,			
		Fo	rm Approved
REPORT DOCUMENTATIO			3 No. 0704-0188
ablic reporting burden for this collection of information is estimated to average 1 hithering and maintaining the data needed, and completing and reviewing the collection of information, including suggestions for reducing this burden, to Washing avis Highway, Suite 1204 Arlington, VA 22202-4302, and to the Office of Manage AGENCY USE ONLY (Leave Blank 2. REPORT DATE	tion of information. Send comments regar gton Headquarters Services, Directorate fo	ding this burden estir r information Operat Project (0704-0188) ERED	nate or any other aspect of this ions and Reports, 1215 Jefferson, Washington, DC 20503.
November 1997	Final lechnical Report,	15. FUNDING N	
Accelerated Methods for the Determination of Le Properties of Glass Reinforced Plastics for Rotor	ong Term Fatigue coCraft Applications	N68171	
AUTHOR(S)		······································	
Roderick H Martin			
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMIN REPORT NU	IG ORGANIZATION
Materials Engineering Research Laboratory Ltd Tamworth Road, Hertford, SG13 7DG, England		ERO/	
SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)	Į Di	SPONSORU AGENCY I	NG/MONITORING EPORT NUMBER
USARDSG (UK)		Peroved for a	The state of the s
2a. DISTRIBUTION/AVAILABILITY STATEMENT	80410 087	12b. DISTRIBU	TION CODE
3. ABSTRACT (Maximum 200 words) The aim of this work was to develop an accelerate data for use in life prediction analysis of structure \$2/8552 and \$2/F584, both glass epoxy systems. I and no difference in cycles to delamination onset could be run at between 15 and 20Hz to represent was modified to allow up to six composite DCB te its own instrumentation to monitor individual species of the second	es. Two materials were underland the delamination onset was most was identified. It was constructural tests at 5Hz. It st pieces to be tested at the delamination of t	sed in this pronitored at be not detected that A multi-station on the manner in the value quency and the same the value of the same the value of the same th	oject. These were oth 5Hz and 20Hz longer term tests ion fatigue machine e. Each station had achine operated set data up to 108 es of G between he use of an erm fatigue data
The aim of this work was to develop an accelerate data for use in life prediction analysis of structure \$2/8552 and \$2/F584, both glass epoxy systems. It and no difference in cycles to delamination onset could be run at between 15 and 20Hz to represent was modified to allow up to six composite DCB tests own instrumentation to monitor individual species of the second systems. For both materials at 17Hz for both materials. For both materials and 10 ⁸ cycles was observed. It was estimate electro-mechanical multi-station fatigue machine to under 5% of that using conventional testing apparent.	es. Two materials were undelamination onset was most was identified. It was constructural tests at 5Hz. It pieces to be tested at the simens for compliance characteristics a consistent decreased that the increase in frequency or oaches.	sed in this pronitored at be notified that A multi-station esame times. The mamination one in the value quency and the rating long to	oject. These were oth 5Hz and 20Hz longer term tests ion fatigue machine e. Each station had achine operated set data up to 10 ⁸ es of G between he use of an
The aim of this work was to develop an accelerate data for use in life prediction analysis of structure \$2/8552 and \$2/F584, both glass epoxy systems. It and no difference in cycles to delamination onset could be run at between 15 and 20Hz to represent was modified to allow up to six composite DCB tests own instrumentation to monitor individual specifies own instrumentation. The multi-station machine cycles at 17Hz for both materials. For both materials and 108 cycles was observed. It was estimate electro-mechanical multi-station fatigue machine	es. Two materials were underlamination onset was most was identified. It was constructural tests at 5Hz. It pieces to be tested at the imens for compliance changes are used to generate delivities a consistent decreased that the increase in free proaches.	sed in this pronitored at be notified that A multi-station esame times. The mamination one in the value quency and the rating long to	oject. These were oth 5Hz and 20Hz longer term tests ion fatigue machine e. Each station had achine operated set data up to 108 es of G between he use of an erm fatigue data

NSN 7540-01-280-5500

Unclassified

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

Unclassified

Unclassified

Accelerated Methods for the Determination of Long Term Fatigue Properties of Glass Reinforced Plastics for Rotor Craft Applications

Final Technical Report

by

Roderick H. Martin

November 1997

United States Army
EUROPEAN RESEARCH OFFICE OF THE U.S. ARMY
London, England

Contract Number: N68171-96-C-9061

Approved for Public Release; distribution unlimited

ABSTRACT

The U.S. Army Vehicle Technology Centre (VTC) at NASA Langley, has successfully used interlaminar fracture mechanics analysis on rotor craft structures to predict delamination initiation. The structure was analysed to determine the values of strain energy release rate (G) at critical locations in the structure. These predictions were compared with structural test data running out to 10⁷ cycles. However, in reality these structures may experience between 10⁸ and 10⁹ cycles in service at a frequency of 5Hz. Hence, the aim of this work was to develop an accelerated and cost effective method of generating these long term fracture data for the analysis. Two materials were used in this project. These were S2/8552 and S2/F584, both glass epoxy systems. Delamination onset was monitored at both 5Hz and 20Hz and no difference in cycles to delamination onset was identified. It was concluded that longer term tests could be run at between 15 and 20Hz to represent structural tests at 5Hz. A multi-station fatigue machine was modified to allow up to six composite DCB test pieces to be tested. Each station had its own instrumentation to monitor individual specimens for compliance changes. This machine operates electro-mechanically and hence is less expensive to run than the conventional servo-hydraulic fatigue machines. The multi-station machine was used to generate delamination onset data up to 10⁸ cycles at 17Hz for both materials. For both materials a consistent decrease in the values of G between 10^8 and 10^0 cycles was observed. It is estimated that the increase in frequency and the use of an electro-mechanical multi-station fatigue machine, reduces the cost of generating long term fatigue data to under 5% of that using conventional testing approaches. This allows additional data to be generated giving greater confidence.

KEY WORDS

accelerated test, delamination onset, double cantilever beam, fatigue, frequency effect, interlaminar fracture, mode I delamination, multi-station.

CONTENTS

FIGURE AND T	TABLE TITLES	iii
NOMENCLATU	URE	iv
1.0 SYNOPSIS	***************************************	1
2.0 INTRODUC	TION	2
3.0 LITERATUI	RE SURVEY ON FREQUENCY EFFECTS	5
	HINE DEVELOPMENT	
5.0 TEST METH	HODS	
5.1 Quasi-statio	CINTERLAMINAR FRACTURE TOUGHNESS TESTS	8
5.2 Effect of fru	EQUENCY ON TEMPERATURE IN THE DCB	ح د
	AMINATION INITIATION	
6.0 TEST RESU	LTS	11
6.1 Frequency E	Effects	11
6.2 STATIC RESU	LTS	
6.2.1 S2/E7T1	(with fabric layer)	11
6.2.3 S2/8552.		
6.3 FATIGUE RI	ESULTS(with fabric layer)	
0.3.1 S2/E/11	(with Jabric layer)	
6.3.2 S2/F 304 .		
	N	
	NG REMARKS	
	ES	
APPENDIX 1	Quasi-static results	
ADDENINIY 2	Fatigue compliance results	

Fatigue compliance results APPENDIX 2

FIGURE AND TABLE TITLES

Figure 2.1	Double cantilever beam
Figure 2.2	Mixed mode fatigue fracture data
Figure 4.1	The re-designed multi-station machine
Figure 4.2	Typical screen from data acquisition
Figure 5.1	Four station multi-station fixture for attachment to servo-hydraulic test stand
Figure 6.1	Typical Load Displacement Curve for S2/E7T1 with a fabric layer
Figure 6.2	Digital scan of failure surface
Figure 6.3	R-Curve for S2/E7T1 Material (with fabric layer)
Figure 6.4	Typical Load Displacement Curve for S2/F584
Figure 6.5	Digital scan of failure surface
Figure 6.6	R-Curve for S2/F584 Material
Figure 6.7	Typical Load Displacement Curve for S2/F584
Figure 6.8	Digital scan of failure surface
Figure 6.9	R-Curve for S2/8552 Material
Figure 6.10	Determination of cycles to onset after a 5% increase in compliance for a
	S2/8552 DCB specimen
Figure 6.11	G-N curve for S2/E7T1 with a fabric layer
Figure 6.12	G-N curve for S2/F584
Figure 6.13	G-N curve for S2/8552
Figure 7.1	Comparison of delamination onset
T-1-1- 6 1	Common of heat build up tests
Table 5.1	Summary of heat build up tests
Table 6.1	Quasi-static and fatigue results for S2/E7T1 specimens
Table 6.2	Quasi-static and fatigue results for S2/F584 specimens
Table 6.3	Quasi-static and fatigue results for S2/8552 specimens
Table 7.1	Linear fit to fatigue data

NOMENCLATURE

a	delamination length
\mathbf{a}_0	initial delamination length
b	specimen width
C	compliance, δ/P
G	strain energy release rate
G_{Ic}	interlaminar fracture toughness
G_{lc}^{NL}	interlaminar fracture toughness using deviation from linearity values of P and δ
G_{Imax}	maximum cyclic strain energy release rate
m	constant in compliance calibration
N	fatigue cycles
P_c	critical load for delamination initiation
P_{max}	maximum cyclic load during fatigue test
$\delta_{\rm c}$	critical displacement for delamination initiation
δ_{\max}	maximum cyclic displacement during fatigue test
Δ	correction to delamination length in compliance calibration

1.0 SYNOPSIS

Composite material bearing less rotor hubs are subject to high cycle tensile, bending and torsion loads. These structures are designed with increased thickness at the ends for mast and blade attachment and reduced thickness between these attachment points to increase the bending flexibility. The change in thickness is obtained by terminating internal plies. Stress concentrations arise where the plies terminate that may act as sites for delaminations to initiate. The U.S. Army Vehicle Technology Centre (VTC) at NASA Langley, has successfully used interlaminar fracture mechanics analysis on such structures to predict delamination initiation. The structure was analysed to determine the values of strain energy release rate (G) at critical locations in the structure. These values of G were compared with generic materials fracture data to predict if a delamination will initiate. These predictions were compared with structural test data running out to 10⁷ cycles. However, in reality these structures may experience between 108 and 109 cycles in service at a frequency of 5Hz. It is not feasible to test the structures out to these number of cycles. Hence, it is proposed to generate the materials fracture data out to this number of cycles and extend the current analysis to allow longer term delamination initiation predictions to be made. Hence, the aim of this work was to develop an accelerated method of obtaining these long term fracture data. To achieve this, an acceptable increase in frequency for mode I double cantilever beam (DCB) testing must be found that does not influence the results. Further a multi-sample testing approach should be used with multiple replicate tests, to address the scatter inherent in fatigue behaviour.

Two materials were used in this project with a third being removed early on. These were S2/8552 and S2/F584, both glass epoxy systems. Fatigue tests were conducted on the S2/8552 at different frequencies to identify if any heat arose at the delamination front with high frequency testing. The tests were run up to 30Hz and no heat rise was detected. Further, delamination onset was monitored for shorter term fatigue tests (<10⁶ cycles) at both 5Hz and 20Hz and no difference in cycles to delamination onset was identified. It was concluded that longer term tests could be run at between 15 and 20Hz to represent structural tests at 5Hz. A multi-station fatigue machine existed at MERL for testing four elastomer test pieces, each with its own instrumentation for stiffness measurement. This design was modified to allow up to six composite DCB test pieces to be tested. Each station had its own instrumentation to monitor individual specimens for compliance changes. This machine operates electro-mechanically and hence is less expensive to run than the conventional servo-hydraulic fatigue machines.

The multi-station machine was used to generate delamination onset data up to 10^8 cycles at 17Hz for both materials. The data, when plotted on a log-log plot gave no obvious indication of reaching a fatigue limit and a linear fit to the data was given. This result highlights the importance of generating the long term data rather than assuming a threshold or no growth limit based on data generated out only to 10^6 cycles. For both materials a consistent decrease in the values of G between 10^8 and 10^0 cycles was observed.

It is estimated that the increase in frequency and the use of an electro-mechanical multi-station fatigue machine, reduces the cost of generating long term fatigue data to under 5% of that using conventional testing approaches. This allows additional data to be generated giving greater confidence.

2.0 INTRODUCTION

For laminated polymeric matrix composites, the first damage event is often a single matrix crack resulting as a fibre matrix interface failure or a failure in the polymeric resin. The crack may appear across a lamina as a translaminar crack or between the laminae as an interlaminar crack or delamination. The latter is a far more critical damage mode. A delamination may occur from interlaminar stresses arising from an impact event or from geometric or material discontinuities resulting from design features, such as an edge, a hole, a dropped ply, etc. The delamination will go through an initiation and growth phase. During these phases damage may initiate in another part of the structure leading directly to failure of the part.

One composite material structure that may experience delamination type damage is a bearing less rotor hub. These structures have internally dropped plies to reduce the thickness for bending flexibility and increase the thickness at the ends for mast and blade attachment. The hubs typically rotate at 5 cycles per second (Hz) and may experience a combination of tension, bending and torsion loads.

The Vehicle Technology Centre (VTC) within the Army Research Laboratory (ARL) at NASA Langley, has (at the time of this work) two Co-operative Research and Development Agreements (CRDAs) on composite material rotor systems. One is with McDonnell Douglas Helicopter Systems (MDHS) (now Boeing Helicopters) and the other with Bell Helicopters Textron, Inc. (BHTI). The CRDA with MDHS is investigating delamination in flat laminates that are subjected to tension/torsion loads using S2/F584 glass epoxy. The CRDA with BHTI is investigating delamination in tapered flex beams that represent a critical section of the hub. These laminates are subjected to axial tension and bending loads and are fabricated from S2/E7T1 or S2/8552 glass toughened epoxies.

Figure 2.1 Double cantilever beam

The methodology for predicting durability and damage tolerance in both these CRDAs is based on interlaminar fracture mechanics. The relevant laminate or structure is analysed to determine the values of strain energy release rate (G) with different delamination lengths at critical locations. These values of G are compared with generic materials fracture data to predict when and to what extent a delamination will initiate and grow [1-3]. To determine if the composite rotor hubs will delaminate in fatigue, flex beams (the tapered region

of a hub) have been tested at VTC for up to 10,000,000 (10⁷) cycles. However, because of stroke and frequency limitations on typical hydraulic load frames and the cost of operation, it is not feasible to fatigue test the flex beam laminate beyond 10⁷ cycles even though rotor hubs may easily experience between 10⁸ and 10⁹ cycles in service. Furthermore, should the design change, the fatigue tests would have to be repeated. Hence, it is proposed to use analysis and long term materials fracture data as a design evaluation tool to predict delamination onset in structures such as the flex beam after long term fatigue.

The generic material fracture data required for such analysis includes fracture initiation data from tension or peel forces, mode I and from shear forces, mode II and mode III (perpendicular shear forces acting in the interlaminar plane). In reality the peel and shear forces may be present together causing a mixed mode, e.g. modes I and II fracture. The specimens to characterise these delamination modes are the double cantilever beam (DCB) specimen for mode I, Figure 2.1; the end-notched flexure (ENF) specimen or the newly developed four point bend end-notched flexure (4ENF) for mode II; the edge cracked torsion specimen (ECT) or the modified split cantilever beam (SCB) for mode III; and the mixed mode bending (MMB) specimen from mode I/II. A review of these test methods is given in Reference 4. To provide a comparison for many different structural applications, the material's delamination onset criteria must be generated both under quasi-static conditions and in fatigue for a range of fracture modes. An example of the data to be generated is shown in Figure 2.2. On the traditional x-axis is the number of cycles to delamination onset. On the traditional y-axis is G_t , the total cyclic strain energy release rate. On the z-axis is the mode ratio. When G_t/G_t is zero, this is an all mode II test, or an ENF specimen. When G_t/G_t is 1, it is a pure mode I test or a DCB specimen. The data shown terminates at 10⁶ cycles. However, for rotor systems the data must be extended beyond 10⁸ cycles.

The data shown in Figure 2.2 is for the initiation or onset of delamination. There are different methods for handling delamination growth. The same specimens described above may be used to measure the rate of fatigue crack growth (da/dN) with the strain energy release rate. In many works [e.g. 4], it has been shown that once the fatigue crack has begun to grow that it grows very rapidly. For structures where the values of G increase with delamination growth, then the delamination growth phase is short and can be neglected. Hence, the design and the prediction approach taken at the VTC is that the delamination should not be allowed to initiate. Hence, no delamination growth work is included in this study.

