Speed Running Discrete Mathematics

Minh Nguyen

November 29, 2023

Contents

1	Propositional Logic 1.1 Propositional Equivalencies	4
2	Set Theory 2.1 Subsets 2.2 Cardinality 2.3 Set Operations 2.4 Functions	9 10
3	Algorithms 3.1 Growth of Functions	12 13
4	Number Theory	14
5	Induction and Recursion	15
6	Relations	15
7	Graphs	17

Author's Notes

This actually isn't the first copy of my discrete math notes...I had an earlier copy that got corrupted, so now I'm just going to constantly upload to GitHub because I'm afraid of them getting wiped again 😭

These notes are based off of the textbook $Discrete\ Mathematics\ and\ Its\ Applications$ by $Kenneth\ H.\ Rosen$, as well as from the lectures of $Serdar\ Erbatur$ from the $Fall\ 2023$ semester.

If you have any complaints, or suggestions regarding these notes, please email me at $\rm mdn220004@utdallas.edu$

1 Propositional Logic

Definition Proposition

Declarative statements that are either true or false

Table 1: Examples of propositions

Statement	Proposition?
1 + 1 = 2	V
What class are ya takin?	
I am happy	V

Propositions can be combined to form another proposition with the use of *logical operators*

Note

Common labels for propositions in discrete mathematics include letters like $P,Q,R,S\dots$

Table 2: Logical Operators in Discrete Mathematics

Symbol	Meaning	Expression
	negation / not	$\neg P$
\wedge	conjunction / and	$P \wedge Q$
V	disjunction / or	$P\vee Q$
\oplus	exclusive disjunction/ xor	$P\oplus Q$
\Longrightarrow	implication $/$ conditional	$P \implies Q$
\iff	biconditional	$P \iff Q$

Note Logical Operator Precedence

Order matters when it comes to evaluating logical operators:

- 1. negation
- 2. conjunction
- 3. disjunctions
- 4. conditionals

Where negation is evaluated first, and conditionals last.

Theorem More on Conditionals

Conditionals can also be expressed in three other ways:

Contrapositive: $\neg Q \implies \neg P$

Converse: $Q \implies P$

Inverse: $\neg P \implies \neg Q$

Example

Conditional: If \underline{it} is raining, then I am not going to \overline{town}

Contrapositive: If \underline{I} go to town, then it is not raining

Converse: If I do not go to town, then it is raining

Inverse: If it is not raining, then I am going to town

Definition Truth Table

They are used as a way of seeing all possible values of a proposition

Table 3: Truth Table of $P \implies Q$

P	Q	$P \implies Q$
F	F	Т
F	\mathbf{T}	Т
\mathbf{T}	F	F
${\bf T}$	Τ	${ m T}$

1.1 Propositional Equivalencies

Definition Equivalencies

A proposition is a...

- Tautology if it is true in every case
- Contradiction / Fallacy if it is false in every case
- Contingency if *neither* is the case

Table 4: Example of Tautology and Contradiction

P	$\neg P$	$P \vee \neg P$	$P \wedge \neg P$
Т	F	${ m T}$	\mathbf{F}
F	Т	${ m T}$	F

Definition Logical Equivalency (≡)

Compound propositions P and Q are logically equivalent if $P \iff Q$ is a tautology. This is expressed as

