Computing 2-isogenies on Kummer lines

> Nicolas Sarkis

Montgomer curves

Theta models

Kummei lines

Conclusion

Reference

Computing 2-isogenies on Kummer lines

Nicolas Sarkis Advisors: Razvan Barbulescu and Damien Robert

Institut de Mathématiques de Bordeaux

October 31st, 2023 – Isogeny Club

curves

Theta model:

> Kummer lines

Conclusior

Reference

Montgomery curves

Arithmetic

2- and 4-isogenies

2 Theta models

Definitions

 ${\sf Arithmetic}$

Conversions

2-isogenies

3 Kummer lines

Definitions

General algorithm

New formulas

Computing 2-isogenies on Kummer lines

> Nicolas Sarkis

Montgomery curves

2- and 4-isogenie

Theta

Kumme lines

Conclusion

References

Montgomery curves

Montgomery curves

Arithmetic

2- and 4-isogeni

Theta models

Kumme lines

Conclusion

References

• Short Weierstrass (general case):

$$E: y^2 = x^3 + ax + b$$

• Montgomery curves:

$$E: By^2 = x(x^2 + Ax + 1)$$

Figure: A Montgomery curve

 $E: Bv^2 = x(x^2 + Ax + 1)$

If P = (x : y : z), then -P = (x : -y : z). If one forgets about the sign of y, we

Arithmetic

Montgomery xz-coordinates

get a Kummer line $\mathcal{K} = E/\{\pm 1\}$.

This map is a degree 2 covering $(\pi^{-1}(x:z) = \{(x:\pm y:z)\}$ except if y=0):

$$E \stackrel{\pi}{ o} \mathbb{P}^1$$

$$(x:y:z)\mapsto egin{cases} (0:1) & ext{if } (x:y:z)=(0:1:0) \ (x:z) & ext{otherwise} \end{cases}$$

Notation:
$$\pi(P) = [P]$$
.

5/47

Montgomery curves

Arithmetic

2- and 4-isogenie

I heta models

lines

Conclusion

References

Figure: Two possible choices

Montgomery curves

Arithmetic

Theta

Kumme lines

Conclusion

References

Figure: Two possible choices

However, if we know [P], [Q], [P-Q], we can compute [P+Q]

Differential addition and doubling [Mon87]

curves

Arithmetic

2- and 4-isogenie

Theta models

Kummer lines

Conclusion

- -

• M is the cost of a multiplication in k, S the cost of a square in k.

• m_0 is the cost of a multiplication by a curve constant in k.

Differential addition (3M + 2S)

Set $u := (x_P + z_P)(x_Q - z_Q)$ and $v := (x_P - z_P)(x_Q + z_Q)$

$$z_{P+Q} = (u+v)^2$$
 $z_{P+Q} = \frac{x_{P-Q}}{z_{P-Q}}(u-v)^2$

Doubling $(2M + 2S + 1m_0, d = \frac{A+2}{4})$

Set
$$u := (x_P + z_P)^2$$
, $v := (x_P - z_P)^2$ and $t := u - v$

$$x_{2\cdot P} = uv$$
 $z_{2\cdot P} = t(v+dt)$

```
Computing
2-isogenies
on Kummer
lines
```

Montgomery curves

Arithmetic
2- and 4-isogenic

Theta models

Kumme lines

Conclusion

References

```
Algorithm 1: Montgomery ladder
```

```
Input: [R] = [m \cdot P], [S] = [(m+1) \cdot P], b a bit
Output: ([2 \cdot R], [R+S]) if b = 0 ([R+S], [2 \cdot S]) if b = 1
Data: The point [P]
```

1 Function MontgomeryLadder([R],[S],b):

```
2 if b = 0 then

3 |S| \leftarrow \text{DiffAdd}([R], [S], [P]);

4 |R| \leftarrow \text{Doubling}([R]);

5 else if b = 1 then

6 |R| \leftarrow \text{DiffAdd}([R], [S], [P]);

7 |S| \leftarrow \text{Doubling}([S]);

8 end
```

return ([R], [S]);

Figure: Chaining ladder

 $n = 22 = \overline{10110}^2$

P

9

Montgomery curves

Arithmetic
2- and 4-isogenie

Theta models

Kumme lines

Conclusion

References

```
Algorithm 1: Montgomery ladder
```

```
Input: [R] = [m \cdot P], [S] = [(m+1) \cdot P], b a bit Output: ([2 \cdot R], [R+S]) if b = 0 ([R+S], [2 \cdot S]) if b = 1
Data: The point [P]
```

```
2 | if b = 0 then

3 | [S] \leftarrow \text{DiffAdd}([R], [S], [P]);

4 | [R] \leftarrow \text{Doubling}([R]);

5 | else if b = 1 then
```

Function MontgomeryLadder([R], [S], b):

6 | $[R] \leftarrow \text{DiffAdd}([R], [S], [P]);$ 7 | $[S] \leftarrow \text{Doubling}([S]);$ 8 | end

return ([R], [S]):

 $n - 22 - \overline{10110}^2$

Figure: Chaining ladder

Montgomery curves

Arithmetic
2- and 4-isogenie

Theta models

Kumme lines

Conclusion

Reference:

Algorithm 1: Montgomery ladder

Input:
$$[R] = [m \cdot P]$$
, $[S] = [(m+1) \cdot P]$, b a bit
Output: $([2 \cdot R], [R+S])$ if $b = 0$ $([R+S], [2 \cdot S])$ if $b = 1$

Data: The point [P]

```
1 Function MontgomeryLadder([R],[S],b):
```

6 |
$$[R] \leftarrow \text{DiffAdd}([R], [S], [P]);$$

7 | $[S] \leftarrow \text{Doubling}([S]);$

8 end

9

return ([R], [S]);

$$n=22=\overline{10110}^2$$

0

Figure: Chaining ladder

Arithmetic

```
Algorithm 1: Montgomery ladder
```

Input:
$$[R] = [m \cdot P]$$
, $[S] = [(m+1) \cdot P]$, b a bit
Output: $([2 \cdot R], [R+S])$ if $b = 0$ $([R+S], [2 \cdot S])$ if $b = 1$
Data: The point $[P]$

Function MontgomeryLadder([R], [S], b):

```
if b=0 then
           [S] \leftarrow \text{DiffAdd}([R], [S], [P]);
3
           [R] \leftarrow \text{Doubling}([R]):
4
       else if b=1 then
5
```

$$[R] \leftarrow \mathsf{DiffAdd}([R], [S], [P]);$$

 $[S] \leftarrow \text{Doubling}([S])$: 7

8 end

return ([*R*], [*S*]): 9

$$n=22=\overline{10110}^2$$

→ 2P

Figure: Chaining ladder

Computing 2-isogenies on Kummer lines

> Nicolas Sarkis

Arithmetic

```
Algorithm 1: Montgomery ladder
```

Input:
$$[R] = [m \cdot P]$$
, $[S] = [(m+1) \cdot P]$, b a bit
Output: $([2 \cdot R], [R+S])$ if $b = 0$ $([R+S], [2 \cdot S])$ if $b = 1$

Data: The point [P]

```
Function MontgomeryLadder([R], [S], b):
```

```
if b=0 then
            [S] \leftarrow \text{DiffAdd}([R], [S], [P]);
3
```

4 |
$$[R] \leftarrow \text{Doubling}([R]);$$

else if b=1 then 5

$$\mathbf{6} \quad | \quad [R] \leftarrow \mathsf{DiffAdd}([R],[S],[P]);$$

7 |
$$[S] \leftarrow \text{Doubling}([S]);$$

8 end

9 return
$$([R], [S])$$
;

$$n = 22 = \overline{10110}^{2}$$

$$P \longrightarrow 2P$$

$$2P \longrightarrow 3P$$

$$5P \longrightarrow 6P$$

Figure: Chaining ladder

Computing 2-isogenies on Kummer lines

> Nicolas Sarkis

Montgomery curves

Arithmetic

Theta models

Kumme lines

Conclusion

Reference:

