

TrenchT2™ **Power MOSFET**

IXTA120N075T2 IXTP120N075T2

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum F	Ratings
V _{DSS}	T _J = 25°C to 175°C	75	V
V _{DGR}	$T_J = 25^{\circ}C$ to 175°C, $R_{GS} = 1M\Omega$	75	V
V _{GSM}	Transient	±20	V
I _{D25}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}	120 300	A A
I _A	T _c = 25°C	60	Α
E _{as}	$T_{c} = 25^{\circ}C$	600	mJ
$\mathbf{P}_{\scriptscriptstyle \mathrm{D}}$	T _C = 25°C	250	W
T		-55 +175	°C
T_{JM}		175	°C
T _{stg}		-55 +175	°C
T _L	Maximum Lead Temperature for Solderin	g 300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
F _c	Mounting Force (TO-263) Mounting Torque (TO-220)	1065 / 2.214.6 1.13 / 10	N/lb Nm/lb.in
Weight	TO-263 TO-220	2.5 3.0	g g

TO-220 (IXTP)	
G D _S	
	D (Tab)

G = Gate	D	=	Drain
S = Source	Tab	=	Drain

Features

- International Standard Packages
- Avalanche Rated
- Low Package Inductance
- Fast Intrinsic Rectifier 175°C Operating Temperature
- High Current Handling Capability
- ROHS Compliant
- High Performance Trench Technology for extremely low $R_{\scriptscriptstyle DS(on)}$

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Automotive Engine Control
- Synchronous Buck Converter (for Notebook SystemPower &
- General Purpose Point & Load)
- DC/DC Converters
- High Current Switching Applications
- Power Train Management
- Distributed Power Architecture

		acteristi Typ.	c Values Max.	>		
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250 \mu A$		75			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250\mu A$		2.0		4.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$				5	μΑ
		T _J = 150°C			150	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 60A, Notes$	1 & 2			7.7	$m\Omega$

		Char Min.	racteristic Values Typ. Max.		
g _{fs}		V _{DS} = 10V, I _D = 60A, Note 1	38	62	S
C _{iss})			4740	pF
\mathbf{C}_{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		585	pF
\mathbf{C}_{rss}	J			75	pF
t _{d(on)})	Resistive Switching Times		13	ns
t,				33	ns
$\mathbf{t}_{d(off)}$	($V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 60A$		21	ns
t,)	$R_{\rm G} = 5\Omega$ (External)		18	ns
$\mathbf{Q}_{g(on)}$)			78	nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 60A$		24	nC
\mathbf{Q}_{gd}	J			23	nC
R _{thJC}					0.62 °C/W
R _{thCS}		TO-220		0.50	°C/W

Source-Drain Diode

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}\text{C Unless Otherwise Specified})$ Min.			cteristic Values Typ. Max.		
I _s	$V_{GS} = 0V$			120	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			480	Α
V _{SD}	$I_F = 60A$, $V_{GS} = 0V$, Note 1			1.3	V
t _{rr}	L 604 V 0V		50		ns
I _{RM}	$I_{F} = 60A, V_{GS} = 0V,$ $-di/dt = 100A/\mu s, V_{D} = 37V$		4		Α
$Q_{_{\mathrm{RM}}}$	$-\text{di/dt} = 100\text{A/}\mu\text{s}, \text{ V}_{\text{R}} = 37\text{V}$		100		nC

Notes: 1. Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

2. On through-hole packages, R_{DS(on)} Kelvin test contact location must be 5mm or less from the package body.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 60A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 60A Value vs.

Fig. 6. Drain Current vs. Case Temperature

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature $R_G = 5\Omega$, $V_{GS} = 10V$ $V_{DS} = 38V$ tr-Nanoseconds I_D = 120A $I_{D} = 60A$ T_J - Degrees Centigrade

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current $T_J = 25^{\circ}C$ tr-Nanoseconds $R_G = 5\Omega$, $V_{GS} = 10V$ $V_{DS} = 38V$ $T_J = 125^{\circ}C$ 105 110 115 120 I_D - Amperes

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance t_{d(on)} $T_J = 125^{\circ}C, \ V_{GS} = 10V$ V_{DS} = 38V d(on) - Nanoseconds tr-Nanoseconds In = 120A, 60A R_G - Ohms

Fig. 19. Maximum Transient Thermal Impedance

