Term Weight Calculation Report

Term Weight Calculator

April 25, 2025

1 Formula Used

$$w(t_i, d_j) = \frac{freq_{ij}}{\max\{\forall t_l \in d_j\} freq_{lj}} \times \log_2\left(\frac{N}{n_i} + 1\right)$$
(1)

2 Input Term Frequencies

Term	D1	D2	D3	Total
algorithme	0	0	1	1
base	0	1	0	1
c++	0	1	0	1
java	0	1	0	1
langage	1	2	2	5
programmation	1	0	1	2
python	1	0	0	1
programme	0	0	1	1
${ m traitement}$	1	0	0	1
texte	1	0	0	1
$\operatorname{traduire}$	0	0	1	1
utilisé	1	0	1	2

Table 1: Term frequencies in each document

3 Query Information

Query: {langage, python, java}

4 Term Weight Calculations

4.1 Term: algorithme

$$w(algorithme, D1) = \frac{0}{1} \times \log_2 \left(\frac{3}{1} + 1\right)$$
 (2)

$$= 0.000 \times 2.000 \tag{3}$$

$$=0.000$$
 (4)

Term	Frequency in Query
algorithme	0
base	0
c++	0
java	1
langage	1
$\operatorname{programmation}$	0
python	1
$\operatorname{programme}$	0
${ m traitement}$	0
texte	0
$\operatorname{traduire}$	0
utilisé	0

Table 2: Term frequencies in query

$$w(algorithme, D2) = \frac{0}{2} \times \log_2\left(\frac{3}{1} + 1\right)$$
 (5)

$$= 0.000 \times 2.000 \tag{6}$$

$$=0.000$$
 (7)

For document D3

$$w(algorithme, D3) = \frac{1}{2} \times \log_2 \left(\frac{3}{1} + 1\right)$$
 (8)

$$= 0.500 \times 2.000 \tag{9}$$

$$=1.000$$
 (10)

For query Q

$$w(algorithme, Q) = \frac{0}{1} \times \log_2 \left(\frac{3}{1} + 1\right)$$
(11)

$$= 0.000 \times 2.000 \tag{12}$$

$$=0.000$$
 (13)

4.2 Term: base

$$w(base, D1) = \frac{0}{1} \times \log_2\left(\frac{3}{1} + 1\right) \tag{14}$$

$$= 0.000 \times 2.000 \tag{15}$$

$$=0.000$$
 (16)

$$w(base, D2) = \frac{1}{2} \times \log_2\left(\frac{3}{1} + 1\right) \tag{17}$$

$$= 0.500 \times 2.000 \tag{18}$$

$$=1.000$$
 (19)

For document D3

$$w(base, D3) = \frac{0}{2} \times \log_2\left(\frac{3}{1} + 1\right) \tag{20}$$

$$= 0.000 \times 2.000 \tag{21}$$

$$=0.000$$
 (22)

For query Q

$$w(base, Q) = \frac{0}{1} \times \log_2\left(\frac{3}{1} + 1\right) \tag{23}$$

$$= 0.000 \times 2.000 \tag{24}$$

$$=0.000$$
 (25)

4.3 Term: c++

For document D1

$$w(c++,D1) = \frac{0}{1} \times \log_2\left(\frac{3}{1} + 1\right)$$
 (26)

$$= 0.000 \times 2.000 \tag{27}$$

$$=0.000$$
 (28)

For document D2

$$w(c++,D2) = \frac{1}{2} \times \log_2\left(\frac{3}{1} + 1\right) \tag{29}$$

$$= 0.500 \times 2.000 \tag{30}$$

$$=1.000$$
 (31)

For document D3

$$w(c++,D3) = \frac{0}{2} \times \log_2\left(\frac{3}{1} + 1\right)$$
 (32)

$$= 0.000 \times 2.000 \tag{33}$$

$$=0.000$$
 (34)

For query Q

$$w(c++,Q) = \frac{0}{1} \times \log_2\left(\frac{3}{1} + 1\right)$$
 (35)

$$= 0.000 \times 2.000 \tag{36}$$

$$=0.000$$
 (37)

4.4 Term: java

For document D1

$$w(java, D1) = \frac{0}{1} \times \log_2\left(\frac{3}{1} + 1\right) \tag{38}$$

$$= 0.000 \times 2.000 \tag{39}$$

$$=0.000$$
 (40)

For document D2

$$w(java, D2) = \frac{1}{2} \times \log_2\left(\frac{3}{1} + 1\right) \tag{41}$$

$$= 0.500 \times 2.000 \tag{42}$$

$$=1.000$$
 (43)