Algorithm 1: Montgomery ladder

Input:
$$[R] = [m \cdot P]$$
, $[S] = [(m+1) \cdot P]$, b a bit Output: $([2 \cdot R], [R+S])$ if $b = 0$ $([R+S], [2 \cdot S])$ if $b = 1$

Data: The point [P]

```
Function MontgomeryLadder([R], [S], b):
       if b=0 then
           [S] \leftarrow \text{DiffAdd}([R], [S], [P]);
3
           [R] \leftarrow \text{Doubling}([R]):
4
      else if b=1 then
5
           [R] \leftarrow \text{DiffAdd}([R], [S], [P]);
6
           [S] \leftarrow \text{Doubling}([S]):
7
8
      end
      return ([R], [S]);
9
```

$$n = 22 = \overline{10110}^2$$

$$P \longrightarrow 2P$$

$$\downarrow$$

Figure: Chaining ladder

2-isogenies on Montgomery curves [Ren18]

Nicolas Sarkis

Montgomer curves

2- and 4-isogenies

Theta models

Kummer lines

Conclusion

Reference

Usage:

- Compute 2^n -isogenies: $E_1 = E \xrightarrow{f_1} E_2 \xrightarrow{f_2} \cdots \xrightarrow{f_n} E_{n+1} = E'$, $f = f_n \circ \cdots \circ f_1$.
- Compute $2 \cdot P$: $\hat{f} \circ f(P) = 2 \cdot P$.

2-isogenies with an additional 2-torsion point

Assume $T = (x_T : 0 : z_T)$ is a 2-torsion point with $x_T \neq 0$.

The 2-isogeny $f: E \to E'$ with kernel T is the following on the Kummer line:

$$f:(x:z)\mapsto (x(xx_T-zz_T):z(xz_T-zx_T))$$

The co-domain $E': B'y^2 = x(x^2 + A'x + 1)$ is given by:

$$(A'+2:4)=(x_T^2-z_T^2:z_T^2)$$

Montgomer

2- and 4-isogenies

Theta models

Kummer lines

Conclusion

References

2-isogenies on Montgomery curves

- Co-domain: 2S + 1a.
- Image: 4M + 6a (4M + 4a with a pre-computation).
- Doubling: 4M + 2S + 4a.

Remark

We had earlier $2M + 2S + 1m_0$ for doubling. While chaining isogenies, we lose control on our constants, so $m_0 = 2M$ (given as numerator + denominator)

2- and 4-isogenies

2-isogenies on Montgomery curves

- Co-domain: 25 + 1a.
- Image: 4M + 6a (4M + 4a with a pre-computation).
- Doubling: 4M + 2S + 4a.

Remark

We had earlier $2M + 2S + 1m_0$ for doubling. While chaining isogenies, we lose control on our constants, so $m_0 = 2M$ (given as numerator + denominator)

For a 4-isogeny, we can chain two 2-isogenies (doubles the cost), or we can do better...

ontgomer Irves

2- and 4-isogenies

Theta

Kummer lines

Conclusion

References

4-isogenies with an additional 4-torsion point

Assume $T = (x_T : * : z_T)$ is a 4-torsion point.

The 4-isogeny $f: E \to E'$ with kernel T is the following on the Kummer line:

$$f: (x:z) \mapsto (x(2x_Tz_Tz - (x_T^2 + z_T^2)x)(x_Tx - z_Tz)^2 : z(2x_Tz_Tx - (x_T^2 + z_T^2)z)(z_Tx - x_Tz)^2)$$

The co-domain $E': B'y^2 = x(x^2 + A'x + 1)$ is given by:

$$(A'+2:4)=(x_T^4-z_T^4:z_T^4)$$

The image can be computed in 6M + 2S + 6a, better than $2 \times (4M + 4a)$.

Computing 2-isogenies on Kummer lines

> Nicolas Sarkis

Montgome curves

Theta models

Definition

Arithme

Conversion

Kumme

lines

Conclusion

References

Theta models

Montgome curves

Theta models

Definitions Arithmetic Conversion 2-isogenies

Kummer lines

Conclusion

Referenc

Why are we doing that?

- We look for other maps $E o \mathbb{P}^1$ with good arithmetic.
- Theta models provide that.
- They generalize to higher dimension.

Remark

Every elliptic curve E can be written in short Weierstrass form. Depending on the property of E and the field k, it can be put in different models (Montgomery, twisted Edwards, theta, ...). In ECC, we can choose a convenient curve with a convenient model, we won't discuss the classification here.

- Montgomery: one rational 4-torsion point on the Kummer line.
- Theta: two independent rational 4-torsion point on the Kummer line.

Sarkis

13/47

ullet We look for other maps $E o \mathbb{P}^1$ with good arithmetic.

Theta models provide that.

They generalize to higher dimension.

Remark

Every elliptic curve E can be written in short Weierstrass form. Depending on the property of E and the field k, it can be put in different models (Montgomery, twisted Edwards, theta, ...). In ECC, we can choose a convenient curve with a convenient model, we won't discuss the classification here.

- Montgomery: one rational 4-torsion point on the Kummer line.
- Theta: two independent rational 4-torsion point on the Kummer line.

We will work on $\mathbb C$ (generalizes well thanks to Lefschetz principle).

An elliptic curve is then $E_{\tau} = \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ with $\tau \in \mathbb{H}$ (upper half-plane).

References

Jacobi theta function

Let $\tau \in \mathbb{H}$, the Jacobi theta function is:

$$\vartheta(z;\tau) = \sum_{n \in \mathbb{Z}} \exp(i\pi n^2 \tau + 2i\pi nz)$$

Jacobi theta function

Let $\tau \in \mathbb{H}$, the Jacobi theta function is:

$$\vartheta(z;\tau) = \sum_{n\in\mathbb{Z}} \exp(i\pi n^2 \tau + 2i\pi nz)$$

Theta functions with characteristics

Let $a,b\in\mathbb{Z}$ (characteristics) and $\ell\in\mathbb{N}^*$ (the level), $\tau\in\mathbb{H}$:

$$\vartheta_{\ell}\left[a,b\right]\left(z; au
ight) = \sum_{n\in\mathbb{Z}}\exp\left(i\pi\left(n+rac{a}{\ell}
ight)^{2} au + 2i\pi\left(n+rac{a}{\ell}
ight)\left(z+rac{b}{\ell}
ight)
ight)$$

References

Recall $E_{\tau} = \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$.

Function of level ℓ

Let $au \in \mathbb{H}$, $\varphi : \mathbb{C} \to \mathbb{C}$ is of level ℓ (associated to au) if:

$$orall m \in \mathbb{Z}, arphi(z+m) = arphi(z) ext{ and } arphi(z+m au) = \exp(-i\pi\ell m^2 au - 2i\pi\ell mz)arphi(z)$$

Denote by $R_{\tau,\ell}$ the vector space of level ℓ functions associated to τ .

Recall $E_{\tau} = \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z}).$

Function of level /

Let $au \in \mathbb{H}$, $\varphi : \mathbb{C} \to \mathbb{C}$ is of level ℓ (associated to au) if:

$$\forall m \in \mathbb{Z}, \varphi(z+m) = \varphi(z) \text{ and } \varphi(z+m au) = \exp(-i\pi\ell m^2 \tau - 2i\pi\ell mz)\varphi(z)$$

Denote by $R_{\tau,\ell}$ the vector space of level ℓ functions associated to τ .

Theorem

 $\dim R_{ au,\ell}=\ell$ (sketch of proof: exhibit bases derived from theta functions)

From now on, $\ell = 2$.

Montgomei curves

Theta models

Definitions
Arithmetic
Conversions

2-isogenies

Kumme lines

Conclusion

References

Examples of basis of $R_{\tau,2}$ and theta constants

- $\theta_0(z) = \vartheta_2[0; 0](z; \tau/2)$ and $\theta_1(z) = \vartheta_2[0; 1](z; \tau/2)$. We call $a = \theta_0(0)$ and $b = \theta_1(0)$ the theta constants.
- Montgomery xz: $x = \vartheta_2[0; 1](u; \tau)^2$ and $z = \vartheta_2[1; 1](u; \tau)^2$.