Figure 2.2 Mixed mode fatigue fracture data

To generate data out to 10⁸ cycles requires long term tests and dedicated equipment. The cost and time to generate such data is largely proportional to the frequency used. Therefore, if the frequency can be increased there is a linearly proportional decrease in test time. However, increasing the frequency to accelerate the test may have an effect on the physics of the fatigue effecting the results. tests frequency information on what acceptable for testing is vital to the reduction of cost to generate these long Further, because of the term data. inherent scatter with fatigue data, it is necessary to test several specimens at the same load level to determine the scatter

and allow a statistically accurate fit of the data to be performed. Hence, running several specimens for long duration becomes an even costlier exercise. At MERL, a unique multi-

station fatigue machine has been designed and built. Each station on the test machine has its own instrumentation allowing individual stiffnesses to be monitored during the test. The machine was developed for large displacement elastomer testing. Composite specimens undergo smaller displacements in fatigue, hence modification to the design would need to be made to allow composites to be tested with the result of greatly reduces the cost and time for long term data generation. Hence, the aim of this work is to identify the optimum frequency and employing the multi-station testing approach for mode I DCB testing This approach would then be used to generate the mode I delamination initiation criteria for two rotor craft composite materials out to 10⁸ cycles. Because mode I is the critical delamination mode, the use of a mode I delamination criteria allows conservative predictions to be made when other loading modes are present in the structure. Identification of the frequency effects for the other delamination modes is an area for further work.

Initially, the two materials intended for the project were S2/E7T1 (of interest to BHTI) and S2/F584 (of interest to MDHS). A panel of S2/E7T1 was supplied to MERL. However on testing it was identified as containing a woven glass ply on the delamination plane. As no more of this material was readily available, this material was changed to S2/8552 (also of interest to BHTI) part way through the project. However, initial results on the woven panel were generated and are presented.

3.0 LITERATURE SURVEY ON FREQUENCY EFFECTS

The underlying theme to this work is the development of a method for accelerated testing to generate long term delamination characterisation data. One method is the utilisation of the multi-station testing approach already utilised by MERL. The other is the increase of test frequency. However, to identify what work had been done in this area before, a literature review was undertaken.

Most of the references found described frequency effects on laminate failure rather than delamination initiation. Also, many references investigated the effect of lowering frequencies to include time dependent effects rather than increasing the frequency to accelerate the test. However, a few references addressed delamination issues. Subramanian and Chan [5] conducted delamination onset tests on IM6/3501-6 [(30/-30)₂/30/90]_s laminates at frequencies of 0.1, 1 and 10Hz. As the frequency was increased, the cycles to onset of delamination and the delamination growth rate increased. Adams et al [6] also investigated the frequency effect on edge delamination in carbon/epoxy laminates. They found no effect between frequencies of 5 and 10Hz, within the ranges of frequencies of interest in this work. Saff [7] found an effect of laminate failure between frequencies of 0.1 and 10Hz and surmised that the sensitivity to load frequency is a function of the stress state of the matrix. Other papers have investigated the effect of frequency and dynamic heating on fatigue life of laminates. Sun and Chan [8] looked at the effect of frequency on notched ±45 laminates and found that an increase in temperature around the hole was responsible for the decrease in fatigue life with increase in frequency (1 to 10Hz). However, if the frequency range being studied is less than 1Hz, such as down to 0.01, then fatigue life is lessened at the lower frequencies because of time dependent damage initiation and growth [9,10].

Hojo et al [11] investigated the effect of low frequencies of delamination growth rates in DCB specimens. As the frequency rate was lowered below 5Hz, the crack growth rate was accelerated. This arises from a fatigue/creep interaction. In the work under this contract, the frequency will be raised above 5Hz and so the effect may not be clear. In conclusion, no relevant work was found on the influence of raising frequency on the initiation of delamination in DCB samples.

4.0 TEST MACHINE DEVELOPMENT

The original MERL multi-station fatigue machine, in its present design, presents a low cost option (when compared with servo-hydraulic test equipment) for the performance of low load,

Figure 4.1 The re-designed multi-station machine

displacement controlled, long term fatigue tests. This machine provides a range of operation, in terms of amplitude, from 2.5 to 20mm. Below 2.5mm amplitude levels the accuracy and control of displacement applied to test pieces becomes unreliable. Double Cantilever Beam (DCB) test piece geometry can require cyclic displacements in the order of 1.0mm for long term fatigue tests, much smaller than that available from the present machine.

A design review phase was carried out to establish the necessary operational requirements for a modified machine to be able to test composite DCB specimens. Following preliminary design requirement discussions, two design (modification) concepts were developed. These were further refined with respect to the test requirements of the project and one concept further developed to a working design.

The chosen concept provided six instrumented test stations operating over a number of, discreet, amplitude ranges. This allowed three specimens of each material to be run together for the 10⁸ cycle test. The resulting machine is illustrated in Figure 4.1. Each station allowed different amplitudes (within certain conditions) to be applied at different stations. Each load cell had a 1kN dynamic load cell. For each station, the data acquisition consisted of digitally recording the load and displacement data. Periodically, the slope of the loading and unloading curve was calculated to determine the specimen compliance. To improve accuracy of this measurement, the frequency of the test was reduced to 1Hz for a short period while the slope was being measured. The frequency was then returned to its original level until the next measurement. The periodicity of the measurements was a user input. The values of

compliance are plotted versus cycles on the screen and stored to disc with other test information. A typical screen output is illustrated in Figure 4.2.

Figure 4.2 Typical screen from data acquisition

5.0 TEST METHODS

5.1 Quasi-static interlaminar fracture toughness tests

These tests were performed on a screw driven test machine at a constant displacement rate according to ASTM D5528. All tests were conducted with delamination from the insert. No unloading cycle was performed after delamination growth from the insert. Four test pieces were selected at random from each batch of material. The S2/8552 specimens for both static and fatigue tests were delivered with MS20001-6 extruded aluminium alloy hinges already attached. The adhesive was not known. For the S2/E7T1 and the S2/F584 specimens, MS20001-6 hinges were bonded on at MERL using Redux 420A/B. The adhesive was cured at 70°C for 2 hours. The thickness and width of each test specimen was measured at three points along the length and the average value determined and used for the calculations of G_{Ic} . The edge of each test specimen was then coated in water-based typewriter correction fluid and a grid marked starting with the first line at a_0 (the end of the insert). Lines were then marked at 1mm intervals for the first 10mm and subsequently at 5mm intervals to a crack length of at least 90mm.

For all specimens, the hinge was clamped firmly in the test grips and the specimen aligned. Load was then applied at a rate of 0.5mm/min. As the load increased the delamination length, a, was measured on one side of the test specimen using a microscope at approximately X25 magnification. At relevant intervals of delamination length, the load and the deflection were noted. Throughout the test, the load/deflection trace was stored in the computer.

The results of all the static tests were calculated using the different methods given in ASTM 5528. However, the tables and plots within this report are all calculated using the modified beam theory, where the compliance is determined from Equation 5.1 and the interlaminar fracture toughness from Equation 5.2.

$$C = m(a + \Delta)^3 \tag{5.1}$$

$$G_{Ic} = \frac{3P_c \delta_c}{2b(a+\Delta)} \tag{5.2}$$

The values of m and Δ are determined from a linear fit of the cube root of the compliance, $C^{1/3}$, plotted against the delamination length, a.

5.2 Effect of frequency on temperature in the DCB

As identified in the literature survey, laminates that undergo high degrees of strain during a fatigue tests may experience a rise in temperature that effects the fatigue life. To determine if this was so with the DCB fatigue tests, a study was conducted to determine the effects of frequency on the heat build up with the S2/8552 specimens. A thermal camera was used that

could determine the local heat in a region 2-3mm in diameter (larger areas were also possible). The thermal camera was capable of detecting a ± 0.2 °C change in temperature. The heat built up during fatigue should be a function of frequency, amplitude, R-ratio, damping properties of the material, and time. Hence, a specimen was fatigue tested at different frequencies and at different amplitudes for different durations as shown in Table 5.1 (the results are discussed in a later section). The camera was placed approximately 3mm from the crack tip on one specimen located in an MTS servo-hydraulic machine.

δ_{max}	Frequency	Cycles	Time	Specimen
	(Hz)	(000s)	Elapsed	Temperature
			(mins)	(°C)
1.75	5	12	40	25.2-25.3
2.5	5	20	67	25.6-26.2
3.5	5	60	200	25.6-25.9
3.5	10	50	83	25.0-25.6
3.5	20	250	50	25.4-25.6
3.5	30	59	140	25.1-25.2

Table 5.1 Summary of heat build up tests

5.3 Fatigue delamination initiation

The longer term fatigue tests ($>10^6$ cycles) were conducted on the new multi-station fatigue machine. Shorter term ($<10^6$ cycles) tests were performed on a servo-hydraulic MTS test system. These tests utilised a specialist fixture that allows four DCB test specimens to be cycled together with load monitoring on each station. A typical set-up is shown in Figure 5.1. This fixture allows accurate alignment of the test specimen with the load. Each station is monitored using a load cell giving accurate measurements of the load applied to each specimen. The outputs from each load cell are monitored using the same software as for the multi-station machine described above.

The fatigue tests were conducted according to the procedures in ASTM D6115. DCB specimens were cycled between a minimum and maximum displacement, δ_{min} , and δ_{max} . For linear elasticity and small deflections ($\delta/a<0.4$) the displacement ratio, $\delta_{\min}/\delta_{\max}$, identical to the R-ratio. displacement ratio, $\delta_{min}/\delta_{max}$, of 0.1 was specified for this series of tests. The frequency used on the multi-station machine was 17 Hz for the long term tests On the

Figure 5.1 Four station multi-station fixture for

MTS machine a frequency of 5 and 20Hz was used. The two frequencies were used to make a comparison. Either three or four specimens were tested at four different cyclic displacements to allow a *G-N* curve to be generated as in ASTM D6115. The tests were run until a 5% (or more) change in compliance was obtained or until a test was stopped as a run-out.

The maximum mode I cyclic strain energy release rate, G_{Imax} , was calculated using the modified beam theory as above and in Equation 5.3. To run the test, an average value of Δ from all four static tests was used to identify the applied level of G_{Imax} . Once the fatigue test was complete, a compliance calibration for the individual specimen was conducted to determine the actual values of m and Δ for that specimen, this is an extra procedure not yet included in ASTM D6115. The post fatigue test compliance calibrations were not conducted on the S2/E7T1 specimens.

$$G_{\text{Im}\,ax} = \frac{3P_{\text{max}}\delta_{\text{max}}}{2b(a+\Delta)} \tag{5.3}$$

6.0 TEST RESULTS

The static and fatigue data are presented in full in the appendices and summarised within the body of the report. The raw-data are supplied on the enclosed discs as Excel files. The files are filed under:

• MATERIAL NAME 8552

E7T1 F584

• DATA TYPE

compcal (compliance calibration)

fatigue (compliance versus cycles data)

static (reduced quasi-static data)

• SPECIMEN NUMBER

6.1 Frequency Effects

For all tests conducted, see Table 5.1, even at 30Hz at amplitudes sufficiently close to static toughness to cause crack growth, no significant temperature rise was detected. The ambient lab temperature was approximately 24°C. The temperature of the test specimens was 1-2°C higher over the whole specimen (caused by radiated heat of the servo-hydraulic test stand) with no increase in temperature at the delamination tip region. In conclusion, because of the small area of the composite that is loaded ahead of the crack tip and the lack of friction or any other heat raising mechanism, heat build up in the unidirectional S2/8552 DCB specimens does not occur within the parameters tested. The comparison of *G-N* data generated at 5Hz and 20Hz is discussed below. In summary, the long term tests of DCB specimens may be conducted at frequencies up to 30Hz with no significant heat build up effects.

6.2 Static Results

The data sheets for all the static tests are given in Appendix 1. This consists of the following:

- The load displacement curve
- Table of data and data reduction
- R-curve.

6.2.1 S2/E7T1 (with fabric layer)

A typical load displacement curve is shown in Figure 6.1. Although these specimens contained a fabric layer, the curve had no signs of crack growth jumping across the weaves (observed as a ratchetting effect) but did show evidence of fibre bridging (load still increases after delamination initiation) [12]. Fibre bridging is evident on examination of the delaminated surfaces, Figure 6.2, where the bridged fibres appear lighter in colour. The R-curve for the four

S2/E7T1 (with fabric layer) specimens is shown in Figure 6.3. The scatter between the four samples tested is low. The data has the classical increase in crack growth resistance from the effects of fibre bridging. This increase occurs over the first 5-10mm of delamination growth where the values reach a plateau approximately twice that at initiation. The actual loads and values are given along with the fatigue data in the section 6.3.

Figure 6.1 Typical Load Displacement Curve for S2/E7T1 with a fabric layer

Figure 6.2 Digital scan of failure surface

Figure 6.3 R-Curve for S2/E7T1 Material (with fabric layer)

6.2.2 S2/F584

A typical load displacement curve for the S2/F584 is shown in Figure 6.4. The actual values are given in Appendix 1. The G_{lc}^{NL} values are given along with the fatigue data in section 6.3. The loading portion is linear but at the point of initiation, there was a jump in the load displacement

Figure 6.4 Typical Load Displacement Curve for S2/F584

Figure 6.5 Digital scan of failure surface

Figure 6.6 R-Curve for S2/F584 Material

curve, indicating unstable growth. This jump is a result of a thick insert being used creating a blunt crack. This results in artificially high values of G_{Ic} . According to ASTM 5528 these values are invalid. The magnitude of the jump was similar for all four specimens. On further delamination growth, the load continues to increase indicating substantial fibre bridging. Fibre bridging is evident on examination of the delaminated surfaces, Figure 6.5 where the bridged fibres appear lighter in colour. The R-curve for the S2/F584 is shown in Figure 6.6. The scatter between the four samples tested is low. The data shows the classical increase in crack growth resistance from the effects of fibre bridging. This increase occurs over the first 5-10mm of delamination growth where the values reach a plateau. The inset graph in Figure 6.6 shows the higher values of G_{Ic} at the insert.

6.2.3 S2/8552

A typical load displacement curve for the S2/8552 is shown in Figure 6.7. The G_{lc}^{NL} values are given along with the fatigue data in the fatigue section below. The loading portion is linear and once the crack initiates the load continues to increase for a substantial amount of delamination growth. This is indicative of fibre bridging occurring. Fibre bridging is evident on examination of the delaminated surfaces, Figure 6.8. The R-curve for the S2/8552 is shown in Figure 6.9. The scatter between the four samples tested is low. The data increases from the initial values and appears to be approaching a plateau value. After 50mm of delamination growth, the values of G_{lc} are seven times larger than that at initiation from the insert. the classical increase in crack growth resistance from the effects of fibre bridging.

Figure 6.8 Digital scan of failure surface

Figure 6.9 R-Curve for S2/8552 Material

6.3 FATIGUE RESULTS

The fatigue results are shown as measured compliance versus cycles monitored during the fatigue tests in Appendix 2. The number of cycles to delamination onset, taken as a 5% increase in compliance, are given in the subsequent tables and plots. The number of cycles to give a 5% increase in compliance was obtained graphically as illustrated in Figure 6.10.

Figure 6.10 Determination of cycles to onset after a 5% increase in compliance for a S2/8552 DCB specimen

6.3.1 S2/E7T1 (with fabric layer)

The cycles to delamination onset for the S2/E7T1 specimens are shown in Figure 6.11 and Table 6.1. The data are plotted on a log-log scale with the quasi-static data (G_{Ic}^{NL}) plotted at 10^0 cycles. A linear fit to all the data is shown. Because of the fabric layer in the DCB specimens, the fatigue data had limited use, hence, these tests were not taken beyond 10^6 cycles. Also, post fatigue compliance calibrations for the fatigue specimens were not conducted and the average value of Δ from the four static tests were used to calculate G_{Imax} .

Figure 6.11 G-N curve for S2/E7T1 with a fabric layer

Sample	Width	Crack	f	P _{max}	$\delta_{ ext{max}}$	G_{Imax} (J/m^2)	N ^{5%}
	(mm)	Length	(Hz)	(N)	(mm)	(J/m^2)	
]		(a_0) (mm)					
4A	25.36	30.0	-	273.3 ^{NL}	1.14 ^{NL}	425.7 NL	static
7A	25.80	30.0	-	269.3 NL	1.18 ^{NL}	394.4 NL	static
8B	25.84	30.0	-	260.0^{NL}	1.00 ^{NL}	376.6 NL	static
9A	25.85	31.0	-	237.4 ^{NL}	1.12 ^{NL}	355.4 NL	static
1B	25.07	32.4	5	175	0.77	154.2	600,000
9B	25.81	27.5	5	221	0.77	208.5	40,700
11B	25.51	29.0	5	195	0.77	180.6	94,200
10A	25.50	28.9	5	209	0.77	193.9	22,900
2B	25.35	28.0	5	203	0.74	185.4	7,600
3A	25.19	26.6	5	225	0.74	213.0	5,500
6B	25.63	24.7	5	248	0.74	241.6	23,100
8A	25.7	26.2	5	226	0.74	211.6	6,500
6A	25.49	27.1	5	272	0.95	323.3	180
5B	25.40	29.3	5	210	0.94	236.7	11,500

Table 6.1 Quasi-static and fatigue results for S2/E7T1 specimens

6.3.2 S2/F584

The cycles to delamination onset for the S2/F584 specimens are shown in Figure 6.12 and Table 6.2. The data are plotted on a log-log scale with the quasi-static data (G_{lc}^{NL}) plotted at 10^0 cycles. These data were taken out to 10^8 cycles. A linear fit to all the data is shown. Post fatigue test compliance calibrations were conducted and the value for Δ from individual specimens used to calculate G_{lmax} . Note: the longer term tests were conducted at 17Hz because the fatigue machine was less resonant than at 20 Hz.

