WiSe 21/22 Logik

Hausarbeit 2 Aufgabe 3

 $\textbf{Gruppe:}\ 402355,\ 392210,\ 413316,\ 457146$

Lösungen

(i)	(ii)	(iii)	(iv)	(v)	(vi)	Form	\sum

Aufgabe 3

(i) Angenommen der Herausforderer gewinnt $\mathfrak{E}_m((\mathcal{H}, u), (\mathcal{H}, v))$, dann ist die Abbildung:

$$h: u \mapsto v, v_1 \mapsto v'_1, ..., v_m \mapsto v'_m$$

mit v_i und v_i' , $i \in \{1, ..., m\}$ als den Elementen, welche in Runde i jeweils von dem Herausforderer H und der Duplikatorin D gewaehlt wurden.

Die selbe Schreibweise verwenden wir auch fuer alle folgenden Abbildungen.

Es gilt laut Annahme, h ist kein partieller Isomorphismus von \mathcal{H} nach \mathcal{H} .

Es sind \mathcal{H}_u und \mathcal{H}_v , τ -Expansionen von \mathcal{H} die sich nur durch das zusaetzliche einstellige Relationssymbol R, von \mathcal{H} unterscheiden. Es gilt jeweils $R^{\mathcal{H}_u} = \{u\}$ fuer \mathcal{H}_u und $R^{\mathcal{H}_v} = \{v\}$ fuer \mathcal{H}_v .

Nun besitzt H die folgende Gewinnstrategie fuer $\mathfrak{E}_{m+1}(\mathcal{H}_u,\mathcal{H}_u)$.

H waehlt in der ersten Runde entweder u aus \mathcal{H}_u oder v aus \mathcal{H}_v und D antwortet indem sie das jeweils andere Element aus der anderen Struktur waehlt. Sie muss auf diese Weise antworten, da u und v in \mathcal{H}_u und \mathcal{H}_v jeweils die einzigen Elemente sind fuer die gilt $u \in R^{\mathcal{H}_u}$ und $v \in R^{\mathcal{H}_v}$.

Anschliessend wiederholt der Herausforderer die selben Zuege, welche er im m-Runden Spiel getaetigt hat fuer die uebrigen m Runden und nach Spielende erhalten wir die Abbildung:

$$h_2: u \mapsto v, v_2 \mapsto v'_2, ..., v_{m+1} \mapsto v'_{m+1}$$

Es gilt $h_2 = h$, da wir in den insgesamt m Runden: 2 bis m + 1, die selben Zuege aus den Runden: 1 bis m des m-Runden Spiels wiederholt haben, und wir zusaetzlich in der ersten Runde u auf v abgebildet haben. Ausserdem gilt, die Universen von \mathcal{H}_u und \mathcal{H}_v sind gleich dem Universum von \mathcal{H} . Es folgt, h_2 ist kein partieller Isomorphismus von \mathcal{H}_u nach \mathcal{H}_v .

Somit gewinnt der Herausforderer auch $\mathfrak{E}_{m+1}(\mathcal{H}_u,\mathcal{H}_v)$.

Angenommen der Herausforderer gewinnt $\mathfrak{E}_{m+1}(\mathcal{H}_u, \mathcal{H}_v)$.

Da \mathcal{H}_u und \mathcal{H}_v τ -Expansionen von \mathcal{H} sind und sich einzig und allein voneinander unterscheiden, indem fuer \mathcal{H}_u : $R^{\mathcal{H}_u} = \{u\}$ und fuer \mathcal{H}_v : $R^{\mathcal{H}_v} = \{v\}$, sind \mathcal{H}_u und \mathcal{H}_v nur verschieden wenn $u \neq v$ gilt, und nur in diesem Fall kann der Herausforderer H eine Gewinnstrategie besitzen. H muss daher in mindestens einer Runde entweder u aus \mathcal{H}_u oder v aus \mathcal{H}_v waehlen, worauf die Duplikatorin D mit dem jeweils anderen Element antwortet.

Wir erhalten nach Beendigung des Spiels die Abbildung:

$$h_3: v_1 \mapsto v'_1, ..., v_{m+1} \mapsto v'_{m+1}$$

Wir koennen h_3 auch schreiben als:

$$h_3: u \mapsto v, v_1'' \mapsto v_1''', ..., v_m'' \mapsto v_m'''$$

H spielt in mindestens einer der m+1 Runden u oder v, worauf D mit dem jeweiligen anderen Element antwortet.

Somit muss eine der Abbildungen aus $v_1 \mapsto v'_1, ..., v_{m+1} \mapsto v'_{m+1}$ die Abbildung $u \mapsto v$ sein.

Weiterhin seien $v_1'' \mapsto v_1''', ..., v_m'' \mapsto v_m'''$ die selben Abbildungen aus $v_1 \mapsto v_1', ..., v_{m+1} \mapsto v_{m+1}'$ mit Ausnahme der Abbildung $u \mapsto v$.

