Nombres complexes

Algèbre - Cours

I Ensemble des nombres complexes

I. 1 Notion de nombre complexe

1. Propriété:

Il existe un ensemble des nombres complexes (noté $\mathbb C$) qui possède les propriétés suiante :

- (i) $\mathbb{R} \subset \mathbb{C}$
- (ii) L'addition et la multiplication des réels se prolongent aux nombres complexes et les règles de calcul sont les mêmes.
- (iii) Il existe un nombre complexe i tel que $i^2 = -1$.
- (iv) Tout nombre complexe z s'écrit z = a + ib avec a et b des réels.

Définitions (nombre complexe):

L'écriture z=a+ib d'un nombre complexe avec $(a,b)\in\mathbb{R}^2$ est appelé forme algébrique (ou cartésienne) de z avec :

- a la partie réelle de z noté a = Re(z).
- b la partie imaginaire de z noté a = Im(z).

Remarques:

Soit z un nombre complexe.

- On a $z = \text{Re}(z) + i \times \text{Im}(z)$
- Si Re(z) = 0, on dit que z est imaginaire pur. On note $i\mathbb{R}$ l'ensemble des imaginaires purs.
- Si Im(z) = 0, z est réel.

1. Théorème:

Soient z=a+ib et z'=a'+ib' deux nombres complexes avec a,b,a' et b' des réels. Alors : $z=z'\Leftrightarrow \begin{cases} a=a'\\b=b' \end{cases}$.

Corrolaire:

Tout nombre complexe z s'écrit de manière unique z = a + ib avec $(a, b) \in \mathbb{R}^2$.

2. Propriétés (conséquence):

Soient z = a + ib et z' = a' + ib' deux nombres complexes avec a, b, a' et b' des réels. Alors :

- (i) $z \neq z' \Leftrightarrow a \neq a' \lor b \neq b'$
- (ii) $z = 0 \Leftrightarrow a = 0 \land b = 0$
- (iii) $z \neq 0 \Leftrightarrow a \neq 0 \lor b \neq 0$

I. 2 Opérations sur les nombres complexes

3. Propriétés (addition et multiplication) :

Soient z = a + ib et z' = a' + ib' deux nombres complexes avec a, b, a' et b' des réels. Alors :

- (i) z + z' = (a + a') + i(b + b')
- (ii) $z \times z' = (aa' bb') + i(ab' a'b)$

Définition (opposé):

Pour tout nombre complexe z=a+ib avec $(a,b)\in\mathbb{R}^2$, il existe un unique nombre complexe z' tel que z+z'=0. On appelle z' l'opposé de z et on le note -z=(-a)+i(-b).

 ${\bf D\'efinition~(soustraction):}$

Soient z = a + ib et z' = a' + ib' deux nombres complexes avec a, b, a' et b' des réels. Alors z - z' est défini par z + (-z') et on a z - z' = (a - a') + i(b - b').

Définition (inverse):

Pour tout nombre complexe z=a+ib avec a,b des réels et $z\neq 0$, il existe un unique nombre complexe z' tel que $z\times z'=1$. On appelle z' inverse de z et on le note $\frac{1}{z}=\frac{a}{a^2+b^2}+i\times\frac{b}{a^2+b^2}$.

Définition (quotient):

Soient z et z' deux nombres complexes tels que $z' \neq 0$. Alors $\frac{z}{z'}$ est défini par $\frac{z}{z'} = z \times \frac{1}{z'}$.

II Conjugué d'un nombre complexe

Définition:

Soit z un nombre complexe tel que z=a+ib avec $(a,b)\in\mathbb{R}^2$. Alors le conjugué de z, noté \overline{z} , est le nombre complexe défini par $\overline{z}=a-ib$.

4. Propriétés :

Pour tout nombre complexe z, on a :

(i)
$$z + \overline{z} = 2 \operatorname{Re}(z)$$

(iii)
$$z \in \mathbb{R} \Leftrightarrow z = \overline{z}$$

(v)
$$\overline{\overline{z}} = z$$

(ii)
$$z - \overline{z} = 2i \operatorname{Im}(z)$$

(iv)
$$z \in i\mathbb{R} \Leftrightarrow z = -\overline{z}$$

(vi)
$$z\overline{z} = \operatorname{Re}(z)^2 + \operatorname{Im}(z)^2$$

5. Propriétés (opérations et conjugué) :

Pour tous nombres complexes z et z', on a:

(i)
$$\overline{-z} = -\overline{z}$$

(ii)
$$\overline{z+z'} = \overline{z} + \overline{z'}$$

(i) Si
$$z \neq 0$$
, $\overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$

(iii)
$$\overline{z \times z'} = \overline{z} \times \overline{z'}$$

(iv)
$$\forall n \in \mathbb{N}, \overline{(z^n)} = (\overline{z})^n$$

(ii) Si
$$z \neq 0$$
, $\overline{\left(\frac{z'}{z}\right)} = \frac{\overline{z'}}{\overline{z}}$

Représentation dans le plan complexe III

Dans toute la suite du chapitre, on munit le plan d'un repère $(O, \overrightarrow{u}, \overrightarrow{v})$ orthonormé direct.

