DISCRETE MATHEMATICS

LATTICE THEORY

Cartesian product: The Cartesian product of two sets A and B denoted $A \times B$ is the set of all ordered pairs of the form (a,b) where $a \in A$ and $b \in B$.

Binary relation: A binary relation from A to B is a subset of $A \times B$.

Reflexive relation: Let R be a binary relation on A. R is said to be reflexive relation if (a, a) is in R for every $a \in A$.

Symmetric relation: A binary relation R on a set A is said to be a symmetric relation if (a, b) in R implies that (b, a) is also in R.

Antisymmetric relation: Let R be a binary relation on A. R is said to be an antisymmetric relation if (a, b) in R implies that (b, a) is not in R unless a = b.

Transitive relation: Let R be a binary relation on A. R is said to be a transitive relation if (a, c) is in R whenever both (a, b) and (b, c) are in R.

Equivalence relation: A binary relation is said to an equivalence relation if it is reflexive, symmetric and transitive.

Partial ordering relation: A binary relation is said to be a partial ordering relation if it is reflexive, antisymmetric and transitive.

Partially ordered set (poset): Set A together with a partial ordering relation R on A is called a partially ordered set and is denoted by (A, \leq) .

Chain: Let (A, \leq) be a partially ordered set. A subset of A is called a chain if every two elements in the subset are related.

Antichain: Let (A, \leq) be a partially ordered set. A subset of A is called an antichain if no two elements in the subset are related.

Totally ordered set: A partially ordered set (A, \leq) is called a totally ordered set if A is a chain and the binary relation is called a total ordering relation.

Maximal element: Let (A, \leq) be a partially ordered set. An element a in A is called a maximal element if for no b in A, $a \neq b$, $a \leq b$.

Minimal element: Let (A, \leq) be a partially ordered set. An element a in A is called a minimal element if for no b in A, $a \neq b, b \leq a$.

Upper bound: Let (A, \leq) be a partially ordered set. An element = is said to be an upper bound of a and b if $a \leq c$ and $b \leq c$. An element c is said to be least upper bound of a and b if c is an upper bound of a and b, and if there is no other upper bound d of a and b such that $d \leq c$.

Universal upper bound: An element a in a lattice (A, \leq) is called a universal upper bound if for every element b in A, $b \leq a$. It is unique if it exists and is denoted by 1.

Lower bound: Let (A, \leq) be a partially ordered set. An element c is said to be a lower bound of a and b if $c \leq a$ and $c \leq b$. An element c is said to be greatest lowerbound of a and b if c is a lower bound of a and b, and if there is no other lower bound d of a and b such that $c \leq d$.

Universal lower bound: An element a in a lattice (A, \leq) is called a universal lower bound if for every element b in A, $a \leq b$. It is unique if it exists and is denoted by 0.

Lattice: A partially ordered set is said to be a lattice if every two elements in the set have a unique least upper bound and a unique greatest lower bound.

For any a and b in the lattice (A, \leq) , $a \leq a \lor b$ and $a \land b \leq a$

For any a, b, c, d in a lattice (A, \leq) , if $a \leq b$ and $c \leq d$ then $a \vee c \leq b \vee d$ and $a \wedge c \leq b \wedge d$

Commutative property: For any a and b in a lattice (A, \leq) , $a \lor b = b \lor a$ and $a \land b = b \land a$

Associative property: For any a, b and c in a lattice (A, \leq)

$$a \lor (b \lor c) = (a \lor b) \lor c$$
 and $a \land (b \land c) = (a \land b) \land c$

Idempotent property: For every a in a lattice (A, \leq) $a \lor a = a$ and $a \land a = a$.

Absorption Property: For any a and b in a lattice (A, \leq) , $a \lor (a \land b) = a$ and $a \land (a \lor b) = a$

Cover: Let a and b be two elements in a lattice. Then a is said to cover b if b < a and there is no element c such that b < c < a.

Atom: An element is called as an atom if it covers the universal lower bound.

Distributive lattice: A lattice (A, \lor, \land) is said to be distributive if for all $a, b, c \in A$,

$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c).$$

Complement of an element: The complement of an element a of a lattice (A, \lor, \land) with 0 and 1 is an element $b \in A$ such that $a \lor b = 1$ and $a \land b = 0$.

Complemented lattice: A lattice in which every element has a complement is called a complemented lattice.

Boolean lattice: A distributive, complemented lattice is called a Boolean lattice. In a such a lattice, every element a has a unique complement \bar{a} , and \bar{a} is a unary operation on the lattice.