Computing

2-isogenies

Examples of basis of $R_{\tau,2}$ and theta constants • $\theta_0(z) = \theta_2[0; 0](z; \tau/2)$ and $\theta_1(z) = \theta_2[0; 1](z; \tau/2)$.

- We call $a = \theta_0(0)$ and $b = \theta_1(0)$ the theta constants.
- Montgomery xz: $x = \theta_2[0; 1](u; \tau)^2$ and $z = \theta_2[1; 1](u; \tau)^2$.

Theorem (Lefschetz)

Let $R_{\tau,2} = \text{span}(f,g)$, the following map is an embedding:

Let
$$\kappa_{ au,2}=\operatorname{span}(r,g)$$
 , the following map is an embedding: $\pi: E_ au/\{\pm 1\} o \mathbb{P}^1(\mathbb{C})$

$$\pi: \mathcal{E}_{ au}/\{\pm 1\}
ightarrow \mathbb{P}^{2}(\mathbb{C})$$

$$[z] \mapsto (f(z): g(z))$$

Theta models (finally!)

If $(f,g)=(\theta_0,\theta_1)$, the image is denoted by $\theta(a:b)\simeq \mathbb{P}^1(\mathbb{C})$ and is called the theta model with theta constants a and b

Theta model (on E_{τ})

Constants: $a := \theta_0(0)$ and $b := \theta_1(0)$. Notation: $\theta(a:b)$.

$$(x:z):=(\theta_0(u):\theta_1(u)),u\in\mathbb{C}$$

References

Theta model (on E_{τ})

Constants: $a := \theta_0(0)$ and $b := \theta_1(0)$. Notation: $\theta(a : b)$.

$$(x:z):=(\theta_0(u):\theta_1(u)), u\in\mathbb{C}$$

Dual model (on E_{τ})

Constants: a' := a + b and b' := a - b. Notation: $\theta'(a' : b')$.

$$H:(x:z)\in\theta(a:b)\mapsto(x+z:x-z)$$

Constants: $a := \theta_0(0)$ and $b := \theta_1(0)$. Notation: $\theta(a:b)$.

 $(x:z):=(\theta_0(u):\theta_1(u)), u\in\mathbb{C}$

Theta twisted model (on E_{τ})

Constants: a^2 and b^2 . Notation: $\theta_{+}(a^2:b^2)$.

Computing

Definitions

17/47

 $C: (x:z) \in \theta(a:b) \mapsto (ax:bz)$

 $H: (x:z) \in \theta(a:b) \mapsto (x+z:x-z)$

Constants: a' := a + b and b' := a - b.

Notation: $\theta'(a':b')$.

Even more models

Computing

2-isogenies

Definitions

17/47

Notation: $\theta(a:b)$.

 $(x:z):=(\theta_0(u):\theta_1(u)), u\in\mathbb{C}$

Theta twisted model (on E_{τ})

Constants: $a := \theta_0(0)$ and $b := \theta_1(0)$.

Constants: a^2 and b^2 . Notation: $\theta_t(a^2:b^2)$.

 $C: (x:z) \in \theta(a:b) \mapsto (ax:bz)$

 $S: (x:z) \in \theta(a:b) \mapsto (x^2:z^2)$

Notation: $\theta_s(a^2:b^2)$

Constants: a^2 and b^2 .

Theta squared model (on $E_{\tau/2}$)

Even more models

 $H: (x:z) \in \theta(a:b) \mapsto (x+z:x-z)$

Notation: $\theta'(a':b')$.

Constants: a' := a + b and b' := a - b.

Montgomer curves

curves

Definitions

Arithmet

Conversion

Kumme lines

Conclusion

References

First two lines are theta models on E_{τ} . The last two lines are theta models on the isogenous curve $E_{\tau/2}$.

$$\theta'(a':b')$$

$$\downarrow \uparrow H$$

$$\theta(a:b) \xrightarrow{C} \theta_t(a^2:b^2) \stackrel{=}{\Longleftrightarrow} ((\theta')_s)'(a^2:b^2) \xrightarrow{H} (\theta')_s(A'^2:B'^2)$$

$$\downarrow s \downarrow \qquad \uparrow s$$

$$\theta_s(a^2:b^2) \xrightarrow{H} (\theta_s)'(A'^2:B'^2) \xrightarrow{=} (\theta')_t(A'^2:B'^2) \xrightarrow{\text{if } A'/B' \in k} \theta'(A':B')$$

$$\downarrow f \\ \theta(A:B)$$

Figure: Relation between theta models

Nicolas

Sarkis

Differential addition and doubling on $\theta(a:b)$

We get these from duplication formulas. We also have the relation $2A'^2 = a^2 + b^2$ and $2B'^2 = a^2 - b^2$

Differential addition $(2M + 4S + 1m + 1m_0)$

Set $u := (x_P^2 + z_P^2)(x_Q^2 + z_Q^2)$ and $v := \frac{A'^2}{B'^2}(x_P^2 + z_P^2)(x_Q^2 + z_Q^2)$

$$x_{P+Q} = u + v$$
 $z_{P+Q} = \frac{x_{P-Q}}{z_{P-Q}}(u - v)$

Arithmetic

Doubling $(4S + 2m_0)$

Set
$$u := (x_P^2 + z_P^2)^2$$
 and $v := rac{A'^2}{B'^2} (x_P^2 + z_P^2)^2$

$$x_{2\cdot P}=u+v$$
 $z_{2\cdot P}=\frac{a}{b}(u-v)$

Computing

Set $X - y^2$ and $Z - z^2$ We still have the relation $2A'^2 = a^2 + b^2$ and $2B'^2 = a^2 - b^2$

Differential addition
$$(3M+2S+1m_0)$$

Set $u:=(X_P+Z_P)(X_Q+Z_Q)$ and $v:=rac{A'^2}{B'^2}(X_P+Z_P)(X_Q+Z_Q)$

Coubling
$$(45 \pm 2m_0)$$

Doubling
$$(4S + 2m_0)$$

$$(a_0)^2$$
 and $y := \frac{A'^2}{a_0}$

Set
$$u := (X_P + Z_P)^2$$
 and $v := \frac{A'^2}{B'^2}(X_P + Z_P)^2$

 $X_{P+Q} = (u+v)^2$ $Z_{P+Q} = \frac{X_{P-Q}}{Z_{P-Q}}(u-v)^2$

$$7_{-} = \frac{a^2}{a^2} (u - \frac{a^2}{a^2})$$

Differential addition and doubling on $\theta_s(a^2:b^2)$

$$X_{2\cdot P} = (u+v)^2$$
 $Z_{2\cdot P} = \frac{a^2}{b^2}(u-v)^2$

Reference

Comparison to Montgomery xz-coordinates

	Montgomery	Theta squared
Diff. Add.	3M + 2S $2M + 2S + 1m_0$	$3M + 2S + 1m_0$ $4S + 2m_0$
	2W + 23 + 1M0	45 + 21110

Table: Comparison of arithmetic

- Differential addition is always slower.
- On $\mathbb{F}_{p^2} = \mathbb{F}_p[i]$ with $p \equiv 3 \mod 4$, we can reach $S = \frac{2}{3}M$, so doubling should be faster (if m_0 is small)

Nicolas

Sarkis

Conversions

Consider the theta squared model $\theta_s(a^2:b^2)$, and the Montgomery Kummer line M associated to:

$$E: y^2 = x \left(x - \frac{a^2}{b^2} \right) \left(x - \frac{b^2}{a^2} \right)$$

Isomorphism

There is an isomorphism between $\theta_s(a^2:b^2)$ and M given by:

$$\theta_s(a^2:b^2) \xrightarrow{\varphi} M$$

$$P_{\theta} = (x:z) \mapsto P_M = (a^2x - b^2z:b^2x - a^2z)$$

$$P_{\theta} = (a^2x - b^2z:b^2x - a^2z) \leftrightarrow P_M = (x:z)$$

We have to spend some multiplications to convert...

