Der Endlichkeitssatz von Serre über die Homotopiegruppen der Sphären

Tim Baumann

Universität Augsburg

4. Februar 2016

Def. Die *i*-te Homotopiegruppe von *X* ist

$$\pi_i(X) := [(S^i,*),(X,x_0)] = \frac{\{ \text{ basispunkterh. stetige Abb. } S^i \to X \}}{\text{basispunkterh. Homotopie}}.$$

Def. Die *i*-te Homotopiegruppe von *X* ist

$$\pi_i(X) := [(S^i,*),(X,x_0)] = \frac{\{ \text{ basispunkterh. stetige Abb. } S^i \to X \}}{\text{basispunkterh. Homotopie}}.$$

Ziel. $\pi_i(S^n)$ studieren

Def. Die *i*-te Homotopiegruppe von *X* ist

$$\pi_i(X) := [(S^i,*),(X,x_0)] = \frac{\{ \text{ basispunkterh. stetige Abb. } S^i \to X \}}{\text{basispunkterh. Homotopie}}.$$

Ziel. $\pi_i(S^n)$ studieren

Methode. Verwende den Hurewicz-Homomorphismus

$$h_i:\pi_i(X)\to H_i(X),\quad [f:S^i\to X]\mapsto f_*(\alpha),$$

wobei $\alpha \in H_i(S^i)$ ein fester Erzeuger ist, und

Satz (Hurewicz-Thm). Sei $n \ge 2$.

Angenommen, $\pi_i(X) = 0$ für i < n.

Dann gilt $\widetilde{H}_i(X) = 0$ für i < n

und $h_n: \pi_n(X) \to H_n(X)$ ist ein Isomorphismus.

Def. Die *i*-te Homotopiegruppe von *X* ist

$$\pi_i(X) := [(S^i,*),(X,x_0)] = \frac{\{ \text{ basispunkterh. stetige Abb. } S^i \to X \}}{\text{basispunkterh. Homotopie}}.$$

Ziel. $\pi_i(S^n)$ studieren

Methode. Verwende den Hurewicz-Homomorphismus

$$h_i:\pi_i(X)\to H_i(X),\quad [f:S^i\to X]\mapsto f_*(\alpha),$$

wobei $\alpha \in H_i(S^i)$ ein fester Erzeuger ist, und

Satz (Hurewicz-Thm). Sei $n \ge 2$.

Angenommen, $\pi_i(X) = 0$ für i < n.

Dann gilt $\widetilde{H}_i(X) = 0$ für i < n

und $h_n: \pi_n(X) \to H_n(X)$ ist ein Isomorphismus.

Kor. $\pi_i(S^n) = 0$ für i < n, $\pi_n(S^n) \cong \mathbb{Z}$ für $n \ge 2$.

Satz (Jean-Pierre Serre, 1951).

Die Gruppen $\pi_i(S^n)$, i > n, sind endlich bis auf die Gruppen $\pi_{2n-1}(S^n)$ für $n \ge 2$ gerade, welche isomorph zur direkten Summe von \mathbb{Z} und einer endlichen Gruppe sind.

Satz (Jean-Pierre Serre, 1951).

Die Gruppen $\pi_i(S^n)$, i > n, sind endlich bis auf die Gruppen $\pi_{2n-1}(S^n)$ für $n \ge 2$ gerade, welche isomorph zur direkten Summe von \mathbb{Z} und einer endlichen Gruppe sind.

Bsp. Die Hopf-Faserung $\eta: S^3 \to S^2$ ist ein Element der Ordnung unendlich in $\pi_3(S^2)$.

Def. Eine Klasse $\mathcal C$ von abelschen Gruppen heißt Serre-Klasse, falls

(I) Für jede kurze exakte Sequenz $0 \to A \to B \to C \to 0$ von abelschen Gruppen gilt:

$$B \in \mathcal{C} \iff A, C \in \mathcal{C}$$
.

(II) Für $A, B \in \mathcal{C}$ sind auch $A \otimes B \in \mathcal{C}$ und $Tor(A, B) \in \mathcal{C}$.

Axiom.

(III) Es sei $G \in \mathcal{C}$. Dann ist $\widetilde{H}_i(K(G, n)) \in \mathcal{C}$ für alle $n \geq 1$, $i \geq 0$.

Def. Eine Klasse $\mathcal C$ von abelschen Gruppen heißt Serre-Klasse, falls

(I) Für jede kurze exakte Sequenz $0 \to A \to B \to C \to 0$ von abelschen Gruppen gilt:

$$B \in \mathcal{C} \iff A, C \in \mathcal{C}$$
.

