Applying Convolutional Neural Network for Network Intrusion Detection

Vinayakumar R¹, K.P Soman¹ and Prabaharan Poornachandran²

¹Centre for Computational Engineering and Networking (CEN), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham,

Amrita University, India.

²Center for Cyber Security Systems and Networks, Amrita School of Engineering, Amritapuri, Amrita Vishwa Vidyapeetham,

Amrita University, India.

Outline

- Introduction
- Methodology
- Description of the data set and Results
- Summary
- Future Work
- References

Introduction

- Information and communication technology (ICT) systems are essential for today's rapidly growing powerful technologies. At the same time, ICT system has been encountered by various attacks.
- Network intrusion detection system (NIDS) is a tool used to detect and classify the network breaches dynamically in ICT systems in both academia and industries.

Methodology

 Feature sets of connection records are passed to deep networks such as Multi-layer perceptron, convolutional neural network (CNN) and hybrid of CNN and recurrent neural network (RNN) and its variants such as long short-term memory, gated recurrent unit

 Figure 1. Architecture of CNN and its hybrid network, all layers and its connections are not shown

Description of the data set and Results

Network intrusion detection data sets: DARAPA / KDDCup '99' [1] and NSL-KDD [2].

Table 1. Description of Data set

	Full data set	10 % data set						
Attack category	KDDCup 99	KDDC	Cup 99	NSL-KDD				
	Train	Train	Test	Train	Test			
Normal	972780	97278	60593	67343	9710			
DOS	3883370	391458	229853	45927	7458			
Probe	41102	4107	4166	11656	2422			
r2l	1126	1126	16189	995	2887			
u2r	52	52	228	52	67			
Total		494021	311029	125973	22544			

Algorithm	Accuracy	Precision	Recall	F-score	
CNN 1 layer	0.999	0.999	0.999	0.999	
CNN 2 layer	0.998	0.999	0.998	0.999	
CNN 3 layer	0.801	0.804	0.994	0.889	
CNN 1 layer-LSTM	0.94	0.998	0.928	0.961	
CNN 2 layer-LSTM	0.997	0.999	0.996	0.998	
CNN 3 layer-LSTM	0.964	0.999	0.956	0.977	
CNN 1 layer-GRU	0.922	0.995	0.907	0.949	
CNN 2 layer-GRU	0.981	0.999	0.976	0.988	
CNN 3 layer-GRU	0.936	0.999	0.921	0.958	
CNN 1 layer-RNN	0.821	0.999	0.778	0.875	
CNN 2 layer-RNN	0.973	1.0	0.967	0.983	
CNN 3 layer-RNN	0.938	0.997	0.926	0.960	

Table 2. Summary of test results for KDDCup '99' in classifying the connection records as either normal or attack

Algorithm	Normal		Dos		Probe		u2r		r21		Accuracy
	TPR	FPR	TPR	FPR	TPR	FPR	TPR	FPR	TPR	FPR	Accuracy
MLP 8	0.760	0.168	0.901	0.318	0.470	0.012	0.0	0.0	0.0	0.0	0.684
CNN-LSTM 8	0.998	0.092	0.766	0.022	0.873	0.052	0.238	0.0	0.784	0.01	0.878
CNN 8	0.998	0.117	0.801	0.026	0.825	0.052	0.104	0.0	0.556	0.013	0.857
MLP 4	0.999	0.530	0.55	0.044	0.464	0.002	0.0	0.0	0.0	0.0	0.667
CNN-LSTM 4	0.999	0.082	0.862	0.062	0.863	0.067	0.209	0.005	0.248	0.002	0.846
CNN 4	0.997	0.104	0.831	0.079	0.712	0.063	0.03	0.0	0.326	0.007	0.827
MLP 4	0.871	0.079	0.927	0.17	0.553	0.011	0.0	0.0	0.0	0.0	0.885
CNN 4	1.0	0.015	0.943	0.145	0.607	0.040	0.0	0.0	0.306	0.009	0.852
CNN-LSTM 4	1.0	0.031	0.916	0.166	0.591	0.032	0.328	0.002	0.283	0.003	0.839

Table 3. Summary of test results for minimal feature sets of KDDCup '99' in multi class classification setting

Algorithm	Normal		Dos		Probe		u2r		r21		Acqueocy
	TPR	FPR	TPR	FPR	TPR	FPR	TPR	FPR	TPR	FPR	Accuracy
MLP 6 layer	0.996	0.081	0.941	0.040	0.794	0.002	0.0	0.0	0.001	0.0	0.923
CNN 1 layer	0.999	0.053	0.941	0.003	0.887	0.011	0.0	0.0	0.654	0.003	0.944
CNN 2 layer	0.999	0.020	0.974	0.002	0.969	0.013	0.286	0.0	0.636	0.0	0.970
CNN 3 layer	0.999	0.022	0.975	0.003	0.925	0.012	0.343	0.0	0.633	0.0	0.970
CNN 1 layer-LSTM	0.998	0.054	0.942	0.007	0.882	0.012	0.0	0.0	0.530	0.002	0.941
CNN 2 layer-LSTM	0.999	0.028	0.974	0.008	0.781	0.005	0.0	0.0	0.712	0.002	0.970
CNN 3 layer-LSTM	0.997	0.006	0.995	0.014	0.868	0.004	0.0	0.0	0.745	0.001	0.987
CNN 1 layer-GRU	0.998	0.073	0.941	0.009	0.857	0.003	0.171	0.001	0.347	0.001	0.934
CNN 2 layer-GRU	0.999	0.031	0.972	0.005	0.873	0.004	0.0	0.0	0.724	0.001	0.969
CNN 3 layer-GRU	0.999	0.013	0.991	0.002	0.873	0.011	0.0	0.0	0.484	0.001	0.977
CNN 1 layer-RNN	0.987	0.073	0.941	0.017	0.861	0.005	0.243	0.0	0.312	0.001	0.931
CNN 2 layer-RNN	0.995	0.031	0.974	0.014	0.760	0.005	0.0	0.0	0.693	0.0	0.967
CNN 3 layer -RNN	0.999	0.027	0.974	0.004	0.912	0.007	0.029	0.0	0.674	0.001	0.969

Table 3. Summary of test results for KDDCup '99' in categorizing attacks to their corresponding categories

Summary and Future work

- The convolutional neural network (CNN) is proposed for intrusion detection by modeling network traffic events of TCP/IP packets.
- For comparative study, MLP network is used.
- CNN and hybrid of CNN and RNN and its variants performed well in comparison to the MLP network.
- The attacks to ICT systems and networks are diverse and continuously evolving gradually. Thus, the efficacy of the proposed mechanism has to be verified on the recently release network intrusion detection data set.

References

[1]http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[2] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, "A detailed analysis of the kdd cup 99 data set," in Computational Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium on. IEEE, 2009, pp. 1–6