7 Capacités de quelques canaux particuliers

Calculer la capacité des canaux suivants en précisant le (ou l'un des) jeu(x) de probabilités d'entrée qui maximise l'information mutuelle entre l'entrée et la sortie.

7.1 Canal en Z.

7.2 Canal déterministe.

7.3 Canal sans équivoque

Proposer plusieurs méthodes pour calculer la capacité du canal de matrice de transition :

$$\mathbf{\Pi} = \left[\begin{array}{cccc} 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \end{array} \right]$$

Exercice complémentaire

On considère un canal sans mémoire à entrée $X \in \{-1,+1\}$ binaire et à bruit B additif quaternaire à valeurs dans $\{-1.5,-0.5,+0.5,+1.5\}$ avec les probabilités respectives $\{1/8,3/8,3/8,1/8\}$. On note Y=X+B la sortie du canal.

- 1. Donner la matrice de transition de ce canal.
- 2. Calculer l'entropie conditionnelle H(Y|X).
- 3. Calculer l'information mutuelle entre l'entrée et la sortie pour une loi d'entrée uniforme. (On peut vérifier que cette loi est celle qui maximise l'information mutuelle)
- 4. Si l'on ne considérait que le signe Z = sign(Y) de la sortie, quelle serait la capacité du canal qui relie X à Z?

Commenter l'intérêt de disposer d'une sortie Y plus fine que Z.