A new blockchain-based secure e-voting protocol

Chiara Spadafora c.spadaf@libero.it https://www.linkedin.com/in/chiara-spadafora/

> Seminario De Cifris Athesis May 29, 2020

Contents

- 1 Introduction
- 2 Preliminaries
- 3 Two-Candidates Protocol
- 4 Generalization
- 5 Proof of Security
- 6 Conclusions

Introduction

Why e-voting?

- Somebody believes that traditional voting schemes cannot be trusted anymore.
- Possible solution to the problem of decreasing turn-out in elections.
- Reduction of the costs of running elections.

E-voting protocols should provide two properties:

- Ballot Casting Assurance: each voter gains personal assurance that their vote was correctly cast.
- Universal Verifiability: any observer can verify that all cast votes were properly tallied.

Historical Notes

- Introduction of democracy by the Athenians, 6th century B.C.,
- Borda count, Jean-Charles de Borda, 1770,
- Chartist voting machine, Benjamin Jolly, 1838,
- First voting machine appropriate for use, Anthony Beranek, 1881,
- IBM voting machine, 1936,
- First e-voting protocol, Chaum, 1981.

Typical remote voting stages

- **Setup and Registration**. The system is initialized and the necessary information are made available.
- Voting Phase. In this stage voters can vote for the candidate they prefer.
- Tallying. In the last stage, tallies verify and validate ballots, count them and publish the results.

General requirements for remote voting systems

- Transparency. The voting system should be understandable in all its components.
- Accuracy. It is not possible for a casted vote to be altered nor for an invalid vote to be counted in the final tally.
- Verifiability. The correctness of elections results can be verified by all observers.

Requirements my protocol aimed to accomplish

A secure voting scheme should be robust and resistant to both coercion and vote-selling.

- Coercion-Resistant: voters can cast their ballots as they want, even if someone tries to actively force them to vote for a specific candidate.
- Vote-Selling Resistant: it is not possible to produce a document that undoubtedly demonstrates for which candidate a voter has voted.

State of the Art

- Civitas is the first electronic voting system that is coercion-resistant (in fact, a voter under coercion can vote with fake credentials so that in the tallying his vote is not counted), universally and voter verifiable, and suitable for remote voting.
- Helios uses homomorphic encryption to ensure ballot secrecy. Anyone can cast a ballot; however, for the final vote to be counted, the voter's identification must be verified.
- Caveat Coercitor is a remote voting scheme which proposes a change of perspective, replacing the requirement of coercion-resistance with a new requirement of coercion-evidence: there should be public evidence of the amount of coercion that has taken place during a particular execution of the voting system.
- Bingo Voting is a verifiable and coercion-free voting scheme, which is based on a trusted random number generator.

Our protocol I

This is a high level presentation of the new e-voting protocol that I have developed for my master degree thesis under the supervision of Prof. Massimiliano Sala and Prof. Riccardo Longo.

- Public but permissioned blockchain.
- Voting = spending a *v-token*.
- One *v-token* is valid, the others are fake.
- In the tally the fake *v-tokens* are erased.

A *v-tokens* is a blockchain token which is the representation of a vote. The next slides (which were not part of the seminar) were added to give a schematic representation of the two-candidates protocol.

Our protocol II

Introduction

The protocol has been designed to run on a public but permissioned blockchain (i.e. only allowed voters can take part in the election).

There are two authorities involved.

Setup:

- Authority A_1 creates, for every voter v_i , the initial ballot \bar{b}_i , comprising of two *v*-tokens (one valid and one fake) and sends it to A_2 .
- A₁ gives to each voter the information on which v-token is valid and which is fake.
- A_2 creates the final ballot b_i and sends it to the respective voter v_i .
- Both \mathcal{A}_1 and \mathcal{A}_2 generate two numbers: one for the first candidate and one for the second candidate. These numbers will be used to mask the *v-tokens* in the voting phase. Eventually both \mathcal{A}_1 and \mathcal{A}_2 make a commitment on the values generated.

Our protocol III

Introduction

Voting Phase:

- The voter v_i sends off chain to A_1 his ballot b_i adding the information on which v-token is meant for the first candidate.
- A_1 receives the ballot and masks the tokens with the candidate's mask. Then A_1 sends the ballot to A_2 which acts in the same way.
- Eventually A_2 sends back the ballot to v_i which, with a blockchain transaction, sends his tokens to the respective candidates.
- A transaction is valid if and only if a voter voted with both of his tokens.
- A voter can abstain from voting without mining the integrity of the protocol.

