

Hyderabad Campus

CS/ECE/EEE/INSTR F215:Digital Design

Lecture 29: Counters

Thu, 18 Nov 2021

BITS Pilani Hyderabad Campus

Dr. R. N. Ponnalagu, EEE

Desire for success > Fear for Failure is the formula for success

Counters

- A sequential circuit that goes through prescribed sequence of states upon application of input pulses.
- Input pulses may be clock pulses.
- Sequence of states may follow binary sequence or any other sequence of states.
- A counter that follows binary sequence Binary Counter
- An n-bit binary counter has n-FFs and can count in binary from 0 through 2ⁿ -1.
- Types of counters: Ripple or Asynchronous counters and Synchronous counters

Ring Counter, Johnson Counter – Other counters

Ripple Counter – Asynchronous Counters

The FF output transition serves as a source for triggering other FFs. No common clock.

Synchronous Counters

All FFs receive the common clock pulse, and the change of state is determined from the present state.

11/18/2021

Ripple Counter – Asynchronous Counters

In Asynchronous counter, ext. clock pulse is applied only to the flip flop (LSB).

Instead of the ext. clock pulse, the output of first flip-flop acts as a clock pulse to the next flip flop, whose output is used as a clock to the next in line flip-flop and so on.

- The output of each FF is connected to the Clock input of the next FF in sequence.
- The FF holding the least significant bit receives the incoming clock pulses.
- The J and K inputs of all FFs are connected to a permanent logic 1.

- Operation:
- The least significant bit (Q_0) is complemented with each negative-edge clock pulse input.
- Every time that Q_0 goes from 1 to 0, Q_1 is complemented.
- Every time that Q_1 goes from 1 to 0, Q_2 is complemented.
- Every time that Q_2 goes from 1 to 0, Q_3 is complemented, and so on.

Timing diagram

4-Bit Binary Ripple Counter

Design a Binary Down Counter

Approach: preset > 1111

Use direct Set (S) signals (PRESET) instead of direct Reset (R), in order to start at 1111.

Method 1: Change edge-triggering to positive

Method 2: Connect the complement output of each FF to the C (CLOCK) input of the next FF in the sequence

0000

- ➤ Q1 complemented on every clock edge
- Q2 complemented when Q1 goes from 1 to 0. as long as Q8=0, when Q8= 1, Q2 remains at 0
- > Q4 complemented when Q2 goes from 1 to 0
- Q8 cleared (remains at zero) as long as Q4 or Q2 is 0 and Q8 complemented when Q4Q2 = 11 and Q1 goes from 1 to 0.

A multiple decade counter can be constructed by connecting BCD counters in cascade. A threedecade counter is shown below:

The inputs to the second and third decades come from Q_8 of the previous decade. When Q_8 in one decade goes from 1 to 0, it triggers the count for the next higher-order decade while its own goes from 9 to 0.

Modulo-n counter

divide by N Counter

A counter that goes through a repeated sequence of 'n' states. Ex. Mod-3 counter will go through 3 states 00 to 01 to 10 to 00

Mod Ripple counter

0 to 9

Can you design mod 10 counter counts till 9

Counts from 0000 → 1111

As soon as 1010 reached all flip flops should be reset 0000

Ripple Counters

mod -12

Mod Ripple counter

Mod 10 counter counts till 9

Ripple Counters

Mod Ripple counter Can you design Mod 12 counter

Synchronous Counters

- The design procedure for a synchronous counter is the same as any other synchronous sequential circuit.
- The primary inputs of the circuit are the CLK and any control signals (EN, Load, etc).
- The primary outputs are the FF outputs (present state).
- ➤ Most efficient implementations usually use T-FFs or JK-FFs. (complementing FFs)

We will examine JK, T and D flip-flop designs.

	Present state				Next state			Flip-flop inputs							
\mathbf{Q}_3	\mathbf{Q}_2	Q ₁	\mathbf{Q}_0	\mathbf{Q}_3	\mathbf{Q}_2	Q ₁	\mathbf{Q}_0	J _{Q3}	K _{Q3}	\mathbf{J}_{Q2}	\mathbf{K}_{Q2}	J _{Q1}	K _{Q1}	$\mathbf{J}_{\mathrm{Q}0}$	K _{Q0}
	0	0	0	(g)	0	0	1	_0	×	0	×	0	×	1	×
(0)	0	0	1	(0)	0	1	0	0	X	0	×	1	X	X	1
0	0	1	0	0	0	1	1	0	X	0	X	X	0	1	×
0	0	1	1	0	1	0	0	0	X	1	X	X	1	X	1
0	1	0	0	0	1	0	1	0	×	X	0	0	×	1	×
0	1	0	1	0	1	1	0	0	×	X	0	1	×	×	1
0	1	1	0	0	1	1	1	0	×	X	0	×	0	1	×
0	1	1	1	(1)	0	0	0	1_	×	×	1	X	1	×	1
1	0	0	0	1	0	0	1	×	0	0	×	0	×	1	×
1	0	0	1	1	0	1	0	×	0	0	×	1	×	×	1
1	0	1	0	1	0	1	1	×	0	0	×	X	0	1	×
1	0	1	1	1	1	0	0	×	0	1	×	×	1	X	1
1	1	0	0	1	1	0	1	×	0	×	0	0	X	1	×
1	1	0	1	1	1	1	0	×	0	×	0	1	×	×	1
1	1	1	0	1	1	1	1	X	0	×	0	X	0	1	×
(1)	1	1	1	(0)	0	0	0	×	1	X	1	X	1	×	1