Conversions

We use the same notations. The following points are of 2-torsion on their respective models:

$$T_{\theta} = (1:0)$$
 $T_{M} = (a^{2}:b^{2})$

Translation map

There is a bijection between $\theta_s(a^2:b^2)$ and M given by:

$$heta_s(a^2:b^2) \xrightarrow{\psi} M$$

$$P_{\theta} = (x:z) \mapsto P_M + T_M = (x:z)$$

$$P_{\theta} + T_{\theta} = (x:z) \longleftrightarrow P_M = (x:z)$$

curves

Theta model

Definition

Conversions

2-isogenies

Kummer lines

Conclusion

References

If T is a 2-torsion point, $2 \cdot T = \mathcal{O}$, one could do:

$$P_M \xrightarrow{\psi^{-1}} P_\theta + T_\theta \xrightarrow{[2]} 2 \cdot P_\theta \xrightarrow{\psi} 2 \cdot P_M + T_M$$

We have to adapt the ladder to exploit the better doubling formulas of the theta model: hybrid ladder.

```
Computing
2-isogenies
on Kummer
lines
```

Montgomer curves

Theta

Definition Arithmet

Conversions

2-isogenies

Kumme

Conclusion

Reference

```
Algorithm 2: Hybrid ladder
```

```
Input: [R], [S] with [R - S] \in \{[P], [P + T]\}, b a bit
  Output: ([2 \cdot R + T], [R + S]) if b = 0
             ([R + S], [2 \cdot S + T]) if b = 1
  Data: The point [P]
 Function HybridLadder([R], [S], b):
      [D] \leftarrow [R - S]:
                                           // pre-computed
    if b=0 then
3
4
          [S] \leftarrow \text{DiffAddMontgomery}([R], [S], [D]);
          [R] \leftarrow \text{DoublingTheta}([R]):
5
      else if b=1 then
6
          [R] \leftarrow \text{DiffAddMontgomery}([R], [S], [D]);
7
          [S] \leftarrow \text{DoublingTheta}([S]):
8
```

$$n = 22 = \overline{10110}^2$$

Figure: Chaining ladder

g

10

end

return ([*R*], [*S*]):

```
Computing
2-isogenies
on Kummer
   lines
```

Conversions

3 4

5

6

7

8 g

10

end

return ([*R*], [*S*]):

```
Algorithm 2: Hybrid ladder
  Input: [R], [S] with [R - S] \in \{[P], [P + T]\}, b a bit
  Output: ([2 \cdot R + T], [R + S]) if b = 0
             ([R + S], [2 \cdot S + T]) if b = 1
  Data: The point [P]
1 Function HybridLadder([R], [S], b):
      [D] \leftarrow [R - S]:
                                           // pre-computed
    if b = 0 then
          [S] \leftarrow \text{DiffAddMontgomery}([R], [S], [D]);
          [R] \leftarrow \text{DoublingTheta}([R]):
      else if b=1 then
          [R] \leftarrow \text{DiffAddMontgomery}([R], [S], [D]);
          [S] \leftarrow \text{DoublingTheta}([S]):
```

$$n = 22 = \overline{10110}^2$$

$$P \longrightarrow 2P + T$$

Figure: Chaining ladder

Montgomer curves

Theta

Definition Arithmet

Conversions

2-isogenies

Kumme lines

Conclusion

Reference

```
Algorithm 2: Hybrid ladder
```

```
Input: [R], [S] with [R - S] \in \{[P], [P + T]\}, b a bit Output: ([2 \cdot R + T], [R + S]) if b = 0 ([R + S], [2 \cdot S + T]) if b = 1 Data: The point [P]
```

```
1 Function HybridLadder([R], [S], b):
```

```
2 [D] \leftarrow [R-S]; // pre-computed

3 if b=0 then

4 [S] \leftarrow \text{DiffAddMontgomery}([R],[S],[D]);

5 [R] \leftarrow \text{DoublingTheta}([R]);

6 else if b=1 then

7 [R] \leftarrow \text{DiffAddMontgomery}([R],[S],[D]);
```

 $[S] \leftarrow \text{DoublingTheta}([S])$:

9 end

8

10 return ([R],[S]);

$$n = 22 = \overline{10110}^{2}$$

$$0 \qquad P \longrightarrow 2P + T$$

$$2P + T \longrightarrow 3P + T$$

Figure: Chaining ladder

> Nicolas Sarkis

Conversions

```
Algorithm 2: Hybrid ladder
```

```
Input: [R], [S] with [R - S] \in \{[P], [P + T]\}, b a bit
Output: ([2 \cdot R + T], [R + S]) if b = 0
          ([R + S], [2 \cdot S + T]) if b = 1
Data: The point [P]
```

1 Function HybridLadder([R], [S], b):

```
[D] \leftarrow [R - S]:
                                              // pre-computed
      if b = 0 then
3
           [S] \leftarrow \text{DiffAddMontgomery}([R], [S], [D]);
4
          [R] \leftarrow \text{DoublingTheta}([R]):
5
      else if b=1 then
6
7
```

 $[R] \leftarrow \text{DiffAddMontgomery}([R], [S], [D]);$

 $[S] \leftarrow \text{DoublingTheta}([S])$:

g end

8

return ([*R*], [*S*]): 10

$$n = 22 = \overline{10110}^{2}$$

$$0 \qquad P \longrightarrow 2P + T$$

$$1 \qquad 2P + T \longrightarrow 3P + T$$

$$5P \longrightarrow 6P + T$$

Figure: Chaining ladder

> Nicolas Sarkis

Conversions

5

6

7

```
Algorithm 2: Hybrid ladder
```

```
Input: [R], [S] with [R - S] \in \{[P], [P + T]\}, b a bit
Output: ([2 \cdot R + T], [R + S]) if b = 0
          ([R + S], [2 \cdot S + T]) if b = 1
Data: The point [P]
```

```
1 Function HybridLadder([R], [S], b):
```

```
[D] \leftarrow [R - S]:
                                              // pre-computed
      if b = 0 then
3
           [S] \leftarrow \text{DiffAddMontgomery}([R], [S], [D]);
4
```

 $[R] \leftarrow \text{DoublingTheta}([R])$: else if b=1 then

```
[R] \leftarrow \text{DiffAddMontgomery}([R], [S], [D]);
```

 $[S] \leftarrow \text{DoublingTheta}([S])$: 8

g end 10

return
$$([R], [S])$$
;

$$n = 22 = \overline{10110}^{2}$$

$$0 \qquad P \longrightarrow 2P + T$$

$$1 \qquad 2P + T \longrightarrow 3P + T$$

$$1 \qquad 5P \longrightarrow 6P + T$$

$$11P + T - 12P + T$$

Figure: Chaining ladder

> Nicolas Sarkis

Montgomery curves

Theta

Definition Arithmeti

Conversions

2-isogenies

Kummeı Iines

Conclusion

Reference

```
Algorithm 2: Hybrid ladder
```

```
Input: [R], [S] with [R-S] \in \{[P], [P+T]\}, b a bit Output: ([2 \cdot R + T], [R+S]) if b = 0 ([R+S], [2 \cdot S + T]) if b = 1 Data: The point [P]
```

1 Function HybridLadder([R], [S], b):

```
2 [D] \leftarrow [R-S]; // pre-computed

3 if b = 0 then

4 [S] \leftarrow DiffAddMontgomery([R], [S], [D]);
```

 $[R] \leftarrow \text{DoublingTheta}([R]);$

else if b = 1 then $| [R] \leftarrow \text{DiffAddMontgomery}([R], [S], [D]);$

8 $[S] \leftarrow \text{DoublingTheta}([S]);$

9 end

5

6

7

10 return ([R],[S]);

$$n = 22 = \overline{10110^2}$$

$$0 \qquad P \longrightarrow 2P + T$$

$$1 \qquad 2P + T \longrightarrow 3P + T$$

$$1 \qquad 5P \longrightarrow 6P + T$$

$$0 \qquad 11P + T - 12P + T$$

$$22P + T \longrightarrow 23P$$

Figure: Chaining ladder

Montgomer curves

Theta

models Definition

Arithmetic

Conversion

2-isogenie

Kummeı lines

Conclusion

Reference:

Context

- $\mathbb{F}_{p^{10}} = \mathbb{F}_{p^5}[i]$ and $\mathbb{F}_{p^5} = \mathbb{F}_p[u]$ with $i^2 = -1$, $u^5 = 2$.
- Small multiplications are elements of \mathbb{F}_p times elements of $\mathbb{F}_{p^{10}}$.
- Curve constants: $\alpha = 1 + \mu i$, $d = \frac{2 \alpha \alpha^{-1}}{4} = \nu + i$, $\mu, \nu \in \mathbb{F}_p$
- $x_P, z_P \in \mathbb{F}_{p^{10}}$, i.e. m = M.
- 100 random scalar multiplications, repeated 100 times.

