Contexte et objectifs du travail d'Aynaz Adl Zarrabi

La presbyacousie

- Définition : perte d'audition liée à l'âge (> 50 ans)
- Effets:
- augmentation des seuils d'audibilité
- distortion des signaux auditifs perçus (perte de sélectivité fréquentielle, recrutement de sonie)

La presbyacousie

Caractérisation de la perte auditive d'une personne en fonction de ses seuils d'audibilité

Audiogramme moyen pour une perte de niveau5 (Humes et al 2021)

La presbyacousie

- Effets **néfastes sur la perception et la compréhension de la parole** (difficulté à reconnaître des mots, à comprendre des phrases)
- Ces effets sont mesurés par des tests subjectifs de répétition de mots (tests d'intelligibilité) :
 on demande au patient de répéter X mots, et on compte le % de mots correctement identifiés
- Les tests subjectifs sont lourds (temps, fatigue du sujet), ils ne peuvent être conduits autant de fois que souhaité (ex. pour trouver le meilleur réglage d'une audioprothèse)

Projet CarlW (Archean Technologies & IRIT)

• <u>Idée</u> : utiliser un simulateur de perte auditive ET un moteur de reconnaissance automatique de la parole pour « remplacer le patient » dans les tests de répétition de mots

- Nous avons fait plusieurs preuves de concept qui montrent :
- 1. Qu'il y a une relation significative (corrélation positive) entre les scores automatiques obtenus via CarlW et les scores obtenus par de « vrais » patients lors de tests de répétition de mots
- Que CarlW peut être utilisé pour affiner les réglages audioprothétiques pour un patient donné (i.e., trouver un meilleur réglage qu'un réglage « standard »)

Objectifs à long terme

- Les preuves de concept effectuées jusqu'à présent ne concernent que les aspects quantitatifs des performances des patients en termes de perception de la parole (VD = % de mots correctement identifiés)
- □ Question de recherche à long terme : **est-il possible de prédire aussi les erreurs de perception de la parole effectuées par les patients ?** (Ex. « Le bateau » répété « Le barreau »). Autrement dit, **passer du quantitatif au qualitatif**

Objectifs à long terme

- Pour effectuer cette preuve de concept, les étapes suivantes sont envisagées :
- 1. Démontrer qu'il existe une relation significative entre les profils auditifs de patients (les audiogrammes) simulés et les erreurs de « perception » commises par le moteur de reconnaissance automatique de la parole
- 2. Identifier des profils (audiogrammes) « typiques » pour des erreurs de perception particulières
- 3. Simuler ces pertes (ces audiogrammes typiques) sur des stimuli de parole et les faire écouter à des sujets normo-entendants pour vérifier qu'ils commettent les erreurs de perception attendues

Objectifs d'Aynaz

Projet CarlW (Archean Technologies & IRIT)

attendues

- Pour effectuer cette preuve de concept, les étapes suivantes sont envisagées :
- Démontrer qu'il existe une relation significative entre les profils auditifs de patients (les audiogrammes) simulés et les erreurs de « perception » commises par le moteur de reconnaissance automatique de la parole
- 2. Identifier des profils (audiogrammes) « typiques » pour des erreurs de perception particulières
- 3. Simuler ces pertes (ces audiogrammes typiques) sur des stimuli de parole et les faire écouter à des sujets normo-entendants pour vérifier qu'ils commettent les erreurs de perception

- 1000 audiogrammes (vecteurs de 12 seuils auditifs, de .125 à 10 kHz) ont été générés (attention, les valeurs des seuils ne sont pas totalement indépendantes les unes des autres au sein d'un même audiogrammes)
- Les 1000 audiogrammes ont été simulés sur 16 fichiers audio contenant les 16 consonnes du français entourées par la voyelle [a] (ex. [apa], [afa], etc.)
- Les 16 000 fichiers résultant de ce traitement ont été donnés à un moteur de reconnaissance automatique de la parole qui devait choisir entre les 16 possibilités ([afa], [apa], etc.)

