Chaderstanding the Wor

看賽車就上手

B94 張哲輔

現在書店裡很流行一種書:「第一次○○○就上手」。○○○可以填的東西包羅萬象:正常一點的諸如「下廚」、「化妝」、「買基金」,奇怪的好比「帶母乳寶寶」、「當客服人員」、「網聚」,但筆者認為最有用的大概就是「把妹」了吧……。不過,不管那些主題有多新潮、多奇怪,書總是薄薄一本,而且還要人花個兩三百塊去買,簡直是沒有天理!富有正義感的筆者深深感受到這個社會的扭曲,也發覺自己有著為這個社會注入一股清流的責任!於是筆者決定下筆寫一篇淺顯易懂又不收錢的「第一次看賽車就上手」,藉著筆者對賽車的一點了解,讓各位從車子的構造、駕駛的基本技巧、對時下流行的甩尾的觀念,到欣賞一場精彩的賽車,都能有通盤的認識!廢話不多說,我們趕快開始吧!

車子是什麼?可以吃嗎?

當然不能吃!

那這個不能吃的東西到底是什麼呢?車子這玩意兒並不像大家想像中那麼複雜、可怕。先讓我們想想車子是怎麼動起來的:第一是提供動力的引擎,再來是把動力傳遞到輪胎上的傳動系統,最後是真正接觸地面、讓車子往前跑的輪胎。車子能動起來,也必須停得下來,執行這項工作的就是煞車系統。而以上這些車子的「器官」都得放在一個「骨架」上,這個「骨架」就是底盤系統。最後,車殼讓車子看起來確實像台車。說穿了,車子也不過就是能動起來、能停下來、有個殼的無生命體罷了」

看完上一段,各位可能心想:「廢話!誰不知道車子能跑能停有個殼啊!」如果各位想要看些有學問的,沒問題!讓我們依照順序一個一個來看看吧!

引擎,是車子的心臟,是動力的來源。引擎是怎麼運作的呢?我們來看看圖一。引擎最主要的部分有燃燒室(combustion chamber)、進氣門(intake valve)、排氣門(exhaust valve)、活塞(piston)、曲軸(crankshaft),而引擎的一個工作循環分爲四階段:進氣、壓縮、膨脹、排氣。

▲ 圖一 引擎構造圖

在進氣階段,進氣門打開、活塞下降,原本在進氣門外的油氣混合物被吸進燃燒室中。在壓縮階段,進氣門關閉、活塞上升,燃燒室內的油氣混合物被壓縮而使得溫度、壓力皆上升。活塞上升接近最高點時,油氣混合物會被點燃,其中汽油引擎由叫做火星塞(spark plug)的點火裝置點燃、柴油引擎則是靠壓縮過程引起的溫度上升來點燃。在膨脹階段,被點燃的油氣混合物膨脹,進而推動活塞往下移動,這是真正動力輸出的階段。到了排氣階段,排氣閥打開、活塞上升,把燃燒完成的廢氣推出燃燒室,準備下一個循環。

為什麼 F1 的引擎聲聽起來比一般的車尖銳這麼多?

F1 的引擎最高轉速可以到 19000 rpm,而一般 汽車到 6000~7000 rpm 就是極限了。為什麼?引擎的 一個先天設計限制是活塞的移動速度(注意是移動速 度而非轉速),而因為 F1 引擎的衝程(活塞上下行走 的長度)非常短,所以在同樣的移動速度底下,F1 引 擎的轉速可以比一般汽車引擎高出非常多。

傳動系統是負責把引擎的動力從曲軸接出來,並傳遞到輪胎上的一套系統,其中最重要的就是變速箱與離合器。有騎過變速腳踏車的想必是對變速箱已經有點概念了,裝在腳踏車後輪上面的那一堆齒盤就是所謂的變速箱,只是在汽車上的變速箱不會連接在輪上罷了。變速箱的功用就是改變輸入端轉速(也就是汽車的引擎轉多快或腳踏車的腳踩多快)和輸出端轉速(輪子實際轉多快)的比例。舉個例子,假設引擎轉速最高可以到8000 rpm (rpm = revolution per minute,每分鐘轉幾圈),而變速箱一檔的輸入:輸出是4:1,那輪胎的轉速就是2000 rpm;如果變速箱六檔的輸入:輸出是1:1,那輪胎的轉速就是8000 rpm。

