Honors Analysis II Math 396

University of Michigan
Harrison Centner
Prof. Jinho Baik
January 12, 2023

Contents

1	Intr	roduction & Motivation	2
		elidean Differentiable Manifolds	2
	2.1	Motivation	3
	2.2	Parametrized Manifolds	5
	2.3	Manifolds Without Boundary	7
		Manifolds With Boundary	
		Integration on Manifolds	

INTRODUCTION & MOTIVATION

Textbooks:

- (i) Munkres, Analysis on Manifolds
- (ii) Spivak, Calculus on Manifolds.
- (iii) (Possibly) Fourier Analysis, an Introduction.

Content:

Manifolds are k-dimensional objects embedded in ambient n-dimensional space. We will bee interested in integration over manifolds. Next, we will study differential forms are generalizations of functions and vector fields. We will then integrate differential forms on manifolds which will lead us to the celebrated **Stokes Theorem**. Stokes Theorem describes the relationship between the integral over a manifold and its boundary. We will study many classical examples.

EUCLIDEAN DIFFERENTIABLE MANIFOLDS

Motivation

Informally, a **topological manifold** is a topological space that is **homeomorphic** to Euclidean space. This means a manifold looks locally like \mathbb{R}^n .

For example, S^1 is a manifold because when we "zoom into" the circle it looks like a line. Also $S^1 \times S^1$ is a manifold because donuts look locally like a plane (see front cover).

We want to do analysis on these manifolds, so we need to add more structure. A **differentiable** manifold is a special type of topological manifold that is "smooth."

Proposition. (Volume of a Parallelepiped)

If $v_1, \ldots, v_n \in \mathbb{R}^n$ are linearly independent. The volume of the parallelepiped generated by v_1, \ldots, v_n is

$$\pm \det \begin{bmatrix} | & & | \\ v_1 & \cdots & v_n \\ | & & | \end{bmatrix}$$

We want to determine the k-dimensional volume of a parallelepiped determined by k vectors in \mathbb{R}^n . The vectors will determine a non-square matrix so we cannot use the determinant.

Definition. (Volume of Parallelepiped)

Let $k \leq n$, Let M(n,k) be the space of $n \times k$ matrices. Define $V: M(n,k) \to [0,\infty)$ by

$$V(X) = \sqrt{\det(X^T X)}$$

Suppose $x_1, \ldots, x_k \in \mathbb{R}^n$ are linearly independent. We define the **k-dimensional volume** of the parallelepiped generated by x_1, \ldots, x_k by V(X) where

$$X = \begin{bmatrix} | & & | \\ x_1 & \cdots & x_k \\ | & & | \end{bmatrix}$$

This is well defined because X^TX is a positive definite matrix.

Examples:

(i) k = n (should agree with previous proposition)

$$V(X) = \sqrt{\det(X^T X)} = \sqrt{\det(X) \cdot \det(X)} = |\det(X)|.$$

(ii) k = 1 (should agree with length of vector)

$$\sqrt{v^T v} = \|v\|.$$

(iii) k=2 and n=3 (should agree with cross product of generators)

$$X = \begin{bmatrix} | & | \\ a & b \\ | & | \end{bmatrix} \implies X^T X = \begin{bmatrix} a^T a & a^T b \\ b^T a & b^T b \end{bmatrix} \implies \det(X^T X) = \det \begin{bmatrix} ||a||^2 & a \cdot b \\ a \cdot b & ||b||^2 \end{bmatrix}$$

$$= ||a||^2 ||b||^2 - (a \cdot b)^2 = ||a||^2 ||b||^2 \sin \theta$$

So $det(X^TX) = ||a \times b||^2$.

This implies an interesting fact about the determinant of X^TX .

Definition. (Ascending k-tuple)

Let $k \leq n$.

- (a) An ascending k-tuple from the set [n] is $I = (i_1, \ldots, i_k)$ satisfying $1 \le i_1 \le \cdots \le i_k$.
- (b) Denote by $ASC_{k,n}$ the set of all ascending k-tuples from [n].

