Connectedness

Intuitively, a topological space X exists as a single piece.

Example: Disconnected

There are two notions of connectedness:

1. Connected: One piece

2. Path Connected: The ability to walk from any point to any other.

Example: The Topologists Sine Curve

$$S = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) \middle| x \in (0, 1) \right\}$$

$$\bar{S} = S \cup \{(1, \sin(1))\} \cup \{(0, y) \mid y \in [-1, 1]\}$$

 \boldsymbol{S} is connected and path connected.

 \bar{S} is connected but not path connected.

Definition: Connected

Let X be a topological space. To say that X is *connected* means that X is not the union of two disjoint non-empty open sets.

Note that if $X=U\sqcup V$ such that $U,V\in \mathscr{T}$ then U=X-V and V=X-U, so both U and V are clopen.

Definition: Separated

Let X be a topological space and $A, B \subset X$. To say that A and B are *separated* means that $\bar{A} \cap B = A \cap \bar{B} = \emptyset$. Thus, A and B do no contain each other's limit points.

Example: Separated

Notation

X = A|B means that $X = A \cup B$ and A and B are separated sets.

Definition: Reachable

Let X be a topological space and let $p,q \in X$. To say that q is reachable from p means that for every open cover $\{U_{\alpha}: \alpha \in \lambda\}$ of X, there exists a finite subset $\{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ such that $p \in U_{\alpha_1}, q \in U_{\alpha_n}$, and for all $1 \le k < n, U_{\alpha_k} \cap U_{\alpha_{k+1}} \ne \emptyset$.

Lemma

Reachable is an equivalence relation.

Proof. Assume that X is a topological space, $\{U_{\alpha}: \alpha \in \lambda\}$ is an open cover for X, and $x,y,z \in X$.

- **R:** There exists some U_{a_k} such that $x \in U_{\alpha_k}$. Thus x is trivially reachable from x.
- **S:** Assume that x is reachable from y. This means that there exists a finite subset $\{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ that links x and y. Taking those sets in reverse order links y and x. Therefore y is reachable from x.
- **T:** Assume that y is reachable from x and z is reachable from y. Then there exists a finite subset $\{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ linking x and y and a finite subset $\{U_{\beta_1}, \ldots, U_{\beta_m}\}$ linking y and z. Let

 $U_{\alpha_j}=U_{\beta_k}$ be the first common subset in the two paths. Then $\{U_{\alpha_1},\ldots,U_{\alpha_j},U_{\beta_{k+1}},\ldots,U_{\beta_m}\}$ is a finite subset linking x and z. Therefore z is reachable from x.

Theorem

Let X be a topological space. TFAE:

- 1. X is connected.
- 2. There are no continuous functions $f: X \to \mathbb{R}$ such that $f(X) = \{0, 1\}$.
- 3. X is not the union of two disjoint non-empty separated sets.
- 4. X is not the union of two disjoint non-empty closed sets.
- 5. The only clopen sets of X are \emptyset and X.
- 6. For all $p, q \in X$, q is reachable from p.

Proof.

 $(1 \implies 2)$ Assume that X is connected.

ABC that there exists a continuous function $f:X\to\mathbb{R}$ such that $f(X)=\{0,1\}$. Let $U=f^{-1}(\{0\})$ and $V=f^{-1}(\{1\})$. Since $\{0\}$ and $\{1\}$ are closed in \mathbb{R} and f is continuous, U and V are closed in X. But $U\sqcup V=X$, so U=X-V and V=X-U meaning that $U,V\in\mathcal{T}$ also, contradicting the connectedness of X.

Therefore there are no continuous functions $f: X \to \mathbb{R}$ such that $f(X) = \{0, 1\}$.

 $(2 \implies 3)$ Assume that there are no continuous functions $f: X \to \mathbb{R}$ such that $f(X) = \{0,1\}$.

ABC that there exists $A,B\subset X$ such that X=A|B and consider $f:X\to\mathbb{R}$ defined by:

$$f(x) = \begin{cases} 0, & x \in A \\ 1, & x \in B \end{cases}$$

Now, $\{0\}$ is closed in $\mathbb R$ and $f^{-1}(\{0\})=A$. But X=A|B and $\bar A\cap B=\emptyset$, so A must contain all of its own limit points, hence $A=\bar A$, meaning that A is closed in X. Similarly, B is closed in X. Thus, f is continuous, contradicting the assumption of non-existence.

Therefore X is not the union of two disjoint non-empty separated sets.

 $(3 \implies 4)$ (CP) Assume that X is the union of two disjoint non-empty closed sets.

This means that there exists A and B that are closed in X such that $X = A \sqcup B$ and $A, B \neq \emptyset$. But $A = \bar{A}$ and so $\bar{A} \cap B = \emptyset$. Similarly, $A \cap \bar{B} = \emptyset$. Thus, X = A | B.

Therefore X is the union of two disjoint non-empty separated sets.

 $(4 \implies 5)$ (CP) Assume that there exists A clopen in X such that $A \neq \emptyset$ and $A \neq X$.

This means that X-A is also clopen. So A and X-A are closed in $X, X \sqcup (X-A) = X$, and $X, X-A \neq \emptyset$.

