

Funções

Uma **função** f é uma terna $(X,Y,x\mapsto y)$, em que X e Y são dois conjuntos e $x\mapsto y$ é uma regra que associa a <u>cada</u> elemento x de X um <u>único</u> y de Y.

Uma função pode ser indicada por

$$f: X \to Y, y = f(x)$$
 ou

$$f: X \to Y$$
$$x \mapsto y$$

O conjunto X é chamado **domínio** da função f e será denotado por D(f) ou D_f .

O conjunto Y é chamado **contradomínio** da função f.

O conjunto $Im(f) = \{f(x) : x \in X\} \subset Y$ é chamado de **conjunto imagem** da função f.

O elemento $f(x) \in Y$ é chamado de **imagem do** elemento $x \in X$ pela função f.

É comum chamar x de variável independente e y de variável dependente da função f.

Exemplo

Sejam $X=\{-1,0,1,2\}$ e $Y=\{-2,-1,0,1,2,3\}$. Estabeleça se $f\colon X\to Y$ é uma função ou não.

f não é uma função, pois o elemento $2 \in X$ não está associado a nenhum elemento de Y.

f é uma função

f não é uma função, pois o elemento $1 \in X$ está associado com dois elementos de Y.

f é uma função

Função de uma variável real a valores reais

Uma função de uma variável real a valores reais é uma função $f: X \to Y$, em que X e Y são subconjuntos de \mathbb{R} .

Nesta disciplina só trabalharemos com funções de uma variável real a valores reais.

Gráfico de uma função

Seja $f: X \to Y$ uma função. O conjunto

$$G_f = \{ (x, f(x)) : x \in X \} \subset \mathbb{R}^2$$

é chamado de **gráfico** da função f.

O gráfico de f é um subconjunto do conjunto de todos os pares ordenados (x, y) de números reais.

Munindo-se o plano de um sistema ortogonal de coordenadas cartesianas, o gráfico de f pode então ser pensado como o lugar geométrico descrito pelo ponto (x, f(x)) quando x percorre o domínio de f.

Observação:

Nem toda curva no plano coordenado é gráfico de uma função. Uma função f pode possuir apenas um valor f(x) para cada x em seu domínio, de modo que <u>nenhuma reta vertical</u> pode ter uma intersecção com o gráfico de uma função mais de uma vez.

Domínio e Imagem

Dado o gráfico de uma função f, temos que:

- Domínio de f: é o conjunto formado por todas as abscissas dos pontos do gráfico de f.
- Imagem de f: é o conjunto formado por todas as ordenadas dos pontos do gráfico de f.

Exemplo

Os seguintes gráficos representam funções. Determine o domínio e o conjunto imagem de cada uma delas.

$$D(f) = \{x \in \mathbb{R}: -2 \le x \le 1\} = [-2,1]$$

$$Im(f) = \{ y \in \mathbb{R} : 0 \le y \le 4 \} = [0,4]$$

$$D(g) = \{x \in \mathbb{R}: -2 < x \le 3\} = (-2,3]$$

$$Im(g) = \{ y \in \mathbb{R}: -1 \le y < 4 \} = [-1,4)$$

$$D(h) = \{x \in \mathbb{R} : x \neq 0\} = (-\infty, 0) \cup (0, +\infty)$$

$$Im(h) = \{y \in \mathbb{R} : -2 < y < 0 \text{ ou } 1 < y < 2\}$$

$$= (-2, 0) \cup (1, 2)$$

$$D(s) = \{x \in \mathbb{R}: -2 < x < 2\} = (-2, 2)$$
$$Im(s) = \{1, 2\}$$

Observação: Por simplificação, deixaremos muitas vezes de explicitar o domínio e o contradomínio de uma função; quando tal ocorrer, ficará implícito que o contradomínio é \mathbb{R} e o domínio é o "maior" subconjunto de \mathbb{R} para o qual faz sentido a regra da função.

