Mathematik I – Lineare Algebra

Vorlesung 18

Wolfgang Globke

5. Dezember 2019

Klausur

- Klausur findet am Mittwoch, 11.12.2019, um 13:00 im Raum 067 C statt.
- Dauer der Klausur ist 90 Minuten.
- Bitte um 12:45 da sein.
- Die Klausurblätter sind so angelegt, dass auf ihnen genug Platz für zur Bearbeitung der Aufgaben sein sollte.
- Zur Sicherheit aber trotzdem ein wenig eigenes Papier mitbringen.
- Es sind keine Hilfsmittel zulässig oder notwendig.
- Was ist zu erwarten?
 - Orientiert euch an den Tests und an den Übungsblättern...
 - Ankreuzaufgaben, Rechenaufgaben, Definitionen, kurze Beweise.
 - Rechenaufgaben und (genaue!) Kenntnis der Definitionen sollten zum Bestehen reichen...sofern nicht haufenweise Rechenfehler auftreten, und man anhand der Aufgabenstellung überhaupt erkennt, was zu rechnen ist!

10 Euklidische Vektorräume

Geometrie in Vektorräumen

- Bisher haben wir ausschließlich die algebraischen Eigenschaften von Vektorräumen studiert, obgleich des Öfteren motiviert durch suggestive geometrische Bildchen.
- Nun werden wir die Geometrie von Vektorräumen kennenlernen, d.h. wir betrachten Größen wie
 - Abstände
 Trickler
 - Längen (Normen)
 - Winkel
- Diese Größen werden in Skalarprodukten codiert.

Hierfür betrachten wir nur Vektorräume über dem Körper \mathbb{R} .

.

10.1 Das Standardskalarprodukt im \mathbb{R}^n

Standardskalarprodukt

Definition

Das Standardskalarprodukt auf dem \mathbb{R}^n ist die Abbildung $V \times V \to \mathbb{R}$, definiert für $x,y \in V$ durch

$$\langle x, y \rangle = x^{\mathsf{T}} \cdot y = x_1 y_1 + \ldots + x_n y_n.$$

Wir schreiben auch $\langle \cdot, \cdot \rangle$ für diese Abbildung, wobei die Punkte andeuten, dass hier die beiden Argumente einzusetzen sind.

• Die Definition zeigt, dass $\langle \cdot, \cdot \rangle$ symmetrisch ist, d.h. es gilt

$$\langle x, y \rangle = \langle y, x \rangle$$

für alle $x, y \in \mathbb{R}^n$.

Aus den Rechenregeln für Matrizen ergibt sich sofort, dass ⟨·,·⟩ bilinear ist, also linear in jedem der beiden Argumente:
 Für alle x, y, z ∈ ℝⁿ

$$\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle,$$

 $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle,$

und für alle $\lambda \in \mathbb{R}$.

$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle = \langle x, \lambda y \rangle.$$

Norm

Das Standardskalarprodukt liefert uns ein Längenmaß in \mathbb{R}^n . Es gilt

$$\langle x, x \rangle = x_1^2 + \ldots + x_n^2.$$

Motiviert durch den Satz des Pythagoras definieren daher die Norm ||x|| (also die Länge) des Vektors x durch

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + \ldots + x_n^2}.$$

Insbesondere gilt für alle $x \in \mathbb{R}^n$

$$\langle x, x \rangle \ge 0$$

und "= 0" nur dann, wenn x = 0 ist. Wir sagen dazu, $\langle \cdot, \cdot \rangle$ sei positiv definit.

Abstände

Die Norm in \mathbb{R}^n liefert uns auch ein Maß für Abstände von Punkten: Für $x,y\in\mathbb{R}$ ist der Abstand die Norm des Verbindungsvektors,

$$dist(x, y) = ||x - y||.$$

Orthogonalzerlegung

Betrachten wir im \mathbb{R}^2 die Fälle $y = e_1$ und $y = e_2$.

