UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

TOKEN GRAFY Bakalárska práca

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

TOKEN GRAFY Bakalárska práca

Študijný program: Aplikovaná informatika

Študijný odbor: Informatika

Školiace pracovisko: Katedra aplikovanej informatiky

Školiteľ: Mgr. Dominika Mihálová

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Timotea Chalupová

Študijný program: aplikovaná informatika (Jednoodborové štúdium, bakalársky

I. st., denná forma)

Študijný odbor:informatikaTyp záverečnej práce:bakalárskaJazyk záverečnej práce:slovenskýSekundárny jazyk:anglický

Názov: Token grafy

Token graphs

Anotácia: Cieľom bakalárskej práce je implementovať algoritmy na token grafoch.

Súčasťou práce je naštudovať a vytvoriť prehľad vlastností token grafov.

Vedúci: Mgr. Dominika Mihálová

Katedra: FMFI.KAI - Katedra aplikovanej informatiky

Vedúci katedry: doc. RNDr. Tatiana Jajcayová, PhD.

Dátum zadania: 04.10.2023

Dátum schválenia: 05.10.2023 doc. RNDr. Damas Gruska, PhD.

garant študijného programu

študent	vedúci práce

ČESTNÉ PREHLÁSENIE	
Čestne prehlasujem, že bakalársku prácu	som vypracovala samostatne, len s použitím
uvedenej literatúry a za pomoci konzultác	zií mojej školiteľky.
Bratislava, 2024	Timotea Chalupová

POĎAKOVANIE

...

abstrakt

abstract

Obsah

Úv	od		1	
1.	Zák	kladné pojmy	2	
]	1.1.	Jednoduchý graf	2	
1	1.2.	Pravidelný graf	2	
]	1.3.	Cesty a cykly	2	
1	1.4.	Hranová a vrcholová súvislosť	3	
1	1.5.	Vyfarbovanie	3	
]	1.6.	Obvod	3	
]	1.7.	Eulerova cesta a cyklus	3	
]	1.8.	Hamiltonovská cesta	4	
]	1.9.	Izomorfizmus	4	
1	1.10.	Strom	4	
1	1.11.	Planárny graf	4	
1	1.12.	Token grafy	5	
	1.2	.1.Základné vlastnosti	5	
1	1.13.	Prehľad technológií	5	
	1.1	3.1. Existujúce systémy	5	
	1.1	3.2. Knižnice	5	
	1.1	3.3. Programovací jazyk	6	
	1.1	3.4. Požiadavky	6	
2.	Ná	vrh	7	
3.	Implementácia			
4.	Testovanie			
5.	Použitá literatúra10			

ÚVOD

V dnešnom rýchlo vyvíjajúcom sa svete, plnom rôznych informačných technológií, je

dôležité hľadať nové algoritmy a dátové štruktúry, ktoré môžu nájsť uplatnenie nielen

v teoretickej informatike ale aj v praxi. V matematike, v informatike a rovnako aj v reálnom

svete sa veľké množstvo problémov dá znázorniť pohybom objektov po vrcholoch grafu.

Z toho dôvodu sú token grafy významnou matematickou štruktúrou, ktorá nachádza využitie

v analýze grafov, grafovej teórii a distribuovaných systémoch. Ich výskum a analýza môžu

poskytnúť užitočné poznatky pre optimalizáciu algoritmov.

...

V prvej kapitole si objasníme základné pojmy z teórie grafov, ktoré sú nevyhnutné pre

porozumenie danej problematike. (Spomenieme termíny ako sú ...). Taktiež sa pozrieme na

porovnanie technológií

V druhej kapitole si priblížime

V tretej....

Ciel'om je...

1

1. ZÁKLADNÉ POJMY

V tejto kapitole vysvetlíme základné pojmy a definície, ktoré sú nevyhnutné pre vypracovanie našej práce.

1.1. Jednoduchý graf

Definícia: Jednoduchý graf je usporiadaná dvojica množín G = (V, E), kde V je neprázdna množina vrcholov G, a E, množina hrán G, je množina dvojíc vrcholov. Každá hrana G môže byť vyjadrená ako $\{u, v\}$, kde u a v sú odlišné vrcholy, t. j. $u, v \in V$, $u \neq v$ [4, s. 497].

Jednoduchý graf je jedným zo základných pojmov v teórii grafov. Neformálne napísane jednoduchý predstavuje matematickú štruktúru, ktorá sa skladá z množiny vrcholov a množiny hrán. V tomto type grafu sa nenachádzajú žiadne zložitejšie prvky, ako sú slučky alebo viacnásobné hrany.

