

Oxford STOCK No. 1521/3 MADE IN U. S. A.

	A	1		
	B	TOR)	<u>×</u>	
		L		
HUC	0 =	0.	A-1	

4	B	X
0	0	0
1	0	1
0	1	1
1	1	1

ALL 1 = 0 ANY 0 = 1

A	B	K
0	0	1
1	0	1
0	1	1
1	1	0

A	8	X
0	0	1
1	0	0
0	1	0
1	1	0

EXCLUSIVE OR

BOTH 1 OR 0 = 0 DIFFERENT IMPUTS = 1

A	B	X	Service and
0	0	0	PERSONAL PROPERTY
1	0	1	SAMOTHMEN
0	1	1	Intestable
1	1	0	Adhenous

METRIC

some Universal Numbers

MM	Frac.	Inches	MM	Frac.	Inches	ММ	Frac.	Inches	ММ	Frac.	Inches
.01		.0004	8.3344	21/64	.3281	21.4312	27/32	.8437	57		2.244
.02		.0008	8.7312	11/32	.3437	21.8281	55/64	.8594	58		2.283
.03		.0012	9.000		.3543	22.000		.8661	59		2.323
.04		.0016	9.1281	23/64	.3594	22.2250	7/8	.875	60		2.362
.05		.0020	9.525	3/8	.375	22.6219	57/64	.8906	61		2.402
.06		.0024	9.9219	25/64	.3906	23.000		.9055	62		2.441
.07		.0028	10.000		.3937	23.0187	29/32	.9062	63		2.480
.08		.0032	10.3187	13/32	.4062	23.4156	59/64	.9219	64		2.520
.09		.0035	10.7156	27/64	.4219	23.8125	15/16	.9375	65		2.559
.10		.004	11.000		.4331	24.000		.9449	66		2.598
.20		.008	11.1125	7/16	.4375	24.2094	61/64	.9531	67		2.638
.30		.012	11.5094	29/64	.4531	24.6062	31/32	.9687	68		2.677
.3969	1/64	.0156	11.9062	15/32	.4687	25.000		.9843	69		2.717
.40		.0158	12.000		.4724	25.0031	63/64	.9844	70		2.756
.50		.0197	12.3031	31/64	.4844	25.400	1"	1.000	71		2.795
.60		.0236	12.700	1/2	.500	26		1.024	72		2.835
.70		.0276	13.000		.5118	27	1-1/16	1.063	73		2.874
.7937	1/32	.0312	13.0968	33/64	.5156	28		1.102	74		2.913
.80		.0315	13.4937	17/32	.5312	29		1.142	75	2-61/64	2.953
.90		.0354	13.8906	35/64	.5469	30		1.181	76		2.992
1.000		.0394	14.000		.5512	31		1.220	77	3-1/32	3.031
1.1906	3/64	.0469	14.2875	9/16	.5625	32		1.260	78		3.071
1.5875	1/16	.0625	14.6844	37/64	.5781	33		1.299	79		3.110
1.9844	5/64	.0781	15.000		.5906	34	and the second	1.339	80		3.150
2.000		.0787	15.0312	19/32	.5937	35		1.378	81		3.189
2.3812	3/32	.0937	15.4781	39/64	.6094	36		1.417	82		3.228
2.7781	7/64	.1094	15.875	5/8	.625	37		1.457	83		3.268
3.000		.1181	16.000		.6299	38		1.496	84		3.307
3.175	1/8	.125	16.2719	41/64	.6406	39		1.535	85		3.346
3.5719	9/64	.1406	16.6687	21/32	.6562	40		1.575	86		3.386
3.9687	5/32	.1562	17.000		.6693	41		1.614	87		3.425
4.000		.1575	17.0656	43/64	.6719	42		1.654	88		3.465
4.3656	11/64	.1719	17.4625	11/16	.6875	43		1.693	89		3.504
4.7625	3/16	.1875	17.8594	45/64	.7031	44		1.732	90		3.543
5.000		.1969	18.000		.7087	45		1.772	91		3.583
5.1594	13/64	.2031	18.2562	23/32	.7187	46		1.811	92		3.622
5.5562	7/32	.2187	18.6532	47/64	.7344	47		1.850	93		3.661
5.9531	15/64	.2344	19.000		.748	48	1-57/64	1.890	94		3.701
6.000		.2362	19.050	3/4	.750	49		1.929	95		3.740
6.3500	1/4	.250	19.4469	49/64	.7656	50		1.969	96		3.780
6.7469	17/64	.2656	19.8433	25/32	.7812	51		2.008	97		3.819
7.000		.2756	20.000		.7874	52		2.047	98		3.858
7.1437	9/32	.2812	20.2402	51/64	.7969	53		2.087	99		3.898
7.5406	19/64	.2969	20.6375	13/16	.8125	54		2.126	100	3-15/16	3.937
7.9375	5/16	.3125	21.000		.8268	55		2.165			Fig. 1
8.000		.315	21.0344	53/64	.8281	56		2.205			

Universal Components ___ 213-783-0220

FAX: **213-783-0223**

WHEN YOU NEED A RULE . . .

- 1. MURPHY'S LAW: If anything can go wrong, it will.
- 2. O'TOOLE'S COMMENTARY ON MURPHY'S LAW: Murphy was an optimist.
- 3. THE UNSPEAKABLE LAW: As soon as you mention something, if it's good, it goes away, if it's bad, it happens.
- 4. NONRECIPROCAL LAWS OF EXPECTATIONS: Negative expectations yield negative results. Positive expectations yield negative results.
- 5. HOWE'S LAW: Every man has a scheme that will not work.
- 6. ZYMURGY'S FIRST LAW OF EVOLVING SYSTEMS DYNAMICS: Once you open a can of worms, the only way to recan them is to use a larger can.
- 7. ETORRE'S OBSERVATION: The other line moves faster.
- 8. SKINNER'S CONSTANT (FLANNAGAN'S FINAGLING FACTOR): That quantity which, when multiplied by, divided by, added to or subtracted from the answer you get, gives you the answer you should have gotten.
- LAW OF SELECTIVE GRAVITY: An object will fall so as to do the most damage.
 JENNING'S COROLLARY: The chance of the bread falling with the buttered side down is directly proportional to the cost of the carpet.
- 10. GORDON'S FIRST LAW: If a research project is not worth doing, it is not worth doing well.
- 11. MAIER'S LAW: If the facts do not conform to the theory, they must be disposed of.
- 12. HOARE'S LAW OF LARGER PROBLEMS: Inside every large problem is a small problem struggling to get out.
- 13. BOREN'S FIRST LAW: When in doubt, mumble.
- 14. THE GOLDEN RULE OF ARTS AND SCIENCES: Whoever has the gold makes the rule.
- 15. BARTH'S DISTINCTION: There are two types of people: those who divide people into two types, and those who do not.
- 16. SEGAL'S LAW: A man with one watch knows what time it is. A man with two watches is never sure.
- 17. NINETY-NINETY RULE OF PROJECT SCHEDULES: The first 90 percent of the project takes 90 percent of the time, and the last 10 percent takes the other 90 percent.
- 18. FARBER'S FOURTH LAW: Necessity is the mother of strange bedfellows.

Universal Components

213-783-0220

FAX: 213-783-0223

WHEN YOU NEED A RULE ...

- 1. MURPHY'S LAW: If anything can go wrong, it will.
- 2. O'TOOLE'S COMMENTARY ON MURPHY'S LAW: Murphy was an optimist.
- 3. THE UNSPEAKABLE LAW: As soon as you mention something, if it's good, it goes away, if it's bad, it happens.
- 4. NONRECIPROCAL LAWS OF EXPECTATIONS: Negative expectations yield negative results. Positive expectations yield negative results.
- 5. HOWE'S LAW: Every man has a scheme that will not work.
- 6. ZYMURGY'S FIRST LAW OF EVOLVING SYSTEMS DYNAMICS: Once you open a can of worms, the only way to recan them is to use a larger can.
- 7. ETORRE'S OBSERVATION: The other line moves faster.
- 8. SKINNER'S CONSTANT (FLANNAGAN'S FINAGLING FACTOR): That quantity which, when multiplied by, divided by, added to or subtracted from the answer you get, gives you the answer you should have gotten.
- 9. LAW OF SELECTIVE GRAVITY: An object will fall so as to do the most damage.
 - JENNING'S COROLLARY: The chance of the bread falling with the buttered side down is directly proportional to the cost of the carpet.
- 10. GORDON'S FIRST LAW: If a research project is not worth doing, it is not worth doing well.
- 11. MAIER'S LAW: If the facts do not conform to the theory, they must be disposed of.
- 12. HOARE'S LAW OF LARGER PROBLEMS: Inside every large problem is a small problem struggling to get out.
- 13. BOREN'S FIRST LAW: When in doubt, mumble.
- 14. THE GOLDEN RULE OF ARTS AND SCIENCES: Whoever has the gold makes the rule.
- 15. BARTH'S DISTINCTION: There are two types of people: those who divide people into two types, and those who do not.
- 16. SEGAL'S LAW: A man with one watch knows what time it is. A man with two watches is never sure.
- 17. NINETY-NINETY RULE OF PROJECT SCHEDULES: The first 90 percent of the project takes 90 percent of the time, and the last 10 percent takes the other 90 percent.
- 18. FARBER'S FOURTH LAW: Necessity is the mother of strange bedfellows.

Universal Components — 213-641-4255

FAX: 213-641-6312

Temperature Conversion Table

Find desired temperature in **bold** type. Column to left will convert to degrees Celsius. Column to right will convert to degrees Fahrenheit.

			T	+		T						T .		
°C		۰F	°C		°F	°C		٥F	°C		۰F	°C		۰F
-40.0	-40	-40	2.22	36	96.8	24.4	76	168.8	82.2	180	356	190.6	375	707
-34.4	-30	-22	2.78	37	98.6	25.0	77	170.6	85.0	185	365	193.4	380	716
-28.9	-20	- 4	3.33	38	100.4	25.6	78	172.4	87.8	190	374	196.1	385	725
-23.3	-10	14	3.89	39	102.2	26.1	79	174.2	90.6	195	383	198.9	390	734
-17.8	0	32	4.44	40	104.0	26.7	80	176.0	93.3	200	392	201.7	395	743
-17.2	1	33.8	5.00	41	105.8	27.2	81	177.8	96.1	205	401	204.4	400	752
16.7	2	35.6	5.56	42	107.6	27.8	82	179.6	98.9	210	410	207.2	405	761
-16.1	3	37.4	6.11	43	109.4	28.3	83	181.4	100.0	212	413	210.0	410	770
15.6	4	39.2	6.67	44	111.2	28.9	84	183.2	101.7	215	419	212.8	415	779
-15.0	5	41.0	7.22	45	113.0	29.4	85	185.0	104.4	220	428	215.6	420	788
-14.4	6	42.8	7.78	46	114.8	30.0	86	186.8	107.2	225	437	218.4	425	797
-13.9	7	44.6	8.33	47	116.6	30.6	87	188.6	110.0	230	446	221.1	430	806
-13.3	8	46.4	8.89	48	118.4	31.1	88	190.4	112.8	235	455	224.0	435	815
12.8	9	48.2	9.44	49	120.2	31.7	89	192.2	115.6	240	464	226.7	440	824
-12.2	10	50.0	10.0	50	122.0	32.2	90	194.0	118.3	245	473	229.5	445	833
-11.7	111	51.8	10.6	51	123.8	32.8	91	195.8	121.1	250	482	232.2	450	842
11.1	12	53.6	11.1	52	125.6	33.3	92	197.6	123.9	255	491	235.0	455	851
10.6	13	55.4	11.7	53	127.4	33.9	93	199.4	126.7	260	500	237.8	460	860
10.0	· 14	57.2	12.2	54	129.2	34.4	94	201.2	129.4	265	509	240.5	465	869
- 9.44	15	59.0	12.8	55	131.0	35.0	95	203.0	132.2	270	518	243.3	470	878
- 8.89	16	60.8	13.3	56	132.8	35.6	96	204.8	135.0	275	527	248.9	480	896
- 8.33	17	62.6	13.9	57	134.6	36.1	97	206.6	137.8	280	536	254.4	490	- 914
- 7.78	18	64.4	14.4	58	136.4	36.7	98	208.4	140.6	285	545	260.0	500	932
- 7.22	19	66.2	15.0	59	138.2	37.2	99	210.2	143.3	290	554	268.6	510	950
- 6.67	20	68.0	15.6	60	140.0	37.8	100	212.0	146.1	295	563	271.1	520	968
- 6.11	21	69.8	16.1	61	141.8	40.6	105	221.0	148.9	300	572	276.7	530	986
- 5.56	22	71.6	16.7	62	143.6	43.3	110	230	151.7	305	581	282.2	540	1004
- 5.00	23	73.4	17.2	63	145.4	46.1	115	239	154.4	310	590	287.8	550	1022
- 4.44	24	75.2	17.8	64	147.2	48.9	120	248	157.2	315	599	293.3	560	1040
- 3.89	25	77.0	18.3	65	149.0	51.7	125	257	160.0	320	608	298.9	570	1058
- 3.33	26	78.8	18.9	66	150.8	54.5	130	266	162.8	325	617	304.4	580	1076
- 2.78	27	80.6	19.4	67	152.6	57.2	135	275	165.6	330	626	310.0	590	1094
- 2.22	28	82.4	20.0	68	154.4	60.0	140	284	168.3	335	635	315.6	600	1112
- 1.67	29	84.2	20.6	69	156.2	62.8	145	293	171.1	340	644	321.1	610	1130
- 1.11	30	86.0	21.1	70	158.0	65.6	150	302	173.9	345	653	326.7	620	1148
- 0.56	31	87.8	21.7	71	159.8	68.3	155	311	176.7	350	662	332.2	630	1166
0	32	89.6	22.2	72	161.6	71.1	160	320	179.4	355	671	337.8	640	1184
0.56	33	91.4	22.8	73	163.4	73.9	165	329	182.2	360	680	343.3	650	1202
1.11	34	93.2	23.3	7.4	165.2	76.7	170	338	185.0	365	689	371.1	700	1292
1.67	35	95.0	23.9	75	167.0	79.4	175	347	187.8	370	698			

Resistance Correction Factors

Precautions to be taken when measuring resistances

Wire must be tensioned enough in the holding apparatus so that exactly ten feet is measured.

Electrical contact must be very good. Erratic behavior of the null meter is the most common indication of a poor contact. A poor contact will give a high resistance reading.

Temperature corrections significantly affect accuracy. Care must be taken that a precise thermometer is used, that wire is at room temperature, and that the room temperature is reasonably consistent. If the wire is heated by bridge current, the accuracy of the reading may be reduced considerably.

Copper (conductivity: 100% IACS)

copper (conductivity: it					
DEG. C	FACTOR				
15	.9804				
16	.9842				
17	.9882				
18	.9922				
19	.9961				
20	1.0000				
21	1.0039				
22	1.0079				
23	1.0118				
24	1.0157				
25	1.0197				
26	1.0235				
27	1.0275				

DEG. C	FACTOR
28	1.0315
29	1.0354
30	1.0393
31	1.0433
32	1.0471
33	1.0511
34	1.0551
35	1.0590
36	1.0630
37	1.0668
38	1.0709
39	1.0747
40	1.0786

EC Aluminum (conductivity: 61.8% IACS)

	`
DEG. C	FACTOR
15	.9796
16	.9837
17	.9878
18	.9918
19	.9959
20	1.0000
21	1.0041
22	1.0082
23	1.0122
24	1.0163
25	1.0204
26	1.0245
27	1.0286

FACTOR
1.0326
1.0367
1.0408
1.0449
1.0490
1.0530
1.0571
1.0612
1.0653
1.0694
1.0730
1.0775
1.0816

To obtain resistance at 20°C, divide resistance at any other temperature by factor given above.

Other Metals and Alloys

To calculate and correct resistance at 20°C for other metals and alloys, find the T.C.R. of the desired material in the chart below and apply the value to the following formula:

Formula:
$$R_{20^{\circ}C} = \frac{R_T}{1 + \alpha (T - 20^{\circ}C)}$$

where:

R_T = Resistance obtained at temperature

T = Temperature registered at time of measurement

 α = Temperature coefficient of resistance per °C

METAL/ALLOY	TEMPERATURE (RESISTAN	METAL/ALLOY	
Pure Nickel (99.0%) Gold (99.98%) Silver (99.99%) Platinum Molybdenum Tungsten Beryllium Copper (CDA 172) Monel*400 Manganin Phosphor Bronze (CDA 510)	.0048 .0039 .0041 .00393 .0047 .0048 .0015 .0001	.00002 .00013 .0001 .0033 .00004 .00018 .0045 .0004	MWS-800 MWS-675 MWS-650 MWS-294R MWS-180 MWS-120 MWS-90 MWS-60 MWS-30

^{*}Registered trademark International Nickel Co.

Gauge to MM Conversion Table

	A.W.G.		WIRE		S.W.G.	
INCH	MM	MM ²	NUMBER	INCH	MM	MM ²
_	_	_	7/0 6/0	.5000 .4640	12,7000 11,7850	126,68 108,98
.4600 .4096 .3648 .3249	11,684 10,404 9,266 8,252		5/0 4/0 3/0 2/0 1/0	.4320 .4000 .3720 .3480 .3240	10,9700 10,1600 9,4487 8,8391 8,2295	94,51 81,07 70,12 61,36 53,19
.2893	7,348	42,41	1	.3000	7,6200	45,60
.2576	6,543	33,63	2	.2760	7,0103	38,60
.2294	5,827	26,67	3	.2520	6,4008	32,18
.2043	5,189	21,15	4	.2320	5,8972	27,27
.1819	4,621	16,77	5	.2120	5,3847	22,77
.1620 .1443 .1285 .1144 .1019	4,115 3,665 3,264 2,906 2,588	13,30 10,55 8,37 6,63 5,26	6 7 8 9	.1920 .1760 .1600 .1440 .1280	4,8768 4,4703 4,0640 3,6576 3,2512	18,68 15,70 12,97 10,51 8,30
.0907	2,304	4,17	11	.1160	2,9463	6,82
.0808	2,052	3,30	12	.1040	2,6416	5,48
.0720	1,829	2,62	13	.0920	2,3368	4,29
.0641	1,628	2,08	14	.0800	2,0320	3,24
.0571	1,450	1,65	15	.0720	1,8288	2,63
.0508	1,291	1,31	16	.0640	1,6256	2,08
.0453	1,150	1,04	17	.0560	1,4224	1,59
.0403	1,024	0,823	18	.0480	1,2192	1,17
.0359	0,9119	0,653	19	.0400	1,0160	0,811
.0320	0,8128	0,518	20	.0360	0,9143	0,657
.0285	0,7239	0,411	21	.0320	0,8128	0,519
.0253	0,6426	0,324	22	.0280	0,7112	0,397
.0226	0,5740	0,258	23	.0240	0,6096	0,292
.0201	0,5106	0,205	24	.0220	0,5588	0,245
.0179	0,4547	0,162	25	.0200	0,5080	0,203
.0159	0,4038	0,129	26	.0180	0,4572	0,164
.0142	0,3606	0,101	27	.0164	0,4166	0,136
.0126	0,3200	0,0810	28	.0148	0,3759	0,111
.0113	0,2870	0,0644	29	.0136	0,3454	0,0937
.0100	0,2540	0,0507	30	.0124	0,3150	0,0779
.0089	0,2261	0,0403	31	.0116	0,2946	0,0682
.0080	0,2032	0,0320	32	.0108	0,2743	0,0591
.0071	0,1803	0,0254	33	.0100	0,2540	0,0507
.0063	0,1601	0,0201	34	.0092	0,2337	0,0429
.0056	0,1422	0,0160	35	.0084	0,2134	0,0358
.0050	0,1270	0,0127	36	.0076	0,1930	0,0293
.0045	0,1143	0,0100	37	.0068	0,1727	0,0234
.0040	0,1016	0,0081	38	.0060	0,1524	0,0182
.0035	0,0889	0,00618	39	.0052	0,1321	0,0137
.0031	0,0787	0,00486	40	.0048	0,1220	0,0117
.0028	0,0711	0,00397	41	.0044	0,1118	0,00981
.0025	0,0635	0,00317	42	.0040	0,1016	0,00811
.0022	0,0559	0,00245	43	.0036	0,0914	0,00657
.0020	0,0508	0,00203	44	.0032	0,0813	0,00519
.0018	0,0457	0,00164	45	.0028	0,0711	0,00397
.0016	0,0406	0,00129	46	.0024	0,0610	0,00292
.0014	0,0350	0,00109	47	.0020	0,0508	0,00203
.0012	0,0305	0,000731	48	.0016	0,0406	0,00129
.0011	0,0279	0,000611	49	.0012	0,0305	0,00073
.0010	0,0254	0,000507	50	.0010	0,0254	0,00050
.00088 .00078 .00070 .00062 .00055	0,0224 0,0198 0,0178 0,0158 0,0140	0,000394 0,000308 0,000249 0,000194 0,000154	51 52 53 54 55	-	- - - -	
.00049	0,0124	0,000121	56	_	_	_

Conversion of Mils and Millimeters

Mils to Millimeters

MILS	MILLI- METERS	MILS	MILLI- METERS
1	0,0254	51	1,2954
2	0,0508	52	1,3208
3	0,0762	53	1,3462
4	0,1016	54	1,3716
5	0,1270	55	1,3970
6	0,1524	56	1,4224
7	0,1778	57	1,4478
8	0,2032	58	1,4732
9	0,2286	59	1,4986
10	0,2540	60	1,5240
11	0,2794	61	1,5494
12	0,3048	62	1,5748
13	0,3302	63	1,6002
14	0,3556	64	1,6256
15	0,3810	65	1,6510
16	0,4064	66	1,6764
17	0,4318	67	1,7018
18	0,4572	68	1,7272
19	0,4826	69	1,7526
20	0,5080	70	1,7780
21	0,5334	71	1,8034
22	0,5588	72	1,8288
23	0,5842	73	1,8542
24	0,6096	74	1,8796
25	0,6350	75	1,9050
26	0,6604	76	1,9304
27	0,6858	77	1,9558
28	0,7112	78	1,9812
29	0,7366	79	2,0066
30	0,7620	80	2,0320
31	0,7874	81	2,0574
32	0,8128	82	2,0828
33	0,8382	83	2,1082
34	0,8636	84	2,1336
35	0,8890	85	2,1590
36	0,9144	86	2,1844
37	0,9398	87	2,2098
38	0,9652	88	2,2352
39	0,9906	89	2,2606
40	1,0160	90	2,2860
41	1,0414	91	2,3114
42	1,0668	92	2,3368
43	1,0922	93	2,3622
44	1,1176	94	2,3876
45	1,1430	95	2,4130
46	1,1684	96	2,4384
47	1,1938	97	2,4638
48	1,2192	98	2,4892
49	1,2446	99	2,5146
50	1,2700	100	2,5400

Millimeters to Mils

MILLI- METERS	MILS	MILLI- METERS	MILS
1	39.370	51	2007.87
2	78.740	52	2047.24
3	118.110	53	2086.61
4	157.48	54	2125.98
5	196.85	55	2165.35
6 7 8 9	236.22 275.69 314.96 354.33 393.70	56 57 58 59 60	2204.72 2244.09 2283.46 2322.83 2362.20
11	433.07	61	2401.57
12	472.44	62	2440.94
13	511.81	63	2480.31
14	515.18	64	2519.68
15	590.55	65	2559.05
16	629.92	66	2598.42
17	669.29	67	2637.79
18	708.66	68	2677.16
19	748.03	69	2716.53
20	787.40	70	2755.90
21	826.77	71	2795.27
22	866.14	72	2834.64
23	905.51	73	2874.01
24	944.88	74	2913.38
25	984.25	75	2952.75
26	1023.60	76	2992.12
27	1063.00	77	3031.49
28	1102.40	78	3070.86
29	1141.70	79	3110.23
30	1181.10	80	3149.60
31	1220.50	81	3188.97
32	1259.80	82	3228.34
33	1299.20	83	3267.71
34	1338.60	84	3307.08
35	1378.00	85	3346.45
36	1417.32	86	3385.82
37	1456.69	87	3425.19
38	1496.10	88	3464.56
39	1535.40	89	3503.93
40	1574.80	90	3543.30
41	1614.17	91	3582.67
42	1653.54	92	3622.04
43	1692.91	93	3661.41
44	1732.28	94	3700.78
45	1771.65	95	3740.15
46	1811.02	96	3779.52
47	1850.39	97	3818.89
48	1889.76	98	3858.26
49	1929.13	99	3897.63
50	1968.50	100	3937.00