Exemplo: Determine o domínio das seguintes funções:

- (a) f(x) = 2x 5. Essa regra é válida para qualquer número real, logo $D(f) = \mathbb{R}$.
- (b) $f(x) = x^2 + 2x 3$. Essa regra é válida para qualquer número real, logo $D(f) = \mathbb{R}$.
- (c) $f(x) = \sqrt{x-2}$. Essa regra é válida quando $x-2 \ge 0 \Rightarrow x \ge 2$. Logo, $D(f) = \{x \in \mathbb{R}: x \ge 2\} = [2, +\infty)$.
- (d) $f(x) = \frac{1}{x+5}$. Essa regra é válida quando $x+5 \neq 0$, ou seja, $x \neq -5$. Logo, $D(f) = \{x \in \mathbb{R}: x \neq -5\} = \mathbb{R} \{-5\}$.
- (e) $f(x) = \frac{1}{x^2+4}$. Essa regra é válida para qualquer número real, uma vez que o denominador nunca se anula. Logo, $D(f) = \mathbb{R}$.
- (f) $f(x) = \sqrt[3]{x^8 + 3x 1}$. Essa regra é válida para qualquer número real, logo $D(f) = \mathbb{R}$.

Análise de Gráficos

Analisando o gráfico de uma função podemos obter informações importantes a respeito do seu comportamento.

(1) Estudo do sinal de uma função

Seja y = f(x) uma função de variável real. Estudar o sinal de f significa determinar os valores de x para os quais y é positivo, os valores de x para os quais y é zero e os valores de x para os quais y é negativo. Temos que:

- Os pontos de intersecção do gráfico com o eixo x apresentam ordenadas y=0, ou seja, suas abscissas x_0 são tais que $f(x_0)=0$. Essas abscissas são os **zeros** ou **raízes** da função.
- Os pontos do gráfico situados acima do eixo x apresentam ordenadas y > 0, ou seja, suas abscissas x_0 são tais que $f(x_0) > 0$. Nesses pontos, dizemos que a função dada é **positiva**.
- Os pontos do gráfico situados abaixo do eixo x apresentam ordenadas y < 0, ou seja, suas abscissas x_0 são tais que $f(x_0) < 0$. Nesses pontos, dizemos que a função dada é **negativa**.

Exemplo: Seja f uma função de uma variável real cujo gráfico é dado abaixo.

Temos que:

- $a, b, c, d \in e$ são raízes de f;
- f é positiva nos intervalos: (a, b), (c, d) e $(e, +\infty)$;
- f é negativa nos intervalos: $(-\infty, a)$, (b, c) e (d, e).

(2) Crescimento e decrescimento de uma função

Seja y = f(x) uma função de uma variável real a valores reais e seja X um subconjunto do domínio de f.

- Se para quaisquer $x_1, x_2 \in X$ com $x_1 < x_2$, tem-se $f(x_1) < f(x_2)$, dizemos que f é **crescente em X**.
- Se para quaisquer $x_1, x_2 \in A$ com $x_1 < x_2$, tem-se $f(x_1) > f(x_2)$, dizemos que f é decrescente em X.

Exemplo: Seja f uma função cujo gráfico é dado a seguir.

Temos que:

- f é crescente nos intervalos: $(-\infty, a), (b, c) \in (d, e).$
- f é decrescente nos intervalos: (a,b),(c,d) e $(e,+\infty)$.

Exemplo: O gráfico ao lado representa uma função f de uma variável real.

Determine:

- (a) os valores de f(-3), f(0) e f(1);
- (b) as raízes de f;
- (c) os intervalos em que f é crescente;
- (\mathbf{d}) os intervalos em que f é decrescente;
- (e) os intervalos em que f é positiva;
- (\mathbf{f}) os intervalos em que f é negativa.

Solução:

- (a) Temos que f(-3) = 2, f(0) = 0 e f(1) = -1.
- (b) As raízes de f são -5, 0 e 2.
- (c) Intervalos em que f é crescente: $(-\infty, -3)$ e $(1, +\infty)$.
- (d) Intervalo em que f é decrescente: (-3, 1).
- (e) Intervalos em que f é positiva: (-5,0) e $(2,+\infty)$.
- (f) Intervalos em que f é negativa: $(-\infty, -5)$ e (0, 2).

(3) Funções Pares e Funções Ímpares

Seja $f: X \subset \mathbb{R} \to \mathbb{R}$ uma função.

- Dizemos que f é par quando f(-x) = f(x), para todo $x \in X$.
- Dizemos que f é **impar** quando f(-x) = -f(x), para todo $x \in X$.

Propriedade Geométrica das Funções Pares

O gráfico de uma função par é simétrico em relação ao eixo das ordenadas (eixo y).

