

SEQUENCE LISTING

<110> Thorpe, Philip E.
Ran, Sophia

<120> Selected Antibody Compositions and Methods for Binding to Aminophospholipids

<130> 4001.003082

<140> US 10/620,850
<141> 2003-07-15

<150> 60/396,263
<151> 2002-07-15

<150> 09/613,430
<151> 2000-07-10

<160> 9

<170> PatentIn version 3.1

<210> 1
<211> 519
<212> DNA
<213> Mus musculus

<400> 1
atgggatgga cctggatctt tatttaatc ctgtcagtaa ctacaggtgt ccactctgag 60
gtccagctgc agcagtctgg acctgagctg gagaagcctg gcgccttcagt gaagctatcc
tgcaaggctt ctggttactc attcaactggc tacaacatga actgggtgaa acagagccat 120
ggaaagagcc ttgaatggat tgacatatt gateccttact atggtgatac ttcctacaac 180
cagaagttca gggcaaggc cacattgact gtagacaaat cctccagcac agcctacatg 240
cagctcaaga gcctgacatc tgaggactct gcagtttactt actgtgtaaa ggggggttac
tacgggcact ggtacttcga tgtctggggc gcagggacca cggtcaccgt ctcctcagct 360
acaacaacag ccccatctgt ctatcccttg gtcccgccg gatccccgg gctgcaggaa 420
ttcgatatca agcttatcga taccgtcgac ctcgagggg 480
519

<210> 2
<211> 152
<212> PRT
<213> Mus musculus

<400> 2

Met Gly Trp Thr Trp Ile Phe Ile Leu Ile Leu Ser Val Thr Thr Gly
1 5 10 15

Val His Ser Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Glu Lys
20 25 30

Pro Gly Ala Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Ser Phe
35 40 45

Thr Gly Tyr Asn Met Asn Trp Val Lys Gln Ser His Gly Lys Ser Leu
50 55 60

Glu Trp Ile Gly His Ile Asp Pro Tyr Tyr Gly Asp Thr Ser Tyr Asn
65 70 75 80

Gln Lys Phe Arg Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser
85 90 95

Thr Ala Tyr Met Gln Leu Lys Ser Leu Thr Ser Glu Asp Ser Ala Val
100 105 110

Tyr Tyr Cys Val Lys Gly Gly Tyr Tyr Gly His Trp Tyr Phe Asp Val
115 120 125

Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ser Ala Thr Thr Thr Ala
130 135 140

Pro Ser Val Tyr Pro Leu Val Pro
145 150

<210> 3
<211> 435
<212> DNA
<213> Mus musculus

<400> 3

atggacatga gggctcctgc acagattttg ggcttcttgt tgctcttgtt tccaggtacc 60
agatgtgaca tccagatgac ccagtctcca tcctccttat ctgcctctct gggagaaaaga 120
gtcagtctca cttgtcgggc aagtcaggac attggtagta gcttaaactg gtttcagcag 180
ggaccagatg gaactattaa acgcctgatc tacgccacat ccagtttaga ttctggtg 240
ccaaaaaggt tcagtggcag taggtctggg tcagattatt ctctcaccat cagcagcctt 300
gagtctgaag atttttaga ctattactgt ctacaatatg ttagttctcc tcccacgttc 360

ggtgctggga ccaagctgga gctgaaacgg gctgatgctg caccaactgt ctcatcttc 420
ggcgatcc cccgg 435

<210> 4
<211> 144
<212> PRT
<213> Mus musculus

<400> 4

Met Asp Met Arg Ala Pro Ala Gln Ile Leu Gly Phe Leu Leu Leu
1 5 10 15

Phe Pro Gly Thr Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
20 25 30

Leu Ser Ala Ser Leu Gly Glu Arg Val Ser Leu Thr Cys Arg Ala Ser
35 40 45

Gln Asp Ile Gly Ser Ser Leu Asn Trp Leu Gln Gln Gly Pro Asp Gly
50 55 60

Thr Ile Lys Arg Leu Ile Tyr Ala Thr Ser Ser Leu Asp Ser Gly Val
65 70 75 80

Pro Lys Arg Phe Ser Gly Ser Arg Ser Gly Ser Asp Tyr Ser Leu Thr
85 90 95

Ile Ser Ser Leu Glu Ser Glu Asp Phe Val Asp Tyr Tyr Cys Leu Gln
100 105 110

Tyr Val Ser Ser Pro Pro Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
115 120 125

