4. 순차 파일

- 수록 순차 파일(Entry-Sequnced File, Pile)
- 키순차 화일 (key-sequenced file)

데이터의형태

SNUMBER = 1234 #SNAME = 홍 길동 #SEX = 남 #IQ = 130;

SNUMBER=1234 #WEIGHT=60;

CITY = 서울 #POPULATION = 800만;

SNAME = 김 철수 #HEIGHT = 170 #AGE = 30;

DEPARTMENT = 전산과 #NUMBER_OF_PROCESSOR = 10;

학번	이름	나이	본적	성
1243	홍길동	10	서울	山
1257	김철수	20	경기	つ
1332	박영희	19	충청	여
1334	이기수	21	전라	亡
1367	정미영	20	경상	여
1440	최미숙	21	강원	여

- 수록 순차 파일(Entry-Sequnced File, Pile)
- 키순차 화일 (key-sequenced file)

❖ 순차 화일의 정의와 응용

- ◆ 수록 순차 파일(Entry-Sequnced File, Pile)
 - 분석, 분류, 표준화과정을 거치지 않음
 - 필드의 순서, 길이 등에 제한이 없음
 - 레코드는 (이름-값)의 쌍으로 구성
 - 병원의 의료 데이터 등에 적합
 - 응응프로그램의 접근이 까다로움

```
SNUMBER = 1234 #SNAME = 홍 길동 #SEX = 남 #IQ = 130;
```

SNUMBER=1234 #WEIGHT=60;

CITY = 서울 #POPULATION = 800만;

SNAME = 김 철수 #HEIGHT = 170 #AGE = 30;

DEPARTMENT = 전산과 #NUMBER_OF_PROCESSOR = 10;

▶ 키 순차 화일 (key-sequenced file)

♦ 순차화일의 특징

- 저장 장치 내의 레코드 순서

= 레코드 리스트의 순서

- 레코드의 데이터 필드는 순서 집합 (ordered set)
 - → 동일 순서의 데이터 필드값
 - → 상이한 데이터 레코드로 구성 가능
- 화일 기술자(file descriptor) : 화일 정의 포함
- 오름차순(ascending) 혹은 내림차순(descending)
- 기본 키(primary key)
- 일괄처리(batch)용 응용
- 레코드 접근 방법 = 파일 내의 레코드 순서→ 빠른 접근 (차위 레코드)
- 키 순차 화일의 구성 예

학버	이름	나이	본적	정
1243	홍길동	10	서울	<u></u> 그c
1257	김철수	20	경기) TC
1332	박영희	19	충청	ᆼ
1334	이기수	21	전라	`∴ TC
1367	정미영	20	경상	ᆼ
1440	최미숙	21	강원	Ö

두 가지 이상의 상이한 레코드로 구성 가능

- ◆ 다른정렬키 → 다른응용의지원 동일한내용의다른화일
- ◆ 상이한형태의 레코드들로구성 가능
 - 공통된 기능상의 목적
 - 논리적으로 밀접하게 관련
 - 가변 길이/고정 길이 레코드(공백을 채움)
- 예
 - 인사·급여 레코드

인사

레코드 형식	사원 번호	성 명	전화 번호	주 소	결혼 여부	성 별	우편 번호	교 기간	육 학위
1								. –	

(a)

급여

레코드	사원	구	좌	기본급	배우자	부양	장애자	수 당	재형	7
형식	번호	고	번호	기근ᆸ	메구지	가족	9 MI VI	T 0	저축액	
										$\overline{}$
2										

▶ 질의 적중 비율 (inquiry hit ratio)

질의에 응답위해 접근해야 할 레코드 수

화일 전체의 레코드수

높은 적중 비율 → 순차 구조에 적합 낮은적중비율 → 직접화일구조에적합

❖ 순차 화일의 설계

- ◆ 설계시고려사항
 - 키필드
 - ◆ 응용 요건에 따라 선정
 - 레코드 내의 필드 배치
 - ◆ 활동적(active) / 비활동적 화일
 - 필드 타입 또는 레코드 어커런스에 따라

