离散数学作业 4

李云浩 241880324

2025年4月22日

1 4.1

1.1 T16

对于 $A_1 \times A_2 \times A_3 = \{(a,b,c) | a \in A_1 \land b \in A_2 \land c \in A_3 \}$, 因此可能元素的个数为: $C^1_{n_1} \times C^1_{n_2} \times C^1_{n_3} = n_1 \times n_2 \times n_3$. 证毕。

1.2 T18

投影 (选择 雇员 [部门 = 人力资源部 > 公共关系])

1.3 T24

不是,划分要求所有划分块的并集应该为原集合。但是因为 $0 \in \mathbb{Z}, 0 \notin A_1 \cup A_2$,因此 $\{A_1, A_2\}$ 不是 \mathbb{Z} 的一个划分。

1.4 T30

- (a) $A_1 = \{x | x \in B \land x \mid 2\}, A_2 = \{x | x \in B \land x \nmid 2\}$ 。 $\{A_1, A_2\}$ 是 B 的一个划分。
- (b) $A_1 = \{x | x \in B \land x \mid 9\}, A_2 = \{x | x \in B \land x \nmid 9 \land x \mid 6\}, A_3 = \{x | x \in B \land x \nmid 9 \land x \mid 6 \land x \mid 3\}$ 。 $\{A_1, A_2, A_3\}$ 是 B 的一个划分。

1.5 T31

 $\{\{1,2,3\}\}, \{\{1\},\{2,3\}\}, \{\{2\},\{1,3\}\}, \{\{3\},\{1,2\}\}, \{\{1\},\{2\},\{3\}\}\}$

1.6 T33

由己知有: S(3,2) = S(2,1) + 2S(2,2) = 3, 在 31 题中, 两个子集的划分数也为 3, 符合预期。

1.7 T34

由己知有:
$$S(4,2) = S(3,1) + 2S(3,2) = 1 + 2 \times 3 = 7$$
。

1.8 T35

$$S(4,3) = S(3,2) + 3S(3,3) = 3 + 3 \times 1 = 6.$$

1.9 T36

$$S(5,2) = S(4,1) + 2S(4,2) = 1 + 2 \times \{S(3,1) + 2S(3,2)\} = 1 + 2 \times \{1 + 2 \times 3\} = 15$$

1.10 T37

设
$$(a,b) \in A \times (B \cup C)$$
, 有:

$$a(A \times (B \cup C))b = a(A \times (Bb \cup Cb))$$

$$= aA \times (Bb \cup Cb)$$

$$= aA \times Bb \cup aA \times Cb$$

$$= a(A \times B)b \cup a(A \times C)b$$

$$= a((A \times B) \cup (A \times C))b$$

因此, $A \times (B \cup C) = (A \times B) \cup (A \times C)$ 。

1.11 T38

由己知有: $B\cap C=\{7\}$, $A\times B=\{(1,2),(1,5),(1,7),(2,2),(2,5),(2,7),(4,2),(4,5),(4,7)\}$ $A\times C=\{(1,1),(1,3),(1,7),(2,1),(2,3),(2,7),(4,1),(4,3),(4,7)\}$ 因此: $A\times (B\cap C)=\{(1,7),(2,7),(4,7)\},(A\times B)\cap (A\times C)=\{(1,7),(2,7),(4,7)\}.$ 可知: $A\times (B\cap C)=(A\times B)\cap (A\times C)$

设 $(a,b) \in A \times (B \cap C)$, 有:

$$a(A \times (B \cap C))b = a(A \times (Bb \cap Cb))$$

$$= aA \times (Bb \cap Cb)$$

$$= aA \times Bb \cap aA \times Cb$$

$$= a(A \times B)b \cap a(A \times C)b$$

$$= a((A \times B) \cap (A \times C))b$$

因此 $A \times (B \cap C) = (A \times B) \cap (A \times C)$ 。

1.12 T39

将 B 的划分中的各个集合中的独属于 B 的元素删去,若删去后为空集则直接将该集合去掉,否则则保留删除后的集合。那么新子集组成的集合便是 A 的一个划分。

下面验证该过程: 1. 删去了所有的空集,因此划分块不为空。2. 新的划分块是在 B 的划分块中删元素,原来不相交,删除元素后也不会相交。3. 因为只删去了独属于 B 的元素,因此新的划分包含 A 的所有元素。检验完毕。

1.13 T40

1. 证明划分块不为空,因为 $A_i \neq \varnothing$, $B_j \neq \varnothing$,因此 $A_i \times B_j \neq \varnothing$ 。
2. 证明划分块不相交,因为 $\{A_1,A_2,\ldots,A_k\}$ 是 A 的一个划分,因此对于 $\forall i,j,i \neq j, \forall x \in A_i \rightarrow x \notin A_j$ 。同理,B 也一样。因此对于 $\forall (x,y) \in A_i \times B_j, \rightarrow \forall m \neq i \forall n \neq j, (x \notin A_m \land y \notin B_n \rightarrow (x,y) \notin A_m \times B_n)$ 。3. 证明划分块的并集为 $A \times B$ 。由题目可知,每一个 A_i 都与 B_j 计算笛卡尔积,且 A_i,B_j 分别包含 A,B 中的所有元素。因此所有 $A_i \times B_j$ 的并集为 $A \times B$ 。

$2 \quad 4.2$

2.1 T20

1. 证明: $\forall a \forall b (a, b \in A \land a \neq b \land R(a) \cap R(b) = \{ \}) \subseteq R(A_1 \cap A_2) = R(A_1) \cap R(A_2)$

