### ROBUST SYSTEMS DESIGN

Systems Analysis & Design

Author: Eng. Carlos Andrés Sierra, M.Sc.

 $\verb"cavirguezs@udistrital.edu.co"$ 

Lecturer Computer Engineering School of Engineering Universidad Distrital Francisco José de Caldas

2025-I





### Outline

① Concepts Generation & Selection

Quality Guidelines in Systems Design

Systems Architectures





### Outline

1 Concepts Generation & Selection

Quality Guidelines in Systems Design

Systems Architectures





## **Concepts Generation**

• Concepts generation is the process of creating ideas for a system that meet the needs of its users.

It involves brainstorming research Shanalysis to generate in Regue words 57 Cart

It is a creative process hat encourages innection and treativity in the design of a system.





## **Concepts Generation**

• Concepts generation is the process of creating ideas for a system that meet the needs of its users. • It involves brainstorming research and analysis to generate innovative ideas for a system. reative process that encorrages -of-the-art

## **Concepts Generation**

- **Concepts generation** is the process of creating ideas for a system that meet the needs of its users.
- It involves brainstorming, research, and analysis to generate innovative ideas for a system.
- It is a creative process that encourages innovation and creativity in the design of a system.





# **Innovation and Creativity**

- **Innovation** is the process of creating new ideas and solutions that improve the performance of a system.
- Creativity is the ability to generate original and innovative ideas that solve problems and meet the needs of users.
- They are important for ensuring that a system is robust, efficient, and effective.





# **Innovation and Creativity**

- Innovation is the process of creating new ideas and solutions that improve the performance of a system.
- Creativity is the ability to generate original and innovative ideas that solve problems and meet the needs of users.
- They are important for ensuring that a system is robust, efficient, and effective.





# Innovation and Creativity

- Innovation is the process of creating new ideas and solutions that improve the performance of a system.
- **Creativity** is the ability to generate original and innovative ideas that solve problems and meet the needs of users.
- They are important for ensuring that a system is robust, efficient, and effective.

4 vality





## Is this Innovation & Creativity?







## **Concepts Selection**

Concepts selection is the process of evaluating and choosing the best ideas for a system.

It involves an evaluation of concepts to determine which ones are 15000 fand effective.

 It is a critical process that ensures that the final design of a system meets the needs of its users.





## **Concepts Selection**

- **Concepts selection** is the process of evaluating and choosing the best ideas for a system.
- It involves analysis, comparison, and evaluation of concepts to determine which ones are the most feasible and effective.







## **Concepts Selection**

- Concepts selection is the process of evaluating and choosing the best ideas for a system.
- It involves analysis, comparison, and evaluation of concepts to determine which ones are the most feasible and effective.
- It is a critical process that ensures that the final design of a system meets the needs of its users.









### Outline

Concepts Generation & Selection

Quality Guidelines in Systems Design

Systems Architectures





## **Quality Guidelines**

- Quality guidelines are principles that guide the design of a system to ensure that it meets the needs of its users.
- They include reliability, scalability, maintainability, and usability guidelines.
- They are important for ensuring that a system is robust, efficient, and effective.





## **Quality Guidelines**

- Quality guidelines are principles that guide the design of a system to ensure that it meets the needs of its users.
- They include reliability, scalability, maintainability, and usability guidelines.
- They are important for ensuring that a system is robust, efficient, and
  effective.





## **Quality Guidelines**

- Quality guidelines are principles that guide the design of a system to ensure that it meets the needs of its users.
- They include reliability, scalability, maintainability, and usability guidelines.
- They are important for ensuring that a system is robust, efficient, and effective.





## Reliability Guidelines

- Reliability guidelines are principles that guide the design of a system to ensure that it is reliable and dependable.
- They include fault-tolerance, redundancy, and error-handling guidelines.
- They are important for ensuring that a system is robust and resilient to failures.





## Scalability Guidelines

- Scalability guidelines are principles that guide the design of a system to ensure that it is scalable and flexible.
- They include modularity, extensibility, and performance guidelines.

• They are important for ensuring that a system can grow and adapt to







# Maintainability Guidelines

- Maintainability guidelines are principles that guide the design of a system to ensure that it is easy to maintain and update,
- They include modularity, documentation, and versioning guidelines.
- They are important for ensuring that a system can be easily maintained and updated by its developers.

  Chy C 24 (13) Beth Ca2





# **Quality Standards**

- Quality standards are benchmarks that define the level of quality that a system must meet.
- They include ISO 9000, CMMI, and Six Sigma standards.
- They are important for ensuring that a system is robust, efficient, and effective





## **Quality Standards**

- Quality standards are benchmarks that define the level of quality that a system must meet.
- They include ISO 9000 CMMI, and Six Sigma standards.
- They are important for ensuring that a system is robust, efficient, and effective





## **Quality Standards**

- Quality standards are benchmarks that define the level of quality that a system must meet.
- They include ISO 9000, CMMI, and Six Sigma standards.
- They are important for ensuring that a system is robust, efficient, and effective.





- **ISO 9000** is a quality standard that defines the requirements for a quality management system.
- It is designed to help organizations ensure that they meet the needs of their customers and stakeholders.
- It is based on a number of quality management principles, including customer focus, leadership, and continuous improvement.





- **ISO 9000** is a quality standard that defines the requirements for a quality management system.
- It is designed to help organizations ensure that they meet the needs of their customers and stakeholders.
- It is based on a number of quality management principles, including customer focus, leadership, and continuous improvement.





