Introduction to statistics and business analytics-BUAD 1560

8th week summary

Case 2: Two Numerical Variables - Population Standard Deviations unknown

	Independent Samples		
	$\sigma_1 = \sigma_2$	$\sigma_1 \neq \sigma_2$	Paired Samples
Parameters of Interest:	Mean Difference, $\mu_1 - \mu_2$	Mean Difference, $\mu_1 - \mu_2$	Mean Difference, $\mu_1 - \mu_2$
Confidence Interval Formula:	$\begin{split} \overline{x}_1 - \overline{x}_2 &\pm t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \\ df &= n_1 + n_2 - 2 \\ \text{, where} \\ s_p &= \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \end{split}$	$\begin{split} \overline{x}_1 - \overline{x}_2 &\pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \\ df &= \frac{(n_1 - 1)(n_2 - 1)}{(1 - c)^2 (n_1 - 1) + c^2 (n_2 - 1)} \\ , \text{ where } c &= \frac{s_1^2}{n_1} \\ &= \frac{s_1^2}{n_1 + \frac{s_2^2}{n_2}} \end{split}$	$\overline{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$ with df = $n-1$ where the subscript " d " denotes the calculation is performed on the differences "Sample1" – "Sample2"
Name of Hypothesis Test, H_0	Two-sample T Test, H_0 : $\mu_1 = \mu_2$ or H_0 : $\mu_1 - \mu_2 = 0$	Two-sample T Test, $H_0: \mu_1 = \mu_2$ or $H_0: \mu_1 - \mu_2 = 0$	Paired T Test, $H_0: \mu_1 = \mu_2 \text{ or } H_0: \mu_1 - \mu_2 = 0$
Test Statistic Formula:	$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$m{t}' = rac{\overline{x}_1 - \overline{x}_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$	$t = \frac{\overline{d}}{s_d/\sqrt{n}}$ with df = $n - 1$
P-value:	$H_a: \mu_1 \neq \mu_2$, p -value = $2P(T \geq t)$ $H_a: \mu_1 > \mu_2$, p -value = $P(T \geq t)$ $H_a: \mu_1 < \mu_2$, p -value = $P(T \leq t)$		$\begin{aligned} H_a: \mu_1 \neq \mu_2 \text{ , } p\text{-value} &= 2P(T \geq t) \\ H_a: \mu_1 > \mu_2 \text{ , } p\text{-value} &= P(T \geq t) \\ H_a: \mu_1 < \mu_2 \text{ , } p\text{-value} &= P(T \leq t) \end{aligned}$

• INFERENCE ABOUT POPULATION STANDARD DEVIATION.....

Test for the population standard deviation (σ):

Given the data is coming from normal distribution we can use the chi-squared test to test $H_0: \sigma = \sigma_0$:

Test Statistics:
$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$
 follows $\chi^2(\nu=n-1)$
 $100(1-\alpha)\%$ CI for σ : $\sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}$

R: EnvStats::varTest(data, sigma.squared = 1)

Test for the equality of the standard deviations (H₀: σ₁ = σ₂):

Given the data-sets are coming from normal distribution we can use the F test to test $H_0: \sigma_1 = \sigma_2$

Test Statistics:
$$F = \frac{\max(s_1^2, s_2^2)}{\min(s_1^2, s_2^2)}$$
 follows $F(\nu_1 = n_{num} - 1, \nu_2 = n_{den} - 1)$ R: var.test(x, y, ratio = 1)