightarrow f \in E$
- 2. (opération d'algèbre) $\forall f \in E, \forall g \in E: f + g \in E \text{ et } fg \in E.$
- 3. $\forall f \in E, \forall L \in \operatorname{Aff}(\mathbb{R}^d, \mathbb{R}^d) : f \circ L \in E \text{ où } \operatorname{Aff}(\mathbb{R}^d, \mathbb{R}^d) := \mathbb{R}^d + \mathcal{L}(\mathbb{R}^d, \mathbb{R}^d)$ $(quand \ d = 1, \ \operatorname{Aff}(\mathbb{R}, \mathbb{R}) = \{ f \mid f(x) = ax + b, (a, b) \in \mathbb{R}^2 \}, \ quand \ d = 2,$ $\operatorname{Aff}(\mathbb{R}^2, \mathbb{R}^2) = \{ \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} d \\ e \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \} \}$
- 4. (sup et inf dénombrable) $\forall (f_n) \in E^{\mathbb{N}} : \sup_{n \in \mathbb{N}} f_n \in E \text{ et } \inf_{n \in \mathbb{N}} f_n \in E$.
- 5. (division) $\forall f \in E, \forall g \in E: (\forall x \in \mathbb{R}^d: g(x) \neq 0) \Longrightarrow f/g \in E.$

Remarque 4. (sup et inf finie) Pour $(f,g) \in E^2$: min $(f,g) \in E$ et max $(f,g) \in E$. En effet, prendre la suite $(f_n) \in E^{\mathbb{N}}$ définie par $f_0 = f$ et $f_n = g$ pour $n \in \mathbb{N}_{>0}$, alors $\sup_{n \in \mathbb{N}} f_n = \max\{f,g\}$ et $\inf_{n \in \mathbb{N}} f_n = \min\{f,g\}$.

Remarque 5. 4 implique 1: soit $(f_n) \in E^{\mathbb{N}}$ t.q. $\forall x \in \mathbb{R}^d$, la limite $f(x) := \lim_{n \to \infty} f_n(x)$ existe. Alors pour tout $k \in \mathbb{N}$, par 4, on a $E \ni g_k : \mathbb{R}^d \to \mathbb{R}$, $x \mapsto \sup_{n \ge k} f_k(x)$. Alors $f(x) = \inf_{k \in \mathbb{N}} g_k(x)$, donc $f \in E$ par 4. On a utilisé le lemme.

Lemme 6. Soit $(a_n) \in (\overline{\mathbb{R}}_+)^{\mathbb{N}}$ t.q. $\lim_{n \to \infty} a_n$ existe $(dans \ \overline{\mathbb{R}}_+)$. On note $a := \lim_n a_n$. Alors $a = \inf_{k \in \mathbb{N}} \sup_{n \ge k} a_n = \lim_{k \to \infty} \sup_{n \ge k} a_n$.

Démonstration. Quand $a \in \mathbb{R}$, alors pour tout $\varepsilon > 0$, il existe $k \in \mathbb{N}$ t.q. pour tout $n \ge k$, on a $|a_n - a| < \varepsilon$, donc pour tout $k' \ge k$: $|\sup_{n \ge k'} a_n - a| \le \varepsilon$. Donc $\lim_{k \to \infty} \sup_{n > k} a_n = a$. Le cas $a = +\infty$ est similaire.

Définition 7. Une tribu, ou une σ -algèbre sur un esemble X: Un ensemble $\mathcal{A} \subseteq \mathcal{P}(X)$ t,q.

- 1. (non-vide) $A \neq \emptyset$
- 2. (complémentaire) $\forall E \in \mathcal{A}: X \setminus E \in \mathcal{A}$.
- 3. (union dénombrable) $\forall (E_n) \in \mathcal{A}^{\mathbb{N}} : \bigcup_{n=0}^{\infty} E_n \in \mathcal{A}$.

Remarque 8. C'est important que l'union en question est dénombrable.

Exercice. (Ch1 Ex1.3) Soient E un ensemble et $A \subseteq \mathcal{P}(X)$ une tribu. Montrer que

- 1. $\emptyset \in \mathcal{A}$ et $X \in \mathcal{A}$.
- 2. (union finie) $\forall (E, F) \in \mathcal{A}^2 : E \cup F \in \mathcal{A}$.
- 3. (intersection dénombrable) $\forall (E_n) \in \mathcal{A}^{\mathbb{N}} : \bigcap_{n=0}^{\infty} E_n \in \mathcal{A}$.

Solution.

- 1. Comme $A \neq \emptyset$, il existe $E \in A$. Alors $X \setminus E \in A$, donc $X = E \cup (X \setminus E) \in A \Longrightarrow \emptyset = X \setminus X \in A$.
- 2. On prend la suite $(E_n) \in \mathcal{A}^{\mathbb{N}}$ donné par $E_0 := E$ et $E_n := F$ pour tout $n \in \mathbb{N}_{>0}$. Alors $\mathcal{A} \ni \bigcup_{n=0}^{\infty} E_n = E_0 \cup (\bigcup_{n=1}^{\infty} E_n) = E \cup F$.

3. $(E_n) \in \mathcal{A}^{\mathbb{N}}$. Pour tout $n \in \mathbb{N}$, $F_n := X \setminus E_n \in \mathcal{A}$, alors $\bigcup_{n=0}^{\infty} F_n \in \mathcal{A} \Longrightarrow X \setminus (\bigcup_{n=0}^{\infty} F_n) \in \mathcal{A}$. $X \setminus \bigcup_{n=0}^{\infty} F_n = \bigcap_{n=1}^{\infty} (X \setminus F_n) = \bigcap_{n=1}^{\infty} E_n$.

Remarque 9. (intersection finie) Une tribu est aussi stable par intersection finie.

Remarque 10. (complément rélatif) Pour tout $E, F \in \mathcal{A}$, on a $E \setminus F \in \mathcal{A}$. En effet, $E \setminus F = E \cap (X \setminus F)$.

Pré-définition 11. Fonctions mesurables $f \in \mathcal{M}$ ($\mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$), l'intégrale de Lebesgue $\int sur \mathcal{M}^+$:

- 1. $1_U \in \mathcal{M}$ pour tout ouvert $U \subseteq \mathbb{R}^d$.
- 2. $C^0(\mathbb{R}^d, \mathbb{R}) \subseteq \mathcal{M}$.
- 3. M est universellement stable.

L'intégrale de Lebesgue \int :

- 1. $\forall (f,g) \in (\mathcal{M}^+)^2, \forall (\lambda,\mu) \in \mathbb{R}^2_{\geq 0}: \int (\lambda f + \mu g) = \lambda \int f + \mu \int g.$
- 2. Pour $a_1 \le b_1, \dots, a_d \le b_d$, on $a \int_{[a_1,b_1] \times \dots \times [a_d,b_d]} = (b_1 a_1) \cdots (b_d a_d)$.
- 3. (Beppo-Levi = convergence croissante) Soit $(f_n) \in (\mathcal{M}^+)^{\mathbb{N}}$ une suite croissante, alors

$$\int \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int f_n$$

4. Pour toute $f \in \mathcal{M}^+$ t.q. $\int f < +\infty$, alors pour tout $\varepsilon > 0$, il existe $\varphi \in C_c(\mathbb{R}^d, \mathbb{R}_{\geq 0})$ (C_c est l'ensemble de fonctions continues dont le support est compact, c'est-à-dire, il existe un ensemble $K \subseteq_{\text{cpct}} \mathbb{R}^d$ t.q. pour tout $x \in \mathbb{R}^d \setminus K$, on a $\varphi(x) = 0$). t.q. $\int |f - \varphi| < \varepsilon$.

Remarque 12. $C^0(\mathbb{R}^d, \mathbb{R}) \subseteq \mathcal{M}$ est stable par somme, produit, composition à droite par des apps affines et par division, mais il n'est pas stable par limite d'une suite ou par sup ou inf (opération « analytique »).

Remarque 13. (\mathcal{M} stable par -) Tout d'abord, les fonctions contantes sont continues, donc $\in \mathcal{M}$. En particulier, $-1 \in \mathcal{M}$. Donc pour tout $f \in \mathcal{M}$, on a -f = (-1) $f \in \mathcal{M}$ comme \mathcal{M} est universellement stable. Par conséquent, pour tout $(f,g) \in \mathcal{M}^2$, $f-g \in \mathcal{M}$.

Définition 14. Un sous-ensemble $E \subseteq \mathbb{R}^n$ est mesurable si 1_E est mesurable.

Remarque 15. Les sous-ensembles mesurables constituent une tribu.

Remarque 16. Les ouverts $U \subseteq \mathbb{R}^n$ sont mesurables. Les fermés les sont aussi.

Exercice. (Ch1 Ex1.4) Si $f: \mathbb{R}^d \to \mathbb{R}$ est mesurable, alors les ensembles $\{f < a\}, \{f = a\}$ et $\{f > a\}$ le sont aussi.

Solution. Comme $\{f < a\} = \{f - a < 0\}$, et $f \in \mathcal{M} \Leftrightarrow f - a \in \mathcal{M}$, on peut supposer que a = 0.

- $\{f>0\}$ est mesurable. $\{f>0\} = \{\max\{f,0\}>0\}$ et $\max\{f,0\} \in \mathcal{M}$. Donc en remplaçant f par $\max\{f,0\}$, on peut supposer que $f\geq 0$. On prend $g_n: \mathbb{R}^d \to \mathbb{R}, x \mapsto f(x)/(f(x)+1/n)$. Comme $f\in \mathcal{M}$, on a $f+1/n\in \mathcal{M}$. De plus, $\forall x\in \mathbb{R}^d$: $f(x)+1/n\geq 1/n>0$, alors $g_n\in \mathcal{M}$ (\mathcal{M} est stable par division). Pour tout $x\in \mathbb{R}^d$, $\mathcal{M}\ni \lim_{n\to\infty}g_n(x)=\begin{cases} 1 & f(x)>0\\ 0 & f(x)=0 \end{cases}=1_{\{f>0\}}$. Par définition, $\{f>0\}$ est mesurable.
- $\{f < 0\}$ est mesurable. Comme $-f \in \mathcal{M}$, on a $\{f < 0\} \Leftrightarrow \{-f > 0\}$ est mesurable.

 $\{f = 0\}$ est mesurable. $\{f = 0\} = \mathbb{R}^d \setminus (\{f > 0\} \cup \{f < 0\}).$

Remarque 17. $f: \mathbb{R}^d \to \mathbb{R}$ est mesurable, alors pour tout $(a,b) \in \mathbb{R}^2$, on a l'ensemble $\{a < f < b\} = \{f > a\} \cap \{f < b\}$ est mesurable. Les ensembles $\{a \le f < b\} = \{f = a\} \cup \{a < f < b\}, \{a < f \le b\}$ et $\{a \le f \le b\}$ le sont aussi.

Définition 18. La mesure de Lebesgue λ d'un ensemble mesurable E est $\int 1_E$.

Remarque 19.

- 1. $\int 0 = 0$: $\int 0 = \int (0.0 + 0.0) = 0$ $\int 0 + 0$ $\int 0 = 0$. Par conséquent, $\lambda(\emptyset) = 0$.
- 2. $\lambda([a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d]) = (b_1 a_1) (b_2 a_2) \cdots (b_d a_d)$ « le volumn ».
- 3. Soient $E \subseteq F$ deux ensembles mesurables, alors $\lambda(E) \le \lambda(F)$. En effet, $F \setminus E$ est mesurable, et $1_F = 1_E + 1_{F \setminus E}$. Donc $\lambda(F) = \lambda(E) + \lambda(F \setminus E) \ge \lambda(E)$. En particulier, si $\lambda(E) = +\infty$, alors $\lambda(F) = +\infty$.
- 4. Soit $E \subseteq \mathbb{R}^d$ un sous-ensemble. Si pour tout $n \in \mathbb{N}$, on a un sous-ensemble mesurable $E_n \subseteq E$ t.q. $\lambda(E_n) \ge n$, alors $\lambda(E) = +\infty$. En effet, $\lambda(E) \ge \lambda(E_n) \ge n$ pour tout $n \in \mathbb{N}$.

Exercice. (Ch1 Ex1.5)

- 1. Soit (A_n) une suite croissante d'ensembles mesurables de \mathbb{R}^d . Montrer que $\lim_{n\to\infty} \lambda(A_n) = \lambda(\bigcup_{n=1}^{\infty} A_n)$.
- 2. Trouver une suite (A_n) décroissante d'ensembles mesurables de \mathbb{R}^d t.q. $\lim_{n\to\infty} \lambda(A_n) \neq \lambda(\bigcap_{n=1}^{\infty} A_n)$ [Indication: on peut prendre une suite (A_n) d'ouverts t.q. $\lambda(A_n) = +\infty$ mais $\bigcap_{n=0}^{\infty} A_n = \emptyset$].
- 3. Quand $\lim_{n\to\infty} \lambda(A_n) = \lambda(\bigcap_{n=0}^{\infty} A_n)$?

Solution.

- 1. Par hypothèse, $\lim_{n\to\infty} 1_{A_n} = 1_A$ où $A = \bigcup_{n=1}^{\infty} A_n$, (1_{A_n}) est croissante, alors par Beppo-Levi, $\lambda(A) = \int 1_A = \lim_{n\to\infty} \int 1_{A_n} = \lim_{n\to\infty} \lambda(A_n)$.
- 2. Quand d=1, on prend $A_n=]n, +\infty[$. Alors $A_n\supseteq [2\,n,k\,n]$ pour tout k>2 et $\lambda([2\,n,k\,n])=k\,n-2\,n=(k-2)\,n$. Prenons $k\to\infty$, on a $\lambda(A_n)=+\infty$. Mais $\bigcap_{n=1}^\infty A_n=\varnothing$ [pour d qqlc, similaire].
- 3. S'il existe $n \in \mathbb{N}$ t.q. $\lambda(A_n) < +\infty$, alors $\lim_{n \to \infty} \lambda(A_n) = \lambda(\bigcap_{n=0}^{\infty} A_n)$. On peut supposer que n=0. On prend $A:=A_0$. Alors la suite $(A \setminus A_n)_{n \in \mathbb{N}}$ est croissante. Donc $\lambda(\bigcup_{n=0}^{\infty} (A \setminus A_n)) = \lim_{n \to \infty} \lambda(A \setminus A_n)$. On remarque que $\lambda(\bigcup_{n=0}^{\infty} (A \setminus A_n)) \leq \lambda(A) < +\infty$ et $\bigcup_{n=0}^{\infty} (A \setminus A_n) = A \setminus \bigcap_{n=0}^{\infty} A_n$, alors $\lambda(A) = \lambda(\bigcap_{n=0}^{\infty} A_n) + \lambda(\bigcup_{n=0}^{\infty} (A \setminus A_n)) = \lambda(\bigcap_{n=0}^{\infty} A_n) + \lim_{n \to \infty} \lambda(A \setminus A_n) = \lambda(\bigcap_{n=0}^{\infty} A_n) + \lim_{n \to \infty} \lambda(A) \lambda(A_n)$. Donc on peut conclure que $\lim_{n \to \infty} \lambda(A_n) = \lambda(\bigcap_{n=0}^{\infty} A_n)$.

2 Séance 10 fév 2021

Rappelons que la mesure λ de Lebesgue sur \mathbb{R}^d satisfait

- 1. $\lambda(\varnothing) = 0$.
- 2. $\lambda([a_1, b_1] \times \cdots \times [a_d, b_d]) = (b_1 a_1) \cdots (b_d a_d)$ pour $a_1, \dots, a_d, b_1, \dots, b_d \in \mathbb{R}, a_i \leq b_i$.
- 3. Soient E, F deux ensembles mesurables disjoints, alors $\lambda(E \sqcup F) = \lambda(E) + \lambda(F)$.
- 4. (**Beppo-Levi**) Soit $(E_n)_{n\in\mathbb{N}}$ une suite croissante d'ensembles mesurables dans \mathbb{R}^d . Posons $E = \bigcup_{n=1}^{\infty} E_n$. Alors $\lambda(E) = \lim_{n\to\infty} \lambda(E_n)$.

Exemple 20. Déterminer $\lambda([a,b[),\lambda(]a,b])$ et $\lambda(]a,b[)$ pour $(a,b) \in \mathbb{R}^2$, a < b.

Solution. Pour $\lambda([a,b[), \text{ on a } b-a=\lambda([a,b])=\lambda([a,b[)+\lambda(\{b\})=\lambda([a,b[), b[), b])=b-a \text{ et } \lambda([a,b[)=b-a.$

Alternativement, $[a, b] = \bigcup_{n>1/(b-a), n\in\mathbb{N}} [a, b-1/n]$, donc $\lambda([a, b]) = \lim_{n\to\infty} \lambda([a, b-1/n]) = \lim_{n\to\infty} ((b-1/n)-a) = b-a$.

Exemple 21. Plus généralement, déterminer $\lambda(I_1 \times \cdots \times I_d)$ où (I_1, \dots, I_d) est une suite d'intervalles en terms de $\lambda(I_j)$. Par exemple, $\lambda([0, 1] \times [0, 1[\times]2, 3] \times]3, 4[)$.

Solution. En effet, $\lambda(I_1 \times \cdots \times I_d) = \lambda(I_1) \lambda(I_2) \cdots \lambda(I_d)$. Pour tout intervalle I_j , il existe une suite croissante d'intervalles fermés $\left(I_j^{(n)}\right)_{j \in \mathbb{N}}$ t.q. $\bigcup_{j=0}^{\infty} I_j^{(n)} = I_j$ et $\lim_{n \to \infty} \lambda\left(I_j^{(n)}\right) = \lambda(I_j)$. Dans ce cas, on peut montrer que $\bigcup_{n=0}^{\infty} I_1^{(n)} \times \cdots \times I_d^{(n)} = I_1 \times \cdots \times I_d$.

(« \subseteq » est évident. En revanche, pour tout $(x_1, \ldots, x_d) \in I_1 \times \cdots \times I_d$, il existe $(r_1, \ldots, r_d) \in \mathbb{N}^d$ t.q. $x_j \in I_j^{(r_d)}$. Alors $(x_1, \ldots, x_d) \in I_1^{(r_1)} \times \cdots \times I_d^{(r_d)}$)

Alors $\lambda(I_1 \times \cdots \times I_d) = \lim_{n \to \infty} \lambda(I_1^{(n)}) \cdots \lambda(I_d^{(n)}) = \lambda(I_1) \cdots \lambda(I_d)$.

En général, λ « volume »:

Subdivision Soient $U \subseteq \mathbb{R}^d$ un ouvert et $N \in \mathbb{N}$. On note $P_N(a_1, \ldots, a_d) := \left[\frac{a_1}{N}, \frac{a_1+1}{N}\right[\times \cdots \times \left[\frac{a_d}{N}, \frac{a_d+1}{N}\right] \text{ pour } (a_1, \ldots, a_d) \in \mathbb{Z}^d.$ et $Q_N := \{P_N(a_1, \ldots, a_d) \mid (a_1, \ldots, a_d) \in \mathbb{Z}^d\}$. Remarquons que Q est dénombrable (il y a une bijection $\mathbb{Z}^d \to Q_N$). Alors

- 1. $\mathbb{R}^d = \bigsqcup_{C \in O_N} C$ (où \sqcup est la réunion disjointe).
- $2. \bigsqcup_{C \in Q_N, C \subseteq U} C \subseteq U.$
- 3. $U \subseteq \bigsqcup_{C \in Q_N, C \cap U \neq \emptyset} C$.

Donc $\lambda(\bigsqcup_{C \in Q_N, C \subset U} C) \subseteq \lambda(U) \subseteq \bigsqcup_{C \in Q_N, C \cap U \neq \varnothing} C$, ou équivalemment,

$$\frac{\#\{C\in Q_N\,|\,C\subseteq U\}}{N^d}\leq \lambda(U)\leq \frac{\#\{C\in Q_N\,|\,C\cap U\neq\varnothing\}}{N^d}$$

Figure 1. Subdivision de \mathbb{R}^2

Exemple 22. Montrer que $\lambda(T := \{(x, y) \in \mathbb{R}^2_{>0} | x + y < 1\}) = 1/2$. Plus généralement, on a $\lambda(\{(x_1, \dots, x_d) \in \mathbb{R}^d_{>0} | x_1 + \dots + x_d < 1\}) = 1/d!$.

Solution. $N \to \infty$, $\#\{C \in Q_N \mid C \subseteq T\}$ est un polynôme $N^2/2 + \cdots$ de dégré 2, $\#\{C \in Q_N \mid C \cap T \neq \varnothing\}$ l'est aussi. $\frac{\#\{C \in Q_N \mid C \subseteq T\}}{N^d} \le \lambda(T) \le \frac{\#\{C \in Q_N \mid C \cap T \neq \varnothing\}}{N^d}$. Prendre $N \to \infty$, on en déduit que $\lambda(T) = 1/2$.

Problème 1. (subdivision dyadique) Posons $Q_{(2)} := \bigcup_{k=0}^{\infty} Q_{2^k}$ « les cubes dyadiques »

- 1. Montrer que pour tout $C, D \in Q_{(2)}$, on a soit $C \subseteq D$, soit $D \subseteq C$, soit $C \cap D = \emptyset$.
- 2. Considérons l'ensemble $E = \{C \in Q_{(2)} \mid C \subseteq U\}$. On dit qu'un objet $C \in E$ est maximal s'il n'y a aucun objet $D \in E$ t.q. $D \supseteq C$. On note $F \subseteq E$ le sous-ensemble des objets maximaux. Montrer que $U = \bigsqcup_{C \in F} C$.
- 3. Montrer que F est soit fini, soit dénombrable ($Q_{(2)}$ est une réunion d'ensembles dénombrable, donc dénombrable, et $F\subseteq Q_{(2)}$). Donc $\lambda(U)=\sum_{C\in F}\lambda(C)$ (par Beppo-Levi + linéarité).

