

Distributed Second Order Methods with Fast Rates and Compressed Communication AMIPT

Rustem Islamov^{1, 2} Xun Qian¹ Peter Richtárik¹

¹KAUST ²MIPT

The Problem

$$\min_{x \in \mathbb{R}^d} \left[P(x) := f(x) + \frac{\lambda}{2} ||x||^2 \right]. \tag{1}$$

Function f is convex, and has an "average of averages" structure:

$$f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x), \quad f_i(x) := \frac{1}{m} \sum_{j=1}^{m} f_{ij}(x), \quad (2)$$

and $\lambda \geq 0$ is a regularization parameter. Each f_{ij} is a function of the form: $f_{ij}(x) := \varphi_{ij}(a_{ij}^{\top}x)$. The Hessian of f_{ij} at point x is

$$\mathbf{H}_{ij}(x) := h_{ij}(x)a_{ij}a_{ij}^{\mathsf{T}}, \quad h_{ij}(x) := \varphi_{ij}''(a_{ij}^{\mathsf{T}}x). \tag{3}$$

The Hessian $\mathbf{H}_i(x)$ of local functions $f_i(x)$ and the Hessian $\mathbf{H}(x)$ of f can be represented as linear combination of one-rank matrices.

Assumptions

We assume that Problem (1) has at least one optimal solution x^* . For all i and j, φ_{ij} is γ -smooth, twice differentiable, and its second derivative $\varphi_{ij}^{"}$ is ν -Lipschitz continuous.

Main goal

Our goal is to develop a communication efficient Newton-type method for distributed optimization.

Naive distributed implementation of Newton's method

Newton's step: $x^{k+1} \stackrel{(1)}{=} x^k - \left(\mathbf{H}(x^k) + \lambda \mathbf{I}\right)^{-1} \nabla P(x^k)$. **Each node:** computes the local Hessian $\mathbf{H}_i(x^k)$ and gradient $\nabla f_i(x^k)$, then sends them to the server.

Server: averages the local Hessians and gradients to produce $\mathbf{H}(x^k)$ and $\nabla f(x^k)$, respectively, adds $\lambda \mathbf{I}$ to $\mathbf{H}(x^k)$ and λx^k to $\nabla f(x^k)$, then performs Newton step. Next, it sends x^{k+1} back to the nodes. Pros: • Fast local quadratic convergence rate

• Rate is independent on the condition number

Cons: • Requires $\mathcal{O}(d^2)$ floats to be communicated by each worker to the server, where d is typically very large

NEWTON-STAR (NS)

Assume that the server has access to coefficients $h_{ij}(x^*)$ for all i and j, i.e access to the Hessian $\mathbf{H}(x^*)$.

Step of NEWTON-STAR: $x^{k+1} = x^k - (\mathbf{H}(x^*) + \lambda \mathbf{I})^{-1} \nabla P(x^k)$.

Theorem 1 (Convergence of NS)

Assume that $\mathbf{H}(x^*) \succeq \mu^* \mathbf{I}$ for some $\mu^* \geq 0$ and that $\mu^* + \lambda > 0$. Then for any starting point $x^0 \in \mathbb{R}^d$, the iterates of **NEWTON**-STAR satisfy the following inequality:

$$||x^{k+1} - x^*|| \le \frac{\nu}{2(\mu^* + \lambda)} \cdot \left(\frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m ||a_{ij}||^3\right) \cdot ||x^k - x^*||^2.$$

Pros: • Fast local quadratic convergence rate

- Rate is independent on the condition number
- Communication cost is $\mathcal{O}(d)$ per-iteration

Cons: • Cannot be implemented in practice

NEWTON-LEARN

How to address the communication bottleneck?

