Seminar 1

DEPI

- 1. Fie A o variabilă aleatoare continuă cu distribuția [0, 6] (distribuție uniformă între $0 \neq \pi$).
 - a. Reprezentați grafic funcția densitate de probabilitate a lui A (distribuția lui A)
 - b. Calculați probabilitatea P(A > 1)
 - c. Calculați probabilitatea $P(A \in (0, 2))$
 - d. Reprezentați funcția de repartiție $F_A(x)$ și scrieți-i expresia matematică
 - e. Care e distribuția variabilei aleatoare B definită ca B = A 2?
 - f. Care e distribuția variabilei aleatoare C definită ca C = 3 * A?
- 2. Fie A o variabilă aleatoare continuă cu distribuția normală $\mathcal{N}(\mu=1,\sigma^2=20)$.
 - a. Calculați probabilitatea $P(A \in [2, 4])$
 - b. Care e distribuția variabilei aleatoare B definită ca B = A 2?
 - c. Care este valoarea maximă a distribuției $w_A(x)$, și pentru ce valoare x se atinge?
 - d. (**) Care e distribuția variabilei aleatoare C definită ca C = 3 * A?
- 3. Considerând că scorul IQ urmează o distribuție \mathcal{N} ($\mu = 100, \sigma = 15$), calculați:
 - a. Probabilitatea ca o persoană oarecare să aibă IQ > 130
 - b. Dacă populația globului este 8 miliarde, câți oameni au IQ mai mic decât 75
 - c. (**)Ce IQ trebuiă să ai pentru a fi între primii 2%?
- 4. Fie A o variabilă aleatoare discretă, cu valorile posibile $\{0, 1, 2, \dots 10\}$, toate având aceeași probabilitate.
 - a. Reprezentați grafic distribuția lui A
 - b. Calculati probabilitatea $P(A \in [3, 7]$
 - c. Care e probabilitatea ca A să fie număr impar?
- 4. Calculați probabilitatea ca 3 variabile aleatoare X, Y, Z, independente și identic distribuite (i.i.d) cu distribuția normală $\mathcal{N}(\mu=1,\sigma^2=1)$ să fie pozitive simultan.

- 5. Fie 3 variabile aleatoare cu distribuțiile: $A \sim \mathcal{N} \quad (\mu=1,\sigma^2=3), \ B \sim \mathcal{N} \quad (\mu=-4,\sigma^2=3), \ C \sim \mathcal{N} \quad (\mu=5,\sigma^2=3).$
 - a. Este mai probabil ca tripleta de valori (A, B, C) să ia valori în jurul lui (2, -6, 3) sau în jurul lui (-2, -3, 2)?
 - b. Găsiți 3 valori pozitive (x,y,z) pentru care probabilitatea ca (A, B, C) să aibă valori în jurul lui (x,y,z) să fie egală cu probabilitatea de a avea valori în jurul lui (2, -6, 3)