$$P \equiv Q$$

Below is a table of useful logical equivalencies

Table 5: Logical Equivalencies

Name	Equivalence		
Idontity	$P \wedge \mathbf{T} \equiv P$		
Identity	$P\vee \mathcal{F}\equiv P$		
Idempotent	$P \wedge P \equiv P$		
rdempotent	$P \lor P \equiv P$		
Domination	$P \lor T \equiv T$		
Domination	$P \wedge F \equiv F$		
Negation	$P \vee \neg P \equiv \mathbf{T}$		
	$P \land \neg P \equiv \mathbf{F}$		
Double Negation	$\neg(\neg P) \equiv P$		
Commutative	$P \wedge Q \equiv Q \wedge P$		
	$P \lor Q \equiv Q \lor P$		
Associative	$(P \wedge Q) \wedge R \equiv P \wedge (Q \wedge R)$		
	$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$		
Distributive	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$		
	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$		
De Morgan's	$\neg(P \land Q) \equiv \neg P \lor \neg Q$		
	$\neg (P \lor Q) \equiv \neg P \land \neg Q$		
Absorption	$P \wedge (P \vee Q) \equiv P$		
110001 puloii	$P\vee (P\wedge Q)\equiv P$		

The use of showing the equivalencies between two compound propositions is called a $conditional-disjunction\ equivalence$

Example Conditional-Disjunction Equivalence

$$P \implies Q \equiv \neg P \vee Q$$

Continued on Next Page...

Table 6: Conditional-Disjunction Equivalence Proof

P	Q	$\neg P$	$\neg P \vee Q$	$P \implies Q$
F	F	Т	Τ	${ m T}$
F	\mathbf{T}	Т	${ m T}$	${ m T}$
T	F	F	\mathbf{F}	F
\mathbf{T}	Τ	F	${ m T}$	${ m T}$

1.2 Predicates and Quantifiers

Note

So far, propositional logic can only handle singular subjects. It can't handle statements such as:

- All computer science students can program well
- $3x + 4 \ge 0$

Definition | Predicate Logic

When you have a proposition that contains a variable. It is typically written as a propositional function, P(x), where x is the subject for the predicate P

Example

- F(x) = "x > 3"
- P(x) = "x looks beautiful!"

Note Multi-variable Propositional Functions

Propositional functions may also contain more than just one argument:

Definition Quantifiers

They define the range of which a proposition holds ${\sf true}$, and can be nested to produce nested quantifiers

Table 7: Quantifiers in Discrete Mathematics

Quantifier	Expression	In English
Universal Quantifier	$\forall x. P(x)$	P(x) is true for every x in its domain
	$\exists x. P(x)$	There exists x where $P(x)$ is true
Existential Quantifier	$ \nexists x.P(x) $	There does not exist x where $P(x)$ is true
	$\exists ! x. P(x)$	There exists only one x where $P(x)$ is true

 $\forall x.P(x)$ may also be written as $\forall xP(x)$, and the same holds for the other quantifiers

Example Nested Quantifiers

$$\forall x \exists y. (x + y = 0)$$

Translates to: "For every x there exists a y such that x + y = 0"

1.3 Inference Rules and Proofs

Definition Argument

A sequence of statements that have a conclusion

Definition Valid

The conclusion, the final statement of the argument, must follow from its premises

(i.e. premises \implies conclusion)

Definition Premise

The preceding statements of a mathematical argument that lead to a conclusion

Definition Fallacy

Incorrect reasoning in discrete mathematics that leads to an invalid argument

Example | Argumentative Form

Arguments may be written as this: $((P \implies Q) \land P) \implies Q$, or in argumentative form:

$$P \implies Q$$

The next page contains a table of inference rules

Table 8: Rules of Inference

Rule	Expression	Tautology
Modus ponens	P $P \Longrightarrow Q$ $\therefore Q$	$\big(P \land (P \implies Q)\big) \implies Q$
Modus tollens	$ \begin{array}{c} \neg Q \\ P \Longrightarrow Q \\ \therefore \neg P \end{array} $	$\left(\neg Q \land (P \implies Q)\right) \implies \neg P$
Hypothetical syllogism	$P \implies Q$ $Q \implies R$ $\therefore P \implies R$	$\big((P \implies Q) \land (Q \implies R)\big) \implies (P \implies R)$
Disjunctive syllogism	$P \lor Q$ $\neg P$ $\therefore Q$	$\big((P\vee Q)\wedge\neg P\big)\implies Q$
Addition	$P \longrightarrow P \lor Q$	$P \implies (P \lor Q)$
Simplification	$P \wedge Q$ P	$(P \land Q) \implies P$
Conjunction	P $Q \over P \wedge Q$	$\big((P) \wedge (Q)\big) \implies P \wedge Q$
Resolution	$P \lor Q$ $\neg P \lor R$ $\therefore Q \lor R$	$((P \lor Q) \land (\neg P \lor R)) \implies (Q \lor R)$

