About LDPC Codes
The BP Decoding of LDPC Codes
Some Improved Results
The End: Literature Review

THE BELIEF PROPAGATION DECODING OF LDPC CODES

Chaonian Guo

CIS Lab, Coding Group

Jan 9, 2009

- 1 ABOUT LDPC CODES
 - Research aspects
 - Basic Conceptions
 - Coding & Decoding Process
- 2 THE BP DECODING OF LDPC CODES
 - Posteriori Probability
 - Belief Propagation
 - LLR BP
- 3 Some Improved Results
 - Fluctuations
 - Adaptive Erasure
 - Simulation Results
- 4 THE END: LITERATURE REVIEW

- ABOUT LDPC CODES
 - Research aspects
 - **Basic Conceptions**
 - Coding & Decoding Process
- - Posteriori Probability
 - Belief Propagation
 - LLR BP
- - **Fluctuations**
 - Adaptive Erasure
 - Simulation Results

- ABOUT LDPC CODES
 - Research aspects
 - **Basic Conceptions**
 - Coding & Decoding Process
- - Posteriori Probability
 - Belief Propagation
 - LLR BP
- - **Fluctuations**
 - Adaptive Erasure
 - Simulation Results

Coding & Decoding Process

RESEARCH ASPECTS

- Coding: H.
- Decoding: simplification&accuracy of decoding.
- Density Evolution: improvements.
- Design of Irregular LDPC Codes: degree distribution.
- Distance&Performance: analysis.
- Implementation&Application: communication.

1 ABOUT LDPC CODES

- Research aspects
- Basic Conceptions
- Coding & Decoding Process

2 THE BP DECODING OF LDPC CODES

- Posteriori Probability
- Belief Propagation
- LLR BP

SOME IMPROVED RESULTS

- Fluctuations
- Adaptive Erasure
- Simulation Results
- 4 THE END: LITERATURE REVIEW

LDPC Codes

A binary Low-Density Parity-Check code, specified by a parity check matrix $H_{(N-K)\times N}$ in GF(2): the 0's are far more than the 1's.

- N: the linear block length of a codeword c.
- K: the length of the source s.
- M: the number of check bits (M = N K).
- R: code rate = $\frac{K}{N}$.
- $G_{K \times N}$: generator matrix specified by $G^T H = 0$.

EXAMPLE 1

The parity check matrix of a trivial LDPC code may be

$$H = \left[\begin{array}{cccccc} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{array} \right],$$

which means:

$$\begin{cases} c_1 + c_2 + c_4 = 0 \\ c_2 + c_3 + c_6 = 0 \\ c_1 + c_3 + c_5 = 0 \end{cases}$$

REGULAR & IRREGULAR LDPC CODES

- (d_V, d_C) -regular codes
 - All the column weights are d_v .
 - All the row weights are d_c.
- $(\lambda(x), \rho(x))$ -irregular codes
 - $\lambda(x) = \sum \lambda_i x^{i-1}$, $\rho(x) = \sum \rho_i x^{i-1}$.
 - λ_i : the fraction of columns of weight *i* in *H*.
 - ρ_i: the fraction of rows of weight i in H.

EXAMPLE 2

(2,4)-regular LDPC code:

• $(\lambda(x), \rho(x))$ -irregular LDPC code, $\lambda(x) = 0.4x + 0.6x^2$, $\rho(x) = 0.2x^2 + 0.8x^3$:

Research aspects

Some Improved Results The End: Literature Review

- ABOUT LDPC CODES
 - Research aspects
 - **Basic Conceptions**
 - Coding & Decoding Process
- - Posteriori Probability
 - Belief Propagation
 - LLR BP
- - **Fluctuations**
 - Adaptive Erasure
 - Simulation Results

Research aspects

Basic Conceptions

CODING & DECODING PROCESS

- Source sequence $s = \{s_1, s_2, ..., s_K\}$.
- Code by $s \cdot G \rightarrow \text{codeword } c = \{c_1, c_2, ..., c_N\}.$
- Modulate codeword $c \rightarrow x$.
- Transmit x.
- Receive x and demodulate $x \rightarrow y$.
- Decode $y \rightarrow$ codeword \hat{c} .

DECODING

Giving y, how to determine \hat{c} ?

- Hard decision decoding: Bit-Flip.
- Soft decision decoding: Belief Propagation.

