Linear Regression

Tutorial Session 3: Linear Regression

Joanina, Ken, Augustin

Linear Regression

Polynomial Regression

Regularization

Bias-Variance Tradeoff

The Tree of CA

Classification vs. Regression

Binary Classification

$$f: \mathbb{R}^d \to \{0, 1\}$$
$$f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} - \beta \ge 0$$

Linear Regression

$$f: \mathbb{R}^d \to \mathbb{R}$$
$$f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} - \beta$$

0000

From the data to the linear function

• Given some data $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ with respective class labels $y_1, \dots, y_n \in \mathbb{R}$, we assume a linear relationship between x_i and corresponding label y_i :

$$x_{i,1}w_1 + x_{i,2}w_2 + \ldots + x_{i,d}w_d - \beta = y_i$$

$$\mathbf{w}^{\top}\mathbf{x}_i - \beta = y_i$$

Linear Regression

0000

From the data to the linear function

• Given some data $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ with respective class labels $y_1, \dots, y_n \in \mathbb{R}$, we assume a linear relationship between x_i and corresponding label y_i :

$$x_{i,1}w_1 + x_{i,2}w_2 + \ldots + x_{i,d}w_d - \beta = y_i$$

$$\mathbf{w}^{\top}\mathbf{x}_i - \beta = y_i$$

• this gives us an *unsolvable* set of n linear equations:

$$\begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,d} & 1 \\ x_{2,1} & x_{2,2} & \cdots & x_{2,d} & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,d} & 1 \end{bmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \\ \beta \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

From the data to the linear function

• Given some data $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ with respective class labels $y_1, \dots, y_n \in \mathbb{R}$, we assume a linear relationship between x_i and corresponding label y_i :

$$x_{i,1}w_1 + x_{i,2}w_2 + \ldots + x_{i,d}w_d - \beta = y_i$$

$$\mathbf{w}^{\top}\mathbf{x}_i - \beta = y_i$$

• this gives us an *unsolvable* set of n linear equations:

$$\begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,d} & 1 \\ x_{2,1} & x_{2,2} & \cdots & x_{2,d} & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,d} & 1 \end{bmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \\ \beta \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

• for which the *next best* solution is given by: $\mathbf{w} = (XX^{\top})^{-1}X\mathbf{y}^{\top}$

OLS Error Function

$$\mathcal{E}_{lsq}(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2 = ||\mathbf{y} - \mathbf{w}^{\top} X||^2$$

Consider a data set with three data points.

$$x_1 = 0, x_2 = 1, x_3 = 2$$

with respective labels

Linear Regression

000

$$y_1 = 0, y_2 = 1, y_3 = 0.$$

We want to fit a simple linear model $f(x) = w \cdot x$ to the data using ordinary least squares (OLS). Compute w.

Polynomial Regression

$$h(x) = w_1 + w_2 x + w_3 x^2 + \dots + w_d x^{d-1}$$

$$= w_1 \phi_1(x) + w_2 \phi_2(x) + w_3 \phi_2(x) + \dots + w_d \phi_d(x)$$

$$= \mathbf{w}^{\top} \phi(x)$$

$$\phi(x): \mathbb{R} \ni x \mapsto \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^{d-1} \end{bmatrix} \in \mathbb{R}^d$$

Linear Regression

Regularization

$$\Phi = [\phi(x_1), \phi(x_2), \dots, \phi(x_n)]$$

$$\Leftrightarrow$$

$$\mathbf{w} = (\Phi \Phi^\top)^{-1} \Phi \mathbf{y}^\top$$

Task 1.2

Now we want to fit a polynomial model $g(x) = w_1 \cdot x + w_2 \cdot x^2 = \mathbf{w}^\top \cdot \phi(x)$ where we have defined a mapping $\phi : \mathbb{R} \mapsto \mathbb{R}^2$ with

$$\phi(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix}$$

and a weight vector

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

Compute w.

Polynomial Regression - Fitting Sine Curve

Overfitting for high degrees

Overfitting for high degrees

	•			
	M = 0	M=1	M=6	M = 9
w_0	0.11	-1.31	33.24	-102297.34
$ w_1 $		0.76	-135.49	470852.74
$ w_2 $			207.87	-911589.91
w_3			-129.08	963843.87
w_4			19.42	-604186.44
w_5			4.01	227748.07
w_6			0.15	-49782.98
$ w_7 $				5656.36
w_8				-244.40
w_9				0.15

Increasing number of samples

• Increasing the size of the data set reduces the overfitting problem

Increasing number of samples

• Increasing the size of the data set reduces the overfitting problem

⇒ But usually the number of samples is limited!

