Nonparametric Deep Generative Models with Stick-Breaking Priors

Eric Nalisnick

University of California, Irvine

In collaboration with

Padhraic Smyth

1. Write Model in Terms of the Exponential Family

- 1. Write Model in Terms of the Exponential Family
- 2. Derive Coordinate Ascent Updates

- 1. Write Model in Terms of the Exponential Family
- 2. Derive Coordinate Ascent Updates
- 3. Write Conference Paper

- 1. Write Model in Terms of the Exponential Family
- 2. Derive Coordinate Ascent Updates
- 3. Write Conference Paper
- 4. Repeat

- 1. Write Model in Terms of the Experiential Family
- 2. Derive Coordinate Ascent Updates
- 3. Write Conference Paper
- 4. Pepeat

Software: Stan, Edward...

Latent variable for which we want posterior $\log p_{m{ heta}}(\mathbf{x}_i) \geq \mathbb{E}_q[\log p_{m{ heta}}(\mathbf{x}_i|\mathbf{z}_i)] - KL(q_{m{\phi}}(\mathbf{z}_i)||p(\mathbf{z}_i))$

$$\log p_{\theta}(\mathbf{x}_i) \ge \mathbb{E}_q[\log p_{\theta}(\mathbf{x}_i|\mathbf{z}_i)] - KL(q_{\phi}(\mathbf{z}_i)||p(\mathbf{z}_i))$$

Stochastic Gradient Variational Bayes (SGVB) Estimator:

(Kingma & Welling, ICLR 2014; Rezende et al, ICML 2014)

$$pprox \frac{1}{S} \sum_{s=1}^{S} \log p_{\boldsymbol{\theta}}(\mathbf{x}_i | \mathbf{z}_{i,s}) - KL(q_{\boldsymbol{\phi}}(\mathbf{z}_i | \mathbf{x}_i) || p(\mathbf{z}_i))$$

$$\log p_{\theta}(\mathbf{x}_i) \ge \mathbb{E}_q[\log p_{\theta}(\mathbf{x}_i|\mathbf{z}_i)] - KL(q_{\phi}(\mathbf{z}_i)||p(\mathbf{z}_i))$$

Stochastic Gradient Variational Bayes (SGVB) Estimator:

(Kingma & Welling, ICLR 2014; Rezende et al, ICML 2014)

$$\approx \frac{1}{S} \sum_{s=1}^{S} \log p_{\boldsymbol{\theta}}(\mathbf{x}_i | \mathbf{z}_{i,s}) - KL(q_{\boldsymbol{\phi}}(\mathbf{z}_i | \mathbf{x}_i) || p(\mathbf{z}_i))$$

Monte Carlo Expectation (relieves conjugacy constraints)

$$\log p_{\theta}(\mathbf{x}_i) \ge \mathbb{E}_q[\log p_{\theta}(\mathbf{x}_i|\mathbf{z}_i)] - KL(q_{\phi}(\mathbf{z}_i)||p(\mathbf{z}_i))$$

Stochastic Gradient Variational Bayes (SGVB) Estimator:

(Kingma & Welling, ICLR 2014; Rezende et al, ICML 2014)

$$pprox rac{1}{S} \sum_{s=1}^{S} \log p_{m{ heta}}(\mathbf{x}_i | \mathbf{z}_{i,s}) - KL(q_{m{\phi}}(\mathbf{z}_i | \mathbf{x}_i) || p(\mathbf{z}_i))$$

Monte Carlo Expectation (relieves conjugacy constraints)

Gradients can be taken through MC samples into **z**'s parameters via a non-centered representation

$$\log p_{\theta}(\mathbf{x}_i) \ge \mathbb{E}_q[\log p_{\theta}(\mathbf{x}_i|\mathbf{z}_i)] - KL(q_{\phi}(\mathbf{z}_i)||p(\mathbf{z}_i))$$

Stochastic Gradient Variational Bayes (SGVB) Estimator:

(Kingma & Welling, ICLR 2014; Rezende et al, ICML 2014)

Gradients can be taken through MC samples into **z**'s parameters via a non-centered representation

SGVB for Stick-Breaking Processes

Black-Boxing Bayesian Nonparametrics

Can we use SGVB for the GEM component of stick-breaking priors?

$$G(\cdot) = \sum_{k=1}^{\infty} \pi_k \delta_{\zeta_k}$$

$$\pi_k = \begin{cases} v_1 \text{ if } k = 1\\ v_k \prod_{i < k} (1 - v_i) \text{ for } k > 1 \end{cases} \qquad v_k \sim \text{Beta}(\alpha, \beta)$$

Black-Boxing Bayesian Nonparametrics

Can we use SGVB for the GEM component of stick-breaking priors?

$$G(\cdot) = \sum_{k=1}^{\infty} \pi_k \delta_{\zeta_k}$$

$$\pi_k = \begin{cases} v_1 \text{ if } k = 1 \\ v_k \prod_{j < k} (1 - v_j) \text{ for } k > 1 \end{cases} \qquad v_k \sim \text{Beta}(\alpha, \beta)$$

Two Requirements:

- 1. Need to take gradients through π_k into the var. parameters
- 2. Analytical KL divergence with Beta (not strict, could try MC approx.)

