보험 Data와 통신 Data, 신용평가 Data를 활용한 대출 연체 여부 예측

2016. 12. 13

오성우, 김제현

목 차

- **I** 배경
- Data 탐색 및 전처리
- 🔟 분석 모형
- ☑ 분석 결과

Background

배경

| 새로운 신용평가방식 필요

국내 대출시장은 중금리수요 대비 공급이 부족하고, 은행과 비은행권 간의 금리 양극화가 존재해 왔음. 최근 들어 중신용자를 대상으로 한 시장확대 노력이 진행되고 있으나 기존의 신용평가 방식 활용만으로는 고객의 정확한 상환능력/의지를 파악하기에 한계가 있음

● 업계별 신용대출 평균금리

● 전통적인 신용평가 방식의 한계

배경

| 대출 연체여부 예측을 통한 신용평가모델

• 에서는 기존 활용하던 금융거래관련 Data(SCI평가정보) 이외에 보험(한화생명) 및 통신(SKT) 데이터 등 다양한 산업의 Data를 활용하여 대출의 연체여부를 예측하는 알고리즘을 개발함으로써 Alternative 신용평가 모델 개발의 가능성을 검증하고자 함

분석 절차

Data 정의

Data 탐색

O Data 출처

한화생명에서 주최한 빅데이터 분석 공모전에서 제공된 데이터

● 수집 범위

약 10만 명의 금융거래 및 보험가입 정보, 통신가입 정보 등을 비식별화하여 결합한 융합된 데이터, 데이터의 크기는 약 30MB이며 전체 3개의 테이블(금융거래정보-SCI, 보험가입정보-한화생명, 통신가입정보-SKT)로 구성되어 있으며 비식별화된 고객 기본기(PRIMARY KEY)로 조인이 가능. 3개의 테이블 조인 시, 전체 69개 필드와 102,252 레코드로 구성

Data 설명

실제 기업내부 데이터 기반의 데이터로 구성되어 있어 Null 값 등이 존재하며 파생변수 등의 다수 업종에 대한 이해가 필요함. 여러 데이터 결합 시 발생하는 개인정보 식별 가능성 때문에 비식별 처리가 되었으며 이 과정에서 데이터의 추가적인 가공으로 인해 삭제되고 마스킹, 범주화 등으로 데이터의 정보 손실이 발생함. 그리고 데이터의 특성 상 대출상환을 하는 이들의 비율이 적기 때문에 타겟 변수의 값이 imbalanced 되어 있음. 데이터 필드에 대해서는 다음 장에서 표로 설명

Data(금융거래)

No	변수영문명	변수명	변수 설명	비고
θ	CUST_ID	고객_D	임의로 부여한 고객번호	분석 필드가 아님
1	TARGET	대출연체여부	대출연체 발생 여부: 미발생(0), 발생(1)	Binary
2	BNK_LNIF_CNT	대출정보 현재 총 건수[은행]	산출일 기준 은행권에서 발생된 총 대출 건수	Numeric
3	CPT_LNIF_CNT	대출정보 현재 총 건수[카드사/할부사/캐피탈]	산출일 기준 카드사/할부사/캐피탈에서 발생된 총 대출 건수	Numeric
4	SPART_LNIF_CNT	대출정보 현재 총 건수[2산업분류]	산출일 기준 2산업분류에서 발생된 총 대출 건수	Numeric
5	ECT_LNIF_CNT	대출정보 현재 총 건수[기타]	산출일 기준 기타 금융권에서 발생된 총 대출 건수	Numeric
6	TOT_LNIF_AMT	대출정보 현재 총 금액	산출일 기준 총 대출 금액	Numeric
7	TOT_CLIF_AMT	대출정보 현재 총 금액[신용대출]	산출일 기준 총 신용대출 금액	Numeric
8	BNK_LNIF_AMT	대출정보 현재 총 금액[은행]	산출일 기준 은행권에서 발생한 총 대출 금액	Numeric
9	CPT_LNIF_AMT	대출정보 현재 총 금액[카드사/할부사/캐피탈]	산출일 기준 카드사/할부사/캐피탈에서 발생한 총 대출 금액	Numeric
10	CRDT_OCCR_MDIF	대출정보 최근 개설일로부터 현재까지 유지기간[신용대출]	신용대출 개좌 개설일부터 산출일까지 유지 개월 수	Numeric
11	SPTCT_OCCR_MDI F	대출정보 최근 개설일로부터 현재까지 유지기간[2산업분류-신용대출]	2산업분류에서 신용대출 개좌 개설일부터 산출일까지 유지 개월 수	Numeric
12	CRDT_CARD_CNT	개설정보 현재 신용개설 총 건수[신용카드]	산출일 기준 신용카드 발급 수	Numeric
13	CTCD_OCCR_MDIF	개설정보 최초 개설일로부터 현재까지 유지기간[신용카드]	신용카드개설일부터 산출일까지 유지 개월 수	Numeric
14	CB_GUIF_CNT	보증정보 현재 보증 총 건수	산출일 기준 총 보증 건수	Numeric
15	CB_GUIF_AMT	보증정보 현재 보증 총 금액	산출일 기준 총 보증 금액	Numeric

Data(보험사)

No	변수영문명	변수명	변수 설명	비고
16	OCCP_NAME_G	직업	산출일 기준 대분류 직업 정보 (NULL, *(비식별처리))	Categorical
17	CUST_JOB_INCM	추정소득	직업정보기반 추정 소득 금액	Numeric
18	HSHD_INFR_INCM	가구추정소득	가계 합산 추정 소득	Numeric
19	ACTL_FMLY_NUM	실가족원수	산출일 기준 입력된 가족원 수	Numeric
20	CUST_FMLY_NUM	보험가입가족원수	산출일 기준 보험가입이력이 있는 가족원 수	Numeric
21	LAST_CHLD_AGE	막내자녀나이	산출일 기준 입력된 막내 자녀의 나이 (0 = NULL)	Numeric
22	MATE_OCCP_NAME_G	배우자직업	산출일 기준 배우자의 대분류 직업 정보 (NULL, *(비식별처리))	분석 필드에서 제외
23	MATE_JOB_INCM	배우자추정소득	배우자 직업 또는 주소 기반 추정 소득 금액	Numeric
24	CRDT_LOAN_CNT	신용대출건수	산출일 기준 한화생명에서 실행된 총 신용대출 건수	Numeric
25	MIN_CNTT_DATE	최초대출날짜	한화생명에서 실행된 최초의 신용대출의 년월	Numeric
26	TOT_CRLN_AMT	한화생명신용대출금액	산출일 기준 한화생명에서 실행된 총 신용대출 금액	Numeric
27	TOT_REPY_AMT	한화생명신용상환금액	산출일 기준 한화생명에서 실행된 총 신용대출 금액 중 총 상환된 상환금액	Numeric
28	CRLN_OVDU_RATE	신용대출연체율	한회생명에서 실행된 신용대출이후 경과월수 중 연체경험월수의 비율	Numeric
29	CRLN_30OVDU_RATE	30일이내신용대출연체율	한회생명에서 실행된 30일이내 연체경험월수/ 30일이내 신용대출월수*100	Numeric
	LT1Y_CLOD_RATE	최근1년신용대출연체율	한화생명에서 실행된 최근1년 연체경험월수/ 최근1년 신용대출월수*100	Numeric
	STRT_CRDT_GRAD	최초신 용등 급	한화생명에서 실행된 가장 오래된 대출시점의 신용등급 (0(등급없음))	Categorical
	LTST_CRDT_GRAD	최근신용등급	한화생명에서 실행된 가장 최근 대출시점의 신용등급 (0(등급없음))	Categorical
	PREM_OVDU_RATE	보험료연체율	총납입보험료 횟수 중 연체한 보험료 횟수의 비율	Numeric
	LT1Y_PEOD_RATE	최근1년보험료연체율	최근1년 연체납입횟수/총납입횟수*100	Numeric
	AVG_STLN_RATE	평균약대율	월별 약관대출가능 금액 중 약관대출 받은 금액의 비율의 연중 평균	Numeric
	STLN_REMN_AMT	약관대출가 능 잔액	약관대출 받은 금액	Numeric
	LT1Y_STLN_AMT	최근1년약대금액	최근1년 약관대출 받은 금액	Numeric
	LT1Y_SLOD_RATE	최근1년약대연체율	최근1년 약관대출연체경험월수/ 최근1년 약관대출월수*100	Numeric
	GDINS_MON_PREM		유효한 계약 중 납입중인 보장성 상품의 월납환산보험료(일시납 제외)	Numeric
40	SVINS_MON_PREM	연금저축상품월납입보험료	유효한 계약 중 납입중인 저축성 상품의 월납환산보험료(일시납 제외)	Numeric
41	FMLY_GDINS_MNPREM	非가구연금저축상품월납입보 험료	가계 합산 기준 유효한 계약 중 납입중인 보장성 상품의 월납환산보험료(일시납 제외)	Numeric
42	FMLY_SVINS_MNPREM	험료	가계 합산 기준 유효한 계약 중 납입중인 저축성 상품의 월납환산보험료(일시납 제외)	Numeric
	MAX_MON_PREM	최대월납입보험료	기준일 이전 납입한 월납입보험료 中 최대보험료	Numeric
44	TOT_PREM	기납입보험료	유효한 계약의 총납입보험료	Numeric
	FMLY_TOT_PREM	가구기납입보험료	가계 합산 기준 유효한 계약의 총납입보험료	Numeric
	CNTT_LAMT_CNT	실효해지건수	계약해지 또는실효난 계약건수	Numeric
	LT1Y_CTLT_CNT	최근1년 실효해지건수	최근1년 계약해지 또는 실효난 계약건수	Numeric
	AUTR_FAIL_MCNT	자동이체실패월수	산출일 기준 총 자동이체실패월수	Numeric
	FYCM_PAID_AMT	가구총지급보험금액	가계 합산 보험금지급 총액	Numeric
	FMLY_CLAM_CNT	가구총보험금청구건수	가계 합산 총 보험금청구 건수	Numeric
51	FMLY_PLPY_CNT	가구만기완납경험횟수	가구단위 만기까지 보험료를 완납한 증번의 갯수	Numeric

Data(통신사)

N o	변수영문명	변수명	변수 설명	비고
52	AGE	연령	한화생명 및 SKT고객이면서 대출정보가 있는 고객의 연령 (*(비식별처리))	Numeric
53	SEX	성별	한화생명 및 SKT고객이면서 대출정보가 있는 고객의 성별: 1(남자), 2(여자)	Categorical
54	AVG_CALL_TIME	월통화시간_분	월평균 통화시간 분단위	Numeric
55	AVG_CALL_FREQ	월통화빈도	월평균 통화횟수	Numeric
56	TEL_MBSP_GRAD	멤버쉽등급	SKT멤버쉽 등급	분석필드에서 제외 결측값이 50% 이상이며 멤버쉽 등급은 납부요금에 결정되므로 다중공선성 문제 발생
57	ARPU	가입자매출_원	월기준 회선당 평균 수익금	Numeric
58	MON_TLFE_AMT	납부요금_원	월기준 서비스 납부요금	Numeric
59	CBPT_MBSP_YN	결합상품가입여부	인터넷, TV등 결합상품가입 여부: Y(가입) , N(미가입)	Categorical
60	MOBL_FATY_PRC	단말기가격_원	사용중인 핸드폰단말기 출고가액	Numeric
61	TEL_CNTT_QTR	가입년월_분기	SKT가입년월_분기단위: YYYYQ	Numeric
62	NUM_DAY_SUSP	정지일수	회선의 사용정지일수	Numeric
63	CRMM_OVDU_AMT	당월연체금액_원	해당월 납부요금의 연체금액	Numeric
64	TLFE_UNPD_CNT	납부일미준수횟수	핸드폰 납부요금의 납입일 미준수한 횟수	Numeric
65	LT1Y_MXOD_AMT	년간최대연체금액_원	산출일 기준 최근1년이내 납부요금 연체금액 中 최대 연체금액	Numeric
66	PAYM_METD	납부방법	납부요금의 납부 방법	Categorical
67	LINE_STUS	회선상태	산출일 기준 회선의 상태: S(정지), U(사용)	Categorical
68	MOBL_PRIN	남은할부금_원	산출일 기준 남아있는 핸드폰 단말기 할부원금	Numeric

1

오버샘플링에 전후에 따른 성능 비교

2

알고리즘에 따른 성능 비교

Data 탐색 및 전처리

Data 탐색 및 전처리

Data 탐색

- Data 전체 100233 레코드 69개의 변수
- 보험사, 통신사, 금융거래 데이터 통합을 위한 key Customer_id 제외 총 68개 변수
- 변수의 형태는 이분(Binary), 명목(Nomial), 연속등이 존재함.

Data 처리

- 잘못 지정된 Data 유형 및 값 처리
- ex) Y/N -> 0/1 등(파이썬에서 값들 인식되서 바꾼 것들 수정)
- 결측치 처리
- 결측값이 절반 이상을 차지하는 변수 LAST_CHLD_AGE, OCCP_NAME_G, MATE_OCCP_NAME_G 제거(대체하면 전체를 왜곡할 가능성이 있음)
- 결측값이 40% 가까이 존재하지만, 해당 변수에 따라 연체율의 차이가 존재하는 변수인 통신사 멤버십 변수는 사용. (결측치를 포함하는 레코드 제거. 해당 레코드를 제거해도 모집단의 분포와 동일)
- 결측치 비율이 1% 이하인 변수들에 한하여 결측치를 대체함.

Data 변수 선택

● 범주형 변수

• 결측치가 많아 제거한 변수 3개를 제외한 각 변수에 따른 타겟 분포 확인

지불 방법

전체	G	К	0	R
4.0%	3.8%	1.7%	3.4%	14.9%

멤버십 등급

전체	E	Q	R	W
4.0%	2.8%	4.5%	2.9%	5.7%

결합상품 가입여부

전체	Υ	N
4.0%	3.1%	5.4%

성별

전체	남자	여자
4.1%	3.9%	4.3%

회선 사용

전체	Use	Stop
4.1%	4.2%	17.2%

Data 변수 선택

● 연속형 변수

- 결측치가 많아 제거한 변수 3개, ID 1개를 제외한 각 변수에 따른 타겟 분포 확인
- 변수 중 두 집단간의 평균의 차이가 존재하지 않고, 분포가 동일한 변수는 제거

변수명	평균 비교	분포 비교
CUST_JOB_INCM	p-value = 0.3838	p-value = 0.1991
ACTL_FMLY_NUM	p-value = 0.3457	p-value = 0.3774
CUST_FMLY_NUM	p-value = 0.1131	p-value = 0.6106
SVINS_MON_PREM	p-value = 0.05304	p-value = 0.3443
FMLY_SVINS_MNPREM	p-value = 0.1906	p-value = 0.7068
FYCM_PAID_AMT	p-value = 0.7074	p-value = 0.7806
AVG_CALL_TIME	p-value = 0.1696	p-value = 0.05149
TEL_CNTT_QTR	p-value = 0.9614	p-value = 0.06836

Data 불균형 자료 처리

oversampling

- 관측수가 큰 클래스를 모두 사용하고, 관측수가 작은 클래스의 관측수를 증대시키는 방법
- 기존 데이터를 중복하여 사용하는 방법과, 노이즈를 포함시키는 두가지 방법이 있음.
- 본 분석에서 두 방법 모두를 사용함.

원 데이터

전체	0(상환)	1(연체)
52843	50735	2108
100%	96%	4%

중복 oversampling

전체	0(상환)	1(연체)
101470	50735	50735
100%	50%	50%

원 데이터

전체	0(상환)	1(연체)
52843	50735	2108
100%	96%	4%

노이즈를 포함하는 oversampling

전체	0(상환)	1(연체)
46376	23188	23188
100%	50%	50%

분석 결과

Raw data

전체	Positive (상환)	Negative (연체)
Positive (상환)	13651	312
Negative (연체)	1569	320

전체	Positive (상환)	Negative (연체)
Positive (상환)	14731	489
Negative (연체)	285	347

전체	Positive (상환)	Negative (연체)
Positive (상환)	14660	560
Negative (연체)	345	287

나이브 베이즈

• Accuracy: 0.8813

• Sensitivity: 0.8969

• Specificity: 0.5063

• Precision : 0.9777

랜덤포레스트

• Accuracy : 0.9512

• Sensitivity: 0.9810

• Specificity: 0.4151

• Precision: 0.9679

DeepLearning

• Accuracy : 0.9429

 \bullet Sensitivity: 0.9770

• Specificity: 0.6612

• Precision: 0.9632

● 나이브 베이지안 모델

전체	Positive(상환)	Negative(연체)
Positive(상환)	12913	226
Negative(연체)	2307	406

중복 upsampling

• Accuracy: 0.8402

• Sensitivity: 0.8484

• Specificity: 0.6424

• Precision: 0.9828

전체	Positive(상환)	Negative(연체)
Positive(상환)	12777	185
Negative(연체)	2443	447

노이즈 포함 upsampling

• Accuracy: 0.8342

• Sensitivity: 0.8395

• Specificity: 0.7073

• Precision: 0.9857

● 랜덤포레스트 모델

전체	Positive(상환)	Negative(연체)
Positive(상환)	15050	170
Negative(연체)	194	438

중복 upsampling

• Accuracy: 0.9770

• Sensitivity: 0.9873

• Specificity: 0.7204

• precision : 0.9888

전체	Positive(상환)	Negative(연체)
Positive(상환)	15035	185
Negative(연체)	181	451

노이즈 포함 upsampling

• Accuracy: 0.9769

• Sensitivity: 0.9881

• Specificity : 0.7091

• precision : 0.9878

● 딥러닝

전체	Positive(상환)	Negative(연체)
Positive(상환)	14854	366
Negative(연체)	165	467

중복 upsampling

• Accuracy : 0.9665

• Sensitivity: 0.9890

• Specificity: 0.5606

• precision : 0. 9760

전체	Positive(상환)	Negative(연체)
Positive(상환)	14810	410
Negative(연체)	173	459

노이즈 포함 upsampling

• Accuracy: 0.9632

• Sensitivity : 0.9884

• Specificity : 0.5281

• precision : 0.9731

Q&A