Lineare Algebra I – Zusammenfassung

1 Vektorräume

1.1 Mengen und Abbildungen

injektive, surjektive, bijektive Abbildungen

1.2 Gruppen

1.3 Körper

1.4 Vektorräume

Definition 1.4.1. Sei K ein Körper. Ein K-Vektorraum besteht aus

- ullet einer Menge V und zwei Abbildungen
- $V \times V \to V$, $(v, w) \mapsto v + w$ (genannt Addition),
- $K \times V \to V$, $(\alpha, v) \mapsto \alpha \cdot v$ (genannt skalare Multiplikation)

so dass gilt

- (V1) (V, +) ist eine abelsche Gruppe,
- (V2) $(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$ für alle $\alpha, \beta \in K, v \in V$,
- (V3) $\alpha \cdot (v+w) = \alpha \cdot v + \alpha \cdot w$ für alle $\alpha \in K, v, w \in V$,
- $(V4) \quad \alpha \cdot (\beta \cdot v) = (\alpha \beta) \cdot v \qquad \text{für alle } \alpha, \beta \in K, v \in V,$
- (V5) $1 \cdot v = v$ für alle $v \in V$ und das Einselement $1 \in K$.

Definition 1.4.2. Ein *Vektor* ist ein Element eines Vektorraums.

Definition 1.4.12. Sei V ein K-Vektorraum. Eine Familie $(v_i)_{i \in I}$ von Vektoren $v_i \in V$ heißt Erzeugendensystem von <math>V, falls jeder Vektor $v \in V$ eine Linearkombination

$$v = \alpha_{i_1} v_{i_1} + \ldots + \alpha_{i_n} v_{i_n}$$
 mit $\alpha_{i_1}, \ldots, \alpha_{i_n} \in K$

gewisser endlich vieler v_{i_1}, \ldots, v_{i_n} ist, deren Auswahl von v abhängt.

V heißt endlich erzeugt, falls V ein endliches Erzeugendensystem (v_1, \ldots, v_n) besitzt.

1.5 Lineare Unabhängigkeit und Basen von Vektorräumen

Definition 1.5.4. Sei V ein K-Vektorraum. Eine Familie $(v_i)_{i \in I}$ von Vektoren $v_i \in V$ heißt $linear\ unabhängig$, falls aus jeder Gleichung

$$\sum_{i \in I} \alpha_i v_i = 0$$

mit Koeffizienten $\alpha_i \in K$ für eine endlich Teilmenge $J \subset I$ stets $\alpha_i = 0$ für alle $i \in J$ folgt.

Definition 1.5.5. Sei V ein K-Vektorraum. Eine Familie $(v_i)_{i \in I}$ von Vektoren $v_i \in V$ heißt Basis von V, falls

- $(v_i)_{i \in I}$ linear unabhängig ist und
- $(v_i)_{i\in I}$ ein Erzeugendensystem von V ist.

Satz 1.5.7. Sei V ein K-Vektorraum und (v_1, \ldots, v_n) eine Familie von Vektoren $v_i \in V$. Dann sind folgende Aussagen äquivalent:

- 1. (v_1, \ldots, v_n) ist eine Basis von V.
- 2. Jeder Vektor $v \in V$ besitzt eine Darstellung $v = \sum_{i=1}^{n} \alpha_i v_i$ mit eindeutig bestimmten Koeffizienten $\alpha_1, \dots, \alpha_n \in K$.

Satz 1.5.8. Jeder endlich erzeugte K-Vektorraum besitzt eine Basis.

Korollar 1.5.12. In einem endlich erzeugten K-Vektorraum besteht jede Basis aus gleich vielen Vektoren.

Definition 1.5.13. Sei V ein K-Vektorraum.

- 1. Ist V endlich erzeugt mit einer Basis bestehend aus n Vektoren, so sagen wir V hat $Dimension\ n$.
- 2. Ist V nicht endlich erzeugt, so sagen wir V hat Dimension ∞ .

1.6 Summen von Vektorräumen

Summen und direkte Summen von Vektorräumen

Satz 1.6.5. (Dimensionsformel für Untervektorräume)

Sei V ein K-Vektorraum und U_1, U_2 endlich dimensionale K-Untervektorräume von V. Dann gilt

$$\dim_K(U_1 + U_2) + \dim_K(U_1 \cap U_2) = \dim_K U_1 + \dim_K U_2$$
.

