

ÉTUDE DE SPECTRES INFRAROUGES DE GÉANTES ROUGES ÉVOLUÉES

Margaux Vandererven

Supervisé par Sophie Van Eck

Étoiles de type S & étoiles à baryum

 T_{eff} étoiles S $\sim T_{eff}$ étoiles K et M Bandes ZrO & enrichissement en éléments s

- de type S intrinsèques (Tc rich)
- de type S extrinsèques (Tc poor)
- à baryum

Structure interne d'une étoile AGB

Processus s

+ de 50% éléments plus lourds que le fer

Spectre observé

Spectre infrarouge :

IGRINS (Immersion GRating INfrared Spectrometer)

Haute résolution : $R = \frac{\lambda}{\Delta \lambda} \sim 45000$

- Bande H (1.45 1.80 μ m)
- Bande K $(2.05 2.50 \ \mu m)$

Réduction, correction tellurique, première normalisation par Chris Sneden.

Seconde normalisation et correction redshift par moi-même.

Série d'étoiles

Étoile	Type spectral	T _{eff} (K)	$\log g \text{ (cm } s^{-2}\text{)}$	$\xi_{ m micro}$ (km s $^{-1}$)	[Fe/H] (dex)
HD 60197	K3.5III:Ba3.5	$3800 \pm 50^{(3)}$	$2.00 \pm 0.50^{(3)}$	2.00 ⁽³⁾	$-0.60 \pm 0.20^{(3)}$
HD 63733	S3.5/3	3700 ⁽¹⁾	$1.00^{(1)}$	-	$-0.10\pm0.13^{(1)}$
CR Cir	S6,2	-	-	-	-
HD 123949	K1pBa	$4378 \pm 80^{(3)}$	$1.78 \pm 0.53^{(3)}$	1.37 ⁽³⁾	$-0.31\pm0.13^{(3)}$
BD-22°1742	S3:*3	4000 ⁽¹⁾	$1.00^{(1)}$	-	$-0.30 \pm 0.09^{(1)}$
CD-29°5912	S4,4	3600 ⁽⁴⁾	1.00(4)	-	$-0.40 \pm 0.22^{(4)}$
BD-18°2608	S	3500 ⁽²⁾	$1.00^{(2)}$	-	$-0.31 \pm 0.16^{(2)}$
HD 116869	G8III:Ba1	$4892 \pm 30^{(3)}$	$2.59 \pm 0.07^{(3)}$	$1.38 \pm 0.04^{(3)}$	$-0.44 \pm 0.09^{(3)}$
HD 120620	K0III (Ba ⁽³⁾)	$4831 \pm 13^{(3)}$	$3.03 \pm 0.30^{(3)}$	$1.11 \pm 0.05^{(3)}$	$-0.30\pm0.10^{(3)}$
HD 121447	$K4III^{(3)}$ (Ba ⁽³⁾)	$4000 \pm 50^{(3)}$	$1.00 \pm 0.50^{(3)}$	2.00(3)	$-0.90\pm0.13^{(3)}$
HD 100503	G/KpBa	$4000 \pm 50^{(3)}$	$2.00 \pm 0.50^{(3)}$	$2.00^{(3)}$	$-0.72 \pm 0.13^{(3)}$
HD 119185	G8IIIpBa	-	-	-	-
HD 88562	K1III (Ba ⁽³⁾)	$4000 \pm 50^{(3)}$	$2.00 \pm 0.50^{(3)}$	$2.00^{(3)}$	$-0.53 \pm 0.12^{(3)}$
V812 Oph	S5+/2.5	3500 ⁽²⁾	$1.00^{(2)}$	-	$-0.37 \pm 0.13^{(2)}$
19 Aql	F0III-IV	-	-	-	-
V915 Aql	S5+/2	3400 ⁽¹⁾	$0.00^{(1)}$	-	$-0.50\pm0.15^{(1)}$
HD 165774	S4,6	-	-	-	-

Références. $^{(1)}$ Shetye et al. 2018, $^{(2)}$ Shetye et al. 2021 , $^{(3)}$ Karinkuzhi et al. 2018, $^{(4)}$ Shetye et al. 2019

Spectre synthétique

TurboSpectrum v20

- code qui résoud l'équation de transfert radiatif avec méthode Feautrier
- à la fois dans l'apporixmation ETL et non-ETL
- à la fois pour la géométrie plan-parallèle (log g < 3.5) et sphérique (log g > 3.5)
- élargissement : profil de Voigt, effet Stark linéaire, théorie ABO

MARCS

- Model Atmospheres with a Radiative and Convective Scheme
- 1D à équilibre hydrostatique
- convection implémentée par théorie de longueur de mélange
- turbulences implémentées par paramètres simples (micro et macro-turbulence)
- \rightarrow Minimisation χ^2 de chaque spectre synthétique avec le spectre observé

Contributions moléculaires

	Molécules	Bande H (%)	Bande K (%)
Cat. I	¹² C ¹⁴ N	55.14	44.35
(> 10%)	¹³ C ¹⁴ N	32.00	14.51
	¹² C ¹⁶ O	75.33	72.01
	HF	17.79	57.16
	¹² C ¹² C	32.97	30.73
	¹² C ¹³ C	14.12	12.26
	¹² CH	4.68	10.68
	¹⁶ OH	59.68	31.59
Cat. II	¹³ C ¹³ C	7.84	3.51
(1-10%)	¹³ C ¹⁷ O	0.04	1.96
	⁵⁶ FeH	3.12	0.08
	¹⁴ NH	1.57	1.23
	H ₂ O	1.75	6.80

Cat. III (< 1%) : 13 CH, 14 NH, 48 TiO, C_2 H $_2$, HCl, 20 CaH, 28 SiH, 28 SiO, VO, YO, 48 TiO, 24 MgH, AlH, 52 CrH, H 12 CN, H 13 CN, $^{90-94}$ ZrO et 96 ZrO

Abondances C, N, O

Itération sur les abondances de C, N, O

Paramètres stellaires

[Fe/H]: abondance de fer

 $T_{\rm eff}$: respect de l'équation de Boltzmann ightarrow abondance d'un élément ne varie pas en fonction de son potentiel d'excitation

 $\log~g$: respect de l'équation de Saha \to abondance d'un élément réagit comme abondance de l'élément ionisé

isochrone et tracés évolutifs

 $\xi_{
m micro}$: abondance ne varie pas en fonction de la largeur équivalente réduite

Raies atomiques

```
Ca I, Mg I, Al I, Si I, K I, Ca I, Sc I, Ti II, Ti II, V I, Mn I, Fe I, Co I, Ni I, Cu I, Y I, Zr I, Ba I, Ce II, Ce III, Er II, Yb II
```

Élements du pic du fer : Mn I, Co I, Ni I,

La suite?

- comparaison avec abondances déterminées dans le visible à partir de spectre HERMES
- détermination d'abondances d'éléments lourds ETL et non-ETL
 - besoin de listes non-ETL
 - besoin d'interpoler modèles et coefficients d'écarts non-ETL
- comparaison profil d'abondances avec modèles de nucléosynthèse
- analyse d'une autre étoile ?