- Pour chaque audiogramme et chacun des stimuli attendus (ex. « apa »), nous avons comme information :
- Le mot reconnu (ex. « afa »)
- Le fait que le mot reconnu était correct ou non (0 ou 1, 0 dans notre exemple)
- Le cas échéant, l'erreur phonétique (p□f dans notre exemple)
- Le cas échéant, la ou les erreur(s) phonologique(s) (+continu dans notre exemple)

- (Aparté : les traits phonologiques)
- Les 16 consonnes du français s'opposent les unes aux autres en fonction de 8 traits phonologiques binaires (continu, nasal, voisé...).
- Certaines consonnes ne s'opposent que par un seul trait (p□b : -voisé devient + voisé), et pour d'autres plusieurs traits sont différents. Donc pour une seule erreur phonétique (ex. R□f) il peut y avoir plusieurs erreurs phonologiques

- Pour chaque audiogramme et chacun des stimuli attendus (ex. « apa »), nous avons comme information :
- Le mot reconnu (ex. « afa »)
- Le fait que le mot reconnu était correct ou non (0 ou 1, 0 dans notre exemple)
- Le cas échéant, l'erreur phonétique (p□f dans notre exemple)
- Le cas échéant, la ou les erreur(s) phonologique(s) (+continu dans notre exemple)

De plus, pour chaque audiogramme nous avons comme information le % de mots reconnus (x / 16). Ceci peut être important pour filtrer les résultats en ne conservant que les audiogrammes pour lesquels les performances du moteurs de reconnaissance étaient suffisantes (ex. au moins 50%). Sinon, la pertinence des erreurs phonétiques ou phonologiques observées peut être questionnée.

Résumé de travail sur le projet de CarlW

Aynaz Adl Zarrabi

frequence

Objectifs

- 1. La relation significative entre les audiogrammes et chaque erreur
- 2. Identifier l'audiogramme le plus typique pour chaque erreur (phonème cible et phonème reconnu) et chaque trait phonologique (ajouté enlevé)
- 3. Prendre ces audiogrammes pour mettre dans la machine de reconnaissance de la parole (qui va donner des audios de chaque mot et voir est-ce qu'on fait les mêmes erreurs de perception

Simulation presbyacousie(de la perte auditive du / de la patient(e) sur des fichiers audio de parole)

Machine de reconnaissance automatique de la parole (pour les malentendants)

Données brutes

erreurs_phono	phoneme_correct	phoneme_reconnu	phoneme_cible	seuil_10000	seuil_8000	seuil_6000	seuil_4000	seuil_3000	seuil_2000	seuil_1500	seuil_1000	seuil_750	seuil_500	seuil_250	seuil_125	id_audiogramme	
[+sonant#+continu#+voise#- coronal#+haut#+arrie	0	R	t	15	0	20	40	55	35	25	20	0	10	0	0	1	1
NaN	1	b	b	15	0	20	40	55	35	25	20	0	10	0	0	1	2
[-haut#+anterieur]	0	z	Z	15	0	20	40	55	35	25	20	0	10	0	0	1	3
NaN	1	m	m	15	0	20	40	55	35	25	20	0	10	0	0	1	4
[-haut#+anterieur]	0	S	S	15	0	20	40	55	35	25	20	0	10	0	0	1	5
	***				***		***		***	***				***	***	***	
[+continu]	0	f	р	15	30	30	55	65	50	65	65	85	90	90	90	1000	15996
[-voise]	0	S	Z	15	30	30	55	65	50	65	65	85	90	90	90	1000	15997
[-voise]	0	f	v	15	30	30	55	65	50	65	65	85	90	90	90	1000	15998
NaN	1	s	S	15	30	30	55	65	50	65	65	85	90	90	90	1000	15999
[-sonant#-haut#-arriere#+anterieur]	0	٧	R	15	30	30	55	65	50	65	65	85	90	90	90	1000	16000

16000 rows x 17 columns

Réalisé les différentes méthodes de preprocessing (one hot encoding, Caractéristiques des fonctionnalités) pour que les données devient analysable et lisible pour ML.

