5 Correction des tests

Correction du test 1 (Retour à l'énoncé.)

Soient X et Y deux variables aléatoires réelles indépendantes et soit $Z = \max(X, Y)$. On note F_Z la fonction de répartition de Z et F_X , F_Y celles de X et de Y.

• *Soit* $t \in \mathbb{R}$ *et montrons que* $[Z \leq t] = [X \leq t] \cap [Y \leq t]$. *Soit* $\omega \in \Omega$.

$$\omega \in [Z \leqslant t] \Longleftrightarrow Z(\omega) \leqslant t \Longleftrightarrow \max(X(\omega), Y(\omega)) \leqslant t \Longleftrightarrow X(\omega) \leqslant t \quad et \quad Y(\omega) \leqslant t \Longleftrightarrow \omega \in [X \leqslant t] \cap [Y \leqslant t].$$

$$Ainsi [Z \leq t] = [X \leq t] \cap [Y \leq t]$$

- On en déduit, par indépendance, que pour tout réel t, $P([Z \le t]) = P([X \le t])P([Y \le t])$.
- En d'autres termes,

$$\forall t \in \mathbb{R}, \quad F_Z(t) = F_X(t)F_Y(t).$$

Correction du test 2 (Retour à l'énoncé.)

Ici on sait que F_X est une fonction de répartition. Pour vérifier que c'est la fonction de répartition d'une variable aléatoire à densité, il s'agit de montrer que F_X est continue sur $\mathbb R$ et de classe C^1 sur $\mathbb R$ sauf éventuellement en un nombre fini de points.

1. Montrons que F_X est continue sur \mathbb{R} . F_X est continue sur $[0, +\infty[$ en tant que composée de fonctions continues et continue sur $]-\infty,0[$ car constante sur cet intervalle. Étudions la continuité en 0:

$$\lim_{x \to 0^+} F_X(x) = 0 = F_X(0) = \lim_{x \to 0^-} F_X(x).$$

Ainsi, F_X est continue en 0. Finalement, F_X est continue sur \mathbb{R} .

2. Montrons que F_X est de classe C^1 sur $\mathbb R$ sauf éventuellement en un nombre fini de points. F_X est de classe C^1 sur $[0, +\infty[$ et sur $]-\infty, 0[$ en tant que composée de fonctions de classe C^1 sur ces intervalles. Ainsi, F_X est de classe C^1 sur $\mathbb R$ sauf éventuellement en $[0, \infty]$.

Ainsi, F_X est la fonction de répartition d'une variable aléatoire à densité. Comme la fonction de répartition caractérise la loi, X est à densité. De plus,

$$\forall x \in \mathbb{R}^*, \quad F_X'(x) = \begin{cases} 2xe^{-x^2} & si \ x > 0 \\ 0 & si \ x < 0 \end{cases}.$$

Donc, la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 2xe^{-x^2} & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$$

est une densité de X.

Correction du test 3 (Retour à l'énoncé.)

Il s'agit de montrer que f est positive, continue sauf éventuellement en un nombre fini de points et que l'intégrale $\int_{-\infty}^{+\infty} f(t)dt$ converge et vaut 1.

- 1. Montrons que f est positive. Sur $]-\infty,-1[$ et sur $[1,+\infty[$, f est positive. De plus, pour tout $x \in [-1,0[$, $f(x)=1+x\geqslant 0$ et pour tout $x\in [0,1[$, $f(x)=1-x\geqslant 0$. Ainsi, f est positive.
- 2. Montrons que f est continue sauf éventuellement en un nombre fini de points. Il est évident que f est continue sur \mathbb{R} sauf éventuellement en -1, 0 et 1.
- 3. Comme f est continue sur \mathbb{R} sauf éventuellement en -1, 0 et 1, l'intégrale $\int_{-\infty}^{+\infty} f(t)dt$ est impropre en $-\infty$, -1, 0, 1 et $+\infty$.
 - Étude de $\int_{-\infty}^{-1} f(t)dt$. Comme f est nulle sur $]-\infty,-1[$, on vérifie facilement que cette intégrale (doublement impropre) converge et vaut 0.
 - Étude de $\int_{-1}^{0} f(t)dt$. Comme f est prolongeable par continuité sur [-1,0] l'intégrale converge et

