# Expanding Compressed Sensing and learning

Kevin Shi Kui Tang

Columbia University

11 Dec. 2015

#### Outline

#### Compressed Learning

Review of Calderblank et. al. 09 Extension to Regression Other Attempted Generalizations

Explicit RIP Constructions

Bipartite graph model of measurement
Poisson Random Matrices

# Learning Compressively-Sensed Data



Figure: Sample space S and measurement (compressed) space AS.

- ▶ There exist training data  $(x_i, y_i) \subset \mathbb{R}^n \times -1, 1$  where the  $x_i$  are k-sparse, learn binary classifier  $f : \mathcal{X} \to -1, 1$ .
- ▶ We observe compressively-sensed measurements  $(Ax_i, y_i) \subset \mathbb{R}^M \times -1, 1$  for a  $(2k, \epsilon)$  RIP  $m \times n$  matrix A.
- Two options
  - Recover n-dimensional sparse vectors, learn classifier in the high dimensional space.
  - Learn classifier directly in the compressed space!

# Support Vector Machine Review

- ▶ We minimize the hinge loss, which on one example is  $H(x, y; w) = \max 0, 1 yw^{\top}x$
- ► The true hinge loss on distribution  $\mathcal{D}$  is  $H_{\mathcal{D}}(w) = E_{(x_i,y_i) \sim \mathcal{D}}[1 y_i w^{\top} x_i]$
- ▶ The true regularization loss is  $L(w) = H_D(w) + \frac{1}{2C} \|w\|$ .
- ▶ The trained SVM classifier  $\widehat{w}_S$  can be written as

$$\widehat{w}_{S} = \sum_{i} \alpha_{i} y_{i} x_{i}$$

where  $0 \le \alpha_i \le C/M$  and  $\|\widehat{w}_S\| \le C$ .

▶ If  $w^*$  is the best SVM classifier over  $\mathcal{D}$ , then with probability  $1 - \delta$ , we have (Sridharan, Srebro, and Shalev-Shwartz, 2008)

$$L_{\mathcal{D}}(\widehat{w}_{S}) \leq L_{\mathcal{D}}(w^{*}) + O\left(C\log\frac{1}{\delta}/M\right)$$

# Compressed Learning Bound

Main result is

$$L_{\mathcal{D}}(\widehat{z}_{AS}) \leq L_{\mathcal{D}}(w^*) + O(CR^2\epsilon + C\log\frac{1}{\delta}/M)$$



#### RIP for Dot Products

Theorem (Calderbank, Jafarpour, and Schapire (2009))

Let  $A_{m \times n}$  be  $(2k, \epsilon)$ -RIP, x, x' two k-sparse vectors in  $\mathbb{R}^n$  with  $||x||, ||x|| \le R$ . Then

$$(1+\epsilon)x^{\top}x' - 2R^2\epsilon \le (Ax)^{\top}(Ax') \le (1-\epsilon)x^{\top}x' + 2R^2\epsilon$$

# Applying Dot-RIP to SVM Loss

- ▶ Suppose we train a classifier  $\widehat{w}_S$  in the high-dimensional space.
- ▶ Project to low dimensional space, getting classifier  $A\widehat{w}_S$ .
- ► A key result is to show that projection does not increase the loss too much:

$$L_{\mathcal{D}}(A\widehat{w}_S) \leq L_{\mathcal{D}}(\widehat{w}_S) + O(CR^2\epsilon)$$

- ▶ *L* contains terms of the form  $y_i w_i^{\top} x_i$  and ||w||.
- Use kernel representation

$$\widehat{w}_{S} = \sum_{i} \alpha_{i} y_{i} x_{i}$$

to write (7) in terms of  $(A\widehat{w}_S)^{\top}(Ax)$  and  $\widehat{w}_S^{\top}x$ , and use Theorem to get result.

Technical issues with signs and cases... tedious but it works out.

# Putting it Together

$$L_{\mathcal{D}}(\widehat{z}_{AS}) \leq L_{\mathcal{D}}(w^*) + O(CR^2\epsilon + C\log\frac{1}{\delta}/M)$$



# Support Vector Regression

• We have continuous y and use the  $\rho$ -insensitive tube loss

$$T(x, y; w) = \max \left\{ y - w^{\top} x - \rho, w^{\top} x - y - \rho, 0 \right\}$$

▶ The dual (kernel) representation of the learned classifier is

$$w = \sum_{i} (\alpha_i - \alpha_i^*) x_i$$

(Almost) the same projection bound holds! Need another term in ρ:

$$T_{\mathcal{D}}(A\widehat{w}_{\mathcal{S}}) \leq T_{\mathcal{D}}(\widehat{w}_{\mathcal{S}}) + O(CR^{2}\epsilon + \rho)$$

# Compressed Learning for Support Vector Machines

▶ The loss function has 3 cases

$$T(x, y; w) = \begin{cases} y - w^{\top} x - \rho & (+) & y - w^{\top} x - \rho > 0 \\ w^{\top} x - y - \rho & (-) & w^{\top} x - y - \rho > 0 \\ 0 & (0) & |y - w^{\top} x| \le \rho \end{cases}$$

- ▶ The difference  $T_D(A\widehat{w}_S) T_D(\widehat{w}_S)$  needs to be evaluated for 9 cases (some trivial).
- Supporting lemmas also need to be upgraded to handle negative cases.

