Chapter 2 Modeling and Control of DC Machines

2.1 Machine Structure

2-Pole DC Machine - Stator

- The field winding consists of N turn concentrated winding of which each half is wrapped around a pole.
- The frame is the yoke-part of the magnetic flux path.
- The use of a field winding gives us the ability to control the magnetic flux.
- Permanent magnets are often used to replace the field winding which leads to a more compact and efficient machine.
- However, we loose the control of flux
 magnitude and the potential of operating the
 machine on an AC source (universal machines)

DC Machine - Rotor

- A very simple example of A DC rotor shows the same single turn winding introduced for the synchronous machine.
- The slip ring/brush combination is replaced by a so-called commutator.

Separately Excited DC Machine

- Field winding: stator based excitation winding.
- With regard to the compensation winding, the magnetizing flux will remain oriented along the α - axis.
- In addition to the magnetizing flux, other component will appear due to the leakage inductance of the armature winding.

Cross-sectional view of a separately excited DC machine

2.2 Model of Separately-Excited DC Machine

Basic Equation

$$\frac{e_a}{T} = k\phi a$$

$$\tilde{T} = k\phi i_a$$

k : Armature Constant

$$v_f = R_f i_f + L_f \frac{a i_f}{dt}$$

field
$$v_f = R_f i_f + L_f \frac{di_f}{dt}$$

where $v_t = R_a i_a + L_a \frac{di_a}{dt} + k\phi\omega$

Mechanical Equation

$$T = k\phi i_a = J\frac{d\omega}{dt} + T_{Load}$$

ที่ STEADY STATE

$$\begin{cases} v_f &=& R_f i_f \\ v_t &=& R_a i_a + k \phi \omega \\ T &=& T_{LOAD} &=& k \phi i_a \end{cases}$$

2.3 SPEED CONTROL

ที่ STEADY STATE

$$\omega = \frac{v_t}{k\phi} - \frac{R_a}{(k\phi)^2} \cdot T \qquad (T = T_{LOAD})$$

จากสมการข้างต้น $oldsymbol{oldsymb$

$$y_t^{\uparrow}$$
, $(k\phi)$, R_a^{\uparrow}

ullet SPEED CONTROL BY $\underline{v_t}$

- Field ไม่เปลี่ยน
- $\bullet \ -v_{rate} < v_t < v_{rate}$
- $\omega < \omega_{base}$
- $i_a < i_{\max}$ (พิกัด)

REGENERATIVE BRAKING

FORWARD DRIVING

REVERSE DRIVING

REGENERATIVE BRAKING

 ω

SPEED CONTROL BY FIELD WEAKENING

• SPEED CONTROL BY R_a

- เพิ่ม Loss
- SPEED REGULATION เพิ่ม
- 🛮 เปลี่ยนแปลงน้อยในช่วงโหลดต่ำ
- $i_a < i_{\max}$ (พิกัด)

<u>LIMIT</u>

$$egin{array}{lll} |v_t| & \leq & v_{rate} & = & v_{
m max} \ |i_a| & \leq & i_{rate} & = & i_{
m max} \ arphi & \leq & arphi_{
m max} & {
m (อาจสูงกว่า} \; arphi_{base}) \ |i_f| & \leq & i_{frate} \ \end{array}$$

<u>Dynamic Behavior ของ DC Motor ที่ Const. Flux</u>

$$\otimes$$

$$\omega_m = F_1(s) \cdot v_t + F_2(s) \cdot T_{Load}$$

Superposition

$$F_{1}(s) = \frac{k\phi}{(L_{a}s + R_{a}) \cdot Js} / \left[1 + \frac{(k\phi)^{2}}{(L_{a}s + R_{a}) \cdot Js}\right]$$

$$= \frac{k\phi}{Js(L_{a}s + R_{a}) + (k\phi)^{2}}$$

$$V_{+} \xrightarrow{f} O \longrightarrow \underbrace{\frac{1}{L_{a}S + R_{a}}}_{L_{a}S + R_{a}} \xrightarrow{h} \underbrace{\frac{1}{K}}_{K} O \xrightarrow{f} \underbrace{\frac{1}{J_{s}S}}_{K}$$

$$F_{2}(s) = \frac{-1}{Js} / \left[1 + \frac{(k\phi)^{2}}{\{(L_{a}s + R_{a}) \cdot Js\}} \right]$$

$$= \frac{-(L_{a}s + R_{a})}{Js(L_{a}s + R_{a}) + (k\phi)^{2}}$$

$$\otimes$$

$$i_a = F_3(s) \cdot v_t + F_4(s) \cdot T_{Load}$$

$$F_3(s) = \frac{1}{(L_a s + R_a)} / \left[1 + \frac{(k\phi)^2}{(L_a s + R_a) \cdot J s} \right]$$

$$= \frac{Js}{Js(L_as + R_a) + (k\phi)^2} = \frac{\frac{J}{(k\phi)^2} \cdot s}{\frac{J}{(k\phi)^2} \cdot s(L_as + R_a) + 1}$$

