Ryan M. Richard — Chemistry

Ames National Labratory and Iowa State University - Ames, IA - USA https://rmrresearch.github.io/

Scientist II at Ames National Laboratory and Adjunct Assistant Professor of Chemistry at Iowa State University. Research interests include: ab initio methods development, computational chemistry, high-performance computing, high-accuracy quantum chemistry, and scientific software design.

Education

Ph.D. The Ohio State University Columbus, OH Dissertation topic:

"Increasing the Computational Efficiency of Ab Initio Methods with Generalized Many-Body Expansions"

Advisor: John M. Herbert B.S. Cleveland State University

Cleveland, OH 2004-2008

Undergraduate: Chemistry major, Advisor: David W. Ball

Professional Experience

Scientist II, Ames National Laboratory

Ames, IA

2008-2013

Architect and a lead developer of NWCHEMEX.

2018-Present

Additional Responsibilities: Mentor undergraduate researchers.

Research Assistant, NASA Glenn Research Center

Cleveland, OH

2007-2008 Research Topics: Characterization of degradation properties of ionic liquid based lubricants for terrestrial and space applications by Raman and infrared spectroscopies as well as liquid and gas chromatography.

Academic Experience

Adjunct Assistant Professor of Chemistry, Iowa State University	Ames, IA
High-accuracy benchmark development.	2022–Present
Additional Responsibilities: Co-advise graduate students.	

Postdoctoral Researcher, Ames National Laboratory Ames. IA Algorithm development, development of massively parallel architecture 2017-2018 Additional Responsibilities: Mentor undergraduate researchers

Postdoctoral Researcher, Georgia Institute of Technology Atlanta, GA Algorithm development, high-accuracy bench marking 2014-2017 Additional Responsibilities: Mentor undergraduate researchers, substitute teach lectures, assist in grant

Research Assistant, The Ohio State University Columbus, OH Algorithm development, excited state modeling 2008-2014

Teaching Assistant, The Ohio State University Columbus, OH General chemistry laboratory and recitation, physical chemistry recitation 2009-2011 Additional Responsibilities: Grading, weekly office hours

Research Assistant, Cleveland State University Cleveland, OH Characterization of new high-energy materials 2006-2008

Software Development Experience

NWChemEx

https://github.com/NWChemEx-Project

Architect and lead developer

2017-present

- Package focused on high-performance, massively parallel electronic structure theory.
- Contributions: design, plugin framework, CI infrastructure, SCF, MP2, MP2-F12, CCSD-F12

GhostFragment

https://github.com/rmrresearch/GhostFragment

Founder, architect, project manager, and lead developer

- Software for massively parallel generalized many-body expansion and basis-set superposition corrections.
- Contributions: concept, design, CI infrastructure, initial implementations.

CMakePP

https://github.com/CMakePP

Founder, architect, project manager, and lead developer

2019-present

2014-2017

- Object-oriented CMake build system.
- Contributions: concept, design, CI infrastructure, CMakePP language

Psi4

https://psicode.org/

Developer

- Electronic structure package focused on providing a user-friendly experience.
- Contributions: SCF, infrastructure, many-body expansion

Q-Chem

https://www.q-chem.com/

Developer

2008-2013

- Commercial electronic structure package focused on good performance on workstations and small clusters.
- Contributions: QM/MM

Expertise

O Computational Chemistry Topics:

Hartree-Fock, MP2, coupled-cluster, explicit correlation, domain-local methods, fragment-based methods

O Productivity Tools:

Git, GitHub, VSCode, Slack

Computer Languages:

C/C++, Python, CMake, LATEX, Bash

Markup Languages:

Doxygen, Sphinx-flavored reStructured Text, Markdown

Python Packages:

Jupyter Notebooks, Matplotlib, Numpy, Sphinx

○ C++ Libraries:

Boost, Catch2, Cereal, PyBind11

High-Performance Computing Libraries:

BLAS, LAPACK, MPI

Honors and Awards

Better Scientific Software Fellow

BSSw.io

Recipient of 1 of 6 BSSw Fellowships

2024

- Recognizes work for promoting better scientific software.
- Awarded for: Multi-Project CI/CD for modular scientific software

Ames National Laboratory Scientist Leadership Development Program

Ames, IA 2022 - 2023

Accepted into 2022 - 2023 cohort

- Nominees are junior level scientists at the laboratory who show leadership potential.
- Program focuses on mentoring and developing leadership skills with a focus on career advancement at a Department of Energy National Laboratory.

