

Available online at www.sciencedirect.com

ECOLOGICAL MODELLING

Ecological Modelling 169 (2003) 237-293

www.elsevier.com/locate/ecolmodel

Plant parameter values for models in temperate climates

Lutz Breuer*, Klaus Eckhardt, Hans-Georg Frede

Institute for Landscape Ecology and Resources Management, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany

Received 12 June 2002; received in revised form 7 May 2003; accepted 16 July 2003

Abstract

Ecological, and especially hydrological models used to assess the effects of land cover changes require various input parameters for plants. Regional model applications rely on detailed information about the properties of the vegetation, especially if process-based approaches are chosen. As raising acceptable data is a time consuming issue, scientists often use globally approximated plant parameter ranges, rather than considering published data sets. The plant parameters summarised in this overview, i.e. albedo, interception capacity, maximum leaf area index, rooting depth, plant height and stomatal conductance, can be used as data for a wide range of published ecological and hydrological models. We concentrate on a presentation of values for temperate regions in order to list a manageable amount of data. Information on plant species is grouped into four main land cover types, crops, pasture (herbs, forbs, grasses), coniferous and deciduous trees. Overall, more than 1300 values for the described parameters have been gathered and present a solid data base for future applications. Further properties of species and sites, such as stand age, basal area, stock density, plant height, mean annual precipitation, mean annual temperature, coordinates and country are given, if available.

In many cases of model applications scientists used parameter spans, with no further information or testing of the distribution of data. Twenty-two of the total of 26 data sets subsumed in this data base contained sufficient values to perform a Kolmogorov–Smirnov-test. Twenty of these 22 data sets are normally distributed. In order to investigate spatial differences, the data for stomatal conductance, leaf area index and interception capacity were grouped into North American and European land cover species. Significant differences could only be determined for the leaf area index of deciduous trees and pasture species between the continents.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Albedo; Interception capacity; Leaf area index; Plant height; Plant parameters; Rooting depth; Stomatal conductance; Temperate climate: Land use; Modelling

1. Introduction

A change in land cover, and hence plant communities, has several ecological consequences on hydrology, microclimate, soil chemistry and soil biology in a given region. In the long term, these changing con-

E-mail address: lutz.breuer@agrar.uni-giessen.de (L. Breuer).

ditions will further alter other soil properties. Direct effects, such as energy exchange between vegetation and atmosphere, are associated with the properties of the new vegetation. In most ecological and hydrological modelling approaches, plant parameters have to be pre-set (e.g. IHDM (Institute of Hydrology Distributed Model, Beven et al., 1987)) applied by Binley et al. (1991) to investigate runoff processes in catchments; SWAT (Soil and Water Assessment Tool; Arnold et al., 1998) to predict impacts of

^{*} Corresponding author. Tel.: +49-641-99-37395; fax: +49-641-99-37389.

land management practices; upgrade of the Farquhar model to predict canopy photosynthesis developed by Chen et al., 1999; canopy transpiration and carbon assimilation submodel of Atmosphere-Land Exchange (ALEX) generated by Anderson et al., 2000; VIC (Variable Infiltration Capacity; Liang et al., 1994) applied by Matheussen et al., 2000 to reveal effects of land cover changes on streamflow; implementation of a terrestrial biogeochemical cycling model by Kercher and Chambers (2001); vegetation model Biosphere Energy-Transfer Hydrology Scheme (BETHY) developed by Knorr and Heimann (2001).

Usually modellers use a small amount of published information as they are not able to ascertain own data due to time constraints or limited infrastructure. Hallgren and Pitman (2000) tried to overcome the problem by searching the Current Contents database but could not find more than four alternative values for 11 out of the 19 investigated parameters needed in their sensitivity analysis of the global biome model BIOME3. Collection of reliable parameter values is usually difficult and always time consuming, due to the fact (i) that a lot of these investigations are relatively old and were published in the mid 20th century or earlier and (ii) that information has to be collected from a broad range of different scientific disciplines. As a consequence, the parameter ranges used for regional approaches are often not really suitable or sometimes even wrong (e.g. including mixed data for temperate as well as tropical vegetation in investigations of mid-latitude ecosystems). In other cases parameterisation is undertaken by looking at only a few published values, neglecting possible existing parameter ranges. Wide ranges of parameter spans result from high spatial and temporal variability and differences in the measurement techniques applied.

The stimulus for this paper was provided by previous investigations on land use changes in a German low mountain range (Fohrer et al., 2001) and the question how parameter uncertainties affect model results (Eckhardt et al., 2003). Effects of land use changes on the hydrological schemes have been debated for years (e.g. Stednick, 1996; Finch, 1998; Roberts, 2000). In most cases, the effects of deforestation, afforestation and conversion of forests to agricultural land (crops or meadows) are analysed (Bowling et al., 2000). Scientists intending to simulate land use changes and their ecological effects will always be faced with the ques-

tion of how to parameterise different land cover options, as models require a broad set of various input parameters. Many of the plant parameters included are the same no matter what specific types of ecological or hydrological models are used.

Using IHDM, Binley et al. (1991) needed input data such as albedo, vegetation height, interception capacity, leaf area index and ground cover to assess the uncertainty of river discharge in Wales. Simulations of land cover change effects on streamflow by the use of the VIC model were performed by Matheussen et al. (2000). Different land cover classes in their approach were characterised by aerodynamic resistance (influenced by vegetation height), canopy resistance (depending on stomatal conductance and LAI), and root distribution. Fohrer et al. (2001) utilised SWAT-G (Eckhardt et al., 2002) to assess land use change effects on different hydrologic variables. The number of plant dependent parameters in this model is very high. The most important ones are albedo, vegetation height, interception capacity, leaf area index, stomatal conductance and rooting depth. Many of the parameters mentioned above are not only important in hydrological modelling. Terrestrial models simulating biogeochemical cycles (Kercher and Chambers, 2001), predicting CO₂ sequestration by vegetation (Knorr and Heimann, 2001), investigating photosynthesis (Chen et al., 1999) or estimating canopy transpiration and carbon assimilation (Anderson et al., 2000) also require information on leaf area index, stomatal conductance, albedo, interception capacity or rooting depth as input parameters.

Therefore, an extensive literature search has been carried out to define statistically reliable ranges for the following parameters: Albedo (a), stomatal conductance (g_s), maximum plant height (H_{max}), interception capacity of precipitation (I_c), leaf area index (LAI) and maximum root depth (RD_{max}).

2. Considered plant-specific parameters

Realising that no comprehensive overview on parameters for ecological and hydrological modelling existed, we conducted a literature research on common temperate vegetation types and plant species. The investigated plant species were grouped into four main land cover types: (i) crops, (ii) herbs, forbs and grasses

(also referred to as pasture), (iii) coniferous and (iv) deciduous forests. If available, additional information on shrubs and woodland species as well as understory species in forests were added. In order to list a manageable amount of data only information on temperate climates was compiled. In cases where data for the investigated climate zone was scarce, parameter values from adjacent regions such as boreal (Estonia, Sweden, Canada) or Mediterranean (Italy, Spain) regions were also listed. Further details on stand characteristics like plant age, plant height, basal area, stock density, height above sea level (a.s.l.), mean annual precipitation, mean annual temperature, latitude, longitude and location (country) were given if available. Information on site treatments such as fertilisation or thinning were also included as soil properties in the case of maximum rooting depths.

For some of the investigated parameters it was possible to find overviews covering typical vegetation types (e.g. Geyger, 1977: LAI for grassland species) or even more or less complete reviews on selected parameters (Körner et al., 1979: stomatal conductance). This data was supplemented by recently published information to allow satisfying statistical analysis. The nomenclature of cited plant species was taken from the original text and was not converted to new classification names. As we found that approximately 5–10% of cited values in secondary literature were wrong due to conversion or typing errors, primary literature was used if accessible, to double-check data.

The published values for most of the parameters covered wide ranges. Where observations were sufficiently numerous (N > 25) normal distribution was tested using Lillefors modification of Kolmogorov–Smirnov-test.

2.1. Interception capacity of precipitation—I_c

Interception capacity of precipitation, in the case of forests sometimes referred to as canopy capacity, plays an important role in the calculation of water balances in hydrology and energy budgets of boundary layer climatology. Interception capacity $I_{\rm c}$ (mm) in this review is defined as the maximum amount of water left on the canopy at the end of a precipitation event under zero evaporation conditions and after drip has stopped. Surface of vegetation (i.e. the sum of leaf and woody area and their characteristics like surface structure

and roughness) defines storage capacity and hence the portion of precipitation which might be evaporating from the plant into the atmosphere. Depending on the season, precipitation can occur in liquid or solid phase. Interception is usually determined by subtracting throughfall from total precipitation input overstory (Gash, 1980). To estimate values of interception capacity various techniques have been applied (Dunkerley, 2000), including artificial rain experiments and weighing of whole trees or single branches after precipitation (e.g. Aston, 1979; Teklehaimnot and Jarvis, 1991). It should be pointed out that interception capacity of precipitation relies on various factors including rainfall intensity, drop size (Calder et al., 1996), wind speed (Klaassen et al., 1996) or plant architecture (Domingo et al., 1998). Therefore, published data cover a wide range due to high temporal and spatial variability of Ic and differences in measuring techniques

Reliable data on I_c to parameterise pasture species and crops are difficult to find. Our estimates of these low-growing plants are based on only a limited number of published investigations. In contrast, information on forest trees is plentiful. Intercepted precipitation in a natural forest stand is a sum of interception of different compartments, i.e. over-, understory vegetation and litter. Consistently we recommend a surcharge for coniferous and deciduous trees to assess interception capacity values for whole forest stands (Table 1). Understory I_c is dominated by two values (8.1 and 11.2 mm), enhancing the mean to 3.5 mm. In view of the limited available published data, the two outliers and the fact that normally less than 100% of the soil surface is covered by understory vegetation, we propose a surcharge constant of 2.0 mm.

In contrast to common opinion, many forest species show a lower I_c than crops or pasture species (Table 1), even though some extreme values of up to 9 mm interception for coniferous forest species (i.e. *Picea* spp. and *Abies* spp.) are reported. Compared to all other main land cover types of temperate regions, deciduous forest in general show the lowest mean value of interception (1.0 mm, Table 7). This fact is even more striking in view of the generally lower mean LAI of crops compared to tree species (Table 7), a parameter very important for intercepting precipitation. An explanation might be that in view of high transpiration rates, trees evolved strategies

Table 1 Interception capacity of precipitation— I_c

$I_{\rm c}$	Sci. name	Furth. inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei	Lat	Lon	Country	Source
Crops													
3.0	Avena sativa											DE	Hoyningen-Huene (1983)
2.7	Beta vulgaris											DE	Hoyningen-Huene (1983)
1.9	Hordeum vulgare											DE	Hoyningen-Huene (1983)
1.2	Secale cereale											USA	Horton (1919)
3.4	Solanum tuberosum											DE	Hoyningen-Huene (1983)
2.1	Triticum aestivum											DE	Hoyningen-Huene (1983)
0.6	Zea mays											n.d.	Stoltenberg and Wilson (1950)
													in Burgy and Pomeroy (1958)
3.7	Zea mays											n.d.	Musgrave and Norton (1937) in
υ.,	Zea mays												Burgy and Pomeroy (1958)
1.4	Zea mays	4 plants per m ²										DE	Hoyningen-Huene (1983)
2.5	Zea mays	8 plants per m ²										DE	Hoyningen-Huene (1983)
3.0	Zea mays	12 plants per m ²										DE	Hoyningen-Huene (1983)
6.0	Zea mays	32 plants per m ²										DE	Hoyningen-Huene (1983)
	•	32 plants per in										DL	Hoyningen-Huche (1763)
Herbs,	forbs, grasses												
2.3	Andropogon furcatus											USA, NE	Clark (1940) in Leuschner
													(1986)
0.8	Beckmannia syzigachne											USA, NE	Clark (1940) in Leuschner
													(1986)
2.8	Lolium perenne						17	300	800	38N	2W	N.Am.	Merriam (1961) in Leyton et al
	_												(1967)
3.6	Medicago spp.											n.d.	Musgrave and Norton (1937) in
	- 11												Burgy and Pomeroy (1958)
0.7	Molinia caerulea											UK	Leyton et al. (1967)
2.4	Stipa tenacissima						17	300	800	38N	2W	ES	Domingo et al. (1998)
1.1	Stipa-Bouteloua	Prairie										N.Am.	Coutourier and Ripley (1973) in
	supu Boutetoud	1141110											Leuschner (1986)
3.1	Trifolium spp.											n.d.	Musgrave and Norton (1937) in
5.1	Trijottum Spp.											n.d.	Burgy and Pomeroy (1958)
1.4	Trisetum flavescens											DE	Leuschner (1986)
1.2	n.d.	Northern Californian										USA, CA	Burgy and Pomeroy (1958)
1.2	n.u.	rangeland species										USA, CA	Burgy and Fomeroy (1936)
		rangeland species											
Shrubs,	, woodland												
0.8	Acer spp.	Hedges, single trees							110			USA, NY	Horton (1919)
1.5	Adenostoma fasciculatum											USA	Hicks (1943) in Zinke (1967)
1.8	Anthyllis cytisoides						17	300	630	38N	2W	ES	Domingo et al. (1998)
1.3	Arctostaphylos mariposa											USA	Rowe (unpubl.) in Grah and
													Wilson (1944)

1.5	Baccharis pilularis									USA USA	Grah and Wilson (1944) Rowe (unpubl.) in Grah and Wilson (1944)
1.5	Ceanothus cuneatus, Arctostaphylos mariposa									USA	Hamilton and Rowe (1949)
1.0	Cerocarpus ledifolius									USA	Hicks (1943) in Zinke (1967)
2.0	Erica spp.									UK	Leyton et al. (1967)
0.8	Fagus spp.	Hedges, single trees					110			USA, NY	Horton (1919)
0.4	Fraxinus spp.	Hedges, single trees					110			USA, NY	Horton (1919)
1.8	Photinia arbutifolia									USA	Hicks (1943) in Zinke (1967)
0.9	Pteridium aquilinum									UK	Leyton et al. (1967)
1.3	Pteridium aquilinum									n.d.	Brookes (1950) in Leyton et al. (1967)
2.0	Quercus dumosa,									USA	Hamilton and Rowe (1949)
	Cercocarpus betuloides,										
	Ceanothus crassifolius										
0.3	Retama spaerocarpa				17	300	630	38N	2W	ES	Domingo et al. (1998)
0.8	Quercus spp.	Hedges, single trees					110			USA, NY	Horton (1919)
0.5	Salix spp.						110			USA, NY	Horton (1919)
0.8	Tilia spp.	Hedges, single trees					110			USA, NY	Horton (1919)
1.3	Tsuga canadensis						110			USA	Horton (1919)
0.8	Tsuga canadensis	Hedges, single trees					110			n.d.	Horton (1919)
0.8	Ulmus spp.	Hedges, single trees					110			USA, NY	Horton (1919)
1.0	n.d.	Hedges, single trees					110			USA, NY	Horton (1919)
Understo	ry										
1.8	Acer spp.	Brushes and herbs								USA, NY	Horton (1919)
1.4	Liriodendron tulipifera									USA	Helvey (1964) in Zinke (1967)
2.3	Pinus ponderosa		23							USA	Rowe (1955)
8.1	Pinus ponderosa		75							USA	Rowe (1955)
11.2	Pinus ponderosa		150							USA	Rowe (1955)
0.5	Pinus radiata		8							USA	Rowe (1955)
1.0	Pinus radiata		10							USA	Rowe (1955)
1.8	Pinus radiata		18							USA	Rowe (1955)
3.6	Pinus radiata		28							USA	Rowe (1955)
Conifero	us trees										
3.8	Abies concolor	Snowfall	100	33.0		1067	1716			USA, CA	Kittredge (1953)
6.6	Abies concolor	Snowfall	70	26.4		1067	1742			USA, CA	Kittredge (1953)
7.6	Abies magnifica	Snowfall	200	39.6		1067	2066			USA, CA	Kittredge (1953)
0.6	Picea abies		15							DE	Delfs et al. (1958) in
											Mitscherlich (1970)
1.5	Picea abies		25							UK	Leyton et al. (1967)
2.7	Picea abies		30							DE	Delfs et al. (1958) in
											Mitscherlich (1970)

Table 1 (Continued)

I _c	Sci. name	Furth. inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei	Lat	Lon	Country	Source
3.0	Picea abies		59									n.d.	Weihe (1968) in Mitscherlich (1970)
3.1	Picea abies					2160						FR	Aussenac (1968)
4.0	Picea abies		60									DE	Delfs et al. (1958) in
													Mitscherlich (1970)
4.0	Picea abies		80									DE	Delfs et al. (1958) in
													Mitscherlich (1970)
4.7	Picea abies		90									DE	Benecke and van der Ploeg
													(1978)
9.1	Picea rubens		30									USA	Morey (pers. comm.) in Johnso (1942)
0.8	Picea sitchensis		25	12.9		3600			220	55N	2W	UK	Gash et al. (1980)
2.0	Picea sitchensis					3900						n.d.	Calder and Wright (1986)
2.0	Picea sitchensis					3100						n.d.	Calder and Wright (1986)
2.4	Picea sitchensis											n.d.	Olszyczka and Crowther (1981
													in Klaassen et al. (1998)
2.5	Picea sitchensis											UK	Hancock and Crowther (1979)
2.8	Picea sitchensis											n.d.	Hutchings et al. (1988) in
													Klaassen et al. (1998)
3.0	Picea sitchensis											n.d.	Calder and Wright (1986)
1.2	Picea sitchensis	Thinned	29	8.9		4250			410	52N	3W	UK	Gash et al. (1980)
1.1	Picea sitchensis	Spacing 2 m										UK	Teklehaimnot and Jarvis (1991)
0.3	Picea sitchensis	Thinned, spacing 4 m										UK	Teklehaimnot and Jarvis (1991)
0.2	Picea sitchensis	Thinned, spacing 6 m										UK	Teklehaimnot and Jarvis (1991)
0.1	Picea sitchensis	Thinned, spacing 8 m										UK	Teklehaimnot and Jarvis (1991)
1.0	Pinus canariensis		28									n.d.	Kittredge et al. (1941) in Grah
													and Wilson (1944)
0.8	Pinus contorta											USA	Niederhof and Wilm (1943)
0.4	Pinus elliottii	Upland	30	14.1	14.9	672		1330		29N	82W	USA, FL	Liu (1998)
0.4	Pinus elliottii	Upland	30	17.6	11.3	464		1330		29N	82W	USA, FL	Liu (1998)
0.5	Pinus elliottii	Upland	30	20.7	16.7	496		1330		29N	82W	USA, FL	Liu (1998)
0.7	Pinus elliottii	Upland	30	15.4	25.9	1190		1330		29N	82W	USA, FL	Allen and Gholz (1995) in Liu (1998)
1.0	Pinus nigra					600						n.d.	Robins (1974) in Llorens and Gallart (2000)
1.1	Pinus nigra											USA, NH	Robins (1969, 1974) in Rutter et al. (1975)
0.3	Pinus pinaster			20.3		430						FR	Lankreijer et al. (1993)
0.4	Pinus pinaster					312						n.d.	Valente et al. (1997) in Llorens
	1												and Gallart (2000)
0.5	Pinus pinaster					800						n.d.	Loustau et al. (1992) in Lloren
													and Gallart (2000)

1.3 3.0 0.3 2.3 2.3 0.4	Pinus ponderosa Pinus ponderosa Pinus ponderosa Pinus ponderosa Pinus ponderosa Pinus radiata Pinus radiata Pinus radiata	Snowfall Snowfall Snowfall	y 70 28 v 70	23.4 5.0 39.6 23.4		450		1067 1067 1067 1067	1100 1723 1716 1100			USA, CO USA, CA USA, CA USA, CA USA, CA n.d.	Johnson (1942) Rowe and Hendrix (1951) Kittredge (1953) Kittredge (1953) Rowe and Hendrix (1951) Kelliher et al. (1992) in Llorens and Gallart (2000) Aston (1979) Grah and Wilson (1944)
0.8	Pinus resinosa	Thinned	40	17.2		1236						USA, CT	Voigt and Zwolinski (1964) in Zinke (1967)
0.5	Pinus strobus	Thinned	40	12.5		1236						USA, CT	Voigt and Zwolinski (1964) in Zinke (1967)
0.3	Pinus sylvestris		23	2.8	5.0	2900			185	60N	16E	SE	Perttu et al. (1980)
0.6	Pinus sylvestris		125	15.6	15.0	400			185	60N	16E	SE	Perttu et al. (1980)
0.7	Pinus sylvestris		60	12.6	20.0	1200			185	60N	16E	SE	Perttu et al. (1980)
0.8	Pinus sylvestris					800						n.d.	Gash and Morton (1978)
1.0	Pinus sylvestris		41	15.0		1870			10.0	57N	3W	UK	Gash et al. (1980)
1.2	Pinus sylvestris			10.0		764			10.0	0,11	2	ES	Llorens and Gallart (2000)
1.3	Pinus sylvestris					2400						ES	Llorens et al. (1997) in Llorens
													and Gallart (2000)
1.5	Pinus sylvestris					1782						ES	Llorens and Gallart (2000)
1.6	Pinus sylvestris					3600						n.d.	Rutter (1963, 1975) in Llorens and Gallart (2000)
2.0	Pinus sylvestris					1400						ES	Llorens and Gallart (2000)
2.3	Pinus sylvestris					509						ES	Llorens and Gallart (2000)
2.7	Pinus sylvestris					2674	7.3	952				ES	Llorens and Gallart (2000)
3.0	Pinus sylvestris					1520						FR	Aussenac (1968)
2.0	Pinus sylvestris, Picea					1476						n.d.	Bringfelt and Harsmar (1974) in
2.0	abies					1.70							Llorens and Gallart (2000)
1.0	Pinus spp.		12									RU	Lokhov (1936) in Grah and Wilson (1944)
1.6	Pinus sylvestris, Quercus		80	16.9	39.3	848			600			DE	Mitscherlich and Moll (1970)
2.1	spp., Fagus sylvatica Pseudotsuga menziesii											USA, NH	Robins (1969, 1974) in Rutter et al. (1975)
2.4	Pseudotsuga menziesii		27	18.0		800						NL	Aston (1979)
2.4	Pseudotsuga menziesii	Thinned weakly	35	19.9	48.5	1257			600			DE	Mitscherlich and Moll (1970)
	Pseudotsuga menziesii Pseudotsuga menziesii	Thinned weakly Thinned moderately	35 35	19.9	40.2	1090			600			DE DE	Mitscherlich and Moll (1970)
3.1	0	Thinned moderately Thinned heavily										DE DE	
1.6	Pseudotsuga menziesii	•	35	19.8	33.9	800		1220	600	201	02337		Mitscherlich and Moll (1970)
0.9	Taxodium asecendens, Pinus elliottii, Nyssa sylvatica	Wetland		13.6	18.5	2062		1330		29N	82W	USA, FL	Liu (1998)

Table 1 (Continued)

	(Continued)												
$I_{\rm c}$	Sci. name	Furth. inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei	Lat	Lon	Country	Source
0.9	Taxodium asecendens, Pinus elliottii, Nyssa sylvatica	Wetland		13.5	17.2	1266		1330		29N	82W	USA, FL	Liu (1998)
1.1	*	Wetland		13.9	14.6	2700		1330		29N	82W	USA, FL	Liu (1998)
2.2	Taxodium distichum		64	27.0	73.6	722			1140	35N	80W	USA, NC	Oren et al. (2001)
2.5	n.d.	Snowfall	v	46.2				1067	1841			USA, CA	Kittredge (1953)
6.4	n.d.	Snowfall	v	36.3				1067	1832			USA, CA	Kittredge (1953)
Decidu	ious trees												
0.6	Acacia longifolia		y	1.5								AU	Aston (1979)
1.0	Acer spp.								110			USA, NY	Horton (1919)
0.8	Aesculus californica											USA	Hamilton and Rowe (1949)
1.5	Aesculus spp.								110			USA, NY	Horton (1919)
0.6	Carpinus betulus		60									UK	Leyton et al. (1967)
1.0	Carpinus betulus		60									UK	Leyton et al. (1967)
0.4	Eucalyptus cinerea		y	1.5								AU	Aston (1979)
0.3	Eucalyptus dives		y	1.5								AU	Aston (1979)
0.5	Eucalyptus maculata			1.5								AU	Aston (1979)
0.3	Eucalyptus mannifera		y	1.5								AU	Aston (1979)
0.2	Eucalyptus viminalis		y	1.5								AU	Aston (1979)
0.8	Eucalyptus pauciflora		y	1.5								AU	Aston (1979)
0.4	Eucalyptus spp.											n.d.	Crockford and Richardson (1990) in Klaassen et al. (1998)
0.6	Eucalyptus spp.											n.d.	Dunin et al. (1988) in Klaasser et al. (1998)
0.6	Fagus sylvatica											n.d.	Weihe (1968) in Mitscherlich (1970)
2.6	Fagus sylvatica		120									DE	Benecke and van der Ploeg (1978)
1.9	Fagus sylvatica, Carpinus betulus											FR	Aussenac (1968)
1.0	Fagus spp.								110			USA, NY	Horton (1919)
0.5	Fraxinus spp.								110			USA, NY	Horton (1919)
0.8	Liquidamber styraciflua											USA	Paul and Burgy (1961) in Zink (1967)
1.0	Quercus robur		60	10.5	33.5	12277						UK	Thompson (1972)
0.6	Quercus rubra			17.3		600						NL	Lankreijer et al. (1993)
2.7	Quercus rubra, Fagus sylvatica, Larix leptolepus			22.0								NL	Klaassen et al. (1996)

0.8	Quercus rubra,		50	1524	792	USA, VA	Trimble and Weitzman (1954)
	Liriodendron tulipifera,						
	Acer rubrum, Robinia						
	pseudoacacia, Nyssa						
	sylvatica, Betula lenta,						
	Magnolia acuminata						
1.3	Quercus spp.				110	USA, NY	Horton (1919)
1.3	Tilia spp.				110	USA, NY	Horton (1919)
1.0	Ulmus spp.				110	USA, NY	Horton (1919)
1.0	n.d.	Orchard			110	USA, NY	Horton (1919)
1.6	n.d.					USA	Helvey and Patric (1965) in
							Zinke (1967)
2.0	n.d.					USA	Morey (pers. comm.) in Johnson
							(1942)

 I_c (mm)—interception capacity of precipitation. Sci. name: scientific names for species were taken as published by authors and not transformed into current nomenclature; n.d.: no details given; Furth. Inf.: further information given in literature; Age: y: young, v: various; PlaH: plant height (m); BasA: basal area (m² ha⁻¹); StoD: stock density (ha⁻¹); MAT: mean annual temperature (°C); MAP: mean annual precipitation (mm); Hei: height above sea level (m); Lat: latitude (°); Lon: longitude (°); Country: N.Am.: North America; abbreviation of countries follows ISO 3166; Source: unpubl.: unpublished; pers. comm.: personal communication.

to reduce interception losses and "harvest" water by promoting throughfall or stemflow.