Our protocol IV

Introduction

Tallying

- Both authorities decommit the values committed in the setup phase.
- Anyone can multiply the (value of the) tokens contained in each candidate's wallet. Then, with a brute force attack, the number of valid votes is retrieved. In this way the winner of the election is found.
- Anyone can check the correctness of the election thanks to a set of zero knowledge proofs.

Two-Candidates Protocol

Definition (DDH Assumption)

Let a, b, $z \in \mathbb{Z}_p$ be chosen at random and g be a generator of the cyclic group \mathbb{G} of prime order p. The decisional Diffie-Hellman assumption holds if no probabilistic polynomial-time algorithm $\mathbb B$ can efficiently distinguish between the tuples (g, g^a, g^b, g^{ab}) and (g, g^a, g^b, g^z) .

Introduction

Protocol (Equality of discrete logarithms)

Let \mathbb{G} be a cyclic group of prime order p, let u, h be generators of \mathbb{G} , and finally let $y,z\in \mathbb{G}$, $\omega\in \mathbb{Z}_p$. The prover knows ω and wants to convince the verifier that:

$$u^{\omega} = y$$
 and $h^{\omega} = z$, (1)

- **1** The prover generates a random r and computes $t_1 = u^r$ and $t_2 = h^r$, then sends (t_1, t_2) to the verifier.
- $oldsymbol{\mathbb{Z}}$ The verifier computes a random $c \in \{0,1\}$ and sends it to the proven
- **The prover creates a response** $s=r+c\cdot\omega$ and sends s to the verifier
- The verifier checks that $u^s = y^c \cdot t_1$, $h^s = z^c \cdot t_2$. If the check fails the proof fails and the protocols aborts. The previous steps are repeated a polynomial number of times t.

Introduction

Protocol (Equality of discrete logarithms)

Let \mathbb{G} be a cyclic group of prime order p, let u, h be generators of \mathbb{G} , and finally let $y,z\in \mathbb{G}$, $\omega\in \mathbb{Z}_p$. The prover knows ω and wants to convince the verifier that:

$$u^{\omega} = y$$
 and $h^{\omega} = z$, (1)

- **1** The prover generates a random r and computes $t_1 = u^r$ and $t_2 = h^r$, then sends (t_1, t_2) to the verifier.
- **2** The verifier computes a random $c \in \{0,1\}$ and sends it to the prover.
- If the prover creates a response $s=r+c\cdot\omega$ and sends s to the verifier
- The verifier checks that $u^s = y^c \cdot t_1$, $h^s = z^c \cdot t_2$. If the check fails the proof fails and the protocols aborts. The previous steps are repeated a polynomial number of times t.

Introduction

Protocol (Equality of discrete logarithms)

Let \mathbb{G} be a cyclic group of prime order p, let u, h be generators of \mathbb{G} , and finally let $y,z\in \mathbb{G}$, $\omega\in \mathbb{Z}_p$. The prover knows ω and wants to convince the verifier that:

$$u^{\omega} = y$$
 and $h^{\omega} = z$, (1)

- **1** The prover generates a random r and computes $t_1 = u^r$ and $t_2 = h^r$, then sends (t_1, t_2) to the verifier.
- **2** The verifier computes a random $c \in \{0,1\}$ and sends it to the prover.
- **I** The prover creates a response $s = r + c \cdot \omega$ and sends s to the verifier.
- The verifier checks that $u^s = y^c \cdot t_1$, $h^s = z^c \cdot t_2$. If the check fails the proof fails and the protocols aborts. The previous steps are repeated a polynomial number of times t.

Introduction

Protocol (Equality of discrete logarithms)

Let \mathbb{G} be a cyclic group of prime order p, let u, h be generators of \mathbb{G} , and finally let $y,z\in \mathbb{G}$, $\omega\in \mathbb{Z}_p$. The prover knows ω and wants to convince the verifier that:

$$u^{\omega} = y$$
 and $h^{\omega} = z$, (1)

- **1** The prover generates a random r and computes $t_1 = u^r$ and $t_2 = h^r$, then sends (t_1, t_2) to the verifier.
- **2** The verifier computes a random $c \in \{0,1\}$ and sends it to the prover.
- **1** The prover creates a response $s = r + c \cdot \omega$ and sends s to the verifier.
- **■** The verifier checks that $u^s = y^c \cdot t_1$, $h^s = z^c \cdot t_2$. If the check fails the proof fails and the protocols aborts. The previous steps are repeated a polynomial number of times t.

