Energy games solver

Domiziano Scarcelli - 1872664 - A.A 2023/2024

Games on Graphs

Branca della teoria dei giochi che descrive i giochi le cui regole e l'evoluzione sono rappresentate da un grafo

Arena

- Il posto in cui si svolge il gioco
- lacktriangledown Insieme di vertici $V=V_{
 m Min}\cup V_{
 m Max}$
 - Finiti: arena finita
 - Infiniti: arena infinita
- Giocatore singolo o multipli. Nel nostro caso 2 giocatori: Min e Max

Play

- Il giocatore che "possiede" il vertice v muove il token attraverso un arco v o v'
 - La sequenza di movimenti del token denota una giocata (play) π .
 - Finita o infinita, ma non vuota

Token si muove da un vertice all'altro

Strategie

- Funzione che mappa giocate finite in archi.
- lacksquare Denotata con $\sigma: \mathrm{Paths}
 ightarrow E$
- lacksquare $\operatorname{Paths} = \{\pi_0, \pi_1, \dots, \pi_n\}$ insieme di n giocate.
- Definisce una descrizione completa del comportamento di un giocatore per ogni possibile situazione.

Condizioni

- Winning condition: condizione che definisce quando un giocatore vince.
- lacktriangle Qualitativa: è una funzione che separa le giocate vincenti $W\subset\operatorname{Paths}$ da quelle non vincenti.
- Quantitativa: è una funzione che assegna un punteggio (valore reale o $\pm \infty$) ad ogni giocata.

Strategie vincenti

- In un gioco **qualitativo**, una strategia σ è vincente da un vertice v se ogni giocata che parte da v consistente con σ è vincente.
- In un gioco **quantitativo**, una strategia σ è vincente da un vertice v se per ogni giocata che parte da v consistente con σ ha un valore maggiore di una certa soglia $x\in\mathbb{R}$. Ovvero $f(\pi)\geq x$.

Energy games

Definizione del gioco e degli obiettivi

Energy Games

- Gioco quantitativo (a somma zero) a 2 giocatori (Min e Max)
- lacksquare Arena: $\mathcal{A} = (G, V_{\mathrm{Min}}, V_{\mathrm{Max}})$
- lacksquare Grafo: G=(V,E,In,Out)

Ogni arco $e \in E$ ha un peso $w(e) \in [-W,W]$ con $W \in \mathbb{R}$

Energia

- Peso dell'arco denota accumulo o consumo di energia:
 - Peso positivo: giocatore accumula energia
 - Peso negativo: giocatore consuma energia

Obiettivi

- Min: trovare un valore iniziale tale che possa navigare il grafo all'infinito mantenendo un'energia non negativa.
- Max: impedire l'obiettivo di Min.

Il gioco è a somma zero: se Min vince, Max perde e viceversa.

Problemi computazionali associati

Cosa possiamo calcolare

- Risolvere il gioco: booleano che indica se Min ha una strategia vincente
- Calcolare il valore del gioco: modellare funzione di valore (valore dell'energia iniziale di Min che soddisfa la condizione vincente, per ogni vertice $v \in V$.)
- Costruire una strategia ottimale per Min.

Il risolutore implementato calcola il valore del gioco.

Notare che l'arena ha una soluzione diversa da $+\infty$ solo se non esistono cicli negativi.

Algoritmo "Value Iteration"

Trovare il valore del gioco con una complessità O(nmW)

Naive Value Iteration

$$\delta(l,w) = \max(l-w,0)$$

$$\mathbb{O}^{\mathcal{G}}(\mu)(u) = egin{cases} \min\{\delta(\mu(v),w) : u \stackrel{w}{
ightarrow} v \in E\} & ext{if } u \in V_{ ext{Min}}, \ \max\{\delta(\mu(v),w) : u \stackrel{w}{
ightarrow} v \in E\} & ext{if } u \in V_{ ext{Max}}. \end{cases}$$

Pseudocodice

```
\mathbf{for}\ u \in V\mathbf{do} \ \mu(u) \leftarrow 0 \ \mathbf{repeat} \ \mu \leftarrow \mathbb{O}^{\mathcal{G}}(\mu) \ \mathbf{until}\ \mu = \mathbb{O}^{\mathcal{G}}(u) \ \mathbf{return}\ \mu
```

Analisi della complessità

- lacktriangledown Calcolare $\mathbb{O}^{\mathcal{G}}(\mu)(u)$ ha una complessità di O(|Out(u)|)
- lacktriangle Sia p la probabilità di avere un arco tra due vertici, il numero medio di archi uscenti da un vertice è $p \cdot n$.
- Il ciclo viene ripetuto per tutti gli n nodi, quindi la complessità è $O(n^2p)$, ovvero O(m).
- Il massimo numero di iterazioni prima di arrivare alla convergenza è O(nW).

Quindi la complessità totale è O(nmW).

Implementazione Python

```
def value iteration(self):
   The naive value iteration algorithm to compute the value function.
   threshold = 0.000001
   steps = 0
   max steps = 50 000
   pbar = tqdm(total=max steps, desc="Value iteration")
```

Refined Value Iteration Algorithm

Come rendere l'algoritmo più efficiente?