<마스터 인사 화일 형식>

사원 번호	이름	부 서	직 종 코드	프로젝트명	입사 일자) 보	가입 보험	7
								$\Big)$

<보조 인사 파일 형식>

사원 번호	최종 학위	출신교	졸업 년월	경력 코드	본 적	호주 성명	

❖ 순차 화일의 설계 (중복제거)

- ② 데이터의 유지 관리가 용이
 ☆ Lee 의 주소를 바꾼다고 가정
 - 분해 전:3 tuples ⇒ 분해 후:1 tuples
- ③ 무결성, 일관성 유지
 - ☆ Lee 의 주소를 바꾼다고 가정
 - ⇒ 어느 한 tuple만 수정하면 불일치
 - ☆ 수강을 하지않는 학생은 삽입 불가능 ⇒ 무결성에 위배

❖ 순차 화일의 생성

- ◆ 순서대로저장 매체에 레코드를수록
 - 데이터 수집
 - _ 컴퓨터가 읽을 수 있는 형태로 변환
 - 편집: 수정(correction), 확인(verification)
 - pp.116~117
 - ◆ 무결성 제약조건
 - 개체무결성
 - 참조무결성
 - 도메인무결성
 - 편집된 데이터를 정렬
 - _ 기록
- ◆ 갱신 알고리즘을 이용한 방법

주민번호의 구조

◆ 오류검증번호(Check Digit)

- 고유번호 부여 시 고유번호의 타당성검증을 빠르고 쉽게 하기 위하여 부가하는 일종의 코드
- 주민번호, 군번, 계좌번호 등 대량의 데이터 처리 시 잘못된 번호 입력을 원천적으로 막아 시스템의 효율을 높이고자 함.

◆ 주민번호의예

- 991201-179621?
 - ◆ 먼저 12개의 숫자에 각각 2,3,4,5,6,7,8,9,2,3,4,5를 차례로 곱한 후 나온 숫자를 모두 더함
 - 9x2+9x3+1x4+2x5+0x6+1x7+1x8+7x9+9x2+7x3+2x4+1x5=185
 - ◆ 11로 나눈 나머지를 11에서 뺴줌
 - 185 mod 11 = 9, 11-9 = 2
 - 991201-1796212

❖ 순차 화일의 갱신

- ◆ 마스터 화일의 갱신 빈도
 - 데이터 변화율 (data change rate)
 - 마스터 화일의 크기
 - 최신 데이터를 유지해야 할 필요성
 - 화일 활동 비율 (file activity ratio)

트랜잭션에 영향을 받는 레코드수

마스터 화일의 총 레코드수

- ◆ 갱신의 처리
 - i) 트랜잭션 로그 화일
 - accumulated (insertion) 화일
 - ii) 일괄 갱신
 - ① 트랜잭션 로그 화일을 정렬 (키값에 따라)
 - ② 새 순차 화일에 합병

▶ 순차화일 갱신의 시스템 흐름도

순차화일 갱신의 원시알고리즘

합병을 이용한 순차화일의 갱신 예제

구마스터화일 트랜잭션화일 신마스터화일 빨강 주황 빨강 3 노랑 3 주황 파랑 5 5 보라 보라 검정 (eof) 검정 초록1 9 초록 (eof)

- ▶ 알고리즘
 - □ 구마스터 키와 트랜잭션 키 비교
 - ① =: 수정 혹은 삭제
 - ② <: 구마스터 레코드를 신마스터에 복사
 - ③ > :트랜잭션 레코드를 신마스터에 복사

▶ 갱신 방법

◆ 트랜잭션 레코드의 구성

i) 삽입 : <I, 새 키값, 나머지 필드값>

ii) 삭제 : <D, 키 값>

iii) 수정 : <C, 키 값, 필드의 새 값들>

<갱신을 위한 트랜잭션 레코드의 예>

트랜잭션 코 드	사원 번호	성 명	주 소	부 서	전화 번호
I	12751	김 철수	당산 1 동 128	경리과	

◆ 순차 화일의 갱신

TRANS-KEY: OLD-MSTER-KEY

= : 연산 실행 (수정, 삭제)

>: 구 마스터 레코드를 신 마스터 화일로 복사

<: 트랜잭션 레코드를 신 마스터 화일에 삽입

순차 화일 갱신 알고리즘

1.수정(단일 트랜잭션)

