

Text Mining

Marcelo Mendoza

http://www.inf.utfsm.cl/~mmendoza mmendoza@inf.utfsm.cl

A 131, Campus San Joaquín - UTFSM

Vectorización de Texto (handcrafted)

Conceptos de NLP

Síntesis. El enfoque de NLP (clásico)

Matriz términos-documentos

	Antonio	Julio	La	Hamlet	Otelo	Macbeth	
	y	Cesar	Tempestad				
	Cleopatra						
Antonio	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
Cesar	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
Cleopatra	57	0	0	0	0	0	

. . .

Matriz términos-documentos

	Antonio	Julio	La	Hamlet	Otelo	Macbeth	
documentos	У	Cesar	Tempestad				
	Cleopatra						
Antonio	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
Cesar	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
Cleopatra	57	0	0	0	0	0	

términos

términos

Matriz términos-documentos

Term scoring function:

$$f(t_i, d_j) = w_{i,j}$$

 $f_{i,j}$: # occs. de ti en dj

 $\max f_{l,j}$: # occs. del t más frecuente en dj

Term scoring functions:

N : # docs

n; : # docs donde ti ocurre

- Tf:
$$Tf_{i,j} = \frac{f_{i,j}}{\max f_{l,j}}$$

- Tf corregido:
$$W_{i,j} = \begin{cases} 1 + \log_{10} f_{i,j} & \text{if } f_{i,j} > 0 \\ 0 & \text{e.t.o.c.} \end{cases}$$

- Idf:
$$idf_{ti} = \log_{10} \frac{N}{n_i}$$

- Tf-Idf (Salton):
$$W_{i,j} = (1 + \log f_{l,j}) \cdot \log \frac{N}{n_i}$$

- Tf-Idf:
$$w_{i,j} = \frac{f_{i,j}}{\max f_{l,i}} \cdot \log \frac{N}{n_i}$$

 $l(d_j)$: # tokens en dj

 l_{avg} : largo promedio

Term scoring functions:

- Tf-Idf suavizado:
$$W_{i,j} = \left(0.5 + \frac{0.5f_{i,j}}{\max f_{l,j}}\right) \times \log \frac{N}{n_i}$$

- BM-25:
$$w_{i,j} = \frac{f_{i,j} \cdot (k_1+1)}{k_1 \cdot \left\lceil (1-b) + b \cdot \frac{l(d_j)}{l_{avg}} \right\rceil + f_{i,j}} \cdot \log \left(\frac{N}{n_i} \right)$$

$$b \in [0,1], k_1 > 0$$

Empírico: $b \approx 0.75$

$$k_1 \approx 1.2$$

Vector-space model (referencias)

Tf-Idf

Salton, G. and Buckley, Ch. Term-weighting approaches in automatic text retrieval, Information Processing and Management, 24(5):513-523, 1988.

BM-25

Robertson, S. and Spärck Jones, K. Relevance weighting of search terms. Journal of the American Society for Information Science, 27(3):129-146, 1976.

Más variantes:

Method	Formula	Reference
Smoothing 1 Smoothing 2 Tf-Idf	$(1 + Tf_{i,c})/(n + Tf_c)$ $\log(1 + Tf_{i,d})$ $Tf_{i,d}\log(N/n_i)$	Rennie <i>et al.</i> (2003) Rennie <i>et al.</i> (2003) Salton and Buckley (1988)
Tf- L_Z Smoothing 3 Tf- L_I Smoothing 4	$Tf_{i,d}/\sqrt{\sum_{i=1}^{n}Tf_{i,d}^{2}}\ Min\{\log(1+Tf_{i,d}),1\}\ Tf_{i,d}/\sum_{i=1}^{n}Tf_{i,d}\ 1+\log Tf_{i,d}$	Salton and Buckley (1988) Schneider (2005) Kolcz and Yih (2007) Qiang (2010)
Extended Idf Extended Tf 1 Extended Tf 2 Extended Tf-Idf 1	$\begin{split} &\log ((2N-n_{i}+1)/n_{i}) \\ &\log (1+Tf_{i,d})/L_{d} \\ &\log (1+Tf_{i,d})/(L_{d}/L) \\ &(\log (1+Tf_{i,d})/L_{d})(\log ((2N-n_{i}+1)/n_{i}) \end{split}$	