- ABOUT LDPC CODES
 - Research aspects
 - Basic Conceptions
 - Coding & Decoding Process
- 2 THE BP DECODING OF LDPC CODES
 - Posteriori Probability
 - Belief Propagation
 - LLR BP
- SOME IMPROVED RESULTS
 - Fluctuations
 - Adaptive Erasure
 - Simulation Results
- 4 THE END: LITERATURE REVIEW

- ABOUT LDPC CODES
 - Research aspects
 - Basic Conceptions
 - Coding & Decoding Process
- 2 THE BP DECODING OF LDPC CODES
 - Posteriori Probability
 - Belief Propagation
 - LLR BP
- SOME IMPROVED RESULTS
 - Fluctuations
 - Adaptive Erasure
 - Simulation Results
- 4 THE END: LITERATURE REVIEW

Some Improved Results The End: Literature Review

POSTERIORI PROBABILITY

The *Posteriori Probability* of the codeword c is computed based on the received value y.

The d^{th} bit c_d :

- $Pr(c_d = 0|y_d, S), Pr(c_d = 1|y_d, S).$
- S: bit c_d satisfies all the check equations.

LEMMA

Consider a sequence of m independent binary digits in which the I^{th} digit is a 1 with probability P_I . Then the probability that an even number of digits are 1 is $\frac{1+\prod_{l=1}^{m}(1-2P_l)}{2}$.

Some Improved Results
The End: Literature Review

THEOREM

Let P_d be the probability that c_d is a 1 conditional on the received digit y_d , and let P_{il} be same probability for the I^{th} bit in the i^{th} check equation. Let the digits be statistically independent of each other. Then

$$\frac{Pr(c_d=0|y_d,S)}{Pr(c_d=1|y_d,S)} = \frac{1-P_d}{P_d} \prod_{i=1}^{d_v} \frac{1+\prod_{i=1}^{d_c-1} (1-2P_{ii})}{1-\prod_{i=1}^{d_c-1} (1-2P_{ii})}$$

LLR BP

Some Improved Results The End: Literature Review

PROOF

$$\frac{Pr(c_d=0|y_d,S)}{Pr(c_d=1|y_d,S)} = \frac{Pr(c_d=0,y_d,S)/Pr(y_d,S)}{Pr(c_d=1,y_d,S)/Pr(y_d,S)} = \frac{Pr(c_d=0,y_d,S)/Pr(y_d,S)}{Pr(c_d=0,y_d,S)} = \frac{Pr(c_d=0,y_d,S)}{Pr(c_d=1,y_d,S)} = \frac{Pr(y_d)Pr(c_d=0|y_d)Pr(S|c_d=0,y_d)}{Pr(y_d)Pr(c_d=1|y_d)Pr(S|c_d=1,y_d)} = \frac{1-P_d}{P_d} \prod_{i=1}^{d_v} \frac{(1+\prod_{l=1}^{d_c-1}(1-2P_{il}))/2}{(1-\prod_{l=1}^{d_c-1}(1-2P_{il}))/2} = \frac{1-P_d}{P_d} \prod_{i=1}^{d_v} \frac{1+\prod_{l=1}^{d_c-1}(1-2P_{il})}{1-\prod_{l=1}^{d_c-1}(1-2P_{il})} \qquad \square$$

- ABOUT LDPC CODES
 - Research aspects
 - Basic ConceptionsCoding & Decoding Process
- T DDD
- 2 THE BP DECODING OF LDPC CODES
 - Posteriori Probability
 - Belief Propagation
 - LLR BP
- SOME IMPROVED RESULTS
 - Fluctuations
 - Adaptive Erasure
 - Simulation Results
- 4 THE END: LITERATURE REVIEW

NOTATIONS

- N(m): $\{n | H_{mn} = 1, 1 < n < N\}$.
- M(n): $\{m | H_{mn} = 1, 1 < m < M\}$.
- $r_{mn}(0)$: the probability of check m being satisfied when bit n is 0.
- $r_{mn}(1)$: ...
- $q_{mn}(0)$: the probability that bit n has the value 0, given the information obtained by the checks other than check m.
- $q_{mn}(1)$: ...
- $q_n(0)$: the probability that bit n has the value 0, given the information obtained by all the checks.
- $q_n(1)$:

DECODING PROCESS(1)

Initialization:

$$q_{mn}^{(0)}(0) = P_i(0), q_{mn}^{(0)}(1) = P_i(1), t = 1$$

Updating check node messages:

$$r_{mn}^{(t)}(0) = \frac{1}{2} + \frac{1}{2} \prod_{n' \in N(m) \setminus n} (1 - 2q_{mn'}^{(t-1)}(1))$$

$$r_{mn}^{(t)}(1) = \frac{1}{2} - \frac{1}{2} \prod_{n' \in N(m) \setminus n} (1 - 2q_{mn'}^{(t-1)}(1))$$

