# Chapter 1 : Basic Concepts

Data Structures Lecture Note Prof. Sungwon Jung Big Data Processing Laboratory Dept. of Computer Science and Engineering Sogang University

# Goals

- To provide the tools and techniques necessary to design and implement large-scale computer systems.
  - solid foundation in <u>data abstraction</u>, <u>algorithm specification</u> and <u>performance analysis and measurement</u> provides the necessary methodology.

## 1.1 SYSTEM LIFE CYCLE

#### Requirement

- a set of specifications that define the purpose of the project.
- input/output

#### Analysis

- break the problems down into manageable pieces.
- bottom-up / top-down

#### Design

- creation of abstract data types
- specification of algorithms and consideration of algorithm design strategies.

(\* language independent \*)

Data Engineering Laboratory

### Refinement and Coding

- choose representations for data objects and write algorithms for each operation on them.
- data object's representation can determine the efficiency of the algorithms related to it.

#### Verification

- Developing correctness proof for the program
- Testing the program with a variety of input data
- Error removal
- Performance analysis
  - running time
  - amount of memory used

**Data Engineering Laboratory** 

Δ

# 1.2 ALGORITHM SPECIFICATION

#### 1.2.1 Introduction

#### Definition:

An algorithm is a finite set of instructions that, if followed, accomplishes particular task.

All algorithms must satisfy the following criteria:

- (1) Input
- (2) Output
- (3) Definiteness
- (4) Finiteness
- (5) Effectiveness

algorithm / program (procedure)

**Data Engineering Laboratory** 

### How to describe an algorithm

natural language flowchart programming language

## Example 1.1 [Selection Sort]

Sorting a set of  $n \ge 1$  integers

From those integers that are currently unsorted, find the smallest and place it next in the sorted list.

**Data Engineering Laboratory** 

#### ■ [Program 1.1 Selection sort algorithm]

```
for (i=0; i<n; i++) {
    Examine list[i] to list[n-1]
    and suppose that the smallest integer is at list[min];
    Interchange list[i] and list[min];
}</pre>
```

- first task : finding the smallest integer;
- second task : exchange;

either a function or a macro

7

**Data Engineering Laboratory** 

#### [Program 1.2 swap function]

**Data Engineering Laboratory** 

#### macro version of swap -

```
#define SWAP(x,y,t) ((t) = (x), (x) = (y), (y) = (t))
```

#### [Program 1.3 Selection sort]

```
void sort (int list[], int n)
{
    int i, j, min, temp;
    for (i=0; i<n-1; i++) {
        min = i;
        for (j = i+1; j < n; j++)
        if (list[j] < list[min])
            min = j;
        SWAP(list[i], list[min], temp);
    }
}</pre>
```

**Data Engineering Laboratory** 

#### **■ Theorem 1.1:**

Function sort(list,n) correctly sorts a set of  $n \ge 1$  integers. The result remains in list[0], ..., list[n-1] such that  $list[0] \le list[1] \le ... \le list[n-1]$ .

proof : consider loop invariant.

### **Example 1.2** [Binary Search]

Find out if an integer *searchnum* is in a list. If so, return i such that list[i] = *searchnum*, Otherwise, return -1.

For a sorted list (in ascending order)



middle = (left + right) / 2

11

**Data Engineering Laboratory** 

#### Compare list[middle] with searchnum

### searchnum < list[middle]</p>

if *searchnum* is present, it must be in the position between *left* and *middle-1*. set *right* to *middle-1*.

searchnum = list[middle]

return *middle*.

searchnum > list[middle]

if *searchnum* is present, it must be in the position between *middle+1* and *right*.
set *left* to *middle+1* 

## Implementing this search strategy :

```
while (there are more integers to check) {
    middle = (left + right) / 2;
    if (searchnum < list[middle])
        right = middle - 1;
    else if (searchnum == list[middle])
        return middle;
    else left = middle + 1;
}</pre>
```

**Data Engineering Laboratory** 

13

## Handling the comparisons:

**Data Engineering Laboratory** 

#### function -

```
int compare (int x, int y)
{
    /* compare x and y, return -1 for less than,
    0 for equal, 1 for greater */
    if (x < y) return -1;
    else if (x == y) return 0;
    else return 1;
}</pre>
```

#### macro -

```
# define COMPARE (x,y) ((x) < (y)) ? -1: ((x) == (y)) ? 0: 1)
```

**Data Engineering Laboratory** 

15

#### **■** [Program 1.6]

**Data Engineering Laboratory** 

# 1.2.2 Recursive Algorithms

# Direct recursion Indirect recursion

- Recursion is a general control scheme.
- Often recursive function is easier to understand than its iterative counterpart.
- Many problems can be defined recursively in natural way.

