

Ecuaciones de Bellman (B1) para calcular el camino más corto (cmc) entre dos vértices

GDP sin circuitos

$$u_{j} = 0$$

$$u_{j} = \min_{k < j, \ v_{k} \in \Gamma^{-1}(v_{j})} \{u_{k} + \omega_{kj}\}, \quad j = 2, \dots, n$$

- Vértices numerados de 1 a n, V = {v₁,...v_n}.
- Vértice origen : vértice numerado 1.
- w_{ij}: peso del arco (i, j) / w_{ij} no negativo /∞ si no existe arco (i,j).
- u_i: peso del cmc(1- j).
- >> Un GDP no tiene circuitos sii, existe una numeración de los vértices para la que se cumple que para todo arco (i,j) ∈ E entonces i < j

ALGORITMO DE NUMERACIÓN

Etapa 1. Inicializar i \leftarrow 1, $V^{(1)} = V$

Etapa 2. Tomar $v \in V^{(i)} / d_e(v) = 0$ en $G[V^{(i)}]$

Etapa 3. Numerar el vértice v como vértice i.

Hacer
$$V^{(i+1)} = V^{(i)} \sim \{v\}$$

Hacer
$$i$$
 ← i + 1

Etapa 4. Si $V^{(i)}$ = { } entonces PARAR

En otro caso, volver a la etapa 2.

i = 1. $V^{(1)} = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}.$ $Tomamos\ v_1 \in V^{(1)}\ /\ d_e(v_1) = 0.$

Numeramos v_1 con 1. Eliminamos v_1 de $V^{(1)}$, es decir, $V^{(2)} = V^{(1)} \sim \{v_1\}.$

Si no se pueden RENUMERAR vértices → existe circuito →No aplicar Bellman **Vértice:** $v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8$

Numer.: 1

ALGORITMO DE NUMERACIÓN

Etapa 1. Inicializar i \leftarrow 1, $V^{(1)} = V$

Etapa 2. Tomar $v \in V^{(i)} \ / \ d_e(v)$ = 0 en $G[V^{(i)}]$

Etapa 3. Numerar el vértice v como vértice i.

Hacer
$$V^{(i+1)} = V^{(i)} \sim \{v\}$$

Hacer $i \leftarrow i + 1$

Etapa 4. Si V(i) = { } entonces PARAR

En otro caso, volver a la etapa 2.

i = 2. $V^{(2)} = \{v_2, v_3, v_4, v_5, v_6, v_7, v_8\}.$ $Tomamos\ v_4 \in V^{(2)}\ /\ d_e(v_4) = 0.$

Numeramos v_4 con 2. Eliminamos v_4 de $V^{(2)}$, es decir, $V^{(3)} = V^{(2)} \sim \{v_4\}$. Vértice: v₁ v₂ v₃ v₄ v₅ v₆ v₇ v₈

Numer.: **1 2**

i = 3. $V^{(3)} = \{v_2, v_3, v_5, v_6, v_7, v_8\}.$ $Tomamos\ v_2 \in V^{(3)}\ /\ d_e(v_2) = 0.$

Numeramos v_2 con 3. Eliminamos v_2 de $V^{(3)}$, es decir, $V^{(4)} = V^{(3)} \sim \{v_2\}$. **Vértice:** $v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8$

Numer.: 13 2

$$i = 4.$$

 $V^{(4)} = \{v_3, v_5, v_6, v_7, v_8\}.$
 $Tomamos\ v_7 \in V^{(4)}\ /\ d_e(v_7) = 0.$

Numeramos v_7 con 4. Eliminamos v_7 de $V^{(4)}$, es decir, $V^{(5)} = V^{(4)} \sim \{v_7\}$. Vértice: v₁ v₂ v₃ v₄ v₅ v₆ v₇ v₈

Numer.: **13 2 4**

i = 5. $V^{(5)} = \{v_3, v_5, v_6, v_8\}.$ $Tomamos\ v_5 \in V^{(5)}\ /\ d_e(v_5) = 0.$

Numeramos v_5 con 5. Eliminamos v_5 de $V^{(5)}$, es decir, $V^{(6)} = V^{(5)} \sim \{v_5\}$. Vértice: $v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8$

Numer.: 1 3 2 5 4

$$i = 6.$$
 $V^{(6)} = \{v_3, v_6, v_8\}.$ $Tomamos\ v_3 \in V^{(6)}\ /\ d_e(v_3) = 0.$

