organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Diethyl [(3-cyano-1-phenylsulfonyl-1*H*-indol-2-yl)methyl]phosphonate

S. Karthikeyan, K. Sethusankar, K. Ganesan Gobi Rajeshwaran, Arasambattu K. Mohanakrishnan and D. Velmurugan C.

^aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, ^bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India, and ^cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai Campus, Chennai 600 025, India Correspondence e-mail: ksethusankar@vahoo.co.in

Received 23 February 2011; accepted 3 March 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.003$ Å; disorder in main residue; R factor = 0.042; wR factor = 0.126; data-to-parameter ratio = 18.2.

In the title compound, $C_{20}H_{21}N_2O_5PS$, the indole ring is essentially planar, with a maximum deviation of -0.0083 (18) Å. The methyl C atom of the methylphosphonate group and the S atom lie 0.104 (2) and -0.2158 (6) Å, respectively, from the indole mean plane. The sulfonyl-bound phenyl ring is almost perpendicular to the indole ring system, with a dihedral angle of 82.30 (8)°. The ethyl side chains are disordered over two sets of sites, with occupancy factors of 0.737 (5)/0.263 (5) and 0.529 (11)/0.471 (11). In the crystal, molecules are linked into centrosymmetric dimers via C— $H\cdots O$ hydrogen bonds, resulting in an R_2^2 (18) graph-set motif. The crystal structure is further stabilized by $C-H\cdots \pi$ interactions.

Related literature

For applications of indole derivatives, see: Stevenson *et al.* (2000); Ho *et al.* (1986); Rajeswaran *et al.* (1999). For comparison of molecular dimensions, see: Bassindale (1984); Sethu Sankar *et al.* (2002); Allen (1981). For graph-set motif notations, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{lll} \text{C}_{20}\text{H}_{21}\text{N}_2\text{O}_5\text{PS} & \gamma = 72.204 \ (5)^\circ \\ M_r = 432.42 & V = 1053.7 \ (9) \ \mathring{\text{A}}^3 \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 9.198 \ (5) \ \mathring{\text{A}} & \text{Mo } K\alpha \ \text{radiation} \\ b = 11.229 \ (5) \ \mathring{\text{A}} & \mu = 0.26 \ \text{mm}^{-1} \\ c = 11.992 \ (5) \ \mathring{\text{A}} & T = 293 \ \text{K} \\ \alpha = 65.569 \ (5)^\circ & 0.23 \times 0.20 \times 0.20 \ \text{mm} \end{array}$

Data collection

Bruker SMART APEXII 5172 independent reflections area-detector diffractometer 4201 reflections with $I > 2\sigma(I)$ 19331 measured reflections $R_{\rm int} = 0.025$

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.042 & 10 \text{ restraints} \\ wR(F^2)=0.126 & \text{H-atom parameters constrained} \\ S=1.02 & \Delta\rho_{\max}=0.28 \text{ e Å}^{-3} \\ 5172 \text{ reflections} & \Delta\rho_{\min}=-0.33 \text{ e Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (\mathring{A} , $^{\circ}$).

-x + 1, -y, -z + 1.

Cg1 is the centroid of the C9/C10/C11/C12/C13/C14 ring and Cg2 is the centroid of the C1/C2/C3/C4/C5/C6 ring.

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots$
C10-H10···O5i	0.93	2.35	3.229 (3)	157
$C5-H5\cdots Cg1^{ii}$	0.93	2.63	3.501 (3)	157
C18 $-$ H18 $A\cdots Cg2^{iii}$	0.96	2.99	3.874 (8)	154
Symmetry codes: (i)	-x + 1, -y	+1, -z + 1;	(ii) $-x + 1, -y$	z, -z + 2; (ii)

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

SK and KS thank the Technology Business Incubator (TBI), CAS in Crystallography and Biophysics, University of Madras, Maraimalai Campus, Chennai, and the Department of Science and Technology (DST) for data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2393).

organic compounds

References

Allen, F. H. (1981). Acta Cryst. B37, 900-906.

Bassindale, A. (1984). *The Third Dimension in Organic Chemistry*, ch. 1, p. 11. New York: John Wiley and Sons.

Bernstein, J., Davis, R. É., Shimoni, L. & Chang, N.-L. (1995). *Angew. Chem. Int. Ed. Engl.* **34**, 1555–1573.

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118–121.
Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.

Sethu Sankar, K., Kannadasan, S., Velmurugan, D., Srinivasan, P. C. & Moon, J.-K. (2002). *Acta Cryst.* C58, o450–o454.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stevenson, G. I., Smith, A. L., Lewis, S. G., Nedevelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). *Bioorg. Med. Chem. Lett.* **10**, 2697–2704.

supplementary m	aterials	

Acta Cryst. (2011). E67, o818-o819 [doi:10.1107/S1600536811008038]

Diethyl [(3-cyano-1-phenylsulfonyl-1*H*-indol-2-yl)methyl]phosphonate

S. Karthikeyan, K. Sethusankar, G. G. Rajeshwaran, A. K. Mohanakrishnan and D. Velmurugan

Comment

The indole ring system is present in many natural products. Indole derivaties are used as bioactive drugs (Stevenson, *et al.*, 2000) and they exhibit anti-allergic, central nervous system depressant and muscle relaxant properties (Ho, *et al.*, 1986). Indoles also have been proved to display high aldose reductase inhibitory activity (Rajeswaran, *et al.*, 1999).

