Discrete Mathematics and Algorithms (CSE611)

Dr. Ashok Kumar Das

Assistant Professor

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad Gachibowli 500 032, Hyderabad, India

E-mail: ashok.das@iiit.ac.in

Homepage: http://www.iiit.ac.in/people/faculty/ashokkdas Personal Homepage: https://sites.google.com/site/iitkgpakdas/

Topic: Relations

Definition

- A relation between two sets A and B is a subset of the cartesian product $A \times B$ and is defined by R (or ρ or r). $R \subseteq A \times B$.
- We write $_{x}R_{y}$ or $_{x}\rho_{y}$ if and only if (iff) $(x,y) \in R$ (or ρ).
- We also write $_{x}(\sim R)_{y}$ when x is NOT related to y in R.

Examples

- Example. Consider the relation R = {(x, y) ∈ I × I : x > y}, where I is the set of all integers.
 Clearly, R ⊆ I × I and R is a relation in I.
 We write ₇R₅ as (7,5) ∈ I × I and 7 > 5.
- Example. Consider the relation R = {(x, y) ∈ N × N : x = 3y}, where N is the set of natural numbers.
 Clearly, R ⊆ N × N and R is a relation on the set N.
 We write 15R5, 18R6, and 27R9.

Inverse Relation

• If R be the relation from A to B, then the inverse relation of R is the relation from B to A and is denoted and defined by $R^{-1} = \{(y,x) : y \in B, x \in A, (x,y) \in R\}.$ $\implies (x,y) \in R \Leftrightarrow (y,x) \in R^{-1}$

• **Example.** If $A = \{1, 2\}$, $B = \{2, 3\}$ and R be the relation from A to B, $R = \{(1, 2), (2, 3)\}$, then $R^{-1} = \{(2, 1), (3, 2)\}$.

Theorem

If R be a relation from A to B, then the domain of R is the range of R^{-1} and the range of R is the domain of R^{-1} .

Theorem

If R be a relation from A to B, then $(R^{-1})^{-1} = R$.

Reflexive relation

- Let A be a set and R the relation defined in it (i.e., $R \subseteq A \times A$). R is said to be *reflexive*, if $(a, a) \in R$, $\forall a \in A$ $\implies {}_{a}R_{a}$ holds for every $a \in A$.
- **Example.** Consider the relation $R = \{(a, a), (a, c), (b, b), (c, c), (d, d)\}$ in the set $A = \{a, b, c, d\}$. Then R is reflexive, since $(x, x) \in R$, $\forall x \in A$, that is, ${}_xR_x$ holds for every $x \in A$.
- **Example.** Consider the relation $S = \{(a, a), (a, c), (b, c), (b, d), (c, d)\}$ in the set $A = \{a, b, c, d\}$. Verify whether S is reflexive.

Symmetric relation

- Let *A* be a set and *R* the relation defined in it (i.e., $R \subseteq A \times A$). *R* is said to be *symmetric*, if $(a, b) \in R \Rightarrow (b, a) \in R$, $\forall a, b \in A$ In other words, ${}_aR_b \Rightarrow {}_bR_a$ for every $a, b \in A$.
- **Example.** Let N be the set of natural numbers and R the relation defined in it such that ${}_xR_y$ if x is a divisor of y (that is, x|y), $x,y \in N$.
 - Then R is NOT symmetric, since ${}_xR_y \Rightarrow {}_yR_x$, $\forall x,y \in N$. For example, ${}_3R_9 \Rightarrow {}_9R_3$.
- **Example.** Consider the relation S in the set of natural numbers N as $R = \{(x, y) \in N \times N : x + y = 5\}$. Verfify whether S is symmetric.

Theorem

For a symmetric relation R, $R^{-1} = R$.

Proof.

Required to prove (RTP) (i) $R \subseteq R^{-1}$, and (ii) $R^{-1} \subseteq R$.

- (i) Let $(x, y) \in R$.
- Then $(x, y) \in R \Rightarrow (y, x) \in R$, since R is symmetric
- \Rightarrow $(x, y) \in R^{-1}$, by definition of R^{-1}
- Thus, $R \subseteq R^{-1}$.
- (ii) Let $(x, y) \in R^{-1}$.
- Then $(y, x) \in (R^{-1})^{-1} = R$, by definition of R^{-1}
- \Rightarrow $(x, y) \in R$, since R is symmetric
- Thus, $R^{-1} \subseteq R$.