那離合器又是什麼呢?腳踏車上沒有聽說過什麼離合器啊?大家可能有試過把腳踏車放在最輕檔,拼了老命踩快,再突然換到最重檔,然後腳就會突然覺得好像堵到什麼東西一樣,瞬間就踩不快了。筆者只能說,盡量別這樣玩,很傷膝蓋……。汽車也是一樣的道理。拿剛才的例子好了,假設車子現在在一檔,所以輪胎轉速爲 2000 rpm,但如果突然從一檔跳到六檔的話(千萬別這麼做!),理論上輪胎的轉速應該瞬間變成 8000 rpm。各位物理都很好,單位時間內角速度改變量越大,也就代表力矩越大。受到很大的力矩作用時,引擎和變

速箱都是很可能壞掉的,就像你的膝蓋 會壞掉一樣。

離合器的存在就是爲了避免這種 突然的劇變,它是連接輸入與輸出端、 跟著它們一起轉動的兩片東西,靠著彈 簧及一些機構頂在一起。當變速箱換檔 時,輸入與輸出端出現了轉速差,此時 這兩片東西之間就開始產生相對滑 動;一段時間後,因爲動摩擦力的關 係,兩片東西之間的相對滑動就消失、

變成一樣的轉速在轉動。動摩擦力越小,兩片東西轉速同步的時間就越長,藉以避免突然的劇變。而讓動摩擦力越小的方法就是讓那兩片東西不要頂那麼緊,這個工作以前是靠人去踩離合器踏板來達成,但現在越來越多的自手排車都可以靠電腦來幫忙做了。另外,自排車雖然也有同樣功用的機構,名叫扭力轉換器,但作用原理卻是不盡相同,在此筆者不多贅述。

接下來要提的是輪胎和煞車系統。各位可能覺得輪胎沒什麼好提的?錯!如果要選出整台車上最重要的一個地方,那一定是輪胎!女生可以試想穿著高跟鞋跑操場是多麼痛苦的感覺;男生可以試想運動會中穿釘鞋的人衝得比穿慢跑鞋的人快多少。輪胎就是車子的鞋子,鞋子不好,再會跑也是枉然!對輪胎來說,最重要的兩個參數就是胎寬和直徑了。胎寬越

寬,輪胎與地面的接觸面積越大,抓地力就越好;直徑越大,施力臂就越長,同樣輪胎轉速下可以跑更快。於是很多人改裝輪胎的時候,就是一味把胎寬換寬、直徑換大。這種做法看似合理,其實完全錯誤!胎寬越寬抓地力越好,換個說法就是摩擦力越大,這可是耗油的元凶啊!直徑越大同樣輪胎轉速下跑越快,但問題是直徑越大代表著輪胎轉動慣量越大,要達到一樣的輪胎轉速是更困難、甚至是不可行的!

再談到煞車系統,現在大部分汽車的煞車系統都是碟式煞車,也就是在車輪上鎖上一片圓形的碟盤,再利用一個名叫卡鉗的機構去夾那片碟盤,達到煞車的效果。那碟盤是不是也是越大越好呢?畢竟半徑越大、力臂越大,煞車也不應該更有力吧?很遺憾,答案還是錯!煞車力道的極限是要看輪胎與地面之間的摩擦力來決定的,如果這個摩擦力很小,但碟盤太大、煞車力太強,那麼輪胎就會直接被鎖死,車子不但停不下來,還控制不住呢!輪胎和煞車雖然看似簡單,學問可是多多喔!

最後是底盤系統,大致包含了車架部分與 懸吊部分。不管是引擎、傳動系統、輪胎、懸 吊、車殼,通通都是裝在車架上。裝上去聽起 來很簡單,但裝在哪可是大大的影響車輛的表 現喔!基本上最好的狀況就是車架前半部跟後 半部的總重量比剛好爲 1:1,這樣的車重分配 可以達到最好的車輛操控性;同時重量越集中 在中心越好,這樣可以讓全車的轉動慣量下 降,提升轉彎時的靈敏度。另外,車架的剛性(施 力與形變量之間的比例)是非常重要的一個參 數,試想你的車是由好吃的「統一布丁」所做 成,那這台車只要一轉彎就會扭得亂七八糟, 更別提什麼車輛的平衡性、操控性了。

