NCERT Solutions for Class 10 Chapter 1-Real Numbers

EXERCISE 1.2

Question 1:

Prove that √5 is irrational.

Solution:

Let $\sqrt{5} = p/q$ be a rational number, where p and q are co-primes and $q \neq 0$.

Then, √5q = p

=>
$$5q^2=p^2$$

 $\Rightarrow p^2 = 5q^2$... (i)
Since 5 divides p^2 , so it will divide p also.
Let p = $5r$

Then $p^2 - 25r^2$ [Squaring both sides]

$$\Rightarrow 5q^2 = 25r^2 \quad [From(i)]$$
$$\Rightarrow q^2 = 5r^2$$

Since 5 divides q², so it will divide q also. Thus, 5 is a common factor of both p and q.

This contradicts our assumption that $\sqrt{5}$ is rational.

Hence, √5 is irrational. Hence, proved.

Question 2:

Prove that $3 + 2\sqrt{5}$ is irrational.

Solution:

Let $3 + 2\sqrt{5} = \frac{p}{q}$ be a rational number, where p and q are co-prime and $q \neq 0$.

Then,
$$2\sqrt{5} = \frac{p}{q} - 3 = \frac{p-3q}{q}$$

 $\Rightarrow \sqrt{5} = \frac{p-3q}{2q}$
since $\frac{p-3q}{2q}$ is a rational number,

therefore, $\sqrt{5}$ is a rational number. But, it is a contradiction.

Hence, $3 + \sqrt{5}$ is irrational. Hence, proved.

EXAMBUDDY

NCERT Solutions for Class 10 Chapter 1-Real Numbers

Question 3:

Prove that the following are irrationals:

(i) 1/√2

Solution

- (i) Let us assume that $\frac{1}{\sqrt{2}}$ is rational.
 - There exists co-prime integers a and b $(b \neq 0)$ such that

$$\frac{1}{\sqrt{2}} = \frac{a}{b} \implies \sqrt{2} = \frac{b}{a}$$

Since a and b are integers, we get $\frac{b}{a}$ is rational and so $\sqrt{2}$ is rational.

But this contradicts the fact that $\sqrt{2}$ is irrational.

This contradiction has arisen because of our incorrect assumption that $\frac{1}{\sqrt{2}}$ is rational. Hence, we conclude that $\frac{1}{\sqrt{2}}$ is irrational.

(ii) 7√5

Solution

- (ii) Let us assume that $7\sqrt{5}$ is rational.
 - ... There exists co-prime integers a and b ($b \neq 0$) such that

$$7\sqrt{5} = \frac{a}{b} \implies \sqrt{5} = \frac{a}{7b}$$

Since a and b are integers, we get $\frac{a}{7b}$ is rational and so $\sqrt{5}$ is rational.

But this contradicts the fact that $\sqrt{5}$ is irrational.

This contradiction has arisen because of our incorrect assumption that $7\sqrt{5}$ is rational. Hence, we conclude that $7\sqrt{5}$ is irrational.

Solution

- (iii) Let us assume that $6 + \sqrt{2}$ is rational.
 - There exists co-prime integers a and b $(b \neq 0)$ such that

$$6 + \sqrt{2} = \frac{a}{b} \implies \sqrt{2} = \frac{a}{b} - 6$$

Since a and b are integers, we get $\frac{a}{b} - 6$ is rational and so $\sqrt{2}$ is rational.

But this contradicts the fact that $\sqrt{2}$ is irrational.

This contradiction has arisen because of our incorrect assumption that $6 + \sqrt{2}$ is rational.

Hence, we conclude that $6 + \sqrt{2}$ is irrational.