Campo electrostático

Método e recomendacións

Cargas puntuais

- 1. Dúas cargas eléctricas positivas de 3 nC cada unha están fixas nas posicións (2, 0) e (-2, 0) e unha carga negativa de -6 nC está fixa na posición (0,-1). Calcula:
 - a) A enerxía electrostática do conxunto das tres cargas.
 - b) O vector campo eléctrico no punto (0, 1).
 - c) A aceleración que experimentaría un protón situado no punto (0, 1).
 - d) Colócase un protón no punto (0, 1) inicialmente en repouso e de xeito que é libre de moverse. Razoa se chegará ata a orixe de coordenadas e, en caso afirmativo, calcula a enerxía cinética que terá nese punto e a súa velocidade.
 - e) Calcula o traballo necesario para levar o protón desde el punto (0, 1) ata a orixe.
 - f) Indica o signo e o valor da carga que habería que situar no punto (0, 1), en vez do protón, para que o potencial eléctrico na orixe sexa nulo.
 - g) Calcula a carga q_2 que habería que situar no punto (0, 1), en vez do protón, para que a intensidade do campo electrostático na orixe sexa nula.

Datos: $K = 9 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$; $q(p) = 1,6 \cdot 10^{-19} \text{ C}$; $m(p) = 1,67 \cdot 10^{-27} \text{ kg.}$. As posicións están en metros. Problema baseado en A.B.A.U. ord. 21, ord. 20, ord. 19

Rta.: a) $E = -1.25 \cdot 10^{-7} \text{ J; b}$ $\overline{E} = -8.67 \, \overline{\mathbf{j}} \text{ N/C; c}$ $\overline{a} = -8.31 \cdot 10^8 \, \overline{\mathbf{j}} \text{ N/C; d}$) $E_c = 3.86 \cdot 10^{-18} \, \text{J; } v = 6.80 \cdot 10^4 \, \text{m/s;}$ e) $W = -3.86 \cdot 10^{-18} \, \text{J; f}$ $q = 3.00 \, \text{nC; g}$) $q_2 = -6.00 \, \text{nC}$.

Valor da carga situada no punto A Valor da carga situada no punto B Valor da carga situada no punto C Posición do punto A Posición do punto B Posición do punto D Posición do punto D no que calcular o vector campo eléctrico Velocidade inicial no punto D Posición do punto O ao que chega Valor da carga del protón Masa do protón Constante de Coulomb Incógnitas Enerxía electrostática do conxunto das tres cargas Intensidade do campo electrostático no punto D Aceleración dun protón situado no punto D Enerxía cinética que terá ao pasar pola orixe Velocidade do protón soltado no punto D ao pasar pola orixe Traballo necesario para levar ao protón desde o punto D ata a orixe Carga no punto D para que o potencial eléctrico na orixe sexa nulo Outros símbolos Distancia	Cifras significativas: 3 $Q_A = 3,00 \text{ nC} = 3,00 \cdot 10^{-9} \text{ C}$ $Q_B = 3,00 \text{ nC} = 3,00 \cdot 10^{-9} \text{ C}$ $Q_C = -6,00 \text{ nC} = -6,00 \cdot 10^{-9} \text{ C}$ $\underline{\boldsymbol{r}}_A = (2,00,0) \text{ m}$ $\underline{\boldsymbol{r}}_B = (-2,00,0) \text{ m}$ $\underline{\boldsymbol{r}}_C = (0,-1,00) \text{ m}$ $\underline{\boldsymbol{r}}_D = (0,1,00) \text{ m}$ $\underline{\boldsymbol{r}}_D = (0,0) \text{ m}$ $q = 1,60 \cdot 10^{-19} \text{ C}$ $m = 1,67 \cdot 10^{-27} \text{ kg}$ $K = 9,00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$ $\underline{\boldsymbol{E}}$ $\underline{\boldsymbol{E}}_D$ a E_{CO} v W q q_2
Ecuacións	* -v Q *
Campo eléctrico nun punto a unha distancia, r , dunha carga puntual, Q	$\vec{E} = K \frac{Q}{r^2} \vec{u}_r$ $\vec{E}_A = \sum_i \vec{E}_{Ai}$
Principio de superposición	
Potencial eléctrico nun punto a unha distancia, $\ r$, dunha carga puntual, $\ Q$	$V = K \frac{Q}{r}$
Potencial eléctrico nun punto debido a varias cargas Enerxía potencial eléctrica dunha carga, q, situada nun punto A	$V = \sum V_i$ $E_{\mathrm{pA}} = q \cdot V_{\mathrm{A}}$

Enerxía cinética dun corpo de masa m que se despraza con velocidade v

Principio da conservación da enerxía entre dous puntos A e B

Enerxía potencial de cada interacción entre dúas cargas

$$E_{pi} = K \frac{Q \cdot q}{r}$$

$$\vec{F} - \vec{F}_{E}$$

Campo eléctrico

 $\vec{E} = \frac{\vec{F}_E}{q}$ $\vec{F} = m \cdot \vec{a}$

2.ª lei de Newton da Dinámica

Traballo da forza eléctrica ao mover unha carga, q, do punto A ao punto B $W_{A\to B} = q (V_A - V_B)$

 $(E_{\rm c} + E_{\rm p})_{\rm A} = (E_{\rm c} + E_{\rm p})_{\rm B}$

Solución:

a) A enerxía potencial de cada interacción entre dúas cargas vén dada pola expresión:

$$E_{\rm pi} = K \frac{Q \cdot q}{r}$$

A enerxía total electrostática é a suma das enerxías das tres interaccións: AB; AC y BC.

al electrostatica e a suma das enerxias das tres interaccions: AB; AC y BC.
$$E_{AB} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-9} \left[\text{C} \right] \cdot 3,00 \cdot 10^{-9} \left[\text{C} \right]}{4,00 \left[\text{m} \right]} = 2,03 \cdot 10^{-8} \text{ J}$$

$$E_{AC} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-9} \left[\text{C} \right] \cdot \left(-6,00 \cdot 10^{-9} \right) \left[\text{C} \right]}{2,24 \left[\text{m} \right]} = -7,24 \cdot 10^{-8} \text{ J}$$

$$E_{BC} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-9} \left[\text{C} \right] \cdot \left(-6,00 \cdot 10^{-9} \right) \left[\text{C} \right]}{2,24 \left[\text{m} \right]} = -7,24 \cdot 10^{-8} \text{ J}$$

$$E = E_{AB} + E_{AC} + E_{BC} = 2,03 \cdot 10^{-8} \left[\text{J} \right] + \left(-7,24 \cdot 10^{-8} \left[\text{J} \right] \right) + \left(-7,24 \cdot 10^{-8} \left[\text{J} \right] \right) = -1,25 \cdot 10^{-7} \text{ J}$$

Análise: Se a enerxía total se calculase como a suma das enerxías potenciais das tres cargas, o resultado duplicaríase, porque as interaccións contaríanse dúas veces. Por exemplo, a interacción $A \leftrightarrow B$ aparece no cálculo da enerxía potencial da carga en A e tamén no cálculo da da carga en B.

Faise un debuxo no que se sitúan os puntos A(2, 0), B(-2, 0), C(0, -1) e D(0, 1).

Debúxanse os vectores do campo no punto D, un vector por cada carga, prestando atención ao sentido.

Os campos creados polas cargas situadas nos puntos A e B son de repulsión, porque as cargas son positivas, e son do mesmo valor, porque as cargas e as distancias son iguais.

Pero o campo producido pola carga situada no punto C é de atracción, porque é negativa, e será maior que o creado pola carga situada no punto A, porque o punto C está máis cerca do punto D que o punto A, e a carga situada no punto C é maior que a carga situada no punto A.

Debúxase o vector suma que é o campo resultante, \overline{E}_{D} .

Como os campos creados polas cargas situadas nos puntos A e B son do mesmo valor, a súas compoñentes horizontais anúlanse e a resul-

tante de ambas será vertical e estará dirixida no sentido positivo do eixe Y. A súa medida será o dobre da compoñente vertical dunha delas.

O valor do campo resultante será a suma das compoñentes verticais de cada carga. Como o valor do campo creado pola carga situada no punto C é maior que a suma das compoñentes verticais dos campos creados polas cargas situadas nos puntos A e B, a resultante dos tres campos estará dirixida no sentido negativo do eixe Y.

O principio de superposición di que a intensidade de campo eléctrico nun punto, debido á presencia de varias cargas, é a suma vectorial dos campos producidos nese punto por cada carga, coma se o resto das cargas non estivese presente.

Para determinar o campo nun punto, calcúlanse os campos creados nese punto por cada carga, e despois súmanse os vectores.

A forza eléctrica entre dúas cargas puntuais, Q e q, separadas por unha distancia, r, vén dada pola lei de Coulomb, na que K é a constante de Coulomb e \overline{u}_r o vector unitario na liña que une as cargas.

$$\vec{F}_E = K \frac{Q \cdot q}{r^2} \vec{u}_r$$

O campo eléctrico nun punto situado a unha distancia, r, dunha carga puntual, Q, é a forza sobre a unidade de carga positiva situada nese punto:

$$\vec{E} = \frac{\vec{F}_E}{q} = \frac{K \frac{Q \cdot \mathbf{q}}{r^2} \vec{u}_r}{\frac{\mathbf{q}}{r}} = K \frac{Q}{r^2} \vec{u}_r$$

Calcúlase a distancia entre os puntos A(2, 0) e D(0, 1):

$$\vec{r}_{AD} = \vec{r}_{D} - \vec{r}_{A} = 1,00 \ \vec{j} \ [m] - 2,00 \ \vec{i} \ [m] = (-2,00 \ \vec{i} + 1,00 \ \vec{j}) \ m$$

$$r_{AD} = |\vec{r}_{AD}| = \sqrt{(-2,00 \ [m])^{2} + (1,00 \ [m])^{2}} = 2,24 \ m$$

Calcúlase o vector unitario do punto D, tomando como orixe o punto A:

$$\vec{\mathbf{u}}_{AD} = \frac{\vec{r}_{AD}}{|\vec{r}_{AD}|} = \frac{(-2,00\,\vec{\mathbf{i}} + 1,00\,\vec{\mathbf{j}})[\,\mathrm{m}\,]}{2,24\,[\,\mathrm{m}\,]} = -0,894\,\vec{\mathbf{i}} + 0,447\,\vec{\mathbf{j}}$$

Calcúlase o campo no punto D, creado pola carga de +3 nC situada no punto A:

$$\vec{E}_{DA} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \cdot \frac{3,00 \cdot 10^{-9} \left[\text{C} \right]}{\left(2,24 \left[\text{m} \right] \right)^{2}} \left(-0,894 \, \vec{i} + 0,447 \, \vec{j} \right) = \left(-4,83 \, \vec{i} + 2,41 \, \vec{j} \right) \, \text{N/C}$$

