1. 给出语言 {a ⁿ b ⁿ a ^mb ^m | n, m ≥ 0} 的一个上下文无关文法。(6 分) 解: G[S]: S→>AB

A—>aAb |ε

B—>aBb |**ε**

2. 给出语言{1 ⁿ 0 ^m 1 ^m0 ⁿ | n, m ≥ 0}的一个上下文无关文法。

解: G[S]: S->1S0 | A

A-->0A1 |ε

3. P48 第6题(5)、(6). 画语法树

6、已知文法 G:

〈表达式〉::=〈项〉 | 〈表达式〉+〈项〉

〈项〉::=〈因子〉 | 〈项〉*〈因子〉

〈因子〉::=(〈表达式〉) | i

(5) i+(i+i) (6) i+i*i

解: (5)语法树:

(6) 语法树:

4. P48 第 13 题 直接短语等

13、 一个上下文无关文法生成句子 abbaa 的推导树如下:

(3)求直接短语

解: 直接短语有: aε b

P102 例题 6.1 及其分析. (后加画语法树)

例 6.1 设文法 G[S]为:

- (1) S—>aAcBe
- $(2) A \longrightarrow b$
- (3) A—>Ab
- (4) B—>d

对输入串 abbcde#进行分析,检查该符号串是否是 G[S]的句子。

解:设一个先进后出的符号符,并把句子左括号"#"号放入栈底,其分析过程如下:

步骤	符号栈	输入符号串	动作
(1)	#	abbcde#	移进
(2)	#a	bbcde#	移进
(3)	#ab	bcde#	归约(A—>b)
(4)	#aA	bcde#	移进
(5)	#aAb	cde#	归约(A—>Ab)
(6)	#aA	cde#	移进
(7)	#aAc	de#	移进
(8)	#aAcd	e#	归约 (B—>d)
(9)	#aAcB	e#	移进
(10)	#aAcBe	#	归约(S—>aAcBe)
(11)	#S	#	接受

语法树如下:

1、正规式 \rightarrow NFA \rightarrow DFA \rightarrow 最简 DFA P72 第 1 题(1)、(4); 第一题 1、构造下列正规式相应的 DFA.

(1) 1(0|1)*101

解: 先构造 NFA

用子集法将 NFA 确定化

	0	1
S		A
A	A	AB
AB	AC	AB
AC	A	ABZ
ABZ	AC	AB

除 S,A 外,重新命名其他状态,令 AB 为 B、AC 为 C、ABZ 为 D,因为 D 含有 Z(NFA 的终态),所以 D 为终态,因此有:

	0	1
S		A
A	A	В
В	С	В
С	A	D
D	С	В

得到 DFA 如下所示:

(4) b((ab)*lbb)*ab

解: 先构造 NFA

得到 DFA 如下所示:

P72 第 4 题 (a)

4、把下图确定化和最小化

解:确定化:

用子集法将 NFA 确定化

	a	b
0	01	1
01	01	1
1	0	

重新命名,以A、B、C代替{0}、{01}、{1},其中A为初态,A,B为终态,因此有:

	a	b
A	В	С
В	В	С
С	A	

最小化::

初始分划得终态组{A,B}, 非终态组{C}

 Π 0: {A, B}, {C}, 对终态组进行审查,判断 A 和 B 是等价的,故这是最后的划分。重新命名,以 A、C 代替{A, B}、{C}, 因此有:

1411 (13) 2) 1 (0) 7 1123 31							
	a	b					
A	A	С					
С	A						

即 DFA 最小化如下:

第7题

7、给文法 G[S]:

S→aAlbQ

 $A \rightarrow aAlbBlb$

B→bDlaQ

Q→aQlbDlb

D→bBlaA

E→aBlbF

F→bDlaElb

构造相应的最小的 DFA。

解: 先构造 NFA:

用子集法将 NFA 确定化:

	,	
	a	b
S	A	Q
A	A	BZ
BZ	Q	D
В	Q	D
Q	Q	DZ
DZ	A	В
D	A	В

将 S、A、BZ、B、Q、DZ、D 重新命名,分别用 0、1、2、3、4、5、6 表示。因为 2、5 中含有 Z,所以它们为终态。因此有:

_ " " " " " " " " " " " " " " " " " " "						
	a	b				
0	1	4				
1	1	2				
2	4	6				
3	4	6				
4	4	5				
5	1	3				

6	1	3

初始分划得: 终态组 {2,5}, 非终态组 {0,1,3,46}

 Π 0: {2,5}, {0,1,3,4,6}

对 $\{0,1,3,4,6\}$ 进行审查: $\{1,4\}$ 输入 b 到达 $\{2,5\}$,而 $\{0,3,6\}$ 输入 b 到达 $\{3,4,6\}$,故得到新分划 $\{1,4\}$, $\{0,3,6\}$

 Π 1: {2,5}, {1,4}, {0,3,6}

对 {0,3,6} 进行审查: {0}经过b到达 {2}, {3,6}经过b到达 {3,6}, 故得到新分划 {0}, {3,6}

 Π 3: 得到最后划分 $\{0\}$, $\{1,4\}$, $\{2,5\}$, $\{3,6\}$

重新命名,以A,B,C,D分别代替 $\{0\}$, $\{1,4\}$, $\{2,5\}$, $\{3,6\}$,其中A为始态,C为终态,可得到最小DFA如下:

2、自顶向下方法

(一) 设文法 G(E):

 $E \rightarrow E + T \mid T$

 $T \rightarrow T * F \mid F$

F→ i | (E)

- (1) 判断是否为 LL(1) 文法.
- (2) 构造文法的预测分析表.

