Networking

Quelli della B1

Indice

1	Introduzione
1.1	Terminologia
	1.1.1 Tipi di flusso trasmissivo 4
1.2	Il modello di riferimento ISO/OSI
1.3	Internet protocol suite (TCP/IP)
2	Livello Fisico
2.1	Terminologia
	2.1.1 Informazione
	2.1.2 Codice
	2.1.3 Segnale
	2.1.4 Lunghezza d'onda
	2.1.5 Spettro
	2.1.6 Ampiezza di banda
2.2	Qualità delle trasmissioni
	2.2.1 Criteri di valutazione in base alle prestazioni
	2.2.2 Criteri di valutazione in base all'affidabilità 8
2.3	Filtri
2.4	Modulazione
	2.4.1 Ad onda continua
	2.4.2 Impulsiva
	2.4.3 Digitale
2.5	Alterazioni del segnale
	2.5.1 Attenuazione
	2.5.2 Distorsione
	2.5.3 Rumore
	2.5.4 Interferenza
2.6	Limiti alla velocità di trasferimento
	2.6.1 Classificazione dei canali trasmissivi 9
	2.6.2 Teorema di Nyquist
	2.6.3 Teorema di Shannon
	2.6.4 Velocità di modulazione
3	Livello di Collegamento
3.1	Tipi di trasmissione
	3.1.1 Sincrona
	3.1.2 Asincrona
	3.1.3 Orientata al carattere
	3.1.4 Orientata al bit
3.2	Controllo degli errori
	3.2.1 Ridondanza
3.3	Protocolli primario-secondario
	3.3.1 RTS-CTS
	2.2.2. YON YOE 10

	3.3.3 ARQ	10
4	Livello di Rete	11
4.1	Terminologia	11
	4.1.1 Rete	11
	4.1.2 DTE	11
	4.1.3 DCE	11
	4.1.4 CPE	11
4.2	Tipologie di rete	11
4.3	Topologia delle reti	11
4.4	Qualità della rete	11
4.5	Routing	11
	4.5.1 Tabella di routing	11
4.6	Protocolli di Routing	11
5	Livello di Trasporto	12
6	Livelli Applicativi	13
6.1	Servizi di Rete	13
	6.1.1 Telnet	13

1 Introduzione 4

1 Introduzione

Gioara

- 1.1 Terminologia
- 1.1.1 Tipi di flusso trasmissivo
- 1.2 Il modello di riferimento ISO/OSI
- 1.3 Internet protocol suite (TCP/IP)

2 Livello Fisico

Nonostante l'amministratore di rete non abbia la possibilità di influirvi direttamente, è importante descrivere lo strato fisico poiché esso influenza significativamente le prestazioni della rete.

2.1 Terminologia

2.1.1 Informazione

L'informazione è una grandezza misurabile in bit. In particolare,

$$Q = log_2 m$$

dove Q è il numero di bit necessari per rappresentare l'informazione relativa ad m possibili stati.

2.1.2 Codice

Al fine di rappresentare l'informazione in maniera tale da renderne più semplice la gestione, un codice associa sequenze di bit a caratteri. I codici che godono della più ampia diffusione sono:

- ASCII (American Standard Code for Information Interchange, 7 bit estesi a 1 byte)
- BCD (Binary-Coded Decimal)
- AIKEN
- Gray
- EBCDIC (Extended Binary Coded Decimal Code, 8 bit), in uso presso le banche

2.1.3 Segnale

Si dice segnale una grandezza fisica variabile nel tempo corrispondente un'informazione. Un segnale **analogico** varia in modo continuo nel tempo ed ha infiniti livelli di intensità; un segnale **digitale** varia invece in modo discreto e ha solo due livelli di intensità. Ogni tipo di dato può essere rappresentato in entrambe le maniere e può essere convertito da analogico a digitale e viceversa.

Fra i segnali analogici assumono particolare rilevanza i **segnali sinusoidali**, ossia segnali che variano nel tempo secondo una legge del tipo

$$u = Usen(\omega t + \Phi)$$

dove

Fig. 1: Rappresentazione grafica di un segnale sinusoidale

- \bullet u è l'ampiezza istantanea
- ullet U è l'ampiezza massima
- \bullet ω è la velocità angolare
- \bullet Φ è lo sfasamento rispetto all'origine
- l'intervallo di tempo impiegato dall'onda per tornare allo stesso livello d'intensità è detto *periodo*.
- 1/t = f è detta frequenza (misurabile in Hz)

2.1.4 Lunghezza d'onda

In un segnale sinusoidale, la distanza tra due massimi relativi è detta lunghezza d'onda $\lambda = c/f$ (dove c è la velocità di propagazione del segnale).

2.1.5 Spettro

Lo spettro è l'insieme delle frequenze che compongono un segnale. Questa affermazione, non necessariamente di immediata comprensione, diventa subito chiara se si tiene presente il **teorema di Fourier**, il quale afferma che un segnale può essere rappresentato come somma di sinusoidi (potenzialmente infinite) con caratteristiche differenti.