Possiamo essere più efficienti e considerare solo un sottoinsieme di nodi per ogni iterazione.

Definiamo le seguenti variabili:

- Un insieme di vertici incorretti Incorrecct
- Una mappa Count che associa a ogni vertice di Min il numero di archi uscenti incorretti.

Definizione di "incorretto"

- lacksquare Un arco $u \stackrel{w}{\longrightarrow} v$ è incorretto se $\mu(u) < \delta(\mu(u), w)$
- Un vertice u è incorretto:
 - lacktriangle Ha un arco uscente incorretto e $u \in V_{ ext{Max}}$
 - lacktriangle Tutti i suoi archi uscenti sono incorretti e $u \in V_{\mathrm{Min}}$

function Init() for $u \in V$ do $\mu(u) \leftarrow 0$ for $u \in V_{\mathrm{Min}}$ do for $u \stackrel{w}{\longrightarrow} v \in E$ do $\overline{ ext{if } incorrect: \mu(u) < \delta(\mu(u), w) ext{ then}}$ $Count(u) \leftarrow Count(u) + 1$ if Count(u) = Degree(u) then Add u to Incorrect for $u \in V_{\text{Max}}$ do for $u \xrightarrow{w} v \in E$ do if $incorrect : \mu(u) < \delta(\mu(u), w)$ then Add u to Incorrect

function Treat(u) $\mu(u) \leftarrow \mathbb{O}^{\mathcal{G}}(\mu)(u)$

if $u \in V_{\min}$ then

 $Count(u) \leftarrow 0$

for $v \xrightarrow{w} u \in E$ which is incorrect do

if $u \in V_{\text{Min}}$ then

 $\mathbf{if} \ Count(v) = Degree(v) \ \mathbf{then}$

 $Count(v) \leftarrow Count(v) + 1$

Add v to Incorrect

```
function Main()
   Init()
   \mathbf{for}\ i = \overline{0,1,2,\dots\ \mathbf{do}}
      Incorrect' \leftarrow \emptyset
       for u \in Incorrect do
          Treat(u)
          Update(u)
      \mathbf{if} \ Incorrect' = \emptyset \ \mathbf{then}
          return \mu
       else
          Incorrect \leftarrow Incorrect'
```

Analisi della complessità

- La funzione Init ha una complessità di $O(n+|Out(V_{\min})|+|Out(V_{\max}|))$, dove |Out(V)| è il numero totale di archi uscenti da V.
- La funzione Treat(u) equivale a calcolare $\mathbb{O}^{\mathcal{G}}(\mu)(u)$, quindi la complessità per ogni $u\in Incorrect$ è $O(n^2p)=O(m)$, considerando il caso peggiore in cui tutti i vertici sono incorretti (quindi |Incorrect|=n).
- La funzione Update(u) ha una complessità di O(|In(u)|), che equivale a O(np). Quindi applicata a tutti i vertici in Incorrect ha una complessità di $O(n^2p)=O(m)$

Possiamo vedere che nel caso peggiore in cui |Incorrect|=n la complessità è O(nmW), uguale all'approccio nativo.

Empiricamente però abbiamo che |Incorrect| < n, quindi l'algoritmo è più efficiente.

Implementazione Python

Generazione dell'arena

Come generare un'arena valida per il gioco

Generazione dell'arena

Parametri

- num_nodes : numero di nodi;
- edge_probability : probabilità di avere un arco tra due nodi;
- ullet max_weight : definisce il range [-W,W] dei pesi degli archi;

$edges \leftarrow \emptyset$ for $v \in V$ do for $u \in V$ do $random_number \leftarrow random(0, 1)$ **if** random_number \leq edge_probability **do** $w \leftarrow sample(-W, W)$ $edge \leftarrow (v, u, w)$ if edge doesn't create a cycle do $edges \leftarrow edges \cup \{(v,u,w)\}$

Bellman Ford

- Capire se il grafo presenta cicli negativi.
- Ogni volta che viene eseguito, deve visitare tutti i nodi e tutti gli archi.
- lacktriangle Complessità di O(mn).

```
for edge in edges:
    if distances[edge[0]] + edge[2] < distances.get(edge[1],float('inf')):</pre>
```

Bellman Ford Incrementale

- Ad ogni step, un solo arco nuovo.
- Aggiornare solamente i pesi relativi al sottografo creato dall'arco.

Complessità di O(np).

Performance Evaluation

Valutare i tempi di generazione dell'arena e risoluzione del gioco con i differenti algoritmi

Risoluzione del gioco

11100161210110 6101 91000				
	Number of nodes	Edge probability	Time (naive)	Time (optimized)
	10	0.1	2.80 ms	2.66 ms
	10	0.2	3.63 ms	2.80 ms
	10	0.5	2.34 ms	3.44 ms
	50	0.1	3.05 ms	2.89 ms
	50	0.2	3.41 ms	3.19 ms
	50	0.5	4.86 ms	3.68 ms
	100	0.1	3.65 ms	3.28 ms
	100	0.2	4.49 ms	4.53 ms

Conclusioni

- Risolutore di energy games

• Generazione arena senza cicli negativi

Grazie per l'attenzione

