Name:

Circle the most appropriate response for each.

Module 1 Computation

- 1. Let z = 4 3i. Find z^{-1} .
 - A. $\frac{4}{25} + \frac{3}{25}i$
 - B. $-\frac{4}{25} + \frac{3}{25}i$
 - C. $\frac{3}{25} \frac{4}{25}i$
 - D. None of these.
- 2. Simplify $\sqrt{2+3i-i(5+i\sqrt{2})}$.
 - A. $-5\sqrt{2} 3i$
 - B. $7\sqrt{2} 1 i$
 - C. $2\sqrt{2} + 2i$
 - D. None of these.
- 3. Compute |5 12i|
 - A. -7
 - B. 13
 - C. 17
 - D. None of these.
- 4. Find the exponential form of $\sqrt{3} i$.
 - A. $2e^{-i\pi/6}$
 - B. $3e^{-i\pi/3}$
 - C. $4e^{i\pi/4}$
 - D. None of these.
- 5. Compute $(2 2\sqrt{3}i)^{-3}$.
 - A. $\frac{1}{16}i$
 - B. $\frac{1}{4} \frac{1}{3}i$
 - C. $-\frac{1}{64}$
 - D. None of these.

Module 1 Knowledge

- 6. The product (0,1)(0,y) simplifies to (-y,0).
 - A. True
 - B. False
- 7. The additive inverse of x + yi is $\frac{x}{x^2+y^2} i\frac{y}{x^2+y^2}$.
 - A. True
 - B. False
- 8. The graph of $\{z: |z+2-i|=3\}$ is a parabola.
 - A. True
 - B. False
- 9. $|Re(z)| \leq |z|$ for all complex z.
 - A. True
 - B. False
- 10. Arg(zw) = Arg(z) + Arg(w) for all nonzero complex z, w.
 - A. True
 - B. False

Module 1 Proofs

Choose at most one of the following exercises to submit to the instructor.

- 11. The statement $Im(z) = \frac{z+\overline{z}}{2i}$ is false. Fix the formula and prove that your fixed formula is true.
- 12. Let w, z be nonzero complex numbers. Prove that the multiplicative inverse of wz is the product of the multiplicative inverse of w with the multiplicative inverse of z.
- 13. Prove that for any value of $arg(\frac{3}{z})$, there exists an equal value for -arg(z).