Preinforme

"Coctelera"

Laboratorio de Microcontroladores (86.07)

Profesor editor: CAMPIGLIO, Guillermo Carlos

Lamond, Wara Martin (Padron 96.866) Alcaraz, Gonzalo (Padrón 93.874) U.B.A FACULTAD DE INGENIERIA ELECTRONICA

"Segundo Cuatrimestre del 2016"

${\bf \acute{I}ndice}$

1.	Introducción	1
2.	Objetivos	1
3.	Funcionamiento	1
	3.1. Display	2
	3.2. Electroválvulas	3
	3.3. Impresora	3
	3.4. Microcontrolador	3

	3.5. Sensor de Proximidad	3
	3.6. Pulsador STOP	3
4.	Hardware a utilizar	4
5.	Opcionales	4
6.	Factores Críticos de éxito	4

1. Introducción

En el siguiente pre-informe, se sentarán las bases del funcionamiento y alcance del trabajo práctico de la materia Laboratorio de Microcontroladores (86.07).

Este será una coctelera capaz de realizar combinaciones de hasta 3 bebidas distintas de forma manual o preestablecidas.

2. Objetivos

Se realizará en el transcurso de este cuatrimestre una coctelera capaz de mezclar 3 bebidas distintas, en proporciones definidas por el usuario.

Se utilizará un teclado numérico para seleccionar los mililitros requeridos, o los porcentajes según se requiera. Cada paso sera visualizado mediante un display LCD de dos lineas.

Al finalizar, se podrá imprimir un ticket que muestre el precio y las características de la bebida realizada así como también un informe de las ganancias del día y las bebidas que necesiten ser rellenadas.

Por último, se adicionará un botón de emergencia en caso de necesidad, para poder cortar el procedimiento instantáneamente.

3. Funcionamiento

Figura 1: Diagrama en bloques de la Coctelera

Figura 2: Diagrama de Flujo de Operación

3.1. Display

Se visualizará según corresponda:

- Nombre del usuario.
- Modo de funcionamiento:
 - 1. **Manual:** Se podrá seleccionar en tiempo real, los mililitros o porcentajes de las bebidas a utilizar.
 - 2. **Preestablecido:** En este caso ya están preestablecidos las combinaciones y los porcentajes de las bebidas a utilizar.

- 3. **Personal:** Se accede a las bebidas guardadas por el usuario respetando mezcla y porcentajes.
- Porcentaje de realización.
- Graduación alcohólica.

3.2. Electroválvulas

Se investigará la más adecuada para la coctelera. Por el momento se está evaluando la posibilidad de usar electroválvulas de lavarropas (220V).

3.3. Impresora

Se utilizará una impresora de taxímetro para imprimir el precio y nombre de la bebida, la graduación alcohólica, el usuario responsable y logo de la empresa.

3.4. Microcontrolador

Se utilizará un microcontrolador de la familia AVR, programado en Assembler. (A definir).

3.5. Sensor de Proximidad

Se usará un sensor de proximidad para detectar la presencia del vaso, lo que evitará que el dispositivo funcione de no encontrarse el mismo. A su vez, esto permitirá detener el funcionamiento si se retira antes de finalizar el llenado.

3.6. Pulsador STOP

En caso de algún desperfecto o equivocación del usuario, se adicionará un botón de STOP para detener en caso de emergencia, el procedimiento instantáneamente.

4. Hardware a utilizar

El grupo cuenta con el programador de microcontroladores utilizado en la materia Ïntroducción a la ingeniería electrónica", el display LCD, la impresora y el teclado numérico.

Se deberá investigar el microcontrolador mas adecuado, junto con las electroválvulas a utilizar, además de un sensor de proximidad apropiado.

5. Opcionales

Los siguientes items son opcionales que, luego de verificar la funcionalidad de todo lo anterior, se irán agregando mientras alcance el tiempo:

- 1. Visualización de la hora en el display LCD.
- 2. Sensor infrarrojo para evitar derrame de líquido.
- 3. Alarma por ingesta excesiva de alcohol.
- 4. Sensor de alcoholemia.
- 5. Contraseña para poder utilizar la coctelera.
- 6. Control mediante bluetooth.

6. Factores Críticos de éxito

El componente a tener más en cuenta es la impresora, se deberá realizar los drivers en assambler lo cual puede llegar a tomar un tiempo considerable además del circuito necesario para hacerla funcionar. La corriente necesaria es relativamente alta (entre 1A y 3A), dato a tener en cuenta al realizar la fuente de tensión.

El segundo componente mas complicado son las electroválvulas, dependiendo las que se consigan se deberá conectarlas a 220V lo cual genera tanto una protección particular del circuito, como los driver necesarios para su correcto control.