GLASGOW CALEDONIAN UNIVERSITY

MEng Group Research Project

MMH723842-24-AB-GLAS

Design and implementation of a PSD-Based Analogue 2D Sun Sensor

word count: xxx

by Zac McCaffery, Alexandru Belea, Sebastian Alexander, William Kong, Nassor Salim,

Date: April 6, 2025

Contents

Abstract							
1	Acknowledgements						
2	Intr	Introduction					
3	Lite	rature	Review	8			
	3.1	CubeS	Sat Design	8			
4	Bac	kgrour	ıd	9			
5	Methodology						
	5.1	Systen	n Design Overview	10			
		5.1.1	Functional Requirements	11			
		5.1.2	Design Approach	11			
		5.1.3	System Architecture	11			
	5.2	Sensor	Array Development	11			
		5.2.1	Functional Requirements	12			
		5.2.2	Design Approach	12			
		5.2.3	System Architecture	12			
	5.3	Signal	Conditioning Circuitry	12			
		5.3.1	Functional Requirements	14			
		5.3.2	Design Approach	14			
		5.3.3	System Architecture	14			
	5.4	Enclos	sure Design And Fabrication	14			
		5.4.1	Functional Requirements	15			
		5.4.2	Design Approach	15			
		5.4.3	System Architecture	15			
	5.5	Data A	Acquisition System	15			
		5.5.1	Functional Requirements	17			
		5.5.2	Design Approach	17			
		5.5.3	System Architecture	17			

	5.6	Testing	g Apparatus
		5.6.1	Functional Requirements
		5.6.2	Design Approach
		5.6.3	System Architecture
	5.7	Protot	ype Develop ment Lifecycle
		5.7.1	Functional Requirements
		5.7.2	Design Approach
		5.7.3	System Architecture
6	Res	ulte	21
U	6.1		Characterization
	0.1	6.1.1	Functional Requirements
		6.1.2	Design Approach
		6.1.3	System Architecture
	6.2		fication Performance
	0.2	6.2.1	Functional Requirements
		6.2.2	Design Approach
		6.2.3	System Architecture
	6.3		diode Angular Response
		6.3.1	Functional Requirements
		6.3.2	Design Approach
		6.3.3	System Architecture
	6.4		sure Effectiveness
		6.4.1	Functional Requirements
		6.4.2	Design Approach
		6.4.3	System Architecture
	6.5		Acquisition System Evaluation
		6.5.1	Functional Requirements
		6.5.2	Design Approach
		6.5.3	System Architecture
	6.6	Systen	n Performance Analysis
		6.6.1	Operational Constraints Identified
		6.6.2	Environmental Factors Impact
		6.6.3	System Stability and Repeatability
		6.6.4	Recommendations for Improvement
	6.7		arative Analysis
		6.7.1	Breadboard vs. Stepboard Results
		6.7.2	Iteration Improvements Analysis
		6.7.3	Performance Against Design Requirements

		6.7.4	Design Evolution Assessment	30			
	6.8	System	n Limitations And Considerations	30			
		6.8.1	Functional Requirements	31			
		6.8.2	Design Approach	31			
		6.8.3	System Architecture	31			
7 Conclusions		ns	34				
8	8 FutureWork						
Bi	Bibliography						

List of Figures

5.1	System Design Overview Flowchart	10
5.2	System Architecture Diagram	11
5.3	System Design Overview Flowchart	12
5.4	System Architecture Diagram	13
5.5	System Design Overview Flowchart	13
5.6	System Architecture Diagram	14
5.7	System Design Overview Flowchart	15
5.8	System Architecture Diagram	16
5.9	System Design Overview Flowchart	16
5.10	System Architecture Diagram	17
5.11	System Design Overview Flowchart	18
5.12	System Architecture Diagram	19
5.13	System Design Overview Flowchart	19
5.14	System Architecture Diagram	20
6.1	System Design Overview Flowchart	22
6.2	System Architecture Diagram	23
6.3	System Design Overview Flowchart	23
6.4	System Architecture Diagram	24
6.5	System Design Overview Flowchart	25
6.6	System Architecture Diagram	26
6.7	System Design Overview Flowchart	26
6.8	System Architecture Diagram	27
6.9	System Design Overview Flowchart	28
6.10	System Architecture Diagram	29
6.11	Environmental Testing Results	29
6.14	System Design Overview Flowchart	30
6.12	Overall System Performance Analysis	32
6.13	Prototype Iteration Comparison	33
6.15	System Architecture Diagram	33