- 마스터 화일의 레코드에 대한 수정이 <mark>하나의</mark> 트랜잭션 레코드만으로 구성되는 경우.
- 트랜잭션 예

Old Master

품번	품명	재고량
1001	지우개	100
1005	연필	150
1008	볼펜	130

Transaction

품번	변동량
1005	-50
1006	+50

New Master

품번	품명	재고량
1001	지우개	100
1005	연필	100
1008	볼펜	130

[알고리즘 1] 마스터 화일 갱신 알고리즘 (단일 트랜잭션 변경)

```
Update_Master1(void) { /* 단일 트랜잭션 변경 */
         Get_Next_Trans();
         Get_Next_Master();
         while (!(master_key == sentinel && trans_key == sentinel)) {
             if (master_key < trans_key) {/* 트랜잭션 없음 */
                        output_mater_record_to_new_master();
                        Get Next Master();
             else
               if (master_key ==trans_key) {
                            make_change_in_master_record();
                            output_master_record_to_new_master();
                            Get_Next_Master();
                            Get_Next_Trans();
               else
                                       /* master key > trans key */
                            printf("No Matching master record for trans key.\n");
                            Get Next Trans();
         Get Next Master(void) {
             if((c = getchar()) == EOF)
                        master key = sentinel value;
             else
                        input_master_record;
         Get Next Trans(void) {
             if ((c = getchar()) == EOF)
                        trans key = sentinel value;
             else
                        input transaction record;
```

2.수정(다중 트랜잭션)

- 마스터 화일의 레코드에 대한 갱신이 여러 개의 트랜잭션 으로 구성되는 경우.
- 트랜잭션 예

Old Master

품번	품명	재고량
1001	지우개	100
1005	연필	150
1008	볼펜	130

Transaction

품번	변동량
1005	-50
1005	+60

New Master

품번	품명	재고량
1001	지우개	100
1005	연필	160
1008	볼펜	130

[알고리즘 2] 마스터 화일 갱신 알고리즘(다중 트랜잭션 변경)

```
/* 다중 트랜잭션 변경 */
       Update_Master2(void)
       Get_Next_Trans();
       Get_Next_Master();
3
       while(! (master_key == sentinel && trans_key == sentinel))
            if(master_key < trans_key)
                                                        /* 트래잭션 없음 */
4
                   output_mater_record_to_new_master();
5
6
                   Get_Next_Master();
            else
                                                              단일트랜잭션
make_change_in_master_record();
8
                   if(master_key ==trans_key)
                                                                  output_master_record_to_new_master();
9
                        make_change_in_master_record();
                                                                  Get_Next_Master();
10
                        Get_Next_Trans();
                                                                  Get_Next_Trans();
11
                   else
                                            /* master_key > trans_key */
12
                        printf("No Matching master record for trans key.\n");
13
                        Get_Next_Trans();
```

3. 추가 + 수정 (다중 트랜잭션)

- 마스터 화일의 레코드에 대한 갱신이 다음과 같을 때
 - ① 각 트랜잭션 키에 대해 한번 또는 그 이상의 변경
 - ② 각 트랜잭션 키에 대해 한번 추가하고 한번 또는 그 이상 변경
 - ③ 각 트랜잭션 키에 대해 여러 번 추가하고 한번 또는 그 이상 변경
- 갱신코드를 갖는 새로운 필드 정의
 - 코드 A: 마스터 화일에 추가하는 트랜잭션
 - 코드 C: 현존하는 마스터 레코드에 변경하는 트랜잭션