Anti-symmetric relation

- Let A be a set and R the relation defined in it (i.e., $R \subseteq A \times A$). R is said to be *anti-symmetric*, if ${}_aR_b$ and ${}_bR_a \Rightarrow a = b$, for every $a, b \in A$.
- **Example.** Let A be the set of real numbers and R the relation defined in it such that ${}_xR_y$ if $x \le y$, that is,

$$R = \{(x, y) \in A \times A : x \le y\}.$$

Then R is anti-symmetric, since

$$_{x}R_{y}$$
 and $_{y}R_{x}$

$$\Rightarrow x \leq y \text{ and } y \leq x$$

$$\Rightarrow x = y$$
.

Transitive relation

- Let A be a set and R the relation defined in it (i.e., $R \subseteq A \times A$). R is said to be *transitive*, if ${}_aR_b$ and ${}_bR_c \Rightarrow {}_aR_c$, $\forall a,b,c \in A$.
- **Example.** Let N be the set of natural numbers and R the relation defined in it such that ${}_xR_y$ if x < y, that is,

$$R = \{(x, y) \in \mathbb{N} \times \mathbb{N} : x < y\}.$$

Then *R* is transitive, since

$$_{x}R_{y}$$
 and $_{y}R_{z}$

$$\Rightarrow x < y \text{ and } y < z$$

$$\Rightarrow X < Z$$

$$\Rightarrow {}_{X}R_{Z}.$$

Equivalence relation

- Let A be a set and R the relation defined in it (i.e., $R \subseteq A \times A$). R is said to be an *equivalence* relation, if and only if
 - **1** R is reflexive, that is, ${}_aR_a$ holds, for every $a \in A$.
 - 2 R is symmetric, that is, ${}_aR_b \Rightarrow {}_bR_a$, $\forall a,b \in A$.
 - 3 R is transitive, that is, ${}_aR_b$ and ${}_bR_c \Rightarrow {}_aR_c$, $\forall a, b, c \in A$.

Problem: A relation ρ is defined on the set Z (set of all integers) by $_a\rho_b$ if and only if (2a+3b) is divisible by 5. Prove or disprove: ρ is an equivalence relation.

- Claim 1: Let $a \in Z$. Then, 2a + 3a = 5a is divisible by 5. Hence, $a\rho_a$ holds, $\forall a \in Z$. $\Rightarrow \rho$ is *reflexive*.
- Claim 2: Lemma: If a(≠ 0) divides b (i.e., a|b), a, b ∈ Z being integers, then ∃ x ∈ Z such that b = ax.
 Lemma: If p be prime and a, b are integers such that p|ab, then either p|a or p|b.

Problem (Continued...)

• Let $a,b \in Z$. Assume that $a\rho_b$ holds. Then, (2a+3b) is divisible by 5. By the Euclid's division algorithm, we have,

$$2a + 3b = 5k_1$$
, for some integer $k_1 \in Z$.

$$\Rightarrow 2(2a+3b)=10k_1$$

$$\Rightarrow$$
 4a + 6b = 10 k_1

$$\Rightarrow 3(2b+3a)-5a=10k_1$$

$$\Rightarrow 3(2b+3a) = 5(a+2k_1) = 5k_2$$
, say, where $k_2 = (a+2k_1)$ is an integer

If p is prime and p|ab, then either p|a or p|b. Thus, $5|(2b+3a) \Rightarrow b\rho_a$ holds. Hence, ρ is **symmetric**.

Problem (Continued...)

• Claim 3: Let ${}_{a}\rho_{b}$ and ${}_{b}\rho_{c}$ hold, for every $a,b,c\in Z$. Then (2a+3b) is divisible by 5 \Rightarrow 2a + 3b = 5 I_1 , for some $I_1 \in Z$, and (2b+3c) is divisible by 5 \Rightarrow 2b + 3c = 5l₂, for some $l_2 \in Z$. Now $2(2a+3b) - 3(2b+3c) = 10l_1 - 15l_2$ $\Rightarrow 4a - 9c = 10l_1 - 15l_2$ $\Rightarrow 2(2a+3c) = 10l_1 - 15l_2 + 15c = 5(2l_1 - 3l_2 + 3c) = 5l_3$, say, where $l_3 = 2l_1 - 3l_2 + 3c \in Z$ \Rightarrow 5|(2a+3c) $\Rightarrow_a \rho_c$ holds and ρ is also *transitive*. Since ρ is reflexive, symmetric and transitive, so ρ is an

equivalence relation.