METRIC

-some Universal Numbers

MM	Frac.	Inches	MM	Frac.	Inches	MM	Frac.	Inches	MM	Frac.	Inches
.01		.0004	8.3344	21/64	.3281	21.4312	27/32	.8437	57		2.244
.02		.0008	8.7312	11/32	.3437	21.8281	55/64	.8594	58		2.283
.03		.0012	9.000		.3543	22.000	A. ·	.8661	59		2.323
.04		.0016	9.1281	23/64	.3594	22.2250	7/8	.875	60		2.362
.05		.0020	9.525	3/8	.375	22.6219	57/64	.8906	61		2.402
.06		.0024	9.9219	25/64	.3906	23.000		.9055	62		2.441
.07		.0028	10.000		.3937	23.0187	29/32	.9062	63		2.480
.08		.0032	10.3187	13/32	.4062	23.4156	59/64	.9219	64		2.520
.09		.0035	10.7156	27/64	.4219	23.8125	15/16	.9375	65		2.559
.10		.004	11.000		.4331	24.000		.9449	66		2.598
.20		.008	11.1125	7/16	.4375	24.2094	61/64	.9531	67		2.638
.30		.012	11.5094	29/64	.4531	24.6062	31/32	.9687	68		2.677
.3969	1/64	.0156	11.9062	15/32	.4687	25.000		.9843	69		2.717
.40		.0158	12.000		.4724	25.0031	63/64	.9844	70		2.756
.50		.0197	12.3031	31/64	.4844	25.400	1"	1.000	71		2.795
.60		.0236	12.700	1/2	.500	26		1.024	72		2.835
.70		.0276	13.000		.5118	27	1-1/16	1.063	73		2.874
.7937	1/32	.0312	13.0968	33/64	.5156	28		1.102	74		2.913
.80		.0315	13.4937	17/32	.5312	29		1.142	75	2-61/64	2.953
.90		.0354	13.8906	35/64	.5469	30		1.181	76		2.992
1.000		.0394	14.000		.5512	31		1.220	77	3-1/32	3.031
1.1906	3/64	.0469	14.2875	9/16	.5625	32		1.260	78		3.071
1.5875	1/16	.0625	14.6844	37/64	.5781	33		1.299	79		3.110
1.9844	5/64	.0781	15.000		.5906	34		1.339	80		3.150
2.000		.0787	15.0312	19/32	.5937	35		1.378	81		3.189
2.3812	3/32	.0937	15.4781	39/64	.6094	36		1.417	82		3.228
2.7781	7/64	.1094	15.875	5/8	.625	37		1.457	83		3.268
3.000		.1181	16.000		.6299	38		1.496	84		3.307
3.175	1/8	.125	16.2719	41/64	.6406	39		1.535	85		3.346
3.5719	9/64	.1406	16.6687	21/32	.6562	40		1.575	86		3.386
3.9687	5/32	.1562	17.000		.6693	41		1.614	87		3.425
4.000		.1575	17.0656	43/64	.6719	42		1.654	88		3.465
4.3656	11/64	.1719	17.4625	11/16	.6875	43		1.693	89		3.504
4.7625	3/16	.1875	17.8594	45/64	.7031	44		1.732	90		3.543
5.000		.1969	18.000		.7087	45		1.772	91		3.583
5.1594	13/64	.2031	18.2562	23/32	.7187	46		1.811	92		3.622
5.5562	7/32	.2187	18.6532	47/64	.7344	47		1.850	93		3.661
5.9531	15/64	.2344	19.000		.748	48	1-57/64	1.890	94		3.701
6.000		.2362	19.050	3/4	.750	49		1.929	95		3.740
6.3500	1/4	.250	19.4469	49/64	.7656	50		1.969	96		3.780
6.7469	17/64	.2656	19.8433	25/32	.7812	51		2.008	97	- Control of the Cont	3.819
7.000	11704	.2756	20.000	20/02	.7874	52		2.047	98	and an address of the second	3.858
7.1437	9/32	.2812	20.2402	51/64	.7969	53		2.047	99		3.898
7.5406	19/64	.2969	20.6375	13/16	.8125	54		2.126	100	3-15/16	3.937
7.9375	5/16	.3125	21.000	10/10	.8268	55	The state of the s	2.120	100	J-10/10	0.307
8.000	3/10	.3123	21.0344	53/64	.8281	56		2.105			
0.000		.010	21.0044	30/04	.0201	50		2.200			

- Universal Components — 213-641-4255

FAX: 213-641-6312

Tarzian

STANCOR

Each transformer has the winding arrangement and terminal numbering shown in the schematic diagrams above. The primary winding is connected to terminals 1, 2, 3 & 4. A separate winding is connected to terminals 5, 6 & 7 that may be used in series with the primary to raise or lower the secondary voltage output. A variety of combinations is possible using the taps on both windings, plus the "Aiding" or "Bucking" action of the extra winding.

Designed for 117 V. 50/60 cycle operation; may also be satisfactorily operated at 400 cycles.

The secondary winding of each transformer consists of two identical windings connected to terminals 8 & 9 and to 10 & 11 respectively. Use the tables showing the various output voltages for specific terminal connections as your guide. Many combinations are possible other than those listed in the tables.

All ratings shown are for normal convection air cooled applications. Select only rectifiers capable of handling the output voltages and currents described

Sarkes-Bulletin 518-R STANCOR Tarzian Part No. Part No. D-10 D-52 8 STANCOR Power Supply RT-201 Transformers for use with Sarkes-RT-202 Tarzian Stock Selenium Rectifiers RT-204 D-14 D-19 RT-206 All of these transformers will operate in Full-Wave Center-Tapped or Bridge **RT-208** Type Circuits with readily available D-16 D-21 RT-408

Common schematics for the complete RT series

FULL-WAVE C. T.

stock sizes of Selenium Rectifiers

FULL-WAVE BRIDGE

RT-2012

RT-4012

D-27

D 28

RT-2	201	1		Full-Wo	ve C. T.		F	ull-Way	ve Bridg	е	
Po	ncor wer pply							D-	D-52 1.25 A. D.C.		
Innut		Ħ.	Resisti	ve Load	Capacitiv	e Load	Resisti	ve Load	Capaciti	ve Load	
Input 117vac Term, No.	Connect Term. No.	Ī	econdary Volts AC	Output Voits DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Voits DC	Secondary Volts AC	Output Voits DC	
1-2		Г	29.4	11.2	28.8	13.8	28.5	23. B	27.9	30.0	
1-7	2-6	u	26.0	9,8	25.7	11.7	25.4	20.6	25.1	26.4	
1-6	2 -5	П	23.8	8 4	22 7	9.9	22.3	17.3	21.8	22 2	
1-7	2-5		20.9	7.4	20 8	8.6	20.2	15.4	19.8	19.7	
1-3		П	19.4	6 7	19.1	7.6	18.6	13.9	18.2	17.5	
1-7	3-6	1	17.8	6.1	17.6	6.7	17.2	12.8	16.8	15.7	
1-6	3-5		16.3	5.3	16.1	6.0	15.7	11.2	15.2	13 8	
1-7		-	*.4.9	The second second	- 14.0 <	1 2 3 3	8.75 W	10:01 =		17 "	
1-4		П	14.2	4.4	14.2	5 6	13.7	9.7	13.5	111 3	
1-7	4-6		13.4	4 0	13.3	4 4	12.7	8.8	12.5	18 1	
1-6	4-5	1	12.4	3.6	12 4	3.9	11.7	7.9	11.7	9 5	
1-7	4-5	ı	11.7	3.3	11.7	3.5	11.1	7.4	11.1	9 /	

Full-Wave C. T. Full-Wave Bridge RT-202 Use with Sarkes-Tarzian Selenium Rectifler Part Nos. Stancor D-11 D-17 Power Supply Output 2.0 A. D.C. Output 4.0 A. D.C. input 117vac Term. No. Connect Term. No 29.7 26.2 24.3 21.8 20.9 19.1 29. 7 26. 2 24. 4 21. 9 20. 9 19. 2 33.0 29.0 26.0 23.1 21.7 19.6 18.2 16.3 13.7 12.6 11.7 11.1 29.3 26.0 23.9 21.5 20.6 18.9 2-6 2-5 2-5 3-6 17.8 16.4 14.2 13.4 12.7 3-5 3-5 4-6 4-5 4-5

RT-2	204		ull-Wa	ve C. T.		Full-Wave Bridge						
Po	ncor		Use with Sarkes-Tarxian Selenium Rectifler Part Nos. D-13 D-18									
Su	pply	C	output 8	.0 A. D.C		0	utput 4	.0 A. D.0	3.			
Input	-	Resisti	ve Load	Capacitive	E Load*	Resistiv	e Load	Capacitiv	e Load**			
117vac Term, No.	Connect Term No.	Secondary Volts AC	Output Voits DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC			
1-2		29. 2	12.0	28.8	14.5	29. 2	24.0	29.0	32.4			
1-7	2-6	25.7	10.5	25 7	12.6	25.7	21.1	25.4	29.2			
1-6	. 2-5	22.8	9.2	22 8	10.9	22.8	18.7	22.7	25.7			
1-7	2-5	20.6	8.3	20 6	9.8	20.7	16 6	20.6	22.8			
1.3		19 3	7.7	19.3	8.7	19,4	15.4	19.0	21.0			
1-7	3-6	17.6	7 0	17.6	7.8	17 8	14.0	17.6	19.0			
1-6	3-5	16,2	6.3	16 2	6.9	16 3	12 7	16.1	17.2			
1-7	3-5	15.0	5.8	15.0	6.3	15.1	11.6	14.9	15 6			
1-4		14.2	5.4	14 2	5.8	14 4	11 0	14 2	14.8			
17	4-6	13 3	5 0	13,3	5.3	13.4	10.2	15.3	13 5			
1_6	4-5	12.5	4.6	12.5	4.9	12.6	9 4	12 5	12.4			
1-7	4-5	11 7	4 3	11.7	4 5	11 8	8.8	11 6	11 4			
		*4000 MED				**2000 MFD.						

SEE OTHER SIDE FOR

STANCOR Part Nos. RT-206, 208, 2012, 408, 4012 Starkes-Tarzian Part Nos. D-14, 19, 15, 20, 16, 21, 27, 28

FULL-WAVE C. T.

FULL-WAVE BRIDGE

Common schematics for the complete RT series

Tarzian

STANCOR

Each transformer has the whiting arrangement and terminal numbering shown in the schematic diagrams above. The primary winding is connected to terminals 1, 2, 3 & 4. A separate winding is connected to terminals 5, 6 & 7 that may be used in series with the primary to raise or lower the secondary voltage output. A variety of combinations is possible using the taps on both windings, plus the "Aiding" or "Bucking" action of the extra winding.

Designed for 117 V. 50/60 cycle operation; may also be satisfactorily operated at 400 cycles.

The secondary winding of each transformer consists of two identical windings connected to terminals 8 & 9 and to 10 & 11 respectively. Use the tables showing the various output voltages for specific terminal connections as your guide. Many combinations are possible other than those listed in the tables.

All ratings shown are for normal convection air cooled applications. Select only rectifiers capable of handling the output voltages and currents described

RT-2	206		Full-W	ave C. 1	F	Full-Wave Bridge			
Po	ncor wer		Use D-		Part Nos. D=19				
501	pply	0	utput 1:	2.0 A. D	.C.		Dutput 6	5.0 A. D.	C.
Input		Resisti	ve Load	Capacit	ive Load*	Resisti	ve Load	Capaciti	ve Load**
117vac Term. No.	Connect Term. No.	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Voits DC	Secondary Voits AC	Output Voits DC	Secondary Volts AC	Output Volts DC
1-2		11 3.8	11.5	29.6	14.4	29.6	24.0	29.2	32 0
1-7	2-6	21.0	9.9	25.8	12.0	25.8	20.6	25.4	27.3
1-6	2-5	23 8	8.8	23.6	10.7	23.8	18.6	23 6	24.6
1.7	2-5	21.2	7.6	21.0	9.0	21 2	16.4	21.0	21.4
1-3		13.7	7.0	19.7	8.4	19.7	15.2	19.4	19.2
1-7	3-6	17.9	6.2	17.8	7.2	17.9	13.5	17 8	17 3
1.6	3-5	16 7	5.7	16.6	6.6	16.8	12 5	16.6	15.8
1-7	3-5	15.4	5.1	15.4	5.9	15 4	11.4	15.2	14.0
1-4		14.6	4.7	14 5	5.2	14.6	10.6	14.5	13.4
1.7	4-6	13.5	4.2	13.4	4.7	13.5	9.8	13.4	12.0
1-6	4-5	2.9	3.9	12.8	4.3	12.9	9.2	12 8	11 0
1-7	4-5	2.0	8.4	12.6	3.9	12.0	8.4	12 8	10.0

		*60 0 MFD.		**3000 MFD.						
RT-2	808		-ull-Wo	ve C. T	•	F	Full-Wave Bridge			
	ncor wer			with Sarke	s-Tarzian	Selenium Rectifler Part Nos. D-20				
Su	pply	0	utput 15	5.0 A. D.	C.	C	Output 8	3.0 A. D.	C.	
Input		Resisti	ve Load	Capaciti	ve Load*	Resisti	ve Load	Capacitiv	/e Load**	
117vac Term No.	Connect Term No.	Secondary Vilts AC	Output Volts DC	Secondary Volts AC	Output Voits DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC	
1 -2		29.2	11.4	29. 2	14.8	29.2	23.7	29.0	32.5	
1-7	2-6	25.4	9. 9	25 4	12.5	25.3	21.0	25.2	27.0	
1-6	2-5	24.1	9.3	24.0	11.6	24.0	19.4	23.9	25.5	
1-7	2-5	21.5	8.2	21.5	10.0	21.3	17.0	21.3	Ž2. U	
1-3		19 3	7.1	19.3	8.7	19.1	14.9	19.1	21 2	
1-7	3 6	17.6	6.4	17.5	7.7	17.4	13.4	17.4	17 0	
1-6	3-5	16.8	6.0	16.8	7.2	16.8	12.9	16.7	16 1	
1-7	3-5	15.6	5.5	15.5	6.5	15.4	11.7	15 4	14.5	
1-4		34.4	5.0	14.4	5.7	14.2	10.7	14.2	13 1	
1-7	4-6	13.4	4.5	13.4	5.1	13.3	9.8	13.3	11.9	
16	4-5	13.0	4.3	12.9	4.8	12.9	9.5	12.8	. 11.4	
1-7	4-5	12.2	3.9	12.1	4.4	12 1	8.7	12.1	10.4	

RT-2	012	F	ull-Wa	ve C. T	•	F	ull-Wa	ve Bridg	je	
	ncor wer			with Sarkes	s-Tarzian S	Selenium Rectifler Part Nos. D-2 1				
	ply	0		2.5 A. D.	C.	0		2.0 A. D.	C.	
Inout		Resistiv	ve Load	Capaciti	ve Load*	Resisti	e Load	Capacitiv	/e Load**	
117vac Term. No.	Connect Term. No.	Secondary Volts AC	Output Voits DC	Secondary Volts AC	Output Voits DC	Secondary Voits AC	Output Voits DC	Secondary Volts AC	Output Volts DC	
1-2		29.1	11.4	28.8	14.3	29.0	23.5	28.7	33.0	
1-7	2-6	25.2	9.7	25.1	12.8	25.3	20.4	25.1	28.0	
1-6	2 -5	23.6	8.9	23.6	10 9	23.5	18 8	23.5	25 7	
1-7	2-5	21 1	7.7	21.0	9.4	21 0	16.3	20.9	22.3	
1-3		19 3	7.2	19.3	8.3	19.2	14.8	19.2	20.2	
1-7	3-6	17.7	6.3	17.7	7.2	17 5	13.4	17 5	17.7	
1-6	3-5	16 9	6.0	16.9	6.7	16.8	12.5	16.8	16.7	
1-7	3-5	15.6	5.4	15.7	5.9	15.5	11 5	15.5	15.1	
1-4		14.6	4.9	14.6	5.4	14.5	10.7	14.5	13.7	
1-7	4-6	13.5	4.4	13.5	4.7	13 5	9.7	13.4	12.6	
1-6	4-5	13 0	4.3	13.0	4.5	13.0	9 3	13.8	11.9	
1-7	4 5	12 2	3.9	12.1	4.6	12.2	8 6	12.0	19.8	

		*11,250 MFD.				**6000 MFD.			
RT-40	8 FULL	-WAVE	BRIDO	SE .	RT	-4012	FULL-	WAVE	BRIDGE
Star	wer			with Sarkes 27	-Tarzian S	Selenium Rectifler Part Nos. D-28			
Sup	ріу	0	utput 8.	0 A. D.(0	utput 12	2.0 A. D	.C.
Input		Resistiv	e Load	Capacitiv	e Load*	Resistiv	e Load	Capaci	ve Load**
117vac Term. No.	Connect Term No.	Secondary Volta, AC	Output Volts DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Voits DC
1 2		53 3	44.0	53 0	63.0	53.0	43 5	53 0	60 0
1.7	2-6	50 0	40.5	50.0	59 0	49.5	48 0	49. C	55 D
1-6	2-5	45 2	37.0	45.0	52 0	43 5	34.0	43, 0	48.0
1.7	2-5	42.5	34.5	42.8	48 0	41.5	32.0	41 0	45.5
1 3		37. \$	30.5	37 5	40.0	37.5	29 0	37.6	40 0
1-7	3-6	35.5	27 5	35.5	39 0	35 5	27.8	35.0	37.5
1-6	. 35	32.5	25.0	33.0	35.5	32.8	24.8	32 7	34.0
1-7	3-5	31.5	24.0	31.5	31.5	31 0	23.6	30.8	31.0
1-4	10.74	29 0	21.5	29.0	29.5	29 0	21 2	29 9	29.0
1-7	4-8	27 5	20.5	27.5	28.0	27.8	20 0	28.0	28 0
1-6	4-5	26. B	19.5	26.0	26.0	26 0	19.0	. 26.0	25.0
1.7	4-5	25.9	18.0	25.0	25.0	25.0	18 0	25.0	24.0

*4000 NFD.

**6000 MFD.

131 GODFREY STREET . LOGANSPORT, IN 46947

OUTLINE DIMENSIONS

Output Watts	Н	W	L	A	В
2, 3	625	1.562	1.875	1.600	.375
4, 5, 6	.875	1.562	1.875	1.600	.375
12	1.062	2.000	2.500	2.000	.500

BOTTOM VIEW

VOLTS & CURRENT

PRIMA	RY
SERIES INPUT ACROSS 1 & 4 CONNECT 2 & 3	PARALLEL INPUT ACROSS 1 & 3, 2 & 4
230V.	115V.

SECONDARY					
SERIES OUTPUT ACROSS 5 & 8 CONNECT 6 & 7	PARALLEL OUTPUT ACROSS 5 & 7, 6 & 8				
SEE SEC. SERIES	SEC. PARALLEL				

PART NO.

LB SERIES

TYPE:

LOW BOY POWER TRANSFORMER

• W.L. RECOGNIZED UNIT. (File Card E-68100)

LOW BOY APPLICATIONS: Electronic Game Systems. Computer Peripherals. Switching Power Supplies. Medical Electronics. Instrumentation Equipment. Telephone Modems.

Communications Equipment. Computer "On Board" Power. Machine Control Logic Systems. ROBOTICS. Consumer Electronics.

SPECIFICATIONS:
LOW-BOY** — allow %** card spacing for 2 & 3, ¼A units; 1* for 4, 5 & 6 \ VA, and 1½** for 12 \ VA units.
DUAL PRIMARIES — versatility!!
115/230V, 50/60/400 \ Hz.
SPLIT BOBBIN — side by side windings — (No static shield)

SEMI-TOROIDAL CONSTRUCTION —
Reduces Radiated Magnetic Fields and
Results in Balanced Windings.
HI-POT — 2000 volts standard RMS
P.C. TERMINALS — Precision Spaced

s	Secondary				
ECT	STANCOR Part No.	V.A or Watts	Series Output Across 5 & 8 Connect 6 & 7	Parallel Output Across 5 & 7, 6 & 8	Wt. Oz.
	L8210	2	10V C.T. @ 200MA	5V @ 400MA	4 5
	LB310	3	10V C.T. @ 300MA	5V @ 600MA	4 5
	LB410	4	10V C.T. @ 400MA	5V @ 800MA	5 5
A	LB510	5	10V C.T. @ 500MA	5V @ 1.A	5.5
	LB610	6	10V C.T. @ 600MA	5V @ 1.2A	5.5
\Box	LB1210	12	10V C T. @ 1200MA	5V @ 2 4A	11.5
\prod_{n}	LB412	4	12V C.T. @ 333MA	6V @ 667MA	5.5
В	LB512	5	12V C T. @ 417MA	6V @ 833MA	5.5
	LB612	6	12.6V C.T. @ 450MA	6.3V @ 900MA	5.5
C	LB1212	12	12.6V C.T. @ 900MA	6.3V @ 1.8A	11.5
,	LB215	2	15V C.T. @ 150MA	7.5V @ 300MA	4.5
D	LB315	3	15V C.T. @ 200MA	7.5V @ 450MA	4.5
-	LB616	6	16V C.T. @ 350MA	8V @ 700MA	5.5
E	LB1216	12	16V C.T. @ 700MA	8V @ 1.4A	11.5
	LB420	4	20V C.T. @ 200MA	10V @ 400MA	5.5
_	LB520	5	20V C.T. @ 250MA	10V @ 500MA	5.5
F	LB620	6	20V C.T. @ 300MA	10V @ 600MA	. 55
	LB1220	12	20V C.T. @ 600MA	10V @ 1.2A	11.5
	LB424	4	24V C.T. @ 167MA	12V @ 333MA	5.5
G	LB524	5	24V C.T. @ 208MA	12V @ 417MA	5.5
	LB624	6	24V C.T. @ 250MA	12V @ 500MA	5.5
ľ	LB1224	12	24V C.T. @ 500MA	12V @ 1A	11.5
	LB634	6	34V C.T. @ 170MA ·	17V @ 340MA	5.5
H	LB1234	12	34V C.T. @ 340MA	17V @ 680MA	11.5
	LB240	2	40V C T. @ 60MA	20V @ 120MA	4.5
	/LB640	6	40V C.T. @ 150MA	20V @ 300MA	5.5
	/LB1240	12	40V C.T. @ 300MA	20V @ 600MA	11 5
	/LB256	2	56V C.T. @ 45MA	28V @ 90MA	4 5
J	/LB656	6	56V C.T. @ 100MA	28V @ 200MA	5 5
	/LB1256	12	56V C.T. @ 200MA	28V @ 400MA	11 5
	/LB288	2	88V C.T. @ 28MA	44V @ 56MA	4.5
ĸ	/LB688	6	88V C.T. @ 65MA	44V @ 130MA	5 5
	/LB1288	12	88V C.T. @ 130MA	44V @ 260MA	11.5
	/LB2120	2	120V C.T. @ 20MA	60V @ 40MA	4.5
	LB4120	4	120V C T. @ 33MA	60V @ 66MA	5.5
L	LB5120	5	120V C.T. @ 41.7MA	60V @ 83.3MA	5.5
Ì	/LB6120	6	120V C T. @ 50MA	60V @ 100MA	5.5
	/LB12120	12	120V C.T. @ 100MA	60V @ 200MA	11.5
	/LB2230	2	230V C.T. @ 10MA	115V @ 20MA	4.5
M	/LB6230	6	230V C.T. @ 25MA	115V @ 50MA	5.5
	LB12230	12	230V C.T. @ 50MA	115V @ 100MA	11.5

√New Item

		PRIMARY - OHMS	SECONDARY - OHMS
50-13	1	400/500 C.T.	40/50 Split
		Brn-Red (C.T.)-Blu	Yel-Wht, Bik-Green
	550-13	200,000 Blu, Brn	1000 Grn-Base, Bik and.
SO-14		80/100 C.T.	32-/40 Split
		Brn-Red (C.T.)-Blu	Yel-Wht, Blk-Green
	SSO-14	10,000/25,000 Blue	200/500 Yel, Blk (C.T.)
		Red (C.T.) Brn	Green
50-15		600 C.T.	600 Split
		Brn-Red (C.T.)-Blu	Yel-Wht, Blk-Grn
	\$\$0-15		800 / 1200 Yel,
		Red (C.T.) Blue	Blk (C.T.) Green
50-16			2500 Split -
		Brn-Red (C.T.)-Blu	Yel-Wht, Blk-Grn
	550-16	1200/1500 Blu, Rd	3.2/4 Grn, Bik
SO-17		Reactor: Series Connected	_ 4
6	,		@ 4 MADC Blu-Red (Join BluW & RW)
1,		Parallel Connected	2 8 MADC Blu-BluW, Red-RW
	550 17		
No.	SSO-17	10K/12.5K Blu-Coll., Red-B plus	500/600 Yel, Blk (C.T.),
	\$50-18	7.5K/9.4K Brn-Rd (C.T.),	3.2/4 Grn, Blk
	330-10	Blue	3.2/4 Sill, Bik
	SSO-19	500 Brn-Rd (C.T.),	600 Yel, Blk (C.T.),
		Blue	Green
	SSO-20	1.5K Brn, Rd (C.T.),	600 Yel, Blk (C.T.),
		Blue	Green
	\$\$0-21	200 K Brn, Rd (C.T.),	1K Yel, Blk (C.T.),
		Blue " "	Green
	SSO-22		1500/1800 Yel, Blk (C.T.),
İ		Blue	Green
			4 HYS @ 5 MADC 650 Red-Gn
		Reactor 3.5 HYS @ 2 MADO	., 1.5 HYS @ 5 MADC 160 Red-Blu
	SSO-25	10K/12K C.T.	10K/12K C.T.
		Brn-Red (C.T.)-Blue	Yel-Bik (C.T.) Green
	SSO-26		400/500 Split
		Brn-Red (C.T.)-Blue	Yel-Wht, Bik-Green
	SSO-27	4000 C.T.	600 Split
		Brn-Red (C.T.)-Blue	Yel-Wht, Blk-Grn

(over)

SUB-OUNCER and SUB-SUBOUNCER COLOR CODE

4				
			PRIMARY - OHMS	SECONDARY - OHMS
	50-1	\$50-1	50 / 200 Red Red	62,500/250,000 Green-Grid Brack-Fil.
1	50-2	\$\$0-2	10,000 Blue-Präte Red-B plus	90,000 Green-Grid Black-Fil.
	50-3	\$\$0-3	10,000/25,000 Blue- Plate Red-B plus	200/500 Black Black
	50-4	SSO-4	30,000 Blue-Plate Red-B plus	50 Brown Brown
	50-6	8-022	100,000 Blue-Plate Red-B plus	60 Brown Black
-	\$0-7	\$\$0-7	20,000/30,000 Blue- Collector Red-Base	800 / 1200 Green-Emitter Black Ground-Base
	8-02	\$50-8	10,004 BlueyColl.	2000 C.J. Gra Buse, Mit Gnd
	*		Red-R plus	C.T., Brn-Base
-	SO-9		500 C.T. Blu-Coll., Red-B plus C.T., Brn-Coll.	3.2 Wht, Blk
		9-022	10,000 Blu-Coll., Red-B plus	16 Wht, Blk
-	\$0-10		Red (C.T.) Brn '2000/4000 Blue	8/16 Blk, Green
		01-022	10,000 Bly-Coll.; Red-B plus	3.2 Wht, Blk
-	SO-11		400/500 C.T. 🤏	400/500 Split
			Brn-Red (C.T.)-Blu	Yel-Wht, Blk-Green
		SSO-11	500/600 Blu-Coli., Red-B plus	50/60 Grn, Blk
ĺ	SO-12		400/500 C.T.	120/150 Split
ĺ			Brn-Red (C.T.)-Blu	Yel-Wht, Blk-Green
		SSO-12	1000/1200 Blu-Coll., Red-B plus	, 50/60 Grn, Blk

ULTRA MINIATURE SERIES

Molded Units—white dot is terminal #1, others follow numerically in clockwise direction.

