Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 136 558 A1**

EUROPEAN PATENT APPLICATION

(43) Date of publication: 26.09.2001 Bulletin 2001/39

(51) Int CI.7: **C12N 15/31**, C12N 15/82, C07K 14/195, A01H 5/00

(21) Application number: 00870051.0

(22) Date of filing: 22.03.2000

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States: **AL LT LV MK RO SI**

AL LI LV WK ROS

(71) Applicants:

 "VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK", afgekort "V.I.T.O."
 2400 Mol (BE)

- LIMBURGS UNIVERSITAIR CENTRUM 3590 Diepenbeek (BE)
- VRIJE UNIVERSITEIT BRUSSEL 1050 Brussel (BE)
- Sirpa Orvokki Kärenlampi 70400 Kuopio (FI)
- Arja Irmeli Tervahauta 74700 Kiuruvesi (FI)
- (72) Inventors:
 - Borremans, Brigitte 3360 Bierbeek (BE)
 - Bousmans, Nathalie
 1640 Sint-Genesius-Rode (BE)

- Jacobs, Michel
 1190 Brussels (BE)
- Kärenlampi, Sirpa Orvokki 70400 Kuopio (FI)
- Tervahauta, Arja Irmeli 74700 Kiuruvesi (FI)
- Mergeay, Maximilien 2470 Retie (BE)
- Van Der Lelie, Daniel 2400 Mol (BE)
- Vangronsveld, Jaco 3590 Diepenbeek (BE)
- (74) Representative: Van Malderen, Joelle et al Office Van Malderen, Place Reine Fabiola 6/1 1083 Bruxelles (BE)

Remarks:

The sequence listing, which is published as annex to the application documents, was filed after the date of filing. The applicant has declared that it does not include matter which goes beyond the content of the application as filed.

(54) Genetically modified plants and plant cells comprising heterologous heavy metal transport and complexation proteins

(57) The present invention relates to genetically modified plants and plant cells, comprising nucleotide

sequences encoding heterologous heavy metal transport protein.

Fig. 1

Description

10

15

20

25

30

35

50

55

Field of the invention

[0001] The present invention is in the field of genetically modified plants and plants cells having improved heavy metal tolerance and accumulation due to increased plant growth and biomass production based upon the expression of exo-cytoplasmic heavy metal resistance system (efflux and complexation).

[0002] More particularly, the present invention is related to genetically modified plants and plant cells, comprising nucleotide sequences encoding heterologous heavy metal transport proteins and exocytoplasmic metal binding proteins of various origins.

Background of the invention and state of the art

[0003] Heterologous nucleic acid sequences, coding for heavy metal resistance, were functionally expressed in plants, to improve their tolerance against these toxic elements. The heterologous heavy metal resistance genes, in casu represent either heavy metal efflux systems or functions involved in heavy metal sequestration.

[0004] Until present, only cytoplasmic functions that provide increased heavy metal resistance were expressed in plants:

1. Expression of heterologous metallothionein and phytochelatines in plants

[0005] Metallothioneins and phytochelatines, which are rich in cystein sulfhydryl residues that bind and sequester heavy metal ions in very stable complexes (Karin, 1985), are found in eukaryotic organisms, but recently also in *Synechococcus*. Various MT genes - mouse MTI, human MTIA (alpha domain), human MTII, Chinese hamster MTII, yeast CUP1, pea PsMTA - have been transferred to tobacco, cauliflower or *Arabidopsis thaliana* (Lefebre et al., 1987; Maiti et al., 1988, 1989, 1991; Misra and Gedamu, 1989; Evans et al., 1992; Yeargan et al., 1992; Brandle et al., 1993; Pan et al., 1993; Elmayan and Tepfer, 1994; Hattori et al., 1994; Pan et al., 1994a, b; Hasegawa et al., 1997). As a result, varying degrees of enhanced Cd tolerance have been achieved, being maximally 20-fold compared with the control. Metal uptake levels were not dramatically changed; in some cases there were no differences, in others maximally 70% less or 60% more Cd was taken up by the shoots or leaves. Only one study has been reported on a transgenic plant generated with MT of plant origin. When pea (*Pisum sativum*) MT-like gene PsMTA was expressed in *Arabidopsis thaliana*, more Cu (several-fold in some plants) accumulated in transformed than in control plants (Evans et al., 1992).