2.1.6 Ampiezza di banda

L'ampiezza di banda è costituita dall'insieme di frequenze dello spettro *ef-fettivamente utilizzate* e corrisponde alla massima velocità teorica della rete. Si parla di *banda larga* nel caso in cui l'ampiezza di banda sia sensibilmente superiore a quella utilizzata correntemente per le comunicazioni telefoniche.

2.2 Qualità delle trasmissioni

Come già accennato in precedenza, é lo strato fisico che determina in larga parte la qualità delle comunicazioni, valutabile in base a prestazioni e affidabilità

Vi sono numerosi strumenti software per valutare la qualità di una rete, quali:

- il comando Unix ping, che indica se un host remoto possa essere raggiunto e riporta statistiche sui pacchetti persi
- il comando Unix traceroute o tracepath, che indica i dispositivi attraversati per raggiungere una data destinazione
- applicazioni web quali ad esempio **speedtest.net** e Ne.Me.Sys, quest'ultimo sviluppato da AGCOM, i cui risultati possono essere utilizzati come elemento probatorio nel caso in cui l'utente voglia esercitare il diritto di reclamo e recesso rispetto a promesse contrattuali di velocità di accesso ad Internet non mantenute dall'operatore.

2.2.1 Criteri di valutazione in base alle prestazioni

- ritardo: tempo necessario per il transito dei dati
- tempo di risposta: tempo che intercorre tra il momento in cui viene effettuata una richiesta e il momento in cui si ottiene una risposta
- throughput: quantità di dati spedita nell'unità di tempo; rappresenta l'effettiva velocità della rete
- latenza: tempo necessario perché un messaggio giunga a destinazione; per il suo calcolo si tiene conto di:
 - tempo di propagazione: tempo di transito sulla rete per arrivare dal mittente al destinatario
 - **tempo di trasmissione**: tempo necessario per immettere i bit sulla rete, ossia $\frac{dim_m}{v}$, dove dim_m è la dimensione del messaggio e v la velocità trasmissiva
 - tempo di inoltro: tempo necessario ai nodi per consegnare il messaggio in transito, non legato al traffico ma solo ad hardware e software
 - tempo di attesa nelle code di rete, dipendente dal traffico

2.2.2 Criteri di valutazione in base all'affidabilità

• jitter: variabilità del ritardo con cui i pacchetti vengono consegnari in ricezione

• packet loss: pacchetti persi.

2.3 Filtri

Un filtro è un sistema che tratta le varie componenti del segnale in modo diverso a seconda della loro frequenza.

E' opportuna innanzitutto una distinzione tra filtri passivi ed attivi: i primi sono costituiti solamente da resistenze e condensatori, mentre i secondi includono altre componenti, come i transistor e gli amplificatori. Inoltre, a seconda del comportamento, si distinguono quattro tipi di filtri:

• filtro passa basso: permette il passaggio delle frequenze al di sotto di una determinata frequenza di taglio, definita come

$$\frac{v_{out}}{v_{in}} = \frac{1}{(2)^{1/2}}$$

dove v_{in} è il segnale in ingresso e v_{out} il segnale in uscita.

- filtro passa alto: complementare al filtro passa basso, permette il passaggio delle frequenze al di sopra della frequenza di taglio, definita come sopra
- filtro passa banda: composizione di un filtro passa basso e un filtro passa alto
- filtro elimina banda: complemento del filtro passa banda, blocca le frequenze comprese tra due frequenze di taglio.

- 2.4 Modulazione
- 2.4.1 Ad onda continua
- 2.4.2 Impulsiva
- 2.4.3 Digitale
- 2.5 Alterazioni del segnale
- 2.5.1 Attenuazione
- 2.5.2 Distorsione
- **2.5.3** Rumore
- 2.5.4 Interferenza
- 2.6 Limiti alla velocità di trasferimento
- 2.6.1 Classificazione dei canali trasmissivi
- 2.6.2 Teorema di Nyquist
- 2.6.3 Teorema di Shannon
- 2.6.4 Velocità di modulazione

3 Livello di Collegamento

- 3.1 Tipi di trasmissione
- 3.1.1 Sincrona
- 3.1.2 Asincrona
- 3.1.3 Orientata al carattere
- 3.1.4 Orientata al bit
- 3.2 Controllo degli errori
- 3.2.1 Ridondanza
- 3.3 Protocolli primario-secondario
- 3.3.1 RTS-CTS
- 3.3.2 XON-XOF
- 3.3.3 ARQ

4 Livello di Rete

4 Livello di Rete

- 4.1 Terminologia
- 4.1.1 Rete
- 4.1.2 DTE
- 4.1.3 DCE
- 4.1.4 CPE
- 4.2 Tipologie di rete
- 4.3 Topologia delle reti
- 4.4 Qualità della rete
- 4.5 Routing
- 4.5.1 Tabella di routing

netstat -nr

4.6 Protocolli di Routing

Claudio

5 Livello di Trasporto

6 Livelli Applicativi

6.1 Servizi di Rete

Tommaso

6.1.1 Telnet