

Symbolic Math Toolbox: Quick Reference Sheet

π	Algebra
<u>subs</u>	Symbolic substitution: syms a b; subs(a^3+b,{a,b},{2,sym('e')})
double	Convert symbolic values to double precision: symN = sym(pi); doubleN = double(symN)
solve	Equations and systems solver: syms a b u v; S=solve(u+v==a, u-v==b)
simplify	Algebraic simplification: syms x; simplify(sin(x)^2 + cos(x)^2)
<u>isolate</u>	Isolate variable or expression in equation: syms a b c x; isolate(a*x^2+b*x+c==0,x)
<u>lhs</u>	Left side (LHS) of equation: syms x y; $lhs(x^2 >= y^2)$
<u>rhs</u>	Right side (RHS) of equation: syms x y; $rhs(x^2 >= y^2)$
<u>rewrite</u>	Rewrite expression in terms of another function: syms x; rewrite(tan(x)/cos(x),'sin')

	Graphics
fplot	Plot symbolic expression or function: syms x; $f(x) = \sin(x)/x$; $fplot(f)$
fplot3	Plot 3-D parametric curve: syms x; fplot3(sin(x),cos(x),log(x))
fsurf	Plot 3-D surface, mesh or contour: syms x y; f(x,y)=x*exp(-x^2-y^2); fsurf(f)
fmesh	Plot 3-D mesh: syms x y; f(x,y)=x*exp(-x^2-y^2); fmesh(f)
fcontour	Plot contours: f(x,y)=x*exp(-x^2-y^2); fcontour(f)
fimplicit, fimplicit3	Plot implicit symbolic equation or function: syms x y; fimplicit(y^2-x^2*(x+1),[-2 2]) syms x y z; fimplicit3(x^2*y*z+y^3-z^3)

$\int_{a}^{b} f(x) \mathrm{dx}$	Calculus
<u>limit</u>	Compute limit of symbolic expression: limit(1/x,x,0,'left')
diff	Differentiation: syms x t; diff(sin(x^2+t),x)
int	Definite and indefinite integrals: syms x z; int(x/(1 + z^2), z)
symsum	Sum of a series: syms k n; symsum(k,0,n-1)
<u>series</u>	Puiseux series expansion: syms x; series(1/sin(x), x)
taylor	Taylor series: syms x; taylor(exp(-x))
<u>gradient</u>	Gradient vector of scalar function: syms x y z; gradient(x*y + 2*z*x, [x, y, z])
hessian	Hessian matrix of scalar function: syms x y z; hessian(x*y + 2*z*x, [x, y, z])
laplacian	Laplacian of scalar function: syms x y z; laplacian(1/x + y^2 + z^3, [x y z])
jacobian	Jacobian matrix: syms x y z u v; jacobian([x*y*z; y; x+z],[x y z])
divergence	Divergence of vector field: syms x y z; divergence([x^2 2*y z], [x y z])

fx Functions	
functions	Symbolic Functions: syms x y; $f(x,y) = x + 2*y$; f(1,2)
piecewise	Conditionally defined expression or function: syms x; g(x)=piecewise(x<0,-1,x>=0,2); g(3)
<pre>matlabFunction, matlabFunctionBlock, simscapeEquation</pre>	Convert symbolic expression to a MATLAB callable function, Simulink block or Simscape equation. g = matlabFunction(f)

© 2018 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

MATLAB: Quick Reference Sheet

Live Editor			
Command	Keyboard Shortcut		
Move Up One Section	Ctrl+upArrow		
Move Down One Section	Ctrl+downArrow		
Run Section	Ctrl+Enter		
Run Section and Advance	Ctrl+Shift+Enter		
Run All Sections	F5		
Insert a new line or Code or Text	Alt+Enter		
Toggle between Code and Text	Ctrl+E		
Title	Ctrl+Alt+L		
Heading	Ctrl+Alt+H		
Section Break	Ctrl+Alt+Enter		
Bulleted List	Ctrl+Alt+U		
Numbered List	Ctrl+Alt+O		
Italic	Ctrl+I		
Bold	Ctrl+B		
Monospace	Ctrl+M		
Underline	Ctrl+U		
LaTeX Equation	Ctrl+Alt+G		
Hyperlink	Ctrl+K		

{ } Cells & Tables		
<u>cell</u>	Create a cell array: cell(3,5)	
<pre>curly brackets, {}</pre>	Access specific cell in cell array: c = cell(3,5); c{3,5}	
<u>cell2mat</u>	<pre>Transform cell to matrix: c = cell(3,5); cell2mat(c)</pre>	
<u>cellfun</u>	Apply function to each cell: c = cell(3,5); cellfun(@mean,c)	
<u>table</u>	Create a table from given variables: table([1:2]',{'one';'two'})	
<u>cell2table</u>	Transform a cell array to a table: c=cell(3,5); cell2table(c)	
table2array	Transform a table into an array: t=table([1:3]'); table2array(t)	

Neierence Sneet		
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{M}$	atrix Operations	
<pre>colon, :</pre>	Create a row vector: 1:10; 1:2:10	
linspace	Linearly spaced points between endpoints: Linspace(1,3,1000)	
square brackets, []	Matrix construction and concatenation: [1,2;3,4]	
NaN	Create matrix of NaN values: NaN(3,5)	
<u>ones</u>	Create matrix of 1 values: ones(3,5)	
zeros	Create matrix of 0 values: zeros(3,5)	
<pre>parentheses, ()</pre>	Index into matrix: x=[1,2;3,4]; x(2,1)	
diag	Diagonal elements of matrix: x=[1,2;3,4]; diag(x)	
times, .*	Element by element multiplication: x=[1,2;3,4]; y=[2,3;4,5]; x.*y	
rdivide, ./	Element by element division: x=[1,2;3,4]; y=[2,3;4,5]; x./y	
plus, +	Element by element addition: x=[1,2;3,4]; y=[2,3;4,5]; x+y	
minus, -	Element by element subtraction: x=[1,2;3,4]; y=[2,3;4,5]; x-y	
gt, >	Determine greater than: x=[1,3;4,2]; x>2	
<u>inv</u>	Invert a matrix: X=[1,2;3,4]; inv(x)	
<u>size</u>	Size of a matrix: x=[1,2,3;4,5,6]; size(x)	
<u>eye</u>	Create identity matrix: eye(3,4)	
<u>isnan</u>	Find elements that are NaN: x=[1,NaN;NaN,4]; isnan(x)	
<u>repmat</u>	Repeat copies of a matrix: x=diag([100 200 300]); repmat(x,2)	
<u>bsxfun</u>	Element wise operation on two matrices: x=[1,2;3,4]; bsxfun(@minus,x,mean(x))	
arrayfun	Apply function to each element: x=[1;3]; arrayfun(@(x) plus(x,x), x)	

Full MATLAB cheat sheet

© 2018 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.