Static Code for App

Trever Yoder

Quarto

Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org.

Running Code

When you click the **Render** button a document will be generated that includes both content and the output of embedded code. You can embed code like this:

```
#Read in packages
#Load libraries
library(httr)
library(jsonlite)
library(tidyverse)
library(shinydashboard)
```

query API

```
data_rainfall_wind <- function(lat, lon, start_date, end_date, time_interval = "1 hours") {
  url <- "https://archive-api.open-meteo.com/v1/archive"
  response <- GET(url, query = list (
    latitude = lat,
    longitude = lon,
    start_date = start_date,
    end_date = end_date,
    hourly = "precipitation,wind_speed_10m,wind_gusts_10m",
    timezone = "auto"
  ))
  data1 <- fromJSON(content(response, as = "text"))</pre>
```

```
df <- tibble(</pre>
   time = ymd_hm(data1$hourly$time),
   precipitation = data1$hourly$precipitation * 0.03937,
   wind_speed = data1$hourly$wind_speed_10m,
   wind_gust = data1$hourly$wind_gusts_10m
  # add time interval
  df hr <- df %>%
   mutate(interval = floor_date(time, time_interval)) %>%
    group_by(interval) %>%
    summarize(
     precipitation_sum = sum(precipitation, na.rm = TRUE),
      wind_speed_avg = mean(wind_speed, na.rm = TRUE),
      wind_gust_max = max(wind_gust, na.rm = TRUE),
      .groups = "drop"
 return(df_hr)
#Asheville Helene flood
rain_asheville_nc <- data_rainfall_wind(35.5975, -82.5461, "2024-09-25", "2024-09-27")
#Busick nc helene flood
rain busick nc <- data rainfall wind(35.7698, -82.1829, "2024-09-25", "2024-09-27")
#houston July 2025 flood
rain_kerrville_tx <-data_rainfall_wind(30.0474, -99., "2025-07-03", "2025-07-05")
#Nc Chantal July 2025 flood
rain_orangecounty_nc <- data_rainfall_wind(36.0263, -79.1097, "2025-07-06", "2025-07-07")
#add location and storm name
rain_asheville_nc <- rain_asheville_nc %>%
 mutate(location = "Asheville", storm name = "Helene")
rain_busick_nc <- rain_busick_nc %>%
  mutate(location = "Busick", storm_name = "Helene")
rain_kerrville_tx <- rain_kerrville_tx %>%
  mutate(location = "Kerrville", storm_name = "Barry")
```

```
rain_orangecounty_nc <- rain_orangecounty_nc %>%
  mutate(location = "Orange County", storm_name = "Chantal")
#combine data sets into One
all_data <- bind_rows(rain_asheville_nc, rain_busick_nc, rain_kerrville_tx, rain_orangecount
###manipulate data into hourly and cumulative rainfall for comparison purposes
hourly_all_data <- bind_rows(rain_asheville_nc, rain_busick_nc, rain_kerrville_tx, rain_orangets)
  group_by(location) %>%
  mutate(
    hours_since_start = as.numeric(difftime(interval, min(interval), units = "hours")),
    cumulative_rainfall = cumsum(precipitation_sum),
    rain_category = cut(
     precipitation_sum,
      breaks = c(-Inf, 0.2, 0.4, Inf),
      labels = c("< 0.2", "0.2 - 0.4", "> 0.4")
    ),
    wind_category = cut(
      wind_speed_avg,
      breaks = c(-Inf, 10, 15, Inf),
      labels = c("Low (<10 mph)", "Moderate (10-15 mph)", "High (>15 mph)")
    )
  ) %>%
  ungroup()
```

Now, let's create some summaries from this data

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. i Please use `linewidth` instead.


```
#Cumulative Rainfall
ggplot(hourly_all_data, aes(x = hours_since_start, y = cumulative_rainfall, color = location
    geom_line(size = 1) +
    labs(
        title = "Cumulative Rainfall Over Time by Location",
        x = "Hours Since Storm Start",
        y = "Cumulative Rainfall (Inches)",
        color = "Location"
    ) +
    theme_minimal()
```



```
#Hourly Wind Averages
ggplot(hourly_all_data, aes(x = hours_since_start, y = wind_speed_avg, color = location)) +
    geom_line(size = 1) +
    labs(
        title = "Hourly Wind Averages Over Storm Duration",
        x = "Hours Since Storm Start",
        y = "Wind Speed Average (Miles Per Hour)",
        color = "Location"
    ) +
    theme_minimal()
```

Hourly Wind Averages Over Storm Duration


```
#Hourly Max Wind Gust
ggplot(hourly_all_data, aes(x = hours_since_start, y = wind_gust_max, color = location)) +
    geom_line(size = 1) +
    labs(
        title = "Maximum Wind Gusts Over Storm Duration",
        x = "Hours Since Storm Start",
        y = "Wind Gust (Miles Per Hour)",
        color = "Location"
    ) +
    theme_minimal()
```


Hours Since Storm Start

```
####BOX PLOTs######
#Rainfall
ggplot(hourly_all_data, aes(x = storm_name, y = precipitation_sum, color = location)) +
    geom_boxplot() +
    labs(title = "Distribution of Hourly Rainfall by Location and Storm",
        x = "Name of the Storm",
        y = "Rainfall (Inches)",
        color = "Location") +
    theme_minimal()
```

60

Distribution of Hourly Rainfall by Location and Storm

Distribution of Hourly Wind Averages by Location and Storm

Distribution of Wind Gust Maximums by Location and Storm

Heat Map of Hourly Rainfall by Location

Heat Map of Hourly Averaged Windspeed by Location

Heat Map of Maximum Hourly Wind Gust by Location