Two-Candidates Protocol: technical description

Key components

Introduction

The key components involved in the protocol are:

- **1** A finite set of voters $V = \{v_1, \dots, v_N\}$ with $N \in \mathbb{N}$ the number of eligible voters.
- 2 Two distinct candidates named Alpha and Beta.
- 3 Two different trusted authorities A_1 and A_2 .
- 4 One ballot b_i comprising two *v*-tokens for $i \in \{1...N\}$, i.e. one for each eligible voter.

Setup 1

Introduction

- \mathcal{A}_1 chooses uniformly at random the values r, k, λ in \mathbb{Z}_p .
- A_1 chooses uniformly at random for every voter v_i the values $x_i, y_i' \in \mathbb{Z}_p$, and for every $i \in \{1...N\}$ it commits to the couples $(v_i, g^{rx_i}), (v_i, g^{y_i'}),$ $(v_i, g^{x_i y_i'}).$

Remark

 A_1 knows that the v-tokens computed using k at the exponent are valid, while the ones computed using λ are fake, but this information is kept secret.

- For both candidates A_1 and A_2 choose at random a value in \mathbb{Z}_p : α' , β' and α'' , β'' respectively.
- $\qquad \qquad \mathbf{\mathcal{A}}_1 \text{ commits to the values } \mathbf{g}^r, \ \mathbf{g}^k, \ \mathbf{g}^\lambda, \ \mathbf{g}^{\alpha'}, \ \mathbf{g}^{\beta'}, \ \mathbf{g}^{\alpha'k}, \ \mathbf{g}^{\beta'k}, \ \mathbf{g}^{\alpha'\lambda}, \ \mathbf{g}^{\beta'\lambda}.$
- A_2 commits to the values $g^{\alpha''}$, $g^{\beta''}$.

Setup III

Introduction

■ For every voter v_i A_1 chooses uniformly at random $\pi_i \in \{1,2\}$ and creates the preliminary ballot

$$\bar{b}_i = \left(g^{y_i'(x_i + \sigma_{i,1})}, g^{y_i'(x_i + \sigma_{i,2})} \right) \tag{2}$$

where:

$$\sigma_{i,j} := \begin{cases} k \iff \pi_i = j & \text{i.e. } \bar{b}_{i,j} \text{ is real} \\ \lambda \text{ otherwise,} & \text{i.e. } \bar{b}_{i,j} \text{ is fake} \end{cases}$$
 (3)

In this notation, i represents the voter while j = 1, 2 is the v-token position in the couple.

 \blacksquare π_i , i.e. the information about which token is real, is communicated by \mathcal{A}_1 to v_i in a safe and controlled environment (e.g. a police station).

Setup IV

Introduction

■ Eventually A_2 picks at random $y_i'' \in \mathbb{Z}_p$ for all $i \neq i' \in \{1 \dots N\}$. In this way it creates the final ballot for every voter v_i :

$$b_i = \overline{b}_i^{y_i''} = \left(g^{y_i(x_i + \sigma_{i, \mathbf{1}})}, g^{y_i(x_i + \sigma_{i, \mathbf{2}})} \right), \quad \text{with} \quad y_i := y_i' \cdot y_i''. \tag{4}$$

Then for every $i \in \{1...N\}$ it commits to the couple $(v_i, g^{v_i''})$.

Voting Phase I

Introduction

- Since the *v-tokens* can be reordered, the voter orders them so that the first v-token is meant for Alpha and the second for Beta.
- $\blacksquare \mathcal{A}_1$ computes:

$$\bar{b}_{i_{\alpha}} = b_{i,\mathbf{1}}^{\frac{\alpha'}{y_i'}} = \left(g^{y_i\left(x_i + \sigma_{i,\mathbf{1}}\right)}\right)^{\frac{\alpha'}{y_i'}} = \left(g^{\alpha' \cdot y_i''\left(x_i + \sigma_{i,\mathbf{1}}\right)}\right),\tag{5}$$

$$\bar{b}_{i_{\beta}} = b_{i,2}^{\frac{\beta'}{\gamma_{i}'}} = \left(g^{\gamma_{i}\left(x_{i}+\sigma_{i,2}\right)}\right)^{\frac{\beta'}{\gamma_{i}'}} = \left(g^{\beta'\cdot y_{i}''\left(x_{i}+\sigma_{i,2}\right)}\right),\tag{6}$$

and sends off-chain the couple $\bar{b}_{i_{\alpha\beta}} = (\bar{b}_{i_{\alpha}}, \bar{b}_{i_{\beta}})$ to \mathcal{A}_2 .

