УДК 576.895.422 : 591.48 to seems the survey of the surve

ПАЛЬПАЛЬНЫЙ РЕЦЕПТОРНЫЙ ОРГАН ГАМАЗОВЫХ КЛЕЩЕЙ (MESOSTIGMATA: GAMASINA) the Hight trajectories to 5 areas situated at the border of the meadow. These areas were situated to the east (a. /) south **Puronoon. A. J. O** 4) and north (a. 5) of the start

Исследование пальпального рецепторного органа, одного из основных органов клещей, участвующего в определении пищевой пригодности субстрата, у представителей 8 родов гамазовых клещей (Gamasellus, Macrocheles, Euryparasitus, Eulaelaps, Myonyssus, Raillietia, Spinturnix и Pneumonyssus) методами растровой электронной микроскопии позволило выделить 3 типа сенсилл, формирующих орган. Два типа (А и В) отнесены к хемо-механорецепторным, и один тип (М) к тактильным механорецепторным сенсиллам. Показано, что тип питания не отражается на строении пальпального органа, в то время как характер паразито-хозяинных отношений (переход к безотрывному паразитизму и паразитизму в полостях внутренних органов) приводит к олигомеризации и редукции хеморецепторных сенсилл.

Пальпальным рецепторным органом называют морфологически обособленное скопление сенсилл на верхушке пальп мезостигматических клещей; его строение достаточно полно и основательно исследовано только у иксодоидных клещей (Foelix, Axtell, 1971; Балашов и др., 1976; Леонович, 1990; Leonovich, Dusbabek, 1991). Во второй обширной таксономической группировке мезостигматических клещей, объединяемых в когорту Gamasina, пальпальный орган исследован только у одного вида — Phytoseiulus persimilis (Jackson, 1974; Jaggers op Akkerhius e. a., 1985). Вместе с тем пальпальный орган играет важную роль в поведении гамазовых клещей; при помощи пальп клещи ощупывают жертву, пищевой субстрат или объект для кровососания, определяя пригодность данного объекта в пищу (Jackson, Ford, 1973).

Строение пальпального рецепторного органа у иксодовых клещей морфологически довольно однообразно (Foelix, Axtell, 1971; Балашов и др., 1976; Атлас, 1979), в то же время у аргасовых клещей этот орган различается как между видами, так и между разными популяциями в пределах одного вида (Леонович, 1990; Leonovich, Dusbabek, 1991). Напомним, что все иксодоидные клещи — облигатные кровососы, т. е. характеризуются сходным типом питания. В то же время различные представители гамазовых клещей отличаются типами питания, притом весьма существенно: среди них имеются хищники, фитофаги, облигатные и факультативные кровососы, постоянные эктопаразиты, полостные паразиты и т. д.

Поэтому представлялось интересным и важным исследовать пальпальный рецепторный орган в основных таксономических группировках гамазовых клещей, попытаться выявить различия, коль скоро таковые окажутся, у клещей, различающихся как таксономически, так и экологически. С этой целью автором было предпринято исследование микроструктуры рецепторных органов, размещающихся на пальпах, у представителей 8 родов гамазовых клещей, представляющих основные надродовые таксономические комплексы (Брегетова, 1977) и одновременно различающихся экологически: это представители родакароидного комплекса (надсем. Rhodacaroidea, сем. Rhodacaridae) Gamasellus montanus (Willm.) (обитающие в подстилке хищники) и Euryparasitus emarginatus (С. L. Koch) (хищники-нидиколы); представители макрохелоидного комплекса (надсем. Macrocheloidea, сем. Macrochelidae) Macrocheles matrius matrius (Hull) и M. glaber (Mull.) (хищники, форезирующие на насекомых); представители лелаптоидного комплекса (надсем. Laelaptoidea) Eulaelaps stabularis (С. L. Koch) (нидикол, факультативный паразит и хищник), Myonyssus gigas (Oudms.) (облигатный кровосос, развивающийся в гнездах кротов и на кроте и лесной мыши) и Raillietia auris (Leidy) Trouess. (паразиты наружного слухового прохода крупного рогатого скота) (сем. Laelaptidae); Spinturnix vespertilionis L. (сем. Spinturnicidae) (паразиты летучих мышей), а также представитель ринониссоидного комплекса (надсем. Rhynonyssoidea, сем. Halarachnidae) Pneumonyssus sp. (паразит легких макаки-резуса). Учитывая мелкие размеры самих клещей и особенно их органов чувств, исследования проводили методами электронной микроскопии.

