

TYRE - FLEX COUPLINGS

The flexible capabilities of the Tyreflex Coupling help to accommodate angular, parallel and axial misalignments.

Parallel Misalignment upto 6 mm.Angular Misalignment upto 4°. End Float upto 8 mm. Suitable in ambient temp. upto 70°C.

CUSHIONING SHOCK LOADS

Tyreflex being a torsionally soft coupling protects against vibration, impact loads and heavy shocks in the event of sudden load changes.

EASE OF ASSEMBLY / DISASSEMBLY

Alignment is quickly checked by placing a straight edge across the outside diameters of the flanges.

Installation or replacement of new tyre is achieved without disturbing driver or driven shafts, simply by loosening the clamping screws, placing a new tyre between the flanges and clamping rings and then tightening the clamping screws.

TYRE-FLEX COUPLING - RST

Tyre-flex Spacer Couplings RST are specifically designed for motor-pump installations, where it is desirable not to disturb drive/driven equipment while servicing impellers, packing glands, etc.

The maintenance time-reduction feature is valuable on pumps, compressors and many other applications.

It comprises of a spacer assembly and a standard Tyre-flex coupling. The spacer assembly consists of a flanged shaft and a spacer adapter taper bored to suit standard Taper Bush.

SELECTION PROCEDURE - T/TO

(a) Service Factor

Determine the required service factor from table 1.

(b) Design Power

Multiply the normal running power by the service factor. This gives **Design Power** which is used as a basis for selecting the coupling.

(c) Coupling Size

Refer table 2 and from the appropriate speed read across until a power greater than that required is found. The size of Tyre-flex coupling required is given in that column..

(d) Bore Size

Check from table 3 that selected coupling can accommodate required bores.

SELECTION PROCEDURE - RST

- 1. Select a suitable size of Tyre-flex coupling using the procedure.
- 2. Refer size column in table A and locate the size of coupling selected.
- 3. Read across this size until required DBSE can be accommodated.
- 4. The size of the spacer coupling is given in the first column of table A.
- 5. Refer coupling dimensional table A to check that the required bores can be accommodated.

TYRE-FLEX COUPLINGS

TABLE 1: SERVICE FACTORS

SPECIAL CLASSES	Type of Driving Unit										
For applications where substantial shock, vibration and torque fluctuations occur and for reciprocating machines e.g. internal combustion engines, piston pumps and compressors, refer to Rathi Transpower Pvt. Ltd. with full application details for analysis.		ectric Motors eam Turbine		Internal Combustion Engine Steam Engines Water Engines							
	Hour	s per day d	uty	Hours	per day dut	ty					
Type of Driven Machine	upto 10	over 10 to 16 incl.	Over 16	upto 10	over 10 to16 incl.	Over 16					
CLASS 1 Agitators, Brewing mahinery, Centrifugal compressors and pumps, Belt Conveyors, Dynamometers, Lineshafts, Fans upto 7.5 kW, Blower and exhausters (except positive displacement), Generators.	0.8	0.9	1.0	1.3	1.4	1.5					
CLASS 2 Clay working machinery, General machine tools, Paper mill beaters and winders, Rotary pumps, Rubber extruders, Rotary Screens, Textile Machinery, Marine Propellers, and Fans over 7.5 kW. CLASS 3	1.3	1.4	1.5	1.8	1.9	2.0					
Bucket elevators, Cooling tower fans, Piston compressors & pumps, Foundry machinery, Metal presses, Paper mill Calenders, Hammer mills, Presses and pulp grinders, Rubber Calenders, Pulverisers and Positive displacement blowers. CLASS 4	1.8	1.9	2.0	2.3	2.4	2.5					
Reciprocating conveyors, Gyratory crushers, Mills (ball, pebble and rod). Rubber Machinery (Banbury Mixers and Mills) and Vibratory screens.	2.3	2.4	2.5	2.8	2.9	3.0					

TABLE 2: POWER RATING (kW)