$$\int_{-1}^{0} f(t)dt = \int_{-1}^{0} (1+t)dt = \frac{1}{2}.$$

• Étude de $\int_0^1 f(t)dt$. Comme f est prolongeable par continuité sur [0,1] l'intégrale converge et

$$\int_0^1 f(t)dt = \int_0^1 (1-t)dt = \frac{1}{2}.$$

• Étude de $\int_1^{+\infty} f(t)dt$. Comme f est nulle sur $[1, +\infty[$, on vérifie facilement que cette intégrale converge et vaut 0.

Ainsi, l'intégrale $\int_{-\infty}^{+\infty} f(t)dt$ converge et

$$\int_{-\infty}^{+\infty} f(t)dt = \int_{-\infty}^{-1} f(t)dt + \int_{-1}^{0} f(t)dt + \int_{0}^{1} f(t)dt + \int_{1}^{+\infty} f(t)dt = 1$$

Ainsi, f est bien un densité de probabilité. Soit X une variable aléatoire de densité f. Alors la fonction de répartition de X est donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & \text{si } x < 0 \\ \frac{1}{2} + x + \frac{x^{2}}{2} & \text{si } -1 \leq x < 0 \\ \frac{1}{2} + x - \frac{x^{2}}{2} & \text{si } 0 \leq x < 1 \\ 1 & \text{si } x \geq 1. \end{cases}$$

Correction du test 4 (Retour à l'énoncé.)

Ici, on ne sait pas a priori que F est une fonction de répartition. Il s'agit donc de montrer que F est croissante sur \mathbb{R} , $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$, F est continue sur \mathbb{R} , F est de classe C^1 sur \mathbb{R} sauf éventuellement en un nombre fini de points.

- 1. Montrons que F est croissante sur \mathbb{R} .
 - F est croissante sur] $-\infty$,0[car la fonction exponentielle l'est,
 - F est croissante sur $[0, +\infty[$ (en étudiant le signe de la dérivée sur $]0, +\infty[$),
 - pour tout $x \in]-\infty,0[$ et tout $y \in [0,+\infty[$ on a

$$F(x) = \frac{1}{2}e^x \le \frac{1}{2} \le 1 - \frac{1}{2}e^{-y} = F(y).$$

Ainsi F est croissante sur \mathbb{R} .

- 2. Par limites usuelles, on a : $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$.
- 3. Montrons que F est continue sur \mathbb{R} . F est continue sur $]-\infty,0[$ et sur $]0,+\infty[$ car la fonction exponentielle est continue sur ces intervalles. De plus, F est continue en 0 car

$$\lim_{x \to 0^{-}} F(x) = \frac{1}{2} = F(0) = \lim_{x \to 0^{+}} F(x).$$

Ainsi F est continue sur \mathbb{R} .

4. F est de classe C^1 sur $]-\infty$, 0[et sur]0, $+\infty[$ car la fonction exponentielle est de classe C^1 sur ces intervalles. Ainsi F est bien la fonction de répartition d'une variable aléatoire à densité X. Comme

$$\forall x \in \mathbb{R}^*, \quad F'(x) = \begin{cases} \frac{1}{2}e^x & \text{si } x < 0\\ \frac{1}{2}e^{-x} & \text{si } x > 0 \end{cases}$$

La fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \frac{1}{2}e^x & \text{si } x < 0\\ \frac{1}{2}e^{-x} & \text{si } x \ge 0 \end{cases}$$

est une densité de X.

Correction du test 5 (Retour à l'énoncé.)

