REMARKS

Applicants respectfully request the Examiner to reconsider the present application in view of the foregoing amendments to the claims.

Status of the Claims

In the present Reply, claims 2 and 16 have been canceled herein without prejudice or disclaimer of the subject matter contained therein. Also, claim 12 was previously canceled. In addition, claims 1, 3, 15 and 16 have been amended. Claims 5-10, 13 and 14 stand withdrawn from consideration. Thus, claims 1, 3-11, 13-15 and 17 are pending in the present application.

No new matter has been added by way of these amendments. The amendment to claim 1 merely incorporates the subject matter of canceled claim 2. The amendment to claim 1 is also supported throughout the present specification, such as page 23, lines 2-14. With the amendment to claim 1, claims 3 and 15-16 were appropriately amended. Thus, no new matter has been added.

Based upon the above considerations, entry of the present amendment is respectfully requested.

In view of the following remarks, Applicants respectfully request that the Examiner withdraw all rejections and allow the currently pending claims.

Withdrawal of Rejections

Docket No.: 0020-4841P

Applicants note that the rejection of claim 17 under 35 U.S.C. § 112, first paragraph, has

been withdrawn; the rejection of claims 2, 3, 15 under 35 U.S.C. § 112, second paragraph has

also been withdrawn; and the rejection of claims 1-4, 11, and 15 under 35 U.S.C. § 102(e) as

being anticipated by U.S. Patent No. 5,800,814 has been withdrawn.

Issues Under 35 U.S.C. § 112

Claims 1-4, 11 and 15-17 are rejected under 35 U.S.C. § 112, first paragraph, as failing to

comply with the written description requirement. This rejection is respectfully traversed.

Reconsideration and withdrawal thereof are respectfully requested.

Applicants had possession of the claimed invention, at the time of filing the present

application. The enzyme as claimed according to the present invention may be summarized as

follows:

(1) It is an aspartic enzyme;

(2) It produces plasma protein fragments having inhibitory activity to metastasis and

growth of cancer;

(3) It has a molecular weight of about 45 kDa as measured by SDS electrophoresis

under non-reduction condition;

(4) It has the N-terminal amino acid sequence LVRIPLHKFT;

(5) It degrades plasma proteins at an acidic pH range of not more than pH 5.0 to

produce the mentioned plasma protein fragments having an inhibitory activity; and

(6) It is an aspartic enzyme having N-terminal amino acid sequence homology to a cathespin D precursor.

Among the features described above, the features of "having a molecular weight of about 45kDa" and of "acting at an acidic pH range of not more than pH 5.0" (see features (3) and (5) above) are traits commonly shared by an aspartic enzyme. These two features thus specify the enzyme of the present invention as an aspartic enzyme. In other words, one of skill in the art would understand that such claim limitations sufficiently define the structural features of the instantly claimed invention as being an aspartic enzyme.

Still, the Examiner states in the Office Action that "there is no information regarding the remaining residues, i.e. carboxy terminus" (see the Office Action at page 3, lines 5-7 from the bottom of the page). Regarding such a concern, Applicants respectfully refer the Examiner to the other instantly claimed features. Specifically, Applicants respectfully submit that the features of "having N-terminal amino acid sequence homology to a cathepsin D precursor," and "having the N-terminal amino acid sequence LVRIPLHKFT," as well as "producing plasma protein fragments having an inhibitory activity to metastasis and growth of cancer" (see features (2), (4) and (6) above), are features that exclude many other types of aspartic enzymes. As mentioned, the present invention as claimed already refers to aspartic enzymes (acting in acidic environment) of certain size (molecular weight of about 45kDa). With these additional features (2), (4) and (6), and regarding the Examiner's concern of needing more structural features (or structure:function correlation), Applicants respectfully submit that the N-terminal amino acid sequence of LVRIPLHKFT is sufficient for defining the structure of the enzyme of the present

invention, and is further distinguishable from any other types of aspartic enzymes having distinct N-terminal amino acid sequences. To support Applicants' position, Applicants herein submit "Evidence A." Evidence A depicts the N-terminal amino acid sequence of cathepsin D as compared with those of other aspartic enzymes, including cathepsin E, pepsinogen and rennin.

Furthermore, the feature of "producing plasma protein fragments having an inhibitory activity to metastasis and growth of cancer" aids in distinguishing the enzyme of the present invention from other types of aspartic enzymes. Applicants herein submit "Evidence B" (consisting of 8 pages). As shown in Evidence B, there was a recent study that demonstrates cathepsin E, though being an aspartic enzyme like cathepsin D, produces plasma protein fragments having a different activity from that produced by the enzyme of the present invention. More specifically, cathepsin D specifically degrades plasminogen to produce angiostatin, while cathepsin E specifically degrades collagen XVIII to produce endostatin (see translated part of Evidence B). Thus, the feature of "producing plasma protein fragments having an inhibitory activity to metastasis and growth of cancer" is distinguishing from other aspartic enzymes, like cathepsin E.