O campo no punto D, debido á carga de +3 nC, situada no punto B, é simétrico ao creado pola carga situada no punto A. Os valores das súas compoñentes son os mesmos, pero o signo da compoñente horizontal é oposto, porque está dirixida en sentido contrario:

$$\vec{E}_{DB} = (4.83 \vec{i} + 2.41 \vec{j}) \text{ N/C}$$

A distancia do punto D ao punto C é: $r_{DC} = |(0, 1,00) \text{ [m]} - (0, -1,00) \text{ [m]}| = 2,00 \text{ m}$. O vector unitario do punto D, tomando como orixe o punto C, é $\bar{\mathbf{j}}$, o vector unitario do eixe *Y*. Calcúlase o campo no punto D, debido á carga de –6 nC situada no punto C:

$$\vec{E}_{DC} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \cdot \frac{-6,00 \cdot 10^{-9} \left[\text{C} \right]}{(2,00 \left[\text{m} \right])^2} \vec{j} = -13,5 \vec{j} \text{ N/C}$$

Polo principio de superposición, o campo resultante no punto D é a suma vectorial dos campos creados nese punto por cada carga.

$$\vec{E}_{D} = \vec{E}_{DA} + \vec{E}_{DB} + \vec{E}_{DC} = (-4.83\vec{i} + 2.41\vec{j})[N/C] + (4.83\vec{i} + 2.41\vec{j})[N/C] + (-13.5\vec{j})[N/C] = -8.67\vec{j}N/C$$

Análise: Coincide co debuxo. O campo resultante do cálculo está dirixido no sentido negativo do eixe Y.

c) Para calcular a aceleración do protón, calcúlase antes a forza eléctrica a partir do campo eléctrico, que é a forza sobre a unidade de carga positiva:

$$\vec{E} = \frac{\vec{F}_E}{q} \implies \vec{F} = q \cdot \vec{E}_D = 1,60 \cdot 10^{-19} [C] \cdot (-8,67 \, \bar{j} \, [N/C]) = -1,39 \cdot 10^{-18} \, \bar{j} \, N$$

A aceleración calcúlase aplicando a segunda lei de Newton:

$$\vec{F} = m \cdot \vec{a} \Rightarrow \vec{a} = \frac{\vec{F}}{m} = \frac{-1,39 \cdot 10^{-18} \, \vec{j} \, [\text{N}]}{1,67 \cdot 10^{-27} \, [\text{kg}]} = -8,31 \cdot 10^8 \, \vec{j} \, \text{m/s}^2$$

d) Ao colocar un protón no punto D(0, 1), o campo exercerá unha forza dirixida no mesmo sentido que o campo, sentido negativo do eixe Y. A carga será empuxada e pasará pola orixe O(0, 0). Como a forza electrostática é unha forza conservativa, a enerxía mecánica consérvase.

$$(E_{c} + E_{p})_{O} = (E_{c} + E_{p})_{D}$$

$$E_{cO} + q \cdot V_{O} = E_{cD} + q \cdot V_{D}$$

Hai que calcular os potenciais eléctricos nos puntos D e O.

O potencial eléctrico nun punto, debido á presencia de varias cargas, é a suma dos potenciais producidos nese punto por cada carga, coma se o resto das cargas non estivese presente.

Para determinar o potencial eléctrico nun punto, calcúlanse os potenciais creados nese punto por cada carga, e despois súmanse.

A ecuación do potencial eléctrico, V, nun punto situado a unha distancia, r, dunha carga puntual, Q, é:

$$V = K \frac{Q}{r}$$

K é a constante de Coulomb.

Calcúlase o potencial no punto D debido á carga de +3 nC situada en A:

$$V_{\rm DA} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-9} \left[\text{C} \right]}{(2,24 \left[\text{m} \right])} = 12,1 \text{ V}$$

O potencial no punto D debido á carga de +3 nC situada no punto B é o mesmo, xa que a distancia e a carga son as mesmas:

$$V_{DR} = 12.1 \text{ V}$$

Calcúlase o potencial no punto D debido á carga de -6 nC situada no punto C:

$$V_{\rm DC} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{-6,00 \cdot 10^{-9} \left[\text{C} \right]}{(2,00 \left[\text{m} \right])} = -27,0 \text{ V}$$

O potencial eléctrico nun punto debido á presenza de varias cargas, é a suma alxébrica dos potenciais debidos a cada carga.

$$V_{\rm D} = V_{\rm DA} + V_{\rm DB} + V_{\rm DC} = 12.1 \text{ [V]} + 12.1 \text{ [V]} + -27.0 \text{ [V]} = -2.8 \text{ V}$$

Faise o mesmo para calcular o potencial eléctrico na orixe O.

Calcúlase o potencial no punto O debido á carga de +3 nC situada no punto A:

$$V_{\text{OA}} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-9} \left[\text{C} \right]}{(2,00 \left[\text{m} \right])} = 13,5 \text{ V}$$

O potencial no punto O(0, 0) debido á carga de +3 nC situada en B(-2, 0) é o mesmo, xa que a distancia e a carga son as mesmas:

$$V_{\rm OB} = 13.5 \text{ V}$$

Calcúlase o potencial no punto O debido á carga de -6 nC situada no punto C:

$$V_{\rm OC} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{-6,00 \cdot 10^{-9} \left[\text{C} \right]}{(1.00 \left[\text{m} \right])} = -54,0 \text{ V}$$

Calcúlase o potencial eléctrico no punto O sumando os potenciais debidos a cada carga.

$$V_{\rm O} = V_{\rm OA} + V_{\rm OB} + V_{\rm OC} = 13.5 \text{ [V]} + 13.5 \text{ [V]} + (-54.0 \text{ [V]}) = -27.0 \text{ V}$$

Substituíndo os valores dos potenciais e tendo en conta que no punto D a velocidade é nula, a ecuación de conservación da enerxía quedaría:

$$E_{\text{cO}} + q \cdot V_{\text{O}} = E_{\text{cD}} + q \cdot V_{\text{D}}$$

$$E_{\text{cO}} + 1,60 \cdot 10^{-19} \text{ [C]} \cdot (-27,0 \text{ [V]}) = 0 + 1,60 \cdot 10^{-19} \text{ [C]} \cdot (-2,8 \text{ [V]})$$

Despexando, obtense o valor da enerxía cinética ao pasar pola orixe.

$$E_{cO} = 1,60 \cdot 10^{-19} [C] \cdot (27,0 - 2,8) [V] = 3,9 \cdot 10^{-18} J$$

A velocidade do protón na orixe obtense da expresión da enerxía cinética:

$$E_{cO} = \frac{1}{2} m \cdot v^2 \implies v = \sqrt{\frac{2 E_{cO}}{m}} = \sqrt{\frac{2 \cdot 3.9 \cdot 10^{-18} [\text{J}]}{1.67 \cdot 10^{-27} [\text{kg}]}} = 6.8 \cdot 10^4 [\text{m/s}]$$

e)

O campo eléctrico é un campo conservativo, porque o traballo realizado pola forza do campo, cando unha carga se move entre dous puntos, é independente do camiño seguido e depende só dos puntos inicial e final. Defínese unha función escalar chamada enerxía potencial, $E_{\rm p}$, asociada ao campo vectorial de forzas, de

tal xeito que o traballo realizado pola forza do campo ao mover unha carga entre dous puntos é igual á variación da enerxía potencial entre estes dous puntos, cambiada de signo.

$$W = -\Delta E_{p}$$

Tamén se define outra magnitude escalar, chamada potencial eléctrico, que é igual á enerxía potencial da unidade de carga.

$$V = \frac{E_{\rm p}}{q}$$

O traballo realizado pola forza de campo, cando unha carga se move do punto A ao punto B, é:

$$W_{A\to B} = -\Delta E_p = -(E_{pB} - E_{pA}) = (E_{pA} - E_{pB}) = q \cdot V_A - q \cdot V_B = q (V_A - V_B)$$

O traballo realizado pola forza do campo para levar un protón desde o punto D á orixe é:

$$W_{\rm D \to O} = q (V_{\rm D} - V_{\rm O}) = 1,60 \cdot 10^{-19} [\rm C] \cdot (-2,8 - (-27,0)) [\rm V] = 3,9 \cdot 10^{-18} \rm J$$

Supoñendo que chega coa mesma velocidade coa que sae, o traballo da forza resultante, igual ao cambio de enerxía cinética, será cero:

$$W(\text{resultante}) = W(\text{campo}) + W(\text{exterior}) = \Delta E_c = 0$$

O traballo a realizar é o contrario ao da forza de campo.

$$W(\text{exterior}) = -W(\text{campo}) = -3.9 \cdot 10^{-18} \text{ J}$$

Análise: O traballo faino a forza do campo. Se a cuestión é o traballo que hai que facer, podemos supoñer que é o traballo necesario para que chegue á orixe con velocidade cero. Xa que vén cunha enerxía cinética, o traballo será o valor da enerxía cinética cambiada de signo.

f) Para que o potencial na orixe sexa cero, debe ser certo que:

$$V_{\rm O} = V_{\rm OA} + V_{\rm OB} + V_{\rm OC} + V_{\rm OD} = 0$$

Despéxase o valor do potencial eléctrico que debe crear a carga que se colocará no punto D.

$$V_{\rm OD} = 0 - (-27.0 \text{ [V]}) = 27.0 \text{ V}$$

A carga que se debe colocar no punto D obtense a partir da ecuación do potencial eléctrico nun punto. A distancia do punto D(0,1) á orixe é de 1,00 m.

$$V = K \frac{q}{r} \Rightarrow q = \frac{V \cdot r}{K} = \frac{27.0 \text{ [V]} \cdot 1,00 \text{ [m]}}{9,00 \cdot 10^9 \text{ [N} \cdot \text{m}^2 \cdot \text{C}^{-2}]} = 3,00 \cdot 10^{-9} \text{ C} = 3,00 \text{ nC}$$

g) Para que a intensidade do campo electrostático na orixe sexa cero, debe ser certo que:

$$\vec{E}_{O} = \vec{E}_{OA} + \vec{E}_{OB} + \vec{E}_{OC} + \vec{E}_{OD} = \vec{0}$$

A distancia do punto A(2, 0) á orixe é: r_{AO} = 2,00 m; r_{CO} = r_{DO} = 1,00 m.

O vector unitario do punto O, tomando como orixe o punto A, $\acute{\rm e}$ - $\ddot{\rm i}$, o vector unitario do eixe X en sentido negativo.

Calcúlase o campo electrostático na orixe, creado pola carga de +3 nC situada no punto A:

$$\vec{E}_{OA} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \cdot \frac{3,00 \cdot 10^{-9} \left[\text{C} \right]}{\left(2,00 \left[\text{m} \right] \right)^2} \left(-\vec{i} \right) = -6,75 \,\vec{i} \, \text{N/C}$$

O campo electrostático na orixe, debido á carga +3 nC, situado no punto B, é oposto ao creado pola carga situada no punto A. Está dirixido en sentido contrario:

$$\vec{E}_{OB} = 6.75 \, \vec{i} \, \text{N/C}$$

A distancia do punto C(0, -1) á orixe é: $r_{CO} = 1,00$ m.

