27 de Julho, Belém - PA

2022

o Quando a planilha trava \leftarrow

Trabalhando com bases de dados massivas

Agenda

01	Sobre: Jailson Pereira	
02	Contexto: o mundo dos dados	
03	Ferramenta: SQL	
04	Referências	
05	Agradecimentos	
06	Contatos	

Sobre: Jailson Pereira

Graduação

Sistemas de Informação - UEA

Mestrado

PPGI - UFAM

Profissional

Engenheiro de Dados - CI&T

Comunidade

PyData Manaus

Interesses e Pesquisa

NLP, Classificação de Imagens, Detecção de eventos sonoros e sistemas de recomendação

NLP, Detecção de viés político através de artigos de notícias

Curiosidades

Tecnologia, forró, anime, série e futevôlei

Introdução:

- Vivemos em um mundo com vasto volume de dados
- Dados disponíveis on-line, por exemplo, na web
- Grandes empresas como Google, Facebook e startups dos mais diversos segmentos baseiam seus negócios em dados coletados da web ou redes sociais
- Hoje o volume de dados pode ser tão grande que é simplesmente descartado por não ter condições de tratá-lo e utilizá-lo adequadamente

Introdução:

- Muito conhecimento importante sobre o negócio pode ser derivado a partir de dados registrados.
- Conhecimento pode ser estratégico para decisões e pode trazer vantagens competitivas
- Business Intelligence:
 - Tecnologias relacionadas, incluindo:
 - Data Warehousing
 - Data Mining
 - Data Analysis
 - Machine Learning

Big Data?

Google

- Google
 - Processa 20 PB por dia (2008)
 - Coleta 20B Páginas web pages por dia (2012)
 - o Índice de busca tem 100+ PB (2014)
 - O Bigtable serve 2+EB, 600M QPS (2014)

Big Data?

- Netflix
 - Milhões de membros em todo mundo, de milhares de dispositivos, visitam a Netflix e geram milhões de horas de visualização
 - "milhões de membros assistindo mais de dois bilhões de horas todos os meses"
 (2015)
 - Recomendação em tempo real

Introdução:

- O As linguagens de programação vêm e vão constantemente
- O Na área de banco de dados, temos SQL
- O SQL foi criado inicialmente para ser a linguagem para gerar, manipular e recuperar dados de bancos de dados relacionais

Introdução - Por quê estudar SQL?

- Usuários de banco de dados relacional ou não
- O Pessoas que trabalham com Ciência de Dados, Business Intelligence ou Análise de Dados
- Combo SQL + Python ou SQL + R

Introdução - Sistemas de Banco de dados:

- Mecanismos informatizados de armazenamento e recuperação de dados
- É um conjunto de informações relacionadas
 - Ex: Lista telefônica (nomes, números de telefone e endereço)
- o Imprecisões:
 - Grande número de entradas
 - Indexação
 - Informações imprecisas ou desatualizadas

Introdução - Modelo Relacional:

- Em 1970, Dr.E.F Codd, do laboratório de pesquisa da IBM publicou um artigo intitulado:
 - "A Relational Model of Data for Large Shared Data Banks"

fname	Iname
George	Blake
Sue	Smith
Sue	Smith
	fname George

	Account				
C	count_id	product_cd	cust_id	balance	
	103	CHK	1	\$75.00	1
	104	SAV	1	\$250.00	
	105	CHK	2	\$783.64	
	106	MM	2	\$500.00)
	107	LOC	2	0	

Product		
product_cd	name	_
CHK	Checking	
SAV	Savings	
MM	Money market	\rangle
LOC	Line of credit	
	_	_

Transaction					
txn_id	txn_type_cd	account_id	amount	date	
978	DBT	103	\$100.00	2004-01-22	
979	CDT	103	\$25.00	2004-02-05	
980	DBT	104	\$250.00	2004-03-09	
981	DBT	105	\$1000.00	2004-03-25	
982	CDT	105	\$138.50	2004-04-02	
983	CDT	105	\$77.86	2004-04-04	
984	DBT	106	\$500.00	2004-03-27	

Criação de Tabela:

- CREATE TABLE databa_name.table (column type);
- Tipos de dados:
 - Character Data: char, varchar
 - Text Data: tinytext, text, mediumtext, longtext
 - Numeric Data: tinyint, smallint, mediumint, int, bigint, float, float, double
 - Temporal Data: date, datetime, timestamp, year, time

Descrição da Tabela:

- PRAGMA table_info("nome_da_tabela");
- o Ou desc "nome_da_tabela";

Inserir dados na Tabela:

