Упражнения на полные и сепарабельные метрические пространства, МГУ, функ. анализ, 01.04.2020

Упражнение 1. Рассмотрим на множестве \mathbb{R} две метрики

$$\rho_1 = |arctgx - arctgy|, \quad \rho_2(x, y) = arctg|x - y|, \quad x, y \in \mathbb{R}.$$

Доказать, что (\mathbb{R}, ρ_1) не является полным метрическим пространством, а (\mathbb{R}, ρ_2) есть полное метрическое пространство.

Упражнение 2. Пусть $C^1[a,b] \subset C[a,b]$ множество всех непрерывно дифференцируемых функций, определенных на отрезке $[a,b],\ a < b$. Докажите, что $(C^1[a,b],\rho_\infty)$ не является полным метрическим пространством, где

$$\rho_{\infty}(f,g) = \sup_{t \in [a,b]} |f(t) - g(t)|, \ f, g \in C^{1}[a,b].$$

Упражнение 3. Доказать, что (\mathbb{N}, ρ) , где $\rho(n, m) = |n - m|, n, m \in \mathbb{N}$, есть полное метрическое пространство.

Упражнение 4. Пусть X произвольное метрическое пространство.

- (*i*). Показать, что если $B \subset A$ и A нигде не плотное множество в X, то B также нигде не плотно в X.
- (ii). Показать, что любое нигде не плотное множество в X является множеством I категории.
- (iii). Показать, что если A нигде не плотное множество в X, то \overline{A} также нигде не плотно в X.
- (iv). Показать, что если $B\subset A$ и A множество I категории в X, то B также есть множество I категории в X.
- (v). Показать, что если $B \subset A$ и B множество II категории в X, то A также есть множество II категории в X.

Упражнение 5. Пусть (X, ρ) произвольное метрическое пространство, $A = \{x_1, x_2, \dots, x_n\}$ конечное подмножество в X. Будет множество A нигде не плотным в (X, ρ) ?

Упражнение 6. Доказать, что если множества $A_1, ..., A_n$ нигде не плотные в метрическом пространстве X, то множество $\bigcup_{i=1}^n A_i$ также нигде не плотно в X. Верно ли это утверждение для счетных объединений нигде не плотных множеств?

Упражнение 7. Показать, что объединение конечного или счетного числа множеств I категории есть опять множество I категории. Будет ли объединение конечного или счетного числа множеств II категории опять множеством II категории?

Упражнение 8. Верно ли, что дополнение к всюду плотному множеству есть нигде не плотное множество?

Упражнение 9. Пусть (X, ρ) произвольное полное метрическое пространство, и пусть A множество I категории в X. Доказать, что $(X \setminus A)$ есть множество II категории.

Упражнение 10. Пусть A множество всех точек из (\mathbb{R}^2, ρ_2) , у которых обе координаты есть иррациональные числа. Какой категории является подмножество $\mathbb{R}^2 \setminus A$.

Упражнение 11. Пусть A всюду плотное подмножество в \mathbb{R} . Доказать, что $x + A = \{x + a : a \in A\}$ также всюду плотно в \mathbb{R} для любого фиксированного $x \in \mathbb{R}$.

Упражнение 12. Доказать, что множество всех финитных последовательностей

$$c_{00} = \{\{x_n\}_{n=1}^{\infty} \subset \mathbb{R} : x_n = 0 \ \forall n \geq n(x), \text{ для некоторого } n(x) \in \mathbb{N}\}$$

является всюду плотным в метрических пространствах (ℓ_1, ρ_1) и (ℓ_2, ρ_2) .

Упражнение 13. Доказать, что мощность любого сепарабельного метрического пространства не превосходит мощности континуума.

Упражнение 14. Доказать, что если метрики ρ_1 и ρ_2 эквивалентны, то метрическое пространство (X, ρ_1) сепарабельно тогда и только тогда, когда сепарабельно метрическое пространство (X, ρ_2) .

Упражнение 15. Доказать, что метрическое пространство

$$\ell_1 = \left\{ x = \{x_n\}_{n=1}^{\infty} \subset \mathbb{R} : \sum_{n=1}^{\infty} |x_n| < \infty \right\}$$

с метрикой

$$\rho_1(x,y) = \sum_{n=1}^{\infty} |x_n - y_n|, \quad x = \{x_n\}_{n=1}^{\infty}, \ y = \{y_n\}_{n=1}^{\infty} \in \ell_1,$$

является сепарабельным метрическим пространством.

Упражнение 16. Доказать, что множество c_0 всех сходящихся к нулю последовательностей с метрикой $\rho_{\infty}(x,y)=\sup_{n\geq 1}|x_n-y_n|, \quad x,\ y\in c_0,$ является сепарабельным.