- Compressed communication
- Taking advantage of the structure of the problem

In NEWTON-LEARN we maintain a sequence of vectors

$$h_i^k = (h_{i1}^k, \dots, h_{im}^k) \in \mathbb{R}^m, \tag{4}$$

for all i = 1, ..., n throughout the iterations $k \geq 0$, with the goal of learning the values $h_{ij}(x^*)$ for all i, j:

$$h_{ij}^k \to h_{ij}(x^*)$$
 as $k \to +\infty$. (5)

Using $h_{ij}^k \approx h_{ij}(x^*)$, we can estimate the Hessian $\mathbf{H}(x^*)$ via

$$\mathbf{H}(x^*) \approx \mathbf{H}^k := \frac{1}{n} \sum_{i=1}^n \mathbf{H}_i^k, \quad \mathbf{H}_i^k := \frac{1}{m} \sum_{j=1}^m h_{ij}^k a_{ij} a_{ij}^\top.$$
 (6)

Compressed learning

Compression operator: A randomized map $\mathcal{C}: \mathbb{R}^m \to \mathbb{R}^m$ is a compression operator (compressor) if there exists a constant $\omega \geq 0$ such that for all $x \in \mathbb{R}^m$

$$\mathbb{E}\left[\mathcal{C}(x)\right] = x, \quad \mathbb{E}\left[\left\|\mathcal{C}(x)\right\|^2\right] \le (\omega + 1)\|x\|^2. \tag{7}$$

Random sparsification (random-r) [1]: Compressor defined

$$C(x) := \frac{m}{r} \cdot \xi \circ x, \tag{8}$$

where $\xi \in \mathbb{R}^m$ is a random vector distributed uniformly at random on the discrete set $\{y \in \{0,1\}^m : ||y||_0 = r\}$. The variance parameter associated with this compressor is $\omega = \frac{m}{r} - 1$.

NEWTON-LEARN: NL1

Assumption: We assume that each $\varphi_{ij}(x)$ is convex, and $\lambda > 0$.

Learning the coefficients: the idea

We design a learning rule for vectors h_i^k via the **DIANA** \mathbf{trick} [2] :

$$h_i^{k+1} = \left[h_i^k + \eta \mathcal{C}_i^k \left(h_i(x^k) - h_i^k \right) \right]_+, \tag{9}$$

where $\eta > 0$ is a learning rate, and \mathcal{C}_i^k is a freshly sampled compressor by node i at iteration k.

Main properties: • $h_{ij}^k \ge 0$ for all i, j

- update is sparse: $||h_i^{k+1} h_i^k||_0 \le s$, where
- $\mathbf{H}^k \succ \mathbf{0}$

Each node: Computes update $h_i^{k+1} = \left[h_i^k + \eta C_i^k \left(h_i(x^k) - h_i^k \right) \right]$ and gradient $\nabla f_i(x^k)$. Then the node broadcasts the gradient, update $h_i^{k+1} - h_i^k$ and data points a_{ij} for which $h_{ij}^{k+1} - h_{ij}^k \neq 0$. **Server:** averages the local gradients to produce $\nabla f(x^k)$ and constructs \mathbf{H}^k via (6). Then it performs a Newton-like step:

$$x^{k+1} = x^k - \left(\mathbf{H}^k + \lambda \mathbf{I}\right)^{-1} \left(\nabla f(x^k) + \lambda x^k\right), \tag{10}$$

and finally broadcasts x^{k+1} back to the nodes.

Pros • Local linear and superlinear rates

- Rates are independent on the condition number
- Communication cost $\mathcal{O}(d)$ per iteration

Algorithm 1: NL1: NEWTON-LEARN ($\lambda > 0$ case)

Parameters: learning rate $\eta > 0$

Initialization: $x^0 \in \mathbb{R}^d$; $h_1^0, \ldots, h_n^0 \in \mathbb{R}_+^m$;

 $\mathbf{H}^{0} = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} h_{ij}^{0} a_{ij} a_{ij}^{\top} \in \mathbb{R}^{d \times d}$

for k = 0, 1, ... do

Broadcast x^k to all workers

for each node $i = 1, \ldots, n$ do

Compute local gradient $\nabla f_i(x^k)$

 $|h_i^{k+1} = [h_i^k + \eta C_i^k (h_i(x^k) - h_i^k)]_+$

Send $\nabla f_i(x^k)$, $h_i^{k+1} - h_i^k$ and corresponding a_{ij} to server

 $x^{k+1} = x^k - \left(\mathbf{H}^k + \lambda \mathbf{I}\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^n \nabla f_i(x^k) + \lambda x^k\right)$

