

ANGGOTA

REHAN

KEISHA

1. TERHUBUNG

- Graf Terhubung (Connected Graph):
 - Sebuah graf tidak berarah G=(V,E) disebut terhubung jika untuk setiap pasangan simpul uuu dan v di V, terdapat setidaknya satu jalur (path) yang menghubungkan u dan v.
 - Dalam graf terarah, graf dikatakan terhubung kuat (strongly connected) jika terdapat jalur dari u ke v dan sebaliknya.
- Komponen Terhubung:
 - Bagian terbesar dari graf yang merupakan subgraf terhubung disebut komponen terhubung.
 - Contoh: Jika graf terdiri dari dua bagian yang tidak memiliki sisi penghubung, maka setiap bagian disebut sebagai komponen terhubung.

2. UPAGRAF (SUBGRAF)

- Definisi: Subgraf H dari graf G adalah graf yang simpulnya (V(H)) merupakan subset dari simpul G dan sisinya (E(H)) merupakan subset dari sisi G.
- Jenis Subgraf:
 - Subgraf Induced (Upagraf Terinduksi):
 - Subgraf H disebut terinduksi jika semua sisi di G yang menghubungkan simpul dalam H juga ada dalam H.
 - Subgraf Tidak Terinduksi:
 - Tidak semua sisi dalam graf asal diambil.

3. KOMPLEMEN UPAGRAF DAN UPAGRAF MERENTANG

A. Komplemen Upagraf

- Komplemen dari graf G=(V,E) adalah graf G'=(V,E'), di mana:
 - E'={(u,v) u,v∈V,(u,v)∉E}.
 - Dengan kata lain, sisi-sisi yang ada di G' adalah semua kemungkinan sisi yang tidak ada di G.

B. Upagraf Merentang

- Definisi:
 - Upagraf merentang adalah subgraf H dari G yang mencakup semua simpul G tetapi mungkin tidak mencakup semua sisi G.
- Ciri Khas:
 - Dalam graf terhubung, upagraf merentang minimal adalah pohon merentang (spanning tree).
 - Untuk graf berbobot, upagraf merentang minimum (minimum spanning tree) adalah upagraf dengan bobot total sisi paling kecil.

4. CUT SET & GRAF BERBOBOT

A. Cut Set

- Definisi:
 - Cut Set adalah himpunan sisi-sisi dalam graf G yang, jika dihapus, akan memutuskan graf menjadi dua atau lebih komponen terhubung.
- Contoh Penggunaan:
 - Dalam analisis jaringan listrik atau komunikasi, cut set membantu mengidentifikasi sisi-sisi kritis yang, jika terganggu, akan memutuskan konektivitas jaringan.

0

B. Graf Berbobot

- Definisi:
 - Sebuah graf berbobot adalah graf G=(V,E) di mana setiap sisi e ∈ E memiliki bobot w(e) yang sering direpresentasikan sebagai angka (jarak, biaya, waktu, dll).
- Aplikasi:
 - Menemukan jalur terpendek (misalnya dengan algoritma Dijkstra atau Floyd-Warshall).
 - Menghitung pohon merentang minimum (misalnya dengan algoritma Kruskal atau Prim).

5. BEBERAPA GRAF SEDERHANA KHUSUS

1. Graf Lengkap (Kn):

- o Graf dengan n simpul di mana setiap pasangan simpul memiliki satu sisi penghubung.
- ∘ Jumlah sisi: n(n−1)/2.

2. Graf Sirkuit (Cn):

 Graf yang membentuk siklus tertutup, di mana simpul pertama terhubung ke simpul terakhir, dan setiap simpul lainnya memiliki tepat dua sisi.

3. Graf Rantai (Pn):

 Graf berbentuk jalur lurus, di mana setiap simpul memiliki sisi yang menghubungkannya dengan satu atau dua simpul lainnya.

4. Graf Bipartit:

 Graf G=(V,E) di mana simpul dapat dibagi menjadi dua himpunan V1 dan V2, sehingga semua sisi E hanya menghubungkan simpul dari V1 ke V2.

