The mandi Package

 $Paul\ J.\ Heafner\ (\texttt{heafnerj@gmail.com})$

February 18, 2021

Version v3.0.0c dated 2021-02-18 **PLEASE DO NOT DISTRIBUTE THIS VERSION.**

Contents

A	cknov	wledgements	3
C	hang	e History	4
Li	st of	GlowScript Programs	5
Li	st of	VPython Programs	5
Li	st of	Figures	5
1	Intr 1.1 1.2	Coduction Loading the Package	6 6
2	1.3	The mandisetup Command	6
_	2.1	Physical Quantities	6
		2.1.1 Typesetting Physical Quantities 2.1.2 Checking Physical Quantities 2.1.3 Commands For Predefined Physical Quantities	6 7 7
		2.1.5 Setting Global Units	16 16 16 17
	2.2	Physical Constants	17 17 18 18
		2.2.4 Defining Your Own Physical Constants 2.2.5 Setting Global Precision 2.2.6 Setting Precision for a Single Instance	23 23 24 24
3	Glov	Script and VPython Program Listings	24
Ŭ	3.1		 24
	3.2 3.3	The vpythonfile Command	27 29
4			29
	4.1 4.2 4.3	4.1.1 Traditional Vector Notation	29 29 31 35 36
5	Con 5.1 5.2 5.3 5.4	The Momentum Principle	39 39 40 41
6	Sou	rce Code	44
7	Inde	ex	65

Acknowledgements

TO BE COMPLETED

Change History

v3.0.0c								
General: Initial release							(ĸ

List of GlowScript Programs	
GlowScript Program 1: A short GlowScript program	26
List of VPython Programs	
VPython Program 1: A VPython program	28
List of Figures	
1 Image shown 20 percent actual size	

1 Introduction

This is the documentation for the mandi,¹ which is designed primarily for students in introductory physics courses. This document serves to document what commands mandi provides and does not necessarily fully demonstrate how students would use them. There is a separate document that serves that purpose.

1.1 Loading the Package

Load mandi as you would any package in your preamble.

\usepackage[options]{mandi}

1.2 Package Options

N 2021-01-30 N 2021-01-30

```
units=\(type \ of \ unit\) (initially unspecified, set to alternate)

preciseconstants=\(boolean\) (initially unspecified, set to false)
```

Now mandi uses a key-value interface for options. The units key can be set to base, derived, or alternate. The preciseconstants key is always either true or false.

1.3 The mandisetup Command

N 2021-02-17

\mandisetup{\langle options \rangle}

Command to set package options on the fly after loadtime. This can be done in the preamble or inside the \begin{document}...\end{document} environment.

2 Intelligent Commands for Physical Quantities and Constants

2.1 Physical Quantities

2.1.1 Typesetting Physical Quantities

Typesetting physical quantities and constants using semantically appropriate names, along with the correct SI units, is the core function of mandi. Take momentum as the prototypical physical quantity in an introductory physics course. Here are all the ways to access this quantity and its units in mandi.

```
\label{local_momentum} $$\operatorname{magnitude}$ \ \end{Constraints} $$\operatorname{constraints}$ $$\operatorname{c
```

Command for momentum and its vector variant. The default units will depend on the options passed to mandi at load time. Alternate units are the default. Other units can be forced as demonstrated. The vector variants can take more than three components.

 $^{^{1}}$ The package name can be pronounced either with two syllables, to rhyme with candy, or with three syllables, as M and I.

```
5 \text{ kg} \cdot \text{m/s}
\momentum{5}
                                         11
                                                                               5
\momentumvalue{5}
                                                                               5 \,\mathrm{m\cdot kg\cdot s^{-1}}
\momentumbaseunits{5}
                                                                               5\,\mathrm{N}{\cdot}\mathrm{s}
\momentumderivedunits{5}
                                          //
                                                                               5 \text{ kg} \cdot \text{m/s}
\momentumalternateunits{5}
\momentumonlybaseunits
                                                                               m \cdot kg \cdot s^{-1}
                                          //
\momentumonlyderivedunits
                                                                               N∙s
\momentumonlyalternateunits \\
                                                                               kg·m/s
\vectormomentum{2,3,4}
                                                                               \langle 2, 3, 4 \rangle \text{ kg·m/s}
\momentum{\mivector{2,3,4}}
                                                                               \langle 2, 3, 4 \rangle \text{ kg·m/s}
```

2.1.2 Checking Physical Quantities

N 2021-02-16

Command to check and typeset the command, base units, derived units, and alternate units of a defined physical quantity.

2.1.3 Commands For Predefined Physical Quantities

Every other defined physical quantity can be treated similarly. Just replace momentum with the quantity's name. Obviously, the variants that begin with $\ensuremath{\mbox{vector}}$ will not be defined for scalar quantities. Here are all the physical quantities, with all their units, defined in mandi. Remember that units are not present with symbolic (algebraic) quantities, so do not use the $\ensuremath{\mbox{vector}}$ variants of these commands for symbolic components. Use $\ensuremath{\mbox{mivector}} \rightarrow P.30$ instead.

$\acceleration{\{\langle magnitude \rangle\}\}$	•		
$\verb \vectoracceleration{ } \langle c_1, \rangle$	(c_n)		
name	base	derived	alternate
\acceleration	m⋅s ⁻²	N/kg	m/s^2
$\amount{\langle magnitude \rangle}$			
name	base	derived	alternate
\amount	mol	mol	mol
\aggreen angularacceleration ${mag}$	anitude\}		
$\vectorangularacceleration$			
	,	1	
name	base	derived	alternate
\angularacceleration	rad·s ^{−2}	rad/s ²	rad/s ²
$\verb \angularfrequency{ } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ude \rangle \}$		
name	base	derived	alternate
\angularfrequency	rad·s ⁻¹	rad/s	rad/s
(angurarirequency	ruu-3	rau/s	rau/s

\	-\ 1		
$\angularimpulse{(magnitud)} \vectorangularimpulse{(c1)}$			
(vector angular impulse (\c1	,, o _n /J		
name	base	derived	alternate
\angularimpulse	$m^2 \cdot kg \cdot s^{-1}$	kg⋅m²/s	kg·m²/s
	-		•
\(magnitu\)			
<	$_1,\ldots,c_n\rangle\}$		
	1	1 . 1	1,
name	base	derived kg·m²/s	alternate
\angularmomentum	$m^2 \cdot kg \cdot s^{-1}$	kg·m²/s	kg·m ² /s
\(magnitu\)	$de\rangle$ }		
(c	$_1,\ldots,c_n\rangle\}$		
name	base	derived	alternate
\angularvelocity	rad·s ⁻¹	rad/s	rad/s
$\area{\langle magnitude \rangle}$			
(area ((magnitude))			
name	base	derived	alternate
\area	m^2	m^2	m^2
(magna	$itude$ }}		
	,		1.
name	base	derived	alternate
\areachargedensity	$m^{-2} \cdot s \cdot A$	C/m ²	C/m ²
(magnitu	$de\rangle$ }		
name	base	derived	alternate
\areamassdensity	$m^{-2} \cdot kg$	kg/m^2	kg/m ²
\ consciton as [(m a amitu do)]			
\capacitance{\langle magnitude \rangle}			
name	base	derived	alternate
\capacitance	$m^{-2} \cdot kg^{-1} \cdot s^4 \cdot A^2$	F	C/V
	J		,
\charge{(magnitude)}			
	,	1	1.
name	base	derived	alternate
\charge	A⋅s	С	С
\(magnitud\)	e>}		
$\color{constraint} \color{constraint} cons$			

name \cmagneticfield	$\begin{array}{c} {\rm base} \\ {\rm m\cdot kg\cdot s^{-3}\cdot A^{-1}} \end{array}$	derived V/m	alternate N/C			
\conductance { \(magnitude \) \(\)	}					
name \conductance	$\begin{array}{c} {\rm base} \\ {\rm m}^{-2}{\cdot}{\rm k}g^{-1}{\cdot}s^3{\cdot}A^2 \end{array}$	derived S	alternate A/V			
$\verb \conductivity \{ (magnitude) (magnitud$	·)}					
name \conductivity	$\begin{array}{c} base \\ m^{-3} {\cdot} kg^{-1} {\cdot} s^3 {\cdot} A^2 \end{array}$	derived S/m	$\begin{array}{c} {\rm alternate} \\ {\rm (A/m^2)/(V/m)} \end{array}$			
\langle m	$agnitude$ }					
name	base A	derived C/s	alternate A			
\current{(magnitude)}						
name \current	base A	derived A	alternate A			
(magnitu\)vectorcurrentdensity{(a						
name \currentdensity	base m ⁻² ·A	derived C·s/m²	alternate A/m²			
\(ma	$gnitude$ }					
name \dielectricconstant	base	derived	alternate			
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:						
name \displacement	base m	derived m	alternate m			
$\delta constrain {\langle magnitude \rangle}$						
name \duration	base s	derived s	alternate s			
$\label{lem:lemoment} $$ \electric dipolemoment {$\langle c_1, \dots, c_n \rangle$} $$$						

name	base m·s·A	derived C·m	alternate C·m
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:			
name \electricfield	$\begin{array}{c} \text{base} \\ \text{m} \cdot \text{kg} \cdot \text{s}^{-3} \cdot \text{A}^{-1} \end{array}$	derived V/m	alternate N/C
\electricflux {\(\tangnitude\)}			
name \electricflux	$\begin{array}{c} {\rm base} \\ {\rm m^3 \cdot kg \cdot s^{-3} \cdot A^{-1}} \end{array}$		alternate $N \cdot m^2/C$
\electricpotential { \langle magnit	$tude$ }}		
name	$\begin{array}{c} {\rm base} \\ {\rm m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}} \end{array}$	derived V	alternate J/C
\(magnitua\)	<i>le</i> }}		
name	$\begin{array}{c} \text{base} \\ \text{s}^{-1} \end{array}$	derived e/s	alternate e/s
$\ensuremath{\mbox{emf}} \{\langle magnitude \rangle \}$			
name \emf	$\begin{array}{c} {\rm base} \\ m^2 {\cdot} kg {\cdot} s^{-3} {\cdot} A^{-1} \end{array}$	derived V	alternate J/C
$\ensuremath{\mbox{energy}\{\langle magnitude\rangle\}}$			
name \energy	$\begin{array}{c} {\rm base} \\ {\rm m^2 \cdot kg \cdot s^{-2}} \end{array}$	derived J	$\begin{array}{c} \text{alternate} \\ \text{J} \end{array}$
\energydensity{\(\dagnitude\)}	}		
name \energydensity	$\begin{array}{c} {\rm base} \\ {\rm m^{-1} \cdot kg \cdot s^{-2}} \end{array}$	derived J/m³	alternate J/m³
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	_n >}		
name \energyflux	base kg·s ^{−3}	derived W/m ²	alternate W/m²
$\verb \entropy { } (magnitude) $			

name \entropy	$\begin{array}{c} {\rm base} \\ {\rm m^2 \cdot kg \cdot s^{-2} \cdot K^{-1}} \end{array}$	derived J/K	alternate J/K			
$\label{eq:local_state} $$\operatorname{\colored}_{(c_1,\ldots,c_n)}$$$						
name \force	$_{\text{m}\cdot\text{kg}\cdot\text{s}^{-2}}^{\text{base}}$	derived N	alternate N			
\frequency{\langle magnitude \range}						
name \frequency	base s^{-1}	derived Hz	alternate Hz			
\ma						
name \gravitationalfield	$\begin{array}{c} {\rm base} \\ {\rm m\cdot s^{-2}} \end{array}$	derived N/kg	alternate N/kg			
\gravitationalpotential	${\langle magnitude \rangle}$					
${\rm name} \\ {\tt \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	base $m^2 \cdot s^{-2}$	derived J/kg	alternate J/kg			
$\label{limbulse} $$ \operatorname{magnitude} $$ \operatorname{colorimpulse}(c_1,\dots,c_n) $$$)}					
name \impulse	$_{m\cdot kg\cdot s^{-1}}^{\mathrm{base}}$	derived N·s				
$\verb \indexofrefraction{ } \langle mag $	$nitude$ }					
${\rm name} \\ {\tt \ \ \ \ \ }$	base	derived	alternate			
$\verb \inductance { }\langle magnitude $						
name \inductance	$\begin{array}{c} {\rm base} \\ {\rm m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}} \end{array}$	derived H	alternate V·s/A			
<m< td=""><td>$agnitude$}</td><td></td><td></td></m<>	$agnitude$ }					
${ m name}$ \linearchargedensity	$\begin{array}{c} {\rm base} \\ {\rm m}^{-1}{\cdot}{\rm s}{\cdot}{\rm A} \end{array}$	derived C/m	alternate C/m			
\linearmassdensity{\(magnitude\)}						

${\rm name} \\ \verb \linearmassdensity $	base m ⁻¹ ·kg	derived kg/m	alternate kg/m
$\label{luminous} {\mbox{\mbox{\langle magnitude\rangle}}}$			
name \luminous	base cd	derived cd	alternate cd
$\verb \magneticcharge \{ \langle magnitue \} \} $	de angle brace		
${\rm name} \\ {\tt \nagneticcharge}$	base m·A	$\operatorname*{derived}_{m\cdot A}$	$ \begin{array}{c} \text{alternate} \\ \text{m} \cdot \text{A} \end{array} $
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:			
name \magneticdipolemoment	base m²·A		alternate J/T
$\verb \magneticfield{ (magnitud) } \\ \verb \magneticfield{ (c_1) } \\$			
${\rm name} \\ {\tt \ \ \ \ \ }$	base $kg \cdot s^{-2} \cdot A^{-1}$	derived T	$\begin{array}{c} {\rm alternate} \\ {\rm N/C \cdot (m/s)} \end{array}$
\(magnitude\)	}		
name \magneticflux	$\begin{array}{c} \text{base} \\ \text{m}^2 \cdot \text{kg} \cdot \text{s}^{-2} \cdot \text{A}^{-1} \end{array}$		
$\mbox{\mbox{$\mbox{mass}${\langle magnitude\rangle$}}}$			
name \mass	base kg	derived kg	alternate kg
\mobility{\(magnitude\)}			
name \mobility	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-4} \cdot A^{-1} \end{array}$	$\begin{array}{c} \mathrm{derived} \\ m^2/V \cdot s \end{array}$	$\begin{array}{c} \text{alternate} \\ \text{(m/s)/(N/C)} \end{array}$
\(magnite{\)	$ude \rangle \}$		
name \momentofinertia	base m²·kg	derived J·s²	$_{\text{kg}\cdot\text{m}^2}^{\text{alternate}}$
$\label{local_momentum} $$\operatorname{momentum}((magnitude)) $$ \operatorname{vectormomentum}((c_1,\ldots,c_n)) $$$,)}		

name	$_{\text{m-kg-s}^{-1}}^{\text{base}}$	derived N·s	alternate kg·m/s
$\label{local_magnitude} $$\operatorname{\mathbf{C}}_1, $$ \operatorname{\mathbf{C}}_1, $$$			
name \momentumflux	$\begin{array}{c} {\rm base} \\ {\rm m^{-1} \cdot kg \cdot s^{-2}} \end{array}$	$\frac{\mathrm{derived}}{N/m^2}$	alternate N/m²
\(magnitude \)	2)}		
name	base m ⁻³	derived /m³	alternate /m³
\permeability {\langle magnitude \rangle	}		
name \permeability	$\begin{array}{c} {\rm base} \\ {\rm m\cdot kg\cdot s^{-2}\cdot A^{-2}} \end{array}$	derived T·m/A	alternate H/m
\permittivity {(magnitude)	}		
name	$\begin{array}{c} \text{base} \\ \text{m}^{-3} {\cdot} \text{kg}^{-1} {\cdot} \text{s}^{-4} {\cdot} \text{A}^2 \end{array}$	derived F/m	alternate $C^2/N \cdot m^2$
$\protect\pro$			
name \planeangle	$_{m\cdot m^{-1}}^{\mathrm{base}}$	derived rad	alternate rad
\polarizability {\(magnitue)	<i>le</i>)}		
name \polarizability	$\begin{array}{c} \text{base} \\ \text{kg}^{-1} \cdot \text{s}^4 \cdot \text{A}^2 \end{array}$	$\begin{array}{c} \mathrm{derived} \\ C{\cdot}m^2/V \end{array}$	$\begin{array}{c} {\rm alternate} \\ {\rm C\cdot m/(N/C)} \end{array}$
\power{(magnitude)}			
name \power	$\begin{array}{c} \text{base} \\ \text{m}^2 \cdot \text{kg} \cdot \text{s}^{-3} \end{array}$	derived W	alternate J/s
$\parbox{$\langle magnitude \rangle$} \\ \parbox{$\langle c_1, \dots, c_n$} \\$) }		
name \poynting	base kg·s ^{−3}	$\frac{\mathrm{derived}}{W/m^2}$	alternate W/m ²
\pressure{\((magnitude\)\)}			

name \pressure	$\begin{array}{c} {\rm base} \\ {\rm m^{-1} \cdot kg \cdot s^{-2}} \end{array}$	derived Pa	$\begin{array}{c} {\rm alternate} \\ {\rm N/m^2} \end{array}$					
(\relativepermeability{(magnitude)}							
${ m name}$	base	derived	alternate					
$\verb \relativepermittivity \{ \langle relative re$	$nagnitude angle \}$							
name \relativepermittivity	base	derived	alternate					
\resistance{\((magnitude\))\)}								
name \resistance	$\begin{array}{c} \text{base} \\ \text{m}^2 \cdot \text{kg} \cdot \text{s}^{-3} \cdot \text{A}^{-2} \end{array}$	derived V/A	$_{\Omega}^{\rm alternate}$					
\resistivity{(magnitude)}	}							
name \resistivity	$\begin{array}{c} base \\ m^3 \cdot kg \cdot s^{-3} \cdot A^{-2} \end{array}$	$\operatorname*{derived}_{\Omega\cdot\mathbf{m}}$	$\begin{array}{c} {\rm alternate} \\ {\rm (V/m)/(A/m^2)} \end{array}$					
\solidangle{(magnitude)}								
name \solidangle	base $m^2 \cdot m^{-2}$	derived sr	alternate sr					
($nagnitude angle \}$							
name \specificheatcapacity	$\begin{array}{c} base \\ m^2 \cdot s^{-2} \cdot K^{-1} \end{array}$	derived J/K·kg	$\begin{array}{c} \text{alternate} \\ \text{J/K-kg} \end{array}$					
\(magnit	$tude$ }}							
name \springstiffness	base kg·s ⁻²	derived N/m	alternate N/m					
$\proonup \proonup \$								
name \springstretch	base m	derived m	alternate m					
$\stress{\langle magnitude \rangle}$								
name \stress	$\begin{array}{c} {\rm base} \\ {\rm m^{-1} \cdot kg \cdot s^{-2}} \end{array}$	derived Pa	$\begin{array}{c} {\rm alternate} \\ {\rm N/m^2} \end{array}$					