• A_2 then computes the final vote (let $\alpha := \alpha' \cdot \alpha''$ and $\beta := \beta' \cdot \beta''$):

$$b_{i_{\alpha}} = \overline{b}_{i_{\alpha}}^{\frac{\alpha''}{y_{i'}'}} = \left(g^{\alpha' \cdot y_{i'}'' \left(x_{i} + \sigma_{i}, \mathbf{1}\right)}\right)^{\frac{\alpha''}{y_{i'}''}} = \left(g^{\alpha \left(x_{i} + \sigma_{i}, \mathbf{1}\right)}\right), \tag{7}$$

$$b_{i_{\beta}} = \overline{b}_{i_{\beta}}^{\frac{\beta''}{\gamma_{i'}'}} = \left(g^{\beta' \cdot y_{i'}'' \left(x_{i} + \sigma_{i, 2}\right)}\right)^{\frac{\beta''}{y_{i'}''}} = \left(g^{\beta \left(x_{i} + \sigma_{i, 2}\right)}\right), \tag{8}$$

and sends off-chain the couple $b_{i_{\alpha\beta}} = (b_{i_{\alpha}}, b_{i_{\beta}})$ back to the voter.

The two masked v-tokens are sent with a transaction on the blockchain to the respective candidates. The voter receives the receipt of its vote.

■ Suppose the first $T \leq N$ voters voted.

- A_1 and A_2 publish the decommitments, excluding the couples $(v_i, g^{y_i'})$, $(v_i, g^{x_i y_i'})$, $(v_i, g^{y_i''})$ $\forall i$.
- \mathcal{A}_1 computes $g^{\alpha} = (g^{\alpha''})^{\alpha'}$, and similarly computes g^{β} , $g^{\alpha k}$, $g^{\beta k}$, $g^{\alpha \lambda}$, $g^{\beta \lambda}$, then publishes all these values.
- A_1 computes sum = $\sum_{s=1}^{T} x_s$, then it publishes $g^{\alpha \cdot \text{sum}}$, $g^{\beta \cdot \text{sum}}$, $g^{r \cdot \text{sum}}$.

Tallying II

• Multiplying all *v-tokens* in Alpha's wallet and dividing by $g^{\alpha \cdot \text{sum}}$ anyone can compute:

$$(g^{\alpha \cdot \text{sum}})^{-1} \prod_{i=1}^{T} g^{\alpha (x_i + \sigma_{i,j})} = (g^{\alpha k})^{\text{valid}_{\alpha}} (g^{\alpha \lambda})^{\text{fake}_{\alpha}}$$
(9)

where j = 1 or 2 depending on the *v*-token used.

Comparing the number of valid votes for each candidate, the winner of the elections is found.

Tallying III

Remark

- \blacksquare valid $_{\alpha}$, valid $_{\beta} \geq 1$.
- lacksquare valid $_{lpha}+\mathtt{fake}_{lpha}=\mathcal{T}.$
 - $valid_{\alpha} = fake_{\beta} \text{ and } fake_{\alpha} = valid_{\beta}$.

As first thing a ZKP is needed to assure that votes have been masked correctly. In other words, that the authorities computed

$$g^{y_i(x_i+k)} \to g^{\alpha(x_i+k)} \tag{10}$$

without messing with the exponents.

 A_1 and A_2 decommit to the voter the values of $(v_i, g^{y_i'})$ and $(v_i, g^{y_i''})$ respectively. Then A_1 computes g^{y_i} and proves that the result is correct using:

$$\omega = y'_i, \qquad u = g, \qquad y = g^{y'_i}, \qquad h = g^{y''_i}, \qquad z = g^{y_i}.$$
 (11)

Then A_1 can prove the correctness of the mask setting:

$$\omega = (x_i + k), \quad u = g^{y_i}, \quad y = g^{y_i(x_i + k)}, \quad h = g^{\alpha}, \quad z = g^{\alpha(x_i + k)}.$$
 (12)

Multiple candidates protocol: brief overview I

The key components involved in the protocol are:

- A finite set of voters $V = \{v_1, \dots, v_N\}$ with $N \in \mathbb{N}$ the number of eligible voters.
- C > 2 distinct candidates named (C_1, \ldots, C_C) .
- Three different trusted authorities A_1 , A_2 and A_3 .
- One voting sheet (ballot) comprising C v-tokens.

