National Cheng Kung University Department of Electrical Engineering

Introduction to VLSI CAD (Spring 2023)

Lab Session 4

Register Files, Manhattan Distance and LFSR

Name	Student ID	
陳慕丞	E94096097	
Practical Sections	Points	Marks
Prob A	25	
Prob B	25	
Prob C	25	
Report	15	
File hierarchy, namingetc.	5	
Superlint	5	
Notes:		

Due Date: 15:00, March 23, 2020 @ moodle

Deliverables

- All Verilog codes including testbenches for each problem should be uploaded.
 NOTE: Please **DO NOT** paste source code in the report!
- 2) Noted! TA will use commands in Appendix A to check your design in SoC Lab. If TA can not compile your code with the commands, you will not get full credit.
- 3) If you upload a dead body which we can't even compile, you will get NO credit!
- 4) All Verilog file should get at least 85% SuperLint Coverage.
- 5) All homework requirements should be uploaded in this file hierarchy or you will not get full credit.

NOTE: Please DO NOT upload waveforms!

Fig.1 File hierarchy for Homework submission

Prob A: Register File

- 1. Based on the register file structure in LabA, please design a 64×32 register file by yourself.
- 2. Port list

Signal	Туре	Bits	Description
clk	input	1	clock
rst	input	1	reset
reg_write	input	1	$0 \rightarrow \text{read}, 1 \rightarrow \text{write}$
src1_addr	input	6	source1 address
src2_addr	input	6	source2 address
write_addr	input	6	write address
write_data	input	32	write data
src1	output	32	read data source1
src2	output	32	read data source2

- 3. You should follow the file name rules as follow.
 - > Register file

■ File name: register.v

■ Module name: register

> Register file testbench

■ File name: register_tb.v

4. Show waveforms to explain that your register work correctly when read and write.

當 reg_write=1, clock falling edge 送入 write_data 時, 下一個 cycle 的 clock rising edge 將 write_data 寫入 REG_FILE[write_addr], 如上圖所示。

當 reg_write=0,clock falling edge 送入 src1_addr 和 src2_add 時,下一個 cycle 的 clock rising edge 將 REG_FILE[src1_addr]輸出到 src1,REG_FILE[src2_add]輸出到 src2,如上圖所示。

5. Show SuperLint coverage

Coverage:100%

Prob B: Finding Smallest Distance

Please design a circuit that will find the smallest distance between the local registers and the input data, based on the structure given in the LAB4 slide.

Port list

Signal	Туре	Bits	Description
clk	input	1	Clock pin.
rst	input	1	Reset pin.
set_reg	input	1	1: write mode. In this mode, when the hardware reads color_val, it will fill register[0] with color, wait for the next color_val and fill register[1] and so on, until set_reg=0. 0: keep the color registers the same.
color_val	input	1	color data is <u>valid</u> color shall be written into the local register if set_reg=1. color data isn't available, keep the local registers the same.
data_val	input	1	input data is <u>valid</u> output shall be available after 8 cycles. input data isn't available.
color	input	24	color data that will be stored in the local register.
data	input	24	Input data that will be compared among all of the color registers.
d	output	10	Output distance data.
index	output	3	Output index. If there are 2 or more colors that has the same smallest distance between input data, output the one that has the smallest index.

1. Show waveforms to explain that your design works correctly.

Input: clk, rst, set_reg, color_val, data_val, color, data

Output: d, index

當 set_reg 和 color_val 為 1 時,將 color 存進 color_reg [counter]中,並將 counter 加 1;當 data_val 為 1 時,將 1 存進 data_val_flag,將 data 存進 data_reg,將 counter 的值存進 counter_reg(記住存到第幾個 color_reg);當 data_val 或 data_val_flag 為 1 時,counter 每個 cycle 減 1(每個 cycle 用 color_reg [counter] 中的值比較),clk_num 每個 cycle 加 1(負責數是否到第 8 個 cycle);運算中 blue 為 $|B_i-B_j|$,green 為 $|G_i-G_j|$,red 為 $|R_i-R_j|$;若比較後距離等於或小於 d 中的值,則將距離的值存進 d 中,counter 的值存進 index 中;最後當 clk_num=7 時,重設 counter 為 counter_reg 中的值,data_val_flag 為 0。

2. Show SuperLint coverage

Coverage:100%

Prob C: LFSR

- 1. Please design an 8-bit-LFSR, with the given feedback function in the LAB4 slide.
- 2. Port list

Signal	Туре	Bits	Description
clk	input	1	Clock pin.
rst	input	1	Reset pin. Reset all of the flip flops to zeros.
seed_val	input	1	1: the flip flops take seed as the initial state.0: the flip flops works as linear feedback shift register.
seed	input	8	Initial state value of LFSR.
d	output	8	Output value of LFSR

3. Feedback function

$$d[0] = (d[7] ^ {d[5]}) ^ (d[4] ^ {d[3]})$$

4. Show waveforms to explain that your LFSR module works correctly.

當 seed_val=1 時,d 被 initial 成 seed 的值 7,如上圖所示,當 seed_val=0 時,d 為{d'[6:0],((d'[7]~^d'[5])^(d'[4]~^d'[3]))} (上一個 cycle 的 d 值為 d')。

5. Show the simulation result on the terminal.

6. Show SuperLint coverage

Coverage:100%

7. At last, please write the lesson you learned from Lab4

在 Lab4 中我學到如何實作 sequential 電路並應用在 register,LFSR 等電路中,並利用 sequential 電路做運算,也學到如何結合 combinational 和 sequential 電路實作比絕對值距離大小。

Appendix A : Commands we will use to check your homework

Prob	Syn	command
А	pre	ncverilog register_tb.v +define+FSDB +access+r ncverilog register_tb.v +define+FSDB_ALL +access+r
В	pre	ncverilog top_tb.v +define+FSDB +access+r
С	pre	ncverilog LFSR_tb.v +define+FSDB +access+r