Numeramos v_3 con 6. Eliminamos v_3 de $V^{(6)}$, es decir, $V^{(7)} = V^{(6)} \sim \{v_3\}$. Vértice: $v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8$

Numer.: 13 62 5 4

$$i = 7.$$

 $V^{(7)} = \{v_6, v_8\}.$
 $Tomamos \ v_8 \in V^{(7)} \ / \ d_e(v_8) = 0.$

Numeramos v_8 con 7. Eliminamos v_8 de $V^{(7)}$, es decir, $V^{(8)} = V^{(7)} \sim \{v_8\}$. **Vértice:** $v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8$

Numer.: 1 3 62 5 4 7

 v_6

i = 8. $V^{(8)} = \{v_6\}.$ $Tomamos \ v_6 \in V^{(8)} \ / \ d_e(v_6) = 0.$

Numeramos v_6 con 8. Eliminamos v_6 de $V^{(8)}$, es decir,

$$V^{(9)} = V^{(8)} \sim \{v_6\} = \emptyset.$$

Vértice: $v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8$

Numer.: 136 2 5 8 4 7

Se cumple

$$\forall$$
 $(i,j) \rightarrow i < j$

- → Grafo sin circuitos
- → Aplicar Ec-Bellman

$$u_1 = 0,$$
 $u_j = \min_{k < j, \ v_k \in \Gamma^{-1}(v_j)} \{u_k + \omega_{kj}\}, \quad j = 2, \dots, n$

PESOS Y VÉRTICES

$$u_1 = 0,$$

$$u_2 = \min\{u_1 + \omega_{12}\} = 2,$$

$$u_3 = \min\{u_1 + \omega_{13}, \underline{u_2 + \omega_{23}}\} = \min\{6, 2 + 3\} = 5,$$

$$u_4 = \min\{u_1 + \omega_{14}, u_2 + \omega_{24}\} = \min\{4, 2+1\} = 3,$$

$$u_5 = \min\{u_2 + \omega_{25}, u_3 + \omega_{35}, \underline{u_4 + \omega_{45}}\} = \min\{2 + 5, 5 + 4, 3 + 3\} = 6,$$

$$u_6 = \min\{u_3 + \omega_{36}, \underline{u_5 + \omega_{56}}\} = \min\{5 + 4, 6 + 2\} = 8,$$

$$u_7 = \min\{u_4 + \omega_{47}, u_5 + \omega_{57}\} = \min\{3 + 6, 6 + 2\} = 8,$$

$$u_8 = \min \{u_5 + \omega_{58}, u_6 + \omega_{68}, \underline{u_7 + \omega_{78}}\} = \min \{6 + 5, 8 + 3, 8 + 1\} = 9.$$

5

<u>CMC(1-J)</u>

V	v1	v4	v2	v7	v5	v3	v8	v6
Numer.	1	2	3	4	5	6	7	8
Peso	0	2	5	3	6	8	8	9
u _i i=1,8								
Vértices		1,2	1,2,3	1,2,4	1,2,4,5	1,2,4,5,6	1,2,4,5,7	1,2,4,5,7,8
cmc								

APLICACIÓN DE LAS ECUACIONES D BELLMAN

Calcular el mínimo tiempo de la duración de un proyecto que incluye la realización de un gran nº de actividades relacionadas

Para realizar una actividad es necesario que otras previas hayan finalizado.

PERT

(Proyect Evaluation Research Task)

Técnicas de Evaluación y Revisión de Proyectos

Visión de PERT:

Permite calcular la duración de un proyecto usando grafos en los que se representan las distintas tareas que forman el proyecto y los plazos de cada una.

El proyecto debe informar de las relaciones entre las distintas tareas y el orden en que se deben realizar.

PERT es una herramienta valiosa para gestionar proyectos complejos a largo plazo en los que interactúen muchos actores.

Ejercicio 4-H3

PROYECTO 1:

HACER TORTILLA DE PATATAS

actividad a1 a2 **a**3 a5 a6 a7 a4 tiempo 6 3 2 15 6 7 10 prerrequisito a5 a6 a1 a2 a3 a4

¿ mínimo tiempo necesario para finalizarlo?