ERD 2

numerically in clockwise direction.					
PART NO.	CONNE Pri. Imped.	Sec. Imped.	SCHEMATIC NO		
UM21	100K 1-2	1,000 3-4	1		
UM22	20K 1-2	1,000 3-4	1		
UM23	20K 1-2	1,200 C.T. 3-4-5	2		
UM24	1,000 1-2	50 3-4	1		
UM25	400 1-2	50 3-4	1		
UM26	400 1-2	11 3-4	1		
UM27	400 C.T. 1-2-3	11 4-5	3		
UM28	10 HY ODC 1-2	8 HY 0.5 MA DC 1-2 600 DCR	4		
UM29	600 C.T. 1-2-3	600 C.T. 4-5-6	5		
UM30	1.5 HY ODC 1-2	0.7 HY 2 MA DC 100 DCR	4		
UM31	10,000 C.T. 1-2-3	1,200 C.T. 4-5-6	5		
UM32	1,500 C.T. 1-2-3	600 4-5	3		
UM33	1,000 C.T. 1-2-3	600 4-5	3		
UM34	10,000 C.T. 1-2-3	600 C.T. 4-5-6	5		
UM35	15,000 C.T. 1-2-3	15,000 C.T. 4-5-6	5		
UM36	20,000 C.T. 1-2-3	800 C.T. 4-5-6	<u>;</u> ; 5		
UM37	10,000 1-2	2,000 C.T. 3-4-5	2		
UM39	2,500 C.T. 1-2-3	600 C.T. 4-5-6	5		

MICROTRAN COMPANY, INC.

145 EAST MINEOLA AVENUE VALLEY STREAM, NEW YORK 516 LO 1-6050

VERI-MINIATURE SERIES

Terminal colors are only applicable to open frame units. Terminal numbers apply to cased and molded units.

PART NO.		CTIONS	SCHEMATIC
	Pri. Imped.	Sec. Imped.	МО
VM1	50 1-2	600 3-4	1
VM2	200K 1-2	600 3-4	(), () 1
VM3	25K 1-2	600 3-4	1,11
VM4	200K 1-2	1,200 3-4	1
VM5	50K 1-2	600 3-4	- 1 1
VM6 34	100K 1-2	1,200 C.T. 3-4-5	2
VM7	500 1-2	3.4 3-4	1
VM8	1,250 1-2	3.4 3-4	1
VM9	1,250 1-2	50 3-4	The state of the s
VM10	2,500 1-2	2,500 C.T. 3-4-5	2
VM11	20 HY 0 DC 1-2	12 HY 0.5 MA DC 1000 DCR	√ ⟨3
VM12	20K 1-2	1,000 3-4	1
VM13	20K 1-2	1,000 C.T. 3-4-5	2
VM14	600 C.T. 1-2-3	600 C.T. 4-5-6	. 58 4
VM15	50,000 C.T. 1-2-3	50,000 C.T. 4-5-6	4
VM16	500 C.T. 1-2-3	250 C.T. 4-5-6	4
VM17	10,000 C.T.	5,000 C.T.	4

MICROTRAN COMPANY, INC

145 EAST MINEOLA AVENUE VALLEY STREAM, NEW YORK 516 LO 1-6050

MICRO MINIATURE SERIES

0,0

Sec. Imped.

 000Ω

CT

4-5-6

 3.4Ω

Part No.

MMT11

Pri. Imped.

 4000Ω

CT

 2000Ω

1-2-3

MMT12	1-2	3-4	6	0)	BLU 2	3118	S	BLK
MMT13	4000Ω CT 1-2-3	3.4Ω 4-5	0 N O'N	40	YEL 2- BLU3-		0000	GRN BLK
MMT16	10,000Ω 1-2	1,500Ω CT 3-4-5	0,	40	RD 1		0000	YEL BLK GRN
MMT17	10,000Ω CT 1-2-3	200Ω CT 4-5-6	0 N	90	BN 1- RD 2- BLU 3-		0000	YEL BLK EGRN
MMT18	25,000Ω CT 1-2-3	1,200Ω CT 4-5-6	0 n o n	90	BN 1 RD 2 BLU 3		8	4 YEL 5 BLK 6 GRN
MMT19	2,500Ω 1-2	2,500Ω CT 3-4-5	000	40	RD 1		0000	3 YEL 4 BLK 5 GRN
MMT21	4000Ω CT 1-2-3	600 SPLIT 150Ω 4-5 6-7	040	4 50	BN1 RD2 BLU3	0000	<u>.</u>	4 YEL 5 BLK 6 WHT 7 GRN
MMT25	7500Ω CT 1-2-3	600Ω CT 4-5-6	0 % 0 %	90	BN 1 RD 2 BLU 3	0000	0000	4 YEL 5 BLK 6 GRN
MMT26	600Ω CT 1-2-3	600Ω CT 4-5-6	0,00	90	BN 1 RD 2 BLU 3		0000	4 YEL 5 BLK 5 GRN
MMT27	25,000Ω CT 1-2-3	600Ω CT 4-5-6	0,00	40	BN 1 RD 2 BLU 3	0000	00000	4 YEL 5 BLK 6 GRN
MMT28	10,000Ω CT 1-2-3	1500Ω CT 4-5-6	0,0 N	40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BN 1 RD 2 BLU 3		8	4 YEL 5 BLK 5 GRN
MMT29	10,000Ω CT 1-2-3	10,000Ω CT 4-5-6	000	0000	BN 1- RD 2- BLU 3-))))	YEL
MMT30	7,500Ω CT 1-2-3	1,200Ω CT 4-5-6	0 N	90	BN 1- RD 2- BLU 3-	0000		4 YEL 5 BLK 5 GRN
ММТ31	2,000Ω CT 1-2-3	500Ω CT 4-5-6	0 N	90	BN 1- RD 2- BLU 3-		3	YEL
MMT32	CT 1-2-3	1200Ω/300Ω SPLIT 4-5 & 6-7	On 4	100	BN1- RD2- BLU3-		5	BLK WHT
*NOTE: On hermetically sealed units only, Pin 1 may be marked by number or color. Numbers increase in clockwise direction. **Terminal colors are only applicable to open frame units.								

^{**}Terminal colors are only applicable to open frame units.

Terminal numbers apply to metal cased and molded units.

MICRO MINIATURE SERIES						
Part No.	Pri. Imped.	Sec. Imped.	Terminal [®] Layout	Schematic**		
MM1	200Ω 50Ω 1-2	250,000Ω 62,000Ω 3-4	0, 30	BLU1 3 BLK		
MM2	10,000Ω 1-2	90,000Ω 3-4	0, ,0 o' 40	BLU1 3 BLK		
MM3	10,000Ω 1-2	200Ω 3-4	0, 30 o' 40	BLU1 3 BLK		
MM4	30,000Ω 1-2	50Ω 3 - 4	0, 30 o' 40	BLU1 3 BLK		
MM5	50 hy @ 1 MIL DC 1-2	4700Ω D.C. RES.	ON O'	BLU1		
MM6	100,000Ω 1 - 2	60Ω 3-4	0, 30 of 40	BLU 1 3 BLK		
MM7	30,000Ω 1-2	1,200Ω 3-4	0, ,0 o' 40	BLU 1 3 BLK		
MMT1	600Ω 1 - 2	600Ω 3 - 4	0, 30 or 40	BLU 1 3 BLK		
MMT3	50,000Ω 1 - 2	600Ω 3-4	0, 30 e ⁴ 40	BLU 1 3 BLK RD 2 4 GRN		
MMT4	50,000Ω CT 1-2-3	600Ω CT 4-5-6	On 000	PD1 6 4GRN YEL2 5 BLK BLU 3 6 9KN		
MMT5	50,000Ω 1-2	6Ω 3-4	On 30	BLU1 3 BLK RD 2 4 GRN		
MMT7	25,000Ω 1-2	1200Ω CT 3-4-5	On 30 4 40	BLU 2 3 GRN		
ммт8	50,000Ω CT 1-2-3	1200Ω CT 4-5-6	On, 90	BN 1 - 4 YEL RD 2 - 5 BLK BLU 3 - 5 GRN		
ММТ9	600Ω CT 1-2-3	1200Ω CT 4-5-6	O ₄₉ 90	BN 1 - 4 YEL RD 2 - 5 BLK BLU 3 - 6 GRN		
MMT10	25,000Ω 1-2	600Ω 3-4	04 30	BLU 2 3 GRN		

No. Pri. Imped. Sec. Imped. Terminal* Layout. Schemate MMT11 4000Ω 600Ω CT 1-2-3 4-5-6 MMT12 2000Ω 3.4Ω	
MMT11 CT	IC.
MMT12	5 BLK
MMT13 CT 1-2-3	3GRN
MMT16 10,000Ω 1-2 CT 3-4-5 BLU 2 MMT17 CT CT CT 1-2-3	4 GRN
MMT17 CT 1-2-3	3 YEL 2 4 BLK 5 GRN
MMT18 CT 1-2-3 1,200Ω CT 4-5-6	-4 YEL 5 BLK
MMT21 $\frac{4000\Omega}{1-2}$ $\frac{600 \text{ SPLIT}}{150\Omega}$ $\frac{600 \text{ SPLIT}}{4-5}$ $\frac{600\Omega}{1-2-3}$ $\frac{600\Omega}{4-5}$ $\frac{600\Omega}{1-2-3}$ $\frac{600\Omega}{4-5-6}$ $\frac{600\Omega}{1-2-3}$ $$	5 BLK
MMT25 $\frac{1}{1-2-3}$ $\frac{4-5}{6-7}$ $\frac{600\Omega}{1-2-3}$ $\frac{600\Omega}{4-5-6}$ $\frac{600\Omega}{1-2-3}$ $\frac{600\Omega}{4-5-6}$ $\frac{600\Omega}{1-2-3}$ 6	3 YEL 2 4 BLK 5 GRN
MMT25 CT CT CT PLU 3 PL	5 BLK 6 6 WHT
MMT26 CT CT CT Θη σο RD2	5 BLK
1-2-3 4-5-6 BLU 3	5 BLK
MMT27 CT CT CT 4-5-6 BLU 3	5 BLK
MMT28 CT CT CT 4-5-6 PLU 3	5 BLK
MMT29 CT CT CT 4-5-6 PLU 3	5 BLK
MMT30 7,500Ω 1,200Ω CT CT CT 4-5-6 PLU3	5 BLK
2,000Ω 500Ω CT CT CT 4-5-6 BLU 3	5 BLK
MMT32 CT SPLIT 4-5 & 6-7 PLU3	5 BLK 6 WHT

^{*}NOTE: On hermetically sealed units only, Pin 1 may be marked by number or color. Numbers increase in clockwise direction.

Terminal numbers apply to metal cased and molded units.

^{**}Terminal colors are only applicable to open frame units.

MICRO MINIATURE SERIES

MIONO MANATORE SERIES						
Part No.	Pri. Imped.	Sec. Imped.	Terminal*	Schematic**		
MM1	200Ω 50Ω 1-2	250,000Ω 62,000Ω 3-4	0, 0	BLU1 3 BLK		
MM2	- 10,000Ω 1-2	90,000Ω 3-4	0, ,0	BLU1 3 BLK RD 2 4 GRN		
MM3	10,000Ω 1-2	200Ω 3-4	0, 30	BLU 1 3 BLK RD 2 4 GRN		
MM4	30,000Ω 1-2	50Ω 3 - 4	0, 30	BLU1 3 BLK RD 2 4 GRN		
MM5	50 hy @ 1 MIL DC 1-2	4700Ω D.C. RES.	ON ON	BLU1		
MM6	100,000Ω 1-2	60Ω :3-4	0, ,0	BLU1 3 BLK RD 2 4 GRN		
MM7	30,000Ω 1-2	1,200Ω 3-4	0, 30	BLU1 3 BLK		
MMT1	600Ω 1 - 2	600Ω 3-4	0, 30	BLU1 3 BLK		
ммт3	50,000Ω 1-2	600Ω 3-4	0, 0	BLU1 3 BLK		
MMT4	50,000Ω CT 1-2-3	600Ω CT 4-5-6	O, 90	PD1 4GRN YEL2 5BLK BLU 3 6GRN		
ммт5	50,000Ω 1-2	6Ω 3-4	0, ,0	BLU1 3 BLK		
MMT7	25,000Ω 1-2	1200Ω CT 3-4-5	On 30 30	RD 1 3 GRN 4 BLK 5 GRN		
ммт8	50,000Ω CT 1-2-3	1200Ω CT 4-5-6	0, , , , O O N G O O N G O O O O O O O O O O O O	BN 1 4 YEL RD 2 5 BLK BLU 3 6 GRN		
ммт9	600Ω CT	1200Ω CT	O, 00 ON 40	BN 1 4 YEL RD 2 5 BLK		

1-2-3

25,000Ω 1-2 4-5-6

600Ω 3-4

MICROTRAN COMPANY, INC

145 EAST MINEOLA AVENUE VALLEY STREAM, NEW YORK 516 LO 1-6050

ULTRA MINIATURE SERIES

#5 BN 1 4 YEL

ERD 2 5 BLK E

BLU 3 6 GRN

Molded Units—white dot is terminal #1, others follow numerically in clockwise direction.

	numerically in ci		
PART NO.	Pri. Imped.	Sec. Imped.	SCHEMATIC NO
UM21	100K 1-2	1,000 3-4	1
UM22	20K 1-2	1,000 3-4	1
UM23	20K	1,200 C.T. 3-4-5	2
UM24	1,000	50 3-4	1
UM25	400 1-2	50 3-4	1
UM26	400 1-2	11 3-4	1
UM27	400 C.T. 1-2-3	11 4-5	3
UM28	10 HY ODC 1-2	8 HY 0.5 MA DC 1-2 600 DCR	4
UM29	600 C.T. 1-2-3	600 C.T. 4-5-6	5
UM30	1.5 HY ODC 1-2	0.7 HY 2 MA DC 100 DCR	4
UM31	10,000 C.T. 1-2-3	1,200 C.T. 4-5-6	5
UM32	1,500 C.T. 1-2-3	600 4-5	3
UM33	1,000 C.T. 1-2-3	600 4-5	. 3 ∜
UM34	10,000 C.T. 1-2-3	600 C.T. 4-5-6	.5
UM35	15,000 C.T. 1-2-3	15,000 C.T. 4-5-6	5
UM36	20,000 C.T. 1-2-3	800 C.T. 4-5-6	5,
UM37	10,000	2,000 C.T. 3-4-5	2
UM39	2,500 C.T. 1-2-3	600 C.T. 4-5-6	5

MICROTRAN COMPANY, INC.

145 EAST MINEOLA AVENUE VALLEY STREAM, NEW YORK 516 LO 1-6050

VERI-MINIATURE SERIES

Terminal colors are only applicable to open frame units. Terminal numbers apply to cased and molded units.

PART	CONNE	CTIONS	SCHEMATIC
NO. /	Pri. Imped.	Sec. Imped.	МО
VMl	50 1 -2	600 3-4	1
VM2 /	200K 1-2	600 3-4	1
VM3	25K 1-2	600 3-4	1
VM4	200K 1-2	1,200 3-4	1
VM5 V	50K 1-2	600 3-4	1
VM6	100K 1-2	1,200 C.T. 3-4-5	·· 2
VM7	500 1-2	3.4 3-4	- 1 - 1
VM8	1,250 1-2	3.4 3-4	1
VM9	1,250 1-2	50 3-4	, 1
VM10	2,500 1-2	2,500 C.T. 3-4-5	2
VM11	20 HY 0 DC 1-2	12 HY 0.5 MA DC 1000 DCR	3
VM12	20K 1-2	1,000 3-4	1
VM13	20K 1-2	1,000 C.T. 3-4-5	2
VM14	600 C.T. 1-2-3	600 C.T. 4-5-6	4
VM15	50,000 C.T. 1-2-3	50,000 C.T. 4-5-6	4
VM16	500 C.T. 1-2-3	250 C.T. 4-5-6	4
VM17	10,000 C.T. 1-2-3	5,000 C.T. 4-5-6	4

MICROTRAN COMPANY, INC.

145 EAST MINEOL A AVENUE VALLEY STREAM, NEW YORK 516 LO 1-6050

TERMINAL ARRANGEMENTS

MICRO MINIATURE SERIES							
Part No.	Conne Pri. Imped.	Sec. Imped.	Termingl*	Schematic**			
MMT11	4000Ω CT 1-2-3	600Ω CT 4-5-6	0, 00 0 N UIO	RD1 - 4 OR YEL 2 - 5 BLK BLU 3 - 6 GRN			
MMT12	2000Ω 1-2	3.4Ω 3-4	On 30	RD1 3GRN BLU2 4BLK			
MMT13	4000Ω CT 1-2-3	3.4Ω 4-5	O, 90 ON 90	RD1 4 GRN YEL 2 5 BLK			
MMT16	10,000Ω 1-2	1,500Ω CT 3-4-5	0, ,0	RD 1 3 YEL 4 BLK BLU 2 5 GRN			
MMT17	10,000Ω CT 1-2-3	200Ω CT 4-5-6	0 N NO	BN 1 - 4 YEL RD 2 - 5 BLK BLU 3 - 6 GRN			
MMT18	25,000Ω CT 1-2-3	1,200Ω CT 4-5-6	ON 40	BN 1 4 YEL RD 2 5 BLK BLU 3 6 GRN			
MMT19	2,500Ω 1-2	2,500Ω CT 3-4-5	O4 40	RD 1 3 YEL 4 BLK BLU 2 5 GRN			
MMT21	4000Ω CT 1-2-3	600 SPLIT 150Ω 4-5 6-7	O _n 4 nO ON NO	BN1 0 4 YEL RD2 5 BLK 6 WHT BLU3 7GRN			
MMT25	7500Ω CT 1-2-3	600Ω CT 4-5-6	O, 90	BN 1 — 4 YEL RD 2 — 5 BLK BLU 3 — 6 GRN			
MMT26	600Ω CT 1-2-3	600Ω CT 4-5-6	0, , , o o o o o o o o o o o o o o o o o	BN 1 4 YEL RD 2 5 BLK BLU 3 6 GRN			
MMT27	25,000Ω CT 1-2-3	600Ω CT 4-5-6	O, , , O	BN 1 4 YEL RD 2 5 BLK BLU 3 6 GRN			
MMT28	10,000Ω CT 1-2-3	1500Ω CT 4-5-6	On 40	BN 1 - 4 YEL RD 2 - 5 BLK BLU 3 - 6 GRN			
MMT29	10,000Ω CT 1-2-3	10,000Ω CT 4-5-6	0, 0 0 u u 0	BN 1 4 YEL RD 2 5 BLK BLU 3 6 GRN			
MMT30	7,500Ω CT 1-2-3	1,200Ω CT 4-5-6	0, 90 0N 410	BN 1 5 BLK BLU 3 6 GRN			
MMT31	2,000Ω CT 1-2-3	500Ω CT 4-5 - 6	0, , , o o o o o o o o o o o o o o o o o	BN 1 4 YEL RD 2 5 BLK BLU 3 6 GRN			
MMT32	CT 1-2-3	1200Ω/300Ω SPLIT 4-5 & 6-7		BN1 5 BLK 6 WHT BLU3 7 GRN Pin 1 may be marked by			

^{*}NOTE: On hermetically sealed units only, Pin 1 may be marked by number or color. Numbers increase in clockwise direction.

^{**}Terminal colors are only applicable to open frame units.

Terminal numbers apply to metal cased and molded units.

TERMINAL ARRANGEMENTS

	MICRO MINIATURE SERIES							
Part No.	Pri. Imped.	Sec. Imped.	Terminal*	Schematic**				
MM1	200Ω 50Ω 1-2	250,000Ω 62,000Ω 3-4	On 30	BLU 1 3 BLK				
MM2	10,000Ω 1-2	90,000Ω 3-4	0 ₁ , 30	BLU 1 3 BLK RD 2 4 GRN				
MM3	10,000Ω 1-2	200Ω 3-4	(, , , o)	BLU 1 3 BLK				
MM4	30,000Ω 1-2	50Ω 3-4	0, 3	BLU 1 3 BLK RD 2 4 GRN				
MM5	50 hy @	4700Ω D.C. RES.	04	BLU1 0000				
MM6	100,000Ω 1-2	60Ω 3 - 4	0, 30 of 40	BLU1 3 BLK				
MM7	30,000Ω 1-2	1,200Ω 3-4	0, 30	BLU 1 3 BLK				
MMT1	600Ω 1 - 2	600Ω 3 - 4	0 ₁ , 30	BLU1 3 BLK				
MMT3	50,000Ω 1-2	600Ω 3-4	0, ,o	BLU 1 3 BLK				
MMT4	50,000Ω CT 1-2-3	600Ω CT 4-5-6	O _{A9} gO ON 410	YEL2 5 BLK BLU 3 6 GRN				
MMT5	50,000Ω 1-2	6Ω 3 -4	0, 30 e 40	BLU1 3 BLK RD 2 4 GRN				
MMT7	25,000Ω 1-2	1200Ω CT 3 -4- 5	0 ₁ 30	RD 1 3 GRN 4 BLK BLU 2 5 GRN				
MMT8	50,000Ω CT 1-2-3	1200Ω CT 4-5-6	O _A , 90	BN 1 4 YEL RD 2 5 BLK BLU 3 6 GRN				
ММТ9	600Ω CT 1-2-3	1200Ω CT 4-5-6	O ₂ , gO ON 40	BN 1 5 BLK BLU 3 6 GRN				
MMT10	25,000Ω 1-2	600Ω 3 - 4	0, ,0 o' 40	RD1 3GRN				

MCROTRAN COMPANY, INC.

POWERSTAT® VARIABLE TRANSFORMER INSTRUCTIONS

10B, 10B-40 AND 12 SERIES

INSPECTION

Covered by one or more of the following U.S. Patents: 2,947,959: 3,087,132; 3,128,442; 3,136,967. Patented Canada 1963.

Your new POWERSTAT Variable Transformer has been carefully packed for shipment. However, damage may occur in transit. After receiving unit, check all components (brush contact primarily) to satisfy yourself that there is no damage. Also make sure that the dial, knob, lockwasher and mounting nuts are in the package. The "Damage and Shortage" Instructions packed with the unit outline the proper procedure to follow if any parts are damaged or missing.

INSTALLATION

POWERSTAT Variable Transformers of the 10B, 10B-40 and 12 Series are designed for mounting in the back-of-panel position only.

SINGLE UNITS

The single hole mounting of single units is fast and simple. For keying to the panel, a 1/16 inch projection is provided. To facilitate mounting, a drilling template is supplied as part of these instructions. Actually, the drilling template must be used only when the hole for the 1/16 inch projection is required.

To mount, proceed as follows:

- 1. Using the drilling template, locate the panel holes. In order that the terminals should be on top, the template should be upright. Drill the holes.
- 2. Mount the POWERSTAT variable transformer as shown. Mount the unit flush to the back of the panel and the dial flush to the front. A single wut and lockwasher hold the unit and dial in place. The knob, mounted on the shaft, covers the nut and lockwasher.
- 3. If the unit is not to be keyed to the panel, only the hole for the 3/8 inch center shaft should be drilled. The extra nut provided is placed on the shaft between the unit and the back of the panel. Otherwise the mounting is as explained above.