Lys Arg Ala Asp Ala Ala Pro Thr Val Phe Ile Phe Gly Arg Ile Pro
130 135 140

<210> 5
<211> 783
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC OLIGONUCLEOTIDE

<400> 5

gcccagccgg	ccatggccga	ggtgcagctg	gtggagtctg	ggggaggcgt	ggtcagcct	60
gggaggtccc	tgagactctc	ctgtgcagcc	tctggattca	ccttcagtag	ctatggcatg	120
cactgggtcc	gccaggctcc	aggcaagggg	ctggagtggg	tggcagttat	atcatatgtat	180
ggaagtaata	aatactatgc	agactccgtg	aaggccgat	tcaccatctc	cagagacaat	240
tccaagaaca	cgctgttatct	gcaaatgaac	agcctgagag	ctgaggacac	ggccgtgtat	300
tactgtgcaa	gattgcatgc	tcagacttgg	ggccaaggta	ccctggcac	cgtctcgagt	360
ggtggaggcg	gttcaggcgg	aggtggctct	ggcggttagt	cacttcagtc	tgtgctgacg	420
cagccgcctt	cagtgtctgc	ggccccagga	cagaaggtca	ccatctcctg	ctctggaagc	480
agctccgaca	tgggaattta	tgcggtatcc	tggtaccagc	agctcccagg	aacagcccc	540
aaactcctca	tctatgaaaa	taataagcga	ccctcaggga	ttcctgaccg	attctctggc	600
tccaagtctg	gcacctcagc	caccctggc	atcaactggcc	tctggcctga	ggacgaggcc	660
gattattact	gcttagcatg	ggataccagc	ccgcggaatg	tattcggcgg	agggaccaag	720
ctgaccgtcc	tagtgcgcc	cgcacatcat	catcaccatc	acggggccgc	agaacaaaaa	780
ctc						783

<210> 6
 <211> 261
 <212> PRT
 <213> ARTIFICIAL SEQUENCE

<220>
 <223> POLYPEPTIDE

<400> 6

Ala	Gln	Pro	Ala	Met	Ala	Glu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly
1				5				10					15		

Val	Val	Gln	Pro	Gly	Arg	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly
		20				25				30					

Phe	Thr	Phe	Ser	Ser	Tyr	Gly	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly
35					40						45				

Lys	Gly	Leu	Glu	Trp	Val	Ala	Val	Ile	Ser	Tyr	Asp	Gly	Ser	Asn	Lys
	50				55				60						

Tyr	Tyr	Ala	Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn
65					70			75			80				

Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
85 90 95

Thr Ala Val Tyr Tyr Cys Ala Arg Leu His Ala Gln Thr Trp Gly Gln
100 105 110

Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly
115 120 125

Gly Ser Gly Gly Ser Ala Leu Gln Ser Val Leu Thr Gln Pro Pro Ser
130 135 140

Val Ser Ala Ala Pro Gly Gln Lys Val Thr Ile Ser Cys Ser Gly Ser
145 150 155 160

Ser Ser Asp Met Gly Asn Tyr Ala Val Ser Trp Tyr Gln Gln Leu Pro
165 170 175

Gly Thr Ala Pro Lys Leu Leu Ile Tyr Glu Asn Asn Lys Arg Pro Ser
180 185 190

Gly Ile Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Thr
195 200 205

Leu Gly Ile Thr Gly Leu Trp Pro Glu Asp Glu Ala Asp Tyr Tyr Cys
210 215 220

Leu Ala Trp Asp Thr Ser Pro Arg Asn Val Phe Gly Gly Thr Lys
225 230 235 240

Leu Thr Val Leu Gly Ala Ala Ala His His His His His Gly Ala
245 250 255

Ala Glu Gln Lys Leu
260

<210> 7
<211> 20
<212> PRT
<213> Homo sapiens

<400> 7

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
1 5 10 15

Ser Thr Ser Gly
20

<210> 8
<211> 15
<212> PRT
<213> Homo sapiens

<400> 8

Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser
1 5 10 15

<210> 9
<211> 19
<212> PRT

<213> Streptomyces cinnamoneus

<220>
<221> MISC_FEATURE
<222> (11)..(18)
<223> Xaa = Abu

<400> 9

Ala Lys Gln Ala Ala Ala Phe Gly Pro Phe Xaa Phe Val Ala Asp Gly
1 5 10 15

Asn Xaa Lys

4001.003082.ST25
SEQUENCE LISTING

<110> Thorpe, Philip E.
Ran, Sophia

<120> Selected Antibody Compositions and Methods for Binding to Aminophospholipids

