Deadlocks (4)

Dr. Jun Zheng
CSE325 Principles of Operating
Systems
10/14/2019

Example of Banker's Algorithm

5 processes P_0 through P_4 ;

3 resource types:

A (10 instances), B (5 instances), and C (7 instances)

Snapshot at time T_0 :

	<u>Allocation</u>	<u>Max</u> <u>Avai</u>	<u>lable</u>
	ABC	ABCAB	C
$P_{ m o}$	010	753 333	2
$P_{\scriptscriptstyle 1}$	$2\ 0\ 0$	322	
P_2	302	902	
$P^{}_3$	211	222	/ A
P_4	002	433	NEW MEXICO TE

Example (Cont.)

The content of the matrix *Need* is defined to be *Max* – *Allocation*

$$egin{array}{cccc} Need & ABC \ P_0 & 743 \ P_1 & 122 \ P_2 & 600 \ P_3 & 011 \ P_4 & 431 \ \end{array}$$

The system is in a safe state since the sequence $\langle P_1, P_3, P_4, P_2, P_0 \rangle$ satisfies safety criteria

Example: P_1 Request (1,0,2)

Check that Request \leq Available (that is, $(1,0,2) \leq (3,3,2) \Rightarrow$ true

	<u>Allocation</u>	<u>Need</u>	<u>Available</u>
	ABC	ABC	ABC
$P_{ m o}$	010	743	230
$P_{\scriptscriptstyle 1}$	302	020	
P_2	302	600	
P_3	211	011	
P_4	002	431	

Executing safety algorithm shows that sequence $\langle P_1, P_3, P_4, P_0, P_2 \rangle$ satisfies safety requirement

Can request for (3,3,0) by P_4 be granted?

Can request for (0,2,0) by P_0 be granted?

In-Class Work 4

Consider the following snapshot of a system:

Allocation	Max	Available
ABCD	ABCD	ABCD
Po 0012	0012	1520
P1 1000	1750	
P2 1354	2356	
P3 0632	0652	
P4 0014	0656	

Answer the following questions using the banker's algorithm:

- a. What is the content of the matrix *Need?*
- b. Is the system in a safe state?
- c. If a request from process P1 arrives for (0,4,2,0), can the request be granted immediately?

 NEW MEXICO TECH
 SCIENCE: ENGINEER FOR SERBERT UNIVERSIT

Answer

- **a.** The values of **Need** for processes *P*0 through *P*4 respectively are (0, 0, 0, 0), (0, 7, 5, 0), (1, 0, 0, 2), (0, 0, 2, 0), and (0, 6, 4, 2).
- b. Yes. With **Available** being equal to (1, 5, 2, 0), either process P0 or P3 could run. Once process P3 runs, it releases its resources, which allow all other existing processes to run.
- c. This results in the value of **Available** being (1, 1, 0, 0). One ordering of processes that can finish is *P*0, *P*2, *P*3, *P*1, and *P*4.

Deadlock Detection

- ☐ Allow system to enter deadlock state
- ☐ Detection algorithm
- ☐ Recovery scheme

Single Instance of Each Resource Type

- ☐ Maintain wait-for graph
 - ☐ Nodes are processes
 - \square $P_i \rightarrow P_j$ if P_i is waiting for P_j
- ☐ Periodically invoke an algorithm that searches for a cycle in the graph. If there is a cycle, there exists a deadlock
- \square An algorithm to detect a cycle in a graph requires an order of n^2 operations, where n is the number of vertices in the graph

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph

Corresponding wait-for graph

Several Instances of a Resource Type

- ☐ Available: A vector of length *m* indicates the number of available resources of each type
- □ Allocation: An *n* x *m* matrix defines the number of resources of each type currently allocated to each process
- □ Request: An $n \times m$ matrix indicates the current request of each process. If Request[i][j] = k, then process P_i is requesting k more instances of resource type R_j .

Detection Algorithm

- Let Work and Finish be vectors of length m and n, respectively Initialize:
 - $\mathfrak{G}(a)$ Work = Available
 - $(\mathfrak{G}(\mathbf{b}))$ For $\mathbf{i} = \mathbf{1,2,...,n}$, if $\mathbf{Allocation_i} \neq \mathbf{0}$, then $\mathbf{Finish[i]} = \mathbf{false}$; otherwise, $\mathbf{Finish[i]} = \mathbf{true}$

- 2. Find an index *i* such that both:
 - $\mathfrak{G}(a)$ Finish[i] == false
 - (\mathfrak{B}) Request_i $\leq Work$

Detection Algorithm (Cont.)

3. Work = Work + Allocation_i
Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, $1 \le i \le n$, then the system is in deadlock state. Moreover, if Finish[i] == false, then P_i is deadlocked

Algorithm requires an order of $O(m \times n^2)$ operations to detect whether the system is in deadlocked state

Example of Detection Algorithm

Five processes P_o through P_4 ; three resource types A (7 instances), B (2 instances), and C (6 instances) Snapshot at time T_o :

	<u>Allocation</u>	<u>Request</u>	<u>Available</u>
	ABC	ABC	ABC
$P_{ m o}$	010	0 0 0	0 0 0
$P_{\scriptscriptstyle 1}$	200	202	
P_2	303	0 0 0	
P_3	211	100	
P_4	002	002	

Sequence $\langle P_0, P_2, P_3, P_1, P_4 \rangle$ will result in **Finish[i]** = **true** for all **i**