2. Heterologous expression of heavy metal reduction

[0006] The only example known is the *mer* operon of *Tn21* of *Shigella* flexneri, whose expression in plants results in the reduction mercury (Hg²⁺) in its metallic form (Hg⁰). This metallic mercury is volatilized out of the cell (Rugh *et al.* 1996).

40 Aims of the invention

[0007] The present invention aims to provide a new way in obtaining plants and plant cells with improved heavy metal tolerance characteristics, and possibly heavy metal accumulation.

[0008] Another aim of the present invention is to provide such plants and plant cells which allow increased heavy metal resistance for revegetation and phytostabilisation of heavy metal contaminated sites.

[0009] A further aim of the present invention is to provide plants and plant cells, characterised by increased heavy metal accumulation combined with increased heavy metal tolerance which allow phytoextraction of heavy metals (inclusive rhizofiltration).

[0010] A last aim of the present invention is to provide a method which results in the possibility to improve important agriculture crop species with high biomass production in their heavy metal tolerance and accumulation.

Summary of the invention

[0011] The present invention is related to genetically modified plants and plant cells, comprising nucleotide sequences encoding one or more heterologous heavy metal transport and/or sequestration proteins of various prokaryotic or eukaryotic origins.

[0012] Said transporters are preferably membrane proteins, which result in reduced toxicity due to the efflux of heavy metals from the cells, being preferably selected from the group consisting of P-type ATPases, 3 component efflux

pumps, ABC transporters and CDF proteins (Cation Diffusion Facilitator proteins).

[0013] The family of the P-type ATPases is preferred, because of their advantage that for functional resistance only one protein is required.

[0014] Said proteins are found in both prokaryotic and eukaryotic organisms including plants.

[0015] Another advantage of said transporters is found as resistance mechanisms against many toxic trace elements of environmental concern, such as copper, cadmium, lead, zinc and silver.

[0016] Unexpectedly, it was not necessary to make structural changes in the coding sequence of said proteins, like it is necessary for the merA gene in order to obtain functional expression in plants (Rugh et al., 1996).

[0017] Preferably, the gene incorporated in the plants or plant cells is a gene encoding a bacterial P-type ATPase, preferably the cadmium ATPase, such as the *cadA* gene.

[0018] According to a second embodiment of the present invention, the system is based upon a prokaryotic heavy metal sequestration system, such as the *pcoA* family protein (more preferably the *pcoA* gene).

[0019] The various nucleotide sequences encoding heterologous heavy metal transport proteins can be deleted partially from non-specific nucleotide sequences which are not involved in efficient heavy metal transport or accumulation.

[0020] Said genetic sequences could be incorporated in a vector for the transfection of said plants or plant cells, such as the pBI121 vector, as described in the figure 1, said vector being advantageously an *E. coli/Agrobacterium/* plant shuttle vector, said vector comprising preferably a CaMV 35S promoter (a strong promoter constitutively expressed in plants).

[0021] Preferably, the system was introduced in the plants, such system allowing the transformation of plants with the *Agrobacterium tumefaciens* technology.

Short description of the drawings

[0022] Fig. 1 is a schematic representation of the cloning of cadA in pBl121.

[0023] Fig. 2 is a leaf disk-test with Nt WT SR1 (wild type), Nt PBI14 (pBI121) and Nt Cd 309 (pBI121-cadA) on 350 μ M Cd and control medium without Cd.

[0024] Fig. 3 represents the regeneration and growth of Nt WT SR1 (wild type), Nt PBI14 (pBI121) and Nt Cu122 (pBI121-pcoA) on 100 μM Cu, the plant growth being shown from above (left) and top (right).