Information on the differences of I_c between leafed and unleafed deciduous trees are scarce and no clear statement on the effects of the leafless stage can be derived. On the one hand, Leyton et al. (1967) and Thompson (1972) reported a reduced I_c in winter during the unleafed period for *Carpinus betulus* (-37%) and for a *Quercus robur* coppice (-60%). On the other hand, Reynolds and Henderson (1967) reported even an increase of I_c for beech and larch trees in the leafless period, which Thompson (1972) attributed to the greater exposure of woody parts, mosses and lichens. Thinning, and hence a change in stand structure, does not generally result in an increase or decrease of interception capacity (see data for coniferous trees, Tables 1 and 7).

2.2. Leaf area index—LAI

Leaf area index is an important parameter in most of the existing ecological and hydrological models, as it determines photosynthesis, transpiration rates, as well as light and water interception. In consequence, the uncertainty of the potential maximum LAI may contribute considerably to the uncertainty of the model results (Eckhardt et al., 2003).

Various destructive and non-destructive methodologies have been used to determine LAI of plants, including e.g. hemispherical photography, sunfleck ceptometers, and other optical instruments like TRAC, LAI-2000 or LI-COR (detailed descriptions of techniques are presented by Chen et al., 1997). Calibration and correcting factors have to be determined for all non-destructive, optically-based methods to determine LAI. Direct litterfall measurements with littertraps were used by Chason et al. (1991) or Cutini et al. (1998) to determine LAI whereas Chen (1996) and Chen et al. (1997) and Fassnacht et al. (1994) completely harvested whole trees to derive appropriate values and set up fitting functions to calibrate their optical methods. It has to be taken into account that all methods have advantages as well as disadvantages in estimating LAI and data is not always directly comparable.

The annual course of LAI for deciduous trees peaks during the height of growing season, whereas LAI of coniferous stands vary far less over the year. Some

deciduous trees keep old leaves till next season's budding whilst other species completely shed leaves. LAI of plants, especially grasses, consists of photosynthetically active green and senescent leaves. Even though old leaves do not influence photosynthesis, they still play an important role in intercepting precipitation. Therefore, as in the case of modelling water interception, a LAI greater than zero has to be maintained throughout the year for forests and pasture species in contrast to agricultural sites, which start with a LAI of zero after ploughing. Information on this lower bound of LAI, here referred to as minimum LAI or LAI_{min} is relatively scarce. Published LAI_{min} for grassland species are in a range between 0.3 and 2.0 (Calvet et al., 1998; Mitchell et al., 1998; Morrow and Friedl, 1998). Measurements of LAI in wintertime for Fagus sylvatica (Prskawetz and Lexer, 2000) or assessments of area indices of branches and stems for Populus tremoluides (Kucharik et al., 1998) reveal a highest LAImin of 1.1. The area index of woody parts of coniferous trees can be assumed to be around 0.5, covering a range of 0.2 and 0.9 (Deblonde et al., 1994; Kucharik et al., 1998; Law et al., 2001).

In general, published LAI for coniferous trees and pasture are somewhat higher than those for deciduous trees, both exceeding LAI for crops by a factor of approximately 1.4–1.7 (Tables 2 and 7). As some models need information on LAI of whole stands, a surcharge for understory and litter has to be added to the LAI of trees to obtain the integrated total LAI of a given forest stand. We therefore listed values for understory as well as shrubs and woodland so modellers can sum up the needed LAI for their purpose. On average we assume that a surcharge for understory vegetation and litter of approximately 2.0 should be added to total LAI of deciduous and coniferous forests stands.

Treatments such as fertilisation of pasture (Aerts and de Caluwe, 1994) or thinning of trees might have a strong effect on LAI. For example, in a high mountain pasture of the Black Forest (Germany) LAI rose from approximately 1.2 to 8.8 after 3 years of consecutive fertilization (Geyger, 1977). Narrow plant spacing compared to broad plant spacing in crop stands led to rising LAI (Hoyningen-Huene, 1983), whereas thinning in deciduous forest reduced LAI (Bréda and Granier, 1996; Cutini et al., 1998).

Table 2 Leaf area index—LAI

LAI	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei	Lat	Lon	Country	Source
Crops													
3.5	Avena sativa											DE	Hoyningen-Huene (1983)
5.1	Beta vulgaris											DE	Hoyningen-Huene (1983)
2.4	Beta vulgaris											DE	Schrödter (1985)
3.6	Beta vulgaris											DE	Schrödter (1985)
3.8	Beta vulgaris											DE	Hoyningen-Huene (1983)
4.2	Beta vulgaris											DE	Sommer and Bramm (1978) in Hoyningen-Huene (1983)
3.1	Brassica oleracea acephale									40S		NZ	Brougham (1960)
3.9	Glycine max	Late season								44N	5E	FR	Olioso et al. (1996) in Calvet et al. (1998)
4.0	Glycine max									43N	1W	FR	Goutorbe (1991) in Calvet et al. (1998)
1.8	Helianthus annuus											n.d.	Hiroi and Monsi (1966) in Saugier (1976)
3.0	Helianthus annuus											n.d.	Anderson (1970) in Saugier (1976)
3.6	Helianthus annuus											FR	Eckhardt et al. (1971) in Saugier (1976)
3.9	Helianthus annuus											n.d.	Laisk (1969) in Saugier (1976)
4.1	Helianthus annuus											n.d.	Nilson (1968) in Saugier (1976)
1.8	Hordeum vulgare											DE	Schrödter (1985)
2.2	Hordeum vulgare											DE	Klapp (1967) in Hoyningen-Huene (1983)
2.4	Hordeum vulgare											DE	Schrödter (1985)
7.1	Pennisetum typhoides								108	14S	132E	AU	Begg et al. (1964)
5.2	Solanum tuberosum											DE	Hoyningen-Huene (1983)
2.3	Triticum aestivum											DE	Schrödter (1985)
2.9	Triticum aestivum											DE	Schrödter (1985)
3.1	Triticum aestivum											DE	Schrödter (1985)
3.6	Triticum aestivum											DE	Schrödter (1985)
4.6	Triticum aestivum											DE	Hoyningen-Huene (1983)
2.8	Zea mays									52N	5E	NL	Jacobs and van Pul (1990)
3.5	Zea mays									43N	1E	FR	Cabelguenne et al. (1990) in Calvet et al. (1998)
3.9	Zea mays									52N	5E	NL	Jacobs and van Pul (1990)
3.6	Zea mays											DE	Hoyningen-Huene (1983)
7.4	Zea mays									40S		NZ	Brougham (1960)
2.1	Zea mays	Narrow spacing										DE	Schrödter (1985)
3.3	Zea mays	Narrow spacing										DE	Schrödter (1985)

Table 2 (Continued)

LAI	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei	Lat	Lon	Country	Source
3.1	Zea mays	Broad spacing										DE	Schrödter (1985)
6.4	Zea mays	Broad spacing										DE	Schrödter (1985)
4.0	Zea mays	4 plants per m ²										DE	Hoyningen-Huene (1983)
3.3	Zea mays	8 plants per m ²										DE	Hoyningen-Huene (1983)
3.8	Zea mays	12 plants per m ²										DE	Hoyningen-Huene (1983)
10	Zea mays	32 plants per m ²										DE	Hoyningen-Huene (1983)
Herbs, f	forbs, grasses												
0.7	Agropyron christatum								1340	45N	111W	USA, MO	Olson et al. (2000)
0.4	Agropyron christatum	Grazed							1340	45N	111W	USA, MO	Olson et al. (2000)
5.5	Agropyron dasystachyum,							350				CA, SK	Robins and Ripley (1973) i
	Kocleria cristata												Ripley and Redmann (1976
0.7	Agropyron spicatum, Poa secunda	Native range site							1475	45N	111W	USA, MO	Olson et al. (2000)
0.8	Agropyron spicatum, Poa secunda	Native range site							1500	45N	111W	USA, MO	Olson et al. (2000)
1.3	Agropyron spicatum, Poa secunda	Native range site							1550	45N	111W	USA, MO	Olson et al. (2000)
7.0	Agrostietum	Intensively managed		0.28					1770	46N	11E	IT	Wohlfahrt et al. (2001)
5.8	Andropogon geradii	Fert.						680				USA, NE	Mitchell et al. (1998)
0.45	Androsace glacialis								2950			AT	Vareschi (1951)
7.0	Arrhenatheretum	Intensively managed		0.80					1850	47N	11E	AT	Wohlfahrt et al. (2001)
12.9	Arrhenatherum,			1.20					10			DE	Geyger (1964)
	Agropyro-Rumicion												
13.6	Arrhenatherum,			1.50					10			DE	Geyger (1964)
	Agropyro-Rumicion												
16.2	Arrhenatherum,			1.70					10			DE	Geyger (1964)
	Agropyro-Rumicion												
6.9	Arrhenatherum,			1.50					5			DE	Geyger (1964)
	Cirsio-Polygonum												
6.3	Bromus erectus								520			CH	Niklaus et al. (1998)
6.8	Bromus erectus	Elevated CO ₂							520			CH	Niklaus et al. (1998)
2.6	Bromus inermis											USA, NE	Engel et al. (1987)
5.1	Bromus inermis	Fert.						680				USA, NE	Mitchell et al. (1998)
5.2	Bromus inermis	Fert. 168 kg N										USA, NE	Engel et al. (1987)
6.8	Bromus inermis	Fert. 336 kg N										USA, NE	Engel et al. (1987)
4.9	Calamagrostis canescens			1.60					10			DE	Geyger (1964)
5.3	Calamagrostis canescens			1.60					10			DE	Geyger (1964)
6.1	Carex acutiformis	Fert. 33 kg N										NL	Aerts and de Caluwe (1994
15.3	Carex acutiformis	Fert. 200 kg N										NL	Aerts and de Caluwe (1994
1.5	Carex diandra	Fert. 33 kg N										NL	Aerts and de Caluwe (1994
6.7	Carex diandra	Fert. 200 kg N										NL	Aerts and de Caluwe (1994

9.9	Carex gracilis		2.00		10			DE	Geyger (1964)
2.1	Carex rostrata	Fert. 33 kg N						NL	Aerts and de Caluwe (1994)
6.3	Carex rostrata	Fert. 200 kg N						NL	Aerts and de Caluwe (1994)
5.5	Caricetum sempervirentis	Abandoned meadow	0.22		1770	46N	11E	IT	Wohlfahrt et al. (2001)
5.1	Cirsio-Polygonum		1.20		10			DE	Geyger (1964)
6.7	Cirsio-Polygonum		1.75		10			DE	Geyger (1964)
7.6	Cirsio-Polygonum		1.60		10			DE	Geyger (1964)
8.2	Cirsio-Polygonum		1.20		10			DE	Geyger (1964)
8.4	Cirsio-Polygonum		0.80		10			DE	Geyger (1964)
10.1	Cirsio-Polygonum		1.80		10			DE	Geyger (1964)
11.7	Cirsio-Polygonum		1.60		10			DE	Geyger (1964)
15.5	Cirsio-Polygonum		1.40		10			DE	Geyger (1964)
6.2	Cirsium		1.10		5			DE	Geyger (1977)
0.2	oleraceum-Arrhenatherum				5			DE	Geyger (1977)
	elatior								
4.8	Crepido cynosyretum		0.14		1565	46N	11E	IT	Wohlfahrt et al. (2001)
6.4	Dactylis glomerata		0.11		1505	40S	112	NZ	Brougham (1960)
0.6	Festuca idahoensis,	Native range site			1770	45N	111W	USA, MO	Olson et al. (2000)
0.0	Agropyron spicatum	rative range site			1770	4311	111 11	05/1, 1410	013011 et al. (2000)
1.3	Festuca idahoensis,	Native range site			1600	45N	111W	USA, MO	Olson et al. (2000)
1.5	Agropyron spicatum	rative range site			1000	4311	111 ***	05/1, 1410	Olson et al. (2000)
3.0	Festuca rubra,	Fert.			200			DE	Geyger (1977)
5.0	Alopecurus pratensis,	T CIT.			200			DL	Geyger (1777)
	Poa pratensis								
6.0	Festuca rubra,	Fert.			200			DE	Geyger (1977)
0.0	Alopecurus pratensis,	Tert.			200			DE	Geyger (1977)
	Poa pratensis								
10.5	Festuco-Cynosuretum				1000			DE	Geyger (1977)
10.5	trifoliosum				1000			DE	Geyger (1977)
9.0	Festuco-Cynosuretum	Fert.			1500			DE	Geyger (1977)
9.0	trifoliosum	Tert.			1300			DE	Geyger (1977)
5.9	Flavescentis	Lightly managed	0.48		1850	47N	11E	AT	Wohlfahrt et al. (2001)
4.4	Geranio trisetetum	Lightly managed	0.30		1520	46N	11E	IT	Wohlfahrt et al. (2001)
8.7	Glyceria maxima	Lightly managed	1.20		10	4011	HE	DE	Geyger (1964)
1.2	Leondonton		1.20		1500			DE	Geyger (1977)
1.2	helveticus-Nardetum				1300			DE	Geyger (1977)
6.0	Lolium perenne	Perennial				40S		NZ	Brougham (1960)
6.5	Lolium perenne × Lolium	Short-rotation				40S		NZ NZ	Brougham (1960)
0.5	multiflorum	Short-rotation				403		NZ	Brougham (1900)
2.4	Molinia cerulea							UK	Leyton et al. (1967)
3.7	Nardetum	Lightly managed	0.16		1770	46N	11E	IT	Wohlfahrt et al. (2001)
4.9		Lightly managed Fert. 110 kg N	0.10	680	1770	4011	HE	USA, NE	Mitchell et al. (1998)
8.7	Panicum virgatum	ren. Hokgi	1.60	000	10			DE	
4.8	Petasites hybrides		3.20		5			DE DE	Geyger (1964)
4.8 8.0	Phragmitis communis		2.75		5			DE DE	Geyger (1964) Geyger (1964)
8.0 10.7	Phragmitis communis		3.30		5 10			DE DE	
10.7	Phragmitis communis		3.30		10			DE	Geyger (1964)

Table 2 (Continued)

LAI	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei	Lat	Lon	Country	Source
11.6	Poa trivialis, Dactylis glomerata, Heracleum sphondylium								1050			AT	Vareschi (1951)
11.0	Polytrichum sexangulare, Bryum spp.								2680			AT	Vareschi (1951)
2.9	Schizachyrium scoparium, Bouteloua spp.						14.2	1166	350	36N	96W	USA, OK	Burba and Verma (2001)
4.9	Siversio nardetum strictae	Abandoned		0.30					1520	46N	11E	IT	Wohlfahrt et al. (2001)
4.7	Thinopyrum intermedium	Fert. 110 kg N						680				USA, NE	Mitchell et al. (1998)
3.0	Trifolium repens									40S		NZ	Brougham (1960)
3.5	Trifolium repens									40S		NZ	Brougham (1960)
4.8	Trifolium pratense									40S		NZ	Brougham (1960)
1.5	Trisetum flavescentis hercynicum								460			DE	Geyger (1977)
9.0	Trisetum flavescentis hercynicum	Fert.							460			DE	Geyger (1977)
10.5	Veronico-Cirsio- Polygonum			1.60					10			DE	Geyger (1964)
14.7	Veronico-Cirsio- Polygonum			1.50					10			DE	Geyger (1964)
1.8	n.d.	Grassland								52N	5E	NL	Chen et al. (1997) in Calvet et al. (1998)
2.9	n.d.	Fallow								43N	1E	FR	Bessemoulin et al. (1996) in Calvet et al. (1998)
5.5	n.d.	Pasture							548			AT	Rosset et al. (1997)
5.8	n.d.	Pasture							915			AT	Rosset et al. (1997)
6.5	n.d.	Pasture							1367			AT	Rosset et al. (1997)
Shrubs,	woodland												
0.5	Artemisia tridentata			15.0				200	1200	44N	121W	USA, OR	Gholz (1982)
4.3	Kalmia latifolia, Rhododendron maximum											n.d.	Whittaker (1966)
3.7	Pinus chihuahuana, Quercus hypoleucoides		101	7.5	26.0	2780			2040			USA, AZ	Whittaker and Niering (1975)
1.6	Pteridium aquilinum											UK	Leyton et al. (1967)
1.8	Quercus spp.		117	5.3	4.0	190			1310			USA, AZ	Whittaker and Niering (1975)
2.8	Rhododendron catawbiense		11,	0.0		1,0			2010			USA, TN	Whittaker (1962)
2.8	Rhododendron catawbiense, Kalmia latifolia								975			USA, TN	Whittaker (1962)

3.0	Rhododendron catawbiense, Kalmia latifolia							975			USA, TN	Whittaker (1962)
4.5	Rhododendron maximum, Kalmia latifolia							1500			USA, TN	Whittaker (1962)
2.0	n.d.		115	2.7	4.3	570		2040			USA, AZ	Whittaker and Niering (1975)
2.7	n.d.										UK	Leyton et al. (1967)
4.7	n.d.										USA	Whittaker (1966)
13.1	n.d.										USA	Whittaker (1966)
Understo	ory											
2.3	Adenostyles alliaria,	OS Alnus incana,									AT	Vareschi (1951)
	Chaerophyllum	LAI 8.8										
	cicutarium, Struthiopteris											
0.4	germanica	00.00				244		0.40	4 43 7	400***		
0.4	Arctostaphylos patula, Purshia tridentata	OS Pinus ponderosa, LAI 0.6;	14	4.3		344	615	940	44N	122W	USA, OR	Law et al. (2001)
	Pursnia iriaeniaia	regeneration after										
		clearcut										
1.5	Carex alba,	OS Pinus sylvestris,									DE	Wedler et al. (1996)
	Brachypodium pinnatum,	LAI 1.8										
	Carex flacca											
0.5	Purshia tridentata,	OS Pinus ponderosa,	85	13.8		440	615	940	44N	122W	USA, OR	Law et al. (2001)
	Pteridium aquilinum,	LAI 1.7										
	Fragia vesca,											
2.2	Arctostyphylos patula	00.0	27	2.5				116	4027	175	GT.	0.14 : (1005)
3.2	Swida sanguinea	OS Populus	27	3.5				116	48N	17E	SI	Oszlányi (1995)
2.0	Vaccinium myrtillus	canadensis, LAI 4.9 OS, Piceetum-									AT	Vareschi (1951)
2.0	vaccinium myriiius	myrtillosum, LAI 3.9									Ai	varesem (1931)
0.2	n.d.	OS Acer									RU	Rauner (1976)
		platanoides, LAI 5.0										
0.3	n.d.	OS Populus tremula,									RU	Rauner (1976)
		LAI 7.1										
0.3	n.d.	OS Tilia cordata,									RU	Rauner (1976)
0.5	1	LAI 4.8									DII	P (1076)
0.5	n.d.	OS <i>Quercus robur</i> , LAI 4.6									RU	Rauner (1976)
0.5	n.d.	OS Quercus-Fagus									USA, GA	Monk et al. (1970)
0.5	11.4.	sylvatica, LAI 2.6									CDII, GII	Work et al. (1970)
0.7	n.d.	OS Betula									RU	Rauner (1976)
		verrucosa, LAI 5.3										
1.0	n.d.	OS Quercus-Betula,									DE	Ellenberg (1939) in Geyger
		LAI 3.8										(1964)
1.0	n.d.	OS									DE	Ellenberg (1939) in Geyger
		Quercus-Carpinus,										(1964)
		LAI 7.0										

Table 2 (Continued)

LAI	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei	Lat	Lon	Country	Source
1.0	n.d.	OS Quercus-Carpinus, LAI 9.0										DE	Ellenberg (1939) in Geyger (1964)
2.0	n.d.	OS Quercus-Betula, LAI 6.0										DE	Ellenberg (1939) in Geyger (1964)
13.3	n.d.	OS Picea-Vaccinium myrtillus, LAI 3.9										AT	Vareschi (1951)
Conifer	ous trees												
15.5	Abies concolor		124	25.5	58.6	1510			2340			USA, AZ	Whittaker and Niering (1975)
12.3	Abies fraseri			17.0	40.0	710			1920	35N		USA, TN	Whittaker (1966)
14.8	Abies fraseri, Picea rubens		161	25.0	55.6	840			1800	35N		USA, TN	Whittaker (1966)
14.7	Abies lasiocarpa		106	33.5	57.8	590			2720			USA, AZ	Whittaker and Niering (1975)
1.0	Juniperus occidentalis				27.8	669		250	1356	44N	121W	USA, OR	Gholz (1982)
5.0	Larix decidua											USA, WI	Bolstad and Gower (1990) in Fassnacht et al. (1994)
5.1	Larix decidua		28		38.3	1040						USA, WI	Gower and Norman (1991)
3.6	Larix leptolepis			10.4		1100				42N	76W	USA	Allen (1968) in Jarvis et al. (1976)
5.6	Picea abies		30	12.6	45.9	2343	6.0	1500	1050	48N	7E	FR	Lu et al. (1995)
6.5	Picea abies		y			d			1000	48N	7E	FR	Granier et al. (1996)
8.4	Picea abies		72	27.5		800				48N	12E	DE	Baumgartner and Alfreit (unpubl.) in Jarvis et al. (197
10.4	Picea abies		28		37.1	1725						USA, WI	Gower and Norman (1991)
12.8	Picea abies		28	17.4	31.2							SE	Nilson et al. (1999)
9.3	Picea abies, Pinus sylvestris		70	17.8	30.7							SE	Nilson et al. (1999)
5.0	Picea mariana		83	10.5		4825				56N	98W	CA	Chen et al. (1997)
6.3	Picea mariana		78	5.0		4750				54N	105W	CA	Chen et al. (1997)
9.8	Picea sitchensis		25	11.5		4100				57N	2W	UK	Landsberg and Jarvis (1973) Jarvis et al. (1976)
4.1	Picea spp.		132	34.0	24.0	112			850			СН	Burger (1939) in Geyger (19
4.3	Picea spp.											n.d.	Möller (1945) in Geyger (19
7.7	Picea spp.											n.d.	Möller (1945) in Geyger (19
8.3	Picea spp.		98	34.0	76.0	712			940			CH	Burger (1939) in Geyger (19
8.5	Picea spp.								-			CH	Burger (1941) in Geyger (19
9.6	Picea spp.		35	12.6	35.3	3148	6.5	1300	800			CH	Burger (1939) in Geyger (19
10.5	Picea spp.											CH	Burger (1939) in Geyger (19
12.0	Picea spp.											CH	Burger (1941) in Geyger (19
14.0	Picea spp.											CH	Burger (1941) in Geyger (19
11.0	Picea-Abies		42	17.6	42.9	1756	7.2	1350	690			CH	Burger (1939) in Geyger (19
3.9	Piceetum-myrtillosum		65	17.0	12.7	920	,	1550	1050			n.d.	Vareschi (1951)