Therefore X is the union of two disjoint non-empty closed sets.

 $(5 \implies 6)$ Assume that the only clopen sets of X are \emptyset and X.

Assume that $p \in X$ and define $U = \{q \in X \mid q \text{ is reachable from } p\}$.

WTS:
$$U = X$$

First, note that $p \in U$ and so $U \neq \emptyset$.

Claim: $U \in \mathscr{T}$

Assume that $q \in U$. This means that for any open cover $\{U_{\alpha} : \alpha \in \lambda\}$ of X there exists some finite subset $\{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ linking p and q such that $q \in U_{\alpha_n}$. But every other point in U_{α_n} is reachable from p, and so $U_{\alpha_n} \subset U$. Thus all $q \in U$ are interior points and therefore U is open.

Claim: U is closed in X

Assume that $q \in \bar{U}$. This means that for all $U_q \in \mathscr{T}$ such that $q \in U_q$, it must be the case that $U_q \cap U \neq \emptyset$. So any open cover of X must include some such U_q . Let $r \in U_q \cap U$. The r is reachable from p and q is trivially reachable from q, and so q is reachable from q. Therefore $q \in U$ and so $Q = \bar{U}$, hence $Q = \bar{U}$ is closed.

Thus U is clopen and $U \neq \emptyset$, so U = X.

Therefore, for all $p, q \in X$, q is reachable from p.

 $(6 \implies 1)$ Assume that for all $p, q \in X$, q is reachable from p.

ABC that X is not connected. This means that there exists $U, V \in \mathscr{T}$ such that $U \sqcup V = X$, and so $\{U, V\}$ is an open cover for X. Now, assume that $p \in U$ and $q \in V$. There is no finite subset of this two-set cover that allows q to be reachable from p, contradicting the assumption.

Therefore X is connected.

Example

Determine whether the following topological spaces are connected or disconnected:

1. \mathbb{R} with the discrete topology.

Let
$$U=(-\infty,0)$$
 and $V=[0,\infty)$. $U,V\in \mathscr{T}$ and $U\sqcup V=\mathbb{R}$.

Disconnected

2. \mathbb{R} with the indiscrete topology.

 $\mathscr{T} = \{\emptyset, \mathbb{R}\}\$, so there are no open non-empty $U, V \in \mathscr{T}$ such that $U \sqcup V = \mathbb{R}$.

Connected

3. \mathbb{R} with the cofinite topology.

ABC there exists non-empty $U, V \in \mathscr{T}$ such that $U \sqcup V = \mathbb{R}$. The $V = \mathbb{R} - U$ is finite and $U = \mathbb{R} - V$ is finite, meaning that $U \sqcup V = \mathbb{R}$ is finite, a contradiction.

Connected.

4. ℝ₁₁

Let
$$U=(-\infty,0)$$
 and $V=[0,\infty)$. $U,V\in\mathscr{T}$ and $U\sqcup V=\mathbb{R}$.

Disconnected

5. \mathbb{Q} as a subspace of R

Let
$$U=(-\infty,\pi)\cap\mathbb{Q}$$
 and $V=(\pi,\infty)\cap\mathbb{Q}$. $U,V\in\mathscr{T}_{\mathbb{Q}}$ and $U\sqcup V=\mathbb{Q}$.

Disconnected

6. $\mathbb{R} - \mathbb{Q}$ as a subspace of R

Let
$$U=(-\infty,0)\cap(\mathbb{R}-\mathbb{Q})$$
 and $V=(0,\infty)\cap(\mathbb{R}-\mathbb{Q})$. $U,V\in\mathscr{T}_{\mathbb{R}-\mathbb{Q}}$ and $U\sqcup V=\mathbb{R}-\mathbb{Q}$.

Disconnected

Theorem

 \mathbb{R}_{std} is connected.

Proof. Since $\mathbb R$ is homeomorphic to (0,1), it is sufficient to show that (0,1) is connected. So ABC that (0,1) is disconnected. This means that there exists $A\subset (0,1)$ such that $A\neq \emptyset, (0,1)$ and A is clopen. Since A is bounded, it has a \sup , so let $a=\sup A$. But A is closed, so $a\in A$. But A is also open, so there exists $\epsilon>0$ such that $B(a,\epsilon)\subset A$, violating the fact that $a=\sup A$. Therefore (0,1) is connected, and so $\mathbb R$ is connected.

Corollary

An open interval in R is connected.

Definition: Interval

To say that $I \subset \mathbb{R}$ is an *interval* means that for all $a, b \in I$, $[a, b] \subset I$.

Theorem

 $C \subset \mathbb{R}$ is connected iff C is an interval.

Proof. Assume $C \subset \mathbb{R}$.

 \implies Assume that C is connected.

ABC that C is not an interval. So there exists $a,b \in C$ such that $[a,b] \not\subset C$. So there exists $z \in [a,b]$ such that $z \notin C$. Let $U = (-\infty,z) \cap C$ and $V = (z,\infty) \cap C$. $U,V \in \mathscr{T}_C$, $U,V \neq \emptyset,C$, and $U \sqcup V = C$. Thus, C is disconnected, contradicting the assumption that C is connected. Therefore C is an interval.