Applicants further note that the primary consideration here is factual and depends on the nature of the invention and the amount of knowledge imparted to those skilled in the art by the disclosure. *In re Wertheim*, 541 F.2d 257, 262, 191 USPQ 90, 96 (CCPA 1976). One of skill in the art would have scientific literature at hand, such as Evidence A and Evidence B, to understand and realize the scope of what is instantly claimed. Thus, the written description requirement is met for all presently pending claims since the mentioned functional

Reply to Office Action of May 19, 2005

characteristics, such as producing the mentioned plasma protein fragments, correlate with the

other structural features as claimed, such as "having N-terminal amino acid sequence homology

to a cathepsin D precursor" and "having the N-terminal amino acid sequence LVRIPLHKFT".

In summary, Applicants respectfully submit that these recited features (e.g., the claimed

Docket No.: 0020-4841P

molecular weight) addresses the Examiner's concern of how "there is no information regarding

the remaining residues, i.e. carboxy terminus". Further, based on Evidence A and Evidence B,

one of skill in the art would understand that Applicants had possession of the claimed invention

(at the time of filing of this application). In other words, the mentioned attachments support

Applicants' position that the claimed features of, e.g., having N-terminal amino acid sequence

homology to a cathepsin D precursor," and "having the N-terminal amino acid sequence

LVRIPLHKFT," as well as "producing plasma protein fragments having an inhibitory activity to

metastasis and growth of cancer" recite sufficient structure: function correlation as understood by

one of skill in the art. Accordingly, Applicants respectfully that the claimed aspartic enzyme, as

defined by the features that well distinguish said enzyme from any other types of aspartic

enzymes both from viewpoint of structure and function, excludes and does not encompass such

other types of aspartic enzymes such that the claimed genus is not as broad as asserted by the

Examiner.

Therefore, reconsideration and withdrawal of this rejection is respectfully requested.

Issues Under 35 U.S.C. § 102

Docket No.: 0020-4841P

Claims 1-4, 11 and 15 stand rejected under 35 U.S.C. § 102 as being anticipated by

"Gately et al." (Cancer Research, Vol. 56, pp. 4998-4890, November 19, 1996) (rejection is

reinstated; see paragraph 7 of the Office Action). Applicants respectfully traverse, and

reconsideration and withdrawal thereof are respectfully requested.

Distinctions over the Gately et al. reference

The Examiner asserts that the factor identified by Gately et al. inherently comprises the

claimed enzyme and that the supernatant containing the enzyme was separate from the cell

culture source, thereby inherently isolated from said source, since the starting material of Gately

et al. is the same as that of Applicants (see the Office Action at page 6, starting at line 6).

Applicants respectfully disagree.

Contrary to the Examiner's remarks, the factor (enzyme) identified by Gately et al. is

distinct from the claimed aspartic enzyme. Applicants draw the Examiner's attention to the fact

that the enzyme of the present invention is an aspartic enzyme, acting at an acidic pH range of

pH 5.0 or less. In contrast, the enzyme identified by Gately et al. is a serine protease, acting only

at neutral pH, but not acting at an acidic pH range. Applicants' position is further supported by

the previously submitted Declaration (filed with the Supplemental Reply of July 22, 2004). Still,

the Examiner refers to the supernatant of Gately et al.

However, even if the PC-3 culture supernatant is the same starting material commonly

used by both Gately et al. and the present inventors, it is definitely true that Gately et al could not

discover or isolate the aspartic enzyme of the present invention. Specifically, as Gately et al.

Application No. 09/806,568 Art Unit 1642 Reply to Office Action of May 19, 2005

themselves approved therein, i.e., as shown its Table 1 on page 4889, the enzymatic activity of Gately et al. is inhibited by a *serine protease inhibitor*, but not by an *aspartic protease inhibitor* (Applicants note that it says "None" next to aspartic proteinases in the Table). Such disclosure undoubtedy demonstrates that said enzymatic activity is due a serine protease, and not due an aspartic enzyme. Thus, Applicants respectfully disagree in that Gately et al. disclose the present invention.

Accordingly, Applicants submit that the claimed enzyme is not disclosed in Gately et al. and that this rejection has been overcome. This is because "a claim is anticipated only if each and every element as set forth in the claim is found, either expressly or inherently described, in a single prior art reference". See Verdegaal Bros. v. Union Oil Co. of California, 814 F.2d 628, 631, 2 USPQ2d 1051, 1053 (Fed. Cir. 1987). Thus, because of the lack of disclosure of all features as instantly claimed, the rejection in view of Gately et al. is overcome. Reconsideration and withdrawal are respectfully requested.

