# The Simplest Protocol for Oblivious Transfer

#### Tung Chou

Technische Universiteit Eindhoven, The Netherlands

August 24, 2015

Latincrypt 2015, Guadalajara, Mexico

Joint work with Claudio Orlandi

 $\binom{2}{1}$  OTs

Sender

Receiver

# $\binom{2}{1}$ OTs







The **Receiver** should learn only  $m_b$ The **Sender** should learn nothing

# $\binom{n}{1}$ OTs



The **Receiver** should learn only  $m_b$ The **Sender** should learn nothing

# Secure Multiparty Computation



The parties should learn no more than f(X, Y)

# Secure Multiparty Computation



The parties should learn no more than f(X, Y)

"OT is complete for secure multiparty computation."

## **OT Extension**



# **OT Extension**



#### **OT** Extension



- Similar to hybrid encryption
- Still we need base OTs

#### Diffie-Hellman



#### Random-OT



The **Receiver** should learn only  $k_b$ The **Sender** gets all  $k_i$  but nothing about b

random 
$$x$$
 
$$S = xB$$
 
$$R = yB + \mathbf{bS}$$
 
$$k_i \leftarrow \mathcal{H}(x(R - \mathbf{iS})), \forall i$$
 
$$k \leftarrow \mathcal{H}(yS = xyB)$$

random 
$$x$$

$$S = xB$$

$$R = yB + \mathbf{bS}$$

$$k_i \leftarrow \mathcal{H}(x(R - \mathbf{iS})), \forall i$$

$$random y$$

$$k \leftarrow \mathcal{H}(yS = xyB)$$

• R uniformly random: privacy for Receiver

random 
$$x$$
 
$$S = xB$$
 
$$R = yB + \mathbf{bS}$$
 
$$k_i \leftarrow \mathcal{H}(x(R - \mathbf{iS})), \forall i$$
 
$$k \leftarrow \mathcal{H}(yS = xyB)$$

- R uniformly random: privacy for Receiver
- Square DH: privacy for Sender

random 
$$x$$
 
$$S = xB$$
 
$$R = yB + \mathbf{bS}$$
 
$$k_i \leftarrow \mathcal{H}(x(R - \mathbf{iS})), \forall i$$
 
$$k \leftarrow \mathcal{H}(yS = xyB)$$

- R uniformly random: privacy for Receiver
- Square DH: privacy for Sender
- Sender precomputes T = xS

random 
$$x$$
 
$$S = xB$$
 random  $y$  
$$K_i \leftarrow \mathcal{H}(x(R - \mathbf{iS})), \forall i$$
 
$$k \leftarrow \mathcal{H}(yS = xyB)$$

- R uniformly random: privacy for Receiver
- Square DH: privacy for Sender
- Sender precomputes T = xS
- ullet  $\mathcal H$  is modeled as RO

## Our Real-OT Construction

#### random OT

$$c_i = \mathcal{E}_{k_i}(m_i), \ \forall i$$

$$m_b = \mathcal{D}_k(c_b)$$

#### Our Real-OT Construction

#### random OT

$$\frac{c_i = \mathcal{E}_{k_i}(m_i), \ \forall i}{m_b = \mathcal{D}_k(c_b)}$$

Encryption scheme:

$$\mathcal{E}_k(m)=k\oplus(m|0^\lambda)$$

#### Our Real-OT Construction

#### random OT

$$c_i = \mathcal{E}_{k_i}(m_i), \ orall i$$
 $m_b = \mathcal{D}_k(c_b)$ 

Encryption scheme:

$$\mathcal{E}_k(m)=k\oplus(m|0^\lambda)$$

$$\mathcal{D}_k(c=(m'|t)\oplus k) = egin{cases} m' & ext{if } t=0^\lambda \ ext{\it FAIL} & ext{otherwise} \end{cases}$$

• #exponentiations: n vs. 2 offline (3 online)

#exponentiations: n vs. 2 offline (3 online)



#exponentiations: n vs. 2 offline (3 online)



#exponentiations: n vs. 2 offline (3 online)



Game-based proof vs. simulation-based proof (UC)

# The Encryption Scheme

#### $\mathcal{E}, \mathcal{D}$ needs to satisfy

- Robustness: Given a set of random keys, it is hard for  $\mathcal A$  to generate a ciphertext that can be decrypted with more than one key.
- Non-committing: it is possible for a simulator to come up with a ciphertext which can later be explained as an encryption of any message

# Base-OT Implementation

• [ALSZ13]: based on MIRACL, used in the SCAPI library

# Base-OT Implementation

• [ALSZ13]: based on MIRACL, used in the SCAPI library

|                   | Our work   | [ALSZ13]   |
|-------------------|------------|------------|
| Curve             | Curve25519 | NIST K-283 |
| Constant-time     | Yes        | No         |
| Million Cycles/OT | 0.23       | 2.47       |

## Base-OT Implementation

• [ALSZ13]: based on MIRACL, used in the SCAPI library

|                   | Our work   | [ALSZ13]   |
|-------------------|------------|------------|
| Curve             | Curve25519 | NIST K-283 |
| Constant-time     | Yes        | No         |
| Million Cycles/OT | 0.23       | 2.47       |

code available at orlandi.dk/simpleOT