2 Lineare Abbildungen

2.1 Grundbegriffe

Definition 2.1.1. Eine Abbildung $f: V \to V'$ zwischen zwei K-Vektorräumen V und V' heißt K-linear, oder K-Homomorphismus, falls für alle $v, w \in V$ und alle $\alpha \in K$ gilt:

- 1. f(v+w) = f(v) + f(w) und
- $2. \quad f(\alpha v) = \alpha f(v).$

weitere Begriffe: Isomorphismus, Monomorphismus, Epimorphismus, Endomorphismus, Automorphismus

Satz 2.1.4. Sei V ein K-Vektorraum der endlichen Dimension n, dann ist V isomorph zu K^n .

Definition 2.1.7. Ist $f: V \to V'$ ein K-Homomorphismus zwischen K-Vektorräumen V und V', so definieren wir den $Kern\ von\ f$ als den K-Untervektorraum von V

$$\ker f := f^{-1}(\{0\}) = \{v \in V : f(v) = 0\}$$

und wir definieren das $Bild\ von\ f$ als den K-Untervektorraum von V'

$$\operatorname{im} f := f(V) = \{ v' \in V' : \exists v \in V \text{ mit } v' = f(v) \}.$$

Satz 2.1.8. Sei $f: V \to V'$ ein K-Homomorphismus zwischen K-Vektorräumen V und V', so ist f injektiv genau dann, wenn ker $f = \{0\}$.

Korollar 2.1.11. Sind zwei K-Vektorräume V und V' isomorph, dann gilt $\dim_K V = \dim_K V'$.

Satz 2.1.12. Sei V ein endlich dimensionaler K-Vektorraum mit Basis (v_1, \ldots, v_n) . Sei V' ein K-Vektorraum und seien v'_1, \ldots, v'_n Vektoren aus V'. Dann gibt es genau einen K-Homomorphismus $f: V \to V'$ mit $f(v_i) = v'_i$ für alle i.

Wir sagen "Homomorphismen sind durch die Bilder einer Basis eindeutig bestimmt."

Satz 2.1.14. (Dimensionsformel für Homomorphismen)

Sei $f: V \to V'$ ein K-Homomorphismus zwischen K-Vektorräumen V und V'. Dann gilt

$$\dim_K V = \dim_K(\ker f) + \dim_K(\operatorname{im} f).$$

2.2 Faktorräume

affine Unterräume

Definition 2.2.7.

- 1. Eine Relation auf einer Menge M besteht aus einer Teilmenge $R \subset M \times M$. Man schreibt $a \sim b$, falls $(a,b) \in R$ und spricht von der Relation "~".
- 2. Eine Relation " \sim " auf einer Menge M heißt eine \ddot{A} quivalenzrelation, falls sie folgende Eigenschaften besitzt:
 - (R) Reflexivität: $a \sim a$ für alle $a \in M$
 - (S) Symmetrie: $a \sim b \implies b \sim a$ für alle $a, b \in M$
 - (T) Transitivität: $a \sim b$, $b \sim c \implies a \sim c$ für alle $a, b, c \in M$

Definition 2.2.8. Ist " \sim " eine Äquivalenzrelation auf einer Menge M und $a \in M$, so heißt

$$[a] := \{b \in M : a \sim b\}$$

die Äquivalenzklasse von a. Jedes Element $b \in [a]$ heißt ein Repräsentant der Äquivalenzklasse [a]. Die Menge aller Äquivalenzklassen ist $M/\sim := \{[a]: a \in M\}$.

Definition 2.2.12. Sei V ein K-Vektorraum und $U \subset V$ ein K-Untervektorraum. Die Äquivalenzrelation auf V

$$v \sim w :\iff v - w \in U \qquad \text{(für } v, w \in V\text{)}$$

heißt Kongruenzrelation modulo U. Die Äquivalenzklassen von "~" heißen Kongruenzklassen modulo U oder Restklassen modulo U. Der K-Vektorraum $V/U := V/\sim$ heißt der Faktorraum von V modulo U. Wir bezeichnen die Kongruenzklasse von v modulo U mit $\bar{v} \in V/U$.

