Algebra

Symbol	Entity	Hex	Desc riptio n
-	−	−	Subtra ction
×	×	& #x00D7;	Multipl ication
÷	÷	& #x00F7;	Divisio n
≠	≠	≠	Not equal
*	≈	≈	Appro ximate ly equal
<	<	<	Less than
≤	≤	≤	Less than or equal

>	>	>	Great er than
≥	≥	≥	Great er than or equal
±	±	±	Plus or minus
α	∝	∝	Propo rtional
Σ	∑	∑	Summ ation
П	∏	& #x220F;	Produ ct
L	⌊	⌊	Left floor
J	⌋	⌋	Right floor
ŗ	⌈	& #x2308;	Left ceiling
1	⌉	⌉	Right ceiling

The ⋅ entity can be used as an alternative to the × operator. And, of course, an ASCII slash can be used in place of ÷.

Calculus

Symbol	Entity	Hex	Description
1	′	′	Prime (1st derivative)
"	″	″	Double prime (2nd derivative)
""	‴	‴	Triple prime (3nd derivative)
ııı	⁗	⁗	Quadruple prime (4th derivative)
д	∂	∂	Partial Differential
Δ	Δ	Δ	Increment
∇	∇	∇	Gradient
ſ	∫	∫	Integral
\iint	∬	∬	Double integral
\iiint	∭	∭	Triple integral
	⨌	⨌ ;	Quadruple integral
∮	∮	& #x222E;	Contour integral
∳	∲	∲	Clockwise contour integral
	,		

```
    $\$\$awconint &\#x2233; Anticlockwise contour integral;
    $\$\$Conint; &\#x222F; Surface integral
    $\$\$Cconint; &\#x2230; Volume integral
    $\$\$\$infin; &\#x221E; Infinity
```

The ′ and ″ symbols are also the preferred way to mark up feet/inch and minutes/seconds measurements.

Ellipses

Description	Hex	Entity	Symbol
Horizontal ellipsis	…	…	
Vertical ellipsis	⋮	⋮	:
	•		
Midline horizontal ellipsis	% #x22EF	⋯	•••
Up right diagonal ellipsis	& #x22F0	⋰	·
Down right diagonal ellipsis	⋱	⋱	٠.

Geometry

Ads by Rich Media ViewAd Options

Symbol Entity Hex Description

0	°	°	Degrees
		,	
2	∠	& #x2220;	Angle
<u> </u>	∡	∡	Measured angle
	,		
L	∟	& #x221F;	Right angle
	⦜	⦜	Right angle with square
		,	
⊿	⊿	⊿	Right triangle
		,	
0	○	○	Circle
		,	
Δ	△	△	Triangle
		,	
	□	□	Square
		,	
	▱	▱	Parallelogram
		,	
I	∥	∥	Parallel
¥	∦	∦	Not parallel
T	⊥	⊥	Perpendicular
		,	
≅	≅	≅	Congruent

```
\rightarrow → → Ray (used with <mover>)
\leftrightarrow ↔ ↔ Line (used with <mover>)
- (n/a) &#x002D Line Segment (used with <mover>)
```

You may also find other useful shapes in the Geometric Shapes Block.

Greek Letters

Letter		Entities		Hex Codes	
Α	α	Α	α	Α	; 1;
В	β	Β	β	Β	; 2;
Γ	Υ	Γ	γ	Γ	; 3;
Δ	δ	Δ	δ	Δ	; 4;
E	3	Ε	ε	Ε	; 5;
Z	ζ	Ζ	ζ	Ζ	; 6;
Н	η	Η	η	Η	; 7;

Θ	θ	Θ	θ	Θ	; 8;
Ī	l	Ι	ι	Ι	; 9;
K	K	Κ	κ	Κ	; A;
٨	λ	Λ	λ ;	Λ	; B;
M	μ	Μ	μ	Μ	; C;
N	V	Ν	ν	Ν	; D;
Ξ	ξ	Ξ	ξ	Ξ	& #x03B E;
0	0	Ο	&omicro n;	Ο	; F;
П	π	Π	π	Π	& #x03C 0;
Р	ρ	Ρ	ρ	Ρ	< 1;
Σ	σ	Σ	σ	Σ	< 3;
T	T	Τ	τ	Τ	< 4;

Y	U	Υ	υ	Υ	< 5;
Φ	φ	Φ	φ	Φ	< 6;
X	X	Χ	χ	Χ	< 7;
Ψ	Ψ	Ψ	ψ	Ψ	< 8;
Ω	ω	Ω	ω	Ω	< 9;

As you can see, Greek letter entities follow a very straightforward naming convention. It's simply their letter name spelled out, using an initial capital for capital letters and lowercase for minuscules.

Invisible Operators

Entity	Short Entity	Hex	Description
⁡	⁡	& #x2061;	Function application
⁢	⁢	⁢	Invisible multiplication
⁣	⁣	⁣	Invisible separator
(n/a)	(n/a)	⁤	Invisible addition

Invisible operators are used to explicitly clarify ambiguous expressions like x(y). Please see the Invisible Operators section for details.

Logic

Symbol	Entity	Hex	Descrip tion
7	¬	¬	Negation
٨	∧	∧	Logical conjuncti on
V	∨	∨	Logical disjuncti on
V	⊻	⊻	Exclusive disjunction
A	∀	∀	Universal quantificati on
Ξ	∃	∃	Existenti al quantific ation
⇒	⇒	& #x21D2;	Material implicati on

\Leftrightarrow	⇔	⇔	Material equivale nce
	◻	◻	Necessa rily
\Diamond	◊	◊	Possibly
H	⊢	⊢	Provable
=	⊨	⊨	Entails
<i>:</i> .	∴	∴	Therefor e

The \oplus character is also used as a common alternative for exclusive disjunction. It can be accessed through the ⊕ entity or the ⊕ hexadecimal reference.

Set Theory

Symbol	Entity	Hex	Description
Ø	∅	∅	Empty Set
€	∈	∈	Member of set
∉	∉	∉	Not a member of set
⊆	⊆	⊆	Subset

⊈	⊈	⊈	Not a subset
C	⊂	⊂	Strict subset
⊄	⊄	⊄	Not a strict subset
⊇	⊇	⊇	Superset
⊉	⊉	⊉	Not a superset
⊃	⊃	⊃	Strict superset
⊅	⊅	⊅	Not a strict superset
\cap	∩	∩	Intersection
U	∪	∪	Union
\	∖ ;	∖	Complemen t

Note that some authors prefer to use the ⊊ and ⊋ symbols for strict subsets and supersets. These are available through the ⊊ and⊋ entities or the ⊊ and ⊋ hexadecimal codes.

Vectors & Functions

Symbol	Entity	Hex	Description
C ,		1 10/1	D C C C I I P II C I I

Dot product	⋅	⋅	
Cross product	⨯	⨯	
Norm (magnitude) bars	‖	‖	I
Left angle bracket	⟨	⟨	<
Right angle bracket	⟩	⟩	>
Function composition	& #x2218;	∘	0
General function mapping	& #x2192;	→	\rightarrow
Concrete function mapping	↦	↦	\mapsto
Dotless i	ı	ı	I
Dotless j	ȷ	ȷ	J

Dotless i's and j's are typically combined with a caret (^) to mark up i-hat and j-hat vectors, as described in Dotless Letters