$$= -\iint_{S} \left(\frac{\partial F_{1}}{\partial y} \cos \theta - \frac{\partial F_{1}}{\partial z} \cdot \cos \beta \right) ds$$
$$= \iint_{S} \left(\frac{\partial F_{1}}{\partial z} \cos \theta - \frac{\partial F_{1}}{\partial y} \cdot \cos \theta \right) ds.$$

Similarly we can ge

$$\iint_{C} \frac{\partial F_{2}(x, y, z) dy}{\int_{S} \left(\frac{\partial F_{2}}{\partial x} \cos \theta - \frac{\partial F_{2}}{\partial z} \cdot \cos \alpha \right) ds}$$

and
$$\int\limits_{C}^{\frac{1}{2}}F_{3}(x,y,z)dz=\iint\limits_{S}\left(\frac{\partial F_{3}}{\partial y}\cos\alpha-\frac{\partial F_{3}}{\partial x}\cdot\cos\beta\right)ds$$

Adding these we get,

$$\oint_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \iint_{S} \overrightarrow{curl} \overrightarrow{F} \cdot \overrightarrow{n} ds.$$

This is the required form

EXERCISE 4.1

1. If
$$\overrightarrow{r}_1 = t^2 \overrightarrow{i} - t \overrightarrow{j} + (2t+1) \overrightarrow{k}$$
, $\overrightarrow{r}_2 = (2t-3) \overrightarrow{i} + \overrightarrow{j} - t \overrightarrow{k}$.

Find (i)
$$\frac{d}{dt}(\overrightarrow{r}_1, \overrightarrow{r}_2)$$
 [2002 – Short] (ii) $\frac{d}{dt}(\overrightarrow{r}_1 \times \overrightarrow{r}_2)$ at $t = 1$.

(ii)
$$\frac{d}{dt}$$
 ($\overrightarrow{r}_1 \times \overrightarrow{r}_2$) at t = 1.

Solution: Let
$$\overrightarrow{r}_1 = t^2 \overrightarrow{i} - t \overrightarrow{j} + (2t+1) \overrightarrow{k}$$
 and $\overrightarrow{r}_2 = (2t-3) \overrightarrow{i} + \overrightarrow{j} - t \overrightarrow{k}$. Then,

$$\overrightarrow{r}_{1}.\overrightarrow{r}_{2} = (t^{2}\overrightarrow{i} - t\overrightarrow{j} + (2t + 1)\overrightarrow{k}); ((2t - 3)\overrightarrow{i} + \overrightarrow{j} - t\overrightarrow{k})$$

$$= (t^{2}, -t, 2t + 1) \cdot (2t - 3, 1, -t)$$

$$= 2t^{3} - 3t^{2} - t - 2t^{2} - t$$

$$= 2t^{3} - 5t^{2} - 2t$$

$$\overrightarrow{r}_{1} \times \overrightarrow{r}_{2} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & -t & 2t+1 \\ 2t-3 & 1 & -t \end{vmatrix}$$

$$= (t^{2} - 2t - 1) \overrightarrow{i} + ((2t - 3)(2t + 1) + t^{3}) \overrightarrow{j} + (t^{2} + t(2t - 3)\overrightarrow{k})$$

$$= (t^{2} - 2t - 1) \overrightarrow{i} + (4t^{2} - 4t - 3 + t^{3}) \overrightarrow{j} + (3t^{2} - 3t) \overrightarrow{k}$$

(i)
$$\frac{d}{dt}(\overrightarrow{r}_1, \overrightarrow{r}_2) = \frac{d}{dt}(2t^3 - 5t^2 - 2t) = 6t - 10t - 2$$

At $t = 1$,

$$\frac{d}{dt}(\vec{r}_1, \vec{r}_2) = 6 - 10 - 2 = -6$$

(ii)
$$\frac{d}{dt}(\overrightarrow{r}_1 \times \overrightarrow{r}_2) = \frac{d}{dt}(t^2 - 2t - 1, t^3 + 4t^2 - 4t - 3, 3t^2 - 3t)$$

= $(2t - 2, 3t^2 + 8t - 4, 6t - 3)$

At
$$t = 1$$
.

$$\frac{d}{dt} (\overrightarrow{r}_1 \times \overrightarrow{r}_2) = (2 - 2, 3 + 8 - 4, 6 - 3) = (0, 7, 3)$$

1 If
$$\overrightarrow{A} = t^2 \overrightarrow{i} + (3t^2 - 2t) \overrightarrow{j} + \left(2t - \frac{1}{t}\right) \overrightarrow{k}$$
. Find $\left| \frac{d\overrightarrow{A}}{dt} \right|$ at $t = 1$.

Solution: Let
$$\overrightarrow{A} = t^2 \overrightarrow{i} + (3t^2 - 2t) \overrightarrow{j} + \left(2t - \frac{1}{t}\right) \overrightarrow{k}$$

 $\frac{d\overrightarrow{A}}{dt} = 2t\overrightarrow{i} + (6t - 2)\overrightarrow{j} + (2 + t^{-2})\overrightarrow{k}$

So,
$$\left| \frac{d\vec{A}}{dt} \right| = \sqrt{(2t)^2 + (6t - 2)^2 + (2 + t^{-2})^2}$$

$$\left| \frac{\overrightarrow{dA}}{dt} \right| = \sqrt{2^2 + (6-2)^2 + (2+1)^2} = \sqrt{4+16+9} = \sqrt{29}$$

$$\left| \frac{\overrightarrow{dA}}{\overrightarrow{dt}} \right|_{at t = 1} = \sqrt{29}.$$

3. If $\overrightarrow{r} = \overrightarrow{a}e^{nt} + \overrightarrow{b}e^{-nt}$, where \overrightarrow{a} and \overrightarrow{b} are constant vectors, show that $\frac{d^2\overrightarrow{r}}{dt^2} - n^2\overrightarrow{r} = 0$. [2013 Fall Q. No. 6(a)] [2004 Spring Q.No. 3(a)]

Solution: Let $\overrightarrow{r} = \overrightarrow{a} e^{it} + \overrightarrow{b} e^{-it}$ for \overrightarrow{a} and \overrightarrow{b} are constant vectors

 $\left| \frac{\overrightarrow{dr}}{dt} \right| = \overrightarrow{a} \cdot ne^{nt} + \overrightarrow{b} \cdot (-n) \cdot e^{-nt} = n \left[\overrightarrow{a} \cdot e^{nt} - \overrightarrow{b} \cdot e^{-nt} \right]$

And
$$\frac{d^2 \overrightarrow{r}}{dt^2} = n[\overrightarrow{a} n e^{nt} - (-n) \overrightarrow{b} e^{-\alpha}] = n^2[\overrightarrow{a} e^{nt} + \overrightarrow{b} e^{-nt}] = n^2 \overrightarrow{r}$$

$$\Rightarrow \frac{d^2 \overrightarrow{r}}{dt^2} - n^2 \overrightarrow{r} = 0.$$

4. If $\vec{r} = \text{cosnt } \vec{i} + \text{sinnt } \vec{j}$. Show that $\vec{r} \times \frac{d\vec{r}}{dt} = n\vec{k}$

Solution: Let $\vec{r} = \text{cosnt } \vec{i} + \text{sinnt } \vec{j} + 0 \vec{k}$. Then,

$$\frac{\overrightarrow{dr}}{dt} = - \operatorname{sinnt.} \overrightarrow{n} \overrightarrow{i} + \operatorname{cosnt.} \overrightarrow{n} \overrightarrow{j} + o \overrightarrow{k}$$

$$\overrightarrow{r} \times \frac{\overrightarrow{dr}}{dt} = \begin{vmatrix} \overrightarrow{r} & \overrightarrow{r} & \overrightarrow{k} \\ \overrightarrow{r} & \overrightarrow{r} & \overrightarrow{k} \\ cosnt & sinnt & 0 \\ -nsinnt & ncosnt & 0 \end{vmatrix}$$

$$= 0 \overrightarrow{i} + 0 \overrightarrow{j} + (n\cos^2 nt + n\sin^2 nt) \overrightarrow{k} = n(\cos^2 nt + \sin^2 nt) \overrightarrow{k}$$
$$= n \cdot 1 \overrightarrow{k} = n \overrightarrow{k}.$$

Thus,
$$\overrightarrow{r} \times \frac{d\overrightarrow{r}}{dt} = n\overrightarrow{k}$$
.

5. If \overrightarrow{r} is a vector function of a scalar t and \overrightarrow{a} is a constant $\text{vector}_{r,\ \psi_{t_0}}$ differentiate with respect to t

$$(i)$$
 \overrightarrow{r} \overrightarrow{a}

(ii)
$$\overrightarrow{r} \times \overrightarrow{a}$$

(iii)
$$\overrightarrow{r} \times \frac{d\overrightarrow{r}}{dt}$$

(iv)
$$\overrightarrow{r}$$
 . $\frac{d\overrightarrow{r}}{d\vec{r}}$

Solution: Let \overrightarrow{r} be a vector function of scalar t and \overrightarrow{a} be a constant vector. Then

(i) Derivative of r. a w. r. t. 't' be,

$$\frac{d}{dt}(\overrightarrow{r} \cdot \overrightarrow{a}) = \frac{d\overrightarrow{r}}{dt} \cdot \overrightarrow{a} + \overrightarrow{r} \cdot \frac{d\overrightarrow{a}}{dt}$$

$$= \frac{d\overrightarrow{r}}{dt} \cdot \overrightarrow{a} + \overrightarrow{r} \cdot 0 \quad [\because \overrightarrow{a} \text{ is a constant. So, } \frac{d\overrightarrow{a}}{dt} = 0.]$$

$$= \frac{d\overrightarrow{r}}{dt} \cdot \overrightarrow{a}$$

(ii) Derivative of $\overrightarrow{r} \times \overrightarrow{a}$ be,

$$\frac{d}{dt}(\overrightarrow{r} \times \overrightarrow{a}) = \frac{d\overrightarrow{r}}{dt} \times \overrightarrow{a} + \overrightarrow{r} \times \frac{d\overrightarrow{a}}{dt}$$

$$= \frac{d\overrightarrow{r}}{dt} \times \overrightarrow{a} + \overrightarrow{r} \times 0 \qquad [\because \overrightarrow{a} \text{ is a constant. So, } \frac{d\overrightarrow{a}}{dt} = 0]$$

$$= \frac{d\overrightarrow{r}}{dt} \times a$$

(iii) Derivative of $\overrightarrow{r} \times \frac{d\overrightarrow{r}}{dt}$ be,

$$\frac{d}{dt} \left(\overrightarrow{r} \times \frac{d\overrightarrow{r}}{dt} \right) = \frac{d\overrightarrow{r}}{dt} \times \frac{d\overrightarrow{r}}{dt} + \overrightarrow{r} \times \frac{d}{dt} \left(\frac{d\overrightarrow{r}}{dt} \right)$$