Satz 2.2.13. Sei V ein K-Vektorraum und $U \subset V$ ein K-Untervektorraum. Dann ist die Abbildung

$$\pi: V \to V/U, \quad v \mapsto \bar{v}$$

ein Epimorphismus von K-Vektorräumen mit ker $\pi = U$. Er wird der kanonische Epimorphismus genannt.

Satz 2.2.14. (Homomorphiesatz)

Sei V ein K-Vektorraum und $U \subset V$ ein K-Untervektorraum, sowie $\pi: V \to V/U$ der kanonische Epimorphismus. Dann erfüllt V/U zusammen mit π die folgende universelle Eigenschaft:

Ist $f: V \to V'$ ein K-Homomorphismus zu einem K-Vektorraum V' mit $U \subset \ker f$, so existiert ein eindeutig bestimmter K-Homomorphismus $\bar{f}: V/U \to V'$ mit $f = \bar{f} \circ \pi$, d.h. so dass folgendes Diagramm kommutiert:

Ferner ist \bar{f} injektiv \iff ker f = U und \bar{f} surjektiv \iff f surjektiv.

2.3 Der Dualraum

Definition 2.3.1. Sei V ein K-Vektorraum. Dann heißt der K-Vektorraum

$$V^* := \operatorname{Hom}_K(V, K) = \{ K \operatorname{-Homomorphismen} f : V \to K \}$$

der Dualraum zu V. Die Elemente von V^* heißen Linearformen auf V.

3 Matrizen

3.1 Lineare Abbildungen und Matrizen

Definition von Matrizen, zu einem Vektor v gehörender Koordinatenvektor p[v] bezüglich einer Basis \mathcal{B} , zu einer linearen Abbildung f gehörende Matrix $p[f]_{\mathcal{B}}$ bezüglich Basen \mathcal{B} und \mathcal{C} , Matrizenprodukt, Rechenregeln für Matrizen, Transponieren von Matrizen

Satz 3.1.3. Seien V und W endlich dimensionale K-Vektorräume mit Basen \mathcal{B} von V und \mathcal{C} von W. Dann ist die Abbildung

$$_{\mathcal{C}}[\cdot]_{\mathcal{B}}: \operatorname{Hom}_{K}(V, W) \longrightarrow K^{m \times n}, \quad f \mapsto _{\mathcal{C}}[f]_{\mathcal{B}}$$

ein Isomorphismus von K-Vektorräumen.

Satz 3.1.5. Seien V und W endlich dimensionale K-Vektorräume mit Basen \mathcal{B} von V und \mathcal{C} von W und sei $f:V\to W$ ein K-Homomorphismus. Dann gilt für alle $v\in V$

$$_{\mathcal{C}}[f(v)] = _{\mathcal{C}}[f]_{\mathcal{B}} \cdot _{\mathcal{B}}[v].$$

Satz 3.1.8. Seien U, V, W endlich dimensionale K-Vektorräume mit Basen \mathcal{B} von U, \mathcal{C} von V und \mathcal{D} von W und seien $f: U \to V$ und $g: V \to W$ zwei K-Homomorphismen. Dann gilt

$$_{\mathcal{D}}[g\circ f]_{\mathcal{B}}\ =\ _{\mathcal{D}}[g]_{\mathcal{C}}\cdot _{\mathcal{C}}[f]_{\mathcal{B}}.$$

3.2 Das Gaußsche Eliminationsverfahren und der Rang einer Matrix

Definition 3.2.1. Sei $A \in K^{m \times n}$. Dann ist der *Spaltenrang von A* die Dimension des von den Spalten von A erzeugten K-Untervektorraums von K^m . Der *Zeilenrang von A* ist die Dimension des von den Zeilen von A erzeugten K-Untervektorraums von $K^{(n)}$.

Satz 3.2.3. Ist $A \in K^{m \times n}$, so ist der Zeilenrang von A gleich dem Spaltenrang von A. Der gemeinsame Wert heißt der $Rang\ von\ A$.