D'après l'exemple ??, la fonction de répartition de X est

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \left\{ \begin{array}{cc} 0 & si \ x < 1 \\ 1 - \frac{1}{x^{2}} & si \ x \geq 1. \end{array} \right.$$

On note Y = 3X - 1

• Déterminons la fonction de répartition F_Y de Y. Soit $t \in \mathbb{R}$. Alors

$$[\mathbf{Y} \leqslant t] = [3\mathbf{X} - 1 \leqslant t] = \left[\mathbf{X} \leqslant \frac{t+1}{3}\right].$$

Donc

$$\forall t \in \mathbb{R}, \quad F_{Y}(t) = P\left(\left[X \leqslant \frac{t+1}{3}\right]\right) = F_{X}\left(\frac{t+1}{3}\right) = \begin{cases} 0 & \text{si } t < 2\\ 1 - \frac{9}{(t+1)^{2}} & \text{si } t \geqslant 2 \end{cases}$$

• Montrons que Y est une variable à densité. La fonction F_Y est continue sur \mathbb{R} : elle est continue sur $]-\infty,2[$ et sur $[2,+\infty[$ par opérations sur les fonctions usuelles et elle est continue en 2 car

$$\lim_{t \to 2^{-}} F_{Y}(t) = 0 = \lim_{t \to 2^{+}} F_{Y}(t) = F_{Y}(2).$$

Enfin, F_Y est de classe C¹ sauf éventuellement en 2. Ainsi, Y est à densité.

• Déterminons une densité de Y. On a, pour tout $t \in \mathbb{R}$ sauf éventuellement en 2 :

$$F'_{Y}(t) = \begin{cases} 0 & \text{si } t < 2\\ \frac{18}{(t+1)^3} & \text{si } t > 2 \end{cases}$$

Au final, la fonction g définie par

$$\forall t \in \mathbb{R}, \quad g(t) = \begin{cases} 0 & \text{si } t < 2\\ \frac{18}{(t+1)^3} & \text{si } t \ge 2 \end{cases}$$

est une densité de Y.

Correction du test 6 (Retour à l'énoncé.)

Soit X une variable aléatoire de loi $\mathscr{E}(2)$. Déterminer la loi de Y = e^{X} .

• On a $Y(\Omega) \subset \mathbb{R}_+^*$. Déterminons la fonction de répartition F_Y de Y. Soit $t \in \mathbb{R}$. Alors

$$[Y \leq t] = [e^X \leq t] = \left\{ \begin{array}{cc} [X \leq \ln{(t)}] & si \; t > 0 \\ \varnothing & si \; t \leq 0 \end{array} \right.$$

Donc

$$\forall t \in \mathbb{R}, \quad \mathrm{F}_{\mathrm{Y}}(t) = \left\{ \begin{array}{cc} \mathrm{P}\left([\mathrm{X} \leqslant \ln\left(t\right)] \right) & si \; t > 0 \\ 0 & si \; t \leqslant 0 \end{array} \right. = \left\{ \begin{array}{cc} \mathrm{F}_{\mathrm{X}}\left(\ln\left(t\right) \right) & si \; t > 0 \\ 0 & si \; t \leqslant 0 \end{array} \right.$$

Or, comme X suit une loi exponentielle de paramètre 2, on a

$$F_{X}(\ln(t)) = \begin{cases} 1 - e^{-2\ln(t)} & si \ln(t) \ge 0 \\ 0 & si \ln(t) < 0 \end{cases} = \begin{cases} 1 - \frac{1}{t^{2}} & si \ t \ge 1 \\ 0 & si \ t < 1 \end{cases}$$

Donc finalement,

$$\forall t \in \mathbb{R}, \quad F_{Y}(t) = \begin{cases} 1 - \frac{1}{t^{2}} & \text{si } t \geq 1 \\ 0 & \text{si } t < 1 \end{cases}$$

• Montrons que Y est une variable à densité.

La fonction F_Y est continue sur \mathbb{R} : elle est continue sur $]-\infty,1[$ et sur $[1,+\infty[$ par opérations sur les fonctions usuelles et elle est continue en 1 car

$$\lim_{t \to 1^{-}} F_{Y}(t) = 0 = \lim_{t \to 1^{+}} F_{Y}(t) = F_{Y}(1).$$

Enfin, F_Y est de classe C^1 sur \mathbb{R} sauf éventuellement en 1. Ainsi, Y est à densité.

