4.3周期信号的频谱及特点

知识点Z4.8

周期信号的频谱

主要内容:

- 1.周期信号频谱、频谱图的定义
- 2.单边谱的定义
- 3.双边谱的定义

基本要求:

- 1.掌握周期信号频谱和频谱图的基本概念
- 2. 掌握单边谱、双边谱的基本概念

频谱

信号的一种新的表示方法

电压

彩色图像

信号的时域分布特性

信号的空域分布特性

Z4.8周期信号的频谱

频谱:周期信号分解后,各分量的幅度和相位对于频率的变化,分别为幅度谱和相位谱。

频谱图:将幅度和相位分量用一定高度的直线表示;其中幅度谱图反映了信号不同频率分量的大小。

三角函数形式分解 $f(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega t + \varphi_n)$

虚指数函数形式分解

$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\Omega t}$$

$$f(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega t + \varphi_n)$$

虚指数函数形式分解
$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\Omega t}$$

频谱分类	直流分量	幅度	相位	n
单边谱	A ₀ /2	$\mathbf{A}_{\mathbf{n}}$	ϕ_{n}	n=0, 1, 2,
双边谱	$\mathbf{F_0}$	$ \mathbf{F_n} $	φ_{n}	$n=0, \pm 1, \pm 2,,$