Q.1 Let B be a skew-symmetric matrix with real entries

- 1. Prove that (I B) is non-singular
- 2. If $A = (I + B)(I B)^{-1}$ then $A^{T} = A^{-1}$

Answer: -

Let *B* be a skew-symmetric matrix of real entries.

This implies the eigen values of B are either 0 or pure imaginary. (1/2 mark)

Let the eigen values of B are 0 or ib. Then eigen values of I – B are 1 or 1–ib.

In any case eigen values of I-B are non-zero. Thus det(I-B) is non-zero. Thus I-B is invertible or non-singular. (1/2 mark)

Let
$$A = (I + B)(I - B)^{-1}$$
. Consider,

$$A^{T} = [(I+B)(I-B)^{-1}]^{T}.$$

$$= [((I-B)^{-1})]^{T}[(I+B)]^{T}.$$

$$= [((I-B)^{T})]^{-1}[(I+B)]^{T}.$$

$$= [I^{T} - B^{T}]^{-1}(I^{T} + B^{T})].$$

$$= ((I+B)^{-1}(I-B)).$$

Thus,
$$A^T A = ((I+B)^{-1}(I-B))((I+B)(I-B)^{-1}) = I \cdot I = I$$
.

Therefore
$$A^T = A^{-1}$$
(1 mark).

Q.2Let $M = \{m_1, m_2, ..., m_r\}$ and $N = \{m_1, m_2, ..., m_r, v\}$ be two sets of vectors from the same vector space V over a field F. Prove that $span\{M\} = span\{N\}$ if and only if $v \in span\{M\}$.

Answer: -

Let $M = \{m_1, m_2, ..., m_r\}$ and $N = \{m_1, m_2, ..., m_r, v\}$ be two set of vectors in a vector space V over a field F.

First we prove that if span(M) = span(N), then $v \in span(M)$

From given data we can write span(N) is contained in span(M).

Therefore, any linear combination of vectors in N, say $a_1m_1 + \cdots + a_rm_r + bv$ can be written as linear combination of vectors in M. Thus, we have-

$$a_1m_1 + \cdots + a_rm_r + bv = b_1m_1 + \cdots + b_rm_r$$
 for some scalars b_1, \dots, b_r .

That implies

$$v = \frac{b_1 - a_1}{b} m_1 + \dots + \frac{b_r - a_r}{b} m_r.$$

Thus $v \in span(M)$. (1 mark)

Conversely let $v \in span(M)$. Then we will prove that span(M) = span(N).

Let, $u \in span(M)$ this implies-

 $u = a_1 m_1 + \dots + a_r m_r$. Since $v \in span(M)$, therefore, $v = b_1 m_1 + \dots + b_r m_r$ for some scalars b_1, \dots, b_r .

Then $u + v = (a_1 + b_1)m_1 + \dots + (a_r + b_r)m_r$ that is

 $u = (a_1 + b_1)m_1 + \dots + (a_r + b_r)m_r - v$. Thus, $u \in span(M)$.

Hence, $span(M) \subseteq span(N)$. (1/2 mark)

Similarly let $u \in span(N)$

Then $u = a_1 m_1 + \dots + a_r m_r + bv$, since $v \in span(M)$, therefore for given scalars b_1, \dots, b_r we have $v = b_1 m_1 + \dots + b_r m_r$

Thus

$$u = a_1 m_1 + \dots + a_r m_r + b(b_1 m_1 + \dots + b_r m_r) = (a_1 + bb_1) m_1 + \dots + (a_r + bb_r) m_r.$$

Thus $u \in span(M)$.

Hence, $span(N) \subseteq span(M)$

Thus span(M) = span(N).

Hence the proof. (1/2 mark)

Q.3 If $T: V \to W$ is a linear transformation from vector space V to a vector space W then prove that $Rank(T) + Nullity(T) = \dim(V)$.

Solution: Let N be the Null space of T. Therefore N is a subspace of V.

Let $\dim(N) = Nullity(T) = k$ and let $\{\alpha_1, \alpha_2, ..., \alpha_k\}$ be Basis for N.

Therefore $\{\alpha_1, \alpha_2, ..., \alpha_k\}$ is L.I. subset of V. we can extend it to form a basis of V.

(1/2 Mark)

Let dim(V) = n and $\{\alpha_1, \alpha_2, ..., \alpha_k, ..., \alpha_n\}$ be basis for V.

Therefore vectors $T(\alpha_1), T(\alpha_2), ..., T(\alpha_k), ..., T(\alpha_n)$ are in Range of T.

We claim that the vectors $T(\alpha_{k+1}),...,T(\alpha_n)$ is a basis for Range of T.