Distancia Euclideana

Funciones de proximidad entre vectores:

$$d(d_1, d_3) = \sqrt{\sum_{i=1}^{V} (w_{i,1} - w_{i,3})^2}$$

Maldición de la dimensionalidad para distancia Euclideana:

Funciones de proximidad entre vectores:

Vector-space model: clasificación de texto

Vector-space model: clasificación de texto

	20	Newsgroups			Web-KB	
	Accuracy	FP-rate	F	Accuracy	FP-rate	F
Smoothing 1	0.823	0.164	0.680	0.840	0.136	0.722
Smoothing 2	0.827	0.158	0.692	0.842	0.132	0.731
Tf-Idf	0.840	0.135	0.694	0.852	0.130	0.742
Tf-L2	0.820	0.152	0.686	0.836	0.138	0.732
Smoothing 3	0.838	0.174	0.692	0.846	0.135	0.743
Tf-L1	0.824	0.137	0.689	0.842	0.140	0.736
Smoothing 4	0.820	0.134	0.692	0.846	0.138	0.726
BM25	0.844	0.128	0.702	0.870	0.128	0.780
Extended Idf	0.832	0.117	0.685	0.849	0.130	0.755
Extended Tf 1	0.826	0.121	0.688	0.848	0.138	0.743
Extended Tf 2	0.830	0.128	0.690	0.851	0.135	0.742
Extended Tf-Idf 1	0.852	0.112	0.701	0.881	0.125	0.781

Vector-space model: clasificación de texto

			#1	#2	#3	#4	#5
		# of documents	21,450	14,347	13,272	12,902	12,902
		# of training documents	14,704	10,667	9,610	9,603	9,603
		# of test documents	6,746	3,680	3,662	3,299	3,299
		# of categories	135	93	92	90	10
System	Type	Results reported by					
Word	(non-learning)	Yang [1999]	.150	.310	.290		
	probabilistic	[Dumais et al. 1998]				.752	.815
	probabilistic	[Joachims 1998]				.720	
	probabilistic	[Lam et al. 1997]	$.443 (MF_1)$				
PROPBAYES	probabilistic	[Lewis 1992a]	.650				
Вім	probabilistic	[Li and Yamanishi 1999]				.747	
	probabilistic	[Li and Yamanishi 1999]				.773	
NB	probabilistic	[Yang and Liu 1999]				.795	
	decision trees	[Dumais et al. 1998]					.884
C4.5	decision trees	[Joachims 1998]				.794	
Ind	decision trees	[Lewis and Ringuette 1994]	.670				
SWAP-1	decision rules	[Apté et al. 1994]		.805			
Ripper	decision rules	[Cohen and Singer 1999]	.683	.811		.820	
SLEEPINGEXPERTS	decision rules	[Cohen and Singer 1999]	.753	.759		.827	
DL-Esc	decision rules	[Li and Yamanishi 1999]				.820	
CHARADE	decision rules	[Moulinier and Ganascia 1996]		.738			
CHARADE	decision rules	[Moulinier et al. 1996]		$.783(F_1)$			
Lise	regression	[Yang 1999]		.855	.810		
LLSF	regression	[Yang and Liu 1999]				.849	
BALANCEDWINNOW	on-line linear	[Dagan et al. 1997]	.747 (M)	.833 (M)			
WIDROW-HOFF	on-line linear	[Lam and Ho 1998]				.822	
Rоссню	batch linear	[Cohen and Singer 1999]	.660	.748		.776	
FINDSIM	batch linear	[Dumais et al. 1998]				.617	.646
Rоссшо	batch linear	[Joachims 1998]				.799	
Rоссню	batch linear	[Lam and Ho 1998]				.781	
Rоссню	batch linear	[Li and Yamanishi 1999]				.625	
CLASSI	neural network	[Ng et al. 1997]		.802			
NNET	neural network					.838	
	neural network	[Wiener et al. 1995]			.820		
Gis-W	example-based	[Lam and Ho 1998]				.860	
k-NN	example-based	[Joachims 1998]				.823	
k-NN	example-based	[Lam and Ho 1998]				.820	
k-NN	example-based	[Yang 1999]	.690	.852	.820		
k-NN	example-based	[Yang and Liu 1999]				.856	
	SVM	[Dumais et al. 1998]				.870	.920
SVMLIGHT	SVM	[Joachims 1998]				.864	
SVMLIGHT	SVM	[Li Yamanishi 1999]				.841	
SVMLIGHT	SVM	[Yang and Liu 1999]				.859	
ADABOOST.MH	committee	[Schapire and Singer 2000]		.860		.000	
THAIR COURT	committee	[Weiss et al. 1999]				.878	
	Bayesian net	[Dumais et al. 1998]				.800	.850
	Daycolan net	[Dunians et al. 1990]	1			.000	.000

