Devoir à la maison n° 05

À rendre le 26 octobre

I. Construction du pentagone régulier à la règle et au compas.

Dans tout ce problème, on pose $z_0 = e^{\frac{2i\pi}{5}}$.

Partie I

- 1) Que vaut $S = 1 + z_0 + z_0^2 + z_0^3 + z_0^4$?
- **2)** On pose $\alpha = z_0 + z_0^4$ et $\beta = z_0^2 + z_0^3$.
 - a) Montrer que α et β sont des réels.
 - b) Déduire de la question 1) que α et β sont les deux racines de l'équation $Z^2 + Z 1 = 0$.
- 3) Donner la valeur exacte de $\cos\left(\frac{2\pi}{5}\right)$.

Partie II

Le plan complexe est muni d'un repère orthonomé direct $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$. On désigne par A_0 , A_1 , A_2 , A_3 et A_4 les points du plan d'affixes respectives 1, z_0 , z_0^2 , z_0^3 et z_0^4 .

- 1) a) Par quelle transformation simple passe-t-on de A_0 à A_1 ? Puis de A_1 à A_2 ? Généraliser ce résultat.
 - **b)** Quelle est l'abscisse du point H intersection de la droite (A_1A_4) avec l'axe des abscisses?
- 2) Soit $\mathscr C$ le cercle de centre Ω d'affixe $-\frac{1}{2}$ et passant par le point B d'affixe i. On désigne par M et N les points où $\mathscr C$ rencontre l'axe des abscisses, M ayant une abscisse positive.
 - a) Prouver que M a pour abscisse α et que N a pour abscisse β .
 - b) Montrer que H est le milieu du segment [OM].
 - c) Déduire de ce qui précéde la description d'une construction à la règle et au compas d'un pentagone dont on connaît le centre O et un sommet A_0 .
 - d) Effectuer cette construction à la règle et au compas sur une feuille blanche.

II. Une inéquation.

On désire prouver que pour tout nombre complexe z de module 1 on a :

$$\sqrt{3} \le |1+z| + |1-z+z^2| \le \frac{13}{4}.$$

Dans tout l'exercice z désigne donc un nombre complexe de module 1.

- 1) On pose t = |1 + z|, dans quel intervalle se trouve le réel t?
- 2) Exprimer Re(z) à l'aide de t.
- 3) Montrer que

$$|1 - z + z^2|^2 = 3 - 4\operatorname{Re}(z) + 2\operatorname{Re}(z^2).$$

4) Exprimer $\text{Re}(z^2)$ en fonction de Re(z) (indication : utiliser l'écriture trigonométrique). En déduire que

$$|1+z| + |1-z+z^2| = t + |3-t^2|.$$

5) En déduire l'inégalité demandée. Trouver un complexe z qui réalise le minimum.