INDIAN INSTITUTE OF TECHNOLOGY PALAKKAD

Department of Computer Science and Engineering CS5616 Computational Complexity January May 2024

Problem Set -1 Total Points -50 Name: Neeraj Krishna N Given on 03 Feb Roll no: 112101033 Due on 11 Feb

Instructions

• Use of resources other than class notes and references is forbidden.

- Collaboration is not allowed. Credit will be given for attempts and partial answers.
- 1. (15 points) [More properties of R and RE] We saw in class that recursive languages are closed under complement. We will see more properties below.
 - (a) (5 points) Show that recursively enumerable languages are closed under union and intersection.
 - (b) (5 points) For a language L, and $i \ge 1$, $L^i = \{a_1 a_2 \dots a_i \mid a_1, \dots, a_i \in L\}$. The Kleene closure of L, denoted by L^* , is defined as $\{\epsilon\} \cup \bigcup_{i\ge 1} L^i$. Show that recursive and recursively enumerable languages are closed under Kleene closure.
 - (c) (5 points) For languages $L_1, L_2 \subseteq \Sigma^*$, define $L_1/L_2 = \{x \in \Sigma^* \mid \exists y \in L_2 \ xy \in L_1\}$. Show that if L_1 and L_2 are recursively enumerable, then so is L_1/L_2 .

Solution: Write your answer here.

(a) 1. To show: recursively enumerable are closed under union

Let L_1 and L_2 be the 2 recursively enumerable languages and let the turing machines (not necessarily total) accepting them be M_1 and M_2 respectively. Now we need to give a turing machine M, which accepts $L = L_1 \cup L_2$.

The description of M is as follows:

- "On input x,
- (a) Run one step of M_1 on x
- (b) Run one step of M_2 on x
- (c) As long as either of them does not accept, repeat steps (a) and (b)
- (d) If one of them accept, accept and halt

To prove : M accepts $L = L_1 \cup L_2$

(a) Proof of $L \subseteq L(M)$:

 $x \in L$

 $\implies x \in L_1 \cup L_2$

 $\implies x \in L(M_1) \lor x \in L(M_2) \text{ (since } L_1 = L(M_1) \text{ and } L_2 = L(M_2))$

 \implies Either M_1 or M_2 will halt and accept (and since we are performing one step in each machine, we will not be stuck in a loop, even if one of the machine loops on the given input)

 $\Longrightarrow M$ halts and accepts

 $\implies x \in L(M)$

```
(b) Proof of L(M) \subseteq L:
        x \in L(M)
        \implies M accepts x
        \implies M_1 accepted x and M reached (d) in the algorithm
        \vee M_2 accepted x and M reached (d) in the algorithm
        \implies x \in L(M_1) \lor x \in L(M_2)
        \implies x \in L_1 \lor x \in L_2 \text{ (since } L_1 = L(M_1) \text{ and } L_2 = L(M_2))
        \implies x \in L_1 \cup L_2
        \implies x \in L
   Hence Proved
2. To show: recursively enumerable are closed under intersection
   Let L_1 and L_2 be the 2 recursively enumerable languages and let the turing
   machines (not necessarily total) accepting them be M_1 and M_2 respectively.
   Now we need to give a turing machine M, which accepts L = L_1 \cap L_2.
   The description of M is as follows:
   "On input x,
   (a) Run one step of M_1 on x
   (b) Run one step of M_2 on x
   (c) As long as both of them do not halt, repeat step (a) and step (b)
   (d) If both of them accept, accept and halt
   To prove : M accepts L = L_1 \cap L_2
   (a) Proof of L \subseteq L(M):
        x \in L
        \Longrightarrow x \in L_1 \cap L_2
        \Longrightarrow x \in L(M_1) \land x \in L(M_2) (since L_1 = L(M_1) and L_2 = L(M_2))
        \implies By the description of the machine, since both M_1 and M_2 accepts,
        M accepts (and since we are performing one step in each machine, we
        will not be stuck in a loop, even if one of the machine loops on the given
        input)
        \Longrightarrow M halts and accepts
        \implies x \in L(M)
   (b) Proof of L(M) \subseteq L:
        x \in L(M)
        \implies M accepts x
        \implies M_1 accepted x \land M_2 accepted x
        and hence M reached (d) in the algorithm
        \implies x \in L(M_1) \land x \in L(M_2)
        \implies x \in L_1 \land x \in L_2 \text{ (since } L_1 = L(M_1) \text{ and } L_2 = L(M_2))
        \implies x \in L_1 \cap L_2
        \implies x \in L
   Hence Proved
```

(c)

- 2. (10 points) [Non-determinism] The machines that we saw in class have a single valued transition function and hence are *deterministic*. A nondeterministic Turing machine is a machine where the transition function can take multiple values.
 - (a) (5 points) Give a rigorous formal definition of a non-deterministic Turing machine, including a definition of configuration, next configuration relation and acceptance.
 - (b) (5 points) Argue that deterministic machines and non-deterministic machines are equivalent (in the sense that they can simulate each other).

