QUICKSTART AI PLATFORM
Single node server for customers

and partners to explore Gen Al

ROBUST CAPABILITIES

• LLM Model customization

• LLM Model Inferencing

Out-of-box capabilities to perform:

Al-in-a-Box (AiB) Proof of Concept on Red Hat

1.1 Overview of Al-in-a-Box(AiB)

Al-in-a-Box is a quick-start single-node server option for customers and partners to explore Generative Al workloads and use cases. It is validated to provide sufficient performance for model training and inferencing tasks required for proof of concept use cases.

1.2 High-Level Solution Architecture

Vector DB

Platform

Operating System

Simple LLM Demo Application

EXTENSIVELY TESTED

Rigorously tested against widelyused industry & enterprise-grade Large Language Models

JOINT COLLABORATIONS

Validated by:

Cloud Native Architecture (CNA)
 Email: ask.cna@dell.com

Supported by:

- CSC Singapore
- Global Alliance
- DS@DCWS APJ

1.3 Solution Components

Hardware	
Server	PowerEdge R760xa
CPU	Intel(R) Xeon(R) Gold 6448Y x 2 (32core, 2.1 GHz Base)
Memory	16x 32GB DDR-5 DIMM 4800 MT/s
GPU	4x NVIDIA L40S
Local Storage	OS Drive – 447GB Data Drive – 14 TB (NVMe RAID Disk)
Software	
Platform	OpenShift v4.14 (Single-Node-OpenShift)
Nemo Container	nvcr.io/ea-bignlp/ga-participants/nemofw-training:23.08.03
TensorRT-LLM	v0.7.1
RAG Chatbot	See Section 4.

D&LLTechnologies

Proof-of-Concept

ROBUSTLY VALIDATED

Rigourously tested for model customization with widely-used industry & enterprise grade Large Language Models and customization techniques

EXTENSIVE MODEL CUSTOMIZABILITY

Widely applicable to common industry model fine-tuning standards & methods:

- Supervised Fine-Tuning (SFT)
- P-Tuning
- Low Rank Adapters (LoRA)

2. Model Customization

Model customization uses finetuning techniques with domain-specific datasets on pre-trained models to enable domain-specific tasks. In validation tests with Nvidia's Nemo, AiB's performance is benchmarked by finetuning the Llama 2 model with Databricks' dolly-15k dataset containing 15,000 rows of data.

2.1 Validation Configurations

Each benchmarked model undergoes popular finetuning techniques like Supervised Fine-Tuning (SFT), P-Tuning, and Low Rank Adaptation (LoRA), with performance evaluated based on training time.

	Llama 2 (7B)	Llama 2 (13B)
SFT	Number of GPUs: 4	N/A
	TP: 4	
	PP: 1	
	Maximum no. of steps: 1000	
P-Tuning	Number of GPUs: 2, 4	Number of GPUs: 4
	TP: 2, 4	TP: 4
	PP: 1	PP: 1
	Maximum no. of steps: 1000	Maximum no. of steps: 1000
LoRA	Number of GPUs: 2, 4	N/A
	TP: 1	
	PP: 2, 4	
	Maximum no. of steps: 1000	

TP - Tensor Parallelism

2.2 Validation Results

Model	No. of GPUs	SFT	P-Tuning	LoRA
Llama 2 (7B)	2	N/A	678	447
	4	642	563	248
Llama 2 (13B)	4	N/A	919	N/A

Values are time to fine-tune model in minutes

Note: These timings exclude the loading of the mode, the dataset and model validation.

PP - Pipeline Parallelism

ALL-ROUND CAPABILITY

Supports GenAl Inferencing on myriad of model sizes, up to large-sized models of **70B** parameters

THROUGHOULY TESTED

Extensively tested across various production inferencing use cases, capable of utilizing highend LLMs in multiple scenarios.

USE CASES EXAMPLES

- Intelligent documentation creation and processing
- Code generation, assistance, and documentation
- Content creation or chatbots for marketing and sales
- Sentiment analysis
- Virtual Customer service agents

3. Model Inferencing

In the validation tests, the performance of AiB is benchmarked using NVIDIA NeMo Frameworks with NVIDIA TensorRT-LLM. Latency is then measured on the Llama2 models with inputs of varying token lengths (128 and 2048).

