

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	Improvement QUIZ	Maximum marks: 10
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 20 Minutes Date: 06-09-2023

Name: USN:

Instructions to students: Rough work can be done at the backside of the sheet.

Q.No	Quiz questions	M	BT	CO
1.1	The value of $\Delta^4[(4+2x)(2-x)(1-3x^2)]$ taking the interval of differencing $h=1$ is	1	L1	1
	.			
	Ans: 144			
1.2	A vector point function \vec{F} is irrotational if	1	L1	1
	Ans: $curl(\vec{F}) = 0$			
1.3	If vector $\vec{f} = ax\hat{\imath} - 2y\hat{\jmath} + z\hat{k}$ is solenoidal, then the value of the constant 'a' is	1	L1	1
	Ans: $a = 1$			
1.4	If $\nabla \phi = 2\sqrt{6}\hat{\imath} + 11\hat{\jmath} - 5\hat{k}$ then the directional derivative along the direction of the vector	1	L1	2
	$\sqrt{6}\hat{\imath} + 3\hat{\jmath} - 7\hat{k} \text{ is } \underline{\hspace{1cm}}.$			
	Ans: 10			
1.5	A particle moves along the curve $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$, the velocity vector	2	L1	1
	at $t = 0$ is and acceleration vector at $t = 0$ is			
	Ans: $\left(\frac{d\vec{r}}{dt}\right)_{t=0} = -\hat{\imath} + 6\hat{k}$ and $\left(\frac{d^2\vec{r}}{dt^2}\right)_{t=0} = \hat{\imath} - 18\hat{\jmath}$			
1.6	The unit normal vector to the surface $3x^2 + y^3z^2 + 5 = 0$ at $(-1, -1, 2)$ is	2	L2	2
	Ans: $\frac{-6\hat{i}+12\hat{j}-4\hat{k}}{14}$			
1.7	Using suitable interpolation, fit a polynomial for the data	2	L2	3
	$\begin{array}{c cccc} x & 1 & 2 & 4 \\ \hline y & 6 & 2 & 0 \\ \end{array}$			
	Ans: $x^2 - 7x + 12$			

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	Improvement QUIZ	Maximum marks: 10
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 20 Minutes Date: 06-09-2023

Name: USN:	USN:
------------	------

Instructions to students: Rough work can be done at the backside of the sheet.

Q.No	Quiz questions	M	BT	CO
1.1	The value of $\Delta^4[(3+x)(1+4x^2)(5-2x)]$ taking the interval of differencing $h=1$ is		L1	1
	·			
	Ans: -192			
1.2	A vector point function \vec{g} is said to be conservative if	1	L1	1
	Ans: $curl(\vec{g}) = 0$.			
1.3	If vector $\vec{f} = 3x\hat{\imath} - by\hat{\jmath} + 2z\hat{k}$ is solenoidal, then the value of the constant 'b' is	1	L1	1
	Ans: $b = 5$			
1.4	If $\nabla \phi = \sqrt{2}\hat{\imath} + \sqrt{3}\hat{\jmath} - \sqrt{6}\hat{k}$ then the directional derivative along the direction of the vector	1	L1	2
	$3\sqrt{2}\hat{i} + 2\sqrt{3}\hat{j} - \sqrt{6}\hat{k}$ is			
	Ans: 3			
1.5	A particle moves along the curve $x = 1 - t^3$, $y = 4t^3 + 3$, $z = 2t - 7$, the velocity vector	2	L1	1
	at $t = 1$ is and acceleration vector at $t = 2$ is			
	Ans: $\left(\frac{d\vec{r}}{dt}\right)_{t=1} = -3\hat{\imath} + 12\hat{\jmath} + 2\hat{k}$ and $\left(\frac{d^2\vec{r}}{dt^2}\right)_{t=2} = -12\hat{\imath} + 48\hat{\jmath}$			
1.6	The unit normal vector to the surface $4x - 5y + z^2 + 5 = 0$ at $(1, 2, -1)$ is	2	L2	2
	Ans: $\frac{4\hat{\imath}-5\hat{\jmath}-2\hat{k}}{\sqrt{45}}$			
1.7	Using suitable interpolation, fit a polynomial for the data	2	L2	3
	x 1 3 4 y 3 7 0			
	Ans: $-3x^2 + 14x - 8$			

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	Improvement QUIZ	Maximum marks: 10
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 20 Minutes Date: 06-09-2023

Name: USN:

Instructions to students: Rough work can be done at the backside of the sheet.

