ML Assignment:

In this assignment, you will be working on the Pima Indians Diabetes Database (https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database)

- 1. Download the dataset and upload it into your bucket.
- 2. Train an ML model on the dataset to predict the Outcome and report the accuracy for different pre-processing techniques and models. Provide the details of data exploration and feature engineering steps. You also need to submit the code along with the answers to the above questions

Roll Number: ME19B190

Step 1: Create a Dataproc cluster with

Step 2: Download the Pima Indians Diabetes Database from (pima-indians-dataset)

Step 3: Open Web Interfaces in the DataProc cluster and open Jupyter notebook. Select cluster type as "Single Node (1 master, 0 workers)", 2.0-debian10 image, and select Jupyter Notebook in optional components. In the Configure Nodes section, N2 Series n2-standard-4 Machine Type is selected with 4 vCPUs and ~4GB Memory and everything else kept default.

Step 4: Launch the Jupyter Notebook

Roll Number: ME19B190

Code Explanation:

1. Reading the dataset from the bucket and storing it as a pyspark dataframe

```
[316]: file_location ="gs://dataproc-staging-us-central1-775468331472-mpvg9j7b/diabetes.csv"
training = spark.read.format("csv").option("header","True").load(file_location).toDF("Pregnancies","Glucose","BloodF
training = training.withColumn("Pregnancies",
    training["Pregnancies"].cast("float")).withColumn("Glucose",
    training["Glucose"].cast("float")).withColumn("BloodPressure",
    training["BloodPressure"].cast("float")).withColumn("SkinThickness",
```

2. Null Value Imputation:

Null values in the dataset have been observed, thus null values have been imputed using the Imputer available in pyspark library

reeFunction Age label
0.627 50.0 1.0
0.351 31.0 0.0
0.672 32.0 1.0
0.167 21.0 0.0
2.288 33.0 1.0
0.201 30.0 0.0
0.248 26.0 1.0
0.134 29.0 0.0
0.158 53.0 1.0
0.232 54.0 1.0
0.191 30.0 0.0
0.537 34.0 1.0
r -

After Null value imputation:

3. Class Imbalance: Checking if there is any class imbalance in the dataset
Yes, there is class imbalance in the dataset. The class "0" records are approximately twice as
many as class "1" records. Thus, under sampling and oversampling techniques have been
explored

print('-----

print("Train data with Over Sampling")

train_oversampling = minor_df.withColumn("temp_col",

duplicate the minority rows

train_oversampling.show(5)

#oversampling
a = range(ratio)

```
[ ] major_df = train.filter(train.label == 0.0)
    minor_df = train.filter(train.label == 1.0)
    print("Majority class is 0 with count: ",major_df.count())
    print("Minority class is 1 with count: ",minor_df.count())
    ratio = round(major_df.count()/minor_df.count())
    print("ratio of majority and minority class: {}".format(ratio))

Majority class is 0 with count: 408
    Minority class is 1 with count: 221
    ratio of majority and minority class: 2

#undersampling of the majority class
sampled_majority_df = major_df.sample(False, 1/ratio)
    train_undersampling = sampled_majority_df.unionAll(minor_df)
    print("Train data with Under Sampling")
    train_undersampling.show(5)
```

Roll Number: ME19B190

Data pre-processing
 Vector assembler to concatenate the feature columns and Data normalizer to normalize the input dataset

explode(array([lit(x) for x in a]))).drop('temp_col')

```
[ ] #concatenating the feature columns to make a feature vector
      assembler = VectorAssembler(inputCols = ["Pregnancies", "Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI", "DiabetesPedigreeFunction", "Age"], outputCol = "temp_features")
[ ] df = train
      df = assembler.transform(df)
    df.show(5, False)
     MI | DiabetesPedigreeFunction | Age | label | temp features
     1.7 0.735
                                     [67.0]0.0 | [0.0,57.0,60.0,29.363431930541992,154.67283630371094,21.700000762939453,0.7350000143051147,67.0]
      5.3 0.194
                                     |46.0||0.0|| [0.0,67.0,76.0,29.363431930541992,154.67283630371094,45.29999923706055,0.1940000057220459,46.0]

|25.0||0.0|| [0.0,73.0,72.52310180664062,29.363431930541992,154.67283630371094,21.100000381469727,0.34200000762939453,25.0]
     1.1 0.342
                                                 [0.0,74.0,52.0,10.0,36.0,27.799999237060547,0.26899999380111694,22.0]
                                     |21.0|0.0 |[0.0,84.0,64.0,22.0,66.0,35.79999923706055,0.5450000166893005.21.0]
     5.8 0.545
[ ] normalizer = Normalizer(inputCol = "temp_features",outputCol="norm_features",p = 1.0)
[ ] df = normalizer.transform(df)
[ ] df.select("norm_features").show(5)
              norm_features|
      [0.0.0.1459774496...
      [0.0,0.1941482285..
      [0.0,0.3332297630.
     only showing top 5 rows
```

