CS(STAT)5525 : Data Analytics Lecture #2

Reza Jafari, Ph.D

Collegiate Associate Professor rjafari@vt.edu

A preliminary exploration of the data to better understand its characteristics.

- A preliminary exploration of the data to better understand its characteristics.
- Key motivations of data exploration include.

- A preliminary exploration of the data to better understand its characteristics.
- Key motivations of data exploration include.
 - Helping to select the right tool for preprocessing or analysis.

- A preliminary exploration of the data to better understand its characteristics.
- Key motivations of data exploration include.
 - Helping to select the right tool for preprocessing or analysis.
 - Making use of humans' abilities to recognize patterns.

- A preliminary exploration of the data to better understand its characteristics.
- Key motivations of data exploration include.
 - Helping to select the right tool for preprocessing or analysis.
 - Making use of humans' abilities to recognize patterns.
 - People can recognize patterns not captured by data analysis tools.

- A preliminary exploration of the data to better understand its characteristics.
- Key motivations of data exploration include.
 - Helping to select the right tool for preprocessing or analysis.
 - Making use of humans' abilities to recognize patterns.
 - People can recognize patterns not captured by data analysis tools.
- Related to the area of Exploratory Data Analysis (EDA)

- A preliminary exploration of the data to better understand its characteristics.
- Key motivations of data exploration include.
 - Helping to select the right tool for preprocessing or analysis.
 - Making use of humans' abilities to recognize patterns.
 - People can recognize patterns not captured by data analysis tools.
- Related to the area of Exploratory Data Analysis (EDA)
 - Created by statistician John Tukey

- A preliminary exploration of the data to better understand its characteristics.
- Key motivations of data exploration include.
 - Helping to select the right tool for preprocessing or analysis.
 - Making use of humans' abilities to recognize patterns.
 - People can recognize patterns not captured by data analysis tools.
- Related to the area of Exploratory Data Analysis (EDA)
 - Created by statistician John Tukey
 - Seminal book is Exploratory Data Analysis by Tukey

- A preliminary exploration of the data to better understand its characteristics.
- Key motivations of data exploration include.
 - Helping to select the right tool for preprocessing or analysis.
 - Making use of humans' abilities to recognize patterns.
 - People can recognize patterns not captured by data analysis tools.
- Related to the area of Exploratory Data Analysis (EDA)
 - Created by statistician John Tukey
 - Seminal book is Exploratory Data Analysis by Tukey
 - A nice online introduction can be found in Chapter 1 of the NIST/SEMATECH e-Handbook of Statistical Methods [Web Link]

■ The <u>three</u> popular data analysis approaches are :

1- Classical Analysis

The data collection is followed by a model (normality, linearity,etc) and then analysis, estimation and testing that follows are focused on the parameters of that model.

2- FDA

For EDA, the data is followed immediately by analysis with a goal of inferring what model would be appropriate.

- The <u>three</u> popular data analysis approaches are :
 - 1 Classical Analysis

1- Classical Analysis

The data collection is followed by a model (normality, linearity,etc) and then analysis, estimation and testing that follows are focused on the parameters of that model.

 $\blacksquare \ \mathsf{Problem} \to \mathsf{Data} \to \mathsf{Model} \to \mathsf{Analysis} \to \mathsf{Conclusions}$

2- EDA

For EDA, the data is followed immediately by analysis with a goal of inferring what model would be appropriate.

- The <u>three</u> popular data analysis approaches are :
 - 1 Classical Analysis
 - 2 EDA

1- Classical Analysis

The data collection is followed by a model (normality, linearity,etc) and then analysis, estimation and testing that follows are focused on the parameters of that model.

 $\blacksquare \ \mathsf{Problem} \to \mathsf{Data} \to \mathsf{Model} \to \mathsf{Analysis} \to \mathsf{Conclusions}$

2- EDA

For EDA, the data is followed immediately by analysis with a goal of inferring what model would be appropriate.

 $lue{}$ Problem o Data o Analysis o Model o Conclusions

- The <u>three</u> popular data analysis approaches are :
 - 1 Classical Analysis
 - 2 EDA
 - 3 Bayesian

1- Classical Analysis

The data collection is followed by a model (normality, linearity,etc) and then analysis, estimation and testing that follows are focused on the parameters of that model.

 $\blacksquare \ \mathsf{Problem} \to \mathsf{Data} \to \mathsf{Model} \to \mathsf{Analysis} \to \mathsf{Conclusions}$

2- EDA

For EDA, the data is followed immediately by analysis with a goal of inferring what model would be appropriate.

lacktriangle Problem o Data o Analysis o Model o Conclusions

3- Bayesian

For Bayesian analysis, the analyst attempts to in corporate scientific/engineering knowledge/experitise into the analysis by imposing a data independent distribution on the parameters of the selected model.