Information Disclosure Statement

Applicants have not yet received a copy of the PTO-1449 form having the Examiner's initial next to each considered reference for two Information Disclosure Statements. The first IDS was filed on December 19, 2002; the second IDS was filed on April 10, 2003. Also, Applicants have checked the USPTO's PAIR website to confirm that the USPTO has received the Information Disclosure Statements. Thus, Applicants respectfully request a copy from the Examiner of the PTO-1449 form for each IDS.

Docket No.: 0020-4841P

Application No. 09/806,568

Art Unit 1642

Reply to Office Action of May 19, 2005

Conclusion

A full and complete response has been made to all issues as cited in the Office Action.

Applicants have taken substantial steps in efforts to advance prosecution of the present

application. Thus, Applicants respectfully request that a timely Notice of Allowance issue for the

present case.

If the Examiner believes that personal communication will expedite prosecution of this

application, the Examiner is invited to contact Eugene T. Perez (Reg. No. 48,501) at the offices

of Birch, Stewart, Kolasch & Birch, LLP.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future

replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any

By

additional fees required under 37 C.F.R. §§1.16 or 1.17; particularly, extension of time fees.

Dated: August 19 2005

Attachments: Evidence A (1 page)

Evidence B (8 pages)

Respectfully submitted,

Marc \$. Weiner

Registration No.: 32,181

BIRCH, STEWART, KOLASCH & BIRCH, LLP

8110 Gatehouse Rd

Suite 100 East

P.O. Box 747

Falls Church, Virginia 22040-0747

(703) 205-8000

Attorneys for Applicant

#32,881

Evidence A BEST AVAILABLE COPY

List of Aspartic enzymes with their N-terminal amino acid sequences wherein possibly homologous region is underlined

Cathepsin D

N- lvriplhkft sirrtmsevg gsvedliakg pvskysqav

Cathepsin E

N- apga Ihrvplsrre sirkkiragg qitelwksqn inmdqcstiq

Pepsinogen

N- avvkvplkkfk siretmkekgligefi rthkydpawk yrfgdisvty

Renin

N- <u>iflkrmp sireslkerg</u> vdmaslgpew

* Source *

Cathepsin D

AUTHORS Faust, P. L., Kornfeld, S. and Chirgwin, J. M.

TITLE Cloning and sequence analysis of cDNA for human cathepsin D

JOURNAL Proc. Natl. Acad. Sci. U.S. A. 82 (15), 4910-4914 (1985)

Cathepsin E

AUTHORS Tatnell, P. J., Cook, M. and Kay, J.

TITLE An alternatively spliced variant of cathepsin E in human gastric adenocarcinoma cells

JOURNAL Biochim. Biophys. Acta 1625 (2), 203-206 (2003)

Pepsinogen

AUTHORS Hayano, T., Sogawa, K., Ichihara, Y., Fujii-Kuriyama, Y. and Takahashi, K.

TITLE Primary structure of human pepsinogen C gene

JOURNAL J. Biol. Chem. 263 (3), 1382-1385 (1988)

Renin

AUTHORS Morris, B. J.

TITLE New possibilities for intraceilular renin and inactive renin now that the structure of the human renin gene has been elucidated

JOURNAL Clin. Sci. 71 (4), 345-355 (1986)

1

Partial Translation of Evidence B

Title: PRODUCTION MECHANISM OF ANGIOGENIC INHIBITORS AND TUMOR SUPPRESSION

- 5 Authors: Jun-ichi Iwata and Kenji Yamamoto
 Source: "Protein, Nucleic Acid, Enzyme", Vol. 48, No. 14, pp.
 1928-1933, 2003
- 10 (pp. 1928)

Abstract:

.

20

25

Angiostatin and endostatin are endogenous angiogenic inhibitors that are produced by degradation of plasminogen and collagen XVIII, respectively.

Recently, the authors have found out that cathepsin D and cathepsin E secreted from cancer cells are enzymes responsible for production of angiostatin and endostatin, respectively.

(pp. 1929, left column, lines 17-22)

Recently, the authors have found out that cathepsin D and cathepsin E, endosomal/lysosomal aspartic proteases secreted from cancer cells, specifically degrade plasminogen and collagen XVIII to produce angiostatin and endostatin, respectively.

