Homework 2 for ECS 20

${\bf Tamim~Nekaien~(915803826)}$

October 12, 2019

This assignment was made with \heartsuit (and $\LaTeX).$

Contents

1	Question 1	ii
	1.1 Part 1	ii
	1.2 Part 2	ii
	1.3 Part 3	ii
2	Question 2	ii
3	-y	ii
	3.1 part 1	ii
	3.2 part 2	
	3.3 part 3	iii
4	Question 4	iii
5	Answers	iii

1 Question 1

1.1 Part 1

The first statement is true because the set of nonnegative integers starts with 0 and 0 is equal to or less than said set.

1.2 Part 2

The second statement is false because for a said integer n, there will be an integer m that is greater than the one integer n given.

1.3 Part 3

The third statement is true because for all given integer m(s) there can be an integer n that is greater than that one individual m in the spanning set of multiple m(s).

2 Question 2

The satement is not valid (Not a Tautology)

р	q	r	$\neg r$	$p \rightarrow r$	$q \rightarrow r$	$\neg (p \lor q)$	$((p \to r) \land (q \to r) \land (\neg(p \lor q))) \to \neg r$
T	Т	Τ	F	Т	Т	F	T
T	Т	F	Т	F	F	F	Т
Т	F	Т	F	Т	Т	F	T
Т	F	F	Т	F	Т	F	T
F	Т	Τ	F	Т	Т	F	Т
F	Т	F	Т	Т	Т	F	T
F	F	Τ	F	Т	Т	Т	F
F	F	F	Т	Т	Т	Τ	T

3 Question 3

3.1 part 1

There is a course $= \exists y$ Every freshman $= \forall x \in F(x)$ Taking the class = T(x, y)

```
\exists y \forall x [F(x) \to T(x,y)]
```

3.2 part 2

```
No student = \exists x
That is a Freshman is also Sophomore = F(x) \land S(x)
Negate statement for final result
\neg(\exists x [F(x) \land S(x)])
```

3.3 part 3

```
Some student = \exists x

Some course = \exists y

Taking course = T(x,y)

Some freshman is in advanced course and is taking it.

\exists x \exists y [F(x) \land A(y) \land T(x,y)]
```

4 Question 4

```
\begin{array}{c} \mathbf{p} = \mathrm{math\ major\ q} = \mathrm{CS\ major\ r} = \mathrm{Discrete\ s} = \mathrm{smart} \\ p \lor q \\ \neg r \to \neg p \\ r \to s \\ \neg q \\ p \longrightarrow \mathbf{p} \text{ or q and not q is p} \\ \mathbf{r} \longrightarrow \mathrm{modus\ tollens\ of\ (not\ r\ implies\ not\ p,\ then\ p,\ therefore\ r)} \\ \mathbf{s} \longrightarrow \mathrm{modus\ ponens\ of\ p\ implies\ s}\ ,\ \mathbf{p} \text{ therefore\ s} \\ \hline s \end{array}
```

5 Answers

My answer for 1, 1.1, 1.2, 1.3, 2, 3, 3.1, 3.2, 3.3, 4 are on pages ii and iii.