Since cross product of same vector is zero. So, $\frac{d\overrightarrow{r}}{dt} \times \frac{d\overrightarrow{r}}{dt} = 0$. Then,

$$=0+\overrightarrow{r}\times\frac{d^{2}\overrightarrow{r}}{dt^{2}}=\overrightarrow{r}\times\frac{d^{2}\overrightarrow{r}}{dt^{2}}=\overrightarrow{r}\times\frac{d^{2}\overrightarrow{r}}{dt^{2}}$$

(iv) Derivative of \overrightarrow{r} . $\frac{d\overrightarrow{r}}{dt}$ be,

$$\frac{d}{dt} \left(\overrightarrow{r} \cdot \frac{d\overrightarrow{r}}{dt} \right) = \frac{d\overrightarrow{r}}{dt} \cdot \frac{d\overrightarrow{r}}{dt} + \overrightarrow{r} \cdot \frac{d}{dt} \left(\frac{d\overrightarrow{r}}{dt} \right)$$
$$= \left(\frac{d\overrightarrow{r}}{dt} \right)^2 + \overrightarrow{r} \cdot \frac{d^2\overrightarrow{r}}{dt^2}$$

Verify
$$\frac{d}{dt}(\vec{a} \times \vec{b}) = \vec{a} \times \frac{d\vec{b}}{dt} + \frac{d\vec{a}}{dt} \times \vec{b} \text{ and } \frac{d}{dt}(\vec{a} \cdot \vec{b}) = \vec{a} \cdot \frac{d\vec{b}}{dt} + \frac{d\vec{a}}{dt} \cdot \vec{b}$$

where $\vec{a} = 2t^3\vec{i} + t\vec{j} + 3t^2\vec{k}$ and $\vec{b} = 2t\vec{i} + 3\vec{j} + t^3\vec{k}$.

Solution: Let,
$$\overrightarrow{a} = (2t^3\overrightarrow{i} + t\overrightarrow{j} + 3t^2\overrightarrow{k}) = (2t^3, t, 3t^2)$$

and $\overrightarrow{b} = 2t\overrightarrow{i} + 3\overrightarrow{j} + t^3\overrightarrow{k} = (2t, 3, t^3)$

Then,

$$\vec{a} \vec{b} = 4t^4 + 3t + 3t^5$$

and
$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2t^3 & t & 3t^2 \\ 2t & 3 & t^3 \end{vmatrix} = (t^4 - 9t^2)\overrightarrow{i} + (6t^3 - 2t^6)\overrightarrow{j} + (6t^2 - 2t^6)\overrightarrow{k}$$

So that.

$$\frac{\overrightarrow{da}}{dt} = (6t^2, 1, 6t); \qquad \frac{\overrightarrow{db}}{dt} = (2, 0, 3t^2); \qquad \frac{\overrightarrow{d}}{dt} (\overrightarrow{a \cdot b}) = 16t^3 + 3 + 15t^4$$

and
$$\frac{\mathbf{d}}{\mathbf{dt}}(\overrightarrow{a} \times \overrightarrow{b}) = (4t^3 - 18t)\overrightarrow{i} + (18t^2 - 12t^5)\overrightarrow{j} + (18t^2 - 4t)\overrightarrow{k}$$

Now

$$\overrightarrow{a} \times \overrightarrow{d} \overrightarrow{b} + \overrightarrow{d} \overrightarrow{a} \times \overrightarrow{b}
= (2t^3, t, 3t^2) \times (2, 0, 3t^2) + (6t^2, 1, 6t) \times (2t, 3, t^3)
= \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2t^3 & t & 3t^2 \\ 2 & 0 & 3t^2 \end{vmatrix} + \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 6t^2 & 1 & 6t \\ 2t & 3 & t^3 \end{vmatrix}
= [3t^3\overrightarrow{i} + (6t^2 - 6t^5)\overrightarrow{j} + (-2t)\overrightarrow{k}] + [(t^3 - 18t)\overrightarrow{i} + (12t^2 - 6t^5)\overrightarrow{j} + (18t^2 - 2t)\overrightarrow{k}]
= (4t^3 - 18t)\overrightarrow{i} + (18t^2 - 12t^5)\overrightarrow{j} + (18t^2 - 4t)\overrightarrow{k}
= \frac{d}{dt}(\overrightarrow{a} \times \overrightarrow{b})$$

Next.

$$\overrightarrow{a} \cdot \frac{d\overrightarrow{b}}{dt} + \frac{d\overrightarrow{a}}{dt} \cdot \overrightarrow{b} = (2t^3, t, 3t^2) \cdot (2, 0, 3t^2) + (6t^2, 1, 6t) (2t, 3, t^3)$$

$$= (4t^3 + 0 + 9t^4) + (12t^3 + 3 + 6t^4)$$

$$= 16t^3 + 3 + 15t^4 = \frac{d}{dt} (\overrightarrow{a} \cdot \overrightarrow{b})$$

Thus,
$$\frac{d}{dt}(\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{a} \times \frac{d\overrightarrow{b}}{dt} + \frac{d\overrightarrow{a}}{dt} \overrightarrow{b}$$

7. Find the unit tangent vector at any point on the curve x = 3cost, y = 3sint, z = 4t.

Solution: Let,
$$x = 3 \cos t$$
, $y = 3 \sin t$ and $z = 4t$.

Then,

$$\overrightarrow{r} = x_i + y \overrightarrow{j} + z \overrightarrow{k} + (x, y, z) = (3\cos t, 3\sin t, 4t)$$

So.
$$\frac{d\overrightarrow{r}}{dt} = (-3 \sin t, 3 \cos t, 4)$$

Therefore,

$$\begin{vmatrix} \frac{d}{dt} \\ = \sqrt{(-3 \sin t)^2 + (3 \cos t)^2 + 4^2} \\ = \sqrt{9(\sin^2 t + \cos^2 t) + 16} = \sqrt{9 + 16} = 5.$$

Now, the unit tangent vector be,

$$\left(\frac{d\hat{r}}{dt}\right) = \frac{\frac{d\vec{r}}{dt}}{\left|\frac{d\vec{r}}{dt}\right|} = \frac{1}{5} (-3'\sin t, 3\cos t, 4).$$

8. Find the angle between the tangents to the curve x = t, $y = t^2$, $z = t^3$ at $t = \pm 1$. Solution: Let, x = t, $y = t^2$, $z = t^3$

Then,
$$\overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k} = (x, y, z) = (t, t^2, t^3)$$
.

So,
$$T = \frac{d\vec{r}}{dt} = (1, 2t, 3t^2).$$

At
$$t = 1$$
, $\frac{d\vec{r}}{dt} = T_1 = (1, 2, 3)$ and at $t = -1$, $\frac{d\vec{r}}{dt} = T_2 = (1, -2, 3)$.

Let,
$$\theta$$
 be the angle between T_1 and T_2 then,
$$\cos\theta = \frac{T_1 \cdot T_2}{|T_1| |T_2|} = \frac{(1, 2, 3) \cdot (1, -2, 3)}{|(1, 2, 3)| |(1, -2, 3)|} = \frac{1 - 4 + 9}{\sqrt{1 + 4 + 9} \sqrt{1 + 4 + 9}} = \frac{6}{14} = \frac{3}{7}$$
$$\Rightarrow \theta = \cos^{-1}\left(\frac{3}{7}\right)$$

Thus, the required angle be $\theta = \cos^{-1}\left(\frac{3}{7}\right)$

A particle moves along the curve $x = e^{-t}$, $y = 2 \cos 3t$, $z = 2 \sin 3t$, where t is the time. Determine its velocity and acceleration vectors and also the magnitude of velocity and acceleration at t = 0. [2010 Fall Q.No. 3(a)]

Solution: Given curve is

$$x = e^{-t}$$
, $y = 2\cos 3t$ and $z = 2\sin 3t$

 $\vec{r} = (x, y, z) = (e^{-t}, 2\cos 3t, 2\sin 3t).$

$$\frac{\overrightarrow{dr}}{dt} = (-e^{-t}, -6\sin 3t, 6\cos 3t) \qquad \text{and} \qquad \frac{\overrightarrow{d^2r}}{dt^2} = (e^{-t}, -18\cos 3t, -18\sin 3t)$$

We know that, velocity of a curve is, $\overrightarrow{v} = \frac{\overrightarrow{dr}}{dt}$ and acceleration is $\overrightarrow{a} = \frac{\overrightarrow{d^2r}}{dt^2}$.

$$\overrightarrow{v} = \frac{\overrightarrow{dr}}{dt} = (-e^{-t}, -6\sin 3t, 6\cos 3t)$$

and acceleration vector be

$$\overrightarrow{a} = \frac{d^2 \overrightarrow{r}}{dt^2} = (e^{-t}, -18\cos 3t, -18\sin 3t)$$

Also, the vector at
$$t = 0$$
 is
$$\frac{1}{\sqrt{m}} = (-e^{-t}) - 6\sin\theta, 6\cos\theta = (-1, 0, 6)$$
and acceleration vector at $t = 0$ is

$$\overrightarrow{a}_{at} = 0 = (1, -18, 0)$$

 $\overrightarrow{a}_{at t=0} = (1, -18, 0)$ Therefore, magnitude of velocity at t=0 is