Data Engineering Laboratory

17

## [Binomial Coefficients]

$$\left[\begin{array}{c} n \\ m \end{array}\right] = \frac{n!}{m!(n-m)!}$$

can be recursively computed by the formula:

$$\left[\begin{array}{c} n \\ m \end{array}\right] = \left[\begin{array}{c} n-1 \\ m \end{array}\right] + \left[\begin{array}{c} n-1 \\ m-1 \end{array}\right]$$

**Data Engineering Laboratory** 

#### Examples:

#### [factorial]

$$n! = \{ n * (n-1)! & \text{if } n>1 \\ 1 & \text{if } n=1 \}$$

#### [Binary search]

Data Engineering Laboratory

10

#### [Fibonacci numbers]

$$f_{n} = \begin{cases} & \text{if } n=0 \\ & 1 & \text{if } n=1 \\ & f_{n-1} + f_{n-2} & \text{if } n>1 \end{cases}$$

#### [Permutations]

We can construct the set of permutations by printing:

- (1) a followed by all permutations of (b, c, d)
- (2) b followed by all permutations of (a, c, d)
- (3) c followed by all permutations of (a, b, d)
- (4) d followed by all permutations of (a, b, c)

**Data Engineering Laboratory** 

#### **Iterative function**

#### **Recursive function**

```
int fibo(int n)
                                    int rfibo (int n)
  int g, h, f, i;
                                      if (n > 1)
  if (n>1) {
                                         return rfibo(n-1) + rfibo(n-2);
     q = 0;
                                      else
     h = 1;
                                         return n;
     for (i = 2; i <= n; i++) {
                                    }
         f = q+h;
         g = h;
         h = f;
  else f = n;
  return f;
```

**Data Engineering Laboratory** 

21

### **■** [Program 1.7]

```
int binsearch(int list[], int searchnum, int left, int right)
{
    /* search list[0] <= list[1] <= . . . <= list[n-1] for searchnum.
    Return its position if found. Otherwise return -1 */

int middle;
if (left <= right) {
    middle = (left + right)/2;
    switch (COMPARE(list[middle], searchnum)) {
        case -1 : return binsearch(list, searchnum, middle + 1, right);
        case 0 : return middle;
        case 1 : return binsearch(list, searchnum, left, middle - 1);
    }
}
return -1;
}</pre>
```

```
[Program 1.8]
  void perm(char *list, int i, int n)
    /* generate all the permutations of list[i] to list[n] */
    int j, temp;
    if (i == n) {
       for (j=0; j<=n; j++) printf("%c", list[j]);
       printf(" ");
    }
    else {
    /* list[i] to list[n] has more than one permutation,
       generate these recursively */
         for (j=i; j<=n; j++) {
            SWAP(list[i], list[j], temp);
            perm(list, i+1, n);
            SWAP(list[i], list[j], temp);
   }
 }
```

**Data Engineering Laboratory** 

## 1.3 DATA ABSTRACTION

basic data types of C :

Arrays and Structs

```
char, int, float, double, . . . short, long, unsigned
```

mechanisms for grouping data together :

```
int list[5];
struct student {
      char last_name[10];
      int student_id;
      char grade;
};
```

#### pointer data type :

for every basic data type
there is a corresponding pointer data type, such as pointer-to-an-int,
pointer-to-a-real,
pointer-to-a-char,
and pointer-to-a-float.

int i, \*pi;

predefined data types / user-defined data types

25

**Data Engineering Laboratory** 

# "What is a data type?"

#### Definition :

A *data type* is a collection of *objects* and a set of *operations* that act on those objects.

## specification of objects

► representation of objects implementation of operations

#### Definition:

An *abstract data type* (ADT) is a data type that is organized in such a way that the specification of the objects and the specification of the operations on the objects is separated from the representation of the objects and the implementation of the operations.