TL;DR small constants behave as small constants.

	Montgomery ladder	Hybrid ladder
Average (s)	2.502 ± 0.039	$2.348 \pm 0.017 \; (6.2\%)$

Table: Timings on Intel Core i5-1145G7 @ 2.60GHz

Montgomei curves

Theta

Definitions Arithmetic

Conversio

2-isogenies

lines

Conclusion

References

We are interested in the following 2-isogeny:

$$f: z \in E_{\tau} \mapsto z \in E_{\tau/2}$$
 $\hat{f}: z \in E_{\tau/2} \mapsto 2z \in E_{\tau}$

This corresponds to the square operation $(x:z) \in \theta(a:b) \mapsto (x^2:z^2) \in \theta_s(a^2:b^2)$

$$\theta(a:b) \stackrel{C}{\longleftarrow} \theta_t(a^2:b^2) \stackrel{H}{\longleftarrow} (\theta')_s(A'^2:B'^2) \qquad \theta_s(A^2:B^2) \\
s \downarrow \qquad \qquad \uparrow s \qquad \uparrow s \\
\theta_s(a^2:b^2) \stackrel{H}{\longrightarrow} (\theta_s)'(A'^2:B'^2) \stackrel{C}{\longrightarrow} \theta'(A':B') \stackrel{H}{\longrightarrow} \theta(A:B)$$

Figure: 2-isogeny on the relation graph

We are interested in the following 2-isogeny:

$$f: z \in E_{\tau} \mapsto z \in E_{\tau/2}$$
 $\hat{f}: z \in E_{\tau/2} \mapsto 2z \in E_{\tau}$

This corresponds to the square operation $(x:z) \in \theta(a:b) \mapsto (x^2:z^2) \in \theta_s(a^2:b^2)$

$$\theta(a:b) \xleftarrow{C} \theta_t(a^2:b^2) \xleftarrow{H} (\theta')_s(A'^2:B'^2) \qquad \theta_s(A^2:B^2)$$

$$\downarrow s \qquad \qquad \uparrow s \qquad \qquad \uparrow s$$

$$\theta_s(a^2:b^2) \xrightarrow{H} (\theta_s)'(A'^2:B'^2) \xrightarrow{C} \theta'(A':B') \xrightarrow{H} \theta(A:B)$$

Figure: 2-isogeny on the relation graph

2-isogeny cost (kernel $(-a:b) \in \theta(a:b)$): 2M + 2S + 4a.

Referen

We are interested in the following 2-isogeny:

$$f: z \in E_{\tau} \mapsto z \in E_{\tau/2}$$
 $\hat{f}: z \in E_{\tau/2} \mapsto 2z \in E_{\tau}$

This corresponds to the square operation $(x:z) \in \theta(a:b) \mapsto (x^2:z^2) \in \theta_s(a^2:b^2)$

$$\theta(a:b) \xleftarrow{C} \theta_t(a^2:b^2) \xleftarrow{H} (\theta')_s(A'^2:B'^2) \qquad \theta_s(A^2:B^2)$$

$$s \downarrow \qquad \qquad \uparrow s \qquad \uparrow s$$

$$\theta_s(a^2:b^2) \xrightarrow{H} (\theta_s)'(A'^2:B'^2) \xrightarrow{C} \theta'(A':B') \xrightarrow{H} \theta(A:B)$$

Figure: 2-isogeny on the relation graph

2-isogeny cost (kernel $(1:0) \in \theta_s(a^2:b^2)$): 2M + 2S + 4a.

ntgomei ves

models
Definitions
Arithmetic

Conversions
2-isogenies

Kummer lines

Conclusion

Referenc

We are interested in the following 2-isogeny:

$$f: z \in E_{\tau} \mapsto z \in E_{\tau/2}$$
 $\hat{f}: z \in E_{\tau/2} \mapsto 2z \in E_{\tau}$

This corresponds to the square operation $(x:z)\in heta(a:b)\mapsto (x^2:z^2)\in heta_s(a^2:b^2)$

$$\theta(a:b) \stackrel{C}{\longleftarrow} \theta_t(a^2:b^2) \stackrel{H}{\longleftarrow} (\theta')_s(A'^2:B'^2) \qquad \theta_s(A^2:B^2)$$

$$s \downarrow \qquad \qquad \uparrow s \qquad \uparrow s$$

$$\theta_s(a^2:b^2) \stackrel{H}{\longrightarrow} (\theta_s)'(A'^2:B'^2) \stackrel{C}{\longrightarrow} \theta'(A':B') \stackrel{H}{\longrightarrow} \theta(A:B)$$

Figure: Doubling on the relation graph

Doubling cost: 4M + 4S + 8a.

References

Costs summary and Montgomery comparison

2-isogenies on theta squared models

• Co-domain: 2S + 2a (not explained).

• Image: 2M + 2S + 4a.

• Doubling: 4M + 4S + 8a.

	Montgomery	Theta squared
Co-domain	2S + 1a	2 <i>S</i> + 2 <i>a</i>
Image	4M + 6a	2M + 2S + 4a
Doubling	4M + 2S + 4a	4 <i>M</i> + 4 <i>S</i> + 8 <i>a</i>

Table: Comparison of 2-isogenies

Sarkis

- 2-isogenies on theta squared models
 - Co-domain: 2S + 2a (not explained).
 - Image: 2M + 2S + 4a.
 - Doubling: 4M + 4S + 8a.

	Montgomery	Theta squared
Co-domain	2S + 1a	2 <i>S</i> + 2 <i>a</i>
Image	4 <i>M</i> + 6 <i>a</i>	2M + 2S + 4a
Doubling	4M + 2S + 4a	4 <i>M</i> + 4 <i>S</i> + 8 <i>a</i>

Costs summary and Montgomery comparison

Table: Comparison of 2-isogenies

- Similarly to hybrid ladder, we can do hybrid 2-isogenies.
- We are interested in more general formulas with other kernels.

> Nicolas Sarkis

Montgome curves

Theta mode

Kummer lines

General algorith

Conclusion

Reference

Kummer lines

Montgome curves

Theta models

Kummer lines

Definitions

General algorith

New formulas

Conclusion

References

Montgomery curves

 $E: By^2 = x(x-\alpha)(x-\alpha^{-1})$ a Montgomery curve.

$$E \xrightarrow{\pi} \mathbb{P}^1$$
 $(x:y:z) \mapsto (x:z) \pmod{(1:0)}$

This is a degree 2 covering, that is $\pi^{-1}(\pi(P)) = \{-P, P\}$, except for the ramification points:

$$(1:0)^*$$
 $(0:1)$ $(\alpha:1)$ $(1:\alpha)$

ntgomei ves

Theta models

Kummer lines

Definitions General algor

Conclusion

Reference

Montgomery curves with extra 2-torsion (α : 0 : 1)

2-torsion (ramification points): $(1:0)^*$, (0:1), $(\alpha:1)$, $(1:\alpha)$

Theta model $\theta(a:b)$

Consider theta constants $a, b \in \mathbb{C}$.

$$\pi: \mathsf{E} o \mathsf{E}/\{\pm 1\} o \mathbb{P}^1 \simeq heta(\mathsf{a}: \mathsf{b})$$

This is a degree 2 covering, that is $\pi^{-1}(\pi(P)) = \{-P, P\}$, except for the ramification points:

$$(a:b)^*$$
 $(-a:b)$ $(b:a)$ $(-b:a)$

2-torsion (ramification points): $(1:0)^*$, (0:1), $(\alpha:1)$, $(1:\alpha)$

2-torsion (ramification points): $(a:b)^*$, (-a:b), (b:a), (-b:a)

2-torsion (ramification points): $(a^2 : b^2)^*$, $(b^2 : a^2)$, (1 : 0), (0 : 1)

Computing

Kummer

lines

Theta model $\theta(a:b)$

Theta squared model $\theta_s(a^2:b^2)$

Montgomei curves

I heta models

Kumme lines

Definitions

General algorith

Conclusion

Reference:

Definition

Let E be an elliptic curve, a Kummer line is a degree 2 covering of \mathbb{P}^1 with exactly 4 ramification points, one of which is marked:

$$\pi: \mathcal{E}
ightarrow \mathbb{P}^1$$

 $\#\pi^{-1}(P)=2$ except for 4 ramification points.