Im Fall $y = e_1$ gilt

$$\langle x, e_1 \rangle = x_1 \cdot 1 + x_2 \cdot 0 = x_1,$$

und im Fall $y = e_2$ gilt

$$\langle x, e_2 \rangle = x_1 \cdot 0 + x_2 \cdot 1 = x_2.$$

Das Skalarprodukt $\langle x, e_i \rangle$ berechnet also die Orthogonalprojektion auf die e_i -Achse. Dies liefert eine Zerlegung in orthogonale Komponenten

$$x = x_1e_1 + x_2e_2 = \langle x, e_1 \rangle e_1 + \langle x, e_2 \rangle e_2.$$

(Analog funktioniert dies im \mathbb{R}^n .)

.

Winkel

Die vorangehende Überlegung zeigt auch, dass

$$\langle x, e_1 \rangle = \cos(\alpha) \cdot ||x||$$

gilt, wobei α der Winkel zwischen den Vektoren x und e_1 ist. Das Standardskalarprodukt beschreibt also auch Winkel zwischen Achsen im \mathbb{R}^n .

Bemerkung

Sowohl die Orthogonalzerlegung als auch bei der Winkelberechnung können wir von der Basis e_1, e_2, \ldots, e_n durch geeigneten Basiswechsel auf andere Basen aus orthogonalen Vektoren übertragen.

10.2 Euklidische Vektorräume und Skalarprodukte

Euklidische Vektorräume

Motiviert durch die Eigenschaften des Standardskalarprodukts können wir die folgende allgemeinere Definition treffen:

Definition

Es sei V ein \mathbb{R} -Vektorraum. Eine Abbildung $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ heißt Skalarprodukt, wenn sie folgende Eigenschaften hat:

 \bullet $\langle \cdot, \cdot \rangle$ ist symmetrisch,

$$\langle x, y \rangle = \langle y, x \rangle,$$

für alle $x, y \in V$.

$$\langle x, y + \lambda z \rangle = \langle x, y \rangle + \lambda \langle x, z \rangle,$$

$$\langle x + \lambda z, y \rangle = \langle x, y \rangle + \lambda \langle z, y \rangle.$$

für alle $x, y, z \in V$ und $\lambda \in \mathbb{R}$.

3 $\langle \cdot, \cdot \rangle$ ist positiv definit, $\langle x, x \rangle \ge 0$ und ,,= 0" nur für x = 0.

Dann heißt $||x|| = \sqrt{\langle x, x \rangle}$ die von $\langle \cdot, \cdot \rangle$ induzierte Norm auf V.

Definition

Ein euklidischer Vektorraum ist ein \mathbb{R} -Vektorraum V zusammen mit einem Skalarprodukt $\langle \cdot, \cdot \rangle$. Wir schreiben dafür auch $(V, \langle \cdot, \cdot \rangle)$.

Beispiele für Skalarprodukte

Beispiele

Es sei

$$S = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 5 \end{pmatrix}.$$

Dann definiert

$$\langle x, y \rangle = x^{\top} \cdot S \cdot y$$

ein Skalarprodukt auf \mathbb{R}^3 .

- Bilinearität folgt aus den Distributivgesetzen der Matrizenrechnung.
- Symmetrie gilt, da $S = S^{\top}$:

$$\langle x,y\rangle = x^\top Sy = (x^\top Sy)^\top = y^\top S^\top x = y^\top Sx = \langle y,x\rangle.$$

• Positive Definitheit:

$$\langle x, x \rangle = x^{\top} S x = 2x_1^2 + 2x_1 x_3 + 2x_2^2 + 5x_3^2 = x_1^2 + (x_1 + x_3)^2 + 2x_2^2 + 4x_3^2 \ge 0$$

und = 0 genau dann, wenn $x_1 = x_2 = x_3 = 0$.

Es sei

$$L = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Die Abbildung

$$\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \quad (x, y) \mapsto x^{\top} \cdot L \cdot y$$

ist zwar bilinear und symmetrisch (Beweis wie oben), aber nicht positiv definit.

