Neural language modeling

The boys went outside to _____

$$\hat{P}(w_t = w^k | w_1, ..., w_{t-1})$$

Objective: minimize the surprisal of the word that in fact occurred in the corpus:

$$-log\hat{P}(w)$$

Neural language model

How do we represent discrete inputs and outputs in a network?

Localist ("one hot") representation: each input unit represents an item (e.g., a word)

Distributed representation: each item is represented by multiple units, and each unit participates in representing multiple items

Neural language model

The chain rule

$$(f(g(x)))' = f'(g(x))g'(x)$$

$$f(y) = y^2 \qquad g(x) = \sin x$$

$$f'(y) = 2y \qquad g'(x) = \cos x$$

$$h(x) = f(g(x)) = (\sin x)^2$$

$$h'(x) = f'(g(x))g'(x) = 2\sin x \cos x$$

Substituting sin(x) for y in f'(y) = 2y

Computation graphs

$$L(a, b, c) = c(a + 2b)$$

$$(f(g(x)))' = f'(g(x))g'(x)$$

Backpropagation

$$L(a, b, c) = c(a + 2b)$$

$$d = 2b$$

$$d = 2b$$
 $e = a + d$

$$L = ce \qquad \frac{\partial L}{\partial c} = e$$

$$\frac{\partial L}{\partial a} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial a}$$

$$\frac{\partial L}{\partial a} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial a} \qquad \frac{\partial L}{\partial a} \bigg|_{a} = \frac{\partial L}{\partial e} \bigg|_{e(a)} \frac{\partial e}{\partial a} \bigg|_{a}$$

$$\frac{\partial L}{\partial e} = c \qquad \frac{\partial e}{\partial a} = 1$$

Backpropagation

$$L(a, b, c) = c(a + 2b)$$

$$L = ce$$

$$L = ce$$
 $e = a + d$

$$d = 2b$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$$

$$\frac{\partial L}{\partial e} = c \qquad \frac{\partial e}{\partial d} = 1 \qquad \frac{\partial d}{\partial b} = 2$$

Long-distance dependencies

- A neural feedforward language model can generalize across n-grams (easy money → easy cash)
- But it still makes the Markov assumption, which ignores long-distance dependencies:
 - The people you saw at the grocery store last night are my friends.
 - I went to Paris but I didn't get a chance to see the rest of France.

Lack of temporal invariance

Recurrent neural network

Simple recurrent network

Unrolling an RNN

$$\frac{\partial L}{\partial W_h} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial W_h}$$

(Figure credit: Richard Socher)

Stacked RNNs

RNN as a language model

	PPL		WER	
Model	RNN	RNN+KN	RNN	RNN+KN
KN5 - baseline	-	221	-	13.5
RNN 60/20	229	186	13.2	12.6
RNN 90/10	202	173	12.8	12.2
RNN 250/5	173	155	12.3	11.7
RNN 250/2	176	156	12.0	11.9
RNN 400/10	171	152	12.5	12.1
3xRNN static	151	143	11.6	11.3
3xRNN dynamic	128	121	11.3	11.1

Sequence classification

Sentiment analysis, language classification, authorship identification, genre classification...

(Figure from Goldberg, 2017)

Sequence tagging

- Part-of-speech tagging:
 - The cat is about to fall from the tree.
 - Last fall I traveled to Europe.
- Named entity recognition:
 - Seattle is in Washington.
 - Washington was the first president of the United States.

Sequence tagging

Bidirectional context can help

- Will gets his revenge by masquerading as Sue's hairdresser and forcibly shaving her head bald.
- Will putting a patch over my eye help to get the object out of it?

(Elkahky et al. 2018)

Bidirectional RNN

Bidirectional RNN

Vanishing gradients

$$\frac{\partial L_t}{\partial W_h} = \sum_{k=1}^t \frac{\partial L_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W_h} \frac{\partial h_k}{\partial W_h} \frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_t}{\partial h_{t-$$

$$\frac{\partial h_j}{\partial h_{j-1}} = W_h \operatorname{diag}(\sigma'(h_{j-1}))$$

(Pascanu et al., 2013)

Vanishing gradients

$$\frac{\partial h_j}{\partial h_{j-1}} = W_h \operatorname{diag}(\sigma'(h_{j-1}))$$

$$\left\|\frac{\partial h_{j}}{\partial h_{j-1}}\right\| \leq \left\|W_{h}\right\| \left\|\operatorname{diag}(\sigma'(h_{j-1}))\right\| \leq \left\|W_{h}\right\| \gamma$$
 Fixed Bounded

$$\left\| \frac{\partial h_t}{\partial h_k} \right\| \leq (\| W_h \| \gamma)^{t-k}$$

(Pascanu et al., 2013)

Simple recurrent network

LSTM ("long short-term memory")

$$c_t = f_t c_{t-1} + i_t g_t$$

$$z_t = \mathbf{concat}(D_{t-1}, x_t)$$

$$i_t = \sigma(W_i z_t + b_i)$$

$$f_t = \sigma(W_f z_t + b_f)$$

$$g_t = \tanh(W_g z_t + b_g)$$

$$D_t = o_t \tanh(c_t)$$

$$o_t = \sigma(W_o z_t + b_o)$$

(Hochreiter & Schmidhuber 1997; figure from Ma & Hovy 2016)