1.2. Pravidelný graf

Definícia: Ak v je vrcholom grafu G, potom stupeň v označený ako $\deg(v)$, je počet hrán pripadajúcich na v, pričom každá slučka sa počíta dvakrát. Jednoduchý graf, v ktorom majú všetky vrcholy rovnaký stupeň sa nazýva pravidelný graf, presnejšie k-pravidelný graf [4, s. 499].

Pre jednoduchý graf, stupeň vrcholu je číslo vyjadrujúce počet susedov tohto vrcholu. To znamená že v k-pravidelnom grafe má každý vrchol presne k susedov, pričom k je z intervalu 0 až |V(G)|-1.

1.3. Cesty a cykly

Definícia: Predpokladajme že G=(V,E) je graf a $v,w\in V$ sú dvojice vrcholov. Cesta v G z v do w je striedavá postupnosť vrcholov a hrán: $P=\langle v_0,e_1,v_1,e_2,v_2,...,v_{k-1},e_k,e_k\rangle$ pri čom koncové body hrany e_i sú vrcholy $\{v_{i-1},v_i\}$, pre $1\leq i\leq k,\ v_0=v$ a $v_k=w$. Hovoríme že cesta P prechádza cez vrcholy $v_0,v_1,v_2,...,v_{k-1},v_k$ a prechádza hranami $e_1,e_2,...,e_k$ a cesta má dĺžku k, nakoľko prechádza k hranami [4,s.540]. Cesta sa nazýva cyklus ak začína a končí v tom istom vrchole, čiže ak v=w a jej dĺžka je väčšia ako nula, takže ak $k\geq 1$.

Ak cesta alebo cyklus neobsahuje žiadnu z hrán viac ako jeden raz, hovoríme o jednoduchej ceste respektíve o jednoduchom cykle [5, s. 679].

1.4. Hranová a vrcholová súvislosť

Definícia: Nech G = (V, E) je súvislý graf. Množinu A:

 $A \subseteq V$ nazývame vrcholovým rezom grafu G, ak graf $(V \setminus A, \{e | e \in E, e \cap A = \emptyset\})$ je nesúvislý.

 $A \subseteq E$ nazývame hranovým rezom grafu G, ak graf $(V, E \setminus A)$ je nesúvislý.

Definícia: Minimálna veľkosť hranového rezu sa nazýva hranová súvislosť grafu G, označujeme $k_E(G)$. Graf sa nazýva k-hranovo súvislý, ak $k \le k_E(G)$. Minimálna veľkosť vrcholového rezu sa nazýva vrcholová súvislosť grafu G, označujeme $k_V(G)$. Graf sa nazýva k-vrcholovo súvislý, ak $k \le k_V(G)$ [6, s. 8].

Hranová súvislosť je teda minimálny počet hrán potrebných vymazať aby sme dostali neprepojené grafy.

Podobne vrcholová súvislosť predstavuje minimálny počet vrcholov, ktorých odstránením dostaneme neprepojené grafy.

1.5. Vyfarbovanie

Definícia: Pod pojmom vyfarbovanie jednoduchého grafu rozumieme priradenie farby každému vrcholu grafu tak, aby žiadne dva susedné vrcholy nemali priradenú rovnakú farbu [5, s. 727].

1.6. Obvod

Definícia: Obvod grafu G označený ako g(G) je dĺžka najmenšieho cyklu v G. Ak neexistuje v G žiaden cyklus $g(G) = \infty$ [7].

1.7. Eulerova cesta a cyklus

Definícia: Eulerov cyklus v grafe *G* je jednoduchý cyklus obsahujúci každú hranu v *G*. Eulerova cesta v *G* je jednoduchá cesta obsahujúca každú hranu v *G* [5, s. 694].

1.8. Hamiltonovská cesta

Definícia: Jednoduchá cesta v G, ktorá prechádza cez každý vrchol práve raz, sa nazýva Hamiltonovská cesta, a jednoduchý cyklus v G ktorý prechádza každým vrcholom práve raz sa nazýva Hamiltonovský cyklus alebo aj Hamiltonovská kružnica. Inak povedané, jednoduchá cesta $x_0, x_1, \dots, x_{n-1}, x_n$ v grafe G = (V, E) je Hamiltonovská cesta ak $V = \{x_0, x_1, \dots, x_{n-1}, x_n\}$ a $x_i \neq x_j$ pre $0 \leq i < j \leq n$, a jednoduchý cyklus $x_0, x_1, \dots, x_{n-1}, x_n, x_0$ (kde n > 0) je Hamiltonovský cyklus ak $x_0, x_1, \dots, x_{n-1}, x_n$ je Hamiltonovská cesta [5, s. 698].

