МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

ПЕТЛЯ ГИСТЕРЕЗИСА (ДИНАМИЧЕСКИЙ МЕТОД)

Выполнил:

Деревянченко Михаил

Группа:

Б03-106

Оглавление

.3
.4
.7
.0
7
_

1. Аннотация

Целью данной работы являются:

- 1. Исследование предельных петель гистерезиса и начальных кривых намагничивания для нескольких ферромагнитных образцов
 - 2. Определение магнитных характеристик материалов

2. Теоретические сведения

Ферромагнитные материалы часто применяются В трансформаторах, дросселях, машинах переменного тока, устройствах, подвергаются где ОНИ периодическому Изучение перемагничиванию. характеристик магнитных ферромагнетиков в переменных полях представляет поэтому большой практический интерес. Основные характеристики ферромагнетиков — ИХ коэрцитивная сила, магнитная проницаемость, рассеиваемая в виде тепла при перемагничивании, и т.д. — зависят от частоты перемагничивающего поля. В настоящей работе кривые гистерезиса ферромагнитных материалов изучаются в поле частоты 50Гц с помощью электронного осциллографа.

Измерение магнитной индукции в образцах

Магнитную индукцию удобно определять с помощью ЭДС, возникающей при изменении магнитного потока Ф в катушке, намотанной на образец:

$$E = \frac{-d\Phi}{dt}$$

Пусть катушка плотно охватывает образец, и индукция В в образце однородна. В этом случае

$$\Phi = BSN_u$$

где $N_{\mbox{\tiny H}}$ — число витков в измерительной катушке, а S — площадь витка. Тогда

$$|B| = \frac{1}{SN_u} \int Edt$$

Таким образом, для определения В нужно проинтегрировать сигнал, наведённый меняющимся магнитным полем на измерительную катушку, намотанную на образец.

интегрирования сигнала рода разного применяют интегрирующие схемы. Простейшая из 🎵 соединённых состоит ИЗ них последовательно резистора R и конденсатора C и выполняет своё назначение, если сопротивление R резистора заметно превышает конденсатора (если выходной сигнал сопротивление меньше входного: Uвых << Uвх). В самом деле, при при выполнении этого условия ток в цепи пропорционален входному напряжению: І Uвх/R, а напряжение на ёмкости С

$$U_{\text{\tiny BMX}} = \frac{q}{C} = \frac{1}{C} \int I dt \simeq \frac{1}{RC} \int U_{\text{\tiny BX}} dt$$

Этот вывод тем ближе к истине, чем больше постоянная времени τ_i =RC превосходит характерное время процесса (например, его период). Для синусоидальных напряжений

$$U_{\scriptscriptstyle \mathit{BMX}} = \frac{U_{\scriptscriptstyle \mathit{BX}}}{RC\,\Omega}$$

где Ω — частот а сигнала.

В итоге:

$$|B| = \frac{1}{SN_u} \int E dt = \frac{1}{SN_u} \int U_{ex} dt = \frac{R_u C_u}{SN_u} U_{ex}$$

3. Экспериментальная

установка и методика

измерений

• Экспериментальная установка

• Напряжение сети (220 В, 50 Гц) с помощью регулировочного автотрансформатора Ат через разделительный понижающий трансформатор Тр подаётся на намагничивающую обмотку N0 исследуемого образца.

Действующее значение переменного ток а в обмотке N_0 измеряется амперметром А. Последовательно с амперметром включено сопротивление R0, напряжение с которого подаётся на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно, и напряжённости H магнитного поля в образце.

Для измерения магнитной индукции В с измерительной обмотки N_{μ} на вход RC-цепочки подаётся напряжение U_{μ} ($U_{\text{вх}}$), пропорциональное согласно (6) производной В', а с интегрирующей ёмкости C_{μ} снимается напряжение $U_{\text{с}}$ ($U_{\text{вых}}$), пропорциональное величине В, и подаётся на вход Y осциллографа.

Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т. е. провести калибровку каналов X и Y ЭО. Для этого, вопервых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и, во-вторых, каким значениям В и Н соответствуют эти напряжения (или токи).

- Методика измерений:
- 1. Проверка калибровки канала Х
- 2. Проверка калибровки канала Ү
- 3. Измерение параметров интегрирующей цепочки

4. Проведение измерений и обработка результатов

0. Параметры материалов

	Пермаллой	Кремниевое	Феррит
		железо	
N_0	20	25	42
N_{U}	300	250	400
S, cm ²	0.76	2	3
2πR, 25см	13.3	11	25

1. Измерение петли гистерезиса

$$H = \frac{I N_0}{2 \pi R} = \frac{\frac{K_x}{R_0} N_0}{2 \pi R} \qquad B = \frac{R_u C_u}{S N_u} K_y$$

Пермаллой

 $H = 6.9 \, A/M$ $B = 0.87 \, T_{\Lambda}$

Кремниевое железо

H = 103.3 A/M $B = 0.4 T_{\Lambda}$

Феррит

 $H = 38.2 \, A/M$ $B = 0.06 \, T_{\Lambda}$

2. Калибровка

Канал Х					
К _х , мВ	I_{θ} , A	R ₀ , Ом	2x	$K_x = 2R_0\sqrt{2}I_{9\phi}/2x$ мВ/дел	
50	0.79			49.7	
100	1.64	0.22	10	100.4	
10	0.161			99.8	

Канал Ү				
Ку, мВ	$U_{9\varphi}$, м B	R ₀ , Ом	2y	$K_y = 2\sqrt{2}U_{9\phi}/(2y)$ мВ/дел
20	56			19.7
50	134	0.22	10	50.4

3. Определение постоянной времени интегрирующей ячейки

	Вход	Ţ	Выход			
K_{y}	2y	$U_{\scriptscriptstyle \mathrm{BX}}$	K_{y}	2y	$U_{\scriptscriptstyle m BMX}$	ν, Гц
5B	4	20B	20мВ	7.6	152мВ	50

$$\tau_{_{9KCN}} = \frac{U_{_{6X}}}{2 \pi \nu U_{_{6bix}}} = 0.42 c \quad \tau_{_{meop}} = R_u C_u = 0.4 c$$

4. Обработка результатов

	Пермаллой	Кремниевое железо	Феррит
Н _s , А/м	30.36	413.2	76.4
В _s , Тл	1.4	1.6	0.3
Н _с , А/м	20.7	62.0	15.28
Вг, Тл	1.4	0.8	0.07
μ _{нач} , Тл*м/А	-	4.8*10 ⁻³	10 ⁻³
$\mu_{\text{max}}, T\pi^*M/A$	0.15	11.1*10 ⁻³	4*10-3