Математический анализ 3. Лекция 4.

Лепский Александр Евгеньевич*

14 сентября 2015 г.

Определение 1. Говорят, что посл-ть $\{f_n(x)\}_{n=1}^{\infty}$ равномерно сходится на множестве D к функции f(x), если

$$\forall \varepsilon > 0 \exists N(\varepsilon) : |f_n(x) - f(x)| < \varepsilon \ \forall n > N(\varepsilon) \ \forall x \in D$$

$$f_n \stackrel{D}{\Rightarrow} f$$

Лемма 1. $Ecnu \exists a_n \xrightarrow{D} 0$:

$$|f_m(x) - f(x)| \le a_n \ \forall x \in D \ \forall n \ge m$$

, mo $f_m \Rightarrow f$

Примеры 1.

1.
$$f_n(x) = \frac{n+1}{n^2 + x^2}, x \in [-1, 1]; f_n \xrightarrow{D} 0 = f(x)$$

 $|f_n(x) - f(x)| = \frac{n+1}{n^2 + x^2} \le \frac{n+1}{n^2}$

2.
$$f_n(x) = x^n, x \in (0; 1) = D$$

 $f_n \xrightarrow{D} 0$
 $\sup |f_n(x) - f(x)| = \sup(x^n) = 1 \nrightarrow 0 \text{ npu } n \to \infty$

Критерий равномерной сходимости

1.
$$f_n \stackrel{D}{\Rightarrow} f \Leftrightarrow \sup_{x \in D} |f_n(x) - f(x)| \to 0$$
 при $n \to \infty$

2. Критерий Коши:
$$f_n \stackrel{D}{\Rightarrow} f \Leftrightarrow \forall \varepsilon > 0 \; \exists \; N(\varepsilon) \; \forall n \geq N(\varepsilon) \; \mathsf{u}$$
 $\forall p: |f_{n+p}(x) - f_n(x)| < \varepsilon \; \forall x \in D$

Доказательство. 1) Необходимость.

Пусть $f_n \stackrel{D}{\Rightarrow} f \Leftrightarrow$

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) : |f_n(x) - f(x)| < \varepsilon \ \forall x \in D$$

$$|f_{n+p}(x) - f_n(x)| \le |f_{n+p}(x) - f(x)| + |f(x) - f_n(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \ \forall x \in D \ \forall n > N(\varepsilon)$$

$$f_n \stackrel{D}{\Rightarrow} f \Leftrightarrow \forall \varepsilon > 0 \; \exists N(\varepsilon) \; \forall n \geq N(\varepsilon) \; \mathsf{и} \; \; \forall p: |f_{n+p}(x) - f_n(x)| < \varepsilon \; \forall x \in D(1)$$

2) Достаточность: пусть верно (1)

 \forall фиксированного $x\in D$ из $(1)\Rightarrow\{f_n(x)\}$ - фундаментальная посл-ть вещ. чисел $\Rightarrow\lim_{n\to\infty}f_n(x)=f(x)$

Покажем, что $f_n \stackrel{D}{\Rightarrow} f$

Из (1) при $p \to \infty$:

$$|f(x) - f_n(x)| < \varepsilon \ \forall x \in D \Rightarrow f_n \stackrel{D}{\Rightarrow} f$$

^{*}лекция записана Жуковым Иваном (группа 145)

Следствие 1. $f_n \not\ni f \Leftrightarrow \exists \ \varepsilon_0 > 0 \ \forall N(\varepsilon) \ \exists \ n \geq N(\varepsilon) \ \exists \ p \ \exists \ x_0 \in D : |f_{n+p}(x_0) - f_n(x_0)| \geq \varepsilon_0$

$$\sum_{1}^{\infty} u_n(x), u_n(x)$$
 - функции на D. (2)

Определение 2. Ряд (2) сх-ся на D поточечно, если

$$\exists S(x) \text{ na } D : S_n \xrightarrow{D} S \Leftrightarrow \forall x \in D \ \forall \varepsilon > 0 \ \exists \ N(\varepsilon, x) : |S_n(x) - S(x)| < \varepsilon \ \forall n > N(\varepsilon, x)$$

Определение 3. Ряд (2) сх-ся на D равномерно, если он сх-ся κ $S(x), \ x \in D$ u

$$\forall \varepsilon > 0 \; \exists \; N(\varepsilon) : |S_n(x) - S(x)| < \varepsilon \; \forall x \in D$$

$$\Leftrightarrow$$

$$\sup_{x \in D} |r_n(x)| \to 0$$

 $npu \ n \to 0$

$$S_n(x) - S(x) = r_n(x) = \sum_{k=n+1}^{\infty} u_k(x)$$
 - остаток ряда

Примеры 2.