In the title compound (Fig. 1), ethyl moieties of diethyl phosphonate are disordered over two sites with occupancy factors 0.737 (5), 0.263 (5) and 0.529 (11), 0.471 (11). The indole ring is essentially planar with a maximum deviation -0.0083 (18) Å for the atom C6. The deviation of atoms C15 and S1 from the indole mean plane is 0.1041 (22) and -0.2158 (6) Å, respectively. The sulfonyl bound phenyl ring is almost perpendicular to the indole ring system, with a dihedral angle of 82.30 (8)°. The atom P1 has a distorted tetrahedral configuration. The widening of angle O3—P1—O5 [115.78 (10)°] and narrowing of angle O4—P1—C15 [104.97 (9)°] from the ideal tetrahedral value are attributed to the Thrope-Ingold effect (Bassindale, 1984).

In the benzene ring of the indole ring system, the endocyclic angles at C2 and C5 are contracted to 117.49 (17) and 118.56 (17)° respectively, while those at C1, C3 and C4 are expanded to 121.35 (15)°, 121.69 (18) and 120.69 (17)°, respectively. This would appear to be a real effect caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortions (Allen, 1981; Sethu Sankar *et al.*, 2002).

In the crystal, molecules are linked into centrosymmetric dimers via C–H···O hydrogen bonds resulting in a $R^2_2(18)$ graphset motif (Bernstein et al., 1995). The crystal structure is further stabilized by C–H··· π interactions, where Cg(1) is the centroid of C9/C10/C11/C12/13/C14 ring and Cg(2) is the centroid of C1/C2/C3/C4/C5/C6 ring.

Experimental

To a solution of 2-(bromomethyl)-1-phenylsulfonyl-indole-3-carbonitrile (1 mmol) and triethylphosphite (1.2 mmol) in dry dichloromethane (10 ml) at room temperature, $ZnBr_2$ (0.2 mmol) was added and allowed to stir for 2 h under N_2 . After consumption of the bromo compound (monitored by TLC) volatile components were removed under vacuo. The residual mass was poured over crushed ice (200 g) containing conc. HCl (5 ml). The precipitated solid was filtered, washed with water and dried to give crude phosphonate ester. The crude product was purified by flash column chromatography to provide the title compound which was recrystalized from a mixture of 50% ethylacetate in pure hexane.

Refinement

All the hydrogen atoms weree fixed geometrically and allowed to ride on their parent atoms with C—H distance in the range 0.93Å to 0.97Å and with $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃ groups and $U_{iso}(H) = 1.2U_{eq}(C)$ for all the other H-atoms.

Figures

Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids. Ethyl groups attached on O4 are disordered.

Fig. 2. A unit cell packing of the crystal structure of the title compound, showing H-bonds.

Diethyl [(3-cyano-1-phenylsulfonyl-1*H*-indol-2-yl)methyl]phosphonate

Crystal data

 $\mathrm{C}_{20}\mathrm{H}_{21}\mathrm{N}_{2}\mathrm{O}_{5}\mathrm{PS}$ Z = 2 $M_r = 432.42$ F(000) = 452Triclinic, $P\overline{1}$ $D_{\rm x} = 1.363 \; {\rm Mg \; m}^{-3}$ Hall symbol: -P 1 Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ a = 9.198 (5) ÅCell parameters from 5172 reflections b = 11.229 (5) Å $\theta = 1.0-28.2^{\circ}$ c = 11.992 (5) Å $\mu = 0.26 \text{ mm}^{-1}$ $\alpha = 65.569 (5)^{\circ}$ T = 293 K $\beta = 72.950 (5)^{\circ}$ Block, colourless $\gamma = 72.204 (5)^{\circ}$ $0.23\times0.20\times0.20~mm$ $V = 1053.7 (9) \text{ Å}^3$

Data collection

Bruker SMART APEXII area-detector 4201 reflections with $I > 2\sigma(I)$ diffractometer

 $R_{\rm int} = 0.025$ Radiation source: fine-focus sealed tube

 $\theta_{\text{max}} = 28.2^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$ graphite

 $h = -12 \rightarrow 12$ ω scans 19331 measured reflections $k = -14 \rightarrow 14$ 5172 independent reflections $l = -15 \rightarrow 15$