O vector unitario do punto O, tomando como orixe o punto C, é $\bar{\mathbf{j}}$, o vector unitario do eixe Y. Calcúlase o campo electrostático na orixe, creado pola carga de -6 nC situada no punto C:

$$\vec{E}_{\text{OC}} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \cdot \frac{-6,00 \cdot 10^{-9} \left[\text{C} \right]}{\left(1,00 \left[\text{m} \right] \right)^2} \vec{j} = -54,0 \vec{j} \text{ N/C}$$

A distancia do punto D(0, 1) á orixe é: $r_{DO} = 1,00 \text{ m}$.

O vector unitario do punto, tomando como orixe o punto D, $\acute{\mathbf{e}}$ - $\ddot{\mathbf{j}}$, o vector unitario do eixe Y en sentido negativo.

Escríbese a expresión do vector de intensidade de campo electrostático na orixe, creado pola carga q_2 situada no punto D, en función da carga:

$$\vec{E}_{\text{OD}} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \cdot \frac{q_{2}}{(1,00 \, [\,\text{m}\,])^{2}} \left(-\vec{\mathbf{j}} \right) = -9,00 \cdot 10^{9} \cdot q_{2} \, \vec{\mathbf{j}} \left[\text{N} \cdot \text{C}^{-2} \right]$$

Súmanse as expresións e faise igual ao vector $\overline{\mathbf{0}}$.

$$-6.75\,\vec{i}\,[N/C] + 6.75\,\vec{i}\,[N/C] - 54.0\,\vec{j}\,[N/C] - 9.00 \cdot 10^9 \cdot q_2\,\vec{j}\,[N\cdot C^{-2}] = 0\,\vec{i} + 0\,\vec{j}$$

O valor da carga obtense despexando q_2 :

$$q_2 = \frac{-54.0 [\text{N/C}]}{9,00 \cdot 10^9 [\text{N} \cdot \text{C}^{-2}]} = -6,00 \cdot 10^{-9} \text{ C} = -6,00 \text{ nC}$$

Análise: O valor podería deducirse inmediatamente, porque o punto D e o punto C están situados simetricamente no eixe Y respecto á orixe. As cargas en ambas deberán ser iguais para que se anule a súa contribución ao campo, do mesmo xeito que se anula a contribución das cargas situadas en A e B, no eixo X, que tamén son iguais. Teña en conta que a carga que cancela o campo non coincide co que cancela o potencial.

As respostas e o seu cálculo poden verse coa folla de cálculo Electrostática (gal). Instrucións de uso. $9.00 \cdot 10^9$ N·m²·C⁻² $\epsilon' = 1$ Enunciado Datos: K = Dada a seguinte distribución de cargas, (en Coord X (m) Coord Y (m) Carga (nC) (coordenadas en m 0 Q_1 e os puntos D e G, calcula: Q_2 -20 3 D a) O vector campo eléctrico no punto Q_3 -1-6 b) O vector forza sobre Q_4 $1,60\cdot10^{-19}$ C unha partícula de carga q =e masa m = 1,67·10⁻²⁷ kg Coord X (m) Coord Y (m) situada nese punto. D G 0 0 c) A aceleración da partícula nese punto. d) O traballo necesario para desprazar a partícula anterior desde o punto D ata o punto G e) A velocidade coa que pasa polo punto G se a velocidade en D é ν (D)= $0 \, \mathrm{m/s}$ f) A enerxía potencial do conxunto de cargas fixas

Os resultados dos apartados a) b) c) d) e e) aparecen nas respostas:

Res	postas		Cifras significativas:	3
Con	mpoñente x C	ompoñente y	Módulo Unidades	S.I.
E (C) =	0	-8,67	8,67 N/C	
F `=	0	$-1,39 \cdot 10^{-18}$	1,39·10 ⁻¹⁸ N	
a =	0	$-8,31\cdot10^{8}$	$8,31\cdot10^{8} \text{ m/s}^{2}$	
<i>V</i> (D) =	-2,85	<i>V</i> (G) =	-27,0 V	
W(ex	xt.) = - <i>W</i> (camp	oo D→G) =	$-3,86\cdot10^{-18} \text{ J}$	
$E_{\rm c}({\rm C}) =$	0	$E_{\rm c}({\rm G}) =$	$3,86 \cdot 10^{-18} \text{ J}$	
		<i>v</i> (G) =	6,80·10 ⁴ m/s	
	C	Conjunto E_p =	$-1,25\cdot10^{-7} \text{ J}$	

Se desexa maior detalle nos resultados ou ver como se fixeron os cálculos, faga clic na parte inferior nunha das pestanas «Campo», «Potencial» e/ou «Enerxía Potencial».

Os restantes apartados non os resolve esta folla de cálculo. Pode comprobar se os resultados obtidos son os correctos escribindo o valor da cuarta carga f) q = 3,00 nC, ou g) $q_2 = -6,00$ nC e comprobando que o potencial, no primeiro caso, ou o vector de intensidade de campo, no segundo, son nulos.

Datos:

- Nos vértices dun triángulo equilátero de 2 cm de lado sitúanse dúas cargas puntuais de +3 μC cada unha. Calcula:
 - a) O campo electrostático nun dos vértices.
 - b) A forza que actúa sobre a carga situada nese vértice.
 - c) A carga que habería que colocar no centro do triángulo para que o conxunto das cargas quede en equilibrio.
 - d) O potencial eléctrico en calquera vértice, tendo en conta a carga no centro.
 - e) A enerxía potencial electrostática do conxunto das catro cargas.
 - f) A enerxía posta en xogo para que o triángulo rote 45° arredor dun eixo que pasa polo centro e é perpendicular ao plano do papel.
 - g) O traballo necesario para levar a carga situada no centro ata o punto medio dun lado.
 - h) Se a masa da carga é de 0,250 g, e sóltase sen velocidade no centro do lado, calcula a súa velocidade cando pasa polo centro do triángulo.

Datos: $K = 9.10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$.

Problema baseado en P.A.U. xuño 08, xuño 11 e set. 14

Rta.: a) $\overline{E} = 1,17 \cdot 10^8$ N/C, na bisectriz cara ao exterior; b) $\overline{F} = 351$ N; c) q = -1,73 μ C

d) $V = 1.35 \cdot 10^6 \text{ V}$; e) $E_p = 0$; f) $\Delta E = 0$; g) W(ext.) = -0.097 J; h) v = 28 m/s cara ao vértice oposto.

Datos	Cifras significativas: 3
Valor de cada carga fixa	$Q = 3,00 \ \mu\text{C} = 3,00 \cdot 10^{-6} \ \text{C}$
Lonxitude do lado do triángulo equilátero	L = 2,00 cm = 0,0200 m
Masa da carga que se despraza	$m = 0.250 \text{ g} = 2.50 \cdot 10^{-4} \text{ kg}$
Constante de Coulomb	$K = 9,00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Incógnitas	
Campo electrostático nun vértice	$\overline{m{E}}$
Forza que actúa sobre a carga situada nese vértice	$\overline{m{F}}$
Valor da carga que equilibre ás outras tres	q
Potencial eléctrico nun vértice	V
Enerxía potencial do conxunto das catro cargas	$E_{ m p}$
Enerxía para que o triángulo rote 45°	ΔE
Traballo para levar a carga do centro ata o punto medio dun lado	$W_{ ext{O} o ext{D}}$
A velocidade cando pasa polo centro do triángulo	ν

Outros símbolos

Distancia

Ecuacións

Campo eléctrico nun punto a unha distancia, r, dunha carga puntual, Q

Principio de superposición

Potencial eléctrico nun punto a unha distancia, r, dunha carga puntual, Q

Potencial eléctrico nun punto debido a varias cargas

Traballo da forza eléctrica ao mover unha carga, q, do punto A ao punto B $W_{A\rightarrow B}=q(V_A-V_B)$

Campo eléctrico

Enerxía potencial electrostática dunha carga, q, nun punto A

Enerxía potencial electrostática dunha interacción entre dúas cargas puntuais, Q e q, a unha distancia, r, unha da outra

Enerxía potencial electrostática dun conxunto de cargas

Enerxía cinética dun corpo de masa m que se despraza con velocidade v

Principio da conservación da enerxía entre dous puntos A y B

r

$$\vec{E} = K \frac{Q}{r^2} \vec{u}_r$$

$$\vec{E}_{A} = \sum_{i} \vec{E}_{A}$$

$$V = K \frac{Q}{r}$$

$$V = \sum_{i} V_{i}$$

$$W_{A\rightarrow B} = q (V_A - V_B)$$

$$\vec{E} = \frac{\vec{F}_E}{q}$$
 $E_{\rm pA} = q \cdot V_{\rm A}$

$$E_{\rm pA} = \stackrel{q}{q} \cdot V_{\rm A}$$

$$E_{\rm pi} = K \frac{Q \cdot q}{r}$$

$$E_{p} = \sum E_{p i} = \frac{1}{2} \sum E_{p q}$$

$$E_{c} = \frac{1}{2} m \cdot v^{2}$$

$$E_{\rm c} = \frac{1}{2} \ m \cdot v^2$$

$$(E_{\rm c}+E_{\rm p})_{\rm A}=(E_{\rm c}+E_{\rm p})_{\rm B}$$

Solución:

a) Faise un debuxo situando as cargas nos vértices A e B do lado horizontal, que se elixe como base, e o punto C será o outro vértice.

Debúxanse os vectores de campo eléctrico no vértice C, un vector por cada carga, prestando atención ao sentido. Os campos creados polas cargas situadas nos puntos A e B son de repulsión, porque as cargas son positivas.

Como os seus valores son iguais, porque as cargas e as distancias son as mesmas, os vectores serán da mesma medida.

Debúxase a suma vectorial, que é o campo resultante, \overline{E}_{C} .

As compoñentes horizontais dos campos creados polas cargas anúlanse, e a resultante irá no sentido positivo do eixe Y. O valor da resultante será a suma das compoñentes verticais de cada campo, e, como son dous, medirá o dobre da compoñente vertical dun deles.

O principio de superposición di que a intensidade de campo eléctrico nun punto, debido á presencia de varias cargas, é a suma vectorial dos campos producidos nese punto por cada carga, coma se o resto das cargas non estivese presente.

Para determinar o campo nun punto, calcúlanse os campos creados nese punto por cada carga, e despois súmanse os vectores.