Darstellungsmatrizen

Satz 10.1

Es sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer Vektorraum, $n = \dim V < \infty$, und $B = \{b_1, \dots, b_n\}$ eine Basis von V. Es sei $S = (s_{ij}) \in \mathbb{R}^{n \times n}$ die Matrix mit Einträgen

$$s_{ij} = \langle b_i, b_j \rangle.$$

Dann gilt für $x, y \in V$

$$\langle x, y \rangle = \varrho_{\mathbf{B}}(x)^{\top} \cdot S \cdot \varrho_{\mathbf{B}}(y).$$

Wir nennen S die Darstellungsmatrix von $\langle \cdot, \cdot \rangle$ für die Basis B, auch $\varrho^{BB}(\langle \cdot, \cdot \rangle)$ geschrieben.

Beweis:

- Erinnerung: Es ist $e_i = \varrho_B(b_i)$.
- Außerdem gilt $s_{ij} = e_i^{\top} \cdot S \cdot e_j$.
- Der Satz gilt also für die Basisvektoren aus B, und wegen der Bilinearität von $\langle \cdot, \cdot \rangle$ daher für alle $x, y \in V$.

Symmetrische Matrizen

Definition

Ein Matrix $S \in \mathbb{R}^{n \times n}$ heißt symmetrisch, wenn

$$S = S^{\top}$$

gilt.

Definition

Eine symmetrische Matrix S heißt positiv definit, wenn

$$x^{\top} \cdot S \cdot x \ge 0$$

für alle $x \in \mathbb{R}^n$ gilt, und "= 0" nur für x = 0.

Folgerung 10.2

Es sei $S \in \mathbb{R}^{n \times n}$. Eine bilineare Abbildung $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ gegeben durch

$$\langle x, y \rangle = x^{\top} \cdot S \cdot y$$

ist genau dann ein Skalarprodukt, wenn S symmetrisch und positiv definit ist.

Basiswechsel für Skalarprodukte

Es sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer Vektorraum, $n = \dim V < \infty$. Weiter seien B, C Basen von V. Schreibe

- $T = T_C^B$ für die Basiswechselmatrix.
- $S_C = \varrho^{CC}(\langle \cdot, \cdot \rangle)$ und $S_B = \varrho^{BB}(\langle \cdot, \cdot \rangle)$ für die Darstellungsmatrizen von $\langle \cdot, \cdot \rangle$.

Für das Skalarprodukt $\langle \cdot, \cdot \rangle$ gilt nach Satz 10.1

$$\begin{aligned} \varrho_{B}(x)^{\top} \cdot S_{B} \cdot \varrho_{B}(y) &= \langle x, y \rangle = \varrho_{C}(x)^{\top} \cdot S_{C} \cdot \varrho_{C}(y) \\ &= \left(T \cdot \varrho_{B}(x) \right)^{\top} \cdot S_{C} \cdot \left(T \cdot \varrho_{B}(y) \right) \\ &= \varrho_{B}(x)^{\top} \cdot \left(T^{\top} \cdot S_{C}(\langle \cdot, \cdot \rangle) \cdot T \right) \cdot \varrho_{B}(y). \end{aligned}$$

Somit ist

$$S_B = T^{\top} \cdot S_C \cdot T.$$

Orthonormalbasen

Definition

Es sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer Vektorraum. Zwei Vektoren $x, y \in V$ heißen orthogonal, geschrieben $x \perp y$, wenn gilt

$$\langle x, y \rangle = 0.$$

Definition

Es sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer Vektorraum. Eine Menge $B = \{b_1, b_2, b_3, \ldots\}$ von Vektoren in V heißt Orthonormalbasis von $(V, \langle \cdot, \cdot \rangle)$, wenn gilt

- \bullet b_1, b_2, b_3, \dots sind linear unabhängig.
- $||b_i|| = 1$ für alle $b_i \in B$.
- $b_i \perp b_j$ für $i \neq j$.
- **9** Jedes $x \in V$ lässt sich als "Linearkombination"

$$x = \sum_{j=1}^{\infty} \langle x, b_j \rangle b_j$$

schreiben (endliche Summe falls dim $V < \infty$).