Detailed description of the invention

Heterologous expression of cadA

[0025] The heavy metal efflux system was CadA, a member of the P-type heavy metal efflux ATPase family of proteins found both in prokaryotic and eukaryotic organisms. P-type ATPases are all cation pumps, either for uptake, for efflux or for cation exchange. These enzymes have a conserved aspartate residue that is transiently phosphorylated from ATP during the transport cycle, hence the name 'P-type' ATPase (Silver et al., 1993).

[0026] The cadA gene from Staphylococcus aureus was amplified by PCR and cloned in the pBI121 vector.

40 [0027] During PCR, appropriate plant specific translation signals were added as well as Xbal and BamHI restriction sites, allowing cloning of the insert in the correct orientation.

[0028] The cadA fragment was cloned in the Escherichia coli/Agrobacterium/plant shuttle vector pBI121. In this vector, cadA expression is derived from the CaMV35S promotor, a strong promoter constitutively expressed in plants. The system was introduced in the plant Nicotiana tabacum cv. Petit Havana line SR1 via an Agrobacterium tumefaciens transformation (Horsch et al., 1985). The selection marker used was kanamycine.

[0029] Kanamycine resistant transformants were obtained after transformation. All the kanamycine resistant transformants tested showed an increased resistance to cadmium (tested by a leaf disk assay) compared to the wild type and transformant with the pBI121 vector without gene (fig. 1). This proves that the CadA P-type ATPase can be functionally expressed in plants, resulting in an increased resistance of the plant to the trace element (in casu cadmium).

[0030] It can be expected that for other members of the P-type ATPase family, which form a family of closely related proteins (both structural and functional) the same positive effect on resistance to specific trace elements will be found. Until present, P-type ATPases from both prokaryotic and eukaryotic have been identified that were found to interact with Zn, Cd, Pb, Cu and Ag (see table 1). It can not be excluded that P-type ATPases, encoding resistance to other trace elements including radioisotopes, will be identified.

55

10

15

20

25

30

35

45

Table 1:

Gene	Sequence ID	Metals	Reference
CadA	P20021	Cd, Zn and Pb	Nucifora et al. 1989 Rensing e al. 1998
ZntA	P37617	Zn and Pb	Rensing et al. 1997 Rensing e al. 1998
CopF	Non available	Cu	van der Lelie and Borremans unpublished
PbrA	Not available	Pb	Borremans et al, 2000
SilP	AF067954, nucleotide sequence <i>sil</i> operon	Ag	Gupta <i>et al</i> , 1999
Menkes' disease	Q04656	Cu	Vulpe <i>et al.</i> 1993
Wilsons' disease	U08344	Cu	Pethrukin et al. 1993

Heterologous expression of pcoA

[0031] The other heavy metal resistance system is involved in exo-cytoplasmic heavy metal sequestration. The tested gene here was pcoA from Escherichia coli (Brown et al., 1995), which was also cloned in pBI121 and introduced in Nicotiana tabacum through an Agrobacterium tumefaciens transformation in a way similar as described for cadA. Kanamycine resistant transformants were obtained after transformation. All the kanamycine resistant transformants tested showed an increased resistance to copper (tested by a leaf disk assay) compared to the wild type and transformant with the pBI121 vector without gene (Fig. 3).

[0032] The pcoA protein has many closely related members, found to be involved in resistance against Cu. In addition, other proteins of these copper resistance determinants have also been shown to be involved in Cu sequestration, such as PcoC/CopC and CopE. These proteins, although different in structure, are also active in the bacterial periplasm and possess similar heavy metal binding sites as pcoA. In addition, a CopE like protein, referred to as SiIE, was identified in the Salmonella sil operon encoding for Ag-resistance. The potential genes whose heterologous expression can result in improved resistance, are summarised in table 2.