A forza eléctrica entre dúas cargas puntuais, Q e q, separadas por unha distancia, r, vén dada pola lei de Coulomb, na que K é a constante de Coulomb e \overline{u}_r o vector unitario na liña que une as cargas.

$$\vec{F}_E = K \frac{Q \cdot q}{r^2} \vec{u}_r$$

O campo eléctrico nun punto situado a unha distancia, r, dunha carga puntual, Q, é a forza sobre a unidade de carga positiva situada nese punto:

$$\vec{E} = \frac{\vec{F}_E}{q} = \frac{K \frac{Q \cdot q}{r^2} \vec{u}_r}{\frac{q}{r}} = K \frac{Q}{r^2} \vec{u}_r$$

A distancia entre os puntos A e C é o lado del triángulo: r = L = 2,00 cm = 0,0200 m. Cando se coñece o ángulo α que forma un vector co eixe X, o vector unitario calcúlase coa expresión: $\overline{\mathbf{u}}_{r} = \cos \alpha \, \overline{\mathbf{i}} + \sin \alpha \, \overline{\mathbf{j}}$. O vector unitario do punto C, tomando coma orixe o punto A é:

$$\vec{u}_{AC} = \cos 60^{\circ} \vec{i} + \sin 60^{\circ} \vec{j} = 0,500 \vec{i} + 0,866 \vec{j}$$

Calcúlase a intensidade de campo electrostático no punto C, debido á carga de 3 µC situada en A:

$$\vec{E}_{CA} = 9,00 \cdot 10^{9} \left[\text{ N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0200 \left[\text{m} \right])^{2}} \left(0,500 \, \vec{\mathbf{i}} + 0,866 \, \vec{\mathbf{j}} \right) = \left(3,38 \cdot 10^{7} \, \vec{\mathbf{i}} + 5,85 \cdot 10^{7} \, \vec{\mathbf{j}} \right) \text{ N/C}$$

O campo electrostático no punto C, debido á carga de 3 μ C situada no punto B, é simétrico ao do punto A. Os valores das súas compoñentes son os mesmos, pero o signo da compoñente horizontal é oposto, porque está dirixido en sentido contrario:

$$\vec{E}_{CB} = (-3.38 \cdot 10^7 \, \vec{i} + 5.85 \cdot 10^7 \, \vec{j}) \, \text{N/C}$$

Polo principio de superposición, a intensidade de campo electrostático resultante no punto C é a suma vectorial das intensidades de campo debidas a cada carga, agás a que se atopa nese punto.

$$\vec{E}_{C} = \vec{E}_{CA} + \vec{E}_{CB} = (3,38 \cdot 10^{7} \, \mathbf{i} + 5,85 \cdot 10^{7} \, \mathbf{j}) \, [\text{N/C}] + (-3,38 \cdot 10^{7} \, \mathbf{i} + 5,85 \cdot 10^{7} \, \mathbf{j}) \, [\text{N/C}] = 1,17 \cdot 10^{8} \, \mathbf{j} \, \text{N/C}$$

Análise: A dirección do campo resultante é vertical cara arriba, como se ve no debuxo.

Unha resposta xeral independente de como se elixiron os vértices sería: o campo electrostático no terceiro vértice vale 1,17·10⁸ N/C e está dirixido segundo a bisectriz do ángulo cara ao exterior do triángulo.

b) Como a intensidade do campo electrostático nun punto é a forza sobre a unidade de carga positiva colocada nese punto, pódese calcular a forza electrostática sobre a carga de 3 μ C a partir do vector de intensidade de campo electrostático:

$$\vec{F} = q \cdot \vec{E} = 3,00 \cdot 10^{-6} [\text{C}] \cdot 1,17 \cdot 10^{8} \vec{j} [\text{N/C}] = 351 \vec{j} \text{ N}$$

Unha resposta xeral independente de como se elixiron os vértices sería:

A forza electrostática sobre a carga situada nun vértice vale 351 N e está dirixido segundo a bisectriz do ángulo, cara ao exterior do triángulo.

c) Para calcular a carga que habería que colocar no centro do triángulo para que o conxunto quede en equilibrio, búscase a carga que, situada no centro do triángulo, exerza un campo electrostático no vértice C que anule o que producen as cargas situadas nos outros vértices.

$$\vec{\boldsymbol{E}}_{\mathrm{CO}} = -(\vec{\boldsymbol{E}}_{\mathrm{CA}} + \vec{\boldsymbol{E}}_{\mathrm{CB}})$$

Calcúlase primeiro a distancia do centro do triángulo ao vértice:

$$\cos 30^{\circ} = \frac{1 \text{ [cm]}}{d}$$

$$d = \frac{1 \text{ [cm]}}{0.866} = 1,15 \text{ cm} = 0,0115 \text{ m}$$

Chamando q á carga situada no centro O, debe cumprirse que o campo electrostático creado por ela sea oposto ao que producen as cargas situadas nos outros vértices:

$$\vec{E}_{CO} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \frac{q}{(0,0115 \text{ [m]})^{2}} \vec{\mathbf{j}} = -1,17 \cdot 10^{8} \vec{\mathbf{j}} \left[\text{N/C} \right]$$

$$q = \frac{-1,17 \cdot 10^{8} \left[\text{N/C} \right] \cdot (0,0115 \text{ [m]})^{2}}{9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right]} = -1,73 \cdot 10^{-6} \text{ C}$$

d)

O potencial eléctrico nun punto, debido á presencia de varias cargas, é a suma dos potenciais producidos nese punto por cada carga, coma se o resto das cargas non estivese presente.

Para determinar o potencial eléctrico nun punto, calcúlanse os potenciais creados nese punto por cada carga, e despois súmanse.

A ecuación do potencial eléctrico, V, nun punto situado a unha distancia, r, dunha carga puntual, Q, é:

$$V = K \frac{Q}{r}$$

K é a constante de Coulomb.

Calcúlanse os potenciais electrostáticos no vértice C, debidos a cada unha das cargas:

$$V_{\text{CA}} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0200 \left[\text{m} \right])} = 1,35 \cdot 10^{6} \text{ V}$$

$$V_{\text{CB}} = V_{\text{CA}} = 1,35 \cdot 10^{6} \text{ V}$$

$$V_{\text{CO}} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \frac{-1,73 \cdot 10^{-6} \left[\text{C} \right]}{(0,0115 \left[\text{m} \right])} = -1,35 \cdot 10^{6} \text{ V}$$

O potencial eléctrico é a suma:

$$V_{\rm C} = V_{\rm CA} + V_{\rm CB} + V_{\rm CO} = 1,35 \cdot 10^6 \, [{\rm V}] + 1,35 \cdot 10^6 \, [{\rm V}] - 1,35 \cdot 10^6 \, [{\rm V}] = 1,35 \cdot 10^6 \, {\rm V}$$

e, f) A enerxía potencial de cada interacción entre dúas cargas vén dada pola expresión:

$$E_{\rm pi} = K \frac{Q \cdot q}{r}$$

A enerxía total electrostática é a suma das enerxías das seis interaccións: AB, AC, BC, AO, BO e CO. A tres primeiras valen o mesmo, porque as cargas e as distancias son iguais:

$$E_{AB} = E_{AC} = E_{BC} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right] \cdot 3,00 \cdot 10^{-6} \left[\text{C} \right]}{0,0200 \left[\text{m} \right]} = 4,05 \text{ J}$$

E as tres últimas tamén valen o mesmo, porque as cargas e as distancias volven ser iguais:

$$E_{AO} = E_{BO} = E_{CO} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right] \cdot \left(-1,73 \cdot 10^{-6} \right) \left[\text{C} \right]}{0,0115 \left[\text{m} \right]} = -4,05 \text{ J}$$

$$E = E_{AB} + E_{AC} + E_{BC} + E_{AO} + E_{BO} + E_{CO} = 3 \cdot 4,05 \left[\text{J} \right] + 3 \cdot \left(-4,05 \left[\text{J} \right] \right) = 0$$

Análise: Se se calculase a enerxía total como a suma das enerxías potenciais das seis cargas, o resultado daría o dobre, porque estaríanse a contar as interaccións dúas veces. Por exemplo a interacción AB aparece no cálculo da enerxía potencial da carga en A e tamén no da carga en B.

Como ao xirar 45°, as distancias relativas non cambian, a enerxía da nova disposición é a mesma, e a enerxía total requirida é cero.

g) Chámase punto D ao centro do lado AB.

O campo eléctrico é un campo conservativo, porque o traballo realizado pola forza do campo, cando unha carga se move entre dous puntos, é independente do camiño seguido e depende só dos puntos inicial e final. Defínese unha función escalar chamada enerxía potencial, E_p , asociada ao campo vectorial de forzas, de tal xeito que o traballo realizado pola forza do campo ao mover unha carga entre dous puntos é igual á variación da enerxía potencial entre estes dous puntos, cambiada de signo.

$$W = -\Delta E_{\rm p}$$

Tamén se define outra magnitude escalar, chamada potencial eléctrico, que é igual á enerxía potencial da unidade de carga.

$$V = \frac{E_{\rm p}}{q}$$

O traballo realizado pola forza de campo, cando unha carga se move do punto A ao punto B, é:

$$W_{A\to B} = -\Delta E_{p} = -(E_{pB} - E_{pA}) = (E_{pA} - E_{pB}) = q \cdot V_{A} - q \cdot V_{B} = q (V_{A} - V_{B})$$

Calcúlanse os potenciais no punto O debidos a cada carga, excepto a que se move. Son todos iguais, porque as cargas e as distancias son iguais:

$$V_{\text{OA}} = V_{\text{OB}} = V_{\text{OC}} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0115 \left[\text{m} \right])} = 2,34 \cdot 10^6 \text{ V}$$

O potencial eléctrico no punto O é a suma:

$$V_{\rm O} = V_{\rm OA} + V_{\rm OB} + V_{\rm OC} = 3 \cdot 2,34 \cdot 10^6 \, [\rm V] = 7,01 \cdot 10^6 \, \rm V$$

Calcúlanse os potenciais no punto D, debidos a cada carga, excepto a que se move. O potencial no punto D, debido a cada unha das cargas do lado AB é:

$$V_{DA} = V_{DB} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0100 \left[\text{m} \right])} = 2,70 \cdot 10^6 \text{ V}$$

A distancia do vértice C ao centro D do lado oposto vale:

$$h = \sqrt{(2,00 \text{ [cm]})^2 - (1,00 \text{ [cm]})^2} = \sqrt{3,00 \text{ [cm]}^2} = 1,73 \text{ cm} = 0,0173 \text{ m}$$

Calcúlase o potencial no punto D, debido á carga situada no vértice C:

$$V_{\rm DC} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{3,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0173 \left[\text{m} \right])} = 1,56 \cdot 10^6 \text{ V}$$

$$V_{\rm D} = V_{\rm DA} + V_{\rm DB} + V_{\rm DC} = 2 \cdot 2,70 \cdot 10^6 \, [\rm V] + 1,56 \cdot 10^6 \, [\rm V] = 6,96 \cdot 10^6 \, \rm V$$

O traballo realizado polas forzas do campo electrostático cando se move unha carga q = –1,73 μ C desde o punto O ao D é:

$$W_{O\to D} = q (V_O - V_D) = -1.73 \cdot 10^{-6} [C] \cdot (7.01 \cdot 10^6 - 6.96 \cdot 10^6) [V] = -0.08 J$$

Análise: <u>Pérdense dúas cifras significativas ao restar</u>. Se se empregasen 6 cifras significativas, o resultado sería: $W_{O\rightarrow D} = q (V_O - V_D) = -1,73205 \cdot 10^{-6} \cdot (7,01481 \cdot 10^6 - 6,95885 \cdot 10^6) = -0,09693 \text{ J}$

Supoñendo que chega coa mesma velocidade coa que sae, o traballo da forza resultante, igual ao cambio de enerxía cinética, será cero:

$$W(\text{resultante}) = W(\text{campo}) + W(\text{exterior}) = \Delta E_c = 0$$

O traballo a realizar é o contrario ao da forza de campo.