Wir schreiben $u \mapsto v$ seperat in die Abbildungsvorschrift.

Die Abbildung h_3 ist laut Annahme kein partieller Isomorphismus von \mathcal{H}_u nach \mathcal{H}_v und somit auch kein partieller Isomorphismus von \mathcal{H} nach \mathcal{H} . Ausserdem gilt somit der Herausforderer gewinnt $\mathfrak{E}_m((\mathcal{H}, u), (\mathcal{H}, v))$.

Es gilt also, der Herausforderer gewinnt $\mathfrak{E}_m((\mathcal{H}, u), (\mathcal{H}, v))$ genau dann wenn er $\mathfrak{E}_{m+1}(\mathcal{H}_u, \mathcal{H}_v)$ gewinnt.

(ii) Zur Vereinfachung der Schreibweise in den folgenden Teilaufgaben (ii) und (iii) benennen wir Tupel $(i,j) \in G$ wie folgt: $(i,j) \coloneqq g, (i_k,j_k) \coloneqq g_k, i,j,k \in \mathbb{N}$

Wir definieren die Formel $\varphi_k(g)$ wie folgt:

$$\varphi_0(g) := \forall g_1 \forall g_2 \forall g_3 (\bigwedge_{i=0}^3 E(g, g_i) \to \bigvee_{1 \le i < j \le 3} g_i = g_j)$$

$$\varphi_{k \ge 1}(g) := \bigvee_{0 \le i \le k-1} \varphi_i(g) \vee \exists g_{k-1} \varphi_{k-1}(g_{k-1}) \wedge E(g_{k-1}, g)$$

$$\varphi_k(g) := \varphi_0(g) \vee \varphi_{k \ge 1}(g)$$

Mit der Formel φ_0 definieren wir den Rekursionsanker der Formel φ_k . Nur das Tupel (0,0) hat einen Knotengrad von maximal 2, wachrend alle anderen Tupel einen Knotengrad von 3 oder hoeher besitzen. Ausserdem erfuellt das Tupel (0,0) die Anforderung fuer φ_0 , da $0+0=0 \le 0$.

Weiterhin pruefen wir in $\varphi_{k\geq 1}$, ob das Tupel g entweder von einer der rekursiv definierten Formeln φ_0 bis φ_{k-1} erfuellt wird, oder ob es ein Tupel g_{k-1} gibt, sodass $\varphi_{k-1}(g_{k-1})$ und $E(g_{k-1},g)$ erfuellt.

Jedes g, welches die Bedingung $i+j \le r, r \in \{0,..,k-1\}$ erfuellt, erfuellt auch die Bedingung $i+j \le k$.

Es existiert weiterhin fuer $k \ge 1$ auch immer ein Element g_{k-1} , sodass $E(g_{k-1}, g)$ gilt und g_{k-1} erfuellt die Anforderung: $i_{k-1} + j_{k-1} = k - 1 \le k - 1$.

Somit ist laut Vorschrift von E, φ_k auch fuer g mit $i + j = k \le k$ erfuellt.

In beiden Faellen erfuellt die Formel die Anforderung.

(iii) Wir definieren die Formel $\psi_k(g)$ wie folgt:

$$\psi_{0,0}(g) := \forall g_1 \forall g_2 \forall g_3 (\bigwedge_{i=0}^3 E(g, g_i) \to \bigvee_{1 \le i < j \le 3} g_i = g_j)$$

$$\psi_{k \ge 1, k \ge 1}(g) := \exists g_0 \exists g_1 (\psi_{k-1, k-1}(g_0) \land E(g_0, g_1) \land E(g_1, g) \land \neg E(g_0, g) \land i = j)$$

$$\psi_{k, k}(g) := \psi_{0,0}(g) \lor \psi_{k \ge 1, k \ge 1}(g)$$

$$\psi_0(g) := \psi_{0,0}(g) \lor \exists g_0 (\psi_{0,0}(g_0) \land (i_0 = i \lor j_0 = j))$$

$$\psi_{k \ge 1}(g) := \bigwedge_{0 \le r \le k-1} \neg \psi_r(g) \land (\psi_{k, k}(g) \lor \exists g_0 (\psi_{k, k}(g_0) \land (i_0 = i \lor j_0 = j)))$$

$$\psi_k(g) := \psi_0(g) \lor \psi_{k \ge 1}(g)$$

Wie auch in der vorigen Formel definieren wir mit ψ_0 den Rekursionsanker der Formel ψ_k und schauen mithilfe der vorher definierten Formel $\psi_{k,k}$, welche fuer Tupel $(k,k), k \in \mathbb{N}$ zu wahr auswertet, ob entweder g = (0,0) gilt, oder ob es ein Tupel g_0 gibt, sodass $g_0 = (0,0)$.

Im Vergleich von g mit g_0 erfahren wir ob g von der Form: g = (0, j) oder g = (i, 0), $i, j \in \mathbb{N}$ ist.

