

I²C Communication, 500mA Single Cell Li-Ion Battery Charger with Power

Path Management, 1mA Termination and <1uA Battery Leakage

DESCRIPTION

The ETA4662 is a single cell battery charger with power path management function for Li-Ion and Li-Polymer battery. It features pre-charging, fast charging (CC) and constant voltage (CV) charging, end-of charging termination, and auto-recharge, and built-in safe-timer preventing from being over-charged or host running out of control.

The power path management function features a low dropout regulator from the input to the system and a low R_{DSON} switch from battery to the system, so it separates the charging current from the system load. This function prioritizes the battery and the system, ensuring the continuous power supply to the system.

Parameters and functions are programmed or selected through an I²C compatible serial interface, such as input current limit, charging current, battery regulation voltage, safety timer, battery UVLO. It also features a safe watchdog protection.

The ETA4662 is available in FCQFN-9L package.

FEATURES

- Fully Autonomous Charger for Single Cell Li-lon and Li-Polymer Battery
- 21V Maximum Input Voltage Rating with Over-Voltage Protection
- I²C Interface for Setting Charging Parameters and Status Reporting
- Fully Integrated Power Switch and No External Blocking Diode Required
- Battery Temperature Monitor and Programmable
 Timer
- Battery or PCB Over-Temperature Protection
- System Reset Function
- Battery Disconnection Function
- Thermal Limiting Regulation on Chip
- FCQFN-9L 1.75x1.75mm

APPLICATIONS

- Wearable Devices
- Smart Watches
- IoT Gadgets
- Smart Handheld Devices

TYPICAL APPLICATION

ORDERING INFORMATION

PART No. ETA4662FQFJ PACKAGE

FCQFN

TOP MARK

Pcs/Reel

3000

SJY<u>W</u>

PIN CONFIGURATION

Top View

FCQFN1.75x1.75-9L

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

IN Pin Voltage to GND	0.3V to 28V				
V _{IN} to GND Discharge Cu					
V _{SYS} to GND Voltage					
BAT pin Voltage to GND.	1V to 6V				
All Other Pins Voltage to	GND		0.3V to 6V		
V _{SYS} , V _{BAT} to Ground Cur	rent		.Internally Limited		
Operating Temperature F	Range		–40°C to 85°C		
Storage Temperature Ra	nge		55°C to 150°C		
Thermal Resistance	θυς	$ heta_{JA}$			
FCQFN1.75x1.75-9L	°C/W				
Lead Temperature (Solde	260°C				
ESD HBM (Human Body	4KV				
ESD CDM (Charged Dev	ESD CDM (Charged Device Mode)				

ELECTRICAL CHARACTERISTICS

(V_{BAT} = 3.6V, unless otherwise specified. Typical values are at TA = 25°C.)

PARAMETER	TESTCONDITIONS	MIN	TYP	MAX	UNIT
INPUT AND BATTERY CONDITION				5	
Input Under Voltage Lock Out Threshold	V _{IN} Falling	3.63	3.73	3.83	V
V _{IN_UVLO} Hysteresis	V _{IN} Rising		170		mV
Input Over Voltage Protection Threshold	V _{IN} Rising	5.85	6	6.15	V
V _{IN_OVP} Hysteresis	V _{IN} Falling		350		mV
Input Clamp Voltage	Test for having 1mA clamp current.	20			٧
Input Discharge Current	V _{IN} = 21V		5		mA
V _{HDRM} (Sleep-Mode Entry Threshold, V _{IN} – V _{BAT})	V _{IN} Falling vs. V _{BAT}		85		mV
Sleep-Mode Exit Hysteresis	V _{IN} Rising vs. V _{BAT}	100	130	160	mV
BAT Input Voltage Range				5	٧
Input Detection Deglitch Time	For either under-voltage or over-voltage		250		μs
Input Power Detection Time	Time before reporting Power ON or OFF	50	75	100	ms

PARAMETER	TESTCONDITIONS			MIN	TYP	MAX	UNIT	
	V _{BAT_UVLO} [2:0] =	000		2.3	2.4	2.5	V	
Battery Under Voltage Lockout Threshold	V _{BAT_UVLO} [2:0] =	V _{BAT_UVLO} [2:0] = 100			2.76	2.86	٧	
(Falling)	V _{BAT_UVLO} [2:0] =	111		2.93	3.03	3.13	V	
V _{BAT_uvlo} Hysteresis	V _{BAT} Falling, V _{BAT_UVLO} =2.76V(Default)				210		mV	
Battery Over Voltage Protection Threshold	V _{BAT} Rising, higher than V _{TERM}				130		mV	
V _{BAT_OVP} Hysteresis	V _{BAT} Falling				70		mV	
Battery Over-Voltage Discharge Current					5		μΑ	
SUPPLY CURRENT CONDITION								
land Original Original	V _{IN} =5.5V, I _{SYS} =0	ΟA,	CEB=0		250		μA	
Input Quiescent Current	I _{CHG} =0A, EN_H	IZ =0	CEB=1		200		μA	
Input Suspend Current	V _{IN} =5.5V,V _{BAT} =4	1.3V,EN	_HIZ =1		70		μΑ	
	V _{IN} =5V, CEB=0, V _{BAT} =4.3V, I _{SYS} =0A, Charge done				12		μA	
	V _{IN} =GND, CEB=1, V _{DD_GATE} =1, BFET_DIS=0,SWITCH_MODE=0, V _{BAT} =4.35V, I _{SYS} =0A ,disable driving to external NTC circuit				5		μА	
Battery Quiescent Current	V _{IN} =GND,SWITCH_MODE=1, V _{BAT} =4.35V, I _{SYS} =0A ,disable driving to external NTC circuit)1/	10	μА	
	V _{IN} =GND, CEB=1, I _{SYS} =0A V _{BAT} =4.35V,Enable PCB OTP function, not include the external NTC bias			1	8)	μΑ	
	V _{IN} =GND,CEB=1,V _{BAT} =4.35V,I _{SYS} =0A, Enable PCB OTP function and Watchdog, not include the external NTC bias				22		μA	
	V _{BAT} =4.5V, V _{IN} =V _{SYS} =0V,FET_DIS=1, shipping mode				1	μA		
POWER PATH MANAGEMENT								
		Vsysri	EG[3:0]=0000	4.15	4.2	4.25		
Regulated System Output Voltage	$V_{IN} = 5.5V,$	Vsysri	=G[3:0]=1001	4.60	4.65	4.70	V	
Accuracy	Rsys=100Ω		 ∈g[3:0]=1111	4.90	4.95	5.00		

