Math 571 - Exam 1 (20 points)

Richard Ketchersid

Question 1 (20 points). For the exam, you need only indicate True or False. No justification is required. If you want to earn back some points, you can supply full justifications for **all** of the problems. You may earn back 50% of lost points.

(a) False Let $X = (0,1] \subseteq \mathbb{R}$. In the induced metric, X is closed and bounded, so X is compact.

The intervals $(\frac{1}{n}, 1]$ gives an open cover with no subcover.

(b) True A discrete space is compact iff it is finite.

An open cover is just the cover by $\{x\}$ for each $x \in X$. If compact, there is a finite subcover, and hence X is finite. conversely, if X is finite, then any open cover is finite as the entire collection of open sets is finite.

(c) True $Cl(A \cup B) = Cl(A) \cup Cl(B)$.

Trivially, $Cl(A) \cup Cl(B) \subseteq Cl(A \cup B)$. Let $x \in Cl(A \cup B)$. Suppose $x \notin Cl(A)$, then there is open O with $x \in O$ and $O \cap A = \emptyset$. But then every open nbhd of x contained in O must intersect B and thus $x \in Cl(B)$.

(d) False $Cl(A \cap B) = Cl(A) \cap Cl(B)$.

Take A and B dense with $A \cap B = \emptyset$. For example, A could be all binary rationals in (0,1), i.e., $\alpha = \sum_{i=1}^{n} \frac{b_i}{2^{i+1}}$ where $b_i \in 2$ and some $b_i \neq 0$ and B could be all ternary rationals, i.e., $\alpha = \sum_{i=1}^{n} \frac{a_i}{3^{i+1}}$ where $a_i \in 3$ and some $a_i \neq 0$. Then $Cl(A) \cap Cl(B) = X \cap X = X$ while $Cl(A \cap B) = Cl(\emptyset) = \emptyset$.

(e) False For X a metric space, to show that a set $F \subseteq X$ is closed, it is necessary and sufficient to show that every sequence from F has a subsequence that converges to a point in F.

The requirement is that every convergent sequence converges to a point in x, not that every sequence converges. In particular, (0,1) satisfies the mentioned criterion but is not closed.

(f) False For X a metric space, to show that a set $K \subseteq X$ is compact, it is necessary and sufficient to show that every sequence from K has a subsequence that converges.

Here again, the required condition is that every sequence from K has a convergent subsequence converging to a point in K. The same counter-example as above suffices.

(g) False If A is connected, then ∂A is connected.

Consider the strip $A = [0, 1] \times \mathbb{R}$ in \mathbb{R}^2 . Then $\partial A = \text{consists of the two lines } x = 0$ and x = 1.

It might be tempting to argue as follows. Suppose $C \cup D = \partial A$, $C \cap D = \emptyset$, $C \cap \partial A \neq \emptyset \neq D \partial A$, and C and D are open in ∂A . Then let $E = \operatorname{Int}(A)$. Then $\operatorname{Cl}(A) = \partial A \cup \operatorname{Int}(A) = C \cup D \cup E$. The issue here is that C and D are not relatively open to $\operatorname{Cl}(A)$, we know $C = C' \cap \partial A$, and $D = D' \cap \partial A$ where C' and D' are open. So we know $\operatorname{Cl}(A) = C' \cup D' \cup E$, but now $C' \cap E \neq \emptyset \neq D' \cap E$.

(h) False Let (Y, d_Y) be a metric space and $f: X \to Y$. Define $d_f: X \times X \to [0, \infty)$ by $d_f(x, x') = d_Y(f(x), f(x'))$. d_f will always give a metric on X for all X, Y, and f.

(symmetry) $d_X(x, x') = d_X(x', x)$ and (triangle inequality) $d_X(x, x') \le d_X(x, x'') + d_X(x'', x')$ are both clear. The only issue is the identity of indiscernibles. It is clear that

$$d_X(x, x') = 0 \iff d_Y(f(x), f(x')) = 0 \iff f(x) = f(x').$$

But we need $f(x) = f(x') \iff x = x'$, that is, we need f to be 1-1.

(i) False On $\mathbb{R}^* = \mathbb{R} - \{0\}$, $d^*(x,y) = \left|\frac{1}{x} - \frac{1}{y}\right| = \frac{|x-y|}{|xy|}$ is a metric on \mathbb{R}^* . In this metric, $\left(\frac{1}{n} \mid n=1,2,\ldots\right)$ has a limit.

For m>1, $d^*\left(1,\frac{1}{m}\right)=m-1$. This is not bounded so the sequence can't have a limit. Suppose $\frac{1}{m}\to x$, then $d^*(1,x)=d$ and thus $d^*(1,m)\le d+d^*(m,x)$ so $d^*(m,x)\ge d^*(1,m)-d=m-d$.

Perhaps more interesting is that $(n \mid n = 1, 2, ...)$ is a Cauchy sequence with no limit.

(j) True Let d(x,y) = |x-y| be the standard metric on \mathbb{R} and let d^* be as in part (i). A little work gives that for $\delta |x_0| < 1$, letting $\delta' = |x_0| \left(1 - \frac{1}{\delta |x_0| + 1}\right)$ and $\delta'' = |x_0| \left(\frac{1}{1 - \delta |x_0|} - 1\right)$ we have that

$$|x-x_0|<\delta'\implies \left|\frac{1}{x}-\frac{1}{x_0}\right|<\delta$$

and

$$\left|\frac{1}{x} - \frac{1}{x_0}\right| < \delta \implies |x - x_0| < \delta''.$$

So (\mathbb{R}^*, d^*) and (\mathbb{R}^*, d) have the same open sets, and hence the two metrics induce the same topological space.

The given information indicates that $N_{\delta'}(x_0) \subseteq N_{\delta}^*(x_0)$ and $N_{\delta}^*(x_0) \subseteq N_{\delta''}(x_0)$. So in every d-nbhd there is a d^* -nbhd and vice versa.