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
name \strain	base	derived	alternate
\temperature {\langle magnitude \rangle}			
name \temperature	base K	derived K	alternate K
$\label{eq:local_decomposition} $$\operatorname{vectortorque}(\langle c_1, \dots, c_n \rangle)$$$			
name	base	derived	alternate
\torque	$m^2\!\cdot\! kg\!\cdot\! s^{-2}$	$N \cdot m$	$N \cdot m$
$\label{eq:continuity} $$ \end{center} $$ \en$			
name	base	derived	alternate
\velocity	$m{\cdot}s^{-1}$	$m \cdot s^{-1}$	m/s
name \velocityc	base c	derived	alternate c
$\volume{(magnitude)}$			
name \volume	base m ³	derived m ³	alternate m ³
$\verb \volumechargedensity \{ (mag$	$nitude$ }}		
	1	1 . 1	1,
name \volumechargedensity	base m ⁻³ ·s·A	derived C/m³	alternate C/m ³
$\verb \volumemassdensity \{ \langle magnitesity for each or experiments fo$	$tude$ }}		
namo	base	derived	alternate
name \volumemassdensity	m ⁻³ ·kg	kg/m ³	kg/m ³
\wavelength{\(magnitude\)}			
name	base	derived	alternate
\wavelength	m	m m	m

$\verb \wavenumber{ (magnitude) } \\ $			
name \wavenumber	base m ⁻¹	derived /m	alternate /m
$\work{(magnitude)}$	-	, 	,
name \work	base m ² ·kg·s ⁻²	derived	alternate N·m
\magnitu	-	J	IN·III
name	base	derived	alternate
\youngsmodulus	$m^{-1} \cdot kg \cdot s^{-2}$	Pa	N/m^2

2.1.4 Defining Your Own Physical Quantities

It is important to *not* define a quantity with the same name using *both* \newscalarquantity and \newvectorquantity because the latter automatically defines both scalar and vector variants. For example in the case of \momentum $^{-P.6}$ both \momentum and \vectormomentum are defined. The scalar variant is useful for typesetting magnitudes.

N 2021-02-16

```
\newscalarquantity{\(\lamble\)} \[ \(\lambda\) \] [\(\lambda\) \] [\(\lambda\) \] [\(\lambda\) \]
```

Command to define a new scalar quantity. If the derived or alternate units are omitted, they are defined to be the same as the base unit.

N 2021-02-16

```
\newvectorquantity{(name)}{(base units)}[(derived units)][(alternate units)]
```

Command to define a new vector quantity. If the derived or alternate units are omitted, they are defined to be the same as the base unit.

2.1.5 Setting Global Units

```
\alwaysusebaseunits
\alwaysusederivedunits
\alwaysusealternateunits
```

Modal commands (switches) for setting the default unit form for the entire document. When mandi is loaded, one of these three commands is executed depending on whether the optional units key is provided. See the section on loading the package for details. Alternate units are the default because they are the most likely ones to be seen in introductory physics textbooks.

2.1.6 Setting Units for a Single Instance

```
\hereusebaseunits{\(content\)}
\hereusederivedunits{\(content\)}
\hereusedalternateunits{\(content\)}
```

Commands for setting the unit form on the fly for a single instance. The example uses momentum and the Coulomb constant, but they work for any defined quantity and constant.

2.1.7 Setting Units in an Environment

Inside these environments units are changed for the duration of the environment regardless of the global default setting.

```
\momentum{5}
                         11
\oofpez
\begin{usebaseunits}
                                                                                            5 \text{ kg} \cdot \text{m/s}
   \momentum{5} \\
                                                                                            9 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2
   \oofpez
                                                                                            5 \,\mathrm{m\cdot kg\cdot s^{-1}}
\end{usebaseunits}
                                                                                           9 \times 10^9 \,\mathrm{m}^3 \cdot \mathrm{kg} \cdot \mathrm{s}^{-4} \cdot \mathrm{A}^{-2}
\begin{usederivedunits}
   \momentum{5} \\
                                                                                            5 N·s
   \oofpez
                                                                                            9 \times 10^{9} \, \text{m/F}
\end{usederivedunits}
                                                                                            5\,\mathrm{kg}\cdot\mathrm{m/s}
\begin{usealternateunits}
                                                                                            9 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2
   \momentum{5} \\
\end{usealternateunits}
```

2.2 Physical Constants

2.2.1 Typesetting Physical Constants

Take the quantity $\frac{1}{4\pi\epsilon_o}$, sometimes called the Coulomb constant, as the prototypical physical constant in an introductory physics course. Here are all the ways to access this quantity in mandi. As you can see, these commands are almost identical to the corresponding commands for physical quantities.

\oofpez

Command for the Coulomb constant. The constant's numerical precision and default units will depend on the options passed to mandi at load time. Alternate units and approximate numerical values are the defaults. Other units can be forced as demonstrated.

```
9 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2
                                                                                      9 \times 10^{9}
\oofpez
\oofpezapproximatevalue
                                                                                      8.987551787 \times 10^9
\oofpezprecisevalue
\oofpezmathsymbol
                                                                                      9 \times 10^9 \,\mathrm{m}^3 \cdot \mathrm{kg} \cdot \mathrm{s}^{-4} \cdot \mathrm{A}^{-2}
\oofpezbaseunits
\oofpezderivedunits
                                                                                      9 \times 10^9 \,\mathrm{m/F}
\oofpezalternateunits
                                                                                      9 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2
\oofpezonlybaseunits
                                                                                      m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}
\oofpezonlyderivedunits
\oofpezonlyalternateunits
                                                                                      m/F
                                                                                      N \cdot m^2 / C^2
```

2.2.2 Checking Physical Constants

N 2021-02-16

N 2021-02-02

$\checkconstant{\langle name \rangle}$

\awomadro

Command to check and typeset the constant's name, base units, derived units, alternate units, mathematical symbol, approximate value, and precise value.

2.2.3 Commands For Predefined Physical Constants

Every other defined physical constant can be treated similarly. Just replace oofpez with the constant's name. Unfortunately, there is no universal agreement on the names of every constant so consult the next section for the names that have been used. Here are all the physical constants, with all their units, defined in mandi. The constants $\colon=10^{-10}$ and $\colon=10^{-10}$ and $\colon=10^{-10}$ and $\colon=10^{-10}$ and $\colon=10^{-10}$.

\avogadro			
$\begin{array}{c} \text{name} \\ \texttt{\angle} \\ \text{symbol} \\ N_A \end{array}$	base mol^{-1} approximate 6×10^{23}	$\begin{array}{c} \text{derived} \\ \text{mol}^{-1} \\ \text{precise} \\ 6.022140857 \times 10^{23} \end{array}$	$_{\rm mol^{-1}}^{\rm alternate}$
\biotsavartconstant			
name \\biotsavartconstant \\ symbol \\ \frac{\mu_o}{4\pi} \end{array}	base $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ approximate 10^{-7}	derived H/m precise 10 ⁻⁷	alternate T·m/A
\bohrradius			
$\begin{array}{c} \text{name} \\ \texttt{\bohrradius} \\ \text{symbol} \\ a_0 \end{array}$	base m approximate 5.3×10^{-11}	derived m precise $5.2917721067 \times 10^{-11}$	alternate m

\boltzmann			
$\begin{array}{c} \text{name} \\ \texttt{\boltzmann} \\ \text{symbol} \\ k_B \end{array}$	base $m^2 \cdot kg \cdot s^{-2} \cdot K^{-1}$ approximate 1.4×10^{-23}	derived J/K precise $1.38064852 \times 10^{-23}$	alternate J/K
\coulombconstant			
$egin{array}{l} { m name} \\ { m coulombconstant} \\ { m symbol} \\ rac{1}{4\pi\epsilon_o} \end{array}$	base $m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}$ approximate 9×10^9	derived m/F precise $8.9875517873681764 \times 10^9$	alternate $N \cdot m^2/C^2$
\earthmass			
$egin{array}{l} { m name} \\ { m \ (earthmass} \\ { m symbol} \\ { m \it $M_{ m Earth}$} \end{array}$	base kg approximate 6.0×10^{24}	derived kg precise 5.97237 × 10 ²⁴	alternate kg
\earthmoondistance			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \\ \texttt{\ \ } \\ \\ \texttt{\ \ } \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	base m approximate 3.8×10^8	derived m precise 3.81550×10^8	alternate m
\earthradius			
$egin{array}{l} { m name} \\ { m ar earthradius} \\ { m symbol} \\ { m \it R}_{ m Earth} \end{array}$	base m approximate 6.4×10^6	derived m precise 6.371 × 10 ⁶	alternate m
\earthsundistance			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ } \\ \text{symbol} \\ \\ d_{\text{ES}} \end{array}$	base m approximate 1.5×10^{11}	derived m precise 1.496×10^{11}	alternate m
\electroncharge			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \texttt{\ }$	base A·s approximate -1.6×10^{-19}	derived C precise $-1.6021766208 \times 10^{-19}$	alternate C

N 2021-02-02

\electronCharge			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \text{electronCharge} \\ \text{symbol} \\ Q_e \end{array}$	base A·s approximate -1.6×10^{-19}	derived C precise $-1.6021766208 \times 10^{-19}$	alternate C
\electronmass			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \text{\ } \text{electronmass} \\ \text{symbol} \\ m_e \end{array}$	base kg approximate 9.1×10^{-31}	derived kg precise $9.10938356 \times 10^{-31}$	alternate kg
\elementarycharge			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \text{elementarycharge} \\ \text{symbol} \\ e \end{array}$	base A·s approximate 1.6×10^{-19}	derived C precise $1.6021766208 \times 10^{-19}$	alternate C
\finestructure			
$\begin{array}{c} \text{name} \\ \texttt{\finestructure} \\ \text{symbol} \\ \alpha \end{array}$	base approximate $\frac{1}{137}$	derived precise $7.2973525664 \times 10^{-3}$	alternate
\hydrogenmass			
$\begin{array}{c} \text{name} \\ \texttt{\hydrogenmass} \\ \text{symbol} \\ m_H \end{array}$	base kg approximate 1.7×10^{-27}	derived kg precise $1.6737236 \times 10^{-27}$	alternate kg
\moonearthdistance			
$egin{array}{l} { m name} \\ { m moonearthdistance} \\ { m symbol} \\ {d_{ m ME}} \end{array}$	base m approximate 3.8×10^8	derived m precise 3.81550×10^8	alternate m
\moonmass			
$\begin{array}{c} \text{name} \\ \texttt{\moonmass} \\ \text{symbol} \\ M_{\text{Moon}} \end{array}$	base kg approximate 7.3×10^{22}	derived kg precise 7.342×10^{22}	alternate kg

\moonradius			
$\begin{array}{c} \text{name} \\ \texttt{`moonradius} \\ \text{symbol} \\ R_{\text{Moon}} \end{array}$	base m approximate 1.7×10^6	derived m precise 1.7371×10^6	alternate m
\mzofp			
name \mzofp symbol	base approximate	derived precise	alternate
\neutronmass			
$\begin{array}{c} \text{name} \\ \texttt{\neutronmass} \\ \text{symbol} \\ m_n \end{array}$	base kg approximate 1.7×10^{-27}	derived kg precise $1.674927471 \times 10^{-27}$	alternate kg
\oofpez			
name \oofpez symbol $\frac{1}{4\pi\epsilon_o}$	base $m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}$ approximate 9×10^9	derived m/F precise 8.987551787 × 10 ⁹	$\begin{array}{c} {\rm alternate} \\ {\rm N \cdot m^2/C^2} \end{array}$
\oofpezcs			
name \oofpezcs symbol $\frac{1}{4\pi\epsilon_o c^2}$	base m·kg·s ⁻² ·A ⁻² approximate 10 ⁻⁷	derived T·m² precise 10 ⁻⁷	alternate N·s²/C²
\planck			
name \planck symbol h	base $m^2 \cdot kg \cdot s^{-1}$ approximate 6.6×10^{-34}	derived J·s precise $6.626070040 \times 10^{-34}$	$_{\text{J}\cdot \text{s}}^{\text{alternate}}$
\planckbar			
name \planckbar symbol ħ	base $m^2 \cdot kg \cdot s^{-1}$ approximate 1.1×10^{-34}	derived J·s precise $1.054571800 \times 10^{-34}$	$_{\text{J}\cdot \text{s}}^{\text{alternate}}$

\planckc			
\praicec			
name \planckc symbol hc	base $m^3 \cdot kg \cdot s^{-2}$ approximate 2.0×10^{-25}	derived $J \cdot m$ precise $1.98644568 \times 10^{-25}$	alternate J·m
\protoncharge			
$\begin{array}{c} \text{name} \\ \texttt{\protoncharge} \\ \text{symbol} \\ q_p \end{array}$	base A·s approximate $+1.6 \times 10^{-19}$	derived C precise $+1.6021766208 \times 10^{-19}$	alternate C
\protonCharge			
$\begin{array}{c} \text{name} \\ \texttt{\protonCharge} \\ \text{symbol} \\ Q_p \end{array}$	base A·s approximate $+1.6 \times 10^{-19}$	derived C precise $+1.6021766208 \times 10^{-19}$	alternate C
\protonmass			
$\begin{array}{c} \text{name} \\ \texttt{\protonmass} \\ \text{symbol} \\ m_p \end{array}$	base kg approximate 1.7×10^{-27}	derived kg precise $1.672621898 \times 10^{-27}$	alternate kg
\rydberg			
$\begin{array}{c} \text{name} \\ \texttt{\t rydberg} \\ \text{symbol} \\ R_{\scriptscriptstyle \infty} \end{array}$	base m^{-1} approximate 1.1×10^7	derived m^{-1} precise $1.0973731568508 \times 10^{7}$	$_{m^{-1}}^{\mathrm{alternate}}$
\speedoflight			
name \speedoflight symbol c	base m·s^{-1} approximate 3×10^8	derived m/s precise 2.99792458×10^8	alternate m/s
\stefanboltzmann			
$\begin{array}{c} \text{name} \\ \texttt{\stefanboltzmann} \\ \text{symbol} \\ \sigma \end{array}$	base $kg \cdot s^{-3} \cdot K^{-4}$ approximate 5.7×10^{-8}	derived $W/m^2 \cdot K^4$ precise 5.670367×10^{-8}	alternate $W/m^2 \cdot K^4$

\sunearthdistance			
name \sunearthdistance \symbol d_{SE}	base m approximate 1.5×10^{11}	derived m precise 1.496×10^{11}	alternate m
\sunradius			
$\begin{array}{c} \text{name} \\ \texttt{\sunradius} \\ \text{symbol} \\ R_{\texttt{Sun}} \end{array}$	base m approximate 7.0×10^8	derived m precise 6.957×10^8	alternate m
\surfacegravfield			
$\begin{array}{c} \text{name} \\ \texttt{\surfacegravfield} \\ \text{symbol} \\ g \end{array}$	$\begin{array}{c} \text{base} \\ \text{m·s}^{-2} \\ \text{approximate} \\ 9.8 \end{array}$	derived N/kg precise 9.807	alternate N/kg
\vacuumpermeability			
$\begin{array}{c} \text{name} \\ \texttt{\vacuumpermeability} \\ \text{symbol} \\ \mu_o \end{array}$	base $\text{m} \cdot \text{kg} \cdot \text{s}^{-2} \cdot \text{A}^{-2}$ approximate $4\pi \times 10^{-7}$	derived H/m precise $4\pi \times 10^{-7}$	alternate T·m/A
\vacuumpermittivity			
$\begin{array}{c} \text{name} \\ \texttt{\backward} \\ \text{symbol} \\ \epsilon_o \end{array}$	base $m^{-3} \cdot kg^{-1} \cdot s^4 \cdot A^2$ approximate 9×10^{-12}	derived F/m precise 8.854187817 × 10 ⁻¹²	alternate C²/N·m²

2.2.4 Defining Your Own Physical Constants

N 2021-02-16

\newphysicalconstant{\(\(\anae\)\)}{\(\anae\)}{\(\anae\)}}{\(\anae\)}{\(\anae\)}{\(\anae\)}}[\(\anae\)] [\(\anae\)] [\(\anae\)]

Command to define a new physical constant. If the derived and alternate units are omitted, they are defined to be the same as the base units.

