Ejercicio 1

Los datos correspondientes a la primera y segunda columnas representan a los pesos y alturas de 114 alumnos de Ingeniería.

a. Indicar si la altura es significativa al 95 %.

Análisis de Varianza

Fuente	Suma de Cuadrados	GI	Cuadrado Medio	Razón-F	Valor-P
Modelo	6318,99	1	6318,99	165,95	0,0000
Residuo	4264,77	112	38,0783		j."
Total (Corr.)	10583,8	113	45		

Como el Valor-P = 0 < α = 0.05, existen evidencias suficientes como para **rechazar la H**₀, por lo que el contraste es significativo.

b. Calcular un intervalo de confianza para la pendiente.

	Pronosticado	Inferior 95%	Superior 95%	Inferior 95%	Superior 95%
X	Y	Límite Pred.	Límite Pred.	Limite Conf.	Limite Conf.
155,0	50,428	37,8249	63,0311	47,3705	53,4855
193,0	84,9187	72,3926	97,4448	82,1961	87,6413
180,0	73,1192	60,8217	85,4168	71,7999	74,4385

Valdría cualquier intervalo de confianza de la tabla.

c. Calcular el peso esperado de una persona de 180 cm.

Valores Predichos

	Pronosticado	Inferior 95%	Superior 95%	Inferior 95%	Superior 95%
X	Y	Limite Pred.	Límite Pred.	Limite Conf.	Limite Conf.
155,0	50,428	37,8249	63,0311	47,3705	53,4855
193,0	84,9187	72,3926	97,4448	82,1961	87,6413
180,0	73,1192	60,8217	85,4168	71,7999	74,4385

El valor esperado sería 73,1192.

Ejercicio 2

Los datos correspondientes a la tercer y cuarta columna representan los datos de los pesos medios del cuerpo y del cerebro de varios mamíferos.

a. Estimar el modelo para predecir el tamaño del cerebro en función del tamaño del cuerpo.

Se empleará un Modelo de Regresión Lineal Simple.

b. Indicar si el modelo de regresión va a ser adecuado y por qué.

Si observamos el valor del coeficiente de correlación (0,934164) al ser positivo significa que hay una relación de proporción entre las variables, y al ser tan próximo a 1 significa que es casi perfecta la relación.

Observando el valor de R-cuadrada (87,2662 %) podemos concluir que el modelo se ajustará bastante bien.

c. Escribir la ecuación de regresión.

Peso cerebro = 91,0044 + 0,966496 · Peso cuerpo.

Ejercicio 3

Las columnas quinta y sexta representan la altura y los tres últimos dígitos del teléfono.

a. Construir un intervalo de confianza para la pendiente.

	Pronosticado	Inferior 95%	Superior 95%	Inferior 95%	Superior 95%
X	Y	Límite Pred.	Límite Pred.	Límite Conf.	Límite Conf.
155,0	591,551	239,99	943,111	483,944	699,157

Un intervalo de confianza sería [483,944; 699,157].

b. ¿Qué efecto tiene incrementar el número de teléfono?

Viendo el coeficiente de correlación, vemos que se aproxima mucho a cero, pero por el lado negativo, lo que quiere decir que es ínfimamente inversamente proporcional.

En resumen, no tiene efecto apreciable, pero el que tiene quiere decir que, a mayor número de teléfono, menor altura.

c. Mostrar que el teléfono NO es significativo.

Simplemente si vemos la tabla ANOVA, el P-Valor = 0,9467 > 0.05, por lo que hay evidencias suficientes para decir que no existe relación lineal entre X e Y.