Then we have to show only

- a. The vectors $T(\alpha_{k+1}),...,T(\alpha_n)$ span the range of T.
- b. The vectors $T(\alpha_{k+1}),...,T(\alpha_n)$ are L.I.

Let $\beta \in \text{Range of T}$. Therefore $\exists \alpha \in V$ such that $T(\alpha) = \beta$.

Now $\alpha \in V \exists a_1, a_2, ..., a_n \in F$ such that $\alpha = a_1\alpha_1 + a_2\alpha_2 + ... + a_n\alpha_n$.

$$T(\alpha) = T(a_1\alpha_1 + a_2\alpha_2 + ... + a_n\alpha_n)$$

$$\beta = a_1T(\alpha_1) + a_2T(\alpha_2) + ... + a_nT(\alpha_n)$$

$$= a_{k+1}T(\alpha_{k+1}) + ... + a_nT(\alpha_n) \text{ as } a_1T(\alpha_1) + a_2T(\alpha_2) + ... + a_kT(\alpha_k) = 0$$

Thus vectors $T(\alpha_{k+1}),...,T(\alpha_n)$ span the range of T. (1/2 Mark)

Now let $b_{k+1}, b_{k+2}, ..., b_n \in F$ such that $b_{k+1}T(\alpha_{k+1}) + b_{k+2}T(\alpha_{k+2}) + ... + b_nT(\alpha_n) = 0$

$$\begin{split} & \text{T(} \ b_{k+1}\alpha_{k+1} + b_{k+2}\alpha_{k+2} + \ldots + b_n\alpha_n) = 0 \\ & \Rightarrow \left(b_{k+1}\alpha_{k+1} + b_{k+2}\alpha_{k+2} + \ldots + b_n\alpha_n \right) \in N \\ & \Rightarrow b_{k+1}\alpha_{k+1} + b_{k+2}\alpha_{k+2} + \ldots + b_n\alpha_n = c_1\alpha_1 + c_2\alpha_2 + \ldots + c_k\alpha_k \\ & \therefore c_1\alpha_1 + c_2\alpha_2 + \ldots + c_k\alpha_k - b_{k+1}\alpha_{k+1} - b_{k+2}\alpha_{k+2} - \ldots - b_n\alpha_n = 0 \end{split}$$

But $\{\alpha_1, \alpha_2, ..., \alpha_k, ..., \alpha_n\}$ be basis for V and hence L.I.

$$\Rightarrow c_1 = c_2 = \dots = c_k = b_{k+1} = b_{k+2} = \dots = b_n = 0$$
i.e. $b_{k+1} = b_{k+2} = \dots = b_n = 0$

Thus The vectors $T(\alpha_{k+1}),...,T(\alpha_n)$ are L.I. (1/2 Mark)

Hence The vectors $T(\alpha_{k+1}),...,T(\alpha_n)$ is a basis for Range of T.

Therefore Rank of $T = \dim \text{ of Range of } T = n-k$

Thus Rank of T + Nullity of T = (n-k)+k=n=dim V (1/2 Mark)

Question 4.

Find the eigenvalues and eigenvectors for the matrix A nxn whose elements are given by

$$a_{ij} = \begin{cases} \alpha & \text{if } i = j \\ 1 & \text{if } |i - j| = 1 \\ 0 & \text{otherwise} \end{cases}$$
, where α is a constant.

Solution:

Given
$$a_{ij} = \begin{cases} \alpha & \text{if } i = j \\ 1 & \text{if } |i - j| = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$A = \begin{pmatrix} \alpha & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & \alpha & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \alpha & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & \dots & 1 & \alpha \end{pmatrix}$$

A is a tri-diagonal matrix. Let $\lambda = [\lambda_1, \lambda_2, \lambda_3, \lambda_4, \dots, \lambda_n]$ be the eigenvalue of A and $X = [X^1, X^2, X^3, X^4, \dots, X^n]$ be the corresponding eigenvectors. For each pair (λ, X) satisfy $AX = \lambda X$ implies that $(A - \lambda I)X = 0$

$$\begin{pmatrix} \alpha - \lambda & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & \alpha - \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \alpha - \lambda & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & \alpha - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Equivalently

$$(\alpha - \lambda)x_1 + x_2 = 0$$

$$x_1 + (\alpha - \lambda)x_2 + x_3 = 0$$

$$x_k + (\alpha - \lambda)x_{k+1} + x_{k+2} = 0$$

$$x_{n-1} + (\alpha - \lambda) x_n = 0$$

From above set of equations, it can be identified a relation

$$x_k + (\alpha - \lambda)x_{k+1} + x_{k+2} = 0$$
 where $k = 0, 1, 2, \dots$ n-1 with $x_0 = x_{n+1} = 0$ -----(1) (0.5)