2.2.5 Setting Global Precision

N 2021-02-16 N 2021-02-16 \alwaysuseapproximateconstants \alwaysusepreciseconstants

Modal commands (switches) for setting the default precision for the entire document. The default with the package is loaded is set by the presence or absence of the preciseconstants $\stackrel{\rightarrow}{\sim}$ P.6 key.

2.2.6 Setting Precision for a Single Instance

N 2021-02-16 N 2021-02-16

```
\hereuseapproximateconstants{\(content\)}
\hereusepreciseconstants{\(content\)}
```

Commands for setting the precision on the fly for a single instance.

2.2.7 Setting Precision in an Environment

N 2021-02-16

\end{usea

N 2021-02-16

Inside these environments precision is changed for the duration of the environment regardless of the global default setting.

```
\begin{use approximate constants} & 9\times10^9\ N\cdot m^2/C^2\\ \begin{use approximate constants} & 9\times10^9\ N\cdot m^2/C^2\\ \begin{use precise constants} & 9\times10^9\ N\cdot m^2/C^2\\ \begin{use precise constants} & 8.987551787\times10^9\ N\cdot m^2/C^2\\ \bed{use precise constants} & 9\times10^9\ N\cdot m^2/C^2\\ \begin{use precise constants} & 9\times10^9\ N\cdot m^2/C^2\\
```

3 GlowScript and VPython Program Listings

3.1 The glowscriptblock Environment

U 2021-02-11

```
\begin{subarray}{l} $$ (caption) & (capt
```

Code placed here is nicely formatted and optionally linked to its source on <code>GlowScript.org</code>. Clicking anywhere in the code window will open the link in the default browser. A caption is mandatory, and a label is internally generated. The listing always begins on a new page. A URL shortening utility is recommended to keep the URL from getting unruly. For convenience, <code>https://</code> is automatically prepended to the URL and can thus be omitted.

```
\begin{glowscriptblock}(tinyurl.com/y3lnqyn3){A short \texttt{GlowScript} Program}
GlowScript 3.0 vpython
scene.width = 400
scene.height = 760
# constants and data
g = 9.8  # m/s^2
mball = 0.03 # kg
Lo = 0.26 # m
ks = 1.8 # N/m
deltat = 0.01 # s
# objects (origin is at ceiling)
ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,
              width=0.2)
ball = sphere(pos=vector(0,-0.3,0),radius=0.025,
              color=color.orange)
spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos,
               color=color.cyan,thickness=0.003,coils=40,
               radius=0.010)
# initial values
pball = mball * vector(0,0,0)
                                # kg m/s
Fgrav = mball * g * vector(0,-1,0) # N
t = 0
# improve the display
scene.autoscale = False
                              # turn off automatic camera zoom
scene.center = vector(0,-Lo,0) # move camera down
scene.waitfor('click')
                             # wait for a mouse click
# initial calculation loop
# calculation loop
while t < 10:
   rate(100)
    # we need the stretch
    s = mag(ball.pos) - Lo
    # we need the spring force
    Fspring = ks * s * -norm(spring.axis)
    Fnet = Fgrav + Fspring
    pball = pball + Fnet * deltat
    ball.pos = ball.pos + (pball / mball) * deltat
    spring.axis = ball.pos - ceiling.pos
    t = t + deltat
\end{glowscriptblock}
```

GlowScript Program 1: A short GlowScript program 1 GlowScript 3.0 vpython scene.width = 4003 scene.height = 7604 # constants and data g = 9.8# m/s^2 mball = 0.03 # kgLo = 0.26 # m ks = 1.8# N/m **deltat = 0.01** # s 10 11 # objects (origin is at ceiling) 12 ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,13 width=0.2) 14 ball = sphere(pos=vector(0,-0.3,0),radius=0.025, color=color.orange) 16 17 spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos, color=color.cyan,thickness=0.003,coils=40, 18 radius=**0.010**) 19 20 # initial values 21 pball = mball * vector(0,0,0)# kg m/s 22 Fgrav = mball * g * vector(0,-1,0) # N 23 25 # improve the display 26 # turn off automatic camera zoom scene.autoscale = False 27 scene.center = vector(0, -Lo, 0) # move camera down 28 scene waitfor('click') # wait for a mouse click 30 # initial calculation loop 31 # calculation loop 32 while t < 10: 33 rate(100) 34 # we need the stretch 35 s = mag(ball.pos) - Lo36 # we need the spring force 37 Fspring = ks * s * -norm(spring.axis) 38 Fnet = Fgrav + Fspring 39 pball = pball + Fnet * deltat 40 ball.pos = ball.pos + (pball / mball) * deltat 41 spring.axis = ball.pos - ceiling.pos 42 t = t + deltat43

```
\GlowScript\ program \ref{gs:1} is nice. It's called \nameref{gs:1} and is on page \pageref{gs:1}.

GlowScript program 1 is nice. It's called A short GlowScript program and is on page 26.
```

3.2 The vpythonfile Command

U 2021-02-11

\vpythonfile[\langle options \rangle] \{\langle file \rangle \} \{\langle caption \rangle \}

Command to load and typeset a VPython program. The file is read from $\{\langle file \rangle\}$. Clicking anywhere in the code window can optionally open a link, passed as an option, in the default browser. A caption is mandatory, and a label is internally generated. The listing always begins on a new page. A URL shortening utility is recommended to keep the URL from getting unruly. For convenience, https:// is automatically prepended to the URL and can thus be omitted.

VPython Program 1: A VPython program from vpython import * scene.width = 4003 scene.height = 7604 # constants and data 6 g = 9.8# m/s^2 mball = 0.03 # kgLo = 0.26 # m ks = 1.8# N/m deltat = 0.01 # s11 # objects (origin is at ceiling) 12 ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,13 width=0.2) 14 ball = sphere(pos=vector(0,-0.3,0), radius=0.025, color=color.orange) 16 17 spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos, color=color.cyan,thickness=0.003,coils=40, 18 radius=0.010) 19 20 # initial values 21 pball = mball * vector(0,0,0)# kg m/s 22 Fgrav = mball * g * vector(0,-1,0) # N 23 25 # improve the display 26 # turn off automatic camera zoom scene.autoscale = False 27 scene.center = vector(0, -Lo, 0) # move camera down 28 scene waitfor('click') # wait for a mouse click 30 # initial calculation loop 31 # calculation loop 32 while t < 10: 33 rate(100) 34 # we need the stretch 35 s = mag(ball.pos) - Lo36 # we need the spring force 37 Fspring = ks * s * -norm(spring.axis) 38 39 Fnet = Fgrav + Fspringpball = pball + Fnet * deltat 40 ball.pos = ball.pos + (pball / mball) * deltat 41 spring.axis = ball.pos - ceiling.pos 42 t = t + deltat43

```
\text{VPython\ program \ref{vp:1} is nice. It's called \nameref{vp:1} and is on page \pageref{vp:1}.}

VPython program 1 is nice. It's called A VPython program and is on page 28.
```

3.3 The glowscriptinline and vpythoninline Commands

```
U 2021-02-15
U 2021-02-15
```

```
\glowscriptinline{\langle GlowScript code \rangle}
\vpythoninline{\langle VPython code \rangle}
```

Typesets a small, in-line snippet of code. The snippet should be less than one line long.

```
\GlowScript\ programs begin with \glowscriptinline{GlowScript 3.0 VPython} and \VPython\ programs begin with \vpythoninline{from vpython import *}.

GlowScript programs begin with GlowScript 3.0 VPython and VPython programs begin with from vpython import *.
```

4 Commands for Writing Physics Problem Solutions

4.1 Introductory Needs

mandi provides a collection of commands physics students can use for writing problem solutions. This new version focuses on the most frequently needed tools. These commands should always be used in math mode.

4.1.1 Traditional Vector Notation

```
\ensuremath{\vec{\langle symbol\rangle}[\langle labels\rangle]} (use this variant for boldface notation) 
\ensuremath{\vec*{\langle symbol\rangle}[\langle labels\rangle]} (use this variant for arrow notation)
```

Powerful and intelligent command for symbolic vector notation. The mandatory argument is the symbol for the vector quantity. The optional label(s) consists of superscripts and/or subscripts and can be mathematical or textual in nature. If textual, be sure to wrap them in \symup{...} for proper typesetting. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels can be arbitrarily mixed, and order doesn't matter.

```
\zerovec (use this variant for boldface notation)
\zerovec* (use this variant for arrow notation)
```

Command for typesetting the zero vector. The starred version gives arrow notation whereas without the star you get boldface notation.

```
\(\zerovec \)\\\\(\zerovec*\)
```

```
\Dvec{\(symbol\)} \( \text{use this variant for boldface notation} \)
\( \text{\(symbol\)} \)
\( \text{use this variant for arrow notation} \)
```

Command for typesetting the change in a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported so if you need the symbol for the change in a subscripted or superscripted vector, just put \changein in front of it. This command must be used in math mode.

```
\(\Dvec{r}\\)\\\\(\Dvec*{r}\\)
```

```
\dirvec{\langle symbol\} \dirvec*{\langle symbol\}} \quad \text{(use this variant for boldface notation)} \quad \text{(use this variant for arrow notation)}
```

Command for typesetting the direction of a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported.

```
\( \dirvec{r} \) \\
\( \dirvec*{r} \) \\
\rac{r}{r}
```

```
\magvec{\langle symbol\rangle} \( \text{use this variant for boldface notation} \)
\magvec*{\langle symbol\rangle} \( \text{use this variant for arrow notation} \)
```

Command for type setting the magnitude of a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported.

```
\(\magvec{r}\)\\\\(\magvec*{r}\)
```

```
\mbox{\mbox{\mbox{$\backslash$}mivector}} \{\langle c_1, \dots, c_n \rangle\} [\langle units \rangle]
```

Typesets a vector as either numeric or symbolic components with an optional unit. There can be more than three components. The delimiter used in the list of components can be specified; the default is a comma. The notation mirrors that of $Matter \, \mathcal{E} \, Interactions$.

4.1.2 Coordinate-Free and Index Notation

Beyond the current level of introductory physics, we need intelligent commands for typesetting vector and tensor symbols and components suitable for both coordinate-free and index notations.

```
      \veccomp{(symbol)}
      (use this variant for coordinate-free vector notation)

      \veccomp*{(symbol)}
      (use this variant for index vector notation)

      \tencomp*{(symbol)}
      (use this variant for coordinate-free tensor notation)

      \tencomp*{(symbol)}
      (use this variant for index tensor notation)
```

Conforms to ISO 80000-2 notation.

```
\(\veccomp{r}\)\\
\(\veccomp*{r}\)\\
r\\(\tencomp{r}\)\\
r\\(\tencomp*{r}\)\\
r
```

4.1.3 Problems and Annoted Problem Solutions

N 2021-02-03

N 2021-02-03

Provides an environment for stating physics problems. Each problem will begin on a new page. See the examples for how to handle single and multiple part problems.

```
\begin{physicsproblem}{Problem 1}
This is a physics problem with no parts.
\end{physicsproblem}

Problem 1

This is a physics problem with no parts.
```

```
\begin{physicsproblem}{Problem 2}
This is a physics problem with multiple parts.
The list is vertical.
\begin{parts}
  \problempart This is the first part.
  \problempart This is the second part.
  \problempart This is the third part.
  \end{parts}
\end{parts}
\end{physicsproblem}
```

Problem 2

This is a physics problem with multiple parts. The list is vertical.

- (a) This is the first part.
- (b) This is the second part.
- (c) This is the third part.

```
\begin{physicsproblem*}{Problem 3}
This is a physics problem with multiple parts.
The list is in-line.
\begin{parts}
  \problempart This is the first part.
  \problempart This is the second part.
  \problempart This is the third part.
  \end{parts}
\end{physicsproblem*}
```

Problem 3

This is a physics problem with multiple parts. The list is in-line. (a) This is the first part. (b) This is the second part. (c) This is the third part.

U 2021-02-02

U 2021-02-02

This environment is only for mathematical solutions. The starred variant omits numbering of steps. See the examples.

```
(1)
                                                                         x = y + z
\begin{physicssolution}
 x &= y + z \\
                                                                                                   (2)
                                                                         z = x - y
 z &= x - y \\
                                                                         y = x - z
                                                                                                   (3)
 y &= x - z
\end{physicssolution}
\begin{physicssolution*}
 x &= y + z \\
 z &= x - y \\
                                                                         x = y + z
 y &= x - z
\end{physicssolution*}
                                                                         z = x - y
                                                                         y = x - z
```

U 2012-02-02

\reason{\(\text{reason}\)}

Provides an annotation in a step-by-step solution. Keep reasons short and to the point. Wrap mathematical content in math mode.

```
(4)
                                                               x = y + z This is a reason.
\begin{physicssolution}
  x \&= y + z \geq \{This is a reason.\}
                                                                                                                (5)
                                                               z = x - y This is a reason too.
  z &= x - y \cdot (This is a reason too.) \ y &= x - z \reason{final answer}
                                                                                                                (6)
                                                               y = x - z final answer
\end{physicssolution}
\begin{physicssolution*}
  x &= y + z \reason{This is a reason.}
  z &= x - y \reason{This is a reason too.} \\
y &= x - z \reason{final answer}
                                                                x = y + z
                                                                               This is a reason.
\end{physicssolution*}
                                                                 z = x - y
                                                                                This is a reason too.
                                                                 y = x - z
                                                                                final answer
```

When writing solutions, remember that the physics solution $^{\rightarrow P.32}$ environment is *only* for mathematical content, not textual content or explanations.

```
\begin{physicsproblem}{Combined Problem and Solution}

This is an interesting physics problem.
\begin{physicssolution}

The solution goes here.
\end{physicssolution}

\end{physicsproblem}
```

```
\begin{physicsproblem}{Combined Multipart Problem with Solutions}
 This is a physics problem with multiple parts.
 \begin{parts}
   \problempart This is the first part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
    \problempart This is the second part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
    \problempart This is the third part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
 \end{parts}
\end{physicsproblem}
```

N 2021-02-06

Hilites the desired target, which can be an entire mathematical expression or a part thereof. The default color is magenta and the default shape is a rectangle.

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

```
\begin{align*}
  \Dvec{p} &= \vec{F}_{\sumup{net}}\,\Delta t \\
  \hilite[orange]{\Dvec{p}}[circle] &= \vec{F}_{\symup{net}}\,\Delta t \\
  \Delta\vec{p} &= \hilite[yellow!50]{\vec{F}_{\symup{net}}}[rounded rectangle]\,\Delta t \\
  \Delta\vec{p} &= \vec{F}_{\symup{net}}\,\hilite[olive!50]{\Delta t}[rectangle] \\
  \Delta\vec{p} &= \hilite[cyan!50]{\vec{F}_{\symup{net}}\,\Delta t}[ellipse] \\
  \hilite{\Delta\vec{p}}[rectangle] &= \vec{F}_{\symup{net}}\,\Delta t\\
  \end{align*}
```

$$\Delta \mathbf{p} = \mathbf{F}_{\text{net}} \Delta t$$

U 2021-02-04

$\label{limited} $$ \sum_{(aption)} {\langle aption \rangle} {\langle label \rangle} {\langle image \rangle} $$$

Simplified interface for importing an image. The images are treated as floats, so they may not appear at the most logically intuitive place.

\image[scale=0.20]{example-image-1x1}{Image shown 20 percent actual size.}{reffig1}

Figure 1: Image shown 20 percent actual size.

\image[scale=0.20,angle=45]{example-image-1x1}{Image shown 20 percent actual size and \(\rangle\) (rotated.){reffig1}

Figure 2: Image shown 20 percent actual size and rotated.

