Article No. ARTPI04 Ver. 1.1 Data. 22 giugno 2020

Risultati di uno studio sul campo sui sensori di ossigeno disciolto

"Quando le sonde sono state rimosse dalla vasca era ovvio che il sistema di pulizia della Pi funzionava bene e avrebbe ridotto in modo importante i tempi e costi di manutenzione".

Peter Martin, responsabile strumentazione, NIW.

Test eseguiti in Irlanda del Nord sui vari modelli di sensori di DO

INTRODUZIONE

L'azienda responsabile del trattamento dell'acqua in Irlanda del Nord (Northern Ireland Water - NIW) ha testato tre analizzatori di ossigeno disciolto (DO) in parallelo. Questi sono stati installati fianco a fianco nell'impianto di trattamento delle acque reflue di Culmore nella stessa corsia di aerazione, dove le misure sono state registrate ogni minuto per 6 mesi.

Dopo aver elaborato più di un milione di punti dato, il sistema OxySense della Pi è stato eletto come la soluzione migliore.

Il grafico mostra un'istantanea di tre ore con alcuni dei risultati che hanno portato l'azienda a decidere che l'analizzatore di ossigeno disciolto fosse il migliore in assoluto. Osservando questo grafico è chiaro il perché: il sensore del concorrente A mostra una lettura bassa ed imprecisa e il sensore del concorrente B è influenzato dal rumore. Questi risultati sono discussi in maggior dettaglio di seguito.

Figura 1 - Cappuccio autopulente

L'IMPIANTO

L'impianto di prova aveva utilizzato i contatori di ossigeno disciolto della concorrenza B per un po' di tempo in tutte le proprie vasche di aerazione, tuttavia hanno scoperto che la parte del sensore che effettua la misura doveva essere sostituita frequentemente (ogni 6 mesi). I costi di sostituzione che si aggirano intorno ai £90 (€105) per sensore hanno iniziato ad accumularsi e l'impianto ha deciso di cercare un'alternativa.

AUTO-PULIZIA

Il sensore è stato dotato di un **cappuccio autopulente**, che pulisce il sensore attivamente con aria compressa (o acqua pulita) per rimuovere fanghi e detriti dalla punta del sensore su base regolare.

Il sensore del concorrente A era collegato ad un supporto flessibile che permetteva al sensore di muoversi con il fango e seguire le bolle di aerazione, **teoricamente** pulendo passivamente il sensore. Il sensore del concorrente B non aveva alcuna funzionalità di pulizia automatica.

"Dopo il test è chiaro che il sensore di Pi è più robusto del sensore del concorrente B. Dopo 6 mesi, mi aspetto che completi la sua durata minima prevista di 2 anni ".

Peter Martin, responsabile strumentazione, NIW.

Tutti e tre i sensori hanno ricevuto periodicamente una pulizia manuale come parte del programma di manutenzione ordinaria dello stabilimento, garantendo che la prova fosse equa per i sensori senza un sistema di pulizia.

RISULTATI

Le misurazioni effettuate dal 25 maggio 2015 sono state utilizzate per dimostrare la variazione tra i diversi analizzatori. Questa serie di date è stata scelta per essere rappresentativa dell'intero processo.

Sensore della Pi

Lo studio ha rilevato che il CRIUS® OxySense della Pi è risultato essere il misuratore di ossigeno più accurato ed affidabile. Il sensore è stato tenuto pulito dal sistema di autopulizia della Pi e ha riportato letture accurate e precise con il livello di rumore più basso. Un graduale aumento del contenuto di ossigeno disciolto è facilmente osservabile durante l'aerazione, seguito da un declino costante quando gli aeratori vengono spenti.

Concorrente A

Il sensore del concorrente A ha fatto fatica a mantenersi pulito tra gli eventi di manutenzione regolari, in quanto il sistema di autopulizia passiva era inefficace. Lo strumento sembra riportare erroneamente letture più basse a causa di fango e detriti che ricoprono il sensore. Il sensore rileva l'aumento dell'ossigeno disciolto durante l'aerazione, ma poi cade ad una lettura pari a zero per lunghi periodi di tempo.

LeafyTECHNOLOGIES

Figura 2 - Ossigeno disciolto concorrente

Concorrente B

Le indicazioni dei sensori del concorrente B sembrano prive di precisione e mostrano livelli di rumore elevati. Questo è molto probabilmente dovuto alla sporcizia sulla testa del sensore (vedi immagine, a destra). I risultati hanno avuto grandi variazioni tra le misure, spesso rendendo difficile distinguere i picchi durante l'aerazione. Alla fine dei sei mesi, il sensore del concorrente B è risultato essere consumato e ha richiesto un ricambio del cappuccio frequente.

"Dopo il test è chiaro che il sensore di Pi è più robusto del sensore del concorrente B. Dopo 6 mesi, mi aspetto che completi la sua durata minima prevista di 2 anni ". Peter Martin, responsabile strumentazione, NIW.

Per maggiori informazioni contattare: info@leafytechnologies.com