Partial-order relation

- Let S be a non-empty set and R the relation defined in it (i.e., R ⊆ S × S). R is said to be an partial-order relation, if and only if it satisfies the following three conditions:
 - **1** R is reflexive, that is, ${}_{a}R_{a}$ holds, for every $a \in S$.
 - 2 R is anti-symmetric, that is, ${}_aR_b$ and ${}_bR_a \Rightarrow a = b$, $\forall a, b \in S$.
 - **3** *R* is transitive, that is, ${}_aR_b$ and ${}_bR_c \Rightarrow {}_aR_c$, $\forall a,b,c \in S$.

Problem: A relation R is defined on the set N (set of natural numbers) by ${}_aR_b$ if and only if a divides b, that is, $R = \{(a,b) \in N \times N : a|b\}$. Prove or disprove: R is a partial-order relation.

- Claim 1: Verify whether R is reflexive. (Yes/No)
- Claim 2: Verify whether R is anti-symmetric. (Yes/No)
- Claim 3: Verify whether *R* is *transitive*. (Yes/No)

Problem: Z be the set of all integers. Define a relation R on the set $Z \times Z$ by $_{(a,b)}R_{(c,d)}$ if and only if ad = bc, $\forall a,b,c,d \in Z$. Prove or disprove: R is a partial-order relation.

- Claim 1: Verify whether R is reflexive. (Yes/No)
- Claim 2: Verify whether R is anti-symmetric. (Yes/No)
- Claim 3: Verify whether R is *transitive*. (Yes/No)

Partial-Order Set (POSET)

- A non-empty set in which the partial-order relation is defined, is called the partial-order set (poset/POSET).
- Example: In the above example, the set *N* is POSET under which partial-order relation *R* is defined.

A Practical Application of POSET: Hierarchical Access Control

- Hierarchical access control is an important research area in computer science, which has numerous applications including schools, military, governments, corporations, database management systems, computer network systems, e-medicine systems, etc.
- In a hierarchical access control, a user of higher security level class has the ability to access information items (such as message, data, files, etc.) of other users of lower security classes.
- A user hierarchy consists of a number n of disjoint security classes, say, SC_1 , SC_2 , ..., SC_n . Let this set be $SC = \{SC_1, SC_2, ..., SC_n\}$.
- A binary partially ordered relation \geq is defined in SC as $SC_i \geq SC_j$, which means that SC_i has a security clearance higher than or equal to SC_i .

A Practical Application of POSET: Hierarchical Access Control (Continued...)

- In addition the relation ≥ satisfies the following properties:
 - (a) [Reflexive property] $SC_i \geq SC_i$, $\forall SC_i \in SC$.
 - (b) [Anti-symmetric property] If SC_i , $SC_j \in SC$ such that $SC_i \geq SC_j$ and $SC_i \geq SC_i$, then $SC_i = SC_i$.
 - (c) [Transitive property] If SC_i , SC_j , $SC_k \in SC$ such that $SC_i \geq SC_j$ and $SC_j \geq SC_k$, then $SC_i \geq SC_k$.
- If $SC_i \geq SC_j$, we call SC_i as the predecessor of SC_j and SC_j as the successor of SC_i . If $SC_i \geq SC_k \geq SC_j$, then SC_k is an intermediate security class. In this case SC_k is the predecessor of SC_j and SC_i is the predecessor of SC_k .
- In a user hierarchy, the encrypted message by a successor security class is only decrypted by that successor class as well as its all predecessor security classes in that hierarchy.

A Practical Application of POSET: Hierarchical Access Control (Continued...)

• Consider a simple example of a poset in a user hierarchy in Fig. 1. In this figure, we have the following relationships: $SC_2 \leq SC_1$, $SC_3 \leq SC_1$, $SC_4 \leq SC_1$, $SC_5 \leq SC_1$, $SC_6 \leq SC_1$, $SC_7 \leq SC_1$; $SC_5 \leq SC_2$; $SC_5 \leq SC_3$, $SC_6 \leq SC_3$; $SC_7 \leq SC_4$.

A Practical Application of POSET: Hierarchical Access Control (Continued...)

- In a hierarchical access control, a trusted central authority (CA)
 distributes keys to each security class in the hierarchy such that
 any predecessor of a successor class can easily derive its
 successor's secret key.
- Using that derived secret key, the predecessor class can decrypt the information encrypted by its successor.
- However, the reverse is not true in such access control, that is, no successor class of any predecessor will be able to derive the secret keys of its predecessors.

