Apellido:

Nombre: DNI:

- 1. (a) (5 pts.) Enunciar la fórmula del binomio de Newton.
 - (b) (5 pts.) Demostrar que para todo $n \in \mathbb{N}$ se tiene que $2^n = \sum_{i=0}^n \binom{n}{i}$.
- 2. (a) (5 pts.) Dados $a, b \in \mathbb{N}$ dar la definición de mínimo común multiplo.
 - (b) (5 pts.) Si $p_1, \ldots, p_n \in \mathbb{N}$ son primos distintos y $a = p_1^{\alpha_1} \ldots p_n^{\alpha_n}$, $b = p_1^{\beta_1} \ldots p_n^{\beta_n}$, con $\alpha_i, \beta_i \in \mathbb{N} \cup \{0\}$. Dar la fórmula del mínimo común multiplo [a, b] en términos de los primos p_i .
 - (c) (5 pts.) Enunciar el Teorema de Fermat (alguno de los dos que vimos en clase).
- 3. (10 pts.) Demostrar que para todo $n \in \mathbb{N}$

$$\sum_{i=1}^{n} (4i - 1) = n(2n + 1).$$

- 4. (10 pts.) Calcular el resto de la división de 87¹⁷⁸ por 17.
- 5. (5 pts.) Sean $a, b \in \mathbb{N}$ números naturales coprimos, es decir (a, b) = 1. Demostrar que para todo $x \in \mathbb{N}$ se tiene que

$$(x, ab) = (x, a)(x, b).$$

Ayuda: Usar el TFA y la fórmula del m.c.d. en términos de productos de primos.

- 6. Un jugador usa las cartas de poker (son 52 cartas, 13 cartas de cada palo, y hay 4 palos, dos palos son rojos y dos negros). Cuántas formas hay de dar una mano de 7 cartas si:
 - (a) (3 pts.) No hay ninguna restricción.
 - (b) (5 pts.) En la mano hay más cartas rojas que negras.
 - (c) (5 pts.) Queremos que en la mano no estén juntas el as de corazones y el as de trébol.
 - (d) (2 pts.) Hay más probabilidad que te toque una mano del punto (b) o del punto (c)?
- 7. (a) (2 pts.) Decida si la siguiente ecuación admite solución entera justificando claramente.

$$220x \equiv 8 (364)$$
.

- (b) (10 pts.) En caso afirmativo, encuentre todos los $x \in \mathbb{Z}$ que satisfacen la congruencia.
- (c) (3 pts.) Hay una única solución x_0 tal que $0 < x_0 < 364$?
- 8. (20 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justifique apropiadamente.
 - (a) La ecuación $5x^2 \equiv 2024$ (25) tiene dos soluciones enteras.
 - (b) Existen un grafo cuyas valencias son 1,1,5,5,8,1,1,1,3,3.
 - (c) La cifra de las unidades de 1003^{245} es 9.
 - (d) Hay infinitos números enteros (x, y) que satisfacen $x^2 = 6y^4$.

1(a)	1(b)	2(a)	2(b)	2(c)	3	4	5	6(a)	6(b)	6(c)	6(d)

7(a)	7(b)	7(c)	8(a)	8(b)	8(c)	8(d)	Total	Nota