## Correction DM n°2

## Exercice 1.

2) 
$$\cos\left(\frac{2\pi}{5}\right) = 2 \times \cos^2\left(\frac{\pi}{5}\right) - 1 = \frac{1+5+2\sqrt{5}-8}{8} = \frac{\sqrt{5}-1}{4}.$$

3) 
$$OC = |1 + 2i| = \sqrt{1 + 4} = \sqrt{5}$$
.

4) D est un point du cercle trigonométrique, donc OD=1. Donc l'affixe de D vérifie  $d=\frac{c}{|c|}=\frac{1+2i}{\sqrt{5}}=\frac{\sqrt{5}+2i\sqrt{5}}{5}$  d'une part, et d'autre part  $CD=OC-OD=\sqrt{5}-1$ .

5)

6) Pour construire F, on obtient le milieu M de [DE] puis on reporte la longueur DM sur l'axe des abscisses : F est le point de coordonnées (DM; 0).

7)

8) L'aire de  $\mathcal{P}$  est cinq fois l'aire du triangle OAG dont la base OA vaut 1 et la hauteur FG vaut  $\sin\left(\frac{2\pi}{5}\right)$ .

Donc 
$$Aire(\mathcal{P}) = 5 \times \frac{\sqrt{1 - \frac{5 + 1 - 2\sqrt{5}}{16}}}{2} = \frac{5\sqrt{10 + 2\sqrt{5}}}{8}.$$

1) Figure:



Exercice 2.

$$Z_n = \left(1 + \frac{z}{n}\right)^n = \left(\frac{n+a}{n} + i\frac{b}{n}\right)^n$$
Donc  $|Z_n| = \left(\frac{n^2 + a^2 + 2na + b^2}{n^2}\right)^{\frac{n}{2}} = \left(1 + \frac{2a}{n} + \frac{a^2 + b^2}{n^2}\right)^{\frac{n}{2}}$ .

De même, un argument de  $Z_n$  est:
$$\arg(Z_n) = n \arg\left(\frac{n+a}{n} + i\frac{b}{n}\right). \text{ On en déduit suivant le signe de } a+n \text{ et de } b:$$
• si  $a = -n$  et  $b = 0$ , alors  $Z_n = 0$  n'a pas d'argument;
• si  $a = -n$  et  $b > 0$ , alors  $\arg(Z_n) = n\frac{\pi}{2}[2\pi]$ ;

• si a = -n et b < 0, alors  $\arg(Z_n) = -n\frac{\pi}{2}[2\pi]$ ;

• si a > -n, alors  $\arg(Z_n) = n \operatorname{Arctan}\left(\frac{b}{a+n}\right)[2\pi]$ ;

• enfin, si a < -n, alors  $\arg(Z_n) = \pi + n \operatorname{Arctan}\left(\frac{b}{a+n}\right)[2\pi]$ .

## Exercice 3.

1) sh est continue et dérivable sur  $\mathbb{R}$ , de dérivée ch  $\geq 1 > 0$ . Donc sh est strictement croissante sur R donc injective.

De plus, on l'a dit, sh est continue,  $\lim_{x\to -\infty} \operatorname{sh}(x) = -\infty$  et  $\lim_{x\to +\infty} \operatorname{sh}(x) = +\infty$ , donc d'après le théorème des valeurs intermédiaires, sh est surjective de  $\mathbb R$  sur  $\mathbb R$ .

On en déduit donc que sh est une bijection de  $\mathbb{R}$  dans  $\mathbb{R}$ .

- 2) D'après la question précédente,  $\forall x \in \mathbb{R}$ , sh (Argsh(x)) = x. Or  $\operatorname{ch}^2 - \operatorname{sh}^2 = 1$  donc  $\forall x \in \mathbb{R}, \operatorname{ch}^2(\operatorname{Argsh}(x)) - x^2 = 1$ . De plus, ch est positive donc  $\forall x \in \mathbb{R}$ , ch  $(\operatorname{Argsh}(x)) = \sqrt{1+x^2}$ .
- 3) D'après le théorème de dérivation de la bijection réciproque, sh étant continue et dérivable sur  $\mathbb{R}$ , Argsh est continue sur  $\mathbb{R}$  et dérivable en tout  $y \in \mathbb{R}$  tel que sh' $(\operatorname{Argsh}(y)) \neq 0$ . Or sh'(Argsh(y)) = ch(Argsh(y)) =  $\sqrt{1+y^2} > 0$ .

Donc Argsh est dérivable sur 
$$\mathbb{R}$$
 et pour tout  $x \in \mathbb{R}$ , Argsh' $(x) = \frac{1}{\sinh' \circ \operatorname{Argsh}(x)} = \frac{1}{\sqrt{1+x^2}}$ .

4) D'une part, par définition de Argsh,  $sh(x) = y \Leftrightarrow x = Argsh(y)$ .

D'autre part,

$$sh(x) = y \Leftrightarrow \frac{e^x - e^{-x}}{2} = y$$
$$\Leftrightarrow e^{2x} - 2ye^x - 1 = 0$$

En posant  $X=e^x$ , on obtient l'équation du second degré  $X^2-2yX-1=0$ .

Discriminant :  $\Delta = 4y^2 + 4 > 0$ , l'équation a donc deux solutions  $X_{\pm} = \frac{2y \pm \sqrt{4 + 4y^2}}{2} = y \pm \sqrt{1 + y^2}$ .

$$X_{\pm} = \frac{2y \pm \sqrt{4 + 4y^2}}{2} = y \pm \sqrt{1 + y^2}$$

Or  $1 + y^2 > y^2$  donc  $\sqrt{1 + y^2} > |y| \ge y$  c'est-à-dire  $y - \sqrt{1 + y^2} < 0$ .

De plus  $X = e^x > 0$ , la seule solution de sh(x) = y est donc finalement

$$x = \operatorname{Argsh}(y) = \ln\left(y + \sqrt{1 + y^2}\right)$$

- 5) D'après les questions précédentes et le théorème fondamental de l'intégration :
  - $x \in \mathbb{R} \mapsto \frac{1}{\sqrt{1+x^2}}$  est une fonction continue sur  $\mathbb{R}$ : toutes ses primitives sont donc obtenues en ajoutant une constante réelle à l'une d'entre elles.
  - $\forall x \in \mathbb{R}$ ,  $\operatorname{Argsh}'(x) = \frac{1}{\sqrt{1+x^2}}$ , donc Argsh est une primitive de  $x \in \mathbb{R} \mapsto \frac{1}{\sqrt{1+x^2}}$ .
  - $\forall x \in \mathbb{R}, \operatorname{Argsh}(x) = \ln\left(x + \sqrt{1 + x^2}\right)$ .

Donc l'ensemble des primitives de  $x \in \mathbb{R} \mapsto \frac{1}{\sqrt{1 + x^2}}$  est

$$\left\{ x \in \mathbb{R} \mapsto \ln\left(x + \sqrt{1 + x^2}\right) + k, \text{ où } k \in \mathbb{R} \right\}$$