GANGED UNITS

Ganged units require four panel holes for mounting. Three are needed for the mounting bolts and a clearance hole is necessary for the center shaft.

To mount, proceed as follows:

- Using the drilling template locate the four panel holes. If the template is upright, the terminals will not be directly on top. When terminals are required at the top, line marked "T" should be vertical. Drill the holes.
- 2. Mount the unit behind the panel as shown using the three 1/4" 20 mounting bolts provided. Mount the dial on the front of the panel, securing it in place with the 3/8"-32 nut and lockwasher provided. The knob, when mounted on the shaft covers the nut and lockwasher.

CONNECTION AND RATING

POWERSTAT Variable Transformers of the 10B, 10B-40 and 12 Series may be connected to suit various requirements as shown in the chart. The individual units in types 10B-40-2 and 10B-40-3 are not electrically interconnected but are independently wired following the type 10B-40 connections. Under "KNOB ROTATION," rotating the knob in the direction indicated will INCREASE the output voltage. The dial is marked for clockwise rotation only.

VIEWED FROM PANEL END

TYPES 10B, 12

TYPE 108-40

	4110117	encouenay.			AD		AD	KNOB		TERMINALS	
TYPE	INPUT VOLTAGE	FREQUENCY (hertz)	VOLTS	MAX. AMP.	MAX. KVA	MAX. AMP.	MAX. KVA	KNOB ROTATION	INPUT	JUMPER*	OUTPU
				SINGL	E UNITS	- SING	LE PHA	SE			
								CW	1-2		1-3
08-40	40	60	0-40	7	0.28	9	0.36	ccw	1-2		2-3
				0.051			0.00	CW	1-2		1-3
10B	120	50/60	0-120	2.25†	0.27	3‡	0.36	ccw	1-2		2-3
		60	0-132	2.25†	0.30			cw	1-4		1-3
			0.040	. 711	0.17	0.0**	0.00	cw	1-2		1-3
12	240	50/60	0-240	0.7††	0.17	0.9**	0.22	ccw	1-2		2.3
			0-264	0.5 !!	0.13			CW	1-4		1-3
		TWO	GANG AS	SEMBL	ES — S	NGLE PI	IASE, S	ERIES CONNI	CTED		
		50.00	0-240	0.054	0.54	3±	0.72	CW	2-2	1-1	3-3
10B-2	240	50/60	0-240	2.25†	0.54	3‡	0.72	ccw	1-1	2-2	3.3
		60	0-264	2.25†	0.59			cw	4-4	1-1	3-3
							0.43	CW	2-2	1-1	3-3
12-2	480	50/60	0-480	0.7††	0.34	0.9**	0.43	CCW	1-1	2-2	3-3
			0-528	0.5	0.26			CW	4-4	1-1	3-3
		TWO GAN	& ASSEM	BLIES -	- THRE	E PHASE	OPEN	DELTA CONN	ECTED		
								CW	2-1-2	1-1	3-1-3
108-2	120	50/60	0-120	2.25†	0.47	3‡	0.62	CCW	1-2-1	2-2	3-2-3
		60	0-132	2.25†	0.51			CW	4-1-4	1-1	3-1-3
				0.744	0.29	0.9**	0.37	cw	2-1-2	1-1	3-1-3
12-2	240	50/60	0-240	0.7††	0.29	0.9	0.37	CCW	1-2-1	2-2	3-2-3
			0-264	0.5/11	0 23			CW	4-1-4	1.1	3-1-
		THR	EE GANG	ASSEM	BLIES -	- THREE	PHASE,	WYE CONNE	CTED		
					0.94	3‡	1.2	CW	2-2-2	1-1-1	3-3-3
10B-3	240	60	0-240		ccw	1-1-1	2-2-11	3-3-3			
			0.490	0.744	0.58	0.9**	0.75	CW	2-2-2	1-1 1	333
12-3	480	50/60	0-480	0.7††	0.58	0.5	0.75	CCM	1-1-1	2-2-2	3-3-
		60	0-528	0.5	0.46			cw	4-4-4	1-1-1	3-3-
†Ratii †Ratii ††Ratii **Ratii ‡‡0.7	ng when mong when mong when mong when mong when mong when mong managere ma	d in standard ounted on a mounted on a mounted on a mounted on a miximum in ran	etal pani etal pani etal pani	el. Wherel. Wherel. Wherel	n mount n mount n mount n mount	ed on a l ed on a l ed on a l ed on a l	pracket pracket pracket pracket	or nonmetall or nonmetall or nonmetall or nonmetall	ic panel, ic panel, ic panel, ic panel,	derate to 0.5 derate to 0.7	amper

OUTPUT CONSTANT

CURRENT

CONSTANT

IMPEDANCE

Be absolutely certain that the line voltage, phase and frequency are as noted on the nameplate. Install a fuse in the brush output lead.

MAINTENANCE

With ordinary care and attention to the precautions outlined above, the POWERSTAT Variable Transformer should require no servicing except possible replacement of the brush. The brush should be inspected periodically and replaced if arcing takes place or if it is badly worn. The correct replacement brush is RB10B for 10B Series units, RB10B-40 for 10B-40 Series units and RB12 for 12 Series units. Because the brushes must be of a special material, only the specified replacement should be used.

Whenever electrical or mechanical difficulties arise in installing or operating the POWER-STAT Variable Transformer, contact the factory or the nearest Superior Electric field office.

THE SUPERIOR ELECTRIC COMPANY, Bristol, Connecticut, U.S.A.

115/230 Volts 50/60 Hz. DUAL PRIMARY PLUG-IN PRINTED CIRCUIT POWER TRANSFORMERS

CONSTRUCTED PER MIL-T-27, GRADE 6-CLASS R

Primary: Connect to Pins 1 & 2 For 230v – Join B to C For 115v – Join A to C, & B to D

Secondary: Connect to Pins 3 & 6 For Parallel Output – Join 3 to 5, & 4 to 6 For Series Output – Join 4 to 5

All Transformers are connected as per schematic except for part numbers noted below.

	EXCEPTIONS	
PART NO.	RATING	CONNECT TO
PC2506	6.3V C.T.@.25A	3 - 4C.T 5
PC2632	115V @ .02A 12.6V @ .15A	3 & 4 5 & 6
PC2732	115V @ .025A 12.6V @ .25A	3 & 4

	SECONDARY			
CATALOG NO.	PARALLEL	SERIES		

SERIES PC 2500

50/60 Hz • 115/230V. Pri. • Approx. 11/2 V.A. • 3.2 oz.

PC2506	6.3V C.T. @ .250A (Single Secondary)			
PC2512	12.6V @ . 120A	25.2V C.T. @ .060A		
PC2524	40V@.040A	80V C.T. @ .020A		
PC 25 28	58V@.026A	116V C.T. @ .013A		

SERIES PC 2600

50/60 Hz • 115/230V. Pri. • Approx. 41/2 V.A. • 6.5 oz.

PC2608	6.3V @ .70A	12.6V C.T. @ .35A
PC2616	* 28V@.156A	56V C.T. @ .078A
PC2624	40V@.110A	80V C.T. @ .055A
PC 26 28	58V @ .066A	116V C.T. @ .033A
PC2632	115V @ .020A, 12.6V	0.150A

SERIES PC 2700

50/60 Hz • 115/230V. Pri. • Approx. 71/2 V.A. • 9.5 oz.

PC2708	6.3V @ 1.2A	12.6V C.T. @ .60A
PC2712	12.6V@.6A	25.2V C.T. @ .30A
PC2715	. 20V@.38A Y	40V C.T. @ . 190 A
PC2716	28 V @ . 27 A	56 V C.T. @ . 135 A
PC2724	40V@.18A	80V C.T. @ .090A
PC2728	58V@.130A	116V C.T. @ .065A
PC2732	115V@.025A, 12.6V	@.250A

DIMENSIONS

DIMENSION	O.								
SERIES	FIG.	A	В	С	D	E	F	G	Н
PC2500	Α	125/64	111/64	113/64	1.00	.312	15/32	4.1	
PC2600	В	145/64	125/64	17/16	1.10	.400	11/4	2	23/8
PC2700	В	161/64	141/64	111/16	1.30	.400	115/32	23/8	213/16

MICROTRAN company, inc.

145 East Mineela Avenue, Valley Stream, N. Y. 11582
Tel. (518) 561-8650 • Cable — Microtran • TWX 518-225-8412

PLUG-IN PRINTED CIRCUIT POWER TRANSFORMERS

CONSTRUCTED PER MIL-T-27 GRADE 6-CLASS R

Secondary: Connect to Pins 3 & 6
For Parallel Output – Join 3 to 5, & 4 to 6
For Series Output – Join 4 to 5

NOTE: All Transformers are connected as per schematic except for part numbers noted below.

PART NO.	RATING '	CONNECT TO
PC 4432	115V @ .01A	3 & 4 5 & 6
PC 6506	6:3V C.T. @ .25A	3 - 4 C.T5
PC 6632	115V @ .02A 12.6V @ .15A	3 & 4 5 & 6
PC 6732	115V @ .025A 12.6V @ .25A	3 & 4

FIG. A

0.7.1.00.110	SECONDARY					
CATALOG NO.	PARALLEL	SERIES				
SERIES PC 4300	- 400 Hz • Approx.	.325 Watts • .5 oz.				
PC4304 ***	3.15V@.1A	6.3V C.T. @ .05A				
PC4312	12.6V @ .026A	25.2V C.T. @ .013A				
PC4316	28V @ .012A.	56V C.T. @ .006A				
PC4320	35V @ .01A	70V C.T. @ .005A				

SERIES PC 4400 - 400 Hz . Approx. 4 Watts . 1.2 ez.

PC4408	6.3V @ 0.60A		12.6V C.T. @ .30A	П
PC4412	. 12.6V @ 0.30A		25.2V C.T. @ .15A	
PC4416	. 28V @ 0.14A	. 2	56V C.T.@.07A	
PC4424	40V @ 0.10A		80V C.T. @ .05A	
PC4428	58V @ .066A		116V C.T. @ .033A	
PC4432	115V @ .010A, 12.6V @ .	150A		

SERIES PC 6500 - 50/60 Hz . Approx. 11/2 Watts . 3.2 oz.

PC6506	6.3V C.T. @ .250A (Single Secondary)					
PC6512	12.6V @ .120A	25.2V C.T. @ .060A				
PC6524	40V @ .040A	80V C.T. @ .020A				
PC6528	58V @ .026A	116V C.T. @ .013A				

SERIES PC 6600 - 50/60 Hz . Approx. 41/2 Watts . 6.5 oz.

	PC6608			6.32V @ .70A	A	1		12.6V	C.T. @ .35A	
E-ministra	PC6616		144	28V @ .156A	1, 1, 1			56V	C.T@.078A	and to
	PC6624		,	40V@.110A		1 .	100 × 100 × 100	80V	C.T.@.055A	
	PC6628			58V @ .066A		I		116V	C.T.@.033A	
	PC6632			115V @ .020A,	12.6V @	.150A				

SERIES PC 6700 - 50/60 Hz . Approx. 71/2 Watts . 9.5 oz.

PC6708	6.3V @ 1.2A	12.6V C.T. @ .60A
PC6712	12.6V@.6A	25. 2V C.T. @ . 30 A
PC6715	20 V @ . 38 A	40V C.T. @ . 190A
PC6716	28 V @ . 27 A	56V C.T. @ .135A
PC6724	40 V @ .18A	80V C.T. @ .090A
P C67 28	58V@.130A	116V C.T. @ .065A
. PC6732	115V@.025A, 12.6V@.250A	

DIMENSIONS

	SERIES	FIG.	A	B	С	D	E	F	G	Н
	PC4300	A	49/64	23/32	†	.420	.187	11/		
	PC4400	Α.	11/64	27/	+	.781	.200	61/64		
	PC6500	A	125/64	1 11/64	113/64	1.00	.312	15/32		
ingere .	PC6600	В	145/64	125/64	17/16	1.10	.400	11/4	2	2 3/8
-	PC6700	В	161/64	141/64	111/16	1.30	.400	1 15/32	23/8	2 13/16

† Do not have standoff

RAN company, inc.

145 East Minoola Avenue, Valley Stream, N. Y. 11502 Tol. (516) 561-8658 • Cable — Microtran • TWX 510-225-8412

SIMICOR

ESSEX INTERNATIONAL, INC.

SUBSIDIARY OF UNITED AIRCRAFT CORPORATION

CONTROLS DIVISION 3501 W. ADDISON ST., CHICAGO, ILL. 60618 Part No. PPC-1 THRU PPC-25

Type POWER TRANSFORMERS

Date 10-74

S.D.S. No. 6-1073

SERVICE DATA SHEET

MINIATURE POWER TRANSFORMERS

- · For Printed Circuit Board Mountings with Molded-In Plug-In Type Terminals.
- All with Single Primary: 115 Volt, 50-60 Hz. Input.
- · Hi-Pot Test: 500 Volts RMS between all Windings and to Core.
- Class "A" Insulation, 105°C. Maximum Operating Temperature Limit.

All Tolerances
on Dimensions are
± 1/32" except A = ± 1/16"

 $H = \frac{1}{1} \frac{3}{16}$ $W = \frac{1}{1} \frac{3}{8}$ $D = 1 \frac{1}{8}$ A = 1.0 $B = 1 \frac{1}{3}$ $E = \frac{5}{16}$ PARALLEL
Connect 3 & 5, 4 & 6
Use 3 & 4
or
SERIES
Connect 4 & 5
Use 3 & 6

1							primeracje prikletkie antrocky
19	STANCOR		VA	OUTPUT FRO	DIM TIVO SECONDARY	WINDINGS	WT.
1	Part No.	STYLE	Сар.	INDIVIDUALLY	PARALLEL	SERIES	Lbs.
1	PPC-1	PC	1.5	4 V @ .188 A	4 V @ .376 A	8 V CT @ .188 A	.27
1	PPC-2	PC	1.5	7.5 V @ .100 A	7.5 V @ .200 A	15 V CT @ .100 A	.22
	PPC-3	PC	1.5	15 V @ .050 A	15 V @ .100 A	30 V CT @ .050 A	.22
	PPC-4	PC	1.5	27 V @ .028 A	27 V @ .056 A	54 V CT @ .028 A	.22
	PPC-5	PC	1.5	38 V @ .020 A	38 V @ .040 A	76 V CT @ .020 A	.22

DIMENSIONS

All Tolerances on Dimensions are \pm 1/32" except A = \pm 1/16"; W = \pm 1/16"; and MW = \pm 1/16". H = 1 7/16" A = 1.1" Use W = 2 3/8" B = 1 3/8"

D = 1 1/4" C = 1 23/32" /.7/8 SEF

Connect 3 & 5, 4 & 6
Use 3 & 4

or

SERIES
Connect 4 & 5

Use 3 & 6

***		ma. A basinone marin		S DOMES CHILLIANS IN THE PROPERTY OF THE PARTY OF THE PAR	a di mar esperado de lacciono frigue e varian destinación de Companyo de Compa	E THE STATE OF THE PROPERTY OF THE PARTY OF	2001-000-000-000-000-000-000-000-000-000
1	STANCOR		VA	OUTPUT FRO	M TWO SECONDARY	WINDINGS	WT.
-	Part No.	STYLE	Cap.	INDIVIDUALLY	PARALLEL	SERIES	Lbs.
Manage Met	PPC-11	APC	4.5	4 V @ .562 A	4 V @ 1.13 A	8 V CT @ .562 A	.47
1	PPC-12	APC	4.5	7.5 V @ .300 A	7.5 V @ .600 A	15 V CT @ .300 A	.47
the case	PPC-13	APC	4.5	15 V @ .150 A	15 V @ .300 A	30 V CT @ .150 A	.47
-	PPC-14	APC	4.5	27 V @ .084 A	27 V @ .168 A	54 V CT @ 084 A	.47
A Charles	PPC-15	APC	4.5	38 V ⊚ .060 A	38 V @ .120 A	76 V CT @ .060 A	.47

DIMENSIONS

All Tolerances on Dimensions are \pm 1/32" except A = \pm 1/16"; W = \pm 1/16"; and MW = \pm 1/16". H = 1 11/16" A = 1.3" W = 2 13/16" B = 1 5/8"

W = 2.13/16 B = 1.5/8D = 1.7/16'' C = 1.31/32''

MW = 2 3/8'' E = 0.4''

PARALLEL

Connect 3 & 5, 4 & 6

Use 3 & 4

or

SERIES

Connect 4 & 5 Use 3 & 6

STANCOR		VA	OUTPUT FRO	M TWO SECONDARY	WINDINGS	WT
Part No.	STYLE	Cap.	INDIVIDUALLY	PARALLEL	SERIES	Lbs.
PPC-21	APC	7.5	4 V @ .940 A	4 V @ 1.88 A	8 V CT @ .940 A	.66
PPC-22	APC	7.5	7.5 V @ .500 A	7.5 V @ 1.00 A	15 V CT @ .500 A	.66
PPC-23	APC	7.5	15 V @ .250 A	15 V @ .500 A	, 30 V CT @ .250 A	.66
PPC-24	APC	7.5	27 V @ .140 A	27 V @ .280 A	54 V CT @ .140 A	.66
PPC-25	APC	7.5	38 V @ .100 A	38 V @ .200 A	76 V CT @ .100 A	.66

TERMINAL ARRANGEMENTS

ULTRA MINIATURE SERIES

6 GRN

Molded Units—white dot is terminal #1, others follow numerically in clockwise direction.

BLU 3

		ockwise direction.	
PART NO.	CONNE	CTIONS Sec. Imped.	SCHEMATIC
110.	Pri. Imped.		NO
UM21	100K 1-2	1,000 3-4	1
UM22	20K 1-2	1,000 3-4	1
UM23	20K 1-2	1,200 C.T. 3-4-5	2
UM24	1,000 1-2	50 3-4	1
UM25	400 1-2	50 3-4	1
UM26	400 - 1-2	11 3-4	1
UM27	400 C.T. 1-2-3	11 4-5	3
UM28	10 HY ODC 1-2	8 HY 0.5 MA DC 1-2 600 DCR	4
UM29	600 C.T. 1-2-3	600 C.T. 4-5-6	5
UM30	1.5 HY ODC 1-2	0.7 HY 2 MA DC 100 DCR	4
UM31	10,000 C.T. 1-2-3	1,200 C.T. 4-5-6	5
UM32	1,500 C.T. 1-2-3	600 4-5	3
UM33	1,000 C.T. 1-2-3	600 4-5	3
UM34	10,000 C.T. 1-2-3	600 C.T. 4-5-6	5
UM35	15,000 C.T. 1-2-3	15,000 C.T. 4-5-6	. 5
UM36	20,000 C.T. 1-2-3	800 C.T. 4-5-6	5
UM37	10,000 1-2	2,000 C.T. 3-4-5	2
UM39	2,500 C.T. 1-2-3	600 C.T. 4-5-6	5

MICROTRAN COMPANY, INC.

145 EAST MINEOLA AVENUE VALLEY STREAM, NEW YORK 516 LO 1-6050

TERMINAL ARRANGEMENTS

VERI-MINIATURE SERIES

Terminal colors are only applicable to open frame units. Terminal numbers apply to cased and molded units.

PART		CTIONS	SCHEMATIC
NO.	Pri. Imped.	Sec. Imped.	NO
VM1	50 1-2	600 3-4	1
VM2	200K 1-2	600 3-4	1
VM3	25K 1-2	600 3-4	1
VM4	200 K 1-2	1,200 3-4	1
VM5	50K 1-2	600 3-4	1
VM6	100K 1-2	1,200 C.T. 3-4-5	2
VM7	500 1-2	3.4 3-4	1
VM8	1,250 1-2	3.4 3-4	1
VM9	1,250 1-2	50 3-4	1
VM10	2,500 1-2	2,500 C.T. 3-4-5	2
VM11	20 HY 0 DC 1-2	12 HY 0.5 MA DC 1000 DCR	3
VM12	20K 1-2	1,000 \ 3-4	1
VM13	20K 1-2	1,000 C.T.	2.4.
VM14	600 C.T. 1-2-3	600 C.T. 4-5-6	4
VM15	50,000 C.T. 1-2-3	50,000 C.T. 4-5-6	4
VM16	500 C.T. 1-2-3	250 C.T. 4-5-6	4
VM17	10,000 C.T.	5,000 C.T.	4

MICROTRAN COMPANY, INC

1-2-3

145 EAST MINEOLA AVENUE VALLEY STREAM, NEW YORK 516 LO 1-6050

Tarzian

Common schematics for the complete RT series

FULL-WAVE C. T.

FULL-WAVE BRIDGE

STANCOR

Each transformer has the winding arrangement and terminal numbering shown in the schematic diagrams above. The primary winding is connected to terminals 1, 2, 3 & 4. A separate winding is connected to terminals 5, 6 & 7 that may be used in series with the primary to raise or lower the secondary voltage output. A variety of combinations is possible using the taps on both windings, plus the "Aiding" or "Bucking" action of the extra winding.

Designed for 117 V. 50/60 cycle operation; may also be satisfactorily operated at 400 cycles.

The secondary winding of each transformer consists of two identical windings connected to terminals 8 & 9 and to 10 & 11 respectively. Use the tables showing the various output voltages for specific terminal connections as your guide. Many combinations are possible other than those listed in the tables.

All ratings shown are for normal convection air cooled applications. Select only rectifiers capable of handling the output voltages and currents described

RT-2	206		Full-W	ave C. 1	•	F	ull-Wo	ve Bridg	je
Po	ncor wer pply	/10	D-	with Sarke 14 2.0 A. D.		Selenium Rectifler Part Nos. D-19 Output 6.0 A. D.C.			
Input			ve Load		ve Load*		ve Load		/e Load**
117vac Term. No.	Connect Term. No.	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Voits DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC
1-2		29.8	11.5	29.6	14.4	29 6	24.8	29.2	32.0
1-7	2-6	26.0	9.9	25.8	12.0	25.8	20.6	25.4	27.3
1-6	2-5 2-5	23.8	8.8 7.6	23.6 21.0	10.7	23.8 21.2	18.6	23.6 21.0	24.6 21.4
1-3		19.7	7.0	19.7	9.0 8.4	19.7	16.4 15.2	19.4	19.2
1-7	3-6	17.9	6.2	17.8	7.2	17.9	13.5	17.8	17.3
1-6	3-5	16.7	5.7	16.6	6.6	16.8	12.5	16.6	15.8
1-7	3_5	15.4	5.1	15.4	5.9	15.4	11.4	15.2	14.0
1-4		14.6	4.7	14.5	5.2	14.6	10.6	14.5	13.4
1-7	46	13.5	4.2	13.4	4.7	13.5	9.8	13.4	12.0
1.6	45	12.9	3.9	12.8	4.3	12.9	9.2	12.8	11.0
1.7	4-5	12.0	8.4	12.0	3.9	12.0	8.4	12.0	10.0

		. 0000 MI D.			3000 MT D.					
RT-2	808		-ull-Wa	ive C. T	•	F	ull-Wa	ve Bridg	je	
Po	ncor wer	0	D-	with Sarke 15 5.0 A. D.		Selenium Rectifier Part Nos. D-20 Output 8.0 A. D.C.				
			ve Load		ve Load*		ve Load		e Load**	
Input 117vac Term No.	Connect Term No.	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC	
1-2 1-7 1-6	2-6 2-5	29. 2 25. 4 24. 1 ?	11.4 9.9 9.3	29.2 25.4 24.0	14.8 12.5 11.6	29.2 25.3 24.0	23.7 21.0 19.4	29.0 25.2 23.9	32 5 27.0 25.5	
1-7 1-3	2-5	21.5 19.3	8. 2 7. 1	21.5 19.3	10.0 8.7	21.3 19.1	17.0 14.9	21.3 19.1	22.0 21.2	
1-7 1-6 1-7	3-6 3-5 3-5	17.6 16.8	6.4 6.0 5.5	17, 5 16, 8 15, 5	7.7 7.2 6.5	17.4 16.8 15.4	13.4 12.9 11.7	17.4 16.7 15.4	17.0 16.1 14.5	
1-4 1-7	4-6	14.4 13.4	5.0 4.5	14.4 13.4	5.7 5.1	14.2 13.3	10.7 9.8	14.2 13.3	13.1 11.9	
1-6 1-7	4-5 4-5	13.0 12.2	4.3 3.9	12.9 12.1	4.8 4.4	12.9 12.1	9.5 8.7	12.8 12.1	11.4 10.4	

		*/300 MFD.			**4000 WFD.				
RT-2	012	F	ull-Wa	ve C. T.	•	Full-Wave Bridge			
Po	ncor wer oply	0	D-	with Sarkes 16 2.5 A. D.		Selenium Rectifler Part Nos. D-21 Output 12.0 A. D.C.			
Input		Resistin	e Load	Capaciti	ve Load*	Resistiv	e Load	Capacitiv	e Load**
117vac Term. No.	Connect Term. No.	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC
1-2		29.1	11.4	28.8	14.3	29.0	23.5	28.7	33.0
1-7	2-6	25.2	9.7	25.1	12.0	25.3	20.4	25.1	28.0
1-6	2-5	23.6	8.9	23.6	10.9	23.5	18.8	23.5	25.7
1-7	2-5	21.1	7.7	21.0	9.4	21.0	16.3	20.9	22.3
1-3		19.3	7.2	19.3	8.3	19. 2	14.8	19.2	20.2
1-7	3-6	17.7	6.3	17.7	7.2	17.5	13.4	17.5	17.7
1-6	3-5	16.9	6.0	16.9	6.7	16.8	12.5	16.8	16.7
1-7	3-5	15.6	5.4	15.7	5.9	15.5	11.5	15.5	15.1
1-4		14.6	4,9	14.6	5.4	14.5	10.7	14.5	13.7
1-7	4-6	13.5	4.4	13.5	4.7	13.5	9.7	13.4	12.6
1-6	4-5	13.0	4.3	13.0	4.5	13.0	9, 3	13.0	11.9
1-7	4-5	12.2 ·	3.9	12.1	4.0	12.2	8.6	12.8	10.8

		*11,250 MFD.				**6000 MFD.			
RT-40	8 FULL	-WAVE	BRIDO	3E	RT	-4012	FULL-	WAVE	BRIDGE
Pov	ncor wer oply	10	D-			Selenium Re	D-	1 Nos. 28 2.0 A. D	.C.
Input		Resistive Load Capacitive Loa				Resistiv			ve Load**
117vac	Connect	Secondary	Output	Secondary	Output	Secondary	Output	Secondary	Output
Term. No.	Term. No.	Volts AC	Volts DC	Volts AC	Volts DC	Volts AC	Volts DC	Volts AC	Volts DC
1-2	2-6	53.5	44.0	53.0	63.0	53.0	43.5	53.0	60.0
1-7		50.0	40.5	50.0	59.0	49.5	40.0	49.0	55.0
1-6	2-5	45.3	37.0	45.0	52.0	43.5	34.0	43.0	48.0
1-7	2-5	42.5	34.5	42.0	48.0	41.5	32.0	41.0	45.5
1-3	3 6	37.5	30.5	37.5	40.0	37.5	29.0	37.0	40.0
1-7		35.5	27.5	35.5	39.0	35.5	27.0	35.0	37.5
1-6	3-5	32.5	25.0	33.0	35, 5	32.B	24.0	32.7	34. 0
1-7	3-5	31.5	24.0	31.5	31, 5	31.0	23.0	30.8	31. 0
1-4	4-6	29. 0 27. 5	21.5 20.5	29.0 27.5	29.5 28.0	29. 0 27. 8	21. 2 20. 0	29.0 28.0	29. 0 28. 0
1-6	4-5	26. 0	19 5	26.0	26.0	26.0	19.0	26.0	25.0
1-7	4-5	25. 0	18.0	25.0	25.0	25.0	18.0	25.0	24.0
		*4000 MFD.				**6000 MFD.			