4.2 Intermediate and Advanced Needs

Typesets column vectors and row vectors as numeric or symbolic components. There can be more than three components. The delimiter used in the list of components can be specified; the default is a comma.

```
\valence{\langle index\rangle} \langle index\rangle index\rangle \langle index\rangle \langle index\rangle index\rangle \langle index\rangle index\rangl
```

Typesets tensor valence. The starred variant typesets it horizontally.

```
\contraction{\langle slot, slot \rangle} \\ contraction*{\langle slot, slot \rangle}
```

Typesets tensor contraction in coordinate-free notation. There is no standard on this so we assert one here.

```
\slot[\langle vector \rangle]
\slot*[\langle vector \rangle]
```

An intelligent slot command for coordinate-free vector and tensor notation. The starred variants suppress the slot.

```
\( (\slot) \) \\
\( (\slot[\vec{a}]) \) \\
\( (\slot*) \) \\
\( (\slot*[\vec{a}]) \) \\
( a)
```

4.3 Useful Math Commands

```
\tento{(number)}
\timestento{(number)}
\xtento{(number)}
```

Commands for powers of ten and scientific notation.

```
\tento{-4} \\
3\timestento{8} \\
3\xtento{8} \\
3 \times 10^8
3 \times 10^8
```

\changein

Semantic alias for \Delta.

```
(double bars)
\verb|\norm*[\langle size\rangle] \{\langle quantity\rangle\}|
                                                                                                              (double bars for fractions)
\absv[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                 (single bars)
\absv*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                               (single bars for fractions)
\ags[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                            (angle brackets)
\ags*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                          (angle brackets for fractions)
\parentheses[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                (parentheses)
\parentheses*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                              (parentheses for fractions)
\dimensionsof[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                          (square brackets)
\dimensionsof*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                        (square brackets for fractions)
\unitsof [\langle size \rangle] \{ \langle quantity \rangle \}
                                                                                                                               (curly braces)
(curly braces for fractions)
```

If no argument is given, a placeholder is provided. Sizers like \big,\Big,\bigg, and \Bigg can be optionally specified. Beginners are encouraged not to use them. See the mathtools package documentation for details.

\[\] \[\norm{\vec{a}} \] \[\norm*{\frac{\vec{a}}{3}} \] \[\norm[\Bigg]{\frac{\vec{a}}{3}} \]	$\ \cdot\ $ $\ a\ $ $\left\ \frac{a}{3}\right\ $ $\left\ \frac{a}{3}\right\ $
\[\] \[\absv{x}\] \[\absv*{\frac{x}{3}}\] \[\absv[\Bigg]{\frac{x}{3}}\]	$\begin{vmatrix} \cdot \\ x \\ \left \frac{x}{3} \right \\ \left \frac{x}{3} \right \end{vmatrix}$
\[\] \[\angs{\vec{a}} \] \[\angs*{\frac{\vec{a}}{3}} \] \[\angs[\Bigg]{\frac{\vec{a}}{3}} \]	$\langle \cdot \rangle$ $\langle a \rangle$ $\left\langle \frac{a}{3} \right\rangle$ $\left\langle \frac{a}{3} \right\rangle$

```
(·)
                                                                                             (x)
  \[ \parentheses{} \]
 \[\parentheses{x} \]
\[\parentheses*{\frac{x}{3}} \]
  \[\] \[ \parentheses[\Bigg]{\frac{x}{3}} \]
                                                                                             [·]
                                                                                             [x]
  \[ \dimensionsof{} \]
  \[ \dimensionsof{x} \]
                                                                                             \left[\frac{x}{3}\right]
 \[\dimensionsof*{\frac{x}{3}} \]
\[\dimensionsof[\Bigg]{\frac{x}{3}} \]
                                                                                             \left[\frac{x}{3}\right]
                                                                                             \{\;\cdot\;\}
                                                                                             {x}
  \[ \unitsof{} \]
  \[ \ \ \]
                                                                                             \left\{\frac{x}{3}\right\}
  \[ \int \left[ \left(x\right)^{3} \right] \right]
\dim
                                                                                                       (defined in amsmath)
\abs
\units
     Operators which may be more useful than delimiters.
                                                                  \dim(x)
  \( \dim (x)
                   \) \\
  \( \abs (x)
                                                                  abs(x)
                  \) \\
  \( \units (x) \)
```

units(x)

5 Commands Specific to Matter & Interactions

mandi comes with an accessory package mandiexp which includes commands specific to *Matter & Interactions*. The commands are primarily for typesetting mathematical expressions used in the text. Use of mandiexp is optional and so must be manually loaded by including the line \usepackage{mandiexp} in your document's preamble.

5.1 The Momentum Principle

```
\LHSmomentumprinciple
                                                                 (LHS of delta form, bold vectors)
\RHSmomentumprinciple
                                                                 (RHS of delta form, bold vectors)
\LHSmomentumprincipleupdate
                                                                (LHS of update form, bold vectors)
\RHSmomentumprincipleupdate
                                                               (RHS of update form, bold vectors)
\momentumprinciple
                                                                         (delta form, bold vectors)
\momentumprincipleupdate
                                                                       (update form, bold vectors)
                                                                (LHS of delta form, arrow vectors)
\LHSmomentumprinciple*
\RHSmomentumprinciple*
                                                                (RHS of delta form, arrow vectors)
\LHSmomentumprincipleupdate*
                                                              (LHS of update form, arrow vectors)
                                                              (RHS of update form, arrow vectors)
\RHSmomentumprincipleupdate*
\momentumprinciple*
                                                                       (delta form, arrow vectors)
\momentumprincipleupdate*
                                                                      (update form, arrow vectors)
```

Variants of command for typesetting the momentum principle. Use starred variants to get arrow notation for vectors.

```
\Delta \boldsymbol{p}_{\mathrm{svs}}
                                                                                               \mathbf{F}_{\text{sys,net}} \Delta t
\(\LHSmomentumprinciple\)
                                                               //
                                                                                               \boldsymbol{p}_{\text{sys,final}}
\(\RHSmomentumprinciple\)
                                                                                              \mathbf{p}_{\mathrm{sys,initial}} + \mathbf{F}_{\mathrm{sys,net}} \Delta t

\Delta \mathbf{p}_{\mathrm{sys}} = \mathbf{F}_{\mathrm{sys,net}} \Delta t
\(\LHSmomentumprincipleupdate\)
\(\RHSmomentumprincipleupdate\)
                                                              11
\( \momentumprinciple \)
                                                                                               \mathbf{p}_{\text{sys,final}} = \mathbf{p}_{\text{sys,initial}} + \mathbf{F}_{\text{sys,net}} \Delta t
\(\momentumprincipleupdate\)
                                                                                               \Delta \vec{p}_{\rm sys}
\(\LHSmomentumprinciple*\)
                                                                                              \vec{F}_{\text{sys,net}} \Delta t
\(\RHSmomentumprinciple*\)
\(\LHSmomentumprincipleupdate*\)\\
                                                                                               \vec{p}_{\text{sys,final}}
\(\RHSmomentumprincipleupdate*\)\\
                                                                                              \vec{p}_{\text{sys,initial}} + \vec{F}_{\text{sys,net}} \Delta t
\( \momentumprinciple* \)
                                                              11
\(\momentumprincipleupdate* \)
                                                                                              \Delta \vec{p}_{\text{sys}} = \vec{F}_{\text{sys,net}} \Delta t
                                                                                              \vec{p}_{\text{sys,final}} = \vec{p}_{\text{sys,initial}} + \vec{F}_{\text{sys,net}} \Delta t
```

5.2 The Energy Principle

```
\LHSenergyprinciple (LHS of delta form)
\RHSenergyprinciple[(+process...)] (RHS of delta form)
\LHSenergyprincipleupdate (LHS of update form)
\RHSenergyprincipleupdate[(+process...)] (RHS of update form)
\energyprinciple[(+process...)] (delta form)
```

```
\energyprincipleupdate[\( + process... \)]
```

(update form)

Variants of command for typesetting the energy principle.

```
\Delta E_{\rm sys}
\( \LHSenergyprinciple \)
                                                                     W_{\rm ext}
\(\RHSenergyprinciple\)
                                               //
                                                                     W_{\rm ext} + Q
\(\RHSenergyprinciple[+Q]\)
                                                                     \Delta E_{\rm sys} = W_{\rm ext}
\( \energyprinciple \)
                                               //
                                                                     \Delta E_{\rm sys} = W_{\rm ext} + Q
\( \energyprinciple[+Q] \)
\(\LHSenergyprincipleupdate\)
                                                                     E_{\rm sys,final}
\(\RHSenergyprincipleupdate\)
                                                                     E_{\rm sys,initial} + W_{\rm ext}
\(\RHSenergyprincipleupdate[+Q]\)
                                                                     E_{\rm sys,initial} + W_{\rm ext} + Q
\(\energyprincipleupdate\)
                                                                     E_{\rm sys,final} = E_{\rm sys,initial} + W_{\rm ext}
\(\energyprincipleupdate[+Q]\)
                                                                     E_{\text{sys,final}} = E_{\text{sys,initial}} + W_{\text{ext}} + Q
```

5.3 The Angular Momentum Principle

```
\LHSangularmomentumprinciple
                                                                (LHS of delta form, bold vectors)
                                                                (RHS of delta form, bold vectors)
\RHSangularmomentumprinciple
                                                              (LHS of update form, bold vectors)
\LHSangularmomentumprincipleupdate
\RHSangularmomentumprincipleupdate
                                                              (RHS of update form, bold vectors)
\angularmomentumprinciple
                                                                       (delta form, bold vectors)
\angularmomentumprincipleupdate
                                                                      (update form, bold vectors)
\LHSangularmomentumprinciple*
                                                               (LHS of delta form, arrow vectors)
                                                               (RHS of delta form, arrow vectors)
\RHSangularmomentumprinciple*
\LHSangularmomentumprincipleupdate*
                                                             (LHS of update form, arrow vectors)
\RHSangularmomentumprincipleupdate*
                                                             (RHS of update form, arrow vectors)
\angularmomentumprinciple*
                                                                      (delta form, arrow vectors)
\angularmomentumprincipleupdate*
                                                                    (update form, arrow vectors)
```

Variants of command for typesetting the angular momentum principle. Use starred variants to get arrow notation for vectors.

```
\Delta \mathbf{L}_{A, \mathrm{sys, net}}
                                                                                                         	au_{A, \mathrm{sys, net}} \Delta t
\(\LHSangularmomentumprinciple\)
                                                                                   11
                                                                                                         L_{A, \text{sys,final}}
\(\RHSangularmomentumprinciple\)
                                                                                                          \begin{aligned} & \boldsymbol{L}_{A,\text{sys,initial}} + \boldsymbol{\tau}_{A,\text{sys,net}} \ \Delta t \\ & \Delta \boldsymbol{L}_{A,\text{sys,net}} = \boldsymbol{\tau}_{A,\text{sys,net}} \ \Delta t \end{aligned} 
\(\LHSangularmomentumprincipleupdate\)
                                                                                   //
\(\RHSangularmomentumprincipleupdate\)
                                                                                   //
\( \angularmomentumprinciple \)
                                                                                                         \boldsymbol{L}_{A,\text{sys,final}} = \boldsymbol{L}_{A,\text{sys,initial}} + \boldsymbol{\tau}_{A,\text{sys,net}} \, \Delta t
                                                                                    //
\(\angularmomentumprincipleupdate \)
                                                                                   //
                                                                                                         \(\LHSangularmomentumprinciple*\)
                                                                                    //
\( \RHSangularmomentumprinciple* \)
                                                                                    11
\(\LHSangularmomentumprincipleupdate*\)
                                                                                                         \overrightarrow{L}_{A, \text{sys,final}}
\(\RHSangularmomentumprincipleupdate*\)\\
                                                                                                         \overrightarrow{L}_{A,\text{sys,nitial}}^{A,\text{sys,nitial}} + \overrightarrow{\tau}_{A,\text{sys,net}} \Delta t
\Delta \overrightarrow{L}_{A,\text{sys,net}} = \overrightarrow{\tau}_{A,\text{sys,net}} \Delta t
\overrightarrow{L}_{A,\text{sys,final}} = \overrightarrow{L}_{A,\text{sys,initial}} + \overrightarrow{\tau}_{A,\text{sys,net}} \Delta t
\(\angularmomentumprinciple* \)
\(\angularmomentumprincipleupdate* \)
```

5.4 Other Expressions

N 2021-02-13

$\ensuremath{\mbox{energyof}} \{\langle label \rangle\} [\langle label \rangle]$

Generic symbol for the energy of some entity.

<pre>\(\energyof{\symup{electron}} \) \\ \(\energyof{\symup{electron}}[\symup{final}] \)</pre>	$E_{ m electron}$
--	-------------------

N 2021-02-13

\systemenergy $[\langle label \rangle]$

Symbol for system energy.

<pre>\(\systemenergy \) \\ \(\systemenergy[\symup{final}] \)</pre>	$E_{ m sys}$ $E_{ m sys,final}$
--	---------------------------------

N 2021-02-13

$\protect\$ [$\langle label \rangle$]

Symbol for particle energy.

<pre>\(\particleenergy \) \\ \(\particleenergy[\symup{final}] \)</pre>	$E_{ m particle}$
--	-------------------

N 2021-02-13

Symbol for rest energy.

```
\(\restenergy \) \\ \(\restenergy [\symup{final}] \) E_{rest} = E_{rest,final}
```

N 2021-02-13

$\time lenergy [\langle label \rangle]$

Symbol for internal energy.

<pre>\(\internalenergy \) \\ \(\internalenergy[\symup{final}] \)</pre>	$E_{ m internal} \ E_{ m internal,final}$
--	---

N 2021-02-13

\chemicalenergy $[\langle label \rangle]$

Symbol for chemical energy.

<pre>\(\chemicalenergy \) \\ \(\chemicalenergy[\symup{final}] \)</pre>	$E_{ m chem}$ $E_{ m chem,final}$
--	-----------------------------------

N 2021-02-13

\thermalenergy $[\langle label \rangle]$

Symbol for thermal energy.

\(\thermalenergy\)\\ \(\thermalenergy[\symup{final}]\)	$E_{ m therm}$ $E_{ m therm,final}$
--	-------------------------------------

N 2021-02-13

\photonenergy [$\langle label \rangle$]

Symbol for photon energy.

<pre>\(\photonenergy \) \\ \(\photonenergy[\symup{final}] \)</pre>	$E_{ m photon} \ E_{ m photon,final}$
	I .

N 2021-02-13

N 2021-02-13

\translationalkineticenergy [$\langle label \rangle$] \translationalkineticenergy*[$\langle label \rangle$]

Symbol for translational kinetic energy. The starred variant gives E notation.

N 2021-02-13 N 2021-02-13

\rotationalkineticenergy [$\langle label \rangle$] \rotationalkineticenergy* [$\langle label \rangle$]

Symbol for rotational kinetic energy. The starred variant gives E notation.

N 2021-02-13

N 2021-02-13

\vibrationalkineticenergy $[\langle label \rangle]$ \vibrationalkineticenergy* $[\langle label \rangle]$

Symbol for vibrational kinetic energy. The starred variant gives E notation.

N 2021-02-13

$\gravitationalpotentialenergy[\langle label\rangle]$

Symbol for gravitational potential energy.

<pre>\(\gravitationalpotentialenergy \) \\ \(\gravitationalpotentialenergy[\symup{final}] \)</pre>	$U_{ m g}$ $U_{ m g,final}$
--	-----------------------------

N 2021-02-13

\electricpotentialenergy [$\langle label \rangle$]

Symbol for electric potential energy.

```
\(\electricpotentialenergy\)\\ \(\electricpotentialenergy[\symup{final}]\) U_{\rm e} U_{\rm e,final}
```

N 2021-02-13

\springpotentialenergy [$\langle label \rangle$]

Symbol for spring potential energy.

```
\(\springpotentialenergy\)\\ \(\springpotentialenergy[\symup{final}]\) U_{\rm S} U_{\rm S,final}
```

6 Source Code

We begin by defining the package version and date for global use. We exploit the fact that in a .sty file there is now no need for \makeatletter and \makeatother. This simplifies defining internal commands, with @ in the name, that are not for the user to know about.

```
1 \def\mandi@Version{3.0.0c}
2 \def\mandi@Date{2021-02-18}
3 \NeedsTeXFormat{LaTeX2e}[1999/12/01]
4 \providecommand\DeclareRelease[3]{}
5 \providecommand\DeclareCurrentRelease[2]{}
6 \DeclareRelease{v3.0.0c}{2021-02-18}{mandi.sty}
7 \DeclareCurrentRelease{v\mandi@Version}{\mandi@Date}
8 \ProvidesPackage{mandi}[\mandi@Date\space v\mandi@Version\space Macros for introductory physics]
We define a convenient package version command.
```

Next, we set up the fonts to be consistent with ISO 80000-2 notation. The unicode-math package loads the fontspec and xparse packages. Note that xparse is now part of the LATEX kernel. Because unicode-math is required, all documents using mandi must be compiled with an engine that supports Unicode. We recommend LuaLATEX.

```
10 \RequirePackage{unicode-math}
11 \unimathsetup{math-style=ISO}
12 \unimathsetup{warnings-off={mathtools-colon,mathtools-overbracket}}
13 \setmathfont[Scale=MatchLowercase]{TeX Gyre DejaVu Math} % Good g everywhere. Based on Arev.

We need to borrow mathscr and mathbfscr from XITS Math.

See https://tex.stackexchange.com/a/120073/218142.
```

 $14 \ \texttt{Scale=MatchLowercase,range=\{\{mathscr,\{mathbfscr\}\}\}} \\ \{\texttt{XITS} \ \texttt{Math}\} \\ \{\texttt{Math}\} \\ \{\texttt{Ma$

9 \newcommand*{\mandiversion}{v\mandi@Version\space dated \mandi@Date}

Get original and bold mathcal fonts.

See https://tex.stackexchange.com/a/21742/218142.

15 \setmathfont[Scale=MatchLowercase,range={\mathcal,\mathbfcal},StylisticSet=1]{XITS Math}

Now we borrow Greek letters from Latin Modern Math.

