**Tutoría 8:** 

# Cachorr@404

Cálculo 1 - Límites



#### Tutores para esta sesión



**Constanza Palomo** 

constanza.palomo@usach.cl



**Bastián Onetto** 

bastian.onetto@usach.cl



**Jorge Sandoval** 

jorge.sandoval.m@usach.cl



#### **Temario**

Sucesiones •• 1 Límites

**Ejercicios** 



### Sucesiones



#### **Sucesiones**



**Definición:** Una sucesión es una función que une números en N con números reales (en R), es decir,  $f: N \rightarrow R$ .

Otra forma de verlo es como  $f(n) = a_n$ , o también  $\{a_n\}$  donde  $a_n$  es llamado término general de la sucesión.



#### **Teoremas**

#### Inducción

- P(1) es V
- si P(n) es V, eso implica que P(n+1) es V

#### **Buen Orden**

N es un conjunto bien ordenado, todo subconjunto A en N tiene primer elemento (a<sub>1</sub>)

#### Recurrencia

- F es fn. sobre N
- F(1) = x
- Para cada n, F(n+1) = G(F(n))

#### **Ejemplo recurrencia**



El teorema de recurrencia puede ser explicado de mejor forma viendo los siguientes casos:

#### **Progresión Aritmética**

$$\begin{array}{rcl} a_1 & = & x \\ a_{n+1} & = & a_n + d \end{array}$$

#### Progresión Geométrica

$$\begin{array}{rcl} a_1 & = & x \\ a_{n+1} & = & a_n \cdot r \end{array}$$

#### **Pregunta!**

Cual es la siguiente sucesión:

$$F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2)$$



#### Convergencia de sucesiones

Para entender la convergencia de sucesiones, se deben tomar en cuenta los siguientes conceptos:

- Sucesiones Acotadas
- Monotonía de sucesión
  - Límites de una sucesión





#### **Sucesiones Acotadas**

#### **Definición:**

Diremos que una sucesión es acotada si existe un número positivo M tal que  $|a_n| < M$ , para todo  $n \in N$ .





#### Monotonía de sucesiones

Se dice de una sucesión:

- estrictamente creciente si a<sub>n</sub> < a<sub>n+1</sub>, para todo n.
- creciente si a<sub>n</sub> ≤ a<sub>n+1</sub>, para todo n.
- estrictamente decreciente si a<sub>n</sub> > a<sub>n+1</sub>, para todo n.
- decreciente si a<sub>n</sub> ≥ a<sub>n+1</sub>, para todo n.

monótona si satisface cualquiera de las condiciones anteriores.



### Límites

02



## Límites para una sucesión cuando tiende a infinito

#### Caso 1

 $\lim_{n\to\infty}\frac{F(n)}{Q(n)}$ 

Donde F(n) es un polinomio de grado mayor que Q(x)

**Infinito** 

#### Caso 2

 $\lim_{n\to\infty}\frac{F(n)}{Q(n)}$ 

Donde Q(n) es un polinomio de grado mayor que F(x)

Cero

#### Caso 3

$$\lim_{n\to\infty}\frac{F(n)}{Q(n)}$$

Donde F(n) es un polinomio de grado igual que Q(x)

Valor real!= 0

#### **Ejercicios!**

 $\lim_{n \to \infty} \frac{n^3 + 4}{n^2 - n + 3} \quad \lim_{n \to \infty} \frac{5n^2 - n}{6n^2 + n} \quad \lim_{n \to \infty} \frac{10n^2 + 10n}{n^5 + 2n^3 + 6n^2 + 10} \quad \lim_{n \to \infty} \frac{(n-1)(1-2n)}{(1-3n)(2-n)}$ 





¿Dudas?

# Fin de las sucesiones





#### Límites de funciones

Analicemos la función:

$$f(x) = \frac{x^2 - 1}{x - 1}$$

La función está definida para toda x diferente de 1.

Podemos simplificar la función de la siguiente manera:

 $\boldsymbol{x}$ 

$$f(x) = \frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1} = x + 1$$

$$y$$

$$y$$

$$y = f(x) = \frac{x^2 - 1}{x - 1}$$

$$-1$$



#### Analizando el comportamiento

| Valores de x que se aproximan a 1: | $f(x) = \frac{x^2 - 1}{x - 1} = x + 1$ $x \neq 1$ |
|------------------------------------|---------------------------------------------------|
| 0.9                                | 1.9                                               |
| 1.1                                | 2.1                                               |
| 0.99                               | 1.99                                              |
| 1.01                               | 2.01                                              |
| 0.999                              | 1.999                                             |
| 1.001                              | 2.001                                             |
| 0.999999                           | 1.999999                                          |
| 1.000001                           | 2.000001                                          |

Decimos que f(x) está muy cercano a 2 conforme x se aproxima a 1.

$$\lim_{x \to 1} f(x) = 2 \ o \ \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$



#### Límite de un caso particular

Sea f(x) definida en un intervalo alrededor de  $x_0$ , posiblemente excepto en  $x_0$ . Si f(x) se acerca de manera arbitraria a L para toda x suficientemente cerca de  $x_0$ , se dice que f se aproxima al límite L conforme x se aproxima a  $x_0$ , y se escribe

$$\lim_{x_0\to 1} f(x) = L$$



$$a) f(x) = \frac{x^2 - 1}{x - 1}$$



$$b) g(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1 \\ 1, & x = 1 \end{cases}$$



$$c)h(x) = x+1$$

#### **Definición formal**

#### DEFINICIÓN Límite de una función

Sea f(x) definida en un intervalo abierto alrededor de  $x_0$ , excepto posiblemente el mismo  $x_0$ . Decimos que el **límite de** f(x) cuando x se aproxima a  $x_0$  es el **número** L, y escribimos

$$\lim_{x \to x_0} f(x) = L,$$

si, para cada número  $\epsilon > 0$ , existe un número  $\delta > 0$  correspondiente tal que, para toda x,

$$0 < |x - x_0| < \delta \quad \Rightarrow \quad |f(x) - L| < \epsilon.$$

# CACHORR@

#### Propiedades de los límites

Las reglas siguientes son válidas si  $\lim_{x\to c} f(x) = L$  y  $\lim_{x\to c} g(x) = M$  (L y M son números reales)