Remarque 23. $\lambda(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} \lambda(E_n)$: $1_{\bigcup_{n=1}^{\infty} E_n} \leq \sum_{n=1}^{\infty} 1_{E_n}$ et on prend $\int_{\mathbb{R}^d}$.

Remarque 24. (Dénombrables)

- 1. \mathbb{N}, \mathbb{Z} sont dénombrable.
- 2. Soient E, F ensembles dénombrables, $E \times F$ l'est aussi.
- 3. Un sous-ensemble infini d'un ensemble dénombrable est dénombrable.
- 4. Soient F un ensemble dénombrable et E un ensemble infi. S'il existe une surjection $F \twoheadrightarrow E$, alors E est dénombrable (parce que $F \twoheadrightarrow E$ admet une section $E \hookrightarrow F$ t.q. la composée $E \hookrightarrow F \twoheadrightarrow E$ est une injection, AC).
- 5. \mathbb{Q}^d est dénombrable.

Exercice. (Ch1 Ex1.6) Considérons (\mathbb{R}^d , λ).

- 1. Montrer que λ est σ -finie: il existe une suite croissante $(E_n)_{n\in\mathbb{N}}$ d'ensembles mesurables t.q. $\mathbb{R}^d = \bigcup_{n=1}^{\infty} E_n$ et $\forall n \in \mathbb{N}: \lambda(E_n) < +\infty$ [Indication: on peut prendre une suite $(E_n)_{n\in\mathbb{N}}$ de cubes fermés].
- 2. Montrer que $\forall K \subseteq_{\text{cpct}} \mathbb{R}^d : \lambda(K) < +\infty$.
- 3. Un ouvert de \mathbb{R}^d de mesure finie est-il forcément borné?
- 4. Un ouvert dense de \mathbb{R}^d peut-il être de mesure finie?

Solution.

1. $E_n = [-n, n] \times \cdots \times [-n, n]$.

- 2. Il existe $n \in \mathbb{N}$ t.q. $K \subseteq E_n$.
- 3. Non. $\bigcup_{n=2}^{\infty}]n, n+2^{-n}[$ quand d=1. Pour d>1, voir la quatrième.
- 4. Oui. Tout d'abord, \mathbb{Q}^d est dénombrable ($\mathbb{Z} \subseteq \mathbb{Q} \leftarrow \mathbb{Z} \times \mathbb{N}_{>0}$ est dénombrable): $\mathbb{Q}^d = \{p_1, p_2, \ldots\}$. Alors on prend $E_n := p_n +] 2^{-n}, 2^{-n}[\times \cdots \times] 2^{-n}, 2^{-n}[$ (il s'agit un cube ouvert dont le centre est p_n et le côté est 2^{1-n} , donc $\lambda(E_n) = (2^{1-n})^d$). Alors comme \mathbb{Q}^d est dense, $\bigcup_{n=1}^{\infty} E_n \supseteq$

Remarque 25. Soient $E \subseteq \mathbb{R}^d$ et $F \subseteq \mathbb{R}^{d'}$ deux parties denses, alors $E \times F \subset \mathbb{R}^{d+d'}$ est dense.

 \mathbb{Q}^d l'est aussi. $\lambda(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} \lambda(E_n) = \sum_{n=1}^{\infty} (2^{1-n})^d \leq 2$.

Définition 26. Soit $E \subseteq \mathbb{R}^d$ une partie. L'intérieure $\operatorname{Int}(E)$ est défini par $\{x \in E \mid \exists r > 0 \colon B_r(x) \subseteq E\}$.

Corollaire 27. Int(E) est ouvert.

Corollaire 28. $\operatorname{Int}(E) = \bigcup_{U \subset_{\operatorname{ouvert}} E} U$.

Définition 29. Une partie $E \subseteq \mathbb{R}^d$ est dite dense si pour tout $x \in \mathbb{R}^d$ et tout r > 0, $E \cap B_r(x) \neq \emptyset$.

Corollaire 30. $E \subseteq \mathbb{R}^d$ est dense ssi $\operatorname{Int}(\mathbb{R}^d \setminus E) = \emptyset$.

Exercice. (Ch1 Ex1.7)

- 1. Montrer qu'une réunion dénombrable d'ensembles négligeables est négligeable. Est-ce vrai sans le mot « dénombrable »?
- 2. Que vaut la mesure de Lebesgue de \mathbb{R}^d ?
- 3. Trouver un ensemble dense $E \subseteq \mathbb{R}^d$ qui est négligeable.

- 4. Montrer que le complémentaire d'un ensemble négligeable est dense.
 - 5. Montrer que le plan $\{x_3=0\}$ est de mesure nulle dans \mathbb{R}^3 .

Solution.

- 1. Soit (E_n) une suite d'ensembles négligeables, alors $\lambda(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} \lambda(E_n) = 0$. On ne peut pas enlever le mot « dénombrable »: $[0,1] = \bigcup_{x \in [0,1]} \{x\}$.
- 2. $\mathbb{R}^d = \bigcup_{n=1}^{\infty} [-n, n]^d$ alors $\lambda(\mathbb{R}^d) = \lim_{n \to \infty} \lambda([-n, n]^d) = \lim_{n \to \infty} (2n)^d = +\infty$.
- 3. $E = \mathbb{Q}^d$: un ensemble dénombrable est négligeable.
- 4. Soit $E \subseteq \mathbb{R}^d$ une partie négligeable. Il suffit de montrer que $\operatorname{Int}(E) = \emptyset$. On remarque que $\operatorname{Int}(E)$ est ouvert et négligeable. Sinon, il existe un cube (non-vide) $C \subseteq \operatorname{Int}(E)$, alors $\lambda(\operatorname{Int}(E)) \ge \lambda(C) > 0$.
- 5. En général, $E \subseteq \mathbb{R}^d$ est négligeable ssi pour tout $N \in \mathbb{N}$, on a $E \cap [-N, N]^d$ est négligeable.

Ici,
$$\lambda(\{x_3=0\}\cap[-N,N]^3) = \lambda([-N,N]^2\times\{0\}) = 0.$$

Problème 2. Existe-il un ensemble négligeable infini non dénombrable? La réponse c'est oui. Voir les exercices supplémentaires.

Définition 31. (Intégrable) Une fonction $f: \mathbb{R}^d \to \mathbb{C}$ est dite intégrable $si \int_{\mathbb{R}^d} |f| < +\infty$. $f \in \mathcal{L}^1(\mathbb{R}^d, \lambda)$.

Définition 32. Soit $f: \mathbb{R}^d \to \mathbb{C}$ une fonction intégrable. L'integrale $\int_{\mathbb{R}^d} f$:

Une fonction réelle. $\int_{\mathbb{R}^d} f := \int_{\mathbb{R}^d} f^+ - \int_{\mathbb{R}^d} f^-$ où les fonctions $f^+ = \max\{f, 0\}$ et $f^- = \max\{-f, 0\}$ sont intégrables.

Une fonction complexe. $\int_{\mathbb{R}^d} f := \int_{\mathbb{R}^d} \operatorname{Re}(f) + \mathrm{i} \int_{\mathbb{R}^d} \operatorname{Im}(f)$ où les fonctions $\operatorname{Re}(f)$ et $\operatorname{Im}(f)$ sont intégrables.

Proposition 33. (Linéarité) $f, g \in \mathcal{L}^1$, $\lambda, \mu \in \mathbb{C} \Rightarrow \lambda f + \mu g \in \mathcal{L}^1$ et $\int (\lambda f + \mu g) = \lambda \int f + \mu \int g$.

Proposition 34. (Inégalité triangulaire) $|\int f| \le \int |f|$.

Exercice. (Ch1 Ex1.10, Ex1.11(1)) Soit $f: \mathbb{R}^d \to [0, +\infty]$ mesurable. Montrer que

- 1. Pour tout $a \in \mathbb{R}_{>0}$, on a $\lambda(\{f > a\}) \leq a^{-1} \int_{\mathbb{R}^d} f$.
- 2. Si $\int_{\mathbbm R^d}\!f<+\infty,$ alors fest finie p.p, c'est-à-dire, $\{f=+\infty\}$ est négligeable.
- 3. Si $\int_{\mathbb{R}^d} f = 0$, alors f = 0 p.p.

Solution.

- 1. $a 1_{\{f>a\}} \le f$ alors $a \lambda(\{f>a\}) \le \int f$.
- 2. Tout d'abord, $\{f=+\infty\}=\bigcap_{n=1}^\infty \{f>n\}$ est mesurable. Comme $\int_{\mathbb{R}^d} f < +\infty, \ \lambda(\{f>1\}) < +\infty. \ \text{Alors} \ \lambda(\bigcap_{n=1}^\infty \{f>n\}) = \lim_{n\to\infty} \lambda(\{f>n\}) = \lim_{n\to\infty} n^{-1} \int_{\mathbb{R}^d} f = 0.$
- 3. $\{f>0\}=\bigcup_{n=1}^{\infty}\{f>1/n\}$. Comme $\lambda(\{f>1/n\})=n\int_{\mathbb{R}^d}f=0$, on a $\{f>0\}$ est négligeable.

Exercice. (Ch1 Ex1.12) Soit $f: \mathbb{R}^d \to \mathbb{C}$ une fonction intégrable. Montrer la continuité de l'intégrale: pour tout $\varepsilon > 0$, il existe $\delta > 0$ t.q. pour toute partie mésurable $A \subseteq \mathbb{R}^d$ avec $\lambda(A) < \delta$, on a $\int_A |f| := \int_{\mathbb{R}^d} 1_A |f| < \varepsilon$.

Solution. Tout d'abord, si la fonction f est borné, i.e. il existe M>0 t.q. $|f|\leq M$, alors l'énoncé est vrai: on peut prendre $\delta=\varepsilon/M$, alors pour tout A avec $\lambda(A)<\delta$, on a $\int_A |f|\leq M\lambda(A)<\delta\,M=\varepsilon$.

En général, on a une suite croissante $(1_{\{|f| \leq M\}} |f|)_{M \in \mathbb{N}}$ avec $\lim_{M \to \infty} 1_{\{|f| \leq M\}} |f| = |f|$. Donc par Beppo-Levi, $\lim_{M \to +\infty} \int 1_{\{|f| \leq M\}} |f| = \int |f| < +\infty$, ce qui implique que $\lim_{M \to +\infty} \int (1 - 1_{\{|f| \leq M\}}) |f| = 0 \Longrightarrow \lim_{M \to +\infty} \int 1_{\{|f| > M\}} |f| = 0$. Donc il existe $M \in \mathbb{N}$ t.q. $\int 1_{\{|f| > M\}} |f| < \varepsilon/2$.

On note que $f = 1_{\{|f| > M\}} |f| + 1_{\{|f| \le M\}} |f|$ où $\int 1_{\{|f| > M\}} |f| < \varepsilon/2$ et la fonction $1_{\{|f| \le M\}} |f|$ est bornée. Alors par la première paragraphe, il existe $\delta > 0$ t.q. pour tout A avec $\lambda(A) < \delta$, on a $\int_A 1_{\{|f| > M\}} |f| < \varepsilon/2$.

Donc
$$\int_A |f| = \int_A \mathbf{1}_{\{|f| > M\}} \, |f| + \int_A \mathbf{1}_{\{|f| \le M\}} \, |f| < \varepsilon/2 + \int_{\mathbb{R}^d} \mathbf{1}_{\{|f| \le M\}} \, |f| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Remarque 35. Quand f est bornée (le cas « bon »), l'énoncé est relativement facile à montrer. Pour le cas général, on décompose f comme une somme de deux fonctions (mesurables) dont l'une est « bonne » et l'autre « partie mauvaise » est majorée.

Une généralisation (dehors de ce cours): lemme de Calderón-Zygmund.

3 Séance 17 fév 2021

Définition 36. Soit $A \subseteq \mathbb{R}^d$ une partie mesurable. La fonction $f: A \to \mathbb{C}$ est dite mesurable si $\tilde{f}: \mathbb{R}^d \to \mathbb{C}, x \mapsto \begin{cases} f(x) & x \in A \\ 0 & x \in \mathbb{R}^d \setminus A \end{cases}$ est mesurable, intégrable si \tilde{f} est intégrable, $\int_A f = \int \tilde{f}$.

Définition 37. Une mesure μ sur \mathbb{R}^n est dite à densité s'il existe une fonction positive mesurable $f_{\mu}: \mathbb{R}^n \to \overline{\mathbb{R}}_+$ t.q. $\mu(A) = \int_A f_{\mu}$ pour toute partie mesurable $A \subseteq \mathbb{R}^n$. Dans ce cas, $\int_{\mathbb{R}^n} f \, d\mu := \int_{\mathbb{R}^n} f f_{\mu}$ est linéaire, .. (les propriétés formelles de l'intégrale de Lebesgue sauf la normlisation) Une mesure μ sur \mathbb{R}^n est dite de probabilité si $\mu(\mathbb{R}^n) = 1$.

Exercice. (Ch1 Ex1.17) On dit qu'une fonction $\varphi : \mathbb{R} \to \mathbb{R}$ est *convexe* si pour tout $x, y \in \mathbb{R}$ et $\lambda \in [0, 1]$, on a $\varphi(\lambda x + (1 - \lambda) y) \leq \lambda \varphi(x) + (1 - \lambda) \varphi(y)$.

- 1. Montrer l'existence de droites d'appui pour les fonctions convexes: en tout point de leur graphe il existe une droite passant par ce point et ne dépassant jamais le graphe. [Indication: on peut supposer que $\varphi(0)=0$ et montrer que $\varphi(x)/x \leq \varphi(y)/y$ si x<0< y]
- 2. (**Jensen**) Montrer que soit μ une mesure de probabilité à densité, alors $\varphi(\int_{\mathbb{R}^d} g \, d\mu) \leq \int_{\mathbb{R}^d} \varphi(g) \, d\mu$ pour tout $g \in L^1(\mu)$ (cf. $\varphi(\lambda_1 x_1 + \dots + \lambda_n x_n) \leq \lambda_1 \varphi(x_1) + \dots + \lambda_n \varphi(x_n)$ pour $\lambda_1 + \dots + \lambda_n = 1, \lambda_i \geq 0$).

Remarque 38. $(x,y) \in \mathbb{R}^2$, la droite $(x,\varphi(x)) \leadsto (y,\varphi(y))$ contient $(\lambda x + (1-\lambda)y, \lambda \varphi(x) + (1-\lambda)\varphi(y))$

Solution.

1. Graphe de fonction convexe:

On fixe $(x_0, y_0 = \varphi(x_0))$ sur le graphe de φ . Alors la fonction $p : \mathbb{R} \setminus \{x_0\} \to \mathbb{R}$ (pour tout x, p(x) est la pente de la droite $(x, y := \varphi(x)) \leadsto (x_0, y_0)$) est croissante.

Lemme 39. La fonction φ est convexe ssi pour tout $x_1 < x_2 < x_3$, on a

$$\frac{\varphi(x_2) - \varphi(x_1)}{x_2 - x_1} \le \frac{\varphi(x_3) - \varphi(x_1)}{x_3 - x_1} \le \frac{\varphi(x_3) - \varphi(x_2)}{x_3 - x_2}$$

Par conséquent, on a $p(x_0^-) := \lim_{x \to x_0^-} p(x) \le \lim_{x \to x_0^+} p(x) =: p(x_0^+).$

Lemme 40. Une droite passant (x_0, y_0) est une droite d'appui ssi sa pente appartient à l'intervalle $[p(x_0^-), p(x_0^+)]$. Par exemple, si φ est differentiable à x_0 , alors telle droite est unique parce que $p(x_0^-) = p(x_0^+) = \varphi'(x_0)$.

2. On prend $x_0 := \int_{\mathbb{R}^d} g \, d\mu$ et $y_0 = \varphi(x_0)$. On prend une droite d'appui de φ passant (x_0, y_0) comme le graphe de la fonction $y \mapsto k \ (x - x_0) + y_0$. Alors pour tout $x \in \mathbb{R}$, on a $\varphi(x) \ge k \ (x - x_0) + y_0$. En particulier, pour tout $x \in \mathbb{R}^d$, $\varphi(g(x)) \ge k \ (g(x) - x_0) + y_0 = k \ g(x)$

$$\begin{split} k \int_{\mathbb{R}^d} & g \, \mathrm{d}\mu + \varphi(\int_{\mathbb{R}^d} g \, \mathrm{d}\mu). \text{ Prenons } \int_A \mathrm{d}\mu, \text{ on a } \int_A \varphi \circ g \, \mathrm{d}\mu \geq k \int_{\mathbb{R}^d} g \, \mathrm{d}\mu - k \int_{\mathbb{R}^d} g \, \mathrm{d}\mu \int_{\mathbb{R}^d} 1 \, \mathrm{d}\mu + \varphi(\int_{\mathbb{R}^d} g \, \mathrm{d}\mu) \int_{\mathbb{R}^d} 1 \, \mathrm{d}\mu = \varphi(\int_{\mathbb{R}^d} g \, \mathrm{d}\mu) \text{ (on a utilisé le fait que } \int_A 1 \, \mathrm{d}\mu = \mu(A) = 1). \end{split}$$

Remarque 41. En général, une partie $E \subseteq \mathbb{R}^d$ est dite *convexe* si pour tout $(x,y) \in E^2$ et tout $\lambda \in [0,1]$, on a $\lambda x + (1-\lambda) y \in E$. Alors une fonction $\varphi : \mathbb{R} \to \mathbb{R}$ est convexe ssi l'epigraphe $\{(x,y) \mid y \geq f(x)\}$ est convexe.

Définition 42. Sommes de Riemann (particulières) Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. $S_N(f) := \sum_{k=1}^N \frac{b-a}{N} f\left(a + \frac{k(b-a)}{N}\right)$.

Théorème 43. Si $f:[a,b]\to\mathbb{R}$ est continue, alors $\int_a^b f=\lim_{N\to\infty}S_N(f)=:^{\mathrm{Riemann}}\int_a^b f(x)\,\mathrm{d}x.$

Théorème 44. (Convergence dominée) Soit $A \subseteq \mathbb{R}^d$ un ensemble mesurable, (f_n) une suite de fonctions mesurables sur A et $f: \mathbb{R}^d \to \mathbb{C}$ une fonction t,q.

- $f_n \to f \ p.p.$
- Il existe une fonction intégrable $g \ge 0$ t.q. pour tout $n \in \mathbb{N}$, $|f_n| \le g$ p.p.

Alors f est intégrable, $\int f = \lim_{n \to \infty} \int f_n$.

Exercice. (Ch1 Ex1.18) Déterminer $\lim_{n\to\infty}$ pour

1.
$$\sum_{k=0}^{n} n/(n^2+k^2)$$
.

- 2. $\sum_{k=n}^{2n} 1/k$.
- 3. $n^{-1} \sum_{k=1}^{n} \sin(k\pi/n + \pi)$.
- 4. $(n+1)^{-1} \sum_{k=-n}^{0} (e^{1/(n+1)})^k$.
- 5. $\ln n n^{-1} \sum_{k=1}^{n} \ln k$.
- 6. $n^{-1} \prod_{k=1}^{n} (k+n)^{1/n}$.

Remarque 45. Pour résoudre les exercices au-dessus, il faut réécrire les sommes comme une somme de Riemann particulier $S_n(f)$ pour quelque fonction continue f.

$$S_N(f) = \sum_{k=1}^N \frac{b-a}{N} f\left(a + \frac{k(b-a)}{N}\right) \sim \sum_{k=0}^N \frac{b-a}{N} f\left(a + \frac{k(b-a)}{N}\right) \text{ quand}$$

$$N \to \infty.$$

Solution.

- 1. $\sum_{k=0}^{n} n/(n^2+k^2) = n^{-1} \sum_{k=0}^{n} n^2/(n^2+k^2) = n^{-1} + n^{-1} \sum_{k=1}^{n} 1/(1+(k/n)^2) = n^{-1} + S_n(f)$ où $f(x) = 1/(1+x^2)$. Donc $\lim_{n\to\infty} \sum_{k=0}^{n} n/(n^2+k^2) = \int_0^1 \frac{\mathrm{d}x}{1+x^2} = \arctan 1 \arctan 0 = \pi/4$.
- 2. $\sum_{k=n}^{2n} 1/k = \frac{1}{n} + \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+k/n} \to \int_{0}^{1} \frac{dx}{1+x} = \ln(2).$
- 3. $\int_0^1 \sin(\pi x + \pi) dx = -\pi^{-1} \int_0^1 \sin(\pi x) d(\pi x) = -\pi^{-1} \int_0^\pi \sin x dx = \pi^{-1} (\cos \pi \cos 0) = -2\pi^{-1}$
- 4. $(n+1)^{-1} \sum_{k=1}^{n+1} e^{(k-(n+1))/(n+1)} = e^{-1} (n+1)^{-1} \sum_{k=1}^{n+1} e^{k/(n+1)} = e^{-1} S_{n+1}(f)$ où $f(x) = e^x$ donc $\lim_{n \to \infty} (n+1)^{-1} \sum_{k=1}^{n+1} e^{(k-1)/(n+1)} = e^{-1} \int_0^1 e^x dx = e^{-1} (e-1) = 1 e^{-1}$.
- 5. $\ln n n^{-1} \sum_{k=1}^{n} \ln k = n^{-1} (n \ln n \sum_{k=1}^{n} \ln k) = n^{-1} \sum_{k=1}^{n} (\ln n \ln k) = n^{-1} \sum_{k=1}^{n} -\ln (k/n) = S_n(g).$

On prend $g(x) = \begin{cases} -\ln x & x \in]0, 1] \\ +\infty & x = 0 \end{cases}$, alors $1_{[1/n,1]} g \to g$ quand $n \to \infty$, donc par Beppo-Levi, $\int_{1/n}^{1} g \to \int_{0}^{1} g$. $\int_{\varepsilon}^{1} g = -\int_{\varepsilon}^{1} \ln x \, dx = -\left(x \ln x |_{\varepsilon}^{1} - \int_{\varepsilon}^{1} x \, (\ln x)' \, dx\right) (x \ln x \to 0 \text{ quand } x \to 0, \text{ i.e. } y^{-1} \ln y \to 0 \text{ quand } y \to +\infty$). Donc $g \in \mathcal{L}^{1}([0,1])$.

