Universidade Federal de Santa Catarina

INE5607 – Organização e Arquitetura de Computadores

Prova 2 – Turmas 02238A/02238B – Semestre 2015/1

Eu, (nome completo do(a) aluno(a))			
matrícula, declaro que as respostas nesta prova são de minha própria autori			
e que não consultei materiais externos ou outras pessoas durante a prova.			
Assinado:			
Instruções adicionais:			
- Todas as folhas devem ser devolvidas ao final da prova.			
- A prova terá duração de 1h30min.			
- O uso de calculadoras não é permitido.			
- Questões envolvendo contas somente serão consideradas com suas apresentações.			

Questão 1. Apresente o código em linguagem de montagem que implementa um dos dois códigos abaixo: [2,0 pontos]

```
a) i = 0; while (vetor[i] > valor) {vetor[i] = vetor[i] + i; i++;}
b) for (i = 0; i < tamanho; i++) {vetor[i] = vetor[i] + valor;}</li>
Considere o seguinte mapeamento de variáveis em alto nível para linguagem de montagem:
Endereço de vetor → $s0; valor → $s2; tamanho → $s4; i → $t0.
```

Questão 2. Dado que um programa tem 10% de seu código sequencial (90% paralelo) e que seu tempo de execução em um único núcleo é de 1000 segundos, qual o **número mínimo de núcleos** idênticos ao anterior necessários para que se consiga executá-lo em 200 segundos? [2,0 pontos]

Questão 3. Dado um procedimento de 1000 instruções executado por uma thread, **quantos ciclos** e **quanto tempo** ele levaria em cada um dos seguintes processadores em condições ideais? [2,0 pontos]

- Processador pipeline de 7 estágios, tempo de ciclo de 100 ns.
- Processador superescalar de 10 estágios, IPC médio de 4, tempo de ciclo de 50 ns.
- Processador VLIW de 8 estágios, despacho múltiplo de 5 instruções, tempo de ciclo de 5 ns.
- Processador SMT de 5 estágios, IPC de 4 no caso ideal, tempo de ciclo de 10 ns.

Questão 4. Considere a lista de componentes abaixo para a confecção de processadores. [2,0 pontos]

- Memória: 10 ns
- Banco de registradores: 5 ns
- Unidade Lógico-Aritmética: 5 ns
- Outros componentes: latência desprezível
- a) Apresente os tempos de ciclo mínimos que poderiam ser alcançadas com um processador monociclo e um processador multiciclo. Considere que o acesso a um componente não pode ser quebrado em mais de um ciclo.
- b) Apresente o tempo de execução do seguinte programa em cada processador: 2 milhões de instruções, onde 50% são aritméticas, 20% são loads, 10% são stores e 20% são desvios.

Questão 5. Considere um programa em determinado ponto de sua execução em um processador de arquitetura MIPS-32, sendo apresentadas abaixo suas instruções em linguagem simbólica, sua memória de dados, valores no banco de registradores e *Program Counter*. **Para cada uma das próximas 8 instruções a serem executadas, apresente qual registrador tem seu valor modificado e qual é seu novo valor**. Se nenhum registrador for alterado por uma instrução, escreva "*nenhum*" no campo registrador. [2,0 pontos]

Endereço	Instrução
0x0040 1010	jal _comp
0x0040 1014	add \$sp, \$sp, 8
• • •	• • • •
0x0044 1000	_comp: lw \$t1, 0(\$sp)
0x0044 1004	lw \$t2, 4(\$sp)
0x0044 1008	slt \$t3, \$t1, \$t2
0x0044 100C	beq \$t3, \$zero, _maior
0x0044 1010	add \$v0, \$t2, \$zero
0x0044 1014	jr \$ra
0x0044 1018	_maior: add \$v0, \$t1, \$zero
0x0044 101C	jr \$ra

Endereço	Dado armazenado
• • •	•••
0x7FFF FFD8	0x0000 0001
0x7FFF FFDC	0x0000 0020
0x7FFF FFE0	0x0000 0003
0x7FFF FFE4	0x0000 0040
0x7FFF FFE8	0x0000 0500
0x7FFF FFEC	0x0000 0060
0x7FFF FFF0	0x0000 0007
0x7FFF FFF4	0x0000 8000
0x7FFF FFF8	0x0000 0009
0x7FFF FFFC	0x0000 0A00

PC: 0x0040 1010

Registrador	Valor atual
\$t0	0x0000 0000
\$t1	0x0000 1000
\$t2	0x0000 2000
\$t3	0x0000 3000
\$ra	0x0040 4040

Registrador	Valor atual
\$a0	0x0000 0000
\$a1	0x0000 1000
\$ v 0	0x0000 2000
\$v1	0x0000 3000
\$sp	0x7FFF FFE0

Instrução 1: registrador \$	recebe o valor 0x
Instrução 2: registrador \$	recebe o valor 0x
Instrução 3: registrador \$	recebe o valor 0x
Instrução 4: registrador \$	recebe o valor 0x
Instrução 5: registrador \$	recebe o valor 0x
Instrução 6: registrador \$	recebe o valor 0x
Instrução 7: registrador \$	recebe o valor 0x
Instrução 8: registrador \$	recebe o valor 0x