Now we load third party packages, documenting why each one is needed.

```
21 \RequirePackage{amsmath}
                                              % AMS goodness (don't load amssymb or amsfonts)
22 \RequirePackage[inline]{enumitem}
                                              \% needed for physicsproblem environment
23 \RequirePackage{eso-pic}
                                              % needed for \hilite
24 \RequirePackage[g]{esvect}
                                              % needed for nice vector arrow, style g
25 \RequirePackage{pgfopts}
                                              % needed for key-value interface
26 \RequirePackage{array}
                                              % needed for \checkquantity and \checkconstant
27 \RequirePackage{iftex}
                                              % needed for requiring LuaLaTeX
28 \RequirePackage{makebox}
                                              % needed for consistent \dirvect; \makebox
29 \RequirePackage{mathtools}
                                              % needed for paired delimiters; extends amsmath
30 \RequirePackage{nicematrix}
                                              % needed for column and row vectors
31 \RequirePackage[most]{tcolorbox}
                                              % needed for program listings
32 \RequirePackage{tensor}
                                              % needed for index notation
33 \RequirePackage{tikz}
                                              % needed for \hilite
34 \usetikzlibrary{shapes,fit,tikzmark}
                                              % needed for \hilite
35 \RequirePackage{hyperref}
                                              % load last
36 \RequireLuaTeX
                                              % require this engine
```

We need to tweak the esvect package fonts to get the correct font size. Code provided by @egreg. See https://tex.stackexchange.com/a/566676.

```
37 \DeclareFontFamily{U}{esvect}{}
38 \DeclareFontShape{U}{esvect}{m}{n}{%
    <-5.5> vect5
    <5.5-6.5> vect6
40
   <6.5-7.5> vect7
41
    <7.5-8.5> vect8
42
    <8.5-9.5> vect9
   <9.5-> vect10
44
45 }{}%
46 \directlua{%
   luaotfload.add_colorscheme("colordigits",
     {["8000FF"] = {"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "zero"}})
48
49 }%
50 \newfontfamily\colordigits{DejaVuSansMono} [RawFeature={color=colordigits}]
```

Now we set up a color scheme and a new code environment for listings. The new colors are more restful on the eye. All listing commands now use tcolorbox.

See https://tex.stackexchange.com/a/529421/218142.

```
51 \newfontfamily{\gsfontfamily}{DejaVuSansMono}
                                                     % new font for listings
52 \definecolor{gsbggray}
                              {rgb}{0.90,0.90,0.90} % background gray
53 \definecolor{gsgray}
                              {rgb}{0.30,0.30,0.30} % gray
54 \definecolor{gsgreen}
                              {rgb}{0.00,0.60,0.00} % green
55 \definecolor{gsorange}
                              {rgb}{0.80,0.45,0.12} % orange
56 \definecolor{gspeach}
                              {rgb}{1.00,0.90,0.71} % peach
57 \definecolor{gspearl}
                              {rgb}{0.94,0.92,0.84} % pearl
                              \{rgb\}\{0.74,0.46,0.70\} % plum
58 \definecolor{gsplum}
59 \lstdefinestyle{vpython}{%
                                                     % style for listings
    backgroundcolor=\color{gsbggray},%
                                                     % background color
61
    basicstyle=\colordigits\footnotesize,%
                                                     % default style
                                                     % break at whitespace
62
    breakatwhitespace=true%
63
    breaklines=true,%
                                                     % break long lines
    captionpos=b,%
                                                     % position caption
                                                     % STILL DON'T UNDERSTAND THIS
65
    classoffset=1,%
    commentstyle=\color{gsgray},%
                                                     % font for comments
66
    deletekeywords={print},%
                                                     % delete keywords from the given language
67
    emph={self,cls,@classmethod,@property},%
                                                     % words to emphasize
68
    emphstyle=\color{gsorange}\itshape,%
                                                     % font for emphasis
    escapeinside={(*0}{0*)},%
                                                     % add LaTeX within your code
    frame=tb,%
                                                     % frame style
71
    framerule=2.0pt,%
                                                     % frame thickness
72
    framexleftmargin=5pt,%
                                                     % extra frame left margin
73
                                                      % style for identifiers
    %identifierstyle=\sffamily,%
74
    keywordstyle=\gsfontfamily\color{gsplum},%
                                                     % color for keywords
75
    language=Python,%
                                                     % select language
76
    linewidth=\linewidth,%
                                                     % width of listings
77
                                                     % VPython/GlowScript specific keywords
    morekeywords={%
78
      __future__,abs,acos,align,ambient,angle,append,append_to_caption,%
79
      append_to_title,arange,arrow,asin,astuple,atan,atan2,attach_arrow,%
80
      attach_trail,autoscale,axis,background,billboard,bind,black,blue,border,%
81
      bounding_box,box,bumpaxis,bumpmap,bumpmaps,camera,canvas,caption,capture,%
82
83
      ceil,center,clear,clear_trail,click,clone,CoffeeScript,coils,color,combin,%
      comp, compound, cone, convex, cos, cross, curve, cyan, cylinder, data, degrees, del, %
84
      delete,depth,descender,diff_angle,digits,division,dot,draw_complete,%
85
      ellipsoid, emissive, end_face_color, equals, explog, extrusion, faces, factorial, %
86
      False, floor, follow, font, format, forward, fov, frame, gcurve, gdisplay, gdots, %
87
      get_library,get_selected,ghbars,global,GlowScript,graph,graphs,green,gvbars,%
88
```

```
hat, headlength, headwidth, height, helix, hsv to rgb, index, interval, keydown, %
 89
       kevup.label.length.lights.line.linecolor.linewidth.logx.logv.lower left.%
 90
       lower_right, mag, mag2, magenta, make_trail, marker_color, markers, material, %
 91
       max,min,mouse,mousedown,mousemove,mouseup,newball,norm,normal,objects,%
 92
       offset, one, opacity, orange, origin, path, pause, pi, pixel_to_world, pixels, plot, %
 93
       points,pos,pow,pps,print,print_function,print_options,proj,purple,pyramid,%
 94
 95
       quad, radians, radius, random, rate, ray, read_local_file, readonly, red, redraw, %
       retain, rgb to hsv, ring, rotate, round, scene, scroll, shaftwidth, shape, shapes, %
 96
       shininess, show_end_face, show_start_face, sign, sin, size, size_units, sleep, %
97
       smooth,space,sphere,sqrt,start,start_face_color,stop,tan,text,textpos,%
98
       texture, textures, thickness, title, trail_color, trail_object, trail_radius, %
99
       trail_type,triangle,trigger,True,twist,unbind,up,upper_left,upper_right,%
100
       userpan, userspin, userzoom, vec, vector, vertex, vertical_spacing, visible, %
101
       visual, vpython, VPython, waitfor, white, width, world, xtitle, yellow, yoffset, %
102
       ytitle%
103
104
     },%
105
     morekeywords={print, None, TypeError},%
                                                       % additional keywords
     morestring=[b]{"""},%
                                                       % treat triple quotes as strings
106
     numbers=left,%
                                                       % where to put line numbers
     numbersep=10pt,%
                                                       % how far line numbers are from code
     numberstyle=\bfseries\tiny,%
                                                       % set to 'none' for no line numbers
109
     showstringspaces=false,%
                                                       % show spaces in strings
110
     showtabs=false,%
                                                       % show tabs within strings
111
     stringstyle=\gsfontfamily\color{gsgreen},%
112
                                                       % color for strings
    upquote=true,%
                                                       % how to typeset quotes
113
114 }%
    We introduce a new, more intelligent glowscriptblock environment.
115 \NewTCBListing[auto counter,list inside=gsprogs]{glowscriptblock}{ O{} D(){glowscript.org} m }{%
116
    breakable.%
     center,%
117
    code = \newpage,%
118
119
    %derivpeach,%
    enhanced, %
120
    hyperurl interior = https://#2,%
121
    label = {gs:\thetcbcounter},%
122
     left = 8mm, %
123
     list entry = \texttt{GlowScript} Program \thetcbcounter: #3,%
124
125
     listing only,%
     listing style = vpython,%
126
127
    nameref = \#3,\%
     title = \texttt{GlowScript} Program \thetcbcounter: #3,%
129
    width = 0.9\textwidth,%
130
    #1.
131 }%
    A command for generating a list of GlowScript programs.
132 \NewDocumentCommand{\listofglowscriptprograms}{}{\tcblistof[\section*]{gsprogs}
     {List of \texttt{GlowScript} Programs}}%
    We introduce a new, more intelligent vpythonfile command.
134 \NewTCBInputListing[auto counter,list inside=vpprogs]{\vpythonfile}{ 0{} m m }{%
135
    breakable,%
     center,%
136
137
     code = \newpage,%
138
     %derivgray,%
139
     enhanced, %
140
    hyperurl interior = https://,%
     label = {vp:\thetcbcounter},%
```

```
142
     left = 8mm, %
     list entry = \texttt{VPython} Program \thetcbcounter: #3,%
143
     listing file = \{\#2\},%
144
     listing only,%
145
     listing style = vpython,%
146
     nameref = #3,%
147
     title = \texttt{VPython} Program \thetcbcounter: #3,%
     width = 0.9\textwidth,%
     #1,%
150
151 }%
    A command for generating a list of VPython programs.
152 \NewDocumentCommand{\listofvpythonprograms}{}{\tcblistof[\section*]{vpprogs}
     {List of \texttt{VPython} Programs}}%
    We introduce a new glowscriptinline command.
154 \DeclareTotalTCBox{\glowscriptinline}{ m }{%
     bottom = Opt,%
     bottomrule = 0.0mm,%
157
     boxsep = 1.0mm,%
     colback = gsbggray,%
158
     colframe = gsbggray,%
159
     left = Opt,%
160
     leftrule = 0.0mm,%
161
     nobeforeafter,%
162
     right = Opt,%
163
     rightrule = 0.0mm,%
164
165
     sharp corners,%
     tcbox raise base,%
166
     top = Opt,%
167
     toprule = 0.0mm,%
168
169 }{\lstinline[style = vpython]{#1}}%
```

Here is a semantic alias for VPython in-line listings.

170 \NewDocumentCommand{\vpythoninline}{}{\glowscriptinline}%

Next, we define units to be used with the unit engine. All single letter macros are now gone. We basically absorbed and adapted the now outdated Slunits package. We make use of \symup{...} from the unicode-math package.

```
171 \NewDocumentCommand{\per}{}{\ensuremath{/}}
172 \NewDocumentCommand{\usk}{}{\ensuremath{\cdot}}
173 \NewDocumentCommand{\unit}{ m m }{\ensuremath{{#1}\;{#2}}}
174 \NewDocumentCommand{\ampere}{}{\ensuremath{\symup{A}}}}
175 \NewDocumentCommand{\atomicmassunit}{}{\ensuremath{\symup{u}}}}
176 \NewDocumentCommand{\candela}{}{\ensuremath{\symup{cd}}}}
177 \NewDocumentCommand{\coulomb}{}{\ensuremath{\symup{C}}}}
178 \NewDocumentCommand{\degree}{}{\ensuremath{^{\circ}}}
179 \NewDocumentCommand{\electronvolt}{}{\ensuremath{\symup{eV}}}}
180 \NewDocumentCommand{\farad}{}{\ensuremath{\symup{F}}}
181 \NewDocumentCommand{\henry}{}{\ensuremath{\symup{H}}}}
182 \NewDocumentCommand{\hertz}{}{\ensuremath{\symup{Hz}}}
183 \NewDocumentCommand{\joule}{}{\ensuremath{\symup{J}}}}
184 \NewDocumentCommand{\kelvin}{}{\ensuremath{\symup{K}}}}
185 \NewDocumentCommand{\kilogram}{}{\ensuremath{\symup{kg}}}
186 \NewDocumentCommand{\lightspeed}{}{\ensuremath{\symup{c}}}
187 \MewDocumentCommand{\meter}{}{\nsuremath{\symup{m}}}
188 \NewDocumentCommand{\metre}{}{\meter}
189 \NewDocumentCommand{\mole}{}{\ensuremath{\symup{mol}}}
190 \NewDocumentCommand{\newton}{}{\ensuremath{\symup{N}}}
191 \NewDocumentCommand{\ohm}{}{\ensuremath{\symup\Omega}}
```

```
192 \NewDocumentCommand{\pascal}{}{\ensuremath{\symup{Pa}}}
193 \NewDocumentCommand{\radian}{}{\ensuremath{\symup{rad}}}}
194 \NewDocumentCommand{\second}{}{\ensuremath{\symup{s}}}
195 \NewDocumentCommand{\siemens}{}{\ensuremath{\symup{S}}}}
196 \NewDocumentCommand{\steradian}{}{\ensuremath{\symup{sr}}}
197 \NewDocumentCommand{\tesla}{}\ensuremath{\symup{T}}}
198 \NewDocumentCommand{\volt}{}{\ensuremath{\symup{V}}}
199 \NewDocumentCommand{\watt}{}{\ensuremath{\symup{W}}}}
200 \NewDocumentCommand{\weber}{}{\ensuremath{\symup{Wb}}}
201 \NewDocumentCommand{\square}{ m }{\ensuremath{{#1}^2}}
                                                                                                               % prefix
202 \NewDocumentCommand{\cubic}{ m }{\ensuremath{{#1}^3}}
                                                                                                                % prefix
203 \NewDocumentCommand{\quartic}{ m }{\ensuremath{{#1}^4}}
                                                                                                                % prefix
204 \NewDocumentCommand{\reciprocal}{ m }{\ensuremath{{#1}^{-1}}}
                                                                                                                % prefix
                                                                                                                               -1
205 \NewDocumentCommand{\reciprocalsquare}{ m }{\censuremath{{#1}^{-2}}}
                                                                                                               % prefix
                                                                                                               % prefix
206 \NewDocumentCommand{\reciprocalcubic}{ m }{\ensuremath{{#1}^{-3}}}
207 \NewDocumentCommand{\reciprocalquartic}{ m }{\ensuremath{{#1}^{-4}}} % prefix -4
208 \NewDocumentCommand{\squared}{}{\ensuremath{^2}}
                                                                                                               % postfix 2
209 \NewDocumentCommand{\cubed}{}{\ensuremath{^3}}
                                                                                                                % postfix 3
% postfix 4
211 \NewDocumentCommand{\reciprocaled}{}{\ensuremath{^{-1}}}
                                                                                                               % postfix -1
212 \ensuremath{^{-2}}
                                                                                                               % postfix -2
213 \ensuremath{^{-3}}
                                                                                                               % postfix -3
214 \MewDocumentCommand{\reciprocalquarted}{}{\normand{^{-4}}}
                                                                                                                % postfix -4
215 \NewDocumentCommand{\emptyunit}{}{\ensuremath{\mdlgwhtsquare}}
      The core unit engine has been completely rewritten in expl3 for both clarity and power.
      Generic internal selectors.
216 \newcommand*{\mandi@selectunits}{}
217 \newcommand*{\mandi@selectprecision}{}
      Specific internal selectors.
218 \newcommand*{\mandi@selectapproximate}[2]{#1}
                                                                                 % really \@firstoftwo
219 \newcommand*{\mandi@selectprecise}[2]{#2}
                                                                                 % really \@secondoftwo
220 \newcommand*{\mandi@selectbaseunits}[3]{#1}
                                                                                % really \Offirstofthree
221 \newcommand*{\mandi@selectderivedunits}[3]{#2}
                                                                                % really \@secondofthree
222 \newcommand*{\mandi@selectalternateunits}[3]{#3} % really \@thirdofthree
      Document level global switches.
223 \NewDocumentCommand{\alwaysusebaseunits}{}
        {\renewcommand*{\mandi@selectunits}{\mandi@selectbaseunits}}%
225 \NewDocumentCommand{\alwaysusederivedunits}{}
        {\renewcommand*{\mandi@selectunits}{\mandi@selectderivedunits}}%
227 \NewDocumentCommand{\alwaysusealternateunits}{}
        {\renewcommand*{\mandi@selectunits}{\mandi@selectalternateunits}}%
229 \NewDocumentCommand{\alwaysuseapproximateconstants}{}
        {\renewcommand*{\mandi@selectprecision}{\mandi@selectapproximate}}%
231 \NewDocumentCommand{\alwaysusepreciseconstants}{}
       {\renewcommand*{\mandi@selectprecision}{\mandi@selectprecise}}%
232
      Document level localized variants.
233 \ensuremath{\mathcolor{NewDocumentCommand{\hereusebaseunits}{ m }{\hereusebaseunits}{\mathcolor{MewDocumentCommand{\hereusebaseunits}{ m }{\mathcolor{NewDocumentCommand{\hereusebaseunits}{ m }{\mathcolor{
234 \NewDocumentCommand{\hereusederivedunits}{ m }{\begingroup\alwaysusederivedunits#1\endgroup}%
235 \NewDocumentCommand{\hereusealternateunits}{ m }{\begingroup\alwaysusealternateunits#1\endgroup}%
236 \NewDocumentCommand{\hereuseapproximateconstants}{ m }{\begingroup\alwaysuseapproximateconstants#1\endgroup}%
237 \NewDocumentCommand{\hereusepreciseconstants}{ m }{\begingroup\alwaysusepreciseconstants#1\endgroup}%
      Document level environments.
238 \NewDocumentEnvironment{usebaseunits}{}{\alwaysusebaseunits}{}%
239 \NewDocumentEnvironment{usederivedunits}{}{\alwaysusederivedunits}{}%
```

```
240 \NewDocumentEnvironment{usealternateunits}{}{\alwaysusealternateunits}{}}
241 \NewDocumentEnvironment{useapproximateconstants}{}{\alwaysuseapproximateconstants}{}}
242 \NewDocumentEnvironment{usepreciseconstants}{}{\alwaysusepreciseconstants}{}}
    Defining a new scalar quantity:
243 \NewDocumentCommand{\newscalarquantity}{ m m 0{#2} 0{#2} }{%
     \expandafter\newcommand\csname #1\endcsname[1]{##1\,\mandi@selectunits{#2}{#3}{#4}}%
244
245
     \expandafter\newcommand\csname #1value\endcsname[1]{##1}%
     \expandafter\newcommand\csname #1baseunits\endcsname[1]{##1\,\mandi@selectbaseunits{#2}{#3}{#4}}%
246
     \expandafter\newcommand\csname #1derivedunits\endcsname[1]{##1\,\mandi@selectderivedunits{#2}{#3}{#4}}%
247
     \expandafter\newcommand\csname #1alternateunits\endcsname[1]{##1\,\mandi@selectalternateunits{#2}{#3}{#4}}%
248
     \expandafter\newcommand\csname #1onlybaseunits\endcsname{\mandi@selectbaseunits{#2}{#3}{#4}}%
249
     \expandafter\newcommand\csname #1onlyderivedunits\endcsname{\mandi@selectderivedunits{#2}{#3}{#4}}%
250
     \expandafter\newcommand\csname #1onlyalternateunits\endcsname{\mandi@selectalternateunits{#2}{#3}{#4}}%
251
252 }%
    Defining a new vector quantity. Note that a corresponding scalar is also defined.
253 \NewDocumentCommand{\newvectorquantity}{ m m O{#2} O{#2} }{%
     \newscalarquantity{#1}{#2}[#3][#4]
     \expandafter\newcommand\csname vector#1\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
255
256 }%
    Defining a new physical constant:
257 \NewDocumentCommand{\newphysicalconstant}{ m m m m 0{#5} 0{#5} }{%
258
     \expandafter\newcommand\csname #1\endcsname
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectunits{#5}{#6}{#7}}%
259
     \expandafter\newcommand\csname #1mathsymbol\endcsname{\ensuremath{#2}}%
260
     \expandafter\newcommand\csname #1approximatevalue\endcsname{\ensuremath{#3}}%
261
     \expandafter\newcommand\csname #1precisevalue\endcsname{\ensuremath{#4}}%
262
     \expandafter\newcommand\csname #1baseunits\endcsname
263
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectbaseunits{#5}{#6}{#7}}%
264
     \expandafter\newcommand\csname #1derivedunits\endcsname
265
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectderivedunits{#5}{#6}{#7}}%
266
     \expandafter\newcommand\csname #1alternateunits\endcsname
267
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectalternateunits{#5}{#6}{#7}}%
268
     \expandafter\newcommand\csname #1onlybaseunits\endcsname
269
       {\mandi@selectbaseunits{#5}{#6}{#7}}%
270
271
     \expandafter\newcommand\csname #1onlyderivedunits\endcsname
       {\mandi@selectderivedunits{#5}{#6}{#7}}%
272
273
     \expandafter\newcommand\csname #1onlyalternateunits\endcsname
274
       {\mandi@selectalternateunits{#5}{#6}{#7}}%
275 }%
    mandi now has a key-value interface, implemented with pgfopts and pgfkeys. There are two options:
units P.6, with values base, derived, or alternate selects the default form of units
preciseconstants ^{\rightarrow P.6}, with values true and false, selects precise numerical values for constants rather than approximate
values.
    First, we define the keys. The key handlers require certain commands defined by the unit engine, and thus must be
defined and processed after the unit engine code.
276 \newif\ifusingpreciseconstants
277 \pgfkeys{%
     /mandi/options/.cd,
278
279
     initial@setup/.style={%
280
       /mandi/options/buffered@units/.initial=alternate,%
281
     },%
     initial@setup,%
282
     \verb|preciseconstants/.is| if = using \verb|preciseconstants/|, %
283
     units/.is choice,%
284
```