#### an abstract data type is implementation independent.

Specification of operations consists of the names of operations, the type of its arguments, and the type of its result. Also a description what the function does without appealing to internal representation details.

package in Ada
class in C++

27

**Data Engineering Laboratory** 

## Categories to classify the operations of a data types:

- Creator/constructor
- Transformers
- Observers/reporters

#### Example 1.5 [ Abstract data type Natural\_Number]

ADT Natural\_Number is

**object:** an ordered subrange of the integers starting at zero and ending at the maximum integer (*INT\_MAX*) on the computer

functions:

for all x, y IN *Nat\_Number*, *TRUE*, *FALSE* IN *Boolean* and where +, -, <, and == are usual integer operations

*Nat Number* Zero() ::= 0

Boolean Is\_Zero(x) ::= if (x) return FALSE

else return TRUE

 $Nat\_Number Add(x, y) ::= if ((x+y) <= INT\_MAX) return x+y$ 

else return INT\_MAX

Boolean Equal(x, y) ::= if (x==y) return TRUE

else return *FALSE* 

 $Nat_Number$  Successor(x) ::= if (x ==  $INT_MAX$ ) return x

else return x+1

 $Nat_Number$  Subtract(x,y) ::= if (x < y) return 0

else return x-y

end Natural\_Number

29

**Data Engineering Laboratory** 

## 1.4 PERFORMANCE ANALYSIS

#### Criteria of judging a program:

- Does the program meet the original specification of the task?
- 2. Does it work correctly?
- 3. Is the program well documented?
- 4. Does the program effectively use functions to create logical units?
- 5. Is the program's code readable?

#### [Performance Evaluation]

- 6. Does the program efficiently use primary and secondary storage?
- 7. Is the program's running time acceptable for the task?

#### Performance Analysis:

estimates of time and space that are machine independent.

#### Performance Measurement:

obtaining machine-dependent running times. used to identify inefficient code segments.

#### Definition :

The *space complexity* of a program is the amount of memory that it needs to run to completion.

The *time complexity* of a program is the amount of computer time that it needs to run to completion.

31

**Data Engineering Laboratory** 

# 1.4.1 Space Complexity

#### Fixed space requirements:

independent from the number and size of the program's inputs and outputs, e.g., the instruction space, space for simple variables, fixed-size structured variables, and constants.

#### Variable space requirements:

space needed by structured variables whose size depends on the particular instance, *I*, of the problem being solved.

$$S_{P}(I)$$
  
 $S(P) = c + S_{P}(I)$ 

### Example 1.6 : [simple arithmetic function]

```
S_{abc}(I) = 0.
```

## [Program 1.9]

```
float abc (float a, float b, float c)
{
    return a+b+b*c + (a+b-c)/(a+b) + 4.00;
}
```

33

**Data Engineering Laboratory** 

## Example 1.7 : [adding a list of numbers iteratively]

#### [Program 1.10]

```
float sum(float list[], int n) 

{
	float tempsum = 0;
	int i;
	for (i=0; i<n; i++)
		tempsum += list[i];
	return tempsum;
}

S_{sum}(n) = n if parameters are passed by value.
	S_{sum}(n) = 0 if parameters are passed by reference
```

## Example 1.8 : [adding a list of numbers recursively]

### [Program 1.11]

25

**Data Engineering Laboratory** 

| Туре                                                                                | Name        | Number of bytes |
|-------------------------------------------------------------------------------------|-------------|-----------------|
| parameter: array pointer<br>parameter: integer<br>return address: (used internally) | list[]<br>n | 4<br>4<br>4     |
| TOTAL per recursive call                                                            |             | 12              |

Figure 1.1 : Space needed for one recursive call of program 1.11  $\,$ 

**Data Engineering Laboratory** 

# 1.4.2 Time Complexity

- (1) Compile Time
- (2) Execution (Running) Time

We are really concerned only with the program's execution time.

37

**Data Engineering Laboratory** 

### Determining the execution time :

- the times needed to perform each operation.
- the number of each operation performed for the given instance (dependent on the compiler).

$$T_P(n) = c_a ADD(n) + c_s SUB(n) + c_1 LDA(n) + c_{st} STA(n)$$

- Obtaining such a detailed estimate of running time is rarely worth the effort.
- Counting the number of operations the program performs gives us a machine-independent estimate.

#### Definition :

A *program step* is a syntactically or semantically meaningful program segment whose execution time is independent of the instance characteristics.

