universität freiburg

Steuerung eines Elektrofahrzeugs durch die Drehmomente der Räder und Regelung im Anhängerbetrieb

Bachelor Präsentation

25. Oktober 2023

Victor Maier

Gliederung

Kapitel der Präsentation

- 1. Aufbau des Fahrzeugs
- 2. Erweiterung mit Anhänger
- 3. Probleme
- 4. Fazit

Kapitel 1
Aufbau des Fahrzeugs

Verbaute Hardware

- Motoren
 - 2 * 350W (vorne)
 - 2 * 250W (hinten)
- Real über 500W pro Motor
- 2 * Hoverboard Regler (STM32F103)
- 1 * ESP32 Wemos32 Lite
- 2 * 10kOhm Potentiometer
- 1 * Happymodel EP2 ELRS Reciver

Fernsteuerung

Erläuterung der verwendete Hardware zur Fernsteuerung

- Jumper T-Pro
- ExpressLRS
- HM EP2 Reciver
- CRSF mit 420000 Baud
- Eingang auf Hardwareserial 2

Allradregelung

Hier die verwendeten Formeln

$$\begin{split} V_{bw} &= \frac{L_{WHEELBASE}}{\tan(\alpha)} \\ V_{bw_0} &= \frac{V_{bw} - \frac{L_{WIDTH}}{2} * sign(\alpha)}{V_{bw}} \\ V_{bw_1} &= \frac{V_{bw} + \frac{L_{WIDTH}}{2} * sign(\alpha)}{V_{bw}} \\ V_{fw_0} &= \frac{\sqrt{\left(V_{bw} + L_{WIDTHSTEER} * sign(\alpha)\right)^2 + L_{WHEELBASE}^2 + L_{WIDTHSTEER2WHEEL}}}{V_{bw}} \\ &= \frac{\sqrt{\left(V_{bw} - L_{WIDTHSTEER} * sign(\alpha)\right)^2 + L_{WHEELBASE}^2 + L_{WIDTHSTEER2WHEEL}}}{V_{bw}} \end{split}$$

Lenkregelung PID

Die Spezifikationen der Lenkregelung

- P-Regler
- PID-Arduinolibrary
- Kp = 0.125
- Ki = Kd = 0
- Differentielles Ansteuern der Räder
- Jeweiliger Regelungseingriff nach 20ms

Lenkregelung PID Messwerte

Kapitel 2 Erweiterung mit Anhänger

Anhänger

Mechanischer Aufbau

- 10kOhm Potentiometer
- Mechanischer Höhenausgleich
- Einachsanhänger
- Führungsschine über der Anhängekupplung

Anhänger Simulator

Modellierung über Splices	Näherung über Kreisbögen	Näherung über Dreiecke
Sehr komplex	Komplex	Einfach
Exakt (kann von Wendepunkt zu Wendepunkt simuliert werden)	Präzise (Spriralensegmente werden als Kreisbögen angenommen)	Unpräzise (kleine Schrittweite notwendig)
	Nicht schnell ausführbar	Schnell ausführbar
Nicht implementiert	Nicht implementiert	Implementiert

Anhänger Stabiler Winkel

Funktion für den stabilen Winkel

lineare Näherung

Anhänger

Protection

Die Funktion der Schutzschaltung für den Anhänger

- Wenn der Anhängerwinkel beta über das Maximum geht errechnet das Fahrzeug die Entwicklung des Anhängerwinkels
 - Wenn dieser größer wird, wird das Gas blockiert und das Fahrzeug bleit stehen
 - Wenn dieser kleiner wird, bewegt sich das Fahrzeug normal

Anhänger Regelung

Livesimulation	Lookuptable	Lineare Regelung
Zeitaufwendig	Schnelles Nachschauen	Schnelles Verarbeiten
Parameter können live angepasst werden	Nach einer Anpassung der Parameter muss die Tabelle neu generiert werden	Parameter können nur schwer angepasst werden
Langsam ausführbar	Schnell ausführbar/Lange Erstellung	Schnell ausführbar
Implementiert	Implementiert	Aktuell verwendet/ Funktioniert

