LOGISTIC REGRESSION

Logistic regression

- Logistic regression (tạm dịch là Hồi quy logistic) là một thuật toán máy học thường được dùng trong tác vụ phân lớp (classification).
- Mục tiêu của logistic regression là ước lượng (estimate) xác suất của một điểm dữ liệu rơi vào một lớp cụ thể.
- Điểm khác biệt giữa logistic regression và linear regression là đầu ra của logistic regression được đưa qua một hàm logit thay vì đưa ra giá trị trực tiếp..

Mô hình logistic regression

— Mô hình của logistic regression như sau:

$$\hat{\mathbf{p}} = \sigma(\theta^{\mathrm{T}} \cdot \mathbf{x})$$

 $\sigma = \frac{1}{1+e^{-x}}$ được gọi là hàm số sigmoid. Giá trị hàm sigmoid trong

khoảng [0,1].

Giá trị dự đoán p như sau:

$$\hat{p} = \begin{cases} 0 \text{ n\'eu } \hat{p} < 0.5 \\ 1 \text{ n\'eu } \hat{p} \ge 0.5 \end{cases}$$

Minh hoạ hàm sigmoid

$\acute{\mathbf{Y}}$ nghĩa của \widehat{p}

- p̂ được gọi là xác suất để 1 điểm dữ liệu x rơi vào 1 lớp c.
- Xét bài toán phân lớp nhị phân, sẽ có 2 lớp 0 và 1. Do đó

$$P(y=1 \mid x, \theta) = \hat{p} = \sigma(\theta^T \cdot x)$$

$$P(y=0 \mid x, \theta) = 1 - \hat{p} = 1 - \sigma(\theta^{T} \cdot x)$$

Xây dựng hàm mất mát

- Xét bài toán phân lớp nhị phân gồm 2 lớp: 0 và 1.
- Mục tiêu của huấn luyện: tìm ra bộ tham số θ để tìm ra xác suất lớn nhất mà một điểm dữ liệu thuộc về một lớp cụ thể.

$$c(\boldsymbol{\theta}) = \begin{cases} -\log(\hat{\mathbf{p}}), & \text{if } y = 1\\ -\log(1 - \hat{\mathbf{p}}), & \text{if } y = 0 \end{cases}$$

Ý nghĩa:

Nếu y = 1, nhưng $\hat{p} \approx 0 => loss sẽ rất lớn.$

Nếu y = 1 và $\hat{p} \approx 1 => loss sẽ rất nhỏ.$

(tương tự đối với y = 0)

Xây dựng hàm mất mát

— Hàm mất mất tổng cộng cho cả 2 lớp được mô tả như sau:

$$\mathcal{L}(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log(\hat{p}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{p}^{(i)}) \right]$$

Mục tiệu: $\theta^* = \operatorname{argmin}_{\theta}(\mathcal{L}(\theta))$

Tính đạo hàm của $\mathcal L$ theo heta

$$\frac{\partial \mathcal{L}}{\partial \theta_{j}} = \frac{1}{m} \sum_{i=1}^{m} \left(\sigma(\theta^{T} x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

Ký hiệu (notation):

- x⁽ⁱ⁾: vector đặc trưng điểm dữ liệu thứ i trong bộ dữ liệu.
- m: số lượng điểm dữ liệu.
- y⁽ⁱ⁾: giá trị của điểm dữ liệu thứ i trong bộ dữ liệu.
- j: đặc trưng thứ j trong bộ dữ liệu.

Để tìm cực trị của $\mathcal{L} \rightarrow$ sử dụng Gradient descent (sẽ học sau).

Tìm cực trị của hàm mất mát

— Sử dụng Gradient Descent:

```
W := m{	heta}_0 // Khởi tạo trọng số Repeat {  m{	heta} := m{	heta} - \alpha^* \frac{d\mathcal{L}(m{	heta},b)}{dm{	heta}}  }
```

— Vector gradient của θ được tính như sau:

$$\frac{d\mathcal{L}(\boldsymbol{\theta})}{d\boldsymbol{\theta}} = \frac{1}{m} X^T (\hat{y} - y)$$

Minh hoạ

- Bộ dataset Iris (https://archive.ics.uci.edu/ml/datasets/iris) chứa thông tin về độ dài (length) và độ rộng (width) của cánh hoa (petal) và đài hoa (sepal) của hơn 150 loài hoa iris.
- Bài toán đặt ra: dựa vào thuộc tính độ rộng của cánh hoa (sepal width), dự đoán xem hoa đó có thuộc loài Iris-Virginica hay không?
 - + Đầu vào: petal width features.
 - + Đầu ra:
 - 1 thuộc loài Iris-Virginica
 - 0 không thuộc loài Iris-Virginica

Iris dataset

Iris

ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3.0	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5.0	3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8	5.0	3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	4.9	3.1	1.5	0.1	Iris-setosa
11	5.4	3.7	1.5	0.2	Iris-setosa
12	4.8	3.4	1.6	0.2	Iris-setosa
13	4.8	3.0	1.4	0.1	Iris-setosa
14	4.3	3.0	1.1	0.1	Iris-setosa
15	5.8	4.0	1.2	0.2	Iris-setosa
16	5.7	4.4	1.5	0.4	Iris-setosa

