# Linear Data Analysis Orthogonal Projection

Cain Susko

Queen's University School of Computing

February 6, 2022

# a Concepts in Orthogonal Projection

We now ask the question, if we are given a vector space, what vector in a vector space is closest to the given vector. This is whats known as projecting. We will first look at projecting a vector in 1 Dimensions.

Consider the vector  $\vec{a}$  as a basis for a 1D space. Given a new vector  $\vec{c}$  what multiple of  $\vec{a}$  is nearest to  $\vec{c}$ 



# b Projecting a Vector to a Vector

We will explore how we can project a vector in a 1-dimensional vector space.

Given: basis  $\vec{a}$  and s new vector  $\vec{c}$ 

We want the vector in the vector space of  $\vec{a}$  that is nearest to  $\vec{c}$ . We refer the nearest vector as:

$$\vec{p} = ^{def} w\vec{a}$$
.

To find  $\vec{p}$  we must use the **error vector**. The error vector is defined as

$$\vec{e} = ^{def} \vec{c} - \vec{p}$$
.

Using the example from section a of this lesson,  $\vec{e}$  is:



Thus we require the vector  $\vec{a}$  perpendicular to vector  $\vec{e}$ 

$$\vec{a}\perp\vec{e}$$
.

IN linear algebra, this can be represented as:

$$\vec{a} \cdot \vec{e} = 0$$

$$\equiv \vec{a}^{\top} \vec{e} = 0$$

$$\equiv \vec{a} = \vec{0} \quad (\vec{c} - \vec{p}) = 0$$

$$\equiv \vec{a}^{\top} \vec{c} - \vec{a}^{\top} \vec{p} = 0$$

$$\equiv \vec{a}^{\top} w \vec{a} = \vec{a}^{\top} \vec{c}$$

$$\equiv w (\vec{a}^{\top} \vec{a}) = \vec{a}^{\top} \vec{c}$$

$$\equiv w = \frac{\vec{a}^{\top} \vec{c}}{\vec{a}^{\top} \vec{a}}.$$

Thus a projection vector is:

$$\vec{p} = w\vec{a} = \frac{\vec{a}^{\top}\vec{c}}{\vec{a}^{\top}\vec{a}}\vec{a}.$$

Which is the nearest vector to  $\vec{c}$  in vector space  $\vec{a}$ 

## c Projecting a Vector to a Vector Space

We will now explore how to project a given vector to a 2 dimensional vector space.

Given: vector space  $\mathbb V$  with basis  $\vec a_1, \vec a_2$  and new vector  $\vec c$  What  $\vec p \in \mathbb V$  is nearest to  $\vec c$ 

We will thus define  $\vec{p}$  for 2D space as:

$$\vec{p} = \overset{def}{w_1} \vec{a}_1 + w_2 \vec{a}_2$$

$$= \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

$$= A\vec{w}$$

and the error vector is define as:

$$\vec{e} = ^{def} \vec{c} - \vec{p}$$
.

Where:

$$\vec{e} \perp \vec{a}_1 \wedge \vec{e} \perp \vec{a}_2$$
.

This can be represented visually as: Note that this is a 2D representation of



3D space so one cannot see how it is perpendicular to both a's. Mathematically, this is represented as:

$$\vec{a}_1 \cdot \vec{e} = 0$$
$$\vec{a}_2 \cdot \vec{e} = 0$$
$$\vec{a}_1^{\mathsf{T}} \cdot \vec{e} = 0$$
$$\vec{a}_2^{\mathsf{T}} \cdot \vec{e} = 0.$$

We then gather up our observations into a matrix:

$$\left[\vec{a}_1^{\top}\vec{a}_2^{\top}\right]\vec{e} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies A^{\top}\vec{e} = 0.$$

Observe that this means the vector e is in the null space of A such that:  $\vec{e} \in null(A)$ . Thus we can also say that  $\vec{e}$  in the orthogonal complement of  $\mathbb{V}$ 

## d The Normal Equation

Consider  $\mathbb{V}$  with basis  $\vec{a}_1, \vec{a}_2$  and the new vector  $\vec{c}$  What  $\vec{p} \in \mathbb{V}$  is nearest to  $\vec{c}$ 

$$A^{\top} \vec{e} = \vec{0}$$
 
$$A^{\top} (\vec{c} - \vec{e}) = \vec{0}$$
 
$$A^{\top} \vec{c} - A^{\top} \vec{p} = \vec{0}$$
 
$$[A^{\top} A] \vec{w} = A^{\top} \vec{c}.$$

Observe that  $A = \Sigma V^{\top}$  which means that A is symmetric:  $A^{\top}A = V\Sigma V^{\top}$ . Thus, the following matrix is positive definite

$$[A^{\mathsf{T}}A] \succ 0.$$

Whic implies that there is an explicit solution of  $\vec{w}$  such that

$$\vec{w} = [A^{\top}A]^{-1}A^{\top}\vec{c}.$$

And thus  $\vec{p}$  is:

$$p = A\vec{w}$$

$$= A[A^{\top}A]^{-1}A^{\top}\vec{c}$$

$$= P\vec{c}$$

.

Thus  $\vec{p}$  is equal to the projection matrix p times  $\vec{c}$ . The projection matrix P is based only on A thus we can use P with any  $\vec{c}$  to find the nearest vector to  $\vec{c}$  in A

Observe that  $\vec{p}$  is not the sum of  $\vec{p}_1$  nearest to  $\vec{a}_1$  and  $\vec{p}_2$  to  $\vec{a}_2$  You can use these as examples to practice

$$\vec{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \vec{a}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \vec{c} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

#### e Overdetermined Linear Equations

We will now consider 2D projection as a linear equation. For 2 vectors  $\vec{a}_1$ ,  $\vec{a}_2$  of size 3. Matrix A is  $3 \times 2$ , vector  $\vec{c}$  is size 3. The entries of A where  $A\vec{w} \approx \vec{c}$  are:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}.$$

While we have not solved this overdetermined system, we have approximately solved it.

## Learning Summary

Students should now be able to

- formulate a projection problem from  $\vec{a}_j$  and  $\vec{c}$
- solve for the weight vector  $\vec{w}$
- solve for the projection vector  $\vec{p}$
- solve for the error vector  $\vec{e}$