<130> 4001.003082

<140> US 10/620,850

<141> 2003-07-15

<150> 60/396,263

<151> 2002-07-15

<150> 09/613,430

<151> 2000-07-10

<160> 9

<170> PatentIn version 3.1

<210> 1

<211> 519

<212> DNA

<213> Mus musculus

<400> 1
atgggatgga cctggatctt tatttaatc ctgtcagtaa ctacaggtgt ccactctgag 60
gtccagctgc agcagtctgg acctgagctg gagaaggcctg gcgcctcagt gaagctatcc
tgcaaggctt ctggttactc attcaactggc tacaacatga actgggtgaa acagagccat 120
ggaaagagcc ttgaatggat tggacatatt gatccttact atggtgatac ttcctacaac 180
cagaagttca ggggcaaggc cacattgact gtagacaaat cctccagcac agcctacatg 240
cagctcaaga gcctgacatc tgaggactct gcagtctatt actgtgtaaa ggggggttac 300
tacgggcact ggtacttcga tgtctgggc gcagggacca cggtcaccgt ctccctcagct 360
acaacaacag ccccatctgt ctatcccttg gtccccggcg gatccccgg gctgcaggaa 420
ttcgatatca agcttatcga taccgtcgac ctcgagggg 480
519

<210> 2
<211> 152
<212> PRT
<213> Mus musculus

<400> 2

Met Gly Trp Thr Trp Ile Phe Ile Leu Ile Leu Ser Val Thr Thr Gly
1 5 10 15

Val His Ser Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Glu Lys
20 25 30

Pro Gly Ala Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Ser Phe
Page 1

35

40

4001.003082.ST25

45

Thr Gly Tyr Asn Met Asn Trp Val Lys Gln Ser His Gly Lys Ser Leu
50 55 60

Glu Trp Ile Gly His Ile Asp Pro Tyr Tyr Gly Asp Thr Ser Tyr Asn
65 70 75 80

Gln Lys Phe Arg Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser
85 90 95

Thr Ala Tyr Met Gln Leu Lys Ser Leu Thr Ser Glu Asp Ser Ala Val
100 105 110

Tyr Tyr Cys Val Lys Gly Gly Tyr Tyr Gly His Trp Tyr Phe Asp Val
115 120 125

Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ser Ala Thr Thr Thr Ala
130 135 140

Pro Ser Val Tyr Pro Leu Val Pro
145 150

<210> 3

<211> 435

<212> DNA

<213> Mus musculus

<400> 3

atggacatga gggctcctgc acagatttg ggcttcttgt tgctcttgtt tccaggtacc 60

agatgtgaca tccagatgac ccagtctcca tcctccttat ctgcctctct gggagaaaaga 120

gtcagtctca cttgtcgggc aagtcaggac attggtagta gcttaaactg gcttcagcag 180

ggaccagatg gaactattaa acgcctgatc tacgccacat ccagtttaga ttctgggtc 240

cccaaaaggt tcagtggcag taggtctggg tcagattatt ctctcaccat cagcagcctt 300

gagtctgaag atttttaga ctattactgt ctacaatatg ttagttctcc tcccacgttc 360

ggtgctggga ccaagctgga gctgaaacgg gctgatgctg caccaactgt cttcatttc 420

gggcggatcc cccgg 435

<210> 4

<211> 144

<212> PRT

<213> Mus musculus

<400> 4

Met Asp Met Arg Ala Pro Ala Gln Ile Leu Gly Phe Leu Leu Leu Leu
1 5 10 15

4001.003082.ST25

Phe Pro Gly Thr Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
20 25 30

Leu Ser Ala Ser Leu Gly Glu Arg Val Ser Leu Thr Cys Arg Ala Ser
35 40 45

Gln Asp Ile Gly Ser Ser Leu Asn Trp Leu Gln Gln Gly Pro Asp Gly
50 55 60

Thr Ile Lys Arg Leu Ile Tyr Ala Thr Ser Ser Leu Asp Ser Gly Val
65 70 75 80

Pro Lys Arg Phe Ser Gly Ser Arg Ser Gly Ser Asp Tyr Ser Leu Thr
85 90 95

Ile Ser Ser Leu Glu Ser Glu Asp Phe Val Asp Tyr Tyr Cys Leu Gln
100 105 110

Tyr Val Ser Ser Pro Pro Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
115 120 125