Boolean algebra: The algebraic structure $(A, \lor, \land, -)$ formed by a Boolean lattice is called a Boolean algebra.

A Boolean expression over $(\{0,1\}, \vee, \wedge)$ is said to be in **disjunctive normal form** if it is join of minterms.

A Boolean expression over $(\{0,1\}, \vee, \wedge)$ is said to be in **conjunctive normal form** if it is meet of maxterms.

COMBINATORICS

Addition Principle. If there are m ways of doing A and n ways of doing B, with no way of doing both simultaneously, then the number of ways of doing A or B is m+n.

Multiplication Principle. If there are m ways of doing A and n ways of doing B independently, then there are mn ways of doing A and B (or A followed by B).

Permutations and Combinations

The number of permutations of n distinct objects is $n! = n(n-1)(n-2) \times \cdots \times \times \times \times \times 1$.

The number of ways of selecting and arranging r distinct objects from a collection of n distinct objects is

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

The number of ways of selecting r distinct objects from a collection of n distinct objects is

$${}^{n}C_{r}$$
 or ${n \choose r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\cdots(n-r+1)}{r!}$.

The number of ways of selecting any number of distinct objects from a collection of n distinct objects is 2^n .

The number of permutations of n objects where n_1 of them are alike of the first kind, n_2 of them are alike of the second kind, ..., n_k of them are alike of the k^{th} kind is $\frac{n!}{n_1!n_2!\cdots n_k!}$

The number of permutations of r objects selected from n types of objects with unlimited repetition of each type is n^r .

The number of selections of r objects from n types of objects with unlimited repetition of each type is $\binom{n+r-1}{r} = \binom{n+r-1}{n-1}.$

Basic identities

- 1. n! = n(n-1)!
- 2. $\binom{n}{r} = \binom{n}{n-r}$ 3. $\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1} \text{ for } n > r > 0$
- 4. $\sum_{r=0}^{n} {n \choose r} = 2^n$

Inclusion-Exclusion Principle

Let $a_1, a_2, ..., a_n$ be n properties. In a collection of N objects, let $N(a_i)$ denote the number of objects with property a_i , let $N(a_i a_i)$ denote the number of objects with both properties $N(a_i a_i)$, etc. Then the number of objects in the collection that do **not** have any of the properties $a_1, a_2, ..., a_n$ is

$$N(\overline{a_1} \, \overline{a_2} \cdots \overline{a_n}) = N - \sum_i N(a_i) + \sum_{i < j} N(a_i a_j) + \dots + (-1)^k \sum_{i_1 < i_2 < \dots < i_k} N(a_{i_1} a_{i_2} \cdots a_{i_k}) + \dots + (-1)^n N(a_1 a_2 \cdots a_n).$$

Ordering of Permutations

Index sequence for k^{th} permutation of n distinct marks in lexicographical order: $c_{n-1}c_{n-2}\cdots c_1$ where

$$k-1 = c_{n-1}(n-1)! + c_{n-2}(n-2)! + \dots + c_1 1!$$

is the factorial base representation of k-1.

Fike's sequence for k^{th} permutation of n distinct marks: $d_1 d_2 \cdots d_{n-1}$, where $d_i = i - c_i$, and

$$k-1 = c_1 \frac{n!}{2!} + c_2 \frac{n!}{3!} + \dots + c_{n-1} \frac{n!}{(n-1)!}$$

Generating Functions

The ordinary generating function for the number of selections of r distinct objects out of n distinct objects is $(1+x)^n = \sum_{r=0}^n \binom{n}{r} x^r$.

The ordinary generating function for the number of selections of r objects from n types of objects with unlimited repetition is $(1-x)^{-n} = \sum_{r=0}^{\infty} \binom{n+r-1}{r} x^r$.

The exponential generating function for the number of permutations of n objects is $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Partitions and Compositions

The number of compositions of n into k positive parts is $\binom{n-1}{k-1}$.

The number of compositions of n into any number of positive parts is 2^{n-1} .

The ordinary generating function for the number of unrestricted partitions of n is $(1-x)^{-1}(1-x^2)^{-1}(1-x^3)^{-1}\cdots$

GRAPH THEORY

A graph G consists of a finite nonempty set V = V(G) whose elements are called 'vertices' of G and a set E = E(G) of unordered pairs of distinct vertices of V(G) whose elements are called the 'edges' of G. A graph with G vertices and G edges is called a G0, G1 graph.