1. Regla de la suma: 
$$\lim_{x\to c} [f(x) + g(x)] = L + M$$

2. Regla de la resta: 
$$\lim_{x\to c} [f(x) - g(x)] = L - M$$

3. Regla del producto: 
$$\lim_{x\to c} f(x) \cdot g(x) = L \cdot M$$

4. Regla del producto: 
$$\lim_{x\to c} k f(x) = kL$$

por una constante

5. Regla del cociente: 
$$\lim_{x\to c} f(x) / g(x) = L / M, M \neq 0$$

6. Regla de la potencia: 
$$\lim_{x\to c} [f(x)]^{m/n} = L^{m/n}$$





#### Límites de polinomios

Los límites de polinomios pueden ser calculados por sustitución

Si 
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$$
, entonces

$$\lim_{x\to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_0$$





#### **Teorema del Sandwich**

Suponga que  $g(x) \le f(x) \le h(x)$  para toda x en algún intervalo abierto que contenga a c, excepto posiblemente en x = c. Supóngase tambien que

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$$

Entonces 
$$\lim_{x\to c} f(x) = L$$



# Ejercicio 1

m) 
$$\lim_{n \to \infty} \frac{3+6+9+\dots+3n}{5+10+15+\dots+5n}$$



# Ejercicio 2

h) 
$$\lim_{n \to \infty} \frac{5}{\sqrt{n^4 + 3n} - \sqrt{n^3 + 3}}$$



# CACHORR@

# Ejercicio 3



g) 
$$\lim_{n \to \infty} \frac{(2n+4)(3n^2+1)^2}{(4n+7)(1-2n^2)^2}$$

$$\lim_{M \to \infty} \frac{(2n+4)(3m^2+1)^2}{(4n+4)(1-2m^2)^2} = \lim_{M \to \infty} \frac{(2n+4)(9n^4+6m^2+1)}{(4n+3)(1-4m^2+4m^4)} = \lim_{M \to \infty} \frac{(8m^5+12n^3+2n+36m^4+24n^2+4)}{4m-16m^3+16m^5+7-28m^2+28m^4/m^5}$$

$$\lim_{M \to \infty} \frac{(2n+4)(9n^4+6m^2+1)}{(4n+3)(1-4m^2+4m^4)} = \lim_{M \to \infty} \frac{(8m^5+12n^3+2n+36m^4+24n^2+4)}{4m-16m^3+16m^5+7-28m^2+28m^4/m^5}$$

$$\lim_{M \to \infty} \frac{(2n+4)(3m^2+1)^2}{(4n+4)(1-2m^2)^2} = \lim_{M \to \infty} \frac{(8m^5+12n^3+2n+36m^4+24n^2+4)}{4m-16m^3+16m^5+7-28m^2+28m^4/m^5}$$

$$\lim_{M \to \infty} \frac{(2n+4)(9n^4+6m^2+1)}{(4n+3)(1-4m^2+4m^4)} = \lim_{M \to \infty} \frac{(8m^5+12n^3+2n+36m^4+24n^2+4)}{4m-16m^3+16m^5+7-28m^2+28m^4/m^5}$$

$$\lim_{M \to \infty} \frac{(2n+4)(9n^4+6m^2+1)}{(4n+3)(1-4m^2+4m^4)} = \lim_{M \to \infty} \frac{(8m^5+12n^3+2n+36m^4+24n^2+4)}{4m-16m^3+16m^5+7-28m^2+28m^4/m^5}$$

$$\lim_{M \to \infty} \frac{(2n+4)(9n^4+6m^2+1)}{4m+3(1-4m^2+4m^4)} = \lim_{M \to \infty} \frac{(8m^5+12n^3+2n+36m^4+24n^2+4)}{4m^5+16m^5+7-28m^2+28m^4/m^5}$$

$$\lim_{M \to \infty} \frac{(2n+4)(9n^4+6m^2+1)}{4m+3(1-4m^2+4m^4)} = \lim_{M \to \infty} \frac{(8m^5+12n^3+2n+36m^4+24n^2+4)}{4m^5+16m^5+7-28m^2+28m^4/m^5}$$

$$\lim_{M \to \infty} \frac{(2n+4)(9n^4+6m^2+1)}{4m^5+16m^5+7-28m^2+28m^4/m^5} = \lim_{M \to \infty} \frac{(2n+4)(9n^4+6m^2+1)}{4m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5+16m^5$$

 $f(x) = \begin{cases} \chi & \text{si } \chi > 0 & g(x) \\ -\chi & \text{si } \chi < 0 & h(x) \end{cases} f(x)$ dem que el lim f(x) wando x > 0 = 0 existe $\lim_{x\to 0} g(x) = \lim_{x\to 0} x = 0 / \lim_{x\to 0} (x) = \lim_{x\to 0} h(x) = 0$  $\lim_{x\to 0} h(x) = \lim_{x\to 0} -x = -0 = 0$   $\lim_{x\to 0} |x\to 0|$   $\lim_{x\to 0} |x\to 0|$   $\lim_{x\to 0} |x\to 0|$ to teorema del sanguchito.



# Síguenos en instagram!

@cachorro404



