Barrington's Theorem

Malek Alsalamat

Universität Kassel

February 17, 2021

Inhalt der Präsentation

In der Präsentation werden wir folgends behandeln:

- 4 Arten von Berechnungsmodelle
- ② Branching-Programme
- Zyklische Permutation
- Permutation Branching-Programme
- Seweis von Barrington Theorem

Berechnungsmodelle

Definition von Branching-Programm

Ein n-input Branching-Programm ist ein Tupel $P = (V, E_0, E_1, \vartheta_0, t)$, wobei:

- (V,E) ist eine endliche gerichtete Graph und jeder Knote hat fanout 0 or 2. Wobei E ist E₀ ∪ E₁.
- E_0 : ist die Mengen alle Kanten, die mit 0 beschriftet sind.
- E_1 : ist die Mengen alle Kanten, die mit 1 beschriftet sind.
- $\vartheta_0 \in V$ ist der *Startknote*.
- *t* ist der akzeptierende Knote (*Endknote*). In folgenden wird der Startknote mit *S* bezeichnet.

Die berechnete Funktion von P ist $f_p: \{0,1\}^n \to \{0,1\}$.

Beipiel 1: 2-input Branching-Programm

<i>x</i> ₁	<i>x</i> ₂	Ausgabe
0	0	0
0	1	1
1	0	1
1	1	1

x_1	<i>x</i> ₂	Ausgabe
0	0	0
0	1	1
1	0	1
1	1	1

 \Rightarrow das Programm berechnet die Funktion $f(x_1, x_2) = x_1 \vee x_2$.

Jedes Branching-Programm besitzt :

• Größe: Die Größe von einem Branching-Programm ist die Anzahl der Knoten in V und wird mit |V|.

Jedes Branching-Programm besitzt :

• Tiefe: Die Tiefe oder Länge von einem Branching-Programm ist der längste Pfad in unserem Graph (V, E).

Jedes Branching-Programm besitzt :

• Tiefe: Die Tiefe oder Länge von einem Branching-Programm ist der längste Pfad in unserem Graph (V, E).

Jedes Branching-Programm besitzt :

• Tiefe: Die Tiefe oder Länge von einem Branching-Programm ist der längste Pfad in unserem Graph (V, E).

Jedes Branching-Programm besitzt :

• Breite: Die Breite von einem Branching-Programm ist die maximale Anzahl von Knoten in einem Level.

$$Majority(x) = \begin{cases} 1, & \sum_{i=0}^{N} x_i \ge n/2 \\ 0, & sonst \end{cases}$$

 $\operatorname{NC} = \bigcup_{i=0}^{\infty} \operatorname{NC}^{i}$. Für alle $i \in \mathbb{N}$ ist NC^{i} die Klasse aller Sprachen, die von einer Schaltkreisfamilie mit polynomieller Größe, Tiefe $\mathcal{O}(\log^{i}(n))$ und einen Fan-In von höchstens 2 erkannt werden.

In NC^1 liegen beispielsweise die Addition und Multiplikation, sowie die Majority-Funktion.

Im Jahr 1986 hat Barrington gezeigt, dass $NC^1=5$ -BP. Und dadurch gezeigt, dass die Majority-Funktion durch solche BP berechnet werden können.

Zyklische Permutation

Permutationen

Eine Permutation von $\{1, \ldots, n\}$ ist eine bijektive Abbildung $\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\}$, $i \to \sigma(i)$.

Zyklische Schreibweiße = $(i_1, \sigma(i_1), \sigma(\sigma(i_1)), \dots)$.

Eine Permutation heißt zyklisch wenn :

$$\sigma(i_j) = \begin{cases} i_1 & j = n \\ i_{j+1} & \text{sonst} \end{cases}$$

Beispiele:

$$a_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
$$a_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$$

 $a_1 = (1,2,3), a_2 = (1,3,2)(4,5) \Rightarrow a_1 \text{ ist zyklisch, aber } a_2 \text{ nicht.}$

Ein w-Permutation Branching-Programm ist ein BP mit folgende Eigenschaften:

- Jedes Level hat genau w Knoten und somit ist die Bereite w.
- Jedes Level ist mit der selben Variable beschriftet.
- Die Verbindung zwischen zwei Levels realisieren Permutationen von Typ $[w] \rightarrow [w]$. Wobei [w] ist $\{1, \dots, w\}$.
- Jeder Knote v aus dem Level; wird mit dem Input 0 oder 1 nur auf Knoten aus dem Level; abgebildet. Kurz gesagt, das Programm liegt in Schichtenform.
- Die 1-Kanten sind mit → bezeichnet und die 0-Kanten mit

Für eine boolesche Funktion f und eine Permutation σ , sagen wir P σ -berechnet f, falls für jedes Input \times gilt:

$$P(x) = \begin{cases} \sigma & , f(x) = 1 \\ e & , f(x) = 0 \end{cases}$$

wobei e ist die identität Permutation.

