피마 인디언 당뇨병 예측 모델

2018110493정정룡

목차

1. EDA

2. Modeling

3. Select Model

Part 1

EDA

 Part 1
 EDA
 데이터설명
 I
 데이터탐색
 I
 결측치처리

변수

변수 이름	변수 설명	
Pregnancies	임신 횟수	
Glucose [NA]	2시간 동안의 경구포도당 내성 검사에서 혈장 포도당 농도	
BloodPressure [NA]	이완기 혈압(mm Hg)	
SkinThickness [NA]	팔 삼두근 뒤쪽의 피하지방 측정값 (mm)	
Insulin [NA]	2 시간 혈청 인슐린 수치(mm U/ml)	
BMI [NA]	체질량 지수	
DiabetesPedigreeFunction	당뇨 내력 가중치 값	
Age	나이	
Outcome	당뇨병 여부 (0, 1)	

Levene's test

Shapiro_Wilks test

- 정규성을 만족할 수 없어 Levene's test로 등분산 검정 진행 - 표본수가 2000미만이므로 Shapiro_Wilks test 로 정규성 검정 진행

- 독립성과 등분산성을 가정하고 진행

Student t-test

Wilcoxon rank sum test

- 정규성
- 등분산성

- 정규성 X

데이터설명

데이터탐색 결측치처리

Pregnancies

등분산 따르지 않으나, 두 집단 차이는 유의

데이터설명

데이터탐색 | 결측치처리

Glucose

등분산 따르지 않으나, 두 집단 차이는 유의

BloodPressure

등분산, 정규성 따르며, 두 그룹 차이도 유의

SkinThickness

등분산 따르나, 정규성 따르지 않고, 두 그룹 차이는 유의

데이터설명

데이터탐색 결측치처리

Insulin

등분산 따르지 않으나, 두 그룹 차이는 유의

데이터설명

데이터탐색 결측치처리

BMI

등분산 따르나, 정규성 따르지 않고, 두 그룹 차이는 유의

데이터탐색 결측치처리

DiabetesPedigreeFunction

등분산 따르나, 정규성 따르지 않고, 두 그룹 차이는 유의

데이터설명

데이터탐색 | 결측치처리

등분산 따르지 않으나, 두 그룹 차이는 유의

Correlation

Age2 | Pregnancies: 0.68

BMI2+SkinThickness: 0.66

Insulin과-Glucose: 0.58

데이터설명

데이터탐색

결측치처리

Insulin:3747H

SkinThickness: 2277H

BloodPressure: 357H

BMI: 11개

Glucose: 57H

데이터설명 | 데이터탐색 | 결측치처리

결측치처리방법

결측 비율	처리 방법
10% 미만	제거 or 방법 상관없이 Imputation
10% 이상 20%미만	Model based method, Regression
20% 이상	Model based method, Regression

Part 1 **EDA**

데이터설명 | 데이터탐색 | 결측치처리

Mice

모든 변수들이 정규분포에 따른 다는 가정 없음

1. Fill-in

모든 변수의 결측치를 변수의 순서대로 채우며, 앞서 채워진 변수는 다음 채워지는 변수의 독립변수로 활용

2. Imputation

앞서 채워진 값들을 변수의 순서대로 대체하는 과정, 이 과정을 충분히 길게 하여 대체된 데이터셋에서 결측치가 독립적인 추출이 될 때까지 시행

Part 2

Modeling

NB | Logistic | DT | KNN

SVM | RF | XGB | Ensemble

- Naïve Bayes, Logistic, Decision Tree KNN, SVM, RandomForest, XGB, Ensemble 이용

- 표준화 진행

- train: test=7:3 으로 진행

Naive Bayes

Cutoff 가 0.66775에서 Accuracy 0.75758

Logistic Regression

변수 이름	VIF
Pregnancies	1.441564
Glucose	1.716390
BloodPressure	1.232609
SkinThickness	1.817627
Insulin	1.745497
ВМІ	2.034133
DiabetesPedigreeFunction	1.018205
Age	1.575832

$$VIF = \frac{1}{1 - R_i^2}$$

$$Odds_i = \exp(\beta_i)$$

Logistic Regression

Cutoff 가 0.43927에서 Accuracy 0.7619

NB | Logistic | DT | KNN

SVM | RF | XGB | Ensemble

Decision Tree

- mlr 패키지 사용하여 k-fold 교차검증 및 grid search 시행

- maxdepth: 9

-cp:0.0289

- minsplit: 9

Decision Tree

Cutoff 가 0.60811에서 Accuracy 0.7316

K는 15일 때 최적

KNN

KNN 모형은 이 데이터에 적합하지 않은 것으로 판단

NB | Logistic | DT | KNN

SVM | RF | XGB | Ensemble

SVM

- Gaussian Kernel 사용

- C:12.9

- Sigma: 0.000464

		True		
		0	1	
Predict	0	124	46	
	1	15	46	

Accuracy: 0.7359

NB | Logistic | DT | KNN

SVM | RF | XGB | Ensemble

Random Forest

- mtry : 2

- ntree: 140

- nodesize : 7

Random Forest

Cutoff 가 0.44286에서 Accuracy 0.74892

NB | Logistic | DT | KNN

SVM | RF | XGB | Ensemble

XGBoost

- nrounds : 189

- lambda : 0.167

- subsample: 0.311

XGBoost

Cutoff 가 0.78905에서 Accuracy 0.75758

NB | Logistic | DT | KNN

SVM | RF | XGB | Ensemble

Ensemble-soft voting

활용한 Model

- Naive Bayes
- Logistic Regression
- Random Forest
- XGBoost

제외한 Model

- Decision Tree
- KNN
- SVM

Hard voting으로는 KNN만 제외해서 해본 결과 Accuracy 0.7489

Ensemble-soft voting

Cutoff 가 0.34044에서 Accuracy 0.77056

Part 3

Select Model

Part 3 Select Model

ROC Plot

AUC(Area under the ROC curve)

- Naïve: 0.8125586
- Logistic: 0.8368001
- Decision Tree: 0.7038239
- KNN: 0.2941038
- Random Forest : 0.821356
- XGBoost: 0.7790116
- Ensemble: 0.8389115

감사합니다