Figure 6.12 G-N curve for S2/F584

Spec	b	Δ	m	a	f	δ_{max}	P _{max}	C ₀	G _{Imax}	N5%
#	(mm)	(mm)	$x10^{-3}$	(mm)	(Hz)	(mm)	(N)	(mm/N)	(J/m²)	
13	20.05	29.44	4.70	52.0	_	2.60	56.0	-	133.6	static
14	20.05	22.43	5.01	51.5	-	2.20	52.0	-	115.7	static
17	20.06	19.96	5.16	51.5	-	2.50	60.0	-	156.8	static
22	20.01	30.02	4.47	51.5	_	2.50	60.0	-	137.8	static
01	20.25	22.25	4.79	51.0	5	1.60	46.1	0.034	74.6	2,800
03	20.20	26.24	4.68	51.0	5	1.60	50.6	0.036	77.8	2,000
10	19.98	35.42	4.33	51.0	5	1.60	45.6	0.037	63.4	1,600
12	20.06	19.85	5.08	51.0	5	1.60	51.2	0.033	86.5	10,100
05	20.24	27.58	4.56	52.0	5	1.20	42.5	0.034	47.5	30,000
08	20.19	23.50	4.88	51.0	5	1.20	40.5	0.035	48.5	24,000
09	20.16	22.87	4.79	52.0	5	1.20	40.0	0.035	47.7	38,000
11	20.16	22.69	4.96	51.0	5	1.20	-	-	-	lost data
02	20.29	27.25	4.73	52.0	5	1.00	-	-	_	lost data
06	20.01	27.54	4.66	50.0	5	1.00	28.9	0.036	27.9	800,000
07	20.16	25.87	4.66	52.0	5	1.00	29.8	0.035	28.5	<u>1,000,000</u>
15	20.12	24.50	4.84	52.0	5	0.80	30.4	0.035	23.7	<u>200,000</u>
19	19.72	30.64	4.53	52.0	5	0.80	29.0	0.034	21.3	<u>2,300,000</u>
21	20.12	28.81	4.68	52.0	5	0.80	22.8	0.041	16.8	<u>2,300,000</u>
24	19.93	19.80	5.11	52.0	5	0.80	25.2	0.037	21.1	<u>2,300,000</u>
26	20.00	21.67	5.09	52.0	17	0.43	11.1	0.038	4.86	108,000,000
29	20.04	20.53	5.14	52.0	17	0.67	12.5	0.048	8.64	108,000,000
30	20.15	26.82	4.58	52.0	17	0.67	19.0	0.031	12.02	5,000,000

underlined indicates a run out

Table 6.2 Quasi-static and fatigue results for S2/F584 specimens

6.3.3 S2/8552

The cycles to delamination onset for the S2/8552 specimens are shown in Figure 6.13 and Table 6.3. The data are plotted on a log-log scale with the quasi-static data (G_{lc}^{NL}) plotted at 10^0 cycles. These data were taken out to 10^8 cycles. The tests conduced at 5 Hz are shown as open symbols. The tests conducted at higher frequencies (20Hz on MTS machine and 17Hz on multi-station machine) are shown as solid symbols. Because the two sets are largely coincident, then it can be concluded that within this range the frequency does not have an effect on the number of cycles to delamination onset. For the three specimens undergoing the long term tests, one station developed a fault during the test. The data were not recovered. On another specimen very early on in the test, the hinge pin came out. This was replaced and the test restarted. For this specimen a 5% change in compliance was achieved at approximately 10^8 cycles determined graphically. For the third specimen, the compliance fluctuates up and down. The cause for this was not identified but possibly caused from the fixture becoming loose during the fatigue test. However, because the overall compliance does not increase this test is considered a run out.

A linear fit including the static and run out data is shown. Post fatigue test compliance calibrations were conducted and the value for Δ from individual specimens used to calculate G_{Imax} .

Figure 6.13 G-N curve for S2/8552

Spec	b	Δ	m	a	f	δ_{max}	P _{max}	C_0	G_{Imax}	N5%
#	(mm)	(mm)	x10 ⁻³	(mm)	(Hz)	(mm)	(N)	(mm/N)	(J/m^2)	
05	25.40	20.86	3.47	62.0	1	2.80	130.0	-	259.3	1
12	25.40	19.94	3.51	62.5	1	2.80	123.0	-	246.0	1
16	25.39	21.48	3.42	64.0	1	2.90	129.0	-	258.4	11
21	25.37	20.91	3.52	62.5	1	2.90	128.0		262.9	1
08	25.40	31.07	3.18	62.0	5	2.00	86.2	0.023	109.4	65,000
11	25.40	33.60	3.19	62.0	5	2.00	97.0	0.020	119.8	3,500
19	25.40	28.36	3.26	62.0	5	2.00	94.2	0.021	123.1	18,000
02	25.4	26.63	3.32	62.0	5	1.80	87.1	0.021	104.5	200,000
09	25.40	25.56	3.25	62.0	5	1.80	82.5	0.021	100.2	1,000,000
10	25.40	20.92	3.43	62.0	5	1.80	86.0	0.021	110.2	200,000
15	25.40	14.74	3.44	62.0	20	1.85	97.3	0.020	138.5	2,000
20	25.40	14.28	3.53	62.0	20	1.85	87.3	0.023	125.0	108,000
3	25.40	28.20	3.23	62.0	20	1.85	94.7	0.020	114.7	3,500
01	25.40	25.24	3.34	62.0	5	1.50	61.3	0.023	62.2	<u>1,260,000</u>
14	25.40	25.39	3.30	62.0	5	1.50	65.5	0.022	66.4	<u>1,260,000</u>
18	25.40	24.64	3.36	62.0	5	1.50	62.1	0.024	63.5	<u>1,260,000</u>
6	25.40	26.81	3.19	62.0	20	1.55	79.9	0.023	84.4	<u>1,264,000</u>
13	25.40	33.63	3.16	62.0	20	1.55	69.5	0.026	66.5	<u>1,264,000</u>
22	25.40	28.18	3.22	62.0	20	1.55	80.7	0.022	81.9	<u>1,264,000</u>
04	25.40	29.04	3.21	63.0	17	1.24	56.2	0.022	44.7	108,000,000
07	25.40	40.67	2.98	62.0	17	1.24	55.3	0.021	39.4	108,000,000
17	25.40	32.21	3.02	62.0	17	_	_	-	-	-

underlined indicates a run out

Table 6.3 Quasi-static and fatigue results for S2/8552 specimens

7.0 DISCUSSION

Although a direct comparison of the materials is not an objective of this work because it is useful to compare the relative fatigue performance with respect to the quasi-static performance. A comparison of the *G-N* curves is shown in Figure 7.1.

Figure 7.1 Comparison of delamination onset

For each material the decrease in G_c for delamination onset from the quasi-static value (plotted at 10^0) is of a similar degree as evident by the slopes of the curves in Figure 7.1. The slope of the linear fit in the F584 curve appears steeper, but is influenced by the run out tests. The numerical expression for this curve is given in Equation 7.1 and the values of the constants in Table 7.1

$$G_{\text{Im}\,ax} = 10^r \left(N_{onset} \right)^S \tag{7.1}$$

Material	r	S
S2/E7T1	-0.0655	2.189
S2/F584	-0.1528	2.250
S2/8552	-0.0890	2.431

Table 7.1 Linear fit to fatigue data

The data represented in Figure 7.1 does not give any indication of turning to reach a fatigue limit below although several of the specimens were run outs. It is often the approach to plot fatigue data assymptoting to a lower bound. However, by actually generating the data to the typical duration of rotor craft structure, as in this work, an actual value of G_{lmax} can be determined as the true fatigue limit such that no delamination will initiate within the life of the structure.

8.0 CONCLUDING REMARKS

This work has illustrated that the combined use of a multi-station electro-mechanical fatigue machine and an increase in test frequency can be used to generate mode I interlaminar fracture fatigue data cost effectively. This work identified that increasing the frequency to 20Hz from the typical 5Hz had no effect on DCB delamination onset. This is largely because there is no temperature rise at the crack tip and the effect of time at load does not play a significant role with the small amplitudes and increase in frequency. Increasing the frequency to 20 Hz from 5Hz, reduces the test time four times. By testing all the required replicates, say four, at same time reduces the test time again by four times. It estimated that an electro-mechanical machine is at most 50% of the cost to operate a servo-hydraulic machine. Therefore, in total this approach in generating long term data is less than 5% of the costs of generating these data using conventional equipment.

The generation of a mode I interlaminar fatigue delamination criteria up to 10^8 cycles, offers the ability to make predictions of fatigue loaded structural parts with lives up to the same number of cycles. This must be based on a total G criteria where the individual modes are summed up and compared with the mode I fatigue and quasi-static properties. This enables a conservative prediction to be made if the delamination within a structure is also driven by shear loads. To further improve the failure criteria, a combination of mode I and II and ultimately mode III should be developed. Before this can be achieved, it is necessary to determine if the tests for mode II (4ENF) and mixed mode I/II (MMB) can be operated at 20 Hz or a higher frequency with no adverse effects on the data. This is research proposed for future work.

9.0 REFERENCES

- 1. O'Brien, T. K., "Towards a Damage Tolerance Philosophy for Composite Materials and Structures," *Composite Materials: Testing and Design*, Vol. 9, ASTM STP 1059, S.P. Garbo, Ed., American Society for Testing and Materials, Philadelphia, 1990, pp. 7-33.
- 2. O'Brien, T. K., Rigamonti, M., and Zanotti, C., "Tension Fatigue Analysis and Life Prediction for Composite Laminates," *International Journal of Fatigue*, Vol. 11, No. 6, Nov. 1989, pp. 379-393.
- 3. Murri, G. B., O'Brien, T. K., and Rousseau, C. Q., "Fatigue Life Prediction of Tapered Composite Laminates," American Helicopter Society, 53rd Annual Forum, April 29-May 1st, 1997, Virginia Beach, Virginia
- 4. Martin, R. H. "Interlaminar Fracture Characterization," Fracture of Composites, Key Engineering Materials Vols. 121-122 (1996), pp. 329-346, Transtec Publications, Switzerland.
- 5. Subramanian, S., and Chan, W. S., "Frequency Effects on Delamination Characteristics of Laminates with and without an Interleaf," Composites; Proceedings of the 8th, International Conference on Composite Materials, (ICCM/8), Honolulu, HI, July 15-19, 1991, Society for, the Advancement of Material and Process Engineering, Covina, CA, 1991, pp. 28-O-1 to 28-O-10.
- 6. Adams, D. F., Zimmerman, R. S., Odom, E. M., "Frequency and Load Ratio Effects on Critical Strain Energy Release Rate Gc Thresholds of Graphite/Epoxy Composites," *Toughened Composites*, ASTM STP 937, N. J. Johnston, Ed., American, Society for Testing and Materials, Philadelphia, 1987, p., 242-259.
- 7. Saff, C. R., "Effect of Load Frequency and Lay-up on Fatigue Life of Composites, "Long-Term Behavior of Composites, T. K. O'Brien, Ed., ASTM STP, American, Society for Testing and Materials, Philadelphia, 1983, p., 78-91.
- 8. Sun, C. T. and Chan W. S., "Frequency Effect on the Fatigue Life of a Laminated Composite," Composite Materials: Testing and Design, Fifth Conference, ASTM STP, American Society for Testing, and Materials, Philadelphia, 1979, p. 418-430.
- 9. Knauss, W. G., "A Study of the Time Dependence in Fracture Processes Relating to Service Prediction of Adhesive Joints and Advanced Composites," Final Technical Report, 15 Aug. 1983 30 Jun. 1984, California Inst. of Tech., Pasadena, CA.
- 10. Tsai, G. C., "A Study of Frequency Effects and Damage Accumulation During the Fatigue of Graphite/Epoxy and Glass/Epoxy Composite Materials Ph.D. Thesis, Purdue Univ., West Lafayette, IN, 1984.

- 11. Hojo, M., Hayashi, R. Tanaka, K., and Gustafson, C. G., "Near-Threshold Propagation of Delamination Fatigue Cracks in Graphite/Peek Laminates," ICCM-VII; Proceedings of the 7th, International Conference on Composite Materials, Guangzhou, People's Republic of China, Nov., 22-24, 1989. Vol. 2, Beijing/Oxford, International Academic, Publishers/Pergamon Press, 1989, p. 511-516.
- Martin, R. H., "Delamination Characterisation of Woven Glass/Polyester Composites," Journal of Composites Technology and Research, Vol. 19, No. 1, 1997, pp. 20-28.

MERL warrants that where advice is given or work carried out, MERL will use its best endeavours to ensure accuracy of such advice or work having regard to the nature of the Clients instructions. Information supplied by MERL shall be as accurate as is appropriate having regard to the nature of the subject matter and the Clients instructions. Any liability of MERL for default under this clause shall be strictly limited to the total charges payable to MERL by the Client on this contract and there shall under no circumstances be any liability for any consequential loss or penalty howsoever such loss or penalty may arise.

APPENDIX A QUASI-STATIC RESULTS

E7T1-4AN.XLS

MERL			Bell E7T1 - 4A			Test Date:	02/01/96
Input			End block thickness	H [mm]	MISSING		
Specimen thickness	2h [mm]	9.73	End block length	[3 [mm]	MISSING		
Specimen width	B [mm]	25.36	Temperature	ົວ	MISSING		
Starter foil material	· =	MISSING	Relative humidity	[%]	MISSING		
Starter foil thickness	[mr]	MISSING	Loading rate	[mm/min]	0.50	•	
Starter foil length	A [mm]	30.00	Drying temperature	ភិ	MISSING	<u>د</u>	
Hinge type	` I	piano	Drying duration	三	MISSING	2	
Fiber Volume Fraction	Vf [Vol%]	MISSING	% Change Compliance	[%]	MISSING	•	

	12	0.00
(а	(a+12)-A >= 0	OK

check

_	_			
⋖⋍	A			_ ro
			A	
- ()			 L
-	7	ļ	-	
2]		H	₽	
			2h	
4				

		Measure	
Text	a [mm]	Load [N]	8 [
¥	30.00	273.30	1.14
2%	30.00	308.90	1.39
Prop.	31.00	310.40	1.40
Prop.	32.00	318.80	1.46
Prop.	34.00	351.00	1.76
	00.0	VE 000	100

	-															
	δ [mm	1.14	1.39	1.40	1.46	1.76	2.04	2.46	2.82	3.40	4.00	4.43	5.17	6.13	7.00	8.17
Measure	Load [N]	273.30	308.90	310.40	318.80	351.00	366.70	353.90	319.40	295.20	290.80	269.80	263.70	254.20	244.00	243.70
	a [mm]	30.00	30.00	31.00	32.00	34.00	35.00	40.00	45.00	50.00	55.00	60.00	65.00	70.00	75.00	80.00
	Text	¥	2%	Prop.												

	_	_	_	_	_		_		_	_			-	-	_	_		
	E-Mod. [GPa]	83.1	76.9	81.5	85.0	86.9	82.7	85.8	85.8	82.1	84.5	85.9	86.2	83.1	82.1	81.9	83.6	2.6
Results	Gmcc [J/m2]	366.4	492.3	497.9	530.6	683.1	799.0	863.4	824.9	841.3	918.9	890.2	957.1	1020.9	1056.0	1168.6	average	deviation
Re	Gecm [J/m2]	425.7	586.4	574.4	596.0	744.5	875.6	891.7	820.2	822.5	866.6	816.3	859.5	912.1	933.1	1019.6		
	Gcbt [J/m2]	366.2	504.5	500.7	526.0	672.4	799.3	853.2	815.1	843.7	912.8	879.6	944.5	1019.6	1058.9	1172.7		

E7T1-4AN.XLS

MERL			Bell E7T1 - 4A			Test Date:	02/07/96
							-
Input			End block thickness	H [mm]	MISSING		
Specimen thickness	2h [mm]	9.73	End block length	[3 [mm]	MISSING		
Specimen width	B [mm]	25.36	Temperature	ភ	MISSING		
Starter foil material	Ī	MISSING	Relative humidity	<u></u>	MISSING		
Starter foil thickness	[mr]	MISSING	Loading rate	[mm/min]	0.50		
Starter foil length	A [mm]	30.00	Drying temperature	ຼິ	MISSING	-3	
Hinge type	·	piano	Drying duration	Ξ	MISSING	<u>-</u>	
Fiber Volume Fraction	Vf [Vol%]	MISSING	% Change Compliance	[%]	MISSING	•	•

2.43	0.00
Ξ	22

-	_		
◀	A	A	_ ro
_	-	⋖	
-	_	-	_
DISCHE	-	2h h	
[0/]			

ş	
+I2)-A >= 0	
e)	
check	

	δ [mm]	1.14	1.39	1.40	1.46	1.76	2.04	2.46	2.82	3.40	4.00	4.43	5.17	6.13	7.00	8.17
Measure	Load [N]	273.30	308.90	310.40	318.80	351.00	366.70	353.90	319.40	295.20	290.80	269.80	263.70	254.20	244.00	243.70
	a [mm]	30.00	30.00	31.00	32.00	34.00	35.00	40.00	45.00	50.00	55.00	00.09	65.00	70.00	75.00	80.00
	Text	Z	2%	Prop.												