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2

methods

Least-squares matrix: full Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.126$	H-atom parameters constrained
S = 1.02	$w = 1/[\sigma^2(F_0^2) + (0.0647P)^2 + 0.2952P]$ where $P = (F_0^2 + 2F_c^2)/3$
5172 reflections	$(\Delta/\sigma)_{\text{max}} < 0.001$
284 parameters	$\Delta \rho_{max} = 0.28 \text{ e Å}^{-3}$
10 restraints	$\Delta \rho_{\text{min}} = -0.33 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	X	y	z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.29990 (18)	0.07457 (15)	0.89632 (14)	0.0423 (3)	
C2	0.1831 (2)	0.03001 (18)	0.99695 (17)	0.0517 (4)	
H2	0.0877	0.0869	1.0109	0.062*	
C3	0.2138 (2)	-0.10164 (19)	1.07533 (18)	0.0581 (4)	
Н3	0.1379	-0.1337	1.1438	0.070*	
C4	0.3557 (2)	-0.18786 (19)	1.05461 (19)	0.0600 (5)	
H4	0.3727	-0.2763	1.1089	0.072*	
C5	0.4706 (2)	-0.14371 (18)	0.95485 (18)	0.0556 (4)	
H5	0.5651	-0.2015	0.9406	0.067*	
C6	0.44273 (18)	-0.01035 (16)	0.87526 (15)	0.0446 (3)	
C7	0.53430 (19)	0.06663 (18)	0.76474 (16)	0.0483 (4)	
C8	0.45078 (19)	0.19408 (17)	0.72042 (15)	0.0460(3)	
C9	0.19475 (17)	0.38218 (15)	0.91760 (14)	0.0411 (3)	
C10	0.29566 (19)	0.46655 (16)	0.88290 (16)	0.0475 (4)	
H10	0.3488	0.4974	0.8010	0.057*	
C11	0.3155 (2)	0.50389 (19)	0.97293 (19)	0.0570 (4)	
H11	0.3817	0.5614	0.9512	0.068*	
C12	0.2382 (2)	0.4566 (2)	1.09435 (19)	0.0602 (5)	
H12	0.2535	0.4816	1.1543	0.072*	
C13	0.1383 (2)	0.3728 (2)	1.12775 (17)	0.0588 (4)	
H13	0.0868	0.3410	1.2101	0.071*	
C14	0.11430 (19)	0.33556 (17)	1.03911 (16)	0.0497 (4)	
H14	0.0454	0.2803	1.0607	0.060*	
C15	0.4982 (2)	0.30307 (19)	0.60283 (17)	0.0569 (4)	

111 <i>5</i> A	0.6102	0.2029	0.5060	0.068*	
H15A	0.6102	0.2928	0.5868		
H15B	0.4507	0.3885	0.6136	0.068*	
C16	0.6889 (2)	0.0160 (2)	0.7105 (2)	0.0619 (5)	
N1	0.30429 (16)	0.20145 (13)	0.79986 (12)	0.0447 (3)	
N2	0.8120 (2)	-0.0289 (2)	0.6719 (2)	0.0908 (6)	
01	0.02186 (14)	0.29595 (14)	0.84344 (14)	0.0623 (3)	
O2	0.19567 (18)	0.44146 (13)	0.68448 (12)	0.0643 (4)	
O3	0.5622 (2)	0.17770 (18)	0.44876 (15)	0.0926 (6)	
O4	0.2857 (2)	0.26002 (16)	0.52126 (14)	0.0762 (4)	
O5	0.4461 (2)	0.42928 (16)	0.36258 (14)	0.0822 (5)	
P1	0.44364 (7)	0.30451 (5)	0.46950 (4)	0.06049 (16)	
S1	0.16477 (5)	0.33911 (4)	0.80224 (4)	0.04691 (13)	
C17	0.5975 (4)	0.1469 (4)	0.3410 (3)	0.0885 (12)	0.737 (5)
H17A	0.5380	0.2176	0.2809	0.106*	0.737 (5)
H17B	0.5646	0.0648	0.3618	0.106*	0.737 (5)
C18	0.7638 (6)	0.1305 (6)	0.2820 (5)	0.1064 (15)	0.737 (5)
H18A	0.7789	0.1097	0.2089	0.160*	0.737 (5)
H18B	0.8237	0.0591	0.3398	0.160*	0.737 (5)
H18C	0.7971	0.2122	0.2588	0.160*	0.737 (5)
C17'	0.7241 (10)	0.1678 (10)	0.3780 (9)	0.086(3)	0.263 (5)
H17C	0.7981	0.1300	0.4334	0.103*	0.263 (5)
H17D	0.7422	0.2546	0.3186	0.103*	0.263 (5)
C18'	0.734(2)	0.0762 (17)	0.3133 (16)	0.1064 (15)	0.263 (5)
H18D	0.8365	0.0629	0.2635	0.160*	0.263 (5)
H18E	0.6585	0.1152	0.2605	0.160*	0.263 (5)
H18F	0.7145	-0.0083	0.3741	0.160*	0.263 (5)
C20	0.010(2)	0.284(3)	0.543 (3)	0.097(3)	0.471 (11)
H20A	-0.0705	0.3064	0.4969	0.146*	0.471 (11)
H20B	-0.0126	0.3450	0.5855	0.146*	0.471 (11)
H20C	0.0135	0.1942	0.6030	0.146*	0.471 (11)
C19	0.1657 (12)	0.2917 (14)	0.4538 (10)	0.0901 (19)	0.471 (11)
H19A	0.1887	0.2294	0.4109	0.108*	0.471 (11)
H19B	0.1612	0.3812	0.3916	0.108*	0.471 (11)
C19'	0.1460 (10)	0.3402 (10)	0.4735 (9)	0.0901 (19)	0.529 (11)
H19C	0.1681	0.3736	0.3830	0.108*	0.529 (11)
H19D	0.1046	0.4160	0.5013	0.108*	0.529 (11)
C20'	0.031 (2)	0.250 (2)	0.524 (3)	0.097 (3)	0.529 (11)
H20D	-0.0640	0.2992	0.4932	0.146*	0.529 (11)
H20E	0.0086	0.2188	0.6134	0.146*	0.529 (11)
H20F	0.0737	0.1748	0.4968	0.146*	0.529 (11)
					=> (**)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0458 (8)	0.0407 (7)	0.0454 (8)	-0.0100 (6)	-0.0116 (6)	-0.0177 (6)
C2	0.0478 (9)	0.0529 (9)	0.0565 (10)	-0.0140 (7)	-0.0071 (7)	-0.0213 (8)
C3	0.0648 (11)	0.0585 (10)	0.0547 (10)	-0.0280(9)	-0.0091 (8)	-0.0148 (8)
C4	0.0738 (12)	0.0454 (9)	0.0643 (11)	-0.0148(8)	-0.0257(9)	-0.0130 (8)

