### VE472 Lecture 2

Jing Liu

UM-SJTU Joint Institute

Summer

# Small Vs Big

- Q: What is the major difference between traditional and contemporary analysis?
- To understand why there is a big difference, one must see the difference in
- 1. The origin of the dataset
- 2. The size of the dataset
- 3. The purpose of investigating the dataset
- Traditionally, data are often some kind of random sample collected from a carefully designed experiment, thus it is naturally very small due to the cost.
- A typical big dataset nowadays often is an opportunistic sample.
- Traditional methods are based on hypothesise-and-tests, which are heavily assumption-oriented, and the purpose is to explain/discover relationships.
- Contemporary methods are predictive in nature, and the purpose is more quantitive, so are heavily algorithm-oriented due to the size of the datasets.

- Recall determinant,  $\det(\mathbf{A})$ , where  $\mathbf{A}$  is an  $n \times n$  matrix, is a useful concept.
- Below gives the number of arithmetic operations involved in each method.

|    | Leibiniz  |            | Laplace   |           | Gauss |     |
|----|-----------|------------|-----------|-----------|-------|-----|
| n  | +         | ×          | +         | ×         | +     | ×   |
| 2  | 1         | 2          | 1         | 2         | 1     | 3   |
| 3  | 5         | 12         | 5         | 9         | 5     | 10  |
| 4  | 23        | 72         | 23        | 40        | 14    | 23  |
| 5  | 119       | 480        | 119       | 205       | 30    | 44  |
| 10 | 3,628,799 | 32,659,200 | 3,628,799 | 6,235,300 | 285   | 339 |

- Note computing the determinant of a  $50\times 50$  matrix directly would take a computer  $10^{40}$  years! that is, more than  $10^{30}$  times the age of the universe!
- The point here is the computational cost of using the wrong method may grow surprising fast as the data size increases.
- We will discuss in terms of computational cost but not in a rigorous way.
- In additional to cost, we will occasionally discuss the stability of a method.

### Vandermonde matrix



## Random invertible matrix



- Being unstable for a big dataset is often due to the fact our computer does floating-point computation and the machine precision is limited, but...
- To illustrate the idea in a simple context, consider solving the followings,

$$\mathbf{A}\mathbf{x}_1 = \mathbf{b} \qquad \text{and} \qquad \mathbf{A}\mathbf{x}_2 = \mathbf{c}$$

where 
$$\mathbf{A} = \begin{bmatrix} 1 & 1/2 \\ 1/2 & 1/3 \end{bmatrix}$$
,  $\mathbf{b} = \begin{bmatrix} 3/2 \\ 1 \end{bmatrix}$  and  $\mathbf{c} = \begin{bmatrix} 3/2 \\ 5/6 \end{bmatrix}$ , without any rounding.

- Q: Do you expect  $\mathbf{x}_1$  and  $\mathbf{x}_2$  to be related? or perhaps close to one another?
  - ullet In fact, the solutions are  ${f x}_1=egin{bmatrix} 0 \\ 3 \end{bmatrix}$  and  ${f x}_2=egin{bmatrix} 1 \\ 1 \end{bmatrix}$  , which are not close at all!
- Q: What is the significance of this observation?
  - The stability of a method used, thus our conclusion based on the data and the method, is not only depended on numerical rounding/machine precision.
  - As our data become big as it being increasingly complex, i.e. k grows, the stability of many methods tends to deteriorate even without rounding.

Q: What do we mean by an unbiased estimator?

#### Definition

The bias of a point estimator  $\hat{\theta}$  of a  $\theta$  is the difference

$$\mathbb{E} igl[ \hat{ heta} igr] - heta$$

An estimator whose bias is identically zero is called unbiased, that is,

Q: How about being consistent? Why is it more relevant for large datasets?