解: 详见 P93-96 例题。

(1) 由于文法中含有左递归, 所以必须先消除左递归, 使文法变为:

E→TE`

E`→+TE` | **ε**

T→FT`

T`→*FT` | ε

 $F \rightarrow i \mid (E)$

FIRST 集合如下:

FIRST (E) = $\{(, i)\}$

FIRST (E) = $\{+, \varepsilon\}$

FIRST $(T) = \{(, i)\}$

FIRST (T) = $\{*, \epsilon\}$

FIRST $(F) = \{(, i)\}$

FOLLOW 集合如下:

FOLLOW $(E) = \{\}, \#\}$

FOLLOW $(E) = \{\}, \#\}$

FOLLOW $(T) = \{+, \}, \#\}$

FOLLOW $(T) = \{+, \}, \#\}$

FOLLOW (F) = $\{+, *,), \#\}$

各产生式的 SELECT 集合如下:

SELECT $(E \rightarrow TE^{*}) = \{(i,i)\}$

SELECT $(E \rightarrow +TE) = \{+\}$

SELECT (E \rightarrow | ϵ) ={),#}

SELECT $(T \rightarrow FT) = \{(i, i)\}$

SELECT $(T \rightarrow *FT) = \{*\}$

SELECT $(T \rightarrow | \epsilon) = \{+, \}, \#\}$

SELECT ($F \rightarrow i$) ={i}

SELECT $(F \rightarrow (E)) = \{(\}$

由上可知有相同左部产生式的 SELECT 集合的交集为空,故文法是 LL(1)文法。

(2) 构造文法的预测分析表如下:

	i	+	*	()	#
Е	→TE`			→TE`		
E`		→+TE`			→ε	→ε
T	→FT`			→FT`		
T`		→ε	→*FT`		→ε	→ε
F	→ i			→ (E)		

(二) P101 6. (4) 改写下面文法为 LL(1) 文法, 井对每个 LL(1) 文法构造相应的预测分析表。

$$S \rightarrow i \mid (E)$$

$$E \rightarrow E + S | E - S | S$$

解:

首先为各非终结符构造 FIRST 集与 FOLLOW 集,但因为产生式 $E \rightarrow E + SIE - SIS$ 存在左递归,故第一步先消除之,写为:

 $S \rightarrow il(E)$

 $E \rightarrow SE'$

 $E' \rightarrow +S E' | -S E' | \epsilon$

此时产生式已无左递归,可以开始写出 FIRST 集与 FOLLOW 集了。

FIRST(S)=(i, ()=FIRST(F)

 $FIRST(E') = \{+, -, \epsilon\}$

 $FOLLOW(S)=\{+, -, \#\}$

 $FOLLOW(E)=\{(\}=FOLLOW(E')\}$

由此可以写出预测分析表,

预测分析表 (i S $S \rightarrow i$ $S \rightarrow (E)$ E $E \rightarrow SE'$ $E \rightarrow SE'$ $E' \rightarrow +SE'$ E'Ε' →ε $E' \rightarrow -SE'$

3、自底向上方法

已知文法 G(E):

$$[0]$$
 S' \rightarrow E

$$[1] \to E + T$$

$$[3] T \rightarrow T * F$$

[5]
$$F \rightarrow (E)$$
 [6] $F \rightarrow i$

- (1) 证明该文法是 SLR(1) 文法.
- (2) 若已给出下面的 SLR(1)分析表, 试分析句子(i + (* i))#输入串出错的位置。

状	ACTION					GOTO			
态	i	+	*	()	#	Е	Т	F
0	S_5			S ₄			1	2	3
1		S_6				acc			
2		\mathbf{r}_2	S ₇		\mathbf{r}_2	r_2			
3		r_4	r_4		r_4	r_4			
4	S_5			S_4			8	2	3
5		r_6	r_6		r_6	r ₆			
6	S_5			S_4				9	3
7	S_5			S_4					10
8		S_6			S ₁₁				
9		r_1	S ₇		r_1	r_1			
10		r_3	r_3		r_3	r_3			
11		r_5	r_5		r_5	r_5			

3、解: (1):

先分析 LR (0) 项目:

由上可见:

