Algorithm Design and Analysis

วิชาบังคับก่อน: 204251 หรือ 204252; และ 206183 หรือ 206281

ผู้สอน: ตอน 1 ผศ. เบญจมาศ ปัญญางาม

ตอน 2 ผศ. ดร. จักริน ชวชาติ

วันสอบปลายภาค : วันพฤหัสบดี ที่ 26 ต.ค. 66

เวลา 12:00 - 15:00 น. (ตามประกาศมหาวิทยาลัย)

บทที่ 12

ออโตมาตา (Automata)

Part III

Nondeterministic Finite Automaton N₁

- ลูกศรออกจาก state มี symbol ซ้ำ (เช่นมี 1 ออกสองอันใน q₁)
- \square symbol หาย (เช่น q_2 ถ้ารับ 1 มาไปไหนไม่รู้)
- lacksquare \mathfrak{I} empty string $oldsymbol{\mathcal{E}}$

ถ้าถึงจุดต้องเลือก ไม่รู้จะเดาทางไหน เช่นไป q_1 หรือ q_2 ดี ทำอย่างไรดี (ลองดู simulation)

Deterministic and Nondeterministic Finite Automata

ก่อนหน้านี้เราพิจารณา finite automata ที่ state ถัดไปนั้นถูกตัดสินจาก input alphabet และ current state

การคำนวณซึ่งแต่ละขั้นถูกกำหนดอย่างแน่นอนจะถูกเรียกว่า deterministic computation

นั่นคือ ใน nondeterministic computation นั้น แต่ละขั้นอาจจะมีหลาย ทางเลือก

ดังนั้นเราจะเรียกให้ต่างกันไปเลยคือ deterministic finite automata(DFA) และ nondeterministic finite automata(NFA)

แต่ละจุดที่มีทางเลือกไปยังขั้นต่อไปหลายทาง machine จะแบ่งตัวมันเอง ออกเป็นหลายๆ copy แล้วแยกกันไป<mark>ทุก</mark>ทางที่เป็นไปได้พร้อมๆกัน ถ้ามีหลายทางเลือก ให้แบ่งตัวไปทำงาน

 ตัวที่แบ่งจะทำงานต่อไปเรื่อยๆ และจะตายถ้าไม่สามารถเดินต่อไป ตาม input ที่ได้รับได้

• จะ accept string เมื่อไร
เมื่อ input หมดแล้วถ้ามีตัวที่แบ่ง<u>สักตัวหนึ่ง</u>(any) ที่อยู่ใน accept state เราจะ accept input นั้น

N₁ เมื่อรับ input 010110

Definition

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

Q is a finite set of states

 Σ is a finite alphabet

 $\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$ is the transition function

 $q_0 \in Q$ is the start state

 $F \subseteq Q$ is the set of accept states

$$N_1$$
 is $(Q, \Sigma, \delta, q_0, F)$ where

$$Q = \{q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{0,1\}$$

 δ :

 q_1 is the start state

$$F = \{q_4\}$$

	0	1	ε
q_1	$\{q_1\}$	$\{q_1, q_2\}$	Ø
q_2	{q ₃ }	Ø	{q ₃ }
q_3	Ø	$\{q_{4}\}$	Ø
q_4	$\{q_{4}\}$	$\{q_4\}$	Ø

NFA มีพลังมากกว่า DFA?

ด้วยพลังของ nondeterminism (ความไม่แน่นอน) ทำให้ดูเหมือนว่า NFAs มีพลัง มากกว่า เหมือนว่ามันเดาได้

แต่ความเป็นจริงแล้ว DFAs และ NFAs นั้น recognize ภาษา class เดียวกัน

เราจะบอกว่า 2 machine นั้น equivalent กันถ้าพวกมัน recognize ภาษาเดียวกัน

ในการพิสูจน์ว่า equivalence

พิสูจน์ 2 ทาง

ทางแรก กำหนด DFA มาให้แล้วสร้าง NFA ที่ recognize ภาษาเดียวกัน ทางนี้ง่าย DFA เป็น NFA อยู่แล้ว (ทำไม)

ทางที่สอง กำหนด NFA มาให้แล้วสร้าง DFA ที่ recognize ภาษาเดียวกัน ทางนี้ไม่ง่าย

Theorem

Every nondeterministic finite automaton has an equivalent deterministic finite automaton

□ NFA นี้ รับอะไร

- รับ 1 ในตำแหน่งที่ 3 จากท้าย
- 🗆 เราจะจำลองมัน

12

รับ 1 มาเกิดอะไรขึ้น

10011

รับ 0

รับ 0

13

10011

รับ 1

รับ 1

- เราจะต้องจำว่า input แต่ละอันสถานะก่อนอยู่ที่ไหนบ้าง
- uอกจากนี้มันอาจจะเป็นไปได้ว่าบาง state อาจจะมี copy มารวมกันก็รวมกันเป็น copy เดียว

$$q_{1},q_{2},q_{3}$$

□ หากมี *E* จะจัดการอย่างไร

เนื่องจากเมื่อมี E อยู่บนลูกศร N จะสามารถย้ายได้อย่างอิสระไปตามลูกศรโดยที่ไม่ ต้องรับ input

ตกลงกันก่อนว่า เดินแล้วค่อย copy ตัวเอง

- เนื่องจาก NFA-DFA equivalence ทำให้เรา ไม่ต้องสร้าง deterministic finite automata สำหรับแสดงว่า regular operations (concatenation union star)
 มีคุณสมบัติปิด เราก็สร้าง nondeterministic finite automata แทน
- 💶 ถ้าเจอ Union ทำอย่างไร

concatenation

🗆 ถ้าเจอ concatenation ทำอย่างไร

star

23

ถ้าเจอ star ทำอย่างไร

Assignment#10 ส่วนที่ 1

จากนิยาม Finite Automaton, FM1 ที่กำหนดให้ จงวาด state diagram of machine FM1

- $Q=\{A,B,C,D\}$
- $\Sigma = \{0,1\}$
- lue is described as:

	0	1	3
Α	{C}	Ø	{B}
В	Ø	{C}	Ø
C	{D}	{D}	Ø
D	{D}	{D}	Ø

- $q_0 = A$
- ☐ F={D}

Assignment#10 ส่วนที่ 2

กำหนดให้ $\Sigma = \{0, 1\}$

- lacksquare จงหา FA $m{M_1}$ ที่ recognize $m{01}^+$
- lacksquare จงหา FA $oldsymbol{M_2}$ ที่ recognize $(1oldsymbol{0})^*$
- lacksquare จงหา FA $m{M_3}$ ที่ recognize ($m{01}^+$) $m{U}$ ($m{10}$)*