C5	0.0589 (10)	0.0480 (9)	0.0654 (11)	-0.0010 (8)	-0.0247(8)	-0.0242 (8)
C6	0.0459 (8)	0.0472 (8)	0.0501 (8)	-0.0088 (6)	-0.0133 (6)	-0.0241 (7)
C7	0.0452 (8)	0.0564 (9)	0.0525 (9)	-0.0110 (7)	-0.0076 (7)	-0.0293 (8)
C8	0.0500(8)	0.0523 (9)	0.0453 (8)	-0.0169 (7)	-0.0039 (6)	-0.0258 (7)
C9	0.0399 (7)	0.0385 (7)	0.0432 (8)	-0.0019 (6)	-0.0098 (6)	-0.0163 (6)
C10	0.0467 (8)	0.0443 (8)	0.0478 (8)	-0.0078 (6)	-0.0086 (7)	-0.0144 (7)
C11	0.0567 (10)	0.0517 (9)	0.0700 (12)	-0.0097 (8)	-0.0208 (9)	-0.0244 (9)
C12	0.0672 (11)	0.0608 (11)	0.0595 (11)	0.0017 (9)	-0.0225 (9)	-0.0319 (9)
C13	0.0642 (11)	0.0598 (10)	0.0447 (9)	-0.0009(8)	-0.0066(8)	-0.0223 (8)
C14	0.0470(8)	0.0458 (8)	0.0501 (9)	-0.0070 (7)	-0.0026 (7)	-0.0177 (7)
C15	0.0676 (11)	0.0574 (10)	0.0538 (10)	-0.0297(9)	0.0026(8)	-0.0256 (8)
C16	0.0532 (10)	0.0684 (12)	0.0672 (12)	-0.0110 (9)	-0.0046 (8)	-0.0332 (10)
N1	0.0486 (7)	0.0414 (7)	0.0446 (7)	-0.0091 (5)	-0.0059 (5)	-0.0181 (6)
N2	0.0581 (11)	0.1031 (16)	0.1028 (16)	-0.0033 (10)	0.0044 (10)	-0.0518 (13)
O1	0.0479 (7)	0.0622 (8)	0.0876 (10)	-0.0041 (6)	-0.0241 (6)	-0.0349 (7)
O2	0.0906 (10)	0.0512 (7)	0.0476 (7)	-0.0059 (7)	-0.0263 (6)	-0.0120 (6)
O3	0.1255 (15)	0.0875 (12)	0.0632 (9)	-0.0091 (10)	-0.0062 (9)	-0.0427 (9)
O4	0.0941 (11)	0.0808 (10)	0.0583 (8)	-0.0476 (9)	-0.0170 (7)	-0.0070 (7)
O5	0.1092 (13)	0.0757 (10)	0.0518 (8)	-0.0455 (9)	0.0009 (8)	-0.0060 (7)
P1	0.0823 (4)	0.0591 (3)	0.0423 (2)	-0.0321 (3)	0.0031 (2)	-0.0183 (2)
S1	0.0508 (2)	0.0430 (2)	0.0495 (2)	-0.00350 (16)	-0.01729 (17)	-0.01830 (17)
C17	0.103 (3)	0.107 (3)	0.077 (2)	-0.028 (2)	0.0013 (18)	-0.062 (2)
C18	0.099 (3)	0.115 (5)	0.101 (3)	-0.021 (3)	0.007 (2)	-0.053 (4)
C17'	0.110 (8)	0.073 (6)	0.079 (6)	-0.026 (5)	-0.010 (5)	-0.034 (5)
C18'	0.099 (3)	0.115 (5)	0.101 (3)	-0.021 (3)	0.007 (2)	-0.053 (4)
C20	0.088 (5)	0.105 (10)	0.103 (8)	-0.031 (7)	-0.025 (3)	-0.029 (5)
C19	0.113 (3)	0.114 (6)	0.056 (3)	-0.046 (4)	-0.028 (3)	-0.018 (3)
C19'	0.113 (3)	0.114 (6)	0.056 (3)	-0.046 (4)	-0.028 (3)	-0.018 (3)
C20'	0.088 (5)	0.114 (0)	0.103 (8)	-0.031 (7)	-0.025 (3)	-0.029 (5)
C20	0.088 (3)	0.103 (10)	0.103 (8)	0.031 (7)	0.023 (3)	0.029 (3)
Geometric para	meters (Å, °)					
C1—C2		1.389 (2)	O1—S1		1.420	03 (15)
C1—C6		1.392 (2)	O2—S1			04 (14)
C1—N1		1.419 (2)	O3—C		1.396	
C2—C3		1.378 (3)	О3—С		1.478	
C2—H2		0.9300	O3—P1			96 (19)
C3—C4		1.392 (3)	O4—C		1.430	
C3—H3		0.9300	O4—C		1.444	
C4—C5		1.372 (3)	O4—P1			06 (17)
C4—H4		0.9300	O5—P1			73 (16)
C5—C6		1.395 (2)	C17—(1.475	
C5—H5		0.9300	C17—I		0.970	
C6—C7		1.434 (2)	C17—I		0.970	
C7—C8		1.363 (3)	C18—I		0.960	
C7—C16		1.428 (3)	C18—I		0.960	
C8—N1		1.428 (3)	C18—I		0.960	
C8—C15		1.403 (2)	C16—I		1.492	
C9—C10		1.486 (2)	C17—		0.970	
C)—C10		1.303 (4)	C1/—	11/0	0.970	70

