Polynomial Regression

Polynomial regression is an extension of linear regression that allows for modeling more complex relationships between variables. Here's an explanation of polynomial regression

Choose the best fit line: linear or polynomial?

Polynomial regression

1. Equation:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + ... + \beta_n x^n$$

Where:

- y is the dependent variable
- x is the independent variable
- β_0 , β_1 , β_2 , ..., β_n are the coefficients
- n is the degree of the polynomial

Polynomial Regression 1

2. Predicted value:

$$\hat{y} = eta_0 + eta_1 x + eta_2 x^2 + eta_3 x^3 + ... + eta_n x^n$$

Where ŷ is the predicted value of y

3. Calculate the Cost Function

$$MSE = (1/n) * \Sigma (\hat{y} - y)^2$$

4. Calculate Gradients

$$\partial MSE/\partial eta i = (2/n) * \Sigma (x^i * (\hat{y} - y))$$

5. Update Weights

$$eta i = eta i - learning_r ate * \partial MSE/\partial eta i$$

Advantages:

- · Can model nonlinear relationships
- More flexible than simple linear regression
- Can capture more complex patterns in the data

Disadvantages:

- Risk of overfitting, especially with higher-degree polynomials
- Can be sensitive to outliers
- · Interpretation becomes more difficult as the degree increases