PARAMETER	TESTCONDITIONS	MIN	TYP	MAX	UNIT	
System Over Voltage Protection to Discharger	Vsys Rising, As Percentage of Vsys_REG		10		%	
V _{SYS_OVP} Hysteresis	Vsys Falling, As Percentage of Vsys_REG		5		%	
V _{SYS} Discharge Resistance	V _{SYS} > V _{SYS_OVP}		400		Ω	
	VINDPM[3:0]=0000	3.78	3.88	3.98		
Input Minimum Voltage Regulation	VINDPM[3:0]=1001	4.50	4.60	4.70	V	
	VINDPM[3:0]=1111	4.98	5.08	5.18		
	IN_ILIM[3:0]=0000 for I _{IN_LIM} =50mA	30	40	50		
	IN_ILIM[3:0]=0011 for I _{IN_LIM} =140mA	125	135	155		
Input Current Limiting	IN_ILIM[3:0]=1001 for I _{IN_LIM} =320mA	200	320	340	mA .	
	IN_ILIM[3:0]=1111 for I _{INDPM} =500mA	440	470	500		
IN to SYS Switch On Resistance	V _{IN} =4.5V, I _{SYS} =100mA		270		mΩ	
BATFET On Resistance	V _{IN} < 2V, V _{BAT} =3.5V, I _{SYS} =100mA		170		mΩ	
Battery Discharge Current Limit	IDISCHG[3:0] = 0001		400			
	IDISCHG[3:0] = 1001		2000		mA	
	IDISCHG[3:0] = 1111		3200		1	
Discharge Short Circuit Limit			3.7		А	
Maximum V _{IN} Current to Shutoff	V _{SYS} falling below V _{HSHORT}		360		mA	
VHSHORT (VSYS Short Detection Threshold)			1.5		V	
Delay Before Over Current Cut	CALL		60	\subset	μs	
Delay Before Retry After Cut	JULU	T	800		μs	
Ideal Diode Forward Voltage in	10m A Discharge Current		20		m\/	
Supplement Mode	10mA Discharge Current		20		mV	
DYNAMIC POWER MANAGEMENT AND	BATTERY SUPPLEMENT	1	1	ı	1	
SYS Drop For Lowering Charging			90		mV	
IN Drop For Lowering Charging			160		mV	
V _{SYS} - V _{BAT} Drop For Supplement			30		mV	
V _{SYS} - V _{BAT} Regulation in Supplement			22.5		mV	
V _{SYS} - V _{BAT} Drop For Exit Supplement			20		mV	
SHIPPING MODE AND BATFET RESET						
Enter Shipping Mode Deglitch Time	FET_DIS is set from 0 to 1,		1		s	
	EN_SHIPPING_DGL[1:0]=00					
Exit Shipping Mode by Push Button	nINT is pulled low		2		S	

PARAMETER	TESTCONDITIONS	MIN	TYP	MAX	UNIT		
Exit Shipping Mode by V _{IN} Plug-in			68		ms		
Decet has a INIT	trst_dgl[1:0] = 00		8				
Reset by nINT	trst_dgl[1:0] = 10		16		S		
DATEST ONL 11 T	trst_dgl[0] = 0		2		s		
BATFET Off Lasting Time	t _{RST_DGL [0]} = 1		4		8		
BATTERY CHARGER							
D. W. O. T. J. W. W.	VTERM[5:0] = 000000	3.582	3.60	3.618			
Battery Charge Termination Voltage	VTERM[5:0] = 101000	4.179	4.200	4.221	V		
Regulation (Aging and pre-condition drift included in 0°C~50°C)	VTERM[5:0] = 110010	4.358	4.380	4.402	V		
Included in 0.0 30.0)	VTERM[5:0] = 111110	4.522	4.545	4.568			
	ICHRG[5:0]=000000		8				
Fast Charge Current	ICHRG[5:0]=001011	91	96	101	^		
	ICHRG[5:0]=100000	251	264	277	mA		
	ICHRG[5:0]=111000	433	456	479			
Pre-Charge Current	I _{PRE} = I _{TERM}	1		31	mA		
	ITERM[3:0]=0000		1				
Ohanna Tannia dian Ohannad Thanahald	ITERM[3:0]=0001	2.7	3	3.3	mA		
Charge Termination Current Threshold	ITERM[3:0]=0101	10	11	12			
	ITERM[3:0]=1111	28	31	34			
Precondition to Fast Charge Threshold	Rising, VPRECOND = 1	2.9	3.0	3.1	V		
Precondition to Fast Charge Hysteresis	Falling	IT	90		mV		
Auto Dook and Make a Throughold	Below V _{TERM} , VRECHG = 0	70	100	130	\/		
Auto Recharge Voltage Threshold	Below V _{TERM} , VRECHG = 1	160	200	240	mV		
Termination Deglitch Time			200		ms		
Battery Auto-Recharge Deglitch Time			200		ms		
Fast Charge Safety Timer	CHG_TMR [1:0]=01, EN_TIMER = 1		5		hrs		
THERMAL PROTECTION							
Junction Temperature Regulation Range	I ² C programmable range	60		120	°C		
Junation Tamparatura Degulation	TJ_REG[1:0] =11 for Thermal		120		°C		
Junction Temperature Regulation	Regulation=120°C		120		C		
Thermal Shutdown Threshold			150		°C		
Thermal Shutdown Hysteresis			20		°C		

PARAMETER	TESTCONDITIONS	MIN	TYP	MAX	UNIT			
NTC Pin Output Current	V _{NTC} = 3V	-100	0	100	nA			
NTC Cold Temperature Threshold	V _{NTC} Rising , As percentage of V _{LDO}	63	65	67	%			
NTC Cold Temperature Hysteresis	V _{NTC} Falling , As percentage of V _{LDO}		30		mV			
NTC Hot Temperature Threshold	V _{NTC} Falling , As percentage of V _{LDO}	31	33	35	%			
NTC Hot Temperature Hysteresis	V _{NTC} Rising , As percentage of V _{LDO}		70		mV			
NTC Hot Temperature Threshold for PCB OTP	V_{NTC} Falling , As percentage of V_{LDO}	30	32	34	%			
NTC Hot Temperature Hysteresis for PCB OTP	V _{NTC} Rising , As percentage of V _{LDO}		85		mV			
LOGIC IO PIN SPECIFICATION, nINT, SC	L, SDA							
Input Low Logic Voltage Threshold	Falling			0.4	V			
Input High Logic Voltage Threshold	Rising	1.3			V			
Output Low Level	I _{SINK} = 5mA			0.4	V			
I ² C SPECIFICATION								
I ² C Clock Frequency				400	KHz			
WATCHDOG								
Watchdog Timer	WATCHDOG[1:0]=11		160		S			

NOTE: For lowering the bias current in the chip, and also to avoid biasing external circuit with output of nINT, the logic high level of the nINT should be a buffered level of an internal reference in range of 1.8~2.5V, at a roughly regulated voltage level.

PIN DESCRIPTION

PIN#	PIN NAME	TYPE	DESCRIPTION
A1	IN	Р	Input Power Pin. Place a ceramic capacitor from IN pin to GND as close as possible to this device.
A2	SYS	Р	System Power Supply. Place a ceramic capacitor from SYS pin to GND as close as possible to this device.
A3	BAT	Р	Battery Pin. Place a ceramic capacitor from BAT pin to GND as close as possible to IC.
B1	NTC	AIO	Battery Temperature Qualification Input Pin. Connect a negative temperature coefficient thermistor. Program temperature window with a resistor divider from VDD to NTC to GND. Charge suspends when either NTC pin is out of range. When NTC pin is not used, connect a $10\text{-k}\Omega$ resistor from VDD to NTC and connect a $10\text{-k}\Omega$ resistor from NTC to GND. Or NTC can be used like charge disable input pin.
B2	nINT	AIO	Interrupt Output and Battery FET Reset Input pin. The nINT pin sends charging status and fault notification to the host. This pin is also used to reset the system from the battery. Refer to "Interrupt to Host (nINT)" and "Battery Disconnection Function" sections for detail information.
В3	VDD	Р	Internal Control Power Supply Pin. Connect a 0.1µF ceramic cap from this pin to GND.
C1	SDA	DIO	I ² C Interface Data. Connect SDA pin to the logic rail through a 10kΩ resistor.
C2	SCL	DI	I ² C Interface Clock. Connect SCL pin to the logic rail through a 10kΩresistor.
C3	GND	Р	Ground Pin

NOTE: AIO = Analog Input /Output; DI = Digital Input; DO = Digital Output; DIO = Digital Input /Output; P = Power.