Sebastiani, F. Machine learning in automated text categorization, ACM Computing Surveys 34(1):1-47, 2002

Positive pointwise mutual information (PPMI): Se usa en matrices término – término.

Positive pointwise mutual information (PPMI): Se usa en matrices término – término.

PPMI mide cuan a menudo dos eventos ocurren, comparados con el valor esperado de ocurrencias si ambos eventos fueran independientes:

Observaciones conjuntas de w y c (c es un documento o contexto)

$$PMI(w,c) = \log_2 \frac{P(w,c)}{P(w)P(c)}$$
 Observaciones que asumen independencia entre ambas palabras

Positive pointwise mutual information (PPMI): Se usa en matrices término – término.

PPMI mide cuan a menudo dos eventos ocurren, comparados con el valor esperado de ocurrencias si ambos eventos fueran independientes:

Observaciones conjuntas de w y c (c es un documento o contexto) $PMI(w,c) = \log_2 \frac{P(w,c)}{P(w)P(c)}$ Observaciones que asumen independencia entre ambas palabras

Para restringir los valores de PMI a los reales positivos, se aplica la función piso:

$$\text{PPMI}(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)},0)$$

Reemplaza los valores negativos con 0

Ej.:

Contextos de Wikipedia (c)

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

Ej.:

Contextos de Wikipedia (c)

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$$P(\text{w=information,c=data}) = \frac{3982}{11716} = .3399$$

$$P(\text{w=information}) = \frac{7703}{11716} = .6575$$

$$P(\text{c=data}) = \frac{5673}{11716} = .4842$$

$$ppmi(\text{information,data}) = \log 2(.3399/(.6575*.4842)) = .0944$$

Ej.:

Contextos de Wikipedia (c)

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

		computer	data	result	pie	sugar	
	cherry	0	0	0	4.38	3.30	
5	strawberry	0	0	0	4.10	5.51	
	digital	0.18	0.01	0	0	0	
i	nformation	0.02	0.09	0.28	0	0	

Ej.:

Contextos de Wikipedia (c)

		computer	aata	resuit	рıе	sugar	count(w)
	cherry	2	8	9	442	25	486
	strawberry	0	0	1	60	19	80
	digital	1670	1683	85	5	4	3447
•	information	3325	3982	378	5	13	7703
W							
	count(context)	4997	5673	473	512	61	11716

		computer	data	result	pie	sugar	
	cherry	0	0	0	4.38	3.30	
	strawberry	0	0	0	4.10	5.51	
	digital	0.18	0.01	0	0	0	
PPMI	information	0.02	0.09	0.28	0	0	

➤ Vector de contexto

Ej.:

W

Contextos de Wikipedia (c)

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
 strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

		computer	data	result	pie	sugar	
	cherry	0	0	0	4.38	3.30	
	strawberry	0	0	0	4.10	5.51	
	digital	0.18	0.01	0	0	0	
PPMI	information	0.02	0.09	0.28	0	0	

➤ Vector de contexto

Vector de la palabra