E7T1-4AN.XLS

Test Date: 02/07/96 Bell E7T1 - 4A

Regression

Method	ŏ	Gcbt	Ge	Gecm	ъ	Gmcc
Value	slope 0.00320058	Slope Y-axis 0.06485084	slope 2.08133821	slope Y-axis slope Y-axis 2 07304546	slope 32.0688328	Y-axis
Correction	=∇	-20.2622	=0	2.0813	A1=	32.0688
Correl. coeff. r^2	0.998675		0.995310		0.998675	
Points for fit						
	×	>	×	>	×	λ
Point 1	30.00	0.16	1.48	-2.39	0.16	3.10
Point 2	80.00	0.32	1.90	-1.50	0.32	8.29

A.O.A	0.0380	0.0463	0.0452	0.0456	5 0.0518		0.0615	0.0627	0.0680	4 0.0727	2 0.0738			0.0933	, , ,
4 4774	- · ·	1.4771	1.4914	1.5051	1.5315	1.5441	1.6021	1.6532	1.6990	1.7404	1.7782	1.8129	1.8451	1.8751	1000
	-2.3781	-2.3447	-2.3438	-2.3372	-2.2977	-2.2523	-2.1557	-2.0520	-1.9365	-1.8594	-1.7826	-1.7055	-1.6154	-1.5398	7,2,0
(C/N) ⁴ 1/3	0.1612	0.1654	0.1655	0.1663	0.1714	0.1775	0.1912	0.2070	0.2262	0.2400	0.2546	0.2701	0.2894	0.3067	,000
C/N [mm/N]	0.0042	0.0045	0.0045	0.0046	0.0050	0.0056	0.0070	0.0089	0.0116	0.0138	0.0165	0.0197	0.0242	0.0289	
FNE	0.9988	0.9985	0.9986	0.9986	0.9985	0.9983	0.9984	0.9986	0.9986	0.9986	0.9986	0.9986	0.9985	0.9985	
Z	0.9962	0.9952	0.9955	0.9956	0.9951	0.9946	0.9948	0.9952	0.9951	0.9950	0.9952	0.9950	0.9946	0.9944	
<u> </u>	0.9949	0.9937	0.9941	0.9942	0.9936	0.9929	0.9933	0.9937	0.9937	0.9936	0.9939	0.9936	0.9931	0.9928	
Text	Z	0.05	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	

DCB Mode | from Insert

04/07/96 16:23

Bell E7T1 - 4A

E7T1-7AN.XLS

MERL			Bell E7T1-7A			Test Date:	02/07/96
						1	
Input			End block thickness	H [mm]	MISSING		
Specimen thickness	2h [mm]	68.6	End block length	[3 [mm]	MISSING		
Specimen width	B [mm]	25.80	Temperature	ົວ	MISSING		
Starter foil material	Ţ	MISSING	Relative humidity	[%]	MISSING		
Starter foil thickness	<u>רשי</u>	MISSING	Loading rate	[mm/min]	MISSING		
Starter foil length	A [mm]	MISSING	Drying temperature	ຼົ	MISSING	<u>.</u>	
Hinge type	· ·	MISSING	Drying duration	Ξ	MISSING	2	
Fiber Volume Fraction	Vf IVol%]	MISSING	% Change Compliance	[%]	MISSING	-1	

2.47	0.00
7	12

♣	1	o o
•		A
<u>-</u> -		2h h h

Ò	
0	
" ^ \	
(a+12)	
_	
heck	
등	

	δ [mm]	1.18	1.36	2.18	2.38	2.77	2.87	3.39	3.81	4.50	4.91	5.54	5.89	6.42	6.59	6.96
Measure	Load [N]	269.30	297.00	354.10	336.50	308.50	302.60	294.40	284.80	269.60	238.30	241.20	245.90	252.80	252.40	250.50
	a [mm]	30.00	30.00	41.00	45.00	49.00	50.00	55.00	00.09	65.00	70.00	75.00	76.00	78.00	79.00	80.00
	Text	Ŋ,	2%	Prop.												

	Re	Results	
Gcbt [J/m2]	Gcbt [J/m2] Gecm [J/m2]	Gmcc [J/m2]	E-Mod. [GPa]
331.4	394.4	321.7	100.6
421.1	501.2	402.8	96.2
672.1	500.2	9.769	123.0
622.9	662.6	691.1	127.5
664.4	649.3	681.1	118.5
666.3	646.7	9'629	116.7
718.3	675.6	732.1	116.5
735.4	673.4	757.2	120.1
776.9	694.9	786.4	114.1
710.1	622.4	0.707	108.6
770.7	663.4	7.877	113.5
827.1	709.5	832.3	112.1
908.9	774.7	914.6	112.0
922.6	783.9	928.7	112.1
957.8	811.3	953.4	108.4
		average	113.3
		deviation	8.0

E7T1-7AN.XLS

Test Date: 02/07/96 Bell E7T1-7A MERL

Method	ŏ	Gcbt	වි	Gecm	Б	Э
Value	slope 0.00282947	slope Y-axis	1 '	slope Y-axis 192351568 -5.25554278	slope 35.445013	slope Y-axis 35.445013 -2.52757049
Correction	7=	-25.6847	•	1.9235	A1=	35.4450
Correl. coeff. r^2	0.991874		0.976330		0.991874	
Points for fit						
	×	>	×	>	×	χ
Point 1	30.00	0.16	1.48	-2.41	0.16	3.28
Point 2	80.00	0:30	1.90	-1.59	0:30	8.23

_					_	_									_	_
8/a	< 0.4	0.0393	0.0453	0.0532	0.0529	0.0565	0.0574	0.0616	0.0635	0.0692	0.0701	0.0739	0.0775	0.0823	0.0834	0.0870
	log(a)	1.4771	1.4771	1.6128	1.6532	1.6902	1.6990	1.7404	1.7782	1.8129	1.8451	1.8751	1.8808	1.8921	1.8976	1.9031
	log(C/N)	-2.3566	-2.3372	-2.2088	-2.1487	-2.0450	-2.0212	-1.9370	-1.8719	-1.7757	-1.6843	-1.6371	-1.6187	-1.5932	-1.5811	-1.5540
	(C/N) ⁴ 1/3	0.1639	0.1663	0.1835	0.1922	0.2081	0.2120	0.2261	0.2377	0.2559	0.2745	0.2847	0.2887	0.2944	0.2971	0.3034
	C/N [mm/N]	0.0044	0.0046	0.0062	0.0071	0600'0	0.0095	0.0116	0.0134	0.0168	0.0207	0.0231	0.0241	0.0255	0.0262	0.0279
	F/N [-]	0.9987	0.9985	0.9987	0.9988	0.9988	0.9988	0.9988	0.9988	0.9988	0.9989	0.9988	0.9988	0.9987	2866.0	0.9987
	I	0966.0	0.9953	0.9957	0.9960	0.9960	0.9960	0.9959	0.9960	0.9958	0.9959	0.9959	0.9956	0.9953	0.9953	0.9950
	Ξ	0.9947	0.9938	0.9943	0.9948	0.9948	0.9948	0.9947	0.9949	0.9946	0.9948	0.9947	0.9944	0.9941	0.9940	0.9937
	Text	Z	0.05	Prop.												

Bell E7T1-7A

E7T1-8BN.XLS

MERL			Bell E7T1-8B			Test Date:	02/07/96
Input			End block thickness	H [mm]	MISSING		
Specimen thickness	2h [mm]	9.77	End block length	[3 [mm]	MISSING	•	
Specimen width	B [mm]	25.84	Temperature	ຼິ	MISSING		
Starter foil material	` I	MISSING	Relative humidity	[%]	MISSING		
Starter foil thickness	[un]	MISSING	Loading rate	[mm/min]	MISSING		
Starter foil length	A [mm]	MISSING	Drying temperature	ຼິ່ວ	MISSING	ر ع_ ا	
Hinge type	`I	MISSING	Drying duration	[-	MISSING	72	
Fiber Volume Fraction	Vf [Vol%]	MISSING	% Change Compliance	[%]	MISSING	1	•

2.44	0.00
Ξ	12

_	
	ş
	(a+12)-A>=0

check

	δ [mm]	1.00	1.23	1.46	1.55	1.61	1.7.1	1.81	2.08	2.57	3.13	3.66	4.26	4.90	5.74	6.48	6.62	6.80	96.9	7.15	7.37
Measure	Load [N]	260.00	309.40	338.20	347.60	348.00	352.30	353.10	330.20	313.60	298.50	277.60	252.40	246.80	232.40	215.80	215.20	213.10	210.40	211.20	209.50
	a [mm]	30.00	30.00	31.00	32.00	33.00	34.00	35.00	40.00	45.00	50.00	55.00	60.00	65.00	70.00	75.00	76.00	77.00	78.00	79.00	80.00
	Text	N	2%	Prop.																	

	E-Mod. [GPa]	64.7	62.5	61.4	63.4	65.1	62.9	66.3	71.7	71.3	70.8	70.2	67.3	69.4	8.99	65.2	65.7	65.5	65.2	65.8	65.3	66.5	2.8
Results	Gmcc [J/m2]	329.5	476.9	601.9	649.7	667.4	706.2	735.7	738.2	793.6	847.4	853.8	832.1	9.988	909.3	893.1	902.5	6.906	905.5	926.6	935.3	average	deviation
Res	Gecm [J/m2]	376.6	551.1	691.8	731.3	737.4	9.69.	793.1	745.9	778.0	811.7	802.5	778.5	808.2	827.8	809.9	814.3	817.5	815.5	830.3	838.3		
	Gcbt [J/m2]	331.6	485.2	615.9	622.9	670.0	705.9	734.0	717.8	772.7	827.3	835.9	826.0	871.2	904.8	896.0	902.9	908.4	908.2	926.6	937.5		

E7T1-8BN.XLS

Test Date: 02/07/96 Bell E7T1-8B MERL

Method	ŏ	Gcbt	Э	Gecm	ູ້ ອ້	Gmcc
Value	slope 0.00341801	Y-axis 0.05287603	slope 2.24800156	slope Y-axis slope Y-axis Y-axis 0.00341801 0.05287603 2.24800156 -5.75245558 29.8912684 -1.57056149	slope 29.8912684	Y-axis -1.57056149
Correction	-∇=	-15.4698	=u	2.2480	A1=	29.8913
Correl. coeff. r [^] 2	0.998188		0.994760		0.998188	
Points for fit						
	×	Α	×	>	×	ý
Point 1	30.00	0.16	1.48	-2.43	0.16	3.12
Point 2	80.00	0.33	1.90	-1.47	0.33	8.24

