

MaNo : Exploiting Matrix Norm for Unsupervised Accuracy Estimation

<u>Ambroise Odonnat</u>* *23 <u>Vasilii Feofanov</u>* *2 Weijian Deng 4 Jianfeng Zhang 2 Bo An 1

^{*}Equal contribution $^{-1}$ NTU $^{-2}$ Huawei Noah's Ark Lab $^{-3}$ Inria $^{-4}$ ANU $^{-1}$

TL;DR

- Predicting generalization performance under distribution shifts is challenging
- Most methods use logits without dealing with miscalibration cases
- We propose MaNo, a theoretically grounded estimation approach
- It automatically takes into account miscalibration scenarios
- It can be applied to ResNets, ConvNext, and ViT architectures
- Benefits: SOTA, efficient, architecture agnostic, robust

Problem Setup

Goal: given a pre-trained model f, predict its performance on a test set $\mathcal{D}_{\mathrm{test}}$.

- ullet Input: a pre-trained model f and test data $\mathcal{D}_{ ext{test}}$.
- Distribution shift: $p_S
 eq p_T$ where training data $\sim p_S$ and test data $\sim p_T$.
- Output: an estimation score $S(f, \mathcal{D}_{test})$ that linearly correlates the true accuracy.

This is a challenging task often occurring in real-world scenarios.

Motivation

Question 1: Why are logits informative of generalization performance? **Question 2:** How to alleviate the overconfidence issues of logits-based methods?

Logits Reflect Distances to Decision Boundaries

- Decision boundary of class k is the hyperplane $\{z' \in \mathbb{R}^q \mid \boldsymbol{\omega}_k^\top \boldsymbol{z}' = 0\}$,
- Distance from a point z this hyperplane is $d(\boldsymbol{\omega}_k, \mathbf{z}) = |\boldsymbol{\omega}_k^{\top} \boldsymbol{z}| / \|\boldsymbol{\omega}_k\|$,
- Logits reflects decision to decision boundary as $|\mathbf{q}_k| = |\boldsymbol{\omega}_k^{\top} \mathbf{z}| \propto d(\boldsymbol{\omega}_k, \mathbf{z})$,
- Low-density assumption: misclassified samples are closer to decision boundaries.

Logits (in absolute values) positively correlated to generalization performance.

MaNo: A Simple Three-Step Recipe

- ullet Input: Pre-trained model f, test dataset $\mathcal{D}_{ ext{test}} = \{\mathbf{x}_i\}_{i=1}^N$
- Inference: Recover logits $\mathbf{q}_i = f(\mathbf{x}_i)$,
- Criterion: $\Phi(\mathcal{D}_{\text{test}}) = \text{KL}(\text{uniform}||\text{softmax proba})$

1)
$$v(\mathbf{q}_i) = \begin{cases} 1 + \mathbf{q}_i + \frac{\mathbf{q}_i^2}{2}, & \text{if } \Phi(\mathcal{D}_{\text{test}}) \leq \eta \\ \exp(\mathbf{q}_i), & \text{if } \Phi(\mathcal{D}_{\text{test}}) > \eta \end{cases}$$

$$\sigma(\mathbf{q}_i) = \frac{v(\mathbf{q}_i)}{\sum_{k=1}^K v(\mathbf{q}_i)_k} \in \Delta_K$$

3)
$$\mathcal{S}(f, \mathcal{D}_{\text{test}}) = \frac{1}{\sqrt[p]{NK}} \|\mathbf{Q}\|_p = \left(\frac{1}{NK} \sum_{i=1}^{N} \sum_{k=1}^{K} |\sigma(\mathbf{q}_i)_k|^p\right)^{\frac{1}{p}}$$

MaNo is simple yet efficient and we prove that it captures the model's uncertainty.

Experimental Results: Better, Faster, Stronger

- ullet Comparison between MANo and its competitors with metrics ho and R^2 ,
- Comparison across several architectures: ResNets, ConvNext, ViT,
- Extensive evaluation with common benchmarks on various distribution shifts.

Shift	MaNo	COT	MDE	Nuclear	Dispersion	ProjNorm
	_	2024	2024	2023	2023	2022
Synthetic	0.991	0.988	0.947	0.982	0.960	971
Subpopulation	0.983	0.962	0.920	0.973	0.909	897
Natural	0.905	0.871	0.436	0.455	0.410	382
Overall improv	2%	25%	6 %	26 %	28%	

MaNo outperforms all the baselines while being training-free.

Main References

- Odonnat et al. AISTATS 2023
- *T-similarity* • **Deng et al.** - ICML 2023

Nuclear

• Xie et al. -NeurIPS 2024 (this work) MaNo

Renchunzi Xie

Ambroise Odonnat

Feofanov

Entity-18 (Subpopulation Shift): MANo linearly correlates with the ground-truth test.

Corruptions on ImageNet (Synthetic Shift): MANo significantly surpasses its competitors.

Challenging Setting: Natural Shift

MaNo significantly outperforms competitors under natural shift.

Robustness Analysis

We conducted large-scale experiments and ablations on all the distribution shifts.

We tested our approach's efficiency and versatility with 3 SOTA architectures.

Overall, MANo leads to the best and

most robust estimations!

MaNo is the best approach to use with **SOTA** architectures!

Take Home Message

Predicting generalization performance under distribution shifts is challenging. → Start using MANo for an efficient and accurate estimation!

Want to Know More?