• Déterminons une densité de Y. On a, pour tout $t \in \mathbb{R}$ sauf en 1 :

$$F'_{Y}(t) = \begin{cases} \frac{2}{t^3} & \text{si } t > 1\\ 0 & \text{si } t < 1 \end{cases}$$

Au final, la fonction g définie par

$$\forall t \in \mathbb{R}, \quad g(t) = \begin{cases} \frac{2}{t^3} & \text{si } t \ge 1 \\ 0 & \text{si } t < 1 \end{cases}$$

est une densité de Y.

Correction du test 7 (Retour à l'énoncé.)

Soit X suivant une loi uniforme sur [-1,1]. Déterminer la loi de X^2 . On note $Y = X^2$.

• On a $Y(\Omega) \subset \mathbb{R}_+$. Déterminons la fonction de répartition F_Y de Y. Soit $t \in \mathbb{R}$. Alors

$$[\mathbf{Y} \leq t] = [\mathbf{X}^2 \leq t] = \begin{cases} \emptyset & \text{si } t < 0 \\ [-\sqrt{t} \leq \mathbf{X} \leq \sqrt{t}] & \text{si } t \geq 0 \end{cases}$$

Donc,

$$\forall \, t \in \mathbb{R}, \quad \mathrm{F}_{\mathrm{Y}}(t) = \left\{ \begin{array}{cc} 0 & si \, t < 0 \\ \mathrm{P}\left(\left[-\sqrt{t} \leqslant \mathrm{X} \leqslant \sqrt{t}\right]\right) & si \, t \geqslant 0 \end{array} \right. \\ = \left\{ \begin{array}{cc} 0 & si \, t < 0 \\ \mathrm{F}_{\mathrm{X}}\left(\sqrt{t}\right) - \mathrm{F}_{\mathrm{X}}\left(-\sqrt{t}\right) & si \, t \geqslant 0 \end{array} \right.$$

car X est à densité. Or comme X suit une loi uniforme sur [-1,1]:

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \begin{cases} 0 & \text{si } x < -1 \\ \frac{x+1}{2} & \text{si } x \in [-1, 1] \\ 1 & \text{si } x > 1 \end{cases}$$

Ainsi

$$\forall t \in \mathbb{R}, \quad F_{Y}(t) = \left\{ \begin{array}{ccc} 0 & si \ t < 0 \\ \frac{\sqrt{t} + 1}{2} - \frac{-\sqrt{t} + 1}{2} & si \ 0 \leqslant t \leqslant 1 \\ 1 & si \ t > 1 \end{array} \right. = \left\{ \begin{array}{ccc} 0 & si \ t < 0 \\ \sqrt{t} & si \ 0 \leqslant t \leqslant 1 \\ 1 & si \ t > 1 \end{array} \right.$$

- Montrons que Y est une variable à densité. La fonction F_Y est continue sur \mathbb{R} (le vérifier!) et de classe C^1 sur \mathbb{R} sauf éventuellement en 0 et 1. Ainsi, Y est à densité.
- Déterminons une densité de Y. On a :

$$\forall t \in \mathbb{R} \setminus \{0, 1\} \quad F'_{Y}(t) = \begin{cases} 0 & \text{si } t < 0 \\ \frac{1}{2\sqrt{t}} & \text{si } 0 < t \le 1 \\ 0 & \text{si } t > 1 \end{cases}$$

Au final, la fonction g définie par

$$\forall t \in \mathbb{R}, \quad g(t) = \begin{cases} \frac{1}{2\sqrt{t}} & si \ 0 < t \leq 1\\ 0 & si \ t \in \mathbb{R} \setminus]0, 1] \end{cases}$$

est une densité de Y.

Correction du test 8 (Retour à l'énoncé.)