Genes	Sequence ID	Metals	References
cop operon (copA, C) e.g. of Pseudomonas syringae	M19930	Cu	Mellano and Cooksey (1988)
pco operon (pcoA, C) of e.g. E. coli	G619126	Cu	Brown <i>et al.,</i> 1995
PcoE	X83541	Cu	Brown <i>et al.,</i> 1995
sil operon of Salmonella	AF067954, nucleotide sequence sil operon	Ag	Gupta <i>et al.,</i> 1999

REFERENCES

[0033]

- Silver S. et al. (1993). Human Menkes X-chromosome disease and the Staphylococcal cadmium-resistance AT-Pase: a remarkable similarity in protein sequence; Molecular Microbiology 10(1): 7 - 12.
- Horsch R.B. et al. (1985). A simple and general method for transferring genes into plants; Science 227: 1229 1231.
- Karin M (1985). Metallothioneins: Proteins in search of function; Cell 41, 9 10.
- Brown N.L. et al. (1995). Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004; Molecular Microbiology 17(6): 1153 - 1166.
- Mellano, M.A. et al. (1988). Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. Tomato. J. Bacteriol. 170: 2879-2883

10

5

15

20

25

30

35

40

45

50

- Vulpe C.D., et al. (1993). Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase; Nature genet. 3: 7 13.
- Petrukhin, K. et al. (1993). Mapping, cloning and genetic characterization of the region containing the Wilson disease gene; Nature Genet. 5 (4): 338-343.
- Rugh C.L. et al. (1996). Mercuric reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene; Proc.Natl.Acad.Sci.USA 93: 3182 - 3187.
- Lefebvre, D. D. et al, 1987. Mammalian metallothionein functions in plants. Bio/Technology 5, 1053-1056.

5

15

20

25

30

35

40

45

50

- Maiti, I. B. et al, 1988. Seed-transmissable expression of mammalian metallothionein in transgenic tobacco. Biochemical and Biophysical Research Communications 150, 640-647.
- Maiti, I. B. et al, 1989. Inheritance and expression of the mouse metallothionein gene in tobacco. Plant Physiology 91, 1020-1024.
 - Maiti, I. B. et al. 1991. Light-inducible and tissue-specific expression of a chimeric mouse metallothionein cDNA gene in tobacco. Plant Science 76, 99-107.
 - Misra, S. et al. 1989. Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theoretical and Applied Genetics 78, 161-168.
 - Evans, K. M. et al 1992. Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function. Plant Molecular Biology 20, 1019-1028.
 - Yeargan, R. et al 1992. Tissue partitioning of cadmium in transgenic tobacco seedlings and field grown plants expressing the mouse metallothionein I gene. Transgenic Research 1, 261-267.
 - Nucifora G. et al. (1989) Cadmium resistance from Staphylococcus aureus plasmid pl258 cadA gene results from a cadmium-efflux ATPase. Proc. Natl. Acad. Sci. U.S.A. 86 (10): 3544-3548
 - Rensing C., et al. (1998). Pb²⁺ (II)-translocating P-type ATPases. J. Biol. Chem. 273: 32614-32617.
 - Rensing C., et al. (1997). The *zntA* gene of *Escherichia coli* encodes a Zn(II)-translocating P-type ATPase. Proc. Natl. Acad. Sci. U.S.A. 94 (26): 14326-14331
 - Gupta, A., et al. 1999. Molecular basis for resistance to silver cations in Salmonella. Nature Medicine 5: 183-188.

Annex to the application documents - subsequently filed sequences listing

[0034]

		SEQUENCE DISTING
	<110>	Vlaamse Instelling voor Technologisch Onderzoek (V
10	<120>	GENETICALLY MODIFED PLANTS AND PLANT CELLS COMPRISING HETEROLOGOUS HEAVY METAL TRANSPORT AND COMPLEXATION PROTEINS
15	<130>	P.VITO.25/EP
	<140>	00870051.0
	<141>	2000-03-22
20	<160>	2
	<170>	PatentIn Ver. 2.1
	<210>	1
25	<211>	2217
	<212>	DNA
	<213>	Artificial Sequence
	<220>	
30	<221>	CDS
	<222>	(16)(2196)
	<223>	cadA
	<220>	
25		misc_feature
		(1)(6)
		Xba I Restriction site
	<220>	
40	<221>	misc_feature
		(2212)(2217)
		BamH I Restriction site
45	<220>	
45	<223>	Description of Artificial Sequence: Staphylococcus
		aureus cadA gene with BamHI and XbaI restriction
		sites and plant specific translation signals.
50	<220>	
	<221>	misc_signal
	<222>	(2206)(2208)
	<223>	start signal
55	<220>	