For document D3

$$w(java, D3) = \frac{0}{2} \times \log_2\left(\frac{3}{1} + 1\right) \tag{44}$$

$$= 0.000 \times 2.000 \tag{45}$$

$$=0.000$$
 (46)

For query Q

$$w(java, Q) = \frac{1}{1} \times \log_2\left(\frac{3}{1} + 1\right) \tag{47}$$

$$= 1.000 \times 2.000 \tag{48}$$

$$=2.000$$
 (49)

4.5 Term: langage

For document D1

$$w(langage, D1) = \frac{1}{1} \times \log_2\left(\frac{3}{3} + 1\right) \tag{50}$$

$$= 1.000 \times 1.000 \tag{51}$$

$$=1.000$$
 (52)

$$w(langage, D2) = \frac{2}{2} \times \log_2\left(\frac{3}{3} + 1\right)$$
 (53)

$$= 1.000 \times 1.000 \tag{54}$$

$$=1.000$$
 (55)

$$w(langage, D3) = \frac{2}{2} \times \log_2\left(\frac{3}{3} + 1\right) \tag{56}$$

$$= 1.000 \times 1.000 \tag{57}$$

$$=1.000$$
 (58)

For query Q

$$w(langage, Q) = \frac{1}{1} \times \log_2 \left(\frac{3}{3} + 1\right)$$
(59)

$$= 1.000 \times 1.000 \tag{60}$$

$$= 1.000$$
 (61)

4.6 Term: programmation

For document D1

$$w(programmation, D1) = \frac{1}{1} \times \log_2\left(\frac{3}{2} + 1\right)$$
(62)

$$= 1.000 \times 1.322 \tag{63}$$

$$=1.322$$
 (64)

For document D2

$$w(programmation, D2) = \frac{0}{2} \times \log_2\left(\frac{3}{2} + 1\right)$$
 (65)

$$= 0.000 \times 1.322 \tag{66}$$

$$=0.000$$
 (67)

For document D3

$$w(programmation, D3) = \frac{1}{2} \times \log_2\left(\frac{3}{2} + 1\right)$$
 (68)

$$= 0.500 \times 1.322 \tag{69}$$

$$=0.661$$
 (70)

For query Q

$$w(programmation, Q) = \frac{0}{1} \times \log_2 \left(\frac{3}{2} + 1\right)$$
 (71)

$$= 0.000 \times 1.322 \tag{72}$$

$$=0.000$$
 (73)

4.7 Term: python

For document D1

$$w(python, D1) = \frac{1}{1} \times \log_2\left(\frac{3}{1} + 1\right)$$
(74)

$$= 1.000 \times 2.000 \tag{75}$$

$$=2.000$$
 (76)

For document D2

$$w(python, D2) = \frac{0}{2} \times \log_2\left(\frac{3}{1} + 1\right) \tag{77}$$

$$= 0.000 \times 2.000 \tag{78}$$

$$=0.000$$
 (79)

For document D3

$$w(python, D3) = \frac{0}{2} \times \log_2\left(\frac{3}{1} + 1\right)$$
(80)

$$= 0.000 \times 2.000 \tag{81}$$

$$=0.000$$
 (82)

For query Q

$$w(python, Q) = \frac{1}{1} \times \log_2\left(\frac{3}{1} + 1\right) \tag{83}$$

$$= 1.000 \times 2.000 \tag{84}$$

$$=2.000$$
 (85)

4.8 Term: programme

For document D1

$$w(programme, D1) = \frac{0}{1} \times \log_2\left(\frac{3}{1} + 1\right)$$
(86)

$$= 0.000 \times 2.000 \tag{87}$$

$$=0.000$$
 (88)

$$w(programme, D2) = \frac{0}{2} \times \log_2\left(\frac{3}{1} + 1\right)$$
(89)

$$= 0.000 \times 2.000 \tag{90}$$

$$=0.000$$
 (91)

$$w(programme, D3) = \frac{1}{2} \times \log_2\left(\frac{3}{1} + 1\right)$$
(92)

$$= 0.500 \times 2.000 \tag{93}$$

$$=1.000$$
 (94)

For query Q

$$w(programme, Q) = \frac{0}{1} \times \log_2 \left(\frac{3}{1} + 1 \right)$$
 (95)

$$= 0.000 \times 2.000 \tag{96}$$

$$=0.000$$
 (97)