Therefore
$$|\vec{v}|_{at t=0} = \sqrt{(-1)^t + 6^2} = \sqrt{1 + 36} = \sqrt{37}$$

and magnitude of acceleration at $t=0$ is

 $\overrightarrow{\mathbf{a}}_{al\ t=0}\mathbf{I} = \sqrt{1^2 + (-18)^2} = \sqrt{1 + 324} = \sqrt{325} = 5\sqrt{13}$

10. A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 5. Find the component of its velocity and acceleration at t = 1 in the direction $\vec{i} + \vec{j} + 3\vec{k}$. [2012 Fall O.No. 3(a)] Q.No. 3(a)] [2009 Fall Q.No. 3(a)]

Solution: Given curve be

$$\overrightarrow{x} = t^3 + 1$$
, $\overrightarrow{y} = t^2$ and $\overrightarrow{z} = 2t + 5$.
Then the position vector of any point of the curve be,

$$\overrightarrow{r} = (x, y, z) = (t^3 + 1, t^2, 2t + 5)$$

So that
$$\frac{d\overrightarrow{r}}{dt} = (3t^2, 2t, 2)$$
 and $\frac{d^2\overrightarrow{r}}{dt^2} = (6t, 2, 0)$

at
$$t = 1$$
, $\frac{d\overrightarrow{r}}{dt}(3, 2, 2)$ and $\frac{d^2\overrightarrow{r}}{dt^2} = (6, 2, 0)$

We know that the velocity vector of \overrightarrow{r} at t = 1 is

$$\overrightarrow{v} = \overrightarrow{\frac{d \cdot r}{dt}}$$
 at $t = 1$ i.e. $\overrightarrow{v} = (3, 2, 2)$

and the acceleration vector of \overrightarrow{r} at t = 1 is

$$\overrightarrow{a} = \frac{d^2 \overrightarrow{r}}{dt^2}$$
 at $t = 1$ i.e. $\overrightarrow{a} = (6, 2, 0)$

Also, given that a vector $\overrightarrow{i} + \overrightarrow{j} + 3\overrightarrow{k} = (1, 1, 3) = \overrightarrow{n}$ (say) So, the unit vector along (1, 1, 3) is

$$\hat{n} = \frac{\overrightarrow{n}}{|\overrightarrow{n}|} = \frac{(1, 1, 3)}{\sqrt{1 + 1 + 9}} = \frac{(1, 1, 3)}{\sqrt{11}}$$

Thus, the velocity component of \overrightarrow{r} along \overrightarrow{n} is

=
$$\overrightarrow{v} \cdot \overrightarrow{n}$$

= $(3, 2, 2) \frac{(1, 1, 3)}{\sqrt{11}} = \frac{3 + 2 + 6}{\sqrt{11}} = \frac{11}{\sqrt{11}} = \sqrt{11}$

and the acceleration component of \overrightarrow{r} along \overrightarrow{n} is

$$= \overrightarrow{a} \cdot \hat{n}$$

$$= (6, 2, 0) \frac{(1, 1, 3)}{\sqrt{11}} = \frac{6 + 2 + 0}{\sqrt{11}} = \frac{8}{\sqrt{11}}$$

11. A particle moves so that its position vector is given by $\overrightarrow{r} = \cos wt^{\frac{1}{2}}$. A particle moves so \overrightarrow{r} of the particle is perpendicular to \overrightarrow{r} and $\overrightarrow{sh_{0w}}$ that the velocity \overrightarrow{v} of the particle is perpendicular to \overrightarrow{r} and $\overrightarrow{sh_{0w}}$ that $\times \stackrel{\rightarrow}{\text{v}}$ is a constant vector.

Solution: Given position vector is

iven position vector is
$$\overrightarrow{r} = \operatorname{coswt} \overrightarrow{i} + \operatorname{sinwt} \overrightarrow{j} = (\operatorname{coswt}, \operatorname{sinwt}, 0)$$

Then.
$$\frac{\overrightarrow{dr}}{dt} = (-w \sin wt, w \cos wt, 0)$$

We know that the velocity vector to \overrightarrow{r} is $\overrightarrow{v} = \frac{\overrightarrow{dr}}{dr}$

$$\overrightarrow{r} \cdot \overrightarrow{v} = \overrightarrow{r} \cdot \frac{\overrightarrow{dr}}{dt} = (\cos wt, \sin wt, 0) \cdot (-w \sin wt, w \cos wt, 0)$$

$$= -w \sin wt \cos wt + w \sin wt \cos wt + 0$$

$$= 0$$

This shows that \overrightarrow{r} and \overrightarrow{v} are perpendicular to each other.

$$\overrightarrow{r} \times \overrightarrow{v} = \overrightarrow{r} \times \frac{\overrightarrow{dr}}{dt} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \cos wt & \sin wt & 0 \\ -w \sin wt & w \cos wt & 0 \end{vmatrix}$$

$$= 0 \overrightarrow{i} + 0 \overrightarrow{j} + (w \cos^2 wt + w \sin^2 wt) \overrightarrow{k}$$

$$= w \overrightarrow{k} \qquad [\cos^2 wt + \sin^2 wt = 1.]$$

This shows that $\overrightarrow{r} \times \overrightarrow{v}$ is constant vector.

12. A particle moves along the curves x = 4 cost, y = 4 sint, z = 6t. Find the velocity and acceleration at time t = 0 and $t = \pi/2$. [2011 Spring Q. No. 6(c)]

Solution: Given curve is

$$x = 4\cos t$$
, $y = 4\sin t$ and $z = 6t$

Then the position vector of any point of the curve is,

$$\vec{r} = (x, y, z) = (4\cos t, 4\sin t, 6t)$$
Then, $\frac{d\vec{r}}{dt} = (-4\sin t, 4\cos t, 6)$ and $\frac{d^2\vec{r}}{dt^2} = (-4\cos t, -4\sin t, 0)$

Then,
$$\frac{dt}{dt} = (-4\sin t, 4\cos t, 6)$$
 and $\frac{d^2 r}{dt^2} = (-4\cos t, -4\sin t, 0)$
At $t = 0$,

$$\frac{d\vec{r}}{dt} = (0, 4, 6) \quad \text{and} \quad \frac{d^2\vec{r}}{dt^2} = (-4, 0, 0)$$
and at $t = \frac{\pi}{2}$. $\frac{d\vec{r}}{dt} = (-4, 0, 6)$ and $\frac{d^2\vec{r}}{dt^2} = (0, -4, 0)$

We know that, velocity along a curve is
$$\overrightarrow{v} = \frac{\overrightarrow{dr}}{dt}$$
 and acceleration is, $\overrightarrow{a} = \frac{\overrightarrow{dr}}{dt}$

Therefore, velocity at
$$t = 0$$
 is, $\overrightarrow{v} = (0, 4, 6) = 4 \overrightarrow{j} + 6 \overrightarrow{k}$
and velocity at $t = \frac{\pi}{2}$ is, $\overrightarrow{v} = (-4, 0, 6) = -4 \overrightarrow{j} + 6 \overrightarrow{k}$

Also, acceleration at
$$t = 0$$
 is, $\overrightarrow{a} = (-4, 0, 0) = -4 \overrightarrow{i}$
and acceleration at $t = \frac{\pi}{2}$ is, $\overrightarrow{a} = (0, -4, 0) = -4 \overrightarrow{j}$

A particle moves along the curve, $x = a \cos t$, $y = a \sin t$ and z bt. Find the velocity and acceleration at t = 0 and $t = \pi/2$.

Note: See the above solution with replacing 4 by a.

3. A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 5. Find the velocity and acceleration at t = 1.

solution: Part of solution of Q. 10.

14. If
$$\overrightarrow{a} = x^2 \overrightarrow{i} - y \overrightarrow{j} + xz \overrightarrow{k}$$
 and $\overrightarrow{b} = y \overrightarrow{i} + x \overrightarrow{j} - xyz \overrightarrow{k}$ verify that
$$\frac{\partial^2}{\partial x \partial y} (\overrightarrow{a} \times \overrightarrow{b}) = \frac{\partial^2}{\partial x \partial y} (\overrightarrow{a} \times \overrightarrow{b})$$

$$\overrightarrow{a} = x^2 \overrightarrow{i} - y \overrightarrow{j} + xz \overrightarrow{k} = (x^2, -y, xz)$$
and
$$\overrightarrow{b} = y \overrightarrow{i} + x \overrightarrow{j} - xyz \overrightarrow{k} = (y, x, -xyz)$$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x^2 & -y & xz \\ y & x & -xyz \end{vmatrix}$$
$$= (xy^2z - x^2z) \overrightarrow{i} + (xyz + x^3yz) \overrightarrow{j} + (x^3 + y^2) \overrightarrow{k}$$

So that. $\frac{\partial (\overrightarrow{a} \times \overrightarrow{b})}{\partial x} = (y^2z - 2xz)\overrightarrow{i} + (yz + 3x^2yz)\overrightarrow{j} + 3x^2\overrightarrow{k}$

and
$$\frac{\partial^2 (\overrightarrow{a} \times \overrightarrow{b})}{\partial x \partial y} = 2yz\overrightarrow{i} + (z + 3x^2z)\overrightarrow{j} + 0$$
(1)

Also

$$\frac{\partial (\overrightarrow{a} \times \overrightarrow{b})}{\partial y} = 2xyz\overrightarrow{i} + (xz + x^3z)\overrightarrow{j} + 2y\overrightarrow{k}$$

and
$$\frac{\partial^2(\overrightarrow{a} \times \overrightarrow{b})}{\partial x \partial y} = 2yz\overrightarrow{i} + (z + 3x^2z)\overrightarrow{j} + 0$$
(2)
From (1) and (2), we have

$$\frac{\partial^2(\overrightarrow{a}\times\overrightarrow{b})}{\partial x\partial y} = \frac{\partial^2(\overrightarrow{a}\times\overrightarrow{b})}{\partial x\partial y}$$

w = dt'Since the particle is moving on a circle of radius a and with constant angular velocity $w = \frac{d\theta}{dt}$.

