

Liad Magen

Learning Goals

Write

• Write efficient Regular Expressions, to solve (almost) any kind of text-extraction task.

Apply

 Apply Topic Modeling & Text-Distance algorithms to clustering and text-sequence problems.

Train

• Train a spelling / grammar corrector.

Classify

• Build a supervised classifier to solve problems such as Sentiment Analysis or a Spam-detector.

Build

• Build a recommendation engine.

Learning (hidden) Goals

What have we learned so far?

Day I

- What is NLP and where it is used
- 5 Levels of Linguistic Knowledge
- Why NLP is hard: Ambiguity, Variability + Zipf Law
- Basic Units of Processing
- Case Study: Sentence Boundary Detection
- Classification Types
- Pre-Processing: Tokenization, n-gram, stemming, lemmatizing
- TF/IDF, PMI

Day II

PP Attachment: Ambiguity Classification using Classical NLP

- Feature Extraction
- Collins and Brooks' Back Off Algorithm

Language Models

- Markov Assumption of n-grams
- Text Generation with a probabilistic model
- One-Hot Encoding
- Neural Language Model
- Embedding Layer

Distributional Semantics

- Word2Vec (== SVD)
- gloVe
- FastText

Pre-Training (Language Model)

- CBOW
- Skip-Gram

Semantic Distribution

- Word Similarity
- Sentence Representation (sum/avg)

RNN

- Seq2Seq (input: words, output: POS, NER, SRL)
- Intermediate vectors
- BiLSTM + deep RNN
- Multi-Task Learning
 - Architecture Creativity solves issues

Day III

Day IV (part 2/2)

- Contextual Word Embeddings
 - ELMo (AI2)
 - ULMFiT (fast.ai)
 - Attention
 - Transformers
- BERT
 - 3-layers of Input
 - SubWords + WordPiece
 - 12/24 layers of Word Embedding Vectors
 - BERTology Family
- Sustainability and Green Responsibility

Day V - Information Extraction

- Phrase Types
 - Chunking
- Named Entity Recognition (NER)
- Co-Reference Resolution
- Relation Extraction
 - Knowledge Graph Database
- Entity Linking
- Graphs
- Google PageRank
- ML-OPS for NLP

Day V

- Presentations:
 - Training Medical Images with Text annotations
 - Word-Order research in BERT
 - Sign Language & NLP
 - Hate Speech Detection
 - News Header Generation
 - ... and many more.

What now?

- Dive deeper:
 - Neural Networks for NLP (2021) http://www.phontron.com/class/nn4nlp2021/schedule.html (All on http://www.phontron.com/class/nn4nlp2021/schedule.html
 - Stanford: Stanford CS 224N | Natural Language Processing with Deep Learning
 - AI2 Information Extraction software and talks: <u>SPIKE: Extractive Search from Allen Institute for AI (allenai.org)</u>

- Communication:
 - (21) How to Speak YouTube

Additional Resources

- www.arxiv-sanity.com
- <u>SemanticScholar.org</u>
- Twitter follow researchers
- ACL www.aclweb.org
- NLPProgress.com
- Ruder.io
- PapersWithCode.com
- Keep-Current.com
- Listen to Podcasts
- Attend (or organize) Meetups

WIIIFM

On the first day, you've written down what you would like to do using NLP.

Please note down:

- Now that you know what you know, has your goal changed? If so, to what?
- How would you use the tools you've learned to achieve it?

