English title

OSCAR RÅHLÉN OCH SACHARIAS SJÖQVIST

Degree project in Computer Science

Date: February 28, 2019 Supervisor: Handledare Examiner: Examinator

School of Electrical Engineering and Computer Science Swedish title: Detta är den svenska översättningen av titeln

Abstract

English abstract goes here.

Sammanfattning

Svenskt sammanfattning

Contents

1	Introduktion				
	1.1	Proble	mformulering	1	
	1.2	Frågest	ällning	1	
	1.3	Avgrän	sningar	1	
2	Bak	grund		2	
	2.1	Maskir	ninlärning	2	
		2.1.1	Artificiella neurala nätverk	3	
		2.1.2			
		2.1.3	Convolutional Neural Network	3	
3	Met	od		4	
4	Resu	ıltat		5	
5	Disk	ussion		6	
6	Slut	sats		7	
Bi	bliogi	raphy		8	
Δ	Δnn	endiv A		Q	

Introduktion

Information om ämnet, leda in läsaren samt förklara uppsatsens relevans [1]. Vi borde sikta på ungefär 40 sidor totalt.

1.1 Problemformulering

Vad är syftet med uppsatsen? Vad vill ni uppnå

1.2 Frågeställning

Vår frågeställning

1.3 Avgränsningar

Vilka avgränsningar vi gjort i datamängder, testpersoner samt modeller.

Bakgrund

Teorin som tillhör vårt område. Främst ergonomi, maskininlärning, djupinlärning och CNN. Tidigare forskning inom området. ANN. Alla olika tekniker vi kommer att använda. Relaterade arbeten.

Möjliga områden: Naive bayes, random forest, SVM, dropout, preprocessing

2.1 Maskininlärning

En maskininlärningsalgoritm är en algoritm som kan lära sig av data (dl book). En definition av (mitchell 1997) är att ett datorprogram har möjlighet att lära sig från erfarenhet E med respekt till en grupp av uppgifter T och prestandamätning P. Uppgiften T är det vi vill att algoritm ska kunna göra, till exempel att prata eller att klassificera bilder. Vanligtvis beskrivs dessa uppgifter T som exempel, där varje exempel består av features (dl book).

Prestandamätningen P mäter vanligtvis hur bra algoritmen har lyckats med uppgft T, i månbga fall mäts modellens noggrannhet (dl book). Det vill säga hur bra modellen fungerade på en mängd testdatapunkter.

I övergripande drag kan maskininlärningsalgoritmer delas in i två kategorier: unsupervised och supervised (dl book), där de olika typerna har olika erfarenheter E. Vid unsupervised så innehåller erfarenheterna E många features men inte de rätta svaren. Medan vid supervised så finns det så kallade labels/targets i erfarenhet E som visar önskat utvärde för alla datapunkter.

- 2.1.1 Artificiella neurala nätverk
- 2.1.2 Djupinlärning
- 2.1.3 Convolutional Neural Network

Metod

Hur vi gått tillväga. Vilka dataset, hur implementation gått till (verktyg, klassificerare, parametrar), hur vi valt features. Hur evalueringen har gått till (traning, test, validation set).

Resultat

Presentation av resultatet från våra olika tekniker och evalueringar. i tabeller och grafer. Även beräkningstid.

Diskussion

Diskutera resultatet och hur olika delar kan ha påverkat eller påverkade. Diskutera eventuell framtida forskning. Begränsningar med resultatet. Etiska aspekter. Hållbarhet.

Chapter 6 Slutsats

Slutsats av vad vi kom fram till.

Bibliography

[1] Werner Heisenberg and Paul Dirac. "To be or not to be". In: *Proceedings of the Uncertain Society Annual Meeting*. Ed. by Erwin Schrödinger. 2015, pp. 21–22.

Appendix A Appendix A