C9—C14	1.385 (2)	C17'—H17D	0.9700
C9—S1	1.7556 (17)	C18'—H18D	0.9600
C10—C11	1.383 (3)	C18'—H18E	0.9600
C10—H10	0.9300	C18'—H18F	0.9600
C11—C12	1.376 (3)	C20—C19	1.521 (9)
C11—H11	0.9300	C20—H20A	0.9600
C12—C13	1.375 (3)	C20—H20B	0.9600
C12—H12	0.9300	C20—H20C	0.9600
C13—C14	1.384 (3)	C19—H19A	0.9700
C13—H13	0.9300	C19—H19B	0.9700
C14—H14	0.9300	C19'—C20'	1.515 (9)
C15—P1	1.804(2)	C19'—H19C	0.9700
C15—H15A	0.9700	C19'—H19D	0.9700
C15—H15B	0.9700	C20'—H20D	0.9600
C16—N2	1.134 (3)	C20'—H20E	0.9600
N1—S1	1.6851 (15)	C20'—H20F	0.9600
C2—C1—C6	121.35 (15)	O5—P1—O3	115.78 (10)
C2—C1—N1	131.13 (15)	O4—P1—O3	103.59 (11)
C6—C1—N1	107.51 (14)	O5—P1—C15	114.48 (10)
C3—C2—C1	117.49 (17)	O4—P1—C15	104.97 (9)
C3—C2—H2	121.3	O3—P1—C15	100.51 (10)
C1—C2—H2	121.3	O1—S1—O2	120.66 (9)
C2—C3—C4	121.69 (18)	O1—S1—N1	105.36 (8)
C2—C3—H3	119.2	O2—S1—N1	106.99 (8)
C4—C3—H3	119.2	O1—S1—C9	109.21 (8)
C5—C4—C3	120.69 (17)	O2—S1—C9	108.82 (8)
C5—C4—H4	119.7	N1—S1—C9	104.60 (7)
C3—C4—H4	119.7	O3—C17—C18	114.3 (3)
C4—C5—C6	118.56 (17)	O3—C17—H17A	108.7
C4—C5—H5	120.7	C18—C17—H17A	108.7
C6—C5—H5	120.7	O3—C17—H17B	108.7
C1—C6—C5	120.20 (16)	C18—C17—H17B	108.7
C1—C6—C7	106.83 (15)	H17A—C17—H17B	107.6
C5—C6—C7	132.95 (16)	C17—C18—H18A	109.5
C8—C7—C16	125.87 (17)	C17—C18—H18B	109.5
C8—C7—C6	109.50 (15)	H18A—C18—H18B	109.5
C16—C7—C6	124.63 (17)	C17—C18—H18C	109.5
C7—C8—N1	107.61 (15)	H18A—C18—H18C	109.5
C7—C8—C15	126.79 (16)	H18B—C18—H18C	109.5
N1—C8—C15	125.36 (16)	O3—C17'—C18'	102.5 (9)
C10—C9—C14	121.57 (15)	O3—C17—C18 O3—C17'—H17C	111.3
C10—C9—S1	118.43 (12)	C18'—C17'—H17C	111.3
C14—C9—S1	119.97 (13)	O3—C17'—H17D	111.3
C11—C10—C9	119.97 (13)	C18'—C17'—H17D	111.3
C11—C10—C9 C11—C10—H10	120.8	H17C—C17'—H17D	109.2
C9—C10—H10	120.8	C17'—C18'—H18D	109.2
C12—C11—C10	120.8	C17'—C18'—H18E	109.5
C12—C11—C10 C12—C11—H11	119.7		109.5
C12—C11—H11 C10—C11—H11	119.7	H18D—C18'—H18E C17'—C18'—H18F	109.5
C10-C11-1111	117./	C1/—C10—III0F	107.3