5. Feature engineering: Principal Component analysis has been performed to extract the top 5 most important features from the dataset.

```
[14]: pca = PCA(k = 5, inputCol = 'norm_features')
                   pca.setOutputCol('features')
                   model_pca = pca.fit(df)
                  df = model_pca.transform(df)
                  df.select("features").show(5,truncate = False)
                  23/04/09 19:10:35 WARN com.github.fommil.netlib.LAPACK: Failed to load implementation from: com.github.fommil.netli
                  b.NativeSystemLAPACK
                   23/04/09 19:10:35 WARN com.github.fommil.netlib.LAPACK: Failed to load implementation from: com.github.fommil.netli
                  b.NativeRefLAPACK
                   lfeatures
                   16.23471773600388526.-0.05495898059059314.-0.037257758048048206.0.11606018091238766.0.0376103331051093
                   [0.19963916199366438,-0.05582877593762735,-0.10533508333468442,0.08563876542886653,0.0010375302056054138]
                    \lfloor [ \emptyset.23166956014258616, -\emptyset.09876342303641925, -\emptyset.14764875497375302, \emptyset.09734157052893108, \emptyset.05438359013801711 \rfloor -0.09876342303641925, -0.14764875497375302, \emptyset.09734157052893108, \emptyset.05438359013801711 \rfloor -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.09876342303641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987641925, -0.0987
                    [-0.054834510446004694,-0.15676612084398914,-0.13853308773482853,0.10933285345673513,-0.012097852450469453]
                   only showing top 5 rows
```

Roll Number: ME19B190

6. Building the pipeline and deploying models: Various models like Logistic regression, Decision Tree classifier, Random Forest Classifier, GBT Classifier (Gradient boost), and Support vector machines have been trained to give predictions on Pima Indians Diabetes Database

```
[ ] lr = LogisticRegression(maxIter = 10)
    pipeline = Pipeline(stages = [assembler,normalizer,pca,lr])
    pred = model.transform(test)
    print("Accuracy - Logistic regression: {} ".format(MulticlassClassificationEvaluator(metricName='accuracy').evaluate(pred)))
    print("F1 score - Logistic regression: {} ".format(MulticlassClassificationEvaluator(metricName='f1').evaluate(pred)))
[ ] dt = DecisionTreeClassifier(maxDepth = 5)
     pipeline = Pipeline(stages = [assembler,normalizer,model_pca,dt])
     model = pipeline.fit(train)
     pred = model.transform(test)
     print("Accuracy - Decision Tree Classifier: {} ".format(MulticlassClassificationEvaluator(metricName='accuracy').evaluate(pred)))
     print("F1 score - Decision Tree Classifier: {} ".format(MulticlassClassificationEvaluator(metricName='f1').evaluate(pred)))
[ ] rf = RandomForestClassifier(maxDepth = 6,numTrees = 100,featuresCol = 'features',featureSubsetStrategy = 'sqrt')
     pipeline = Pipeline(stages = [assembler,normalizer,model_pca,rf])
    model = pipeline.fit(train)
    pred = model.transform(test)
    print("Accuracy - Random Forest Classifier: {} ".format(MulticlassClassificationEvaluator(metricName='accuracy').evaluate(pred)))
    print("F1 score - Random Forest Classifier: {} ".format(MulticlassClassificationEvaluator(metricName='f1').evaluate(pred)))
[ ] gbt = GBTClassifier(labelCol="label", featuresCol="features", maxIter=10)
    pipeline = Pipeline(stages = [assembler,normalizer,model_pca,gbt])
    model = pipeline.fit(train)
    pred = model.transform(test)
    print("Accuracy - GBTClassifier: {} ".format(MulticlassClassificationEvaluator(metricName='accuracy').evaluate(pred)))
    print("F1 score - GBTClassifier: {} ".format(MulticlassClassificationEvaluator(metricName='f1').evaluate(pred)))
[ ] svc = LinearSVC(labelCol="label", featuresCol="features", maxIter=10,regParam=0.1)
     pipeline = Pipeline(stages = [assembler,normalizer,model_pca,svc])
     model = pipeline.fit(train)
     pred = model.transform(test)
     print("Accuracy - GBTClassifier: {} ".format(MulticlassClassificationEvaluator(metricName='accuracy').evaluate(pred)))
     print("F1 score - GBTClassifier: {} ".format(MulticlassClassificationEvaluator(metricName='f1').evaluate(pred)))
```