Definition Proof

Valid arguments that establish the \mathtt{truth} of mathematical statements

Table 9: Rules of Inference for Quantified Statements

Rule	Expression	
Universal Instantiation	$ \frac{\forall x. P(x)}{P(c)} $	
Universal Generalization	$\frac{P(c) \text{ for an arbitrary } c}{\forall x. P(x)}$	
Existential Instantiation	$\exists x. P(x)$ $\therefore P(c) \text{ for some element } c$	
Existential Generalization	$\frac{P(c) \text{ for an arbitrary } c}{\forall x. P(x)}$	

Definition Theorem

A statement or claim that can be proven using:

- definitions
- other theorems
- axioms
- inference rules

They are also referred to as "Lemma", "Proposition", or "Corollary"

There are many different ways of proving a theorem. Let's assume a conditional statement $P \implies Q$...

Definition | Direct Proof

When the first step is the assumption that P is true and the following steps that lead up to Q is also true

Definition Indirect Proof

Proofs that do not start with the premises and end with conclusion (the opposite of a direct proof). Ways of doing direct proofs involve proof by contraposition, proof by contradiction, and much more...

Example Proof by Contraposition

 $P \implies Q$ can be proved true if $\neg Q \implies P$, its contraposition, can also be proved. This is because a contraposition and a conditional proposition are tautologies

Example Proof by Contradiciton

To prove P, you must assume $\neg P$ and derive that $\neg P$ is false. If $\neg P$ is false, then that must mean that $\neg \neg P$, or P, must be true

2 Set Theory

Definition set

A collection of unique objects or elements

- $a \in A$ to state that a is contained in the set A
- $a \notin A$ to indicate that a is not contained in A

Note Defining Sets

Roster method

$$A = \{a, b, c, d\}$$
$$B = \{4, b, c, a\}$$

$$C = \{1, 2, \{3.0, 3.5\}, 4, 5\}$$

$$D = \{1, 2, C\}$$

Set Builder Notation

$$E = \{x \in \mathbb{N} | x = 2k \text{ for some } k \in \mathbb{N} \}$$

$$F = \{\alpha | P(\alpha) \text{ is true}\}$$

Table 10: Important Sets

Set	Expansion	Description
\mathbb{N}	$\{0,1,2,3,\cdots\}$	Natural numbers
\mathbb{Z}	$\{\cdots,-1,0,1,\cdots\}$	Integers
\mathbb{Z}^+	$\{1,2,3,\cdots\}$	Positive integers
\mathbb{Q}	$\{\frac{P}{Q}\big P\in\mathbb{Z},Q\in\mathbb{Z},Q\neq0\}$	Rational numbers
\mathbb{R}		Real numbers
\mathbb{R}^+	$\{x x > 0\}$	Positive real numbers
\mathbb{C}		Complex numbers
Ø		Empty set

2.1 Subsets

Theorem Set Equality

Given two sets A and B:

$$A \equiv B \iff \forall x.(x \in A \iff x \in B)$$

is true

Definition Subset (⊆)

A is a subset of B if all elements of A are also contained in B:

$$A \subseteq B \iff \forall x. (x \in A \implies x \in B)$$

Example Subsets

Let $A = \{2, 3\}, B = \{a, b, c, 2, 3\}$

- $A \subseteq B$ true
- $A \subseteq A$ true

- $\varnothing \subseteq A$ true
- $B\subseteq A \; {\tt false}$

This notation is seen in Section 2.2

Definition | Power Set

The set of all subsets of the set

$$|A| = n, |P(A)| = 2^n$$

Example

Let $S = \{1, 2\}$:

$$P(S) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}\$$

Definition Proper Subset (⊂)

