UNIVERSIDADE FEDERAL FLUMINENSE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO TCC00349 - AVALIAÇÃO DE DESEMPENHO

Trabalho de simulação utilizando a ferramenta Java Modelling Tools

BEATRIZ DE OLIVEIRA PIEDADE

NITERÓI 2024

$1 \mod 1 - M/M/1$

Tempo médio entre chegadas: 0.5 u.t, logo $\lambda = 2$ clientes por u.t.

Tempo de atendimento do servidor: $E[X] = \frac{1}{\mu} = 0.25$ u.t por cliente, logo $\mu = 4$ clientes por u.t.

Capacidade: Ilimitada.

1.1 Topologia do sistema

1.2 Solução analítica

Fórmula de L:

$$L = \lambda \cdot W$$

$$L = \lambda \cdot \frac{1}{\mu - \lambda}$$

$$L = 2 \cdot \frac{1}{4 - 2}$$

$$L = \frac{2}{2}$$

$$L = 1$$

Fórmula de W:

$$W = \frac{1}{\mu - \lambda}$$

$$W = \frac{1}{4 - 2}$$

$$W = \frac{1}{2}$$

$$W = 0.5$$

Fórmula de W_Q :

$$W_{Q} = \frac{L_{Q}}{\lambda}$$

$$W_{Q} = \frac{\frac{\lambda^{2}}{\mu \cdot (\mu - \lambda)}}{\lambda}$$

$$W_{Q} = \frac{\lambda^{2}}{\lambda \cdot \mu \cdot (\mu - \lambda)}$$

$$W_{Q} = \frac{\lambda}{\mu \cdot (\mu - \lambda)}$$

$$W_{Q} = \frac{2}{4 \cdot (4 - 2)}$$

$$W_{Q} = \frac{1}{2 \cdot (2)}$$

$$W_{Q} = \frac{1}{4}$$

$$W_{Q} = 0.25$$

1.3 Especificação das métricas da simulação

Class: Entrada

λ: 2

• mean: 0.5

Queue Section: Fila

• Capacity: Infinite

Service Section: Atendimento

• Number of Servers: 1

λ: 4

• mean: 0.25

Performance Indices: Valores a simular

- Number of customers
- Response Time
- Queue Time

1.4 Comparação

Métrica	Solução analítica	Valor simulado
Number of customers (L)	1	1.0219
Response Time (W)	0.5	0.5066
Queue Time (W_Q)	0.25	0.2535

2 Modelo 2 - M/M/1/10

Tempo médio entre chegadas: 0.5 u.t, $\log \lambda = 2$ clientes por u.t.

Tempo de atendimento do servidor: $E[X] = \frac{1}{\mu} = 0.35$ u.t por cliente, logo $\mu = 2.857$ clientes por u.t.

Capacidade: Limitada a K = 10 clientes (1 cliente atendido e 9 na fila).

2.1 Topologia do sistema

2.2 Solução analítica

Fórmula de L:

$$L = \frac{\rho}{1 - \rho} - \frac{(K+1) \cdot \rho^{K+1}}{1 - \rho^{K+1}}$$

$$L = \frac{\frac{\lambda}{\mu}}{1 - \frac{\lambda}{\mu}} - \frac{(K+1) \cdot \frac{\lambda}{\mu}^{K+1}}{1 - \frac{\lambda}{\mu}^{K+1}}$$

$$L = \frac{\frac{2}{2.857}}{1 - \frac{2}{2.857}} - \frac{(10+1) \cdot \frac{2}{2.857}^{10+1}}{1 - \frac{2}{2.857}^{10+1}}$$

$$L = \frac{0.7}{1 - 0.7} - \frac{11 \cdot 0.7^{11}}{1 - 0.7^{11}}$$

$$L = \frac{0.7}{0.3} - \frac{11 \cdot 0.019}{1 - 0.019}$$

$$L = 2.333 - \frac{0.209}{0.981}$$

$$L = 2.333 - 0.213$$

$$L = 2, 12$$

Fórmula de W:

$$W = \frac{L}{\lambda}$$

$$W = \frac{2.12}{2}$$

$$W = 1.06$$

2.3 Especificação das métricas da simulação

Class: Entrada

λ: 2

• mean: 0.5

Queue Section: Fila

• Capacity: Finite 10

Service Section: Atendimento

• Number of Servers: 1

• λ: 2.857

• mean: 0.35

Performance Indices: Valores a simular

• Number of customers

• Response Time

• Queue Time

• Drop Rate

2.4 Comparação

Métrica	Solução analítica	Valor simulado
Number of customers (L)	2.12	2.1456
Response Time (W)	1.06	1.0795
Queue Time (W_Q)	-	0.7279
Drop Rate	-	0.0174

$3 \mod 3 - M/M/5$

Tempo médio entre chegadas: 0.25 u.t, logo $\lambda = 4$ clientes por u.t.

