[Regression Analysis] [cheatsheet]

Data Preparation

- Loαd dαtαset: import pandas as pd; data = pd.read_csv('data.csv')
- Handle missing values: data.fillna(data.mean(), inplace=True)
- Feature selection (Correlation): correlation = data.corr()
- One-hot encoding: pd.get_dummies(data)
- Feature scaling (Standardization): from sklearn.preprocessing import StandardScaler; scaler = StandardScaler(); scaled_data = scaler.fit_transform(data)
- Feature scaling (Normalization): from sklearn.preprocessing import MinMaxScaler; scaler = MinMaxScaler(); normalized_data = scaler.fit_transform(data)
- Split dataset: from sklearn.model_selection import train_test_split; X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
- Polynomial feature generation: from sklearn.preprocessing import PolynomialFeatures; poly = PolynomialFeatures(degree=3); X_poly = poly.fit_transform(X)

Regression Model Selection

- Linear Regression: from sklearn.linear_model import LinearRegression; model = LinearRegression()
- Ridge Regression: from sklearn.linear_model import Ridge; model = Ridge(alpha=1.0)
- Lasso Regression: from sklearn.linear_model import Lasso; model = Lasso(alpha=0.1)
- ElasticNet: from sklearn.linear_model import ElasticNet; model = ElasticNet(alpha=0.1, l1_ratio=0.5)
- Logistic Regression: from sklearn.linear_model import LogisticRegression; model = LogisticRegression()
- Polynomial Regression: # Use PolynomialFeatures in combination with LinearRegression
- Decision Tree Regression: from sklearn.tree import DecisionTreeRegressor; model = DecisionTreeRegressor()

- Random Forest Regression: from sklearn.ensemble import RandomForestRegressor; model = RandomForestRegressor()
- Support Vector Regression: from sklearn.svm import SVR; model = SVR()
- K-Nearest Neighbors Regression: from sklearn.neighbors import KNeighborsRegressor; model = KNeighborsRegressor(n_neighbors=5)

Model Fitting

- Fit model: model.fit(X_train, y_train)
- Predict values: predictions = model.predict(X_test)
- Calculate R-squared: model.score(X_test, y_test)
- Coefficient of determination: from sklearn.metrics import r2_score; r2_score(y_test, predictions)
- Mean Squared Error (MSE): from sklearn.metrics import mean_squared_error; mse = mean_squared_error(y_test, predictions)
- Root Mean Squared Error (RMSE): import numpy as np; rmse = np.sqrt(mse)
- Mean Absolute Error (MAE): from sklearn.metrics import mean_absolute_error; mae = mean_absolute_error(y_test, predictions)
- Model coefficients: coefficients = model.coef_
- Model intercept: intercept = model.intercept_
- Cross-validation: from sklearn.model_selection import cross_val_score; scores = cross_val_score(model, X, y, cv=5)

Diagnostics and Model Evaluation

- Plot residuals: import matplotlib.pyplot as plt; residuals = y_test - predictions; plt.scatter(y_test, residuals)
- Check for homoscedasticity: plt.scatter(predictions, residuals)
- 0-0 plot for normality of residuals: import scipy.stats as stats; stats.probplot(residuals, dist="norm", plot=plt)
- Calculate AIC: from statsmodels.regression.linear_model import OLS; model = OLS(y, X); result = model.fit(); result.aic
- Calculate BIC: result.bic
- Feature importance (for tree-based models): importance = model.feature_importances_

- Confusion matrix (for logistic regression): from sklearn.metrics import confusion_matrix; cm = confusion_matrix(y_test, predictions)
- Classification report (for logistic regression): from sklearn.metrics import classification_report; report = classification_report(y_test, predictions)
- ROC Curve (for logistic regression): from sklearn.metrics import roc_curve; fpr, tpr, thresholds = roc_curve(y_test, model.predict_proba(X_test)[:,1])
- Precision-Recall Curve: from sklearn.metrics import precision_recall_curve; precision, recall, thresholds = precision_recall_curve(y_test, model.predict_proba(X_test)[:,1])

Advanced Techniques and Considerations

- Feature selection with RFE: from sklearn.feature_selection import RFE; selector = RFE(model, n_features_to_select=5); selector = selector.fit(X, y)
- Hyperparameter tuning with GridSearchCV: from sklearn.model_selection import GridSearchCV; parameters = {'alpha':[0.1, 1, 10]}; grid = GridSearchCV(model, parameters, cv=5); grid.fit(X, y)
- Regularization path (for Lasso/Ridge): from sklearn.linear_model import lasso_path; alphas, coefs, _ = lasso_path(X, y, alphas=[0.1, 1, 10])
- Learning curve: from sklearn.model_selection import learning_curve; train_sizes, train_scores, test_scores = learning_curve(model, X, y, cv=5)
- Validation curve: from sklearn.model_selection import validation_curve; param_range = np.logspace(-6, -1, 5); train_scores, test_scores = validation_curve(model, X, y, param_name="alpha", param_range=param_range, cv=5)
- Partial dependence plots (for ensemble models): from sklearn.inspection import plot_partial_dependence; plot_partial_dependence(model, X, [0, 1])

