```
import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.model_selection import train_test_split
from sklearn import metrics
import pydotplus
from IPython.display import Image
```

Załadowanie danych

data=pd.read_csv('tennis.csv')
data.head()

₽		Day	Outlook	Temperature	Humidity	Wind	PlayTennis	1
	0	D1	Sunny	Hot	High	Weak	No	
	1	D2	Sunny	Hot	High	Strong	No	
	2	D3	Overcast	Hot	High	Weak	Yes	
	3	D4	Rain	Mild	High	Weak	Yes	
	4	D5	Rain	Cool	Normal	Weak	Yes	

Dane z tabeli (bez atrybutu PlayTennis) zapisujemy w kodowaniu one-hot

```
one_hot_data = pd.get_dummies(data[ ['Outlook','Temperature','Humidity','Wind'] ])
one_hot_data
```

Obiekt DecisionTreeClassifier

Outlook Oversest = 0.E

Testujemy model dla samochodu o parametrach: Sunny, Cool, High, Strong (zakodowany jako one-hot)

Gampios – 14

prediction = clf_train.predict([[0,0,1,1,0,0,1,0,1,0]])
prediction

/usr/local/lib/python3.8/dist-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but DecisionTreeClassifier was fitted with feature names warnings.warn(

array(['No'], dtype=object)

✓ 0 s ukończono o 11:10

• ×