Anhänger

Lineare Anhängerregelung

- Auf den Diagrammen der Messreihen ist zu sehen, dass die PID-Regelung erst bei einer Differenz von c.a. 5° beim Anhänger Soll- und Istwinkel, aktiv wird
- Hierbei ist sichtbar, dass es eine funktionierende Korrektur gibt

Messreihe 1: Näherung auf 0°

Anhänger

Lineare Anhängerregelung

Kapitel 3 Probleme

ESP32 Zuverlässigkeit

Im Laufe des Projekts sind eine Hand voll Developmentboards gestorben

- Ein Board ist beim Arbeiten im Bobbycar kaputt gegangen. Der Hoverboardakku ist auf das USB-Kabel gefallen und hat die USB Buchse abgerissen
 - Lösung: Buche neu auflöten
 - 5 Tage später war das Board komplett defekt und musste getauscht werden
- Ein Board ist ohne erkennbaren Grund gestorben
 - · Lösung: Neues Board

ESP-IDF-Standartlibrary

Probleme der ESP-IDF in der C-Standartlibrary

fgets

- fgets fügt konsequent keine ,\0' am Ende des Strings an und hat somit lange Zeit für Speicherprobleme in Form von Segmentation Faults gesorgt
 - Warscheinlichkeit: 100%
 - Lösung (Workaround): den Buffer mit memset komplett mit ,\0' füllen

printf

- printf gibt nicht mehr alle Zeichen eines Strings aus und erschwert damit den Export von Messdaten
 - Warscheinlichkeit: 1,75-2,5%, dass ein Zeichen fehlt. Bei einer Zeilenlänge von 45-50 Zeichen waren 42% unbrauchbare Zeilen messbar
 - Lösung (Workaround): Hinter einer ausgegebenen Zeile die Länge der Zeile anfügen und später mit einem Skript alle Zeilen, in denen Zeichen fehlen, verwerfen

ESP-IDF und Arduino Kompatibilität

Probleme der ESP-IDF mit Arduino bei Updates

- Bluepad32: Die Library sollte die Verwendung von Bluetooth Controllern ermöglichen
 - Problem: Der Controller verbindet sich nur einmal und danach ist eine Verbindung mit diesem Controller nicht mehr möglich
 - Lösung: Keine
 - Problem: Wenn die UART Console deaktiviert ist stürzt der Controller ab
 - Lösung: UART Debug-Output aktivieren und die Eingabe deaktivieren, damit die eigene Console funktioniert

• ESP-IDF 4.4

- Problem: Die Version lässt sich nicht mehr installieren.
- Lösung: Migration auf die Version 5.1

ESP-IDF und Arduino Kompatibilität

Probleme der ESP-IDF mit Arduino bei Updates

- ESP-IDF 5.1
 - Problem: Das Projekt baut nicht
 - Lösung: Fehlende Abhängikeit hinzufügen.
 - Problem: Display funktioniert nicht
 - Lösung: Die Arduino I2C Taktanpassung aus dem Code entfernen

espsoftwareserial

- Problem: Das Timing von den gesendeten Paketen passt nicht
- Lösung: Die Deaktivierung der Interrupts während dem Senden und das Nutzen von CRC32 Checksums
- Problem: Das Feedback wird falsch eingelesen
- · Lösung: Keine

Kapitel 4 Fazit

Fazit

Lenkregelung

- Das Losbrechmoment der Lenkung ist problematisch
 - Eine mögliche Lösung wäre die Einarbeitung einer Wälzlagerung
- Die Regelung ist zu langsam
 - Eine mögliche Lösung wäre es, die Lenkregelung direkt auf dem vorderen Motorregelboard auszuführen

Anhängerregelung

- Die Präzision der Regelung liegt hinter den Erwartungen zurück
 - Dies ließe sich über eine Überarbeitung der Lenkregelung beheben
- Die Anhängerregelung lässt sich mit einem Linearregler implementieren. Es ist kein Simulator notwendig