ISU Research Collaboration Catalysts Ames, IA Accepted into 2020 - 2021 cohort 2020 - 2021- Nominees demonstrate potential to lead future high-impact interdisciplinary research teams. - Provided educational opportunities to refine leadership skills. Finalist for the Emerging Technology in Computational Chemistry Symposium Philadelphia, PA 252nd American Chemical Society National Meeting and Exposition 2016 The Ohio State University Graduate School Fellowship Columbus, OH The Ohio State University 2008-2009 **Best Undergraduate Presentation** South Euclid, OH Notre Dame College 2007 Cleveland State University Honors Program Scholarship Cleveland, OH Cleveland State University 2004-2008 **Professional Service** Virtual Workshop on Multi-Project CI/CD Virtual Organizer and moderator. 2024 Workshop sought to create a community of practice for DevOps professionals managing CI/CD workflows for multiple software project. National Laboratory Information Technology (NLIT) Summit 24 Seattle, WA Member of the Sustainable Scientific Software (S3C) organizing team. 2024 Helped choose topics for conference and downselect contributed presentations. 2022 Iowa State Fair Des Moines, IA Ames National Laboratory and Iowa State University Exhibit. 2022 Explained research at Ames National Laboratory to general public and answered questions. Department of Energy's National Science Bowl Ames, IA Moderator and Judge 2019-Present Helped setup/teardown and served as moderator and judge. 256th National American Chemical Society Meeting. Boston, MA Session chair 2018 PURA (President's Undergraduate Research Award) application reviewer Atlanta, GA Georgia Institute of Technology 2016 2nd Annual Postdoctoral Research Symposium Atlanta, GA Session chair 2015 1st Annual Postdoctoral Research Symposium Atlanta, GA Session chair 2014 'Postdocs@Tech" Atlanta, GA Co-Organizer 2014-2017 Organized monthly social events and an annual university research symposium for postdocs at Georgia Tech. Peer Reviewer for: Journal of Chemical Physics, Journal of Chemical Theory and Computation

Active Grants

NSF CHE-2348724 Ames, IA

Theresa Windus (PI) and Ryan M. Richard (co-PI)

2024-2027

REU Site: Sutainability Institute for Machine Learning and Collaborative Open-Source Development of Enzymatic Simulations

Value of award: \$465,000.00

Ames National Laboratory Directed Research and Development FY2024-xxxx-01 Ames, IA Ryan M. Richard (PI) 2024 Automating Parameter Selection of Fragment Based Methods for Materials Challenges Value of award: \$287,000.00 BSSw Fellowship FY2023-407 Ames, IA Ryan M. Richard (PI) 2024-2025 Multi-Project CI/CD for Modular Scientific Software Value of award: \$50,000.00 **Completed Grants** Ames National Laboratory Directed Research and Development FY2022-xxxx-01 Ames. IA Ryan M. Richard (PI) 2021-2022 GhostFragment: Making Strong Electron Correlation Less Scary Value of award: \$48,000.00 Renewal of XSEDE Research Allocation number CHE150006 Atlanta, GA Ryan M. Richard (PI), C. D. Sherrill (Co-PI). 2016-2017 Accurate Crystal Lattice Energies Via Pleasantly Parallel Methods Value of award: \$115,006.00 XSEDE Research Allocation number CHE150006 Atlanta, GA Ryan M. Richard (PI), C. D. Sherrill (Co-PI). 2015-2016 Applying Quantum Chemistry to Condensed Phase Systems Using the Many-Body Expansion **XSEDE Startup Allocation number CHE140145** Atlanta, GA Ryan M. Richard (PI), C. D. Sherrill (Co-PI). 2014-2015 Accurate Crystal Properties Via Massively Parallel Quantum Chemistry **Students Mentored** Graduates... Heflin, Jacob Ames. IA Research focus: Benchmarking fragment-based methods 2023 - Present Undergraduates Lewis, John Ames, IA Research focus: Benchmarking geometry optimizers. 2023-Present Ames. IA Walker Hayes Research focus: Implementing capping methods in GhostFragment 2023 **Issac Van Orman** Ames, IA Research focus: Implementing capping methods in GhostFragment 2023 Theodore Davis Ames. IA Research focus: Object-oriented CMake. 2020-2021 Ames, IA Research focus: Continuous integration for CMake. 2020-2021 Allison Finger Ames. IA Research focus: Object-oriented CMake. 2020 Blake Mulnix Ames, IA Research focus: Object-oriented CMake. 2020 **Jacob Brunton** Ames. IA

Research focus: Improving self-consistent field guesses.

