5주차

⊞ 날짜	@2024년 4월 9일	
≋ 과제	강의 요약	출석 퀴즈
≡ 세부내용	[딥러닝 1단계] 5. 심층 신경망 네트워크	
⊘ 자료	[Week5] 출석퀴즈 C1_W4.pdf	
∅ 과제물	[<u>Week5] 강의요약.pdf</u>	

심층 신경망 네트워크

🚺 더 많은 층의 심층 신경망

What is a deep neural network

• 로지스틱 회귀 : 매우 얕은 모델, 1 layer NN

• 1 hidden layer model: 2 layer NN, 로지스틱 회귀보다 덜 얕음

• 2 hidden layer model: 3 layer NN

• 5 hidden layers model : 매우 깊은 모델

• 문제에 따라 얼마나 깊은 신경망을 사용해야 하는지는 알 수 없음

→ 은닉층의 개수가 또 다른 하이퍼파라미터가 됨

→ 은닉층의 개수를 다양하게 시도하고 검증 데이터에서 평가

Deep Neural Network Notation

• 4 layer NN (3 hidden layers)

• 각각의 은닉층 유닛 개수 : 5 / 5 / 3 + 1개의 출력 유닛

• L:# of layers → L = 4

• $n^{[l]}$: # of units in layer l

$$\rightarrow n^{[0]} = n_x = 3 \mid n^{[1]} = 5 \mid n^{[2]} = 5 \mid n^{[3]} = 3 \mid n^{[4]} = n^{[L]} = 1$$

 $ullet \ a^{[l]}=g^{[l]}(z^{[l]})$: activation in layer l

$$ightarrow X = a^{[0]}$$
 , $\hat{y} = a^{[L]}$

 $\bullet \ \ w^{[l]}: \text{weights for } z^{[l]}$

② 정방향전파와 역방향전파

Forward Propagation for Layer \boldsymbol{l}

 $\bullet \ \ \mathsf{Input}: a^{[l-1]}$

- output : $a^{[l]}=g^{[l]}(z^{[l]})$, cache $(z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]})$

ullet vectorization : $A^{[l]} = q^{[l]}(Z^{[l]})$, $Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$

ullet $A^{[0]}$: 전체 훈련 데이터셋을 진행할 때의 입력 특성, 정방향 전파의 시작

Backward Propagation for Layer \boldsymbol{l}

• input : $da^{[l]}$

ullet output $:da^{[l-1]}$, $dW^{[l]}$, $db^{[l]}$

$$egin{aligned} oldsymbol{\cdot} & dz^{[l]} = da^{[l]} * g^{[l]'}(z^{[l]}) \ & dw^{[l]} = dz^{[l]}a^{[l-1]} \ & db^{[l]} = dz^{[l]} \end{aligned}$$

$$ab^{-1}=az^{-1}$$

$$da^{[l-1]}=w^{[l]T}dz^{[l]}$$

vectorization

$$egin{aligned} dZ^{[l]} &= dA^{[l]} * g^{[l]'}(Z^{[l]}) \ dW^{[l]} &= rac{1}{m} dZ^{[l]} A^{[l-1]T} \ db^{[l]} &= rac{1}{m} ext{np.sum} (dZ^{[l]}, ext{axis}{=}1, ext{keepdims}{=} ext{True}) \ dA^{[l-1]} &= W^{[l]T} dZ^{[l]} \end{aligned}$$

Summary

• $X \rightarrow ReLU \rightarrow ReLU \rightarrow Sigmoid \rightarrow \hat{y} \rightarrow L(\hat{y}, y)$

• $\mathsf{L}(\hat{y},y) o dw^{[3]}, db^{[3]}$ 계산하여 $da^{[2]}$ 전달 $o dw^{[2]}, db^{[2]}$ 계산하여 $da^{[1]}$ 전달 $o dw^{[1]}, db^{[1]}$ 계산 o 캐시에서 $z^{[1]}, z^{[2]}, z^{[3]}$ 를 옮김

• 정방향 반복은 입력 X로 초기화

• 역방향 반복은 $da^{[L]}$ 로 초기화 ightarrow 벡터화 $dA^{[L]}$ 로 초기화

🛐 심층 신경망에서의 정방향 전파

4 행렬의 차원을 알맞게 만들기

- 같은 층의 W와 dW의 차원, b와 db의 차원은 서로 같아야 함
- 같은 층의 z와 a의 차원은 서로 같아야 함

⑤ 왜 심층 신경망이 더 많은 특징을 잡아낼 수 있을까요?

