Clôtures des reconnaissables

- Rec(X*) et Rec sont closes par
 - union (cf cours 3)
 - produit (cf TD6)
 - étoile (cf cours 5)
 - intersection (cf cours 5 et TD8)
- Rec(X*) est close par
 - complémentation (cf TD5)

Clôture de Rec par étoile (exemple 1)

automate A^e

• autrement dit : On duplique vers l'état initial les transition menant à un état final, puis on prend comme unique état final l'état initial.

Clôture de Rec par étoile (exemple 2)

 A^e

A reconnaît L

Quiz 1 - L'automate A^e reconnaît $L(A)^*$ (autrement dit, $L(A^e) = L(A)^*$) vrai faux

Clôture de Rec par étoile (exemple 2 bis)

standardisé

Clôture de Rec par intersection

• On voit une construction en CM et une autre en TD. Selon les cas, l'une ou l'autre est plus intéressante.

Complexité respective des constructions

• A et B sont deux automates possédant n et p états

	L'automate obtenu à l'issue de la construction possède
union	Quiz - $1 + n + p$ états $n \cdot p$ états
produit	voir en TD
intersection	Quiz - $1 + n + p$ états $n \cdot p$ états
standardisation (de A)	Quiz - 1 + n états 2 . n états
étoile (de A)	Quiz - n états n + 1 états
complétion (de A)	Quiz - n états n + 1 états
déterminisation (de A)	Quiz - 2.n états 2 n états
complémentation (de A)	voir en TD

Le lemme de l'étoile

- Si L est un langage reconnaissable, il existe un entier N>0 tel que tout mot f de L de longueur supérieure ou égale à N se décompose en f=α.u.β avec
 - $-u \neq \varepsilon$
 - pour tout entier n≥0, $\alpha.u^n.\beta \in L$.
- autrement dit : Si L est un langage reconnaissable, il existe un entier N>0 tel que tout mot f de L de longueur supérieure ou égale à N se décompose en f=α.u.β avec
 - $u \neq \varepsilon$
 - $-\{\alpha\}.\{u\}^*.\{\beta\}\subseteq L.$

D'où le nom de ce lemme!

Formalisation du lemme de l'étoile

• si $L \subseteq X$ *est reconnaissable, alors

$$(\exists N > 0) \quad (\forall f \in X^*)$$

$$[(f \in L \land | f | \ge N) \Rightarrow$$

$$(\exists \alpha \in X^*) (\exists u \in X^*) (\exists \beta \in X^*)$$

$$(f = \alpha. u . \beta \land u \ne \epsilon \land ((\forall n \ge 0) \alpha. u^n. \beta \in L))]$$

Forme contraposée du lemme de l'étoile

• si on peut établir que

$$(\forall N > 0) \quad (\exists f \in X^*) \left[(f \in L \land | f | \ge N) \land \right]$$

$$(\forall \alpha \in X^*) (\forall u \in X^*) (\forall \beta \in X^*)$$

$$((f = \alpha. \ u . \beta \land u \ne \epsilon) \Longrightarrow ((\exists \ n \ge 0) \quad \alpha. \ u^n. \beta \not\in L)) \right]$$

alors L n'est pas reconnaissable

• en remarquant que

$$\neg (p \Rightarrow q)$$
 équivaut à $p \land \neg q$
 $\neg ((a \land b) \land c)$ équivaut à $(a \land b) \Rightarrow \neg c$

Applications du lemme de l'étoile

• $\{a^nb^n / n \ge 0\}$ n'est pas reconnaissable

• $\{f \in \{a,b\}^* / |f|_a = |f|_b \}$ n'est pas reconnaissable bien qu'il vérifie les hypothèses du lemme

Quiz 1 - $\{a^n b^p / n \ge p\}$ est reconnaissable vrai faux

Quiz 2 - $\{(ab)^n / n \ge 0\}$ est reconnaissable vrai faux