

Generated by s1412595 on 08 July 2019, 15:57:15

This report has been generated automatically by Madanalysis 5.

Please cite:

E. Conte, B. Fuks and G. Serret,

MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. **184** (2013) 222-256, arXiv:1206.1599 [hep-ph].

To contact us:

 ${\bf http://madanalysis.irmp.ucl.ac.be} \\ {\bf ma5team@iphc.cnrs.fr} \\$

Contents

1	Set	up	2
	1.1	Command history	2
	1.2	Configuration	3
2	Dat	casets	4
	2.1	tag_1_pythia8_basicreco	4
3	His	tos and cuts	5
	3.1	Object definition 1	5
	3.2	Object definition 2	5
	3.3	Object definition 3	5
	3.4	Object definition 4	5
	3.5	Object definition 5	5
	3.6	Object definition 6	5
	3.7	Object definition 7	5
	3.8	Object definition 8	5
	3.9	Histogram 1	5
	3.10	Histogram 2	7
	3.11	Histogram 3	8
	3.12	Histogram 4	9
	3.13	Histogram 5	10
	3.14	Histogram 6	11
	3.15	Histogram 7	12
	3.16	Histogram 8	13
	3.17	Histogram 9	14
	3.18	Histogram 10	15
	3.19	Histogram 11	16
	3.20	Histogram 12	17
	3.21	Histogram 13	18
	3.22	Histogram 14	19
	3.23	Histogram 15	20
	3.24	Histogram 16	21
	3.25	Histogram 17	22
	3.26	Histogram 18	23
	3.27	Histogram 19	24
	3.28	Histogram 20	25
	3.29	Histogram 21	26
	3.30	Histogram 22	27
	3.31	Histogram 23	28
	3.32	Histogram 24	29
	3.33	Histogram 25	30
	3 34	Histogram 26	31

4	Sur	nmary	32
	4.1	Cut-flow charts	32

1 Setup

1.1 Command history

```
ma5>define invisible = 12 14 16 -12 -14 -16
ma5>set main.fastsim.package = fastjet
ma5>set main.fastsim.algorithm = antikt
ma5>set main.fastsim.radius = 0.4
ma5>set main.fastsim.ptmin = 5.0
ma5>set main.fastsim.bjet_id.matching_dr = 0.4
ma5>set main.fastsim.bjet_id.efficiency = 1.0
ma5>set main.fastsim.bjet_id.misid_cjet = 0.0
ma5>set main.fastsim.bjet_id.misid_ljet = 0.0
ma5>set main.fastsim.tau_id.efficiency = 1.0
ma5>set main.fastsim.tau_id.misid_ljet = 0.0
ma5>import /home/s1412595/Desktop/SummerProject2019/MG5_aMC_v2_6_6/BP2_080719/Events/-
run_01/tag_1_pythia8_events.hepmc.gz as reco_events
ma5>set main.outputfile=tag_1_pythia8_BasicReco.lhe.gz
ma5>submit /home/s1412595/Desktop/SummerProject2019/MG5_aMC_v2_6_6/BP2_080719/MA5_HADRON_ANALYSIS_
ma5>remove reco_events
ma5>set main.mode = parton
ma5>import /home/s1412595/Desktop/SummerProject2019/MG5_aMC_v2_6_6/BP2_080719/Events/-
run_01/tag_1_pythia8_BasicReco.lhe.gz as tag_1_pythia8_BasicReco
ma5>set main.stacking_method = normalize2one
ma5>define e = e+ e-
ma5>define mu = mu+ mu-
ma5>select (j) PT > 20
ma5>select (b) PT > 20
ma5>select (e) PT > 10
ma5>select (mu) PT > 10
ma5>select (j) ABSETA < 2.5
ma5>select (b) ABSETA < 2.5
ma5>select (e) ABSETA < 2.5
ma5>select (mu) ABSETA < 2.5
ma5>plot MET 40 0 500
ma5>plot THT 40 0 500
ma5>plot PT(j[1]) 40 0 500 [logY]
ma5>plot ETA(j[1]) 40 -10 10 [logY]
ma5>plot MT_MET(j[1]) 40 0 500 [logY]
ma5>plot PT(j[2]) 40 0 500 [logY]
ma5>plot ETA(j[2]) 40 -10 10 [logY]
ma5>plot MT_MET(j[2]) 40 0 500 [logY]
ma5>plot PT(e[1]) 40 0 500 [logY]
ma5>plot ETA(e[1]) 40 -10 10 [logY]
ma5>plot MT_MET(e[1]) 40 0 500 [logY]
ma5>plot PT(mu[1]) 40 0 500 [logY]
ma5>plot ETA(mu[1]) 40 -10 10 [logY]
ma5>plot MT_MET(mu[1]) 40 0 500 [logY]
ma5>plot M(e[1] mu[1]) 40 0 500 [logY]
ma5>plot M(j[1] e[1]) 40 0 500 [logY]
```

```
ma5>plot M(j[1] mu[1]) 40 0 500 [logY]
ma5>plot M(j[2] e[1]) 40 0 500 [logY]
ma5>plot DELTAR(e[1], mu[1]) 40 0 10 [logY]
ma5>plot DELTAR(j[1], e[1]) 40 0 10 [logY]
ma5>plot DELTAR(j[1], j[2]) 40 0 10 [logY]
ma5>plot DELTAR(j[1], j[2]) 40 0 10 [logY]
ma5>plot DELTAR(j[1], mu[1]) 40 0 10 [logY]
ma5>plot DELTAR(j[2], e[1]) 40 0 10 [logY]
ma5>plot DELTAR(j[2], e[1]) 40 0 10 [logY]
ma5>plot DELTAR(j[2], mu[1]) 40 0 10 [logY]
```

1.2 Configuration

• MadAnalysis version 1.8.5 (2019/04/04).

ma5>plot M(j[1] j[2]) 40 0 500 [logY]

• Histograms given for an integrated luminosity of 10fb⁻¹.