Old Master

품번	품	재고량
1001	지우개	100
1005	연필	150
1008	볼펜	130

Transaction

갱신코드	품번	품명	변동량
A	1001	지우개	+50
C	1005		-50
C	1005		+20
A	1006	삼각자	+50
C	1006		-10

New Master

품번	품명	재고량
1001	지우개	100
1005	연필	120
1006	삼각자	40
1008	볼펜	130

오류

[알고리즘 3] 마스터 화일 갱신 알고리즘 (다중 트랜잭션 추가 포함)

```
/* 다중 트랜잭션 삽입 변경 */
Update_Master3(void)
          Get Next Trans();
          Get Next Master();
          while(! (master_key == sentinel && trans_key == sentinel))
                                                   /* 트랜잭션 없음 */
                if (master key < trans key)
                    output mater record to new master();
                    Get Next Master();
                else
                    if (master key ==trans key)
                    switch(update code)
                          case 'A':
                                         printf("Duplicate add₩n");
                                         Get Next Trans();
                                         break:
                                         make_change_in_master_record();
                          case 'C':
                                         Get_Next_Trans();
                                         break;
                          default:
                                         printf("Invalid update code₩n");
                                         Get Next Trans();
                              /* master_key > trans_key */
                       else
                          Make_New_Record(); /* 새 레코드를 생성 */
```

```
/*새로운 레코드를 생성함 */
Make_New_Record()
                 switch(update_code)
                                 build_new_record_from_trans_record();
                      case 'A':
                                 new_key = trans_key; 
Get_Next_Trans();
                                 while(trans_key!= sentinel && trans_key == new_key)
                                       switch(update code)
                                            case 'A':
                                                        printf("Duplicate add₩n");
                                                        break;
                                                        make_change_in_new_record();
                                            case 'C':
                                                        break;
                                                        printf("Invalid update code₩n");
                                            default:
                                       Get_Next_Trans();
                                 output_new_record_to_new_master();
                                 break;
                      case 'C':
                                 printf("No matching master record for trans key₩n");
                                 Get_Next_Trans();
break;
                                 printf("Invalid update code₩n");
                      default:
                                 Get_Next_Trans();
                                 break;
```

4 . 추가 + 수정+ 삭제 (다중 트랜잭션)

- 마스터 화일의 레코드에 대한 갱신이 다음과 같을 때
 - ① 각 트랜잭션 키에 대해 한번 삭제 수행
 - ② 각 트랜잭션 키에 대해 여러 번 삭제 수행
 - ③ 각 트랜잭션 키에 대해 추가 한번과 삭제 한번 수행
 - ④ 각 트랜잭션 키에 대해 한번 또는 그 이상의 변경과 삭제 한번 수행
 - ⑤ 각 트랜잭션 키에 대해 추가 한번, 한번 또는 그 이상의 변경, 삭제 한번 수행
- 갱신 코드
 - 추가-A
 - _ 변경-C
 - 삭제-D
- 트랜잭션 예

갱신코드	id번호	제조회사	차형	모델	총운 행거 리	색깔
D A	F1 GM7	Pontiac	2 DR	Fiero	1,250	orange
C	GM7	Tomac	2510	11010	5,000	orango
D	GM7	.			4.500	
A D	GM7 H3	Pontiac	2 DR	Fiero	1,500	navy
C	T1				7,800	
D	T1				-	

```
[알고리즘 4] 마스터 화일 갱신 알고리즘4(다중 트랜잭션 Full)
                              /* 다중 트랜잭션 삽입 삭제 변경 */
Update Master4(void)
          Get Next Trans();
          Get Next Master();
   while(! (master_key == sentinel && trans_key == sentinel))
                                                  /* 트랜잭션 없음 */
               if(master key < trans key)
                    output_mater_record_to_new_master();
                    Get Next Master();
               else
                if(master_key ==trans_key)
                    switch(update code)
                         case 'A':
                                        printf("Duplicate add");
                                        Get_Next_Trans();
                                        break;
                                        make_change_in_master_record();
                         case 'C':
                                        Get_Next_Trans();
                                        break:
                         case 'D':
                                        Get_Next_Master();
                                        Get_Next_Trans();
                                        break:
                         default:
                                        printf("Invalid update code");
                                        Get Next Trans();
                             /* master key > trans key */
                    Make_New_Record();
```

```
Make New Record()
    switch(update code)
           case 'A':
                       build_new_record_from_trans_record();
                       new_key = trans_key;
delete_record = FALSE;
                       Get_Next_Trans();
                       while(trans_key! = sentinel && trans_key == new_key &&! delete_record)
                             switch(update_code)
                                              printf("Duplicate add");
                                   case 'A':
                                               break;
                                              make_change_in_new_record()
                                   case 'C':
                                               break;
delete_record = TRUE;
                                   case 'D':
                                               break; printf("Invalid update code");
                                   default:
                             Get_Next_Trans();
                       if(! delete record)
                       output_new_record_to_new_master(); break;
                                                                                    4번쨰 트랜잭션
           case 'C':
                                                                                     D GM7의 경우
           case 'D':
                       printf("No matching master record for trans key");
                       Get_Next_Trans();
break;
                       printf("Invalid update code");
Get_Next_Trans();
break;
           default:
```

