m DM~20 $m \AA~rendre~le~vendredi~28~mars.$ MP2I PV

Matrices magiques

Dans ce problème, on travaille dans l'espace vectoriel des matrices de taille 3, à coefficients réels, c'est à-dire de la forme

$$M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}.$$

À une telle matrice, on associe les huit nombres

$$s_1 = a + b + c;$$
 $s_2 = d + e + f$ $s_3 = g + h + i;$
 $s_4 = a + d + g;$ $s_5 = b + e + h$ $s_6 = c + f + i;$
 $s_7 = a + e + i;$ $s_8 = c + e + g.$

On dit qu'une matrice est **magique** si les huit nombres s_1, \ldots, s_8 sont égaux. L'ensemble des matrices magiques est noté \mathcal{M} .

On note

S le sous-espace vectoriel des matrices symétriques de taille 3;

A le sous-espace vectoriel des matrices antisymétriques de taille 3;

 ${\cal H}$ l'ensemble des matrices de trace nulle ;

J la matrice de taille 3 dont tous les coefficients sont égaux à 1;

V le sous-espace vectoriel engendré par J.

1. Préliminaires.

- (a) Justifier brièvement que H est un sous-espace vectoriel de $M_3(\mathbb{R})$.
- (b) Montrer que \mathcal{M} est un sous-espace vectoriel de $M_3(\mathbb{R})$.

2. Matrices magiques symétriques.

- (a) Justifier que $\mathcal{M} \cap S \cap H$ et $\mathcal{M} \cap A$ sont des sous-espaces vectoriels de \mathcal{M} . Trouver pour chacun d'eux une base et la dimension.
- (b) Montrer que $\mathcal{M} \cap S = (\mathcal{M} \cap S \cap H) \oplus V$.

3. Description des matrices magiques.

- (a) Montrer que $\mathcal{M} = (\mathcal{M} \cap S) \oplus (\mathcal{M} \cap A)$.
- (b) En déduire une base de \mathcal{M} et donner sa dimension.
- (c) Montrer qu'il existe une unique matrice magique (que vous expliciterez) vérifiant (a, b, c) = (3, 4, 5).

4. Une base de $\mathcal{M} \cap H$.

- (a) Donner l'unique matrice magique vérifiant (a, b, c) = (0, -1, 1). On l'appelle A dans la suite.
- (b) Donner l'unique matrice magique vérifiant (a,b,c)=(1,-1,0). On l'appelle B dans la suite.
- (c) Vérifier les identités $A^2 = -B^2$, AB + BA = 0, $A^3 = -3A$ et $B^3 = 3B$.
- (d) Justifier que (A, B) est une base de $\mathcal{M} \cap H$.
- (e) Justifier que V est un supplémentaire de $\mathcal{M} \cap H$ dans \mathcal{M} .

5. Une curiosité des matrices magiques de taille 3.

(a) Soit $M_0 \in \mathcal{M} \cap H$.

On décompose M_0 sur la base de $\mathcal{M} \cap H$ donnée plus haut : il existe un unique couple de réels (α, β) tels que $M_0 = \alpha A + \beta B$.

Démontrer que $M_0^3 = 3(\beta^2 - \alpha^2)M_0$.

Prouver alors que toutes les puissances impaires de M_0 sont magiques.

(b) En vous appuyant pour commencer sur la question 4)e), prouver que si M est une matrice magique quelconque, toutes ses puissances impaires sont magiques.