Final Exam

Intro to Discrete Math MATH 2001 Spring 2020

Saturday May 2, 2020

PRINT YOUR NAME:		
I IXIIXI IOON NAWI:		

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total:	80	

- For the exam, you may use only the textbook, your lecture notes, your homework, and your previous exams, from this course.
- You may not use any other resources whatsoever.
- You may not discuss the exam with anyone, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must write your solutions in LATEX, and you must upload your .pdf and .tex files to canvas.
- The exam is due at 11:59 PM Saturday May 2, 2020.

1. (10 points) True or false.

Let $f: A \to B$ and $g: B \to C$ be maps of sets. If $g \circ f$ is injective, then g is injective.

If true, give a proof. If false, provide a counter example.

Proof.

False.

Example:

$$A = \{a, b\}, B = \{1, 2, 3\}, C = \{q, w\}$$

The map $g \circ f$ is injective, but g is not.

1

2. (10 points) True or False.

Suppose $f: A \to B$ is a surjective map of sets. Then there exists an injective map of sets $s: B \to A$. If true, give a proof. If false, provide a counter example.

Proof.

True.

Assume $f:A\to B$ is a surjective map of sets. Then for all $b\in B$ we have $b=f(a), a\in A$. Assume c=f(a), d=f(b) where $c,d\in B$ and $a,b\in A$. Then there is a map of sets $s:B\to A$ which $s=f^{-1}$. Then we have s(c)=s(f(a))=a and s(d)=s(f(b))=b. Assume a=b, then we have f(a)=f(b), it follows that c=d. There for s is injective. \Box

2

3. (10 points) True or False.

A map of sets $f: A \to B$ is surjective if and only if for all maps of sets $g_1: B \to C$ and $g_2: B \to C$, we have that $g_1 \circ f = g_2 \circ f$ implies $g_1 = g_2$.

If true, give a proof. If false, provide a counter example.

Proof.

True.

Step1: Prove if $f:A\to B$ is surjective, then for all $g_1:B\to C$ and $g_2:B\to C$ we have that $g_1\circ f=g_2\circ f\implies g_1=g_2$.

(contrapositive) Assume $g_1: B \to C$, $g_2: B \to C$ and $g_1 \neq g_2$, then there exist $g_1(b) \neq g_2(b)$, $b \in B$ by definition. Suppose $f: A \to B$ is surjective, then b = f(a) for some $a \in A$. Thus we have $g_1(f(a)) \neq g_2(f(a))$, in other word $g_1 \circ f \neq g_2 \circ f$. (contrapositive proof)

Step2: Prove if for all maps of set $g_1: B \to C$ and $g_2: B \to C$, we have $g_1 \circ f = g_2 \circ f$ implies $g_1 = g_2$, then $f: A \to B$ is surjective.

(contrapositive) Assume a map of sets $f: A \to B$. Suppose there exist $g_1: B \to C$ and $g_2: B \to C$ such that $g_1 \circ f = g_2 \circ f$ and $g_1 \neq g_2$. We have $g_1(f(a)) = g_2(f(a))$ for all $a \in A$. We also get $g_1(b) \neq g_2(b)$ for some $b \in B$. Thus it follows that $b \neq f(a)$. Therefor f is not surjective by pigeonhole principle.

3

4. Define a relation on $\mathbb{N} \times \mathbb{N}$ by the rule that for all (a, b), $(c, d) \in \mathbb{N} \times \mathbb{N}$,

$$(a,b) \sim (c,d) \iff a+d=b+c.$$

(a) (5 points) What is this relation as a subset of $(\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N})$?

Proof.

$$\{((a,b),(a,b))|a,b,c,d\in N,a+d=b+c\}\subseteq (\mathbb{N}\times\mathbb{N})\times (\mathbb{N}\times\mathbb{N})$$

(b) (5 points) Show that the relation is an equivalence relation.

Proof. Assume $(a,b), (c,d) \in \mathbb{N} \times \mathbb{N}$ and $(a,b) \sim (c,d)$. Then we have a+d=b+c by definition, so c+b=d+a. It follows that $(c,d) \sim (a,b)$. Thus the relation is symetric. Suppose c=a and b=d, then we have a+b=b+a, it follows that $(a,b) \sim (a,b)$. Thus it is reflexive. Assume $(c,d) \sim (e,f)$, then we get c+f=d+e, thus d-c=f-e. We also get d-c=b-a from previous step, so f-e=b-a, then a+f=b+e, it follows that $(a,b) \sim (e,f)$ by definition. Therefor the relation is transitive.