From: AOYAMA & PARTNERS

2

(pp. 1929)

Table 1: Endogenous angiogenic inhibitors produced by proteases

Endogenous angiogenic inhibitors	Enzymes produced	Action
Angiostatin	Cathepsin D, MMP, Plasmin	Inhibition of proliferation and migration of vascular endothelial cells, Induction of apoptosis
Endostatin	Cathepsin E, Cathepsin L, MMP-9	Inhibition of proliferation of vascular endothelial cells, Inhibition of lumen formation
		····

(pp. 1930)

5

Table 2: Functional features of cathepsin D and cathepsin E in tumor 10

	Cathepsin D	Cathepsin E		
Inhibitory mechanism to	Angiostatin	Endostatin		
angiogenesis Substrate	Plasminogen	Collagen XVIII		
Optimal pH	4.0	6.0		
Content of sialic acid	Dependent	Not dependent		
Tumor proliferation	Inhibition	Inhibition		
Metastasis	Not known	Inhibition		

Short Review

血管新生阻害因子の産生機構と腫瘍抑制

岩田淳一・山本健二

腫瘍組織が一定の大きさをこえて発育増殖するためには、おもに腫瘍細胞から分泌される血管新生促進因子による新たな血管新生が必要不可欠である。一方、腫瘍部位では血管新生阻害因子も産生され、腫瘍の発育増殖を抑制することが知られている。阻害因子の作用が促進因子の作用を上まわれば、腫瘍は栄養補給を断たれ体眠状態ないし壊死に陥るとされている。アンジオスタチンおよびエンドスタチンは、それぞれプラスミノーゲンおよびコラーゲンXMの分解によって産生される内在性血管新生阻害因子である。しかし、これらを生体内で産生する責任酵素は何なのか、また、それらの作用メカニズムはどのようになっているのか、などについては不明な点が多い。筆者らは、最近、癌細胞から分泌されるカテプシンDおよびカテプシンEがそれぞれアンジオスタチンおよびエンドスタチンを産生する責任酵素であることを明らかにした。本稿では、これらのプロテアーゼに焦点をあて、それらの作用機序について概説する。

Keywords カテプシン D カテプシン E 血管新生 悪性腫瘍

・ はじめに

血管新生は発生・分化や創傷治癒過程に必須の機構で あるが、その一方で疾患の発症進展を促すこともよく知 られている、病的血管新生は、固形腫瘍の発育増殖や浸 潤・転移過程,糖尿病および未熟児網膜症の発症・進展 過程、関節リウマチの慢性炎症時などでよく観察され る. 現在, これらの難治性疾患に対する効果的な治療法 の開発が緊急課題として検討されているなか、血管新生 阻害療法はこれら疾病に対して新たな方法論を提供する ものと期待されている.なかでも、腫瘍血管新生阻害療 法は、癌細胞そのものを標的とする既存の治療法と異な り、癌細胞の変異による耐性を生じにくいなどの理由か ら有望な治療戦略と考えられている. 実際, 1995年ご ろから血管新生を阻害する物質の探索が精力的に行なわ れ、表1に示すような多様な阻害物質が報告され、こう した阻害物質の一部を用いた腫瘍血管新生阻害療法が米 国を中心に進められている. しかし, 血管新生が複雑な ステップの反応であることや、阻害物質の in vivo での

作用が一様でないことなどもあって、 今のところ期待される成績からはほど違い状況にある。

アンジオスタチン (angiostatin) およびエンドスタチン (endostatin) は血管新生を強力に阻害 生阻害因子で、それぞれプラスミノー ゲンおよびコラーゲン X個が腫瘍から分泌される何らか よって分解されてできるポリペプチドである。これらは 増殖している血管内皮細胞に選択的に 作用し、休止期に ある正常な血管内皮細胞には作用しなっている。しかし、これまで、アンジエンドスタチンの産生酵素の同定や作 点が多かった。これら血管新生阻害因子を産生すると ト 癌細胞のプロテアーゼはいったい何な や性状は腫瘍の悪性度にどう関係する のか、それらは血管新生阻害療法の開発につながるのか、などといった疑 を サして、 筆者らの最近の解析結果と得られた知見を紹介する.

Jun-ichi Iwata, Kenji Yamamoto,九州大学大学院齒学研究院口腔常態制御学鑄座口腔機能分子科学分野 E-mail: jun-iwt@dent.kvushu-u.ac.jp

Involvement of cathepsin D and cathepsin E in the inhibition of tumor growth and metastasis through the production of angiogenetic inhibitors

I. 腫瘍血管新生とプロテアーゼ

トリプシン、プラスミン、カリクレインなどのセリン プロテアーゼの阻害剤が癌の増殖や転移を抑制するこ とい、リソソーム性システインプロテアーゼのカテプシ ンBやカテプシンLの阻害剤に浸潤抑制効果があるこ と¹⁾、マトリックスメタロプロテアーゼ(MMP)の阻害 剤に癌の増殖・浸潤・転移抑制効果があること20などか ら、悪性腫瘍におけるプロテアーゼは生体侵襲や転移を ひき起こす悪玉として考えられてきた。しかし、最近の in vitro のモデル実験から、腫瘍細胞から分泌されるプ ロテアーゼのなかに血管新生阻害因子を産生するものが、 含まれていることが発見され、これらが血管新生阻害因 子の産生を介して間接的に悪性腫瘍の発育増殖を抑制す ることが示唆された. つまり, 血管新生阻害因子の産生 プロテアーゼは悪性腫瘍に対して善玉として作用すると 考えられ、血管新生阻害療法の新たな標的分子になりう る可能性を示唆するものである.