ORDEN ACTIVIDADES/TAREAS	TIEMPO DURACIÓN	PRERREQUISITO		
a1: Pelar patatas	a1: 6u	a1:		
a2: Batir huevos	a2: 3u	a2:		
a3: Pelar cebolla	a3: 2u	a3:		
a4: Freir patatas y cebolla	a4: 15u	a4: a1, a3		
a5: Añadirlo a huevo	a5: 6u	a5: a2, a4		
a6: Cuajar tortilla	a6: 10u	a6: a5		

a7: 7u

a7: Zampar tortilla

a7: a6

PERT

- >> Modela el proyecto en un grafo dirigido ponderado acíclico.
- >> Calcula el camino más largo (CAMINO CRÍTICO) entre dos vértices usando ecuaciones de Bellman (B2).

$$u_1 = 0,$$

 $u_j = \max_{k < j, \ v_k \in \Gamma^{-1}(v_j)} \{u_k + \omega_{kj}\}, \quad j = 2, \dots, n,$

- >> PESO del camino crítico: coste MÍNIMO necesario para desarrollar el proyecto.
- >> Vértices del camino crítico: actividades que han participado en el cálculo del coste: actividades críticas.

Construcción del GDP

actividad	a1	a2	a3	a4	a5	a6	a7
tiempo	6	3	2	15	6	10	7
prerrequisito	-	-	-	a1 a3	a2 a4	a5	a6

Vértices: actividades.

Arcos: $(a_i,a_j) >> a_i$ es prerrequisito de a_j

w_{ij}: tiempo que debe transcurrir entre el inicio de a_i y el inicio de a_j.

Construcción del GDP

Inicio proyecto >> vértice ficticio s

Añadir arco (s,ai) / de(ai)=0

 $\mathbf{w}_{sai} = 0$ (tiempo para empezar)

Final proyecto >> vértice ficticio t

Añadir arco (ai, t) / ds(ai) = 0

 (\mathbf{w}_{ait}) = tiempo de ai

Comprobar q el grafo es acíclico

Renumerar vértices >> repetir >> elegir vértice v / de(v) = 0

									7
VÉRTICE	S	a_1	a_2	a_3	a ₄	a ₅	a ₆	a ₇	t
NUMERACIÓN	1	2	3	4	5	6	7	8	9

Comprobar q el grafo es acíclico

VÉRTICE	S	a_1	a ₂	a_3	a ₄	a ₅	a ₆	a ₇	t
NUMERACIÓN	1	2	3	4	5	6	7	8	9

Calcular el camino crítico: PESOS

= 44

 $u_1 = 0,$ $u_j = \max_{k < j, v_k \in \Gamma^{-1}(v_j)} \{u_k + \omega_{kj}\}, \quad j = 2, \dots, n,$

$$u_1 = 0$$

$$u_2 = max\{u_1 + w_{12}\} = 0$$

$$u_3 = \max\{u_1 + w_{13}\} = 0$$

$$u_4 = \max\{u_1 + w_{14}\} = 0$$

$$u_5 = \max\{u_2 + w_{25}, u_4 + w_{45}\} = \max\{6, 2\} = 6$$

$$u_6 = \max\{u_3 + w_{36}, u_5 + w_{56}\} = \max\{3, 21\} = 21$$

$$u_7 = max\{u_6 + w_{67}\}$$
 = 27

$$u_8 = \max\{u_7 + w_{78}\}$$
 = 37

$$u_9 = max\{u_8 + w_{89}\}$$

(1<2,
$$v_1 \in \Gamma^{-1}(v_2)$$

(1,2<3,
$$v_1 \in \Gamma^{-1}(v_3)$$

$$(1,2,3<4, v_1 \in \Gamma^{-1}(v_4))$$

$$(1,..4<5, v_2, v_4 \in \Gamma^{-1}(v_5))$$

$$(1,...5<6, v_3, v_5 \in \Gamma^{-1}(v_6)$$

(1,..6<7,
$$v_6 \in \Gamma^{-1}(v_7)$$

(1,..7<8,
$$v_7 \in \Gamma^{-1}(v_8)$$

$$v_{s} \in \Gamma^{-1}(v_{s})$$

9

Calcular el camino crítico: ACTIVIDADES CRÍTICAS

PESO CAMINO CRÍTICO = 44 u

Mínimo tiempo para hacer la tortilla

$$u_1 = 0$$

$$u_2 = \max\{u_1 + w_{12}\} = 0$$

$$u_3 = \max\{u_1 + w_{13}\} = 0$$

$$u_4 = \max\{u_1 + w_{14}\} = 0$$

$$u_5 = \max\{\mathbf{u_2} + \mathbf{w_{25}} u_4 + \mathbf{w_{45}}\} = 6$$

$$u_6 = \max\{u_3 + w_{36}, u_5 + w_{56}\} = 21$$

$$u_7 = max\{u_6 + w_{67}\}$$
 = 27

$$u_8 = \max\{u_7 + w_{78}\}\ = 37$$

$$u_9 = \max\{u_8 + w_{89}\}$$
 = 44

Vértices: 1 2 5 6 7 8 9

Se corresponden con las actividades CRÍTICAS:

Situación particular:

¿ qué sucede si alguna actividad se retrasa o pide más tiempo para finalizar?

