

Einleitung

Aufgabe

Wählen eines Al Modells aus den behandelten Lerneinheiten.

Projektwahl

RL-Modell Entwickeln auf dem PyBoy-Emulator für "Super Mario Land" erstellen.

Ziel

Ziel ist es, einen intelligenten Agenten zu schaffen, der durch das Spiel navigiert, Hindernisse überwindet und das Level schnellstmöglich abschließt.

Lernumgebung

"Super Mario Land" wegen seiner komplexen, variantenreichen Levelgestaltung und Linearität.

Double Deep Q-Network-Architektur (DDQN)

RL

Agent lernt durch (Trial and Error) nach optimale Policy
Prinzip ein Verhaltensstrategie zu entwickeln.

DQL

Verbindet Q-Learning mit neuronalen Netzwerken um komplexe Probleme in umfangreichen Zustandsräumen zu lösen.

Durch das Erlernen einer Q-Funktion, die den erwarteten Wert einer Aktion, in einem bestimmten Zustand darstellt, können DQNs in anspruchsvollen Umgebungen agieren

DDQN

Basieren auf DQNs und zielen darauf ab, ein zentrales
Problem – die systematische Überschätzung von Q-Werten – zu lösen.

Durch Trennung zwischen der Auswahl (Online-Netzwerk) und der Bewertung (Ziel-Netzwerk) von Aktionen minimieren DDQNs das Risiko einer Überbewertung.

Stabilisiert Lernprozess und beschleunigt die Konvergenz.

Lernumgebung

PyBoy

- Python basierter Emulator
- Schnittstelle zum Spiel
- Ermöglicht Auslesen und verändern von Internen werten
- Direkter Zugriff auf das Spiel

Preprocessing-Techniken

- Frame Skipping
- Graustufenkonvertierung
- Resize Observation
- Frame Stacking

Technik & Methode

Reward Funktion

- Zeit
- Bewegung
- Tod -
- Level Belohnung +

Hyperparameter

- Exploration 1
- Exp. Decay 0.9999975
- Exp Min 0.1
- Learning_rate 0.00025
- Batch 32
- Gamma 0.9
- Sync 10.000

Aktionsraum

- Rechts
- Links
- Springen
- 2er Kombination

Netzwerkarchitektur

- 3 Convolutional-Layer
- 2 Fully Connected-Layer.

RL MARIO NET

- Vergleich der Lern-Performance zweier unterschiedlich großer Netzwerke.
 - (Modell 1)
 - 3 Conv_layer
 - kein Pedding
 - StepLR
 - (Modell 2)
 - 4 Conv_layer
 - 3 x 1 Pedding
 - Cyclic

- Vergleich der Lern-Performance zweier unterschiedlich großer Netzwerke.
 - (Modell 1)
 - 3 Conv_layer
 - 0 Pedding
 - StepLR
 - (Modell 2)
 - 4 Conv_layer
 - 3 x 1 Pedding
 - Cyclic

- Vergleich der Lern-Performance zweier unterschiedlich großer Netzwerke.
 - (Modell 1)
 - 3 Conv_layer
 - 0 Pedding
 - StepLR
 - (Modell 2)
 - 4 Conv_layer
 - 3 x 1 Pedding
 - Cyclic

- Vergleich der Lern-Performance zweier unterschiedlich großer Netzwerke.
 - (Modell 1)
 - 3 Conv_layer
 - 0 Pedding
 - StepLR
 - (Modell 2)
 - 4 Conv_layer
 - 3 x 1 Pedding
 - Cyclic

Schlussfolgerung und Ausblick

Zusammenfassung

- Keine deutlichen unterschiede im lernverhalten
- Kleineres Modell
 Ressourcen sparender

Verbesserungen und Ausblick

Möglichkeiten zur Weiterentwicklung:

- Training des Agenten über verschiedene Spiellevel
- Erweiterung des Aktionsraums.
- Anpassen der Hyperparameter
- Multiagent Training

DANKE

Github Repository:

I4nz8/q_play