Equivalence classes

- Let A be a non-empty set and R be an equivalence relation defined in A.
- Let a ∈ A be an arbitrary element. Then the elements x ∈ A which satisfy _xR_a form a subset of A which is called the *equivalence* class of a in A with respect to (w.r.to) R.
- Thus, A_a or [a] or cl(a) or \bar{a} = $\{x|_x R_a, x \in A\}$ is called the equivalence class of a in A w.r.to R.

Important properties of equivalence classes

- Let A be a non-empty set and R be an equivalence relation defined in A.
- Let $a \in A$ and $b \in A$ be two arbitrary elements. Then,
 - $\mathbf{0}$ $a \in [a];$
 - ② $b \in [a] \Rightarrow [b] = [a];$

 - either [a] = [b] or $[a] \cap [b] = \emptyset$, that is, either two equivalence classes are identical or disjoint.

Problem(Equivalence classes): Let A be the set of triangles in a plane. Let R be a relation in A defined by "x is similar to y", where $x, y \in A$. Verify whether R is an equivalence relation. If so, find the equivalence classes.

- Part 1. Claim: R is an equivalence relation.
- Part 2. Here $R = \{(x, y) | x, y \in A, x \text{ is similar to } y\}$. Let $a \in A$ be an arbitrary triangle in the plane. Then,

[a] =
$$\{x | x \in A \text{ and } {}_x R_a\}$$

= $\{x | x \in A, x \text{ is similar to } a\}$

is an equivalence class of $a \in A$.

Partitions

- Let S be a non-empty set. Then a partition of S is a collection of non-empty disjoint sub-sets of S whose union is S.
- In other words, if $A_1, A_2, ..., A_n$ be the non-empty sub-sets of S, then the set $\mathcal{P} = \{A_1, A_2, ..., A_n\}$ is said to be a partition of S, if

 - ② either $A_i = A_j$ or $A_i \cap A_j = \emptyset$, for all i, j = 1, 2, ..., n.

Example (Partitions)

• Consider a set $S = \{1, 2, 3, \dots, 22\}$. Now consider three subsets

A, B and C of S as follows:
$$A = \{1, 4, 7, ..., 22\},$$

$$B = \{2, 5, 8, \dots, 20\},\ C = \{3, 6, 9, \dots, 21\}.$$

See that

- \bigcirc $A \cup B \cup C = S$, and

Hence, the set $(P) = \{A, B, C\}$ forms a partition of S.

Relationship between Partitions and Equivalence relations

Theorem (Fundamental Theorem on Equivalence Relations)

An equivalence relation R in a non-empty set A partitions A and conversely, a partition of A defines an equivalence relation.

Problem(Equivalence classes): Let Z be the set of integers. Let R be a relation in Z defined by the open sentence "(x-y) is divisible by m", where $x, y \in Z$. Verify whether R is an equivalence relation. If so, find the equivalence classes.

- Part 1. Claim: R is an equivalence relation.
- Part 2. Equivalnce classes.

Compatible Relation

Definition (Compatibility Relation)

Let R be a relation in a non-empty set A (i.e., $R \subseteq A \times A$). Then, R is said to be a *compatibility relation* if it is both reflexive and symmetric.

- **Problem:** Let A be a set of people, and R a binary relation on A such that $(a, b) \in R$ if a is a friend of b. Verify whether R is a compatibility relation.
 - **Solution:** (i) R is reflexive, since a is always a friend of $a \in A$ (i.e., himself/herself), that is, ${}_aR_a$ holds, $\forall a \in A$.
 - (ii) R is symmetric, since, if a is a friend of b, then obviously b is also a friend of a, that is,
 - if ${}_aR_b$ holds, then ${}_bR_a$ also holds, $\forall a,b \in A$. Hence, R is a compatibility relation.

Compatible Relation (Continued...)

Important Observations

- All equivalence relations are compatibility relations.
- Let R and S be two compatibility relations on a set A. Then $R \cap S$ is a compatibility relation, but $R \cup S$ may or may not be a compatibility relation (True/False).

Closure of Relations

Definition (Reflexive Closure)

A relation R' is the reflexive closure of a relation R if and only if

- (a) R' is reflexive,
- (b) $R \subseteq R'$,
- (c) For any relation R'', if $R \subseteq R''$ and R'' is reflexive, then $R' \subseteq R''$,
- i.e., R' is the smallest relation that satisfies the conditions (a) and (b).

