MA2001

LIVE LECTURE 10

Q&A: log in to PollEv.com/vtpoll

Topics for week 10

- **5.3** Best Approximation
- **5.4** Orthogonal Matrices
- **6.1** Eigenvalues and Eigenvectors

Least Squares Solution

```
\boldsymbol{u} is the "best approximated" solution to an inconsistent \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}
```

 \boldsymbol{u} is the least squares solution to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$

u is a solution of $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ always consistent

 \boldsymbol{u} is a solution of $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{p}$, the projection of \boldsymbol{b} onto column space of \boldsymbol{A}

always consistent

We can always find least squares solution to any Ax = b

Least squares solution to Ax = b may be unique or infinite

Find projection using least squares solution

Find projection of **w** onto a subspace $V = \text{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n\}$

- i. Form matrix **A** using $v_1, v_2, ..., v_n$ as columns.
- Column space of $\mathbf{A} = V$

- ii. Find the least squares solution of Ax = w.
- iii. Find the solutions of $A^TAx = A^Tw$.
- iv. Take any solution *u* in (iii).
- v. **Au** gives the projection of **w** onto V.

Orthogonal Matrices

A is n x n matrix

- A is an orthogonal matrix
- $A^{-1} = A^T$
- $\mathbf{A}\mathbf{A}^T = \mathbf{I}$ \mathbf{A}^T is also orthogonal matrix
- The rows of \mathbf{A} form an orthonormal basis for \mathbf{R}^n .
- The columns of A form an orthonormal basis for Rⁿ.

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{1} \\ \vdots \\ \mathbf{a}_{n} \end{pmatrix} \quad \mathbf{A}^{T} = (\mathbf{a}_{1}^{T} \quad \cdots \quad \mathbf{a}_{n}^{T}) \qquad \mathbf{A}\mathbf{A}^{T} = \begin{pmatrix} \mathbf{a}_{1}\mathbf{a}_{1}^{T} & \mathbf{a}_{1}\mathbf{a}_{2}^{T} & \mathbf{a}_{1}\mathbf{a}_{3}^{T} \\ \mathbf{a}_{2}\mathbf{a}_{1}^{T} & \mathbf{a}_{2}\mathbf{a}_{2}^{T} & \mathbf{a}_{2}\mathbf{a}_{3}^{T} \\ \mathbf{a}_{3}\mathbf{a}_{1}^{T} & \mathbf{a}_{3}\mathbf{a}_{2}^{T} & \mathbf{a}_{3}\mathbf{a}_{3}^{T} \end{pmatrix} = \begin{pmatrix} \mathbf{a}_{1} \cdot \mathbf{a}_{1} & \mathbf{a}_{1} \cdot \mathbf{a}_{2} & \mathbf{a}_{1} \cdot \mathbf{a}_{3} \\ \mathbf{a}_{2} \cdot \mathbf{a}_{1} & \mathbf{a}_{2} \cdot \mathbf{a}_{2} & \mathbf{a}_{2} \cdot \mathbf{a}_{3} \\ \mathbf{a}_{3} \cdot \mathbf{a}_{1} & \mathbf{a}_{3} \cdot \mathbf{a}_{2} & \mathbf{a}_{3} \cdot \mathbf{a}_{3} \end{pmatrix}$$

True or False

 $\mathbf{A} = (\mathbf{c}_1 \ \mathbf{c}_2 \ ... \ \mathbf{c}_k)$ is an $\mathbf{n} \times \mathbf{k}$ matrix such that the columns $\{\mathbf{c}_1, \ \mathbf{c}_2, \ ..., \ \mathbf{c}_k\}$ of \mathbf{A} form an orthonormal set. Can we conclude that

(I) $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ = identity matrix and (II) $\mathbf{A}\mathbf{A}^{\mathsf{T}}$ = identity matrix?

$$\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A} = \begin{pmatrix} \boldsymbol{c}_{1}^{\mathsf{T}} \\ \vdots \\ \boldsymbol{c}_{k}^{\mathsf{T}} \end{pmatrix} (\boldsymbol{c}_{1} \quad \cdots \quad \boldsymbol{c}_{k}) = \begin{pmatrix} \boldsymbol{c}_{1}^{\mathsf{T}}\boldsymbol{c}_{1} & \cdots & \boldsymbol{c}_{1}^{\mathsf{T}}\boldsymbol{c}_{k} \\ \vdots & & \vdots \\ \boldsymbol{c}_{k}^{\mathsf{T}}\boldsymbol{c}_{1} & \cdots & \boldsymbol{c}_{k}^{\mathsf{T}}\boldsymbol{c}_{k} \end{pmatrix}$$
True