Was berechnet P? und was passiert auf die Eingabe (0,0)?

Die Permutation für zwischen ersten und zweiten Level:

Die Permutation für 1- Kanten zwischen dem ersten und zweiten Level:

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 3 & 5 \end{pmatrix} = (1,2)(3,4)(5)$$

Die Permutation für 0 — Kanten zwischen dem ersten und zweiten Level:

$$e_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = id$$

Die Permutation zwischen dem zweiten und dritten Level:

 x_2

Die Permutation für 1 - Kanten zwischen dem zweiten und dritten Level:

$$\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = id$$

Die Permutation für 0 - Kanten zwischen dem zweiten und dritten Level:

$$e_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 2 & 5 \end{pmatrix} = (1,2)(3,4)(5)$$

Bei Eingabe $(0,0) \Rightarrow Ausgabe = e_1e_2 = (1,2)(3,4)(5)$

Bei Eingabe
$$(0,0) \Rightarrow Ausgabe = e_1e_2 = (1,2)(3,4)(5)$$

Bei Eingabe
$$(1,1) \Rightarrow \mathsf{Ausgabe} = \sigma_1 \sigma_2 = (1,2)(3,4)(5)$$

Bei Eingabe
$$(0,1) \Rightarrow \mathsf{Ausgabe} = e_1 \sigma_2 = id$$

Bei Eingabe
$$(1,0) \Rightarrow Ausgabe = \sigma_1 e_2 = id$$

Barrington Theorem

Wenn eine boolesche Funktion durch DeMorgan Formel mit polynomischer Größe berechnet werden kann, dann kann sie auch durch ein 5-Branching Programm mit polynomischer Tiefe berechnet werden.

DeMorgan Formel

Formel: ist ein Schaltkreis dessen Gattern höchsten **fan-out 1** haben. Die Größe von einem Formel ist die Anzahl von Gattern.

DeMorgan Schaltkreis: ist ein Schaltkreis über die boolesche Operationen $\{\lor,\land\}$, aber die Eingaben sind die Variable und deren Negation.

Also man kann sagen, dass eine DeMorgan Formel ein Schaltkreis mit höchsten **fan-out 1** über die boolesche Operationen $\{\lor, \neg, \land\}$ ist.

Satz 1

Wenn P σ -berechnet f und σ eine zyklische Permutation ist, dann existiert ein Permutation-Branching-Programm P' mit der gleichen Größe wie P, welches τ -berechnet f für eine zyklische Permutation τ .

Beweis: sei $P(x) = \sigma = \sigma_1 \sigma_2 \dots \sigma_t$.

- σ und τ sind beide zyklische Permutationen.
- dann gilt $\tau = \theta \sigma \theta^{-1}$ für beliebig Permutation θ .
- dann nimm $P'(x) = \theta \sigma_1 \sigma_2 \dots \sigma_t \theta^{-1} = \theta \sigma \theta^{-1} = \tau$, indem σ_1 durch $\theta \sigma_1$ und σ_t durch $\sigma_t \theta^{-1}$ ersetzt werden.

Sei nun P durch die folgende Graph gegeben:

Sei nun P durch die folgende Graph gegeben:

Die 1-Kanten realisieren die Permutation $\sigma_1 = (1, 3, 5, 2, 4)$.

Die 0-Kanten realisieren die Permutation $\sigma_0 = id$.

Sei nun P durch die folgende Graph gegeben:

Die 1-Kanten realisieren die Permutation $\sigma_1 = (1, 3, 5, 2, 4)$.

Die 0-Kanten realisieren die Permutation $\sigma_0 = id$.

 \Rightarrow die berechnete Funktion ist f(x) = x mit $\sigma = (1, 3, 5, 2, 4)$.

Sei jetzt

$$\theta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix} \Rightarrow \theta^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix}.$$

Sei jetzt

$$\theta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix} \Rightarrow \theta^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix}.$$

Jetzt berechnen wir $\theta \sigma_0 \theta^{-1}$ und $\theta \sigma_1 \theta^{-1}$.

$$\theta \sigma_0 \theta^{-1} = (1,3)(2,4,5) \circ id \circ (1,3)(2,5,4) = id.$$

Sei jetzt

$$\theta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix} \Rightarrow \theta^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix}.$$

Jetzt berechnen wir $\theta \sigma_0 \theta^{-1}$ und $\theta \sigma_1 \theta^{-1}$.

$$\theta \sigma_0 \theta^{-1} = (1,3)(2,4,5) \circ id \circ (1,3)(2,5,4) = id.$$

$$\theta \sigma_1 \theta^{-1} = (1,3)(2,4,5) \circ (1,3,5,2,4) \circ (1,3)(2,5,4) = (1,4,5,2,3).$$

Und somit sieht das Graph wie folgt aus:

Das Programm berechnet auch die Funktion f(x) = x aber durch andere Permutation und zwar $\tau = (1, 4, 5, 2, 3)$.