Q.No	Quiz questions	M	BT	CO
1.1	The value of $\Delta^3[(7+4x)(1-2x)(5+x)]$ taking the interval of differencing $h=2$ is	1	L1	1
	·			
	Ans: -384			
1.2	Curl of a constant vector is	1	L1	1
	Ans: Zero vector			
1.3	If vector $\vec{f} = 7x\hat{\imath} + 6y\hat{\jmath} + mz\hat{k}$ is solenoidal, then the value of the constant 'm' is	1	L1	1
	Ans: $m = -13$			
1.4	If $\nabla \phi = 10\hat{\imath} - 7\hat{\jmath} + 2\hat{k}$ then the directional derivative along the direction of the vector	1	L1	2
	$3\hat{\imath} - 2\hat{\jmath} + 6\hat{k} \text{ is } \underline{\hspace{1cm}}.$			
	Ans: 8			
1.5	A particle moves along the curve $x = t^3 - 4t$, $y = t^2 + 4t$, $z = 8t^2 - 5$, the velocity	2	L1	1
	vector at $t = 2$ is and acceleration vector at $t = 0$ is			
	Ans: $\left(\frac{d\vec{r}}{dt}\right)_{t=2} = 8\hat{\iota} + 8\hat{\jmath} + 32\hat{k}$ and $\left(\frac{d^2\vec{r}}{dt^2}\right)_{t=0} = 2\hat{\jmath} + 16\hat{k}$			
1.6	The unit normal vector to the surface $x^2 + y^2 = 6z + 14$ at $(1, 1, -2)$ is	2	L2	2
	Ans: $\frac{2\hat{\iota}+2\hat{\jmath}-6\hat{k}}{\sqrt{44}}$			
1.7	Using suitable interpolation, fit a polynomial for the data	2	L2	3
	$\begin{array}{c ccccc} x & -2 & 1 & 2 \\ \hline y & 3 & 0 & 7 \\ \end{array}$			
	Ans: $2x^2 + x - 3$			

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	Improvement QUIZ	Maximum marks: 10
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 20 Minutes Date: 06-09-2023

Name: USN:

Instructions to students: Rough work can be done at the backside of the sheet.

Q.No	Quiz questions	M	BT	CO
1.1	The value of $\Delta^3[(3+x)(1+3x)(1+4x)]$ taking the interval of differencing $h=2$ is	1	L1	1
	·			
	Ans: 576			
1.2	Curl of the position vector $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ is	1	L1	1
	Ans: Zero vector			
1.3	If vector $\vec{f} = 2ax\hat{\imath} - ay\hat{\jmath} + 4z\hat{k}$ is solenoidal, then the value of the constant 'a' is	1	L1	1
	Ans: $a = -4$			
1.4	If $\nabla \phi = 6\hat{\imath} + 8\hat{\jmath} - 7\hat{k}$ then the directional derivative along the direction of the vector	1	L1	2
	$2\hat{\imath} - \hat{\jmath} - 2\hat{k} \text{ is } \underline{\hspace{1cm}}.$			
	Ans: 6			
1.5	A particle moves along the curve $x = 4 \sin t$, $y = 4 \cos t$, $z = 3t^2$, the velocity vector at	2	L1	1
	$t = \pi$ is and acceleration vector at $t = 0$ is			
	Ans: $\left(\frac{d\vec{r}}{dt}\right)_{t=\pi} = -4\hat{\imath} + 6\pi\hat{k}$ and $\left(\frac{d^2\vec{r}}{dt^2}\right)_{t=0} = -4\hat{\jmath} + 6\hat{k}$			
1.6	The unit normal vector to the surface $y^2 - 4x^2 + 3z = 3$ at $(1, -2, 1)$ is	2	L2	2
	Ans: $\frac{-8\hat{\imath}-4\hat{\jmath}+3\hat{k}}{\sqrt{89}}$			
1.7	Using suitable interpolation, fit a polynomial for the data	2	L2	3
	Ans: $3x^2 - 7x + 2$			
