

শ্যামল বণিক

পশ্চিয়্যুস্থ রাজ্য প্রক্তব্য পর্ষদ

বিজ্ঞান পৃত্তিকা

रिज्यमात ७ कृषिविद्यात जीवाणुत व्यवमान

COMPLIMENTARY

ডঃ শ্যামল বণিক এম. এর্মাস. (এজি) ; পিএইচ. ডি

JAIBASAR O KRISHIBIJNANE JIBANUR ABADAN

[Organic Manure and Contribution of Microbiology to Agriculture]

Dr. Shyamal Banik

- © West Bengal State Book Board
- © পশ্চিমবন্ধ রাজ্য পুস্তক পর্যদ

প্রকাশকাল ঃ ডিসেম্বর, ১৯৮৫

প্রকাশক ঃ
পশ্চিমবল রাজ্য পুস্তক পর্যদ
(পশ্চিমবল সরকারের একটি সংস্থা)
আর্য ম্যানসন (নবম তল)
৬ এ, রাজা সুবোধ মল্লিক ক্ষোয়ার
কলিকাতা-৭০০ ০১৩

মূলক ঃ শ্রীপূর্গ প্রসাদ মিল, এলম্ প্রস ৬৩, বিডন স্ট্রীট,কলিকাতা–৭০০ ০০৬

প্রক্রদঃ বিমল দাস

Accno- 16368

মূল্য ঃ বারো টাকা

Published by Dr. Ladlimohan Roy Chowdhury Chief Executive Officer, West Bengal State Rook Board under the Centrally Sponsored Scheme of production of books and literature in regional languages at the University level by the Government of India in the Ministry of Education and Social Welfare (Department of Culture), New Delhi.

লেখকের নিবেদন

"জৈবসার ও কৃষিবিজ্ঞানে জীবাণুর অবদান" পুন্তিকায় মোট চোদটি অংগায়ে বর্ত মান পর্য্যায়ে ক্বষি গবেষণার জীবাণু বিজ্ঞান বিষয়ক সম্ভাবনার দিকগুলির প্রতি আলোকপাত করা হয়েছে। জীবাণুদার এখনও জনপ্রিয়তার শীর্ষে পৌছাতে পারে নি, এর কারণ নির্দেশ করা এই পুস্তিকার উদ্দেশ্য নয়। তবে এটা ঠিক যে জীবাণুদার এককভাবে সাফল্য লাভ করতে পারে না। এরজন্য প্রয়োজন জমিতে উপকারী জীবাণু ক্রিয়ার উপযুক্ত পরিবেশ রচনা করা এবং জমিতে জৈবসার প্রয়োগ করা। বলা বাহুল্য, আজকের এই শক্তি গংকটের দিনে জৈবশার সহযোগে জীবাবুসার প্রয়োগের ফলে কৃষিক্ষেত্রে ব্যবহৃত কৃত্রিম শক্তির চাহিদা অনেকটা মিটবে। জীবাণুর ক্রিয়া ভাল না হলে জমি স্বস্ময়ই অমুর্বর হয়ে থাকেবে, এই পুস্তিকাতে তা বোঝাতে চাওয়া হয়েছে। মাটিতে, জীবাণুঘটিত বিভিন্ন মৌলের যে বিবর্তন চক্র অবিরত চলেছে তাকে গুরুত্ব দিলেও এই পুন্থিকাজে কেবলমাত্র নাইট্রোজেন ও ফ্রাফরাস ভিন্ন অন্ত মৌলগুলির আলোচনা সম্ভব হয়নি। পরবর্তী পর্যায়ে এদের সম্বন্ধে আলোচনার ইচ্ছা রইল। সবশেষে ছটি ভিন্নমুখী আলোচনা রাধা হয়েছে, যাদের বহুল প্রচলন এখনও বিশ্বব্যাপী হয়ে উঠে নি। এদের সার্থক রূপায়ণ যেদিন সম্ভব হবে সেদিন কৃষিবিজ্ঞান আরো বেশী করে বৈজ্ঞানিক ভিত্তির উপর প্রতিষ্ঠিত হবে এটা নিঃদন্দেহে বলা চলে।

পরিশেষে আমি সকলের সহামুভূতি কামনা করে শেষ করছি। এই পুন্তিকাটি পুঞায়পুঞ্ভাবে নিরীক্ষণ করে কিছু মূল্যবান পরিভাষা সংযোজন এবং প্রয়োজনায়গ আধুনিকীকরণের জন্ম উপদেশ দিয়ে বর্তমান বিধানচক্ত কৃষি বিভালয়ের জীবার্ বিজ্ঞানের অধ্যাপক ডঃ বিমলক্রফ দে মহাশায় প্রভূত উপকার করেছেন। আশা করা যায় পুত্তিকাটি স্নাতক তার পর্যন্ত কৃষিবিজ্ঞানের ছাত্র এবং সাধারণ ক্রবিজ্ঞাবি মহলে কিছু নূতন তথ্য সংযোজন করতে সমর্থ হবে। পুত্তিকাটি সাধারণ ক্রবিজ্ঞাবি ও ছাত্রমহলে সমাদৃত হলে নিজেকে ধন্ত মনে করব।

ভভেছা সহ— শ্যামল বণিক

সূচীপত্র

(5)	হচনা	>8
(2)	রাসায়নিক সার বনাম জৈবসার	e—a
(9)	আবর্জনা ঘটিত সার	<u> </u>
(8)	সবুজ সার	२७—७:
(¢)	অন্নমাটিতে চূন প্রয়োগের উপযোগিতা	তহ—৩৮
(७)	ক্ষারীয় মাটির সমস্থা ও সমাধান	98—€©
(9)	জীবাণুসার বলতে কি বোঝায়	84—4
(b)	নীল স্বুজ শেওলা এবং এজোলা	e>-9:
(5)	कीवाव्मात हिमारव मूककीवी नाहरद्वारकन	
	वसनकाती कीवाव	92-26
(>0)	कीवानुगात हिमादन महकीवी नाहेट्डोटकन	
	वक्षनक्ष्म जीवान्	24->>>
(>>)	ফস্ফরাস ঘটিত জীবাণুসার	>20-506
(><)	কীটনাশক হিসাবে জীৰাণু	>06->86
20)	জীবানুগার প্রয়োগে নৃতন পথ নির্দেশ—হর্মোন	
	উৎপাদনকারী জীবাগুর ভূমিকা	>86->66
(86)	উপসংহার	>66->65

as the real result of the safette feetile into the

এই পৃথিবীতে লকল শক্তি উৎস সূর্য, এটা অবিদিত হলেও এর কিছুটা विद्यायर विद्याखन चारह। ल्षेत्र अत चना पिकान धरत सूर्य य चारना এবং তাপ বিকিরণ করে চলেছে তার মাত্র তু'ল কোটি ভাগের একভাগ পৃথিবীর ভাগ্যে জুটছে। আবার তারও এক বড় অংশ নষ্ট হয়ে যাচেছ বিকিরিত হয়ে। ভবে পৃথিবীতে কিছুটা স্বায়ীভাবে এই শক্তিকে ধরে রাখার ক্ষমতা আছে সবুজ উভিদের। এবং সেটা প্রধানতঃ গাছের পাতার সবুজ রঞ্জক অংশের, যার নাম হল ক্লোকো। বলা বাহলা, এই ক্লোরোফিলের দৌলতেই পৃথিবীতে সবুজের সমারোহ, যা প্রত্যক্ষ বা অপ্রত্যক্ষ ভাবে দেয় থাতের যোগান, আর তার জ্ঞুই সম্ভব প্রাণী এবং মানুবের জীবনধারণ।

क्रिटा कि**ला**त कांख कि ? यह कथात्र बना यात्र, अत कांख हन শুধুমাত্র সৌরলজ্ঞি শোষণ (আলোক পর্যায়ের), এবং বথাস্থানে তার বণ্টন। অধাৎ দৌরশক্তিই অনবরতঃ উদ্ভিদ এবং প্রাণী জগতে শক্তির যোগান দিয়ে

বর্তমানে বড় সমস্তা-শক্তি সম্কট। আমরা আজ যেভাবে বিহাতের অপ্রাচুর্য্যে বিপর্যস্ত হয়ে পড়ছি, তাতে ভাবাই যায় না আগামী ৫০ বা ৭৫ বংশর পরে পুথিবীতে সঞ্চিত জীবাখা জালানী (fossil fuel) শেষ হয়ে গেলে আমাদের कि व्यवस्था रूटत । हिमादन दमथा श्रिष्ठ, व्यानामी १६ वरमहत्तत मह्या भृषिनीहरू সঞ্চিত জীবাণা জালানী শক্তির উৎস কয়লা, খনিজ তেল এবং প্রাকৃতিক গ্যাপের শেষ কণাটুকুও নিঃশেষ হয়ে যাবে। তথন শক্তির কুরিবুতির জ্ঞা থাকবে শেষ সম্বল কিছু তেজঃক্রিয় মৌল। কিন্তু এ-রসদও একশত বৎসর পরে আর অবশিষ্ট थाकरव ना। अत्रभन्न कि হবে ? त्म हिन्डांहा अथन एथू भागर्थ निकानी एमत 'কাঁধে ছেড়ে বসে থাকা যাবে না। এজন্ম আমাকে আপনাকে সকলকেই ভাবতে ছবে। সেদিনের জন্ম আমাদের যে পথসংকেত বিজ্ঞানীরা দিচ্ছেন তা হল নিউক্লিয় সংশ্লেষণ চুল্লি থেকে শক্তির যোগান, যার জালানীর অসীম ভাগ্ডার হল

সমুদ্রে সঞ্চিত ভারী জল [1H22O] কিন্তু সে রহম্মের চাবিকাঠি এখনও খুঁজে পাওয়া যায়নি।

তাই সময় থাকতেই আমাদের স্বাইকে আরো সচেতন হতে হবে,
আমাদেরই উত্তরপুরুবদের কথা ভেবে। সৌর চুল্লির সাহাব্যে শক্তি আহরণ
সত্যি প্রশংসনীয়, কিন্তু এতেই আত্মতুষ্টির কোন অবকাশ নেই। তাই নূতন
নূতন শক্তি সংগ্রহের অভিযানে প্রকৃতি বিজ্ঞানীদের সঙ্গে আমাদেরও সামিল
হতে হবে। আমাদের জনসাধারণকে বোঝাতে হবে সঙ্কটি। সমগ্র মানব
জাতির। তাই যে পথে শক্তির সাশ্রেয় করা যায় সেই পথই আমাদের অবলম্বন
করতে হবে। সভ্যতার উন্নতির সঙ্গে সঙ্গে শক্তির চাহিদা ক্রমেই বেড়ে চলেছে,
কিন্তু বলা বাছল্য-শক্তির যোগান বাড়ার পথ নেই।

প্রসঙ্গ পরিবর্তন করে কাজের কথার আসা যাক। সমস্যার সমাধানের পথ কি ? বেঁচে থাকার জন্ম প্রথমেই চিন্তা করতে হয় অন্ন এবং বস্ত্র সংস্থানের কথা। জীব দিয়েছেন যিনি আহার দেবেন তিনি এই ভেবে বসে থাকলে মানব-জাতিকে অনাহারে মরতে হবে তা বলার অপেক্ষা রাথে না। কারণ দিন দিন জনসংখ্যার বাড়তি বোঝা পৃথিবীকে প্রতিনিয়তই যে ভ্যকি দিচ্ছে, তার মোকাবিলার জন্ত আমাদের তৈরি থাকতেই হবে। তাই প্রথমেই গুরুত্ব দিতে হবে ক্রবিপদ্ধতি উন্নয়নের উপর। ক্রবি উন্নয়নের হার ত্বান্থিত হলে তবেই আমরা জনসংখ্যার এই জেমবর্ধ মান হারের সঙ্গে কিছুটা যুবাতে পারব। তার সঙ্গে শক্তি সন্ধটের কথা চিন্তা করে উন্নত ক্রবিপদ্ধতিতে প্রারোজনীয় কৃত্রিম শক্তিব বার্লার বি শক্তির ব্যবহার কিভাবে ক্যানো যায় সেদিকে নজর দিতে হবে। উদ্ভিদ হল পার্থিব শক্তি বিবর্ত নের প্রধান মাধ্যম। তাই স্পষ্টই বোঝা খায় শক্তি অপচয় রোধের সঙ্গে কৃষি প্রণাণীর বোগ কত্টুকু। জমি কর্ষণ, জলসেচ, কৃত্তিম রাশায়নিক সার প্ররোগ, কীটনাশক ঔবধাদি প্রয়োগ পর্যন্ত স্বাহ্ট প্রত্যক্ষ বা পরোক্তাবে কৃত্রিম শক্তির উপর নির্ভর্মীল ৮ জমিতে জল সেচ দেওয়ার ব্যাপারে সৌরশক্তি চালিত পাম্পের ব্যবহার ইতিমধ্যেই শুরু হয়েছে। কিন্তু উন্নতমানের
ভিচ্চ কলনশীল প্রভাক্তি উচ্চ ফলনশীল প্রজাতির শয়ের বাড়তি ফলন পাঁওয়ার জন্ম সর্বাত্তে প্রায়োজন হয় প্রচুর পরিমাণে সার প্রারোগের। স্বার্হ জানা আছে যে রাসায়নিক সার্বের উৎপাদনের জন্ত প্রান্তের। স্বার্ই জানা আছে যে রাসায়। গণ হলেও বিচাৎ কিজানে ক্র বিপুল পরিমাণ বিচাৎ শক্তির। অপ্রাস্থিক হলেও বিছাৎ কিভাবে প্রান্ধন হয় সে সম্বন্ধে একটা উদাহরণ দেওয়া থাক।

অ্যামোনিয়াম সালফেট [(NH4)2SO4] বা ইউরিয়া [CO(NH2)2] জাতীয় নাইট্রোজেন ঘটিত রাসায়নিক সার উৎপাদনের জন্ত প্রথমে তৈরী করতে হয় আ্যামোনিয়া (NH3), যা অনেক দেশে আজকাল সরাসরি তরল অবস্থায় রুষি-জমিতে প্রয়োগ করা হচ্ছে। হেবারের নির্দেশিত শিল্প পদ্ধতিতে আ্যামোনিয়া উৎপাদনের জন্ত প্রয়োজন হয় প্রায় ২০০ গুল বায়ুমগুলীয় চাপ এবং ৫৫০ ডিগ্রি সেটিগ্রেড উষণ্ডতা স্টির। এ ছাড়া জটিল কলাকৌশলের কথা বাদই দিলাম। অর্থাৎ সহজ্বেই অনুমান করা যায় যে এই সার উৎপাদনের জন্ত প্রয়োজনীয় বিপুল পরিমাণ শক্তি সংগ্রহের জন্ত আমাদের কয়লা বা খনিজ তেলের উপরই নির্ভর করতে হয়।

আসল প্রশ্নটা হল এই সমস্যার সমাধান হবে কিসে ? আমরা যদি শুধুমাত্র গারের কথাটা চিস্তা করি তবে তার অনেকটা সমাধান হবে নিঃসন্দেহে জৈবসার। এ ছাড়া আছে অন্ত শক্তিশালী হাতিয়ার জীবাণুসার। এখন দেখা যাক জৈবসার এবং জীবাণুসার বলতে কি বোঝায়?

জৈবসারকে আমরা প্রধান ছুইভাগে ভাগ করব। প্রথমতঃ সবুজসার এবং দিতীয়তঃ ভালোভাবে পচানো (well decomposed)। জৈবসার। জৈব সাবের মধ্যে উল্লেখযোগ্য হল খামারজাত সার (Farm Yard manure)। এবং শহরের বর্জাপদার্থজাত সার (Town compost manure)। এছাড়া আছে মান্তবের মলের সার (Night soil) বিশেষ শ্রেণীর সবুজ উদ্ভিদকে জমিতে পচিয়ে যে সার উৎপন্ন করা হয় তাকে বলে সবুজসার (Green manure)।

আমাদের প্রতিদিনের অব্যবহার্য্য দ্রব্যাদি যেখানে সেখানে পড়ে অবাঞ্ছিত পচনের ফলে তুর্গন্ধ উৎপাদন করে এবং রোগ জীবাণুর জন্ম দিয়ে আর এক চুড়ান্ত বিপদ সংকেত বছন করে। কিন্তু এইসব অব্যবহৃত আবর্জনাকেই কল্যাণমূলক কাজে লাগানো যায় উপযুক্ত নির্বাচিত জীবাণু দ্বারা জারণ ঘটিয়ে। এইসব আবর্জনার মধ্যে সঞ্চিত শক্তিই আবর্জনার বিবর্ত ন ঘটিয়ে তাকে পরিণত করবে জমিতে প্রয়োগের উপযোগী কৃষিসার হিসাবে। যে বিপুল পরিমাণ গোময়াদি পশুবর্জ্য পদার্থ স্থানে অস্থানে পড়ে নই হয় বা সন্তা জালানী হিসাবে ব্যর হয় তার অন্ততঃ একাংশও কৃষিসারের অনেকটা চাহিদা মিটাতে সক্ষম। এইসব অপ্যব্যের মধ্যে কার্বনজাত পদার্থ টুকু জীবাণুর দেহগঠন ও শক্তি

উৎপাদনের খাতে ব্যর হয়, বিনিময়ে মুক্ত হয় অজৈব নাইট্রোজেন জাত দ্রবাদি যা রাসায়নিক সারের মতই ক্রবিজমির উর্বরতা বৃদ্ধি করে থাকে।

একশ্রেণীর মৃত্তিকা জীবাণুর নাইটোজেন বছন ক্ষমতা থাকায় এরা ক্ববিজীবাণুবিদদের মনে এক পরম আশার সঞ্চার করেছে। এই জীবাণুদের ক্রিয়া
সাধারণতঃ সীমিত মানের হলেও এ পদ্ধতি প্রাকৃতিক বলে, প্রয়োগ খুব সহজ্ব
এবং সর্বোপরি প্রয়োগের খরচও অতি সামান্ত। এদের যোগ্যতার মান বৃদ্ধি
করা খুব কঠিন নয়। এ নিয়ে সারা বিশ্বে চলেছে প্রচুর গবেবণা। অর্থাৎ দেখা
যাচ্ছে ক্বিক্লেন্তে শক্তি সাম্রায়ের জন্ত নাইটোজেন বন্ধনকারী জীবাণুর গুরুত্বপূর্ণ
ভূমিকা রয়েছে। এছাড়া দ্বিতীয় মুখ্য ভূমিকা হল ফসফেট জীবাণুর। এই শ্রেণীভুজ্ত জীবাণু পাথুরে ফসফেটের মত প্রাকৃতিক অন্রবণীয় ফসফেট ঘটিত লবণ
থেকে উন্তিদ গ্রহনোপোযোগী ক্রবণীয় ফসফেট মৃক্ত করতে পারে। ফসফেট
সার হিসাবে যে স্থপার ফসফেট উৎপাদন করা হয় তার জন্তও প্রয়োজন হয়
বিপ্রল পরিমাণ বিভাগে শক্তির। বলা বাছলা উৎপাদনের অপ্রত্নতার জন্ত
আমাদের স্থপারফসফেট আমদানী করতে হয় কটাজিত বৈদেশিক মৃদ্রার
বিনিময়ে।

ক্ববিক্ষেত্রে জীবাণু শুধুমাত্র সাবের সাশ্রয়ই করে না, স্মন্ত্র্ নির্বাচিত জীবাণ অপকারী কীটনাশক হিসাবেও কাজ করতে পারে। এছাড়া কিছু শ্রেণীর জীবাণুর রয়েছে উদ্ভিদবৃদ্ধি উদ্দীপক হর্মোন জাতীয় পদার্থ উৎপাদনের ক্ষমতা। বলা বাহুল্য, স্মন্ত্র্যু এবং নির্বাচিত জীবাণুসার প্রয়োগের ফলে ক্লবি ভমি হয়ে উঠবে আরো সবুজ আরো শ্রীময়ী। পরবর্তী অধ্যায়গুলিতে আমরা এদের পর্যায়-ক্রমিক আলোচনা করব।

्रा प्रकार के जिल्ला के जिल्ला है। जिल्ला के मान के जा कि जा के जा है। जा कि जा के जा जा के जा

রাসায়নিক সার বনাম জৈবসার

সার বলতে কি বোঝার ? রাসায়নিক সার এবং জৈবসারের মূল পার্থক্যই বা কি ? রাসায়নিক সারের বিকল্প কি জৈবসার ? এইসব প্রশ্নের জ্ববাব পেতে হলে প্রথমে আমাদের জানতে হবে সার কি বস্তু ? তার প্রয়োজনই বা হয় কেন ?

সার বলে যেগব রাসায়নিক বস্বগুলোকে আমরা জমিতে প্রয়োগ করি,
সেগুলোর মূল উপাদান হচ্ছে আসলে উদ্ভিদ পোষক (Plant nutrient),
গাছ সালোকসংশ্লেষের মাধ্যমে তার শক্তি উৎপাদনের রসদ সংগ্রহ কবে থাকে
একথা সর্বজনবিদিত। এর জন্ম প্রয়োজনীয় জল, কার্বনডাইঅক্সাইড এবং
আলো সরবরাহের দায়িত্ব প্রকৃতির। এছাড়াও সালোকসংশ্লেষের জন্ম প্রয়োজন
হয় কিছু অত্যাবশুকীয় মৌলের, বার অভাবে গাছের দেহগঠন হতে পারে না।
এইসব মৌলের যোগান আসে মাটি থেকে, কোন কারণে ঐসব অত্যাবশুকীয়
মৌলের অভাব ঘটলেই প্রয়োজন হয় তাদের মাটিতে প্রয়োগ করবার। এই
হল সার। অর্থাৎ যে সমস্ত পদার্থের প্রয়োগ উদ্ভিদের পৃষ্টি, বৃদ্ধি ও ফলনে
সহায়তা করে—ভাদের বলে সার। তাহলে এখন আমরা বুঝতে পারছি
প্রয়োজনে পরিমিত পরিমাণে সারের যোগান দিলে গাছের গঠন ভালো হবে,
রোগ প্রতিরোধ ক্ষমতা বাড়বে এবং সর্বোপরি বাড়বে ফলন।

এখন দেখা যাক উভিদের প্রকৃত প্রয়োজনীয় মৌলগুলো কি কি ?

উদ্ভিদের বৃদ্ধির জন্ম প্রয়োজন হয় প্রায় ২০টা বিভিন্ন মৌলিক পদার্থের। তার
মধ্যে প্রধান হল কার্বন, অক্সিজেন, হাইড্রোজেন, নাইট্রোজেন, ফসফরাস,
পটাসিয়াম, ক্যালসিয়াম, ম্যাগনেসিয়াম, লোহা, তামা, দন্তা, বোরন, মলিবডেনাম
ইত্যাদি। এদের মধ্যে কার্বন, অক্সিজেন ও হাইড্রোজেনের চাহিদা বেশী হলেও
তা জল এবং কার্বনডাইঅক্সাইড থেকে সংগৃহীত হয় বলে এরা সার বলে গণ্য হয়

না। ক্রমিক চাহিদার ভিত্তিতে জমিতে প্রয়োগ করা হয় প্রধানতঃ নাইট্রোজেন, ফসফরাস এবং পটাসিয়ামকে যা ক্রবিরসায়নবিদদের কাছে "এন পি কে" (N. P. K.) নামে পরিচিত। এছাড়া সার হিসাবে এদের প্রয়োগই ব্যাপক বলে, এরা মুখ্য পোষক বা মেজর নিউট্রিয়েন্ট (Major nutrient) বা ম্যাকোনিউট্রিয়েন্ট (Macronutrient) নামেও পরিচিত।

যখন এই মৌলগুলো সরবরাহের জন্ম সরল অজৈব পদার্থ প্রয়োগ করা হয় তথন তাকে আমরা বলি রাসায়নিক সার। এনের মধ্যে অন্ততম হল, আ্যামোনিয়াম সালফেট, ক্যালসিয়াম আ্যামোনিয়াম নাইট্রেট, ইউরিয়া ইত্যাদি (নাইট্রোজেন ঘটিত); সিলল অপার ফসফেট, ও ট্রিপল অপার ফসফেট (ফসফরাস ঘটিত) এবং মিউরেট অব পটাস ও পটাসিয়াম সালফেট (পটাসিয়াম ঘটিত)। কিন্তু এইসব উদ্ভিদ পোষক আহরণের জন্ম অপরিহার্য খনিজ লবণ যদি জটিল জৈব পদার্থের থেকে সংগৃহীত হয় তবে তাকে বলে জৈবসার। সাধারণতঃ অব্যবহার্য খামারজাত পদার্থ, পশুমলমূত্রাদি, শহর এবং গ্রামের পচানো আবর্জনাদি জমিতে প্রেয়াগ করলে, রাসায়নিক সার অপেকা অল প্রিমৃল্য হলেও তা ভালোভাবে গাছের প্রেয়াজন মিটাতে সক্ষম হয়। এই আবর্জনার মধ্যে জৈব পদার্থের প্রাচুর্য থাকায় তা জৈবসার হিসাবে পরিচিতি লাভ করেছে।

এছাড়া পটাসিয়ামের পরবর্তী তালিকাভুক্ত মৌলগুলোর চাহিদা আছুপাতিক হারে কম বলে, এদের স্বল্পপ্রয়োজনীয় মৌল বা মাইকোনিউটি রেন্ট (Micronutrient) বলা হয়। এই মৌলগুলির চাহিদা গাছের কাছে অতি অর পরিমাণে হওয়ার দরুল সাধারণতঃ জমিতে এদের সরাসরি প্রয়োগ করার প্রয়োজন প্রায়ই হয় না। এখানে উল্লেখ করা প্রয়োজন যে গাছ তার চাহিদার স্বর্প্রয়োজনীয় মৌলের বোগান মাটি থেকেই পেয়ে যায়। তবে কোন বিশেষ পরিস্থিতিতে স্বন্ধপ্রয়োজনীয় মৌলের চাহিদাও প্রকট হয়ে উঠতে পারে যা গাছের নানাবিধ লক্ষণে (অস্বাভাবিকভার) স্পষ্ট হয়। সেই পরিস্থিতিতে পরিমাত পরিমাণে ঐ স্বল্প চাহিদার মৌলগুলিকে প্রয়োগ করলে বিরূপ প্রতিজ্ঞিয়ার হাত থেকে গাছকে রক্ষা করা যায়। ক্রবি পণ্যগুলির মধ্যে অধিক ফলনশীল প্রজাতিগুলির ক্রন্ত্রিম সারের চাহিদা যথেই বেশী।

এরপর আসা থাক মাটির **অবস্থা সম্পর্কে। মাটিতে সার প্রয়োগ করা** হলে

তার কি কি বিবর্তন ঘটতে পারে এবং প্রযুক্ত সারের স্বটাই গাছ পায় কি না দেখা যাক। গাছের কোন সম্ভা সমাধানের জন্ত ক্রষিবিজ্ঞানীকে নজর রাথতে হর গাছ, মাটি এবং সেই মাটিভে অবস্থানকারী জীবাণুর প্রকৃতির উপর; এক কথার উদ্ভিদ, মাটি এবং জীবাণুর গতিশীল সাম্যের উপর। এটা অবশ্রুই মনে রাখতে হবে যে কোন পৃষ্টিকর পদার্থ মাটিতে এলেই প্রথমে তা চলে যান্ত্র মাটির জীবাণুর ভোগে এবং কেবলমাত্র ভাদের প্রয়োজনের অভিরিক্ত অংশটুকুই উদ্ভিদের প্রশ্নোজন মিটাতে ব্যবহৃত হয়। তার প্রধান কারণ হল যুত্তিকা জীবাণুর সংখ্যা বিপুল (প্রতি গ্রাম মাটিতে প্রায় ১০৮—১০১ সংখ্যক পর্যন্ত) এবং তাদের খাত শোষণের ক্ষমতাও অপরিসীম। গাছ কেবলমাত্র মূলের সাহায্যে জল এবং খনিজ লবণ সংগ্রহ করে থাকে মাটি থেকে, কিন্তু জীবাণু খান্ত শোষণের জন্তু (অভিস্রবণ প্রক্রিয়া দারা) তার দেহের সমস্ত অংশকেই ব্যবহার করে থাকে। অন্ত দৃষ্টিভঙ্গি থেকে বলা যায় জীবাণুর বংশবৃদ্ধির হারও অস্বাভাবিক দ্রুত। একটা সাধারণ ব্যা ফিরিয়া গড়ে প্রায় ২০ মিনিট সময়ের মধ্যেই দ্বিধাবিভক্ত হয়ে বংশ বিস্তার করে, অবশু পরিবেশ অমুকৃল হলে তবেই। স্ক্তরাং দেখা যাচ্চে এ তুটি অস্বাভাবিক ক্ষমভার দক্ষন জীবাণু মাটি থেকে খান্ত সংগ্রহের ক্ষেত্রে গাছের প্রবল প্রতিযোগী। এত গেল শেষোক্ত প্রশ্নের জবাব। এখন দেখা যাক প্রথম প্রশ্নের সমাধান কি ? এ প্রশ্নের জবাব পাওয়া যাবে জৈবগারের বিবর্ত নের ভিত্তিতে। জৈবসারের মূল উপাদান হল কার্ব ন। এই কার্বন কিন্তু গাছের প্রত্যক্ষ কাজে লাগে না। কারণ গাছ কার্বন সংগ্রহ করে বায়ু-মগুলীয় কার্বনভাইঅক্সাইড থেকে একথা আগেই বলা হয়েছে। আসলে জৈবদারের কার্বনজাত উপাদানগুলো ব্যবহৃত হয় প্রধানতঃ জীবাণুর শক্তি উৎপাদনে। এর ফলে কার্বনডাইঅক্সাইড মুক্ত হতে থাকে এবং তাতে কার্বনের পরিমাণ কমতে থাকে। জৈবপদার্থে যে নাইট্রোজেন থাকে তার ব্যবহার তুলনায় কম হওয়ায় প্রকৃতপক্ষে এই প্রক্রিয়ায় কার্বন নাইট্রোজেনের অমূপাতও ক্রমণঃ সম্ভূচিত হতে থাকে। এই অমূপাত একটা নির্দিষ্টমানে এসে পৌছালে কার্বন ও নাইট্রোজেনের অজৈবকরণ সমানতালে হতে থাকে। এই নাইট্রোজেন গ্রহণীয় (available) পর্বায়ে আসতে থাকে যা অজৈব লবণের মত গাছ সহজেই গ্রহণ করতে পারে। জৈবসারের এই বিবর্ত নকে বলা হয় অজৈব-

করণ প্রক্রিয়া (Nitrogen mineralisation)। এই প্রক্রিয়ায় নাইট্রোজেন সমৃদ্ধ যৌগের শেষ পর্যায় আমাইনো এসিডে পরিণত হয়। এরপর তা রূপান্তরিত হয় আ্যামানিয়াম লবণে। এই অ্যামোনিয়াম লবণ পরবর্তী পর্যায় ক্রিমিক জারণের কলে নাইট্রাইট ও শেষে নাইট্রেট লবণে পরিণত হয়। বলা বাহুল্য মাটিতে এইসব জীবরাগায়নিক বিক্রিয়ায় মূল হোতা বিভিন্ন শ্রেণীর মূত্তিকা জীবাণু। সবুজ সার আলোচনা প্রসঙ্গে আমরা এই প্রক্রিয়া সম্বদ্ধে বিস্তারিত আলোচনা করব। কেবলমাত্র সারের দিক থেকে চিস্তা করলে সাধারণ জৈবপদার্থ থেকে তেমন কিছু উল্লেখযোগ্য পরিমাণে ফসফরাস বা পটাসিয়াম পাওয়া যায় না, যা গাছের প্রয়োজন মিটাতে পারে। মাটিতে নাইট্রোজেন জাত পদার্থের বিবর্তন প্রসঙ্গে নাইট্রোজেন চক্র নিয়ে আমরা পরে আলোচনা করব।

মাটিতে জৈবসার প্রারোগের উপযোগিতা কি ? এ প্রসঙ্গে আলোচনা করতে হলে জানা দরকার মাটির নিজস্ব জৈব পদার্থ বা হিউমাসের (Humus) কথা। ছিউমাস হচ্ছে মাটির রুষ্ণ বা গাঢ় বাদামী বর্ণের বিবর্তিত জৈব পদার্থ বা মাটিতে জাগত উদ্ভিদ বা প্রাণীজ দেহাবশেষ থেকে জীবারর ক্রিয়া বা অন্ত উপায়ে জাত (Humified)। জল কার্বনডাইঅরাইড, অ্যানোনিয়া এবং খনিজ লবণ অপসারিত হবার পর যে বিশেষ আফুতিবিহীন জটিল জৈবপনার্থ মাটিতে পড়ে থাকে তাই হল হিউমাস। এই জৈবপদার্থ উষ্ণ ক্ষারে জ্রবীভূত হয় এবং এতে জীবিত বা মৃত জীবারুর সন্ধান পাওয়া যায়। এছাড়া সবচেয়ে গুরুত্বপূর্ণ তথা হল এই ঘন বাদামী বা কৃষ্ণবর্ণের পদার্থের কার্বন নাইট্রোজেনের অনুপাত (প্রায় ১০: ১) নির্দিষ্ট হয়ে থাকে। জৈবসার প্রয়োগের ফলে জমিতে হিউমাসের পরিমাণ বৃদ্ধি পায়। তার দর্শন মাটির সহিজ্বতা, জলধারণ ক্ষমতা এবং আয়ন (ion) বিনিময় ক্ষমতা বৃদ্ধি পায়। এছাড়া হিউমাসের পরিমাণ বৃদ্ধি পেলে মাটির উপকারী জীবার্রা টিকে থাকার কিছুটা রসদ পেয়ে যায়। এটা নিশ্চিত করে বল যায় যে, যে জামিতে বেশী উপকারী জীবার্রা টিকে থাকার কিছুটা রসদ পেয়ে যায়। এটা নিশ্চিত করে বল যায় যে, যে জামিতে বেশী উপকারী জীবার্ণ্ডা তিকে থাকার তিত্বটা জীবাণু থাকে ভার উর্বন্ধতা ভঙ্ক যেন্ন যায় যে, যে জামিতে বেশী উপকারী জীবাণু থাকে ভার উর্বন্ধতা ভঙ্ক যেন্ন যায় যে, যে জামিতে বেশী উপকারী জীবাণু থাকে ভার উর্বন্ধতা ভঙ্ক যেন্ন।

জৈবসারের গুরুত্ব আলোচনা করতে গেলে প্রথমেই সার্থক মৃল্যায়ন করতে হবে সেইসব জীবাণুর, যারা তাদের ক্রিয়া অব্যাহত রেখেছে অনাদিকাল থেকে। প্রকৃতির এই সীমিত রসদ সম্বল করে আজও যে প্রাণী এবং উদ্ভিদকূল সগৌরবে বেঁচে আছে এবং থাকবেও তার প্রতিশ্রুতি এসেছে জীবাণুর কাছ থেকে। প্রকৃতিতে প্রতিটি মৌলিক পদার্থই আবত নচক্রে কোন না কোন বিশেষ প্রাজাতির জীবাণুর সঙ্গে একসূত্রে বাঁধা। জৈবসার বিবতিত হয়ে অজৈব সারেই পরিণত হচ্ছে। তাই জৈব সারের সঙ্গে অজৈব সারের ঘন্দের প্রশ্নই উঠে না। আসলে তফাৎটা হচ্ছে পরিমাণ ও প্রয়োগ কৌশলের। তাই বলা চলে জৈবসার রাসায়নিক সারের পরিপূর্ক।

উপর্পরি জমিতে কয়েক বৎসর জৈবসার ব্যবহার না করে কেবলমাত্র রাসায়নিক সার প্রয়োগ করে গেলে, জমি তার স্বাভাবিক জলধারণ ক্ষমতা এবং আয়ন বিনিময়ের নিয়ন্ত্রণ হারায়। হিউমাসের পরিমাণ ক্রমে কমতে থাকে যার ফলে উপকারী জীবাণুর সংখ্যা ক্রত নির্মূল হয়ে শেষে জমি অমুর্বর পাথুরে জমিতে পরিণত হয়। তাই এ-সব অবস্থার মোকাবিলার জন্য প্রতি বৎসরই পরিমিত পরিমাণে জৈবসার প্রয়োগ করে গেলে জমির ভৌত অবস্থার অবনতি ঘটে না। যার ফলে জমির ফলন ক্ষমতাও ব্রাস পায় না। পরবর্তী অধ্যামগুলোতে আমরা অভাত্য গুরুত্বপূর্ণ বিষয়গুলোর পর্যালোচনা করব।

রাসায়নিক সার ও জৈবসার আলোচনা প্রসঙ্গে আমরা জেনেছি জৈব-সার কাকে বলে এবং জৈবসার প্রয়োগের উপযোগিতা কি ? পরবর্তী প্রশ্ন হল জৈবসার তৈরীর উৎস কি এবং তার প্রয়োগ কৌশলই বা কি ? এই ছটি মূল প্রশের জবাব আমরা এক এক করে আলোচনা করব।

সাধারণতঃ থামারজাত আবর্জনা ও অন্ত বর্জ্য পদার্থস্হ গোবর সার (Farm yard manure), গ্রাম ও শহরের আবর্জনাদি থেকে উৎপন্ন সার (Compost), মান্তবের মলজাত সার (Night soil) শহরের পয়:প্রণালীর লোংরা জল (Sewage water) থেকে উৎপন্ন সার এবং সবুজ সারের নামই আমাদের প্রথমে মনে পড়ে। এছাড়া প্রকৃতিজ্ঞাত ভিছু পণ্য বা শিল্পে ব্যবহৃত বর্জ্যপণ্যাদিতেও উদ্ভিদের পোষক (Plant nutrient) অল্ল পরিমাণে সঞ্চিত থাকে বলে এদের সরাসরি জমিতে নিম্নমানের সন্তা সার হিসাবে প্রয়োগের রীতি প্রচলিত আছে। এই তালিকার আছে পাথুরে ফ্সফেট (Rock phosphate), অন্থিচূর্ণ (Bone meal), লৌহণিরজাত বর্জাপণ্য (Basic slag), চিনি শিল্পজাত বৰ্জ্যপণ্য (Press mud) ইত্যাদি। এছাড়াও জমিতে প্ৰয়োজনে চুন, জিপসাম ($CaSO_4$, $2H_2O$) বা গন্ধক প্রয়োগ করা হয়ে থাকে। চূন এবং জ্বিপসাম বা গন্ধক অবশ্র জমিতে যথাক্রমে অমুত্ব এবং কারত্ব মোচনেই ব্যবহার করা হয়ে থাকে। পূর্ব উল্লেখিত জৈবসারগুলির মধ্যে শবুজ্বসার শহন্দে আমরা পৃথক আলোচনা করব। চিনি শিল্পভাত বর্জাপণ্য ছাড়া পরবর্তী পর্য্যায়ে উল্লিখিত সারগুলিকে জৈবসারের পর্যায়ে ফেলা যায় না, কারণ এদের মধ্যে জৈবকার্বন থাকে না বললেই চলে। এরা প্রধানতঃ অদ্রবণীয় ফসফরাসের উৎস এবং এদের উপর জীবাণু ঘটিত ক্রিয়াকে নির্ভর করে এদের সার হিসাবে প্রারোগ করা হয়। জৈবসারই হোক বা প্রাক্ততিক কিম্বা ক্লুত্রিম উৎস জাত পরিত্যক্ত দ্রব্যাদিই সার হিসাবে ব্যবহৃত হোক সকলেরই নার হিসাবে সাফল্য মাটিতে জীবাণুর ক্রিয়ার উপর নির্ভরশীল। তাই এই সারকে স্মষ্ঠ ভাবে প্রয়োগ করতে গেলে যে কলা কৌশল প্রয়োগ করা হয়, তাতে জীবাণু বিজ্ঞান সম্বন্ধে যথেষ্ঠ জ্ঞানের প্রয়োজন হয়। অগ্রথায় সামাগ্

ভূলে জৈবসারই রোগের উৎসে পরিণত হতে পারে। এইসব সার রাসায়নিক সারের তুলনায় তত শক্তিশালী নয় বলে আমরা এদের উপসার (Manure) হিসাবে চিহ্নিত করব। তবে এটা অবগুই অরণে রাখতে হবে এইসব উপসারের ব্যবহার অপরিহার্য্য। উপর্যুপরি কয়েক বৎসর জমিতে কেবলমাত্র রাসায়নিক সার প্রয়োগের ফলে জমি দীর্ঘকালের জন্ম তার উর্বরতা শক্তি হারিয়ে ফেলতে পারে। তাই এইসব উপসার ব্যবহারের উপযোগিতাকে আমরা কোন মতেই ক্লুল্ল করব না।

প্রথমে দেখা যাক জমির কি কি গুল থাকলে তাকে আমরা উর্বর জমি বলব ? দোঁআশ মাটিতে সাধারণ ফদলের ফলন ভাল হয় একথা সবাই জানেন যদিও দোঁআশ মাটি সবরকম চাষের পক্ষে মোটেই উপযোগী নয়। অর্থাৎ ফদল বিশেষে মাটির গঠন (structure) এবং বুননের (texture) তারতম্যের উপর ফলন নির্ভর করে। ঠাস বুননের মাটি অর্থাৎ কাদামাটির জলধারণ ক্ষমতা থ্ব বেশী, মাঝারি বুননের মাটি অর্থাৎ দোঁআশ মাটিতে জলধারণ ক্ষমতা হল মাঝামারি এবং স্লথ বুননের মাটি অর্থাৎ বেলেমাটির জলধারণ ক্ষমতা ন্যুনতম।

মাটির বুননের উপর কি কি নির্ভর করে ? মাটির প্রধান তিনটি অজৈব উপাদান হল কাদা (clay), পলি (silt) এবং বালি (sand)। এছাড়া মাটিতে থাকে জৈব পদার্থ (humus), প্রতিস্থাপনযোগ্য অজৈব লবণ, মাটির জল (soil water), মাটির বাভাস (soil air) এবং জীবাণু। কাদার উপর শাটির দৃঢ়তা (rigidity), আয়ন বিনিময় ক্ষমন্তা, হিউমাসের স্থিতি এবং জল-ধারণ ক্ষমতা নির্ভর করে। কোন জ্মিতে তাই বালির ভাগ বেশী থাকলে সে জমিতে জল মাটির স্তর ভেদ করে গাছের শিকড়ের সীমা ছাড়িয়ে চলে যার। ফলে সেইসব জমিতে সেচ দেওয়া একটা প্রধান সমস্তা হয়ে দাঁড়ায়। ছিতীয় সম্ভা হল, মাটির আয়ন বিনিময় ক্ষমতাও কাদার উপর নির্ভর করে। কাদা অণুর কেলাসের মধ্যে দ্রবণীয় ধাতব আয়নগুলো চুকে থাকে এবং তা প্রয়োজনে বেরিয়ে এসে গাছকে পুষ্টি জোগায়। কাদা, যাটির জৈব পদার্থ ছিউমাসের সঙ্গে জোড়-বন্ধ (complex) হয়ে থাকে যার ফলে জমির সচ্ছিদ্রতা বজায় থাকে। মাটিতে ছিদ্র না থাকলে তাতে জল এবং বাতাস আবন্ধ হয়ে থাকতে পারে না, ফলে গাছের শিকড়কে খদনের জন্ম অক্সিজেনের অভাব ভোগ করতে হয়। মাটিতে জৈব পদার্থ কম থাকলে আবার সে জমি অমুর্বর হিসাবে চিহ্নিত হয় কারণ সেখানে মাটির উপকারী জীবাণু এবং কেঁচো ইত্যাদি গাছের বন্ধুরা সংখ্যালঘু হয়ে পড়ে। তাই জমিতে হিউমাসের মাত্রা বৃদ্ধি করা বা অন্ততঃ একটা নির্দিষ্ট মাত্রা ছির রাখা অবশুই প্রয়োজনীয়। হিউমাসের অভাবে (কেবলমাত্র রাসায়নিক সার প্রয়োগের ফলে) স্বল্পলের মধ্যেই মাটির আয়ন বিনিমর ক্ষমতা, জলধারণ ক্ষমতা, গচ্ছিদ্রতা ইত্যাদি কমে যাওয়ার দক্ষন জমি পাথরের মত শক্ত হরে পড়তে থাকে এবং তা চাষবাসের অযোগ্য হরে পড়তে থাকে। তাই সার্বিক বিশ্লেষণের পর সিদ্ধান্তে আসা যায় যে মাটির উর্বরতা শুধুমাত্র সেই জমিতে তাৎক্ষনিক উদ্ভিদের প্রয়োজনীয় পোষক মৌলাদির (nutrients) উপর নির্ভর করে না, সেই সঙ্গে জমির সচ্ছিদ্রতা, জলধারণ ক্ষমতা, কাদাপলি এবং বালির একটা সমতা, হিউমাসের পরিমাণ এবং সবশেষে সেই মাটিতে মোট জীবানুর গ্রহাণ এবং উপকারী জীবানুর প্রচুর সংখ্যায় উপস্থিতির উপর নির্ভর করে। কোন মাটিতে কাদার ভাগ বেশী হলে জল জমে থাকে যা বিশেষ কোন উদ্ভিদের পক্ষে উপযোগী হলেও সাধারণ উদ্ভিদের শিকড় পচিয়ে দেয়। কোনমাটির জীবানু বিষয়ক বিশ্লেষতের (microbiological study) সময় সেই জিমিতে উপকারী জীবানুর অবস্থিতি এবং তাদের জিভির উপর বিশ্বেষ শুকুই জিমিতে উপকারী জীবানুর অবস্থিতি এবং তাদের শিক্তির উপর বিশেষ শুকুই জিমিতে উপকারী জীবানুর অবস্থিতি এবং তাদের শিক্তির উপর বিশেষ শুকুই জিমিতে উপকারী জীবানুর অবস্থিতি এবং তাদের শিক্তির উপর বিশেষ শুকুই জিমিতে উপকারী জীবানুর অবস্থিতি এবং তাদের শিক্তির উপর বিশেষ শুকুই জিমিতে উপকারী জীবানুর অবস্থিতি এবং তাদের শ্বিতির

জমিতে জৈবসার প্রয়োগের প্রধান ও ম্থা উদ্দেশ্য হল জমির হিউমাসের পরিমাণ স্থির রাখা বা বৃদ্ধি করা। জমিতে হিউমাসের মাত্রা স্থির থাকলে জীবাণুর ক্রিয়াও অব্যাহত থাকে। মাটিতে অবন্ধিত মোলগুলির জীবাণু ঘটিত বিবর্ত নের পরিবেশবজ্ঞায় রাখা সার প্রয়োগের চেয়ে অনেক বেশী শুরুত্বপূর্ণ। স্পৃত্তির পর অনাদিকাল ধরেই কোন সার প্রয়োগের প্রচলন ছিল না, তবু উদ্ভিদকুল প্রাকৃতিক বিবর্ত ন চক্রকে সম্বল করে ঠিকই টিকেছিল। কিন্তু তারপর পরিবর্তিত পরিশ্বিতিতে জনসংখ্যার চাপ যখন সমগ্র পৃথিবীর ফুল্চন্তাতে পরিণত হয়েছে, তথনই প্রয়োজনের তাগিদে এসেছে উন্নত উচ্চ ফলনশীল জাতের চাম, এবং তাদেরই প্রয়োজনে এসেছে রাসায়নিক সারের ব্যবহার। কিন্তু আজ যখন শক্তি সম্কট চরমে উঠেছে, তথনই চিন্তা করতে হচ্ছে বিকল্প পথের। তাই প্রকৃতির উপজাত ও সহজাত পণ্যের মধ্যে চলেছে শক্তির উৎস সন্ধানের গবেষণা। জৈবসার তারই একটা প্রতিশ্রতি মাত্র।

এককভাবে বিভিন্ন জৈবসার সম্বন্ধে আলোচনার পূর্বে উপসার হিসাবে ব্যবহাত কতকগুলি পণ্যের মূল্যায়ন করা যাক।

ভালিকা—>

উপসার হিসাবে ব্যবহাত পণ্যের গড়পড়তা পোষক মূল্য (মুখাজি, দাজি এবং রায়চৌধুরি ১৯৬৯; In. Hand book of Agriculture)।

/ LESAS (52)	outlie l'est	ণতকরা হিসাবে		
উপসার হিসাবে	নাইট্যোজেন	ক্সকরাস	পটাগিয়াম	
ব্যবহৃত প্রাদি	(N)	P_2O_5	K ₂ O	
য়ল -	100 可用有利	Parales Indian	osognios)	
গরু ১৯১৯ ছে	00-08	0.2 - 0.5	0.5 - 0.0	
বোড়া	08-06	0.0 - 0.8	0.0 - 0.8	
ভেঞা	0.8 - 0.9	0.8 - 0.9	00-2.0	
মান্ন	> 0 >.6	0 4 - 25	0.2 - 0.6	
মূত্র	7 J. 17 4 . 4	व अवस्था भक्ता है।	13 9對東部 12	
গরু	09-25	নগন্ত	0.0 - 2.0	
হোড়া	25.5 - 26	নগন্ত	2.0 - 2.6	
ভেড়া	0.9 - 2.0	0.5 0 5	0.5 - 0.0	
যাত্ৰয	2.6 - 2 4	নগভ	2.p — 5.0	
উপসার			Al Inffe 3 na	
গ্রাম্য বন্ধ্যপদার্থ	0.8 - 2.0	0.8 — 0.A	0.4 - 2.5	
শহরের বর্জ্যপদার্থ	0.9 - 5.0	03-00	20-5.0	
খামারজাত	0.8 - 0.6	60-00	00- 29	
পোলট্ডিজাত	20-24	2.8 - 2.6	08-09	
পয়ঃ প্রণালীজাত	5.0 - 08	2.0 - 9.0	0.5 - 0.8	
ভড়িদ অবদেশ			04 17.87%	
ক্ষুলা ভন্ম	0.40	0.80	0.60	
কাঠের ভন্ম	0.6 - 2.9	2.6 - 8.5	50- >5	
ধানগাছ	০ ৩৬	• ob	0.95	
গম গাছ	0.60	0 50	2.30	
কলাগাছ	0.63	0.25	2.00	
তামাক গাছ	2.25	e l 8	0.90	
আৰ গাছ	0.06	0.20	0 60	

খামরজাত গোবর সার (Farm Yard Manure) ঃ গৃহপালিত পশুর মল মুত্রাদি শুকিয়ে জমিতে প্রয়োগ করার রীতি বহুল পরিচিত। উত্তম শ্রেণীর খামারজাত উপসার কেবলমাত্র জমির হিউমাসই বৃদ্ধি করে না। এতে যে যথেষ্ট পরিমাণে (in significant quantity) নাইটোজেন, ফসফরাস ও পটাসিয়াম থাকে তা আমরা তালিকায় দেখেছি। কিন্তু এটা অবশৃই মনে রাখতে হবে যে এই সার থেকে ভাল ফল পেতে গেলে তা ভালোভাবে মথিত (decomposed) হওয়ার প্রয়োজন। এর উদ্দেশ্য হল এইসব কার্বনজাত পণ্য অর্থাৎ জৈবদার ব্যবহারের পূর্বে তাদের কার্বন নাইট্রোজেনের অনুপাত কমিয়ে আনা হয়। এই প্রক্রিয়াকে মথিতকরণ আখ্যা দেওয়া হয় (decomposition)। শহর বা গ্রাম্য আবর্জনা এবং উদ্ভিদের দেহাবশেষের মধ্যে বিস্তীর্ণ কার্বন নাইটোজেন অনুপাত দেখতে পাওয়া যায়। (প্রায় ৭৫ -- ১০০ : ১) সাধারণতঃ মাটির কার্বন নাইট্রোজেন অমুপাত ১০ ঃ ১ ধরা হয় যদিও এর সামাগু তারতম্য দেখা যেতে পারে। প্রকৃতপক্ষে মাটির কার্বন, নাইট্রোজেনের অনুপাত হল মাটিতে অবস্থিত হিউমাসের কার্বন নাইট্রোজেন অমুপাত। মাটির জৈবপদার্থ বা হিউমাসের মূল উপাদান হল জটিল কালো বা বাদামী বর্ণের (কুইনোন জাতীয়) জৈবপদার্থ। এছাড়া হিউমাসকে আশ্রয় করে থাকে ব্যাক্তিরিয়া, ছত্তাক এবং এ ফ্রিনোমাইসিটিস জাতীয় নানাবিধ জীবাণু। তাই এদের দেহের কার্বন নাইট্রোজেনের অমুপাতের উপর হিউমাসের কার্বন নাইট্রোজেনের অমুপাত নির্ভর করে। সাধারণতঃ ব্যাক্টোরিয়া এবং এি ক্টনোমাইসিটসের কার্বন নাইট্রোজেনের অমুপাত প্রায় ৫—৭: ১ হয়ে থাকে। কিন্তু ছত্রাকের কার্বন নাইট্রোজেন অনুপতি সাধারণতঃ ১০—১৫ : ১ এর মধ্যে থাকতে দেখা যায়। পরীক্ষায় দেখা গেছে জীবাণুর বৃদ্ধির সময় জৈবপদার্থ থেকে একভাগ কার্বন তাদের দেহের কার্বন সংশ্লেবের জন্ম এবং তুইভাগ কার্বন তাদের শক্তি যোগানের জন্ম কার্বনডাই-অল্লাইড হিসাবে নির্গত হয়। এর ফলে জৈবপদার্থের বিস্থৃত কার্বন নাইট্রোজেন অমুপাত ক্রমেই সঙ্কীর্ণ হতে থাকে। প্রাথমিক পর্য্যায়ের জীবাণুর মৃত্যু ঘটলে ভারাই আবার পরবর্তী পর্য্যায়ের জীবাণ্দের খাজে পরিণত হয়। তখন বিতীয় পর্য্যায়ের জীবাণুরা শক্রিয় হয়ে উঠে। তাদের বংশ বিস্তারের ফলে কার্বন নাইট্রোজেন অমুপাত আরও কমে আসতে থাকে। এভাবে কার্বন নাইট্রোজেনের অমুপাত প্রায় ১০ ঃ ১ এর নিকটবর্তী হয়ে পড়লে তখন নির্মন্ত নাইট্রোজেন

জীবাণুর প্রয়োজন মিটিয়ে উদ্বৃত্ত হয়। এই সময় গাছ দ্রবণীয় পর্য্যায়ের অইজব নাইট্রোজেনের সরবরাহ মাটি থেকে প্রেক্ত থাকে। এই পরিস্থিতিকে নাইট্রোজেন অজৈবকরণ (mineralisation) আখ্যা দেওয়া হয়। ২নং তালিকায় কয়েকটি বিভিন্ন ক্রৈবসার এবং মাটির কার্বন নাইট্রোজেন অন্ধুপাত দেখান হল।

ভালিকা-২

জৈবপদার্থ সমৃদ্ধ এবং মৃত্তিকার কার্বন নাইট্রোজেন অমুপাত (গোবিন্দরাজন এবং গোপালরাও ১৯৭৮)

The state of the s				
জৈবসার হিসাবে	কাৰ্বন নাইট্ৰো-	মাটির উৎস	কার্বন নাইট্রোজেন	
ব্যবহৃত পদার্থ	জেন অমুপাত	এবং শ্রেণী	অনুপাত	
ধানের খড়	500:5	পলিমাটি		
আথের ছিবড়।	60:5	কাৰ্ণাল	9.60%	
গমের খড়	60:5	বারুইপুর	a ba: 5	
খামারজাত	ra an Figure	উচ্চক্যাল সিয়াম	a landa	
উপসার (FYM)	80:5	কাৰ্বনেট যুক্ত		
শহরের আবর্জনা		পলিমাটি	· which	
নার (Town	>0:>	পুসা	29. P : 2	
compost)		কুষ্ণমূত্তিক1	TOTAL CONTRACTOR	
a supply spring	ta Lylantenio	প্যাড়েগাঁও	>5. 6:2	
	d 7 0 1 1 100	হারিজ	9. 9:2	
		লালমাটি	e display	
		মহীশূর	6.48 ; >	
		কোমেম্বাটোর	9: > : >	
		পাহাড়ী মাটি		
		মোংপু	9 9:5	
		न्याचेत्राहेष	A MAP HAVE	
		কাপগাড়ি	P.5A: 2	
		পটিমবি	5. 4 : 5	
		ভরাইযাটি		
		ক্তপুর	56· 5: 5	

শাধারণতঃ যেসব উদ্ভিদের দেহাবশেষের মধ্যে কার্বন নাইট্রোজেন অনুপাত কম তাদের ক্ষেত্রেই অজৈবকরণ ক্রত ঘটে থাকে। তাই শিঘ কড়াই বা শুটি ভাতীয় (leguminous) উদ্ভিদের দেহাবশেষকে অতি উত্তম জৈৰসারের কাজ করতে দেখা যায়। বিন্তীর্ণ (wide) কার্বন নাইট্রোজেন অমুপাত্ত্বকু উদ্ভিদাবশেষ জমিতে সরাসরি প্রয়োগ করলে, কৃষি জমিতেই তার মথিতকরণ (decomposition) হতে থাকে। এইরূপ জীবাণ্র ক্রিয়া কৃষি জমিতে ঘটান বিজ্ঞানসমত নয় কারণ, প্রথমতঃ এর ফলে জমির দ্রবণীয় নাইট্রোজেন জীবাণুর ভোগে চলে যায়, কারণ এইসব জৈবপদার্থে নাইট্রোজেনের পরিমাণ কম থাকার জীবাণুরা ভালের প্রয়োজনীয় নাইট্রোজেন মাটি থেকে গ্রহণ করে, এবং দিতীয়তঃ এই পদ্ধতিতে ক্লবিজমিতে রোগজীবাণ্ প্রবেশের সম্ভাবনা থেকে যায়। তাই জৈব উপসার তৈরীর জন্য পৃথক ব্যবস্থা অবলম্বন রাই বৈজ্ঞানিক বিধিসম্মত। যে কারণেই ছোক আমাদের দেশে থামারজাত উপসারের ব্যবহার আজও বৈজ্ঞানিক বিধিসমত হয়ে উঠে নি। তার ফলে খামারজাত উপসার থেকে প্রচুর পরিমাণে নাইট্রোজেন অ্যামোনিয়া হিসাবে নষ্ট হয়ে যায়। এই পরিশ্বিতি মোকাবিলার জন্ম জমিতে জিপদাম প্রয়োগে স্থকল পাওয়া যায়। জমিতে আংশিক মথিত (partially decomposed) খামারজাত শার প্রয়োগের ক্ষেত্রে বীজ বপন করার (sowing) তিন থেকে চার সপ্তাহ পূর্বেই তা প্রয়োগ করতে হবে এবং জমিতে জল সরবরাহের ব্যবস্থা করতে হবে। ভাহলে সময়ে ত্র্ফল পাওয়া যাবে। উত্তমরূপে মথিত খামারজাত উপসার যদি বপন করার বহুপূর্বেই জমিতে প্রয়োগ করা হয় তবে তা জমিতে শুকিয়ে যাবে কিছা অতিক্রত মথিত হয়ে নই হবে, গাছের উপকারে আসবে না। তাই এই উপসারকে ৰীজ্বপন বা রোম্বা করার (transplanting) ঠিক পূর্বে প্রয়োগ করাই বিধিসম্মত। খামারজাত উপসার বা গোবরসারকে জমিতে সাধারণতঃ ছোট ছোট স্তৃপ করে সাজিয়ে রাখা হয় এবং চাষের পূর্বে মাটিতে মিশিয়ে লাঙল দেওরা হয়। এই জৈবসার যে কোন ফললের পক্ষেই উপযোগী। এই সার প্ররোগের পর জীবাণুর ক্রিয়া অব্যাহত রাথার জন্ম জল সরবরাহ রাথতে হয়। বর্ধাকালে এই উপসার বিশেষ উপযোগী হয়ে থাকে। ফসলভেদে এই সার প্রস্নোগের মাত্রার ভারতম্য হয়। সাধারণতঃ প্রতি হেক্টর শুদ্ধ ভ্রমিতে ১২ গরুর গাড়ী বোঝাই এবং সেচযুক্ত ভমিতে ২৫—৫০ গব্ধুর গাড়ী বোঝাই (প্রতি গাড়ী

উপসার প্রায় ০·৭৫ ঘন মিটার বা প্রায় ৫০০ কিগ্রার সমত্ল) উপসার প্ররোগ করতে হয়। অবশ্য শক্তি বা ফলচাবের ক্ষেত্রে আরো বেশী মাত্রায় জৈবসারের প্রয়োজন হয়। এই সার জমির ভৌত অবস্থার উন্নতি ঘটায় এবং গাছকে নাইট্রোজেন সরবরাহ করে। এই উপসারে নাইট্রোজেনের চাহিদা কিছুটা মিটলেও ফসফরাস ও পটাসের অভাব পূর্ণ হয় না।

ক্মপোস্ট উপসার (Compost manure) ঃ গ্রাম ও শহরের বর্জ্য পদার্থ, থামারজাত উপাদান, বাড়ীর তরিতরকারির থোসা, কচুরিপানা, লতাপাতা, মাছের জাঁশ, হাঁস মুরগীর মলমূত্র, গৃহপালিত গরাদি পশুর মলমূত্রাদি বৈজ্ঞানিক বিধিসন্মত উপায়ে পচন ঘটিয়ে (মথিত করে) এই উপসার তৈরী করা হয়। এইসধ আবর্জনাদি পচন না ঘটয়ে প্রয়োগ করলে কি ক্ষতি হতে পারে তা আমরা পূর্বেই জেনেছি। উত্তমরূপে মথিত করণ বা পচানোর (decomposition) পর ঐসব আবর্জনার কার্বন নাইট্রোজেন অমুপাত ৪০-৫০: ১ থেকে ১০-১৫: ১-এ নেমে আসে। তথন ঐ আবর্জনা ফৈবসারে পরিণত হয়। এই জৈব উপসারে ০ ৮ থেকে ১ শতাংশ নাইট্রোজেন থাকে। এই উপসার অন্যান্য মৌল উপাদানের দিক থেকেও প্রায় খামারজাত গোবর সারের সমতৃল। আবর্জনাসার তৈরীর জন্য যে পচনক্রিয়া ঘটানো হয় তাতে তৃইপ্রকার পদ্ধতি অবলম্বন করা হয়। (১) সবাত পদ্ধতি (aerobic), (২) অবাত পদ্ধতি (anaerobic)।

সবাত পদ্ধতিতে সুবিধান্তনক দৈর্য্য ও প্রস্থবিশিষ্ট ৩০-৫০ সেটিমিটার গভীর গতে দৈনন্দিন থামারজাত আবর্জনা, গৃহের জঞ্জাল, কিছু গোময়, গৃহপালিত পশুমূত্র ভিজা মাটি এবং কয়েক মৃষ্টি কাঠের ছাই নিক্ষেপ করা হয়। এই প্রক্রিয়া বর্ষার ঠিক পূর্বে শুরু করা হয়। বর্ষা শুরু হয়ে গেলে এ আবর্জনাদি ভিজা অবস্থায় থাকে এবং পচনের ক্রিয়া ক্রত হয়। ঐ স্তপের উচ্চতা মাটির তল থেকে প্রায় এক মিটার উঁচু হলেও কোন ক্ষতি হয় না। তিন চার সপ্তাহ পর পর ঐ স্তপের মধ্যে আলোড়ন অষ্টি করা হয় যাতে পচন সার্বিক এবং সমভাবে হতে পারে। ফলে পচনশীল আবর্জনাদি অক্সিজেনের সংস্পর্ণে আসতে পারে যার ফলে সবাত শ্বসজীবী জীবাণুদের ক্রিয়া উল্লেখযোগ্য পরিমাণে বৃদ্ধি পায়। বৃষ্টির উপর নির্ভর করে শেববার আলোড়ন করার পর (শুরু করার প্রায় তিন থেকে চার মাস পর) কালো বা বাদামী বর্ণের জৈব উপসার ব্যবহার উপযোগী হয়ে উঠে। ওজন