- o O nome da tabela na qual adicionar os dados
- Os nomes das colunas na tabela a serem preenchidas
- Os valores com os quais preencher as colunas

Comando para inserir dados na tabela:

INSERT INTO nome_da_tabela
(nome_da_coluna) VALUES
(valor_da_coluna);

Comando para inserir dados na tabela:

SELECT * FROM nome_da_tabela;

Query Cláusula:

- SELECT: Determina quais colunas incluir no conjunto de resultados da consulta
- FROM: Identifica as tabelas das quais recuperar dados e como as tabelas devem ser unidas
- WHERE: Filtra dados
- GROUP BY: Usado para agrupar linhas por valores de coluna comuns
- HAVING: Filtra grupos indesejados
- ORDER BY: Ordena as linhas do resultado final definido por uma ou mais colunas

Comando para uma query SELECT:

SELECT nome_da_coluna FROM
nome_da_tabela;

Combinações com SELECT:

- Alias
 - SELECT nome_da_coluna AS
 novo_nome_da_coluna_consulta FROM
 nome_da_tabela;
- Ordenação
 - SELECT nome_da_coluna FROM nome_da_tabela ORDER BY nome_da_coluna_por_onde_ordenar;
- Duplicados
 - SELECT DISTINCT nome_da_coluna
 FROM nome_da_tabela; ou
 COUNT(DISTINCT)

Subconsultas:

- Uma subconsulta é uma consulta contida em outra consulta
- As subconsultas são cercadas por parênteses e podem ser encontradas em várias partes de uma instrução select

Comando para uma subconsulta:

- SELECT + concat
 - SELECT concat(sub_consulta.col1,
 ',', sub_consulta.col2) nome FROM
 (SELECT col1, col2 FROM WHERE col3
 = valor) sub_consulta;

Cláusula Where:

 A cláusula where é o mecanismo para filtrar linhas indesejadas do seu conjunto de resultados. Comando para inserir dados na tabela:

SELECT nome_coluna FROM nome_da_tabela
WHERE nome_coluna = valor AND
nome_coluna2 >= valor;

Cláusula GROUP BY:

 O GROUP BY gera o resultado de uma tendência com algum tipo de manipulação

Consulta com GROUP BY:

SELECT tb1.coluna_tabela_1 FROM tabela1
tb1 INNER JOIN tabela2 tb2 ON
tb1.coluna = tb2.coluna GROUP BY
tb1.coluna_tabela_1;

Cláusula ORDER BY:

 A cláusula ORDER BY é o mecanismo para ordenar seu conjunto de resultados usando dados de coluna brutos ou expressões baseadas em dados de coluna.

Consulta com ORDER BY:

- SELECT tb1.coluna_tabela_1 FROM tabela1
 tb1 INNER JOIN tabela2 tb2 ON
 tb1.coluna = tb2.coluna GROUP BY WHERE
 tb2.coluna = valor ORDER BY
 tb2.coluna2;
- Ascending ou Descending Sort Order

Consultas com INNER JOINS:

 Consultas em uma única tabela certamente não são raras, a maioria das consultas exige duas, três ou até mais tabelas.

Consulta com INNER JOIN:

SELECT tb1.coluna FROM tabela1 tb1
INNER JOIN tabela2 tb2 ON tb1.coluna =
tb2.coluna WHERE tb1 = valor;

Consultas com UNION:

- União
- Interseção
- Exeção
- Diferença

Consultas com União:

- O ALL
 - SELECT tb1.coluna FROM tabela1 tb1
 UNION ALL SELECT tb2.coluna FROM tabela2 tb2
- INTERSECT
 - SELECT tb1.coluna FROM tabela1 tb1
 INTERSECT SELECT tb2.coluna FROM tabela2 tb2

Consultas com União:

- EXCEPT
 - SELECT tb1.coluna FROM tabela1 tb1
 EXCEPT SELECT tb2.coluna FROM tabela2 tb2

Referências

Livro: Alan Beaulieu - Learning SQL Generated, Manipulate and Retrieve Data - O'Reilly Media (2020)

Aulas Big Data/PPGI UFAM:

https://www.youtube.com/watch?v=1BshZsP1UQQ&list=PLhyf4Hm3tvmh5fj35bB1W8cIV6mTiSn_u

Base de dados: https://basedosdados.org/

Github Workshop: https://github.com/jailsonpj/CodaAmazonia

O LinkedIn: https://www.linkedin.com/in/jailson-pereira-574a09115/

o Email: jailsoncolares@gmail.com

Github: jailsonpj

o Instagram: @jailson_pj

Agradecimentos

OBRIGADO!!

