Données haute fréquence

Analyse et modélisation statistique multi-échelle de séries chronologiques financières

Cours de Master - Paris 6

Transparents de la Partie VI:

Faits stylisés et modèles "classiques"

Emmanuel Bacry
Centre de Mathématiques Appliquées
Ecole Polytechnique
emmanuel.bacry@polytechnique

	Moyenne	Variance	Skewness	Kurtosis	Test de JB
CAD/USD	0.0013	0.1054	-0.0065	5.7243	0.0000
JPY/USD	-0.0115	0.4624	-0.4802	6.9016	0.0000
CHF/USD	-0.0090	0.5680	-0.0192	5.6205	0.0000
GBP/USD	-0.0003	0.3856	0.1011	6.2693	0.0000

TAB. 1 – Forex. 1977-2006: 7208 points. Moyenne, variance, skewness, kurtosis et p-valeur du test statistique de Jarque et Bera des rendements logarithmiques journaliers.

Thèse Alexei Kozhemyak CMAP - Ecole Polytechnique 2007

	Moyenne	Variance	Skewness	Kurtosis	Test de JB
Accor	0.0164	4.1302	-0.1946	6.5537	0.0000
Air Liquide	0.0351	2.9136	0.0965	5.3988	0.0000
Alcatel	-0.0140	9.2631	-0.8909	28.2650	0.0000
Axa	0.0311	5.0735	0.0287	7.5109	0.0000
Bouygues	0.0426	5.2142	0.1934	7.2622	0.0000
Capgemini	-0.0173	8.7527	-0.0704	8.3784	0.0000
Carrefour	0.0504	3.4422	-0.0804	6.1774	0.0000
Casino Guichard	0.0356	3.5825	0.2289	5.4663	0.0000
Danone	0.0314	2.3257	-0.0291	6.6562	0.0000
Essilor International	0.0580	3.9690	0.0948	7.9286	0.0000
L'Oréal	0.0585	3.8911	-0.0182	5.0729	0.0000

Tab. $2 - \text{Extrait CAC } 40.\ 1990\text{-}2005:3700 \text{ points.}$

Thèse Alexei Kozhemyak CMAP - Ecole Polytechnique 2007

Table 6.6. Value of the parameters corresponding to a TLD or Student (S) fit to the daily and monthly returns of a pool of U.S. stocks. The variance of each stock is normalized to one using the method explained in Section 4.4.

Time lag			Kur	tosis κ_1	Log likelihood per point		
	$a^{2/3}\alpha$	μ	Measured	TLD	S	TLD	S
Daily	0.174	4.16	38.3	9.7	37.5	-1.3383	-1.3369
Monthly	0.332	5.68	5.38	3.7	3.6	-1.3818	-1.3818

FIG. 1 – Lois des rendements logarithmiques GBP/USD de haut en bas : $\tau = 1$ jour, 5 jours, 10 jours et 20 jours.

Thèse Alexei Kozhemyak CMAP - Ecole Polytechnique 2007

Fig. 6.5. Elementary cumulative distribution $\mathcal{P}_{1>}(\eta)$ (for $\eta>0$) and $\mathcal{P}_{1<}(\eta)$ (for $\eta<0$), for the S&P 500 returns, with $\tau=30$ min (left, log-log scale) and 1 day (right, semi-log scale). The thick line corresponds to the best fit using a symmetric TLD $L_{\mu}^{(t)}$, of index $\mu=\frac{3}{2}$. We have also shown the best Student distribution and the Gaussian of same RMS.

Fig. 6.8. Daily (left) and monthly (right) distribution returns of a pool of U.S. stocks. The RMS of the log-returns of each stock was normalized to one using the method explained in Section 4.4. Daily extreme events are shown in left inset. Note power law with $\mu = 3$ for the negative tails (open squares).

