Предварительные замечания:

- 1. Описание алгоритма состоит из описания двух процедур, где процедура SHOWLINE—вспомогательная.
- 2. Предполагается, что к началу исполнения алгоритма был произведен переход к экранной системе координат и проведена операция кадрирования, в ходе которой координата z каждой точки (координата в экранной системе координат) не отбрасывается, а остается неизменной. Т. е. после перехода к экранной системе координат выполняется преобразование:

$$\begin{bmatrix} \chi' \\ \gamma' \\ \zeta' \\ \alpha' \end{bmatrix} = \begin{bmatrix} W_x/2 & 0 & 0 & W_{cx} + W_x/2 \\ 0 & -W_y/2 & 0 & W_{cy} - W_y/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \zeta \\ \alpha \end{bmatrix}$$

- 3. В описании алгоритма подразумевается, что область рисования имеет координаты по x от W_{cx} до $W_{cx}+W_x$, по y от W_{cy} до $W_{cy}+W_y$, где W_{cx} , W_x , W_{cy} , W_y неотрицательны.
- 4. Список AEL—список пятерок вещественных чисел.
- 5. При сравнении значений координаты y на равенство следует округлять эти значения до целого числа.
- 6. При рассмотрении ребер многоугольника $[(x_1, y_1, z_1), (x_2, y_2, z_2)]$ считаем, что $y_1 \leqslant y_2$ (начальная точка ребра находится не ниже конечной), а при равенстве $y_1 = y_2$ выполняется $x_1 \leqslant x_2$ (начальная точка ребра находится не левее конечной).

Алгоритм 1: Алгоритм отсечения невидимых граней с использованием Zбуфера

 \mathbf{B} ход: $\mathscr{P}-$ список многоугольников трехмерной сцены.

начало алгоритма

- \cdot Заполнить растровую область рисования цветом фона. Определить вещественнозначный двумерный массив Z с размерностями (и индексами элементов) области рисования. Заполнить массив Z значением -1;
- \cdot цикл пока $cnuco\kappa \mathscr{P}$ не nycm выполнять
 - \cdot Взять из списка \mathscr{P} очередной многоугольник P с цветом C;
 - \cdot Сформировать список S ребер многоугольника. Упорядочить список S по возрастанию значения y_1 ;
 - \cdot Найти y_{min} и y_{max} минимальное и максимальное значение координаты y точек вершин многоугольника;
 - $AEL = \emptyset, y_t = y_{min}, y_{Snext} = y_{min};$
 - · цикл пока $y_t \leqslant y_{max}$ выполнять
 - \cdot если $y_t = y_{S\,next}$, то
 - · Добавить в AEL все пятерки $\left(x_1, z_1, y_2, \frac{x_2 x_1}{y_2 y_1}, \frac{z_2 z_1}{y_2 y_1}\right)$, составленные для каждого отрезка из S, у которого $y_1 = y_t$ и $y_1 \neq y_2$;
 - · Для всех ребер в S, у которых $y_1 = y_t$ и $y_1 = y_2$ выполнить SHOWLINE $(y_t, (x_1, z_1), (x_2, z_2))$;
 - · Удалить из S все ребра, у которых $y_1 = y_t$;
 - · Для отрезков в S найти $y_{S\,next}$ минимальное значение y_1 у отрезков в S;
 - \cdot Отсортировать AEL по возрастанию первого элемента и по возрастанию четвертого элемента;
 - · Найти $y_{AEL\,next}$ минимальное значение третьего элемента в пятерках в AEL;
 - $\cdot i = 1;$
 - \cdot цикл пока $i\leqslant |AEL|$ выполнять
 - Выполнить SHOWLINE $(y_t, (x_i, z_i), (x_{i+1}, z_{i+1}))$, где $(x_i, z_i, y_i, \Delta_i x, \Delta_i z)$ обозначает i-й элемент списка AEL; i = i + 2;
 - $\cdot y_t = y_t + 1;$
 - \cdot если $y_t \geqslant y_{AEL\,next},$ то
 - · удалить из AEL пятерки с третьим элементом меньшим или равным y_t ;
 - · Обновить значение $y_{AEL\,next};$
 - · В каждой пятерке $(x_j,z_j,y_j,\Delta_jx,\Delta_jz)$ в AEL заменить x_j на $x_j+\Delta_jx,\,z_j$ на $z_j+\Delta_jz;$

Алгоритм 2: SHOWLINE

Вход: y_0 — координата y строки растра, (x_1, z_1) — координаты x и z первой точки, (x_2, z_2) — координаты x и z второй точки.

Выход: Измененные Z-буфер и область рисования.

начало алгоритма

- \cdot если $y_0 < W_{cy}$ или $y_0 > W_{cy} + W_y$, то закончить алгоритм;
- \cdot если $x_2 < W_{cx}$ $u_{x_1} > W_{cx} + W_{x}$, то закончить алгоритм;

$$x \cdot x = x_1, z = z_1; \Delta z = \frac{z_2 - z_1}{x_2 - x_1};$$

· если $x < W_{cx}$, то

$$z = z + (W_{cx} - x)\Delta z;$$

$$x = W_{cx};$$

- · цикл пока $x\leqslant x_2$ u $x\leqslant W_{cx}+W_x$ выполнять
 - · если $Z[x,y_0]\leqslant z\leqslant 1$, то

Присвоить $Z[x,y_0]=z$ и закрасить в растровой области точку с координатами (x,y_0) цветом C;

· Присвоить $x = x + 1, z = z + \Delta z;$

конец алгоритма