Tarzian

STANCOR

Each transformer has the winding arrangement and terminal numbering shown in the schematic diagrams above.

The primary winding is connected to terminals 1, 2, 3 & 4. A separate winding is connected to terminals 5, 6 & 7 that may be used in series with the primary to raise or lower the secondary voltage output. A variety of combinations is possible using the taps on both windings, plus the "Aiding" or "Bucking" action of the extra winding.

Designed for 117 V. 50/60 cycle operation; may also be satisfactorily operated at 400 cycles.

The secondary winding of each transformer consists of two identical windings connected to terminals 8 & 9 and to 10 & 11 respectively. Use the tables showing the various output voltages for specific terminal connections as your guide. Many combinations are possible other than those listed in the tables.

All ratings shown are for normal convection air cooled applications. Select only rectifiers capable of handling the output voltages and currents described

Bulletin 518-R	STANCOR Part No.	Sarkes- Tarzian Part No.
8 STANCOR Power Supply	RT-201	{ D-10 D-52
Transformers for use with Sarkes-	RT-202	{ D-11 D-17
Tarzian Stock Selenium Rectifiers	RT-204	{ D-13 D-18
All of these transformers will operate	RT-206	D-14 D-19
	:: RT-208	{ D-15 D-20
Type Circuits with readily available	· RT-408	{ D-16 D-21
stock sizes of Selenium Rectiflers	RT-2012	D-27
	RT-4012	D-28

Common schematics for the complete RT series

RT-2	201		Full-Wo	ve C. T.		F	ull-Way	ve Bridg	je
Stancor Power Supply		0	D-	with Sarkes- 10 .0 A. D.C		elenium Rectifler Part Nos. D-52 Output 1.25 A. D.C.			
Input			ve Load	Capacitiv			ve Load		ive Load
117vac Term. No.	Connect Term. No.	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC
1-2		29.4	11.2	28.8	10.8	28.5	23.0	27.9	30.0
1-7 1-6	2-6 2-5	26.0 23.0	9. 8 8. 4	25.7 22.7	11.7 9.9	25.4 22.3	20.0 17.3	25.1 21.8	26.4 22.2
1-7	2-5	20.9	7.4	20.8	8.6	20.2	15.4	19.8	19.7
1-3		19.4	6.7	19.1	7.6	18.6	13.9	18.2	17.6
1-7	3-6	17.8	6.1	17.6	6.7	17.2	12.8	16.8	15.7
1-0	3-5	16.3	5.3	16.1	0.0	15.7	11.2	15.2	13.8
1-/	3-5	14.9	4.1	14.8	5.3	14.3	10.3	14.1	12.4
1.4	4.0	14.2	4.4	14.2	5.0	13.7	9.7	13.5	11.6
1-7	4-6	13.4	4.0	13.3	4.4	12.7	8.8	12.5	10.4
1-6	4-5	12.4	3, 6	12.4	3.9	11.7	7.9	11.7	9.5
1-7	4-5	11.7	3, 3	11.7	3.5	11.1	7.4	11,1	8.7

RT-2	202	1	Full-Wa	ve C. T.		F	ull-Way	ve Bridg	е
Po	ncor wer pply		D-	with Sarkes 11 .0 A. D.C		belenium Rectifler Part Nos. D-17 Output 2.0 A. D.C.			
Input		Resistive Load Capacitive Load*				Resistiv		Capacitiv	
117vac Term. No.	Connect Term. No.	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC
1-2 1-7	2-6	29.7 26.2	11. 1	29.3 26.0	14.7 12.6	29.7 26.2	24.3 21.5	29.3 26.0	33.0 ° 29.0
1-6	2-5	24.4	8. 8 7. 8	24. 0 21. 7	11.3	24. 3 21. 8	19.5 17.6	23.9 21.5	26.0
1-3	2-5	20.9	7.4	20.7	9.3	20.9	16.6	20.6	23.1 21.7
1-7	3-6 3-5	19.2 18.0	6. 6 6. 1	18.9 17.8	8. 2 7. 5	19.1 18.0	15.1 14.2	18.9 17.8	19.6 18.2
1.7	3-5	16.6 14.4	5. 5 4. 4	16. 4 14. 2	6.6	16.6 14.4	12.8 19.8	16.4 14.2	16.3 13.7
1-7	4-6 4-5	13.5 12.9	4.1	13.4	4.9	13.5 12.9	10.1	13.4	12.6
1-7	4-5	12. 3 12. 2	3. 7	12.0	4.4	12. 3 12. 2	9.5 8.9	12.7 12.0	11.7 10.8

RT-2	204	F	ull-Wo	ve C. T.		F	ull-Way	ve Bridg	е	
Stancor Power				with Sarkes	·Tarzian S	elenium Re	elenium Rectifler Part Nos. D-18			
Su	pply	Output 8.0 A. D.C.				0	utput 4	.0 A. D.0	3.	
Input		Resistiv	e Load	Capacitiv	e Load*	Resistiv	e Load	Capacitiv	e Load**	
117vac Term. No.	Connect Term No:	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Volts DC	Secondary Volts AC	Output Voits DC	Secondary Volts AC	Output Voits DC	
1-2 1-7	2-6	29. 2 25. 7	12.0 10.5	28.8 25.7	14.5 12.6	29. 2 25. 7	24.0 21.1	29.0 25.4	32.4 29.2	
1-6	2-5 2-5	22.8 20.6	9.2	22. 8 20. 6	10.9	22. 8 20. 7	18.7 16.6	22.7 20.6	25.7 22.8	
1-3	3-6	19.3 17.6	7.7 7.0	19.3 17.6	8.7	19.4 17.8	15.4 - 14.0	19.0 17.6	21.0 19.0	
1-6 1-7	3-5 3-5	16.2 15.0	6.3	16. 2 15. 0	6.9	16.3 15.1	12.7 11.6	16.1 14.9	17.2 15.6	
1-4	3-3 4-6	14.2 13.3	5. 4 5. 0	14. 2 13. 3	5.8 5.3	14. 4 13. 4	11.0	14.2 15.3	14.8 13.5	
1-7 1-6 1-7	4-5 4-5 4-5	12.5 11.7	4.6 4.3	12.5 11.7	4.9 4.5	12.6 11.8	9. 4 8. 8	12.5 11.6	12.4 11.4	
1-/	7.3	*4000 MFD.	7.3	11.7	4.3	**2000 MFD.	0,0	11.0	11.4	

SEE OTHER SIDE FOR

STANCOR Part Nos. RT-206, 208, 2012, 408, 4012 Starkes-Tarzian Part Nos. D-14, 19, 15, 20, 16, 21, 27, 28 PARALINE COMPANY 511 South Palm Avenue Alhambra, CA 91803

BULK RATE
U. S. POSTAGE
PAID
Permit No. 70
Altembra, Calif.

PARKO ELECTRONICS 16722 MILLIKEN AVE IRVINE, CA 92714

ATTN: TRANSFORMER BUYER

PARALINE SS SERIES

THE PARALINE SS SERIES PROVIDES YOU WITH A WIDE RANGE OF SELECTION IN SMALL 117V PRIMARY POWER TRANSFORMERS (50-60 Hz) FROM SHELF STOCK.

AVAILABLE VOLTAGES CENTER TAPPED AND CURRENT RATINGS IN AMPS

	SENIES SE	TRANSFO					
VOLTS				AMPERES			
C/T	SIZE 3	SIZE 4	SIZE 5	SIZE 6	SIZE 7	SIZE 8	SIZE 9
C/T 4 6.3 8 10 12.6 14 16 18 20 22 24 26 28 30 32 34 36 40 44 48 52 56 60 66 72 80 88 96 104 1180 1180 230		.50 .32 .28 .20 .31 .15 .13 .12 .11 .10 .095 .090 .080 .070 .066 .055 .050 .045 .040 .040 .035 .030 .027 .025 .024 .022 .020 .017 .014 .012 .011 .010 .010	\$\text{12E 5}\$ 1.2 .80 .60 .50 .40 .35 .32 .30 .27 .25 .22 .20 .18 .17 .16 .15 .14 .13 .12 .11 .10 .09 .08 .077 .070 .066 .060 .055 .050 .040 .035 .036 .036 .036 .0260 .022	2.8 2.8 1.7 1.4 1.0 .90 .80 .36 .34 .32 .20 .29 .19 1.8 1.7 .15 .14 .13 .11 .10 .09 .08 .07 .06 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	\$12E 7 5.2 3.5 2.8 2.0 1.7 1.5 1.3 1.2 1.1 1.0 .95 .90 .85 .75 .70 .65 .55 .50 .47 .45 .40 .37 .35 .28 .28 .20 .20 .20 .17 .14 .12 .11 .10	\$\text{SIZE 8}\$ 10 7.0 5.0 4.0 3.6 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 .90 .80 .75 .70 .65 .60 .55 .50 .40 .35 .30 .30 .30 .30 .30 .30 .3	\$\text{SIZE 9} 14 10 7.0 5.6 4.5 4.5 4.5 3.7 3.5 3.2 3.0 2.7 2.5 2.2 0 1.9 1.8 1.7 1.6 1.5 1.3 1.2 1.1 1.0 .90 .85 .80 .70 .65 .60 .40 .35 .30 .28

Case A Available in sizes 4, 5, 6, 7, 8 & 9 (Lead Wires)
Case B Available in sizes 4, 5 & 6 (Lugs)
Case C Available in sizes 3, 4, 5 & 6 (Pin P.C.)
Case D Available in sizes 4, 5 & 6 (Lugs)

SS SERIES DIMENSIONAL DATA

CASE	SIZE	WIDTH (A)	LENGTH (B)	HEIGHT (C)	MOUNTING CENTERS (D)	PIN CENTERS (JXK)
A A A A	4 5 6 7 8	1.20 1.37 1.42 1.70 2.00	2.10 2.38 2.83 3.25 3.88	1.19 1.38 1.63 1.94 2.25	1.75 2.00 2.38 2.83 3.13	
B B	4 5 6	1.07 1.25 1.38	1.83 2.00 2.38	1.42 1.68 1.93	1.50 1.72 2.00	
CCCC	3 4 5 6	0.93 1.15 1.25 1.44	1.10 1.38 1.63 1.88	0.88 1.19 1.38 1.63		.78x.40 1.0x.63 1.1x.80 1.3x.80
0	4 5 6	1.07 1.25 1.38	2.10 2.38 2.83	1.19 1.38 1.63	1.75 2 00 2.38	

REFER TO SS SERIES TRANSFORMERS BY PART NUMBERS. CASES ARE ILLUSTRATED ON LAST PAGE.
SAMPLE: SS-A-4-12.6

SCHEMATICS

PARALINE DS SERIES

THE PARALINE DS SERIES PROVIDES YOU WITH GOOD OFF THE SHELF SELECTION OF 115/230 VOLT 50-60 Hz POWER TRANSFORMERS WITH DUAL

AVAILABLE TOTAL SERIES VOLTAGES AND CURRENT RATINGS OF SECONDARIES

VOLTS			AMP	ERES		
(SERIES)	SIZE 8	SIZE 9	SIZE 10	SIZE 11	SIZE 12	SIZE 13
8	6.0	8.5	12	17	24	30
10	5.0	7.0	10	14	20	24
12.6	4.0	5.6	8.0	11	16	19
14	3.5	5.0	7.0	10	14	17
16	3.0	4.4	6.2	8.7	12	15
18	2.8	3.9	5.5	7.7	11	13
20	2.5	3.5 3.2	5.0	7.0	10	12
22	2.3	3.2	4.5 4.1	6.3	9.0 8.3	11
24 26	2.0 1.9	2.9 2.7	3.8	5.8 5.4	7.8	11 10 9.2
28		2.7		5.0	7.1	8.5
30	1.8 1.7	2.5 2.3	3.6 3.3	4.6	6.6	8.0
32	1.7	2.2	3.3	4.3	6.2	7.5
34	1.5	2.0	2.9	4.1	5.8	7.0
36	1.6 1.5 1.4	2.0 1.9	3.1 2.9 2.7	3.8	5.5	6.6
40	1.3	1.7	2.5 2.2		5.0	6.0
44	1.3 1.1	1.6	2.2	3.5 3.1 2.9 2.7 2.5	4.5	5.4
48	1.0	1.4	2.1	2.9	4.1	5.0
52	1.0	1.3 1.2	1.9 1.8	2.7	3.8 3.5	4.6
56	.90	1.2		2.5	3.5	4.2
60	.80	1.1	1.7	2.3 2.1	3.3	4.0
66	.75	1.0	1.5	2.1	3.0	3.6
72 80	.70 .63	1.0	1.4 1.2	1.9	2.7	3.3
88	.56	.80	1.1	1.6	3.3 3.0 2.7 2.5 2.2	3.6 3.3 3.0 2.7
96	.52	.70	1.0	1.4	2.0	2.7
104	.48	.66	.95	1.3	1.9	2.3
120	.42	.58	.83	1.1	1.6	2.0
140	.36	.50	.71	1.0	1.4	2.5 2.3 2.0 1.7
160	.31	.43	.62	.87	1.2	1.5
180	.28	.38	.55	.77	1.1	1.3
200	.25	.35	.50	.70	1.0	1.2
230	.22	.30	.43	.60	.86	1.0

DS SERIES TRANSFORMER SIZES 8 AND 9 ARE AVAILABLE IN STYLES:
"A" (with lead wires)
"B" (with lugs)
"D" (with lugs)

DS.SERIES TRANSFORMER SIZES 10 THRU 13 ARE AVAILABLE IN STYLES:
"F" (with lead wires)
"G" (with lugs)
"H" (with lugs)

DS SERIES DIMENSIONAL DATA

CASE	SIZE	A	В	C	D	E	F	G
A A	8 9	2.00 2.30	3 70 4.00	2.25 2.56	3.13 3.56		2.70 3.06	.19 .19
B	8 9	2.00 2.30	3.13 3.56	2.70 3.06	2.81 3.13		2.27 2.56	.19 .19
D D	8 9	2.00 2.30	3.70 4.00	2 25 2.56	3.13 3.56		2.70 3.06	.19 .19
F	10 11 12 13	3.38 3.75 4.13 4.50	2.50 2.80 3.00 3.30	2.81 3.13 3.44 3.75	2.81 3 13 3.44 3.75	2.13 2.25 2.38 2.50	2.69 2.81 2.94 3.06	.2x.37 .2x.37 .2x.37 .2x.37
G G G	10 11 12 13	2 81, 3.13 3.44 3.75	2.50 2.80 3.00 3.30	3.38 3.75 4.13 4.50	2.25 2.50 2.75 3.00	2.13 2.25 2.38 2.50	2.69 2.81 2.94 3.06	.2x.37 .2x.37 .2x.37 .2x.37
H H H	10 11 12 13	3 38 3.75 4.13 4.50	2.50 2.80 3.00 3.30	2.81 3.13 3.44 3.75	2.81 3.13 3.44 3.75	2.13 2.25 2.38 2.50	2.69 2.81 2.94 3.06	.2x.37 .2x.37 .2x.37 .2x.37

SCHEMATICS

PARALINE, 511 South Palm Avenue, Alhambra, CA 91803 • (818) 281-0222

The Paraline HP & DHP Series are available in sizes 3, 4, 5, 6, 7, & 8 with single or dual primaries and dual secondaries on an 8 pin printed circuit format.

Available total series voltages and current ratings of secondaries.

HP & DHP SERIES

			AMPERES			
Volts*	Size 3	Size 4	Size 5	Size 6	Size 7	Size 8
5	.20	.46	1.16	2.3	3.8	7.0
6.3	.15	.36	.92	1.8	3.0	5.5
8	.12	.28	.72	1.4	2.3	4.3
10	.10	.23	.58	1.1	1.9	3.5
12	.079	.18	.46	.97	1.5	2.9
14	.071	.16	.41	.83	1.3	2.5
16	.062	.14	.36	.73	1.1	2.1
18	.055	.12	.32	.65	1.0	1.9
20	.050	.11	.29	.58	.95	1.7
22	.045	.10	.26	.53	.86	1.5
24	.041	.095	.24	.48	.79	1.4
26	.038	.088	.22	.45	.73	1.3
28	.035	.082	.20	.41	.67	1.2
30	.033	.076	.19	.39	.63	1.1
32	.031	.071	.18	.36	.59	1.0
34	.029	.067	.17	.34	.55	1.0
36	.027	.063	.16	.32	.52	.97
40	.025	.057	.14	.29	.47	.87
44	.022	.052	.13	.26	.43	.79
48	.020	.047	.12	.24	.39	.72
52	.019	.044	.11	.22	.36	.67
56	.017	.041	.10	.20	.33	.62
60	.016	.038	.096	.19	.31	.58
66	.015	.034	.087	.17	.28	.53
72	.013	.031	.080	.16	.26	.48
80	.012	.028	.072	.14	.23	,43
88	.011	.026	.065	.13	.21	.39
96	.010	.023	.060	.12	.19	.36
104	.009	.022	.055	.11	.18	.33
120	.008	.019	.048	.097	.15	.29
140	.007	.016	.041	.083	.13	.25
160	.006	.014	.036	.073	.11	.21
180	.005	.012	.032	.065	.10	.19
200	.005	.011	.029	.058	.095	.17
230	.004	.010	.025	.050	.082	.15

HP Series—Volts C/T
DHP Series—Total Series Volts

HP & DHP DIMENSIONAL DATA

Sizes	L	W	Ht	A	В	С	Wt
3	1.375	1.125	.937	1.20	.250	.250	.17
4	1.375	1.125	1.187	1.20	.250	.250	.25
5	1.625	1.312	1.312	1.28	.350	.250	.44
6	1.875	1.562	1.437	1.41	.400	.300	.70
7	2 250	1.875	1.437	1.60	.400	.300	.80
8	2.625	2.187	1.562	1.85	.400	.400	1.10

The Paraline DLP & MLP Series are available in sizes 4, 5, & 6 with dual primary and dual secondary 12 pin printed circuit configuration. All have 2 separate center tap secondaries.

Available total series voltages and current ratings of secondaries.

DLP SERIES

VOLTS		AMPERES	
(Series)	Size 4	Size 5	Size 6
5	.46	1.10	2.3
6.3	.36	.87	1.8
8	.28	.68	1.4
10	.23	.55	1.1
12.6	.18	.43	.91
14	.16	.39	.82
16	.14	.34	.71
18	.12	.30	.63
20	.11	.27	.57
22	.10	.25	.52
24	.095	.22	.47
26	.088	.21	.44
28	.082	.19	.41
30	.076	.18	.38
32	.071	.17	.35
34	.067	.16	.33
36	.063	.15	.31
40	.057	.13	.28
44	.052	.12	.26
48	.047	.11	.23
52	.044	.10	.22
56	.041	.098	.20
60	.038	.091	.19
66	.034	.083	.17
72	.031	.076	.15
80	.028	.068	.14
88	.026	.062	.13
96	.023	.057	.11
104	.022	.052	.11
120	.019	.045	.095
140	.016	.039	.082
160	.014	.034	.071
180	.012	.030	.063
200	.011	.027	.057
230	.010	.023	.050

MLP SERIES

Part #	Sec. #1 V/CT	MA.	Sec. #2 V/CT	MA.
MLP4-9024	9.0	.12	24	.047
MLP5-9024	9.0	.30	24	.11
MLP6-9024	9.0	.63	24	.23
MLP4-1632	16	.071	32	.035
MLP5-1632	16	.17	32	.085
MLP6-1632	16	.35	32	.17

DLP & MLP DIMENSIONAL DATA

Size	L	W	Н	Α	В	С	Lbs.
4	1.875	1.562	.850	1.60	.375	.187	.29
5	1.875	1.562	.850	1.60	.375	.187	.43
6	2.50	2.0	1.065	2.0	.500	.250	.67

DOT INDICATES LIKE POLARITY

100 VOLT PRIMARY CENTER TAPS AVAILABLE UPON REQUEST.
ALL PARALINE TRANSFORMERS MAY BE USED FOR 50 OR 60 HZ APPLICATIONS.

								*			
SIZE	1-3	4-49	50-249	250	1K	SIZE	1-3	4-49	50-249	250	1K
3	4.24	3.58	3.25	3.07	2.96	TTC2-(7 6.05	5.26	4.61	4.21	4.06
4	5.21	4.35	3.70	3.49	3.35	TTC3-8	549 4.42	3.83	3.07	2.46	2.37
5	5.81	4.83	4.16	3.95	3.79		222 4.46	3.91	3.12	2.52	2.42
6	6.82	5.73	4.84	4.61	4.43	TTC4-1	8 4.23	3.66	3.46	3.23	3.07
7	8.14	6.81	5.78	5.48	5.26	TTC4-1		4.24	3.74	3.09	2.98
8	10.40	8.77	7.37	7.00	6.72	TTC4-1		4.34	3.78	3.12	3.01
9	11.79	9.84	8.70	8.25	7.92	TTC2-I	3746 9.00	7.90	7.17	6.47	6.24
						TTC2-I	3750 8.65	7.56	6.82	6.15	5.90
						TTC2-I	758 9.00	7.90	7.17	6.47	6.24
DS SERIES						TTC2-I	3761 9.00	7.90	7.17	6.47	6.24
						TTC2-1	3762 9.00	7.90	7.17	6.47	6.24
SIZE	1-3	4-49	50-249	250	1K		3763 9.00	7.90	7.17	6.47	6.24
						TTC2-I	3772 8.20	7.13	6.37	5.72	5.48
4	5.73	4.80	4.05	3.86	3.71						
5	6.38	5.30	4.57	4.35	4.17						
6	7.49	6.29	5.28	5.07	4.86						
7	9.66	7.94	6.64	6.35	6.10	MLP &	DLP SERIES				
8	11.38	9.58	7.99	7.63	7.34						
9	12.27	10.26	9.03	8.66	8.31	SIZE	1-3	4-49	50-249	250	1K
10	14.79	12.59	11.24	10.77	10.35						
11	17.64	15.15	13.81	13.27	12.73	4	7.32	5.76	4.47	4.12	3.95
12	23.00	19.96	18.48	17.74	17.03	5	8.07	6.36	4.93	4.54	4.36
13	26.85	23.45	21.84	20.95	20.11	6	9.72	7.65	5.95	5.48	5.25
14	40.83	35.34	31.87	30.56	29.33						
						HP SE	RIES				
MS SERIES	1-3	4-49	50-249	250	1K						
						3	5.49	4.32	3.36	3.08	2.97
MSC4-924	7.40	6.64	6.19	5.89	5.64	4	5.59	4.41	3.43	3.15	3.03
MSC5-924	7.99	7.19	6.68	6.36	6.11	5	6.20	4.87	3.79	3.49	3.36
MSC6-924	8.97	7.98	7.42	7.05	6.76	6	6.84	5.39	4.17	3.85	3.70
MSC4-1632	7.40	6.64	6.19	5.89	5.64	7	8.24	6.49	5.06	4.65	4.46
MSC5-1632	7.99	7.19	6.68	6.36	6.11	8	9.21	7.41	5.63	5.18	4.97
MSC6-1632	8.87	7.98	7.42	7.05	6.76						
MSL4-9024	9.18	8.26	7.67	7.29	7.00						
MSL5-9024	10.20	9.19	8.54	8.12	7.79	DHP SE	RIES				
MSL6-9024	11.98	10.76	10.03	9.52	9.14						
HSL7-9024	14.34	12.91	12.00	11.39	10.94	3	6.38	5.02	3.90	3.61	3.46
MSL4-16032	9.18	8.26	7.67	7.29	7.00	4	6.58	5.17	3.79	3.49	3.34
MSL5-16032	10.20	9.19	8.54	8.12	7.79	. 5	7.07	5.46	4.32	3.99	3.82
MSL6-16032	11.98	10.76	10.03	9.52	9.14	6	8.14	6.16	4.58	4.21	4.04
MSL7-16032	14.34	12.91	12.00	11.39	10.94	7	9.67	7.60	5.92	5.45	5.23
MSH10-16032	19.16	17.25	16.04	15.25	14.63	8	10.64	8.38	6.52	4.00	5.75
MSH11-16032	22.87	20.58	19.14	19.18	17.46						
MSH12-16032	29.83	26.85	23.61	21.27	20.44						
MSH13-16032	33.48	30.14	27.10	24.60	23.60						
MSD9-16032	15.29	13.75	. 12.65	12.07	11.58						

QUOTES ON LARGER QUANTITIES ARE AVAILABLE FROM OUR SALES DEPT.