FUNCTIONAL BLOCK DIAGRAM

TYPICAL PERFORMANCE CHARACTERISTICS

 $(V_{IN} = 5V, V_{BAT} = 4.2V \text{ unless otherwise specified.}$ Typical values are at TA = 25°C.)

Battery Regulation Voltage vs. Temperature

 $VBAT_REG[5:0] = 101000, I_{BAT} = 10mA$

System Regulation Voltage vs. Temperature

 $VSYS_REG[3:0] = 0111, I_{VSYS} = 10mA$

(V_{IN} =5V, V_{BAT}=4.2V unless otherwise specified. Typical values are at TA = 25°C.)

Minimum Input Regulation Voltage vs. Temperature

Fast Charge Current vs. Temperature

Precondition Charge Current vs. Temperature

Input Current Limit Regulation vs. Temperature

Discharge Current Limit vs. Temperature

Termination Current vs. Temperature

(V_{IN} =5V, V_{BAT}=4.2V unless otherwise specified. Typical values are at TA = 25°C.)

Charging Profile Curve

CH1 = V_{IN},CH2 = V_{SYS},CH3 = V_{BAT},CH4 = I_{BAT}

Recharging Profile Curve

CH1 = V_{IN},CH2 = V_{SYS},CH3 = V_{BAT},CH4 = I_{BAT}

Minimum Input voltage regulation based PPM

CH1 = V_{IN},CH2 = V_{SYS},CH3 = I_{SYS},CH4 = I_{BAT}

Minimum Input voltage regulation based PPM

 $CH1 = V_{IN}, CH2 = V_{SYS}, CH3 = I_{SYS}, CH4 = I_{BAT}$

VIN Plug-in, Charge Start-Up Waveform

CH1 = V_{IN} , CH2 = V_{SYS} ,

 $CH3 = V_{BAT}, CH4 = I_{BAT}, nCE[] = 1$

VIN Plug-in, Charge Start-Up Waveform

CH1 = V_{IN} , CH2 = V_{SYS} ,

 $CH3 = V_{BAT}, CH4 = I_{BAT}, nCE[] = 0$

(V_{IN} =5V, V_{BAT}=4.2V unless otherwise specified. Typical values are at TA = 25°C.)

VIN Plug-in, Charge Start-Up to Supplement Waveform

$$CH1 = V_{IN}, CH2 = V_{SYS},$$

$$CH3 = V_{BAT}, CH4 = I_{BAT}, nCE[\] = 0$$

VIN Un-Plug, Charge Stop from Supplement Waveform

VIN Un-Plug, Charge Stop Waveform

CH1 =
$$V_{IN}$$
, CH2 = V_{SYS} ,
CH3 = V_{BAT} , CH4 = I_{BAT} , nCE[] = 0

Battery Insertion

$$CH1 = V_{IN}, CH2 = V_{SYS},$$

$$CH3 = V_{BAT}, CH4 = I_{BAT}, nCE[\] = 0$$

Battery Removal

$$CH1 = V_{VIN}, CH2 = V_{SYS},$$

$$CH3 = V_{BAT}, CH4 = I_{BAT}, nCE[\] = 0$$

(V_{IN} =5V, V_{BAT}=4.2V unless otherwise specified. Typical values are at TA = 25°C.)

NTC Voltage Rising in Charge Mode

CH1 = V_{SYS} , CH2 = V_{NTC} , CH3 = V_{nINT} , CH4 = I_{BAT} ,

nCE[] = 0, EN_NTC[] = 1, ENB_PCB_OTP[] = 1

NTC Voltage Falling in Charge Mode

CH1 = V_{SYS}, CH2 = V_{NTC},

CH3 = V_{nINT} , CH4 = I_{BAT} ,

nCE[] = 0, EN_NTC[] = 1, ENB_PCB_OTP[] = 1

PCB_OTP in Charge Mode

 $CH1 = V_{SYS}$, $CH2 = V_{NTC}$,

 $CH3 = V_{nINT}$, $CH4 = I_{BAT}$,

EN_NTC[] = 1, ENB_PCB_OTP[] = 0

PCB_OTP in Discharge Mode

CH1 = V_{SYS}, CH2 = V_{NTC},

 $CH3 = V_{nINT}$, $CH4 = I_{BAT}$,

nCE[] = 0, EN_NTC[] = 1, ENB_PCB_OTP[] = 0

OPERATION

General Description

The ETA4662 is a single cell battery charger with power path management function for Li-lon and Li-Polymer battery. It features pre-charging, fast charging (CC) and constant voltage (CV) charging, end-of charging termination, and auto-recharge, and built-in safe-timer preventing from being over-charged or host running out of control.

A bypass FET between VIN and SYS pin, and a battery switch FET between SYS and BAT pin is integrated for providing to complete power path management. System load is prior in getting power from the input or is switched to battery power when the input is weak or removed. Power to the battery is regulated by the battery switch FET during charging, while the input voltage, input current, voltage to system load, chip temperature and sensed external temperature are kept in priority.

错误未找到引用源。**1:** shows the power path and key circuit blocks in the ETA4662, where the Q_{BYPASS} regulates voltage to the system load and to the circuit for charging, the Q_{RVS} prevents reverse leakage from the SYS node to VIN node and the Q_{SWITCH} regulates for charging or gates the discharging from the BAT node to SYS node. The charging circuit and the discharging circuit have their own UVLO and bias, and the common circuit is powered by the higher voltage of the IN node or SYS node. The I/F is ready whenever any power is available.

The power fed to the SYS pin is recycled when watchdog times out, the host does not response to IN power input(when watchdog is forced on) or BFET_RESET[1] is set 1, to clear the running environment before system program upgrade or release from locked situations.

Figure 1: Power Path Management Structure

Input Detection

The device monitors the input at the VIN node. When the input is within the normal range certified by the UVLO circuit and OVP circuit for more than t_{INI} the charge circuit starts. The circuit stops or turns into OVP cut off instantly when the input voltage is lower than VIN_UVLO or is higher than VIN_OVLO, that the QBYPASS and QRVS are turned open.

错误未找到引用源。**2**: shows the timings relative to the input detection. The input state is certified after t_{INI} and stays for over t_{PWD} , the device outputs a pulse through the nINT. The nINT is internally pulled up to an unregulated reference voltage unless the battery is set into disconnected state. The nINT asserts pulse whenever an effective input change is certified, while the changes occurring within t_{PWM} do not assert pulse.

The watchdog timer register is set 01 once the valid input is detected and when a nINT pulse is asserted, which resumes its original setting when any writing to this device occurs. If the host does not reset the watchdog, power to the host is recycled when watchdog runs time out.