Propriedade Geométrica das Funções Ímpares

O gráfico de uma função ímpar é simétrico em relação à origem do sistema de coordenadas.

Exemplos

(1) A função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$ é par, pois $f(-x) = (-x)^2 = x^2 = f(x), \text{ para todo } x \in \mathbb{R}.$

(2) A função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^3$ é impar, pois $f(-x) = (-x)^3 = -x^3 = -f(x), \text{ para todo } x \in \mathbb{R}.$

(3) A função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2 + x$ não é par nem ímpar. Por exemplo, observe que f(1) = 2 e f(-1) = 0, logo $f(-1) \neq f(1)$ e $f(-1) \neq -f(1)$.

Exercícios

Determine o domínio das seguintes funções:

(a)
$$f(x) = 3x^5 - 4x^3 + 2$$
 (b) $g(x) = \frac{x-1}{x^2-4}$

(b)
$$g(x) = \frac{x-1}{x^2-4}$$

(c)
$$h(x) = \sqrt{x-1}$$

(d)
$$p(x) = \frac{1}{\sqrt{x+1}}$$

$$(\mathbf{e}) \ r(x) = \frac{\sqrt{x+2}}{x-2}$$

(f)
$$s(t) = \frac{1}{\sqrt[3]{2t+3}}$$

(2) Determine o domínio e a imagem das funções cujos gráficos são dados a seguir.

 (\mathbf{a})

- (3) Considere a função $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = \frac{x+2}{x^2+1}$. Calcule:

- (a) f(1) (b) f(0) (c) f(-1) (d) $f(\frac{1}{2})$ (e) f(2x) (f) f(x+1)
- (4) Seja a função $f: \mathbb{R} \{1\} \to \mathbb{R}$, definida por $f(x) = \frac{3x+2}{x-1}$. Qual é o elemento do domínio que tem imagem 2?
- (5) È dada uma função real tal que
 - 1. f(x + y) = f(x)f(y)
 - 2. f(1) = 2
 - 3. $f(\sqrt{2}) = 4$.

Calcule $f(3 + \sqrt{2})$.

(6) Diga se a função é par, ímpar ou nenhuma delas.

(a)
$$f(x) = x^4 - x^2$$

$$\mathbf{(b)}\ f(x) = 2x^3$$

$$(\mathbf{c}) f(x) = \frac{x}{x^2 - 1}$$

(c)
$$f(x) = \frac{x}{x^2 - 1}$$
 (d) $f(x) = 2x^2 - x$

Função Composta

Sejam $f \in g$ duas funções tais que $Im(f) \subset D(g)$. A função composta de $g \in f$ é definida por

 $(g \circ f)(x) = g(f(x)), \text{ com } x \in D(f).$

Observações:

- (1) A função composta de g com f está definida **apenas** quando o conjunto imagem de f está contido no domínio de g.
- (2) Note que $g \circ f$ possui o mesmo domínio que f.

Exemplos

- (1) Sejam $f: \mathbb{R}_+ \to \mathbb{R}$, dada por $f(x) = \sqrt{x}$ e $g: \mathbb{R} \to \mathbb{R}$, definida por g(x) = 2x + 1. Temos que
 - $Im(f) = \mathbb{R}_+$
 - $D(g) = \mathbb{R}$.

Logo, $Im(f) \subset D(g)$ e podemos obter a função composta $g \circ f : \mathbb{R}_+ \to \mathbb{R}$, dada por

$$(g \circ f)(x) = g(f(x)) = 2f(x) + 1 = 2\sqrt{x} + 1.$$

Por outro lado, temos que $Im(g) = \mathbb{R} \underline{\text{não}}$ está contida em $D(f) = \mathbb{R}_+$, logo $f \circ g \underline{\text{não}}$ está definida.

(2) Sejam $f, g: \mathbb{R} \to \mathbb{R}$, dadas por $f(x) = x + 1 e g(x) = x^2$.

