Lecture 2

Enhanced Entity-Relationship (EER) Modeling

EERD Model

- EER stands for Enhanced ER or Extended ER
- EER Model Concepts
 - Includes all modeling concepts of basic ER
 - Additional concepts:
 - subclasses/superclasses
 - specialization/generalization
 - categories (UNION types)
 - attribute and relationship inheritance
- The additional EER concepts are used to model applications more completely and more accurately
 - EER includes some object-oriented concepts, such as inheritance

Subclasses and Superclasses (1)

- An entity type may have additional meaningful subgroupings of its entities
 - Example: EMPLOYEE may be further grouped into:
 - SECRETARY, ENGINEER, TECHNICIAN, ...
 - Based on the EMPLOYEE's Job
 - MANAGER
 - EMPLOYEEs who are managers
 - SALARIED_EMPLOYEE, HOURLY_EMPLOYEE
 - Based on the EMPLOYEE's method of pay
- EER diagrams extend ER diagrams to represent these additional subgroupings, called subclasses or subtypes

Subclasses and Superclasses

Subclasses and Superclasses (2)

- Each of these subgroupings is a subset of EMPLOYEE entities
- Each is called a subclass of EMPLOYEE
- EMPLOYEE is the superclass for each of these subclasses
- These are called superclass/subclass relationships:
 - EMPLOYEE/SECRETARY
 - EMPLOYEE/TECHNICIAN
 - EMPLOYEE/MANAGER
 - · ...

Subclasses and Superclasses (3)

- These are also called IS-A relationships
 - SECRETARY IS-A EMPLOYEE, TECHNICIAN IS-A EMPLOYEE,
- Note: An entity that is member of a subclass represents the same real-world entity as some member of the superclass:
 - The subclass member is the same entity in a distinct specific role
 - An entity cannot exist in the database merely by being a member of a subclass; it must also be a member of the superclass
 - A member of the superclass can be optionally included as a member of any number of its subclasses

Subclasses and Superclasses (4)

Examples:

- A salaried employee who is also an engineer belongs to the two subclasses:
 - ENGINEER, and
 - SALARIED_EMPLOYEE
- A salaried employee who is also an engineering manager belongs to the three subclasses:
 - MANAGER,
 - ENGINEER, and
 - SALARIED_EMPLOYEE
- It is not necessary that every entity in a superclass be a member of some subclass

Representing Specialization in EER Diagrams

Figure 4.4

EER diagram notation for an attribute-defined specialization on Job_type.

Attribute Inheritance in Superclass / Subclass Relationships

- An entity that is member of a subclass inherits
 - All attributes of the entity as a member of the superclass
 - All relationships of the entity as a member of the superclass

Example:

- In the previous slide, SECRETARY (as well as TECHNICIAN and ENGINEER) inherit the attributes Name, SSN, ..., from EMPLOYEE
- Every SECRETARY entity will have values for the inherited attributes

Specialization (1)

- Specialization is the process of defining a set of subclasses of a superclass
- The set of subclasses is based upon some distinguishing characteristics of the entities in the superclass
 - Example: {SECRETARY, ENGINEER, TECHNICIAN} is a specialization of EMPLOYEE based upon job type.
 - May have several specializations of the same superclass

Specialization (2)

- Example: Another specialization of EMPLOYEE based on method of pay is {SALARIED_EMPLOYEE, HOURLY_EMPLOYEE}.
 - Superclass/subclass relationships and specialization can be diagrammatically represented in EER diagrams
 - Attributes of a subclass are called specific or local attributes.
 - For example, the attribute TypingSpeed of SECRETARY
 - The subclass can also participate in specific relationship types.
 - For example, a relationship BELONGS_TO of HOURLY_EMPLOYEE

Specialization (3)

Generalization

- Generalization is the reverse of the specialization process
- Several classes with common features are generalized into a superclass;
 - original classes become its subclasses
- Example: CAR, TRUCK generalized into VEHICLE;
 - both CAR, TRUCK become subclasses of the superclass VEHICLE.
 - We can view {CAR, TRUCK} as a specialization of VEHICLE
 - Alternatively, we can view VEHICLE as a generalization of CAR and TRUCK

Generalization (2)

Figure 4.3

Generalization. (a) Two entity types, CAR and TRUCK.
(b) Generalizing CAR and TRUCK into the superclass VEHICLE.