1.5 1.6 1.7 2.0 2.2 2.5	Pinus banksiana Pinus banksiana Pinus banksiana Pinus banksiana Pinus banksiana Pinus banksiana	Natural regeneration Plantation Plantation Plantation	30 30 30 60 30 68	13.5	20.5 17.3 20.7 17.5 28.0	2705 1299 1510 781 1368 2800				46N 46N 46N 46N 46N 54N	77W 77W 77W 77W 77W 105W	CA, ON CA, ON CA, ON CA, ON CA, ON	Deblonde et al. (1994) Deblonde et al. (1994) Deblonde et al. (1994) Deblonde et al. (1994) Deblonde et al. (1994) Chen et al. (1997)
2.8	Pinus banksiana		14	4.5		4750				54N	105W	CA	Chen et al. (1997)
2.0 2.2	Pinus banksiiana Pinus banksiiana		25 58	1.3 11.3		23850 2400				56N 56N	99W 99W	CA CA	Chen et al. (1997) Chen et al. (1997)
2.8	Pinus contorta		71	10.0		1700				39N	140E	JP	Bergen (1971) in Jarvis et al. (1976)
14.4	Pinus contorta, Abies lasiocarpa			12.5		3200			2750	41N	106W	USA, WY	Pataki et al. (2000)
0.8	Pinus densiflora		37	4.5		2300				36N	79W	USA	Kondo (1971) in Jarvis et al. (1976)
1.7	Pinus densiflora		37	23.0		750				41N	106W	USA	Kondo (1971) in Jarvis et al. (1976)
4.6	Pinus halapensis			10.6	16.8	812	13.6	353	700	39N	1W	ES	López-Serrano et al. (2000)
2.3	Pinus pinaster			20.3		430						FR	Lankreijer et al. (1993)
0.6	Pinus ponderosa	Natural regeneration after clearcut	14	4.3		344		615	940	44N	122W	USA, OR	Law et al. (2001)
1.7	Pinus ponderosa		85	13.8		440		615	940	44N	122W	USA, OR	Law et al. (2001)
2.0	Pinus ponderosa				28.5	1152			1250	47N	113W	USA, MT	Fassnacht et al. (1994)
3.5	Pinus ponderosa				26.1	705		400	870	44N	122W	USA, OR	Gholz (1982)
5.9	Pinus ponderosa		142	18.4	46.3	1100			2470			USA, AZ	Whittaker and Niering (1975)
7.6	Pinus ponderosa, Pinus strobiformes		93	12.8	39.4	2700			2740			USA, AZ	Whittaker and Niering (1975)
4.7	Pinus ponderosa,		150	15.2	34.9	1280			2180			USA, AZ	Whittaker and Niering (1975)
8.3	Quercus hypoleucoides Pinus radiata											n.d.	Whitehead (unpubl.) in Jarvis and Leverenz (1983)
2.6	Pinus resinosa		40	15.0		2500				41N	72W	USA	Waggoner and Turner (1971) in Jarvis et al. (1976)
2.9	Pinus resinosa	Plantation	60		29.3	430				46N	77W	CA, ON	Deblonde et al. (1994)
4.9	Pinus resinosa	Plantation	60		43.3	850				46N	77W	CA, ON	Deblonde et al. (1994)
5.4	Pinus resinosa											USA, WI	Bolstad and Gower (1990) in Fassnacht et al. (1994)
5.8	Pinus resinosa				42.4	2106			500	46N	89W	USA, WI	Fassnacht et al. (1994)
6.2	Pinus resinosa	Plantation	60		57.3	1269				46N	77W	CA, ON	Deblonde et al. (1994)
6.4	Pinus resinosa		28		45.5	1970						USA, WI	Gower and Norman (1991)
3.1	Pinus resinosa, Pinus strobus			22.0		600				46N	77W	CA	Mukammal (1971) in Jarvis et al. (1976)
5.7	Pinus strobus											CH	Burger (1929) in Geyger (1964)
7.1	Pinus strobus		28		41.8	1180						USA, WI	Gower and Norman (1991)

Table 2 (Continued)

LAI	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei	Lat	Lon	Country	Source
7.4	Pinus strobus											USA, WI	Bolstad and Gower (1990) in Fassnacht et al. (1994)
8.0	Pinus strobus											CH	Burger (1929) in Geyger (1964
1.1	Pinus sylvestris		60	4.4	6.4							EE	Nilson et al. (1999)
1.5	Pinus sylvestris		120	24.8	14.1							SE	Nilson et al. (1999)
2.8	Pinus sylvestris											n.d.	Whitehead and Jarvis (unpubl.)
2.8	Pinus sylvestris		31	12.0		4000			201	48N	7E	n.d.	in Jarvis and Leverenz (1983) Joss and Graber (1996)
2.8	Pinus sylvestris Pinus sylvestris		31	12.0		4000			201	48N	7E 7E	n.a. DE	Granier et al. (1996)
			15	177	27.0				201	40IN	/E	EE EE	
3.2 3.4	Pinus sylvestris Pinus sylvestris		45 70	17.7 23.6	23.5							SE	Nilson et al. (1999) Nilson et al. (1999)
	*											EE EE	
3.6	Pinus sylvestris		35	7.9 8.4	16.1 18.5							EE EE	Nilson et al. (1999)
3.7	Pinus sylvestris		35 25									SE	Nilson et al. (1999)
3.8	Pinus sylvestris		25	10.5 15.5	19.1	900				FONI	OE.	SE UK	Nilson et al. (1999)
4.3	Pinus sylvestris		41	15.5		800				52N	UE		Oliver (1971) in Jarvis et al. (1976)
4.4	Pinus sylvestris		50	15.3	23.7							EE	Nilson et al. (1999)
4.4	Pinus sylvestris		55	12.8	27.0							EE	Nilson et al. (1999)
4.6	Pinus sylvestris		56	7.6	14.9							SE	Nilson et al. (1999)
4.9	Pinus sylvestris		40	14.3	32.0							SE	Nilson et al. (1999)
6.3	Pinus sylvestris		30	10.2	27.4							SE	Nilson et al. (1999)
7.2	Pinus sylvestris		31	17.2	32.7							EE	Nilson et al. (1999)
2.6	Pinus taeda		14	12.5		1700				36N	140E	JP	Sinclair et al. (unpubl.) in Jarvi et al. (1976)
2.7	Pinus taeda		12	7.1	24.8	5240	15.5	1140	130	36N	80W	USA, NC	Phillips et al. (1996)
7.8	Pinus virginiana, Pinus strobus			20.0	34.4	3460			610	35N		USA, TN	Whittaker (1966)
3.3	Pinus spp.											CH	Burger (1941) in Geyger (1964)
3.3	Pinus spp.		105									SE	Tiren (1927) in Geyger (1964)
3.6	Pinus spp.		35									SE	Tiren (1927) in Geyger (1964)
3.7	Pinus spp.											CH	Burger (1941) in Geyger (1964)
5.1	Pinus spp.		55									SE	Tiren (1927) in Geyger (1964)
5.1	Pseudotsuga menziesii		74	27.8	21.7	132						NL	Bartelink (1998)
7.5	Pseudotsuga menziesii				54.5	500		1570	410	44N	122W	USA, OR	Gholz (1982)
7.6	Pseudotsuga menziesii		25	18.3	36.6	1010						NL	Bartelink (1998)
7.8	Pseudotsuga menziesii		26			1080						CA, BC	Chen and Black (1991)
9.2	Pseudotsuga menziesii											n.d.	Burger (1935) in Geyger (1964)
11.0	Pseudotsuga menziesii											n.d.	Ungs (1981) in Jarvis and Leverenz (1983)
13.5	Pseudotsuga menziesii											n.d.	Burger (1935) in Geyger (1964)
15.5	Pseudotsuga menziesii		252	27.6	70.5	340			2650			USA. AZ	Whittaker and Niering (1975)

16.7	Pseudotsuga menziesii,		321	27.9	118.1	400			2640			USA, AZ	Whittaker and Niering (1975)
9.0	Abies concolor Pseudotsuga menziesii,				84.2	422		1200	365	45N	123W	USA, OR	Gholz (1982)
11.0	Abies grandis Pseudotsuga menziesii,				72.4	2255		2000	1500	44N	122W	USA, OR	Gholz (1982)
	Tsuga heterophylla, Abies amabilis												
5.9	Pseudotsuga menziesii,		50		23.8	1586						USA, OR	Turner et al. (2000)
	Tsuga heterophylla, Thuja placata												
9.5	Pseudotsuga menziesii, Tsuga heterophylla,		140		59.7	307						USA, OR	Turner et al. (2000)
	Thuja placata												
9.8	Pseudotsuga menziesii, Tsuga heterophylla,		200		84.1	547						USA, OR	Turner et al. (2000)
	Thuja placata												
2.2	Taxodium distichum		64	27.0	73.6	722	15.5	1140	130	35N	79W	USA, NC	Oren et al. (2001)
15.5	Tsuga heterophylla				118.2	2794		2460	200	45N	124W	USA, OR	Gholz (1982)
23.5	Tsuga heterophylla				111.2	1999		2460	200	45N	124W	USA, OR	Gholz (1982)
5.0	Tsuga mertensiana				57.2	2504		2300	1590	44N	122W	USA, OR	Gholz (1982)
Deciduo	us trees												
5.0	Acer platanoides		18	7.0								RU	Rauner (1976)
4.9	Acer rubrum, Quercus alba			21.5				1360	365	36N	84W	USA, TN	Chason et al. (1991)
6.2	Aesculus octandra, Tilia		222	36.0	54.2	1450			1310	35N		USA, TN	Whittaker (1966)
	heterophylla												
8.8	Alnus incana			5.0					1050			AT	Vareschi (1951)
5.3	Betula verrucosa		18	7.6								RU	Rauner (1976)
4.1	Castanea sativa	Thinned	37	23.7	32.9	590			900	44N	12E	IT	Cutini et al. (1998)
7.0	Castanopsis cuspidata											JP	Kira et al. (1969) in Jarvis and
													Leverenz (1983)
2.8	Eucalyptus maculata											n.d.	Dunin and Reyenga (unpubl.) in
													Jarvis and Leverenz (1983)
2.0	Eucalyptus marginata			27.5								AU, WA	Silberstein et al. (1999)
7.0	Fagus crenata											JP	Kira et al. (1969) in Jarvis and Leverenz (1983)
2.9	Fagus grandifolia			16.0	22.2	2170			1580	35N		USA, TN	Whittaker (1966)
4.3	Fagus sylvatica		m	30.2	28.5	659						FR	Le Dantec et al. (2000)
4.9	Fagus sylvatica		90	23.5	32.1	1243			1560	42N	13E	IT	Cutini et al. (1998)
5.0	Fagus sylvatica											DE	Schäfer et al. (unpubl.) in Oren et al. (1999)
5.7	Fagus sylvatica		30	16.0	19.6	3800			300	48N	7E	FR	Granier et al. (2000)
5.7	Fagus sylvatica		120	22.5		429			1000	48N	7E	FR	Granier et al. (2000)
5.8	Fagus sylvatica		135									DE	Stickan et al. (1983)
													· · · ·

Table 2 (Continued)

LAI	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei	Lat	Lon	Country	Source
6.2	Fagus sylvatica											DE	Schäfer et al. (unpubl.) in Oren et al. (1999)
6.8	Fagus sylvatica		47	18.0	40.9	3920			1000	44N	12E	IT	Cutini et al. (1998)
7.0	Fagus sylvatica											DE	Ebermayer (1882) in Geyger (1964)
7.4	Fagus sylvatica		62	23.0	23.4	357						NL	Bartelink (1998)
8.0	Fagus sylvatica											CH	Burger (1940) in Geyger (1964)
8.2	Fagus sylvatica		y	8.0	28.7	15810				48N	16E	AT	Prskawetz and Lexer (2000)
10.0	Fagus sylvatica		·									DE	Ebermayer (1882) in Geyger (1964)
5.6	Fagus sylvatica	Fert.	135									DE	Stickan et al. (1983)
5.9	Fagus sylvatica	Thinned	47	18.0	19.6	708			1000	44N	12E	IT	Cutini et al. (1998)
6.3	Fagus sylvatica	Limed	135									DE	Stickan et al. (1983)
5.0	Fraxinus spp.											n.d.	Möller (1945) in Geyger (1964)
6.0	Liriodendron tulipifera											USA, TN	Hutchinson and Matt (1976) in Jarvis and Leverenz (1983)
7.4	Liriodendron tulipifera		29	27.0	34.2	1820			700	35N		USA, TN	Whittaker and Marks (1975)
4.9	Populus canadensis	Plantation	27	33.2	41.3	324			116	48N	17E	SK	Oszlányi, 1995
7.1	Populus tremula		25	10.5				1200				RU	Rauner (1976)
3.3	Populus tremuloides		60	21.0		900				54N	106W	CA, SK	Chen et al. (1997)
3.3	Populus tremuloides		70	21.5		828				54N	106W	CA, SK	Kucharik et al. (1998)
3.6	Populus tremuloides									56N	98W	CA	Chen et al. (1997)
3.8	Populus tremuloides			12.5		17100			2750	41N	106W	USA, WY	Pataki et al. (2000)
6.4	Populus tremuloides	Succession	34	16.1	31.6	2350			2550			USA, AZ	Whittaker and Niering (1975)
7.3	Populus tremuloides, Pinus contorta, Abies lasiocarpa			12.5		1900			2750	41N	106W	USA, WY	Pataki et al. (2000)
5.5	Quercus alba, Liquidambar styraciflua		80	45.0	22.1	1330	15.5	1140	130	36N	80W	USA, NC	Phillips et al. (1996)
5.3	Quercus cerris		40	23.2	42.3	3589			305	43N	10E	IT	Cutini et al. (1998)
6.9	Quercus cerris		39	22.2	34.1	4052			700	43N	10E	IT	Cutini et al. (1998)
3.8	Quercus cerris	Thinned	38	23.4	22.2	460			900	44N	12E	IT	Cutini et al. (1998)
4.3	Quercus cerris	Thinned	39	20.5	21.2	1004			700	43N	12E	IT	Cutini et al. (1998)
4.3	Quercus cerris	Thinned	40	22.4	28.1	2741			305	43N	10E	IT	Cutini et al. (1998)
6.0	Quercus petrea	Tillined	35	22.4	24.6	3352			237	48N	6E	FR	Bréda and Granier (1996)
3.3	Quercus petrea	Thinned	35		17.6	3077			237	48N	6E	FR	Bréda and Granier (1996)
6.3	Quercus peireu Quercus prinus, Acer rubrum	- minieu	33	30.0	35.0	2130			820	35N	OL.	USA, TN	Whittaker (1966)
4.6	Ouercus robur		18	6.5								RU	Rauner (1976)
5.5	Quercus robur, Quercus petrea		m	31.3	35.3	659			120	48N	2E	FR	Le Dantec et al. (2000)

3.1 4.9 5.0	Quercus rubra Quercus rubra Quercus rubra		28	17.4	11.6	1840 600				USA, WI NL USA, WI	Gower and Norman (1991) Lankreijer et al. (1993) Bolstad and Gower (1990) in Fassnacht et al. (1994)
3.4	Quercus rubra, Acer rubrum			20.0			315	43N	72W	USA, WI	Sakai et al. (1997)
5.4	Quercus rubra, Fagus sylvatica, Larix leptolepus			22.0						NL	Klaassen et al. (1996)
5.7	Quercus rubra, Quercus alba, Quercus velutina	Arboretum								USA, WI	Bolstad and Gower (1990) in Fassnacht et al. (1994)
6.2	Querco-Betuletum									DE	Ellenberg (1939) in Ellenberg (1996)
10.0	Querco-Carpinetum									DE	Ellenberg (1939) in Ellenberg (1996)
2.6	Quercus-Carya pallida									USA, GA	Monk et al. (1970)
6.5	Quercus sppFagus sylvatica		m	30.8	30.3	746				FR	Le Dantec et al. (2000)
3.8	Quercus-Pinus		43	9.0	15.6	1850				USA, NY	Whittaker and Woodwell (1969) in Whittaker and Marks (1975)
2.5	Quercus spp.									n.d.	Möller (1945) in Geyger (1964)
3.1	Quercus spp.									n.d.	Möller (1945) in Geyger (1964)
6.5	Quercus spp.									n.d.	Ebermayer (1882) in Geyger (1964)
7.6	Quercus spp.	Single tree		11.6						NL	Bartelink (1998)
3.8	Salix viminalis	Coppice	1	3.2		20000	70	58N	26E	EE	Ross et al. (2000)
4.1	Salix viminalis	Coppice	3	5.1		20000	70	58N	26E	EE	Ross and Ross (1998)
4.8	Tilia cordata	•	18	11.5						RU	Rauner (1976)
6.1	n.d.	Mixed	124	20.0	26.3	1290				USA, NH	Whittaker et al. (1974) in Whittaker and Marks (1975)

LAI—leaf area index. Sci. name: scientific names for species were taken as published by authors and not transformed into current nomenclature, n.d.: no details given; Furth. Inf.: further information given in literature, OS: overstory, Fert.: fertilized; Age: m: mature, y: young; PlaH: plant height (m); BasA: basal area (m^2 ha⁻¹); StoD: stock density (ha⁻¹), d: dense; MAT: mean annual temperature ($^{\circ}$ C); MAP: mean annual precipitation (mm); Hei: height above sea level (m); Lat: latitude ($^{\circ}$); Lon: longitude ($^{\circ}$); Country: N.Am.: North America; abbreviation of countries follows ISO 3166; Source: unpubl.: unpublished.

2.3. Albedo—a

The fraction of reflected to incident radiation by the sun is commonly referred to as albedo (or sometimes as reflectance). Accurate parameterisation of surface albedo is important in modelling energy balances of a given land cover (Iqbal, 1983). Estimates of available energy are needed in a variety of ecological as well as hydrological models, i.e. to calculate evapotranspiration, photosynthesis, biomass production or soil temperature. A new perspective of forestation and its impacts on carbon sequestration is highlighted by Betts (2000). Model simulations revealed that the negative radiative forcing due to CO₂ uptake by temperate and boreal forests might be offset by the positive radiative forcing induced by a decreased albedo.

Despite the direction of the incident radiation, set up by the solar elevation, reflected energy depends mostly on surface properties. Albedo values are most often given for the shortwave spectrum between 0.3 and 3.0 μ m (Iqbal, 1983), including the photosynthetically active radiation for plant growth (PAR: 0.4–0.7 μ m). To determine albedo values for certain plants a set of pyranometers (solarimeters) is used over the specific stand, measuring incoming and outgoing radiation simultaneously (Monteith and Szeicz, 1961). Broader scale determination of albedo is performed by using data from regional aircraft flights or satellite images, though all these techniques have to be calibrated by ground truth measurements too (Yin, 1998).

Published ranges of albedo in textbooks are often inaccurate and general values for "crops" or "forests" with no further details are given. Comprehensive overviews on data for substantial sets of various vegetation types, land covers and materials like soil, rocks and building materials were published among others by Kondratyev (1969, 1972) and Iqbal (1983). The values presented by Gates (1980) were obtained by measuring the spectral reflectance of single leaves. We focused on a selection of available data for temperate land covers and amended those where possible with recent findings (Table 3).

Mean minimum and maximum albedo values for crops, pasture and deciduous forest were similar within a range of 0.20–0.27 as opposed to coniferous forests with a substantially lower minimum of 0.11 and a mean maximum of 0.14 (Table 7). This distinction is mainly the result of general differences

in canopy architecture, leaf/needle morphology and spectral reflectance properties of leaves/needles.

Furthermore, a differentiation should further be made for seasonal albedo values. Schmid et al. (2000) provided data for a mixed broad-leafed forest stand in Indiana, USA. Lowest albedo was found in February (~0.11) whilst the highest was recorded during the initial period of foliage development (~0.17). Towards the end of the vegetation period, albedo decreased gradually, which was attributed (i) to an increase of foliage size and hence a multiple reflection of radiation within the canopy and/or (ii) to darker leaf colour as a matter of senescence (Schmid et al., 2000). Overall albedo of deciduous and coniferous forests is further determined by snow cover in winter, where values obtained by aircraft measurements varied between 0.35 and 0.66 (Kondratyey, 1972).

Extremely low values for pasture species were reported twice (alfalfa 0.02 as well as *Schizachyrium scoparium* and *Bouteloua* spp. 0.05), extending the range for pasture species from 0.02 to 0.42. Albedo of this land cover type is strongly dependent on the portion of bare soil and its spectral reflectance properties, which itself is driven by factors like soil moisture, texture, mineral composition or humus content.

2.4. Stomatal conductance—g_s

Stomatal conductance g_s plays an important role in the plant-atmosphere water exchange and hence it is a key parameter in many ecological models (Chen et al., 1999). Diffusion of CO₂ into the mesophyll of leaves and water vapour from the leaf to the atmosphere is mainly controlled by the stomatal aperture, which is further controlled by a complex system of plant physiological processes. One has to keep in mind, that potentially maximum stomatal conductance will in fact never be measured, as environmental conditions such as CO₂ partial pressure or soil moisture always influence stomatal conductance to some extend. In the context of this review, we therefore define g_s as the maximum measured value of water vapour passage through the stomata. Nearly all the water transpired by plants is lost through the stomata as water vapour diffusion via cuticle can be neglected. Methods applied for determining the diffusive conductance include porometer and photosynthesis cuvette measurements as well as energy balancing approaches (e.g. Körner et al., 1979;

Table 3 Minimum and maximum albedo— a_{min}/a_{max}

a_{\min}	a_{max}	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei	Lat	Lon	Country	Source
Crops														
0.16	0.25	Avena sativa											USA, AZ	Fritschen (1967)
0.24	0.24	Avena sativa											n.d.	Impens and Lemeur (1969)
0.18	0.22	Beta vulgaris											n.d.	Kondratyev (1969)
0.25	0.25	Beta vulgaris											n.d.	Monteith (1959) in Iqba (1983)
0.19	0.28	Brassica oleracea acephale											UK	Monteith and Szeicz (1961)
0.21	0.27	Capsicum annuum											n.d.	Gates (1980)
0.20	0.20	Glycine max									43N	1W	FR	Goutorbe (1991) in Calvet et al. (1998)
0.22	0.22	Glycine max	Late season								44N	5E	FR	Olioso et al. (1996) in Calvet et al. (1998)
0.21	0.32	Helianthus annuus											n.d.	Gates (1980)
0.23	0.29	Helianthus annuus											n.d.	Gates (1980)
0.28	0.28	Helianthus annuus											n.d.	Impens and Lemeur (1969)
0.20	0.26	Hordeum vulgare											USA, AZ	Fritschen (1967)
0.23	0.26	Hordeum vulgare											n.d.	Monteith and Unsworth (1990)
0.23	0.23	Lycopersicon lycopersicum											n.d.	Monteith and Unsworth (1990)
0.24	0.24	Nicotiana tabacum											n.d.	Monteith and Unsworth (1990)
0.23	0.23	Phaesolus spp.											n.d.	Impens and Lemeur (1969)
0.24	0.24	Phaesolus spp.											n.d.	Monteith and Unsworth (1990)
0.11	0.18	Secale cereale											n.d.	Kondratyev (1972)
0.21	0.21	Secale cereale											n.d.	Kondratyev (1969)
0.10	0.25	Secale cereale, Triticum aestivum											n.d.	Budyko (1974)
0.15	0.25	Solanum tuberosum											n.d.	Budyko (1974)
0.19	0.22	Sorghum spp.											USA, AZ	Fritschen (1967)
0.10	0.25	Triticum aestivum											n.d.	Kondratyev (1969)
0.13	0.21	Triticum aestivum											n.d.	Kondratyev (1972)
0.18	0.23	Triticum aestivum											USA, AZ	Fritschen (1967)
0.20	0.23	Triticum aestivum											USA, IL	Song (1998)
0.22	0.26	Triticum aestivum											n.d.	Monteith and Unsworth (1990)