So
$$|ASC_{k,n}| = \binom{n}{k}$$

Theorem. (Cauchy-Binet Identity)

Let $k \leq n$. If $A \in M(k, n)$ and $B \in M(n, k)$, then

$$\det(AB) = \sum_{ASC_{k,n}} \det(A^{I}) \det(B_{I})$$

where for $I = (i_1, ..., i_k)$, A^I is the $k \times k$ submatrix of A containing the columns $i_1, ..., i_k$ and B_I , is the $k \times k$ submatrix of A containing the rows $i_1, ..., i_k$.

Corollary. For $k \leq n, X \in M(n, k)$

$$V(X)^2 = \det(X^T X) = \sum_{\mathrm{ASC}_{k,n}} (\det X_I)^2$$

This generalizes the Pythagorean Theorem.

Check directly for a 2×3 matrix.

Proof.

We will prove for k=2 and n arbitrary.

$$\det(AB) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ \vdots & \vdots \\ b+n1 & b_{n2} \end{bmatrix}$$

$$\begin{split} \det(AB) &= \det \begin{bmatrix} \sum_{i \in [n]} a_{1i}b_{i1} & \sum_{i \in [n]} a_{1i}b_{i2} \\ \sum_{j \in [n]} a_{2j}b_{j1} & \sum_{j \in [n]} a_{2j}b_{j2} \end{bmatrix} & \text{matrix product} \\ &= \sum_{i \in [n]} \sum_{j \in [n]} \det \begin{bmatrix} a_{1i}b_{i1} & a_{1i}b_{i2} \\ a_{2j}b_{j1} & a_{2j}b_{j2} \end{bmatrix} & \text{det is multilinear} \\ &= \sum_{i \in [n]} \sum_{j \in [n]} a_{1i}a_{2j} \det \begin{bmatrix} b_{i1} & b_{i2} \\ b_{j1} & b_{j2} \end{bmatrix} & \text{det is multilinear} \\ &= \sum_{i \in [n]} \sum_{j \in [n]} \delta_{ij} \cdot a_{1i}a_{2j} \det \begin{bmatrix} b_{i1} & b_{i2} \\ b_{j1} & b_{j2} \end{bmatrix} & \text{det is alternating} \\ &= \sum_{i \in [n]} \sum_{i < j} a_{1i}a_{2j} \det \begin{bmatrix} b_{i1} & b_{i2} \\ b_{j1} & b_{j2} \end{bmatrix} + \sum_{i \in [n]} \sum_{i > j} a_{1i}a_{2j} \det \begin{bmatrix} b_{i1} & b_{i2} \\ b_{j1} & b_{j2} \end{bmatrix} & \text{expansion of sum} \\ &= \sum_{i \in [n]} \sum_{i < j} a_{1i}a_{2j} \det \begin{bmatrix} b_{i1} & b_{i2} \\ b_{j1} & b_{j2} \end{bmatrix} + \sum_{j \in [n]} \sum_{j > i} a_{1j}a_{2i} \det \begin{bmatrix} b_{j1} & b_{j2} \\ b_{j1} & b_{j2} \end{bmatrix} & \text{permute } i \text{ and } j \\ &= \sum_{i \in [n]} \sum_{i < j} a_{1i}a_{2j} \det \begin{bmatrix} b_{i1} & b_{i2} \\ b_{j1} & b_{j2} \end{bmatrix} - \sum_{j \in [n]} \sum_{j > i} a_{1j}a_{2i} \det \begin{bmatrix} b_{i1} & b_{i2} \\ b_{j1} & b_{j2} \end{bmatrix} & \text{det is alternating} \\ &= \sum_{i \in [n]} \sum_{i < j} (a_{1i}a_{2j} - a_{1j}a_{2i}) \det \begin{bmatrix} b_{i1} & b_{i2} \\ b_{j1} & b_{j2} \end{bmatrix} & \text{factor} \\ &= \sum_{(i,j) \in ASC_{2,n}} \det \begin{bmatrix} a_{i1} & a_{i2} \\ a_{j1} & a_{j2} \end{bmatrix} \det \begin{bmatrix} b_{i1} & b_{i2} \\ b_{j1} & b_{j2} \end{bmatrix} & \text{definition of det.} \end{aligned}$$

