第一章 统计初步

1.1 求统计量的抽样分布

Remark. 统计的三大分布

 χ^2 分布的定义

设随机变量 X_1, X_2, \ldots, X_n 相互独立, 均服从 N(0,1) 称 $\chi^2 = X_1^2 + X_2^2 + \ldots + X_n^2$ 服从自由度为 n 的 χ^2 分布, 记 $\chi^2 \sim \chi^2(n)$, 特别的若 $X \sim N(0,1)$, 则 $\chi^2 \sim \chi^2(1)$

 χ^2 分布的性质

- (1) 参数可加性 设 χ_1^2 与 χ_2^2 相互独立, 且 $\chi_1^2 \sim \chi^2(n)$, $\chi_2^2 \sim \chi^2(m)$ 则 $\chi_1^2 + \chi_2^2 \sim \chi^2(n+m)$
- (2) 设 $\chi^2 \sim \chi^2(n)$ 则 $E\chi^2 = n, D\chi^2 = 2n$

F 分布的定义

设随机变量 X 和 Y 相互独立,且 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$,称 $F = \frac{X/n_1}{Y/n_2}$ 服从自由度为 n_1, n_2 的 F 分布,记作 $F \sim F(n_1, n_2)$

F 分布的性质

- (1) 设 $F \sim F(n_1, n_2)$, 则 $\frac{1}{F} \sim F(n_2, n_1)$
- (2) $F_{1-\alpha}(n_2, n_1) = \frac{1}{F_{\alpha}(n_1, n_2)}$

t 分布的定义 设随机变量 X 和 Y 相互独立, $X \sim N(0,1), Y \sim \chi^2(n)$,则称 $T = \frac{X}{\sqrt{Y/n}}$ 服从自由度为 n 的 t 分布,记作 $T \sim t(n)$

t 分布的性质

- (1) 设 $T \sim t(n)$, 则 $T^2 \sim F(1,n)$, $\frac{1}{T^2} \sim F(n,1)$
- $(2) t_{1-\alpha}(n) = -t_{alpha}(n)$

Remark. 单正态总体与双正态总体

单正态总体

设 X_1, X_2, \ldots, X_n 为来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本, \bar{X} 与 S^2 分别为样本均值与样本方差, 则

- (1) $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$, $\exists \bar{Y} \ \bar{X} \sim N(\mu, \sigma^2/n)$
- (2) $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ 即 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i \bar{X})^2 \sim \chi^2(n-1)$, 且 \bar{X} 与 S^2 相互独立
- (3) $\frac{\bar{X}-\mu}{S/sqrtn} \sim t(n-1)$

双正态总体

设总体 $X \sim N(\mu_1, \sigma_1^2)$,总体 $Y \sim N(\mu_2, \sigma_2^2)$, $X_1, X_2, \cdots, X_{n_1}$ 与 $Y_1, Y_2, \cdots, Y_{n_2}$ 分别为来自总体 X 与 Y 的简单随机样本且相互独立,样本均值分别为 \bar{X}, \bar{Y} ,样本方差分别为 S_1^2, S_2^2 ,则

- (4) $\frac{\bar{X} \bar{Y} (\mu_1 \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1);$
- (5) $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 1, n_2 1)$;
- (6) $\stackrel{\text{def}}{=} \sigma_1^2 = \sigma_2^2 \text{ ID}, \frac{\bar{X} \bar{Y} (\mu_1 \mu_2)}{S_\omega \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t \left(n_1 + n_2 2 \right), \not\equiv \mathcal{P} S_\omega = \sqrt{\frac{(n_1 1)S_1^2 + (n_2 1)S_2^2}{n_1 + n_2 2}}.$
 - 1. (2013, 数一) 设随机变量 $X \sim t(n), Y \sim F(1,n)$ 。给定 $\alpha(0 < \alpha < 0.5)$,常数 c 满足 $P\{X > c\} = \alpha$,则 $P\{Y > c^2\} =$

(A)
$$\alpha$$
 (B) $1-\alpha$ (C) 2α (D) $1-2\alpha$

2. 设 X_1, X_2, \cdots, X_9 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, $Y_1 = \frac{1}{6}(X_1 + X_2 + \cdots + X_6), Y_2 = \frac{1}{3}(X_7 + X_8 + X_9), S^2 = \frac{1}{2}\sum_{i=7}^9 (X_i - Y_2)^2$, 求 $\frac{\sqrt{2}(Y_1 - Y_2)}{S}$ 的分布.

1.2 求统计量的数字特征

3. 设 X_1, X_2, \cdots, X_n 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, 则

$$E\left[\sum_{i=1}^{n} X_i \cdot \sum_{j=1}^{n} \left(nX_j - \sum_{k=1}^{n} X_k\right)^2\right] =$$

- 4. 设 X_1, X_2, \cdots, X_9 为来自总体 $N(0, \sigma^2)$ 的简单随机样本,样本均值为 \bar{X} ,样本方差为 S^2 。
 - (1) 求 $\frac{9\bar{X}^2}{S^2}$ 的分布
 - (2) $Rightharpoonup E[(\bar{X}^2S^2)^2];$