ELECTRONICS - I END TERM SOLUTIONS.

KCL at Up.

$$\frac{\log p - 0}{R_1} + \frac{\log p - 10}{R_2} = 0$$

$$Op\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{10}{R_2} = Op = \frac{10R_1}{R_1 + R_2}$$

$$\frac{1011}{R_1 + R_2}$$

$$=) v_{i} = \frac{10 \times 2}{6} = \frac{10}{3} \text{ V}$$
Similarly for $v_{i} = -v_{cc} = -10 \text{ V}$

$$v_{i} = -\frac{10}{3} \text{ V}$$

$$2 = \frac{10}{6}$$

KCL at Up.

$$\frac{U_{p-2}}{R_1} + \frac{U_{p-10}}{R_2} = 0$$

$$Up(\frac{1}{R_1} + \frac{1}{R_2}) = \frac{2}{R_1} + \frac{10}{R_2}$$

(3)

2v I R₁ R₂ V₀

$$\frac{U_0-2}{R_1} + \frac{U_p+10}{R_2} = 0 = 0$$

$$V_{p}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{2}{R_{1}}-\frac{10}{R_{2}}$$
 $=\frac{2}{R_{1}}-\frac{10}{R_{2}}$ $=\frac{2}{R_{1}}-\frac{10}{R_{2}}$ $=\frac{2}{R_{1}}-\frac{10}{R_{2}}$

$$= -\frac{6}{3} = -2V$$

$$\frac{2}{J^{N}} \frac{2000 \left(J^{N} + 0.5 \right)}{J^{N} \left(J^{N} + 10 \right) \left(J^{N} + 1 \right)} = \frac{2000 \times \frac{1}{2} \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right) \times 50 \left(J^{N} + 1 \right)}$$

$$= \frac{2 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)}$$

$$= \frac{2 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)}$$

$$= \frac{2 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)}$$

$$= \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)}$$

$$= \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)}$$

$$= \frac{2 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)}$$

$$= \frac{2 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)}$$

$$= \frac{2 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)}$$

$$= \frac{2 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)}$$

$$= \frac{2 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)}$$

$$= \frac{2 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left(J^{N} + 1 \right)}{J^{N} \left(J^{N} + 1 \right)} \frac{20 \left$$

$$Slope = -20$$

$$Slope = -20$$

$$Slope = -40$$

Delay of blip blop= Tpropt Tsotypt hold. :. Min delaig of ff = 4+5+1 = 10 ns Maa " " = 7+5+1 = 1375. Delay & logic gate = Tpoop. :. Min delan & gate = ans, Max delay = 6 ns. In path from A toV, output is dependent of P and Q. To tel & 3 gates and QFF. [i] Here gat ! and of CI are in pasculal. So the component with larger delay would be considered. $T_{A-V} min = 2x10 + 3x2 = 26 ms$ $T_{A-V} max = 2x18 + 3x6 = 44 ms$ Simplorly be B to V. 2 ff and 3 gestes. [1] T_{8-v} min = 2x10 + 3x2 = 26ns [1] T_{8-v} max = 2x13 + 3x6 = 44ns. For man clock bregvency, we need minimum delay. mon = I = 38.46 MHz. [1]. 4) Up = (R/3) U2+ (R/3) N4+ (R/3) N6

Uz = B Sinzt NR $= \frac{1}{4} \left(\frac{42}{4} + \frac{4}{4} + \frac{4}{8} \right)$ KCl at $\frac{1}{2}$ and put $\frac{1}{4}$ and $\frac{1}{4}$ 10p-101 + 10p-103 + 10p-10 + 10p-10=0 12=A Cast ____ U= 40p- (0, +03+05) Uy = Blos 2+ N V6=CG13t_1 = (2-12,)+ (12-12)+(12-15)

5). Considering only ImA source.

Considering only 2V source.