Figure 2: Input Power Detection and Operation Timings

Power Path Management

When the input is available $(V_{IN} > V_{IN_UVLO}, V_{IN} - V_{SYS} > V_{HDRM})$, the device intends to power the system load with input by regulating the input voltage to V_{SYS_REG} (V_{SYS} is decided by the input voltage, input current limit and battery voltage in reality). V_{SYS_REG} is programmed through REG07[3:0], The Q_{BYPASS} and Q_{SWITCH} are also manipulated by corresponding register bits, as showed in the 错误!未找到引用源。

Table 1. FET Control by I2C

FETs	EN_HIZ = 1	CEB = 1
QBYPASS	OFF	X
Qswitch (Charging)	X	OFF
Qswiтcн (Discharging)	X	X

NOTE: X = Don't Care.

Battery Charge Profile

The charging profile managed by the device is as shown in *错误!未找到引用源。***e3**, which is segmented as following phases:

Pre-charge: If the battery voltage is less than the pre-charging threshold V_{BAT_PRE}, it charges the battery with pre-charging current, which shares the same value of the termination current programmed ITERM[3:0].

Constant-Current Charge: When battery voltage is higher than V_{BAT_PRE}, and is less than V_{BAT_REG}, it is charged with constant current that is programmed ICC[5:0] and a bit to choose scale of the current, the CC_FINE in REG0A.

Constant-Voltage Charge: When the battery voltage rises close to the battery voltage VBAT_REG[5:0], the charge current begins to decreases until the termination situation is identified.

When the charging termination function EN_TERM set via REG05 D[4] = 1, the charge cycle is considered as completed when following termination condition is identified: 1. The charge current I_{CHG} reaches the termination current threshold I_{TERM}, for over t_{TERM_DGL}; 2. Charging safe timer runs out of time if this function is enabled set via the REG05[3].

The charge status is updated to charge done once the termination condition is identified. The charge current will be terminated when termination conditions are met if TERM_TMR is not set via REG05[0]; otherwise the charge current keeps tapering off when it is set by REG05[0]=1.

During the whole charging process, the actual charge current may be less than the register setting due to other loop regulations like dynamic power management (DPM) regulation (input voltage, input current), or thermal regulation.

A new charge cycle starts when any one of the following conditions are valid:

- The input power is recycled
- Battery charging is enabled by I²C
- Auto-recharge kicks in.

Under the following conditions:

- No thermistor fault at NTC.
- No safety timer fault.
- No battery over voltage event.
- The Qswitch is not forced to turn off

Figure 3: Battery Charge Profile

Battery Over-Voltage Protection

This device is designed with a built-in battery over-voltage limit about VBAT_OVP higher than the VBAT_REG. When the battery over-voltage event occurs, the device immediately suspends the charging and asserts a fault. A discharging path is turned on when the battery OVP keeps.

Input Current and Input Voltage Based Power Path Management

To meet the input source (USB usually) maximum current limit specification, the IC features the input current based power management by continuously monitoring the input current. The total input current limit can be programmed via the I2C to prevent the input source from over-loaded.

If the preset input current limit is higher than the rating of the input source, the back-up input voltage based power management also works to prevent the input source from being over-loaded. Either the input current limit or the input voltage limit is reached, the QBYPASS between IN and SYS pin will be regulated so that the total input power will be limited. As a result the system voltage drops, once the system declines to minimum value of the VSYS_REG - DVSYS_LOW and VIN - DVIN_LOW, the charge current will be reduced to prevent the system voltage from dropping further.

The voltage based dynamic power management (DPM) will regulate the input voltage to VIN_MIN when the load is over the input power capacity.

The VIN_MIN set via I²C should be at least 250mV higher than VBAT_REG to make sure the stable operation of the regulator.

Battery Supplement Mode

As mentioned above, the charge current is reduced to keep the input current or input voltage in regulation when DPM happens. If the charge current is reduced to zero and the input source is still overloaded due to heavy system load, the system voltage starts to decrease. Once the system voltage falls V_{SYS-BAT_LOW} below the battery voltage, the device enters battery supplement mode and the ideal diode mode will be enabled. The Qswitch is regulated to maintain the V_{BAT}-V_{SYS} at V_{SYS-BAT_REG} when I_{DSCHG} (supplement current) × R_{ON_BAT} is lower than V_{SYS-BAT_REG}, in the case the I_{DSCHG} x R_{ON_BAT} is higher than V_{SYS-BAT_REG}, the Qswitch is fully turned on to keep ideal forward voltage. During system load decreasing, once V_{SYS} is higher than V_{BAT} + V_{SYS-BAT_HIGH}, the ideal diode mode will be disabled. 错误!未找到引用源。 shows the dynamic power management and battery supplement mode operation profile.

When VIN is not available, the device operates in discharge mode, the Qswitch is always fully on to reduce the loss.

Figure 4: Dynamic Power Management and Battery Supplement Operation Profile

Battery Regulation Voltage

The battery voltage for the constant voltage regulation phase is V_{BAT_REG} . When battery is float, the BAT pin voltage varies between V_{BAT_REG} - V_{RECH} and V_{BAT_REG} .

Thermal Regulation and Shutdown

The device continuously monitors the internal junction temperature to maximize power delivery and avoid overheating the chip. When the internal junction temperature reaches preset limit of T_{J_REG} , the device starts to reduce the charge current to prevent higher power dissipation. The programmable thermal regulation thresholds help system design to meet the thermal requirement in different applications. The junction temperature regulation threshold can be set via T_{J_REG} [1:0].

When the junction temperature reaches T_{J_SHDN} that is slightly higher than most high programmable thermal regulation temperature threshold, both the Q_{BYPASS} and Q_{SWITCH} are turned off.

NTC Sensing and VDD Gating

The NTC pin allows the device to sense the battery temperature using the thermistor usually available in the battery pack to ensure a safe operating environment of the chip. A resistor with appropriate value should be connected from VDD pin to NTC pin and the thermistor is connected from NTC pin to ground. The voltage on NTC pin is determined by the resistor divider whose divide ratio depends on temperature. The device internally sets a pre-determined upper and lower bound of the divide ratio for NTC cold and NTC hot.

In ETA4662, I²C default setting is the PCB OTP; user can change the function through I²C:

Table 2. NTC Function Selection

I ² C CON	I ² C CONTROL					
EN_NTC	EN_PCB OTP	FUNCTION				
0	Х	Disable				
1	1	NTC				
1	0	PCB OTP				

The VDD powering from battery when not powered by the supply applied on the IN pin is gated via setting a register bit DIS VDD.

When PCB OTP is selected, if the NTC pin voltage is lower than the NTC hot threshold, both the Q_{BYPASS} and Q_{SWITCH} are off. The PCB OTP fault also will set the NTC_FAULT status to 1 to show the fault. The operation will resume once the NTC pin voltage is higher than the NTC hot threshold.

NTC function only works in charge mode. Once NTC pin voltage falls out of this divide ratio which means the temperature is outside the safe operating range, the device will stop the charging and report it on status bits. Charging will automatically resume after the temperature falls back into the safe range.

Safety Timer

The device provides both the pre-charge and charge safety timer to prevent extended charging cycle due to abnormal battery conditions. The safety timer is 1hr when battery voltage is lower than V_{BAT_PRE}. The charge safety timer starts when the battery enters constant-current or constant-voltage charge. The user can program charge safety timer through I²C. The safety timer feature can be disabled via I²C.

