Abstract Algebra: Homework #8

Joel Savitz

Wednesday 15 July 2020

1 Chapter 15, Exercise A1

Suppose $G = \mathbb{Z}_{10} \land H = \{0, 5\}.$

Then, table 1 describes the operation table for G/H with respect to coset multiplication defined for cosets of an abelian group, denoted *.

I exclusively use multiplicative notation here because I like it better, but $aH \ni a \in G$ denotes the coset $a+_{10}H$. Since G is abelian, I use left and right cosets interchangably.

The following are the elements of G/H:

$$H0 = \{0, 5\}$$

 $H1 = \{1, 6\}$
 $H2 = \{2, 7\}$
 $H3 = \{3, 8\}$
 $H4 = \{4, 9\}$

*	НО	H1	H2	Н3	H4
НО	HO	H1	H2	Н3	H4
H1	H1	H2	H3	H4	HO
H2	H2	H3	H4	H3 H4 H0 H1 H2	H1
H3	H3	H4	HO	Н1	H2
H4	H4	HO	H1	H2	H3

Table 1: Operation table for G/H under *

If we replace each HX in the table with an f(HX) where $f: G/H \to \mathbb{Z}_5 \ni f(HX) = X$ and replace * by $+_5$, we construct the operation table for \mathbb{Z}_5 . By table inspection, this f is an isomorphism from G/H to \mathbb{Z}_5 , so clearly $G/H \cong \mathbb{Z}_5$.

2 Chapter 15, Exercise A4

Denote the elements of D_4 as:

$$R_{0} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \quad R_{\pi/2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \quad R_{\pi} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \quad R_{3\pi/2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

$$(1)$$

$$H = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \quad V = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \quad D' = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

$$(2)$$

The operation table for function composition \circ on D_4 is given in table 1

0	R_0	$R_{\pi/2}$	R_{π}	$R_{3\pi/2}$	Н	V	D	D'
R_0	Ro	$R_{\pi/2}$	R_{π}	$R_{3\pi/2}$	Н	V	D	D'
	$R_{\pi/2}$	R_{π}	$R_{3\pi/2}$	R_0	D'	D	Н	V
R_{π}	R_{π}	$R_{3\pi/2}$	R_0	$R_{\pi/2}$	V	Н	D'	D
$R_{3\pi/2}$	$R_{3\pi/2}$	R_0	$R_{\pi/2}$	R_{π}	D	D'	V	Н
Н	Н	D	V	D'	R_0	R_{π}	$R_{\pi/2}$	$R_{3\pi/2}$
V	V	D'	Н	D	R_{π}	R_0	$R_{3\pi/2}$	$R_{\pi/2}$
D	D	V	D'	Н	$R_{3\pi/2}$	$R_{\pi/2}$	R_0	R_{π}
D′	D′	Н	D	V	$R_{\pi/2}$	$R_{3\pi/2}$	R_{π}	R_0

Table 2: Operation table for D_4 under \circ

Now that we have better notation than Pinter, let $G=D_4 \wedge H \leq G \ni H=\{R_0,R_\pi,H,V\}$

Note that other than H, G/H contains only one other element since (G:H)=2.

We can then fully describe $G/H = \{ \{R_0, R_\pi, H, V\}, \{R_{\pi/2}, R_{3\pi/2}, D, D'\} \}$. Table 3 give the operation table for G/H under coset multiplication:

Table 3: Operation table for G/H under coset multiplication

3 Chapter 15, Exercise C1

Suppose $H \subseteq G$ where G is a group.

Theorem 1.
$$(\forall x \in G)(x^2 \in H) \iff (\forall X \in G/H)(X^2 = H)$$

Proof. Suppose that $(\forall x \in G)(x^2 \in H)$. Let $X \in G/H$. Then, $X = Hx \ni x \in G$. Therefore, $XX = (Hx)(Hx) = H(x^2) = H$ since $x^2 \in H \implies h(x^2) \in H$ for any $h \in H$ since H is closed under the group operation. Then, $(\forall X \in G/H)(X^2 = H)$.

Conversely, suppose $(\forall X \in G/H)(X^2 = H)$. Let $x \in G$ and let X = Hx. Then, $X^2 == (Hx)(Hx) = Hx^2$. By assumption, $X^2 = Hx^2 = H$, and by Pinter chapter 15 theorem 5 part 2, we have $Hx^2 = H \iff x^2 \in H$.

The first implication and its converse thus proved demostrates bidirecitonal implication. This proves theorem 1. \Box

4 Chapter 15, Exercise D1

Suppose $H \triangleleft G$ where G is a group.

Theorem 2.
$$|H| \in \mathbb{N} \land |G/H| \in \mathbb{N} \implies |G| \in \mathbb{N}$$

Proof. Let $n = |H| \in \mathbb{N}$ and let m = |G/H|. Since G/H is the set of all left cosets of H with respect to G, we can write |G/H| as (G : H), the index of H with respect to G. By Lagrange's theorem, we have $|G| = (G : H) \cdot |H| = mn$. Since $m, n \in \mathbb{N}$ and the naturals are closed under multiplication, we must have $|G| \in \mathbb{N}$. This proves theorem 2.

5 Chapter 15, Exercise E2

Suppose $H \triangleleft G$ where G is a group.

Theorem 3. $\mathfrak{m} = (G : H) \implies (\forall x \in G/H)(\operatorname{ord}(x)|\mathfrak{m})$

Proof. Suppose $\mathfrak{m}=(G:H)$. Then, since (G:H)=|G/H|, we have as a consequence of Lagrange's theorem that $(\forall x\in G/H)(\operatorname{ord}(x)\mid |G/H|)$, therefore $(\forall x\in G/H)(\operatorname{ord}(x)|\mathfrak{m})$. This proves theorem 3.

6 Chapter 15, Exercise E5

Suppose $H \subseteq G$ where G is a group.

Theorem 4. $m = (G : H) \implies a^m \in G$ for any $a \in G$

Proof. Suppose $\mathfrak{m}=(G:H)$ and let $\mathfrak{a}\in G$. Then, $\mathfrak{a}^{\mathfrak{m}}\in G$ since G is closed under multiplication. This proves theorem 4 for some reason.

7 Chapter 15, Exercise E6

Suppose $H \subseteq G$ where G is a group.

Theorem 5. $(\forall x \in \mathbb{Q}/\mathbb{Z})(\operatorname{ord}(x) \in \mathbb{N})$

Proof. Suppose $x \in \mathbb{Q}/\mathbb{Z}$. Then x can be written as some unique $y + \mathbb{Z}$, where $y \in \mathbb{Q}$. Then, we can write $y = \frac{m}{n}$ for some $m, n \in \mathbb{Z}$ by the definition of \mathbb{Q} . We want to find an $n \in \mathbb{N}$ such that $n(y+\mathbb{Z}) = \mathbb{Z}$. Any $n(y+\mathbb{Z})$ is just $(ny+\mathbb{Z})$, however this n is no aribtrary integer, it is in fact the same n we see in the denominator of $y = \frac{m}{n}$, for then $(ny+\mathbb{Z}) = (n\frac{m}{n} = \mathbb{Z}) = (m+\mathbb{Z})$, and since $m \in \mathbb{Z}$, we have $m + \mathbb{Z} = \mathbb{Z}$, and every $x \in \mathbb{Q}/\mathbb{Z}$ satisfies $n(y+\mathbb{Z}) = \mathbb{Z}$ for any $y = \frac{m}{n} \in \mathbb{Q}$, therefore $\operatorname{ord}(x) = n \in \mathbb{N}$. This proves theorem 5.