

Photon-triggered jet reconstruction at the STAR experiment

DEREK M ANDERSON, TEXAS A&M UNIVERSITY FOR THE STAR COLLABORATION

QGP & Jets

- o The **Quark-Gluon Plasma** (QGP) −
 - » Color charges confined to hadrons
 - » Can be "deconfined" at high temperatures and density
- ORHIC-
 - » Au nuclei collided up to $\sqrt{s_{NN}}=200~{\rm GeV}$
 - » Proton-proton collisions used as base line
- Jets
 - » Collimated sprays of hadrons
 - » Produced early in collision by hard-scattered partons
 - » Described perturbatively

Picture credit: Jonah Bernhard

Photon Triggers

- Jet Quenching elastic and inelastic energy loss by gluon radiation
 - » Parton will lose energy as it traverses medium
 - » Depends on initial energy, path length, color factor (C_A/C_F) , coupling constant (α_S) , etc...
- **Direct photon** (γ^{dir}) photon scattered from energetic partons
 - » Doesn't strongly interact with medium so (to leading order)

$$E_T^{\gamma} \approx E_T^{parton}(t_0)$$

- » Powerful way to measure energy loss
 - PRL 77, 231 (1996)
- o In experiment, we measure:
 - » γ^{dir} -hadron "jet-like" correlations
 - PLB 760, 689 (2016)
 - » Reconstructed recoil jets in γ^{dir} -triggered events (ongoing)

Photon vs. π^0 Triggers

- O Compare quenching of jets opposite of γ^{dir} -triggers to those opposite energetic π^0 -triggers...
 - » Might illuminate path length and color factor dependence of energy loss.

o Path Length -

- » Energetic π^0 biased towards surface emission
 - Surface emission implies max path-length of medium for away-side
- » γ^{dir} has no such bias
 - More likely to come from volume of fireball than from surface

Color Factor –

- » γ^{dir} mostly from quark-gluon Compton scattering
 - Mostly quark jets opposite γ^{dir} ($C_F = 4/3$)
- » π^0 from all QCD processes
 - Mostly gluon jets opposite π^0 ($C_A = 3$)
- o On average, jets opposite γ^{dir} -triggers should **lose less energy** than those opposite π^0 -triggers

The STAR Experiment

- Located at RHIC
 - » The Relativistic Heavy-Ion Collider
 - » Built to study:
 - Partonic structure of nuclei and nucleons
 - And the **Quark-Gluon Plasma**
- As a jet detector:
 - » Time Projection Chamber (TPC)
 - Measures charged particles
 - » Barrel Electro-Magnetic Calorimeter (BEMC)
 - Identifies electromagnetic clusters (neutral particles)
 - » Both cover $\varphi = 2\pi, \eta = \pm 1$

Neutral Triggers

- Barrel Shower Maximum Detector
 (BSMD) allows for spatial imaging in BEMC
- Energetic π^0 and γ^{dir} discriminated via **Transverse Shower Profile** (TSP) –

$$TSP = \frac{E_{cluster}}{\sum_{i} E_{i}^{strip} r_{i}^{1.5}}$$

- $E_{cluster}$ is total energy of cluster
- E_i^{strip} is energy of ith strip
- r_i is distance from strip to center of cluster.
- » Split triggers into a sample of nearly pure π^0 and a sample with enhanced fraction of γ^{dir} (" γ^{rich} ")

arXiv:1512.08782v1 [nucl-ex]

γ^{dir} , π^0 -Hadron Jet-Like Correlations

o Look for collisions with energetic γ^{dir} , π^0 and measure yield of charged hadrons on **away side** –

$$|\Delta \varphi - \pi| < 1.4$$

Nuclear Modification Factor –

$$I_{AA}(x) = \frac{Y^{Au+Au}(x)}{Y^{p+p}(x)}$$

- \circ Comparing $I_{AA}^{\gamma^{dir}}$ to $I_{AA}^{\pi^0}$
 - » γ^{dir} -triggered recoil jets **should lose less energy** than π^0 -triggered recoil jets
 - Suppression should differ due to color factor ($C_F/C_A=4/9$)
 - Suppression should differ due to path length
 - » Within uncertainty, NOT observed in studied kinematic range

$$\Delta arphi = arphi_h - arphi_{trig} \ z_T = rac{p_T^{assoc}}{p_T^{trig}}$$

- Qin: PRC 80, 054909 (2009)
- o ZOWW: PRL 103, 032302 (2009)

γ^{dir} , π^0 -Hadron Jet-Like Correlations

o Look for collisions with energetic γ^{dir} , π^0 and measure yield of charged hadrons on **away side** –

$$|\Delta \varphi - \pi| < 1.4$$

Nuclear Modification Factor –

$$I_{AA}(x) = \frac{Y^{Au+Au}(x)}{Y^{p+p}(x)}$$

 \circ For γ^{dir} -hadrons

» Lower p_T^{assoc} less suppressed than higher p_T^{assoc}

O PHENIX reported:

- » $I_{AA}^{\gamma^{dir}} > 1$ for low z_T and large angles
- » Expected if energy is redistributed in jet
- \circ Comparing yields within $\pm 35^{\circ}$ and $\pm 80^{\circ}$ in STAR
 - » Low z_T and large angle enhancement seen **only** in π^0 trigger
 - » Possible that lost energy recovered at large angles for range of $p_T^{assoc} < 2$ GeV/c independent of p_T^{trig}
- For fixed $z_T \in (0.1, 0.4)$:
 - » STAR: $p_T^{trig} \in (12, 20) \Rightarrow p_T^{assoc} \in (1.2, 8)$
 - **» PHENIX:** $p_T^{trig} \in (5,9) \Rightarrow p_T^{assoc} \in (0.5,3.6)$