O traballo necesario para mover unha carga $q = -1.73 \,\mu\text{C}$ desde o punto O ao D, supoñendo que chegue a D coa mesma velocidade que tiña en O, é:

$$W(\text{exterior}) = -W(\text{campo}) = 0.08 \text{ J}$$

h) Como a forza electrostática é unha forza conservativa, a enerxía mecánica consérvase.

$$(E_{\rm c} + E_{\rm p})_{\rm O} = (E_{\rm c} + E_{\rm p})_{\rm D}$$

$$\frac{1}{2} m v_{\rm O}^2 + q \cdot V_{\rm O} = \frac{1}{2} m v_{\rm D}^2 + q \cdot V_{\rm D}$$

$$-1,73 \cdot 10^{-6} [{\rm C}] \cdot (7,01 \cdot 10^6 [{\rm V}]) = (2,50 \cdot 10^{-4} [{\rm kg}] \cdot v_{\rm D}^2) / 2 + (-1,73 \cdot 10^{-6} [{\rm C}]) \cdot (6,96 \cdot 10^6 [{\rm V}])$$

$$v_{\rm D} = \sqrt{\frac{2 \cdot (-1,73 \cdot 10^{-6} [{\rm C}]) \cdot (7,01 \cdot 10^6 - 6,96 \cdot 10^6) [{\rm V}]}{2,50 \cdot 10^{-4} [{\rm kg}]}} = \sqrt{\frac{2 \cdot 0,09 [{\rm J}]}{2,50 \cdot 10^{-4} [{\rm kg}]}} = 3 \cdot 10^4 {\rm m/s}$$

Análise: <u>Pérdense dúas cifras significativas ao restar</u>. Se empregásemos 6 cifras significativas, o resultado sería: $v_D = 27.8 \, \text{m/s}$.

Como a velocidade é un vector, hai que deducir a dirección e sentido.

Pódese deducir que a aceleración ten a dirección do eixo Y en sentido positivo, xa que pasa pola orixe. Se un móbil parte do repouso, e a aceleración ten dirección constante, o movemento será rectilíneo na liña da aceleración. Por tanto, a dirección da velocidade é a do eixo Y en sentido positivo.

$$\overline{\boldsymbol{v}}_{\mathrm{D}} = 3 \cdot 10^{1} \, \overline{\mathbf{j}} \, \, \mathrm{m/s}$$

En xeral, o vector de velocidade valerá 3·10¹ m/s na dirección entre o centro do lado e o centro do triángulo, no sentido do vértice oposto ao lado do que sae.

Algunhas das respostas, e o seu cálculo, poden verse coa folla de cálculo <u>Electrostática (gal)</u>, aínda que hai que ir por partes.

Primeiro habería que calcular as coordenadas na pestana «Coords». Escriba os datos nas celas de cor branca e bordo azul, e faga clic e elixa as magnitudes e unidades nas celas de cor laranxa:

Seleccione as celas coas coordenadas e cópieas (pulsando ao tempo as teclas Ctrl e C). Faga clic na pestana «Enunciado» da parte inferior, e preme á dereita de Q_1 . Elixa no menú: Editar \rightarrow Pegado especial \rightarrow Pegar só números.

Escriba os datos restantes nas celas de cor branca e bordo azul, e preme e elixa as magnitudes e unidades nas celas de cor laranxa:

Os resultados son

Os resultado	03 3011.			
Re	espostas		Cifras significativas: 6	
Co	ompoñente x C	ompoñente y	Módulo Unidades	S.I.
E (C) =	0	1,16913·10 ⁸	1,16913·10 ⁸ N/C	
F =	0	350,740	350,740 N	
<i>V</i> (C) =	$2,70000\cdot 10^6$		V	
Pu	ntos do traballo	non definidos		
	C	Conxunto $E_p =$	12,1500 J	
Carga que e	equilibra	Q =	−1,73205·10 ⁻⁶ C	
en Co	ordenada x C	oordenada y		
M	0	0	m	

Para o apartado d), haberá que escribir o valor da carga que equilibra e poñer as súas coordenadas na pestana «Enunciado»

	·uo»								
Enur	ıciado	Datos: K =	9,00.109		ε' =	1			
Dada	Dada a seguinte distribución de cargas, (en			μC)		Coord X (cm)	Coord Y (cm)	Carga (μC)
(coordenadas en			cm)	$Q_{\scriptscriptstyle 1}$	-1	-0,57735 026 919	3	
e os p	ountos D e	G, calcula:				Q_2	1	-0,57735 026 919	3

a) O vector campo eléctrico no	punto	С	Q_3	0	1,15470 053 838	3
b) O vector forza sobre			Q_4	0	0,000000000000	-1,7320507
unha partícula de carga q =						
e masa m =				Coord X (cm)	Coord Y (cm)	
situada nese punto.			С	0	1,15470 053 838	

O novo resultado sería:

	Respostas		Cifras significativas:	6	
	Compoñente x	Compoñente y	Módulo Unidades		
<i>E</i> →(C) =	0	0	0 N/C		
<i>V</i> (C) =	$1,35000 \cdot 10^6$		V		

Para os restantes apartados, haberá que escribir a masa e a carga da partícula que se despraza, poñer as coordenadas dos puntos medio G e D(centro da base del triángulo) e elixir os puntos inicial e final nos apartados d) traballo, e e) velocidade. Pestana «Enunciado»

s uj trabano, e ej velo	ciuaue. I estan	a «Elluliciauo	"	_				
Enunciado	Datos: K =	9,00.109		ε' =	1			
Dada a seguint	e distribución	de cargas, (en	μС)		Coord X (cm)	Coord Y (cm)	Carga (μC)
	(co	ordenadas en	cm)	$Q_{\scriptscriptstyle 1}$	-1	-0,57735 026 919	3
e los puntos D	e G, calcula:				Q_2	1	-0,57735 026 919	3
a) El vector camp	o eléctrico en	el punto	D		Q_3	0	1,15470 053 838	3
b) O vector forza	sobre				Q_4	0	0,000000000000	-1,7320507
unha partícula	a de carga q =	-1,7320507	μС					
	e masa m =	0,25	g			Coord X (cm)	Coord Y (cm)	
situada nese p	unto.			-	D	0	-0,57735 026 919	
					G	0	0	
d) O traballo nece	esario para des	prazar aa part	ícula	_				
anterior desde	o punto D ata	o punto G						
e) A velocidade c	oa que pasa po	olo punto	G					
se a velocidade	e en D é <i>v</i> (D) =	0	m/s					
f) A enerxía pote	encial do conxu	ınto de cargas	fixas					

Os novos resultados son:

$$V(D) = 6,95885 \cdot 10^6$$
 $V(G) = 7,01481 \cdot 10^6 \text{ V}$
 $W(\text{ext.}) = -W(\text{campo D} \rightarrow G) = -0,0969256 \text{ J}$
 $E_c(D) = 0$ $E_c(G) = 0,0969256 \text{ J}$
 $V(G) = 27,8461 \text{ m/s}$
 $Conxunto E_p = 0 \text{ J}$

- 3. Dúas cargas eléctricas positivas (q_1 e q_2) están separadas unha distancia de 1 m. Entre as dúas hai un punto, situado a 20 cm de q_1 , onde o campo eléctrico é nulo. Sabendo que q_1 = 2 μ C, calcula:
 - a) O valor de q_2 .
 - b) O potencial no punto no que se anula o campo.
 - c) O traballo realizado pola forza do campo para levar unha carga de $-3~\mu\text{C}$ desde o punto no que se anula o campo ata o infinito.

Dato:
$$K = 9.10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$$
. (A.B.A.U. extr. 18)
Rta.: a) $q_2 = 32 \,\mu\text{C}$; b) $V = 4.5 \cdot 10^5 \,\text{V}$; c) $W = -1.4 \,\text{J}$.

Datos

Distancia entre as cargas q_1 e q_2

Distancia do punto P, no que se anula o campo, á carga q_1

Valor da carga situada no punto 1

Valor da carga situada no punto P

Campo eléctrico no punto P

Constante de Coulomb

Incógnitas

Valor da carga q_2

Potencial eléctrico no punto P

Traballo para trasladar unha carga de −3 µC desde P ata o infinito

Ecuacións

Campo eléctrico nun punto a unha distancia, r, dunha carga puntual, Q

Principio de superposición

Potencial eléctrico nun punto a unha distancia, r, dunha carga puntual, Q

Potencial eléctrico nun punto debido a varias cargas

Traballo da forza eléctrica ao mover unha carga desde A ata B

Cifras significativas: 3

 $r_{12} = 1,00 \text{ m}$

 $r_{\rm P1} = 20.0 \text{ cm} = 0.200 \text{ m}$

 $q_1 = 2,00 \ \mu\text{C} = 2,00 \cdot 10^{-6} \ \text{C}$

 $q = -3,00 \ \mu\text{C} = -3,00 \cdot 10^{-6} \ \text{C}$

 $K = 9.00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$

 q_2 $\hat{V}_{\scriptscriptstyle
m P}$

 $W_{\rm P \to \infty}$

$\vec{E} = K \frac{Q}{r^2} \vec{u}_r$

$$E-K-\frac{r}{r^2}u$$

$$\vec{E}_{A} = \sum_{i} \vec{E}_{Ai}$$

 $V = K \frac{Q}{r}$

$$W_{A\rightarrow B} = q (V_A - V_B)$$

Solución:

a) Faise un debuxo situando as cargas no eixe horizontal, unha na orixe, e a outra a 1 m de distancia, por exemplo no semieixe positivo. Sitúase un punto, P, a 20 cm da orixe, entre ámbalas cargas.

Debúxase no punto P o vector de campo eléctrico creado pola

carga q_1 , prestando atención ao sentido, que é de repulsión, porque a carga é positiva.

O principio de superposición di que a intensidade de campo eléctrico nun punto, debido á presencia de varias cargas, é a suma vectorial dos campos producidos nese punto por cada carga, coma se o resto das cargas non estivese presente.

Para determinar o campo nun punto, calcúlanse os campos creados nese punto por cada carga, e despois súmanse os vectores.

A forza eléctrica entre dúas cargas puntuais, Q e q, separadas por unha distancia, r, vén dada pola lei de Coulomb, na que K é a constante de Coulomb e u_r o vector unitario na liña que une as cargas.

$$\vec{F}_E = K \frac{Q \cdot q}{r^2} \vec{u}_r$$

O campo eléctrico nun punto situado a unha distancia, r, dunha carga puntual, Q, é a forza sobre a unidade de carga positiva situada nese punto:

$$\vec{E} = \frac{\vec{F}_E}{q} = \frac{K \frac{Q \cdot \mathbf{q}}{r^2} \vec{u}_r}{\frac{\mathbf{q}}{r}} = K \frac{Q}{r^2} \vec{u}_r$$

A distancia entre a carga q_1 e o punto P é: $r_{P1} = 20,0$ cm = 0,200 m.