The following actions restart the safety timer:

- A new charge cycle is kicked in.
- Write REG01[3] from 1 to 0 (charge enable)
- Write REG05[3] from 0 to 1 (safety timer enable)
- Write REG02[7] from 0 to 1 (software reset)
- Write REG0A[4] from 0 to 1 (software power recycle)

Host Mode and Default Mode

Upon power on reset, the device starts in the watchdog timer expiration state, or default mode. All the registers are in the default settings, when the EN_HIZ = 0, CEB = 1, power input and battery discharge are enabled.

Watchdog timer works in both charge and discharge mode. When the watchdog timer runs time out, the power to load system recycles by cutting off the Qswitch and Qbypass for the default of trst_durant all the registers in this device reset to the default value.

And to save the quiescent current during discharge mode, the watchdog timer can be turned off during discharge mode by set the EN WD DISCHG bit to 0.

Any write to the device transits it to host mode. If the watchdog timer (WATCHDOG[1:0]) is not disabled, the host has to reset the watchdog timer regularly by writing 1 to REG02 WD_RST bit before the watchdog timer expires to keep the device in host mode. Once the watchdog timer expires, the device goes back into default mode. The watchdog timer limit can also be programmed or disabled by host control.

When the WATCHDOG[1:0] is set to 00, then the watchdog timer is disabled under both charge mode and discharge mode no matter EN WD DISCHG status is.

The operation could also be turned to default mode when one of the following conditions are valid:

- Refresh input without battery
- Re-insert battery with no VIN
- Register reset REG_RST bit is set 1

Battery Discharge Function

If battery is connected and the input source is missing, the Q_{SWITCH} is fully on when VBAT is above the VBAT_UVLO threshold. The low Ron Q_{SWITCH} minimizes the conduction loss during discharge. The quiescent current of the device is as low as 6μA in this mode. By setting REG0A[3] = 1, the Q_{SWITCH} keeps on with sensing circuit off, to further reduce the quiescent current to below 1μA. The low on-resistance and low quiescent current help extend the running time.

Over-Discharge Current Protection

The over-discharge current protection is effective in discharge mode and supplement mode. Once the IBAT exceeds discharge current limit programmed through the REG03[7:4], the Q_{SWITCH} cuts off after t_{DSCHG_CUT} and the device resumes conducting after t_{RETRY}. Besides, if the discharge current goes high to hit IDSCHG_S, the Q_{SWITCH} cuts off instantly.

When the battery voltage falls below VBAT_UVLO programmed through the REG01[2:0], the QSWITCH cuts off to prevent over discharge.

When REG0A[3] is set 1, the Qswitch is forced on and the over-discharge is not sensed during battery discharge. The REG0A[3] is reset 0 when effective power input to the IN applied. If the REG0A[3] is set when only the power input applied, attaching to detaching the battery does not make any change to the status.

System Short Circuit Protection

When system short circuit occurs, the QSWITCH cuts the BAT to SYS path and the QBYPASS limits the current input through the IN to SYS path. If the system short circuit remains, the die temperature goes high to cause thermal shut down.

The ETA4662 features V_{SYS} node short circuit protection for both V_{IN} to V_{SYS} path and BAT to VSYS path.

- V_{IN} to V_{SYS} path: The ETA4662 starts activate hard short protection after V_{SYS} goes greater than 1.5V once. This means the IC allows to start-up with full current limit. Once this condition occurs, if V_{SYS} falls below 1.5V, and I_{IN} is found over the protection threshold, Q_{SWITCH}, Q_{BYPASS} and Q_{RVS} are turned off immediately. And the operation of the IC goes into the hiccup mode. Beside hard short protection, at any time V_{SYS} is lower than 1.5V, while the setting input current limit is reached, I_{IN} is regulated at I_{IN_LIM} the hiccup mode also starts after a 60µs delay. The interval of the hiccup mode is 800us.
- BATT to SYS path: Once IBAT is found over the 3.7A protection threshold, both the LDO FET and the BATT FET are
 turned off immediately and the operation of the IC goes into the hiccup mode. Besides, while the battery discharge
 current limit threshold is reached, the hiccup mode also starts after a 60μs delay. The interval of the hiccup mode is
 800μs
- Particularly, if the system short circuit happens when both input and battery are present, the protection mechanism of both paths will work, the faster one dominates the hiccup operation.

Interrupt to Host (INT)

This device also has an alert mechanism which can output an interrupt signal via nINT pin to notify the system on the operation by outputting low for $t_{\text{INT_PULSE}}$. Any of the events listed below triggers the nINT output.

- Good input source detected
- UVLO or input over voltage detected
- Charge completed
- Charging status change

Any fault recorded in REG09 (input fault, thermal fault, safety timer fault, battery OVP fault, NTC fault) and in REG08[7]
occurs.

When any fault occurs, this device sends out nINT pulse and latches the fault state in register bits correspondingly. After the device quit the fault state, the fault bit could be released to 0 after the host reads. The NTC fault is not latched and always reports the current thermistor conditions.

The INT signal can be masked when the corresponding control bit is set, which means, even the event which causes the INT signal happened, user can just keep the nINT high when the INT signal is not acceptable in the application, via setting the INT control bit in REG06[4:0].

The nINT is pulled up to an unregulated low voltage that is not high enough to most logic circuit (in the circuit the device loads), to avoid unexpected creeping powering and leakage during power recycling and in shipping mode; the nINT is pulled up to a high voltage in other states. Both the low voltage and high voltage are internally generated and pull up is weak and could be over-driven externally.

Battery Disconnection Function

In the application that the battery is not removable, it's essential to disconnect the battery from the system for shipping mode in stock or to allow the recycle of the system power during the application. ETA4662 provides both shipping mode (shown in Table 3) and system power recycling for different applications.

Table 3. Shipping Mode Control

	ENTER SHIPPING MODE	EXIT SHIPPING MODE			
ITEMS	FET_DIS = 1	nINT Pin H to L for 2s	VIN Plug In		
LDO FET	X (To disable LDO FET (VIN to VSYS), set EN_HIZ[]=1)	X	ON		
Qswiтcн (Charging)	OFF	ON	ON (2s Later)		
Qswiтcн (Discharging)	OFF	ON	ON (2s Later)		

NOTE: x = Don't Care.

The FET_DIS bitfor battery disconnection control. If this bit is set to 1, it enters shipping mode after a delay time, which can be programmed by EN_SHIP_DGL[1:0], the QSWITCH turns off and the FET_DIS bit refresh to 0 after the QSWITCH is off. Pulling down nINT pin or VIN is detected, the device wakes up from shipping mode.

This device can also reuse nINT pin or watchdog overflow signal to cut off the path from battery to system under the condition need to recycle the system power. Once the logic at nINT pin set to low for more than $t_{\text{INT_OFF}}$ which can be programmed via $t_{\text{RST_DGL}}$ or watchdog time is overflow, the battery is disconnected from the system by turning off the Q_{SWITCH} and Q_{BYPASS} , the off state lasts for $t_{\text{INT_ON}}$ which can be programmed via $t_{\text{RST_DUR}}$, then the Q_{SWITCH} and Q_{BYPASS} will be automatically turned on and system is powered again. During the off period, the nINT pin is biased to a lower voltage.