2020

0	Branden Butler Research focus: CMake documentation and unit testing	Ames, IA 2019–Present	
0	Andres Garcia-Alejo	Ames, IA	
O	Research focus: Machine learning molecular structure	2018–2019	
0	Brodie Schroeder Research focus: Machine learning applications to quantum chemistry	Ames, IA 2017	
0	Michael Zott	Atlanta, GA 2015-2017	
Invited Presentations			
	2024		
16.	Ryan M. Richard . <i>PluginPlay: Enabling high- performance scientific software one module at a time</i> CECAM Flagship Workshop. Lausanne, Switzerland. February 2024.		
	2023		
15.	Ryan M. Richard . <i>NWChemEx: Designing a Computational Chemistry App Store for The Exascale</i> . APS March Meeting. Las Vegas, NV. March 2023.		
14.	Ryan M. Richard. NWChemEx: Challenges Faced in Designing an Electronic Structure Program for the Exascale. SIAM Conference on Computational Science and Engineering. Amsterdam, New Holland. The Netherlands. February 2023.		
	2022		
13.	Ryan M. Richard . Software design for the exascale era: The NWChemEx perspective. 2022 Midwe Regional Meeting for the American Chemical Society. October 2022.		
	2019		
12.	Ryan M. Richard . The SDE: A General Computational Chemistry Software Framework. Webinar. March 2019.	Blue Waters	
11.	Ryan M. Richard and Theresa L. Windus. <i>CMake Packaging Project: Reliable, Repro</i> <i>Reusable Build Systems Made Easy.</i> Spring NWCHEMEX Team Meeting. Richland, WA. M.		
10.	Ryan M. Richard . The Simulation Development Environment (SDE): A C++ Framework for Reusable Computational Chemistry. Society for Industrial and Applied Mathematics Conference on Computational Science and Engineering. Spokane, WA. February 2019.		
	2018		
9.	Ryan M. Richard . Applying Ab Initio Methods to Large Molecules. Ames Laboratory. Ames 2018.	s, IA. August	
	2017		
8.	Ryan M. Richard . Exascale Prototyping Via A Computational Chemistry App Store. 25 American Chemical Society Meeting. Washington, D.C. August 2017.	4^{th} National	
	2016		

- 7. **Ryan M. Richard**. *Pulsar: A Computational Chemistry App Store*. PSI4 Developers Meeting. University of Georgia. Athens, GA. November 2016.
- 6. **Ryan M. Richard**. *Forcemanll: Status and Possible Future Directions*. Q-CHEM Developers Meeting. University of Pennsylvania. Philadelphia, PA. August 2016.

- 5. **Ryan M. Richard**. *Understanding Chemistry Via Fragment Based Methods*. University of Tennessee. Knoxville, TN. February 2016.
- 4. **Ryan M. Richard**. *Understanding Chemistry Via Fragment Based Methods*. Youngstown State University. Youngstown, OH. February 2016.
- 3. **Ryan M. Richard**. *Understanding Chemistry Via Fragment Based Methods*. Tennessee Technological University. Cookeville, TN. January 2016.

2. **Ryan M. Richard**. *Understanding Chemistry Via Fragment Based Methods*. University of North Florida. Jacksonville, FL. November 2015.

2008.....

1. **Ryan M. Richard**, David W. Ball. *Thermodynamic Studies on the Potential Use of Boron- and/or Nitrogen-Containing Molecules as New High Energy Materials*. Ohio State University. Columbus, OH. February 2008.

Contributed Presentations

2019.....

- 21. **Ryan M. Richard** and Theresa L. Windus. *CMake Packaging Project: Reliable, Reproducible, and Reusable Build Systems Made Easy.* 257th National American Chemical Society Meeting. Orlando, FL. April 2019.
- Ryan M. Richard, Kristopher Keipert, Thom Dunning Jr., Robert Harrison, and Theresa L. Windus. The NWChemEx Simulation Development Environment - A General Computational Chemistry Framework. Poster Presentation. Society for Industrial and Applied Mathematics Conference on Computational Science and Engineering. Spokane, WA. February 2019.

2018.....