So,
$$\vec{r} = a\cos\theta \vec{i} + a\sin\theta \vec{j}$$
. Then, $\frac{d\vec{r}}{dt} = -a\sin\theta \frac{d\theta}{dt} \vec{i} + a\cos\theta \frac{d\theta}{dt} \vec{j}$

And,
$$\frac{d^{2} \overrightarrow{r}}{dt^{2}} = -a \cos \theta \left(\frac{d\theta}{dt} \right)^{2} \overrightarrow{i} - a \sin \theta \left(\frac{d\theta}{dt} \right)^{2} \overrightarrow{j}$$
$$= -\left[a \cos \theta \ w^{2} \overrightarrow{i} + a \sin \theta \ w^{2} \overrightarrow{j} \right]$$
$$= -w^{2} \left(a \cos \theta \ \overrightarrow{i} + a \sin \theta \ \overrightarrow{j} \right) = -w^{2} \overrightarrow{r}$$

Since the acceleration of the particle is $\frac{d^2 \vec{r}}{dt^2}$ i.e. $-\mathbf{w}^2 \vec{r}$

15. If $\overrightarrow{r} = x^2y\overrightarrow{i} - 2y^2z\overrightarrow{j} + xy^2z^2\overrightarrow{k}$. Show that $\left|\frac{\partial^2\overrightarrow{r}}{\partial x^2} \times \frac{\partial^2\overrightarrow{r}}{\partial y^2}\right|$ at the p_{0j}

Solution: Let, $\overrightarrow{r} = x^2y\overrightarrow{i} - 2y^2z\overrightarrow{j}$, $xy^2z^2\overrightarrow{k} = (x^2y, -2y^2z, xy^2z^2)$

Then,

$$\frac{\partial \overrightarrow{r}}{\partial x} = (2x, 0, y^2z^2), \qquad \frac{\partial \overrightarrow{r}}{\partial y} = (x^2, -4yz, 2xyz)$$

and,
$$\frac{\partial^2 \overrightarrow{r}}{\partial x^2} = (2, 0, 0)$$
 $\frac{\partial^2 \overrightarrow{r}}{\partial y^2} = (0, -4z, 2xz^2)$

So that,

$$\frac{\partial^2 \overrightarrow{r}}{\partial x^2} \times \frac{\partial^2 \overrightarrow{r}}{\partial y^2} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 0 & 0 \\ 0 & -4z & 2z^2 \end{vmatrix} = 0. \overrightarrow{i} - 4xz^2 \overrightarrow{j} - 8z \overrightarrow{k}$$

Therefore,

$$\left| \frac{\partial^2 \overrightarrow{r}}{\partial x^2} \times \frac{\partial^2 \overrightarrow{r}}{\partial y^2} \right| = \sqrt{0 + (-4xz^2)^2 + (-8z)^2}$$

At the point (2, 1, -1)

$$\begin{vmatrix} \frac{\partial^2 \mathbf{r}}{\partial x^2} \times \frac{\partial^2 \mathbf{r}}{\partial y^2} \end{vmatrix} = \sqrt{0 + (4(2)(-1)^2)^2 + (8(-1)^2)}$$

$$= \sqrt{0 + 64 + 864} = \sqrt{2 \times 64} = 8\sqrt{2}.$$

16. Show that the unit tangent to the curve $\overrightarrow{r} = t \overrightarrow{i} + t^2 \overrightarrow{j} + t^3 \overrightarrow{k}$ at t = 1 is $\frac{1}{\sqrt{14}} (\overrightarrow{i} + 2 \overrightarrow{j} + 3 \overrightarrow{k})$

Solution: Given curve is

$$\overrightarrow{r} = t \overrightarrow{i} + t^2 \overrightarrow{j} + t^3 \overrightarrow{k} = (t, t^2, t^3)$$

So, the tangent vector of \overrightarrow{r} is, $\frac{d\overrightarrow{r}}{dt} = (1, 2t, 3t^2)$

Therefore, the unit tangent vector of \overrightarrow{r} is

$$\left(\frac{\overrightarrow{dr}}{dt}\right) = \frac{\overrightarrow{dr}}{\left|\frac{\overrightarrow{dr}}{dt}\right|} = \frac{(1, 2t, 3t^2)}{\sqrt{1 + 4t^2 + 9t^4}}$$

At t = 1, the unit tangent vector of \overrightarrow{r} is

$$\left(\frac{\overrightarrow{d r}}{dt}\right) = \frac{(1, 2, 3)}{\sqrt{1 + 4 + 9}}$$

$$= \frac{(1, 2, 3)}{\sqrt{14}} = \frac{1}{\sqrt{14}} (\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}).$$

EXERCISE 4.2

1. Find grad f, where

(i)
$$f = x^2 + yz$$
 (ii) $f = x^3 + y^3 + 3xyz$ (iii) $f = \log(x^2 + y^2 + z^2)$
Solution: (i) Given that, $f = x^2 + yz$

Then.

Grad (f) =
$$\nabla f = \left(\overrightarrow{i}\frac{\partial}{\partial x} + \overrightarrow{j}\frac{\partial}{\partial y} + \overrightarrow{k}\frac{\partial}{\partial z}\right)(x^2 + yz)$$

= $\overrightarrow{i}\frac{\partial}{\partial x}(x^2 + yz) + \overrightarrow{j}\frac{\partial}{\partial y}(x^2 + yz) + \overrightarrow{k}\frac{\partial}{\partial z}(x^2 + yz)$
= $\overrightarrow{i}\cdot 2x + \overrightarrow{j}\cdot z + \overrightarrow{k}\cdot y$
= $2x\overrightarrow{i} + z\overrightarrow{j} + y\overrightarrow{k}$

(ii) Given that, $f = x^3 + y^3 + 3xyz$ Then,

Grad (f) =
$$\nabla f = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}\right) (x^3 + y^3 + 3xyz)$$

= $(3x^2 + 3yz)\overrightarrow{i} + (3y^2 + 3zx)\overrightarrow{j} + 3xy\overrightarrow{k}$.

(iii) Given that, $f = \log (x^2 + y^2 + z^2)$ Then,

Grad (f)
$$= \nabla f = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z} \right) (\log (x^2 + y^2 + z^2))$$

$$= \overrightarrow{i} \left(\frac{2x}{x^2 + y^2 + z^2} \right) + \overrightarrow{j} \left(\frac{2y}{x^2 + y^2 + z^2} \right) + \overrightarrow{k} \left(\frac{2z}{x^2 + y^2 + z^2} \right)$$

$$= \frac{2}{x^2 + y^2 + z^2} \left(x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k} \right).$$

2. Find a unit normal to the surface

[2009 Fall - Short]

(i)
$$xy^{1}z^{2} = 4$$
 at $(-1, -1, 2)$ (ii) $x^{2}y + 2xz = 4$ at $(2, -2, 3)$

Solution: (i) Let given surface is.

$$f = xy^3z^2 - 4$$

We have, grad (f) is the normal to the given surface.

Then.

grad (f) =
$$\nabla f = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}\right) (xy^3z^2 - 4),$$

= $y^3z^2\overrightarrow{i} + 3xy^2z^2\overrightarrow{j} + 2xy^3z\overrightarrow{k}$

At point (-1, -1, 2), grad $(f) = -4\overrightarrow{i} - 12\overrightarrow{j} + 4\overrightarrow{k}$

Thus, (-4, -12, 4) is normal to f at (-1, -1, 2).

And, the unit vector of grad (f) is

$$\hat{n} = \frac{\text{grad (f)}}{|\text{grad (f)}|} = \frac{(-4, -12, 4)}{\sqrt{16 + 144 + 16}} = \frac{4(-1, -3, 1)}{4\sqrt{1 + 9 + 1}} = \frac{(-1, -3, 1)}{\sqrt{11}}$$

Let the given surface be,

$$f = x^2y + 2xz - 4$$

We know, the normal vector to the surface f is Vf. Here,

$$\nabla f = \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}\right) (x^2y + 2xz - 4)$$
$$= (2xy + 2z) \vec{i} + x^2 \vec{j} + 2x \vec{k}$$

At point (2, -2, 3),
$$\nabla f = (-8+6)\overrightarrow{i} + 4\overrightarrow{j} + 4\overrightarrow{k}$$

$$=2(-\overrightarrow{i}+2\overrightarrow{j}+2\overrightarrow{k})$$

Now, unit vector of ∇f is

$$\hat{n} = \frac{\nabla f}{|\nabla f|} = \frac{2(\overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k})}{2\sqrt{1 + 4 + 4}} = \frac{\overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k}}{3}$$

Thus, the unit vector normal to f at (2, -2, 3) is $\frac{1}{3}(-1 + 2) + 2k$.

Find the directional derivatives of f at P in the direction a, where

(i)
$$f = x^2 + y^2$$
, P(1, 1), $\overrightarrow{a} = 2\overrightarrow{i} - 4\overrightarrow{j}$
Solution: Given surface be, $f = x^2 + y^2$

grad (f) =
$$\nabla f = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}\right) (x^2 + y^2)$$

= $2(x \overrightarrow{i} + y \overrightarrow{i})$

At point P(1, 1), grad (f) = $2(\overrightarrow{i} + \overrightarrow{i})$

Also, given that $\overrightarrow{a} = 2\overrightarrow{i} - 4\overrightarrow{j}$. So, unit vector of \overrightarrow{a} is

$$\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{2\vec{i} - 4\vec{j}}{\sqrt{4 + 16}} = \frac{\vec{i} - 2\vec{j}}{\sqrt{5}}$$

Now, the direction derivative of f at P alone \vec{a} is $\nabla f. \ \hat{a} = \frac{2}{\sqrt{5}} (\vec{i} + \vec{j}) \cdot (\vec{i} - 2\vec{j}) = \frac{2}{\sqrt{5}} (1 - 2) = -\frac{2}{\sqrt{5}}$

$$\nabla f. \ \hat{a} = \frac{2}{\sqrt{5}} (\vec{i} + \vec{j}) . (\vec{i} - 2\vec{j}) = \frac{2}{\sqrt{5}} (1 - 2) = -\frac{2}{\sqrt{5}}$$