Multiple candidates protocol: brief overview II

Setup. A_1 creates for every voter v_i the ballot

$$b_i = \left(g^{y_{i_1}(x_i + \sigma_{i,1})}, g^{y_{1_2}(x_i + \sigma_{i,2})}, g^{y_{i_3}(x_i + \sigma_{i,3})}, \ldots, g^{y_{i_C}(x_i + \sigma_{i,C})}\right).$$

- Voting Phase. Since the *v-tokens* cannot be reordered, the voter reorders the list of the candidates to let it match the way it wants to vote.
- **Tallying.** For every candidate C_{μ} with its associated mask ω_{μ} , the product of the *v-tokens* in its wallet is

$$\left(g^{\omega_u\left(\mathbf{x_1}+\sigma_{\mathbf{1},j_{\mathbf{1}}}\right)}\right)\cdots\left(g^{\omega_u\left(\mathbf{x_T}+\sigma_{T},j_{T}\right)}\right)=\left(g^{\omega_u\left(\left(\mathrm{valid}_{\omega_u}\right)\cdot k+\left(\mathrm{fake}_{\omega_u}\right)\cdot \lambda+\sum_{s=\mathbf{1}}^{T}x_s\right)}\right).$$

Proof of security of the Two-Candidates **Protocol**

Formally, the security of a scheme relies on an assumption. In a formal proof of security, there are two parties involved:

- \blacksquare Challenger ${\mathcal C}$ which runs the algorithms of the protocol.
- **Adversary** A which tries to break the scheme making queries to C.

Introduction

Definition (Security Game)

The security game for a two-candidates protocol proceeds as follows:

- Init The adversary A chooses N-2 users that it will control.
- **Setup** The *Challenger* controls both authorities and the other two voters.
- Phase 0 The adversary may request to see the *v-tokens* of any voter
- Phase 1 The adversary may request either to see some v-tokens or ask to some voters it controls, to vote and see the receipt.
- Challenge The Challenger votes randomly with the two voters it controls (for different candidates).
- Phase 2 Phase 1 is repeated
- Phase 3 The voting phase ends and the values committed by the authorities are decommitted. The votes are counted and the adversary car request some ZKP of the correctness of the results.
- Guess The adversary outputs a guess on the challenge

Conclusions

Introduction

Definition (Security Game)

- Init The adversary A chooses N-2 users that it will control.
- **Setup** The *Challenger* controls both authorities and the other two voters.
- **Phase 0** The adversary may request to see the *v-tokens* of any voter
- Phase 1 The adversary may request either to see some v-tokens or ask to some voters it controls, to vote and see the receipt.
- Challenge The Challenger votes randomly with the two voters it controls (for different candidates).
- Phase 2 Phase 1 is repeated.
- Phase 3 The voting phase ends and the values committed by the authorities are decommitted. The votes are counted and the adversary car request some ZKP of the correctness of the results.
- Guess The adversary outputs a guess on the challenge

Introduction

Definition (Security Game)

- Init The adversary A chooses N-2 users that it will control.
- **Setup** The *Challenger* controls both authorities and the other two voters.
- Phase 0 The adversary may request to see the *v-tokens* of any voter.
- Phase 1 The adversary may request either to see some v-tokens or ask to some voters it controls, to vote and see the receipt.
- Challenge The Challenger votes randomly with the two voters it controls (for different candidates).
- Phase 2 Phase 1 is repeated.
- Phase 3 The voting phase ends and the values committed by the authorities are decommitted. The votes are counted and the adversary car request some ZKP of the correctness of the results.
- Guess The adversary outputs a guess on the challenge

Introduction

Definition (Security Game)

- Init The adversary A chooses N-2 users that it will control.
- **Setup** The *Challenger* controls both authorities and the other two voters.
- Phase 0 The adversary may request to see the *v-tokens* of any voter.
- Phase 1 The adversary may request either to see some v-tokens or ask to some voters it controls, to vote and see the receipt.
- Challenge The Challenger votes randomly with the two voters it controls (for different candidates).
- Phase 2 Phase 1 is repeated
- Phase 3 The voting phase ends and the values committed by the authorities are decommitted. The votes are counted and the adversary car request some ZKP of the correctness of the results.
- Guess The adversary outputs a guess on the challenge

Introduction

Definition (Security Game)

