Complementos de Análise Matemática B

MIECOM, MIEEIEC

Exame da época Especial 2011/12

Duração: 2 horas (1ª + 2ª Parte)

Nome:	N.°	Curso:
Realização de (assinalar só uma das opções): 1ª Parte (1 hora)	2ª Parte (1 hora)	$1^a + 2^a$ Parte (2 horas)
Indique todos os cálculos que efectuar.		
1ª Parte		
1. cotação: a) 1,50 valores, b) 3,50 valores		
a) Comente, justificando adequadamente, a afirmação: "uma EDO linear de primeira ordem não pode ser nunca uma EDO de variáveis separáveis";		
b) Determine a solução geral da seguinte EDO:		
$x\frac{dy}{dx} - \frac{1}{2x}y = 4xe^{-1/(2x)}\cot x$.		

- 2. cotação: a) 1,50 valores, b) 3,50 valores
- a) Considere a EDO $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$. Determine a sua solução geral sabendo que e^{-x} é uma solução da EDO;
- **b**) Determine a solução geral de $\frac{d^2y}{dx^2} y = e^{-x} + xe^x 1$, sabendo que as funções e^x e e^{-x} são soluções da equação homogénea associada.

Indique todos os cálculos que efectuar.

2ª Parte

- 3. cotação: a) 2,0 valores, b) 3,0 valores
- a) Determine a transformada inversa de Laplace de $H(s) = \frac{5s-6}{s^2+4}e^{-\pi s/2}$;
- b) Determine, aplicando a transformada de Laplace, a solução do PVI:

$$\frac{d^2y}{dx^2}$$
 - 16y = 9e^{4t},

$$y(0) = 0$$
, $\frac{dy}{dx}(0) = 2$.

- 4. cotação: a) 2,0 valores, b) 3,0 valores
- a) Determine os valores próprios negativos e as correspondentes funções próprias do seguinte PVF:

$$\frac{d^2y}{dx^2} - \lambda y = 0$$
, $y(0) = 0$, $\frac{dy}{dx}(\pi) = 0$.

b) Determine a solução do seguinte problema usando o método de separação de variáveis:

$$u = u(x, y) : \begin{cases} u_x + \frac{1}{\cos y} & u_y = u, \quad x > 0, \ y > \pi, \\ u(x, \pi) = 3e^{-x} - e^x, \quad x > 0. \end{cases}$$