The reflexive closure of a relation R is denoted by r(R).

Problem (Closure of Relations): Given the relation $R = \{(a,b), (b,a), (b,b), (c,b)\}$ on the set $A = \{a,b,c\}$. Compute the reflexive closure r(R) of R.

- It is clear that R is not reflexive, since $(a, a) \notin R$ and $(c, c) \notin R$.
- Consider a relation R' which contains R as well as the tuples (a, a) and (c, c), that is,

$$R' = R \cup \{(a,a),(c,c)\}$$

= \{(a,a),(a,b),(b,a),(b,b),(c,b),(c,c)\}

Then, clearly R' is reflexive and $R \subseteq R'$.

Furthermore, any other relation, say R", containing R must also contain (a, a) and (c, c); otherwise it will not be reflexive. So, R' ⊆ R". As R' contains R, and R' is reflexive, and is contained in every reflexive relation that contains R, so R' is the smallest relation satisfies conditions (a) and (b). Hence, r(R) = R'.

Closure of Relations (Continued...)

Definition (Symmteric Closure)

A relation R' is the symmetric closure of a relation R if and only if

- (a) R' is symmetric,
- (b) $R \subseteq R'$,
- (c) For any relation R'', if $R \subseteq R''$ and R'' is symmetric, then $R' \subseteq R''$,
- i.e., R' is the smallest relation that satisfies the conditions (a) and (b).

The symmetric closure of a relation R is denoted by s(R).

Problem (Closure of Relations): Given the relation $R = \{(a, a), (a, b), (c, c), (b, c), (b, a), (a, c)\}$ on the set $A = \{a, b, c\}$. Compute the symmetric closure s(R) of R.

- It is clear that R is not symmetric.
- To be symmetric, R needs the pairs (c, b) and (c, a). Consider a relation R' which contains R as well as the tuples (c, b) and (c, a), that is,

$$R' = R \cup \{(c,b),(c,a)\}$$

= \{(a,a),(a,b),(c,c),(b,c),(b,a),(a,c),(c,b),(c,a)\}

Then, clearly R' is symmetric and $R \subseteq R'$.

Furthermore, any other relation, say R", containing R must also contain (c, b) and (c, a); otherwise it will not be symmetric. So, R' ⊆ R". So, R' is the smallest relation satisfies conditions (a) and (b). Hence, s(R) = R'.

Closure of Relations

Definition (Transitive Closure)

A relation R' is the transitive closure of a relation R if and only if

- (a) R' is transitive,
- (b) $R \subseteq R'$,
- (c) For any relation R'', if $R \subseteq R''$ and R'' is transitive, then $R' \subseteq R''$,
- i.e., R' is the smallest relation that satisfies the conditions (a) and (b).

The transitive closure of a relation R is denoted by t(R) or R^t .

Problem (Closure of Relations): Let R be the less than (<) relation on the set Z of integers. Compute the transitive closure t(R) of R.

• The transitive closure of the less than (<) relation on Z is the less than (<) relation itself.

How to find Transitive Closure of a given Relation R?

- We need to add the minimum number of tuples to R giving us R^t such that if $(a, b) \in R^t$ and $(b, c) \in R^t$, then $(a, c) \in R^t$.
- Thus, $R^t = R \cup \{(a, b) \in R^t \land (b, c) \in R^t \Rightarrow (a, c) \in R^t\}.$

Problem (Closure of Relations): Let $A = \{1, 2, 3\}$ and $R = \{(1, 1), (1, 2), (1, 3), (2, 3), (3, 1)\}$ be a relation on A. Compute the transitive closure R^t of R.

Solution

- Clearly, R is not transitive. For example, $(2,3) \in R \land (3,1) \in R \Rightarrow (2,1) \in R$.
- Add the following mininum number of tuples in R to construct R' such that $R \subseteq R'$ and R' is transitive:

$$(2,3) \in R \land (3,1) \in R \implies (2,1) \in R^{t}$$

 $(3,1) \in R \land (1,2) \in R \implies (3,2) \in R^{t}$
 $(3,1) \in R \land (1,3) \in R \implies (3,3) \in R^{t}$
 $(2,1) \in R^{t} \land (1,2) \in R \implies (2,2) \in R^{t}$

• Thus, $R^t = t(R) = R' = R \cup \{(2,1), (2,2), (3,2), (3,3)\}.$

End of this lecture