2 Datasets

$2.1 \quad {\rm tag_1_pythia8_basicreco}$

• Sample consisting of: signal events.

• Generated events: 1000 events.

 \bullet Normalization to the luminosity: 0+/- 0 events.

• Ratio (event weight): 0.0 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
Events/run_01/- tag_1_pythia8_BasicReco.lhe.gz	1000	0.0 @ 0.0%	0.0

3 Histos and cuts

3.1 Object definition 1

* Cut: select (j)
$$PT > 20.0$$

3.2 Object definition 2

* Cut: select (b)
$$PT > 20.0$$

3.3 Object definition 3

* Cut: select (e)
$${
m PT} > 10.0$$

3.4 Object definition 4

* Cut: select (mu)
$${\rm PT} > 10.0$$

3.5 Object definition 5

* Cut: select (j) ABSETA
$$< 2.5$$

3.6 Object definition 6

* Cut: select (b) ABSETA
$$< 2.5$$

3.7 Object definition 7

* Cut: select (e) ABSETA
$$< 2.5$$

3.8 Object definition 8

* Cut: select (mu) ABSETA
$$< 2.5$$

3.9 Histogram 1

* Plot: MET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 + / - 0.0	1.0	0.0	0.0	0.0	0.0

Figure 1.

3.10 Histogram 2

* Plot: THT

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 2.

3.11 Histogram 3

* Plot: PT (j[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$tag_1_{pythia8_{}}$	0.0 + / - 0.0	1.0	0.0	0.0	0.0	0.0

Figure 3.

3.12 Histogram 4

* Plot: ETA ($\mathbf{j}[1]$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$tag_1_{pythia8_{}}$	0.0 + / - 0.0	1.0	0.0	0.0	0.0	0.0

Figure 4.

3.13 Histogram 5

* Plot: MT_MET (**j**[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 5.

3.14 Histogram 6

* Plot: PT (j[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$tag_1_{pythia8_{}}$	0.0 + / - 0.0	1.0	0.0	0.0	0.0	0.0

Figure 6.

3.15 Histogram 7

* Plot: ETA ($\mathbf{j}[2]$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 7.

3.16 Histogram 8

* Plot: MT_MET (j[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 8.

3.17 Histogram 9

* Plot: PT (e[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 9.

Histogram 10 3.18

* Plot: ETA (e[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 10.

3.19 Histogram 11

* Plot: MT_MET (e[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 11.

3.20 Histogram 12

* Plot: PT (mu[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 12.

Histogram 13 3.21

* Plot: ETA (mu[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 13.

3.22 Histogram 14

* Plot: MT_MET (mu[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 14.

3.23 Histogram 15

* Plot: M (e[1] mu[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0

Figure 15.

3.24Histogram 16

* Plot: M (e[1] j[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 16.

3.25Histogram 17

* Plot: M (j[1] j[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$tag_1_{pythia8_{}}$	0.0 + / - 0.0	1.0	0.0	0.0	0.0	0.0

3.26 Histogram 18

* Plot: M (j[1] mu[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 18.

3.27 Histogram 19

* Plot: M (e[1] j[2])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 19.

3.28 Histogram 20

* Plot: M (j[2] mu[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 20.

3.29 Histogram 21

* Plot: DELTAR ($\mathbf{e}[1]$, $\mathbf{mu}[1]$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	0.	0.0	0.0	0.0	0.0

Figure 21.

3.30 Histogram 22

* Plot: DELTAR ($\mathbf{j}[1]$, $\mathbf{e}[1]$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 22.

3.31 Histogram 23

* Plot: DELTAR ($\mathbf{j[1]}$, $\mathbf{j[2]}$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 23.

3.32 Histogram 24

* Plot: DELTAR ($\mathbf{j}[1]$, $\mathbf{mu}[1]$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 24.

3.33 Histogram 25

* Plot: DELTAR ($\mathbf{j[2]}$, $\mathbf{e[1]}$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 25.

3.34 Histogram 26

* Plot: DELTAR ($\mathbf{j[2]}$, $\mathbf{mu[1]}$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
tag_1_pythia8_	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 26.

4 Summary

4.1 Cut-flow charts

- \bullet How to compare signal (S) and background (B): S/sqrt(S+B) .
- \bullet Object definition selections are indicated in cyan.
- Reject and select are indicated by 'REJ' and 'SEL' respectively

Cuts	Signal (S)	Background (B)	S vs B
Initial (no cut)	0.0 +/- 0.0		