1. Differentiating Through π_k

Obstacle: The Beta distribution does not have a non-centered parametrization (except in special cases)

1. Differentiating Through π_k

Obstacle: The Beta distribution does not have a non-centered parametrization (except in special cases)

Kumaraswamy Distribution: A Beta-like distribution with a closed-form inverse CDF. Use as variational posterior.

Poondi Kumaraswamy (1930-1988)

 $\mathsf{Kumaraswamy}(x;a,b) = abx^{a-1}(1-x^a)^{b-1}$

 $x \sim (1 - u^{\frac{1}{b}})^{\frac{1}{a}}$ where $u \sim \text{Uniform}(0, 1)$

2. KL Divergence

$$\mathbb{E}_q[\log q(v_{i,k})] - \mathbb{E}_q[\log p(v_{i,k})] =$$

$$\frac{a_{\phi} - \alpha}{a_{\phi}} \left(-\gamma - \Psi(b_{\phi}) - \frac{1}{b_{\phi}} \right) + \log a_{\phi} b_{\phi} + \log B(\alpha, \beta)$$
$$- \frac{b_{\phi} - 1}{b_{\phi}} + (\beta - 1) b_{\phi} \sum_{m=1}^{\infty} \frac{1}{m + a_{\phi} b_{\phi}} B\left(\frac{m}{a_{\phi}}, b_{\phi}\right)$$

Application to Deep Generative Models

*Applicable to just about every VAE-based model, including the *Neural Statistician*

Variational Autoencoder

(Kingma & Welling, ICLR 2014)

Gaussian Sample

$$\tilde{\mathcal{L}}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}_i) = \frac{1}{S} \sum_{s=1}^{S} \log p_{\boldsymbol{\theta}}(\mathbf{x}_i | \mathbf{z}_{i,s}) - KL(q_{\boldsymbol{\phi}}(\mathbf{z}_i | \mathbf{x}_i) || p(\mathbf{z}_i))$$

Stick-Breaking Variational Autoencoder

Kumaraswamy Samples

Truncated posterior; not necessary but learns faster

$$\tilde{\mathcal{L}}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}_i) = \frac{1}{S} \sum_{s=1}^{S} \log p_{\boldsymbol{\theta}}(\mathbf{x}_i | \boldsymbol{\pi}_{i,s}) - KL(q_{\boldsymbol{\phi}}(\boldsymbol{\pi}_i | \mathbf{x}_i) || p(\boldsymbol{\pi}_i; \boldsymbol{\alpha}_0))$$

Quantitative Results

MNIST: Dirichlet Process Latent Space (t-SNE)

MNIST: Gaussian Latent Space (t-SNE)

	k=3	k=5	k=10
SB-VAE	9.34	8.65	8.90
Gauss-VAE	28.4	20.96	15.33
Raw Pixels	2.95	3.12	3.35

MNIST: kNN Classifier on Latent Space

Nonparametric version of (Kingma et al., NIPS 2014)'s M2 model

	Œ
_	_
	<u> </u>
	·5
(Ф
$\check{\Omega}$	Ŏ
	\preceq
	ر
	S

0

	MNIST (N=45,000)		SVHN (N=65,000)			
	10%	5%	1%	1 0 %	5%	1%
SB-DGM	4.86 _{±.14}	5.29 _{±.39}	7.34 _{±.47}	32.08±4.00	37.07±5.22	61.37 _{±3.60}
Gauss-DGM	$3.95 \scriptstyle{\pm .15}$	4.74 _{±.43}	$11.55{\scriptstyle\pm2.28}$	36.08 _{±1.49}	$48.75 \scriptstyle{\pm 1.47}$	$69.58_{\pm 1.64}$
kNN	$6.13_{\pm .13}$	$7.66_{\pm .10}$	$15.27_{\pm .76}$	64.81±.34	$68.94 \scriptstyle \pm .47$	$76.64 \scriptstyle \pm .54$

Samples from Generative Model

Stick-Breaking VAE

Truncation level of 50 dimensions, Beta(1,5) Prior

Gaussian VAE

50 dimensions, N(0,1) Prior

Theano code at: github.com/enalisnick/stick-breaking dgms

Full paper at: arxiv.org/abs/1605.06197

Thank you. Questions?

Appendix

(a) Gauss VAE

(b) Stick-Breaking VAE