Satz 2 (Negation)

Wenn P σ -berechnet f und σ eine zyklische Permutation ist, dann existiert ein Permutation-Branching-Programm mit der selben Größe von P, welches σ -berechnet $\neg f$.

Beweis: Nach dem Satz 1 können wir ein PBP P' kriegen, welches σ^{-1} -berechnet f.

- rechne $P'(x) = \sigma^{-1} = \sigma_1 \sigma_2 \dots \sigma_t$, σ^{-1} -berechnet f mit Satz-1.
- dann gilt: $P'(x) = \sigma^{-1}$ falls f(x) = 1, und P'(x) = e falls f(x) = 0.
- nimm $P''(x) = \sigma_1 \sigma_2 \dots \sigma_t \sigma$, indem σ_t durch $\sigma_t \sigma$ ersetzt wird.

Angewendet auf Beispiel von Satz 1:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix} \Rightarrow \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix}.$$

Angewendet auf Beispiel von Satz 1:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix} \Rightarrow \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix}.$$

Die neue Permutation für die 1-Kanten ist:

$$\sigma^{-1}\sigma = id$$
.

Die neue Permutation für die 0-Kanten ist:

$$\sigma^{-1}id = \sigma^{-1} = (1, 4, 2, 5, 3).$$

Und somit sieht das Graph wie folgt aus:

Das Programm berechnet die Funktion $\neg f(x) = x$.

Χ

Satz 3 (AND)

Wenn P σ -berechnet f und Q τ -berechnet g, dann existiert ein PBP mit der Tiefe 2(|P| + |Q|), welches $\sigma \tau \sigma^{-1} \tau^{-1}$ -berechnet $f \wedge g$.

Beweis: Nach dem Satz 1 bekommen wir ein Programm mit σ^{-1} -berechnet f und das andere mit τ^{-1} -berechnet g.

Wir komponieren die 4 Programme in diese Reihenfolge $\sigma' =$ id. Für den Fall f = 1 und g = 1 brauchen wir den Folgenden Satz.

Satz 4

Es gibt zwei zyklische Permutationen auf [5] σ und τ so, dass $\sigma \tau \sigma^{-1} \tau^{-1}$ zvklisch ist.

Beweis: Durch ein Beispiel.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}, \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}, \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix}$$
$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}, \tau^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}, \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix}$$
$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}, \tau^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3 \end{pmatrix}$$
$$\sigma \tau \sigma^{-1} \tau^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 1 & 4 \end{pmatrix}$$

Theorem 1

Für jede zyklische Permutation auf [5] σ und für jedes DeMorgan Schaltkreis der Tiefe d, die entsprechende Boolesche Funktion kann dank einem 5-PBP der Tiefe höchstens 4^d σ -berechnet werden.

Beweis: Durch Induktion über d.

IA: Für $d=0 \Rightarrow$ der Schaltkreis ist entweder die Variable x oder ihre Negation $\neg x$. Für f(x)=x wurde ein Beispiel gegeben und nach dem Satz 2 können wir ein 5-PBP konstruieren, welches $f(x)=\neg x$ berechnet.

IS: Für d \geq 1. Nach dem Satz 3 können wir annehmen, dass $f=g \wedge h$, wobei g und h Formeln deren Tiefe d - 1 und deren 5-PBP (nach der Induktion Hypothese) G und H haben höchsten die Tiefe 4^{d-1} .

Nach dem Satz 1 können wir annehmen, dass G σ -berechnet g und H τ -berechnet h. Nach dem Satz 3 existiert ein 5-PBP mit der Tiefe $2(size(G) + size(H)) \le 4^d$, welches $\sigma\tau\sigma^{-1}\tau^{-1}$ -berechnet f. Nach dem Satz 4 ist dies eine zyklische Permutation \square .

 $w\hbox{-} Permutation\ Branching\hbox{-} Programm\ zu\ BP\ umwandeln:$

w-Permutation Branching-Programm zu BP umwandeln:

 $w\hbox{-} Permutation\ Branching\hbox{-} Programm\ zu\ BP\ umwandeln:$