7. Results:

Results of various models have been tabulated below

Name: Royyuru Sai Prasanna Gangadhar Roll Number: ME19B190

Model	Logistic regression		Decision Tree		Random	forest	GBT Cla	ssifier	SVC	3
Sampling	Accuracy	F1	Accuracy	F1	Accuracy	F1	Accuracy	F1	Accuracy	F1
No sampling	0.741	0.724	0.669	0.677	0.776	0.768	0.683	0.686	0.661	0.527
Under sampling	0.640	0.649	0.597	0.599	0.705	0.712	0.640	0.648	0.640	0.649
Over sampling	0.33	0.17	0.33	0.17	0.33	0.17	0.33	0.17	0.33	0.17

8. Conclusions: Random Forest classifier without under sampling or oversampling is giving best results followed by logistic regression (without under sampling or oversampling)

Deep learning Assignment:

The DL.ipynb file uploaded on moodle uses a pre-trained mobilenet model to run inference on the flowers dataset using Pyspark. Modify the above code to run inference on CIFAR 10 dataset using Pyspark. Try a few different models pre-trained on Imagenet and report which works better

Roll Number: ME19B190

1. Install the required packages

```
!sudo add-apt-repository ppa:openjdk-r/ppa
!sudo apt-get install openjdk-11-jdk
# To Install Oracke JDK varsion 8
#!sudo add-apt-repository ppa:webupd8team/java
#!sudo apt-get install oracle-java8-installer
!sudo apt install -y openjdk-8-jdk

[] |wget -q https://downloads.apache.org/spark/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spark-3.2.3/spar
```

2. Download CIFAR 10 dataset

3. Store each image in the dataset as a binary array and store its path and corresponding label

```
df = images.select(
          col("path"),
          col("modificationTime"),
         extract label(col("path")).alias("label"),
          extract size udf(col("content")).alias("size"),
        col("content"))
 df = df.withColumn("label",
                                                                                                   when(col("label")=="00","airplanes" )
                                                                                                  .when(col("label")=="01", "cars")
.when(col("label")=="02", "birds")
                                                                                                  .when(col("label")=="03", "cats")
.when(col("label")=="04", "deer")
.when(col("label")=="05", "dogs")
.when(col("label")=="06", "frogs")
                                                                                                                                                                                                                                                                                                               path| modificationTime|label|
                                                                                                                                                                                                                                                                                                       |file:/root/.keras...|2023-04-09 15:20:...|birds|{40, 40}|[89 50 4E 47 0D 0...|file:/root/.keras...|2023-04-09 15:20:...|frogs|{40, 40}|[89 50 4E 47 0D 0...|file:/root/.keras...|2023-04-09 15:20:...|deer|{40, 40}|[89 50 4E 47 0D 0...|file:/root/.keras...|2023-04-09 15:20:...|frogs|{40, 40}|[89 50 4E 47 0D 0...|file:/root/.keras...|2023-04-09 15:20:...|frogs|[40, 40]|[89 50 4E 47 0D 0...|file:/root/.keras...|2023-04-09 15:20:...|frogs|[40, 40]|[80 50 4E 47 0D 0...|file:/root/.keras...|2023-04-09 15:20:...|frogs|[40, 40]|[80 50 4E 47 0D 0...|file:/root/.keras...|2023-04-09 15:20:...|frogs|[40, 40]|[80 50 4E 47 0D 0...|file:/root/.keras...|40 50 
                                                                                                   .when(col("label")=="07", "horses")
.when(col("label")=="09", "ships")
                                                                                                                                                                                                                                                                                                        |file:/root/.keras...|2023-04-09 15:20:...|frogs|{40, 40}|[89 50 4E 47 0D 0...
                                                                                                   .otherwise("trucks"))
                                                                                                                                                                                                                                                                                                       only showing top 5 rows
df.show(5)
```

