

Computing ℓ -adic monodromy groups

CNTA XV, July 9th 2018

David Zywina

Cornell University

Abelian varieties

- Let A be an abelian variety of dimension g ≥ 1 defined over a number field K. It will be fixed throughout the talk.
- You should think of A as being explicitly given. For example, A
 could be the Jacobian of the smooth projective curve over K
 with genus g. For example,

$$y^2 = x^9 + x^3 + 7x^2 + 5$$

gives an abelian variety of dimension 4.

• Let \overline{K} be a fixed algebraic closure of K and define $\operatorname{Gal}_K := \operatorname{Gal}(\overline{K}/K)$.

The set of points $A(\overline{K})$ is an abelian group with a Gal_K -action that respects the group structure.

ℓ-adic Galois representations

- For each positive integer m, let A[m] be the m-torsion subgroup of $A(\overline{K})$. We have $A[m] \cong (\mathbb{Z}/m\mathbb{Z})^{2g}$ and it comes with a natural $\operatorname{Gal}_K := \operatorname{Gal}(\overline{K}/K)$ action.
- Take any prime ℓ . Define

$$V_{\ell} := (\varprojlim_{n} A[\ell^{n}]) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell};$$

it is a \mathbb{Q}_{ℓ} -vector space of dimension 2g with a Gal_K -action. We can express this Galois action in terms of a representation

$$\rho_{\ell} \colon \operatorname{Gal}_K \to \operatorname{Aut}_{\mathbb{Q}_{\ell}}(V_{\ell}) = \operatorname{GL}_{V_{\ell}}(\mathbb{Q}_{\ell})$$

Choosing a basis for V_ℓ gives $\mathrm{GL}_{V_\ell} \cong \mathrm{GL}_{2g}$ over \mathbb{Q}_ℓ and hence $\rho_\ell \colon \mathrm{Gal}_K \to \mathrm{GL}_{2g}(\mathbb{Q}_\ell)$. It is better for us not to make such a choice.

Compatibility

For each prime ℓ , we have defined a representation

$$\rho_{\ell} \colon \operatorname{Gal}_{K} \to \operatorname{GL}_{V_{\ell}}(\mathbb{Q}_{\ell})$$

- Take any non-zero prime ideal $\mathfrak{p} \subseteq \mathscr{O}_K$ for which A has good reduction.
- If $\mathfrak{p} \nmid \ell$, then ρ_{ℓ} is unramified at ℓ . Define the polynomial

$$P_{\mathfrak{p}}(x) := \det(xI - \rho_{\ell}(\operatorname{Frob}_{\mathfrak{p}})) \in \mathbb{Q}_{\ell}[x].$$

We have $P_{\mathfrak{p}}(x) \in \mathbb{Z}[x]$ and it is independent of ℓ .

- We view the polynomials $P_{\mathfrak{p}}(x)$ as being computable for our given A.
- The polynomials $P_{\mathfrak{p}}(x)$ know a lot; from Faltings we know that they determine ρ_{ℓ} up to isomorphism and A up to isogeny.

For each prime ℓ , we have defined a representation

$$\rho_{\ell} \colon \operatorname{Gal}_K \to \operatorname{GL}_{V_{\ell}}(\mathbb{Q}_{\ell}),$$

where V_{ℓ} is a \mathbb{Q}_{ℓ} -vector space of dimension 2g.

Definition

The ℓ -adic monodromy group of A is the Zariski closure G_{ℓ} of $\rho_{\ell}(\operatorname{Gal}_K)$ in $\operatorname{GL}_{V_{\ell}}$; it is a linear algebraic group over \mathbb{Q}_{ℓ} .

The algebraic group G_ℓ almost determines the image of ρ_ℓ (and it is much easier to study!). For example, $\rho_\ell(\operatorname{Gal}_K)$ is an open subgroup of $G_\ell(\mathbb{Q}_\ell)$ with respect to the ℓ -adic topology.

For each prime ℓ , we have defined a representation

$$\rho_{\ell} \colon \operatorname{Gal}_{K} \to \operatorname{GL}_{V_{\ell}}(\mathbb{Q}_{\ell}),$$

where V_{ℓ} is a \mathbb{Q}_{ℓ} -vector space of dimension 2g.

