Lecture 2 - defects

Lecture summary

- Introduction to defects
- Types of defect
- Instrinsic and extrinsic defects
- Defect equations
- Ionic conductivity

Defects

All crystals contain defects of some sort, for example:

- Missing atoms (vacancies)
- Atoms in the 'wrong' place
 - interstitials (between lattice sites) or substitutions (different atom types)
- Extended defects of lines or planes of atoms (see lecture 5)

Defects

All crystals contain defects of some sort, for example:

- Missing atoms (vacancies)
- Atoms in the 'wrong' place
 - interstitials (between lattice sites) or substitutions (different atom types)
- Extended defects of lines or planes of atoms (see lecture 5)
 Defects are often the source of interesting properties

Figure 7-7. How steel qualities change as carbon is added.

Defect amounts

The amount of defects is a fine balance of entropy and enthalpy

• Defects gain entropy but have a (often large) formation energy

Defect concentration

Minimum in ΔG depends on structure and bonding, but typically << 1%.

Types of defect

The three most common defect types in ionic solids are:

Vacancy						Interstitial						Substitution						
М	X	M	X	М	X	М	X	М	X	М	X	М	X	М	X	М	X	
X	М	X	М	X	М	X	М	X	M	X	М	X	M	X	M	X	М	
М	X	M	X	M	X	М	X	М	X	M	X	М	X	M	X	M	X	
X	M	X		X	М	X	М	X	M	X	М	X	М	X	М	X	М	
М	X	M	X	M	X	М	X	М	X	M	X	M	X	N	X	M	X	
X	М	X	М	X	М	X	М	X	M	X	М	X	М	X	M	X	М	
М	X	M	X	М	X	М	X	M	X	M	X	М	X	M	X	M	X	
X	М	X	М	X	М	X	М	X	M	X	М	X	M	X	M	X	М	

Types of defect

The three most common defect types in ionic solids are:

Vacancy						Interstitial						Substitution						
М	X	M	X	М	X	М	X	М	X	М	X	М	X	М	X	М	X	
X	М	X	М	X	М	X	М	X	М	X	М	X	M	X	М	X	М	
M	X	M	X	М	X	М	X	М	X	М	X	М	X	M	X	M	X	
X	М	X		X	М	X	М	X	M	X	М	X	Μ	X	М	X	M	
M	X	M	X	M	X	М	X	M	X	М	X	М	X	N	X	M	X	
X	М	X	М	X	М	X	М	X	М	X	М	X	М	X	М	X	М	
М	X	M	X	М	X	М	X	M	X	Μ	X	М	X	M	X	M	X	
X	М	X	М	X	М	X	М	X	М	X	М	X	M	X	Μ	X	М	

Additionally, defects can be either

- intrinsic (maintaining stoichiometry) or
- extrinsic (non-stoichiometric)

Intrinsic defects

Two of the most common stoichiometric defects are:

Schottky

Charge-balanced combination of anion and cation vacancies

Frenkel

lons displaced to interstitial sites

Defects observed depend on both structure type and atoms involved.

Top: Walter Schottky (1886-1976)

Bottom: Yakov Frenkel (1894-1952)

Schottky defects

- Typically occur when anions and cations have similar size (e.g. NaCl structure)
- Reduced density compared with the ideal material
- e.g. NaCl equal numbers of Na and Cl vacancies

Frenkel defects

- Smaller ion normally displaced
- Only one ion shows defect
- e.g. AgCl (NaCl-type)
 - \circ Smaller Ag^+ ion displaced to tetrahedral holes in CCP Cl^- structure

```
Ag Cl Ag Cl Ag Cl
Cl Ag Cl Ag Cl Ag
Ag Cl Ag Cl Ag
Ag Cl Ag Cl Ag
Cl Ag Cl Ag Cl
Cl Ag Cl Ag Cl Ag
Ag Cl Ag Cl Ag
Ag Cl Ag Cl Ag
Cl Ag Cl Ag
Cl Ag Cl Ag
Cl Ag Cl Ag
Cl Ag Cl Ag
```

Useful to write equation for defects, using **Kroger-Vink** notation:

Normal chemical symbols used for atoms, and V for vacancies

Useful to write equation for defects, using **Kroger-Vink** notation:

- Normal chemical symbols used for atoms, and V for vacancies
- Subscripts denote lattice or interstitial (i) sites

Useful to write equation for defects, using **Kroger-Vink** notation:

- Normal chemical symbols used for atoms, and V for vacancies
- Subscripts denote lattice or interstitial (i) sites
- Charges shown relative to the ideal host site:
 - ∘ ′ for 1−, ″ for 2−, etc.;
 - for 1+, •• for 2+, etc.;
 - x for no net charge (sometimes omitted)