5. Graf Bipartit Lengkap (Km,n):

o Graf bipartit di mana setiap simpul di V1 terhubung ke setiap simpul di V2

6. REPRESENTASI GRAF

- Matriks Ketetanggaan (Adjacency Matrix):
- Matriks persegi A dengan ukuran n×n, di mana n adalah jumlah simpul.
- Elemen A[i][j]:
 - 1: Jika ada sisi dari simpul i ke j.
 - 0: Jika tidak ada sisi.
- Matriks Insidensi (Incidence Matrix):
- Matriks dengan ukuran n×m, di mana n adalah jumlah simpul dan m adalah jumlah sisi.
- Elemen A[i][j]:
 - 1: Jika sisi ke-j terhubung ke simpul i.
 - 0: Jika tidak.
- Daftar Ketetanggaan (Adjacency List):
- Representasi berbasis daftar:
 - Setiap simpul memiliki daftar simpul lain yang terhubung dengannya.
 - Cocok untuk graf jarang (sparse graph).
- Daftar Sisi (Edge List):
- Representasi berbasis daftar sisi:
 - Daftar berisi semua sisi dalam bentuk pasangan (u,v) atau tripel (u,v,w) untuk graf berbobot.

7. contoh soal

Diberikan graf berbobot G=(V,E) di mana:

- V adalah himpunan simpul: V={A,B,C,D,E}.
- E adalah himpunan sisi berbobot sebagai berikut: {(A,B,3),(A,C,1),(B,C,1),(B,D,4),(C,D,2),(D,E,1)}.

Diminta untuk mencari lintasan terpendek dari simpul A ke simpul E menggunakan algoritma Dijkstra.

Penyelesaian:

Langkah 1: Representasi Graf

Graf direpresentasikan sebagai berikut:

- Simpul (Vertices): V={A,B,C,D,E}.
- Sisi berbobot (Edges with weights): (A,B,3),(A,C,1), (B,C,1),(B,D,4),(C,D,2),(D,E,1).

```
A
//\
(3) (1)
// \
B --(1)-- C --(2)-- D --(1)-- E
\
\
\----(4)----/
```

Iterasi 1: Pilih Simpul A (Jarak Terkecil, 0)

• Perbarui jarak ke tetangganya Bdan C:

○ Ke BBB: 0+3 = 3 → Simpul sebelumnya: A.

○ Ke CCC: 0+1=1 → Simpul sebelumnya: A.

Simpul	Jarak dari A	Simpul Sebelumnya	Status
Α	0	7 <u>~</u>	Tetap
В	∞		Belum
С	∞		Belum
D	∞		Belum
E	∞		Belum

Iterasi 2: Pilih Simpul C (Jarak Terkecil, 1)

- Perbarui jarak ke tetangganya B dan D:
 - Ke B: 1+1=2 (lebih kecil dari 3) → Simpul sebelumnya: C.
 - Ke D: 1+2=3 → Simpul sebelumnya: C.

Simpul	Jarak dari A	Simpul Sebelumnya	Status
Α	0		Tetap
В	2	С	Belum
С	1	A	Tetap
D	3	С	Belum
E	∞	-	Belum

Iterasi 3: Pilih Simpul B (Jarak Terkecil, 2)

- Perbarui jarak ke tetangganya DDD:
- Ke DDD: 2+4=6 (lebih besar dari 3, tidak ada perubahan).

terasi 4: Pilih Simpul D (Jarak Terkecil, 3)

- Perbarui jarak ke tetangganya E:
 - Ke E: 3+1=4 Simpul sebelumnya:
 D.

Iterasi 5: Pilih Simpul E (Jarak Terkecil, 4)

Semua simpul telah ditetapkan.

Simpul	Jarak dari A	Simpul Sebelumnya	Status
Α	0	·=	Tetap
В	2	С	Tetap
С	1	A	Tetap
D	3	С	Belum
E	∞	-	Belum

Simpul	Jarak dari A	Simpul Sebelumnya	Status
А	0	:	Tetap
В	2	С	Tetap
С	1	А	Tetap
D	3	С	Tetap
E	4	D	Belum

Langkah 3: Lintasan Terpendek Lacak simpul sebelumnya dari E:

E→D→C→A.

Lintasan Terpendek: $A \rightarrow C \rightarrow D \rightarrow E$

Jarak Total: 4