Generalization and Specialization (1)

- Diagrammatic notation are sometimes used to distinguish between generalization and specialization
 - Arrow pointing to the generalized superclass represents a generalization
 - Arrows pointing to the specialized subclasses represent a specialization
 - We do not use this notation because it is often subjective as to which process is more appropriate for a particular situation
 - We advocate not drawing any arrows

Generalization and Specialization (2)

- Data Modeling with Specialization and Generalization
 - A superclass or subclass represents a collection (or set or grouping) of entities
 - It also represents a particular type of entity
 - Shown in rectangles in EER diagrams (as are entity types)
 - We can call all entity types (and their corresponding collections) classes, whether they are entity types, superclasses, or subclasses

Constraints on Specialization and Generalization (1)

- If we can determine exactly those entities that will become members of each subclass by a condition, the subclasses are called predicatedefined (or condition-defined) subclasses
 - Condition is a constraint that determines subclass members
 - Display a predicate-defined subclass by writing the predicate condition next to the line attaching the subclass to its superclass

Constraints on Specialization and Generalization (2)

- If all subclasses in a specialization have membership condition on same attribute of the superclass, specialization is called an attribute-defined specialization
 - Attribute is called the defining attribute of the specialization
 - Example: JobType is the defining attribute of the specialization {SECRETARY, TECHNICIAN, ENGINEER} of EMPLOYEE
- If no condition determines membership, the subclass is called user-defined
 - Membership in a subclass is determined by the database users by applying an operation to add an entity to the subclass
 - Membership in the subclass is specified individually for each entity in the superclass by the user

Displaying an attribute-defined specialization in EER diagrams

Figure 4.4

EER diagram notation for an attributedefined specialization on Job_type.

Constraints on Specialization and Generalization (3)

- Two basic constraints can apply to a specialization/generalization:
 - Disjointness Constraint:
 - Completeness Constraint:

Constraints on Specialization and Generalization (4)

- Disjointness Constraint:
 - Specifies that the subclasses of the specialization must be disjoint:
 - an entity can be a member of at most one of the subclasses of the specialization
 - Specified by <u>d</u> in EER diagram
 - If not disjoint, specialization is overlapping:
 - that is the same entity may be a member of more than one subclass of the specialization
 - Specified by <u>o</u> in EER diagram

Constraints on Specialization and Generalization (5)

- Completeness Constraint:
 - Total specifies that every entity in the superclass must be a member of some subclass in the specialization/generalization
 - Shown in EER diagrams by a <u>double line</u>
 - Partial allows an entity not to belong to any of the subclasses
 - Shown in EER diagrams by a single line

Constraints on Specialization and Generalization (6)

- Hence, we have four types of specialization/generalization:
 - Disjoint, total
 - Disjoint, partial
 - Overlapping, total
 - Overlapping, partial
- Note: Generalization usually is total because the superclass is derived from the subclasses.

Example of disjoint partial Specialization

Figure 4.4

EER diagram notation for an attribute-defined specialization on Job_type.

Example of overlapping total Specialization

Specialization/Generalization Hierarchies, Lattices & Shared Subclasses (1)

- A subclass may itself have further subclasses specified on it
 - forms a hierarchy or a lattice
- Hierarchy has a constraint that every subclass has only one superclass (called single inheritance); this is basically a tree structure
- In a *lattice*, a subclass can be subclass of more than one superclass (called *multiple inheritance*)

Shared Subclass "Engineering_Manager"

Figure 4.6 A specialization lattice with shared subclass ENGINEERING_MANAGER.

Specialization/Generalization Hierarchies, Lattices & Shared Subclasses (2)

- In a lattice or hierarchy, a subclass inherits attributes not only of its direct superclass, but also of all its predecessor superclasses
- A subclass with more than one superclass is called a shared subclass (multiple inheritance)
- Can have:
 - specialization hierarchies or lattices, or
 - generalization hierarchies or lattices,
 - depending on how they were derived
- We just use specialization (to stand for the end result of either specialization or generalization)

Specialization/Generalization Hierarchies, Lattices & Shared Subclasses (3)

- In specialization, start with an entity type and then define subclasses of the entity type by successive specialization
 - called a top down conceptual refinement process
- In generalization, start with many entity types and generalize those that have common properties
 - Called a bottom up conceptual synthesis process
- In practice, a combination of both processes is usually employed

Specialization / Generalization Lattice Example (UNIVERSITY)

Figure 4.7
A specialization lattice with multiple inheritance for a UNIVERSITY database.

