

1. Características do Som

2. Digitalização de áudio

• Digital: conversão de sinais elétricos em bits.

- Transformação eletrônica
 - Sinal de áudio.
 - Analógico.

2.1 - Princípios de Digitalização

- Conversão analógico-digital.
 - Voltagem e tempo.
- Amostragem: realiza uma leituras periódicas e instantâneas da voltagem em espaços de tempo uniformes.
- Quantização: converte os valores analógicos amostrados em valores digitais.

13

2.2 - Amostragem

- O quanto deve ser amostrado?
 - Reconstruir exatamente o sinal = infinitas amostras.
 - Poucas amostras = sinal distorcido.

15

2.2 - Amostragem

- O quanto deve ser amostrado?
 - Teorema de Nyquist: "Para obter uma representação precisa de um sinal analógico, sua amplitude deve ser amostrada a uma taxa mínima igual ou superior ao dobro da componente de mais alta freqüência presente no sinal". (taxa de Nyquist).

16

2.2 - Amostragem

Aliasing.

2.2 - Amostragem

- Filtros anti-aliasing.
 - Removem componentes de alta frequência.
- Em sistemas multimídia:
 - A largura de banda do canal é normalmente menor que a largura de banda do sinal.
 - A taxa de amostragem é determinada pelo largura de banda do canal.
 - A taxa de Nyquist será baseada na freqüência mais alta suportada pelo canal.

2.3 - Quantização

- Processo pelo qual os valores analógicos das amostras tomadas da amplitude do sinal são convertidos em valores digitais.
- Para reconstruir exatamente o sinal:
 - Necessidade de um número infinitos de bits.
 - Usando um número finito de bits:
 - Representa-se cada amostra através de um número correspondente de níveis discretos.

19

2.3 - Quantização

- Amostragem e Quantização
 - Número de amostras x número de níveis.
 - Compromisso.
 - Quantização resulta em distorções.
 - Como descobrir o número ótimo de bits por amostra?

21

23

2.4 - Digitalização

- Taxas comuns de amostragem:
 - 8.000Hz, 11.025Hz, 22.050Hz e 44.100Hz (CD).
- Quantidades comuns de bits por amostra:
 - 4, 8, 16 e 24.
- Canais de som:
 - 1 (mono), 2 (stereo), 3, 5, 7, ...
- Qualidade de CD:
 - Amostras a 44.100Hz (4,1 KHz), 16 bits por amostra e 2 canais de som (estéreo).

22

2.4 - Digitalização

- Circuito que realiza amostragem e quantização:
 - Conversor analógico-digital (analog to digital converter – ADC).
 - Caminho inverso: DAC. Usado na reprodução de áudio digital.
- Normalmente implementado em hardware.

2.4 - Digitalização

- Após a captura
 - os dados amostrados e quantizados devem ser "guardados" em algum formato – mídia de representação.
 - WAV e MP3, por exemplo.

2.5 - Digitalização

- Aspectos quantitativos.
 - Quantos bytes serão necessários para armazenar 1 segundo de áudio, capturado com qualidade de CD?

25

2.5 - Digitalização

- Aspectos quantitativos.
 - Quantos bytes serão necessários para armazenar 1 segundo de áudio, capturado com qualidade de CD?
 - 1(segundo) * 44.100 (taxa de amostragem) * 2 (16 bits por amostra) * 2 (som estéreo) = 176.400 bytes.
 - Necessidade para transmissão: 1,41Mbps!

26

13. Compresão de Áudio

3.1 - PCM

- Explora quantização não-linear.
 - Amplitudes maiores = maiores intervalos de quantização.
 - Amplitudes menores implicam em maior percepção de ruído de amostragem.
- Desempenho:
 - Utilizando 8 bits equivale à quantização linear com 12 bits.

3.1 - PCM

- PCM A-Law e µ-Law.
 - Usados em telefonia.
 - Largura de banda do sinal de voz: 200Hz a 3.4kHz.
 - Taxa limite do filtro:
 - 8KHz.
 - Imprefeições.
 - μ-Law = EUA e Japão, 7 bits.
 - A-Law = Europa e outros, 8 bits.

3.2 – Codificadores para voz

- Adaptative Differential PCM (ADPCM).
 - ITU-T G.721, G.722, G.726
- Codificação Linear preditiva (LPC)
 - Modelo simplificado do trato vocal
- Modelo Estendido
 - CELP
 - ITU-T G.728, G.729, G.729(A)

Para Saber Mais

- Áudio digital:
 - Mandal, M. K.; Multimedia Signals and Systems. Kluwer Academic Publishers, 2003. Capítulo 2, seção 2.1.