### Definition

A consistent estimator  $\hat{\theta}$  of  $\theta$  gives estimates  $\hat{\theta}_n$  that converge in probability to  $\theta$ 

$$\lim_{n \to \infty} \Pr\left[ \left| \hat{\theta}_n - \theta \right| \ge \epsilon \right] = 0 \quad \text{for all} \quad \epsilon > 0$$

## Bashing Unbiasedness

ullet Let  $\mathcal{S} = \{X_1, X_2, \dots, X_n\}$  be a random sample from a population with

$$\mathbb{E}[X_i] = \mu$$
 and  $\operatorname{Var}[X_i] = \sigma^2 < \infty$  for all  $i$ .

Q: What is the commonly used unbiased estimator of  $\sigma^2$  given S?

$$\hat{\sigma}_{\mathbf{u}}^2 = \frac{1}{n-1} \sum_{i=1}^n \left( X_i - \bar{X} \right)^2 \qquad \text{where} \quad \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$$

- This estimator  $\hat{\sigma}_u^2$  can be shown to be consistent as well as being unbiased.
- Recall the maximum likelihood estimator for  $\sigma^2$  is also consistent but biased

$$\hat{\sigma}_{\text{MLE}}^2 = \frac{1}{n} \sum_{i=1}^n \left( X_i - \bar{X} \right)^2$$

• On average an unbiased estimator is clearly better for small datasets.





Q: Should we still obsess about the unbiased estimator when data is large?

• Unbiasedness is *not* relevant for large datasets as long as  $\hat{\sigma}^2$  is consistent.



Q: Should we use  $\hat{\sigma}_{u}^{2}$  or  $\hat{\sigma}_{mle}^{2}$  to estimate  $\sigma^{2}$ ?

#### Definition

An estimator  $\hat{\theta}$  that achieves optimality on estimating  $\theta$  according to a particular loss function is said to be efficient with respect to the loss function.

Traditionally, the loss function is chosen to be quadratic, that is,

$$\label{eq:MSE} \mathrm{MSE}(\hat{\theta}) = \mathbb{E}\left[\left(\hat{\theta} - \theta\right)^2\right] = \mathrm{Var}\big[\hat{\theta}\big] + \left(\underbrace{\mathbb{E}\big[\hat{\theta}\big] - \theta}_{\mathrm{Bias}}\right)^2$$
 mean square error

is used to judge the quality of an estimator, i.e. the smaller MSE, the better.

- Classically, only unbiased estimators are considered and judged, which means we choose the unbiased estimator that has the smallest variance.
- However, the property of unbiasedness is not that relevant for large datasets.

• The MSE of  $\hat{\sigma}_{\text{mle}}^2$  is always smaller than  $\hat{\sigma}_{\text{u}}^2$ , thus better despite being biased.



ullet Consider k independent variables,  $X_j$ , values of which are stored in a matrix

$$\mathbf{X}_{n \times (k+1)} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1j} & \cdots & x_{1k} \\ 1 & x_{21} & \cdots & x_{2j} & \cdots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nj} & \cdots & x_{nk} \end{bmatrix}$$

where each row of X corresponds to a case, and a vector

$$\mathbf{y}_{n\times 1} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

is used to store the value of the corresponding dependent variable Y.

• In traditional regression analysis, the following linear model is often used

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

where  $oldsymbol{eta} \in \mathbb{R}^{k+1}$  are fixed but unknown, while  $oldsymbol{arepsilon} \in \mathbb{R}^n$  is random such that

$$\mathbb{E}\left[\boldsymbol{\varepsilon}\right] = 0$$
 and  $\operatorname{Var}\left[\boldsymbol{\varepsilon}\right] = \sigma^2 \mathbf{I}$ 

• One estimate of  $\beta$  is the vector b that minimises the sum of squared "errors"

$$\sum_{i=1}^{n} (y_i - \mathbf{X}_{i,} \mathbf{b})^2$$

where  $X_{i}$  b is essentially the dot product between the *i*th row of X and b.

- This estimate is known as the least squares estimate of  $\beta$ , denoted by  $\mathbf{b}_{lse}$ .
- The corresponding estimator of  $\mathbf{b}_{lse}$  is often denoted by  $\hat{\boldsymbol{\beta}}_{lse}$ .

