SUMMER 2025 READING GROUP ON ERGODIC THEORY

EXERCISE SHEET 8 (ZHAOSHEN ZHAI): CORRESPONDENCE PRINCIPLES

Exercise 1. Show that the following are equivalent.

Theorem (Simple recurrence in open covers). Let $(U_{\alpha})_{\alpha}$ be an open cover of a topological dynamical system^a (X,T). There exists α such that $U_{\alpha} \cap T^{-n}U_{\alpha} \neq \emptyset$ for infinitely many $n \in \mathbb{N}$.

Theorem (Infinite pigeonhole-principle). For any $c \ge 1$, any c-colouring of \mathbb{Z} always contains a colour class with infinitely-many elements.

Theorem (Finite pigeonhole-principle). For any $c, k \geq 1$, there exists N(c, k) such that if $n \geq N(c, k)$ and we colour $\{1, \ldots, n\}$ by c colours, then there is a colour class of at least k elements.

^aRecall that a topological dynamical system is a pair (X,T) consisting of a compact metrizable topological space X and a continuous map $T:X\to X$.

Exercise 2. Show that the following are equivalent.

Theorem (Multiple recurrence in open covers). Let $(U_{\alpha})_{\alpha}$ be an open cover of a topological dynamical system (X,T). There exists α such that for each $k \geq 1$, we have $\bigcap_{i < k} T^{-in}U_{\alpha} \neq \emptyset$ for some $n \in \mathbb{N}$.

Theorem (Infinitary van der Waerden). For any $c \geq 1$, any c-colouring of \mathbb{Z} always contains a colour with arbitrarily long arithmetic progressions.

Theorem (Finitary van der Waerden). For any $c, k \ge 1$, there exists N(c, k) such that if $n \ge N(c, k)$ and we colour $\{1, \ldots, n\}$ with c colours, then there is a monochromatic k-term arithmetic progression.

Exercise 3. Show that the following are equivalent.

Theorem (Furstenberg's multiple recurrence; v1). Let (X, \mathcal{B}, μ, T) be a measure-preserving dynamical system. For any $k \geq 1$ and any set $A \in \mathcal{B}$ with positive measure, there exists $n \geq 1$ such that

$$\mu(A \cap T^{-n}A \cap T^{-2n}A \cap \dots \cap T^{-(k-1)n}A) > 0.$$

Theorem (Furstenberg's multiple recurrence; v2). Let (X, \mathcal{B}, μ, T) be a measure-preserving dynamical system. For any $k \geq 1$ and any set $A \in \mathcal{B}$ with positive measure, we have

$$\liminf_{N \to \infty} \frac{1}{N} \sum_{n < N} \mu(A \cap T^{-n}A \cap T^{-2n}A \cap \dots \cap T^{-(k-1)n}A) > 0.$$

Theorem (Furstenberg's multiple recurrence; v3). Let (X, \mathcal{B}, μ, T) be a measure-preserving dynamical system. For any $k \geq 1$ and any $f \in L^{\infty}(X, \mu)$ with $f \geq 0$ and $\int f d\mu > 0$, we have

$$\liminf_{N \to \infty} \frac{1}{N} \sum_{n < N} \int f(T^{-n}f)(T^{-2n}f) \cdots (T^{-(k-1)n}f) \, \mathrm{d}\mu > 0.$$

Theorem (Infinitary Szemerédi). Any subset of \mathbb{Z} with positive upper density contains arbitrarily long arithmetic progressions.

Theorem (Finitary Szemerédi). For any $\delta > 0$ and $k \geq 1$, there exists $N(\delta, k)$ such that if $n \geq N(\delta, k)$, then any subset of $\{1, \ldots, n\}$ with at least δn elements contains a k-term arithmetic progression.

Date: June 18, 2025.