Week 3 Quiz

1.) Use proof by contradiction to show that the set of prime numbers is infinite.

Proof(by contradiction):

Suppose not. That is, suppose that the set of prime numbers is finite. This statement implies that there is a largest prime number. Let the list of all prime numbers be represented by $p_1, p_2, p_3, \dots p_k$ where p_k is the largest prime number.

Multiplying all the primes together can be represented by $p_1 \cdot p_2 \cdot p_3 \cdot ... \cdot p_k$

Let
$$m = p_1 \cdot p_2 \cdot p_3 \cdot \dots p_k + 1$$

 $\it m$ cannot be evenly divided by any of these prime numbers. For example,

$$\frac{m}{p_1} = p_2 \cdot p_3 \cdot \dots p_k + \frac{1}{p_1}$$

Thus, $\frac{1}{p_1}$ does not evenly divide, which implies m is a prime number bigger than p_k . This is true for p_2 and so on as well. Therefore, because m is not divisible by any of p_1 through p_k , and m is bigger than p_k we have a contradiction [what we needed to show.]

2.) Suppose $a \in \mathbb{Z}$. If a^3 is even, then a is even. Use proof by contradiction.

Let P = " a^3 is even", and Q = "a is even". Assume for the sake of contradiction $\sim (P \to Q)$ or $P \land \sim Q$ meaning that a^3 is even and a is not even, which makes a odd.

By definition of even, $a^3=2k$ for some integer k, and by definition of odd, a=2j+1 for some integer j. a is an integer because it is the product and sum of integers. By substitution,

$$a^3 = (2j+1)^3 = (2j+1)(2j+1)(2j+1)$$

By definition in Example 4.2.3, an odd integer times another odd integer is odd. The odd result multiplied by another odd integer is still odd. Thus,

(2j+1)(2j+1)(2j+1) is odd, which contradicts our assumption that a^3 is even. [Hence the supposition is false and the theorem is true.]

3.) Let
$$A = \{x \in Z \mid x = 10a + 7 \text{ for some integer a } \}$$
 and $B = \{y \in Z \mid y = 10b - 3 \text{ for some integer b} \}$.

Prove or disprove that $B \subseteq A$

Suppose m is a particular but arbitrarily chosen element of B. [We must show that $x \in A$. By definition of A, this means we must show that $m=10\times(some\ integer)+7$.] By definition of B, there is an integer such that m=10b-3. [Given that m=10b-3, can m also be expressed as $10\times(some\ integer)+7$? I.e., is there an integer, say a such that 10b-3=1

$$10a + 7$$
? Solve for a to obtain $a = \frac{10b - 10}{10} = b - 1$. Check to see if this works.] Let $a = b - 1$.

[First check that a is an integer.] Then a is an integer because it is the difference of integers.

[Then check that m = 10a + 7.]

Also
$$10a + 7 = 10(b - 1) + 7 = 10b - 10 + 7 = 10b - 3 = m$$
.

Thus, by definition of A, m is an element of A [which is what was to be shown.]

4.) False

- 5.) False
- 6.) False
- 7.) True

8.)
$$A = \{-6, -4, -1, 0\}$$

$$\mathcal{P}(A) = \{\emptyset, \{-6\}, \{-4\}, \{-1\}, \{0\}, \{-6, -4\}, \{-6, -1\}, \{-6, 0\}, \{-4, -1\}, \{-4, 0\}, \{-1, 0\}, \{-6, -4, -1\}, \{-6, -4, 0\}, \{-6, -4, -1, 0\}\}\}$$

$$(A \times B) \times C = \{((\{1\}, 1), \{1,2\}), ((\{1\}, \{2\}), \{1,2\})\}$$