Tempo de atendimento do servidor: $E[X] = \frac{1}{\mu} = 1$ u.t por cliente, logo $\mu = 1$ cliente por u.t.

Capacidade: Ilimitada.

3.1 Topologia do sistema

3.2 Especificação das métricas da simulação

Class: Entrada

λ: 4

• mean: 0.25

Queue Section: Fila

• Capacity: Infinite

Service Section: Atendimento

• Number of Servers: 5

λ: 1

• mean: 1

Performance Indices: Valores a simular

• Number of customers

- Response Time
- Queue Time

3.3 Comparação

Métrica	Solução analítica	Valor simulado
Number of customers (L)	-	6.2073
Response Time (W)	-	1.5519
Queue Time (W_Q)	-	0.5499

4 Modelo 4 - $M/M/1 \rightarrow M/M/1$

Tempo médio entre chegadas: 0.5 u.t, logo $\lambda = 2$ clientes por u.t.

Tempo de atendimento do servidor 1: $E[X] = \frac{1}{\mu} = \frac{1}{3}$ u.t por cliente, logo $\mu = 3$ clientes por u.t.

Tempo de atendimento do servidor 2: $E[X] = \frac{1}{\mu} = 0.25$ u.t por cliente, logo $\mu = 4$ clientes por u.t.

Capacidade: Ilimitada.

4.1 Topologia do sistema

4.2 Solução analítica

Fórmula de L_1 :

$$L_{1} = \lambda_{inicial} \cdot E[W]_{1}$$

$$L_{1} = \lambda_{inicial} \cdot \frac{E[X]_{1}}{1 - \lambda_{inicial} \cdot E[X]_{1}}$$

$$L_{1} = 2 \cdot \frac{\frac{1}{3}}{1 - 2 \cdot \frac{1}{3}}$$

$$L_{1} = 2 \cdot \frac{0.333}{1 - 2 \cdot 0.333}$$

$$L_{1} = \frac{0.666}{1 - 0.666}$$

$$L_{1} = \frac{0.666}{0.334}$$

$$L_{1} = 1.994$$

Fórmula de
$$L_2$$
:

$$L_{2} = \lambda_{1} \cdot E[W]_{2}$$

$$L_{2} = \lambda_{1} \cdot \frac{E[X]_{2}}{1 - \lambda_{1} \cdot E[X]_{2}}$$

$$L_{2} = 2 \cdot \frac{0.25}{1 - 2 \cdot 0.25}$$

$$L_{2} = \frac{0.5}{1 - 0.5}$$

$$L_{2} = \frac{0.5}{0.5}$$

$$L_{2} = 1$$

Fórmula de $L_{sistema}$:

$$L_{sistema} = L_1 + L_2$$
$$L_{sistema} = 1.994 + 1$$
$$L_{sistema} = 2.994$$

Fórmula de W_1 :

$$W_1 = \frac{L_1}{\lambda_{inicial}}$$

$$W_1 = \frac{1.994}{2}$$

$$W_1 = 0.997$$

Fórmula de W_2 :

$$W_2 = \frac{L_2}{\lambda_1}$$

$$W_2 = \frac{1}{2}$$

$$W_2 = 0.5$$

Fórmula de $W_{sistema}$:

$$W_{sistema} = W_1 + W_2$$
$$W_{sistema} = 0.997 + 0.5$$
$$W_{sistema} = 1.497$$

4.3 Especificação das métricas da simulação

Class: Entrada

λ: 2

• mean: 0.5

Queue Section: Fila 1

• Capacity: Infinite

Service Section: Atendimento da fila 1

• Number of Servers: 1

λ: 3

• mean: 1/3

Queue Section: Fila 2

• Capacity: Infinite

Service Section: Atendimento da fila 2

• Number of Servers: 1

λ: 4

 \bullet mean: 0.25

Performance Indices: Valores a simular

• Number of customers

• Response Time

4.4 Comparação

Métrica	Solução analítica	Valor simulado
Number of customers (L)	2.994	2.9770
Response Time (W)	1.497	1.4919