FONCTIONS PART3 E05

EXERCICE N°1 (Le corrigé)

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x)=3x^3-4x$.

1) Calculer la dérivée f' de f.

$$f'(x) = 3 \times 3x^2 - 4 \times 1 = 9x^2 - 4$$

remarque : On a utilisé les formules du cours (fonctions part 2 <u>propriété n°5 et exemple n°3</u>)

2)

2.a) Factoriser f'(x)

$$f'(x) = \underbrace{9x^2 - 4}_{a^2 - b^2} = \underbrace{(3x)^2 - 2^2}_{a^2 - b^2} = \underbrace{(3x + 2)(3x - 2)}_{(a+b)(a-b)}$$

2.b) Étudier le signe de f' sur \mathbb{R}

Nous allons dresser un tableau de signes :

$$3x+2 > 0 \Leftrightarrow 3x > -2 \Leftrightarrow x > -\frac{2}{3}$$

(On mettra donc les + après $-\frac{2}{3}$ dans la ligne : 3x+2)

$$3x-2 > 0 \Leftrightarrow 3x > 2 \Leftrightarrow x > \frac{2}{3}$$

(On mettra donc les + après $\frac{2}{3}$ dans la ligne : 3x-2)

x	$-\infty$		$-\frac{2}{3}$		$\frac{2}{3}$		+∞
3x+2		_		+	0	+	
3x-2		_		_		+	
f'(x)		+	0	_	0	+	

On en déduit que :

$$f'(x)$$
 est strictement positif sur $\left]-\infty ; -\frac{2}{3}\right[\cup \left]\frac{2}{3} ; +\infty\right[$

$$f'(x)$$
 est strictement négatif sur $\left] -\frac{2}{3}; \frac{2}{3} \right[$

et que f'(x) vaut zéro sur $\left\{-\frac{2}{3}; \frac{2}{3}\right\}$

3) En déduire le tableau de variations de f sur \mathbb{R} .

Pas demandé ici mais cela permet de faire le lien

x	$-\infty$		$-\frac{2}{3}$		$\frac{2}{3}$		+∞
f'(x)		+	0	_	0	+	
f(x)			$\sqrt{\frac{16}{9}}$		$-\frac{16}{9}$		+∞

$$f\left(-\frac{2}{3}\right) = 3 \times \left(-\frac{2}{3}\right)^3 - 4 \times \left(-\frac{2}{3}\right) = -\frac{8}{9} + \frac{8}{3} = \frac{-8 + 24}{9} = \frac{16}{9}$$

$$f\left(\frac{2}{3}\right) = 3 \times \left(\frac{2}{3}\right)^3 - 4 \times \left(\frac{2}{3}\right) = \frac{8}{9} - \frac{8}{3} = \frac{8 - 24}{9} = -\frac{16}{9}$$