Neste caso, $Im(f) = \mathbb{R}$ está contida no $D(g) = \mathbb{R}$ e também $Im(g) = \mathbb{R}_+$ está contida no $D(f) = \mathbb{R}$. Logo, podemos calcular $g \circ f$ e $f \circ g$:

$$(g \circ f)(x) = g(f(x)) = (f(x))^2 = (x+1)^2 = x^2 + 2x + 1,$$
$$(f \circ g)(x) = f(g(x)) = g(x) + 1 = x^2 + 1.$$

Exercícios

- (1) Verifique que $Im(f) \subset D_g$ e determine a composta $g \circ f$, sendo:
- (a) f(x) = x + 2 e g(x) = 3x + 1.
- (b) $f(x) = x^2 + 2 e g(x) = \sqrt{x}$

Solução:

(a) Temos que $Im(f) = \mathbb{R} \in D_g = \mathbb{R}$. Logo, $Im(f) \subset D_g \in g \circ f : \mathbb{R} \to \mathbb{R}$ é dada por

$$(g \circ f)(x) = g(f(x)) = 3f(x) + 1 = 3(x+2) + 1 = 3x + 7.$$

(b) Neste caso, temos que $Im(f) = [2, +\infty)$ e $D_g = [0, +\infty)$. Logo, $Im(f) \subset D_g$ e $g \circ f : \mathbb{R} \to \mathbb{R}$ é dada por

$$(g \circ f)(x) = g(f(x)) = \sqrt{f(x)} = \sqrt{x^2 + 2}$$
.

- (2) Sejam $f, g: \mathbb{R} \to \mathbb{R}$, definidas por $f(x) = x^2 + 4x 5$ e g(x) = 2x 3.
- (a) Obtenha as leis que definem $f \circ g \in g \circ f$.
- (b) Calcule $(f \circ g)(2) \in (g \circ f)(2)$.
- (c) Determine os valores do domínio da função $f \circ g$ que produzem imagem 16.

Solução:

(a) Temos que

$$(f \circ g)(x) = f(g(x))$$

$$= (g(x))^{2} + 4g(x) - 5$$

$$= (2x - 3)^{2} + 4(2x - 3) - 5$$

$$= (4x^{2} - 12x + 9) + 8x - 12 - 5$$

$$= 4x^{2} - 4x - 8$$

$$(g \circ f)(x) = g(f(x))$$

$$= 2f(x) - 3$$

$$= 2(x^{2} + 4x - 5) - 3$$

$$= 2x^{2} + 8x - 10 - 3$$

$$= 2x^{2} + 8x - 13$$

(b)
$$(f \circ g)(2) = 4 \cdot 2^2 - 4 \cdot 2 - 8 = 16 - 8 - 8 = 0$$

 $(g \circ f)(2) = 2 \cdot 2^2 + 8 \cdot 2 - 13 = 8 + 16 - 13 = 11$

Solução:

(c) Queremos obter os valores de x tais que $(f \circ g)(x) = 16$, ou seja

$$4x^{2} - 4x - 8 = 16 \Rightarrow 4x^{2} - 4x - 24 = 0$$

$$\Rightarrow x^{2} - x - 6 = 0$$

Temos que $\Delta = b^2 - 4ac \Rightarrow \Delta = (-1)^2 - 4.1.(-6) = 25$, logo

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{1 \pm 5}{2}$$

isto é, $x_1 = 3$ ou $x_2 = -2$.

(3) Determine o "maior" conjunto domínio D_f de modo que $Im(f) \subset D_g$, em seguida determine a função composta $g \circ f$, sendo f(x) = x + 3 e $g(x) = \frac{2}{x+2}$.

1^a Solução:

Como $g(x) = \frac{2}{x+2}$, então $D_g = \{x \in \mathbb{R}: x \neq -2\} = \mathbb{R} - \{-2\}$.

Para que $Im(f) \subset D_g$, então $-2 \notin Im(f)$.

Assim, devemos retirar do domínio de f os valores de x tais que f(x) = -2. Veja que

$$f(x) = -2 \Rightarrow x + 3 = -2 \Rightarrow x = -5.$$

Logo, o domínio de f deve ser igual a $D_f = \{x \in \mathbb{R}: x \neq -5\} = \mathbb{R} - \{-5\}$. Neste caso, temos que a imagem de f é $Im(f) = \mathbb{R} - \{-2\}$, e portanto, $Im(f) \subset D_g$.

A composta de g com f é a função $g \circ f : \mathbb{R} - \{-5\} \to \mathbb{R}$, dada por

$$(g \circ f)(x) = g(f(x)) = \frac{2}{f(x)+2} = \frac{2}{x+3+2} = \frac{2}{x+5}$$
.