Table 3 (Continued)

a_{\min}	a_{max}	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei	Lat	Lon	Country	Source
0.16	0.23	Zea mays											n.d.	Kondratyev (1972)
0.18	0.22	Zea mays											n.d.	Monteith and Unsworth (1990)
0.18	0.22	Zea mays									52N	5E	NL	Jacobs and van Pul (1990)
0.20	0.20	Zea mays									43N	1E	FR	Cabelguenne et al. (1990 in Calvet et al. (1998)
0.20	0.26	Zea mays											USA, IL	Song (1998)
0.25	0.25	Zea mays											n.d.	Impens and Lemeur (1969)
0.10	0.25	n.d.	Crops										n.d.	Budyko (1956) in Rutter (1968)
0.20	0.20	n.d.	Crops										n.d.	Baumgartner (1967) in Rutter (1968)
0.24	0.25	n.d.	Crops										UK	Barry and Chambers (1966) in Rutter (1968)
Herbs, fo	orbs, gra	asses												
0.22	0.28	Aristida spp.											n.d.	Gates (1980)
0.22	0.28	Aristida spp.											n.d.	Gates (1980)
0.21	0.26	Clematis fremontii											n.d.	Gates (1980)
0.02	0.05	Medicago sativa											n.d.	Ashburn and Weldon (1956) in Iqbal (1983)
0.20	0.27	Medicago sativa											USA, AZ	Fritschen (1967)
0.31	0.38	Parmelia spp.											n.d.	Gates (1980)
0.23	0.29	Parthenium											n.d.	Gates (1980)
		integrifolium												
0.22	0.28	Pelargonium spp.											n.d.	Gates (1980)
0.17	0.22	Reboulia spp.											n.d.	Gates (1980)
0.05	0.14	Schizachyrium						14.2	1166	350	36N	96W	USA, OK	Burba and Verma (2001)
		scoparium, Bouteloua spp.												
0.23	0.29	Streliztsia spp.											n.d.	Gates (1980)
0.36	0.42	Verbascum spp.											n.d.	Gates (1980)
0.23	0.29	Xanthium spp.											n.d.	Gates (1980)
0.23	0.29	Xanthium spp.											n.d.	Gates (1980)
0.14	0.37	n.d.	Grass										n.d.	List (1966) in Iqbal (1983)
0.15	0.25	n.d.	Grass										n.d.	Budyko (1956) in Rutter (1968)
0.22	0.26	n.d.	Grass										UK	Barry and Chambers (1966) in Rutter (1968)

Ruter (1968) Rute
O.14 O.24
0.14 0.24 n.d. Pasture 915 AT Rosset et al. (1997) 0.14 0.24 n.d. Pasture 1367 AT Rosset et al. (1997) 0.15 0.25 n.d. Meadow 1367 TAI Rosset et al. (1997) 0.20 0.20 n.d. Meadow 43N IE FR Bessemoulin et al. (1996) in Calvet et al. (1998) in Calvet et al. (1990) in C
No.
Pallow P
Part
0.23 0.28 0.28 0.29 0.20
Shrubs, words and Same S
0.15
Prairie Prai
0.20 0.27 n.d. Semiarid grass 34S 145E AU Grant et al. (2000) n.d. Budyko (1974)
0.20 0.30 n.d. Dry steppe Shrubs, woodland 0.33 0.38 Andromeda glaucophylla n.d. Gates (1980) 0.37 0.44 Artemisia spp. n.d. Kondratyev (1969) 0.10 0.10 Calluna spp. n.d. Kondratyev (1969) 0.30 0.37 Chamaedaphne calyculata n.d. Gates (1980) 0.16 0.16 0.16 n.d. Coniferous 0.18 0.18 n.d. Deciduous Coniferous trees n.d. Monteith and Unsworth (1990) Coniferous trees n.d. Picea abies n.d. 7ajchman (1967, 1972a)
Shrubs
0.33 0.38 glaucophylla n.d. Gates (1980) 0.37 0.44 Artemisia spp. n.d. Gates (1980) 0.10 0.10 Calluna spp. n.d. Kondratyev (1969) 0.30 0.37 Chamaedaphne calyculata n.d. Gates (1980) 0.16 0.16 n.d. Coniferous n.d. Monteith and Unsworth (1990) 0.18 0.18 n.d. Deciduous n.d. Monteith and Unsworth (1990) Coniferous trees n.d. Ficea abies n.d. Tajchman (1967, 1972a)
0.33 0.38 glaucophylla n.d. Gates (1980) 0.37 0.44 Artemisia spp. n.d. Gates (1980) 0.10 0.10 Calluna spp. n.d. Kondratyev (1969) 0.30 0.37 Chamaedaphne calyculata n.d. Gates (1980) 0.16 0.16 n.d. Coniferous n.d. Monteith and Unsworth (1990) 0.18 0.18 n.d. Deciduous n.d. Monteith and Unsworth (1990) Coniferous trees n.d. Ficea abies n.d. Tajchman (1967, 1972a)
Second Parisment Second Pari
0.37 0.44 Artemisia spp. n.d. Gates (1980) 0.10 0.10 Calluna spp. n.d. Kondratyev (1969) 0.30 0.37 Chamaedaphne calyculata n.d. Gates (1980) 0.16 0.16 n.d. Coniferous n.d. Monteith and Unsworth (1990) 0.18 0.18 n.d. Deciduous n.d. Monteith and Unsworth (1990) Coniferous trees 0.05 0.06 Picea abies n.d. Tajchman (1967, 1972a)
0.10 0.10 Calluna spp. n.d. Kondratyev (1969) 0.30 0.37 Chamaedaphne calyculata n.d. Gates (1980) 0.33 0.40 Kalmia polifolia n.d. Gates (1980) 0.16 0.16 n.d. Coniferous n.d. Monteith and Unsworth (1990) 0.18 0.18 n.d. Deciduous n.d. Monteith and Unsworth (1990) Coniferous trees 0.05 0.06 Picea abies n.d. Tajchman (1967, 1972a)
0.30 0.37 Chamaedaphne calyculata n.d. Gates (1980) 0.33 0.40 Kalmia polifolia n.d. Gates (1980) 0.16 0.16 n.d. Monteith and Unsworth (1990) 0.18 0.18 n.d. Deciduous Coniferous trees 0.05 0.06 Picea abies n.d. Tajchman (1967, 1972a)
Coniferous trees O.36 O.66 Picea abies O.67 O.
0.16 0.16 n.d. Monteith and Unsworth (1990) 0.18 0.18 n.d. Monteith and Unsworth (1990) Coniferous trees 0.05 0.06 Picea abies n.d. Tajchman (1967, 1972a)
0.16 0.16 n.d. Monteith and Unsworth (1990) 0.18 0.18 n.d. Monteith and Unsworth (1990) Coniferous trees 0.05 0.06 Picea abies n.d. Tajchman (1967, 1972a)
0.18 0.18 n.d. Monteith and Unsworth (1990) Coniferous trees 0.05 0.06 Picea abies n.d. Tajchman (1967, 1972a)
Coniferous trees $0.05 0.06 \textit{Picea abies} \tag{1990}$
Coniferous trees 0.05 0.06 Picea abies n.d. Tajchman (1967, 1972a)
0.05 0.06 <i>Picea abies</i> n.d. Tajchman (1967, 1972a)
0.05 0.06 <i>Picea abies</i> n.d. Tajchman (1967, 1972a)
in Jarvis et al. (1976)
0.09 0.09 Pinus contorta n.d. Gay (1971)b in Jarvis
et al. (1976)
0.14 0.20 Pinus halepensis n.d. Stanhill (1970) in Jarvis
et al. (1976)
0.17 0.17 Pinus halepensis n.d. Monteith and Unsworth
(1990)
0.10 0.10 Pinus radiata n.d. Denmead (1969) in
Jarvis et al. (1976)
0.07 0.15 Pinus sylvestris 125 15.6 15.0 400 185 60N 16E SE Perttu et al. (1980)
0.08 0.08 Pinus sylvestris n.d. Stewart (1971); Gay and
Stewart (1973) in Jarvis
et al. (1976)

Table 3 (Continued)

a_{\min}	a_{max}	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei	Lat	Lon	Country	Source
0.11	0.11	Pinus taeda											n.d.	Gay and Knoerr (1970); Gay (1971a) in Jarvis et al. (1976)
0.09	0.09	Pseudotsuga menziesii											n.d.	Gay (1972); Gay and Stewart (1973) in Jarvis et al. (1976)
0.10	0.14	n.d.	Forest										n.d.	Angstrom (1925) in Rutter (1968)
0.10	0.15	n.d.	Forest										n.d.	Budyko (1956) in Rutter (1968)
0.10	0.15	n.d.	Forest										n.d.	Budyko (1974)
0.11	0.11	n.d.	Forest										n.d.	Baumgartner (1967) in Rutter (1968)
0.12	0.12	n.d.	Forest										n.d.	Conover (1965) in Iqbal (1983)
0.12	0.13	n.d.	Forest										n.d.	Stanhill (1966) in Rutter (1968)
0.15	0.20	n.d.	Forest										UK	Barry and Chambers (1966) in Rutter (1968)
0.11	0.23	n.d.	Tundra										n.d.	List (1966) in Iqbal (1983)
0.15	0.20	n.d.	Tundra										n.d.	Budyko (1974)
0.10	0.19	n.d.	Coniferous, deciduous										n.d.	List (1966) in Iqbal (1983)
Deciduo	us trees													
0.22	0.27	Acer saccharinum											n.d.	Gates (1980)
0.11	0.17	Acer sacchanum. Liriodendron tulipifera, Sassafras albidum, Quercus alba, Quercus nigra	Annual measurements		26.0	26.3				275	39N	86W	USA, IN	Schmid et al. (2000)
0.23	0.30	Aesculus hippocastanum											n.d.	Gates (1980)
0.22	0.28	Ailanthus altissima											n.d.	Gates (1980)
0.30	0.33	Betula spp.											n.d.	Monteith and Unsworth (1990)
0.09	0.28	Betula sppPopulus spp.		45	16.0								RU	Rauner (1976)
0.24	0.30	Carya spp.											n.d.	Gates (1980)
0.21	0.26	Cercis canadensis											n.d.	Gates (1980)

0.24	0.31	Colocasia spp.						n.d.	Gates (1980)
0.23	0.30	Erythrina spp.						n.d.	Gates (1980)
0.26	0.32	Euonymus bungeanus						n.d.	Gates (1980)
0.23	0.29	Fagus grandifolia						n.d.	Gates (1980)
0.20	0.26	Fagus sylvatica						n.d.	Gates (1980)
0.27	0.33	Ginko biloba						n.d.	Gates (1980)
0.21	0.27	Hamamelis venalis						n.d.	Gates (1980)
0.24	0.29	Liriodendron						n.d.	Gates (1980)
		tulipifera							` '
0.20	0.25	Magnolia virginiana						n.d.	Gates (1980)
0.23	0.28	Platanus occidentalis						n.d.	Gates (1980)
0.23	0.28	Populus deltoides						n.d.	Gates (1980)
0.28	0.33	Populus spp.						n.d.	Monteith and Unsworth
		- · · · · · · · · · · · · · · · · · · ·							(1990)
0.25	0.31	Prunus persica						n.d.	Gates (1980)
0.24	0.30	Prunus serotina						n.d.	Gates (1980)
0.23	0.29	Quercus alba						n.d.	Gates (1980)
0.22	0.28	Quercus imbricaria						n.d.	Gates (1980)
0.21	0.26	Quercus macrocarpa						n.d.	Gates (1980)
0.25	0.31	Quercus marilandica						n.d.	Gates (1980)
0.11	0.19	Quercus rubra, Acer		20.0	315	43N	72W	USA, MA	Sakai et al. (1997)
0.11	0.17	rubrum		20.0	515		,	0511, 1111	Saltar et al. (1557)
0.10	0.20	Quercus spp.		9.5				BE	Grulois (1968) in Rauner
									(1976)
0.32	0.36	Quercus spp.						n.d.	Monteith and Unsworth
									(1990)
0.23	0.29	Quercus velutina						n.d.	Gates (1980)
0.11	0.19	Quercus-Carpinus						BE	Grulois (1968)
0.23	0.29	Sassafras albidum						n.d.	Gates (1980)
0.24	0.31	Ulmus spp.						n.d.	Monteith and Unsworth
									(1990)
0.15	0.20	n.d.	Forest					n.d.	Budyko (1974)
0.15	0.20	n.d.	Broadleaved					n.d.	Budyko (1956) in Rutter
									(1968)
0.16	0.23	n.d.	Broadleaved					n.d.	Stanhill (1966) in Rutter
									(1968)
0.17	0.19	n.d.	Broadleaved					UK	Barry and Chambers
									(1966) in Rutter (1968)
0.18	0.18	n.d.	Broadleaved					n.d.	Angstrom (1925) in
									Rutter (1968)

 a_{\min}/a_{\max} —minimum and maximum value for albedo. Sci. name: scientific names for species were taken as published by authors and not transformed into current nomenclature, n.d.: no details given; Furth. Inf.: further information given in literature; PlaH: plant height (m); BasA: basal area (m² ha⁻¹); StoD: stock density (ha⁻¹); MAT: mean annual temperature (°C); MAP: mean annual precipitation (mm); Hei: height above sea level (m); Lat: latitude (°); Lon: longitude (°); Country: abbreviation of countries follows ISO 3166.

Falge et al., 1996; Niklaus et al., 1998). Stomatal conductance is given in (mm s⁻¹). In cases where stomatal conductance is published in (mmol m⁻²) values were divided by 41 for transformation according to Körner et al. (1979, calculation based on 293 K and 10⁵ Pa).

Many values in Table 4 for stomatal conductance are cited from Körner et al., who published a comprehensive review in "1979". Additional values for stomatal conductance according to typical plant species in temperate land use systems evaluated by other authors are taken into account in Table 4 (e.g. Lu et al., 1995; Bunce, 2000). Woody plants reveal general lower stomatal conductance of 2.5–4.0 mm s⁻¹ compared to herbal plants species with around 6 mm s⁻¹ (Table 7). Spans of published data for these herbal plant species are broad, indicated by comparatively high standard deviation with approximately 4 mm s⁻¹ for crops and 6 mm s⁻¹ for herbs, forbs and grasses.

Presenting single values for g_s neglects its high temporal (especially daily) and spatial variability. Thus, in some ways it is difficult to compare published data as investigations under natural conditions are strongly affected by factors such as water vapour pressure deficit, soil moisture, general conditions of the plant (healthy/unhealthy), position of leaves or needles (shaded/exponated), age of leaves or needles. Nevertheless, many SVAT (Soil-Vegetation-Atmosphere Transfer) and hydrological models need single g_s values as input parameters. Data for g_s was therefore taken as published or read of graphs. The mean value for g_s in a given land cover type—if data for g_s are significantly normal distributed—reflects a sufficient approximation of natural conditions, as it averages information over space, time and species.

2.5. Maximum plant height—H_{max}

Maximum plant height is one of the main parameters for calculating the above ground biomass, nutrient balances or carbons sequestration potentials of a given site. In hydrology, the maximum plant height H_{max} is used to determine the aerodynamic resistance of the vegetation which in turn may be used to calculate the potential evapotranspiration.

Typical values for maximum plant height of pasture species are adopted from Ellenberg (1996) and Geyger (1964) whereas information for crops are taken from Rothmaler (1990). Further maximum plant heights for

herbaceous plants are given in most plant handbooks. As it does not make sense to list all plant species of Europe and North America in this context, a set of typical mid European species is chosen (Table 5). In most cases of ecological and hydrological modelling approaches these values can be used for North American ecosystems as well, as there is not much of a difference in maximum heights for herbs, forbs, grasses and crops in global temperate regions.

In contrast to low-growing plants where set values for maximum plant height make sense—even though they can vary considerably (Table 7)—absolute dimensions of coniferous and deciduous trees are far more higher and diverse. Exact parameter setting of maximum tree height for forests can therefore be most important to obtain good results in biomass production or evapotranspiration rates. Hence, in microand mesoscale modelling values for H_{max} should be obtained from regionally adapted forest growth tables, where site conditions, size classes, and stand age are considered. Plant height for grain crops in most cases does not exceed 2.0 m, whereas some species like Helianthus annuus or Phaseolus spp. grow up to 4.0 and 5.0 m, respectively (Table 5). Wetland species like *Phragmites communis* show H_{max} of up to 3.0 m, whereas other herbaceous plants and grasses show an average H_{max} of 1.0-1.2 m. An overall mean for H_{max} of pasture species (1.4 m)—no matter whether wetland or dryland species—is equivalent to mean H_{max} of crops (Table 7).

2.6. Maximum rooting depth—RD_{max}

The rooting depth of plants determines the maximum depth of water and nutrient uptake from the soil profile. Maximum root depth RD_{max} depends mainly on soil factors like texture, compaction, underlying bedrock, clefts, and further physical and chemical properties of the solum. Sites where soil layers such as clay bands prevent vertical water flow, or groundwater is close to surface, are not suitable for deep rooting plants as anoxic areas impede conditions for root growth. Depth of tree roots is further defined by the root shape. Tap roots of trees generally grow further into the soil compared to plate or heart shaped root systems. To take these restrictions into account, available information of soil conditions is also presented in Table 6 in addition.

Table 4
Stomatal conductance—g_s

$g_{\rm s}$	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei.	Lat	Lon	Country	Source
Crops					_								
2.3	Alocasia indica											n.d.	Raschke (1958) in Körner et al. (1979)
5.6	Beta vulgaris											GRH	Hall and Kaufmann (1975a) in Körner et al. (1979)
7.1	Beta vulgaris		4 w									GRH	Hansen (1971) in Körner et al. (1979)
10.0	Beta vulgaris								600			AT	Scheel (unpubl.) in Körner et al. (1979)
3.3	Cucumus sativus		4 w									GRH	Behboudian (1977) in Körner et al. (1979)
4.3	Dolichos uniflorus											GRH	Ludlow and Wilson (1971b) in Körner et al. (1979)
3.3	Glycine max											GRH	Sionit and Kramer (1976) in Körner et al. (1979)
6.7	Glycine max		26–46 d									GRH	Woodward and Begg (1976) in Körner et al. (1979)
7.1	Glycine max	4th leaf	10–20 d									GRH	Woodward and Rawson (1976) in Körner et al. (1979)
2.1	Glycine max	Potted plants										USA, OH	Mederski et al. (1975) in Körner et al. (1979)
16.1	Glyceria max	Low $p_{\rm H_2O}$										GRH	Bunce (1985)
6.7	Glycine wightii	7 1120										GRH	Körner et al. (1979)
1.5	Helianthus annuus		8 w									USA, NY	Hunt et al. (1968) in Körner et al. (1979)
2.5	Helianthus annuus											GRH	Holmgren et al. (1965) in Körner et al. (1979)
3.3	Helianthus annuus		2 mth									GRH	Sionit and Kramer (1976) in Körner et al. (1979)
7.7	Helianthus annuus		8 w									GRH	Aston (1973) in Körner et al. (1979)
15.9	Helianthus annuus											GRH	Schurr et al. (1992)
23.8	Helianthus annuus											GRH	Holmgren et al. (1965)
7.1	Helianthus annuus	4–6 leaves										GRH	Hall and Kaufmann (1975a) in Körner et al. (1979)
7.1	Helianthus annuus	6-8 leaves										GRH	Aston (1976) in Körner et al. (1979)
12.5	Helianthus annuus	14th leaf										GRH	Rawson and Woodward (1976) in Körner et al. (1979)
16.7	Helianthus annuus	Low soil H ₂ O										GRH	Gollan et al. (1986)
4.0	Hordeum distichum	2 -										UK	Day (1977)

Table 4 (Continued)

gs	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei.	Lat	Lon	Country	Source
4.2	Hordeum distichum											UK	Monteith et al. (1965) in Körner et al. (1979)
4.0	Hordeum distichum											UK	Day (1977)
4.2	Hordeum distichum											UK	Monteith et al. (1965)
5.0	Hordeum vulgare											GRH	Jones (1977)
5.6	Hordeum vulgare											GRH	Jones (1977)
7.0	Hordeum vulgare											USA, MD	Bunce (2000)
8.3	Hordeum vulgare											GRH	Cummins et al. (1971) in Körner et al. (1979)
2.5	Lactuca sativa											GRH	Tibbitts and Bottenberg (1976) in Körner et al. (1979)
4.0	Lycopersicum esculentum			0.3								GRH	Moreshet and Yocum (1972) in Körner et al. (1979)
7.7	Lycopersicum esculentum											n.d.	Duniway (1971) in Körner et al. (1979)
4.8	Nicotiana tabacum											USA, CT	Turner and Begg (1973) in Körner et al. (1979)
11.1	Nicotiana tabacum	12th leaf										GRH	Rawson and Woodward (1976) in Körner et al. (1979)
5.3	Phaseolus vulgaris											USA, WI	Kanemasu et al. (1969)
7.7	Phaseolus vulgaris		12 d									GRH	Charter et al. (1970) in Körner et al. (1979)
7.7	Phaseolus vulgaris											GRH	Moldau (1973) in Körner et al. (1979)
3.7	Phaseolus vulgaris	1st leaf	10–14 d									GRH	Solárova et al. (1977) in Körner et al. (1979)
10.0	Secale cereale								580			AT	Scheel (unpubl.) in Körner et al. (1979)
5.0	Solanum tuberosum		3–12 w									AU	Shepherd (1976) in Körner et al. (1979)
2.3	Sorghum bicolor		m									USA, CT	Turner and Begg (1973) in Körner et al. (1979)
3.4	Sorghum bicolor											GRH	Henzell et al. (1976) in Körner et al. (1979)
2.8	Sorghum bicolor	15 leaves										GRH	Beardsell and Cohen (1975) in Körner et al. (1979)
5.0	Triticum aestivum		3–6 mth									AU	Shepherd (1976) in Körner et al. (1979)

5.6	Triticum aestivum		1 mth			GRH	Simmelsgaard (1976) in Körner et al. (1979)
10.4	Triticum aestivum					USA, MD	Bunce (2000)
12.6	Triticum aestivum Triticum aestivum	Low soil H ₂ O				GRH	Gollan et al. (1986)
9.1	Triticum aesiivum Triticum vulgare	Low soil H ₂ O			580	AT	Scheel (unpubl.) in Körner et al.
					380		(1979)
1.0	Vitis vinifera		1			GRH	Hofäcker (1976) in Körner et al. (1979)
1.5	Vitis vinifera		1			n.d.	Düring (1976a) in Körner et al. (1979)
2.7	Vitis vinifera					GRH	Loveys et al. (1974) in Körner et al. (1979)
2.9	Vitis vinifera				400	IT	Scheel (unpubl.) in Körner et al. (1979)
2.9	Vitis vinifera				400	IT	Körner et al. (1979)
4.5	Vitis vinifera				400	IT	Körner et al. (1979)
1.5	Vitis vinifera	Cuttings				GRH	Hofäcker (1976) in Körner et al. (1979)
3.1	Vitis vinifera	5–6 leaves				GRH	Düring (1976b) in Körner et al. (1979)
2.3	Zea mays			1.5		USA, CT	Turner (1975) in Körner et al. (1979)
5.9	Zea mays					NL	Stigter and Lammers (1974) in Körner et al. (1979)
6.3	Zea mays				580	AT	Scheel (unpubl.) in Körner et al. (1979)
7.1	Zea mays					n.d.	Sinclair et al. (1975) in Körner et al. (1979)
3.1	Zea mays	7–9 leaves				GRH	Dubé et al. (1974) in Körner et al. (1979)
Herbs, fo	rbs, grasses						,
26.3	Abutilon theophrasti	Low $p_{\rm H_2O}$				GRH	Bunce (1985)
2.4	Agropyron desertorum					GRH	Frank et al. (1976) in Körner et al. (1979)
1.4	Agropyron intermedium					GRH	Frank et al. (1976) in Körner et al. (1979)
8.3	Agropyron smithii					GRH	Frank et al. (1976) in Körner et al. (1979)
2.5	Alium ursinum				580	AT	Scheel (unpubl.) in Körner et al. (1979)
6.7	Alopecurus pratensis	2nd leaf				CZ/SK	Gloser (1976) in Körner et al. (1979)
5.6	Alopecurus pratensis	4th leaf				CZ/SK	Gloser (1976) in Körner et al. (1979)
	r						

Table 4 (Continued)