(II) Für $A, B \in \mathcal{C}$ sind auch $A \otimes B \in \mathcal{C}$ und $Tor(A, B) \in \mathcal{C}$.

Axiom.

(III) Es sei $G \in \mathcal{C}$. Dann ist $\widetilde{H}_i(K(G, n)) \in \mathcal{C}$ für alle $n \geq 1$, $i \geq 0$.

Lem/Bspe. Folgendes sind Serre-Klassen, die Axiom (III) erfüllen:

- a) $\mathcal{T}_P := \left\{ \begin{array}{l} \text{endl. ab. Gruppen, deren Ordnung ein Produkt} \\ \text{von Primzahlen in } P \subseteq \mathbb{P} \text{ ist} \end{array} \right\}$
- b) $\mathcal{F} \coloneqq \mathcal{T}_{\mathbb{P}} = \{ \text{ endliche abelsche Gruppen } \}$
- c) $\mathcal{FG} \coloneqq \{ \text{ endlich erzeugte abelsche Gruppen} \}$

Satz (Hurewicz-mod-C-Thm). Es sei $n \ge 2$.

Es sei \mathcal{C} eine Serre-Klasse, die (III) erfüllt.

Es sei X ein einfach zusammenhängender topologischer Raum.

```
Angenommen, \pi_i(X) \in \mathcal{C} für i < n.

Dann gilt \widetilde{H}_i(X) \in \mathcal{C} für i < n

und h_n : \pi_n(X) \to H_n(X) ist ein Isomor. modulo \mathcal{C},

d. h. \ker(h_n) \in \mathcal{C} und \operatorname{coker}(h_n) \in \mathcal{C}.
```

Satz (Hurewicz-mod-C-Thm). Es sei $n \ge 2$.

Es sei \mathcal{C} eine Serre-Klasse, die (III) erfüllt.

Es sei X ein einfach zusammenhängender topologischer Raum.

Angenommen,
$$\pi_i(X) \in \mathcal{C}$$
 für $i < n$.
Dann gilt $\widetilde{H}_i(X) \in \mathcal{C}$ für $i < n$
und $h_n : \pi_n(X) \to H_n(X)$ ist ein Isomor. modulo \mathcal{C} ,
d. h. $\ker(h_n) \in \mathcal{C}$ und $\operatorname{coker}(h_n) \in \mathcal{C}$.

Kor. Sei $n \ge 2$. Dann sind die Homotopiegruppen $\pi_i(S^n)$, $i \ge 1$ endlich erzeugt.

Zweite Verallgemeinerung: Relativität

Satz (relatives Hurewicz-mod-C-Thm). Es sei $n \ge 2$.

Es sei \mathcal{C} eine Serre-Klasse, die (III) erfüllt.

Es sei (X, A) ein einfach zusammenhängendes Raumpaar mit

 $A \neq \emptyset$ und A einfach zusammenhängend.

Angenommen, $\pi_i(X, A) \in \mathcal{C}$ für i < n.

Dann gilt $H_i(X, A) \in \mathcal{C}$ für i < n

und $h_n: \pi_n(X, A) \to H_n(X, A)$ ist ein Isomor. modulo C.

Zweite Verallgemeinerung: Relativität

Satz (relatives Hurewicz-mod-C-Thm). Es sei $n \ge 2$.

Es sei C eine Serre-Klasse, die (III) erfüllt.

Es sei (X, A) ein einfach zusammenhängendes Raumpaar mit $A \neq \emptyset$ und A einfach zusammenhängend.

Angenommen, $\pi_i(X,A) \in \mathcal{C}$ für i < n. Dann gilt $H_i(X,A) \in \mathcal{C}$ für i < nund $h_n : \pi_n(X,A) \to H_n(X,A)$ ist ein Isomor. modulo \mathcal{C} .

Kor. Es sei $f: A \rightarrow B$ stetig, A und B nichtleer und einfach zusammenhängend. Dann sind äquivalent:

- a) $f_*: \pi_i(A) \to \pi_i(B)$ ist ein Isomorphismus mod $\mathcal C$ für i < n und ein Epimorphismus mod $\mathcal C$ für i = n.
- b) $f_*: H_i(A) \to H_i(B)$ ist ein Isomorphismus mod $\mathcal C$ für i < n und ein Epimorphismus mod $\mathcal C$ für i = n.