- $\blacksquare \ \mathsf{Problem} \to \mathsf{Data} \to \mathsf{Model} \to \mathsf{Prior} \ \mathsf{Distribution} \to \mathsf{Analysis}$
 - \rightarrow Conclusions

3- Bayesian

For Bayesian analysis, the analyst attempts to in corporate scientific/engineering knowledge/experitise into the analysis by imposing a data independent distribution on the parameters of the selected model.

- $\begin{array}{c} \blacksquare \ \, \mathsf{Problem} \to \mathsf{Data} \to \mathsf{Model} \to \mathsf{Prior} \ \mathsf{Distribution} \to \mathsf{Analysis} \\ \to \mathsf{Conclusions} \end{array}$
- In the real world, data analysts freely mix elements of all the above three approaches (and other approaches).

■ In EDA, as originally defined by Tukey

- In EDA, as originally defined by Tukey
 - The focus was on visualization.

- In EDA, as originally defined by Tukey
 - The focus was on visualization.
 - Clustering & anomaly detection were viewed as exploratory techniques.

- In EDA, as originally defined by Tukey
 - The focus was on visualization.
 - Clustering & anomaly detection were viewed as exploratory techniques.
 - In data mining, clustering and anomaly detection are major areas of interest, and not thought of as just exploratory.

- In EDA, as originally defined by Tukey
 - The focus was on visualization.
 - Clustering & anomaly detection were viewed as exploratory techniques.
 - In data mining, clustering and anomaly detection are major areas of interest, and not thought of as just exploratory.
- In our discussion of data exploration, we focus on:

- In EDA, as originally defined by Tukey
 - The focus was on visualization.
 - Clustering & anomaly detection were viewed as exploratory techniques.
 - In data mining, clustering and anomaly detection are major areas of interest, and not thought of as just exploratory.
- In our discussion of data exploration, we focus on:
 - Summary statistics

- In EDA, as originally defined by Tukey
 - The focus was on visualization.
 - Clustering & anomaly detection were viewed as exploratory techniques.
 - In data mining, clustering and anomaly detection are major areas of interest, and not thought of as just exploratory.
- In our discussion of data exploration, we focus on:
 - Summary statistics
 - Visualization

- In EDA, as originally defined by Tukey
 - The focus was on visualization.
 - Clustering & anomaly detection were viewed as exploratory techniques.
 - In data mining, clustering and anomaly detection are major areas of interest, and not thought of as just exploratory.
- In our discussion of data exploration, we focus on:
 - Summary statistics
 - Visualization
 - Online Analytical Processing (OLAP)

Iris Sample Data set

■ Many of the exploratory data techniques are illustrated with the Iris Plant data set.

Iris Sample Data set

- Many of the exploratory data techniques are illustrated with the Iris Plant data set.
- The iris dataset can be obtained from the seaborn package in python using sns.load_dataset('iris')

Iris Sample Data set

- Many of the exploratory data techniques are illustrated with the Iris Plant data set.
- The iris dataset can be obtained from the seaborn package in python using sns.load_dataset('iris')
- Four attributes sepal width & length, petal width & length

Histogram

Usually shows the distribution of values of a single variable

- Usually shows the distribution of values of a single variable
- Divide the values into bins and show a bar plot of the number of objects in each bin.

- Usually shows the distribution of values of a single variable
- Divide the values into bins and show a bar plot of the number of objects in each bin.
- The height of each bar indicates the frequency of objects.

- Usually shows the distribution of values of a single variable
- Divide the values into bins and show a bar plot of the number of objects in each bin.
- The height of each bar indicates the frequency of objects.
- Shape of histogram depends on the number of bins

Boxplot invented by J. Tukey

- Boxplot invented by J. Tukey
 - Usually shows the distribution of values of a single variable

- Boxplot invented by J. Tukey
 - Usually shows the distribution of values of a single variable
 - Another way of displaying the distribution of data

- Boxplot invented by J. Tukey
 - Usually shows the distribution of values of a single variable
 - Another way of displaying the distribution of data
 - Following figure shows the basic part of a box plot

- Scatter plots
 - Attributes values determine the position

- Attributes values determine the position
- Two-dimensional scatter plots most common, but can have three-dimensional scatter plots

- Attributes values determine the position
- Two-dimensional scatter plots most common, but can have three-dimensional scatter plots
- Often additional attributes can be displayed by using the size, shape, and color of the markers that represent the objects

- Attributes values determine the position
- Two-dimensional scatter plots most common, but can have three-dimensional scatter plots
- Often additional attributes can be displayed by using the size, shape, and color of the markers that represent the objects
- It is useful to have arrays of scatter plots can compactly summarize the relationships of several pairs of attributes

- Attributes values determine the position
- Two-dimensional scatter plots most common, but can have three-dimensional scatter plots
- Often additional attributes can be displayed by using the size, shape, and color of the markers that represent the objects
- It is useful to have arrays of scatter plots can compactly summarize the relationships of several pairs of attributes
- See example on the next slide

■ We can see 3 noticeable clusters:

- We can see 3 noticeable clusters:
 - 1 one which is rather dense (bottom left) and far from the others.