En suite, $S_N(g) = \int_a^b E_N(g)$ où $E_N(g) := \sum_{k=1}^N 1_{[a+(b-a)(k-1)/N,a+(b-a)k/N]} g(a+k(b-a)/N).$

Lemme 46. Soit $g: [a,b] \to \mathbb{R}_{\geq 0}$ une fonction continue décroissante. Si g est intégrable sur [a,b], alors les sommes de Riemann particulières $\lim_{N\to\infty} S_N = \int_a^b g$.

 $\lim_{n\to\infty} S_n = \int_0^1 \ln x \, \mathrm{d}x = 1.$

6. $\ln(n^{-1} \prod_{k=1}^{n} (k+n)^{1/n}) = -\ln n + \sum_{k=1}^{n} n^{-1} \ln(k+n) = n^{-1} \sum_{k=1}^{n} (\ln(k+n) - \ln n) = n^{-1} \sum_{k=1}^{n} \ln(1+k/n)$. On prend $f(x) = \ln(1+x) \in C(\mathbb{R}_{\geq 0})$. Donc $\lim_{n\to\infty} \ln(\cdots) = \int_{0}^{1} \ln(1+x) \, \mathrm{d}x = \ln 2$. Par la continuïté de exp, on a $\lim_{n\to\infty} (\cdots) = \exp(\ln 2) = 2$.

Exercice. (Ch1 Ex1.13) Soit $g:[a,b] \to \mathbb{R}_{\geq 0}$ intégrable et $f:[a,b] \to \mathbb{R}$ continue. Montrer qu'il existe $\theta \in [a,b]$ t.q. $\int_a^b f(x) \, g(x) \, \mathrm{d}x = f(\theta) \int_a^b g(x) \, \mathrm{d}x$.

Solution. On prend $m := \inf \{f(x) \mid x \in [a,b]\}$ et $M := \sup \{f(x) \mid x \in [a,b]\}$. Comme f est continue, pour tout $\alpha \in [m,M]$, il existe $\theta \in [a,b]$ t.q. $f(\theta) = \alpha$. Donc il suffit de montrer que $m \int_a^b g(x) \, \mathrm{d}x \le \int_a^b f(x) \, g(x) \, \mathrm{d}x \le M \int_a^b g(x) \, \mathrm{d}x$ (quand $\int_a^b g(x) \, \mathrm{d}x = 0$, alors cela implique que $\int_a^b f(x) \, g(x) \, \mathrm{d}x = 0$. Quand $\int_a^b g(x) \, \mathrm{d}x > 0$, alors $\left(\int_a^b g(x) \, \mathrm{d}x\right)^{-1} \int_a^b f(x) \, g(x) \in [m,M]$).

En effet, $m \le f(x) \le M$ et $g(x) \ge 0 \Longrightarrow m \, g(x) \le f(x) \, g(x) \le M \, g(x)$, cela implique ce que nous devons montrer.

Exercice. (Ch1 Ex1.15) Soit $f \in C^0(\mathbb{R}_{\geq 0})$ une fonction continue intégrable.

- 1. (Traité dans le CM?) Construire une fonction continue $f \in C^0(\mathbb{R}_{\geq 0})$ intégrable t.q. $\lim_{x\to +\infty} f(x)$ n'existe pas.
- 2. Montrer que si f est uniformément continue alors $\lim_{x\to+\infty} f(x) = 0$.

Solution.

1. Tout d'abord, il existe une fonction continue $g:[-1,1]\to\mathbb{R}_{\geq 0}$ t.q. $g(-1)=g(1)=0,\,g(1)=1$ mais $\int_{-1}^1 g(x)\,\mathrm{d}x>0$ (on peut prendre g(x):=1-|x|).

En suite,
$$g_n : \mathbb{R} \to \mathbb{R}_{\geq 0}$$
, $g_n(x) = \begin{cases} g(nx) & x \in [-1/n, 1/n] \\ 0 & \text{sinon} \end{cases}$ est continue, $g_n(-1/n) = g_n(1/n) = 0$ et $\int_{\mathbb{R}} g_n = \int_{-1/n}^{1/n} g_n(x) dx = n^{-1} \int_{-1}^{1} g(x) dx$.

Alors, on peut prendre $f(x) = \sum_{k=1}^{\infty} g_{2^k}(x-2^k)$ est continue, $\int f = (\sum_{k=1}^{\infty} 2^{-k}) \int_{-1}^{1} g(x) \, \mathrm{d}x$ donc $f \in \mathcal{L}^1$ mais $f(2^k) = 1$ et $f(2^k+1) = 0$ pour tout $k \in \mathbb{N}_{>1}$. Donc $\lim_{x \to +\infty} f(x)$ n'existe pas.

2. $\lim_{x\to+\infty} f(x) = 0$ ssi pour tout $\varepsilon > 0$, il existe E > 0 t.q. pour tout x > E on a $f(x) < \varepsilon$. Sinon, il existe $\varepsilon > 0$, et une suite $(x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ croissante t.q. $\lim_{n\to\infty} x_n = +\infty$ et $f(x_n) \ge \varepsilon$. On va trouver une contradiction. Tout d'abord, on peut supposer que $x_{n+1} - x_n > 1$.

Pour cela, par la continuïté uniforme, il existe $\delta>0$ t.q. pour tout $|x-y|\leq \delta$, on a $|f(x)-f(y)|<\varepsilon/2$. On peut supposer que $\delta<1/2$. En particulier, pour tout $y\in [x_n-\delta,x_n+\delta]$, on a $f(y)\geq f(x_n)-\varepsilon/2\geq \varepsilon-\varepsilon/2=\varepsilon/2$. Alors $\int_{x_n-\delta}^{x_n+\delta}f(x)\,\mathrm{d}x\geq 2\,\delta\varepsilon/2=\varepsilon\delta$. On remarque que $([x_n-\delta,x_n+\delta])_{n=1}^\infty$ sont deux-à-deux disjoints, $\int_{\mathbb{R}}f\geq \sum_{n=1}^\infty \int_{x_n-\delta}^{x_n+\delta}f(x)\,\mathrm{d}x\geq \sum_{n=1}^\infty \varepsilon\,\delta=+\infty$. C'est une contradiction $(f\in\mathcal{L}^1)$.

Exercice. (Ch1 Ex1.19) Montrer que si $f:[a,b] \to \mathbb{C}$ est K-lipschitzienne, alors $|S_N(f) - \int_a^b f(x) dx| \le K (b-a)^2/(2N)$.

Solution. On commence par N=1. Comme f est K-lipschitzienne, pour tout $x \in [a, b]$, on a $|f(x) - f(a)| \le K(x - a)$. Donc

$$\begin{vmatrix} S_1(f) - \int_a^b f(x) \, \mathrm{d}x \end{vmatrix} = \begin{vmatrix} (b-a) f(a) - \int_a^b f(x) \, \mathrm{d}x \end{vmatrix}$$

$$= \begin{vmatrix} \int_a^b (f(a) - f(x)) \, \mathrm{d}x \end{vmatrix}$$

$$\leq^{\mathrm{tri}} \int_a^b |f(a) - f(x)| \, \mathrm{d}x$$

$$\leq \int_a^b K(x-a) \, \mathrm{d}x$$

$$= \frac{K(b-a)^2}{2} \tag{1}$$
En général, $\int_a^b f(x) \, \mathrm{d}x = \sum_{k=1}^N \int_{a+(b-a)k/N}^{a+(b-a)k/N} f(x) \, \mathrm{d}x$.

$$\left| S_{N}(f) - \int_{a}^{b} f(x) \, dx \right| = \left| \frac{b-a}{N} \sum_{k=1}^{N} f\left(a + \frac{b-a}{N} k\right) - \sum_{k=1}^{N} \int_{a+(b-a)(k-1)/N}^{a+(b-a)k/N} f(x) \, dx \right|$$

$$= \left| \sum_{k=1}^{N} \left(\frac{b-a}{N} f\left(a + \frac{b-a}{N} k\right) - \int_{a+(b-a)(k-1)/N}^{a+(b-a)k/N} f(x) \, dx \right) \right|$$

$$\leq^{\text{tri}} \sum_{k=1}^{N} \left| \frac{b-a}{N} f\left(a + \frac{b-a}{N} k\right) - \int_{a+(b-a)(k-1)/N}^{a+(b-a)(k-1)/N} f(x) dx \right|$$

$$\leq^{(1)} \sum_{k=1}^{N} \frac{K\left(\frac{b-a}{N}\right)^{2}}{2}$$

$$= \frac{K(b-a)^{2}}{2}$$

Exercices non-traités

Exercice. (Ch1 Ex1.20) On note $\mathcal{E}([a,b])$ l'ensemble des fonctions en escalier.

- 1. Montrer que $\mathcal{E}([a,b])$ est un espace vectoriel dont $(1_{[\alpha,\beta]})_{a<\alpha<\beta< b}$ est une famille génératrice non libre.
- 2. Montrer que $(1_{[a,\beta]})_{a<\beta< b}$ est une base de $\mathcal{E}([a,b])$.
- 3. Montrer qu'il existe une unique forme linéaire $L \in \mathcal{E}([a, b])^*$ t.q. $L(1_{[\beta,\alpha[}) = \beta - \alpha.$
- 4. Montrer que pour tout élément $g \in \mathcal{E}([a,b])$, on a $|L(g)| \leq (b-1)$ $a) \sup_{[a,b]} |g|.$
- 5. Soit $f:[a,b]\to\mathbb{C}$ une fonction bornée pour laquelle il existe $(g_n)\in$ $\mathcal{E}([a,b])^{\mathbb{N}}$ t.q. $\sup_{[a,b[}|f-g_n|=0.$ Montrer que $(L(g_n))$ converge. Si $(h_n) \in \mathcal{E}([a,b])^{\mathbb{N}}$ t.q. $\sup_{[a,b]} |f-h_n| = 0$, montrer que $\lim_{n\to\infty} L(g_n) = 0$ $\lim_{n\to\infty} L(h_n)$.

Définition 47. $f_n \rightarrow f$ (mes) si pour tout $\varepsilon > 0$, $\lambda(\{|f - f_n| > \varepsilon\}) \rightarrow 0$.

Definition 47.
$$f_n \to f$$
 (mes) so pour tout $\varepsilon > 0$, $\lambda(\{|f - f_n| > \varepsilon\}) \to 0$

1. Convergence p.p \Rightarrow Convergence en mes

 $1_{[0,1/8]}, \ldots$ converge en mes. p.p?

Exercice. (Ch1 Ex1.16)

- a. $(A_k \subseteq [0,1])$ mesurables décroissante. $\lambda(\bigcap A_k)$?
- b. $(B_i \subseteq [0, 1])$ mesurables t.q. $\inf_i \lambda(B_i) > 0$. Montrer que

2. Montrer que $1_{[0,1]}, 1_{[0.1/2]}, 1_{[1/2,1]}, 1_{[0,1/4]}, 1_{[1/4,1/2]}, 1_{[1/2,3/4]}, 1_{[3/4,1]},$

- c. Conclure.

- $\lambda(\bigcap_k \bigcup_{i>k} B_i) \neq 0.$

- 3. Soit $f_n \to f$ (mes).
 - a. Montrer qu'il existe une sous-suite (f_{n_k}) t.q. pour $k \in \mathbb{N}_{>0}$, $\lambda(E_k)$: $\{|f - f_{n_k}| > 1/k\}\} < 2^{-k}$.
 - b. $H_m := \bigcup_{k>m+1} E_k$. Montrer que $\lambda(H_m) \leq 2^{-m}$.
 - c. $\lambda(\bigcap H_m)$?
 - d. $f_{n_k} \to f$ p.p.
- 4. $\Omega \subseteq_{\text{mesurable}} \mathbb{R}^d$ au lieu de [0,1].

Séance 3 mar 2021

Théorème 48. (Thm fond de l'analyse)

Corollaire 49. Si $f \in C^1$, alors $\int_a^b f'$

Théorème 50. Si f est Riemann-intégrable sur [a,b], alors $(Leb) \int_a^b f =$ $(Rie) \int_a^b f(x) dx$.

Lemme 51. (Changement de var) Soit $\varphi \in C^1(\mathbb{R}, \mathbb{R}), f \in C^0(\mathbb{R})$ et $\int f(x) dx = F(x) + C$, alors

$$\int f(\varphi(x)) \varphi'(x) dx = F(\varphi(x)) + C$$

et

$$\int_{a}^{b} f(\varphi(x)) \varphi'(x) dx = \int_{\varphi(a)}^{\varphi(b)} f(u) du$$

Remarque 52. Formellement, on écrit $\int f(\varphi(x)) \varphi'(x) dx = \int$ $f(\varphi(x)) d(\varphi(x)) = F(\varphi(x)) + C.$

Exercice. (Ch2 Ex1.1) Calculs de primitives

- 1. $x \mapsto 3x^2 + x + 2$, $x \mapsto \sin(2x)$, $x \mapsto 1/(x^2 + 1)$, $f(x) = 1/(x^2 + 2)$
- 2. $x \mapsto x/(x^2+1)$, $x \mapsto \tan x$, $x \mapsto \tan(2x)$
- 3. $x \mapsto \frac{2x}{(x^2+1)^2}, x \mapsto \frac{1}{\sqrt{2-x^2}}, x \mapsto \sin^2 x, x \mapsto \cos^2 x$

Solution.

- 1. $\int \frac{dx}{x^2+1} = \arctan |x| + C$, $\int (3x^2+x+2) dx = x^3 + \frac{x^2}{2} + 2x + C$, \int $\sin(2x) dx = \frac{1}{2} \int \sin(2x) d(2x) = -\frac{1}{2} \cos(2x) + C, \int \frac{dx}{-2+2} = \frac{\sqrt{2}}{2} \int$ $\frac{\mathrm{d}(x/\sqrt{2})}{(x/\sqrt{2})^2+1} = \frac{1}{\sqrt{2}}\arctan\left(\frac{x}{\sqrt{2}}\right) + C$ 2. $\int \frac{x \, dx}{x^2 + 1} = \frac{1}{2} \int \frac{d(x^2)}{x^2 + 1} = \frac{\ln(x^2 + 1)}{2} + C$, $\int \frac{\sin x \, dx}{\cos x} = -\int \frac{d(\cos x)}{\cos x} = -\ln|\cos x| + C$

$$\int \tan(2x) \, dx = -\frac{1}{2} \ln|\cos(2x)| + C$$

3. $\int \frac{2x \, dx}{(x^2+1)^2} = \int \frac{d(x^2)}{(x^2+1)^2}$, $\int \frac{dt}{(t+1)^2} = -(t+1)^{-1} + C$ donc $\int \frac{d(x^2)}{(x^2+1)^2} =$ $-(x^2+1)^{-1}+C$

$$\int \sin^2 x \, dx = \int \frac{1 - \cos(2x)}{2} \, dx = \frac{1}{2} - \frac{1}{2} \int \cos(2x) \, dx = \frac{1}{2} - \frac{1}{4} \sin(2x) + C.$$
$$\int \cos^2 x \, dx = \int \frac{1 + \cos(2x)}{2} \, dx = \frac{1}{2} + \frac{1}{4} \sin(2x) + C$$

Pour évaluer $\int \frac{\mathrm{d}x}{\sqrt{2-x^2}}$, tout d'abord, $2-x^2 \ge 0 \Longrightarrow -\sqrt{2} \le x \le \sqrt{2}$. On peut prendre $x = \sqrt{2} \sin \theta$ où $-\pi/2 \le \theta \le \pi/2$. $\int \frac{dx}{\sqrt{2-x^2}} = \int$ $\frac{\mathrm{d}(\sqrt{2}\sin\theta)}{\sqrt{2(1-\sin^2\theta)}} = \int \frac{\cos\theta\,\mathrm{d}\theta}{\cos\theta} = \theta + C = \arcsin(x/\sqrt{2}) + C. \cos(\pi/2-\theta) =$ $\sin \theta$, donc il y a une relation entre $\arcsin x$ et $\arccos x$.

Remarque 53. Calculer les primitives pour

- 1. (Polynôme) $\int P(x) dx$ où $P \in \mathbb{R}[X]$ par linéairité $\int x^k dx = \frac{x^{k+1}}{k+1} + C$
- 2. (Fonction rationnelles) $\int \frac{P(x)}{Q(x)} dx$
 - a. deg Q=1: tout d'abord, $\int \frac{\mathrm{d}x}{x} = \ln|x-a| + C$. En général, e.g. Q(x) = x - a. P(x) = (x - a) R(x) + P(a) où $R(x) \in \mathbb{R}[X]$, Alors

$$\int \frac{P(x)}{x-a} dx = \int R(x) dx + P(a) \int \frac{dx}{x-a}$$

b. deg
$$Q = 2$$
, e.g. $Q(x) = x^2 + ax + b$. $\Delta = a^2 - 4b$

i.
$$\Delta > 0$$
, $Q(x) = (x - \alpha)(x - \beta)$ où α , β sont deux racines de Q . Alors

$$\int \frac{P(x) dx}{(x-\alpha)(x-\beta)} = \frac{1}{\alpha-\beta} \left(\int \frac{P(x) dx}{x-\alpha} - \int \frac{P(x) dx}{x-\beta} \right)$$

ii.
$$\Delta = 0$$
, e.g. $Q(x) = (x - \alpha)^2$, $\int \frac{P(x) dx}{(x - \alpha)^2} \frac{x = t + \alpha}{t = x - \alpha} \int \frac{P(t + \alpha)}{t^2} dt$.
 $P(t + \alpha) \in \mathbb{R}[t]$: $P(t + \alpha) = R(t) t^2 + c t + d$ où $c, d \in \mathbb{R}$. Donc $\int \frac{P(t + \alpha)}{t^2} dt = \int R(t) dt + c \int \frac{dt}{t} + d \int \frac{dt}{t^2}$, comme $\int dt/t = \ln|x - t|$

$$\alpha \mid +C \text{ et } \int t^{-2} dt = -(x-\alpha)^{-1} + C.$$

iii. $\Delta < 0$. e.g. $Q(x) = (x-\alpha)^2 + \beta^2$. $\int \frac{P(x) dx}{(x-\alpha)^2 + \beta^2} \xrightarrow{x=t+\alpha} \int$

$$\frac{P(t+\alpha)}{t^2+\beta^2} dt. \ P(t+\alpha) = (t^2+\beta^2) R(t) + ct + d. \ Alors \int \frac{P(t+\alpha)}{t^2+\beta^2} dt =$$

$$\int R(t) dt + c \int \frac{t dt}{t^2+\beta^2} + d \int \frac{dt}{t^2+\beta^2}$$
 où

$$\int \frac{t \, dt}{t^2 + \beta^2} = \int \frac{d(t^2)}{t^2 + \beta^2} = \ln(t^2 + \beta^2) + C$$

et

$$\int \frac{\mathrm{d}t}{t^2 + \beta^2} = \frac{1}{\beta} \int \frac{\mathrm{d}(t/\beta)}{(t/\beta)^2 + 1} = \frac{1}{\beta} \arctan\left(\frac{t}{\beta}\right) + C$$

c. Quand $\deg Q > 2$, on commence par factoriser Q.

Exercice. (Ch2 Ex1.4) Calculer

- 1. $\int_{2}^{3} \frac{\mathrm{d}x}{x^2-1}$
- 2. $\int_0^1 \frac{x^2 + 2x + 2}{x^2 + 3x + 2} dx$.

Solution.

1.
$$\int_{2}^{3} \frac{dx}{x^{2}-1} = \int_{2}^{3} \frac{dx}{(x-1)(x+1)} = \int_{2}^{3} \frac{1}{2} \left(\frac{1}{x-1} - \frac{1}{x+1} \right) dx = \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right) \Big|_{2}^{3}$$

2.
$$\int_0^1 \frac{x^2 + 2x + 2}{x^2 + 3x + 2} \, dx = \int_0^1 \frac{x^2 + 2x + 2}{(x+1)(x+2)} \, dx = \int_0^1 (x^2 + 2x + 2) \left(\frac{1}{x+1} - \frac{1}{x+2} \right) \, dx = \int_0^1 \left((x+1) + \frac{1}{x+1} - x - \frac{2}{x+2} \right) \, dx = \int_0^1 \left(1 + \frac{1}{x+1} - \frac{2}{x+2} \right) \, dx = 1 + \ln(2) - 2\ln(3) + 2\ln(2) = 1 + 3\ln(2) - 2\ln(3).$$

Remarque 54. Primitives

1. $\int e^x P(x) dx$ où $P \in \mathbb{R}[X]$. Tout d'abord, $\deg P = 0$. On suppose que $\deg P > 0$.

$$\int e^x P(x) dx = \int P(x) d(e^x) = P(x) e^x - \int e^x P'(x) dx$$

où deg $P' = \deg P - 1$. Alors on peut continuer.