- 19. **Ryan M. Richard** and Theresa L. Windus. *Leveraging* NWCHEMEX's computational chemistry app store to design an exascale SCF. Oral Presentation. 256th National American Chemical Society Meeting. Boston, MA. August 2018.
- Ryan M. Richard, Brandon W. Bakr, and C. David Sherrill. Understanding the Many-Body Basis Set Superposition Error: Beyond Boys and Bernardi. Oral Presentation. 50th Midwest Theoretical Chemistry Conference. Chicago, IL. June 2018.

2017

17. **Ryan M. Richard**. Leveraging a Computational Chemistry App-Store for Both Teaching and Researching Chemistry. Oral Presentation. 254th National American Chemical Society Meeting. Washington, D.C. August 2017.

2016.....

- Ryan M. Richard, Ben Pritchard, and C. D. Sherrill. Leveraging a Computational Chemistry App Store to Compute High Accuracy Lattice Energies of Molecular Crystals. Oral Presentation. 252nd American Chemical Society National Meeting and Exposition. Philadelphia, PA. August 2016
- Ryan M. Richard, Brandon Bakr, and C. D. Sherrill. Understanding Basis Set Superposition Error in Many-Body Systems: Beyond Boys and Bernardi. Oral Presentation. 47th Southeast Theoretical Chemistry Association Annual Meeting. Tallahassee, FL. May 2016

14. **Ryan M. Richard**, Michael S. Marshall, Jean-Luc Brédas, Noa Marom, and C. D. Sherrill. CCSD(T)/CBS Benchmark Quality Ionization Potentials (IP) and Electron Affinities (EA). Poster Presentation. 2^{nd} Annual Postdoctoral Research Symposium. Atlanta, GA. October 2015.

- 13. **Ryan M. Richard**, C. D. Sherrill. *Massively Parallel Fragment Based Methods as Implemented in* Psi4. Oral Presentation. 250th American Chemical Society National Meeting and Exposition. Boston, Massachusetts. August 2015.
- Ryan M. Richard, Michael S. Marshall, Jean-Luc Brédas, Noa Marom, and C. D. Sherrill. CCSD(T)/CBS
 Benchmark Quality Ionization Potentials (IP) and Electron Affinities (EA). Poster Presentation. 46th
 Southeast Theoretical Chemistry Association Annual Meeting. Orlando, Florida. May 2015.

2014.....

 Ryan M. Richard, C. D. Sherrill. Achieving Chemical Understanding Via High Performance Computing. Oral Presentation. 1st Annual Postdoctoral Research Symposium. Atlanta, Georgia. September 2014.

- Ryan M. Richard, J. M. Herbert. Achieving the Complete-Basis Limit in Large Molecular Clusters: Computationally Efficient Procedures to Eliminate Basis-Set Superposition Error. Oral Presentation. 246th American Chemical Society National Meeting and Exposition. Indianapolis, Indiana. September 2013.
- 9. **Ryan M. Richard**, J. M. Herbert. *Achieving the Complete-Basis Limit in Large Molecular Clusters: Computationally Efficient Procedures to Eliminate Basis-Set Superposition Error*. Oral Presentation. 68th International Symposium on Molecular Spectroscopy. Columbus, Ohio. June 2013.
- 8. **Ryan M. Richard**, J. M. Herbert. Oral Presentation. 45^{th} Midwest Theoretical Chemistry Conference. Champaign, Illinois. May 2013.

2012.....

7. **Ryan M. Richard**, J. M. Herbert. *A Generalized Many-Body Expansion and a Unified View of Fragment-Based Methods in Electronic Structure Theory*. Poster presentation. 44th Midwest Theoretical Chemistry Conference. Madison, Wisconsin. June 2012.

2011.....

- 6. **Ryan M. Richard**, J. M. Herbert. *TDDFT Calculations of Transient IR Spectra of DNA*. Oral Presentation. 66th International Symposium on Molecular Spectroscopy. Columbus, Ohio. June 2011.
- Ryan M. Richard, J. M. Herbert. Time-Dependent Density- Functional Description of the ¹L_a State in Polycyclic Aromatic Hydrocarbons: Charge-Transfer State in Disguise?. Poster Presentation. 43rd Midwest Theoretical Chemistry Conference. South Bend, Indiana. June 2011.