Chuẩn bị dữ liệu

Bộ dữ liệu Iris được hỗ trợ sẵn bởi sklearn.

```
from sklearn import datasets
iris = datasets.load_iris()
```

– Lấy thuộc tính petal width:

```
X = iris["data"][:, 3:]
```

 Thuộc tính đích: giá tri 0 nếu như không phải là Iris-Virginica và giá trị 1 nếu như là Iris-Virginica.

```
y = (iris["target"] == 2).astype(np.int)
```

Xây dựng mô hình

 Xây dựng mô hình Logistic Regression từ dữ liệu huấn luyện (X,y).

```
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X, y)
```

Dự đoán dữ liệu mới X_new

— Tạo dữ liệu mới X_new:

```
X_{new} = np.linspace(0, 3, 1000).reshape(-1, 1)
```

Dự đoán giá trị cho dữ liệu mới:

```
y_proba = log_reg.predict_proba(X_new)
```

— Trực quan hoá dữ liệu:

```
plt.plot(X_new, y_proba[:, 1], "g-",label="Iris-Virginica")
plt.plot(X new, y proba[:, 0], "b--",label="Not Iris-Virginica")
```

Decision boundary

– Lấy giá trị decision_boundary:

decision_boundary = X_new[y_proba[:, 1] >= 0.5][0]

- Nếu petal_length trên 1.6,
 mô hình sẽ dự đoán là
 Iris-Virginica.
- Nếu petal_length dưới
 1.6, mô hình sẽ dự đoán
 không phải là Iris-Virginica

Dự đoán

Dự đoán nhãn cho 2 giá trị petal_length: 1.7 và 1.5

```
log_reg.predict([[1.7], [1.5]])
```

– Kết quả:

```
array([1, 0])
```

- ➤ Giá trị 1.7 được dự đoán là Iris-Virginica.
- ➤ Giá trị 1.5 được dự đoán không phải là Iris-Virginica.

SOFTMAX REGRESSION

Multi-class classification

- Logistic regression thường được dùng cho bài toán phân lớp nhị phân (binary classification).
- Nếu trên 2 lớp, LR vẫn có thể áp dụng bằng các chiến lược như
 Một với tất cả nhãn còn lại (OvR).
 - + Nhược điểm: n class cần n bộ phân lớp → khá tốn chi phí !!
- Để khắc phục nhược điểm trên, Softmax regression được sử dụng.
 - + Ý tưởng: ước lượng xác suất một điểm dữ liệu thuộc về một lớp trên k lớp (k > 2)

Softmax regression

— Công thức softmax regression:

$$\hat{p}_{k} = \frac{e^{\sigma(\theta_{k}^{T} \cdot x)}}{\sum_{j=1}^{K} e^{\sigma(\theta_{j}^{T} \cdot x)}}$$

- K: số lượng lớp (nhãn)
- k: lớp cụ thể trong tập các lớp (nhãn)
- $\sigma(\theta_k^T \cdot x)$: xác suất ước lượng của 1 điểm dữ liệu thuộc về
- Giá trị dự đoán: nhãn (label) có xác suất ước lượng cao nhất.

$$\hat{\mathbf{y}} = \underset{k}{\operatorname{argmax}}_{k} \left(\theta_{k}^{T} \cdot \mathbf{x} \right)$$

Xây dựng hàm mất mát

— Hàm mất mát cho softmax regression:

$$\mathcal{L}(\theta) = \frac{-1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log \left(\hat{p}_k^{(i)} \right)$$

 $y_k^{(i)}$: xác suất điểm dữ liệu thứ (i) thuộc về lớp k.

— Tính đạo hàm của \mathcal{L} theo θ :

$$\frac{\partial \mathcal{L}}{\partial \theta} = \frac{1}{m} \sum_{i=1}^{m} \left(\hat{p}_k^{(i)} - y_k^{(i)} \right) x^{(i)}$$

Tối ưu *L* → sử dụng Gradient descent.

Minh hoạ với dữ liệu Iris

– Lấy thuộc tính petal_length và petal width:

```
X = iris["data"][:, (2,3)]
```

- Thuộc tính đích: loài hoa iris tương ứng, thuộc 1 trong 3 giá trị như sau:
 - + 0: Iris-setosa
 - + 1: Iris-versicolor
 - + 2: Iris-Virginica

```
y = iris["target"]
```

Xây dựng mô hình

 Sử dụng Logistic regression với các tham số sau: + multi class="multinomial" + solver="lbfgs" + C = 10softmax reg = LogisticRegression(multi class="multinomial", solver="lbfqs", C = 10)

softmax reg.fit(X, y)

Dự đoán

- Dự đoán nhãn cho dữ liệu có giá trị petal_length = 5 và
 petal width = 2.
- Giá trị xác suất dự đoán ứng với từng nhãn:

```
softmax_reg.predict_proba([[5, 2]])
```

Lớp dự đoán: Iris-Virginica (lớp 2)

TÀI LIỆU THAM KHẢO

Chương 4 của sách: Hands-on Machine Learning with ScikitLearn, Keras & TensorFlow.