Melhores momentos

AULA 1

Digrafos

digrafo = de vértices e conjunto de arcos
arco = par ordenado de vértices

Exemplo: v e w são vértices e v-w é um arco

Especificação

Digrafos podem ser especificados através de sua lista de arcos

Exemplo:

d-f

b-d

a-c

b-e

e-f

a-b

Grafos

grafo = digrafo simétrico
aresta = par de arcos anti-paralelos

Exemplo: b-a e a-b formam uma aresta

Grafos

Um grafo é um digrafo simétrico

Exemplo: representação usual

Estrutura de dados

Vértices são representados por objetos do tipo Vertex.

Arcos sao representados por por objetos do tipo Arc

```
#define Vertex int

typedef struct {
    Vertex v;
    Vertex w;
} Arc;
```

Grafos no computador

Usaremos duas representações clássicas:

- matriz de adjacência (agora)
- vetor de listas de adjacência (próximas aulas)

Matriz de adjacência de digrafo

Matriz de adjacência de um digrafo tem linhas e colunas indexadas por vértices:

$$adj[v][w] = 1 se v-w é um arco$$

 $adj[v][w] = 0 em caso contrário$

Exemplo:

Consumo de espaço: $\Theta(V^2)$

	0	1	2	3
0	0	1	1	0
1	0	0	0	1
2	0	1	0	1
3	0	0	0	0

fácil de implementar

Estrutura digraph

```
V = número de vértices
A = número de arcos
adj = ponteiro para a matriz de adjacência
   struct digraph {
       int V
       int A
       int **adj;
   };
   typedef struct digraph *Digraph;
```

Digrafo

${\tt Digraph} \; {\tt G}$

Estruturas de dados

MATRIXint

Aloca uma matriz com linhas 0..r-1 e colunas 0..c-1, cada elemento da matriz recebe valor val

```
int **MATRIXint (int r, int c, int val) {
        Vertex v. w:
        int **m = malloc(r * sizeof(int *));
        for (v = 0; v < r; v++)
            m[v] = malloc(c * sizeof(int));
        for (v = 0; v < r; v++)
            for (w = 0; w < c; w++)
5
                m[v][w] = val;
6
        return m;
                               4 D > 4 P > 4 E > 4 E > 9 Q P
```

DIGRAPHinit

Devolve (o endereço de) um novo digrafo com vértices 0, ..., V-1 e nenhum arco.

```
Digraph DIGRAPHinit (int V) {
Digraph G = malloc(sizeof *G);
G->V = V;
G->A = 0;
G->adj = MATRIXint(V,V,0);
return G;
}
```

AULA 2

Funções básicas (continuação)

S 17.3

DIGRAPHinsertA

Insere um arco v-w no digrafo G. Se v == w ou o digrafo já tem arco v-w, não faz nada

void

DIGRAPHinsertA(Digraph G, Vertex v, Vertex w)

DIGRAPHinsertA

Insere um arco v-w no digrafo G. Se v == w ou o digrafo já tem arco v-w, não faz nada

void

```
DIGRAPHinsertA(Digraph G, Vertex v, Vertex w)
{
   if (v != w && G->adj[v][w] == 0) {
      G->adj[v][w] = 1;
      G->A++;
   }
}
```

DIGRAPHremoveA

Remove do digrafo G o arco v-w Se não existe tal arco, a função nada faz.

void

DIGRAPHremoveA(Digraph G, Vertex w, Vertex w)

DIGRAPHremoveA

Remove do digrafo G o arco v-w Se não existe tal arco, a função nada faz.

void

```
DIGRAPHremoveA(Digraph G, Vertex v, Vertex w)
{
   if (G->adj[v][w] == 1) {
      G->adj[v][w] = 0;
      G->A--;
   }
}
```

DIGRAPHshow

DIGRAPHshow

Para cada vértice v de G, imprime, em uma linha, os vértices adjacentes a v

void DIGRAPHshow (Digraph G) {

DIGRAPHshow

Para cada vértice v de G, imprime, em uma linha, os vértices adjacentes a v

```
void DIGRAPHshow (Digraph G) {
        Vertex v, w;
       for (v = 0; v < G -> V; v++)
            printf("%2d:", v);
            for (w = 0; w < G -> V; w++)
               if (G->adj[v][w] == 1)
5
                   printf("%2d", w);
6
            printf("\n");
```

Consumo de tempo

linha	número de execuções da linha		
1	T 1 1	O(n)	
1	= V + 1	$=\Theta({\tt V})$	
2	= V	$=\Theta({ extsf{V}})$	
3	$= \mathbf{V} \times (\mathbf{V} + 1)$	$=\Theta({\color{red}\mathtt{V}}^2)$	
4	$= V \times V$	$=\Theta({f V}^2)$	
5	$\leq \mathtt{V} \times \mathtt{V}$	$= O(V^2)$	
6	= V	$=\Theta({\color{red}\mathtt{V}})$	
total	$3\Theta(V) + O(V^2) +$	$3\Theta(\mathbf{v}^2)$	

total
$$3\Theta(\mathbf{V}) + O(\mathbf{V}^2) + 3\Theta(\mathbf{V}^2)$$

= $\Theta(\mathbf{V}^2)$

Conclusão

O consumo de tempo da função DIGRAPHShow é $\Theta(V^2)$.

