Clase 12

En sesiones pasadas definimos el supremo de un conjunto (no vacío), enunciamos el axioma del supremo y estudiamos algunas consecuencias de este, pero si recordamos la definición del supremo:

Definición 1 Sea $A \subseteq \mathbb{R}$ no vacío. Un número $\alpha \in \mathbb{R}$ es llamado **el supremo de** A, denotado por sup A, si:

- (1) α es cota superior de A y
- (2) si M es otra cota superior de A, entonces $\alpha \leq M$.

¿Qué ocurre si en la definición anterior cambiamos superior por inferior?

¿Ínfimo?

Definición 2 Sea $A \subseteq \mathbb{R}$ no vacío. Un número $\beta \in \mathbb{R}$ es llamado **el ínfimo de** A, denotado por ínf A, si:

- (1) β es cota inferior de A y
- (2) si m es otra cota inferior de A, entonces $m \leq \beta$.

Observación 3 El ínfimo de un conjunto $A \neq \emptyset$ es la máxima cota inferior de A.

Y ahora es momento de preguntarse si existe un "axioma del ínfimo", la respuesta es no, aunque si hay un resultado *equivalente*. Antes de enunciar y demostrar dicho resultado debemos demostrar algunos resultados.

Lema 4 Sea $B \subseteq \mathbb{R}$ un conjunto no vacío y acotado inferiormente. Si denotamos por -B al conjunto $\{-b \mid b \in B\}$, es decir,

$$-B = \{-b \mid b \in B\},\$$

entonces -B es un conjunto no vacío y acotado superiormente.

Demostración. Como B es un conjunto no vacío, existe $b \in B$. Luego, $-b \in -B$, por lo que -B es un conjunto no vacío.

Ahora, por ser B un conjunto acotado inferiormente, existe $m \in \mathbb{R}$ tal que $m \leq b$, para todo $b \in B$. De aquí que

$$-b \leq -m$$
,

para todo $-b \in B$. Es decir, -B es un conjunto acotado superiormente.

(a) (b)

Figura 1: Para obtener, gráficamente, al conjunto -B basta con reflejar el conjunto B respecto al cero en la recta real.

Teorema 5 (del ínfimo) Sea $B \subseteq \mathbb{R}$. Si B es no vacío y acotado inferiormente, entonces existe el ínfimo de B. Más aún,

$$\inf B = -\sup (-B).$$

Demostración. Por el lema anterior, -B es un conjunto no vacío y acotado superiormente, luego, por el axioma del supremo, existe $\alpha = \sup(-B)$.

Veamos que $-\alpha$ es el ínfimo de B. Para ello debemos demostrar que $-\alpha$ es la máxima cota inferior de B.

Sea $b \in B$. Como $-b \in -B$ y $\alpha = \sup(-B)$, se tiene que $-b \le \alpha$. Se sigue que $-\alpha \le b$ y de aquí que $-\alpha$ es cota inferior de B.

Ahora, si m es una cota inferior de B, se tiene que $m \leq b$, para todo $b \in B$. De donde $-b \leq -m$, para todo $b \in B$, esto es, -m es cota superior de -B. Finalmente, como $\alpha = \sup(-B)$, se tiene que $\alpha \leq -m$ y luego $m \leq -\alpha$. Es decir, $-\alpha$ es la máxima cota inferior de B.

En el ejercicio 9 de la Clase 10 mostramos que, para $a, b \in \mathbb{R}$ con a < b, el conjunto [a, b) es no vacío y acotado superiormente, más aún, vimos que $b = \sup[a, b)$.

Ejemplo 6 Sean $c, d \in \mathbb{R}$ con c < d. Muestre que existe el ínfimo del conjunto (c, d) y hállelo.

Solución. Es claro que el conjunto (c, d] es no vacío y acotado inferiormente, así que, por el teorema anterior, existe el ínfimo de (c, d] y se cumple que

$$\inf(c,d] = -\sup(-(c,d]).$$

Por otro lado, -(c, d] = [-d, -c) y, por el Ejercicio 9 de la Clase 10, tenemos que $\sup[-d, -c) = -c$. Por lo tanto,

$$\inf(c,d] = c.$$

2