PHYS2113 Classical Mechanics

Joey Liang May 2021

Contents

T	1 Introduction to Lagrangian Mechanics																										
	1.1	Action	1																								
	1.2	The E	lu	le	er	-I	_ {6	aę	gra	n	ge	E	նգւ	ıa	tior	ι.											
		1.2.1		E	Х	a	m	ıp	le																		

1 Introduction to Lagrangian Mechanics

1.1 Action

Definition 1.1 (Action) Action, termed A, is defined as

$$A = \int_{t_0}^{t_1} L \, \mathrm{d}t. \tag{1}$$

Where $L(q,\dot{q})=T-V=\frac{1}{2}m\dot{q}^2-V(q)$ is what we call the Lagrangian.

Note that action represents the integral over time of the Lagrangian which can be thought as the motion of the object at some point of time.[1]

1.2 The Euler-Lagrange Equation

Definition 1.2 (The Euler-Lagrange Equation) The Euler-Lagrange equation for a system with a single degree of freedom is

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0.$$

1.2.1 Example

Refer to Taylor's Example 6.2 on page 222.

¹The book 'Classical Mechanics' By John R. Taylor

References

[1] Action (physics). en. Page Version ID: 1020785959. May 2021. URL: https://en.wikipedia.org/w/index.php?title=Action_(physics)&oldid=1020785959 (visited on 05/31/2021).