- Init The adversary A chooses N-2 users that it will control.
- **Setup** The *Challenger* controls both authorities and the other two voters.
- Phase 0 The adversary may request to see the *v-tokens* of any voter.
- Phase 1 The adversary may request either to see some v-tokens or ask to some voters it controls, to vote and see the receipt.
- Challenge The Challenger votes randomly with the two voters it controls (for different candidates).
- Phase 2 Phase 1 is repeated
- Phase 3 The voting phase ends and the values committed by the authorities are decommitted. The votes are counted and the adversary car request some ZKP of the correctness of the results.
- Guess The adversary outputs a guess on the challenge

Introduction

Definition (Security Game)

- Init The adversary A chooses N-2 users that it will control.
- **Setup** The *Challenger* controls both authorities and the other two voters.
- Phase 0 The adversary may request to see the *v-tokens* of any voter.
- Phase 1 The adversary may request either to see some v-tokens or ask to some voters it controls, to vote and see the receipt.
- Challenge The Challenger votes randomly with the two voters it controls (for different candidates).
- Phase 2 Phase 1 is repeated.
- Phase 3 The voting phase ends and the values committed by the authorities are decommitted. The votes are counted and the adversary can request some ZKP of the correctness of the results.
- Guess The adversary outputs a guess on the challenge

Introduction

Definition (Security Game)

- Init The adversary A chooses N-2 users that it will control.
- **Setup** The *Challenger* controls both authorities and the other two voters.
- Phase 0 The adversary may request to see the *v*-tokens of any voter.
- Phase 1 The adversary may request either to see some v-tokens or ask to some voters it controls, to vote and see the receipt.
- Challenge The Challenger votes randomly with the two voters it controls (for different candidates).
- Phase 2 Phase 1 is repeated.
- Phase 3 The voting phase ends and the values committed by the authorities are decommitted. The votes are counted and the adversary can request some ZKP of the correctness of the results.
- Guess The adversary outputs a guess on the challenge

Introduction

Definition (Security Game)

- Init The adversary A chooses N-2 users that it will control.
- **Setup** The *Challenger* controls both authorities and the other two voters.
- Phase 0 The adversary may request to see the *v-tokens* of any voter.
- Phase 1 The adversary may request either to see some v-tokens or ask to some voters it controls, to vote and see the receipt.
- Challenge The *Challenger* votes randomly with the two voters it controls (for different candidates).
- **Phase 2** Phase 1 is repeated.
- Phase 3 The voting phase ends and the values committed by the authorities are decommitted. The votes are counted and the adversary can request some ZKP of the correctness of the results.
- Guess The adversary outputs a guess on the challenge.

Vote Indistinguishability

Introduction

Definition (Vote Indistiguishability)

A Two-Candidates Protocol with security parameter ξ is VI-secure if for all probabilistic polynomial-time adversaries $\mathcal A$ there exists a negligible function ϕ such that:

$$\mathbb{P}[\mathcal{A} \text{ wins}] \le \frac{1}{2} + \phi(\xi). \tag{13}$$

The protocol is proven VI-secure under the DDH assumption in the security game defined above.

Proof of security I

Theorem

Suppose that the commitment scheme is perfectly hiding and computationally binding. If an adaptive distinguisher adversary can break the scheme, then a simulator can be constructed to play the decisional Diffie-Hellman game with non-negligible advantage.

Corollary

Suppose that the Decisional Diffie-Hellman problem is an hard mathematical problem, then no adaptive distinguisher adversary can break the scheme.

Remark

The security of the protocol will be proven in terms of two authorities, A_1 honest and A_2 honest but *leaky*.

Proof of security II

Introduction

Recall that *ballot* is composed of:

$$b_i = \left(g^{y_i(x_i+k)}, g^{y_i(x_i+\lambda)}\right).$$

The simulator takes in a DDH challenge $(g, A = g^a, B = g^b, T)$ with

$$T = g^{ab}$$
 or $T = R = g^z$.

Setup. The two uncontrolled voters are v_1 and v_2 . The simulator implicitly sets:

$$y_1' = \frac{\bar{y}_1}{a}, \qquad y_2' = \frac{\bar{y}_2}{a}, \qquad k = \bar{k} \cdot a, \qquad \lambda = \bar{\lambda} \cdot a.$$

while all the other parameters are chosen uniformly at random.

The parameters of A_2 are **leaked** to the adversary and the required commitments are done.