 $\int_{0}^{1} f = \sqrt{x^{2} + y^{2} + z^{2}}, P(3, 0, 4); \vec{a} = \vec{i} + \vec{j} + \vec{k}.$ [2006 Spring Q.No. 3(a)]

$$f = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

We know the directional derivative of f at P in the direction of a is Vf. â at P. Here.

$$\nabla \mathbf{f} := \left(\overrightarrow{\mathbf{i}} \frac{\partial}{\partial \mathbf{x}} + \overrightarrow{\mathbf{j}} \frac{\partial}{\partial \mathbf{y}} + \overrightarrow{\mathbf{k}} \frac{\partial}{\partial \mathbf{z}} \right) \frac{1}{\sqrt{\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2}}$$
$$= -2(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{-3/2} \cdot (\mathbf{x} \overrightarrow{\mathbf{i}} + \mathbf{y} \overrightarrow{\mathbf{j}} + \mathbf{z} \overrightarrow{\mathbf{k}})$$

At point P(3, 0, 4),
$$\nabla f = -2(9 + 0 + 16)^{-3/2} (3\vec{i} + 4\vec{k})$$
$$= -\frac{2}{125} (3\vec{i} + 4\vec{k})$$

Also, given that, $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$. So, unit vector of \overrightarrow{a} is

$$\hat{a} = \frac{\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}}{\sqrt{1+1+1}} = \frac{\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}}{\sqrt{3}}$$

$$\nabla f. \ \hat{a} = -\frac{2}{125} (3\vec{i} + 4\vec{k}) \cdot \frac{1}{\sqrt{3}} (\vec{i} + \vec{j} + \vec{k})$$
$$= -\frac{2}{125\sqrt{3}} (3 + 0 + 4) = -\frac{14}{125\sqrt{3}}$$

Thus, the directional derivative of f at P in the direction of \overrightarrow{a} is, $-\frac{14}{125\sqrt{3}}$

(ii)
$$f = xyz$$
, $P(-1, 1, 3)$, $\overrightarrow{a} = \overrightarrow{i} - 2\overrightarrow{j} + 2\overrightarrow{k}$

(iv)
$$f = e^x \cos y$$
, $P(2, \pi, 0)$, $\overrightarrow{a} = 2\overrightarrow{i} + 3\overrightarrow{k}$

(i)
$$f \le xy^2 + yz^3$$
, $P(2, -1, 3)$, $\overrightarrow{a} = \overrightarrow{i} + 2\overrightarrow{i} + 2\overrightarrow{k}$

(ij) $f = 2xy + z^2$, P(1, -1, 3), $\vec{a} = \vec{i} + 2\vec{j} + 2\vec{k}$ Solution: (iii) – (vi) – process as (ii).

 $f(x) = 4xz^3 - 3x^2yz^2$ at (2, -1, 2) along z-axis. Solution: Given that, $f = 4xz^3 - 3x^2yz^2$

Then the directional derivative of f at (2, -1, 2) along z-axis is,

 ∇f , \hat{a} at (2, -1, 2) and where $\overrightarrow{a} = \overrightarrow{k}$

$$\nabla f = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}\right) (4xz^3 - 3x^2yz^2)$$

$$= (4z^3 - 6xyz^2) \overrightarrow{i} + (-3x^2z^2) \overrightarrow{j} + (12xz^2 - 6x^2yz) \overrightarrow{k}$$

$$\nabla f \cdot \hat{\mathbf{a}} = ((4z^3 - 6xyz^2) \overrightarrow{\mathbf{i}} - 3x^2z^2 \overrightarrow{\mathbf{j}} + (12xz^2 - 6x^2yz) \overrightarrow{\mathbf{k}}) \cdot \overrightarrow{\mathbf{k}}$$

$$[\because |\overrightarrow{\mathbf{a}}| = 1 \text{ and } \hat{\mathbf{a}} = \frac{\overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|} = \overrightarrow{\mathbf{k}}]$$

$$= 12xz^2 - 6x^2yz$$

at point (2, -1, 2), $\nabla f \cdot \hat{a} = 12(2)(2)^2 - 6(2)^2(-1)(2) = 96 + 48 = 144$ Thus, the directional derivative of f at (2, -1, 2) along z-axis is 144.

(viii) $f = xy^2 + yz^3$ at (2, -1, 1) along the direction of the normal to the surface $x |_{0p}$ $y^2 + 4 = 0$ at (-1, 2, 1).

Solution: Given that, $f = xy^2 + yz^3$

And the surface is, $\phi = x \log(z) - y^2 + 4$

$$\nabla \phi = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{j} \frac{\partial}{\partial z}\right) (x \log(z) - y^2 + 4) = \log(z) \overrightarrow{i} - 2y \overrightarrow{j} + \frac{x}{z} \overrightarrow{k}$$
at $(-1, 2, 1)$,

$$\nabla \phi = \log(1) \overrightarrow{i} - 4 \overrightarrow{j} - \overrightarrow{k} = 0 \overrightarrow{i} - 4 \overrightarrow{j} - \overrightarrow{k}$$

Also,

grad (f) =
$$\left(\overrightarrow{i}\frac{\partial}{\partial x} + \overrightarrow{j}\frac{\partial}{\partial y} + \overrightarrow{j}\frac{\partial}{\partial z}\right)(xy^2 + yz^3)$$

= $y^2\overrightarrow{i} + (2xy + z^3)\overrightarrow{j} + 3yz^2\overrightarrow{k}$
at (2, -1, 1),

grad(f) =
$$\overrightarrow{i}$$
 + (-4 + 1) \overrightarrow{j} - 3 \overrightarrow{k} = \overrightarrow{i} - 3 \overrightarrow{j} - 3 \overrightarrow{k}

Now, directional derivative of f is

$$= (\text{grad } (f)|_{a_{1}(2,-1,1)}) \cdot \left(\frac{\nabla \phi}{|\nabla \phi|}|_{a_{1}(-1,2,1)}\right)$$

$$= (\overrightarrow{i} - 3\overrightarrow{j} - 3\overrightarrow{k}) \cdot \left(\frac{0\overrightarrow{i} - 4\overrightarrow{j} - \overrightarrow{k}}{\sqrt{0 + 16 + 1}}\right) = \frac{1}{\sqrt{17}}(0 + 12 + 3) = \frac{15}{\sqrt{17}}$$

Find the angle between the tangent planes to the surface x $\log z = y^2 - 1$ and x= 2 - z at (1, 1, 1).

Solution: Let the given surface is, $f = x \log(z) - y^2 + 1$

Then, $\nabla F = \left(\overrightarrow{i}, \frac{\partial}{\partial x} + \overrightarrow{j}, \frac{\partial}{\partial y} + \overrightarrow{k}, \frac{\partial}{\partial z}\right) = 2xy\overrightarrow{i} + x^2\overrightarrow{j} + \overrightarrow{k}$ Let θ be the angle between the tangent planes of surface $x\log(z) = y^2 - 1$ and $x^2y = 2 - z$. Then θ be the angle between ∇f and ∇F .

Therefore, $\cos\theta = \frac{\nabla f \cdot \nabla F}{|\nabla f| |\nabla F|} = \frac{2xy \log(z) - 2x^2y + x/z}{\sqrt{(\log(z))^2 + 4y^2 + x^2/z^2}\sqrt{4x^2y^2 + x^4 + 1}}$

 $\cos\theta = \frac{2(0) - 2 + 1}{\sqrt{0 + 4 + 1}\sqrt{4 + 1 + 1}} \quad [\log(1) = 0]$ $=\frac{-1}{\sqrt{5}\sqrt{6}}=-\frac{1}{\sqrt{30}}$

Thus, angle between the tangent planes to the given surfaces $x\log(z) = y^2 - 1$ and x^2y =2-z at (1, 1, 1) is $\cos^{-1}\left(-\frac{1}{\sqrt{30}}\right)$

Find the angle between the tangent planes to the surface $xy = z^2$ at the point (4. 1, 2) and (3, 3, -3).

Solution: Given surface is, $f = xy - z^2$

Then the normal to the surface f is Vf.

$$\nabla f = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z} \right) (xy - z^2) = y \overrightarrow{i} + x \overrightarrow{j} - 2z \overrightarrow{k}.$$

 $\nabla f = \overrightarrow{i} + 4\overrightarrow{i} - 4\overrightarrow{k}$. At point, (4, 1, 2),

 $\nabla f = 3\vec{i} + 3\vec{j} + 6\vec{k}$ and at point (3, 3, -3),

Let θ be the angle between ∇f at (4, 1, 2) and at (3, 3, -3)

 $\cos\theta = \frac{(\nabla f \text{ at } (4, 1, 2)) \cdot (\nabla f \text{ at } (3, 3, -3))}{|\nabla f \text{ at } (4, 1, 2)| |\nabla f \text{ at } (3, 3, -3)|}$

$$= \frac{\overrightarrow{(1+4)} - 4\overrightarrow{k}) \cdot (3\overrightarrow{1} + 3\overrightarrow{1} + 6\overrightarrow{k})}{\overrightarrow{(1+4)} - 4\overrightarrow{k}|3\overrightarrow{1} + 3\overrightarrow{1} + 6\overrightarrow{k}|}$$

$$= \frac{3 + 12 - 24}{\sqrt{1 + 16 + 16}\sqrt{9 + 9 + 36}} = \frac{-9}{\sqrt{33}\sqrt{54}} = \frac{-9}{9\sqrt{14}\sqrt{2}} = \frac{-1}{\sqrt{22}}$$

 $\Rightarrow \theta = \cos^{-1}\left(-\frac{1}{\sqrt{22}}\right)$

Thus, the angle between the normal to $xy = z^2$ at (4, 1, 2) and (3, 3, -3) is, $\cos^{-1}\left(-\frac{1}{\sqrt{22}}\right)$

6. If $\overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$, show that

$$= \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}\right) (a_1x + a_2y + a_3z)$$

$$= a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{k} = \overrightarrow{a}.$$

Thus, grad $(\overrightarrow{a}, \overrightarrow{r}) = \overrightarrow{a}$

(i) grad $r = \operatorname{grad}(r) = \frac{\overrightarrow{r}}{r}$ (ii) grad $\left(\frac{1}{r}\right) = -\frac{\overrightarrow{r}}{r^2}$