最近、筆者らは、腫瘍細胞から分泌されるエンドソーム・リソソーム性アスパラギン酸プロテアーギのカテプシン Dおよびカテプシン E がそれぞれプラスミノーゲンおよびコラーゲン X個を特異的に分解してアンジオスタチンおよびエンドスタチンを産生することを明らかにした。 両酵素は、本来、エンドソーム・リソソーム系蛋白質分解システムにおいて重要な役割を果たしている3.41が、腫瘍細胞や活性化された抗原提示細胞では一部が細胞外に分泌され、細胞外蛋白質の分解に関与することが知られている。

Ⅱ. アンジオスタチン産生とカテプシンロ

アンジオスタチンは、内因性血管新生阻害因子として 1994年に O' Reilly らによって同定された分子量 38 K のポリペプチドで、前駆基質プラスミノーゲンのクリングルドメイン(K1~K4)のうち少なくとも 3 つを含んでいる5). in vitro の実験系では、MMP-126, ウロキナーゼッなどのプロテアーゼがアンジオスタチンの産生に関与するとされたが、これらが in vivo の真のアンジオスタチン産生酵素かどうかは明らかにされていなかった.

筆者らは、プラスミノーゲンがヒト前立腺癌細胞(PC3)の産生するカテプシンDによって特異的に切断され、アンジオスタチンを産生することを見いだした(図1).また、本酵素はアンジオスタチン産生過程でプラスミンを分解し、プラスミンの産生を阻害することによって血管新生促進因子 VEGF(vascular endothelial growth factor)の潜在型から活性型への変換を阻害することを明らかにし、二重のメカニズムで血管新生を抑制することを報告したらら、さらにそのなかで、ヒト乳癌細胞(MCF7)が分泌しているカテプシンDは、PC3細胞から分泌される分子に比べて、同じ酵素量であっても、プラスミノーゲンからアンジオスタチンを産生する活性が著しく低いことを報告したら。

その後の研究から、カテプシンD分子のアンジオスタチン産生能の差は、腫瘍の発生臓器の違いによるのではなく、腫瘍細胞の発育増殖能(悪性度)に依存していることが明らかとされた。つまり、同じ腫瘍細胞が分泌するカテプシンDであっても、悪性度が高いと判定され

◎ 表1 プロテアーゼによって産生される内在性血管新生阻害因子

内在性血管新生阻害因子	産生酵業	作用機序	
アンジオスタチン	カテプシン Day, MMPa, プラスミンち	血管内皮細胞の増殖・遊走阻害とアポトー	シス誘導
エンドスタチン	カテプシンE.カテプシンL''',MMP-9 ¹²	血管内皮細胞の増殖阻害と管腔形成阻害	
16 K プロラクチン断片	カテプシン D ⁽⁴⁾	血管内皮細胞の増殖阻害	
キニノスタチン	不明	血管内皮細胞の遊走・増殖阻害	
2本鎖アンチトロンピン	トロンピン、エラスターゼ	血管内皮細胞の増殖阻害	
プロトロンビン分解産物	不明	血管内皮細胞の増殖阻害	
キャンスタチン/ツムスタチン/アレステン	不明	血管内皮細胞の増殖・遊走・管腔形成阻容	
パソスタチン	不明	血管内皮細胞の増殖阻容	
血小板因子-4分解産物	不明	血管内皮細胞の増殖阻害	
MMP-2 断片(PEX)	不明	MMP-2 阻害	
レスチン	不明	血管内皮細胞の遊走阻害	
フィブロネクチン分解産物	不明	血管内皮細胞の増殖阻害	

From:AOYAMA & PARTNERS

図 1 カテプシン D によるアンジオスタチン産生機構 カテプシン D はブラスミノーゲンを段階的に分解(L[®]-P[®]→L[™]-F[®] 結合切断)し、4 つのクリングルドメイン(K1~K4)を含むアンジオスタチンを産生するとともに、プラスミンを切断(E[®]-A[™] 結合切断)することによって強力な抗血管新生作用を発揮する。 ◆: N-結合型糖鎖、◊: O-結合型糖鎖。

<u> </u>			
	カテプシンD	カテプシンE	
血管新生阻害機構	アンジオスタチン	エンドスタチン	
基質	ブラスミノーゲン	コラーゲンXVII	
最適 pH	4.0	6.0	:
シアル酸含量	依存	依存せず	
腫瘍増殖	抑制	抑制	
転移	不明	抑制	