Intuition about deep representation

• 얼굴 인식이나 감지 같은 시스템 구축 시 심층 신경망에서 일어나는 일

- 。 이미지를 입력으로 받음
- 。 Layer 1: 20개의 은닉 유닛이 사진을 보고 모서리가 어디에 있는지 파악
 - → 모서리 탐지기는 이미지의 더 좁은 영역을 볼 수 있음
- ∘ Layer 2: 모서리를 그룹화해서 눈, 코 등의 얼굴 일부를 감지
- 。 Layer 3 : 서로 다른 얼굴의 일부를 그룹화
 - → 얼굴 탐지기는 이미지의 더 넓은 영역을 볼 수 있음
- 。 Layer 4(출력) : 최종적으로 서로 다른 얼굴을 감지할 수 있게 됨
- 간단한 것을 먼저 찾아 모으고 모아서 복잡한 것을 찾아나가는 과정
- 음성 인식의 경우 : 파형 특징 파악(low level) → 음소 파악 → 음성의 단어 인식 → 구/문장 인식
 - ⇒ 낮은 단계에서는 간단한 특징을, 깊은 층에서는 더 복잡한 특징을 탐지해 나감

Circuit theory and deep learning

- 회로 이론 : 논리 게이트의 서로 다른 게이트에서 어떤 종류의 함수를 계산할 수 있을지에 관한 것
- small DNN에서 계산할 수 있는 함수를 얕은 NN에서 계산하려고 하면 더 많은 은닉 유닛이 필요함
- X1 XOR X1 XOR X3 XOR ... XOR Xn → XOR 트리로 계산하게 됨 ⇒ O(log n)
- 여러 은닉층을 갖지 못하는 경우 \rightarrow 은닉 노드가 기하급수적으로 많이 필요 \Rightarrow O(2ⁿ)
 - ⇒ 얕은 네트워크보다 깊은 네트워크에서 계산하기 쉬운 수학적 계산이 존재

🜀 심층 신경망 네트워크 구성하기

🔽 변수 vs 하이퍼파라미터

What are hyperparameters?

- ullet Parameters $:W^{[1]},b^{[1]},W^{[2]},b^{[2]},\cdots$
- Hyperparameters
 - 。 learning rate (α): 매개변수가 어떻게 진전될지 결정
 - 。 # of iterations : 경사하강법의 반복 횟수
 - 。 # of hidden layers (L) : 은닉층의 수
 - \circ # of hidden units $(n^{[1]}, n^{[2]}, \cdots)$: 은닉 유닛의 수
 - Choice of activation functions: ReLU, tanh, sigmoid ...
 - 。 Momentum term, mini-batch size, 정규화 매개변수 ...
 - ⇒ 하이퍼파라미터가 최종 매개변수인 W와 b를 통제

Applied deep learning is a very empirical process

- Idea : α = 0.01 → code로 구현하고 결과를 확인 → 다시 α값 조정 → 반복
- 비용함수가 더 낮은 값으로 수렴하도록 하는 하이퍼파라미터를 찾는 과정을 거침
- 경험적인 과정 : 많은 것을 시도하고 결과를 확인하는 것
- 적절한 하이퍼파라미터를 찾아도 컴퓨터 환경에 따라서 또 달라질 수 있음
 - ⇒ 다양한 하이퍼파라미터를 적용해보고 평가해보기

📵 인간의 뇌와 어떤 연관이 있을까요?

- 딥러닝 구현 시 정방향 전파와 역방향 전파를 하게 됨
 - → 이 복잡한 식을 "It's like the brain" 이라고 간단하게 비유

신경 세포

생물학적인 신경 세포를 단순화하여 모델링한 Neuron. <mark>여러 신호를 받아, 하나의 신호를 만들어 진</mark>달하는 역할을 한다. 출력을 내기 전에 활성 함수(activation function)을 통해 <mark>비선형 특성을 가할</mark> 수 있다.

- 하지만 오늘날 신경과학도 아직 하나의 뉴런이 무엇을 하는지 거의 알지 못함
- 우리의 생각보다 하나의 뉴런은 훨씬 더 복잡하고 알기 어려움
 - ⇒ 뉴런과 딥러닝의 비유가 점점 무너져 가는 중