's	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei.	Lat	Lon	Country	Source
7.7	Arrhenatherum elatius								650			AT	Cernusca (1975) in Körner et al. (1979):
3.3	Asarum europeum								580			AT	Scheel (unpubl.) in Körner et al. (1979)
6.7	Astrebla lappacea											GRH	Doley and Yates (1976) in Körner et al. (1979)
11.0	Atriplex hastata											GRH	Slatyer (1970) in Körner et al. (1979)
3.8	Atriplex spongiosa											GRH	Slatyer (1970) in Körner et al. (1979)
7.1	Brachiaria ruziziensis	Tiller										GRH	Ludlow and Wilson (1971)b in Körner et al. (1979)
1.2	Brachipodium pinnatum								201	48N	7E	DE	Wedler et al. (1996)
3.3	Brassica rapa											GRH	Gaastra (1959) in Körner et al. (1979)
12.5	Bromus erectus											CH	Niklaus et al. (1998)
2.5	Bromus inermis											USA, NH	Lea et al. (1977) in Körner et al. (1979)
10.0	Caltha leptosepala											USA, CO	Ehleringer and Miller (1975) in Körner et al. (1979)
7.7	Caltha palustris								580			AT	Scheel (unpubl.) in Körner et al. (1979)
3.2	Carex alba								201	48N	7E	DE	Wedler et al. (1996)
2.0	Carex aquatilis											GRH	Johnson and Caldwell (1975) in Körner et al. (1979)
8.3	Carex bigelowii											USA, NH	Curtin and Mayo (1975) in Körne et al. (1979)
5.0	Carex curvula								2300			AT	Körner (1977) in Körner et al. (1979)
3.2	Carex flacca								201	48N	7E	DE	Wedler et al. (1996)
5.3	Cenchrus ciliaris											GRH	Ludlow and Wilson (1971b) in Körner et al. (1979)
0.8	Circea lutetiana											GRH	Holmgren et al. (1965)
12.5	Convolvulus arvensis								580			AT	Scheel (unpubl.) in Körner et al. (1979)
6.7	Coronilla varia								580			AT	Scheel (unpubl.) in Körner et al. (1979)
2.5	Dactylis glomerata											GRH	Frank et al. (1976) in Körner et a

6.7	Dactylis glomerata			650			AT	Körner et al. (1979)
33.1	Datura	Low p _{H2O}					GRH	Bunce (1985)
	stramonium							
4.0	Deschampsia						GRH	Johnson and Caldwell (1975) in
	cespitosa							Körner et al. (1979)
2.1	Diapensia lapponica						USA, NH	Courtin and Mayo (1975) in Körner et al. (1979)
6.3	Diplotaxis tenufolia			580			AT	Scheel (unpubl.) in Körner et al. (1979)
1.8	Dupontia fischeri						GRH	Johnson and Caldwell (1975) in
								Körner et al. (1979)
6.3	Elymus junceuns						GRH	Frank et al. (1976) in Körner et al. (1979)
3.3	Festuca halleri			2300			AT	Körner et al. (1979)
3.0	Gentiana punctata			1800			AT	Körner and Schubert (1978) in Körner et al. (1979)
10.0	Geum montanum			1800			AT	Körner and Schubert (1978) in Körner et al. (1979)
3.0	Geum rosii						GRH	Johnson and Caldwell (1975) in Körner et al. (1979)
5.6	Glyceria maxima	2nd leaf					CZ/SK	Gloser (1976) in Körner et al. (1979)
6.7	Glyceria maxima	4th leaf					CZ/SK	Gloser (1976) in Körner et al. (1979)
5.3	Hieracium alpinum			2300			AT	Körner (1977) in Körner et al. (1979)
6.3	Holcus lanatus			650			AT	Körner et al. (1979)
5.9	Impatiens parviflora			580			AT	Scheel (unpubl.) in Körner et al. (1979)
1.1	Lamium galeobdolon						GRH	Holmgren et al. (1965)
2.5	Lolium perenne						GRH	Sheehy et al. (1975) in Körner et al. (1979)
6.3	Luzula sylvatica			1800			AT	Körner and Schubert (1978) in Körner et al. (1979)
3.3	Melinis minutiflora						GRH	Ludlow and Wilson (1971)b in Körner et al. (1979)
29.2	Moliniopsis japonica	Mire wetland	1049	6.5	45N	141E	JP	Takagi et al. (1998)
1.2	Oxalis acetosella			580			AT	Scheel (unpubl.) in Körner et al. (1979)
4.2	Paeonia officinalis			580			AT	Scheel (unpubl.) in Körner et al. (1979)
3.8	Panicum coloratum						GRH	Ludlow and Wilson (1971b) in Körner et al. (1979)

Table 4 (Continued)

g_{s}	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei.	Lat	Lon	Country	Source
11.1	Panicum maximum											GRH	Ludlow and Wilson (1972) in Körner et al. (1979)
14.3	Pennisetum purpureum											GRH	Ludlow and Wilson (1972) in Körner et al. (1979)
1.5	Phalaris arundinacea											GRH	Frank et al. (1976) in Körner et al. (1979)
6.3	Phalaris arundinacea	2nd leaf										CZ/SK	Gloser (1976) in Körner et al. (1979)
5.6	Phalaris arundinacea	4th leaf										CZ/SK	Gloser (1976) in Körner et al. (1979
3.6	Phyllitis scolopendrium								580			AT	Scheel (unpubl.) in Körner et al. (1979)
12.5	Polygonum bistortoides								3550			USA, CO	Ehleringer and Miller (1975) in Körner et al. (1979)
2.8	Prenanthes purpurea								580			AT	Scheel (unpubl.) in Körner et al. (1979)
6.7	Primula minima								2300			AT	Körner (1977) in Körner et al. (1979)
2.8	Pulmonaria officinalis								580			AT	Scheel (unpubl.) in Körner et al. (1979)
1.7	Rhus integrifolia											USA, CA	Poole and Miller (1975) in Körner et al. (1979)
4.2	Rhus integrifolia											USA, CA	Poole and Miller (1975) in Körner et al. (1979)
1.5	Rhus ovata											USA, CA	Poole and Miller (1975) in Körner et al. (1979)
3.7	Rumex alpestris								1900			AT	Körner et al. (1979)
10.0	Rumex alpinus								1800			AT	Körner and Schubert (1978) in Körner et al. (1979)
1.2	Sedum rupestre								660			AT	Körner et al. (1979)
1.8	Sesleria caerulea											GRH	Lloyd and Woolhouse (1976) in Körner et al. (1979)
3.7	Setaria sphacelata											GRH	Ludlow and Wilson (1971b) in Körner et al. (1979)
1.7	Solidago virgaurea	Shaded										GRH	Holmgren (1968) in Körner et al. (1979)
2.1	Solidago virgaurea	Exposed										GRH	Holmgren (1968) in Körner et al. (1979)
6.7	Sorghum almum											GRH	Ludlow and Wilson (1972) in Körner et al. (1979)

5.9	Stachys recta					580			AT	Scheel (unpubl.) in Körner et al. (1979)
2.5	Stellaria nemorum					1800			AT	Körner and Schubert (1978) in
6.5	Trifolium pratense					650			AT	Körner et al. (1979) Cernusca (1975) in Körner et al. (1979)
5.6	Veratrum album					1800			AT	Körner and Schubert (1978) in Körner et al. (1979)
3.4	Vicia sepium					580			AT	Scheel (unpubl.) in Körner et al. (1979)
5.9	Xanthium pennsylvanicum	Potted plants							n.d.	Mellor et al. (1964) in Körner et al. (1979)
10.0	Xanthium strumarium								GRH	Drake and Raschke (1974) in Körner et al. (1979)
25.0	Xanthium strumarium		60 d						n.d.	Drake et al. (1970) in Körner et al. (1979)
Shrubs, v	voodland									
1.0	Artemisia tridentata								USA, UT	De Puit and Caldwell (1975) in Körner et al. (1979)
6.6	Eucalyptus pauciflora	Sclerophyll		11.5	650	940	37S	149E	AU	Körner and Cochrane (1985)
8.5	Eucalyptus pauciflora	Subalpine				1645	37S	149E	AU	Körner and Cochrane (1985)
2.3	Hedera helix								GRH	Bauer (unpubl.) in Körner et al. (1979)
2.6	Heteromeles arbutifolia								USA, CA	Poole and Miller (1975) in Körner et al. (1979)
3.1	Heteromeles arbutifolia								USA, CA	Poole and Miller (1975) in Körner et al. (1979)
17.9	Ilex crenata	Mire wetland			1049	7	45N	141E	JP	Takagi et al. (1998)
3.3	Ligustrum vulgare					600			AT	Scheel (unpubl.) in Körner et al. (1979)
3.2	Loiseleuria procumbens		6–8			2175			AT	Körner (1976) in Körner et al. (1979)
37.5	Myrica gale	Mire wetland			1049	7	45N	141E	JP	Takagi et al. (1998)
5.0	Physocarpus malvaceus								USA, ID	Cline and Campbell (1976) in Körner et al. (1979)
1.7	Physocarpus opulifolius		4 mth						GRH	Pereira and Kozlowski (1977)
7.4	Quercus myrtifolia				1310		28N	80W	USA, FL	Lodge et al. (2001)
5.3	Rosmarinus officinalis	Potted plants	10						GRH	Körner et al. (1979)
10.0	Ruta graveolens					580			AT	Scheel (unpubl.) in Körner et al. (1979)

Table 4 (Continued)

$g_{\rm s}$	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei.	Lat	Lon	Country	Source
23.2	Sasa palmata	Mire wetland						1049	7	45N	141E	JP	Takagi et al. (1998)
1.9	Vaccinium myrtillus	Understory							900			AT	Scheel (unpubl.) in Körner et al. (1979)
1.3	Vaccinum myrtillus	Shade leaves										USA, CO	Janke (1970) in Körner et al. (1979
2.3	Vaccinum myrtillus	Sun leaves										USA, CO	Janke (1970) in Körner et al. (1979
2.6	Vaccinum myrtillus	Timberline							2000			AT	Scheel (unpubl.) in Körner et al. (1979)
Conifero	ous trees												
2.2	Abies amabilis	New needles	43	14.6	78.7	1941			1300			USA, WA	Martin et al. (1997)
1.5	Abies amabilis	5 yr needles	43	14.6	78.7	1941			1300			USA, WA	Martin et al. (1997)
1.9	Abies grandis			2.0					700			USA, OR	Running (1976) in Körner et al. (1979)
4.8	Abies magnifica			2.0					1200			USA, OR	Running (1976) in Körner et al. (1979)
2.7	Abies procera			2.0					1000			USA, OR	Running (1976) in Körner et al. (1979)
0.8	Juniperus virginiana			7.0					580			AT	Körner et al. (1979)
2.4	Larix x eurolepis											GRH	Sandford and Jarvis (1986)
0.5	Picea abies		30	12.6	45.9	2343	6	1500	1050	48N	7E	FR	Lu et al. (1995)
1.2	Picea abies		120	30.0				1070	685			CH	Falge et al. (1996)
1.8	Picea abies		40					1200	700			CH	Falge et al. (1996)
0.7	Picea abies	Healthy	30	12.0					680	50N	11E	DE	Zimmermann et al. (1988)
1.5	Picea abies	Healthy	30	10.0	32.3	3100						DE	Oren and Zimmermann (1989)
1.8	Picea abies	Declining	30	12.0					750	50N	11E	DE	Zimmermann et al. (1988)
1.9	Picea abies	Declining	30	7.9	26.8	4400						DE	Oren and Zimmermann (1989)
2.8	Picea breweriana			2.0					1200			USA, OR	Running (1976) in Körner et al. (1979)
1.7	Picea engelmannii		15						3000			USA, CO	Kaufmann (1976) in Körner et al. (1979)
1.2	Picea mariana		75	10.5		750				56N	99W	CA	Dang et al. (1997)
2.0	Picea sitchensis			2.0					200			USA, OR	Running (1976) in Körner et al. (1979)
6.9	Picea sitchensis											GRH	Sandford and Jarvis (1986)
3.8	Picea sitchensis	Seedlings	7 mth									GRH	Grace et al. (1975) in Körner et al. (1979)
4.0	Picea sitchensis	Seedlings	2									GRH	Braddle and Jarvis (1977) in Körne et al. (1979)
3.8	Picea sitchensis	New needles		11.5					280			UK	Watts et al. (1976) in Körner et al. (1979)

1.8	Picea sitchensis	1 yr needles		11.5				280			UK	Watts et al. (1976) in Körner et al. (1979)
2.0 2.0	Pinus banksiana Pinus banksiana		58 8	9		2488			56N	99W	CA USA, WI	Dang et al. (1997) Pereira and Kozlowski (1977b) in Körner et al. (1979)
2.9 1.2	Pinus banksiana Pinus cembra	1 yr needles	82	13.5 8.0	21.9	1875		579 1900	54N	104W	CA AT	Saugier et al. (1997) Scheel (unpubl.) in Körner et al. (1979)
1.5	Pinus cembra	New needles		8.0				1900			AT	Scheel (unpubl.) in Körner et al. (1979)
4.0	Pinus contorta		60					2800			USA, WY	Lassoie et al. (1977) in Körner et al. (1979)
6.9 1.1	Pinus contorta Pinus monticola			25.0							GRH USA, ID	Sandford and Jarvis (1986) Cline and Campbell (1976) in Körner et al. (1979)
4.0	Pinus pinaster		64	24.1	29.8	312	550	24	39N	9W	PT	Loustau et al. (1996)
2.3	Pinus pinaster	New needles	37	20.3	21.8	385	330	146	44N	1W	FR	Granier et al. (1990)
3.0	Pinus pinaster	New needles	37	20.3	21.8	385		146	44N	1W	FR	Granier et al. (1990)
2.2	Pinus pinaster	2 yr needles	37	20.3	21.8	385		146	44N	1W	FR	Granier et al. (1990)
3.2	Pinus ponderosa	2 yr needles	,	2.0	21.0			1150		1,,	USA, OR	Running (1976) in Körner et al. (1979)
3.2	Pinus ponderosa	Seedlings	5	1							GRH	Hubbard et al. (2001)
0.8	Pinus ponderosa	New needles	24								USA, CA	Bingham and Coyne (1977) in Körner et al. (1979)
2.0	Pinus ponderosa	1 yr needles	24								USA, CA	Bingham and Coyne (1977) in Körner et al. (1979)
2.0	Pinus resinosa		9								USA, WI	Raschke, 1958 in Körner et al. (1979)
1.4	Pinus resinosa	New needles									USA, CT	Waggoner and Turner (1971) in Körner et al. (1979)
0.6	Pinus resinosa	1 yr needles									USA, CT	Waggoner and Turner (1971) in Körner et al. (1979)
2.5	Pinus resinosa	1 yr needles		16.0				500			USA, WI	Pereira and Kozlowski (1976)a in Körner et al. (1979)
5.1	Pinus sylvestris										GRH	Sandford and Jarvis (1986)
7.4	Pinus sylvestris										GRH	Sandford and Jarvis (1986)
1.6	Pinus sylvestris	New needles		20.0				580			AT	Scheel (unpubl.) in Körner et al. (1979)
1.5	Pinus sylvestris	1 yr needles		20.0				580			AT	Scheel (unpubl.) in Körner et al. (1979)
1.7	Pinus sylvestris	1 yr needles		15.0				1000			AT	Körner et al. (1979)
4.0	Pinus taeda	•	16								USA, NC	Gresham et al. (1975)
1.7	Pseudotsuga menziesii			2.0				700			USA, OR	Blake and Ferrell (1977) in Körner et al. (1979)

Table 4 (Continued)

g_s	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei.	Lat	Lon	Country	Source
3.3	Pseudotsuga menziesii	Seedlings	2									GRH	Running (1976) in Körner et al. (1979)
2.1	Taxodium distichum		64	27	73.6	722	15.5	1140	130	35N	79W	USA, NC	Oren et al. (2001)
2.3	Tsuga heterophylla	Seedlings		2.0					350			USA, OR	Running (1976) in Körner et al. (1979)
Decidu	ous trees												
3.3	Acacia harpophylla								286			AU	Tunstall and Connor (1975) in Körner et al. (1979)
4.8	Acer glabrum											USA, ID	Cline and Campbell (1976) in Körner et al. (1979)
1.3	Acer platanoides											GRH	Holmgren et al. (1965)
2.5	Acer platanoides			6.0					580			AT	Scheel (unpubl.) in Körner et al. (1979)
1.1	Acer rubrum		13									USA, CT	Turner and Heichel (1977) in Körner et al. (1979)
4.4	Acer rubrum	Arboretum					14.0	1385		36N	84W	USA, TN	Augé et al. (2000)
1.4	Acer saccharinum		1									GRH	Pereira and Kozlowski (1977)
2.0	Acer saccharum		m	3.0								USA, NH	Federer and Gee (1976)
1.7	Acer saccharum	Sapling										USA, MO	Phelps et al. (1976) in Körner et a (1979)
2.5	Acer saccharum	Seedling	1									GRH	Wuenscher and Kozlowski (1971) in Körner et al. (1979)
2.7	Acer saccharum	Arboretum					14.0	1385		36N	84W	USA, TN	Augé et al. (2000)
2.0	Alnus sinuata											USA, ID	Cline and Campbell (1976) in Körner et al. (1979)
4.6	Alnus viridis								1800			AT	Körner et al. (1979)
3.6	Amygdalus communis			3.0					400			IT	Körner et al. (1979)
3.3	Betula alleghaniensis		m									USA, NH	Federer and Gee (1976)
1.7	Betula lutea	Seedling		0.3								GRH	Loveys et al. (1974) in Körner et a (1979)
8.1	Betula verrucosa											GRH	Holmgren et al. (1965)
4.2	Betula verrucosa	Seedling										GRH	Holmgren et al. (1965) in Körner et al. (1979)
1.6	Castanea sativa			18.0					400			IT	Körner et al. (1979)
3.0	Cornus florida	Arboretum					14.0	1385		36N	84W	USA, TN	Augé et al. (2000)
5.0	Eucalyptus camaldulensis	Seedlings	3 mth									GRH	Pereira and Kozlowski (1976)b in Körner et al. (1979)

2.5	Eucalyptus globulus	Seedlings	3 mth							GRH	Pereira and Kozlowski (1976b) in Körner et al. (1979)
2.5	Eucalyptus pauciflora			4.0			1645			AU	Slatyer and Morrow (1977) in Körner et al. (1979)
4.2	Eucalyptus pauciflora			10.0			915			AU	Slatyer and Morrow (1977) in Körner et al. (1979)
7.5	Eucalyptus pauciflora		m	1.5		1800	2040	37S	149E	AU	Körner and Cochrane (1985)
8.5	Eucalyptus pauciflora	Sclerophyll		11.5			1215	37S	149E	AU	Körner and Cochrane (1985)
1.7	Fagus grandifolia		m							USA, NH	Federer and Gee (1976)
2.0	Fagus sylvatica		120							DE	Schulze (1970) in Körner et al. (1979)
2.8	Fagus sylvatica			18.0			580			AT	Scheel (unpubl.) in Körner et al. (1979)
1.6	Fraxinus americana	Seedlings	1							GRH	Pereira and Kozlowski (1977)
1.8	Fraxinus americana	Seedlings	2							USA, WI	Davies and Kozlowski (1975) in Körner et al. (1979)
3.8	Fraxinus excelsior			15.0			580			AT	Scheel (unpubl.) in Körner et al. (1979)
2.5	Fraxinus ornus			4.0			450			IT	Körner et al. (1979)
2.3	Juglans nigra		6 w							GRH	Pereira and Kozlowski (1977)
2.9	Juglans regia			16.0			580			AT	Körner et al. (1979)
3.1	Juglans regia			12.0			400			IT	Körner et al. (1979)
1.2	Juglans nigra	Sapling		5.0						USA, MO	Dougherty et al. (1976) in Körner et al. (1979)
7.1	Laburnum anagyroides						580			AT	Scheel (unpubl.) in Körner et al. (1979)
11.7	Liquidambar styraciflua	Arboretum			14.0	1385		36N	84W	USA, TN	Augé et al. (2000)
1.1	Liriodendron tulipifera		2–3 mth							USA, TN	Richardson et al. (1972) in Körner et al. (1979)
9.3	Liriodendron tulipifera	Arboretum			14.0	1385		36N	84W	USA, TN	Augé et al. (2000)
3.3	Malus domestica		2–3 mth							GRH	West and Gaff (1976) in Körner et al. (1979)
3.4	Malus domestica		9							UK	Landsberg et al. (1975) in Körner et al. (1979)
4.5	Malus domestica		9							UK	Landsberg et al. (1976) in Körner et al. (1979)
5.0	Malus domestica		6				580			AT	Scheel (unpubl.) in Körner et al. (1979)

Table 4 (Continued)

gs.	Sci. name	Furth. Inf.	Age	PlaH	BasA	StoD	MAT	MAP	Hei.	Lat	Lon	Country	Source
6.6	Malus domestica		6						580			AT	Scheel (unpubl.) in Körner et al. (1979)
7.1	Malus domestica								400			IT	Körner et al. (1979)
9.3	Nyssa sylvatica	Arboretum					14.0	1385		36N	84W	USA, TN	Augé et al. (2000)
2.4	Olea europea	Potted trees	6									GRH	Körner et al. (1979)
2.9	Ostrya carpinifolia			6.0					450			IT	Körner et al. (1979)
4.3	Oxydendrum arboreum	Arboretum					14.0	1385		36N	84W	USA, TN	Augé et al. (2000)
4.2	Persica vulgaris			5.0					400			IT	Körner et al. (1979)
2.5	Populus grandidentata											USA, MI	Miller and Gates (1967) in Körner et al. (1979)
4.3	Populus tremula											GRH	Holmgren et al. (1965)
4.3	Populus tremula											GRH	Holmgren et al. (1965) in Körner et al. (1979)
9.8	Populus tremuloides		75	18.0		2000				56N	99W	CA	Dang et al. (1997)
4.0	Populus tremuluides											USA, MI	Miller and Gates (1967) in Körner et al. (1979)
3.6	Prunus armeniaca		10						640			AT	Körner et al. (1979)
6.3	Prunus armeniaca		5						640			AT	Körner et al. (1979)
3.3	Prunus avium			6.0					400			IT	Körner et al. (1979)
4.5	Prunus avium			10.0					580			AT	Scheel (unpubl.) in Körner et al. (1979)
4.5	Pyrus communis			4.0					400			IT	Körner et al. (1979)
7.2	Quercus muehlenbegil	Arboretum					14.0	1385		36N	84W	USA, TN	Augé et al. (2000)
2.0	Quercus alba			19.0								USA, MO	Hinckley et al. (1975) in Körner et al. (1979)
2.2	Quercus alba	Saplings		3.0								USA, MO	Phelps et al. (1976) in Körner et a (1979)
9.5	Quercus alba	Arboretum					14.0	1385		36N	84W	USA, TN	Augé et al. (2000)
0.8	Quercus macrocarpa	Seedlings	3–4 mth									GRH	Wuenscher and Kozlowski (1971) in Körner et al. (1979)
9.5	Quercus prinus	Arboretum					14.0	1385		36N	84W	USA, TN	Augé et al. (2000)
2.8	Quercus pubescens			3.0					450			IT	Körner et al. (1979)
0.9	Quercus robur											GRH	Holmgren et al. (1965)
2.9	Quercus robur			20.0					580			AT	Scheel (unpubl.) in Körner et al. (1979)
2.0	Quercus rubra		9									USA, CT	Turner and Heichel (1977) in Körner et al. (1979)
1.8	Quercus rubra	Saplings		3.0								USA, MO	Phelps et al. (1976) in Körner et (1979)

6.8	Quercus rubra	Arboretum			14.0	1385	36N	84W	USA, TN	Augé et al. (2000)
1.2	Quercus rubra	Seedlings	30 d						GRH	Tebbest et al. (1976) in Körner
										et al. (1979)
2.5	Quercus rubra	Seedlings	3–4 mth						GRH	Wuenscher and Kozlowski (1971)
										in Körner et al. (1979)
2.0	Quercus velutina		3–4 mth						GRH	Wuenscher and Kozlowski (1971)
										in Körner et al. (1979)
1.6	Quercus velutina	Saplings		3.0					USA, MO	Phelps et al. (1976) in Körner et al.
										(1979)
2.4	Rhus laurina								USA, CA	Poole and Miller (1975) in Körner
										et al. (1979)
4.2	Rhus laurina								USA, CA	Poole and Miller (1975) in Körner
										et al. (1979)
3.1	Tilia cordata			20.0		580			AT	Scheel (unpubl.) in Körner et al.
										(1979)
1.8	Ulmus americana	Seedlings	1						GRH	Pereira and Kozlowski (1977)

 g_s (mm s⁻¹)—maximum of stomatal conductance. Sci. name: scientific names for species were taken as published by authors and not transformed into current nomenclature; Furth. Inf.: further information given in literature; Age: d: days, w: weeks, mth: months, m: mature; PlaH: plant height (m); BasA: basal area (m² ha⁻¹); StoD: stock density (ha⁻¹); MAT: mean annual temperature (°C); MAP: mean annual precipitation (mm); Hei: height above sea level (m); Lat: latitude (°); Lon: longitude (°); n.d.: no details given; Country: GRH: greenhouse, abbreviation of countries follows ISO 3166.