2ª Solução:

Observe que o "maior" conjunto D_f possível, satisfazendo a condição desejada, deve ser igual ao conjunto para o qual a função composta de g com f existe, e neste caso temos que $D_f = D_{g \circ f}$.

Calculando $g \circ f$, obtemos:

$$(g \circ f)(x) = g(f(x)) = \frac{2}{f(x)+2} = \frac{2}{x+3+2} = \frac{2}{x+5}$$

cujo domínio é $D_{g \circ f} = \mathbb{R} - \{-5\}$. Portanto, $D_f = \mathbb{R} - \{-5\}$.

(4) Considere o gráfico da função $f:[0,6] \to \mathbb{R}$ representado a seguir.

Com base nesse gráfico, marque para as alternativas a seguir (V) Verdadeira ou (F) Falsa e justifique as falsas.

- (F) f é decrescente no intervalo [2,6]. Temos que f é decrescente no intervalo [2,5].
- (V) O conjunto dos números $x \in [0,6]$ tais que $f(x) \le 0$ é o intervalo [4,6]. f é negativa em [4,6].
- $(V)(f \circ f \circ f)(2) = 2$ Temos que $(f \circ f \circ f)(2) = (f \circ f)(f(2)) = (f \circ f)(4) = f(f(4)) = f(0) = 2$.
- (V) O número real $1+\sqrt{2}$ pertence ao conjunto imagem da função f.

Exercícios

(1) Considere as funções reais $f \in g$, definidas por $f(x) = x^2 + 2$ e g(x) = x - 3, obtenha as leis que definem:

- (a) $f \circ g$ (b) $g \circ f$ (c) $f \circ f$ (d) $g \circ g$

(2) Dadas as funções reais definidas por f(x) = 3x + 2 e g(x) = 2x + a, determine o valor de a de modo que se tenha $f \circ g = g \circ f$.

(3) Sejam as funções reais f(x) = 2x + 7 e $(f \circ g)(x) = x^2 - 2x + 3$. Determine a lei da função g.

(4) Sejam as funções reais g(x) = 2x - 3 e $(f \circ g)(x) = 2x^2 - 4x + 1$. Determine a lei da função f.

Propriedades de uma Função

Função Injetiva ou Injetora

Uma função $f: X \to Y$ é **injetiva** (ou **injetora**) quando elementos diferentes de X transformados por f em elementos diferentes de Y, ou seja, não há elemento em Y que seja imagem de mais de um elemento de X. Matematicamente:

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$
 ou, equivalentemente, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

funcão não injetiva

(Não há elemento em Y que seja imagem de mais de um elemento de X.)

(Há um elemento em Y que é imagem de dois elementos distintos de X.)

Observação: Podemos verificar se uma função é injetiva olhando seu gráfico. Sabemos que, se a função é injetiva, não há elemento do conjunto imagem que seja imagem de mais de um elemento do domínio. Assim, imaginando retas horizontais cortando o gráfico, essas retas só podem cruzar o gráfico uma única vez para cada valor de y.

 a) As linhas horizontais intersectam o gráfico mais de uma vez.

Então, a função não é injetiva.

 b) As linhas horizontais **nunca** intersectam o gráfico mais de uma vez.

Então, a função é injetiva.

Função Sobrejetiva ou Sobrejetora

Uma função $f: X \to Y$ é sobrejetiva (ou sobrejetora) quando, para qualquer elemento $y \in Y$, pode-se encontrar um elemento $x \in X$ tal que f(x) = y. Ou seja, f é sobrejetiva quando todo elemento de Y é imagem de pelo menos um elemento de X, isto é, quando Im(f) = Y.

função sobrejetiva Im(f) = Y

função sobrejetiva Im(f) = Y

função não sobrejetiva

(Há elementos em Y sem correspondência em X. Logo, $Im(f) \neq Y$)

Função Bijetiva ou Bijetora

Uma função $f: X \to Y$ é **bijetiva** (ou **bijetora**) quando f é, simultaneamente, injetiva e sobrejetiva. Quando isso ocorre dizemos que há uma **bijeção** ou uma **correspondência biunívoca** entre os conjuntos X e Y.

função bijetiva

não é bijetiva (É sobrejetiva, mas não injetiva.)

não é bijetiva (É injetiva, mas não sobrejetiva.)

nao e bijetiva (Não é injetiva nem sobrejetiva.)

