Advanced Practical 2024/2025

Operations Research Case

Guanlian Xiao

Department of Operations Analytics
Vrije Universiteit Amsterdam

June 2025

Meeting times

- Lectures on project and final presentation
 - Tuesday 3, 10, 17 June 11:00-12:45 in HG-05A16
 - Wednesday 25 June 9:00-17:00 in HG-07A16
- Lecture on Writing: 5 June 11:00-12:45 in HG-12A00
- Lecture on Presentation: 19 June 11:00-12:45 in HG-12A00

Agenda

- Week 1:
 - introduce basics on simulation
 - introduce the OR project
- Week 2:
 - analyze an example on G/G/1 queue with raw data
- Week 3:
 - discuss your progress, problems and next step
- Week 4:
 - final report deadline: Tuesday 24 June 23:59 hr.
 - final presentation: Wednesday 25 June in HG-07A16

Assessment: 5 components

- Writing (grade by ALP): 10%
- Presentation skills (graded by ALP): 5%
- Report quality: 60%
- Argumentations in presentation: 25%
- Group Contribution Factor (GCF):0.75 and 1.05.
- Individual grade=grade of group report * GCF
 - For example: if your group assignment grade is 8 out of 10 and your Group Contribution Factor is 0.9, your final grade is calculated as, 8 * 0.9 = 7.2
- Role of Al.

Data Analytics and Simulation

Categories of Data Analytics

- Descriptive analytics
- Predictive analytics
- Prescriptive analytics

Type of Simulation Models

Source: https://doi.org/10.3390/min7070116

Monte Carlo Simulation

Monte Carlo Simulation

- For any unknown random variable η , how to evaluate any performance measure $E[f(\eta)]$?
- Monte Carlo Simulation!
 - Collect a large number of outcomes η_i to compute $f(\eta_i)$, then take the sample mean to approximate $E[f(\eta)]$:

$$E[f(\eta)] \approx \frac{\sum_{i=1}^{n} f(\eta_i)}{n}$$

Application of Monte Carlo Simulation for G/G/1 queue

- Considering a G/G/1 queue, how do you estimate the average waiting time of the first 20 customers arriving to a queue?
- Here $\eta = (\eta^1, \eta^2, ..., \eta^{20}), \eta^i$ is the waiting time of the ith customer. $f(\eta) = \sum_{i=1}^{20} \eta^i/20$ is the average waiting of the first 20 customers, which is a rv.

How to estimate $E[f(\eta)]$??

Application of Monte Carlo Simulation for G/G/1 queue

- To estimate $E[f(\eta)]$, use Monte Carlo simulation:
 - generate a large number of sample paths η_i = $(\eta_i^1, \eta_i^2, \eta_i^3, \eta_i^4, ..., \eta_i^{20})$;
 - take the sample mean $E[f(\eta)] \approx \frac{\sum_{i=1}^{n} f(\eta_i)}{n}$.

G/G/1 queue

How to collect the waiting time of each customer, i.e.,

$$\eta_i = (\eta_i^1, \eta_i^2, \eta_i^3, \eta_i^4, \dots, \eta_i^{20})$$
?

Also called a sample path.

Discrete Event Simulation!

Discrete Event Simulation

A discrete-event simulation

models a system whose state may change only at discrete point in time.

Components of DES

System state:

The collection of state variables necessary to described the system at a particular time

Event

- an instantaneous occurrence in time that may alter the state of the system
- Simulation clock (time variable):
 - A variable giving the current value of simulated time
- Event list (calendar):
 - A list containing the next time when each type of event will occur
- Statistical counters (counter variables):
 - Variables used for storing statistical information about system information, such as average request processing time, server load, or average queue length.