Lys Arg Ala Asp Ala Ala Pro Thr Val Phe Ile Phe Gly Arg Ile Pro
130 135 140

<210> 5
<211> 783
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC OLIGONUCLEOTIDE

<400> 5
gccccagccgg ccatggccga ggtgcagctg gtggagtctg ggggaggcgt ggtccagcct 60
gggaggtccc ttagactctc ctgtcagcc tctggattca ctttcagtag ctatggcatg 120
caactgggtcc gccaggctcc aggcaagggg ctggagtggg tggcagttat atcatatgat 180
ggaagtaata aatactatgc agactccgtg aagggccat tcaccatctc cagagacaat 240
tccaagaaca cgctgttatct gcaaatttgcac agcctgagag ctgaggacac ggccgttat 300
tactgtgcaa gattgcatttgc tcagacttgg ggccaaaggta ccctggtcac cgtctcgagt 360
ggtgtggaggcg gttcaggcgg aggtggctct ggcggtagtg cacttcagtc tgtgctgacg 420
cagccgcctt cagtgtctgc ggccccagga cagaaggta ccatctcctg ctctggaaagc 480
agctccgaca tggggaaatta tgccgtatcc tggtaccagc agctcccagg aacagcccc 540
aaactcctca tctatgaaaa taataagcga ccctcaggga ttccctgaccg attctctggc 600

4001.003082.ST25
tccaaagtctg gcacacctcagc caccctgggc atcaactggcc tctggcctga ggacgaggcc 660
gattattact gcttagcatg ggataccagc ccgcggaatg tattcggcgg agggaccaag 720
ctgaccgtcc taggtgcggc cgcacatcat catcaccatc acggggccgc agaacaaaaa 780
ctc 783

<210> 6
<211> 261
<212> PRT
<213> ARTIFICIAL SEQUENCE

<220>
<223> POLYPEPTIDE

<400> 6

Ala Gln Pro Ala Met Ala Glu Val Gln Leu Val Glu Ser Gly Gly Gly
1 5 10 15

Val Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
20 25 30

Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly
35 40 45

Lys Gly Leu Glu Trp Val Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys
50 55 60

Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn
65 70 75 80

Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
85 90 95

Thr Ala Val Tyr Tyr Cys Ala Arg Leu His Ala Gln Thr Trp Gly Gln
100 105 110

Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly
115 120 125

Gly Ser Gly Gly Ser Ala Leu Gln Ser Val Leu Thr Gln Pro Pro Ser
130 135 140

Val Ser Ala Ala Pro Gly Gln Lys Val Thr Ile Ser Cys Ser Gly Ser
145 150 155 160

Ser Ser Asp Met Gly Asn Tyr Ala Val Ser Trp Tyr Gln Gln Leu Pro
165 170 175

4001.003082.ST25
Gly Thr Ala Pro Lys Leu Leu Ile Tyr Glu Asn Asn Lys Arg Pro Ser
180 185 190

Gly Ile Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Thr
195 200 205

Leu Gly Ile Thr Gly Leu Trp Pro Glu Asp Glu Ala Asp Tyr Tyr Cys
210 215 220

Leu Ala Trp Asp Thr Ser Pro Arg Asn Val Phe Gly Gly Gly Thr Lys
225 230 235 240

Leu Thr Val Leu Gly Ala Ala Ala His His His His His Gly Ala
245 250 255

Ala Glu Gln Lys Leu
260

<210> 7
<211> 20
<212> PRT
<213> Homo sapiens

<400> 7

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
1 5 10 15

Ser Thr Ser Gly
20

<210> 8
<211> 15
<212> PRT
<213> Homo sapiens

<400> 8

Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser
1 5 10 15

<210> 9
<211> 19
<212> PRT
<213> Streptomyces cinnamoneus

<220>
<221> MISC_FEATURE
<222> (11)..(18)
<223> Xaa = Abu

<400> 9

4001.003082.ST25

Ala Lys Gln Ala Ala Ala Phe Gly Pro Phe Xaa Phe Val Ala Asp Gly
1 5 10 15

Asn Xaa Lys

SEQUENCE LISTING

<110> Thorpe, Philip E.
Ran, Sophia

<120> Selected Antibody Compositions and Methods for Binding to
Aminophospholipids