那麼懸吊系統呢?大家都學過: $F_{ext} = m \frac{d^2}{dt^2} x + c \frac{d}{dt} x + kx , 這就是最基本$

的懸吊系統:外力經過了彈簧的緩衝、減震器 的能量吸收、最後變成施加在車上的力。彈簧 與減震器就是懸吊系統的核心:彈簧負責支撐 全車的重量、緩衝路面施加在車上的力;減震 筒負責吸收路面施加在車上的力。沒有了懸吊 系統,車子就只是一個方塊,撞到東西就飛起 來,不僅坐起來不舒服,也沒辦法讓車輪乖乖 地貼著地面。

最後我們來看看車身。車身的長相是很多

人喜不喜歡一台車的最主要原因,但車身可不 只是爲了好看而已!空氣阻力的公式各位應該 都不陌生: $F = \frac{1}{2}C_d \rho A v^2$,其中 ρ 是空氣密 度、A 是物體迎風面的截面積、 ν 是物體速度、 C_d 是與物體幾何形狀有關的風阻係數。如果車 身設計得不好、風阻係數很大,那麼它在高速 行駛下的空氣阻力也就很大,結果就會是高速 下的加速性能減弱、極速降低、油耗還上升。 另外,好的車身設計還可以增加所謂的下壓 力:下壓力指的是空氣流經車身時,施加在車 身的向下的力。增加下壓力可以使得輪胎抓地 力上升(因爲正向力上升的關係),進而使得車 子在彎道的速度可以更快。各位可能會覺得: 不過就是空氣嘛,是能產生多大的力量?讓我 告訴各位:現在的 F1 賽車,可以在時速 300 公 里的速度下產生 1.5 噸的下壓力, 是賽車本身重 量的 2.5 倍! 多了這麼多的正向力, 各位就可以 想像 F1 賽車爲什麼可以用快得不可思議的速度 涌過彎道了吧!

賽車技巧大解密!

筆者在升大三暑假時,系學會正流行一款 叫作 Gran Turismo 4 的擬真賽車遊戲。大家都以 爲玩賽車是很簡單的事情,但當他們玩過了才 覺得奇怪:爲什麼彎道都過不去,都會衝出跑 道呢?爲什麼前面的車旁邊明明都有很大的空 位可以超車,可是都超不過去呢?玩不起來的結果就是,擬真賽車遊戲就被大家玩成暴力賽車遊戲,比賽的目的從獲勝變成了撞爆敵車,好好的一款遊戲就這樣被糟蹋了……。身爲熱愛賽車的筆者怎麼可以放任這種傷天害理的事情不管呢?!在這裡筆者就要義不容辭地告訴各位如何輕鬆寫意地成爲賽車大師!

首先,要成爲賽車大師,第一件要學的事情就是「**踩煞車**」! Sounds funny right? Absolutely not! 就像只會微分不會積分的人考試一定完蛋一樣,只知道踩油門不知道踩煞車的人的下場只有一個:撞上所遇到的第一面牆壁……。所以,請務必記得:在進入彎道前確實地踩下煞車!

大家都知道一個簡單的高中物理公式: (a=V^2/R),固定向心加速度 a,速度平方與曲率半徑成正比。這個簡單的觀念告訴我們:過 彎時,因爲輪胎的抓地力有一定的極限(也就是向心加速度有最大值),所以要提高速度,就必須尋找曲率半徑最大的路線走,這就是所謂的「外內外」原則!意思是在入彎時靠近外側、在彎道中靠近內側、在出彎時再度靠近外側,以達到曲率半徑最大的效果。

接下來我們要學的是:「欲速則不達」。我拿這種老掉牙的話來說教不是沒有原因的。各位一定認爲要把車子開快,就要在不會衝出跑道的前提下盡量踩油門吧?很遺憾,這是錯的。車子在入彎時的速度越快的結果,就是車子的行進方向就越不容易改變(想想 a=V^2/R吧);車子方向不容易改變的結果,就是都已經要出彎了,車頭還沒對準下一條直線跑道;沒對準直線跑道的結果,就是不能大腳踩油門加速,甚至必須減速,除非你想衝出跑道;出彎不能加速的結果,就是跑不快。See?從入彎速度快的前提竟然得到了出彎跑不快的結果!這時候 dilemma 就來了:我到底應該選擇入彎快一點、出彎跑不快,還是應該選擇入彎慢一點、

出彎跑得快?在一般的情況下,彎道的長度是遠遠不及直線的長度的,更不用提彎道的前面一小段了。所以爲了在較長的直路上跑得更快,比較好的做法應該是在入彎時慢一點,讓車頭更早一點對準下一條直線,然後就可以更早一點加速,這就是所謂的「慢入快出」原則!

