

From Mechanics, We know that Total Energy (E) = Potential (PE) + Kinetick Energy Energy
> E = PE + KE -(1)
For free portiell. PE=0 and KE={mv2
$\Rightarrow E = 0 + \frac{1}{2}mv^2 = \frac{1}{2}mv^2$ -(ii)
According to Work-Energy Theorem, we know,
WE RNOW. KE = WORK done Fidn = \int \frac{dP}{dt} \text{ an}
= \langle d (mv) dn = \langle dm + mdv dn \\ = \langle dm dm + mdv dn = \langle dm dm + mdv dn \\ = \langle dt dm dm + mdv dn \\ = \langle dt dt dt dt dt \\ = \langle dt dt dt dt dt \\ = \langle dt dt dt dt dt dt \\ = \langle dt
KE = V2dm + mvdv -lii)

$$m = \gamma m_0$$
 $\Rightarrow m = m_0$
 $\Rightarrow m^2(1-v^2) = m_0^2$
 $\Rightarrow m^2(c^2-v^2) = m_0^2c^2$
 $\Rightarrow m^2(c^2-m^2v^2) = m_0^2c^2$
 $\Rightarrow m^2(c^2-m^2v^2) = m_0^2c^2$
 $\Rightarrow m^2(c^2-m^2v^2) = m_0^2c^2$
 $\Rightarrow m^2(c^2-m^2v^2) = m_0^2c^2$
 $\Rightarrow m^2(c^2-w^2) = m_0^2c^2$
 $\Rightarrow m^2(c^2-v^2) = m_0^2$
 $\Rightarrow m^2(c^2-v^2) = m^2(c^2-v^2)$
 $\Rightarrow m^2(c^2-v^2) = m^2(c^2-v^2)$

Mass is the measure of Inertia.
If we generalise Am by m, men
For a free porfice et moss m,
$E = mc^2$ — Wii)
Tollworthich elect sprans
This is known as principle of Mass-Energy Equivalence.
This principle was proposed by
Einstien in his original paper
"Does the Inertia of a body depend upon its energy contents?"
ON
21 November 1905
Prepared by Santosh Chaudhary M.Sc (Physics)