1. D'après le test ??, comme X et Y sont indépendantes, on a

$$\forall t \in \mathbb{R}, \quad F_{U}(t) = F_{X}(t)F_{Y}(t).$$

Comme $X \hookrightarrow \mathcal{E}(a)$ et $Y \hookrightarrow \mathcal{E}(b)$, on obtient finalement

$$\forall t \in \mathbb{R}, \quad F_{U}(t) = F_{X}(t)F_{Y}(t) = \begin{cases} 0 & \text{si } t < 0 \\ (1 - e^{-at})(1 - e^{-bt}) & \text{si } t \ge 0 \end{cases}$$

2. (a) D'après l'exemple ??, comme X et Y sont indépendantes, on a

$$\forall t \in \mathbb{R}, \quad \mathrm{F_V}(t) = 1 - (1 - \mathrm{F_X}(t))(1 - \mathrm{F_Y}(t)).$$

Comme $X \hookrightarrow \mathcal{E}(a)$ et $Y \hookrightarrow \mathcal{E}(b)$, on obtient finalement

$$\forall t \in \mathbb{R}, \quad F_{V}(t) = 1 - (1 - F_{X}(t))(1 - F_{Y}(t)) = \begin{cases} 0 & \text{si } t < 0 \\ 1 - e^{-(a+b)t} & \text{si } t \ge 0 \end{cases}$$

(b) F_V est la fonction de répartition d'une variable aléatoire suivant la loi $\mathcal{E}(a+b)$. Comme la fonction de répartition caractérise la loi, on en déduit que $V \hookrightarrow \mathcal{E}(a+b)$.

Correction du test 9 (Retour à l'énoncé.)

Soit $X \hookrightarrow \mathcal{N}(0,1)$. On pose Y = |X|. Montrer que Y est une variable à densité et déterminer une densité de Y.

• On a $Y(\Omega) \subset \mathbb{R}_+$. Déterminons la fonction de répartition F_Y de Y. Soit $t \in \mathbb{R}$. Alors

$$[\mathbf{Y} \leqslant t] = [|\mathbf{X}| \leqslant t] = \left\{ \begin{array}{ll} \varnothing & \text{si } t < 0 \\ [-t \leqslant \mathbf{X} \leqslant t] & \text{si } t \geqslant 0 \end{array} \right.$$

Donc.

$$\forall t \in \mathbb{R}, \quad F_{\mathbf{Y}}(t) = \left\{ \begin{array}{cc} 0 & si \ t < 0 \\ P\left([-t \leqslant \mathbf{X} \leqslant t]\right) & si \ t \geqslant 0 \end{array} \right. = \left\{ \begin{array}{cc} 0 & si \ t < 0 \\ F_{\mathbf{X}}(t) - F_{\mathbf{X}}(-t) & si \ t \geqslant 0 \end{array} \right.$$

car X est à densité.

• Montrons que Y est une variable à densité.

La fonction F_Y est continue sur \mathbb{R}_+ car F_X est continue sur \mathbb{R} . Elle est continue sur $]-\infty,0[$ car constante sur cet intervalle. De plus,

$$\lim_{t \to 0^{-}} F_{Y}(t) = 0 = \lim_{t \to 0^{+}} F_{Y}(t) = F_{Y}(0)$$

ce qui montre que F_Y est continue en 0.

Comme F_X de classe C^1 sur \mathbb{R} sauf éventuellement en un nombre fini de point, F_Y est de classe C^1 sur \mathbb{R}_+ sauf éventuellement en un nombre fini de point. De plus, F_Y est de classe C^1 sur \mathbb{R}_+ \mathbb{R}_+ o. \mathbb{R}_+

Ainsi, F_Y est aussi continue sur \mathbb{R} et de classe C^1 sur \mathbb{R} sauf éventuellement en un nombre fini de point. Par conséquent, Y est une variable aléatoire à densité.

• Déterminons une densité de Y. On a, pour tout réel t sauf éventuellement un nombre fini

$$\mathbf{F}_{\mathbf{Y}}'(t) = \left\{ \begin{array}{ll} 0 & si \ t < 0 \\ \mathbf{F}_{\mathbf{X}}'(t) + \mathbf{F}_{\mathbf{X}}'(-t) & si \ t \ge 0 \end{array} \right.$$

Comme X suit une loi normale centrée réduite, la fonction g définie par

$$\forall t \in \mathbb{R}, \quad g(t) = \begin{cases} 0 & \text{si } t < 0 \\ \frac{2}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} & \text{si } t \ge 0 \end{cases}$$

est une densité de Y.

Correction du test 10 (Retour à l'énoncé.)