Hilfssatz 10.3

Ist V endlich-dimensional, so ist eine Orthonormalbasis B auch eine Basis von V im üblichen Sinne.

Orthonormalreihe

Aus der Definition einer Orthonormalbasis folgt direkt:

Hilfssatz 10.4

Ist $B = \{b_1, b_2, b_3, ...\}$ eine Orthonormalbasis von $(V, \langle \cdot, \cdot \rangle)$, und ist $x \in V$ eine Summe (Linearkombination)

$$x = \lambda_1 b_1 + \lambda_2 b_2 + \lambda_3 b_3 + \dots,$$

so ist für alle $j = 1, 2, 3, \dots$

$$\lambda_j = \langle x, b_j \rangle.$$

Wir können also Linearkombinationen einer Orthonormalbasis direkt durch das Skalarprodukt, ohne Verwendung eines LGS, bestimmen.

Hilfssatz 10.5

Ist V endlich-dimensional und B eine Orthonormalbasis von V, so ist die Darstellungsmatrix $\varrho^{BB}(\langle\cdot,\cdot\rangle) = I_n$ die Einheitsmatrix.

Ist der euklidische Vektorraum $(V, \langle \cdot, \cdot \rangle)$ von endlicher Dimension, so existiert immer eine Orthonormalbasis: Das Gram-Schmidt-Verfahren erlaubt uns, aus einer beliebigen Basis von V eine Orthonormalbasis zu berechnen.

Ist der euklidische Vektorraum $(V, \langle \cdot, \cdot \rangle)$ von endlicher Dimension, so existiert immer eine Orthonormalbasis: Das Gram-Schmidt-Verfahren erlaubt uns, aus einer beliebigen Basis von V eine Orthonormalbasis zu berechnen.

Ist der euklidische Vektorraum $(V, \langle \cdot, \cdot \rangle)$ von endlicher Dimension, so existiert immer eine Orthonormalbasis: Das Gram-Schmidt-Verfahren erlaubt uns, aus einer beliebigen Basis von V eine Orthonormalbasis zu berechnen.

Ist der euklidische Vektorraum $(V, \langle \cdot, \cdot \rangle)$ von endlicher Dimension, so existiert immer eine Orthonormalbasis: Das Gram-Schmidt-Verfahren erlaubt uns, aus einer beliebigen Basis von V eine Orthonormalbasis zu berechnen.

Ist der euklidische Vektorraum $(V, \langle \cdot, \cdot \rangle)$ von endlicher Dimension, so existiert immer eine Orthonormalbasis: Das Gram-Schmidt-Verfahren erlaubt uns, aus einer beliebigen Basis von V eine Orthonormalbasis zu berechnen.

Ist der euklidische Vektorraum $(V, \langle \cdot, \cdot \rangle)$ von endlicher Dimension, so existiert immer eine Orthonormalbasis: Das Gram-Schmidt-Verfahren erlaubt uns, aus einer beliebigen Basis von V eine Orthonormalbasis zu berechnen.

Ist der euklidische Vektorraum $(V, \langle \cdot, \cdot \rangle)$ von endlicher Dimension, so existiert immer eine Orthonormalbasis: Das Gram-Schmidt-Verfahren erlaubt uns, aus einer beliebigen Basis von V eine Orthonormalbasis zu berechnen.

Algorithmus (Gram-Schmidt)

Gegeben ist eine Basis $C = \{c_1, \dots, c_n\}$ von V. Gesucht ist eine Orthonormalbasis $B = \{b_1, \dots, b_n\}$.