 \iff Assume that C is an interval.

Already proved by previous theorem.

Note that the union of connected sets need not be connected. For example, U=(0,1) and V=(1,2) are both connected; however, $U\sqcup V$ is not an interval and hence is not connected.

Theorem

Let X be a topological space and let $A, B \subset X$ be separated. If $C \subset A \cap B$ is connected then either $C \subset A$ or $C \subset B$ (but not both).

Theorem

Let X be a topological space and let $\{C_\alpha:\alpha\in\lambda\}$ be a collection of connected subsets of X. Furthermore, let $E\subset X$ also be connected such that for all $\alpha\in\lambda$, $C_\alpha\cap E\neq\emptyset$. $E\cup\bigcup_{\alpha\in\lambda}U_\alpha$ is connected.

Theorem

Let X be a topological space and let $C\subset X$ be connected. If $D\subset X$ such that $C\subset D\subset \bar C$ then D is connected.

Proof. Assume $D\subset X$ such that $C\subset D\subset \bar{C}$ and ABC that D is disconnected. This means that there exists $A,B\subset D$ such that $A,B\neq\emptyset$ and D=A|B. Now, since $C\subset D$, it must be the case that either $C\subset A$ or $C\subset B$ (but not both). So AWLOG that $C\subset A$, and hence $\bar{C}\subset \bar{A}$. But $\bar{A}\cap B=\emptyset$ and so $\bar{C}\cap B=\emptyset$. And since $D\subset \bar{C}, D\subset B=\emptyset$. But this can only be the case if $B=\emptyset$, contradicting the assumption that B is not empty. Therefore D is connected.

Corollary

Let X be a topological space and $C \subset X$. If C is connected then \bar{C} is connected.

Proof. Assume that C is connected. But $C\subset \bar C\subset \bar C$. Therefore, by previous theorem, $\bar C$ is connected.

Theorem

The closure of the topologist's sine curve in \mathbb{R}^2 is connected.

Proof. Let:

$$S = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) \middle| x \in (0, 1) \right\}$$

$$\bar{S} = S \cup \{(1, \sin(1))\} \cup \{(0, y) \mid y \in [-1, 1]\}$$

ABC that S is not connected. This means that there exists $g:S \to \{0,1\}$ such that g is continuous and surjective. But $f:(0,1)\to S$ defined by $f(x)=(x,\sin\frac{1}{x})$ is also continuous and surjective. This means that $g\circ f:(0,1)\to \{0,1\}$ is also continuous and surjective, indicating that (0,1) is not connected, contradicting the connectedness of the interval. Therefore S is connected, and by previous corollary, \bar{S} is connected.

Theorem

Let X and Y be a topological spaces and let $f:X\to Y$ be continuous and surjective. If X is connected then Y is connected.

Proof. Assume that X is connected and ABC that Y is disconnected. This means that there exists $U,V\in \mathscr{T}_Y$ such that $U,V\neq \emptyset$ and $U\sqcup V=Y$. Now, since f is continuous, $f^{-1}(U),f^{-1}(V)\in \mathscr{T}_X$. Furthermore, since f is surjective, $f^{-1}(U),f^{-1}(V)\neq \emptyset$ and $f^{-1}(U)\sqcup f^{-1}(V)=X$. Thus, X is disconnected, violating the assumption. Therefore Y is connected.

Corollary

Let X and Y be homemorphic topological spaces. X is connected iff Y is connected.

Proof. It is sufficent to prove one direction, so assume that X is connected. This means that there exists a homeomorphism $f:X\to Y$. But homeomorphism are continuous and surjective. Therefore Y is connected.

Theorem: IVT

Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and $(a,b) \subset \mathbb{R}$. If f(a) < r < f(B) then there exists $c \in (a,b)$ such that f(c) = r.

Proof. Assume that f(a) < r < f(b). Since [a,b] is connected and f is continuous, f([a,b]) is connected, and hence f([a,b]) must be an interval. But $f(a), f(b) \in f([a,b])$ and f(a) < r < f(b), so $r \in f((a,b))$. Therefore, there must exist some $c \in (a,b)$ such that f(c) = r.

Theorem

Let X and Y be topological spaces. $X \times Y$ is connected iff X and Y are connected.

Proof.

 \implies Assume that $X \times Y$ is connected.

 π_X and π_Y are continuous and surjective. Therefore X and Y are connected.

 \iff Assume that X and Y are connected.

Assume $x_0 \in X$ and consider $\{x_0\} \times Y$. Since $\{x_0\} \times Y$ is homeomorphic to Y and Y is connected, $\{x_0\} \times Y$ is connected. Similarly, for all $y \in Y$, $X \times \{y\}$ is connected. Note that $X \times Y = \bigcup_{y \in Y} X \times \{y\}$. Furthermore, for all $y \in Y$:

$$(\{x_0\} \times Y) \cap (X \times \{y\}) = \{(x_0, y)\} \neq \emptyset$$

Therefore, by previous theorem, $X \times Y$ is connected.