4.9 Term: traitement

For document D1

$$w(traitement, D1) = \frac{1}{1} \times \log_2\left(\frac{3}{1} + 1\right)$$
(98)

$$= 1.000 \times 2.000 \tag{99}$$

$$=2.000$$
 (100)

For document D2

$$w(traitement, D2) = \frac{0}{2} \times \log_2\left(\frac{3}{1} + 1\right)$$
(101)

$$= 0.000 \times 2.000 \tag{102}$$

$$=0.000$$
 (103)

For document D3

$$w(traitement, D3) = \frac{0}{2} \times \log_2\left(\frac{3}{1} + 1\right)$$
(104)

$$= 0.000 \times 2.000 \tag{105}$$

$$=0.000$$
 (106)

For query Q

$$w(traitement, Q) = \frac{0}{1} \times \log_2 \left(\frac{3}{1} + 1\right)$$
 (107)

$$= 0.000 \times 2.000 \tag{108}$$

$$=0.000$$
 (109)

4.10 Term: texte

For document D1

$$w(texte, D1) = \frac{1}{1} \times \log_2\left(\frac{3}{1} + 1\right) \tag{110}$$

$$= 1.000 \times 2.000 \tag{111}$$

$$=2.000$$
 (112)

For document D2

$$w(texte, D2) = \frac{0}{2} \times \log_2\left(\frac{3}{1} + 1\right) \tag{113}$$

$$= 0.000 \times 2.000 \tag{114}$$

$$=0.000$$
 (115)

For document D3

$$w(texte, D3) = \frac{0}{2} \times \log_2\left(\frac{3}{1} + 1\right) \tag{116}$$

$$= 0.000 \times 2.000 \tag{117}$$

$$=0.000$$
 (118)

For query Q

$$w(texte, Q) = \frac{0}{1} \times \log_2\left(\frac{3}{1} + 1\right) \tag{119}$$

$$= 0.000 \times 2.000 \tag{120}$$

$$=0.000$$
 (121)

4.11 Term: traduire

For document D1

$$w(traduire, D1) = \frac{0}{1} \times \log_2\left(\frac{3}{1} + 1\right)$$
(122)

$$= 0.000 \times 2.000 \tag{123}$$

$$=0.000$$
 (124)

$$w(traduire, D2) = \frac{0}{2} \times \log_2\left(\frac{3}{1} + 1\right)$$
 (125)

$$= 0.000 \times 2.000 \tag{126}$$

$$=0.000$$
 (127)

$$w(traduire, D3) = \frac{1}{2} \times \log_2\left(\frac{3}{1} + 1\right)$$
(128)

$$= 0.500 \times 2.000 \tag{129}$$

$$=1.000$$
 (130)

For query Q

$$w(traduire, Q) = \frac{0}{1} \times \log_2 \left(\frac{3}{1} + 1\right)$$
(131)

$$= 0.000 \times 2.000 \tag{132}$$

$$=0.000$$
 (133)

4.12 Term: utilisé

For document D1

$$w(utilis, D1) = \frac{1}{1} \times \log_2\left(\frac{3}{2} + 1\right) \tag{134}$$

$$= 1.000 \times 1.322 \tag{135}$$

$$=1.322$$
 (136)

For document D2

$$w(utilis, D2) = \frac{0}{2} \times \log_2\left(\frac{3}{2} + 1\right) \tag{137}$$

$$= 0.000 \times 1.322 \tag{138}$$

$$=0.000$$
 (139)

For document D3

$$w(utilis, D3) = \frac{1}{2} \times \log_2\left(\frac{3}{2} + 1\right)$$
(140)

$$= 0.500 \times 1.322 \tag{141}$$

$$=0.661$$
 (142)

For query Q

$$w(utilis, Q) = \frac{0}{1} \times \log_2\left(\frac{3}{2} + 1\right)$$
(143)

$$= 0.000 \times 1.322 \tag{144}$$

$$=0.000$$
 (145)

5 Final Term Weights

Term	D1	D2	D3	Q
algorithme	0.000	0.000	1.000	0.000
base	0.000	1.000	0.000	0.000
c++	0.000	1.000	0.000	0.000
java	0.000	1.000	0.000	2.000
langage	1.000	1.000	1.000	1.000
programmation	1.322	0.000	0.661	0.000
python	2.000	0.000	0.000	2.000
programme	0.000	0.000	1.000	0.000
${ m traitement}$	2.000	0.000	0.000	0.000
texte	2.000	0.000	0.000	0.000
${ m traduire}$	0.000	0.000	1.000	0.000
utilisé	1.322	0.000	0.661	0.000

Table 3: Final term weights