It's a subset where $A \neq B$:

$$A \subset B \iff \forall x.(x \in A \implies x \in B) \land A \neq B$$

2.2 Cardinality

Definition | Cardinality

It's the number of unique elements in a set. It's denoted by $\left|A\right|$

Example

 $\{\{1,2\},3\}$

2 elements

 $\{1,2,3\} = \{1,2,3,3\}$

3 elements

 $\{\emptyset\}$

1 element

{}

0 elements

 $\{\emptyset\}$

1 element

Definition Intervals

Sets of numbers between two numbers a and b if $a, b \in \mathbb{R} \land a \leq b$

•
$$[a,b] = x | a \le x \le b$$

•
$$[a,b) = x | a \le x < b$$

•
$$(a,b] = x | a < x \le b$$

•
$$(a,b) = x | a < x < b$$

Definition Ordered Tuples

$$(a_0, a_1, a_2, \cdots, a_n)$$

An ordered collection of unique elements

$$(a, b, c) \neq (b, c, a)$$

Theorem Cartesian Products

Let A and B be sets:

$$A\times B=\{(a,b)\big|a\in A,b\in B\}$$

Example Cartesian Product

Let
$$A = \{1, 2\}, B = \{a, b, c\}$$
:

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

2.3 Set Operations

Let
$$A = \{1, 2, 3\}, B = \{2, 3, 4, 5\}$$
:

Table 11: Set Operations

Expression	Meaning	Result
$A \cup B$	A union B	$\{1, 2, 3, 4, 5\}$
$A\cap B$	A intersection B	$\{2,3\}$
$ar{A}$	A complement B	$\{x \not\in A\}$

Definition Membership Table

It's very similar to a truth table, where true means that an element exists within the set, and false means that the element isn't.

Table 12: Membership Table Example

 A	B	$A \cup B$	$A \cap B$
false	false	false	false
false	true	true	false
true	false	true	false
true	true	true	true

2.4 Functions

Definition Function

Function f is denoted from set A to set B:

$$f: A \to B$$

representing a relation that assigns each element of A to $exactly\ one$ element of B

Example

Let
$$A = \{1, 2\}, B = \{a, b\}$$

$$A \times B = \{(1, a), (1, b), (2, a), (2, b)\}$$

These are functions:

•
$$f = \{(1, a), (2, b)\}$$

•
$$f = \{(1, a), (2, a)\}$$

This isn't:

•
$$f = \{(1, a), (1, b)\}$$

Theorem Equality of Functions

Two functions f and g are equal if:

- They share the same domains / co-domains
- They assign the same element from the domain to the same element

Let $f: A \to B, g: C \to D$:

- $A \neq C \lor B \neq D \implies f \neq g$
- $\bullet \ \ A = C \vee B = D \implies f = g$

Definition One-to-One Functions (Injective)

A function $f: A \to B$ where all values A must correspond to one and only one element in B:

$$\forall a \in A, \forall b \in B. (f(a) \neq f(b))$$

Definition Onto Functions (Subjective)

A function $f: A \to B$ where all values B must correspond to at least an element in A:

$$\forall b \in B, \exists a \in A. (f(a) = b)$$

Definition Bijection

A function that is *both* one-to-one and onto

Definition Inverse of Function

$$f^{-1}(x) = y \iff f(y) = x$$

Definition | Compisite Functions

$$domain(f) = range(g) \implies f \circ g(x) = f(g(x))$$

If the composite of the function exists, then:

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}$$

Definition Floor (|x|)

The biggest integer $n \leq x$

Definition Ceiling ($\lceil x \rceil$)