Table 5 Maximum plant height— H_{max}

H_{max}	Sci. name	Country	Source
Crops			
0.60	Avena sativa	n.d.	Conert (2000)
0.60	Avena sativa	n.d.	Rothmaler (1990)
1.00	Avena sativa	n.d.	Conert (2000)
1.50	Avena sativa	n.d.	Rothmaler (1990)
0.50	Beta vulgaris	n.d.	Rothmaler (1990)
1.50	Beta vulgaris	n.d.	Rothmaler (1990)
1.00	Beta vulgaris	n.d.	Polunin (1971)
1.00	Beta vulgaris	n.d.	Polunin (1971)
1.00	Brassica napus	n.d.	Rothmaler (1990)
1.40	Brassica napus	n.d.	Rothmaler (1990)
0.40	Brassica rapa	n.d.	Rothmaler (1990)
0.80	Brassica rapa	n.d.	Rothmaler (1990)
0.40	Glycine max	n.d.	Polunin (1971)
1.00	Glycine max	n.d.	Polunin (1971)
0.50	Helianthus annuus	n.d.	Fick (1989)
1.00	Helianthus annuus	n.d.	Rothmaler (1990)
2.00	Helianthus annuus	n.d.	Rothmaler (1990)
4.00	Helianthus annuus	n.d.	Fick (1989)
0.60	Hordeum vulgare	n.d.	Rothmaler (1990)
1.20	Hordeum vulgare	n.d.	Rothmaler (1990)
0.40	Lycopersicum esculentum	n.d.	Rothmaler (1990)
1.00	Lycopersicum esculentum	n.d.	Polunin (1971)
1.50	Lycopersicum esculentum	n.d.	Rothmaler (1990)
0.75	Nicotiana tabacum	n.d.	Rothmaler (1990)
3.00	Nicotiana tabacum	n.d.	Rothmaler (1990)
2.00	Phaseolus coccineus	n.d.	Polunin (1971)
3.50	Phaseolus coccineus	n.d.	Rothmaler (1990)
5.00	Phaseolus coccineus	n.d.	Polunin (1971)
0.30	Phaseolus vulgaris	n.d.	Polunin (1971)
3.00	Phaseolus vulgaris	n.d.	Polunin (1971)
4.00	Phaseolus vulgaris	n.d.	Rothmaler (1990)
0.70	Secale cereale	n.d.	Rothmaler (1990)
2.00	Secale cereale	n.d.	Rothmaler (1990)
0.40	Solanum tuberosum	n.d.	Rothmaler (1990)
1.00	Solanum tuberosum	n.d.	Rothmaler (1990)
0.70	Triticum aestivum	n.d.	Rothmaler (1990)
1.60	Triticum aestivum	n.d.	Rothmaler (1990)
0.60	Triticum spelta	n.d.	Rothmaler (1990)
1.50	Triticum spetta	n.d.	Rothmaler (1990)
1.00	Zea mays	n.d.	Rothmaler (1990)
3.00	Zea mays	n.d.	Rothmaler (1990)
	·		
Herbs, forbs, gr		1	A' 1 1 1 1 1 1 (1001)
1.00	Alopecurus pratensis	n.d.	Aichele and Schwegler (1991)
0.50	Arrhenatheretum	n.d.	Aichele and Schwegler (1991)
0.56	Arrhenatheretum	DE	Ellenberg (1996)
1.50	Arrhenatheretum	n.d.	Aichele and Schwegler (1991)
1.20	Arrhenatherum, Agropyro-Rumicion	DE	Geyger (1964)
1.50	Arrhenatherum, Agropyro-Rumicion	DE	Geyger (1964)
1.70	Arrhenatherum, Agropyro-Rumicion	DE	Geyger (1964)
1.50	Arrhenatherum, Cirsio-Polygonum	DE	Geyger (1964)
1.60	Calamgrostis canescens	DE	Geyger (1964)
1.60	Calamgrostis canescens	DE	Geyger (1964)

Table 5 (Continued)

H_{max}	Sci. name	Country	Source
0.30	Caltha palustris	n.d.	Aichele and Schwegler (1991)
0.90	Carex aquatilis	n.d.	Aichele and Schwegler (1991)
2.00	Carex gracilis	DE	Geyger (1964)
0.80	Cirsio-Polygonum	DE	Geyger (1964)
1.20	Cirsio-Polygonum	DE	Geyger (1964)
1.20	Cirsio-Polygonum	DE	Geyger (1964)
1.40	Cirsio-Polygonum	DE	Geyger (1964)
1.60	Cirsio-Polygonum	DE	Geyger (1964)
1.60	Cirsio-Polygonum	DE	Geyger (1964)
1.75	Cirsio-Polygonum	DE	Geyger (1964)
1.80	Cirsio-Polygonum	DE	Geyger (1964)
0.80	Cirsium oleracum-Polygonum bistorta	DE	Ellenberg (1996)
1.00	Dactylis glomerata	n.d.	Aichele and Schwegler (1991)
1.50	Deschampsia cespitosa	n.d.	Aichele and Schwegler (1991)
1.00	Equisetum arvense	n.d.	Ellenberg (1996)
1.00	Festuca rubra	n.d.	Aichele and Schwegler (1991)
1.50	Festuca rubra	n.d.	Aichele and Schwegler (1991)
1.20	Glyceria maxima	DE	Geyger (1964)
2.50	Glyceria maxima	n.d.	Aichele and Schwegler (1991)
1.00	Holcus lanatus	n.d.	Aichele and Schwegler (1991)
0.60	Impatiens parviflora	n.d.	Aichele and Schwegler (1991)
0.60	Lolium perenne	n.d.	Aichele and Schwegler (1991)
1.60	Petasites hybrides	DE	Geyger (1964)
2.00	Phalaris arundinacea	n.d.	Aichele and Schwegler (1991)
2.75	Phragmitis communis	DE	Geyger (1964)
3.20	Phragmitis communis	DE	Geyger (1964)
3.30	Phragmitis communis	DE	Geyger (1964)
0.40	Trifolium pratense	n.d.	Aichele and Schwegler (1991)
0.58	Trisetum spp.	DE	Ellenberg (1996)
0.43	Trollius europaeus-Polygonum bistorta	DE	Ellenberg (1996)
1.50	Veronico-Cirsio-Polygonum	DE	Geyger (1964)
1.60	Veronico-Cirsio-Polygonum	DE	Geyger (1964)
0.60	Vicia sepium	n.d.	Aichele and Schwegler (1991)

 H_{max} (m)—maximum plant height. Sci. name: scientific names for species were taken as published by authors and not transformed into current nomenclature; Country: n.d.: no details given; abbreviation of countries follows ISO 3166.

Measurement of the rooting depths is a destructive technique in which plant roots have to be excavated. Authors usually present data for the deepest root found (Köstler, 1968), whereas in some cases researchers divided data into root classes and published depth for the specific root class (e.g. Raspe and Haug, 1998).

Most of maximum rooting depth for herbs, forbs, grasses and crops (Table 6) are read off graphs published by Ellenberg (1996) or are taken from Kutschera (1960), whereas data for coniferous and deciduous trees is selected from several sources (Köstler et al., 1968; Schmidt-Vogt, 1987; Gregory, 1988; Rastin and Mintenig, 1992; Raspe and Haug, 1998). General plant handbooks also provide maximum root length of cer-

tain species, though the influence of soil conditions is usually not described in detail.

Even though the focus in the collection of maximum root depths is on species from mid-European ecosystems, maximum root depths of temperate vegetation types in other temperate regions will not differ much as they mainly depend on physical soil properties (Kutschera, 1960; Köstler, 1968; Sitte et al., 1999). Maximum root depth of crops and pasture species are lower on average $(1.4 \pm 0.6$ and 0.9 ± 0.6 m, respectively) and show a smaller standard deviation than those of deciduous and coniferous trees $(1.9 \pm 1.8$ and 2.1 ± 1.3 respectively) (Table 7). Extensive root systems for deciduous trees in deep soils are found in depths of 4.0 m and more, whereas rootlets in clefts of

Table 6 Root depth—RD_{max}

RD_{max}	Sci. name	Furth. Inf.	Age	Country	Source
Crops					
0.61	Avena sativa	Short-grass prarie		USA, NE	Weaver (1926) in Kutschera (1960)
0.84	Avena sativa			AT	Kutschera (1960)
0.85	Avena sativa	Sandy loam		n.d.	Kutschera (1960)
1.05	Avena sativa			n.d.	Könnecke (1967)
1.15	Avena sativa			DE	Thiel (1865) in Kutschera (1960)
1.60	Avena sativa	Black earth over loess		n.d.	Günther (1951) in Kutschera (1960)
2.47	Avena sativa			n.d.	Schulze (1911) in Kutschera (1960)
0.90	Beta vulgaris			UK	Durrant et al. (1973) in Gregory (1988)
1.10	Beta vulgaris			n.d.	Könnecke (1967)
0.85	Brassica napus			AT	Kutschera (1960)
1.02	Brassica napus			n.d.	Könnecke (1967)
1.30	Brassica napus			DE	Schubert (1885) in Kutschera (1960)
1.30	Brassica napus			DE	Könnecke (1951) in Kutschera (1960)
1.50	Brassica napus			DE	Römer-Scheffer (1953) in Kutschera (1960)
1.64	Brassica napus			AT	Kutschera (1960)
1.66	Brassica napus			DE	Pistohlkors (1898) in Kutschera (1960
1.75	Brassica napus			DE	Pistohlkors (1898) in Kutschera (1960
1.00	Cannabis sativa			n.d.	Pistohlkors (1898) in Kutschera (1960
1.12	Cannabis sativa			n.d.	Kutschera (1960)
1.80	Glycine max			USA	Sivakumar et al. (1977) in Gregory (1988)
1.60	Helianthus annuus			AT	Kutschera (1960)
1.80	Helianthus annuus			DE	Könekamp (1942) in Kutschera (1960
2.75	Helianthus annuus			USA, NE	Weaver (1926) in Kutschera (1960)
0.76	Hordeum distichum	Short-grass prarie		USA, NE	Weaver (1926) in Kutschera (1960)
0.94	Hordeum distichum	Gley with mull		AT	Kutschera (1960)
1.20	Hordeum distichum	Black earth		DE	Walter (1951) in Kutschera (1960)
1.50	Hordeum distichum	Black earth		DE	Walter (1951) in Kutschera (1960)
1.75	Hordeum distichum	Brown soil		AT	Kutschera (1960)
1.98	Hordeum distichum	Tall-grass prarie		USA, NE	Weaver (1926) in Kutschera (1960)
2.59	Hordeum distichum			n.d.	Schulze (1911) in Kutschera (1960)
0.98	Hordeum vulgare			n.d.	Könnecke (1967)
1.01	Hordeum vulgare			n.d.	Könnecke (1967)
1.36	Medicago sativa	Loam		AT	Kutschera (1960)
1.75	Medicago sativa	Sand		n.d.	Pistohlkors (1898) in Kutschera (1960
1.85	Medicago sativa	Black earth over loess		DE	Könnecke (1951) in Kutschera (1960)
2.20	Medicago sativa	Stony sandy loam		AT	Kutschera (1960)
3.65	Medicago sativa	Stony sandy rouni		USA, NE	Weaver (1926) in Kutschera (1960)
3.80	Medicago sativa	Stony sandy loam		AT	Kutschera (1960)
1.45	Medicago spp.	Stony sandy roam		n.d.	Könnecke (1967)
0.67	Pisum sativum			n.d.	Könnecke (1967)
1.50	Pisum sativum			AU	Hamblin and Hamblin (1985) in Gregory (1988)
0.75	Secale sereale			n.d.	Kraus (1914) in Kutschera (1960)
0.73	Secale sereale	Black earth, middle-deep		n.d.	Günther (1951) in Kutschera (1960)
0.90	Secale sereale	Fraible soil over hardpan		n.d.	Günther (1951) in Kutschera (1960)
1.00	Secale sereale	Humic sandy loam		n.d.	Günther (1951) in Kutschera (1960)
	Secure serent	Trainic buildy rouni		11.4.	Candida (1991) in Russelleta (1900)

Table 6 (Continued)

RD_{max}	Sci. name	Furth. Inf.	Age	Country	Source
1.20	Secale sereale	Brown soil with shingle		AT	Kutschera (1960)
1.23	Secale sereale			n.d.	Pistohlkors (1898) in Kutschera (1960)
1.25	Secale sereale			DE	Schubart (1855) in Kutschera (1960)
1.50	Secale sereale			n.d.	Pistohlkors (1898) in Kutschera (1960)
1.52	Secale sereale	Dry sandy soil		USA, CO	Weaver (1926) in Kutschera (1960)
1.80	Secale sereale	Black earth, deep			Günther (1951) in Kutschera (1960)
2.30	Secale sereale	Wet sandy soil		USA, NE	Weaver (1926) in Kutschera (1960)
0.80	Solanum tuberosum			UK	Durrant et al. (1973) in Gregory (1988
0.93	Solanum tuberosum			n.d.	Könnecke (1967)
1.13	Solanum tuberosum			AT	Kutschera (1960)
1.20	Solanum tuberosum			n.d.	Heyl (1942) in Kutschera (1960)
1.43	Solanum tuberosum			USA, NE	Weaver (1926) in Kutschera (1960)
2.20	Solanum tuberosum	Marly-humic loam		n.d.	Böhme (1925) in Kutschera (1960)
0.79	Sorghum spp.			n.d.	Könnecke (1967)
1.35	Sorghum spp.			AU	Myers (1980) in Gregory (1988)
0.50	Triticum aestivum			n.d.	Kraus (1914) in Kutschera (1960)
0.75	Triticum aestivum			n.d.	Kraus (1914) in Kutschera (1960)
0.96	Triticum aestivum			n.d.	Könnecke (1967)
1.00	Triticum aestivum			UK	Ellis et al. (1984) in Gregory (1988)
1.05	Triticum aestivum	Mesotrophic brown soil over granite		AT	Kutschera (1960)
1.09	Triticum aestivum	-		n.d.	Pistohlkors (1898) in Kutschera (1960)
1.20	Triticum aestivum	Gley with deep mull horizon		AT	Kutschera (1960)
1.30	Triticum aestivum	Mesotrophic brown soil over shingle		AT	Kutschera (1960)
1.40	Triticum aestivum	Calcic brown soil over loess		AT	Kutschera (1960)
1.40	Triticum aestivum			AU	Hamblin and Hamblin (1985) in Gregory (1988)
1.40	Triticum aestivum	Black earth		n.d.	Könnecke (1951) in Kutschera (1960)
1.60	Triticum aestivum			CA	Pavlychenko (1937) in Kutschera (1960
1.79	Triticum aestivum	Gley with deep mull horizon		AT	Kutschera (1960)
1.88	Triticum aestivum	Compact soil		DE	Schubart (1855) in Kutschera (1960)
2.00	Triticum aestivum	F		UK	Gregory et al. (1978) in Gregory (1988
2.20	Triticum aestivum	Friable soil		DE	Schubart (1855) in Kutschera (1960)
2.22	Triticum aestivum	Silty loam		USA, NE	Weaver (1926) in Kutschera (1960)
2.77	Triticum aestivum	2-1-1, 1-1-1-1		n.d.	Schulze (1911) in Kutschera (1960)
0.90	Zea mays			n.d.	Könnecke (1967)
1.20	Zea mays	Gleyey brown soil		AT	Kutschera (1960)
2.41	Zea mays	Steyey stewn son		USA, NE	Weaver (1926) in Kutschera (1960)
	bs, grasses			,	
0.42	Arabidopsis thaliana			AT	Kutschera (1960)
0.75	Arrhenatheretum spp.			DE	Ellenberg (1996)
0.75	Arrhenatherum elatius			n.d.	Ellenberg (1996)
1.95	Avena sativa	Tall-grass prarie		USA, NE	Weaver (1926) in Kutschera (1960)
0.70	Cirsium oleracum- Polygonum bistorta			DE	Ellenberg (1996)
0.80	Equisetum arvense			n.d.	Ellenberg (1996)
	Festuca rubra			n.d.	Ellenberg (1996)
0.80	resinca rubra				

Table 6 (Continued)

RD _{max}	Sci. name	Furth. Inf.	Age	Country	Source
1.35	Lolium multiflorum			AT	Kutschera (1960)
1.45	Lolium multiflorum			CH	Kauter (1933) in Kutschera (1960)
1.80	Phragmitis communis			AT	Kutschera (1960)
0.14	Plantago lanceolata			UK	Anderson (1927) in Kutschera (1960)
0.59	Plantago lanceolata			AT	Kutschera (1960)
0.60	Plantago lanceolata			DE	Wehsarg (1935) in Kutschera (1960)
0.85	Plantago lanceolata			n.d.	Ellenberg (1996)
0.70	Poa pratensis	Valley bog		DE	Kamprath (1933) in Kutschera (1960)
0.72	Poa pratensis	Loamy brown soil		AT	Kutschera (1960)
	r	over shingle			
0.83	Poa pratensis	Clay		DE	Kamprath (1933) in Kutschera (1960)
0.89	Poa pratensis	Loam		DE	Kamprath (1933) in Kutschera (1960)
0.94	Poa pratensis	Sand		DE	Kamprath (1933) in Kutschera (1960)
1.22	Poa pratensis	Sand		USA, KS	Kutschera (1960)
1.44	Poa pratensis	Stony sandy brown		AT	Kutschera (1960)
1.44	rou praiensis	soil		AI	Ruischera (1900)
1.52	Poa pratensis	Silty loam		USA, NE	Weaver (1926) in Kutschera (1960)
1.83	Poa pratensis	Clay loam		USA, NE	Weaver (1926) in Kutschera (1960)
2.13	Poa pratensis	Sandy soil		USA, NE	Weaver (1926) in Kutschera (1960)
0.25	Polygonum aviculare			DE	Meisel (1955) in Kutschera (1960)
0.72	Polygonum aviculare			AT	Kutschera (1960)
0.80	Trifolium pratense			n.d.	Ellenberg (1996)
0.81	Trifolium pratense	Sandy brown soil		AT	Kutschera (1960)
1.32	Trifolium pratense	•		n.d.	Könnecke (1967)
1.35	Trifolium pratense	Black earth over loess		DE	Könnicke (1951) in Kutschera (1960)
3.04	Trifolium pratense			USA, NE	Weaver (1926) in Kutschera (1960)
0.15	Trifolium repens			n.d.	Fraas in Kutschera (1960)
0.18	Trifolium repens			n.d.	Pistohlkors (1898) in Kutschera (1960
0.40	Trifolium repens	Loamy sand		DE	Kraus (1914) in Kutschera (1960)
0.61	Trifolium repens			USA, NY	Beckwith (1886) in Kutschera (1960)
0.70	Trifolium repens	Stoney sandy loam		AT	Kutschera (1960)
0.76	Trifolium repens	Silty loam		USA, NE	Weaver (1926) in Kutschera (1960)
1.00	Trifolium spp.	2,		AU	Hamblin and Hamblin (1985) in
0.60				D.F.	Gregory (1988)
0.68	Trisetum spp.			DE	Ellenberg (1996)
0.70	Trollius			DE	Ellenberg (1996)
	europaeus-Polygonum				
	bistorta				
0.80	Vicia sativa			AT	Kutschera (1960)
Coniferous 0.40	trees Abies alba		10	n.d.	Köstler et al. (1968)
1.50	Abies alba	Heavy clay	100	DE	Köstler et al. (1968)
1.60	Abies alba	licary clay	40	n.d.	Köstler et al. (1968)
1.30	Larix decidua	Pseudogley	70	DE	Köstler et al. (1968)
2.50	Larix decidua Larix decidua	Deep loamy sand			` /
	Larix decidud Larix leptolepis	- ·	60	n.d.	Köstler et al. (1968) School (1964) in Köstler et al. (1968)
0.80	* *	Clay, alternate moist	60 60	DE	Schoch (1964) in Köstler et al. (1968)
1.20	Larix leptolepis	Daguda alar:	60	DE	Schoch (1964) in Köstler et al. (1968)
1.20	Larix leptolepis	Pseudogley	60	DE	Köstler et al. (1968)
1.70	Larix leptolepis	Pseudogley	60	DE	Köstler et al. (1968)
2.80	Larix leptolepis	Sand over loam		DE	Yao-Ming (1962) in Köstler et al. (196
1.00	Picea abies		0.0	DE	Köstler (1956) in Schmidt-Vogt (1987
1.10	Picea abies		80	DE	Rastin and Mintenig (1992)
1.50	Picea abies			DE	Graser (1935) in Köstler et al. (1968)
1.70	Picea abies			DE	Schoch (1964) in Köstler et al. (1968)

Table 6 (Continued)

RD_{max}	Sci. name	Furth. Inf.	Age	Country	Source
2.00	Picea abies			DE	Raspe et al. (1998)
2.00	Picea abies			n.d.	Büsgen-Münch (1927) in Köstler et al. (1968)
2.00	Picea abies		30	n.d.	Köstler et al. (1968)
2.10	Picea abies			DE	Vater (1927) in Köstler et al. (1968)
2.35	Picea abies			DE	Wagenknecht and Belitz (1959) in Schmidt-Vogt (1987)
3.25	Picea abies			n.d.	von Kruedener (1943) in Schmidt-Vogt (1987)
4.40	Picea abies			n.d.	Römper (1954) in Schmidt-Vogt (1987)
4.50	Picea abies			n.d.	Wagenknecht (1955) in Köstler et al. (1968)
6.00	Picea abies			n.d.	Jüttner (1954) in Schmidt-Vogt (1987)
2.52	Pinus spp.	Mixed stand with Betula verrucosa		RU	Rachtejenko (1952) in Köstler et al. (1968)
1.40	Pinus sylvestris	Rendzina on shingle		DE	Köstler et al. (1968)
1.50	Pinus sylvestris		20	DE	Engler (1903) in Köstler et al. (1968)
1.50	Pinus sylvestris		55	UK	Ovington (1957)
1.80	Pinus sylvestris			n.d.	Rutter (1968)
2.50	Pinus sylvestris		40	n.d.	Köstler et al. (1968)
6.00	Pinus sylvestris			n.d.	Wiedemann (1927) in Köstler et al. (1968)
0.70	Pseudotsuga taxifolia	Fine-textured loam		n.d.	Dertinger (1964) in Köstler et al. (1968
0.80	Pseudotsuga taxifolia	Pleistocene sand	30	n.d.	Köstler et al. (1968)
1.00	Pseudotsuga taxifolia	Mesic dense loam over shingle rich loam	62	DE	Köstler et al. (1968)
1.80	Pseudotsuga taxifolia	Dense weathered old moraine		DE	Köstler et al. (1968)
2.00	Pseudotsuga taxifolia	Loam derived from loess	50	n.d.	Köstler et al. (1968)
2.20	Pseudotsuga taxifolia		40	n.d.	Köstler et al. (1968)
3.20	Pseudotsuga taxifolia		70	n.d.	Köstler et al. (1968)
Deciduous	trees				
0.50	Acer pseudoplatanus		2	DE	Pfeil (1860) in Köstler et al. (1968)
0.70	Acer pseudoplatanus	Shingle		n.d.	Köstler et al. (1968)
1.36	Acer pseudoplatanus		5	n.d.	Hoffmann (1959) in Köstler et al. (1968
1.40	Acer pseudoplatanus	Bronw earth	70	DE	Schoch (1964) in Köstler et al. (1968)
0.50	Alnus glutinosa		2	СН	Engler (1903) in Kreutzer (1961) in Köstler et al. (1968)
1.50	Alnus glutinosa		10	СН	Engler (1903); Kreutzer (1961) in Köstler et al. (1968)
1.60	Alnus glutinosa	Dense soil	30	n.d.	Köstler et al. (1968)
1.75	Alnus glutinosa		25	DE	Schoch (1964) in Köstler et al. (1968)
1.80	Alnus glutinosa	Dense sandy loam	45	DE	Köstler et al. (1968)
2.10	Alnus glutinosa	Loam over sand, high groundwater level		SI	Bibelriether (1964) in Köstler et al. (1968)
3.80	Alnus glutinosa		75	DE	Schoch (1964) in Köstler et al. (1968)
0.50	Betula verrucosa	Acidified loam	50	DE	Schoch (1964) in Köstler et al. (1968)
0.70	Betula verrucosa	Pseudogley-Podsol	9	CZ	Zakopal (1958) in Köstler et al. (1968)
1.10	Betula verrucosa	Sandy gravelly loam	60	DE	Schoch (1964) in Köstler et al. (1968)
1.10	Betula verrucosa		12		Köstler et al. (1968)
1.20	Betula verrucosa	Heavy loam	70	DE	Köstler et al. (1968)
1.20	Betula verrucosa	Sandy-loamy weathered gneiss	60	DE	Köstler et al. (1968)

Table 6 (Continued)

