Course Announcements

Due Sunday (11:59 PM):

- D7
- Q8
- Weekly Project Survey (optional)

Notes:

- A3 and D6 grades posted
- Data Checkpoint grading underway (discuss)
- update: A4 now available; due *Wed of week 10* (3/13)
 - Note: "Validate" will fail; use Kernel > Restart & Run All instead

Machine Learning I

Sid Joshi UC San Diego

Department of Cognitive Science s1joshi@ucsd.edu

What is machine learning?

"Machine learning is the science of getting computers to act without being explicitly programmed"

- Andrew Ng, Stanford, ex-Google, chief scientist at Baidu, Coursera founder, Stanford Adjunct Faculty

A Shift in Programming Paradigm

TRADITIONAL PROGRAMMING

MACHINE LEARNING

- **Problem:** Detecting whether credit card charges are fraudulent.
- Data science question: Can we use the time of the charge, the location of the charge, and the price of the charge to predict whether that charge is fraudulent or not?
- **Type of analysis:** Predictive analysis

Rule1. Claim time - Submit time < 1 h

Rule2. Agreement review time > 5 m

Rule3. ...

Prediction Questions

Which of these questions is most appropriate for machine learning?

A How common is watching Sesame Street in the US?

B What is the effect of watching Sesame Street on children's brains?

C What is the relationship between early childhood educational programming and success in elementary school?

D Can we use information about one's early childhood to predict their success in elementary school?

E How does Sesame Street cause an increase in educational attainment?

Machine Learning Generalizations

The goal of modeling is to simplify, not replicate

Basic Steps to Prediction

data partitioning

Data Partitioning

What portion of the data are typically used for generating the model?

feature selection

feature selection determines which variables are most predictive and includes them in the model

Note: Occam's Razor

- When faced with two explanations for the same evidence, we prefer the explanation that makes the fewest assumptions
- Given equal performance, choose the simpler model

model selection

A Thought about it and have a thought

B Thought about it and have no thought

C I'm confused

- **A** Thought about it and have a thought
- **B** Thought about it and have no thought
- **C** I'm confused

- **A** Thought about it and have a thought
- **B** Thought about it and have no thought
- **C** I'm confused

- **A** Thought about it and have a thought
- **B** Thought about it and have no thought
- **C** I'm confused

- **A** Thought about it and have a thought
- **B** Thought about it and have no thought
- **C** I'm confused

Cross-Validation

In reality, our eyeball meter won't (and sometimes can't) cut it

Real data are messy and live in dimensions we cannot even comprehend (let alone visualize)

Cross-validation offers a systematic way of assessing various models and determine which ones meet our requirements the closest

- Validation Set
- Leave-one-out
- K-Fold

model assessment

Many Metrics!

Assessing machine learning models involves gauging its performance on novel data

- Novel data come from the testing set we left out earlier!
- Performance assessments depend on the specific problem/question
- Different metrics measure different aspects of models
 - o e.g. MSE, MAE, accuracy, specificity/sensitivity, etc.

Classical Machine Learning

CLASSICAL MACHINE LEARNING

Regression

- Predicting a continuous outcome by finding a relationship between inputs and outputs
- Makes predictions on new data based on the learned patterns from the training set
- Used for:
 - Stock price forecasts
 - Demand and sales volume analysis
 - Number-time correlations
- Popular regression models include:
 - Linear regression
 - Polynomial regression

PREDICT TRAFFIC JAMS

REGRESSION

Classification

- Predicting a categorical outcome by finding boundaries between classes of data points
- Makes predictions on new data based on where within the decision boundary it falls
- Used for:
 - Spam filtering
 - Fraud detection
 - Language detection
- Popular classification models include:
 - Logistic regression
 - Support Vector Machine
 - Decision Tree

GIVE A LOAN?

DECISION TREE

SEPARATE TYPES OF ALCOHOL

SUPPORT VECTOR MACHINE

Supervised vs. Unsupervised

Supervised algorithms use labeled data \rightarrow Checks answers and improves over time

- Learning relationships between inputs and outputs to make predictions
- Goal is to minimize error or maximize accuracy in predictions

Unsupervised algorithms use unlabeled data \rightarrow No "correct" answers

- Commonly used to discover new patterns where they are unknown \rightarrow research!!
- Verifies itself with similarity/stability scores

Regression Walkthrough

Linear regression

Quadratic regression

Piecewise linear nonparametric regression

Which to choose?

The data partition method

- 1. Randomly choose 30% of the data to be in a test set
- 2. The remainder is a training set

Train the model on your training set

- Randomly choose
 of the data to be in a test set
- 2. The remainder is a training set
- 3. Perform your regression on the training set

(Linear regression example)

Assess future performance using the test set

(Linear regression example)
Mean Squared Error = 2.4

- 1. Randomly choose 30% of the data to be in a test set
- 2. The remainder is a training set
- 3. Perform your regression on the training set
- 4. Estimate your future performance with the test set

Go through this process for each possible model

- Randomly choose
 of the data to be in a test set
- 2. The remainder is a training set
- 3. Perform your regression on the training set
- (Quadratic regression example)
 Mean Squared Error = 0.9
- 4. Estimate your future performance with the test set

Go through this process for each possible model

(Join the dots example)

Mean Squared Error = 2.2

- 1. Randomly choose 30% of the data to be in a test set
- 2. The remainder is a training set
- 3. Perform your regression on the training set
- 4. Estimate your future performance with the test set

Pros and cons of data partitioning

Pros:

- Simple approach
- Can choose model with best test-set score

Cons:

- Model fit on 30% less data than you have
- Without a large data set, removing 30% of the data could bias prediction

For k=1 to R

1. Let (x_k, y_k) be the k^{th} record

For k=1 to R

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset

For k=1 to R

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset
- Train on the remaining R-1 datapoints

For k=1 to R

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset
- Train on the remaining R-1 datapoints
- 4. Note your error (x_k, y_k)

For k=1 to R

- 1. Let (x_k, y_k) be the k^{th} record
- 2. Temporarily remove (x_k, y_k) from the dataset
- Train on the remaining R-1 datapoints
- 4. Note your error (x_k, y_k)

When you've done all points, report the mean error.

Method Comparison

	Cons	Pros
Data partitioning	Variance: unreliable estimate of future performance	Cheap
LOOCV	Computationally expensive; has weird behavior	Uses all your data

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition.

Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Linear Regression MSE_{3FOLD}=2.05

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error

Quadratic Regression $MSE_{3FOLD}=1.11$

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition.

Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition.

Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error

NOTE: Notice each fold generates a dramatically different model than the others?

- This model has overfit the training data
- i.e. You only memorized the study guide
- Perfect training performance, but poor predictive power on test set

Validator

Which approach would *you* use to limit overfitting?

Validator

Given the example we just worked, how would you model these data?