Автор весьма признателен Ю. С. Балашову, В. А. Троицкому, покойной Н. Г. Брегетовой за предоставление в его распоряжение некоторых видов гамазовых клещей.

МАТЕРИАЛ И МЕТОЛИКА

Использованные в работе виды клещей перечислены в предыдущем разделе. Изучены были только взрослые клещи.

Для исследования в растровом электронном микроскопе (РЭМ) препараты гамазовых клещей, заключенные в жидкость Фора на предметных стеклах, подвергались процедурам, описанным в предыдущих публикациях (Леонович, 1984, 1989; Леонович, Троицкий, 1981). Напыленные платиной препараты просматривали и фотографировали в РЭМ Hitachi—S570 при ускоряющем напряжении 30 кВ. Для исследования внутренней структуры кутикулярных отделов сенсилл широко использовался метод сколов сенсилл, описанный ранее (Леонович, 1989).

Для угочнения особенностей строения некоторых разновидностей сенсилл в трансмиссивном электронном микроскопе были изучены ультратонкие срезы пальпального органа клеща *Hirstionyssus criceti*, нарезанные с препаратов клещей, исследовавшихся ранее с целью выяснения особенностей строения тарзального рецепторного комплекса этого клеща (Леонович, 1985); методика подготовки препаратов для изучения в электронном микроскопе описана в цитированной работе. Ультратонкие срезы изготавливали на ультратоме LKB-3 и фотографировали в электронном микроскопе Tesla BS 500.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Пальпы гамазовых клещей несут относительно небогатое сенсорное вооружение, за исключением двух последних члеников: голени и лапки (рис. 1; 2, 1; см. вкл.). Разобраться в довольно сложном скоплении сенсилл на конце пальпы (рис. 1—3; см. вкл.) помогает только исследование большого количества препаратов, а также использование метода исследования сколов (Леонович, Троицкий, 1981).

Сенсорное вооружение голени не относится собственно к пальпальному рецепторному органу, являющемуся предметом данной работы, поэтому я остановлюсь на нем только кратко. Согласно данным Джексона (Jackson, 1974), у клеща *Phytoseiulus persimilis* голень несет 14 сенсилл. Такое же число было обнаружено автором в случаях, когда такой подсчет производился (для видов родов *Gamasellus, Euryparasitus, Macrocheles, Eulaelaps*). Все эти сенсиллы относятся по своей модальности к тактильным механорецепторам и обладают характерными признаками такого типа сенсилл: сплошным стержневидным кутикулярным волоском (сетой), у основания которого заканчиваются вершины двух рецепторных клеток, в ресничках которых находятся трубчатые тельца [Jaggers op Akkerhius e. a., 1985 (*Phytoseiulus persimilis*);

Рис. 1. Вершина правой пальпы Macrocheles glaber.

 $a-a_5$ — хемо-механорецепторные однополостные сенсиллы пальпального органа (сенсиллы типа «А»); $b-b_5$ — хемо-механорецепторные двуполостные сенсиллы (типа «В»); $m-m_6$ — механорецепторные сенсиллы пальптарзуса; ap — апотель (apotele).

Fig. 1. Apex of right palpus of Macrocheles glaber.

данная статья (Hirstionyssus criceti)]. У некоторых видов такие сенсиллы четко различаются в РЭМ благодаря наличию поверхностных структур, типичных для тактильных сенсилл идиосомы данного вида, например зубчиков у Euryparasitus emarginatus (рис. 2, 3, 4).