Useful to write equation for defects, using **Kroger-Vink** notation:

- Normal chemical symbols used for atoms, and V for vacancies
- Subscripts denote lattice or interstitial (i) sites
- Charges shown relative to the ideal host site:
 - ∘ ′ for 1−, ″ for 2−, etc.;
 - for 1+, •• for 2+, etc.;
 - x for no net charge (sometimes omitted)
- For example:
 - \circ Na vacancy in NaCl: ${
 m V_{Na}}'$
 - \circ Ag interstital in AgCl: Ag_i^{\bullet}

Defect equations (2)

Defect equations must balance for:

- mass (atoms)
- charge
- sites
 - positions created/destroyed must balance

Examples

AgCl interstitial formation again:

$$\mathrm{Ag}_{\mathrm{Ag}} \Longrightarrow \mathrm{Ag}_{\mathrm{i}}^{ullet} + \mathrm{V}_{\mathrm{Ag}}{}'$$

Examples

AgCl interstitial formation again:

$$\mathrm{Ag}_{\mathrm{Ag}}
ightleftharpoons \mathrm{Ag}_{\mathrm{i}}^{ullet} + \mathrm{V}_{\mathrm{Ag}}{}'$$

NaCl Schottky formation:

Examples

AgCl interstitial formation again:

$$\mathrm{Ag}_{\mathrm{Ag}}
ightleftharpoons \mathrm{Ag}_{\mathrm{i}}^{ullet} + \mathrm{V}_{\mathrm{Ag}}{}'$$

NaCl Schottky formation:

Easily extended to substitutions, e.g. substituting ${\rm Al}^{3\,+}$ with ${\rm Cr}^{3\,+}$ in ${\rm Al}_2{\rm O}_3$ (ruby):

$$2\operatorname{Al}_{\operatorname{Al}}+\operatorname{Cr}_2\operatorname{O}_3 \Longrightarrow 2\operatorname{Cr}_{\operatorname{Al}}+\operatorname{Al}_2\operatorname{O}_3$$

Substitution

• lons of similar size can often replace each other

Substitution

- Ions of similar size can often replace each other
- While an integer number are substituted across a crystal, the average can be non-stoichiometric
 - often represented by a variable such as x:
 - \circ i.e. Ruby is $\mathrm{Al}_{2-\mathrm{x}}\mathrm{Cr_xO_3}$ $(0 \leq x \leq 2)$

Substitution

- Ions of similar size can often replace each other
- While an integer number are substituted across a crystal, the average can be non-stoichiometric
 - often represented by a variable such as x:
 - \circ i.e. Ruby is $\mathrm{Al}_{2-\mathrm{x}}\mathrm{Cr_xO_3}$ $(0 \leq x \leq 2)$
- Substitution can dramatically affect properties:
 - \circ e.g. $La_{2-x}Sr_{x}CuO_{4}$:
 - semiconducting for x=0
 - superconducting (below 40 K) for x=0.15

Extrinsic defects

Substitution can also drive formation of defects, e.g. doping NaCl with $CaCl_2$:

Overall synthesis reaction:

$$(1-2 \, \mathrm{x}) \mathrm{NaCl} + \mathrm{xCaCl}_2 \longrightarrow \mathrm{Na}_{1-2 \, \mathrm{x}} \mathrm{Ca}_{\mathrm{x}} \mathrm{Cl}$$

Kroger-Vink notation:

$$2\,\mathrm{Na_{Na}} + \mathrm{CaCl_2}
ightleftharpoons \mathrm{Ca_{Na}^{ullet}} + \mathrm{V_{Na}}' + 2\,\mathrm{NaCl}$$

More complex example

Sometimes, substitution (or 'doping') can give rise to multiple potential defects.

For example, substitution of La^{3+} for Sr^{2+} in $LaCoO_3$ could occur:

by creating oxygen vacancies;

$$2\operatorname{La_{La}} + 2\operatorname{SrO} + \operatorname{O_O} \Longrightarrow 2\operatorname{Sr_{La}}' + \operatorname{V_O^{ullet}} + \operatorname{La_2O_3}$$

• or by oxidising $\mathrm{Co}^{3\,+}$ to $\mathrm{Co}^{4\,+}$

$$2\operatorname{La_{La}} + 2\operatorname{SrO} + \frac{1}{2}\operatorname{O_2} + 2\operatorname{Co_{Co}} \rightleftharpoons 2\operatorname{Sr_{La}}' + 2\operatorname{Co_{Co}}^{\bullet} + \operatorname{La_2O_3}$$