Setup. The *v-tokens* of the uncontrolled voters are constructed in this way:

$$\begin{split} b_1 &= \left(g^{y_1''\bar{y}_1(d+\bar{k}-\bar{\lambda})} \cdot B^{y_1''\bar{y}_1}, B^{y_1''\bar{y}_1} \cdot g^{y_1''\bar{y}_1} d \right), \\ b_2 &= \left(B^{-y_2''\bar{y}_2} \cdot g^{y_2''\bar{y}_2e}, g^{y_2''\bar{y}_2(e-\bar{k}+\bar{\lambda})} \cdot B^{-y_2''\bar{y}_2} \right), \end{split}$$

implicitly setting

$$x_1 + k = (d + \overline{k} - \overline{\lambda})a + ab,$$

$$x_1 + \lambda = ab + da,$$

$$x_2 + k = -ab + ea,$$

$$x_2 + \lambda = (e - \overline{k} + \overline{\lambda})a - ab.$$

so that the DDH challenge appears only in the votes.

Phase 1 The adversary chooses some voters u, $3 \le u \le N$

$$V_{u} = \left(g^{\alpha(x_{u}+k)}, g^{\beta(x_{u}+\lambda)}\right) = \left(g^{\alpha x_{u}} \cdot A^{\bar{\lambda}\alpha}, g^{\beta x_{u}} \cdot A^{\bar{\lambda}\beta}\right). \tag{14}$$

Challenge The votes are constructed as:

$$V_1 = \left(T^{\alpha} \cdot A^{(d+\bar{k}-\bar{\lambda})\alpha}, T^{\beta} \cdot A^{\beta \cdot d}\right), \tag{15}$$

$$V_2 = \left(T^{-\beta} \cdot A^{\beta \cdot e}, T^{-\alpha} \cdot A^{\alpha(e - \bar{k} + \bar{\lambda})}\right). \tag{16}$$

Note that:

$$V_{1,\alpha} \cdot V_{2,\alpha} \cdot \prod_{i=3}^{N} V_{i,\alpha} = A^{(d+e)\alpha} \cdot \prod_{i=3}^{N} V_{i,\alpha}, \tag{17}$$

$$V_{1,\beta} \cdot V_{2,\beta} \cdot \prod_{i=3}^{N} V_{i,\beta} = A^{(d+e)\beta} \cdot \prod_{i=3}^{N} V_{i,\beta},$$
 (18)

so the product of all the votes received by both of the candidates does not contain the value of the challenge T.

Guess

Introduction

- The adversary outputs a guess on the challenge.
- The simulator outputs 0 to guess that $T = g^{ab}$ if the guess of A was correct, otherwise it outputs 1 to indicate that T is random.
- If T is not random the simulator S gives a perfect simulation:

$$V_{1} = \left(T^{\alpha} \cdot A^{(d+\bar{k}-\bar{\lambda})\alpha}, T^{\beta} \cdot A^{\beta \cdot d}\right) = \left(g^{\alpha(x_{1}+k)}, g^{\beta(x_{1}+\lambda)}\right), \tag{19}$$

$$V_2 = \left(T^{-\beta} \cdot A^{\beta \cdot e}, T^{-\alpha} \cdot A^{\alpha(e-\bar{k}+\bar{\lambda})}\right) = \left(g^{\beta(x_2+k)}, g^{\alpha(x_2+\lambda)}\right). \tag{20}$$

■ This means that the advantage is preserved and so it holds that:

$$\mathbb{P}[\mathcal{S}(g,A,B,T=g^{ab})=0]=\frac{1}{2}+\varepsilon. \tag{21}$$

■ On the contrary when T is a random element $R \in \mathbb{G}$ the votes are completely random values from the adversary point of view, so:

$$\mathbb{P}[S(g, A, B, T = R) = 0] = \frac{1}{2}.$$
 (22)

Therefore, $\mathcal S$ can play the DDH game with non-negligible advantage $\frac{\varepsilon}{2}$.

Articles:

- Two-Candidates Protocol (concluded),
- C-Candidates Protocol.

Implementation:

- Hyperledger,
- Quadrans.

Proof of Security

Thank you for your attention!

Introduction

Appendix

This section was not part of the seminar but has been added to clarify some presented concepts.

On the honesty of \mathcal{A}_1 I

Finally, a voter can ask (always in a safe and authenticated environment) for a proof that in the registration phase the authority \mathcal{A}_1 correctly computed and identified the *v-tokens*, i.e. that the *v-token* identified as valid by \mathcal{A}_1 was the one containing k.

