

Model-Based Integration Of Embedded Software PI Meeting

Mobiles

July 24 - 26, 2002 New York, NY

Smart Vehicles: An Open Testbed for Design, Testing and Implementation for Automotive Embedded Systems

Pravin Varaiya, (510) 642-5270, varaiya@eecs.berkeley.edu
J. Karl Hedrick, (510) 642-2482, khedrick@newton.berkeley.edu
The University of California, Berkeley

Approved for Public Release, Distribution Unlimited

Subcontractors and Collaborators

- Subcontractor: Teja
 - Goal: Provision of baseline hybrid systems modeling environment
- Collaborators: Ford, General Motors, Motorola
 - Goals: Automotive industry user perspective and inputs, particularly with technology evaluation and transition
- Collaborative Effort with Software Enabled Control Program:
 - Ptolemy, Giotto

Problem Description and Program Objective

- Problem Statement
 - "Auto OEP" lead in developing customizable software framework for model based system integration, with an aim to significantly improve embedded system design process
- SmartVehicle Contribution
 - Provision of vehicle and engine domain-specific libraries for application development
 - Definition and execution of high impact physical challenge problems
 - Advanced Vehicle Control Testbed: multi-agent sensing and control ("Cooperative Adaptive Cruise Control")
 - Engine Control System Rapid-Prototyping Testbed: powertrain control for emissions
 - Co-develop performance measures (with auto industry partners) and provide benchmark frameworks to assess Phase I contributions
 - Foster technology transfer

Problem Description and Program Objective (Cont'd)

- Success Criteria
 - Implementation of Phase I embedded systems framework in SmartVehicles open platform for passenger vehicles
 - Technology transfer to vehicle engineering community
 - Reduced development time
 - Ease in which domain experts and software engineers can interact
 - Ease in which different domain experts can specify and design code independently of one another
 - Usability, i.e., the 'naturalness' of the modeling language from which code is generated
 - Ease with which test engineers can modify and tune code in the field
 - Degree of accurate automated documentation in design

Project Status

- Current Technical Approach
 - Evaluation of end-to-end tool chains
 - Further development and near-completion of baseline tool chains
 - Vehicle-to-vehicle
 - Powertrain
 - Enhancement of OEP experiments
 - Vehicle-to-vehicle
 - Powertrain
- Change Since Last PI Meeting
 Refinement and expansion of OEP experiments

- Deliverables and Publications
 - Deliverables
 - Initial iterations of Phase I evaluations
 - Refined ETC/powertrain and V2V models
 - Publications
 - ETC and V2V model documentation updates
 - With updates
 - Conferences:
 - ACC, MED2002, CDC2002, etc

- Specific Milestones Accomplished
 - Demonstration of baseline MoBIES approach
 - Refinement of midterm experiments
 - Continued coordination and cooperation with
 - Phase I participants
 - Auto industry

- Midterm Experiments
 - Goals and success criteria (contributed from auto industry partners)
 - Tool chain integration
 - Completeness of design suite
 - Time and effort to configure and learn tools
 - Domain reconfigurability /meta-programmability
 - Model and code validation and verification
 - Relevance to automotive platforms/architecture
 - Integration with automotive tools

- Midterm Experiments (Cont'd)
 - Other goals and success criteria
 - Ease of implementation
 - Does the generated code compile and/or run? (y/n)
 - How long does it take to get the controller to run on the car?
 - How much effort must be put into interfacing with the rest of the system (database, other control code, communications system, hardware etc...)?

Controller performance

- Robustness, Stability (proofs?)
- Safety
- "Drivability", that is quality of ride (comfort, etc...)
- Was the controller's behavior accurately predicted in simulation?

Real-time performance and timing aspects

- Is the code schedulable?
- Are we making optimal use of the system resources?

User-friendly aspects

- Is the code readable? Documented?
- How long does it

Project Plans

- Next 6 Months
 - Conduct enhanced OEP experiments
 - Focus on performance vis-à-vis baseline
 - Continue to assist auto industry in evaluation
- Specific Performance Goals
 - Successful integration experiments
 - Baseline tool chains executed
 - Performance assessment

Project Plans (Cont'd)

- Schedule and Goal for Midterm Experiments
 - Powertrain
 - See detailed presentation
 - **V2V**
 - See detailed presentation

Technology Transfer and Program Issues

- Technology Transfer via SmartVehicle Technology Advisory Committee
 - Auto OEP Partners: Ford, General Motors and Motorola
- Program Issues
 - UC Berkeley's stepped-up role in OEP integration (carried forward from last PI meeting)
 - Process of transitioning technology to automotive industry (carried forward from last PI meeting)
 - We observe that limited resources are available from Auto OEP participants for this
 - We expect to solicit additional auto industry input for V2V experiment