5	<222	?> (2	sc_s 203) art	(2	205)												
10	<400 tota		ta c	cacc	_	Sei	-			val				-	ı Glı	a gaa 1 Glu	51
15	_		_		cgg Arg	-					-	_		-	_		99
20	_				aat Asn			_	_			_		-			147
25	_				gct Ala				_								195
30	_	_			aaa Lys 65			-		_							243
	_				aat Asn						-						291
35				_	gag Glu				_								339
40	_				cta Leu		_										387
45					aac Asn												435
50					Tyr 145												483
55	_		-		gac Asp	_			_	_		_	_	-			531

5		acc Thr		_	_			_	_	_		_			_		579
10		gca Ala 190		_	_	_		_	_			_	_				627
15		tcc Ser															675
20		cga Arg						_						_	_		723
25		gat Asp		_		-								_	_		771
		att Ile			-		_		_			_	-				819
30		tct Ser 270								-	_						867
35	_	ctt Leu							_	_						_	915
40		gat Asp															963
45		gag Glu	_	_		_		_		_	_						1011
50		act Thr			_												1059
55		cta Leu 350															1107

5	-	gtt Val		-	-	-			-	_		_				1155
10	_	tcg Ser	_	_		_	_	_		_	_				_	1203
15	_	aaa Lys			_							~	_		•	1251
20		ttt Phe				_						-		-		1299
25		ttt Phe 430	_	_				_	_	_	_					1347
		att Ile													_	1395
30	_	atg Met			_		_			_				_		1443
35		gaa Glu													_	1491
40		gga Gly					_		_				_	_		1539
45		gtt Val 510								-						1587
50		aac Asn														1635
55		ggc														1683

5	_														atg Met		1731
10			-					_		_		•			gta Val		1779
15	_		-		_		_	_	_		_	_			gat Asp		1827
20				_		_			_		_	-	_		ggc	_	1875
25		_		_	_				_				-		att Ile 635	_	1923
30	_			_		_	_		_				_	_	att Ile	_	1971
35												_	_	-	ctc Leu	_	2019
40	-													_	atc Ile		2067
					-										acc Thr		2115
45															gca Ala 715		2163
50		-		cga Arg 720	_	_	_		_	_		tago	jtaat	ga t	gttt	ggatc	2216
55	С																2217

5	<210> 2 <211> 727 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: Staphylococcus aureus cadA gene with BamHI and XbaI restriction sites and plant specific translation signals.
15	<pre><400> 2 Met Ser Glu Gln Lys Val Lys Leu Met Glu Glu Glu Met Asn Val Tyr 1 5 10 15 Arg Val Gln Gly Phe Thr Cys Ala Asn Cys Ala Gly Lys Phe Glu Lys</pre>
20	Asn Val Lys Lys Ile Pro Gly Val Gln Asp Ala Lys Val Asn Phe Gly 35 40 45
25	Ala Ser Lys Ile Asp Val Tyr Gly Asn Ala Ser Val Glu Glu Leu Glu 50 55 60 Lys Ala Gly Ala Phe Glu Asn Leu Lys Val Ser Pro Glu Lys Leu Ala 65 70 75 80
30	Asn Gln Thr Ile Gln Arg Val Lys Asp Asp Thr Lys Ala His Lys Glu 85 90 95
35	Glu Lys Thr Pro Phe Tyr Lys Lys His Ser Thr Leu Leu Phe Ala Thr 100 105 110 Leu Leu Ile Ala Phe Gly Tyr Leu Ser His Phe Val Asn Gly Glu Asp
40	Asn Leu Val Thr Ser Met Leu Phe Val Gly Ser Ile Val Ile Gly Gly 130 135 140
45	Tyr Ser Leu Phe Lys Val Gly Phe Gln Asn Leu Ile Arg Phe Asp Phe 145 150 155 160
50	Asp Met Lys Thr Leu Met Thr Val Ala Val Ile Gly Ala Thr Ile Ile 165 170 175
	Gly Lys Trp Ala Glu Ala Ser Ile Val Val Ile Leu Phe Ala Ile Ser 180 185 190
55	Glu Ala Leu Glu Arg Phe Ser Met Asp Arg Ser Arg Gln Ser Ile Arg 195 200 205