 Lost energy appears as soft particles emitted at large angles

Photon-Triggered Jet Reconstruction

- O Jet Reconstruction:
 - » Particles clustered into jets via algorithm:
 - Cone, Cambridge-Aachen, k_T, anti-k_T
 - » Pros:
 - Allows for study of correlations inside jets (jet sub-structure)
 - More sensitive to soft sector ($p_T^{cst} > 0.2 \text{ GeV/c}$)
 - » Cons:
 - Very sensitive to fluctuating background
- Recoil Jets any jet satisfying:

$$|\Delta \varphi - \pi| < \pi/4$$

- Semi-inclusive Recoil Jets:
 - 1) Select collisions with high energy γ^{dir} (or π^0)
 - 2) Cluster charged **and** neutral constituents into jets ("full" jets)
 - Gives much more precise measurement of E^{jet} than just charged constituents ("charged" jets)
 - 3) Count all recoil jets

- O Above:
 - » PYTHIA generated recoil jet p_T^{corr} spectrum for **p+p collisions**
 - » Illustrates difference between full and charged jets
 - » Fastjet: arXiv:1111.6097v1 [hep-ph]

- Background sources in p+p collisions:
 - » Jet finding
 - Split jets, Combinatorial Jets...
 - » Underlying Event
 - Diffuse radiation not related to hard fragmentation
- Background sources in Heavy Ion (HI) collisions:
 - » Jet finding
 - » HI background
 - Very large fluctuations, flow, etc...
- Possible background techniques
 - » Jet Finding
 - Mixed Event
 - » Underlying Event
 - Different $\Delta \varphi$ -regions (see left)
 - » HI background
 - Unfolding

Preliminary study of γ^{dir} triggered recoil jets using PYTHIA

UE spectrum given by:

$$\left(\frac{1}{N_{trg}}\right) \frac{dN_{jet}(UE)}{dp_T}$$

Mixed Event –

- » Create pseudo-event from randomly selected tracks
 - Randomly select 1 track per event
 - Add it to Mixed Event
 - Use only events with same centrality, evt. plane, vtx. z-position
- » Very good description of combinatorial background

○ Unfolding –

- "True" spectrum distorted by background and detector
- » Create a "response matrix" that maps the true onto the measured spectrum.

$$M_j = R_{ij}T_i$$

» True spectrum then obtained from

$$R_{ij}^{-1}M_j = T_i$$

Au+Au charged hadron-triggered jet spectrum compared to mixed-event spectrum

12

October 14th, 2016 FALL MEETING OF THE APS DIVISION OF NUCLEAR PHYSICS

Summary

Photon-Hadron Correlation –

- » No observed difference due to color-factor or path-length (within uncertainties)
- » Less suppression at low p_t^{assoc}
- » Lost energy (possibly) escaping as soft radiation at wide angles

Photon-Jet Reconstruction –

- » Currently ongoing
- » Still very early in analysis
 - Currently working on p+p baseline
 - "Testing the waters" in Au+Au
- » Stay tuned!

Thank you!

Extracted Yields

- Per-Trigger Yields for a given trigger, total no. of associated hadrons divided by total no. of triggers
 - » Near-side yields extracted within $|\Delta \varphi| \leq 1.4$
 - » Away-side yields extracted within $|\Delta \varphi \pi| \leq 1.4$
- o Let $Y_{\gamma^{rich}+h}^{a(n)}$ and $Y_{\pi^0+h}^{a(n)}$ be the away-side (near-side) yields of hadrons associated with each trigger...

$$R \equiv \frac{Y_{\gamma^{rich}+h}^{n}}{Y_{\pi^{0}+h}^{n}} \Rightarrow 1 - R = \frac{N_{\gamma^{dir}}}{N_{\gamma^{rich}}}$$

- » Assumes $Y_{\gamma^{dir}+h}^n = 0$
- » 1-R ~ 40% for p+p
- » 1-R ~ 70% for Au+Au
- \circ Then the away-side yield for γ^{dir} -triggers is given by:

$$Y_{\gamma^{dir} + h}^{a} = \frac{Y_{\gamma^{rich} + h}^{a} - RY_{\pi^{0} + h}^{a}}{1 - R}$$

15

Unfolding

- » True spectrum is distorted by background and detector
- » Create a response matrix to map true spectrum onto measured spectrum

$$M_j = R_{ij}T_i$$

- R_{ij} calculated by:
 - 1) Simulate a "particle level" jet spectrum (e.g. Pythia)
 - 2) "Smear" spectrum with parameterization of detectors and background
 - 3) Match particle jets to detector jets
- Effect of HI background determined by embedding Pythia events in Au+Au events
- » True spectrum then given by:

$$R_{ij}^{-1}M_j = T_i$$

- To correctly account for error bars and the steeply falling spectrum we must resort to "regularized" unfolding methods:
 - » Bayesian Method: R_{ij}^{-1} is guessed based on given prior using Baye's Theorem, and then iteratively tweaked.
 - Must specify no. of iterations
 - » SVD Method: R_{ij}^{-1} computed indirectly via Singular-Value Decomposition.
 - Must specify no. of terms to keep during SVD
- Unfolding performed using RooUnfold package: arXiv:1105.1160v1 [physics.data-an]