Parametrized Manifolds

Almost always we will use n to denote the dimension of the ambient space and k the dimension of the subspace.

```
Definition. (Parametrized Manifold) Let k \leq n and A \subseteq \mathbb{R}^k be open. Let \alpha : A \subseteq \mathbb{R}^k \to \mathbb{R}^n be a C^1 map. Put Y = \alpha(A). The pair Y_{\alpha} = (Y, \alpha) is called a parametrized manifold of dimension k.
```

Examples:

- (a) $\alpha:(0,3\pi)\subseteq\mathbb{R}\to\mathbb{R}^2$ given by $\alpha(t)=(2\cos t,2\sin t)$. Think of this manifold not as a circle but the trajectory of a particle that moves around the circle 1.5 times.
- (b) $\alpha:(0,\pi)\times(0,\pi)\subseteq\mathbb{R}^2\to\mathbb{R}^3$ given by $\alpha(\theta,\phi)=(2\cos\theta\sin\phi,2\sin\theta\sin\phi,2\cos\phi)$. This is the portion of S^2 in the positive x quadrant.
- (c) Let $\Omega \subseteq \mathbb{R}^n$ be open. Let $h: \Omega \to \mathbb{R}$ be a C^1 function. Put $\alpha: \Omega \to \mathbb{R}^{n+1}$ with $\alpha(x) = (x, h(x))$. Then (G_h, α) is a parametrized manifold.

We want to compute the k-dimensional volume of parametrized manifolds, and in general compute integrals over them. We now define reasonable notions of length, area, and volume.

Take a rectangle in A with vertex at p and lengths $\Delta x_1, \Delta x_2$. Then it should be that the volume of

this rectangle in the image is $\alpha(p + (\Delta x_i)e_i) - \alpha(p) \approx \frac{\partial \alpha}{\partial x_i} \Delta x_i$. So the volume in the image should be approximately the volume of the parallelepiped determined by $\frac{\partial \alpha}{\partial x_1}(p)\Delta x_1, \ldots, \frac{\partial \alpha}{\partial x_k}(p)\Delta x_k$ which is equal to $V(D\alpha(p))\Delta x_1\Delta x_2\cdots\Delta x_k$. Where

$$D\alpha = \begin{bmatrix} \frac{1}{\partial \alpha} & \cdots & \frac{1}{\partial \alpha} \\ \frac{\partial \alpha}{\partial x_1} & \cdots & \frac{\partial \alpha}{\partial x_k} \end{bmatrix}.$$

This motivates the following definition

Definition. (Volume of Parametrized Manifold)

Let $k \leq n$, $A \subseteq \mathbb{R}^k$ be open, $\alpha : A \to \mathbb{R}^n$ be C^1 . Set $Y = \alpha(A)$ and $Y_\alpha = (Y, \alpha)$.

Define the **volume** of Y_{α} as

$$v(Y_{\alpha}) = \int_{A} V(D\alpha)$$

For a continuous function $f: Y \to \mathbb{R}$, define the **integral** of f over Y_{α} as

$$\int_{Y_{\alpha}} f dV = \int_{A} (f \circ \alpha) V(D\alpha)$$

if the RHS exists^a.

Examples:

(1) $\alpha:(0,3\pi)\subseteq\mathbb{R}\to\mathbb{R}^2$ given by $\alpha(t)=(2\cos t,2\sin t)$.

$$D\alpha = \begin{bmatrix} -2\sin t \\ 2\cos t \end{bmatrix} \implies V(D\alpha) = \sqrt{4} = 2 \implies v(Y_\alpha) = \int_0^{3\pi} 2 = 6\pi$$

(2) For k = 2, n = 3 and $\alpha : A \subseteq \mathbb{R}^2 \to \mathbb{R}^3$.

