Лабораторная работа 2.2.6 Определение энергии активации по температурной зависимости вязкости жидкости Выполнил Жданов Елисей Б01-205

1 Цель работы:

- 1) Измерение скорости падения шариков при разной температуре жидкости
- 2) Вычисление вязкости жидкости по закону Стокса и расчет энергии активации

2 Оборудование:

Стеклянный цилиндр с исследуемой жидкостью (глицерин)

Термостат

Секундомер

Горизонтальный компаратор

Микроскоп

Мелкие шарики (диаметром около 1 мм)

3 Теоретическая справка

Сила сопротивления для шарика в жидкости определена теоретически

 $F = 6\pi \eta r v$

Составив с использованием выражения уравнение вертикально движения шарика в жидкости и решив его, получим

$$\eta = \frac{2}{9}gr^2 \frac{\rho - \rho_{\mathcal{K}}}{v_{\text{VCT}}}$$

$$\tau = \frac{2}{9} \frac{r^2 \rho}{\eta}$$

Также релаксационный путь будет равен

$$S = v_{\text{yct}} \tau \left(\frac{t}{\tau} - 1 + e^{-t/\tau} \right)$$

Плотность жидкости зависит от температуры, значения будем брать из графика

Наконец, можно записать выражения для энергии активации

$$W = k \frac{d(\ln \eta)}{d(1/T)}$$

Построим график в логарифмических координатах

4 Экспериментальная установка

На стенках сосуда нанесены две метки на некотором расстоянии друг от друга. Верхняя метка располагается ниже уровня жидкости с таким расчетом, чтобы скорость шарика к моменту прохождения этой метки успевала установиться. Измеряя расстояние между метками с помощью линейки, а время падения с помощью секундомера, будем определять скорость шарика $v_{\rm уст}$.

Радиусы шариков измеряются горизонтальным компаратором или микроскопом.

5 Измерения, Обработка

1-2) Радиус сосуда R = см

τ, сек	T, K	d, мм	
188.0	188.0	(64.5 ± 3.9)	22

5) Найдем угловые коэффициенты прямых для каждой установки по МНК.

$$a = \frac{\langle x_i y_i \rangle - \langle x \rangle \langle y_i \rangle}{\langle x_i^2 \rangle - \langle x_i \rangle^2}$$

$$b = < v_i > -a < N_i >$$

Также рассчитаем их погрешности

$$S_a^2 = \frac{\langle x_i^2 \rangle}{\langle x_i^2 \rangle - \langle x_i \rangle^2} \cdot \frac{\langle b_i - b \rangle^2}{n - 2}$$

$$q(T)$$

6 Вывод

7 Ресурсы

Расчет по МНК: метод-наименьших-квадратов.рф