$$\mathbf{A}\mathbf{A}^{\mathsf{T}} = \begin{pmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{pmatrix} (\mathbf{r}_1^{\mathsf{T}} \cdots \mathbf{r}_n^{\mathsf{T}}) = \begin{pmatrix} \mathbf{r}_1 \mathbf{r}_1^{\mathsf{T}} & \cdots & \mathbf{r}_1 \mathbf{r}_n^{\mathsf{T}} \\ \vdots & & \vdots \\ \mathbf{r}_n \mathbf{r}_1^{\mathsf{T}} & \cdots & \mathbf{r}_n \mathbf{r}_n^{\mathsf{T}} \end{pmatrix}$$
 False

Exercise 5 Q32 (Tutorial)

```
A be an orthogonal matrix:
```

- a) ||u|| = ||Au||;
- b) $d(\boldsymbol{u}, \boldsymbol{v}) = d(\boldsymbol{A}\boldsymbol{u}, \boldsymbol{A}\boldsymbol{v});$

Orthogonal matrix preserves norm, distance, angles

- c) the angle between \boldsymbol{u} and \boldsymbol{v} is equal to the angle between $\boldsymbol{A}\boldsymbol{u}$ and $\boldsymbol{A}\boldsymbol{v}$.
- Express each part using dot product
- Regard the dot product as matrix multiplication

Use the fact that A is orthogonal

 $oldsymbol{u}$ and $oldsymbol{v}$ regarded as column matrices

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$$

8

Orthogonal matrix preserves

- Basis
- Orthogonal basis
- Orthonormal basis

Exercise 5 Q33 (Tutorial)

A be an orthogonal matrix and let $S = \{u_1, u_2, ..., u_n\}$ be a basis for \mathbb{R}^n .

- (a) Show that $T = \{Au_1, Au_2, ..., Au_n\}$ is a basis for \mathbb{R}^n .
 - Refer Ex 3.30(b)
- (b) If S is orthogonal, show that T is orthogonal.
- Show $\mathbf{A}\mathbf{u}_i \cdot \mathbf{A}\mathbf{u}_i = 0$ for any $i \neq j$ using matrix multiplication
- (c) If S is orthonormal, is T orthonormal?
 - Refer to Q32

Transition matrix between orthonormal bases

Let $S = \{\boldsymbol{u_1}, \, \boldsymbol{u_2}, \, ..., \, \boldsymbol{u_n}\}$ and $T = \{\boldsymbol{v_1}, \, \boldsymbol{v_2}, \, ..., \, \boldsymbol{v_n}\}$ be two bases for \mathbf{R}^n Transition matrix from S to T: $\boldsymbol{P} = (\, [\boldsymbol{u_1}]_T \, [\boldsymbol{u_2}]_T \, \cdots \, [\boldsymbol{u_n}]_T \,)$ S is an orthonormal basis for \mathbf{R}^n

T is the standard basis for **R**ⁿ

S is the standard basis for \mathbb{R}^n T is an orthonormal basis for \mathbb{R}^n

S is an orthonormal basis for \mathbb{R}^n T is an orthonormal basis for \mathbb{R}^n

$$P = \begin{pmatrix} u_1 & u_2 & \cdots & u_n \end{pmatrix}$$

$$P = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

$$P = \begin{pmatrix} u_1 \cdot v_1 & u_2 \cdot v_1 & \cdots & u_k \cdot v_1 \\ u_1 \cdot v_2 & u_2 \cdot v_2 & \cdots & u_k \cdot v_2 \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

10

P is an

orthogonal

matrix

True or False

```
S = \{u_1, u_2, ..., u_n\} and T = \{v_1, v_2, ..., v_n\}
              two orthonormal bases for R<sup>n</sup>
   \mathbf{A} = (\mathbf{u_1} \ \mathbf{u_2} \ ... \ \mathbf{u_n}) and \mathbf{B} = (\mathbf{v_1} \ \mathbf{v_2} \ ... \ \mathbf{v_n}) orthogonal matrices
       \boldsymbol{P} the transition matrix from S to T orthogonal matrices
 True or false: PA = B Recall: P[w]_S = [w]_T
 Correct relation: \mathbf{A} = \mathbf{BP}
                                                     HW3 Q5(iv): BC = A
        (B \mid A) \rightarrow (I \mid P)
Pre-multiply by B<sup>-1</sup>
                                                                       A, B are not
                                                                      square matrices
     (B^{-1}B \mid B^{-1}A)
```

Orthonormal matrix?

