Основы математической логики.

Лектор — Станислав Олегович Сперанский Создатель конспекта — Глеб Минаев *

TODOs

	(А надо ли?)	
	тно. ТОДО	
	ержание	
0.1	Формальности про алфавиты и слова	1
0.2	Язык пропозициональной классической логики	
	(Proposal Classic Logic, PCL)	2
0.3	Семантика пропозициональной классической логики	5

Материалы лекций: ссылка

0.1 Формальности про алфавиты и слова

Определение 1. $A \wedge \phi a \epsilon u m A$ — множество элементов произвольной природы.

A-слова или слова над алфавитом A — элементы A^* (т.е. всевозможные конечные последовательности элементов из A).

Для всякого $w \in A^*$ длиной слова w называется |w| (что также равно dom(w)).

Определение 2. Пусть даны слова w_1 и w_2 над A. Рассмотрим отображение

$$v: |w_1| + |w_2| o A, i \mapsto egin{cases} w_1(i) & ext{если } i < |w_1| \ w_2(i-|w_1|) & ext{если } i \geqslant |w_1| \end{cases}$$

Понятно, что $v \in A^*$. Полученное v называется конкатенацией w_1 и w_2 и обозначается w_1w_2 .

Определение 3. Пусть $w, w' \in A^*$. Тогда w' называется *подсловом* w, если $w = v_0 w' v_1$ для некоторых $\{v_0; v_1\} \subseteq A^*$. Обозначение: $w' \preccurlyeq w$.

В этом случае $\langle w'; |v_0| \rangle$ называется вхождением w' в w.

 $^{^*}$ Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

Определение 4. Пусть $\langle w', k \rangle$ — вхождение w' в w, т.е. $w = v_0 w' v_1$, где $|v_0| = k$. Тогда для всякого $u \in A^*$ можно определить

$$w[w'/u, k] := v_0 u v_1,$$

т.е. результат замены данного вхождения w' в w на u.

Если никакие два различных вхождения w' в w не пересекаются, то можно определить w[w'/u] как результат одновременной замены всех вхождений w' в w на u.

0.2 Язык пропозициональной классической логики (Proposal Classic Logic, PCL)

Определение 5. Пусть (навсегда) зафиксировано некоторое счётное множество Prop. Будем называть его элементы *пропозициональными переменными* или просто *переменными*.

Алфавит \mathscr{L} классической пропозициональной классической логики состоит из элементов Prop, а также:

- символов связок:
 - $\rightarrow -$ символ импликации,
 - − ∧ символ конъюнкции,
 - V символ дизъюнкции,
 - ¬ символ отрицания,
- и вспомогательных символов: (и).

Обозначим за Form наименьшее подмножество \mathscr{L}^* , замкнутое относительно следующих порождающих правил:

- если $p \in \text{Prop}$, то $p \in \text{Form}$;
- если $\{\varphi, \psi\} \in \text{Prop}$, то $(\varphi \to \psi) \in \text{Form}$;
- если $\{\varphi, \psi\} \in \text{Prop}$, то $(\varphi \wedge \psi) \in \text{Form}$;
- если $\{\varphi, \psi\} \in \text{Prop}$, то $(\varphi \lor \psi) \in \text{Form}$;
- если $\varphi \in \text{Form}$, то $\neg \varphi \in \text{Form}$.

Элементы Form называются формулами.

Теорема 1. Form существует.

Доказательство. Рассмотрим семейство T всех подмножеств \mathcal{L}^* , удовлетворяющих порождающим правилам выше. Заметим, что T не пусто, так как содержит \mathcal{L}^* . Тогда можно рассмотреть $F := \bigcap T$. Несложно убедиться, что оно удовлетворяет всем порождающим правилам, значит лежит в T. И при этом меньше по включению всех других множеств в T. Значит его и можно взять в качестве Form.

Определение 6. Будем говорить, что φ является *началом* ψ , и писать $\varphi \sqsubseteq \psi$, если $\psi = \varphi \tau$ для некоторого $v \in \mathcal{L}^*$.

Лемма 2. Всякое $\varphi \in \text{Form } u$ меет один из следующих видов:

- 1. p для некоторого $p \in \text{Prop}$;
- 2. $(\theta \circ \chi)$ для некоторых $\{\theta; \chi\} \subseteq \text{Form } u \circ \in \{\rightarrow; \land; \lor\};$
- 3. $\neg \theta$ для некоторого $\theta \in \text{Form}$.

