Data and Encodings

Daniel Archambault

Previously in CSCM27...

- Name the four problem types in the Nested Model
- How can they be evaluated?
- When addressing a problem, where do we need to look?

Previously in CSCM27... (2)

- We now begin to look at data types
- And how to effectively encode them

Data and Encodings

Thanks

- Huge thanks to Tamara Munzner (my PhD adviser)
- Many of the figures are from her work
- This lecture is based off of her lectures

Data Types

- continuous (quantitative)
 - 10 inches, 17 inches, 23 inches

- ordered (ordinal)
 - small, medium, large
 - days: Sun, Mon, Tue, ...

- categorical (nominal)
 - apples, oranges, bananas

Marks

- Basic graphical element of an image
- Can be 0D, 1D, 2D, 3D

[T. Munzner, Visualization Analysis & Design, A. K. Peters, 2014]

Channels

- attributes: visual/retinal variables
 - parameters control mark appearance
 - separable channels flowing from retina to brain

- x,y −
- position
- size
- greyscale
- color
- texture
- orientation
- shape

[Bertin, Semiology of Graphics, 1967 Gauthier-Villars, 1998 EHESS]

Example of Marks and Channels

[T. Munzner, Visualization Analysis & Design, A. K. Peters, 2014]

Use marks and channels to analyse idiom structure

Marks and Channels in Altair

• At minimum, you should do the following tutorials:

```
https://github.com/uwdata/visualization-curriculum/blob/master/altair_introduction.ipynbhttps://github.com/uwdata/visualization-curriculum/blob/master/altair_marks_encoding.ipynb
```

API information in here:

```
https://altair-viz.github.io/
```

Start now.

Understanding How Humans Work

- Human information processing:
 - Perception
 - Attention
 - Memory
 - Vision

Perception of Channels

[T. Munzner, Visualization Analysis & Design, A. K. Peters, 2014]

• Not all channels are perceived the same

Effectiveness by Data Type

[T. Munzner, Visualization Analysis & Design, A. K. Peters, 2014]

Channels encode data with different effectiveness.

Perception: Constructivism

- Context:
 - used to resolve ambiguous stimuli,
 - requires some prior knowledge to make sense of the ambiguity
- Gestalt:
 - innate laws of organisation
 - partition and decomposition into entities that are readily recognisable

Perception: Constructivism

Bottom-up vs. Top-down Perception

Bottom-up vs. Top-down Perception

- Bottom-up uses features of stimulus
- Top-down uses context
 - temporal (auditory perception), spatial (visual perception)
 - draws on long-term memory

Gestalt Laws

- principles of pattern perception
 - "gestalt": German for "pattern"
 - original proposed mechanisms wrong
 - rules themselves still very useful
- Pragnatz
 - simplest possibility wins

Proximity

Similarity

Continuity

- smooth not abrupt change
- overrules proximity

Connectedness

can overrule size, shape

Closure

overrules proximity

Symmetry

emphasises relationships

Common Fate

- demo
- http://tepserver.ucsd.edu/~jlevin/gp/ time-example-common-fate/

Relative Size

• smaller components perceived as objects

Motion

- works for preattentive/grouping
- less studied than static dimensions
 - Michotte on causality
 - newer InfoVis/motion work by Lyn Bartram

[www.psy.vanderbilt.edu/faculty/blake/biowalker.gif]

- color (hue) alone: preattentive
 - attentional system not invoked
 - search speed independent of distractor count

demo

[Chris Healey, Preattentive Processing, www.csc.ncsu.edu/faculty/healey/PP/PP.html]

hue shape texture length width size orientation curvature intersection intensity flicker direction of motion stereoscopic depth light direction, ...

Not All Dimensions Preattentive

parallelism

[www.csc.ncsu.edu/faculty/healey/PP/PP.html]

color alone: preattentive

shape alone: preattentive

- combined hue and shape (demo)
 - requires attention
 - search speed linear with distractor count

color alone: preattentive

• shape alone: preattentive

- combined hue and shape (demo)
 - requires attention
 - search speed linear with distractor count

- color alone: preattentive
- shape alone: preattentive

- combined hue and shape (demo)
 - requires attention
 - search speed linear with distractor count

Summary

- Data types and effective encodings
- Perceptual factors in data encodings
- Gestalt principles
- Preattentive encodings