What is the difference between orthogonal matrix and orthonormal matrix?

The rows/columns of **A** form an orthonormal set

No such thing as orthonormal matrix!

Eigenvalue and Eigenvector Visualization

May not give the complete set of eigenvalues

Finding eigenvalue (given eigenvector)

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
 Are these eigenvectors of \mathbf{A} : $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$?
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ is an eigenvector

with eigenvalue 1

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \text{ is not an eigenvector}$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$$

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is an eigenvector with eigenvalue 2

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \text{ is an eigenvector}$$
with eigenvalue 0

 $n \times n$ matrix has n eigenvalues, counting multiplicities

Finding eigenvalues (without eigenvector)

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

So the eigenvalues of **A** are 1 (repeated) and -1 (repeated).

Characteristic polynomial:

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad \text{det}(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda & 0 & -1 & 0 \\ 0 & \lambda & 0 & -1 \\ -1 & 0 & \lambda & 0 \\ 0 & -1 & 0 & \lambda \end{vmatrix}$$

$$= \lambda \times \begin{vmatrix} \lambda & 0 & -1 \\ 0 & \lambda & 0 \\ -1 & 0 & \lambda \end{vmatrix} - 1 \times \begin{vmatrix} 0 & \lambda & -1 \\ -1 & 0 & 0 \\ 0 & -1 & \lambda \end{vmatrix}$$

$$= \lambda(\lambda^3 - \lambda) - (1)(\lambda^2 - 1)$$

$$= \lambda^2(\lambda^2 - 1) - (1)(\lambda^2 - 1)$$

$$= (\lambda^2 - 1)(\lambda^2 - 1)$$

Multiplicities of the eigenvalues

$$= (\lambda - 1)(\lambda + 1)(\lambda - 1)(\lambda + 1) = (\lambda - 1)^{2}(\lambda + 1)^{2}$$

Different perspectives of eigenvalues

- λ is an eigenvalue of A
- $AV = \lambda V$ for some nonzero column vector V
- $(\lambda I A) v = 0$ for some nonzero column vector v
- $det(\lambda I A) = 0$ Solve this equation to find the eigenvalues of A

v is a non-trivial solution of the homogeneous system $(\lambda \mathbf{I} - \mathbf{A}) \times = \mathbf{0}$

True or False

Let λ be an eigenvalue of an invertible matrix A. Then

- 1. 2λ is an eigenvalue of 2A.
- 2. λ^{-1} is an eigenvalue of A^{-1} .

Bring in the corresponding eigenvector ${m v}$

Start with $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$

Ways To Find Eigenvalues

- If an eigenvector **u** is given, multiply it by the matrix: $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$
- Solve characteristic equation $det(\lambda I A) = 0$
- If the matrix is triangular, take the diagonal entries
- If λ is an eigenvalue of \boldsymbol{A} , then
 - \circ c λ is an eigenvalue of c \boldsymbol{A}
 - $\int_{0}^{\infty} \lambda$ is an eigenvalue of \mathbf{A}^{T}
- Exercise 6 Q3 $\langle \rangle$ λ^n is an eigenvalue of A^n
 - λ^{-1} is an eigenvalue of A^{-1} (when A is invertible)

Eigenspace

 \boldsymbol{A} : n x n matrix and λ is (one of the) eigenvalue of \boldsymbol{A}

Zero vector is not an eigenvector

Check: Eigenspace for
$$\lambda = -1$$
: $E_{-1} = span \left\{ \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right\}$

Finding eigenvector (given eigenvalue)

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
 Solve $(\lambda \mathbf{I} - \mathbf{A}) \mathbf{x} = \mathbf{0}$ for eigenvalues $\lambda = 1$ and -1
$$\begin{pmatrix} \lambda & 0 & -1 & 0 \\ 0 & \lambda & 0 & -1 \\ -1 & 0 & \lambda & 0 \\ 0 & -1 & 0 & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\lambda = 1$$

Gen. soln:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} s \\ t \\ s \end{pmatrix} = s \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
 Eigenspace for $\lambda = 1 : E_1 = span \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}$

Any non-trivial linear combination is an eigenvector associated to $\lambda = 1$

Complete process

 $\dim(U+V)=\dim(U)+\dim(V)-\dim(U\cap V)$

Exercise 6 Q7 (modified)

A is a 3 x 3 matrix with eigenvalue λ and the associated eigenspace $E_{\lambda, \mathbf{A}}$ such that $\dim(E_{\lambda, \mathbf{A}}) = 2$.

