GEOMETRY

Lecturer: Asst. Prof. Ufuk Çelikcan

Based on the slides by: E. Angel and D. Shreiner

Basic Elements

- Geometry is the study of the relationships among objects in an n-dimensional space
 - In computer graphics, we are interested in objects that exist in 3 dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
- We will need three basic elements
 - 1. Scalars
 - 2. Vectors
 - 3. Points

Coordinate-Free Geometry

- When we learned simple geometry, most of us started with a Cartesian approach
 - Points at locations in space p=(x,y,z)
 - We derived results by algebraic manipulations involving these coordinates
- This approach is nonphysical
 - Physically, points exist regardless of the location of an arbitrary coordinate system
 - Most geometric results are independent of the coordinate system
 - Example: Euclidean geometry: two triangles are identical if two corresponding sides and the angle between them are identical

Scalars

- Scalars can be defined as members of sets
 - which can be combined by two operations: addition and multiplication
 - obeying some fundamental axioms: associativity, commutativity, inverses
- Examples include the real and complex number systems under the ordinary rules with which we are familiar.
- Scalars alone have no geometric properties

Vectors

- Physical definition:
- a vector is a quantity with two attributes
 - Direction
 - Magnitude
- Examples include
 - Force
 - Velocity
 - Directed line segments
 - Most important example for graphics
 - Can map to other types

Vector Operations

- Every vector has an inverse
 - Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a zero vector
 - Zero magnitude, undefined orientation
- The sum of any two vectors is a vector
 - Use head-to-tail axiom

Linear Vector Spaces

- Mathematical system for manipulating vectors
- Operations
 - scalar-vector multiplication $u = \alpha v$
 - vector-vector addition: W = U + V
- Expressions such as

$$v=u+2w-3r$$

make sense in a vector space

Vectors Lack Position

- These vectors are identical
 - Same length and magnitude

- >> Vector spaces insufficient for geometry
 - >> Need points too

Points

- Location in space
- Operations allowed between points and vectors
 - Point-point subtraction >> yields a vector
 - Equivalent to point-vector addition

- Geometrically, curves and surfaces are usually considered to be sets of points with some special properties, living in a space consisting of "points."
- Typically, one is also interested in geometric properties invariant under certain transformations, for example, translations, rotations, projections, etc.
- One could model the space of points as a vector space, but this is not very satisfactory for a number of reasons.
 - One reason is that the point corresponding to the zero vector (0), called the origin, plays a special role, when there is really no reason to have a privileged origin.
 - Another reason is that certain notions, such as parallelism, are handled in an awkward manner.
 - But the deeper reason is that vector spaces and affine spaces really have different geometries.
- Affine spaces provide a better framework for doing geometry.

- In particular, it is possible to deal with points, curves, surfaces, etc., in an intrinsic manner, that is, independently of any specific choice of a coordinate system.
 - As in physics, this is highly desirable to really understand what is going on.
 - Affine spaces are the right framework for dealing with motions, trajectories, and physical forces, among other things. Thus, affine geometry is crucial to a clean presentation of kinematics, dynamics, and other parts of physics (for example, elasticity).

Also, given an mxn matrix A and a vector b ∈ R^m, the set U = {x ∈ R^n | Ax = b} of solutions of the system Ax = b is an affine space, but not a vector space (linear space) in general.

- no specific point that serves as an origin.
 - >> no vector has a fixed origin and no vector can be uniquely associated to a point.
- instead, there are displacement vectors between two points of the space.
 - Thus it makes sense to subtract two points of the space, giving a vector,
 - but it does not make sense to add two points of the space.
 - Likewise, it makes sense to add a vector to a point, resulting in a new point displaced from the starting point by that vector.
- Of course, coordinate systems have to be chosen to finally carry out computations, but one should learn to resist the temptation to resort to coordinate systems until it is really necessary.
- Should use coordinate systems only when needed.

- Points + a vector space
 - Points are typically used to position ourselves in space and vectors are use to move about in space.

Operations

- Vector-vector addition
- Scalar-vector multiplication
- Point-vector addition
- Scalar-scalar operations

For any point define

- $1 \bullet P = P$
- 0 P = **0** (zero vector)

Lines

Consider all points of the form

$$P(\alpha)=P_0+\alpha \mathbf{d}$$

>> Set of all points that pass through P_0 in the direction of the vector \mathbf{d}

Parametric Form

Two-dimensional forms

- 1. Explicit form: y = mx + h
- 2. Implicit form: ax + by + c = 0

3. Parametric form:

$$x(\alpha) = \alpha x_0 + (1-\alpha)x_1$$
$$y(\alpha) = \alpha y_0 + (1-\alpha)y_1$$

parametric form of the line

- More robust and general than other forms
- Extends to curves and surfaces

Rays and Line Segments

• If $\alpha >= 0$, then $P(\alpha)$ is the **ray** leaving P_0 in the direction **d**

If we use two points to define v, then

$$P(\alpha) = Q + \alpha (R-Q) = Q + \alpha v$$
$$= \alpha R + (1-\alpha)Q$$

For $0 <= \alpha <= 1$ we get all the points on the *line segment* joining R and Q

Convexity

 An object is convex iff for any 2 points in the object all points on the line segment between these 2 points are also in the object

Affine Sums

Consider the "sum"

$$P = \alpha_1 P_1 + \alpha_2 P_2 + \dots + \alpha_n P_n$$

Can show by induction that this sum makes sense iff $\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$

in which case we have the *affine sum* (affine combination) of the points P_1, P_2,P_n

- If, in addition, $\alpha_i >= 0$, then we have the *convex hull* of $P_1, P_2, \dots P_n$
 - Convex combinations are simply affine combinations where the constants in the combination are limited to be in the interval [0,1].

