空气比热容比的测定

一、绝热膨胀法

数据表格: $\gamma = \log \left(\frac{P_1}{P_0} \right) / \log \left(\frac{P_1}{P_2} \right)$

次数	测量值(mV)							计算值			
	状态 I		状态Ⅱ		状态Ⅲ		P _i (10 ⁵ Pa)				
	P_0	T_0	ΔP_1	T_1	ΔP_2	T_2	P_0	P_1	\mathbf{P}_2	Υ	
1											
2											
3											
4											
5											

$$P_1 = (P_0 + \Delta P_1/2000) \times 10^5 \text{ Pa}$$
 $P_2 = (P_0 + \Delta P_2/2000) \times 10^5 \text{ Pa}$

$$P_2 = (P_0 + \Delta P_2 / 2000) \times 10^5 \text{ Pa}$$

$$\bar{y} = \frac{1}{n} \sum y_i$$
 $\sigma_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n(n-1)}}$ $E_y = \frac{\sigma_y}{\bar{y}} \times 100\%$

$$E_{y} = \frac{\sigma_{y}}{\bar{y}} \times 100\%$$

结果表达式:
$$\begin{cases} y = \overline{y} \pm \sigma_y \\ E_r = \\ E_A = \left| \frac{\overline{y} - y_0}{y_0} \right| \times 100\% \end{cases}$$

二、振动法

数据表格表格

t	t ₁	t ₂	t ₃	t ₄	t ₅	ī	σ_{t}	\overline{T}	\bar{y}	$\sigma_{_{\scriptscriptstyle \gamma}}$
10										
20										
50										

$$\overline{\gamma} = \frac{64mV}{\overline{T}^2 P \overline{d}^4} \ , \ P = P_L + \frac{mg}{\pi r^2} \ , \ E_r = \sqrt{(\frac{\sigma_m}{m})^2 + 4(\frac{\sigma_T}{\overline{T}})^2 + 16(\frac{\sigma_d}{\overline{d}})^2} \ , \ \sigma_\gamma = E_r \cdot \overline{\gamma}$$

结果表达式:
$$egin{cases} y = \overline{y} \pm \sigma_y \ E_r = \ E_A = \left| \frac{\overline{y} - y_0}{y_0} \right| imes 100\% \end{cases}$$