III. 1 **Définitions**

Définitions:

À tout nombre complexe z = a + ib, avec a et b réels, on peut

- L'unique point M(a;b) appelé point image de z.
- L'unique vecteur $\overrightarrow{w} = \begin{pmatrix} a \\ b \end{pmatrix}$ appelé vecteur image de z.

- À tout point M(a;b) avec a et b deux réels, on peut associer l'unique nombre complexe z = a + ib appelé affixe du point M.
- À tout vecteur vecteur $\overrightarrow{w} = \begin{pmatrix} a \\ b \end{pmatrix}$ avec a et b deux réels, on peut associer l'unique nombre complexe z = a + ibappelé affixe du vecteur \overrightarrow{w} .

Remarques:

- Les nombres réels sont les affixes des points de l'axe des abscisses aussi appelé : axe des
- Les nombres imaginaires purs sont les affixes des points de l'axe des ordonnées aussi appelé : axe des imaginaires purs.
- Lorsqu'un point ou un vecteur est repéré par son affixe, le plan est appelé le plan complexe.
- L'affixe de M est souvent noté z_M et la donnée d'un point M d'affixe z_M est souvent notée $M(z_M)$.
- L'affixe de \overrightarrow{w} est souvent noté $z_{\overrightarrow{w}}$, et la donnée d'un vecteur w d'affixe $z_{\overrightarrow{w}}$ est souvent notée $\overrightarrow{w}(z_{\overrightarrow{w}})$.

III. 2 Propriétés

Des propriétés connues de géométrie sur les vecteurs et points donnent les propriétés suivantes.

6. Propriétés:

Soient $A(z_A)$ et $B(z_B)$ deux points du plan complexe. Soient $\overline{w_1}(z_{\overline{w_1}})$ et $\overline{w_2}(z_{\overline{w_2}})$ deux vecteurs du plan complexe. Soit $\lambda \in \mathbb{R}$.

- (iv) Le milieu du segment [AB] a pour affixe $\frac{z_A + z_B}{2}$.
- (v) Le vecteur $\overrightarrow{w_1} + \overrightarrow{w_2}$ a pour affixe $z_1 + z_2$.
- (iii) \overrightarrow{AB} a pour affixe $z_B z_A$.
- (vi) $\lambda \overrightarrow{w_1}$ a pour affixe λz_1 .

III. 3 Conjugué et opposé

7. Propriété:

- (i) Les points M d'affixe z et M' d'affixe \overline{z} sont symétriques par rapport à l'axe des réels.
- (ii) Les points M d'affixe z et M'' d'affixe -z sont symétriques par rapport à l'origine du repère.

IV Module et argument d'un nombre complexe

IV. 1 Module

Définition:

Soit M un point d'affixe z. Le module de z, noté |z| est le réel positif défini par |z| = OM. Si z = a + ib avec a et b deux réels. Alors $|z| = \sqrt{a^2 + b^2}$.

Remarque : Si z=z', alors |z|=|z'|. Mais la réciproque est fausse. Contre-exemple avec z=1+i et z'=1-i. $|z|=|z'|=\sqrt{2}$ et $z\neq z'$.

8. Propriétés:

Soit z un nombre complexe.

(i)
$$|z|^2 = z\overline{z}$$

(iii)
$$|-z| = |z|$$

(ii)
$$|\overline{z}| = |z|$$

(iv)
$$|z| = 0 \Leftrightarrow z = 0$$

Remarque : corrolaire de (i) : $|z| = \sqrt{z\overline{z}}$ (utile en pratique).

9. Propriété:

Soit
$$A(z_A)$$
 et $B(z_B)$. On a $AB = |z_B - z_A| = |z_A - z_B|$

10. Propriétés :

(i) Produit :
$$|zz'| = |z||z'|$$

(iii) Inverse :
$$\left|\frac{1}{z}\right| = \frac{1}{|z|}$$

(ii) Puissance :
$$|z^n| = |z|^n$$

(iv) Quotient :
$$\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$$

11. Propriété (inégalité triangulaire) :

Soient z et z' deux nombres complexes, on a $|z + z'| \le |z| + |z'|$

IV. 2 Argument

Définition:

Soit un point M d'affixe non nulle z. On appelle argument de z, noté $\arg(z)$ une mesure, en radians, de l'angle $(\overrightarrow{u};OM)$.

