Examen

Questions de cours.

- Énoncer le théorème de convergence dominée.
- Énoncer la propriété d'intégration par parties.
- Énoncer le théorème de Fubini-Tonelli.
- Citer deux exemples d'espaces de fonctions denses dans $L^p(\mathbb{R})$ pour $p < +\infty$.

Exercice 1. 1. Calculer la limite

$$\lim_{n \to +\infty} \int_0^{+\infty} \left(1 + \frac{e^{-nx}}{\sqrt{x}} \right) \left(1 - e^{-1/x^n} \right) dt.$$

2. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction intégrable, bornée avec une limite à droite en 0. calculer les limites

$$\lim_{t\to +\infty} \int_0^{+\infty} t \mathrm{e}^{-tx} f(x) dx \quad et \quad \lim_{t\to +\infty} \int_0^{+\infty} \frac{t f(x)}{1+t^2 x^2} dx.$$

Exercice 2. Soit $f:]-1,1[^2 \to \mathbb{R}$ définie par

$$f(0,0) = 0$$
 et $f(x,y) = \frac{xy}{(x^2 + y^2)^2}$ pour $(x,y) \neq (0,0)$.

1. Montrer que f est borélienne et calculer les intégrales suivantes

$$I = \int_{-1}^{1} \int_{-1}^{1} f(x, y) dx dy \qquad J = \int_{-1}^{1} \int_{-1}^{1} f(x, y) dy dx.$$

2. f est elle intégrable sur $]-1,1[^2]$. Justifier.

Exercice 3. On note * la convolution. Soit $h: \mathbb{R} \to \mathbb{C}$ une fonction borélienne bornée. Pour $f \in L^1(\mathbb{R}, \mathbb{C})$, on définit $T_h(f) = \int_{\mathbb{R}} h(x)f(x)dx$.

1. Vérifier que si $h(x) = e^{i\alpha x}$ alors pour f et g dans $L^1(\mathbb{R}, \mathbb{C})$ on a $T_h(f * g) = T_h(f)T_h(g)$.

On suppose dans la suite que h est une fonction de \mathbb{R} dans \mathbb{C} telle que pour tout f et g dans $L^1(\mathbb{R},\mathbb{C})$ on a $T_h(f*g) = T_h(f)T_h(g)$.

2. Montrer que si A et B sont des boréliens de $\mathbb R$ alors

$$\int_{A\times B} h(x+y)dxdy = \int_{A\times B} h(x)h(y)dxdy.$$

En déduire que h(x,y) = h(x)h(y) p.p.

3. On définit $H(t)=\int_0^t h(x)dx$. Montrer que H est continue sur $\mathbb R$ et que pour tous s,t dans $\mathbb R$

$$H(s)H(t) = \int_0^s (H(x+t) - H(x))dx.$$

4. Montrer que H est $C^{+\infty}$, que H' = h p.p. et que

$$H'(s+t) = H'(s)H'(t).$$

- 5. Si H' n'est pas identiquement nulle prouver que H'(0) = 1 et que pour tout x |H'(x)| = 1.
- 6. Montrer que H''(x) = H''(0)H'(x) et en déduire une propriété de h.
- 7. Que peut on en déduire quant à la transformée de Fourier?

Problème. Soit I =]a, b[et \bar{I} son adhérence. On note $\mathcal{D}(I)$ l'espace des fonctions C^{∞} à support compact dans I.

- 1. Montrer que $\mathbb{L}^{2}(I) \subset \mathbb{L}^{1}(I)$ et que : $\forall f \in \mathbb{L}^{2}(I), \|f\|_{1} \leqslant \sqrt{b-a} \|f\|_{2}$
- 2. Soient $f \in \mathbb{L}^2(I)$. On note $F : \overline{I} \to \mathbb{R}$ sa primitive généralisée en a définie par :

$$\forall x \in \bar{I}, \ F(x) = \int_{a}^{x} f(t) dt$$

Montrer que F est uniformément continue sur \bar{I} avec $||F||_{\infty} \leq \sqrt{b-a} ||f||_2$ et que F=0 si et seulement si f=0 presque partout sur I.

3. Soit $f \in \mathbb{L}^2(I)$. Montrer que

$$(f = 0 \ p.p.) \Leftrightarrow \left(\forall \varphi \in \mathcal{D}\left(I\right), \ \int_{a}^{b} f\left(t\right) \varphi\left(t\right) dt = 0\right)$$
$$(\exists c \in \mathbb{R} \mid f = c \ p.p.) \Leftrightarrow \left(\forall \varphi \in \mathcal{D}\left(I\right), \ \int_{a}^{b} f\left(t\right) \varphi'\left(t\right) dt = 0\right)$$

Dans la suite, si on se donne $f,g \in \mathbb{L}^2(I)$ et F,G leurs primitive généralisée en a, on suppose démontrée la formule d'intégration par parties $\int_a^x F(t) g(t) dt = F(x) G(x) - \int_a^x f(t) G(t) dt$ et on désigne par $\mathbb{H}^1(I)$ l'espace des (classes de) fonctions $f \in \mathbb{L}^2(I)$ pour lesquelles il existe un réel α et une fonction $g \in \mathbb{L}^2(I)$ tels que :

$$f(x) = \alpha + \int_{a}^{x} g(t) dt \quad (p.p.)$$
 (1)

- 4. Montrer que pour $f \in \mathbb{H}^1(I)$, le couple (α, g) vérifiant (1) est unique. On note g = f' et on dit que g est la dérivée généralisée de f.
- 5. Montrer que tout élément $f \in \mathbb{H}^1(I)$ admet un unique représentant continu sur \bar{I} . On identifiera f à ce représentant encore noté f.

6. Montrer que $f \in \mathbb{H}^1(I)$ si, et seulement si, $f \in \mathbb{L}^2(I)$ et il existe une unique fonction $g \in \mathbb{L}^2(I)$ telle que :

$$\forall \varphi \in \mathcal{D}(I), \int_{a}^{b} f(t) \varphi'(t) dt = -\int_{a}^{b} g(t) \varphi(t) dt$$
 (2)

On précisera le lien entre g et la dérivée généralisée de f.

- 7. Montrer que la fonction $t \mapsto \frac{1}{2}(|t|+t)$ est dans $\mathbb{H}^1(]-1,1[)$ et que $f' \notin \mathbb{H}^1(]-1,1[)$.
- 8. Montrer que $f\in\mathbb{H}^{1}\left(I\right)$ si, et seulement si, $f\in\mathbb{L}^{2}\left(I\right)$ et il existe $\beta>0$ tel que :

$$\forall \varphi \in \mathcal{D}(I), \left| \int_{a}^{b} f(t) \varphi'(t) dt \right| \leq \beta \|\varphi\|_{2}$$
 (3)