2. $\int P(x) \ln x \, dx$ où $P \in \mathbb{R}[X]$. On suppose que $\int P(x) \, dx = x \, Q(x) + C$. Alors

$$\int P(x) \ln x \, dx = \int \ln x \, d(Q(x)) = x \, Q(x) \ln x - \int Q(x) \, dx$$

$$P(x)\sin x - \int P'(x)\cos(x) dx$$
 où $\deg P' < \deg P$.

Exercice. (Ch2 Ex1.5) Calculer IPP

$$\int_0^1 x e^x dx \qquad \int_0^{2\pi} x \sin x dx \int_0^{2\pi} x \cos^2 x dx \int_1^e \ln x dx \int_1^e x \ln x dx$$
(non-traité)

3. $\int P(x) \sin x \, dx$ et $\int P(x) \cos x \, dx$. $\int P(x) \cos x \, dx = \int P(x) \, d(\sin x) = \int P(x) \sin x \, dx$

$$\int_0^1 \ln(x^2 + 1) \, \mathrm{d}x$$

Solution.

1.
$$\int_0^1 x e^x dx = 1$$

$$r dr = 1$$

$$2. \int_1^e \ln x \, \mathrm{d}x = 1$$

3.
$$\int_1^e x \ln x \, dx = \frac{1}{2} \int_1^e \ln x \, d(x^2) = \frac{1}{2} (x^2 \ln(x)|_1^e - \int_1^e x \, dx) = \dots = \frac{1 + e^2}{4}$$

4.
$$\int_0^1 \ln(x^2+1) dx = x \ln(x^2+1) \Big|_0^1 - \int_0^1 \frac{2x^2 dx}{\frac{x^2}{2} + 1} = \ln 2 - 2 + \pi/2$$
 où $\int_0^1 \frac{x^2 dx}{\frac{x^2}{2} + 1} = \ln 2 - 2 + \pi/2$

$$\left(\frac{1}{1+1}\right) dx$$

$$\int \left(1 - \frac{1}{x^2 + 1}\right) \mathrm{d}x$$

$$5. \int_{0}^{2\pi} x \cos^2 x \, dx$$

5.
$$\int_0^{2\pi} x \cos^2 x \, dx = \int_0^{2\pi} x \, \frac{1 - \cos(2x)}{2} \, dx = \int_0^{2\pi} \frac{x \, dx}{2} - \int_0^{4\pi} \frac{u/2 \cos(u)}{2} \, d(u/2) =$$

Remarque 55. Le primitive de
$$\frac{P(x)}{Q(x)}\sin(x)$$
 n'est pas nécessairement élémentaire. Par exemple, $\int \frac{\sin t}{t} dt$

Remarque 56.
$$\int P(x, \sqrt{x-a}) dx$$
 où P est une fonction rationnelle. On remplace $u = \sqrt{x-a}$, alors $x = u^2 + a$

$$\int P(x, \sqrt{x-a}) dx = 2 \int u P(u^2 - a, u) du$$

alors $dx = \frac{2 dt}{1+t^2}$. On peut simplifier le calculs quand

Remarque 57. $\int P(\cos x, \sin x) dx$. On peut remplacer $t = \tan(x/2)$,

1. $P = Q(\cos^2 x, \sin^2 x)\cos x \,dx$, alors $\int P(\cos x, \sin x) \,dx = \int Q(1 - \sin^2 x)$

 $\int_0^{\pi/2} \sin(2x) \, dx \quad \int_0^1 \frac{2x \, dx}{x^2 + 1} \quad \int_0^{\sqrt{\pi}} x \sin(x^2) \, dx \quad \int_0^{\pi/2} \frac{\sin t \, dt}{3 + \sin^2 t} \quad \int_8^3 \frac{dt}{t \sqrt{1 + t}}$

- $\sin^2 x$) d(sin x).
- 2. $P = Q(\cos^2 x, \sin^2 x) \sin x \, dx$ (similaire)

Exercice. (Ch2 Ex1.6) Calculer

1.
$$u = 2x$$

2.
$$u = x^2$$

 $\int_0^{\pi/2} \frac{\mathrm{d}x}{3 + 2\cos x}$

$$u = x$$

3.
$$\int_0^{\sqrt{\pi}} x \sin(x^2) dx = \frac{1}{2} \int_0^{\sqrt{\pi}} \sin(x^2) d(x^2) = \frac{1}{2} \int_0^{\pi} \sin x dx = 1$$

4.
$$\sin t \, dt = d(\cos t)$$
 et $\sin^2 t = 1 - \cos t$, on prend $u = \cos t$

5.
$$\int_{8}^{3} \frac{dt}{t\sqrt{1+t}}$$
 On prend $x = \sqrt{1+t}$, alors $t = x^2 - 1$. On a $\int_{8}^{3} \frac{2x \, dx}{(x^2 - 1)x} = 1$

$$\int_{8}^{3} \left(\frac{1}{x-1} - \frac{1}{x+1} \right) dx = \ln 3 - \ln 2.$$

6.
$$\int_0^{\pi/2} \frac{\mathrm{d}x}{3+2\cos x} = \int_0^1 \frac{2/(u^2+1)\,\mathrm{d}u}{(3+2\,(1-u^2)/(1+u^2))} = \int_0^1 \frac{2}{5+u^2}\,\mathrm{d}u = 2\frac{1}{\sqrt{5}}\arctan\frac{u}{\sqrt{5}}\Big|_0^1$$

Remarque 58. En pratique, pour les fonctions « bonnes » (par exemple, « quasiment » continue) pour déterminer si $f \in \mathcal{L}^1(\mathbb{R})$, il suffit de déterminer si l'intégrale impropre $\int |f(x)| \, \mathrm{d}x$ converge (c'est-à-dire, $\int f(x) \, \mathrm{d}x$ converge absolument). Donc les procédures s'appliquent:

- 1. Trouver toutes les singularités.
 - a. $a \in \mathbb{R}$ est une singularité si f n'est pas bornée auprès de a. Donc quand f est continue au point a, alors a n'est pas une singularité.
 - b. $a = +\infty$ n'est pas une singuliarité s'il existe M t.q. pour tout x > M, on a f(x) = 0.
 - c. $a = -\infty$ similaire.
- 2. Déterminer la convergence de toutes les singularités:
 - a. Comparaison. Par exemple, si $a\in\mathbb{R}$ est le seul singulier. Soit g une fonction (continue dans $[a-\varepsilon,a+\varepsilon]$ et $\lim_{x\to a}(f(x)/g(x))$ existe, alors $g\in\mathcal{L}^1\Rightarrow f\in\mathcal{L}^1$. En effet, si $\lim_{x\to a}(f(x)/g(x))$ existe, alors il existe M t.q. $|f(x)|\leq M|g(x)|$ sur $[a-\varepsilon,a+\varepsilon]$. En pratique, on peut souvent trouver une équivalence de f quand $x\to a$. En effet, $\int_{a-\varepsilon}^{a+\varepsilon}|f|\leq M\int_{a-\varepsilon}^{a+\varepsilon}|g|<+\infty, \text{ donc }f\text{ est intégrable sur }[a-\varepsilon,a+\varepsilon].$ C'est similiaire quand $a=+\infty$ en remplaçant $[a-\varepsilon,a+\varepsilon]$ par $[A,+\infty[$. Similaire pour $a=-\infty$.

En particulier, si $\lim_{x\to a} (f(x)/g(x)) \in \mathbb{R} \setminus \{0\}$, alors $f \in \mathcal{L}^1$ ssi $g \in \mathcal{L}^1$.

Exercice. (Ch2 Ex1.2) $\mathcal{L}^1(\mathbb{R})$?

 $\begin{array}{lll} t \mapsto \sin t & t \mapsto \mathbf{1}_{[0,1]}(t) \ln t & t \mapsto \mathrm{e}^{-t} & t \sin(t) \, \mathrm{e}^{-t} \mathbf{1}_{[0,+\infty[}(t) \ln(t) \, \mathrm{e}^{-t} \mathbf{1}_{[0,+\infty[}(t) t) \\ t \mapsto (1-t)^{-1} t^{-1/2} \mathbf{1}_{[0,1]}(t) & t \mapsto \ln(t)/(1+t^2) \mathbf{1}_{[0,+\infty]}(t) \end{array}$

Solution.

- 1. $\sin t$ Deux singularités: $\pm \infty$, $\int |\sin t| \, \mathrm{d}t = +\infty$ donc $(t \mapsto \sin t) \notin \mathcal{L}^1(\mathbb{R})$.
- 2. e^{-t} Deux singularités: $\pm \infty$, $\int_{-M}^{0} |e^{-t}| dt \ge \int_{-M}^{0} dt = M$ donc $\int |e^{-t}| dt = +\infty$.
- 3. $1_{[0,1]}(t) \ln t$ Singularité $\{0\}$ sur [0,1]. $\int_{\varepsilon}^{1} |\ln t| dt = -\int_{\varepsilon}^{1} \ln t dt = 1 \varepsilon + \varepsilon \ln(\varepsilon)$. Donc $\lim_{\varepsilon \to 0^{+}} \int_{\varepsilon}^{1} |\ln t| = 1$ donc $1_{[0,1]} \ln(\cdot) \in \mathcal{L}^{1}$.
- 4. $t \sin(t) e^{-t} 1_{[0,+\infty[}(t)$. Singularité: $+\infty$. Intégrable. Par exemple $\lim_{t\to\infty} \frac{t \sin(t) e^{-t}}{e^{-t/2}} = 0$ et $e^{-t/2} 1_{[0,+\infty[} \in \mathcal{L}^1$.
- 5. $\ln(t) e^{-t} 1_{[0,+\infty[}(t)$: Singularités: $\{0,+\infty\}$. Quand $t \to 0^+$, $\ln(t) e^{-t} \sim \ln(t) \in \mathcal{L}^1([0,1])$. Quand $t \to +\infty$, $\lim_{t \to +\infty} \ln(t) e^{-t} / e^{-t/2} = \lim_{t \to +\infty} \ln(t) e^{-t/2} = 0$ et $e^{-t/2} \in \mathcal{L}^1([1,+\infty])$, donc intégrable.
- $\begin{array}{lll} 6. \ (1-t)^{-1} \ t^{-1/2} \ 1_{[0,1]}(t) \colon \mbox{Singularit\'es: } \{0,1\}. \ \ \mbox{Quand} \ t \to 0^+, \ (1-t)^{-1} \ t^{-1/2} \sim t^{-1/2} \ \mbox{est int\'egrable sur }]0,1/2]. \ \ \mbox{Quand} \ t \to 1^-, \ (1-t)^{-1} \ t^{-1/2} \sim (1-t)^{-1} \ \ \mbox{n'est pas int\'egrable sur } [1/2,1], \ \mbox{donc} \ \ (1-t)^{-1} \ t^{-1/2} \ 1_{[0,1]}(t) \not\in \mathcal{L}^1. \end{array}$
- 7. $\ln(t)/(1+t^2) \, \mathbf{1}_{[0,+\infty]}(t)$. Singularités: $\{0,+\infty\}$. Quand $t \to 0^+$, $\ln(t)/(1+t^2) \sim \ln(t)$ est intégrable sur [0,1]. Quand $t \to +\infty$, $\ln(t)/(1+t^2) \sim t^{-2} \ln(t)$, et $\lim_{t \to +\infty} (t^{-2} \ln(t))/(t^{-3/2}) = 0$ et $t^{-3/2} \in \mathcal{L}^1$. En résumé, $(t \mapsto \ln(t)/(1+t^2) \, \mathbf{1}_{[0,+\infty]}(t)) \in \mathcal{L}^1$.

5 Séance 10 mars 2021

Exercice 1. Soit $f \in \mathcal{L}^1(]0,1[)$ croissante. Montrer que $\lim_{n\to\infty} S_n(f) = \int_0^1 f$ où $S_n(f) := n^{-1} \sum_{k=1}^{n-1} f(k/n)$ [Indication: $\int_{x-1/n}^x f \leq f(x)/n \leq \int_x^{x+1/n} f$].

Solution. $\int_{[0,1]\setminus[1-1/n,1]} f \leq S_n(f) \leq \int_{[0,1]\setminus[0,1/n]} f$. Comme $\lambda([1-1/n,1]) = \lambda([1-1/n,1]) = 1/n \to 0$ quand $n \to 0$ et $f \in \mathcal{L}^1([0,1])$, on a $\lim_{n\to\infty} \int_{[1-1/n,1]} f = 0 = \lim_{n\to\infty} \int_{[0,1/n]} f$. Donc $\lim_{n\to\infty} S_n(f) = \int_0^1 f$.

Exercice 2. Déterminer

$$1. \int \frac{\sin x \, \mathrm{d}x}{2\sin x + 3\cos x}$$

2.
$$\int \frac{dx}{1+x^4}$$

Solution.

1. Changement de variable: $t = \tan x$ alors $dx = \frac{dt}{1+t^2}$

$$\int \frac{\sin x \, dx}{2 \sin x + 3 \cos x} = \int \frac{t \, dt}{(2t+3)(1+t^2)}$$

$$\frac{t}{(2t+3)(1+t^2)} = \frac{A}{2t+3} + \frac{Bt+C}{1+t^2}$$

$$\frac{t}{1+t^2} = A + \frac{(Bt+C)(2t+3)}{1+t^2}$$

on prend t = -3/2, on a A = (-3/2)/(1+9/4) = -6/13.

$$\begin{split} \frac{t}{(2\,t+3)\,(1+t^2)} + \frac{6}{13\,(2\,t+3)} &= \frac{13\,t+6\,(1+t^2)}{13\,(2\,t+3)\,(1+t^2)} \\ &= \frac{(2\,t+3)\,(3\,t+2)}{13\,(2\,t+3)\,(1+t^2)} \\ &= \frac{3\,t+2}{13\,(1+t^2)} \\ \int \frac{t\,\mathrm{d}t}{(2\,t+3)\,(1+t^2)} &= -\frac{6}{13}\int \frac{\mathrm{d}t}{2\,t+3} + \frac{1}{13}\int \frac{3\,t+2}{1+t^2}\,\mathrm{d}t \\ \int \frac{3\,t+2}{1+t^2}\,\mathrm{d}t &= \int \frac{3\,\mathrm{d}(t^2)}{2\,(1+t^2)} + 2\int \frac{\mathrm{d}t}{1+t^2} \end{split}$$

Alternativement, on prend $I:=\int \frac{\sin x\,\mathrm{d}x}{2\sin x+3\cos x}$ et $J:=\int \frac{\cos x\,\mathrm{d}x}{2\sin x+3\cos x}$, alors $2\,I+3\,J=\int \mathrm{d}x=x+C$, et

$$2J - 3I = \int \frac{(2\cos x - 3\sin x) dx}{2\sin x + 3\cos x}$$
$$= \int \frac{d(2\sin x + 3\cos x)}{2\sin x + 3\cos x}$$
$$= \ln|2\sin x + 3\cos x| + C'$$

On peut résoudre le système 2I + 3J = x + C, $2J - 3I = \ln |\cdot| + C'$.

Remarque 59. On peut évaluer $\int \frac{\alpha \sin x + \beta \cos x}{\gamma \sin x + \delta \cos x} dx$ par cette méthode.

2. On peut factoriser $1 + x^4 = (1 + x^2)^2 - (\sqrt{2}x)^2 = (1 - \sqrt{2}x + x^2)(1 + x^2)^2 = (1 - \sqrt{2}x + x^2)^2 = (1 - \sqrt{2$ $\sqrt{2} x + x^2$) et écrire

$$\frac{1}{1+x^4} = \frac{Ax+B}{1-\sqrt{2}x+x^2} + \frac{Cx+D}{1+\sqrt{2}x+x^2}$$

Trouver $A, B, C, D \in \mathbb{R}$ et calculer la primitive.

Alternativement, $I := \int \frac{\mathrm{d}x}{1+x^4}$ et $J := \int \frac{x^2 \,\mathrm{d}x}{1+x^4}$. Alors

$$I + J = \int \frac{(1+x^2) dx}{1+x^4}$$

$$= \int \frac{1+x^{-2}}{x^2+x^{-2}} dx \quad x \neq 0$$

$$= \int \frac{d(x-x^{-1})}{(x-x^{-1})^2+2}$$

$$\int (x - x^{-1})^{2} + 2$$

$$= \frac{1}{\sqrt{2}} \arctan \frac{x - x^{-1}}{\sqrt{2}} + C$$

$$+ J = \int \frac{(-1 + x^{2}) dx}{1 + x^{4}}$$

$$= \int \frac{1 - x^{-2}}{x^{2} + x^{-2}} dx \quad x \neq 0$$

$$-I + J = \int \frac{(-1+x^2) dx}{1+x^4}$$

$$= \int \frac{1-x^{-2}}{x^2+x^{-2}} dx \quad x \neq 0$$

$$= \int \frac{d(x+x^{-1})}{(x+x^{-1})^2 - 2}$$

$$= -\frac{1}{2\sqrt{2}} \ln \frac{x^2 - \sqrt{2}x + 1}{x^2 + \sqrt{2}x + 1} + C'$$

Exercice 3. Posons $I_n := \int \frac{\sin n x}{\sin x} dx$ pour n > 2. Montrer que

$$I_n = \frac{2\sin((n-1)x)}{n-1} + I_{n-2}$$

[Indication: $\sin n x = \sin(x + (n-1)x) = \sin x \cos((n-1)x) + \cos x \sin((n-1)x)$ 1) x) et $\sin((n-2)x) = \sin((n-1)x - x) = \sin((n-1)x)\cos x - \cos((n-1)x)\cos x$ $1) x) \sin x$.

Solution. On a

$$I_{n} = \int \frac{\sin((n-1)x)\cos x + \cos((n-1)x)\sin x}{\sin x} dx$$

$$= \int \frac{\sin((n-1)x)\cos x}{\sin x} dx + \int \cos((n-1)x) dx$$

$$= \frac{\sin((n-1)x)}{n-1} + \int \frac{\sin((n-1)x)\cos x}{\sin x} dx$$

$$I_{n-2} = \int \frac{\sin((n-1)x)\cos x - \cos((n-1)x)\sin x}{\sin x} dx$$

$$= -\frac{\sin((n-1)x)}{n-1} + \int \frac{\sin((n-1)x)\cos x}{\sin x} dx$$

Donc $I_n - I_{n-2} = 2\sin((n-1)x)/(n-1)$.

Exercice 4. Posons $I_{m,n} := \int \cos^m x \sin^n x \, dx$. Montrer (par IPP) que

 $I_{m,n} = \frac{\cos^{m-1} x \sin^{n+1} x}{m+n} + \frac{m-1}{m+n} I_{m-2,n}$

Solution. On a

$$I_{m,n} = \int \cos^{m-1} x \sin^n x \, d(\sin x)$$

$$= \cos^{m-1} x \sin^{n+1} x - \int \sin x \, d(\cos^{m-1} x \sin^n x)$$

$$(\cos^{m-1} x \sin^n x)' = (m-1) \cos^{m-2} x (-\sin x) \sin^n x + \cos^{m-1} x n \sin^{n-1} x \cos x$$

$$= -(m-1) \cos^{m-2} x \sin^{n+1} x + n \cos^m x \sin^{n-1} x$$

$$I_{m,n} = \cos^{m-1} x \sin^{n+1} x + (m-1) I_{m-2,n+2} - n I_{m,n}$$

$$I_{m-2,n+2} = \int \cos^{m-2} x \sin^n x (1 - \cos^2 x) \, dx$$

$$= I_{m-2,n} - I_{m,n}$$

$$I_{m,n} = \cos^{m-1} x \sin^{n+1} x + (m-1) (I_{m-2,n} - I_{m,n}) - n I_{m,n}$$

$$= \cos^{m-1} x \sin^{n+1} x + (m-1) I_{m-2,n} - (m+n-1) I_{m,n}$$

$$(m+n) I_{m,n} = \cos^{m-1} x \sin^{n+1} x + (m-1) I_{m-2,n}$$

Exercice 5. Déterminer $\int \sin^4 x \, dx$

Solution. On peut utiliser IPP pour établir une relation de récurrence. Alternativement,

$$\int \sin^4 x \, dx = \int (\sin^2 x)^2 \, dx$$
$$= \int \left(\frac{1 - \cos(2x)}{2}\right)^2 dx$$

$$= \frac{1}{4} \int \left(1 - 2\cos(2x) + \frac{1 - \cos(4x)}{2} \right) dx$$
$$= \frac{x}{4} - \frac{\sin(2x)}{4} + \frac{x}{8} - \frac{\sin(4x)}{32} + C$$

Remarque 60. Soit $P \in \mathbb{R}[X, Y]$, alors $\int P(\cos^2 x, \sin^2 x) dx = \int P\left(\frac{1+\cos(2x)}{2}, \frac{1-\sin(2x)}{2}\right)$.

Définition 61. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction mesurable. On dit que f est localement intégrable au point $a \in \mathbb{R} \cup \{\pm \infty\}$ s'il existe un voisinage $V \ni a$ t.q. $f \in \mathcal{L}^1(V)$.

