w4d4 pratica

Giacomo di Giacinto

Nell'esercizio di oggi metteremo insieme le competenze acquisite finora. Lo studente verrà valutato sulla base della risoluzione al problema seguente.

Requisiti e servizi:

- Kali Linux

 IP 192.168.32.100
- Windows 7 \(\text{IP 192.168.32.101} \)
- HTTPS server: attivo
- Servizio DNS per risoluzione nomi di dominio: attivo

Traccia:

Simulare, in ambiente di laboratorio virtuale, un'architettura client server in cui un client con indirizzo 192.168.32.101 (Windows 7) richiede tramite web browser una risorsa all'hostname epicode.internal che risponde all'indirizzo 192.168.32.100 (Kali).

Si intercetti poi la comunicazione con Wireshark, evidenziando i MAC address di sorgente e destinazione ed il contenuto della richiesta HTTPS.

Ripetere l'esercizio, sostituendo il server HTTPS, con un server HTTP. Si intercetti nuovamente il traffico, evidenziando le eventuali differenze tra il traffico appena catturato in HTTP ed il traffico precedente in HTTPS. Spiegare, motivandole, le principali differenze se presenti.

Configurazione IP statici di client e server

in questa fase andremo a configurare gli indirizzi IP di kali linux e windows 7 manualmente come da istruzioni.

Configurazione servizi HTTPS e DNS su kali linux

di seguito incollo tutte le impostazioni che ho modificato nel servizio inetsim con il comando sudo nano /etc/inetsim/inetsim.conf

attivo i servizi https e dns

collego l'IP di kali linux al server dns, assegno il dominio epicode.internal al server dns,

configuro il fake file nei servizi http e https

Attivazione servizio inetsim e test connessione su client W7

In questa fase attivo il servizio inetsim su kali linux dopo averlo configurato con il comando sudo inetsim

Dopodichè in ambiente W7, aprendo internet explorer verifico la connessione dei servizi digitando https://epicode.internal

cattura dei pacchetti con wireshark HTTPS

in questa fase faremo la prima cattura dei pacchetti con il servizio https

cattura di pacchetti con wireshark HTTP

in questa fase procediamo alla cattura dei pacchetti con il servizio wireshark; dovrò disattivare il servizio inetsim, modificarlo attivando solo l'HTTP e rilanciare di nuovo il servizio inetsim.

A questo punto andrò su W7 ed in internet explorer testerò il servizio HTTP digitando http://epicode.internal e, se il fake file si aprirà correttamente procederò alla seconda cattura di pacchetti con il servizio wireshark.

di seguito incollo tutti i passaggi:

attivazione servizio HTTP e DNS

attivazione servizio inetsim

```
kali@kali: ~
File Actions Edit View Help
$ sudo nano /etc/inetsim/inetsim.conf
[sudo] password for kali:
---(kali⊕kali)-[~]
_$ <u>sudo</u> inetsim
INetSim 1.3.2 (2020-05-19) by Matthias Eckert & Thomas Hungenberg
Using log directory:
                         /var/log/inetsim/
                         /var/lib/inetsim/
Using data directory:
Using report directory: /var/log/inetsim/report/
Using configuration file: /etc/inetsim/inetsim.conf
Parsing configuration file.
Configuration file parsed successfully.
■ INetSim main process started (PID 23525) =
               23525
Session ID:
Listening on: 192.168.32.100
Real Date/Time: 2024-01-08 16:26:36
Fake Date/Time: 2024-01-08 16:26:36 (Delta: 0 seconds)
Forking services ...
 * dns_53_tcp_udp - started (PID 23527)
print() on closed filehandle MLOG at /usr/share/perl5/Net/DNS/Nameserver.pm l
print() on closed filehandle MLOG at /usr/share/perl5/Net/DNS/Nameserver.pm l
ine 399.
 * http_80_tcp - started (PID 23528)
Simulation running.
```

test funzionamento servizio

cattura pacchetti HTTP

valutazione delle differenze tra HTTP e HTTPS

di seguito incollo a titolo esplicativo i due screenshot di cattura.