因为 $R(a) \cap R(b) = \{ \}$ 。

如果 $A_1 \cap A_2 = \emptyset$, 那么 $R(A_1 \cap A_2) = R(\emptyset) = \{ \}$ 。由于 A_1 和 A_2 之中没有重复元素,因此对于任意 A_1, A_2 中的元素 $a, b, R(a) \cap R(b) = \{ \}$,所以 $R(A_1) \cap R(A_2) = \{ \}$ 。

如果 $A_1 \cap A_2 = A_3$,那么 $R(A_1 \cap A_2) = R(A_3)$, $R(A_1) \cap R(A_2) = (R(A_1 - A_2) \cup R(A_3)) \cap R(A_2) = (R(A_1 - A_2) \cap R(A_2)) \cup (R(A_3) \cap R(A_2)) = R(A_3)$,所以 $R(A_1 \cap A_2) = R(A_1) \cap R(A_2)$ 。

2. 证明: $R(A_1 \cap A_2) = R(A_1) \cap R(A_2) \subseteq \forall a \forall b (a, b \in A \land a \neq b \land R(a) \cap R(b) = \{ \})$

反证法: 假设 $R(a) \cap R(b) \neq \{\}$ 。那么取子集 A_1, A_2 分别为 $\{a\}, \{b\}$ 。 $R(A_1 \cap A_2) = R(\emptyset) = \{\}$ 。但是 $R(a) \cap R(b) \neq \{\}$ 。因此 $R(A_1 \cap A_2) \neq R(A_1) \cap R(A_2)$ 。

因此 $R(A_1 \cap A_2) = R(A_1) \cap R(A_2) \subseteq \forall a \forall b (a, b \in A \land a \neq b \land R(a) \cap R(b) = \{ \})$

2.2 T25

$$\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0
\end{pmatrix}$$

2.3 T26

$$\begin{pmatrix}
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

2.4 T28

顶点	入度	出度
1	1	3
2	2	2
3	2	0
4	2	3
5	1	0

2.5 T32

只保留 B 中元素所代表的行和列。

2.6 T34

设
$$M_R = [m_{ij}]_{n \times n}$$

(a)
$$R(a_k) = \{m_{ki} | m_{ki} = 1 \land 0 \le i \le n\}$$

(b)
$$R(\{a_l, a_j, a_n\}) = \{m_{ij} | m_{ij} = 1 \land (i = l \lor i = j \lor i = n) \land m_{ij} = 1\}$$

2.7 T36

因为
$$|\{1,2,3\}| = 3, |\{a,b\}| = 2$$
,所以 S 中关系的数量为 $2^{3\times 2} = 2^6 = 64$

3 4.3

3.1 T18

$$\begin{split} M_{R \cup S} &= \{m_{ij}|i(R \cup S)j\} \\ &= \{m_{ij}|iRj \vee iSj\} \\ &= \{m_{ij}|iRj\} \vee \{m_{ij}|iSj\} \\ &= M_R \vee M_S \end{split}$$

3.2 T19

因为 R^* 的定义是 x=y 或 $xR^{\infty}y$ 。因此 $M_{R^*}=\{m_{ij}|i=j\}\lor\{m_{ij}|xR^{\infty}y\}$ 所以 $M_{R^*}=M_{R^{\infty}}\lor I_n$

3.3 T20

$$\pi_2 \circ \pi_1 = 1, 2, 4, 3, 5, 6, 4$$

3.4 T21

$$\pi_2 \circ \pi_1 = 1, 7, 5, 6, 7, 4, 3$$

$3.5 \quad T27$

$$M_R = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \quad M_R \cdot M_R = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & 2 & 1 \end{bmatrix}$$
其中 m_{ij} 表示从 i

到 i 且长度为 2 的路线的数目。

3.6 T28

$$(M_R)^3 = egin{bmatrix} 9 & 6 & 6 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 3 & 3 & 1 \end{bmatrix}$$
 显然, $(M_R)^3$ 的 m_{ij} 不表示从 i 到 j 且长度为

3 的路线的数目。

3.7 T30

(a) 定理 2 先说明了 P(2) 为真,在此基础上以 P(n) 为真作为前提条件,从而推导出 P(n+1) 为真,最后便可以通过归纳得出结论,即:对于整数 $n \le 2$, P(n) 成立。(b) 以 P(n) 成立作为前提条件,并把 P(n) 翻译为自然语言,通过自然语言建立 P(n) 与 P(n+1) 的联系。

3.8 T31

设一共有 n 个顶点,且每个顶点的出度不为 1。那么 $\forall n \in Z, R^n$ 不为空,因为每个顶点皆有出度。但由于只有 n 个顶点,但 R^∞ 存在,即存在一条无限长的路径,因此有向图中有环。因此可以得出,如果在 D 中无任何环,那么至少有一个顶点的出度是 0

3.9 T32

3.10 T33

将有向图转换为关系矩阵,这样可以更加直观的看出。

4 4.4

4.1 T14

- 1. 自反性: $\forall x \in A, |x-x|=0 \le 2$ 成立,因此 $\forall x \in A \to (x,x) \in R$ 。满足自反性。
- 2. 反自反性:由于满足自反性,因此不满足反自反性。
- 3. 对称性: $\forall a,b \in A, |a-b| = |b-a|$,因此 $\forall a,b \in A, (a,b) \in R \to (b,a) \in R$,满足对称性。
- 4. 反对称性:反例: $(1,2) \in R \land (2,1) \in R \land 2 \neq 1$,因此不满足反对称性。