O vector unitario do punto P, tomando como orixe o punto 1, $\acute{\bf i}$, o vector unitario do eixe X. Calcúlase o campo no punto P, debido á carga de 2 µC situada no punto 1:

$$\vec{E}_{P1} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{2,00 \cdot 10^{-6} \left[\text{C} \right]}{\left(0,200 \left[\text{m} \right] \right)^2} \vec{i} = 4,50 \cdot 10^5 \vec{i} \text{ N/C}$$

O campo no punto P, debida á carga q_2 situada a 1 m de distancia da carga q_1 , ten que ser oposta, para que o campo no punto P sexa nula.

$$\overline{E}_{P2} = -4,50 \cdot 10^5 \ \overline{i} \ N/C$$

A distancia de q_2 ao punto P é: $r_{P2} = 1,00 \text{ [m]} - 0,200 \text{ [m]} = 0,80 \text{ m}$

Escríbese a expresión do módulo do campo creado pola carga q2 no punto P, e substitúense os datos:

$$|\vec{E}_{P2}| = K \frac{q_2}{r_{P2}^2} \Rightarrow 4.50 \cdot 10^5 = 9.00 \cdot 10^9 \frac{q_2}{0.80^2}$$

O valor da carga obtense despexando q_2 :

$$q_2 = \frac{4,50 \cdot 10^5 \left[\text{ N} \cdot \text{C}^{-1} \right] \cdot \left(0,80 \left[\text{m} \right] \right)^2}{9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right]} = 3,2 \cdot 10^{-5} \text{ C} = 32 \text{ } \mu\text{C}$$

Análise: Como a distancia de q_2 ao punto P é 4 veces maior que a da carga q_1 , o valor da carga terá que ser 4^2 = 16 veces maior.

b)

O potencial eléctrico nun punto, debido á presencia de varias cargas, é a suma dos potenciais producidos nese punto por cada carga, coma se o resto das cargas non estivese presente.

Para determinar o potencial eléctrico nun punto, calcúlanse os potenciais creados nese punto por cada carga, e despois súmanse.

A ecuación do potencial eléctrico, V, nun punto situado a unha distancia, r, dunha carga puntual, Q, é:

$$V = K \frac{Q}{r}$$

K é a constante de Coulomb.

Calcúlanse os potenciais no punto P, debidos a cada unha das cargas:

$$V_{P1} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \frac{2,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,200 \left[\text{m} \right])} = 9,00 \cdot 10^{4} \text{ V}$$

$$V_{P2} = 9,00 \cdot 10^{9} \left[\text{N} \cdot \text{m}^{2} \cdot \text{C}^{-2} \right] \frac{32 \cdot 10^{-6} \left[\text{C} \right]}{(0,80 \left[\text{m} \right])} = 3,6 \cdot 10^{5} \text{ V}$$

O potencial eléctrico no punto P é a suma:

$$V_{\rm P} = V_{\rm P1} + V_{\rm P2} = 9,00 \cdot 10^4 \, [\rm V] + 3,6 \cdot 10^5 \, [\rm V] = 4,5 \cdot 10^5 \, \rm V$$

O campo eléctrico é un campo conservativo, porque o traballo realizado pola forza do campo, cando unha carga se move entre dous puntos, é independente do camiño seguido e depende só dos puntos inicial e final. Defínese unha función escalar chamada enerxía potencial, E_p , asociada ao campo vectorial de forzas, de tal xeito que o traballo realizado pola forza do campo ao mover unha carga entre dous puntos é igual á variación da enerxía potencial entre estes dous puntos, cambiada de signo.

$$W = -\Delta E_{\rm p}$$

Tamén se define outra magnitude escalar, chamada potencial eléctrico, que é igual á enerxía potencial da unidade de carga.

$$V = \frac{E_{\rm p}}{q}$$

O traballo realizado pola forza de campo, cando unha carga se move do punto A ao punto B, é:

$$W_{A\to B} = -\Delta E_p = -(E_{pB} - E_{pA}) = (E_{pA} - E_{pB}) = q \cdot V_A - q \cdot V_B = q (V_A - V_B)$$

c) O potencial no infinito é cero, porque se toma como orixe. O traballo que fai a forza de campo cando se traslada unha carga de -3μ C desde o punto P ata o infinito é:

$$W_{\text{P}\to\infty} = q (V_{\text{P}} - V_{\infty}) = -3,00 \cdot 10^{-6} [\text{C}] \cdot (4,5 \cdot 10^5 - 0) [\text{V}] = -1,4 \text{ J}$$

Pode obter as respostas na pestana «Equil2QoM» da folla de cálculo Fisica (gal). Instrucións.

Ī	Constante	K =	9,00·10° N·m²	$\varepsilon' = 1$
Carga	μC		x	у
2	M		0	0 cm

- Unha carga eléctrica puntual de valor Q ocupa a posición (0,0) do plano XY no baleiro. Nun punto A do eixo X o potencial eléctrico é V = -120 V e o campo eléctrico é $\overline{E} = -80 \text{ i}$ N /C. Se as coordenadas están dadas en metros, calcula:
 - a) A posición do punto A e o valor de Q.

de

do campo

b) O traballo que realiza a forza eléctrica do campo para levar un electrón desde o punto B (2,2) ata o

W =

DATOS: $K = 9 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$; $|q_e| = 1.6 \times 10^{-19} \text{ C}$.

(A.B.A.U. ord. 24)

-1,35

Rta.: a) $r_A = (1,50, 0) \text{ m}$; Q = -20,0 nC; b) $W_{B\to A} = -9,02 \cdot 10^{-18} \text{ J.}$

 $A \rightarrow \infty$

Datos Cifras significativas: 3 Posición da carga Q $r_0 = (0, 0) \text{ m}$

 $V_{\rm A}$ = $-120~{
m V}$ Potencial eléctrico no punto A Campo eléctrico no punto A $\overline{E} = -80.0 \ \overline{i} \ N/C$ $rac{r}{B} = (2,00, 2,00) \text{ m}$ Posición do punto B $q_p = -1,60 \cdot 10^{-19} \text{ C}$ Carga do electrón $K = 9.00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$ Constante de Coulomb

Incógnitas

 r_{A} Posición do punto A Valor da carga Q Q

Traballo da forza do campo para levar un electrón do punto B ao punto A $W_{\mathrm{B}
ightarrow \mathrm{A}}$

Outros símbolos

Distancia r

Ecuacións

 $\vec{E} = K \frac{Q}{r^2} \vec{u}_r$ Campo eléctrico nun punto a unha distancia, r, dunha carga puntual, Q

Potencial eléctrico nun punto a unha distancia, r, dunha carga puntual, Q

 $V = K \frac{Q}{r}$ $W_{A \to B} = q (V_A - V_B)$ Traballo da forza eléctrica ao mover unha carga do punto A ao punto B $E_{p} = q \cdot V = K \frac{Q \cdot q}{r}$ Enerxía potencial eléctrica dunha interacción entre dúas cargas, Q e q, situadas a unha distancia, r, una da outra.

Solución:

A forza eléctrica entre dúas cargas puntuais, Q e q, separadas por unha distancia, r, vén dada pola lei de Coulomb, na que K é a constante de Coulomb e u_r o vector unitario na liña que une as cargas.

$$\vec{F}_E = K \frac{Q \cdot q}{r^2} \vec{u}_r$$

O campo eléctrico nun punto situado a unha distancia, r, dunha carga puntual, Q, é a forza sobre a unidade de carga positiva situada nese punto:

$$\vec{E} = \frac{\vec{F}_E}{q} = \frac{K \frac{Q \cdot \mathbf{q}}{r^2} \vec{u}_r}{\frac{\mathbf{q}}{r}} = K \frac{Q}{r^2} \vec{u}_r$$

a) Substitúense os datos na ecuación do campo eléctrico:

$$-80.0 \,\mathbf{i} \,[\mathrm{N/C}] = 9.00 \cdot 10^9 \,[\mathrm{N \cdot m^2 \cdot C^{-2}}] \frac{Q}{r^2} \,\mathbf{u}_r$$

Tomando só o módulo, queda:

80,0 [N/C]=9,00·10⁹ [N·m²·C⁻²]
$$\frac{|Q|}{r^2}$$

A ecuación do potencial eléctrico, V, nun punto situado a unha distancia, r, dunha carga puntual, Q, é:

$$V = K \frac{Q}{r}$$

K é a constante de Coulomb.

Substitúese tamén na ecuación de potencial eléctrico:

$$-120 [V] = 9,00 \cdot 10^{9} [N \cdot m^{2} \cdot C^{-2}] \frac{Q}{r}$$

Como na ecuación do campo eléctrico aparece o valor absoluto da carga, |Q|, emprégase a ecuación en valores absolutos:

120 [V]=9,00·10⁹ [N·m²·C⁻²]
$$\frac{|Q|}{r}$$

Resólvese o sistema:

$$\begin{cases} 80,0=9,00 \cdot 10^{9} \frac{|Q|}{r^{2}} \\ 120=9,00 \cdot 10^{9} \frac{|Q|}{r} \end{cases}$$

Dividindo a segunda ecuación entre a primeira, obtense:

$$\frac{120}{80,0} = \frac{\frac{9,00 \cdot 10^9 |Q|}{r}}{\frac{9,00 \cdot 10^9 |Q|}{r^2}} = r$$

$$r = 1.50 \text{ m}$$

Despexando o valor absoluto da carga |Q| da segunda ecuación

$$|Q| = \frac{120 [V] \cdot r}{9,00 \cdot 10^{9} [N \cdot m^{2} \cdot C^{-2}]} = \frac{120 [V] \cdot 1,50 [m]}{9,00 \cdot 10^{9} [N \cdot m^{2} \cdot C^{-2}]} = 2,00 \cdot 10^{-8} C$$

O potencial é negativo, por tanto, a carga debe ser negativa:

$$Q = -2,00 \cdot 10^{-8} \text{ C} = -20,0 \text{ nC}$$

Como o campo no punto A vai no sentido negativo do eixe X, $\overline{E}_A = -80.0 \ \overline{i} \ (N/C)$, o punto ten que estar no semieixe positivo:

$$\bar{r}_{A} = (1,50, 0) \text{ m}$$

O campo eléctrico é un campo conservativo, porque o traballo realizado pola forza do campo, cando unha carga se move entre dous puntos, é independente do camiño seguido e depende só dos puntos inicial e final. Defínese unha función escalar chamada enerxía potencial, E_p , asociada ao campo vectorial de forzas, de tal xeito que o traballo realizado pola forza do campo ao mover unha carga entre dous puntos é igual á variación da enerxía potencial entre estes dous puntos, cambiada de signo.

$$W = -\Delta E_{\rm p}$$

Tamén se define outra magnitude escalar, chamada potencial eléctrico, que é igual á enerxía potencial da unidade de carga.

$$V = \frac{E_{\rm p}}{q}$$

O traballo realizado pola forza de campo, cando unha carga se move do punto A ao punto B, é:

$$W_{A\to B} = -\Delta E_p = -(E_{pB} - E_{pA}) = (E_{pA} - E_{pB}) = q \cdot V_A - q \cdot V_B = q (V_A - V_B)$$

b) Para calcular o potencial do punto B, débese calcular primeiro a distancia do punto B á carga Q.

$$r_{\rm OB} = \sqrt{(2,00 \, [\, {\rm m}\,])^2 + (2,00 \, [\, {\rm m}\,])^2} = 2,83 \, {\rm m}$$

Calcúlase o potencial eléctrico no punto B:

$$V_{\rm B} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{\left| -2,00 \cdot 10^{-8} \left[\text{C} \right] \right|}{2,83 \left[\text{m} \right]} = -63,6 \text{ V}$$

Calcúlase o traballo realizado pola forza do campo:

$$W_{\text{B}\to\text{A}} = q (V_{\text{B}} - V_{\text{A}}) = -1,60 \cdot 10^{-19} [\text{C}] \cdot (-63,6 - (-120)) [\text{V}] = -9,02 \cdot 10^{-18} \text{ J}$$

Análise: Para unha carga positiva, o traballo do campo sería positivo porque o desprazamento vai no sentido de potencial crecente, achegándose á carga. Pero como a carga é negativa, o traballo tamén o é.