#### Attempts to Generalize to other Kernels

Recall the RIP for linear kernels:

$$(1+\epsilon)x^{\top}x' - 2R^2\epsilon \le (Ax)^{\top}(Ax') \le (1-\epsilon)x^{\top}x' + 2R^2\epsilon$$

▶ The squared exponential kernel has with variance  $\sigma^2$  and length scale  $\ell$  is

$$k(x, x') = \sigma^2 \exp\left(-\frac{\|x - x'\|_2^2}{2\ell^2}\right)$$
 (1)

We have obtained

$$\exp(-2\epsilon R - \epsilon^2 R)k(x, x') \le k(Ax, Ax') \le \exp(2\epsilon R)k(x, x')$$
(2)

- ▶ Both the  $(1 \pm \epsilon)$  and  $2R^2\epsilon$  terms are exponentiated.
- Tried Matern and rational quadratic kernels... no luck.

### Attempts to Generalize to Linear Regression

- ▶ Classical analysis: suppose  $Y = X\beta + \epsilon$  where  $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ .
- ightharpoonup Y random, X and  $\beta$  fixed.
- ► The measure of generalization error is *risk*, e.g. expected squared error under the true distribution:

$$E_{Y} \left[ \frac{1}{n} \left\| Y - X \widehat{\beta} \right\|^{2} \right] = E_{Y} \left[ \left\| \widehat{\beta} - \beta \right\|_{\Sigma}^{2} \right]$$
$$= E_{Y} \left[ \left\| \widehat{\beta} - \overline{\beta} \right\|_{\Sigma}^{2} \right] + E_{Y} \left[ \left\| \overline{\beta} - \widehat{\beta} \right\|_{\Sigma}^{2} \right]$$

where 
$$\Sigma = \frac{1}{n}X \top X$$
 and  $\widehat{\beta} = E_Y[\widehat{\beta}]$ .

- For both linear and ridge ( $\ell_2$  regularized) regression,  $\widehat{\beta} = \widehat{\beta}(X, Y, \lambda)$  available in closed form.
- ▶ Note: For positive semi-definite matrix C,  $||x||_C = x^\top Cx$ .

# Problem with Linear Regression

- ▶ Again, let's compute the risk of the projected model  $A\widehat{\beta}_{AS}$ .
- ▶ The *variance* of the this estimator is

$$E\left[\left\|A\widehat{\beta}_{S} - A\overline{\beta}_{S}\right\|_{A\Sigma A^{\top}}^{2}\right] = E\left[\left\|\widehat{\beta}_{S} - \overline{\beta}_{S}\right\|_{A^{\top}A\Sigma A^{\top}A}^{2}\right]$$

- ► The term  $E\left[\left\|\widehat{\beta}_S \overline{\beta}_S\right\|_{\Sigma}^2\right]$  is the variance of the estimator in the high-dimensional space  $\widehat{\beta}_S$ .
- ▶ The norm  $||x||_{A^{\top}A\Sigma A^{\top}A}$  contains the factor  $A^{\top}Ax$ .
- ▶ But RIP doesn't apply here because Ax is no longer sparse, and  $A^{\top}$  does not have interesting properties.
- Or am I missing something here?

#### Outline

#### Compressed Learning

Review of Calderblank et. al. 09 Extension to Regression Other Attempted Generalizations

# Explicit RIP Constructions Bipartite graph model of measurement Poisson Random Matrices

# RIP constructions with $m = \tilde{O}(k)$

- ▶ Draw a random matrix with entries sampled from  $\mathcal{N}(0, 1/m)$ .
- ▶ Draw a random matrix with entries sampled from  $\left\{+\frac{1}{\sqrt{m}}, -\frac{1}{\sqrt{m}}\right\}$  with Bernoulli parameter 0.5.

#### **Theorem**

With high probability the random matrix  $\Phi$  sampled from either distribution above satisfies

$$(1 - \epsilon) \|x\|_2^2 \le \|\Phi x\|_2^2 \le (1 + \epsilon) \|x\|_2^2$$

for all k-sparse x.

But...

Theorem (Bandeira, Dobriban, Mixon, and Sawin (2012)) Given a matrix  $\Phi$  and parameters  $(k, \epsilon)$ , certifying whether  $\Phi$  is  $(k, \epsilon)$ -RIP is NP-hard.