5 사례 연구

- 렌트카 영업소 예
 - 가정: 렌트카 마스터 화일이 비었다
 - 마스터 화일에 추가할 데이터를 갖는 트랜잭션 화일 T1

<Ç¥5.1>·»Æ®Ä«¿µ¾÷¼ÒÀÇÆ®·£Àè¼ÇÈ-ÀÏT1

°»½ÅÄÚµå	id¹øÈ£	Á¦Á¶È¸»ç	Â÷Çü	͵ðμ¨	ÃÑ¿îÇà°Å¸®	»ö±ò
Α	C1	Dodge	2 DR	Omni	25,000	grey
Α	C2	Dodge	2 DR	Aapen	7,000	tan
Α	F1	Ford	2 DR HB	Escort	54,000	white
Α	F2	Lincoln	4 DR	Continental	38,000	black
Α	F3	Ford	2 DR	Thunderbird	35,000	blue
Α	GM1	Cadillac	4 DR	Fleetwood	9,000	red
Α	GM2	Oldsmobile	4 DR	Delta 88	28,050	blue
Α	GM3	Chevrolet	2 DR	Camaro	33,000	silver
Α	GM4	Cadillac	2 DR	Cimarron	63,000	maroon
Α	GM5	Oldsmobile	4 DR	98	11,000	green
Α	H1	Honda	4 DR	Accord	32,000	yellow
Α	H2	Honda	2 DR HB	Accord	11,250	brown
Α	T1	Toyota	2 DR HB	Celica	3,400	white

id¹øÈ£	Á¦Á¶È¸»ç	Â÷Çü	,ðμ¨	ÃÑ¿îÇà°Å¸®	»ö±ò
C1	Dodge	2 DR	Omni	25,000	grey
C2	Dodge	2 DR	Aapen	7,000	tan
F1	Ford	2 DR HB	Escort	54,000	white
F2	Lincoln	4 DR	Continental	38,000	black
F3	Ford	2 DR	Thunderbird	35,000	blue
GM1	Cadillac	4 DR	Fleetwood	9,000	red
GM2	Oldsmobile	4 DR	Delta 88	28,050	blue
GM3	Chevrolet	2 DR	Camaro	33,000	silver
GM4	Cadillac	2 DR	Cimarron	63,000	maroon
GM5	Oldsmobile	4 DR	98	11,000	green
H1	Honda	4 DR	Accord	32,000	yellow
H2	Honda	2 DR HB	Accord	11,250	brown
T1	Toyota	2 DR HB	Celica	3,400	white

<Ç¥ 5.3> Æ®-£Àè¼Ç È-ÀÏT2

°»½ÅÄÚµa	id¹øÈ£	Á¦Á¶È¸»ç	Â÷Çü	¸ðμ¨	ÃÑ¿îÇà°Å¸®	»ö±ò
Α	GM6	Chevrolet	4 DR	Cimarron	11,250	brown

id¹øÈ£	Á¦Á¶È¸»ç	Â÷Çü	¸ðµ¨	ÃÑ¿îÇà°Å¸®	»ö±ò
C1	Dodge	2 DR	Omni	25,000	grey
C2	Dodge	2 DR	Aapen	7,000	tan
F1	Ford	2 DR HB	Escort	54,000	white
F2	Lincoln	4 DR	Continental	38,000	black
F3	Ford	2 DR	Thunderbird	35,000	blue
GM1	Cadillac	4 DR	Fleetwood	9,000	red
GM2	Oldsmobile	4 DR	Delta 88	28,050	blue
GM3	Chevrolet	2 DR	Camaro	33,000	silver
GM4	Cadillac	2 DR	Cimarron	63,000	maroon
GM5	Oldsmobile	4 DR	98	11,000	green
GM6	Chevrolet	4 DR	Cimarron	11,250	brown
H1	Honda	4 DR	Accord	32,000	yellow
H2	Honda	2 DR HB	Accord	11,250	brown
T1	Toyota	2 DR HB	Celica	3,400	white