TERMS: NET 30 DAYS, UPON APPROVAL OF CREDIT, 1% DISCOUNT FOR PAYMENT WITHIN TEN DAYS

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

ALL ORDERS: F.O.B. ALHAMBRA CA 91803

MINIMUM DRDER: \$20.00

PARALINE DS SERIES

THE PARALINE DS SERIES IS AVAILABLE IN SIZES 4, 5, & 6 WITH DUAL PRIMARY AND DUAL SECONDARY 8 PIN PRINTED CIRCUIT CONFIGURATION. AVAILABLE TOTAL SERIES VOLTAGES AND CURRENT RATINGS OF SECONDARIES.

VOLTS		AMPERES	
(SERIES)	SIZE 4	SIZE 5	SIZE 6
4	.50	1.2	2.8
8.3	.32 .28	.80	1.7
8	.28	.60	1.4
10	.20 .17	.50	1.0
12.6		.40	.90
14	.15	.35	.80
16	.13	.32	.70
18	.12	.30	.60
22	.10	.25	.55 .50
24	.095	.22	.45
26	.090	20	.40
28	.080	.20	.38
30	.070	.17	.36
32	065	.16	.38 .36 .34
34	.060	.15	.32 .30 .27 .25 .22
36	.055	.14	.30
40	.050	.13	.27
44 48	.050 .045	.12	.25
		.10	
52 56	.040 .040	.10	.20 .19
60	.035	.08	.18
66	.030	.077	.17
72	.027	.070	.15
80	.025	.066	.14
88	.024	.060	.13
96	.022	.055	.11
104	.020	.050	.10
120	.017	.040	.09
140	.014	.035	.08
160	.012	.030	.07
180 200	.011 .010	.026	.06
230	.010	.022	.05

DS SERIES DIMENSIONAL DATA

CASE	SIZE	A	С	F	Н	J	К
C	4	1.15	1.19	1.38	.20	1.0	.60
C	5	1.25	1.38	1.63	.25	1.1	.75
C	6	1.44	1.63	1.88	.25	1.3	.75

REFER TO DS SERIES TRANSFORMERS BY PART NUMBERS

Paraline manufactures a wide variety of power transformers. They are stocked in 11 different sizes with 32 available secondary voltages totaling over 1600 different types.

There are five general series designations, each series designed to suit the requirements of your particular application.

A brief description of each series is as follows:

- The "SS" series has a single 115V primary and a single centertapped secondary. Also available with a 230V primary.
- The "CS" series has a single 115V primary and two identical and separate secondaries. Also available with a 230V primary.
- The "DS" series has dual primaries for 115V or 230V operation and two identical and separate secondaries.
- The "MS" series has dual primaries for 115V or 230V operation and two center-tapped secondaries designed for 5V and 15V logic and OP amp power supplies.
- The "TI" series includes a number of coupling transformers, holding coils, and telephone associated devices for use in interconnective data modem terminals.

All Paraline stock power transformers may be used for 50 Hz or 60 Hz applications.

PARALINE CS SERIES

THE PARALINE CS SERIES WITH STANDARD 117V (50-60 Hz) PRIMARIES IS AVAILABLE FROM STOCK WITH SINGLE PRIMARY AND DUAL SECONDARY 6 PIN PRINTED CIRCUIT CONFIGURATION.

AVAILABLE TOTAL SERIES VOLTAGES AND CURRENT RATINGS OF

VOLTS		AMPERES	
(SERIES)	SIZE 4	SIZE 5	SIZE 6
4	.50	1.2	2.8
6.3	.32	.80	1.7
8	.28	.60 .50	1 4
10	.20 .17	.50	1.0
12.6	1 .17	.40	.90
14	.15	.35	.80
16	.13	.32	.70
18	.12	.30	.60
20	.11	.27	.55
22	.10	.25	.50
24	.095	.22	.45
26	.090	.20	.40
28	.080	.18 .17	.38
30 32	.070	.17	.36 .34
	.065		
34	.060	.15	.32
36 40	.055	.14	.30
44	.050	.13	.27
48	.045	.12	.30 .27 .25 .22
52	.040		.22
52 56	.040	.10	.20 .19
60	.035	.08	.18
66	.030	.077	.17
72	.027	.070	.15
80	.025	.066	.14
88	.024	.060	.13
96	.022	.055	.11
104	.020	.050	.10
120	.017	.040	.09
140	014	.035	.08
160	.012	.030	.07
180	.011	.026	.06
200	.010	.022	.05

CS SERIES DIMENSIONAL DATA

CASE	SIZE	A	6	F	н	J	К
C	4	1.15	1.19	1.38	.31	1.0	.63
C	5	1.25	1.38	1.63	.40	1.1	.80
C	6	1.44	1.63	1.88	.40	1.3	.80

REFER TO CS SERIES TRANSFORMERS BY PART NUMBERS.

SCHEMATIC

PARALINE MS SERIES

8 PIN P.C. WITH SINGLE 120V PRIMARY, (Fig. 1)

PART NUMBER	SEC. #1 V/CT	MA.	SEC. #2 V/CT	MA.
MSC4-924	9.0	70	24	30
MSC5-924	9.0	240	24	70
MSC6-824	9.0	480	24	150
MSC4-1832	16	50	32	18
MSC5-1632	16	140	32	55
MSC6-1632	16	280	32	100

12 PIN P.C. LOW PROFILE DUAL 120V PRIMARIES WITH 100V TAPS. (Fig. 2)

PART NUMBER	SEC. #1 V/CT	MA.	SEC. #2 V/CT	MA.
MSL4-9024	9.0	70	24	28
MSL5-9024	9.0	240	24	70
MSL6-9024	9.0	480	24	150
MSL7-9024	9.0	800	24	280
MSL4-16032	16	50	32	18
MSL5-16032	16	140	32	55
MSL6-18037	16	280	32	100
MSL7-16032	16	500	32	180

12 LUGS CASE 'H' DUAL 120V PRIMARIES WITH 100V TAPS (Fig. 3)

PART NUMBER	SEC. #1 V/CT	AMPS	SEC. #2 V/CT	AMPS
MSN10-16032	16	3.8	32	1.2
MSH11-16032	16	5.0	32	1.8
MSH12-16032	16	7.0	32	2.5
MSH13-16032	16	9.0	32	3.0

SCHEMATICS

PARALINE TT SERIES

TRANSFORMERS FOR DATA MODEM TERMINALS DESIGNED TO EXCEED 1200 VAC BREAKDOWN REQUIREMENTS.
FREQUENCY RESPONSE: 300-3500 Hz (TOL. 0.5 DB)

LEVEL: -45DBM TO +7DBM DISTORTION: 0.4% MAX. IMPEDANCE: ±10% RETURN LOSS: 26 DB MIN.

PART NUMBER	PRI. IMP.	SEC. IMP.	FIG.
TTC2-07	600	600	1
TTC3-6549	600	600	1
TTC3-7222	600	600 +900	2
TTC4-7226	600	600	1
TTC4-7657	600	600 +900	2
TTC4-18	Holding Coil 1.3 H	y. @ 100 MA. DC.	

WIDE RANGE AUDIO MATCHING TRANSFORMERS.

FREQUENCY RESPONSE: 20 Hz (TOL. 2 DB)

LEVEL: 5DBM

PART NUMBER	PRI. IMP.	SEC. IMP.	FIG.	
TTC2-8746	400	40K	3	
TTC2-8750	200	40K	1	
TTC2-8758	200/CT/50	50K	3	
·TTC2-8761	600/CT/150	50K	3	
TTC2-8762	250/CT/62	50K	3	
TTC2-8763	50/CT/12	50K	3	
TTC2-8772	150	60K	1	

SCHEMATICS

STANDOR

3501 W. ADDISON ST. CHICAGO, ILL. 60618

SERVICE DATA SHEET

P-6375
P-6376
part no. P-6377

type Control Transformers

date 5-15-69
s.d.s. no. 6-1069

Stancor		Secon	VA Mtg.	Mig.	Shpg. Wt.	1				
Part No.	Primary	Parallel	Series .	Rating	Type	Ctrs.	in Lbs.	Overail	Area	
P-6375		6V @ 2A	12V @ 1A	12	J	23/8"	1	23/8"	27/8" x 13/4"	
P-6376	115V/230V	6V (W 4A	12V @ 2A	24	j	213/16"	11/2	35/8"	31/8" x 2"	
P-6377	50/60 CPS	12V @ 4A	24V @ 2A	48	J	31/8"	21/2	31/8"	35/8" x 23/8"	

on all

RECTIFIER POWER TRANSFORMERS

F-90X F-91X F-92A F-93X F-94X

100MaDC

300MaDC 1ADC 750MaDC

35MaDC

Voltages: 10/20ct or 40ct

These transformers are designed for use with silicon diode rectifiers, to supply the DC voltages for transistors in their various applications. They are intended for use with full wave bridge or bridge rectifier, but may be used with voltage doubler circuits at one-half of the rated current.

CAUTION: Never apply the full line voltage (II5 volts) between the Black/Red and Black leads of the primary. One of these leads is used as a primary common lead in all applications. The lowest output voltage is obtained when the available line voltage is applied to the Black/Red and Black/White primary leads.

SECONDARY AC VOLTAGES OBTAINABLE

40 VCT, 38 VCT, 34 VCT, 32 VCT, 30 VCT, 28VCT, 20VCT, 19VCT, 17VCT, 16VCT, 15VCT. 14VCT.

30V, 28.5V, 25.5V, 24V, 22.5V, 21V, 10V, 9.5V, 8.5V, 8V, 7.5V, 7V

		IMARY	
1151	OLT	S AC	60CPS

S				

TISTOLIS AC	3 0001 3				
Lead	Lead	Leads Green Red	Leads Green Blue	Leads Yellow Red	Leads Blue Red
Black/Yellow	Black	40V CT Yellow	30V	20V CT Blue	10V
Black/Yellow	Black/Red	38V CT Yellow	28.5V	19V CT Blue	9.5V
Black/Green	Black	34V CT Yellow	25.5V	17V CT Blue	8.5V
Black/Green	Black/Red	32V CT Yellow	24V	16V CT Blue	8V
Black/White	Black	30V CT Yellow	22.5V	15V CT Blue	7.5V
Black/White	Black/Red	28V CT Yellow	21V	14V CT Blue	7V

TRIAD DISTRIBUTOR DIVISION

305 North Briant Street Huntington, Indiana

SIMUGOR

ESSEX INTERNATIONAL, INC.

SUBSIDIARY OF UNITED AIRCRAFT CORPORATION

CONTROLS DIVISION

3501 W. ADDISON ST., CHICAGO, ILL. 60618

DISERVICE DATA SHEET

Part No. PPC-1 THRU PPC-27

Type POWER TRANSFORMER

Date 10-74 (REVISED 3-75)

S.D.S. No. 6-1073

MINIATURE POWER TRANSFORMERS

- For Printed Circuit Board Mountings with Molded-In Plug-In Type Terminals.
- All with Single Primary: 115 Volt, 50-60 Hz. Input.
- Hi-Pot Test: 500 Volts RMS between all Windings and to Core.
- Class "A" Insulation, 105°C. Maximum Operating Temperature Limit.

DIMENSIONS
All Tolerances

on Dimensions are ± 1/32" except A = ±1/16"

H = 1 3/16''

W = 1.3/8''

D = 1.1/8''A = 1.0''

B = 1.1/8"

E = 5/16''

PARALLEL
Connect 3 & 5, 4 & 6
Use 3 & 4

or

SERIES

Connect 4 & 5 Use 3 & 6

STANCOR		VA	OUTPUT FAC	M TWO SECONDARY	WINDINGS	WT.
Part No.	STYLE	Cap.	INDIVIDUALLY	PARALLEL	SERIES	Lbs.
PPC-1	PC	1.5	4.V @ .138 A	4 V @ .376 A	8 V CT @ .188 A	.22
PPC-2	PC	1.5	7.5 V @ .100 A	7.5 V @ .200 A	15 V CT @ .100 A	.22
PPC-3	PC	1.5	15 V @ .050 A	15 V @ .100 A	30 V CT @ .050 A	.22
PPC-4	PC	1.5	27 V @ .028 A	. 27 V @ .056 A	54 V CT @ .028 A	.22
PPC-5	PC	1.5	38 V ⊚ .020 A	38 V @ .040 A	76 V CT @ .020 A	.22
PPC-6	PC	1.5	58 V @ .013 A	58 V ∋ .026 A	116 \' CT @ .013 A	.22
PPC-7	PC	1.5	20 V @ .038 A	20 V ♦ .076 A	40 V CT @ .038 A	.22

DIMENSIONS

All Tolerances on Dimensions are \pm 1/32" except A = \pm 1/16"; W = \pm 1/16"; and MW = \pm 1/16". H = 1 7/16" A = 1.1" W = 2 3/8" B = 1 3/8" D = 1 1/4" C = 1 23/32" MW = 2" E = 0.4" PARALLEL
Connect 3 & 5, 4 & 6
Use 3 & 4
or
SERIES

Connect 4 & 5 Use 3 & 6

	STANCOR		VA	OUTPUT FRO	M TWO SECONDARY	WINDINGS	WT.
Í	Part No.	STYLE	Cap.	INDIVIDUALLY	PARALLEL	SERIES	Lbs.
	PPC-11	APC	4.5	4 V @ .562 A	4 V @ 1.13 A	8 V CT @ .562 A	.47
	PPC-12	APC	4.5	7.5 V @ .300 ∧	7.5 V @ .600 A	15 V CT @ .300 A	.47
	PPC-13	APC	4.5	15 V @ .150 A	15 V @ .300 A	30 V CT @ .150 A	.47
-	PPC-14	APC	4.5	27 V @ .084 A	27 V @ 1168 A	54 V CT @ .084 A	.47
	PPC-15	APC	4.5	38 V @ .060 A	38 V @ .120 A	76 V CT @ .060 A	.47
	PPC-16	APC	4.5	58 V @ .033 A	58 V @ .066 A	116 V CT @ '.033 A	.47
Parameter of	PPC-17	APC	4.5	20 V @ .112 A	20 V @ .224 A	40 V CT.@ .112 A	.47

DIMENSIONS

All Tolerances on Dimensions are \pm 1/32" except A = \pm 1/16"; W = \pm 1/16"; and MW = \pm 1/16".

H = 1 11/16" A = 1.3" W = 2 13/16" B = 1 5/8" D = 1 7/16" C = 1 31/32" MW = 2 3/8" E = 0.4" PARALLEL
Connect 3 & 5, 4 & 6
Use 3 & 4

or SERIES Connect 4 & 5 Use 3 & 6

STANCOR		VA	OUTPUT FRO	M TWO SECONDARY	WINDINGS	WT.
Part No.	STYLE	Cap.	INDIVIDUALLY	PARALLEL	SERIES	Lbs.
PPC-21	APC	7.5	4 V @ .940 A	4 V @ 1.88 A	8 V CT @ .940 A	.66
PPC-22	APC	7.5	7.5 V @ .500 A	7.5 V @ 1.00 A	15 V CT @ .500 A	.66
PPC-23	APC	,7.5	15 V @ .250 A	15 V @ .500 A	30 V CT @ .250 A	.66
PPC-24	APC	7.5	27 V @ .140 A	27 V @ .280 A	54 V CT @ .140 A	.66
PPC-25	APC	7.5	38 V @ .100 A	38 V @ .200 A	76 V CT @ .100 A	.66
PPC-26	APC	7.5	58 V © .065 A	58 V @ .130 A	116 V CT @ .065 A	.66
PPC-27	APC	7.5	20 V@ .188 A	20 V @ .376 A	40 V CT @ .188 A	.66

ESSEX INTERNATIONAL. INC.

SUBSIDIARY OF UNITED AIRCRAFT CORPORATION

CONTROLS DIVISION

3501 W. ADDISON ST., CHICAGO, ILL. 60618

SERVICE DATA SHEET

PPC-8 PPC-20 PPC-18 PPC-28 PPC-19 PPC-29 Part No.

MINIATURE POWER TRANSFORMERS

1/10/78 Date_

6-1075 S.D.S. No. __

MINIATURE POWER TRANSFORMERS

For Printed Circuit Board Mountings with Molded-In Type Terminals. All with Dual Primary: 115 or 230 Volt, 50-60 Hz. Input. Hi-Pot Test: 500 Volts RMS between all Windings and to Core. Class "A" Insulation, 105°C. Maximum Operating Temperature Limit.

DIMENSIONS

All Tolerances on Dimensions are $\pm 1/32$ " except A = $\pm 1/16$ "

-.041"

H = 1 3/16"

W = 1.3/8"

D = 1.1/8"

 $A = 1.0^{n}$

B = 1.1/8"

E = 13/64"

115 V 115 V. 50-60 Hz

PARALLEL

connect 5 & 7, 6 & 8

use 5 & 6 or

SERIES

connect 6 & 7

use 5 & 8

STANCOR .	STYLE	OUTPUT	OUTPUT 1	RY WINDINGS	WT.	
Part No.	O I I I I	BITTAW	INDIVIDUALLY	PARALLEL	SERIES	Lbs.
PPC-8	PC	1.5	15V. @ 50MA	15V. @ 100MA	30V.CT. @ 50MA	.22

DIMENSIONS

All Tolerances on Dimensions are $\pm .1/32$ " except A = $\pm .1/16$ "; W = $\pm .1/16$ "; and MW = $\pm .1/16$ ".

H = 1 7/16" W = 2 3/8" D = 1 1/4" MW = 2" A = 1 1/8" B = 1 3/8" C = 1 23/32" E = 9/32"

parallel connect 5 & 7, 6 & 8 use 5 & 6 or SERIES connect 6 & 7 use 5 & 8

1	STANCOR	S'TYLE	OUTPUT	OUTPUT	FROM TWO SECONDAI		WT.
	Part No.	21110	WATTS	INDIVIDUALLY	PARALLEL	SERIES	Lbs.
	PPC-18	APC	4.5	6.3V. @ 350MA	6.3V. @ 700MA	12.6V.CT. @ 350MA	.47
	PPC=19	APC	4.5	8v. @ 280MA	8v. @ 560MA	16V.CT. @ 280MA	.47
	PPC-20	APC	4.5	12V. @ 180MA	12V. @ 360MA	24V.CT. @ 180MA	.47
	PPC-28	APC	4.5	10V. @ 225MA	10V. @ 450MA	20V.CT. @ 225MA	.47
	PPC-29	APC	4.5	115V. @ 20MA	115V. @ 40MA	230V.CT. @ 20MA	.47

STANDOR

3501 W. ADDISON ST. CHICAGO, ILL. 60618

SERVICE DATA SHEET

P-6375
P-6376
part no. P-6377

type Control Transformers

date 5-15-69

s.d.s. no. 6-1069

Stancor		Secon	idary		Mig.	Mig.	Shpg. Wt.	Height	Base	
Part No.	Primary	Parallel	Series .	Rating	Type	Ctrs.	in Lbs.	Overall	Area	
P-6375		6V @ 2A	12V @ 1A	12	J	23/8"	1	23/8"	2%" x 13/4"	
P-6376	115V/230V	6V @ 4A	12V @: 2A	24	J	213/16"	11/2	35/8"	31/2" x 2"	
P-6377	50/60 CPS	12V @ 4A	24V @, 2A	48	J	31/8"	21/2	31/8"	35/8" x 23/8"	

on all

W2, W5, W5H, W5L, W8, and W8L GANGED VARIAC® autotransformers

with DURATRAK® contact surface

These instructions should be used in conjunction with instructions for corresponding individual models.

The use of two or more Variac autotransformers on a common shaft presents several possibilities:

- 1. The simultaneous control of two, or more, electrically independent circuits.
- 2. The control of polyphase circuits, either twoor three-phase.
- 3. The control of voltages or currents beyond the rating of single units.

Series W Variac autotransformers are available in standard two- and three-gang assemblies. The type number suffix G2 or G3 signifies a two- or three-gang Variac assembly. Type numbers terminating in the suffix M indicate totally enclosed units with knockout facilities for wiring.

The Operating Instructions, for the particular type used, apply to individual units of ganged assemblies, and should be observed. The following special instructions apply to ganged units:

INSTALLATION AND MOUNTING. Ganged Series W models are designed primarily for back-of-panel mounting. Where the panel is strong enough to withstand the bending moment of the cantilevered gang structure, direct panel mounting is recommended, as the gangs themselves are adequately sturdy. However, duplicate mounting facilities at both ends of the gang, and brackets adaptable to either open or cased models, permit shelf mounting, combination shelf and panel mounting, or even table mounting, should this prove desirable. Figure 5 details these mounting op-

tions, and gives complete dimensions. For direct panel mounting, the four-hole mounting is strongly recommended as combining greatest strength with freedom from interference between mounting screws and dial plate. When cased models are installed, the two channel sections that comprise the enclosure between the ends should be so installed that removal of the top channel provides ready access to terminals and brushes. This is particularly important if the gang is installed close to a side wall or partition. The long side of the top channel should be installed on the side away from such interference.

The reversible dial plate may be mounted either on the panel or knob. For panel mounting, use the side with clockwise increasing numbers; for knob mounting, the counterclockwise numbers are indicated. This procedure ensures clockwise rotation to increase voltage. Because ganged models are subject to differing voltage maxima, dependent upon the circuit used, dials are calibrated arbitrarily from 0 through 10, to avoid confusion between the several voltage ratings.

Wiring diagrams are detailed in Figures 1, 2, and 3. Remember that the individual units of a ganged assembly must be operated within the single-unit ratings. If there is any doubt on this score, a quick check with an ammeter in the brush output lead and a voltmeter across the winding is the safest procedure to determine if units are being operated within limits. Permissible currents and voltages for the various connections are clearly indicated in Tables I and II.

Single-Phase Circuits

When Variac autotransformers are operated in series, they can be used on circuits whose voltages are twice the normal voltage ranges of the autotransformers. This circuit is particularly useful on 480-volt, single-phase supply, which would otherwise re-

quire auxiliary transformers for control. Ratings and other data are listed in Table I below.

Because there is no common connection between input and output with the series connection, DO NOT GROUND LOAD.

TABLE I SINC	SLE-PH	ASE /	ASSEME	BLIES				OUT	PUT*			
		T		LINE	KVA	AT	VOLT.	RANGE	AMPE	RES	MINIMUM LOA OHMS AT	
SERVICE	TYPE	WIRING	SEE FIGURE	INPUT VOLTS	LINE VOLTS	MAX VOLTS	LINE	MAX	RATED	MAX	LINE VOLTS	MAX VOLTS
120-VOLT	W2 W5 W5L W8 W8L	Single Single Single Single Single		120 120 120 120 120	0.37 0.94 1.32 1.32 1.56	0.34 0.84 1.19	0-120 0-120 0-120 0-120 0-120	0-140 0-140 0-140	2.4 6 8.5 8.5 10	3.1 7.8 11 11 13	39 15.4 10.9 10.9 9.3	58 23.3 16.5
120- TO 240-VOLT	W5H	Single		120		0.28		0-280	1			280
240-VOLT	W2G2 W5H W5G2 W5LG2 W8G2 W8LG2	Series Single Series Series Series Series	1a, 1b 1a, 1b 1a 1a, 1b 1a	240 240 240 240 240 240 240	0.74 0.62 1.87 2.64 2.64 3.12	0.67 0.56 1.68 2.38	0-240 0-240 0-240 0-240 0-240 0-240	0-280 0-280 0-280 0-280	2.4 2 6 8.5 8.5 10	3.1 2.6 7.8 11 11 13	78 93 31 21.8 21.8 18.5	116 140 47 33
240- TO 480-VOLT	W5HG2	Series	1c	240	0.62	0.56		0-560	2	2.6		560
480-VOLT	W5HG2	Series	1a, 1b	480	1.25	1.12	0-480	0-560	2	2.6	185	280

*Current and power ratings for Types W5HG2 and W5HG3 also apply to Types W5HG2M and W5HG3M; ratings for other M (cased) models are 17% less than those given for the uncased models.

