3. Checking the Markov property

Problem 3. Checking the Markov property

7/7 points (ungraded)

For each one of the following definitions of the state X_k at time k (for $k=1,2,\ldots$), determine whether the Markov property is satisfied by the sequence X_1,X_2,\ldots .

- 1. A fair six-sided die (with sides labelled $1, 2, \ldots, 6$) is rolled repeatedly and independently.
 - (a) Let X_k denote the largest number obtained in the first k rolls. Does the sequence X_1, X_2, \ldots satisfy the Markov property?

(b) Let X_k denote the number of ${\bf 6}$'s obtained in the first k rolls, up to a maximum of ten. (That is, if ten or more ${\bf 6}$'s are obtained in the first k rolls, then $X_k=10$.) Does the sequence X_1,X_2,\ldots satisfy the Markov property?

(c) Let Y_k denote the result of the $k^{ ext{th}}$ roll. Let $X_1=Y_1$, and for $k\geq 2$, let $X_k=Y_k+Y_{k-1}$. Does the sequence X_1,X_2,\ldots satisfy the Markov property?

(d) Let $Y_k=1$ if the $k^{ ext{th}}$ roll results in an odd number; and $Y_k=0$ otherwise. Let $X_1=Y_1$, and for $k\geq 2$, let $X_k=Y_k\cdot X_{k-1}$. Does the sequence X_1,X_2,\ldots satisfy the Markov property?

- 2. Let Y_k be the state of some Markov chain at time k (i.e., it is known that the sequence Y_1, Y_2, \ldots satisfies the Markov property).
 - (a) For a fixed integer r>0, let $X_k=Y_{r+k}$. Does the sequence X_1,X_2,\ldots satisfy the Markov property?

Yes ▼ ✓

(b) Let $X_k = Y_{2k}$. Does the sequence X_1, X_2, \ldots satisfy the Markov property?

Yes ▼ ✓

(c) Let $X_k = (Y_k, Y_{k+1})$. Does the sequence X_1, X_2, \ldots satisfy the Markov property?

Yes ▼ ✓

提交

你已经尝试了2次(总共可以尝试3次)

讨论

显示讨论

主题: Unit 10 / Problem Set / 3. Checking the Markov property