Poincare Map

 Looking at the evolution for a fixed velocity or position point that a trajectory oscillates through defines a poincare map

Poincare Map

 Looking at the evolution for a fixed velocity or position point that a trajectory oscillates through defines a poincare map

We can look at behavior over parameters

Saturn's Rings

Machine Learning Diffeq

- Recently within ML community:
 - The concept of Physics informed ML emerged

Strategy:
$$\mathcal{L}_{total} = \mathcal{L}_{NN} + \mathcal{L}_{\text{Diffeq}}$$

$$\ddot{\theta} + \mu \dot{\theta} + k\theta = 0$$

$$\mathcal{L}_{\text{Diffeq}} = \left(\ddot{\theta} + \mu \dot{\theta} + k\theta \right)^2$$

Constraint on Differential Equation Aim to approximate learning

Navier Stokes equation to extrapolate blood flow in system

Navier Stokes equation to extrapolate blood flow in system

Image Sources

poicare maps and diagrams

link: https://www.researchgate.net/figure/Sketch-of-Poincare-section-and-Poincare-map_fig1_230660497 attribution: Abdullaev, S.. (1999). A new integration method of Hamiltonian systems by symplectic maps. Journal of Physics A General Physics. 32. 2745-2766. 10.1088/0305-4470/32/15/004.

Saturn's rings

link: https://commons.wikimedia.org/wiki/File:Unraveling_Saturn%27s_Rings.jpg

attribution: NASA / JPL, Public domain, via Wikimedia Commons

physics informed ML diagram; fluid flow figures; blood flow plots figures; plasma dynamics figures

link: https://www.nature.com/articles/s42254-021-00314-5

attribution: Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed machine learning. Nat Rev Phys 3, 422–440 (2021). https://doi.org/10.1038/s42254-021-00314-5