Determining the number of steps that a program or a function needs to solve a particular problem instance by creating a global variable, *count*, and inserting statements that increment count

**Data Engineering Laboratory** 

39

#### ■ [Example 1.9] [Iterative summing of a list of numbers]

#### [Program 1.12]

```
float sum(float list[], int n)
{
    float tempsum = 0; count++; /*for assignment*/
    int i;
    for (i=0; i<n; i++) {
        count++; /*for the for loop */
        tempsum += list[i]; count++; /*for assignment*/
    }
    count++; /* last execution of for */
    count++; /* for return */ return tempsum;
}</pre>
```

**Data Engineering Laboratory** 

### [Program 1.13]

```
float sum(float list[], int n)
{
    float tempsum = 0;
    int i;
    for (i=0; i<n; i++)
        count += 2;    /*for the for loop */
        count += 3;
        return 0;
}</pre>
```

If the initial value of count is 0, its final value will be 2n+3.

41 =

**Data Engineering Laboratory** 

#### [Example 1.10] [Recursive summing of a list of numbers]

### [Program 1.14]

the step count is 2n+2.

**Data Engineering Laboratory** 

#### ■ [Example 1.11] : [Matrix addition]

#### [Program 1.15]

**Data Engineering Laboratory** 

43

### [Program 1.16]

**Data Engineering Laboratory** 

## [Program 1.17]

The step count will be 2 rows \*cols + 2rows +1

45

**Data Engineering Laboratory** 

## ■ Tabular method: *steps/execution*

## [Figure 1.2]

| Statement                                                              | s/e | Frequen | cy Total steps |
|------------------------------------------------------------------------|-----|---------|----------------|
| float sum(float list[], int n)                                         | 0   | 0       | 0              |
| {                                                                      | 0   | 0       | 0              |
| float tempsum=0;                                                       | 1   | 1       | 1              |
| int i;                                                                 | 0   | 0       | 0              |
| for (i=0; i <n; i++)<="" td=""><td>1</td><td>n+1</td><td>n+1</td></n;> | 1   | n+1     | n+1            |
| tempsum += list[i];                                                    | 1   | n       | n              |
| return tempsum;                                                        | 1   | 1       | 1              |
| }                                                                      | 0   | 0       | 0              |
| Total                                                                  |     |         | 2n+3           |

**Data Engineering Laboratory** 

## [Example 1.13]

## [Figure 1.3]

| Statement                         | s/e | Freque | ncy Total steps |
|-----------------------------------|-----|--------|-----------------|
| float rsum(float list[], int n)   | 0   | 0      | 0               |
| {                                 | 0   | 0      | 0               |
| if (n)                            | 1   | n+1    | n+1             |
| return rsum(list, n-1)+list[n-1]; | 1   | n      | n               |
| return 0;                         | 1   | 1      | 1               |
| }                                 | 0   | 0      | 0               |
| Total                             |     |        | 2n+2            |

47

**Data Engineering Laboratory** 

## ■ [Example 1.14]

## [Figure 1.4]

| Statement                                                                                           | s/e | Frequency     | Total Steps            |
|-----------------------------------------------------------------------------------------------------|-----|---------------|------------------------|
| void add(int a[][MAX_SIZE])                                                                         | 0   | 0             | 0                      |
| <b> </b> {                                                                                          | 0   | 0             | 0                      |
| int i, j;                                                                                           | 0   | 0             | 0                      |
| for (i=0; i <rows; i++)<="" td=""><td>1</td><td>rows + 1</td><td>rows + 1</td></rows;>              | 1   | rows + 1      | rows + 1               |
| for (j=0; j <cols; j++)<="" td=""><td>1</td><td>rows·(cols+1)</td><td>rows·cols + rows</td></cols;> | 1   | rows·(cols+1) | rows·cols + rows       |
| c[i][j] = a[i][j] + b[i][j];                                                                        | 1   | rows·cols     | rows·cols              |
| }                                                                                                   | 0   | 0             | 0                      |
| Total                                                                                               |     |               | 2rows·cols + 2rows + 1 |

# **Summary**

- Time complexity of a program is given by the number of steps taken by the program to compute the function it was written for.
- The number of steps is itself a function of the instance characteristics.
  - e.g., the number of inputs, the number of outputs, the magnitudes of the inputs and outputs, etc.
- Before the step count of a program can be determined, we need to know exactly which characteristics of the problem are to be used.