$$F_{4}(s) = \frac{k\phi}{Js(L_{a}s + R_{a})} / \left[1 + \frac{(k\phi)^{2}}{(L_{a}s + R_{a}) \cdot Js}\right]$$

$$= \frac{k\phi}{Js(L_{a}s + R_{a}) + (k\phi)^{2}} = F_{1}(s)$$

 $J\frac{d\omega}{dt} = T - T_{Load}$ $c\frac{dv}{dt} = i$

ทางด้านอาร์เมเจอร์

ทางด้านกล

Ideal Transformer

พลังงานที่สะสมใน
$$\frac{1}{T}J=rac{1}{2}J\omega_m^2$$

Control of Separately Excited DC Motor

- การออกแบบระบบจะง่าย (อิสระต่อกัน) ถ้า

Response ของ Loop ใน >> Response ของ Loop นอก (Inner Loop) เร็วกว่า (Outer Loop)

Bandwidth เร็วกว่า 10 เท่า โดยทั่วไป

Consider loop la Pring pool republished

Temperature Control

Tension Control

Figure 11.1. Basic electrical drive

The aim of this drive circuit is to control the current in the motor in such a way that the reference current value matches the actual load current under all circumstances, i.e. transient as well as in steady-state.

Power Electronic Converters

Single-Phase Half-Bridge Converter:

- Consists of 2 switches.
- The average output voltage can be varied between $+\frac{u_{DC}}{2}$ and $-\frac{u_{DC}}{2}$.
- Output waveform is bipolar.

Fig. 2.1 Two switch half-bridge converter with power source and mo

Table 2.1 Half-bridge switching states

$Sw_{ m t}$	Sw_{b}	Voltage u	Comment
0	0	_	Idle mode
0	1	$-\frac{u_{\text{DC}}}{2}$	Active mode
1	0	$\frac{u_{\mathrm{DC}}}{2}$	Active mode
1	1	-	Shoot-through mode

Fig. 2.4 Generic model of double edged PWM based half-bridge modulator

Pulse Width-Modulation Converter

- 🗖 ลด Harmonics ที่ความถี่ต่ำของ Six-Step Inverter
- ใช้การปรับ duty cycle (อัตราส่วน Ton ของ S1)

Ton+Toff ของ S1

ให้ค่าเฉลี่ยแรงดันมีค่าตามต้องการ

Ex
$$E_d = 200 V$$
; $T = 200 \mu s$
∴ $v_{uo} = \begin{cases} +100 V \\ -100 V \end{cases}$

เราสามารถปรับค่าเฉลี่ยของแรงดันได้อย่างต่อเนื่องระหว่างค่า

 $\bar{v}_{uo} = +100 \, V$

-100

$$+\frac{E_d}{2}$$
, $-\frac{E_d}{2}$ (+100V, -100V)

 $\overline{v}_{uo} = 0 V$

-100

-100

 $\overline{v}_{uo} = +50 V$

<u>วิธีการหาตำแหน่งเวลาการสวิตช์</u>

Single-Phase Full-Bridge Converter

Single-Phase Full-Bridge Converter:

- Consists of 4 switches.
- The average output voltage can be varied between $+u_{DC}$ and $-u_{DC}$.
- Output waveform is unipolar.

Fig. 2.5 H-bridge converter

Fig. 2.8 Generic model of double edged PWM based modulator for full-bridge converter

0 = +80V, Ts = 200 Ms, UDC = 200V Um = 40V, Ubo = -40V € 200 Ms —>1 V001 7 - 100V now floar Sat 1 0 -100V 561 Vbo t corv

0

100J

(unipolar)

Current Control of Single-Phase Load

Fig. 3.2 Single-phase converter with hysteresis current controller

- 1) Hysteresis Current Control
- 2) PI (+ Feedforward) Current Control

Fig. 3.1 Generic hysteresis module and transfer function

Fig. 3.3 Generic structure of hysteresis current controller

- ไม่มีการทำ PWM
- สัญญาณออกของ Hysteresis Comparator เป็น Switching Signal โดยตรง
- ไม่มี Carrier Frequency...... Switching Frequency ไม่คงที่
- เหมาะกับ Analog มากกว่า Digital
- Response เร็ว

2) PI (+ Feedforward) Current Control

Fig. 3.7 Model based current controller structure

- มีการทำ PWM
- สัญญาณออกของตัวควบคุมเป็นคำสั่งแรงดัน
- มี Carrier Frequency...... มี Switching Frequency ตามที่กำหนด
- เหมาะทั้ง Analog และ Digital
- Feedforward Control ช่วยให้ Response เร็วขึ้น

Fig. 3.8 Single-phase model based current control example

Ra=1 1, La= 10 mH, in=10 A, Ve=50V

 ${\bf Fig.~3.5~~Single-phase~model~based~current~control}$