হিসাবে এই উপসার তৈরী করতে গেল নিম্নলিখিত অমুপাতে শেষোক্ত উপাদান-গুলি প্রয়োজন হয়ে থাকে।

খামারজাত ও অন্তান্ত আবর্জনাদি	800
পশুমূত্ৰ ভিজা মাটি	68
শত ত্যাগ করা পশুমল (গোময়াদি)	60
কাঠের ছাই	8

পশুমল মূত্রাদি না পাওয়া গেলে গাছের ঝরাপাতা, গৃহের আবর্জনাদি, ধান বা গমের খড়, তুষ ইত্যাদি ব্যবহার করা যেতে পারে।

অবাত পদ্ধতিতে অপেক্ষাকৃত ছোট কিন্তু গভীর প্রকোঠে দৈনন্দিন সংগৃহীত আবর্জনাদির দক্ষে বেশ কিছুটা গোবর এবং কাঠের ছাই যোগ করা হয়। এক মিটার গভীর গর্ত হলে প্রায় ৫০ সে.মি. পরিমাণ ভতি হবার পর ঐ আবর্জনাদির উপর গোময় এবং মাটির প্রলেপ দেওয়া হয়। তারপর বেশ কিছুটা মাটি দিয়ে ঐ গত বোজানো হয়। মাটির নীচে ঐ আবর্জনার কার্বনজাত অংশের উপর জীবাণুর অবাত ক্রিয়া চলতে থাকে। ঐ আবর্জনার পিণ্ডে জল সরবরাহ কয়ে জীবাণুর ক্রিয়াপোযোগী করে রাখতে হয়। উপরে মাটি চাপা থাকার দক্ষন হুর্গন্ধ বা মাছির উপত্রব হয় না। এই অবহায় প্রচুর পরিমাণে কার্বন-ডাই-অক্সাইড উৎপন্ন হবার দক্ষন নাইটোজেন অ্যামোনিয়া হয়ে নট হতে পারে না। নিজের বাগানে জৈবসার প্রয়োগের উপযোগী সার প্রস্তুতির জন্য শহরাঞ্চলে এই পদ্ধতি বিশেষ স্থবিধাজনক। সাধারণতঃ চার থেকে পাঁচ মাসের মধ্যেই এই উপসার ব্যবহারোপোযোগী হয়ে উঠে।

শহরের আবর্জনাদি থেকে উৎপন্ন জৈব উপসার (Town Compost): শহরের আবর্জনাদি নিয়মিত পরিকার করে ফেলার পর তা সঞ্চয় করার জায়গা পাওয়া মিউনিসিপ্যালিটি কর্ত্ পক্ষের কাছে একটা মস্ত বড় সমস্যা। আমাদের দেশে জনবছল শহরের সব জায়গায় আজও আধুনিকীকরণ হয় নি । পয়ঃপ্রণালী ব্যবস্থা অনেক স্থানেই মান্ধাতা আমলের রীতি অমুযায়ী চলে আসছে। এরই মধ্যে একটা কার্যকর নিদর্শন হিসাবে মাহুবের মল নিক্ষেপের (Night soil) জন্য মিউনিসিপ্যালিটি শহরের উপকণ্ঠে নির্জন একটা স্থানকে বেছে নেন এবং সেখানে গভীর প্রকোষ্ঠের স্থান্ট করে দৈনন্দিনের সঞ্চিত মল জ্বমা করেন। জ্বমে ঐ প্রকোষ্ঠগুলি ভরাট হয়ে এলে তা মাটি চাপা দিয়ে দেওয়া হয়। তর্থন

অবাত পদ্ধতিতে ঐ জৈব পদার্থের উপর জীবাগুর ক্রিয়া করে ক্রমে তাকে এক বিশেষ উপকারী জৈব উপসারে পরিণত করে। এই বিশেষ স্থানটিকে অনেকে তাগাড় বলে অভিহিত করেন। মল ছাড়া মৃত জীবজন্তর দেহাবশেষও এইস্থানে নিক্ষেপ করা হয়। উদ্ভিদ পৃষ্টির সব উপাদানগুলিই এই উপসারে যথেষ্ট পরিমাণে থাকে। এছাড়া দৈনন্দিন অব্যবহার্য্য তরিতরকারি, ফলমুলের খোসা, মাছের আঁশ, ছেঁড়া জামা কাপড়, চুল্লীর ছাই ইত্যাদি নানা আবর্জনা একই পদ্ধতিতে পচানো হয়। প্রায় তিন থেকে চার মাস উপযুক্ত পরিস্থিতিতে পচনের ফলে ব্যবহারোপো-যোগী উপসার পাওয়া যায়। বর্তমানে এইসব আবর্জনাজাত সারকে ক্রষিজীবী এবং সাধারণ মাল্ব সাদ্বে গ্রহণ করেছে। এর ফলে প্রচুর শক্তির অপচয় বয় হয়েছে এবং নাইট্রোজেন, পটাস, ফসফরাস ইত্যাদি উদ্ভিদের অত্যাবগুকীয় মৌল উপাদানগুলির বিবর্ত ন চক্রপথ ছোট হয়ে আসছে। ফলে একই মৌল উপাদান অল সময়ের ব্যবধানে পুনঃ পুনঃ আমাদের স্থার্থে ব্যবহৃত হচ্ছে।

পয়ঃপ্রণালী বা নদ'মাজাত আবজ'না থেকে উৎপন্ন উপসার (Sewage and sludge mannre): সাধারণতঃ গৃহের আবর্জনা, আনাদি ও শৌচ করার পর যে খৌত জল শহরের নদ'মা দিয়ে বয়ে যায় তার মধ্যে প্রায় ০০০১ শতাংশ কঠিন কার্বনজ্ঞাত ও অজৈব উপাদান থাকে। এই নোংরা জল নদ্মা দিয়ে বয়ে চলার সময় এতে নানা ধরনের জীবাণুর আবাস হয়ে থাকে। প্রধানতঃ অবাত খসজীবী জীবাণুর ক্রিয়ায় এর থেকে পচা ছুর্গন্ধ উৎপন্ন হয়। তাই উপযুক্ত নিষেকের বাবস্থা না থাকলে তা মামুষের স্বাস্থ্যহানি ঘটায়। এইসব আবর্জনার মধ্যে প্রচুর পরিমাণে উদ্ভিদের প্রয়োজনীয় খনিজ লবণ থেকে যায়। তাই উপযুক্ত উপায়ে এই জলের জীবাণুঘটিত ক্রিয়া ঘটিয়ে তা থেকে উত্তম শ্রেণীর জৈব উপসার তৈরী করা যেতে পারে। পূর্বে এই জল নিকাশের জন্য স্বাস্থ্যসন্মত বিধি যেনে চলা হত না, কিন্তু বর্ত মান আধুনিক পদ্ধতিতে ভৌত এবং জীববিজ্ঞানের প্রাথা অবলম্বন করা হয়। বর্ত মানে বৈজ্ঞানিক পদ্ধতিতে বিপদযুক্ত করার পর উন্মুক্ত প্রাপ্তরে এই জ্বলকে মাটিতে শোষণ এবং বাঙ্গীভবনের সাহায্যে উবে যেতে দেওয়া হয়। তারপর সেই শুরু আবর্জ নাকে সংগ্রন্থ করে উপদার হিসাবে ক্রবি জমিতে প্রয়োগ করা হয়। অবাত খদজীবী জীবাগুর ক্রিয়ায় তুর্গদ্ধজাত গ্যাদ উৎপন্ন হয় বলে বর্ত মানে নদ মার জল যেখানে সঞ্চয় করা হয়, তাতে সবুজ বা নীলসবুজ শেওলা জন্মাতে দেওয়া হয়। নালসবুজ শেওলা নাইটোজেন বন্ধন করে ঐ জলে

নাইট্রোজেনের পরিমাণ বাড়ায় এবং উভয় শেওলাই অক্সিজেন উৎপন্ন করে পরিবেশকে সবাত খসজীবী জীবাণ্ বৃদ্ধির উপযোগী করে তোলে। এই উপসারে প্রায় শতকরা ৩-৬ ভাগ নাইট্রোজেন, ২ ভাগ ফসফরাস ও একভাগ পটাস থাকে।

নীচে একটা বিজ্ঞানসম্মত আধুনিক পদ্ধতি দেখানো হল (চিত্র-১):

চিত্র ১ নদ'মাজাত আবর্জনা থেকে উপসার উৎপাদন পদ্ধতি (পেলকৎসার ও রীড়, ১১৭৪)

এই পদ্ধতিতে উৎপন্ন শক্তিয় কর্দম (Activated sludge) উত্তয়মানের জৈব উপসার হিসাবে ক্রিয়া করে থাকে।

এইসব জৈবসার ছাড়াও কিছু প্রাক্কতিক সম্পদকে সরাসরি জমিতে প্রয়োগ করে স্থাফল পাওয়া বায় তা আগেই বলা হয়েছে। এর মধ্যে পাথুরে ফসফেটকে জমিতে ফসফেট সারের বিকল্প হিসাবে ব্যবহারের প্রয়াস চালানো হচ্ছে। ফসফেট জীবাণু আলোচনা প্রসঙ্গে তা উল্লেখ করা হবে। এছাড়া বিশেব কবে লৌহ ধাড়ু শিল্লের ক্ষার্থমী ধাড়ুমল অয়ধর্মী মাটিতে ফসফরাস সরবরাহের ক্ষেত্রে বিশেব কার্যকর প্রমাণিত হচ্ছে। স্থপার ফসফেটের বিকল্প হিসাবে পাথুরে ফসফেট ও লৌহ ধাড়ুমল ছাড়াও অন্বিচূর্ণকে সরাসরি জমিতে প্রয়োগ করা হচ্ছে। এছাড়া বিভিন্ন শিল্পে উৎপান বর্জা পদার্থের মধ্যে চিনি শিল্পের অবশেষ (Press mud) বিশেষভাবে ফসফরাস ও নাইট্রোজেন সমৃদ্ধ। কারণ আথের রস থেকে চিনি তৈরীর সময় আথের রস থেকে প্রোটন জাতীয় উপাদান পৃথক করা হয়, সেজ্য কিছু চূণও যোগ করতে হয়। তাই আথের রসের গাদে নাইট্রোজেন, ফসফরাস ও চূণ যথেষ্ট পরিমাণে থেকে যায়। এই বজ্যা পদার্থের প্রয়োগ অয়জমিতে বিশেষ উপযোগী হয়ে থাকে। বর্জানে মৃত জীবজন্তর হাড়, শিং এবং পরিত্যক্ত চামড়ার গ্রঁড়ো থেকেও উত্তমমানের উপসার তৈরীর চেষ্টা চলেছে।

জমিতে রাসায়নিক বা জৈবসার প্রয়োরেণর পদ্ধতি ও সময় নিরূপণঃ উত্তমরূপে যথিত না হয়ে থাকলে জমিতে জৈবসার বীজরোয়ার যথেষ্ট পূর্বেই প্রয়োগ করতে হবে। যদি তা কোন কারণে না সন্তব হয়, তবে তা বীজ থেকে গাছ বেরিয়ে চারা থানিকটা বড় হওয়ার পর প্রয়োগ করতে হবে। অগ্রথায় শিশু চারাগাছের রোগ প্রতিরোধ ক্ষমতা কম হওয়ার জন্য চারাগাছের রোগাক্রান্ত হবার সন্তাবনা থেকে বাবে। ভালো ফল পাবার জন্য সার যত চুর্নীক্বত হবে ততই ভালো। মাটিতে জৈবসার ভালোভাবে কাজ করার জন্য যথেষ্ট পরিমাণে জল সরবরাহের প্রয়োজন হয় তাই বর্ষাকালেই জৈবসার প্রয়োগ করা ভাল। রাসায়নিক সারপ্রয়োগের ক্ষেত্রে (বিশেষ করে নাইট্রেট জাতীয় লবণ) লবণগুলির জলে অত্যন্ত দ্রবণীয়তার জন্য ক্ষেত্রে গাঁড়ানো ফগলের উপর তা বিশেষ বিশেষ পর্বে ছড়িয়ে প্রয়োগ করা হয়। অ্যামোনিয়া ঘটিত লবণ কাদার সঙ্গে যুক্ত হয়ে অপরিবত নীয় জ্যোড় গঠন করে এবং প্রায়ই জমিতে অয়জের পরিমাণ বৃদ্ধি করে। অপচয় রোধের জন্য ইউরিয়া সার ছোট ছোট পলিথিনের

প্যাকেটে করে গাছের গোড়ার কাছে প্রয়োগ করা হয়। এই পদ্ধতিতে সার প্রয়োগ জলমগ্ন ধান জমির পক্ষে বিশেষ উপযোগী। অপার ফসফেট মাটিতে পড়ার সজে সজে তা অতি ক্রত আবদ্ধ হরে পড়ে যার ফলে প্রায় অর্দ্ধেক সারই গাছের কোন কাজে লাগে না। তাই ফসফেট জাতীয় সার ফলল হিসাবে বিশেষ বিশেষ সময়ে প্রয়োজনমত অল্প অল্প করে প্রয়োগ করাই বিধিসল্পত। সাধারণতঃ যে সব ফসলে সেচ প্রয়োজন হয় সেইসব ফসলের জমিতে সার প্রয়োগের পর জল দেওয়ার ব্যবস্থা করতে হয়। ফলের গাছে সার প্রয়োগ করতে হলে তা মাটির নীচে গর্জ করে পুঁতে দিতে হবে। গাছের শিক্ত বিভারের সঙ্গে সার প্রয়োগের সীমানাও বৃদ্ধি করতে হয়। উন্নত দেশগুলিতে যেখানে অবিচ্ছিয় বিশাল এলাকা জুড়ে চাষ হয় সেখানে লাঙল দেওয়ার জন্ম ট্রান্টার এবং সার প্রয়োগের জন্ম হেলিকপ্টারের সাহায্য নেওয়া হয়ে থাকে।

জমিতে সার প্রয়োগের আগে মাটি পরীকা করা একান্ত প্রয়োজনীয়। অন্তথার শারের অপচয় হয় অথবা গাছের প্রয়োজন মেটানো সম্ভব হয় না। জমিতে সারের প্রব্রোজনীয়তা নির্ণয়ের জন্ত মাটির রাসায়নিক বিশ্লেষণ, জীবাণু ঘটিত পরীক্ষা, টবে বা সরাসরি জমিতে ফলন সম্পর্কিত পরীক্ষা করা যেতে পারে। সরাসরি ভমিতে পরীক্ষা চালানো স্বচেয়ে নির্ভরযোগ্য পদ্ধতি কিন্তু তা খরচ এবং সময়-সাপেক। জীবাণুঘটিত পরীক্ষাদি খুবই কুল্ল ফল দেয় বটে, কিন্তু এই পরীক্ষাগুলি মোটামুটি জটিল এবং রাসায়নিক পরীক্ষার মত ক্রত সম্পন্ন করা যায় না। তাই সাধারণতঃ তাৎক্ষণিক বিচারের প্রয়োজনে রাসায়নিক পদ্ধতির সাহায্যই নেওয়া হয়ে থাকে। হিউমাসের পরিমাণ কম থাকলে সেইসব জমিতে জৈবসার ব্যবহারের জন্ম অবশ্র পরীক্ষার প্রয়োজন হয় না। আমাদের দেশে উচ্চ তাপমাত্রা এবং জীবাণুর উচ্চ খননহারের জন্ম বেশীর ভাগ মাটিতেই হিউমানের পরিমাণ শতকরা > ভাগের নীচে থাকতে দেখা যায়। দীর্ঘকাল ভৈবসার ব্যবহারের কলে জমির হিউমানের পরিমাণ বাড়তে পারে। পক্ষান্তরে দীর্ঘকাল শুধুমাত্র রাসায়নিক সার ব্যবহারের ফলে হিউমাদের পরিমাণ কমে গিয়ে জমি দীর্ঘকালের জন্য চাথের অযোগ্য হয়ে পড়তে পারে।

SENT OF THE HOLDERS CO. THE SENT.

সবুজ সারের অর্থ কি ? নাম থেকেই স্পষ্ট বোঝা যায় এই সারের সঙ্গে ভাজা বা সবুজ উদ্ভিদ জড়িত। জমিতে জৈবদার প্রয়োগের এক বিশেষ পছা হল সবুজসার প্রয়োগ। সাধারণতঃ করেকটি বিশেষ কড়াই জাতীয় (leguminous plant) গাছকে সবুজ সার উৎপাদনে ব্যবহার করা হয়ে থাকে। প্রথমেই প্রশ্ন আসবে সবুজ সার প্রয়োগের উপযোগিতা কি ? উত্তর, অভাভ জৈব উপসারের মতই সবুজ সার প্রয়োগের উদেশু ও জমিতে হিউমাদের পরিমাণ বৃদ্ধি করা। শুরু তাই নয়, সবুজ সার প্রয়োগের ফলে অভ বড় সন্তাবনাময় প্রতিশ্রুতি, জমিতে নাইটোজেনের পরিমাণ বৃদ্ধি পাওয়া। এছাড়াও সবুজ সার প্রয়োগের ফলে মাটিতে নাইটোজেন অজৈবকরণ প্রক্রিয়া (Nitrogen mineralisation) ত্রোজিত হয়। নাইটোজেন অজৈবকরণ প্রক্রিয়ার ফলে নাইটোজেন সমৃদ্ধ জৈব পদার্থ থেকে জৈব নাইটোজেন জীবাণুর ক্রিয়ায় দ্রবণীয় অজৈব পর্যায়ে "আ্যামোনিয়াম" ও"নাইটোজেন জীবাণুর ক্রিয়ায় দ্রবণীয় অজৈব পর্যায়ের নাইটোজেনই ক্রেবলমাত্র উদ্ভিদ পোষক (Plant nutrient) হিসাবে বিবেচিত হয়।

এখন কথা হল, সমুজ সার হিসাবে কড়াই জাতীয় গাছ ব্যবহার করায় কি বিশেষ কোন ভ্রবিধা পাওয়া যায় ? যায় বৈ কি, কড়াই জাতীয় গাছ জীবাণুর সহযোগীতায় বায়ুয়ঙলীয় নাইটোজেন বন্ধন করতে পারে বলে সাধারণতঃ প্রোটিন সমূদ্ধ হয়ে থাকে। এই নাইটোজেন গাছ সঞ্চয় করে থাকে জীবাণুর সহযোগীতায় বায়ুয়ঙলীয় নাইটোজেন বন্ধন করে। তাই কড়াই জাতীয় গাছের অবশেষ মাটতে জীবাণুর ক্রিয়ায় প্রচুর পরিমাণে নাইটোজেন মুক্ত করবে। এর ফলে জমিতে অবৈল নাইটোজেন ঘটিত সার প্রায়োগের প্রয়োজন হবে না বা কুয় হবে।

এরপর মনে প্রশ্ন জাগবে সবুজ সার কিন্তাবে উৎপাদন করা হয়ে ভাবেক ?

অবশ্রুই ভালোভাবে পচানো থামারজাত সার বা আবর্জনাদি থেকে উৎপর সার জমিতে প্রয়োগের আগেই ভৈরী অবস্থায় থাকে কিন্তু সুবুজ, সার উৎপাদনের জন্ম কাঁচা বা সবুজ রসালো গাছের পাতা, ডাঁটা শিক্ত স্বটাই সরাসরি জমিতে মিশিয়ে দেওয়া হয়। লাঙল দিয়ে ভালোভাবে মিশানোর পর যাটকে সেচ দিয়ে ভিজ্ঞিরে রাখার ব্যবস্থা করতে হবে। জমিতে ক্রত পচনের ফলে প্রায় মাসথানেক পরে এর স্থফল পাওয়া যেতে থাকবে। সর্ক্র সার, খামারজাত সারের চেয়ে তুলনামূলক বিচারে কিছুটা নিচুমানের হলেও এর যথেষ্ঠ প্রবিধার দিকও আছে। সর্ক্র সার উৎপাদনের জন্ম আলাদা জ্ঞমির প্রয়োজন হয় না বা এদের পচনের জন্ম দীর্ঘকাল অপেক্রাও করতে হয় না। জ্ঞমিতে হিউমাস বৃদ্ধির ক্রমতা সর্ক্র সারে খামারজাত সার অপেক্রা কম হলেও, এই সার অধিক নাইট্রোজেন সমৃদ্ধ। সর্ক্র সার ফসফরাস ও পটাসের পরিমাণের দিক থেকে মধ্যম মানের। এবার ক্রেকটি বিশেষ বিশেষ সর্ক্র সার হিসাবে ব্যবহৃত উদ্ভিদের মূল্যায়ন তালিকার পর্যালোচনা করা যাক (তালিকা ১)।

ভালিকা—১ কভিপন্ন শন্যের গড়পরভা পোষকমূল্য [মুখার্জী, দাজি এবং রামচৌধুরী (১৯৬৯) In. Handbook of Agriculture 7

সবুজ সার ছিসাবে ব্যবহৃত উদ্ভিদের প্রচলিত এক	শতকরা মাত্রা নাইট্রোডেন ফসফরাস		পটাশ
বৈজ্ঞানিক নাম	De la	DENET TE	151-5 51
বর্বটি (Vigna Catjang)	0.42	0.26	o.6A
ধইঞ্চা (Sesbania aculeata)	0.65		2.7
হ্লস্টার বীন (Cyamopsis tetragonoloba)	0 08		2 3 4
অৰ্থান্ত ছোলা (Dolichos biflorus)	0.00	Text (Fig. 1)	
মথ বীন (Phaseolus aconitifolicus)	o.p.o	o mo mai	<u> </u>
শবুজ ছোলা (Phaseolus aureus)	0.45	o.2A	0.60
শন (Crotolaria juncea)	0 96	0.25	0.62
কালমুগ (Phaseojus mungo)	• F¢	0.24	0.60

নাটির জটিল নাইট্রোজেনজাত পদার্থ থেকে উদ্ভিদের গ্রহণোপোযোগী নাইট্রোজেন পাওয়া সম্পূর্ণভাবে জীবাণু ঘটিত প্রক্রিয়ার উপর নির্ভরশীল। তাই সবুজ সারের সাফল্য সম্বন্ধে আলোচনা করার আগে জীবাণু ঘটিত নাইট্রোজেন অজৈবকরণ প্রক্রিয়া সম্বন্ধে জানতে হবে।

মৃত উদ্ভিদ বা প্রাণীর দেহাবশেষ জমিতে এলে তার উপর জীবাণু ঘটিত ক্রিয়া বা পচন শুরু হয়ে যায়। কার্বন সমৃদ্ধ দেহাবশেষটুকুর মধ্যে সামাগু অংশই জীবাগুর দেহগঠনে লাগে। বাকি সবটুকুই বায়ুমণ্ডলে কার্বন-ডাই-অক্সাইড হয়ে মিশে যায়। কিন্তু কার্বন ছাড়া অহ্য অহুবায়ী মৌল উপাদানগুলি মাটিতে থেকে যায়। বিশেষ করে নাইট্রোজেনজাত উপাদানটুকু আবদ্ধ হয়ে পড়ে জীবাণুর দেহকোবে প্রোটিন হিসাবে। এই জীবাণ্গুলির মৃত্যুর পর সেই নাইট্রোজেন এসে হাজির হয় জমিতে। এই ক্রমিক বিবর্তান পর্যায়ে প্রোটনজাত নাইট্রোজেন, উৎসেচকের (enzyme) ক্রিয়ায় ক্ষুত্তর এককে পরিণত হয়। জৈব অবস্থার এদের অন্তিম পরিণতি হল অ্যামাইনো অ্যানিড। কিছু কিছু সরল অ্যামাইনো এাসিড অবশু গাছ সরাসরি গ্রহণ করতে পারে। কিন্তু এইসব অ্যামাইনো এ্যাসিড পরবর্তী পর্যায়ে অজৈব অ্যামোনিয়াম লবণে পরিণত হয়। এই পর্যায় থেকেই অজৈবকরণ পর্বের শুরু হয়। অ্যামোনিয়াম লবণ উদ্ভিদ এবং জীবাণু সকলের কাছেই স্মানভাবে গ্রহণযোগ্য। কিন্তু মাটিতে উৎপন্ন অ্যামোনিয়াম লবণ ক্রত কর্দম (clay) দারা আবদ্ধ (fixed) হয়ে পড়ে। উদ্ভিদ অবশ্য অ্যামোনিয়াম লবণের চেয়ে নাইট্রেট লবণকেই বেশী পছন্দ করে। আন্মোনিয়াম লবণের যেটুকু উদ্ভিদ বা সাধারণ জীবাণু গ্রহণ করার পর উদ্ভূত থাকে তা নাইট্রোসো-ফাইন্নিং (Nitrosofying) জীবাণু লাইট্রোসোমোনাসের ক্রিয়ায় নাইট্রাইট (NO2-) লবণে পরিণত হয়। নাইট্রাইট লবণ পরবর্তী পর্ণায়ে নাইট্রিফাইয়িং (Nitrifying) জীবাণু নাইট্রোব্যাকার এর ক্রিয়ায় নাইট্রেট লবণে পরিণত হয়। সাধারণতঃ অ্যামোনিয়াম থেকে নাইট্টে ল্বণে পরিণত হওয়ার পুরে। জীবাণু ঘটিত প্রক্রিয়াকে নাইটি ফিকেশন (Nitrification) বলে । নাইটেট লবণ আবার ডিনাইট্রিফাইঝিং জীবাণুর (Denitrifying) ক্রিয়ায় আনব (molecular) নাইট্রোজেনে পরিণত হয়। শেষোক্ত প্রক্রিয়া কৃষি জমিতে সঞ্চিত নাইট্রোজেনের পরিমাণ ব্লাস করে। এই প্রাক্কৃতিক উপায়ে নাইট্রোজেন অজৈবকরণ চক্রে সক্রিয় জীবাণুর ভূমিকা এবং পথচক্রটি পরপৃষ্ঠায় চিত্রে দেখানো হল (চিত্র ১)।

চিলঃ ১ মাটি ত নাইট্রাজেন অজৈবকরণ চল্ল (আলেকজাভার, ১৯৬১)

পরীক্ষার প্রমাণিত হয়েছে, বিস্তীর্ণ কার্বন নাইটোজেন অন্প্রপাত সম্পর্ম জৈব পদার্থ জমিতে প্রয়োগ করলে প্রাথমিক পর্যায়ে, গাছ নাইটোজেনের অভাবে ভোগে। এর প্রধান কারণ হল ঐ জৈব পদার্থে নাইটোজেনের পরিমাণ কম থাকায় জীবাণুরা, ঐ জৈব পদার্থ পচন ক্রিয়ার জন্ত অজেব দ্রবনীয় নাইটোজেন মাটি পেকে আহরণ করে। এই প্রক্রিয়াকে বলে নাইটোজেন ঘটিত পদার্থের স্থিতিকরণ (microbial nitrogen immobilisation)। জীবাণুরা মাটি থেকে খান্ত শোবণের ক্ষেত্রে উদ্ভিদের চেয়ে অনেক বেশী বলশালী। তার কারণ হল অভিস্রবণ প্রক্রিয়ায় (osmosis) থান্ত শোবণের জন্ত জীবাণু তার দেহের সমগ্র অংশকে ব্যবহার করতে পারে। তাই জমিতে না পচানো থড় ইত্যাদি প্রয়োগ করা উচিত নয়। কিন্তু সবুজ সারের প্রয়োগ রীতি হল ঠিক এর বিপরীত। কারণ সবুজ সারে কার্বন নাইটোজেন অন্থপাত বিস্তীর্ণ নয় বলে এর পচন ক্রম্বি জমিতেই

ঘটালো হয়ে খাকে। তাই ফদল রোয়া করার কিছু আগেই সবুজ সার প্রয়োগ করার রীতি প্রচলিত। সাধারণতঃ কড়াই জাতীয় উদ্ভিদ প্রতি একর জমিতে তিন থেকে দশ টন সবুজ সার উৎপন্ন করে যা হেক্টর প্রতি ২৪-৬০ কিলোগ্রাম নাইট্রোজেনের সমতৃল্য। সবুজ সারের আর এক মুখ্য ভূমিকা হল ভূমিক্ষয় এবং স্বুজ উদ্ভিদ হিসাবে নীল্যবুজ শৈবাল এবং দ্রবণীয় লবণের অবচয়রোধ। এজোলাকে (Azolla) বর্তমানে ধান জমিতে ব্যবহার করে প্রভৃত উপকার পাওয়া খাচ্ছে। সবুজ সার হিসাবে যে সকল গাছগুলি প্রধানতঃ ব্যবহার করা হয় ভা হল; খন (Sunnhemp), ধইঞ্চা (Dhaincha), ক্লাস্টার বীন (Cluster bean), সেনজি (Senji) বরবটি (Cowpea), কুলতি কলাই (Horse bean), বারদীয় (Berseem) ইত্যাদি। এদের মধ্যে এক-একটি গাছের কার্যকারিতা এক একটা ফসলের ক্ষেত্রে উল্লেখযোগ্য হয়ে থাকে। দেশভেদেও এইসব সরুজ সার ব্যবহারের রীতি ভিন্ন। যেমন কাশ্মীরে ধান জমিতে সবুজ সার হিসাবে মস্তরকে (lentil) ব্যবহার করা হয়। শন, অতি উত্তম সবুজ সার হিসাবে প্রায় সর্বত্রই ব্যবহার করা হয়। শুন, সাধারণতঃ আম, আলু, স্বর্ক্ম শক্তিতে এবং দক্ষিণ ভারতে ধান এবং সেচযুক্ত গমের জমিতে বিশেষ কার্যকর হয়ে থাকে। ধইঞা সাধারণতঃ বাংলা, বিহার, আগাম এবং মাদ্রাজে বেশী ব্যবস্ত হয়। এই সর্জ সারটি বিশেষতঃ ক্ষার মৃত্তিকা ও জলাজমিতে ভালো ফর্ল দেয়। ক্লাস্টার বীন, বারসীম এবং সেনজির ব্যবহার পাঞ্জাব, উত্তরপ্রদেশ, রাজস্থান, দিল্লী ও মধ্য-প্রদেশেই বেশী প্রচলিত। ফল চাবের জমিতে এবং সেচযুক্ত আথ বা তূলার জমিতে বারদীমের প্রয়োগ বেশী প্রচলিত। এই সবুজ্ঞসারের ব্যবহার উত্তরপ্রদেশ ও পাঞ্জাবে বেশী দেখা যায়। বরবটি এবং অশ্বথান্ত ছোলাকে সবুজ গার হিসাবে মহীশুরে ব্যবহারের প্রচলন বেশী।

প্রায়ই দেখা যায় বারসীম, সেনজি, লুসান ও শনকে আংশিক পশুখাদ্য এবং আংশিক সবুজ সার হিসাবে ব্যবহার করা হয়েছে। এছাড়া প্রায়শঃই এদের সবুজ পাতা ছু'তিন দফার কেটে নিয়ে পশু খাত্ত হিসাবে ব্যবহার করা হয় এবং বছরের শেবে মুলসহ সমগ্র গাছকে জমিতে মিশিয়ে লাঙল দেওয়া হয়। তখন তা সবুজ সাবের প্রয়োজন মেটায়। প্রয়োগ পদ্ধতি যাই হোক না কেন, সব শ্রেণীর জমির ভৌত অবস্থার উন্নতি হয় সবুজ সাবের প্রয়োগে।

সমূজ সারকে ভালোভাবে পচানোর জন্ম ব্যবহৃত গাছকে অবশুই রুগালো

(succulent) হতে হবে এবং এছাড়াও জমিতে যথেষ্ট জলের সরবরাহ রাথতে হবে। ধরা যাক, গাছের কুললোটার পর্যায়—এই সময় গাছের কার্বনজাত জংশ অধিক সরস থাকে কিন্তু সেইসময় গাছে কার্বন নাইট্রোজেনের অমুপাত ক্ম হয়ে থাকে। মাটিতে প্রয়োগের ফলে এই পর্যায়ের গাছের পচনের কাজ জেত হবে এবং তা থেকে জত উদ্ভিদ গ্রহণযোগ্য নাইট্রোজেন মুক্ত হবে। অনেক ক্ষেত্রে কচুরি পানা (Water hyacinth) সরাসরি জমিতে সবুজ্ব সার হিদাবে প্রয়োগ করা হয়। সাধারণ রীতি জমুধায়ী গাছের বয়স বুদ্ধির সলে সঙ্গে কার্বনজাত পদার্থের পরিমাণও বাড়তে থাকে এবং তার সলে কমতে থাকে নাইট্রোজেনজাত পদার্থের পরিমাণ। আমরা আগেই জেনেছি কার্বন নাইট্রোজেন অমুপাত বিস্তীর্ণ হলে তা থেকে উদ্ভিদগ্রহণযোগ্য নাইট্রোজেন মুক্ত হবার জন্ম সময় লাগে অনেক বেশী এবং প্রাথমিক পর্যায়ে অজৈব নাইট্রোজেন কৃদ্ধ (immobilisation) করে জীবাণুরা উদ্ভিদের বৃদ্ধির ক্ষেত্রে প্রতিবন্ধকতার স্থিষ্ট করে।

সবুজ সার প্রয়োগের বিভিন্ন রীতির মধ্যে প্রধান হল, ধইঞ্চাকে আথ বা তুলার সঙ্গে একই জমিতে আলাদা সারিতে চাব করা। পাঁচ থেকে ছয় সপ্তাহ পরে ধইঞ্চা গাছকে জমিতে মিশিয়ে দিলে ভালো ফল পাওয়া থেতে পারে। কোন কোন ক্রেত্র কেবলমাত্র সবুজ সার প্রয়োগ করে ৩০ থেকে ৫০ শতাংশ পর্যন্ত ফলন-বৃদ্ধির নজির-রয়েছে।

সবুজসারের সঙ্গে স্থপার ফসফেট প্রয়োগের ফলে আরো ভালো ফল পাওয়া যায়। স্থপার ফসফেটের অভাবে পাথুরে ফসফেটকে বিকল্প হিসাবে ব্যবহার করা যেতে পারে। উর্বর জমিতে উপকারী জীবাণুর ক্রিয়া সন্তোষজনক হয়ে থাকে। তাই উর্বর জমিতে উচ্চমানের পাথুরে ফসফেট প্রয়োগের ফলও (P_2O_5 -এর পরিমাণ ২০—২৫ শতাংশ) স্থান্য প্রসারী হতে পারে। কোন ক্রেক্রে সবুজ সার প্রয়োগের পর অলমাত্রায় থামারজাত বা আবর্জনা উপসার প্রয়োগেরও রীতি প্রচলিত আছে। সবুজ সারের উপবোগিতা প্রসঙ্গে বলতে গেলে জীবাণু সার প্রয়োগের কথা ভাবতে হবে। আজকাল ক্রমি বিজ্ঞানীরা জীবাণুসার সম্বন্ধে যথেষ্ঠ সচেতন হয়েছেন। জীবাণু সারের সার্থকতা কার্বনজাত উপসার প্রয়োগের উপর নির্ভরশীল। আমাদের দেশে অপেক্ষাক্রত দরিদ্র শ্রেণীর মান্তব বনের শুকনো পাতা, আগাছার ডালপালা এবং প্রায় শতকরা ৫০ ভাগ গোময়কেই জালানী হিসাবে ব্যবহার করেন। তাই এইসব আবর্জনাকে সার

হিসাবে স্মৃষ্ঠ, প্রয়োগের প্রকল্প আমাদের দেশে আজও গড়ে উঠে নি। এই অবস্থায় সবুজ সারকে খুবই ফলপ্রস্থ বলেই মনে হয়। বিশেষ করে জীবাণু সার প্রয়োগের ক্ষেত্রে জীবাণুর জীবনধারণ ও বংশবৃদ্ধির জন্ম প্রয়োজনীয় সামগ্রী সরবরাহের ক্ষেত্রে সবুজ সার এক অন্য ভূমিকা পালন করবে।

দেবনাথ ও হাজরার ১৯৭২ সালের একটা পরীক্ষার ফলাফল বিশ্লেষণ করে দেখা যায়, ধইঞ্চার নাইট্রোজেন সরবরাহের ক্ষমতা খামারজাত উপসার ও ধানের খড় পচানো সার থেকে বেশী, ফসফরাস সরবরাহের ক্ষমতা খামারজাত উপসার ও খড় পচানো সারের মাঝামাঝি এবং পটাস সরবরাহের ক্ষমতা খামারজাত উপসার অপেক্ষা বেশী কিন্তু খড় পচানো সার অপেক্ষা কম। সবচেয়ে বড় লক্ষণীয় ব্যাপার হল খামারজাত ও খড় পচানো সার প্রয়োগের ফলে জমির ক্ষারত বেড়েছে কিন্তু ধইঞ্চা ব্যবহারে জমির অন্তর্ম বা ক্ষারত্বর কোন পরিবর্তন হয়নি।

শবুজ শার চাষ করা হয় প্রধানত: ছুটি কারণে; প্রথমতঃ পশুখাত হিসাবে ব্যবহারের জন্ত, দ্বিতীয়তঃ জমির হিউমাস বৃদ্ধি এবং জমির ভৌত অবস্থা উন্নয়নের জন্ত । সবুজ সারের ফলন বাড়ানোর জন্ত কিছুটা ফসফেট জাতীয় সার প্রয়োগের ফলে ত্মফল দেখা যায় তা আগেই আলোচিত হয়েছে। একটা অম মৃতিকায় চূণ এবং ফসফেট শার প্রয়োগের ফলে "শনের" ফলনের প্রতিক্রিয়া কি হয়েছে তা নিরীক্ষা করা যাক। (তালিকা-২)

ভালিকা ২: খরিপ মরশুমে শনের সবুজ অংশের ফলন প্রভিক্রিয়া (সরকার, ১৯৭৩)

নাইটোজেনের মাত্রা

ক্যালসিয়ামের মাত্রা

২০৫ টন প্রতি হেক্টরে

নাইট্রোজেনের মাত্রা ২২'৫ কেজি প্রতি হেক্টরে ক্যালসিয়ামের মাত্রা ২'৫ টন প্রতি হেক্টরে

	প্রথম ব	ংশর		
নিয়ন্ত্রিত	660	৫৮२	250	605
স্থপার ফগফেট	३ ৮२२	२७७१	२२७२	৩৯১৭
অস্থিচূর্ণ	२०७१	२०७०	२२৯१	२३वर
ক্ষারীয় ধাত্মল	\$850	2000	3006	>829

	*তৃতীয় ব	ৎসর		
নিয়ন্ত্রিত	8696	७०२६	२७७६	6569
ভুপার ফদফেট	8>29	4009	9666	6892
অন্থিচূৰ্ণ	6000	७२ 8¢ .	२३२०	9000
ক্ষারীয় ধাতুমল	৫৮২০	७२०२	8>>0	ಅವಾರ

এই পরীক্ষার, প্রতিটি ফস্ফরাস ঘটিত সারের মাধ্যমে ফস্ফরাস সরবরাহের পরিমাণ ছিল হেক্টর প্রতি ৪৫ কেজি। এই পরীক্ষার ফল বিশ্লেষণ করলে দেখা যার এক্লেত্রে নাইট্রোজেন এবং চুন প্রয়োগ খুব ফলপ্রস্থ হয় নি, কিন্তু ফস্ফেট প্রয়োগ খুবই ফলপ্রস্থ হয়েছে। স্থপার ফস্ফেট সর্বাপেক্ষা ভাল ফল দিয়েছে, তুলনামূলকভাবে অন্থিচূর্ণ ভদপেক্ষা নিস্তাভ এবং ক্ষারীয় ধাতুমল সর্বাপেক্ষা কম কার্যকর হয়েছে। অন্ত একটা পরীক্ষায় দেখা গেছে চুন এবং নাইট্রোজেন সহযোগে স্থপার ফস্ফেট সর্বাধিক ফলপ্রস্থ হয়েছে। এই ধারা জমির পরিবেশ এবং জলবায়ুর প্রভাব নিরপেক্ষ। নীচে পরীক্ষালক্ষ ফল তালিকাপুক্ত করা হল। (ভালিকাত) এই পরীক্ষায় সার প্রয়োগের মাত্রা পূর্ববর্তী পরীক্ষার অন্থুরূপ ছিল।

ভালিকা ৩: শনের সবুজ অংশের ফলনমাত্রা (সরকার, ১৯৭৬) সবুজ অংশের ফলন (কেজি প্রতি হেক্টরে)

		ৰৎসর		
	প্রথম	দিতীয়	তৃতীয়	
নিয়ন্ত্রিত	660	२३११	৯৭৩	५२ १०
ट्रिल	६५२	७৮৯२	>842	>296
गरि द्धारञ्जन	520	2880	3686	>800
गरिद्धारकन 🕂 চূन	605	७ ८७२	२०४१	2000
ফ্রফরাস	2655	9266	७३१२	8960
कगकताम 4 ह्न	2669	७ ७७२	чане	6366
নাইট্রোজেন + ফসফরাস	२००२	७ ५ ५ ५ ५ ५	6666	6668
नार्रेट्रोट्बन + कनकतान + हून	9229	४१२१	9866	6933

[🌴] দ্বিতীয় বৎসর শনের উপর এই প্রীক্ষা চালানো হয়নি।

আমাদের এক পরীক্ষায়, ধইঞ্চা সবুজ সার হিসাবে প্ররোগ করে তদাপরি খামারজাত উপসার, শহরের আবর্জনাজাত উপসার, ধানের খড় পচানো সার, এবং জ্যোমোনিয়াম সালফেট সহযোগে পাথুরে ফসফেট, এদের পৃথক পৃথক তাবে প্রয়োগ করে নাইটোজেন বন্ধনকারী জীবাণু, ফসফেট দ্রবণকারী জীবাণু, সেলুলোজ খনিজিকরণ জীবাণু, নীলসবুজ শেওলা, মাটির জীবাণুর নাইটোজেন বন্ধন ক্ষমতা এবং ফসফরাস দ্রবণে আনয়নকারী জীবাণুর ক্ষমতা মূল্যায়ন করা হয়। এই পরীক্ষায় প্রাথমিক পর্যায়ে ধান ও পরবর্তী পর্যায়ে উপসারগুলির অবশিষ্ট শক্তি গমের উপর কেমন প্রভাব বিস্তার করেছে তা পর্যবেক্ষণ করা হয়। এই পরীক্ষায় ফলাফল বিশ্লেষণে জানা যায় মাটির নাইটোজেন বন্ধনকারী জীবাণু, নীলসবুজ শেওলা, ফসফেট জীবাণু, সেলুলোজ জীর্ণকারী জীবাণু এবং মাটির নাইটোজেন বন্ধন ক্ষমতা ও ফসফেট দ্রবণায়ন ক্ষমতা বৃদ্ধি পেয়েছে।

অমু মাটিতে চূন প্রয়োগের উপযোগীতা

BITC CARC .

0

সাধারণতঃ মাটির pH ৬ ৬ এর নীচে থাকলে সেই মাটিকে বলে অন্ন মাটি বা বাংলার চাবীদের ভাষার টকোমাটি। মাটিতে অন্নত্বের চরম মান pH ৪ ৫ পর্যন্ত হতে দেখা যার। অভিরিক্ত অন্নত্ব মাটির উর্বরা শক্তি যথেষ্ট পরিমাণে ব্রাদ করে। এইসব মাটিতে সর্বাপেকা অভাব দেখা যার কদকরাসের। তাই অন্ন মাটিতে কদকরাস যোগ করলে যথেষ্ট ভালো কলন পাওয়া যায়। কিন্তু এই সকল জমিতে প্রযুক্ত ক্রবণীয় কদকরাসের স্থায়িত্ব খুবই অল্ল সময়ের। এছাড়া অন্ন মৃত্তিকায় প্রোরশই গাছ নানাবিধ পোষক মৌলের সংকটে ভোগে। এই অভাবের কারণ সবসময় জমিতে উদ্ভিদ খাত্মের ঘাটিতি থেকে উৎপত্তি হয়, তা নয়। বরং প্রারই দেখা যার এইসব মাটিতে বিভিন্ন মৌল ক্রবণীয় পর্যায়ে আসা মাত্র তা অভিরিক্ত মুক্ত এলুমিনিয়ম লোহা ইত্যাদি মৌলের ক্রিয়ায় তা অক্রবণীয় অবস্থায় পরিণত হয়।

মাটিতে অম্লব্যের প্রধান কারণ হল লোহা, এলুমিনিয়ম, ম্যাঙ্গানীজ ইত্যাদি আয়নের আধিকা। এদের অধিকমাত্রায় উপস্থিতির দক্ষনই জমিতে হাইড্রোজেন আয়নের পরিমাণ (অমুত্ব) বৃদ্ধি পায়। এইসব জমিতে জৈব কার্বন বা হিউমাসের পরিমাণ যথেষ্ঠ কম থাকে এবং মুক্ত অবস্থায় ক্যালসিয়াম কার্বনেট থাকে না। তাই এইসব জমির অমুত্ব-ক্ষারত্ব প্রতিরোধক (Buffer) ক্ষমতা খুবই নিয়মানের হয়ে থাকে। জৈব পদার্থ এবং প্রয়োজনীয় ধাতব লবণাদির অপর্যাপ্ত হওয়ার দক্ষন এইসব মাটিতে জীবাণুর সংখ্যা এবং উপকারী জীবাণুর সক্রেরতাও যথেষ্ঠ কম হতে দেখা যায়। তাই এইসব জমিতে সাফল্যের সঙ্গে চাষ করতে হলে প্রথমেই প্রয়োজন হয় অমুত্ব মোচনের। অমুত্ব মোচনের প্রচলিত রীতি হল জমিতে চুন প্রয়োজন হয় আমুত্ব মোটকে আংশিক প্রখমিত করে রাখে। ক্ষান্ঠতই এই প্রজিয়াতে চিরহায়ী সমাধান হয় না। মাটিতে জব সময় একটা গাভিনীল প্রস্কাত্র করের, ভাই তাৎক্ষণিক প্রফল পাওয়া যায় এমন প্রজাত্রকই সন্তোবজনক মনে করা হয়।

জমিতে কতটা চূন প্রয়োগ করলে তা পর্যাপ্ত হবে তা নির্ণয়ের জন্ত রাশায়নিক পরীক্ষার প্রয়োজন হয়। সাধারণতঃ মাটির অয়ন্বকে pH ৬.৫-এ তুলতে পারলেই চুনপ্রয়োগে সস্তোবজনক ফল বৃদ্ধি হয়। প্রশম বা প্রায় প্রশম অবস্থায় মাটির আবদ্ধ বা রুদ্ধ মৌলগুলি ক্রমে ক্রমে মুক্ত হতে থাকে। অয় মাটিতে সাধারণতঃ গ্রহণযোগ্য (available) নাইট্রোজেন, পটাসিয়াম, গদ্ধক, ফসফরাস, ম্যাঙ্গানীজ, বোরন, মলিবভেনাম ইত্যাদি মৌলের অভাব লক্ষিত হয়। মাটিতে চূনপ্রযুক্ত হলে এইসব মৌলগুলি মুক্ত হয়ে দ্রবনীয় পর্যায়ে আসতে থাকে। তাই ইংরাজীতে একটা প্রবাদ বাক্য প্রচলিত আছে, Liming makes father rich but son poor. কথাটার তাৎপর্য হল, জমিতে বছরের পর বছর চূন প্রয়োগের ফলে মাটিতে সঞ্চিত মৌলগুলি ক্রমাগত বেরিয়ে আসতে থাকে, ফলে কলন বৃদ্ধি হয় বটে, কিন্তু এইসব মৌলগুলি ক্রমাগত বেরিয়ে আসতে থাকে, ফলে কলন বৃদ্ধি হয় বটে, কিন্তু এইসব মৌলের সঞ্চয় শেব হয়ে গেলে জমি অয়ুর্বর হয়ে পড়ে।

অমু মাটি প্রষ্টি হবার জন্ম দায়ী আমিক শিলা। কিন্তু কোন কোন ক্ষেত্রে অতিরিক্ত বৃষ্টিপাতের জন্ম মাটি থেকে ক্রমাগত সোভিয়াম, পটাসিয়াম, ক্যালসিয়াম ও ম্যাগনেসিয়ামের মত অধিক দ্রবণীয় লবণগুলি ধুয়ে যেতে থাকলে মাটিতে অপেক্ষাক্বত অদ্রবণীয় লোহা, এ্যালুমিনিয়ম ইত্যাদি মৌলের আধিক্যের জন্ম অমুত্ স্থৃষ্টি হতে পারে। সাধারণতঃ ১৫ সেমি. পুরু জমিই সাধারণ চাথের জন্ত প্রয়োজন হয়। >৫ সেমি গভীর এক হেক্টর জমির ওজন দাঁড়ায় প্রায় ২২.৫ লক্ষ কিলোগ্রাম। হেক্টর প্রতি ২২.৫ লক্ষ কিগ্রা. মাটির ভিভিতেই ক্ষবি জমিতে সার প্রয়োগ করা হয় এবং চুনের পরিমাণ নির্ণয় করা হয়। কারণ সাধারণ ফদলের শিক্ত >৫ সেমি.-র নীচে পৌছার না। এখানে কৃষিজীবিদের শতর্ক করার প্রয়োজন যে তাঁরা যেন একটু গভীরভাবে জমিতে লাঙল দেন। কারণ, দীর্ঘকাল আবাদের ফলে মাটির উপরের স্তরের উর্বরতা কমে গেলেও নীচের স্তারে তথনও যথেষ্ট উর্বরাশক্তি বজায় থাকতে পারে। এটা অবশুই মনে রাখতে হবে যে প্রাকৃতিক বিবর্ত নের ফলে ক্রমে ক্রমে শিলাক্ষয় হয়ে নৃতন মাটি স্ষ্টি হচ্ছে। আর গাছের পুষ্টি উপাদানগুলি সঞ্চিত থাকে ঐ সকল শিলার মধ্যেই। নীচের স্তরের মাটিতে হিউমাস এবং খনিজ দ্রবণীয় পর্যায়ের লবণ কম থাকার কারণ হল শেখানে জীবাণুর অপর্যাপ্ত ক্রিয়া। তাই মাঝে মাঝে মাটিকে আলোড়িত করে দিলে ভ্রফল মিলতে পারে।

সাধারণতঃ ৬ ৫ থেকে ৬ · ০ pH সম্পন্ন মাটিকে স্বল্ন আন্নিক, ৬ · ০ থেকে

e·e pH সম্পন্ন মাটিকে মাঝারি আন্লিক এবং e·e থেকে e·e pH সম্পন্ন মাটিকে বেশী আদ্রিক এবং ৫ ০ থেকে ৪·৫ pH সম্পন্ন মাটিকে অত্যধিক আদ্রিক বলা হয়। অবশ্য এর চেয়ে বেশী আগ্লিক মাটির সন্ধান আমাদের দেশে ছোটনাগপুর মালভূমি অঞ্জলে এবং সাঁওতাল পরগণায় দেখা যায়। অমত্বের মাত্রা বেশী হলে সে জমি চাবের পক্ষে অনুপযুক্ত হয়ে থাকে। কিন্তু আদ্রিক মাটি জলমগ্ন থাকাকালীন তা প্রার প্রশম অবস্থায় পৌছার এবং এই অবস্থায় বিভিন্ন উদ্ভিদের প্রয়োজনীয় মৌলাদি নির্গত হয়। তাই জলে ডোবা জমিতে ধানচাবের সময় এসব অস্থবিধার শন্থীন হতে হয় না। এই কারণেই জলে ডোবা অন্ন জমিতে চূন প্রয়োগের প্রয়োজন হয় না। কিন্তু এই জমি শুকিয়ে গেলে অমত্ব ততোধিক বৃদ্ধি পায়। শাধারণতঃ অম জমিকে চাযোপোযোগী করার জন্ম চুন প্রয়োগের রীতি প্রচলিত। কিন্তু চুনের বিকল্প হিসাবে চুনাপাধর (lime stone), ডলোমাইট (CaCO₃+ MgCO3), क्यानिमिश्राम माश्रनामाहिष्ड, क्यानिमिश्राम नाहेट्डि वा क्यात्रीत थांकूमन (basic slag) প্রয়োগে অ্ফল পাওয়া যায়। বিশেষ করে কড়াই জাতীয় উদ্ভিদের চাব অমু জমিতে মোটেই হয় না। তাই চূন প্রায়েগে এইসব চাবে বেশী স্থকল পাওয়া যায়। যেসব গাছ যত অমত্ব সহ করতে পারে সেইসব গাছের ক্ষেত্রে চুন প্রয়োগ করলে লাভের পরিমাণও ভত কম হয়। অমিতে চুন প্রয়োগ করতে হলে তাকে অবশ্রুই উত্তমরূপে চূর্ণ করে প্রয়োগ করতে হবে অগ্রথায় ভালো কাজ হবে না। বিভিন্ন পরীক্ষার দেখা গেছে অন্ন মাটিতে চূন প্রায়োগে এজোটোব্যাকার বা রাইজোবিয়াম জাতীয় নাইটোজেন বন্ধনকারী জীবাণুর কার্যকারিত। বৃদ্ধি পেয়েছে। নাইট্রোব্যাক্টার জীবাণু মাটিতে ক্যানসিয়াম কার্বনেট দানার চারপাশে একত্রিভূত হয়েই জন্মায়। ফনলভেদে চুন প্রয়োগের ফলে উদ্ভিদের ফলনের উপর যে প্রতিক্রিয়া লক্ষ্য করা গেছে তার একটা ভালিকা পরবর্তী পৃষ্ঠান্ন দেখান হয়েছে (তালিকা ১)।

জমিতে কভটা চূল দিতে হবে: জমিতে কভটা চূল দিলে তা গ্রাসিড মুক্ত হবে তা নির্ণয় করার জন্ম ১০ গ্রাম পরিমাণ মাটিকে একটা ১০০ মিলি লিটার শত্ম আরুতির ফ্রাঙ্গে নিয়ে তাতে ২০ মিলি লিটার বাফার জ্ববণ যোগ করে ১০ মিনিট ভালোভাবে আলোড়ন করতে হবে। তারপর জ্ববণকে pH মাপক যন্ত্রের সাহায্যে পরীক্ষা করে তালিকা অমুযারী চূল যোগ করতে হবে। উক্ত বাফার জ্ববণ তৈরি করতে হলে ১৮ গ্রাম নাইট্রোফেনল,

তালিকা ১:

চুন প্রয়োগে বিভিন্ন উদ্ভিদের উৎপাদনে তুলনামূলক সাড়া (গোবিন্দ রাজন ও গোপালা রাও ১৯৭৮)

1		উত্তম সাড়া			মধ্যম সাড়া			নিম্মানে সাড়া					
0 10		অড়হর	সয়াবীন	ভূলা	ছোলা	মন্থ্র	মটর	চিনা- বাদাম	গম	यव ८	বারোধান	আউস ধান	ভিল
	নিয়ন্ত্রিত	500	300	>00	>00	>00	>00	>00	>00	>00	300	>00	300
THE PERSON NAMED IN	চূন	>>00	000	>040	२७७	२७७	२३६	908	502	२०२	290	१२२	326
100	এন পি কে (NPK)	8 60	२०१	२२१०	२६७	000	७५७	966	5>6	266	540	১২৪	>09
	চূন + এন পি কে	১৯২৭	966	৩৮৮৭	606	७२१	126	೨೨೨	२७१	৩২৭	२७७		>80

২.৫ মিলি লিটার থায়োইথানল অ্যামিন, ৩.০ গ্রাম পটাসিয়াম ক্রোমেট, ২.০ গ্রাম ক্যালসিয়াম অ্যাসিটেট এবং ৩.১ গ্রাম ক্যালসিয়াম ক্রোমাইডকে প্রায় ৮০০ মি.লিওজলে দ্রবীভূত করে লঘু হাইড্রোক্রোরিক অ্যাসিড বা সোডিয়াম হাইড্রন্সাইড দ্রবণের সাহায্যে pH ৭.৫ এ স্থির রেখে একলিটার পূর্ণ করতে হবে, জল ঢেলে। নীচে pH ভেদে অমন্থ মোচনের জন্ম প্রেমাজনীয় চুনের পরিমাণ তালিকাভুক্ত করা হল (তালিকা ২)।

ভালিকা ২: অমুমাটির pH-এর সঙ্গে প্রব্যোজনীয় চুনের পরিমাণের সম্পর্ক (সংগৃহীত)

বাফার দ্রবণে	প্রয়োজনীয় চূনের	বাফার দ্রবণে	প্রয়োজনীয়
गाँठेत pH	পরিমাণ CaCO3	মাটির pH	চুলের পরিমাণ
	টন প্রতি একরে		CaCOa हैन
		000	প্রতি একরে
6.4	2.6	6.4	9.6
6.6	5.5	6.6	P-5
6.6	5.6	0.6	P-3
2.8	2.8	6.8	2.0
6.0	8.0	6.0	20.2
9.5	8.6	6.5	
6.9	6.5	6.2	>>.0
6.0	6.4	6.0	>>.4
¢°5			>5.8
6.4	6.8	8.9	20.5
	9.0	8.P	>8.0

> টন প্রতি একরে = ২.৫১ মেট্রিক টন প্রতি হেক্টরে

জমিতে চুন প্রয়োগের মাত্রা মাটির বুননের উপর (texture) যথেষ্টভাবে নির্ভর করে। বিভিন্ন অমুমাত্রা এবং বিভিন্ন প্রকার বুননের মাটির উপর তা কিভাবে নির্ভর করে তার একটা তালিকা এবার আমরা দেখব পরবর্তী পৃষ্ঠায় (তালিকা ৩)।
০-৭ ইঞ্চি ক্ববি জমির ক্বেত্রে pH ৬ ৫ পর্যস্ত উন্নয়নের জন্ম প্রয়োজনীয় উত্তয

ভালিকা ৩: অমুমাটির বুননের সঙ্গে অমুত্ব মোচনের জন্ম প্রয়োজনীয়
চূনের পরিমাণের সম্পর্ক (রায়চৌধুরী, দেশাই এবং
আগরওয়াল ১৯৬৯; In. Hand book of Agriculture).

是 主人的对 创作 自由为通信 医电子性 用证 "你们会" 计图像

মাটির বুনন এবং অবস্থান	প্রয়োজনীয় চূনাপাথরের পরিমাণ টন প্রতি একরে			
	pH 8.0	pH 8.¢	bH «.«	
উষ্ণ আদ্র সমভূমি			See 1	
দোতাঁশ বেলেমাটি (Loamy sand)	2.6	5	0 6	
বেলে দোআঁশ মাটি (Sandy loam)	_	2	>	
দোৰ্জাশ মাটি (Loam)	-	۵.۶	٤	
দোৰ্জাশ কাদানাটি (Clay loam)		¢	o	
নাভিশীভোক্ত বা শীভল অঞ্ লের পাহাড়ী মাটি				
দোআঁশ বেলেমাটি	o	2	>	
বেলে দোতাঁশ মাটি		0	2	
দোআঁশ মাটি		8.0		
দোআঁশ কাদামাটি	-	6	0.6	
উপত্যকা অঞ্চল	ALL NO.	The same		
জলমগ্ন বোঁদমাটি	a	٩	8.6	

১ ট্ঞি = ২'৫৪ সেমি-; ১ টন প্রতি একরে = ২'৫১ মে- টন প্রতি হেক্টরে

মানের চূর্ণীক্বত চূনাপাথরের পরিমাণ ভালোভাবে গুঁড়োকরা চূন, প্রারোগের সময় জমিতে সমানভাবে ছড়িয়ে দিতে হবে। মাটিতে ভালোভাবে কাজ করার জন্ম চূন প্রয়োগ ফসল লাগানোর ২—০ মান আগেই সম্পন্ন করা উচিত। এই সময়ে জমিতে জল সরবরাহ থাকা প্রয়োজন। এর ফলে জমির ক্ষার বিনিময় ক্ষমতা (base exchange capacity) যথেষ্ট বৃদ্ধি পাবে। বলা বাহল্য একবার পূর্ণমাত্রায় চূন প্রয়োগ করা হলে তার প্রতিক্রিয়া প্রায় পাঁচ বৎসর বজায় থাকে। কিন্তু এর পূর্বেই অমুত্র বেড়ে গেলে অন্তব্যক্তিবালের মধ্যেই আবার চূন প্রয়োগ করতে হবে। চূন প্রয়োগ, মাটিতে ফসফরান সাম্যের উপর যথেষ্ট প্রভাব বিন্তার করে। পরীক্ষায় দেখা গেছে চূনপ্রয়োগে মাটিতে এ্যালুমিনিয়ম এবং ফেরিক ফসফেটের পরিমাণ কমে বটে কিন্তু অন্তবনীয় ক্যালিনিয়াম ফসফেটের পরিমাণ বৃদ্ধি পায়।

ক্ষারীয় মাটির সমস্তা এবং সমাধান

THE PROPERTY OF THE PARTY OF SAME OF THE PARTY.