Pode obter as respostas na pestana «Equil2OoM» da folla de cálculo Fisica (gal). Instrucións.

Touc obter as respostas	na pestana «Equine gorii» da roi	ia ac carcare	Tiblea (Sai). Hibtractoris.
Constante I	$T = \frac{9,0.10^9}{\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2}}$		€' =
		x	У
	Posición da carga fixa:	0	0
No nunto	Campo (N/C):	E =	-80
No punto	Potencial:	V =	-120 V
		x	y
	Punto B:	2	2 m
	Carga móbil:	q = -	1,6·10 ⁻¹⁹ C
Os regultados con 3 cifr	as significatives son.		

Os resultados, con 3 cifras significativas, son:

Posición do punto A: 1,50 0 m Carga fixa: $Q = -2,00 \cdot 10^{-8}$ C Potencial en B: $V_b = -63,6$ V			x	y
Potencial en B: $V_b = -63,6 \text{ V}$	Pos	ición do punto A:	1,50	0 m
	Carga fixa:		Q =	-2,00·10 ⁻⁸ C
		Potencial en B:	$V_b =$	-63,6 V
Traballo da forza do campo B \rightarrow A $W = -9,02 \cdot 10^{-18}$ J	Traballo da forza	do campo B \rightarrow A	W =	$-9,02\cdot10^{-18}$ J

Campo uniforme

1. Dúas láminas condutoras con igual carga e signo contrario están colocadas horizontalmente e separadas 5 cm. A intensidade do campo eléctrico no seu interior é 2,5·10⁵ N·C⁻¹. Unha micropinga de aceite

cuxa masa é $4,90\cdot10^{-14}$ kg, e con carga negativa, está en equilibrio suspendida nun punto equidistante de ambas as placas.

- a) Razoa cal das dúas láminas está cargada positivamente.
- b) Determina a carga da micropinga.
- c) Calcula a diferenza de potencial entre as láminas condutoras.

Dato: $g = 9.8 \text{ m} \cdot \text{s}^{-2}$.

Rta.: b) $q = 1.92 \cdot 10^{-18} \text{ C}$; c) $\Delta V = 1.25 \cdot 10^4 \text{ V}$.

(P.A.U. set. 15)

Datos

Valor do campo eléctrico Distancia entre as láminas condutoras Masa da micropinga Valor do campo gravitacional terrestre

Incógnitas

Carga da micropinga

Diferenza de potencial entre as láminas condutoras

Ecuacións

Campo eléctrico

Peso

Diferenza de potencial nun campo eléctrico

<u>C</u>ifras significativas: 3

 $|\overline{E}| = 2,50 \cdot 10^5 \text{ N/C}$ d = 5,00 cm = 0,0500 m $m = 4,90 \cdot 10^{-14} \text{ kg}$ $g = 9,80 \text{ m/s}^2$

q AV

$$\vec{E} = \frac{\vec{F}_E}{q}$$

$$\vec{P} = m \cdot \vec{g}$$

$$\Delta V = |\vec{E}| \cdot d$$

Solución:

a, b) Calcúlase o valor da forza peso:

$$P = m \cdot g = 4,90 \cdot 10^{-14} \text{ [kg]} \cdot 9,80 \text{ [m} \cdot \text{s}^{-2}] = 4,80 \cdot 10^{-13} \text{ N}$$

Cando a micropinga alcanza o equilibrio, a forza eléctrica equilibra á forza peso.

$$F_E = P = 4.80 \cdot 10^{-13} \text{ N}$$

A carga eléctrica calcúlase despexando q:

$$\vec{E} = \frac{\vec{F}_E}{q} \Rightarrow q = \frac{F_E}{E} = \frac{4,80 \cdot 10^{-13} [\text{N/C}]}{2,5 \cdot 10^5 [\text{N}]} = 1,92 \cdot 10^{-18} \text{ C}$$

Análise: A carga eléctrica da micropinga é só lixeiramente maior que a do electrón. Corresponde á de $1,92\cdot10^{-18}$ C / $1,6\cdot10^{-19}$ C = 12 electróns. Este resultado parece razoable.

A forza eléctrica está dirixida cara arriba, en sentido contrario ao peso. Como a carga da micropinga é negativa, o campo eléctrico debe estar dirixido cara abaixo. Por tanto, a lámina superior é a positiva e a inferior a negativa.

c) Calcúlase a diferenza de potencial: $\Delta V = |\overline{E}| \cdot d = 2,50\cdot10^5 \text{ [N/C]} \cdot 0,0500 \text{ [m]} = 1,25\cdot10^4 \text{ V}$

 \overline{F}_{E} \downarrow \overline{F} \overline{P} \downarrow

Pode obter as respostas na pestana «Pendulo_Elec» da folla de cálculo <u>Fisica</u>

c)

	Desprazamento vertical	$\Delta y =$	0	cm	
	Aceleración da gravidade	<i>g</i> =	9,8	m/s^2	
Os 1	resultados son:				
b)			Carga (12 e)	<i>q</i> =	$-1,92 \cdot 10^{-18} \text{ C}$

Unha esfera pequena, de masa 2 g e carga +3 μC, colga dun fío de 6 cm de lonxitude entre dúas placas metálicas verticais e paralelas separadas entre si unha distancia de 12 cm. As placas posúen cargas iguais pero de signo contrario. Calcula:

∆V placas

 $\Delta V =$

- a) O campo eléctrico entre as placas para que o fío forme un ángulo de 45° coa vertical.
- b) A tensión do fío nese momento.
- c) Se as placas se descargan, cal será a velocidade da esfera ao pasar pola vertical? Dato: $g = 9.81 \text{ m} \cdot \text{s}^{-2}$. (A.B.A.U. ord. 17)

Rta.: a) $E = 6.54 \cdot 10^3 \text{ N/C}$; b) T = R = 0.0277 N; c) v = 0.587 m/s.

Datos Cifras significativas: 3 $m = 2,00 \text{ g} = 2,00 \cdot 10^{-3} \text{ kg}$ Masa da esfera Carga da esfera $q = 3.00 \,\mu\text{C} = 3.00 \cdot 10^{-6} \,\text{C}$ L = 6,00 cm = 0,0600 mLonxitude do fío Ángulo que forma o fío coa vertical $\alpha = 45^{\circ}$ $g = 9.81 \text{ m/s}^2$ Valor do campo gravitacional terrestre Incógnitas Valor do campo eléctrico Е Tensión do fío TVelocidade da esfera ao pasar pola vertical Outros símbolos \overline{R} Forza resultante das forzas eléctrica e peso Altura do punto de equilibrio h **Ecuacións**

Campo eléctrico

Forza peso

Enerxía potencial da forza peso

Enerxía cinética dunha masa, m, que se move cunha velocidade, v Principio da conservación da enerxía entre dous puntos A e B

$$\vec{E} = \frac{\vec{F}}{q}$$

$$\vec{P} = m \cdot \vec{g}$$

$$E_p = m \cdot g \cdot h$$

$$E_c = \frac{1}{2} m \cdot v^2$$

$$(E_c + E_p)_A = (E_c + E_p)_B$$

1.25·104 V

Solución:

a) Debúxase un esquema situando as forzas. Cando a esfera alcanza o equilibrio, a tensión, \overline{T} , equilibra á resultante, \overline{R} , das forzas peso, \overline{P} , e eléctrica, \overline{F}_{E} . Calcúlase o valor da forza peso:

$$P = m \cdot g = 2,00.10^{-3} \text{ [kg]} \cdot 9,81 \text{ [m} \cdot \text{s}^{-2} \text{]} = 0,0196 \text{ N}$$

Como o ángulo entre a resultante e a vertical é de 45° e tan 45° = 1,00, a forza eléctrica vale o mesmo que o peso.

$$F_E = P \cdot \tan 45^\circ = P = 0,0196 \text{ N}$$

Calcúlase o campo eléctrico:

$$E = \frac{F_E}{q} = \frac{0.0196 \text{ N}}{3.00 \cdot 10^{-6} \text{ C}} = 6.54 \cdot 10^3 \text{ N/C}$$

b) Como a forza eléctrica e o peso son perpendiculares, a forza resultante vale:

$$|\vec{R}| = \sqrt{(0.0196[N])^2 + (0.0196[N])^2} = 0.0277 \text{ N}$$

O valor da tensión é o mesmo que o da forza resultante:

$$T = R = 0.0277 \text{ N}$$

c) Ao descargarse as láminas só actúa a forza peso, que é unha forza conservativa. A enerxía mecánica consérvase entre a posición inicial e o punto máis baixo da traxectoria.

A altura do punto de equilibrio respecto do punto máis baixo pode calcularse do triángulo:

$$h = L - L \cos \alpha = L (1 - \cos \alpha) = 0.0600 \text{ [m]} (1 - \cos 45^\circ) = 0.0176 \text{ m}$$

Calcúlase a enerxía potencial do peso no punto de partida, tomando como orixe de enerxías o punto máis baixo:

$$E_p = m \cdot g \cdot h = 2,00 \cdot 10^{-3} \text{ [kg]} \cdot 9,81 \text{ [m} \cdot \text{s}^{-2}] \cdot 0,00240 \text{ [m]} = 3,45 \cdot 10^{-4} \text{ J}$$

$$(E_{c} + E_{p})_{A} = (E_{c} + E_{p})_{B}$$

$$(\frac{1}{2} m \cdot v^{2} + m \cdot g \cdot h)_{A} = (\frac{1}{2} m \cdot v^{2} + m \cdot g \cdot h)_{B}$$

$$0 + 3,45 \cdot 10^{-4} [J] = (2,00 \cdot 10^{-3} [kg] \cdot v^{2} / 2) + 0$$

Calcúlase a velocidade despexando:

$$v = \sqrt{\frac{2 \cdot 3,45 \cdot 10^{-4} [\text{ J}]}{2,00 \cdot 10^{-3} [\text{kg}]}} = 0,587 \text{ m/s}$$

Pode obter as respostas na pestana «Pendulo_Elec» da folla de cálculo Fisica (gal). Instrucións.