(iii) grad $(r^n) = nr^{n-2} \overrightarrow{r}$ (iv) grad $(\overrightarrow{a}, \overrightarrow{r}) = \overrightarrow{a}$, where \overrightarrow{a} is a constant vector

Solution: Let $\overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k} = (x, y, z)$

 $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$ (i) So that,

$$\frac{\overrightarrow{r}}{r} = \frac{\overrightarrow{r}}{|\overrightarrow{r}|} = \frac{(x, y, z)}{\sqrt{x^2 + y^2 + z^2}} \qquad \dots (ii)$$

 $-\frac{\overrightarrow{r}}{r^3} = -\frac{\overrightarrow{r}}{\xrightarrow{1 \to 3}} = \frac{-(x, y, z)}{(x^2 + y^2 + z^2)^{3/2}} \qquad \dots (iii)$ and,

 $r^{(n-2)} \xrightarrow{r} = |\overrightarrow{r}|^{(n-2)} \xrightarrow{r} = (x^2 + y^2 + z^2)^{(n-2)/2} (x, y, z)$ Also,

(i)
$$\operatorname{grad}(r) = \nabla r = \nabla |\overrightarrow{r}| = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}\right) \sqrt{x^2 + y^2 + z^2}$$

$$= \frac{1}{2\sqrt{x^2 + y^2 + z^2}} (2x\overrightarrow{i} + 2y\overrightarrow{j} + 2z\overrightarrow{k})$$

$$= \frac{x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}}{\sqrt{x^2 + y^2 + z^2}} = \frac{(x, y, z)}{\sqrt{x^2 + y^2 + z^2}} = \frac{\overrightarrow{r}}{r}$$

Thus, grad (r) = $\frac{1}{r}$

(ii) grad
$$\left(\frac{1}{r}\right) = \nabla \left(\frac{1}{r}\right) = \nabla \frac{1}{|\vec{r}|}$$

$$= \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}\right) \cdot \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
$$= -\frac{1}{2(x^2 + y^2 + z^2)^{3/2}} (2x \vec{i} + 2y \vec{j} + 2z \vec{k})$$
$$= -\frac{(x, y, z)}{(x^2 + y^2 + z^2)^{3/2}} = -\frac{\vec{r}}{r^2}.$$

Thus, grad $\left(\frac{1}{r}\right) = -\frac{\overrightarrow{r}}{2}$.

(iii) grad
$$(r^n) = \nabla (r^n) = \nabla |\vec{r}|^n = \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}\right) (x^2 + y^2 + z^2)^{n/2}$$

$$= \frac{n}{2} (x^2 + y^2 + z^2)^{n/2 - 1} (2x \vec{i} + 2y \vec{j} + 2z \vec{k})$$

$$= n(x, y, z) \cdot (x^2 + y^2 + z^2)^{(n - 2)n/2}$$

$$= nr^{n - 2} \vec{r}$$

Thus, grad $(r^n) = nr^{n-2}$

(iv)
$$\operatorname{grad}(\overrightarrow{a}, \overrightarrow{r}) = \nabla((a_1\overrightarrow{i} + a_2\overrightarrow{j} + a_3\overrightarrow{k})(x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}))$$

= $\nabla(a_1x + a_2y + a_3z)$

In what direction from (3, 1, -2) is the directional derivative of $f = x^2y^2z^4$ Solution: Given that, $f = x^2y^2z^4$

since we have the directional derivative of f is maximum in the direction of grad(f).

grad
$$f = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}\right) (x^2 y^2 z^4)$$

= $2xy^2 z^4 \overrightarrow{i} + 2x^2 y z^4 \overrightarrow{j} + 4x^2 v^2 z^3 \overrightarrow{k}$

at (3, 1, -2), grad
$$f = 2(3) (1)^2 (-2)^4 \overrightarrow{i} + 2(3)^2 (1) (-2)^4 \overrightarrow{j} + 4(3)^2 (1)^2 (-2)^3 \overrightarrow{k}$$

= $96 \overrightarrow{i} + 288 \overrightarrow{j} - 288 \overrightarrow{k}$.

And its magnitude is

$$|\text{grad fl}| = \sqrt{(96)^2 + (288)^2 + (-288)^2}$$
$$= \sqrt{9216 + 82944 + 82944} = \sqrt{175104} = 96\sqrt{19}.$$

Thus in the direction of $96\overrightarrow{i} + 288\overrightarrow{j} - 288\overrightarrow{k}$ from (3, 1, -2) is the maximum directional derivative of $f = x^2y^2z^4$ and its magnitude is $96\sqrt{19}$.

8. What is the greatest rate of increase of $u = x^2 + yz^2$ at the point (1, -1, 3)? Solution: Given that, $u = x^2 + yz^2$.

Since we have the greatest rate of increase of u at the point (α, β, γ) is the maximum value of the directional derivative at (α, β, γ) . So,

greatest rate of increase of u at (α, β, γ)

=
$$|\nabla u|$$
 at (α, β, γ)

$$\nabla u = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}\right) (x^2 + yz^2) = 2x\overrightarrow{i} + z^2\overrightarrow{j} + 2yz\overrightarrow{k}$$

 $\nabla u = 2\vec{i} + 9\vec{i} - 6\vec{k}$ At point (1, -1, 3),

Then, value of $|\nabla u|$ at (1, -1, 3) is,

$$|\nabla u| = |(2, 9, -6)|$$
 at $(1, -1, 3)$
= $\sqrt{4 + 81 + 26} = \sqrt{121} = 11$.

Thus, the greatest rate of increase of $u = x^2 + yz^2$ at (1, -1, 3) is 11.

The temperature at a point (x, y, z) in space is given by $T = x^2 + y^2 - z$. A mosquito located at (1, 1, 2) desire to fly in such a direction that it wing get warm as a such as (1, 1, 2) desire to fly in should it fly? warm as soon as possible. In what direction should it fly?

Solution: Given that, $T = x^2 + y^2 - z$

$$\nabla T = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}\right) (x^2 + y^2 - z) = 2x \overrightarrow{i} + 2y \overrightarrow{j} - \overrightarrow{k}$$

at point (1, 1, 2), $\nabla T = 2\overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$.

at point (1, 1, 2).

Given that a mosquito desires to fly in a direction so that its wing gets warm as to

as possible.

That means, the mosquito wants to fly in the direction where it get many tempereture.

Thus, the mosquito should fly in the direction of $2\vec{i} + 2\vec{j} - \vec{k}$.

10. If q is the acute angle between the surfaces $xy^2z = 3x + z^2$ and $3x^2 - y^2 + 2z = 3$ the point (1, -2, 1), show that $\cos\theta = \frac{3}{7\sqrt{6}}$.

Solution: Given surfaces are

$$f = xy^2z - 3x - z^2$$

and $F = 3x^2 - y^2 + 2z - 1$

Then,

grad
$$f = (y^2z - 3)\overrightarrow{i} + 2xyz\overrightarrow{j} + (xy^2 - 2z)\overrightarrow{k}$$

and grad
$$F = 6x \overrightarrow{i} - 2y \overrightarrow{j} + 2 \overrightarrow{k}$$

At point,
$$(1, -2, 1)$$
, grad $f = \overrightarrow{i} - 4\overrightarrow{j} + 2\overrightarrow{k}$

and
$$\operatorname{grad} F = 6\overrightarrow{i} + 4\overrightarrow{j} + 2\overrightarrow{k}$$

Let θ be the angle between f and F at (1, -2, 1). Then,

$$\cos\theta = \frac{\text{grad f. grad F}}{|\text{grad fl | grad Fl}} \quad \text{at point } (1, -2, 1)$$

$$= \frac{(\vec{i} - 4\vec{j} + 2\vec{k}) \cdot (\vec{6}\vec{i} + 4\vec{j} + 2\vec{k})}{|(\vec{i} - 4\vec{j} + 2\vec{k})| |(\vec{6}\vec{i} + 4\vec{j} + 2\vec{k})|}$$

$$= \frac{6 - 16 + 4}{\sqrt{1 + 16 + 4}\sqrt{36 + 16 + 4}} = \frac{-6}{\sqrt{21}\sqrt{56}} = \frac{-6}{14\sqrt{6}} = \frac{-3}{7\sqrt{6}}$$

11. Find the value of constants I and u so that the surface $\lambda x^2 - \mu yz = (\lambda + 2)x$ $4x^2y + z^3 = 4$ may intersect orthogonally at the point (1, -1, 2).

Solution: Given surfaces are

$$\lambda x^2 - \mu yz = (\lambda + 2)x$$
(i)
 $4x^2y + z^3 = 4$ (ii)

Given that the surfaces intersect orthogonally at (1, -1, 2). So, the point lies on help surfaces.

Then at (1, -1, 2), (i) becomes

$$\lambda + 2\dot{\mu} = \lambda + 2 \implies \dot{\mu} = 1.$$

Set,
$$\phi_1 = \lambda x^2 - (\lambda + 2)x - yz$$
 [: $\mu = 1$]
 $\phi_2 = 4x^2y + z^3 - 4$

So.

$$\overrightarrow{r}_{1} = \operatorname{grad}(\phi_{1}) = (2\lambda x - \lambda - 2) \overrightarrow{i}_{1} - z \overrightarrow{j}_{2} - y \overrightarrow{k}$$

$$\overrightarrow{r}_{2} = \operatorname{grad}(\phi_{2}) = 8xy \overrightarrow{i}_{1} + 4x^{2} \overrightarrow{j}_{1} + 3z^{2} \overrightarrow{k}$$

$$\vec{r}_1 = (\lambda - 2)\vec{i} - 2\vec{j} + \vec{k}$$
 and $\vec{r}_2 = -8\vec{i} + 4\vec{j} + 12\vec{k}$
Given that ϕ_1 and ϕ_2 are orthogonal to each other at $(1, -1, 2)$, we should have,

$$\overrightarrow{r}_1, \overrightarrow{r}_2 = 0 \Rightarrow -8(\lambda - 2) - 8 + 12 = 0$$

$$\Rightarrow -8(\lambda - 2) + 4 = 0 \Rightarrow \lambda - 2 = -1/2 \Rightarrow \lambda = \frac{3}{2} = 2.5$$

Thus, $\lambda = 2.5$ and $\mu = 1$.

