χ² Correlation Test for Nominal Data

For nominal data, a correlation relationship between two attributes, A and B, can be discovered by a χ^2 (**chi-square**) test. Suppose A has c distinct values, namely $a_1, a_2, \ldots a_c$. B has r distinct values, namely $b_1, b_2, \ldots b_r$. The data tuples described by A and B can be shown as a **contingency table**, with the c values of A making up the columns and the r values of B making up the rows. Let (A_i, B_j) denote the joint event that attribute A takes on value a_i and attribute B takes on value b_j , that is, where $A = a_i, B = b_j$. Each and every possible $A = a_i, B = b_j$ joint event has its own cell (or slot) in the table. The χ^2 value (also known as the $A = a_i, B = a_i$ value)

$$\chi^2 = \sum_{i=1}^c \sum_{j=1}^r \frac{(o_{ij} - e_{ij})^2}{e_{ij}},$$
(3.1)

where o_{ij} is the observed frequency (i.e., actual count) of the joint event (A_i, B_j) and e_{ij} is the expected frequency of (A_i, B_j) , which can be computed as

$$e_{ij} = \frac{count(A = a_i) \times count(B = b_j)}{n},$$
(3.2)

where n is the number of data tuples, $count(A = a_i)$ is the number of tuples having value a_i for A, and $count(B = b_j)$ is the number of tuples having value b_j for B. The sum in Eq. (3.1) is computed over all of the $r \times c$ cells. Note that the cells that contribute the most to the χ^2 value are those for which the actual count is very different from that expected.

The χ^2 statistic tests the hypothesis that A and B are *independent*, that is, there is no correlation between them. The test is based on a significance level, with $(r-1) \times (c-1)$ degrees of freedom. We illustrate the use of this statistic in Example 3.1. If the hypothesis can be rejected, then we say that A and B are statistically correlated.

Example 3.1 Correlation analysis of nominal attributes using χ^2 . Suppose that a group of 1500 people was surveyed. The gender of each person was noted. Each person was polled as to whether his or her preferred type of reading material was fiction or nonfiction. Thus, we have two attributes, *gender* and *preferred_reading*. The observed frequency (or count) of each possible joint event is summarized in the contingency table shown in Table 3.1, where the numbers in parentheses are the expected frequencies. The expected frequencies are calculated based on the data distribution for both attributes using Eq. (3.2).

Using Eq. (3.2), we can verify the expected frequencies for each cell. For example, the expected frequency for the cell (*male*, *fiction*) is

$$e_{11} = \frac{count(male) \times count(fiction)}{n} = \frac{300 \times 450}{1500} = 90,$$

and so on. Notice that in any row, the sum of the expected frequencies must equal the total observed frequency for that row, and the sum of the expected frequencies in any column must also equal the total observed frequency for that column.