Problem R-64 ($C_{12}H_{10}S$). Below are four ¹³C NMR spectra (50 MHz). The upper spectra are of diphenyl sulfide (Ph_2S). The lowerr spectra are of Ph_2S partially deuterated. The left set of spectra are proton-decoupled, the right set is fully coupled. Source: S.-K. Chung, K. Sasamoto *JOC* **1981**, *46*, 4950 (DOI: 10.1021/jo00335a062)

(a) Assign the resonances in the unlabelled spectra (C¹, C², C³, C⁴).

(b) Assign the various peaks in the D-labelled spectra.

(c) Determine the **position(s)** and roughly estimate the **extent** of deuteration indicated by the upper spectra. Briefly give your reasoning. Hint: calculate the expected C-D couplings and compare to the observed ones before assigning the signals.

 $^{1}J_{CH} = 159 \text{ Hz}$

 $^{2}J_{CH} = 1.0 \text{ Hz}$

 $^{3}J_{CH} = 7.4 \text{ Hz}$

 $^{4}J_{CH} = -1.1 \text{ Hz}$

Problem R-64 (C₁₂H₁₀S). Below are four ¹³C NMR spectra (50 MHz). The upper spectra are of diphenyl sulfide (Ph₂S). The lowerr spectra are of Ph₂S partially deuterated. The left set of spectra are proton-decoupled, the right set is fully coupled. Source: S'-K' Chung, K'Sasamoto *JOC* **1981**, *46*, 4950 (DOI: 10.1021/jo00335a062)

(a) Assign the resonances in the unlabelled spectra (C¹, C², C³, C⁴).

(b) Assign the various peaks in the D-labelled spectra.

(c) Determine the **position(s)** and roughly estimate the **extent** of deuteration indicated by the upper spectra. Briefly give your reasoning. Hint: calculate the expected C-D couplings and compare to the observed ones before assigning the signals.

H $^{1}J_{CH} = 159 \text{ Hz}$

 $^{2}J_{CH} = 1.0 \text{ Hz}$

 $^{3}J_{CH} = 7.4 \text{ Hz}$

 $^{4}J_{CH} = -1.1 \text{ Hz}$

The three peaks for C¹ (labelled A, B, C) are separated by 6 Hz. These cannot be due to $^3J_{CD}$ since this would be at most 1/6 x 7.4 Hz (if D was meta), or to $^2J_{CD}$, if D was ortho (as it actually is) since it would be only 1/6 x 1.0 Hz. The A/B/C peaks are from the 2-bond isotope shift due to the H/H, H/D and D/D isotopomers.

The deuterium seems to be almost entirely at C^2 (this is the only carbon that shows $^1J_{CD}$). The best estimate of the level of labelling at C^2 is probably from the two peaks at C^3 (two-bond isotope shift), (60% D, 40% H). There must a significant amount of 2,6-dideutero, to account for peak C at C^1 , and very little 2,6-diprotio (structure A), otherwise peak A at C^1 would be taller. Peaks B and especially C are vey weak because they would have long T_1 due to loss of CH DD relaxation, leading to saturation, and possible loss of NOE enhancement.