The first theorem in graph theory due to Euler, popularly known as 'Hand shaking lemma'. It states that, "the sum of degrees of all the vertices in a graph is twice the number of edges".

There are several types of graphs namely: complete graph, regular graph, cycle graph, path graph, tree, bipartite graph etc.

Some of the preliminary terminologies to be noted are:

Distance: The distance d(u, v) between the two vertices u and v in G is the length of a shortest path joining them if any, otherwise $d(u, v) = \infty$. In a connected graph, distance is a metric. That is, for all the vertices u, v, w

- i. $d(u, v) \ge 0$ with d(u, v) = 0 if and only if d(u, u) = 0
- ii. d(u,v) = d(v,u)
- iii. $d(u,v) + d(v,w) \ge d(u,w)$

Geodesic: A shortest *u-v* path.

Girth: Girth g(G) of a graph G is the length of the shortest cycle (if any) in G.

Circumference: Circumference c(G) of a graph G is the length of the longest cycle (if any) in G.

Eccentricity: The eccentricity e(v) of a vertex in a connected graph G is the distance from v to the vertex farthest from v in G. That is, $e(v) = \max_{u \in V(G)} \{d(v, u)\}.$

Radius: The radius r(G) or rad(G) is the minimum eccentricity of the vertices, i.e. $rad(G) = \min_{v \in V(G)} \{e(v)\}.$

Diameter: The diameter $\operatorname{diam}(G)$ is the maximum eccentricity of the vertices. In other words, the length of any longest geodesic. i.e., $\operatorname{diam}(G) = \max_{v \in V(G)} \{e(v)\}$.

Central vertex: A vertex v is a central vertex if e(v) = rad(G). And the set of all central vertices is called 'center' of the graph.

GROUP THEORY

Let G be a non-empty set and $*: G \times G \to G$ a binary operation on G. Then

- 1. Associativity axiom: (a * b) * c = a * (b * c), for all $a, b, c \in G$.
- 2. Identity axiom: There exists an element $e \in G$ such that a * e = e * a = a, for all $a \in G$.
- 3. Inverse axiom: For $a \in G$, there corresponds an element $b \in G$ such that a * b = b * a = e.
- 4. Commutativity or Abelian axiom: a * b = b * a, for all $a, b \in G$.

In the above, if (G,*) satisfies 1 then (G,*) is a **semigroup**.

- If (G,*) satisfies 1 and 2 then (G,*) is a **monoid**.
- If (G,*) satisfies 1, 2, and 3 then (G,*) is a **group**.
- If (G,*) satisfies 1, 2, 3, and 4 then (G,*) is a **commutative** or **Abelian group**.

Definitions

Let (G,\cdot) be a group.

- 1. A non-empty subset of $H \subseteq G$ is a **subgroup** of G if (H,\cdot) itself is a group. Then we write $H \subseteq G$.
- 2. If $H \le G$, and $a \in G$, then $Ha = \{ha \mid h \in H\}$. Then Ha is a **right coset** of H in G. Similarly, $aH = \{ah \mid h \in H\}$ is a **left coset** of H in G.
- 3. The number of elements in G is the **order of the group** G, denoted o(G) or |G|.
- 4. Let $a \in G$. The **order of the element** a is the least positive integer m such that $a^m = e$, denoted o(a) or |a|.
- 5. Let $a \in G$. Then $\langle a \rangle = \{a^i \mid i = 0, \pm 1, \pm 2, ...\}$ is the **cyclic subgroup** of *G* generated by *a*.
- 6. A subgroup N of G is a **normal subgroup** of G if for every $g \in G$ and every $n \in N$, $gng^{-1} \in N$.
- 7. The set $Z(G) = \{z \in G \mid xz = zx, \forall x \in G\}$ is the **center** of G.
- 8. Let $a \in G$. Then $N(a) = \{x \in G \mid ax = xa\}$ is the **normaliser** of a.
- 9. Let (H, \circ) also be a group. Then a **group homomorphism** from G to H is a function $f: G \to H$ such that for all $x, y \in G$, $f(xy) = f(x) \circ f(y)$.
- 10. Let $f: G \to H$ be a group homomorphism. Then the **image** of f is $\operatorname{im} f = \{f(x) \mid x \in G\} \le H$ and the **kernel** of f is $\ker f = \{x \in G \mid f(x) = e_H\} \le G$ where e_H is the identity element of H.

