Комплексный Анализ

Основано на лекциях Мельникова Е.В. Конспект написан Заблоцким Данилом

Весенний семестр 2024

Эти записи не одобряются лекторами, и я вношу в них изменения (часто существенно) после лекций. Они далеко не точно отражают то, что на самом деле читалось, и, в частности, все ошибки почти наверняка мои.

Оглавление

1	Голоморфные функции			
	1.1	Комп,	Комплексная плоскость	
		1.1.1	Комплексные числа	
		1.1.2	Топология комплексной плоскости	
		1.1.3	Пути, кривые и области	
	Спи	сок ист	пользуемой литературы	

Глава 1

Голоморфные функции

Лекция 1: Начало

от 15 фев 12:45

1.1 Комплексная плоскость

1.1.1 Комплексные числа

 $\mathbb{R}^2 := \mathbb{R} \times \mathbb{R},$

$$(x_1, y_1) + (x_2, y_2) \coloneqq (x_1 + x_2, y_1 + y_2),$$

 $(x_1, y_1) \cdot (x_2, y_2) \coloneqq (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1).$

$$z = (x, y) = x + iy, \ x, y \in \mathbb{R}$$

$$(1,0) =: 1,$$

$$(0,1) =: i,$$

$$(0,0) =: 0$$

 $x = r \cdot \cos \phi$

 $y = r \cdot \sin \phi$

$$x =: \operatorname{Re} z$$
$$y =: \operatorname{Im} z$$

$$r = \sqrt{x^2 + y^2} =: |z|,$$

$$\phi =: \arg z, \qquad \underbrace{0 \leqslant \arg z < 2\pi}_{\text{главное значение аргумента}}$$

$$\operatorname{Arg} z := \operatorname{arg} z + 2\pi k, \ k \in \mathbb{Z}, \quad \overline{z} = x - iy$$

Формула Эйлера:

$$e^{i\phi} = \cos\phi + i\sin\phi, \quad \forall \phi \in \mathbb{R}$$

Тригонометрическая форма записи: $z = |z| \cdot (\cos \arg z + i \sin \arg z)$

Показательная форма записи:

 $z = |z| e^{i \arg z}$

Формула Муавра:

 $z^n = r^n(\cos n\phi + i\sin n\phi)$

$$e^z = e^{x+iy} = e^x \cdot e^{iy}$$

$$z^n = |z|^n e^{in \arg z}$$

$$e^{z_1 + z_2} = e^{z_1} \cdot e^{z_2}$$

$$z^{n} = |z|^{n} e^{in \arg z}$$
$$z = re^{ir}, \quad z^{n} = z_{0}$$

$$\sqrt[n]{z_0} = \sqrt[n]{|z_0|} \cdot e^{i\frac{\arg z_0 + 2\pi k}{n}}, \quad 0 \leqslant k \leqslant n - 1.$$

Теорема 1. $\forall z,z_1,z_2\in\mathbb{C}$ справедливы равенства:

1.
$$z \cdot \overline{z} = |z|^2$$

6.
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$

$$2. \ \overline{(z_1+z_2)}=\overline{z_1}+\overline{z_2}$$

7.
$$|z_1 + z_2| \leq |z_1| + |z_2|$$

$$3. \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

8.
$$||z_1| - |z_2|| \leq |z_1 - z_2|$$

$$4. \ \overline{\overline{z}} = z$$

9.
$$\arg(z_1 \cdot z_2) = \arg z_1 + \arg z_2$$
 ($\mod 2\pi$)