The smallest integer $n \geq x$

3 Algorithms

Definition Algorithm

A sequence of *precise* steps used to solve computational problems

Note Input-Output

For every input instance, a correct output must be produced

Algorithm 1: Binary Search Algorithm

```
Input: A \leftarrow \{A_1, A_2, \dots, A_n\} where A_i \in \mathbb{Z}, k \in \mathbb{Z}
    Output: i where A_i = k, or i = 0 \implies k \notin A
 \mathbf{1} \; \operatorname{left} \leftarrow 1
 2 right\leftarrow n
 3 while left < right do
         i \leftarrow \lfloor (\text{left} + \text{right}) \div 2 \rfloor
         if A_i = k then
 5
          return i
 6
          else if A_i < k then
 7
 8
           left\leftarrow i+1
          else
 9
           right\leftarrow i
10
11 return 0
```

Algorithm 2: Insertion Sort

```
Input: A \leftarrow \{A_1, A_2, \dots, A_n\} where n \geq 2
Output: A \leftarrow \{A_1, A_2, \dots, A_n\} where n \geq 2 \land A_i \leq A_{i+1}

1 for i \leftarrow 2 to n do

2 | key \leftarrow A_i
3 | index \leftarrow i - 1
4 | while index \geq 1 \land A_{index} > key do

5 | A_{index+1} \leftarrow A_{index}
6 | index \leftarrow index - 1
7 | A_{index+1} \leftarrow key
```

3.1 Growth of Functions

This can be used to determine the growth of functions, and is also mainly used in the field of *computer science* to analyze algorithms.

Note Proving Big-O

To prove that f(x) = O(g(x)), you must prove the existence of a C and k that fulfill the definition:

$$\exists C, k. (\forall x > k. (|f(x)| \le C \times |g(x)|))$$

Definition Big-O Notation

Let f and g be functions. f(x) is O(g(x)) (read "f(x) is Big-O of g(x)") when there are constants C and k (the witnesses) such that:

$$|f(x)| \le C|g(x)|, x > k$$

This is called the worst-case runtime of an algorithm

Example Identify the Witnesses

Find C, k such that $f(x) = 4x^2 + 2x + 1$ is $O(x^2)$

$$g(x) = n^2 + n^2 + n^2$$
$$= 3n^2$$

$$f(x) < g(x)$$
 when $x > 1$: $C = 3, k = 1$

Definition \mathbf{Big} - Ω

Let f and g be functions. f(x) is $\Omega(g(x))$ when there are constants C and k such that:

$$|f(x)| \ge C|g(x)|$$

This is called the best-case runtime of an algorithm

Definition Big- θ

Let f and g be functions. f(x) is $\theta(g(x))$ when:

$$f(x) = O(g(x)) \wedge f(x) = \Omega(g(x))$$

This is called the average-case runtime of an algorithm

4 Number Theory

Definition Division

Let $a, b \in \mathbb{Z}$. a divides b (a|b) if there exists integer c such that $a \times c = b$

$$a|b, a, b \in \mathbb{Z} \iff \exists c \in \mathbb{Z}. (a \times c = b)$$

Theorem Basic Division Properties

Let $a, b, c \in \mathbb{Z}, a \neq 0$:

- $(a|b) \wedge (a|c) \implies a|(b+c)$
- $a|b \implies \forall c \in \mathbb{Z}.(a|(b \times c))$
- $(a|b) \wedge (b|c) \implies a|c$

Theorem Consequence of Division

$$\forall a, b, c, m, n \in \mathbb{Z}, a \neq 0. \Big((a|b) \land (a|c) \implies \big(a|(mb + nc) \big) \Big)$$

Let a,b,c,m,n be integers where $a\neq 0$, and suppose $a|b\wedge a|c$. Then, for any integers m and n, a|mb+nc.

