Photogrammetry & Robotics Lab

Machine Learning for Robotics and Computer Vision

Beyond Supervised Learning

Jens Behley

Last Lecture

- Fine-grained scene understanding:
 - Semantic Segmentation
 - Instance Segmentation
 - Panoptic Segmentation
- Discussed common, popular approaches for segmentation in these domains.

Data, data, data

- Deep learning brought astonishing progress in visual perception
- Supervised learning on large annotated datasets made progress possible

Labeling data is expensive

- Labeling data is tedious and expensive
- Examples
 - Cityscapes: ~1.5 h per image → 7500 h/312 days for 5k images
 - Mapillary Vistas: ~1.5 h per image → 4.2 years for 25k images
 - MS COCO: 22k h (category labeling) + 10k h (instance spotting) + 26k h (instance segmentation*) → 6.6 years
- Not included: Validation of annotations!

Large datasets needed?

- Capacity of deep neural networks very large (millions of parameters)
- Commonly: More parameters = more training data
- Question: Do we always need first to invest lot of time and money to get labeled data?
- Answer: No!

Pre-training & Fine-tuning

Stage 1: Pre-training (ImageNet)

Stage 2: Fine-tuning (Targeted dataset)

- Idea: Take weights from ImageNet and train only part of the network for novel task/dataset
- Training with pre-trained weights is faster and less data intensive!

Pre-training on different tasks

- ImageNet pre-trained features (with a bit data augmentation) performs well over a wide range of vision tasks
- Surprisingly beats consistently "traditional" stateof-the-art methods

Pre-training vs. Random Init

- Example: Pascal VOC Classification, Detection, and Segmentation with same CNN backbone (AlexNet)
- Strong results of ImageNet pre-training vs. models trained "from scratch" on smaller dataset!

Pre-training vs. Random Init

- ImageNet pre-training speeds up convergence
- But: ImageNet pre-training not necessarily leads to better performance in the end
- Requirement: Enough target data + time available

Influence of CNN Architecture

- Study on 16 architectures and performance on 12 target datasets
- Takeaway: Better performance on ImageNet leads to better transfer to other datasets!

Domain/Modality Gap

- But performance usually degrades when features not specifically learned for the task or data
- Domain gap: ImageNet → Satellite, Medical images
- Modality gap: RGB vs. RGB-D vs. Hyperspectral Cameras
- So we are back at labeling lots of data?

Pre-text Tasks

- Pre-train networks with other task, where it's easy to generate data
 - → Self-supervised learning
- Idea: Learn good representation of data (say features) that can be exploited

Common Pre-text Tasks

$$X = (V, V); Y = 3$$

- Predict relative position of image patches
- Predict ordering of Jigsaw
- Predict rotation of images
- Common: Features must capture visual information

Prospect of Self-Supervision

- Pre-text tasks or self-supervised pre-training leads to more data-efficient learning
- Learn more generalizable models with fewer labels

Contrastive Learning

 Idea: Learn representations such that similar examples (positives) are closer than representations of different examples (negatives)

How to get examples?

- Common way to get positive and negatives is to use random augmentations (e.g., crop, color distortion, etc.)
- Other augmented pairs are negatives

Contrastive Loss

- Given a set of N representations $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\},\mathbf{x}_i\in\mathbb{R}^D$
- Let i_+ be the positive example of the i-th representation.
- The (temperature-scaled) contrastive loss for the i-th example:

$$\ell_i = -\log \frac{\exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_{i_+})/\tau)}{\sum_{k \neq i} \exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_k)/\tau)}$$

where τ is a hyperparameter called temperature.

• Commonly: $sim(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u}^{\top} \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$ (cosine similarity)

SimCLR

- Idea: Learn representations by finding agreement between projected features
- Compute contrastive loss over projections/latents z
- Projection $g(\cdot)$ via FC \rightarrow ReLU \rightarrow FC

[Chen, 2020] 18

Augmentations

- Various simple image augmentations investigated
- Combinations of multiple augmentations key for good performance

Augmentations matter

 Augmentations should be large enough to learn good similarity (corresponding to class similarity)

Crop and color augmentation most important

20

How much augmentation?

- Right amount of data augmentation crucial for downstream-task
- Too much augmentation removes task-relevant information, too less augmentation keeps irrelevant information

Batch Size = Negative Examples

 SimCLR benefits from large batch sizes (e.g., N=4096) and long training (T=1000)

Momentum Contrast (MoCo)

- Large batch sizes might be a problem
- Momentum Contrast (MoCo) solves this by separate encoder and momentum encoder
- Only encoder part is updated via backpropagation!
- Queue of negative examples that can be larger than batch size

23

Momentum Encoder

• Only updated with weighted average between parameters of encoder θ_q and parameters of momentum encoder θ_k :

$$\theta_k \leftarrow m\theta_k + (1-m)\theta_q$$

Typically, large values (e.g., m = 0.999) better
then smaller values (e.g., m = 0.9)
[He, 2020]