$$D_{\alpha} = \begin{bmatrix} \begin{vmatrix} & & \\ \frac{\partial \alpha}{\partial x} & \frac{\partial \alpha}{\partial y} \\ & & \end{vmatrix} \implies V(D\alpha) = \left\| \frac{\partial \alpha}{\partial x} \times \frac{\partial \alpha}{\partial y} \right\| \implies v(Y_{\alpha}) = \int_{A} \left\| \frac{\partial \alpha}{\partial x} \times \frac{\partial \alpha}{\partial y} \right\|$$

More generally,

$$\int_{Y_{\alpha}} f dV = \int_{A} (f \circ \alpha) \left\| \frac{\partial \alpha}{\partial x} \times \frac{\partial \alpha}{\partial y} \right\|$$

- (3) $\alpha: (0,\pi) \times (0,\pi) \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ given by $\alpha(\theta,\phi) = (2\cos\theta\sin\phi, 2\sin\theta\sin\phi, 2\cos\phi)$. Check that $V(D\alpha) = 4\sin\phi$.
- (4) Let $\alpha: \Omega \to \mathbb{R}^{n+1}$ be given by $\alpha(x) = (x, g(x))$ for C^1 g. Check that

$$v(D\alpha) = \sqrt{1 + \sum_{i \in [n]} \left(\frac{\partial g}{\partial x_i}\right)^2}$$

^aHere we are using the concept of a Pullback.

......

Now we show that integrals over parametrized manifolds are invariant under reparametrization.

For a parametrized manifold to exist there is one α the following theorem says any β diffeomorphic to α will agree on integrals. It does not say anything about two "randomly" chosen maps which define the same parametrized manifold.

Theorem. (Reparametrization Invariance)

Let $A, B \subseteq \mathbb{R}^k$ be open. Let $g: A \to B$ be a diffeomorphism. Let $\beta: B \to \mathbb{R}^n$ be a C^1 map. Let $\alpha = \beta \circ g: A \to \mathbb{R}^n$. Put $Y = \beta(B) = \alpha(A)$. For a continuous function $f: Y \to \mathbb{R}$, f is integrable on $Y_{\alpha} \iff$ f is integrable on Y_{β} . If so,

$$\int_{Y_{\Omega}} f dV = \int_{Y_{\beta}} f dV.$$

Proof.

We need to show

$$\int_{A} (f \circ \alpha) V(D\alpha) = \int_{B} (f \circ \beta) V(D\beta) \tag{*}$$

This amounts to change of variables in \mathbb{R}^k .

$$\int_A (f \circ \alpha) V(D\alpha) = \int_B f(\beta(y)) V(D\beta(y)) = \int_A f(\beta(g(x))) V(D\beta(g(x))) \cdot |\det Dg(x)|.$$

By the Chain rule

$$D\alpha(x) = D\beta(g(x))Dg(x)$$

$$\implies V(D\alpha(x))^2 = \det(D\alpha(x)^T D\alpha(x)) = \det\left([D\beta(g(x))Dg(x)]^T D\beta(g(x))Dg(x)\right)$$

$$= \det\left(Dg(x)^T D\beta(g(x))^T D\beta(g(x))Dg(x)\right) = \det(Dg(x))^2 V(D\beta \circ g(x))^2$$

The last step follows from the multiplicativity of the determinant and commutativity¹. Taking square roots gives (\star) .

Manifolds Without Boundary

Definition. (Homeomorphism)

Let X and Y be topological spaces (such as subsets of Euclidean spaces). A map $f: X \to Y$ is called a **homeomorphism** provided that f is bijective, continuous, and f^{-1} is continuous (equivalently f is an open map). If there is a homeomorphism between X and Y we say that they are **homeomorphic**.

Examples²:

- (a) (0,1) and the unit square minus the point (0,1) are homeomorphic.
- (b) $f(x) = (\cos x, \sin x)$ with $f: [0, 2\pi) \to S^1$ is a continuous bijective map. However $[0, 2\pi)$ and S^1 are *not* homeomorphic because f^{-1} is not continuous (this makes sense because their fundamental groups are different).

¹Get used to this proof. It's techniques will show up often.

²Algebraic Topology is the study of classifying topological spaces invariant under homeomorphism

Recall the definition of the **subspace topology**.

Definition. (Differentiable Manifold)

Let $k \leq n$. Let $M \subseteq \mathbb{R}^n$. We call M a differentiable k-manifold without boundary in \mathbb{R}^n provided that $\forall p \in M$, there is

(i) a set $V \subseteq M$, containing p, that is open in M.

(open containment)

(ii) a set $\mathcal{U} \subseteq \mathbb{R}^k$, that is open in \mathbb{R}^k ,

(local homeomorphism)

(iii) and a $C^{\overline{1}}$ homeomorphism $\alpha: \mathcal{U} \to V$ such that

(rank condition)

$$\operatorname{rank} D\alpha(x) = k,$$

 $\forall x \in \mathcal{U}.$

If α is C^r we say M is of class C^r . If α is C^{∞} then we say M is **smooth**.

The **manifold** is the set M together with its coordinate patches (atlas). A manifold without the rank condition is called a **topological manifold**.

<u>Terminology</u>: We call the map $\alpha : \mathcal{U} \subseteq \mathbb{R}^k \to V \subseteq M$ a **coordinate patch** (**coordinate system**) on M about p. The map $\varphi = \alpha^{-1} : V \subseteq M \to \mathcal{U} \subseteq \mathbb{R}$ is called a **coordinate chart**. The collection of coordinate charts $(\varphi_{\lambda}, V_{\lambda})$ such that $\bigcup_{\lambda} V_{\lambda} = M$ is called an **atlas**.

<u>Intuition</u>: Intuitively the rank condition assures the linear independence of the columns of

$$D\alpha = \begin{bmatrix} \frac{1}{\partial \alpha} & \cdots & \frac{1}{\partial \alpha} \\ \frac{\partial \alpha}{\partial x_1} & \cdots & \frac{\partial \alpha}{\partial x_k} \end{bmatrix} \quad \text{where} \quad \frac{\partial \alpha}{\partial x_i} = \lim_{\varepsilon \to 0} \frac{\alpha(x + \varepsilon e_i) - \alpha(x)}{\varepsilon}$$

when it exists is the **tangent vector** to M at $\alpha(x)$. So, rank condition means that there is a k-dimensional tangent "plane" to M at every point.

Examples:

(a) Let M be $S^1 \subseteq \mathbb{R}^2$ (the unit circle). For every $p \in M \setminus \{(-1,0)\}$, put $V = M \setminus \{(-1,0)\}$, $\mathcal{U} = (-\pi,\pi) \subset \mathbb{R}$, and $\alpha(t) = (\cos t, \sin t)$. α is clearly C^{∞} , onto, 1-1, continuous inverse, and the rank of $D\alpha(t)$ is $1 \ \forall t$.

For the point p = (-1, 0), put $V = M \setminus \{(1, 0)\}$, $\mathcal{U} = (0, 2\pi) \subset \mathbb{R}$, and $\alpha(t) = (\cos t, \sin t)$. α is clearly C^{∞} , onto, 1-1, continuous inverse, and the rank of $D\alpha(p)$ is 1.

So S^1 is a differentiable manifold. We showed this by considering a covering of S^1 whose constituents are homeomorphic to \mathbb{R} .

- (b) Let M be $S^1 \subseteq \mathbb{R}^2$ (the unit circle). For every p in the upper half of M, put $\alpha_1 : (-1,1) \to V_1$ given by $\alpha_1(t) = (t, \sqrt{1-t^2})$. Do the same with the lower half of M. Then do the same with the right and left hand sides of M but with $\alpha_3 : (-1,1) \to V_3$ given by $\alpha_3(t) = (-\sqrt{1-t^2},t)$.
- (c) Let $M = \mathbb{R}^n$. Then M is a smooth n-manifold without boundary ($\alpha = id$).
- (d) Finite dimensional vector space W. Let v_1, \ldots, v_k be a basis of W. Then,

$$W = \left\{ \sum_{i \in [k]} c_i v_i : c_1, \dots, c_k \in \mathbb{R} \right\}.$$

Let $\alpha: \mathbb{R}^k \to W$ such that

$$\alpha(x) = \sum_{i \in [k]} x_i v_i.$$

Then

$$D\alpha(x) = \begin{bmatrix} | & & | \\ v_1 & \cdots & v_k \\ | & & | \end{bmatrix}$$

has rank k.

- (e) Translates and dilates of a manifold (any diffeomorphism). If $M \subseteq \mathbb{R}^n$ and $p \in \mathbb{R}^n$ such that M is a manifold then $N = M + p_0$ is a manifold. The translation map is continuous and has rank 0. N = rM is also a manifold.
- (f) Spheres. $S^{n-1}\{x \in \mathbb{R}^n : ||x|| = 1\}$ is a smooth manifold without boundary of dimension n-1. Consider all 2n half spheres of S^{n-1} and consider the patch

$$\alpha_1(x_1,\ldots,x_{n-1}) = \left(x_1,\ldots,x_{n-1},\sqrt{1-\sum_{i\in[n]}x_i^2}\right).$$

- (g) Open subsets of a manifold (**submanifold**). The restriction of C^r maps are C^r . Therefore, open sets in \mathbb{R}^n are differentiable manifolds without boundary. Any open sets in S^{n-1} are differentiable manifolds without boundary. $GL(n,\mathbb{R})$ the set of $n \times n$ invertible manifolds is an n^2 -manifold without boundary, this is an open subset of \mathbb{R}^{n^2} .
- (h) **Product manifold**. For $i \in [\ell]$, M_i an k_i -manifold without boundary in \mathbb{R}^{n_i} . Then

$$M = \prod_{i \in [\ell]} M_i$$

is a manifold of dimension $\sum_{i \in [\ell]} k_i$.

The coordinate patches are the products of coordinate patches. $T^n = S^1 \times \cdots \times S^1$ is an n-torus which is a smooth n-manifold without boundary in \mathbb{R}^{2n} . So $S^1 \times S^1$ is a 4-manifold but we can clearly embed it in \mathbb{R}^3 because we all have seen 3-dimensional donuts coated in sprinkles (this is called the em edibility question). This is because we can realize the torus as a quotient manifold.

- (i) Singletons or discrete sets are by definition 0-dimensional manifolds.
- (j) Quotient manifold.

Non-Examples:

(a) $\alpha:(0,\pi)\to\mathbb{R}^2$ given by $\alpha(t)=\sin(2t)\begin{bmatrix}|\cos t|\\\sin t\end{bmatrix}$. Then α is 1-1 and onto but the inverse is not continuous.

Figure 1: Not a manifold.

Why is the cross not a manifold.

(b) $\alpha: \mathbb{R}^2 \to \mathbb{R}^3$ given by $\alpha(x,y) = (x(x^2+y^2), y(x^2+y^2), x^2+y^2)$. Put $M = \alpha(\mathbb{R}^2)$. α is C^{∞} , a homeomorphism (check!), but $D\alpha(0,0) = \vec{0}_{3\times 2}$

so rank $D\alpha(0,0) \neq 2$.

Figure 2: Not a manifold.

At all other point $D\alpha$ has rank two. So M is not a manifold. The surface looks like a parabolic funnel. The set does not have a two dimensional tangent plane at the origin.

(c) Put $\alpha(t) = (t, |t|)$ and $M = \alpha(\mathbb{R})$. This α does not give rise to a (differentiable) manifold. Put $\beta(t) = (t^3, t^2|t|)$. Note that

$$f(x) = t^{2}|t| = \begin{cases} t^{3} & t \ge 0\\ -t^{3} & t < 0 \end{cases}$$

is C^1 .

Since

$$f'(x) = \begin{cases} 3t^2 & t > 0 \\ 0 & t = 0 \\ -3t^2 & t < 0 \end{cases}$$

But the rank condition still fails because rank $D\beta(0) = \operatorname{rank} \vec{0} \neq 1$.

Moral of the story: if you try to be clever, the rank condition will kick in and you will fail.

Is the topologist's sine curve a manifold?

What topology is generated by using the euclidean topology on \mathbb{R} and then considering a space filling curve.

Definition. (Continuous Differentiability)

Let $S \subseteq \mathbb{R}^{\ell}$. A function $f: S \to \mathbb{R}^m$ is said to be C^r on S provided that f extends to a C^r function on an open set in \mathbb{R}^2 containing S. There is an open $\Omega \subseteq \mathbb{R}^{\ell}$ with $\Omega \supseteq S$ and $\tilde{f}: \Omega \to \mathbb{R}^m$, such that \tilde{f} is C^r and $\tilde{f} \upharpoonright S = f$.

Example:

(a) Let $f: S \to \mathbb{R}$ where $S = \text{Span}(\{e_1 + e_2\})$ and f(x, y) = xy then f is C^{∞} on S.

Lemma. (Local $C^r \implies C^r$)

Let $S \subseteq \mathbb{R}^{\ell}$ and $f: S \to \mathbb{R}^m$. Suppose that $\forall x \in S$ f is locally C^r near x (i.e. $\exists S_x$ open in S such that $x \in S_x$ and f is C^r on S_x), then f is C^r on S.

Proof.

We did this in the 395 homework.

Lemma. (Coordinate Charts are C^r)

Let M be a differentiable k-manifold without boundary in \mathbb{R}^n of class C^r . Let $\alpha: \mathcal{U} \subseteq \mathbb{R}^k \to V \subseteq M \subseteq \mathbb{R}^m$ be a coordinate path on M. Then $\alpha^{-1}: V \to \mathcal{U}$ is C^r on V.

Proof.

It suffices to prove locally. Choose $p_0 \in V$ with $x_0 = \alpha^{-1}(p_0)$.

Since rank $D\alpha(x_0) = k$ (and row rank equals column rank) there are k linearly independent rows. Without loss of generality we assume that the first k rows of $D\alpha(x_0)$ are linearly independent. Let $\pi: \mathbb{R}^n \to \mathbb{R}^k$ be the projection map onto \mathbb{R}^k (the indices of the k independent rows).

Note π is C^{∞} and

$$D\pi = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ & \ddots & & 0 & \cdots & 0 \\ 0 & & 1 & 0 & \cdots & 0 \end{bmatrix}$$

Define $g = \pi \circ \alpha$. Then g is C^r and the chain rule gives us

$$Dg(x_0) = D\pi(p_0)D\alpha(x_0)$$

$$\begin{bmatrix} 1 & & 0 & 0 & \cdots & 0 \\ & \ddots & & 0 & \cdots & 0 \\ 0 & & 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \\ \heartsuit & \heartsuit & \heartsuit \\ \heartsuit & \heartsuit & \heartsuit \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix}$$

which is invertible (by rank condition).

By the Inverse Function Theorem, g is a diffeomorphism locally near x_0 and g^{-1} is C^r near $\pi(p_0)$.

Note that
$$\alpha^{-1} = \pi \circ g^{-1}$$
, so α^{-1} is C^{r3} .

Theorem. (Coordinate Patches Overlap Differentiably)

Let M be a differentiable k-manifold without boundary in \mathbb{R}^n of class C^r . Let α_1, α_2 be coordinate patches from $\mathcal{U}_1, \mathcal{U}_2$ to $\mathcal{V}_1, \mathcal{V}_2$ respectively with $\mathcal{V}_1 \cap \mathcal{V}_2 \neq \emptyset$. The map $\alpha_2^{-1} \circ \alpha_1 : \mathcal{W}_1 \to \mathcal{W}_2$ is C^r where $W_i = \alpha_i^{-1}(\mathcal{V}_\infty \cap \mathcal{V}_2)$ are open in \mathbb{R}^k .

Proof.

Easy. The lemma above tells us that α_2 is C^2 and composition of C^2 maps is C^r by the Chain Rule. The map $\alpha_2^{-1} \circ \alpha_1$ is called a **transition map**⁴.

Manifolds With Boundary Integration on Manifolds

³This step needs more thinking!

⁴In more abstract manifold theory we take the existence of transition maps as the definition of a differentiable manifold.