C13—C12—C11	120.47 (17)	H18D—C18'—H18F	109.5
C13—C12—H12	119.8	H18E—C18'—H18F	109.5
C11—C12—H12	119.8	C19—C20—H20A	109.5
C12—C13—C14	120.18 (17)	C19—C20—H20B	109.5
C12—C13—H13	119.9	H20A—C20—H20B	109.5
C14—C13—H13	119.9	C19—C20—H20C	109.5
C13—C14—C9	118.76 (17)	H20A—C20—H20C	109.5
C13—C14—H14	120.6	H20B—C20—H20C	109.5
C9—C14—H14	120.6	O4—C19—C20	110.0 (15)
C8—C15—P1	113.12 (12)	O4—C19—H19A	109.7
C8—C15—H15A	109.0	C20—C19—H19A	109.7
P1—C15—H15A	109.0	O4—C19—H19B	109.7
C8—C15—H15B	109.0	C20—C19—H19B	109.7
P1—C15—H15B	109.0	H19A—C19—H19B	108.2
H15A—C15—H15B	107.8	O4—C19'—C20'	106.7 (13)
N2—C16—C7	177.1 (3)	O4—C19'—H19C	110.4
C8—N1—C1	108.54 (13)	C20'—C19'—H19C	110.4
C8—N1—S1	127.93 (12)	O4—C19'—H19D	110.4
C1—N1—S1	122.66 (11)	C20'—C19'—H19D	110.4
C17—O3—C17'	61.5 (4)	H19C—C19'—H19D	108.6
C17—O3—P1	125.4 (2)	C19'—C20'—H20D	109.5
C17'—O3—P1	128.4 (4)	C19'—C20'—H20E	109.5
C19—O4—C19'	25.7 (4)	H20D—C20'—H20E	109.5
C19—O4—P1	127.1 (5)	C19'—C20'—H20F	109.5
C19'—O4—P1	122.9 (4)	H20D—C20'—H20F	109.5
O5—P1—O4	115.69 (10)	H20E—C20'—H20F	109.5
C6—C1—C2—C3	0.0 (2)	C2—C1—N1—S1	9.9 (2)
N1—C1—C2—C3	179.38 (16)	C6—C1—N1—S1	-170.65 (11)
C1—C2—C3—C4	-0.6 (3)	C19—O4—P1—O5	26.8 (7)
C2—C3—C4—C5	0.3 (3)	C19'—O4—P1—O5	-4.2 (5)
C3—C4—C5—C6	0.5 (3)	C19—O4—P1—O3	-100.9 (7)
C2—C1—C6—C5	0.8 (2)	C19'—O4—P1—O3	-132.0 (5)
N1—C1—C6—C5	-178.67 (14)	C19—O4—P1—C15	15/11/7/
C2—C1—C6—C7			154.1 (7)
	179.62 (15)	C19'—O4—P1—C15	123.0 (5)
N1—C1—C6—C7	179.62 (15) 0.10 (17)	C19'—O4—P1—C15 C17—O3—P1—O5	123.0 (5) -40.6 (3)
C4—C5—C6—C1	179.62 (15) 0.10 (17) -1.1 (2)	C19'—O4—P1—C15 C17—O3—P1—O5 C17'—O3—P1—O5	123.0 (5) -40.6 (3) 38.8 (6)
C4—C5—C6—C1 C4—C5—C6—C7	179.62 (15) 0.10 (17) -1.1 (2) -179.47 (17)	C19'—O4—P1—C15 C17—O3—P1—O5 C17'—O3—P1—O5 C17—O3—P1—O4	123.0 (5) -40.6 (3) 38.8 (6) 87.1 (3)
C4—C5—C6—C1 C4—C5—C6—C7 C1—C6—C7—C8	179.62 (15) 0.10 (17) -1.1 (2) -179.47 (17) 0.37 (18)	C19'—O4—P1—C15 C17—O3—P1—O5 C17'—O3—P1—O5 C17—O3—P1—O4 C17'—O3—P1—O4	123.0 (5) -40.6 (3) 38.8 (6)
C4—C5—C6—C1 C4—C5—C6—C7	179.62 (15) 0.10 (17) -1.1 (2) -179.47 (17) 0.37 (18) 178.91 (17)	C19'—O4—P1—C15 C17—O3—P1—O5 C17'—O3—P1—O5 C17—O3—P1—O4	123.0 (5) -40.6 (3) 38.8 (6) 87.1 (3)
C4—C5—C6—C1 C4—C5—C6—C7 C1—C6—C7—C8	179.62 (15) 0.10 (17) -1.1 (2) -179.47 (17) 0.37 (18)	C19'—O4—P1—C15 C17—O3—P1—O5 C17'—O3—P1—O5 C17—O3—P1—O4 C17'—O3—P1—O4	123.0 (5) -40.6 (3) 38.8 (6) 87.1 (3) 166.5 (5) -164.5 (2) -85.1 (6)
C4—C5—C6—C1 C4—C5—C6—C7 C1—C6—C7—C8 C5—C6—C7—C8	179.62 (15) 0.10 (17) -1.1 (2) -179.47 (17) 0.37 (18) 178.91 (17)	C19'—O4—P1—C15 C17—O3—P1—O5 C17'—O3—P1—O5 C17—O3—P1—O4 C17'—O3—P1—O4 C17—O3—P1—C15	123.0 (5) -40.6 (3) 38.8 (6) 87.1 (3) 166.5 (5) -164.5 (2)
C4—C5—C6—C1 C4—C5—C6—C7 C1—C6—C7—C8 C5—C6—C7—C8 C1—C6—C7—C16	179.62 (15) 0.10 (17) -1.1 (2) -179.47 (17) 0.37 (18) 178.91 (17) -179.50 (16) -1.0 (3) 179.19 (16)	C19'—O4—P1—C15 C17—O3—P1—O5 C17'—O3—P1—O5 C17—O3—P1—O4 C17'—O3—P1—C15 C17'—O3—P1—C15	123.0 (5) -40.6 (3) 38.8 (6) 87.1 (3) 166.5 (5) -164.5 (2) -85.1 (6)
C4—C5—C6—C1 C4—C5—C6—C7 C1—C6—C7—C8 C5—C6—C7—C8 C1—C6—C7—C16 C5—C6—C7—C16	179.62 (15) 0.10 (17) -1.1 (2) -179.47 (17) 0.37 (18) 178.91 (17) -179.50 (16) -1.0 (3)	C19'—O4—P1—C15 C17—O3—P1—O5 C17'—O3—P1—O4 C17'—O3—P1—O4 C17'—O3—P1—C15 C17'—O3—P1—C15 C8—C15—P1—O5	123.0 (5) -40.6 (3) 38.8 (6) 87.1 (3) 166.5 (5) -164.5 (2) -85.1 (6) 162.95 (14)