<Ç¥ 5.4> Æ®·£Àè¼Ç È-ÀÏT2·Î°»½ÅÈÄÀǸ¶½ºÅÍ È-ÀÏ

id¹øÈ£	Á¦Á¶È¸»ç	Â÷Çü	¸ðμ"	ÃÑ¿îÇà°Å¸®	»ö±ò
C1	Dodge	2 DR	Omni	25,000	grey
C2	Dodge	2 DR	Aapen	7,000	tan
F1	Ford	2 DR HB	Escort	54,000	white
F2	Lincoln	4 DR	Continental	38,000	black
F3	Ford	2 DR	Thunderbird	35,000	blue
GM1	Cadillac	4 DR	Fleetwood	9,000	red
GM2	Oldsmobile	4 DR	Delta 88	28,050	blue
GM3	Chevrolet	2 DR	Camaro	33,000	silver
GM4	Cadillac	2 DR	Cimarron	63,000	maroon
GM5	Oldsmobile	4 DR	98	11,000	green
GM6	Chevrolet	4 DR	Cimarron	11,250	brown
H1	Honda	4 DR	Accord	32,000	yellow
H2	Honda	2 DR HB	Accord	11,250	brown
T1	Toyota	2 DR HB	Celica	3,400	white

<Ç¥5.5>Æ®∙£Àè¼Ç È-ÀÏT3

°»½ ÅÄÚµå D	id¹ø È£ F1	Á¦Á¶È¸»ç	Â÷Çü	͵ðμ¨	ÃÑ¿îÇà°Å¸®	»ö±ò
A C	GM7 GM7	Pontiac	2 DR	Fiero	1,250 5,000	orange
D A D	GM7 GM7 H3	Pontiac	2 DR	Fiero	1,500	navy
C D	T1 T1				7,800	

<표 5.6> 트랜잭션 화일 T3로 갱신후의 마스터 화일

ic	밴호	제조회사	차형	모델	총운행거리	색깔
	C1	Dodge	2 DR	Omni	25,000	grey
		•		_	•	
	C2	Dodge	2 DR	Aapen	7,000	tan
	F2	Lincoln	4 DR	Continental	38,000	black
	F3	Ford	2 DR	Thunderbird	35,000	blue
(3M1	Cadillac	4 DR	Fleetwood	9,000	red
(GM2	Oldsmobile	4 DR	Delta 88	28,050	blue
(SM3	Chevrolet	2 DR	Camaro	33,000	silver
(3M4	Cadillac	2 DR	Cimarron	63,000	maroon
(3M5	Oldsmobile	4 DR	98	11,000	green
(3M6	Chevrolet	4 DR	Cimarron	11,250	brown
(GM7	Pontiac	2 DR	Fiero	1,500	navy
	H1	Honda	4 DR	Accord	32,000	yellow
	H2	Honda	2 DR HB	Accord	11,250	brown
				T		

❖ 순차 화일의 저장 장소

◆ 저장매체

- 순차 접근 저장 매체 : 카드, 테이프
- 직접 접근 저장 매체 : 디스크
 - ◆ 익스텐트(Extent)
 - 하나의 파일이 차지하는 연속된 디스크 구역
 - 하나의 실린더에 다 채워질 때까지 저장
 - 암은 다음 실린더로 이동하여 다 채워질 때까지 저장
 - 만일 한면의 트랙을 채우고 다음 면의 트랙을 채워나가면?
 - 하나의 트랙이 채워질 때 마다 암이 이동을 해야함

◆ 직접접근장치가바람직한경우

- 순차 접근 장치의 부족
- 디스크에 기록되어야 하는 화일
 - ◆ 스물링(Simultaneous Peripheral Operation Online)
 - 주변장치와 컴퓨터 내부장치 간에 데이터를 전송할 때 처리 지연을 단축하기 위해 디스크를 완충 기억장치로서 사용하는 것.

