

Sistem Uygulama Aşaması: Bilgisayar Mühendisliği Bakış Açısı

Yazılım ve donanım entegrasyonunu içeren sistemlerin uygulanması aşamasında temel prensipleri, stratejileri ve önemli aşamaları ele alınacaktır.

Öğr. Gör. Erhan AKAGÜNDÜZ

Sistem Geliştirme Yaklaşımları

Şelale Modeli

Sıralı, adımlar halinde ilerleyen klasik yöntem.

Çevik (Agile) Model

Esnek, iteratif, sürekli geri bildirim odaklı.

Spiral Model

Risk odaklı, prototipleme ve geliştirme döngüleri.

Sistem Tasarımı: Konsept ve Planlama

3

Sistem Gereksinimleri

Kullanıcı ihtiyaçları ve iş gereksinimleri.

Mimarinin Belirlenmesi

Sistem bileşenleri, veri akışı ve etkileşimler.

Tasarım Belgesinin Oluşturulması

Detaylı tasarım spesifikasyonları.

Donanım ve Yazılım Entegrasyonu

Donanım Seçimi

Performans, uyumluluk, maliyet faktörleri.

Yazılım Geliştirme

Uygulama kodu yazma, test etme, hata ayıklama.

Entegrasyon ve Test

Donanım ve yazılım bileşenlerini bir araya getirmek.

Veri Tabanı ve Kullanıcı Ara Yüzü Tasarımı

Veri modeli, tablolar, ilişkiler, sorgu optimizasyonu.

Kullanıcı deneyimi odaklı tasarım, gezinti, etkileşim.

Uygulama Geliştirme Metodolojileri

- Suçluluk (Waterfall) modeli:
 Adımlar halinde ilerleme.
- **2** Çevik (Agile): Esnek, iteratif, hızlı geri bildirim.

Spiral Model: Risk odaklı, prototipleme döngüleri.

Test ve Doğrulama Süreçleri

Birim Testleri

Tekil kod parçalarının doğruluğunu test etme.

Entegrasyon Testleri

Farklı bileşenlerin birlikte çalışabilirliğini kontrol etme.

_____ Sistem Testleri

Tüm sistemin işlevselliğini ve performansını değerlendirme.

Kabul Testleri

Kullanıcıların sistemin beklentilere uygunluğunu onaylamaları.

Olası Teknik Zorluklar ve Çözümler

Uyumluluk Sorunları

Farklı bileşenler arasındaki uyumsuzluklar.

Performans Sorunları

Yüksek iş yükü altında sistemin yavaşlaması.

Güvenlik Açıkları

Yetkisiz erişim veya veri ihlalleri riski.

Performans Optimizasyonu ve İyileştirme

1

Profilleme

Sistemin darboğazlarını belirlemek.

2

Kod Optimizasyonu

Daha verimli kod yazmak.

3

Veri Tabanı Optimizasyonu

Sorgu performansını artırmak.

4

Donanım Yükseltmesi

Daha güçlü işlemciler veya daha fazla bellek.

Sistemin Sürdürülebilirliği ve Gelişimi

Sistemin güncelliğini korumak, yeni gereksinimlere uyum sağlamak ve güvenlik açıklarını gidermek için sürekli bakım, güncelleme ve geliştirme planlaması önemlidir. Bu aşamada çevik yaklaşımlar ve sürekli entegrasyon/teslim yöntemleri kullanışlıdır.