	П		$\neg \tau$			_							_		- 1				1	•
< 0.4	0.0333	0.0410	0.0471	0.0484	0.0488	0.0503	0.0517	0.0520	0.0571	0.0626	0.0665	0.0710	0.0754	0.0820	0.0864	0.0871	0.0883	0.0892	0.0905	0.0921
log(a)	1.4771	1.4771	1.4914	1.5051	1.5185	1.5315	1.5441	1.6021	1.6532	1.6990	1.7404	1.7782	1.8129	1.8451	1.8751	1.8808	1.8865	1.8921	1.8976	1.9031
log(C/N)	-2.4135	-2.3988	-2.3628	-2.3487	-2.3327	-2.3119	-2.2882	-2.1989	-2.0846	-1.9775	-1.8780	-1.7707	-1.7001	-1.6052	-1.5203	-1.5098	-1.4938	-1.4782	-1.4681	-1.4514
(C/N) ⁴ 1/3	0.1569	0.1586	0.1631	0.1649	0.1669	0.1696	0.1727	0.1849	0.2019	0.2192	0.2366	0.2569	0.2712	0.2917	0.3113	0.3139	0.3177	0.3216	0.3241	0.3282
C/N [mm/N]	0.0039	0.0040	0.0043	0.0045	0.0046	0.0049	0.0052	0.0063	0.0082	0.0105	0.0132	0.0170	0.0199	0.0248	0.0302	0.0309	0.0321	0.0333	0.0340	0.0354
F/N [-]	0.9989	0.9987	0.9985	0.9985	0.9985	0.9985	0.9985	0.9987	0.9987	0.9987	0.9987	0.9987	0.9987	0.9986	0.9986	0.9986	0.9986	0.9986	0.9986	0.9986
I	0.9967	0.9958	0.9953	0.9952	0.9953	0.9953	0.9953	0.9957	0.9957	0.9956	0.9955	0.9955	0.9954	0.9951	0.9949	0.9949	0.9948	0.9948	0.9947	0.9947
Ξ	0.9956	0.9945	0.9938	0.9938	0.9939	0.9938	0.9938	0.9944	0.9944	0.9942	0.9942	0.9942	0.9940	0.9937	0.9935	0.9935	0.9935	0.9934	0.9933	0.9932
Text	Z	0.05	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.
	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a)	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0.9945 0.9958 0.9987 0.0040 0.1586 -2.3988 1.4771	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9958 0.9987 0.0040 0.1569 -2.4135 1.4771 0.9945 0.9967 0.0040 0.1586 -2.3988 1.4771 0.9938 0.9985 0.0043 0.1631 -2.3628 1.4914	F F-J N F-J F/N F-J C/N [mm/N] (C/N)^1/3 log(C/N) log(a) [1.4771]	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0.9945 0.9963 0.0985 0.0040 0.1586 -2.3988 1.4771 0.9938 0.9963 0.9985 0.0045 0.1631 -2.3628 1.4914 0.9938 0.9963 0.9985 0.0045 0.1649 -2.3487 1.5051 0.9939 0.9963 0.9985 0.0046 0.1669 -2.3327 1.5185	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0.9945 0.9968 0.0040 0.1586 -2.3988 1.4771 0.9938 0.9965 0.0985 0.0045 0.1631 -2.3628 1.4914 0.9938 0.9965 0.9985 0.0045 0.1649 -2.3487 1.5051 0.9939 0.9963 0.9985 0.0046 0.1669 -2.3327 1.5185 0.9938 0.9963 0.09865 0.0046 0.1669 -2.3327 1.5185	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0.9945 0.9968 0.0040 0.1586 -2.3988 1.4771 0.9938 0.9965 0.0985 0.0045 0.1631 -2.3628 1.4914 0.9938 0.9965 0.9985 0.0045 0.1649 -2.3487 1.5051 0.9939 0.9963 0.9985 0.0046 0.1669 -2.3327 1.5185 0.9938 0.9963 0.0946 0.0049 0.1669 -2.3119 1.5315 0.9938 0.9965 0.0049 0.1696 -2.3119 1.5315	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0.9945 0.9968 0.0040 0.1569 -2.3988 1.4771 0.9938 0.9965 0.0985 0.0045 0.1649 -2.3487 1.5051 0.9939 0.9965 0.0046 0.1669 -2.3487 1.5051 1.5051 0.9938 0.9965 0.0046 0.1669 -2.3327 1.5185 1.5185 0.9938 0.9965 0.0049 0.1669 -2.3119 1.5315 1.5441 0.9938 0.9965 0.0052 0.1727 -2.2882 1.5441 0.9944 0.9967 0.0963 0.0063 0.1849 -2.1889 1.6021	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0.9945 0.9968 0.0040 0.1586 -2.3988 1.4771 0.9938 0.9963 0.0985 0.0045 0.1649 -2.3628 1.4914 0.9938 0.9963 0.9985 0.0046 0.1669 -2.3487 1.5051 0.9938 0.9963 0.9985 0.0049 0.1669 -2.319 1.5185 0.9938 0.9965 0.0049 0.1669 -2.3327 1.5185 0.9938 0.9985 0.0049 0.1696 -2.3119 1.5315 0.9944 0.9967 0.0963 0.1849 -2.1989 1.6021 0.9944 0.9967 0.0982 0.2019 -2.0199 -2.0846 1.6532	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0 0.9945 0.9968 0.0040 0.1586 -2.3988 1.4771 0 0.9938 0.9953 0.9985 0.0045 0.1649 -2.3628 1.4914 0.9938 0.9963 0.9985 0.0046 0.1669 -2.3327 1.5185 0.9938 0.9963 0.9985 0.0049 0.1696 -2.3119 1.5315 0.9938 0.99653 0.9985 0.0052 0.1727 -2.2882 1.5441 0.9944 0.9967 0.9987 0.0063 0.1849 -2.1989 1.6021 0.9942 0.9966 0.9987 0.0063 0.2019 -2.0846 1.6532 0.9942 0.9967 0.9987 0.0105 0.2192 -1.9775 1.6990	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0 0.9945 0.9968 0.0040 0.1586 -2.3988 1.4771 0 0.9938 0.9953 0.9985 0.0045 0.1649 -2.3628 1.4914 0.9938 0.9953 0.9985 0.0046 0.1669 -2.3487 1.5051 0.9938 0.9963 0.0985 0.0046 0.1669 -2.319 1.5185 0.9938 0.9985 0.0049 0.1696 -2.319 1.5185 0.9944 0.9967 0.9987 0.0063 0.1849 -2.1989 1.6021 0.9942 0.9956 0.9987 0.0063 0.2019 -2.0846 1.6990 0.9942 0.9956 0.9987 0.0105 0.2192 -1.9775 1.6990 0.9942 0.9956 0.9987 0.0105 0.2192 -1.9775 1.6	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0 0.9945 0.9968 0.0040 0.1586 -2.3988 1.4771 0 0.9938 0.9953 0.9985 0.0045 0.1649 -2.3628 1.4914 0.9938 0.9953 0.9985 0.0046 0.1669 -2.3487 1.5051 0.9938 0.9963 0.0985 0.0046 0.1669 -2.319 1.5185 0.9938 0.9985 0.0049 0.1696 -2.319 1.5315 0.9944 0.9967 0.9987 0.0063 0.1849 -2.1889 1.6021 0.9942 0.9956 0.9987 0.0063 0.2019 -2.0846 1.6990 0.9942 0.9956 0.9987 0.0105 0.2192 -1.9775 1.7704 0.9942 0.9956 0.9987 0.0132 0.2366 -1.8770 1.7	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0 0.9945 0.9968 0.0040 0.1586 -2.3988 1.4771 0 0.9938 0.9953 0.9985 0.0045 0.1649 -2.3628 1.4914 0.9938 0.9953 0.9985 0.0046 0.1669 -2.3487 1.5051 0.9938 0.9953 0.9985 0.0046 0.1669 -2.319 1.5185 0.9938 0.9965 0.0049 0.1669 -2.319 1.5315 0.9944 0.9967 0.9087 0.0063 0.1849 -2.1889 1.6021 0.9942 0.9966 0.9987 0.0105 0.2192 -1.9775 1.7404 0.9942 0.9965 0.9987 0.0132 0.2366 -1.8770 1.7707 0.9940 0.9955 0.9987 0.0132 0.2366 -1.8770 1.7	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0 0.9945 0.9967 0.0040 0.1586 -2.3988 1.4771 0 0.9938 0.9953 0.9985 0.0045 0.1649 -2.3628 1.4914 0 0.9938 0.9953 0.9985 0.0046 0.1669 -2.3487 1.5051 0 0.9938 0.9953 0.9985 0.0046 0.1669 -2.3187 1.5185 0 0.9944 0.9957 0.9987 0.0063 0.1849 -2.1889 1.6021 0.9942 0.9966 0.9987 0.0063 0.2192 -1.9775 1.6990 0.9942 0.9965 0.9987 0.0105 0.2192 -1.9776 1.7404 0.9942 0.9965 0.9987 0.0132 0.2366 -1.8707 1.7404 0.9940 0.9955 0.9987	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0 0.9945 0.9967 0.0040 0.1586 -2.3988 1.4771 0 0.9945 0.9953 0.9985 0.0043 0.1631 -2.3628 1.4914 0 0.9938 0.9953 0.9985 0.0046 0.1649 -2.3487 1.5051 0 0.9938 0.9953 0.9985 0.0046 0.1669 -2.3487 1.5185 1.5441 0.9938 0.9985 0.0046 0.1689 -2.3127 1.5185 1.6021 0.9944 0.9957 0.9987 0.0063 0.1849 -2.1889 1.6021 0.9942 0.9965 0.9987 0.0105 0.2192 -1.9775 1.7404 0.9942 0.9965 0.9987 0.0132 0.2366 -1.7707 1.7404 0.9940 0.9965 0.9987	F.J. N.F.J. F/N.F.J. C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0.9945 0.9968 0.0040 0.1586 -2.398 1.4771 0.9938 0.9965 0.0045 0.1631 -2.3628 1.4914 0.9938 0.9965 0.0045 0.1649 -2.3487 1.5051 0.9939 0.9965 0.0046 0.1669 -2.3487 1.5185 0.9938 0.9965 0.0046 0.1669 -2.3487 1.5185 0.9938 0.9965 0.0049 0.1669 -2.319 1.5315 0.9944 0.9967 0.9087 0.0063 0.2192 -2.1989 1.6021 0.9942 0.9966 0.9987 0.0105 0.2192 -1.9775 1.7404 0.9942 0.9965 0.9987 0.0105 0.2366 -1.8760 1.7707 1.7707 0.9940 0.9966 0.9987 <	F.F.J. N.F.J. F/N.F.J. C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0.9956 0.9958 0.0040 0.1586 -2.3988 1.4771 0.9948 0.9958 0.0045 0.0045 0.1586 -2.3988 1.4771 0.9938 0.9953 0.9985 0.0045 0.1631 -2.3628 1.4914 0.9953 0.9953 0.9985 0.0046 0.1669 -2.3327 1.5185 0.9953 0.9985 0.0046 0.1669 -2.3319 1.5315 0.9985 0.0046 0.1699 -2.3319 1.5315 0.9944 0.9957 0.9987 0.0052 0.1727 -2.2882 1.5441 0.9957 0.9987 0.0063 0.1849 -2.1989 1.6021 0.9942 0.9956 0.9987 0.0105 0.2192 -1.9775 1.6990 0.9942 0.9956 0.9987 0.0105 0.2366 -1.8780 1.7707 1.7702 0.9940 0.9954 0.9987 0.0170 0.2569 -1.7707 1.7782 0.9940 0.9954 0.9987 0.0170 0.2569 -1.7707 1.8129 0.9940 0.9954 0.9986 0.0248 0.2917 -1.6052 1.8451 0.9937 0.9956 0.09986 0.0302 0.3113 -1.5203 1.8751 0.9935 0.9986 0.0302 0.3113 -1.5203 1.8751 0.9935 0.9986 0.0302 0.3113 -1.5203 1.8751 0.9935 0.9986 0.0309 0.3139 -1.5098 1.8065 0.9935 0.9986 0.0309 0.3139 -1.5098 1.8865	F F.J N I.J F/N IJ C/N [mm/N] (C/N)^1/13 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0.9945 0.9945 0.9968 0.9987 0.0040 0.1569 -2.4135 1.4771 0.9938 1.4771 0.9938 1.4514 1.4814 0.9938 1.4914 1.4814 1.4814 0.9938 0.99653 0.9985 0.0045 0.1649 -2.3487 1.5051 0.9938 0.99653 0.9985 0.0049 0.1669 -2.3487 1.5051 0.0049 0.1669 -2.319 1.5185 0.0049 0.1669 -2.319 1.5051 0.0049 0.0049 0.1669 -2.319 1.5051 0.0049 0.0049 0.1669 -2.319 1.5051 0.0049 0.0049 0.1669 -2.319 1.5051 0.0049 0.0049 0.1669 -2.319 0.5051 0.0049 0.0069 0.1699 0.0049 0.0049 0.1699 0.0049 0.0069 0.0049 0	F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) log(a) 0.9956 0.9967 0.9989 0.0039 0.1569 -2.4135 1.4771 0.9945 0.9968 0.0040 0.1586 -2.3328 1.4771 0.9938 0.9953 0.9985 0.0045 0.1649 -2.3327 1.5051 0.9938 0.9953 0.9985 0.0046 0.1669 -2.3487 1.5051 0.9938 0.9953 0.9985 0.0049 0.1669 -2.3487 1.5051 0.9938 0.9953 0.9985 0.0049 0.1669 -2.3327 1.5185 0.9944 0.9957 0.9987 0.0063 0.1849 -2.1889 1.6021 0.9942 0.9956 0.9987 0.0105 0.2192 -1.9776 1.7404 0.9942 0.9956 0.9987 0.0105 0.2192 -1.9776 1.7404 0.9942 0.9956 0.9987 0.0105 0.2192 -1.9776 1.7404

DCB Mode I from Insert

04/07/96 16:27

Bell E7T1-8B

E7T1-9AN.XLS

MERL			Bell E7T1-9A			Test Date:	02/01/96
Input			End block thickness	H [mm]	MISSING		
Specimen thickness	2h [mm]	9.65	End block length	[3 [mm]	MISSING		
Specimen width	B [mm]	25.85	Temperature	္ဌာ	MISSING		
Starter foil material	Ξ	MISSING	Relative humidity	<u></u>	MISSING		
Starter foil thickness	[mr]	MISSING	Loading rate	[mm/min]	MISSING		
Starter foil length	A [mm]	MISSING	Drying temperature	ຼີ	MISSING	-3	
Hinge type	' <u>-</u>	MISSING	Drying duration	Ξ	MISSING	-	
Fiber Volume Fraction	Vf [Vol%]	MISSING	% Change Compliance	[%]	MISSING	-	\

2.41	0.00
1	2

_		
_►		a
)		4 y
<u>-</u>	Ļ	+
+	1	2h ↑ h
		2

	8	1.1	, P P
Measure	Load [N]	237.40	00 000
	a [mm]	31.00	00 70
	Text	Į,	/0.2

(a+12)-A >= 0

check

						-						_							
	δ [mm]	1.12	1.43	1.60	1.71	1.85	1.94	2.01	2.15	2.27	2.38	2.70	3.22	3.90	4.51	5.33	6.18	7.05	7.98
Measure	Load [N]	237.40	300.00	318.00	330.20	342.80	338.90	333.80	323.90	318.20	320.30	292.20	287.80	273.90	257.50	243.20	237.10	224.50	213.40
	a [mm]	31.00	31.00	32.00	33.00	34.00	35.00	36.00	37.00	39.00	40.00	45.00	50.00	55.00	60.00	65.00	70.00	75.00	80.00
	Text	J _N	2%	Prop.															

Results	J/m2] Gmcc [J/m2] E-Mod. [GPa]	4 309.6 69.9	.3 497.7 69.1	.6 579.7 69.5	7 637.2 71.6	.6 705.8 72.8	.1 717.5 72.6	.0 720.0 73.0	723.4	.2 732.6 72.4	.4 762.7 73.2	.3 734.1 75.4	.9 809.1 78.2	.6 860.6 75.9	.8 873.2 75.2	.1 904.4 72.4	.1 964.9 72.5	.1 979.4 70.9	.7 994.2 69.6	average 72.5	3.6
	Gcbt [J/m2] Gecm [J/m2]	312.4 355.4	503.9 573.3	585.7 658.6	637.3 708.7	702.1 772.6	714.2 778.1	715.5 772.0	729.2 779.6	730.0 767.2	757.2 789.4	721.9 726.3	785.9 767.9	844.1 804.6	859.1 801.8	901.3 826.1	961.1 867.1	982.5 874.1	1003.4 881.7		

E7T1-9AN.XLS

Test Date: 02/07/96 Bell E7T1-9A MERL

Method	Gcbt	;pţ	ල	Gecm	Gr	Gmcc
Value	slope 0.0038228	Y-axis	slope 2 14476435	Y-axis slope	slope 30 7524299	Y-axis -1 88464839
Correction	Ψ=∇		=0	2.1448	A1=	
Correl. coeff. r [^] 2	0.997787		0.994143		0.997787	
Points for fit						
	×	>	×	>	×	^
Point 1	31.00	0.17	1.49	-2.35	0.17	3.28
Point 2	80.00	0.33	1.90	-1.47	0.34	8.42

		_				-	_				_	_		_	_	_	_		
8/a	< 0.4	0.0361	0.0461	0.0500	0.0518	0.0544	0.0554	0.0558	0.0581	0.0582	0.0595	0.0600	0.0644	0.0709	0.0752	0.0820	0.0883	0.0940	0.0998
	log(a)	1.4914	1.4914	1.5051	1.5185	1.5315	1.5441	1.5563	1.5682	1.5911	1.6021	1.6532	1.6990	1.7404	1.7782	1.8129	1.8451	1.8751	1.9031
	log(C/N)	-2.3247	-2.3198	-2.2962	-2.2836	-2.2656	-2.2401	-2.2181	-2.1757	-2.1445	-2.1268	-2.0323	-1.9492	-1.8444	-1.7545	-1.6570	-1.5816	-1.5006	-1.4246
	(C/N)^1/3	0.1679	0.1686	0.1716	0.1733	0.1757	0.1792	0.1822	0.1883	0.1928	0.1955	0.2102	0.2240	0.2428	0.2601	0.2803	0.2970	0.3161	0.3351
	C/N [mm/N]	0.0047	0.0048	0.0051	0.0052	0.0054	0.0058	0.0061	0.0067	0.0072	0.0075	0.0093	0.0112	0.0143	0.0176	0.0220	0.0262	0.0316	0.0376
	F/N [-]	0.9989	0.9986	0.9985	0.9985	0.9984	0.9984	0.9985	0.9984	0.9985	0.9985	0.9986	0.9987	0.9986	0.9986	0.9986	0.9985	0.9985	0.9984
	I	0.9965	0.9954	0.9951	0.9950	0.9949	0.9949	0.9950	0.9949	0.9951	0.9951	0.9955	0.9954	0.9952	0.9951	0.9948	0.9946	0.9943	0.9941
	I	0.9954	0.9940	0.9936	0.9935	0.9933	0.9933	0.9935	0.9933	0.9936	0.9936	0.9941	0.9941	0.9938	0.9938	0.9934	0.9931	0.9928	0.9925
	Text	¥	0.05	Prop.															
L		<u> </u>	<u> </u>	L	L_	L			L	L	L	L	<u></u>	L	L	L	L	1_	L

DCB Mode I from Insert

04/07/96 16:28

Bell E7T1-9A

STAT-13.XLW

MERL			S2/F584 13 ERO			Test Date:	Test Date: 01/01/04
Input			End block thickness	H [mm]	MISSING		
Specimen thickness	2h [mm]	6.72	End block length	[3 [mm]	MISSING		
Specimen width	B [mm]	20.05	Temperature	္ခြင့္	23.00		
Starter foil material	· ·	Teflon	Relative humidity	<u> </u>	MISSING		
Starter foil thickness	[maj	13.00	Loading rate	[mm/min]	0.50		
Starter foil length	A [mm]	MISSING	Drying temperature	<u>်</u>	MISSING	[3	
Hinge type		MS20001-6	Drying duration	Ξ	MISSING	2	
Fiber Volume Fraction	Vf [Vol%]	MISSING	% Change Compliance	8	MISSING		*

1.68	0.00	š
=	2	(a+l2)-A >= 0
		check

	§ [mm]	2.60	2.67	2.94	3.27	3.65	3.87	4.52	5.71	7.41	8.93	10.51	11.18	11.51	11.82	12.21	12.43
Measure	Load [N]	56.00	45.00	48.00	52.00	55.00	57.00	61.00	68.00	74.00	00'22	79.00	79.00	79.00	80.00	80.00	80.00
	a [mm]	52.00	52.00	53.00	54.00	55.00	26.00	00.09	65.00	70.00	75.00	80.00	81.00	82.00	83.00	84.00	85.00
	Text	Z	Prop.														