49

**Data Engineering Laboratory** 

- For many programs, the time complexity is not dependent solely on the characteristics specified.
- The step count varies for different inputs of the same size.

Best case Worst case Average

### **Examples:**

Binary Search Insertion Sort

# 1.4.3 Asymptotic Notation (O, $\Omega$ , $\Theta$ )

### Our motivation to determine step counts:

to compare the time complexities of two programs for the same function, and

to predict the growth in run time as the instance characteristics change.

Data Engineering Laboratory

- Determining the exact step count (either worst case or average) of a program can prove to be an exceedingly difficult task.
- Expending immense effort to determine the step count exactly isn't a worthwhile endeavor as the notion of a step is itself inexact.

(e.g., x = y and x = y+z+(x/y)+(x\*y\*z-x/t) count as one step)

 Because of the inexactness of what a step stands for, the exact step count isn't very useful for comparative purposes.

**Data Engineering Laboratory** 

■ For most situations, step counts can be represented as a function of instance characteristics, such as  $C_1 n \le T_P(n) \le C_2 n^2$  or  $T_Q(n, m) = C_1 n + C_2 m$ .

What if the difference of two step counts are large? e.g., 3n+3 versus 100n+10.

What if two step counts are of different orders? e.g.,  $C_1 n^2 + C_2 n$  versus  $C_3 n$ .

break even point:

$$C_1=1, C_2=2, C_3=100$$
  
 $C_1n^2+C_2n\leq C_3n, \ n\leq 98$   
 $C_1n^2+C_2n>C_3n, \ n>98$  Break even point :  $n=98$ 

The exact break even point cannot be determined analytically.

The programs have to be run on a computer in order to determine the break even point.

**53** 

**Data Engineering Laboratory** 

### Some terminology :

■ Definition: [Big "oh"] f(n) = O(g(n))

iff there exist positive constants c and  $n_0$  such that  $f(n) \le c g(n)$  for all n,  $n \ge n_0$ .

$$3n + 2 = 0(n)$$

$$3n + 3 = 0(n)$$

$$100n + 6 = 0(n)$$

$$10n^2 + 4n + 2 \approx 0(n^2)$$

$$1000n^2 + 100n - 6 \approx 0(n^2)$$

$$6*2^n + n^2 = 0(2^n)$$

$$3n + 3 = 0(n^2)$$

$$10n^2 + 4n + 2 = 0(n^4)$$

$$3n + 2 \neq 0(1)$$

$$10n^2 + 4n + 2 \neq 0(n)$$

55

**Data Engineering Laboratory** 

$$0(1)$$
 a constant  $0(n^2)$  quadratic

$$0(\log n)$$
 logarithm  $0(n^3)$  cubic

$$O(n)$$
 linear  $O(2^n)$  exponential

In order for the statement f(n) = O(g(n)) to be informative, g(n) should be as small a function of n as one can come up with for which f(n) = O(g(n)).

### **■** Theorem 1.2:

If 
$$f(n) = a_m n^m + ... + a_1 n + a_0$$
 then  $f(n) = 0(n^m)$ .

#### Proof:

$$f(n) \leq \sum_{i=0}^{m} |a_i| n^i$$

$$\leq n^m \sum_{i=0}^{m} |a_i| n^{i-m}$$

$$\leq n^m \sum_{i=0}^{m} |a_i|, \text{ for } n \geq 1.$$
SO,  $f(n) \approx O(n^m)$ 

57

**Data Engineering Laboratory** 

## Definition : [Omega]

$$f(n) = \Omega(g(n))$$

iff there exist positive constants c and  $n_0$  such that  $f(n) \geq cg(n)$  for all n,  $n \geq n_0$ .

#### **Example 1.16**:

$$3n + 2 = \Omega(n)$$

$$3n + 3 = \Omega(n)$$

$$100n + 6 \approx \Omega(n)$$

$$10n^2 + 4n + 2 = \Omega(n^2)$$

$$6*2^n + n^2 = \Omega(2^n)$$

$$10n^2 + 4n + 2 = \Omega(n)$$

$$10n^2 + 4n + 2 = \Omega(1)$$

$$6*2^n + n^2 = \Omega(n^{100})$$

$$6*2^n + n^2 = \Omega(n^2)$$

$$6*2^n + n^2 = \Omega(n)$$

$$6*2^n + n^2 = \Omega(1)$$

**Data Engineering Laboratory** 

In order for the statement  $f(n) = \Omega(g(n))$  to be informative, g(n) should be as large a function of n as possible for which  $f(n) = \Omega(g(n))$  is true.

