RNA-seq解析パイプライン: *de novo*

Shuji Shigenobu 重信 秀治

基礎生物学研究所生物機能解析センター

de novo RNA-seq

Millions of short reads pre-processing

mapping

Reads aligned to reference

summarization by unit (gene, transcript, exon)

Table of counts

normalization **DE** testing

List of DE gene

systems biology

- GO enrichment
- multivariate analysis
- network analysis

Biological insights

- I. Build reference
- 2. Characterize reference

RNA-seq analysis pipeline (de novo strategy)

de novo assemblers of RNA-seq

De novo assemblers use reads to assemble transcripts directly, which does not depend on a reference gnome.

- Trinity
- Oases
- TransAbyss
- ▶ EBARDenovo
- . . .

https://github.com/trinityrnaseq/trinityrnaseq/wiki

Trinity example

- Input: Illumina short reads in FASTQ | FASTA format
- Output: assembled contigs in FASTA format

(Trinity is supported on only Linux)

RNA-seq analysis pipeline (de novo strategy)

DEG analysis

Follow transcript-based RNA-seq pipeline

7

Advanced

Clean up reference sequences

- Issues: Inflation of the number of Trinity contigs is often observed.
 - ▶ Trinity outputs splicing variants separately
 - Contaminations
 - Artifacts (bad contigs)
 - Incomplete contigs with very low expression.
- Solution
 - Filter out unwanted contigs.
 - Filter out very lowly expressed transcripts.
 - ▶ Clustering similar sequences.

Remove redundancy in reference sequences

Strategy and Tools

- Choose one representative transcript from each cluster based on Trinity component information. (longest or highest expression)
- Clustering
 - ► CDHIT-EST (http://weizhongli-lab.org/cd-hit/)
 - ▶ Corset (Davidson et al., 2014).
 - ▶ RapClust (https://github.com/COMBINE-lab/RapClust)

RNA-seq analysis pipeline (de novo strategy)

ORF prediction

- Special consideration in ORF prediction after de novo RNA-seq assembly
 - ▶ Sometimes partial: Start Met or terminal codon may be missing.
 - Ideally one ORF is present per contig, but erroneously joined contigs may include multiple ORFs.
 - Possible frame shifts.
 - Frame shifts do not occur so often in Illumina, while it happens very frequently in 454 and IonProton.
- Recommended software: TransDecoder

Functional Annotation of Predicted ORFs

BLAST

- NCBI NR (or UniProt)
- species of interest (model organisms, close relatives etc)
- specific DB (SwissProt, rRNA DB, CEGMA etc)
- self (assembly v.s. assembly)

Motif search

▶ Pfam, SignalP etc.

Ortholog analysis

- vs model organism
- ortholog database (OrthoDB, eggNOG, OrthoMCL etc)
- close relatives
- Gene Ontology term assignment

Quick annotation by BLASTX

- Query: assembled contigs (nucleotide sequences in multi-fasta format)
- DB: Protein sequences of a model organism

Format DB

```
$ makeblastdb -in protein.fa -dbtype prot
```

Search

```
$ blastx -query trinity_contigs -db protein.fa \
  -num_threads 8 -evalue 1.0e-8 -outfmt 0 > blastxout.txt
```

Protein motif search using InterProScan

- Query: Translated ORF sequences
- ▶ Software: InterProScan
 - https://github.com/ebi-pf-team/interproscan/wiki

Search

```
$ interproscan.sh -I proteins.fasta -f XML,TSV --goterms
--pathways
```

Assign Gene Ontology terms

- ▶ Tools
 - InterProScan
 - ▶ BLAST2GO
 - ▶ Transfer model organisms GO terms based on orthology.

Let's try Trinity assembly

ex9: de novo RNA-seq assembly using Trinity