Synchronous Binary Counters:

J-K Flip Flop Design of a Binary Up Counter

		esent state	:		Next state						
\mathbf{Q}_3	\mathbf{Q}_2	Q ₁	\mathbf{Q}_0	\mathbf{Q}_3	\mathbf{Q}_2	Q ₁	\mathbf{Q}_0	J _{Q3}	K _{Q3}		
)	0	0	0	0	0	0	1	0	X		
)	0	0	1	0	0	1	0	0	X		
)	0	1	0	0	0	1	1	0	X		
)	0	1	1	0	1	0	0	0	Χ		
)	1	0	0	0	1	0	1	0	X		
)	1	0	1	0	1	1	0	0	X		
)	1	1	0	0	1	1	1	0	X		
)	1	1	1	1	0	0	0	1	X		
1	0	0	0	1	0	0	1	×	0		
1	0	0	1	1	0	1	0	×	0		
1	0	1	0	1	0	1	1	×	0		
1	0	1	1	1	1	0	0	×	0		
1	1	0	0	1	1	0	1	×	0		
1	1	0	1	1	1	1	0	×	0		
1	1	1	0	1	1	1	1	X	0		
1	1	1	1	0	0	0	0	X	1		

Synchronous Binary Counters:

J-K Flip Flop Design of a Binary Up Counter

Flip-flo		Next state				Present state				
J _{Q2} K _{Q2}	\mathbf{Q}_0	Q ₁	\mathbf{Q}_2	Q_3	\mathbf{Q}_0	\mathbf{Q}_1	\mathbf{Q}_2	\mathbf{Q}_3		
0 ×	1	0	0	0	0	0	0	0		
0 X	0	1	0	0	1	0	0	0		
0 X	1	1	0	0	0	1	0	0		
1 x	0	0	1	0	1	1	0	0		
$\mathbf{X} = 0$	1	0	1	0	0	0	1	0		
$\mathbf{X} = 0$	0	1	1	0	1	0	1	0		
X 0	1	1	1	0	0	1	1	0		
X 1	0	0	0	1	1	1	1	0		
0 x	1	0	0	1	0	0	0	1		
0 X	0	1	0	1	1	0	0	1		
0 X	1	1	0	1	0	1	0	1		
1 X	0	0	1	1	1	1	0	1		
× 0	1	0	1	1	0	0	1	1		
$\mathbf{x} = 0$	0	1	1	1	1	0	1	1		
X 0	1	1	1	1	0	1	1	1		
X 1	0	0	0	0	1	1	1	1		

		1	
Х	Х	Х	Х
Х	Х	Х	Х
		1	

	1	
J00 =	0,0	

Х	Х	Х	Х
		1	
		1	
Χ	Х	Х	Х

$$K_{Q2} = Q_0Q_1$$

Synchronous Binary Counters:

J-K Flip Flop Design of a Binary Up Counter

p inputs		Next state				Present state				
K Q1	J _{Q1}	\mathbf{Q}_0	Q ₁	\mathbf{Q}_2	\mathbf{Q}_3	\mathbf{Q}_0	Q ₁	\mathbf{Q}_2	\mathbf{Q}_3	
×	0	1	0	0	0	0	0	0	0	
X	1	0	1	0	0	1	0	0	0	
0	X	1	1	0	0	0	1	0	0	
1	x	0	0	1	0	1	1	0	0	
X	0	1	0	1	0	0	0	1	0	
X	1	0	1	1	0	1	0	1	0	
0	×	1	1	1	0	0	1	1	0	
1	X	0	0	0	1	1	1	1	0	
X	0	1	0	0	1	0	0	0	1	
X	1	0	1	0	1	1	0	0	1	
0	X	1	1	0	1	0	1	0	1	
1	×	0	0	1	1	1	1	0	1	
X	0	1	0	1	1	0	0	1	1	
X	1	0	1	1	1	1	0	1	1	
0	X	1	1	1	1	0	1	1	1	
1	X	0	0	0	0	1	1	1	1	

1	Х	Х
1	Х	Х
1	х	Х
1	х	Х

х	х	1	
Х	Х	1	
			_

$$\mathsf{J}_{\mathsf{Q}1} = \mathsf{Q}_0$$

K _{O1}	=	Qo
W.		

achieve

$$J_{Q0} = 1$$

 $K_{Q0} = 1$

$$J_{Q1} = Q_0$$

 $K_{Q1} = Q_0$

$$J_{Q2} = Q_0 Q_1$$

 $K_{Q2} = Q_0 Q_1$

$$J_{Q3} = Q_0 Q_1 Q_2$$

 $K_{Q3} = Q_0 Q_1 Q_2$