Mathematics: analysis and approaches	
Higher Level	Name
Paper 1	
Date:	
2 hours	

Instructions to candidates

- Write your name in the box above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your name on each answer sheet and attach them to this examination paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the mathematics: analysis and approaches formula booklet is required for this paper.
- The maximum mark for this examination paper is [110 marks].

exam: 13 pages

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer all questions in the boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 5]

Let A and B be events such that $P(A \cap B) = \frac{1}{5}$, $P(B|A) = \frac{1}{2}$ and $P(A|B) = \frac{3}{10}$. Find $P(A \cup B)$.

2. [Maximum mark: 4]

Use a proof by contradiction to prove that there are no positive integers a and b such that $a^2-b^2=2$.

3. [Maximum mark: 5]

Let $g'(x) = \frac{(\ln x)^2}{x}$. Given that g(1) = 2, find g(x).

4. [Maximum mark: 5]

The following diagram shows the graph of $y = f(x), -2 \le x \le 2$. The graph has a horizontal tangent at the points (-1,3) and (1,1).

On the set of axes below, sketch the graph of y = f(2x-4), clearly indicating the coordinates of any local maxima or minima.

5. [Maximum mark: 7]

Consider the function $h(x) = \frac{2x+3}{x-4}$, $x \neq 4$.

- (a) Find an expression for the inverse function $h^{-1}(x)$. [4]
- (b) There is a function k such that $(h^{-1} \circ k)(x) = \frac{4x+8}{x-9}$, $x \neq 9$. Show that $k(x) = \frac{x-1}{4}$. [3]

٠	 	 		 • • • •		 			• • • •			 	• • • •	• • • • •	 	 • • • •		• • • • •	•
	 	 		 • • • •	• • • • •	 		• • • • •		• • • •		 		• • • • •	 	 	• • • • •		•
*	 	 	• • • •	 • • • •	• • • • •	 		• • • • •	• • • •	• • • •	• • • •	 	• • • •	• • • • •	 	 			•
	 	 	• • • •	 • • • •	• • • • •	 	• • • •	• • • •	• • • •	• • • •		 	• • • •	• • • • •	 • • • •	 • • • •	• • • • •		•
٠	 	 		 • • • •	• • • • •	 			• • • •	• • • •		 	• • • •	• • • • •	 • • • •	 • • • •	• • • •		
	 	 		 	• • • • •	 		• • • • •		• • • •		 	• • • •	• • • • •	 • • • •	 	• • • • •		•
	 	 	• • • •	 • • • •	• • • •	 	• • • •	• • • •	• • • •	• • • •		 	• • • •	• • • •	 • • • •	 • • • •	• • • • •		•
	 	 	• • • •	 • • • •	• • • • •	 		• • • • •	• • • •	• • • •		 	• • • •	• • • • •	 • • • •	 • • • •			
	 	 	• • • •	 • • • •	• • • • •	 	• • • •	• • • • •	• • • •	• • • •		 		• • • • •	 • • • •	 • • • •			
*	 	 		 	• • • • •	 				• • • •		 	• • • •	• • • • •	 • • • •	 	• • • • •		
	 	 		 • • • •	• • • • •	 		• • • • •	• • • •	• • • •		 	• • • •	• • • • •	 • • • •	 			

6. [Maximum mark: 8]

Solve for *x* in each equation.

(a)
$$\ln x + \ln (x-2) - \ln (x+4) = 0$$
 [4]

(b)
$$\log_3(4x^2 - 5x - 6) = 1 + 2\log_3 x$$
 [4]

• • • • • • • • • • • • •
 •

7. [Maximum mark: 7]

A continuous random variable X has the probability density function f given by

$$f(x) = \begin{cases} a \sin\left(\frac{\pi x}{2}\right), & 0 \le x \le 2\\ 0, & \text{otherwise} \end{cases}$$

- (a) Show that $a = \frac{\pi}{4}$. [3]
- (b) Given that $P(0 \le X \le q) = 0.25$, find the value of q. [4]

8. [Maximum mark: 6]

The angle between unit vectors \mathbf{v} and \mathbf{w} is 60° . Calculate $\left|3\mathbf{v}+4\mathbf{w}\right|$.

9. [Maximum mark: 8]

Consider the function $f(x) = \frac{2x^2 + x - 3}{x + 2}$. A portion of the graph of f is shown below.

- (a) Given that f can be expressed in the form $ax + b + \frac{c}{x+2}$, find the value of a, the value of b and the value of c. [4]
- (b) The graph of f has two asymptotes. One of the asymptotes is the vertical line x = -2. Write down the equation of the other asymptote. [1]
- (c) Show that the area of the region bounded by the graph of f and the x-axis is $\left| 3 \ln 6 \frac{35}{4} \right|$. [3]

(This question continues on the following page)

(Question 9 continued)

Do not write solutions on this page.

Section B

Answer **all** the questions on the answer sheets provided. Please start each question on a new page.

10. [Maximum mark: 17]

Consider the complex number $z = \cos \theta + i \sin \theta$.

(a) Prove, using mathematical induction, that for a positive integer n,

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$
 where $i^2 = -1$ [5]

(b) Using De Moivre's theorem show that
$$z^n + \frac{1}{z^n} = 2\cos n\theta$$
. [3]

(c) By expanding
$$\left(z + \frac{1}{z}\right)^4$$
 show that $\cos^4 \theta = \frac{1}{8} \left(\cos 4\theta + 4\cos 2\theta + 3\right)$. [4]

- (d) Let $h(c) = \int_0^c \cos^4 \theta \, d\theta$ where $0 < c < \pi$.
 - (i) Find h(c).

(ii) Solve
$$h(c) = \frac{3}{8}c$$
. [5]

11. [Maximum mark: 16]

(a) The plane
$$\Pi_1$$
 has equation $\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 1 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -3 \\ -9 \end{pmatrix}$.

The plane Π_2 has equation $\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- (i) For points which lie in both Π_1 and Π_2 , show that $\lambda = \mu$.
- (ii) Hence, find a vector equation of the line of intersection of Π_1 and Π_2 . [7]
- (b) The plane Π_3 contains the line $\frac{2-x}{3} = \frac{y}{-4} = z+1$ and is perpendicular to 3i-2j+k. Find the cartesian equation of Π_3 .
- (c) Find the intersection of Π_1, Π_2 and Π_3 . [4]

Do **not** write solutions on this page.

12. [Maximum mark: 22]

Consider the differential equation $\frac{dy}{dx} = \frac{y^2}{1+x}$, where x > -1 and y = 1 when x = 0.

- (a) Use Euler's method, with a step length of 0.5, to find an approximate value of y when x = 1. [7]
- (b) (i) Show that $\frac{d^2y}{dx^2} = \frac{2y^3 y^2}{(1+x)^2}$.
 - (ii) Hence, find the Maclaurin series for y, up to and including the term in x^2 . [8]
- (c) (i) Solve the differential equation.
 - (ii) Given that $\lim_{x\to a} y = \pm \infty$ find the value of a. [7]