Vm27		Re	Results	
144.9 144.7 119.6 110.0 137.8 127.9 163.0 152.7 188.9 177.1 203.9 193.1 237.8 234.4 309.1 316.6 405.2 421.5 474.2 503.2 536.7 580.3 553.8 604.7 573.3 616.5 601.2 652.1 601.2 652.1	Gcbt [J/m2]	Gecm [J/m2]	Gmcc [J/m2]	E-Mod. [GPa]
119.6 110.0 137.8 127.9 163.0 152.7 188.9 177.1 203.9 193.1 237.8 234.4 309.1 316.6 405.2 421.5 474.2 503.2 536.7 580.3 553.8 604.7 573.3 616.5 601.2 652.1 601.2 652.1	133.6	144.9	144.7	122.1
137.8 127.9 163.0 152.7 188.9 177.1 203.9 193.1 237.8 234.4 309.1 316.6 405.2 421.5 474.2 503.2 536.7 580.3 553.8 604.7 573.3 616.5 601.2 652.1 601.2 652.1	110.3	119.6	110.0	95.5
163.0 152.7 188.9 177.1 203.9 193.1 237.8 234.4 309.1 316.6 405.2 421.5 474.2 503.2 536.7 580.3 563.8 604.7 573.3 616.5 601.2 652.1 average	128.0	137.8	127.9	96.0
188.9 177.1 203.9 193.1 237.8 234.4 309.1 316.6 405.2 421.5 474.2 503.2 536.7 580.3 563.8 604.7 563.8 616.5 601.2 652.1 601.2 652.1 average	152.3	163.0	152.7	6.96
203.9 193.1 237.8 234.4 309.1 316.6 405.2 421.5 474.2 503.2 536.7 580.3 563.8 604.7 563.8 604.7 589.0 638.1 601.2 652.1 average	177.7	188.9	177.1	95.1
237.8 234.4 309.1 316.6 405.2 421.5 474.2 503.2 536.7 580.3 563.8 604.7 589.0 638.1 601.2 652.1 604.8 659.9	193.0	203.9	193.1	6.3
309.1 316.6 405.2 421.5 474.2 503.2 536.7 580.3 563.8 604.7 573.3 616.5 589.0 638.1 601.2 652.1 604.8 659.9	230.4	237.8	234.4	101.2
405.2 421.5 474.2 503.2 536.7 580.3 563.8 604.7 573.3 616.5 589.0 638.1 601.2 652.1 604.8 659.9	307.2	309.1	316.6	105.0
563.8 604.7 589.3 563.2 563.8 604.7 589.0 638.1 601.2 659.9 659.9 659.9 659.9 659.9	411.9	405.2	421.5	102.7
536.7 580.3 563.8 604.7 573.3 616.5 589.0 638.1 601.2 652.1 604.8 659.9	491.7	474.2	503.2	102.6
563.8 604.7 573.3 616.5 589.0 638.1 601.2 652.1 604.8 659.9	566.5	236.7	580.3	102.9
573.3 616.5 589.0 638.1 601.2 652.1 604.8 659.9 average	597.1	563.8	604.7	99.3
601.2 652.1 604.8 659.9 average	609.2	573.3	616.5	99.1
604.8 659.9 average	627.9	589.0	638.1	100.4
604.8 659.9 average	642.9	601.2	652.1	99.7
	648.7	604.8	629.9	100.6
			average	101.0
			deviation	6.4

STAT-13.XLW

Test Date: 01/01/04 S2/F584 13 ERO MERL

Method	Gcbt	Đ.	6 9	Gecm	μΩ	Gmcc
Value	slope 0.00470885	Y-axis 0.13864757	slope 2.07733005	slope Y-axis slope Y-axis slope 0.00470885 0.13864757 2.07733005 -4.81690886 31.1443264	slope 31,1443264	Y-axis -4.17164758
Correction	#	-29.4440	=	2.0773	A1=	31.1443
Correl. coeff. r^2	0.985515		0.979481		0.985515	
Points for fit						
	×	Χ.	×	λ	×	λ
Point 1	52.00	0.38	1.72	-1.25	96.0	20.7
Point 2	85.00	0.54	1.93	-0.81	0.54	12.62

F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 I 0.9968 0.9975 0.9993 0.0465 0.3597 0.9967 0.9975 0.9993 0.0465 0.3597 0.9967 0.9975 0.9993 0.0595 0.3904 0.9967 0.9972 0.9993 0.0614 0.3946 0.9967 0.9969 0.9991 0.0614 0.3946 0.9956 0.9990 0.0681 0.4053 0.9957 0.9990 0.0681 0.4084 0.9957 0.9998 0.0744 0.4206 0.9943 0.9986 0.1007 0.4653 0.9943 0.9986 0.1007 0.4653 0.9947 0.9984 0.1167 0.4653 0.9907 0.9982 0.1340 0.5225 0.9998 0.9981 0.1427 0.5225 0.9896 0.9981 0.1429 0.5225 0.9896 0.9980 0.1469 0.5302 0.9893																		
F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 log(C/N) 0.9968 0.9975 0.9993 0.0465 0.3597 -1.3321 1 0.9967 0.9975 0.9993 0.0465 0.3904 -1.2256 1 0.9967 0.9972 0.9993 0.0614 0.3946 -1.2217 1 0.9967 0.9969 0.9991 0.0664 0.3946 -1.2107 1 0.9966 0.9966 0.9990 0.0666 0.4053 -1.2001 1 0.9956 0.9966 0.9990 0.0666 0.4053 -1.2001 1 0.9957 0.9966 0.9064 0.0744 0.4206 -1.1766 1 0.9943 0.9986 0.1007 0.4653 -0.9969 1.0739 1 0.9917 0.9984 0.1167 0.4887 -0.9969 1.0730 1 0.9900 0.9917 0.9981 0.1427 0.5225 -0.9456 1 0.9896 <t< th=""><th>δ/а</th><th>< 0.4</th><th>0.0500</th><th>0.0513</th><th>0.0555</th><th>0.0606</th><th>0.0664</th><th>0.0691</th><th>0.0753</th><th>0.0878</th><th>0.1059</th><th>0.1191</th><th>0.1314</th><th>0.1380</th><th>0.1404</th><th>0.1424</th><th>0.1454</th><th>0.1462</th></t<>	δ/а	< 0.4	0.0500	0.0513	0.0555	0.0606	0.0664	0.0691	0.0753	0.0878	0.1059	0.1191	0.1314	0.1380	0.1404	0.1424	0.1454	0.1462
F [-] N [-] F/N [-] C/N [mm/N] (C/N)^1/3 Interval 0.9968 0.9975 0.9983 0.0465 0.3597 0.9967 0.9975 0.9993 0.0465 0.3904 0.9967 0.9975 0.9993 0.0595 0.3946 0.9967 0.9972 0.9993 0.0614 0.3946 0.9966 0.9996 0.0631 0.3946 0.3990 0.9956 0.9966 0.9990 0.0666 0.4053 0.9957 0.9960 0.0681 0.4084 0.4084 0.9943 0.9986 0.1007 0.4887 0.9986 0.9943 0.9986 0.1007 0.4653 0.9986 0.9907 0.9984 0.1167 0.4653 0.9986 0.9909 0.9981 0.1427 0.5225 0.9986 0.9998 0.9981 0.1427 0.5225 0.9986 0.9898 0.9981 0.1489 0.5302 0.5392 0.9893 0.9980 <		log(a)	1.7160	1.7160	1.7243	1.7324	1.7404	1.7482	1.7782	1.8129	1.8451	1.8751	1.9031	1.9085	1.9138	1.9191	1.9243	1.9294
F [-] N [-] F/N [-] C/N [mm/N] 0.9968 0.9975 0.9993 0.0465 0.9967 0.9975 0.9993 0.0465 0.9967 0.9975 0.9993 0.0614 0.9964 0.9972 0.9993 0.0614 0.9956 0.9969 0.9991 0.0614 0.9956 0.9966 0.9990 0.0681 0.9957 0.9966 0.9990 0.0681 0.9957 0.9966 0.9990 0.0744 0.9943 0.9986 0.0744 0.9943 0.9986 0.1007 0.9977 0.9986 0.1167 0.9907 0.9934 0.9984 0.1167 0.9909 0.9917 0.9981 0.1427 0.9896 0.9917 0.9980 0.1469 0.9896 0.9915 0.9980 0.1490 0.9893 0.9912 0.9980 0.1540 0.9897 0.9980 0.1567		log(C/N)	-1.3321	-1.2256	-1.2117	-1.2001	-1.1766	-1.1666	-1.1285	-1.0739	6966.0-	-0.9327	-0.8727	-0.8456	-0.8329	-0.8268	-0.8126	-0.8048
F [-] N [-] F/N [-] 0.9968 0.9975 0.9993 0.9967 0.9975 0.9993 0.9967 0.9975 0.9993 0.9964 0.9975 0.9993 0.9956 0.9972 0.9993 0.9956 0.9969 0.9990 0.9957 0.9966 0.9990 0.9957 0.9966 0.9986 0.9943 0.9965 0.9986 0.9943 0.9943 0.9984 0.9907 0.9934 0.9982 0.9908 0.9919 0.9981 0.9896 0.9915 0.9981 0.9896 0.9915 0.9980 0.9893 0.9913 0.9980 0.9893 0.9912 0.9980		(C/N)^1/3	0.3597	0.3904	0.3946	0.3981	0.4053	0.4084	0.4206	0.4386	0.4653	0.4887	0.5118	0.5225	0.5277	0.5302	0.5360	0.5392
F [-] N [-] 0.9968 0.9975 0.9968 0.9975 0.9967 0.9975 0.9961 0.9969 0.9955 0.9966 0.9955 0.9964 0.9951 0.9955 0.9943 0.9955 0.9943 0.9955 0.9907 0.9919 0.9898 0.9917 0.9898 0.9917 0.9898 0.9917 0.9899 0.9912		C/N [mm/N]	0.0465	0.0595	0.0614	0.0631	0.0666	0.0681	0.0744	0.0844	0.1007	0.1167	0.1340	0.1427	0.1469	0.1490	0.1540	0.1567
P [-] 0.9968 0.9964 0.9964 0.9956 0.9956 0.9957 0.9928 0.9907 0.9900 0.9898 0.9896		E/N []	0.9993	0.9993	0.9992	0.9991	0.9990	0.9990	0.9990	0.9988	0.9986	0.9984	0.9982	0.9981	0.9981	0.9980	0.9980	0.9980
		I	0.9975	0.9975	0.9972	0.9969	0.9966	0.9964	0.9962	0.9955	0.9943	0.9934	0.9925	0.9919	0.9917	0.9915	0.9913	0.9912
NL. Prop.		F	0.9968	0.9967	0.9964	0.9961	0.9956	0.9955	0.9951	0.9943	0.9928	0.9917	0.9907	0.9900	0.9898	0.9896	0.9893	0 9892
		Text	Z	Prop.	Prop													

17/09/97 12:40

S2/F584 13 ERO

STAT-14.XLW

MERL			S2/F584 14 ERO			Test Date: 01/01/04
Input			End block thickness	H [mm]	MISSING	
Specimen thickness	2h [mm]	6.72	End block length	[3 [mm]	MISSING	
Specimen width	B [mm]	20.05	Temperature	្តិ	23.00	
Starter foil material	·	Teflon	Relative humidity	<u> </u>	MISSING	
Starter foil thickness	[m]	13.00	Loading rate	[mm/min]	0.50	
Starter foil length	A [mm]	MISSING	Drying temperature	ភ្ជ	MISSING	္
Hinge type	· 🗆	MS20001-6	Drying duration	Ξ	MISSING	
Fiber Volume Fraction	Vf [Vol%]	MISSING	% Change Compliance	%	MISSING	

Į.		
		æ
-		
		- -
'三 !		£
-	-	2h▲

	δ	2.20	UE 6
Measure	Load [N]	52.00	UU UV
	a [mm]	51.50	62.00
	Text	N	Gross

충

(a+l2)-A >= 0

check

= 8

		Measure	
Text	a [mm]	Load [N]	δ [mm]
NF	51.50	52.00	2.20
Prop.	53.00	40.00	2.30
Prop.	54.00	42.00	2.41
Prop.	55.00	47.00	2.87
Prop.	56.00	50.00	3.13
Prop.	57.00	51.00	3.29
Prop.	60.00	27.00	4.19
Prop.	65.00	63.00	5.22
Prop.	70.00	00.69	6.76
Prop.	75.00	72.00	8.31
Prop.	80.00	00'54	9.90
Prop.	81.00	75.00	10.53
Prop.	82.00	00'94	10.80
Prop.	83.00	75.00	11.03
Prop.	84.00	75.00	11.39
Prop.	85.00	76.00	11.79

	-		-	_		-				_		_		_	-	_			
	E-Mod. [GPa]	100.3	78.4	81.7	79.8	80.9	81.5	79.9	84.5	84.4	83.8	85.1	82.3	83.7	83.2	82.9	83.4	83.5	4.9
Results	Gmcc [J/m2]	124.5	90.4	99.5	129.8	149.4	158.6	216.1	285.8	383.3	465.5	552.3	575.4	9'565	593.4	6.909	631.4	average	deviation
Œ	Gecm [J/m2]	124.8	97.6	105.3	137.8	157.0	165.4	223.6	284.2	374.2	447.9	521.0	547.3	561.9	559.5	570.8	591.7		
	Gcbt [J/m2]	115.7	91.2	0.66	130.2	149.2	157.9	216.5	281.1	377.0	458.7	541.4	570.2	586.9	585.9	599.4	622.8		

Test Date: 01/01/04 S2/F584 14 ERO MERL

Method	ဗ	Gobt	ජී	Gecm	<u>6</u>	Gmcc
Value	slope 0.00501688	Y-axis 0.11255306	slope 2.25486553	slope Y-axis slope Y-axis Y-axis Y-axis 0.00501688 0.11255306 2.25486553 -5.15771424 29.3490403 -3.19630012	slope 29.3490403	Y-axis -3.19630012
Correction	- ₹	-22.4349	# <u></u>	2.2549	A1=	29.3490
Correl. coeff. r^2	0.989457		0.985355		0.989457	
Points for fit						
	×	>	×	Α	×	Α,
Point 1	51.50	0.37	1.71	-1.30	0.35	7.04
Point 2	85.00	0.54	1.93	-0.81	0.54	12.62

Text	Ξ	I	F/N [-]	C/N [mm/N]	(C/N)^1/3	log(C/N)	log(a)	< 0.4
ź	0.9974	0.9980	0.9994	0.0424	0.3487	-1.3727	1.7118	0.0427
Prop.	0.9974	0.9980	0.9994	0.0576	0.3862	-1.2394	1.7243	0.0434
Prop.	0.9973	0.9979	0.9994	0.0575	0.3860	-1.2403	1.7324	0.0446
Prop.	0.9968	0.9975	0.9993	0.0612	0.3941	-1.2131	1.7404	0.0522
Prop.	0.9965	0.9973	0.9992	0.0628	0.3974	-1.2023	1.7482	0.0559
Prop.	0.9964	0.9972	0.9992	0.0647	0.4014	-1.1892	1.7559	0.0577
Prop.	0.9956	0.9965	0.9991	0.0738	0.4194	-1.1322	1.7782	0.0698
Prop.	0.9950	0.9960	0.9989	0.0832	0.4365	-1.0799	1.8129	0.0803
Prop.	0.9937	0.9950	0.9987	0.0985	0.4618	-1.0067	1.8451	0.0966
Prop.	0.9926	0.9941	0.9985	0.1161	0.4879	-0.9351	1.8751	0.1108
Prop.	0.9915	0.9931	0.9984	0.1329	0.5103	-0.8764	1.9031	0.1238
Prop.	6066'0	0.9926	0.9983	0.1414	0.5210	-0.8494	1.9085	0.1300
Prop.	0.9907	0.9925	0.9982	0.1432	0.5231	-0.8441	1.9138	0.1317
Prop.	0.9907	0.9924						

DCB Mode I from Insert

17/09/97 12:37

S2/F584 14 ERO

STAT-17.XLW

MERL			S2/F584 17 ERO			Test Date:	01/01/04
Input			End block thickness	H [mm]	MISSING		
Specimen thickness	2h [mm]	08.9	End block length	[3 [mm]	MISSING		
Specimen width	B [mm]	20.06	Temperature	[ည	23.00		
Starter foil material	· 🖭	Teflon	Relative humidity	<u> </u>	MISSING		
Starter foil thickness	[ma]	13.00	Loading rate	[mm/min]	0.50		
Starter foil length	A [mm]	MISSING	Drying temperature	် ည	MISSING	ر ج	
Hinge type	Ī	MS20001-6	Drying duration	Έ.	MISSING	~	
Fiber Volume Fraction	Vf [Vol%]	MISSING	% Change Compliance	<u>%</u>	MISSING		*

_	_			
◀-	•			
			∢ ,	
L			+	
÷	11.	+	<u>+</u>	
	-		2 4	

	- 2	0.00
check	(a+l2)-A >= 0	Š

	-									_	_						
	ջ [mm]	2.50	4.31	4.59	4.85	5.15	5.23	5.83	7.08	8,55	10.13	11.45	11.99	12.48	13.06	13.25	13.43
Measure	Load [N]	60.00	62.00	64.00	00.59	00'.29	68.00	70.00	74.00	00'92	78.00	76.00	75.00	74.00	74.00	73.00	74.00
	a [mm]	51.50	58.00	29.00	00'09	61.00	62.00	65.00	70.00	00'54	00'08	00'58	00'98	00'28	00'88	89.00	90.00
	Text	'N	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.	Prop.