Exemplos

(1) Prove que a função $f: \mathbb{R} \to \mathbb{R}$, definida por f(x) = 3x + 2 é bijetora.

Solução:

(i) <u>f é injetora:</u>

Dados $x_1, x_2 \in D_f = \mathbb{R}$, temos que:

$$f(x_1) = f(x_2) \Rightarrow 3x_1 + 2 = 3x_2 + 2 \Rightarrow 3x_1 = 3x_2 \Rightarrow x_1 = x_2$$

ou seja, f é injetora.

(ii) <u>f é sobrejetora:</u>

Vamos mostrar que qualquer que seja $y \in CD_f = \mathbb{R}$, existe $x \in D_f = \mathbb{R}$ tal que f(x) = y. Isolando x na expressão da função, obtemos:

$$y = 3x + 2 \Leftrightarrow 3x = y - 2 \Leftrightarrow x = \frac{y-2}{3}$$
.

Desse modo, basta tomarmos $x = \frac{y-2}{3}$, que teremos:

$$f(x) = f\left(\frac{y-2}{3}\right) = 3\left(\frac{y-2}{3}\right) + 2 = y - 2 + 2 = y.$$

Logo, f é sobrejetora.

- (2) Determine se as funções a seguir são injetoras, sobrejetoras, bijetoras ou nenhuma delas.
- (a) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$
 - Sejam $x_1, x_2 \in D_f = \mathbb{R}$, temos que:

$$f(x_1) = f(x_2) \Rightarrow x_1^3 = x_2^3 \Rightarrow \sqrt[3]{x_1^3} = \sqrt[3]{x_2^3} \Rightarrow x_1 = x_2.$$

Logo, f é injetora.

• Qualquer que seja $y \in CD_f = \mathbb{R}$, existe $x \in D_f = \mathbb{R}$ tal que f(x) = y. Basta tomar $x = \sqrt[3]{y}$, que teremos

$$f(x) = f(\sqrt[3]{y}) = (\sqrt[3]{y})^3 = y.$$

Logo, $Im(f) = \mathbb{R}$ e, portanto, f é sobrejetora.

• Como f é injetora e sobrejetora, então ela é bijetora.

(b)
$$g: \mathbb{R} \to \mathbb{R}$$
, $g(x) = |x|$

Veja que:

- g <u>não</u> é injetora, por exemplo, $3, -3 \in \mathbb{R}$ e g(3) = g(-3) = 3, ou seja, elementos distintos possuem a mesma imagem.
- g <u>não</u> é sobrejetora, uma vez que a $Im(g) = \mathbb{R}_+$ é diferente do contradomínio de g, $CD_g = \mathbb{R}$.
- Logo, g também <u>não</u> é bijetora.

(c)
$$h: \mathbb{R} \to \mathbb{R}_+$$
, $h(x) = |x|$

Veja que a função h possui a mesma lei da função g do item anterior, diferenciando apenas no contradomínio, que agora é dado por \mathbb{R}_+ .

- Como no item anterior, h não é injetora.
- No entanto, agora $Im(h) = \mathbb{R}_+$ coincide com o seu contradomínio. Logo, h é sobrejetora.
- Por fim, h <u>não</u> é bijetora.

Exercícios

(1) Analisando os gráficos a seguir, verifique se as funções são injetoras, sobrejetoras, bijetoras ou nenhuma delas.

a)
$$f: [0, 5] \rightarrow [0, 8]$$

c)
$$f: [0, 5] \rightarrow [0, 8]$$

e)
$$f: \mathbb{R} \to \mathbb{R}^*_+$$

b)
$$f: [0, 5] \rightarrow [0, 8]$$

d)
$$f: \mathbb{R} \to \mathbb{R}$$

f)
$$f: \mathbb{R} \to \mathbb{R}$$

- (2) Determine se as funções a seguir são injetoras, sobrejetoras, bijetoras ou nenhuma delas.
- (a) $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x 1
- (b) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 1 x^2$
- (c) $f: \mathbb{R} \to \mathbb{R}_+$, f(x) = |x 1|
- (d) $f: \mathbb{R}^* \to \mathbb{R}, f(x) = \frac{1}{x}$
- (3) Determine o valor de b em $B = \{y \in \mathbb{R}: y \ge b\}$ de modo que a função f de \mathbb{R} em B, definida por $f(x) = x^2 4$ seja sobrejetora.