此外,各位在看熱血的賽車卡通時,是不 是覺得激烈地轉動方向盤的主角真是帥呆了 呢?可惜,激烈地轉動方向盤,真的就純粹只 是帥呆了而已,沒有任何其他好處啊!實際 上,前輪所轉的角度比起車子真正轉向的角 度,總是要來得更大一些,這兩者之間的差叫 做滑動角 (slip angle),它的物理意義是:由於 輪胎是彈性體,所以在轉動時,與地面的摩擦 並不是完美的靜摩擦,而含有動摩擦的成分。 滑動角與轉向力的關係是非線性的正相關:大 約在滑動角小於 4~6 度時,滑動角與轉向力成 正比,大約超過8~12度後,轉向力即達到臨界 值,不會再隨著滑動角的增大而增加。所以, 當車子在過彎時,如果轉向力已經到達了極 限,那麼方向盤轉得再多,車子也不會轉向得 比較快,只會讓輪胎與地面的動摩擦成分更 大,更快把輪胎磨光而已;相反地,如果可以 準確的轉動方向盤,不做劇烈的轉動,那麼不 僅可以維持速度、保護輪胎、駕駛起來也會輕 鬆順暢,也就容易開得快;因此我們會說*「舵 角越小、速度越快* / !

講完這些基本的概念,不如讓我們來談些 更帥氣的技術。相信各位一定都在《閃電霹靂 車》、《頭文字 D》,還有時下諸多的好萊塢動作 電影看過類似的橋段:一輛又一輛的車後輪摩 擦著地面、冒著白煙,像是溜冰般地滑行在彎 與彎之間,速度好快、好刺激啊!沒錯,這種 極具速度感與視覺張力的高難度動作就是所謂 的「甩尾」!

其實,在華麗炫目的甩尾動作底下,可是 潛藏著各式各樣不同技巧的喔!比較主要的技 巧有利用手煞車來鎖死後輪的 hand-brake drift、利用強大動力來達成的 powerslide、利用 換檔時引擎與傳動軸的轉速差的 shift lock、利 用點放離合器來破壞車輛平衡的 clutch kick、利 用煞車和油門改變車身重心的 brake drift 和 lift off、利用車身的左右擺動來使車尾甩出的 inertia drift,和把後輪開進泥地的 dirt drift 等等。不過 說了這麼多,也只是充充版面而已。其實萬法 歸一,不管是使用什麼樣的技巧甩尾,主要原理就是想辦法破壞後輪與地面之間的靜摩擦,使其進入並維持在動摩擦的狀態,就這麼簡單!

不過,當我們看著電視,享受著車子在彎道中驚險地甩進又甩出所帶來的快感的同時, 有沒有仔細地想過車子要如何在彎道中穿梭才 會快呢?行文至此,各位是否有發現,在甩尾 的速度感底下是另有蹊蹺呢?我深信擁有深厚 物理基礎的各位一定知道我在說什麼:車子在 甩尾的時候,後輪是處於動摩擦的狀態,所以 地面施給後輪的反作用力,也就是推動車子的 力,是動摩擦力;而動摩擦力又比最大靜摩擦 力來的小,所以車子想要開得快,應該要利用 地面給車輪的最大靜摩擦力,也就是用一般的 循跡開法才對。這麼說來,甩尾過彎的時候, 車子怎麼可能會快的起來嘛!聰明的你,猜對 了嗎?

「蛤~好失望喔~」當筆者把上述事實告 訴筆者的姐姐的時候,她很沮喪地這麼回應, 「那電視上看到那些車子在甩尾,全部都是騙 人的、好看而已囉?」看樣子她可得 low 上好 一陣子了。可是,真的是這樣嗎?不,事情沒 這麼簡單!