Definition

The ℓ -adic monodromy group of A is the Zariski closure G_{ℓ} of $\rho_{\ell}(\operatorname{Gal}_K)$ in $\operatorname{GL}_{V_{\ell}}$; it is a linear algebraic group over \mathbb{Q}_{ℓ} .

The algebraic group G_ℓ almost determines the image of ρ_ℓ (and it is much easier to study!). For example, $\rho_\ell(\operatorname{Gal}_K)$ is an open subgroup of $G_\ell(\mathbb{Q}_\ell)$ with respect to the ℓ -adic topology.

Moreover, there is a constant C such that

$$[G_{\ell}(\mathbb{Q}_{\ell}) \cap \operatorname{Aut}_{\mathbb{Z}_{\ell}}(T_{\ell}) : \rho_{\ell}(\operatorname{Gal}_{K})] \leq C$$

holds for all ℓ , where $T_{\ell} := \underline{\lim}_{n} A[\ell^{n}]$.

Connectedness assumption

For simplicity, we now assume that all the groups G_ℓ are connected.

Serre: this can be achieved by replacing K by an appropriate finite extension

Problem:

Can you compute G_{ℓ} ? At least give an educated guess.

- Idea: Look at a few $P_{\mathfrak{p}}(x)$ and try to guess G_{ℓ} .
- How to describe G_ℓ ?

From Faltings, we know that G_{ℓ} is reductive. So G_{ℓ} over $\overline{\mathbb{Q}}_{\ell}$ is given, up to isomorphism, by its root datum.

To pin down G_ℓ requires the root datum and a little more info.

Theorem

Assume the Mumford–Tate conjecture for A and assume that A has ordinary reduction at a set of primes of density 1.

For "random" primes ideals $\mathfrak p$ and $\mathfrak q$ of $\mathscr O_K$, the polynomials

$$P_{\mathfrak{p}}(x)$$
 and $P_{\mathfrak{q}}(x)$

determine the group G_ℓ and its representation V_ℓ , up to isomorphism, for all sufficiently large ℓ .

Remarks

- "Random"?: The theorem holds for all $\mathfrak{p} \notin S$ and $\mathfrak{q} \notin S_{\mathfrak{p}}$, where S and $S_{\mathfrak{p}}$ have density 0 (and $S_{\mathfrak{p}}$ depends on \mathfrak{p}).
- The proof gives a practical algorithm; implemented!
- Two primes suffice!! Can use more primes for confidence.

Aside: what good is a guess for G_{ℓ} ?

• A guess for G_ℓ gives a prediction for the dimensions of the \mathbb{Q}_ℓ -vector spaces

$$H^{2i}_{\operatorname{\acute{e}t}}(A^j_{\overline{K}},\mathbb{Q}_\ell(i))^{\operatorname{Gal}_K}.$$

- The Tate conjecture says that this space should be spanned by classes arising from subvarieties of A^j of codimension i.
- If you can find/prove the existence of the predicted algebraic cycles, then you will get G_{ℓ} unconditionally.

So computing G_{ℓ} is linked to interesting geometry of A.

The Mumford-Tate group

- Fix an embedding $\overline{K} \subseteq \mathbb{C}$. Define the \mathbb{Q} -vector space $V := H_1(A(\mathbb{C}), \mathbb{Q})$.
- The Mumford—Tate group is a certain connected and reductive group

$$G \subseteq GL_V$$

- defined over \mathbb{Q} ; it is constructed using the Hodge decomposition of $(V \otimes_{\mathbb{Q}} \mathbb{C})^{\vee} = H^1(A(\mathbb{C}), \mathbb{C})$.
- For each prime ℓ , we have a comparison isomorphism $V_{\ell} = V \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$. So we can view $G_{\mathbb{Q}_{\ell}}$ as a subgroup of $\mathrm{GL}_{V_{\ell}}$.

The Mumford-Tate conjecture

For each prime ℓ , we have $G_\ell = G_{\mathbb{Q}_\ell}$.

So conjecturally, the G_ℓ arise from a common group.

Frobenius torus

Assume the Mumford–Tate conjecture for A and assume that A has ordinary reduction at a set of primes of density 1.