Data Transformation and Interaction Effects

 Log transformation of a feature: data['log_feature'] = np.log(data['feature'])

- Square root transformation: data['sqrt_feature'] =
 np.sqrt(data['feature'])
- Box-Cox transformation: from scipy.stats import boxcox;
 data['boxcox_feature'], _ = boxcox(data['feature'])
- Creating interaction terms manually: data['interaction'] =
 data['feature1'] * data['feature2']
- Automatic interaction terms with PolynomialFeatures: from sklearn.preprocessing import PolynomialFeatures; poly = PolynomialFeatures(interaction_only=True); data_interaction = poly.fit_transform(data)

Ensemble Methods and Model Improvement

- Gradient Boosting Regression: from sklearn.ensemble import

 GradientBoostingRegressor; model = GradientBoostingRegressor()
- XGBoost Regression: from xgboost import XGBRegressor; model = XGBRegressor()
- LightGBM Regression: from lightgbm import LGBMRegressor; model = LGBMRegressor()
- Stacking models: from sklearn.ensemble import StackingRegressor;
 estimators = [('lr', LinearRegression()), ('svr', SVR())]; model = StackingRegressor(estimators=estimators)
- Bagging with Random Forests: # Random Forests inherently use bagging

Dealing with Non-linear Relationships

- Kernel Ridge Regression: from sklearn.kernel_ridge import
 KernelRidge; model = KernelRidge(kernel='polynomial', degree=2)
- SVM with non-linear kernel: model = SVR(kernel='rbf')
- Non-linear transformation of target variable (log): y_log = np.log(y)
- GAMs for flexible non-linear modeling: from pygam import LinearGAM,
 s; gam = LinearGAM(s(0) + s(1)).fit(X, y)

Model Comparison and Selection

 Akaike Information Criterion (AIC) for model comparison: # Refer to operation 32 for calculation method

- Bayesian Information Criterion (BIC) for model comparison: # Refer to operation 33 for calculation method
- Adjusted R-squared for model comparison: 1 (1-model.score(X, y))*(len(y)-1)/(len(y)-X.shape[1]-1)
- F-test to compare models: from sklearn.feature_selection import f_regression; F, p_values = f_regression(X, y)

Advanced Diagnostics

- VIF (Variance Inflation Factor) for multicollinearity: from statsmodels.stats.outliers_influence import variance_inflation_factor; VIF = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
- Durbin-Watson test for autocorrelation: from statsmodels.stats.stattools import durbin_watson; dw = durbin_watson(residuals)
- Cook's distance for influence points: from statsmodels.stats.outliers_influence import OLSInfluence; influence = OLSInfluence(model); cooks = influence.cooks_distance[0]
- Leverage to identify influential observations: leverage = influence.hat_matrix_diag

Prediction and Validation

- Predict with confidence intervals: # For linear models, use statsmodels for prediction: predictions, intervals = model.get_prediction(X_new).summary_frame(alpha=0.05)
- Bootstrap resampling for estimating prediction uncertainty: from sklearn.utils import resample; bootstrapped_samples = resample(predictions, n_samples=1000)
- Permutation importance for feature evaluation: from sklearn.inspection import permutation_importance; result = permutation_importance(model, X_test, y_test, n_repeats=10)
- Shapley values for feature impact: import shap; explainer = shap.TreeExplainer(model); shap_values = explainer.shap_values(X)

Post-modeling Analysis

- Model summary with statsmodels: import statsmodels.api as sm; model = sm.OLS(y, sm.add_constant(X)); results = model.fit(); print(results.summary())
- Partial dependence plots for feature effect visualization: # Refer to operation 44 for sklearn or use 'plot_partial_dependance' from the appropriate library for advanced models
- ICE plots for individual conditional expectations: from pycebox.ice import ice, ice_plot; ice_df = ice(data, 'feature', model.predict); ice_plot(ice_df)
- LIME for local interpretation: import lime; import lime.lime_tabular; explainer = lime.lime_tabular.LimeTabularExplainer(training_data=X_train, feature_names=X.columns, class_names=['target'], mode='regression'); explanation = explainer.explain_instance(data_row=X_test.iloc[0], predict_fn=model.predict)
- Model persistence with joblib: from joblib import dump, load; dump(model, 'model.joblib'); model = load('model.joblib')

Handling Categorical Variables

- Ordinal encoding: from sklearn.preprocessing import OrdinalEncoder; encoder = OrdinalEncoder(); data['encoded_feature'] = encoder.fit_transform(data[['feature']])
- Frequency encoding: frequency = data['feature'].value_counts() / len(data); data['freq_encoded_feature'] = data['feature'].map(frequency)
- Target encoding: import category_encoders as ce; encoder = ce.TargetEncoder(); data['target_encoded_feature'] = encoder.fit_transform(data['feature'], data['target'])

