Variants of Vision Transformer

Vision Transformers Series

Vision Transformers What we have covered so far:

https://arxiv.org/pdf/2010.11929.pdf

ViT

 Needs very large labeled data for (pre-) training

https://arxiv.org/pdf/2012.12877.pdf

https://arxiv.org/pdf/2101.11986.pdf

Tokens-to-Token ViT

A ViT variant that can be trained on mid-size image dataset with superior performance than CNNs

Swin Transformer Overview

➤ Making transformer as a general-purpose backbone for computer vision

Recognized challenges of using transformers in computer vision:

- > Visual tokens vary significantly in scale and resolution
- Computational cost of attention on high resolution images

Main idea:

- > Hierarchical transformer architecture
- > Shifted window based self-attention

Computational Complexity: Global vs. Local Attention

Input image

Image tokenized to N patches \rightarrow Global attention has quadratic complexity $O(N^2)$

Windows of size 4×4 \rightarrow Local attention has linear complexity O(N)

Window-based Attention

 \triangleright Efficiency: Linear w.r.t. effective sequence length O(N)

- > Lacking interactions across windows
 - → limited modeling power

W-MSA: performing MSA in each local window

Shifted Window-based Attention

W-MSA: Attention in regular windows

SW-MSA: Attention in shifted windows

Shifted Window-based Attention

SW-MSA: Attention in shifted windows

- ➤ All queries within a window share the same key set
 - → facilitate memory access
 - → lower latency
- ➤ Another side-effect: Increasing number of windows (from 4 to 9)

Solution: Using a cyclic shift and masking for efficient batch computation

Swin Transformer Blocks

- Alternating regular window and shifted window attention in consecutive transformer layers
 - → Efficient attention with linear complexity
 - → Enables long-range interactions across windows
 - → Increase modeling capability

Patch merging layers for down-sampling

- \triangleright Input: $h \times w \times C$ patches
- Concatenate the embedding layers in local 2 × 2 neighborhood
- ➤ Apply a linear layer to reduce dimensions

Swin Transformer Architecture

Patch size: 4×4

- ➤ Using relative position embedding
- Each Swin transformer block contains a pair of alternative regular window and shifted window sub-blocks
- ➤ Down-sampling starts from stage 2

Architecture variants

- Swin-T: C = 96, Layers = $\{2, 2, 6, 2\}$
- Swin-S: C = 96, Layers = $\{2, 2, 18, 2\}$
- Swin-B: C = 128, Layers = $\{2, 2, 18, 2\}$
- Swin-L: C = 192, Layers = $\{2, 2, 18, 2\}$

Experiments

Classification

Exp1: Training from scratch on ImageNet-1K

Exp2: Pre-train on ImageNet-22K, then finetune on ImageNet-1K

Object Detection

COCO 2017 dataset

118K training, 5K validation, and 20K test

Semantic Segmentation

ADE20K dataset

150 categories 20K training, 2K validation, and 3K test

Image Classification

(a) Regular ImageNet-1K trained models								
method	image	#param.	EI ODa	throughput	ImageNet			
memou	size	size		(image / s)	top-1 acc.			
RegNetY-4G [48]	224^{2}	21M	4.0G	1156.7	80.0			
RegNetY-8G [48]	224^{2}	39M	8.0G	591.6	81.7			
RegNetY-16G [48]	224^{2}	84M	16.0G	334.7	82.9			
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6			
EffNet-B4 [58]	380^{2}	19 M	4.2G	349.4	82.9			
EffNet-B5 [58]	456^{2}	30M	9.9G	169.1	83.6			
EffNet-B6 [58]	528^{2}	43M	19.0 G	96.9	84.0			
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3			
ViT-B/16 [20]	384^{2}	86M	55.4G	85.9	77.9			
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	76.5			
DeiT-S [63]	224^{2}	22M	4.6G	940.4	79.8			
DeiT-B [63]	224^{2}	86M	17.5G	292.3	81.8			
DeiT-B [63]	384^{2}	86M	55.4G	85.9	83.1			
Swin-T	224^{2}	29M	4.5G	755.2	81.3			
Swin-S	224^{2}	50M	8.7G	436.9	83.0			
Swin-B	224^{2}	88M	15.4G	278.1	83.5			
Swin-B	384^{2}	88M	47.0G	84.7	84.5			

Exp1: Training models from scratch on ImageNet-1k

- Similar performance compared to ConvNet models
- Slightly better than DeiT

Exp2: Pre-training on ImageNet-22k, and finetune on ImageNet-1k

• Swin transformer models outperform their counterparts

https://arxiv.org/pdf/2103.14030.pdf

Objection Detection & Instance Segmentation

(a) Various frameworks									
Method	Backbone	AP ^{box}	AP_{50}^{box}	AP_{75}^{box}	#param.	FLOPs FPS			
Cascade	R-50	46.3	64.3	50.5	82M	739G 18.0			
Mask R-CNN	Swin-T	50.5	69.3	54.9	86M	745G 15.3			
ATSS	R-50	43.5	61.9	47.0	32M	205G 28.3			
	Swin-T	47.2	66.5	51.3	36M	215G 22.3			
RepPointsV2	R-50	46.5	64.6	50.3	42M	274G 13.6			
	Swin-T	50.0	68.5	54.2	45M	283G 12.0			
Sparse	R-50	44.5	63.4	48.2	106M	166G 21.0			
R-CNN	Swin-T	47.9	67.3	52.3	110M	172G 18.4			

(b) Various backbones w. Cascade Mask R-CNN

		50	15		50	AP ₇₅ ^{mask}	1		
DeiT-S [†]	48.0	67.2	51.7	41.4	64.2	44.3	80M	889G	10.4
R50	46.3	64.3	50.5	40.1	61.7	43.4	82M	739G	18.0
Swin-T	50.5	69.3	54.9	43.7	66.6	47.1	86M	745G	15.3
X101-32	48.1	66.5	52.4	41.6	63.9	45.2	101M	819G	12.8
Swin-S	51.8	70.4	56.3	44.7	67.9	48.5	107M	838G	12.0
X101-64	48.3	66.4	52.3	41.7	64.0	45.1	140M	972G	10.4
Swin-B	51.9	70.9	56.5	45.0	68.4	48.7	145M	982G	11.6

https://arxiv.org/pdf/2103.14030.pdf

- COCO 2017 dataset
- Multiscale training:
 - Smallest dimension between 450 800
 - Largest dimension at most 1333

- Table (a): Comparing Swin-T and ResNEt-50 using different detection methods
- Table (b): fixed method (Mask R-CNN), comparing different backbones

Semantic Segmentation

ADE20K		val	test	#param.	FI OPs	FPS
Method	Backbone	mIoU	score	πparam.	1 LOI 3	115
DANet [23]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [11]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [24]	ResNet-101	45.9	38.5	-		
DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [69]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [73]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [11]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [81]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2

- ADE20K dataset
- Using UPerNet framework with Swin backbone
- Swin-S achieves +5 mIoU compared to DeiT-S (with similar computation cost)
- Pretrained Swin-L outperforms the previous best model (SETR)

https://arxiv.org/pdf/2103.14030.pdf

Swin Transformer

- ➤ A general-purpose transformer backbone for computer vision
 - Hierarchical representations
 - Shifted window based self-attention

Thanks for watching