5	Ser	Leu 210	Met	Asp	Ile	Ala	Pro 215	Lys	Glu	Ala	Leu	Val 220	Arg	Arg	Asn	Gly
	G1n 225	Glu	Ile	Ile	Ile	His 230	Val	Asp	Asp	Ile	Ala 235	Val	Gly	Asp	Ile	Met 240
10	Ile	Val	Lys	Pro	Gly 245	Glu	Lys	Ile	Ala	Met 250	Asp	Gly	Ile		Val 255	Asn
15	Gly	Leu	Ser	Ala 260	Val	Asn	Gln	Ala	Ala 265	Ile	Thr	Gly	Glu	Ser 270	Val	Pro
	Val	Ser	Lys 275	Ala	Val	Asp	Asp	Glu 280	Val	Phe	Ala	Gly	Thr 285	Leu	Asn	Glu
20	Glu	Gly 290	Leu	Ile	Glu	Val	Lys 295	Ile	Thr	Lys	Tyr	Val 300	Glu	Asp	Thr	Thr
25	Ile 305	Thr	Lys	Ile	Ile	His 310	Leu	Val	Glu	Glu	Ala 315	Gln	Gly	G1u	Arg	Ala 320
	Pro	Ala	Gln	Ala	Phe 325	Val	Asp	Lys	Phe	Ala 330	Lys	Tyr	Tyr	Thr	Pro 335	Ile
30	Ile	Met	Val	11e 340	Ala	Ala	Leu	Val	Ala 345	Val	Val	Pro	Pro	Leu 350	Phe	Phe
35	Gly	Gly	Ser 355	Trp	Asp	Thr	Trp	Val 360	Tyr	Gln	Gly	Leu	Ala 365	Val	Leu	Val
	Val	Gly 370	Cys	Pro	Cys	Ala	Leu 375	Val	Ile	Ser	Thr	Pro 380	Ile	Ser	Ile	Val
40	Ser 385	Ala	Ile	Gly	Asn	Ala 390	Ala	Lys	Lys	Gly	Val 395	Leu	Val	Lys	Gly	Gly 400
45	Val	Tyr	Leu	Glu	Lys 405	Leu	Gly	Ala	Ile	Lys 410	Thr	Val	Ala	Phe	Asp 415	Lys
	Thr	Gly	Thr	Leu 420	Thr	Lys	Gly	Val	Pro 425	Val	Val	Thr	Asp	Phe 430	Glu	Val
50	Leu	Asn	Asp 435	Gln	Val	Glu	Glu	Lys 440	Glu	Leu	Phe	Ser	Ile 445	Ile	Thr	Ala
55	Leu	Glu 450	Tyr	Arg	Ser	Gln	His 455	Pro	Leu	Ala	Ser	Ala 460	Ile	Met	Lys	Lys