DECODING PROCESS(2)

Updating variable node messages:

$$q_{mn}^{(t)}(0) = P_n(0) \prod_{m' \in M(n) \setminus m} r_{m'n}^{(t)}(0)$$

$$q_{mn}^{(t)}(1) = P_n(1) \prod_{m' \in M(n) \setminus m} r_{m'n}^{(t)}(1)$$

Some Improved Results The End: Literature Review

DECODING PROCESS(3)

Decoding:

$$q_n^{(t)}(0) = P_n(0) \prod_{m \in M(n)} r_{mn}^{(t)}(0)$$

$$q_n^{(t)}(1) = P_n(1) \prod_{m \in M(n)} r_{mn}^{(t)}(1)$$

• if
$$q_n^{(t)}(0) > q_n^{(t)}(1)$$
, then $\hat{c}_n = 0$;

• else
$$\hat{c}_n = 1$$
.

DECODING PROCESS(4)

- Stopping criterion test:
 - if $H\hat{c} = 0$, then the decoding process ends;
 - if *t* exceeds some maximum number, and \hat{c} is considered as the final codeword, then the process ends;
 - otherwise, continue the iteration.

- ABOUT LDPC CODES
 - Research aspects
 - Basic Conceptions
 - Coding & Decoding Process
- 2 THE BP DECODING OF LDPC CODES
 - Posteriori Probability
 - Belief Propagation
 - LLR BP
- 3 Some Improved Results
 - Fluctuations
 - Adaptive Erasure
 - Simulation Results
- 4 THE END: LITERATURE REVIEW

LOG-LIKELIHOOD BELIEF PROPAGATION

IDENTICAL EQUATION

$$\tanh(\frac{1}{2}\ln\frac{p_0}{p_1}) = p_0 - p_1 = 1 - 2p_1.$$

$$(p_0 + p_1 = 1, \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}})$$

LLR

$$\begin{split} r_{mn}^{(t)}(1) &= \tfrac{1}{2} - \tfrac{1}{2} \prod_{n' \in N(m) \setminus n} (1 - 2q_{mn'}^{(t-1)}(1)) \\ &\Rightarrow 1 \text{-} 2r_{mn}^{(t)}(1) = \prod_{n' \in N(m) \setminus n} (1 - 2q_{mn'}^{(t-1)}(1)) \\ &\Rightarrow \tanh(\tfrac{1}{2} \ln \frac{r_{mn}^{(t)}(0)}{r_{mn}^{(t)}(1)}) = \prod_{n' \in N(m) \setminus n} \tanh(\tfrac{1}{2} \ln \frac{q_{mn'}^{(t-1)}(0)}{q_{mn'}^{(t-1)}(1)}) \end{split}$$

Some Improved Results The End: Literature Review

LLR BP

$$ln\frac{r_{mn}^{(t)}(0)}{r_{mn}^{(t)}(1)} = 2tanh^{-1}(\prod_{n'\in N(m)\backslash n}tanh(\frac{1}{2}ln\frac{q_{mn'}^{(t-1)}(0)}{q_{mn'}^{(t-1)}(1)})); \qquad (1)$$

$$ln\frac{q_{mn}^{(t)}(0)}{q_{mn}^{(t)}(1)} = ln\frac{P_n(0)}{P_n(1)} + \sum_{m' \in M(n) \setminus m} ln\frac{r_{m'n}^{(t)}(0)}{r_{m'n}^{(t)}(1)}.$$
 (2)

- ABOUT LDPC CODES
 - Research aspects
 - Basic Conceptions
 - Coding & Decoding Process
- 2 THE BP DECODING OF LDPC CODES
 - Posteriori Probability
 - Belief Propagation
 - LLR BP
- 3 SOME IMPROVED RESULTS
 - Fluctuations
 - Adaptive Erasure
 - Simulation Results
- 4 THE END: LITERATURE REVIEW

- ABOUT LDPC CODES
 - Research aspects
 - Basic Conceptions
 - Coding & Decoding Process
- 2 THE BP DECODING OF LDPC CODES
 - Posteriori Probability
 - Belief Propagation
 - LLR BP
- 3 SOME IMPROVED RESULTS
 - Fluctuations
 - Adaptive Erasure
 - Simulation Results
- 4 THE END: LITERATURE REVIEW