Discrete Event Simulation Model of G/G/1

The DES is modeled using a 6-tuple

$$G = (S, E, L, \phi, s_0, X)$$

where

- *S* is the set of all states;
- *E* is the set of all events;
- $L: S \to 2^E$ is the active event function, forming the event list;
- ϕ : $S \times E$ is the transition function;
- s_0 is the initial state;
- $X = \{X(e) : e \in E, n = 1, 2,...\}$ are the event life times;

Values of $G = (S, E, L, \phi, s_0, X)$ for simulation model of G/G/1

• State variable s = (n), where n is the number of jobs present (in service and in queue). The state space is

$$S = \{(n), n = 0, 1, 2, 3, ...\}$$

• The state changes either by an arrival, or a service completion. These are the events. Denote α for arrival event. Denote β for service completion. The event space is

$$\boldsymbol{E} = \{\alpha, \beta\}$$

• L(s) is the list of active events in state s, called event list. These are the events that are currently scheduled to occur. L(s) is listed below:

$$L(0) = {\alpha}$$

 $L(n) = {\alpha, \beta}, n = 1, 2, ...$

State Transition from s to s'

State transition $\phi(s, e) = s'$ means when event e in state s occurs, the next state will be s'. Specifically,

$$\phi((n), \alpha) = (n+1);$$

$$\phi((n), \beta) = (n-1) \text{ for } n \ge 1.$$

The new state s' has an updated event list. For instance, s = (0) with $L(s) = \{\alpha\}$ and event α occurs, then s' = (1) with $L(s') = \{\alpha, \beta\}$.

Which event $e \in L(s)$ will occur at state s?

Event remaining lifetime: which event will occur next?

- Denote the system state at event time t by s_t , and $s_t = s$ with event list L(s). Which event in L(s) will occur next and when?
- Check the remaining lifetimes of all events in L(s) at t.
 - If $e \in L(s)$ is a newly added event, then $C_t(e) = X(e)$, where X(e) is a newly generated sample.
 - If $e \in L(s)$ is an old event added at time $\tau_e < t$, its remaining lifetime is $C_t(e) = X(e) (t \tau_e)$.
- Then the event to occur is determined by the minimum of the remaining lifetimes at t, $e^* = \arg\min\{C_t(e): e \in L(s)\}$

And it will occur after $C_t(e^*)$.

Next we will show the complete event evolving scheme.

The Event Evolving Scheme

- 1. Suppose the system is empty at time t=0, $s_0=(0)$. Its associated event list is $L(s_0)=\{\alpha\}$, the event lifetime of α is $X(\alpha)$ (take a sample of interarrival time, assume $X^1(\alpha)=\tau_1$), its remaining lifetime $C_t(\alpha)=X(\alpha)$. The next event is an arrival α , it occurs at τ_1 .
- 2. State update at τ_1 : $s_1 = (1)$, $L(s_1) = \{\alpha, \beta\}$.
 - Both events in $L(s_1)$ are new, generate samples for both new events (take a sample of interarrival time denoted by $X^1(\alpha)$, take a sample of service time denoted by $X^1(\beta)$)
 - Their remaining lifetimes are $C_{\tau_1}(\alpha) = X^1(\alpha)$ and $C_{\tau_1}(\beta) = X^1(\beta)$
 - The next event can be an arrival or a departure, it occurs at τ_2 and $\tau_2 = \tau_1 + \min(C_{\tau_1}(\alpha), C_{\tau_1}(\beta))$.
 - During (τ_1, τ_2) there is no state change. If $C_{\tau_1}(\alpha) < C_{\tau_1}(\beta)$, a new customer arrives at τ_2 .
- 3. State update at τ_2 : $s_2 = (2)$, $L(s_2) = \{\alpha, \beta\}$.
 - α is a new event, generate a sample $X^2(e)$ for new event as its remaining lifetime: $C_{\tau_2}(\alpha) = X^2(\alpha)$.
 - β is an old event, $C_{\tau_2}(\beta) = C_{\tau_1}(\beta) (\tau_2 \tau_1)$
 - The next event can be an arrival or a departure, it occurs at τ_3 and $\tau_3 = \tau_2 + \min(C_{\tau_2}(\alpha), C_{\tau_2}(\beta))$ and the associated event to occur is determined.
- 4. State update at τ_3 , update state, eventlists. For new events generate samples, for old events, update their remaining lifetimes, and determine the next event and event occurance time.

The process continues until a stopping condition is met.

Python code

• See canvas

Project: KLM Warehouse

30 docks available;

Each active dock costs 240 euros per day (labor cost);

At the end of each week, unserved trucks are outsourced with 20 euros per truck Service times in excel file;

Project: KLM Warehouse

Tasks:

- analyze the data
- Create simulation model
- Evaluate the current policy
- Propose an improved policy and evaluate it