- Take a "random" prime $\mathfrak{p} \subseteq \mathscr{O}_K$.
- Let

$$\Phi_{\mathfrak{p}}\subseteq\overline{\mathbb{Q}}^{\times}$$

be the subgroup generated by the roots of $P_{\mathfrak{p}}(x)$. It has a $\mathrm{Gal}_{\mathbb{Q}}$ -action and is computable!

• Up to isomorphism, there is a unique torus $T_{\mathfrak{p}}$ defined over \mathbb{Q} for which we have an isomorphism

$$X(T_{\mathfrak{p}}) = \Phi_{\mathfrak{p}}$$

of $\operatorname{Gal}_{\mathbb Q}$ -modules, where $X(T_{\mathfrak p})$ is the group of characters $(T_{\mathfrak p})_{\overline{\mathbb Q}} \to \mathbb G_{m,\overline{\mathbb Q}}.$

• We can identify T_p with a maximal torus of G. A maximal torus is the first step in finding the root datum of G.

An example

- Let A be the Jacobian of the curve $y^2 = x^9 1$ over $K = \mathbb{Q}(\zeta_9)$; it has dimension 4.
- \bullet A has CM, so G is a torus. Therefore,

$$G=T_{\mathfrak{p}}$$

for "random" p.

- Without more info, one expects that G is a torus of dimension 5. Note that the group $X(T_{\mathfrak{p}}) = \Phi_{\mathfrak{p}}$ has rank at most 5 when one takes into account the relations $\pi \overline{\pi} = N(\mathfrak{p})$ for a root π of $P_{\mathfrak{p}}(x)$.
- Actually G has dimension 4 which implies that there is an unexpected multiplicative relation in the roots of $P_{\mathfrak{p}}(x)$.

An example (continued)

• A is the Jacobian of the curve $y^2 = x^9 - 1$ over $K = \mathbb{Q}(\zeta_9)$. We have

$$A \sim B \times E$$

where ${\it B}$ is a simple abelian variety of dimension 3 and ${\it E}$ is an elliptic curve. So

$$P_{\mathfrak{p}}(x) = P_{B,\mathfrak{p}}(x) \cdot P_{E,\mathfrak{p}}(x).$$

• There are roots $a,b,c\in\overline{\mathbb{Q}}$ of $P_{B,\mathfrak{p}}$ such that

$$-abc/N(\mathfrak{p})$$

is a root of $P_{E,p}(x)$. This is our unexpected relation between the roots of $P_p(x)$.

• Geometric explanation: A has an exceptional Tate class.

The Weyl group

- Back to our general setting: A is a non-zero abelian variety over a number field K and G is the Mumford—Tate group.
 - For a "random" \mathfrak{p} , we have a maximal torus $T_{\mathfrak{p}} \subseteq G$, where we have an isomorphism $X(T_{\mathfrak{p}}) = \Phi_{\mathfrak{p}}$ that respects the $\mathrm{Gal}_{\mathbb{O}}$ -actions.
- The Weyl group of G is

$$W(G, T_{\mathfrak{p}}) := N_G(T_{\mathfrak{p}})(\overline{\mathbb{Q}})/T_{\mathfrak{p}}(\overline{\mathbb{Q}}),$$

where $N_G(T_{\mathfrak{p}})$ is the normalizer of $T_{\mathfrak{p}}$ in G.

The group $W(G, T_p)$ is finite and conjugation induces a faithful action on T_p and $X(T_p)$.

The Weyl group (continued)

- Recall, the Weyl group $W(G,T_{\mathfrak{p}})$ acts faithfully on $X(T_{\mathfrak{p}})=\Phi_{\mathfrak{p}}.$
- Now choose a second prime \mathfrak{q} . Let L be the splitting field of $P_{\mathfrak{q}}(x)$ over \mathbb{Q} .

Proposition

For "random" \mathfrak{p} and \mathfrak{q} , Gal_L acts on $X(T_{\mathfrak{p}})$ as the Weyl group $W(G,T_{\mathfrak{p}})$.