讓我們來看個比較特殊的例子:當一台車 在冰上過彎時,因爲輪胎在冰上的抓地力很 低,所以用一般的循跡開法時,不管是入彎或 出彎的速度都會很慢。但如果是用甩尾來過彎 的話可就不一樣了,用尾時車輛可以很快地進 入彎道,不需要太過考慮抓地力的問題;同時,車頭所指的方向也會很快地改變,使車頭更早指向彎道的出口,也就更早出彎,這就是甩尾的兩大好處。看完了特殊的例子,現在來看看比較貼近日常生活的例子吧:各位可能多數都有汽車駕照了,沒有駕照的也都看過長輩們開車,所以想必各位都很了解路邊停車的困難。又要前進,又要後退,橋了個老半天才終於硬塞進那小小的停車格中間,光用想的就覺得很麻煩。不過只要會甩尾,一切就迎刃而解了!就算是再難停的停車格,只要車頭一轉、車尾一甩,車子一下就塞進格子裡面囉!

看完上面的兩個例子,大概就可以歸納出 適合甩尾的情況了:第一,輪胎與地面的摩擦 力很小,例如在泥地、沙地、雪地和冰上,或 是使用的輪胎較差;所以越野賽車都是採取甩 尾的跑法。第二,彎道彎曲的程度很大或路面 很狹窄,例如狹小的巷道或是連續的彎道。所 以《頭文字 D》裡的拓海在山路飆車使用甩尾 來過彎是其來有自,不完全是隨便胡謅的!

談完了基本的賽車技巧,各位是不是感覺 到自己已經是個賽車大師,摩拳擦掌地準備下 場,跑出個嚇死人的成績,再好好炫耀一番呢? No, no, no, 我敢說現在的你還沒出師!一場真 正的賽車比賽,可不是開得快就是贏家!大多 數正式的賽車比賽會分成排位賽與正賽:排位 賽是比較最快單圈成績,以決定正賽的起跑順 序;正賽才是真正有積分可拿的比賽。排位賽 只看單圈成績,開得快的人也許可以在排位賽 時取得第一,而在正賽時排在最前面起跑,但 正賽是長時間、長距離的比賽,就算是一般的 房車賽也要跑個二十多圈、四十多分鐘,這時 候比較誰開完一圈的時間最短就沒有太大的意 義了。用最快速度開完每一圈的代價是大幅消 耗體力與集中力、快速磨損輪胎、燃燒大量的 油料,結果好的話可能每一圈都比別人快半 秒,但是爲了換輪胎和加油卻多花了半分鐘; 結果不好的話可能就是體力不足開不完、集中

力不足失誤連連、輪胎磨損太嚴重而失去抓地 力、油花得太兇而跑到沒有油······。

所以,不是能跑出最快單圈的車手就是最快的車手;能在需要超車或擺脫對手追擊時展現驚人的速度、也能在需要保留實力的時候展現穩定性,這才算是最快的車手!同樣的道理,真正的賽車比賽是比一整年的,冠軍是這一年中拿到最多積分的車手,所以跑贏一場比賽並非就是最快的車手,能在每一場比賽都穩定地拿到前頭名次者,才是最快的車手!

成為一位賽車迷!

在台灣這個賽車運動不盛行的國家,喜歡 賽車的人在家裡是很沒有地位的……。拿最高 等級的 F1 賽事來說,大部分的比賽都在台灣時間的周六、日晚上或是凌晨,在這種尷尬的時 段,筆者想要看個直播卻往往馬上被家人阻止:

爸爸:「出去吃飯了啦還看!」

OS:是不會在家裡吃喔······

妹妹:「我要看SBL 啦!」

「我要看喬傑立啦!」

OS:拜託妳長大一點好不好都幾歲了還在看人 家打假球耍白痴……

媽媽:「都凌晨幾點了還在看,吵得要死! 給我關靜音!」

OS:你家車子引擎是沒有聲音的喔……

全家人:「看車子繞圈圈有什麼好看?」

OS:全世界觀眾第二多的運動你們看不懂是你們素養不夠啦!

(P.S.全世界觀眾最多的運動是足球。)

面對這樣沒有運動素養的家人,面對這樣 搶不到遙控器主控權的情況,筆者深切覺得不 是辦法,於是「感化家人看賽車大作戰」就這 樣在筆者家中展開了!如果你也和筆者的家人 一樣,正準備一窺賽車比賽的奧妙的話,不妨 一起來看看筆者是怎麼跟家人介紹看賽車的樂 趣吧!

