```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import datetime as dt
    import calendar
    import plotly.graph_objects as go
    import warnings
    warnings.filterwarnings("ignore")
    import plotly.express as px

%matplotlib inline
```

Out[2]:

	Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Region.1	Iongitude	latitude
0	Andhra Pradesh	31-01- 2020	M	5.48	16635535	41.02	South	15.9129	79.740
1	Andhra Pradesh	29-02- 2020	M	5.83	16545652	40.90	South	15.9129	79.740
2	Andhra Pradesh	31-03- 2020	M	5.79	15881197	39.18	South	15.9129	79.740
3	Andhra Pradesh	30-04- 2020	M	20.51	11336911	33.10	South	15.9129	79.740
4	Andhra Pradesh	31-05- 2020	M	17.43	12988845	36.46	South	15.9129	79.740
262	West Bengal	30-06- 2020	M	7.29	30726310	40.39	East	22.9868	87.855
263	West Bengal	31-07- 2020	М	6.83	35372506	46.17	East	22.9868	87.855
264	West Bengal	31-08- 2020	М	14.87	33298644	47.48	East	22.9868	87.855
265	West Bengal	30-09- 2020	М	9.35	35707239	47.73	East	22.9868	87.855
266	West Bengal	31-10- 2020	М	9.98	33962549	45.63	East	22.9868	87.855

267 rows × 9 columns

In [3]: data.head()

Out[3]:

	Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Region.1	longitude	latitude
0	Andhra Pradesh	31-01- 2020	М	5.48	16635535	41.02	South	15.9129	79.74
1	Andhra Pradesh	29-02- 2020	М	5.83	16545652	40.90	South	15.9129	79.74
2	Andhra Pradesh	31-03- 2020	М	5.79	15881197	39.18	South	15.9129	79.74
3	Andhra Pradesh	30-04- 2020	М	20.51	11336911	33.10	South	15.9129	79.74
4	Andhra Pradesh	31-05- 2020	М	17.43	12988845	36.46	South	15.9129	79.74

In [4]: #updating the column names

data.columns=["State","Date","Frequency","Estimated unemployment rate","Estimated employed",
"Estimated labour participation rate","Region","Longitude","Latitude"]

In [5]: data.head()

Out[5]:

	State	Date	Frequency	Estimated unemployment rate	Estimated employed	Estimated labour participation rate	Region	Longitude	Latitude
0	Andhra Pradesh	31 - 01- 2020	M	5.48	16635535	41.02	South	15.9129	79.74
1	Andhra Pradesh	29 - 02- 2020	M	5.83	16545652	40.90	South	15.9129	79.74
2	Andhra Pradesh	31 - 03- 2020	M	5.79	15881197	39.18	South	15.9129	79.74
3	Andhra Pradesh	30 - 04- 2020	M	20.51	11336911	33.10	South	15.9129	79.74
4	Andhra Pradesh	31 - 05- 2020	М	17.43	12988845	36.46	South	15.9129	79.74

```
In [6]:
         data.shape
Out[6]: (267, 9)
In [7]:
        data.columns
Out[7]: Index(['State', 'Date', 'Frequency', 'Estimated unemployment rate',
                'Estimated employed', 'Estimated labour participation rate', 'Region',
                'Longitude', 'Latitude'],
               dtype='object')
In [8]:
        data.describe()
Out[8]:
               Longitude
                                                                                                   Latitude
         count
                              267.000000
                                              2.670000e+02
                                                                            267.000000
                                                                                      267.000000
                                                                                                 267.000000
                               12.236929
                                              1.396211e+07
                                                                             41.681573
                                                                                       22.826048
                                                                                                 80.532425
          mean
           std
                               10.803283
                                              1.336632e+07
                                                                              7.845419
                                                                                        6.270731
                                                                                                  5.831738
           min
                                0.500000
                                              1.175420e+05
                                                                             16.770000
                                                                                       10.850500
                                                                                                 71.192400
           25%
                                4.845000
                                              2.838930e+06
                                                                             37.265000
                                                                                       18.112400
                                                                                                 76.085600
           50%
                                9.650000
                                                                             40.390000
                                                                                       23.610200
                                                                                                 79.019300
                                              9.732417e+06
           75%
                               16.755000
                                              2.187869e+07
                                                                             44.055000
                                                                                       27.278400
                                                                                                 85.279900
                               75.850000
                                              5.943376e+07
                                                                             69.690000
                                                                                       33.778200
                                                                                                 92.937600
           max
In [9]:
        data.dtypes
Out[9]: State
                                                  object
                                                  object
         Date
                                                  object
         Frequency
         Estimated unemployment rate
                                                 float64
         Estimated employed
                                                   int64
         Estimated labour participation rate
                                                 float64
         Region
                                                  object
         Longitude
                                                 float64
         Latitude
                                                 float64
         dtype: object
```

```
data['Date']=pd.to_datetime(data["Date"])
In [10]:
In [11]: data.dtypes
Out[11]: State
                                                         object
                                                 datetime64[ns]
         Date
                                                         object
         Frequency
         Estimated unemployment rate
                                                        float64
         Estimated employed
                                                          int64
         Estimated labour participation rate
                                                        float64
         Region
                                                         object
         Longitude
                                                        float64
         Latitude
                                                        float64
         dtype: object
         data.isnull().sum()
In [12]:
Out[12]: State
                                                 0
         Date
                                                 0
         Frequency
         Estimated unemployment rate
                                                 0
         Estimated employed
                                                 0
         Estimated labour participation rate
                                                 0
         Region
                                                 0
         Longitude
                                                 0
         Latitude
                                                 0
         dtype: int64
         data.duplicated().any()
In [13]:
Out[13]: False
In [14]: #Converting 'Frequency' and 'Region' columns to categorical data type
         data['Frequency'] = data['Frequency'].astype('category')
         data['Region'] = data['Region'].astype('category')
```

```
In [15]: data.dtypes
Out[15]: State
                                                         object
                                                datetime64[ns]
         Date
         Frequency
                                                       category
         Estimated unemployment rate
                                                       float64
         Estimated employed
                                                          int64
         Estimated labour participation rate
                                                       float64
         Region
                                                       category
         Longitude
                                                       float64
         Latitude
                                                       float64
         dtype: object
In [16]: #extract month
         data["month"]=data["Date"].dt.month
In [17]: #converting 'month' to integer format
         data['Month int'] = data['month'].apply(lambda x: int(x))
         # Mapping integer month values to abbreviated month names
         data['Month name'] = data['Month int'].apply(lambda x: calendar.month abbr[x])
         data['Month'] = data['Month int'].apply(lambda x: calendar.month abbr[x])
```

In [18]: data.tail()

Out[18]:

	State	Date	Frequency	Estimated unemployment rate	Estimated employed	Estimated labour participation rate	Region	Longitude	Latitude	month	Month_int	Month_name
262	West Bengal		М	7.29	30726310	40.39	East	22.9868	87.855	6	6	Jun
263	West Bengal	2020- 07-31	М	6.83	35372506	46.17	East	22.9868	87.855	7	7	Jul
264	West Bengal	2020- 08-31	М	14.87	33298644	47.48	East	22.9868	87.855	8	8	Aug
265	West Bengal	2020- 09-30	М	9.35	35707239	47.73	East	22.9868	87.855	9	9	Sep
266	West Bengal	2020- 10-31	М	9.98	33962549	45.63	East	22.9868	87.855	10	10	Oct
4												•

In [19]: #Basic Statistics

data_stats = data[['Estimated unemployment rate', 'Estimated employed', 'Estimated labour participation rate'
round(data_stats.describe().T, 2)

Out[19]:

	count	mean	std	min	25%	50%	75%	max
Estimated unemployment rate	267.0	12.24	10.80	0.50	4.84	9.65	16.76	75.85
Estimated employed	267.0	13962105.72	13366318.36	117542.00	2838930.50	9732417.00	21878686.00	59433759.00
Estimated labour participation rate	267.0	41.68	7.85	16.77	37.26	40.39	44.06	69.69

Out[20]:

	Region	Estimated unemployment rate	Estimated employed	Estimated labour participation rate
0	East	13.92	19602366.90	40.11
1	North	15.89	13072487.92	38.70
2	Northeast	10.95	3617105.53	52.06
3	South	10.45	14040589.33	40.44
4	West	8.24	18623512.72	41.26

```
In [21]: IMD = data.groupby(["Month"])[['Estimated unemployment rate','Estimated employed','Estimated labour participa
IMD = pd.DataFrame(IMD).reset_index()
```

```
In [22]: State = data.groupby("State")[['Estimated unemployment rate','Estimated employed','Estimated labour participa
State = pd.DataFrame(State).reset_index()
```

```
In [23]: heat_maps = data[["Estimated unemployment rate", "Estimated employed","Estimated labour participation rate",'
heat_maps = heat_maps.corr()
plt.figure(figsize=(10,5))
sns.set_context("notebook",font_scale=1)
sns.heatmap(heat_maps,annot=True , cmap='coolwarm')
```