Theorem Division Algorithm

Let $a \in \mathbb{Z}, d \in \mathbb{Z}^+$. Then there are unique integers q and r where $0 \le r < d$ such that $a = q \times d + r$

$$\forall a, q, r \in \mathbb{Z}, d \in \mathbb{Z}^+, 0 \le r < d. (a = q \times d + r)$$

Definition Quotient

$$q=a \ {
m div} \ d$$

Definition Congruency (≡)

Let $a,b\in\mathbb{Z}, m\in\mathbb{Z}^+$. a is congruent to b mod m if...

- m|a-b
- $\bullet \ a \ \mathrm{mod} \ m \equiv b \ \mathrm{mod} \ m$
- $k \in \mathbb{Z}, a = b + k \times m$

Definition Remainder

$$r = a \mod d$$

Theorem Preservation of Congruencies

Let $a, b, c, d \in \mathbb{Z}, m \in \mathbb{Z}^+$. If $a \equiv b \mod m \wedge c \equiv d \mod m$, then

- $a+c \equiv b+d \pmod{m}$
- $a \times c \equiv b \times d \pmod{m}$

5 Induction and Recursion

Definition Proof via. Induction

To prove that P(n) is true for $n \in \mathbb{Z}^+$, we must complete these two steps:

- Basis Step: Verify that P(1) is true
- Inductive Step: Show that $P(k) \implies P(k+1), k \in \mathbb{Z}^+$ is true

Definition Recursion

A way to express a definition of an element in terms of itself. There's two required steps to recursively define a function:

- Basis Step: Specify the value of the function at 0
- Recursive Step: Specify a rule for finding its value at an integer from its smaller values at smaller integers

6 Relations

Definition Relation

Given sets A, B, it's a subset of $A \times B$

Example

$$R_1 = \{(a,b)|a,b \in \mathbb{Z} \land a \leq b\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

$$R_2 = \{(a,b)|a,b \in \mathbb{Z} \land a < b\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

$$R_3 = \{(a,b)|a,b \in \mathbb{Z} \land a = b\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

$$R_4 = \{(a,b)|a,b \in \mathbb{Z} \land a = b + \mathbb{Z}\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

$$R_5 = \{(a,b)|a,b \in \mathbb{Z} \land a|b\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

Definition Reflexivity

A relation R on a set A is reflexive if and only if:

$$\forall x. (x \in A \implies (x, x) \in R)$$

Example

$$A = \{1, 2, 3\}$$

$$R = \{(1,1), (2,2), (1,3), (3,3)\}$$

$$R = \{(3,3), (1,3), (1,1)\} \leftarrow \text{not reflexive}$$

Definition | Symmetry

Relation R on a set A is symmetric if and only if

$$\forall x \forall y. ((x,y) \in R \implies (y,x) \in R)$$

Definition Anti-Symmetry

Relation R on a set A is antisymmetric if and only if

$$\forall x \forall y. ((x,y) \in R \land (y,x) \in R \implies (y,x) \in x = y)$$

Example

$$\leq$$
 Not symmetric: $3 \leq 5, 5 \not \leq 3$ Antisymmetric: $a \leq b, b \leq a \implies a = b$

Not symmetric:
$$5 > 3, 3 \not> 5$$

Antisymmetric:
$$a > b, b > a \implies a = b$$

$$R = \{(a,b)|a,b \in \mathbb{Z} \land a = -b\} \subseteq \mathbb{Z} \times \mathbb{Z} \quad \begin{array}{l} \text{Symmetric: } (a,-a) \in R \implies (-a,a) \in R \\ \text{Not antisymmetric: } (a,-a) \land (-a,a) \in R, a \neq -a \end{array}$$

$$\begin{array}{c} \text{Let } A = \{1,2,3\} \\ R = \{(2,3),(3,2),(1,3)\} \end{array} \qquad \begin{array}{c} \text{Not symmetric: } (1,3) \in R, (3,1) \notin R \\ \text{Not antisymmetric: } (2,3),(3,2) \in R, 2 \neq 3 \end{array}$$

Definition Transitive

A relation R on set A such that

$$\forall x \forall y \forall z. ((x,y) \in R \land (y,z) \in R \implies (x,z) \in R)$$

Example

$$A = \{a, b, c\}$$

$$R = \{(a, b), (a, a), (b, b), (b, c), (c, b)\}$$

It's nothing, nada, it's...disappointing

Note Equivalence Relation

A relation that is reflexive, symmetric, and transitive

7 Graphs

Definition Graph

Denoted by G=(V,E), consists of a non-empty set of vertices (or nodes) V and a set of edges E

What's a graph without its nodes?