The waveforms of power recycling are shown in 错误!未找到引用源。5.

Figure 5. Power Recycling Waveforms

OPERATION DIAGRAM

Main State Machine

Figure 6: State Machine Conversion

HOST Control Flow Chart

Figure 7: Default Mode and Host Mode Selection

Charger Flow Chart

Figure 8: Charger Flow Chart

System Short Circuit Protection

Figure 9: System Short Circuit Protection

APPLICATION INFORMATION

Resistor Choose for NTC Sensor for Battery Temperature Monitor

NTC pin uses a resistor divider from input source (VDD) to sense the battery temperature. The two resistors RT1 and RT2 allow the high temperature limit and low temperature limit to be programmed independently, as shown in Figure. In other word, this device can fit most type of NTC resistor and different temperature operation range requirement with the two extra resistors.

Figure 10: NTC Function Block

For a given NTC thermistor, RT1 and RT2 values depend on the type of the NTC resistor and can be calculated with following equations:

$$R_{T2} = \frac{(V_{COLD} - V_{HOT}) \times R_{NTCH} \times R_{NTCL}}{(V_{HOT} - V_{COLD} \times V_{HOT}) \times R_{NTCL} - (V_{COLD} - V_{COLD} \times V_{HOT}) \times R_{NTCH}}$$

$$R_{T1} = \frac{1 - V_{COLD}}{V_{COLD}} \times \frac{R_{T2} \times R_{NTCL}}{R_{T2} + R_{NTCL}}$$

Where R_{NTCH} is the value of the NTC resistor at high temperature of the required temperature operation range, and R_{NTCL} is the value of the NTC resistor at low temperature.

Resistor Choose for NTC Sensor for HOT PCB Temperature Monitor

ETA4662 features PCB temperature monitor function. When this function is set, Function will operate in both Charge and Discharge Mode and COLD detect is invalid. Same equations with Battery Temperature Monitor will be used normally.

External Capacitor Selection

Like most low-dropout regulators, the ETA4662 requires external capacitors for regulator stability and voltage spike immunity. The device is specifically designed for portable applications requiring minimum board space and smallest components, these capacitors must be correctly selected for good performance.

Input Capacitor

An input capacitor is required for stability, at least, a 1μ F capacitor has to be connected between IN to GND for stable operation over full load current range. Basically, it is OK to have more output capacitance than input, as long as the input is at least 1μ F.

Output Capacitor

This device is designed specifically to work with a very small ceramic output capacitor. A ceramic capacitor (dielectric types X5R or X7R) $>2.2\mu$ F is suitable in the ETA4662 application circuit. For this device, the output capacitor should be connected between VSYS pin and GND pin with thick trace and small loop area.

BAT to GND Capacitor

The capacitor from the BAT pin to GND pin is also necessary for ETA4662. A ceramic capacitor (dielectric types X5R or X7R) >2.2µF is suitable for the ETA4662 application circuit.

VDD to GND Capacitor

The capacitor between VDD and GND is used to stabilize the VDD voltage to power the internal control and logic circuit. The typical value of this capacitor is 100nF.

PCB Layout Guideline

Put external capacitors as close to this device as possible to make sure the smallest input inductance and the ground impedance. The PCB trace to connect the capacitor between VDD and GND is very important, and it should be put very close to this device.

The GND for the I²C wire should be clean, and it should not be very close to the GND. I²C wire should be put in parallel.

EVALUATION KIT DESIGN

Table 4: ETA4662 EVKIT BOM List

QTY	DEVICE	VALUE	DESCRIPTION	PACKAGE	RECOMMENDED MANUFATURE	
1	C1	1µF	20V Ceramic Capacitor (X5R or X7R)	0603	TBD	
2	C2, C4	2.2µF	10V Ceramic Capacitor (X5R or X7R)	0603	TBD	
2	C3, C5	4.7µF	10V Ceramic Capacitor (X5R or X7R)	0603	TBD	
1	C6	100nF	10V Ceramic Capacitor (X5R or X7R)	0603	TBD	
1	R1, R2,	15kΩ	Resistor	0603	TBD	
4	R3, R4	13K22	Resistor	0003	טפו	
1	PB		Push Button		TBD	

I²C REGISTER MAP

I²C Address is set 0ExH as default and can be programmable after power up by change ADDR[2:0] bits.

Table 5: Register General Description

REGISTER NAME	ADDRESS	RD/WR	DESCRIPTION	DEFAULT
REG00	00xH	RD/WR	Input Source Control Register	1001 1111
REG01	01xH	RD/WR	Power on configuration register	1010 1100
REG02	02xH	RD/WR	Charge Current Control Register	0000 1111
REG03	03xH	RD/WR	Dis-charge/ Termination Current	1001 0001
REG04	04xH	RD/WR	Charge Voltage Control Register	1010 0011
REG05	05xH	RD/WR	Charge Termination/Timer Control Register	0111 1010
REG06	06xH	RD/WR	Miscellaneous Operation Control Register	1100 0000
REG07	07xH	RD/WR	System Voltage Regulation Register	0011 0111
REG08	08xH	RD	System Status Register	0000 0000
REG09	09xH	RD	Fault Register	0000 0000
REG0A	0AxH	RD/WR	I ² C Address and Miscellaneous Configuration Register	1110 0000
REG0B	0BxH	RD	Device ID Register	0000 0000

Table 6: Input Source Control Register - Memory Location: 00xH. Reset State: 1001 1111

BIT	NAME	POR	RESET BY	RD/WR	FUNCTION	NOTE
7		1	REG_RST	RD/WR	640mV	Range: 3.88V – 5.08V
6	V [2.0]	0	REG_RST	RD/WR	320mV	Default:4.6V(1001)
5	VINDPM[3:0]	0	REG_RST	RD/WR	160mV	Offset:3.88V
4		1	REG_RST	RD/WR	80mV	
3		1	REG_RST	RD/WR	240mA	Range: 50mA – 500mA
2	1 [2.0]	1	REG_RST	RD/WR	120mA	Default:500mA(1111)
1	I _{IN_LIM} [3:0]	1	REG_RST	RD/WR	60mA	Offset:50mA
0		1	REG_RST	RD/WR	30mA	

Table 7: Power On Configuration Register - Memory Location: 01xH. Reset State: 1010 1100

BIT	NAME	POR	RESET BY	RD/WR	FUNCTION	NOTE
7		1	REG_RST	RD/WR	00: 8s	
	T (1:0)	I	WD_RST	ND/WN	01: 12s	Pull INT low time period to
6	T _{RST_DGL} [1:0]	0	REG_RST	RD/WR	10: 16s (Default)	disconnect the battery.
		U	WD_RST	KD/WK	11: 20s	
5	T	REG_RST PRAYE		RD/WR	0: 2s	The QBYPASS and QSWITCH Lasts Off
	T _{RST_DUR}	I	WD_RST	KD/WK	1: 4s (Default)	Time Before Auto-On
4	EN HIZ	0	REG_RST	RD/WR	0: Enabled	Default: Enable(0)
4	EN_HIZ	U	WD_RST	KD/WK	1: Disabled	Delauit. Eliable(0)
3	CED	1	REG_RST	RD/WR	0: Charge Enable	Default:
<u> </u>	CEB	l	WD_RST	RU/WR	1: Charge Disabled	Charge Disable(1)