Abstract

add abstract here

1. Acknowledgements

2. Introduction

3. LiteratureReview

3.1 CubeSat Design

Puig-Suari, Turner and Ahlgren published an IEEE paper in 2001 with the help of their students at California Polytechnic State University exploring a need for micro satellites for use by universities in an ever-expanding space programme. They provide as a solution a standard satellite form-factor that will bring down the cost of both manufacture and deployment of satellites by smaller entities: the CubeSat. The paper identifies a key component for the success of this form factor a need for a standard CubeSat deployer mechanism which can deploy several satellites safely and develop such a platform, called Poly Picosatellite Orbital Deployer or P-POD. They point out the need and provide microsatellite size and shape of the CubeSat form factor. Sai balaji et al. performed a study using MATLAB simulation of several attitude control algorithms to look at the ability to control a CubeSat of size 1U. They also simulated sensors such as sun sensors, magnetometer, and gyroscope. They concluded that it is possible to operate the satellite using a magnetorquer type actuator and an array of mathematical models and algorithms: it would take 2000 seconds for a 1U satellite to stabilize at 505km, 98° degree attitude in orbit with the methods utilized by them. Incentivised by the rapidly increasing use of LEO, Lopez-Calle and Franco perform a quantitative comparative study on the catastrophic failure of CubeSats and Nanosats from radiation exposure due to the harsh environment of space versus failure due to collisions in the increasingly busy Low Earth Orbit (LEO). The authors concluded that while sustained damage and damage protection from radiation exposure used to be and currently still is the most crucial factor in protecting LEO microsatellites, increasingly the risk of debris collisions is becoming more important and will become the most important in the following 50 to 70 years. The authors conclude that microsatellite designers need to move their focus more towards defence from debris impacts as these, even if not resulting in catastrophic failure of the satellite, they will impact the attitude of the satellite.

4. Background

5. Methodology

5.1 System Design Overview

This section provides an overview of the System Design Overview.

Figure 5.1: System Design Overview Flowchart

5.1.1 Functional Requirements

5.1.2 Design Approach

5.1.3 System Architecture

As shown in Figure 5.1 the system architecture consists of various components.

Your code here

Listing 5.1: System Architecture Code Example

Figure 5.2: System Architecture Diagram

5.2 Sensor Array Development

This section provides an overview of the Sensor Array Development.

Figure 5.3: System Design Overview Flowchart

5.2.1 Functional Requirements

5.2.2 Design Approach

5.2.3 System Architecture

As shown in Figure 5.3 the system architecture consists of various components.

Your code here

Listing 5.2: System Architecture Code Example

5.3 Signal Conditioning Circuitry

This section provides an overview of the Signal Conditioning Circuitry.

Figure 5.4: System Architecture Diagram

Figure 5.5: System Design Overview Flowchart

5.3.1 Functional Requirements

5.3.2 Design Approach

5.3.3 System Architecture

As shown in Figure 5.5 the system architecture consists of various components.

Your code here

Listing 5.3: System Architecture Code Example

Figure 5.6: System Architecture Diagram

5.4 Enclosure Design And Fabrication

This section provides an overview of the Enclosure Design And Fabrication.

Figure 5.7: System Design Overview Flowchart

5.4.1 Functional Requirements

5.4.2 Design Approach

5.4.3 System Architecture

As shown in Figure 5.7 the system architecture consists of various components.

Your code here

Listing 5.4: System Architecture Code Example

5.5 Data Acquisition System

This section provides an overview of the Data Acquisition System.

Figure 5.8: System Architecture Diagram

Figure 5.9: System Design Overview Flowchart

5.5.1 Functional Requirements

5.5.2 Design Approach

5.5.3 System Architecture

As shown in Figure 5.9 the system architecture consists of various components.

Your code here

Listing 5.5: System Architecture Code Example

Figure 5.10: System Architecture Diagram

5.6 Testing Apparatus

This section provides an overview of the Testing Apparatus.

Figure 5.11: System Design Overview Flowchart

5.6.1 Functional Requirements

5.6.2 Design Approach

5.6.3 System Architecture

As shown in Figure 5.11 the system architecture consists of various components.

Your code here

Listing 5.6: System Architecture Code Example

5.7 Prototype Develop ment Lifecycle

This section provides an overview of the Prototype Develop ment Lifecycle.