LSTM computation graph

LSTM language models

Model	TEST PERPLEXITY	NUMBER OF PARAMS [BILLIONS]
SIGMOID-RNN-2048 (JI ET AL., 2015A)	68.3	4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013)	67.6	1.76
SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015)	52.9	33
RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013)	51.3	20
T. CITTLE 51.0. 51.0		0.02
LSTM-512-512	54.1	0.82
LSTM-1024-512	48.2	0.82
LSTM-2048-512	43.7	0.83
LSTM-8192-2048 (No Dropout)	37.9	3.3
LSTM-8192-2048 (50% DROPOUT)	32.2	3.3
2-LAYER LSTM-8192-1024 (BIG LSTM)	30.6	1.8
BIG LSTM+CNN INPUTS	30.0	1.04

(Jozefowicz et al., 2016)

Gated Recurrent Units

Reset gate: $r_t = \sigma(U_r h_{t-1} + W_r x_t)$

Update gate: $z_t = \sigma(U_z h_{t-1} + W_z x_t)$

$$\tilde{h}_t = \tanh(U(r_t h_{t-1}) + W x_t)$$

$$h_t = (1 - z_t)h_{t-1} + z_t \tilde{h}_t$$

(Cho et al. 2014)

Part-of-speech tagging

Penn TreeBank tag set:

Your query

Tal loves making slides for the lecture.

Tagging

```
Tal/NNP loves/VBZ making/VBG slides/NNS for/IN the/DT lecture/NN ./

Present verb, third

person singular
```

http://nlp.stanford.edu:8080/parser/index.jsp

Part-of-speech tagging

A simpler tag set:

There's no one correct annotation scheme!

https://explosion.ai/demos/displacy

Part-of-speech tagging: ambiguity and baselines

RNN for sequence labeling: POS tagging

RNN for sequence labeling: POS tagging

(From Goldberg 2017)

RNN for sequence labeling: POS tagging

- What's the part of speech of the following words?
 - Vectorize
 - LSTMification
 - Goldbergian
- With atomic word embeddings or a symbolic model without morphological decomposition - we will have to treat those words as UNKs!

Character-based word embeddings

Character-based word embeddings

The embedding for each word is generated dynamically

We still train a full word embedding (useful for frequent words)

Character embeddings

RNN for sequence labeling: Named entity recognition

Goal: extract proper names from a document and classify them into categories

```
Italy GPE 's business world was rocked by the announcement last Thursday DATE that Mr. Verdi PERSON would leave his job as vice president of Music Masters of Milan, Inc. ORG to become operations director of Arthur Andersen ORG.
```

(GPE = Geopolitical entity)

https://explosion.ai/demos/displacy-ent

Isn't NER really easy?

Italy's business world was rocked by the announcement last Thursday that Mr. Verdi would leave his job as vice president of Music Masters of Milan, Inc. to become operations director of Arthur Andersen.

- Italy is in the beginning of the sentence: capitalization does help
- Milan is part an organization, not a location, as usual
- Arthur Andersen is an organization, not a person...
- Context matters!

(Borthwick, 1999)

Span labeling using IOB

 NER is a span labeling problem; how can we reduce it to token labeling?

• IOB = Inside, Beginning, Outside

United cancelled the flight from Denver to San Francisco.

В

O O O B

OB I

With entity types:

United cancelled the flight from Denver to San Francisco.

B-ORG O

O O B-LOC O B-LOC I-LOC

Dependency parse

No explicit constituents: all syntactic information expressed as relations between words

Dependency parse

- Easier to work with in languages with flexible word order
- More direct relationship with semantic roles: head can be read off automatically

Universal dependencies treebank

Standardized labels for dozens of languages!

Relation	Examples with <i>head</i> and dependent
NSUBJ	United canceled the flight.
DOBJ	United diverted the flight to Reno.
	We booked her the first flight to Miami.
IOBJ	We booked her the flight to Miami.
NMOD	We took the morning <i>flight</i> .
AMOD	Book the cheapest <i>flight</i> .
NUMMOD	Before the storm JetBlue canceled 1000 flights.
APPOS	United, a unit of UAL, matched the fares.
DET	The flight was canceled.
	Which flight was delayed?
CONJ	We flew to Denver and drove to Steamboat.
CC	We flew to Denver and drove to Steamboat.
CASE	Book the flight through Houston.

Figure 15.3 Examples of core Universal Dependency relations.

https://universaldependencies.org/

Projectivity

Czech:

(Nivre & Nilsson, 2005)

Shift-reduce for constituency parsing

	_	-			_
Step	Stack	Input buffer	Move		$VP \rightarrow V Adv,$ dj N, Det \rightarrow the,
0		the aged bottle flies fast		Adj \rightarrow aged, $V \rightarrow$ flies,	$N \rightarrow bottle,$ $Adv \rightarrow fast$
1	the	aged bottle flies fast	shift "the"	·	
2	Det	aged bottle flies fast	reduce (Det \rightarrow the	e)	
3	Det aged	bottle flies fast	shift "aged"		
4	Det Adj	bottle flies fast	reduce (Adj \rightarrow age	ed)	
5	Det Adj bottle	flies fast	shift "bottle"		(Roark and
6	Det Adj N	flies fast	reduce (N \rightarrow bott)	le)	•
7	NP	flies fast	reduce (NP \rightarrow De	t Adj N)	Sproat, 2007
8	NP flies	fast	shift "flies"	·	•
9	NP V	fast	reduce $(V \rightarrow flies)$)	
10	NP V fast		shift "fast"		
11	NP V Adv		reduce (Adv \rightarrow fas	st)	
12	NP VP		reduce (VP \rightarrow V A	Adv)	

reduce $(S \rightarrow NP VP)$

If anything can be reduced on the top of the stack, do so; otherwise shift.

13