Examples of Groups

- 1. $(\mathbb{Z}, +)$ Group of integers under addition
- 2. $(\mathbb{Q}, +)$ Group of rational numbers under addition
- 3. $(\mathbb{R}, +)$ Group of real numbers under addition
- 4. $(\mathbb{C}, +)$ Group of complex numbers under addition
- 5. \mathbb{Q}^{\times} Group of non-zero rational numbers under multiplication
- 6. \mathbb{R}^{\times} Group of non-zero real numbers under multiplication
- 7. \mathbb{C}^{\times} Group of non-zero complex numbers under multiplication
- 8. $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$ Group of integers modulo n under addition modulo n
- 9. $\{1, \omega, \omega^2, \dots, \omega^{n-1}\}$, where $\omega = e^{\frac{2i\pi}{n}}$ Group of complex n^{th} roots of unity under multiplication
- 10. S_n Group of all permutations of $\{1, 2, ..., n\}$ under composition of permutations
- 11. $GL_n(\mathbb{R})$ Group of $n \times n$ invertible real matrices

Basic Results

Let (G,\cdot) be any group.

- 1. **Uniqueness of identity:** *G* has a unique identity element.
- 2. Uniqueness of inverses: Every element $x \in G$ has a unique inverse $x^{-1} \in G$, and $(x^{-1})^{-1} = x$.

- 3. Shoe-sock property: $\forall x, y \in G, (xy)^{-1} = y^{-1}x^{-1}$.
- 4. **Cancellation laws**: Let $x, y \in G$. If $\exists a \in G$ such that ax = ay, then x = y. If $\exists b \in G$ such that xb = yb, then x = y.
- 5. If *G* is finite of order *n*, then $\forall x \in G, x^n = e$.
- 6. If $f: G \to H$ is a homomorphism, then ker f is an normal subgroup of G
- 7. Z(G) is a normal subgroup of G.

PROPOSITIONAL CALCULUS

Implications

 $I_1: P \wedge Q \Rightarrow P(Simplification)$ l₈: $\neg(P \rightarrow Q) \Rightarrow Q$ $I_2: P \land Q \Rightarrow Q(Simplification)$ lg: $P, Q \Rightarrow P \land Q$ $I_3: P \Rightarrow P \lor Q(Addition)$ $I_{10}: \neg P, P \lor Q \Rightarrow Q$ (Disjunctive syllogism) I₄: $Q \Rightarrow P \lor Q$ (Addition) $I_{11}: P, P \rightarrow Q \Rightarrow Q$ (Modus ponens) $I_{12}: \neg Q, P \rightarrow Q \Rightarrow \neg P$ (Modus tollens) $I_5: \neg P \Rightarrow P \rightarrow Q$ $I_6: Q \Rightarrow P \rightarrow Q$ $I_{13}: P \to Q, Q \to R \Rightarrow P \to R$ (Hypothetical syllogism) $I_7: \neg (P \rightarrow Q) \Rightarrow P$ $I_{14}: P \vee Q, P \rightarrow R, Q \rightarrow R \Rightarrow R$ (Dilemma)

Equivalences

$E_1: \neg \neg P \Leftrightarrow P$	E_{12} : $R \lor (P \land \neg P) \Leftrightarrow R$
$E_2: P \wedge Q \Leftrightarrow Q \wedge P$	E_{13} : $R \land (P \lor \neg P) \Leftrightarrow R$
$E_3: P \vee Q \Leftrightarrow Q \vee P$	$E_{14}: R \lor (P \lor \neg P) \Leftrightarrow \mathbf{T}$
E_4 : $(P \land Q) \land R \Leftrightarrow P \land (Q \land R)$	$E_{15}: R \wedge (P \wedge \neg P) \Leftrightarrow \mathbf{F}$
E_5 : $(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$	$E_{16}: P \to Q \Leftrightarrow \neg P \lor Q$
$E_6: P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$	$E_{17}: \neg (P \to Q) \Leftrightarrow P \land \neg Q$
$E_7: P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$	$E_{18}: P \to Q \Leftrightarrow \neg Q \to \neg P$
$E_8: \neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$	$E_{19}: P \to (Q \to R) \Leftrightarrow (P \land Q) \to R$
E ₉ : $\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$	$E_{20}: \neg (P \rightleftarrows Q) \Leftrightarrow P \rightleftarrows \neg Q$
$E_{10}: P \vee P \Leftrightarrow P$	E_{21} : $P \rightleftarrows Q \Leftrightarrow (P \to Q) \land (Q \to P)$
$E_{11}: P \wedge P \Leftrightarrow P$	$E_{22} \colon P \rightleftarrows Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$