Direct photo-production of narrow pK resonance in CLAS

Moskov Amaryan

In collaboration with Chandra Nepali and Gagik Gavalian

CLAS Collaboration Meeting February 24, 2012

Outline

Introduction

Review of current status

CLAS Data analysis

Direct production of a resonance in pK system

Conclusions

Constituent Quark Model

Light Mesons

$$J^{PC} = 0^{-+}$$

(pseudoscalar nonet)

 $\pi^{0} = \left(u\overline{u} - d\overline{d}\right) / \sqrt{2}$ $\eta^{0} = \left(u\overline{u} + d\overline{d} - 2s\overline{s}\right) / \sqrt{6}$ $\eta' = \left(u\overline{u} + d\overline{d} + s\overline{s}\right) / \sqrt{3}$

All are qq states Why?

$$Q=I_3+(B+S)/2$$

Gell-Mann-Nishijima

$$J^{PC} = 1^{-}$$

(vector nonet)

$$\rho^{0} = \left(u\overline{u} - d\overline{d}\right) / \sqrt{2}$$

$$\omega^{0} = \left(u\overline{u} + d\overline{d}\right) / \sqrt{2}$$

$$\phi = s\overline{s}$$
3

B-baryon number S-strangeness

Light Baryons

octet

 $J^P = \frac{1}{2}^+$

All are qqq states Why?

We then refer to the members u_3^2 , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, (qqqq), etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q\bar{q})$ similarly gives just 1 and 8.

M.Gell-Mann, Phys. Lett. V8, Num. 3, 214 (1964)

But where are multiquark states?

Anti-decuplet

Predicted narrow (Γ<15 MeV), Θ+ state at M~1530 MeV

Where Θ^+ was searched for?

A lot of negative results: Pentaquark is really elusive!

CLAS at Tampa 2005

Since then the fate of Θ^{\dagger} was decided, but was it justified? This is the question.

Where we stand?

- The CLAS has set up an upper limit for the cross section
- Many experiments do not see a signal, but should they see it?
- Some previous positive results still hold
- Is the case closed?
- •Can we increase sensitivity to the tiny cross section ?
- •What must be done in order to convince ourselves in existence or in absence of the resonance?
- We reported the signal via interference with φ (arXiv:110.3325)
- •Can we observe it in the direct production?

Reanalysis of CLAS Data

Reaction of interest:

$$Y + p = pKs(\pi + \pi -)X(K_L)$$

Experimental Strategy:

- a) In final state detect $p\pi + \pi$ -
- b) reconstruct Ks from π + π -
- c) reconstruct K_L in missing mass of $p\pi + \pi$ -
- d) search for a resonance in pK system
- e) invoke Dalitz plot distribution

Reconstructing Ks

Reconstruction of Ks and KL

CLAS published paper Phys. Rev. D74, 032001(2006)

Mx(p)>1.04 GeV

Doca1(Kp)<1cm
Doca2<1cm
d>3cm

CLAS new analysis

Mx(p)>1.04 GeV

Docal<1.0cm

Doca2<0.5cm

d>3cm

 $\cos\theta > 0.98$

Present Analysis: close # of signal events.

But!

Missing Mass of Proton

M=1.021 GeV σ =7 MeV

Dalitz Plot with no φ

Missing Mass of Ks cutting out M(pKs)

Apply Vertex Cuts:

Doca I < 1.0 cm Doca 2 < 0.5 cm $\cos\theta$ > 0.98 d>3.0 cm

Select 2 kaons

 $M(\pi + \pi -) = 0.497 \pm 0.004 \text{ GeV}$ $Mx(pKs) = 0.497 \pm 0.020 \text{ GeV}$

Reject ϕ meson

Mx(p) > 1.035 GeV

Apply Dalitz Cut

M(pKs)<1.52 GeV

How stable is a peak vs φ-cut?

very weak Mx(p)
cut dependence
peek one
No tuning!

Doca I < 1.0 cm
Doca 2 < 0.5 cm
cos θ > 0.98
d > 3.0 cm

M(pKs) < 1.52 GeV

How stable is a peak vs $\cos\Theta$ -cut?

Mx(Ks) [GeV]

Mx(Ks) [GeV]

Doca I < 1.0cm Doca 2 < 0.5cm d > 3cm

M(pKs) < 1.52GeV

Mx(p)> 1.035 GeV

How stable is a peak vs DOCA1-cut?

How stable is a peak vs DOCA2-cut?

DOCAI<1.0cm
d>3cm
cosΘ>0.98

Mx(p)> 1.035GeV

M(pKs)<1.52GeV

Mx(Ks) [GeV]

How stable is a peak vs Decay distance-cut?

DOCA2<0.5cm cosΘ>0.98 Mx(p)> 1.035GeV

M(pKs) < 1.52GeV

DOCAI<I.0cm

How stable is a peak vs $\Delta M(\pi + \pi -)$ cut around Ks?

And Finally:

10σ!

From our previous paper arXiv: I I I 0.3325v I

PHYSICAL REVIEW C 85, 035209 (2012)

Interference with φ at low t<0.45 GeV We hypothesized strong t dependence

Can we see it now?

How peak changes vs t-cut?

For illustration purposes only:

now we do not need this cut

However:

We see **sharper t-dependence**for the peak at ~1.55 GeV
(it is less affected by the t-cut)

compared to (higher mass region) of Σ^* 's

with shallower t-dependence

The Effect of the CLAS Acceptance

No acc. correction: sharp decrease near threshold

Acceptance corrected

Peak at ~1.55GeV

is very robust

How about invariant mass M(pKs)?

We see a signal in both channels

CLAS Acceptance for observed signals

It is very different for pKs and pKL

Therefore huge peak at higher masses (see previous slide)

Cross Section

in a 4MeV bin CLAS upper limit was 2nb (for Eγ~2GeV) now per 4MeV we have (if calculated similarly) $\sigma_{\text{max}} = \ln b$ Br[Ks(π + π -)]=69% $Br[Ks(K^{\circ})]=50\%$ $Br[\Theta+(pK^{\circ})]=50\%$ total cross section

over Θ peak:

 $\sigma=20 \pm 7 \text{ nb}$

Conclusions

- Narrow resonance in pK system is observed for the first time in a direct photo-production in CLAS
- Statistical significance of the peak is $\sim 10\sigma$
- Strangeness of the state is not fixed
- Observed peak could be either due to pentaquark Θ^+
- Or previously unobserved excited hyperon state
- Observation of narrow peak at M(pK)~1.545 GeV

via interference with φ and in a direct production in both pKs and pKL channels

Provides very strong confidence that the observed signal is real

- Preliminary estimation of the cross section is consistent with CLAS upper limit and integrated over the peak is σ =20+-7nb

Backup: Classic Dalitz Plots