THE VARIABLE NODE LLR

The variable node LLR fluctuates continously during the iterative decoding:

$$\begin{split} & \cdot & \ln \frac{q_{mn}^{(t-1)}(0)}{q_{mn}^{(t-1)}(1)} > 0 \ (<0); \\ & \cdot & \ln \frac{q_{mn}^{(t)}(0)}{q_{mn}^{(t)}(1)} < 0 \ (>0); \\ & \cdot & \ln \frac{q_{mn}^{(t)}(0)}{q_{mn}^{(t+1)}(0)} > 0 \ (<0); \end{split}$$

•
$$\ln \frac{q_{mn}^{(t)}(0)}{q_{mn}^{(t)}(1)} < 0 \ (>0);$$

$$-\ln \frac{q_{mn}^{(t+1)}(0)}{q_{mn}^{(t+1)}(1)} > 0 \ (< 0);$$

- 1 ABOUT LDPC CODES
 - Research aspectsBasic Conceptions
 - Coding & Decoding Process
 - Coarrig & Decoarrig 1 100000
- 2 The BP Decoding of LDPC Codes
 - Posteriori Probability
 - Belief Propagation
 - LLR BP
- 3 Some Improved Results
 - Fluctuations
 - Adaptive Erasure
 - Simulation Results
- 4 THE END: LITERATURE REVIEW

CFT

Introduce a sequence of counters to record the Continuous Fluctuant Times (CFT) of the variable node LLRs:

$$CFT_{mn}^{(t)} = \begin{cases} 0; & t = 0; \\ CFT_{mn}^{(t-1)} + 1; & ln\frac{q_{mn}^{(t-1)}(0)}{q_{mn}^{(t-1)}(1)} \cdot ln\frac{q_{mn}^{(t)}(0)}{q_{mn}^{(t)}(1)} < 0; \\ 0; & otherwise. \end{cases}$$

Fluctuations
Adaptive Erasure
Simulation Results

ERASE THE LLRS

$$Inrac{q_{mn}^{(t)}(0)}{q_{mn}^{(t)}(1)} = egin{cases} 0; & \textit{CFT}_{mn}^{(t)} \geq 2; \ Inrac{q_{mn}^{(t-1)}(0)}{q_{mn}^{(t-1)}(1)} + Inrac{q_{mn}^{(t)}(0)}{q_{mn}^{(t)}(1)}; & \textit{CFT}_{mn}^{(t)} = 1; \ Inrac{q_{mn}^{(t)}(0)}{q_{mn}^{(t)}(1)}; & \textit{otherwise}. \end{cases}$$

- ABOUT LDPC CODES
 - Research aspects
 - Basic Conceptions
 - Coding & Decoding Process
- 2 THE BP DECODING OF LDPC CODES
 - Posteriori Probability
 - Belief Propagation
 - LLR BP
- 3 Some Improved Results
 - Fluctuations
 - Adaptive Erasure
 - Simulation Results
- 4 THE END: LITERATURE REVIEW

SIMULATION RESULTS

Error performances for iterative decoding, (3,6)-regular LDPC code with N=504 and R=1/2.

- 1 ABOUT LDPC CODES
 - Research aspectsBasic Conceptions
 - Coding & Decoding Process
- 2 THE BP DECODING OF LDPC CODES
 - Posteriori Probability
 - Belief Propagation
 - LLR BP
- SOME IMPROVED RESULTS
 - Fluctuations
 - Adaptive Erasure
 - Simulation Results
- 4 THE END: LITERATURE REVIEW

MAIN PROGRESS

- Gallager, 1963: first proposed LDPC codes.
- Tanner, 1981: modeled the decoding process by Tanner Graph.
- Mackay&Neal, 1996: rediscovered LDPC codes.
- Luby, 1997: proposed irregular LDPC codes.
- Richardson&Urbanke, 2001: Density Evolution and code threshold.
- S.-Y Chung, 2001: within 0.0045dB of the Shannon Limit by Gaussian Approximation.
- M. Ardakani, 2004: semi-Gaussian Approximation.
- Now: Over GF(q) & Quasi-cyclic LDPC Codes.

LDPC CODES DECODING

BP

- BP, LLR-BP (SPA).
- UMP-BP: Fossorier 1999.
- Normalized/Offset BP: J. Chen 2002.
- BP based on Oscillation: S. Gounai 2006.

BIT-FLIP

• ...

NEXT

Storage ↔ Error Correcting Code

About LDPC Codes
The BP Decoding of LDPC Codes
Some Improved Results
The End: Literature Review

Thank you & happy Niu year!