B is another 3 x 3 matrix with eigenvalue μ and the associated eigenspace $E_{\mu,B}$ such that $\dim(E_{\mu,B}) = 2$.

Show that $\lambda + \mu$ is an eigenvalue of the matrix $\mathbf{A} + \mathbf{B}$.

 $E_{\lambda,A}$ is a subspace of \mathbb{R}^3 with dimension 2

 $E_{u,B}$ is a subspace of \mathbb{R}^3 with dimension 2

Then $E_{\lambda,A} \cap E_{\mu,B}$ is a subspace of \mathbb{R}^3

with dimension 1 or 2
The two eigenspaces
have non-trivial intersection

Take
$$\mathbf{v} \in \mathsf{E}_{\lambda, \mathbf{A}} \cap \mathsf{E}_{\mu, \mathbf{B}}$$
 nave non-trivial
$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \qquad \mathbf{B}\mathbf{v} = \mu \mathbf{v} \quad \Rightarrow (\mathbf{A} + \mathbf{B})\mathbf{v} = (\lambda + \mu)\mathbf{v}$$

★★★ In general, $\lambda + \mu$ is not an eigenvalue of $\bf{A} + \bf{B}$

Exercise 6 Q26

Let $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$.

Suppose \boldsymbol{u} and \boldsymbol{v} are eigenvectors of \boldsymbol{A} associating with two different eigenvalues.

Show that **u** and **v** are orthogonal.

Let
$$\lambda \neq \mu$$
 be eigenvalues for \boldsymbol{u} and \boldsymbol{v}

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u} \qquad \mathbf{A}\mathbf{v} = \mu \mathbf{v}$$

$$\mathbf{v} \cdot \mathbf{A}\mathbf{u} = \mathbf{A}\mathbf{u} \cdot \mathbf{v} = (\mathbf{A}\mathbf{u})^{\mathsf{T}}\mathbf{v} = \mathbf{u}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{v} = \mathbf{u} \cdot \mathbf{A}^{\mathsf{T}}\mathbf{v} = \mathbf{u} \cdot \mathbf{A}\mathbf{v}$$

$$\mathbf{v} \cdot (\lambda \mathbf{u}) \qquad \qquad \mathbf{u} \cdot (\mu \mathbf{v})$$

$$\downarrow \lambda (\mathbf{v} \cdot \mathbf{u}) \qquad \qquad \mu(\mathbf{u} \cdot \mathbf{v})$$

 $\lambda(\boldsymbol{u}\cdot\boldsymbol{v})=\mu(\boldsymbol{u}\cdot\boldsymbol{v}) \quad \Leftrightarrow (\lambda-\mu)(\boldsymbol{u}\cdot\boldsymbol{v})=0 \ \Leftrightarrow \boldsymbol{u}\cdot\boldsymbol{v}=0$

Exercise 6 Q8 (Tutorial)

 $\{ \boldsymbol{u}_1, \boldsymbol{u}_2, ..., \boldsymbol{u}_n \}$ basis for \mathbb{R}^n and \boldsymbol{A} is an n x n matrix such that

$$Au_i = u_{i+1}$$
 for $i = 1, 2, ..., n-1$ and $Au_n = 0$

Show that the only eigenvalue of \mathbf{A} is 0 and find all the eigenvectors of \mathbf{A} .

Hint: Start with an eigenvalue λ and show $\lambda = 0$

Suppose \mathbf{v} is an eigenvector of \mathbf{A} with eigenvalue λ

$$Av = \lambda v ---(*)$$

 $v = c_1 u_1 + c_2 u_2 + ... c_n u_n ---(**)$

Substitute (**) into (*) and use the given condition

Deduce $\lambda = 0$ by comparing the coefficients of the \boldsymbol{u}_i , and show $c_1 = c_2 = ... = c_{n-1} = 0$

to be continued

Map of LA

\boldsymbol{A} is an n×n matrix

A is invertible chapter 2 A is not invertible $\det A \neq 0$ chapter 2 det A = 0rref of A is identity matrix chapter 1 rref of A has a zero row AX= 0 has only the AX= 0 has non-trivial chapter 1 trivial solution solutions AX= B has a unique AX= B has no solution or chapter 1 solution infinitely many solutions rows (columns) of A are rows (columns) of A are chapter 3 linearly independent linearly dependent chapter 4 row (column) space of $A \neq R^n$ row (column) space of $A = R^n$ rank(A) = nrank(A) < nchapter 4 nullity(A) = 0nullity(A) > 00 is not an eigenvalue of A 0 is an eigenvalue of A chapter 6