Recall that a v-token is:

$$b_{i,j} = g^{y_i(x_i + \sigma_{i,j})} = g^{y_i \cdot x_i} \cdot g^{y_i \cdot \sigma_{i,j}}, \quad \text{with} \quad \sigma_{i,j} \in \{k, \lambda\}.$$
 (23)

 A_1 starts by decommitting $(v_i, g^{y_i'x_i})$ to the voter, then computes $g^{y_i^{v_i}}$ from $g^{y_i^{v_i'}}$ setting:

$$\omega = y_i' x_i, \qquad u = g, \qquad y = g^{y_i' x_i}, \qquad h = g^{y_i''}, \qquad z = g^{y_i \cdot x_i}.$$
 (24)

On the honesty of \mathcal{A}_1 II

Then the voter knows g, g^{y_i} , g^k , g^{λ} , $g^{r \cdot x_i}$ and g^r so first A_1 can prove the validity of the factor $g^{y_i \cdot x_i}$ by setting:

$$\omega = x_i, \qquad u = g^r, \qquad y = g^{r \cdot x_i}, \qquad h = g^{y_i}, \qquad z = g^{y_i \cdot x_i}.$$
 (25)

To conclude A_1 can prove than the valid coin contains k while the fake contains λ by setting:

$$\omega = k, \qquad u = g, \qquad y = g^k, \qquad h = g^{y_i}, \qquad z = g^{y_i \cdot k}, \qquad (26)$$

and:

$$\omega = \lambda, \qquad u = g, \qquad y = g^{\lambda}, \qquad h = g^{y_i}, \qquad z = g^{y_i \cdot \lambda},$$
 (27)

where the values of z can be derived by the voter dividing the v-tokens by $g^{y_i \cdot x_i}$ that has been proved correct in the previous step.

Security Considerations (of the ZK protocol) I

If the DDH assumption holds then:

- **Completeness.** To show that this protocol is correct, it suffices to verify that the equations of steps 3 and 4 hold when *s* is computed correctly.
- **Soundness.** To show soundness first note that the prover can guess all *t* values of the challenges *c* only with probability 2^{-t} which is negligible. Therefore if the prover manages to complete a proof with more than negligible probability then there has to be a repetition in which the prover does not fail even when guessing wrong, i.e. it can answer both possible challenges correctly.

Security Considerations II

- **Zero-knowledge.** To show that we use a simulator S that takes in input (u, y, h, z) and can interact with a (possibly malicious) verifier V producing a view that is indistinguishable from a real one, as follows:
 - **1** \mathcal{S} initialises the verifier V with u, y, h, z and i = 0;
 - 2 \mathcal{S} selects $c' \in \{0,1\}$ at random;
 - \mathfrak{S} selects $s \in \mathbb{Z}_p$ at random and sets $t_1 = u^s \cdot y^{-c'}$, $t_2 = h^s \cdot z^{-c'}$;
 - 4 S gives (t_1, t_2) and gets the challenge c;
 - If $c \neq c'$ S rewinds V and goes back to step 2 with the same i, otherwise it proceeds:
 - **5** S gives s to V, since the check succeeds, if i=t the proof successfully completes, otherwise $\mathcal S$ sets i=i+1 and proceeds with the simulation repeating from step 2.

If there exists a $\,V\,$ that can distinguish this simulation from a real protocol interaction then we can break DDH assumption.

Commitment Scheme

A commitment scheme is composed by two algorithms:

- Commit(m, r): takes the message m to commit with some random value r as input and outputs the commitment c and an opening value d.
- Verify(c, m, d): takes the commitment c, the message m and the decommitment value d and outputs true if the verification succeeds, false otherwise.

A commitment scheme must have the following two properties:

- **Binding:** it is infeasible to find $m' \neq m$ and d, d' such that Verify(c, m, d) = Verify(c, m', d') = true.
- **Hiding:** Let $[c_1, d_1] = \text{Commit}(m_1, r_1)$ and $[c_2, d_2] = \text{Commit}(m_2, r_2)$ with $m_1 \neq m_2$, then it is infeasible for an attacker having only c_1 , c_2 , m_1 and m_2 to distinguish which c_i corresponds to which m_i .

DDHA specifications

Examples of groups for which the Decisional Diffe Hellman is believed to hold are:

- \mathbb{Q}_p the subgroup of quadratic residues in \mathbb{Z}_p with p safe prime.
- Cyclic groups of order (p-1)(q-1) with p and q safe primes.
- Some prime order elliptic curves over GF(p).