Solid solutions

Frequently, substitutional defect concentrations can exceed 1%

- known as a 'solid solution'
- Very important for tuning properties via synthesis
- Often useful to think of the "average ion" properties at each site
 - ∘ e.g. ionic radius, resulting in *Vegard's Law*
 - Lattice parameter is weighted average of the end-members, e.g. $Al_{2-x}Cr_xO_3$:

Non-stoichiometry

Some materials are naturally non-stoichiometric even without extrinsic defects

- Very common in transition metal compounds
 - multiple oxidation states available
- Example: FeO (wustite, NaCl structure) cannot actually form stoichiometrically at ambient pressure
 - \circ Actually Fe_{1-x}O, with $0.05 \le x \le 0.15$

Non-stoichiometry

Some materials are naturally non-stoichiometric even without extrinsic defects

- Very common in transition metal compounds
 - multiple oxidation states available
- Example: FeO (wustite, NaCl structure) cannot actually form stoichiometrically at ambient pressure
 - \circ Actually Fe_{1-x}O, with $0.05 \le x \le 0.15$

N.B. From cation:anion ratio alone you cannot determine the defect types

e.g. Fe:O ratio of 0.9 could equally be $\mathrm{Fe}_{0.9}\mathrm{O}$ or $\mathrm{FeO}_{1.11}!$

Conductivity

- Many ionic solids conduct electricity; due to *ionic* and/or *electronic* motion.
- Most ionic solids are electrically insulating/semiconducting (localised electrons)

Conductivity

- Many ionic solids conduct electricity; due to ionic and/or electronic motion.
- Most ionic solids are electrically insulating/semiconducting (localised electrons)
- Ionic conductivity is dominated by defects
 - 'Ideal' lattice sites are fixed in place
- ullet Conductivity, $\sigma=nq\mu$, where
 - n is number of charge carriers
 - ∘ q is charge
 - \circ μ is the mobility of charge carriers

Ion migration mechanisms

Three 'main' mechanisms of ionic migration

1. Vacancy mechanism

Vacancies move throughout the lattice (atoms move into vacancy)

2. Interstitial mechanism

lons hop between interstitial sites

3. Interstitialcy (knock-on) mechanism

Interstitial ions 'push' into a neighbouring site

Migration paths

lon paths are rarely direct, but will take the lowest energy route.

Pathways can be complex

Migration pathways can be calculated and/or experimentally determined

e.g. NASICON Na^+ conductor, $\mathrm{Na_3Zr_2(SiO_4)_2(PO_4)}$:

Migration energetics

Defect mobility is a thermally-activated process:

$$\mu = \mu_0 \exp\!\left(-rac{\mathrm{E_a}}{\mathrm{RT}}
ight)$$

• interstitial sites are higher energy than vacancies, so smaller energy barrier ($E_i < E_a$) - dominates

Variation with temperature

As $\sigma = nq\mu$ and μ is thermally-activated,

$$egin{aligned} \sigma &= n q \mu_0 \exp igg(-rac{ ext{E}_{ ext{a}}}{ ext{RT}} igg) \ &= A \exp igg(-rac{ ext{E}_{ ext{a}}}{ ext{RT}} igg) \end{aligned}$$

Variation with temperature

As $\sigma = nq\mu$ and μ is thermally-activated,

$$egin{aligned} \sigma &= n q \mu_0 \exp igg(-rac{ ext{E}_{ ext{a}}}{ ext{RT}} igg) \ &= A \exp igg(-rac{ ext{E}_{ ext{a}}}{ ext{RT}} igg) \end{aligned}$$

Plotting $\ln \sigma$ vs. $\frac{1}{T}$ (or more commonly $\log_{10} \sigma$ vs $\frac{1000}{T}$ for high temperature measurements) should give a straight line

• gradient = $\frac{-E_a}{R}$ (or $\frac{-E_a}{2303R}$).

Nasicon conductivity

Lecture recap

- Crystals are never perfect!
 - defects favoured at higher temperature
- Three main types of defect:
 - vacancy (called Schottky if stoichiometry maintained)
 - interstitial (called Frenkel if stoichiometry maintained)
 - substitution
- Kroger-Vink notation is a way to write defect equations
- Some materials can form solid solutions and/or nonstoichiometric compositions
- Defects can give rise to ionic conduction
 - Occurs by three main mechanisms:
 - Vacancy hopping
 - Interstitial hopping
 - interstitialcy (knock-on) cooperation
- Ionic conductivity is thermally-activated
 - shows Arrhenius-like behaviour

Return to course contents 25