Speed							Size	T /	го						
rpm	4	5	6	7	8	9	10	11	12	14	16	18	20	22	25
100	0.25	0.69	1.33	2.62	3.93	5.24	7.07	9.16	13.9	24.3	39.5	65.7	97.6	121	154
750	1.87	5.17	9.97	19.65	29.47	39.30	53.02	68.70	104.25	182.25	296.25	492.75	732	907.5	1155
1000	2.50	6.90	13.30	26.20	39.30	52.40	70.70	91.60	139.0	243.0	395.0	657.0	976	1215	1537
1500	3.75	10.35	19.95	39.30	58.95	78.60	106.05	137.40	208.50	364.50	592.50*	986.5*	-	1	-
1800	4.50	12.42	23.94	47.16	70.74	94.32	127.26	164.88	250.20	437.40*	-	-	-	-	-
3000	7.50	20.70	39.90	78.60	117.90*	157.20*	-	-	-	-	-	-	-	-	-
3600	9.00	24.84	47.98	94.32	-	-	-	-	-	-	-	-	-	-	-

- All these power ratings are calculated at constant torque. For speeds below 100 rpm and intermediate speeds use normal torque ratings.

Dynamic balancing preferred at these speeds.

Poles	2	4	6	8
rpm	3000	1500	1000	750

TECHNICAL DATA: FLEXIBLE TYRES

Size		4	5	6	7	8	9	10	11	12	14	16	18	20	22	25
Max. Speed	rpm	4500	4500	4000	3600	3100	3000	2600	2300	2050	1800	1600	1500	1300	1100	1000
Torsional Stiffness Nm/	Deg.	5	13	26	41	63	91	126	178	296	470	778	1371	1959	2760	3562
Parallel Misalignment	mm	1.1	1.3	1.6	1.9	2.1	2.4	2.6	2.9	3.2	3.7	4.2	4.8	5.3	5.8	6.6
End Float	mm	1.3	1.7	2.0	2,3	2.6	3.0	3,3	3.7	4.0	4.6	5.3	6.0	6.6	7.3	8,2
Normal Torque	Nm	24	66	127	250	375	500	675	875	1330	2325	3730	6270	9325	11600	14675
Max. Torque	Nm	64	160	318	487	759	1096	1517	2137	3547	5642	9339	16455	23508	33125	42740

