Compito di Reti Logiche 16/02/2017

Cognome e Nome:	Matricola
Prima della consegna barrare una delle due caselle sotto a consegna.	stanti. L'opzione scelta non può essere modificata dopo
Chiedo che la mia prova scritta sia corretta e valutata su n questo appello. Prendo atto che, a seguito della mia de re valida al termine di questo appello e <u>non potrà</u> essere	ecisione, la mia prova scritta cesserà di esse-
Chiedo che la mia prova scritta sia corretta e valutata di diritto a ed intenzione di rimandare la prova orale all'appl l mio diritto a rimandare la prova orale sarà oggetto di la capo se la verifica darà esiti negativi (per qualunque r	pello straordinario di Aprile. Prendo atto che verifica, e che dovrò ripetere l'intero esame

Esercizio 1

Descrivere e sintetizzare, secondo il modello strutturale con elementi neutri di ritardo, la rete sequenziale asincrona che riconosce la sequenza di stati di ingresso 10, 11. Sintetizzare le reti combinatorie in forma PS.

Esercizio 2

L'unità XXX comunica con l'unità YYY tramite 3 fili aventi la seguente funzione:

- ➤ Il filo *clock* è il clock comune a XXX e YYY.
- ➤ Il filo bidirezionale *data* serve a XXX e YYY per scambiarsi bit in seriale.
- ➤ Il filo *dir* comanda la direzione di scambio dei dati, mettendo in conduzione o in alta impedenza le uscite di XXX *e di* YYY. Quando *dir* vale 1, XXX utilizza *data* per trasmettere a YYY. Quando *dir* vale 0, XXX tiene l'uscita *data* in alta impedenza ed attende dati da YYY, che può a sua volta utilizzare l'uscita.

Più precisamente, un ciclo di comunicazione si svolge come segue:

- i) XXX invia all'unità YYY un numero naturale N a 8 bit e mette e tiene la linea dir a 1 mentre invia i bit costituenti il numero N; i bit vengono emessi al ritmo di un bit per ogni periodo di clock.
- ii) XXX riporta la linea *dir* a 0 al clock successivo a quello in cui ha emesso l'ultimo degli *N* bit (in tal modo anche l'ultimo bit permane sulla linea *data* per un periodo di clock) ed entra in un ciclo da cui esce solo quando riceve una notifica da YYY.
- iii) YYY notifica, **dopo un tempo non noto** a XXX, di aver ricevuto gli 8 bit; la notifica consiste nel trasmettere (**dopo un tempo non noto**) il bit 1 sulla linea *data* e nel mantenerlo per tutto il tempo in cui *dir* permane a 0

Descrivere e sintetizzare il modulo XXX in modo che nella prima comunicazione invii il numero *N*=0 ad emetta, a ogni nuova comunicazione, il numero naturale successivo a quello precedentemente emesso, e così via all'infinito. **Nella sintesi di XXX si disegni con precisione** la porzione di parte operative inerente il registro ENNE di cui sotto

Suggerimento

```
module XXX(dir, data, clock, reset_);
input          clock, reset_;
output          dir;
inout          data;
reg          DIR; assign dir=DIR;
reg [7:0]         ENNE; always@(reset_==0) ENNE<=0;
reg          OUT;
assign ...
...</pre>
```

Esercizio 1 – Soluzione

La tabella di flusso del riconoscitore è quella della figura a sinistra. Adottando le codifiche S_0 = 00, S_1 = 01, S_2 = 11, si rende necessario uno stato ponte fra S_2 e S_0 , nel passaggio dello stato d'ingresso da 'B11 a 'B01. Poiché per lo stato di ingresso 'B01 lo stato successivo corrispondente allo stato S_1 è non specificato, quest'ultimo può essere usato come stato ponte. La tabella diventa quindi quella a destra:

$\setminus x_1 x$	0				
	00	01	11	10	Z
S_0	S_0	S_0	S_0	S_1	0
S_1	S_0		S ₂	S_1	0
S_2		S_0	S_2	S_1	1

Con riferimento al modello strutturale con elementi neutri di ritardo, le mappe di Karnaugh relative alle uscite della rete CN1 sono riportate a lato. Le forme PS corrispondenti (esenti da alee statiche) sono:

$$a_1 = x_1 \cdot x_0 \cdot y_0,$$

$$a_0 = (x_1 + y_1) \cdot (\overline{x}_0 + y_0).$$

Per la rete CN2, è immediato verificare che: $z = y_1$.

$X_1 X_0$					
	00	01	11	10	Z
S_0	S_0	S_0	S_0	S_1	0
S_1	S_0	S_0	S_2	S_1	0
S_2		S ₁	S_2	S ₁	1

x_1	· ·				
y_1y_0	00	01	11	10	Z
00	00	00	00	01	0
01	00	00	11	01	0
11		01	11	01	1
10					-
$a_1 a_0$					

Esercizio 2 - Soluzione

```
module XXX(dir, data, clock, reset );
              clock, reset;
 input
 output
              dir;
 inout
              data;
 reg
              DIR;
                      assign dir=DIR;
 reg [7:0]
              ENNE;
 req
              OUT;
                      assign data=(DIR==1)?OUT:1'BZ; //FORCHETTA
 reg [3:0]
              COUNT;
 req [2:0]
              STAR; parameter S0=0, S1=1, S2=2, S3=3, S4=4, S5=5;
 always @(reset ==0) #1 begin DIR<=0; ENNE<=0; COUNT<=8; STAR<=S0; end
 always @(posedge clock) if (reset ==1) #3
  casex (STAR)
   S0: begin DIR<=1; COUNT<=COUNT-1; OUT<=ENNE[0];
             ENNE \le \{ENNE[0], ENNE[7:1]\}; STAR <= (COUNT == 1) ?S1:S0; end
   S1: begin DIR<=0; ENNE<=ENNE+1; COUNT<=8; STAR<=S2; end
   S2: begin STAR<=(data!==1)?S2:S0; end
  endcase
endmodule
```