Os resultados son:

a)	Campo eléctrico	E =	$6,54 \cdot 10^3 \text{ N/C}$
	Diferencia de potencial	ΔV =	785 V
b)	Tensión do fío	T =	0,0277 N
c)	Velocidade máxima	<i>v</i> =	0,587 m/s

Esferas

- Unha esfera condutora de raio 4 cm ten unha carga de +8 μC en equilibrio electrostático. Calcula canto valen en puntos que distan 0, 2 e 6 cm do centro da esfera:
 - a) O módulo da intensidade do campo electrostático.
 - b) O potencial eléctrico.
 - c) Representa as magnitudes anteriores en función da distancia ao centro da esfera.

DATO:
$$K = 9 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$$
. (A.B.A.U. ord. 18)
Pto (2) $|\overline{F}| = |\overline{F}| = 0$; $|\overline{F}| = 2.00 \cdot 10^7 \text{ N/C} \cdot \text{h}$) $V = V = 1.80 \cdot 10^6 \text{ V}$; $V = 1.20 \cdot 10^6 \text{ V}$

Rta.: a) $|\overline{E}_1| = |\overline{E}_2| = 0$; $|\overline{E}_3| = 2,00 \cdot 10^7 \text{ N/C}$; b) $V_1 = V_2 = 1,80 \cdot 10^6 \text{ V}$; $V_3 = 1,20 \cdot 10^6 \text{ V}$.

Datos Carga da esfera Radio da esfera

Cifras significativas: 3 $Q = 8,00 \ \mu\text{C} = 8,00 \cdot 10^{-6} \ \text{C}$ R = 4,00 cm = 0,0400 m

Cifras significativas: 3

 $r_1 = 0 \text{ cm} = 0 \text{ m}$ Distancias ao centro da esfera: punto interior 1

> punto interior 2 $r_2 = 2,00 \text{ cm} = 0,0200 \text{ m}$ punto exterior $r_3 = 6,00 \text{ cm} = 0,0600 \text{ m}$ $K = 9.00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$

> > $\overline{E}_1, \overline{E}_2, \overline{E}_3$

 V_1, V_2, V_3

Constante de Coulomb

Incógnitas

Intensidade do campo eléctrico nos puntos 1, 2 e 3

Potencial eléctrico nos puntos 1, 2 e 3

Ecuacións

 $\vec{E} = K \frac{Q}{r^2} \vec{u}_r$ Campo eléctrico nun punto a unha distancia, r, dunha carga puntual, Q

 $V = K \frac{Q}{}$ Potencial eléctrico nun punto a unha distancia, r, dunha carga puntual, Q

Solución:

a) O módulo da intensidade de campo eléctrico nos puntos 1 e 2, que se atopan no interior a 0 e 2 cm do centro da esfera, é nulo porque o condutor atópase en equilibrio e todas as cargas atópanse na superficie da esfera.

O módulo da intensidade de campo eléctrico no punto 3, a 6 cm do centro da esfera, é o mesmo que se a carga fose puntual.

A forza eléctrica entre dúas cargas puntuais, Q e q, separadas por unha distancia, r, vén dada pola lei de Coulomb, na que K é a constante de Coulomb e \overline{u}_r o vector unitario na liña que une as cargas.

$$\vec{F}_E = K \frac{Q \cdot q}{r^2} \vec{u}_r$$

O campo eléctrico nun punto situado a unha distancia, r, dunha carga puntual, Q, é a forza sobre a unidade de carga positiva situada nese punto:

$$\vec{E} = \frac{\vec{F}_E}{q} = \frac{K \frac{Q \cdot q}{r^2} \vec{u}_r}{q} = K \frac{Q}{r^2} \vec{u}_r$$

$$|\vec{E}_3| = 9,00 \cdot 10^9 [\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2}] \frac{8,00 \cdot 10^{-6} [\text{C}]}{(0,0600 [\text{m}])^2} = 2,00 \cdot 10^7 \text{ N/C}$$

b) O potencial eléctrico nos puntos 1 e 2 é o mesmo que o potencial na superficie da esfera, que vale o mesmo que o creado por unha carga puntual, Q, situada no centro da esfera:

A ecuación do potencial eléctrico, V, nun punto situado a unha distancia, r, dunha carga puntual, Q, é:

$$V = K \frac{Q}{r}$$

K é a constante de Coulomb.

$$V_1 = V_2 = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{8,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0400 \left[\text{m} \right])} = 1,80 \cdot 10^6 \text{ V}$$

O potencial eléctrico no punto 3 é o mesmo que se a carga fose puntual.

$$V_3 = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{8,00 \cdot 10^{-6} \left[\text{C} \right]}{(0,0600 \left[\text{m} \right])} = 1,20 \cdot 10^6 \text{ V}$$

c) A gráfica da esquerda representa a variación do valor do campo eléctrico coa distancia ao centro da esfera. O campo vale cero para distancias inferiores ao raio da esfera, é máxima para o raio, e diminúe de forma inversamente proporcional ao cadrado da distancia para valores maiores.

A gráfica da dereita representa a variación do potencial eléctrico coa distancia ao centro da esfera. O potencial é constante para distancias inferiores ou iguais ao raio da esfera, e diminúe de forma inversamente proporcional á distancia para valores maiores.

Pode obter as respostas na pestana «Esferas» da folla de cálculo Fisica (gal). Instrucións.

Constante	<i>K</i> =	9,00.109	$N \cdot m^2/C^2$	$\varepsilon' =$	1
Esfera		Interior	Exterior		
Carga da esfera	Q =		8		μC
Radio da esfera	R =		4		cm
Distancia	<i>r</i> =	0	2	6	cm
ao centro do punto	'	A	В	С	
Os resultados son:					

	Punto	A	В	С
a)	Campo	0	0	2,00·10 ⁷ N/C
b)	Potencial	$1,80 \cdot 10^6$	$1,80 \cdot 10^6$	1,20·10 ⁶ V

Cuestións e problemas das Probas de avaliación de Bacharelato para o acceso á Universidade (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 06/10/24

Sumario

CAMPO ELECTROSTÁTICO

	as puntuais1
1.	Dúas cargas eléctricas positivas de 3 nC cada unha están fixas nas posicións (2, 0) e (-2, 0) e unha
	carga negativa de -6 nC está fixa na posición (0,-1). Calcula:1
	a) A enerxía electrostática do conxunto das tres cargas
	b) O vector campo eléctrico no punto (0, 1)
	c) A aceleración que experimentaría un protón situado no punto (0, 1)
	d) Colócase un protón no punto (0, 1) inicialmente en repouso e de xeito que é libre de moverse.
	Razoa se chegará ata a orixe de coordenadas e, en caso afirmativo, calcula a enerxía cinética que
	terá nese punto e a súa velocidade
	e) Calcula o traballo necesario para levar o protón desde el punto (0, 1) ata a orixe
	f) Indica o signo e o valor da carga que habería que situar no punto (0, 1), en vez do protón, para
	que o potencial eléctrico na orixe sexa nulo
	g) Calcula a carga q ₂ que habería que situar no punto (0, 1), en vez do protón, para que a intensida-
	de do campo electrostático na orixe sexa nula
2	Nos vértices dun triángulo equilátero de 2 cm de lado sitúanse dúas cargas puntuais de +3 μC cada
۵.	unha. Calcula:
	a) O campo electrostático nun dos vértices
	b) A forza que actúa sobre a carga situada nese vértice
	c) A carga que habería que colocar no centro do triángulo para que o conxunto das cargas quede
	en equilibriod) O potencial eléctrico en calquera vértice, tendo en conta a carga no centro
	e) A enerxía potencial electrostática do conxunto das catro cargas
	f) A enerxía posta en xogo para que o triángulo rote 45° arredor dun eixo que pasa polo centro e é
	perpendicular ao plano do papel
	g) O traballo necesario para levar a carga situada no centro ata o punto medio dun lado
	h) Se a masa da carga é de 0,250 g, e sóltase sen velocidade no centro do lado, calcula a súa veloci-
	dade cando pasa polo centro do triángulo
3.	Dúas cargas eléctricas positivas (q_1 e q_2) están separadas unha distancia de 1 m. Entre as dúas hai
	un punto, situado a 20 cm de q_1 , onde o campo eléctrico é nulo. Sabendo que q_1 = 2 μ C, calcula:13
	a) O valor de q ₂
	b) O potencial no punto no que se anula o campo
	c) O traballo realizado pola forza do campo para levar unha carga de $-3~\mu\text{C}$ desde o punto no que
	se anula o campo ata o infinito
4.	Unha carga eléctrica puntual de valor Q ocupa a posición (0,0) do plano XY no baleiro. Nun punto
	A do eixo X o potencial eléctrico é $V = -120 \ V$ e o campo eléctrico é $E = -80 \ i \ N$ /C. Se as coordena-
	das están dadas en metros, calcula:16
	a) A posición do punto A e o valor de Q
	b) O traballo que realiza a forza eléctrica do campo para levar un electrón desde o punto B (2,2) ata
	o punto A
Cam	po uniforme18
1.	Dúas láminas condutoras con igual carga e signo contrario están colocadas horizontalmente e se-
	paradas 5 cm. A intensidade do campo eléctrico no seu interior é 2,5·10 ⁵ N·C ⁻¹ . Unha micropinga de
	aceite cuxa masa é 4,90·10 ⁻¹⁴ kg, e con carga negativa, está en equilibrio suspendida nun punto
	equidistante de ambas as placas
	a) Razoa cal das dúas láminas está cargada positivamente
	b) Determina a carga da micropinga
	c) Calcula a diferenza de potencial entre as láminas condutoras
2	Unha esfera pequena, de masa 2 g e carga +3 μ C, colga dun fío de 6 cm de lonxitude entre dúas pla-
۷.	cas metálicas verticais e paralelas separadas entre si unha distancia de 12 cm. As placas posúen car-
	gas iguais pero de signo contrario. Calcula:
	a) O campo eléctrico entre as placas para que o fío forme un ángulo de 45° coa vertical
	b) A tensión do fío nese momento
	,
E_C_	c) Se as placas se descargan, cal será a velocidade da esfera ao pasar pola vertical?
zsjei	ras

1.	Unha esfera condutora de raio 4 cm ten unha carga de +8 μC en equilibrio electrostático. Calcula
	canto valen en puntos que distan 0, 2 e 6 cm do centro da esfera:21
	a) O módulo da intensidade do campo electrostático
	b) O potencial eléctrico
	c) Representa as magnitudes anteriores en función da distancia ao centro da esfera