COMPLEX NETWORKS

LAB03: Community Detection

The three **Community Detection Algorithms** used in this work are the following:

Algorithm 1: Clauset-Newman-Moore Greedy modularity maximization
 c = list(greedy_modularity_communities(G))

It begins with each node in its own community and joins the pair of communities that most increases modularity until no such pair exists.

Networks with high modularity have dense connections between the nodes within modules but sparse connections between nodes in different modules.

Modularity is often used in optimization methods for detecting community structure in networks.

• Algorithm 2: Fluid Communities

```
c = list(asyn fluidc(G, 4, max iter=100))
```

This algorithm is based on the simple idea of fluids interacting in an environment, expanding and pushing each other. It's initialization is random, so found communities may vary on different executions.

It's able to find communities in synthetic graphs with an accuracy close to the current best alternatives, and it's the first propagation-based algorithm capable of identifying a variable number of communities in network.

A k = 4 number of communities to be found, and a number of 100 iterations has been used.

• Algorithm 3: Louvain Method

```
C = G.community_multilevel()
```

Optimizing modularity theoretically results in the best possible grouping of the nodes of a given network, however going through all possible iterations of the nodes into groups is impractical so heuristic algorithms are used.

In this Method, first small communities are found by optimizing modularity locally on all nodes, then each small community is grouped into one node and the first step is repeated.

The method is similar to Clauset, Newman and Moore Algorithm that connects communities whose amalgamation produces the largest increase in modularity.

For the first two ones, the Python library **NetworkX** has been used. For the last one **iGraph** has been used.

To plot the Networks, **Kamada-Kawai** function has been used, except for the airports_UW, where **spring** layout have been used.

The following **measures** have been computed for the Networks with reference partitions compared to the Communities created by the different algorithms. **Radatools** software has been used.

- <u>Jaccard Distance</u>: 1 size of the intersection divided by the size of the union of the sample sets.
- <u>Normalized Mutual Information Index</u>: mutual dependence between the two variables. It quantifies the "amount of information" obtained about one random variable through observing the other random variable.
- <u>Normalized Variation of Information Metric</u>: distance between two clusters. It is a true metric as it obeys the triangle inequality.
- Modularity has been computed for all the partitions. It is a scale value between -1 and 1 that measures the density of edges inside communities to edges outside communities.

The **code** for the calculation of the partitions, the computing of the modularity for each algorithm, and the plotting of the different algorithms applied to each Network can be found in the CN_Lab03_OlgaValls.py file.

Networks

TOY NETWORKS

20x2+5x2

<u>MEASURES</u>	Clauset	Fluid	Louvain
Jaccard Index	0.4348	0.3745	0.9412
Normalized Mutual Information Index (arithmetic)	0.5382	0.4967	0.9383
Normalized Variation Of Information Metric	0.2654	0.3226	0.0354
Modularity	0.5425785462209646	0.4551728997157167	0.5425785462209587

graph3+1+3

<u>MEASURES</u>	Clauset	Fluid	Louvain
Jaccard Index	1.0000	0.3333	1.0000
Normalized Mutual Information Index (arithmetic)	1.0000	0.6713	1.0000
Normalized Variation Of Information Metric	0.0000	0.3437	0.0000
Modularity	0.3671875	0.1015625	0.3671875

graph4+4

<u>MEASURES</u>	Clauset	Fluid	Louvain
Jaccard Index	1.0000	0.3333	1.0000
Normalized Mutual Information Index (arithmetic)	1.0000	0.6667	1.0000
Normalized Variation Of Information Metric	0.0000	0.3333	0.0000
Modularity	0.4428571428571428	0.2346938775510204	0.4230769230769231 3

<u>star</u>

<u>MEASURES</u>	Clauset	Fluid	Louvain
Jaccard Index	1.0000	0.4167	1.0000
Normalized Mutual Information Index (arithmetic)	1.0000	0.0000	1.0000
Normalized Variation Of Information Metric	0.0000	0.4564	0.0000
Modularity	0.0	-0.046875	0.0

MODEL NETWORKS

256 4 4 2 15 18 p

<u>MEASURES</u>	Clauset	Fluid	Louvain
Jaccard Index	0.2498	0.1284	1.0000
Normalized Mutual Information Index (arithmetic)	0.6233	0.3849	1.0000
Normalized Variation Of Information Metric	0.3332	0.4523	0.0000
Modularity	0.7656597969165392	0.6305960306906689	0.7818042125081897

256 4 4 4 13 18 p

<u>MEASURES</u>	Clauset	Fluid	Louvain
Jaccard Index	0.3080	0.2716	0.9048
Normalized Mutual Information Index (arithmetic)	0.4240	0.3128	0.9517
Normalized Variation Of Information Metric	0.2880	0.3381	0.0254
Modularity	0.6967733384846492	0.619992693080448	0.6974188902601712

<u>rb125</u>

MEASURES (with rb125-1 partition)	Clauset	Fluid	Louvain
Jaccard Index	0.5833	0.2667	0.6167
Normalized Mutual Information Index (arithmetic)	0.8284	0.4721	0.8450
Normalized Variation Of Information Metric	0.1381	0.2590	0.1223
Modularity	0.6087328970850735	0.4631052944675827	0.6168970001542905

REAL NETWORKS

airports UW

<u>MEASURES</u>	Clauset	Fluid	Louvain
Modularity	-8.355951990733535e -17	0.301141049976736	0.6919049657372429

cat cortex sim

<u>MEASURES</u>	Clauset	Fluid	Louvain
Jaccard Index	0.2572	0.1685	0.5894
Normalized Mutual Information Index (arithmetic)	0.0000	0.1429	0.6726
Normalized Variation Of Information Metric	0.3341	0.5738	0.1981
Modularity	-3.545599775302562e -17	0.3384118872407228	0.266097341683014

dolphins

<u>MEASURES</u>	Clauset	Fluid	Louvain
Jaccard Index	0.4086	0.4903	0.3631
Normalized Mutual Information Index (arithmetic)	0.3860	0.2878	0.5109
Normalized Variation Of Information Metric	0.2705	0.2975	0.2581
Modularity	0.4954906847039274 3	0.4358807009216394 4	0.5185317036509631

<u>football</u>

<u>MEASURES</u>	Clauset	Fluid	Louvain
Jaccard Index	0.0530	0.0682	0.7004
Normalized Mutual Information Index (arithmetic)	0.1199	0.1052	0.8903
Normalized Variation Of Information Metric	0.7788	0.7223	0.1095
Modularity	0.549740665142672	0.4959043987130234	0.6045695626834572

zachary unwh

<u>MEASURES</u>	Clauset	Fluid	Louvain
Jaccard Index	0.2415	0.2051	0.4754
Normalized Mutual Information Index (arithmetic)	0.0009	0.0194	0.5866
Normalized Variation Of Information Metric	0.4902	0.5534	0.2359
Modularity	0.3806706114398416	0.3396614069690988 6	0.4188034188034188 7

Conclusions

As seen in the previous tables, for most of the Networks, the Louvain Method is the algorithm that performs the best clustering.

The plots show a clear color separation for each of the communities for this algorithm, while for the other two the colors are more mixed (mixed that some nodes are considered from one community while they should belong to another community).

The values for the modularity are also strong for the Clauset-Newman-Moore algorithm, which indicates the relation between the density of edges inside communities to edges outside communities.

Needed to say that for the Fluid algorithm, the number of communities is fixed a priori, and this same k is used for all the Networks of this work. Modifying the k and the number of iterations that this algorithm perform, for a specific Network could result in a better performance than Louvain Method, although some tests should be performed.