首先讓我們從排位賽開始看起。排位賽,顧名思義就是排位子的比賽。排什麼位子?排正賽起跑順序的位子!那起跑順序重要嗎?超級重要!有在騎機車的人多多少少都知道,在等紅綠燈的時候要盡量停前面一點,至少不要卡在一堆汽車後面。爲什麼?等綠燈亮了你就知道停在別人的車子後面是多麼痛苦的事情:綠燈秒數搞不好都要倒數完了,你可能還被擋在那些龜速車的後面。賽車也是一樣,排在前面一個位子就是少一個人在前面擋路,何況跟平常在路上不一樣的是,前面的賽車會想盡辦法把後車擋在後面啊!所以想當然爾,各個車隊都是想盡了各種辦法要跑出最快的單圈時間囉!

在整套完整的賽事中,從各隊的練習時間、排位賽到正賽,賽車跑最快的時候就是排位賽了。在練習時間,各隊都在想辦法將車子調整到最佳狀態,而且也都會隱藏實力,怎麼可以還沒開始比賽就讓對方知道自己多強呢?正賽期間因爲要跑很多圈,如果每圈都全速衝刺,油用得快、輪胎也磨損得快,而多加一次油、多換一次輪胎所損失的時間可能更多;另外,每圈都全力跑對車手來說也是非常消耗體力與集中力的事。排位賽就不一樣了,一來搶到好的起跑位子太重要,二來排位賽到最後也只是比最快那圈的時間,所以當然就管他三七二十一,越快越好囉!

在排位賽中,因爲大家都拼了命的想開 快,所以就可以看出各個車手是如何「攻略」 一條賽道的,誰比較晚踩煞車、誰開得比較靠 近跑道邊甚至是護欄、誰走的路線跟大家都不一樣……;同時也可以看出各車隊的車子在某條賽道上的競爭力,哪台車在直線特別快、哪台車在低速彎道根本就不行……看得越仔細,就會發現其實每個車手的風格、每台車的特性都是大不相同喔!

再來看看正賽吧。首先要提醒的就是:千萬記得準時開電視!起跑常常都是整場比賽最精采的時刻!最容易超車的時間地點就是在起跑第一圈的第一個彎道,那時所有的車都離得很近,技術好的車手一次就可以超掉好幾台車,相反地,菜鳥也可能一次掉好幾個位子;也因爲所有的車都離得很近,起跑第一圈的第一個彎道也是最容易發生事故的地方。慢慢地,一圈兩圈過去了,快的車就會開始拉開差距,超車和事故的頻率就會慢慢下降了。

當然,在賽事中間也是有很多精采的超越 鏡頭的,而且在賽事中間不像起跑的時候那麼 混亂,所以超越所需要的技術更是精湛喔!一 條賽道容不容易超車,要看賽道的寬度、直線 的長度、彎道的設計……等等,而很多賽道容 易超車的地點只有一兩個,有些甚至沒有容易 超車的地點。當車手要超越前車的時候,必須 思考他要在哪個地點超越、思考在到達那個地 點前如何維持或追近與前車距離、思考要走什 麼路線超越前車、思考在超越成功之後要如何! 守住不被反超回來,思考超越失敗的話會不會 反而被拉開差距甚至被後車超越, 還要思 考……。相對的,防守的鏡頭也是非常精彩的! 前車被追擊的時候,也要猜測後車何時要超 車、思考如何拉開差距、選擇走哪條線路來阻 擋後車……太多太多需要思考的了!

讓我們來看一個小例子好了,有種東西叫做「真空帶」,利用真空帶來超車是非常重要的一項技巧。真空帶又稱低壓區,是車輛高速行駛時,在車後產生的一小塊氣壓較低的區域。 在直路上車子可以利用真空帶來超車:當後車 進入前車的真空帶時,空氣阻力會比較小,於 是加速會比較快;而當直線夠長的時候,後車 就可以獲得比前車更高的速度,進而超越前 車。但真空帶在車後延伸的範圍很小,所以要 進入前車的真空帶是很困難的。實際的賽事 中,常常看到後車積極地想要進入前車的真空 帶卻一直失敗,此時後車不但無法有足夠的加 速度超越前車,反而還會因爲吸入過多前車的 廢氣而導致引擎輸出下降。當後車遲遲無法超 越前車時,後車常會乾脆與前車保持一段距離 或是直接進維修區加油換胎。