Remarques:

- Un nombre complexe non nul possède une infinité d'arguments de la forme $\arg(z)[2\pi]$.
- 0 n'a pas d'argument car dans ce cas l'angle $(\overrightarrow{u}; OM)$ n'est pas défini.

12. Propriété:

Soit z un nombre complexe non nul.

(i)
$$z \in \mathbb{R} \Leftrightarrow \arg(z) = 0 \ [\pi]$$

(iii)
$$\arg(\overline{z}) = -\arg(z)$$
 [2 π]

(ii)
$$z \in i\mathbb{R} \Leftrightarrow \arg(z) = \frac{\pi}{2} \ [\pi]$$

(iv)
$$arg(-z) = arg(z) + \pi [2\pi]$$

V Forme trigonométrique d'un nombre complexe

V. 1 Définition

13. Propriété:

Soit z = a + ib un nombre complexe non nul. On pose : $\theta = \arg(z)$.

On a alors : $a = |z|\cos(\theta)$ et $b = |z|\sin(\theta)$.

Définition:

On appelle forme trigonométrique d'un nombre complexe non nul l'écriture : $z = |z|(\cos(\theta) + i\sin(\theta))$ avec $\theta = \arg(z)$.

14. Propriété:

Deux nombres complexes non nuls sont égaux si, et seulement si, ils ont même module et même argument (modulo 2π).

V. 2 Relations trigonométrique et propriétés des arguments

15. Propriété (formule d'addition) :

Pour tous réel a et b,

(i)
$$cos(a - b) = cos(a)cos(b) + sin(a)sin(b)$$

(iii)
$$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

(ii)
$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

(iv)
$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

16. Propriété (formule de duplication) :

Pour tous réel a,

(i)
$$\cos(2a) = \cos^2(a) - \sin^2(a) = 1 - 2\sin^2(a) = 2\cos^2(a) - 1$$

(ii)
$$\sin(2a) = 2\sin(a)\cos(a)$$

17. Propriété (argument et opérations) :

Soient z et z' deux nombres complexes non nuls et n un entier naturel non nul.

(i)
$$\arg(zz') = \arg(z) + \arg(z')$$
 $[2\pi]$

(ii)
$$\arg(z^n) = n \arg(z)$$
 [2 π]

(iii)
$$\arg\left(\frac{1}{z}\right) = -\arg(z) \ [2\pi]$$

(iv)
$$\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z')$$
 [2 π]

Remarques:

A l'aide des arguments, on peut gérer différentes situations em géométrie, par exemple, avec

A, B, C et D quatre points d'affixes respectives a, b, c et d:

— Situation d'alignement :

A, B et C alignés
$$\Leftrightarrow \arg(b-a) = \arg(c-a) [\pi]$$

— Situation de parallèlisme :

$$(AB) / (CD) \Leftrightarrow \arg(b-a) = \arg(d-c) [\pi]$$

— Situation de perpendicularité :

$$(AB) \perp (CD) \Leftrightarrow \arg(b-a) = \arg(d-c) + \frac{\pi}{2} \ [\pi]$$

VI Forme exponentielle

VI. 1 Définition

2. Théorème (fonction exponentielle complexe):

Soit f la fonction défini sur \mathbb{R} par $f(\theta) = \cos \theta + i \sin \theta$.

- Pour tous réels θ et θ' on a $f(\theta + \theta') = f(\theta) \times f(\theta')$. De plus, f(0) = 1.
- Par analogie avec la fonction exponentielle dans \mathbb{R} , on pose $f(\theta) = e^{i\theta}$, soit $e^{i\theta} = \cos \theta + i \sin \theta$.
- On a $|e^{i\theta}|=1$

Remarque : On peut écrire $e^{i\pi} - 1 = 0$. Cette relation possède la particularité de relier les grandes branches des mathématiques : l'analyse (avec la fonction e), l'algèbre (avec le nombre i) et la géométrie (avec le nombre π)

Définition:

Tout nombre complexe z non nul de module r et d'argument θ s'écrit sous sa forme exponentielle $z=re^{i\theta}$.

18. Propriétés:

Pour tous nombres réels θ et θ' , on a :

(i)
$$e^{i\theta}e^{i\theta'} = e^{i(\theta+\theta')}$$

(ii)
$$\frac{1}{e^{i\theta}} = e^{-i\theta}$$

(iii)
$$\frac{e^{i\theta}}{e^{i\theta'}} = e^{i(\theta - \theta')}$$

(iv)
$$\overline{e^{i\theta}} = e^{-i\theta}$$

19. Propriété (formule de Moivre) :

 $\forall \theta \in \mathbb{R}, \forall n \in \mathbb{Z} : (e^{i\theta})^n = e^{in\theta} \text{ c'est à dire } (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$

20. Propriété (formule d'Euler) :

$$\forall \theta \in \mathbb{R} : \begin{cases} \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \\ \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2} \end{cases}$$