Solution:

- (a) Non-deterministic Turing Machine is a 9-tuple $M=(Q,\Sigma,\Gamma,\vdash,\sqcup,\delta,s,t,r)$ where
 - Q is a finite set of states
 - Σ is a finite set of input alphabets
 - Γ is the finite set of tape symbols
 - $\vdash \in \Gamma \setminus \Sigma$ is the left end marker
 - $\sqcup \in \Gamma \setminus \Sigma$ is the blank symbol
 - $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{L,R\}}$ is the transition relation
 - $s \in Q$ is the start state
 - $t \in Q$ is the accept state
 - $r \in Q$ is the reject state

Configuration:

A configuration c is a tuple of $(q, w \sqcup^{\omega}, n)$ where $q \in Q, w \in \Gamma^*, n \in \mathbb{N}$

Next Configuration Relation:

It is the single step transition from one configuration to a set of configurations. $(p, z, n) \to (q, z', n')$ where n' = n + 1 if head moved right, else if head moved left, n' = n - 1, else n' = n and $((p, z), (q, z')) \in \delta$

Acceptance:

Turing machine M, is said to accept an input x, if after a finite number of steps, the configuration becomes (t, y, n) for some $y \in \Gamma^*$ and $n \in \mathbb{N}$

(b)

3. (15 points) [Undecidability]

- (a) (5 points) Consider the problem of deciding if two given Turing machines accept the same set. Formulate this as a language and show that it is undecidable.
- (b) (5 points) Consider the problem of deciding given a Turing machine and a state, whether it enters the state on some input. Formulate this as a language and show that it is undecidable.
- (c) (5 points) Show that if Membership problem is undecidable, then Halting problem is undecidable. [Note: We independently know the undecidability of both the problems. Nevertheless, this question asks to prove the implication.]

Solution:

(a) Let the language be

$$L = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$

We will show that if L is decidable, then HP^{\complement} is decidable

Let M_{σ} be a machine such that on input $\langle M, x \rangle$, it produces a description of 2 machines $\langle M_1, M_2 \rangle$ which are as follows

Description of M_1 :

- "On input y,
- (a) Run M on x
- (b) If M halts on x, Accept

,,

Description of M_2 :

- "On input y,
- (a) Run M on x
- (b) If M halts on x, Reject

,,

We will prove that $\langle M, x \rangle \in HP \Leftrightarrow \langle M_1, M_2 \rangle \notin L$

Proof of forward direction

$$\langle M, x \rangle \in HP$$

 $\Rightarrow M$ halts on x

 $\Rightarrow M_1$ accepts all strings and M_2 rejects all strings

$$\Rightarrow L(M_1) = \Sigma^* \text{ and } L(M_2) = \phi$$

$$\Rightarrow L(M_1) \neq L(M_2)$$

$$\Rightarrow \langle M_1, M_2 \rangle \notin L$$

Proof of reverse direction

$$\langle M, x \rangle \notin HP$$

 $\Rightarrow M$ does not halt on x

$$\Rightarrow L(M_1) = \phi \text{ and } L(M_2) = \phi$$

$$\Rightarrow L(M_1) = L(M_2)$$

$$\Rightarrow \langle M_1, M_2 \rangle \in L$$

Hence, L is undecidable

(b)

(c)

4. (10 points) [**Decidable or Undecidable ?**] Let |M| denote the length of the Turing

machine description. Are the following problems decidable? Justify.

- (a) (5 points) Does a Turing machine M takes at least |M| steps on some input?
- (b) (5 points) Does a Turing machine M takes at least |M| steps on all inputs?

Solution:

(a) This is decidable because every Turing Machine takes at least |M| steps on some inputs. Below is the justification

Let us take a Turing Machine M_{σ} whose description is as follows

On input M,

- 1. If M is not a valid encoding of Turing Machine, reject
- 2. Else accept

,,

The above machine accepts any valid encoding of Turing Machine. The above machine is total because there exists a **total turing machine** which checks if a string is a valid encoding of a Turing Machine

Let us take an arbitrary Turing Machine M

Let n = |M|

Let string x be $0^{|M|+1}$

For this string, the Turing Machine will take at least |M| steps

Hence for every Turing Machine M, there exists an input for which M will take at least |M| steps.

(b) Let the language be $L = \{M \mid M \text{ takes at least } |M| \text{ steps on all inputs} \}$ This is undecidable because, we can show that if the given problem is decidable, then HP is decidable. Let us take a turing machine M_{σ} which on input $\langle M, x \rangle$, provides a description of another turing machine M' which is "On input y,

- (1) Run M on x
- (2) If M halts on x, perform |M'| steps and accept

,,

We will prove that $\langle M, x \rangle \in HP \Leftrightarrow M' \in L$

Proof of forward direction

 $\langle M, x \rangle \in HP$

 $\Rightarrow M$ halts on x

 $\Rightarrow M'$ reaches step (2) and performs at least |M'| steps and then accepts

 $\Rightarrow M' \in L$

Proof of reverse direction

 $\langle M, x \rangle \notin HP$

 $\Rightarrow M$ does not halt on x

 $\Rightarrow M'$ is stuck in step 1 itself

 $\Rightarrow M'$ does not perform even a single step on any input

 $\Rightarrow M' \notin L$

Since HP is undecidable, L is undecidable