C4—C5—C6—C1 C4—C5—C6—C7 C1—C6—C7—C8 C5—C6—C7—C8 C1—C6—C7—C16 C5—C6—C7—C16 C16—C7—C8—N1	179.62 (15) 0.10 (17) -1.1 (2) -179.47 (17) 0.37 (18) 178.91 (17) -179.50 (16) -1.0 (3) 179.19 (16)	C19'—O4—P1—C15 C17—O3—P1—O5 C17'—O3—P1—O4 C17'—O3—P1—O4 C17'—O3—P1—C15 C17'—O3—P1—C15 C8—C15—P1—O5 C8—C15—P1—O4	123.0 (5) -40.6 (3) 38.8 (6) 87.1 (3) 166.5 (5) -164.5 (2) -85.1 (6) 162.95 (14) 35.01 (16)
C4—C5—C6—C1 C4—C5—C6—C7 C1—C6—C7—C8 C5—C6—C7—C8 C1—C6—C7—C16 C5—C6—C7—C16 C16—C7—C8—N1 C6—C7—C8—N1	179.62 (15) 0.10 (17) -1.1 (2) -179.47 (17) 0.37 (18) 178.91 (17) -179.50 (16) -1.0 (3) 179.19 (16) -0.68 (18)	C19'—O4—P1—C15 C17—O3—P1—O5 C17'—O3—P1—O4 C17'—O3—P1—O4 C17—O3—P1—C15 C17'—O3—P1—C15 C8—C15—P1—O5 C8—C15—P1—O4 C8—C15—P1—O3	123.0 (5) -40.6 (3) 38.8 (6) 87.1 (3) 166.5 (5) -164.5 (2) -85.1 (6) 162.95 (14) 35.01 (16) -72.26 (16)
C4—C5—C6—C1 C4—C5—C6—C7 C1—C6—C7—C8 C5—C6—C7—C8 C1—C6—C7—C16 C5—C6—C7—C16 C16—C7—C8—N1 C6—C7—C8—N1 C16—C7—C8—N1	179.62 (15) 0.10 (17) -1.1 (2) -179.47 (17) 0.37 (18) 178.91 (17) -179.50 (16) -1.0 (3) 179.19 (16) -0.68 (18) 4.6 (3)	C19'—O4—P1—C15 C17—O3—P1—O5 C17'—O3—P1—O5 C17—O3—P1—O4 C17'—O3—P1—C15 C17'—O3—P1—C15 C8—C15—P1—O5 C8—C15—P1—O4 C8—C15—P1—O3 C8—N1—S1—O1	123.0 (5) -40.6 (3) 38.8 (6) 87.1 (3) 166.5 (5) -164.5 (2) -85.1 (6) 162.95 (14) 35.01 (16) -72.26 (16) 149.41 (14)
C4—C5—C6—C1 C4—C5—C6—C7 C1—C6—C7—C8 C5—C6—C7—C8 C1—C6—C7—C16 C5—C6—C7—C16 C16—C7—C8—N1 C6—C7—C8—N1 C16—C7—C8—C15 C6—C7—C8—C15	179.62 (15) 0.10 (17) -1.1 (2) -179.47 (17) 0.37 (18) 178.91 (17) -179.50 (16) -1.0 (3) 179.19 (16) -0.68 (18) 4.6 (3) -175.22 (15)	C19'—O4—P1—C15 C17—O3—P1—O5 C17'—O3—P1—O5 C17'—O3—P1—O4 C17'—O3—P1—C15 C17'—O3—P1—C15 C8—C15—P1—O5 C8—C15—P1—O4 C8—C15—P1—O3 C8—N1—S1—O1 C1—N1—S1—O1	123.0 (5) -40.6 (3) 38.8 (6) 87.1 (3) 166.5 (5) -164.5 (2) -85.1 (6) 162.95 (14) 35.01 (16) -72.26 (16) 149.41 (14) -42.48 (14)
C4—C5—C6—C1 C4—C5—C6—C7 C1—C6—C7—C8 C5—C6—C7—C8 C1—C6—C7—C16 C5—C6—C7—C16 C16—C7—C8—N1 C6—C7—C8—N1 C16—C7—C8—C15 C6—C7—C8—C15 C14—C9—C10—C11	179.62 (15) 0.10 (17) -1.1 (2) -179.47 (17) 0.37 (18) 178.91 (17) -179.50 (16) -1.0 (3) 179.19 (16) -0.68 (18) 4.6 (3) -175.22 (15) 0.2 (2)	C19'—O4—P1—C15 C17—O3—P1—O5 C17'—O3—P1—O5 C17'—O3—P1—O4 C17'—O3—P1—C15 C17'—O3—P1—C15 C8—C15—P1—O5 C8—C15—P1—O4 C8—C15—P1—O3 C8—N1—S1—O1 C1—N1—S1—O1 C8—N1—S1—O2	123.0 (5) -40.6 (3) 38.8 (6) 87.1 (3) 166.5 (5) -164.5 (2) -85.1 (6) 162.95 (14) 35.01 (16) -72.26 (16) 149.41 (14) -42.48 (14) 19.85 (16)
C4—C5—C6—C1 C4—C5—C6—C7 C1—C6—C7—C8 C5—C6—C7—C16 C5—C6—C7—C16 C16—C7—C8—N1 C6—C7—C8—N1 C16—C7—C8—N1 C16—C7—C8—C15 C14—C9—C10—C11 S1—C9—C10—C11	179.62 (15) 0.10 (17) -1.1 (2) -179.47 (17) 0.37 (18) 178.91 (17) -179.50 (16) -1.0 (3) 179.19 (16) -0.68 (18) 4.6 (3) -175.22 (15) 0.2 (2) 177.98 (12)	C19'—O4—P1—C15 C17—O3—P1—O5 C17'—O3—P1—O5 C17—O3—P1—O4 C17'—O3—P1—C15 C17'—O3—P1—C15 C17'—O3—P1—C15 C8—C15—P1—O5 C8—C15—P1—O4 C8—C15—P1—O3 C8—N1—S1—O1 C1—N1—S1—O1 C8—N1—S1—O2 C1—N1—S1—O2	123.0 (5) -40.6 (3) 38.8 (6) 87.1 (3) 166.5 (5) -164.5 (2) -85.1 (6) 162.95 (14) 35.01 (16) -72.26 (16) 149.41 (14) -42.48 (14) 19.85 (16) -172.04 (12)