1.9. Izomorfizmus

Definícia: Jednoduché grafy $G_1 = (V_1, E_1)$ a $G_2 = (V_2, E_2)$ sú izomorfné ak existuje bijektívna funkcia f z V_1 do V_2 s vlastnosťou že a a b sú susedné v G_1 ak a iba ak f(a) a f(b) sú susedné v G_2 , pre všetky a a b vo V_1 . Takáto funkcia f sa nazýva izomorfizmus [5, s. 672].

1.10. Strom

Definícia: Strom je spojený neorientovaný graf ktorý nemá žiadne jednoduché cykly [5, s. 746].

1.11. Planárny graf

Definícia: Planárny alebo inak nazývaný aj rovinný graf je taký graf ktorý vieme nakresliť v rovine bez prekrývania hrán. Nákres takéhoto grafu voláme planárna alebo rovinná reprezentácia grafu [5, s. 719].

1.12. Token grafy

1.2.1.Základné vlastnosti

Majme graf G s n vrcholmi a k je kladné celé číslo. Aby sme sa vyhli triviálnym prípadom, budeme predpokladať že $n \ge k+1$. Počet vrcholov $F_k(G)$ je:

$$\left|V\left(F_k(G)\right)\right| = \binom{n}{k}$$

1.13. Prehľad technológií

V tejto podkapitole sa zameriame na niekoľko rôznych programovacích jazykov a knižníc, ktoré sme vzájomne porovnávali, aby sme našli najvhodnejšie technológie na implementáciu token grafov.

1.13.1. Existujúce systémy

Gelphi

Cytoscape

1.13.2. Knižnice

NetworkX je open-source knižnica pre jazyk Python, používaná najmä na vytváranie, manipuláciu a študovanie štruktúry, dynamiky a funkcií grafových štruktúr. Poskytuje veľké množstvo algoritmov na analýzu, ako sú vzdialenosti medzi uzlami, hľadanie najkratšej cesty, hľadanie najmenšieho cyklu a mnoho ďalších. Zaujímavosťou je, že vrcholom grafu môže byť čokoľvek, od textového reťazca až po obrázky [2].

Tkinter je open-source knižnica pre jazyk Python, určená predovšetkým na tvorbu používateľského rozhrania pre desktopové aplikácie. Vývojárom poskytuje množstvo nástrojov na vytváranie, manipuláciu a správu grafických komponentov, ako sú napríklad tlačidlá alebo polia na zadávanie textu. Tkinter je schopný práce s viacvláknovým prostredím, čo umožňuje efektívne riadenie viacerých úloh súčasne. Je obľúbený hlavne vďaka jednoduchej syntaxi a intuitívnemu používaniu [3].

1.13.3. Programovací jazyk

Python je vysokoúrovňový interpretovaný jazyk. Medzi jeho základné vlastnosti patrí jednoduchá syntax, ktorá zlepšuje čitateľnosť. Výhodou je veľké množstvo knižníc slúžiace na prácu s webovými aplikáciami, s vývojom hier ale aj databázami a mnoho ďalšími. Taktiež je multiplatformový, takže aplikácia naprogramovaná v tomto jazyku môže byť spustená na zariadeniach s rôznymi operačnými systémami bez potreby upravovať kód. Python je na rozdiel od staticky typovaných jazykov, kde je potrebné vopred deklarovať typy všetkých dát, typovaný dynamicky [1].

1.13.4. Požiadavky

•••

2. NÁVRH

ERD

3. IMPLEMENTÁCIA

4. TESTOVANIE

5. POUŽITÁ LITERATÚRA

[1] https://www.python.org/doc/
[2] https://networkx.org/documentation/stable/
[3] https://docs.python.org/3/library/tkinter.html
[4] kniha
[5] Kenneth H. Rosen, Discrete Mathematics and Its Applications
[6] https://edu.fmph.uniba.sk/~winczer/diskretna/pred8z03.pdf
[7] http://people.qc.cuny.edu/faculty/christopher.hanusa/courses/634sp12/Documents/634sp12 ch1-4.pdf
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]