# draws a random matrix not R E

# Bipartite graph model of measurement



### Expander graphs

- ► Expander graphs capture many properties of random graphs, but can be constructed deterministically.
- ► Expander graphs can also be constructed probabilistically, and the graph expansion property can be certified.

#### Definition (Vertex expansion)

Let G=(A,B,E) be a bipartite graph with left degree d. G has  $(k,\epsilon)$ -vertex expansion if for every subset  $X\subset A, |X|\leq k$ , the set of neighbors  $N(A)=\{j\in B\,|\,\exists\,i\in X, (i,j)\in E\}$  has size at least  $|N(A)|\geq (1-\epsilon)d|X|$ .

#### Explicit RIP for $\ell_1$ -norm

Theorem (Berinde, Gilbert, Indyk, Karloff, and Strauss (2008)) Let (A, B, E) be a bipartite expander graph with left degree d and with  $(k, \epsilon)$ -vertex expansion. That is, for all  $X \subset A$ , |X| < k, then  $|N(X)| \le (1 - \epsilon)d|X|$ . Then the scaled adjacency matrix  $\frac{1}{d^{1/p}}\Phi$  satisfies the  $(p, k, \epsilon)$ -RIP property

$$(1 - \epsilon) \|x\|_p^2 \le \|\Phi x\|_p^2 \le (1 + \epsilon) \|x\|_p^2$$

for all k-sparse x and for p close to 1.

The paper goes on to show this RIP-1 property gives the same sparse recovery bound for basis pursuit but with the  $\ell_1$  norm of the error vector instead of the  $\ell_2$  norm.

#### Extension to $\ell_2$ -norm

#### Theorem (Chandar 08)

A matrix  $\Phi \in \{0,1\}^{m \times n}$  which satisfies the  $(2,k,\epsilon)$ -RIP property must have  $m = \Omega(k^2)$ .

- The technique of Berinde doesn't work directly.
- Possible way around the lower bound: use multigraphs.  $\Phi_{ij} = \#$  of edges between i and j.

### Possible generalization of lower bound?

- ▶ The lower bound uses some techniques very specific to the  $\{0,1\}$  assumption.
- ▶ Want to see if more entries helps, such as using  $\{0, \dots, d\}$  in the case of a degree—d multigraph.
- ▶ Tried to get a lower bound in terms of the ratio of  $\ell_1$  to  $\ell_2$  norms of the columns, which should be smaller when larger entries are used... no luck.
- ▶ Found out about the Bernoulli  $\left(\left\{-\frac{1}{\sqrt{m}}, +\frac{1}{\sqrt{m}}\right\}\right)$  construction of JL, which has an even worse  $\ell_1$  to  $\ell_2$  ratio on the columns.

### A more modest question

Let's ignore derandomization for a moment.

- ▶ Are cancellations in sign necessary for the  $\ell_2$  norm?
- ▶ Can RIP matrices with  $m = \tilde{O}(k)$  can be constructed using only nonnegative entries?

#### Poisson Random Matrices

- ▶ Given  $a, b \overset{i.i.d.}{\sim} \mathsf{Pois}(\lambda)$ ,  $\mathbb{E}[ab] = \lambda^2$  and  $\mathbb{E}[a^2] = \lambda + \lambda^2$ .
- ▶ For  $\lambda << 1$ , this property seems almost as good as  $\mathbb{E}[ab] = 0$  for Gaussian random variables.

#### Lemma

Given a matrix  $\Phi \in \mathbb{Z}_{>0}^{m \times n}$  where  $\Phi_{ij} \sim Pois(\lambda)$ , for k-sparse x

$$||x||_{2}^{2} \leq \mathbb{E}\left[\left\|\frac{1}{m\lambda}\Phi x\right\|_{2}^{2}\right] \leq (1+\lambda k)||x||_{2}^{2}$$

- Doesn't quite work for the full JL statement need the k-sparsity or else λ has to be inversely proportional to the raw signal dimension n.
- Concentration bounds being worked out...

#### References I

- A. S. Bandeira, E. Dobriban, D. G. Mixon, and W. F. Sawin. Certifying the restricted isometry property is hard. *ArXiv e-prints*, April 2012.
- R. Berinde, A.C. Gilbert, P. Indyk, H. Karloff, and M.J. Strauss. Combining geometry and combinatorics: A unified approach to sparse signal recovery. In *Communication, Control, and Computing, 2008 46th Annual Allerton Conference on*, pages 798–805, Sept 2008. 10.1109/ALLERTON.2008.4797639.
- Robert Calderbank, Sina Jafarpour, and Robert Schapire.
  Compressed learning: Universal sparse dimensionality reduction and learning in the measurement domain.
  Technical report, Princeton University, 2009.
- Karthik Sridharan, Nathan Srebro, and Shai Shalev-Shwartz. Fast convergence rates for excess regularized risk with application to svm. Technical report, TTIC, 2008.