

BESS:

A Virtual Switch Tailored for NFV

Sangjin Han, Aurojit Panda, Brian Kim, Keon Jang, Joshua Reich Sai Edupuganti, Christian Maciocco, Sylvia Ratnasamy, Scott Shenker

Why Another Virtual Switch?

Does OpenVSwitch meet all the requirements for NFV?

I. Performance

- OVS (\sim IMpps) \rightarrow OVS-DPDK (\sim I5Mpps)
- cf. Vanilla DPDK (~59Mpps/core)
- Packet I/O is only half of the problem

2. Flexibility

- Custom actions?
- Stateful packet processing?

3. Extensibility

- Must enable NFV controller evolution
- Easily add support for new/niche protocols

Alternative Approach with BESS

- Modular pipeline as a dataflow graph
- Each module can run arbitrary code
 - Not limited by Match/Action semantics
 - Independently extensible & optimizable
- Everything is programmable, not just flow tables.
- You pay only for what you use.
 - No performance cost for unused features

BESS: Berkeley Extensible Software Switch

- BESS is a programmable platform for vSwitch dataplane
- Clean-slate internal architecture with NFV in mind
 - Highly extensible & customizable
 - Readily deployable with backward compatibility
 - ... all with extreme performance:
 - Sub-microsecond latency
 - Line-rate 40Gbps with min-sized packets on two cores
 - (> 2x faster than other virtual switches)

BESS in E2

BESS daemon (running in user space)

Modular Datapath Pipeline

- External ports are interconnected with "modules" in a dataflow graph (like the Click modular router).
 - You can compose modules to implement your own datapath.
 - Developing a new module is easy.

- BESS allows flexible scheduling policies for the data path.
 - In terms of CPU utilization and bandwidth. Examples:

- BESS allows flexible scheduling policies for the data path.
 - In terms of CPU utilization and bandwidth. Examples:

- BESS allows flexible scheduling policies for the data path.
 - In terms of CPU utilization and bandwidth. Examples:

- BESS allows flexible scheduling policies for the data path.
 - In terms of CPU utilization and bandwidth. Examples:

- BESS allows flexible scheduling policies for the data path.
 - In terms of CPU utilization and bandwidth. Examples:

 JSON-like structured messages between BESS and controller

- 3 ways to control the BESS datapath
 - Python/C APIs
 - Scriptable configuration language
 - Cisco iOS-like CLI

Everything is run-time configurable!

Performance?

Minimum Framework Overhead

- Packet buffer allocation/deallocation
 - − ~10 CPU cycles per packet
- CPU scheduling
 - ~50 CPU cycles per round
 - Scales well with thousands of traffic classes
- Dynamic per-packet metadata attributes
 - Zero instruction overhead for access
 - Optimal CPU cache-line usage

Performance Evaluation

OPNFV VSPERF usage models

I. Phy-Phy Performance

1. Phy-Phy Performance

Data sources:

- BESS, Vanilla DPDK, VPP: measured on a 2.6GHz Xeon E5-2650 v2 machine
- OVS, Linux L2/L3: Emmerich et al. "Performance Characteristics of Virtual Switching", CloudNet 2014
- OVS-DPDK: Intel ONP 2.1 Performance Test Report
- mSwitch: (link bottlenecked w/ large batch sizes @ 3.2GHz) Honda et al. ''mSwitch: A Highly-Scalable, Modular Software Switch'', SOSR 2015 24

2. Phy-NF-Phy Performance

3. Phy-NF-NF-Phy Performance

BESS outperforms OVS-DPDK by a factor of 4-5x*

Multi-Core/Thread Scalability

Round-Trip Latency

Summary

- BESS is an ideal vSwitch platform for NFV
 - High performance
 - Sub-microsecond latency/jitter
 - Small packet 40Gbps throughput with only 1-2 cores
 - Full flexibility and extensibility
- Available on GitHub: https://github.com/netsys/bess
 - Under BSD3 License
 - ~30k lines in C and Python, supporting
 - Linux 3.x / 4.x (x86_64), DPDK 16.04
 - QEMU/KVM virtual machines, Docker/LXC containers