Somit ist fuer die Formel ψ_0 , die Anforderung: $\min(i,j) = 0$ erfuellt.

Fuer $k \ge 1$ pruefen wir mithilfe der Formel $\psi_{k\ge 1}(g)$ den selben Zusammenhang, jedoch schliessen wir vorher aus, dass fuer g eine der Formeln von ψ_0 bis ψ_{k-1} erfuellt ist. Somit ist g von der Form: g = (k, k) oder g = (i, k), i > k oder g = (k, j), j > k. Analog zu ψ_0 erfuellt die Formel somit die Anforderung.

(iv) Wir betrachten eine Fallunterscheidung wie folgt:

Fall 1: es gibt genau ein weiteres Element g_1

Fall 1.1: $g = g_1$

$$(\mathcal{G}, g) \equiv (\mathcal{G}, g_1), da g = g_1$$

Fall 1.2: $q \neq q_1$

Fall 2: es gibt genau zwei weitere Elemente g_1 und g_2

Fall 2.1: $g = g_1$ und $g \neq g_2$

$$(\mathcal{G}, g) \equiv (\mathcal{G}, g_1), da g = g_1$$

Fall 2.2: $g \neq g1$ und $g \neq g2$

(v) Wir geben eine Gewinnstrategie für die Duplikatorin für ein m-Runden Spiel mit $m \in \mathbb{N}$ an:

Für jedes Element a'_i das der Herausforderer H in Runde $i, i \in \{1, ..., m\}$ in \mathcal{A} wählt, wählt die Duplikatorin $D \pi(a'_i)$ in \mathcal{B} .

Für jedes Element $\pi(a_i')$ das H in Runde $i, i \in \{1, ..., m\}$ in \mathcal{B} wählt, wählt D a_i' in \mathcal{A} .

Da π ein Isomorphismus von \mathcal{A} nach \mathcal{B} ist, wird dieser in Runde i auf lediglich die i gewählten Knoten von H und D beschränkt, und, da D immer gleich zu dem von H gewählten Knoten aus der jeweilig anderen Struktur wählt, bleibt der Isomorphismus auch auf jeder Teilmenge erhalten. Somit gewinnt D.

Weiterhin werden die Elemente a_1 bis a_k auf die Elemente $\pi(a_1)$ bis $\pi(a_k)$ abgebildet. Somit erhalten wir nach Ende von $\mathfrak{E}_m((\mathcal{A},(a_1,...,a_k)),(\mathcal{B},(\pi(a_1),...,\pi(a_k)))$:

$$h: a_1 \mapsto \pi(a_1), ..., a_k \mapsto \pi(a_k), a'_1 \mapsto \pi(a'_1), ..., a'_m \mapsto \pi(a'_m)$$

Die Abbildung h ist ein partieller Isomorphismus von \mathcal{A} nach \mathcal{B} , da laut Definition, π ein Isomorphismus von \mathcal{A} nach \mathcal{B} ist und fuer alle $a \in \text{def}(h)$ gilt $a \mapsto \pi(a)$. Die Duplikatorin gewinnt also $\mathfrak{E}_m((\mathcal{A}, (a_1, ..., a_k)), (\mathcal{B}, (\pi(a_1), ..., \pi(a_k)))$ und nach dem Satz von Ehrenfeucht gilt somit:

$$(A, (a_1, a_2, ..., a_k)) \equiv_m (B, (\pi(a_1), \pi(a_2), ..., \pi(a_k)))$$

weiterhin gilt somit:

$$(A, (a_1, a_2, ..., a_k)) \equiv (B, (\pi(a_1), \pi(a_2), ..., \pi(a_k)))$$

, da wir zu Beginn der Aufgabe gezeigt haben, dass die Duplikatorin für alle $m \in \mathbb{N}$ eine Gewinnstrategie besitzt.

(vi) Wir haben bereits in Teilaufgabe (v) gezeigt:

$$(A, (a_1, a_2, ..., a_k)) \equiv (B, (\pi(a_1), \pi(a_2), ..., \pi(a_k)))$$

Es gilt also für \mathcal{A} und \mathcal{B} und alle $\varphi \in FO[\sigma]$ mit frei $(\varphi) = (x_1, ..., x_k)$ $\mathcal{A} \models \varphi[a_1, ..., a_k]$, genau dann wenn $\mathcal{B} \models \varphi[\pi(a_1), ..., \pi(a_k)]$

 $\varphi(\mathcal{A})$ ist die Menge aller Elemente \bar{a} aus A^k , die φ erfüllen. Somit gilt für jedes Element \bar{b} aus B^k , wenn $\bar{b} \in \varphi(\mathcal{B})$ und $\bar{a} \in A^k$ mit $\bar{b} = (\pi(a_1), ..., \pi(a_k))$, dann $\bar{a} \in \varphi(\mathcal{A})$. Somit gilt $\varphi(\mathcal{B}) = \pi(\varphi(\mathcal{A}))$.