5. 传递性: 反例: $(0,2) \in R \land (2,4) \in R$, 但是 $(0,4) \notin R$, 因此不满足传递性。

4.2 T16

- 1. 自反性: $\forall x \in A, x + x = 2x$,为 2 的倍数即偶数,因此满足自反性。
- 2. 反自反性: 由于满足自反性, 因此不满足反自反性。
- 3. 对称性: $\forall a, b \in A, a+b=b+a$ 。 因此 $\forall a, b \in A, (a,b) \in R \rightarrow (b,a) \in R$ 。
- 4. 反对称性: 反例: $(2,4) \in R \land (4,2) \in R \land 2 \neq 4$, 因此不满足反对称性
- 5. 传递性: 如果 a+b 为偶数,那么 a, b 要么同为奇数,要么同为偶数。因此,对应奇偶性明确的数字 b,如果 $(a,b) \in R \land (b,c) \in R$,那么 a,c的奇偶性一定与 b等同,因此 a,c的奇偶性一致,因此 $(a,c) \in R$ 。满足传递性。

4.3 T18

- 1. 自反性: 反例: $4 \in A, (4,4) \notin R$, 因此不满足自反性
- 2. 反自反性: 反例: $\sqrt{2} \in A, (\sqrt{2}, \sqrt{2}) \in R$, 因此不满足反自反性
- 3. 对称性: 因为 $\forall a, b \in A, a^2 + b^2 = b^2 + a^2$, 因此 $\forall a, b \in A, (a, b) \in R \to (b, a) \in R$, 满足对称性
- 4. 反对称性: 取 $a=1,b=\sqrt{3}$,因为 $(a,b)\in R\wedge (b,a)\in R\wedge a\neq b$,因此不满足反对称性。
- 5. 传递性: 反例: $(1,\sqrt{3}) \in R \land (\sqrt{3},1) \in R \land (1,1) \notin R$,因此不满足传递性。

4.4 T20

- 1. 自反性: $\forall (a,b) \in A$, 因为 a = a, 所以有 (a,b)R(a,b) 满足自反性。
- 2. 反自反性: 由于满足自反性, 因此不满足反自反性。
- 3. 对称性: $\forall (a,b), (c,d) \in A$,如果 $a=c \to c=a$,因此 $(a,b)R(c,d) \to a=c \to (c,d)R(a,b)$,因此满足对称性
- 4. 反对称性: 反例: $(1,3)R(1,4) \wedge (1,4)R(1,3) \wedge (1,3) \neq (1,4)$,因此不满足反对称性。
- 5. 传递性: $\forall (a,b), (c,d), (e,f) \in A \land (a,b)R(c,d) \land (c,d)R(e,f)$, 因此有: a = c, c = e, 因此 $a = e \to (a,b)R(e,f)$, 因此满足传递性。

4.5 T22

- 1. 自反性: 因为直线平行于自身,因此 $\forall l_i \in A, l_i R l_i$,满足自反性。
- 2. 反自反性: 由于满足自反性, 因此不满足反自反性。
- 3. 对称性: 因为 $l_i \parallel l_j \rightarrow l_j \parallel l_i$,因此 $\forall l_i, l_j \in A \land l_i R l_j \rightarrow l_j R l_i$,因此满足对称性。
- 4. 反对称性: 反例: $l_1: y = x, l_2: y = x + 1$, 因此 $l_1Rl_2 \wedge l_1 \neq l_2$, 因此不满足反对称性。
- 5. 传递性: 因为平行本身具有传递性, 因此 $\forall l_i, l_j, l_k \in A$, 如果 $l_i R l_j \wedge l_j R l_k \rightarrow l_i R l_k$, 因此满足传递性

4.6 T31

因为集合 A 上的关系是反自反,因此其关系矩阵中的主对角线上全为 0. 那么证明该集合的关系具有反对称的性质可以转换为证明 $a,b \in A$, $aRb \land bRa$ 。

下用反证法,不妨假设 $\exists a,b \in A, aRb \land bRa$,因为该关系具有传递性, $aRb \land bRa \rightarrow aRa$,与反自反的条件不符,因此假设不成立。因此 $\nexists a,b \in A, aRb \land bRa$,故该关系是反对称的,并且因为主对角线元素全为 0,所以还是非对称的。

4.7 T32

反证法: 假设 R^2 不满足传递性,则 $\exists a,c,e \in A,aRc \land cRe \land aRe$ 。因为 R^2 是由 R 复合运算得来的,因此 $\exists b,d \in A,aRb,bRc,cRd,dRe$ 。因为 R 是传递的,那么在 R 中一定还有 $aRc \land cRe$,因此 $R^2 = R \circ R$ 中会含有 aRe,与假设不符,因此假设不成立。

故如果 A 上的关系 R 是传递的, 那么 R^2 也是传递的。

4.8 T33

因为 R 是对称的,因此 $\exists a,b \in A, aRb \land bRa$,又因为 R 是传递的,因此 $aRb \land bRa \rightarrow aRa$,因此 $\exists a \in A, (a,a) \in R$,因此 R 不是非自反的。

4.9 T34

 $\forall (a,c) \in R^2$,因为 R^2 是由 R 复合而成,因此 $\exists b \in A, (a,b) \in R \land (b,c) \in R$,又因为 R 是对称的,因此 $(c,b) \in R \land (b,a) \in R$. 又因为 $R^2 = R \circ R$,因此 $(c,a) \in R^2$ 。即 $\forall (a,c) \in R^2 \rightarrow (c,a) \in R^2$,因此 R^2 也是对称的。

4.10 T35

当 n=1 时,显然成立。当 n=2 时,已有上题证出。

不妨假设当 n=k 时,结论成立,即 R^k 是对称的,下证 R^{k+1} 也是对称的。 $\forall (a,c) \in R^{k+1}$,因为 $R^{k+1} = R^k \circ R$,因此 $\exists b \in A, (a,b) \in R^k \wedge (b,c) \in R$ 因为 R 和 R^k 是对称的,因此 $(b,a) \in R^k \wedge (c,b) \in R$ 。又因为 $R^{k+1} = R \circ R^k$,因此 $(c,a) \in R^{K+1}$ 。即 $\forall (a,c) \in R^{k+1} \to (c,a) \in R^{k+1}$,因此 R^{k+1} 也是对称的。