Which is a second order difference equation

To solve (1), set $x_k = r^k$

(1) Reduced to the quadratic equation $r^2 + (\alpha - \lambda)r + 1 = 0$ -----(2)

Let the root of the equation (2) be r_1 and r_2

The general solution of (1) is

$$x_{k} = \begin{cases} c_{1} \rho^{k} + c_{2} k \rho^{k}, r_{1} = r_{2} & \text{(roots are same)} \\ c_{1} r_{1}^{k} + c_{2} r_{2}^{k}, r_{1} \neq r_{2} & \text{(roots are distinct)} \end{cases}, \text{ where } c_{1} \text{ and } c_{2} \text{ are arbitrary cons tan ts.}$$

Case (i):

Suppose r_1 and r_2 are same and take $r_1 = r_2 = \rho$

$$\mathbf{x}_{\mathbf{k}} = \mathbf{c}_{1} \boldsymbol{\rho}^{\mathbf{k}} + \mathbf{c}_{2} \mathbf{k} \boldsymbol{\rho}^{\mathbf{k}}$$

By initial conditions, $x_0 = 0$ implies $c_1 = 0$ and hence $c_2 = 0$

Therefore $x_k = 0$, for all k

 $X_k = 0$ gives zero eigenvector which is impossible.

Therefore the roots must be distinct in our case. That we will discuss as case (ii)

Case (ii): Let r_1 and r_2 be two distinct roots of equation (2)

Therefore, $X_k = c_1 r_1^k + c_2 r_2^k$

Using initial condition $x_0 = 0 \Rightarrow c_1 + c_2 = 0$ and we get $c_1 = -c_2$

Taking
$$x_{n+1} = 0 \Rightarrow c_1 r_1^{n+1} + c r_2^{n+1} = 0$$

Using
$$c_1 = -c_2$$
 we get $\frac{r_1^{n+1}}{r_2^{n+1}} = 1$

$$r_2 = r_1 e^{-\frac{i2\pi j}{n+1}}, \qquad i \le j < n$$

(0.5)

We have
$$r^2 + (\alpha - \lambda)r + 1 = (r - r_1)(r - r_2)$$

 $r_1r_2 = 1$, and $r_1 + r_2 = -(\alpha - \lambda)$

Since $r_1r_2 = 1$ and substituting the result $r_2 = r_1 e^{\frac{-2i\pi j}{n+1}}$ we get

$$r_1 = e^{\frac{i\pi j}{n+1}}$$

Therefore
$$r_2 = e^{\frac{-i\pi j}{n+1}}$$

We have
$$r_1 + r_2 = -(\alpha - \lambda)$$

Substituting r_1 and r_2 values we get the eigenvalues of A as

$$\lambda_{j} - \alpha = e^{\frac{i\pi j}{n+1}} + e^{-\frac{i\pi j}{n+1}}$$

$$\lambda_{j} = \alpha + 2\cos\frac{\pi j}{n+1}; \quad j = 1,2,...n,$$

Hence, the eigenvalues of A are given by

$$\lambda_{j} = \alpha + 2\cos\frac{\pi j}{n+1}; \quad j = 1,2,...n,$$
 (0.5)

Determination of Eigenvector:

Let $X^j = (x_1, x_2, ..., x_k, ..., x_n)$ is the eigenvector associated with eigenvalue λj . Here x_k is k^{th} component of eigenvector X^j associated with eigenvalue λj and is given by

$$\begin{aligned} x_k &= c_1 r_1^k + c_2 r_2^k , & \text{where } c_1 + c_1 &= 0, \ c_1 &= -c_2 \\ &= c_1 (r_1^k - r_2^k) \\ &= c_1 (e^{\frac{i\pi jk}{n+1}} - e^{-\frac{i\pi jk}{n+1}}) \end{aligned}$$

 $x_k = 2ic_1 \sin(\frac{j\pi k}{n+1})$ where c_1 is an arbitray constants and k = 1, 2, ..., j = 1, 2, ..., nThis is k^{th} component of eigenvector X^j associated with λj .

Therefore the eigenvector X^{j} corresponding to the eigenvalue λj is given by

$$X^{j} = \begin{pmatrix} 2ic_{1}\sin(\frac{j\pi}{n+1}) \\ 2ic_{1}\sin(\frac{2j\pi}{n+1}) \\ 2ic_{1}\sin(\frac{3j\pi}{n+1}) \\ \vdots \\ 2ic_{1}\sin(\frac{(n-1)j\pi}{n+1}) \\ 2ic_{1}\sin(\frac{nj\pi}{n+1}) \end{pmatrix}$$

(0.5)

Q.5 Find the singular value decomposition of $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \end{bmatrix}$ and determine the angle of rotation induced by U and V. Also write the rank 1 decomposition of A in terms of the columns of U and rows of V. Can we do dimensionality reduction in this case?