2		1	REG_RST WD_RST	RD/WR	360mV	Battery UVLO Threshold:
1	V _{BAT_UVLO} [2:0]	0	REG_RST WD_RST	RD/WR	180mV	Range: 2.4V – 3.03V Default:2.76V(100)
0		0	REG_RST WD_RST	RD/WR	90mV	Offset:2.4V

Table 8: Charge Current Control Register - Memory Location: 02xH. Reset State: 0000 1111

	blasse	1			T	NOTE
BIT	NAME	POR	RESET BY	RD/WR	FUNCTION	NOTE
7	REG_RESET	0	REG_RST	RD/WR	0: Keep current setting 1: Reset	Once write REG_RST[] = 1, longer than 10ms needed before write REG_RST[] = 0. In the time between these 2 actions, can write or read anything else
6	WD DECET	0	REG_RST	RD/WR	0: Normal	Default: Normal(0)
0	WD_RESET	U	WD_RST	KD/WK	1: Reset	Default: Normal(0)
5		0	REG_RST WD_RST	RD/WR	256mA	
4		0	REG_RST WD_RST	RD/WR	128mA	
3		1	REG_RST WD_RST	RD/WR	64mA	Fast Charge Current setting: Range:8mA-456mA(111000)
2	Існв	1	REG_RST WD_RST	RD/WR	32mA	Default:128mA(001111) Offset:8mA
1		1	REG_RST WD_RST	RD/WR	16mA	
0		1	REG_RST WD_RST	RD/WR	8mA	ITIONS

Table 9: Dis-charge/ Termination Current Register - Memory Location: 03xH. Reset State: 1001 0001

BIT	NAME	POR	RESET BY	RD/WR	FUNCTION	NOTE
7		1	REG_RST	RD/WR	1600mA	
		I	WD_RST	KD/WK	TOUUTIA	DAT to CVC Discharge Current Limit
6		0	REG_RST	RD/WR	800mA	BAT to SYS Discharge Current Limit Configuration:
	lpoous[3:0]	U	WD_RST	ND/WN	OUUIIA	Range: 400mA – 3.2A Default:2A(1001) Offset:200mA
5	l _{DSCHG} [3:0]	0	REG_RST	RD/WR	400mA	
		0	WD_RST	ND/WIX		
4		1	REG_RST	RD/WR	200mA	Oliset.20011A
4		ı	WD_RST	ND/WN	ZOUTIA	
3		0	REG_RST	RD/WR	16mA	Termination and Precondition
	J==0[3:0]	l I WD RST I		ND/WIX	TOTIA	Current configuration:
2	I _{TERM} [3:0]	0	REG_RST	RD/WR	8mA	Range:1mA – 31mA
		U	WD_RST	ND/WK	OIIIA	Default: 3mA(0001)

1	0	REG_RST WD_RST	RD/WR	4mA	Offset:1mA
0	1	REG_RST WD_RST	RD/WR	2mA	

Table 10: Charge Voltage Control Register - Memory Location: 04xH. Reset State: 1010 0011

BIT	NAME	POR	RESET BY	RD/WR	FUNCTION	NOTE	
7		1	REG_RST WD_RST	RD/WR	480mV		
6		0	REG_RST WD_RST	RD/WR	240mV	5 T	
5	V [E:0]	1	REG_RST WD_RST	RD/WR	120mV	Battery Termination Voltage Configuration Range:3.6V – 4.545V Default: 4.2V(101000) Offset:3.6V	
4	VBAT_REG[5:0]	REG[5.0]	REG_RST WD_RST	RD/WR	60mV		
3		0	REG_RST WD_RST	RD/WR	30mV		
2		0	REG_RST WD_RST	RD/WR	15mV		
1	V _{BAT_PRE}	1	REG_RST WD_RST	RD/WR	0: 2.8V 1: 3V(Default)	Pre-charge to Fast Charge Threshold: Rising Threshold	
0	V _{RECH}	1	REG_RST WD_RST	RD/WR	0: 100mV 1: 200mV (Default)	Battery Recharge Threshold: Delta voltage below V _{BAT_REG}	

Table 11: Charge Termination/Timer Control Register - Memory Location: 05xH. Reset State: 0111 1010

BIT	NAME	POR	RESET BY	RD/WR	FUNCTION	NOTE	
7	EN_WD_DISCHG	0	REG_RST	RD/WR	0:Disable(Default)	Watchdog Control in Discharge	
					1: Enable	Mode	
6	WATCHDOG[1:0]	1	REG_RST	RD/WR	00:Disable 01:40s	Default: 160c/11)	
5	WATCHDOG[1.0]	1	REG_RST	RD/WR	10:80s 11:160s	Default: 160s(11)	
4	EN TERM	1	REG_RST	RD/WR	0:Disable	Charge Termination Enable	
4	EN_IERW	I	WD_RST	KU/WK	1:Enable(Default)	Charge remination Lhable	
3	EN TIMER	1	REG_RST	RD/WR	0:Disable	Safety Timer Configuration	
J	EN_TIMER	I	WD_RST	NUIVIN	1:Enable(Default)	Salety Timer Configuration	
2	CHG_TMR [1:0]	0	REG_RST	RD/WR	00:3hrs 01:5hrs	Default Fast Charge Timer:	
1		1	WD_RST	RD/WR	10:8hrs 11:12hrs	5hrs(01)	
0	TERM TMR	0	REG_RST	RD/WR	0:Disable (Default)	Termination Timer Control	
0	I ENIVI_ I IVIK	U	WD_RST	אוועא	1:Enable		

Table 12: Miscellaneous Operation Control Register	-	Memory Location: 06xH. Reset State: 1100 0000
--	---	---

BIT	NAME	POR	RESET BY	RD/WR	FUNCTION	NOTE	
7	EN_NTC	1	REG_RST	RD/WR	0: Disable	Battery Thermal Monitor	
	LIV_IVIO	ı	WD_RST RD/WR		1: Enable (Default)	Enable	
			REG_RST		0: Normal safety timer	Enable long Charger Timer	
6	TMR2X_EN	1	WD RST	RD/WR	1: 2X extended safety	Fault in DPM	
			WD_NOT		timer (Default)	T duit iii Di Wi	
5	BFET_DIS	0	REG_RST	RD/WR	0: Enable(Default)	Battery FET Qswitch Disable	
	DI L1_DI3	O	NEG_NOT	IND/WIN	1: Disable	Dattery I LT QSWITCH DISable	
4	PG_INT_CTL	0	REG_RST	RD/WR	0: No Mask (Default)	Mask Power Good to nINT	
	10_1111_012	U	WD_RST	IND/WIN	1: Mask	Indication	
3	EOC_INT_CTL	0	REG_RST	RD/WR	0: No Mask (Default)	Charge Complete to nINT	
	LOC_INT_CTL	O	WD_RST	IND/WIN	1: Mask	Indication	
2	CHG_STAT_INT_CTL	0	REG_RST	RD/WR	0: No Mask (Default)	Charge Status Change to	
	CHG_STAT_INT_CTL	O	WD_RST	ND/WN	1: Mask	nINT Indication	
1	NTC_INT_CTL	0	REG_RST	RD/WR	0: No Mask (Default)	NTC Fault to nINT Indication	
	NIO_INI_CIL	O	WD_RST	IND/ WIN	1: Mask	INTO FAUIL TO THINT INCICATION	
0	BATTOVP_INT_CTL	0	REG_RST	DD/M/D	0: No Mask (Default)	Battery OVP to nINT	
U	DATIOVE_INT_CIL	U	WD_RST	RD/WR	1: Mask	Indication	