Собственно пальпальный рецепторный орган расположен на тарзальном членике пальпы и у большинства изученных видов (G. montanus, M. matrius, M. glaber, E. emarginatus, Eul. stabularis, M. gigas, R. auris) несет 15 сенсилл трех морфологических типов (рис. 1—3, 1—4), а также так называемый апотель (apotele), трактуемый как редуцированный коготок (Jackson, 1974). Эти типы были обозначены автором как «А», «В» и «М». В работах, посвященных сенсиллам пальп Ph. persimilis, сенсиллы тарзального членика пальп подразделялись на два типа, обозначавшихся как «d» и «di», и пронумеровывались (Jackson, 1974). При этом, как сенсиллы типа «di», обозначали сенсиллы, разделяемые мною на 2 типа (A и B).

Сенсилл типа A у всех исследованных видов, за исключением Spinturnix vespertilionis и Pneumonyssus sp., пять (рис. 1; 2, 2; 3, 2). Это относительно короткие, базиконической формы сенсиллы; у некоторых видов на вершине сильно утоньшенные (рис. 2, 2). На сколах волосков сенсилл видно, что они относительно толстостенные и содержат единственную полость (рис. 3, 4). В этой полости проходят видоизмененные реснички рецепторных нейронов; у *Ph. persimilis* их обнаружено 8 (Jagger op Akkerhius e. a., 1985), мною у *H. criceti* их найдено 5. Еще две клетки заканчиваются у основания такого базиконического волоска, образуя трубчатые тельца (Jagger op Akkerhius e. a., 1985). У *S. vespertilionis* обнаружено всего 3 сенсиллы типа A (рис. 3, 5), а у легочного паразита *Pneumonyssus* sp. —

Рис. 4. Вершина пальпы клеща *Pneumonyssus* sp. Обозначения, как на рис. 1.

Fig. 4. Palpal apex of Pneumonyssus sp.

одна (рис. 4). На основании морфологии эти сенсиллы могут быть безошибочно отнесены к одной из разновидностей хемо-механорецепторных органов (подробнее о возможностях делать подобные выводы на основании строения см.: Леонович, 1987).

Сенсиллы типа В обладают более длинными и тонкостенными волосками, зачастую ближе к трихо-идному, нежели базиконическому типу (рис. 1; 2, 2; 3, 1—3, 5). На сколах в этих волосках обнаруживаются две полости; две полости, в одной из которых проходят реснички рецепторных нейронов, были найдены и у *H. criceti* на срезах. В целом по своему строению такие сенсиллы идентичны тактильным хемо-механорецепторным сенсиллам паразитиформных клещей (Леонович, 1987). У всех исследованных видов, за исключением опять же *S. vespertilionis* и *Pneumonyssus* sp., обнаружены 4 сенсиллы типа В (рис. 1).

Сенсиллы типа М (механорецепторные) представляют собой обычные тактильные сенсиллы, по своему внутреннему строению подобные описанным выше для сенсорного вооружения голени. Внешне, однако, они в большинстве случаев обладают гладкостенными во-

Таким образом, пальпальный орган у большинства исследованных видов, относящихся к различным таксономическим комплексам и различающихся экологически, содержит 15 сенсилл трех морфофункциональных типов: 5 — типа A, 4 — типа B и 6 — типа M (что можно представить в виде формулы 5A—4B—6M). Для S. vespertilionis эта формула будет выглядеть как 3A—2B—4M, а для Pneumonyssus sp. как 1A—2B—3M (рис. 4).