EXERCISE 4.3

Find divergence of

(i)
$$\overrightarrow{x}$$
 \overrightarrow{i} + \overrightarrow{y} \overrightarrow{j} + \overrightarrow{z} \overrightarrow{k} (ii) e^{x} (cosy \overrightarrow{i} + siny \overrightarrow{j})

(iii)
$$\left(-\frac{y\overrightarrow{i} + x\overrightarrow{j}}{x^2 + y^2}\right)$$
 (iv) $e^{x}\overrightarrow{i} + ye^{-x}\overrightarrow{j} + 2z \sinh x \overrightarrow{k}$

Solution: (i) Let,
$$\overrightarrow{v} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$

Then,

Div
$$(\overrightarrow{v}) = \nabla \cdot \overrightarrow{v} = (\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}) \cdot (\overrightarrow{x} \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k})$$

= 1 + 1 + 1 = 3.

Thus, divergence of $x \overrightarrow{i} + y \overrightarrow{i} + z \overrightarrow{k}$ is 3.

(ii) Let
$$\overrightarrow{v} = e^x (\cos y \overrightarrow{i} + \sin y \overrightarrow{j})$$
.

Then the divergence of
$$\overrightarrow{V}$$
 is,
$$\overrightarrow{div} \cdot \overrightarrow{V} = \overrightarrow{V} \cdot \overrightarrow{V} = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}\right) \left(e^{x} \cos y \overrightarrow{i} + e^{x} \sin y \overrightarrow{j}\right)$$

$$= e^{x} \cos y + e^{x} \cos y = 2e^{x} \cos y.$$

Thus, the divergence of e^x (cosy \overrightarrow{i} + siny \overrightarrow{j}) is $2e^x \cos y$

(iii) Let
$$\overrightarrow{v} = \left(-\frac{\overrightarrow{y \cdot 1} + \overrightarrow{x \cdot 1}}{\overrightarrow{x^2 + y^2}}\right)$$
. Then the divergence of \overrightarrow{v} is:

$$\operatorname{div.} \overrightarrow{v} = \nabla \cdot \overrightarrow{v} = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y}\right) \left(-\frac{y \overrightarrow{i} + x \overrightarrow{j}}{x^2 + y^2}\right)$$
$$= \frac{1}{x^2 + y^2} \left[-\frac{\partial y}{\partial x} + \frac{\partial x}{\partial y}\right] = \frac{1}{x^2 + y^2} (0 + 0) = 0.$$

Thus, the divergence of \overrightarrow{v} is 0.

(iv) Let
$$\overrightarrow{v} = e^{x} \overrightarrow{i} + ye^{-x} \overrightarrow{j} + 2z \sinh x \overrightarrow{k}$$
. Then the divergence of \overrightarrow{v} is,

$$div \overrightarrow{v} = \overrightarrow{v} \overrightarrow{v} = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}\right) \cdot \left(e^{x} \overrightarrow{i} + ye^{-x} \overrightarrow{j} + 2z \sinh x \overrightarrow{k}\right)$$

$$= e^{x} + e^{-x} + 2\sinh x$$

$$= e^{x} + e^{-x} + 2\sinh x$$

$$= e^{x} + e^{-x} + 2(\frac{e^{x} - e^{-x}}{2}) = e^{x} + e^{-x} + e^{x} - e^{-x} = 2e^{x}$$

Thus, divergence of $e^x \overrightarrow{i} + ye^{-x} \overrightarrow{j} + 2z \sinh x \overrightarrow{k}$ is $2e^x$.

2. Find curl of

(i)
$$\frac{1}{2}(x^2 + y^2 + z^2)(\vec{i} + \vec{j} + \vec{k})$$
 (ii) $(x^2 + y^2 + z^2)^{-3/2}(x\vec{i} + y\vec{j} + z\vec{k})$

(iii) xyz
$$(x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k})$$

Solution: (i) Let
$$\overrightarrow{v} = \frac{1}{2}(x^2 + y^2 + z^2)(\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k})$$
.

Then the curl of \overrightarrow{v} is,

curl
$$\overrightarrow{V} = \nabla \times \overrightarrow{V} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 1/2 (x^2 + y^2 + z^2) & 1/2 (x^2 + y^2 + z^2) & 1/2 (x^2 + y^2 + z^2) \end{vmatrix}$$

= $(y - z)\overrightarrow{i} + (z - x)\overrightarrow{j} + (x - y)\overrightarrow{k}$

Thus, curl of \overrightarrow{v} is $(y-z)\overrightarrow{i} + (z-x)\overrightarrow{j} + (x-y)\overrightarrow{k}$

(ii) - (iii) Similar to (i).

3. Evaluate: (i) div. $(3x^2\overrightarrow{i} + 5xy^2\overrightarrow{j} + xyz^3\overrightarrow{k})$ at (1, 2, 3).

(ii) div (xy sinz \overrightarrow{i} + y²sinx \overrightarrow{j} + z²sinxy \overrightarrow{k}) at $\left(0, \frac{\pi}{2}, \frac{\pi}{2}\right)$. Solution: (i) Here,

div.
$$(3x^{2}\overrightarrow{i} + 5xy^{2}\overrightarrow{j} + xyz^{3}\overrightarrow{k})$$

= $(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}) \cdot (3x^{2}\overrightarrow{i} + 5xy^{2}\overrightarrow{j} + xyz^{3}\overrightarrow{k})$
= $6x + 10xy + 3xyz^{2}$

At point (1, 2, 3), div. $(3x^2\vec{i} + 5xy^2\vec{j} + xyz^3\vec{k}) = 6 + 20 + 54 = 80$.

(ii) Here,

$$\operatorname{div}(xy\sin z \overrightarrow{i} + y^2\sin x \overrightarrow{j} + z^2\sin xy \overrightarrow{k})$$

$$= \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}\right) \cdot (xy\sin z \overrightarrow{i} + y^2\sin x \overrightarrow{j} + z^2\sin xy \overrightarrow{k})$$

$$= y\sin z + 2y\sin x + 2z\sin xy$$

Chapter 4 | Vector Calculus | Exam Questions 281

At point
$$\left(0, \frac{\pi}{2}, \frac{\pi}{2}\right)$$
, div $\left(xy \sin z \overrightarrow{i} + y^2 \sin z \overrightarrow{j} + z^2 \sin y \overrightarrow{k}\right)$

$$= \frac{\pi}{2} \sin \frac{\pi}{2} + 2\frac{\pi}{2} \sin 0 + 2\frac{\pi}{2} \sin 0$$

$$= \frac{\pi}{2} \cdot 1 + \pi \cdot 0 + \pi \cdot 0 = \frac{\pi}{2}.$$

Find the divergence and curl of vectors
(i)
$$\overrightarrow{v} = xyz \overrightarrow{i} + 3x^2y \overrightarrow{j} + (xz^2 - y^2z) \overrightarrow{k}$$

(ii) $\overrightarrow{v} = (x^2 + yz) \overrightarrow{i} + (y^2 + zx) \overrightarrow{j} + (z^2 + xy) \overrightarrow{k}$

Solution: (i) Let
$$\overrightarrow{v} = xyz \overrightarrow{i} + 3x^2y \overrightarrow{j} + (xz^2 - y^2z) \overrightarrow{k}$$

Then divergence of \overrightarrow{v} is,

div.
$$\overrightarrow{v} = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}\right) \cdot (xyz \overrightarrow{i} + 3x^2y \overrightarrow{j} + (xz^2 - y^2z) \overrightarrow{k})$$

= $yz + 3x^2 + 2xz - y^2$

And, curt of
$$\overrightarrow{v}$$
 is, $\overrightarrow{curl} \overrightarrow{v} = \nabla \times \overrightarrow{v} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial \partial x}{\partial x} & \frac{\partial \partial y}{\partial y} & \frac{\partial \partial z}{\partial y} \\ xyz & 3x^2y & xy^2 - y^2z \end{vmatrix}$

$$= -2yz \overrightarrow{i} - (z^2 - xy) \overrightarrow{j} + (6xy - xz) \overrightarrow{k}$$

Thus, divergence of \overrightarrow{v} is $yz + 3x^2 + 2xz - y^2$ and curl of \overrightarrow{v} is $-2yz\overrightarrow{i} + (xy - z^2)\overrightarrow{j} + x(6y - z)\overrightarrow{k}$

5. If
$$\overrightarrow{v} = \frac{\overrightarrow{x} \cdot \overrightarrow{i} + y \cdot \overrightarrow{j} + z \cdot \overrightarrow{k}}{\sqrt{x^2 + y^2 + z^2}}$$
. Show that: $\overrightarrow{v} \cdot \overrightarrow{v} = \frac{2}{\sqrt{x^2 + y^2 + z^2}}$ and $\overrightarrow{v} \times \overrightarrow{v} = \overrightarrow{v}$.

Solution: Let,

$$\overrightarrow{v} = \frac{\overrightarrow{x} \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}}{\sqrt{x^2 + y^2 + z^2}}$$

$$\nabla \cdot \overrightarrow{v} = \left(\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z} \right) \cdot \left(\frac{\overrightarrow{x \, i} + y \, \overrightarrow{j} + z \, \overrightarrow{k}}{\sqrt{x^2 + y^2 + z^2}} \right)$$

$$= (x^2 + y^2 + z^2)^{-1/2} - \frac{x}{2} (x^2 + y^2 + z^2)^{-1/2} \cdot 2x + (x^2 + y^2 + z^2)^{-1/2} - \frac{y}{2} (x^2 + y^2 + z^2)^{-3/2} \cdot 2y + (x^2 + y^2 + z^2)^{-1/2} - \frac{z}{2} (x^2 + y^2 + z^2)^{-3/2} \cdot 2z$$

$$= \frac{3}{\sqrt{x^2 + y^2 + z^2}} - \frac{1}{(x^2 + y^2 + z^2)^{3/2}} (x^2 + y^2 + z^2)$$

$$= \frac{3}{\sqrt{x^2 + y^2 + z^2}} - \frac{1}{(x^2 + y^2 + z^2)^{3/2}}$$

$$= \frac{2}{\sqrt{x^2 + y^2 + z^2}}$$

And.