	•															
5	Ala 465	Glu	Gln	Asp	Asn	Ile 470	Pro	Tyr	Ser	Asn	Val 475	Gln	Val	Glu	Glu	Phe 480
·	Thr	Ser	Ile	Thr	Gly 485	Arg	Gly	Ile	Lys	Gly 490	Ile	Val	Asn	Gly	Thr 495	Thr
10	Tyr	Tyr	Ile	Gly 500	Ser	Pro	Lys	Leu	Phe 505	Lys	Glu	Leu	Asn	Val 510	Ser	Asp
	Phe	Ser	Leu 515	Gly	Phe	Glu	Asn	Asn 520	Val	Lys	Ile	Leu	Gln 525	Asn	G1n	Gly
15	Lys	Thr 530	Ala	Met	Ile	Ile	Gly 535	Thr	Glu	ГÀЗ	Thr	11e 540	Leu	Gly	Val	Ile
20	Ala 545	Val	Ala	Asp	Glu	Val 550	Arg	Glu	Thr	Ser	Lys 555	Asn	Val	Ile	Gln	Lys 560
	Leu	His	Gln	Leu	Gly 565	Ile	Lys	Gln	Thr	11e 57C	Met	Leu	Thr	Gly	Asp 575	Asn
25	Gln	Gly	Thr	Ala 580	Asn	Ala	Ile	Gly	Thr 585	His	Val	Gly	Val	Ser 590	qaA	Ile
30	Gln	Ser	Glu 595	Leu	Met	Pro	Gln	Asp 600	Lys	Leu	Asp	Tyr	Ile 605	Lys	Lys	Met
	Gln	Ser 610	Glu	Tyr	Asp	Asn	Val 615	Ala	Met	Ile	Gly	Asp 620	Gly	Val	Asn	Asp
35	Ala 625	Pro	Ala	Leu	Ala	Ala 630	Ser	Thr	Val	Gly	Ile 635	Ala	Met	Gly	Gly	Ala 640
40	Gly	Thr	Asp	Thr	Ala 645	Ile	Glu	Thr	Ala	Asp 650	Ile	Ala	Leu	Met	Gly 655	Asp
40	Asp	Leu	Ser	Lys 660	Leu	Pro	Phe	Ala	Val 665	Arg	Leu	Ser	Arg	Lys 670	Thr	Leu
45	Asn	Ile	Ile 675	Lys	Ala	Asn	Ile	Thr 680	Phe	Ala	Ile	Gly	Ile 685	Lys	Ile	Ile
	Ala	Leu 690	Leu	L eu	Val	Ile	Pro 695	G1y	Trp	Leu	Thr	Leu 700	Trp	Ile	Ala	Ile
50	Leu 705	Ser	Asp	Met	Gly	Ala 710	Thr	Ile	Leu	Val	Ala 715	Leu	Asn	Ser	Leu	Arg 720

Leu Met Arg Val Lys Asp Lys 725

Claims

5

15

25

30

35

40

45

50

55

- 1. Genetically modified plants and plant cells, comprising nucleotide sequences encoding one or more heterologous heavy metal transporters or sequestration proteins.
- 2. Genetically modified plants or plant cells, the nucleotide sequence encoding the heterologous heavy metal transport proteins being genes encoding heavy metal transporters, such as transporters selected from the group consisting of P-type ATPase, 3 components efflux pumps or ABC transporters.
- 3. Genetically modified plants or plant cells according to the claim 2, characterised in that the nucleotide sequence encodes for cadmium ATPase.
 - **4.** Genetically modified plants or plant cells according to the claim 2 or 3, wherein the nucleotide sequence is *cad A* or a portion thereof allowing heavy metal transport.
 - 5. Genetically modified plants or plant cells according to the claim 1, **characterised in that** the nucleotide sequence encoding the heavy metal sequestration protein belongs to the copA family.
- 6. Use of the genetically modified plants or plant cells according to any of the preceding claims for phytoremediation of contaminated sites, especially for the revegetation, phytostabilisation, phytoextraction of soils and/or water contaminated with trace elements.

Fig. 1

Fig. 2

Fig. 3

EUROPEAN SEARCH REPORT

Application Number EP 00 87 0051

	DOCUMENTS CONSID	DERED TO BE RELEVANT		
Category	Citation of document with of relevant pass	indication, where appropriate, sages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (int.Cl.7)
A	prospective tools RESOURCES, CONSERV vol. 18, no. 1, 1 November 1996 (19135-149, XP00401667 * abstract * * page 137, line 1 * page 138, line 37	21	1,2,6	C12N15/31 C12N15/82 C07K14/195 A01H5/00
х	WO 00 04760 A (THE UNIVERSITY OF PENNS 3 February 2000 (20	SYLVANIA)	1,2	
A	* abstract * * page 7, line 1 - * page 8, line 18 - * page 9, line 25 - * page 11, line 1 - * page 15, line 3 - * page 41 - page 47 * page 55 - page 58 1,2,9,10,15,16,26 *	line 5 * - page 9, line 10 * - line 32 * - line 7 * - line 12 * 7; example 4 *	3,4,6	TECHNICAL FIELDS SEARCHED (Int.CI.7) C12N C07K
A	* abstract * * page 2, line 4 - * page 10, line 1 -	THE UNIVERSITY OF per 1997 (1997-12-04) page 7, line 14 * page 13, line 14 * page 38, line 23 *	1,6	A01H
	The present search report has l	Doon drawn up for all claims		
	Place of search	Date of completion of the search	'	Examiner
	BERLIN	28 August 2000	Fuci	hs, U
X : partio Y : partio docur A : techn O : non-v	TEGORY OF CITED DOCUMENTS culturly relevant if taken alone culturly relevant if combined with anothern to the same category cological background written disclosure nediate document	T: theory or principl E: earlier patent do after the filing dat D: document cited i L: document cited f &: member of the sa document	e underlying the in cument, but publis le n the application or other reasons	vention hed on, or