Сравнительный анализ строения пальпального рецепторного органа у гамазовых и иксодоидных клещей показывает удивительное сходство между этими двумя группами Рагаsitiformes, в отличие от комплексного сложного органа дистантной рецепции, размещающегося на лапках передних ног: органа Галлера иксодоидей и тарзального рецепторного комплекса гамазин. Основу пальпального органа в обеих группах составляют два практически идентичных типа сенсилл (А и В по нашей терминологии), и различия здесь заключаются практически только в количестве сенсилл. У иксодовых клещей имеются 6 сенсилл типа А и 4 — типа В (Foelix, Axtell, 1971; Балашов и др., 1976; Атлас, 1979), у аргасовых клещей 2 сенсиллы типа А (всегда); количество сенсилл типа В варьирует от 8 до 26 (у разных видов и в пределах видов в зависимости от количества преимагинальных нимфальных фаз) (Leonovich, Dusbabek, 1991). У гамазовых клещей в большинстве случаев имеются 5 сенсилл типа А и 4 — типа В, причем набор этот весьма устойчив. Видно, что

строение пальпального органа гамазид наиболее близко к таковому иксодид и более сильно отличается от характерного для аргасовых клещей. Причина этого, по-видимому, кроется в том, что в обеих группах (гамазовые клещи и иксодиды) пальпальный орган в первую очередь используется для определения пищевой пригодности субстрата, в то время как у аргасовых клещей сенсиллы типа В (одностенные контактные хеморецепторы) используются для рецепции феромона скопления (Leonovich. Dusbabek. 1991).

Как видно из материалов работы, характер питания не отражается на количестве сенсилл пальпального органа; в то же время характер паразито-хозяинных отношений имеет здесь первостепенное значение. Олигомеризация сенсилл обоих типов отчетливо наблюдается у представителей безотрывных эктопаразитов летучих мышей (S. vespertilionis) и особенно у внутрилегочных паразитов (Pneumonyssus sp.). В последнем случае определение пищевой пригодности субстрата практически лишено смысла (в любом месте клещ способен питаться); имеет значение только определение механических особенностей участка потенциального питания, его удаленность от ротовых органов. Указанную функцию вполне успешно может выполнять единственная, гипертрофированно развитая механорецепторная сенсилла; остальные, в том числе вкусовые сенсиллы пальп, настолько сильно редуцированы, что вряд ли играют какую-либо роль в определении пищевой пригодности субстрата (рис. 3, 6; 4).

Список литературы

- Атлас электронно-микроскопической анатомии иксодовых клещей / Под ред. Ю. С. Балашова. Л.: Наука, 1979. 256 с.
- Балашов Ю. С., Иванов В. П., Игнатьев А. М. Тонкое строение и функция пальпального рецепторного органа иксодоидных клещей (Acarina, Ixodoidea) // Зоол. журн. 1976. Т. 55, вып. 9. С. 1308—1317.
- Брегетова Н. Г. О таксономической структуре системы паразитиформных клещей (Acarina, Parasitiformes) // Морфология и диагностика клещей. Л.: ЗИН РАН, 1977. С. 69—78.
- Леонович С. А. Тарзальные рецепторные комплексы гамазовых клещей семейства Haemogamasidae // Паразитология. 1984. Т. 18, вып. 6. С. 451—458.
- Леонович С. А. Ультраструктурное исследование тарзального рецепторного комплекса гамазового клеща Hirstionyssus criceti (Hirstionyssidae) // Паразитология. 1985. Т. 19, вып. 6. С. 456—463.
- Леонович С. А. Поисковые рецепторы кровососущих клещей отряда Parasitiformes // Паразитол. сб. 1987. Т. 34. С. 83—96.
- Леонович С. А. Тарзальный рецепторный комплекс и систематика гамазовых клещей (Parasitiformes, Mesostigmata, Gamasina) // Паразитология. 1989. Т. 23, вып. 6. С. 469—479.
- Леонович С. А. Строение пальпального рецепторного органа у аргасовых клещей // Тез. докл. VIII Всесоюз. совещ. по теорет. и приклад. акарологии (Ашхабад, 1990). Л., 1990. С. 77.
- Леонович С. А., Троицкий В. А. Рецепторные органы на передних конечностях у гамазовых клещей (Acarina, Gamasina) // Тр. ЗИН АН СССР. Морфологические особенности клещей и паукообразных. Л., 1981. Т. 106. С. 34—46.
- Foelix R. F., Axtell R. C. Fine structure of tarsal sensilla in the tick Amblyomma americanum (L.) // Z. Zellforsch. 1971. Bd 114. S. 22—37.
- Jackson G. J. Chaetotaxy and setal morphology of the palps and first tarsi of Phytoseiulus persimilis A.-H. (Acarina: Phytoseiidae) // Acarologia. 1974. T. 14, fasc. 4. P. 583—594.
- Jackson G. J., Ford J. B. The feeding behaviour of Phytoseiulus persimilis (Acarina: Phytoseiidae), particularly as affected by certain pesticids // Ann. Appl. Biol. 1973. Vol. 75. P. 165—171.

