Success Story 2 --- Optimum Sensor Placement

Will Handley¹ <will.handley@polychord.co.uk> Justin Ward² <justin.ward@qmul.ac.uk>

¹PolyChord Ltd Chief Technology Officer University of Cambridge Royal Society University Research Fellow polychord.co.uk

²Senior Lecturer in Optimisation School of Mathematical Sciences, Queen Mary University of London

27th July 2021

Challenges in the electromagnetic environment 2: Challenge 3

Arose at second CEME workshop as:

``Challenge 3: Locating an illicit transmitter in a dense, reflective urban environment"

- At initial scoping, determined we could assume:
 - Transmitter and sensors are static
 - Problem is offline i.e. cost of optimisation ≪ cost of deployment
 - Where should we put the sensors?
 - Which sensors should we use?
 - How can we deal with reflections?
- Continued as mini-project over Jan--Apr 2021, with James Matthews (PA) & DSTL (Emily Russell, Ben Jackson & Ben Gear)

Incorporates content from third CEME workshop as:

``Challenge 1: Identifying the performance limit of a heterogeneous sensor system"

Range finding sensors

- Sensors: blue and orange dots
- Transmitter: green cross
- Contours: posterior distributions
 - individual posteriors in blue and orange (faint circular arcs)
 - combined posterior in green (solid peak)
- Measure transmitter distance with Gaussian error
- Both sensors detect: good localisation

Range finding sensors

- Sensors: blue and orange dots
- Transmitter: green cross
- Contours: posterior distributions
 - individual posteriors in blue and orange (faint circular arcs)
 - combined posterior in green (solid peak)
- Measure transmitter distance with Gaussian error
- Both sensors detect: good localisation
- One sensor detection: reasonable localisation -- can use non-detection as additional information

Range finding sensors

- Sensors: blue and orange dots
- Transmitter: green cross
- Contours: posterior distributions
 - individual posteriors in blue and orange (faint circular arcs)
 - combined posterior in green (solid peak)
- Measure transmitter distance with Gaussian error
- Both sensors detect: good localisation
- One sensor detection: reasonable localisation -- can use non-detection as additional information
- No sensors detect: poor localisation

Time delay on arrival sensors

- Sensors: blue, orange & green dots
- Transmitter: red cross
- Contours: posterior distributions
 - pairwise posteriors excluding one sensor in blue, orange & green (faint parabolic arcs)
 - combined posterior in green (solid peak)
- Sensors measure time of arrival of signal, and use time delay-based likelihood to determine location
- All sensors detect: good localisation

Time delay on arrival sensors

- Sensors: blue, orange & green dots
- Transmitter: red cross
- Contours: posterior distributions
 - pairwise posteriors excluding one sensor in blue, orange & green (faint parabolic arcs)
 - combined posterior in green (solid peak)
- Sensors measure time of arrival of signal, and use time delay-based likelihood to determine location
- All sensors detect: good localisation
- Two sensor detection: reasonable localisation

Time delay on arrival sensors

- Sensors: blue, orange & green dots
- Transmitter: red cross
- Contours: posterior distributions
 - pairwise posteriors excluding one sensor in blue, orange & green (faint parabolic arcs)
 - combined posterior in green (solid peak)
- Sensors measure time of arrival of signal, and use time delay-based likelihood to determine location
- All sensors detect: good localisation
- Two sensor detection: reasonable localisation
- No sensors detect: poor (independent of sensor type)
- Extendable to heterogenous sensors (CEME3.1)

Bayes theorem, and the Kullback--Leibler divergence $\mathcal{D}_{\mathsf{KL}}$

Key question: What should we optimise in order to determine best sensor location?

- We have a forward model/generative likelihood of $P(D|\theta, X)$, where
 - D is the sensor reading (including non-detections)
 - \triangleright θ is the location of the transmitter
 - X is the locations of the sensors
- Can use this to
 - 1. Generate mock data $D(\theta, X)$ given a transmitter location θ & sensor setup X
 - 2. compute posterior on sensor location $P(\theta|D, X)$ given sensor reading D and sensor set up X
- ► Can quantify degree of transmitter posterior localisation with the Kullback--Leibler divergence

$$\mathcal{D}_{\mathsf{KL}}(\mathsf{D},\mathsf{X}) = \left\langle \log \frac{P(\theta|\mathsf{D})}{P(\theta)} \right\rangle_{\mathsf{p}(\theta|\mathsf{D})} \approx \log \frac{\mathsf{Volume}(\mathsf{prior})}{\mathsf{Volume}(\mathsf{posterior})}$$

- KL divergence measures posterior localisation
- ho $\mathcal{D}_{ ext{KL}}pprox \log rac{ ext{Volume(prior)}}{ ext{Volume(posterior)}}$
- It is a function of
 - sensor reading D
 (generated from the true transmitter location)
 - sensor setup X

- KL divergence measures posterior localisation
- ho $\mathcal{D}_{ ext{KL}}pprox \log rac{ ext{Volume(prior)}}{ ext{Volume(posterior)}}$
- It is a function of
 - sensor reading D (generated from the true transmitter location)
 - sensor setup X

- KL divergence measures posterior localisation
- $ho \ \mathcal{D}_{\mathsf{KL}} pprox \mathsf{log} \, rac{\mathsf{Volume}(\mathsf{prior})}{\mathsf{Volume}(\mathsf{posterior})}$
- It is a function of
 - sensor reading D (generated from the true transmitter location)
 - sensor setup X

