Fully Connected Neural Networks

Roberto Souza Assistant Professor Electrical and Computer Engineering Schulich School of Engineering

Outline

Learning Goals

- Fully Connected Neural Networks
 - Single-layer Network
 - Multi-layer Network

Avoiding Overfitting with Dropout

Summary

Learning Goals

Introduce fully connected neural networks

Learn how to compute the number of parameters of your model

Learn how to use dropout to avoid model overfitting

Notation

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1M} \\ x_{21} & x_{22} & \dots & x_{2M} \\ x_{31} & x_{32} & \dots & x_{3M} \\ \dots & \dots & \dots & \dots \\ x_{N1} & x_{N2} & \dots & x_{NM} \end{bmatrix}$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \\ y_5 \end{bmatrix}$$

True Labels

Predicted Labels

The Neuron Model

- b_i is the bias
- w_{ij} are the weights
- s_i is the output of the neuron
- σ is the activation function

Single-layer Fully Connected Neural Network

$$[S]_{C\times 1} = \sigma([W]_{C\times M}X_{i,:}^T + [B]_{C\times 1})$$
Matrix formulation

If the activation σ is the softmax function, then:

$$\hat{y} = \underset{\forall i}{\operatorname{argmax}}(s_i)$$

Number of parameters: C x
 (M+1) = 4 x 6 = 24

Multi-layer Fully Connected Neural Network

$$[S^{(1)}] = \sigma_1([W^{(1)}] X_{i,:}^T + [B^{(1)}])$$

$$[S^{(2)}] = \sigma_2([W^{(2)}] S^{(1)} + [B^{(2)}])$$

- Number of parameters:
 - First layer: $(4 \times 6) + 6 = 30$
 - Second layer: (6x4) + 4 = 28

Dropout

- Technique to avoid overfitting
- Learn redundant paths -> gain robustness

(a) Standard Neural Net

(b) After applying dropout.

Summary

 Fully connected neural networks alternate linear operations (matrix multiplication + bias term) and non-linear activations

 The number of parameters in each layer is given by the (number of inputs +1) x the number of outputs

 Dropout is a technique to avoid overfitting that makes the neural network learn redundant paths to reach the same decision

Thank you!