 $\bullet$  It is useful to realise and understand  $\mathbf{b}_{\mathrm{lse}}$  as the solution to the following

$$\underset{\mathbf{b} \in \mathbb{R}^{k+1}}{\operatorname{arg\,min}} \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2$$

where  $\|\cdot\|$  denote the usual  $\ell_2$  norm in  $\mathbb{R}^n$ .

ullet In other words,  ${f b}_{
m lse}$  is the minimiser of the squared distance between

y

and the image of b under the linear transformation represented by X

Xb

### Theorem 0.1

Suppose  $\mathbf{b} \in \mathbb{R}^{k+1}$ , then  $\mathbf{b}$  is the least squares estimate of  $\boldsymbol{\beta}$  if and only if  $\mathbf{X}\mathbf{b}$  is the orthogonal projection of  $\mathbf{y}$  onto the column space of the matrix  $\mathbf{X}$ ,

 $\operatorname{col}\left(\mathbf{X}\right)$ 

## Least squares fit as projection



Q: How to find the projection  $\hat{\mathbf{y}}$ ? Is  $\hat{\mathbf{y}}$  unique? How to find  $\mathbf{b}$ ? Is  $\mathbf{b}$  unique? projection matrix

#### Theorem 0.2

If X is full rank, then the orthogonal projection of y onto  $\operatorname{col}(X)$  is given by n >> k (row  $>> \operatorname{column}$ ) columns are linearly independent  $\mathbf{P}y$ 

幂等的

where P is known as the projection matrix, which is symmetric and idempotent,

$$\mathbf{P} = \mathbf{X} \left( \mathbf{X}^{\mathrm{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathrm{T}}$$

- ullet One can reach the same matrix  ${f P}$  without the concept of projection, but the concept of projection will provide insights into ways of dealing with big data.
- Theoretically, the last two theorems give us the least squares estimator

$$\mathbf{X}\mathbf{b} = \mathbf{X} \left( \mathbf{X}^{\mathrm{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y} \implies \underbrace{\mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{b} = \mathbf{X}^{\mathrm{T}} \mathbf{y}}_{\text{normal equation}} \implies \mathbf{b} = \left( \mathbf{X}^{\mathrm{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$$

• However, unless X is full rank, the inverse will not exist.

b is unique iff X^TX is invertible otherwise, inf number of b solutions

- Even if it exists, it is too slow for a big dataset and shall never be used.
- Directly solving the normal equation without explicitly computing the inverse

$$\mathbf{X}^T\mathbf{X}\mathbf{b} = \mathbf{X}^T\mathbf{y}$$

known as Gaussian elimination with pivoting, is a faster alternative.

```
>> n = 1000000; X = rand(n, 100); y = randn(n, 1);
>> XX = transpose(X)*X; yy = transpose(X)*y;
tic; for i = 1:10000
    bhat = inv(XX)*yy;
                           finding inverse -> slow
end; toc;
tic; for i = 1:10000
    [L, U] = lu(XX);
    bhat = U\setminus(L\setminus yy);
end; toc;
Elapsed time is 3.130701 seconds.
```

Elapsed time is 0.884935 seconds.

### choleskey decomposition

Q: Do you know anything that might even be faster for arbitrary data matrices? >> n = 1000000; X = rand(n, 100); y = randn(n, 1); >> XX = transpose(X)\*X; yy = transpose(X)\*y; tic: for i = 1:10000bhat = inv(XX)\*yy; lu is much slower than chol end; toc; tic; for i = 1:10000[L, U] = lu(XX);bhat =  $U\setminus(L\setminus yy)$ ; end; toc; roughly the same cost tic; for i = 1:10000C = chol(XX, 'lower'); bhat = transpose(C)\(C\yy); end; toc; Elapsed time is 3.130701 seconds. Elapsed time is 0.884935 seconds. Elapsed time is 0.367677 seconds.