La variable aléatoire X admet une espérance si et seulement si l'intégrale $\int_{-\infty}^{+\infty} t f(t) dt$ converge absolument.

Comme $t\mapsto |tf(t)|$ est continue sur \mathbb{R} , l'intégrale est $\int_{-\infty}^{+\infty} |tf(t)|dt$ est impropre en $-\infty$ et $+\infty$.

Oı

- $|tf(t)| \sim \frac{1}{t \to +\infty} \frac{1}{\pi t}$
- $t \mapsto |tf(t)|$ et $t \mapsto \frac{1}{\pi t}$ sont positives au voisinage $de + \infty$,
- $\int_{1}^{+\infty} \frac{1}{\pi t} dt$ est divergente d'après le critère de convergence des intégrales de Riemann en $+\infty$.

Donc d'après le critère d'équivalence des intégrales de fonctions positives, $\int_1^{+\infty} |tf(t)| dt$ diverge.

Ainsi $\int_{-\infty}^{+\infty} |tf(t)| dt$ diverge et X ne possède donc pas d'espérance.

Correction du test 11 (Retour à l'énoncé.)

Une densité de X est donnée par la fonction f définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 0 & \text{si } x < 0 \\ e^{-x} & \text{si } x \ge 0 \end{cases}$$

La fonction $x\mapsto \frac{1}{1+e^{-x}}$ étant continue sur $[0,+\infty[$, d'après le théorème de transfert, la variable $\frac{1}{1+e^{-x}}$ possède une espérance si et seulement si $\int_0^{+\infty} \frac{e^{-x}}{1+e^{-x}} dx$ converge absolument. La fonction $x\mapsto \frac{e^{-x}}{1+e^{-x}}$ étant positive et continue sur $[0,+\infty[$, il suffit d'étudier la convergence de $\int_0^{+\infty} \frac{e^{-x}}{1+e^{-x}} dx$, impropre en $+\infty$. Soit $A\in [0,+\infty[$.

$$\int_0^A \frac{e^{-x}}{1 + e^{-x}} dx = -\left[\ln\left|1 + e^{-x}\right|\right]_0^A = \ln(2) - \ln(1 + e^{-A})$$

$$donc \lim_{A \to +\infty} \int_{0}^{A} \frac{e^{-x}}{1 + e^{-x}} dx = \ln(2).$$

Finalement, $\int_{0}^{+\infty} \frac{e^{-x}}{1+e^{-x}} dx$ converge (absolument) donc $\frac{1}{1+e^{-x}}$ possède une espérance et

$$E\left(\frac{1}{1+e^{-X}}\right) = \ln{(2)}.$$

Correction du test 12 (Retour à l'énoncé.)

 $Soit X \hookrightarrow \mathcal{U}([a,b])$ avec a < b deux réels. Une densité de X est donnée par la fonction f définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \frac{1}{b-a} & si \ x \in [a,b] \\ 0 & sinon \end{cases}$$

D'après le théorème de transfert et la formule de Koenig-Huygens, X possède une variance si et seulement si $\int_a^b \frac{t^2}{b-a} dt \text{ converge absolument. Or, la fonction } t \mapsto \left| \frac{t^2}{b-a} \right| \text{ est continue sur } [a,b] \text{ donc l'intégrale ne possède pas d'impropreté! Ainsi X possède un moment d'ordre 2 donc une variance. La formule de Koeznig-Huygens donne alors}$

$$\begin{split} \mathrm{V}(\mathrm{X}) &= \int_{a}^{b} \frac{t^2}{b-a} dt - \mathrm{E}(\mathrm{X})^2 = \frac{b^3 - a^3}{3(b-a)} - \frac{(a+b)^2}{4} = \frac{4(b^3 - a^3) - 3(b-a)(a+b)^2}{12(b-a)} \\ &= \frac{4(b-a)(a^2 + ab + b^2) - 3(b-a)(a+b)^2}{12(b-a)} \\ &= \frac{4(a^2 + ab + b^2) - 3(a^2 + 2ab + b^2)}{12} \\ &= \frac{a^2 - 2ab + b^2}{12} \\ &= \frac{(b-a)^2}{12} \end{split}$$

Correction du test 13 (Retour à l'énoncé.)