Setze zuerst

$$b_1 = \frac{c_1}{\|c_1\|}.$$

• Für j = 2, ..., n, setze

$$\tilde{b}_j = c_j - \langle c_j, b_1 \rangle b_1 - \ldots - \langle c_j, b_{j-1} \rangle b_{j-1}$$

und dann

$$b_j = \frac{\tilde{b}_j}{\|\tilde{b}_j\|}.$$

Mit Induktion über j sieht man, dass in jedem Schritt die Menge $\{b_1, \ldots, b_j\}$ aus orthogonalen Vektoren der Norm 1 besteht. Somit ist am Ende $B = \{b_1, \ldots, b_n\}$ eine Orthonormalbasis.

Orthogonale Matrizen

Hilfssatz 10.5

Ist V endlich-dimensional und B eine Orthonormalbasis von V, so ist die Darstellungsmatrix $\varrho^{BB}(\langle\cdot,\cdot\rangle)=I_n$ die Einheitsmatrix.

Es seien B und C Orthonormalbasen eines euklidischen Vektorraumes $(V, \langle \cdot, \cdot \rangle)$ von endlicher Dimension $n = \dim V$, und wir schreiben

- $T = T_C^B$ für die Basiswechselmatrix,
- $S_C = \varrho^{CC}(\langle \cdot, \cdot \rangle)$ und $S_B = \varrho^{BB}(\langle \cdot, \cdot \rangle)$ für die Darstellungsmatrizen von $\langle \cdot, \cdot \rangle$.

Dann gilt

$$I_n = S_B = T^{\top} \cdot S_C \cdot T = T^{\top} \cdot I_n \cdot T = T^{\top} \cdot T,$$

also

$$T^{\top} = T^{-1}$$
.

Definition

Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt orthogonal, wenn $A^{-1} = A^{\top}$ gilt.

Folgerung 10.6

Es sei $A \in \mathbb{R}^{n \times n}$. Dann sind äquivalent:

- A ist orthogonal.
- ② Die Spalten von A bilden eine Orthonormalbasis (für Standardskalarprodukt).
- in Die Zeilen von A bilden eine Orthonormalbasis (für Standardskalarprodukt).

10.3 Hilbert-Räume und Fourier-Analyse

Hilbert-Raum

Definition

Ein euklidischer Vektorraum $(V, \langle \cdot, \cdot \rangle)$ der eine Orthonormalbasis besitzt, wird Hilbert-Raum genannt.

Bemerkungen

- Durch das Gram-Schmidt-Verfahren wissen wir, dass im Falls dim V < ∞ stets eine Orthonormalbasis existiert, d.h. jeder endlich-dimensionale euklidische Vektorraum ist automatisch ein Hilbert-Raum.
- Der Begriff "Hilbert-Raum" wird daher meist im Zusammenhang mit unendlich-dimensionalen Vektorräumen verwendet.
- Es ist auch üblich, eine Variante von Hilbert-Räumen für komplexe
 Vektorräume zu betrachten (Quantenphysik). Hier muss das Skalarprodukt aber etwas anders definiert werden.

Wir betrachten hier einen besonders wichtigen unendlich-dimensionalen Vektorraum: Für ein Intervall $[a,b]\subset\mathbb{R}$ sei

$$\mathbf{L}^{2}[a,b] = \Big\{ f : [a,b] \to \mathbb{R} \, \Big| \, \int_{a}^{b} f(t)^{2} \mathrm{d}t < \infty \Big\}.$$

Wir können diesen Vektorraum als den Raum der Signale von endlicher Energie auf [a,b] auffassen.

• Erinnerung: Die Vektorraumoperationen sind punkteweise definiert,

$$(f+g)(t) = f(t) + g(t), \quad (\lambda f)(t) = \lambda f(t)$$

für $f, g \in L^2[a, b], \lambda \in \mathbb{R}, t \in [a, b].$

- Der Nachweis, dass für $f, g \in L^2[a, b]$ auch $f + g \in L^2[a, b]$ liegt, ist nicht ganz trivial.
- Der Einfachheit wegen beschränken wir uns nun auf

$$[a,b] = [0,2\pi].$$

Wir können $L^2[0, 2\pi]$ mit dem Skalarprodukt

$$\langle f, g \rangle = \int_0^{2\pi} f(t)g(t)dt$$

zu einem Hilbert-Raum machen (bis auf eine kleine maßtheoretische Finesse, die wir hier ignorieren dürfen).