- KL divergence measures posterior localisation
- ho $\mathcal{D}_{\mathsf{KL}} pprox \mathsf{log} \, rac{\mathsf{Volume}(\mathsf{prior})}{\mathsf{Volume}(\mathsf{posterior})}$
- It is a function of
 - sensor reading D (generated from the true transmitter location)
 - sensor setup X

- KL divergence measures posterior localisation
- ho $\mathcal{D}_{\mathsf{KL}} pprox \mathsf{log} \, rac{\mathsf{Volume}(\mathsf{prior})}{\mathsf{Volume}(\mathsf{posterior})}$
- It is a function of
 - sensor reading D (generated from the true transmitter location)
 - sensor setup X
- Plot as a function of true transmitter location
- Can compress this via desired statistical function
 - ightharpoonup mean value: $\hat{\mathcal{D}}$
 - ightharpoonup minimum value: min $\mathcal D$
 - percentiles, standard deviations etc...
- ▶ What remains is a function of sensor setup X...
- ...can be optimised e.g. using PolyChord for the full 2N-dimensional optimisation

7.894

7.194

6.494

5.794

5.094

4.394

- 3.694 ell

- KL divergence measures posterior localisation
- $ho \ \mathcal{D}_{\mathsf{KL}} pprox \mathsf{log} \, rac{\mathsf{Volume}(\mathsf{prior})}{\mathsf{Volume}(\mathsf{posterior})}$
- It is a function of
 - sensor reading D (generated from the true transmitter location)
 - sensor setup X
- Plot as a function of true transmitter location
- Can compress this via desired statistical function
 - ightharpoonup mean value: $\hat{\mathcal{D}}$
 - minimum value: min \mathcal{D}
 - percentiles, standard deviations etc...
- \blacktriangleright What remains is a function of sensor setup X...
- ...can be optimised e.g. using PolyChord for the full 2N-dimensional optimisation

- KL divergence measures posterior localisation
- ho $\mathcal{D}_{ ext{KL}}pprox \log rac{ ext{Volume(prior)}}{ ext{Volume(posterior)}}$
- It is a function of
 - sensor reading D (generated from the true transmitter location)
 - sensor setup X
- Plot as a function of true transmitter location
- Can compress this via desired statistical function
 - ightharpoonup mean value: $\hat{\mathcal{D}}$
 - ightharpoonup minimum value: min $\mathcal D$
 - percentiles, standard deviations etc...
- \blacktriangleright What remains is a function of sensor setup X...
- ...can be optimised e.g. using PolyChord for the full 2N-dimensional optimisation

will.handley@polychord.co.uk

7/9 PolyChord

will.handley@polychord.co.uk

7/9

PolyChord

will.handley@polychord.co.uk

7/9 PolyChord

will.handley@polychord.co.uk

7/9

will.handley@polychord.co.uk

7/9 PolyChord

will.handley@polychord.co.uk

7/9

will.handley@polychord.co.uk

7/9

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

- Exploring the ability to deal with a reflective landscape was a key goal of the project
- Our metric and optimisation methodology is independent of the complexity of the forward model.
- Data files of full ray tracing simulations provided by James Matthews as an example of complexity increase
- Plot shows attenuating EM signal in a reflective, diffractive environment, with location of transmitter in bright white.

As before:

- can calculate our chosen optimisation metric (e.g. \hat{D} , min D,...) for the more complicated forward model including reflections
- riangleright can use PolyChord to optimise as a function of sensor setup max_X $\hat{\mathcal{D}}(X)$

- Heterogenous sensors
- Incoporate a financial cost constraint to also allow *N* and type of sensor to vary.

As before:

- can calculate our chosen optimisation metric (e.g. $\hat{\mathcal{D}}$, min \mathcal{D} ,...) for the more complicated forward model including reflections
- riangleright can use PolyChord to optimise as a function of sensor setup max_X $\hat{\mathcal{D}}(X)$

- Heterogenous sensors
- Incoporate a financial cost constraint to also allow *N* and type of sensor to vary.

As before:

- can calculate our chosen optimisation metric (e.g. $\hat{\mathcal{D}}$, min \mathcal{D} ,...) for the more complicated forward model including reflections
- can use PolyChord to optimise as a function of sensor setup max_X $\hat{\mathcal{D}}(X)$

- Heterogenous sensors
- Incoporate a financial cost constraint to also allow *N* and type of sensor to vary.

As before:

- can calculate our chosen optimisation metric (e.g. $\hat{\mathcal{D}}$, min \mathcal{D} ,...) for the more complicated forward model including reflections
- can use PolyChord to optimise as a function of sensor setup max_X $\hat{\mathcal{D}}(X)$

- Heterogenous sensors
- Incoporate a financial cost constraint to also allow *N* and type of sensor to vary.

As before:

- can calculate our chosen optimisation metric (e.g. $\hat{\mathcal{D}}$, min \mathcal{D} ,...) for the more complicated forward model including reflections
- riangleright can use PolyChord to optimise as a function of sensor setup max_X $\hat{\mathcal{D}}(X)$

- Heterogenous sensors
- Incoporate a financial cost constraint to also allow *N* and type of sensor to vary.

As before:

- can calculate our chosen optimisation metric (e.g. $\hat{\mathcal{D}}$, min \mathcal{D} ,...) for the more complicated forward model including reflections
- riangleright can use PolyChord to optimise as a function of sensor setup max_X $\hat{\mathcal{D}}(X)$

- Heterogenous sensors
- Incoporate a financial cost constraint to also allow *N* and type of sensor to vary.