units/.default=derived,%

285

Process the options.

290 \ProcessPgfPackageOptions{/mandi/options}

We write a banner to the console showing the options in use. The value of the units $^{\rightarrow P.6}$ key is used in situ to set the default units.

```
291 \newcommand*{\mandi@linetwo}{\typeout{mandi: Loadtime options...}}
292 \newcommand*{\mandi@do@setup}{%
     \typeout{}%
     \typeout{mandi: You are using mandi \mandiversion.}%
294
     \mandi@linetwo
295
     \csname alwaysuse\pgfkeysvalueof{/mandi/options/buffered@units}units\endcsname%
296
     \typeout{mandi: You will get \pgfkeysvalueof{/mandi/options/buffered@units}\space units.}%
297
     \ifusingpreciseconstants
298
       \alwaysusepreciseconstants
299
300
       \typeout{mandi: You will get precise constants.}%
301
     \else
       \alwaysuseapproximateconstants
302
       \typeout{mandi: You will get approximate constants.}%
303
     \fi
304
     \typeout{}%
305
306 }%
307 \mandi@do@setup
```

Next, we define a setup command that overrides the loadtime options when called with new options. A new banner is written to the console.

```
308 \NewDocumentCommand{\mandisetup}{ m }{%
309 \IfValueT{#1}{%
310 \pgfqkeys{/mandi/options}{#1}
311 \renewcommand*{\mandi@linetwo}{\typeout{mandi: mandisetup options...}}
312 \mandi@do@setup
313 }%
314 }%
```

Now we define every quantity we need in introductory physics, alphabetically for convenience. This is really the core feature of mandi that no other package offers. There are commands for quantities that have no dimensions or units, and these quantities are defined for semantic completeness.

```
315 \newvectorquantity{acceleration}%
     {\meter\usk\second\reciprocalsquared}%
     [\newton\per\kilogram]%
317
     [\meter\per\second\squared]%
318
319 \newscalarquantity{amount}%
     {\mole}%
321 \newvectorquantity{angularacceleration}%
     {\radian\usk\second\reciprocalsquared}%
322
     [\radian\per\second\squared]%
323
     [\radian\per\second\squared]%
325 \newscalarquantity{angularfrequency}%
     {\radian\usk\reciprocal\second}%
     [\radian\per\second]%
     [\radian\per\second]%
329 %\ifmandi@rotradians
330 % \newphysicalquantity{angularimpulse}%
        {\meter\squared\usk\kilogram\usk\reciprocal\second\usk\reciprocal\radian}%
331 %
        [\joule\usk\second\per\radian]%
332 %
```

```
[\newton\usk\meter\usk\second\per\radian]%
333 %
334 %
      \newphysicalquantity{angularmomentum}%
335 %
        {\meter\squared\usk\kilogram\usk\reciprocal\second\usk\reciprocal\radian}%
336 %
        [\kilogram\usk\meter\squared\per(\second\usk\radian)]%
337 %
        [\newton\usk\meter\usk\second\per\radian]%
338 %\else
339
     \newvectorquantity{angularimpulse}%
       {\meter\squared\usk\kilogram\usk\reciprocal\second}%
340
       [\kilogram\usk\meter\squared\per\second] % % also \joule\usk\second
341
       [\kilogram\usk\meter\squared\per\second]% % also \newton\usk\meter\usk\second
342
     \newvectorquantity{angularmomentum}%
343
       {\meter\squared\usk\kilogram\usk\reciprocal\second}%
344
       [\kilogram\usk\meter\squared\per\second]% % also \joule\usk\second
345
       [\kilogram\usk\meter\squared\per\second]% % also \newton\usk\meter\usk\second
346
347 %\fi
348 \newvectorquantity{angularvelocity}%
349
     {\radian\usk\reciprocal\second}%
     [\radian\per\second]%
350
     [\radian\per\second]%
352 \newscalarquantity{area}%
     {\meter\squared}%
354 \newscalarquantity{areamassdensity}%
     {\meter\reciprocalsquared\usk\kilogram}%
355
     [\kilogram\per\meter\squared]%
356
     [\kilogram\per\meter\squared]%
357
358 \newscalarquantity{areachargedensity}%
     {\reciprocalsquare\meter\usk\second\usk\ampere}%
     [\coulomb\per\square\meter]%
360
     [\coulomb\per\square\meter]%
361
362 \newscalarquantity{capacitance}%
     {\reciprocalsquare\meter\usk\reciprocal\kilogram\usk\quartic\second\usk\square\ampere}%
363
364
365
     [\coulomb\per\volt]% % also \coulomb\squared\per\newton\usk\meter, \second\per\ohm
366 \newscalarquantity{charge}%
     {\ampere\usk\second}%
     [\coulomb]%
368
     [\coulomb]% % also \farad\usk\volt
369
370 \newvectorquantity{cmagneticfield}%
     {\meter\usk\kilogram\usk\second\reciprocalcubed\usk\reciprocal\ampere}%
     [\volt\per\meter]%
372
     [\newton\per\coulomb]%
373
374 \newscalarquantity{conductance}%
     {\reciprocalsquare\meter\usk\reciprocal\kilogram\usk\cubic\second\usk\square\ampere}}
375
376
     [\siemens]%
     [\ampere\per\volt]%
377
378 \newscalarquantity{conductivity}%
     {\reciprocalcubic\meter\usk\reciprocal\kilogram\usk\cubic\second\usk\square\ampere}}
380
     [\siemens\per\meter]%
     [(\ampere\per\square\meter)\per(\volt\per\meter)]%
381
382 \newscalarquantity{conventionalcurrent}%
     {\ampere}%
383
     [\coulomb\per\second]%
384
     [\ampere]%
386 \newscalarquantity{current}%
     {\ampere}%
387
388 \newscalarquantity{currentdensity}%
     {\reciprocalsquare\meter\usk\ampere}%
389
390
     [\coulomb\usk\second\per\square\meter]%
```

[\ampere\per\square\meter]%

391

```
392 \newscalarguantity{dielectricconstant}%
     {}%
393
394 \newvectorquantity{displacement}%
     {\meter}
395
396 \newscalarquantity{duration}%
     {\second}%
398 \newvectorquantity{electricdipolemoment}%
     {\meter\usk\second\usk\ampere}%
     [\coulomb\usk\meter]%
400
     [\coulomb\usk\meter]%
401
402 \newvectorquantity{electricfield}%
     {\meter\usk\kilogram\usk\second\reciprocalcubed\usk\reciprocal\ampere}%
     [\volt\per\meter]%
     [\newton\per\coulomb]%
406 \newscalarquantity{electricflux}%
     {\meter\cubed\usk\kilogram\usk\second\reciprocalcubed\usk\reciprocal\ampere}%
     [\volt\usk\meter]%
408
     [\newton\usk\meter\squared\per\coulomb]%
409
410 \newscalarquantity{electricpotential}%
     {\square\meter\usk\kilogram\usk\reciprocalcubic\second\usk\reciprocal\ampere}%
412
     [\volt]%
     [\joule\per\coulomb]%
413
414 \newscalarquantity{electroncurrent}%
     {\reciprocal\second}%
415
     416
     [\ensuremath{\symup{e}}\per\second]%
417
418 \newscalarquantity{emf}%
     {\square\meter\usk\kilogram\usk\reciprocalcubic\second\usk\reciprocal\ampere}%
419
     [\volt]%
420
421
     [\joule\per\coulomb]%
422 \newscalarquantity{energy}%
     {\meter\squared\usk\kilogram\usk\second\reciprocalsquared}%
423
424
     [\joule]% % also \newton\usk\meter
425
     [\joule]%
426 \newscalarquantity{energydensity}%
     {\meter\reciprocaled\usk\kilogram\usk\reciprocalsquare\second}%
427
     [\joule\per\cubic\meter]%
428
     [\joule\per\cubic\meter]%
429
430 \newscalarquantity{energyflux}%
     {\kilogram\usk\second\reciprocalcubed}%
432
     [\watt\per\meter\squared]%
     [\watt\per\meter\squared]%
433
434 \newscalarquantity{entropy}%
     {\meter\squared\usk\kilogram\usk\second\reciprocalsquared\usk\reciprocal\kelvin}%
435
436
     [\joule\per\kelvin]%
     [\joule\per\kelvin]%
438 \newvectorquantity{force}%
     {\meter\usk\kilogram\usk\second\reciprocalsquared}%
439
440
     [\newton]% % also \kilogram\usk\meter\per\second\squared
441
442 \newscalarquantity{frequency}%
     {\reciprocal\second}%
443
     [\hertz]%
444
     [\hertz]%
445
446 \newvectorquantity{gravitationalfield}%
     {\meter\usk\second\reciprocalsquared}%
447
     [\newton\per\kilogram]%
448
449
     [\newton\per\kilogram]%
450 \newscalarquantity{gravitationalpotential}%
```

```
{\square\meter\usk\reciprocalsquare\second}%
451
     [\joule\per\kilogram]%
452
     [\joule\per\kilogram]%
453
454 \newvectorquantity{impulse}%
     {\meter\usk\kilogram\usk\reciprocal\second}%
455
     [\newton\usk\second]%
456
457
     [\newton\usk\second]%
458 \newscalarquantity{indexofrefraction}%
459
460 \newscalarquantity{inductance}%
     {\square\meter\usk\kilogram\usk\reciprocalsquare\second\usk\reciprocalsquare\ampere}}
461
     [\henry]%
462
     [\volt\usk\second\per\ampere]% % also \square\meter\usk\kilogram\per\coulomb\squared, \Wb\per\ampere
464 \newscalarquantity{linearchargedensity}%
     {\reciprocal\meter\usk\second\usk\ampere}%
465
     [\coulomb\per\meter]%
466
     [\coulomb\per\meter]%
467
468 \newscalarquantity{linearmassdensity}%
     {\reciprocal\meter\usk\kilogram}%
     [\kilogram\per\meter]%
471
     [\kilogram\per\meter]%
472 \newscalarquantity{luminous}%
     {\candela}%
473
474 \newscalarquantity{magneticcharge}%
     {\meter\usk\ampere}%
476 \newvectorquantity{magneticdipolemoment}%
     {\square\meter\usk\ampere}%
477
     [\ampere\usk\square\meter]%
478
     [\joule\per\tesla]%
479
480 \newvectorquantity{magneticfield}%
     {\kilogram\usk\second\reciprocalsquared\usk\reciprocal\ampere}%
481
     [\tesla]%
482
483
     [\newton\per\coulomb\usk(\meter\per\second)]% % also \Wb\per\meter\squared
484 \newscalarquantity{magneticflux}%
     {\meter\squared\usk\kilogram\usk\second\reciprocalsquared\usk\reciprocal\ampere}%
485
     [\tesla\usk\meter\squared]%
486
     [\volt\usk\second]% % also \Wb and \joule\per\ampere
487
488 \newscalarquantity{mass}%
     {\kilogram}%
490 \newscalarquantity{mobility}%
     {\meter\squared\usk\kilogram\usk\second\reciprocalquarted\usk\reciprocal\ampere}%
491
     [\meter\squared\per\volt\usk\second]%
492
     [(\meter\per\second)\per(\newton\per\coulomb)]%
493
494 \newscalarquantity{momentofinertia}%
     {\meter\squared\usk\kilogram}%
495
496
     [\joule\usk\second\squared]%
     [\kilogram\usk\meter\squared]%
497
498 \newvectorquantity{momentum}%
     {\meter\usk\kilogram\usk\reciprocal\second}%
499
     [\newton\usk\second]%
500
     [\kilogram\usk\meter\per\second]%
501
502 \newvectorquantity{momentumflux}%
     {\reciprocal\meter\usk\kilogram\usk\second\reciprocalsquared}%
503
     [\newton\per\meter\squared]%
504
     [\newton\per\meter\squared]%
505
506 \newscalarquantity{numberdensity}%
     {\tt \{\c reciprocal cubic \meter\}\%}
507
508
     [\per\cubic\meter]%
```