TABL	E 3 : D	IMENS	ONS	OF TY	RE-I	LEX I	IUB T	YPES	B, F	& H													
	Kw at	Max		#		# Bore)	7	Type F/	Н	Тур	е В						Weight per	Moment of				
Size	100 rpm	Speed rpm	Туре	Bush Size	РВ	Ma							Α	D	В	M	G	Coupling kg.	Inertia (WR²) per				
						Metric	Inch	L	С	J	L	С							Coupling kgm ²				
T-4	0.25	4500	В	-	10	32	1 1/4	-	-	-	65	22	104	82	-	17	24	1.9	0.00161				
			F/H	1008	-	25	1	65	22	29	-	-						1.7	0.00148				
T-5	0.69	4500	В	-	10	38	1 1/2	-	-	-	89	32	133	100	79	17	29	3.5	0.00358				
			F/H	1210	-	32	1 1/4	75	25	38	-	-				19		2.7	0.00349				
T-6	1.33	4000	В	-	15	45	1 3/4	-	-	-	106	38	165	125	73	8	35	5	0.0105				
			F/H	1610	-	42	1 5/8	80	25	38	-	-			103	19		3.6	0.0103				
			В	-	19	50	2	-	-	-	106	45				-		8.4	0.0177				
TO-7	2.62	3600	F	2012	-	50	2	80	32	38	-	-	197	144	82	9	16	6.35	0.0192				
			Н	1610	-	42	1 5/8	66	25		-	-						6.2	0.0157				
			В	-	25	63	2 1/2	-	-	-	123	51		167		10		11.5	0.0329				
TO-8	3.93	3100	F	2517	-	60	2 1/2	111	45	42	-	-	210		96	9	22	8.53	0.0303				
			Н	2012	-	50	2	85	32		-	-						8.5	0.0293				
TO-9	5.24	3000	В	-	30	75	3	-	-	-	138	57	235	188	110	-	24	16	0.0599				
			F/H	2517	-	60	2 1/2	114	45	48	-	-				-		12	0.0538				
			В	-	32	80	3 1/8	-	-	-	140	60				-		22.7	0.1148				
TO-10	7.07	2600	F	3020	-	75	3	122	51	48	-	-	254	216	125	_	24	18.2	0.1062				
			Н	2517	-	60	2 1/2	110	45	10	-	-						18.1	0.1058				
TO-11	9.16	2300	В	-	32	90	3 1/2	-	-	-	151	65	279	233	140	-	22	28.3	0.1631				
10 11	0.10	2000	F/H	3020	-	75	3	123	51	55	-	-	270		110	-		21.1	0.1461				
			В	-	38	100	4	-	-	-	177	76				-		40.1	0.2902				
TO-12	13.9	2050	F	3525	-	*100	4	155	65	55	-	-	314	264	152	-	24.5	30.33	0.2627				
			Н	3020	-	75	3	127	51		-	-						30.3	0.2622				
TO-14	24.3	1800	В	-	58	127	5	-	-	-	200	89	359	311	195	26	23	60.6	0.6045				
10-14	24.5	1000	F/H	3525	-	*100	4	152	65	67	ı	ı	339	311	195	ı	20	42.6	0.4922				
TO-16	39.5	1600	В	-	65	140	5 1/2	-	-	-	212	102	395	345	016	-	8	86.4	1.2755				
10-16	39.5	1600	F/H	4030	-	*115	4 1/2	162	77	80	-	-	393	345	216	-	0	72.6	1.1134				
TO 10	6E 7	1500	В	1	70	150	6	-	-	-	254	116	470	200	220	-	22	133.3	2.1525				
TO-18	65.7	1500	F/H	4535	-	*125	5	200	89	89	-	-	470	398	220	-	22	123.0	1.9514				
TO 00	07.0	1200	В	-	70	150	6	-	-	-	258	114	E00	400	200	- 00		144.6	3.1765				
TO-20	97.6	1300	F/H	4535	-	*125	5	208	89	89	-	-	508	429	220	-	30	158.3	3.0129				
TO 00	101	1100	В	-	75	160	6 1/2	-	-	-	281	127	562 470				0 470	60 470	040	-	07	181.63	4.7861
TO-22	121	1100	F/H	5040	-	125	5	231	102	92	-	1		470 2	240	-	27	195.1	4.8954				
TO-25	154	1000	В	-	85	190	7 1/2	-	-	-	294	132	628	532	275	-	30	281.1	8.129				

- All dimensions are in mm unless otherwise specified.

 M is the amount by which clamping screws need to be withdrawn to release the tyre.

 J is the wrench clearance to allow for tightening and loosening the bush on the shaft.

 Shaft ends, although normally located G apart, can project beyond the flanges as shown. In this event allow sufficient space between shaft ends for end float and misalignment.

 Maximum torque figures should be regarded as short duration overload ratings for direct on line starting. Angular misalignment capacity up to 4°.

 Weights & Moment of Inertia specified are at without bores.

 For detailed information about Taper Bush bore, please refer Taper Bush catalogue.

 Standard Bore 90mm, 100mm, 115mm & Max Bore with shallow key 100mm, 115mm & 125mm for bush nos. 3525, 4030 & 4535 respectively.