根据数学归纳法得出: 如果 A 上的关系 R 是对称的,那么 R^n 对于任意 $n \ge 1$ 也是对称的。

4.11 T36

定义: 差 3 关系,即两数之差为 3 的倍数。 $R = \{(a,b)|(a-b)|3\}$ 。 1. 自反性: $\forall a \in Z^+, a-a=0$,为 3 的倍数,因此 $\forall a \in Z^+, aRa$ 。满足自反性。

- 2. 对称性: $\forall a, b \in Z^+$, 如果 $(a, b) \in R$, 即 $(a b) \mid 3$, 即 $\exists m \in Z, a b = 3m$ 。 因此 b a = -3m, 仍为 3 的倍数。因此 $\forall a, b \in Z^+ \land (a, b) \in R \to (b, a) \in R$, 满足对称性。
- 3. 传递性: $\forall a, b, c \in Z^+, aRb, bRc,$ 因此 $\exists m, n \in Z, (a-b) = 3m, (b-c) = 3n$ 。那么 a-c = a-b+(b-c) = 3m+3n = 3(m+n),仍为 3 的倍数。所以 $\forall a, b, c \in Z^+ \land aRb \land bRc \to aRc,$ 满足传递性。

4.12 T38

(a)
$$R = \{(a, b), (b, c), (a, c)\}$$

(b)
$$R = \{(a, a), (b, b), (c, c), (d, d), (a, b), (b, c)\}$$

4.13 T40

1. 充分性: R 是传递的 \rightarrow 对于所有 $n \ge 1, R^n \subseteq R$ 。

利用数学归纳法: 当 n=2 时,因为 $R^2=R\circ R$,因此 $\forall (a,c)\in R^2\to \exists b\in A\land (a,b)\in R\land (b,c)\in R$ 。因为 R 具有传递性,因此 $(a,c)\in R$ 。即 $\forall (a,c)\in R^2\to (a,c)\in R$ 。即 $R^2\subseteq R$ 。

当 $n \ge 2$ 时,不妨设 n = k - 1 时,有 $R^{k-1} \subseteq R$ 。下证 $R^k \subseteq R$ 。

因为 $R^k = R^{k-1} \circ R$, $\forall (a,c) \in R^k \to \exists b \in A \land (a,b) \in R^{k-1} \land (b,c) \in R$ 。 又因为 $R^{k-1} \subseteq R$,因此 $(a,b) \in R \land (b,c) \in R$ 。因为 R 具有传递性,因此 $(a,c) \in R$ 。即 $\forall (a,c) \in R^k \to (a,c) \in R$,因此 $R^k \subseteq R$ 。证毕。

2. 必要性: 对于所有 $n \ge 1, R^n \subseteq R \to R$ 是传递的。

取 n=2,有: $R^2 \subseteq R$ 。 $\forall (a,b), (b,c) \in R$,因为 $R^2=R$ 。因此 $(a,c) \in R^2$ 。 又因为 $R^2 \subseteq R$,因此 $(a,c) \in R$ 。即 $\forall (a,b), (b,c) \in R \to (a,c) \in R$ 。因此 R 是传递的,证毕。

5 4.5

5.1 T19

(a)1. 自反性: $\forall (a,b) \in A, a^2 + b^2 = a^2 + b^2$,因此 (a,b)R(a,b),满足自反性。

2. 对称性: $\forall (a,b) \in A, a^2 + b^2 = b^2 + a^2$, 因此 (a,b)R(b,a), 满足对称性。

3. 传递性: $\forall (a,b), (c,d), (e,f) \in A \land (a,b)R(c,d) \land (c,d)R(e,f)$ 。 因此 $a^2 + b^2 = c^2 + d^2 = e^2 + f^2$,所以 $a^2 + b^2 = e^2 + f^2$,即 (a,b)R(e,f)。 故 $\forall (a,b), (c,d), (e,f) \in A \land (a,b)R(c,d) \land (c,d)R(e,f) \rightarrow (a,b)R(e,f)$ 。 满足传递性。

因为关系 R 满足自反、对称、传递性, 因此 R 是 A 上的一个等价关系。

(b) 在每个等价类中, $a^2 + b^2 = c^2 + d^2$,可以理解为坐标到原点的距离相等,即圆。因此 A/R 为以原点为圆心的无数个圆。

5.2 T20

因为等价关系具有对称性,因此只观察关系矩阵的右上角部分,有: $\{(a,a),(a,b),(a,c),(a,e),(b,b),(b,c),(b,e),(c,c),(c,e),(d,d),(e,e)\}\subseteq R$,因此不难得出: a 与 b, c, e 等价, d 与自身等价。因此 $A/R = \{\{a,b,c,e\},\{d\}\}$

5.3 T22

- (a)1. 自反性: $\forall (a,b) \in A, a+b=a+b$,因此 (a,b)R(a,b)。满足自反性。
- 2. 对称性: $\forall (a,b) \in A, a+b=b+a$, 因此 (a,b)R(b,a)。满足对称性。
- 3. 传递性: $\forall (a,b), (c,d), (e,f) \in A \land (a,b) R(c,d) \land (c,d) R(e,f)$ 。因此: a+b=c+d=e+f,有 (a,b) R(e,f)。因此满足传递性。

因此 R 是一个等价关系。(b) 可以根据 a+b 的和来进行等价类划分。 $A/R = \{\{(1,1)\}, \{(1,2), (2,1)\}, \{(1,3), (3,1), (2,2)\}, \{(1,4), (2,3), (3,2), (4,1)\}, \{(2,4), (3,3), (4,2)\}, \{(3,4), (4,3)\}, \{(4,4)\}\}$