4. Visualizing the dataset

5. A Imagenet dataset class has been created and a method _preprocess has been defined to convert all the input images to standard ImageNet dataset sizes

Roll Number: ME19B190

6. Predict function has been defined with returns predictions of the given model on each image

```
def predict(content_series_iter : pd.Series) -> pd.DataFrame:
    model = model_fn() # Once per Map
    model.eval() # Once Per Map ,model file read from memory
    for content_series in content_series_iter:
        dataset = ImageNetDataset(list(content_series))
        loader = DataLoader(dataset, batch_size=64)
        with torch.no_grad():
        for image_batch in loader:
            predictions = model(image_batch).numpy()
            predicted_labels = [x[0] for x in decode_predictions(predictions, top=1)]
            yield pd.DataFrame(predicted_labels)
```

7. Various pretrained models such as MobileNet, ResNet50, GoogleNet and VGG16 has been used to give predictions on ImageNet dataset. The below table summarizes the results of various pretrained models.

Predictions of MobileNet:

Predictions of ResNet50 architecture:

+	++
label ResNet50 prediction	ResNet50 Score
+	++
birds brambling	6.5817957
frogs tailed frog	5.7556643
deer tusker	5.8913913
frogs muzzle	5.5295134
frogs cheetah	7.1604624
-	5.916838
_	4.5856814
	6.1878433
-	5.433097
frogs sidewinder	5.265415
-	5.7072563
-	5.4684696
_	6.578742
<u> </u>	5.7039857
<u> </u>	5.801503
_	14.8295956
	7.5168877
· · · · · · · · · · · · · · · · · · ·	5.94618
·	5.341413
frogs German short-haired pointer	
++	, ++

Roll Number: ME19B190

Predictions of GoogleNet:

+	++
label GoogleNet prediction	GoogleNet Score
+	++
birds brambling	8.454064
frogs book_jacket	6.4626827
deer book_jacket	6.2683506
frogs book_jacket	6.6099167
frogs cheetah	7.160299
frogs screen	7.0333133
frogs safety_pin	6.7185173
frogs screen	5.701735
birds patas	9.558256
frogs bolo_tie	6.728154
frogs book_jacket	6.834465
frogs screen	6.812574
frogs fox_squirrel	6.750074
frogs screen	6.3442874
birds screen	7.789497
deer book_jacket	6.203725
frogs book_jacket	6.9980235
deer sorrel	8.453428
cats screen	7.7593718
frogs book_jacket	7.0712056
+	++

Predictions of VGG16 Network:

+	++
label VGG16 prediction	VGG16 Score
+	++
birds screen	8.6330185
frogs frilled lizard	11.306978
deer bulletproof vest	7.5320554
frogs comic book	19.264689
-	10.472668
-	8.955809
frogs safety pin	8.636215
frogs three-toed sloth	9.986124
birds fox_squirrel	11.699705
frogs rock python	8.877836
frogs hen-of-the-woods	7.9704266
frogs book jacket	7.852457
frogs fox squirrel	13.552772
frogs plate rack	10.658487
birds fox squirrel	6.7122188
—	9.036906
-	6.843171
deer fox squirrel	8.38976
cats Windsor tie	8.3282795
frogs German_short-haired_pointer	7.845697
+	++

8. Conclusions:

ImageNet dataset has different label names than that of CIFAR10, the predicted labels of these pre trained models do not match the exact labels of CIFAR10 dataset.

Roll Number: ME19B190

- From the above predictions reported, ResNet 50 is performing better compared all other models like GoogleNet, MobileNet and VGG16.
- The reason being, it has predicted
 - a. Brambling (a bird) for the class "bird"b. tailed frog for the class "frogs
 - c. tusker for the class "deer" (may it is drawing correlation between the tusks of the two classes)
- These predictions are better compared to the predictions of other models which are completely different like screen for birds(VGG16), book_jacket for frogs(GoogleNet) etc.
- Thus, we can conclude that ResNet50 is working better on CIFAR10 dataset compared to other pre-trained models which are trained on ImageNet dataset.