Raport z ćwiczenia NUM2 Analiza uwarunkowania układów równań liniowych

Bartosz Satoła

30.10.2024

Contents

1	Cel ćwiczenia	2
2	Opis ćwiczenia	2
3	Wstęp teoretyczny 3.1 Uwarunkowanie macierzy	2 2 2
4	Omówienie wyników	3
5	Wnioski	3

1 Cel ćwiczenia

Celem ćwiczenia było rozwiązanie układów równań macierzowych $A_i y = b$ dla dwóch zadanych macierzy A_1 i A_2 , a także analiza wpływu zaburzenia wektora wyrazów wolnych b na stabilność rozwiązań. Dodatkowo sprawdzono, jak wprowadzenie małego zaburzenia Δb , losowanego tak, aby jego norma była rzędu 10^{-6} , wpływa na różnice w wynikach, co pozwala na ocenę uwarunkowania numerycznego macierzy.

2 Opis ćwiczenia

W ćwiczeniu rozwiązano układy równań liniowych:

$$A_i y = b$$
, dla $i = 1, 2$

gdzie wektor b jest dany jako:

$$b = \begin{pmatrix} -2.8634904630 \\ -4.8216733374 \\ -4.2958468309 \\ -0.0877703331 \\ -2.0223464006 \end{pmatrix}.$$

Następnie dodano do b losowe zaburzenie Δb o małej normie euklidesowej, a układy rozwiązano ponownie dla $b+\Delta b$:

$$A_i y = b + \Delta b.$$

Wyniki dla macierzy A_1 i A_2 porównano, badając różnice między rozwiązaniami układów z pierwotnym b oraz zaburzonym $b + \Delta b$.

3 Wstęp teoretyczny

3.1 Uwarunkowanie macierzy

Uwarunkowanie macierzy jest miarą wrażliwości rozwiązania układu równań liniowych Ax = b na małe zmiany w danych wejściowych, tj. macierzy A lub wektora b. Jeżeli niewielkie zaburzenie danych prowadzi do dużych zmian w rozwiązaniu x, układ nazywamy źle uwarunkowanym.

Z kolei dobrze uwarunkowane układy charakteryzują się stabilnością numeryczną, co oznacza, że małe błędy w danych (np. wynikające z błędów zaokrągleń lub zakłóceń w b) wywołują proporcjonalnie małe zmiany w wynikach.

3.2 Współczynnik uwarunkowania

Współczynnik uwarunkowania macierzy, oznaczany przez $\kappa(A)$, jest wyrażony jako:

$$\kappa(A) = ||A|| \cdot ||A^{-1}||$$

gdzie $||\cdot||$ oznacza normę macierzy. Wartość $\kappa(A)$ mówi o stabilności układu:

- Jeśli $\kappa(A) \approx 1$, układ jest dobrze uwarunkowany.
- Im wyższe $\kappa(A)$, tym bardziej układ jest podatny na błędy, a zatem gorzej uwarunkowany.

W praktyce, dobrze uwarunkowane układy zapewniają stabilność obliczeń i dokładność wyników, co jest szczególnie ważne w zastosowaniach, gdzie precyzja jest kluczowa.

4 Omówienie wyników

Po rozwiązaniu układów dla obu macierzy A_1 i A_2 oraz dla wektora b z perturbacją Δb , uzyskano następujące obserwacje:

- Dla macierzy A_1 rozwiązanie układu wykazało mniejsze odchylenie po wprowadzeniu perturbacji, co świadczy o jej lepszym uwarunkowaniu.
- Macierz A_2 , charakteryzująca się wyższym współczynnikiem uwarunkowania, wykazała większą wrażliwość na zaburzenie Δb , co potwierdza, że układ jest gorzej uwarunkowany.
- Wyniki te są zgodne z oczekiwaniami teoretycznymi, które wskazują, że macierze o wyższym współczynniku uwarunkowania są bardziej podatne na błędy związane z małymi perturbacjami danych.

5 Wnioski

Z przeprowadzonego ćwiczenia można wyciągnąć następujące wnioski:

- Układy równań liniowych dla dobrze uwarunkowanych macierzy są stabilniejsze i mniej podatne na błędy, nawet w obecności zaburzeń.
- Współczynnik uwarunkowania macierzy jest kluczowym wskaźnikiem stabilności układu równań. Wyższa wartość $\kappa(A)$ oznacza większą podatność na błędy, co może prowadzić do znaczących zmian w rozwiązaniach.
- W przypadku zastosowań wymagających wysokiej dokładności, zalecane jest stosowanie macierzy dobrze uwarunkowanych lub technik, które poprawiają stabilność obliczeń.