2010

4. **Ryan M. Richard**, J. M. Herbert. *Determination of Exciton Length in Aqueous B-DNA Using Long-Range Time-Dependent Density Functional Theory (LRC-TDDFT)*. Oral Presentation. 65^{th} International Symposium on Molecular Spectroscopy. Columbus, Ohio, June 2010.

2008.....

3. **Ryan M. Richard**, D. W. Ball. *Thermodynamic Studies on Boron and Nitrogen Containing Spiropentanes*. Oral Presentation. American Chemical Society Meeting in Miniature. Oberlin College. Oberlin, OH. March 2008.

2. **Ryan M. Richard**, D. W. Ball. *G2*, *G3*, and Complete Basis Set Calculations on Small Hydroboranes and Mixed Boron-Nitrogen Containing Rings. American Chemical Society Meeting in Miniature. Notre Dame College. South Euclid, OH. March 2007. Winner of Best Undergraduate Presentation.

1. **Ryan M. Richard**, D. W. Ball. *New Potential High Energy Materials*. Cleveland State University Undergraduate Research Symposium. Summer 2007

Birds of a Feather Sessions

1. **Ryan M. Richard**. Best Practices for Multi-project CI/CD. NLIT (National Laboratory Information Technology) Summit 2024. Seattle, Washington. April 2024.

Position Papers

 Ryan M. Richard, T. L.Windus. Is a Language Barrier Impeding Development of Better Scientific Software?. ASCR (Advanced Scientific Computing Research) Workshop on the Science of Scientific-Software Development and Use. Virtual. December 13-15 2021.

Request for Information

1. **Ryan M. Richard**, Z. Crandall, H. v. Dam, N. Govind, K. Kowalski, T. L. Windus. Stewardship of Software for Scientific and High-Performance Computing. Office of Advanced Scientific Computing Research.

Review Articles

- 2. **Ryan M. Richard**, K. U. Lao, J. M. Herbert. *Aiming for Benchmark Accuracy with the Many-Body Expansion*. Accounts of Chemical Research. 47 (2014) 2828-2836.
- 1. L. D. Jacobson, **Ryan M. Richard**, K. U. Lao, J. M. Herbert. *Efficient Monomer-Based Quantum Chemistry Methods for Molecular and Ionic Clusters*. Annual Reports of Computational Chemistry. 9 (2013) 25-56.

Publications

2024.....

36. Z. Crandall, T. L. Windus, **Ryan M. Richard**. *CMaize: Simplifying inter-package modularity from the build up*. Journal of Chemical Physics. 160 (2024) 092502.

2023

- 35. V. Gavini ... **Ryan M Richard**...D. Perez. *Roadmap on electronic structure codes in the exascale era*. Modelling and Simulation in Materials Science and Engineering. 31 (2023) 063301. (30th author of 41)
- 34. Ryan M. Richard, K. Keipert, J. Waldrop, M. Keçeli, D. Williams-Young, R. Bair, J. Boschen, Zachery Crandall, Kevin Gasperich, Quazi Ishtiaque Mahmud, A. Panyala, E. Valeev, H. van Dam, W A. de Jong, T. L. Windus. *PluginPlay: Enabling exascale scientific software one module at a time*. The Journal of Chemical Physics. 158 (2023) 184801.

2022.....

33. B. Butler and **Ryan M. Richard**. *CMinx: A CMake Documentation Generator*. Journal of Open Source Software. 7 (2022) 4680.

- 20. **Ryan M. Richard**, K. U. Lao, J. M. Herbert. *Approaching the Complete-Basis Limit with a Truncated Many-Body Expansion*. The Journal of Chemical Physics. 139 (2013) 224102:1-11.
- 19. **Ryan M. Richard**, K. U. Lao, J. M. Herbert. *Achieving the CCSD(T) Basis-Set Limit in Sizable Molecular Clusters: Counterpoise Corrections for the Many-Body Expansion*. The Journal of Physical Chemistry Letters. 4 (2013) 2674-2680.
- 18. **Ryan M. Richard**, J. M. Herbert. *Many-Body Expansion with Overlapping Fragments: Analysis of Two Approaches*. Journal of Chemical Theory and Computation. 9 (2013) 1408-1416.

2012

- 17. **Ryan M. Richard**, J. M. Herbert. *A Generalized Many-Body Expansion and a Unified View of Fragment-Based Methods in Electronic Structure Theory*. The Journal of Chemical Physics. 137 (2012) 064113.
- 16. W. Morales, K. W. Street Jr., **Ryan M. Richard**, D. J. Valco. *Tribological Testing and Thermal Analysis of an Alkyl Sulfate Series of Ionic Liquids for Use as Aerospace Lubricants*. Tribology Transactions. 55 (2012) 815-821.