Données après les préparations

Audiogramme: numero des audiogrammes 1000

16 Logatoms(consonnes)

Frequence: 125 Hz -10000 Hz

Seuil d'audiometrique: 0-90 dBL

Audiogramme:moins d'intensité, plus de fréquence

Erreur fait: Z->b

Categorie: 16 traits phonologiques

L'idée de faire les audiogrammes moyennes de chaque ajout ou suppression de trait phonologique

+nasa	+haut	+coronal	+continu	+arriere	+anterieur	frequence
13.076923076923077	16.41176470588235	12.125984251968504	22.587719298245613	15.68359375	17.88235294117647	0.125
14.935897435897436	18.15686274509804	16.22047244094488	29.05701754385965	17.08984375	22.84313725490196	0.25
16.794871794871796	18.31372549019608	22.322834645669293	33.70614035087719	16.66015625	26.254901960784316	0.5
20.384615384615383	20.058823529411764	29.37007874015748	39.10087719298246	18.6328125	32.25490196078432	0.75
21.7948717948718	20.823529411764707	34.44881889763779	39.25438596491228	19.765625	36.21568627450981	1.0
31.08974358974358	24.15686274509804	33.93700787401575	37.89473684210526	24.4140625	41.78431372549019	1.5
40.0	28.07843137254902	31.5748031496063	39.89035087719298	30.15625	49.490196078431374	2.0
44.23076923076923	26.529411764705884	28.89763779527559	40.43859649122807	29.8046875	52.90196078431372	3.0
48.14102564102564	28.647058823529413	27.55905511811024	41.97368421052632	31.66015625	54.45098039215687	4.0
44.80769230769231	28.58823529411765	24.33070866141732	40.76754385964912	30.8984375	51.588235294117645	6.0
46.7948717948718	31.19607843137255	26.496062992125985	39.42982456140351	33.18359375	49.372549019607845	8.0
47.11538461538461	31.686274509803923	29.566929133858267	38.70614035087719	33.61328125	48.74509803921568	10.0

Pour trouver les audiogrammes plus typiques de chaque erreurs on a regardé aussi des moyennes de fréquences, qu'il ne donnent pas les bonnes résultats.

Filtrage des données

df_pourcentage=pourcentage.loc[(pourcentage['pourcentage'] >50)& (pourcentage['phoneme_correct'] == '1')]
df_pourcentage

	id_audiogramme	phoneme_correct	pourcentage
4	10	1	58.333333
6	100	1	83.333333
10	102	1	91.666667
18	106	1	66.666667
20	107	1	58.333333

1694	90	1	66.666667
1712	91	1	58.333333
1764	94	1	91.666667
1785	95	1	75.000000
1857	99	1	66.666667

Création une base de données comme la base de données de Phonème

	id_audiogramme	0.125	0.25	0.5	0.75	1.0	1.5	2.0	3.0	4.0	6.0	8.0	10.0	mot
1	123	10.0	20.0	15.0	25.0	25.0	25.0	0.0	0.0	10.0	25.0	25.0	25.0	RS
2	26	0.0	10.0	20.0	30.0	30.0	20.0	0.0	5.0	10.0	30.0	15.0	25.0	RS
3	275	25.0	10.0	25.0	30.0	35.0	25.0	0.0	15.0	10.0	20.0	40.0	55.0	RS
4	281	25.0	15.0	30.0	20.0	30.0	30.0	5.0	0.0	10.0	30.0	15.0	10.0	RS
5	600	5.0	15.0	10.0	15.0	35.0	20.0	5.0	0.0	20.0	15.0	10.0	25.0	RS

645	99	10.0	0.0	15.0	0.0	20.0	5.0	10.0	30.0	25.0	0.0	15.0	20.0	nm
646	148	10.0	30.0	40.0	50.0	30.0	30.0	20.0	35.0	35.0	50.0	30.0	45.0	nv
647	338	30.0	20.0	40.0	35.0	35.0	10.0	10.0	25.0	0.0	5.0	10.0	15.0	nz
648	626	5.0	25.0	20.0	25.0	25.0	5.0	15.0	25.0	5.0	0.0	10.0	10.0	nz
649	388	35.0	15.0	30.0	45.0	40.0	50.0	25.0	45.0	60.0	70.0	75.0	65.0	pf

Jeu de données déséquilibres (taille de chaque classe d'erreur dans l'ensemble d'audiogrammes)

