9 класс

Код работы	
тод рассты	

Таблица результатов

	Задача	Σ_{max}	Балл жюри	Апелляция	Результат	Подпись
9-1.	Прогрессивная разминка	26				
9-2.	Двойное скольжение	29				
9-3.	Конечная бесконечность	26				
	Σ_{max}	81	Σ :			

Схемы оценивания

Пункт	Содержание	Баллы	Оценки жюри			
	Задание 9-1. Прогрессивная разминка (26 баллов)					
1.1	Отмечено, что в данной системе разность противоположных по направлению сил попарно остается постоянной и равной $F_0=60~\mathrm{H}.$	2				
	Система 12 сил упрощена до шести сил, записано (1) для равнодействующей $F = 2F_0(\cos 15^\circ + \cos 45^\circ + \cos 75^\circ).$	3				
	Найдено ускорение (2) материальной точки $a_1 = \frac{F}{m} = \frac{2F_0(\cos 15^\circ + \cos 45^\circ + \cos 75^\circ)}{m}.$ Указан угол $\beta = 105^\circ$ с осью оси Ox .	2				
	Правильно посчитано (3) и округлено (до двух значащих цифр) $a_1 = \frac{2\cdot 60\cdot (\cos 15^\circ + \cos 45^\circ + \cos 75^\circ)}{23,2} \left(\frac{\text{M}}{\text{c}^2}\right) = 10 \left(\frac{\text{M}}{\text{c}^2}\right).$	2				
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1				
1.2	Сформулирована идея решения: умножим все векторы на (-1) , повернем на угол α и наложим на исходную систему — получим систему одинаковых по модулю векторов.	3				
	Указано, что сумма одинаковых векторов равна нулю, найден некомпенсированный вектор (7) $F_1 - F_n = -n\Delta F + \Delta F.$	2				
	Изображена векторная диаграмма для указанных векторов	3				
	Записано (8) для равнодействующей всех сил $n\Delta F = 2F \sin\left(\frac{\alpha}{2}\right) \Longrightarrow F = \frac{n\Delta F}{2\sin\left(\frac{\alpha}{2}\right)}.$	2				
	Из треугольника найден угол (9) с осью Ox $\beta = \frac{n+2}{2n}\pi.$	1				
	Найдено ускорение (10) материальной точки	1				

	$a_2 = \frac{F}{m} = \frac{n\Delta F}{2m\sin(\frac{\pi}{a})}.$		
1.3	Найдены необходимые для вычисления параметры механической системы: $n=12$; $\Delta F=10$ H .	1	
	Правильно проведен расчет: $a_1 = \frac{12 \cdot 10}{2 \cdot 23, 2 \cdot \sin\left(\frac{\pi}{12}\right)} \left(\frac{\text{M}}{\text{c}^2}\right) = 10 \left(\frac{\text{M}}{\text{c}^2}\right),$ $\beta = \frac{12 + 2}{2 \cdot 12} \pi = \frac{7}{12} \pi = 105^{\circ}.$	2	
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1	
	Всего за задачу:	26	Σ:
	Задание 9-2. Двойное скольжение (29 баллов) Отмечено, что шарик относительно земли будет двигаться равномерно и прямолинейно.	1	
1.1	Рассмотрено смещение параллелепипеда на длину вертикальной стороны $b=vt. \label{eq:bound}$	2	
	Использовано свойство нерастяжимости нити, указано, что при этом шарик поднялся до вершины параллелепипеда и совершил перемещение (2) $AB = \sqrt{2}b.$	2	
	Найдена скорость u_1 шарика $u_1 = \frac{AB}{t} = \frac{\sqrt{2}b}{b/v} = \sqrt{2}v,$ указан угол с горизонтом $\alpha = 45^\circ = \frac{\pi}{4},$ отмечено, что траектория — отрезок.	3	
	Отмечено, что шарик относительно земли будет двигаться равномерно и прямолинейно.	1	
1.2	Рассмотрена система через промежуток времени t , когда наклонная плоскость сместился вправо на свою длину $l = vt$.	2	
	Использовано свойство нерастяжимости нити, указано, что шарик поднялся по наклонной плоскости до ее вершины D $CD = 2l \sin\left(\frac{\alpha}{2}\right).$	3	
	Найден угол $\beta = \frac{\pi}{2} - \frac{\alpha}{2} = \frac{\pi - \alpha}{2}$ к горизонту.	1	
	Определена скорость шарика $u_2 = \frac{cD}{t} = \frac{2l\sin\left(\frac{\alpha}{2}\right)}{l/v} = 2v\sin\left(\frac{\alpha}{2}\right).$	2	
1.3	Отмечено, что движение сферы равномерное, нить нерастяжима, поэтому длина дуги EF $\widecheck{EF} = x = vt = \varphi R$.	1	
	Правильно найден угол φ $\varphi = \frac{x}{R} = \frac{vt}{R}.$	1	
	Найден угол (13) касательной с горизонтом $ \gamma = \frac{\pi}{2} - \varphi. $	2	