KCL at X.

$$\frac{X-6}{8} + \frac{X+2-0}{6} + \frac{X+2-y}{5} = 0$$

15 x + 20 x + 40 + 24 x + 48 - 24 y = 0

KCL at Y.

$$\frac{0-y}{7} + \frac{\chi+2-y}{5} = 0$$

$$-5y + 7x + 14 - 7y = 0$$

$$(1)$$
 - 2 (1) =)

$$45 \times = -60 = \times = -\frac{4}{3}$$

$$=) Y = \frac{7x - \frac{1}{3} + \frac{1}{4}}{\sqrt{12}} = \frac{\frac{14}{36}}{\sqrt{12}} \cdot \sqrt{12} = \frac{14}{36} + \frac{1}{3} - 2 = \frac{-10}{36}$$

$$(\sqrt{12} - 0.277 \vee)$$

$$20x - 60 + 15x + 24x - 24y = 0$$

 $59x - 24y = 60$

$$KCL \text{ at } Y \qquad \frac{0-Y}{7} + \frac{X-Y}{5} = 0$$

$$-SY + 7X - 7Y = 0$$
 $7X - 12Y = 0$

$$(1) - 2(1) =)$$
 $45x = 60 =) x = \frac{4}{3}$

$$\gamma = \frac{7 \times \frac{4}{3}}{12} = \frac{28}{36} = \frac{7}{9}$$

6)	X2 X1 X0	7 ₂ 7,70
	000	011
	001	100
	010	101
	011	000
	100	001
	101	0 1 2
	110	011
	111	100
		2

72 X	Xoco,	01	11	10
X2 Y		1		1 "
1			11	

	m () (11	10
X2 1	1			1 7
1				1
1_		-		/

$$Y_2 = \overline{X}_2 \overline{X}_1 X_0 + \overline{X}_2 X_1 \overline{X}_0 + X_2 X_1 X_0$$

$$Y_1 = \overline{X_2} \overline{X_1} \overline{X_0} + \overline{X_2} \overline{X_1} \overline{X_0} + \overline{X_2} \overline{X_1} \overline{X_0}$$

	1	1
	0	7)
1	Q	

7) In charecteristics table 3 input variables A, B, C along with Qlt) would decide Q(t+1).

ABCQ	(t) Q(t+1)	QL+1) Ca(t)
0000	0	A13 100 01 11 10
0 0 1 0	0	010011
0 1 0 0	0	11 0 0 1 1
0 1 1 0	1 9	10 0 0
1000	$0 \qquad 0 \qquad$	
0 1 0		3C + ABQH) + BCQH)
, , , , , ,	1	
1 1 1 0	1	
1 1 [0	

Excitation Table.

			1				
Qtt)	Q(t+	-1.)	A	B	C		
0	0		X	X	X		
0			×	X	X	(Z)	
	0		×	X	X		97
1,	1		×	X	X		
	Q (t) 0 1	Qtt) Qtt	Qtt) Q(t+1) 0 0 0 1 1 0 1 1	0 0 x	0 0 x x	0 0 x x x	0 0 x x x

Sop will be implemented using 3 AND+ 1 Pos " QOR of IAND

Pos would be better solution. [1]

	-
9 2,20 Q, Q0 T, T0 :. To = 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

CUK

	With Shift=1	
	v	with Shift = 0
X3X2XIX0	43424,40	Y3 Y2 Y1 Y0
0000	0 0 0 0	0000
0 0 0 1	0 0 1 0	0001
0011	0110	0011
0100	1000	0 100
0110	100	0 101
0111	1 1 1 0	0 110
1000	0000	1000
1001	00 10	1010
1011	0110	1011
1100	1000	1100
101	10 10	1101
1110	1110	1110
(1	F27	

.. The circuit doesn't do any thing if Shift=0.

and It shift X towards left by 1 bit by replacing LSB with 0 and excluding the overflown MSB.

. It is a left shifter.