Funções básicas para grafos

Funções básicas para grafos

```
#define GRAPHinit DIGRAPHinit
#define GRAPHshow DIGRAPHshow
```

Função que insere uma aresta v-w no grafo G

GRAPHinsertE (Graph G, Vertex v, Vertex w)

Funções básicas para grafos

```
#define GRAPHinit DIGRAPHinit
     #define GRAPHshow DIGRAPHshow
Função que insere uma aresta v-w no grafo G
   void
   GRAPHinsertE (Graph G, Vertex v, Vertex w)
     DIGRAPHinsertA(G, v, w);
     DIGRAPHinsertA(G, w, v);
```

Exercício Escrever a função GRAPHremoveE

Caminhos em digrafos

S 17.1

Caminhos

Um **caminho** num digrafo é qualquer seqüência da forma \mathbf{v}_0 - \mathbf{v}_1 - \mathbf{v}_2 -...- \mathbf{v}_{k-1} - \mathbf{v}_p , onde \mathbf{v}_{k-1} - \mathbf{v}_k é um arco para $k=1,\ldots,p$.

Exemplo: 2-4-1-3-5-4-5 é um caminho com **origem** 2 é **término** 5

Caminhos simples

Um caminho é **simples** se não tem vértices repetidos Exemplo: 2-4-1-3-5 é um caminho simples de 2 a 5

Procurando um caminho

Problema: dados um digrafo G e dois vértices s e t decidir se existe um caminho de s a t

Exemplo: para s = 0 e t = 1 a resposta é SIM

Procurando um caminho

Problema: dados um digrafo G e dois vértices s e t decidir se existe um caminho de s a t

Exemplo: para s = 0 e t = 1 a resposta é SIM

Procurando um caminho

Problema: dados um digrafo G e dois vértices s e t decidir se existe um caminho de s a t

Exemplo: para s = 5 e t = 4 a resposta é NÃO

DIGRAPHpath

Recebe um digrafo G e vértices s e t e devolve 1 se existe um caminho de s a t ou devolve 0 em caso contrário

Supõe que o digrafo tem no máximo maxV vértices.

int DIGRAPHpath (Digraph G, Vertex s, Vertex t)

DIGRAPHpath(G,0,1)

DIGRAPHpath(G,0,1)

pathR(G,1)

DIGRAPHpath(G,0,1)

DIGRAPHpath(G,2,3)

DIGRAPHpath(G,2,3)

pathR(G,1)

pathR(G,5)

pathR(G,5)

pathR(G,4)

pathR(G,2)

DIGRAPHpath(G,2,3)

DIGRAPHpath

```
static int lbl[maxV];
int DIGRAPHpath (Digraph G, Vertex s, Vertex t)
   Vertex v:
   for (v = 0; v < G -> V; v++)
       1b1[v] = -1;
3
   pathR(G,s);
   if (lbl[t] == -1) return 0;
5
   else return 1;
```

pathR

Visita todos os vértices que podem ser atingidos a partir de \mathbf{v}

void pathR (Digraph G, Vertex v)

pathR

Visita todos os vértices que podem ser atingidos a partir de v

```
void pathR (Digraph G, Vertex v)
   Vertex w:
   lbl[v] = 0;
   for (w = 0; w < G -> V; w++)
       if (G->adj[v][w] == 1)
3
            if (lbl[w] == -1)
               pathR(G, w);
```

DIGRAPH path (G, 0, 1)

DIGRAPHpath(G,2,3)

Qual é o consumo de tempo da função DIGRAPHpath?

Qual é o consumo de tempo da função DIGRAPHpath?

linha	número de execuçõe	es da linha
1	= V + 1	$=\Theta({ extsf{V}})$
2	= V	$=\Theta({ extsf{V}})$
3	=1	= ????
4	=1	$=\Theta(1)$
5	=1	$=\Theta(1)$
total	$= 2\Theta(1) + 2\Theta(V) + ???$	
	$=\Theta(\mathbf{V})+????$	

Conclusão

O consumo de tempo da função DIGRAPHpath é $\Theta(V)$ mais o consumo de tempo da função PathR.

Qual é o consumo de tempo da função PathR?

Qual é o consumo de tempo da função PathR?

linha	número de execuções da linha	
1	< V (₹2, 1)	= O(V)
2	$\leq \mathbf{V} \times (\mathbf{V} + 1)$	$= O(V^2)$
3	$\leq \mathtt{V} \times \mathtt{V}$	$= O(V^2)$
4	$\leq \mathtt{V} \times \mathtt{V}$	$= O(V^2)$
5	$\leq V - 1$	$= \mathrm{O}(V)$
total	$= 2 \operatorname{O}(\mathbf{V}) + 3 \operatorname{O}(\mathbf{V}^2)$ $= \operatorname{O}(\mathbf{V}^2)$	

Conclusão

O consumo de tempo da função PathR para matriz de adjacência é $O(V^2)$.

O consumo de tempo da função DIGRAPHpath para matriz de adjacência é $O(V^2)$.