C11—C12—C13—C14	-0.2 (3)	C10—C9—S1—O1	-158.84 (12)
C12—C13—C14—C9	1.2 (3)	C14—C9—S1—O1	19.01 (15)
C10—C9—C14—C13	-1.2 (2)	C10—C9—S1—O2	-25.28 (15)
S1—C9—C14—C13	-178.99 (13)	C14—C9—S1—O2	152.57 (13)
C7—C8—C15—P1	88.3 (2)	C10—C9—S1—N1	88.79 (14)
N1—C8—C15—P1	-85.35 (18)	C14—C9—S1—N1	-93.36 (14)
C8—C7—C16—N2	167 (5)	C17'—O3—C17—C18	3.9 (6)
C6—C7—C16—N2	-13 (5)	P1—O3—C17—C18	122.6 (4)
C7—C8—N1—C1	0.74 (17)	C17—O3—C17'—C18'	-25.5 (9)
C15—C8—N1—C1	175.38 (14)	P1—O3—C17'—C18'	-139.8 (9)
C7—C8—N1—S1	170.20 (12)	C19'—O4—C19—C20	-65 (2)
C15—C8—N1—S1	-15.2 (2)	P1—O4—C19—C20	-155.4 (10)
C2—C1—N1—C8	-179.97 (17)	C19—O4—C19'—C20'	58 (2)
C6—C1—N1—C8	-0.51 (17)	P1—O4—C19'—C20'	166.2 (9)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9/C10/C11/C12/C13/C14 ring and Cg2 is the centroid of the C1/C2/C3/C4/C5/C6 ring.

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
C10—H10···O5 ⁱ	0.93	2.35	3.229 (3)	157
C5—H5···Cg1 ⁱⁱ	0.93	2.63	3.501 (3)	157
C18—H18A···Cg2 ⁱⁱⁱ	0.96	2.99	3.874 (8)	154

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+2; (iii) -x+1, -y, -z+1.

Fig. 1

Fig. 2