TYRE - FLEX SPACER COUPLINGS

TYPE RST

TABLE	A :DI	MENS	IONAL	DATA															
Spacer	Nom		Bush				Е				;	S		Tyre-		Bush		(G
Size	DBSE	Size		# Max. Bore		ØD	т	то	F	J	т	то	ØВ	Flex Size	Size	# Max. Bore		т	то
			mm	Inch										T/TO		mm	Inch		
RST 12	80 100	1210 1210	32 32	1 1/4 1 1/4	118 118	83 83	130 150	_	25 25	22 22	57 77	_	25 25	4	1008 1008	25 25	1	24 24	_
	100 140	1615 1615	42 42	1 5/8 1 5/8	127 127	80 80	163 203	_	38 38	24 24	94 134	_	32 32	4* 4*	1008 1008	25 25	1	24 24	_
RST 16	100	1615 1615	42	1 5/8	127	80	166	_	38	24	94	_	32	5 5	1210	32	1 1/4	29	_
	100	1615	42 42	1 5/8 1 5/8	127 127	80 80	206 166	_	38 38	24 24	134 94	_	32 32	6	1210 1610	32 42	1 1/4 1 5/8	29 35	_
	140	1615	42	1 5/8	127	80	206	_	38	24	134	_	32	6	1610	42	1 5/8	35	_
	100 140	2517 2517	60 60	2 1/2 2 1/2	178 178	127 127	_	180 220	45 45	27 27	_	94 134	48 48	7F 7F	2012 2012	50 50	2 2	_	16 16
RST 25	180 100	2517 2517	60 60	2 1/2 2 1/2	178 178	127 127	_	260 193	45 45	27 27	_	174 94	48 48	7F 8F	2012 2517	50 60	2 2 1/2	_	16 22
1101 20	140	2517	60	2 1/2	178	127	_	233	45	27	_	134	48	8F	2517	60	2 1/2	_	22
	180 140	2517 2517	60 60	2 1/2 2 1/2	178 178	127 127	_	273 233	45 45	27 27	_	174 134	48 48	8F 9	2517 2517	60 60	2 1/2 2 1/2	_	22 24
	180	2517	60	2 1/2	178	127	_	273	45	27		174	48	9	2517	60	2 1/2		24
	140 180	3030 3030	75 75	3	216 216	146	_	270	76	33	_	134 174	60 60	10F 10F	3020 3020	75	3	_	24
RST 30	140	3030	75 75	3 3	216	146 146	_	310 270	76 76	33 33	_	134	60	11	3020	75 75	3	_	24 22
	180	3030	75	3	216	146	_	310	76	33		174	60	11	3020	75	3		22
	140	3535	90	3 1/2	248	178	_	297	89	33	_	134	80	12F	3525	100	4	_	24.5
	180	3535	90	3 1/2	248	178	_	337	89	33	_	174	80	12F	3525	100	4	_	24.5
RST 35	140 180	3535 3535	90 90	3 1/2 3 1/2	248 248	178 178	_	297 337	89 89	33 33	_	134 174	80 80	14 14	3525 3525	100 100	4	_	23 23

All dimensions are in mm unless otherwise specified.

TABLE B: DISTANCE BETWEEN SHAFT ENDS (DBSE)

		DOT 40																		
Tyre-flex	RS	T12		RS	T 16			RST 25						RS	Г 30		RST 35			
Size	1	80	100		140		100		140		180		140		180		140		180	
T/TO	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
4	80	100	100	113	140	153														
5			100	116	140	156														
6			100	124	140	164														
7 F							100	107	140	147	180	187								
8 F							100	112	140	152	180	192								
9									140	155	180	195								
10 F													140	151	180	191				
11													140	151	180	192				
12 F																	140	156	180	196
14																	140	153	180	193

- Non-standard spacers are available on request. Notes: ●
 - Ref. installation instructions for mounting and dismounting.

In view of our constant endeavour to improve quality of our products, we reserve the right to alter or change specifications without prior notice. This document is the intellectual property of Rathi Transpower Pvt. Ltd. and subject to copyright.

Rathi Transpower Pvt Ltd

Rathi Chambers, 7, Deccan College Road, Pune 411 006.(INDIA) Phone : 91-20-30517201 Fax : 91-20-30517212

E-mail: enquiry@rathigroup.com Website: www.rathicouplings.com Distributor

4

^{*} T4 'B' flange must be used to fit spacer shaft.

For detailed information about Taper Bush bore, please refer Taper Bush catalogue.