3.1 Observed GPU Memory Consumptions

Model	Quantization	GPU Memory Consumption (GB)
Llama 2 (7B)	FP8	24.3
	AWQ	16.6
Llama 2 (12P)	FP8	34.9
Llama 2 (13B)	AWQ	23.0
Llama 2 (70P)	FP8*	133.9
Llama 2 (70B)	AWQ**	70.3

Note: Measured with a batch size of 1, input length of 128 and output length of 1

3.2 Validation Results (First Token Latency)

		1x L40S		2x L40S		4x L40S	
Model	Quantization	Token Length					
		128	2048	128	2048	128	2048
Llama	FP8	19.7	93.7	17.1	122.3	16.4	123.4
2 (7B)	AWQ	14.7	158.5	15.6	148.5	N/A	N/A
Llama	FP8	31.8	178.8	27.8	206.0	24.4	202.1
2 (13B)	AWQ	26.1	329.6	24.6	266.3	21.3	230.6
Llama 2 (70B)	FP8	N/A	N/A	N/A	N/A	79.3	696.2
	AWQ			92.7	1091.7	68.4	847.5

Values are time recorded in milliseconds

3.3 Validation Results (Throughput)

Model	Quantization	1x L40S	2x L40S	4x L40S
Llaws 0 (7D)	FP8 2966.9		3617.9	4298.8
Llama 2 (7B)	AWQ	2900.8	3575.3	N/A
Llama 2 (13B)	FP8 1650.7		2140.9	2616.3
	AWQ	1746.1	2215.1	2651.0
Llama 2 (70B)	FP8	N/A	N/A	787.1
	AWQ	N/A	712.9	949.3

Values represents tokens per second

Note: Measured with a batch size of 64, input length of 128 and output length of 128

^{*} Measured based on 4x L40S

^{**} Measured based on 2x L40S

VERSATILITY ACROSS INDUSTRY USE CASES

Al-in-a-Box handles end-to-end GenAl tasks, spanning various industry applications. From basic chatbots using pre-trained models to tailored RAG pipelines with custom models.

EASE OF DEPLOYMENT

Leverage the NVIDIA RAG LLM

Operator to simplify the deployment of production-ready RAG pipelines on RedHat OpenShift.

D&LLTechnologies Proof-of-Concept

4. Sample Use Case: Q&A Chatbot

A RAG chatbot application has been deployed on AiB as part of the PoC using the NVIDIA RAG LLM Operator. The chatbot is powered by the Llama2 13b-chat model running on NIMs.

4.1 Software Components

Component	Detail
Inference Server	Triton Inference Server
LLM Engine	vLLM
Pretrained LLM Model	Llama-2 13B-chat
Embedding Model	NV-Embed-QA-4
Vector Database	pgvector
User Interface	NVIDIA RAG Playground
Data Frameworks	LlamaIndex, LangChain
RAG Pipeline	RAG LLM Operator with NIMs

4.2 RAG ChatBot

DEPLOYABLE OUT-OF-BOX

Tuned to maximize GPU compute, ensuring optimal performance and power efficiency under demanding LLM workloads, all while fitting seamlessly into your existing data center environment without any changes.

STAY COMPLIANT WITHIN POWER CONSUMPTION

Ensuring compliance with common datacenter power limits, even under the most demanding conditions.

5. Power Consumption

The AiB is a product configured and designed with sustainability and efficiency at its core. This cutting-edge, all-rounded, quick-starter package not only brings the power of artificial intelligence to your fingertips but also does so while adhering to most data center power consumption regulations and policies.

With a maximum peak power consumption load of **1811 watts** or **6181 BTU/hr**, the Al-in-a-box ensures optimal performance without compromising on energy efficiency. Harness the power of Al while staying green and most importantly compliant with your current existing environment, without needless drastic environment changes.

5.1 Peak Training Power Consumption

To ensure and assure the AiB is capable of handling most demanding recommended workloads without making drastic datacenter changes to accommodate, the AiB has been rigorously tested under intensive workloads and monitored throughout.

Tests involved fine-tuning the Large Language Model (LLM) utilizing all four GPUs to their maximum capacity. Throughout these tests, power consumption metrics were continuously monitored, ensuring that even under the most demanding conditions, the AiB stays within its specified power consumption limits, ultimately compliant to common datacenter power limits.

Name	Input Wattage	Rated	Actual
PS1 Status	2656	2400	2400
PS2 Status	2656	2400	2400

 Average Usage
 1016 Watts | 3468 BTU/hr

 Max Peak
 1811 Watts | 6181 BTU/hr

 Max Peak Time
 Tue Jul 30 11:21:46 2024

 Min Peak
 516 Watts | 1761 BTU/hr

 Min Peak Time
 Tue Jul 30 11:58:32 2024

6. Conclusion

Dell's AiB offers a compact yet robust single-node server for customers or partners delving into GenAl solutions. Satisfactory test results on model customization and inferencing affirm that AiB's performance remains uncompromised by its size, fully supporting LLM workloads.

Moreover, the AiB, along with its tested power consumption, forms a convenient package that is compliant with current data center standards. This ensures that Dell's AiB can be seamlessly integrated into existing infrastructure, providing a practical and efficient solution for those seeking to leverage the power of GenAl. At the same time, Dell's AiB continues to uphold its commitment to sustainability and energy efficiency, further enhancing its appeal to modern data centers.

D¢LTechnologies Proof-of-Concept