Warning: Higher dimensions ahead!

A Fully Connected/Dense layer is insensitive to the order of features.

This is just a property of the dot product

$$\Theta^T \cdot \mathbf{x} = \Theta[\mathrm{perm}]^T \cdot \mathbf{x}[\mathrm{perm}]$$

where $\Theta[\text{perm}]^T$ and $\mathbf{x}[\text{perm}]$ are permutations of Θ, \mathbf{x} .

$$\begin{split} \sum \left\{ \begin{aligned} &\text{Machine} & \text{Learning} & \text{is} & \text{easy} & \text{not} & \text{hard} \\ & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ & \Theta_{Machine} & \Theta_{Learning} & \Theta_{is} & \Theta_{easy} & \Theta_{not} & \Theta_{hard} \\ & & = & & & & \\ & \sum \left\{ \begin{aligned} &\text{Machine} & \text{Learning} & \text{is} & \text{hard} & \text{not} & \text{easy} \\ & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ & \Theta_{Machine} & \Theta_{Learning} & \Theta_{is} & \Theta_{hard} & \Theta_{not} & \Theta_{easy} \end{aligned} \right. \end{split}$$

But there are many problems in which order is important.

Consider the following examples

Same words

Machine Learning is easy not difficult

Machine Learning is difficult not easy

In this lecture, we will be dealing with examples that are sequences.

That is, we will add a new dimension to each example which we will call the *temporal* dimension.

To make this concrete, consider the difference between a snapshot and a movie

• A movie is a sequence of snapshots

We have already encountered (when introducing CNN's) data with a spatial dimension
• location of a feature within a 1D or 2D space.

The main difference between the spatial and temporal dimensions:

- We have some degree of freedom to alter the spatial dimension without affecting the problem
 - e.g., flipping or rotating an image
- There is *no* ability to rearrange data in the temporal dimension
 - Time flows forward and we can't peek ahead.

A single example $\mathbf{x}^{(i)}$ will now be written as

$$[\mathbf{x}_{(t)}^{(\mathbf{i})} \mid 1 \leq t \leq T]$$

Using the movie analogy

- $\mathbf{x^{(i)}}$ is a movie: a sequence of frames
- $\mathbf{x}_{(t)}^{(\mathbf{i})}$ is the t^{th} frame in the movies
 $\mathbf{x}_{(t),j,j'}^{(\mathbf{i})}$ is a particular pixel within the frame $\mathbf{x}_{(t)}^{(\mathbf{i})}$
 - $\ \ \, \ \ \,$ The temporal dimension is indexed by (t) and the spatial dimensions by j, j'

Functions on sequence

In the absence of a temporal dimension, our multi-layer networks

Computed functions from vectors to vectors

With a temporal dimension, there are several variants of the function

- Many to one
 - Sequence as input, vector as output
 - Examples:
 - Predict next value in a time series (sequence of values)
 - Summarize the sentiment of a sentence (sequence of words)

- Many to many
 - Sequence as input, sequence of vectors as output
 - Examples
 - Translation of sentence in one language to sentence in second language
 - Caption a movie: sequence of frames to sequence of words

- One to many
 - Single input vector, sequence of vectors as output
 - Examples
 - o Generating sentences from seed

Recurrent Neural Network (RNN) layer

With a sequence $\mathbf{x}^{(i)}$ as input, and a sequence \mathbf{y} as a potential output, the questions arises:

• How does an RNN produce $\mathbf{y}_{(t)}$, the t^{th} output ?

Some choices

• Predict $\mathbf{y}_{(t)}$ as a direct function of the prefix of \mathbf{x} of length t:

$$p(\mathbf{y}_{(t)}|\mathbf{x}_{(1)}\ldots\mathbf{x}_{(t)})$$

Uses a "latent state" that is updated with each element of the sequence, then
predict the output

$$p(\mathbf{h}_{(t)}|\mathbf{x}_{(t)},\mathbf{h}_{(t-1)})$$
 latent variable $\mathbf{h}_{(t)}$ encodes $[\mathbf{x}_{(1)}\dots\mathbf{x}_{(t)}]$ $p(\mathbf{y}_{(t)}|\mathbf{h}_{(t)})$ prediction contingent on latent variable

The Recurrent Neural Network (RNN) adopts the latter approach.

A prime advantage of the latent state approach

• it can handle sequences of *unbounded* length

Here is some pseudo-code:

```
In [2]: def RNN( input_sequence, state_size ):
    state = np.random.uniform(size=state_size)

for input in input_sequence:
    # Consume one input, update the state
    out, state = f(input, state)

return out
```


At each time step t

- Input $\mathbf{x}_{(t)}$ is processed
- ullet Causes latent state ${f h}$ to update from ${f h}_{(t-1)}$ to ${f h}_{(t)}$
 - \blacksquare We use the same sequence notation to record the sequence of latent states $[h_{(1)},\ldots,]$
- ullet Optionally outputs $\mathbf{y}_{(t)}$ (for outputs that are of type sequence)

When processing $\mathbf{x}_{(t)}$

- ullet The function computed takes ${f h}_{(t-1)}$ as input
- ullet Latent state ${f h}_{(t-1)}$ has been derived by having processed $[{f x}_{(1)}\dots{f x}_{(t-1)}]$
- And is thus a *summary* of the prefix of the input encountered thus far

One can look at this unrolled graph as being a dynamically-created computation graph.