Gcbt [J/m2] Gecn [J/m2] Gmcc [J/m2] E-Mod. [GPa] 156.8 170.7 169.3 88.7 256.0 270.0 254.1 68.9 277.9 291.7 276.5 68.9 277.9 291.7 276.5 68.9 294.5 307.9 292.8 69.7 294.5 307.9 292.8 69.7 324.1 336.1 317.3 69.7 324.1 336.1 327.0 72.3 358.7 367.8 447.8 76.8 510.9 507.4 526.1 76.8 590.1 578.4 609.7 77.5 618.8 599.5 639.0 77.3 668.0 642.9 673.1 71.7 668.0 642.9 673.1 71.7 662.4 662.4 667.4 71.7 662.4 646.4 685.7 73.1 674.4 646.4 685.7 77.1 644.4			Re	Results	
170.7 169.3 270.0 254.1 291.7 276.5 307.9 292.8 331.4 317.3 336.1 327.0 336.1 327.0 367.8 365.4 438.4 447.8 507.4 526.1 507.4 526.1 612.2 647.4 621.5 653.1 642.9 673.1 642.9 673.1 646.4 685.7 devlation		Gcbt [J/m2]	Gecm [J/m2]	Gmcc [J/m2]	
270.0 254.1 291.7 276.5 307.9 292.8 331.4 317.3 336.1 327.0 367.8 365.4 438.4 447.8 507.4 526.1 507.4 526.1 612.2 647.4 621.5 653.1 642.9 673.1 642.9 673.1 646.4 685.7 devlation		156.8	170.7	169.3	
291.7 276.5 307.9 292.8 331.4 317.3 336.1 327.0 367.8 365.4 438.4 447.8 507.4 526.1 578.4 609.7 599.5 639.0 612.2 647.4 642.9 673.1 642.9 673.1 646.4 685.7 deviation		256.0	270.0	254.1	68.9
307.9 292.8 331.4 317.3 336.1 327.0 367.8 365.4 438.4 447.8 507.4 526.1 578.4 609.7 599.5 639.0 612.2 647.4 621.5 653.1 642.9 673.1 646.4 685.7 deviation		277.9	291.7	276.5	69.4
331.4 317.3 336.1 327.0 367.8 365.4 438.4 447.8 507.4 526.1 578.4 609.7 599.5 639.0 612.2 647.4 621.5 653.1 642.9 673.1 646.4 685.7 deviation		294.5	307.9	292.8	69.2
336.1 327.0 367.8 365.4 438.4 447.8 507.4 526.1 578.4 609.7 599.5 639.0 612.2 647.4 621.5 653.1 642.9 673.1 646.4 685.7 average		318.3	331.4	317.3	69.7
367.8 365.4 438.4 447.8 507.4 526.1 578.4 609.7 599.5 639.0 612.2 647.4 621.5 653.1 642.9 673.1 636.2 667.4 646.4 685.7 deviation	L	324.1	336.1	327.0	72.3
438.4 447.8 507.4 526.1 578.4 609.7 599.5 639.0 612.2 647.4 621.5 653.1 642.9 673.1 636.2 667.4 average deviation		358.7	367.8	365.4	74.4
507.4 526.1 578.4 609.7 599.5 639.0 612.2 647.4 621.5 653.1 642.9 673.1 646.4 685.7 deviation	1	434.9	438.4	447.8	76.8
578.4 609.7 599.5 639.0 612.2 647.4 621.5 653.1 642.9 673.1 636.2 667.4 average deviation	L	510.9	507.4	526.1	76.8
612.2 647.4 621.5 647.4 642.9 673.1 646.4 685.7 average deviation		590.1	578.4	2.609	77.5
621.2 647.4 621.5 653.1 642.9 673.1 636.2 667.4 646.4 685.7 average deviation	I.	618.8	599.5	0.659	77.3
621.5 653.1 642.9 673.1 636.2 667.4 646.4 685.7 average deviation	<u> </u>	633.4	612.2	647.4	74.9
642.9 673.1 636.2 667.4 646.4 685.7 average deviation	<u> </u>	644.4	621.5	653.1	73.0
636.2 667.4 646.4 685.7 average deviation	<u> </u>	668.0	642.9	673.1	71.7
646.4 685.7 average deviation		662.4	636.2	667.4	71.7
		674.4	646.4	685.7	73.7
				average	74.1
				deviation	4.9

STAT-17.XLW

Test Date: 01/01/04 S2/F584 17 ERO MERL

Method	Gcbt	ţ Ç	95	Gecm	ซ็	Gmc
Value	slope 0.00515863	slope Y-axis 0.00515863 0.10297058	slope 2.35343232	slope Y-axis slope Y-axis 28.0907878 -2.73586246	slope 28.0907878	Y-axis -2.73586246
Correction	Δ=	-19.9608	ä	2.3534	A1=	28.0908
Correl. coeff. r^2	0.985388		0.981751		0.985388	
Points for fit						
	×	>	×	χ	×	Y
Point 1	51.50	0.37	1.71	-1.31	96.0	7.01
Point 2	90.00	0.57	1.95	-0.74	0.57	13.22

								δ/a
Text	FE	I	E/N	C/N [mm/N]	(C/N)^1/3	log(C/N)	log(a)	< 0.4
Z	0.9969	0.9976	0.9993	0.0418	0.3470	-1.3792	1.7118	0.0485
Prop.	0.9951	0.9961	0.9989	0.0698	0.4117	-1.1562	1.7634	0.0743
Prop.	0.9948	0.9959	0.9989	0.0720	0.4160	-1.1426	1.7709	0.0778
Prop.	0.9946	0.9957	0.9989	0.0749	0.4216	-1.1253	1.7782	0.0808
Prop.	0.9943	0.9955	0.9988	0.0772	0.4258	-1.1123	1.7853	0.0844
Prop.	0.9944	0.9956	0.9988	0.0773	0.4259	-1.1121	1.7924	0.0844
Prop.	0.9941	0.9953	0.9988	0.0837	0.4374	-1.0774	1.8129	0.0897
Prop.	0.9932	0.9946	0.9986	0.0962	0.4582	-1.0168	1.8451	0.1011
Prop.	0.9922	0.9938	0.9985	0.1132	0.4838	-0.9461	1.8751	0.1140
Prop.	0.9912	0.9928	0.9983	0.1308	0.5076	-0.8834	1.9031	0.1266
Prop.	0.9905	0.9923	0.9982	0.1518	0.5335	-0.8187	1.9294	0.1347
Prop.	0.9900	0.9919	0.9981	0.1612	0.5442	-0.7927	1.9345	0.1394
Prop.	0.9896	0.9916	0.9981	0.1701	0.5541	-0.7693	1.9395	0.1434
Prop.	0.9891	0.9911	0.9980	0.1781	0.5626	-0.7494	1.9445	0.1484
Prop.	0.9891	0.9911	0.9980	0.1831	0.5679	-0.7372	1.9494	0.1489
Prop.	0.9891	0.9911	0.9980	0.1831	0.5679	-0.7373	1.9542	0.1492

17/09/97 12:45

S2/F584 17 ERO

113.5 5.5

STAT-22.XLW

MERL			S2/F584 22 ERO			Test Date:	01/01/04
Input			End block thickness	H [mm]	MISSING		
Specimen thickness	2h [mm]	6.81	End block length	[3 [mm]	MISSING	•	
Specimen width	B [mm]	20.01	Temperature	ဦ	23.00		
Starter foil material	Ξ	Teflon	Relative humidity	[%]	MISSING		
Starter foil thickness	[mr]	13.00	Loading rate	[mm/min]	0.50		
Starter foil length	A [mm]	MISSING	Drying temperature	ည	MISSING	<u>်</u>	
Hinge type	Ξ	MS20001-6	Drying duration	Ξ	MISSING	2	
Fiber Volume Fraction	Vf [Vol%]	MISSING	% Change Compliance	<u>%</u>	MISSING		Y

	_			
◂¯	>			6
_			A	
•	_			
_	1		-	
1	+	+	ų	
		ľ	2h	

1.70

프 의

ş

(a+l2)-A >= 0

check

E-Mod. [GPa]

		Measure	8
Text	a [mm]	Load [N]	ծ [mր
Į.	51.50	90.09	2.50
Prop.	52.00	50.00	2.56
Prop.	53.00	55.00	2.79
Prop.	54.00	58.00	3.19
Prop.	92.00	60.00	3.39
Prop.	56.00	62.00	3.69
Prop.	60.00	71.00	4.76
Prop.	65.00	79.00	5.98
Prop.	70.00	84.00	7.32
Prop.	75.00	85.00	8.53
Prop.	80.00	88.00	10.16
Prop.	81.00	87.00	10.53
Prop.	82.00	87.00	10.93
Prop.	83.00	87.00	11.30
Prop.	84.00	87.00	11.58
Prop.	85.00	87.00	11.75

eante		•		Results
ad [N]	8 [mm]	Gcbt [J/m2]	Gcbt [J/m2] Gecm [J/m2]	Gmcc [J/m2]
50.00	2.50	137.8	150.4	146.2
50.00	2.56	116.9	127.1	116.5
55.00	2.79	 138.4	149.5	140.1
58.00	3.19	164.9	176.9	164.4
50.00	3.39	179.2	190.9	179.1
52.00	3.69	199.2	210.9	198.0
71.00	4.76	281.1	290.7	281.0
79.00	2.98	372.2	375.0	377.2
84.00	7.32	460.2	453.2	468.4
85.00	8.53	516.7	498.7	526.8
88.00	10.16	608.1	576.4	619.9
87.00	10.53	617.5	583.3	625.2
87.00	10.93	635.2	598.1	640.9
87.00	11.30	650.8	610.8	655.3
87.00	11.58	661.1	618.5	0.999
87.00	11.75	665.0	620.2	672.6
				average deviation

131.4 108.9 108.9 109.8 109.8 114.2 115.6 116.0 113.7 112.5 111.7 113.2

STAT-22.XLW

Test Date: 01/01/04 S2/F584 22 ERO MERL

Method	Ğ	Gcbt	g.	Gecm	වි	Gmcc
Value	slope 0.0044709	slope Y-axis 0.0044709 0.13423744	slope 2.0677186	Y-axis slope Y-axis -4.85894725 32.5492201 -4.27978081	slope 32.5492201	Y-axis -4.27978081
Correction	=\(\nabla_{}\)	-30.0247	=6	2.0677	A1=	32.5492
Correl. coeff. r^2	0.991020		0.988109		0.991020	
Points for fit						
	×	>	×	>	×	χ
Point 1	51.50	98.0	1.71	-1.32	0.35	7.01
Point 2	85.00	0.51	1.93	-0.87	0.51	12.47

																_	_
δ/a	< 0.4	0.0485	0.0492	0.0526	0.0591	0.0616	0.0659	0.0793	0.0920	0.1046	0.1137	0.1270	0.1300	0.1333	0.1361	0.1379	0.1382
	log(a)	1.7118	1.7160	1.7243	1.7324	1.7404	1.7482	1.7782	1.8129	1.8451	1.8751	1.9031	1.9085	1.9138	1.9191	1.9243	1.9294
	log(C/N)	-1.3792	-1.2897	-1.2936	-1.2583	-1.2466	-1.2239	-1.1718	-1.1188	-1.0573	-0.9958	-0.9345	-0.9139	-0.8975	-0.8830	-0.8723	-0.8660
	(C/N)^1/3	0.3470	0.3716	0.3705	0.3807	0.3841	0.3909	0.4068	0.4237	0.4442	0.4657	0.4881	0.4959	0.5021	0.5078	0.5120	0.5144
	C/N [mm/N]	0.0418	0.0513	0.0509	0.0552	0.0567	0.0597	0.0673	0.0761	0.0876	0.1010	0.1163	0.1219	0.1266	0.1309	0.1342	0.1362
	FNE	0.9993	0.9993	0.9992	0.9991	0.9991	0.9991	0.9989	0.9987	0.9986	0.9985	0.9983	0.9982	0.9982	0.9981	0.9981	0.9981
	I	0.9976	0.9976	0.9974	0.9970	0.9969	0.9966	0.9958	0.9951	0.9943	0.9938	0.9928	0.9926	0.9923	0.9921	0.9920	0.9920
	∑	6966.0	0.9969	0.9966	0.9962	0.9960	0.9957	0.9947	0.9938	0.9929	0.9922	0.9911	0.9908	0.9905	0.9903	0.9901	0 9901
	Text	ž	Prop.	Prop.	Prop.	Prop.	Pron										
			L		L	L	L		L	L	乚		<u>L</u>	乚	L	乚	L

DCB Mode I from Insert

17/09/97 12:34

S2/F584 22 ERO

8552-5.XLW

MERL			S2/8552 - ERO			Test Date: 01/01/04	01/01/04
Input			End block thickness	H [mm]	MISSING		
Specimen thickness	2h [mm]	9.45	End block length	[3 [mm]	MISSING		
Specimen width	B [mm]	25.40	Temperature	်	24.00		
Starter foil material	`I	MISSING	Relative humidity	<u></u> [%]	MISSING		
Starter foil thickness	<u>E</u>	MISSING	Loading rate	[mm/min]	0.50		
Starter foil length	A [mm]	MISSING	Drying temperature	္မ်ာ	MISSING	3	
Hinge type	`I	ms20001-6	Drying duration	Ξ.	MISSING	2	
Fiber Volume Fraction	Vf [Vol%]	MISSING	% Change Compliance	[%]	MISSING	1	

- CS	
	墅
	Hesc.

2.36

= 2

ş

(a+|2)-A>=0

check

		Measure	
Text	a [mm]	[N] Foad	δ [mm]
Z	62.00	130.00	2.80
Prop.	63.00	134.00	3.35
Prop.	64.00	139.00	3.60
Prop.	65.00	142.00	3.81
Prop.	00'99	145.00	4.00
Prop.	67.00	150.00	4.30
Prop.	68.00	155.00	4.55
Prop.	69.00	156.00	4.77
Prop.	70.00	158.00	4.94
Prop.	72.00	165.00	5.56
Prop.	75.00	170.00	6.26
Prop.	80.00	181.00	7.58
Prop.	85.00	187.00	9.00
Prop.	90.00	188.00	10.60
Prop.	95.00	187.00	11.88
Prop.	100.00	187.00	13.72
Prop.	101.00	187.00	13.95
Prop.	102.00	187.00	14.25
Prop.	103.00	187.00	14.58
Prop.	104.00	186.00	14.93

	E-Mod. [GPa	78.7	70.2	70.2	70.2	7.07	70.4	71.1	70.6	71.3	9.07	71.1	72.7	73.1	71.6	72.5	71.2	71.8	72.0	72.1	71.7
Results	Gcbt [J/m2] Gecm [J/m2] Gmcc [J/m2]	268.1	314.5	346.5	370.2	393.2	431.7	468.3	487.4	507.5	581.7	655.1	0.608	947.2	1063.8	1139.5	1254.1	1268.1	1286.2	1305.9	1317.2
2	Gecm [J/m2]	276.8	335.9	368.5	392.3	414.2	453.7	488.8	508.2	525.5	600.4	9.899	807.9	932.7	1042.8	1101.2	1208.0	1216.1	1230.0	1246.2	1257.1
•	Gcbt [J/m2]	259.3	315.9	347.9	371.8	394.0	433.1	468.2	488.5	506.8	582.8	654.8	802.2	937.4	1059.7	1130.3	1251.1	1261.7	1278.3	1297.3	1310.7

8552-5.XLW

Test Date: 01/01/04 S2/8552 - ERO MERL

Method	Ö	Gcbt	ජී	Gecm	г	Gmc
Value	slope 0.00346801	Y-axis 0.07232651	slope 2.39669936	Y-axis slope Y-axis -5.92529484 30.4759899 -2.19307535	slope 30.4759899	Y-axis -2.19307535
Correction	Φ=	-20.8553	=6	2.3967	A1=	30.4760
Correl. coeff. r^2	0.998781		0.998092		0.998781	
Points for fit						
	×	χ	×	>	×	λ
Point 1	62.00	0.29	1.79	-1.63	0.28	6.29
Point 2	110.00	0.45	2.04	-1.03	0.46	11.69

N [-]
0.9975 0.9993
0.9970 0.999
0.9969 0.999
0.9967 0.9991
0.9966 0.9990
0.9964 0.9990
0.9962 0.9989
0.9961 0.9989
0.9960 0.9989
0.9956 0.9988
0.9953 0.9987
0.9945 0.9986
0.9938 0.9984
0.9930 0.9982
0.9925 0.9981
0.9915
0.9915 0.9980
0.9913 0.9979
0.9912 0.9979
0.9910

S2/8552 - ERO

8552-12.XLW

MERL			S2/8552 ERO			Test Date:	01/01/04
input			End block thickness	H [mm]	MISSING		
Specimen thickness	2h [mm]	9.28	End block length	[3 [mm]	MISSING	ŀ	
Specimen width	B [mm]	25.45	Temperature	္မွ	24.00		
Starter foil material	Ī	MISSING	Relative humidity	[%]	MISSING		
Starter foil thickness	[m]	MISSING	Loading rate	[mm/min]	0.50		
Starter foil length	A [mm]	MISSING	Drying temperature	ြင့	MISSING	- - 	
Hinge type	· 🗆	MS20001-6	Drying duration	Ξ	MISSING	_2	
Fiber Volume Fraction	Vf [Vol%]	MISSING	% Change Compliance	<u>%</u>	MISSING	-	1

1	æ
	\forall
I	
	_
	2h ↑ h
	ิฉ

2.32

드 2

		Measure	
Text	a [mm]	Load [N]	δ [mm]
N.	62.50	123.00	2.80
Prop.	00'ස	138.00	3.48
Prop.	64.00	143.00	3.75
Prop.	00'59	145.00	3.93
Prop.	00'99	151.00	4.17
Prop.	00'29	157.00	4.55
Prop.	00'89	162.00	4.77
Prop.	00'69	165.00	5.00
Prop.	00'02	168.00	5.25
Prop.	72.00	174.00	5.84
Prop.	74.00	181.00	6.42
Prop.	00'52	184.00	6.83
Prop.	00'08	190.00	8.04
Prop.	85.00	196.00	9.70
Prop.	00'06	197.00	11.11
Prop.	100.00	192.00	14.13
Prop.	101.00	190.00	14.51
Prop.	102.00	189.00	14.80
Prop.	103.00	189.00	15.00
Prop.	104.00	188.00	15.45

_					_		-							\neg	\neg	_		7			
	Gmcc [J/m2] E-Mod. [GPa]	6.77	71.0	70.8	70.9	72.1	71.1	72.4	72.8	73.0	72.5	73.2	72.2	73.8	73.0	73.6	73.1	72.2	72.2	73.0	72.2
Results	Gmcc [J/m2]	251.6	339.0	373.7	392.7	431.2	481.4	518.0	547.7	579.5	651.9	731.8	779.5	902.0	1071.1	1180.4	1338.6	1343.6	1351.8	1364.0	1381.3
æ	Gecm [J/m2]	261.5	361.7	397.6	416.0	452.7	505.8	539.1	567.2	597.7	669.5	744.8	794.7	905.5	1060.5	1152.9	1285.8	1293.7	1299.7	1304.5	1323.6
	Gcbt [J/m2]	246.0	340.9	376.1	395.0	431.4	483.7	517.3	546.0	577.2	650.5	728.0	0'6//	899.4	1065.8	1171.1	1330.2	1340.6	1349.0	1356.1	1378.1