<130> 4001.003082

<140> US 10/620,850
<141> 2003-07-15

<150> 60/396,263
<151> 2002-07-15

<150> 09/613,430
<151> 2000-07-10

<160> 9

<170> PatentIn version 3.1

<210> 1
<211> 519
<212> DNA
<213> Mus musculus

<400> 1
atgggatgga cctggatctt tatttaatc ctgtcagtaa ctacaggtgt ccactctgag 60
gtccagctgc agcagtcctgg acctgagctg gagaagcctg gcgcctcagt gaagctatcc 120
tgcaaggctt ctggttactc attcaactggc tacaacatga actgggtgaa acagagccat 180
ggaaagagcc ttgaatggat tggacatatt gatccttact atggtgatac ttcctacaac 240
cagaagttca ggggcaaggc cacattgact gtagacaaat cctccagcac agcctacatg 300
cagctcaaga gcctgacatc tgaggactct gcagtcattt actgtgtaaa ggggggttac 360
tacgggcact ggtacttcga tgtctgggc gcagggacca cggtcaccgt ctcctcagct 420
acaacaacag ccccatctgt ctatcccttg gtcccgccg gatccccgg gctgcaggaa 480
ttcgatatca agcttatcga taccgtcgac ctcgagggg 519

<210> 2
<211> 152
<212> PRT
<213> Mus musculus

<400> 2

Met Gly Trp Thr Trp Ile Phe Ile Leu Ile Leu Ser Val Thr Thr Gly
1 5 10 15

Val His Ser Glu Val Gln Leu Gln Ser Gly Pro Glu Leu Glu Lys
20 25 30

Pro Gly Ala Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Ser Phe
35 40 45

Thr Gly Tyr Asn Met Asn Trp Val Lys Gln Ser His Gly Lys Ser Leu
50 55 60

Glu Trp Ile Gly His Ile Asp Pro Tyr Tyr Gly Asp Thr Ser Tyr Asn
65 70 75 80

Gln Lys Phe Arg Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser
85 90 95

Thr Ala Tyr Met Gln Leu Lys Ser Leu Thr Ser Glu Asp Ser Ala Val
100 105 110

Tyr Tyr Cys Val Lys Gly Gly Tyr Tyr Gly His Trp Tyr Phe Asp Val
115 120 125

Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ser Ala Thr Thr Thr Ala
130 135 140

Pro Ser Val Tyr Pro Leu Val Pro
145 150

<210> 3
<211> 435
<212> DNA
<213> Mus musculus

<400> 3

atggacatga	gggctcctgc	acagattttg	ggcttcttgt	tgctcttgtt	tccaggtacc	60
agatgtgaca	tccagatgac	ccagtctcca	tcctccttat	ctgcctctct	gggagaaaaga	120
gtcagtctca	cttgtcgggc	aagtcaaggac	attggtagta	gcttaaactg	gcttcagcag	180
ggaccagatg	gaactattaa	acgcctgate	tacgccacat	ccagtttaga	ttctgggtgc	240
cccaaaaggt	tcaagtggcag	taggtctggg	tcagattatt	ctctcaccat	cagcagcctt	300
gagtctgaag	atttttaga	ctattactgt	ctacaatatg	ttagttctcc	tcccacgttc	360

ggtgctggga ccaagctgga gctgaaacgg gctgatgctg caccaactgt cttcatcttc 420
gggcggatcc cccgg 435

<210> 4
<211> 144
<212> PRT
<213> Mus musculus

<400> 4

Met Asp Met Arg Ala Pro Ala Gln Ile Leu Gly Phe Leu Leu Leu Leu
1 5 10 15

Phe Pro Gly Thr Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
20 25 30

Leu Ser Ala Ser Leu Gly Glu Arg Val Ser Leu Thr Cys Arg Ala Ser
35 40 45

Gln Asp Ile Gly Ser Ser Leu Asn Trp Leu Gln Gln Gly Pro Asp Gly
50 55 60

Thr Ile Lys Arg Leu Ile Tyr Ala Thr Ser Ser Leu Asp Ser Gly Val
65 70 75 80

Pro Lys Arg Phe Ser Gly Ser Arg Ser Gly Ser Asp Tyr Ser Leu Thr
85 90 95

Ile Ser Ser Leu Glu Ser Glu Asp Phe Val Asp Tyr Tyr Cys Leu Gln
100 105 110

Tyr Val Ser Ser Pro Pro Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
115 120 125