Les variables explicative et à expliquer

٠	0.125	0.25	0.5	0.75	1.0	1.5	2.0	3.0	4.0	6.0	8.0	10.0
1	10	20	15	25	25	25	0	0	10	25	25	25
2	0	10	20	30	30	20	0	5	10	30	15	25
3	25	10	25	30	35	25	0	15	10	20	40	55
4	25	15	30	20	30	30	5	0	10	30	15	10
5	5	15	10	15	35	20	5	0	20	15	10	25
6	10	15	30	20	30	40	15	25	40	55	65	45
7	10	15	30	40	35	30	30	50	45	60	60	60
8	10	5	25	30	35	50	35	30	45	55	50	70
9	20	10	20	10	25	20	0	15	35	15	10	10
10	0	10	20	35	45	50	30	40	45	25	15	10
11	30	15	20	20	40	35	15	30	45	40	60	55
12	30	15	25	20	35	40	20	25	35	25	10	0
13	35	10	30	25	40	40	15	25	40	20	10	15
14	35	15	30	45	40	50	25	45	60	70	75	65
15	35	20	20	35	55	30	20	30	35	20	30	20
16	5	20	30	35	55	55	40	30	45	35	55	45
17	0	20	40	35	50	30	50	40	30	20	35	30

Variable explicative,X

id_audiogramme	÷	mot ÷
	9	bd
	95	bd

Variable à expliquer \rightarrow Y \rightarrow les audiogrammes (fonctionnelles) Variable explicative \rightarrow X \rightarrow les groupes d'erreur

Code R pour construire un fdata

```
seuil <- as.matrix(df) #absorp
row.names(seuil) = c(1:163)
dim(seuil) #453 12
frequence <- c(0.125,0.250,0.500,0.750,1.000,1.500,2.000,3.000,4.000,6.000,8.000,10.000) #tt
rangfreq<-c(0.125,10.000)
rangfreq
main = c("audiogram curves")
xlab = c("frequence")
ylab = c("seuil")
names=list(main='audiogram curves',xlab='frequence',ylab='seuil')
```

```
datacarlw=fdata(seuil, argvals = frequence,
rangeval = rangfreq, names = names, fdata2d =
TRUE)

absorp1<-datacarlw

tt = absorp1[["argvals"]]

X = absorp1[ind, ]</pre>
```

Plots avec fdata.deriv pour toutes les erreurs

audiogram curves

audiogram curves

Plot fds pour une erreur (b -->R)


```
df_org <- read.csv("pivot.csv",check.names = FALSE)
df_org=df_org[,-1]
x=c(1:12)
bR=df_over[df_org$mot == "bR",]
bR=bR[,-13]
bR=transpose(bR)
colnames(bR)=c(1:45)
bR_fds=fds(x,bR,xname =
"frequence",yname="audiogramme")
plot(bR_fds)</pre>
```

Visualisation pour chaque trait (voise +) avec l'aide de fda et sampling

frequence ‡	103 ‡	104	105	111 ‡	117 ‡	12 ‡	122 ‡	125	128	131 ‡	132	133 ‡	140	143	144	145
0.125	10	10	10	10	10	0	10	10	10	10	10	10	10	10	10	10
0.250	10	10	10	15	15	0	20	20	20	20	20	20	25	30	30	30
0.500	20	20	20	20	35	5	15	20	25	30	30	40	45	15	15	30
0.750	10	20	5	10	45	0	15	20	0	5	5	35	45	0	25	15
1.000	0	5	0	5	50	10	5	5	5	15	5	20	65	10	25	5
1.500	10	15	20	0	35	10	15	10	15	35	10	30	50	5	20	10
2.000	5	10	35	0	40	30	30	10	15	55	15	30	60	10	35	30
3.000	25	30	45	10	40	25	5	15	5	30	35	5	55	25	15	30
4.000	35	45	45	25	35	10	0	0	10	50	45	0	65	5	0	10
6.000	30	60	55	25	10	10	15	10	0	50	25	20	85	5	15	30
8.000	35	60	30	5	10	0	20	25	0	60	0	25	60	15	10	45
10.000	20	60	15	20	30	10	5	35	10	55	20	25	40	10	20	20