2011

- K. W. Street Jr., W. Morales, V. R. Koch, D. J. Valco, Ryan M. Richard, N. Hanks. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids. Tribology Transactions. 54 (2011) 911-919.
- 14. **Ryan M. Richard**, J. M. Herbert. *Time-Dependent Density- Functional Description of the* 1L_a *State in Polycyclic Aromatic Hydrocarbons: Charge-Transfer Character in Disguise?* Journal of Chemical Theory and Computation. 7 (2011) 1296-1306.

2009.....

- 13. **Ryan M. Richard**, D. W. Ball. *B3LYP Calculations on the Thermodynamic Properties of a Series of Nitroxycubanes Having the Formula C_8H_{8-x}(NO_3)_x (x=1-8). Journal of Hazardous Materials. 164 (2009) 1593-1600.*
- 12. **Ryan M. Richard**, D. W. Ball. Density Functional Calculations on the Thermodynamic Properties of a Series of Nitrosocubanes Having the Formula $C_8H_{8-x}(NO)_x$ (x=1-8). Journal of Hazardous Materials. 164 (2009) 1552-1555.

2008

- 11. **Ryan M. Richard**, D. W. Ball. *Ab Initio Calculations on the Thermodynamic Properties of Azaspiropentanes*. The Journal of Physical Chemistry A. 112 (2008) 2618-2627.
- 10. **Ryan M. Richard**, D. W. Ball. *Enthalpies of Formation of Nitrobuckminsterfullerenes: Extrapolation to* $C_{60}(NO_2)_{60}$. Journal of Molecular Structure: THEOCHEM. 858 (2008) 85-87.
- 9. **Ryan M. Richard**, D. W. Ball. *Ab Initio Calculations on the Thermodynamic Properties of Spiropentane and its Boron-Containing Derivatives*. Journal of Molecular Structure: THEOCHEM. 851 (2008) 284-293.
- 8. **Ryan M. Richard**, D. W. Ball. *Ab Initio Calculations on the Thermodynamic Properties of Azaborospiropentanes*. Journal of Molecular Modeling. 14 (2008) 871-878.
- 7. **Ryan M. Richard**, D. W. Ball. *G2, G3, and Complete Basis Set Calculations on the Thermodynamic Properties of Triazane*. Journal of Molecular Modeling. 14 (2008) 29-37.
- 6. **Ryan M. Richard**, D. W. Ball. *G2, G3, and Complete Basis Set Calculations of the Thermodynamic Properties of Cis- and Trans- Triazene*. Journal of Molecular Modeling. 14 (2008) 21-27.

5. **Ryan M. Richard**, D. W. Ball. *G2*, *G3*, and Complete Basis Set Calculations of the Thermodynamic Properties of Aminoborane, Diaminoborane, and Triaminoborane. Journal of Molecular Structure: THEOCHEM. 823 (2007) 6-15.

- 4. **Ryan M. Richard**, D. W. Ball. *B3LYP, G2, G3 and Complete Basis Set Calculations of the Thermodynamic Properties of Small Cyclic and Chain Hydroboranes*. Journal of Molecular Structure: THEOCHEM. 814 (2007) 91-98.
- 3. **Ryan M. Richard**, D. W. Ball. *G2*, *G3*, and Complete Basis Set Calculations of Optimized Geometries, Vibrational Frequencies, and Thermodynamic Properties of Azatriboretidine and Triazaboretidine. Journal of Molecular Structure: THEOCHEM. 806 (2007) 165-170.
- 2. **Ryan M. Richard**, D. W. Ball. *Optimized Geometries, Vibrational Frequencies, and Thermochemical Properties of Mixed Boron- and Nitrogen-Containing Three-Membered Rings*. Journal of Molecular Structure: THEOCHEM. 806 (2007) 113-120.

2006.....

1. **Ryan M. Richard**, D. W. Ball. *G2*, *G3*, and Complete Basis Set Calculations of the Thermodynamic Properties of Boron-Containing Rings: cyclo-CH₂BHNH, 1,2-, and 1,3-cyclo-C₂H₄BHNH. Journal of Molecular Structure: THEOCHEM. 776 (2006) 89-96.