Enhancing Model Performance

- Feαture engineering: data['new_feature'] = data['feature1'] / data['feature2']
- Removing outliers: from scipy import stats; data = data[(np.abs(stats.zscore(data['feature'])) < 3)]</pre>
- Smoothing noisy data (Moving Average): data['smoothed_feature'] = data['feature'].rolling(window=5).mean()

- Dimensionality reduction (PCA): from sklearn.decomposition import PCA; pca = PCA(n_components=2); X_pca = pca.fit_transform(X)
- Clustering as a feature (K-Means): from sklearn.cluster import KMeans; kmeans = KMeans(n_clusters=3); data['cluster'] = kmeans.fit_predict(data[['feature1', 'feature2']])
- Using external data for additional features: # Assume external_data is loaded; data = pd.merge(data, external_data, on='key')

Advanced Diagnostics and Model Analysis

- Cross-validation with multiple metrics: from sklearn.model_selection import cross_validate; scoring = ['r2', 'neg_mean_squared_error']; results = cross_validate(model, X, y, scoring=scoring)
- Time series cross-validation: from sklearn.model_selection import TimeSeriesSplit; tscv = TimeSeriesSplit(); for train_index, test_index in tscv.split(X): ...
- Spatial cross-validation (for geographical data): from sklearn.model_selection import GroupShuffleSplit; gss = GroupShuffleSplit(test_size=.3, n_splits=1, random_state=42).split(X, groups=X['group'])
- Analyzing residuals for patterns: plt.plot(y_test, residuals, marker='o', linestyle='')
- Testing for stationarity in residuals (ADF test): from statsmodels.tsa.stattools import adfuller; adf_result = adfuller(residuals)
- Model stability testing (bootstrap): # Refer to operation 68 for bootstrap resampling

Advanced Prediction Techniques

- Forecasting with ARIMA (for time series): from statsmodels.tsa.arima.model import ARIMA; model = ARIMA(data['feature'], order=(1,1,1)); result = model.fit()
- Using Prophet for time series prediction: from fbprophet import Prophet; m = Prophet(); m.fit(data); future = m.make_future_dataframe(periods=365); forecast = m.predict(future)

- Multi-output regression: from sklearn.multioutput import MultiOutputRegressor; mor = MultiOutputRegressor(model).fit(X_train, y_train_multi)
- Quantile regression for prediction intervals: import statsmodels.formula.api as smf; model = smf.quantreg('y ~ X', data).fit(q=0.5)

Model Interpretation and Explanation

- Advanced SHAP value interpretation: shap.summary_plot(shap_values, X, plot_type="bar")
- ALE (Accumulated Local Effects) plots for feature effects: from alibi.explainers import ALE, plot_ale; ale = ALE(model.predict, feature_names=X.columns); ale_exp = ale.explain(X.values); plot_ale(ale_exp)
- Global model explanation with Skater: from skater.core.explanations import Interpretation; from skater.model import InMemoryModel; interpreter = Interpretation(X_test, feature_names=X.columns); model = InMemoryModel(model.predict, examples=X_train); plots = interpreter.feature_importance.plot_feature_importance(model, ascending=False)
- Decision tree visualization for simple models: from sklearn.tree import plot_tree; plot_tree(decision_tree_model); plt.show()
- Visualizing feature interactions with PDPBox: from pdpbox import pdp; pdp_interact = pdp.pdp_interact(model, dataset=X, model_features=X.columns, features=['feature1', 'feature2']); pdp.pdp_interact_plot(pdp_interact, ['feature1', 'feature2'], plot_type='contour')
- Visualizing SVM decision boundaries: from mlxtend.plotting import plot_decision_regions; plot_decision_regions(X.values, y.values, clf=svm_model, legend=2)
- Visualizing K-Means clustering boundaries: # Assume data is 2D for visualization; plt.scatter(data[:,0], data[:,1], c=kmeans.labels_); centers = kmeans.cluster_centers_; plt.scatter(centers[:,0], centers[:,1], c='red', s=200, alpha=0.5);
- Visualizing embeddings with t-SNE: from sklearn.manifold import TSNE; tsne = TSNE(n_components=2); X_tsne = tsne.fit_transform(X)

- Exploring model errors: error_indices = np.where(y_test != predictions)[0]; wrong_predictions = X_test.iloc[error_indices]
- Visualizing regression diagnostics with Yellowbrick: from yellowbrick.regressor import ResidualsPlot; visualizer = ResidualsPlot(model); visualizer.fit(X_train, y_train); visualizer.score(X_test, y_test); visualizer.show()
- Model comparison with scikit-plot: import scikitplot as skplt; skplt.estimators.plot_learning_curve(model1, X, y); skplt.estimators.plot_learning_curve(model2, X, y)