Définition 62. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction « bonne » (dont l'ensemble de discontinuités est discret). On dit que $a \in \mathbb{R}$ est une singularité si pour tout voisinage $V \ni a$, f est non-bornée sur V. Pour $a = \pm \infty$, a est une singularité sauf si f = 0 sur un voisinage $V \ni a$.

Remarque 63. Si f est continue au point $a \in \mathbb{R}$, alors a n'est pas une singularité.

Lemme 64. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction « bonne ». Si $a \in \mathbb{R} \cup \{\pm \infty\}$ n'est pas une singularité, alors f est localement intégrable au point a.

Lemme 65. Une fonction « bonne » $f: \mathbb{R} \to \mathbb{R}$ est intégrable ssi f est localement intégrable à toute singularité $a \in \mathbb{R} \cup \{\pm \infty\}$.

Determiner si une fonction « bonne » $f: \mathbb{R} \to \mathbb{R}$ est intégrable:

- 1. Trouver toutes les singularités (potentielles).
- 2. Pour toute singularité $a \in \mathbb{R} \cup \{\pm \infty\}$, déterminer si f est localement intégrable au point a, par une combinaison des méthodes suivantes:
 - a. On peut remplacer f par une fonction g équivalente « plus simple » quand $x \rightarrow a$.
 - b. On peut majorer (ou minorer) f par une fonction g localement intégrable (ou non-intégrable) au point a.
 - c. On peut évaluer $\int_V f$ sur un voisinage $V \ni a$.

Remarque 66. Quand une fonction n'est définie que sur un sous-ensemble $E \subseteq \mathbb{R}$, i.e., $f: E \to \mathbb{R}$, il suffit de considérer $\tilde{f}: \mathbb{R} \to \mathbb{R}$ définie par $\tilde{f}(x) = f(x)$ quand $x \in E$ et $\tilde{f}(x) = 0$ quand $x \in E \setminus E$.

Lemme 67. (Riemann) $t \mapsto t^{\alpha}$ est intégrable sur $[1, +\infty[$ ssi $\alpha < -1$.

Démonstration. Singularité: $\{+\infty\}$. Quand $\alpha < -1$, $\int_a^{+\infty} |t^{\alpha}| dt = \frac{t^{\alpha+1}}{\alpha+1}\Big|_a^{+\infty} = -\frac{a^{\alpha+1}}{\alpha+1}$ donc intégrable. Quand $\alpha \ge -1$, $\int_a^{+\infty} |t^{\alpha}| dt \ge \int_a^{+\infty} t^{-1} dt = +\infty$, donc pas intégrable.

Remarque 68. On la compare avec la convergence de la suite $\sum n^{\alpha}$.

Exercice. (Ch2 Ex1.2(8)) Déterminer si $t \mapsto e^{-\sqrt{\ln t}} 1_{[1,+\infty[}(t))$ est intégrable sur \mathbb{R} .

Remarque 69. Quand $t \to +\infty$, $(\ln \ln t)^{100} \ll \cdots \ll \ln t \ll (\ln t)^2 \ll (\ln t)^3 \ll \cdots \ll t \ll t^2 \ll \cdots \ll e^t \ll \cdots$

 $\begin{array}{ll} \textbf{Solution.} & \text{Singularit\'e } \{+\infty\}. \ t \to +\infty, \ t \mapsto \mathrm{e}^{-\sqrt{\ln t}} \text{ - pas de simplification \'evidente.} & \sqrt{\ln t} \lesssim \ln t \text{ quand } t \to +\infty, \text{ donc } \mathrm{e}^{-\sqrt{\ln t}} \geq \mathrm{e}^{-\ln t} = t^{-1}. \text{ On va d\'eterminer si } t \mapsto t^{-1} \text{ est localement int\'egrable au point } +\infty. \text{ Pour tout } a \in \mathbb{R}_{>1}, \int_a^{+\infty} t^{-1} = \lim_{A \to +\infty} \int_a^A t^{-1} = \lim_{A \to \infty} \ln(A/a) = +\infty. \text{ Donc } \int_a^{+\infty} \mathrm{e}^{-\sqrt{\ln t}} \, \mathrm{d}t \geq \int_a^{+\infty} t^{-1} \, \mathrm{d}t = +\infty, \text{ donc pas int\'egrable.} \end{array}$

Exercice 6. Trouver une CNS sur p > 0 t.q. la fonction $f(x) = \frac{\sin x}{x^p + \sin x}$ appartienne à $\mathcal{L}^1([0, +\infty])$.

Solution. Tout d'abord, f est continue sur $]0, +\infty[$, donc les singularités « potentielles » sont $\{0, +\infty\}$.

0. $0 \lesssim \frac{\sin x}{x^p + \sin x} \lesssim 1$ quand $x \to 0^+$, donc f est localement bornée au point 0. Donc 0 n'est pas une singularité.

 $+\infty$. Comme p > 0, $x^p + \sin x \sim x^p$ donc $\frac{\sin x}{x^p + \sin x} \sim \frac{\sin x}{x^p}$ quand $x \to +\infty$.

Quand p > 1, $\left| \frac{\sin x}{x^p} \right| \le x^{-p}$ et $x \mapsto x^{-p}$ est localement intégrable au point $+\infty$ (par la critère de Riemann). Donc f est localement intégrable au point $+\infty$. Quand $p \le 1$, f n'est pas localement intégrable au point $+\infty$. Il y a deux méthodes:

1. $\sin x \ge 1/\sqrt{2}$ quand $2k\pi + \pi/4 \le x \le 2k\pi + 3\pi/4$ où $k \in \mathbb{Z}$. Alors

$$\int_{A}^{+\infty} \left| \frac{\sin x}{x^{p}} \right| dx \ge \int_{\bigcup_{k=k_{0}}^{\infty} [2k\pi + \pi/4, 2k\pi + 3\pi/4]} \left| \frac{\sin x}{x^{p}} \right| dx$$

$$\ge \frac{1}{\sqrt{2}} \int_{\bigcup_{k=k_{0}}^{\infty} [2k\pi + \pi/4, 2k\pi + 3\pi/4]} x^{-p} dx$$

$$= \frac{1}{\sqrt{2}} \sum_{k=k_{0}}^{\infty} \int_{2k\pi + \pi/4}^{2k\pi + 3\pi/4} x^{-p} dx$$

$$\geq \frac{1}{\sqrt{2}} \sum_{k=k_0}^{\infty} \lambda([2 k \pi + \pi/4, 2 k \pi + 3 \pi/4]) (2 k \pi + 3 \pi/4)^{-p}$$

$$= C \sum_{k=k_0}^{\infty} (2 k \pi + 3 \pi/4)^{-p}$$

$$= +\infty$$

où k_0 est le minimum k t.q. $2k\pi \ge A$ (La dernière étape: $2k\pi + 3\pi/4 \sim 2k\pi$ quand $k \to \infty$ et on utilise la critère de Riemann pour les suites).

2. On peut souvent calculer le DL de $\int_a^A f(t) \sin t \, dt$ par IPP.

Exercice. (Ch2 Ex1.3) Pour $\alpha, \beta > 0$, on pose $f_{\alpha,\beta}(t) = t^{-\alpha} |\ln t|^{-\beta}$. Montrer que

- 1. $f_{\alpha,\beta} \in \mathcal{L}^1(]0, e^{-1}[)$ ssi $\alpha < 1$ ou $(\alpha = 1 \text{ et } \beta > 1)$.
- 2. $f_{\alpha,\beta} \in \mathcal{L}^1([e,+\infty[) \text{ ssi } \alpha > 1 \text{ ou } (\alpha = 1 \text{ et } \beta > 1).$

Solution. On va traiter seulement pour $[e, +\infty[$. Les singularités: $\{+\infty\}$. Quand $\alpha > 1$, on prend un réel $\gamma \in]1, \alpha[$. Alors quand $t \to \infty, t^{-\alpha} |\ln t|^{-\beta} \ll t^{-\gamma}$ et $t \mapsto t^{-\gamma}$ est localement intégrable au point $+\infty$. Donc $f_{\alpha,\beta}$ l'est aussi. Quand $\alpha < 1$, on prend un réel $\gamma \in]\alpha, 1[$. Quand $t \to \infty, t^{-\alpha} |\ln t|^{-\beta} \gg$

 $t^{-\gamma}$ et $t \mapsto t^{-\gamma}$ n'est pas localement intégrable au point $+\infty$. Donc $f_{\alpha,\beta}$ n'est pas localement intégrable non plus.

Maintenant on suppose que $\alpha\!=\!1.$ On change $s\!=\!\ln t,$ alors $\mathrm{d}t\!=\!t\,\mathrm{d}s,$ donc pour $b>a>\!\mathrm{e}$

$$\int_a^b t^{-1} |\ln t|^{-\beta} dt = \int_{\ln a}^{\ln b} s^{-\beta} ds$$

Par critère de Riemann, $s \mapsto s^{-\beta}$ est localement intégrable au point $\{+\infty\}$ ssi $\beta > 1$, donc $t \mapsto t^{-1} |\ln t|^{-\beta}$ est localement intégrable ssi $\beta > 1$.

Problème 3. DL de $\int_a^{+\infty} e^{-t} f(t) dt$ quand $a \to +\infty$.

Méthode générale:

$$\int_{a}^{+\infty} e^{-t} f(t) dt = -\int_{a}^{+\infty} d(e^{-t}) f(t) dt$$

$$= -e^{-t} f(t)|_{a}^{+\infty} + \int_{a}^{+\infty} e^{-t} f'(t) dt$$

$$= -e^{-t} \left(\sum_{k=0}^{n} f^{(k)}\right)\Big|_{a}^{+\infty} + \int_{a}^{+\infty} e^{-t} f^{(n+1)}(t) dt$$

6 Séance 17 mars 2021

3 thèmes importants:

- 1. Déterminer $\lim_{n\to\infty} S_n$ en réécrivant S_n comme une somme de Riemann.
- 2. Calculer la primitive d'une fonction.
- 3. Déterminer si une fonction est intégrable.

Exercice. (Ch2 Ex1.8) Posons $F(x) = \int_{x}^{+\infty} e^{-t^2/2} dt$

- 1. Montrer que F est bien définie.
- 2. En admettant que $\int_{-\infty}^{+\infty} e^{-t^2/2} dt = \sqrt{2\pi}$, montrer que F est une bijection $\mathbb{R} \to]0, \sqrt{2\pi}[$.

Remarque 70.

- 1. Trouver toutes les singularités (en générale, sur $\mathbb{R} \cup \{\pm \infty\}$. S'il s'agit une fonction définie sur un intervalle]a,b[, vous pouvez soit étendre la domaine de la fonction à \mathbb{R} , soit l'étudier directement. En tout cas, c'est possible que a ou b est une singularité. Cela veut dire que, une singularité n'appartient pas nécessairement à la domaine).
- 2. Étudier les singularités (étude asymptotique).

Solution.

1. Les singularités de $f:t\mapsto \mathrm{e}^{-t^2/2}$ sur $[x,+\infty[:\{+\infty\}\ (\mathrm{il}\ \mathrm{n'y}\ \mathrm{a}\ \mathrm{pas}\ \mathrm{de}\ m\in\mathbb{R}\ \mathrm{t.q.}$ pour tout $x\geq m,\ f(t)=0,\ \mathrm{donc}\ +\infty$ est une singularité; pour tout $x\in[x,+\infty],\ \mathrm{comme}\ f$ est continue au point $x,\ f$ est localement bornée au point $x,\ \mathrm{donc}\ x$ n'est pas une singularité).

 $\lim_{t\to +\infty} \mathrm{e}^{-t^2/2}\,t^2 = 0 \Longrightarrow |\mathrm{e}^{-t^2/2}| \lesssim t^{-2}, t\to +\infty.$ Comme $t\mapsto t^{-2}$ est intégrable sur $[y,+\infty]$ (où y est suffisament grand), c'est-à-dire, $t\mapsto t^{-2}$ est localement intégrable au point $\{+\infty\}$, $\mathrm{e}^{-t^2/2}$ l'est aussi. Donc $t\mapsto \mathrm{e}^{-t^2/2}$ est intégrable sur $[x,+\infty]$ i.e. F est bien définie.

2. F est strictement décroissante: pour tout x < y, $F(y) - F(x) = \int_x^y e^{-t^2/2} dt \ge \int_x^y e^{-\max\{x^2, y^2\}/2} dt = (y - x) e^{-\max\{x^2, y^2\}/2} > 0$.

Remarque 71. En effet, si $f \ge 0$ et $\int f = 0$, alors f = 0 p.p.: pour tout $n \in \mathbb{N}_{>0}$, on a $\int f \ge \int 1_{\{f \ge 1/n\}} f \ge \lambda(\{f \ge 1/n\})/n, \lambda(\{f \ge 1/n\}) = 0$ pour tout $n \in \mathbb{N}_{>0}$. Donc $\lambda(\{f > 0\}) = \lambda(\bigcup_{n=1}^{\infty} \{f \ge 1/n\}) = 0$.

Ensuite, F est continue $(x \mapsto F(0) - F(x)) = \int_0^x e^{-t^2/2} dt$ est continue par le thm fon de l'analyse, donc F l'est aussi)

Remarque 72. En général, pour tout $f \in \mathcal{L}^1(\mathbb{R})$, la fonction $x \mapsto \int_x^{+\infty} f$ est continue, mais c'est plus difficile. Quand $f \in \mathcal{L}^1(\mathbb{R})$ est continue, on peut utiliser le thm fon de l'analyse comme au-dessus.

donc F est une bijection $\mathbb{R} \to \lim_{x \to +\infty} F(x)$, $\lim_{x \to -\infty} F(x)$. Il suffit de montrer que $\lim_{x \to -\infty} F(x) = \int_{-\infty}^{+\infty} e^{-t^2/2} dx$ et $\lim_{x \to +\infty} F(x) = 0$.

Tout d'abord, par Beppo-Levi, comme F est décroissante, $\lim_{x\to-\infty}F(x)=\lim_{n\to\infty}F(-n)=\int_{\mathbb{R}}1_{[x,+\infty]}\mathrm{e}^{-t^2/2}\mathrm{d}t=\int_{-\infty}^{+\infty}\mathrm{e}^{-t^2/2}\mathrm{d}t.$

Remarque 73. Quand $\lim_{x\to\infty} f(x)$ existe, alors $\lim_{x\to\infty} f(x) = \lim_{n\to\infty} f(n)$.

Ensuite, aussi par Beppo-Levi, $\lim_{x\to +\infty} \int_{-\infty}^x \mathrm{e}^{-t^2/2} \, \mathrm{d}t = \int_{-\infty}^{+\infty} \mathrm{e}^{-t^2/2} \, \mathrm{d}t$ (similaire), comme $F(x) = \int_{-\infty}^{+\infty} \mathrm{e}^{-t^2/2} \, \mathrm{d}t - \int_{-\infty}^x \mathrm{e}^{-t^2/2} \, \mathrm{d}t$, on en déduit que $\lim_{x\to +\infty} F(x) = 0$.

Remarque 74. Pour une fonction $f:[a,b] \to \mathbb{R}$,

- 1. Si f est strictement croissante (ou strictement décroissante), alors f est injective.
- 2. (Thm des valeurs extrêmes) Si f est continue, alors $f([a,b]) = [\min f([a,b]), \max f([a,b])]$.
- 3. Si f est continue et strictement croissante (ou resp. strictement décroissante), alors f est injective, f([a,b]) = [f(a), f(b)] (resp. f([a,b]) = [f(b), f(a)]). Donc f définit une bijection continue $\tilde{f}: [a,b] \to [f(a), f(b)]$ (resp. $[a,b] \to [f(b), f(a)]$).
- 4. Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction continue et strictement croissante, alors $g(\mathbb{R}) = g(\bigcup_{\alpha>0} [-\alpha,\alpha]) = \bigcup_{\alpha>0} g([-\alpha,\alpha]) = \bigcup_{\alpha>0} [g(-\alpha),g(\alpha)]$. Comme g est strictement croissante, $I:=\bigcup_{\alpha>0} [g(-\alpha),g(\alpha)] = \lim_{\alpha\to+\infty} g(-\alpha), \lim_{\alpha\to+\infty} g(\alpha)[$, alors g définit une bijection continue $\mathbb{R} \to I$. Similaire pour g strictement décroissante.

Exercice. (Partiel 2020) Déterminer

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n+3k}{n^2+k^2}$$

Solution. On a

$$\sum_{k=1}^{n} \frac{n+3k}{n^2+k^2} = \frac{1}{n} \sum_{k=1}^{n} \frac{n(n+3k)}{n^2+k^2}$$
$$= \frac{1}{n} \sum_{k=1}^{n} \frac{1+3(k/n)}{1+(k/n)^2} = f(k/n)$$

Considérons la fonction $f:[0,1] \to \mathbb{R}, x \mapsto \frac{1+3x}{1+x^2}$. C'est une fonction continue, donc la somme de Riemann converge à l'intégral

$$\int_0^1 \frac{1+3x}{1+x^2} dx = \int_0^1 \frac{1}{1+x^2} dx + \frac{3}{2} \int_0^1 \frac{d(x^2)}{1+x^2} dx$$
$$= \arctan x |_0^1 + \frac{3}{2} \ln|1+x^2||_0^1$$
$$= \pi/4 + \frac{3}{2} \ln(2)$$

Remarque 75. Quand f est continue sur [a, b] ou $f \in \mathcal{L}^1([a, b])$ est monotone, la somme de Riemann converge à l'intégrale $\int_a^b f$.

Exercice. (Rattrapage 2020) Soit $x \in \mathbb{R}_{>0}$. Montrer que $t \mapsto \sin(t)/(t^2+x^2)$ est intégrable sur $[0,+\infty[$.

Solution. Singularités: $\{+\infty\}$.

Étude de $+\infty$: $|\sin(t)/(t^2+x^2)| \lesssim 1/t^2$ quand $t \to +\infty$, et par la critère de Riemann, $1/t^2$ est localement intégrable au point $+\infty$, donc $t \mapsto \sin(t)/(t^2+x^2)$ l'est aussi. En conclusion, $t \mapsto \sin(t)/(t^2+x^2)$ est intégrable sur $[0,+\infty]$.

Remarque 76. Quand on rencontre une fonction $P(\sin x, \cos x)$, pour étudier la singularité $+\infty$, on peut commencer par majorisation en utilisant $|\sin x| \le 1$ et $|\cos x| \le 1$. Par exemple,

$$\left| \frac{\sin x}{x^2} \right| \le \frac{1}{x^2}$$

Dans ce cas, on peut montrer que $x^{-2}\sin(x)$ est localement intégrable au point $+\infty$. Mais cette méthode ne marche pas si la majorisation n'est pas (localement) intégrable. Par exemple, $|x^{-1}\sin(x)| \le |x|^{-1}$ mais x^{-1} n'est pas localement intégrable au point $+\infty$. Dans ce cas, on **ne peut pas** en déduire que $x^{-1}\sin(x)$ n'est pas localement intégrable au point $+\infty$.

Remarque 77. Si on remplace t^2+x^2 par t^2-t+x^2 , i.e., $t\mapsto \sin(t)/(t^2-t+x^2)$ est aussi intégrable quand x>1/2. En effet, singularité $\{+\infty\}$ comme x>1/2 (on le verra bientôt). Alors quand $t\to+\infty$

$$\left| \frac{\sin t}{t^2 - t + x^2} \right| \le \frac{1}{t^2 - t + x^2}$$

Comme $1/(t^2-t+x^2) \sim 1/t^2$ quand $t \to +\infty$, et $t \mapsto 1/t^2$ est localement intégrable au point $+\infty$, $t \mapsto 1/(t^2-t+x^2)$ l'est aussi. Donc $t \mapsto \sin(t)/(t^2-t+x^2)$ est intégrable sur $[0,+\infty]$.

En revanche, quand $0 < x \le 1/2$, la fonction $f: t \mapsto \sin(t)/(t^2 - t + x^2)$ est-elle intégrable sur $[0, +\infty[$? Tout d'abord, $+\infty$ est une singularité. Nous devons déterminer si les racines de $t^2 - t + x^2$ appartiennent à $[0, +\infty[$. Les racines sont $0 < \frac{1}{2} \pm \sqrt{\frac{1}{4} - x^2} < 1$. On écrit $x_1 := \frac{1}{2} - \sqrt{\frac{1}{4} - x^2}$ et $x_2 := \frac{1}{2} + \sqrt{\frac{1}{4} - x^2}$. Alors $0 < x_1 \le x_2 < 1$.

1. Quand x=1/2, alors $x_1=x_2=1/2$, alors les singularités potentielles: $\{1/2,+\infty\}$. Il suffit de déterminer si f est localement intégrable au point 1/2 et $+\infty$. En effet, f n'est pas localement intégrable au point 1/2: $f(t)=\sin(t)/(t-1/2)^2$. Pour cela, on trouve un équivalent de f quand $t\to 1/2$: $f(t)\sim C$ $(t-1/2)^{-2}$ où $C=\sin(1/2)$ est **non-zéro**. En suite, $t\mapsto (t-1/2)^{-2}$ n'est pas localement intégrable au point 1/2 par la critère de Riemann.

Remarque 78. (Riemann) $t \mapsto |t|^{\alpha}$ est localement intégrable au point 0 ssi $\alpha > -1$, $t \mapsto |t|^{\alpha}$ est localement intégrable au point $+\infty$ ssi $\alpha < -1$.

Donc f n'est pas intégrable sur $[0, +\infty]$.