4

5. (10 points) **True or False.** Let $Z=(\mathbb{N}\times\mathbb{N})/\sim$ be the set of equivalence classes in $\mathbb{N}\times\mathbb{N}$ for the equivalence relation given in the previous problem.

There is a bijective map of sets

$$f: Z \longrightarrow \mathbb{Z}$$

given by the rule $[(a,b)] \mapsto a-b$.

You must prove that the statement in italics is true or that it is false.

Proof. Ture

Assume the map of sets $f: Z \to \mathbb{Z}$ where $Z = (\mathbb{N} \times \mathbb{N})/\sim$ is the set of equivalence classes, such that $f([(a,b)]) = a-b, [(a,b)] \in Z$. Suppose the equivalence classes [(a,b)] and [(c,d)], such that f([(a,b)]) = f([(c,d)]), we have that a-b=c-d, so a+d=b+c, it follows that $(a,b) \sim (c,d)$ and [(a,b)] = [(c,d)]. There for f is injective. For every $k \in \mathbb{Z}$, we can find a equivalence class [(m+k,m)], such that f([(m+k,m)]) = m+k-m=k. Therefor f is surjective.

5

6. (10 points) **True of False.** Let *S* be a set and let $\mathscr{C} \subseteq \mathscr{P}(S)$ be a collection of subsets of *S* with the following property: For any set *I*, if for each $i \in I$ we are given a set $C_i \in \mathscr{C}$, and for all $i, j \in I$ we have $C_i \subseteq C_j$ or $C_j \subseteq C_i$, then $\bigcup_{i \in I} C_i \in \mathscr{C}$.

There exists $C \in \mathscr{C}$ such that for all $C' \in \mathscr{C}$, if $C \subseteq C'$, then C = C'.

If the statement in italics is true, give a proof. Otherwise, provide a counter example.

[Hint: Think in terms of POSETs.]

Proof. True

Assume set I is the index set of \mathscr{C} . Let $C_i \in \mathscr{C}$, we have $\{C_i | i \in I\}$ are the elements of \mathscr{C} . Suppose for all $i, j \in I$ we have $C_i \subseteq C_j$ or $C_j \subseteq C_i$ and $\bigcup_{i \in I} C_i \in \mathscr{C}$, then we get the partilly order relation R, which $aRb \iff a \subseteq b$, and the poset (\mathscr{C}, \subseteq) . Thus there is a element $C \in \mathscr{C}$ such that $C' \subseteq C$ for all $C' \in \mathscr{C}$ by definition of poset. Suppose $C \subseteq C'$, then we have C = C'.

6

- 7. (10 points) For an incidence plane (Π, Λ) , given a line $\ell \in \Lambda$ and a point $P \in \Pi$ such that $P \notin \ell$, consider the following properties:
 - (P0) There *does not exist* $\ell' \in \Lambda$ such that $P \in \ell'$ and $\ell' \cap \ell = \emptyset$.
 - (P1) There exists exactly one $\ell' \in \Lambda$ such that $P \in \ell'$ and $\ell' \cap \ell = \emptyset$.
 - (P2) There exists at least two $\ell' \in \Lambda$ such that $P \in \ell'$ and $\ell' \cap \ell = \emptyset$.

Find an example of an incidence plane (Π, Λ) with exactly five points, such that for each of the properties above there exists a point and a line satisfying that property. In other words, find a single incidence plane (Π, Λ) with $|\Pi| = 5$, such that for i = 0, 1, 2, there exists $\ell_i \in \Lambda$ and $P_i \in \Pi$ with $P_i \notin \ell_i$, such that ℓ_i and P_i satisfy property (P_i) .

7

8. A polynomial in one variable, x, with rational coefficients can, by definition, be written in the form

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_d x^d$$

where $a_0, a_1, \dots, a_d \in \mathbb{Q}$, and d is some nonnegative integer. If in the expression above for p(x) we have $a_d \neq 0$, then we say p(x) has degree d.

We denote by $\mathbb{Q}[x]$ the set of all polynomials in x with rational coefficients. Denote by $\mathbb{Q}[x]_d \subseteq \mathbb{Q}[x]$ the subset consisting of those polynomials that have degree at most d, union the set containing the zero polynomial (the zero polynomial does not have a degree using our definition above).

(a) (5 points) Let d be a nonnegative integer. Show that the set $\mathbb{Q}[x]_d$ is countable.

[Hint: Show that $Q[x]_d$ is in bijection with Q^{d+1} .]

(b) (5 points) **True or False.** The set $\mathbb{Q}[x]$ is countable.

You must prove that the statement in italics is true or that it is false.

8