Função Inversa

Seja $f: A \subset \mathbb{R} \to B \subset \mathbb{R}$ uma função <u>bijetora</u>. Então, podemos definir a função $g: B \to A$ tal que

$$f(a) = b \Leftrightarrow g(b) = a$$
.

A função g é chamada de **inversa** da função f e indicada por $g = f^{-1}$. Neste caso, dizemos que f é **invertível**, e temos que

$$f(a) = b \Leftrightarrow f^{-1}(b) = a$$
.

Observações:

(1)
$$D(f^{-1}) = B = Im(f) \in Im(f^{-1}) = A = D(f)$$
.

$$(2) (x,y) \in f \Leftrightarrow (y,x) \in f^{-1}.$$

(3)
$$(f^{-1})^{-1} = f$$
.

Propriedade dos Gráficos de Funções Invertíveis

O gráfico de uma função $f: A \to B$ invertível e o gráfico de sua inversa $f^{-1}: B \to A$, com $A, B \subset \mathbb{R}$, são simétricos em relação ao gráfico da função y = x (bissetriz dos quadrantes ímpares).

Determinação da Função Inversa

Dada a função bijetora $f: A \to B$, definida pela sentença y = f(x), para obtermos a expressão que define sua inversa $f^{-1}: B \to A$, procedemos do seguinte modo:

- (I) Isole o x na lei da função f;
- (II) Troque as variáveis de lugar, isto é, troque o x pelo y e y por x.

Exemplo: Determine a função inversa das seguintes funções bijetoras:

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2x - 4$

I) Isolando x na expressão da função:

$$y = 2x - 4 \Rightarrow 2x = y + 4 \Rightarrow x = \frac{y + 4}{2}$$

II) Trocando x e y de lugar:

$$y = \frac{x+4}{2}$$

Logo, a função inversa de f é dada por $f^{-1}(x) = \frac{x+4}{2}$.

(b)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^3$

I) Isolando x na expressão da função:

$$y = x^3 \Rightarrow \sqrt[3]{y} = \sqrt[3]{x^3} \Rightarrow \sqrt[3]{y} = x \Rightarrow x = \sqrt[3]{y}$$

II) Trocando x e y de lugar:

$$y = \sqrt[3]{x}$$

Logo, a função inversa de f é dada por $f^{-1}(x) = \sqrt[3]{x}$.

Propriedades de Funções Invertíveis

(1) Composta de funções inversas entre si

Seja $f: A \to B$ uma função invertível. Se f^{-1} é a inversa de f, então:

$$(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(b) = a = Id(a), \forall a \in A$$

$$(f \circ f^{-1})(b) = f(f^{-1}(b)) = f(a) = b = Id(b), \forall b \in B$$

sendo $Id: \mathbb{R} \to \mathbb{R}$ a função identidade, dada por Id(x) = x, cujo gráfico é a reta bissetriz dos quadrantes ímpares.

(2) A inversa da composta

Sejam $f: A \to B$ e $g: B \to C$ funções invertíveis. Então,

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
.

Exercícios

- (1) Prove que cada função abaixo é bijetora e obtenha a sua inversa.
- (a) $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 5
- (b) $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \sqrt[3]{x-1}$
- (c) $h: \mathbb{R} \{4\} \to \mathbb{R} \{1\}, \ h(x) = \frac{x+1}{x-4}$
- (2) Considere a função bijetora $f: \mathbb{R}^* \to \mathbb{R} \{4\}$, $f(x) = \frac{4x+2}{x}$. Qual é a função inversa de f?
- (3) Construa num mesmo plano cartesiano os gráficos de f e f^{-1} .
- (a) $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1
- (b) $f: \mathbb{R}^* \to \mathbb{R}^*$, $f(x) = \frac{1}{x}$
- (4) Dadas as funções $f \in g$, determine a função inversa de $g \circ f$.
- (a) $f: \mathbb{R} \to \mathbb{R}$, f(x) = 4x + 1 e $g: \mathbb{R} \to \mathbb{R}$, g(x) = 3x 5
- (b) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ e $g: \mathbb{R} \to \mathbb{R}$, g(x) = 2x + 3