সমন্তারিস্ট মাটির মধ্যে লবণাক্ত, কারীয় লবণাক্ত বা কারীয় মাটি ক্রবিজীবিদের কাছে এক একটা বড় প্রতিকৃলতা। প্রতিটি মাটির উৎপক্তির কারণ ভিন্ন তাই এদের সমাধানের পথগুলিও ভিন্ন। কিন্তু সমন্তার কথা হল এদের কোন স্থায়ী সমাধানের পথ আজও ক্রবি এবং মৃতিকা বিজ্ঞানীদের জানা নেই। কারণটা প্রাকৃতিক বলেই বোধহন্ন এদের বিক্লছে মান্তবের ক্ল্ছে শক্তির অসম লড়াই কণস্থায়ী।

পর্যায়ক্রমে দেখা যাক কোন্ পরিস্থিতিতে এদের উদ্ভব হয় এবং কিভাবে ভার আপাত নিয়য়ণ সম্ভব। আমাদের দেশে প্রায় ৭০ লক হেন্টর জমি লবণাজ্য, কারীয় লবণাক্ত বা ক্ষারীয় মাটির পর্যায়ে পড়ে। লবণাক্ত মাটির পরিচিতি বিভিন্ন প্রায়েল কারণ প্রায় লবণাক্ত বা ক্ষারীয় মাটির পর্যায়ে পড়ে। লবণাক্ত মাটির পরিচিতি বিভিন্ন প্রায়েলক কারণ প্রায়্রতিক বা ক্রত্রিম হতে পারে। সাধারণতঃ স্বল বৃষ্টিপাত অঞ্চলে ঠিকমত জ্ঞল নিক্ষাণন ব্যবস্থা না থাকলে জল চুঁইয়ে মাটির নীচে চলে যাবার আগেই বাজ্পীভূত হয় । ফলে জমিতে ক্রমশঃ লবণের পরিমাণ বাড়তে থাকে। আনেক সময় সমুদ্রের লবণাক্ত জল জোয়ারের ফলে নিকটবর্তী কোন নীচু জমিতে চুকে আটকা পড়লে, ক্রমে জল বাজ্পীভূত হয়ে যায় এবং সেই দ্রবীভূত লবণ মাটিতে থেকে যায়। বিশেষ করে সমুদ্র উপকৃলবর্তী ক্রমি জমি প্রায়ই এই সমজা সম্বলিত হয়ে থাকে। পক্ষান্তরে ক্রত্রিম জলগেচের জন্ত অধিক লবণযুক্ত জল সরবরাহ করা হলে ক্রমেই মাটি লবণ সমৃদ্ধ হতে হতে একসময় লবণাক্ত মাটির পর্যায়ে এসে পড়ে। হরিয়ালা এবং পাঞ্জাবে প্রায় ২৮ লক্ হেন্টর জমি এভাবে ক্রত্রিশ্ব হয়েছে।

লবণাক্ত মাটির তড়িৎ পরিবাহিতা সাধারণতঃ ৪ মিলি মোহ প্রতি সেটিমিটারে বা তার অধিক হতে দেখা যায়। এইসব মাটির বিনিময়যোগ্য সোডিয়ামের পরিমাণ (exchangable sodium) >৫ শতাংশের বেশী এবং pH সাধারণতঃ ৮০৫ এর নীচে হয়ে থাকে। এইসব জমিতে উপকারী জীবাণুর ক্রিয়া খুবই সীমিত হয়ে থাকে। তাই এইসব মাটিতে জৈব পদার্থ উপযুক্ত জারনের অভাবে বিপদের স্ক্রনা করে। এ ছাড়া এাালুমিনিয়ম এবং লোহা প্রায়ই উদ্ভিদ বৃদ্ধির প্রতিবন্ধকতা ল্যুষ্টি করে।

লবণাক্ত জমির লবণমুজির একটা পথ হল মাটির উপর সঞ্চিত লবণের স্তর্মকে চেঁছে ফেলে দেওয়া। এই পদ্ধতি সব সময় সস্তোবজনক হয় না। কারণ মাটির উপর থেকে সম্পূর্ণ লবণ এভাবে মুক্ত করা সন্তব নয়। এ ছাড়া অন্ত একটা পাষ্টা হল লবণাক্ত জমিতে জল দাঁড় করিয়ে রাখা। কিছুকাল পরে সেই জল নিদ্ধাশন করলে জমি অনেকাংশে দ্রবনীয় লবণমুক্ত হতে পারে। বাংলাদেশে স্থন্দরবন এলাকায় চাবের জমিকে সম্দ্রজল থেকে বাঁচবার জন্ত মাটির বাঁধ দিয়ে জায়ারের জল প্রবেশ রোধের প্রচেষ্টা করা হয়।

কারীয় লবণাক্ত মাটতে নীচের স্তর (sub soil) তুর্ভেগ্ন শক্ত কাদার আন্তরণ থাকে যাকে অনেক সময় কায়র বলে অভিহিত্ত করা হয়। এর ফলে এইসব জমিতে প্রায়ই জল দাঁড়িয়ে সমস্যার স্থাষ্ট করে। ক্ষার মাটির উপর স্তরে পিচিছল আস্তরণ এবং নীচের স্তরে অভেগ্র দৃঢ় আস্তরণ থাকে বলে এই মাটি চাবের কাজে প্রায় জনুপযুক্ত বলা চলে। এ ছাড়া এই মাটিতে সোডিয়াম ও অগ্রাপ্ত কার ধাতুর পরিমাণ যথেষ্ট বেশী হয়। এই মাটির তড়িং পরিবাহিতা ৪ মিলি মোহ প্রতি সেটিমিটারের বেশী হতে দেখা যায়। এই মাটিতে বিনিময়যোগ্য সোডিয়ামের পরিমাণ ২৫ শতাংশের বেশী এবং pH ৮'৫ বা তার বেশীও হতে পারে। জলধীত করে (leaching) এই জমির লবণের পরিমাণ কমানো যায়। এই জমির জল নিজাশন ক্ষমতা বাড়ানোর জগ্র ঘিতীয় স্তরে কায়রের শক্ত আন্তরণ ভেঙে দিলেও সন্তোবজনক ফল পাওয়া যেতে পারে।

ক্ষারীয় মাটিতে অভেন্ত কান্ধর স্তর ছাড়াও অত্যথিক পরিমাণে সোডিয়াম ও অন্তান্ত ক্ষার্র মাটিতে বিত্রমান থাকে। এই মাটির তড়িৎপরিবাহিতা সাধারণতঃ ৪ মিলি মোহের (প্রতি সেটিমিটারে) কম হয়। এই মাটিতে বিনিময়যোগ্য সোডিয়ামের পরিমাণ ১৫ শতাংশের বেশী এবং মাটির pH ৮ ৫ থেকে ১০ ৫ পর্যন্ত হতে দেখা যায়। যায়িক পদ্ধতি ছাড়া এইসব মাটিতে জিপসাম (CaSO4, 2H2O) প্রয়োগ করে ভ্রকল দেখা যায়। জিপসাম মাটিতে অবস্থিত মুক্ত কার্বনেটর গঙ্গে বিক্রিয়ায় অদ্রাব্য ক্যালসিয়াম কার্বনেট উৎপন্ন করে। এ ছাড়া সোডিয়াম ও পটাসিয়াম সালফেটও উৎপন্ন হয়। এই দ্রবণীয় সালফেট লবণ বৃষ্টিপাত বা খোত পদ্ধতির সাহায্যে মুক্ত করা হয়। ক্যালসিয়াম কার্বনেট জৈবলারের ক্রিয়ায় ক্রমে ক্রমে মুক্ত হয়ে যায়। জিপসাম ছাড়া ক্ষারমাটিতে গন্ধক, চিটাগুড় বা ইক্ষ্টিনি শিল্পের অমধর্মী গাদ (Press mud) ব্যবহারের রীতি আছে।

গন্ধক, মাটির গন্ধক ব্যা ক্টিরিয়ার ক্রিয়ার (খ্যায়োব্যাসিলাস খ্যায়োভাক্সিডেনস, খ্যায়োব্যাসিলাস ফেরোভাক্সিডেনস ইত্যাদি) সালফিউরিক
ব্যাসিডে পরিণত হয়। উৎপন্ন সালফিউরিক ব্যাসিড মাটির ক্ষারন্থকে আংশিক
প্রশমিত করে। বিভিন্ন উদ্ভিদের সাফল্যজনক ফলনের জ্ঞা সবুজ সার বা খামারজাত উপসারের সঙ্গে হেক্টর প্রতি ৬ ৭৫-১১ ২৫ মে. টন জ্বিপনাম প্রয়োগে ক্ষল
পাওয়া যায়। গন্ধকের ক্রিয়া সফলভাবে পেতে গেলেও জৈবসার বা সবুজ সার
প্রয়োগ করতে হবে। জিপদাম প্রয়োগের ফলে মাটির কি রকম পরিবর্তন হয়
তা পরবর্তী পৃষ্ঠায় তালিকা দেখে বোঝা যাবে (তালিকা ১)।

এই পরীক্ষার মাটিতে একর প্রতি তিন টন অর্থাৎ হেক্টর প্রতি ৭·৫ মেট্রিক টন গুড়ো জিপসাম প্রয়োগ করা হয়েছিল।

কিছু কিছু ফদল আবার মাটির ক্ষারন্থকে বেশ থানিকটা দহু করতে পারে।
এই পর্যায়ন্থক্ত কিছু গাছ হল বীট, ধান, নীল, বাবুল ইত্যাদি। দমুদ্র উপকূলের
মাটিতে অতিরিক্ত লবণ থাকার দক্ষন নারিকেলের ফদন ভালো হয়। কিছু
সাধারণ চাবের ক্ষেত্রে ক্ষারন্থমোচন অপরিহার্য। এবার জিপদাম প্রয়োগে
কয়েকটি ফদলের ফলনের প্রতিক্রিয়া দেখলে ক্ষবিক্ষেত্রে জিপদাম প্রয়োগের
তাৎপর্য বোবা বাবে (তালিকা ২)।

ভালিকা ২ঃ ভিন্ন মাত্রার জিপসাম প্রয়োগের ফলে শস্যের ফলন প্রতিক্রিয়া

(গোবিন্দ রাজন এবং গোপালা রাও ১৯৭৮)

জিপসাম প্রয়োগের পরিমাণ	প্রথম বংসরে ফলন কুইন্টাল প্রতি হেক্টরে			দিতীয় বৎসরে ফলন কুইণ্টাল প্রতি হেক্টরে		
(টন প্রতি হেক্টরে)	ধান	গম	য্ব	ধান	গ্য	য্ৰ
	2.09	0.80	0.80	162.09	७५.५	04.9
9'6	\$8.85	26.80	55.04	62.5	୦୫.୦	80'9
>6.0	22.66	54.70	50.00	680	80.5	85.4
55.6	७० २७	08.00	२क.रव	68 F	৩৭・৭	89.0
00.0	08.90	09'20	٥٥.24	68.0	OF.4	84.4

ভালিকা ১ঃ ক্ষার মৃত্তিকার জিপসাম প্রয়োগের প্রতিক্রিয়া (গোবিন্দ রাজন এবং গোপালা রাও ১৯৭৮)

মাটির ধর্ম জি	প্রতিকারের পূর্	্রি প্রতিকারের পর (জিপসাম প্রয়োগে)			
To design to the second	(3)(2) - 3(2) 1/108 (1)	ধইঞ্চা ব্যতীত	ধইঞা প্রযুক্ত		
pH	20.5	P.6	P.6		
8 N 10 8 16 150	সম্পৃত জবণের বিশ্লেষণ ফলাফল				
বিনিময় ক্ষমতা×১০৩	24.99	5.66	5.85		
কাৰ্বনেট	০ ৬০ মিলিতুল্যাস্ক	নগন্য	নগন্য		
বাইকার্বনেট	শতাংশ হিদাবে	कि मार्थ का नह	电师系		
কোরাইড	২.৫৯	0.40	0.40		
সালফেট	৩ ৯৭	0.06	0.00		
মোট আানায়ণ ক্ষার বিনিময় ক্ষমতা	5.46	নগন্য	নগন্য		
	9 8 2	0.88	0.48		
বিনিময়যোগ্য সোভিয়াম	8.0P P. 80	9:88	9 86		
বিনিময়যোগ্য পটাসিয়াম	0.25	0.08	000		
মোট নাইট্রোজেন	0 08	0.25	0.22		
विशेष गामक स्थान	শতকরা হিসাবে	0.06	60.0		
জৈব কাৰ্বন	0.56	0.06	0.60		
কাৰ্বন নাইটোজেন	6.58	9.50	6.52		
অমূপাত	17 000 000	200 0	6.50		
জল ভেদন ক্ষমতা	0.05	5.09	2.64		
Brain daughos	ইঞ্চি প্রতি ঘণ্টায়	Selfa	100		

অন্ন মাটিতে চূন প্রয়োগের মাত্রা নির্ণয়ের জন্ম বেমন রাসায়নিক পরীক্ষার প্রয়োজন হয় ক্ষার মৃত্তিকাতেও জিপগামের মাত্রা নির্ণয়ের জন্ম তেমনই পরীক্ষার প্রব্যোজন হর। জিপসাম প্রয়োগের মাত্রা নির্ণরের জন্ম পরীক্ষা পদ্ধতি নিয়ে এবার আলোচনা করা যাক।

জিপসামের মাত্রা নির্বয়প্রাণালাঃ ৫ গ্রাম পরিমাণ মাটিকে একটা ২০০ মিলি লিটার শন্থ আক্তবির ফ্লাস্কে নিয়ে ভাতে ১০০মিলি লিটার সম্পৃত জিপসাম দ্রবণ মিণিয়ে যান্ত্রিক উপায়ে ৫ মিনিট আলোড়িত করার পর পরিশ্রুত করা হয়। এই দ্রবণের ৫ মিলি লিটার নির্বাস ১০০ মিলি লিটার ফ্লাস্কে নিয়ে ভাতে জল দিয়ে প্রায় ২৫ মিলিলিটার করা হয়। ভারপর ভাতে ৩০৫ মিলি লিটার অ্যামোনিয়াম হাইডুক্সাইডের বাফার দ্রবণ যোগ করা হয়। এই দ্রবণকে ই বি টি স্ফচকের উপস্থিতিতে প্রমাণ ই. ডি. টি. এ. (ইথিলিন ডাই প্র্যামিন টেট্রাএ্যাসিটিক এ্যাসিড) ম্বারা প্রশমিত করা হয়। মাটি ছাড়া একই প্রক্রিয়া পুনরায় সম্পন্ন করে পাঠ নেওয়া হয়। এই প্রশমন ক্রিয়ায় নির্দেশকের বর্ণ মত্রলাল থেকে নীলবর্ণ ধারণ করে।

বিকারক প্রস্তুতি :

- (>) সম্পূত CaSO4 দ্রবণ প্রস্তুতির জ্বন্য ওগ্রাম জিপসামকে এক নিটার জ্বনে ২০ মিনিট যান্ত্রিক উপায়ে আলোড়িত করা হয়।
- (২) বাফার তৈরির জন্ম ৬৭'৫ গ্রাম কঠিন অ্যামোনিয়াম ক্লোরাইডের মধ্যে ৫৭০ মিলি লিটার ঘন অ্যামোনিয়াম হাইডুক্সাইড যোগ করে জল দারা এক লিটার পূর্ণ করা হয়।
- (৩) স্থচক $\circ \cdot \epsilon$ গ্রাম ইরিওক্রোম ব্লাক টি (ই বি টি) এবং $8 \cdot \epsilon$ গ্রাম হাইড্রোক্সিল অ্যামিন হাইড্রোক্লোরাইডকে (NH_2OH , HCI) ১০০ মিলি লিটার ১৫ শতাংশ ইথানলে দ্রবীভূত করা হয়।
- (8) প্রমাণ ক্যালসিয়াম ক্লোরাইড দ্রবণ প্রস্তুতির জন্ত ০'ও প্রাম ক্যালসিয়াম কার্বনেটকে ১০ মিলি লিটার লঘু হাইড্রোক্লোরিক এ্যাসিডে দ্রবীভূত করে এক লিটার পূর্ণ করা হয়।
- (৫) ০ ০০ নর্মান ই. ডি. টি. এ. দ্রবণ প্রস্তুতির জন্ম ২ গ্রাম ই. ডি টি. এ.-কে এক নিটার জলে দ্রবীভূত করা হয়। মাত্রা নিরূপণের জন্ম উৎপন্ন দ্রবণকে প্রমাণ CaCl2 দ্রবণ দ্বারা প্রশমিত করা হয়।

গণনাঃ ধরা যাক ই. ডি. টি. এ. দ্রবণের মাত্রা N মাটি ছাড়া প্রশমনের জন্ম প্রয়োজনীয় ই. ডি. টি. এর পরিমাণ A মিলি লিটার।

মাটিযুক্ত অবস্থার প্রশামনের জন্ম প্রারাজনীয় ই ডি টি এর পরিমাণ B মিলি লিটার

স্থতরাং জিপসামের প্রয়োজনীয় মাত্রা = ৩৪৪ N (A—B) টন প্রতি একরে একে ২·৫১ দারা গুণ করে, মে. টন প্রতি হেক্টরে পরিণত করতে হবে। [জিপসামের আণবিক গুরুত্ব: ১৭২]

জীবাণু সার বলতে কি বোঝায়

উদ্ভিদের বৃদ্ধিয় জন্ম জল এবং কার্বন-ডাই-অক্লাইড ছাড়াও প্রয়োজন হয় नाहरिद्धार्यन, कमकताम, अठामिश्राम, शक्तक, मागरनिम्श्राम, कानिम्श्राम, जाहरी, मामिनीक, त्वांतन, प्रस्ता, जामा, मिनवर्णनाम थवर कावार्टित मक नानाविष মাটিতে এইসব মৌল আসে ক্ষ্মীভূত শিলা থেকে বা জৈব-পদার্থের খনিজিকরণ (mineralisation) থেকে। উল্ভিদের গ্রহণযোগ্য खननीय जनः উ डिल्म व वार्गरामा कार्यनीय स्थानका वारिड একটা সাম্য রক্ষা করে চলে। কিন্তু জীবাণুর ক্রিয়াভে এই সাম্য হয় গভিশীল। তাই একই মৌলিক উপাদানগুলি চক্রপথে বারবার আসছে এবং বারবার ব্যবহৃত হচ্ছে। মাটিতে দ্রবণীয় পর্যায়ের যৌগ, সার হিসাবে প্রযুক্ত হলে তার একাংশ উদ্ভিদের কাছে সহজে গ্রহণযোগ্য হয় বটে, কিন্তু তার একটা বড় অংশ সেচের জলের সাথে ধুয়ে চলে যায় এবং আর এক অংশ মাটির স্তর তেদ করে উদ্ভিদ মূলের সীমানা ছাড়িয়ে অনেক নীচে চলে যায় যা সম্পূর্ণভাবে অপচয় ছাড়া আর কিছু নয়। ভাই জলে অপেক্ষাকৃত কম দ্রবণীয়, এমন পদার্থ জমিতে প্রয়োগ করলে তা উপরোক্ত ছটির কোন উপায়েই নষ্ট হতে পারে না। উপরোক্ত ছটি পদ্ধতি ছাড়াও দ্রবণীয় অপার ক্সফেট জাতীয় সার মাটির মুক্ত ক্যালসিয়াম, এ্যালুমিনিয়ম বা লোহার সঙ্গে ক্রিয়ায় অদ্রবণীয় ফসফেট লবণে পরিণত হয় যা উদ্ভিদের কাছে গ্রহণযোগ্য নয়। এ ছাড়া প্রাদত সারের একটা বড় অংশই যায় জীবাণুর কোষ গঠনে। তাই বোঝা যাচ্ছে প্রদত্ত সারের প্রায় অর্থে কই নষ্ট হয় বিভিন্ন অবাঞ্ছিত প্রক্রিয়ার ফলে। যে কোন ন্তর্বর চাবের জমিতেই প্রচুর পরিমাণে উপকারী জীবাণু থাকে। এদের সংখ্যা প্রতি গ্রাম উর্বর মাটিতে ১০৮ থেকে ১০০ পর্যন্ত হয়ে খাকে। এদের অধিকাংশই আবার ব্যা ক্টিরিয়ার পর্যায়ভুক্ত। এইসব জীবাগুর क्रियादक सुष्ठं छेशास्त्र कृषित व्यसाष्ट्राक्त नागातार इन कृषि कीवाव विकानीस्त्र জৈবলার প্রয়োগের প্রয়োজনীয়তা বিশ্লেষণ করতে গিয়ে আমরা

জেনেছি জৈবসার কেবলমাত্র উদ্ভিদের প্রয়োজনীয় মৌলের যোগানই দেয় না উপরস্থ তা জমির হিউমাসের পরিমাণ বৃদ্ধি করে এবং জমির বিভিন্ন ভৌত অবস্থার উন্নতি ঘটায় যা উদ্ভিদ মাটি এবং জীবাণুর একটা স্থস্থ সাম্য বজার রাখতে একাস্ত-ভাবে প্রয়োজনীয়। তাই বোঝা যাচ্ছে যে জৈবসারের সাফল্য জীবাণুর ক্রিয়ার উপর একাস্তভাবে নির্ভরশীল।

জৈবসার বা সবুজ সারের মূল উপাদান হল কার্বন। এই কার্বনজাত যৌগ মৃতজ্বীৰী (Saprophytes) জীবাণুর শক্তি উৎপাদনে কার্বনের উৎস হিসাবে ব্যবহৃত হর। মাটির জীবাণুকে প্রধানতঃ তুইভাগে ভাগ করা হয়। স্থানীয় (Indigenous) বা Autochthonus) এবং অনুপ্রবেশকারী (Invader বা Allochthonus) এদের মধ্যে এক শ্রেণী নির্ভর করে মাটির হিউমানের উপর, বলা বাহুল্য এরা জৈবসারের অভিরিক্ত কার্বনজাত পদার্থের সরবরাহে তেমনভাবে প্রভাবিত হয় না। কিন্তু মাটিতে অবস্থানকারী এক বিশেষ শ্রেণী (Zymogenous) এবং ৰছিরাগত বা অমুপ্রবেশকারী কিছু ব্যা িক্টরিয়া এবং ৰিশেষ করে ছত্রাক জৈব পদার্থের বিবর্ত নে মুখ্য ভূমিকা পালন করে থাকে। এই বিবর্তন প্রক্রিয়ার সঙ্গে প্রত্যক্ষ বা পরোক্ষভাবে জড়িত জীবাণুর ক্রিয়ায় বিভিন্ন মৌলগুলি জবণীয় পর্বায়ে আসে। তাই কোন জমিতে উপকারী জীবাণুর সংখ্যা অধিক পরিমাণে থাকলে, অধিক পরিমাণে উদ্ভিদের প্রমোজনীয় মৌলগুলিও ৰুক্ত অবস্থায় থাকৰে বলে আশা করা যায়। উদ্ভিদখাত সরবরাহ পর্যাপ্ত থাকলে ভবেই উদ্ভিদের ফলন বেশা হবে। আবার ফলন অধিক হলে উদ্ভিদের মৃত্যুর পর মাটিভে শিকড়সহ ভাদের প্রচুর দেহাবশেষ পড়ে थाकरव। এই দেহাবদেষ ब्रवश्र हरव शूनताम জोवावृत वृष्टित जना। এভাবে উर्वत जिंबिट अक्टो गिल्मीन माग्र गर्यमार्थे বজায় থাকৰে। কিন্তু এই প্রাকৃতিক সাম্যের মাধ্যমে প্রায়ই কৃষি উদ্ভিদের চাহিলা মেটে না। তার প্রধান কারণ, কোন বিশেষ জীবাণু কোন বিশেষ गাটিতে ৰিশেষ বিশেষ পরিস্থিতিতে শক্রিয় হয়ে উঠে। তাই বিশেষ কোন মৌলের ক্রিয়া সৰ জমিতে সৰ সময়ের জন্ম অব্যাহত থাকতে পারে না। অবশ্র কোন বিশেষ প্রক্রিয়া উক্ত মাটির স্থানীয় (native) জীবাণু দারা নিয়মানে চলতে পারে (with low efficiency)। এই মান উন্নয়নের তাগিদ আনে উদ্ভিদের প্রয়োজনেই। রাসায়নিক সার প্রয়োগের কোন ক্ষেত্রে জীবাণু হল বিকল্প, আবার

কোন ক্ষেত্রে জীবাণু হল রাসায়নিক সারের সহযোগী। কিন্তু জীবাণুসার প্রয়োগের খরচ রাসায়নিক সার প্রয়োগের খরচের চেয়ে অনেক কম।

এখন দেখা যাক জীবাণু সার বলতে কি বোঝায়? কোন বিশেব শক্তিশালী জীবাণুকে উপবৃক্ত জৈবসার সহযোগে সঠিকভাবে প্রয়োগের পদ্ধতিই হল জীবাণু সার প্রয়োগ। বিভিন্ন মৌলের জীবাণুঘটিত বিবর্ত ন নিরীক্ষা করলে আমরা দেখন উদ্ভিদের প্রয়োজনীয় মৌলগুলির মধ্যে নাইটোজেন, ফসফরাস ও গদ্ধক জীবাণুর জীবনচক্রের সঙ্গে মুখ্যতঃ জড়িত। এর প্রধান কারণ, লক্ষ্য করলে দেখা যাবে এইসব অধাতব মৌলগুলি জীবকোষ গঠনের চাবিকাঠি। এরা উৎসেচক ঘটিত নানাবিধ বিক্রিয়ায় অংশগ্রহণ করে থাকে। এদের জীব রাসায়নিক গুরুত্ব অপরিসীম। অপরপক্ষে অতীব প্রয়োজনীয় হলেও পটাসিয়াম, ক্যালসিয়াম ইত্যাদি ধাতব মৌলগুলি কিভাবে বিপাকীয় ক্রিয়ার সামিল হয় তা আজও পরিক্ষারভাবে জানা যায় নি। এরা সাধারণতঃ জৈব পদার্থে প্রবেশ করে না। তাই এই মৌলগুলির জীবাণুঘটিত বিবর্ত নচক্র তেমন গুরুত্বপূর্ণ নয়।

বিশেষ করে নাইটোজেনচক্র বিশ্লেষণ করলে আমরা দেখৰ, বায়ুমগুলীয় নাইটোজেনকে দেহকোষে আবদ্ধ করবার ক্ষমতা সম্পন্ন একশ্রেণীর জীবাণু জীব-মগুলে (biosphere) গুরুজপূর্ণ স্থান দখল করে। এদের অনস্থ বলার কারণ হল উদ্ভিদ এবং প্রাণীজগতে এ ঘটনা সভ্যি বিরল। কিছু কিছু আন্মপ্রাণী (Protozoa) এবং জীবাণুর সহযোগিতায় কয়েকশ্রেণীর উদ্ভিদই কেবলমাত্র এই বিচিত্র ক্ষমতার অধিকারী। জীবাণুবটিত নাইটোজেন বন্ধন হুইপ্রকার হতে পারে। প্রথমতঃ মুক্তজীবী (free living) ব্যা ক্রিরিয়া বা নীল সবুজ শেওলা এবং দিতীয়তঃ সহজীবী (Symbiont) ব্যা ক্রিরিয়া ও উদ্ভিদ এবং নীলসবুজ শেওলা, ছত্রাক বা এজোলা নামে একপ্রকার ফার্ণের সঙ্গে যুক্ত হয়ে যৌথ প্রক্রিয়ায় বায়ুমগুলের নাইটোজেন কোষে আবদ্ধ করে প্রোটিন হিসাবে। মুক্তজীবী নাইটোজেন বন্ধনকারীর পর্যায়ভুক্ত কিছু কিছু ছত্রাক, নীল সবুজ শেওলা এবং এক্টিনোমাইসিটসের নামও আমাদের পরিচিত। এদের মধ্যে কেবলমাত্র ব্যা ক্রিরিয়াকেই নাইটোজেন ঘটিত জীবাণু সার হিসাবে ব্যবহার করা হচ্ছে। অবাত শ্বসনকারী জীবাণুর স্ত্রিয়তা নিয়্মানের হওয়ার জন্ম এবং

ভাদের পরীক্ষাগারের কৃষ্টিমাধ্যমে আবাদ করা (culture) যথেষ্ঠ কষ্টসাধ্য হওয়ায়
ব্যবহারিক প্রয়োগের ক্ষেত্রে ভারা যোগ্য ছান দখল করে নিতে পারে না। সবাত
খসনকারী সহজ্বলভা এবং সর্বাধিক সক্রিয় মুক্তজ্বীবী নাইট্রোজেন বন্ধনকারী
ব্যান্তিরিয়া হল প্রাজ্যেটোব্যান্তার (Azotobacter)। এই প্র্যাজ্যেটোব্যান্তার গণের (genus) সক্রিয় প্রজাতির মধ্যে প্র্যাজ্যেটোব্যান্তার
ক্রে কক্কাম এবং প্রাজ্যেটোব্যান্তার ভাইনল্যান্তি উল্লেখযোগ্য।
নাইট্রোজেন বন্ধনকারী জীবাণু হিসাবে প্র্যাজ্যেটোব্যান্তার এর ব্যবহারই
সমধিক প্রচলিত। বাণিজ্যিক জগতে এই জীবাণু সার প্র্যাজ্যেটোব্যান্তিরিন নামে
পরিচিত। এ ছাড়া বর্তমানে প্র্যাজ্যোম্প্রিলাম (Azospirillum) নামক
একশ্রেণার উত্তমনানের নাইট্রোজেন বন্ধনকারী জীবাণুর প্রয়োগ সন্ভাবনা নিয়ে
গবেষণা চলেছে। মাটিতে প্র্যাজ্যেটোব্যান্তারের সাফল্য সম্বন্ধে অনেকেই
সন্ধিহন। তার প্রধান কারণ হল এই শ্রেণীর জীবাণুর উচ্চ খ্যন হারের জ্ঞা
প্রয়োজন মত দ্রবণীয় পর্যায়ের কার্বনজাত পদার্থের বোগান দেওয়াই একটা বড়
সমস্তা।

নীলসবুজ শেওলার নাইট্রোজেন বন্ধন ক্ষমতা প্র্যাজোটোব্যাকীর অপেক্ষা আনেক কম হলেও এদের প্রয়োগ স্থবিধাজনক এই কারণে যে এরা অভোজী। তাই এদের বাঁচিয়ে রাধার জন্ম জৈব পদার্থ সরবরাহের প্রয়োজন হয় না। এরা বায়্ম মণ্ডলীয় কার্বন (কার্বন-ডাই-জন্মাইড থেকে) ও নাইট্রোজেনকে একই সঙ্গে বন্ধন করে জমির কার্বন ও নাইট্রোজেন উভয়ের পরিমাণই বৃদ্ধি করে। এ ছাড়াও নীলসবুজ শেওলার প্রয়োগে অন্ত যেসব স্থফল দেখা যায় পরবর্তী অধ্যায়ে তার পৃথক আলোচনা করা হবে। বিশেষ করে নীলসবুজ শেওলার ক্রিয়া জলে ভোষা ধান জনিতে খুবই সজ্যোবজনক।

নাইট্রাজিন জীবাণু সার ছিসাবে পরিচিত, কড়াইজাতীয় উদ্ভিদের ক্ষেত্রে (leguminous plant) রাইজোবিয়াম (Rhizobium) জীবাণুর সাফল্য সম্বন্ধে কোন সন্দেহের অবকাশ নেই। কড়াইজাতীয় উদ্ভিদের মূলে এক ধরনের অর্ক বা গুটি (nodule) দেখা যায়। ঐ গুটিগুলি হল রাইজোবিয়ামের আবাসম্বল। এই প্রাকৃতিক শান্তিপূর্ণ সহাবস্থানের ফলে জীবাণু উদ্ভিদ দেহ থেকে কার্বনজ্ঞাত পদার্থের সরবরাহ পায়। পক্ষাস্তরে উদ্ভিদ জীবাণুর কাছ থেকে পায় কোবগঠনের উপাদান নাইট্রোজেনের সরবরাহ। জীবাণু সার হিসাবে

রাইজোবিয়াম প্রয়োগ করতে হলে জমিতে জৈবসার প্রয়োগের খুব বেশী প্রয়োজন হয় না। বিভিন্ন শ্রেণীর কড়াই জাতীর গাছের উপর রাইজোবিয়ামের ক্রিয়া ভিন্ন ভিন্ন প্রজাতি দ্বারা হয়ে থাকে। এক একটি বিশেষ শ্রেণীর রাইজোবিয়াম কয়েক শ্রেণীর কড়াই জাতীয় গাছের উপর সক্রিয় হতে দেখা যায়। এদের বলে বিপ্রতীপ প্রয়োগ শ্রেণী (Cross inoculation group)। কড়াই জাতীয় গাছের শিকড়ে গুটি হওয়া প্রাকৃতিক ঘটনা। কিন্তু কোন বিশেষ মাটিতে গুটির সংখ্যা সম্ভোষজনক না হলে এই জীবাণু সার প্রয়োগে আশাতীত ফল পাওয়া যায়।

জাবাণু সার হিসাবে ব্যবহৃত হয় এমন আর এক শ্রেণী হল ফসফোব্যা ক্টিরিন। বিভিন্নগণের, বিভিন্ন প্রজাতির জীবাণু তাদের নানাবিধ ক্রিয়ার ফলে মাটির অন্তর্নীয় ফসফেটকে বা মাটিতে যুক্ত পাপুরে ফসফেট, অন্থিচূর্ব বা ফসফরাস সমুদ্ধ ক্ষারধর্মী ধাতুমল থেকে দ্রবনীয় পর্যায়ের ফসফেট মুক্ত করতে সক্ষম। এদের মধ্যে ব্যাসিলাস মেগাথেরিয়াম (Bacillus megatherium) প্রজাতির ব্যাক্টিরিয়াকে জাবাণু সার হিসাবে প্রয়োগ করা হয়ে থাকে। এই শ্রেণীর জীবাণু প্রধানতঃ মাটির অন্তর্বীয় জৈব পর্যায়ের ফসফরাস বা অজ্বৈর ট্রাইকালিসিয়াম ফস্মেটের উপর সক্রিয় হয়ে দ্রবনীয় ফসফরাস মুক্ত করতে সক্ষম। কৈব ফসফরাস সমৃদ্ধ পদার্থের উপর এদের ক্রিয়া ফ্রাফেটেরে উৎসেচকঘটিত এবং অজ্বৈ ফসফরাস কর্মের কর্মান ব্যাসিলাস মেগাথেরিয়াম ছাড়াও অজ্বন্র ব্যাক্টিরিয়া, এক্টিনামাইসিট্ এবং ছত্রাক জৈব বা অজ্বৈ ফসফরাস সমৃদ্ধ অন্তর্নীয় যৌগ থেকে দ্রবনীয় পর্যায়ের ফসফরাস মৃক্ত করতে সক্ষম।

অন্ন পরিমাণে প্রয়োজনীয় মৌলের ছক্ত (micro-elements) অবশ্ কোন জীবাণু সার প্রয়োগের প্রচলন নেই। পদান্তরে, অনেকেই মুক্তজীবী নাইট্রোজেন বন্ধনকারী জীবাণুর প্রয়োগে প্রাপ্ত প্রফলকে কেবলমাত্র নাইট্রোজেন বন্ধনজাত বলে স্বীকার করেন না। অনেক বিজ্ঞানীর মতে মাটিতে প্রজ্যোটোব্যাক্তারের সাফল্যের কারণ এদের উদ্ভিদ হর্মোন উৎপাদন ক্ষমতা। কিন্তু এ সম্বন্ধের গবেষণা না হওয়ায় নিশ্চিত করে কিছু মন্তব্য করা কঠিন। তবে অবশ্ বেশ কিছু নাইট্রোজেন বন্ধমকারী ব্যাক্তিরিরা, নীলসবুজ লোওলা বা সাধারণ জীবাণু বিভিন্ন উদ্ভিদ উদ্দীপক পদার্থ উৎপাদনে ক্ষম এ

ভথ্য প্রমাণিত হয়েছে। জমিতে নার হিনাবে এদের (এইনব জীবাণুর)
প্রয়োগরীতি আজও প্রচলিত হয় নি। এর কারণ হল উপযুক্ত ক্ষমতাশালী
জীবাণু চয়নের গবেবণার অভাব। বিভিন্ন উচ্চ শক্তিশালী নাইট্রোজেন বন্ধনকারী
বা ক্লক্টে দ্রবণকারী জীবাণুর মধ্যে এ ক্ষমতা উল্লেখযোগ্য পরিমাণে বর্ত মান
বাক্তে পারে। এরূপ কয়েকটি প্রজাতির সন্ধান ও তাদের সন্তাবনা সম্বন্ধে
পরবর্তী অধ্যায়ে আলোচিত হবে।

ক্ষবিজ্ঞানে জীবাণ্ নার হিসাবেই শুধু জীবাণ্র ব্যবহার সীমিত নেই।
কৃষিক্ষেত্রে কীটনাশক হিসাবে যে বিবিধ রাসায়নিক জব্যাদি প্রয়োগ
করা হর ভার নানাবিধ কৃষ্ণলের হান্ত থেকে রক্ষা পাবার একটা
সমাধান নির্বাচিত্ত জীবাণুর প্রয়োগে সম্ভব হয়েছে। বিভিন্ন উদ্ভিদরোগ উৎপাদনকারী পত্তর্গ, বিশেষ বিশেষ জীবাণুর দ্বারা আক্রান্ত ও
নিমূল হয়। উপযুক্তভাবে ঐসব জীবাণুকে চয়ন করে পত্তর্গরিষ্ট উদ্ভিদে
প্রয়োগ করলে অপকারী পতঙ্গের হান্ত থেকে ফ্সলকে রক্ষা করা যাবে। এই
পত্তর্গ নির্য্ লকারী জীবাণুরা বিভিন্ন প্রভাতির ভাইরাস, ব্যা ক্টিরিয়া, প্রোটোজোয়া
বা ছত্রাক হয়ে থাকে। এদের বিপুল সন্তাবনা সম্বন্ধেও পরবর্তা অধ্যায়ে বিস্তারিত
আলোচনা করা হবে। জীবাণু বিজ্ঞানের ব্যবহার আজ নানা শিল্পে এক গুরুত্বপূর্ণ
ভূমিকা প্রহণ করেছে। আশা করা যায় ক্ষণিক্ষেত্রেও এর প্রয়োগ দিন দিন বেডে
চলবে এবং এর ফলে আরো নৃতন নৃতন দিগস্ত উল্লোচিত হবে। ক্রম্বিবিজ্ঞানে
জীবাণুর সম্ভাবনা সম্বন্ধে জনসাধারণকে, বিশেষ ফরে ক্রমিজীবিজের
সচেত্রন করাই হল এই পুল্ফিকার মূল উদ্দেশ্য।

নীলসবুজ শেওলা এবং এজোলা

মাটি, জল, বাধানো সাঁতিস্যাতে জারগা এমন কি গাছের ছালে পর্যন্ত শাওলার বিস্তার সর্বত্র। সবুজ, নীলসবুজ, কালচে সবুজ, হলদে সবুজ ইত্যাদি নানা বর্ণের সম্ভার সাজি য় শেওলা প্রকৃতির সর্বত্র বিরাজ করছে। প্রকৃতপক্ষে শেওলা হল খ্যালাস শ্রেণীভুক্ত (খ্যালাস অর্থ থাদের মূল, কাণ্ড, পাতা, ফুল ও ফলের পার্থক্য করা যায় না) এককোষী বা বহুকোষী সবুজ উদ্ভিদ। এরা নিজের খাল্প নিজে উৎপাদন করতে পারে। এরা কোষ দ্বিভাজন (binary cell division), অযৌন এবং যৌন প্রক্রিয়ায় বংশ বৃদ্ধি করতে পারে বলে এদের বংশ বৃদ্ধির হার অত্যন্ত ক্রত হয়ে থাকে। এরা সচরাচর যেখানে জন্মায় সেধানে একটা পিচ্ছিল আন্তরণের স্পৃষ্টি করে।

বৈজ্ঞানিক ফ্রিংসের মতে শেওলাকে নয়টি শ্রেণীতে ভাগ করা যায়, কিছ বর্ত মানে পেওলাকে দশটি শ্রেণীতে ভাগ করা হয়েছে। এই শ্রেণীগুলি পরবর্তী পৃষ্ঠায় দেখানো হল:

বিভিন্ন জাতের শেওলা বিভিন্ন স্থানে জনায়। যেমন মূক্ত জলে ভাসমান জবস্থায়, স্বোতের জলে, জলাশয়ের তলায়, পাথরের গায়ে, সমুদ্রের লবণাক্ত জলে, গাছ বা প্রাণীর দেহে এবং মাটিতে। আমাদের প্রধান আগ্রহ হল শুরু মাটিছে বসবাসকারী শেওলাদের নিয়ে। এক শ্রেণীর শেওলা জন্মায় মাটির উপরিস্তরে, এদের বলে শুফ্রেফাইট (Saphophytes) এবং আর এক শ্রেণী জনায় মাটির লীচের স্তরে, এদের বলে ক্রিপটোফাইট (Cryptophytes)। ভিজা মাটির উপর যে শেওলা জন্মায় তারা হল স্বভাজী (Photo synthetic) কিন্তু পরিবৃত্তিত পরিবেশে তারা ক্রোরোফিল হারিয়ে মাটির নীচের শুরে ব্যা ক্রিয়িয়া বা ছত্রাকের মত পরভাজী (heterotrophic) জীবন, চালাতে পারে। কিন্তু মাটির উপরিতলে উঠে এলে এরা আবার স্থাভাবিক স্বভোজী পর্যায় ফিরে পায়। মাটিতে প্রধানতঃ স্বুজ, নীলসবুজ এবং হলদে সবুজ শেওলার প্রাধান্ত দেখা যায়।

নীলসবুজ শেওলা, ব্যা ক্টিরিয়া বা এক্টিনোমাইসিটসের মন্ত অবিক্রন্ত নিউক্লিয়াসযুক্ত (Procaryotic) অর্থাৎ নিউক্লিয়াসের মূল উপাদান ভি এন এ. সাইটোগ্লাজম থেকে নিউক্লিয় পর্দা দারা আহত হয়ে পৃথকভাবে অবস্থান করে না।

বৈজ্ঞানিক নাম	পারচিত নাম
না য়নোফিসি	নীলসবুজ শেওলা
Cyanophyceae	FULL FACIFICATION OF THE SAFETY
THE MER PIKE ST.	Mark ten Sin 1970
মিস্কোফিনি	astroni escribility are
Myxophyceae	a principal de la company
ক্লোরোফিসি	স্বুজ শেওলা
Chlorophyceae	CANADA SE
ইউমেনোফিসি	ক্ষলা শেওলা
Euglenophyceae	ALL THE PARTY OF T
জ্যান্থোফিসি	হলদে সবুজ শেওলা
Xanthophyceae	Service Committee
ব্যাশিলারিওফিসি	ভাইএটম
Bacillariophyceae	
পাইরোফিনি	অগ্নিশৈবাল
Pyrophyceae	
কিওফিসি	বাদামী শেওলা
Phaeophyceae	
রোডোফিনি	লাল শেওলা
Rhodophyceae	
<u>কাই</u> দোফিসি	সোণালী শেওলা
Chrysophyceae	6 (1 (1-(1 6 10-1)
ক্রিপটোফি নি	হিম শেওলা
Cryptophyceae	(বর্ণের কোন বিশেষত্ব নেই)

কিন্তু অন্ত শেওলারা বিগ্রন্ত নিউক্লিয়াসমুক্ত (Eucaryotic) হর অর্থাৎ তাদের ডি. এন. এ. নিউক্লিয় পর্দা দারা আবৃত থাকে এবং সাইটোপ্লাজম থেকে পৃথকভাবে অবস্থান করে। চাবের জমিতে, জলে ভাসমান নীলসমুক্ত শেওলা অক্লিজেন উৎপন্ন করে গাছের শিক্ড এবং মাটির জীবাণুর (সবাত খসনকারী) খসনের জন্ত প্রয়োজনীয় অক্সিজেন সরবরাহের গুরুত্বপূর্ণ ভূমিকা পালন করে । এহাড়া বিভিন্ন শ্রেণীর শেওলা মাটিতে আঁঠালো পদার্থ উৎপাদন করে মাটির স্বাভাবিক গঠন বৈশিষ্ট বজান্ন রাখে, যার ফলে ভূমিক্ষ রোধ হয়। এইসব ক্ষমতা ছাড়াও নীলশবুজ শেওলা মুক্তজীবী বাা ক্রিরিয়ার মত বায়ুমগুলের নাইট্রোজেন বন্ধনে সক্ষম।

শায়ানোফিসি বা নীলসবুজ শেওলার বিশেযত্বগুলি হল:

- (১) এরা অবিশ্রস্ত নিউ ক্লবাশযুক্ত (Procaryotic),
- (২) এদের জীবনচক্রে চলনাজ সম্পূর্ণভাবে অনুপশ্বিত (aflagellated),
- (৩) কোন জিনিস বেয়ে বেয়ে চলা (gliding motion) হল এদের চলনের বৈশিষ্ট।
- (৪) এদের মধ্যে সালোক-সংশ্লেষকারী রঞ্জক পদার্থ হিসাবে বিলোপ্রোটিনের (ফাইকোসায়ানিন বা ফাইকোএরিথিন) সঙ্গে এক অনম্য ক্যারোটিন মিজো-জ্যানথিন এবং মিজোক্রোরোফিল থাকে।
- ্রে এদের দেহে সঞ্চিত খান্ত হিদাবে মজ্ত থাকে সায়ানোফাইসিন নামে একপ্রকার বিশেব প্রোটিন।
- (७) এদের মধ্যে যৌন জ্বন দেখা যায় না বটে কিন্তু ব্যাক্তিরিয়ার মক্ত অবিন্যন্ত যৌন সন্মিলনের (Conjugation) মত ঘটনা ঘটা অস্বাভাবিক নয়।

ব্যা ক্রিরিয়ার সক্ষে নীলাবুজ শেওলার সাদৃশ্যঃ গাইজোফাইটা পরের (Phylum—Schizophyta) ছটি শ্রেণী (Class) হল, গাইজোফিসি [(Schizophyceae)—নীলাবুজ শেওলা] এবং গাইজোমাইসিট [(Schizomycetes)—বাণি ক্রিরিয়া] এদের প্রধান ভিনটি মিল হল অবিগ্রন্থ নিউক্লিয়ান (Procaryotic nucleus), যৌন জননের অক্ষমতা এবং প্লাসটিড হীনতা (lack of plastid)। এছাড়াও বিভিন্ন জৈবরাসায়নিক দৃষ্টিভ্লিতেও বাণি ক্রিয়া ও নীলাবুজ শেওলার মিল খুঁজে পাওয়া যায়। কিন্তু স্বচেয়ে বড় মিল হল একিবারোটিক উৎপাদন এবং নাইট্রোজেন বন্ধনক্ষমতা যা সাধারণতঃ স্থবিগ্রন্থ কিউক্লিয়াসযুক্ত কোষে প্রায়ই দেখা যায় না। নীলাবুজ শেওলার জীবনচক্রেছিটারোসিস্ট (heterocyst) নামক এক বিশেব অবস্থাদেখা যায়। এই ছিটারোসিস্টের মধ্যেই নাইট্রোজেন বন্ধন হয় বলে অনেক বিজ্ঞানীর বিশাস।

অর্থাৎ দেখা যাচ্ছে কৃষি জমিতে বিশেষ করে জলমগ্ন ধান

জনিতে জীবাণু সার হিসাবে নীলসবুজ শেওলা প্রয়োগের ফল হবে বহুমুখা। প্রথমতঃ এরা জমিতে বায়ুমণ্ডলীয় নাইটোজেন বন্ধন করে জমির উর্বরতা বাড়াবে, দিতীয়তঃ এরা মারা গেলে জমিতে কৈবকার্বন হিসাবে বুক্ত হবে, বার ফলে জমিতে ন্তন জীবাণু জন্মানোর উপযুক্ত পরিবেশ বজায় থাকবে এবং তৃতীয়তঃ তাদের সালোকসংশ্লেষ ক্রিয়ায় নির্গত অক্রিজেন জীবাণু এবং উদ্ভিদ মূলের খদনের উপযোগী পরিবেশ ক্ষি করবে। সারানোফিসি শ্রেণীর শেওলাকে চারটি প্রধান বর্গে (order) ভাগ করা হয়।

- (১) জুককেনন (Chroococcales)—সাধারণতঃ এককোষী হয়ে থাকে। এদের হিটারোসিট্ট এবং হর্মোগোন থাকে না (হর্মোগোন হল গোল প্রান্তবিশিষ্ট ছোট ট্রাইকোম—অর্থাৎ কোষের মালাকার সজ্জায় গঠিত অমুস্ত্র)।
- (২) কিমোসিফোনেলস (Chaemosiphonales)— সাধারণতঃ এদের কেগ্রন্থলি একক বা শ্রেণীবদ্ধভাবে থাকতে পারে। এদের কোবের বাইরে সিধ (Seath) থাকে।
- (৩) প্লিউরোক্যাপদেশন (Pleurocapsales)—এদের অমুস্ত্ত্র (filament)
 হিটারোসিন্ট খুব স্পষ্ট নয়।
- (8) হরমোগোনেল্স (Hormogonales)—এরা অমুস্ত্র বিশিষ্ট, কিন্তু এদের অমুস্ত্রে হিটাগোনিণ্ট এবং হর্মোগোনিয়ার অবস্থিতি খুব স্পষ্টভাবে দেখা যায়।

বাঙালী জীবাণু বিজ্ঞানী প্রাণকুমার দে-এর ১৯৩৯ সালের যুগান্তকারী আবিফারের পর। নীলসবুজ শেওলা আণবিক নাইটোজেন বন্ধন করতে পারে) থেকেই নীলসবুজ শেওলার উপর ক্লয়ি বিজ্ঞানীদের দৃষ্টি নিবদ্ধ হয়। বিশেষ করে জলমগ্র ধান জমিতে কোন রাসায়নিক সার প্রয়োগ ব্যতীত কিভাবে বছরের পর বছর ধানের ফলন অব্যাহত থাকে এই ঘটনার উপর পরীক্ষা চালাতে গিয়ে তিনি এই যুল্যবান তথাটি আবিদ্ধার করেন।

এরপর বহু নীলসবুজ শেওলার উপর নানাবিধ গবেষণা চলেছে। বর্ত মানে ক্ষয়ি জমিতে নীলসবুজ শেওলার ভূমিকা নিঃসন্দেহে প্রতিষ্ঠিত হয়েছে; এ সম্বন্ধে কোন দ্বিধা নেই। সাধারণতঃ নাটক (Nostoc), এনাবীনা (Anabaena), সিলিণ্ড্রোম্পার্ম Cylindrospermum), ক্যালোপ্রিক্স (Calothrix) টলিপোণ্ড্রিক্স (tolypothrix), অলোসিরা (Aulosira) প্রভৃতি নীলসবুজ শেওলা নাইট্রোজেন বন্ধন ক্ষমতার অধিকারী। এদের মধ্যে ন টক, এনাবীনা এবং সিলিণ্ড্রোম্পার্মামেরই সর্বাধিক প্রজাতি নাইট্রোজেন বন্ধন ক্ষমতার অধিকারী।

নীলসবুজ শেওলার গবেষণা সারা বিখে সমানতালে চলছে। স্কটল্যাণ্ডের বিভিন্ন জ্বমিতে মুক্তজীবি নাইট্রোজেন বন্ধনকারী সক্রিয় শেওলাদের একটা তালিকা প্রকাশ করা হল (তালিকা >)।

ভালিকা ১ ঃ প্রাকৃতিক উৎস নির্ভন নীলসবুজ শেওসার প্রজাতি (দ্বিওমাট, ১৯৭৩)

প্রাকৃতিক উৎস	প্রধান প্রধান গণের নীল্মবুজ শেওলা
উন্মৃক্ত জমি	নস্টক, এনাবীনা, গিলিভে, ক্পার্মাম,
10000	অস্যিকেটোরিয়া
আমিক পঞ্চিল জমি	অস্যিলেটোরিয়া, এনাবীনা,
	লিংগবিয়া নস্টক
স্রলবর্গীয় বনভূমি	অস্যিলেটোরিয়া
পর্ণমোচী বনভূমি	नर्भे क
জলাভূমি	অস্যিলেটোরিয়া, কোর্মিডিয়াম,
	নস্টক, এনাবীনা
চিরাচরিত তৃণভূমি	নস্টক, অস্যিলেটোরিয়া, লিংগবিয়া,
	অলোসিরা, এনাবীনা, ফোর্মিভিয়াম
ध्यामम् व्याखन	बम्हें क
নদীর বাঁক	অন্যিলেটোরিরা, নস্টক, কোর্মিডিরাম
শিলাগাত্র	এনাবীনা, এনবিনোপসিস, ফোর্মিভিয়াম
	নস্টক, লিংগবিয়া, অস্যিতেলটোল্লিয়া
লবণাক্ত শিলাভট	ক্যালো থি, জ
বালিয়াড়ি	নস্টক, এনাবীনা, লিংগবিয়া,
	অসিলেটোরিয়া
লবণাক্ত জলাভূমি	কোর্মিডিয়াম, অস্যিলেটোরিয়া, লিংগবিয়া,
	এনাবীনা, নস্টক, নিডেউলেরিয়া, গ্লিপ্তক্যাপসা

এইসকল জীবাণু প্রথমতঃ সৌরশক্তি থেকে কৃষিক্ষেত্রে সরবরাহের উপযোগী ৰক্তি সরবরাহ করেছে জৈব কার্বন সরবরাহের মাধ্যমে, দ্বিতীয়তঃ এরা নাইট্রোজেন বন্ধন করে জমির উর্বরাশক্তি বৃদ্ধি করছে। নাইট্রোজেন বন্ধনকারী কয়েকটি প্রজাতির নীলসবুজ শেওলা হল:)

ৰৰ্গ—ক্ৰেকাকেন্স

Chroococcales

ৰৰ্গ—নগ্টকেল্য Nostocales শ্ৰেণী নগ্টকেল্য Nostocaceae নাইটোজেন বন্ধনক্ষম প্রজাজি ক্লোরোগ্নিয়া ফ্রিটসি Chloroglea fritschii এনাবীনা এম্বিগুয়া

এ. সিলিড্রকা

Anabaena ambigua

- A. Cylindrica
- এ. ফার্টিলিসিমা
- A. fertilisima
- এ ফুমিকোলা
- A. flumicola
- এ. তাতিকুলয়েডস
- এ ভ্যারিএবিলিস
- A. variabilis
- थ. এজোল
- A. azollae

এনবিনপ্সিস্সাকু লারিস্ Anabaenopsis circularis

সিলিডোম্পার্মান ম্যাজাস Cylindrospermum majus.

সি. লাইকেনিফমি

C. licheniforme

নি ক্রেরিকা

C. sphaerica

নাটক কমিউন Nostoc commune

ন. পাংটিফর্মি N. punctiforme

A. paneryou

ন. মাস্কোরাম N. mascorum

এই শেওলাগুলিকে ক্ববিক্ষেত্রে প্রয়োগ করতে গেলে নিম্নলিখিত বিষয়গুলির উপর গুরুত্ব দিতে হবে—

- (১) জীবাণ্গুলির বৃদ্ধির ছার এবং তাদের শারীর বৃত্তীর (Physiological) অবস্থা।
- (২) জীবাণু স্টেনগুলির (strain) জমিতে সহনশীলতা (adaptability) এবং উচ্চ নাইটোজেন বন্ধন ক্ষমতা।
 - (৩) স্ট্রেনগুলির অন্ত জীবাণুর সঙ্গে প্রতিযোগিতার ক্ষমতা।
- (৪) জীবাণুগুলির প্রকৃতি এবং তাদের কোষের বাইরে পরিত্যক্ত (extracellular) পদার্থের ধর্ম।
 - (e) এদের বাণিজ্যিক ভিত্তিতে উৎপাদন সম্ভাবনা।
 - (৬) জমিতে এদের প্রয়োগ সম্প্রা এবং
 - (१) বিশেষ করে জলমগ্ন ধান জমিতে এদের সাফল্য লাভের ক্ষমতা।

নাইটোজেন বন্ধনকারী নীলসবুজ শেওলারা সাধারণতঃ অভোজী এবং এরা ফ্রালোক থেকে শক্তি সংগ্রহ করে (Photo autotroph)। কিন্তু নস্টক, পাংটিফরির ক্ষেত্রে ব্যক্তিক্রম দেখা যায়। এরা ব্যাক্তিরিয়ার মত মৃতজীবী হলেও নাইটোজেন বন্ধনে সক্ষম। সাধারণতঃ নীলসবুজ শেওলা বায়ুমগুলীয় নাইটোজেন ছাড়াও, নানারকমের উৎস থেকে নাইটোজেন গ্রহণ করতে পারে। কিন্তু সহজ্বতা নাইটোজেনের যোগান থাকলে নাইটোজেন বন্ধনের প্রবণতা ছাস পায়। পর্যাপ্ত অ্যামোনিয়াম লবণ সরাসরি সরবরাহ করলে নীলসবুজ শেওলার নাইটোজেন বন্ধন সম্পূর্ণরূপে বন্ধ হয়ে যায়। মাটির pH প্রথম বা অতি অলমাত্রায় ক্ষারধর্মী হলে তা নাইটোজেন বন্ধনের উপযুক্ত পরিবেশ বলে বিবেচিত ছয়। যেহেতু জলে ডোবা ধান জমি (submerged rice field) আয়িকই ছোক বা ক্ষারধর্মীই হোক জসমগ্র অবহায় তার জমন্ত্র বা ক্ষারম্বের মাত্রা

কমে প্রায় প্রশম অবস্থায় পৌছায়, তাই জলমগ্ন ধানজমিতে স্বস্ময়ই নীল-সবৃদ্ধ শেওলার সক্রিয় থাকার পরিবেশ বজায় থাকে। ক্যালসিয়ায়, সোডিয়ায়, বেরিয়ায়, কোবাল্ট ইত্যাদি ধাতব মৌল নীলসবৃদ্ধ শেওলার নাইট্রোজেন বন্ধনের সময় প্রেয়াজন হয়ে থাকে। এছাড়া, মলিবডেনাম নাইট্রোজেন বন্ধনের ক্ষেত্রে অপরিহার্য মৌল হিসাবে বিবেচিত হয়। পরীক্ষায় দেখা গেছে নাইট্রোজেন বন্ধনকারী সক্রিয় উৎসেচক নাইট্রোজেনেসের (Nitrogenase) মধ্যে মলিবডেনাম বর্তমান। সাধারণতঃ এইসব স্বভোজী নাইট্রোজেন বন্ধনকারী জীবাণুর বৃদ্ধির জন্ত কোন উদ্দীপক রাসায়নিক পদার্থ (growth promoting substance) বা হর্মোনের প্রয়োজন হয় না।

বিভিন্ন গণের (genus) নীলসরুত্ব শেওলার মধ্যে নাইটোজেন বন্ধন ক্ষমতার পার্থক্য থাকা স্বাভাবিক কিন্তু একই গণের বিভিন্ন প্রজ্ঞাতির (species) মধ্যেও নাইটোজেন বন্ধন ক্ষমতার প্রচুর পার্থক্য দেখা যায়। এই পার্থক্য উৎস স্থানভেদে একই প্রজাতির মধ্যেও দেখা যায়। এর কারণ হল একই প্রজাতিস্থক্ত হলেও এদের মধ্যে স্টেনের পার্থক্য থাকে। এই পার্থক্যের কারণ প্রকৃতির বিভিন্ন স্থানে অভিযোজন বিভিন্ন হয়ে থাকে। বলা বাহুল্য নাইটোজেন বন্ধন ক্ষমতার পার্থক্যের মূল কারণ নিহিত থাকে জীনের মধ্যে (নীফ-Nif-জীন নাইটোজেন বন্ধনকারী জীন-Nitrogen fixing gene)। নীচে ক্ষেক্টি পরীক্ষিত প্রজাতি এবং ভাদের নাইটোজেন বন্ধন ক্ষমতার ভালিকা দেওয়া হল:

ভালিকা ২ ঃ ভিন্ন প্রজাতির নীলসবুজ শেওলার নাইট্রোজেন বন্ধন ক্ষমতা (সংগৃহীত)

(क) इन्।	পরীক্ষিত সময়মাত্রা (দিনে)	নাইট্রোজেন বন্ধনের পরিমাণ মিলিগ্রাম		
COMPANY HER AND	The Color Sellingson	(প্রতি ১০০ মি লি. পুষ্টি দ্রবণে)		
এনাবীনা অৱাইজি Anabaena oryzae (দে, ১৯৩৯)		8.8		
এ. ভ্যারিএবিলিস A, variabilis	& o	6.9		
(CF, 5505)				

		Allies Services Services
শেওলা	প্রীক্ষিত সময়মাত্রা (দিনে)	লাইট্রোজেন বন্ধনের পরিমাণ মিলিগ্রাম
		(প্রতি ১০০ মি.লি
A STATE OF THE PARTY OF THE PAR	A PERSONAL PROPERTY.	পুষ্টি দ্ৰবণে)
এ. ন্যাভিকুলয়েডস	60	0.9
A. naviculoides		
((T, 2202)		
এ ফাটি লিসিমা	98	6.4
A, fertilissima		
(गिः, ३२६२)		
ত্ৰ. ত্ৰন্থিগুয়া	8¢	6.6
A. ambigua		
(निः, >>8२)		
এ. এজোল	90	0.80
A, azollae		
((एक देवमन, ३०७०)		
The state of the s	00	2.5
নস্টক প্রজাতি		AS RESIDENT AND STORY
Nostoc sp.		
(ভেন্কটর্মন, ১৯৬০)	51 CC	৩.৯২
গিলিভে শার্মাম কেরিব	er a service	
Cylindrospermum spheric	a Thinks In 1216	THE BALL STATE
((७इ हे दयन, ১৯৬৯)	1 7 7 7 8 PM	

অপর একটি তালিকা দ্বারা স্থানভেদে নস্টক প্রজাতির নীলদবুজ শেওলার নাইট্রোজেন বন্ধন ক্ষমতার পার্থক্য পরবর্তী পৃষ্ঠায় দেখানো হল।

কোন জমিতে বছরের পর বছর নীলসবুজ শেওলা জন্মতে থাকলে সেই জমিতে ফলন বৃদ্ধি পেতে দেখা যায় এবং তার ফলশ্রুতি হিসাবে জমির উর্বরা শক্তিও বৃদ্ধি পেতে থাকে। মাটিতে নাইটোজেনের পরিমাণ বৃদ্ধি করা বা জমির উর্বরা শক্তি বৃদ্ধি করানোর জন্ম জীবাণুকে কতকগুলি বিশেষ গুণের অধিকারী হতে হয়। প্রথমতঃ তাকে উচ্চ নাইটোজেন বন্ধন ক্ষমতা সম্পন হতে হবে। দিতীয়তঃ তার আবদ্ধ নাইটোজেনের অস্ততঃ একটা অংশকে সহজনতা নাইটোজেনজাত পণ্য হিসাবে তৎক্ষণাৎ মুক্ত করতে সক্ষম হতে হবে। এদের নাইটোজেন বন্ধন ক্ষমতা

ভালিকা ৩ ঃ ভিন্ন স্থান থেকে সংগৃহীত নস্টক প্রজাতির নাইট্রোজেন বন্ধন ক্ষমতা (সংগৃহীত)

সংগ্রহের স্থান ৪০	পরীক্ষার সময়কাল (দিনে)	নাইট্রোজেন বন্ধনের পরিমাণ (মিলিগ্রাম)
চণ্ডিগড়	೨೦	১৩ প্রতি ১০০ মিলি-
পাঞ্জাব		লিটার গৃষ্টিদ্রবলে
কলিকাতা	90	
পশ্চিমবৃদ্ধ		0.26
ওখনা	/ 90	
मि ल्ली		2.09. "
গোপাল ন্যুদ্ৰ		Mary Mary Total
गा जाब	90	0.95 "

মাটির ধর্ম এবং গাছের রাইজোফ্রিরারের পরিবেশের উপর নির্ভরশীল। সাধারণতঃ নীলসবুজ শেওলা যে নাইট্রোজেন বন্ধন করে তার প্রায় শতকরা ৫০ ভাগই তৎক্ষণাৎ মৃক্ত হয়। ফলে গাছ তা গ্রহণ করতে পারে। লে'হা বা পটাসিয়ামের অভাবে নীলসবুজ শেওলার বন্ধনকত নাইট্রোজেন তাদের কোষে প্রোটন হিসাবে কোষ থেকে নির্গত হয়। কিন্তু জমিতে নাইট্রেটের পরিমাণ বুদ্ধি পেলে নীলসবুজ শেওলা সেই নাইট্রোজেন গ্রহণ করে, ফলে নাইট্রোজেন বন্ধনের মাত্র। হ্রাস পার। অর্থাৎ জমিতে নাইট্রেট পর্যায়ের লবণ প্রায়োগ করলে নীলসবুজ শেওলা নাইট্রোজেন জাত পদার্থ মুক্ত করবে না এটাই স্বাভাবিক। সাধারণতঃ জলে নিমগ্র ধান জমিতে, মাটি ক্রমে ক্রমে বিজ্ঞারিত অবস্থায় পৌহায়। তথন জমিতে নাইট্রেট লবণ থাকতে পারে না। ফলে জলমগ্র জমিতে নাইট্রেট, নাইট্রোজেন বন্ধনে প্রতিবন্ধকতা তৃষ্টি করতে পারে না। কিন্তু পরিবেশ অত্যধিক বিজ্ঞারিত অবস্থায় পৌছালে মাটি থেকে নাইট্রেডিসেনজাত পণ্য অ্যামোনিয়া হিসাবেও মুক্ত হতে পারে। নীলসবুজ শেওলা মুক্ত অ্যামোনিয়ার বোগান পেলে

