Data Privacy

- * Simplest privacy method: Anonymization.
 - 1. Remove "identifying" bits eg, names, addresses, etc.
 - 2. Publish data!
- * This has serious problems.
 - eg. AOL 2006, Netfline 2008.
- * Why? People's data tends to be very unique. For example:

Gender Position Dept Ethnicity

F Faculty CSE SASian

Only one person, Kamalika, fits description." Linkage" information on CSF website.

- * Statistics from data also problematic.
 - eg, Wong et al study
 Histogram with outliers.

privacy - utility - sample size

* Need robust, rigorous measures to preserve privacy. tradioffs.

Three Privacy Settings:

- 1. Local somitizer
- 2. Centralized sanitizer
- 3. Consent management.

- 1. Aggregator is untrusted.
- 2. Samifization happens locally before passing on to Aggregator.

Example: Romdomized Response. [Werner 1965]

Each person is asked if they use on illegal drug (Yes or No). Everyone takes their answer, flips w.p. p and returns it.

= (1-p) ½

 $\frac{1}{2}$, $(1-p) + \frac{1}{2}$.

What is the utility offered?

Suppose we are aggregating N responses, and &f is the fraction of drug uses.

E[# Yes] = NPr[Output = Y]

Pr (Output = Y) = Pr (Output = Y | True = Y) The Pr (True = Y) + Pr (Output = Y | True = N) Pr (True = N)

= (1-1)f + 1(1-f) = 1+f-2f

[# Yes] = N(p+f-2pf) = Np+ N(1-2p)f

Var (#Yes) = IN

Let $T = \frac{\# \text{Yes} - \text{Np}}{\text{N}(1-2\text{b})}$

Then $\mathbb{F}[T] = f$ Comestimate the fraction $Nar(T) \leq \frac{1}{\sqrt{N(1-2p)}}$ of drug users if p is not too close to $\frac{1}{2}$.

Note: Privacy - Utility - Dotasize trade off

 $\mathcal{P} \approx \frac{1}{2}$: High privacy, but high varionce of T, so low utility.

Trade off is better when N is high

Applications: Data collection systems in companies, eg. Google, Apple, etc.

1. Somitizer is trusted.

released. Example 2: Census (2020 Census)

2. Somitizer sees / collects row sensitive data and "privatizes" it and passes the privatized version to the public sphere.

Somitizer

What is a good notion of brivary for such a setting? Differential privary.

Main idea: Participation of a single person does not make a difference.

Adversary: whatever she can learn about Alice from algorithm's output, she can learn even if Alice is not in data.

Example 1: Study shows smoking causes cancer, Adversary knows Alice smokes > infers Alice may have concur.

NOT a privacy riolation.

xample 2: A Study in Wang et al. with Alice in data.

Adversary knows about

Alice's genome > solves equations and

finds Alice in Cancur group

Privacy Violation

Formally, Differential privacy definition:

A mechanism A is ϵ . DP if for all datasets D and D' that differ in the private value of a single person and for all t, $\Pr\left(A(D)=t\right) \leq e^{\epsilon} \Pr\left(A(D')=t\right)$.

E = privacy budget

Pr = over randomization of the algorithm A.

Properties: 1. Post processing Invariance.

Sequential

Paralle

How to get DP?

- The Global Sensitivity Mechanism.
 - · Global sensitivity of a function f:

GS(f) =
$$\max_{D,D'} |f(D) - f(D')|$$

$$|D(D')| = 1$$

Mechanism:

Output
$$f(D) + \frac{GS(f)}{E} \neq \text{where } \neq \text$$

Laplace distribution:

$$f(z) = \frac{1}{2}e^{-|z|/b}$$

[mean 0, stdev: 126]

Ratio & e Epi

Use this mechanism + composition to get more complex ones. Utility: Back to the drug user problem, if we use DP, then GS of mean of n bits = $\frac{1}{n}$.

So stdev of noise added =
$$\frac{\sqrt{2}}{ne}$$
 (as opposed to $\frac{1}{\sqrt{m(1-2b)}}$ for RR)

So better privacy - utility - data size tradeoff