5.4 T23

1. 充分性: R 是自反的和循环的 $\rightarrow R$ 是一个等价关系。

证 R 是等价关系,即证 R 具有自反、对称、传递性。已知,R 具有自反性。对称性: $\forall (a,b) \in R$,因为自反性,所以 $(a,a) \in R$,根据传递性可以得: $(a,a) \in R \land (a,b) \in R \rightarrow (b,a) \in R$ 。即: $\forall (a,b) \in R \rightarrow (b,a) \in R$ 。因此 R 是对称的。

传递性: $\forall (a,b), (b,c) \in R$ 根据循环性,所以 $(c,a) \in R$ 。又因为对称性,所以 $(a,c) \in R$ 。因此 $\forall (a,b), (b,c) \in R \rightarrow (a,c) \in R$ 。

2. 必要性: R 是等价关系 $\rightarrow R$ 是自反的和循环的。

因为 R 是等价的,因此 R 一定是自反的。又因为 $\forall (a,b), (b,c) \in R$,因为 R 是等价的,因此 R 具有传递性,所以 $(a,c) \in R$ 。又因为 R 具有传递性,所以 $(c,a) \in R$ 。即 $\forall (a,b), (b,c) \in R \to (c,a) \in R$ 。因此 R 是循环的。

5.5 T24

1. 自反性: $\forall x \in A$,因为 R_1, R_2 ,具有自反性,所以 $(x, x) \in R_1, (x, x) \in R_2$ 。因为 $R_1 \cap R_2$ 即取 R_1, R_2 中的公共元素。因此 $(x, x) \in R_1 \cap R_2$ 。即: $\forall x \in A \to (x, x) \in R_1 \cap R_2$ 。满足自反性。

2. 对称性:

$$\forall (a,b) \in R_1 \cap R_2 \Rightarrow (a,b) \in R_1 \land (a,b) \in R_2$$
$$\Rightarrow (b,a) \in R_1 \land (b,a) \in R_2$$
$$\Rightarrow (b,a) \in R_1 \cap R_2$$

因此 $R_1 \cap R_2$ 满足对称性。

3. 传递性:

$$\forall (a,b), (b,c) \in R_1 \cap R_2 \Rightarrow (a,b) \in R_1 \wedge (b,c) \in R_1 \wedge (a,b) \in R_2 \wedge (a,b) \in R_2$$
$$\Rightarrow (a,c) \in R_1 \wedge (a,c) \in R_2$$
$$\Rightarrow (a,c) \in R_1 \cap R_2$$

因此 $R_1 \cap R_2$ 满足传递性。

综上所述, $R_1 \cap R_2$ 是 A 上的一个等价关系。

5.6 T27

因为 R 是模 2 同余关系,有 $\forall x \in R(a)$, x 与 a 的奇偶性相同。情况 1: a,b 同奇偶性,因为 $R(a) + R(b) = \{x | x = s + t, s \in R(a), t \in R(b)\}$,且 s,t 的奇偶性也相同,因此 $\forall x \in (R(a) + R(b))$ 一定为偶数。又因为 a,b 同奇偶性,因此 a+b 亦为偶数。因此: $\forall x (x \in (R(a) + R(b)) \leftrightarrow x \in R(a+b))$ 。情况 2:a,b 的奇偶性相反,因为 $R(a) + R(b) = \{x | x = s + t, s \in R(a), t \in R(b)\}$,且 s,t 的奇偶性也相同,因此 $\forall x \in (R(a) + R(b))$ 一定为奇数。又因为 a,b 奇偶性相反,因此 a+b 亦为奇数。因此: $\forall x (x \in (R(a) + R(b)) \leftrightarrow x \in R(a+b))$ 。

综上所述: 对所有 a,b, 有 R(a) + R(b) = R(a+b)。

5.7 T28

不妨设: $a = (m_a, n_a), b = (m_b, n_b).$

因此 $R(a) = \{(m_i, n_i) | n_i = n_a\}, R(b) = \{(m_j, n_j) | n_j = n_b\}, 所以 <math>R(a) + R(b) = \{(m_k, n_k) | m_k = m_i + m_j, n_k = n_i + n_j, (m_i, n_i) \in R(a), (m_j, n_j) \in R(b)\} = \{(m_k, n_k) | n_k = n_a + n_b\}$ 。因为 $R(a+b) = \{(m_l, n_l) | n_l = n_a + n_b\}$ 。因此 (R(a) + R(b)) 与 R(a+b) 的集合的定义相同,所以 R(a) + R(b) = R(a+b)。

5.8 T29

因为 $R((a,b)) = \{(m_i,n_i)|an_i = bm_i\}, R((a',b')) = \{(m_j,n_j)|a'n_j = b'm_j\}, R((a+a',b+b')) = \{(m_k,n_k)|(a+a')n_k = (b+b')m_k\}$ 。又因为 $R((a,b)) + R((a',b')) = \{(m_l,n_l)|(m_l,n_l) = (m_i,n_i) + (m_j,n_j), (m_i,n_i) \in R((a,b)), (m_j,n_j) \in R((a',b'))\}$ 。要证 R((a,b)) + R((a',b')) = R((a+a',b+a'))

b')),即证 $\forall (m_l, n_l) \in (R((a,b)) + R((a',b'))) \to (a+a')n_l = (b+b')m_l$ 。因为 $(a+a')(n_i+n_j) - (b+b')(m_i+m_j) = an_j + a'n_i - bm_j - b'm_i$ 。不一定为 0。因此等式不成立。