কাইট্রোজেন বন্ধন সম্পূর্ণভাবে বন্ধ করে দেয় তা আমরা জেনেছি। নীলসবুজ শেওসার কোষ থেকে মুক্ত অনাবশ্যকীয় পণ্যাদি নানাভাবে পরিবেশের উপর প্রভাব বিস্তার করে। নীল পুল শেওলা কোষের বাইরে জৈব পদার্থ বিশ্লেষণ উপযোগী উৎসেচক নির্গত করে অন্ত জীবাণুদের সহায়তা করে। এ ছাড়া বিভিন্ন নির্গত পদার্থের মধ্যে চিলেট (chelate) উৎপন্নকারী যৌগ উৎপাদনের ক্ষমতাও লক্ষিত हत्र। किंग्रु गर्वाधिक উল্লেখযোগ্য हन वह नीनगरुक म्थलांत्रहे नानांविध উদ्ভिদवृद्धि উদ্দীপক রাসায়নিক পদার্থ উৎপাদনের ক্ষমতা প্রমাণিত হয়েছে। এইসব পদার্থের মধ্যে রয়েছে বিভিন্ন অক্সিন, ভিটামিন, অ্যামাইনো ত্যাসিড এবং পালপেপটাইড জাতীয় নাইট্রোজেন ঘটিত যোগ। কিছু কিছু নস্টক যথেষ্ট পরিমাণে মুক্ত এাম ইনো এ্যাসিড (free amino acid) মুক্ত করে, যেমন অ্যাসপারটিক এ্যাসিড (asparatic acid), মুটামিক এগাসিড (glutamic acid), আলানিন (alanine) ইত্যাদি। এ ছাড়া কমেলা নস্টক ভিটামিন-বি কমপ্লেক্স—পায়ামিন, রিবোফ্লেভিন, বায়োটিন, নিকোটিনিক এাসিড, পেণ্টোপেনিক এাসিড, ভিটামিন বি-:২ ইত্যাদি মুক্ত করে থাকে। নীলসবুজ শেওলার কোষ থেকে মুক্ত বিভিন্ন রাসায়নিক পদার্থ বিভিন্ন জীবাণুকে তাদের সঙ্গে সঙ্ঘবদ্ধভাবে (Symbiotically-একে অপরের পরিপুরক হিসাবে] বাস করতে সাহায্য করে। ছত্রাক, লিভার ৬ট (liver wort), ফার্ন (fern) গুপ্তবীজী উদ্ভিদ (angiosperm), এদের তাই নীলসবুজ শেওলার সঙ্গে সহাবস্থানে দেখতে পাওয়া যায়। এ ধরনের সহাবস্থ'নে প্রায়ই নীলসবুজ শেওলা নাইট্রোজেনের সরবরাহ দেয় এবং অপর অংশীদার নীলসবুজ শেওলাকে বাইরের আক্রমণ থেকে রক্ষা করে। ক্যালোপ্তির স্কোপালোরাম (Calothrix Scopulorum) ল্বণাক্ত জলে নাইট্রোজেন জাত পদার্থমুক্ত করে, যাকে আশ্রম করে বিভিন্ন ছত্রাক, শেওলা বা ব্যা ফিরিয়ারা বেঁচে থাকে। জলে ভাসমান অনেক উদ্ভিদই নীলসবুজ শেওলার মুখাপেক্ষী হয়ে থাকে। নালসবুজ খেওলা অনেক সময় জলে বিভিন্ন ত্ষিত ধাতৰ লবণ চিলেট গঠনের মাধ্যমে বা রোগ জীবাণু মুক্ত করার কাজে গুরুত্ব-পূর্ণ ভূমিকা নের। বিশেষ করে কলিফর্ম জীবাণুর (Coli form) ক্ষেত্রে নীলসবুজ শেওলার ভূমিকা থুবই উৎসাহব্যঞ্জক। প্রকৃতি ও পরিবেশের উপর নীলসবুজ শেওলার কতটা আধিপত্য এ থেকে তা কিছুটা বোঝা যায়। কোন কোন ক্ষিবিজ্ঞানীর মতে নীলসবুজ শেওলার কৃষি জমিতে সাফল্য শুধুমাত্র নাইট্রোজেন বন্ধনের জন্ত নয়। উদ্ভিদ বৃদ্ধি উদ্দীপক হর্মোনজাত পদার্থ উৎপাদন নীলসবুজ শেওলার ক্রিয়ামানকে বহুলাংশে বৃদ্ধি করে।

এইসব বিভিন্ন দিক বিচার করার পর উৎক্রপ্ত মানের জীবাণুকে জমিতে প্ররোগ করার সম্ভাবনা সম্বন্ধে চিন্তা করা হয়। তবে অনেকেই মাটিতে নীলসবুজ শেওলা বাইরে থেকে প্রয়োগ না করে জমির স্থানীয় শেওলার ক্রিয়াকল প বৃদ্ধির অনুকূল পরিবেশ স্পান্তর কথা চিন্তা করেন। এই চিন্তাধারার অবশু বিভিন্ন দিক আছে। কোন জমিতে বাইরে থেকে প্রযুক্ত কোন বিশেষ উচ্চ ক্ষমতাশালী জীবাণ প্রতিবন্দিতার জয়ী হবেই এমন কথা প্রয়োগ করার পর পরীক্ষালব্ধ ফল বিশ্লেষণ না করে বেমন নিশ্চিত হওয়া যায় না, ভেমনই পরিবতিত পরিবেশে শুধু বাঁচার জ্ঞ ভাদের যে সংগ্রাম করতে হয় ভাভে সেই জীবাণুর নাইট্রোজেন বন্ধন বা উপকারী অন্ত শক্তি প্রয়োগের কভটুকু ক্ষমতা সে প্রদর্শন করতে পারবে সে সম্বন্ধেও যথেষ্ট সন্দেহ থেকে যায়। অক্ত দৃষ্টিভঙ্গি থেকে বলা যায় কোন বিশেষ জমিতে উচ্চমালের জীবাণু নাও থাকতে পারে। শুধুমাত্র কোন এক বিশেষ শ্রেণীর জীবাণুর উপযোগী পরিবেশ শৃষ্টি পরীক্ষাগারে যত সহজে করা সম্ভব, জমিতে তা ততটা সহজে সম্ভব হর না, এ ব্যাপারে সব বিজ্ঞানীরাই একমত। পক্ষান্তরে শেওলার উপযুক্ত পরিবেশ স্থৃষ্টি করা হলে (ক্লুত্রিম উপায়ে) স্বাভাবিক কারণেই নীলসবুজ্ব শেওলাকে বেশী করে নাইট্রোজেন বন্ধন ক্ষমতাহীন সবুজ বা অন্তান্ত শ্রেণীর শেওলার সকে প্রতিযোগীতা করতে হবে। কারণ বংশবৃদ্ধির ভ্র্যোগ পেন্নে তারা মাটি থেকে মুক্ত বা বাইরে থেকে প্রযুক্ত সারের সহজলভা মৌলিক উপাদানের উপর বেশী করে ভাগ বসাবে। এর ফলে হয়ত গাছকে আরও তীব্র সংকটের শন্মুখীন হতে হবে। ব্যাক্তিরিয়ার বংশবৃদ্ধি করতে যেমন জৈবসারের প্রান্তেন নীলসবুজ শেওলার উৎপাদন বৃদ্ধির জন্ম জমিতে তেমন জৈবসার প্রয়োগ করতে ছয় न। বরং নীলসবুজ শেওলা মারা গেলে এরাই জমিতে সবুজ সারের কাজ করে থাকে। তাই উপযুক্ত পরিমাণে উচ্চ ক্ষমভাশালী নালসবুজ শেওলা সার জমিতে প্রয়োগ করলে তার নাইটোজেন বন্ধন ও কার্বনজাত বৌগ সরবরাহ ছাড়াও হর্মোন উৎপাদন ও অন্যান্য ক্ষমভা উভিদের ফলন বৃদ্ধিতে সাহায্য করবে সে সম্বন্ধে সন্দেহ दन्हे।

নীলসবুজ শেওলাকে জমিতে প্রয়োগের আগে হুটি ক্ষেত্রে অবশ্রুই গুরুত্ব দিজে

হবে। প্রথমতঃ উপযুক্ত বৈজ্ঞানিক পদ্ধতিতে জীবাণু সার হিসাবে প্রয়োগের উপযোগী প্রজাতিকে উৎপাদন করা এবং ঐ জীবাণুকে কার্যকর অবস্থায় প্রয়োগেরঃ আগে পর্যন্ত সংরক্ষণ।

সাধারণতঃ নীলসবুজ শেওলা চাষের জন্ম যেসব পদ্ধতির সাহায্য নেওয়। হয় তার মধ্যে অন্ততম হল কাঁচের জানালাযুক্ত প্রকোষ্ঠ পদ্ধতি। এই বিশেষ প্রকোষ্টের বৈশিষ্ট্য হল শেওলার চাবের জন্ম প্রয়োজনীয় আলো সরবরাছের পথ ছিলাবে ঐ কাঁচের জানালার ব্যবহার। প্রকোষ্ঠটি মাঝে মাঝে আলোডন করা হয়, উদ্দেশ্য হল নীলসবুজ শেওলার উৎপাদন বৃদ্ধি। অন্ত এক পদ্ধতিতে পলি ভিনাইলের বন্ধ গোল টিউব ব্যবহার করা হয়। টিউবট আলোক স্বচ্ছ তাই ভিতরে স্বচ্ছন্দে শেওলা জন্মাতে পারে। এর চেয়ে ত্বিধাজনক পদ্ধতি হল সুন্ম স্চ্ছিদ্র অগ্নিশীলার উপর শেওলার চাব। এরজন্ম শিলার উপরের স্তর ভিজা থাকার দরকার। এর উপরই নীলসবুজ শেওলার একটা আন্তরণ জন্মায়। এ ছাড়াও উন্নতত্র পদ্ধতিতে চাষ করে অধিকতর শেওসার সরবরাহ পাওয়া যায়। জাপানে বিজ্ঞানী ওয়াতানাবে মুক্ত পদ্ধতিতে বংসরে ৭ টন শেওলা উৎপন্ন করার পদ্ধতি আবিফার করেছেন। এই পরিমাণ শেওলাকে প্রায় ৩০০ হেক্টর ধান জমিতে প্রয়োগ করা চলে। ওয়াতানাবের ভিজা অগ্নিনিলার উপর নীলসবুত্র শেওলার চাব পদ্ধতি অনেক ক্ষেত্রে গ্রহণবোগ্য বলে বিবেচিত হয়েছে। এই পদ্ধতিতে শেওলার শক্রিয় বৃদ্ধির জন্ত অনবরত বুরুদাকারে বাতাস চালানো হয়। গলিত ম্যাগনেশিয়াম ফশফেটকে শেওলা চাবের জন্ত প্রয়োগ করা হয় এবং সেই ম্যাগনেশিয়াম ফশফেটের [Mg3 (PO4)8] অবশিষ্টাংশ জমিতে পার হিসাবে কাজে লাগে।

১৯৬১ সালে ভেক্কটরমন নীলসবুজ শেওলা সংরক্ষণের একটা নূতন পদ্ধতি আবিদ্ধার করেন। এই পদ্ধতিতে ভালোভাবে ধোয়া বালি ধারক হিসাবে ব্যবহার করা হয়। এই বালিকে নাইট্রোজেনহীন শেওলার পৃষ্টি মাধ্যমে ভিজিয়ে নিবীজ (sterilised) করা হয়। এই বালিতে তারপর উপযুক্ত পরিমাণে নীলসবুজ শেওলার প্রলম্বন দিয়ে রোদে শুকানো হয়। এই শুক্ষ পরিচ্ছয় বালিতে নীলসবুজ শেওলার জীবনীশক্তি বছদিন বজায় থাকে। এইভাবে শেওলা রাথাও সহজ্ব এবং তাতে থরচাও কয় পড়ে। এই পদ্ধতিকে আরো সহজ্বভা এবং সন্তা করার জ্বজ্ব প্রেরাগ জমির নিক্টবর্তী স্থানে বড় বড় পাত্রে নীলসবুজ শেওলা চাম কয়া

হয়। এই পদ্ধতিতে ২ মিটার × > নিটার টিনের পাত্রে প্রায় পাঁচ দেযি
পুরু মাটির উপর জল জমানো হয়। মাটির বদলে বালিও ব্যবহার করা যেতে
পারে। নীলসবুল শেওলা বীজায়ন (seeding) করার আগে পাত্রে ২৫০
গ্রাম অপার ফসফেট ও মাটিভেদে পরিমাণ্যত চুল ছড়ানো হয়। চুলের
উপস্থিতিতে শেওলায় বুদ্ধি ভাল হয়। উপযুক্ত পরিমাণে প্রয়োজনীয় শেওলা
প্রয়োগের পর পাত্রগুলিকে আলোতে রাখা হয়। সম্পূর্ণভাবে শেওলার একটা
পুরু আন্তরণ তৈরি হলে তাকে শুকিয়ে ফেলা হয়। শেওলার পিচ্ছিল তার ফেটে
গেলে তাকে সংগ্রহ করে পলিথিন প্যাকেটে প্যাক করা হয় বা সরাসরি জমিতে
প্রয়োগ করা হয়। শেবোক্ত পদ্ধতির সবচেয়ে অবিধা হল এই পদ্ধতিতেই
শেওলার উৎপাদন সবচেয়ে বেশী পাওয়া সন্তব। এই পদ্ধতি ক্রবিত্রীবারা নিজেই
চালাতে পারেন। বিশেষ করে মাটিতে জন্মানো হলে (টিনের ট্রের পরিবর্তে)
জীবাণ্টি উক্ত মাটিতে অভিযোজনের প্রথম পরীক্ষায় উত্তীর্ণ বলে ধরা যেতে
পারে।

ভারতের থান জমিকে মুখ্যতঃ তিনটি পর্যায়ে ভাগ করা যায়; প্রথমতঃ জলময় দশা—চারা বোনার পর থেকে ফসল কাটার আগে পর্যন্ত (অবশ্র ফসল কাটার প্রেই জমি শুকিয়ে আসে), দিতীয়তঃ ফসল কাটার পর জমির শুক্ষ দশা এবং তৃতীয়তঃ এরপর মাটির নিরুদন দশা যথন তাপমাত্রা বৃদ্ধির ফলে জমি ফুটিকাটা হয়ে যায়। এই অবশ্বায় মাটির তাপমাত্রা ৫০° সেন্টিগ্রেড ছাড়িয়ে যায়। আমাদের পূর্ব আলোচনার জ্ঞান থেকেই এটা স্পান্ত বোঝা যায় য়ে মাটি শুকিয়ে গেলে তখন নীলসবৃজ্ব শেওলার ক্রিয় উল্লেখযোগ্য পরিমাণে কমে যেতে বায়। তাই জলময় থান জমিই হল নীলসবৃজ্ব শেওলার সক্রিম থাকার স্বচেয়ে উপয়ৃক্ত সময়। একটা হিসাবে দেখা গেছে প্রান্ত বংলা প্রায় ৯২০ লক্ষ মেটিক টন নাইটোজেন বন্ধন করে এবং ভার মধ্যে প্রায় ৮৩০ লক্ষ মেটিক টন নাইটোজেন বন্ধন ডিনাইটি ক্রিকেসলের ছারা নাই হয়ে যায়। এই বাকি ৯০ লক্ষ্ম মেটিক টন নাইটোজেন উদ্ভিদ্দ গ্রহণ করে বা মাটিতে অবশ্বিষ্ট থাকে। একটা হিসাব অয়্যায়ী বিহারে গড়ে প্রায় প্রতি হেন্টরে ১৫ কেজি নাইটোজেন আবদ্ধ হয়।

জমিতে নীলসবুজ শেওলা সার হিসাবে প্রযুক্ত হলে ভার প্রতিদান

প্রথম বংসরে তেমন পাওয়া যায় না, যদিও দিতীয়, তৃতীয় বংসরে অধিক পরিমাণে ফলনবৃদ্ধি হতে দেখা যায়। প্রতি বৎসর শেওলা প্রয়োগ করে গেলে ধান জমির উর্বরা শক্তি বৃদ্ধি পাবেই। ফ্সলহীন জমির তুলনায়, নীলস্বুজ শেওলা দারা নাইট্রোজেন বন্ধনের পরিমাণ ফসলী জমিতে বেশী হ্বার একটা কারণ হল ধানগাছের মূল দারা সরবরাহ ক্লত প্রচুর কার্বন-ডাই-অক্সাইড। এ ছাড়া জমিতে জৈবসার দেওয়া থাকলে জলমগ্র ধান জ্মিতে মাটির জীবাণুর ক্রিয়ায় প্রচুর কার্বন-ডাই-অক্সাইড মৃক্ত হয়। মাটিতে ফসফরাসের সরবরাহ পর্যাপ্ত থাকলে নীলসবুজ শেওলার নাইট্রোজেন বন্ধন ক্ষমতা বহুলাংশে বৃদ্ধি পায়। ফসফেট সার হিসাবে স্থপার ফসফেট, পটাসিয়াম ফসফেট এমন কি ক্যালসিয়াম ফদফেট (অদ্রবণীয়) প্রযুক্ত হলেও নাইট্রোজেন বন্ধনের পরিমাণ যথেষ্ট বৃদ্ধি পায়। স্থপার ফসফেট প্রায়োগে তেক্টর প্রান্তি ৫০ কেজি নাইট্রোজেন বন্ধন হতেও দেখা গেছে। জমিতে পটাসিয়াম বা ম্যাগনেসিয়াম সালফেট পৃথকভাবে প্রয়োগের ফলে নাইট্রোজেন বন্ধনের মাত্রা হ্রাস পায় বটে কিন্তু উভয়ের যৌথ প্রায়োগের ফলে নাইট্রোজেন বদ্ধনের মাত্রা বৃদ্ধি পায়। তাই নীলসবুজ শেওলা দারা নাইট্রোজেন বন্ধনের জন্ম ফলফেট, ক্যালসিয়াম ও মলিবডেনামকে অপরিহার্য বলে চিহ্নিত করা হয়। বিভিন্ন পরীক্ষায় অলোসিরা, ফার্টিলিসিমা, টলিপোথি জ্বা টেনিয়াস, নস্টক মাজোরাম ইত্যাদি নীলসবুজ শেওলার প্রয়োগে অধিক ফলন পাওয়া গেছে। হেক্টর প্রতি জমিতে ২-১০ কেজি (শুক্ষ ওজন) উন্নত মানের নীলসবুজ শেওলা প্রয়োগের ফলে ফলনের যথেষ্ট উন্নতি লক্ষিত হয়। নীলসবুজ শেওলা অতিরিক্ত অমত্ব শহু করতে পারে না তাই অমুজমিতে চূন প্রয়োগ করলে শেওলার ক্রিয়া ক্ষমতা বৃদ্ধি পাবে। এর সঙ্গে সামাক্ত পরিমাণে সোডিয়াম হেপ্টা-মলিবডেট (০'২৫ কেজি প্রতি হেক্টরে) প্রয়োগ করা হলে ফলন বহুলাংশে বৃদ্ধি পায়। সাধারণতঃ উপযুক্ত পরিবেশে শুধুমাত্র নীলসবুজ শেওলা প্রয়োগের ফল হিসাবেই ১০-১৫ শতাংশ দানাশব্যের উৎপাদন বৃদ্ধি পায়। আমাদের দেশে যেখানে গরীব ক্বকরা অর্থাভাবে বা সরবরাহের অপ্রতুলতার অন্ত রাসায়নিক সার (ইউরিয়া, অ্যামোনিয়াম সালফেট ইত্যাদি নাইট্রোজেন ঘটিত সার) ব্যবহার করতে পারেন না, তাঁরা নিঃসন্দেহে জমিতে নীলসবুজ শেওলা সার প্রয়োগ করে স্থফল পেতে পারেন।

রাইজোবিরামের মত নীলসবুজ শেওলাও তাইরাস দারা আক্রান্ত হর।
এদের বলে সারানোফাজ। এখানে এটা উল্লেখের প্রয়োজন যে অবিগ্রন্ত নিউক্লিয়াসবৃক্ত জীবাণুকে আক্রমণকারী বিশেষ ডি. এন. এ. যুক্ত তাইরাসকে ফাজ আখ্যা
দেওরা হয়। তাই একই প্রজাতির নীলসবুজ শেওলা সার একই জমিতে
দীর্ঘকাল ব্যবহার করলে, তা ফাজ কবলিত হতে পারে। তখন ঐ নীলসবুজ
শেওলা সার প্রয়োগ করে আশামুরূপ ফল পাওয়া যাবে না। এই অবস্থায়
অন্ত নীলসবুজ শেওলা ব্যবহার করাই নিরাপভায়্লক বিধি।

যদিও নীলসবৃজ্ঞ শেওলা, কোন শক্তিশালী নাইটোজেন বন্ধনক্ষম শ্রেণী বা প্রজাতি নয়, তরু শক্তি সংকটের দিনে নীলসবৃজ্ঞ শেওলা অনেকাংশে শক্তির অপচয় রোধ করতে পারে। নীচে কয়েকটি সাধারণ নীলসবৃজ্ঞ শেওলার ফাজের নামের তালিকা দেখানো হল।

ভালিকা ৪: নীলসবুজ শেওলার ফাজ (ভেঙ্কটরমন এবং সহক্ষীবৃন্দ; ১৯৭৪)

ফাভের নাম	অমূপোৰক নীলসবুজ শেওলা		
LPP-1	निः गविया, दक्षदक्षादम्या,		
SM-1 A-1	কোরমিভিয়াম মাইক্রোসি ন্টিস অরিসিনোসা		
A-2	এনাৰীনা সিলিণ্ডি,কা এনাৰীনা ভ্যাৱিএবিলিস		
N-1 AS-1	নস্টক মাজোরাম এনাসি স্টিস নিতুল্যান্স		
AC—1	এনাসি স্টিস নিতুল্যাল ক্রকোক্কাস মাইনর		
TAuHN—1	টলিপোথি ক্স টেনিয়াস অলোলিরা ফার্টিলিসিমা নস্টক মাজোরাম		
	जन्म नादकाश्राज		

এজোলা

নীল্সবুজ শেওলা সহস্কে আলোচনা প্রসঙ্গে আমরা জেনেছি এরা বিভিন্নপ্রকার জীবাণুর সঙ্গে সহাবস্থানে থেকেও নাইটোজেন বন্ধনে সক্ষম। এরকম একধরনের জ্বলজ ফার্ন' হল এজোলা যারা নীল্যবুজ শেওলার সলে যুগ্যভাবে নাইট্রোজেন বন্ধন করতে পারে। এজোলা জলাভূমিতে ভেদে বিচরণ করে। এলাবীনা এজোলিকে (Anabeana azollae) নাইট্রোজেন বন্ধনকারী হিসাবে পাতার পূর্চদেশের (dorsal) গতে দেখা যায়। এজোলার ক্রত বংশবৃদ্ধি ক্ষমতার জ্ঞ্য এরা জ্মিতে একাধারে সবুজ্নার ও নাইট্রোজেন ঘটিত জৈবসার হিসাবে ক্রিয়া করতে পারে। সাধারণতঃ অপেকাক্বত দরিক্র এবং উরতিশীল দেশগুলিতে नाहरिएकिन चरिक देवनमात्र हिमारन अखाना नानहारतत श्रीहनन रमधा यात्र। ভিমেতনাম, ইন্দোনেশিরা, থাইল্যাণ্ড, চীন এবং ভারতবর্ষে এর প্রয়োগ ক্রমেই বেড়ে চলেছে। এজোলা খুব ক্রত বংশ বিস্তার করে বলে এদের উৎপাদন করা সহজ। এই জাতীয় উদ্ভিদের দেহে শুফ ওজন হিসাবে ৪-৫ শতাংশ (हे।हेका शाष्ट्र ०'२-०'७ मंजारम) नाहेट्টाप्कन शाक । चामारनत प्राम কটকের কেন্দ্রীয় চাল গবেষণা কেন্দ্রে (CRRI) প্রায় বৎসরের সব সময়ই এজোলা উৎপাদন করা হচ্ছে। এখানে বিভিন্ন পদ্ধতিতে সারা বৎসরে প্রায় হেক্টর প্রতি ৬৫০ টন এজোলা উৎপাদন করা হয় এবং তা থেকে প্রায় হেক্টর প্রতি ৮৪০ কিগ্রা- নাইট্রোজেন পাওয়া যায়। এজোলা উৎপাদনের ক্ষেত্রে ফদফরাস সার হিসাবে প্রয়োগ করা অপরিহার্য। হেক্টর প্রতি মাত্র ৪-৬ কিগ্রা. P_2O_5 স্থপার ফসফেট হিসাবে প্রয়োগ করলে ফলন যথেষ্ট বৃদ্ধি পায়। পটাস প্রয়োগে সরাসরি ফলনের উপর তেমন প্রতিক্রিয়া লক্ষিত হয় না বটে, তবু প্রথামুযায়ী হেক্টর প্রতি ৫-৮ কিগ্রা. K2O, মিউরেট অব পটাস বা পটাসিয়াম সালফেট হিসাবে প্রয়োগের ফলে এজোলার উৎপাদন বৃদ্ধি ঘরান্বিত হয়। জমিতে প্রারম্ভিক নাইট্রোজেনের চাহিদা মেটানোর জন্ম অল পরিমাণে অ্যামোনিয়াম সালফেট নির্ধারিত পরিমাণ তুপার ফসফেটের সঙ্গে মিশিয়ে প্রয়োগ করা হয়। এহাড়া মাটির তাপমাত্রা ও মাটির pH-এর উপর এজোলার ফলন বহুলাংশে নির্ভরশীল। সাধারণতঃ তাপমাত্রা ১৫-৩০° ডিগ্রি সেন্টিগ্রেডে থাকলে এজোলা খুব ভালো জন্মায়। দিনের তাপমাত্রা ৪০° ডিগ্রি সেন্টিগ্রেড এবং রাতের ভাপমাত্রা ৩২° ডিগ্রি সেন্টিগ্রেডে পৌছালে এজোলার বৃদ্ধি বন্ধ হয়ে যায়। এজোলা

সাধারণতঃ অল্ল অমুত্ব থেকে অল্ল ক্ষারত্বের জমি পছন্দ করে। ৬ থেকে ৮-এর মধ্যে এজোলা ভালোভাবে জনায়। জমির pH 8-এর নীচে বা ৮ ২-এর উপরে গেলে এজোলার বংশবৃদ্ধি বন্ধ হয়ে যায়। এছাড়া এজোলা জলজ পতঙ্গের শুক্কীট বা লার্ভা দারা অতি সহজেই আক্রাস্ত হয়। তাই এই ক্ষারোধের জন্ম হেন্টর প্রতি ২-৩ কিগ্রা**।** ফিউরা**ডান** জমিতে প্রয়োগ করা হয়। এই কীটনাশক জমিতে ফদলের কোন ক্ষতি করে না। এজোলা শুদ্ধ অবস্থায় নীলসবুজ শেওলার মত বেঁচে থাকতে পারে না। তাই পুনর্বার চাষের জন্ম এদের স্বৃদ্ধ অবস্থাতেই প্রয়োগ করতে হয়। এদের একটা স্থবিধা হল জমিতে স্বুজ্ঞসারের মত মিশিয়ে দিলে ৭-১০ দিনের মধ্যেই এরা বিবর্তিত হয়ে উদ্ভিদের গ্রহণোপোযোগী পর্যায়ের নাইট্রোভেন খুক্ত করতে পারে। একই জমিতে বার বার এজোলা চাব করা চলে বলে এদের দেহে নাইট্রোজেনের পরিমাণ কম থাকা সত্তেও ক্লবি জমিতে, বিশেষ করে জনমগ্র ধান জমিতে প্লরা পর্যাপ্ত নাইট্রোজেন সরবরাহ করতে পারে। এজোলা বা অক্তান্ত বৰুজ জলজ আগাছা যেমন কচুরিপানা (Water hyacinth), হাইড্রিলা (Hydrilla), লেমা (Lemna) ইত্যাদি রাসায়নিক উপাদানের দিক থেকে আলফা আলফার সমতুল। এজোলার একটা রাসায়নিক বিশ্লেষণের তালিকা পরবর্তী পৃষ্ঠায় দেওয়া হল :

এজোলা প্রয়োগ পদ্ধতি

উৎপাদন পদ্ধতি এজোলা প্রয়োগের পূর্বেই জমিতে লাঙল দিয়ে প্লট-গুলিতে বাঁধ দিতে হয়। এরপর জমিতে অন্ততঃ ৫ থেকে ১০ সেমি. জল দাঁড় করিয়ে রাথার ব্যবহা করতে হবে। জলের উচ্চতা ৩০ সেমি. পর্যস্ত হলেও কোন ক্ষতি হয় না। জলমগ্ন জমিতে প্রতি বর্গমিটারে হিসাব করে ০০২-০০৪ কিগ্রামির্ক এজোলা ছড়িয়ে দিতে হবে। এছাড়া জমিতে হেক্টর প্রতি ৪-১০ কিগ্রামির প্রথালা করা ছয়। পোকার হাত থেকে রক্ষা পেতে প্রয়োজনে হেক্টর প্রতি ০০১-১০০ কিগ্রামিকর সিট্রোজন প্রয়োগ করা ভিচিত। এরপর সপ্তাহান্তে একটা বাঁশের সাহাব্যে সবুজ এজোলা সংগ্রহ করে পদ্ধতিটি পুনরায় একইভাবে অনুসরণ করা যেতে পারে।

প্রারোগ: জমিতে সবুজ্ঞগার হিসাবে প্রয়োগের জক্ত চাষের আগেই হেক্টর প্রতি ২ কুইণ্টল হারে এজোলা প্রয়োগ করে ছুই সপ্তাহ পরে তা চাষ করে

ভালিকা ৫ঃ এজোলার রাগায়নিক বিশ্লেষণ ফল (সিং এবং স্থবৃধি; ১৯৭৮)

উপাদান	শতাংশ—শুক ওজন হিসাবে
ছাই অশোধিত স্নেহজ পদাৰ্থ অশোধিত প্ৰোটিন	>0.0 0.0—0.6 28—00
নাইট্রোজেন ফ্রফ্রাস ক্যাল্যিয়াম	o.8—>.o
পটাসিয়াম ম্যাগনেসিয়াম	0.52—0.76 0.6—0.66 5.8—5.6
ম্যাঙ্গানীজ লোহা ক্রবণীয় শর্করা	o.e.
অশোধিত তন্ত স্টার্চ কোরোফিল	0.08—0.00 6.08 2.3

মাটিতে মিশিয়ে দিতে হবে। প্রধানতঃ জমিতে হেক্টর প্রতি ৫০০-১০০০ কিগ্রাএজোলা প্রয়োগকরণই বিধিসমত। এই পদ্ধতি তৃইবার পুনরাবৃত্তি করলে জমিতে
নাইট্রোজেনের পরিমাণ যথেষ্ট বেশী হতে পারে। সাধারণতঃ একস্তর সবুজসার
হিসাবে হেক্টর প্রতি > কুইণ্টল এজোলা, ২৫-৩০ কিগ্রা- নাইট্রোজেন সরবরাহ
করে। হেক্টর প্রতি > কিগ্রা- এজোলার সঙ্গে হেক্টর প্রতি ৩০ কিগ্রা- নাইট্রোজেন
আ্যামোনিয়াম সালফেট হিসাবে প্রয়োগের ফলে মাটির নাইট্রোজেন বন্ধন
ক্ষমতা বৃদ্ধি পোতে দেখা গেছে। স্পষ্টতঃই বোঝা যায় এর ফলে ফলনও
যথেষ্ট বৃদ্ধি পাবে। ধান জমিতে এজোলার সঙ্গে তৃই কিন্তিতে স্থপার ফসফেট
প্রয়োগের ফলে ফলন আরো ভালো হয়। জলে ভাসমান এজোলা অবাঞ্ছিত

আগাছা জন্মতে দেয় না। সাধারণতঃ উচ্চ ফলনশীল ধানের ক্ষেত্রে ক্যদিনে পাকে এমন গাছে এক্ষোলাকে বেশী প্রফল দিতে দেখা গেছে।

এজোলার উৎপাদন সমন্বিত তালিকা বিশ্লেষণ করে আমরা জেনেছি, এজোলা পশুথাত হিসাবে যথেষ্ট উচুমানের। পোলাট্রতে বিশেষ করে হাঁস বা মুরগির থাতা হিসাবে এজোলা পরীক্ষামূলক স্তরে উত্তীর্ণ হয়েছে। পাখীরা শুকানো লাল এজোলা পছল করে না, তবে তাদের খাবারের সঙ্গে সবুজ এজোলা থাকলে তারা তা সানন্দে গ্রহণ করে। এতে পাখির ওজন বৃদ্ধি পায় এবং প্রোটিনের পরিমাণও বাড়ে। মূল্য তালিকা- হিসাবে এজোলা সস্তা কারণ এদের সহজ্জে উৎপাদন করা সম্ভব। নীচে এবং পরবতী পৃষ্ঠায় এজোলা প্রয়োগের ফলে রবি মরশুমে আই-আর-৮, স্থপ্রিয় এবং কলিল ধানের ফলন তালিকা দেখানো হল।

তালিকা ৬: এজোলা প্রয়োগে শস্যের ফলন প্রতিক্রিয়া সিং, ১৯৭৭)

		ना वालाना । । गर, उदयप
প্রযুক্ত এজোলার পরিমাণ	দানা উৎপাদন কিগ্রা. প্রতি হেক্টরে	খড় উৎপাদন কিগ্রা. প্রতি হেক্টরে
	আই আর-৮	
নিয়ন্ত্রিত	8922	৩৬০৭
হেক্টর প্রতি ১০ টন	6924	8880
	স্থপ্রিয়	
নিয়ন্ত্রিত	0869	
হেক্টর প্রতি ১০ টন	6256	২৫৭১ ৩৭৮৬
ar reld M.	কলিজ	
নিয়ন্ত্ৰিত	>922	2056
হেক্টর প্রতি ১০ টন	2820	२०৮१
হেন্টর প্রতি ২০ টন	২৬২৩	२.६৮१

প্রযুক্ত একোলার	দানা উৎপাদন	খড় উৎপাদন
পরিমাণ	কিগ্রা- প্রতি হেক্টরে	কিগ্রা. প্রতি হেক্টরে
হেক্টর প্রতি	5504	5200
২০ কিগ্ৰা. নাইট্ৰো	জেন	
হেক্টর প্রতি	७३৮१	9809
so কিগ্ৰা. নাইট্ৰো	AND THE RESERVE TO SERVE THE RESERVE	৩৭৩৭
হেক্টর প্রতি	0624	See secular inches
৬০ কিগ্ৰা- নাইট্ৰে		8610
হেক্টর প্রতি	⊘ ₽≱8	800
৮০ কিগ্ৰা. নাইট্ৰো	জেন	
হেক্টর প্রতি ৩০ বি	হগ্রা ৩৪৬১	२৮०१
নাইটোজেন + >	০ টন	
এজোলা		
হেক্টর প্রতি ৫০ বি	চগ্রা- ৩৫৭৬	७०७२
নাইট্রোজেন + ১		
এন্দোলা		THE REAL PROPERTY.

পরীক্ষালর ফলাফলের ভিত্তিতে আশা করা যায় এজোলা নিঃসন্দেহে উন্নত মানের জৈবসার হিসাবে সাফল্যলাভ করবে।

জীবাণুসার হিসাবে মুক্তজীবী নাইট্রোজেন বন্ধনকারী জীবাণু

2

আমরা এমন একটা গ্যাসীয় সমুদ্রে বাস করি যেখানে নাইট্রোজেনই হল তার প্রধান উপাদান। আর এই নাইট্রোজেনের হাতেই রয়েছে জীবজগতের মৃত্য চাবিকাঠি। নাইট্রোজেন ছাড়া কোষ গঠন হয় না। আমাদের খাত্তে আজ যে বস্তুর অভাব স্বচেয়ে বেশী, তা হল একটা অতি প্রয়োজনীয় নাইট্রোজেন ঘটিত জৈব পদার্থ প্রোটিন। গাছের যে নাইট্রোজেন প্রয়োজন তা অবশ্র প্রোটিন দিয়ে মেটে না। তার কারণ গাছ হল স্বভোজী। তাই গাছ কোনরকম জৈব কার্বনজাত বস্তুকে ভাদের খাত হিসাবে গ্রহণ করতে পারে না। নাইট্রোজেনের অভাবে গাছের পাতা হলুদ হয়ে আলে এবং ক্রমে ক্রমে তারা মৃত্যুর কোলে চলে পড়ে, এ দৃগু আমাদের পরিচিত। তাই নাইট্রোজেনের অভাবে ভুগছে এমন জমিতে নাইট্রোজেন ঘটিত সার প্রয়োগের ফলে স্তফল পাওয়া বাবে তা স্বাভাবিক ঘটনা। বিশেষ করে ধানের চারাগাছ যথন নূতন জমিতে রোয়া করা হয়, তথন শিশু চারাগাছগুলো নাইট্রোজেনের অভাবে বিবর্ণ, হলুদ হয়ে পড়ে। তারপর সেই জমিতে কোন নাইট্রোজেন ঘটিত সার প্রয়োগ করলে এক রাতের মধ্যেই তাদের চেহারা পার্ল্টে যায়। পরদিন সকালে তাজা সবুজ শিশু উদ্ভিদগুলি যথন মৃত্যুন্দ বাতাসের সঙ্গে থেলা করে তথন তাদের আর চেনাই যার না। অর্থাৎ নাইট্রোজেন, উদ্ভিদের ক্ষেত্রে যে কতটা অপরিহার্য তা বলার আর অবকাশ রাখে না। বিভিন্ন প্রাণী এবং মান্তবের মধ্যেও নাইট্রোজেনের অভাৰ ঘটলে দেহ দূৰ্বল ও নানাবিধ রোগের আকর হয়ে পড়ে।

গাছ আমাদের প্রাণপ্রতিম এ মতে রায় দিতে আমরা দিধাগ্রন্থ নই। কিছ তার অন্তরালে আর একপ্রেণীর ছোট উদ্ভিদ অনবরত আমাদের জন্ম নিঃশব্দে নীরবে কাজ করে যাচেছ, যাদের আমরা চিরকাল অপকারী-ই ভেবে এসেছি। আন্তন এবার আমরা তাদের কিছুটা মূল্যায়নের চেষ্টা করি।

গাছ নাইট্রোজেন পান্ন মূলতঃ মাটি থেকে। বায়ুমণ্ডলের অসীযভাণ্ডার থেকে এ সম্পদ আহরণের ক্ষেত্রে সেও প্রাণীর মতই অসহার। জ্যোর গলান্ন এটা বললে অবশ্য ভুল হবে, কারণ করেক শ্রেণীর উদ্ভিদ (যেমন বট, অশ্বর্থ ইত্যাদি) সরাসরি বায়ুমণ্ডল থেকে নাইট্রোজেন আহরণ করতে সক্ষম, তবে তা অবশু মৌলিক नारेट्रिक्नि नम्र । এছाए। गूळकीवी वा महकीवी नारेट्रिक्नि वसनकाती कीवार् এবং নীলসবুজ শেওলা প্রকৃত উদ্ভিদ শ্রেণীভুক্ত। সে কথা থাক। আসল কথা হল গাছ যে নাইট্রোজেন গ্রহণ করতে সক্ষম তা প্রধানতঃ অজৈব পর্যায়ের হওয়া আবশুক। অবশু বিশেষ বিশেষ পরিশ্বিভিতে গাছ কিছু কিছু সরস আমাইনো এ্যাসিড গ্রহণ করে থাকে। যদিও সে ঘটনা অবশ্য বিরল বলা চলে। এখন কথা হল মাটি এই বিপুল পরিমাণ নাইট্রোজেন সরবরাহ করে চলেছে কিভাবে ? মাটির নিজম্ব নাইট্রোজেন ভাণ্ডার বলতে যা বোঝায় তা হল শিলা ক্ষয় থেকে উভুত নাইট্রোজেন ঘটত যৌগ। এটা নিশ্চয় যুক্তিগ্রাহ্থ নয় যে প্রতি বৎসর কোট কোটি টন শিলা একই অঞ্লে ক্ষ্মীভূত হচ্ছে। এছাড়া মাটিতে নাইট্রো-জেনের পরিমাণ শিলাভূত নাইট্রোজেন অপেক্ষা বেশী। ভবে এ নাইট্রোজেন এল কোথা থেকে? বরং নাইট্রোজেন মাটিতে যা সঞ্চয় ছিল তা বছকাল পূর্বেই শেষ হয়ে যাওয়াই উচিত ছিল। কিন্ত এরকম হয় নি কেন ?

এর প্রধান কার্ণ হল প্রকৃতিতে প্রতিটি মৌলিক পদার্থই বিবর্ত নের এক পর্যায়ক্রমিক চক্রের মধ্য দিয়ে চলেছে। কিন্তু প্রশ্ন হল এই যজের মূল পুরোহিত কে? এই পদ্ধতি পরিচালনার কর্ণধার হল বিভিন্ন ভোগীর জীবাণু। কিন্তু এছাড়া মাটিতে নাইট্রোজেন সংযোজনের আর কি কি উৎস আছে ? সে হল বায়ুমগুলীয় নাইট্রোজেন বন্ধন এবং জমিতে রাসায়নিক বা জৈব নাইট্রোজেনের ঘটিত সার প্রয়োগ। বায়ুমণ্ডলের নাইট্রোজেন বন্ধন হয় সন্তাব্য হুটো উপায়ে। প্রথমতঃ প্রাকৃতিক রাসায়নিক বন্ধন এবং দিভীয়তঃ মুক্তঞীবী এবং সহজীবী জীবাণু ঘটিত বন্ধন। এখন নাইট্রোজেন বন্ধনের চক্রপথটা পরবর্তী পৃষ্ঠায় দেখানো হল (চিত্র-১)।

বজ্র বিদ্যুৎপাতের ফলে বায়ুয়ওলীয় নাইট্রোজেন এবং অক্সিজেন পরস্পার যুক্ত হয়ে নাইট্রিক অক্সাইড (NO) গঠন করে। এই নাইট্রিক অক্সাইড আবার অক্সিজেনের গঙ্গে যুক্ত হয়ে নাইট্রোজেন-ডাই-অক্সাইড (NO_2) গঠন করে। এই নাইটোজেন ড়াই-অক্সাইড বৃষ্টির জলের সঙ্গে ক্রিয়ায় নাইটি ক এ্যাসিড গঠন করে। এই নাইট্রিক এ্যাসিড বৃষ্টির জলের সাহায্যে নেমে আসে মাটিতে। এই প্রক্রিয়ায়

চিত্র ১: নাইটোজেন চক্র

নাটিতে যুক্ত নাইট্রোজেনের পরিমাণ প্রতি বছর একর পিছু ২-১০ কিগ্রার বেশী হয় না। মুক্তজীবী নাইট্রোজেন বন্ধনকারী জীবাণু কিন্তু জমিতে প্রতিবৎসর উল্লেখযোগ্য পরিমাণ নাইট্রোজেন যোগ করে থাকে। এর মধ্যে জসমগ্র জমিতে নীলসবুজ শেওলার ভূমিকা সম্বন্ধে আগেই আলোচনা করা হয়েছে। এখানে আমরা প্রধানতঃ মুক্তজীবী ব্যা ক্রিরিয়া ছারা নাইট্রোজেন বন্ধন এবং ক্রমিজমিতে তাদের প্রয়োগ সম্ভাবনা ও পরীকালক কলাফল নিয়ে আলোচনা সীমাবদ্ধ রাখব।

নাইট্রোজেন বন্ধনকারী মুক্তজীবী ব্যা কিরিয়ারা অভোজী বা পরভোজী, সবাত শ্বসনকারী বা অবাত শ্বসনকারী হতে পারে। তাই এরা কোন এক নিদিষ্ট শ্রেণীভুক্ত জীবাণু নর। সালোকসংশ্লেষকারী জীবাণুদের মধ্যে মুখ্য হল—ক্লোরোবিয়াম, ক্রোজোলিয়াম, ব্রোডোন মাইক্রোবিয়াম, রোভোজিভোমোনাল, রোজোলিপরিলিয়াম ইত্যাদি গণের ব্যা ক্রিরিয়া। রাসারনিক স্বভোজী (Chemoautotrophic) জীবাণুদের মধ্যে মুখ্য হল—মিখানোব্যাজিলাস গণের ব্যা ক্রিরিয়া।

পরভোক্তা ও সবাত খদজীবী জীবাণুদের মধ্যে—এজেপটোব্যাক্তার,

এজোমোনাস, বায়ারিছিয়া, একোমোব্যাক্টার, এজোম্পিরিলাম, ভারকসিয়া, ক্লেবসিয়েলা ইভাাদি গণের ব্যাক্তিরিয়া উল্লেখযোগ্য। পরভোজী ও অবাত খদজীবী জীবাণুদের মধ্যে—ক্লফি ডিয়াম, এরো-ব্যাকার, এরোজেন্স, ব্যাসিলাস পলিমিক্সা (প্রোগদদানী—facultative) সিডোমোনাস (অ্যোগ-সন্ধানী) ইত্যাদি গণের বাা ক্তিরিয়া মুখ্য ভূমিকা নের। এছাড়া কিছু এ িক্টনোমাইটিটন বেমন নকারভিন্না, স্ট্রেপটো-মাইসিস, মাইকোব্যা ক্রিরিয়াম এবং কিছু কিছু ছত্রাক যেমন এস্পার-জিলাস, পেনিসিলিয়াম, মিউকর, ক্ল্যাডোস্পোরিয়াম, ফোমা ইত্যাদি গণের জীবাণু এবং বিশেষ কয়েক শ্রেণীর ইস্ট বেমন স্যাকারোমাইসিস, রোভোটোরুলা ইত্যাদি জীবাণ্র নাইট্রোজেন বন্ধনের ক্ষমতা আছে। ভবে বলা বাহুল্য কয়েকশ্রেণীর সবাত খসনকারী মুক্তজীবী ব্যাক্টিরিয়া ছাড়া অন্তাদের নাইট্রোজেন বন্ধন ক্ষমতা আশামুরপ নয়। এরা কেবলমাত্র নাইট্রোজেন-হীন প্রতিকূল পরিস্থিতিতে নিজেদের জীবনধারণ ও বংশবৃদ্ধির জন্ম প্রয়োজনীয় নাইটোজেন বন্ধন করতে পারে। স্পষ্টতঃই এরা আমাদের তেমন কোন উল্লেখ-যোগ্য উপকারে আসবে না। বিভিন্ন শ্রেণীর কয়েকটা জীবাণুর তুলনামূলক নাইটোজেন বন্ধন ক্ষমতা পরবর্তী পৃষ্ঠায় দেখানো হল।

তুলনামূলকভাবে ক্ষমতা মূল্যায়ন করা হলে স্পষ্টই বোঝা যাবে এজোটোব্যাকার অন্য ব্যা কিরিয়া বা নীলসবুজ শেওলা থেকে অনেক বেণী ক্ষমতাশালী। পরীক্ষাগারে কোন জীবাণু নাইট্রোজেন বন্ধনে সক্ষম কিনা বোঝার জন্ম, নাইট্রোজেনহীন পৃষ্টি মাধ্যমে তাদের বৃদ্ধি হচ্ছে কিনা তা লক্ষ্য করা হয়। যদিও কোন জীবাণু নাইট্রোজেনহীন পৃষ্টি মাধ্যমে জন্মতে সক্ষম হয় তবুও তাকে নাইট্রোজেন বন্ধনকারী বলে সকলে মেনে নিতে রাজি নন। অনেক ,বিজ্ঞানীদের মতে কোন কোন জীবাণু অতি অল্ল পরিমাণ নাইট্রোজেনের উপন্থিতিতে ভালোভাবে জন্মতে পারে। অর্থাৎ কিনা অন্যান্ত রাসায়নিক পদার্থে বে সামান্তব্য পরিমাণ নাইট্রোজেনজাত পদার্থ অপদ্রব্য হিসাবে মিশ্রিত থাকে বা স্বাভাবিক কারণেই পরীক্ষাগারের বায়ুমগুলে যে সামান্ত পরিমাণ মুক্ত অ্যামোনিয়া থাকতে পারে তা গ্রহণ করে প্রস্বাণ বিদ্যাবি নি কিরাণ না করে নিন্দিত হওয়া যায় না যে তারো প্রকৃত নাইট্রোজেন বন্ধনকারী কিনা! নাইট্রোজেনের পরিমাণ নির্ণরের

ভালিকা ১: নাইট্রোজেন বন্ধনক্ষম ব্যাক্তিরিয়ার নাইট্রোজেন বন্ধন ক্ষমতা (আলেকজাণ্ডার, ১৯৬১)

জীবাণু	বিশেষত্ব	সময় (দিনে)	নাইট্রোজেন বন্ধনের পরিমাণ (মাইজোগ্রাম প্রতি মিলিলিটার pg/ml)
একোমোব্যাকার প্রজাতি	গবাত শ্বশজীবী	8	29
এজোটোব্যাক্টার ডাইনল্যান্ডি এরোব্যাক্টার	,,	9	10 100 5060
এরোজেনস প্রোজেনস ক্লস্ট্রিভিন্নাম	খনাত খনজীবী	ર	60
বিউটিরিকাম ক্লোবেরাবিরাম	"	>0	20 6
প্রজাতি রোডোম্পিরিলিয়াম	অবাত শ্বসজীবী (আলোক)	C	₹ २० (*) - ₹
প্ৰকাতি সিলিণ্ড্যোম্পাৰ্মাম	,,	>0	96
সিলিণ্ডি,কা	সবাত খসজীবী (আলোক)	ce	(2

জন্ত গাবেকি পদ্ধতি হল কিল্ডাল (kieldahl) নির্দেশিত পদ্ধতি। এই পদ্ধতি খুব অন্ধ নয় বলে অতি অল্ল পরিমাণ আবদ্ধ নাইটোজেনের হিগাব এই পদ্ধতিতে আন্থার সঙ্গে নির্ণয় করা বার না। এজন্ত বর্তমানে যে রীতি অনুসরণ করা হয় তা হল গ্যাস ক্রোমোটোগ্রাফির সাহাব্যে এসিটিলিন বিজ্ঞারণ পদ্ধতি। এই পদ্ধতি খুবই সংবেদনদীল বলে অতি অল্প পরিমাণ আবদ্ধ নাইটোজেনের পরিমাণও এই পদ্ধতির সাহাব্যে

নিভুলভাবে নির্ণয় করা যায়। এ ছাড়া আছে নাইট্রোজেনের স্থায়ী আইলোটোপ N^{১৫} পদ্ধতি। মাস স্পেক্টোগ্রাফের (Mass spectograph) সাহায্যে নির্ণাভ এই পরিমাপ পদ্ধতিও খুবই সংবেদনশীল। এই পদ্ধতির সাহায্যেও সামাগ্রতম আবদ্ধ নাইট্রোজেন পরিমাপ করা সম্ভব।

সাধারণতঃ সালোকসংশ্লেষকারী এবং রাসায়নিক অভোজী জীবাণুদের বৃদ্ধি হার যথেষ্ট বিলম্বিত হয়ে থাকে। সালোকসংশ্লেষক্ষম নাইটোজেন বন্ধনকারী ব্যাক্তিরিয়ায়াদের সিউডোমোনাডেলস (Psuedomonadales) পর্বের এথায়োরোডেসি (Athiorhodaceae) বা গন্ধক বর্জিত লালাভ ব্যাক্তিরিয়া পরিবারভূক্ত এবং ক্লোরোব্যাক্তিরিয়েসি (Chlorobactericeae) বা সবৃদ্ধ গদ্ধক বাাক্তিরিয়া এই পরিবারভুক্ত করা হয়। প্রভাবেকই আলোর প্রভাবে উদ্দিপ্ত হয় কিছ এরা অক্সিজেনের প্রভাবে ক্ষতিগ্রন্থ হয়। এছাড়া এদের নাইটোজেন বন্ধনক্ষমতাও নিয়মানের হয়ে থাকে। গদ্ধক বর্জিত লালাভ ব্যাক্তিরিয়ার মুখ্য প্রাপ্তিস্থান হল জলমগ্র জমি, থালের কাদামাটি বা সমুদ্র সৈকত। সাধারণতঃ এদের ক্রি খামার বা বনভূমিতে পাওয়া যায় না। এছাড়া এরোব্যাক্তার, এক্রোব্যোক্তার, জিউডোমোনাস বা ব্যাজিলাস পলিমিক্সা এদের খামার বা ক্রবিজমিতে দেখা যায়, যদিও এদের নাইটোজেন বন্ধন ক্ষমতা খ্ব নিয়মানের।

সবাত পরিবেশে নাইট্রোজেন বন্ধনের মুখ্য ভূমিকা হল এজোটোব্যাক্টারের।
এদের কোষগুলি যথেষ্ট বড়, উত্তল-ইস্টের আক্কৃতি বিশিষ্ট হয়ে থাকে।
এরা সকলেই সবাত শ্বসজীবী। এদের সাধারণতঃ শ্বসনের হার অভি
উচ্চ, সম্ভবতঃ তা সকলপ্রাণী এবং উদ্ভিদ জগতের মধ্যে সবে চিচমানের। নাইট্রেজেন সাধারণতঃ বায়ুমণ্ডল থেকে গ্রহণ করলেও আ্যামোনিয়াম,
নাইট্রেট, নাইট্রাইট, ইউরিয়া বা কিছু সরল জৈব যৌগ থেকেও নাইট্রোজেন
আহরণ করতে এরা সক্ষম। এরা সাধারণতঃ মধ্যমমানের (mesophilic) উষ্ণতা
পছন্দ করে। এদের বৃদ্ধির জন্ম সর্বাপেক্ষা উপযোগী উষ্ণতা হল ৩০° ডিগ্রী
সেন্টিগ্রেড। এদের শ্বসনের হার অতি উচ্চ হওয়ার জন্ম অভিযোজনের বিশেষ
শ্বেধা থাকা সত্ত্বেও এরা প্রকৃতিতে টিকে থাকার পক্ষে প্রবল প্রতিযোগী বলে গণ্য
হয় না। এরা প্রাকৃতিক এবং ভৌগোলিক সকলপ্রকার বাধা উপেক্ষা করে শীত
বা গ্রীষ্মপ্রধান সকল দেশের মাটিতেই অবস্থান করে। তবে এরা অভিরিজ্ঞ

অমন্ত্র বা ক্ষারন্ত্র সহ্য করতে পারে না। অমুমাটিতে ভাই এক্সোটোব্যাকারের সন্ধান মেলে না। গ্রীত্মপ্রধান দেশে বিশেষ করে অমুমৃত্তিকার বারাগরিস্কিয়া এবং ভারকিসিয়ার (Derxia) প্রাধান্ত দেখা যায়। এদের শীতপ্রধান দেশের মাটিতে কিন্তু মোটেই পাওয়া যায় না। এই অনন্ত ভৌগোলিক বিন্তাসের প্রকৃত কারণ আজও বিজ্ঞানীদের কাছে রহস্তাবৃত্ত।

रेंडेगा केंद्रियान পर्वत अप्लाही वाकी (Azotobacteraceae) পরিবারভুক্ত হল এজোটোব্যাক্টার গণের বাা ক্টিরিয়া। এদের নাইট্রোজেন বন্ধন ক্ষমতা বিভিন্ন মাটির এবং বিভিন্ন প্রজাতির উপর নির্ভর করে ভিন্ন হয়ে थारक। এজোটোব্যাकेरित्रत श्रथान शांठिए श्रकां इन, এজোটোব্যাकात्र ভাইনল্যান্তি, এ. ক্রকক্কাম, এ. বায়ারিন্ধি, এ. ম্যাক্রোসাইটো-জिनम, এবং এ এজিলিम। এদের মধ্যে আমাদের দেশে স্বচেরে শক্তিশালী নাইটোজেন বন্ধনকারী ব্যাক্টিরিয়া হল এজোটোব্যাকার ক্রুককাম, এছাড়া এজোটোব্যাক্টার ভাইনল্যাণ্ডি প্রজাতিও খুব সক্রিয়ভাবে নাইট্রোজেন বন্ধনে সক্ষম। এ. ক্রুকক্কাম প্রজাতিকে তার বৃদ্ধি বৈশিষ্ট থেকে চেনা খুব সহজ। এরা কঠিন মাধ্যমে জন্মানোর কয়েকদিন পরে বাদামী বা কালো রঙের মেলানিন নামক রঞ্জক পদার্থ উৎপন্ন করে। আমাদের দেশের ক্ববি-জমিতে নাইট্রোজেন বন্ধনকারী জীবাগুর সংখ্যা (যার মধ্যে এজোটোব্যাক্টারই প্রধান) প্রতি গ্রাম মাটিতে ১০৪ — ১০৫ পর্যন্ত বা তার বেশী হতে দেখা যায়। এজেতিব্যক্তার ছাড়া অন্ত প্রধান নাইটোজেন বন্ধনকারী গণের ব্যাক্তিরিয়া रण, **এজোমোনাস** এবং ক্লেবসিয়েলা। এজোটোব্যাক্টার, বায়ারিভিয়া। এজোমোনাস বা ক্লেবসিয়েলা মাটি ছাড়া গাছের পাতাকেও (Phyllosphere) আশ্রয় করে শক্রিরভাবে নাইট্রোজেন বন্ধন করে থাকে। ক্লস্ট্রিভিয়াম হল মাটিতে মুখ্য অবাত শ্বনকারী নাইট্রোজেন বন্ধনক্ষম ব্যাক্টিরিয়া। এদের সংখ্যা সাধারণ জমিতে প্রতিগ্রাম মাটিতে ১০° বা তারও বেশী হতে দেখা যায়। এনের নাইটোজেন বন্ধন ক্ষমতা কম হলেও এরা বিস্তীর্ণ pH এ (৫'০ — ৯'০) জন্মতে পারে। নাইট্রোজেন বন্ধনকারী মুখ্য ক্লিস্ট্রিডিয়ামের প্রজাতিগুলি হল, ক্লস্টিভিয়াম পাস্তরিয়ানাম, ক্ল, বিউটিরিকাম, ক্লু এদেটিকাম, ক্লু-(कनमिनाम, क्र. क्रूटें खेती, क्र. वाम्रातिहर, क्र. न्यातिहर्णाकिनाम, ক্ল. এসিটোবিউটিলিকাম ইভ্যাদি।

জীবাণুর নাইট্রোজেন বন্ধন কৌশল প্রসঙ্গে কিন্তু সব বিজ্ঞানীরা একমত নন। আনেকের মতে অ্যামোনিয়া (NH3) হচ্ছে সর্বশেষ অজৈব পর্যায় যা পরবর্তী পর্যায়ে কৈব নাইট্রোজেনে পরিণত হয়। পক্ষান্তরে এক শ্রেণীর বিজ্ঞানীদের মতে হাইডুক্সিল অ্যামিন (NH2OH) এবং অন্ত একশ্রেণীর বিজ্ঞানীদের মতে হাইডুক্সিল অ্যামিন (NH2OH) এবং অন্ত একশ্রেণীর বিজ্ঞানীদের মতে হাইডুক্সিন (N2H4) হল সর্বশেষ অজৈব পর্যায় যা জৈব নাইট্রোজেনে পরিণত হয়। প্রত্যোক প্রকল্পের প্রবজ্ঞাগণই নিজেদের বক্তব্যের সমর্থনে যুক্তি উপস্থাপিত করেছেন। কিন্তু বলা বাহুল্য বর্ত মানে বিভিন্ন পরীক্ষায় দেখা গোছে অ্যামোনিয়াই হচ্ছে জৈব এবং অজৈব সংযোগ রক্ষাকারী পদার্থ। আামোনিয়াই অজিম অজৈব পর্যায়ের যৌগ মনে করার কারণগুলো হল:

- (১) স্ক্রিয়ভাবে বংশবিস্তার করে চলেছে এমন কোন নাইটোজেন বন্ধনকারী জীবাণুকে অ্যামোনিয়া গ্যাস সরবরাহ করা হলে জীবাণুর এই নৃতন পদার্থ অধি-গ্রহণের জন্ত কোন অভিরিক্ত সময় না নিয়েই সমানহারে বংশ বৃদ্ধি চালিয়ে য়েভে পারে।
- (২) অ্যামোনিয়া বা যেশব যৌগ থেকে সহজ্বেই অ্যামোনিয়া উৎপন্ন হতে পারে তা জীবাণুরা অতি সত্তর গ্রহণ করে থাকে।
- (৩) অতি অন্ন সমন্ন সাপেক্ষ পরীক্ষার N³⁶ আইসোটোপ ব্যবহার করে দেখা গেছে প্রথমে বে আমাইনো এ্যাসিড উৎপন্ন হন্ন তা হল গ্লুটামিক এ্যাসিড। এই পরীক্ষা থেকে বোঝা বান্ন অন্তিম অজৈব উপাদান হল আমোনিয়া। এছাড়া তাপগতীর হিসাব অন্থ্যায়ীও অন্তিম অজৈব উপাদান হিসাবে অ্যামোনিয়ার পক্ষেই রান্ন পাওয়া যান্ন।

নাইট্রোজেন যন্ধনের সম্ভাব্য পথগুলি পরবর্তী পৃষ্ঠার চিত্রের সাহায্যে দেখানো হল (চিত্র ২):

পরবর্তী পৃষ্ঠার চিত্র থেকে বোঝা যাচ্ছে নাইট্রোজেন বন্ধনের প্রাথমিক গতি-পথকে জারণ, বিজারণ এবং আর্দ্র বিশ্লেষণ বলে দাবী করা হয়েছে। কিন্তু পরীক্ষালব্দ্র ফলাফল বিজারণ প্রক্রিয়ার পক্ষে রায় দ্বেয়। তার প্রধান কারণগুলো হল:

- (>) নাইট্রোজেন বন্ধনের সময় নিম্নমানের জারণ বিভবের উদ্ভব হয়।
- (২) অতিরিক্ত অক্সিজেনের উপস্থিতি নাইট্রোজেন বন্ধনক্রিয়া ব্যুভে করে ১

চিত্র ২: নাইট্রোজেন বন্ধনের সম্ভাব্য পথ (আলেকজাণ্ডার, ১৯৬১ হইতে গৃহীত) প্রাকৃতপক্ষে, নাইট্রোজেন ও অক্সিজেনের অমুপাত ১:৩ হলে নাইট্রোজেন বন্ধন সম্পূর্ণভাবে বন্ধ হয়ে যায়।

- (৩) নাইট্রোজেন বন্ধনকারী জীবাণুর কোষ বিশ্লিষ্ট করে বিজ্ঞারিত পণ্য উদ্ধার করা সম্ভব হয়েছে।
- (8) নাইটোজেন সমৃদ্ধ বিজ্ঞারিত পণ্যকে নাইটোজেন বন্ধনকারী জীবাণু বিনা দ্বিশায় গ্রহণ করে।

এ ছাড়া হাইড়াজিন এবং হাইড়ক্সিল অ্যামিন জীবাণুর পক্ষে বিষ (toxic) বলে পাণ্য করা হয়।

নাইটোজেন একটা অভিশয় নিজ্জিয় মোল যা স্বাভাবিক চাপে ও ভাপমাজায় সন্তবভঃ লিথিয়াম ছাড়া অল্য কোন মোলের সঙ্গে যুক্ত হয় না। কৃত্রিম শিল্প পদ্ধভিতে নাইট্রোজেন বদ্ধনের জল্য প্রায় ৫৫০° ডিগ্রী সেন্টিগ্রেড ভাপাংক এবং ২০০ গুল বায়ুমগুলীয় চাপ প্রস্রোগ করতে হয়। নাইট্রোজেন অণুতে হুট পরমাণ্ পরস্পরের সঙ্গে ত্রিবন্ধে যুক্ত থাকে যার প্রতিগ্রাম অণুগ্যানে বন্ধন শক্তির পরিমাণ হল ২২৫ কিলোক্যালরী। এই শক্তি বণ্টনের মাত্রা হল প্রথম বন্ধনে ২২৭ কিলোক্যালরী, দিতীয় বন্ধনে শক্তির মাত্রা হল ৬০ কিলোক্যালরী এবং তৃতীয় বন্ধনে শক্তির পরিমাণ হল ৩৮ কিলোক্যালরী। কিন্তু নাইট্রোজেন বন্ধনকারী জীবাণু প্রকৃতির অন্তত্ত ক্ষমভাবলে উৎসেচক ক্রিয়ায় বায়ুমগুলীয় নাইট্রোজেন থেকে নিজের দেহগঠনের উপযোগী প্রোটিন গড়তে সক্ষম।