Fig. 2 – Thèse Alexei Kozhemyak. CMAP - Ecole Polytechnique 2007

Fig. 6.10. Hill estimator of the tail exponent of the individual U.S. stock returns, normalized by their volatility using the trick explained in Eq. (4.37). The negative tail exponent is $\mu \approx 3$, whereas the positive tail exponent is $\mu \approx 4$.

Fig. 4.1. Hill estimator $\mu^*(k^*)$ as a function of x_{k^*} for a 1000 point sample of a $\mu=3$ Student distribution. The two curves corresponds to the left and right tail. Note that for small x one leaves the tail region. The plain horizontal line is the expected value $\mu=3$.

 $Fig.\ 3$ – Thèse Alexei Kozhemyak - CMAP - Ecole Polytechnique 2007.

Fig. 4 – Thèse Alexei Kozhemyak - CMAP - Ecole Polytechnique 2007.

Fig. 6.3. Variogram of the detrended logarithm of the Dow Jones index, during the period 1950–2000. ℓ is in days. Except perhaps for the last few points, the variogram shows no sign of saturation.

Bouchaud J.-Ph. and Potters M.

 $Fig.\ 5$ – Thèse Alexei Kozhemyak - CMAP - Ecole Polytechnique 2007.

Fig. 6 – Thèse Alexei Kozhemyak - CMAP - Ecole Polytechnique 2007.

					=						
	GARCH(1,1) gaussien					GARCH(1,1) Student					
	ω	α_1	eta_1	$\alpha_1 + \beta_1$		ν	ω	α_1	eta_1	$\alpha_1 + \beta_1$	
CAD/USD	0.0020	0.135	0.845	0.980		6.686	0.0015	0.116	0.868	0.984	
JPY/USD	0.0215	0.091	0.863	0.954		3.877	0.0114	0.104	0.888	0.992	
CHF/USD	0.0160	0.090	0.888	0.978		5.805	0.0116	0.077	0.909	0.986	
GBP/USD	0.0134	0.066	0.905	0.971		4.915	0.0021	0.072	0.928	1.000	

Tab. 3 – Thèse Alexei Kozhemyak - CMAP - Ecole Polytechnique 2007.

	GARCH(1,1) gaussien				GARCH(1,1) Student						
	ω	α_1	eta_1	$\alpha_1 + \beta_1$	_	ν	ω	α_1	eta_1	$\alpha_1 + \beta_1$	
Accor	0.127	0.085	0.883	0.967		6.527	0.066	0.086	0.901	0.987	
Air Liquide	0.036	0.068	0.920	0.988		8.721	0.030	0.070	0.921	0.991	
Alcatel	0.128	0.150	0.850	1.000		5.161	0.067	0.114	0.886	1.000	
Axa	0.080	0.097	0.886	0.984		7.795	0.057	0.095	0.895	0.990	
Bouygues	0.053	0.072	0.919	0.991		5.491	0.048	0.080	0.915	0.995	
Capgemini	0.153	0.086	0.899	0.985		5.235	0.173	0.121	0.870	0.991	
Carrefour	0.043	0.061	0.926	0.987		7.372	0.037	0.061	0.929	0.990	
Casino	0.070	0.050	0.930	0.981		5.159	0.093	0.079	0.900	0.979	
Danone	0.050	0.072	0.907	0.979		6.344	0.037	0.074	0.912	0.986	
Essilor	0.311	0.110	0.812	0.922		4.122	0.152	0.098	0.873	0.971	
L'Oréal	0.072	0.092	0.891	0.983		13.689	0.061	0.086	0.900	0.986	

Tab. 4 – Thèse Alexei Kozhemyak - CMAP - Ecole Polytechnique 2007.

Bouchaud J.-Ph. and Potters M.

Bouchaud J.-Ph. and Potters M.

Arneodo, Muzy, Sornette
"Direct" causal cascade in the stock market, Eur. Phys. J. B 2, 2 (1998).

Michael Dacorogna, Ramazan Gencay and Ulrich A Muller An Introduction to High-Frequency Finance Academic Press (May 2001)