$$\hat{X} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$\rho = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 4 \begin{bmatrix} 6 \\ r \\ 3 \\ 4 \end{bmatrix} = 5$$

$$13$$

$$17$$

$$= \begin{bmatrix} 4 & 26 \\ 26 & 26 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 26 \\ 26 \end{bmatrix} \begin{bmatrix} 26 \\ 26 \end{bmatrix} \begin{bmatrix} 26 \\ 112 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 8 \\ 8 & 26 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 36 \\ 112 \end{bmatrix}$$

0=1

$$b = \begin{bmatrix} 0 \\ 8 \\ 4 \\ 20 \end{bmatrix}$$
 $e = p - b = \begin{bmatrix} -3 \\ +5 \\ -3 \end{bmatrix}$

AAR

$$C = 1$$

 $C + D = 5$
 $C + 3D = 13$
 $C + 40 = 17$

C+40 = 20

$$\begin{bmatrix}
14 \\
1111
\end{bmatrix} \begin{bmatrix}
-1 \\
3 \\
-5 \\
3
\end{bmatrix} = -1+3-5+3 = 0$$

$$\begin{bmatrix}
0134
\end{bmatrix} \begin{bmatrix}
-1 \\
3 \\
-5 \\
3
\end{bmatrix} = 3-15+12 = 0$$

$$[0134][-1]$$
 $\begin{bmatrix} -1\\3\\-5\\3 \end{bmatrix}$ $\begin{bmatrix} 3\\-15+12\\2\\0 \end{bmatrix}$

$$= (C + 40 - 20)^{2} + (C + 30 - 8)^{2} + (C + 0 - 8)^{2} + (C +$$

$$\frac{\partial E}{\partial C} = \frac{1}{2(C+40-20)(1)} + \frac{1}{2(C+30-8)(1)} + \frac{1}{2(C+0-8)(1)} + \frac{1}{2(C)(1)}$$

$$\frac{\partial E}{\partial 0} = 2((249-20)(4)) + = 16.6 + 52.0 - 224 = 0$$

$$\frac{\partial E}{\partial 0} = 2((249-8)(3)) + 2((249-8)(1)) + 2((24$$

$$\frac{12}{5}$$
= $\frac{4C + 8D - 36}{8, C + 260 - 112}$

$$e = ||Ax - b||^{2}$$

$$= (C)^{2} + ||A|| + ||A||^{2} + ||A|| +$$

1+ 2.4= 9

the average point is on the average line.

Mis the count of samples.

Zti is the sum of to

Eb, is the sun of by

dividing each use off yoild 1, \$\frac{\varepsilon}{n}, \frac{\varepsilon}{n} \\

or just 1, \varepsilon, \varepsilon \tau \)

the frat whe of \$ is C, sad so

& RE the matrix product yells)

m C + Eti D = Ebi

divide all by m,

C + ED = 5