Lys Arg Ala Asp Ala Ala Pro Thr Val Phe Ile Phe Gly Arg Ile Pro
130 135 140

<210> 5
<211> 783
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC OLIGONUCLEOTIDE

<400> 5

gcccagccgg ccatggccga ggtgcagctg gtggagtctg ggggaggcgt ggtccagcct	60
gggaggtccc tgagactctc ctgtgcagcc tctggattca ctttcagtag ctatggcatg	120
cactgggtcc gccaggctcc aggcaagggg ctggagtggg tggcagttat atcatatgtat	180
ggaagtaata aatactatgc agactccgtg aaggccgtat tcaccatctc cagagacaat	240
tccaagaaca cgctgttatct gcaaataatgaac agcctgagag ctgaggacac ggccgtgtat	300
tactgtgcaa gattgcatgc tcagacttgg gcacaaggta ccctggcac cgtctcgagt	360
ggtggaggcg gttcaggcgg aggtggctct ggccgttagtg cacttcagtc tgtgctgacg	420
cagccgcctt cagtgtctgc ggccccagga cagaaggta ccatctcctg ctctggaagc	480
agctccgaca tggggaaatta tgcggtatcc tggtaaccaggc agctcccagg aacagcccc	540
aaactcctca tctatgaaaa taataagcga ccctcaggta ttccctgaccg attctctggc	600
tccaaagtctg gcacacctcagc caccctggc atcaactggcc tctggcctga ggacgaggcc	660
gattattact gcttagcatg ggataccaggc ccgcggaatg tattcggcgg agggaccaag	720
ctgaccgtcc taggtgcggc cgcacatcat catcaccatc acggggccgc agaacaaaaa	780
ctc	783

<210> 6
<211> 261
<212> PRT
<213> ARTIFICIAL SEQUENCE

<220>
<223> POLYPEPTIDE

<400> 6

Ala Gln Pro Ala Met Ala Glu Val Gln Leu Val Glu Ser Gly Gly Gly
1 5 10 15

Val Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
20 25 30

Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly
35 40 45

Lys Gly Leu Glu Trp Val Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys
50 55 60

Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn
65 70 75 80

Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
85 90 95

Thr Ala Val Tyr Tyr Cys Ala Arg Leu His Ala Gln Thr Trp Gly Gln
100 105 110

Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly
115 120 125

Gly Ser Gly Gly Ser Ala Leu Gln Ser Val Leu Thr Gln Pro Pro Ser
130 135 140

Val Ser Ala Ala Pro Gly Gln Lys Val Thr Ile Ser Cys Ser Gly Ser
145 150 155 160

Ser Ser Asp Met Gly Asn Tyr Ala Val Ser Trp Tyr Gln Gln Leu Pro
165 170 175

Gly Thr Ala Pro Lys Leu Leu Ile Tyr Glu Asn Asn Lys Arg Pro Ser
180 185 190

Gly Ile Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Thr
195 200 205

Leu Gly Ile Thr Gly Leu Trp Pro Glu Asp Glu Ala Asp Tyr Tyr Cys
210 215 220

Leu Ala Trp Asp Thr Ser Pro Arg Asn Val Phe Gly Gly Gly Thr Lys
225 230 235 240

Leu Thr Val Leu Gly Ala Ala His His His His His Gly Ala
245 250 255

Ala Glu Gln Lys Leu
260

<210> 7

<211> 20

<212> PRT

<213> Homo sapiens

<400> 7

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
1 5 10 15

Ser Thr Ser Gly
20

<210> 8
<211> 15
<212> PRT
<213> Homo sapiens

<400> 8

Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser
1 5 10 15

<210> 9
<211> 19
<212> PRT
<213> Streptomyces cinnamoneus

<220>
<221> MISC_FEATURE
<222> (11)..(18)
<223> Xaa = Abu

<400> 9

Ala Lys Gln Ala Ala Ala Phe Gly Pro Phe Xaa Phe Val Ala Asp Gly
1 5 10 15

Asn Xaa Lys