Table 13: System Voltage Regulation Register - Memory Location: 07xH. Reset State: 0011 0111

BIT	NAME	POR	RESET BY	RD/WR	FUNCTION	NOTE
7	ENB PCB OTP	0	REG_RST	RD/WR	0: Enable (Default)	PCB Over-Temperature Protection
	ENB_FCB_OTF	U	WD_RST	ND/WN	1: Disable	Function
6	DIS VINDPM	0	REG_RST	RD/WR	0: Enable (Default)	Enable VIN DPM Loop
	DI3_VIINDFINI	U	WD_RST	ND/WN	1: Disable	Enable VIII DEW Loop
5		1	REG_RST	RD/WR	00: 60°C	IIUIVS
	TJ_REG[1:0]		WD_RST	ND/WN	01: 80 °C	Thermal Regulation Threshold
4	13_KEG[1.0]	1	REG_RST	RD/WR	10: 100 ° C	Configuration
		ı	WD_RST	ND/WN	11: 120°C (Default)	
3		0	REG_RST	RD/WR	400mV	System Voltage Regulation
2	V _{SYS_REG} [3:0]	1	REG_RST	RD/WR	200mV	Configuration: Range:4.2V – 4.95V
1		1	REG_RST	RD/WR	100mV	Default:4.55V
0		1	REG_RST	RD/WR	50mV	Offset:4.2V

Table 14: System Status Register - Memory Location: 08xH. Reset State: 0000 0000

BIT	NAME	POR	RESET BY	RD/WR	FUNCTION	NOTE
7	WTD FAULT	0	N/A	RD	0: Normal	I ² C Watchdog Timer Fault
1	WID_FAULI	U	IN/A	עא	1: Watchdog Timer Expiration	Status
6	NO_IN_ILIM	0	N/A	RD	0: Use IN_ILIM 1: Disable IN_ILIM	VIN Current Limit
5	ILIM_ADD200mA	0	N/A	RD	0: Normal IN_ILIM 1: Add 200mA	VIN Current Limit

4	CHG_STAT[1:0]	0	N/A	RD	00: Not Charging 01: Pre Charge	Charge Status	
3	CHG_STAT[1.0]	0	N/A	RD	10: Charge 11: Charge Done	Charge Status	
2	PPM STAT	0	N/A	RD	0: Not in PPM	Power Management	
2	PPW_STAT	O	IN/A	ΚD	1: In PPM	Status	
1	PG STAT	0	N/A	RD	0: Power Fail	Power Good Status	
	FG_STAT	0	IN/A	ΝD	O: Not in PPM 1: In PPM Status O: Power Fail 1: Power Good O: No Thermal Regulation Thermal Regulation		
0	THERM STAT	0	N/A	RD	0: No Thermal Regulation	Thermal Regulation	
U	HIERW_STAT	J	IN/A	אט	1: In Thermal Regulation	Status	

Table 15: Fault Register - Memory Location: 09xH. Reset State: 0000 0000

BIT	NAME	POR	RESET BY	RD/WR	FUNCTION	NOTE		
7	EN CHID DOL(1/0)	0	REG_RST	RD/WR	00: 1s (Default) 01: 2s	Enter Shipping Mode Deglitch		
6	EN_SHIP_DGL[1:0]	0	REG_RST	RD/WR	10: 4s 11: 8s	Time Configuration		
					0: Normal			
5	VIN_FAULT	0	N/A	RD	1: Input fault (OVP or bad	VIN Condition Status		
					source)			
4	THEM_SD	0	N/A	RD	0: Normal	Thermal Shutdown Status		
	TTILIN_3D	U	IN/A	ND	1: Thermal Shutdown	Thermal Shuldown Status		
3	BAT_FAULT	0	N/A	RD	0: Normal	Battery Status		
	DAT_LAULT	U	IN/A	ND	1: Battery OVP	Dallery Status		
2	STMR_FAULT	0	N/A	RD	0: Normal	Safety Timer Status		
	OTMICT AGET	Ů	IN/A	ND	1: Safety Timer Expiration	Odlety Tillier Status		
	140				0: Normal	NTC Pin in HOT Condition:		
1	NTC_HOT	0	N/A	RD	1: HOT Condition	Always be '0' when PCB_OTP		
					1. HOT Condition	Function is set.		
	NTC_COLD			RD	0: Normal	NTC Pin in COLD Condition:		
0		0	N/A		1: COLD Condition	Always be '0' when PCB_OTP		
					1. GOLD CONTRICT	Function is set.		

Table 16: Address OTP Register - Memory Location: 0AxH. Reset State: 1110 0000

BIT	NAME	POR	RESET BY	RD/WR		FUNCTION	NOTE		
7		1		RD	000: 00H	001: 02H	010: 04H	I ² C Address	
6	ADDR[2:0]	1	N/A	RD	011: 06H	100: 08H	101: 0AH		
5		1		RD	110: 0CH 111: 0EH(Default)			Configuration	
4	COLD_RESET	0	N/A	RD/WR	BATFET Re 0: Not Rese 1: Reset BA	t BATFET	Auto cleared after BATFET Reset		
3	SWITCH_MODE	0	REG_RST	RD/WR	0: Normal Power Path 1: For BATFET On without Current Limit			Force SWITCH Mode:	
2	DIS_VDD	0	REG_RST	RD/WR		Battery Power attery Power	VDD Output Voltage Pin Setting:		

1	DIC MINOMB	0	REG RST	RD/WR	1:Disable Lock Out Disable 0: Keep default ICHRG as ICHRG[5:0] defined Finer turn charge 1: Program ICHRG with all specs of current	
ı	DIS_VINOVP	0	REG_RSI	RD/WR		Lock Out Disable
0					0: Keep default ICHRG as ICHRG[5:0]	
	CC FINE	_	N/A	DD MAD	defined	Finer turn charge
	CC_FINE	0	IN/A	RD/WR	1:Disable Lock Out Disable 0: Keep default ICHRG as ICHRG[5:0] defined Finer turn charge	
					ICHRG[5:0] divided by 4.	

Table 17: ETA Solution Part Identify - Memory Location: 0BxH. Reset State: 00000000

BIT	NAME	POR	RESET BY	RD/WR	FUNCTION	NOTE			
7		0	N/A	RD					
6		0	N/A	RD					
5		0	N/A	RD					
4	ETA CODEIZO		N/A	RD	0000 0000: ETA4662 All Other: Wrong IC	Identification Code			
3	ETA_CODE[7:0]		N/A	RD					
2		0	N/A	RD					
1		0	N/A	RD					
0		0	N/A	RD					

PACKAGE OUTLINE DIMENSIONS

FCQFN-9L 1.75x1.75mm

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ETA4662FQFJ	QFN1.75*1.75-9	9	3000	178	9.5	2.00	2.00	0.50	4	8	Q1