 $\mathbf{H}^{k+1} = \mathbf{H}^k + \frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m (h_{ij}^{k+1} - h_{ij}^k) a_{ij} a_{ij}^\top$

Convergence theory

The analysis relies on the Lyapunov function

$$\Phi_1^k = \|x^k - x^*\|^2 + \frac{1}{\eta n m \nu^2 R^2} \mathcal{H}^k, \quad \mathcal{H}^k = \sum_{i=1}^n \|h_i^k - h_i(x^*)\|^2,$$

where $R = \max ||a_{ij}||$.

Theorem 2 (convergence of NL1)

Theorem 2. Let each φ_{ij} is convex, $\lambda > 0$, and $\eta \leq \frac{1}{\omega+1}$. Assume that $||x^k - x^*||^2 \le \frac{\lambda^2}{12\nu^2 R^6}$ for all $k \ge 0$. Then for Algorithm 1 we have the inequalities

$$\mathbb{E}[\Phi_1^k] \le \theta_1^k \Phi_1^0,$$

$$\mathbb{E}\left[\frac{\|x^{k+1} - x^*\|^2}{\|x^k - x^*\|^2}\right] \le \theta_1^k \left(6\eta + \frac{1}{2}\right) \frac{\nu^2 R^6}{\lambda^2} \Phi_1^0,$$

where $\theta_1 = 1 - \min\left\{\frac{\eta}{2}, \frac{5}{8}\right\}$, which is independent on the condition number.

Assumption on $||x^k - x^*||$ can be relaxed using the following lemma:

Lemma 1

Assume h_{ij}^k is a convex combination of $\{h_{ij}(x^0), \ldots, h_{ij}(x^k))\}$ for all i, j and k. Assume $||x^0 - x^*||^2 \le \frac{\lambda}{12\nu^2 B^6}$. Then

$$||x^k - x^*||^2 \le \frac{\lambda^2}{12\nu^2 R^6}$$
 for all $k > 0$.

It is easy to verify that if we choose $h_{ij}^0 = h_{ij}(x^0)$, use the random sparsification compressor (8) and $\eta \leq \frac{1}{\omega+1}$, then h_{ij}^k is always a convex combination of $\{h_{ij}(x^0), \ldots, h_{ij}(x^k)\}$ for k > 0.

NEWTON-LEARN: NL2

We additionally develop a modified method (NL2) which handles the case where P is μ -strongly convex, $|h_{ij}^k| \leq \gamma$, and $\lambda \geq 0$.

Pros: • Local linear and superlinear rates

- Rates are independent on the condition number
- $\mathcal{O}(d)$ bits are communicated per iteration

CUBIC-NEWTON-LEARN

We also constructed a method (CNL) with global convergence guarantees using cubic regularization [3].

- **Pros:** Local linear and superlinear rates
 - Global linear rate in the strongly convex case and global sublinear rate in the convex case
 - Rates are independent on the condition number
 - \bullet $\mathcal{O}(d)$ bits are communicated per iteration

Experiments

Figure 1:Comparison of NL1, NL2 with (a), (b) BFGS; (c), (d) ADIANA; (e), (f) DINGO in terms of communication complexity. Comparison of CNL with (g), (h) DIANA and DCGD in terms of communication complexity.

References

- [1] Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory. In Advances in Neural Information Processing Systems, pages 4447 - 4458, 2018.
- [2] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.
- [3] Yurii Nesterov and Boris T. Polyak. Cubic regularization of Newton method and its global performance. Mathematical Programming, 108(1): 177-205, 2006.
- [4] Rustem Islamov, Xun Qian, and Peter Richtárik. Distributed Second Order Methods with Fast Rates and Compressed Communication. arXiv preprint arXiv:2102.07158, 2021.