Definition Adjacent Verticies (Undirected)

When the endpoints of an edge e are vertices a and b, the vertices are considered to be adjacent (or neighbors) with one another.

That edge is called an incident edge, connecting vertices a and b

Definition Adjacent Verticies (Directed)

When (a, b) is an edge of a directed graph G, a is adjacent to b, and a is adjacent from b.

Vertex a is called the *initial vertex*, and b is called the *terminal* or *end* vertex of (u, v)

Definition Neighborhood (N(v))

"The set of all neighbors of u" of a graph G = (V, E), denoted by (N(v))

If A is a subset of V, N(A) is the set of verticies in G that are adjacent to at least one vertex in A:

$$V = \bigcup_{v \in A} N(v)$$

The number of edges incident with it. A loop contributes *twice* to the degree of that vertex

Definition Degree (Directed Graph) $(deg^{\pm}(v))$

The number of edges incident with it. A loop contributes *twice* to the degree of that vertex

Definition Infinite Graphs

If $|V| = \infty$, then the graph is referred to as an *infinite* graph, otherwise it's called a *finite* graph

Example Neighborhoods and Degrees

Figure 1: Neighborhoods Example

Table 13: Table of Neighbors and Degrees

Vertex	Degree	Neighborhood	
(2)	2	{ઁ,♣}	
0	3	$\{ (\bigcirc, \searrow, , \bigcirc \}$	
<u></u>	4	$\{ \textcircled{6}, \textcircled{h}, \textcircled{9} \}$	
Ŏ	5	$\{ \nearrow, \searrow, \circlearrowleft \}$	
>	6	$\{ \overset{\bullet}{\bigcirc}, \overset{\bullet}{\bigcirc}, \overset{\bullet}{\bigcirc}, \overset{\bullet}{\bigcirc} \}$	

Note Sum of Degrees

When adding the degrees of all verticies in graph G = (V, E), you'll find that each edge contributes two to the sum of degrees, since each edge is incident with exactly two verticies

Theorem Handshake Theorem

If G = (v, E) is an undirected graph with |E| = m edges, then

$$\sum_{v \in V} \deg(v) = \sum_{v \in V_1} \deg(v) + \sum_{v \in V_2} \deg(v) = 2 \times m$$

This applies even if multiple edges and loops are present

Example | Handshake

We can see this theorem in effect if we look back at Figure 1:

$$\begin{aligned} 2\times m &= \sum_{v\in V} \deg(v) \\ &= 2+3+4+5+6 \\ 2\times m &= 20 \\ m &= 10 \end{aligned}$$

Theorem Consequences of Handshaking

In an undirected graph, the sum of degree of nodes with odd degrees is *even*.

Theorem Directed Handshake

Let G = (V, E) be a directed graph:

$$\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) = |E|$$

Table 14: Graph Terminology

Type	Direction	Edges	${\bf Loops}$
Simple Graph	Undirected	Singular	No
Multigraph	Undirected	Multiple	No
Pseudograph	Undirected	Multiple	Yes
Simple Directed Graph	Directed	Singular	No
Directed Multigraph	Directed	Multiple	Yes
Mixed Graph	Both	Multiple	Yes

Figure 2: Simple Graph

Figure 3: Multigraph

Figure 4: Pseudograph

Figure 5: Simple Directed Graph

Figure 6: Directed Multigraph

Figure 7: Mixed Graph