১৯৬২ সালে মটেন্দ্র এবং তার সহকারীবৃন্দ কোষ্থীন নির্ধাস (Cell free extract) থেকে হৃটি উৎসেচক আবিজার করেন, একটি হল হাইড্রোজেন দাতা (H.D.S.) যাতে আছে হাইড্রোজিনেস এবং ফসফোরোক্লান্টিক ক্ষমতা এবং দিতীয়টি হল নাইট্রোজেন উদ্দীপক (N.A.S.) বা নাইট্রোজিনেস। হাইড্রোজিনেজ উৎসেচকে প্রস্থেটিক শ্রেণী (Prosthetic group) হিসাবে মলিবডেনাম সংযুক্ত ফ্লেভিন এভিনিন ডাইনিউক্লিওটাইড (FAD) এবং হিম-বিহীন (Nonheme) লোহা বর্তুমান। সম্ভবতঃ কোবাণ্ট পর্মাণু প্রোটন খংশের সঙ্গে যুক্ত থাকে। এ ছাড়া ফ্রন্ফোরোক্লাট্টিক পর্যায়ে পাইক্রভিক অমু থাকে। পরীক্ষায় দেখা গেছে এক অণু নাইটোজেন বন্ধনের জন্ম প্রায় ৮০ অণু পাইকভিক অমের প্রশ্নেজন হয়। ফসফোরোক্লাচিক বিক্রিয়া অবাত খসনকারী নাইট্রোজেন বন্ধনক্ষম জীবাগুতে দেখা যায়। সবাত খসনক্ষম জীবাণুতে এদের কোন অন্তিত্ব নেই। ফ্লফোরোক্লান্টিক পর্যায়ে সহকারী হিসাবে কোএনজাইম—'এ', থাইমিন পাইরো ফগফেট (TPP), লিপোরিক অম এবং ফোলিক অম পাওয়া গেছে। ১৯°> সালে বারগেরসন প্রথম জানতে পারেন ষে নাইট্রোঞ্চনেজ উৎসেচকে ছটি ধাতব প্রোটিন বর্ত মান। বৃহত্তর প্রোটিনটিতে (बाः खः >,००,००० - बाः खः >,४०,००० এक थ्यारक कृष्टि भनिवर्णनाम अवः ৮-১৬টি লোহার প্রমাণু থাকে। ক্ষুত্রত প্রোটিনটিতে (আঃ গুঃ ৪০,০০০৫০,০০০) তুই থেকে তিনটি Fe-S বন্ধন থাকে। তিনি প্রথম অংশের নাম দেন এজাফার্মস (Mo-Fe-প্রোটিন) এবং দিতীয় অংশের নাম দেন এজাফার (Fe-প্রোটিন)। এরা সম্ভবতঃ ১:২ অমুপাতে থাকে। নাইট্রোজিনেজ উৎসেচকের ক্রিয়ার জন্ম এডিনোসিন ট্রাই ফসফেট (ATP) এবং নিম্নমানের জারণ বিভব মাত্রার প্রয়োজন হয়।

প্রবাজনীয় বিজারকগুলির মধ্যে একটি ইলেকট্রন দাতা, ইলেকট্রন গ্রহীতার এটিপি এবং দিযোজী ধাতব আয়ন প্রয়োজন। ইলেকট্রন দাতা এবং গ্রহীতার কাজ করে এটিপি এবং এডিপি (এডিনোসিন ডাই ফসফেট)। ইলেকট্রন দাতা হিসাবে অনেকক্ষেত্রে ফেরেডোক্সিন এবং ফ্রেডোর্জ্সনের সন্ধান পাওয়া গেছে। বিভিন্ন পরীক্ষার দেখা গেছে এটিপি নাইট্রোজেন বন্ধনে অপরিহার্য কিন্তু দিযোজী ধাতু মলিবডেনামের পরিবর্তে ম্যাঙ্গানীজ Mn^{+2} , ম্যাগনেসিয়াম Mg^{+2} , কোবাল্ট Co^{+2} , জোহা Fe এবং নিকেল Ni^{+2} ক্রমাবনত মানে ব্যবহৃত হতে পারে। মলিবডেনাম যুক্ত বাতব প্রোটিনের ক্রিয়া অ্যাসিটিলিনের উপস্থিতিতে ব্যাহত হয়। পরীক্ষায় দেখা গেছে এমতাবস্থায় নাইট্রোজেন বন্ধনের তুল্য পরিমাণ আ্যাসিটিলিন বিজ্ঞারত হয়। ভাই অ্যাসিটিলিন বিজ্ঞারণ পদ্ধতির সাহায্যে নাইট্রোজেন বন্ধনের পরিমাণ নির্পন্ন করা সম্ভব।

নাইট্রোজেন বন্ধনকালে HDS এবং NAS উত্তর পর্যায়ের উৎসেচকই প্রয়োজন হয়। কিন্তু কেবলমাত্র জীবাণু যখন আগবিক নাইট্রোজেনকে ভিত্তি করে জন্মায় তখন NAS পর্যায়টি সক্রিয় হয়।

নাইটোজেন বন্ধনের বাস্তবক্ষেত্রে কিন্তু কতকগুলি সমন্তা দেখা যায়। বিশেষ করে এজোটোব্যাকার, আন্নিক পরিবেশে একেবারেই জন্মায় না বা অমত্বের মাত্রা বৃদ্ধি পেলে তার নাইটোজেন বন্ধনের ক্ষমতা যথেষ্ট কমে যায়। পরীক্ষায় দেখা গেছে এজোটোব্যাকারের নাইটোজেন বন্ধন ক্ষমতা pH ৩০০ থেকে ৯০০-এর মধ্যে সক্রিয়ভাবে নাইটোজেন বন্ধন করে থাকে। ক্রমিট্র ডিয়াম বা অক্তান্ত ব্যা ক্রিয়াদের নাইটোজেন বন্ধন করে থাকে। ক্রমিট্র ডিয়াম বা অক্তান্ত ব্যা ক্রিয়াদের নাইটোজেন বন্ধন ক্ষমতা এজোটোব্যাকার এবং বায়ারিভিয়ার মধ্যবর্তা হন্ধে থাকে। নালসবৃদ্ধ শেওলা জলমগ্র ধানজমিতে নাইটোজেন বন্ধন করে বলে সম্ভবতঃ জমির অমৃত্ব বা ক্ষারত্ব হারা তাদের ক্রিয়া বিশ্বিত হন্ন না। কিন্তু পরীক্ষাগারে pH ৬০৫-এর কাছাকাছি হলে ভারা পক্রিয়-

ভাবে নাইট্রোজেন বন্ধন করে। নাইট্রোজেন বন্ধনকারী জীবাণ্দের নাইট্রোজেন বন্ধনের জন্ম দ্রবার পর্যারের ফসফরাস অভ্যন্ত আবশ্রকীর পণা।

এজোটোব্যাকারের ফসফরাসের প্রতি সংবেদনশীলতা অত্যন্ত বেশী। বন্ততপক্ষে

১০০ মিলিগ্রাম নাইট্রোজেন বন্ধনের জন্ম তাদের ০০০ মিলিগ্রাম দ্রবণীর

ফসফেটের প্রয়োজন হয়। নাইট্রোজেন বন্ধনের জন্ম বিভিন্ন জীবাণুর বিভিন্ন

উদ্দীপক জৈব পদার্থের প্রয়োজন হয়। কিন্তু যৌগিক নাইট্রোজেন যেমন

জ্যামোনিয়া বা আ্যামোনিয়াম যৌগের উপস্থিতিতে নাইট্রোজেন বন্ধন প্রায়

জন্ম হয়ে যায়। মলিবডেনাম (Mo+6) ধাতু নাইট্রোজেন বন্ধনের ক্ষেত্রে

অতি অবশ্র প্রয়োজনীয়। মলিবডেনাম কিভাবে উৎসেচকের সহায়তা করে

তা আমরা জেনেছি। মলিবডেনামের বিকল্প হিসাবে অন্ত ধাতু ক্রিয়া করতে
পারে তবে তাদের কার্যক্ষমতা অপেক্ষাক্সত কম। ত্যানাডিয়াম (V) হল

মলিবডেনামের একটা কার্যকর বিকল্প। এছাড়া নাইট্রোজেন বন্ধনের জন্ম ক্যাল
শিরামকেও প্রয়োজনীয় ভূমিকা নিতে দেখা গেছে।

অমিতে নাইটোলেন বন্ধনকারী জীবাণুর কার্যকর প্রতিশ্রুতি হল নাইটোলেন বন্ধন নাইরে নিতে পারি যে এক্সাটোরার বা অন্তান্ত নাইটোলেন বন্ধনকারী গলের জীবাণু প্রত্যেক জমতেই কমবেশী পরিমাণে থাকবে। তাই সক্ষত কারণেই এটা মনে করা যেতে পারে যে, যে ভমিতে ঘত বেশী সংখ্যক নাইটোজেন বন্ধনকারী থাকবে সেই জমিতে তত বেশী পরিমাণ নাইটোজেন বন্ধন হবে। আমাদের দেশের মত উষ্ণ বা নাতিশীতোক্ষ জলবান্ত্র নেশের প্রত্যেক মাটিতেই পর্যাপ্ত পরিমাণে নাইটোজেন বন্ধনকারী ব্যাক্তিরিয়া থাকে এবং এই সংখ্যা সচরাচর প্রতিগ্রাম মাটিতে ১০০ থেকে ১০৫ বা তারও বেশী হয়। তবু সব জীবাণুর বন্ধন ক্ষমতা সমান না হওয়ায় জমির নাইটোজেন বন্ধন ক্ষমতা কেবলমাত্র জীবাণুর সংখ্যার উপর নির্ভর করে না। আমাদের দেশের মাটিতে উন্ধতমানের নাইটোজেন বন্ধনকারী জীবাণুর মধ্যে এক্সাটোব্যাক্টার ভারকলিয়া গামোদা (Derxia gummosa), ক্লেব-দিমেলা এবং এক্যাম্পিরিলাম্ব প্রভাতির নাম উল্লেখ করা যেতে পারে। এখানে উল্লেখযোগ্য যে এইসব ব্যাক্টিরিয়াদের জন্ম প্রয়োজন হয় প্রচুব পরিমাণে সহজ্জাত্য (শর্করা জাতীয় কার্বন জাতীয় পদার্থের যোগান দেবার। অধিক ক্ষমতা-সহজ্জাত্য (শর্করা জাতীয় কার্বন জাতীয় পদার্থের যোগান দেবার। অধিক ক্ষমতা-

শালী প্রজাতির ব্যা িক্টরিয়া একগ্রাম শর্করা বিপাক করে প্রার ২০-২৫ মিলিগ্রাম পর্যন্ত নাইট্রোজেন বন্ধন করতে পারে। এদের মধ্যে অবশু এজোটোব্যাকারের বিভিন্ন প্রজাতিই গর্বত্র বিস্তৃত। উপরোক্ত পরীক্ষার উপর ভিন্তি করে যে হিসাব গড়ে উঠেছে ভাতে দেখা গেছে এজোটোব্যাকার সর্বোচ্চ হেক্টর পিছু ৪৫-৫৬ কিলোগ্রাম পরিমাণ নাইট্রোভেন বন্ধন করতে পারে। কিন্তু প্রকৃতপক্ষে সচরাচর এজোটোব্যাক।র যে পরিমাণ নাইটোজেন বন্ধন করতে দক্ষম হয় ভার পরিমাণ আরো কম হয়ে থাকে। অধিক ক্ষমতাশালী কোন এজোটোব্যাকার প্রজাতি যদি একগ্রায় শর্করা বিপাকের ফলে ১৫-২৫ মিলিগ্রাম নাইট্রোজেন বন্ধনে সক্ষম হয় তবে সেই হিসাবে ১৫ ২৫ কিগ্রা. নাইট্রোজেন বন্ধনের জন্ম প্রয়োজন হবে ১০০০ কিগ্রা. শর্করা বা কিঞ্চিদধিক ৩০০০ কিগ্রা. জৈব পদার্থ। যেথানে আমাদের দেশের মত উষ্ণ অঞ্চলের দেশগুলিতে একেতেই মাটিতে হিউমাসের পরিমাণ শতকরা একভাগের কম, তার উপর এজোটো-ব্যাক্টারের মত ক্ষীণ প্রতিযোগী কিভাবে প্রতিঘদিতায় ঐ বিপুল পরিমাণ জৈব পদার্থ আত্তীকরণে সমর্থ হবে তা নিয়ে যথেষ্ট সন্দেহের অবকাশ আছে। অর্থাৎ এজোটোব্যাকারের সাফল্যের মূল প্রতিবন্ধক হল জৈব পদার্থের সরবরাহ। একটা পরীক্ষার সাহায্যে এই তথ্যের সত্যতা যাচাই করা যাক।

পরীক্ষার জন্ম মাটির নির্ধাগকে (soil extract) N° নাইটোজেন পরিমণ্ডলে রেখে মাটির N° এর পরিমাণ নির্ণন্ন করা হল। প্রথম মাটিতে একর প্রতি ৬০০০ পাউণ্ড খড় এবং অন্ত তিনটি মাটিতে যথাক্রমে একর প্রতি ২০,০০০ পাউণ্ড খড়, আলফা আলফা পাছের দেহাবশেষ, স্টার্চ এবং শর্করা

পরবর্তী পৃষ্ঠার ভালিকা ২ দেখে স্পষ্টই বোঝা যাচ্ছে মূল সমস্রাটা কোপার ? এজোটোব্যাক্টারের মত স্রখী জীবাণ্যারা কাজ পেতে হলে জমিতে সেলুলোজ বিচ্পকারী (Cellulose decomposer) জীবাণ্র ক্রিয়া উচ্চমানের হওয়া আবশ্যক। অবশু জমিতে জৈবসার প্রয়োগের ফলে সেলুলোজ জীপকারী জীবাণ্র প্রাচ্ব্য ঘটে, ফলে এ সমস্রার ভৃষ্টি হয় না। আবার চাবের জমিতে, বিশেষ করে যথন কোন উদ্ভিদ বর্তমান তখন উদ্ভিদ, উপকারী জীবাণ্কে আরুষ্ট করার জন্ম প্রতিনিয়তঃই মূলের সাহাযোে শর্করা এবং বিভিন্ন বৃদ্ধি উদ্দীপক্ পদার্থ নির্গতি করে থাকে। তাই এই পরিছিতিতে মূলের চারপাশের মাটিকে

ভালিকা ২ ঃ জৈব পদার্থের প্রভাবে মাটির নাইট্রোজেন বন্ধনক্ষম জীবাণুর ক্ষমতা (আলেকজ'গুরি, ১৯৬১)

	-		
<u> </u>	<u> মাটির</u>	পরীক্ষিত	व्यावक्ष नाहरद्वारव्यत्नव
NAME OF TAXABLE PARTY.	pH	স্থয়	পরিমাণ
从带线 对于		or Sciences	(পাউও প্রতি একরে)
নিয়ন্ত্ৰিত	9.6	86	0.62
খড় ৬,০০০ পাউত্ত	6.5-6.6	86	•.>8
প্রতি একরে	c b-6.0	86	0.08
	89-90	3 84	2.05
আলফা আলফা	ARTON MARKET	STATE 12	
২০,০০০ পাউত্ত প্রতি	76	80	0.69
একরে		Tall pay	
ग्हें। ई		A CONTRACTOR	100000
২০,০০০ পাউও প্রতি	9 6	80	9 ¢
একরে			Standard Committee
থ কোজ			March San San San
২০,০০০ পাউণ্ড প্রতি	9 6	80	800
একরে			Section 1997

> পাউণ্ড প্রতি একরে = ১:১২ কিগ্রা, প্রতি হেক্টরে

অর্থাৎ মৃল-পরিমণ্ডলকে (rhizosphere) আশ্রের করে প্রচুর এজোটোব্যাকার জন্মানোর অন্তকৃল পরিবেশ শৃষ্টি হয়। ফলে জনিতে এজোটোব্যাকারের নাইট্রোজেন বন্ধন ক্রিরার পথ কন্ধ হয় না। জলমগ্র ধানজনিতে অবাভ পরিবেশ শৃষ্টি হয় বলে হয়ত অনেকেই এজোটোব্যাকারের সাফল্য সম্বন্ধে প্রকাশ করবেন। কিন্তু এটা মনে রাখতে হবে এই পরিবেশেও শানগাঁচের পাত্ররন্ধ্য, , এরেনকাইমা 'aerenchyma' ও লাই নিজেনাস

আন্তর্কোষিক ছিদ্র দিয়ে পাতা থেকে অক্সিজেন মূলে গিরে পে'ছার এবং বাইরে বেড়িয়ে আসে, বার ফলে মূল-পরিমণ্ডলে এজোটো-ব্যাকার (অলমগ্র অমিতেও সহজলতা শর্করা জাতীর পদার্থের সরবরাহ অব্যাহত থাকলে) অক্সিজেনের সংকটে পড়বে না এবং নাইট্রোজেন বন্ধন ক্রিয়াও অব্যাহত রাখবে। যদিও অবাত পরিবেশে ক্লস ট্রিডিয়াম জীবাণ্র সংখ্যা বহুগুণে বৃদ্ধি পার এবং ভারাই তথন নাইট্রোজেন বন্ধনে মুখ্য ভূমিকা গ্রহণ করে।

গাছের ফুল থেকে প্রধানতঃ যে যে জৈব পদার্থ বেরিয়ে আসতে দেখা যায় তার মধ্যে প্রধান হল বিভিন্ন শর্করা, আামাইনো এ্যাসিড এবং জৈব এ্যাসিড। নাইটোজেন বন্ধনের জক্ত জক্তাক্ত মৌলের মধ্যে জ্ববণীয় পর্যায়ের ফসফরাস এবং স্বর প্রয়োজনীয় মৌল মলিবডেনামের প্রতিক্রিয়া সর্বাপেক্ষা বেশী। বিভিন্ন পরীক্ষায় প্রমাণিত হয়েছে মাটিতে মলিবডেনামের অভাব রয়েছে এরকম জমিতে হেক্টর প্রতি ২০-৪০ গ্রাম মলিবডেনাম প্রয়োগের ফলে সবচেয়ে বেশী উপক্রত হয় নাইটোজেন বন্ধনকারী জীবাণু। মলিবডেনাম প্রয়োগের ফলে অক্তাক্ত যে প্রতিক্রিয়া লক্ষ্য করা যায় তা হল, জমির জৈব কার্যনের পরিমাণ বৃদ্ধি এবং নাইটোজেন বন্ধনের হার বৃদ্ধি। এছাড়া মলিবডেনাম প্রয়োগের ফলে জমিতে নাইটোজেন বন্ধনের হার বৃদ্ধি। এছাড়া মলিবডেনাম প্রয়োগের ফলে জমিতে নাইটোজেন বন্ধনকারী শেওলা বিশেষ করে নীলসবৃজ্ব শেওলার সংখ্যা বৃদ্ধি হয়। পরবর্তী পৃষ্ঠায় এই ভথাের সমর্থনে দে এবং ঘাষের ১৯৮০ সালের পরীক্ষালক্ক ভালিকাটি উপস্থাপিত করা যেতে পারে।

এই পরীক্ষার দেখা যার জমিতে সার প্ররোগের পূর্বে বণাক্রমে ৫০×১০³ এবং ৬×১০⁵ সংখ্যক নাইট্রোজেন বন্ধনকারী ব্যা ক্রিরিয়া এবং নীলসবুজ শেওলা উপন্থিত ছিল। অর্থাৎ এই তালিকা ভালোভাবে নিরীক্ষা করলেই এটা স্পষ্টভাবে বোঝা যাবে যে মলিবডেনাম প্রয়োগের প্রভাব নাইট্রোজেন বন্ধনকারী জীবাণুর ক্ষেত্রে কত স্পষ্ট। বলা বাহুল্য নাইট্রোজেন ঘটিত সার যৌধভাবে প্রয়োগের ফলে প্রভিক্রিয়া আরও স্পষ্ট হয়ে উঠেছে।

এই পরীক্ষার দানা খদ্যের ওজন বৃদ্ধি তালিকাও পূর্বোক্ত বক্তব্যগুলিকে সমর্থনের পক্ষে বৃক্তি রাখে।

এজোটোব্যাক্তার নিয়ে ক্লবি জীবাণু বিজ্ঞানী মহলে অনেক আলোচনা এবং অনেক আলোড়নের শেষেও কিন্তু স্বাই মতৈক্যে পৌছাতে পারেন নি। ভীবাণুদার হিসাবে মুক্তজীবী নাইট্রোজেন বন্ধনকারী জীবাণু ৮৭
ভালিকা ৩: আই আর-৮ ধান গাছে বিভিন্ন পরিমাণে নাইট্রোজেন
ও মলিবডেনাম জাতীয় দার প্রয়োগের ফলে দবাত
মুক্তজীবী নাইট্রোজেন বন্ধনকারী ব্যা ক্টিরিয়া, নীলদবুজ
শেওলা এবং দানা শদ্যের ওজনের উপর প্রতিক্রিয়া (দে

চারটি প্লটের (২৪ বর্গমিটার) গড়

শার প্রয়োগে র শাত্রা	গড়ে নাইট্রোজেন বন্ধনকারী ব্যাক্টি- বিয়ার সংখ্যা (××°8)	গড়ে নীলসবুজ শেওলার সংখ্যা (×১০°)	গড়ে ১০০০ দান শহ্যের ওজন (গ্রামে)		
	P9	55	50.08		
Mo ₁	59	30	२७.२१		
N ₀					
Mo ₂	220	50	২৬.৫৩		
Moo	a) w	20	२৫.48		
N ₁	A SERVICE STATE	SIE W			
Mo ₁	36	50	26.68		
Mos	224	28	২৬.৩৬		
Moo	50	50	২৬.৫৩		
N ₂			26.50		
Mo ₁	255	20			
Mo ₂	500	25	56.02		

সাবের মাত্রা: N_0 , N_1 এবং $N_2 o$ নাইটোম্বেনের মাত্রা যথাক্রমে O_3 ৬০ এবং >২০ কিগ্রা প্রভি হেক্টরে ;

 Mo_0 , Mo_1 এবং $Mo_2 o$ মলিবডেনামের মাত্রা বথাক্রমে \circ , ২০ এবং ৪০ প্রাম প্রতি হেক্টরে।

এজোটোব্যাক্টার পর্যাপ্ত পরিমাণ নাইটোজেন বন্ধন করে রাসায়নিক সারের (নাইটোজেন ঘটিত) সঙ্গে সাক্ষাত প্রতিদ্বন্দিতায় নামতে সমর্থ হবে এতটা আশা অবশু কোন জীবাণু বিজ্ঞানীই করেন না। তবু বিভিন্ন উচ্চমানের নাইটোজেন বন্ধনকারী এজোটোব্যাক্টার প্রয়োগ করে অনেকেই কিছু না কিছু অফল পেয়েছেন। সচরাচর মৃক্তজীবী নাইটোজেন বন্ধনকারী জীবাণুসার প্রয়োগের ফলে শতকরা দশভাগ অতিরিক্ত ফলনবৃদ্ধি হয়, যদিও অনেক বিজ্ঞানী শতকরা ৩০-৪০ ভাগ বেশী ফলনের সাক্ষ্য পেয়েছেন। মিন্তুস্টিনের ১৯৭০ সালের পরীক্ষালন্ধ ফলাফল বিশ্লেষণ করলে দেখা যাবে দানা শভের বেকে শক্তি জাতীয় শভের ফলনই এজোটোব্যা ক্রিরণ প্রয়োগে বেশী ছয়েছে।

ভালিকা ৪: কতিপর শহ্যের ফলনের উপর এজোটোব্যাক্টরিণ প্রয়োগের প্রভাব (মিছ্টিটন, ১৯৭০)

শভ	বিনাসারে গড়পরতা ফলনমাত্রা (টন প্রক্তি হেক্টরে)	এজোটোব্যা ক্টবিণ প্রয়োগের ফলে ফলন বৃদ্ধির পরিমাণ (শতকরা হিসাবে)
বসস্তকালীন পম	2.64	b 2
শীতকালীন গম	5.20	≥. F
र्वेष्ट व्य	2.42	25.0
यव	5.70	30
ছুটা	ં ૭ હર	P.o
বীট	२৮ ७५	P. 0
আলু	59·Fe	b.o
		The second secon

এবার দেখা যাক জমিতে সার প্রয়োগ করার পর এজোটোব্যা ক্টিরিণ কভটা শাফল্য লাভ করেছে।

ভালিকা ৫: জৈবসারের সহযোগিতার এজোটোব্যা ক্রিণের প্রভাব (মিস্থদিটন, ১৯৭০)

	alle straggment	THE PARTY OF THE P	
49	সার প্রয়োগ	জীবাণু প্রয়োগ না করায় প্রাপ্ত ফলন (টন প্রতি হেক্টরে)	ফলন বৃদ্ধি শুভকরা হিসাবে
দুট়্ ।	হৈত্বসার খনিজ সার	6.89	>5.4
আৰু	্রাসায়নিক সার ভৈন্সার	29'20	26.0 56.0
বাঁধাকলি	হৈজবসার	₹0.90	5A.o.
हत्यत्हे।	হৈ বসার		Maria Maria

এজোটোব্যাকার বিশ্ব যে নাইটোজেন বন্ধন করে তা মূলত: প্রোটন হিশাবে তাদের কোষে আবদ্ধ থাকে এবং কেবলমাত্র তাদের মৃত্যু ঘটলেই নাইট্রোজেন অজৈবকরণই (mineralisation) প্রক্রিয়ায় অজৈব নাইট্রোজেন মুক্ত হয় যা উদ্ভিদের উপকারে আসতে পারে। উপরস্ক এজোটোব্যাকার উদ্ভিদ বৃদ্ধি উদ্দীপক (হুৰ্মোন জাতীয় পদাৰ্থ) অক্সিন বা ইনডোল এ্যাসিটিক এাসিড উৎপাদন করে। গাছের মূলে এই উপকারী জৈব পদার্থগুলি গাছের বৃদ্ধিকে যথেষ্ঠ পরিমাণে প্রভাবিত করে। অনেকেই অবশ্য এজোটোব্যাকারের সাফল্যের মূল কারণ হিসাবে হর্মোন উৎপাদনকেই চিহ্নিত করে থাকেন। এ ছাড়াও এজোটোব্যাকার এমন কিছু রাসায়নিক পদার্থ উৎপন্ন করে যা গাছের মূলে অপকারী জীবাগুকে বাসা বাঁধতে দেয় না। তাই সার্বিক বিচারে এই জীবাগুকে জীবাগুরে বাসারের উপযোগিতা অস্বীকার করা যায় না। জীবাগুনার হিসাবে এজোটোব্যাকারের ব্যবহার কোশল এবং শিল্পভিত্তিক উৎপাদন প্রশক্ষে আলোচনার আগে আমরা দেখব মলিবডেনাম প্রয়োগের ফলে জ্মির হিউমাস এবং নাইটোজেন বন্ধনকারী জীবাগুর সংখ্যা কতটা প্রভাবিত হয়েছে।

ভালিকা ৬ ঃ মলিবডেনাম প্রায়োগে নাইট্রোজেন বন্ধনক্ষম জীবাণ্র প্রতিক্রিয়া (দে এবং সহক্ষীবৃন্দ, ১৯৭৫)

জৈব কার্বন বৃদ্ধির পরিমাণ প্রাম প্রতি ১০০ গ্রাম মাটিজে	নোট ব্যাক্টিরিয়া (সংখ্যা × > ° ⁸)	नांहरद्वारखन रक्षनकांती रागि केंद्रिमात (गःथा। × > ०°)	নাইটোজেন বন্ধনের পরিমাণ মিলিগ্রাম প্রতি ১০০ গ্রাম মাটিতে
0.54	12	>08	२७.>
0.59	P-8	355	२५२
• २ ৮	48	51	0e.A
0.20	Fo	>29	8 > 5
0.24	F9	>8¢	89.2
	বৃদ্ধির পরিমাণ প্রাম প্রতি ১০০ গ্রাম মাটিচে ০:২৭ ০:২৯ ০:২৮	র্ন্ধির পরিমাণ ব্যাক্টিরিয়া প্রাম প্রতি ১০০ গ্রাম মাটিকে ০:২০ ১২১ ১২৮ ১৯১ ১৯১ ১৯১ ১৯১ ১৯১ ১৯১	র্দ্ধির পরিমাণ ব্যাক্টিরিয়া বন্ধনকারী প্রাম প্রতি ১০০ গ্রাম মাটিকে ০:২৭ ১০৪ ১০৪ ১০৪ ১০৪ ১০৪ ১০৪ ১০৪ ১০

পরীক্ষার আগে জমিতে জৈব কার্বনের পরিমাণ:

০০৮২ গ্রাম প্রতি ১০০ গ্রাম মাটিতে।

এছাড়া আমাদের দেশে এক নৃতন জীবাণু এজোস্পিরিলাম নিয়ে গবেষণা হচ্ছে। এই জীবাণুর বৈশিষ্ট্য হল এরা শর্করাকে ভিত্তি করে জন্মাতে অক্ষম। এরা ম্যালেট যৌগের উপস্থিতিতে ভালোভাবে জন্মাতে পারে। তাই তৃণজাতীয় শত্তের মূল-পরিমণ্ডলে এদের প্রাচুর্য্য দেখা যায়। এদেরও স্ভাবনাময় নাইট্রোজেন বন্ধনকারী জীবাণু হিসাবে গণ্য করা হচ্ছে।

বাণিজ্ঞাক ভিত্তিতে উৎপন্ন এজোটোব্যাকীর, এজোটোব্যা টিরিণ নামে পরিচিত। সাধারণতঃ মৃক্তজীবী নাইটোজেন বন্ধনকারী জীবাণু উৎপাদনের জন্ত শর্করা ও মলিবডেনাম যুক্ত নাইটোজেন বিহীন পুষ্টি মাধাম ব্যবহার করা হয়ে থাকে। সাধারণ ধাতু ছাড়া এই জীবাণু বৃদ্ধির জন্ত প্রয়োজন হয় মলিবডেনামের (Mo+6 এজোটোব্যান্টার স্বাত শস্জীবী হওয়ার এদের উৎপাদনের জন্ত অক্সিজেন স্ববরাহ রাখতে হয়। সাধারণতঃ কঠিন আগার আগার মাধামে বা তরল মাধামে এরা জন্মাতে পারে। ক্লেবজিয়েলা এবং জারক্সিয়া গামোলা উচ্চ নাইটোজেন বন্ধন ক্ষমতার অধিকারী হলেও এরা ক্লীণজীবী। তাই জীবাণ্সার হিসাবে এজোটোব্যাকীরেই স্বীকৃত। কিন্তু অম মাটিতে এজোটোব্যাকীরে বার্থ হলেও সেবানে ডারক্সিয়া গামোলাতঃ প্রশম বা জিল্পাম প্রযুক্ত কার মাটিতে এজোক্সিরলাম তালো ফল দের।

উদ্ভিদহীন সাধারণ মাটিতে জীবাণুসারের ক্রিয়া খুব আশাপ্রাদ হয় না বটে কিন্তু
পাছের মূল নির্বাদের (root exudate) প্রাণম্পর্শে এদের, ক্রমতা যথেষ্ট পরিমাণে
বেড়ে বেতে দেখা যায়। বিভিন্ন পরীক্ষায় দেখা গেছে ধান, গম এমন কি সজি
গাছের মূল-পরিমণ্ডলে এজোটোব্যাক্টারের সংখ্যা যথেষ্ট বৃদ্ধি পেয়েছে।
শামান্ত পরিমাণ নাইট্রোজেন এবং ফসফরাস জাতীয় সারের সহযোগিতায়
এজোটোব্যাক্টার জীবাণুসার হেক্টর প্রতি বাড়তি ৩০ থেকে ৪০ কিপ্রান
নাইট্রোজেন প্রয়োগের তুল্য পরিমাণ ফলনবৃদ্ধি করতে সক্ষম।

এজোটোব্যাক।র জীবাণুনার পলিধন পাকেটে পীট বা বোঁদ মাটির সঙ্গে
নিশরে বাজারে বিক্রম্ন করা হয়। এছাড়া উত্তমরূপে গুঁড়ো করা মাটি এবং
খামারজাত জৈব উপসারের সঙ্গেও পর্যাপ্ত পরিমাণে এজোটোব্যাকারের কোষ
মিশিয়ে চাবের জমিতে প্রয়োগের উপযোগী করে পণ্য হিদাবে বাজারে বিক্রীত
হতেও দেখা যায়। জীবাণু সরাসরি উৎপন্ন করে নিতে পারলে ওড় বা পলিস্যাকারাইড জাতীন্ন জাঁঠালো পদার্থের সঙ্গে বীজ উত্তমরূপে মিশিয়ে ছায়ায়
শুকিরে বপনের জন্ম জমিতে প্রয়োগ করা যেতে পারে। তবে এ পদ্ধতি অবশ্য
শিঘজাতীয় উদ্ভিদে রাইজোবিয়াম জীবাণু প্রয়োগের ক্ষেত্রেই অধিক প্রচলিত।
সাধারণত: তরল পৃষ্টি মাধ্যমে অধিক ক্ষমতাশালী এজোটোব্যাকার জীবাণুকে

প্রবেশ করানো হয়। সাধারণতঃ উৎপাদন পাত্রের আকার ২০০০-৫০০০ লিটারের মধ্যে হলে পৃষ্টি দ্রবণকে নির্বাঞ্জ (sterilise) করা হয়, কিন্তু পাত্র অপেকাকৃত বড় হলে তা আর সন্তব হয় না। আজকাল গভীর পাত্রে বায়ু সঞ্চালন এবং পাত্রকে আলোড়নের ব্যবস্থা রাখা হয়। এর ফলে ব্যা ক্টিরিয়া সমানভাবে এবং অধিক-সংখ্যার জ্ব্যাতে পারে। সাধারণ অগভীর পদ্ধতিতে যেখানে প্রতি মিলি লিটার দ্রবণে (১০-১৫) × ১০৬ সংখ্যক ব্যা ক্টিরিয়া উৎপাদন করা সন্তব সেখানে গভীর প্রকোষ্ঠ পদ্ধতিতে তার শভগুণ অর্থাৎ প্রতি মিলি লিটার দ্রবণে (১০-১৫) × ১০৬ সংখ্যক ব্যা ক্টিরিয়া উৎপাদনের পর জীবাণুকে সেন্টি ফিউজ করে অধ্যক্ষিপ্ত করা হয়। অতঃপর জীবাণুকে নিম্নচাপে শুদ্ধ বরফের সাহায্যে হিম করে উপযুক্ত ধারকের (base) মধ্যে মিশিয়ে প্যাক করা হয়। এই জীবাণু বংসরাধিক কাল সক্রিয় থাকতে পারে বলে আশা করা যায়।

এজোটোব্যাকার অনেক ক্ষেত্রেই আশামুরূপ ফল দেয় না বলে আশাহত হরেই অনেকে এজোটোব্যাকার প্রয়োগের বিরুদ্ধে রায় দেন। এজোটোব্যাক্টারের প্রয়োগে সাফল্য লাভ করলে, সাফল্যের কারণ ছিসাবে তার হর্মোন উৎপাদন ক্রমতা, বা উদ্ভিদ অপকারী জীবাণু নিয়ন্ত্রণ বা একিবায়োটিক উৎপাদনের ফলশ্রুতি বলে ব্যাখ্যা করা হয়। পরীক্ষায় জানা গেছে পরিমিত পরিমাণ জৈবসার বা স্বল্ল পরিমাণ নাইট্রোজেনজাত রাসাম্বনিক সার এবং মলিবভেনাম প্রায়োগের সজে এভোটোব্যাকার জীবাণুসার প্রয়োগের কলে লাভজনক পরিমাণে জমিতে অভিবিক্ত নাইট্রোজেন সঞ্জিত হয়। অর্থাৎ এজোটোব্যাক্টার অ্যিতে নিঃসন্দেহে নাইট্রোজেন বন্ধন করে। বলা বাহুল্য যে উপায়েই হোক **এজোটোব্যাকার** গাছের উপকার করে এ বিষয়ে দ্বিমত নেই। কারণ এই সন্তা জীবাণু সার প্রয়োগের ফলে জমিতে কোন প্রতিবন্ধকতা স্মৃষ্টি হয় না। এবার আমরা **এজোটোব্য**াকার প্রয়োগের করেকটা পরীক্ষালর ফলাফল যাচাই করে দেখব। মেহরোত্রা এবং লেছরির ১৯৭১) এক পরীক্ষায় দেখা যায় স্টার্চ জাতীয় দানা শস্তের (cereal) চেমে সক্তি জাতীয় শক্তে (vegetable) এজোটোব্যাক্টার অধিক ফলন বৃদ্ধি करत्रा ।

পর বর্তী পৃষ্ঠার সোনোর-৬৪ জাতীর পমে এজোটোব্যাক্টার প্রয়োপের ফলাফল দেখানো হল:

ভালিকঃ ৭: গমের ফলনে এভোটোবাক্টারের প্রভাব (মেহরোজা এবং লেছরি, ১৯৭১)

যে স্থানের মাটি এজোটো-			গায	Ţ	ফল্ম	(কুইণ্টা	ল প্ৰতি	হেন্টরে).			15.0
ন্যান্টারের উৎস হিসাবে ব্যবহার করা হয়েছে	প্রযুক্ত সারের পরিমাণ (কোজ প্রতি হেক্টরে)											
4.41 40.404	N	P	K	N	P	K	N	P	K	N	* P	K
NEW YORK OF THE PARTY OF THE PA	60	90	90	50	28	80	250	60	60	>60	90	98
এজেটোব্যাক্টার ছাড়া		২৯.৭১		৩৩ ৩১			୯୫.୦୫			७१२३		
এজোটোবান্টার প্রযুক্ত কানপুর (পূরা)		. 00.58		७० २२		৩৭ ৩৫		1	80.52		,	
কানপুর (কল্যাণপুর)		२१.४५		-	06.0			OF.8P		80 00		0

পরিসংখ্যান তাৎপর্য্যপূর্ণ নম্ন (Statistically not significant)

व्यद्भाग कानीय भारन हेशत बारकारिताकीत विकात करत्रष्ट विवात का तम्या याक। A-Ella

क्छों क्ष्णिव

ভালিকা ৮: ধানের ফগনে এজোটোবাজীরের প্রভাব (মেহরোত্রা এবং লেহরি, ১৯৭১)

যে স্থানের মাটি			धाः	1	ফলন	(কুইণ্ট	াল প্রতি	হেক্টরে	1)			
এজোটোব্যাক্টারের উৎস		STATE OF	2	াযুক্ত সা	রের পরি	यान (f	কগ্ৰা. ভ	শতি ছেই	हेदब्र)		0.0	
	N	F ₁	K	N	F ₂ P	K	N	F ₃ P	K	N	F ₄	K
Robert Land	60	00	00	20	86	80	>50	60	60	>60	90	92
এজোটোব্যাক্টার ছাড়া		24.90			20.9	•		₹8 €	•		२३३	0
এজোটোব্যাক্টার প্রযুক্ত কানপুর (পুরা)		20.60			22 o			२५२	0		000	0
কানপুর (কল্যাণপুর)		₹>:80	O.	19	20.00		15/42	29.0	0		00 60	,
যগেশ্বর		2> >0			58.20			२१२			00.90	
পায়রা (বুন্দেল্থ ্)		२०७०			₹8.00			७० २	0		00 50	

F₃ ছাড়া অন্ত পরিসংখ্যান ভাৎপর্যাপূর্ণ নয়।

(क्यान

व्यिकिया श्रिका।

ভালিকা ৯ ঃ সজির ফগনে (বেগুন) এজোটোব্যাক্টারের প্রভাব (মেহরোত্রা এবং লেহরি, ১৯৭১)

যে স্থানের মাটি	বেগুল যোট											
এভোটোব্যাক্টারের	প্রযুক্ত সারের মাত্রা (কিগ্রা- প্রতি হেক্টরে)											
উ ৎস	N P K ২০ ২০ ১০ ৭৫০০ কিন্ত্রা, খামার- জ্বাক্ত উপসার	N P K ৮০ ৪০ ৪০ + ১৮৭৫০ কিগ্রা. খামারজাত উপদার	N P K >৫০ ৭০ ৭০ + ৩০,০০০ কিগ্রা. থামার- ভাত উপসার									
এজেটোৰ্যান্তীর ছাড়া	20 028	>5.205	>8.060									
ভরাই	20.015	>6.409	>6.63.9									
পান্ধরা (বুন্দেলখণ্ড)	30.00	>6.645	P 6 6 6 c .									
যগেশ্বর	>0.299	३५ २०६	১৯.৫৯৩									
পুনা	>8 (22	>0.569	১৪ '২২৭									

পরিসংখ্যান তাৎপর্যাপূর্ণ নয় ৷

পরিশেষে বাঁধাকপির উপর এজোটোব্যাক্টার প্রায়োগের ফলাফল দেখা যাক।
ভালিকা ১০ ঃ সন্তির ফলনে (বাঁধাকপি) এজোটোব্যাক্টারের প্রভাব
(মেহরোত্রা এবং লেহরি, ১৯৭১)

যে স্থানের মাটি	বাঁধাকপি ফলন (টন প্রতি হেক্টরে)		
এন্সোটোব্যাস্টারের উৎস হিসাবে ব্যবহার্ত হয়েছে	প্রযুক্ত সারের N P K ৯০ ৫৬ ১৫ + ২২,০০০ কি	পরিমাণ (কিগ্রা- N P K ১৮০ ১১ ৩০ গ্রা- সার প্রতি হেই প্রয়োগ করা হয়ে	প্রতি হেক্টরে) N P K ৩৬০ ২২৪ ৬০ বৈর প্রতি ক্ষেত্রেই
এজোটোব্যাক্টার ছাভা	86.940	60.265	68.453
> যগেশ্বর	68.666	67.70	6¢.426
পুনা	GCO.93	৬৯.৭২৬	90.660
কানপুর	P. P	6¢.895	96.244
বুন্দেলখণ্ড (কাবার)	62 286	¢e.8¢¢	42.44¢
তরাই	७७.६२१	64.245	98.208
বুন্দেলখণ্ড পাররা)	60.206	eb ३७५	99.698
वाहै-এ-वात्र-वाहे	65.52	80.806	66.808
পাৰ্বত্য	\$7.608	७१ ४७४	98.698
কানপ্র (পুরা)	60.760	68.870	90.992
কানপুর (কল্যাণপুর)	६६ ६०६	69.454	92.084
করিয়াল	es ४२१	69.265	951309

এই পরীক্ষায় পরিসংখ্যান তাৎপর্য্যপূর্ণ হয়েছে।

অভএব পরিসংখ্যানের বোঝা না বাড়িয়ে বোধহয় এর থেকেই আমরা নিঃসম্পেহে মেনে নিভে পারব যে মুক্তজীবী নাইট্রোজেন বন্ধনকারী জীবাণুর ভূমিকা ক্লবিক্ষেত্রে অবশুই আছে। তাই নিঃসম্পেহে বিশ্বাস করা চলে যে ক্লবিজ্ঞনিত্তে এদের প্রশোগ লাভজনক হবেই।

জীবাণুসার হিসাবে সহজীবী নাইট্রোজেন বন্ধনক্ষম জীবাণু

The safe was the same state of the safe of

20

সহযোগিতাপূর্ণ সহাবস্থান প্রকৃতিরই নিয়ম। তাই এই নীতি অয়ুসরণ করে বছাশ্রেণীর জীবাণু উদ্ভিদ এবং প্রাণী স্বছ্নন্দে প্রকৃতিতে তার অভিন্ব বজায় রেখে টিকে আছে। এরকম একটা পরিচিত উদাহরণ হল শিম্ব, কড়াই বা শুঁটি জাতীয় উদ্ভিদ (leguminous plant) এবং রাইজোবিয়াম জীবাণু। শিম্ব জাতীয় প্রজাতিগুলির মধ্যে বেশ কয়েকটিকেই মায়ুষ চাষ করে থাকে প্রধানতঃ পশুখাদ্য এবং মায়ুবের প্রোটিনের প্রয়োজনে। আমরা এই শ্রেণীর গাছের ফলকে প্রোটন সমূদ্ধ বলেই জানি এবং তা সত্যি। প্রোটিনের মূল উপাদান নাইট্যোজেন, যা কোষে আমাইনো এয়াগিড গঠন করে প্রোটিনে পরিণত হয়। জমিতে সার প্রয়োগের রীতি মায়ুষ সভ্য হবার পরেই এসেছে, কিল্প তথন কে মিটাত শিম্ব জাতীয় গাছের বিপুল নাইট্যোজেনের চাহিদা ? বলা বাহুল্য বর্ত মানেও এই শ্রেণীর উদ্ভিদ চাবের জন্ম নাইট্যোজেন জাত সারের চাহিদা ন্যুনতম। তবে এই রহুস্যের অভ্রেরালে কে ?

একটা ৩-৪ সপ্তাহের সতেজ শিষ্ব জাতীয় চারাগাছকে সমত্রে মাটি থেকে তুলে এনে তার মূল লক্ষ্য করলে বোঝা যাবে সেখানে রয়েছে অসংখ্য ছোট বড় নানা রকমের গোল বা উত্তল ঈবৎ লালাভ, সবুজ বা বেগুনী বর্ণের গুটি বা অবুদ। এই গুটিগুলিকে শিকড়ের প্রান্থ থেকে সমত্রে কেটে অল্ল জলে রেখে গুটির মাঝ বরাবর কাটলে অতিক্রত জলকে ঘোলা হয়ে যেতে দেখা যাবে। সন্তব হলে এই জলীয় ফ্রবণের একটা বিন্দুকে অণুবীক্ষণ যন্ত্রের সাহায্যে পরীক্ষা করলে বিচিত্র আকৃতির ব্যা ক্রিয়া দেখা যাবে। এরাই হল রাইজোবিয়াম জীবাগু হারা গুটির মধ্যে বাসা বেঁধে লাইট্রোজেন বন্ধন করে।

এই সহযোগিতাপূর্ণ সহাবস্থান অবশু রাইজোবিয়াম—শিষ জাতীয় উদ্ভিদের একচেটিয়া নয়। এছাড়া শেওলা ও ছত্রাক (লাইকেন), এজোলা নামক জনজ ফার্ন এবং নীল সবুজ শেওলা, ব্যাপ্রবীজি বনজ উদ্ভিদ এবং মাইকোরাইজ্ঞা নামে একশ্রেণীর ছত্রাকের মধ্যেও এই জ্বান্তীয় সহাবস্থান দেখা যায়।

শিষ জাতীয় গাছে অর্ব্দ বা গুটি আবিকারের পর থেকেই পরীক্ষাগারে এবং ক্রিক্লিতে রাইজোবিয়াঝের সন্মানজনক আসন প্রতিষ্ঠিত হয়। ১৮৮৮ সালে বায়ারিক্ক (Beijerinck) প্রথম এই গুটি থেকে রাইজোবিয়াম জীবাবু নিজাশনে সমর্থ হন (হলসওয়ার্থ, ১৯৫৮) এরপর থেকেই শুরু হয় এই জীবাবুকে ক্রবিক্ষেত্রে প্রয়োগ করে ফলনর্দ্ধির উত্যোগ। কিন্তু বলা বাহুল্য সেই আদিম উত্যোগে সাফল্য আসে নি। এই অসাফল্যের কারণ চিহ্নিত করতে গেলে রাইজোবিয়াম জীবাবু এবং শিষ্ম জাতীয় গাছের সহযোগিতাপূর্ণ সহাবস্থান সম্বন্ধে সমাক জ্ঞানের অপ্রত্নতার কথাই উল্লেখ করতে হয়। পরবর্তী যুগে অবশু এ সম্বন্ধে প্রচুর গবেবণা হওয়াতে আমাদের জ্ঞানের পরিধি জনেক বৃদ্ধি পেয়েছে। রাই-জোবিয়ামের কার্যকর ভূমিকা সম্বন্ধে নিশ্চিত হবার পর অ্বনির্বাচিত উচ্চানের জীবাবুকে বাণিজ্যিক ভিত্তিতে উৎপাদন করা হচ্ছে এবং তা জ্বমতে প্রয়োগ করে আশামুরূপ সাফল্য লাভ করা যাচ্ছে। তবু এদের থেকে আরও ভাল ফললাভের জন্ম গবেবণার কাজে এতটুকু ভাটা পড়েনি।

উদ্ভিদ শ্রেণী এবং রাইজোবিয়াম প্রজাতি

লেগুমিনোসি (Leguminosae) পরিবারের প্রায় ১২,০০০ প্রজ্ঞাতির মধ্যে মাত্র শতেক প্রজাতিকে আমাদের খান্তশশু বা পশুখাত হিসাবে চাষ করা হয়। এরা মুখ্যতঃ প্যাপিলিওনইডি (Papilionoideae) উপপরিবারের অন্তর্ভু জ। এরা প্রায় সকলেই মূলে গুটি উৎপন্ন করে, যেখানে রাইজোবিয়াম জীবাণু অবস্থান করে বান্ত্র্মগুলীয় নাইট্রেজেন বন্ধন করে।

ইউবা কিরিয়েলস পর্বের অন্তর্গত রাইজোবিয়েসি (Rhizobiaceae) পরিবারের বিলটি গণের অন্তন্তম মুখ্য গণ হল রাইজোবিয়াম। এই পরিবারের অন্ত এক সদন্ত এত্রোব্যা কিরিয়াম—এরা উদ্ভিদের মূলে গুটি উৎপল্পকারী রাই-জোবিয়ামের সাথেই প্রবেশ করে রোগ উৎপন্ন করতে পারে। এরা নাইটোজেন বরন করতে অক্ষম। এছাড়া এই পরিবারের অন্ত সদন্ত ক্রোমাটিয়াম কিন্তুমাটি বা জলে মৃক্তজীবী হিসাবে বসবাস করে। তাই দেখা যাচ্ছে রাইজোবিয়েসি

পরিবারের মধ্যে রাইজোবিয়াম জীবাগুই শিঘ্ন জাতীয় গাছের মূলে প্রবেশ करत नामा नास वनः नाहरहोास्यम नक्षम करत। श्रुवित मस्य नमनामकाती শক্রিয় নাইট্রোজেন বন্ধনকারী রাইজোবিয়াম জীবাবুর আফুতি অনিয়তাকার, অসম এবং অনির্দিষ্ট হয়ে পাকে। এদের বলে বাা ক্টিরয়েড। কিন্তু এদের যথন পরীক্ষাগারে ক্বত্রিম পৃষ্টিমাধ্যমে জন্মানো হয় তখন এদের পরিচয় হল গ্রাম ধাণাত্মক, স্পোরগঠনে অক্ষম, সবাত খসজীবী ০০৫-১০ মাইজোমিটার চওড়া এবং ১'২-৩'০ মাইক্রোমিটার লম্বা রড আক্ততি বিশিষ্ট। পরীক্ষাগারে এরা নানাবিধ কার্বনন্ধাত পদার্থ থেকে প্রয়োজনীয় শক্তি সংগ্রহ করে বেঁচে থাকতে পারে। কিন্তু সেক্ষেত্রে তারা নাইটোজেন বন্ধন করতে পারে না। এই বিশেষ পরিন্ধিতিতে এদের জন্মানোর জন্ম নাইটোজেনের উৎস হিসাবে প্রয়োজন হয় অ্যামোনিয়াম বা নাইট্রেট লবণের। অবশ্য বর্তমানে রাইবোজ শর্করাকে কার্বন উপাদান হিসাবে প্রয়োগ করে এই রাইজোবিয়াম জীবাণু घाता कृत्विय याधारम नाहेर हो। एकन रक्षन कतारना मुख्य हरवरह । वहेमय माधात्र উপাদান ছাড়াও রাইজোবিয়াম জন্মানোর জন্ত কতকগুলি 'বি' ভিটামিনের প্রয়োজন হয়। এগুলি হল বায়োটিন, থায়ামিন, রিবোক্লেভন এবং পেণ্টোথেনিক ঞাসিত। রাইজোবিয়াম জীবাণুর নিকটতম প্রতিবেশী হল এগ্রো-ব্যা কিরাম রেডিওব্যাকার। এরা প্রায় স্বদিক থেকেই রাই-জ্যোবিয়ামের খুব সন্নিকটবর্তী। তবে পরীক্ষাগার পদ্ধতিতে এদের পৃথকী-করণের মূল ভিত্তি হল এরা অভিরিক্ত ক্ষারত্বে (pH, >>->৩) জন্মাতে পারে। কিন্তু এই প্রবল কারতে রাইজোবিয়াম জনার না। অভাত রাশায়নিক, শরীরতাত্বিক, বা কুষ্টি পরীক্ষা দ্বারা কিন্তু আজ পর্যস্তও নিশ্চিতভাবে রাই-জোবিয়ামকে সনাক্ত করার পদ্ধতি আবিষ্ণত হয় নি। তাই **রাইজোবি**য়াম সনাক্ত করণের সর্বশেষ নিশ্চিত পরীক্ষা হল শিম্ব জাতীয় গাছে তাদের গুটি উৎপাদন এবং এইসঙ্গে সক্রিয় নাইটোজেন বন্ধন। শিম্ব জাভীয় শ্রেণীর যে কোন গাছ যে কোন রাইজোবিয়াম জীবাণু ঘারা আক্রান্ত হয় না। প্রাকৃত-পকে বিশেষ এক শ্রেণীর রাইজোবিয়ামের অর্বদক গুটি পৃষ্টির ক্ষমতা বিশেষ এক শ্রেণীর শিম্ব জাতীয় গাছের মধ্যেই সীমাবদ্ধ। এই ভিত্তিতেই গ্রুডে উঠেছে বিপ্রভীপ প্রয়োগ শ্রেণী (Cross inoculation group)। বিপ্রতীপ শ্রেণীর বাইরে কোন এক শ্রেণীভুক্ত রাইক্যোবিয়াম জীবার

সচরাচর অস্তু শ্রেণীর উদ্ভিদে অর্দ স্টে করে না, কিন্তু এর বিপরীত ঘটনার দৃষ্টান্তও বিরল নয়। সাধারণতঃ যথন কোন শিঘ্ব জাতীয় উদ্ভিদ বিপ্রতীপ শ্রেণীর বাইরে কোন রাইজোবিয়াম জীবাণু ঘারা আক্রান্ত হয় তথন তারা সাধারণতঃ নাইট্রোজেন বন্ধনে ব্যর্থ হয়ে থাকে। বিপ্রতীপ শ্রেণীর সংজ্ঞা দিতে গোলে বলতে হয়, এরা হল একদল শিন্ত জাতীয় উদ্ভিদ প্রজাতি যাদের বে কোন একটির মূলের গুটির রাইজোবিয়াম জীবাণু, ঐ শ্রেণীভুক্ত অপর গাছকে আক্রমণ করে মূলে গুটি উৎপন্ন করতে পারে এবং সক্রিয়ভাবে নাইট্রোজেন বন্ধন করতে পারে । মোট প্রায় ২০টি এ ধরনের শ্রেণীকে চিহ্নিত করা হলেও নিশ্চিতভাবে সাতটি শ্রেণীই স্বীকৃতি লাভ করেছে। এর মধ্যে আবার মাত্র ছয়টি শ্রেণীকেই যথেষ্ট পার্থক্য বজায় রেখে সনাক্ত করা যায়।

বলা বাহুল্য এই শ্রেণীবিভাগ মোটেই ক্রটিমুক্ত নয়। বেমন সম্বাবীন এবং বরবটির রাইজোবিয়াম জীবাণু ভিন্ন ভিন্ন শ্রেণীভুক্ত হলেও এরা একে অপরকে আক্রমণ করে মৃলে গুটি উৎপন্ন করতে পারে। বিপরীভক্রমে একই জীবাণু তাদের নির্দেশিত শ্রেণীর বাইরে অন্ত শ্রেণীকে আক্রমণ করে। এরকম একের সঙ্গে অন্তের সমপতিত শ্রেণী (Over lapping) বা বিশ্ভালাসম্পন্ন সহাবস্থান (Symbiotic promiscuity) মূলক শ্রেণীবিন্তাস সম্বত কারণেই বিপ্রভীপ প্রয়োগ শ্রেণীর নিশ্চয়তা সম্বন্ধে সন্দেহের উদ্রেক করে। তাই ১৯৩৯ সালের পর থেকেই নৃতন শ্রেণীর আবিফার সংক্রান্ত গবেষণা প্রায় ন্তব্ধ হয়ে গেছে। বর্ত মানে রাইজোবিয়াম বিশেষজ্ঞগণ জীবাণুর বংশবৃদ্ধির হার, অমুত্ উৎপাদন, শোণিতবিভা (Serology), ডি. এন. এ -তে নাইট্রোজেন ঘটিত উপাদানের অমূপাত, সাংখ্যিক শ্রেণীবিস্থাস (Numerical taxonomy), ডি. এন. এ. সংকরারণ (DNA hybridisation) এবং (Phage) প্রতিরোধ ক্ষমতা; এইসব পরীক্ষার উপর গুরুত্ব আরোপ করছেন। বিগত চারদশকে আর কোন নৃতন রাইজোবিয়াম প্রজাতি আবিষ্কৃত হয় নি। বত'মানে নৃতন আবিষ্কৃত রাই-জোবিয়াম জীবাগুকে চিহ্নিত করা হয় তার আশ্রয়দাতার ভিত্তিতে। একটা তালিকাতে শিষ জাতীয় গাছ (বিপ্রতীপ প্রয়োগ শ্রেণী) এবং তার সঙ্গে যুক্ত ব্লাইজোবিমাম প্রজাতিকে পরবর্তী পৃষ্ঠায় দেখানো হল।

ভালিক। ১ঃ বাইজোবিয়ামের শ্রেণীবিস্থান (বার্টন, ১৯৭৯)

বিপ্রতীপ প্রয়োগ শ্রেণ	রাইজোবিয়াম প্রজাতি	অমুপোৰক প্ৰস্তাতি-
আলফা আলফা	রাইজোবিয়াম মেলিলোটি Rhizobium meliloti	— মেডিকাগো Medicago মেলিলোটাস Melilotus ট্রাইগোনেলা — Trigonella
ক্লোভার	রা ট্রাইফোলিআই R. trifolii	– ট্ৰাইফোলিয়াম – Trifolium
মট র	রা: লেগুমিনোসেরাম R. leguminosarum	– পিসাম (Pisam) ভিসিন্না Vicia) ল্যাপাইরান (Lathyrus) – লেন্স (Lens)
वौन	রা. ফ্যাজিওলি R. Phaseoli	– ফ্যাজিওলান – Phaseolus
ल् शिन	রা. লুপিনি R. lupini	– ল্যুপিনান (Lupinus) অনিথোপান Ornithopus
স্য়াবীন	রা জ্যাপোনিকাম R. japonicum	aাইগিন Glycine
বরবটি	অপ্রতিষ্ঠিত	ভিগনা (Vigna)) এরাকিস (Arachis) ফ্যাজিওলাগ Phaseolus ক্রোট'লারিয়া Crotalaria লেসপেডেজা Lespedeza

শিঘু জাতীয় পাছের মূলে যে গুটি উৎপন্ন হয় তা নানা প্রজাতির ক্ষেত্রে নানা আক্রতিবিশিষ্ট হয়ে পাকে। যেমন সাদা এবং লাল ক্লোভার-এ বড় আক্রতির উদ্ধ মুখী (club shaped) গুটি দেখা যায়, আলফা আলফা গাছে গুটিগুলি আবার দিধাবিভক্ত লম্বাটে আকারের, কিন্তু বরবটি, মটর ধইঞা এবং লীমবীনে গোলাকার গুটি দেখা যায়। আকারের দিক থেকে কোন গুটি বেশ বড আবার কোন কোন প্রজাতির গাছে গুটির ব্যাস মাত্র কয়েক মিলিমিটার হয়ে থাকে। গুটি যে আকুতিরই হোক না কেন সাধারণতঃ প্রধান মূলে (tap root) যুক্ত গুটির আকার একট বড় হয় কিন্তু শাখা-মূলে বুক্ত গুটিগুলি আকারে একটু ছোট এবং সংখ্যায় বেশী থাকে। শিম্ব জাভীয় গাছে গুটি উৎপন্ন হলেই তা শক্রিয় নাইট্রোজেন বন্ধনের শঙ্গে জড়িত, তা মনে করার কারণ নেই। সাধারণতঃ বড় বা মাঝারি, উত্তল, চ্যাপ্টা বা প্রায় গোলাকার ঈবৎ লালাভ, বেগুনী বা সবুদ্ধাভ বর্ণের গুটি গুলিই প্রকৃত রাইজোবিয়ামের গুটি। বিশেষজ্ঞরা এই গুটি দেখেই এদের কার্যক্ষমতা সম্বন্ধে অনেকটা ধারণা করতে পারেন।

পরবর্তী সমস্তা হল লেগুমিনেসি পরিবারে সব গণ বা প্রজাতির মূলে গুটি দেখা যায় না। সিশালপিনিওইডি (Caesalpinioideae) উপপরিবারের অধিকাংশ গণ এবং প্রজাতির গাছে বহুপ্রচেষ্টা চালিয়েও গুটি উৎপাদন করা সম্ভব रुश्र नि ।

কোন শিম্ব জাতীয় গাছের মূলে কিভাবে জীবাণু প্রবেশ করে গুটি উৎপন্ন করে তা সত্তিয় এক রহস্তময় অধ্যায়। রাইজোবিয়াম হল মাটির জীবাণু। সাধারণ মাটিতে এদের সংখ্যা ১০—১,০০,০০০ পর্যন্ত হতে পারে। কিন্ত কোন জমিতে দীর্ঘকাল ধরে শিষ জাতীয় গাছের চাব না করা হলে সে জমি থেকে রাইজোবিয়াম সম্পূর্ণভাবে বিলুপ্ত হতে পারে। পক্ষান্তরে কোন জমিতে প্রায় প্রতিবৎসর এই জাতীয় উদ্ভিদের চায করা হলে, সেই জমিতে সক্রিয় রাইজোবিয়াম জীবাণ্র সংখ্যা অনেক বেড়ে যাবে। পরীক্ষাগারে উৎপন্ন রাইজোবিয়াম বড় আকৃতি বিশিষ্ট হলেও গুটির মধ্যে অবস্থানকারী জীবাণু 'ব্যা ক্টিরয়েড' বিষম আকৃতির হয়ে থাকে তা আগেই আলোচিত হয়েছে। স্চরাচর বড় আক্তির জীবাণু পরীক্ষাগারে নাইট্রোজেন বন্ধন করতে পারে না। পরীক্ষাগারে পৃষ্টিদ্রবণে গ্লকোসাইড বা উপক্ষার (alkaloid) যোগ

করে ব্যাক্টিরয়েড আরুতি বিশিষ্ট জীবাণু পাওয়া যায় বটে, তবে তারাও
মুক্তজীবী জীবাণুর মত নাইট্রোজেন বন্ধনে জক্ষ। অর্থাৎ এইসব পরীক্ষালব্ধ ফলাফলের উপর ভিত্তি করে বলা চলতে পারে যে রাইজোবিয়াম জীবাণুর
ক্ষেত্রে শিম্ব জাতীয় উদ্ভিদের সহাবস্থান অপরিহার্য। কারণ অন্ত কোন শ্রেণীর
উদ্ভিদের রাইজোবিয়াম গুটি স্পষ্ট করে না বা নাইট্রোজেন বন্ধনও করে
না। এ থেকে এটা স্পষ্ট হয় যে প্রাকৃতিক নিয়মে নিজের তাগিদেই শিম্ব
জাতীয় উদ্ভিদ বিশেষ কোন উদ্দীপক পদার্থ নির্গত করে, যা রাইজোবিয়ামকে
স্থাগত জানায় এবং রাইজোবিয়াম এই ডাকে সাড়া দেয়। শিম্ব জাতীয়
উদ্ভিদের প্রতি রাইজোবিয়াম কিভাবে আরুষ্ট হয়ে গুটি উৎপন্ন করে তার
একটা সন্ভাব্য পথ সংকেত দেখা যাক।

সাধারণ মূলরোম থেকে বিশেষ ধরনের জৈব পদার্থ নির্গত হয়।

+

ফলে গাছের মূলের চারপাশে রাইজোবিয়াম আরুট হয়।

+

এই জীবাণুরা সম্ভবতঃ ট্রিপটোফ্যান নামক আমাইনো এাসিড থেকে ইনডোল আসিটিক এ্যাসিড উৎপন্ন করে।

+

ফলে মূলরোম কুঞ্চিত হয়ে পড়ে।

1

এরপর সম্ভবতঃ রাইজোবিয়ামের বিশেষ কোন পলিস্যাকারাইড এবং কোমোজোমের ছিন্ন অংশ মূলরোমের ছিদ্রপথে শিঘ জাতীয় গাছের মূলে প্রবেশ করে।

+

এই পলিস্যাকারাইড সম্ভবতঃ উল্লোগী হয়ে জীবাণু প্রবেশের পথ তৈরি করতে সচেষ্ট হয়।

+

এরপর জীবাণু সম্ভবতঃ পলিগ্যালান্ট রোনেজ নামক উৎসেচক রস উৎপাদন

করে গাছকে উদ্দীপিত করে এবং কোষ প্রাচীরের পেকটিন জ্বাতীয় পদার্থকে বিশ্লিষ্ট করে। ARTHUR TO THE THE PARTY OF THE

এরপর রাইজোবিয়াম গাছের কোব প্রাচীরে প্রবেশ করে।

এরপর মৃলরোমের কোষগুলি আক্রমণকারী জীবাণু প্রবেশের প্রাথমিক স্ত্রাকৃতি পথ করে দেয়।

এই স্ত্রাকৃতি পথে রড আকৃতির রাইজোবিয়াম প্রবেশ করে এবং এই भटभन्न मटक मूनदर्शासन मटभा अभिदन्न हटन।

এই স্ত্রাকার পথ মূলের বহিরাবরণের কোষগুলি ভেদ করে অভ্যস্তরে প্রবেশ করে এরং সেখান থেকে বিভক্ত হয়। অবশেষে দ্বিগুণ ক্রোমোজোম যুক্ত গুটি স্জনকারী মূলকোবে প্রাবেশ করবার পর স্থ্রোকার পথ থেকে রাইজোবিয়াম বেরিয়ে আসে এবং উক্ত কোবগু**লিকে** ক্রন্ত বৃদ্ধিতে প্রবৃত্ত করে। ফলে মূল ফুলে উঠে গুটির স্পৃষ্টি হয়। গুটি স্পৃষ্টির একই সঙ্গে গুটির ভিতরে রাইজোবিয়াম রূপাস্তরিত হয়ে বিষম আরুতি ব্যাক্টিরয়েডে পরিণত হয়। এই ব্যা ক্টিরয়েড গুটিতে বায়ুমণ্ডলীয় নাইট্রোজেন বন্ধন করে। কিছু রাইজোবিয়ামের সব প্রজাতি সমান দক্ষতার সঙ্গে নাইট্রোজেন বল্ধন করতে পারে না। এই দক্ষতার ভিত্তিতে নির্বাচিত জীবাণু গুটি থেকে আহরণ করা হয়। এই গুটি চারাগাছ জন্মানোর প্রায় ছই থেকে তিন সপ্তাহের পর থেকে দেখা যায়। গুটি আহ্রণের শ্রেষ্ঠ সময় হল সতেজ্ব গাছের ক্ষেত্রে চার থেকে ছন্ন সপ্তাছ বন্নসের মধ্যে। গাছের ফুল আসার পর থেকে এই গুটি কমে যেতে দেখা যায় এবং ফল পরিপক হওয়ার আগেই গুটি থেকে সব জীবাণু বেরিক্লে আবার মাটিতে চলে যায়। এই ঘটনার জন্ত কি কি রাসায়নিক প্রক্রিয়া সক্রির ভূমিকা নেয় এ সম্বন্ধে যথেষ্ঠ গবেষণা হয় নি। সাধারণতঃ অদক্ষ ৰা অপ্ররোজনীয় গুটি সংখ্যায় বেশী এবং ছোট আকারের হয়ে থাকে। সচরাচক্

দেখা যায় একটা যাত্র রাইজোবিয়াম প্রজাতিও একটা গাছের প্রয়োজনের সব চাহিদা যেটাতে অক্ষম। বস্তুত:পক্ষে একই গাছে একাধিক প্রজাতির জীবাগুর: সম্মিলিত ক্রিয়ায় ভাল ফল দিতে দেখা গেছে। বিপরীতক্রমে একগাছের সক্রিয়ানাইট্রোজেন বন্ধনকারী রাইজোবিয়াম অন্ত শ্রেণীর শিষ্ব জাতীয় গাছে পর-জীবীর ভূমিকা নেয়। কিন্তু বর্ত মানে পরীক্ষায় প্রমাণিত হয়েছে উদ্ভিদ রাইজোবিয়ামের নাইট্রোজেন বন্ধন ক্ষমতা নিয়ন্ত্রণ করে। কারণ বেশীর ভাগ ক্ষেত্রেই দেখা যায় গাছ রাইজোবিয়ামেকে পর্যাপ্ত পরিমাণে শর্করা জাতীয় পদার্থ সরবরাহে ব্যর্থ হয়। তাই উচ্চ সালোক সংশ্লেষক্ষম প্রজাতির উদ্ভিদে এই সহাবস্থান (Symbosis) দ্বারা আরো ভালো ফল আশা করা যায়। প্রাকৃত পরীক্ষায় দেখা গেছে রাইজোবিয়াম জ্যাপোনিকাম, সয়াবীন গাছের প্রয়োজনীয় শতকরা ৭৫ ভাগের বেশী নাইট্রোজেন সরবরাহ করতে অক্ষম। সয়াবীন বিশেষজ্ঞগণ সয়াবীনের সালোক সংশ্লেষের হার এবং নাইট্রোজেন বন্ধনের পরিমাণ বাড়ানোর চেষ্টা করছেন।

প্রতিকৃল প্রাকৃতিক পরিবেশ, রাইজোবিয়াম এবং শিম্ব জাতীয় শ্রেণীর সিমিলিত ক্রিয়ায় বিয় ঘটায়। সাধারণতঃ যে তাপমাত্রা উদ্ভিদের পক্ষে ক্ষতিকারক নয়, সেই পাল্লার তাপমাত্রাতে রাইজোবিয়াম জীবাণু শিম্ব জাতীয় গাছে গুটি উৎপদ্ম করে এবং সক্রিয়ভাবে নাইটোজেন বন্ধন করে। কিন্তু অতিরিক্ত তাপমাত্রা এবং অতিরিক্ত শৈত্য, রাইজোবিয়ামের ক্রিয়ায় বিয় স্পষ্ট করে। দিনরাতের দৈর্ঘ্য এবং আলোর প্রথরতার উপরও গুটি উৎপাদন এবং নাইটোজেন বন্ধন ক্ষমতা নির্ভরশীল। রাইজোবিয়াম জীবাণুর স্পোর গঠনের ক্ষমতা নেই বলে প্রতিকৃল পরিবেশে সংগ্রাম চালানোর ক্ষমতা এদের আনেক কম। তার উপর রাইজোবিয়াম জীবাণুর বড় শক্র হল কাজ (ভাইরাস)। একই জমিতে একই রাইজোবিয়াম প্রজাত্র বার বার প্রয়োগ করা হলে তা সহজেই কাজের শিকারে পরিণত হয়। সেই পরিস্থিতিতে অন্ত রাইজোবিয়াম প্রজাতিকে কাজে লাগানো যুক্তিযুক্ত। নাইট্রেট পর্যায়ের নাইট্রোজেন বাইজোবিয়ামের নাইট্রোজেন বন্ধন ক্ষমতা প্রতিক্রার স্পষ্ট করে। নাইট্রেট প্রয়োগের ফলে ব্যাক্তিরয়েডের আকার বৃদ্ধি পায় কিন্তু পক্ষান্তরে নাইট্রেট প্রয়োগের ফলে ব্যাক্তিরয়েডের আকার বৃদ্ধি পায় কিন্তু পক্ষান্তরে নাইট্রেটজন বন্ধন ক্ষমতা হাস পায়। সন্তবতঃ, নাইট্রেট গাছে রাইজোবিয়ামের নাইট্রোজেন বন্ধন ক্ষমতা হাস পায়। সন্তবতঃ, নাইট্রেট গাছে রাইজোবিয়ানের

প্রবেশপথ গঠনে বাধাস্মষ্টি করে। ইউরিয়া প্রয়োগের ফলেও গুটি উৎপাদন ব্যাহত হয় বলে জানা গেছে।

কিন্তু ঐ পরিন্থিতিতে শর্করার দ্রবণ ছিটালে গুটি উৎপাদন বৃদ্ধি পায়।
প্রধানতঃ ইকুশর্করা বা স্প্র্জোজ, ন্যানিটল এবং এলএারাবিনোজ উল্লেখযোগ্য ফল দেয়। সাধারণতঃ নাইট্রেট লবণ গাছের ম্লের কোন অংশ
কেটে, সেখান দিয়ে প্রয়োগ করলে গুটি তৈরির ক্ষেত্রে প্রতিবন্ধকতা স্পৃষ্টি
হয় না। মূলে নাইট্রেট প্রয়োগের ফলে সন্তবতঃ তা নাইট্রেট থেকে নাইট্রাইটে
পরিণত হয়। এই উৎপন্ন নাইট্রাইট সন্তবতঃ ইনডোল অ্যাসিটিক এ্যাসিডকে নষ্ট
করতে পারে। সাধারণতঃ রাইজোবিয়ামের অন্থপ্রবেশের জন্ম ইনডোল
আ্যাসিটিক এ্যাসিডের সংকট পরিমাণ হল ১০-৮ মৌল। নাইট্রেট প্রয়োগের
ক্ষতিকর প্রজিক্রিয়া ঐ পরিমাণ আই-এ-এ প্রয়োগ করে নিয়ন্ত্রণ করা সন্তব।
এ থেকে স্পষ্টই বোঝা যাচেছ রাইজোবিয়াম জীবাণুর ক্রিয়া ইনডোল অ্যাসিটিক
এ্যাসিড হারা অনেকাংশে নিয়ন্ত্রিত হয়।

একথা বলার অপেক্ষা রাখে না যে রাইজোবিয়াম জীবাণুর প্রভাব, শিম্ব জান্তীয় উদ্ভিদের উপর বৈজ্ঞানিকভাবে প্রতিষ্ঠিত। বর্ত মানে পৃথিবীর বিভিন্ন দেশে যে পরিমাণ শিম্ব জান্তীয় গাছের চাব করা হয় তার একটা সন্তাব্য তালিকা প্রকাশ করা হল।

ভালিকা ২ ঃ বিশ্বে শিম্ব জাতীয় উদ্ভিদ চাবের পরিমাণ (বার্টন, ১৯৭৯)

উদ্ভিদ	inger species grows.	রুষি জ্বমির পরিমাণ (হেক্টর × ১০°)
শয়াবীন	গ্লাইনিন ম্যাক্ত (Glycine max)	99,600
চীনাবাদাম	এরাকিস হাইপোজিয়া (Arachis hypogaea))b,000

উদ্ভিদ		ক্ববি জমির পরিমাণ (হেক্টর × ১০°)
বাকলা	ক্যাজি ওলাস ভালগারিস (Phaseolus vulgaris)	२२,२१३
ছোলা	সিদার অরিত্রটিনাম (Cicer arietinum)	>0,680
মটর	পিদাম ন্যাটিভাম (Pisum sativum)	৯,২৬৪
বরবটি	ভিগৰা আৰগুইকালাটা (Vigna unguiculata)	8,569
বাকলা	ভিসিয়া ফাবা (Vicia faba)	8,860
অড়হৰ এবং	ক্যাজানাস ক্যাজান (Cajanas cajan)	२,६४१
আংকারী	ভিসিয়া প্রজাতি (Vicia sp.)	>,৮৭৯
মন্থর	লেক্স এসকুলেণ্টা (Lens esculenta)	5,959
লুপিন	লুপিনান প্ৰজাতি (Lupinus sp.)	,
অভাত	Lapinus sp.)	6,088
	মোট	> ₹ <i>0</i> ,99 >

পরবর্তী পৃষ্ঠার তালিকায় দেখ। যাচ্ছে একটা মরস্থমে বিভিন্ন শিষ প্রজাতির সার্থকভাবে ফলন হলে হেক্টর প্রতি কি পরিমাণ নাইট্রোজেন গাশ্রয় হয়।

ভালিকা ৩ঃ শিল্প জাতীয় চাবের ফলে নাইট্রোজেন সাশ্রয় (সংগৃহীত)

শিষ জাতীয় উদ্ভিদ	হেক্টর প্রতি নাইট্রোজেন বন্ধনের পরিমাণ (কিগ্রাতে
আলফা আলফা (পশুখান্য)	5>9.56
মিষ্টি ক্লোভার	
সাদা ক্লোভার	३०० २ ৮
ग श्रादीन	>>6.06
মটর	೬8:৯৬
	Po.68
বরবটি	200.A
वौन	88.F
মন্থর	
পশুখাত বিশেষ	30.06
	>>4.45

ভারতে নাইট্রোজেন বন্ধনের পরিমাণ হেক্টর প্রতি জমিতে ৫৬-১৬৮ কিগ্রা. হতে দেখা গেছে। আই. এ. আর. আই. দিল্লীতে এক পরীক্ষায় দেখা যায় হেক্টর প্রতি শন (sunhemp) এবং বরবটি প্রত্যেকে ১০০ ৮ কিগ্রা বারসীয ১৩৪-৪ কিগ্রা. এবং অরহর ১৫৬-৮ কিগ্রা. নাইট্রোজেন বন্ধন করেছে।

সাধারণতঃ সব মাটিতেই নাইট্রোজেন বন্ধনে সমান দক্ষ ব্লাইজোবিয়াম জীবাণু থাকে না। কোন কোন মাটির রাইজোবিয়াম জীবাণুর শতকরা ২৫ ভাগও সক্রিয় নয়। আবার কোথাও এই পরিমাণ শূন্যও হতে পারে। এইসব জমিতে যথন কড়াই জাতীয় গাছের চাব করা হয় তখন সঙ্গত কারণেই সেই জমিতে বীজের সঙ্গে উন্নতমানের জীবাণু প্রারোগ করলে অফল পাওয়া যাবে। বলা বাহুল্য যে মাটিতে দক্ষ নাইট্রোজেন বন্ধনকারী রাইজোবিয়াম প্রচুর পরিমাণে রয়েছে সেখানে জীবাণু প্রয়োগের জন্ম সঠিক গুটিগুলি সংগ্রহ করে

তাকে জলের মধ্যে থেঁতো করে, মিশ্রণ বীজের সঙ্গে মিশিয়ে প্রয়োগ করলে উৎপন্ন চারাগাছে ক্রত গুটি উৎপাদন সম্বন্ধে অনেকটা নিশ্চিত হওয়া যাবে। কিন্তু বেশ কিছুকাল সংরক্ষণের ক্ষেত্রে এই প্রথা কার্যকর হবে না।

কড়াই জাতীয় গাছ যে নাইট্রোজেন বন্ধন করে তা প্রায়ই উদ্ভিদের চাহিদার তুলনায় পর্যাপ্ত হয় না একথা আমরা আগেই জেনেছি। কিন্তু পরীক্ষার দেখা যায় কড়াই জাতীয় গাছের সঙ্গে শর্করা প্রধান (cereal) শশ্ভেম যৌথ চাব করা হলে শেষোক্ত শ্রেণী বিশেষভাবে উপক্বত হয়। এই উপকারের কারণ হিসাবে শুটি জাতীয় শশুের নাইট্রোজেন জাত পদার্থের নিঃশরণকে দায়ী মনে করা হয়। লিপম্যান (১৯১০) এবং ভিরটানেন ও লেন (১৯৩৫) এ সম্বন্ধে নিশ্চিতকরণ পরীক্ষা করেন। ভিরটানেনের পরীক্ষালব্ধ ফলাফল অমুযায়ী রাইজোবিদ্রাম দারা আবদ্ধ নাইটোজেনের শতকরা ১০-৮০ ভাগই মূলের দারা নিজ্ঞান্ত হয়। নির্গত নাইট্রোজেন সমৃদ্ধ পদার্থের মধ্যে প্রধান হল গ্ল টামিক এ্যানিড, এনপারটিক এ্যানিড এবং বিটা এলানিন। বলা বাহুল্য ফিনল্যাণ্ডে ভিরটানেনের এই পরীক্ষার সপক্ষে কোন রায় আমেরিকা, জার্মানি, গ্রেটব্রিটেন বা অষ্ট্রেলিয়ায় বিভিন্ন শুঁটি জাতীয় শহ্তের উপর চালিয়েও পাওয়া যায় নি। ফিনল্যাতে প্রাপ্ত পরীক্ষার ফলাফলের অহুরূপ কোন ঘটনা মাটিতে যদি প্রকৃতই ঘটে তবে তা সম্ভবতঃ আলোর স্বল্পতা, কার্বন-ডাই-অক্সাইডের পরিমাণ স্থাস, অতি অল্প তাপমাত্রা ইত্যাদি কারণে ঘটে থাকবে। সঙ্গত কারণেই এটা মনে করা যেতে পারে যথন জীবাণুরা সক্রিয়ভাবে পর্যাপ্ত নাইট্রোজেন বন্ধন করে তথন গাছ যদি প্রয়োজনীয় পরিমাণ দালোক-সংশ্লেষ না করতে পারে সেক্ষেত্রে অতিরিক্ত নাইট্রাজেন গাছের যুল দিয়ে বেড়িয়ে যেতে বাধ্য। আমাদের দেশে এ অবস্থা একমাত্র বর্ধাকালে শৃষ্টি হতে পারে। কিন্তু বর্ষাকালে এই শভের চাব হয় না। তাই ভাটি শ্রেণীর সঙ্গে চাব করা অন্য শ্রেণীর গাছের অতিরিক্ত ফলনের কারণ স্পষ্ঠতঃই ভিন্ন হতে বাধা।

রাইজোবিয়াম এবং শুটি জাতীয় উদ্ভিদের যৌথ ক্রিয়ায় নাইট্রোজেন বন্ধন, মাটি থেকে সহজে গ্রহণীয় ফসফরাস (available phosphorus), পটাদিয়াম (available potassium) এবং অস্তান্ত মৌলের পরিমাণের উপর

নির্ভরশীল। এছাড়া মাটির pH, এবং নাইট্রোজেন অজৈবকরণও উপরোক্ত ক্রিয়ার উপর যথেষ্ট প্রভাব বিস্তার করে। যথেষ্ট পরি<mark>যাণ ফসফরাস এবং</mark> পটাসিয়ামের উপস্থিতিতে গুটির আকার বড় ও পুষ্ট হয়। ফলে নাইট্রোজেন বন্ধনের পরিমাণও বৃদ্ধি পায়। সাধারণতঃ pH ৫০০ এর নীচে থাকলে সেই ষাটিতে রাইজোবিয়ামের ক্রিয়া ব্যাহত হয়। এই ক্ষতির কারণ সরাসরি অমত্ব নাও হতে পারে। অমত্ব বৃদ্ধির ফলে মাটিতে অতিরিক্ত লোহা এবং এলুমিনিয়াম দ্রবণীয় হয়ে পড়ে যা ক্ষতির কারণ হতে পারে। মুক্তঞাবী নাইট্রোজেন বন্ধনের মত যৌথ নাইট্রোজেন বন্ধন প্রক্রিয়াতেও মলিবডেনাম এক অতি গুরুত্বপূর্ণ ভূমিকা নেয়। উদ্ভিদের কাছে সহজে গ্রহণীয় পর্যায়ের মলিব-ভেনামের অভাবে নাইট্রোজেন বন্ধন ক্রিয়া ব্যাহত হয়। এছাড়া রাইজোবিয়াম জীবাণুর আর এক মারাত্মক শক্ত হল ফাজ (রাইজোবিওফাজ)। এ সম্বন্ধে পূৰ্বেই ভালোচনা হয়েছে।

নাইট্রোজেন বন্ধনের রহস্য ঃ রাইজোবিরাম এবং শিঘ জাতীয় উভিদের যৌপ উল্ভোগে নাইট্রোজেন বন্ধন প্রক্রিয়া মৃক্তজাবী জীবাণু হার। নাইট্রোজেন বন্ধন প্রক্রিয়ার প্রায় অনুরূপ। ভারী আইলোটোপ N>৫ প্রয়োগ করে বর্তমানে নাইট্রোজেন বন্ধন রহস্ত সম্বন্ধে অনেক কিছু জানা গেছে। মুক্তজীবী জীবাণুর নাইট্রোজেন বন্ধনের মত এক্ষেত্রেও শেষ অজৈব উপাদান হল আ্যামোনিরা। এই অ্যামোনিরা সম্ভবতঃ আলফা কিটো গ্ল টারিক এ্যাসিডের সঙ্গে যুক্ত হয়ে গ্লুটামিক এাদিড উৎপদ্ন করে। N>৫ পরিমগুলে ছয় ঘণ্টা বাাপী পরীক্ষায় গুটি যে নাইট্টোজেন বন্ধন করে তা বিশ্লেষণ করে প্রথম উৎপন্ন পদার্থ চিহ্নিত হয়েছে প্ল টামিক এগাসিড। সক্রিম্নভাবে নাইট্রোজেন বন্ধনকারী গুটির বর্ণ হয় ঈবৎ লালাভ। তার কারণ এক বিশেব ধরনের হিমোগ্রোবিন (লোহা ঘটিত প্রোটিন)—"লেগহিমোগ্লোবিন" এই গুটির মধ্যে অবস্থান করে। এই লেগ-ছিমোগ্লোবিন পক্রিয়ভাবে নাইট্রোজেন বন্ধনের জন্ম দায়ী। লেগছিমোগ্লোবিন শাধারণ রাইজোবিয়াম বা ব্যাক্তিরয়েডে দেখা যার না। এই রঞ্জক পদার্থকে (तथा यात्र छिद्धितत मृगत्कात्वत नाहेटिनेक्षां क्रांसा

ভিরটানেন এবং জেনের (১৯৩৫) মতে লেগহিমোবিন জারিত হয়ে আণবিক নাইট্রোজেনকে বিজারিত করে হাইডুক্সিল স্থামিনে পরিণত করে। এই হাইডুক্সিল অ্যামিন সরাসরি অক্সালে। এ্যাসিটিক এ্যাসিডের সঙ্গে যুক্ত হয়ে অক্সিম উৎপন্ন করে, যা হাইডুক্সামিক এ্যাসিডে পরিণত হয়ে শেবে এনপারটিক এ্যাসিড উৎপন্ন করে।

কিন্ত ১৯৫১ সালে ডেমোলন, অ্যামোনিয়া প্রকলের কথা পুনরায় ঘোষণা করেন। ভিনি বলেন ডিহাইড্রোজিনেজ উৎসেচক হাইড্রোজেনকে উদ্দীপিত করে যা মূলতঃ আগবিক নাইট্রোজেনকে বিজ্ঞারিত করে অ্যামোনিয়া উৎপন্ন করে। উৎপন্ন আমোনিয়া কিটো এ্যাসিডের সঙ্গে যুক্ত হয়ে অ্যামাইনো এ্যাসিড উৎপন্ন করে। (মিস্প্রস্টিন ও সিলনিকোভা, ১৯৭২)

১৯৭১ সালে বারগেরসন, আরো উন্নত চিন্তাধারার পরিচয় দেন। তাঁর মতে উদ্ভিদ এবং জীবাণু একযোগে ইলেকট্রন পরিবহণের কাজ করে এবং এই ক্রিয়ার মূল হোতা হল হিমোগ্রোবিন। তাঁর মতে অন্প্রপোষকের কোবে নাইট্রোজেন বন্ধনের ঘটনা ঘটে। একদল ব্যাক্তিরয়েড এক একটা পর্দা দ্বারা আবদ্ধ থাকে। এবং এই পর্দার উপরই নাইট্রোজেন বন্ধন হয়ে থাকে।

বারগেরসনের নাইট্রোজেন বন্ধন প্রকরের একটা কল্লচিত্র দেখানো হল।

চিত্র ১ ঃ বারগেরসন, ১৯৭১

পূর্ব পৃষ্ঠার সরলীক্ত চিত্র থেকে পরিকার বোঝা যাচ্ছে উদ্ভিদ, কার্বন বিপাক ক্রিয়ায় প্রয়োজনীয় কার্বনজাত উৎপাদন সরবরাহের দায়িত্ব নেয় যার থেকে নাইট্রোজেন বন্ধনের প্রয়োজনীয় শক্তি সংগৃহীত হয়। উদ্দীপ্ত নাইট্রোজেন এই ইলেকট্রন পরিবহণ ক্রিয়ায় অন্তিম ইলেকট্রন গ্রাহকের কাজ করে। এই প্রক্রিয়া বা্যি ক্রিরয়েড ঘারা শুক্র হয় এবং লেগহিমোগ্রোবিন দ্বারা শেব হয়। কার্বনজাত পদার্থের অসম্পূর্ণ জারণে উৎপন্ন পণ্যের সঙ্গে অ্যামোনিয়া যুক্ত হয়ে ব্যা ক্রিরয়েডে আ্যামাইনো এ্যাসিড উৎপন্ন করে যা পরে উদ্ভিদ আন্তীকরণ করে থাকে। অর্থাৎ বারগেরসনের মতে উদ্ভিদ কার্বনজাত উপাদান এবং নাইটোকনিড্রিয়া থেকে এ টি পি সরবরাহ করে। গুটি উৎপাদনকারা ব্যা ক্রিরয়া ব্যা ক্রিরয়া ব্যা ক্রিরয়া ব্যা ক্রিরয়ারত করে। ভার পথে নাইট্রোজেন বিজ্ঞারিত হয়ে অ্যামোনিয়া উৎপন্ন করে এবং তা উপরোক্ত প্রক্রিয়ার সামিল হয়।

ন ইট্রোজেন বন্ধনে নাইট্রোজিনেজ উৎসেচকের ক্রিয়া মুক্তজীবী ব্যাক্তিরিয়ার ক্রিয়ার অন্তর্মণ।

জীবাণুসার ছিসাবে রাইজোবিয়াম জীবাণুর প্রয়োগ

জীবাণুসার কাকে বলে এবং তার প্রয়োগ কৌশল আমরা পূর্ববর্তী অধ্যায়গুলিতে জেনেছি। উপযুক্ত জৈবসার বা সবুজ সার প্রয়োগের পর জীবাণু সারকে আর্ম্র জমিতে ছিটিয়ে বা প্রে করে কিয়া বাজকে জীবাণু মাঝিয়ে জমিতে প্ররোগ করা হয়। অবশু এই প্রয়োগ পদ্ধতি বিভিন্ন জীবাণুসারের ক্ষেত্রে এবং বিভিন্ন শশ্রের ক্ষেত্রে ভিন্ন ভিন্ন হয়ে থাকে। রাইজোবিয়ামতে জীবাণুসার হিসাবে প্রয়োগের সবচেয়ে প্রচলিত রীতি হল বীজের সঙ্গে মিশিয়ে প্রয়োগ করা। সয়াবীনের দানা অতিরিক্ত প্রোটিন সমুদ্ধ বলে পরিচিত। তার মূল কারণ হল এই গাছের সঙ্গে যুক্ত জীবাণু রাইজোবিয়াম জ্যাপোনিকামের নাইটোজেন বন্ধন ক্ষমতা যথেষ্ট বেশী। কড়াই জাতীয় নোট চাবের মাত্র ৩০ শতাংশ এই ফসলের চাষ করা হলেও সয়াবীন একাই শতকরা ৫০ শতাংশ প্রোটিন উৎপন্ন করে। স্বাভাবিক কারণেই এই উদ্ভিদের উপর রাইজোবিয়াম বিশেষজ্ঞদের নজর বেশী।

সমগ্র পৃথিবীর ক্লবিজমিতে কি পরিমাণ রাইজোবিয়াম প্রয়োগ করা হয়

তার সঠিক কোন পরিসংখ্যান আজও প্রকাশিত হয়নি। আমেরিকা জীবাগুসার প্রয়োগে তেমন বিশ্বাসী নয়। কিন্তু তারাও কিছু রাইজোবিয়াম জীবাগুসার প্রয়োগ করে থাকে, এবং তার মধ্যে আবার শতকরা ৮০ তাগই হল সয়বীন জীবাগুসার রাইজোবিয়াম জ্যালোলিকাম। মোটায়টি পৃথিবীতিতিক হিসাবে মোট কড়াই জাতীয় চাষের শতকরা ৪০ তাগ বীজে রাইজোবিয়াম জীবাগুসার প্রয়োগ করা হয়। ব্রাজিল, তারতবর্ষ, অট্রেলিয়া এবং প্রায় সব ইউরোপীয় দেশ-গুলিই রাইজোবিয়াম জীবাগুকে বাণিজ্যিক তিতিতে উৎপাদন করে থাকে। তারতবর্ষর রুষি জীবাগু বিশারদগণ রাইজোবিয়ামের প্রয়োগ সম্বন্ধে আশাবাদী। গ্রীম্মপ্রধান দেশের মাটিতে রাইজোবিয়ামের প্রাচ্র্য থাকায় সাধারণতঃ এইসব জাবতে জীবাগু প্রয়োগ করার প্রয়োগ করের প্রত্যাক্ষ কল পাওয়া য়য়। ক্রেকটি শস্তের উপর রাইজোবিয়াম প্রয়োগের একটা পরীক্ষার কলাকল দেখা যাক।

ভালিকা ৪: রাইজোবিয়ান জীবাণুসার প্রয়োগের প্রভাব (মেহরোত্রা এবং লেহরি, ১৯৭০)

দাৰা ব	উৎপাদন কিগ্ৰা. গু	াভি হেক্টরে)
*ID 32 35	নিয়ন্ত্রিত	জীবাণু প্রযুক্ত
ne 35 38	৬৩৭	960
মূগ তেওঁ	200	2062
লোবিয়া 💯	4>5	569
সয়াবীন	696	>000
ब ह्या	२०७२	৩৭৭৯
গানাই	969	>000

এই পরীকার ফলাফল থেকে জীবাণুসার প্রয়োগের গুরুত উপলব্ধি করা

যার। সাধারণতঃ কোন স্থান থেকে আহত উন্নতমানের রাইজোবিয়াম
জীবাণু অন্যন্থানে সমান ফলাফল নাও প্রদর্শন করতে পারে। একই প্রজাতির
রাইজোবিয়াম আবার ভিন্ন ভিন্ন মাটিতে ভিন্ন ভিন্ন স্টেন হিসাবে থাকতে
পারে। মেহরোত্রা এবং লেহরী বিভিন্ন স্থান থেকে আহত রাইজোবিয়াম
লেগুমিনোসেরাম এবং রাইজোবিয়াম ট্রাইফোলিআই যথাক্রমে মটর
এবং বারসীমের উপর প্রয়োগ করে ভিন্ন ফল পেয়েছেন। নীচের এবং পরবর্তী
পৃষ্ঠার তালিকা থেকে ভা আরো স্পষ্ট হবে।

ভালিকা ৫: উৎসের উপর রাইজোবিয়াম জীবাণুর নির্ভরশীলতা
(>) শশু-বারসীম (মেহরোত্রা এবং লেহরি, ১৯৭০)

নিয়ন্ত্রিত ২৮.৬৪ বুন্দোলখণ্ড ৪৭ ৭০ মীরাট ৪১.৭০ গোরকপুর ২৪.৫৫ আলিগড় ৪৪.০০ মির্জাপুর ৪৫.২০ প্রতাপগড় ৩৪.৯৫	রাইজোবিয়ামের উৎস স্থান	বারদীমের ফলনমাত্রা (টন প্রস্তি হেক্টরে)	
89.60	শিরান্ত বুন্দেলখণ্ড শীরাট গোরকপুর আলিগড় মির্জাপুর প্রভাপগড়	24.68 89 90 85.40 88.00 86.50 98.36	

বিভিন্ন স্টেনের রাইজোবিয়াম ট্রাইফোলিআই প্রন্নোগ করে দেখা যার বারসীমের উপর ফলনের প্রভাব খ্বই স্পষ্ট, কিন্তু স্থানভেদে ফলনের মাত্রা পূথক হয়েছে।

बीवान्गांत्र हिनाटव महस्रीवी नाहर्द्धाटलन वसनक्त्र कीवान् >>६

এবার দেখা যাক বিভিন্ন স্থান থেকে সংগৃহীত রাইজোবিয়াম **লেগুমিনোনেরাম** মটরের উপর কেমন প্রভাব বিস্তার করেছে।

ভালিকা ৬ঃ উৎসের উপর রাইজোবিয়াম জীবাণ্র নির্ভরশীলতা (২) শস্ত-মটর (মেহরোত্রা এবং লেহরি, ১৯৭০)

রাইজোবিয়ামের উৎদ খান	মটরের ফলনমাত্রা (টন প্রতি হেক্টরে)
নিয়ন্ত্রিভ	18.89 (18.87) SE.89
গাজিপুর	05.84 OS.84
প্রভাপগড়	೦২.೯०
বারাণসী	00.98
ক ন্দপূ র	SAN SERVICE STATE OF PARTY OF STATE OF
কানপুর	49.89 My 3 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1
আলিগড়	96.00
মূজাফর নগর	१५ ,७७
মীরাট	90.24
গোরকপুর	29.69
ফৈজাবাদ	00 10 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
মির্জাপুর	\$9.60
বে রিলী	22,92

এই পরীক্ষার ঘারাও পূর্বোক্ত শিষাস্ত শর্মর্থনের শাক্ষর মেলে। ভারতের বিভিন্ন মাটিতে পরীক্ষা চালিয়ে দেখা গেছে রাইজোবিয়াম প্রয়োগের ফলে হেক্টর পিছ ৮৪-১৪৫ কিগ্রা. নাইট্রোজেন প্রয়োগের অনুরূপ ফল পাওয়া যার। পর্যায়ক্রমিকভাবে কড়াই জাতীয় এবং অন্ত শর্করা সমূদ্ধ বা তৈলবীজের প্রয়োগে যথেষ্ট বেশী ফলন পাওয়া সন্তব। এ ছাড়া পরিমিত পরিমাণে মিশ্র চাব পদ্ধতিও উচ্চ ফলনের সান্দ্য রাথে। রাইজোবিয়াম প্রয়োগে আরো সন্তাবনাময় হয়ে উঠে দ্রবণীর ফসফেট সার প্রয়োগের ফলে। এ ছাড়া প্রয়োজন ভিত্তিতে অয়জমিতে চ্নপ্রয়োগে অফল পাওয়া যায়। এ ছাড়া স্বল্প প্রয়োজনীয় মৌলগুলির আভাবিক চাহিদার প্রতিও নজর রাথতে হবে এবং প্রয়োজনীয় মৌলগুলির আভাবিক চাহিদার প্রতিও নজর রাথতে হবে এবং প্রয়োজনে মলিবডেনাম, বোরন বা ভামা ঘটিত লবণও পরিমিত মাত্রায় প্রয়োগ করতে হবে গুটি তৈরী হতে কমপক্ষে হই থেকে ভিন সপ্তাহ সময় নেয় ভা আমরা আগেই জেনেছি। ভাই মাটিতে নাইটোজেনের পরিমাণ অত্যন্ত কম থাকলে প্রাথমিক পর্যায়ে উদ্ভিদের চাহিদা মেটানোর জন্ম অল্ল পরিমাণে নাইটোজেন ঘটিত সার প্রয়োগ করলে উদ্ভিদ পৃষ্ট ও সতেজ হয়ে গড়ে উঠবে। সাধারণতঃ কোন জমিতে প্রথম বংসর রাইজোবিয়াম প্রয়োগ তেমন ফলপ্রস্থ হয় না। কিন্তু উপর্যুগিরি ৩-৪ বংসর জীবাণুসার প্রয়োগের ফলে জমির উর্বরতা যথেষ্ট বৃদ্ধি পায় এবং তথন প্রথম বংসরের প্রায় দ্বিগুণ ফলনের ঘটনাও অম্বাভাবিক নয়। সাধারণতঃ জীবাণুসার উৎপাদনের জন্ম দ্বিতীয় বংসরের পৃষ্ট ও সতেজ গাছ থেকে লালাভ বর্ণের গুটি আহরণ করা হয়।

প্রকৃত রাইজোবিয়াম চিচ্ছিত্তকরণ প্রণালী ঃ সাধারণ দানা শশু বা ভাঁট জাতীয় পশুখাদ্য উদ্ভিদের ৬-৮ সপ্তাহ বরসের পৃষ্ট ও সভেজ গাছকে সমত্নে মাটি থেকে তোলা হয়। প্রধান মূল সংলগ্ন বড় আকারের চ্যাপটা বা উত্তল, লালাভ গুটিকে আহরণ করে মারকিউরিক কোরাইডের (HgCl2) লবু দ্রবণে (০০০%) ভিজিয়ে তা থেকে উপরিতলের অবাঞ্ছিত জীবাণু মূক্ত করা হয়। তারপর এই গুটিগুলিকে তালোভাবে জলে ধুয়ে, জলের মধ্যে থেঁতো করে দ্রবণ প্রস্তুত করা হয়। উক্ত দ্রবণের একফোটা (০০০ মিলি); কলোরেড মুক্ত ইষ্ট নির্যাস, ম্যানিটল, আগার আগার দ্রবণে মিশানো হয়। এইভাবে দ্রবণকে ৩-৪ বার লঘু করার পর প্রায় ৪০ থেকে ৪৫ ডিগ্রি সেটিগ্রেড উষ্ণতাম) গলিত আগার আগার মিশ্রিত জীবাণুর দ্রবণকে গেটিগ্রেড উষ্ণতাম) গলিত আগার আগার মিশ্রিত জীবাণুর দ্রবণকে গেটিগ্রেড উষ্ণতাম রাধা হয়। এই সময়ের মধ্যে জীবাণু কলোনি গঠন করে। কলোনি বদি কলোরেডের ঈষৎ লাল বর্ণ গ্রহণ করে তথন ঐ জীবাণুকে প্রগ্রোব্যা ক্রিরাম রেডিওব্যান্টার মনে করা হয়। কিন্ত উৎপন্ধ জীবাণুর কলোনি বর্ণহীন বা সাদা বর্ণের হলে তা রাইজোবিয়াম্ম মনে করা হয়। নিশ্চিতভাবে

শিদ্ধান্ত করার অন্ত উক্ত জীবার্থকৈ কলোরেড বিহীন উপরোক্ত মাধ্যমে শোডিরাম হাইডুরাইড দ্রবন যোগ করে অমুন্দান্তা pH, ১১-১৩-তে উনীত করার পর (হপারের কারীয় মাধ্যম) বপন (inoculate) করা হয়। এই অতিরিক্ত কারছে রাইজোবিয়াম জীবানু জনাতে পারে না, কিন্ত এগোব্যা কিরিয়াম স্বেডিপ্রব্যাকীর সহজেই জনাতে পারে। তাই হপারের কারীয় মাধ্যমে জীবানু উপনিবেশ গঠনে অক্ষম হলে তা প্রকৃত রাইজোবিয়াম ব্যুতে হবে।

সর্বশেষ নিশ্চিতকরণের উপায় হিসাবে এবং তার সক্রিয়তা পরীক্ষার জন্ম ঐ জীবাণুকে বিভিন্ন মাটির পাত্রে পরীক্ষার জন্ম প্রয়োগ করা হয়। পাত্রগুলিতে সমান পরিমাণ নির্বীক্ষ করা (sterile) বা সাধারণ মাটি কিংবা ধৌত বালি ব্যবহার করা বেতে পারে। প্রথম পাত্রটি হবে নিয়ন্ত্রিত, অর্থাৎ তাতে কোন জীবাণু প্রয়োগ করা হবে না, বিভীয় এবং তৃতীন্ত্র পাত্রে জীবাণু প্রয়োগ করা হবে এবং এরপর চতুর্ব, পঞ্চম, বর্চ ইত্যাদি সংখ্যাবারা চিহ্নিত পাত্রে বিভিন্ন মাত্রায় নাইট্রোজেন ঘটিত সার প্রয়োগ করা হবে। উদ্ভিদের চাহিদা অলুযায়ী ফসফরাস এবং পটাস অবশ্র প্রতি পাত্রেই সমান পরিমাণে দিতে হবে। এই পরীক্ষার শেষে গাছের মূলে উৎপন্ন গুটির সংখ্যা, ফলন এবং গাছের তুলনামূলক সতেজভার ভিত্তিতে জীবাণুটির দক্ষতা সম্বন্ধে ধারণা করা যেতে পারে। এই পরীক্ষার অমুত্রণ পরীক্ষার ক্রবিজমিতে সাফল্যলাভ করার পরই জীবাণুটিকে, জীবাণুসার হিসাবে ব্যবহারের উপযোগী গণ্য করা যেতে পারে।

জীবাণুসার উৎপাদন পদ্ধতিঃ রাইজোবিয়াম ঘটত জীবাণুসারের বাণিজ্যিক পরিচিতি, নাইট্রাজিন হিসাবে। এখন আমরা পর্যায়ক্রমে ক্য়েকটি উল্লিখিত জীবাণুসার উৎপাদন সম্বন্ধে আলোচনা করব।

প্রথম পদ্ধতি ঃ এই পদ্ধতিতে প্রয়োগোপযোগী জীবাণুর চাব করা হয় (culture) তরল পৃষ্টি মাধ্যমে। এই দ্রবণে জীবাণু জন্মানোর জন্ম থাকে প্রয়োজনীয় শর্করা, খনিজ লবণ এবং জীবাণুর খনন চালানোর জন্ম থাকে বায়ুপ্রবাহের ব্যবস্থা। যথেষ্ট সংখ্যায় জীবাণু জন্মানোর পর তাতে নির্বীজ্ঞকত গুড়োমাটি বা পীট যোগ করা হয়। এইতাবেই এই জীবাণুকে সার হিসাবে ব্যবহারের জন্ম প্যাক করে বাজারে ছাড়া হয়। ইউরোপে এই পদ্ধতি প্রচলিত।

বিভীয় পদ্ধিভিঃ এই পদ্ধিভিতে উপরোক্ত পন্থার অধিক সংখ্যক জীবাণ্
জন্মনো হয় (১০৯ — ৫ × ১০৯ প্রতি মিলিলিটার দ্রবণে)। তারপর
উল্লিখিত দ্রবণকে সাধারণ পীটের সঙ্গে মিশানো হয়। এতে ৩৫-৪০ শতাংশ
জলীয় বাষ্পা থাকে। এই অবস্থায় জীবাণুকে আরো কিছুকাল বংশ বিস্তারের
স্থ্যোগ দেওয়া হয়। ফলে জীবাণুর সংখ্যা আরো ৫-১০ গুণ বৃদ্ধি পায়।
এভাবে উৎপন্ন পদার্থকে জীবাণুসার হিসাবে ব্যবহারের জন্ত প্যাক করা হয়।

উপরোক্ত পদ্ধতিতে উৎপন্ন জীবাগুসারে বৎসরকাল পরেও প্রতি গ্রাম পীটে ১০° সংখ্যক জীবাণু সঞ্জীব অবস্থায় থাকতে পারে। সাধারণতঃ প্রতি গ্রাম পীটে ১০° সংখ্যক জীবাণুকেই সন্তোবজনক মনে করা হয়। এই সার বীজে মাথিয়ে প্রয়োগ করলে বীজপিছু ১০০০টি জীবাণু থাকবে যা প্রয়োগের পক্ষে সন্তোবজনক।

এ ছাড়া কড়াই জাতীয় গাছের মূল (গুটি সমেত) থেঁতো করে সরাসরি জমিতে প্রয়োগের কৌশল পূর্বেই আলোচিত হয়েছে। কিন্তু তাৎক্ষণিক প্রয়োগ না করা হলে এই পদ্ধতিতে স্থুফল পাওয়া যায় না।

পীটভিত্তিক জীবাণুসারকে প্রেরোগের আগেই বীজে লেপন করতে হয়।
এই প্রক্রিয়ার জন্ম প্রায় ১৫০ গ্রাম পরিমাণ চিটাওড় বা গাঁদকে এক লিটার জলে
গুলে ফুটিয়ে দ্রবণ প্রস্তুত করা হয়। এই দ্রবণ ঠাওা করে তাতে প্রায় ৪০০-৫০০
গ্রাম পরিমাণ পীট মিশ্রিত জীবাণুসার এবং এক একর জ্বমিতে প্রয়োগের
জন্ম পরিমাণ বীজকে প্রায় ১৫ মিনিটকাল ভিজিয়ে রাখা হয়
এবং তারপর পরিমাণ বীজকে প্রায় ১৫ মিনিটকাল ভিজিয়ে রাখা হয়
রোদে শুকালে জীবাণু মরে যাবে। বীজে প্রয়োগ করার পর দেখানে জীবাণুর
বংশবৃদ্ধি হয়ে তা ১০-১০০ গুণ বন্ধিত হতে পারে। চিটাগুড় বা অন্ত আঁঠালো
পদার্থ প্রয়োগের ফলে জীবাণু দৃঢ়ভাবে বীজের গায়ে আটকে থাকে। নীজিগতভাবে বাণিজ্যিক ভিত্তিতে জীবাণু উৎপাদনের বিভিন্ন পদ্ধতি হল (১) কঠিন
মাধ্যমের উপরিতলে জীবাণুর চায (২) জগভীর তরল মাধ্যমে জীবাণুর উৎপাদন।

ভূতীয় পদ্ধতিঃ গভীর প্রকোষ্ঠ পদ্ধতি—গভীর তরল মাধ্যমে জীবা উৎপাদন।

প্রথমোক্ত কঠিন পৃষ্টি মাধ্যমে উৎপন্ন জীবাগুর সংখ্যা প্রথমদিকে বেশ বেশী হয়।

তার কারণ অক্সিজেনের প্রাচুর্যা। এ ছাড়া কঠিন মাধ্যমে জীবাণু বংশবৃদ্ধি করতে শুরু করলে তারা যে বর্জ্য পদার্থ জ্যাগ করে তার বিবক্রিয়া অন্ত জীবাণুর উপর প্রতিফলিত হয় না, কারণ আগার আগার মাধ্যম উৎপন্ন বর্জ্য পদার্থ শোষণ করে। তবু বৃহদায়তন শিল্পে সন্ধান পদ্ধতিতে জীবাণু উৎপাদনই স্মবিধাজনক দিল্লে সন্ধান পদ্ধতি ছল এক বিশেষ ধরনের অবাভ শ্বনন বেখানে জৈব পদার্থ ইলেকট্রন দাজা এবং গ্রহীতা উভয় ক্রিয়াই সম্পন্ন করে ফলে জৈব পদার্থের আংশিক জারণে তাপশক্তি নির্গত হয় এবং মধ্যবর্তী কার্বনজাত পণ্য ও কার্বন-ডাই-অক্সাইড উৎপন্ন হয়।

দিতীয় পদ্ধতি বায়ু সরবরাহ অক্ষুন্ন রাখার পক্ষে তৃতীয় পদ্ধতির চেয়ে ভালো। কিন্তু এই পদ্ধতি চালানোর জন্ম অপেক্ষাকৃত বেশী স্থানের প্রয়োজন হয় এবং এতে জীবাণ্ উৎপাদনের হারও তুলনামূলকভাবে অনেক কম হয়।

বর্তানে তৃতীয় পদ্ধতিরই উৎকর্ষতা প্রমাণিত হয়েছে। অক্সিঞ্জেন সরবরাহের অস্থবিধা এড়ানোর জন্ত নীচ থেকে সরু নলের সাহায্যে নির্বাক্ত বায়ু অনবরত পাঠানোর ব্যবস্থা থাকে। ফলে অক্সিজেনের স্বল্পতা জীবাণুর বংশবিস্তারে প্রতিবন্ধকতা স্মৃষ্টি করতে পারে না। যে পাত্রে জীবাণুর রৃদ্ধি ঘটানো হয় তাকে আলোড়নের ব্যবস্থা রাখলে সমানভাবে বৃদ্ধি হতে পারে। এর ফলে জীবাণুর উৎপাদনও বহুলাংশে বেড়ে যাবে।

সাবেকি পদ্ধতিতে যেখানে জীবাণুর সংখ্যা প্রতি মিলিলিটার দ্রবণে ২×১০৭ — ৫×১০৭ হরে থাকে, দেখানে গভীর প্রকোষ্ঠ পদ্ধতিতে প্রতি মিলিলিটার দ্রবণে ২×১০৯ — ৫×১০৯ সংখ্যক অর্থাৎ প্রায় ১০০ গুণ বেশী জীবাণু উৎপন্ন হয়। অবশু রাইজোবিয়াম জীবাণু ব্যাসিলাস মেগা-বেপ্রিয়ামের মত স্পোর বা রেণু উৎপাদনকারী নয়, তাই জীবাণু বৃদ্ধির জন্ম অতিরিক্ত সময় না দিয়ে (স্পোর বা রেণু গঠনের জন্ম প্রয়োজনীয় সময়) অনবরত প্রক্রিয়া অবলম্বন করলে জীবাণু উৎপাদনের সমহার বজায় থাকবে।

প্রাণীজ প্রোটিনের বিকল্প হিসাবে উদ্ভিদ প্রোটিন উৎপাদনের জন্ম রাইজোবিরাম প্রয়োগের ব্যাপ্তি বাড়াভেই হবে কারণ আমাদের দেশের জনসংখ্যার এক বড় অংশই হল নিরামিষাশী। সঞ্জীৰ পদাৰ্থের সঙ্গে জড়িত স্বাধিক গুরুত্বপূর্ণ মৌলগুলির মধ্যে ফসফরাস অন্তত্তম। জীবকোষ সন্ধন্ধে বলতে গেলে সন্তব্তঃ নাইট্রোজেন ছাড়া, জৈবরাসায়নিক দৃষ্টিভালিতে ফসফরাসের মত জটিল ভূমিকা আর কোন মৌলিক পদার্থের নেই। গাছ ফসফরাস পার প্রধানতঃ নাটি থেকে। আমাদের দেশের মাটিতে ফসফরাস থাকে মূলতঃ অলৈব পর্যারে। যদিও মাটির প্রকারভেদে জৈব পর্যারের ফসফরাসও মাটিতে মুখ্য ফসফরাসের সঞ্চয় হতে পারে। বিশেষতঃ যেসব মাটিতে হিউমাসের পরিমাণ যথেষ্ট বেশী সেইসব মাটিভেই জৈব ফসফরাসের প্রাধান্ত লক্ষিত হয়। আমাদের দেশের অধিকাংশ নাটিই অজৈব (mineral soil) এবং তাতে হিউমাসের পরিমাণও থাকে কম। তাই আমাদের দেশের বেশীর ভাগে মাটিভেই অজৈব ফসফরাসের প্রাধান্ত লক্ষিত হয়। মাটির ফসফরাসের প্রধান্ত উদ্ভিদ কসফরাসের প্রধান্তিই লক্ষিত হয়। মাটির ফসফরাসের প্রধান্তি উদ্ভিদ এবং মৃত প্রাণীর দেহাবশেষের উপর জীবাণুর ক্রিয়া কিছু পরিমাণ ফসফরাস মূক্ত করে দেয়। এ ছাড়াও অন্ত মুখ্য উৎস হল (বিশেষ করে ক্রিব জমিতে) মাটিতে প্রযুক্ত অজৈব ফসফরাস ঘটিত সার এবং জৈবসার।

মাটিতে ফসফরাস জৈব এবং অজৈব উভয় অবস্থাতেই বিরাজ করে তা আমরা জেনেছি। জৈব উপাদানের মুখ্য অংশগুলি হল, নিউক্লিক অম, শর্করা ফসফেট, স্লেহজ ফসফেট, নিউক্লিয়োগ্রোটিন, ফাইটিন এবং ফাইটিক এ্যাসিড বা ভার সহজাত যোগা। পক্ষান্তরে মৃখ্য অজৈব উপাদানগুলি হল, ক্যালালিয়ামের এক তুই বা ভিনযোজী যোগসমূহ এবং লোহা, এলুমিনিয়ম বা ম্যালালীজের অন্তর্বনীয় ফসফেট। এ ছাড়া থাকে অল মাত্রায় সোডিয়াম, পটাসিয়াম বা ম্যাগনেসিয়াম ঘটিত ফসফেট লবণ। এই সকল বিভিন্ন যোগের মধ্যে লোহা, এলুমিনিয়ম এবং ক্যালিসিয়াম ঘটিত

ফ্রনফেট লবণ হল মুখ্য অন্তবনীয় পর্যায়ের যৌগ যা উদ্ভিদের কাছে গ্রহনীর নয়।
বিভিন্ন পরীক্ষায় দেখা গেছে সামান্ত অয় থেকে কারধনী মাটিতে ট্রাইক্যালসিয়ায়
ফ্রনফেট মুখ্য ভূমিকা নেয় আর অয়ধনী মাটিতে লোহা বা এলুমিনিয়ম ফ্রনফেটর
ভূমিকাই হচ্ছে মুখ্য। তাই দেখা যাচেই ফ্রনফেট জাতীর মৌলের চাহিদা মাটিতে
থেকেই যায়। বিশেষ করে অয় মাটিতে বা ক্ষারধর্মী মাটিতে ফ্রনফরাসের
জ্যোগান দেওয়া সত্যি অপরিহার্য। কিন্তু মাটিতে দ্রবনীয় পর্যায়ের ফ্রনফরাস যুক্ত
হবার পর অয়কালের মধ্যেই তা ক্যালসিয়ায়, ম্যাগনেসিয়ায়, লোহা বা
এলুমিনিয়মের হাইডুক্সাইড, কার্বনেট বা সিলিকেটের সঙ্গে যুক্ত হয়ে অদ্রবনীয়
অধ্যক্ষেপ ফেলে। অবশিষ্টাংশও কর্দমের কলয়েড হারা আবদ্ধ হয়ে পড়ে। ফলে
মাটিতে প্রয়োগ কয়া দ্রবনীয় স্থপার ফ্রনফেটের খুব অয় অংশই উদ্ভিদের ভাগ্যে
জ্যোট এবং তার জন্তও আবার গাছকে প্রতিযোগিতায় নামতে হয় জীবায়ুর সঙ্গে।
ফ্রন্সফরাসের অভাবে শুধুমাত্র ক্যোম্বনিয় মোলগুলি গ্রহণ কয়ার
ক্রমজাও ভারায়। প্রথমে দেখা যাক মাটিতে ফ্রনফরাস কিভাবে বিবর্তন
চক্রপথে আবহিত হছে।

চিত্র ১ ঃ ফসফরাস চক্র

(Soil Biochemistry Vol-1 (19(6) হইতে গৃহীত।)

এবার আদা যাক ফদফরাদ চক্রে জীবাণুর ভূমিকা প্রদাদের ফদফরাদ চক্রে মুখ্যতঃ জীবাণুর হুটি ভূমিকা। প্রথমতঃ অদ্রবণীয় পর্যায়ের ফদফেটকে দ্রবণীয় পর্যায়ের অজৈব ফদফেটে পরিণত করা এবং দিতীয়তঃ দ্রবণীয় অজৈব ফদফরাদকে অদ্রবণীয় পর্যায়ের জৈব বা অজৈব ফদফেটে পরিণত করা। প্রথম পর্যায়প্তক হল ফদফেট দলিউবিলাইজেদন (solubilisation) যেখানে অদ্রবণীয় অজৈব ফদফেট পরিণত হয় এবং ফদফেট মিনারালাইজেদন (mineralisation) বা অজেবকরণ যেখানে অদ্রবণীয় জৈব ফদফেট পেকে দ্রবণীয় অজিব ফদফেট মুক্ত হয়। দিতীয় পর্যায়প্তক হল ফদফেট স্থিতিকরণ বা ইমমবিলাইজ্বেদন (immobilisation) যেখানে দ্রবণীয় অজিব পর্যায়ের ফদফেট জীবাণু কোবে জৈব ফদফেট হিলাবে আবদ্ধ হয়। এ ছাড়া মাটিতে দ্রবণীয় অজিব ফদফারাদ মাটির কালসিয়াম, লোহা বা এলুমিনিয়ম, আয়ন দ্বায়া যুক্ত হয়ে অদ্রবণীয় পর্যায়ের কাল। (clay) বা মাটির জৈব পদার্থের (humus) ক্রিয়ায়ও হতে পারে। বলা বাহল্য এই প্রক্রিয়া মুখ্যতঃ রাদায়নিক। প্রস্বাস্তঃ আমাদের মূল লক্ষ্য প্রথমেন্ত প্রক্রিয়া এবং ভার মান উল্লয়নের উপর।

মাটির আগুনীক্ষণিক জীবাগুদের মধ্যে সংখ্যার দিক থেকে ব্যা ক্রিরিয়ার স্থান সবার উপরে, কিন্তু জীবভরের (biomass) দিক দিয়ে বিচার করলে ছত্রাক একছত্র অধিপতি। মৃতজীবী অন্ত জীবাগুদের মধ্যে একটিনামাইসিটস হল মধ্যবর্তা। মাটিতে এককোষী ছত্রাকের (ইন্ট) ভূমিকা তেমন গুরুত্বপূর্ণ নয় বলে, মাটির কোন নির্দিষ্ট জীব রাসায়নিক বিবর্তনে এরা তেমন গুরুত্বপূর্ণ মান দখল করে না। প্রকৃতিতে প্রবল প্রতিযোগীর জয় এবং হুর্বলের পরাজয় ঘটে, এটাই নিয়ম। তাই কোন বিশেষ পরিবেশে নিজেকে টিকিয়ে রাখতে পারলে কালক্রমে সেখানে তার জয় অবগুন্তাবী। মাটিতে জীবাগুদের কার্বন (শক্তির উৎস), নাইট্রোজেন ও ফসফরাসের জন্ত তীত্র প্রতিদ্বন্দিতা করতে হয়, তা বলা বাছলা। তাই একশ্রেণীর জীবাগু অন্তবনীয় অজব বা জৈব ফসফেট থেকে যে ক্রবণীয় পর্যায়ের ফসফেট মৃক্ত করতে সক্রম তা পরিবেশ বিজ্ঞানের (ecology) দিক থেকে খুবই গুরুত্বপূর্ণ। এরা সাধারণতঃ নিজের বিপাকীয় প্রায়েনের অতিরিক্ত পরিমাণ ক্রবণীয় ফসফেট মৃক্ত করতে পারে যা গাছের কাজে লাগে। তাই এদের এই ক্রমতা ক্রবিক্রেতে অষ্ঠ ভাবে প্রয়োগ করা যেতে পারে।

স্টাটস্টর্ম ১৯০৩ সালে প্রথম জানতে পারেন যে টকে যাওয়া ত্ব বা মাটির নির্যাস, ট্রাইক্যালসিয়াম ফসফেট থেকে দ্রবনীয় পর্যায়ের ফসফেট মুক্ত করতে পারে। এরপর ১৯০৮ সালে ভাকেট এবং তাঁর সহকারীরা স্টাটস্টর্মের সিদ্ধান্তের অহকুলে যুক্তির সন্ধান পান (রোজ, ১৯৫৭)। তাঁরা দেখেন যে এইসব জীবাণুরা জৈব এ্যাসিড উৎপন্ন করে ট্রাইক্যালসিয়াম ফসফেটকে [C_{13} (PO_4) $_2$] দ্রবীভূত করছে এবং উৎপন্ন এ্যাসিডের পরিমাণ যত বেশী হচ্ছে দ্রবনীয় ফসফরাসের পরিমাণও তত বৃদ্ধি পাছে। এই সিদ্ধান্তের অহুকূলে বৈপ্লবিক আবিকার করেন ১৯৪৮ সালে পিকভঙ্কাইয়া নামে এক রুণ মহিলা বিজ্ঞানী। তিনি ফসফরাইট এবং মাটি থেকে ফসফেট দ্রবনকারী বিশুদ্ধ একক জীবাণু আবিকারে সমর্থ হন। তিনি এই জীবাণুর নাম দেন ব্যাক্তিরিয়াম পি। এরপর ১৯৫০ সালে মেনকিনা মাটি থেকে ছটি পূথক বিশুদ্ধ ব্যাক্তিরিয়া আবিকার করেন যারা সক্রিয়ভাবে অদ্রবনীয় $Ca_3(PO_4)_2$ এবং জৈব ফসফেট থেকে দ্রবনীয় অর্থোফসফেট মুক্ত করতে সক্ষম। এই জীবাণু ছটি হল যথাক্রমে ব্যাসিকাসে মেগাথেরিয়াম ভ্যারাইটি ফসফেটিকাম এবং একটি সেরারিয়া (Serratia) প্রজাতি।

এর পরবর্তী বিভিন্ন গবেষণায় দেখা গেছে বিভিন্ন প্রজ্ঞাতির ব্যাক্টিরিয়া,
ছত্রাক এবং এক্টিনোমাইসিটস এই ক্ষমতার অধিকারী। এদের মধ্যে মুখ্য
ব্যাসিলাস, আর্থোব্যাক্টার সিউডোমোনাস, ফ্লাভোব্যা ক্টিরিয়াম,
মাইক্রোকোকাস, এক্রোমোব্যাক্টার—এরা সকলেই ব্যাক্টিরিয়া,
সেটুপটোমাইসিস, মাইক্রোমনোক্রেণারা হল এক্টিনোমাইসিটস এবং
এসপারজিলাস, পেনিসিলিয়ায়, রাইজোপাস, এবং কিটোমিয়াম
এরা সকলেই হল ছত্রাক শ্রেণাভুক্ত।

১৯৫৭ সালে গোলেবিয়য়া, ফসফেট দ্রবণকারী জীবার্কে ছয়টি ভাগে ভাগ করেন। এগুলি হল, (ক) যারা অদ্রবনীয় জৈব বা অজৈব ফসফেট গ্রহণ করতে পারে, (খ) যারা অধুমাত্র অজৈব অদ্রবনীয় ফসফরাস গ্রহণ করতে পারে, (গ) যারা অধুমাত্র অদ্রবনীয় জৈব ফসফেট গ্রহণ করতে পারে, (ঘ) যারা টুটিক্যালসিয়াম ফসফেট গ্রহণ করতে পারে, (৬) যারা প্রয়োজনের অতিরিক্ত অদ্রবনীয় জৈব ফসফরাসকে দ্রবীভূত করে এবং (চ) যারা প্রয়োজনের অতিরিক্ত টুটিক্যালসিয়াম ফসফেটকে দ্রবীভূত করতে পারে। এই শ্রেণীবিভাগ থেকে স্পষ্টই বোঝা যায় আমাদের দেশের সাধারণ মাটির জন্ম শেষোক্ত শ্রেণীই

সর্বাধিক উপকারী বলে গণ্য হবে, যদিও শীতপ্রধান দেশে (ও) পর্বান্তের শ্রেণীই বেশী কার্যকর বলে গণ্য হয়ে থাকে।

ফসফেট দ্রবণকারী জীবাণুদের একটি নির্দিষ্ট শ্রেণীতে বিভক্ত করা যায় না কারণ আমরা দেখেছি ব্যা জিরিয়া ছত্রাক এবং এ জিনোমাইসিটসের বিভিন্ন গণের জীবাণু এই প্রক্রিয়ার অংশীদার। ফসফেট দ্রবণায়নের (Solubilization) কারণ বিশ্লেষণ করলে দেখা যাবে যে বিশেষ করেকটি অভি প্রশ্লোজনীয় বিপাকীয় জীব রাসায়নিক ক্রিয়ার অধিকারী জীবাণ্গুলিই অদ্রবণীয় ফসফেটকে দ্রবীভূত করতে সক্ষম। এখন দেখা যাক ফসফেট দ্রবণায়নের পথগুলি কি কি হতে পারে।

ৰাটির প্রধান জৈব কদকেট ফাইটেট জাতীয় পদার্থ থেকে দ্রবণীয় অর্থো-ফ্লফেট মুক্ত করার একমাত্র পথ হল এক বিশেষ ধরনের উৎসেচক (enzyme) ভৎপাদন। ফাইটেজ নামক উৎসেচক ফাইটিন জাভীয় জৈব পদাৰ্থ থেকে দ্রবণীর পর্যায়ের অর্থোফদফেট মুক্ত করে থাকে। অন্তবণীয় অঞ্জব পদার্থের মধ্যে ক্যালসিয়াম, এলুমিনিয়ম এবং লোহার ফদফেটই মুখ্য ভূমিকা নের তা আমরা জেনেছি! সাধারণতঃ ফদফেট দ্রবণকারী জীবাগ্রা তাদের বিপাকীয় ক্রিয়ায় জৈব এাশিড উৎপন্ন করে থাকে। এইসব জৈব এাশিডগুলি হাইড্রোজেন আয়ন (প্রোটন) উৎপন্ন করে। মুক্ত প্রোটন উপরোক্ত অদ্রবণীয় অজৈব ফ্সফেটগুলির সঙ্গে ক্রিয়ায় দ্রবণীয় অর্থোফসফেট মুক্ত করে। বলা বাহুল্য বিভিন্ন প্রাকৃতির জৈব এ্যাসিডের দ্রবণায়ন ক্ষমতা ভিন্ন হয়ে থাকে। সাধারণতঃ গ্রালিকেটিক শ্রেণীর হাইডুক্সি গ্রাসিড, কিটো গ্রাসিড বা ডাই-কার্বক্সিলিক এ্যাসিডগুলিকে অতিরিক্ত দ্রবণায়ন ক্ষমতার অধিকারী হতে দেখা যায়। এ ছাড়া কয়েক শ্রেণীর রাশারনিক স্বভোজী জীবাণু (Chemoantotroph) বিণাকীর ক্রিয়ায় সালফিউরিক এাসিড বা নাইট্রিক এাসিড উৎপাদন করে থাকে। এরাও অদ্রবণীয় ফসফেট থেকে দ্রবণীয় ফসফেট মুক্ত করে থাকে, যদিও ষাটিতে এটি একটি বিরল ঘটনা। এ ছাড়া অন্ত পদ্ধতির মধ্যে, জীবাণুদের খগনে উৎপন্ন কার্বন-ডাই-অক্লাইড একটা কার্যকর ভূমিকা গ্রহণ করে। কার্বন-ডাই-অক্সাইড সিক্ত জমিতে কার্বলিক এ্যাসিড উৎপন্ন করে যা অদ্রবণীয় অজৈব ফসফেট থেকে দ্রবণীয় অর্থোকসফেট মৃক্ত করতে সক্ষ। এ ছাড়া অক্সালিক এাাসিডের মত ডাই-কাৰ্বজিলিক এ্যাসিড বা কিটো এ্যাসিডগুলি অন্তৰণীয় ক্যালসিয়াম

ফসফেটের, ক্যালসিয়ামের সঙ্গে বৃত্তাকার চিলেট উৎপন্ন করতে পারে (Chelate), এই বিক্রিয়ার ফলে ক্যালসিয়াম বন্দী হয়ে পড়ে এবং দ্রবণীয় অর্থাফসফেট মুক্ত হয়। এ ছাড়া জলমগ্ন ধান জমিতে কয়েক শ্রেণীর জীবাণু অবাভ র্মসন ক্রিয়ার গল্পক ঘটিত যৌগ থেকে সালফিউরেটেড হাইড্রোজেন (H2S) মুক্ত করে। উৎপন্ন সালফিউরেটেড হাইড্রোজেন লোহার ফসফেটের সঙ্গে ক্রিয়ার কালো ফেরাস সালফাইডের (FeS) অধ্বংক্ষেপ ফেলে এবং ফসফোরিক এাসিড মুক্ত করে দেয়। এইসব নির্দেশিত পথগুলির মধ্যে মাটিতে কিন্তু পরভোজী (heterotroph) জীবাণু দ্বারা জৈব এ্যাসিড উৎপাদনই মুধ্য ভূমিকা নেয়। এই শ্রেণীর জীবাণুর বৃদ্ধির জ্যা মুক্তজীবী নাইট্রোজেন বন্ধনকারী জীবাণুদের মতই মৃল সমস্যা হল তাদের শক্তি উৎপাদনের জ্যা কার্বনজাত পদার্থের জোগান দেওয়া। এর জ্যা প্রয়োজন হয় জমিতে জৈবসার প্রয়োগের। অর্থাৎ এইসব জীবাণুরায়া স্থেলা প্রেণ করতেই হবে।

এবার আসা যাক সমস্ভার কথার। আমাদের দেশে প্রয়োজনীয় রাসায়নিক সারের খুব সামান্ত অংশই উৎপন্ন করা সন্তব হয়। এজন্ত কটাজিত বিদেশী মুদ্রা ৰায় করেও আমরা পরমুখাপেকী হয়ে থাকতে বাধ্য হচ্ছি। এমতাবস্থায় সার-প্রাপ্তির অপ্রতুলতা ও সাধারণ ক্বকদের ক্রয় ক্ষমতার বাইরে সারের মূল্যমাতা শ্মভাবে ক্বকদের চাবের জমিতে প্রয়োজনীয় সারের জোগান দেওয়া থেকে বঞ্চিত করছে। বিকল্প হিসাবে, আমাদের দেশে যথেষ্ট পরিমাণে উত্তৰমানের পাথুরে ফসফেটের (Rock phosphate) সন্ধান পাওয়া গেছে। এই পাথুরে ফসফেটের, ফসফেট অন্তবণীয় পর্যায়ে থাকায় গাছের কাছে ভাৎক্ষণিক গ্রহণযোগ্য হয়ে উঠে না বটে, কিন্তু উপযুক্ত জীবাণুর ক্রিয়ায় এর থেকে বেরিয়ে আসা জবণীয় অর্থোকসফেট গাছের প্রয়োজন মিটাতে পারে। বলা বাহল্য পরিমিত পরিমাণে জৈবসার প্রয়োগের ফলে এই প্রক্রিয়ার ক্ষমতা আরো বেড়ে যায়। এ ছাড়া যদি কোন উচ্চমানের জীবাণুকে জীবাণুসার হিসাবে প্রয়োগ করা যায় ভবে সত্যি সস্তায় একটা সমস্তার সমাধান করা যাবে। পাথুরে ফসফেট ছাড়া আছে প্রাণীজ অন্থিচূর্ণ যাকে প্রপার ফসফেট উৎপাদনে কাজে নাগানো হরে থাকে। প্রাণীত্ব অন্থিচূর্ণ পাথুরে ফশফেটের বিকল্প হিসাবে প্রয়োগ করা যেতে পারে। এ ছাড়া আছে ধাতু শিল্পের পরিত্যক্ত অংশ ধাতুমল। এর মধ্যেও যথেষ্ঠ পরিমাণে অদ্রবণীয় ক্সফেট থাকে। ধাতুমল ক্ষারধর্মী ছওয়ায় অন্ন মৃত্তিকায় এই উপসার খুবই ক্রিয়াশীল হয়ে থাকে।

ফসফেট দ্রবণে আনমনকারী প্রচলিত জীবাণুসারের নাম হল ফসফোব্যা কিরিন। জীবাণুসার হিসাবে ক্সফোব্যা কিরিন। জীবাণুসার হিসাবে ক্সফোব্যা কিরিনের ভূমিকা কিন্তু বিত্তর্কমূলক। ব্যাসিলাস মেগাথেরিয়ামের ফসফেট দ্রবণকারী স্ট্রেন (Strain) স্পোর বা রেণ্ উৎপাদনক্ষম হওয়ার জন্ম জীবাণুসার হিসাবে রাশিয়ার বিজ্ঞানীরাই প্রথম ক্রবি জমিতে এর প্রয়োগ শুরু করেন। তাঁদের পরীক্ষালক ফলাফল থেকে এই জীবাণুর উত্তম প্রতিক্রিয়া স্টিত হলেও তা আমেরিকার বিজ্ঞানীদের কাছে গ্রহণযোগ্য হয় নি। তাই এই জীবাণু প্রয়োগের সন্তাবনা সম্বন্ধে তারা সন্দির্ধ। অবশু ভারতবর্ষ বা অন্যান্ম দেশগুলিতে ফসফেট ঘটিত জীবাণুসার প্রয়োগ করে যথেষ্ঠ স্থকল পাওয়া গেছে। ভবিষ্যৎ আরো আঞ্চালপ্র ক্রমের নির্মার জারতায় ক্রমিবিজ্ঞানীরা এই বিষয়ে নূতন নূতন দিগত্তে গাবেষণা চালিয়ে যাচ্ছেন।

কোন বিশেব ভামিতে কোন বিশেব জীবাণুর সাফলালাভ প্রাথমিকভাবে কতকগুলি পূর্ব-নির্ধারিত পরিস্থিতির উপর নির্ভর্মীল একথা আগেই বলা হয়েছে। যেমন ঐ জমিতে প্রযুক্ত জীবাণু আগে থেকেই যথেষ্ঠ সংখ্যায় উপস্থিত থাকতে পারে। সেক্ষেত্রে কিছু সংখ্যক নৃতন জীবাণু প্রয়োগের ফলে ফলাফলের কোন ভারতম্য ধরা পড়বে না। এ ছাড়া ঐ জীবাণুকে নৃতন দেশের নৃতন মাটি এবং নৃতন পরিবেশে অসম সংগ্রামে নামতে হয়। সেধানে সংগ্রামে ভারা যে টিকবেই এটা হলফ করে বলা চলে না ; আর পরীক্ষায় টিকে গেছে এটা নিশ্চিতভাবে প্রমাণিত হবার পর যদি কোন স্মফল না পাওয়া যায়, কেবলমাত্র তথনই ঐ জীবাণুর কার্যকারিতা সম্বন্ধে সন্দেহ প্রকাশ করা চলে। সবচেয়ে বড় কথা, জমিতে দ্রবলীয় ফসফরাস যথেষ্ঠ পরিমাণে বিভ্যমান থাকলে জীবাণুরা ঐ ফসফরাস দিয়ে ভাদের বিপাকীয় ক্রিয়া চালিয়ে নিতে পায়ে। এই পরিস্থিতিতে ভারা অদ্রবণায় ফসফেট থেকে দ্রবলীয় ফসফেট মুক্ত করতে উৎসাহী হয় না। এ ছাড়া কোন নির্দিষ্ঠ জমিতে প্রযুক্ত জীবাণুর উপর ক্রিয়াশীল প্রোটোজ্যেয়া বা ভাইরাস থাকতে পারে যায়া প্রয়োগের সঙ্গে প্রযুক্ত জীবাণুরে সবংশে নির্মূল করে দিজে পারে। অর্থাৎ দেখা

বাচ্ছে বাস্তবক্ষেত্রে জমিতে সাফল্যলাভের পথে সম্ভা অনেক। সকলে ভালোর দিকটাও ঠিক সহজে মেনে নিভে পারেন না। তাই আমেরিকান বা বুটিশ বিজ্ঞানীরা যথন জীবাণুশারের স্থফল পেয়েছেন তখন তাকে উদ্ভিদ হর্মোন উৎপাদনের ফল বলে অভিহিত করেছেন। কিছু কিছু জীবাণু উদ্ভিদ হর্মোন উৎপাদন করে সত্যি কিন্তু সব নাইট্রোজেন বন্ধনকারী বা ফদফেট দ্রবণকারী জীবাণু হর্মোন উৎপাদন করে না। জীবাণুর হর্মোন উৎপাদন ক্ষমতার কথা জানা থাকলেও তাঁরা এ ব্যাপারে আশাবাদী নন তার প্রমাণ হল বাস্তবে এইসব হর্মোন উৎপাদনক্ষম জীবাণু প্রয়োগের কোন প্রচেষ্টা তাঁরা করেন নি। কিন্তু আমাদের গবেষণালক ফলাফল বিশ্লেষণ করে আমরা নিশ্চিত বলতে পারি যে কোন জীবার্শারের স্থফল পেতে গেলে পূর্বারোপিত শর্ত গুলি বেন প্রতিবন্ধকতা স্থষ্টি না করে সেদিকে তীক্ষ দৃষ্টি রাখতেই হবে। সেজত প্রয়োজন হবে আঞ্চলিক ভিত্তিতে ব্যাপক গবেষণার। সবচেরে গুরুত্বপূর্ণ কথা হল জীবাণুর ছারা ভালো ফল পেতে হলে ভাদের কাজ করার জন্য উপযুক্ত পরিবেশ त्रह्मा कत्रदेख बद्व। विरम्राभव अणि छेक्र मार्गत कीवार्गात ७ आमार्मत দেশের মাটিতে ভীত্র প্রভিত্বনিভার পিছু হঠতে বাধ্য। তাই আমাদের দেশে গবেষণালক আঞ্চলিক উচ্চমানের জীবাণু একই ধরনের মাটিতে প্রয়োগ করলে ভাদের সাফলা সম্বন্ধে অনেকটা নিশ্চিত হওয়া যাবে। এবার আমরা কয়েকটা পরীক্ষালক ফলাফলের তালিকা বিশ্লেষণ করে দেখব। প্রথমে দেখা যাক আমাদের ১৯৭৫ সালের একটা পরীক্ষায় ধান এবং গমের জমিতে বিভিন্ন জৈবসার প্ররোগে মাটির ফসফেট দ্রবণকারী ব্যাক্টিরিয়ার সংখ্যা এবং তাদের দ্রবণ ক্ষমতা কতটা প্রভাবিত হয়েছে। (পরবর্তী পৃষ্ঠায় তালিকাটি দেখানো হল)

পরবর্তী পৃষ্ঠার পরীক্ষার ফলাফল বিশ্লেষণ করলে আমরা দেখব যে খামার-জাত গোবরদার এবং পাথুরে ফদফেট যেখানে প্রযুক্ত হয়েছে সেখানেই এই জীবাণুর দংখ্যা বৃদ্ধি পেয়েছে। মাটির জীবাণু হারা অন্তরণীয় ফদফেটের দ্রবণ ক্ষমতা যে কার্বনজাত পদার্থের উপর নির্ভরশীল এই পরীক্ষার ফলাফল থেকে তা খুব স্পষ্টভাবে বোঝা যায়। এ ছাড়া এ থেকে এটাও পরিষ্কার বোঝা যায় যে যেখানে পাথুরে ফদফেট প্রযুক্ত হয়েছে সেখানে দ্রবণীয় ফদফেটের পরিমাণ তুলনামূলক ভাবে বেড়েছে। আবার এই পরীক্ষা থেকেই স্পষ্ট বোঝা যায়, জমিতে স্থানীয় জীবাণুর সংখ্যা বৃদ্ধি পেলেই দ্রবণীয় ফসফেটের পরিমাণ বাড়ে না।

खिनमात ७ क्वितिब्ङात्म कीनागृत व्यनमान

ভালিকা ১ ঃ জৈবসারের প্রভাবে ফসফেট দ্রবণকারী জীবাণুর প্রতিক্রিয়া (বণিক, ১৯৭৫)

(111, 5012)				
জৈব উপসার		খান	Flat pas	গ্ৰ
ভেন জন্মার	कन्नटक्के व्याि क्वेत्रियात गংथ्या × >०8	ফসফেট দ্ৰবণ ক্ষমতা মিলি- গ্ৰামে প্ৰতি ২৫ মিলিগ্ৰাম Ca ₃ (PO ₄) ₂ হইতে	ফ্সফেট ব্যা ক্টিরিম্বার সংখ্যা × ১০৪	कमरक हे ख्रवन क्रमका मिनि- ब्राम श्रक २० मिनिश्राम Ca ₃ (PO ₄) ₂ इट्टेंट
পরীক্ষার পূর্বের		96 ST 1 18 ST		0816 819
মাটি রাইজো ল্ফি-	503	0.226	>02	0.224
য়ারের মাটি	AN ANTHON		E LONG	5 MI
নিয়ন্ত্রিত	२१৯	0.68	242	0'69
খামারজাত সার শহরের আবর্জনা-	066	2.06	285	0.96
জাত সার এমোনিয়াম	8>6	360.0	280	0,40
সালফেট ধানের খড় +	240	0.626	>69	0.08
পাথুরে ফসফেট এমোনিয়াম	७৮১	0.406	200	o.p.>¢
গাল্পেট + গাপুরে ফসফেট থানের খড় -	৩৬০	o:69	> &F	o.pe¢
এমোনিয়াম সালফেট	૭૯૨	2.00	308	0.65

ATHER STREET, PROBETIONS OF BUILDING

কারণ পরিবেশ অধিক সক্রিয় এবং অপেকারত কম কার্যকর সকল শ্রেণীর জীবাণুকেই সমানভাবে বংশবৃদ্ধির ছবিধা দেয়, যার ফলে নিয়মানের জীবাণুর সংখ্যা বৃদ্ধি পায় বা তাদের কার্যক্ষমভার উপর প্রভিফলিত হয় না। এবার জমি থেকে বাছাই করা অধিক ক্ষমতাশালী জীবাণু কেমন ফল দেয় তার একটা তুলনামূলক ক্লাফলের ভালিকা দেখব।

ভালিকা ২ঃ মাটির ফ্সফেট দ্রবনায়ণ ক্ষমতা (বণিক, ১৯৮০)

মাটি	গড় দ্ৰবণ ক্ষমতা মাইক্ৰোগ্ৰাম (🌬 ৪ দ্ৰবণীয় ফ্ৰ	KIND OF THE
Smith of	প্রতি >৫ মিলিগ্রাম Ca ₃ (PO ₄)	ু হইতে
এলু ভিয়াল (বাক্ছপুর) ১০০	25.9 27.9	TRIPE
ল্যাটারাইট (কাপগাড়ি)		Real of the local state of the l
	THE RESERVE OF THE PROPERTY OF THE PERSON OF	25年10月1日

এরপর উপরোক্ত হুইটি মাটি থেকে নির্বাচিত হুটি করে বাা ক্টিরিয়া, হুটি করে ছত্তাক এবং একটি করে এক্টিনোমাইদিটনের ফদফেট দ্রবনারণ ক্ষমতার মূল্যায়ন তালিকা পরবর্তী পৃষ্ঠায় দেখানো হল।

প্রবর্তী পৃষ্ঠার তালিকা ও থেকে পরীক্ষার তুলনামূলক বিচারে দেখা যার রাশিয়ার একটি উচ্চ শক্তিশালী ব্যাসিলাস সেগাথেরিয়ামের অদ্রবণীয় ক্ষাফেট দ্রবনায়ণের ক্ষমতা একই পরিস্থিতিতে মাত্র ৬৭ ৫ মাইক্রোগ্রাম। অর্থাৎ স্পষ্টই বোঝা যাচেছে বিদেশী উচ্চমানের জীবাণুর চেয়ে আমাদের FIGURES OF MINES

ভালিকা ৩ ঃ কতিপয় নির্বাচিত জীবাণুর ফসফেট দ্রবনায়ণ ক্ষমতা (বণিক এবং দে, ১৯৮১)

-	AND THE REAL PROPERTY.	A DESCRIPTION OF THE PERSON OF	
বাক্সইপুরের	গড় দ্ৰবণ ক্ষমতা	কাপগাড়ির	গড় দ্ৰবণ ক্ষমতা
এনুভিয়াল মাটির	№৪ দ্রবণীয় ফ্স-	ল্যাটারাইট মাটির	PS দ্ৰবণীয় ফগ-
জীবাণু	ফরাস প্রতি	জীবাণু	ফ্রাস প্রতি
Park St	>৫ মিলিগ্রাম	Establish Com	>৫ মিলিগ্রাম
149	Ca ₃ (PO ₄) ₂	STATE STORY SHIP	Ca ₃ (PO ₄) ₂
	হইতে		হইতে
ৰ্যাসিলাস		ৰ্যাগিলা স	
ফারমাস	80.5	ফার্মাস	90.5
ব্যাসিলাস	PROPERTY IN COLUMN	ব্যাসিলাস	The Market of the Control of the Con
কোএগুল্যান্স	A9.0	প্ৰজাতি	>88.2
স্ট্রেপটো-		ক্ট্রেপটো-	
ৰাই সিস	n ee	মাইসিস	
প্ৰজাতি	₹8:@	প্ৰজ্ঞাতি	608
এসপারজিলাস		এসপারজিলাস	
কিউমিগ্যাটাস	560.5	প্রজাতি	>69.0
এসপারজিলাস		পেনিজিলিয়াম	
ক্যাণ্ডিডা স	२०७.७	প্রজাতি	>66.0
THE WAY		BAT WAY THE TO	I———

দেশের মাটি থেকে আহাত, নির্বাচিত জীবাগুই আমাদের দেশের মাটিতে বেশী জালো ফল দেবে।

এবার সৌরের ১৯৭২ সালে গম (কল্যাণ সোনা) শশ্রের উপর বিভিন্ন ফ্রুফেট দ্রুবণকারী ব্যাসিলাস গণের ব্যাক্টিরিয়া প্রয়োগ সমন্তিত প্রীক্ষার তালিকা পর্যালোচনা করে দেখা যাক।

ভালিকা ৪ঃ ফসফেট দ্রবণক্ষম জীবাণু প্রয়োগে শহুের উপর প্রতিক্রিয়া (গৌড়, ১৯৭২)

উপাদান	দানা শস্ত উৎপাদন গ্রাম প্রতি পটে [°]	খড় উৎপাদন গ্রাম প্রতি পটে	শভের ফসফেট গ্রহণ মিলিগ্রাম
নিয়ন্ত্রিত মাটি	>€.€	26.6	29.6
যাটি + পাথুরে ফ দফেট ∗	20.6	20.6	P8.2
(হেক্টর প্রতি ৫০০ কেজি P ₂ O ₅ হিসাবে)	THE PAR	SOUTH THE PARTY OF	is an increase the
মাটি + পাথুরে ফসফেট* +	OF HOUSE	P1.754 BUIL	
ফ্সফে বি গা িক্টরিন	:0.0	76.3	66.0
মাটি + পাথুরে ফদফেট* +	PER RESIDENT	15 14年7月16日	
ব্যাগিলাগ পালভিফেসিয়েন্স	20.66	29.2	306
মাটি + পাথুরে ফদকেট• +	men mon	्राक्त आविष्टीति	ple i Div
ৰ্যাসিলাস পলিমিক্সা	२२ १	२७.४	>00.€
মাটি + ফদফোব্যা ক্টিরিন	>5.9	305	PG.G 135
মাটি + ব্যাদিলাস			EN INDIVID
পালভিফেসিমেক	22.8	20.9	P. 8.
মাট + ব্যাসিলাস পলিমিক্সা	25.0	500	920
মাটি 🕂 স্থপার ফলফেট	२७.६	50.2	208
(হেক্টর প্রতি ১৫০ কেজি P ₂ O ₅)	Haight a	grettin 5	The state of the s

এই পরীক্ষার ফলাফল বিশ্লেষণ করলে বোঝা যার জমির নিজস্ব জীবাগুর জিয়ার উপর নির্ভন করে পাথুরে ফসফেট প্রয়োগ করলে কোনই লাভ হয় না। পক্ষান্তরে বিদেশী ফসফোব্যা ক্টিরিন অপেক্ষা দেশী ক্ষীবাগুই ভালো ফল দিয়েছে। বিশেষ করে ব্যাসিলাস পলিমিক্সার ক্রিয়া প্রায় হেক্টর প্রতি জমিতে ১৫০ কেজি P_2O_5 (স্থপার ফসফেট হিসাবে) প্রয়োগের তুল্য । এই পরীক্ষার ফলাফলের উপর সন্দেহের উদ্রেক না হওয়ার জন্ম প্রথমেই উল্লেখ করা প্রয়োজন যে মাটিতে প্রাথমিক পর্যায়ে এক শতাংশ (ওজন হিসাবে) খামারজাত সার এবং হেক্টর প্রতি ২০০ কেজি K_2O প্রয়োগ করা হয়েছিল।

অন্ধুরূপ সিদ্ধান্তের জন্ম আমরা সেন এবং পালের (১৯৫৮) ক্যাসিয়া অসিডেণ্টালিসের গ্রন্থি থেকে (Cassia occidentalis) প্রাপ্ত ফসফেট দ্রবণকারী ব্যান্টিরিয়ার সঙ্গে চেকোশ্লোভাকিয়ার এক উন্নত মানের জীবাণুর তুলনামূলক ক্রিয়াকলাপের ভালিকা পর্যালোচনা করে পরবর্তী পৃষ্ঠায় দেখান হল।

এই পরীক্ষালর ফলাফলের পর সম্ভবতঃ স্থানীয় উচ্চমানের জীবাণুর ক্রিয়া-ক্ষমতা সম্বন্ধে সন্দেহ থাকতে পারে না।

ভীবাণু নির্বাচন এবং শিল্পভিত্তিতে উৎপাদন প্রসঙ্গে প্রথম স্থান দখলকারী হল ব্যা ক্রিরিয়া। কারণ অনেক ছত্রাক পরীক্ষাগারে অতি উত্তম ফল দেখালেও মাটিতে তাদের ক্রিয়া ক্ষমতা সন্দেহের অবকাশ রাখে। অপরপক্ষে স্পোর গঠনকারী ব্যা ক্রিরিয়া অনেক বেশী প্রতিকৃল পরিবেশেও কার্যক্ষমতা অক্রুপ্ত রাখতে পারে। তাই ভীবাণুসার প্রয়োগের ক্ষেত্রে ব্যা জিলাজ গণের ব্যা ক্রিরিয়াকেই প্রাধান্ত দেওয়া হয়। ক্রন্ত বৃদ্ধিহারের জন্ত বৃহদায়তনে এদের উৎপাদন করাও অপেক্ষাকৃত সহজ। পরিশেবে আমরা জীবাণুসার উৎপাদন ও প্রয়োগ প্রসঙ্গে আলোচনা করব।

অন্তান্ত জীবাণুদের মন্তই ফসফোব্যা ক্রিরিনকে অবিরাম পদ্ধতিতে (Continuous culture) শিল্পভিত্তিতে উৎপাদন করা সন্তব। সাধারণতঃ ফসফোব্যা ক্রিরিন প্রয়োগের নির্ধারিত পরিমাণ হল হেক্টর প্রতি জমিতে ৫-১৫ গ্রাম ক্রমনো জীবাণুর পাউডার। ব্যাসিলাস স্বাত শ্বসজীবী হওয়ায় তাদের উৎপাদনের জন্ত স্বাভ পরিবেশ স্ষ্টি করতে হয়। সাধারণতঃ ১০০০-৩০০০ লিটার ক্রমভাযুক্ত আধারে সন্ধান প্রক্রিয়া চালানো হয়। উপযুক্ত পুষ্টি দ্রবণে জীবাণু প্রয়োগ করে তাতে অতিক্রম বুদ্বুদাকারে প্রতি মিনিটে লিটার প্রতি দ্রবণে ১-৩ লিটার নির্বাক্ত বায়ু চালনা করা হয়। এই বায়ু চালনার ফলে জীবাণুগুলি স্মানভাবে মিশতে পারে এবং এতে ভারা প্রয়োজনীয় অক্সিজেনের সরবরাহও

তালিকা । ৫ ঃ বিভিন্ন অদ্ৰবণীয় ফ্ৰাফেটের প্রভাবে ফ্রাফেটাদ্রবণক্ষম জীবাধুর তুলনামূলক দ্রবণক্ষমতা

(সেন এবং পাল, ১৯৫৮)

অস্থিচূৰ্ণ	ক্যালনিয়াম গ্লিশব্যোক্তসকেট	কালিয়াম ফন্যুক্ট Ca ₃ (PO ₄) ₂	ফ্সফেটের উৎস	THE WAY
পেপটোন গোডিয়াম নাইট্টেট ইউরিয়া	আমোনিয়াম নালকেট পেপটোন নোডিয়াম নাইটেট ইউরিয়া	ত্যামোনিয়াম সালফেট পেপটোন সোভিয়াম নাইট্রেট ইউরিয়া	নাইট্রোজেনের উৎস	
0 0 N N 0 0 N 0 0 N 0 N 0 0 N 0 N 0 0 N 0	\$6.08 \$4.80 \$4.80	66.09 60.08 80.08	গুম্ন দ্রণে P ₂ O ₅ -এর নিয়ন্ত্রিত	
\$6.0 94.2 94.36	8 9 . 30 00 . 40 00 . 40	\$ 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	গুষ্ট দ্ৰৱণে P_2O_5 -এর পার্মাণ (মালগ্রাম আত ১০০ । সাস প্রবংশ) ক্যাসিয়া অসিডেন্টালিস (চেকোপ্লোভাবি ক্যাকোব্যা স্থি জীবাগ্ন ক্যাকোব্যা স্থি জীবাগ্ন ক্যাকো-২৪ দ্ববাগ্যাম	
96.0 69.8 7.85	08 90 00 00 00 00 00 00 00 00 00 00 00 00	46.0c 60.6 62.ec	চেকেল্লোভাকিয়ার ক্রেকোব্যা ক্রিরাম ক্রেকো-২৪ দ্বারা ভাতিরিক্ত দ্রবণায়ল	CE - Tree

ार राज सम्मानित की राज्यानी

পার। সাধারণ হিসাবে ১০০ সিটার পাত্রে ৫০ শতাংশ জ্বনীয় অংশযুক্ত এক কিপ্রা ফসফোন্যা ক্রিরিন উৎপন্ন হয়ে থাকে। উৎপন্ন কোবগুলিকে নিম্নচাপে

— ২০ থেকে — ২৫ ডিগ্রি সেন্টিগ্রেড উষ্ণতায় শুক্ষ বরফের মধ্যে সংরক্ষণ করা
হয়।

সাধারণতঃ জমিতে প্রয়োগের জন্ম গভীর প্রকোষ্ঠ পদ্ধতিতে যে জীবার উৎপাদন করা হয় ভার সংখ্যা প্রতি মিলিলিটার পুষ্টি দ্রবণে ১×১০৯ — ২ ১০৯ সংখ্যক পর্যন্ত হয়ে থাকে। উৎপাদন সমস্রার মধ্যে প্রধান হল বহিরাগত অন্ত জীবার্র প্রবেশ প্রতিরোধ করা এবং ফাজের আক্রমণ হতে জীবার্কে রক্ষা করা। এই জীবার্ স্পোর গঠনকারী বলে এর বাহ্নিক সন্ত ক্ষমতা সাধারণ জীবার্র চেয়ে অনেক বেশী। তাই উৎপাদনের সময় বেশীর ভাগ কোষগুলি যাতে স্পোরে পরিণত হয় সেদিকে সজাগ দৃষ্টি রাখা হয়।

ক্লফেট দ্রবণকারী জীবাণুর ক্রিয়া বিভর্কমূলক হলেও আমাদের দেশে এই জীবাণু সার প্রায়োগে শতকরা ৫-২০ ভাগ ফলন বৃদ্ধি পেতে দেখা গেছে। এই জীবাণুর সার্থক ক্রিয়ার জন্ম অম জমিতে পরিমিত পরিমাণে চূন দিতে হবে। অশ্বপান্ন জীবাণুর ক্রিয়া ব্যাহত হবে। জমিতে হিউমানেসর পরিমাণ, জীবাণু প্রবেরানের আগে নির্ণয় করে প্রবেরাজন হলে পরিমাণ মত জৈবদার প্রয়োগ করতে হবে। এই জীবাণুসারের প্রয়োগ বীজের সঙ্গে বা চারাগাছ জন্মানোর পরেও প্রয়োগ করা চলতে পারে। গাছকে বাড়তি দ্রবণীয় ফসফরাসের যোগান দেওয়ার জ্বন্য জনিতে পাথুরে ফসফেট, অস্থি-চূর্ণ বা শিল্পজ ধাতুমল ইত্যাদি প্রয়োগ করা অবশ্য কর্তব্য। বহু ফ্সফেট দ্রবণকারী জীবাণু ইনডোল অ্যাসিটিক এ্যাসিড, অক্সিন বা জিল্লারলিনের মত বা অন্ত অনেক অজ্ঞানা উদ্ভিদ উদ্দীপক রাসায়নিক পদার্থ উৎপাদনে সক্ষম বলে অনেক বিজ্ঞানীর ধারণা। পক্ষাস্তবে এই জীবাণু অলটারনেরিয়া সোলানি (Alternaria solani), রাইজকটোলিয়া সোলালি (Rhizoctonia solani), ফিউসারিয়াম উভাম (Fusarium udum), হেলমিন্থো-সোধিয়াৰ অরাইজি (Helminthosporium oryzae) ইত্যাদি রোগ উৎপাদনকারী ছত্রাকের বৃদ্ধি নিয়ন্ত্রিত করে। অদ্রবণীয় ফদফেট দ্রবণীয় করে এই জীবাণু পাছের মূলের পরিমগুলে উপকারী জীবাণুর বংশবৃদ্ধির অমুকূল পরিবেশ রচনা করে। সার্বিক বিশ্লেষণে এই জীবাণুসার প্রায়োগের কোন

প্রতিকূল প্রতিক্রিয়া আজ পর্যস্ত লক্ষিত হয় নি। এর সভাবনায়র প্রতিশ্রতি আমাদের আরো তালোভাবে কাজে লাগানো উচিত।

পরীক্ষাগারে ক্বত্রিম পরিবেশে উন্নতমানের ব্যা ক্রিরিয়া বা ছত্রাকের ক্রিয়া অবলম্বনে আধা শিল্প পদ্ধতিতে পাথুরে ফসফেটকে অর্দ্ধমথিত (half decomposed) করে জমিতে প্রয়োগের সন্তাবনা নিম্নে আজকাল বহু বিজ্ঞানী গবেষণা চালাচ্ছেন। এই পদ্ধতি সাফল্যলাভ করলেও তাতে ক্ববিজ্ঞীবীদের ফসফেট ঘটিত সারের ক্ষেত্রে নিঃসন্দেহে অনেকটা স্কুরাহা হবে।

PRINCIPAL OF THE PRINCIPAL PRINCIPAL

were all an order of artificial or are a feedful and

The series of th

THE SE THE STE SHARE SHE YES IN THE MENTS A

কীটনাশক হিসাবে জীবাণু क्रीं है के इसमा हमा। विक्री के क्षांक क्षांका के बाह्य समें हो जा है है। व स्वार व व

अंदा अस्ति होत्य अस्ति में अध्यास मार्थित वर्षा है होता है कि वास्ति में

प्राथमिक का नहीं पढ़ एकोर अवेश काल किया है। इस उन्हों क

expensive office Magnetic and

े हिन्दी है से मेंग्रह नहता अध्यांत्राचन केट्रब मार्ग्यक्ता है एक ।

ক্ষিক্তের বিভিন্ন পদক্ষেপে জীবাগুর প্রয়োগ এবং ভূমিকা সম্বন্ধে আলোচনা প্রদক্ষে এবার আর এক। নৃতন দিকের প্রতি আমরা আলোকদম্পাত করব। সম্ভবতঃ এরিষ্টটল প্রথম মৌমাছির (অতি পরিচিত কীট) রোগের ঘোষণা। করেন যা হল পতক্ষের জীবাণুঘটিত রোগ সম্বন্ধে <mark>মানুষের প্রথম জ্ঞানলাত।</mark> এরপর গ্রীক এবং রোমান কবি, সাহিত্যিক এবং প্রকৃতি বিজ্ঞানীরা একাধিক কীটান্তর রোগের কথা উল্লেখ করেছেন। এর মধ্যে মৌমাছি এবং রেশ্য মধ্বের কথা তাঁরা বিশেষভাবে উল্লেখ করেছেন। কিন্তু উনবিংশ শতান্দীভে বাস্সি (১৮৩৫) এবং এরপর পাস্তর (১৮৭০) প্রথম দেখান যে, একটি জীবাণু ছত্রাক বিউত্তেরিয়া ব্যাসিয়ানা (Beauveria bassiana) রেশ্ম মথের এক সংক্রামক ব্যাধি-ভৃষ্টি করে। বাগ্সি, এই আবিষ্ণারের পর নিয়ন্ত্রিত উপায়ে জীবাণু প্রয়োগ করে কীটনাশকের বিকল্প হিসাবে জীবাণুর প্রয়োগ স্ভাবনার কথা ঘোষণা করেন। পাস্তরের গবেষণা অপকারী কীট নিরন্ত্রণ সম্পর্কে ছিল না বরং তাঁর পবেবণার লক্ষ্যবস্ত ছিল রেশম মথের এবং মৌমাছির মত উপকারী পতকের রোগ নিয়ন্ত্রণ সম্পর্কে। এইসব গবেষণাই বভামান কীটনাশক জীবাণু সম্পর্কীয় গবেষণার মূল প্রেরণা বলা যেতে পারে।

শস্তবতঃ ডি' হেরেল ১৯১৪ সালে প্রথম ব্যাক্টিরিয়াকে পতক বিনাশকারী হিশাবে ব্যবহারের চেষ্টা করেন। এরপর ১৯৪০ সালে হোদ্বাইট এবং ডাটকি একটি রেণু (স্পোর) উৎপাদনকারী ব্যাক্তিরিয়া ব্যাসিলাস প্রিপিলিই (Bacillus popilliae) প্রয়োগ করে জাপানী গুবরে পোকার প্রথম সার্থক নিরম্ভবে সমর্থ হন। এই গবেষণা পরবর্তী বিজ্ঞানীদের অমুপ্রাণিত করে এবং এর ফলে আরো কার্যকর ব্যাক্তিরিয়ার সন্ধান পাওয়া যায়।

বাল্চ এবং বার্ড ১৯৪৪ সালে প্রথম ভাইরাসকে প্রভন্ননিশকারী হিসাবে
চিহ্নিত করায় গবেষণায় সাফল্যলাভ করেন। বর্তমানে আমেরিকায় পরিবেশ
সংব্রহ্মণ সংস্থা নামে (Environmental protection Agency, EPA) একটা
সংস্থা গড়ে উঠেছে। কোন জীবাবুকে বাণিজ্যিক ভিত্তিতে উৎপাদন বা
প্রয়োগের পূর্বে এই সংস্থার অন্থমোদন প্রয়োজন হয়।

প্রায় দশলক্ষ প্রজাতির পরিচিত পতজের মধ্যে, ১৫ হাজার প্রজাভিকে বিভিন্ন রোগ উৎপাদনকারী হিসাবে চিহ্নিত কর চলে। এদের মধ্যে ভিন্নদটি প্রজাভি সংক্রামক ব্যাধির স্পষ্ট করতে পারে। তাই তাদের নিয়ন্ত্রণের প্রয়োজন হয়। সৌভাগ্যবশত: প্রায় স্বগুলি প্রজাতির ক্ষতিকারক পতদেরই বিনাশকারী জীবাণুর সন্ধান পাওয়া গেছে। প্রায় ১৫০০ প্রভঙ্গ বিনাশক ছত্রাক, ভাইরাস, প্রোটোজোয়া <mark>ৰা ব্যাক্টিরিয়ার সজে আজ আমরা পরিচিত। এ</mark>দের মধ্যে ব্যা ক্রিরিয়া এবং ভাইরাস, প্রয়োগের স্থবিধা এবং উদ্ভিদ প্রাণী বা মান্নবের উপর কোন বিন্নপ প্রতিক্রিয়া না ভৃষ্টি করার স্থবাদে, অধিক পরিমাণে ব্যবহৃত হচ্ছে। ছত্রাককে পতক্ষ বিনাশকারী হিসাবে ব্যবহার আজও সকলের কাছে গ্রহণযোগ্য হয়ে উঠে নি এবং প্রোটোজোয়ার কার্যকারিতা এখনও পরীক্ষামূলক পর্যায়ে আবদ্ধ রয়েছে। যে কোন পতন্স বিনাশকারী জীবাণুর (ছত্রাক, ব্যা ক্টিরিয়া, ভাইরাস বা প্রোটোজোয়া যাই হোক না কেন) সার্থক প্রয়োগের জন্ত এদের বেশ কয়েকটা গুণ বা পূর্বশর্ত মেনে চলতে হবে। এই গুণগুলি হল (১) এদের সহজ্বলভা হতে হবে এবং সহজে বৃহৎ শিল্প পদ্ধতিতে উৎপাদন যোগা হতে হবে, (২) এরা নির্দেশিত কটিপতঙ্গ ছাড়া, গাছ বা অন্ত উপকারী পতজের উপর ক্ষতি-কারক প্রতিক্রিয়া স্থাষ্ট করবে না এবং (৩) এরা নির্দেশিত পতক্ষকে সার্থকভাবে নিমূল করতে সমর্থ হবে। কিন্তু সর্বোপরি বাণিজ্ঞাক ভিত্তিতে এদের উৎপাদন এবং প্রয়োগ আর্থিক দিক থেকেও লাভজনক হতে হবে। এইসব বন্ধনের গণ্ডি ছাড়িয়ে উন্নত দেশগুলিতে এই গবেষণা যথেষ্ট প্রসারলাত করেছে এবং কীটনাশক জীবাণু পণ্য হিসাবে বাজারের দারত্ব হয়েছে। এককভাবে এইসব জীবাণুর সম্বন্ধে আলোচনার আগে আমরা এদের নাম এবং এরা যেসব পতন্ধকে ধ্বংস করে পাকে তাদের নামের তালিকা দেখব।

ভালিকা ১ ঃ কয়েকটি সার্থক পত্তঙ্গনাশক জীবাণুর পরিচিতি (এণ্ডারসন এবং ইগনোফা, ১৯৬৭)

পতঙ্গবিনাশকারী জীবাণু

নিৰ্দেশিত পতন্

ব্যা কিরিয়া ব্যাসিলাস পপিলিই (Bacillus popilliae) ব্যাসিলাস থুরিনজেনসিস (Bacillus thuringiensis)

কোকোব্যাসিলাস এক্রিভিয়োরাম (Coccobacillus acridiorum) সেরাসিয়া মারসেস্যাস (Serratia marcescens)

ভাইরাস নিউক্লীয় পলিতেইড্রোসিস (Nuclear polyhedrosis)

সাইটোপ্লাজমীয় পলিহেড্রোসিস (Cytoplasmic polyhedrosis) গ্রান্থলোসিস (Granulosis)

এন্টোমোপথোরা প্রজাতি (Entomopthora spp.) বিউভেরিয়া প্রজাতি (Beauveria spp.)

মেটারাইজিয়াম এনিসোপ্লিই (Metarrhizium anisopliae) প্রোটোজোয়া থেলোহানিয়া হাইফানটি

(Thelohania hyphantriae) মালামিবা লোকাস্টি (Malameba locustiae) জাপানী গুবরে পোকা বিভিন্ন শ্রেণীর শুঁরাপোকা

কড়িং

উইপোকা

ইউরোপীয় পাইনকাঠ ছিদ্রকারী পোকা, আলকা আলকা আক্রমণকারী শুঁরা-পোকা, ঘুনপোকা ইত্যাদি। পাইনগাছ আক্রমণকারী পোকা

লাল পান্তা পাকানো পোকা, বাঁধাকপি ছিক্তকারী পোকা

বাদামী লেজযুক্ত মথ

ধূসর বর্ণের ছারপোকা আলুর গুবরে পোকা শস্ত ছিদ্রকারী পোকা

ঝর্ণার জ্ব্লচর পাথির পায়ের চামড়ার মধ্যের পোকা ফড়িং

ভালিকা ২ ঃ বাণিজ্যিক ভিত্তিতে উৎপাদিত ক্ষেকটি পতঙ্গনাশক জীবাণু (ইগনোফো এবং এগুারসন, ১৯৭৯)

রোগ উৎপাদনকারী	বাণিজ্ঞ্যিক পরিচয়	S. arts.
	वाशिकाक गायवस	উৎপাদক সংস্থা
জীবাণু		
	বিউভেরিয়া ব্যাসিয়ানা বিউভেরিয়া স্পোর বোভেরিন	আন্তর্জাতিক থনিজ এবং রাসায়নিক সংস্থা— আমেরিকা, নিউ ট্রিলাইট প্রোডাক্ট—আমেরিকা গ্রাডমিক্রোবায়োপ্রোম —রাশিয়া
মেটারাইজিয়াম এনিসোপ্লিই (Metarrhizium	মেটারাইজিয়াম এনিসোপ্লিই	আন্তর্জাতিক খনিজ এবং রাসায়নিক সংস্থা— আমেরিকা
anisopliae)	ব্যাগিলাগ স্কেরিকুলাগ	আন্তর্জাতিক খনিজ এবং রাগায়নিক সংস্থা— আমেরিকা
sphericulas) ব্যাসিলাস পপিলিই (B. popilliae)	ভূম	ফেয়ারফাক্স বারোলজিক্যাল ল্যাবরেটরি—আমেরিকা ডাইটাম কর্পোরেশন
ৰ্যাসিলাস ল্যান্টিমর্বাস	জাপিডেমিক	—আমেরিকা
(B. lantimorbus) ব্যাসিকাস	এগ্রিটল	মার্ক এণ্ড কোম্পানি— আমেরিকা
থু রিনজেনসিস (B. thuringiensis)	ব্যা ক্টোম্পিন	পিচিনি প্রো জিল ল্যাবরেটরি—ফ্রা জ

রোগ উৎপাদনকারী জীবাণু	বাণিজ্যিক পরিচ	উৎপাদক সংস্থা
TERRITORY OF	ঝাথুরিন	কেমাপোল—চেকোপ্লো- ভাকিয়া
and the second	বায়োস্পোর ২৮০২	ফারবেয়ার্ক হোমেট— জার্মানি
THE	এণ্টোব্যাক্টেরিন ৩	অল ইউনিয়ন ইনস্টিটিউট প্লাণ্ট প্রোটেক্সন-রাশিয়া
পলিহেহভুগসিস	থুরিসাইড	আন্তর্জাতিক খনিজ এবং রাসায়নিক সংস্থা — —আমেরিকা
ভাইরাস	HIROSHI SE	thruj disklam
হেলিওথিস (Heliothis)	বায়োট্টল VHZ	নিউ ট্রলাইট প্রোডাক্ট্রদ আমেরিকা
নিওডিপ্রিয়ন	ভাইরেক্স	হেজ-স্যামন্স—আমেরিকা
(Neodiprion)	পলিভাইরোসাইড	ইণ্ডিয়ান ফার্মবারো কোম্পানি—আমেরিকা
প্রে'ডেনিয়া (Prodenia)	বায়োট্ৰল VPO	নিউ ট্রিলাইট প্রোডাক্ট্রন
স্পোড়োপটেরা (Spodoptera)	বায়োট্ৰল VSE	—আমেরিকা নিউট্টিলাইট প্রোভাক্টিস
ট্রাইকোপ্ল সিন্না (Trichoplusia)	বায়োট্ৰল VTN	— আমেরিকা নিউ ট্রিলাইট প্রোডাক্ট ন
ভেনড্রোলিমান (Dendrolimus)	মাত হুকেমিন	—আমেরিকা কৃষিআই কেমিক্যাল ইণ্ডাস্ট্রিজ কোম্পানি লিমিটেড – জাপান

প্রজবিনাশ জীবাবুর ব্যবহারে নিরাপতার প্রশ্ন:

যেহেতু জীবাণু কীটনাশক সজীব পদার্থ, বংশবিস্তারে সক্ষম এবং রোগ উৎপাদনকারী হিসাবেই পরিচিত তাই তাদের ব্যবহারের আগে নিরাপতার প্রশানী মুখ্য হয়ে দাঁড়ায়। কিন্তু যেহেতু এই শ্রেণীভুক্ত জীবাণু খুবই সীমাবদ্ধ ক্ষেত্রে কার্যকর তাই এদের দারা অন্ত অনির্দেশিত প্রাণী বা উদ্ভিদের বিপদের সম্ভাবনাও ক্ম। এইসৰ জীবাণু আমাদের চতুদিকের পরিবেশে ছড়িয়ে আছে, তবু আজ পর্যন্ত এদের দারা পরীক্ষাগারে, কৃষিজমিতে বা এইসৰ জীবাণু প্রয়োগ লব্ধ পণ্য আমাদের খাদ্য হিসাবে ব্যবহারের কলে কোনরকম ক্ষতিকর প্রতিক্রিয়া দেখা যায় নি। এইসব অপ্রতাক্ষ পর্যবেক্ষণ থেকেই সিদ্ধান্ত নেওয়া যায় উল্লিখিত জীবাণু পভসনাশক, রাসায়নিক পতক্ষনাশক অপেক্ষা নিম্নমানের ত নয়ই, ক্ষতিকারকও নয়। তা সত্ত্বেও এই गव गिक्षांखरक विधाशीन जारव स्थान तम्बा **।** विश्व करत रकान न्छन অপরীক্ষিত জীবাণু প্রয়োগ করার পর ফলাফল যথেষ্ট নিষ্ঠা এবং গুরুত্বের সঙ্গেই विद्याय कता हरत थारक। अहेगव कीवान मतामति छेडिन, श्रानी वा माछूरवत ক্ষতি না করলেও এরা স্বাভাবিকভাবেই কিছু বিবাক্ত রাসায়নিক পদার্থ (toxin) যোচন করতে পারে যা অপ্রভাক্ষভাবে যথেষ্ট ক্ষতির কারণ হতে পারে। তাই এইদৰ জীবাণু ব্যবহারের আগে বিভিন্ন নিরাপভামূলক পরীক্ষার সন্দেহাতীতভাবে উত্তীর্ণ হতে হবে। এ ধরনের জীবাণু প্রয়োগে ধেমন খরচ সাভায় হয় তেমনই রাসায়নিক বিষক্রিয়ার হাত থেকেও গৃহপালিত পশু এবং মানুষকে বক্ষা করে থাকে। যে কোন জমিতে (পতন্স বিনাশকারী জীবাণুই হোক বা ক্তত্রিম রাসায়নিক পদার্থই হোক) কীট-নাশক প্রয়োগ করলে সমাজের স্বার্থেই সেই জমিকে চিহ্নিত করতে হবে যেন তার থেকে কোন বৃহত্তর বিপদের বুঁকি না আসে। সাধারণতঃ খাছ হিসাবে ব্যবহারের আগে খাতপণ্যকে ভালোভাবে জলে ধুয়ে নিলে এইনব বিষ্ক্রিয়া অনেকাংশে ক্মতে পারে। রাসায়নিক প্তঙ্গনাশক সম্বন্ধে বলা যায়, এগুলি উদ্ভিদে প্রয়োগ করা হলে এরা শীঘ্র জীবাপুর ক্রিয়ায় নিম্ক্রিয় হয়ে পড়ে। জীবাণু পতল্পনাশকদের এরকম কোন আশঙ্কা নেই যদিও প্রাথমিক পর্যায়ে তাদের নৃতন পরিবেশের দঙ্গে খাপ খাওয়ানোর জন্ম লড়াই করতে হয়। এ ছাড়া অন্ত দৃষ্টিভলি থেকে বলা চলে, রাসায়নিক পঙল নাশক পদার্থ অবিক্লন্ত থেকে গেলে ঐ কীটনাশক পদার্থের রাসায়নিক বিষক্রিয়া থেকে গবাদি পশু, জলের মাছ এমন কি মানুষ কেউ মুক্তি পায় না।

কেবলমাত্র পতঙ্গ বিনাশকারী হিসাবেই আজ জীবাণুকে ব্যবহার করা হচ্ছে বা নৃতন পতন্তমাশক জীবাণুর সন্ধানে গবেষণা চালানো হচ্ছে। আশা করা যায় নিকট ভবিষ্যতে এইসব গবেষণা আরো প্রসারলাভ করবে এবং জীবাণু দারাই তথন রোগ উৎপাদনকারী ক্ষতিকর জীবাণুর নিয়ন্ত্রণ সম্ভব হবে আরো সার্থকভাবে। কিন্তু তৃঃথের বিষয়, এইসব নৃতন দিগন্তের পথনির্দেশে গবেষণা ভারতের মত দরিদ্র দেশেই খুব ক্রত গ্রহণ করা উচিত, কিন্তু আজন্ত এইসব গবেষণার ফলাকল প্রয়োগের ক্ষেত্র রাশিরা, আয়েরিকা, ফ্রান্স বা জাপানের মত ক্ষেকটা উন্নত দেশেই সীমাবদ্ধ। তাই জাতীয় উল্লয়নের স্থার্থে এদিকে দৃষ্টি দিত্তে হবে।

প্ৰক্ষনাশক হিসাবে ব্যাকিরিয়াঃ শতাধিক প্ৰক্ষনাশক জীবাণ্র মধ্যে কেবলমাত্র তিনটি ব্যাক্তিরিয়াই সার্থকভাবে পতল্পশক হিসাবে বাণিজ্যিক ভিত্তিতে উৎপাদনের জন্ম গৃহীত হয়েছে। রেণু গঠনকারী এই তিনটি ব্যাক্তিরিয়া रम न्यांत्रिलाम श्रिलिटे, न्यांत्रिलाम थूत्रिनटक्रमिम व्वरः न्यांत्रिलाम মরিটাই (Bacillus moritai)। এদের কোবের অভ্যস্তরে (in vivo) বা কোষের বাইরে (in vitro) উৎপাদন করা চলে। এদের মধ্যে ব্যাসিলাস পিলিই-কে (পরজীবী) কেবলমাত্র জাপানী গুবরে পোকার মধ্যে চাব করতে হয়। কিন্ত ব্যাসিলাস থুরিনজেনসিস বা ব্যাসিলাস মরিটাইকে চিরাচরিত সন্ধান পদ্ধতিতে **डे**९शीनन क्दा यात्र। लक्का করার বিষয় হল পতঙ্গ রোগ উৎপাদনকারী প্রায় সব ব্যাক্টিরিয়াই রেণু উৎপাদনকারী। এদের বিশেষ স্থবিধা হল এরা প্রতিকূল পরিবেশেও বেশ কিছু সময় টি'কে থাকতে পারে। উপরোক্ত তিনটি ছাড়াও বেশ কিছু রেণু গঠনকারী ব্যা জিরিয়ার সন্ধান পাওয়া গেলেও তারা সহজে উৎপাদন, গৃহপালিত পশু, মাছ বা মান্তবের উপর প্রতিক্রিয়ার প্রশ্নে সন্দেহাতীত প্রমাণিত হয় নি। আশা করা বার আগামী দশকে এ বিবরে আরের অগ্রগতি হবে।

প্রজনাশক হিদাবে ভাইরাদঃ অনেক প্রজ বিশারদের মতে জীবাণু

কীটনাশকদের মধ্যে ভাইরাস স্বাধিক কার্যকর। আজ পর্যন্ত বিভিন্ন গবেষণার ফলশ্রুতি হিসাবে অর্ধকরী ফসল ধ্বংসকারী প্রজ্বনাশক অনেক ভাইরাসকেই চিহ্নিত করা সম্ভব হয়েছে। আজ পর্যন্ত প্রায় ৬৫০টি পতঙ্গনাশক ভাইরাসের সঙ্গে আমাদের পরিচয় ঘটেছে এরং এই পরিচিত মহলের পরিধি ক্রমেই বৃদ্ধি শক্তিয় ব্যা ঠিরিয়ারা রেণু গঠন করে নিজেদের রক্ষা করে কিন্তু শক্তিয় ভাইরাসরা একটা প্রোটিনের আচ্ছাদন (Protective body) দিয়ে নিজেদের রক্ষা করে। বিশেষ অবস্থায় আক্রান্ত অমুপোষক কোষের মধ্যে অসম্পূর্ণ ভাইরাস এবং শক্রিয় ভাইরাদ কণা আচ্ছাদনের মধ্যে একত্রে অবস্থান করে যা অণুবীক্ষণ বছের সাহায্যে দৃগুমান। একে বলে ইনক্লুনন বিভি (Inclusion body)। এ ছাড়া আচ্ছাদনবিহীন ভাইরাসকে বলে নন-ইনক্ল সন ভাইরাস। ইনক্ল সন বিভি নানান আকৃতির হয়ে থাকে, অসম এবং স্থম বহুতল বিশিষ্ট পিরামিড বা পলিহেড়োসিস (Polyhedrosis) প্রকৃতিসম্পন্ন এবং ডিমাকৃতি বা গ্রামুলোসিস (Granulosis) প্রকৃতি সম্পন্ন। কিন্তু সচরাচর পত্তক ভাইরাগকে চিহ্নিত করা হয় এরা কোষের অভ্যন্তরে যেথানে বংশ বিস্তার করে তার উপর ভিত্তি করে। তাই সাধারণ হুই শ্রেণী হল নিউক্লীয় পলিহেড্রোসিস (NPV) এবং সাইটোপ্লাজমীয় পলিহেড্রোসিস (CPV) ভাইরাস। আধুনিক শ্রেণীবিক্তাস অবশু পতক ভাইরাসের আক্বতি, প্রকৃতি জীবরাসায়নিক এবং শারীর বৃত্তীয় পরীক্ষার ভিত্তিতে নির্ণয় করা হয়। গণের (Genus) নামকরণের জন্ম দিপদ পদ্ধতি (Binomial system) অবলম্বন করা হয় এবং নামের শেষে ভাইরাস কথাটা যুক্ত থাকে ! যেমন বাকুলোভাইরাস, এন্টোমোপক্স ভাইরাস, ইরিডো-ভাইরাস ইত্যাদি। নন-ইনক্সন ভাইরাসগুলি সহজে উৎপাদন করা সম্ভব হয় না এবং নিরাপতার প্রশ্নেও এরা সন্দেহাতীত প্রমাণিত না হওয়ায় এদের প্রচলন সীমাবন্ধ। পতঙ্গ ভাইরাস উৎপাদনের সবচেয়ে বড় সম্প্রা হল এরা সম্পূর্ণভাবে পরাশ্রয়ী পরজীবী। তাই এদের উৎপাদনের জন্ত প্রাঞ্জন হয়। যথাযোগ্য অনুপোষকের। এইসব অস্ত্রবিধা সত্ত্বেও এক ডজনের বেশী পতক্ষনাশক ভাইরাস শিল্পণা হিসাবে বাজারে এসেছে এবং এদের প্রয়োগ করে যথেষ্ট স্মুফল ও মিলেছে। ছত্রাঁক বা ব্যাক্টিরিয়া পভঙ্গনাশকের চেয়ে ভাইরাদ পতন্সনাশক ব্যবহারে ছবিধা বেশী। কারণ এরা সীমাবদ্ধ ক্ষেত্রে এদের কার্যকারিতা নির্দিষ্ট রাথে বলে অনির্দেশিত উদ্ভিদ বা প্রাণীর কোন ক্ষতির আশস্কা এদের দ্বারা স্ঠি হয় না।

প্রভাগনিক হিসাবে ছত্রাকঃ ছত্রাককে প্রভাগনিক হিসাবে ব্যবহার করার রীতি এখনও আমেরিকার প্রচলিত না হলেও রাশিরার একাধিক প্রভাগনিক করার রীতি এখনও আমেরিকার প্রচলিত হয়েছে। প্রায় ৫০০ প্রভাগনিক ছত্রাকের নাশক ছত্রাকের ব্যবহার প্রচলিত হয়েছে। প্রায় ৫০০ প্রভাগনিক ছত্রাকের মধ্যে উল্লেখযোগ্য প্রায় দকলেই কাইকোমাইদিট (Phycomycetes) এবং ডিটারোমাইদিট (Deuteromycetes) শ্রেণীভুক্ত। ছত্রাক প্রভাগনাশক কিন্তু যখন মাটিতে রেণ্ অন্করিত হবার বা বৃদ্ধির অন্তক্ত্বল পরিবেশ দ্বন্ত হয় কেবলমাত্র ভখনই স্ক্রিয় হয়ে থাকে। আবার ছত্রাক বহুবিধ উদ্ভিদরোগের সঙ্গে জড়িত বলে অনেক ছত্রাক বিশেষজ্ঞের মতে ছত্রাকের ব্যবহারের সাফল্য সম্বন্ধে সন্দেহ আছে। কিন্তু অন্তশ্রেনীর বিজ্ঞানীরা বিশ্বাস করেন রাসায়নিক কীটনাশকের সম্বেহ্ব ছত্রাক কীটনাশকের ব্যবহারে সম্ভোবজনক কল পাওয়া যায়।

ছত্রাকের অণুস্ত্র (mycellium), রেণু এবং টক্সিন (toxin) বুহদাকারে উৎপন্ন করা থুব সহজ্ব। সাধারণতঃ কৃষ্টি মাধ্যমের উপরিতলে সন্ধান প্রক্রিয়া দ্বারা জীবাণুর বংশ বৃদ্ধি ঘটানো সহজ্ঞসাধ্য। এদের ব্যবহারে একটা মুখ্য অবিধা হল এরা ভাইরাসের মত কেবলমাত্র বিশেষভাবে নির্দেশিত পতক্র ছাড়া অন্ত পতকের উপরও সক্রিয় হত্তে পারে। সাধারণতঃ বিভিন্ন শ্রেণীর কৃডিং, গুবরে পোকা এবং শ্ব্যছিদ্রকারী পোকার উপর ছত্রাকের ক্রিয়া বিশেষভাবে সন্তোব-জনক। তাই আশা করা যায় ছত্রাক পতক্রনাশক সহন্ধে গবেষণার পরিধি ক্রমেই বৃদ্ধি পাবে এবং তখন এর প্রায়োগের জনহিতকর দিক উন্মোচিত হবে।

পভঙ্গনাশক হিসাবে প্রোটোজোয়া ঃ পরীক্ষাগারে প্রোটোজায়া পত্রদাশক ক্রিয়া দেখাতে সক্ষম হলেও, তাদের নিয়মানের কার্যকারিতা এবং উৎপাদনের জটিলতার জন্ম বাণিজ্যিক ভিত্তিতে উৎপাদন আজও সম্ভব হয় নি । প্রেটোজায়াকে কেবলমাত্র জীবকোষের মধ্যেই উৎপন্ন করা সম্ভব । এইলব অম্প্রবিধা সত্ত্বেও প্রায় ১৫টি বিভিন্ন ধরনের উন্নতমানের প্রোটোজায়াকে পরীক্ষান্ত্বক ভিত্তিতে ব্যবহার করা হচ্ছে । প্রোটোজায়া জীবাণুনাশক হিসাবে ব্যবহাত হবার স্বচেয়ের বড় সম্ভাবনামর কারণ হল যে কীটপতেল, ব্যাক্টিরিয়া বা ভাইরাল মাত্র পাঁচিট সার্থক প্রোটোজায়াকে এখনও পর্যন্ত যথেই সম্ভাবনাপূর্ণ বলে পরীক্ষা চালানো হচ্ছে । এর মধ্যে নোকেমা কোকাকি (Nosema locustae) ভার

সকল সন্তাবনা এবং নিরাপতার প্রতিশ্রুতি নিয়ে এগিয়ে এসেছে। এই প্রোটোজোয়াটি ফড়িং জাতীয় পতত্বের উপর খুবই সক্রিয়। এ ছাড়া ম্যাটেসিয়া টোগোডার্রমি (Mattesia trogodermae) মজ্তু খাছবিনষ্টকারী পতত্ব এবং নোলেমা এলজিরি (Nosema algerae) মশা নিম্ল করতে খুবই কার্যকর। আশা করা যায় আগামী দশকে প্রোটোজোয়াকে কীটনাশক পণ্য হিসাবে বাজারে আগতে দেখা যাবে।

সিদ্ধান্ত ঃ কীটনাশক হিসাবে সজীব জীবাণুর ব্যবহার থ্ব প্রাচীন বলা চলে লা। রাসায়নিক কীটনাশক ব্যবহারের কুফল এবং এর তুর্ল ভভাই জীবাণু কীটনাশক ব্যবহারের গবেষণায় বিজ্ঞানীদের উদ্বৃদ্ধ করেছে। জীবাণুসারের মত, জীবাণু কীটনাশকের সাফল্যও পরিবর্তিত পরিবেশে জীবাণুর টিকে থাকার ক্ষমতার উপর প্রাথমিকভাবে নির্ভরশীল। উন্নতমানের পতল্পনাশক জীবাণুর দ্বারা রাসায়নিক কীটনাশকের চেয়েও ভালো ফল পাওয়া সন্তব বিভিন্ন পরীক্ষায় প্রমাণিত হয়েছে কীটনাশক জীবাণু গৃহপালিত পশু, উপকারী পতল এবং উন্ভিদের কোল ক্ষতি করে লা। উপরম্ভ জীবাণু কীটনাশক রাসায়নিক কীটনাশকের রাসায়নিক বিষ্ক্রিক্রার দোষ মুক্ত। জীবাণু প্রয়োগ যে কোল রাসায়নিক পদার্থ প্রয়োগ অপেক্ষা দামে সন্তা, ভাই সার্বিক বিশ্লেষণে সিদ্ধান্ত নেওয়া যায় জীবাণু কীটনাশকের সন্তাবনা অসীয়, ভাই এর কার্যকারিভাও হবে অন্যা।

NAMES AND ADDRESS OF THE PARTY OF THE PARTY.

