Отчет по лабораторной работе

"Лабораторная работа I. Асимптотическая сложность."

Травина Валерия, Б02-307 23.02.2024г

1 Часть

Здесь все легко. Для начала оценим время выполнения функции $\operatorname{rand}()^*\operatorname{rand}()\%N$, поймем что она не зависит от N и в целом временем всех математических операций будем пренебрегать. Только случае использования функции $\operatorname{rand}()$ будем вычитать сооответствующее время. Для читаемости графиков линейного поиска будем строить их в логарифмических координатах $\log(time)$ от $(\log(N))$:

Часть 1
Бинарный поиск (Для 1000000 повторений)

— Случайный элемент
— Несуществующий элемент

300

200

По графикам найдем коэффициенты линеаризации y = kx + b:

10

8

0

Таблица 1: Коэффициенты линеаризации

12

14

log2(N)

16

18

20

Часть 1. Линейный поиск			
	случайный элемент несуществующий элем		
k	1.00 ± 0.01	0.98 ± 0.02	
b	-0.84 ± 0.03	-0.44 ± 0.02	

Часть 1. Бинарный поиск			
	случайный элемент	несуществующий элемент	
k	38 ± 4	9.8 ± 0.3	
b	204 ± 20	8.8 ± 1.5	

Как и следовало ожидать при линейном поиске время прямопропорционально количеству элементов. При этом время поиска несуществующего элемента (перебор всего массива) в $0.84/0.44 \approx 2$ раза больше времени посика случайного элемента (так как по теории вероятностей это средний элемент, а зависимость времени от количества элементов линейная).

Результаты бинарного поиска поразительные не только из-за их скорости (сильно большей скорости линейного поиска), но и из-за того, что поиск случайного числа занимает больше времени (даже при учете среднего времени выполнения функции $\operatorname{rand}()^*\operatorname{rand}()\approx 200\operatorname{Mc})$ нежели поиск несуществующего (т.е перебор всех вариантов). Никакому логическому объяснению этот феномен не поддается (а еще показания ноутбука меняются в 2 раза за пару минут), однако можно заметить интересный факт $38/9.8\approx 2^2$. Также из результатов очевидно, что $time \sim \log 2(N)$.

2 Часть

'Трудные времена создают сильных котят' Построим графики зависимости log(time) от (log(N)) и найдем коэффициенты линеаризации

Часть 2 Поиск суммы в неупорядоченном массиве (Для 1000 повторений) 5.5 Случайная сумма Несуществующая сумма 5.0 4.5 4.0 log10(time) 3.5 3.0 2.5 2.0 1.5 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 2.00 log10(N)

Часть 2 Линейный поиск				
	случайный элемент	несуществующий элемент		
k	1.987 ± 0.003	1.987 ± 0.004		
b	-2.514 ± 0.002	-2.435 ± 0.003		

Часть 2 Бинарный поиск			
	случайный элемент несуществующий эле		
k	1.08 ± 0.01	0.93 ± 0.01	
b	0.034 ± 0.007	0.219 ± 0.009	

Проанализируем полученные результаты. Во-первых для линейного поиска очевидна степенная зависимость $time \sim \alpha N^2$. Во-вторых из теоретических соображений коэффициенты пропорциональности α должны различаться в 4 раза, однако они почти равны, это может быть следствием оптимизации кода при поиске одного и того же элемента. Рассмотрим оптимизированный поиск в упорядоченном массиве. Зависимость $time \sim N$ линейна.

3 Часть

А вот эта уже интересная часть. Для оценки колличества повторяющихся элементов введем коэффициент

$$p = \frac{\text{количество}_\text{неуникальных}_\text{элементов}}{\text{количество}_\text{всех}_\text{элементов}} \tag{1}$$

Стратегия А

Аналогично предыдущим пунктам построим графики зависимости log(time) от (log(N)) и найдем коэффициенты линеаризации

Часть 3 Стратегия А				
p (%)	k	b	α	
0	1.04 ± 0.05	-0.82 ± 0.04	0,151	
10	1.00 ± 0.02	-0.64 ± 0.02	0,229	
25	0.95 ± 0.01	-0.52 ± 0.02	0,302	
50	0.96 ± 0.02	-0.64 ± 0.02	0,229	
75	0.97 ± 0.02	-0.95 ± 0.01	0,112	
90	0.97 ± 0.01	-1.28 ± 0.01	0,052	

Заметим, что коэффициент наклона почти не меняется и примерно равен 1, поэтому вычислительная сложность такого алгоритма O(N). Однако исследуем зависимость b(p). Пусть $time = \alpha \cdot N^k$, то есть $10^b = \alpha$. Построим графики зависимостей $\alpha(p)$ и b(p):

Рис. 1: График зависимостей $\alpha(p)$ -фиолетовый и b(p)-зеленый

Они с приемлимой точностью описываются параболами, что позволяет считать такую стратегию немного более эффективной лишь при p>70%.

Стратегия В

Опять же построим графики зависимости log(time) от (log(N)) и найдем коэффициенты линеаризации

Часть 3 Стратегия В (Для 100000 повторений) k=0% 4.0 k=10% k=25% 3.5 k=50% k=75% 3.0 k=90% log10(time) 2.5 2.0 1.5 1.0 0.5 2.5 3.0 4.0 2.0 3.5 4.5

Часть 3 Стратегия В				
p (%)	k	b	α	
0	0.96 ± 0.02	-0.70 ± 0.01	0,200	
10	1.00 ± 0.01	-0.84 ± 0.02	0,145	
25	1.02 ± 0.02	-0.91 ± 0.02	0,123	
50	1.05 ± 0.03	-1.02 ± 0.02	0,095	
75	1.26 ± 0.08	-1.89 ± 0.07	0,013	
90	1.22 ± 0.05	-1.78 ± 0.04	0,017	

log10(N)

Опять таки посторим график зависимочтей $\alpha(p)$ и b(p):

Рис. 2: График зависимостей $\alpha(p)$ -фиолетовый и b(p)-зеленый

Однако этот график менее информативный, так как меняется не только коэффициент, но и степень N. Но все же можно сделать вывод о лучшей применимости этой стратегии по сравнению с предыдущей, так как для небольших массивов (до $N<10^4$) при любом р время меньше по сравнению с p=0%. Но конечно максимальная эффективность достигается начиная с 70%.

Стратегия С Не будем сдаваться и построим еще один график log(time) от (log(N)) и найдем коэффициенты:

Часть 3 Стратегия С				
p (%)	k	b	α	
0	0.68 ± 0.04	0.41 ± 0.04	2,57	
10	0.77 ± 0.05	0.02 ± 0.04	1,05	
25	0.78 ± 0.04	-0.01 ± 0.04	0,98	
50	0.81 ± 0.05	-0.13 ± 0.04	0,74	
75	0.88 ± 0.04	-0.44 ± 0.04	0,36	
90	0.96 ± 0.04	-0.80 ± 0.03	0,17	

Строить график зависимостей $\alpha(p)$ и b(p) не будем так как он не информативен, вследствие сильного изменения степени k. Однако по уже построенному графику можно сделать вывод, что для небольших массивов (до $N{<}10^4$) при любом p время меньше по сравнению с $p{=}0\%$. Но, конечно, максимальная эффективность достигается начиная с 60%.

Вывод

Самой удачной оказалась стратегия C, а неудачной - A, не только по скорости убывания времени с увеличением p, но и просто анализируя "чистое" время выполнения функций (см. таблички в экселе).

4 Вывод

Эта лабароторная работа имеет номер, значит будут и другие ...