• Wir schreiben für $n \in \mathbb{N}$

$$S_n(t) = \frac{1}{\sqrt{\pi}}\sin(nt), \quad C_n(t) = \frac{1}{\sqrt{\pi}}\cos(nt).$$

Außerdem ist $C_0(t) = \frac{1}{\sqrt{2\pi}}$ (konstante Funktion).

Wir können $L^2[0, 2\pi]$ mit dem Skalarprodukt

$$\langle f, g \rangle = \int_0^{2\pi} f(t)g(t)dt$$

zu einem Hilbert-Raum machen (bis auf eine kleine maßtheoretische Finesse, die wir hier ignorieren dürfen).

• Wir schreiben für $n \in \mathbb{N}$

$$S_n(t) = \frac{1}{\sqrt{\pi}}\sin(nt), \quad C_n(t) = \frac{1}{\sqrt{\pi}}\cos(nt).$$

Außerdem ist $C_0(t) = \frac{1}{\sqrt{2\pi}}$ (konstante Funktion).

• Eine Orthonormalbasis in $L^2[0, 2\pi]$ ist

$$B = \{C_0, C_n, S_n \mid n \in \mathbb{N}\}.$$

Prüfe durch trickreiche Integralrechnung für alle i, j:

$$\langle S_i, S_j \rangle = \langle C_i, C_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}, \quad \langle S_i, C_j \rangle = 0.$$

Es ist ein wichtiger Satz aus der Analysis, dass jedes $f \in L^2[0, 2\pi]$ sich tatsächlich als Orthogonalreihe der C_i , S_j schreiben lässt.

Die Orthogonalreihendarstellung einer Funktion $f \in L^2[0, 2\pi]$ wird Fourier-Reihe genannt,

$$f(t) = \frac{\alpha_0}{\sqrt{2}} + \sum_{j=1}^{\infty} \alpha_j C_j(t) + \sum_{j=1}^{\infty} \beta_j S_j(t)$$

mit

$$\alpha_j = \langle f, C_j \rangle = \frac{1}{\sqrt{\pi}} \int_0^{2\pi} f(t) \cos(jt) dt,$$
$$\beta_j = \langle f, S_j \rangle = \frac{1}{\sqrt{\pi}} \int_0^{2\pi} f(t) \sin(jt) dt.$$

Dabei ist zu beachten, dass die Gleichheit der Funktionen nur im Sinne der L²-Norm gilt, aber an einzelnen isoliert liegenden Stellen $t \in [0, 2\pi]$ verletzt sein kann.

Beispiel: Sägezahnfunktion

$$f(t) = -2\sum_{j=1}^{\infty} \frac{(-1)^j}{j} \sin(jt)$$

Approximation durch endliche Summen: $f(t) = -2\sum_{j=1}^{5} (-1)^{j} \frac{\sin(jt)}{j}$

Beispiel: Sägezahnfunktion

$$f(t) = -2\sum_{j=1}^{\infty} \frac{(-1)^j}{j} \sin(jt)$$

Approximation durch endliche Summen: $f(t) = -2\sum_{j=1}^{7} (-1)^j \frac{\sin(jt)}{j}$

Beispiel: Sägezahnfunktion

$$f(t) = -2\sum_{j=1}^{\infty} \frac{(-1)^j}{j} \sin(jt)$$

Approximation durch endliche Summen: $f(t) = -2\sum_{j=1}^{11} (-1)^j \frac{\sin(jt)}{j}$

Bandbegrenzte Signale abtasten

In den Funktionen $S_n(t) = \sin(nt)$ und $C_n(t) = \cos(nt)$ bestimmt der Parameter n die Frequenz des Signals f. Wir nennen ein Signal bandbegrenzt mit Grenzfrequenz n, wenn die Fourier-Reihe von f endlich ist,

$$f(t) = \frac{\alpha_0}{\sqrt{2}} + \sum_{j=1}^{n} \alpha_j C_j(t) + \sum_{j=1}^{n} \beta_j S_j(t)$$

In der Praxis sind Signale bandbegrenzt, da ein Computer nur endlich viele Informationen speichern kann.