Ridge Regression

- Regression with penalization: restrict large values for w
- ullet Often it is important to control the complexity of the solution ${\bf w}$

$$\mathcal{E}_{RR}(\mathbf{w}) = ||y - \mathbf{w}^{\top} X||^2 + \lambda ||w||^2$$

Solution is given by

$$\mathbf{w} = (XX^{\top} + \lambda I)^{-1} X \mathbf{y}^{\top}$$

Ridge Regression - Fitting Sine Curve

•
$$M = 9$$

		$\lambda = 0.1$	$\lambda = 10^{-6}$	$\lambda = 0$
u	^{'0}	0.83	28.58	-102297.34
u	j_1	0.69	-34.35	470852.74
u	j_2	0.51	-26.34	-911589.91
u)3	0.26	13.48	963843.87
u	j_4	-0.07	36.93	-604186.44
u	5	-0.48	12.88	227748.07
u	⁾ 6	-0.94	-36.35	-49782.98
u	7	-1.21	-0.41	5656.36
u	98	-0.27	5.55	-244.40
u	9	0.68	0.14	0.15

Bias-Variance Tradeoff

1. Show that $\hat{\mathbf{y}}_{OLS}$ is invariant under arbitrary transformations A, but $\hat{\mathbf{w}}_{OLS}$ is not.

1. Show that $\hat{\mathbf{y}}_{OLS}$ is invariant under arbitrary transformations A, but $\hat{\mathbf{w}}_{OLS}$ is not.

2. Show that $\hat{\mathbf{y}}_{RR}$ is invariant under orthogonal transformations A.

Bias-Variance Tradeoff - Simple Estimators

- Estimators are themselves random variables
- \Rightarrow They have their own distribution!

Bias-Variance Tradeoff Visualized

low bias, low variance

high bias, low variance

low bias, high variance

high bias, high variance

By Bernhard Thiery - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12694751

Bias-Variance Tradeoff

Bias and Variance in (Regularized) Linear Regression

$$\lambda = 0.3$$

$$\lambda = 0.5$$

1. If the number of data points n increases, the variance of $\hat{\mathbf{w}}$ will (a) decrease (b) increase (c) remain the same.

- 1. If the number of data points n increases, the variance of $\hat{\mathbf{w}}$ will
 - (a) decrease (b) increase (c) remain the same.
- 2. If the noise variance σ_{ϵ}^2 increases, the variance of $\hat{\mathbf{w}}$ will (a) decrease (b) increase (c) remain the same.

- 1. If the number of data points n increases, the variance of $\hat{\mathbf{w}}$ will
 - (a) decrease (b) increase (c) remain the same.
- 2. If the noise variance σ_{ϵ}^2 increases, the variance of $\hat{\mathbf{w}}$ will (a) decrease (b) increase (c) remain the same.
- 3. If the data variance σ_x^2 increases, the variance of $\hat{\mathbf{w}}$ will (a) decrease (b) increase (c) remain the same.

Linear Regression

Task 2

- 1. If the number of data points n increases, the variance of $\hat{\mathbf{w}}$ will
 - (a) decrease (b) increase (c) remain the same.
- 2. If the noise variance σ_{ϵ}^2 increases, the variance of $\hat{\mathbf{w}}$ will
 - (a) decrease (b) increase (c) remain the same.
- 3. If the data variance σ_x^2 increases, the variance of $\hat{\mathbf{w}}$ will (a) decrease (b) increase (c) remain the same.
- 4. If the true slope w increases, the variance of $\hat{\mathbf{w}}$ will
 - (a) decrease (b) increase (c) remain the same.

1. Draw a sketch showing two curves: training error vs. the number of features m and test error vs. the number of features m.

Bias-Variance Tradeoff

- 1. Draw a sketch showing two curves: training error vs. the number of features m and test error vs. the number of features m.
- 2. Annotate the plot with the two terms "Overfitting" and "Underfitting"

- 1. Draw a sketch showing two curves: training error vs. the number of features m and test error vs. the number of features m.
- 2. Annotate the plot with the two terms "Overfitting" and "Underfitting"
- 3. Draw two more curves in a second sketch: The bias of \hat{f} and the variance of \hat{f} against the number of features m.

- 4. Suppose we choose m such that we are in the "overfitting" region, but we use ridge regression with a (good) regularisation parameter $\lambda>0$. Compared to OLS,
 - (a) will the training error decrease, increase or is it ambigious?
 - (b) will the test error decrease, increase or is it ambigious?
 - (c) will the bias of \hat{f} decrease, increase or is it ambigious?
 - (d) will the variance of \hat{f} decrease, increase or is it ambigious?