2. Quand 0 < x < 1/2, alors $0 < x_1 < x_2 < 1$. Les singularités potentielles: $\{x_1, x_2, +\infty\}$. En effet, f n'est pas localement intégrable au point x_1 . On trouve un équivalent f(t) quand $t \to x_1$. Tout d'abord, $t^2 - t + x^2 = (t - x_1)(t - x_2)$. Donc quand $t \to x_1$, on a $f(t) \sim \frac{\sin(x_1)}{(x_1 - x_2)}(t - x_1)^{-1}$ où $\frac{\sin(x_1)}{(x_1 - x_2)} \neq 0$ parce que $0 < x_1 < 1$. Par la critère de Riemann, $t \mapsto |t - x_1|^{-1}$ n'est pas localement intégrable au point x_1 , donc f n'est pas intégrable.

C'est une exemple: si on commence par $|\sin t| \le 1$, alors on va échouer. Il faut étudier toutes les singularités.

Exercices non-traités

Exercice. (Ch2 Ex1.8, difficile) Posons $F(x) = \int_x^{+\infty} e^{-t^2} dt$. Donner un équivalent de $F^{-1}(x)$ lorsque $x \to 0^+$.

Exercice. (Partiel 2020) Montrer que pour tout $n \in \mathbb{N}$, la fonction $f_n(t) = n \frac{\ln(2+t)}{1+t^2} e^{-nt}$ est intégrable sur $[0, +\infty[$.

Solution. Singularités: [il faut séparer n = 0 et n > 0]

1. Montrer que
$$\int_a^b fg = f(b) G(b) + \int_a^b (-f') G$$
.

1. Homoret que
$$f_a$$
 , $g = f(a) \otimes (a) + f_a \otimes f(a)$

et $g \in C^0([a,b],\mathbb{R})$. On pose $G(t) = \int_0^t g$.

2. En déduire qu'il existe
$$c \in [a, b]$$
 t.q. $\int_a^b f g = f(a) \int_a^c g$.

Exercice. (Partiel 2020) Déterminer
$$\lambda(\{t \in \mathbb{R} \mid |\cos t| = 1\})$$
.

Exercice. (Ch2 Ex1.7) Soient $f \in C^1([a,b],\mathbb{R})$ décroissante et positive

Exercice. (Partiel 2020) Vrai ou faux

1.
$$\lambda_{\mathbb{R}^2}([0,1] \times \{0\}) = 0.$$

- 2. Toute fonction intégrable sur $\mathbb R$ est bornée.
- 3. Toute fonction continue sur un intervalle borné est intégrable.
- 4. Soient $f, g \in C^0(\mathbb{R}) \cap \mathcal{L}^1(\mathbb{R})$ t.q. $f \leq g$ et $\int_{\mathbb{R}} f = \int_{\mathbb{R}} g$, alors f = g.

est intégrable sur [0, 1]. Posons

Exercice. (Examen 2020) Soient $j, k \in \mathbb{N}$. Montrer que $x \mapsto x^j (\ln x)^k$

$$I_{j,k} := \int_0^1 x^j (\ln x)^k \, \mathrm{d}x$$

Déterminer la valeur de $I_{j,0}$, en suite la valeur de $I_{j,k}$.

Exercice 7. Déterminer l'intégrabilité de

1.
$$x \mapsto \frac{x}{x^2 + n} - \frac{p}{x + 1} \text{ sur } [1, +\infty[.$$

- 2. $x \mapsto |\ln x|^p \text{ sur } [0,1].$
- 3. $x \mapsto \frac{1}{\sqrt[3]{x^2(x-1)^2}}$ sur $[0, +\infty[$.
- 4. $x \mapsto \frac{1}{x^p(1+x^2)} \text{ sur } [0,+\infty[\text{ pour } p > 0.$

Exercice 8. Déterminer si $x \mapsto \frac{x}{1+x^6\sin^2 x}$ est intégrable sur $[0,+\infty[$.

7 Séance 31 mars 2021

Théorème 79. (Convergence dominée) Soit $A \subseteq \mathbb{R}^d$ un ensemble mesurable et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions intégrables sur A t,q.

- 1. $f_n(x) \to f(x)$ p.p. $x \in A$ (par exemple, quand $f_n \to f$ simplement sur $A \setminus E$ où $E \subseteq A$ est un sous-ensemble fini)
- 2. Il existe une fonction mesurable, positive et intégrable g t.q. pour tout $n \in \mathbb{N}$, on ait $|f_n(x)| \leq g(x)$ p.p. $x \in A$

Alors f est intégrable et

$$\int_{A} f = \lim_{n \to \infty} \int_{A} f_n$$

De plus, $\lim_{n\to\infty} \int_A |f_n - f| = 0$.

Remarque 80. Quand A est un intervalle fini (ou plus généralement, $\lambda(A) < +\infty$), c'est beaucoup plus faible que la convergence uniforme $\lim_{n \to \infty} \sup_{x \in A} |f_n(x) - f(x)| = 0$. Par exemple, si $\lambda(A) < +\infty$ et il existe $M \in \mathbb{R}_{\geq 0}$ t.q. pour tout $n \in \mathbb{N}$ et tout $x \in A$, on ait $|f_n(x)| \leq M$ (c'est-à-dire, la suite (f_n) est uniformément bornée, alors $\int_A \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_A f_n$.

Exemple 81. On prend $A = [0, \pi/2]$ et $f_n(x) = \sin^n x$. On remarque que $|f_n(x)| \le 1$ pour tout $n \in \mathbb{N}$ et $x \in A$. Alors $f(x) = \lim_{n \to \infty} f_n(x) = 0$ quand $x \in A \setminus \{\pi/2\}$ et $f(\pi/2) = \lim_{n \to \infty} f_n(\pi/2) = 1$. Donc $\lim_{n \to \infty} \int_A f_n = \int_A \lim_{n \to \infty} f_n = 0$. Mais $\sup_{x \in A} |f_n(x) - f(x)| = 1$ (comme $\lim_{x \to (\pi/2)^-} |f_n(x) - f(x)| = 1$ par la continuité de f_n et f sur $[0, \pi/2]$, donc $f_n \to f$ n'est pas uniforme.

Théorème 82. (\sum et \int) Soit $A \subseteq \mathbb{R}^d$ un ensemble mesurable et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables sur A t.a.

$$\sum_{n=0}^{\infty} \int_{A} |f_n| < +\infty$$

Alors $\sum_{m=0}^{\infty} f_n$ est intégrable, et

$$\int_{A_{n-0}}^{\infty} f_n = \sum_{n=0}^{\infty} \int_{A} f_n$$

Théorème 83. Soient $A \subseteq \mathbb{R}^d$ un ensemble mesurable, $\Lambda \subseteq \mathbb{R}^n$ un ouvert, et $f: A \times \Lambda \to \mathbb{C}$ une fonction t.q. pour tout $t \in \Lambda$ (comme un « paramètre »), la fonction $f(\cdot,t): A \to \mathbb{C}$ est intégrable. On note F la fonction $\Lambda \to \mathbb{C}, t \mapsto \int_A f(\cdot,t)$.

Continuité. Supposons que

- 1. (Continuité par rapport au paramètre) La fonction $f(x,\cdot)$: $\Lambda \to \mathbb{C}$ est continue p.p. $x \in A$.
- 2. (Majoration indépendante du paramètre) Il existe une fonction intégrable $g: A \to \mathbb{R}_{\geq 0}$ t.q. pour tout $t \in \Lambda$, $|f(x,t)| \leq g(x)$ p.p. $x \in A$.

Alors la fonction F est continue.

Dérivée. Supposons que $\Lambda \subseteq \mathbb{R}$, et que

1. (Dérivabilité par rapport au paramètre) La fonction $f(x, \cdot): \Lambda \to \mathbb{C}$ est dérivable p.p. $x \in A$.

2. Il existe une fonction intégrable $g: A \to \mathbb{R}_{\geq 0}$ t.q. pour tout $t \in \Lambda$, $|\partial_t f(x,t)| \leq g(x)$ p.p. $x \in A$.

Alors la fonction F est dérivable, et

$$F'(t) := \partial_t \int_A f(x,t) dx = \int_A \partial_t f(x,t) dx$$

Exercice. (Ch2 Ex2.9)

- 1. Soit $f: \mathbb{R}^d \to \mathbb{C}$ une fonction intégrable. $\overline{B}_{\mathbb{R}^d}(r) = \{ p \in \mathbb{R}^d \mid ||p|| \le r \}$
 - a. Montrer que $\int_{\mathbb{R}^d} f \, 1_{B_{\mathbb{R}^d}(n)}$ et $\int_{\mathbb{R}^d} f \, 1_{|f| \le n}$ convergent vers $\int_{\mathbb{R}^d} f$ quand $n \to \infty$.
 - b. On suppose que d=1. Montrer que la fonction $x\mapsto \int_0^x f$ est continue.
- 2. Calculer les limites quand $n \to \infty$

$$\int_{1}^{e} (\ln x)^{n} dx \qquad \int_{0}^{\pi} \cos(x/n) dx \qquad \int_{-1}^{1} x^{3} e^{-n|x|} dx \qquad \int_{0}^{+\infty} \frac{\sin^{n} t}{t(1+t)} dt
\int_{0}^{+\infty} \frac{\sin(t^{n})}{t^{n}(1+t)} dt$$

Avertissement 84. Tout d'abored, il faut montrer que $t \mapsto \frac{\sin^n t}{t(1+t)}$ et $t \mapsto \frac{\sin(t^n)}{t^n(1+t)}$ sont intégrables sur $[0, +\infty[$ pour tout $n \in \mathbb{N}_{>0}$.

- 3. Le but de cette question est de calculer $\int_0^{+\infty} \frac{\sin x}{e^x 1} dx$.
 - a. Soit $x \in \mathbb{R}$ t.q. |x| < 1. Rappeler la valeur de $\sum_{n=0}^{\infty} x^n$.

- b. En déduire, pour x > 0, une nouvelle expression pour $\frac{\sin x}{e^x 1}$.
- c. Pour tout $n \ge 1$, calcular $\int_0^{+\infty} e^{-nx} \sin x \, dx$. Conclure.

Solution.

- 1. Convergence dominée
 - a. La convergence simple: pour tout $x \in \mathbb{R}^d$, $\lim_{n \to \infty} f(x) 1_{\overline{B}_{\mathbb{R}}d(n)}(x) = f(x)$ (comme quand $n \ge \|x\|$, on a $1_{\overline{B}_{\mathbb{R}}d(n)}(x) = 1$, donc la suite $(f(x) 1_{\overline{B}_{\mathbb{R}}d(n)}(x))_{n \in \mathbb{N}} = (0, 0, \dots, 0, f(x), f(x), \dots))$. Il faut alors trouver une fonction intégrable $g : \mathbb{R}^d \to \mathbb{R}_{\ge 0} \cup \{+\infty\}$ t.q. $|f(x) 1_{\overline{B}_{\mathbb{R}}d(n)}(x)| \le g(x)$. On peut prendre g(x) = |f(x)|. Par le thm de conv. dom., on a ...

La convergence simple: pour tout $x \in \mathbb{R}^d$, $\lim_{n \to \infty} f(x) 1_{|f| \le n}(x) = f(x)$. $|f(x) 1_{|f| \le n}(x)| \le |f(x)|$. Par le thm de conv. dom., on a ...

- b. Par la caractérisation sequentielle, il suffit de montrer que, pour toute suite $(x_n)_{n\in\mathbb{N}}$ qui converge, on a $\lim_{n\to\infty}\int_0^{x_n}f=\int_0^{\lim_{n\to\infty}x_n}f$. On peut réécrire $\int_0^x f=\int_{\mathbb{R}}g_x f$ où $g_x=1_{]-\infty,x]}-1_{]-\infty,0[}$. Alors la convergence simple quand $t\neq x$: $1_{]-\infty,x_n]}(t)\to 1_{]-\infty,x]}(t)$ (quand t< x, alors il existe N t.q. pour tout $n\geq N$, on a $x_n>t$ donc $1_{]-\infty,x_n]}(t)=1=1_{]-\infty,x]}(t)$; quand t>x, alors il existe N t.q. pour tout $n\geq N$, on a $x_n< t$ donc $1_{]-\infty,x_n]}(t)=0=1_{]-\infty,x]}(t)$. et $\lim_{n\to\infty}g_{x_n}(t)\,f(t)=g_x(t)\,f(t)$. En résumé, $g_{x_n}f\to f$ p.p. (plus précisément, sur $\mathbb{R}\setminus\{x\}$).
 - Ensuite, $|g_x| \le 1$ donc $|g_{x_n}(t)| f(t) \le |f(t)|$. Par le thm de conv. dom.

2. Les limites

Convergence simple: quand $1 \le x < e$, on a $\lim_{n \to \infty} (\ln x)^n = 0$, donc $(\ln x)^n \to 0$ p.p. $x \in [1, e]$ (plus précisément, $[1, e] \setminus \{e\}$). Ensuite, $|\ln x|^n \le g(x)$ pour tout $n \in \mathbb{N}$ et tout $x \in [1, e]$ où g(x) = 1 est intégrable sur [1, e]. Alors $\lim_{n \to \infty} \int_1^e (\ln x)^n dx = \int_1^e 0 dx = 0$.

Convergence simple: $\lim_{n\to\infty}\cos(x/n)=1$, $|\cos(x/n)|\leq 1$ qui est intégrable sur $[0,\pi]$. Donc $\lim_{n\to\infty}\int_0^\pi\cos(x/n)\,\mathrm{d}x=\int_0^\pi 1\,\mathrm{d}x=\pi$.

Convergence simple: quand $x \neq 0$, $\lim_{n\to\infty} x^3 e^{-n|x|} = 0$ et $|x^3 e^{-n|x|}| \leq 1$ qui est intégrable sur [-1,1]. Alors $\lim_{n\to\infty} \int_{-1}^1 x^3 e^{-n|x|} dx = \int_{-1}^1 0 dx = 0$.

Pour $\int_0^{+\infty} \frac{\sin^n t}{t(1+t)} dt$, deux singularités (potentielles): $0, +\infty$. $\frac{\sin^n t}{t(1+t)} \sim t^{n-1}$. Comme $n \ge 1$, c'est localement bornée au point 0, donc localement intégrable au point 0. Quand $t \to +\infty$, $\left|\frac{\sin^n t}{t(1+t)}\right| \le \frac{1}{t(1+t)} \sim \frac{1}{t^2}$, par la critère de Riemann, c'est localement intégrable au point $+\infty$. En résumé, $t \mapsto \frac{\sin^n t}{t(1+t)}$ est intégrable sur $[0, +\infty[$ pour tout $n \in \mathbb{N}_{>0}$. Ensuite, quand $t \notin \{2 k \pi \pm \pi/2 \mid k \in \mathbb{Z}\}$ (i.e. $|\sin t| < 1$) $\lim_{n\to\infty} \frac{\sin^n t}{t(1+t)} = 0$. De plus $\left|\frac{\sin^n t}{t(1+t)}\right| \le \left|\frac{\sin t}{t(1+t)}\right|$ qui est intégrable sur $[0, +\infty[$. Donc $\lim_{n\to\infty} \int_0^{+\infty} \frac{\sin^n t}{t(1+t)} dt = 0$.

Pour $\int_0^{+\infty} \frac{\sin(t^n)}{t^n(1+t)} dt$. Singularités potentielles: $0, +\infty$. Remarquons que, pour tout $n \in \mathbb{N}$, $\lim_{t\to 0^+} \frac{\sin(t^n)}{t^n(1+t)} = 1$, donc localement intégrable au point 0. Quand $t\to +\infty$, $\left|\frac{\sin(t^n)}{t^n(1+t)}\right| \leq \frac{1}{t^n(1+t)} \sim \frac{1}{t^{n+1}}$. Par la critère

de Riemann, la fonction est localement intégrable au point $+\infty$. En suite, la limite simple: quand 0 < t < 1, $f_n(t) := \frac{\sin(t^n)}{t^n(1+t)} \sim \frac{t^n}{t^n(1+t)} = \frac{1}{1+t}$ quand $n \to \infty$. quand t > 1, $\left|\frac{\sin(t^n)}{t^n(1+t)}\right| \le \frac{1}{t^n(1+t)} \to 0$ quand $n \to \infty$. En résumé, $f_n \to f$ p.p. $t \in [0, +\infty]$ où $f(t) = \begin{cases} \frac{1}{1+t} & t \le 1 \\ 0 & t > 1 \end{cases}$. De plus, quand $0 < t \le 1$, comme $|\sin(t^n)| \le t^n$, on a $\left|\frac{\sin(t^n)}{t^n(1+t)}\right| \le \frac{t^n}{t^n(1+t)} = \frac{1}{1+t}$. Quand t > 1, on a $\left|\frac{\sin(t^n)}{t^n(1+t)}\right| \le \frac{1}{t^n(1+t)}$. On prend $g(t) = \begin{cases} \frac{1}{1+t} & t \le 1 \\ \frac{1}{t(1+t)} & t > 1 \end{cases}$ qui est continue sur $[0, +\infty[$. Alors pour tout $n \in \mathbb{N}_{>0}$ et $t \in [0, +\infty[$, on a $|f_n(t)| \le g(t)$. De plus, on vérifie que g est intégrable sur $[0, +\infty[$. Par le thm de conv. dom., $\lim_{n \to \infty} \int_{\mathbb{R}_{>0}} f_n = \int_0^1 \frac{dt}{1+t} = \ln 2$.

3.

a.
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$
 quand $|x| < 1$.

b.
$$\frac{\sin x}{e^x - 1} = \frac{1}{1 - e^{-x}} e^{-x} \sin x = e^{-x} \sin x \sum_{n=0}^{\infty} e^{-nx} = \sin x \sum_{n=1}^{\infty} e^{-nx}$$
.

c. Tout d'abord, il faut montrer que $x \mapsto e^{-nx} \sin x$ est intégrable sur $[0, +\infty]$ quand $n \in \mathbb{N}_{>0}$. En suite,

$$I_n := \int_0^{+\infty} e^{-nx} \sin x \, dx = -\int_0^{+\infty} e^{-nx} \, d(\cos x)$$

$$\stackrel{\text{IPP}}{=} -e^{-nx} \cos x \, dx$$

$$= \int_0^{+\infty} e^{-nx} \cos x \, dx$$

$$= 1 - n \int_0^{+\infty} e^{-nx} d(\sin x)$$

$$\stackrel{\text{IPP}}{=} 1 - n \left(e^{-nx} \sin x \Big|_0^{+\infty} + n \int_0^{+\infty} e^{-nx} \sin x dx \right)$$

$$= 1 - n^2 I_n$$

Donc $I_n = \frac{1}{n^2 + 1}$. Pour évaluer l'intégrale $\int_0^{+\infty} \frac{\sin x}{e^x - 1} dx = \int_0^{+\infty} \sin x dx \sum_{n=1}^{\infty} e^{-nx}$. Pour intervertir \int et \sum , il faut montere que $\sum_{n=1}^{\infty} \int_0^{+\infty} |\sin x| e^{-nx} dx < +\infty$. Par Beppo-Levi, on a

$$\sum_{n=1}^{\infty} \int_0^{+\infty} |\sin x| e^{-nx} dx = \int_0^{+\infty} \sum_{n=1}^{\infty} |\sin x| e^{-nx} dx$$
$$= \int_0^{+\infty} \frac{|\sin x|}{e^x - 1} dx$$

On remarque que $x \mapsto |\sin x|/(e^x - 1)$ est intégrable sur $[0, +\infty]$: il faut vérfier que la fonction est localement intégrable aux points $\{0, +\infty\}$. Quand $x \to 0^+$, $\lim_{x\to 0^+} |\sin x|/(e^x - 1) = 1$, donc la fonction est localement intégrable au point 0. Quand $x \to \infty$, $|\sin x|/(e^x - 1)$

 $1) \le 1/(e^x - 1) \sim e^{-x}$ qui est localement intégrable au point $+\infty$.

En résumé, $\int_0^{+\infty} \frac{|\sin x|}{e^x-1} dx < +\infty$. Donc on a

$$\int_0^{+\infty} \frac{\sin x}{e^x - 1} dx = \int_0^{+\infty} \sin x dx \sum_{n=1}^{\infty} e^{-nx}$$
$$= \sum_{n=1}^{\infty} \int_0^{+\infty} e^{-nx} \sin x dx$$
$$= \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

Exercice. (Ch2 Ex2.11) Calculer

$$\lim_{n\to\infty} \int_0^{+\infty} \frac{n e^{-nx} dx}{1+x^2}$$

Solution. Tout d'abord, c'est bien définie. Ensuite, par le changement de variable y = n x, on a

$$\int_0^{+\infty} \frac{n e^{-nx} dx}{1 + x^2} = \int_0^{+\infty} \frac{e^{-y} dy}{1 + (y/n)^2}$$

Limite simple: $n \to \infty$, $e^{-y}/(1+(y/n)^2) = e^{-y}$. De plus, $\left|\frac{e^{-y}}{1+(y/n)^2}\right| \le e^{-y}$ qui est intégrable sur $[0, +\infty]$. Par le thm de conv. dom., on a $\lim_{n\to\infty} \int_0^{+\infty} \frac{e^{-y} dy}{1+(y/n)^2} = \int_0^{+\infty} e^{-y} dy = 1$.

8 Séance 7 avr 2021

Exercice. (Ch2 Ex2.12) Soit $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ une fonction continue et bornée. Calculer

$$\lim_{n \to \infty} \int_0^{+\infty} \frac{n f(x)}{1 + n^2 x^2} \, \mathrm{d}x$$

[Indication: considérons le changement de variable y = n x].