509

[\per\cubic\meter]%

```
510 \newscalarquantity{permeability}%
     {\meter\usk\kilogram\usk\second\reciprocalsquared\usk\ampere\reciprocalsquared}%
511
     [\tesla\usk\meter\per\ampere]%
512
     [\henry\per\meter]%
513
514 \newscalarquantity{permittivity}%
     {\meter\reciprocalcubed\usk\reciprocal\kilogram\usk\second\reciprocalquarted\usk\ampere\squared}%
     [\farad\per\meter]%
     [\coulomb\squared\per\newton\usk\meter\squared]%
517
518 \newscalarquantity{planeangle}%
     {\meter\usk\reciprocal\meter}%
     [\radian]%
520
     [\radian]%
521
522 \newscalarquantity{polarizability}%
     {\reciprocal\kilogram\usk\second\quarted\usk\square\ampere}%
     [\coulomb\usk\square\meter\per\volt]%
524
     [\coulomb\usk\meter\per(\newton\per\coulomb)]%
525
526 \newscalarquantity{power}%
     {\meter\squared\usk\kilogram\usk\second\reciprocalcubed}%
     [\watt]%
528
529
     [\joule\per\second]%
530 \newvectorquantity{poynting}%
     {\kilogram\usk\second\reciprocalcubed}%
     [\watt\per\meter\squared]%
532
     [\watt\per\meter\squared]%
533
534 \newscalarquantity{pressure}%
     {\reciprocal\meter\usk\kilogram\usk\second\reciprocalsquared}%
535
     [\pascal]%
536
     [\newton\per\meter\squared]%
537
538 \newscalarquantity{relativepermeability}
539
540 \newscalar
quantity{relative
permittivity}%
542 \newscalarquantity{resistance}%
     {\square\meter\usk\kilogram\usk\reciprocalcubic\second\usk\reciprocalsquare\ampere}}
543
     [\volt\per\ampere]%
544
     [\ohm]%
546 \newscalarquantity{resistivity}%
     {\cubic\meter\usk\kilogram\usk\reciprocalcubic\second\usk\reciprocalsquare\ampere}%
547
     [\ohm\usk\meter]%
     [(\volt\per\meter)\per(\ampere\per\square\meter)]%
550 \newscalarquantity{solidangle}%
     {\meter\squared\usk\reciprocalsquare\meter}%
551
     [\steradian]%
552
     [\steradian]%
554 \newscalarquantity{specificheatcapacity}%
     {\meter\squared\usk\second\reciprocalsquared\usk\reciprocal\kelvin}%
     [\joule\per\kelvin\usk\kilogram]%
556
     [\joule\per\kelvin\usk\kilogram]
557
558 \newscalarquantity{springstiffness}%
     {\kilogram\usk\second\reciprocalsquared}%
559
     [\newton\per\meter]%
560
     [\newton\per\meter]%
561
562 \newscalarquantity{springstretch}% % This is really just a displacement.
     {\meter}%
564 \newscalarquantity{stress}%
565
     {\reciprocal\meter\usk\kilogram\usk\second\reciprocalsquared}%
     [\pascal]%
566
     [\newton\per\meter\squared]%
567
568 \newscalarquantity{strain}%
```

```
569
     {}%
570 \newscalarquantity{temperature}%
    {\kelvin}%
572 %\ifmandi@rotradians
573 % \newphysicalquantity{torque}%
574 %
        {\meter\squared\usk\reciprocal\radian}%
575 %
        [\newton\usk\meter\per\radian]%
        [\newton\usk\meter\per\radian]%
576 %
577 %\else
     \newvectorquantity{torque}%
578
       {\meter\squared\usk\kilogram\usk\second\reciprocalsquared}%
579
       [\newton\usk\meter]%
580
       [\newton\usk\meter]%
581
582 %\fi
583 \newvectorquantity{velocity}%
     {\meter\usk\reciprocal\second}%
     [\meter\usk\reciprocal\second]%
585
     [\meter\per\second]%
586
587 \newvectorquantity{velocityc}%
     {\lightspeed}%
589
     [] %
     [\lightspeed]%
590
591 \newscalarquantity{volume}%
     {\cubic\meter}%
593 \newscalarquantity{volumechargedensity}%
     {\reciprocalcubic\meter\usk\second\usk\ampere}%
     [\coulomb\per\cubic\meter]%
595
     [\coulomb\per\cubic\meter]%
596
597 \newscalarquantity{volumemassdensity}%
     {\meter\reciprocalcubed\usk\kilogram}%
598
     [\kilogram\per\meter\cubed]%
599
     [\kilogram\per\meter\cubed]%
601 \newscalarquantity{wavelength}% % This is really just a displacement.
    {\meter}%
603 \newvectorquantity{wavenumber}%
     {\reciprocal\meter}%
604
     [\per\meter]%
605
     [\per\meter]%
607 \newscalarquantity{work}%
     {\meter\squared\usk\kilogram\usk\second\reciprocalsquared}%
608
609
     [\joule]%
     [\newton\usk\meter]%
611 \newscalar
quantity{youngsmodulus}\% % This is really just a stress.
     {\reciprocal\meter\usk\kilogram\usk\second\reciprocalsquared}%
612
613
     [\pascal]%
     [\newton\per\meter\squared]%
    Similarly, we now define physical constants for introductory physics, again alphabetically for convenience.
615 \newphysicalconstant{avogadro}%
    {N_A}
616
     \{6 \times \{23\}\} \{6.022140857 \times \{23\}\} \%
617
     {\reciprocal\mole}%
619 \newphysicalconstant{biotsavartconstant}% % alias for \mzofp
     {\frac{\mu_o}{4\pi^2}}
620
     {\tento{-7}}{\tento{-7}}%
621
622
     {\meter\usk\kilogram\usk\second\reciprocalsquared\\uk\ampere\reciprocalsquared\\%
623
     [\henry\per\meter]%
624
     [\tesla\usk\meter\per\ampere]%
625 \newphysicalconstant{bohrradius}%
```

```
{a 0}%
626
               \{5.3 \times \{-11\}\} \{5.2917721067 \times \{-11\}\} \%
627
              {\meter}%
628
629 \newphysicalconstant{boltzmann}%
630 {k_B}%
631
            {1.4\timestento{-23}}{1.38064852\timestento{-23}}%
           {\meter\squared\usk\kilogram\usk\reciprocalsquare\second\usk\reciprocal\kelvin}%
            [\joule\per\kelvin]%
633
              [\joule\per\kelvin]%
634
635 \newphysicalconstant{coulombconstant}% % alias for \oofpez
            {\frac{1}{4\pi\epsilon_o}}%
              {9\timestento{9}}{8.9875517873681764\timestento{9}}%
637
               {\meter\cubed\usk\kilogram\usk\reciprocalquartic\second\usk\ampere\reciprocalsquared}%
638
               [\meter\per\farad]%
               [\newton\usk\meter\squared\per\coulomb\squared]%
640
641 \newphysicalconstant{earthmass}%
            {M_{\symup{Earth}}}%
642
           \{6.0\timestento\{24\}\}\{5.97237\timestento\{24\}\}\%
643
            {\kilogram}%
645 \newphysicalconstant{earthmoondistance}%
            \{d_{\scriptstyle symup}(EM)\}\}%
            {3.8\timestento{8}}{3.81550\timestento{8}}%
            {\meter}%
648
649 \newphysicalconstant{earthradius}%
              {R_{\symup{Earth}}}%
               \{6.4 \times \{6.371 \times \{6.
               {\meter}%
653 \newphysicalconstant{earthsundistance}%
              \{d_{\sim}\{symup\{ES\}\}\}%
654
              {1.5\timestento{11}}{1.496\timestento{11}}%
655
              {\meter}%
656
657 \newphysicalconstant{electroncharge}%
             {q_e}%
              {-\elementarychargeapproximatevalue}{-\elementarychargeprecisevalue}%
            {\ampere\usk\second}%
660
              [\coulomb]%
661
              [\coulomb]%
662
663 \newphysicalconstant{electronCharge}%
            {Q_e}%
              {-\elementarychargeapproximatevalue}{-\elementarychargeprecisevalue}%
665
              {\ampere\usk\second}%
666
667
               [\coulomb]%
               [\coulomb]%
668
669 \newphysicalconstant{electronmass}%
           {m_e}%
670
            {9.1\times \{9.1\times \{-31\}\}}{9.10938356\times \{-31\}\}}%
671
672 {\kilogram}%
673 \newphysicalconstant{elementarycharge}%
674
              {1.6\timestento}{-19}{1.6021766208\timestento}{-19}}%
675
              {\ampere\usk\second}%
676
               [\coulomb]%
677
               [\coulomb]%
679 \newphysicalconstant{finestructure}%
680
              {\alpha}%
681
              {\frac{1}{137}}{7.2973525664\times{-3}}%
682
683 \newphysicalconstant{hydrogenmass}%
            {m_H}%
```

```
\{1.7\timestento\{-27\}\}\{1.6737236\timestento\{-27\}\}\%
685
     {\kilogram}%
686
687 \newphysicalconstant{moonearthdistance}%
     {d_{\symup{ME}}}%
     {3.8\times 1550\times 8}
689
    {\meter}%
690
691 \newphysicalconstant{moonmass}%
    {M {\symup{Moon}}}%
    {7.3\timestento{22}}{7.342\timestento{22}}\%
    {\kilogram}%
694
695 \newphysicalconstant{moonradius}%
    {R_{\{ \setminus symup\{Moon\} \} \} }}
     \{1.7\timestento\{6\}\}\{1.7371\timestento\{6\}\}\%
697
     {\meter}%
699 \newphysicalconstant{neutronmass}%
    {m_n}
700
701
     \{1.7\timestento\{-27\}\}\{1.674927471\timestento\{-27\}\}\%
     {\kilogram}%
702
703 \newphysicalconstant{oofpez}%
     {\frac{1}{4\pi\epsilon_o}}%
     {9}\times{9}\times{9}
     {\meter\cubed\usk\kilogram\usk\reciprocalquartic\second\usk\ampere\reciprocalsquared}%
706
     [\meter\per\farad]%
707
     [\newton\usk\meter\squared\per\coulomb\squared]%
708
709 \newphysicalconstant{oofpezcs}%
     {\frac{1}{4\pi c_1}}{4\pi c_0 c^2}}
     {\left(-7\right)}{\left(-7\right)}
711
     {\meter\usk\kilogram\usk\second\reciprocalsquared\\uk\ampere\reciprocalsquared\\%
712
     [\tesla\usk\meter\squared]%
713
     [\newton\usk\second\squared\per\coulomb\squared]%
714
715 \newphysicalconstant{planck}%
716
    {h}%
     \{6.6\timestento\{-34\}\}\{6.626070040\timestento\{-34\}\}\%
717
     {\meter\squared\usk\kilogram\usk\reciprocal\second}%
718
     [\joule\usk\second]%
719
     [\joule\usk\second]%
721 \newphysicalconstant{planckbar}%
    {\hslash}%
722
     {1.1\times -34}}{1.054571800\times -34}}%
723
     {\meter\squared\usk\kilogram\usk\reciprocal\second}%
724
     [\joule\usk\second]%
725
     [\joule\usk\second]
726
727 \newphysicalconstant{planckc}%
     {hc}%
728
     {2.0\times {-25}}{1.98644568\times {-25}}%
729
     {\meter\cubed\usk\kilogram\usk\reciprocalsquare\second}%
     [\joule\usk\meter]%
     [\joule\usk\meter]%
733 \newphysicalconstant{protoncharge}%
     {q_p}%
734
     {+\elementarychargeapproximatevalue}{+\elementarychargeprecisevalue}%
735
     {\ampere\usk\second}%
736
     [\coulomb]%
737
     [\coulomb]%
739 \newphysicalconstant{protonCharge}%
740
     {+\elementarychargeapproximatevalue}{+\elementarychargeprecisevalue}%
741
     {\ampere\usk\second}%
742
     [\coulomb]%
743
```

```
[\coulomb]%
744
745 \newphysicalconstant{protonmass}%
     {m_p}%
746
     \{1.7\timestento\{-27\}\}\{1.672621898\timestento\{-27\}\}\%
747
    {\kilogram}%
748
749 \newphysicalconstant{rydberg}%
     {R_{\{\inf ty\}}}%
     {1.1\timestento{7}}{1.0973731568508\timestento{7}}%
751
    {\reciprocal\meter}%
753 \newphysicalconstant{speedoflight}%
    {c}%
754
     {3\timestento{8}}{2.99792458\timestento{8}}%
755
     {\meter\usk\reciprocal\second}%
756
     [\meter\per\second]%
757
     [\meter\per\second]
758
759 \newphysicalconstant{stefanboltzmann}%
     {\sigma}%
760
     \{5.7\timestento\{-8\}\}\{5.670367\timestento\{-8\}\}\%
761
     {\kilogram\usk\second\reciprocalcubed\usk\kelvin\reciprocalquarted}%
     [\watt\per\meter\squared\usk\kelvin\quarted]%
     [\watt\per\meter\squared\usk\kelvin\quarted]
764
765 \newphysicalconstant{sunearthdistance}%
     {d_{\symup{SE}}}%
766
     \{1.5\timestento\{11\}\}\{1.496\timestento\{11\}\}\%
767
     {\meter}%
768
769 \newphysicalconstant{sunmass}%
     {M_{\scriptstyle symup}}
     \{2.0\timestento\{30\}\}\{1.98855\timestento\{30\}\}\%
771
     {\kilogram}%
772
773 \newphysicalconstant{sunradius}%
     {R_{\scriptstyle symup{Sun}}}
     {7.0\times 8}}{6.957\times 6.957}
775
     {\meter}%
777 \newphysicalconstant{surfacegravfield}%
     {g}%
778
     {9.8}{9.807}%
779
     {\meter\usk\second\reciprocalsquared}%
780
     [\newton\per\kilogram]%
781
     [\newton\per\kilogram]%
783 \newphysicalconstant{universalgrav}%
784
     \{6.7\timestento\{-11\}\}\{6.67408\timestento\{-11\}\}\%
785
     {\meter\cubed\usk\reciprocal\kilogram\usk\second\reciprocalsquared}%
786
     [\newton\usk\meter\squared\per\kilogram\squared]% % also \joule\usk\meter\per\kilogram\squared
787
     [\newton\usk\meter\squared\per\kilogram\squared]%
788
789 \newphysicalconstant{vacuumpermeability}%
790
     {4\pi}{4\pi}{timestento}{-7}}{4\pi}{timestento}{-7}}%
791
     {\meter\usk\kilogram\usk\second\reciprocalsquared\usk\ampere\reciprocalsquared}%
792
     [\henry\per\meter]%
793
     [\tesla\usk\meter\per\ampere]%
794
795 \newphysicalconstant{vacuumpermittivity}%
     {\epsilon_o}%
     {9 \times {-12}}{8.854187817 \times {-12}}%
797
     {\meter\reciprocalcubed\usk\reciprocal\kilogram\usk\second\quarted\usk\ampere\squared}%
798
     [\farad\per\meter]%
799
     [\coulomb\squared\per\newton\usk\meter\squared]%
800
```

We need a better, intelligent coordinate-free \vec command. Note the use of the e{_^} type of optional argument. This

accounts for much of the flexibility and power of this command. Also note the use of the TEX primitives \sb{} and \sp{}. Why doesn't it work when I put spaces around #3 or #4? Because outside of \ExplSyntaxOn...\ExplSyntaxOff, the _ character has a different catcode and is treated as a mathematical entity.

See https://tex.stackexchange.com/q/554706/218142.

See also https://tex.stackexchange.com/a/531037/218142.

```
801 \RenewDocumentCommand{\vec}{ s m e{_^} }{%
     \ensuremath{%
802
       \mbox{\ensuremath{\mbox{\%}}} 
 Note the \mbox{\ensuremath{\mbox{\backslash}}} , used to make superscript look better.
803
       \IfBooleanTF {#1}
                                  % check for *
804
805
          {\vv{#2}% % * gives an arrow
806
             % Use \sp{} primitive for superscript.
             % Adjust superscript for the arrow.
807
             808
         }%
809
         {\symbfit{#2} % no * gives us bold
810
             % Use sp{} primitive for superscript.
811
             % No superscript adjustment needed.
812
             \sp{\IfValueT{#4}{#4}\vphantom{\smash[t]{\big|}}}
813
         }%
814
       % Use \sb{} primitive for subscript.
815
       \style T{#3}{#3}\vphantom{\smash[b]{|}}}
816
     }%
817
818 }%
    Of course we need the zero vector.
819 \NewDocumentCommand{\zerovec}{ s }{%
     \IfBooleanTF {#1}
820
       {\vv{0}}%
821
       {\symbfup{0}}%
822
823 }%
    We need a command for the change in a vector.
824 \NewDocumentCommand{\Dvec}{ s m }{%
     \Delta
825
     \IfBooleanTF{#1}
826
827
       {\vec*}%
828
       {\vec{\vec}}
     {#2}
829
830 }%
```

We need a command for the direction of a vector. We use a slight tweak is needed to get uniform hats that requires the makebox package.