Montgomer curves

Theta models

Kumme

Definitions

General algorit

Conclusion

Reference

Definition

Let E be an elliptic curve, a Kummer line is a degree 2 covering of \mathbb{P}^1 with exactly 4 ramification points, one of which is marked:

$$\pi: \mathcal{E}
ightarrow \mathbb{P}^1$$

 $\#\pi^{-1}(P) = 2$ except for 4 ramification points.

- The 4 ramification points are enough to describe the Kummer line.
- They always correspond to the 2-torsion.
- $\pi^{-1}(\pi(P)) = \{-P, P\}.$

Montgome curves

Theta models

Kummer lines

Definitions

New formulas

Conclusio

Reference

Definition

Let E be an elliptic curve, a Kummer line is a degree 2 covering of \mathbb{P}^1 with exactly 4 ramification points, one of which is marked:

$$\pi: \mathcal{E} o \mathbb{P}^1$$

 $\#\pi^{-1}(P) = 2$ except for 4 ramification points.

- The 4 ramification points are enough to describe the Kummer line.
- They always correspond to the 2-torsion.
- $\pi^{-1}(\pi(P)) = \{-P, P\}.$

To study a map between Kummer lines, we only need to look at the 2-torsion.

Montgomer curves

models

lines

Definitions

General algo New formula

Conclusion

References

We want to compute 2-isogenies, so assume we have a curve with a 2-torsion point:

$$E: y^2 = x(x^2 + Ax + \gamma) = x(x - \alpha)(x - \gamma\alpha^{-1})$$
 (maybe $\alpha \notin k$)

Notations

The 2-torsion on the Kummer line will be noted as follows:

$$\mathcal{O} = (1:0)^*$$
 $T = (0:1)$ $R = (\alpha:1)$ $S = (\gamma:\alpha)(=R+T)$

We have $A = -\alpha - \frac{\gamma}{\alpha} \in k$.

Computing

Canonical example

We want to compute 2-isogenies, so assume we have a curve with a 2-torsion point:

 $E: y^2 = x(x^2 + Ax + \gamma) = x(x - \alpha)(x - \gamma\alpha^{-1})$ (maybe $\alpha \notin k$)

 $\mathcal{O} = (1:0)^*$ T = (0:1) $R = (\alpha:1)$ $S = (\gamma:\alpha)(=R+T)$

 $(x:z) \mapsto (\lambda x:z) \qquad \lambda \in k$

We can multiply γ by a square without changing the 2-torsion, because the

Therefore, R is sent to $(\lambda \alpha : 1) = (\alpha' : 1)$ and S to $(\lambda \gamma : \alpha) = (\lambda^2 \gamma : \alpha')$.

The 2-torsion on the Kummer line will be noted as follows:

isomorphisms preserving \mathcal{O} and \mathcal{T} are of this shape:

Notations

We have $A = -\alpha - \frac{\gamma}{2} \in k$.

curves

models

Kummer lines

General algorithm

Conclusion

T is a 2-torsion point, the 2-isogeny f with kernel T verifies: $f(\cdot + T) = f$. Conversely, if $f(\cdot + T) = f$ (+ deg 2), the 2-isogeny with kernel T is $g = f - f(\mathcal{O})$.

General algorithm

T is a 2-torsion point, the 2-isogeny f with kernel T verifies: $f(\cdot + T) = f$. Conversely, if $f(\cdot + T) = f(+ \deg 2)$, the 2-isogeny with kernel T is $g = f - f(\mathcal{O})$.

Step 1

What is the map $\tau: P \mapsto P + T$ on the Kummer line?

It is a homography (isomorphism of \mathbb{P}^1).

Montgomer curves

neta models

Kummer lines

Definitions

General algorithm

Conclusion

References

$$E: y^2 = x(x^2 + Ax + \gamma)$$

$$\mathcal{O} = (1:0)^* \qquad T = (0:1) \qquad R = (\alpha:1) \qquad S = (\gamma:\alpha)(=R+T)$$
 If $\tau: P \mapsto P + T$, we know that $\tau: (x:z) \mapsto (ax + bz: cx + dz)$. We want $\tau(\mathcal{O}) = T$, $\tau(T) = \mathcal{O}$, $\tau(R) = S$ and $\tau(S) = R$, this yields:
$$\tau: (x:z) \mapsto (\gamma z:x) \text{ with } M_T = \begin{pmatrix} 0 & \gamma \\ 1 & 0 \end{pmatrix} \in \mathsf{PGL}_2(k)$$

curves

models

lines

General algorithm

Conclusion

References

 M_T : associated matrix to $\tau: P \mapsto P + T$.

By construction, $M_T^2=I_2\in\mathsf{PGL}_2(k)$, so with a lift: $\widetilde{M_T}^2=\lambda_TI_2\in\mathsf{GL}_2(k)$.

Definition

 λ_T is the type of T, well-defined up to a square.

curves

models

lines

General algorithm

Conclusion

References

 M_T : associated matrix to $\tau: P \mapsto P + T$.

By construction, $M_T^2 = I_2 \in \mathsf{PGL}_2(k)$, so with a lift: $\widetilde{M_T}^2 = \lambda_T I_2 \in \mathsf{GL}_2(k)$.

Definition

 λ_T is the type of T, well-defined up to a square.

In the previous example, $\widetilde{M_T}^2 = \gamma I_2$ so the type is γ .

Fact: $\overline{M_T}/\sqrt{\lambda_T}$ only depends on T.

Montgomei curves

Theta models

Kummeı lines

Definition

General algorithm New formulas

Reference:

We want to build a map in x^2 , xz, z^2 invariant by T. In terms of a quadratic form q, if $M = \widetilde{M_T}/\sqrt{\lambda_T} = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right)$, we want:

$$M \cdot q(x,z) = q(ax + bz, cx + dz) = q(x,z)$$

lontgomei urves

Theta

Kummer

Definitions
General algorithm

New formulas

References

We want to build a map in x^2 , xz, z^2 invariant by T. In terms of a quadratic form g, if $M = \widetilde{M_T} / \sqrt{\lambda_T} = \begin{pmatrix} a & b \\ a & d \end{pmatrix}$, we want:

$$M \cdot q(x,z) = q(ax + bz, cx + dz) = q(x,z)$$

Step 2

We compute $M \cdot x^2$, $M \cdot z^2$ and $M \cdot xz$ and build invariant quadratic forms from that.

We need two of these, for the two isogenous coordinates.

Montgome curves

models

Kummer lines

General algorithm

New formulas

References

$$E: y^2 = x(x^2 + Ax + \gamma)$$

$$\mathcal{O} = (1:0)^*$$
 $T = (0:1)$ $R = (\alpha:1)$ $S = (\gamma:\alpha)$

We have $\lambda_{\mathcal{T}}=\gamma$, we take $M=\left(egin{array}{cc} 0&\sqrt{\gamma}\ \sqrt{\gamma^{-1}}&0 \end{array}
ight)$. Then:

$$M \cdot x^2 = \gamma z^2$$
 $M \cdot z^2 = \frac{1}{\gamma} x^2$ $M \cdot xz = xz$

Montgomei curves

Theta model

Kummer lines

Definitions

General algorithm

New formulas

Conclusion

Reference

$$E: y^2 = x(x^2 + Ax + \gamma)$$

$$\mathcal{O} = (1:0)^*$$
 $T = (0:1)$ $R = (\alpha:1)$ $S = (\gamma:\alpha)$

We have $\lambda_T=\gamma$, we take $M=\left(egin{array}{c}0&\sqrt{\gamma}\\sqrt{\gamma}^{-1}&0\end{array}
ight)$. Then:

$$M \cdot x^2 = \gamma z^2$$
 $M \cdot z^2 = \frac{1}{\gamma} x^2$ $M \cdot xz = xz$

xz is already invariant, for the other one we can consider (okay because $\mathit{M}^2=\mathit{I}_2$):

$$x^2 + M \cdot x^2 = x^2 + \gamma z^2$$

Montgome curves

Theta model

Kummei lines

Definitions

General algorithm

New formulas

References

Consider two invariant quadratic forms u, v, not co-linear. Set:

$$f:(x:z)\mapsto (u(x,z):v(x,z))$$

By construction, $f(\cdot + T) = f$. That's it?