た癌細胞からのカテブシンDはアンジオスタチン産生能が低く、悪性度の低い癌細胞からのカテブシンD分子はアンジオスタチン産生能が高い、その理由を探るために、各種腫瘍細胞からアンジオスタチン産生能の異なるカテブシンD分子を分離し、SDS ゲル電気泳動や糖鎖分解酵素処理などにかけて比較検討した結果、アンジオスタチン産生能はカテプシンDの N-結合型糖鎖に支むしたがあることがわかった(表記)、もし、カテブシンDのシアル酸付加の程度が腫瘍細胞の悪性度に影響を与えるとするならば、腫瘍細胞中のシアル酸転移酵素の発現や性状を知ることによって、腫瘍の悪性度や予後を推定することが可能になるかもしれない、また、腫瘍の悪性度と腫瘍細胞の産生するカテブシンD分子の糖鎖構造の関係がさらに明確になれ

ば、カテプシンDによるアンジオスタチン産生工進を目的とした新たな創薬基盤が構築できるものと期待される。

Ⅲ. エンドスタチン産生と カテプシンE

エンドスタチンは同じく内在 性血管新生阻害因子として 1997年にO'Reilly ちにより初 かて発見された100. エンドスタ チンはおもに血管周囲に局在す るコラーゲンX個の のプロテアーゼによって切断されてできる 22 Kの れてできる 22 Kの ドである. 2000年, Felbor ら は、マウス血管内皮腫細胞株か ら分泌されるカテ

エンドスタチンを産生する酵素であることを報告した¹¹⁾. しかし、カテプシンしによって切断されたエンドスタチン断片は、ヒトにおいては検出されておらず、はたしてヒトにおいてカテプシンしがエンドスタチンの産生酵素であるかどうか不明であった。その後、MMP-9がエンドスタチン産生能を有することが報告された¹²⁾が、この場合もやはり切断部位がヒト・エンドスタチンと一致していなかった。また、MMP-9については、子宮内膜の血管新生の時期に一致してその発現が誘導されることから、エンドスタチンの責任酵素であるか疑問が残った。

最近、筆者らは、癌細胞から分泌されるカテブシンEがコラーゲンXMのC末端部位を特異的に切断し、エンドスタチンを産生することを見いだした、カテブシンEによって産生されるコラーゲンXMの切断部位は、ヒト血液中で同定されるエンドスタチンのN末端と一致した(図2)、悪性度の異なる各種のヒト前立腺癌細胞、乳癌細胞、ムラノーマ細胞から分泌されるプロテアーゼ活性を測定してみると、カテブシンE量のみが腫瘍細胞の悪性度や血管新生能と逆相関した、腫瘍細胞から分泌されるカテブシンEはほとんどが活性型分子で、コラーゲンXMやそのC末端フラグメント(NC1)を農度依存性、時間依存性に分解しエンドスタチンを

図2 各種プロテアーゼによるヒト コラーゲンXMMの C 末端 NC1 領域 の切断部位

ヒト血清中に検出されるエンドスタチン のN末端は、カテプシンEおよびカテ ブシンDによってYIP-VIII 結合が特異 的に切断されてできる VHL で始まるポ リペプチドである。この部位の切断は、 カテプシンロに比べカテプシンEのほ うが強い. 下段のアミレ酸配列はマウス コラーゲンXMIのうち比トと異なるアミ ノ酸を示している、▲はマウス組織中よ り見つかったエンドスタチン、↓はヒト 血液中より見つかったエンドスタチン、 マは各種プロテアーゼの In vitro 実験 での切断部位を示す. カテプシンDの Lⁿ-Hⁿ 結合切断部位占カテプシンLの HIIILLIa 結合切断部位は、マウスで見つ かったエンドスタチンとは一致したが、 とトでは検出されていない.

表 3 ヒト前立腺癌細胞培養上濟中のカテプシンE量とエ ンドスタチン産生能および血管内皮細胞の管腔破壊の相関

細胞株	ALVA-41	LNCaP	PC-3	PPC-1	DU-145	ALVA-101
カテプシンE量 (U/mg)	4.2	2.9	2.7	2.3	0.6	0.3
エンドスタチン <u>産生量</u>	多い			5		少ない
血管内皮細胞の 管腔破壊費	多い			M		少ない

産生した(表 2)、カテプシンEによって産生されたエン ドスタチンを分離精製し、増殖している血管内皮細胞と 休止期にある血管内皮細胞に作用させて比較検討してみ ると、休止期のものと比べ増殖期の内皮細胞に約100倍 の感受性が認められた. また, 血管内皮細胞にあらかじ め管腔を形成させておき、それに NC1 と各種腫瘍細胞 の培養上清を加えると、カテプシンE活性量に比例し て血管内皮細胞はアポトーシスに陥り、形成された管腔 は消失した(表 3). すなわち, カテプシンEを多く分泌 する腫瘍細胞は、エンドスタチンの産生を介して血管新 生を阻害し、同時に、高濃度では形成された血管の内皮 細胞をアポトーシスに導くことが明らかとなった.