Il primo è relativo all'HTTP mentre il secondo è relativo all'HTTPS;

la principale differenza tra i due protocolli sta nel fatto che l'HTTP è in chiaro e, attraverso il servizio wireshark, possiamo analizzare il dettaglio di ogni pagina visitata e ricerca fatta;

mentre il protocollo HTTPS utilizza il sistema di crittografia TLS che impedisce ad un soggetto intermedio di conoscere il dettaglio delle richieste eseguite sul browser.

No.	Time	Source	Destination	Protocol Le	ength Info
Г	1 0.000000000	192.168.32.101	192.168.32.100	TCP	68 49171 → 80 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM
	2 0.000119042	192.168.32.100	192.168.32.101	TCP	68 80 → 49171 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460 SACK_PERM WS=128
	3 0.002868331	192.168.32.101	192.168.32.100	TCP	62 49171 → 80 [ACK] Seq=1 Ack=1 Win=65700 Len=0
-	4 0.002868569	192.168.32.101	192.168.32.100	HTTP	363 GET / HTTP/1.1
	5 0.002910656	192.168.32.100	192.168.32.101	TCP	56 80 → 49171 [ACK] Seq=1 Ack=308 Win=64128 Len=0
	6 0.014677451	192.168.32.100	192.168.32.101	TCP	206 80 → 49171 [PSH, ACK] Seq=1 Ack=308 Win=64128 Len=150 [TCP segment of a reass
4	7 0.016003563	192.168.32.100	192.168.32.101	HTTP	314 HTTP/1.1 200 OK (text/html)
	8 0.016589648	192.168.32.101	192.168.32.100	TCP	62 49171 → 80 [ACK] Seq=308 Ack=410 Win=65292 Len=0
	9 0.017058620	192.168.32.101	192.168.32.100	TCP	62 49171 → 80 [FIN, ACK] Seq=308 Ack=410 Win=65292 Len=0
L	10 0.017076180	192.168.32.100	192.168.32.101	TCP	56 80 → 49171 [ACK] Seq=410 Ack=309 Win=64128 Len=0
	11 5.022832462	PcsCompu_cb:7e:f5		ARP	44 Who has 192.168.32.101? Tell 192.168.32.100
	12 5.023737741	PcsCompu_0e:c4:ea		ARP	62 192.168.32.101 is at 08:00:27:0e:c4:ea

No.	Time	Source	Destination	Protocol	Length Info
F	1 0.000000000	192.168.32.101	192.168.32.100	TCP	68 49166 → 443 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM
	2 0.000033889	192.168.32.100	192.168.32.101	TCP	68 443 → 49166 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460 SACK_PERM WS=128
	3 0.000785209	192.168.32.101	192.168.32.100	TCP	62 49166 → 443 [ACK] Seq=1 Ack=1 Win=65700 Len=0
	4 0.000785305	192.168.32.101	192.168.32.100	TLSv1	217 Client Hello
	5 0.000813285	192.168.32.100	192.168.32.101	TCP	56 443 → 49166 [ACK] Seq=1 Ack=162 Win=64128 Len=0
	6 0.030407800	192.168.32.100	192.168.32.101	TLSv1	1375 Server Hello, Certificate, Server Key Exchange, Server Hello Done
	7 0.034504037	192.168.32.101	192.168.32.100	TLSv1	190 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
	8 0.035092529	192.168.32.100	192.168.32.101	TLSv1	115 Change Cipher Spec, Encrypted Handshake Message
	9 0.038389179	192.168.32.101	192.168.32.100	TLSv1	397 Application Data
	10 0.044817961	192.168.32.100	192.168.32.101	TLSv1	237 Application Data
	11 0.046347829	192.168.32.100	192.168.32.101	TLSv1	386 Application Data, Encrypted Alert
	12 0.047815342	192.168.32.101	192.168.32.100	TCP	62 49166 → 443 [ACK] Seq=637 Ack=1891 Win=65700 Len=0
	13 0.048317791	192.168.32.101	192.168.32.100	TCP	62 49166 → 443 [FIN, ACK] Seq=637 Ack=1891 Win=65700 Len=0
L	14 0.048332741	192.168.32.100	192.168.32.101	TCP	56 443 → 49166 [ACK] Seq=1891 Ack=638 Win=64128 Len=0