Experiments

Overall Performance

Weibo						Twitter15						Twitter16					
Method	Class	Acc.	Prec.	Rec.	$ F_1 $		1	l NI	F	т			1	l NI	F	т	
DTC	F T	0.831	0.847	0.815	0.831 0.819	Method	Acc.	$egin{array}{c c} N \ \hline F_1 \end{array}$	F_1	F_1	$\dfrac{ ext{U}}{F_1}$	Method	Acc.	$egin{array}{c c} N \ \hline F_1 \end{array}$	F_1	F_1	$rac{ ext{U}}{F_1}$
SVM-RBF	F	0.879	0.777	0.656		DTC	0.454	0.415	0.355	0.733	0.317	DTC	0.473	0.254	0.080	0.190	0.482
	T	1	0.579	0.708	0.615	SVM-RBF	0.318	0.225	0.082	0.455	0.218	SVM-RBF	0.553	0.670	0.085	0.117	0.361
SVM-TS	F T	0.885	0.950 0.124	0.932 0.047	0.938 0.059	SVM-TS	0.544	0.796	0.472	0.404	0.483	SVM-TS	0.574	0.755	0.420	0.571	0.526
RvNN	F	0.908	0.912	0.897		SVM-TK	0.750	0.804	0.698	0.765	0.733	SVM-TK	0.732	0.740	0.709	0.836	0.686
	I E		0.904	0.918 0.957 0.876	0.919	RvNN	0.723	0.682	0.758	0.821	0.654	RvNN	0.737	0.662	0.743	0.835	0.708
PPC_RNN+CNN	T	0.916				PPC_RNN+CNN	0.477	0.359	0.507	0.300	0.640	PPC_RNN+CNN	0.564	0.591	0.543	0.394	0.674
Bi-GCN	F T	0.961	0.961 0.962	0.964 0.962	0.961 0.960	Bi-GCN	0.886	0.891	0.860	0.930	0.864	Bi-GCN	0.880	0.847	0.869	0.937	0.865

- Bi-GCN is significantly superior to the RvNN method, RvNN only uses the hidden feature vector of all the leaf nodes so that it's heavily impacted by information of the latest post (lack of information such as comments, and just follow the former posts).
- Root feature enhancement of Bi-GCN to pay attention to the information of the source posts.

ExperimentsAblation Study

- All variants outperform without root feature enhancement.
- Indicates that the source posts plays an gimportant role in rumor detection.
- TD-GCN and BU-GCN can't always achieve better results that UD-GCN, but Bi-GCN is always superior to them.
- Implies the importance to simultaneously consider both top-down and bottom-up representations.