RD_{max}	Sci. name	Furth. Inf.	Age	Country	Source
1.30	Betula verrucosa	Clay	45	DE	Köstler et al. (1968)
1.30	Betula verrucosa	Pseudogley	90	DE	Köstler et al. (1968)
1.50	Betula verrucosa	Pseudogley-Podsol	15	CZ	Zakopal (1958) in Köstler et al. (1968
1.50	Betula verrucosa	Loam	50		Köstler et al. (1968)
2.60	Betula verrucosa	Poor sand	17		Köstler et al. (1968)
3.04	Betula verrucosa			RU	Rachtejenko (1952) in Köstler et al. (1968)
3.80	Betula verrucosa	Mixed stand with Pinus spp.		RU	Rachtejenko (1952) in Köstler et al. (1968)
4.02	Betula verrucosa	Mixed stand		RU	Rachtejenko (1952) in Köstler et al. (1968)
1.40	Carpinus betulus	Acidified clay	70	DE	Schoch (1964) in Köstler et al. (1968)
1.50	Carpinus betulus		65	n.d.	Köstler et al. (1968)
0.60	Fagus sylvatica	Clay, alternate moist	0.0	DE	Schoch (1964) in Köstler et al. (1968)
0.80	Fagus sylvatica	On Tertiary shingle		n.d.	Köstler et al. (1968)
0.90	Fagus sylvatica	Heavy clay		DE	Köstler et al. (1968)
1.80	Fagus sylvatica	Deep loam		DE	Graser (1928) in Köstler et al. (1968)
3.00	Fagus sylvatica Fagus sylvatica	Deep roam Deep sand		DE DE	Ganssen (1934) in Köstler et al. (1968)
		*			
3.40	Fagus sylvatica	Loamy clefts in sandstone quarry		n.d.	Hilf (1927) in Köstler et al. (1968)
12.00	Fagus sylvatica	Stony-gritty soil derived from granite and gneiss		n.d.	Köstler et al. (1968)
1.10	Fraxinus excelsior	Loam over clay	40	DE	Köstler et al. (1968)
1.40	Fraxinus excelsior	Coarse textured loam on weathered limestone	90	n.d.	Köstler et al. (1968)
1.50	Fraxinus excelsior	innestone	30	n.d.	Köstler et al. (1968)
2.50	Populus canadensis	Sand	10	n.d.	Köstler et al. (1968)
1.80	Populus tremoluides	Sand	10	n.d.	Brown and Tompson (1965) in Rutter (1968)
1.20	Populus tremula	Clay, alternate moist	40	DE	Schoch (1964) in Köstler et al. (1968
1.40	Populus tremula	Pseudogleyig loam	50	DE	Köstler et al. (1968)
1.50	Populus tremula	Clay	60	DE	Köstler et al. (1968)
1.00	Quercus petrea	Loamy sand over various substrates	00	DE	Köstler et al. (1968)
1.30	Quercus robur	Shallow soil on weathered shingle	100	n.d.	Köstler et al. (1968)
1.40	Quercus robur	Clay, alternate moist	100	DE	Schoch (1964) in Köstler et al. (1968
1.60	Quercus robur	Pseudovergleyt lehm	100	DE	Schoch (1964) in Köstler et al. (1968
9.00	Quercus robur	Steppe soil	13	RU	Walter (1962) in Köstler et al. (1968)
0.90	Quercus rubra	Pseudogley derived from loess-loam	45	DE	Köstler et al. (1968)
0.95	Quercus rubra	Clay, alternate moist	25	DE	Schoch (1964) in Köstler et al. (1968
1.30	Quercus rubra	Fine-textured loam	50	DE	Köstler et al. (1968)
3.60	Quercus rubra	Sand over loam	65	n.d.	Lemke (1956) in Köstler et al. (1968)
2.00	Robinia pseudoacacia		2	DE	Hoffmann (1966) in Köstler et al. (1966)
2.60	Robinia pseudoacacia	Sand	28	HU	Ijjasz (1939) in Köstler et al. (1968)
3.00	Robinia pseudoacacia	Sand	20	n.d.	Scamoni (1952) in Köstler et al. (1966)
3.25	Robinia pseudoacacia	Deep sand	2	DE	Wächter (1921) in Köstler et al. (196
0.80	Tilia cordata	Pseudogley	50	n.d.	Köstler et al. (1968)
	Tilia cordata Tilia cordata	Coarse textured soil	90	n.a. DE	Köstler et al. (1968)
0.00			71.1	DE	BUSHELEL AL LISONI
0.90 1.30	Tilia cordata	Loess-loam	65	DE	Köstler et al. (1968)

Table 6 (Continued)

RD _{max}	Sci. name	Furth. Inf.	Age	Country	Source
0.50	Ulmus montana	Heavy clay	43	DE	Köstler et al. (1968)
0.80	Ulmus montana	Alluvial gravel and sand	88	DE	Köstler et al. (1968)
1.20	Ulmus montana	Heavy pseudogley	75	DE	Köstler et al. (1968)
1.60	Ulmus montana	Heavy pseudogley	50	DE	Köstler et al. (1968)

RD_{max} (m)—maximum depth in which single roots were found. Sci. name: scientific names for species were taken as published by authors and not transformed into current nomenclature; Furth. Inf.: further information given in literature; Country: n.d.: no details given; abbreviation of countries follows ISO 3166.

solid rock layers have been found to grow as deep as $12.0\,\mathrm{m}$ (Table 6). Mean $\mathrm{RD}_{\mathrm{max}}$ for coniferous trees as compared to deciduous trees is approximately $0.2\,\mathrm{m}$ higher, even though the span of maximum root depth for coniferous trees is comparatively narrower and maximum values are lower as well.

3. Global assessment of parameter ranges

A synopsis of the literature review undertaken for six parameters important in ecological and hydrological modelling is given in Table 7 with overall mean, standard deviation, median, minimum, maximum and total number of species investigated for the main land cover crops, herbs/forbs/grasses, coniferous and deciduous trees in global temperate ecosystems.

Overall, a total of 1244 single plant parameter values have been collected for the main land cover types of forests, agriculture and pasture. An additional 94 data sets for shrubs, woodlands and understory vegetation are given. The main findings for the analysed plant parameters can be summarised as (Table 7):

- Mean for minimum and maximum albedo of deciduous forest trees, pasture and crops species are in a range of 0.19–0.27 whereas values for coniferous forest trees are substantially lower with a range of 0.11–0.14. Standard deviation is relatively low with an average of 0.05.
- A clear distinction between forest species and low-growing herbaceous plants and crops can be found for g_s with around 2.5–4.0 and 6 mm s⁻¹, respectively. Variation within data sets leads to high standard deviation for all land cover types.
- $-I_c$ of deciduous trees is significantly lower as compared to I_c of coniferous trees. Mean I_c of crops is highest (2.6 mm) compared to other land cov-

- ers. Taking into account the proposed surcharge of 2.0 mm for I_c of understory vegetation in forest stands, total I_c for coniferous forest stands rises to 3.9 mm and to 3.0 mm for deciduous forest stands respectively.
- LAI for the investigated vegetation types cover a wide range and a maximum value of 23.5 was found for a coniferous forest species. Mean LAI of forest trees and herbs/forbs/grasses differ moderately between 5.4 and 6.3.
- Even though plant species develop different root systems soil properties are a key factor in maximum root depth. Trees in general root slightly deeper than crops or pasture species, even though ranges broadly overlap.

Values for certain plant parameters have to be preset in nearly all ecological or hydrological process orientated models. Usually these are taken from a limited number of sources, hoping that the cited values fulfil the assumption of being in fact representative for the given land cover, e.g. the assumption of known distribution of parameters for Monte Carlo simulation (Franks and Beven, 1997; Veihe and Quinton, 2000; Eckhardt et al., 2003). To test whether the calculated means of the data sets in Table 7 meet this criteron, normal distribution is tested by the Kolmogorov–Smirnov-test if N > 25, which is true for 22 out of the 26 cases for the main land cover types investigated. Normal distribution is verifiable for 15 plant parameters and land cover types. Outliers in five of the 22 cases superpose normal distribution ((1) LAI crops 10.0, Table 2; (2) LAI coniferous trees 23.5, 16.7, 15.5, Table 2; (3) g_s pasture 33.1, 29.2, 26.3, 25.0 mm s⁻¹, Table 4; (4) g_s deciduous trees 11.7, 9.8, 9.5 mm s⁻¹, Table 4; (5) RD_{max} pasture 3.04 m, Table 6). There are a number of reasons for outliers in plant parameter investigations, attributable

Table 7
Parameter values (median, minimum and maximum) for land covers in global temperate ecosystems

	Main land cover types			Additional information		Total	
	Crops	Herbs, forbs, grasses	Coniferous forest	Deciduous forest	Shrubs, woodland	Under story	
Minimum albe	edo (a)						
Mean	0.20	0.19	0.11	0.21	0.25		
Min	0.10	0.02	0.05	0.09	0.10		
Max	0.28	0.36	0.17	0.32	0.37		
Median	0.20	0.20	0.10	0.23	0.30		
S.D.	0.05	0.07	0.03	0.05	0.10		
N	36*	28*	19	37*	7		127
Maximum albe	edo (a)						
Mean	0.24	0.27	0.14	0.27	0.29		
Min	0.18	0.05	0.06	0.18	0.10		
Max	0.32	0.42	0.23	0.36	0.44		
Median	0.24	0.27	0.14	0.28	0.37		
S.D.	0.03	0.07	0.05	0.05	0.14		
N	36*	28*	19	37*	7		127
Stomatal cond	uctance, g_s (n	$m s^{-1}$)					
Mean	6.1	6.2	2.5	3.8	7.3		
Min	1.0	0.8	0.5	0.8	1.0		
Max	23.8	33.1	7.4	11.7	37.5		
Median	5.0	5.2	2.0	3.1	3.3		
S.D.	4.3	6.0	1.6	2.5	9.1		
N	62*	82(*)	53*	82(*)	20		299
Maximum plai	nt height, $H_{\rm ma}$	_x (m)					
Mean	1.44	1.35	n.d.	n.d.			
Min	0.30	0.30	n.d.	n.d.			
Max	5.00	3.30	n.d.	n.d.			
N	41 ^{n.s.}	43*	n.d.	n.d.			84
Interception ca	pacity, I_c (mr	n)					
Mean	2.6	1.9	1.9	1.0	1.1	3.5	
Min	0.6	0.7	0.1	0.2	0.3	0.5	
Max	6.0	3.6	9.1	2.7	2.0	11.2	
Median	2.6	1.9	1.3	0.8	1.0	1.8	
S.D.	1.4	1.0	1.7	0.6	0.5	3.7	
N	12	10	74*	30*	21	9	157
Leaf area inde	x (LAI)						
Mean	3.8	6.2	6.3	5.4	3.7	1.8	
Min	1.8	0.4	0.6	2.0	0.5	0.2	
Max	10.0	16.2	23.5	10.0	13.1	13.3	
Median	3.6	5.9	5.1	5.5	2.8	1.0	
S.D.	1.6	3.8	4.3	1.7	3.1	3.1	
N	37(*)	77*	106(*)	68*	13	17	318
Maximum roo	ting depth, RI	O _{max} (m)					
Mean	1.43	0.93	2.10	1.90			
Min	0.50	0.14	0.40	0.50			
Max	3.80	3.04	6.00	12.00			
Median	1.30	0.80	1.80	1.40			
S.D.	0.63	0.56	1.31	1.82			
N	86*	41(*)	37*	63 ^{n.s.}			227

n.d.: no details on plant height are given for forests as these should be read of regional forest growth tables, considering site and soil conditions. Min: minimum, Max: maximum, N: number of cited values, S.D.: standard deviation. * Significantly normal distribution, P < 0.05 (N = 25), (*) significantly normal distribution, excluding up to four outliers, P < 0.05 (N = 25). n.s no significantly normal distribution P > 0.05 (N = 25).

e.g. to different methods of measurement, measurement errors, extreme site or species characteristics, seasonal and annual variation, etc. Omitting these outliers, normal distribution is also valid for these five data sets at P < 0.05. The remaining two data sets, $H_{\rm max}$ of crops and RD_{max} of deciduous forest, are positively skewed and not normally distributed.

4. Continental differences in plant parameters

Most regional modelling studies should use average plant parameter values (or spans) to account for spatial and temporal heterogeneity within the land covers investigated. Information on such aggregated data is not available. Therefore, we grouped and analysed plant parameter values according to regional distribution, to give an overview and test whether significant differences exist between these regions. As a regional view on plant parameters only makes sense if a sufficient amount of data is analysed, we (i) selected and

grouped parameter values for the regions of Europe and North America and (ii) took a closer look at LAI, I_c and g_s where in most cases the number of published values is N>8 (Table 8). The latter is valid for 17 of the 24 analysed regional sub-data sets. Data for g_s measured in greenhouse experiments is not considered in this approach. Most striking is the lack of data for crops on LAI and I_c in North America (Table 8). As for LAI it must be assumed that we have overlooked published values. We are fairly certain that data for I_c has not been published as we considered available publications back to the beginning of the 20th century.

To prove whether average plant parameters under temperate climatic conditions in Europe and North America differ significantly, we compared means of temperate land covers by t-tests. As we showed that normal distribution for the complete set of specified plant parameters is valid, we assumed that normal distribution is also true for the regional approach. Omitting the same outliers as described above, t-test $N \ge 8$ showed no significant differences (P > 0.05)

Table 8
Statistics of parameter values for the main land covers in temperate ecosystems of Europe and North America

	European main land cover types			North American main land cover types				
	Crops	Herbs, forbs, grasses	Coniferous trees	Deciduous trees	Crops	Herbs, forbs, grasses	Coniferous forest	Deciduous forest
Stomatal cor	nductance, g	g _s (mm s ⁻¹)						
Mean	5.7	5.4	1.8	4.2	4.5	5.4	2.2	4.2
Min	2.9	1.2	0.5	1.6	1.5	1.5	0.6	1.1
Max	10.0	12.5	4.0	8.5	10.4	12.5	4.8	11.7
Median	4.4	5.6	1.7	3.6	3.6	3.4	2.0	2.9
S.D.	2.6	2.7	0.9	1.8	3.1	4.3	1.0	3.1
N	12	40	19	28	8	8	25	32
Interception	capacity, Ic	(mm)						
Mean	2.9	1.5	1.8	1.4	1.2	1.7	2.2	1.1
Min	1.4	0.7	0.1	0.6	1.2	0.8	0.3	0.5
Max	6.0	2.4	4.7	2.7	1.2	2.8	9.1	2.0
Median	2.7	1.4	1.5	1.0	1.2	1.2	1.1	1.0
S.D.	1.3	0.9	1.2	0.9	n.d.	0.9	2.4	0.4
N	9	3	33	8	1	5	28	13
Leaf area in	dex (LAI)							
Mean	3.7	7.2	6.2	5.8	n.d.	3.1	6.5	4.7
Min	1.8	0.5	1.1	2.5	n.d.	0.4	0.6	2.6
Max	10.0	16.2	14.0	10.0	n.d.	6.8	23.5	7.4
Median	3.6	6.7	5.0	5.7	n.d.	2.8	5.3	4.3
S.D.	1.5	3.8	3.3	1.7	n.d.	2.3	5.0	1.6
N	30	55	46	39	n.d.	16	58	20

Min: minimum; Max: maximum, N: number of cited values; S.D.: standard deviation; n.d.: no details given.

Fig. 1. Comparison of mean (± 1 S.D.) plant parameter values for stomatal conductance g_s (mm s⁻¹), interception capacity I_c (mm) and leaf area index (LAI) for North American and European land cover species in temperate ecosystems. Species are divided into four main land cover crops, herbs/forbs/grasses, deciduous and coniferous trees. *t*-test was conducted if N=8 for each data set (see details in the text). * denotes statistical significant differences at P < 0.05 and n.s. denotes no statistical significant differences at P > 0.05.

between North American and European land covers for interception capacity and stomatal conductance (Fig. 1, Table 8). As far as stomatal conductance is concerned, it might be concluded, that no differences in this leaf physiological property exist between species growing on the two continents, even though climatic conditions can differ substantially. No further differences could be proven for I_c of coniferous and deciduous trees. There is an information gap, especially for I_c on low-growing plant species and crops. In contrast, values for LAI were significantly different (P < 0.05) for pasture and deciduous forest species. It is highly probable that structural differences exist for these analysed vegetation types between North America and Europe, whereas no distinction is possible for coniferous species.

5. Conclusions

A comprehensive literature review has been performed in order to collect reliable information on various plant parameters commonly used in ecological and hydrological modelling. Time consuming and unreliable or irreproducible compilation of the described parameters of temperate land covers are no longer necessary, as an extensive overview on these plant parameters is made available. This data base provides valuable information for comprehensive uncertainty analysis such as Monte Carlo simulations (e.g. Eckhardt et al., 2003) or investigations like the climate model experiment on the influence of surface parameters on model results (www.climateprediction.com).

The majority of published plant parameter values follow normal distribution. Grouping of existing data into European and North American plant species for a continental approach revealed similar parameter ranges. Overall, hardly any statistical differences between vegetation covers of North America and Europe exists for stomatal conductance and interception capacity, whereas LAI can be distinguished for pasture and deciduous forest species. A gap in the data was found for interception measurements in low-growing plants.

A combined effort should be made to obtain sufficient information and extend the current database to other climatic zones, as for example data for tropical and sub-tropical regions is comparatively difficult to find. Modelling approaches on ecological, climatological and hydrological effects of land cover changes in these regions are of particular importance, as today main land use changes take place especially in these areas.

Further information on some of the plant parameters presented can be obtained from two recently published data bases available at the Oak Ridge National Laboratory Distributed Active Archive Center (http://www.daac.ornl.gov). Scurlock et al. (2001) collected a global data set on LAI and calculated basic statistics. Their collection covered a wide geographic distribution, including desert, tundra and tropical species, but lack detailled information on stand characteristics such as mean annual precipitation/temperature, stock density, basal area or plant height. Information on vertical root profiles was presented by Schenk and Jackson (2003), but less than 10% of the soil profiles described in their database were sampled to the maximum rooting depth. Furthermore, they published additional information such as root type, soil texture or depth of organic horizon of each soil pit under investigation, data which were not available in the literature investigated in this overview. In view of the amount and quality of information contained in the ORNL-DAAC data set and in the data base presented here, both data bases complement one another.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft within the scope of the Collaborative Research Centre (Sonderforschungsbereich) 299 and FR 615/7-1. The authors thank E. Westerdale for his helpful linguistic suggestions on the paper. The comments of two anonymous reviewers helped further to clarify the text.

References

Aerts, R., de Caluwe, H., 1994. Effects of nitrogen supply on canopy structure and leaf nitrogen distribution in *Carex* species. Ecology 75, 1482–1490.

- Aichele, D., Schwegler, H.-W., 1991. Unsere Gräser. Franckh-Kosmos, Stuttgart, 244 pp.
- Anderson, M.C., Norman, J.M., Meyers, T.P., Diak, G.R., 2000.
 An analytical model for estimating canopy transpiration and carbon assimilation fluxes based on canopy light-use efficiency.
 Agric. For. Meteorol. 101, 265–289.
- Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998.
 Large area hydrologic modeling and assessment. Part I: model development. J. Am. Water Res. Assoc. 34, 73–88.
- Aston, A.R., 1979. Rainfall interception by eight small trees. J. Hydrol. 42, 383–396.
- Augé, R.M., Green, C.F., Stodola, A.J.W., Saxton, A.M., Olinick, J.B., Evans, R.M., 2000. Correlations of stomatal conductance with hydraulic and chemical factors in several deciduous tree species in natural habitat. New Phytol. 145, 483–500.
- Aussenac, G., 1968. Interception des précipitations par le couvert forestier. Ann. Sci. For. 25, 135–156.
- Bartelink, H.H., 1998. Radiation interception by forest trees: a simulation study on effects of stand density and foliage clustering on absorption and transmission. Ecol. Model. 105, 213–225.
- Begg, J.E., Bierhuizen, J.F., Lemon, E.R., Misra, D.K., Slatyer, R.O., Stern, W.R., 1964. Diurnal energy and water exchanges on bulrush millet in an area of high solar radiation. Agric. Met. 1, 294–312.
- Benecke, P., van der Ploeg, R.R., 1978. Wald und Wasser. I. Komponenten des Wasserhaushaltes von Waldökosystemen. Forstarchiv 49, 1–7.
- Betts, R.A., 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187– 190
- Beven, K.J., Calver, A., Morris, E.M., 1987. The Institute of Hydrology Distributed Model, Report 98. Institute of Hydrology, Wallingford, 33 pp.
- Binley, A.M., Beven, K.J., Calver, A., Watts, L.G., 1991. Changing responses in hydrology: assessing the uncertainty in physically based model predictions. Water Resour. Res. 27, 1253–1261.
- Bowling, L.C., Storck, P., Lettenmaier, D.P., 2000. Hydrological effects of logging in western Washington, United States. Water Resour. Res. 36, 3223–3240.
- Bréda, N., Granier, A., 1996. Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (*Quercus petrea*). Ann. Sci. For. 53, 521–536.
- Brougham, R.W., 1960. The relationship between the critical leaf area, total chlorophyll content, and maximum growth-rate of some pasture and crop plants. Ann. Bot. 24, 463–474.
- Budyko, M.I., 1974. Climate and Life. Academic Press, New York, 525 pp.
- Bunce, J.A., 1985. Effect of boundary layer conductance on the response of stomata to humidity. Plant Cell Environ. 8, 55–57.
- Bunce, J.A., 2000. Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field. Global Change Biol. 6, 371–382.
- Burba, G.G., Verma, S.B., 2001. Prairie growth, PAR albedo and seasonal distribution of energy fluxes. Agric. For. Meteorol. 107, 227–240.

- Burgy, R.H., Pomeroy, C.R., 1958. Interception losses in grassy vegetation. Trans. Am. Geophys. Union 39, 1095–1100.
- Calder, I.R., Wright, I.R., 1986. Gamma ray attenuation studies of interception from Sitka spruce: some evidence for an additional transport mechanism. Water Resour. Res. 22, 409–417.
- Calder, I.R., Hall, R.L., Rosier, P.T.W., Bastable, H.G., Prasanna, K.T., 1996. Dependence of rainfall interception on drop size:
 2. Experimental determination of the wetting functions and two-layer stochastic model parameters for five tropical tree species. J. Hydrol. 185, 379–388.
- Calvet, J.-C., Noilhanm, J., Roujean, J.-L., Bessemoulin, P., Cabelguenne, M., Olioso, A., Wigneron, J.-P., 1998. An interactive vegetation SVAT-model tested against data from six contrasting sites. Agric. For. Meteorol. 92, 73–95.
- Chason, J.W., Baldocchi, D.D., Huston, M.A., 1991. A comparison of direct and indirect methods for estimating forest canopy leaf area. Agric. For. Meteorol. 57, 107–128.
- Chen, J.M., 1996. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agric. For. Meteorol. 80, 135–163.
- Chen, J.M., Black, T.A., 1991. Measuring leaf area index of plant canopies with branch architecture. Agric. For. Meteorol. 57, 1–12
- Chen, J.M., Liu, J., Cihlar, J., Goulden, M.L., 1999. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Model. 124, 99–119.
- Chen, J.M., Rich, P.M., Gower, S.T., Norman, J.M., Plummer, S., 1997. Leaf area index of boreal forests: theory, techniques, and measurements. J. Geophys. Res. 102, 29429–29443.
- Conert, H.-J., 2000. Pareys Gräserbuch. Parey Buchverlag, Berlin, 600 pp.
- Cutini, A., Matteucci, G., Mugnozza, G.S., 1998. Estimation of leaf area index with the LI-COR LAI-2000 in deciduous forest. For. Ecol. Managem. 105, 55–65.
- Dang, Q.-L., Margolis, H.A., Coyea, M.R., Sy, M., Collatz, G.J., 1997. Regulation of branch-level gas exchange of boreal trees: roles of shoot water potential and vapor pressure difference. Trees 17, 521–535.
- Day, W., 1977. A direct reading continuous flow porometer. Agric. Met. 18, 81–89.
- Deblonde, G., Penner, M., Royer, A., 1994. Measuring leaf area index with the LI-COR LAI-2000 in pine stands. Ecology 75, 1507–1511.
- Domingo, F., Sánchez, G., Moro, M.J., Brenner, A.J., Puigdefábregas, J., 1998. Measurement and modelling of rainfall interception by three semi-arid canopies. Agric. For. Meteorol. 91, 275–292.
- Dunkerley, D., 2000. Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies. Hydrol. Proc. 14, 669–678.
- Eckhardt, K.S., Breuer, L., Frede, H.-G., 2003. Parameter uncertainty and the significance of simulated land use change effects. J. Hydrol. DOI 10.1016/S0022-1694(02)00395-5.
- Eckhardt, K.S., Haverkamp, S., Fohrer, N., Frede, H.-G., 2002. SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Phys. Chem. Earth B 27, 641– 644.