Soient a < b deux nombres réels et X une variable aléatoire. On raisonne par double implication.

 \Rightarrow Supposons que X $\hookrightarrow \mathcal{U}([0,1])$ et notons Y = a + (b-a)X. Rappelons que la fonction de répartition de X est

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \begin{cases} 0 & si \ x < 0 \\ x & si \ x \in [0, 1] \\ 1 & si \ x > 1 \end{cases}$$

On va déterminer la fonction de répartition de Y. Soit $t \in \mathbb{R}$.

$$[Y \leqslant t] = [a + (b-a)X \leqslant t] = \left[X \leqslant \frac{t-a}{b-a}\right] \quad car \quad b-a > 0.$$

Donc

$$\forall t \in \mathbb{R}, \quad F_{\mathbf{Y}}(t) = \mathbf{P}\left(\left[\mathbf{X} \leqslant \frac{t-a}{b-a}\right]\right) = F_{\mathbf{X}}\left(\frac{t-a}{b-a}\right) = \begin{cases} 0 & \text{si } \frac{t-a}{b-a} < 0\\ \frac{t-a}{b-a} & \text{si } \frac{t-a}{b-a} \in [0,1]\\ 1 & \text{si } \frac{t-a}{b-a} > 1 \end{cases}$$

Or $\frac{t-a}{b-a} \in [0,1]$ si et seulement si $t \in [a,b]$, $\frac{t-a}{b-a} < 0$ si et seulement si t < a et $\frac{t-a}{b-a} > 1$ si et seulement si t > b. Donc

$$\forall t \in \mathbb{R}, \quad F_{Y}(t) = \begin{cases} 0 & \text{si } t < a \\ \frac{t-a}{b-a} & \text{si } t \in [a,b] \\ 1 & \text{sit} > b \end{cases}$$

On reconnaît la fonction de répartition de la loi uniforme sur [a, b]. Comme la fonction de répartition caractérise la loi, Y suit une loi uniforme sur [a, b].

 \Leftarrow On suppose que Y = a + (b - a)X suit la loi uniforme sur [a, b]. Sa fonction de répartition est donc:

$$\forall t \in \mathbb{R}, \quad F_{Y}(t) = \begin{cases} 0 & \text{si } t < a \\ \frac{t-a}{b-a} & \text{si } t \in [a,b] \\ 1 & \text{sit} > b \end{cases}$$

Soit $t \in \mathbb{R}$. Alors

$$[X \le t] = [a + (b - a)X \le (b - a)t + a] = [Y \le (b - a)t + a] \quad car \quad b - a > 0.$$

Donc

$$\forall \, t \in \mathbb{R}, \quad \mathrm{F}_{\mathrm{X}}(t) = \mathrm{P}\left([\mathrm{X} \leqslant t]\right) = \mathrm{F}_{\mathrm{Y}}((b-a)\,t + a) = \left\{ \begin{array}{cc} 0 & si\,(b-a)\,t + a < a \\ \frac{(b-a)\,t + a - a}{b-a} & si\,(b-a)\,t + a \in [a,b] \\ 1 & si\,(b-a)\,t + a > b \end{array} \right. = \left\{ \begin{array}{cc} 0 & si\,t < 0 \\ t & si\,t + \in [0,1] \\ 1 & si\,t > 1 \end{array} \right.$$

On reconnaît la fonction de répartition de la loi uniforme sur [0,1]. Comme la fonction de répartition caractérise la loi, X suit une loi uniforme sur [0,1].

Correction du test 14 (Retour à l'énoncé.)

Soit μ , $\sigma > 0$. Démontrer le cas particulier suivant :

$$X \hookrightarrow \mathcal{N}(0,1) \Longleftrightarrow \sigma X + \mu \hookrightarrow \mathcal{N}(\mu,\sigma^2).$$

On raisonne par double implication.