さらに、血管新生阻害機構におけるカテプシンEの 役割を検証するために、カテプシンEをほとんど産生 しない悪性のヒト前立腺癌細胞(ALVA-101)にヒトカテ プシンEを過剰発現させ、ヌードマウス皮下に移植し

たところ、遺伝子を導入していない腫瘍細胞を移植した ときに比べ、腫瘍の発育増殖がほとんど認められなかっ た. このとき、ヒトカテプシンE過剰発現 ALVA-101 は血管新生をほとんど誘導していないことが免疫組織学 的に明らかにされた。また、ヒトカテプシンEを過剰 発現させた ALVA-101 の培養上清は、in vitro のマトリ ゲルを使った血管形成に対しても強い阻奪効果を示すこ ともわかった。ついで、別の悪性ヒト前立腺癌細胞をヌ ードマウスに移植しておき、精製したカテプシンEを 増殖部位に投与すると、腫瘍細胞の発育増殖が有意に抑 制された、同様に、局所の腫瘍細胞にヒβカテプシンE 遺伝子をエレクトロポレーション法によって導入する と, 腫瘍の発育増殖ならびに転移が有意は抑制された.

これまでに筆者らの研究から、カテプシンEは生体 防御系において重要な役割を果たしていることが示され ている. とくに、カテプシンEノックアウトマウスの 解析から、本動物が一定環境下でアトピー性皮膚炎を発 症することから、本酵素が細胞性免疫を担う重要酵素で あることが示唆されている(投稿中). そこで, 腫瘍細胞 だけではなく、生体側のカテプシンEが腫瘍細胞に対 する生体防御にどう影響するのかを調べる目的で、マウ スメラノーマ細胞をカテプシンEノックアウトマウス および野生型マウスに移植し腫瘍細胞の肺転移能を比較 した. その結果、野生型マウスに比べて、カテプシンE ノックアウトマウスでは、腫瘍細胞の肺転移が明らかに 大きいことがわかった. このことは, 腫瘍細胞から産生

From:AOYAMA & PARTNERS

図 3 カテプシン E によるエンドスタチン産生を介した腫瘍の発育増殖ならびに転移の抑制機構 腫瘍細胞から分泌されるカテプシン E はコラーゲン XMIを特異的に分解してエンドスタチンを産生し、腫瘍血管新生を抑制するとともに、一部、血管内皮細胞のアポトーシスを誘導する。その結果、腫瘍の発育増殖および転移の抑制が起こる。一方、抗原提示細胞やリンパ球から分泌されるカテプシン E は直接的または間接的に腫瘍の発育増殖および転移を抑制する可能性もある。

されるカテプシンEのみならず、宿主のもつカテプシンEも抗腫瘍作用をもつことを示している(図 3).

1 おわりに

現在、エンドスタチンの臨床治験は第I相、アンジオスタチンの臨床治験は第I相が行なわれており、これまでのところ重篤な副作用の報告はない。アンジオスタチンおよびエンドスタチンは、少なくともマウスの系においては強力な血管新生阻害活性をもつため、ヒト臨床は験においてもその劇的な効果が期待された。しかしながら、ヒト腫瘍のもつ多様性のためか、あるいは種の違いによるものかはわからないが、当初期待されたほどの効果はみられていない^[3]。その原因のひとつは、これらの阻害因子の作用機序についての分子生物学的な解析が十分ではなく、これら物質のもつ特徴を十分に発揮させる方法論が確立されていないことが考えられる。

策者らは、すでに臨床的に、口腔癌患者血液中のカテプシンEが正常者に比べ有意に低下していることを見いだしており、今回の結果とあわせて、カテプシンEの発現や活性の低下が腫瘍細胞の増殖・転移を誘導する可能性を示唆している。腫瘍組織でカテブシンEによるエンドスタチン産生、カテブシンDによるアンジオスタチン産生が誘導されるならば、腫瘍血管新生が阻害され、腫瘍の発育増殖ならびに転移が抑制されると考え

られる. このことは、両酵素を含めた血管新生阻害因子 産生関連分子が腫瘍の悪性度や予後のマーカーとなりう るばかりでなく、血管新生阻害療法に基づく癌治療に新 たな道を開くものと期待される.