#### ■ Theorem 1.3:

If 
$$f(n) = a_m n^{m} + ... + a_1 n + a_0$$
 and  $a_m > 0$  , then  $f(n) = \Omega(n^m)$  .

**Data Engineering Laboratory** 

### Definition : [Theta]

$$f(n) = \Theta(g(n))$$

iff there exist positive constants  $c_1$ ,  $c_2$  and  $n_0$  such that  $c_1g(n) \leq f(n) \leq c_2g(n)$  for all n,  $n \geq n_0$ .

**Data Engineering Laboratory** 

61

### **Example 1.17**:

$$3n + 2 = \Theta(n)$$

$$10n^2 + 4n + 2 = 0(n^2)$$

$$10 * \log n + 4 \approx \Theta(\log n)$$

$$3n + 2 \neq 0(1)$$

$$10n^2 + 4n + 2 \neq 0(n)$$

$$6*2^n + n^2 \neq \Theta(n^{100})$$

$$6*2^n + n^2 \neq 0(1)$$

$$3n + 3 = \Theta(n)$$

$$6*2^n + n^2 = \Theta(2^n)$$

$$3n + 2 \neq \Theta(n^2)$$

$$10n^2 + 4n + 2 \neq 0(1)$$

$$6*2^n + n^2 \neq \Theta(n^2)$$

#### ■ Theorem 1.4:

If 
$$f(n) = a_m n^{m+...+} a_1 n + a_0$$
 and  $a_m > 0$ , then  $f(n) = \Theta(n^m)$ .

#### Example 1.18: [Complexity of matrix addition]

| Statement                                                         | Asymptotic complexity |
|-------------------------------------------------------------------|-----------------------|
| void add(int a[][MAX_SIZE])                                       | 0                     |
| <b>\{</b>                                                         | 0                     |
| int i, j;                                                         | 0                     |
| for (i=0; i <rows; i++)<="" td=""><td>⊕(rows)</td></rows;>        | ⊕(rows)               |
| for (j=0; j <cols; j++)<="" td=""><td>Θ(rows · cols)</td></cols;> | Θ(rows · cols)        |
| c[i][j] = a[i][j] + b[i][j];                                      | Ø(rows · cols)        |
| )                                                                 | 0                     |
| Total                                                             | Θ(rows · cols)        |

63

**Data Engineering Laboratory** 

### Example 1.19 : [Binary Search]

## [Program 1.6]

The instance characteristic -- number of elements in the list.

Each iteration of *while* loop takes  $\Theta(1)$  time.

The *while* loop is iterated at most  $\lceil \log_2(n+1) \rceil$  times.

Worst case - the loop is iterated  $\Theta(\log n)$  times Best case -  $\Theta(1)$ .

#### Example 1.21 : [Magic square]

The magic square is an  $n \times n$  matrix of integers from 1 to  $n^2$  such that the sum of each row and column and two major diagonals is the same.

When n=5: the common sum is 65.

| 15 | 8  | 1  | 24 | 17 |
|----|----|----|----|----|
| 16 | 14 | 7  | 5  | 23 |
| 22 | 20 | 13 | 6  | 4  |
| 3  | 21 | 19 | 12 | 10 |
| 9  | 2  | 25 | 18 | 11 |

Data Engineering Laboratory

#### Coxeter's rule :

Put a one in the middle of the top row. Go up and left assigning numbers in increasing order to empty boxes. If your move cause you to jump off the square (that is, you go beyond the square's boundaries), figure out where you would be if you landed on a box on the opposite side of the square. Continue with this box. If a box is occupied, go down instead of up and continue.