PO FORM 1503 03.82 (P04C)

Application Number

EP 00 87 0051

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
see sheet B
All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:
1 and 6 partially and 2-4 completely

EUROPEAN SEARCH REPORT

Application Number EP 00 87 0051

	DOCUMENTS CONSID			
Category	Citation of document with i of relevant pass	indication, where appropriate, ages	Relevan to claim	
Х	WO 98 04700 A (THE UNIVERSITY OF CALL 5 February 1998 (19	1,6		
A	* page 7, line 22 - * page 8, line 28 -	line 7 * - page 3, line 19 * - line 24 * - page 9, line 9 * - page 18, line 12	*	
D,A	NUCIFORA, G. ET AL. from Staphylococcus cad A gene results ATPase" PROCEEDINGS OF THE SCIENCES OF USA, vol. 86, no. 10, Ma	58 ux		
	3544-3548, XP000938 * the whole documer		TECHNICAL FIELDS SEARCHED (Int.CI.7)	
A	Heavy Metal Resiste ANNUAL REVIEW OF MI	s 753-789, XP000925		
	The present search report has t	boon drawn up for all claims		
	Place of search	Date of completion of the se	arch	Examiner
	BERLIN	28 August 20	00 Fi	uchs, U
CA X : partic Y : partic	TEGORY OF CITED DOCUMENTS cularly relevant if taken alone sularly relevant if combined with anothent of the same category nological background	T : theory or E : earlier par after the her D : documen	principle underlying the tent document, but putiling date at the dited in the application to tet of or other reason	re invention blished on, or on

EPO FORM 1503 03.82 (P04

LACK OF UNITY OF INVENTION SHEET B

Application Number

EP 00 87 0051

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claims: 1 and 6 partially and 2-4 completely

Genetically modified plants and plant cells, comprising nucleotide sequences encoding one or more heterologous heavy metal transporters; said nucleotide sequences encoding heavy metal transporters selected from the group consisting of P-type ATPases, 3 components efflux pumps or ABC transporters; said nucleotide sequence encoding cadmium ATPase; said nucleotide sequence being cadA or a portion therof allowing heavy metal transport and use of said plants or plant cells for phytoremediation of contaminated sites, revegetation, phytostabilisation, phytoextraction of soils / water contaminated with trace elements.

2. Claim: 1 and 6 partially and 5 completely

Genetically modified plants and plant cells, comprising nucleotide sequences encoding one or more heterologous heavy metal sequestration proteins; said nucleotide sequences encoding heavy metal sequestration proteins belonging to the copA family and use of said plants or plant cells for phytoremediation of contaminated sites, revegetation, phytostabilisation, phytoextraction of soils / water contaminated with trace elements.

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 87 0051

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

28-08-2000

cite	Patent document ed in search repo	i ort	Publication date		Patent family member(s)	Publication date
WO	0004760	Α	03-02-2000	NONE		
WO	9745000	A	04-12-1997	AU CA US	1142397 A 2187728 A 5846821 A	05-01-199 29-11-199 08-12-199
WO	9804700	A	05-02-1998	AU US	3741597 A 5965792 A	20-02-199 12-10-199
			e Official Journal of the Euro			
			MANAGEMENT OF THE PROPERTY OF			