5.
$$\overline{z} = z \iff z \in \mathbb{R}$$

10.
$$\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2 \pmod{2\pi}$$

Рис. 1.1: Сфера Римана

$$\xi^2 + \eta^2 + \zeta - \zeta = 0, \qquad \begin{cases} \xi = \frac{x}{1+|z|^2} \\ \eta = \frac{y}{1+|z|^2} \\ \zeta = \frac{|z|^2}{1+|z|^2} \end{cases}.$$

$$P : \mathbb{C} \stackrel{\mathrm{ha}}{\to} S \setminus \{N\}, \quad P(z) = (\xi, \eta, \zeta).$$

$$A(x^2 + y^2) + Bx + Cy + D = 0, \quad A, B, C, D \in \mathbb{R}$$
 общее уравнение окружности
$$\gamma \quad - \text{окружность ha } \mathbb{C},$$

$$P(\gamma) \quad - \text{окружность ha } S.$$

$$|z|^2 = x^2 + y^2 = \frac{\zeta}{1 - \zeta}, \qquad \begin{cases} x = \frac{\xi}{1 - \zeta} \\ y = \frac{\eta}{1 - \zeta} \end{cases}.$$

$$A\zeta + B\xi + C\eta + D(1 - \zeta) = 0, \qquad \overline{\mathbb{C}} \quad \coloneqq \mathbb{C} \cup \{\infty\} \\ P(\infty) \quad \coloneqq N \end{cases}.$$

1.1.2 Топология комплексной плоскости

Меня зовут Данил, мне 19 лет!

$$\alpha - \beta = \frac{12}{43}.$$

 $M_1, M_2 \in \mathbb{R}^3$,

$$dist(M_1, M_2) := \sqrt{(\xi_1 - \xi_2)^2 + (\eta_1 - \eta_2)^2 + (\zeta_1 - \zeta_2)^2},$$

$$d(z_1, z_2) := |z_1 - z_2|, \ z_1, z_2 \in \mathbb{C},$$

$$\rho(z_1, z_2) := \operatorname{dist} (P(z_1), P(z_2)),$$

$$B_{\varepsilon}(z_0) := \{ z \in \mathbb{C} : |z - z_0| < \varepsilon \},\$$

$$P: \mathbb{C} \stackrel{\scriptscriptstyle{\mathrm{Ha}}}{\to} S \setminus \{N\}.$$

Определение 1 (Окрестность точки). Множество называется *окрестностью точки*, если оно содержит некоторый шарик с центром в этой точке.

Обозначение.

$$O_z, \quad z \in \overline{\mathbb{C}}.$$

Лекция 2: Продолжение

от 22 фев 12:45

$$\forall z \in \mathbb{C} \ d(z; \infty) \coloneqq +\infty, \qquad \begin{array}{c} d: \quad \mathbb{C}^2 \to \mathbb{R} \\ d: \quad \mathbb{C}^2 \to \overline{\mathbb{R}} \\ \rho: \quad \overline{\mathbb{C}}^2 \to \mathbb{R}, \quad \rho(z; \infty) \in \mathbb{R} \end{array}$$

Свойство (Свойства окрестностей). $\forall z \in \overline{\mathbb{C}}$:

- 1. $\forall V \in O_z \quad z \in V$.
- 2. $\forall U, V \in O_z \quad U \cap V \in O_z$.
- 3. $\forall U \in O_z, \ \forall V \supset U \quad V \in O_z$.
- 4. $\forall V \in O_z, \ \exists U \in O_z: \ U \subset V \ \& \ \forall w \in U \quad U \in O_w.$

Определение 2 (Открытое множество). Множество называется $om\kappa pu-m\omega m$, если оно является окрестностью каждой своей точки.

Определение 3 (Окрестность множества). Окрестностью множества называется множество, являющееся окрестностью каждой точки исходного множества (V – окрестность множества A, если $\forall z \in A \ V \in O_z$).

Определение 4. $D \subset \overline{\mathbb{C}}, \ z \in \mathbb{C},$

$$\operatorname{dist}(z,D) \coloneqq \inf_{w \in D} \operatorname{d}(z,w),$$

Определение 5. $D_1, D_2 \subset \overline{\mathbb{C}},$

$$\operatorname{dist}(D_1, D_2) \coloneqq \inf_{z \in D_1, \ w \in D_2} \operatorname{d}(z, w),$$

Определение 6 (Внутренность). Множество всех внутренних точек называется 6 нутренностью.

Обозначение.

int D.