Consider two invariant quadratic forms u, v, not co-linear. Set:

$$f:(x:z)\mapsto (u(x,z):v(x,z))$$

By construction, $f(\cdot + T) = f$. That's it?

Let's try with $u(x,z) = x^2 + \gamma z^2$ and v(x,z) = xz:

$$f(1:0) = (1:0) = f(0:1)$$
 $f(\alpha:1) = (-A:1) = f(\gamma:\alpha)$

Montgomei curves

Theta models

Kumme lines

General algorithm

Conclusion

Reference:

Consider two invariant quadratic forms u, v, not co-linear. Set:

$$f:(x:z)\mapsto (u(x,z):v(x,z))$$

By construction, $f(\cdot + T) = f$. That's it?

Let's try with $u(x,z) = x^2 + \gamma z^2$ and v(x,z) = xz:

$$f(1:0) = (1:0) = f(0:1)$$
 $f(\alpha:1) = (-A:1) = f(\gamma:\alpha)$

- Where is the remaining 2-torsion? Via 4-torsion
- How do I recover a good shaped Kummer line? Case-by-case

Montgomery curves

Kumme

lines

General algorithm

New formulas

Poforonco

 $E: y^2 = x(x^2 + Ax + \gamma)$

 $\mathcal{O} = (1:0)^*$ T = (0:1) $R = (\alpha:1)$ $S = (\gamma:\alpha)$

Assume T' is a 4-torsion point above T: T = 2T'.

Because we are on a Kummer line: 3T' = T' + T = -T' = T'.

If T' = (x : z), we then have:

$$T' + T = (\gamma z : x) = (x : z) \text{ iff } \left(\frac{x}{z}\right)^2 = \gamma$$

Montgomery curves

models Kumme

lines

Definitions

General algorithm

Conclusion

Reference:

$$E: y^2 = x(x^2 + Ax + \gamma)$$

$$\mathcal{O} = (1:0)^*$$
 $T = (0:1)$ $R = (\alpha:1)$ $S = (\gamma:\alpha)$

Assume T' is a 4-torsion point above T: T = 2T'.

Because we are on a Kummer line: 3T' = T' + T = -T' = T'.

If T' = (x : z), we then have:

$$T' + T = (\gamma z : x) = (x : z) \text{ iff } \left(\frac{x}{z}\right)^2 = \gamma$$

The 4-torsion points are (maybe in a quadratic extension):

$$T'=(\sqrt{\gamma}:1)$$
 $T''=(-\sqrt{\gamma}:1)$

4-torsion on the Kummer line

Assume T' is a 4-torsion point above T: T = 2T'.

Because we are on a Kummer line: 3T' = T' + T = -T' = T'. If T' = (x : z), we then have:

by construction)

 $T' + T = (\gamma z : x) = (x : z) \text{ iff } \left(\frac{x}{z}\right)^2 = \gamma$

The 4-torsion points are (maybe in a quadratic extension):

 $T'=(\sqrt{\gamma}:1)$ $T''=(-\sqrt{\gamma}:1)$

f(T') and f(T'') are the remaining 2-torsion points on the image (always rational

General algorithm

Computing

2-isogenies

New formulas

Montgomery: $\gamma = 1$.

We want to compute $f: E_1 \to E_1/T_1 = E_2$ where $(\alpha = A_1/B_1)$:

$$\mathcal{O}_1 = (1:0)^* \quad T_1 = (0:1) \quad R_1 = (\alpha:1) = (A_1:B_1) \quad S_1 = (1:\alpha) = (B_1:A_1)$$

4-torsion above T_1 : $T'_1 = (1:1)$ and $T''_1 = (-1:1)$.

Montgomer curves

models

Kummer lines

Definitions
General algorit
New formulas

Conclusior

Reference

Montgomery: $\gamma=1$.

We want to compute $f: E_1 \to E_1/T_1 = E_2$ where $(\alpha = A_1/B_1)$:

$$\mathcal{O}_1 = (1:0)^*$$
 $\mathcal{T}_1 = (0:1)$ $R_1 = (\alpha:1) = (A_1:B_1)$ $S_1 = (1:\alpha) = (B_1:A_1)$

4-torsion above T_1 : $T_1'=(1:1)$ and $T_1''=(-1:1)$.

• Translation by T_1 : $\tau:(x:z)\mapsto (z:x)$ (type of T_1 : 1)

Montgomer curves

models

Kummer lines

Definitions General algorithm New formulas

Conclusion

Reference

Montgomery: $\gamma=1$.

We want to compute $f: E_1 \to E_1/T_1 = E_2$ where $(\alpha = A_1/B_1)$:

$$\mathcal{O}_1 = (1:0)^*$$
 $\mathcal{T}_1 = (0:1)$ $R_1 = (\alpha:1) = (A_1:B_1)$ $S_1 = (1:\alpha) = (B_1:A_1)$

4-torsion above T_1 : $T'_1 = (1:1)$ and $T''_1 = (-1:1)$.

- ① Translation by T_1 : $\tau:(x:z)\mapsto(z:x)$ (type of T_1 : 1)
- \bigcirc Invariant quadratic forms: $u(x,z)=(x+z)^2$ and $v(x,z)=(x-z)^2$

Montgomer curves

models

lines

Definitions
General algorithm
New formulas

Conclusio

Reference

Montgomery: $\gamma=1$.

We want to compute $f: E_1 \to E_1/T_1 = E_2$ where $(\alpha = A_1/B_1)$:

$$\mathcal{O}_1 = (1:0)^*$$
 $\mathcal{T}_1 = (0:1)$ $R_1 = (\alpha:1) = (A_1:B_1)$ $S_1 = (1:\alpha) = (B_1:A_1)$

4-torsion above T_1 : $T_1' = (1:1)$ and $T_1'' = (-1:1)$.

- ① Translation by $T_1: \tau: (x:z) \mapsto (z:x)$ (type of $T_1: 1$)
- On Invariant quadratic forms: $u(x,z)=(x+z)^2$ and $v(x,z)=(x-z)^2$
- **3** Images of the special points by $f:(x:z)\mapsto (u(x,z):v(x,z))$

$$f(\mathcal{O}_1) = f(T_1) = (1:1)^*$$
 $f(T_1') = (1:0)$ $f(T_1'') = (0:1)$

$$f(A_1:B_1)=f(B_1:A_1)=((A_1+B_1)^2:(A_1-B_1)^2)=(A_2^2:B_2^2)$$

 $\mathcal{O}_1 = (1:0)^*$ $T_1 = (0:1)$ $R_1 = (\alpha:1) = (A_1:B_1)$ $S_1 = (1:\alpha) = (B_1:A_1)$

Computing

We want to compute
$$f: E_1 \to E_1/T_1 = E_2$$
 where $(\alpha = A_1/B_1)$:

- 4-torsion above T_1 : $T'_1 = (1:1)$ and $T''_1 = (-1:1)$.
- ① Translation by $T_1: \tau: (x:z) \mapsto (z:x)$ (type of $T_1: 1$) Invariant quadratic forms: $u(x,z) = (x+z)^2$ and $v(x,z) = (x-z)^2$
- Images of the special points by $f:(x:z)\mapsto (u(x,z):v(x,z))$

$$f(\mathcal{O}_1) = f(\mathcal{T}_1) = (1:1)^* \qquad f(\mathcal{T}_1') = (1:0) \qquad f(\mathcal{T}_1'') = (0:1)$$

$$f(A_1:B_1)=f(B_1:A_1)=((A_1+B_1)^2:(A_1-B_1)^2)=(A_2^2:B_2^2)$$

0 To get a convenient Kummer line, compose by $C:(x:z)\mapsto (B_2x:A_2z)$

$$\mathcal{O}_2 = (1:0)$$
 $\mathcal{T}_2 = (0:1)$ $\mathcal{R}_2 = (A_2:B_2)$ $\mathcal{S}_2 = (B_2:A_2)^*$

Montgomery with full 2-torsion (2/2)

Translated 2-isogeny with kernel T_1

 $g = f + S_2$, where $f: (x:z) \mapsto (B_2(x+z)^2: A_2(x-z)^2)$.

f can be computed in 2S + 2M + 2a. The co-domain is given by $\frac{A_2+2}{a}$ where $\mathcal{A}_2 = -rac{A_2}{B_2} - rac{B_2}{A_2}$ and is computed in 2S + 5a.