3.3 Matrizenringe und invertierbare Matrizen

Definition von Ringen, Einheitengruppe eines Rings, $GL_n(K)$

Satz 3.3.9. Sei $A \in K^{n \times n}$. Dann sind folgende Aussagen äquivalent:

- 1. A ist invertierbar, d.h. $A \in GL_n(K)$.
- 2. Es gibt ein $B \in K^{n \times n}$ mit $B \cdot A = \mathrm{Id}_n$.
- 3. Die Spalten von A sind linear unabhängig als Vektoren im K^n .
- 4. Es gibt ein $C \in K^{n \times n}$ mit $A \cdot C = \mathrm{Id}_n$.
- 5. Die Zeilen von A sind linear unabhängig als Vektoren im $K^{(n)}$.
- 6. Der Rang von A ist n.

Gelten diese Aussagen, so ist $B = C = A^{-1}$ eindeutig bestimmt.

Korollar 3.3.12. Jede invertierbare Matrix ist Produkt von Elementarmatrizen.

3.4 Basiswechsel

Satz 3.4.1. Seien V und W endlich dimensionale K-Vektorräume mit Basen $\mathcal{B}, \mathcal{B}'$ von V und $\mathcal{C}, \mathcal{C}'$ von W, sowie $f: V \to W$ ein K-Homomorphismus. Dann ist

$$_{\mathcal{C}'}[f]_{\mathcal{B}'} = S^{-1} \cdot _{\mathcal{C}}[f]_{\mathcal{B}} \cdot T$$

für die Basiswechselmatrizen $S = {}_{\mathcal{C}}[\operatorname{id}_W]_{\mathcal{C}'}$ und $T = {}_{\mathcal{B}}[\operatorname{id}_V]_{\mathcal{B}'}$.

Satz 3.4.3. Sei $A \in K^{n \times n}$ vom Rang r. Dann gibt es invertierbare Matrizen $S \in GL_m(K)$ und $T \in GL_n(K)$ mit

$$S \cdot A \cdot T = \begin{pmatrix} \operatorname{Id}_r & 0 \\ 0 & 0 \end{pmatrix} .$$

3.5 Lineare Gleichungssysteme

Definition 3.5.1. Für eine Matrix $A = (a_{ij})_{i=1...m,j=1...n} \in K^{m \times n}$ und einen Vektor $b = (b_1, \ldots, b_m)^T \in K^m$ nennt man

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

 \vdots \vdots \vdots
 $a_{m1}x_1 + \dots + a_{mn}x_n = b_m$

oder kurz Ax = b für $x = (x_1, ..., x_n)^T$ ein lineares Gleichungssystem.

Satz 3.5.4. Sei $A \in K^{m \times n}$, $b \in K^m$, sowie $v \in K^n$ eine Lösung des linearen Gleichungssystems Ax = b. Dann gilt

$$\{x \in K^n : Ax = b\} = v + \{x \in K^n : Ax = 0\} = v + \ker f_A.$$

4 Determinanten

4.1 Permutationen

Definition 4.1.1. Sein $n \in \mathbb{N}$ und $X = \{1, ..., n\}$. Die symmetrische Gruppe oder Permutationsgruppe auf n Elementen ist die Gruppe

$$S_n := \{ \sigma : X \to X \text{ bijektive Abbildung } \}.$$

Die Elemente von S_n heißen Permutationen.

Definition 4.1.6. Sei $\sigma \in S_n$. Dann heißt

$$\operatorname{sgn} \sigma \ := \ \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}$$

das Signum von σ .

4.2 Determinantenfunktionen

Definition 4.2.1. Sei V ein K-Vektorraum der endlichen Dimension n. Eine Determinanten-funktion auf <math>V ist eine multilineare, alternierende Abbildung $\Delta: V^n \to K$.

Satz 4.2.4. (Formel von Leibniz)

Für Matrizen $A = (a_{ij}) \in K^{n \times n}$ definiere man die Determinante von A durch

$$\det A := \sum_{\sigma \in S_n} (\operatorname{sgn} \sigma) a_{\sigma(1),1} \cdot \ldots \cdot a_{\sigma(n),n} \in K.$$

Dann ist det aufgefasst als Funktion in den Spalten von A eine Determinantenfunktion auf $V = K^n$. Sie erfüllt $\det(\mathrm{Id}_n) = 1$.

