LOGIC AND DISCRETE MATH 240

PROFESSOR PLESS

Homework 1

Peiyun(Seed) Zeng

September 9, 2014

1. Let *M* be the proposition "you cause a memory overflow error" Let *P* be the proposition "you use pointers incorrectly"

Express each of the following statements using M, P, and logical connectives, for example, in an expression that might look like: $(M \land P) \longrightarrow \neg P$.

- a) You cause a memory overflow error only if you use pointers incorrectly
- b) You use pointers correctly but you cause a memory overflow error.
- c) If you used pointers incorrectly but didn't cause memory overflow error then you used pointers correctly.

Solutions:

a) The key word here is only if. It implies that "you use pointers correctly" (P) is the **necessary** condition for "you cause a memory flow" (M)

So the final answer becomes: $(M \rightarrow P)$

b) first, English word but has the same logic meaning as \land (the logic **and**). Also, "you use pointers correctly" is an negation of P

then obviously we can rewrite the sentecne as: $(\neg P \land M)$

c) Let's walk through this sentence. "if you use d pointers incorecctly" is P. "but" as we discussed is logic "and" (\land). you did not cause memory overflow is the negation of M ($\neg M$).

The "if then" is equivalent to →

Then the final answer **becomes:** $(P \land \neg M) \rightarrow \neg P$

2. Consider the expression: $(Q \land P) \lor \neg (\neg Q \longrightarrow \neg P)$. In any way that you like, find an equivalent expression that is as short as possible. Prove that your expression is equivalent.

Solutions:

- 1. The first approach- using boolean algebra rules:
 - a) Identity: $P^{\wedge}T \equiv P$
 - b) Identity: $P \lor F \equiv P$
 - c) Domination: $P^{\wedge}F \equiv F$
 - d) Domination: $P \lor T \equiv T$
 - e) Negation : $P \land \neg P \equiv F$
 - f) Negation: $P \lor \neg P \equiv T$
 - g) Idempotent: $P \wedge P \equiv P$
 - h) Idempotent : $P \lor P \equiv P$
 - i) Double Negation : $\neg \neg P \equiv P$
 - j) Commutative Law: $P \wedge Q \equiv Q \wedge P$
 - k) Commutative Law: $P \lor Q \equiv Q \lor P$
 - l) DeMorgans Law: $\neg (P \lor Q) \equiv (\neg P \land \neg Q)$
 - m) DeMorgans Law: $\neg (P \land Q) <==> (\neg P \lor \neg Q)$
 - n) Implies Rule : $P \rightarrow Q \equiv (\neg P \lor Q)$
 - o) Contrapositive: $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$
 - p) Absorption: $P \land (P \lor Q) \equiv P$
 - q) Absorption : $P \lor (P \land Q) \equiv P$
 - r) Associative Law: $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
 - s) Associative Law: $P \land (Q \land R) \equiv (P \land Q) \land R$
 - t) Distributive Law: $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$
 - u) Distributive Law: $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$

Now let's simply the Expression by applying the rules above

$$\begin{array}{lll} (Q \wedge P) \vee \neg (\neg Q \longrightarrow \neg P) \\ &= (Q \wedge p) & \vee & \neg (P \rightarrow Q) \\ &= (Q \wedge p) & \vee & \neg (\neg P \vee Q) \\ &= (Q \wedge p) & \vee & (\neg P \vee Q) \\ &= (Q \wedge p) & \vee & (P \wedge \neg Q) \\ &= P \wedge (Q \vee \neg Q) \\ &= P \wedge T \\ &= P \end{array} \qquad \begin{array}{ll} \text{(Applying rule [l]- DeMorgan's Theoreom)} \\ \text{(Applying rule [t] and rule [j])} \\ \text{(Applying rule [f])} \\ \text{(OMG! I love this result)} \end{array}$$

2. The second approach, which is essentially a better and more reliable approach is by using **Truth Table** and **K-Map**