8552-12.XLW

Test Date: 01/01/04 S2/8552 ERO

Method	Ö	Gcbt	Gecm	cm	Ω	дшα
Value	slope 0.0035131	slope Y-axis 0.0035131 0.07008529	slope 2.41753561	Y-axis -5.95999584	slope Y-axis 30.6510824 -2.14147808	Y-axis -2.14147808
Correction	4	-19.9497	±C	2.4175	A1=	30.6511
Correl. coeff. r^2	0.999272		0.998718		0.999272	
Points for fit						
	×	>	×	Χ	×	λ
Point 1	62.50	0.29	1.80	-1.62	0.28	6.55
Point 2	110.00	0.46	2.04	-1.02	0.46	11.85

										_	_										
δ/8	< 0.4	0.0448	0.0552	0.0586	0.0605	0.0632	0.0679	0.0701	0.0725	0.0750	0.0811	0.0868	0.0911	0.1005	0.1141	0.1234	0.1413	0.1437	0.1451	0.1456	0.1486
	log(a)	1.7959	1.7993	1.8062	1.8129	1.8195	1.8261	1.8325	1.8388	1.8451	1.8573	1.8692	1.8751	1.9031	1.9294	1.9542	2.0000	2.0043	2.0086	2.0128	2.0170
	log(C/N)	-1.6417	-1.5970	-1.5799	-1.5655	-1.5573	-1.5362	-1.5293	-1.5167	-1.5033	-1.4721	-1.4480	-1.4281	-1.3709	-1.3025	-1.2455	-1.1293	-1.1132	-1.1022	-1.0964	-1.0811
	(C/N)^1/3	0.2836	0.2935	0.2974	0.3007	0.3026	0.3076	0.3092	0.3122	0.3154	0.3231	0.3291	0.3342	0.3492	0.3680	0.3844	0.4203	0.4255	0.4291	0.4311	0.4361
	C/N [mm/N]	0.0228	0.0253	0.0263	0.0272	0.0277	0.0291	0.0296	0.0304	0.0314	0.0337	0.0356	0.0373	0.0426	0.0498	0.0568	0.0742	0.0771	0.0790	0.0801	0.0830
	F/N []	0.9993	0.9991	0.9991	0.9990	0.9990	0.9989	0.9989	0.9989	0.9988	0.9987	0.9987	0.9986	0.9985	0.9983	0.9981	0.9979	0.9979	0.9978	0.9978	0.9978
	Z	0.9976	0.9969	0.9967	0.9966	0.9965	0.9962	0.9960	0.9959	0.9958	0.9954	0.9950	0.9947	0.9941	0.9931	0.9925	0.9912	0.9910	0.9909	0.9909	0.9906
	Ξ	0.9969	0.9960	0.9958	0.9957	0.9955	0.9951	0.9949	0.9948	0.9946	0.9941	0.9937	0.9933	0.9926	0.9914	0.9907	0.9891	0.9889	0.9887	0.9887	0.9884
	Text	Z	Prop.	Prop.																	
L				L	1	L	L_	L	L.	_		1		<u></u>	1		1_		1_	<u> </u>	

DCB Mode I from Insert

05/01/98 10:37

S2/8552 ERO

MERL			S2/8552 ERO			Test Date: 01/01/04	01/01/04
Input			End block thickness	H [mm]	MISSING		
Specimen thickness	2h [mm]	9.46	End block length	[mm] [3]	MISSING		
Specimen width	B [mm]	25.39	Temperature	္ခ်	24.00		
Starter foil material	` <u> </u>	MISSING	Relative humidity	[%]	MISSING		
Starter foil thickness	<u> </u>	MISSING	Loading rate	[mm/min]	0.50		
Starter foil length	A [mm]	MISSING	Drying temperature	<u>်</u>	MISSING	<u>ဗ</u>	
Hinge type	`I	MS20001-6	Drying duration	Ē	MISSING		
Eiber Volume Eraction	Wf [V/olo/]	CNIUUM	% Change Compliance	[%]	MISSING		

	a
	A
Ш	
	 -
	-
	<u>2</u>
1	2 h <mark>▼</mark>

	S In
Measure	Load [N]
	a [mm]
	Text

2.37

드입

Š

(a+|2)-A>=0

check

	2	Results	
Gcbt [J/m2	Gcbt [J/m2] Gecm [J/m2]	Gmcc [J/m2] E-Mod. [G	E-Mod. [G
258.4	275.0	268.1	82.5
368.9	391.1	366.9	72.6
408.1	431.0	406.5	72.9
435.9	458.7	433.7	72.7
478.3	501.5	477.0	73.2
493.6	515.8	492.8	73.4
525.7	547.5	526.3	74.0
613.0	634.2	610.8	72.9
665.6	684.3	0'299	74.2
700.5	718.1	702.9	74.4
856.9	866.2	862.1	75.0
982.6	983.9	6.066	74.8
1073.0	1059.1	1081.2	75.2
1130.9	1104.9	1137.0	74.7
1198.1	1159.7	1206.5	75.0
1219.7	1178.7	1227.7	74.9
1230.0	1186.5	1236.9	74.7
1237.2	1191.5	1243.9	74.6
1264.7	1215.9	1269.0	74.2
1271.9	1220.9	1280.6	74.9

		Measure	
Text	a [mm]	Load [N]	δ [mm]
Į.	64.00	129.00	2.90
Prop.	65.00	143.00	3.78
Prop.	90.99	149.00	4.06
Prop.	67.00	152.00	4.30
Prop.	68.00	158.00	4.59
Prop.	69.00	159.00	4.76
Prop.	70.00	163.00	5.00
Prop.	72.00	171.00	5.68
Prop.	74.00	176.00	6.12
Prop.	75.00	179.00	6.40
Prop.	80.00	189.00	7.80
Prop.	85.00	193.00	9.22
Prop.	90.00	193.00	10.51
Prop.	95.00	189.00	11.82
Prop.	100.00	187.00	13.20
Prop.	101.00	187.00	13.55
Prop.	102.00	186.00	13.85
Prop.	103.00	185.00	14.12
Prop.	104.00	185.00	14.55
Prop.	105.00	185.00	14.75

8552-16.XLW

	Tot Date: 04 /04 /04	1881 Date: 01/01/04	
	C3/05E3 E3/	OL3 25(0)25	
		1	

Regression

Method	ğ	Gcbt	ජී	Gecm	Gmc	8
Value	slope 0.00342002	slope Y-axis 0.00342002 0.07348197	slope 2.3904408	Y-axis slope -5.92408486 30.8557585	slope 30.8557585	Y-axis -2.2514527
Correction		-21.4858	=0	2.3904	A1=	30.8558
Correl. coeff. r^2	0.998288		0.997446		0.998288	
Points for fit						
	×	X	×	X	×	>
Point 1	64.00	0.29	1.81	-1.61	0.28	6.46
Point 2	110.00	0.45	2.04	-1.04	0.45	11.68

								8 /9
Text	F[·]	N [-]	F/N [-]	C/N [mm/N]	(C/N)^1/3	log(C/N)	log(a)	< 0.4
N.	0.9969	0.9976	0.9993	0.0225	0.2825	-1.6471	1.8062	0.0453
Prop.	0.9958	0.9967	0.9991	0.0265	0.2982	-1.5764	1.8129	0.0582
Prop.	0.9956	0.9965	0.9990	0.0273	0.3013	-1.5632	1.8195	0.0615
Prop.	0.9954	0.9964	0.9990	0.0284	0.3051	-1.5468	1.8261	0.0642
Prop.	0.9951	0.9962	0.9989	0.0292	0.3078	-1.5352	1.8325	0.0675
Prop.	0.9950	0.9961	0.9989	0.0301	0.3109	-1.5221	1.8388	0.0690
Prop.	0.9948	0966.0	0.9989	0.0308	0.3135	-1.5115	1.8451	0.0714
Prop.	0.9942	0.9955	0.9988	0.0334	0.3219	-1.4767	1.8573	0.0789
Prop.	0.9940	0.9953	0.9987	0.0349	0.3269	-1.4567	1.8692	0.0827
Prop.	0.9938	0.9951	0.9987	0.0359	0.3300	-1.4445	1.8751	0.0853
Prop.	0.9928	0.9943	0.9985	0.0415	0.3462	-1.3819	1.9031	0.0975
Prop.	0.9919	966.0	0.9984	0.0481	0.3636	-1.3180	1.9294	0.1085
Prop.	0.9913	0:66:0	0.9983	0.0548	0.3799	-1.2609	1.9542	0.1168
Prop.	0.9907	0.9925	0.9982	0.0630	0.3979	-1.2006	1.9777	0.1244
Prop.	0.9901	0.9920	0.9981	0.0712	0.4144	-1.1478	2.0000	0.1320
Prop.	0.9899	0.9918	0866'0	0.0731	0.4180	-1.1363	2.0043	0.1342
Prop.	0.9897	0.9917	0.9980	0.0751	0.4219	-1.1245	2.0086	0.1358
Prop.	0.9896	0.9916	0.9980	0.0770	0.4254	-1.1137	2.0128	0.1371
Prop.	0.9894	0.9914	0866.0	0.0793	0.4297	-1.1006	2.0170	0.1399
Prop.	0.9893	0.9914	0866.0	0.0804	0.4316	-1.0946	2.0212	0.1405

DCB Mode I from Insert

S2/8552 ERO

8552-21.XLW

MERL			S2/8552 ERO			Test Date:	01/01/04
Input			End block thickness	H [mm]	MISSING		
Specimen thickness	2h [mm]	9.38	End block length	[3 [mm]	MISSING		
Specimen width	B [mm]	25.37	Temperature	ှ်	24.00		
Starter foil material	` 🖸	MISSING	Relative humidity	[%]	MISSING		
Starter foil thickness	[mm]	MISSING	Loading rate	[mm/min]	0.50		
Starter foil length	A [mm]	MISSING	Drying temperature	ှင့်	MISSING	<u>د</u>	
Hinge type	· I	MS20001-6	Drying duration	Ξ	MISSING	2	
Fiber Volume Fraction	Vf [Vol%]	MISSING	% Change Compliance	%	MISSING		1

	↓ ↓		8
	-		
MISSING MISSING 0.50 MISSING MISSING	PICCIM	 -	2h h

Š	
(a+I2)-A>=0	
(a	
check	

2.35

<u>-- 2</u>

do.	a [mm]	Load [N]	δ [mm]
.do	62.50	128.00	2.90
	63.00	143.00	3.76
Prop.	64.00	147.00	4.00
Prop.	65.00	154.00	4.30
Prop.	00.99	157.00	4.58
Prop.	67.00	161.00	4.82
Prop.	68.00	165.00	5.08
Prop.	00.69	168.00	5.31
Prop.	70.00	175.00	5.69
Prop.	72.00	180.00	6.21
Prop.	74.00	186.00	6.92
Prop.	75.00	188.00	7.18
Prop.	80.00	196.00	8.63
Prop.	85.00	196.00	10.00
Prop.	90.00	195.00	11.48
Prop.	95.00	194.00	13.05
Prop.	100.00	190.00	14.45
Prop.	101.00	189.00	14.75
Prop.	102.00	189.00	15.13
Prop.	103.00	188.00	15.36

_				_			_	_			_	_	<u> </u>		_	-	_	_		-	-
	E-Mod. [GPa]	78.1	68.4	68.5	69.1	68.5	69.1	69.5	70.0	70.3	70.7	8.69	70.2	70.9	70.7	70.3	70.1	70.4	70.3	70.2	70.5
Results	Gmcc [J/m2]	273.0	376.2	406.7	454.1	485.9	519.9	556.3	586.8	648.9	714.1	801.7	833.5	6.366	1098.5	1196.0	1293.7	1346.6	1355.5	1378.7	1382.8
A.	Gecm [J/m2]	280.5	402.9	433.7	480.9	514.3	546.7	581.8	610.2	671.4	732.7	820.7	849.2	3.766	1087.7	1173.2	1256.7	1294.6	1301.5	1321.9	1321.9
	Gcbt [J/m2]	262.9	378.5	409.0	455.3	488.6	521.3	556.7	585.9	646.8	710.4	800.7	830.9	989.4	1092.2	1191.1	1288.7	1339.7	1349.1	1372.5	1374.8

8552-21.XLW

Test Date: 01/01/04 S2/8552 ERO MERL

Method	Gcbt	þţ	8 5	Gecm	Ω ₀	Gmcc
Value	slope 0.00351766	Y-axis	slope 2.39785108	slope Y-axis slope Y-axis	slope 30,2675596	slope Y-axis 30.2675596 -2.21402012
Correction	-V	-20.9068	=0	2.3979	A1=	30.2676
Correl. coeff. r^2	0.998697		0.997865		0.998697	
Points for fit	,	>	×	>	×	>
Point 1	62.50	0.29	1.80	-1.60	0.28	98.9
Point 2	110.00	0.46	2.04	-1.01	0.46	11.72

8/8	< 0.4	0.0464	0.0597	0.0625	0.0662	0.0694	0.0719	0.0747	0.0770	0.0813	0.0863	0.0935	0.0957	0.1079	0.1176	0.1276	1974	0.13/4	0.1445	0.1460	0.1483	0.1491
	log(a)	1.7959	1.7993	1.8062	1.8129	1.8195	1.8261	1.8325	1.8388	1.8451	1.8573	1.8692	1.8751	1.9031	1 9294	1 0542	1	1.8//	2.0000	2.0043	2.0086	2.0128
	log(C/N)	-1.6437	-1.5787	-1.5637	-1.5524	-1.5333	-1.5220	-1,5097	-1.4983	-1.4859	-1.4600	-1.4270	-1 4155	-1 3534	-1 2891	1 2266	-1.2200	-1.1684	-1.1149	-1.1036	-1.0925	-1.0836
	(C/N)^1/3	0.2832	0.2977	0.3011	0.3038	0.3083	0.3109	0.3139	0.3166	0.3197	0.3261	0.3345	0.3374	0.3539	0.3718	2000	0.3901	0.4079	0.4250	0.4287	0.4324	0.4353
	C/N [mm/N]	0.0227	0.0264	0.0273	0 0280	0.0293	0.0301	0.0309	0.0317	0.0327	0.0347	0.0374	0.0384	0.000	0.00	41000	0.0593	0.0679	0.0768	0.0788	0.0808	0.0825
	F/N [-]	0 9993	08080	0666 0	0 0080	0,000	0.998	0.9900	88000	0 0987	98000	0.000	0.9900	0.9900	0.9903	0.9962	0.9980	0.9979	0.9978	0 9978	0 9978	0.0070
	Z	0 0075	0.996	0.9900	0.9904	0.9900	0.9900	0.9930	0.9957	0.9955	0.3332	0.00	0.0944	0.9945	0.9935	0.9928	0.9921	0.9913	0 9908	0 9907	0.930	2000
	ш Ш	7500.0	0.9967	0.9930	0.9934	0.8931	0.9949	0.9947	0.9943	0.3345	0.9939	0.9930	0.9929	0.9928	0.9918	0.9910	0.9901	0.9893	0.0887	2000	0.9000	0.3000
	Tox	140	- N	riop.	TIOD.	i G G	7.00 G	7.00 G	rop.	riop.	7.00 0.00	1.00 0.00	Prop.	Prop.	Prop.	Prop.	Prop.	Pro	1000	100.	riop.	[2]

V1.02

DCB Mode | from Insert

05/01/98 10:37

APPENDIX B FATIGUE COMPLIANCE RESULTS

E7T1 - 0.07 to 0.74mm (R=0.1) load approx 200 to 250N

E7T1 - 0.08 to 0.75mm (R=0.1) load approx 175 to 220N

E7T1 - 5B - 0.08 to 0.94mm (R=0.1) load approx 210N

E7T1-6A - 0.1 to 0.95mm (R=0.1) load approx 270N

S2/F584 $\delta_{max} = 1.2 \text{ mm}$

 10^6 105 104 103 10^2 101 (M/mm) explisance (mm/M) 0.038 0.037 0.036 0.034 0.035 0.039

S2/F584 δ_{max} =1.0 mm

S2/F584 δ_{max} =0.8mm

S2/F584 $\delta_{\text{max}} = 0.6 \text{mm}$

S2/8552 $\delta_{max} = 2.0 \text{mm f} = 5 \text{Hz}$

S2/8552 $\delta_{\text{max}} = 1.8 \text{mm}$ f=5Hz

S2/8552 $\delta_{max} = 1.5 \text{mm f} = 5 \text{Hz}$

S2/8552 $\delta_{max} = 1.24$ mm f= 17Hz

S2/8552 S_{max} =1.8mm f=20Hz

S2/8552 S_{max} =1.5mm f=20Hz

