CONTINUITÉ ET CALCUL DE DÉRIVÉES

1. FONCTIONS CONTINUES

DÉFINITION

Une fonction définie sur un intervalle I est **continue** sur I si l'on peut tracer sa courbe représentative sans lever le crayon

EXEMPLES

- Les fonctions polynômes sont continues sur \mathbb{R} .
- Les fonctions rationnelles sont continues sur chaque intervalle contenu dans leur ensemble de définition.
- La fonction *racine carrée* est continue sur \mathbb{R}^+ .
- Les fonctions *sinus* et *cosinus* sont continues sur \mathbb{R} .

THÉORÈME

Si f et g sont continues sur I, les fonctions f+g, kf ($k \in \mathbb{R}$) et $f \times g$ sont continues sur I.

Si, de plus, g ne s'annule pas sur I, la fonction $\frac{f}{g}$, est continue sur I.

THÉORÈME (LIEN ENTRE CONTINUITÉ ET DÉRIVABILITÉ)

Toute fonction **dérivable** sur un intervalle *I* est **continue** sur *I*.

REMARQUE

Attention! La réciproque est fausse.

Par exemple, la fonction valeur absolue $(x \mapsto |x|)$ est continue sur \mathbb{R} tout entier mais n'est pas dérivable en 0.

PROPRIÉTÉ (LIEN ENTRE CONTINUITÉ ET LIMITE)

Si f est une fonction continue sur un intervalle [a;b], alors pour tout $\alpha \in [a;b]$:

$$\lim_{x \to \alpha} f(x) = \lim_{x \to \alpha^{-}} f(x) = \lim_{x \to \alpha^{+}} f(x) = f(\alpha).$$

EXEMPLE

Montrons à l'aide de cette propriété que la fonction «partie entière» (notée $x \mapsto E(x)$), qui à tout réel x associe le plus grand entier inférieur ou égal à x, n'est pas continue en 1.

Si x est un réel positif et strictement inférieur à 1, sa partie entière vaut 0.

Donc
$$\lim_{x \to 1^{-}} E(x) = 0$$
.

Par ailleurs, la partie entière de 1 vaut 1 c'est à dire E(1) = 1.

Donc
$$\lim_{x \to 1^{-}} E(x) \neq E(1)$$
.

La fonction « partie entière » n'est donc pas continue en 1 (en fait, elle est discontinue en tout point d'abscisse entière).

Fonction « partie entière »

2. THÉORÈME DES VALEURS INTERMÉDIAIRES

THÉORÈME DES VALEURS INTERMÉDIAIRES

Si f est une fonction **continue** sur un intervalle [a;b] et si y_0 est compris entre f(a) et f(b), alors l'équation $f(x) = y_0$ admet **au moins une** solution sur l'intervalle [a;b].

REMARQUES

- Ce théorème dit que l'équation $f(x) = y_0$ admet **une ou plusieurs solutions** mais ne permet pas de déterminer le nombre de ces solutions. Dans les exercices où l'on recherche le nombre de solutions, il faut utiliser le corollaire ci-dessous.
- Cas particulier fréquent : Si f est continue et si f(a) et f(b) sont de signes contraires, l'équation

f(x) = 0 admet au moins une solution sur l'intervalle [a;b] (en effet, si f(a) et f(b) sont de signes contraires, 0 est compris entre f(a) et f(b)).

COROLLAIRE (DU THÉORÈME DES VALEURS INTERMÉDIAIRES)

Si f est une fonction **continue** et **strictement monotone** sur un intervalle [a;b] et si y_0 est compris entre f(a) et f(b), l'équation $f(x) = y_0$ admet une **unique** solution sur l'intervalle [a;b].