Alternative diagrammatic notations

- ER/EER diagrams are a specific notation for displaying the concepts of the model diagrammatically
- DB design tools use many alternative notations for the same or similar concepts
- One popular alternative notation uses UML class diagrams
- see next slides for UML class diagrams and other alternative notations

UML Example for Displaying Specialization / Generalization

A UML class diagram corresponding to the EER diagram in Figure 4.7, illustrating UML notation for specialization/generalization.

Alternative Diagrammatic Notations

Figure A.1

Alternative notations. (a) Symbols for entity type/class, attribute, and relationship. (b) Displaying attributes. (c) Displaying cardinality ratios. (d) Various (min, max) notations. (e) Notations for displaying specialization/generalization.

Mapping EER Model Constructs to Relations

Step8: Options for Mapping Specialization or Generalization.

Convert each specialization with m subclasses $\{S_1, S_2,, S_m\}$ and generalized superclass C, where the attributes of C are $\{k, a_1, ..., a_n\}$ and k is the (primary) key, into relational schemas using one of the four following options:

Option 8A: Multiple relations-Superclass and subclasses.

Create a relation L for C with attributes $Attrs(L) = \{k, a_1, ... a_n\}$ and PK(L) = k. Create a relation L_i for each subclass S_i , 1 < i < m, with the attributes $Attrs(L_i) = \{k\}$ U {attributes of S_i } and $PK(L_i)=k$. This option works **for any specialization** (total or partial, disjoint of over-lapping).

Option 8B: Multiple relations-Subclass relations only

Create a relation L_i for each subclass S_i , 1 < i < m, with the attributes $Attr(L_i) = \{attributes of <math>S_i\}$ U $\{k, a_1, ..., a_n\}$ and $PK(L_i) = k$. This option only works for a specialization whose subclasses are **total** (every entity in the superclass must belong to (at least) one of the subclasses).

EER diagram notation for an attribute-defined specialization on JobType.

Options for Mapping Specialization or Generalization.

(a) Mapping the EER schema using option 8A.

(a) EMPLOYEE

SN FName MInit	LName	BirthDate	Address	JobType
----------------	-------	-----------	---------	---------

SECRETARY

SSN TypingSpeed

TECHNICIAN

SSN TGrade

ENGINEER

SSN EngType

Generalizing CAR and TRUCK into the superclass VEHICLE.

Options for Mapping Specialization or Generalization.

(b) Mapping the EER schema using option 8B.

(b) CAR

VehicleId LicensePlateNo Price MaxS	peed NoOfPassengers
-------------------------------------	---------------------

TRUCK

VehicleId LicensePlateNo Price NoOfAxles
--

Mapping EER Model Constructs to Relations

Option 8C: Single relation with one type attribute.

Create a single relation L with attributes $Attrs(L) = \{k, a_1, ..., a_n\} U$ {attributes of S_n } U...U {attributes of S_m } U {t} and PK(L) = k. The attribute t is called a type (or **discriminating**) attribute that indicates the subclass to which each tuple belongs

Option 8D: Single relation with multiple type attributes.

Create a single relation schema L with attributes $Attrs(L) = \{k, a_1, ..., a_n\}$ U $\{attributes of S_1\}$ U...U $\{attributes of S_m\}$ U $\{t_1, t_2, ..., t_m\}$ and PK(L) = k. Each t_i , 1 < l < m, is a Boolean type attribute indicating whether a tuple belongs to the subclass S_i .

EER diagram notation for an attribute-defined specialization on JobType.

Options for Mapping Specialization or Generalization.

(c) Mapping the EER schema using option 8C.

(c) EMPLOYEE

EER diagram notation for an overlapping (nondisjoint) PartNo Description specialization. PART ManufactureDate SupplierName DrawingNo BatchNo ListPrice MANUFACTURED_PART PURCHASED_PART

Options for Mapping Specialization or Generalization.

(d) Mapping using option 8D with Boolean type fields Mflag and Pflag.

Mapping EER Model Constructs to Relations

Mapping of Shared Subclasses (Multiple Inheritance)

A shared subclass, such as STUDENT_ASSISTANT, is a subclass of several classes, indicating multiple inheritance. These classes must all have the same key attribute; otherwise, the shared subclass would be modeled as a category.

We can apply any of the options discussed in Step 8 to a shared subclass, subject to the restriction discussed in Step 8 of the mapping algorithm. Below both 8C and 8D are used for the shared class STUDENT_ASSISTANT.