1.

Proof:

If L is context-free language, then L^R is also a context-free language.

For context-free language L has grammar G as its grammar.

If G_1 = context free grammar, so G_1 creates L_1 (of language).

Form G_1 we can get a new grammar G' as follows:

For every production $X \to V$ of G_1 , we add the production $X \to V^R$ in G'.

Where X is a variable and V is string of terminals and variables (non terminals)

Then

It is easy to see that a string W is generated by grammar G, if string W^R is generated by G'

Therefore, grammar G' generates language L^R, and the language L^R is context-free.

Therefore, context-free language is closed under reversal.

2.

Proof:

As L_1 and L_2 are context-free languages. The difference is $L_1 - L_2 = L_1 \cap \overline{L_2}$

Because L₁ is CFL, L2 is CFL, but L₂' need not be CFL because complementation is not closed.

Then intersection and complement are not closed for context-free language.

Therefore, context-free language is not closed under difference.

3.

Proof:

L1 =
$$\{a^n b^m, : n = 2^m\}.$$

If L1 is context-free language, then by pumping lemma,

For $w \in L1$, with $|w| \ge m$ can decomposed into w = uvxyz,

Such as $|vy| \ge 1$, $|vxy| \le m$, and $w^i = uv^i xy^i z \in L1$, for i=0,1,2,...

Pick $a^{2^m}b^m$, $|w| \ge m$

case1:

v and y are all a's |vy|=K,

$$\mathbf{w}_0 = a^{2^m} b^m |\mathbf{w}| \ge \mathbf{m}$$

case 2:

v and y are all b's |vy|=K,

$$W_0 = a^{2^m - k} b^m, \notin L$$

case 3:

v and y are all contain a's, b's

w are out of order.

Case 4:

V is all a's, y is all b's, $|v|=k_1$, $|y|=k_2$, $2 \le k_1+k_2 \le m$,

$$W2 = a^{2^m + k} b^{m + k}$$

Then,
$$2^m + 1 \le 2^m + k_1 \le 2^m + m$$
,

$$2^{m+k_2} = 2^m * 2^{k_2}, 1 \le k_1 \le m, 1 \le k_2 \le m,$$

Therefore,

$$2^m + k_1 < 2^{m+k_2}$$

So, W2 =
$$a^{2^{m}+k}b^{m+k} \notin L$$
.

All case lead to a contradiction, L is not a CFL.

4.

Proof:

L2= {
$$a^n b^n c^j$$
, : n \le j }.

If L2 is context-free language, then by pumping lemma,

For $w \in L2$, with $|w| \ge m$ can decomposed into w = uvxyz,

Like $|vy| \ge 1$, $|vxy| \le m$, and $w^i = uv^i x y^i z \in L1$, for i=0,1,2,...

Pick $a^m b^m c^{m+1}$, $|w| \ge m$

Case 1:

v and y and all a's, |vy|=k.

$$w_0 = a^{m-k}b^mc^{m+1} \notin L$$

Case 2:

v and y and all b's, |vy|=k.

$$w_0 = a^m b^{m-k} c^{m+1} \notin L$$

Case 3:

V and y all is c's, |vy| = k,

$$w_0 = a^m b^m c^{m+1-k} \notin L$$
, since $k \ge 1$

Case 4:

For either v or y both is a's and b's.

W are out of order.

Case 5:

For either v or y both contain b's and c's.

W are out of order.

Case 6:

V is all b's, y is all b's, |v|=k1, |y|=k2,

$$w_2 = a^{m+k_1}b^{m+k_2}c^{m+1} \notin L$$
, since $k_1 \ge 1$, $k_2 \ge 1$

Case 7:

V is b's, y is c's,
$$|v|=k1$$
, $|y|=k2$,

$$w_2 = a^m b^{m+k_1} c^{m+1+k_2} \notin L$$
, since $k_1 \ge 1$, $k_2 \ge 1$

All case lead to a contradiction, therefor L is not CFL.

5.

Proof:

 $L3 = \{ w: w \in \{a,b,c\}^* \text{ and } na(w) < nb(w) < nc(w) \}.$

$$L \cap a^*b^*c^* = \{a^nb^{2n}c^{3n}\}$$

Then, wu just need prove L' = $\{a^nb^{2n}c^{3n}\}$ is not a context-free language.

If $a^nb^{2n}c^{3n}$ is a CFL, L' is an infinite language, then by the pumping lemma,

For $w \in L'$, with $|w| \ge m$ can decomposed into w = uvxyz,

Like $|vy| \ge 1$, $|vxy| \le m$, and $w^i = uv^i x y^i z \in L1$, for i=0,1,2,...

Pick $a^n b^{2n} c^{3n}$, $|w| \ge m$,

Case 1:

v and y and all a's, |vy|=k.

$$w_0 = a^{m-k}b^{2m}c^{3m} \notin L'$$

Case 2:

v and y and all b's, |vy|=k.

$$w_0 = a^m b^{2m-k} c^{3m} \notin L'$$

Case 3:

V and y all is c's, |vy| = k,

$$w_0 = a^m b^{2m} c^{3m-k} \notin L'$$

Case 4:

For either v or y both is a's and b's.

W are out of order.

Case 5:

For either v or y both contain b's and c's.

W are out of order.

Case 6:

V is all b's, y is all b's, |v|=k1, |y|=k2,

$$w_2 = a^{m+k_1}b^{2m+k_2}c^{3m} \notin L$$
, since $3(m+k_1) > 3m$

Case 7:

V is b's, y is c's, |v|=k1, |y|=k2,

$$w_2 = a^m b^{2m+k_1} c^{3m+k_2} \notin L$$
, since $3m < 3m + k_2$

All cases lead to a contradiction, therefor L' is not a CFL.

Therefor,

Based on L $\cap a^*b^*c^* = \{a^nb^{2n}c^{3n}\}$

Because $a^*b^*c^*$ is a regular language, since L' = $\{a^nb^{2n}c^{3n}\}$ is not CFL,

So L is not CFL.