Доказательство. Предположим противное. Тогда рассмотрим $F := \text{Form} \setminus \{\varphi\}$. Заметим, что F удовлетворяет тем же порождающим правилам, что и Form. Действительно:

- Если $p \in \text{Prop}$, то $p \in \text{Form}$. При этом $p \neq \varphi$ по условию леммы. Следовательно $p \in F$.
- Если $\{\varphi, \psi\} \in \text{Prop}$, то $(\varphi \to \psi) \in \text{Form}$. При этом $(\varphi \to \psi) \neq \varphi$ по условию леммы. Следовательно $(\varphi \to \psi) \in F$. Аналогично для \wedge и \vee .
- Если $\varphi \in$ Form, то $\neg \varphi \in$ Form. При этом $\neg \varphi \neq \varphi$ по условию леммы. Следовательно $\neg \varphi \in F$.

Значит F — меньшее по включение чем Form множество, удовлетворяющее условиям наложенным на Form — противоречие.

Следствие 2.1. Рассмотрим последовательность множеств $(F_n)_{n=0}^{\infty}$, что $F_0 = \text{Prop}$, а

$$F_{n+1} = F_n \cup \{ (\varphi \circ \chi) \mid \{\theta; \chi\} \subseteq \text{Form } \land \circ \in \{\rightarrow; \land; \lor\} \} \cup \{ \neg \theta \mid \theta \in \text{Form} \}$$

Tог ∂a

- 1. всякое $F_n \subseteq \text{Form}$;
- 2. всякое $\varphi \in \text{Form лежит в некотором } F_n$.

Следствие 2.2. $\bigcup_{n=0}^{\infty} F_n = \text{Form.}$

Лемма 3. Пусть $\{\varphi;\psi\}\subseteq$ Form таковы, что $\psi\subseteq\varphi$. Тогда $\psi=\varphi$.

Доказательство. Докажем утверждение возвратной индукцией по $|\varphi|$. Рассмотрим случаи.

- 1. Если $\varphi \in \text{Prop}$, то, очевидно, $\psi = \varphi$.
- 2. Если $\varphi = (\theta \circ \chi)$, где $\{\theta; \chi\} \in$ Form и $\circ \in \{\to; \land; \lor\}$, то ψ начинается на "(", значит имеет вид $(\theta' \circ' \chi')$, где $\{\theta'; \chi'\} \in$ Form и $\circ' \in \{\to; \land; \lor\}$. Следовательно либо $\theta \sqsubseteq \theta'$, либо $\theta' \sqsubseteq \theta$. Но $|\theta| < |\varphi| 3$, и $|\theta'| < |\psi| 3 \leqslant |\varphi| 3$. Тогда можно применить предположение индукции и получить, что $\theta = \theta'$. Значит $\circ = \circ'$, а далее по аналогии получаем, что $\chi = \chi'$. Следовательно $\varphi = \psi$.
- 3. Если $\varphi = \neg \theta$, то ψ начинается на "¬", следовательно $\psi = \neg \theta'$. Тогда $\theta' \sqsubseteq \theta$, а тогда по предположению индукции $\theta' = \theta$, значит $\varphi = \psi$.

Теорема 4 (о единственности представления формул). Всякая формула в Form \ Prop npedставляется единственным образом в одном из видов

- $(\theta \to \chi)$,
- $(\theta \wedge \chi)$,

3

- $(\theta \lor \chi)$,
- ¬θ,

 $e \partial e \{\theta; \chi\} \subseteq Form.$

Доказательство. По доказанной лемме всякое ϕ имеет такое представление. Пусть тогда их несколько; рассмотрим случаи.

- 1. Если ϕ начинается на "(", то тогда $\phi = (\theta \circ \chi) = (\theta' \circ \chi')$. Тогда по доказанной лемме $\theta = \theta', \circ = \circ', \chi = \chi'$. Значит представления совпадают.
- 2. Если ϕ начинается на "¬", то $\phi = \neg \theta = \neg \theta'$. Тогда $\theta = \theta'$, а следовательно представления совпадают.

Определение 7. Для всякого $\varphi \in$ Form определим

$$Sub(\varphi) := \{ \psi Form \mid \psi \preccurlyeq \varphi \}.$$

Элементы $Sub(\varphi)$ называют $nod \phi oрмулами \varphi$.

Лемма 5. Пусть $\varphi \in \text{Form.}$ Тогда каждое вхождение "¬" или "(" в φ является началом вхождения некоторой подформулы.

Доказательство.

ТООО (А надо ли?)

