## 1 Семинар 1. Вперёд, в рукопашную!

## Минитеория:

- 1. https://github.com/bdemeshev/pr201/wiki или http://pokrovka11.wordpress.com
- 2. Константы. Строчные английские буквы, a, x, z.
- 3. События. Заглавные английский буквы начала алфавита A, B, C, D. Вероятность  $\mathbb{P}(A)$ .
- 4. Случайные величины. Заглавные английский буквы конца алфавита X, Y, W, Z. Математическое ожидание  $\mathbb{E}(X)$ .

## Задачи:

- 1. В вазе пять неотличимых с виду конфет. Две без ореха и три с орехом. Маша ест конфеты выбирая их наугад до тех пор, пока не съест первую конфету с орехом. Обозначим X число съеденных конфет. Найдите  $\mathbb{P}(X=2)$ ,  $\mathbb{P}(X>1)$ ,  $\mathbb{E}(X)$
- 2. Неправильную монетку с вероятностью «орла» равной p подбрасывают до первого «орла». Чему равно среднее количество подбрасываний? Орлов? Решек? Какова вероятность того, что будет чётное число бросков?
- 3. Саша и Маша по очереди подбрасывают кубик. Посуду будет мыть тот, кто первым выбросит шестерку. Маша бросает первой. Каковы ее шансы отдохнуть за «Cosmo»?
- 4. Вы играете в следующую игру. Кубик подкидывается неограниченное число раз. Если на кубике выпадает 1, 2 или 3, то соответствующее количество монет добавляется на кон. Если выпадает 4 или 5, то игра оканчивается и Вы получаете сумму, лежащую на кону. Если выпадает 6, то игра оканчивается, а Вы не получаете ничего.
  - а) Чему равен ожидаемый выигрыш в эту игру?
  - б) Изменим условие: если выпадает 5, то набранная сумма сгорает, а игра начинается заново. Чему будет равен ожидаемый выигрыш?
- 5. Саша и Маша подкидывают монетку до тех пор, пока не выпадет последовательность POO или OOP. Если игра закончится выпадением POO, то выигрывает Саша, если OOP, то Маша. Случайная величина X общее количество подбрасываний, Y количество выпавших решек.
  - (а) У кого какие шансы выиграть?
  - (b)  $\mathbb{P}(X = 4), \mathbb{P}(Y = 1), \mathbb{E}(X), \mathbb{E}(Y)$
  - (с) Решите аналогичную задачу для ОРО и ООР.
- 6. «Amoeba». A population starts with a single amoeba. For this one and for the generations thereafter, there is a probability of 3/4 that an individual amoeba will split to create two amoebas, and a 1/4 probability that it will die out without producing offspring. Let the random variable X be the number of generations before the death of all the amoebas. Find the probabilities  $\mathbb{P}(X=2)$ ,  $\mathbb{P}(X=3)$ ,  $\mathbb{P}(X=\infty)$
- 7. Вася подкидывает кубик. Если выпадает единица, или Вася говорит «стоп», то игра оканчивается, если нет, то начинается заново. Васин выигрыш последнее выпавшее число. Как выглядит оптимальная стратегия? Как выглядит оптимальная стратегия, если за каждое подбрасывание Вася платит 35 копеек?
- 8. Suppose the probability to get a head when throwing an unfair coin is p, what's the expected number of throwings in order to get two consecutive heads? The expected number of tails?
- 9. Саша и Маша решили, что будут заводить новых детей до тех пор, пока в их семье не будут дети обоих полов. Обозначим X количество детей в их семье. Найдите  $\mathbb{P}(X=4)$ ,  $\mathbb{E}(X)$
- 10. В каждой вершине треугольника по ёжику. Каждую минуту с вероятностью 0.7 каждый ежик независимо от других двигается по часовой стрелке, с вероятностью 0.3 против часовой стрелки. Обозначим T время до встречи всех ежей в одной вершине. Найдите  $\mathbb{P}(T=3),\,\mathbb{E}(T).$