Angenommen, wir möchten ein bandbegrenztes 2π -periodisches Signal f an äquidistanten Zeitpunkten abtasten.

Wir können f als Element von $f \in L^2[0, 2\pi]$ auffassen (da sich die Werte nach 2π ja periodisch wiederholen).

Haben wir k äquidistante Abtastzeitpunkte, so sind dies

$$t_0 = 0, \ t_1 = \frac{2\pi}{k}, \ t_2 = 2\frac{2\pi}{k}, \ t_3 = 3\frac{2\pi}{k}, \ \dots, \ t_{k-1} = (k-1)\frac{2\pi}{k}.$$

Die abgetasteten Funktionswerte sind

$$f(t_0), f(t_1), f(t_2), f(t_3), \ldots, f(t_{k-1}).$$

Die abgetasteten Funktionswerte sind

$$f(t_0), f(t_1), f(t_2), f(t_3), \dots, f(t_{k-1}).$$

Frage

Lässt sich aus diese Informationen die bandbegrenzte Funktion f rekonstruieren?

Links: Das Signal ist unterabgetastet.

Rechts: Das Signal kann rekonstruiert werden.

Weiteres Beispiel: Der magische Helikopter (Video).

Das Abtasttheorem

Lineare Algebra hilft uns, das Abtastproblem zu lösen. Ist

$$f(t) = \frac{\alpha_0}{\sqrt{2}} + \sum_{j=1}^{n} \alpha_j C_j(t) + \sum_{j=1}^{n} \beta_j S_j(t)$$

die Fourier-Reihe der bandbegrenzten Funktion f, so liefern die k Abtastwerte $f(t_0), f(t_1), \ldots, f(t_{k-1})$ ein LGS mit den k (linear unabhängigen) Gleichungen

$$f(t_r) = \frac{\alpha_0}{\sqrt{2}} + \sum_{j=1}^{n} \alpha_j C_j(t_r) + \sum_{j=1}^{n} \beta_j S_j(t_r)$$

für r = 0, ..., k - 1, in den 2n + 1 Variablen $\alpha_0, \alpha_1, ..., \alpha_n, \beta_1, ..., \beta_n$.

Aus der Theorie der LGSe wissen wir, dass wir $k \ge 2n + 1$ Gleichungen benötigen, um eine eindeutige Lösung für dieses LGS zu erhalten.

Satz 10.7 (Abtasttheorem für periodische Funktionen)

Eine bandbegrenzte 2π -periodische Funktion f und Grenzfrequenz n ist durch 2n+1 äquidistante Abtastwerte $f(j\frac{2\pi}{2n+1}), j=0,\ldots,2n$, eindeutig bestimmt.

Nachlesen

Beutelspacher, Lineare Algebra, Abschnitte 10.1, 10.2, 10.3

Mehr nachlesen (non scholae, sed vitae...)

Egbert Brieskorn,

Lineare Algebra und analytische Geometrie I & II,

Vieweg Verlag 1983 & 1985

Otto Forster,

Algorithmische Zahlentheorie,

Vieweg Verlag 1996

John D. Lipson,

Algebra and Algebraic Computing,

Benjamin Cummings 1981

Florence J. MacWilliams, Neil J.A. Sloane,

The Theory of Error-Correcting Codes I & II,

North-Holland 1977

Nicholas J.J. Smith,

Logic – The Laws of Truth,

Princeton University Press 2012

