Базовые типы данных. Методы работы со строками, списками

Ввод и вывод данных

Ввод

```
x = input() #строка
```

x = int(input()) #целое число

Вывод

```
print(x, sep = ' ', end =' ')
>>> x = 2
>>> y = 1
>>> print(x, y, sep ='_', end ='/')
2_1/
```

```
print(z)
print(m+n)
print('Hello')
```

Вводим два любых значения с клавиатуры. Программа должна перед и после каждого значения, которое вы ввели, ставить нижнее подчеркивание.

Ввод:

мне

Ок

Вывод:

Ответ: мне ок_

Типы данных

Узнать тип данных

>>> print(type(x))

Строки

Ввод с клавиатуры

Присваивание значений

$$x = input()$$

$$x = 'punk'$$

Базовые операции

Сложение строк	Дублирование строки	Длина строки	Метод replace
>>> x = 'punk' >>> y = 'rock' >>> print(x+y) punkrock	>>> print('punk' * 3) punkpunkpunk	>>> x = 'punk' >>> len(x) 4	<pre>>>> print('punkrock'.replace('k', 'K')) punKrocK</pre>
			Memoд count
>>> x = input() >>> y = input() >>> print(x+y) 5 7 57	>>> x = input() >>> x = x * 3 >>> print(x) 5 555	>>> len('555555') 6	>>> print('5556785'.count('5')) 4

Переменная 1 = число, переменная 2 = слово, переменная 3 = знак препинания.

Ввод	Ввод
90	90
stop	stop
!	!
Вывод	Вывод
stop90!	9090!

>>> x = 'punkrock'

0	1	2	3	4	5	6	7
р	u	n	k	r	0	С	k
-8	-7	-6	-5	-4	-3	-2	-1

Индексы

Первый элемент	N-ый элемент	Memod find	Memo∂ rfind
>>> print(x[0]) p	>>> print(x[5]) o >>> print(x[-3]) o	>>> print(x.find('k')) 4	>>> print(x.rfind('k')) 7
C	резы	Шаг среза	Переворот
>>> print(x[2:5]) nkr >>> print(x[3:-2]) kro	<pre>>>> print(x[:6]) punkro >>> print(x[1:]) unkrock >>> print(x[:]) punkrock</pre>	>>> print(x[2::2]) nrc	>>> print(x[::-1]) kcorknup

Вводим с клавиатуры значение строки длиной 9 символов. Вводим число от 0 до 8 с клавиатуры (это индекс).

Вывести символ соответствующий этому индексу.

Сделать срез с 1 по 7

Вывести каждый третий символ, начиная с 1

Ввод:

ваовтомто

1

Ввод:

ваовтомто

Ввод:

ваовтомто

Вывод:

a

Вывод:

аовтомт

Вывод:

атт

Числа

Натуральные int

Вещественные float

Комплексные complex

round (x) округление >>> x = complex(a, b) >>> print (x) (a+bj)

x + y	сложение
x - y	вычитание
x * y	умножение
x / y	деление
x // y	целая часть от деления
x % y	остаток от деления
x ** y	возведение в степень
abs(x)	модуль числа

	Модуль math	
	>>> import math	
math.pi	число ПИ	
math.sqrt(x)	корень	
math.ceil(x)	округление вверх	
math.floor(x)	округление вниз	
round(x)	"Банковское округление" округление к ближайшем	

чётному

(a+bJ)

Вводим вещественное и целое число. Перемножаем их. Сколько раз в получившемся произведении повторяется число 5?

Ввод

0.25

7

Вывод

1

Memod count

```
>>> print('5556785'.count('5'))
4
#работает только со строками
```

Конвертация числа в строку

```
>>> x = 2 #число
>>> x = str(x) #перевод в строку
```

Списки

упорядоченные изменяемые коллекции объектов произвольных типов

Синтаксис

имя = list['элемент1']

Заполнение списка

```
>>> a = []
>>> for i in range(int(input())):
    a.append(int(input()))
>>> print(a)
>>> x = [1, 'g', 'z1']
>>> print(x)
[1, 'g', 'z1']
```

Добавляем элемент

Расширение списка

Удаление элемента

Очистка списка

Создайте список содержащий информацию о планетах нашей Солнечной системы. (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун)

<u>Задание 1</u>	Задание 2	Задание 3
Вывести 5 планету/4 с конца планету Солнечной системы (двумя способами)	Вывести планеты с 2 по 4	Вывести планеты начиная с 5/4 последних планеты (двумя способами)
Вывод Юпитер	Вывод Венера, Земля, Марс	Вывод Юпитер, Сатурн, Уран, Нептун
<u>Задание 4</u>	<u>Задание 5</u>	Задание 6
Заменить название 4 планеты СС на «Сникерс»	Заменить название первых 3 планет следующим образом: Мер, Вен, Зем	Вернуть первым 4 планетам исходные названия
<u>Задание 7</u>	Задание 8	Задание 9
Посчитать количество планет в списке с помощью функции len	Отсортировать планеты СС в алфавитном порядке с помощью метода sorted	Добавить в наш список планет еще Плутон, с помощью метода append
<u>Задание 10</u>	Задание 11	
Удалить Плутон из списка с помощью метода рор (удаляет последний элемент в списке), либо с помощью remove	Найти какой по счету Сатурн в солнечной системе с помощью метода index	

Кортежи

неизменяемые списки

Синтаксис

имя = tuple(элемент 1, ..., элемент N)

имя = (элемент 1, ..., элемент N)

имя = элемент 1,

Зачем они нужны?