And,
$$\nabla x \overrightarrow{v} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \partial_i \partial x & \partial_i \partial y & \partial_i \partial_z \\ x.(x^2 + y^2 + z^2)^{-1/2} & y(x^2 + y^2 + z^2)^{-1/2} & z(x^2 + y^2 + z^2) \end{vmatrix}$$

$$= \left[-\frac{Z}{2} (x^2 + y^2 + z^2)^{-3/2} \cdot 2y + \frac{Y}{2} (x^2 + y^2 + z^2)^{-3/2} \cdot 2z \right] \overrightarrow{i} - \left[-\frac{Z}{2} (x^2 + y^2 + z^2)^{-3/2} \cdot 2x + \frac{X}{2} (x^2 + y^2 + z^2)^{-3/2} \cdot 2z \right] \overrightarrow{j} + \left[-\frac{Y}{2} (x^2 + y^2 + z^2)^{-3/2} \cdot 2x + \frac{X}{2} (x^2 + y^2 + z^2)^{-3/2} \cdot 2y \right] \overrightarrow{k}$$

$$= \frac{1}{(x^2 + y^2 + z^2)^{3/2}} [(-yz + yz) \overrightarrow{i} (-xz + xz) \overrightarrow{j} + (-xy + xy) \overrightarrow{k}]$$

$$= \frac{1}{(x^2 + y^2 + z^2)^{3/2}} (0 \overrightarrow{i} - 0 \overrightarrow{j} + 0 \overrightarrow{k})$$

$$= \overrightarrow{0}$$
Thus,
$$\nabla . \overrightarrow{v} = \frac{2}{\sqrt{x^2 + y^2 + z^2}} \text{ and } \nabla \times \overrightarrow{v} = \overrightarrow{0}.$$

6. If $\overrightarrow{A} = 3xz^2\overrightarrow{i} - yz\overrightarrow{j} + (x + 2z) \overrightarrow{k}$. Find curl (curl \overrightarrow{A})

Solution: Let $\overrightarrow{A} = 3xz^2 \overrightarrow{i} - yz \overrightarrow{j} + (x + 2z) \overrightarrow{k}$ Then,

$$\operatorname{curl} (\overrightarrow{A}) = \nabla \times \overrightarrow{A} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 3xz^2 & -yz & x+2z \end{vmatrix} = y\overrightarrow{i} + (6xz-1)\overrightarrow{j} + 0\overrightarrow{k}$$

So

$$\operatorname{curl} \left(\operatorname{curl} \left(\overrightarrow{A} \right) \right) = \nabla \times \operatorname{curl} \overrightarrow{A} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & 6xz - 1 & 0 \end{vmatrix}$$
$$= -6x \overrightarrow{i} + 0 \overrightarrow{i} + (6z - 1) \overrightarrow{k}.$$

Thus, curl (curl \overrightarrow{A}) = $-6x\overrightarrow{i} + (6z-1)\overrightarrow{k}$.

7. Show that the vector $\overrightarrow{v} = (x + 3y)\overrightarrow{i} + (y - 3z)\overrightarrow{j} + (x - 2z)\overrightarrow{k}$ is solenoidal.

Note: If divergence of \vec{v} is zero i.e. div $\vec{v} = 0$ then \vec{v} is called solenoidal.

Let, $\overrightarrow{V} = (x + 3y)\overrightarrow{i} + (y - 3z)\overrightarrow{j} + (x - 2z)\overrightarrow{k}$ Then,

This shows that \overrightarrow{v} is solenoidal.

If
$$\mathbf{u} = \mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2$$
 and $\overrightarrow{\mathbf{V}} = \mathbf{x} \cdot \overrightarrow{\mathbf{i}} + \mathbf{y} \cdot \overrightarrow{\mathbf{j}} + \mathbf{z} \cdot \overrightarrow{\mathbf{k}}$. Show that div. $(\mathbf{u} \cdot \overrightarrow{\mathbf{v}}) = 5\mathbf{u}$

Solution: Let,

 $\mathbf{u} = \mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2$ and

 $\mathbf{y} = \mathbf{x} \cdot \overrightarrow{\mathbf{i}} + \mathbf{y} \cdot \overrightarrow{\mathbf{j}} + \mathbf{z} \cdot \overrightarrow{\mathbf{k}}$

Then,

 $\mathbf{div} \cdot (\mathbf{u} \cdot \overrightarrow{\mathbf{v}}) = \nabla \cdot (\mathbf{u} \cdot \overrightarrow{\mathbf{v}}) = \left(\overrightarrow{\mathbf{i}} \cdot \frac{\partial}{\partial \mathbf{x}} + \overrightarrow{\mathbf{j}} \cdot \frac{\partial}{\partial \mathbf{y}} + \overrightarrow{\mathbf{k}} \cdot \frac{\partial}{\partial \mathbf{z}} \right) \cdot \left((\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2) \cdot (\mathbf{x} \cdot \overrightarrow{\mathbf{i}} + \mathbf{y} \cdot \overrightarrow{\mathbf{j}} + \mathbf{z} \cdot \overrightarrow{\mathbf{k}}) \right)$

$$= \left(\overrightarrow{\mathbf{i}} \cdot \frac{\partial}{\partial \mathbf{x}} + \overrightarrow{\mathbf{j}} \cdot \frac{\partial}{\partial \mathbf{y}} + \overrightarrow{\mathbf{k}} \cdot \frac{\partial}{\partial \mathbf{z}} \right) \cdot \left((\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2) \cdot (\mathbf{x} \cdot \overrightarrow{\mathbf{i}} + \mathbf{y} \cdot \overrightarrow{\mathbf{j}} + \mathbf{z} \cdot \overrightarrow{\mathbf{k}}) \right)$$

$$= \left(\overrightarrow{\mathbf{i}} \cdot \frac{\partial}{\partial \mathbf{x}} + \overrightarrow{\mathbf{j}} \cdot \frac{\partial}{\partial \mathbf{y}} + \overrightarrow{\mathbf{k}} \cdot \frac{\partial}{\partial \mathbf{z}} \right) \cdot \left((\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2) \cdot (\mathbf{x} \cdot \overrightarrow{\mathbf{i}} + \mathbf{y} \cdot \overrightarrow{\mathbf{j}} + \mathbf{z} \cdot \overrightarrow{\mathbf{k}}) \right)$$

$$= \left(\overrightarrow{\mathbf{x}}^2 + \mathbf{y}^3 + \mathbf{y} \cdot \mathbf{z}^2 \right) \cdot \overrightarrow{\mathbf{j}} + \left(\mathbf{x}^2 \mathbf{z} + \mathbf{y}^2 + \mathbf{z}^2 \right) \cdot \overrightarrow{\mathbf{k}} \right)$$

$$= 3\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 + \mathbf{x}^2 + 3\mathbf{y}^2 + \mathbf{z}^2 + \mathbf{x}^2 + \mathbf{y}^2 + 3\mathbf{z}^2$$

$$= 5(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2) = 5\mathbf{u}$$

Thus $\operatorname{div.}(u\overrightarrow{v}) = 5u$.

9. Show that the vector $\overrightarrow{v} = (\sin y + z) \overrightarrow{i} + (x \cos y - z) \overrightarrow{j} + (x - y) \overrightarrow{k}$ is irrotational.

Note: If curl of v is zero i.e. curl v = 0 then v is called irrotational.

Let,
$$\overrightarrow{v} = (\sin y + z)\overrightarrow{i} + (x\cos y - z)\overrightarrow{j} + (x - y)\overrightarrow{k}$$

Then $\overrightarrow{\mathbf{v}}$ is irretational if $\operatorname{curl} \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{0}}$.

· Here,

$$curl \overrightarrow{V} = \overrightarrow{\nabla} \times \overrightarrow{V} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \sin y + z & x\cos y - z & x - y \end{vmatrix}$$
$$= (-1 + 1) \overrightarrow{i} + (1 - 1) \overrightarrow{j} + (\cos y - \cos y) \overrightarrow{k} = \overrightarrow{0}.$$

This shows that \overrightarrow{v} is irrotational.

10. Show that $\overrightarrow{v} = 2xyz^3\overrightarrow{i} + x^2z^3\overrightarrow{j} + 3x^2yz^2\overrightarrow{k}$ is irrotational.

Solution: Let, $\overrightarrow{v} = 2xyz^3\overrightarrow{i} + x^2z^3\overrightarrow{j} + 3x^2yz^2\overrightarrow{k}$

Then \overrightarrow{v} is irratational if curl $\overrightarrow{v} = \overrightarrow{0}$. Here

$$\begin{aligned}
\operatorname{curl} \overrightarrow{\mathsf{v}} &= \nabla \times \overrightarrow{\mathsf{v}} = \begin{vmatrix} \overrightarrow{\mathsf{i}} & \overrightarrow{\mathsf{j}} & \overrightarrow{\mathsf{k}} \\ \overrightarrow{\mathsf{i}} \partial_i \partial x & \partial_i \partial y & \partial_i \partial z \\ 2xyz^3 & x^2z^3 & 3x^2yz^2 \end{vmatrix} \\
&= (3x^2z^2 - 3x^2z^2) \overrightarrow{\mathsf{i}} - (6xyz^2 - 6xyz^2) \overrightarrow{\mathsf{j}} + (2xz^3 - 2xz^3) \overrightarrow{\mathsf{k}} \\
&= \overrightarrow{\mathsf{0}} . \end{aligned}$$

This shows that \overrightarrow{v} is irratational.

11. If $\phi = \log (x^2 + y^2 + z^2)$, find div (grad ϕ) and curl (grad ϕ). $\delta_{0|ution}$: If $\mu = \log (x^2 + y^2 + z^2)$, find div (grad μ).

Solution: Let, $\phi = \log(x^2 + y^2 + z^2)$ Then.