La única forma de **no retrasar** el proyecto es <u>NO RETRASAR</u> **ninguna actividad crítica**

Si una Actividad es crítica y

se **retrasa** u/unidades:

El proyecto se retrasa u/unidades

Si una Actividad es NO crítica

su retraso no debe retrasar

ninguna actividad crítica

Εj

$$u_5 = max\{u_2 + w_{25}, u_4 + w_{45}\} = 6$$

Si v2 se retrasa 2u >>> $u_5 = 8$
>> >> **PESO CAMINO>**> $u_9 = 46$

Εj

$$u_5 = \max\{u_2 + w_{25}, u_4 + w_{45}\} = \max\{6, 2\} = 6$$

Si v4 se retrasa 2u >> $u_5 = 6$ no hay retraso
Si v4 se retrasa 10u >> $u_5 = 12$ > se retrasa proyecto...

CÁLCULO DEL RETRASO MÁXIMO DE UNA ACTIVIDAD NO CRÍTICA

PARA QUE NO SE RETRASE EL PROYECTO

Sea P_{ik} el camino desde

la actividad **no** crítica **j** a la actividad crítica **k**.

Sea **W(P_{ik}) el peso** del camino de **j** a **k**

Si **j se retrasa en X** unidades

Para que **no haya retraso** en el proyecto debe verificarse

$$u_j + W(P_{jk}) + X \leq u_k$$

>> a₄ (5) se retrasa 2u ¿en cuánto tiempo se terminará el proyecto?

La actividad a_4 es un actividad crítica >> 45 + 2 = 47 u

>> a₃ (4) pide tiempo "extra".

 a_3 (4) accede al c. crítico por la actividad crítica a_4 (5).

Camino: $P_{4,5}$, w($P_{4,5}$) = 2

$$u_4 + w(P_{4,5}) + x \le u_5 \rightarrow 0 + 2 + x \le 6 \rightarrow x \le 4$$

Para que no se retrase el proyecto la actividad a₃ (4) se puede retrasar como máximo 4u.

PROYECTO2-PERT

CÁLCULO DE RETRASO EN ACTIVIDADES

PESOS / VÉRTICES del camino crítico(1-13)

 $u12 = max\{u_9 + w_{912}, u_{11} + w_{1112}\} = 23$

 $u13 = max\{u_8 + w_{813}, u_{12} + w_{1213}\} = 27$

¿Cuántos días se puede **retrasar** la actividad del vértice **9** sin que afecte a la duración total del proyecto?

vértice 9 : actividad NO crítica.

no puede retrasar actividades 11 y 12

El vértice 9 interviene en el cálculo de la actividad 11

$$u10 = max\{u_6 + w_{610}, u_9 + w_{910}\} = max\{10, 11+2\} = 13$$

 $u11 = max\{u_4 + w_{411}, u_{10} + w_{1011}\} = max\{6+10, 13+2\} = 16$

Camino
$$P_{9,11}$$
: 9, 10, 11 >> $W(P_{9,11}) = 4$

$$u9 + W(P_{9,11}) + x \le u11 \rightarrow 11 + 4 + x \le 16 \rightarrow x \le 1$$

Máximo tiempo para 9: x = 1

$$u10 = max\{6+4, 14\} = 13$$

$$u11 = max\{6+10, 14+2\} = 16$$

El tiempo se queda igual

El vértice 9 interviene en el cálculo de la actividad 12

$$u12 = max\{u_9 + w_{912}, u_{11} + w_{1112}\} = max\{13, 16+7\} = 23$$

Camino $P_{9,12}$: 9, 12 >> $W(P_{9,12}) = 2$

$$u9 + \omega(P_{9.12}) + x \le u12 \rightarrow 11 + 2 + x \le 23 \rightarrow x \le 10$$

Máximo tiempo para 9: x = 10

 $u12 = max{23, 16+7} = 23$

El tiempo se queda igual

PROYECTO2-PERT (cont)

- -Como $x \le 1$, $x \le 10 \rightarrow$ la actividad 9 se puede retrasar como máximo x = 1u
- para que **no se retrase el proyecto**