當然,在賽事中也不是只有賽道上的攻防 戰好看而已,車隊策略也是觀賽一大重點!有 些車的速度不怎麼快,可能是因為車子的油載 很重,可以少進去維修區加油換胎;而有些車 的速度非常快,可能是因為車子的油載很輕, 但他要多進幾次維修區加油。哪樣好?不一 定!也許某條跑道的維修區很長,進去加一次 油就要很久(維修區是有速限的),那重油載的車 可能佔點優勢;但搞不好比賽途中突然下雨, 車子非得進維修區換輪胎不可,那重油載的車 的優勢就不見了;又搞不好輕油載的車出維修 區以後剛好被慢車擋住跑不快,而重油載的車 出維修區以後一路都沒有阻礙,那輕油載的車 的優勢就又不見了……。影響比賽的變數非常 多,欣賞車隊如何因應這些變數也是非常有趣 的!

此外,自古以來,在戰場上有著不變的真理:「兵不厭詐」。在賽事中,各個車隊都會互相猜測對方何時會進維修區、要加多少油、要換哪種胎,並藉此來調整自己的進站策略。F1車隊之間的互相猜忌更是有趣,當他們知道對方在觀察自己時,他們有時會故意將所有賽車進維修區需要用到的東西通通搬出來,讓對手以爲他們的車要進站了,然後過一段時間再通通撤回去,藉此欺騙對手。看每個車隊的心機與攻防,是賽車比賽不可或缺的一部分。

行文至此,不知道各位是否從車子的構造、駕駛的基本技巧、對時下流行的甩尾的觀念,到欣賞一場精彩的賽車,都有了通盤的認識呢?如果是的話,那麼恭喜你,你已經準備好了!

賽車運動看似簡單,不過就是幾台車子繞 著跑道轉啊轉,和賽馬、賽跑、賽豬甚至鬥蟋 蟀好像差不了多少,但要真正了解其精髓卻沒 有你想像的那麼簡單。所謂「外行看熱鬧,內 行看門道」,賽車的構造複雜、技巧繁複,一輛 車子就裝載著成千上百種零件,過個彎可能就 要考慮踩、放踏板的時機與方向盤角度等。如 果你只是想看車子轉圈圈,那買台四驅車恐怕 還更有臨場感。要從賽車中獲得感動、要能第 一次看賽車就上手,這些基本的認識與了解是 絕對不可或缺的。

然而理論懂得再多、構造摸得再清楚,沒 有實際看過比賽還是什麼都不懂。現在快翻開 節目表,查查今天有沒有最夯、最熱血的車賽, 打開電視,享受那撼動心靈的引擎聲吧!隨著 衝出的車輛,不錯,這就是你衝破心靈藩籬、 上手賽車的第一次綠燈!

比賽旗語 表示前方存在的障礙已經清除,比賽恢復正常。 當出現方格旗的時候,表示比賽或者練習賽結束了。 表示前方車道上有障礙物,比如一輛撞壞的或者 表示前方有慢速行駛的車輛。可能是救護車、拖車, 出現故障的賽車。出現黃旗時不允許超車。 或是賽會安全車輛。 表示比賽或者試車因故提前結束。車手應該回到 表示賽道前方路面有油或路面較滑,車手應小心駕 賽道末端的檢修車道並待命,以得知是否與何時 駛,直到信號旗收回為止。如果比賽官員揮動紅黃 恢復比賽。 條紋旗,代表著前方不遠處就有所謂的濕滑地帶。 表示後方有領先一圈的車輛正在接近,並且準備 如果車手的號碼顯示在出發線,同時旁邊有半黑半 超車。車手就應該往側靠攏,為後來居上的賽車 白旗出現,表示車手的行為違反運動精神,若不馬 讓路。 上改正,則會被取消參賽資格。 如果車手的號碼顯示在出發線,同時旁邊有黑旗 如果車手的號碼顯示在出發線,同時旁邊有黑底橋 出現,表示車手在跑完這一圈之後需要向檢修站 圈旗出現,表示車手需要立即與檢修站取得聯繫。 匯報。當一名車手在比賽中犯規的時候,需要向 當比賽官員懷疑車手的賽車存在機械問題而需要檢 車手出示黑旗。出現這種信號時,一般來說車手 修的時候,會出示黑底橘圈旗。 有可能被取消比賽資格。