A short-hand picture for the movie that you will often see is	

The movie version is a little more direct and is often referred to as "unrolling the loop" in the short-hand version.

The unrolled version will be crucial in understanding how Gradient Descent works when RNN layers are present.

- The unrolled graph looks just like an ordinary graph
- Because it resembles a non-loop computation, our logic and intuition for computing gradients transfers directly

Note that $\mathbf{x}, \mathbf{y}, \mathbf{h}$ are all vectors.

In particular, the state ${f h}$ may have many elements

- it is a vector of "synthesized" features
- to record information about the entire prefix of the input.

 $\mathbf{h}_{(t)}$ is the latent state (sometimes called the *hidden state* as it is not visible outside the layer).

It is essentially a fixed length encoding of the variable length sequence $[\mathbf{x}_{(1)}\dots\mathbf{x}_{(t)}]$

- ullet All essential information about the prefix of ${f x}$ ending at step t is recorded in ${f h}_{(t)}$
- Hence, the size of $\mathbf{h}_{(t)}$ may need to be large

We will shortly attempt to gain some intuition as to what these synthesized features may be.

Let's make this concrete with an example: a sequence of words

RNN

 $\mathbf{h}_{(t)}$ is a **fixed length** vector that "summarizes" the prefix of sequence \mathbf{x} up to element t.

The sequence is processed element by element, so order matters.

```
egin{array}{lcl} \mathbf{h}_{(0)} &= & \operatorname{summary}([\operatorname{Machine}]) \\ \mathbf{h}_{(1)} &= & \operatorname{summary}([\operatorname{Machine}, \operatorname{Learning}]) \\ dots \\ \mathbf{h}_{(t)} &= & \operatorname{summary}([\mathbf{x}_{(0)}, \dots \mathbf{x}_{(t)}]) \\ dots \\ \mathbf{h}_{(5)} &= & \operatorname{summary}([\operatorname{Machine}, \operatorname{Learning}, \operatorname{is}, \operatorname{easy}, \operatorname{not}, \operatorname{hard}]) \end{array}
```

Turning an unbounded length sequence into a fixed length vector is very useful!

• All our other layer types take fixed length input

So we can feed $\mathbf{h}_{(5)}$ into a Classifier to decide on the sentiment of the sentence.

RNN Many to one; followed by classifier

Another common	paradigm	using RNN	I's that we	e will encour	nter is the	: Fncoder-Decoder
,	Jan aangiii	451110 1 11 11		, ,,,,, o,,,ooa,	1001 10 0110	, E11000101 D 0000101

Encoder-Decoder for language translation

- The final latent state $ar{\mathbf{h}}_{(T)}$ of the Encoder "summarizes" the source sentence (English)
- It initializes the latent state of the Decoder which produces the target sentence (French)
- The Decoder implements a one-to-many API
 - source language "summary" as seed

ullet Each unrolled "frame" in the movi function F	ght not be apparent from the movie version: The shares the same weights and computes the same etwork where each layer has its own weights

That is the unrolled RNN computes

$$egin{array}{lll} \mathbf{y}_{(t)} &=& F(\mathbf{y}_{(t-1)}; \mathbf{W}) \ &=& F(\ F(\mathbf{y}_{(t-2)}; \ \mathbf{W}); \ \mathbf{W}\) \ &=& F(\ F(\ F(\mathbf{y}_{(t-3)}; \ \mathbf{W}); \ \mathbf{W}\); \mathbf{W}\) \ &=& dots \end{array}$$

rather than

$$egin{array}{lll} \mathbf{y}_{(l)} &=& F_{(l)}(\mathbf{y}_{(l-1)}; \mathbf{W}_{(l)}) \ &=& F_{(l)}(\ F_{(l-1)}(\mathbf{y}_{(l-2)}; \ \mathbf{W}_{(l-1)}); \ \mathbf{W}_{(l)}\) \ &=& F_{(l)}(\ F_{(l-1)}(\ F_{(l-2)}(\mathbf{y}_{(l-3)}; \ \mathbf{W}_{(l-2)}); \ \mathbf{W}_{(l-1)}\); \mathbf{W}_{(l)}\) \ &=& \vdots \end{array}$$

Note, in particular

- ullet The repeated occurrence of the term f W will complicate computing the derivative
- As we will see in a subsequent lecture

RNN's are sometimes drawn without separate outputs $\mathbf{y}_{(t)}$

• in that case, $\mathbf{h}_{(t)}$ may be considered the output.

The computation of $\mathbf{y}_{(t)}$ will just be a transformation of $\mathbf{h}_{(t)}$ so there is no loss in omitting it from the RNN and creating a separate node in the computation graph.

Geron does not distinguish between $\mathbf{y}_{(t)}$ and $\mathbf{h}_{(t)}$ and he uses the single $\mathbf{y}_{(t)}$ to denote the state.

I will use ${f h}$ rather than ${f y}$ to denote the "hidden state".

Conclusion

We have introduced the key concepts of Recurrent Neural Networks.

- An unrolled RNN is just a multi-layer network
- In which all the layers are identical
- The latent state is a fixed length encoding of the prefix of the input

A more detailed view of sequences and RNN's will be our next topic.

```
In [3]: print("Done")
```

Done