文 献

- DeClerck, Y. A., Imren, S.: Eur. J. Cancer, 30A 2170-2180 (1994)
- 2) Siafaca, K.: Future Oncology, 1, 185-199 (1995)
- Yamamoto, K.: Proteases: New Perspectives (ed. Turk, V.), pp. 59-71, Birkhäuser Verlag, Basel (1999)
- Yasuda, Y., Ikeda, S., Sakai, H., Tsukuba, T., Okamoto, K., Nishishita, K., Akamine, A., Kato, Y., Yamamoto, K.: Eur. J. Biochem., 266, 383-391 (1999)
- O' Reilly, M. S., Holmgren, L., Shing, U., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H., Folkman, J.: Cell, 79, 315-328 (1994)
- Dong, Z., Kumar, R., Yang, X., Fidler, I. J.: Cell., 88, 801-810 (1997)
- Gately, S., Twardowski, P., Stack, M. S., Cundiff, D. L., Grella, D., Castellino, F. J., Enghild, J., Kwaan, H. C., Lee, F., Kramer, R. A., Volpert, O., Bouck, N., Soff, G., A.: Proc. Natl. Acad. Sci. USA, 94, 10868-10872 (1997)
- 8) Morikawa, W., Yamamoto, K., Ishikawa, S., Takemoto, S., Ono, M., Fukushi, J., Naito, S., Nozaki, C., Iwanaga, S., Kuwano, M.: J. Biol. Chem., 275, 38912-38920 (2000)
- 9) Tukuba, T., Okamoto, K., Yasuda, Y., Morikawa, W.,

Nakanishi, H., Yamamoto, K.: Mol. Cells, 6, 601-611 (2000)

- 10) O'Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., Folkman, J.: Cell, 88, 277-285 (1997)
- Felbor, U., Dreier, L., Bryant, R. A. R., Ploegh, H. L., Olsen, B. R., Mothes, W.: EMBO J., 19, 1187-1194 (2000)
- Ferreras, M., Felbor, U., Lanhard, T., Oisen, B. R., Delaisse,
 J. M. : FEBS Lett., 486, 247-251 (2000)
- 13) von Moorselaar, R. J. A., Voest, E. E.: Mol. Cell. Endocrinol., 197, 239-250 (2002)
- 14) Khurana, S., Liby, K., Buckley, A. R., Ben-Jonathan, N.: Endocrinology, 140, 4127-4132 (1999)
- Cao, R., Wu, H., Veitonmaki, N., Linden, P., Farnebo, J., Shi,
 G., Cao, Y.: Proc. Natl. Acad. Sci. USA, 96, 5728-5733 (1999)

岩田淳一

略歴: 1974年山口県に生まれる. 2000年 九州大学歯学部卒業. 同年同大大学院に進学し, 現在博士課程 4年. 2003年より日本学術振興会特別研究員. 研究テーマ: 内在性血管新生阻害因子の産生機構の解明と血管新生標的薬剤の開発. 関心事・抱負: 日本発の新しい癌治療への挑戦.

山本健二

略歴:1974年九州大学大学院薬学研究科博士課程修了.1975年九州大学歯学部助手.1983年長崎大学歯学部助教授.1989年九州大学歯学部教授.2000年九州大学大学院歯学研究院教授.この間,1979~1981年米国エール大学医学部博士研究員.研究テーマ:生体防御系におけるプロテアーゼの機能と病態.

●workshop

日仏構造プロテオミクスワークショップ

- 日 程 2003年11月10日(月)~12日(水)
- 場 所 10 日:東京大学弥生講堂一条ホール 11・12 日:東京大学農学部 1 号館 8 番教室
- 内 容 日仏構造ゲノムプロジェクト実施機関研究代表者らによる研究現状報告,意見交換。仏人 12 名、日本人 14 名, あわせて 26 講演予定。時間,講演者などの詳細情報はワークショップホームページをご参照下さい。
- 参加 費 無料
- 定 員 200名
- 申込方法 ホームページからお申し込み下さい。当日参加も可能ですが、事前申込みをされた方を優先とさせていただきます。なお、事前申込みは定員になり次第締切とさせていただきますので、ご了承下さい。
- 明合せ先 日仏構造プロテオミクスワークショップ実行委員会事務局 E-mail: wfj-info@gsc.riken.go.jp FAX 045-503-9195
- 主 催 日仏構造プロテオミクスワークショップ実行委員会

実行委員会幹事会 Dino Moras (IG

Dino Moras (IGBMC, CNRS Strasbourg), Jean-Claude Thierry (IGBMC, CNRS Strasbourg), Christian Cambillau (CNRS-Univ. Aix-Marseille I & II), Joel Janin (CNRS, Gif-sur-Yvette, Paris), 大島泰郎(東京東大, 委員長),中村奉木(阪大), 田之倉 優(東大), 老根壮市(高エネ機棒・物構研), 西村啓文(横浜市大), 横山茂之(理研 GSC,東大), 黒田 裕(理研 GSC)

http://bio.gsc.riken.go.jp/WFJ-2003

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

△ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.