	Сформулирована идея: маленький участок полусферы можно считать «кусочком» наклонной плоскости.	2	
	Использованы формулы из предыдущего пункта (для наклонной плоскости) $u_3(\varphi) = 2v \sin\left(\frac{\pi}{4} - \frac{\varphi}{2}\right), \text{ или} $ $u_3(x) = 2v \sin\left(\frac{\pi}{4} - \frac{x}{2R}\right), \text{ или} $ $u_3(t) = 2v \sin\left(\frac{\pi}{4} - \frac{vt}{2R}\right).$	3	
	Найден угол (17) с горизонтом $\delta = \frac{\pi}{4} + \frac{vt}{2R}.$	2	
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1	
	Всего за задачу:	29	Σ :
	Задание 9-3. Конечная бесконечность (26 баллов)		
1.1	Шаг за шагом		
	Найдено сопротивление R_1 одного звена и R_2 двух звеньев $R_1=R+2R=3R$ $R_2=R+\frac{2R\cdot R_1}{2R+R_1}=\frac{11}{5}R=2\frac{1}{5}R.$	2	
	Получена погрешность ε_1 для первого шага $\varepsilon_1 = \frac{R_1 - R_2}{R_1} = \frac{4}{15} = 27 \%.$	1	
	Найдено сопротивление R_3 трех звеньев $R_3 = R + \frac{2R \cdot R_2}{2R + R_2} = \frac{43}{21}R = 2\frac{1}{21}R.$	2	
	Получена погрешность ε_2 для второго шага $\varepsilon_2 = \frac{R_2 - R_3}{R_2} = 6,9 \%.$	1	
1.1	Найдено сопротивление R_4 четырех звеньев $R_4 = R + \frac{2R \cdot R_3}{2R + R_3} = R + \frac{2R \cdot \frac{43}{21}R}{2R + \frac{43}{21}R} = \frac{171}{85}R = 2\frac{1}{85}R.$	2	
	Получена погрешность ε_3 для третьего шага $\varepsilon_3 = \frac{R_3 - R_4}{R_3} = \frac{\frac{43}{21} - \frac{171}{85}}{\frac{43}{21}} = \frac{64}{3655} = 1,8 \%.$	1	
	Найдено сопротивление R_5 пяти звеньев $R_5 = R + \frac{2R \cdot R_4}{2R + R_4} = \frac{683}{341} R = 2 \frac{1}{341} R.$	2	
	Получена погрешность ε_4 для четвертого шага $\varepsilon_4 = \frac{R_4 - R_5}{R_4} = \frac{\frac{171}{85} - \frac{683}{341}}{\frac{171}{85}} = \frac{256}{58311} = 0,44 \%.$	1	
	Сделан вывод, что $n = 4$, т.е. на четвертом шаге мы получили оценку с погрешностью меньше процента.	1	
1.2	«Линейная бесконечность»		
	Сформулирована идея об отбрасывании одного звена.	1	
1.2	Перечерчена цепь и записано (11) $R_{\infty} = R + \frac{2R \cdot R_{\infty}}{2R + R_{\infty}}.$	2	

	Найдены корни (13)		
	$R_{\infty 1} = \frac{R + \sqrt{9R^2}}{2} = 2R$ $R_{\infty 2} = \frac{R - \sqrt{9R^2}}{2} = -R$	2	
	Отброшен отрицательный корень, дан верный ответ $R_{\infty}^{*} = 2R$.	1	
1.3	«Плоская бесконечность»		
1.3	Предложен вариант бесконечного соединения резисторов.	4	
	Рассчитано сопротивление предложенной схемы $R_{\infty}^{**} = R_{AZ} = R_{AB} = R.$		
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1	
	Всего за задачу:	26	Σ: