实验报告

注:此实验报告对应实验计划中第一部分两个参数的效果。 针对噪声、模糊、噪声模糊三种情况实验,得到如下特点:

- 噪声图像和同时加噪声模糊的情况
 - β_1 值越大,变暗的程度越大,最优值一般出现在 (0,1) 之间,对 人工变亮的图像 (如 lenaBright),在 β_2 (β_3) 的基础上加 β_1 比 不加要好,而对于正常图像,加入 β_1 要比不加差,两者所用时 间相差不多。如图12所示。
 - $β_2$ 和 $β_3$ 具有互补的性质,最优 $β_2$ 随 $β_3$ 的增大而减小,但 $β_3$ 的值不易太大, $β_3$ 最优值一般在 (0,1) 之间,同时使用 $β_2$ 和 $β_3$ 与只用 $β_2$ 所用时间也相差不多,但时间随 $β_2$ 的增加。如图3所示。
 - 对于 β_3 来说, $|u-f|^2$ 也会出现先减小后增大的情况,最优值随 snr 的减小而增大。
 - 最优 $β_2$ 和 $β_3$ 都随 snr 的减小而增大, snr 对 $β_2$ 的影响较大, 而对 $β_3$ 影响较小, 一般在 (0,1) 内。如图4所示。
 - 对于时间来说, β_2 与其他两个参数连用时, β_2 起主要作用,其他两个参数为不为 0、等于多少影响不大,而 β_1 、 β_3 同时用时, β_3 取最优值时时间最短。235所示。

• 对于仅加模糊的情况, $\beta_i (i = 1, ..., 3)$ 值越小,psnr 越小,此种情况与单个参数时结论相同,原因见单参数实验报告。

• 想法:

- 加入 β_1 , psnr 增大, 但会不会使图像平滑, 找个 sharp 指标评价一下 (用 canny 算子检测边缘, 看效果: 经过 canny 算子检测,可以看出不会使图像平滑, 如图6所示)
- 亮度和最佳 β_1 值之间是否存在关系?!!! (实验看看: 亮度与最佳 β_1 之间有直接关系, 亮度越高, 使 psnr 达到最大的最佳 β_1 值越大, 如图7所示, 在三参数实验中考虑加入不同亮度的图像实验)
- $-\beta_2$ 、 β_3 具有一定的互补性,通过加入较小的 β_3 ,使得最佳 β_2 值 减小,从而使时间减小、效果变好(加入 β_3 的突破点)。
- snr 会影响最佳 β_2 , 怎么解决?!!! (已与老师讨论解决: 训练时分不同 snr 的训练集进行训练, 真实图像的 snr 也是大致可以估计的)
- 能否找到 β_1 、 β_2 、 β_3 、snr 之间的关系式,建立"证明 β 的必要性"—"关系式"—"训练"之间的联系,通过"证明 β 的必要性"得到"关系式",而训练又能证明"关系式",即使不训练也可以给以指示。

图 1: (a): 原始图像;(b): 观测图像;(c): $\beta_1=0,\beta_2=9$;(d): $\beta_1=0.1,\beta_2=9$;(e): $\beta_1=0.5,\beta_2=9$;(f): $\beta_1=1,\beta_2=9$

图 5: time vs $\beta_3(a):\beta_1=0;(b):\beta_1=0.1;(c):\beta_1=0.5;(d):\beta_1=1;$ Image:lena

图 6: 边缘 (a): $\beta_1=0.1,\beta_2=10,snr=23$;(b): $\beta_1=0.5,\beta_2=10,snr=23$;(c): $\beta_1=1,\beta_2=10,snr=23$;Image:lena

 \boxtimes 7: psnr vs β_1 :(a): Brightness = 50; (b):(a) :Brightness = 100; (c) :(a): Brightness = 150; Image:lena