Определение 7 (Предельная точка множества). Точка называется npe- deльной точкой множества, если в любой ее окрестности есть точки множества, отличные от данной.

Замечание. Точка является предельной точкой множества на расширенной комплексной плоскости $(\overline{\mathbb{C}}) \iff \forall$ ее окрестность содержит бесконечное число точек данного множества.

Определение 8 (Окрестность бесконечно удаленной точки). Множество $V\subset \overline{\mathbb{C}}$ является окрестностью бесконечно удаленной точки, если $\exists \varepsilon>0: \{z\in \overline{\mathbb{C}}: \ |z|>\varepsilon\}\subset V.$

Определение 9 (Точка прикосновения множества). Точка $z\in\overline{\mathbb{C}}$ расширенной комплексной плоскости называется точкой прикосновения множества $D\subset\overline{\mathbb{C}}$, если пересечение $\forall V\in O_z \quad V\cap D\neq\varnothing$.

Обозначение.

 $\operatorname{cl} D$ – замыкание (closure)

Определение 10 (Замкнутое множество). Множество называется *замкнутым*, если его дополнение открыто.

Обозначение.

 ∂D

Определение 11 (Граничная точка). Точка называется *граничной точкой множесства*, если в любой ее окрестности есть как точки множества, так и точки его дополнения.

Обозначение. Множество всех замкнутых подмножеств в $\overline{\mathbb{C}}$:

 $Cl\overline{\mathbb{C}}$ (closed)

Определение 12 (Компактное множество). Множество в $\overline{\mathbb{C}}$ называется *компактным*, если \forall его открытое покрытие имеет конечное подпокрытие.

Обозначение.

$$v$$
 – покрытие множества $D,$ если $D \underset{V \in v}{\subset} UV,$

Обозначение.

 $\mathcal{P}(\overline{\mathbb{C}})$ – совокупность всех подмножеств $\overline{\mathbb{C}}$.

Критерий 1 (Компактности). Подмножество \mathbb{C} компактно \iff оно замкнуто и ограничено.

Примечание. Множество ограничено, если оно содержится в некотором шаре.

Замечание. $\overline{\mathbb{C}}$ – компактно.

Определение 13. Последовательность $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ сходится к $z\in\mathbb{C},$ если $\forall \varepsilon>0$ $\exists n_0\in\mathbb{N}:\ \forall n\geqslant n_0$

$$|z_n-z| $\mathrm{d}(z_n,z) \xrightarrow[n o \infty]{} 0, \qquad z_n o \infty, \ \mathrm{ec}$ ли $\lim_{n o \infty} |z_n| = \pm \infty.$ $z=\lim_{n o \infty} z_n, \qquad z_n \xrightarrow[n o \infty]{} z.$$$

Замечание.

$$z_n \to z \ {\scriptscriptstyle \mathrm{B}} \ {\mathbb C} \iff \left\{ \begin{array}{l} \operatorname{Re} z_n \to \operatorname{Re} z \\ \operatorname{Im} z_n \to \operatorname{Im} z \end{array} \right. \ {\scriptscriptstyle \mathrm{B}} \ {\mathbb R},$$

$$|z_n - z| = \sqrt{(\operatorname{Re} z_n - \operatorname{Re} z)^2 + (\operatorname{Im} z_n - \operatorname{Im} z)^2} \geqslant |\operatorname{Re} z_n - \operatorname{Re} z|,$$

$$\operatorname{Re}(z_1 \pm z_2) = \operatorname{Re} z_1 \pm \operatorname{Re} z_2.$$

Критерий 2 (Коши). Последовательность $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ сходится \iff $\forall \varepsilon>0\ \exists n_0\in\mathbb{N}:\ \forall n,m\geqslant n_0$

$$|z_n - z_m| < \varepsilon.$$

Критерий 3 (Коши в $\overline{\mathbb{C}}$). Последовательность $\{z_n\}_{n\in\mathbb{N}}\subset\overline{\mathbb{C}}$ сходится $\iff \forall \varepsilon>0 \ \exists n_0\in\mathbb{N}: \ \forall n,m\geqslant n_0$

$$\rho(z_n, z_m) < \varepsilon,$$

$$z_n \xrightarrow[n \to \infty]{} z \iff \rho(z_n, z) \xrightarrow[n \to \infty]{} 0.$$