REMARQUES

- Ce dernier théorème est aussi parfois appelé "Théorème de la bijection"
- Il faut vérifier 3 conditions pour pouvoir appliquer ce corollaire :
 - f est continue sur [a; b];
 - f est strictement croissante ou strictement décroissante sur [a;b];
 - y_0 est compris entre f(a) et f(b).
- Les deux théorèmes précédents se généralisent à un intervalle ouvert] a;b[où a et b sont éventuellement infinis. Il faut alors remplacer f(a) et f(b) (qui ne sont alors généralement pas définis) par $\lim_{x \to a} f(x)$ et $\lim_{x \to b} f(x)$

EXEMPLE

Soit une fonction f définie sur $]0;+\infty[$ dont le tableau de variation est fourni ci-dessous :

On cherche à déterminer le nombre de solutions de l'équation f(x) = -1.

L'unique flèche oblique montre que la fonction f est **continue** et **strictement croissante** sur $]0;+\infty[$.

$$-1$$
 est compris entre $\lim_{x\to 0} f(x) = -\infty$ et $\lim_{x\to +\infty} f(x) = 1$.

Par conséquent, l'équation f(x) = -1 admet une **unique** solution sur l'intervalle $]0; +\infty[$.

3. CALCUL DE DÉRIVÉES

Le tableau ci-dessous recense les dérivées usuelles à connaître en Terminale S. Pour faciliter les révisions, toutes les formules du programme ont été recensées; certaines seront étudiées dans les chapitres ultérieurs.

DÉRIVÉE DES FONCTIONS USUELLES

Fonction	Dérivée	Ensemble de dérivabilité
$k \ (k \in \mathbb{R})$	0	\mathbb{R}
x	1	\mathbb{R}
$x^n (n \in \mathbb{N})$	nx^{n-1}	\mathbb{R}
$\frac{1}{x^n} \ (n \in \mathbb{N})$	$-\frac{n}{x^{n+1}}$	$\mathbb{R}-\{0\}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$]0;+∞[
$\sin(x)$	$\cos(x)$	\mathbb{R}
$\cos(x)$	$-\sin(x)$	\mathbb{R}
e^x	e^x	\mathbb{R}
$\ln(x)$	$\frac{1}{x}$]0;−∞[

PROPRIÉTÉ

Soient une fonction f définie et dérivable sur un certain intervalle et a et b deux réels.

Alors la fonction $g: x \mapsto f(ax + b)$ est dérivable là où elle est définie et :

$$g'(x) = af'(ax + b).$$

EXEMPLES

- La fonction $f: x \mapsto (5x+2)^3$ est définie et dérivable sur $\mathbb R$ et : $f'(x) = 5 \times 3(5x+2)^2 = 15(5x+2)^2$.
- En particulier, si g(x) = f(-x) on a g'(x) = -f'(-x). Par exemple la dérivée de la fonction $x \mapsto e^{-x}$ est la fonction $x \mapsto -e^{-x}$.

REMARQUE

Le résultat précédent se généralise à l'aide du théorème suivant :

THÉORÈME (DÉRIVÉES DES FONCTIONS COMPOSÉES)

Soit u une fonction dérivable sur un intervalle I et prenant ses valeurs dans un intervalle J et soit f une fonction dérivable sur J.

Alors la fonction $g: x \mapsto f(u(x))$ est dérivable sur I et :

$$g'(x) = u'(x) \times f'(u(x)).$$

EXEMPLES

Soit u une fonction dérivable sur intervalle I:

- la fonction u^n est dérivable sur I et sa dérivée est $u' \times nu^{n-1}$;
- la fonction $\frac{1}{u}$ est dérivable sur la partie de I où $u \neq 0$ et sa dérivée est $-\frac{u'}{u^2}$;
- la fonction \sqrt{u} est dérivable sur la partie de I où u > 0 et sa dérivée est $\frac{u'}{2\sqrt{u}}$;
- la fonction $\sin(u)$ est dérivable sur I et sa dérivée est $u' \times \cos(u)$;
- la fonction $\cos(u)$ est dérivable sur I et sa dérivée est $-u' \times \sin(u)$;
- la fonction e^u est dérivable sur I et sa dérivée est $u' \times e^u$;
- la fonction $\ln(u)$ est dérivable sur la partie de I où u > 0 et sa dérivée est $\frac{u'}{u}$.