Теорема 6. $\Pi ycmb \varphi \in Form.$

- 1. $Ecnu \varphi \in \text{Prop}, \ mo \ \text{Sub}(\varphi) = \{\varphi\}.$
- 2. Если $\varphi = (\theta \circ \chi)$, где $\{\theta; \chi\} \subseteq \text{Form } u \circ \in \{\rightarrow; \land; \lor\}$, то

$$Sub(\varphi) = Sub(\theta) \cup Sub(\chi) \cup \{\varphi\}.$$

3. Ecau $\varphi = \neg \theta$, $\varepsilon \partial e \ \theta \in \text{Form}$, mo

$$Sub(\varphi) = Sub(\theta) \cup \{\varphi\}.$$

Доказательство.

- 1. Очевидно.
- 2.

Непонятно. ТООО

3.

Непонятно. TODO

0.3 Семантика пропозициональной классической логики

Определение 8. Под $ouenko\ddot{u}$ мы будем понимать произвольную функцию из Prop в 2 (т.е. в $\{0;1\}$). Интуитивно 0 — «ложь», а 1 — «правда».

Теорема 7. Пусть дана случайная $v: \text{Prop} \to 2$. Тогда существует единственная $v^*: \text{Form} \to 2$, которая удовлетворяет следующим свойствам:

1.
$$\forall p \in \text{Prop}$$
 $v^*(p) = 1 \Leftrightarrow v(p) = 1$.

2.
$$\forall \{\varphi; \psi\} \subseteq \text{Form}$$
 $v^*("(\varphi \to \psi)") = 1 \Leftrightarrow v^*(\varphi) = 0 \lor v^*(\psi) = 1.$

3.
$$\forall \{\varphi; \psi\} \subseteq \text{Form}$$
 $v^*(``(\varphi \wedge \psi)") = 1 \Leftrightarrow v^*(\varphi) = 1 \wedge v^*(\psi) = 1.$

4.
$$\forall \{\varphi; \psi\} \subseteq \text{Form}$$
 $v^*("(\varphi \lor \psi)") = 1 \Leftrightarrow v^*(\varphi) = 1 \lor v^*(\psi) = 1.$

5.
$$\forall \varphi \in \text{Form} \quad v^*(\neg \varphi) = 1 \Leftrightarrow v^*(\varphi) = 0.$$

Доказательство.

TODO

Определение 9. Если для некоторой оценки v и формулы φ верно, что $v^*(\varphi) = 1$, то пишут $v \Vdash \varphi$.

Определение 10. Формулу φ называют:

- выполнимой, если $v \Vdash \varphi$ для некоторой оценки v;
- общезначимой (или тождественно истинной, или тавтологией), если $v \Vdash \varphi$ для всякой оценки v.

Замечание. Очевидно, например, что

$$\varphi$$
 общезначима $\iff \neg \varphi$ не выполнима.

Теорема (Кук-Левин). Проблема выполнимости для пропозициональной классической логики NP-полна.

Определение 11. Пусть $\Gamma\subseteq \text{Form } u\ \varphi\in \text{Form.}$ Говорят, что φ семантически следует из $\Gamma,$ если для любой оценки v

$$(\forall \psi \in \Gamma \quad v \Vdash \psi) \qquad \longrightarrow \qquad v \Vdash \varphi.$$

Обозначение: $\Gamma \vDash \varphi$.

Вместо $\varnothing \vDash \varphi$ обычно пишут $\vDash \varphi$.

Замечание. Очевидно, например, что

$$\models \varphi \iff \varphi$$
 общезначима.

Определение 12. Формулы φ и ψ называются *семантически эквивалентными*, если $\vDash \varphi \leftrightarrow \psi$. Обозначение: $\varphi \equiv \psi$.

Пример 1. Для любых $\{\varphi; \psi; \chi\} \subseteq$ Form:

•
$$(\varphi \to \psi) \equiv \neg \varphi \lor \psi;$$

- $(\varphi \lor \psi) \land \chi \equiv (\varphi \land \chi) \lor (\psi \land \chi);$
- $(\varphi \wedge \psi) \vee \chi \equiv (\varphi \vee \chi) \wedge (\psi \vee \chi);$
- $\bullet \neg (\varphi \wedge \psi) \equiv \neg \varphi \vee \neg \psi;$
- $\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi;$
- $\bullet \ \neg \neg \varphi \equiv \varphi.$

Упражнение 1. Всякая формула семантически эквивалентна некоторой ДНФ.