Критерий 4 (Компактности (расширенный)). Подмножество $D \subset \overline{\mathbb{C}}$ компактно $\iff \forall$ его последовательность имеет сходящуюся подпоследовательность: $D \subset \overline{\mathbb{C}} \ \forall \{z_n\}_{n \in \mathbb{N}} \subset D \ \exists \{z_{n_k}\}_{k \in \mathbb{N}} \subset \{z_n\}_{n \in \mathbb{N}}$:

$$z_{n_k} \to z \in D$$
.

Пусть $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$:

$$\sum_{n=1}^{\infty} z_n = \lim_{n \to \infty} S_n.$$

Определение 14 (Числовой ряд). *Числовым рядом* называется формальная сумма членов.

Определение 15 (Абсолютно сходящийся числовой ряд). Числовой ряд называется *абсолютно сходящимся*, если сходится ряд

$$\sum_{n=1}^{\infty} |z_n|.$$

Критерий 5 (Коши (сходимости ряда)). $\sum_{n=1}^{\infty} z_n$ сходится \iff $\forall \varepsilon > 0 \ \exists m \in \mathbb{N}: \ \forall n \geqslant m \ \forall k \in \mathbb{N}$

$$\underbrace{|z_{n+1} + z_{n+2} + \ldots + z_{n+k}|}_{|S_{n+k} - S_n|} < \varepsilon.$$

Следствие 1. Если ряд сходится, то его общий член стремится к 0.

Следствие 2. Каждый абсолютно сходящийся числовой ряд сходится.

1.1.3 Пути, кривые и области

Определение 16 (Путь). Путем $\gamma:[a;b]\to\mathbb{C}$ называется непрерывное отображение [a;b] в \mathbb{C} .

Пример. $\gamma(t) = e^{it}$,

 $0 \leqslant t \leqslant 2\pi$.

 \Diamond

Определение 17. $\gamma_1:[a_1;b_1]\to \mathbb{C},\ \gamma_2:[a_2;b_2]\to \mathbb{C}.\ \gamma_1\sim \gamma_2,$ если \exists возрастающая непрерывная функция $\phi:[a_1;b_1]\xrightarrow{\mathrm{Ha}}[a_2;b_2]:$

$$\gamma_1(t) = \gamma_2(\phi(t)), \quad \forall t \in [a_1; b_1].$$

Пример.

$$\begin{array}{ll} \gamma_1(t) = t & 0 \leqslant t \leqslant 1 \\ \gamma_2(t) = \sin t & 0 \leqslant t \leqslant \frac{\pi}{2} \\ \gamma_3(t) = \sin t & 0 \leqslant t \leqslant \pi \\ \gamma_4(t) = \cos t & 0 \leqslant t \leqslant \frac{\pi}{2} \end{array}$$

 $\phi(t) = \arcsin t$,

$$\gamma_1(t) = \gamma_2\left(\phi(t)\right).$$

 \Diamond

Литература

- [1] Шабат «Введение в комплексный анализ, 1976» (том 1)
- [2] Привалов «Введение в ТФКП, 1967»
- [3] Бицадзе «Основы теории аналитических функций комплексного переменного, 1984»
- [4] Волковыский, Лунц, Араманович «Сборник задач по ТФКП», 1975»
- [5] Гилев В.М. «Основы комплексного анализа. Ч.1», 2000»
- [6] Исапенко К.А. «Комплексный анализ в примерах и упражнениях (Ч.1, 2017, Ч.2, 2018)»
- [7] Мещеряков Е.А., Чемеркин А.А. «Комплексный анализ. Практикум»
- [8] Боярчук А.К. «Справочное пособие по высшей математике» (том 4)