If
$$\begin{bmatrix} S' \rightarrow E_{\bullet} \\ E \rightarrow E_{\bullet} + T \end{bmatrix}$$
 If $\begin{bmatrix} E \rightarrow T_{\bullet} \\ T \rightarrow T_{\bullet} + F \end{bmatrix}$ If $\begin{bmatrix} E \rightarrow E + T_{\bullet} \\ T \rightarrow T_{\bullet} + F \end{bmatrix}$

 I_1 , I_2 , I_9 存在移进—归约冲突. 分析 FOLLOW 集:

因为: 对 I₁ FOLLOW(S')={#} ∩ {+}= ф

对 I_2 FOLLOW(E)={ +, #,) } \cap {* }= ϕ

对 I_9 FOLLOW(E)={ +, #, } } \cap {* }= **¢**

所以是 SLR(1)文法。

(2):

(2):					
STEP	S	X	(i+(*i)#	action	goto
1	0	#	(i+(*i)#	S_4	
2	04	# (i+(*i)#	S ₅	
3	045	# (i	+ (* i) #	r_6	3
4	043	# (F	+ (* i) #	r_4	2
5	042	# (T	+ (* i) #	r_2	8
6	048	# (E	+ (* i) #	S ₆	
7	0486	# (E+	(*i)#	S_4	
8	04864	# (E+ (* i) #	error	

4、(一) 给出语句 if a+b > b+c*d then while x*y>3 do x:=x-a*b else while b+c*d>10 do b:=b-(x*y+5) 相应的三地址代码.

(1)	t1=a+b	(12)	goto (6)
(2)	t2=c*d	(13)	goto (23)
(3)	t3=b+t2	(14)	t7=c*d
(4)	if t1>t3 goto (6)	(15)	t8=b+t7
(5)	goto (14)	(16)	if t8>10 goto (18)
(6)	t4=x*y	(17)	goto (23)
(7)	if t4>3 goto (9)	(18)	t9=x*y
(8)	goto (13)	(19)	t10=t9+5
(9)	t5=a*b	(20)	t11=b-t10
(10)	t6=x-t5	(21)	b=t11
(11)	x=t6	(22)	goto (14)
		(23)	

(
$$\stackrel{\frown}{}$$
) While $a>0 \lor b<0$ do

Begin

$$X_{:} = X+1;$$

if
$$a>0$$
 then a: $=a-1$

else b:
$$=b+1$$

End;

翻译成四元式序列. (10分)

● 解:

$$(5)(+, x, 1, T1)$$

$$(6) (:=, T1, _, x)$$

$$(10) (:=, T2, _, a)$$

$$(11) (j, _, _, 1)$$

$$(12)(+, b, 1, T3)$$

(15)

5、(一)设有基本块(10分)

 T_{1} : =2

$$T_{2}$$
: =10 / T_{1}

$$T_3$$
: $=S-R$

$$T_4$$
: =S+R

 $A_{:} = T_{2} * T_{4}$

 $B_{:} = A$

 T_{5} : =S+R

 T_{6} : $=T_{3} * T_{5}$

B: $=T_6$

- (1) 画出 DAG 图;
- (2) 假设基本块出口时只有 A, B 还被引用,请写出优化后的四元序列。

5(一)、解: (1)DAG:

(3分)

(2) 优化后的四元式

$$T_3$$
: =S-R

$$T_4$$
: =S+R

$$A_{:} = 5*T_{4}$$

B:
$$=T_3+T_4$$

(二) P255-257 DAG 图

例 试构造以下基本块 G 的 DAG

- (1) T_0 : =3.14
- (2) T_1 : =2* T_0
- (3) T_2 : = R+r
- (4) A: $=T_1 * T_2$
- (5) B: =A
- (6) T_3 : =2* T_0
- (7) T_4 : = R+r
- (8) T_5 : $= T_3 * T_4$
- (9) T_{6} : = R-r
- $(10)B_{:} = T_5 * T_6$

(11)if B<=10 goto (1)

- (1) 画出 DAG 图;
- (2) 假设基本块出口时只有 A, B 还被引用,请写出优化后的四元序列。
- 解: (1) DAG 图如下:

- (2) 四元序列如下:
 - ① T_2 : =R+r
 - ② T_{6} : =R-r
 - ③ A: $=6.28* T_2$
 - 4 B: $=A*T_6$

四、

• 1.1

先给出 NFA 图:

画状态转换表:

	I	0	1
A	A		В
В	В	В	BC
C'	BC	BD	BC
D'	BD	В	BCE
E'	CBE	BD	BC

得 DFA 如下图:

1.4 画状态转换表:

	Ι	0	1
A	0		1
В	1	24	5
C	24		13
D	5		1
E	13	24	5

由 NFA, 得 **DFA** 如图:

● P72 第 4 题 (a)

画状态转换表:

	I	I_a	I_b
A	0	01	1
В	01	01	1
C	1	0	

得 DFA 如下图:

