VISUALIZING SOFTWARE DEFINED SWITCHING ON A STRUCTURED P2P OVERLAY TOPOLOGY USING BOUNDED FLOODING

PRAGMA36 DEMONSTRATION

KEN SUBRATIE & PRAPAPORN RATTANATAMRONG

WELCOME

• THIS PROJECT FOCUSES ON NETWORK VIRTUALIZATION INFRASTRUCTURE THAT ALLOWS EDGE AND CLOUD RESOURCES TO BE DYNAMICALLY CONNECTED, USING NETWORK TUNNELS, INTO COMMUNITY VIRTUAL PRIVATE NETWORKS (VPNS).

MOTIVATION

- THE CONTEMPORARY DE-FACTO APPLICATION MODEL IS ONE USING MICROSERVICES WITHIN CONTAINERS.
 - DOCKER, LXD, KUBERNETES
- VIRTUAL NETWORKS ARE POSITIONED TO BE A VITAL COMPONENT OF THE SUCCESSFUL ORCHESTRATION AND INTEROPERABILITY OF CONTAINERIZED APPLICATIONS.
- HOWEVER, THERE ARE CHALLENGES THAT MUST BE ADDRESSED, PARTICULARLY AT THE NETWORK'S EDGE, TO REALIZE THE VISION OF UBIQUITOUS FOG COMPUTING.

METHOD

- USES IPOP TUNNELS FOR P2P DATA LINKS
 - SOFTWARE ABSTRACTION WHICH AGGREGATES A VIRTUAL NETWORK INTERFACE (TAP) AND A COMMUNICATION CHANNEL (WEB RTC)
- BUILDS A STRUCTURED RING TOPOLOGY
 - SUCCESSOR NODES ORDERED INCREASING CLOCKWISE BY UUID
- SYMPHONY LONG DISTANCE LINKS PROVIDE SHORTCUTS ACROSS RING
 - PEER SELECTION $e^{\text{LOG}_{10} \, N \times (rand[0,1)-1)}$ Manku, Gurmeet Singh, et al. "Symphony: Distributed Hashing in a Small World." USENIX Symposium on Internet Technologies and Systems. 2003.
- ON DEMAND TUNNELS PROVIDE 1 HOP SWITCHING BETWEEN CHATTY DEVICES

METHODOLOGY

- REQUIRES S + L + D LINKS PER NODE (S NUMBER OF SUCCESSOR LINKS, L NUMBER OF LONG-DISTANCE LINKS, D – NUMBER OF ON-DEMAND LINKS)
 - S AND D ARE CONSTANTS
 - L IS BOUND BY O(LOG(N)) N IS THE NETWORK SIZE
- BOUNDS AVERAGE NUMBER OF SWITCHING HOPS IN NETWORK
 - LOG(N)

METHODOLOGY

- SWITCHING ARE RULES PROGRAMMED USING OPENFLOW
 - PEER NODES ACT AS SWITCHES
- SDN CONTROLLER QUERIES TOPOLOGY STRUCTURE FROM IPOP
 - EXCLUDES LEAF DEVICES
- BOUNDED FLOODING USED FOR BROADCAST
 - SPECIFIES SO FAR IN A CYCLE A THE RECEIVED MESSAGE IS TO BE PROPAGATED
 - PREVENTS BROADCAST STORM

CONTRIBUTION

- FULLY DISTRIBUTED
 - NO CENTRALIZED ROUTING TABLE OR SWITCHING/CONTROLLER COMPONENTS

CONTRIBUTION

- RESILIENT TO TRANSIENT FAILURES DUE TO CHURN AND TOPOLOGY RESTRUCTURING
 - PARTITIONS WILL FUNCTION WHILE THE TOPOLOGY HEALS

CONTRIBUTION

- ALLOWS UTILIZATION OF ALL SWITCHING LINKS
 - NO LINKS ARE DISABLED TO ELIMINATE CYCLES

- TOPOLOGY VISUALIZATION IS A VITAL COMPONENT
 - OBSERVE FOREST FOR THE TREES

IPOP Visualizer

Demonstration

IPOP Visualizer

- Motivation: Visualisations are essential to retrieve fast and easy access to different aspects of the network
- Goal: To provide visualization for network overlay that can reduce the
 expertise requirement to gain a well formed overview of the actual status
 and perhaps make a simple analysis of already collected data.
- Main Monitoring Tasks:
 - Status including topology
 - Flow Monitoring

Our Approach

Architecture:

Ben Shneiderman:

"Overview first, zoom and filter, then details-on-demand"

Our Preliminary Prototype (1)

Display all IPOP network overlays -

Our Preliminary Prototype (2)

Two views: Geographical map and Topology

Our Preliminary Prototype (3)

See more in action

Our Preliminary Prototype (4)

Distinct statuses via colors

https://github.com/ipop-project/Network-Visualizer

Our Team Members

Thammasat University

- Prapaporn (Nan)Rattanatamrong
- Pichatorn Bamroongsri
- Siwakorn Suwanjinda
- Yutthana Boonpalit

University of Florida

- Renato Figueiredo
- Kensworth Subratie