Translated dual isogeny

If $\hat{f}: (x:z) \mapsto (B_1(x+z)^2: A_1(x-z)^2)$, then $\hat{f} \circ f(P) = 2 \cdot P + R_1$. This quasi-doubling can be computed in 4M + 4S.

New formulas

Computing

2-isogenies on Kummer

Reference

$$\mathcal{O}_1 = (1:0)^*$$
 $T_1 = (0:1)$ $R_1 = (A_1:B_1)$ $S_1 = (B_1:A_1)$

Assume we know $R'_1 = (a' : b')$ above R_1 .

Set
$$a = a' + b'$$
, $b = a' - b'$ (fact: $(A_1 : B_1) = (a^2 + b^2 : a^2 - b^2)$).

$$\mathcal{O}_2 = (1:0)$$
 $\mathcal{T}_2 = (0:1)$ $R_2 = (a'^2:b'^2)^*$ $S_2 = (b'^2:a'^2)$

Montgomery curves

Theta models

Kummer lines

Definitions

General algorith

Conclusion

Reference

$$\mathcal{O}_1 = (1:0)^*$$
 $\mathcal{T}_1 = (0:1)$ $R_1 = (A_1:B_1)$ $S_1 = (B_1:A_1)$

Assume we know $R'_1 = (a' : b')$ above R_1 .

Set
$$a = a' + b'$$
, $b = a' - b'$ (fact: $(A_1 : B_1) = (a^2 + b^2 : a^2 - b^2)$).

$$\mathcal{O}_2 = (1:0)$$
 $T_2 = (0:1)$ $R_2 = (a'^2:b'^2)^*$ $S_2 = (b'^2:a'^2)$

Translated 2-isogeny with kernel R_1

$$g = f + R_2$$
, with $f : (x : z) \mapsto ((a(x+z) + b(x-z))^2 : (a(x+z) - b(x-z))^2)$
 f can be computed in $2S + 2M$. The co-domain can be computed in $2S$.

urves

Theta models

Kummer lines

Definitions
General algorith
New formulas

Conclusio

Reference

$$\mathcal{O}_1 = (1:0)^*$$
 $T_1 = (0:1)$ $R_1 = (A_1:B_1)$ $S_1 = (B_1:A_1)$

Assume we know $R'_1 = (a' : b')$ above R_1 .

Set a = a' + b', b = a' - b' (fact: $(A_1 : B_1) = (a^2 + b^2 : a^2 - b^2)$).

$$\mathcal{O}_2 = (1:0)$$
 $T_2 = (0:1)$ $R_2 = (a'^2:b'^2)^*$ $S_2 = (b'^2:a'^2)$

Translated 2-isogeny with kernel R_1

 $g = f + R_2$, with $f : (x : z) \mapsto ((a(x+z) + b(x-z))^2 : (a(x+z) - b(x-z))^2)$ f can be computed in 2S + 2M. The co-domain can be computed in 2S.

- ullet Similarly, with the dual isogeny, we recover alternative formulas for $2\cdot P+R_1$.
- If the next kernel is R_2 , then we can easily chain isogenies.

Montgomer curves

models

lines

General algorith

New formulas

References

$$\mathcal{O}_1 = (1:0)^*$$
 $T_1 = (0:1)$ $R_1 = (A_1:B_1)$ $S_1 = (B_1:A_1)$

Recall $T_1' = (1:1)$ and $T_1'' = (-1:1)$ are 4-torsion points above T_1 .

Assume we know $\widetilde{T}_1=(r:s)$ a 8-torsion point above T_1' .

$$\mathcal{O}_2 = (1:0)^*$$
 $\mathcal{T}_2 = (1:-\delta)$ $R_2 = (1:0)$ $S_2 = (-\delta:1)$

Montgome curves

models Kumme

lines

General algorith

Conclusion

Reference:

$$\mathcal{O}_1 = (1:0)^*$$
 $T_1 = (0:1)$ $R_1 = (A_1:B_1)$ $S_1 = (B_1:A_1)$

Recall $T_1'=(1:1)$ and $T_1''=(-1:1)$ are 4-torsion points above T_1 .

Assume we know $\widetilde{T}_1 = (r : s)$ a 8-torsion point above T'_1 .

$$\mathcal{O}_2 = (1:0)^*$$
 $T_2 = (1:-\delta)$ $R_2 = (1:0)$ $S_2 = (-\delta:1)$

2-isogeny with kernel T_1

Set $\delta = (4rs : (r - s)^2)$, then $f : (x : z) \mapsto (\delta(x - z)^2 : 4xz)$. f can be computed in 2S + 2M + 3a.

We may need a permutation of 2-torsion afterwards.

lines

Conclusion

Reference

Future work and research direction

What's new?

- General framework to compute 2-isogenies on Kummer lines: new isogeny formulas.
- Hybrid ladder which provides better doubling (under specific circumstances).

Work in progress

- Classification of elliptic curves given torsion properties on their Kummer line (via Galois representation).
- Choices of good curves for ECC and ECM to use hybrid ladder.

Montgomei curves

Theta models

Kumme lines

Conclusion

References

[CH17] Craig Costello and Huseyin Hisil. "A simple and compact algorithm for SIDH with arbitrary degree isogenies". English. In: Advances in cryptology – ASIACRYPT 2017. 23rd international conference on the theory and applications of cryptology and information security, Hong Kong, China, December 3–7, 2017. Proceedings. Part II. Cham: Springer, 2017, pp. 303–329. ISBN: 978-3-319-70696-2; 978-3-319-70697-9. DOI: 10.1007/978-3-319-70697-9_11.

[DJP14] Luca De Feo, David Jao, and Jérôme Plût. "Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies". English. In: Journal of Mathematical Cryptology 8.3 (2014), pp. 209–247. ISSN: 1862-2976. DOI: 10.1515/jmc-2012-0015.

∕lontgomer urves

Theta models

Kumme lines

Conclusion

References

[HR19] Huseyin Hisil and Joost Renes. "On Kummer lines with full rational 2-torsion and their usage in cryptography". English. In: ACM

Transactions on Mathematical Software 45.4 (2019). Id/No 39, p. 17. ISSN: 0098-3500. DOI: 10.1145/3361680.

[KS20] Sabyasachi Karati and Palash Sarkar. "Kummer for genus one over prime-order fields". English. In: Journal of Cryptology 33.1 (2020), pp. 92–129. ISSN: 0933-2790. DOI: 10.1007/s00145-019-09320-4.

[Mon87] Peter L. Montgomery. "Speeding the Pollard and elliptic curve methods of factorization". English. In: Mathematics of Computation 48 (1987), pp. 243–264. ISSN: 0025-5718. DOI: 10.2307/2007888.

Montgome curves

[Ren18]

models

Rumme lines

Conclusio

References

Joost Renes. "Computing isogenies between Montgomery curves using the action of (0,0)". English. In: *Post-quantum cryptography. 9th international conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9–11, 2018. Proceedings.* Cham: Springer, 2018, pp. 229–247. ISBN: 978-3-319-79062-6; 978-3-319-79063-3. DOI: 10.1007/978-3-319-79063-3_11.