

D.Y. PATIL INTERNATIONAL UNIVERSITY B.TECH CSE FY SEM-2 A.Y. 2022-2023

NAME: Suryakant Upadhyay

PRN: 20220802043

SUBJECT: DIGITAL LOGIC AND DESIGN

BATCH: A1

EXPERIMENT-5

Aim:

Realization of one/two-bit comparator & study of 7485 magnitude Comparator.

Requirements:

- For 1-Bit Comparator
 - 1. NOT Gate
 - 2. AND Gate
 - 3. NOR Gate
- For 2-Bit Comparator
 - 1. NOT Gate
 - 2. AND Gate
 - 3. OR Gate
 - 4. Ex-NOR

Theory:

A magnitude digital comparator is a combinational circuit that compares two digital or binary numbers in order to find out whether one binary number is equal, less than or greater than the other binary number. We logically design a circuit for which we will have two inputs one for A and other for B and have three output terminals, one for A > B condition, one for A = B condition and one for A < B condition.

Block Diagra	otoroguas to m	r ?
0	0 1 .	
A	N-Bit	A>B
.B	Comparator	A <b< td=""></b<>

Fre	ith:	lable	of 1-Bit	compara	tor:	
	A	B	A <b< td=""><td>A=B</td><td>A>B</td><td></td></b<>	A=B	A>B	
	0	0	Ó	1	0	
	0	1	1	0	0	
	1	0	0	0	-1	
	1	1	0	1	-0	
			pression:		•	
	A > AB	: AB'				10
	A < B	: A'P				9
	A = B	: A'B'	+AB			

1	ruth	Table	of s	2-Bit co	i ratmeagum		
		Inpe	. t		out	put	
	As	Ao	BI	80	A <b< td=""><td>A = B</td><td>A > B</td></b<>	A = B	A > B
	0	0	0	0	0	0	00
	0	0	1	0		0	80
	0	1	0	0	00	. D	0
	00	16	11	0	1	0	0
	1	0	0	0	0	000	
	1	00	1	0	0	6	0
1:	1	1.	0	0	0	0	
	1	1	11	0	0	1	1 0.

Observation Table:

A) One-bit Comparator

Input		Output			
A	В	A>B	A=B	A <b< th=""></b<>	
0	0	0	1	0	
0	1	0	0	1	
1	0	1	0	0	
1	1	0	1	0	

B) Two-bit Comparator

Input			Output			
A1	A0	B1	В0	A>B	A=B	A <b< th=""></b<>
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

Output:

Result:	
The implementation of one-bit and two-bit compara 7485.	tors is done using logic gates and also with Io