Jaggers op Akkerhius G., Sabelis M. W., Tjallingii W. F. Ultrastructure of chemoreceptors on the pedipalps and first tarsi of Phytoseiulus persimilis # Exp. Appl. Acarol. 1985. Vol. 1. S. 235—251.

Leonovich S. A., Dusbabek F. Pheromone sensory subsystem in ticks: correlation between structure of sensilla and evolution of behaviour. Modern Acarology. Vol. 1. Academia, Prague and SPB Academic Publishing by, The Hague, 1991. S. 53—58.

ЗИН РАН, Санкт-Петербург, 199034

Поступила 20.04.1997

PALPAL SENSORY ORGAN OF GAMASID MITES (MESOSTIGMATA, GAMASINA)

S. A. Leonovich

Key words: palpal sensory organ, morphology, scanning electron microscopy, Mesostigmata, Gamasina.

SUMMARY

Three types of sensilla were distinguished during scanning electron microscope investigations of the palpal sensory organ, one of the main organs in food suitability detection, in 8 species of mites belonging to the genera Gamasellus, Macrocheles, Euryparasitus, Eulaelaps, Myonyssus, Raillietia, Spinturnix, and Pneumonyssus. Two types (A and B) are chemo-mechanoreceptor single-walled and double-walled sensilla (SW-UP and DW-UP) and one type (M) is represented by mechanoreceptor (NP) sensilla. It is shown, that no type of feeding influences the structure of palpal organ, whereas a character of host-parasite relationship (transition to constant parasitism and parasitism in cavities of inner organs) leads to oligomerization and reduction of chemoreceptor sensilla.

ввухкомпонентную светему заподостворилия маляргізний комар» способно также

гламм 13—10—2, поосано представленных дером Оса (12). м. Опоа, гикцока арал). В опытах использовано свыше 2500 личинок, кариотипы проделенняю 87 особей.

Все выявленные в процессе изучения кариотипов микроспоридии принадлежали роду Parathelohania. Видовую видентификацию микроспоридий не проволили.

Ранее распределение микроспоридий в зависимости от инверсионного тенотипа выю изучено в тегливдетской попунании (Бурлах. Панкова, 1997). Это исследование в выявило тенотипческой специфичности распределения микроспоридий в натив-

Рис. 2. Пальпальный рецепторный орган гамазовых клещей.

1 — общий вид гнатосомы и пальп Gamasellus montanus (справа, ув. 300) и пальпальный орган G. montanus (слева, ув. 3000); 2 — Macrocheles glaber, ув. 4500; 3 — Euryparasitus emarginatus, ув. 3000; 4 — то же, ув. 2500.

Обозначения, как на рис. 1.

Fig. 2. Palpal sensory organ in gamasid mites.

Рис. 3. Пальпальный рецепторный орган гамазовых клещей.

1 — Eulaelaps stabularis. Самка. Общий вид вершины пальпы, ув. 1000; 2 — то же, пальпальный орган, ув. 2000; 3 — Myonyssus gigas, ув. 1800; 4 — Raillietia auris, ув. 2300; 5 — Spinturnix vespertilionis, ув. 4000; 6 — Pneumonyssus sp., ув. 6500. Обозначения, как на рис. 1.

Fig. 3. Palpal sensory organ in gamasid mites.