Solution. Quand
$$n \in \mathbb{N}_{>0}$$
, $\int_0^{+\infty} \frac{n f(x)}{1 + n^2 x^2} dx = \int_0^{+\infty} \frac{f(x) d(n x)}{1 + (n x)^2} = \int_0^{+\infty} \frac{f(y/n)}{1 + y^2} dy$.

Comme f est bornée, il existe $M \in \mathbb{R}_{\geq 0}$ t.q. $|f(x)| \leq M$ pour tout $x \in \mathbb{R}_{\geq 0}$. Alors la fonction $y \mapsto (1+y^2)^{-1} f(y/n)$ est intégrable sur $[0,+\infty[$: quand $y \to +\infty, |(1+y^2)^{-1} f(y/n)| \leq M (1+y^2)^{-1} \sim M y^{-2}$ est localement intégrable au point $+\infty$ par la critère de Riemann.

Afin d'utiliser le thm de conv. dom., il faut trouver une fonction intégrable $g: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ t.q. pour tout $n \in \mathbb{N}$, on a $|(1+y^2)^{-1} f(y/n)| \leq g(y)$. On peut prendre $g(y) = M (1+y^2)^{-1}$.

Donc
$$\lim_{n\to\infty} \int_0^{+\infty} \frac{f(y/n)}{1+y^2} dy = \int_0^{+\infty} \lim_{n\to\infty} \frac{f(y/n)}{1+y^2} dy = f(0) \int_0^{+\infty} \frac{dy}{1+y^2} = \frac{f(0)\pi}{2}$$
.

Exercice. (Ch2 Ex3.15) Soit $f:[0,1] \to \mathbb{R}_{\geq 0}$ une fonction continue. On définit $F(x):=\int_0^1 \sqrt{f(t)+x^2}\,\mathrm{d}t$. Justifier que F est bien définie, et étudier la continuité et la dérivée de F.

Solution. La fonction $t \mapsto \sqrt{f(t) + x^2}$ est continue sur [0, 1] donc intégrable sur [0, 1].

Remarque 85. (Majoration locale) Soit I un intervalle. Une fonction $f: I \to \mathbb{R}$ est continue / dérivable ssi pour tout $x \in I$, il existe un voisinage V de x dans I t.q. f est continue / dérivable sur V. On peut aussi le vérifier sur tous les intervalles compacts.

Pour montrer que $F: \mathbb{R} \to \mathbb{R}$ est continue, il suffit de montrer que, pour tout intervalle compact $I \subseteq \mathbb{R}$, la fonction $F|_I: I \to \mathbb{R}$ est continue. Fixons un intervalle compact $I \subseteq \mathbb{R}$. Afin d'utiliser le thm de continuité des intégrales, il suffit de trouver une fonction intégrable $g: [0,1] \to \mathbb{R}_{\geq 0}$ t.q. pour tout $x \in I$, on a $\sqrt{f(t) + x^2} \leq g(t)$. Comme I est borné, on prend $A \in \mathbb{R}_{\geq 0}$ t.q. $I \subseteq [-A,A]$, alors $\sqrt{f(t) + x^2} \leq \sqrt{f(t) + A^2} =: g(t)$ pour tout $x \in I \subseteq [-A,A]$. Donc par le thm de .., la fonction F est continue sur I. Montrer que $F: \mathbb{R} \to \mathbb{R}$ est dérivable sur $\mathbb{R} \setminus \{0\}$: $\partial_x \left(\sqrt{f(t) + x^2}\right) = \frac{x}{\sqrt{f(t) + x^2}}$ quand $x \neq 0$. Pour tout intervallé compact $I \subseteq \mathbb{R} \setminus \{0\}$, il faut trouver une fonction intégrable $g: [0,1] \to \mathbb{R}_{\geq 0}$ t.q. pour tout $x \in I$, on a $\frac{|x|}{\sqrt{f(t) + x^2}} \leq g(t)$. On peut essayer de prendre $M:=\sup_{x \in I} |x|$

$$g(t) := \sup_{x \in I} \frac{|x|}{\sqrt{f(t) + x^2}} = \sup_{x \in I} \frac{1}{\sqrt{1 + \frac{f(t)}{|x|^2}}} = \frac{1}{\sqrt{1 + \frac{f(t)}{M^2}}}$$

où le dernier égalité est une corollaire de la croissance de la fonction $x \mapsto (1+f(t)/x^2)^{-1/2}$ quand x>0. La fonction g est continue sur [0,1], donc intégrable. Par le thm de dérivabilité des intégrales, la fonction F est dérivable sur I, donc sur $\mathbb{R} \setminus 0$, et la dérivée est donnée par

$$F'(x) = \int_0^1 \frac{x}{\sqrt{f(t) + x^2}} dt$$

Ensuite, on va étudier que la dérivabilité de F au point $0 \in \mathbb{R}$. Pour cela,

on prend $E_0 := \{t \in [0, 1] \mid f(t) = 0\}$ et $E_1 := [0, 1] \setminus E_0$, Alors

$$F(x) = \int_{E_0} \sqrt{f(t) + x^2} dt + \int_{E_1} \sqrt{f(t) + x^2} dt$$

$$= \int_{E_0} |x| dt + \int_{E_1} \sqrt{f(t) + x^2} dt$$

$$= \lambda(E_0) |x| + \int_{E_1} \sqrt{f(t) + x^2} dt$$

La preuve précédente montre que la fonction $\mathbb{R} \to \mathbb{R}_{\geq 0}$, $x \mapsto \int_{E_1} \sqrt{f(t) + x^2} \, \mathrm{d}t$ est dérivable sur \mathbb{R} , donc la fonction F est dérivable au point 0 ssi la fonction $x \mapsto \lambda(E_0) |x|$ est dérivable au point 0, ssi $\lambda(E_0) = 0$, c'est-à-dire, $\{f = 0\}$ est négligéable.

Exercice. (Ch2 Ex3.16) Soit $\varphi: \mathbb{R}_{\geq 0} \to \mathbb{R}$ définie par

$$\varphi(t) = \int_{\mathbb{R}} \frac{e^{-tx^2}}{1+x^2} \, \mathrm{d}x$$

- 1. Montrer que φ est bien définie et continue.
- 2. Montrer que φ est dérivable sur $]0, +\infty[$.
- 3. Montrer que $\varphi' \varphi = -C/\sqrt{t}$ où $C = \int_{\mathbb{R}} e^{-x^2} dx$.
- 4. Résoudre cette EDO, calculer $\varphi(0)$ et montrer que $C = \sqrt{\pi}$.

Solution.

1. Pour montrer que φ est bien définie et continue, par la continuité de $t \mapsto (1+x^2) e^{-tx^2}$ pour tout $x \in \mathbb{R}$, il suffit de montrer que (majoration locale), pour tout intervalle compact $I \subseteq \mathbb{R}_{>0}$, il existe une fonc-

tion intégrable $g: \mathbb{R} \to \mathbb{R}_{\geq 0}$ t.q. pour tout $t \in I$, on a $(1+x^2)^{-1} e^{-tx^2} \leq g(t)$ p.p. $x \in \mathbb{R}$. En effet, **(majoration globale)** il existe une fonction intégrable $g: \mathbb{R} \to \mathbb{R}_{\geq 0}$ t.q. pour tout $t \in \mathbb{R}_{\geq 0}$, on a $(1+x^2)^{-1} e^{-tx^2} \leq g(x)$ p.p. $x \in \mathbb{R}$. On peut prendre $g(x) = (1+x^2)^{-1}$.

Remarque 86. En généralement, on peut vérifier l'intégrabilité et la continuité en même temps par une majoration.

- 2. $\partial_t((1+x^2)^{-1}e^{-tx^2}) = -(1+x^2)^{-1}x^2e^{-tx^2}$. Afin d'utiliser le thm de dérvabilité des intégrales, **(majoration locale)** pour tout intervalle compact $I \subseteq]0, +\infty[$, il suffit de trouver une fonction intégrable $g: \mathbb{R} \to \mathbb{R}_{\geq 0}$ t.q. pour tout $t \in I$, on a $|-(1+x^2)^{-1}x^2e^{-tx^2}| \leq g(x)$ p.p. $x \in \mathbb{R}$. En effet, on peut prendre $g(x) := \sup_{t \in I} |-(1+x^2)^{-1}x^2e^{-tx^2}| = (1+x^2)^{-1}x^2e^{-x^2\inf(I)}$. Comme I est compact, $\inf(I) > 0$, alors g est intégrable. Par conséquent, $\varphi' = -\int_{\mathbb{R}} (1+x^2)^{-1}x^2e^{-tx^2} dx$
- 3. $\varphi(t) \varphi'(t) = \int_{\mathbb{R}} e^{-tx^2} dx = \frac{y = x\sqrt{t}}{\left(\int_{\mathbb{R}} e^{-y^2} dy\right) / \sqrt{t}}$.
- 4. $-C e^{-t}/\sqrt{t} = e^{-t} (\varphi' \varphi) = (e^{-t}\varphi)'$, et $\varphi(0) = \int_{\mathbb{R}} (1+x^2) dx = \pi$. Alors $e^{-t} \varphi(t) \varphi(0) = \lim_{\varepsilon \to 0^+} \int_0^t (e^{-s} \varphi(s))' ds = -C \lim_{\varepsilon \to 0^+} \int_\varepsilon^t e^{-s} dt / \sqrt{s}$. Comme $s \mapsto e^{-s}/\sqrt{s}$ est intégrable sur [0,t] (par la critère de Riemann), $\lim_{\varepsilon \to 0^+} \int_\varepsilon^t e^{-s} dt / \sqrt{s} = \int_0^t e^{-s} dt / \sqrt{s} = \int_0^{\sqrt{t}} e^{-u^2} du$, donc

$$e^{-t}\varphi(t) - \pi = -2C \int_0^{\sqrt{t}} e^{-u^2} du = -C \int_{-\sqrt{t}}^{\sqrt{t}} e^{-u^2} du$$
 (2)

Comme $\varphi(t) \leq \int_{\mathbb{R}} \frac{\mathrm{d}x}{1+x^2} = \pi$, et $u \mapsto e^{-u^2}$ est intégrable sur \mathbb{R} , prend $t \to +\infty$ dans (2), on a $-\pi = -C^2$, donc $C = \sqrt{\pi}$.

9 Séance 14 avr 2021

Remarque 87. Soit $f \in C[a,b]$, alors la somme de Riemann $S_N(f) = \sum_{k=1}^N \frac{b-a}{N} f\left(a + \frac{k\,(b-a)}{N}\right) \to \int_a^b f(x)\,\mathrm{d}x$ lorsque $N \to \infty$. On peut remplacer $\sum_{k=1}^N \mathrm{par} \sum_{k=0}^N$. En effet, $T_N(f) := \sum_{k=0}^N \frac{b-a}{N} f\left(a + \frac{k\,(b-a)}{N}\right) = \frac{b-a}{N} f(a) + S_N(f)$. Lorsque $N \to \infty$, $\frac{b-a}{N} f(a) \to 0$, donc $\lim_{N \to \infty} T_N(f) = \lim_{N \to \infty} S_N(f) = \int_a^b f(x)\,\mathrm{d}x$, mais on doit réproduire cette preuve dans l'examen.

Exercice 9. Le but de cet exercice est de calculer l'intégrale de Poisson $\int_0^{\pi} \ln(x^2 - 2x\cos\theta + 1) d\theta$ pour tout $x \in \mathbb{R}$.

- 1. Montrer que pour tout $x \in \mathbb{R}$, la fonction $\theta \mapsto \ln(x^2 2x \cos \theta + 1)$ est intégrable sur $[0, \pi]$. On note $I(x) := \int_0^{\pi} \ln(x^2 2x \cos \theta + 1) d\theta$.
- 2. Montrer que pour tout $x \in \mathbb{R} \setminus \{0\}$, on a $I(x) I(1/x) = 2\pi \ln |x|$.
- 3. Montrer que la fonction $I: \mathbb{R} \to \mathbb{R}$ est continue. [pas fini]
- 4. Montrer que la fonction I est dérivable sur $\mathbb{R} \setminus \{\pm 1\}$. [non-traité]

5. Montrer que I'(x) = 0 quand |x| < 1. En déduire la valeur de I(x) pour tout $x \in \mathbb{R}$. [non-traité]

Solution.

- 1. On remarque que la fonction $y\mapsto \ln y$ est continue sur $\mathbb{R}_{>0}$. Pour $x\in\mathbb{R}$ et $\theta\in[0,\pi]$, $x^2-2x\cos\theta+1=(x-\cos\theta)^2+\sin^2\theta\geq 0$, et c'est zéro ssi $x=\cos\theta$ et $\sin\theta=0$, c'est-à-dire, soit $\theta=0$ et x=1, soit $\theta=\pi$ et x=-1. Quand $x\notin\{\pm 1\}$, la fonction $\theta\mapsto \ln(x^2-2x\cos\theta+1)$ est continue sur $[0,\pi]$, donc intégrable. Quand x=1, singularité: $\{0\}$, $\ln(x^2-2x\cos\theta+1)=\ln(2-2\cos\theta)=\ln(\theta^2+o(\theta^3))=\ln(\theta^2(1+o(\theta)))=2\ln\theta+\ln(1+o(\theta))=2\ln\theta+o(\theta)\sim 2\ln\theta$ quand $\theta\to 0^+$, donc par critère de Bertrand, la fonction $\theta\mapsto \ln(2-2\cos\theta)$ est localement intégrable au point 0. Pour x=-1, $\ln(2+2\cos\theta)=\ln(2-2\cos(\pi-\theta))$ et similaire.
- 2. $I(1/x) = \int_0^{\pi} \ln(x^{-2} 2x^{-1}\cos\theta + 1) d\theta = \int_0^{\pi} (\ln x^{-2} + \ln(x^2 2x\cos\theta + 1)) d\theta = \int_0^{\pi} -2\ln|x| d\theta + I(x) = -2\pi\ln|x| + I(x).$
- 3. Pour tout intervalle compact $[a, b] \subseteq \mathbb{R}$, il suffit d'étudier $\sup_{x \in [a,b]} |\ln(x^2 2x\cos\theta + 1)|$ [pas fini]

Exercices non-traités

Exercice 10. Le but de cet exercice est de calculer l'intégrale de Poisson $\int_0^{\pi} \ln(x^2 - 2x \cos \theta + 1) d\theta$ pour tout $x \in \mathbb{R}$. On note $I(x) := \int_0^{\pi} \ln(x^2 - 2x \cos \theta + 1) d\theta$.

- 1. Montrer que la fonction I est dérivable sur $\mathbb{R} \setminus \{\pm 1\}$.
- 2. Montrer que I'(x) = 0 quand |x| < 1. En déduire la valeur de I(x) pour

tout $x \in \mathbb{R}$.

Exercice 11. (Frullani) Soient a > b > 0 et $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ une fonction continue t.q. la limite $f(+\infty) := \lim_{x \to +\infty} f(x)$ existe.

- 1. Supposons que la fonction $t\mapsto (f(a\,x)-f(b\,x))/x$ est intégrable sur $[0,+\infty[$. Montrer que $\int_0^{+\infty}\frac{f(a\,x)-f(b\,x)}{x}\,\mathrm{d}x=(f(+\infty)-f(0))\ln\frac{a}{b}.$
- 2. (Ch2 Ex4.20) En déduire que $\int_0^{+\infty} \frac{e^{-bt} e^{-at}}{t} dt = \ln \frac{a}{b}.$

10 Séance 5 mai 2021

Théorème 88. (Fubini) Soient $E \subseteq \mathbb{R}^m$ et $F \subseteq \mathbb{R}^n$ deux parties mesurables (alors $E \times F \subseteq \mathbb{R}^{m+n}$ l'est aussi).

1. Soit $f: E \times F \to [0, +\infty]$ une fonction mesurable **positive**, alors les fonctions $x \mapsto \int_E f(x, y) \, dy$ et $y \mapsto \int_E f(x, y) \, dx$ sont mesurables, et

$$\int_{E \times F} f = \int_{E} \left(\int_{F} f(x, y) \, \mathrm{d}y \right) \mathrm{d}x = \int_{F} \left(\int_{E} f(x, y) \, \mathrm{d}x \right) \mathrm{d}y$$

2. Soit $f: E \times F \to \mathbb{C}$ une fonction **intégrable**, alors les fonctions $x \mapsto \int_E f(x, y) \, dy$ et $x \mapsto \int_E f(x, y) \, dx$ sont intégrables, et

$$\int_{E \times F} f = \int_{E} \left(\int_{F} f(x, y) \, dy \right) dx = \int_{F} \left(\int_{E} f(x, y) \, dx \right) dy$$

Théorème 89. (Chg de var \mathbb{R}^d) Soient $U, V \subseteq_{\text{ouvert}} \mathbb{R}^d$, et $\varphi: U \to V$ un C^1 -diffeo. Alors une fonction $f: V \to \mathbb{C}$ est intégrable ssi $(f \circ \varphi) |\det J_{\varphi}| : U \to \mathbb{C}$ l'est aussi, et on a

$$\int_{V} f = \int_{U} (f \circ \varphi) |\det J_{\varphi}|$$

Remarque 90. Pour les coordonées polaires, $dx dy = r dr d\theta$ où $J_{\varphi} = r$.

Évaluer un intégrale double d'une fonction positive

Exercice. (Ch2 Ex4.18) Calculer $\int_D \frac{\mathrm{d}x\,\mathrm{d}y}{x^2\,y}$ où $D = \{(x,y) \in \mathbb{R}^2 \mid x \ge 1 \text{ et } x^{-1} \le y \le x\}.$

Solution. $f(x,y) = x^{-2}y^{-1}1_D(x,y) \ge 0$, donc par le thm de Fubini,

$$\int_{D} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y) \, \mathrm{d}y \right) \mathrm{d}x$$

$$= \int_{1}^{+\infty} \left(\int_{1/x}^{x} \frac{\mathrm{d}y}{x^{2}y} \right) \mathrm{d}x$$

$$= \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{2}} \left(\ln(x) - \ln(1/x) \right)$$

$$= 2 \int_{1}^{+\infty} \frac{\ln x \, \mathrm{d}x}{x^{2}}$$

$$= 2 \lim_{A \to +\infty} \int_{1}^{A} \frac{\ln x \, \mathrm{d}x}{x^{2}}$$

$$= -2 \lim_{A \to +\infty} \int_{1}^{A} \ln x \, \mathrm{d}\left(\frac{1}{x}\right)$$

$$= -2 \lim_{A \to +\infty} \left(\frac{\ln x}{x} + \frac{1}{x} \right) \Big|_{1}^{A}$$

$$= 2$$

Alternativement, $\begin{cases} x \ge 1 \\ x^{-1} \le y \le x \end{cases} \iff \begin{cases} y > 0 \\ x \ge \max\{1/y, y\} \end{cases} \text{ alors}$

$$\int_{D} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_{0}^{+\infty} \mathrm{d}y \int_{\max\{1/y,y\}}^{+\infty} \frac{\mathrm{d}x}{x^{2} y}$$

Intégrabilité

Exercice. (Ch2 Ex4.19) La fonction $(x, y) \mapsto (x - y) (x + y)^{-3}$ est-elle intégrable sur $[1, +\infty]^2$?

Solution. Cette fonction est intégrable ssi $\int_{[1,+\infty[^2]} |x-y| (x+y)^{-3} dx dy < +\infty$ par définition. On remarque que $\{x \ge 1, y \ge 1, y \ge x\} \subseteq [1,+\infty[^2.$

$$\int_{[1,+\infty[^2]} |x-y| (x+y)^{-3} dx dy \ge \int_{\{x\ge 1, y\ge 1, y\ge x\}} |x-y| (x+y)^{-3} dx dy
= \int_{1}^{+\infty} dx \int_{x}^{+\infty} \frac{y-x}{(y+x)^3} dy
= \int_{1}^{+\infty} dx \int_{2x}^{+\infty} \frac{u-2x}{u^3} du
\int_{2x}^{+\infty} \frac{u-2x}{u^3} du = \int_{2x}^{+\infty} (u^{-2} - 2xu^{-3}) du
= \lim_{A \to +\infty} \int_{2x}^{+\infty} (\cdots) du
= \lim_{A \to +\infty} (-u^{-1} + xu^{-2})|_{2x}^{A}
= \frac{1}{4x}
\int_{1}^{+\infty} dx \int_{2x}^{+\infty} \frac{u-2x}{u^3} du = \int_{1}^{+\infty} \frac{dx}{4x}$$

Donc $(x, y) \mapsto (x - y)(x + y)^{-3}$ n'est pas intégrable sur $[1, +\infty]^2$.

Remarque 91. Pour évaluer l'intégrale $\int_{\mathbb{R}^2} f$ pour une fonctione mesurable $f: \mathbb{R}^2 \to \mathbb{C}$:

1. Déterminer si f est intégrable sur \mathbb{R}^2 , i.e. $\int_{\mathbb{R}^2} |f| < +\infty$.

2. Si oui, on peut l'évaluer par le thm de Fubini (ou avec un changement de variable).

Exercice. (Ch2 Ex4.22) Barreau de longueur L, densité $\rho(x) = x^2$.

- 1. Calculer la masse du barreau.
- 2. Calculer l'abscisse du centre de gravité du barreau.

Une plaque homogène de densité constante 1: $P = \{(x, y) \mid x \in [0, L] \text{ et } 0 < y < x^2\}.$

- 3. Faire un dessin, et exprimer la masse de la plaque, puis l'abscissi de son centre de gravité.
- 4. Calculer l'ordonée du centre de gravité.