- Ellenberg, H., 1996. Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Eugen Ulmer, Stuttgart, 1096 pp.
- Engel, R.K., Moser, L.E., Stubbendieck, J., Lowry, S.R., 1987.
 Yield accumulation, leaf area index, and light interception of smooth bromegrass. Crop Sci. 27, 316–321.
- Falge, E., Graber, W., Siegwolf, R., Tenhunen, J.D., 1996. A model of the gas exchange response of *Picea abies* to habitat conditions. Trees 10, 277–287.
- Fassnacht, K.S., Gower, S.T., Norman, J.M., McMurtrie, R.E., 1994. A comparison of optical and direct methods for estimating foliage surface area index in forests. Agric. For. Meteorol. 71, 183–207.
- Federer, C.A., Gee, G.W., 1976. Diffusion resistance and xylem potential in stressed and unstressed northern hardwood trees. Ecology 57, 975–984.
- Fick, G.N., 1989. Sunflower. In: Röbbelen, G., Downey, R.K. Ashri, A. (Eds.), Oil Crops of the World. McGraw-Hill, New York, pp. 301–318.
- Finch, J.W., 1998. Estimating direct groundwater recharge using a simple water balance model—sensitivity to land surface parameters. J. Hydrol. 211, 112–125.
- Fohrer, N., Haverkamp, S., Eckhardt, K.S., Frede, H.-G., 2001. Hydrologic response to land use changes on the catchment scale. Phys. Chem. Earth B 26, 577–582.
- Franks, S.W., Beven, K.J., 1997. Baeysian estimation of uncertainty in land surface-atmosphere flux predictions. J. Geophys. Res. 102, 23991–23999.
- Fritschen, L.J., 1967. Net and solar radiation relations over irrigated field crops. Agric. Met. 4, 55–62.
- Gash, J.H.C., Morton, A.J., 1978. An application of the Rutter model to the estimation of the interception loss from the Thetford forest. J. Hydrol. 38, 49–58.
- Gash, J.H.C., Wright, I.R., Lloyd, C.R., 1980. Comparative estimates of interception loss from three coniferous forests in Great Britain. J. Hydrol. 48, 89–105.
- Gates, D.M., 1980. Biophysical Ecology. Springer, New York, 611 pp.
- Geyger, E., 1964. Methodische Untersuchungen zur Erfassung der assimilierenden Gesamtoberflächen von Wiesen. Ber. Geobot. Instit. Eidgenöss. Tech. Hochsch. Stift. Rübel 35, 41–112.
- Geyger, E., 1977. Leaf area and productivity in grasslands. In: Krause, W. (Ed.), Handbook of Vegetation Science. Part XIII. Application of Vegetation Science to Grassland Husbandry. Junk, The Hague, pp. 499–520.
- Gholz, H.L., 1982. Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest. Ecology 63, 469–481.
- Gower, S.T., Norman, J.M., 1991. Rapid estimation of leaf area index in conifer and broad-leaf plantations. Ecology 72, 1896– 1900.
- Grah, R.F., Wilson, C.C., 1944. Some components of rainfall interception. J. For. 42, 890–898.
- Granier, A., Biron, P., Bréda, N., Pontailler, J.-Y., Saugier, B., 1996.
 Transpiration of trees and forest stands: short and long-term monitoring using sapflow methods. Glob. Chang. Biol. 2, 265–274.

- Granier, A., Bobay, V., Gash, J.H.C., Gelpe, J., Saugier, B., Shuttleworth, W.J., 1990. Vapour flux density and transpiration rate comparisons in a stand of Maritime pine (*Pinus pinaster* Ait.) in Les Landes forest. Agric. For. Meteorol. 51, 309–319.
- Grant, I.F., Prata, A.J., Cechet, R.P., 2000. The impact of the diurnal variation of albedo on the remote sensing of the daily mean albedo of grassland. J. Appl. Met. 39, 231–244.
- Gregory, P.J., 1988. Growth and functioning of plant roots. In: Wild, A. (Ed.), Russell's Soil Conditions and Plant Growth. Longman Scientifical & Technical, Essex, pp. 113–167.
- Gresham, C.A., Sinclair, T.R., Wuenscher, J.E., 1975. A ventilated diffusion porometer for measurement of the stomatal resistance of pine fascicles. Photosynthetica 9, 72–77.
- Grulois, J., 1968. A variation annuelle du coefficient d'albédo des surfaces supérieures du peuplement. Bull. Soc. R. Bot. Belgique 101, 141–153.
- Hallgren, W.S., Pitman, J., 2000. The uncertainty in simulations by a Global Biome Model (BIOME3) to alternative parameter values. Glob. Chang. Biol. 6, 483–495.
- Hamilton, E.L., Rowe, P.B., 1949. Rainfall interception by Chaparral in California, California Forest and Range Experiment Station, U.S. Forest Service, 43 pp.
- Hancock, N.H., Crowther, J.M., 1979. A technique for the direct measurement of water storage on a forest canopy. J. Hydrol. 41, 105–122.
- Holmgren, P., Jarvis, P.G., Jarvis, M.S., 1965. Resistances to carbon dioxide and water vapour transfer in leaves of different plant species. Physiol. Plant. 18, 526–557.
- Horton, R.E., 1919. Rainfall interception. Mon. Weather Rev. 47, 603–623.
- Hoyningen-Huene, J.F., 1983. Die Interzeption des Niederschlags in landwirtschaftlichen Pflanzenbeständen. DVWK Schriften 57, 3–53
- Hubbard, R.M., Ryan, M.G., Stiller, V., Sperry, J.S., 2001. Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environ. 24, 113–121.
- Impens, I., Lemeur, R., 1969. The radiation balance of several field crops. Arch. Met. Geophy. Biokl. B 17, 261–268.
- Iqbal, M., 1983. An Introduction to Solar Radiation. Academic Press, Toronto, 390 pp.
- Jacobs, A.F.G., Van Pul, W.A.J., 1990. Seasonal changes in the albedo of a maize crop during two seasons. Agric. For. Meteorol. 49, 351–360.
- Jarvis, P.G., Leverenz, J.W., 1983. Productivity of temperate, deciduous and evergreen forests. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (Eds.), Physiological Plant Ecology IV. Ecosystem Processes: Mineral Cycling, Productivity and Man's Influence. Springer, Berlin, pp. 234–280.
- Jarvis, P.G., James, G.B., Landsberg, J.J., 1976. Coniferous forest.
 In: Monteith, J.L. (Ed.), Vegetation and the Atmosphere, vol.
 2: Case Studies. Academic Press, London, pp. 171–240.
- Johnson, W.M., 1942. The interception of rain and snow by young ponderosa-pine. Trans. Am. Geophys. Union. 23, 566–569.
- Jones, H.G., 1977. Transpiration in barley lines with differing stomatal frequencies. J. Exp. Bot. 28, 162–168.
- Joss, U., Graber, W.K., 1996. Profiles and simulated exchange of H₂O, O₃, NO₂ between the atmosphere and the Hartheim Scots pine plantation. Theor. Appl. Clim. 53, 157–172.

- Kanemasu, E.T., Thurtell, G.W., Tanner, C.B., 1969. Design, calibration and field use of a stomatal diffusion porometer. Plant Physiol. 44, 881–885.
- Kercher, J.R., Chambers, J.Q., 2001. Parameter estimation for a global model of terrestrial biogeochemical cycling by an interactive method. Ecol. Model. 139, 137–175.
- Kittredge, J., 1953. Influences of forests on snow in the Ponderosa-sugar pine-fir zone of the Central Sierra Nevada. Hilgardia 22, 1–96.
- Klaassen, W., Bosveld, F., de Water, E., 1998. Water storage and evaporation as constituents of rainfall interception. J. Hydrol. 212/213, 36–50.
- Klaassen, W., Lankreijer, H.J.M., Veen, A.W.L., 1996. Rainfall interception near a forest edge. J. Hydrol. 185, 349–361.
- Knorr, W., Heimann, M., 2001. Uncertainties in global terrestrial biosphere modeling, Part II: global constraints for a process-based vegetation model. Global Biogeochem. Cyc. 15, 227–246.
- Kondratyev, K.Y., 1969. Radiation in the Atmosphere. Academic Press, New York, 912 pp.
- Kondratyev, K.Y., 1972. Radiation Processes in the Atmosphere. World Meteorological Organization, Geneva, 214 pp.
- Könnecke, C., 1967. Fruchtfolgen. VEB Dt. Landwirtschaftsverlag, Berlin, 334 pp.
- Körner, C., Cochrane, P.M., 1985. Stomatal responses and water relations of *Eucalyptus pauciflora* in summer along an elevational gradient. Oecologia 66, 443–455.
- Körner, C., Scheel, J.A., Bauer, H., 1979. Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13, 45–82.
- Köstler, J.N., Brückner, E., Bibelriether, H., 1968. Die Wurzeln der Waldbäume. Paul Parey, Hamburg, 284 pp.
- Kucharik, C.J., Norman, J.M., Gower, S.T., 1998. Measurements of branch area and adjusting leaf area index indirect measurements. Agric. For. Meteorol. 91, 69–88.
- Kutschera, L., 1960. Wurzelatlas mitteleuropäischer Ackerunkräuter und Kulturpflanzen. DLG, Frankfurt, 574 pp.
- Lankreijer, H.J.M., Hendriks, M.J., Klaassen, W., 1993. A comparison of models simulation rainfall interception of forests. Agric. For. Meteorol. 64, 187–199.
- Law, B.E., van Tuyl, S., Cescatti, A., Balocchi, D.D., 2001. Estimation of leaf area index in open-canopy ponderosa pine forests at different successional stages and management regimes in Oregon. Agric. For. Meteorol. 108, 1–14.
- Le Dantec, V., Dufrêne, E., Saugier, B., 2000. Interannual and spatial variation in maximum leaf area index of temperate deciduous stands. For. Ecol. Manage. 134, 71–81.
- Leuschner, C., 1986. Niederschlags-Interzeption aus ökologischer Sicht: Mikrometeorologische und physiologische Untersuchungen in krautigen Pflanzenbeständen. Ber. Forschzent. Waldökosyst. 23, 1–220.
- Leyton, L., Reynolds, E.R.C., Thompson, F.B., 1967. Rainfall interception in forest and moorland. In: Sopper, W.E., Lull, H.W. (Eds.), Forest Hydrology. Pergamon, Oxford, pp. 163–178.
- Liang, X., Lettenmaier, D.P., Wood, E.F., Burgess, S.J., 1994. A simple hydrologically based model of land surface, water, and energy fluxes for general circulation models. J. Geophys. Res. 99, 14415–14428.

- Liu, S., 1998. Estimation of rainfall storage capacity in the canopies of cypress wetlands and slash pine uplands on North-Central Florida. J. Hydrol. 207, 32–41.
- Llorens, P., Gallart, F., 2000. A simplified method for forest water storage capacity measurement. J. Hydrol. 240, 131–144.
- Lodge, R.J., Dijkstra, P., Drake, B.G., Morison, J.I.L., 2001. Stomatal acclimation to increased CO₂ concentration in a Florida scrub oak species *Quercus myrtifolia* Willd. Plant Cell Environ. 24, 77–88.
- López-Serrano, F.R., Landete-Castillejos, T., Martínez-Millán, J., del Cerro-Barja, A., 2000. LAI estimation of natural pine forest using a non-standard sampling technique. Agric. For. Meteorol. 101, 95–101.
- Loustau, D., Berbigier, P., Roumagnac, P., Arruda-Pacheco, C., David, J.S., Ferreira, M.I., Pereira, J.S., Tavares, R., 1996. Transpiration of a 64-year-old maritime pine stand in Portugal. Oecologia 107, 33–42.
- Lu, P., Biron, P., Bréda, N., Granier, A., 1995. Water relations of adult Norway spruce (*Picea abies* (L) Karst) under soil drought in the Vosges mountains: water potential, stomatal conductance and transpiration. Ann. Sci. For. 52, 117–129.
- Martin, T.A., Brown, K.J., Cermák, J., Ceulemans, R., Kucera, J., Meinzer, F.C., Rombold, J.S., Sprugel, D.G., Hinckley, T.M., 1997. Crown conductance and tree and stand transpiration in a second-growth *Abies amabilis* forest. Can. J. For. Res. 27, 797–808.
- Matheussen, B., Kirschbaum, R.L., Goodman, I.A., O'Donnell, G.M., Lettenmaier, D.P., 2000. Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada). Hydrol. Proc. 14, 867–885.
- Mitchell, R.B., Moser, L.E., Moore, K.J., Redfearn, D.D., 1998.Tiller demographics and leaf area index of four perennial pasture grasses. Agronomic J. 90, 47–53.
- Mitscherlich, G., 1970. Wald, Wachstum und Umwelt. Bd 2: Waldklima und Wasserhaushalt. J.D. Sauerländer's, Frankfurt, 365 pp.
- Mitscherlich, G., Moll, W., 1970. Untersuchungen über die Niederschlags- und Bodenfeuchtigkeitsverhältnisse in einigen Nadel- und Laubholzbestände in der Nähe von Freiburg/Br. Allg. Forst Jagd Ztg. 3, 49–60.
- Monk, C.D., Child, G.I., Nicholson, S.A., 1970. Biomass, litter and leaf surface area estimates of an oak-hickory forest. Oikos 21, 138–141.
- Monteith, J.L., Szeicz, G., 1961. The radiation balance of bare soil and vegetation. Quart. J. R. Met. Soc. 87, 159–170.
- Monteith, J.L., Unsworth, M.H., 1990. Principles of Environmental Physics. Edward Arnold, London, 291 pp.
- Morrow, N., Friedl, M.A., 1998. Modeling biophysical controls on land surface temperature and reflectance in grasslands. Agric. For. Meteorol. 92, 147–161.
- Niederhof, C.H., Wilm, H.G., 1943. Effects of cutting mature lodgepole-pine stands on rainfall interception. J. Forestry 41, 57–61.
- Niklaus, P.A., Spinnler, D., Körner, C., 1998. Soil moisture dynamics of calcareous grassland under elevated CO₂. Oecologia 117, 201–208.
- Nilson, T., Anniste, J., Lang, M., Praks, J., 1999. Determination of needle area indices of coniferous forest canopies in the

- NOPEX region by ground-based optical measurements and satellite images. Agric. For. Meteorol. 98/99, 449–462.
- Olson, B.E., Wallander, R.T., Beaver, J.M., 2000. Comparing nondestructive measures of forage structure and phytomass. Can. J. Plant Sci. 80, 565–573.
- Oren, R., Sperry, J.S., Ewers, B.E., Pataki, D.E., Phillips, N., Megonigal, J.P., 2001. Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded *Taxodium* distichum L. forest: hydraulic and non-hydraulic effects. Oecologia 126, 21–29.
- Oren, R., Sperry, J.S., Katul, G.G., Pataki, D.E., Ewers, B.E., Phillips, N., Schäfer, K.V.R., 1999. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22, 1515–1526.
- Oren, R., Zimmermann, R., 1989. CO₂ assimilation and the carbon balance of healthy and declining Norway spruce stands. In: Schulze, E.-D., Lange, O.L., Oren, R. (Eds.), Forest Decline and Air Pollution. A Study of Spruce (*Picea abies*) on Acid Soils. Springer, Berlin, pp. 352–369.
- Oszlányi, J., 1995. Dynamics of leaf area index in an adult floodplain forest ecosystem during one vegetation period. Ekologia (CSSR) 14, 14 35–41.
- Ovington, J.D., 1957. Dry-matter production by *Pinus sylvestris* L. Ann. Bot. 21, 287–314.
- Pataki, D.E., Oren, R., Smith, W.K., 2000. Sap flux of co-occurring species in a western subalpine forest during seasonal soil drought. Ecology 81, 2557–2566.
- Pereira, J.S., Kozlowski, T.T., 1977. Influence of light intensity, temperature and leaf area on stomatal aperture and water potential of woody plants. Can. J. For. Res. 7, 145–153.
- Perttu, K., Bischof, W., Grip, H., Jansson, P.-E., Lindroth, A., Norén, B., 1980. Micrometeorology and hydrology of pine forest ecosystems. I. Field studies. In: Persson, T. (Ed.), Structure and Function of Northern Coniferous Forests—An Ecosystem Study. Stockholm, pp. 75–121.
- Phillips, N., Oren, R., Zimmermann, R., 1996. Radial patterns of xylem sap flow in non-, diffuse- and ring-porous tree species. Plant Cell Environ. 19, 983–990.
- Polunin, O., 1971. Pflanzen Europas. BLV, München, 554 pp.
- Prskawetz, M., Lexer, M.J., 2000. Application of the LI-COR LAI-2000 for measuring leaf area index in young beech stands. Allg. Forst Jagd Ztg. 171, 185–191.
- Raspe, S., Haug, I., 1998. Wurzelverteilung und Mykorrhizadynamik in Abhängigkeit vom Nährelementangebot im Boden. In: Raspe, S., Feger, K.H., Zöttl, H.W. (Eds.), Ökosystemforschung im Schwarzwald, ecomed, Landsberg, pp. 223–238.
- Rastin, N., Mintenig, H., 1992. Quantitative determination of Norway spruce root systems on different sites. In: Kutschera, L., Hübl, E., Lichtenegger, E., Persson, H., Sobotik, M. (Eds.), Root Ecology and Its Practical Application, 3. ISRR Symposium Wien, Univ. Bodenkultur, 1991, Verein für Wurzelforschung. Klagenfurt, pp. 521–523.
- Rauner, J.L., 1976. Deciduous forest. In: Monteith, J.L. (Ed.), Vegetation and the Atmosphere, vol. 2: Case Studies. Academic Press, London, pp. 241–264.
- Reynolds, E.R.C., Henderson, C.S., 1967. Rainfall interception by beech, larch and Norway spruce. Forestry 40, 165–184.

- Ripley, E.A., Redmann, R.E., 1976. Grassland. In: Monteith, J.L. (Ed.), Vegetation and the Atmosphere, vol. 2: Case Studies. Academic Press, London, pp. 349–398.
- Roberts, J., 2000. The influence of physical and physiological characteristics of vegetation on their hydrological response. Hydrol. Proc. 14, 2885–2901.
- Ross, J., Ross, V., 1998. Statistical description of the architecture of a fast growing willow coppice. Agric. For. Meteorol. 91, 23–37
- Ross, J., Ross, V., Koppel, A., 2000. Estimation of leaf area and its vertical distribution during growth period. Agric. For. Meteorol. 101, 237–246.
- Rosset, M., Riedo, M., Grub, A., Geissmann, M., Fuhrer, J., 1997. Seasonal variation in radiation and energy balances of permanent pastures at different altitudes. Agric. For. Meteorol. 86, 245–258.
- Rothmaler, W., 1990. Exkursionsflora von Deutschland. Bd 2: Gefäßpflanzen. Volk und Wissen, Berlin, 640 pp.
- Rowe, P.B., 1955. Effects of the forest floor on disposition of rainfall in pine stands. J. For. 53, 342–355.
- Rowe, P.B., Hendrix, T.W., 1951. Interception of rain and snow by second-growth ponderosa pine. Trans. Am. Geophys. Union. 32, 903–908.
- Rutter, A.J., 1968. Water consumption by forests. In: Koslowski, T.T. (Ed.), Water Deficits and Plant Growth, vol. II. Academic Press, London, pp. 23–84.
- Rutter, A.J., Morton, A.J., Robins, P.C., 1975. A predictive model of rainfall interception in forests. III. Generalization of the model and comparison with observations in some coniferous and hardwood stands. J. Appl. Ecol. 12, 367–380.
- Sakai, R.K., Fitzjarrald, D.R., Moore, K.E., 1997. Detecting leaf area and surface resistance during transition seasons. Agric. For. Meteorol. 84, 273–284.
- Sandford, A.P., Jarvis, P.G., 1986. Stomatal responses to humidity in selected conifers. Tree Physiol. 2, 89–103.
- Saugier, B., 1976. Sunflower. In: Monteith, J.L. (Ed.), Vegetation and the Atmosphere. vol. 2: Case Studies. Academic Press, London, pp. 87–120.
- Schenk, H.J., Jackson R.B., 2003. Global Distribution of Root Profiles in Terrestrial Ecosystems. Data set. Available on-line (http://www.daac.ornl.gov) from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.
- Schmid, H.P., Grimmond, C.S.B., Cropley, F., Offerle, B., Su, H.-B., 2000. Measurements of CO₂ and energy fluxes over a mixed hardwood forest in the mid-western United States. Agric. For. Meteorol. 103, 357–374.
- Schmidt-Vogt, H., 1987. Die Fichte. Bd I. Paul Parey, Hamburg, 647 pp.
- Schrödter, H., 1985. Verdunstung. Springer, Berlin, 186 pp.
- Schurr, U., Gollan, T., Schulze, E.-D., 1992. Stomatal response to drying soil in relation to changes in the xylem sap composition of *Helianthus annuus*. II Stomatal sensitivity to abscisic acid imported from the xylem sap. Plant Cell Environ. 15, 561–567.
- Scurlock, J.M.O., Asner G.P., Gower S.T., 2001. Global leaf area index from field measurements, 1932–2000. Data set. Available on-line (http://www.daac.ornl.gov) from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.

- Sitte, P., Ziegler, H., Ehrendorfer, F., Bresinsky, A., 1999. Lehrbuch der Botanik. Spektrum Akademischer Verlag, Heidelberg, 1007 pp.
- Song, J., 1998. Diurnal asymmetry in surface albedo. Agric. For. Meteorol. 92, 181–189.
- Stednick, J.D., 1996. Monitoring the effects of timber harvest on annual water yield. J. Hydrol. 176, 79–95.
- Stickan, W., Schulte, M., Kakubari, Y., Niedersteadt, F., Schenk, J., Runge, M., 1983. Ökophysiologische und biometrische Untersuchungen in einem Buchenbestand (*Fagus sylvatica* L.) des Sollings als Beitrag zur Waldschadensforschung. Ber. Forschzent. Waldökosyst 18, 1–82.
- Takagi, K., Tsuboya, T., Takahashi, H., 1998. Diurnal hysteresis of stomatal and bulk surface conductances in relation to vapor pressure deficit in a cool-temperate wetland. Agric. For. Meteorol. 91, 177–191.
- Teklehaimnot, Z., Jarvis, P.G., 1991. Direct measurement of evaporation of intercepted water from forest canopies. J. Appl. Ecol. 28, 603–618.
- Thompson, F.B., 1972. Rainfall interception by oak coppice (*Quercus robur*, L.). In: Taylor, A. (Ed.), Research Papers in Forest Meteorology. Cambrian News Ltd., Aberystwyth, pp. 59–74.
- Trimble Jr., G.R., Weitzman, S., 1954. Effects of hardwood forest canopy on rainfall interception. Trans. Am. Geophys. Union. 35, 226–234.
- Vareschi, V., 1951. Zur Frage der Oberflächenentwicklung von Pflanzengesellschaften der Alpen und Subtropen. Planta 40, 1– 35
- Veihe, A., Quinton, J., 2000. Sensitivity analysis of EUROSEM using Monte Carlo simulation I: hydrological, soil and vegetation parameters. Hydrol. Proc. 14, 915–926.
- Wedler, M., Heindl, B., Hahn, S., Köstner, B., Bernhofer, C., Tenhunen, J.D., 1996. Model-based estimate of water loss from "patches" of the understory mosaic of the Hartheim Scots pine plantation. Theor. Appl. Clim. 53, 135–144.
- Whittaker, R.H., 1962. Net production relations of shrubs in the Great Smoky Mountains. Ecology 43, 357–377.
- Whittaker, R.H., 1966. Forest dimensions and production in the Great Smoky Mountains. Ecology 47, 103–121.
- Whittaker, R.H., Marks, P.L., 1975. Methods of assessing terrestrial productivity. In: Lieth, H., Whittaker, R.H. (Eds.), Primary Productivity of the Biosphere. Springer, Berlin, pp. 55–118
- Whittaker, R.H., Niering, W.A., 1975. Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology 56, 771–790.
- Wohlfahrt, G., Sapinsky, S., Tappeiner, U., Cernusca, A., 2001. Estimation of plant area index of grasslands from measurements of canopy radiation profiles. Agric. For. Meteorol. 109, 1–12.
- Yin, X., 1998. The albedo of vegetated land surfaces: system analysis and mathematical modeling. Theor. Appl. Climatol. 60, 121–140.
- Zimmermann, R., Oren, R., Schulze, E.-D., Werk, K.S., 1988.Performance of two *Picea abies* (L.) Karst. stands at different stages of decline. Oecologia 76, 513–518.
- Zinke, P.J., 1967. Forest interception studies in the United States. In: Sopper, W.E., Lull, H.W. (Eds.), Forest Hydrology. Pergamon, Oxford, pp. 137–161.