Units connected in open delta and wye circuits can be used directly on three-phase lines. The opendelta connection of Figure 2a normally permits operation either to line voltage or to 117% of line voltage. With the H-models, output voltages of more than double the supply voltage can be obtained, although current and power ratings are halved.

Figure 3 shows one of the most useful connections. Because the voltage across each leg of a wyeconnected assembly is line volts divided by \(\sqrt{3}\), and since 120-volt units are wound to 140 volts, and 240volt units to 280 volts, it is possible to operate wyeconnected assemblies from three-phase lines of twice the voltage rating of the unit. With this connection,

ABLE II THR	EE-PH	ASE /	ASSEM	ABLIES							OUTPU	JT*			
								D	ELTA L	OAD			WYE		
			INPUT		KVA AT		VOLTAG	E RANGE	AMPE	RES	MINIMU	M OHMS	VOLTAGE	E RANGE	A
SERVICE	TYPE	LINE VOLTS	WIRING	SEE FIGURE	LINE VOLTAGE	MAX VOLTAGE	LINE	MAX	RATED	MAX		AT MAX VOLTS	LINE	MAX	RAT
120-VOLT	W2G2 W5G2 W5LG2 W8G2 W8LG2	120 120 120 120 120	Delta Delta Delta Delta Delta	2a, 2b 2a, 2b 2a 2a, 2b 2a	0.64 1.63 2.28 2.28 2.70	0.59 1.45 2.06	0-120 0-120 0-120 0-120 0-120 0-120	0-140 0-140 0-140	1.39 3.47 4.9 4.9 5.75	1.8 4.5 6.35 6.35 7.52	67 26.7 18.9 18.9 16.0	101 40.4 28.6	0-69.3 0-69.3 0-69.3 0-69.3 0-69.3	0-81 0-81 	8 8 10
120- TO 240-VOLT	W5HG2	120	Delta	2c	0.54	0.49		0-280	0.575	1.5		487		0-162	1
208- V OLT	W2G3 W5G3 W5HG2 W5LG3 W8G3 W8LG3	208 208 208 208 208 208 208	Wye Wye Delta Wye Wye Wye	3a, 3b 3a, 3b 2a, 2b 3a 3a, 3b 3a	1.15 2.81 0.94 3.96 3.96	1.00 2.50 0.84 3.57	0-208 0-208 0-208 0-208 0-208 0-208	0-242 0-242 0-242 0-242 ———————————————————————————————————	1.33 3.47 1.15 4.9 4.9 5.75	1.8 4.5 1.5 6.35 6.35 7.52	116 46.3 139 32.8 32.8 27.7	174 70 210 49.5	0-120 0-120 0-120 0-120 0-120 0-120	0-140 0-140 0-140 0-140	8 8 10
240-VOLT	W2G3 W5G3 W5HG2	240 240 240	Wye Wye Delta	3a 3a 2a, 2b	1.33 3.24 1.08	0.98	0-240 0-240 0-240	0-280	1.39 3.47 1.15	1.8 4.5 1.5	133 53.3 160	243	0-139 0-139 0-139	<u> </u>	6
208- TO 480-VOLT	W5HG3	208	Wye	3c	0.94	0.84		0-485	0.575	1.5	_	840		0-280	
480-VOLT	W5HG3	480	Wye	3a	2.16		0-480		1.15	1.5	320		0-276		

G2 Assemblies: 120 volts 50-60 c/s in 0-120 volts out HG2 Assemblies: 240 volts 50-60 c/s in 0-240 volts out

Circuits

the voltage across the assembly on a 480-volt line is 277 volts; across a 240-volt line it is 138 volts. The overvoltage feature is sacrificed in this circuit, but KVA rating is increased by the ratio of 138:120.

The two common types of three-phase loads are shown in Figure 4. For equal loads on the supply

units, $R_{\Delta} = 3R_{Y}$: The relation of R_{Δ} and R_{Y} to the single-phase impedance, R, is given by $\frac{R_{\Delta}}{R_{\Delta}} = R = R_{Y} \sqrt{3}$.

Voltages and circuits as well as minimum load impedances are given in Table II below. Note that $V_{\Delta} = V_{Y}\sqrt{3}$ and $I_{\Delta} = \frac{I_{Y}}{\sqrt{3}}$.

)								
S	MINIMUM OHMS							
AX	AT LINE VOLTS	AT MAX VOLTS						
.8	22.4 8.9 6.3 6.3 5.3	33.7 13.5 9.5						
2.6		162						
3.1 7.8 2.6	39.4 15.4 46.2 10.9 10.9 9.25	58.3 23.3 70 16.5						
3.1	44.8 17.8 53.5	80.5						
2.6		280						
2.6	106							

NOTE: On each ganged assembly, one unit is reversed to provide protection by having a base at each end of the assembly. This is indicated in the accompanying figures by the relative position of the numbered terminals. Since all units are symmetrically tapped, the terminals on the reversed unit are numerically interchanged, as is plainly indicated on the diagrams.

*Current and power ratings for Types W5H and W5HG2 also apply to Types W5HM and W5HG2M; ratings for other M (cased) models are 17 % less than those given for the uncased models.

FIGURE 2b

G2 Assemblies: 120 volts 50-60 c/s in 0-140 volts out HG2 Assemblies: 240 volts 50-60 c/s in 0-280 volts out

FIGURE 2c

HG2 Assemblies: 120 volts 50-60 c/s in 0-280 volts out

GenRad

ATLANTA • 1 Dunwoody Park, Suite 107 Atlanta, GA 30341 • Tel: 404 394-5380

*BOSTON ● (Sales) Bolton, MA 01740 ● Tel: 617 646-0550 (Service) Concord, MA 01742 ● Tel: 617 369-8770 TWX: 710 347-1051

°CHICAGO • 1067 E. State Parkway, Schaumburg, IL 60195 Tel: 312 884-6900 ● TWX: 910 291-1209

DALLAS ● 777 South Central Expressway, Suite 4-A Richardson, TX 75080 **●** Tel: 214 234-3357 TWX: 910 867-4771

DAYTON • 3300 South Dixie Drive, Dayton, OH 45439 Tel: 513 294-1500 • TWX: 810 459-1785

*LOS ANGÉLES • P.O. Box 19500, 17361 Armstrong Avenue, Irvine Industrial Complex, Irvine, CA 92714 Tel: 714 540 9830 • TWX: 910 595-1762

*NEW YORK ● 380 Midland Avenue, Saddle Brook, NJ 07662 ● Tel: (NJ) 201 791-8990, (NY) 212 964-2722 ● TWX: 710 988-2205

SAN FRANĆISCO • 2855 Bowers Avenue, Santa Clara, CA 95051 • Tel: 408 985-0662 TWX: 910 338-0291

Alaska: Tel: 907 279-5741

*WASHINGTON, DC ● 15 Firstfield Road, Gaithersburg, MD 20760 ● Tel: 301 948-7071 TWX: 710 828-9741

300 Baker Avenue Concord, Massachusetts 01742

*CANADA • 307 Evans Avenue, Toronto, Ontario M8Z 1K2 Tel: 416 252-3395

Montreal: 514 747-1052 • Ottawa: Zenith 88630

***EUROPE, AFRICA, and NEAR EAST ●** P O. Box CH:8034, Zürich, Switzerland ● Tel: (01) 55 24 20 ***Paris**: (01) 797 07 39 **● *München**: (089) 40 18 01 ***Milano**: (02) 20 92 57 **● *Bourne End (UK)**: (06285) 2 66 11

*ASIA, PACIFIC and LATIN AMERICA Concord, MA 01742 USA Cable: GENRADCO CONCORD (MASS)

*Service facilities available

Printed in USA

MRTL

MEDIUM POWER INTEGRATED CIRCUITS FROM MOTOROLA

ISSUE A

MC700 series (+15 to +55°C) MC800 series (0 to +75 and 0 to +100°C) MC900 series (-55 to +125°C)

Medium-power MRTL integrated circuits provide a broad line of low-cost, multi-function, digital circuits. Typical gate speed is 12 ns, with power dissipation averages of 19 mW (input high) and 5.0 mW (inputs low) per logic node. Devices from the MC700 Series have loading factors normalized for compatibility with the low-power mW MRTL devices for ease in mixing the two power levels in a system.

G SUFFIX
METAL PACKAGE
CASE 601

G SUFFIX METAL PACKAGE CASE 603 TO-100

PSUFFIX
PLASTIC PACKAGE
CASE 646

F SUFFIX CERAMIC PACKAGE CASE 606 TO-91

F SUFFIX
CERAMIC PACKAGE
CASE 607

P SUFFIX
PLASTIC PACKAGE
CASE 648

FUNCTIONS AND CHARACTERISTICS

 $(V_{CC} = 3.0 \text{ V} \pm 10\% \text{ for MC900 Series and MC800F, G Series; } 3.6 \text{ V} \pm 10\% \text{ for MC800P Series and MC700 Series, T}_{A} = 25^{\circ}\text{C})$

	Type (1)		Type ① MC800 Series 0 to +75°C	Case	Type 1 MC800 Series 0 to +100°C	Case	Type ① MC900 Series -55 to +125°C	Case	Loading Factor Each Output			Power Dissipation mW typ/pkg	
Function	MC700 Series +15 to +55°C	Case							With mW MRTL	With MRTL	tp ns typ	MC700 and MC800P Series	MC800F,G and MC900 Series
Buffer	MC700	601,606			MC800	601,606	MC900	601,606	80	25	20	25/50 ②	16/45 ②
	MC701	601			MC801	601	MC901	601	16	5	22	80	55
	MC702	601			MC802	601	MC902	601	13	4	14	32	22
	MC703	601,606			MC803	601,606		601,606	16	5	12 14	28/7.5 ②	19/5.0 ② 45
	MC704	601,606			MC804	601,606		601,606	16			65	
	MC705	601,606			MC805	601,606		601,606	13	4	22	75	53 36
	MC706	601,606				601,606		601,606	13 16	5	22 12	52	
	MC707 MC714	601,606 601,606			MC807 MC814	601,606 601,606		601,606	16	5	12	50/15	38/10 (2)
	MC715	603,606,646	MC815	646		603,606		603,606	16	5	12	30/7.5 ② 50/15 ② 55/15 ②	38/10 ② 38/10 ②
J-K Flip-Flop	1110770	000,000,010	MC816		MC816	601,606		601,606		3	30	91/79 ③	62/54 (3)
	MC723	601,606,646	IVICO 10	646	IVICOTO	001,000	MCSTO	001,000	10	_	30	91/79 ③	02/34 9
	MC724.A	607,646	MC824,A	646	MC824	607	MC924	607	16	5	12	100/30 ②	- 76/20 (2)
	MC725	607,646	MC825		MC825	607	MC925	607	16	5	12	60/15 ②	76/20 ② 38/10 ② 130/65 ③
J-K Flip-Flop	MC726	603,606,646	MC826		MC826	603,606	MC926	603,606	16	5	35	100/86 ③	130/65 ③
Quad Inverter	MC727	603,606			MC827	603.606	MC927	603,606	16	5	12	87/30 ②	76/20 ② 19/5.0 ②
	MC729	601,606			MC829	603,606	MC929	601,606	16	5	12	33/7.5 ②	19/5.0 ②
	MC771	607,646	MC871	646	MC871	607	MC971	607	16	5	12	28	72
	MC774	601			MC874	601	MC974	601	16	5	35	100/86 ③	
	MC775	607,646	MC875	646	MC875	607	MC975	607	16	5	20	120	90
	MC777	646	MC877	646					10	3		180	-
1 J-K Flip-Flop, 1 Expander, 2 Buffers		646	MC879	646					-		-	141/124 4	
	MC780	646	MC880	646					10	3		250	110
	MC783	607,646	MC883 MC884	646	MC883 MC884	607 607	MC983 MC984	607 607	13 13	4	22	140 100	75
	MC784	607,646											1
	MC785,A	607,646	MC885,A	646	MC885 MC886	607	MC985	607 607		_	12 12	20/- 2 20/- 2	17/- 2 17/- 2
	MC786 MC787	607,646 646	MC886 MC887	646 646	IVICABO	607	MC986	007			-	138/132 4	1//-
	MC788	607.646	MC888	646	MC888	607	MC988	607	80	25	24	145/56 2	128/42 (2)
	MC789,A	607,646	MC889,A	646	MC889	607	MC989	607	16	5	12	130/15 (2)	128/42 ② 76/20 ②
	MC790	607,646	MC890	646	MC890	607	MC990	607	10	3	35	182/158 ③	124/108 ③
	MC791	607,646	MC891	646	MC891	607	MC991	607	16	5	40	190/160 ③	
Triple 3-Input NOR Gate	MC792	607,646	MC892	646	MC892	607	MC992	607	16	5	12	82/24 ②	57/15 ②
	MC794	646	MC894	646					16	5	55	225	_
Dual Full Adder	MC796	607,646	MC896	646	MC896	607	MC996	607	16	5	60	225	190
	MC797	607,646	MC897	646	MC897	607	MC997	607	16	5	60	225	190
		603,606,646	MC899	646	MC899	603,606	MC999	603,606	80	25	15	50/90 ②	32/90 ②
	MC9701	648	MC9801	648					16	5	25	100	- Ann
	MC9702	646	MC9802	646					10	3	35	182/158 ③	1
	MC9704	648	MC9804	648					6	2 5	125 25	265 150	_
	MC9707	648	MC9807						16	1			
	MC9709	646	MC9809	646					16	5	30	95	
	MC9713	646	MC9813 `	646					16	5	28	100 145	
	MC9714 MC9715	646 646	MC9814 MC9815	646					16 16	5	14 (5) 14 (5)		_

[&]quot;A" suffix devices have insured capability to drive at least one MTTL load or two MDTL loads.

¹ G Suffix denotes Metal Can, F suffix denotes Flat Package, P suffix denotes Plastic Package.

② Inputs High/Inputs Low

³ Only Clock Inputs High/Inputs Low

[@] Only Clock Input high on flip-flop, other element Inputs High/Inputs Low

⁽⁵⁾ Operating Frequency (MHz)

MRTL LOGIC DIAGRAMS

The numbers in parenthesis indicate loading factors for medium-power MRTL devices. The numbers at the end of the terminals indicate the normalized loading factors used for compatability with the low-power mW MRTL devices when mixing the two power levels in a system. Pin numbers

vary with the package types. The alpha pin designations shown on the logic diagrams, used in conjunction with the Package Information Table (following the logic diagrams), make it possible to ascertain pin numbers for a specific device and package.

-FLIP-FLOPS -

CLOCKED INPUT OPERATION

	tn2	t	n + 12
S	С	Q	Q
1	1	Qn3	Qn
1	0	1	0
0	1	0	1
0	0	Qn	Qn3

- 1. Direct input (Co) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted to and the time period subsequent to this transi-
- 3. Qn is the state of the Q output in the time period to.

MC726, MC826, MC926 J-K Flip-Flop

- 1. Direct inputs (Co and So) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted to and the time period subsequent to this transition is denoted tn+1.
- 3. Qn is the state of the Q output in the time period to.
- 4. Clock (T) to remain unchanged.
- 5. The output state will not change when the input state goes from $S_D = \overline{C}_D$ to $S_D =$ CD = 0. The output state cannot be predetermined in the case where the input goes from $S_D = C_D = 1$ to $S_D = C_D = 0$.

CLOCKED INPUT OPERATION(1)

	t _n 2	t	1 + 12
S	С	Q	Q
1	1	Qn3	Qn
1	0	1	0
0	1	0	1
0	0	Q _n	Qn(3)

DIRECT INPUT OPERATION()

Sp	Co	Q	Q
0	0	(§)	6
1	0	1	0
0	1	0	1
1	1	1	1

MC774, MC874, MC974 J-K Flip-Flop

CLOCKED INPUT OPERATION(1)

Q,

0

1

Clock pulse fall time must be within the range of 10 ns to 100 ns on all J-K Flip-Flops except MC926, MC826F, and MC826G which have a range

а	(1)	з —	s a	16 (5) g
b	(2)	5 — 0	Т		
C	(1):	3 —0	c c _D ā	16 (5) e
f	(1):	3			

- С Q 1 Qn3 0 0 1 n 0 0 $\overline{\mathbb{Q}}_n$ Q_n(3)
- 1. Direct input (Co) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted to and the time period subsequent to this transition is denoted tn+1.
- 3. Q_n is the state of the Q output in the time period t_n.

MC790, MC890, MC990 Dual J-K Flip-Flop

g (1) 3 — -dc cD a ; (1) 3 -

CLOCKED INPUT OPERATION

(each Flip-Flop)

	tn2	t	n + 12
S	С	Q	Q
1	1	Q _n 3	Qn
1	0	1	0
0	1	0	1
0	0	Qn	Q _n ③

- 1. Direct input (Cp) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted to and the time period subsequent to this transition is denoted to a
- 3. Qn is the state of the Q output in the time period to.

MC702, MC802, MC902 R-S Flip-Flop

a (1) 3 ---Q -13(4)ā - 13 (4) e c(1)3-

R	S	Qn + 1
0	0	Qn
0	1	1
1	0	0
1	1	0

MC791, MC891, MC991 **Dual J-K Flip-Flop**

(A)

MC715P · MC815P

ISSUE A

A monolithic device consisting of two 3-input positive logic NOR gates. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

NUMBER IN PARENTHESIS INDICATES MW MRTL LOADING FACTOR

NUMBER IN BRACKETS INDICATES LOADING FACTOR

			TEST V	DLTAGE 1	VALUES							
	@ Test		(Volts)									
	Temperature	Vin	Von	V _{BOT}	V _{off}	Vcc						
	(0°C	0.960	0.930	1.80	0.570	3.60						
MC815P	+25°C	0.910	0.880	1.80	0.500	3.60						
	(+75°C	0.820	0.790	1.80	0.450	3.60						
	(+15°C	0.865	0.865	1.80	0.475	3.60						
MC715P	+25°C	0.850	0.850	1.80	0.460	3.60						
	+55°C	0.800	0.800	1.80	0.430	3.60						

ELECTRICAL CHARACTERISTICS

TEST PROCEDURES ARE SHOWN FOR ONE GATE ONLY THE OTHER GATE IS TESTED IN THE SAME MANNER

				MC8	15P	To	est Limit	S			MC7	15 P	T	est Limit	ts			TES	ST VOLTA	GE		
		Under	0°	C	+25	°C	+75	°C		+15	°C	+25	°C	+55	°C		API	PLIED TO	PINS LIS	TED BELO	W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	V _{on}	V _{BOT}	Voff	V _{CC}	Gnd
Input Current	^I in	2 12 13	-	600	-	600	-	570	μAde		500	-	500	-	470	;⊥Adc	2 12 13	-	12.13 2.13 2.12	-	11	4
Output Current	I _{A5}	3	3.00	-	3.00	-	2.85	-	m Ade	2.65	-	2.65	-	2.50	-	m Adc	-	3	-	2.12.13	11	4
Output Voltage	V _{out}	3 3	-	500	-	400	-	400	mVdc	-	400		300	-	320	mVdc	~	12 13 2	-	-	11	2.4.13 2.4.12 4.12.13
Saturation Voltage	V _{CE(sat)}	3 3 3	-	400	-	300	-	350	mVdc	-	300	- - -	290		320	m Vdc	-	-	12 13 2	-	11	2.4.13 2.4.12 4.12.13
Switching Time	t _{on} • t _{off}	3, 13	-	-	-	48	-	-	ns	-	-	-	48	-	-	ns	Pulse In 13	Pulse Out 3	-	-	11	2.4.12

Ground input pins of gate not under test. Other pins not listed are left open.

MOTOROLA Semiconductor Products Inc.
BOX 20912 • PHOENIX, ARIZONA 85036 • A SUBSIDIARY OF MOTOROLA INC.

MC717P · MC817P

QUAD 2-INPUT GATES

ISSUE A

A monolithic device consisting of four 2-input positive logic NOR gates. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

NUMBER IN PARENTHESIS
INDICATES MW MRTL LOADING FACTOR

$$\begin{array}{ll} t_{pd} = & 27 \text{ ns} \\ P_D = & 20 \text{ mW (Input High)} \\ & 5.0 \text{ mW (Inputs Low)} \end{array}$$

			TEST V	OLTAGE V	ALUES					
	@ Test	(Volts)								
	Temperature	Via	Von	V _{BOT}	Voff	Vcc				
	0°C	0.880	0.850	1.80	0.500	3.60				
MC817P	+25°C	0.830	0.800	1.80	0.460	3.60				
	+75°C	0.740	0.710	1.80	0.400	3.60				
	(+15°C	0.865	0.865	1.80	0.475	3.60				
MC717P	+25°C	0.850	0.850	1.80	0.460	3.60				
	+55°C	0.800	0.800	1.80	0.430	3.60				

ELECTRICAL CHARACTERISTICS

TEST PROCEDURES ARE SHOWN FOR ONE GATE ONLY. THE OTHER GATES ARE TESTED IN THE SAME MANNER.

				MC8	17P	Te	est Limit	:s			MC7	17P	To	est Limi	ts			TES	T VOLTA	GE		
		Pin Under	0 °	C	+25	i°C	+75	°C		+1	5°C	+2	5°C	+55	°C		APF	LIED TO	PINS LIS	TED BELO)W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	In	1 2	-	150 150	-	140 140	-	140 140	. Adc μ Adc	-	150	-	150 150	-	150 150	. Adc μAdc	1 2	-	2 1		11	4 4
Output Current	I _{A4}	3	570	-	570	-	535	-	,. Ade	570	-	570	-	570	-	,.Adc	-	3	-	1.2	11	4
Output Voltage	V _{out}	3	-	400 400	-	350 350	-	300 300	mVdc mVdc	-	400 400	-	300 300	-	320 320	mVdc mVdc	-	1 2	-	-	11 11	2,4
Saturation Voltage	V _{CE(sat)}	3		250 250	-	250 250	-	250 250	mVdc mVdc	-	220 220	-	230 230	-	320 320	mVac mVdc	-	-	1 2	-	11	2.4
													ı		1		Pulse In	Pulse Out				
Switching Time	t _{on} + t _{off}	1,3	-		-	90	-	~	ns	-	-	-	90	-	-	ns	1	3	-	-	11	2,4

Ground input pins of gates not under test. Other pins not listed are left open.

(AA)

MC718P · MC818P

ISSUE A

A monolithic device consisting of two 3-input positive logic NOR gates. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.

tpd = 27 ns PD = 12 mW (Input High)

2.5	mW	(Inputs	Low)

ELECTRICAL CHARACTERISTICS

TEST PROCEDURES ARE SHOWN FOR ONE GATE ONLY THE OTHER GATE IS TESTED IN THE SAME MANNER

	@ Test			(Volts)		
	Temperature	Vin	V _{on}	V _{BOT}	Voff	V _{CC}
	O°C	0.880	0.850	1.80	0.500	3.60
MC818P	+25°C	0.830	0.800	1.80	0.460	3.60
	(+75°C	0.740	0.710	1.80	0.400	3.60
	(+15°C	0.865	0.865	1.80	0.475	3.60
MC718P	+25°C	0.850	0.850	1.80	0.460	3.60
	+55°C	0.800	0.800	1.80	0.430	3.60
est Limits			TES	ST VOLTA	GE	

TEST VOLTAGE VALUES

				MC8	18P	Te	st Limit	S			MC7	18P	T	est Limi	ts			TE	ST VOLTA	GE		
		Pin Under	0°	C	+25	i°C	+75	°C		+1	5°C	+25	5°C	+55	°C		API	PLIED TO	PINS LIS	TED BELO	W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	Voff	V _{CC}	Gnd
Input Current	I _{in}	2 12 13	-	150	-	140	- - -	140	,, Ade	-	150	-	150	-	150	μAdc	2 12 13	-	12, 13 2, 13 2, 12	-	11	4
Output Current	I _{A4}	3	570	-	570	-	535	-	,. Ade	570	-	570	-	570		.r Adc	3	-	-	2,12,13	11	4
Output Voltage	V _{out}	3 3 3	-	400		350	-	300	mVde	-	400		300	-	320	niVdc	-	12 13 2	-	-	11	2,4,13 2,4,13 4,12,13
Saturation Voltage	V _{CE(sat)}	3 3 3	-	250	-	250	-	250	mVdc	-	220	-	230	-	320	niVdc	-	-	12 13 2	-	11	2,4,13 2,4,12 4,12,13
																	Pulse In	Pulse Out				
Switching Time	ton * toff	3, 13	-	-	-	90	-	-	1.8	-	-		90	-	-	ns	13	3	-	-	11	2.4.12

Ground unused input pins. Other pins not listed are left open.