Remarque 92. $E \subseteq \mathbb{R}^d$, le centre de gravité (u_1, \ldots, u_d) où $u_i := \lambda(E)^{-1} \int_E x_i \, \mathrm{d}x_1 \, \mathrm{d}x_2 \cdots \, \mathrm{d}x_d$.

Solution.

- 1. $m = \int_0^L \rho(x) dx = L^3/3$.
- 2. $x_G = \left(\int_0^L x \, \rho(x) \, dx \right) / m = \left(L^4 / 4 \right) / \left(L^3 / 3 \right) = 3 L / 4.$
- 3. $m = \int_P dx dy = \int_0^L dx \int_0^{x^2} dy = \int_0^L x^2 dx = L^3/3$ et

$$x_G = m^{-1} \int_P x \, \mathrm{d}x \, \mathrm{d}y$$

$$y_G = m^{-1} \int_P y \, \mathrm{d}x \, \mathrm{d}y$$

4. On a

$$x_{G} = m^{-1} \int_{0}^{L} x \, dx \int_{0}^{x^{2}} dy$$

$$= m^{-1} \int_{0}^{L} x^{3} \, dx$$

$$= 3L/4$$

$$y_{G} = m^{-1} \int_{0}^{L} dx \int_{0}^{x^{2}} y \, dy$$

$$= m^{-1} \int_{0}^{L} dx \frac{x^{4}}{2}$$

$$= (3/L^{3}) (L^{5}/10)$$

$$= 3L^{2}/10$$

Exercice. (Ch2 Ex5.23) Calculer l'aire

- 1. $\{(x,y) \mid x \ge 0, y \ge 0 \text{ et } 1 \le x + y \le 2\}$
- 2. $\{(x,y) \mid 1 \le x \le 2 \text{ et } x \le y \le e^x\}$
- 3. $\{(x,y) \mid 0 \le x \le \pi \text{ et } \sin^2 x \le y \le \sin x\}$
- 4. $\{(r\cos\theta,r\sin\theta)\mid r\leq 1\ \text{ et } \pi/2\leq\theta\leq 3\,\pi/2\}$ (il faut les coordonées polaires)

Solution. L'aire de $E \subseteq \mathbb{R}^2$ est $\lambda(E) = \int_{\mathbb{R}^2} 1_E$ où $1_E \ge 0$.

$$\lambda(D) = \int_0^2 dx \int_{\mathbb{R}} 1_D(x, y) \, dy$$

$$\int_{\mathbb{R}} 1_D(x, y) \, dy = \int_{l(x)}^{r(x)} dy$$

$$= 2 - x - (1 - x)^+$$

$$r(x) = 2 - x$$

$$l(x) = \max\{1 - x, 0\} = (1 - x)^+$$

$$\int_0^2 dx \int_{\mathbb{R}} 1_D(x, y) \, dy = \int_0^2 (2 - x - (1 - x)^+) \, dx$$

$$= \int_0^1 dx + \int_1^2 (2 - x) \, dx$$

$$= 1 + 1/2$$

$$= 3/2$$

- 2. $e^2 e 3/2$. Il faut montrer que, pour tout $1 \le x \le 2$, on a $e^x \ge x$, mais en effet, $e^x \ge 1 + x > x$ quand $x \ge 0$.
- 3. Quand $0 \le x \le \pi$, on a $0 \le \sin x \le 1$, donc $\sin x \ge \sin^2 x$. On rappelle que $\sin^2 x = \frac{1 \cos(2x)}{2}$. (alternativement, $\sin^2 x = \frac{\sin^2 x}{\sin^2 x + \cos^2 x} = \frac{\tan^2 x}{1 + \tan^2 x}$). $2 \pi/2$.
- 4. $]0,1] \times]\pi/2, 3\pi/2[\rightarrow \{(r\cos\theta,r\sin\theta) \mid r \leq 1 \text{ et } \pi/2 \leq \theta \leq 3\pi/2\} \setminus \{0\} \setminus \{\theta=\pi/2 \text{ ou } 3\pi/2\} \text{ et un difféomorphisme, donc par le change de variables,}$

$$\lambda(E) = \int_0^1 r \, dr \int_{\pi/2}^{3\pi/2} d\theta$$
$$= \pi \int_0^1 r \, dr$$
$$= \pi/2$$

Remarque 93. Si la domaine est stable par rotation, alors on peut prendre les coordonnées polaires.

Exercice. (Ch2 Ex5.24) Calculer $\int_D f(x, y) dx dy$

- 1. f(x, y) = x et $D = \{z = x + y \in \mathbb{C} \mid |z| \le 5\}$.
- 2. f(x,y)=y et D borné du $\mathbb{R}_{\geq 0}\times\mathbb{R}_{\geq 0}$ délimité par $x^2+y^2=9,\ y=x$ et y=0.
- 3. f(x,y) = xy et $D \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$ délimité par $x^2 + y^2 = 4$ et $x^2 + y^2 = 25$
- 4. $f(x,y) = (x^2 + y^2)^{-1/2}$ où $D = \{4 \le x^2 + y^2 \le 16\}$

Solution. 1. $]0,5[_{(r)}\times]0,2\pi[_{(\theta)}\to D\setminus 0\setminus\mathbb{R},(r,\theta)\mapsto r\operatorname{e}^{\mathrm{i}\theta}$ est un difféomorphisme. On remarque que la fonction f est continue sur D qui

est compact, donc f est intégrable. On peut alors utiliser le théorème de Fubini.

$$\int_{D} x \, dx \, dy = \int_{]0,5[(r)\times]0,2\pi[(\theta)]} r \cos \theta \, r \, dr \, d\theta$$
$$= \int_{0}^{5} r^{2} \, dr \int_{0}^{2\pi} \cos \theta \, d\theta$$
$$= 0$$

2. $f \ge 0$ sur D.

$$\int_{D} y \, dx \, dy = \int_{]0,3[r] \times]0,\pi/4[\theta)} r \sin \theta \, r \, dr \, d\theta$$

$$= \int_0^3 r^2 dr \int_0^{\pi/4} \sin \theta d\theta$$
$$= 9 \left(1 - \sqrt{1/2}\right)$$

3. $f \ge 0$.

$$\int_{D} x y \, dx \, dy = \int_{]2,5[(r)\times]0,2\pi[(\theta)]} r^{2} \cos \theta \sin \theta \, r \, dr \, d\theta$$
$$= \int_{2}^{5} r^{3} \, dr \int_{0}^{2\pi} \cos \theta \sin \theta \, d\theta$$
$$= \frac{5^{4} - 2^{4}}{4} \frac{1}{2} \int_{0}^{2\pi} \sin(2\theta) \, d\theta$$

4. $f \ge 0$,

$$\int_{D} \frac{\mathrm{d}x \,\mathrm{d}y}{\sqrt{x^2 + y^2}} = \int_{]2,4[(r)\times]0,2\pi[(\theta)} \frac{r \,\mathrm{d}r \,\mathrm{d}\theta}{r}$$
$$= 4 \,\pi$$

Notation 94. Soit $p \ge 1$. $\mathcal{L}^p(\mathbb{R}^d)$ est l'ensemble de fonctions mesurables $\mathbb{R}^d \to \mathbb{C}$ t.q. $|f|^p$ soit intégrable. $L^p(\mathbb{R}^d) = \mathcal{L}^p(\mathbb{R}^d) / \sim$ où $f \sim g$ ssi f = g p.p. Pour $f \in \mathcal{L}^p(\mathbb{R}^d)$, on note

$$||f||_p := \left(\int_{\mathbb{R}^d} |f|^p\right)^{1/p}$$

Exercice. (Ch3 Ex1.1) vrai ou faux

- 1. $\mathcal{L}^1(\mathbb{R}) \subseteq C_b(\mathbb{R})$ où $C_b(\mathbb{R}) = C_b^0(\mathbb{R})$ est l'ensemble de fonctions continues et bornées.
- 2. $C_b(\mathbb{R}) \subseteq \mathcal{L}^2(\mathbb{R})$.
- 3. Si $f: \mathbb{R} \to \mathbb{C}$ est continue sur [a,b] et f(x) = 0 pour $x \in \mathbb{R} \setminus [a,b]$, alors $f \in \bigcap_{p \geq 1} \mathcal{L}^p(\mathbb{R})$.
- 4. $(x \mapsto x^{-1/2} 1_{[0,1]}) \in \mathcal{L}^p(\mathbb{R})$ pour $1 \le p < 2$.

Solution.

- 1. Faux. Par la critère de Riemann, $x \mapsto 1_{[0,1]}(x) x^{\alpha}$ est intégrable mais pas bornée quand $-1 < \alpha < 0$. Cela implique que $\mathcal{L}^1(\mathbb{R}) \nsubseteq \mathcal{L}^{\infty}(\mathbb{R})$.
- 2. Faux. $f(x) = 1 \in C_b(\mathbb{R}) \setminus \mathcal{L}^2(\mathbb{R})$.
 - 3. Vrai: $|f|^p$ est continue sur [a,b] pour $p \ge 1$, donc y est intégrable. 0 dehors, donc intégrable sur \mathbb{R} .
- 4. Vrai par la critère de Riemann.

11 Séance 12 mai 2021

Définition 95. Le produit de convolution de deux fonctions mesurables $f: \mathbb{R} \to \mathbb{C}$ et $g: \mathbb{R} \to \mathbb{C}$ est défini par (quand l'intégrale est bien défini)

$$(f \star g)(x) = \int_{\mathbb{R}} f(x - t) g(t) dt$$

Lemme 96. $f \star q = q \star f$

Théorème 97. Si $f \in \mathcal{L}^1$ et $g \in \mathcal{L}^p$ quand $p \ge 1$, alors $f \star g$ est bien définie, $f \star g \in \mathcal{L}^p$ et $||f \star g||_p \le ||f||_1 ||g||_p$.

Théorème 98. Si $f \in \mathcal{L}^1$ et $g \in C_b(\mathbb{R}) = C_b^0(\mathbb{R}) = C(\mathbb{R}) \cap \mathcal{L}^{\infty}$, alors $f \star g \in C_b(\mathbb{R})$. De plus, si $g \in C_b^1(\mathbb{R})$ (c'est-à-dire, $g \in C^1(\mathbb{R})$ et $g, g' \in \mathcal{L}^{\infty}$), alors $f \star g \in C_b^1(\mathbb{R})$ et $(f \star g)' = f \star g'$:

$$(f \star g)'(x) = \frac{\mathrm{d}}{\mathrm{d}x} (g \star f)(x) = \int_{\mathbb{R}} g'(x - t) f(t) \, \mathrm{d}t$$

Définition 99. Le support de f: supp $f := \overline{\{f \neq 0\}}$

Exercice. (Ch3 Ex1.1(5-)) Vrai ou faux

- 1. Pour $p \ge 1$, $f \in \mathcal{L}^p$ et $g \in C_b \Longrightarrow fg \in C_b$.
- 2. Pour p > 1, $f \in \mathcal{L}^p$ et $q \in C_b \Longrightarrow f q \in \mathcal{L}^p$.
- 3. f et $a \in \mathcal{L}^1 \Longrightarrow f a \in \mathcal{L}^1$.
- 4. f et $q \in \mathcal{L}^2 \Longrightarrow f q \in \mathcal{L}^1$.
- 5. $f \text{ et } g \in \mathcal{L}^1(\mathbb{R}) \Longrightarrow ((x, y) \mapsto f(x) g(y)) \in \mathcal{L}^1(\mathbb{R}^2).$

Solution.

1. Faux. g = 1 et $f(x) = 1_{[0,1]}(x) x^{\alpha}$ pour $\alpha = -1/(2p)$.

- 2. Vrai. $\int_{\mathbb{R}} |fg|^p \le ||g||_{\infty} \int_{\mathbb{R}} |f|^p < +\infty$ comme $|g| \le ||g||_{\infty}$ p.p.
- 3. Faux. Prenons $f(x)=1_{[0,1]}(x)$ x^{α} et $g(x)=1_{[0,1]}(x)$ x^{β} où $\alpha=\beta=-1/2$.
- 4. Vrai.
 - a. $0 \le (|f| |g|)^2 \Longrightarrow |fg| \le \frac{1}{2} (|f|^2 + |g|^2) \Longrightarrow \int |fg| \le \frac{1}{2} (||f||_2^2 + ||g||_2^2) < +\infty$
 - b. Cauchy-Schwarz: $||fq||_1 < ||f||_2 ||q||_2$
- 5. Vrai. $\int_{\mathbb{R}^2} |F| = \int_{\mathbb{R}} |f| \int_{\mathbb{R}} |g| < +\infty$ par le thm de Fubini où F(x, y) = f(x) g(y)

Exercice. (Ch3 Ex2.10) Montrer que $f \star g$ est bien définie, et la calcule:

- 1. $f(x) = e^{-\alpha x} 1_{\mathbb{R}_{\geq 0}}(x)$ et $g(x) = e^{-\beta x} 1_{\mathbb{R}_{\geq 0}}(x)$ pour $0 < \alpha \neq \beta < 1$.
- 2. $f = 1_{[-1,1]}$ et $g = 1_{[-a,a]}$ pour a > 0.

Solution.

1. $f, g \in \mathcal{L}^1$ donc $f \star g \in \mathcal{L}^1$. Quand x < 0, alors pour tout $t \in \mathbb{R}$, soit t < 0 soit x - t < 0, donc $(f \star g)(x) = 0$. On suppose que $x \ge 0$

$$(f \star g)(x) = \int_{\mathbb{R}} f(x - t) g(t) dt$$
$$= \int_{0}^{x} e^{-\alpha(x - t)} e^{-\beta t} dt$$
$$= e^{-\alpha x} \int_{0}^{x} e^{(\alpha - \beta)t} dt$$

$$= e^{-\alpha x} \frac{e^{(\alpha - \beta)t}}{\alpha - \beta} \Big|_{t=0}^{x}$$
$$= \frac{e^{-\beta x} - e^{-\alpha x}}{\alpha - \beta}$$

2.
$$1_{[-1,1]} \in \mathcal{L}^1$$
 et $1_{[-a,a]} \in \mathcal{L}^1$. $1_{[-a,a]}(x-t) = 1_{[x-a,x+a]}(t)$. $(f \star g)(x) = \int_{\mathbb{R}} 1_{[-1,1]} 1_{[x-a,x+a]} = \lambda([-1,1] \cap [x-a,x+a])$ qui est

$$\begin{cases} 0 & x-a < x+a < -1 \\ x+a+1 & x-a < -1 \le x+a \le 1 \\ 2a & -1 \le x-a < x+a \le 1 \\ 2 & x-a < -1 < 1 < x+a \\ 1-x+a & -1 \le x-a \le 1 < x+a \\ 0 & 1 < x-a < x+a \end{cases}$$

Exercice. (Ch3 Ex2.11) Soient $f = 1_{[0,\pi]}$ et $g(x) = e^{-ix}$.

- 1. Montrer que $f \star q$ existe et de classe C^1 . Calculer $(f \star q)'$ en termes de $f\star g$.
- 2. En déduire une équation différentielle vérifiée par $f \star q$ et en déduire que $(f \star q)(x) = (f \star q)(0) e^{-ix}$.
- 3. Calculer directement $f \star g$.

Solution.

1. $f \in \mathcal{L}^1$, $g \in C_b(\mathbb{R})$ et $g' \in C_b(\mathbb{R})$, donc $f \star g \in C_b^1$ et $(f \star g)' = f \star g' =$ $-i f \star q$.

- 2. $u' = -i u \Longrightarrow \frac{d}{dx} (e^{ix} u) = e^{ix} (u' + i u) = 0$ donc par NL, $e^{ix} u(x) = 0$

- - $u(0) \Longrightarrow u(x) = u(0) e^{-ix}$.
 - 3. $(f \star g)(x) = \int_{\mathbb{R}} 1_{[0,\pi]}(x-t) g(t) = \int_{[x-\pi^{-r}]} g = \frac{e^{-ix} e^{-i(x-\pi)}}{-i} = 2ie^{-ix}$.

Exercice. (Ch3 Ex2.12) Soit $f(x) = e^{-x^2}$.

- 1. Donner l'expression de $(f \star f)(x)$.
- 2. Déterminer $a, b \in \mathbb{R}$ t.a. $-2y^2 x^2 + 2xy = -2(y ax)^2 + bx^2$.
- 3. Effectuer le changement de variables u = y ax et en déduire la valeur de $(f \star f)(x)$ en rappelant que $\int_{\mathbb{D}} e^{-x^2} dx = \sqrt{\pi}$.

Solution.

- 1. $\int_{\mathbb{T}} f(x-t) f(t) dt = \int_{\mathbb{T}} e^{-(x-t)^2 t^2} dt = \int_{\mathbb{T}} e^{-2y^2 + 2xy x^2} dy$
 - 2. $-2y^2 + 2xy x^2 = -2(y \frac{x}{2})^2 + \frac{x^2}{2} x^2 = -2(y \frac{1}{2}x)^2 \frac{1}{2}x^2$.
 - 3. Il suffit d'évaluer $\int_{\mathbb{R}} e^{-2y^2+2xy-x^2} dy$.

$$\int_{\mathbb{R}} e^{-2y^2 + 2xy - x^2} dy = \int_{\mathbb{R}} e^{-2(y - x/2)^2 - x^2/2} dy$$

$$= e^{-x^2/2} \int_{\mathbb{R}} e^{-2z^2} dz$$

$$= \frac{e^{-x^2/2}}{\sqrt{2}} \int_{\mathbb{R}} e^{-(\sqrt{2}z)^2} d(\sqrt{2}z)$$

$$= \frac{e^{-x^2/2}}{\sqrt{2}} \sqrt{\pi}$$

où on a utilisé deux fois le changement de variables pour un difféomorphisme $\mathbb{R} \to \mathbb{R}$ (il y a deux versions de changement de variable: $(\varphi\colon [a,b] \to [\varphi(a),\varphi(b)]$ est dérviable où [a,b] est un intervalle compact) et $(\varphi\colon \mathbb{R}^d \supseteq U \to V \subseteq \mathbb{R}^d$ est un difféomorphisme))

Exercice 12. Déterminer l'aire de $D = \{(x, y) \in \mathbb{R}^2 \mid x^2/a^2 + y^2/b^2 \le 1\}$ où a, b > 0 en utilistant le changement de variables $x = a r \cos \theta$ et $y = b r \sin \theta$ pour 0 < r < 1 et $\theta \in]0, 2\pi[$.

Solution. Tout d'abord, pour l'application $\varphi:]0,1[_r \times]0,2\pi[_\theta \to D \setminus D_0, (r,\theta) \mapsto (ar\cos\theta,br\sin\theta)$ où $D_0 \subseteq D$ est un sous-ensemble négligéable,

$$J_{\varphi} = \begin{pmatrix} a\cos\theta & -ar\sin\theta \\ a\sin\theta & br\cos\theta \end{pmatrix}$$

donc det $J_{\varphi} = a b r (\cos^2 \theta + \sin^2 \theta) = a b r$.

$$\lambda(D) = \int_{]0,1[_r \times]0,2\pi[_{\theta}} a b r dr d\theta$$
$$= a b 2 \pi \int_0^1 r dr$$
$$= \pi a b$$

Exercice 13. En utilisant le changement de variables dans l'exercices précédent, calculer

$$\int_{D} (x+y) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

où $D\subseteq\mathbb{R}^3$ est délimitée par $x=0,\,x=1$ et $x^2+1=(y/a)^2+(z/b)^2$ où $a,\,b>0.$

Solution. Tout d'abord, $D \to \mathbb{R}$, $(x, y, z) \mapsto x + y$ est continue sur D qui est compact, donc y est intégrable.

$$\int_{D} (x+y) dx dy dz = \int_{0}^{1} dx \int_{D_{x}} (x+y) dy dz$$
$$= \int_{0}^{1} F(x) dx$$

où $D_x := \{(y, z) \in \mathbb{R}^2 \mid (y/a)^2 + (z/b)^2 \le 1 + x^2\}$ et $F(x) := \int_{D_x} (x + y) \, dy \, dz$. En utilisant le changement de variables $y = a \, r \, \sqrt{1 + x^2} \cos \theta$ et $z = b \, r \, \sqrt{1 + x^2} \sin \theta$, on a

$$F(x) = \int_{]0,1[_r \times]0,2\pi[_{\theta}} \left(x + a r \sqrt{1 + x^2} \cos \theta \right) a \sqrt{1 + x^2} b \sqrt{1 + x^2} r dr d\theta$$

$$= a b (1 + x^2) \int_0^1 r dr \int_0^{2\pi} \left(x + a r \sqrt{1 + x^2} \cos \theta \right) d\theta$$

$$= a b (1 + x^2) \int_0^1 2 \pi x r dr$$

$$= \pi a b x (1 + x^2)$$

Donc

$$\int_{D} (x+y) \, dx \, dy \, dz = \int_{0}^{1} \pi \, a \, b \, x \, (1+x^{2}) \, dx = \frac{3 \pi \, a \, b}{4}$$

Exercices non-traités

Exercice 14. Soient $I \subseteq \mathbb{R}$ un intervalle compact, $f \in L^1_{loc}(\mathbb{R})$ et $g \in L^{\infty}(I)$, alors $f \star g$ est bien définie p.p.

Définition 100. Une fonction mesurable $f: \mathbb{R}^d \to \mathbb{C}$ est dite localement intégrable, notée $f \in L^1_{loc}(\mathbb{R}^d)$ si pour tout compact $K \subseteq \mathbb{R}^d$, la fonction $1_K f$ est intégrable.