较容易举出反例: (1,2)R(2,4),(1,3)R(2,6) 但是 $(3,7) \notin R((2,5))$

6 4.6

6.1 T2

```
EDGE(i ,j){
    int ptr = VERT[i];

while(NEXT[ptr] != 0){
    if(HEAD[ptr] == j){
        return T;
    }

ptr = NEXT[ptr];

}

if(NEXT[ptr] == 0 && HEAD[ptr] == j) return T;
else return F;
}
```

6.2 T3

因为 R 一共有 P 条边,N 个顶点。因此平均每个顶点的出度为 $\frac{P}{N}$ 。对这 $\frac{P}{N}$ 个出度进行排序,如果要找的边为第 n 条,则需要 n 步,如果找的边不存在,那么则需要 $\frac{P}{N}$ 步。因此平均步数为: $\frac{1+2+\cdots+\frac{P}{N}+(N-\frac{P}{N})(\frac{P}{N})}{N} = \frac{(2N-\frac{P}{N}+1)(\frac{P}{N})}{2N}$

6.3 T4

```
LOOK(NUM, NEXT, START, N, K){

int ptr = START;

while(NEXT[ptr] != 0){

if(NUM[ptr] == K) return ptr;

else ptr == NEXT[ptr];

}

if(NUM[ptr] != K) print("NOT_FOUND");
```

6.4 T6

VERT	TAIL	HEAD	NEXT
2	4	1	9
4	1	1	3
7	1	2	5
1	2	1	6
	1	3	0
	2	4	8
	3	4	10
	2	3	0
	4	3	0
	3	3	0

6.5 T8

2. 矩阵:

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

6.6 T12

$$VERT = [1,4,7,11]$$

$$TAIL = [1,1,1,2,2,2,3,3,3,3,4,4,4]$$

$$HEAD = [1,2,4,1,2,4,1,2,3,4,1,2,4]$$

$$NEXT = [2,3,0,5,6,0,8,9,10,0,12,13,0]$$

7 4.7

7.1 T7

(a)
$$\overline{R} = \{(1,4), (2,1), (3,1), (3,2), (3,3), (4,2), (4,3), (4,4)\}$$

(b)
$$R \cap S = \{(1,1), (1,2), (2,2), (2,3), (2,4), (3,4), (4,1)\}$$

(c)
$$R \cup S = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,4)\}$$

(d)
$$S^{-1} = \{(1,1), (1,3), (1,4), (2,1), (2,2), (2,3), (3,2), (4,1), (4,2), (4,3), (4,4)\}$$

7.2 T8

(a)
$$\overline{R} = \{(a,c), (a,e), (b,a), (b,c), (b,d), (c,a), (c,c), (c,d), (c,e), (d,a), (d,b), (d,e), (e,c), (e,d), (e,e)\}$$

(b)
$$R \cap S = \{(a, a), (a, d), (c, b), (e, a), (e, b)\}$$

(c)
$$R \cup S = \{(a, a), (a, b), (a, d), (a, e), (b, a), (b, b), (b, e), (c, b), (c, d), (d, c), (d, d), (e, a), (e, b), (e, d), (e, e)\}$$

(d)
$$S^{-1} = \{(a, a), (a, b), (a, e), (b, c), (b, e), (d, a), (d, c), (d, e), (e, a), (e, e)\}$$

7.3 T12

(a)
$$M_{R \cap S} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 (b) $M_{R \cup S} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

(c)
$$R^{-1} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$
 (d) $M_{\overline{S}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$

7.4 T14

 $R \cap S = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$ 划分: $\{\{1,2\}, \{3\}, \{4\}, \{5\}, \{6\}\}$ 。

7.5 T19

因为闭包运算是往集合里面添加元素的过程,相当于让关系矩阵中的部分的 0 变为 1,但是不能把 1 变为 0。因此例如一个等价关系,往里面不断将 0 化为 1,都不能使其具有非自反、非对称、反对称关系。因此闭包的概念不适用于非自反、非对称、反对称之中。

7.6 T20

(a) $R\circ S=\{(a,c)|a\le 6c\}$ 。 因为 $2\le 6\times 3=18$,因此 $(2,3)\in R\circ S$ 。 (b) 因为 $8\ge 6\times 1$,因此 $(8,1)\notin R\circ S$

7.7 T23

(a) 自反性: 假设 R, S 是 A 上的关系,且都具有自反性。 $\forall x \in A \to (x,x) \in R \land (x,x) \in S$. 所以对于 $R \circ S$ 而言,有 $\forall x \in A, (x,x) \circ (x,x) = (x,x)$ 。 因此 $R \circ S$ 仍为自反的。

反自反性: 假设 $R = \{(1,2)\}, S = \{(2,1)\}, 则 R \circ S = \{(1,1)\}, 反自反不能保持对称性: 假设 <math>R = \{(1,2),(2,1)\}, S = \{(2,3),(3,2)\}, 则 R \circ S = \{(1,3)\},$ 对称性不能保持。

反对称性: 假设 $R = \{(1,2),(2,2)\}, S = \{(2,2),(1,1),(2,1)\},$ 则 $R \circ S =$

 $\{(1,2),(1,1),(2,2),(2,1)\}$, 反对称性不能保留传递性: 假设 $R = \{(1,2),(2,4)\}$, $S = \{(2,2),(4,3)\}$, 则 $R \circ S = \{(1,2),(2,3)\}$, 对称性不能保持。

(b) 自反性:根据 (a) 中可知,自反性质能够保留,因此 $S \circ R$ 是 A 上的自反关系。

对称性:假设 $R = \{(1,1),(1,2),(2,1),(2,2),(3,3)\}, S = \{(1,1),(2,2),(2,3),(3,2),(3,3)\}$ 。 所以 $S \circ R = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,3),(3,2)\}$,不满足对 称性。因此 $S \circ R$ 不是 A 上的等价关系