Solution: We compute

$$AA^{T} = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 17 & 16 \\ 16 & 17 \end{bmatrix}$$

The eigenvalues of AA^T

$$|A. A^{T} - \lambda I| = 0$$

$$\begin{vmatrix} 17 - \lambda & 16 \\ 16 & 17 - \lambda \end{vmatrix} = 0$$

$$(\lambda - 1)(\lambda - 33) = 0$$

$$\lambda = 1, \lambda = 33$$

The eigenvector for $\lambda = 33$,

$$X_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

The eigenvector for $\lambda = 1$,

$$X_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Hence

$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Consider
$$A^T A = \begin{bmatrix} 13 & 12 & 10 \\ 12 & 13 & 10 \\ 10 & 10 & 8 \end{bmatrix}$$

Eigenvalues of $A^T A$ are computed as

$$|A^TA - \lambda I| = 0$$

$$\lambda = 0,1,33$$

The eigenvectors for
$$\lambda = 33$$

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ \frac{4}{5} \end{bmatrix}$$

The eigenvectors for
$$\lambda=1$$

$$v_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

The eigenvectors for
$$\lambda=0$$

$$v_3 = \begin{bmatrix} 1 \\ 1 \\ \frac{-5}{3} \end{bmatrix}$$

Normalizing, we get

$$v_1 = \begin{bmatrix} \frac{5}{66} \sqrt{66} \\ \frac{5}{66} \sqrt{66} \\ \frac{2}{33} \sqrt{66} \end{bmatrix}$$

$$v_2 = \begin{bmatrix} \frac{1}{2}\sqrt{2} \\ -\frac{1}{2}\sqrt{2} \\ 0 \end{bmatrix}$$

$$v_3 = \begin{bmatrix} \frac{2}{33}\sqrt{33} \\ \frac{2}{33}\sqrt{33} \\ -\frac{5}{33}\sqrt{33} \end{bmatrix}$$

Therefore, we get

$$V = \begin{bmatrix} \frac{5}{66}\sqrt{66} & \frac{1}{2}\sqrt{2} & \frac{2}{33}\sqrt{33} \\ \frac{5}{66}\sqrt{66} & -\frac{1}{2}\sqrt{2} & \frac{2}{33}\sqrt{33} \\ \frac{2}{33}\sqrt{66} & 0 & -\frac{5}{33}\sqrt{33} \end{bmatrix}$$

Finally

$$\sum = \begin{bmatrix} \sqrt{33} & 0 & 0 \\ 0 & \sqrt{1} & 0 \end{bmatrix}$$

$$A = U \sum V^{T}$$

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{33} & 0 & 0 \\ 0 & \sqrt{1} & 0 \end{bmatrix} \begin{bmatrix} \frac{5}{66}\sqrt{66} & \frac{1}{2}\sqrt{2} & \frac{2}{33}\sqrt{33} \\ \frac{5}{66}\sqrt{66} & -\frac{1}{2}\sqrt{2} & \frac{2}{33}\sqrt{33} \end{bmatrix}^{T}$$

$$(0.5M)$$

•
$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
 Comparing with rotation matrix $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

Angle of rotation induced by $U=45^{\circ}$

• V is orthogonal matrix similar to
$$\begin{bmatrix} cos\theta & -sin\theta & 0 \\ sin\theta & cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, their traces are same

Hence 1+2 $cos\theta$ =trace of V

The rank one decomposition of A is

$$A = \sigma_1 U_1 V_1^T + \sigma_2 U_2 V_2^T$$

$$= \sqrt{33} U_1 V_1^T + 1 U_2 V_2^T$$
(0.5M)

The dimensionality reduction depends on the application for which SVD is used. The two singular values of A are

$$\sigma_1=\sqrt{33}~and~\sigma_2=1$$

$$\sigma_1=\sqrt{33}~and~\sigma_2=1$$
 We note that $\sigma_1\approx 6>>\sigma_2$. Due to this reason, we can write

$$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T \approx \sigma_1 u_1 v_1^T$$

Hence, the dimension is reduced to 1 and so dimensionality reduction is possible. However, for some applications, the difference between σ_1 and σ_2 is not significant enough to replace σ_2 by 0 in the rank one decomposition of A. Hence, in those cases, dimensionality reduction is not possible.

(0.5M)