- We can see 3 noticeable clusters:
 - 1 one which is rather dense (bottom left) and far from the others.
 - 2 two which are quite close but differ in their respective distance to the third one (bottom left).

- We can see 3 noticeable clusters:
 - 1 one which is rather dense (bottom left) and far from the others.
 - 2 two which are quite close but differ in their respective distance to the third one (bottom left).
- These three clusters refers to 3-types of flowers ('setosa', 'versicolor', 'virginica')

scipy.spatial.distance.pdist() returns the pairwise distances between observations in n-dimensional space.

- scipy.spatial.distance.pdist() returns the pairwise distances between observations in n-dimensional space.
- A condensed distance matrix as returned by pdist can be converted to a full distance matrix by using scipy.spatial.distance.squareform().

- scipy.spatial.distance.pdist() returns the pairwise distances between observations in n-dimensional space.
- A condensed distance matrix as returned by pdist can be converted to a full distance matrix by using scipy.spatial.distance.squareform().
- Lets create a normally distributed systematic dataset with 1000 observations that represent 3 clusters.

- scipy.spatial.distance.pdist() returns the pairwise distances between observations in n-dimensional space.
- A condensed distance matrix as returned by pdist can be converted to a full distance matrix by using scipy.spatial.distance.squareform().
- Lets create a normally distributed systematic dataset with 1000 observations that represent 3 clusters.
 - Cluster 1: mean = 0 variance 1
 - Cluster 1: mean = 5 variance 1
 - Cluster 1: mean = 10 variance 1

```
import numpy as np
from scipy.spatial.distance import pdist, squareform
import matplotlib.pyplot as plt
np.random.seed(123)
                                                         Distance Matrix- Practice
                                              3.0
x1 = np.random.normal(0,1,1000)
                                             2.5
x2 = np.random.normal(5.1.1000)
                                                                                               25
x3 = np.random.normal(10.1.1000)
                                              2.0
                                                                                               20
X = np.vstack((x1,x2,x3))
dist_mat = squareform(pdist(X))
                                              1.5
                                                                                               15
N = len(X)
                                              1.0
plt.pcolormesh(dist_mat)
plt.colorbar()
                                             0.5
plt.xlim([0,N])
plt.ylim([0,N])
                                              0.0
plt.title('Distance Matrix- Practice')
                                                       0.5
                                                             1.0
                                                                    1.5
                                                                                  2.5
                                                                           2.0
                                                                                         3.0
plt.show()
```


■ OLAP (Online Analytical Processing) is the technology behind Business Intelligence (BI) applications.

- OLAP (Online Analytical Processing) is the technology behind Business Intelligence (BI) applications.
- OLAP is a powerful technology for data discovery, including capabilities for limitless report, viewing, complex analytical calculations and predictive "what if scenario" (budget, forecast) planing.

- OLAP (Online Analytical Processing) is the technology behind Business Intelligence (BI) applications.
- OLAP is a powerful technology for data discovery, including capabilities for limitless report, viewing, complex analytical calculations and predictive "what if scenario" (budget, forecast) planing.
- OLAP technology has been defined as the ability to achieve fast access to shared multidimensional information.

- OLAP (Online Analytical Processing) is the technology behind Business Intelligence (BI) applications.
- OLAP is a powerful technology for data discovery, including capabilities for limitless report, viewing, complex analytical calculations and predictive "what if scenario" (budget, forecast) planing.
- OLAP technology has been defined as the ability to achieve fast access to shared multidimensional information.
- Unlike relational databases, two-dimensional row-by-column format, OLAP used Cubes terminology to store arrays of consolidated information.

- OLAP (Online Analytical Processing) is the technology behind Business Intelligence (BI) applications.
- OLAP is a powerful technology for data discovery, including capabilities for limitless report, viewing, complex analytical calculations and predictive "what if scenario" (budget, forecast) planing.
- OLAP technology has been defined as the ability to achieve fast access to shared multidimensional information.
- Unlike relational databases, two-dimensional row-by-column format, OLAP used Cubes terminology to store arrays of consolidated information.
- The data and formulas are stored in an optimized multidimensional database, while views of the data are created on demand.

Data Cube Example

Consider a data set that records the sales of <u>products</u> at a number of company stores at <u>various dates</u>.

Data Cube Example

- Consider a data set that records the sales of <u>products</u> at a number of company stores at <u>various dates</u>.
- This data can be represented as a 3-dimensional array.

Data Cube Example

The following figure table shows one of the two-dimensional aggregations, along with two of the one-dimensional aggregation and the overall total.

			date		
		Jan 1, 2004	Jan 2, 2004	 Dec 31, 2004	total
product ID	1	\$1,001	\$987	 \$891	\$370,000
	:	:		:	:
	27	\$10,265	\$10,225	 \$9,325	\$3,800,020
	:	:		:	:
	total	\$527,362	\$532,953	 \$631,221	\$227,352,127