- ISO 9000 is a quality standard that defines the requirements for a quality management system.
- It is designed to help organizations ensure that they meet the needs of their customers and stakeholders.
- It is based on a number of quality management principles, including customer focus, leadership, and continuous improvement.





- **ISO 27001** is a quality standard that defines the requirements for an information security management system.
- It is designed to help organizations protect their information and ensure that it is secure and confidential.
- It is based on a number of information security management principles, including risk assessment, security policies, and incident response.





- **ISO 27001** is a quality standard that defines the requirements for an information security management system.
- It is designed to help organizations protect their information and ensure that it is secure and confidential.
- It is based on a number of information security management principles, including risk assessment, security policies, and incident response.





- ISO 27001 is a quality standard that defines the requirements for an information security management system.
- It is designed to help organizations protect their information and ensure that it is secure and confidential.
- It is based on a number of information security management principles, including risk assessment, security policies, and incident response.







### **CMMI**

- <u>CMMI</u> is a quality standard that defines the requirements for a mature software development process.
- It is designed to help organizations improve their software development processes and deliver high-quality products to their customers.
- It is based on a number of best practices for software development, including requirements management, project planning, and process monitoring.





### **CMMI**

- **CMMI** is a quality standard that defines the requirements for a mature software development process.
- It is designed to help organizations improve their software development processes and deliver high-quality products to their customers.
- It is based on a number of best practices for software development, including requirements management, project planning, and process monitoring.





### **CMMI**

- CMMI is a quality standard that defines the requirements for a mature software development process.
- It is designed to help organizations improve their software development processes and deliver high-quality products to their customers.
- It is based on a number of best practices for software development, including requirements management, project planning, and process monitoring.





### Six Sigma

- Six Sigma is a quality standard that defines the requirements for a process that is capable of producing high-quality products.
- It is designed to help organizations improve their processes and reduce defects in their products and services.
- It is based on a number of quality management principles, including data-driven decision-making, process improvement, and customer focus





## Six Sigma

- Six Sigma is a quality standard that defines the requirements for a process that is capable of producing high-quality products.
- It is designed to help organizations improve their processes and reduce defects in their products and services.
- It is based on a number of quality management principles, including data-driven decision-making, process improvement, and customer focus.





## Six Sigma

- Six Sigma is a quality standard that defines the requirements for a process that is capable of producing high-quality products.
- It is designed to help organizations improve their processes and reduce defects in their products and services.
- It is based on a number of quality management principles, including data-driven decision-making, process improvement, and customer focus.





#### Outline

Concepts Generation & Selection

Quality Guidelines in Systems Design

Systems Architectures





#### What is a System Architecture?

- A system architecture is the structure of a system that defines its components, interactions, and relationships.
- A system architecture is the blueprint of a system that guides its development and imperientation.
- A **system architecture** is the foundation of a system that ensures that it meets the needs of the users.





#### What is a System Architecture?

- A system architecture is the structure of a system that defines its components, interactions, and relationships.
- A system architecture is the blueprint of a system that guides its development and implementation.
- A system architecture is the foundation of a system that ensures that it meets the needs of its users.





#### What is a System Architecture?

- A system architecture is the structure of a system that defines its components, interactions, and relationships.
- A **system architecture** is the blueprint of a system that guides its development and implementation.
- A **system architecture** is the foundation of a system that ensures that it meets the needs of its users.





## Types of System Architectures

 There are several types of system architectures that are used in systems development.

• They include monolithic netsen, peer-to-peer, and distributed architectures.

architectures.

Each type of architecture Colygown advantages and disadvantages that depend on the specific required of the system.





## Types of System Architectures

- There are several types of system architectures that are used in systems development.
- They include monolithic, client-server, peer-to-peer, and distributed architectures.
- Each type of architecture has its own advantages and disadvantages that depend on the specific requirements of the system.





#### Types of System Architectures

- There are several types of system architectures that are used in systems development.
- They include monolithic, client-server, peer-to-peer, and distributed architectures.
- Each type of architecture has its own advantages and disadvantages that depend on the specific requirements of the system.





#### Monolithic System Architecture

- A monolithic system architecture is a single-tier architecture that consists of a single unit that performs all the functions of the system.
- It is simple, easy to develop, and maintain, but it is not scalable and flexible. It is used for small systems that do not require high performance or reliability.













#### Client-Server System Architecture

A client-server system architecture is a two-tier architecture that
consists of a client and a server that communicate with each other
over a network

• It is scalable, flexible, and efficient, but it is complex and difficult to develop and maintain. It is used for medium to large systems that require high performance and reliability.





#### Peer-to-Peer System Architecture

- A peer-to-peer system architecture is a two-tier architecture that consists of a <u>network of peers</u> that communicate with each other directly.
- It is scalable, flexible, and efficient, but it is complex and difficult to develop and maintain. It is used for medium to large systems that require high performance and reliability.





#### Distributed System Architecture

- A distributed system architecture is a multi-tier architecture that
  consists of a network of nodes that communicate with each other over
  a network.
- It is scalable, flexible, and efficient, but it is complex and difficult to develop and maintain. It is used for large systems that require high performance and reliability.







#### Outline

Concepts Generation & Selection

Quality Guidelines in Systems Design

Systems Architectures





## Thanks!

# **Questions?**



Repo: https://github.com/EngAndres/ud-public/tree/main/courses/systems-analysis