**Data Engineering Laboratory** 

#### [Program 1.22]

**Data Engineering Laboratory** 

**67** 

**Data Engineering Laboratory** 

```
69
```

```
/* output the magic square */
  printf("Magic Square of the size %d : \n\n", size);
  for (i = 0; i < size; i++) {
    for (j = 0; j < size; j++)
        printf ("%5d", square[i][j];
    printf("\n");
    }
  printf("\n \ n");
}</pre>
```

instance characteristic -- *n* denoting the size of the magic square.

```
the nested for loops -- \Theta(n^2)
next for loop -- \Theta(n^2)
Others --- \Theta(1)
Total asymptotic complexity is \Theta(n^2).
```

**Data Engineering Laboratory** 

71

# 1.4.4 Practical Complexities

- The time complexity of a program is generally some function of the instance characteristics.
- This complexity function:
  - is very useful in determining how the time requirements vary as the instance characteristics changes, and
  - may also be used to compare two programs P and Q that perform the same task.

**Data Engineering Laboratory** 

Assume that program P has complexity  $\Theta(n)$  and program Q has complexity  $\Theta(n^2)$ .

We can assert that P is faster than program Q for *sufficiently large* n.

How the various functions grow with n?

Data Engineering Laboratory

|                | Instance characteristic n |   |   |    |       |                |                        |  |  |
|----------------|---------------------------|---|---|----|-------|----------------|------------------------|--|--|
| Time           | Name                      | 1 | 2 | 4  | 8     | 16             | 32                     |  |  |
| 1              | Constant                  | 1 | 1 | 1  | 1     | 1              | 1                      |  |  |
| log n          | Logarithmic               | 0 | 1 | 2  | 3     | 4              | 5                      |  |  |
| n              | Linear                    | 1 | 2 | 4  | 8     | 16             | 32                     |  |  |
| nlog n         | Log linear                | 0 | 2 | 8  | 24    | 64             | 160                    |  |  |
| n²             | Quadratic                 | 1 | 4 | 16 | 64    | 256            | 1024                   |  |  |
| n³             | Cubic                     | 1 | 8 | 64 | 512   | 4096           | 32768                  |  |  |
| 2 <sup>n</sup> | Exponential               | 2 | 4 | 16 | 256   | 65536          | 4294967296             |  |  |
| n!             | Factorial                 | 1 | 2 | 24 | 40326 | 20922789888000 | 26313×10 <sup>33</sup> |  |  |

**Figure 1.7 Function values** 

**Data Engineering Laboratory** 



Figure 1.8 Plot of function values

75

| Data | Eng | neeri | ing I | La | bora | tory |
|------|-----|-------|-------|----|------|------|
|------|-----|-------|-------|----|------|------|

|                 |        |             |         | f (     | (n)                    |                         |                        |
|-----------------|--------|-------------|---------|---------|------------------------|-------------------------|------------------------|
| n               | $n$    | $n\log_2 n$ | $n^2$   | $n^3$   | $n^4$                  | n 10                    | 2 <sup>n</sup>         |
| 10              | .01 μs | .03 µs      | .1 µs   | 1 μs    | 10 μs                  | 10 s                    | 1 μs                   |
| 20              | .02 μs | .09 μs      | .4 μs   | 8 μs    | 160 μs                 | 2.84 h                  | 1 ms                   |
| 30              | .03 μ  | .15 μ       | .9 μ    | 27 μ    | 810 μ                  | 6.83 d                  | 1 s                    |
| 40              | .04 μs | .21 μs      | 1.6 µs  | 64 µs   | 2.56 ms                | 121 d                   | 18 m                   |
| 50              | .05 μs | .28 μs      | 2.5 μs  | 125 μs  | 6.25 ms                | 3.1 y                   | 13 d                   |
| 100             | .10 μs | .66 µs      | 10 μs   | 1 ms    | 100 ms                 | 3171 y                  | 4*10 <sup>13</sup> y   |
| 10 <sup>3</sup> | 1 μs   | 9.96 µs     | 1 ms    | 1 s     | 16.67 m                | 3.17*10 <sup>13</sup> y | 32*10 <sup>283</sup> y |
| $10^{4}$        | 10 μs  | 130 μs      | 100 ms  | 16.67 m | 115.7 d                | 3.17*10 <sup>23</sup> y |                        |
| 10 <sup>5</sup> | 100 μs | 1.66 ms     | 10 s    | 11.57 d | 3171 y                 | 3.17*10 <sup>33</sup> y |                        |
| 10 <sup>6</sup> | 1 ms   | 19.92 ms    | 16.67 m | 31.71 y | 3.17*10 <sup>7</sup> y | 3.17*10 <sup>43</sup> y |                        |
|                 |        |             |         |         |                        |                         |                        |