See https://tex.stackexchange.com/a/391204/218142.

```
831 \NewDocumentCommand{\dirvec}{ s m }{%
832
     \widetilde{\mbox{(p\)}}{\%}
        \ensuremath{%
833
          \IfBooleanTF{#1}%
834
            {#2}%
835
            {\symbfit{#2}}%
836
          }%
837
       }%
838
     }%
839
840 }%
```

We need a command for the magnitude of a vector.

```
841 \NewDocumentCommand{\magvec}{ s m }{%
842 \norm{%
843 \IfBooleanTF{#1}
```

```
844 {\vec*}%

845 {\vec}%

846 {#2}

847 }%

848 }%
```

We need intelligent commands for typesetting vector and tensor symbols and components suitable for use with both coordinate-free and index notations. Use starred form for index notation, unstarred form for coordinate-free.

```
849 \NewDocumentCommand{\veccomp}{ s m }{%
     % Consider renaming this to \vectorsym.
     \IfBooleanTF{#1}
     {\%} We have a *.
852
       \ensuremath{\symnormal{#2}}%
853
     }%
854
     {% We don't have a *.
855
       \ensuremath{\symbfit{#2}}%
856
     }%
857
858 }%
859 \NewDocumentCommand{\tencomp}{ s m }{%
     % Consider renaming this to \tensororsym.
860
     \IfBooleanTF{#1}
861
     {\%} We have a *.
862
863
       \ensuremath{\symsfit{#2}}%
     }%
864
     {% We don't have a *.
865
       \ensuremath{\symbfsfit{#2}}%
866
     }%
867
868 }%
    We provide an environment for problem statements. The starred version allows for in-line lists.
869 \NewDocumentEnvironment{physicsproblem}{ m }{%
     \newpage%
870
     \section*{#1}%
871
     \newlist{parts}{enumerate}{2}%
872
     \setlist[parts]{label=\bfseries(\alph*)}}%
873
874
875 \NewDocumentEnvironment{physicsproblem*}{ m }{%
     \newpage%
876
     \section*{#1}%
877
     \newlist{parts}{enumerate*}{2}%
878
     \setlist[parts]{label=\bfseries(\alph*)}}%
879
     {}%
880
881 \NewDocumentCommand{\problempart}{}{\item}%
    We provide an environment for problem solutions.
882 \NewDocumentEnvironment{physicssolution}{ +b }{%
     % Let's make equation numbering consecutive through the document.
883
     \begin{align}
884
       #1
885
     \end{align}
886
888 \NewDocumentEnvironment{physicssolution*}{ +b }{%
     % Let's make equation numbering consecutive through the document.
889
     \begin{align*}
890
       #1
891
     \end{align*}
892
893 }{}%
```

We provide a simplified command for important images.

```
894 \NewDocumentCommand{\image}{ O{scale=1} m m m }{%
     \begin{figure}[ht!]
895
       \begin{center}%
896
         \includegraphics[#1]{#2}% #4
897
       \end{center}%
898
       \caption{#3}%
                                    #2
899
       \label{#4}%
                                    #3
     \end{figure}%
901
902 }%
    See https://tex.stackexchange.com/q/570223/218142.
903 \NewDocumentCommand{\reason}{ O{4cm} m }{&&\begin{minipage}{#1}\raggedright\small #2\end{minipage}}
    We provide notation for column and row vectors.\mivector is a workhorse command.
Orginal code provided by @egreg.
See https://tex.stackexchange.com/a/39054/218142.
904 \ExplSyntaxOn
905 \NewDocumentCommand{\mivector}{ O{,} m o }%
906 {%
      \mi_vector:nn { #1 } { #2 }
907
      \IfValueT{#3}{\; {#3}}
908
909 }%
910 \seq_new:N \l__mi_list_seq
911 \cs_new_protected:Npn \mi_vector:nn #1 #2
912 {%
     \verb|\ensuremath{{\%}}|
913
914
       \seq_set_split:Nnn \l__mi_list_seq { , } { #2 }
915
       \int_compare:nF { \seq_count:N \l__mi_list_seq = 1 } { \left\langle }
       \seq_use: Nnnn \l__mi_list_seq { #1 } { #1 } { #1 }
916
       \int_compare:nF { \seq_count:N \l__mi_list_seq = 1 } { \right\rangle }
917
918
    }%
919 }%
920 \NewDocumentCommand{\colvec}{ O{,} m }{%
     \vector_main:nnnn { p } { \\ } { #1 } { #2 }
921
922 }%
923 \NewDocumentCommand{\rowvec}{ O{,} m }{%
     \vector_main:nnnn { p } { & } { #1 } { #2 }
924
925 }%
926 \sq_new:N \l_vector_arg_seq
927 \cs_new_protected:Npn \vector_main:nnnn #1 #2 #3 #4 {%
     \seq_set_split:Nnn \l__vector_arg_seq { #3 } { #4 }
     \begin{#1NiceMatrix}[r]
       \seq_use:Nnnn \l__vector_arg_seq { #2 } { #2 } { #2 }
930
     \end{#1NiceMatrix}
931
932 }%
933 \ExplSyntaxOff
    Commands for scientific notation.
934 \NewDocumentCommand{\tento}{ m }{\ensuremath{10^{#1}}}
935 \NewDocumentCommand{\timestento}{ m }{\ensuremath{\;\times\;\tento{#1}}}
936 \NewDocumentCommand{\xtento}{ m }{\ensuremath{\;\times\;\tento{#1}}}
937 \NewDocumentCommand{\changein}{}{\Delta}
    We need intelligent delimiters provided via the mathtools package. Use the starred versions for fractions. You can supply
optional sizes. Note that default placeholders are used when the argument is empty.
938 \DeclarePairedDelimiterX{\norm}[1]{\lVert}{\rVert}{\ifblank{#1}}{\:\cdot\:}{#1}}
939 \DeclarePairedDelimiterX{\absv}[1]{\lvert}{\rvert}{\ifblank{#1}{\:\cdot\:}{#1}}
940 \DeclarePairedDelimiterX{\angs}[1]{\langle}{\rangle}{\ifblank{#1}{\:\cdot\:}{#1}}
```

```
941 \DeclarePairedDelimiterX{\parentheses}[1]{()}{\ifblank{#1}{\:\cdot\:}{#1}} 942 \DeclarePairedDelimiterX{\dimensionsof}[1]{\lbrack}{\rbrack}{\ifblank{#1}{\:\cdot\:}{#1}} 943 \DeclarePairedDelimiterX{\unitsof}[1]{\lbrace}{\rbrace}{\ifblank{#1}{\:\cdot\:}{#1}}
```

Declare some new math operators. A \dim operator is already defined in amsmath. These may be more useful than delimiters.

```
944 \DeclareMathOperator{\abs}{abs}
945 \DeclareMathOperator{\units}{units}
```

These versions use \left...\right and are rather disfavored by IATEX purists. They may eventually be removed from mandi so don't rely on them.

```
946 \NewDocumentCommand{\innorm}{ O\{\cdot: \cdot\} }{\%}
947
     \left\lVert#1\right\rVert
948 }%
949 \NewDocumentCommand{\inabsv}{ O{\:\cdot\:} }{%
     \left\lvert#1\right\rvert
951 }%
952 \NewDocumentCommand{\inangs}{ O{\:\cdot\:} }{%
     \left\langle#1\right\rangle
953
954 }%
955 \NewDocumentCommand{\inpens}{ O{\:\cdot\:} }{%
     \left(#1\right)
956
957 }%
958 \NewDocumentCommand{\indims}{ O{\:\cdot\:} }{%
959
     \left[#1\right]
960 }%
961 \NewDocumentCommand{\inunts}{ O{\:\cdot\:} }{%
     \left\{#1\right\}
963 }%
    This command lets you highlight parts of, or entire, mathematical expressions.
Original code by anonymous user @abcdefg, modified by me.
See https://texample.net/tikz/examples/beamer-arrows/.
See also https://tex.stackexchange.com/a/406084/218142.
See also https://tex.stackexchange.com/a/570858/218142.
See also https://tex.stackexchange.com/a/570789/218142.
See also https://tex.stackexchange.com/a/79659/218142.
See also https://tex.stackexchange.com/q/375032/218142.
See also https://tex.stackexchange.com/a/571744/218142.
964 \newcounter{tikzhighlightnode}
965 \NewDocumentCommand{\hilite}{ O{magenta!60} m O{rectangle} }{%
     \stepcounter{tikzhighlightnode}%
966
     \tikzmarknode{highlighted-node-\number\value{tikzhighlightnode}}{#2}%
967
     \edef\temp{%
968
       \noexpand\AddToShipoutPictureBG{%
969
         \noexpand\begin{tikzpicture}[overlay,remember picture]%
970
         971
          \noexpand\node[inner sep=1.0pt,fill=#1,#3,fit=(highlighted-node-\number\value{tikzhighlightnode})]{};%
972
         \noexpand\fi
973
         \noexpand\end{tikzpicture}%
974
       }%
975
     }%
976
977
     \temp%
```

This is an intelligent slot command for coordinate-free tensor notation.

```
979 \NewDocumentCommand{\slot}{ s d[] }{% 980  % d[] must be used because of the way consecutive optional
```

978 }%

```
% arguments are handled. See xparse docs for details.
981
     \IfBooleanTF{#1}
982
      {\%} We have a *.
983
        \IfValueTF{#2}
984
        {% Insert a vector, but don't show the slot.
985
          \smash{\makebox[1.5em]{\ensuremath{#2}}}
986
987
        {% No vector, no slot.
988
          \smash{\makebox[1.5em]{\ensuremath{}}}
989
        }%
990
     }%
991
      {% We don't have a *.
992
        \IfValueTF{#2}
993
        {% Insert a vector and show the slot.
994
          \underline{\smash{\makebox[1.5em]{\ensuremath{#2}}}}
995
        }%
996
        {% No vector; just show the slot.
997
          \underline{\smash{\makebox[1.5em]{\ensuremath{}}}}
998
        }%
999
1000
     }%
1001 }%
    Here is an intelligent notation for contraction on pairs of slots.
1002 \NewDocumentCommand{\contraction}{ s m }{%
     \IfBooleanTF{#1}
1003
      {\bf C}}\ We have a *.
1004
      _{#2}
1006
1007 }%
    There is an intelligent differential (exterior derivative) operator.
1008 \NewDocumentCommand{\dd}{ s }{%
1009
     \mathop{}\!
     \IfBooleanTF{#1}
1010
     {\symbfsfup{d}}% We have a *.
1011
     {\simeq d} We don't have a *.
1012
1013 }%
     We need a command to typeset tensor valence.
1014 \NewDocumentCommand{\valence}{ s m m }{%
     \IfBooleanTF{#1}
1015
        \{(#2,#3)\}
1016
1017
        {\binom{#2}{#3}}
1018 }%
     We provide these diagnostic commands to provide sanity checks on commands that represent physical quantities and
 constants.
1019 \NewDocumentCommand{\checkquantity}{ m }{%
1020
     % Works for both scalar and vector quantities.
1021
      \begin{center}
        \begin{tabular}{>{\centering}p{4cm} >{\centering}p{3cm} >{\centering}p{4cm} >{\centering}p{3cm}}
1022
          name & base & derived & alternate \tabularnewline
1023
          \ttfamily\small{\expandafter\string\csname #1\endcsname} &
1024
          \small{\csname #1onlybaseunits\endcsname} &
1025
          \small{\csname #1onlyderivedunits\endcsname} &
1026
          \small{\csname #1onlyalternateunits\endcsname}
1027
        \end{tabular}
     \end{center}
1029
```

1030 }%

```
1031 \NewDocumentCommand{\checkconstant}{ m }{%
     \begin{center}
1032
1033
      name & base & derived & alternate \tabularnewline
1034
        \ttfamily\small{\expandafter\string\csname #1\endcsname} &
1035
        \small{\csname #1onlybaseunits\endcsname} &
1036
        \small{\csname #1onlyderivedunits\endcsname} &
1037
        \small{\csname #1onlyalternateunits\endcsname} \tabularnewline
1038
        symbol & approximate & precise \tabularnewline
1039
        \small{\csname #1mathsymbol\endcsname} &
1040
        \small{\csname #1approximatevalue\endcsname} &
1041
        \small{\csname #1precisevalue\endcsname} \tabularnewline
1042
       \end{tabular}
1043
     \end{center}
1044
1045 }%
```

7 Index

Page numbers refer to page where the corresponding entry is documented, and not to the page in the source code where it is defined.

A \contraction \abs 38 \contraction* \absv* 37 \conventional current \absv* 37 \coulombconstant	
\absv	
V	9
\absv*	
/222	19
\acceleration 7 \current	9
alternate value	9
\alwaysusealternateunits 16	
\alwaysuseapproximateconstants 23	
\alwaysusebaseunits	49
\alwaysusederivedunits 16 \dielectricconstant	9
\alwaysusepreciseconstants 23 \dim	38
\amount 7 \dimensionsof 7	37
\angs 37 \dimensionsof*	37
\angs*	30
\angularacceleration 7 \dirvec*	30
\angularfrequency 7 \displacement	9
\angularimpulse 8 \duration	9
\angularmomentum 8 \Dvec 8	30
\angularmomentumprinciple 40 \Dvec*	30
\angularmomentumprinciple* 40	
\angularmomentumprincipleupdate $\dots \dots \dots$	
\angularmomentumprincipleupdate* 40 \earthmass	19
\angularvelocity 8 \earthmoondistance	19
\area 8 \earthradius	19
\areachargedensity 8 \earthsundistance	19
\areamassdensity 8 \electricdipolemoment 8	9
\avogadro 18 \electricfield	10
\electricflux	10
<u>-</u>	10
base value 6, 49 \electricpotentialenergy	43
\biotsavartconstant 18 \electronCharge	20
\bohrradius 18 \electroncharge	19
\boltzmann 19 \electroncurrent	10
\electronmass	20
\cdot \cdot \cdot \cdot	20
\capacitance 8 \emf	10
\changein 37 \energy	10
\charge 8 \energydensity	10
\checkconstant 18 \energyflux	10
$\verb \checkquantity $	41
$\verb \chemicalenergy 42 $	39
\cmagneticfield 8 \energyprincipleupdate	40
\colvec 35 \entropy	10
\conductance 9 Environments	
$\verb \conductivity 9 $	24

physicsproblem 31	\LHSmomentumprinciple 39
physicsproblem* 31	\LHSmomentumprinciple* 39
physicssolution 32	\LHSmomentumprincipleupdate39
physicssolution* 32	\LHSmomentumprincipleupdate* 39
usealternateunits	\linearchargedensity
useapproximateconstants $\dots 24$	\linearmassdensity 11
usebaseunits	\luminous 12
usederivedunits	
usepreciseconstants 24	\mathbf{M}
	\magneticcharge 12
\mathbf{F}	$\verb \magneticdipolemoment 12$
false value	\magneticfield 12
\finestructure 20	\magneticflux 12
\force 11	\magvec 30
\frequency 11	\magvec* 30
	\mandisetup 6
G	\mass 12
glowscriptblock environment 24	\mivector 30
\glowscriptinline 29	\mobility 12
\gravitationalfield 11	\momentofinertia 12
\gravitationalpotential 11	\momentum 6, 12
\gravitationalpotentialenergy 43	\momentumflux
***	\momentumprinciple 39
H	\momentumprinciple* 39
\hereuseapproximateconstants 24	\momentumprincipleupdate 39
\hereusebaseunits	\momentumprincipleupdate* 39
\hereusedalternateunits	\moonearthdistance 20
\hereusederivedunits	\moonmass 20
\hereusepreciseconstants	\moonradius 21
\hilite	\mzofp 21
\hydrogenmass 20	N
Ī	
\image	\neutronmass
\impulse 11	
\indexofrefraction	\newscalarquantity
\inductance	\norm
\internalenergy 42	\norm*
,	\numberdensity
K	(Hamberdonbroy
Keys	0
preciseconstants 6	\oofpez 17, 21
units 6	\oofpezcs 21
	•
$\mathbf L$	P
\LHSangularmomentumprinciple 40	\parentheses 37
\LHSangularmomentumprinciple* 40	\parentheses* 37
\LHSangularmomentumprincipleupdate \dots 40	\particleenergy 41
\LHSangularmomentumprincipleupdate* 40	\permeability 13
\LHSenergyprinciple 39	\permittivity 13
\LHSenergyprincipleupdate 39	\photonenergy

physicsproblem environment 31	\stress 14
physicsproblem* environment	\sunearthdistance 23
physics solution environment	\sunradius 23
physicssolution* environment 32	\surfacegravfield 23
\planck 21	\systemenergy 41
\planckbar 21	_
\planckc 22	\mathbf{T}
\planeangle 13	\temperature 15
\polarizability 13	\tencomp 31
\power 13	\tencomp* 31
\poynting 13	\tento 36
preciseconstants key 6	\thermalenergy 42
\pressure 13	\timestento
\protonCharge 22	\torque 15
\protoncharge 22	\translationalkineticenergy 42
\protonmass 22	\translationalkineticenergy* 42
_	true value 6, 49
R	TT
\reason	U
\relativepermeability 14	\units
\relativepermittivity 14	units key
\resistance 14	\unitsof 37
\resistivity	\unitsof* 37
\restenergy 41	usealternateunits environment
\RHSangularmomentumprinciple 40	useapproximateconstants environment 24
\RHSangularmomentumprinciple* 40	usebaseunits environment
\RHSangularmomentumprincipleupdate 40	usederivedunits environment
\RHSangularmomentumprincipleupdate* 40	usepreciseconstants environment 24
\RHSenergyprinciple	V
\RHSenergyprincipleupdate	\vacuumpermeability 23
\RHSmomentumprinciple	\vacuumpermittivity
\RHSmomentumprinciple* 39	\valence
\RHSmomentumprincipleupdate	\valence*
\RHSmomentumprincipleupdate* 39	Values
\rotationalkineticenergy 42	alternate 6, 49
\rotationalkineticenergy* 42	base
\rowvec	derived
\rydberg 22	false
S	true
\slot 36	\vec
\slot*	\vec*
	\veccomp
\solidangle	\veccomp*
\specificheatcapacity	\vectoracceleration 7
\speedoflight	\vectorangularacceleration
\springpotentialenergy	\vectorangularimpulse
\springstiffness	\vectorangularmomentum 8
\springstretch	\vectorangularvelocity
\strain	\vectorcmagneticfield
/priain 19	\vectorcurrentdensity 9
	,

\vectordisplacement	9
\vectorelectricdipolemoment	9
\vectorelectricfield 1	
\vectorenergyflux 1	C
\vectorforce 1	1
$\verb \vectorgrav itational field$	1
\vectorimpulse 1	1
\vectormagneticdipolemoment 1	2
\vectormagneticfield 1	2
\vectormomentum 6, 1	2
$\verb \vectormomentumflux $	3
$\verb \vectorpoynting 1 $	3
\vectortorque 1	5
\vectorvelocity 1	5
\vectorvelociyc 1	5
\vectorwavenumber 1	6
\velocity 1	5
\velocityc 1	5
\vibrationalkineticenergy 4	3
\vibrationalkineticenergy* 4	3
\volume 1	5
$\verb \volumechargedensity $	5
\volumemassdensity 1	5
\vpythonfile 2	7
\vpythoninline 2	9
\mathbf{W}	
$\verb \wavelength \dots \dots$	5
\wavenumber 1	6
\work 1	6
\mathbf{X}	
\xtento 3	6
Y	
\youngsmodulus 1	6
7	
Z	
\zerovec	