MC719P · MC819P

ISSUE A

A monolithic device consisting of two 4-input positive logic NOR gates. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

12 = 2 + 3 + 13 + 14

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR

PD = 27 ns PD = 13 mW (Input High) 2.5 mW (Inputs Low)

			TEST V	OLTAGE 1	VALUES	
	@ Test			(Volts)		
	Temperature	V _{in}	Von	V _{BOT}	Voff	V _{CC}
	/ 0°C	0.880	0.850	1.80	0.500	3 20
MC819P	+25°C	0.830	0.800	1.80	0.460	3 60
	(+75°C	0.740	0.710	1.80	0.400	3.50
	(+15°C	0.865	0.865	1.80	0.475	3, 5)
MC719P	+25°C	0.850	0.850	1.80	0.460	3.+0
	+55°C	0.800	0.800	1.80	0 430	3.00

ELECTRICAL CHARACTERISTICS

TEST PROCEDURES ARE SHOWN FOR ONE GATE ONLY THE OTHER GATE IS TESTED IN THE SAME MANNER.

		D:		MC	19P	Te	est Limit	ts			MC7	19 P	T	est Limi	ts				ST VOLTA			
		Pin Under	0	°C	+25	5°C	+75	°C		+1	5°C	+25	i°C	+55	5°C		API	PLIED TO	PINS LIS	TED BELO	W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	Voff	Vcc	Gnd
Input Current	I	2 3 13 14	-	150	-	140	-	140	. Adc	-	150	-	150		150	"Ad.	2 3 13 14	-	3.13.14 2.13.14 2.3.14 2.3.13	-	11	± ±
Output Current	I _{A4}	12	570	-	570	~	535	-	,. Ade	570	-	570	-	570		· _ Adc	-	12	-	2.3.13. 14	11	4
Output Voltage	V _{out}	12 12 12 12		400	-	350	-	300	mVdc	-	400	-	300	-	320	mVdc	- - -	13 14 2 3	-	-	11	2,3,4,14 2,3,4,13 3,4,13,14 2,4,13,14
Saturation Voltage	V _{CE(sat)}	12 12 12 12	-	250	-	250	-	250	mVdc	-	220		230	-	320	mVdc	-		13 14 2 3	-	11	2.3,4,14 2.3,4,13 3,4,13,14 2 ±.13,14
Switching Time	t _{on} - t _{off}	2.12	-	-	-	90	-		ns	-	_	-	90	-	-	Le	Pulse In 2	Pulse Out 12		-	11	3.4.13.14

Ground inputs of gate not under test. Other pins not listed are left open.

MOTOROLA Semiconductor Products Inc.

BOX 20912 • PHOENIX, ARIZONA 85036 • A SUBSIDIARY OF MOTOROLA INC.

3001-36 PRINTED IN USA 4-74 IMPERIAL LITHO 843473 3500 D5 9081

MC722P · MC822P

ISSUE A

A J-K flip-flop with direct clear and direct set inputs in addition to the clocked inputs.

DIRECT INPUT OPERATION (1) SD Q 0 0 2 0 1 0 0 1 0 1

		INPU	
t,	1	t _{n+}	1
S	С	Q	Q
1	1	Qn	Q _n
1	0	1	0
0	1	0	1
0	0	Qn	Qn

1. Clock (T) to remain unchanged.

0 0

- 2. The output state will not change when the input state goes from $S_D = \overline{C}_D$ to $S_D = C_D = 0$. The output state cannot be predetermined in the case where the input goes from $S_D = C_D = 1$ to $S_D = C_D = 0$.
- 3. Direct inputs (Sp and Cp) must be low.

0 = low state

1 = high state

 $t_{\text{n}} = \text{time period prior to negative transition of clock}$

 $t_{n+1} = time\ period\ subsequent\ to\ negative\ transition\ of$ clock pulse

 $\mathbf{Q}_n = \text{state of } \mathbf{Q} \text{ output in time period } \mathbf{t}_n$

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR

 $f_{Tog} = 1.0 \; \mathrm{MHz}$ P_D = 24 mW (Only Clock Input High) 20 mW (Inputs Low)

			TEST V	OLTAGE	VALUES	
	@ Test			(Volts)		
	T emperature	Vin	Von	V _{BOT}	Voff	Vcc
	0°C	0.880	0,850	1,80	0.500	3.60
MC822P	+25°C	0.830	0.800	1.80	0.460	3.60
	+75°C	0.740	0.710	1.80	0.400	3.60
	(+15°C	0.865	0.865	1.80	0.475	3.60
MC722P	+25°C	0.850	0.850	1.80	0.460	3.60
	+55°C	0.800	0.800	1.80	0.430	3.60

ELECTRICAL CHARACTERISTICS

				MC8	322P	Te	est Limit	ts			MC7	22 P	T	est Limi	ts			TES	ST VOLTA	GE		
		Pin Under	0,	°C	+2	i°C	+75	°C		+1	5°C	+2	5°C	+55	o°C		API	PLIED TO	PINS LIS	TED BELO	IW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	Voff	V _{CC}	Gnd
Input Current	2I _{in} I _{in}	3 9	-	300 150	-	280 140	- 4	280 140	μAdc	-	300 150	-	300 150	-	300 150	μAdc	2 3 9	-	3, 13 12 -		11	4
		12. 13	-		-	v	-		1	-	 	-	•	-	 	V	12 13	-	9	-		V
Output Current	I _{A4}	6 10	570 570	-	570 570	-	535 535	-	μAdc μAdc	570 570	-	570 570	-	570 570	-	μAdc μAdc	6 10	9 12	12 9	-	11 11	4 4
Saturation Voltage	V _{CE} (sat)	6 6*# 6*#	-	250	-	250	-	250	mVdc	-	220	-	230	-	320	m Vdc	-	12 13	-	9 3 3, 13	11	4
		6*## 10 10*##	-		-		-			-		-		-			-	3, 13 9 3	-	12 13		
		10*#	-		-		-			-		_		-			-	3, 13	_	3, 13	¥	

Pins not listed are left open.
* = Clock Pulse to pin 2, see Figure 1.

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. $\rm t_r$ is not critical but should be $<1.0~\mu\rm s.$
- B. Biases of all other inputs are applied. $V_{\rm CC}$ is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to $V_{\rm L},\,t_{\rm f}$ must remain within 10 ns minimum and 200 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC822P

TA	V _L	V _H
+ 25°C	+ 0.460 V + 2.0 mV	+ 0.850 V + 2.0 mV
0°C	+ 0.500 V · 2.0 mV	+ 0.900 V ± 2.0 mV
+ 75°C	-0.400 V + 2.0 mV	+ 0.760 V ± 2.0 mV

MC722P

TA	V _L	V _H
+ 25°C	$+ 0.460 V \pm 2.0 mV$	+ 0.900 V ± 2.0 mV
+ 15°C	+0.475 V ± 2.0 mV	$+0.915 \text{ V} \pm 2.0 \text{ mV}$
+ 55°C	+ 0.430 V = 2.0 mV	+ 0.850 V ± 2.0 mV

MOTOROLA Semiconductor Products Inc.

MC723P · MC816P

ISSUE A

A J-K flip-flop with a direct clear input in addition to the clocked inputs.

CLOCKED INPUT OPERATION ① Q 0 0 0 0 0 Q-Q-3

- 1. Direct input (CD) must be low.
- 2. The time period prior to the negative transition of the the time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1} .
- 3. Q_n is the state of the Q output in the time period t_n .
- 4. Clock pulse fall time must be < 100 ns.

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR FOR MW MRTL NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MRTL

 $f_{Tog} = 4 \text{ MHz}$

PD = 91 mW (Only Clock Input High) 79 mW (Inputs Low)

			TEST	VOLTAGE	VALUES	
	@ Test			(Volts)		
	Temperature	V _{in}	V _{on}	V _{BOT}	Voff	V _{CC}
	(0°C	0.960	0.930	1.80	0.570	3,60
MC816P	+25°C	0.910	0.880	1.80	0.500	3.60
	(+75°C	0.820	0.790	1.80	0.450	3.60
	+15°C	0.865	0.865	1.80	0, 475	3.60
MC723P	+25°C	J 550	3.550	1,60	6, 463	3.60
	(+55°C	0.800	0.000	1.80	1, 430	3.60

FLECTRICAL CHARACTERISTICS

				MC8	16P	Te	st Limit	ts			MC7	23P	Ţ	est Limi	ts				TEST VOLT			
		Pin Under	0 9	°C	+25	°C	+75	°C		+15	°C	+25	i°C	+55	o C			PPLIED T	O PINS L	ISTED BEI	.OW:	-
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	Vist	V _{CC}	Gnd
Input Current	2I Iin	2 3 9 12	-	1200		1200		1140 570	μAdc	-	1000	1 1 1 1	1000		940	μAdc	2 3 9		3, 12 10 5	-	11	1
Output Current	I _{A3}	5 5 10	1.80	- - -	1.80	-	1.71	-	mAdc	1.65	-	1.65	-	1.56	-	mAdc	-	5 5,9 10	a. 12 12 3	9	11	4.5%
Output Voltage	V _{out}	10 10*## 10* 10*##	-	500	-	400	- - -	400	mVdc		400		300		320	m Vdc	-	3. 12 3		12 3, 12	11	4.5 4.9
Saturation Voltage	V _{CE(sat)}	5 10 10	-	400	- - -	300		350	mVdc		300	-	290	-	320	mVdc	-	-	- 3		11 V	4,5 4.5 4.10
Turn-On Voltage	v _{on}	10*##4		-	880	-	790	-	mVdc	865	-	850	-	800	-	mVdc	-	3, 12 12 -	-	3 3.12	11	4.9

Pins not listed are left open.

= Pin 10 LOW ## = Pin 5 LOW

Set by a momentary ground prior to the application of the negative-going Clock pulse.

§ = Silicon diode to ground.

* = Clock Pulse to pin 2, See Figure 1.

 $\Delta = MC816P \ pin \ 10 \ loaded \ by: \ 1.56 \ mAdc \ (0°C \ and \ +75°C) \\ 1.65 \ mAdc \ (+25°C) \\ 1.56 \ mAdc \ (+25°C) \\$

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. t_r is not critical but should be $<1.0~\mu \rm s$.
- B. Biases of all other inputs are applied, $V_{\rm CC}$ is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to $V_{\rm L},\,t_{\rm f}$ must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC816P

	TA	VŁ	V _H
-	- 25°C	$+0.500 \text{ V} \pm 2.0 \text{ mV}$	+0.930 V ± 2.0 mV
-	0°C	+0.570 V = 2.0 mV	+0.980 V ~ 2.0 mV
-	- 75°C	+0.450 V = 2.0 mV	+0.840 V = 2.0 mV

MC723P

TA	V _L	VH
+ 25°C	$+ 0.460 V \pm 2.0 \text{ mV}$	+0.900 V ± 2.0 mV
+ 15°C	$+ 0.475 V \pm 2.0 \mathrm{mV}$	$+0.915 \text{ V} \pm 2.0 \text{ mV}$
+ 55°C	$+ 0.430 \text{ V} \pm 2.0 \text{ mV}$	$\pm 0.850 \text{ V} \pm 2.0 \text{ mV}$

ISSUE B

MC724AP · MC824AP

MC724P · MC824P

Vcc 110 140 R2 ₹ R2 \$ R2 ₹ R2 ₹ \$R1 \$R1 \$R1 \$R1 R1\$ R1\$ R1\$ R1\$ 90 120 02 06 67 100 130 40 GND TYPICAL RESISTANCE VALUES $R1 = 450 \Omega$ $R2 = 640 \Omega$

This monolithic device consists of four 2-input positive logic NOR gates. Each may be used independently, or cross-coupled to form bistable elements.

The MC724AP and MC824AP are compatible with MTTL and MDTL devices. Extra electrical tests are performed to insure that the devices will drive two MDTL loads and at least one MTTL load using any MTTL family.

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one gate. The other gates are tested in the same manner.

Tests and limits in shaded areas apply to the "A" suffix devices only, and insure capability to drive two MDTL loads or at least one MTTL load.

				TEST V	OLTAGE	/CURR	ENT V	ALUES			
				(V		(mA)					
		@ Test nperature	Vin	Von	V _{BOT}	Voff	Vcc	IOL	Тон		
		0°C	0.960	0.930	1.80	0.570	3.60	2 80			
MC824P, M	C824AP	+25°C	0.910	0.880	1.80	0.500	3.60	280			
		+75°C	0.820	0.790	1.80	0.450	3.60	2 66			
		(+15°C	0.865	0.865	1.80	0.475	3 60	2 80	-0 12		
MC724P, M	C724AP	+25°C	0.850	0.850	1.80	0.460	3.60	280	-0.12		
		+55°C	0.800	0.800	1.80	0.430	3.60	2.66	-0.12		
24P, MC724AP	Test Limit	s	TEST VOLTAGE/CURRENT APPLIED TO PINS LISTED BELOW:								
+25°C	+55°C		<u> </u>	APPLI	ED IOP	INS LIS	I ED BI	LUW:			

				MC	824P, I	MC824	AP Test	Limits			MC	724P, N	IC724A	P Test	Limits				ST VOL					
		Pin	0	°С	+2	5°C	+75	°C		+15	o _C	+2	5°C	+55	o _C		·	APPLI	ED TO P	INS LIS	I ED BE	LOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	VBOT	Voff	VCC	OL	OH	Gnd
Input Current	l _{in}	1 2	-	600 600	-	600 600		570 570		-	500 500	-	500 500	_	470	μAdc μAdc	1 2	-	2	-	11			4
Output Current	1 _{A5}	3	-3.0		-30		-2 85	-	mAdc	-2.65	-	-2.65		-2.50	-	mAdc	-	3		1,2	11			4
Output Voltage	Vout	3	_	500 500	-	400 400	-	400 400	mVdc mVdc	-	400 400	_	300 300		320 320	mVde mVde		1 2			11			2,4
	VOL	3 3	-	500	-	500 500	-	550 550		-	500 500	_	500 500		550 550	mVac mVdc	_	_	1 2		11	3		2,4
	VOH	3	2.60	-	2.60	-	250	-	Vdc	2.60		2.60		2.50		Vdc	-			1,2	11			4
Saturation Voltage	VCE(sat)	3 3	-	400	-	300 300	_	350 350	mVac mVdc		300 300	-	290 290		320 320	mVdc mVdc	~	-	1 2	-	11			2,4
																	Pulse In	Pulse Out						
Switching Time	ton + toff	1,3		-		48			ns	-		-	48		-	ns	1	3	-		11			2,4

Ground input pins of gates not under test. Other pins not listed are left open.

MOTOROLA Semiconductor Products Inc.

-SHIFT REGISTERS-MC705, MC805, MC905 MC784, MC884, MC984 Dual Half-Shift Register MC783, MC883, MC983 Half-Shift Register **Dual Half-Shift Register** (without inverter) ь (1) 3 -- 13 (4) i c (3) 9 ā - 13 (4) g a(1)3d (1) 3 -- 13 (4) n a (1) 3 -- 13 (4) n - 16 (5) h b(3)9b (2) 6 -₫ - 13 (4) 1 c(1)3-₫ - 13 (4) 1 c (1) 3 -- 16 (5) m $i = \overline{g} (b + c)$ $g = \overline{i}(c + d)$ e(1)3-- 13 (4) h 0 e (1) 3 — MC706, MC806, MC906 Half-Shift Register Q - 13 (4) h f (3) 9 -(without inverter) ā -13 (4) i g(1)3 -- 13 (4) j ₫ g (1) 3 -- 16 (5) i b (1) 3 -0 – 13 (4) i c (2) 6 ā - 13 (4) g d(1)3 $n = \overline{1}(a + b)$ $n = \overline{1}(a + b)$ $I = \overline{n} (c + b)$ $I = \overline{n} (c + b)$ $i = \vec{g} (b + c)$ $g = \overline{i} (c + d)$ MC794, MC894 Serial-Parallel Shift Register

MAXIMUM RATINGS (TA = 25°C)

Rating	Symbol	Value	Unit
Input Voltage		<u>+</u> 4	Vdc
Power Supply Voltage (Pulsed ≤ 1 second)	_	+6	Vdc
Operating Temperature Range MC900 Series MC800F,G Series MC800P Series MC700 Series	TA	-55 to +125 0 to +100 0 to +75 +15 to +55	°C
Storage Temperature Range Metal Can, Flat Package Plastic Package	T _{stg}	65 to +150 55 to +125	°C

INSTRUCTIONS FOR USE OF PACKAGE INFORMATION TABLE

MC900, MC800, and MC700 Series Medium-Power MRTL devices are available in the packages pictured in the following table as indicated on the line following each device type number. Plastic packaged devices are available in the MC700/800 Series only.

Pin numbers for any of the following devices and packages may be determined by:

- 1. Find the device among the logic diagrams appearing on the preceding pages (grouped by function). Note the alpha pin designations for the device.
- 2. Find the device type number in the left hand columns of the "Package Information Table".
- The letters in the columns following the type number and below the drawing of the desired package indicate the correct pin numbers for
 the specific package by their numbered positions beneath the package drawing. (These letters are the same as indicated on the logic diagram for the device.)
- 4. Notes: Blanks in an area following the type number and directly beneath a package indicate the device is not available in that package. A dash indicates this pin or lead is not connected nor otherwise utilized for this device and package.
 - * indicates this pin number is the ground connection for this device and package.
 - # indicates this pin number is the V_{CC} connection for this device and package.

PACKAGE INFORMATION TABLE

(See instructions on preceding page.)

G SUFFIX

			4						CA (1	SE 4 p		7	
				TO	66 -91 pin								
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	5		d	*		01		1	#				

	ı	NET	FAL	L PA	ACK	AC	ES		
	-		7			0-1	603 (00 oin)		
	CA (8	SE 3 pii				7			
1	2	3	4	5	6	7	8	9	1
b	-	d	*	g		i	#		
a	b	С	*	е	-	g	#		
а	-	С	*	е	-	g	#		
	STREET, SQUARE,	THE OWNER OF THE OWNER,	-	100000	THE RESERVE	1		THE R. LEWIS CO., LANSING	100

	Type No.		Pin N	lo
	MC700	MC800	MC900	
	MC701	MC801	MC901	
-	MC702	MC802	MC902	
	MC703	MC803	MC903	
	MC704	MC804	MC904	
	MC705	MC805	MC905	
	MC706	MC806	MC906	
	MC707	MC807	MC907	
	MC714	MC814	MC914	
	MC715	MC815	MC915	
	-	MC816	MC916	
	MC723		_	
	MC724,A	MC824,A	MC924	
	MC725	MC825	MC925	
	MC726	MC826	MC926	

MC726	MC826	MC926	
		Pin f	No
MC727	MC827	MC927	ı
MC729	MC829	MC929	
MC771	MC871	MC971	
MC774	MC874	MC974	
MC775	MC875	MC975	
MC777	MC877	-	ı
MC779	MC879	-	
MC780	MC880	-	ı
MC783	MC883	MC983	
MC784	MC884	MC984	
MC785,A	MC885,A	MC985	
MC786	MC886	MC986	
MC787	MC887		
MC788	MC888	MC988	
MC789,A	MC889,A	MC989	ı

1010700	1010000	1010300
MC789,A	MC889,A	MC989
		Pin I
MC790	MC890	MC990
MC791	MC891	MC991
MC792	MC892	MC992
MC794	MC894	
MC796	MC896	MC996
MC797	MC897	MC997
MC799	MC899	MC999
MC9701	MC9801	
MC9702	MC9802	-
MC9704	MC9804	_
MC9707	MC9807	-
MC9709	MC9809	_
MC9713	MC9813	
MC9714	MC9814	-
MC9715	MC9815	_
MC9719,A	MC9819,A	

			200					201		NO.						20
								3-3	98	255		1	100			
									WI		100	100				
	-	b	C	*	е	f	-		i	j	#	1	m	n		-
	-	b	С	*	е	1	-	-	i	j	#	1	100 M	-		
	-	b	C	*	е	-			i	j	#	1	-	-		
	a	b	С	*	е	f	g	h	ì	j	#	1	m	n		To the
		b	C	*	е	f	g	-	i	j	#	1	m	n		
	-	b	C	*	-	f		-	i	j	#	1	n	1		
0.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			3			100				133				To the last		
							-51		2				617			
	а	b	C	*	е	f	g	h	i	j	#	1	m	n		
						1	134	130								
	a	b	С	*	е	f	g	h	i	j	#		m	n		
	-		С	*	е	f	g	h	i	j	#	1	m	n		
	a	b	С	*	е	f	g	h	i	j	#	1	m	n		
	-	-	C	*	е	f	g	h	i	j	#	1	m	n		
	a	b	C	*	е	f	9	h	i	j	#	1	m	n		
	a	b	C	*	e	f	g	h		j	#	1	-	n		
	a	b	C	*	6	f	g	h	i	j	#	1	m	n		
	-	b	C		е	f	g		i	i	#	1	m	n		
	а	b	C	*	е	f	g	h	i	j	#		m	n		
	a	b	c	*	е	f	9	h	ì	i	#	1	m	n		
	a	b	C	*	е	f	g	h	i	j	#	1	m	n		
٥.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	a	b	С	*	е	f	g	h	i	ĵ	#	1	m	n		
	a	b	c		e	f	g	h	î	j	#	1	m	n		
	a	b	c	*	е	f	9	h	î	j	#	1	m	n		
	a	b	C	*	е	f	g	h	i	j	#	1	m	n		
		b	C	*	е	f	-	h	i	j	#	1	m	n		
	-	b	C	*	е	f		h	i	j	#	1	m	n		
	-	b	C	*	e	f	_	-	i	j	#	1	m	-		
		b	C	*	е	f	g	h	i	i	k	1	#	n	p	q
	a		C	*	е	f	g	h	i	j	#	1	m	n		
	a	b					g	h	i	j	k	1	#	n	p	q
		b	C	*	e	f	3					1	#	n	p	q
	a	-	-	*	e	f	g	h	i	j	k		H	100		
	a	b	С	100	1000	-		h	i	j	K	1	m	n		
	a	b	C	*	6	f	g	200	-	-	-			100		
	a a a	b b	c c	*	e e	f	g g	h	i	j	#	1	m	n		
	a a a a	b b b	c c c	* *	e e e	f	g	h	i	j	#	1	m	n		

				ASE TO	-91								
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	b		d	*		g	-	i	#				
				1000									
-	b	С	d	*	-	-	h	-	#				
	b	С	d	*	-	g	h	i	#				
-	b	С	d	*		g	h	i	#				
-	b	C	d	*		g		i	#				
-	b	С	d	*	-	g	h	-	#				
-	b	С	d	*	-	g	h	i	#				
b		m	C	*	9	f	i	j	#				
-	I	b	C		-	е	i	j	#				
-	1	b	C	*	-	e	i	j	#				
a	b	С	f	9	е	*	h	i	j	n		m	#
1	b	C	-	m	n	*	е	f	9		i	j	#
1	m	b	С	*	-	f	i	j	#				
1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	С	d	*	f	9	h	i	#				
-	b	C	d	*	-	9	h	i	#				
a	b	С	f	g	е	*	h	i	j	n	1	m	#
		118											
1	n	a	n	b	C	*	g	h	е	f	j	i	#
16	13			8		13	18						
						100							
n	m	1	С	b	a	*	е	f	g	j	i	h	#
1	-	n	a	b	C	*	е	f	g	j	-	h.	#
a	b	C	f	g	e	*	h	i	j	n	1	m	#
1	b	C	-	m	n	*	е	f	g		i	j	#
			-										
1	m	n	a	b	C	*	е	f	g	h	ì	j	#
h	i	j	6	f	g	100	a	b	C		m	n	#
1	2	3	4	5	6	7	8	9	10	11	12	13	-
1	m	n	a	b	С	*	е	f	g	h	i	j	#
1	m	n	a	b	C	*	е	f	g	h	i	j	#
1	m	а	b	n	C	*	е	f	g	h	i	j	#
-	-					*				-		1	11
1	1	h	-	f	C	*	е	b	-	n	m :	1	#
1	m	n		b *	C		е	f		h	i	j	#
i	f	j	8		C	m	1	b	#				
					-	-	-	-					
1					-	-		-					
		-			-	-	-						
	1	1		-		-	-						
								-					
-	-	N. V.				1		-					
100			-			-		-					
-	-	-		-	-	-			1		-	1	-

		SE			T	7	3.5		
	(8	3 pi	1)		444	1			
1	2	3	4	5	6	7	8	9	10
b		d	*	g		i	#	灩	
a	b	С	*	e	-	g	#	爾	
а		С	*	е		g	#		
b	c	d	*	-	h	-	#		
b	C	d	*	g	h	i	#		
b	С	d	*	g	h	i	#		
b	C	d	*	g	-	i	#		
b	c	d	*	g	h	-	#		
b	C	d	*	g	h	i	#		
b	1	m	C *		6	f	i	j	#
1	b	С	*	е	i	j	#		
1	b	С	-	е	i	j	#		
9			100	111			100		
				*					
-1	m	b	C		-	f	i	j	#
1	2	3	4	5	6	7	8	9	10
a	b	c	d	*	f	g	h	i	#
b	c	d	*	g	h	i	#		
		12							9
а	b	С	*	е	f	g	#		
16						100			
					1				
100	1								
	100					1			
							9		
-									
		1							
							100		
1	2	3	4	5	6	7	8	9	10
	11.3	19			1				-
	1		100		1				
	100			7				1	
									1
	10						1		1
i	f	j	е	*	C	m	1	b	#
								18	
	190	100	1						
	1								
									100
					100				
	1						1		10

MRTL INTEGRATED CIRCUITS

MOTOROLA Semiconductor Products Inc.