- We have now described how to find a maximal torus $T_{\mathfrak{p}}$ of G and have found the Weyl group $W(G,T_{\mathfrak{p}})$ via its action on $X(T_{\mathfrak{p}})$.
- The next major step is to find the set of roots

$$R(G, T_{\mathfrak{p}}) \subseteq X(T_{\mathfrak{p}})$$

of G with respect to $T_{\mathfrak{p}}$.

• From the triple

$$(X(T_{\mathfrak{p}}), W(G, T_{\mathfrak{p}}), R(G, T_{\mathfrak{p}}))$$

one can recover the root datum of G; this describes G up to isomorphism over $\overline{\mathbb{Q}}$.

Finding roots

- Let $\Omega \subseteq X(T_{\mathfrak{p}})$ be the set of weights of the representation V_{ℓ} of G_{ℓ} .
- The set Ω corresponds with the roots of $P_{\mathfrak{p}}(x)$ under the isomorphism $X(T_{\mathfrak{p}})=\Phi_{\mathfrak{p}}.$ Set

$$W := W(G, T_{\mathfrak{p}}).$$

• Let $\Omega_1, \ldots, \Omega_s$ be the W-orbits in Ω . One can show that

$$R(G,T_{\mathfrak{p}})\subseteq\bigcup_{i=1}^{s}\mathscr{C}_{i},$$

where $\mathscr{C}_i := \{\alpha\beta^{-1} : \alpha, \beta \in \Omega_i, \alpha \neq \beta\}.$

This gives $R(G,T_{\mathfrak{p}})$ in a computable finite set. Now need to "sieve" it out. KEY INPUT: the irreducible representations of $G_{\overline{\mathbb{Q}}}$ on $V \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}$ are minuscule.

Sieving for roots (technical slide 1/3)

Let's give some details on the first step to pick out $R(G,T_{\mathfrak{p}})$ from $\cup_i\mathscr{C}_i$.

- Choose a W-orbit $\mathscr O$ in $\cup_i \mathscr C_i$ of minimal cardinality. We have $\mathscr O \subseteq \mathscr C_i$ for some i.
- Let S be the set of elements in \mathscr{C}_i that are in the span of \mathscr{O} in $X(T_{\mathfrak{p}}) \otimes_{\mathbb{Z}} \mathbb{Q}$. Let r be the dimension of the span of \mathscr{O} in $X(T_{\mathfrak{p}}) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Proposition

There is a unique irreducible component R_1 of the root system $R(G,T_p)$ with $R_1\subseteq S$; it has rank r.

Sieving for roots (technical slide 2/3)

We can determine the Lie type of R_1 !

Proposition

- i) If $r \ge 1$, then R_1 has type A_r if and only if |W| = (r+1)!.
- ii) If $r \ge 3$, then R_1 has type B_r if and only if $|W| = 2^r r!$ and S consists of at least three W-orbits.
- iii) If $r \ge 2$, then R_1 has type C_r if and only if $|W| = 2^r r!$ and S consists of two W-orbits.
- iv) If $r \ge 4$, then R_1 has type D_r if and only if $|W| = 2^{r-1}r!$.

Sieving for roots (technical slide 3/3)

We can determine R_1 .

Proposition

- i) If $r \ge 1$ and R_1 is of type A_r , then R_1 is the unique W-orbit of S of cardinality r(r+1).
- ii) If $r \ge 3$ and R_1 is of type B_r , then R_1 is the union of the unique W-orbits of S of cardinality 2r and 2r(r-1).
- iii) If $r \ge 2$ and R_1 is of type C_r , then $R_1 = S$.
- iv) If $r \ge 4$ and R_1 is of type D_r , then R_1 is the unique W-orbit of S with cardinality 2r(r-1).

- We now have root datum for G and a natural $\operatorname{Gal}_{\mathbb Q}$ -action on it. Unfortunately, this is not enough to recover G.
- It is enough info to determine the quasi-split inner form G_0 of G.
- ullet For ℓ sufficiently large, we have

$$(G_0)_{\mathbb{Q}_\ell} = G_{\mathbb{Q}_\ell}$$

and hence $(G_0)_{\mathbb{Q}_\ell} = G_\ell$.

So we have found G_{ℓ} for all ℓ sufficiently large.