7.8 T24

$$\text{(a) } M_{R \circ R} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\text{(b) } M_{S \circ R} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\text{(c) } M_{R \circ S} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\text{(d) } M_{S \circ S} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

7.9 T26

因为
$$R \cap R^{-1} = S \cap S^{-1} = \emptyset$$
,所以
$$(R \cap S) \cap (R \cap S)^{-1} = (R \cap S) \cap (R^{-1} \cap S^{-1})$$

$$= (R \cap R^{-1}) \cap (S \cap S^{-1})$$

$$= \emptyset$$

因此 $R \cap S$ 是非对称的。

$$\begin{split} (R \cup S) \cap (R \cup S)^{-1} &= (R \cup S) \cap (R^{-1} \cup S^{-1}) \\ &= ((R \cup S) \cap R^{-1}) \cup ((R \cup S) \cap S^{-1}) \\ &= R \cap R^{-1} \cup S \cap R^{-1} \cup R \cap S^{-1} \cup S \cap S^{-1} \\ &= S \cap R^{-1} \cup R \cap S^{-1} \\ &= S \cap R^{-1} \cup (S \cap R^{-1})^{-1} \end{split}$$

因此,如果 $S \cap R^{-1} = \emptyset$, $R \cup S$ 是非对称的,反之则不是。

7.10 T27

假设 $R=\{(1,1),(1,2),(2,2)\}, S=\{(1,1),(2,2),(2,1)\}$ 。因此 $R\cup S=\{(1,1),(1,2),(2,1),(2,2)\}$ 是对称的,不是反对称的。 对于 $R\cap S$,如果 $\forall (a,b)((a,b)\in (R\cap S)\wedge (b,a)\in (R\cap S))$,故 $(a,b)\in R\wedge (b,a)\in R$ 。因为 R 是反对称的,因此 a=b,故 $R\cap S$ 是反对称的。

7.11 T28

对 $\forall a \in A, c \in C$, 有 $a(S \cup T) \circ Rc$

$$a(S \cup T) \circ Rc \Leftrightarrow (\exists b \in B)(a(S \cup T)b \wedge bRc)$$

$$\Leftrightarrow (\exists b \in B)((aSb \vee aTb) \wedge bRc)$$

$$\Leftrightarrow (\exists b \in B)(aSb \wedge bRc \vee aTb \wedge bRc)$$

$$\Leftrightarrow (\exists b \in B)(aS \circ Rc \vee aT \circ Rc)$$

$$\Leftrightarrow (a(S \circ R) \cup (T \circ R)c)$$

因此 $(S \cup T) \circ R = (S \circ R) \cup (T \circ R)$

7.12 T30

$$aT \circ Rc \Rightarrow (\exists b \in B)(aTb \land bRc)$$

 $\Rightarrow (\exists b \in B)(aTb \land bSc)$
 $\Rightarrow aT \circ Sb$

因此: $T \circ R \subseteq T \circ S$

7.13 T31

- (a) 因为 $\forall a \in A, b \in A, a(R \cap S)b \Leftrightarrow aRb \wedge aSb$ 。因此 $(a,b) \in (R \cap S) \Leftrightarrow (a,b) \in R \wedge (a,b) \in S$,故 $M_{R \cap S} = M_R \wedge M_S$
- (b) 因为 $\forall a \in A \ b \in A, a(R \cup S)b \Leftrightarrow aRb \lor aSb$ 。因此 $(a,b) \in (R \cup S) \Leftrightarrow$

- $(a,b) \in R \vee (a,b) \in S$, it $M_{R \cup S} = M_R \vee M_S$
- (c) 因为 $\forall a \in A, b \in A, (a, b) \in R^{-1} \Leftrightarrow (b, a) \in R,$ 故 $M_{R^{-1}} = (M_R)^T$
- (d) 因为 $\forall a \in A, b \in A, (a,b) \in \overline{R} \Leftrightarrow (a,b) \notin R$, 故 $M_{\overline{R}} = \overline{M_R}$

7.14 T36

 $\forall (a,b) \in R \land (a,b) \notin S$ 因为 R,S 都是对称的,因此 $(b,a) \in R \land (b,a) \notin S$ 。故 $\forall (a,b) \in R \land (a,b) \notin S \Rightarrow (b,a) \in R \land (b,a) \notin S$ 。因此 $\forall (a,b) \in (R-S) \Rightarrow (b,a) \in (R-S)$,即 R-S 也是一个对称关系。

7.15 T37

(a) 充分性: R 是对称的 $\Rightarrow R = R^{-1}$

 $\forall (b,a) \in R \Rightarrow (a,b) \in R^{-1}$,又因为 R 是对称的,因此 $\forall (b,a) \in R \Rightarrow (a,b) \in R$ 。 因此 $R \subseteq R^{-1}$ 。 同理 $R^{-1} \subseteq R$,因此 $R = R^{-1}$ 。

必要性: $R = R^{-1} \Rightarrow R$ 是对称的

因为 $R = R^{-1}, \forall (a,b) \in R \Rightarrow (a,b) \in R^{-1}$,又因为 $\forall (a,b) \in R^{-1} \Rightarrow (b,a) \in R$ 。因此 $\forall (a,b) \in R \Rightarrow (b,a) \in R$ 。故 R 是对称的。

(b) 充分性: R 是反对称的 $\Rightarrow R \cap R^{-1} \subseteq \Delta$

 $\forall a \in A, b \in B$,

当 $a \neq b$ 时, $\forall (a,b) \in R \Rightarrow (b,a) \notin R \Rightarrow (a,b) \notin R^{-1}$ 。因此 $R \cap R^{-1} = \varnothing$ 。

当 a=b 时, $\forall (a,b)\in R\Rightarrow (b,a)\in R\Rightarrow (a,b)\in R^{-1}$, 因此 $R\cap R^{-1}\subseteq \Delta$ 。