 $\mu s$  = microsecond =  $10^{-6}$  seconds; ms = milliseconds =  $10^{-3}$  seconds s = seconds; m = minutes; h = hours; d = days; y = years

Figure 1.9 Times on a 1 billion instruction per second computer

# 1.5 PERFORMANCE MEASUREMENT

- How to measure real execution time.
  - Use of C's standard library.
    Functions are accessed through the statement:
    #include <time.h>.
  - Inaccurate results can be produced for small data (e.g. if the value of CLK\_TCK is 18 on our computer, the number of clock ticks for n < 500 is less than 10)

Data Engineering Laboratory

|                   | Method 1                                   | Method 2                        |
|-------------------|--------------------------------------------|---------------------------------|
| Start timing      | Start=clock();                             | Start=time(NULL);               |
| Stop timing       | Stop=clock();                              | Stop=time(NULL);                |
| Type returned     | Clock_t                                    | Time_t                          |
| Result in seconds | Duration=                                  | Duration=                       |
|                   | ((double)(stop-start))/<br>CLOCKS_PER_SEC; | (double) difftime(stop, start); |

Figure 1.10: Event timing in C

**Data Engineering Laboratory** 

```
ry
```

ring Laboratory

```
79 Program 1.24: First timing program for selection sort
```

if (n == 100) step = 100;

#include <stdio.h>
#include <time.h>

void main (void)

#include "selectionSort.h"
#define MAX\_SIZE 1001

int i, n, step = 10; int a[MAX\_SIZE]; double duration; clock\_t start;

printf(" n time\n");

{/\* get time for size n \*/

for (i = 0; i < n; i++)a[i] = n - i;

start = clock( );

sort(a, n);

for  $(n = 0; n \le 1000; n += step)$ 

/\* times for n = 0, 10, ..., 100, 200, ..., 1000 \*/

/\* initialize with worst-case data \*/

duration = ((double) (clock() - start))

printf("%6d %f\n", n, duration);

/ CLOCKS\_PER\_SEC;

```
###clude <stdio.h>
===clude <time.h>
= clude "selectionSort.h"
##efine MAX_SIZE 1001
mid main (void)
  int i, n, step = 10;
  int a[MAX_SIZE];
  double duration;
  /* times for n = 0, 10, ..., 100, 200, ..., 1000 */
  printf(" n repetitions time\n");
for (n = 0; n <= 1000; n += step)
      /* get time for size n */
      long repetitions = 0;
      clock_t start = clock();
        repetitions++;
         /* initialize with worst-case data */
        for (i = 0; i < n; i++)
           a[i] = n - i;
        sort(a, n);
      } while (clock( ) - start < 1000);</pre>
         /* repeat until enough time has elapsed */
     duration = ((double) (clock() - start))
                             / CLOCKS_PER_SEC;
     duration /= repetitions;
printf("%6d %9d %f\n", n, repetitions, duration);
      if (n == 100) step = 100;
```

| n    | repetitions | time     |
|------|-------------|----------|
| 0    | 8690714     | 0.000000 |
| 10   | 2370915     | 0.000000 |
| 20   | 604948      | 0.000002 |
| 30   | 329505      | 0.000003 |
| 40   | 205605      | 0.000005 |
| 50   | 145353      | 0.000007 |
| 60   | 110206      | 0.000009 |
| 70   | 85037       | 0.000012 |
| 80   | 65751       | 0.000015 |
| 90   | 54012       | 0.000019 |
| 100  | 44058       | 0.000023 |
| 200  | 12582       | 0.000079 |
| 300  | 5780        | 0.000173 |
| 400  | 3344        | 0.000299 |
| 500  | 2096        | 0.000477 |
| 600  | 1516        | 0.000660 |
| 700  | 1106        | 0.000904 |
| 800  | 852         | 0.001174 |
| 900  | 681         | 0.001468 |
| 1000 | 550         | 0.001818 |
|      |             |          |

Figure 1.11: Worst case performance of selection sort (in seconds)

81 Data Engineering Laboratory



Figure 1.12: Graph of worst case performance of selection sort

# **Generating Test Data**

- Generating a data set that results in the worst case performance of a program isn't always easy.
- We may generate a suitably large number of random test data.
- Obtaining average case data is usually much harder.
- It is desirable to analyze the algorithm being tested to determine classes of data that should be generated for the experiment algorithm specific task.

**Data Engineering Laboratory**