Task-oriented DS

Language Understanding

- Three modules:
 - Domain classification
 - Intent classification
 - Slot filling

LU: Domain/Intent Classification

Find me a cheap Taiwanese restaurant in Oakland

```
Movies find_movie, buy_tickets
```

Restaurants find_restaurant, find_price, book_table

Music find_lyrics, find_singer

Sports ...

•••

Domain Intent

LU: Domain/Intent Classification

Challenges:

- addressee detection
- Sparseness of n-gram
- Large number of singletons

Approaches:

- RNN with LSTM to solve both domain/intent classification and addressee detection
- Word-hashing to resolve singleton
 - Kat: #Ka, Kat, at#

LU: Slot Filling

Flights from Boston to New York today

Entity Tag	
Slot Tag	

	flights	from	Boston	to	New	York	today	
3	0	0	B-city	0	B-city	I-city	0	
	0	0	B-dept	0	B-arrival	I-arrival	B-date	

LU: Slot Filling

- Challenges:
 - to model dependencies between labels
 - To capture contextual information
- Approaches:
 - RNN with LSTM
 - LSTM-look around (the input is n-grams)
 - bLSTM
 - Encoder-decoder networks
 - Attention based encoder-decoder

LU: Joint-learning and Multi-domain

• Motivation:

- to prevent error propagation in the pipeline approach
- to reduce the number of training data required for each domain

Challenges:

- To use external information, e.g., dependency tree and parse tree
- Unseen slot value

LU: Joint-learning and Multi-domain

 Multi-task bLSTM (POS, disfluency, NER, frame label)

 Slot filling and intent prediction at the same times

LU: Contextual

- Motivation: many works exploit adjacency pair of utterances, not the history of dialogue
- Approaches:
 - LSTM over the whole dialogue
 - Knowledge guided attention network (memory network)

Knowledge guided attention network

Dialogue Management

- Dialogue State Tracking
- Dialogue Policy

DM: Dialogue State Tracking

- S: Which part of town? request(area)
- U: A cheap place in the north inform(area=north, pricerange=cheap)

- 0.8 inform(area=north),
 inform(pricerange=cheap)
- 0.1 inform(area=north)

area=north pricerange=cheap	0.7 area=north pricerange=cheap	1
	0.1 area=north food=north_african	×
	0.2 ()	×
method=byconstraints	0.9 byconstraints0.1 none	1
requested=()	0.0 phone 0.0 address	1

DM: Dialogue State Tracking

- Challenges:
 - A DST that can work on many domains
- Approaches:
 - To train one generalized RNN model and then specialized it for each slot name

DM: Dialogue Policy

Task: to guide what the system should say

- Motivation:
 - To develop a generic RL algorithm to learn dialogue policy for all domains
- Challenges:
 - Number of dialogues for training
 - Domain expertise
- Approaches:
 - RL algorithms with different reward (e.g. #turns maximized or minimized)
 - User simulation (to generate enough data using dialogue history)

Language Generation

To map dialogue acts into natural language

inform(name=Seven_Days, foodtype=Chinese)

Seven Days is a nice Chinese restaurant

LG: Statistical NLG

LG: NN

LG: NN

LG: Contextual

End-to-End

- ChitChat
- Task-oriented

ChitChat

Motivation:

- To model dialogue without directly measurable goals
- To train task-less DS using task-oriented data to obtain task-oriented DS

Challenges:

- To model topic in the DS
- Dull response

Approaches:

- Seq2seq with MMI, deep RL, personalized DS (using user's personal history),
- IR-based technique (using twitter data)

E2E: Task Oriented (Supervised Learning)

E2E: Task Oriented (Reinforcement Learning)

 To traverse knowledge base

E2E Task-Oriented (RL)

Breakdown

Kyoto Institute of Technology

- Poly kernel SVM
- Features: word vector both in the system utterance and the previous user utterance (modified combinations of these utterances)

Shizuoka University

- Handcrafted rules
 - I: if there is no shared keywords between system's and user's utterance, then it is a breakdown
 - II: system's utterance after user's question is a breakdown
 - III: system's utterance which is a question is a breakdown

Tohoku University and PFI

 Encode a pair of user's and system's utterance using NCM, LSTM encoder, BOW, or extended NCM

NAIST

- LSTM-RNN
- Features: word frequency vector (user and system), frequency vector of cooccurrence words, doc2vec (user, system, co-occurrence)

• NTT Communication

- 6-layer perceptron
- Features: word vector (user and system), word class vector (user and system), perplexity, cosine similarity (system and previous system), personality question, dialogue acts (SVM)
- Hiroshima City University
 - LSTM-RNN
 - Features: word2vec of user's and system's utterances