Satz 4.2.8. Sei $\mathcal{B} = (x_1, \dots, x_n)$ eine Basis des K-Vektorraums V. So ist

$$\det_{\mathcal{B}}: V^n \to K, \quad \det_{\mathcal{B}}(v_1, \dots, v_n) := \det \left({}_{\mathcal{B}}[v_1], \dots, {}_{\mathcal{B}}[v_n] \right)$$

eine Determinantenfunktion auf V mit $\det_{\mathcal{B}}(x_1,\ldots,x_n)=1$. Für jede andere Determinantenfunktion Δ auf V gibt es eine eindeutig bestimmte Konstante $\alpha \in K$ mit $\Delta = \alpha \cdot \det_{\mathcal{B}}$.

4.3 Determinanten von Endomorphismen und Matrizen

Proposition 4.3.1. Sei Δ eine nicht-triviale Determinantenfunktion auf einem n-dimensionalen K-Vektorraum V. Ferner sei $f: V \to V$ ein Endomorphismus von V. Dann gilt:

- 1. Durch $\Delta_f: V^n \to K$, $\Delta_f(v_1, \ldots, v_n) := \Delta(f(v_1), \ldots, f(v_n))$ wird auf V eine Determinantenfuktion definiert.
- 2. Es existiert ein eindeutig bestimmtes $\alpha_f \in K$ mit $\Delta_f = \alpha_f \cdot \Delta$.
- 3. Ist $\mathcal{B} = (x_1, \dots, x_n)$ eine Basis von V, so gilt $\alpha_f = \det_{\mathcal{B}}[f]_{\mathcal{B}}$.

Definition 4.3.2. det $f := \alpha_f$ heißt die Determinante des Endomorphismus f.

Satz 4.3.4. Seien $A, B \in K^{n \times n}$. Dann gilt:

- 3. $det(A \cdot B) = (det A)(det B)$.
- 4. det $A \neq 0$ genau dann, wenn $A \in GL_n(K)$.
- 6. $\det A^T = \det A$ für die transponierte Matrix A^T .

Satz 4.3.6. Sei $A \in K^{n \times n}$ und $\alpha \in K$. Dann ändert sich det A unter elementaren Zeilen- und Spaltenumformungen wie folgt:

Typ I: det A multipliziert sich mit α , wenn man eine Zeile (bzw. Spalte) von A mit α multipliziert.

Typ II: det A ändert sich nicht, wenn man zu einer Zeile (bzw. Spalte) von A das α -fache einer anderen Zeile (bzw. Spalte) von A addiert.

Typ III: det A ändert das Vorzeichen, wenn man in A zwei Zeilen (bzw. Spalten) vertauscht.

4.4 Die Cramersche Regel

Definition 4.4.2. Für eine Matrix $A \in K^{n \times n}$ und ein Indexpaar $i, j \in \{1, ..., n\}$ betrachten wir die Unter-Matrix $A'_{ij} \in K^{(n-1)\times(n-1)}$, die aus A entsteht durch Weglassen der i-ten Zeile und der j-ten Spalte. Wir definieren

$$\widetilde{a}_{ij} := (-1)^{i+j} \det A'_{ij} \quad \text{und} \quad \widetilde{A} := (\widetilde{a}_{ij})_{i=1\dots n, j=1\dots n} \in K^{n\times n}.$$

Dann heißt $A^{\operatorname{ad}} := \widetilde{A}^T$ die zu A gehörende Komplementärmatrix.

Korollar 4.4.4. (Laplacescher Entwicklungssatz)

Sei $A = (a_{ij}) \in K^{n \times n}$ und seien $i, j \in \{1, ..., n\}$. Dann gilt

$$\det A = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} \det A'_{ik} \qquad \textit{Entwicklung nach der i-ten Zeile}$$

$$\det A = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} \det A'_{kj} \qquad \textit{Entwicklung nach der j-ten Spalte}$$

Korollar 4.4.5. Für $A \in GL_n(K)$ gilt $A^{-1} = (\det A)^{-1} A^{\operatorname{ad}}$.