CS & IT

ENGINEERING

Quantifier 2

Lecture No.06

By- SATISH YADAV SIR

TOPICS TO BE COVERED

01 Negation of Quantifier

02 Nested Quantifier

03 Theorems on Nested Quantifier

04 Problems on Nested Quantifier

05 Nested Quantifeir Relations

Nested/quantifier:

Hn

In

$$\forall n (n^2 + 4 \ge 2)$$
 $D: \{1, 2, 3\}$
 $\forall n (n^2 + y^2 > 0)$
 $\forall y (1^2 + (y^2) > 0)$

Type-1.

P(n): 2220 P(n,y): 22+y220 P(n,y,2):

n2+y2+227,0

Anty (n xy < 9)

Sfor all of n, all of y such that P(n, y) for each element of n each element of y such that P(n, y)

n=2 y=!

 $2 \times 1 \leq 9(T)$

D: {1,2,3} P(n,y): nxy<9 + Hny

$$D: \{1, 2, 3\}$$

$$-3x = 1 \quad y = 1$$

$$1 \times 1 \leq 9(T)$$

$$-3x = 1 \quad y = 2$$

$$1 \times 2 \leq 9(T)$$

$$-3x = 1 \quad y = 3$$

$$1 \times 3 \leq 9$$

 $D: \{1, 2, 3\}$ $P(n, y): n \times y \leq 9$

Ynty (nxy≤9) →True.

Hnty True.
When all edges will
be True

Anty of alse.
When at least
1 edge is false.

D° { 1, 2, 3 } P(n,y): nxy=4.

D: {1,2,3} P(n,y): nxy < 9. Hy Hx

y=1 x=1. 1×1 ≤ 9. Hytn - True When all edges will be True

Hy Hn -> false

when at least 1 edge is

false

D° { 1, 2, 3 } P(n,y): xxy < 9. HNHY — HYHN.

*** $\forall x \forall y \equiv \forall y \forall x$ $\forall x \forall y \rightarrow \forall y \forall x$ $\forall y \forall x \rightarrow \forall x \forall y$

 $T \longrightarrow f$

D° {1,2,3 } P(n,y); nxy=4 ヨn ∃y.

→ there exist n there exist y P(n,y)

→ at least 1 value of n, at least 1 value of y P(n,y)

→ some value of n, some value of yP(n,y)

$$D$$
: $\{1, 2, 3\}$.
 $P(n, y)$: $n \times y = 4$.

$$N=1 \ y=1.$$

$$|x|=4(f)$$

$$N=1$$
 $y=2$ $1\times 2=4(f)$

∃n∃y⇒True when at least 1 edge is True

In Jy -) false
When all edges will be
false.

 $n \times y = 4$ $n = 1 \quad y = 1$ $p(!,1) \vee p(1,2) \vee$ $p(i,3) \vee p(2,1)$ i = 1

D: Z.
$$P(m,r): m \times n = 1.$$

$$\exists n \in m \in n = 1.$$

$$m \in m \in n = 1.$$

$$m \in m \in n = 1.$$

D: z
$$P(x,y): \left(\frac{x}{y} \in Z\right)$$

$$\exists x \exists y \left(\frac{x}{y} \in Z\right) \rightarrow True$$

$$x = 4 \quad y = 2$$

$$x = 6 \quad y = 2$$

$$\exists n \exists y (2n+y=6 \land 3n+2y=10)$$
 $\begin{cases} n=2 \\ y=2 \end{cases}$

True

$$(2n+y=6)\times 2.$$
 $3n+2/y=10$
 $4n+2y=12.$
 $-n=-2.$

$$2(2) + y = 6$$

 $4 + y = 6$
 $y = 2$

∃n∃y = ∃y∃n. D: P(n,y)

fined:

Domain. Jopen stmt. 1 spredicate variable Yny→ 3n3y. YENE ENYY

Hn Hy → Jy Jn Hy∀n-> Jy Jn.

Hnty = tytn.

Typel: Anth

Type 2 Jn Jy

ne gation of quantifier:

Q:
$$\forall n [p(n) \rightarrow Q(n)]$$
What will be negation of this?
$$\neg \forall n [p(n) \rightarrow Q(n)]$$

$$\exists n [p(n) \rightarrow Q(n)]$$

$$\exists n \neg [\neg p(n) \lor Q(n)]$$
 $\exists n [p(w) \land \neg Q(n)]$

negation:

$$\forall n \forall y [(n=y) \rightarrow Q(n,y)]$$
 $\neg \forall n \forall y (\neg (n=y) \lor Q(n,y))$
 $\exists n \exists y ((n=y) \land \neg Q(n,y))$

1. 7 3n[p(n) va(n)]

Hn[7p(n)17Q(n)]

 $\exists n \left((P(n)VQ(n)) \right)$ $\wedge \wedge \gamma R(\gamma)$

 λ . $\forall n \left[\left(p(n) \vee Q(n) \right) \rightarrow R(n) \right]$ $\exists n \in \Gamma(n) \otimes \Gamma(n) \cap \Gamma(n)$

$$\forall n \left[\left(P(n) \vee Q(n) \right) \longrightarrow R(n) \right]$$

$$\forall n \left[\gamma \left(P(n) \vee Q(n) \right) \vee R(n) \right]$$

$$\exists n \left[P(n) \vee Q(n) \wedge \gamma R(n) \right]$$