1.
$$\sum_{n=0}^{\infty} x^{n}, D = [0; \alpha], \alpha \in (0; 1)$$

$$S_{n}(x) = \sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} \xrightarrow{D} \frac{1}{1 - x} = S(x)$$

$$\begin{vmatrix} \sup_{0 < x < 1} |r_{n}(x)| = \sup_{k=-n+1} \left| \sum_{k=-n+1}^{\infty} x^{k} \right| = \sup_{1 < x < 1} \frac{x^{n+1}}{1 - x} = \infty \Rightarrow$$

не является равном. cx-cs на D

Критерий равномерной сходимости функции ряда

Критерий Коши: ряд (2) равн. сх-ся на $D \Rightarrow$

$$\forall \varepsilon > 0 \; \exists \; N(\varepsilon) : \; \forall n > N(\varepsilon) \; \forall p : |S_{n+p}(x) - S_n(x)| < \varepsilon \; \forall x \in D$$

Следствие 2. Pяд (2) не явл. cxod. на $D \Leftrightarrow$

$$\exists \varepsilon_0 \ \forall \ N: \ \exists \ n \geq N, p, x_0 \in D: |S_{n+p}(x_0) - S_n(x_0)| \geq \varepsilon_0$$

Признаки равномерной сходимости функций рядов

1. Необходимый признак

Если ряд
$$\sum_{1}^{\infty} u_n(x)$$
 равномерно сх-ся на D, то $u_n(x) \stackrel{D}{\Rightarrow} 0$ при $n \to \infty$

Доказательство. Пусть ряд равномерно сх-ся
$$\Leftrightarrow S_n \stackrel{D}{\Rightarrow} S$$

$$|u_n(x)| = |S_n(x) - S_{n-1}(x)| \le |S_n(x) - S(x)| + |S(x) - S_{n-1}(x)| \le \varepsilon \ \forall x \in D$$

2. Признак Вейерштрасса

Пусть $\sup_{x \in D} |u_n(x)| \le a_n \ \forall n \ge m.$

$$\sum_{1}^{\infty} u_n(x) \, \operatorname{сходится} \Rightarrow \sum_{1}^{\infty} u_n(x) \, \operatorname{сходится} \, \operatorname{равномерно} \, \kappa \, \operatorname{D}$$

Доказательство.
$$|S_{n+p}(x) - S_n(x)| = \left|\sum_{k=n+1}^{n+p} u_k(x)\right| \le \sum_{k=n+1}^{n+p} \ \forall x \in D \Rightarrow |S_{n+p}(x) - S_n(x)| < \varepsilon \ \forall x \in D \ \forall p \ \forall n \ge N(\varepsilon) \Rightarrow$$
 по критерию Коши ряд равномерно

Примеры 3.
$$\sum_{1}^{\infty} n sin(nx) \cdot (ln(n^3+1) - 3ln(n)) = \sum_{1}^{\infty} n sin(nx) \cdot ln(1+\frac{1}{n^3})$$

3. Признаки равн. сх-ти Дирихле и Абеля

Определение 4. Посл-ть $\{f_n(x)\}_{n=1}^\infty$ наз-ся равн. ограниченной на D, если $\exists \ c > 0 : \sup_{x \in D} |f_n(x)| \le c \ \forall n$

• Признак Дирихле:

$$\sum_{1}^{\infty} a_n(x) \cdot b_n(x)$$
 сходится, если:

1)
$$\{a_n(x)\} \stackrel{D}{\Rightarrow} 0$$
 и $\{a_n(x)\}$ монотон. $\forall x \in D$

2)
$$\sum_{k=1}^{\infty} b_k(x)$$
 равн. огр. на D

$$\Rightarrow \sum_{1}^{\infty} a_n(x) \cdot b_n(x)$$
 равн. сх-ся на D

• Признак Абеля:

$$\sum_{n=0}^{\infty} a_n(x) \cdot b_n(x)$$
 сходится, если

$$\sum_{1}^{\infty}a_n(x)\cdot b_n(x)$$
 сходится, если:
$$1)\ \{a_n(x)\}\ \text{равномерно огр. на D и }\{a_n(x)\}\ \text{монотон.}\ \ \forall x\in D$$

2)
$$\sum_{k=1} b_k(x)$$
равн. сх-ся на D

$$\Rightarrow \sum_{n=0}^{\infty} a_n(x) \cdot b_n(x)$$
 равн. сх-ся на D