综上所述: R 是反对称的 $\Rightarrow R \cap R^{-1} \subseteq \Delta$

必要性: $R \cap R^{-1} \subset \Delta \Rightarrow R$ 是反对称的

 $\forall a \in A, b \in B$,

当 $a \neq b$ 时, $\forall (a,b) \in R \Rightarrow (a,b) \notin R^{-1} \Rightarrow (b,a) \notin R$ 。 因此 $\forall a \in A, \nexists b (b \in A \land b \neq a) \Rightarrow (a,b) \in R \land (b,a) \in R$

 $\stackrel{\text{\tiny \perp}}{=} a = b \text{ ps}, \ \forall (a,b) \in R \Rightarrow (b,a) \in R \Rightarrow (a,b) \in R^{-1}$

综上所述: $R \cap R^{-1} \subseteq \Delta \Rightarrow R$ 是反对称的

(c) 充分性: R 是非对称的 $\Rightarrow R \cap R^{-1} = \emptyset$

因为 R 是非对称的,因此 $\forall (a,b) \in R \Rightarrow (b,a) \notin R \Rightarrow (a,b) \notin R^{-1}$,故 $R \cap R^{-1} = \emptyset$

必要性: $R \cap R^{-1} = \emptyset \Rightarrow R$ 是非对称的

因为 $R \cap R^{-1} = \emptyset$, 因此 $\forall (a,b) \in R \Rightarrow (a,b) \notin R^{-1} \Rightarrow (b,a) \notin R$, 因此 R

是非对称的。

8 4.8

8.1 T8

充分性: $aS^{\infty}b \Rightarrow R$ 中存在从 a 到 b 的一条路径,且该路径具有偶数条边。

因为 $S=R^2$,因为 $aS^{\infty}b\Rightarrow \exists i\geq 1s.t.aS^ib$ 。又因为 $S^i=R^{2i}$,所以存在一条从 a 到 b 长度为 2i 的路径。即 $aS^{\infty}b\Rightarrow R$ 中存在从 a 到 b 的一条路径,且该路径具有偶数条边。

必要性: R 中存在从 a 到 b 的一条路径,且该路径具有偶数条边 $\Rightarrow aS^{\infty}b$ 因为 R 中存在从 a 到 b 的一条路径,且该路径具有偶数条边。不妨设 $aR^{2k}b$,因为 $S=R^2$,故 aS^kb . 又因为 $S^k \subset S^{\infty}$,即 $aS^{\infty}b$ 。

综上所述: $aS^{\infty}b$ 当且仅当 R 中存在从 a 到 b 的一条路径,且该路径具有偶数条边。

8.2 T10

$$M_R = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad M_{R^2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = M_R.$$
因此 $M_{t(R)} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

8.3 T12

$$M_R = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad M_{R^2} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad M_{R^3} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix},$$

$$M_{R^4} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \quad \text{B.L.} \quad M_{t(R)} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

8.4 T14

$$M_R = egin{bmatrix} 0 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 \ 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix}$$

求
$$M_s(R)$$
 的传递闭包关系矩阵: $M_{s(R)}=\begin{bmatrix}0&1&0&0\\1&1&1&1\\0&1&1&0\\0&1&0&0\end{bmatrix}, M_{s(R)^2}=\begin{bmatrix}1&1&1&1\\1&1&1&1\\1&1&1&1\\1&1&1&1\end{bmatrix}$

求
$$M_{t(R)}$$
 的对称闭包关系矩阵: $M_{R^2}=egin{bmatrix}0&0&0&0\\1&1&1&0\\1&1&1&0\\1&1&1&0\end{bmatrix}, \quad M_{R^3}=M_{R^2}.$ 因

相同的关系

8.5 T18

 $A/R = \{\{1\}, \{2,3\}, \{4,5\}\}, A/S = \{\{1,2\}, \{3\}, \{4,5\}\}.$ $A/(R \cup S)^{\infty} = \{\{1,2,3\}, \{4,5\}\}$

8.6 T20

因为 19 题的前提条件是两个关系本身是等价关系,不具有普遍性。而 Warshall 算法不需要这个前提条件。

8.7 T23

使用了直接证明法。先假设 $\forall S, (R\subseteq S)$,后续利用 S 的传递性,说明 $S^\infty\subseteq S$,又因为满足公式 $S^\infty=\bigcup_{n=1}^\infty S^n\subseteq S$,结合 $R\subseteq S$,推出 $R^\infty\subseteq S^\infty\subseteq S$ 。从而证明是传递关系中最小的。

8.8 T24

使用了构造性证明法。考虑了路径中可能成环,把成环的部分删去,留下顶点各异的部分。因为顶点数不可能超过 n,因此路径的长度也至多是 n。由此证明计算 R^{∞} 并不需要计算比 n 次幂大的 R 的幂。

8.9 T25

设包含 R 的最小等价关系为 S.

S 满足自反性: $\forall x \in A, (x, x) \in S$ 。

S 满足对称性且 $R \subseteq s$: $\forall a \in A, b \in A \land |a| \le |b| \Rightarrow (a,b) \in R \Rightarrow (a,b) \in S$, 因为 S 满足对称性,所以 $|a| \ge |b| \Rightarrow (a,b) \in S \Rightarrow a \in A, b \in Aa \ne b \Rightarrow (a,b) \in S$ 。

综上所述, $\forall a \in A, b \in A$. 当 $a = b, (a, b) \in S$ 。当 $a \neq b, (a, b) \in S$ 。因此, $\forall a \in A, b \in A \Rightarrow (a, b) \in S$ 即 $S = A \times A = \mathbf{R} \times \mathbf{R}$ 。