Figure 5.12: System Architecture Diagram

Figure 5.13: System Design Overview Flowchart

5.7.1 Functional Requirements

5.7.2 Design Approach

5.7.3 System Architecture

As shown in Figure 5.13 the system architecture consists of various components.

Your code here

Listing 5.7: System Architecture Code Example

Figure 5.14: System Architecture Diagram

6. Results

6.1 Sensor Characterization

For the SensorCharacterization.tex file, you'd want to focus on the fundamental properties and performance of your photodiodes themselves, distinct from the other subsections. Here are some key elements that would belong specifically under SensorCharacterization:

Basic Photodiode Electrical Characteristics:

Dark current measurements Junction capacitance I-V characteristics in different lighting conditions Spectral response profiles (sensitivity vs. wavelength)

Individual Sensor Benchmarking:

Performance comparison between the 4 photodiodes (matching/differences) Responsivity measurements (A/W) Quantum efficiency calculations Detection threshold levels

Response Linearity:

Measurements showing linear range of the photodiodes Saturation point characterization Recovery time from saturation

Temperature Dependency:

Performance drift with temperature Baseline shift measurements Temperature compensation data

Aging/Stability Tests:

Long-term drift measurements Repeatability of measurements over time

This section should focus on the inherent properties of the photodiodes themselves - essentially providing the baseline characterization data that underpins all the other analysis. The other sections then build on this foundation by examining how these sensors perform when integrated into the complete system with amplification, angular positioning, enclosure effects, etc.

Figure 6.1: System Design Overview Flowchart

6.1.1 Functional Requirements

6.1.2 Design Approach

6.1.3 System Architecture

As shown in Figure 6.1 the system architecture consists of various components.

Your code here

Listing 6.1: System Architecture Code Example

6.2 Amplification Performance

This section provides results of the amplifier performance.

Figure 6.2: System Architecture Diagram

Figure 6.3: System Design Overview Flowchart

6.2.1 Functional Requirements

6.2.2 Design Approach

6.2.3 System Architecture

As shown in Figure 6.3 the system architecture consists of various components.

Your code here

Listing 6.2: System Architecture Code Example

Figure 6.4: System Architecture Diagram

6.3 Photodiode Angular Response

This section discusses the results of the response of the solar sensor to angular changes of the light source.

Figure 6.5: System Design Overview Flowchart

6.3.1 Functional Requirements

6.3.2 Design Approach

6.3.3 System Architecture

As shown in Figure 6.5 the system architecture consists of various components.

Your code here

Listing 6.3: System Architecture Code Example

6.4 Enclosure Effectiveness

This section discusses the effectiveness of the Photodiode enlosure.

Figure 6.6: System Architecture Diagram

Figure 6.7: System Design Overview Flowchart

6.4.1 Functional Requirements

6.4.2 Design Approach

6.4.3 System Architecture

As shown in Figure 6.7 the system architecture consists of various components.

Your code here

Listing 6.4: System Architecture Code Example

Figure 6.8: System Architecture Diagram

6.5 Data Acquisition System Evaluation

This section provides results related to the Arduino DAQ.

Figure 6.9: System Design Overview Flowchart

6.5.1 Functional Requirements

6.5.2 Design Approach

6.5.3 System Architecture

As shown in Figure 6.9 the system architecture consists of various components.

Your code here

Listing 6.5: System Architecture Code Example

Figure 6.10: System Architecture Diagram

6.6 System Performance Analysis

6.6.1 Operational Constraints Identified

6.6.2 Environmental Factors Impact

```
1 // Environmental test results
2 // Temperature, ambient light, and vibration effects
```

Figure 6.11: Environmental Testing Results

6.6.3 System Stability and Repeatability

6.6.4 Recommendations for Improvement

6.7 Comparative Analysis

This section compares the simulation with the prototype results.

6.7.1 Breadboard vs. Stepboard Results

6.7.2 Iteration Improvements Analysis

6.7.3 Performance Against Design Requirements

The performance ...

6.7.4 Design Evolution Assessment

The what now?

6.8 System Limitations And Considerations

This section discusses the limitations and future work.

Figure 6.14: System Design Overview Flowchart

6.8.1 Functional Requirements

6.8.2 Design Approach

6.8.3 System Architecture

As shown in Figure 6.14 the system architecture consists of various components.

Your code here

Listing 6.6: System Architecture Code Example

Figure 6.12: Overall System Performance Analysis

Figure 6.13: Prototype Iteration Comparison

Figure 6.15: System Architecture Diagram

7. Conclusions

8. FutureWork

Bibliography