ECON 6090-Microeconomic Theory. TA Section 1

Omar Andujar

December 6, 2024

In Section notes

Preference

 $\succsim \ \ {\rm rational} \ \iff \succsim \ \ {\rm complete} \ {\rm and} \ \ {\rm transitive}$

Indifference relation

$$x \sim y \iff x \succsim y \text{ and } y \succsim x$$

Strictly preferred relation

$$x \succ y \iff x \succsim y \text{ and } \neg [y \succsim x]$$

1. From preference we have $C^*(B, \succeq)$

$$\succsim$$
 is rational \iff $C^*(B, \succsim)$ satisfies HWARP for $B \in P(x)$

 \iff Sen's α, β

2. From choice structure

$$(\mathcal{B}, C(.)) \implies \succeq^*$$
 revealed preference

If

- (a) $(\mathcal{B}, C(.))$ satisfies WARP
- (b) \mathcal{B} is the power set of X^1

Then we have that \succsim^* is rational

Exercises

Rational Preference Relations

1. Yes.

$$\forall x,y,z \in X$$

$$x \sim y,y \sim z$$

$$\implies x \succsim y,y \succsim x \text{ and } y \succsim z,z \succsim y$$

$$\implies x \succsim y \succsim z \text{ and by transitivity } z \succsim y \succsim x$$

$$\implies x \sim z$$

- 2. (a) Since $x \succeq x \implies x \ge x + \epsilon$, which is a contradiction, it is not complete, therefore not rational.
 - (b) Let $y = x \epsilon, z = x + \epsilon$

$$\implies y \succsim x, x \succsim z$$

By transitivity,

$$y \succeq z$$

Which is a contradiction. Therefore, not rational.

 $^{^1\}mathrm{We}$ can weaken the claim by $\mathcal B$ only being all subsets of X up to 3 elements

(c) Rational.

$$\succeq : c \succ b \succ a$$

(d) We check if reflexivity holds,

$$x \succsim_2 x \implies x \succ_1 x$$

Which is a contradiction. Not complete. Not rational.

- (e) Let $(x_1, x_2) \gtrsim (y_1, y_2)$ and $(y_1, y_2) \gtrsim (z_1, z_2)$. We do an analysis by cases:
 - i. If $x_1 > y_1$ and $[(y_1 > z_1) \text{ or } (y_1 = z_1 \text{ and } y_2 \ge z_2)]$ we have $(x_1, x_2) \succsim (z_1, z_2)$
 - ii. If $x_1 = y_1$ and $x_2 \ge y_2$ and $[(y_1 > z_1) \text{ or } (y_1 = z_1 \text{ and } y_2 \ge z_2)]$ we have $(x_1, x_2) \succsim (z_1, z_2)$.

So it is transitive.

Now to prove completeness we check if $(x_1, x_2) \succeq (y_1, y_2)$ or $(y_1, y_2) \succeq (x_1, x_2)$ or both hold.

- i. If $x_1 = y_1$ either $x_2 \ge y_2$ or $x_2 \le y_2$
- ii. If $x_1 \neq y_1$ either $x_1 > y_1$ or $x_1 < y_1$

So it is complete.

3. (2022 Q)

- (a) We proceed by induction.
 - i. Let $A^1 = \{a_1\}$. Then a_1 is the best alternative (BA).
 - ii. Let $A^2 = \{a_1, a_2\}$. Then by completeness, either a_1 or a_2 or both are BA.
 - iii. Now assume that for $A^{N-1}=\{a_1,a_2,...,a_{N-1}\}$ there exist $a^*\in A^{N-1}$ that is BA. Then for $A^N=a_1,a_2,...,a_N$, we have
 - 1) $a^* \succsim a_N$, and then a^* is BA in A^N
 - 2) $a_N \gtrsim a^*$, and then by transitivity $a_N \gtrsim a^* \gtrsim a_j$ for all j=1,...,N-1

$$\implies a_N \text{ is BA}$$

(b) By definition of BA, $a' \in A' \subseteq A$. Again by definition of BA, $a^* \succsim a \ \forall a \in A$ which implies that $a^* \succsim a'$.

Choice Rules

1. Observe that

$$C^*(\{a,b,c\}, \succsim) = \{a,b\} \implies a \sim b$$

$$C^*(\{a,b,c\},\succeq) = \{b\} \implies b \succ a$$

And we get a contradiction. Not rational.

2. There is no rational preference relation consistent with the information given about C(.). Observe that,

$$C^*(\{a, b, c\}, \succeq) = a, b \implies a \sim b \succ c$$
$$C^*(\{b, c\}, \succeq) = \{b\} \implies b \succ c$$
$$C^*(\{c, d\}, \succeq) = \{c\} \implies c \succ d$$

$$C^*(\{a,d\},\succeq) = \{a,d\} \implies a \sim d$$

Combining this information,

$$\implies a \sim b \succ c \succ d$$
$$\implies a \succ d$$

Which is a contradiction.