Breast Cancer Data Analysis

PRINCESS NWABULU
MICHAEL PETERS
TOM DANNER

Executive Summary (project and project goals)

Create accurate and reliable models to predict if somebody has breast cancer and which type of breast cancer they have.

Data Sets:

Breast Cancer Wisconsin - UC Irvin:

(https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic)

BRCA - Kaggle

(https://www.kaggle.com/datasets/amandam1/breastcancerdataset)

BC Dataset - Selected Models

Breast Cancer Wisconsin - UC Irvine

- Neural Network
- 2. XGB Classifier
- 3. Logistic Regression
- 4. Support Vector Machine

BRCA Dataset - Selected Model

BRCA - Kaggle

- 1. Neural Network
- 2. Sequential Neural Network
- 3. Support Vector Machine
- 4. K-Nearest Neighbors- KNN

Data Preparation Process

- Describe the source of your data and why you chose it for your project.
 - Kaggle is well known source for data sets.
 - we choose the BC data because of its large set of features to predict a cancer cell.
- Describe the collection, cleanup, and preparation process.
 - Collection searching on Kaggle for usable datasets
 - Identifying feature and target wanted, dropping unwanted columns, transforming data into format the models will work with using One Hot Encoder, Label Encoder, and to categorical, then Standard Scaler to scale the sets.
- Describe the training process.
 - Separating the features and target into training and testing datasets, scaling the datasets, fitting the data into the models, predicting results based on the testing data.

BC Dataset – Logistic Regression vs. XGBoost Classifier

BC Dataset – Classification Reports

Logistic	Regr	ession	Model	Training	Classifi	cation	Report
		nrogi		recall	f1-score		
		precis	51011	recarr	II-SCOLE	supp	OCIU
	0	(0.98	0.99	0.99		263
	1	(0.99	0.98	0.98		163
2 0 0 1 1 1	62.617				0.99		426
accui			2 00	0.00			
macro			0.99	0.98	0.99		426
weighted	avg	(0.99	0.99	0.99		426

Logistic Regi	ression Model	Testing	Classificat	ion Report
	precision	recall	f1-score	support
0	0.99	0.98	0.98	94
accuracy			0.98	143
macro avg	0.97 0.98	0.98	0.98 0.98	143 143

XGB Class:	ifie	r Model Trair	ning Class	sification	Report
		precision		f1-score	support
	0	1.00	1.00	1.00	263 163
accura macro a	avg	1.00	1.00	1.00	426 426
weighted a	avg	1.00	1.00	1.00	426
XGB Class:	ifie	r Model Testi			
	0	precision 0.98	recall 0.99	f1-score	support 94
	1	0.50	0.95	0.55	4.0

0.97

0.98

0.98

0.98

macro avg weighted avg 0.98

0.98

BC Dataset Neural Network

Setup

Layers

- nn.add(Dense(units=16, input_dim=31, activation="relu"))
- nn.add(Dense(units=8, activation="relu"))
- nn.add(Dense(units=1, activation="sigmoid"))

Compilation

 nn.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])

Fitting the model

• nn.fit(X_train_scaled, y_train, epochs=200)

Results

Evaluation

- loss: 0.1247
- categorical accuracy: 0.9650

Predictions

- Benign (0.0) 88
- malignant (1.0) 55

BC Dataset svm

Data Preprocessing

BC Data

559 rows/31 columns

no nulls

y= diagnosis

x= drop diagnosis

BRCA Data

Dropped 6 columns

one hot encoder(histology)

nan after encoding

y= histology

x= drop histology

SVM

BC Data

- Kernel selection Linear
- Parameter Tuning- N
- 80% train set
- random state=1
- Acc score = 0.96

BRCA Data

- imbalanced data?
- Parameter Tuning- N
- 80% train set
- random state=1
- Acc score = 0.58

ann/knn

BC Data

<u>ANN</u>

Tuning- N

BRCA Data

<u>KNN</u>

Tuning- y

neighbor classifier- 2,3,4

2 accuracy= 0.51

3 accuracy= 0.46

4 accuracy= 0.55

BRCA Dataset Neural Network

Setup

Layers

- nn.add(Dense(units=7, input_dim=14, activation="relu"))
- nn.add(Dense(units=4, activation="relu"))
- nn.add(Dense(units=2, activation="relu"))
- nn.add(Dense(units=1, activation="relu"))
- nn.add(Dense(units=1, activation="relu"))

Compilation

 nn.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])

Fitting the model

• nn.fit(X train scaled, y train, epochs=50)

Results

Evaluation

- loss: (NaN)
- categorical accuracy: 0.6429

Predictions

- Infiltrating Ductal Carcinoma (0.0) 54
- Mucinous Carcinoma (1.0) 4
- Infiltrating Lobular Carcinoma (2.0) 20
- No Prediction (NaN) 6

BRCA Dataset Sequential Neural Network

Setup

Layers

- (Dense(25, input_dim = number_of_predictors, activation = 'relu'))
- (Dense(25, activation = 'relu'))
- (Dense(25, activation = 'tanh'))
- (Dense(25, activation = 'tanh'))
- (Dropout(.1))
- (Dense(number of classes, activation='softmax'))

Compilation

 (loss="categorical_focal_crossentropy", optimizer= "adam", metrics=['categorical_accuracy'])

Fitting the model

- number_of_epochs = 200
- nn.fit(X_train_scaled, y_train, epochs = number_of_epochs, shuffle = True)

Results

Evaluation

- loss: 0.1370
- categorical accuracy: 0.6875

Predictions

• Infiltrating Ductal Carcinoma - 80

Group Approach to Achieve Project Goals

Evaluation Methods

- evaluate (Neural Networks)
- confusion matrix, classification report(Logistic Regression/XGB Classifier)

Unanticipated Problems

- NaNs in y_test (Neural Network BRCA)
- Low accuracy score for the BRCA model.
- How to display the Confusion Matrix.

Results / Conclusions

Almost perfectly predict if somebody had cancer.

- BC Dataset
 - 96.5% Accurate (Neural Network)
 - 99% training, 98% testing Accuracy (LR Model)
 - 100% training, 98% testing Accuracy (XGB Classifier Model)
 - 95.6% accurate (SVM)

Not able to predict the type of cancer based on the provided data with enough accuracy.

- BRCA Dataset
 - 68.75% Accurate (Sequential Neural Network)
 - 64.29% Accurate (Neural Network)
 - 58.20% Accurate(SVM)
 - 55% Accurate(KNN)

Next Steps

- BC Dataset
 - Find more testing data
 - Testing Accuracy >98%
- BRCA Dataset
 - O Deeper analysis of model failure.
 - Try to determine which features are necessary to predict cancer type
 - Find Larger dataset for training
 - Try over sampling or SMOTE to account for imbalanced targets.