DES AUTOMATES AUX EXPRESSIONS RATIONNELLES

À la fin de ce chapitre, je sais :

🕼 expliquer ce qu'est un automate généralisé

fusionner des transitions multiples

éliminer des états

passer d'un automate à une expression régulière

Ce chapitre permet d'apporter une démonstration à la réciproque du théorème de Kleene, à savoir qu'un langage reconnaissable est un langage régulier. On s'appuie pour cela sur l'algorithme d'élimination des états qui nécessite le concept d'automate généralisé.

A Automate généralisé

■ Définition 1 — Automate généralisé. Soit Σ un alphabet et \mathcal{E}_R l'ensemble des expressions régulières sur un Σ . Un automate généralisé est un automate tel que $\mathcal{A} = (Q, \mathcal{E}_R, Q_i, \Delta, F)$, c'est-à-dire un automate dont les étiquettes des arcs sont des expressions régulières.

B D'un automate généralisé à une expression régulière

Soit un automate \mathcal{A} . On souhaite trouver une expression régulière e telle que $\mathcal{L}(\mathcal{A}) = \mathcal{L}_{ER}(e)$, c'est-à-dire le langage reconnu par l'automate \mathcal{A} est le même que celui dénoté par e.

La construction de Brzozowski et McCluskey est intuitive et facile à programmer. Il s'agit

FIGURE 1 – Exemple d'automate généralisé sur l'ensemble des expressions régulières sur $\Sigma = \{a,b,c,d\}$

d'éliminer un à un les états de l'automate généralisé associé à \mathcal{A} . À la fin de la procédure, il ne reste plus que deux états reliés par un seul arc étiqueté par une seule expression régulière e. Le langage dénoté par cette dernière est le langage reconnu par l'automate.

Méthode 1 — Construire l'expression régulière équivalent à un automate Deux grandes étapes sont nécessaires pour construire l'expression régulière équivalent à un automate. Pour chaque état q à éliminer, c'est-à-dire les états autres que l'état initial ou l'état final,

- 1. fusionner les expressions régulières des transitions au départ de q_s et à destination du même état q_n comme illustré sur la figure 2. Formellement, si on a les transitions (q_s, e_1, q_n) et (q_s, e_2, q_n) , alors on fusionne les deux expressions en faisant leur somme : $(q_s, e_1|e_2, q_n)$. On ne conserve ainsi qu'une seule expression par destination au départ de q_s .
- 2. éliminer l'état q_s en mettant à jour les transitions au départ des états précédents comme l'illustre la figure 3. Considérons chaque transition de type (q_p, e_1, q_s) et (q_s, e_2, q_n) , c'està-dire les transitions pour lesquelles q_s intervient. Si on souhaite éliminer q_s , il faut considérer à chaque fois deux cas :
 - (a) une transition boucle (q_s, e_b, q_s) existe : alors il est nécessaire d'ajouter la transition $(q_p, e_1 e_b^* e_2, q_n)$,
 - (b) dans le cas contraire, il suffit d'ajouter la transition (q_p, e_1e_2, q_n) .

FIGURE 2 – Fusion de deux arcs au départ d'un état q_s et à destination du même état q_n

Dans le cas où il existe une boucle :

 $e_1e_b^*e_2$