The supplied to the supplied of the supplied o

THE PARTY OF THE PARTY OF THE PROPERTY AND ASSESSMENT

A to the second of the last the second of th

জীবাণুসার প্রয়োগে নূতন পথ নির্দেশ— হর্মোন উৎপাদনকারী জীবাণুর ভূমিকা

10

ভৈবদার এবং সবুজ্ঞসার প্রায়োগের ভূমিকা আজ ক্বক এবং ক্রবিশারদ স্বার কাছেই স্বীকৃত। **রাইজোবিয়াম** জীবাণুনার সম্বন্ধেও কেউ দ্বিমত পোষণ করেন না। কিন্তু মুক্তজীবী নাইট্রোজেন বন্ধনকারী জীবাণুসার (সার মুখ্য হোতা হল এজেটিব্যাক্টার) সম্বন্ধে বা ফ্সফেট ঘটিত জীবাণুসার সম্বন্ধে (যার পথ প্রদর্শকের ভূমিকা হল রাশিয়ার—ব্যাসিলাস বেমগাথেরিয়াম হারা) এখনও সকলে নিঃসন্দেহ নন। অক্তদিকে জলমগ্ন ধান জমিতে নীলসবুজ শেওলার ভূমিকাও আজ স্বীকৃত। কিন্তু মুক্তজীবী নাইট্রোজেন বন্ধনকারী জীবাণু বা ফদফেট দ্রবণকারী জীবাণুর ক্রিয়ায় যখন স্থফল দেখা যায় তখন অনেকেই তাদের উদ্ভিদ উদ্দীপক রাসায়নিক পদার্থ বা হর্মোনের অবদান বলে চিহ্নিত করেন। এর কারণ হল মাটির স্বাভাবিক জীবাণু এবং যেসব জীবাণু গাছের মৃলের পরিমণ্ডলে উদ্দীপিত হয় তাদের মধ্যে একাংশ, উদ্ভিদ বৃদ্ধি উদ্দীপক বা হর্মোন জাতীয় পদার্থ উৎপাদনের ক্ষমতা প্রদর্শন করে। এজোটোব্যাক্টারও এই ভালিকায় স্থান পার এবং সেটাই হল এজোটো-ব্যাকার জীবাণুর উপর এই **সন্দেহ** উদ্রেকের কারণ। পক্ষান্তরে রাশিয়ার ব্যাসিলাস মেগাথেরিয়াম জীবাণুর ব্যর্থতার কারণ হল এরা প্রধানতঃ অদ্রবণীয় জৈব ফসফরাসের উপর ক্রিয়াশীল। তাই অজৈব কসফরাস সমৃদ্ধ গ্রীল্ম-প্রধান দেশের মাটিতে এই জীবাণূর ক্রিয়া সীমিত হতে বাধ্য। ব্যা**সিলাস** ভেষাতে রিয়াম অবশ্য হর্মোন উৎপাদনে সক্ষম এমন কোন সাক্ষ্য নেই।

সাধারণতঃ জীবাণুরা যে সমস্ত উদ্ভিদ হর্মোন (অক্সিন) উৎপাদন করতে সক্ষম তাদের মধ্যে প্রধান হল ইনডোল ৩-এ্যাসিটিক এ্যাসিড (আই এ এ), জিব্বারালিক এগাসিড। বলা বাহুল্য, সব এজোটোব্যাক্তারই হর্মোন উৎপাদন করে না এবং সব এজোটোব্যাক্তারই বিভিন্ন উদ্ভিদের

জীবাণুদার প্রয়োগে নৃতন পথ নির্দেশ-হর্মোন উৎপাদনকারী জীবাণুর ভূমিকা ১৪৭ বোগ উৎপাদনকারী ছত্রাকের বৃদ্ধি নিয়ন্ত্রণ করে এই ধারণাও অনেকটা করনা-প্রস্তা তাই নিঃসন্দেহে বলা যায় কোন উচ্চমানের নাইট্রোজেন বন্ধনকারী বা ক্ষসকেট দ্রবণকারী জীবাণু যদি হর্মোন উৎপাদনক্ষম হয় তা অধিকত্র সম্ভাবনাময় জীবাণুদার হিসাবে কাজ করার প্রতিশ্রুতি বহন করবে।

১৯০৪ সালে হিলটনারের তাৎপর্য পূর্ব গবেষণায় পরিবেশ বিজ্ঞানে এক নূডন নাম সংযোজিত হল যা তাঁর ভাষার উদ্ভিদের মূল পরিমণ্ডল বা "রাইজোন্ফিয়ার" নামে পরিচিতি লাভ করন। তিনি লক্ষ্য করলেন রাইজোন্ফিয়ারে বিভিন্ন উপকারী জীবাণুর সংখ্যা এবং জীবরাসায়নিক ক্রিয়া, মূল থেকে দূরে সাধারণ মাটির তুলনায় বেশ কয়েকগুণ বেশী। তিনি ঘোষণা করলেন রাইজোন্ফিয়ার হল উদ্ভিদ মূল, জীবাণু এবং মাটির সন্মিলিত ক্রিয়ার ত্রিবেশী।

মুড্দন ১৯২০ দালে প্রথম সঠিকভাবে প্রমাণ করেন গাছের মূল শর্করা জাতীয় পদার্থ নির্গত করে। ১৯৬৫ দালে বিজ্ঞানী রোভিরা মূলের পরিমণ্ডলে সমস্ত গবেষণার একটা সংকলন প্রকাশ করেন। এর থেকে জানা যায় গাছের মূল শর্করা, জৈব এ্যাসিড, অ্যামাইনো এ্যাসিড এবং কিছু কিছু অজ্ঞাত উদ্ভিদ উদ্দীপক পদার্থ নির্গত করে। গাছের মূল থেকে যে শর্করা, জৈব এ্যাসিড, এবং অ্যামাইনো এ্যাসিড নির্গত হয় তা তিনি আরো স্পষ্টভাবে প্রমাণ করতে সমর্থ হন। এ ছাড়া তিনি পরীক্ষায় প্রমাণ করেন মূল নির্যাসে দ্রবণীয় বি শ্রেণীর ভিটামিনের সন্ধান পাওয়া যায়। এইসব পৃষ্টিকর খাছাই সন্তবতঃ মূলের পরিমণ্ডলে অধিক সংখ্যায় জীবাণুর আকর্ষণের প্রধান কারণ।

উদ্ভিদ হর্মোন উৎপাদনক্ষম জীবাণুর সার্থক গবেষণা শুরু হয় ১৯৫৫ সালে।
ববো এবং তাঁর সহকর্মীগণ জিবেবরেলা ফুজিকুরোই (Gibberella fujikuroi) নামে এক ছত্রাকের সন্ধান পান যারা জিবারালিনা উৎপাদনে সক্ষম। এই ছত্রাকটি আসলে ফিউসারিয়াম মিলিফর্মি-এর কনিডিয় (এক-ধরনের রেণু গঠনকারী) রূপ। এই ছত্রাকটি তাঁর পেটেন্টে শিল্লভিত্তিতে জিবারালিন উৎপাদনে আজপু ব্যবহৃত হচ্ছে। ১৯৫৭ সালে কার্টি স্থ নামে এক বিজ্ঞানী জীবাণুর এই ক্ষমতার সন্ধানে প্রায় ১০০০ ছত্রাক এবং ৫০০ এক্টিনো-মাইসিটস নিয়ে গবেষণায় নিক্ষল হন। ১৯৬১ সালে তাঁকুরা এজোটোব্যাক্টায় ক্রেক্কাম প্রজাতির মধ্যে জিবারালিন উৎপাদনের দৃষ্টান্ত প্রমাণ করেন

এবং ১৯৬২ সালে কাটজনেলসন ও তাঁর সহক্ষীবৃন্দ প্রাথমিকভাবে পরীক্ষা চালিরে আর্থে ব্যাক্টার গ্লোবিফর্মিস-এর জিকারালিন জাতীয় পদার্থ উৎপাদনের সন্ধান পান (পেপলার ও পার্ল ম্যান, ১৯৭৯)। জাশিলনিকভ ও তাঁর সহক্ষীরা ১৯৬৩ সালে কিছু অজানা একটিনোমাইনিট্স, ইস্ট প্রজাতি—টোরুলা পালচেরিমা এবং বেশ কিছু ফিউসারিয়াম প্রজাতির ছত্রাকের মধ্যে জিব্বারালিক এ্যাসিড উৎপাদনের সন্ধান পান। নিতা ১৯৬৪ সালে কিছু রেণু উৎপাদনকারী ব্যাক্তিরিয়া এবং সিউডোমোনাস ফ্লুরেসের্সের মধ্যে জিব্বারালিন জাতীয় পদার্থ উৎপাদন ক্ষমতার পরিচয় পান এবং ১৯৬৫ সালে কার্টজনেল্যন এবং কোলে ব্যাসিলাস পলিমিক্তা, এগ্রোব্যা করিয়াম রেভিওব্যাকার এবং ছটি প্রঞাতির এক্টিনোমাই সিটসের মধ্যে প্রতি লিটার কুষ্টিমাধ্যমে ১-১৪ মাইজোগ্রাম জিকারালিন উৎপাদন ক্ষম্ভা লক্ষ্য করেন (পেপলার ও পার্লম্যান, ১৯৭৯)। ১৯৬৭ সালে বসন্তরাজন এবং ভাট ভারতের মাটিতে জীবাণুর ক্রিয়ায় জিঝারালিন এবং ইনডোল এগাসিটিক এগাসিড উৎপাদনের সংবাদ পরিবেশন করেন। আজ মাটির জীবাণুর এইসব উদ্ভিদ হর্মোন উৎপাদনের রহশু দর্বজ্বন স্বীকৃত। কিন্তু কথা হল এইসব জীবাগুর এই ক্ষমতাকে কিভাবে কৃষি উন্নয়নের কাজে লাগানো যায়।

বসস্তরাজন এবং ভাট ১৯৬৭ সালে মালবেরীর (মোরাস ইণ্ডিকা) মূল পরিমণ্ডল থেকে এবং নিয়ন্ত্রিভ মাটি থেকে জীবাণু সংগ্রহ করে প্রমাণ করেন, মূল পরিমণ্ডল থেকে সংগৃহীত জীবাণুর ১২ ৮ শতাংশ এবং নিয়ন্ত্রিভ মাটি থেকে সংগৃহীত জীবাণুর ৯৭ শতাংশ উদ্ভিদ হর্মোন জাতীয় পদার্থ উৎপাদন করে। এ থেকে তাঁরা সিদ্ধান্তে উপনীত হন যে মূলের পরিমণ্ডলে জীবাণুরা সাধারণ মাটির জীবাণুর থেকে অনেক বেশী সক্রিয়। এ দের পরীক্ষালয় ফলাফলের ভালিকা দেখলে তাঁদের বক্তব্যের তাৎপর্য আরো স্পষ্টভাবে বোঝা যাবে।

পরীক্ষার প্রমাণিত হয়েছে জীবাণুর উৎপন্ন জ্বিবারালিন বা জিব্বারলিক এ্যানিড মাটিতে প্রয়োগ করলে তা উদ্ভিদ অভিক্রত শোষণ করে নেয়।

আমাদের এক পরীক্ষায় শতাধিক বিভিন্ন মৃতিকা জীবাণু (ব্যা ক্টিরিয়া, ছত্রাক এবং এক্টিনোমাইসিটস) থেকে নির্বাচিত উন্নতমানের ছয়টি অজৈব ফসফেট জ্ববণকারী ব্যা ক্টিরিয়ার উপর পরীক্ষা চালানো হয় । অজৈব ফসফেটকে দ্রবীভূত করার কারণ হিসাবে এইসব জীবাণ্র জৈব এ্যাসিড উৎপাদন ক্ষমতাকে

>8>

ভালিকা > : মাণবেরী গাছের মূল পরিমণ্ডলের মাটিতে মোট জীবাগুর এবং হর্মোন উৎপাদনকারী জীবাগুর সংখ্যা (বসম্বরাজন এবং ভাট, ১৯৬৭)

নিম্বন্ধিত মাটি	রাহুজো পরিমগুলের মূলের পরিমগুলের নাটি	न्देन्द्रमार्थकिकास्य या			উপাদান
३६६ व.क ३ ६६ ३६० ३६ १६५६ ६ ६७ १६६६ ६३,०६ म के ३६००६	S S S S S S S S S S S S S S S S S S S	طرح درو ۹ ۹۹ ۹۵،۰۹ د سورور د سال ۱۳۰۰ د ۱۳۰ د ۱۳۰۰ د ۱۳۰ د ۱۳۰۰ د ۱۳۰ د ۱۳۰ د ۱۳۰ د ۱۳۰۰ د ۱۳۰ د ۱۳ د ۱۳	A* B C D A B C D A B C D	চারা লাগানোর সময় ৬ মাস বয়সে	গাছের বয়স
८. व १ १५ १ १ १ १		4.e 6 66 69.06c	ABCD	>২ মাস বয়সে	7) 70/20 72/21
N N N	e le (questa	नद इ	TO THE REAL PROPERTY.	ग्रथा	त्याहे
200	e sale i e sale i e sale i	AR	गृश्या	কারীর	हर्सान
9.9¢	mple for	A. 86			भे छ क्डा हिजारब

প্রতি গ্রাম মাটিতে জীবারুর সংখ্যা হল প্রদন্ত সংখ্যা imes ১০৬ এবং D → ত্র্যোন উৎপাদনকারীর সংখ্যা শতাংশ তিসাবে। A → মোট ব্যা छितिशा; B → পরীক্ষিত জীবাগুর সংখ্যা; С → हार्यान उप्लाननकाती खीवाव्य मृश्या

এবার দেখা যাক উপরোক্ত হর্মোন উৎপাদনকারী ব্যাক্টিরিয়াদের প্রকৃতি এবং ভারা কোন গোত্রভুক্তঃ

ভালিকা ২ ঃ হর্মোন উৎপাদনক্ষম জীবাণুর পরিচিতি ও প্রকৃতি

(বসস্তরাজন এবং ভাট, ১৯৬৭)

জীবাণুর আক্তৃতি	শ্রেণীবিভাগ	কৃষ্টিদ্ৰ	ক্লষ্টিদ্রবণে উদ্ভিদ হর্মোন			
The second	100	g d	ৎপাদন ম	মভা		
The state of the s		0	20-2	20-5		
গ্রাম ঋনাত্মক, রড	সিউডোবোৰাস	+	74	+		
	এলকালিজেনস	+	+	iet.		
	ফ্লাভোব্যা কিরিয়াম	+	104	-		
THE THE	একোনোব্যাকার	+	-			
গ্রাম ধনাত্মক, কোকাস	মাইকোকোকাস	+	+	1_		
রেণু গঠনকারী গ্রাম-		i Sart	100	1		
ধনাত্মক, রড	ব্যাসিলাস	+	4	+		
একাধিক শারীরিক	9		1	T.		
গঠনযুক্ত (Pleomor-	是自己的意思。	-				
phic) এবং দ্বিধাবিভক্ত						
কোৰ	আহের্গ্রাব্যাক্টার	+	+5			

>o-> এবং >o-> দ্রবণের লঘুত্ব (dilution) + সক্ষম এবং — অকম।

চিহ্নিত করা হয়। হর্মোন উৎপাদনের ক্ষমতা নির্ণয়ের পরীক্ষা চালিয়ে দেখা যায় এদের মধ্যে একটি ল্যাটারাইট মাটি পেকে আহত এবং একটি এালুভিয়াল মাটি থেকে আহত এবং একটি এালুভিয়াল মাটি থেকে আহত ব্যাসিলাস ফারমাস প্রজাতি ইনডোল ৩-এ্যাসিটিক এ্যাসিড উৎপাদন করছে। তুলনামূলক পরীক্ষায় দেখা যায় রাশিয়ার উচ্চ ক্ষমতা সম্পন্ন প্রজাতি ব্যাসিলাস মেগাথেরিয়াম, অপেক্ষায়ত কম অভৈব ফ্সফেট জ্বীভূত করেছে এবং তা হর্মোন উৎপাদনেও অক্ষম। এবার দেখা যাক পরীক্ষালক ফলাফলের তালিকা।

ज्यिका ३६	জীবাণুর পরিচয় এবং উৎস	অদ্রবণীয়	व कगरक है	এবং ১৫ বি থেকে মূক্ত ণ (মাইক্রে	দ্রবণীয়	উক্ত কৃষ্টি দ্রবণে উৎপন্ন ক্রে ব এাদিড	দ্রবণের অন্নত্বমাত্রা (pH)	উৎপন্ন	ফাইটোই	হোন
कीवाशूत पू		Ca ₃ (PO ₄) ₂	AlPO ₄	FePO ₄	Rock Phosphate			IAA	IBA	GA
	ব্যাসিলাস মেগাথেরি- ম্নাম ভাব ফসফেটিকাম—৮৪৭	<i>₽5.</i> 0	0.0	>.0	0.6	অজ্ঞাত	6.6	=		-
লীবাগুদার প্রস্নোগে নূতন পথ নির্দেশ−হর্ষোন উৎপাদনকারী	(মস্কো-রাশিষা) ব্যাসিলাস ফারমাস (ল্যাটারাইট মাটি)	>60.0	0.0	22.0	0.0	২-কিটো গ্লুকোনিক + সাকসিনিক	8.9	+		
ाथ निर्द	ব্যাসিলাস সাকু লৈজ +ব্যাসিলাস সাবটিলিস	280.0	0.0	50.0	0.0	২-কিটো গ্লুকোনিক + সাকসিনিক	8 2	-	-	-
। मूलम १	(ল্যাটারাইট মাটি) ব্যাসিলাস সাবটিলিস	9a.º	0.0	6.0	0.0	অক্সালিক	e c	E	_	
व्यत्त्राधि	(ল্যাটারাইট মাটি) ব্যা লিলাল ফার্মাল	66.0	\$.0	0.0	6.6	২-কিটো গ্লুকোনিক + সাকসিনিক		+	-	_
विधिमात्र	(এলুভিয়াল মাটি) ব্যাসিলাস কার্মাস	88.0	0.0	0.0	2.4	অক্লাগিক + গাকগিনিক	6.9		-	
B	(এলুভিয়ান মাটি) ব্যাসিলাস সাবটিলিস (এলুভিয়াল মাটি)	₹8.0	0.0	20.0	0.0	অক্সালিক	a.a	1=		

一切的 的 39年 三年 中国的 在的一种的一种一种一种一种 30

IAA—ইণ্ডোল এ্যাসিটক এ্যাসিড; IBA—ইণ্ডোল বিউটিরিক এ্যাসিড; GA—জ্বিরার্লিন এবং জিব্বারালিক অমু।

পরীক্ষালর ফলাফলের তালিকা থতিয়ে দেখলে জীবাণু ছটির ক্ষমতা সম্বন্ধের ধারণা করা বাবে। বত মানে ঐ জীবাণু ছটি পুনায় জাতীয় শিল্প জীবাণু সংগ্রহ-শালায় রক্ষিত হয়েছে। জীবাণু ছটি যথাক্রমে NCIM-2636 এবং NCIM-2637 সংখ্যায় তালিকাভুক্ত।

এইসব আবিকার খেকে এটাই স্পষ্টভাবে প্রমাণিত হয় যে কিছু কিছু নাইট্রোজেন বন্ধনকারী বা ফসফেট দ্রবণকারী জীবাণুর মধ্যে ঐসব হর্মোন উৎপাদন ক্ষমতা থাকা কিছু অস্বাভাবিক ঘটনা নয়। এইসব হৈত গুণদপ্রক জীবাণুর সম্ভাবনা ক্রবিজ্বমিতে জীবাণুসার হিসাবে খুবই উজ্জ্বল এই ধারণার বশবর্তী হয়ে আমরা ব্যাসিলাস ফারমাস জীবাণুকে নাগাল্যাণ্ডের উঁচু অমুজ্বমিতে পরপর হুই বৎসর ধানের জমিতে প্রয়োগ করে গড়ে ৩০ শতাংশেরও বেশী ফলন পেয়েছি। এবার আমরা একে একে এ সম্বন্ধে হুটি ভালিকায় প্রকাশিত পরীক্ষালক ফলাফল দেখব।

ভালিকা ৪ঃ জমিতে হর্মোন উৎপাদনক্ষম জীবাণুসার প্রয়োগে জয়া ধানের ফলনের উপর প্রভাব (দৃত্ত এবং সহক্ষীবৃন্দ, ১৯৮২)

ফ্রন্ফরাসের প্রয়োগ মাত্রা	সিন্দল স্থপ	ার ফ্সফেট	পাথুরে ফসফেট		
কিগ্রা. প্রতি হেক্টরে	জীবাণু বিহীন দানাশস্ত	জীবাবু প্রযুক্ত দানাশশু	জীবাণু বিহুীন দানাশশু	জীবাণু প্রযুক্ত দানাশগু	
নিরন্ত্রিত যাটি	\$ >: 22*	9 89			
P. 96	56.60	83.60	52.99	99 89	
29 60	54.22	82.46	\$8.42	82.58	
00 00	00.26		09 02	8P.0R	
80 96	The District of the Control of the C	६७. १२	०६ ५२	80 २ 4	
	90 24	89.42	96.49	86.09	
65.60	65.00	80.00	09.40	86.64	
90.00	७० ४३	85.00		The second second	
গড়ে	00.62	88:25	06.4P	88.42	

দিতীয় বৎসর একই জমিতে এই পরীক্ষার পুনরাবৃত্তি করা হয় জয়ার পরিবর্তে আই-আর-৮ ধান শন্তের উপর।

জীবাণুসার প্রয়োগে নৃতন পথ নির্দেশ-ছর্মোন উৎপাদনকারী জীবাণুর ভূমিকা ১৫৩ পরীক্ষার ফলাফল তালিকা ৫-এ প্রকাশিত হল।

ভালিকা ৫ ঃ জমিতে হর্মোন উৎপাদনক্ষম জীবাণুদার প্রয়োগে আই-আর-৮ ধানের ফলনের উপর প্রভাব (দন্ত এবং সহক্মীবৃন্দ, ১৯৮২)

ফ্যফ্রাসের	সিঙ্গল স্থপা	র ফদফেট	পাথুরে ফ্সফেট		
প্রয়োগ মাত্রা কিগ্রা: প্রতি হেক্টরে	জীবাণু বিহীন দানাশশু	ভীবাণু প্রযুক্ত দানাশস্থ	জীবাণু বিহীন দানাশগু	জীবাণু প্রযুক্ত দানাশন্ত	
The second second	29.66*	०५ ६०	२१ ४४	02.50	
নিয়ন্ত্রিত			99 90	80.60	
F 90		\$2.80	७५ ४ ८	80.66	
29.60	00 64		oz.20	७७ ७६	
00.00	O6.5A	82.26		THE PERSON NAMED IN	
65.60	७२ ७७	97 60			

- চাপান সারের পরিমাণ ৮০ কিগ্রা- নাইট্রোজেন প্রতি হেক্টরে এবং
 ৪০ কিগ্রা- পটাসিয়াম প্রতি হেক্টরে।
 - চারটি প্লটের গড়পরতা হিসাবে।

এইসব পরীক্ষালক ফলাফলের ভিত্তিতে ধারণা করা যায় যে, এ ধরনের দিবিধ ক্ষমতার অধিকারী জীবাণুকে জমিতে জীবাণুসার হিসাবে প্রয়োগ করকে জমি আরো শশুগুমানলা হয়ে উঠবে। সার্থক জীবাণুসার হিসাবে কাজ করার পূর্বশতের মধ্যে একটি হল রেণুগঠন ক্ষমতা। এই পরীক্ষাতেও জীবাণুটি উত্তীর্ণ। তাই আশা করা যায় উপযুক্ত পরিবেশে যথার্থ প্রয়োগ করা হলে এই জীবাণু এক নৃতন দিগস্ত উদ্যোচন করবে।

যে সকল রাসায়নিক পদার্থকে উদ্ভিদ হর্মোন হিসাবে কাজ করতে দেখা গেছে তা হল, ইণ্ডোল এ্যাসিটিক এ্যাসিড, ইণ্ডোল বিউটিরিক এ্যাসিড, জ্বিকারালিন, সাইটোকাইনিন, জিঝারলিক এ্যাসিড ইত্যাদি। এ ছাড়া কিছু সরল অ্যারোমেটিক পদার্থকেও উদ্ভিদ বৃদ্ধি (হর্মোন) উদ্দীপক পদার্থ হিসাবে পাওয়া যায়।
কিন্তু আজ পর্যন্ত কেবলমাত্র ইনডোল এ্যাসিটিক এ্যাসিড, জিঝারালিন এবং
জিঝারালিক অমকেই জীবাণু উৎস থেকে পাওয়া সন্তব হয়েছে। সরাসরি
জীবাণু প্রয়োগ না করা হলেও ফুল ও ফলের চারা তৈরীর জন্ত (বিশুদ্ধ)
রাসামনিক পদার্থ হিসাবে এইসব উদ্ভিদ উদ্দীপক প্রয়োগের রীতি স্বীকৃত।
বলা বাহুল্য এইসব উদ্ভিদ হর্মোন প্রয়োগে ক্রুত শিকড় বাড়ে। সাধারণতঃ এদের
খুব অল্পমাত্রায় প্রয়োগ করা হয়ে থাকে, বেমন ০০০ মাইজোগ্রাম জিঝারালিক
এ্যাসিড বা ২৭৫ মাইজোগ্রাম ইনডোল এ্যাসিটিক এ্যাসিড প্রতি লিটার দ্রবণে
থাকলে ভা প্রচুর পরিমাণে শিকড় এবং গাছের সবুজ অক্সজ্ব অংশ বৃদ্ধিতে সহায়তা
করে। কিন্তু এটা মনে রাখতে হবে যে প্রয়োগমাত্রা বেশী হলে ভা হবে খুবই
ক্ষতিকর (phyto-toxic)।

জিকারালিন বা জিকারালিক অমের একটি গুরুত্বপূর্ণ ক্রিয়া হল ক্রত গাছের কাও বৃদ্ধি, এ ছাড়া বৃদ্ধি পার প্রতিটি গাঁটের মধ্যে দূরত্ব। এইরূপ প্রকৃতি লক্ষ্য করে এই সিদ্ধান্ত করা চলে যে ঐ সকল হর্মোনের ক্রিরায় কোষ বিভাজনের চেয়ে কোবের আকার বৃদ্ধিই মুখ্যতঃ ঘটে থাকে। এ ছাড়া জিকারালিক এ্যানিড প্ররোগে বীজহীন ফল উৎপাদন, পরাগ মিলন ব্যক্তিরেকে ফল উৎপাদন, গাছে জত ফুল আনা ইত্যাদি সম্ভব হয়েছে। এ ছাড়া ক্রত বী**জ অ**ন্ধুরোগদমন এবং বীজ থেকে ক্রত চারা উৎপাদনের।ক্ষেত্রেও এদের ভূমিকা অনবগ্য। শিশু চারাগাছের মূল নির্বাদে ট্রিপট্রোফানের প্রাধান্ত থাকায় দেখানে প্রচুর ইণ্ডোল এ্যাসিটিক এ্যাসিড উৎপাদনক্ষম ব্যাক্তিরিয়া থাকার সম্ভাবনা থাকে। ইনডোল এ্যাসিটিক এ্যাসিড প্রায়োগের ফলে উদ্ভিদের দেহে অক্সিনের পরিমাণ বৃদ্ধি পার। অক্সিন আংশিকভাবে শিকড় জন্মানো নিয়ন্ত্রণ করে। ভাবে উদ্ভিদ হর্মোন প্রয়োগের ফলে যেসব প্রতিক্রিয়া লক্ষ্য করা যায় তা ছল ক্রত কাণ্ডের বৃদ্ধি, পাতার সংখ্যা ও ক্ষেত্রফল বৃদ্ধি এবং অস্বাভাবিক-ভাবে মূল উৎপাদন বৃদ্ধি, এ ছাড়া ক্রত ফুল এবং ফল আসা ইত্যাদি। অর্থাৎ কোন ক্ষেত্রে জীবাণু প্রয়োগে যদি তা উদ্ভিদ-হর্মোন উৎপাদনের প্রতিক্রিয়া হয় ভবে সেটা উপরোক্ত লক্ষণের উপস্থিতি দেখে নিশ্চিত সিদ্ধান্ত করা যাবে। প্রকৃতপক্ষে হর্মোন উৎপাদনক্ষম জীবাণুর প্রায়োগে উদ্ভিদের উপর প্রভাব জীবাণুদার প্রয়োগে নৃতন পথ নির্দেশ-হর্মোন উৎপাদনকারী জীবাণুর ভূমিকা ১৫৫ অনেকাংশে পরিবেশের উপর নির্ভর করে। এর মধ্যে মুখ্য ভূমিকা নেয় উদ্ভিদের প্রফাতি, মাটির উর্বরতা, মাটির অম্রন্ধাত্রা, মাটির জলধারণ ক্ষমতা, দিনের দৈর্ঘ্য, আলোর তীব্রতা, ঋতুর প্রভাব এবং উষ্ণতা। ভাই কোন পরীক্ষাতে প্রাপ্ত ফলাফল আশামুরূপ না হলে তা জীবাণুর অক্ষমতা ছাড়াও অন্ত প্রকৃত কারণগুলোর অমুগ্রান ও তার প্রতিকারের পথ খুঁজে বার করতে হবে।

এইসব গবেষণালব্ধ ফলাফল এবং তাত্ত্বিক আলোচনা থেকে এটা খুবই স্পৃষ্ঠিভাবে বোঝা যায় যে বর্ত মানের শক্তি সংকটমোচনে হর্মোন উৎপাদনক্ষম জীবাণুর ভূমিকা কৃষিক্ষেত্রে হবে অনন্ত ।

STORE THESE TO THE SECTION OF THE STORE OF

of the land to the property of the part from the part of the part

was the state of t

মামূব যেদিন থেকে আগুন জালাতে শিখল সেই দিন থেকেই শুকু হল মামুবের জয়বাত্রার ধারা। তারপর ক্রমে ক্রমে শে শিখল ধাত্র ব্যবহার <mark>এবং তারপর</mark> এল ক্ষবিকার্য। প্রাকক্ষবি যুগে মান্ত্র্যও ইতর প্রাণীদের মত বনজ ফলমূল বা পশু-শিকার করেই ক্ষা মিটাত। কিন্তু জনসংখ্যা বৃদ্ধির সঙ্গে সঙ্গেই সে খাতের অপ্রতুলতা অফুভব করতে থাকল। সেই প্রয়োজনেই এল ক্ববিকার্য। বিগত ক্ষেক দশক আগেও মান্ত্ৰ দনাতন পদ্ধতিতে ক্বৰিকাজ করে প্রয়োজন মেটাতে পারত। কিন্তু বর্তমানে জনসংখ্যার ক্রমবর্দ্ধমান হার ক্রমশঃ 'যে মারাত্মক সংকটময় পরিস্থিতির খৃষ্টি করেছে তার থেকে ত্রাণ পাবার জন্ম নামুব নিত্য নৃত্ন পদ্ধতিতে অধিক খান্ত উৎপাদন করার আপ্রাণ প্রস্নাস চালিয়ে যাচ্ছে। আর এই অবস্থায় জরুরি ভিত্তিতে হাজির হয়েছে উন্নতমানের ক্রবির তাগিদ। এসেছে উচ্চ ফলনশীল জাতের বীজ যা অধিক ফলনের প্রতিশ্রুতি। এ ছাড়াও ব্যবহৃত হচ্ছে পুরনে। আমলের ক্বি সরঞ্জামের পরিবতে নৃতন ক্বি যন্ত্রপাতি। উচ্চফলনশীল শশ্রের প্রতিশ্রুতিকে বাস্তবায়িত করার জন্ম প্রয়োজন হয়েছে অভিরিক্ত জলসেচের। বিছাৎ চালিত গভীর এবং অগভীর নলকুপ এই সমস্তার আংশিক সমাধানে এগিয়ে এসেছে। কিন্তু বড় সমস্তা হল ভাদের অভ প্রয়োজনীয় অজৈব সারের যোগান দেওয়া। জৈবসার বা সব্জ্বসার কিছুটা ভারলাঘ্ব করলেও সারের অভাব থেকেই গেছে। অক্তদিকে রাসায়নিক শিল্পে উৎপন্ন সার ব্যবহার করতে গিয়ে চাবের খরচও অনেক বেড়ে গেছে। কিন্তু সমস্তা এথানেই সীমাবদ্ধ থাকে নি। রাসায়নিক সার যোগান দেওয়ার জন্ম প্রয়োজনীয় বিপুল শিল্প সম্ভারের অভাব শুধু আমাদের দেখে কেন সমগ্র বিষেই এক জটিল সমস্তার স্পৃষ্টি করেছে। শুধু কাঁচামালের অপ্রতুলতাই সার উৎপাদনে প্রধান বাধা তা নয়। এ ছাড়াও রয়েছে অভাবনীয় শক্তি সংকট। সারা বিশ্বে যথন শক্তি সংকট চরমে পৌছেছে তথন যদি ক্লবিকাজের জন্ত সার

উৎপাদনে ব্যবহৃত শক্তি যোগানের ভার কিছুটা লাঘৰ করা যায় তবে তা নিঃসন্দেহে প্রশংসনীয় কাজ বলে গণ্য হবে। এরই প্রতিশ্রুতি পাওয়া গেছে বিভিন্ন শ্রেণীর উপকারী জীবাণুর মধ্যে। মৃক্তজীবী নাইট্রোজেন বন্ধনকারী এজোটোব্যাক্টার বা এজোস্পিরিলাম কিয়া জনমগ্ন ধান জমিতে <mark>নাইট্রোজেন বন্ধনকারী নীলসবুজ শেওলা কভটা নাইট্রোজেন বন্ধন ক্ষমতার</mark> অধিকারী তা আমরা জেনেছি। নাইট্রোজেন বন্ধনের ক্ষেত্রে এজোটো-ব্যাক্টার শক্তিশালী হলেও তার কার্যকারিতার মূল প্রতিবন্ধকতা হল উচ্চ খসনহার। যার জন্ম প্রয়োজন হয় প্রচুর পরিমাণে জৈবসার। অবগ্র নাইট্রোজেন वसन क्रिया इंग्लिश बद्धारिको बा के बिस क्रिया कर्मीन कर्मान করে গাছের বৃদ্ধির সহায়তা করে। পক্ষান্তরে এজোটোব্যাক্টার গাছের मृत्न विरमय धत्रत्नत टेक्ट अनार्थ छे९ अज्ञ करत व्यथकाती ह्यां क्त वश्मवृि নিয়ন্ত্রণ করে। সজাব পদার্থ হওয়ার জন্ম সহজেই প্রাকৃতিক প্রতিকৃলভার শিকার হলেও অধিকাংশ ক্ষেত্রেই এজোটোব্যাকারের প্রয়োগে ১০-৩০ শতাংশ ফলন বৃদ্ধির সাক্ষ্য পাওয়া যায়। তাই জীবাবুসার হিসাবে এতেখাটো-ব্যাক্টার নিঃসন্দেহে এক সম্ভাবনাময় প্রতিশ্রুতি বহন করে। বিশেষ যে কারণেই হোক, এজোটোব্যাক্টার প্রয়োগে শক্তি জাতীয় গাছ বা গাছের অঙ্গজ অংশের বৃদ্ধি অধিক ত্বরান্বিত হয়। এ ছাড়া গ্রীমপ্রধান দেশের অমুনাটিতে ডারক্সিয়া গামোসার অন্তিত্ব দেখা যায়। এই জীবাণুর নাইট্রোজেন বন্ধন ক্ষমতা খুব উচুমানের হলেও এদের বিপাকীয় নিষ্ক্রিয়তা এবং স্থৰী প্রকৃতির জন্ম মাটিতে প্রবল প্রতিযোগিতার এরা পিছু হটতে বাধ্য হয়। "রাইজোম্ফিয়ার" বা মূলের পরিমণ্ডলে নাইট্রোজেন বন্ধন বা অভাভ জীনাণুঘটিত ক্রিয়া বর্দ্ধিতমাত্রায় ঘটলেও অনুরূপ এক প্রাকৃতিক পরিবেশ ''ফাইলোস্ফিয়ার'' অর্থাৎ গাছের পাতার পরিমগুলে জীবাণুর বৃদ্ধিত ক্রিয়ার সাক্ষ্য মেলে। পাতা সংশ্লিষ্ট জীবাণুদের বিভিন্ন ক্রিয়ার মধ্যে নাইট্রোজেন বন্ধন উল্লেখযোগ্য। এই পরিবেশে এজোটোব্যাকারের সলে পালা দের ক্লেবসিয়েলা, ব্যাসিলাস, এজোমোনাস এক্লোমোব্যাকার ইত্যাদি নাইট্রোজেন বন্ধনকারী জীবাণু। তাই ফাইলোক্ষিয়ারে জীবাণুর দক্রিয়তা বৃদ্ধির জন্ম গাছে উপযুক্ত জীবাণু ছিটানোর এক কৌশল নিয়ে পরীক্ষা নীলসবুজ শেওলার নাইট্রোজেন বন্ধনের ক্ষেত্রে, জৈব পদার্থের জোগান প্রতিবন্ধকতা স্পৃষ্টি করে না। কারণ এরা হল স্বভোজী। জলমগ্ন ধান জমিতে নাইট্রোজেন বন্ধন করে এরা একাধারে জমির উর্বরতা বজার রাথে এবং বিভিন্ন উদ্ভিদ হর্মোন বা রোগজীবাণু প্রতিরোধক রাসায়নিক পদার্থ উৎপন্ন করে গাছের প্রভুত উপকার করে। বলা বাহুল্য মাটিতে জলের পরিমাণ কমে এলে এদের জিয়া ব্যাহত হয়। এদের আর এক প্রধান উপকারী ভূমিকা হল অক্সিজেন উৎপাদন। যার ফলে জলে ডোবা ধান জমিতে অন্ততঃ কিছুটা স্বাত পরিবেশ বজার থাকে, বা ধানগাছের মূলের খাননের জন্ম প্রস্কোর্ম অক্সিজেনের চাহিদা মেটার। এই অক্সিজেনের আমুক্ল্যে এজোটোব্যাক্টারের মত দৃঢ় স্বাত্ত খাসজীবী জীবাণ্ড তাদের জিয়া অব্যাহত রাথতে সক্ষম হয়। নীলসবুজ শেওলা যে পরিমাণ নাইট্রোজেন বন্ধন করে তার একটা ক্মুক্তম অংশই সে তৎক্ষণাৎ নির্গত করে থাকে। তাই বড় লাভ হয় এই জীবাণু মারা গেলে। মৃত জীবাণুর উপর অ্যামোনিকাইরিং এবং নাইট্রিকাইরিং জীবাণু পর্যায়ক্রমে জিয়া করে মাটিতে জৈব নাইট্রোজেনকে অ্যামোনিরাম বা নাইট্রেট পর্যায়ের অজৈব নাইট্রোজেন পরিণত করে। তথন সেই নাইট্রোজেন গাছ গ্রহণ করে থাকে।

সব্জনার এবং নাইটোজেন বন্ধনের যৌথ ক্রিয়ার অধিকারী এজোলায় প্রারোগেও অফল পাওয়া গেছে। খুব উচ্চমানের দার না হলেও গরীব দেশগুলি এ নারের সাহায্যে অনেকাংশে নাইটোজেনের চাহিদা মেটাতে সক্ষম হবে। অবশু, শিঘ জাতীয় উদ্ভিদের সহযোগিতায় রাইজোবিয়ায় জীবাগ্র নাইটোজেন বন্ধনের ঘটনাকে স্বীকৃতি দিতে কেউ কার্পণ্য করেন না। তবে এই জীবাগুকে দার হিসাবে প্রয়োগের প্রশ্ন তথনই আসে বথন জমিতে প্রকৃত দক্ষ নাইটোজেন বন্ধনকারী রাইজোবিয়ায় প্রজাতির সাক্ষাৎ মেলে না। বাস্তবক্ষেত্রে কড়াই জাতীয় গাছের মূলে গুটি উৎপাদন, বীজের সক্ষেরাইজোবিয়ায় প্রয়োগের ফলে স্বরাহিত এবং নিশ্চিত হয়। এ ছাড়া রাইজোবিয়ায় জীবাণু প্রয়োগে জমির উর্বরাশক্তিও অনেকাংশে বৃদ্ধি পায়।

এই সব নাইটোজেন বন্ধনকারী জীবাণুর সক্রিয়তা বজায় রাধার জন্ত এবং সার্থকভাবে জীবাণুকে কাজে লাগানোর জন্ত জমিতে দ্রবণীয় পর্যায়ের ফসফরাস যোগ করতে হয়। স্বল্ল পরিমাণে প্রেরোজন হলেও নাইট্রোজেন বন্ধনের ক্লেক্রে মলিবডেনামের গুরুত্ব অপরিসীম।

মাটির অমুত্ব বেধানে প্রধান প্রতিবন্ধকতা, নেধানে প্রয়োগ করতে হবে পরিমিত পরিমাণে চূন। এর ফলে মাটির অমত্ব দূর হবার সঙ্গে উপকারী জীবাণুরাও পুনরায় চাঙ্গা হয়ে উঠবে। যে ক্ষেত্রে ক্ষারত্ব মাটির প্রধান প্রতি-বন্ধকতা সেখানে প্রয়োগ করতে হবে পরিমিত পরিমাণে গল্ধক বা জিপসাম। এ ছাড়া মাটিতে ক্যালসিয়ামের অভাব ঘটলে মাটির নাইট্রোজেন মিনারালাইজেস্ন প্রক্রিয়া ন্তর হয়ে যেতে পারে। সাধারণতঃ প্রোটিন নাইটোজেনকে আমো-নিয়াম যৌগে পরিণত করার ক্ষমতা মাটির অধিকাংশ জীবাণুর মধ্যেই বর্তমান। তাই এই প্রক্রিয়াকে বিবর্ধিত করার জন্ম বাইরে থেকে কোন বিশেষ জীবাণু প্রয়োগের রীতি নেই। এ ছাড়া মাটিতে আমোনিয়াম লবণ জমতে থাকলে শুরু হবে নাইট্রিফাইয়িং জীবাবুর ক্রিয়া। নাইট্রোজেন চক্রে আমরা তা দেখেছি। এ ছাড়া মাটিতে সঞ্চিত নাইট্রোজেন, জীবাণুর ক্রিয়ায় নষ্ট হতে পারে। ডিনাইট্রিফাইয়িং জীবাণুরা নাইট্রেট লবণ থেকে আনবিক নাইট্রোজেন উৎপন্ন করে তা বায়ুমণ্ডলে ফিরিয়ে দেয়। এই প্রক্রিয়া মাটির উর্বরতার দিক থেকে দেখলে একটা ক্ষতিকর প্রক্রিয়া বলে মনে হয়। কিন্তু মাটিতে এরও প্রয়োজন আছে। ডিনাই ট্রিফিকেসন না হলে মাটিতে নূতন করে নাইট্রোজেন বন্ধন বন্ধ হয়ে যেত।

এ ছাড়া আর এক মুখ্য সমস্তা হল ফসফরাস। মাটিতে ফসফরাস জৈব বা অজৈব যে পর্যায়েই থাকুক না ।কেন তা থাকে মূলতঃ অদ্রবণীয় পর্যায়ে। ফসফরাস চক্রে আমরা দেখেছি বায়্মগুল থেকে মাটিতে ফসফরাস আসার কোনসভাবনা নেই। তা হলেও ফসফরাসের অভাব ঘটার মূল কারণই হল এর অদ্রবণীয়তা, সব সময় অপর্যাপ্রভা নয়। জমির ফসফরাসকে দ্রবণীয় করে তাকে গাছের প্রয়োজনে ব্যবহার করা এক কষ্ট্রসাধ্য ব্যাপার। তাই স্থপার ফসফেটের মত দ্রবণীয় সহজলভা সার প্রয়োগের রীতি বিধিসম্মত। মাটির ব্যা ক্টিরিয়া, ছত্রাক এবং এক্টিনোমাইসিটল উপযুক্ত পরিবেশে মাটির আদি অদ্রবণীয় ফসফরাস বা প্রযুক্ত অদ্রবণীয় ফসফরাস থেকে দ্রবণীয় পর্যায়ের ফসফরাস ঘটিত জীবাণু সারের প্রয়োগ পছতি। এ ব্যাপারে রাশিয়ার অগ্রণী ভূমিকা সকলের কাছে স্বীকৃতি পায় নি। তবু বিশ্বজুড়ে রাশিয়ার নির্বাচিত জীবাণুর ব্যর্থতার কারণ অনুসন্ধানের জন্ত অবশ্ব আনেক গবেষণা হয়েছে। গবেষণায় জানা গেছে, কোন মাটির নিজন্ব বা

নিক্টধর্মী মাটি থেকে আহত উচ্চমানের জীবাণু প্রয়োগ করলে আশাসুরূপ ফল পাওয়া বেতে পারে। মুক্তজীবী নাইট্রোজেন বন্ধনকারী জীবাণুর মতই ফসফেট দ্রবণকারী জীবাণুরা মৃতজীবী পরভোজী বলে জমিতে জৈবসার প্রয়োগ করলে তথনই তাদের প্রতিবর্ত ক্রিয়া দেখা যায়। রাশিয়ার ব্যাসিলাস মেগাথেরি— স্নামের পরিবর্তে ভারতীয় ব্যাসিলাস সাবটিলিস, ব্যাসিলাস পলিমিক্সা লা ব্যাসিলাস ফারমাস দেশের জমিতে উন্নত ক্রিয়ামানের সাক্ষ্য রেখেছে।

পরীক্ষাগারে প্রাপ্ত ফলাফলের ভিত্তিতে দেখা বার ছত্রাক ব্যা ক্টিরিয়ার চেয়ে অনেক বেশী সক্রিয়। পাথুরে ফসফেট, বা অন্থিচূর্বের উপর ব্যাসিলাস জাতীয় ব্যা ক্টিরিয়া বা প্রস্কারজিলাস এবং পেনিসিলিয়াম জাতীয় ছত্রাকের ক্রিয়া বাটিরে পাথুরে ফসফেটের ক্যালসিয়াম ফসফেটকে অর্দ্ধজীর্ণ (half decomposed) অবস্থায় জমিতে প্রয়োগ করলে তা প্রাথমিক পর্য্যায়ে গাছের তাৎক্ষণিক প্রয়োজন মেটাবে এবং এই অবস্থায় জীবাণুরাও মাটির নৃতন পরিস্থিতিতে নিজেদের খাপ খাইয়ে নেবার প্রযোগ পাবে।

থামারজাত উপসার বা শহরের আবর্জনাসারের এক বড় অংশ হল সেলুলোজ। এই জটিল কার্বনজাত পদার্থ ই হল জীবাণুদের খাতের দূর্ম। সরল কার্বনজাত যৌগের জোগান ফুরিয়ে গেলে সেলুলোজের উপর জীবাণুরা নির্ভর করতে বাধ্য হয়। সেই পরিস্থিতিতে সেলুলোজ জীর্ণকারী জীবাণুরা অন্ত জীবাণুর কার্বনের চাহিদা মেটায়। তাই মাটির উর্বরতা মান রক্ষা করতে এই শ্রেণীর জীবাণুর এক পরোক্ষ ভূমিকা রয়েছে।

এই জীবাণ্ অগ্রভাবেও ব্যবহার করা হয়, তন্তুজ্ব পণ্যাদি পচানোর জন্ত। পাট, শন ইত্যাদি যথন প্রথামত জলে পচানো হয়, তথন তাদের উপর জরের আন্তরণ বা কোব প্রাচীরের দূর্গ তেঙে অবিক্বত তন্তু বের করে আনার দারিত্ব নের একশ্রেণীর জীবাণ্। হেমিদেলুলোজ, দেলুলোজ ও লিগনিন জীবাণ্দের মধ্যে মুখ্য ভূমিকা গ্রহণকারীগণের জীবাণ্রা হল ক্রস্টি,ডিয়াম, এসপারজিলাস, কিটোমিয়াম, পেনিজিলিয়াম, অলটার-বিরিয়া, ক্লাডোস্পোরিয়াম, কার্ভুলেরিয়া ইত্যাদি।

এ ছাড়াও জীবাগুরা আরও গুরুত্বপূর্ণ ভূমিকা পালন করে। উন্নতমানের উচ্চ ফলনশীল শক্তের সজে বঙ্গে এবেছে নানাবিধ পোকামাকড়। এরা যে কোন সময়ে শস্তকে আক্রমণ করে সমূলে বিনাশ করে ফেলতে পারে।

জীবাণুকে আমরা এতদিন কেবল অনিষ্টকারী, হিসাবেই জেনে এনেছি। কিন্ত পূর্ববর্তী অধ্যায় ওলির আলোচনা বেকে আমরা জেনেছি বিভিন্ন শ্রেণীর ভাইরাদ, ছত্রাক, ব্যা ক্টিরিয়া এমন কি প্রোটোজোয়া পর্যন্ত বিভিন্ন কীটনাশকের দার্থক ভূমিকা পালন করতে পারে। কিন্ত জীবাণু কীটনাশকের প্রয়োজন কি? এর স্বপক্ষে যুক্তি হল, রাসায়নিক কীটনাশকের আকাশছেঁায়া দাম। এ ছাড়াও রুরেছে এদের মারাত্মক বিষক্রিয়া। তা ছাড়া বারংবার একই কীটনাশক প্রয়োগের শময়, সেইসব রাশায়নিক পদার্থ প্রতিরোধী মিউটেণ্ট-নৃতন্ প্রজাতি রাশায়নিক কীটনাশকের বিষ্ত্রিয়াকে বার্থ করে দেয়। তাই কীটনাশক রাসায়নিক পদার্থের বিষক্রিয়ার পরিমাণ বাড়িয়েও এই পতক্ষের সঙ্গে পালা দেওয়া যাচছে না। কিছ এদের উপর বিষক্রিয়া ব্রিত না হলেও তার কুফল প্রতিভাত হচ্ছে কৃষিজীবী ও শাধারণ মাহুষের উপর, ববিত হচ্ছে গৃহপালিত পশু, এমন কি জলের মাছের উপরও। পক্ষান্তরে জীবাণু কীটনাশক অন্ত উপকারী পতন, উদ্ভিদ, মানুষ ও গৃহপালিত গবাদি পশুর উপর ক্রিয়াহীন হওয়ায় এদের থেকে বিপদের সম্ভাবনাও অনেক কম। বর্তমানে ভাইরাস, ছত্রাক ও ব্যাক্টিরিয়াকে কীটনাশক হিশাবে ব্যবহার করা হলেও প্রোটোজোয়া শংক্রান্ত গবেষণা পরীক্ষাধীন পর্যায়ে রয়েছে।

আমাদের দেশে এখনও এর প্রচলন হয় নি, তাই যত শীঘ্র হয়, ক্ষিজীবীর পক্ষেত্রতই মলল। সবশেষে আলোচনা করা যাক ক্ষমিক্তরে এক নৃতন সম্ভাবনাময় প্রতিশ্রুতি, হর্মোন উৎপাদনক্ষম উচ্চমানের নাইটোজেন বন্ধনকারী বা ফ্যফেট দ্রবণকারী জীবাণুর ভূমিকা নিয়ে। সাধারণ নাইটোজেন বন্ধনকারী বা ফ্যফেরাস দ্রবণকারী জীবাণুর সীমিত ক্ষমতার মধ্যে এই বাড়তি গুণের অধিকারী ফ্যবাণুর ক্ষমতা হবে অনন্ত। এই হর্মোন উৎপাদনক্ষম জীবাণুরা অতিরিক্ত জীবাণুর ক্ষমতা হবে অনন্ত। এই হর্মোন উৎপাদনক্ষম জীবাণুরা অতিরিক্ত জীবাণুর ক্ষমতা হবে অনন্ত। এই হর্মোন উৎপাদনক্ষম জীবাণুরা, বিশেষ বিজ্ঞান মহলই চিন্তা করেন নি। ব্যাসিলাস ফারমাল জীবাণুনার, বিশেষ বিজ্ঞান মহলই চিন্তা করেন নি। ব্যাসিলাস ফারমাল জীবাণুনার, বিশেষ তার কারণ কড়াই জাতীয় গাছে গুটি উৎপাদনে প্রাথমিক পর্যায়ে ইনডোল তার কারণ কড়াই জাতীয় গাছে গুটি উৎপাদনে প্রাথমিক পর্যায়ে ইনডোল আাসিটিক এয়াসডের ভূমিকা স্বীকৃত। এ ছাড়া পাণুরে ফ্সফেটকে দ্রবীভূত করে এয়াসিটিক এয়াসডের ভূমিকা স্বীকৃত। এ ছাড়া পাণুরে ফ্সফেটকে দ্রবীভূত করে প্রাতিরিক্ত ফ্সফরাসের যোগান দেওয়ার নাইটোজেন বন্ধনকারী রাইজোবিয়াম অতিরিক্ত ফ্সফরাসের যোগান দেওয়ার নাইটোজেন বন্ধনকারী রাইজোবিয়াম জীবাণুর ক্রিয়াক্ষমতাও বহুলাংশে বৃদ্ধি পাবে। ধানের জমিতে এই জীবাণু

প্রায়েগ করে স্থফল পাওয়া গেছে, তাই সঙ্গত কারণেই আশা করা যায় এই জীবানুসার যেসব শস্তের অঙ্গজ বৃদ্ধিই প্রধান সেইসব শস্তের ক্ষেত্তকে আরে। জামলা করে তুলবে। তাই এই জীবানুসার হয়ত হবে এক নৃতন দিগস্ত উন্মোচনের পথিকং।

Selected Literature cited

পুস্তক পঞ্জী

- Alexander, M. 1961. In: Introduction to Soil Microbiology.

 John Wiley and Sons, N. York.
- Alexander, M. 1977. In: Introduction to Soil Microbiology. 2nd Edn. John Wiley & Sons, N. York.
- Anderson, R. F. and Ignoffo, C. M. 1967. In: Microbial Technology. (Peppler, H. J. ed) Reinhold Publishing Corporation, N. York, p. 172.
- Balch, R. E. and Bird, F. T. 1944. Science Agricultural Ottawa. 25, 65.
- Banik, S. 1975. M. Sc. (Ag) thesis. Calcutta University.
- Banik, S. 1980. Ph. D. thesis. Calcutta University.
- Banik, S. and Dey, B. K. 1978. Indian Agric. 22, 93.
- Banik, S. and Dey, B. K. 1981. Zbl. Bakt. II. Abt. 136, 478.
- Bassi, A. 1835. Orcesi Lodi. 1.
- Bergersen, F. J. 1971. Ann. Rev. Pl. Physiol. 22, 121
- Borrow, A., Brian, P. W., Chester, V. E., Curtis, P. J., Hemming, H. G., Henchan, C., Jefferys, E. G., Lloyd, P. B., Nixon. I. S., Norris, G. L. and Radley, M. 1955. J. Sci. Food Agr. 6, 340.
- Burton, J. C. 1979. In: Microbial Technology. (Peppler, H. J. and Perlman, D. eds.) Acad. Press. London. p. 29.
- Curtis, R. W. 1957. Science. 125, 646.

- Datta, M., Banik, S. and Gupta, R. K. 1982. Pl. Soil. 69, 365.
- De, P. K. 1939. Proc, Royl. Soc. B. 127, 121.
- Debnath, N. C. and Hazra, J. N. 1972. J. Indian Soc. Soil Sci. 20, 95.
- Dey, B. K. and Ghosh, A. 1930. Indian Agric. 24, 239.
- Dey, B. K., Roy Chowdhury, S. P. and Ghosh, B. S. 1975. Indian Agric. 19, 23.
- d'Herelle, F. 1914. Ann. Inst. Pasteur. 28, 280.
- Gaur, A. C. 1972. Proc. Symp. Soil Productivity Varanasi and Calcutta. Natu. Acad. Sci. India. p. 259.
- Golebiowska, J. 1957. Soils and Fert. 1957. 20, 94.
- Govinda Rajan, S. V. and Gopala Rao, H. G. 1978. In: Studies on Soils of India. Vikas Publishing House Pvt. Ltd., N. Delhi.
- Hallsworth, E. G. 1958. In: Nutrition of the Legumes. Butterworth's Scientific Publication, London
- Handbook of Agriculture. 1969. I. C. A. R. Publication,
- Handbook of Manures and Fertilizers. 1971. I. C. A. R. Publication, N. Delhi.
- Hiltner, L. 1904. Arb, Dent. Landwirsch Ges. 98, 59.
- Ignoffo, C. M. and Anderson, R. F. 1979. In: Microbial Technology. (Peppler, H. J. and Perlman, D. eds.) Acad. Press, London. p. 1.
- Knudson, L. 1920. Am. J. Bot 7, 371.
- Krasil'nikov. N. A., Shirokov, O. G. and Kuchaeva, A. G. 1963. Akad. Nauk. SSSR, Inst. Fiziol. Rast. 39.
- Lipman, J. G. 1910. J. Agr. Sci. 3. 297.

Mcharen, A. D. and Peterson, G. H (eds). 1967. Soil Biochemistry vol. 1. Marcel Dekker, Inc. N. York.

Mehrotra, C. L. and Lehri, L. K. 1970. J. Indian Soc, Soil Sci. 18, 203.

Mehrotra, C. L. and Lehri, L. K. 1971. J. Indian Soc. Soil. Sci. 19, 243.

Menkina, R. A. 1950. Mikrobiologiya 19, 308.

Mishustin, E. N. 1970. Pl. Soil 32, 545.

Mishustin, E. N. and Shil'nikova, V. K. 1972. Biological Fixation of Atmospheric Nitrogen. Penna State University Press, University Park, Pa.

Mortenson, L. E., Velentine, R. C. and Carnahan, J. E. 1962. Biochem. Bioplys. Res. Comm. 7, 448.

Pasteur, L. 1870. "Etude sur la maladie des vers a soie"

To ne I, Tome II Paris, Fautheir Villars.

Pelczar, M. J. (Jr.) and Reid, R. D. 1974 Microbiology.

Tata McGraw Hill Publishing Co. Ltd., N. Delhi.

Peppler H. J. and Perlman, D. (eds). 1979. In: Microbial Technology. Acad Press, London.

Pikovskaia, R. I. 1948. Mikrobiologiya 17, 362.

Rose, R. E. 1957. N. Z. J. Sci, Technol. 38, 773.

Rovira, A. D. 1965. In: Ecology of Soil-borne Plant Pathogens. (Baker, K.F. and Snyder, W. C. eds). University Calif. Press, Berkeley. p. 170.

Sarkar, A. K. 1973. Indian Agric. 17, 1.

Sarkar, A. K. 1976. Indian Agric. 20, 169.

Sen, A. and Paul, N. B. 1958. Indian J. Agric. Sci. 27, 21.

Singh, R. N. 1942. Indian J. Agric. Sci. 12, 743.

Singh, P. K. 1977. Curr. Sci. 46, 642.

Singh, P. K. and Subudhi, B. P. R. 1978. Indian Farming. 27, 37.

Statstorm, V. A. 1903. Zbl. Bakt. Abt. II. 11, 724.

Stewart, W. D. P. 1973. Ann. Rev. Microbiol. 27, 283.

Vasantharajan, V. N. and Bhat, J. V 1967. Pl. Soil. 27, 261.

Venkataraman, G. S. 1960. Proc. Symp. Algology. I.C.A.R., New Delhi. p. 119.

Venkataraman, G. S. 1961. J. Gen. appl. Microbiol. 7, 96.

Venkataraman, G. S, 1969. In: The Cultivation of Algae.

I.C.A.R. New Delhi.

Venkataraman, G. S., Goyal, S. K., Kaushik, B. D. and Roy Chowdhury, P. 1974. In: Algae Form and Function. Today and Tomorrow's Printers and Publishers, N. Delhi.

পশ্চিমবঙ্গ রাজ্য পুস্তক পর্ষদ প্রকাশিত ও প্রকাশিতব্য অন্যান্য বিজ্ঞান পুস্তিকা

- ১। রোগ ও তার প্রতিষেধ / সম্প্রম ভট্টাচার্ঘ / ৫:00
- ২। পেশাগত ব্যাধি / গ্রীকুমার রায় / ৭:00
- ৩। আমাদের দ্বিটতে গণিত / প্রদীপকুমার মজ্বমদার / ৭ 00
- ৪। শক্তিঃ বিভিন্ন উৎস / অমিতাভ রায় / ৭:০০
- ৫। সান ুষের মন / অর ুণকুমার রায়চৌধ ুরী / ৪'০০
- ७। वशःमन्धि / वाम्द्रानव मख्किधद्वी / ৯'00
- ৭। ভূতাত্তিবকের চোথে বিশ্বপ্রকৃতি / সভকর্ষণ রায় / ৮'০০
- **४। हांशानि রোগ / बनीमहन्त्र अधान / 8'00**
- ৯। পশ-ুপাখীর আচার ব্যবহার / জ্যোতিম'র চট্টোপাধ্যায় / ৮·০০
- ১০। ময়লা জল পরিশোধন ও প্রনব্যবিহার / ধ্রবজ্যোতি ঘোষ / ৬ ০০
- ১১। গ্রাম পর্নগঠিনে প্রম্বত্তি / দর্গা বদরে / ১০:০০
- ১२। अकरमा जिनीं हे स्मीलिक अमार्थ / कानारेलाल मृत्याशामाम / ১० ००
- ১৩। পরিবর্তী প্রবাহ / ডঃ সমীরকুমার ঘোষ / ৭:00
- ১৪। ৰাভৰ সংখ্যা ও সংহতিতত্ত্ব / প্রদীপকুমার মঞ্জ্মদার / ১০'০০
- ১৫। অতিশৈত্যের কথা / দিলীপকুমার চক্রবর্তী / ৭'০০
- ১৬। এফিড বা জাৰপোকা / মনোজৰঞ্জন ঘোষ / ১২:০০
- ১৭। সয়াবীন / দিবজেন গ্ৰহৰক্সী / ৯ ০০
- ১৮। পাতালের ঐশ্বর্য | সভকর্ষণ রায় | ১০ ০০
- ১৯। নিয়ন্তিত ক্ষেপণান্ত / সংশীল ঘোষ / ১২°০০
- ২০। ঘরে করো শিষ্প গড়ো / তিলক বন্দ্যোপাধ্যায় / ১১:০০
- २)। जाभारमब जीवत्न शांध / मृद्धीन रमनगर्थ / ১৪ ००
- ২২। আৰহাওয়া ও আমরা / অপরাঞ্চিত বস্ত্
- २०। क्रिअन माह / भागीनमुत्मादन वतनगार्थाय
- २৫। भ_रक ७ थता এलाकात हार श्रमधीं / विमनविहाती माम ७

बनाईनान काना

- ২৬। সমনুদ্র পরিচয় / প্রসাদ সেনগর্প্ত
- ২৭। আন্দ্র সন্ধি পেশীতলের ব্যাধি ও বিকৃতি / প্রীকুমার রায়

বারো টাকা