- Защищен от изменений
- Меньший размер чем у списка
- Использовать как ключ для словаря

Синтаксис

```
>>> a = set('hello')
>>> a
{'h', 'o', 'l', 'e'}
# видим, что порядок нарушен
```

>>> a = set() # пустое множество

<u>Не дайте фигурным скобкам себя</u> <u>обмануть!</u>

>>> b = {} # это уже не множество, а словарь, про него – позже!

Множества

Множество в Python - "контейнер", содержащий **не повторяющиеся** элементы **в случайном порядке.**

- Можно очень быстро проверять принадлежность элемента множеству
- С множествами можно выполнять множество операций: находить объединение, пересечение, разность
- Множества удобно использовать для удаления повторяющихся элементов:

```
>>> words = ['gimme', 'gimme', 'a', 'man', 'after', 'midnight']
>>> set(words)
{'man', 'a', 'midnight', 'after', 'gimme'}
```

```
>>> a = {1, 2, 3}
>>> a.add('mississippi')
>>> a
{1, 2, 3, 'mississippi'}
```

```
>>> A = {1, 2, 3}
>>> B = {3, 2, 3, 1, 1, 1}
>>> print(A==B)
True
```

```
>>> a = {i ** 2 for i in range(10)}
>>> a
{0, 1, 4, 81, 64, 9, 16, 49, 25, 36}
```

Операции с множествами

С множествами в питоне можно выполнять обычные для математики операции над множествами.

A B A.union(B)	Возвращает множество, являющееся объединением множеств А и В .	
A = B A.update(B)	Добавляет в множество A все элементы из множества В .	
A & B A.intersection(B)	Возвращает множество, являющееся пересечением множеств А и В .	
A &= B A.intersection_update(B)	Оставляет в множестве А только те элементы, которые есть в множестве В.	
A - B A.difference(B)	Возвращает разность множеств А и В (элементы, входящие в А , но не входящие в В).	
A -= B A.difference_update(B)	Удаляет из множества А все элементы, входящие в В.	
A ^ B A.symmetric_difference(B)	Возвращает симметрическую разность множеств A и В (элементы, входящие в A или в В, но не в оба из них одновременно).	

Словари

неупорядоченный набор данных произвольного типа с доступом по ключу

Синтаксис

создание

имя = {ключ 1:значение 1, ..., ключ N: значение N}

имя = dict('ключ 1' = значение 1, ..., 'ключ N' = значение N)

добавление элемента

имя[новый ключ] = значение

<u>удаление элемента</u> del имя[ключ]

вызов словаря

РМИ

Зачем они нужны?

- Для подсчета числа каких-то объектов. В этом случае нужно завести словарь, в котором ключами являются объекты, а значениями их количество.
- Для хранение каких-либо данных, связанных с объектом. Ключи объекты, значения связанные с ними данные.
- Установка соответствия между объектами (например, "родитель—потомок"). Ключ объект, значение соответствующий ему объект.
- Если нужен обычный массив, но максимальное значение индекса элемента очень велико, и при этом будут использоваться не все возможные индексы (так называемый "разреженный массив"), то можно использовать ассоциативный массив для экономии памяти.

Методы словарей		
имя.clear()	Очищает словарь	
имя.сору()	Возвращает копию словаря	
имя.items()	Возвращает пары (ключ, значение)	
имя.keys()	Возвращает ключи	
имя.values()	Возвращает значения в словаре	
имя.update({кл юч; значение})	Обновляет словарь, добавляя пары.	

Перебор словаря

```
>>> a = {1: 'one', 2: 'two', 3: 'three'}
>>> for key, value in a.items():
print(key, ':', value)
1 : one
2: two
3: three
>>> a = {1: 'one', 2: 'two', 3: 'three'}
>>> for key in a.keys():
print(key)
>>> a = {1: 'one', 2: 'two', 3: 'three'}
>>> for val in a.values():
print(val)
one
two
three
```

Создайте словарь, где ключ – это римская цифра, а значение арабская. Для цифр от 1 до 3.

<u>Задание 1</u>	<u>Задание 2</u>	Задание 3
Выведете цифру 2 из словаря	Добавьте в словарь число 11, с	Замените значение под ключом «I»
	ключом «XI»	на слово «один»