 \Rightarrow Supposons que $X \hookrightarrow \mathcal{N}(0,1)$ et notons $Y = \sigma X + \mu$. Rappelons que la fonction de répartition de X est

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \int_{0}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt.$$

On va déterminer la fonction de répartition de Y. Soit $x \in \mathbb{R}$.

$$[Y \leqslant x] = [\sigma X + \mu \leqslant x] = \left[X \leqslant \frac{x - \mu}{\sigma}\right] \quad car \quad \sigma > 0.$$

Donc

$$\forall x \in \mathbb{R}, \quad F_{Y}(x) = P\left(\left[X \leqslant \frac{x-\mu}{\sigma}\right]\right) = F_{X}\left(\frac{x-\mu}{\sigma}\right) = \int_{-\infty}^{\frac{x-\mu}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt.$$

En effectuant le changement de variable $t = \frac{s-\mu}{\sigma}$ dans cette intégrale on trouve :

$$\forall x \in \mathbb{R}, \quad F_{Y}(x) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(s-\mu)^{2}}{2\sigma^{2}}} ds.$$

On reconnaît la fonction de répartition de la loi $\mathcal{N}(\mu, \sigma^2)$. Comme la fonction de répartition caractérise la loi, Y suit une loi uniforme sur $\mathcal{N}(\mu, \sigma^2)$.

 \Leftarrow On suppose que Y = σ X + μ suit la loi $\mathcal{N}(\mu, \sigma^2)$. Sa fonction de répartition est donc :

$$\forall x \in \mathbb{R}, \quad F_{Y}(x) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(s-\mu)^{2}}{2\sigma^{2}}} ds$$

Soit $x \in \mathbb{R}$ *. Alors*

$$[X \le x] = [\sigma X + \mu \le \sigma x + \mu] = [Y \le \sigma x + \mu] \quad car \quad \sigma > 0.$$

Donc

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = F_{Y}(\sigma X + \mu) = \int_{-\infty}^{\sigma x + \mu} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(s - \mu)^{2}}{2\sigma^{2}}} ds.$$

En effectuant le changement de variable $t = \frac{s-\mu}{\sigma}$ dans cette intégrale on trouve :

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \int_{-\infty}^{\sigma x + \mu} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(s - \mu)^2}{2\sigma^2}} ds = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt.$$

On reconnaît la fonction de répartition de la loi $\mathcal{N}(0,1)$. Comme la fonction de répartition caractérise la loi, X suit la loi $\mathcal{N}(0,1)$.

Correction du test 15 (Retour à l'énoncé.)

Une densité de X est donnée par la fonction f définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0\\ 0 & \text{sinon} \end{cases}$$

D'après le théorème de transfert et la formule de Koenig-Huygens, X possède une variance si et seulement si $\int_0^{+\infty} \lambda t^2 e^{-\lambda t} dt \text{ converge absolument. Or, la fonction } t \mapsto \lambda t^2 e^{-\lambda t} \text{ est positive donc il suffit d'étudier si} \int_0^{+\infty} \lambda t^2 e^{-\lambda t} dt \text{ converge. La seule impropreté de cette intégrale est en } +\infty.$

Soit A ≥ 0. En intégrant par parties deux fois de suite

$$\begin{split} \int_0^A \lambda t^2 e^{-\lambda t} dt &= \left[-t^2 e^{-\lambda t} \right]_0^A + \int_0^A 2t e^{-\lambda t} dt \\ &= -A^2 e^{-\lambda A} + 2 \left(\left[-t \frac{e^{-\lambda t}}{\lambda} \right]_0^A + \int_0^A \frac{e^{-\lambda t}}{\lambda} dt \right) \\ &= -A^2 e^{-\lambda A} - 2 \frac{A e^{-\lambda A}}{\lambda} + \frac{2}{\lambda^2} - \frac{e^{-\lambda A}}{\lambda^2} \end{split}$$

Ainsi,

$$\lim_{N \to +\infty} \int_0^A \lambda t^2 e^{-\lambda t} dt = \frac{2}{\lambda^2}.$$

Cela montre que X possède un moment d'ordre 2 et que $E(X^2) = \frac{2}{\lambda^2}$. La formule de Koenig-Huygens donne alors

$$V(X) = E(X^2) - E(X)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}.$$