MoCo V2

		ImageNet							
case	MLP	aug+	cos	epochs	batch	acc.			
MoCo v1 [6]				200	256	60.6			
SimCLR [2]	✓	✓	✓	200	256	61.9			
SimCLR [2]	✓	✓	✓	200	8192	66.6			
MoCo v2	√	✓	✓	200	256	67.5			
results of longer unsupervised training follow:									
SimCLR [2]	✓	✓	✓	1000	4096	69.3			
MoCo v2	✓	✓	✓	800	256	71.1			

Improvements inspired by of SimCLR:

- 1. Use projection head (FC->ReLU->FC)
- 2. Stronger data augmentation
- 3. Hyperparameter search for temperature

Boostrap your own latent (BYOL)

- Augmented views are passed through online and target network
- Online network predicts output of the target network
- Important: There are no negative examples involved!

BYOL training and update

• Loss measures difference between prediction $q(z_{\theta})$ and output of target network z'_{ξ} :

$$\ell = \left\| \frac{q(z_{\theta})}{\|q(z_{\theta})\|_{2}} - \frac{z_{\xi}'}{\|z_{\xi}'\|_{2}} \right\|_{2}^{2} = 2 - 2 \cdot \frac{q(z_{\theta})^{\top} z_{\xi}'}{\|q(z_{\theta})\|_{2} \|z_{\xi}'\|_{2}}$$

- Only online network is directly updated via backpropagation
- Target network parameters ξ are updated via momentum:

$$\xi \leftarrow m\xi + (1-m)\theta$$

Comparison on ImageNet

- Results for ResNet50 with different widths (=number of channels), e.g., 2x, 4x
- BYOL approaches supervised training

Transfer learning

Method	Food101	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation:												
BYOL (ours)	75.3	91.3	78.4	57.2	62.2	67.8	60.6	82.5	75.5	90.4	94.2	96.1
SimCLR (repro)	72.8	90.5	74.4	42.4	60.6	49.3	49.8	81.4	75.7	84.6	89.3	92.6
SimCLR [8]	68.4	90.6	71.6	37.4	58.8	50.3	50.3	80.5	74.5	83.6	90.3	91.2
Supervised-IN [8]	72.3	93.6	78.3	53.7	61.9	66.7	61.0	82.8	74.9	91.5	94.5	94.7
Fine-tuned:												
BYOL (ours)	88.5	97.8	86.1	76.3	63.7	91.6	88.1	85.4	76.2	91.7	93.8	97.0
SimCLR (repro)	87.5	97.4	85.3	75.0	63.9	91.4	87.6	84.5	75.4	89.4	91.7	96.6
SimCLR [8]	88.2	97.7	85.9	75.9	63.5	91.3	88.1	84.1	73.2	89.2	92.1	97.0
Supervised-IN [8]	88.3	97.5	86.4	75.8	64.3	92.1	86.0	85.0	74.6	92.1	93.3	97.6
Random init [8]	86.9	95.9	80.2	76.1	53.6	91.4	85.9	67.3	64.8	81.5	72.6	92.0

- BYOL provides also strong results on different other datasets
- 7/12 datasets better then supervised pre-training on ImageNet

DetCon

- Contrastive learning targeted specifically at other vision tasks (detection & segmentation)
- Idea: By using generated segmentation masks learn object-level features
- Pooled features of same masks are positives, other regions are negatives

30

Mask Generation

- Different variants investigated
- Off-the-shelf super-pixel segmentation results in good trade-off between compute and quality

31

Results of DetCon

 Surpasses supervised ImageNet pre-training for detection, instance segmentation and semantic segmentation!

Summary

- Purely supervised training does not scale
- Using pre-trained models allows to get away with less labels!
- Self-supervised pretraining shows strong performance without any labels!

See you next week!

References

- Doersch et al. Unsupervised Visual Representation Learning by Context Prediction, ICCV, 2015.
- Gidaris et al. Unsupervised Representation Learning by Predicting Image Rotations, ICLR, 2018.
- Grill et al. Bootstrap Your Own LatentA New Approach to Self-Supervised Learning, NeurIPS, 2020.
- He et al. Momentum Contrast for Unsupervised Visual Representation Learning, CVPR, 2020.
- He et al. Rethinking ImageNet Pre-training. ICCV, 2019.
- He et al. Improved Baselines with Momentum Contrastive Learning, arxiv, 2020.
- Henaff et al. Data-Efficient Image Recognition with Contrastive Predictive Coding, ICML, 2020.
- Henaff et al. Efficient Visual Pretraining with Contrastive Detection, arxiv, 2021.
- Kornblith et al. Do Better ImageNet Models Transfer Better?, CVPR, 2019.
- Noroozi et al. Unsupervised Learning of Visual Representation by Solving Jigsaw Puzzles, ECCV, 2016.
- Razavian et al. CNN Features off-the-shelf: an Astonishing Baseline for Recognition, CVPR, 2014.
- Tian et al. What Makes for Good Views for Contrastive Learning? NeurIPS, 2020.
- Van den Oord et al., Representation Learning with Contrastive Predictive Coding, 2018.