Out[23]: <Axes: >


```
In [24]: # Sunburst chart showing unemployment rate in each region and state
    unemplo_data = data[['State', 'Region', 'Estimated unemployment rate', 'Estimated employed', 'Estimated labou
    unemplo = unemplo_data.groupby(['Region', 'State'])['Estimated unemployment rate'].mean().reset_index()
    fig = px.sunburst(unemplo, path=['Region', 'State'], values='Estimated unemployment rate',
    color_continuous_scale='Plasma', title='Unemployment rate in each region and state',
    height=650, template='ggplot2')
    fig.show()
```

Unemployment rate in each region and state


```
In [25]: fig = px.bar(data, x='Region', y='Estimated unemployment rate', animation_frame='Month_name', color='State')
fig.update_layout(title='Unemployment rate across region from Jan.2020 to Oct.2020', height=700, template='pl
fig.update_layout(xaxis={'categoryorder': 'total descending'})
fig.layout.updatemenus[0].buttons[0].args[1]["frame"]["duration"] = 2000
fig.show()
fig = px.bar(data, x='Region', y='Estimated unemployment rate', animation_frame='Month_name', color='State')
```

Unemployment rate across region from Jan.2020 to Oct.2020


```
In [26]:
         #data representation before and after the Lockdown
         before lockdown = data[(data['Month int']>=1) & (data['Month int']<4)]</pre>
          after lockdown = data[(data['Month int']>=4) & (data['Month int']<=6)]
In [27]:
         data.Region.unique()
Out[27]: ['South', 'Northeast', 'East', 'West', 'North']
         Categories (5, object): ['East', 'North', 'Northeast', 'South', 'West']
In [28]: | af lockdown=after lockdown.groupby('State')['Estimated unemployment rate'].mean().reset index()
          lockdown= before lockdown.groupby('State')['Estimated unemployment rate'].mean().reset index()
         lockdown['Unemployment Rate before lockdown'] = af lockdown['Estimated unemployment rate']
          lockdown.columns=['State','Unemployment Rate Before Lockdown','Unemployment Rate After Lockdown']
          lockdown.head()
Out[28]:
                     State Unemployment Rate Before Lockdown Unemployment Rate After Lockdown
          0 Andhra Pradesh
                                                  5.700000
                                                                               13.750000
                    Assam
                                                  4.613333
                                                                                7.070000
          2
                     Bihar
                                                 12,110000
                                                                               36.806667
          3
                                                  8.523333
                                                                                9.380000
               Chhattisgarh
          4
                     Delhi
                                                 18.036667
                                                                               25.713333
In [29]: # percentage change in unemployment rate
         lockdown['rate change in unemployment'] = round(lockdown['Unemployment Rate After Lockdown']) -lockdown['Unem
         plot per = lockdown.sort values('rate change in unemployment')
```

```
In [30]: # percentage change in unemployment after Lockdown
fig = px.bar(plot_per, x='State',y='rate change in unemployment',color='State')
fig.update_layout(
    title='Percentage Change in Unemployment in Each State After Lockdown',
    template='ggplot2'
)
fig.show()
```

Percentage Change in Unemployment in Each State After Lockdown


```
In [31]: # function to sort value based on impact
def sort_impact(x):
    if x <= 10:
        return 'impacted States'
    elif x <= 20:
        return 'hard impacted States'
    elif x <= 30:
        return 'harder impacted States'
    elif x <= 46:
        return 'hardest impacted States'
    return x</pre>
```

```
In [32]: plot_per['impact status'] = plot_per['rate change in unemployment'].apply(lambda x:sort_impact(x))
```

```
In [33]: fig = px.bar(plot_per, y='State',x='rate change in unemployment',color='impact status',
    title='Impact of lockdown on employment across states',template='ggplot2',height=650)
    fig.show()
```

Impact of lockdown on employment across states


```
In [34]: import matplotlib.pyplot as plt
plt.figure(figsize=(12,6))
plt.show()

<Figure size 1200x600 with 0 Axes>
In []:
```