Convex Hull

- Smallest convex object containing P₁,P₂,....P_n
 - The set of all points P that can be written as convex combinations of P_1, P_2, \ldots, P_n
- Formed by "shrink wrapping" points

Convex Hull

- Convex combinations are an extremely important concept in computer graphics and geometric modeling.
- The convex-hull concept will allow us to take a set of points, put a **bounding box** about the set of points, and since the bounding box is convex, we are insured that the convex-hull of the set of points is also contained in the bounding box.
- These bounding boxes are the method that we can use to "keep track of" objects without having to continually reference the object's complex mathematical definition.
 - In many cases, a bounding box can be placed about the object and the algorithms can refer to the box when necessary, rather than the object.

Bounding Box

 A bounding box for an object is just a rectangular box in three-dimensional space, with sides parallel to the coordinate planes, that contains (or surrounds) the object. This illustration below shows a two-dimensional box surrounding a curved object.

A Simple Intersection Test

- If we have two complex models M1 and M2 and we wish to see if these models do not intersect, we can use a "bounding-box test" to give a quick initial answer.
- If B1 and B2 are bounding boxes containing M1 and M2 respectively, it is easily seen that M1 and M2 cannot intersect if the two bounding boxes do not intersect.

A Ray/Object Intersection Test

- Want to see if a ray intersects a model M. This is normally a complex operation, and we can simplify it somewhat by using a simple "bounding-box test" to see if the ray misses M.
- By placing a bounding box B around M, we first see if the ray hits B, and if not, we know that the ray does not hit the model M.
- Of course, if the ray hits the bounding box, we then must test it against
 M for intersection which may be expensive. But by testing first against
 the bounding box, we can eliminate a number of complex expensive
 calculations.

Curves and Surfaces

- Curves are one parameter entities of the form $P(\alpha)$ where the function is nonlinear
- Surfaces are formed from two-parameter functions $P(\alpha, \beta)$
 - Linear functions give planes and polygons

Planes

- A plane can be defined by
 - a point and two vectors
 - or by three points

$$P(\alpha,\beta)=R+\alpha u+\beta v$$

$$P(\alpha,\beta)=R+\alpha(Q-R)+\beta(P-R)$$

Triangles

for $0 \le \alpha$, $\beta \le 1$, we get all points in triangle

Barycentric Coordinates

Triangle is convex so any point inside can be represented as an affine combination

$$P(\alpha_1, \alpha_2, \alpha_3) = \alpha_1 P + \alpha_2 Q + \alpha_3 R$$
 where
$$\alpha_1 + \alpha_2 + \alpha_3 = 1$$

$$\alpha_i >= 0$$

The representation is called the **barycentric coordinate** representation of P

Normals

- Every plane has a vector n normal (perpendicular, orthogonal) to it
- From point & two vector form: $P(\alpha,\beta) = R + \alpha u + \beta v$, we know we can use the cross product to find $n = u \times v$ and the equivalent form

$$(P(\alpha) - P) \cdot n = 0$$

REPRESENTATION

Lecturer: Asst. Prof. Ufuk Çelikcan

Based on the slides by: E. Angel and D. Shreiner

Linear Independence

- A set of vectors $v_1, v_2, ..., v_n$ is linearly independent if $\alpha_1 v_1 + \alpha_2 v_2 + ... \alpha_n v_n = 0$ iff $\alpha_1 = \alpha_2 = ... = 0$
- If a set of vectors is linearly independent, we cannot represent one in terms of the others
- If a set of vectors is linearly dependent, at least one of them can be written in terms of the others

Dimension

- In a vector space, the maximum number of linearly independent vectors is fixed and is called the dimension of the space
- In an n-dimensional space, any set of n linearly independent vectors form a basis for the space
- Given a basis v_1, v_2, \dots, v_n , any vector v can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

where the $\{\alpha_i\}$ are unique

Representation

- Until now we have been able to work with geometric entities without using any frame of reference, such as a coordinate system
- Now, need a frame of reference to relate points and objects to our physical world.
 - For example, where is a point exactly? Can't answer without a reference system
 - World coordinates
 - Camera coordinates

Coordinate Systems

- Consider a basis v_1, v_2, \ldots, v_n
- A vector is written as $v = \alpha_1 v_1 + \alpha_2 v_2 + + \alpha_n v_n$
- The list of scalars $\{\alpha_1, \alpha_2, \alpha_n\}$ is the *representation* of v with respect to the given basis
- We can write the representation as a row or a column array of scalars

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \dots \ \alpha_n]^T = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ . \\ \alpha_n \end{bmatrix}$$

Example

- $v = 2v_1 + 3v_2 4v_3$
- a=?
- $\mathbf{a} = [2\ 3\ -4]^{\mathrm{T}}$
- Note that this representation is with respect to a particular basis.
- For example, in OpenGL
 - we start by representing vectors using the <u>object basis</u>
 - but later the system needs a representation in terms of the camera/eye basis

Coordinate Systems

Which is correct?

Both are correct, because vectors have no fixed location

Frames

- A coordinate system by itself is insufficient to represent points
- If we work in an affine space, we can add a single point, the *origin*, to the basis vectors to form a *frame*

Representation in a Frame

- Frame determined by (P_0, v_1, v_2, v_3)
- Within this frame, every vector can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

Every point can be written as

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + + \beta_n v_n$$

Confusing Points and Vectors

Consider the point and the vector

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + + \beta_n v_n$$

$$v = \alpha_1 v_1 + \alpha_2 v_2 + + \alpha_n v_n$$

They appear to have the similar representations

$$\mathbf{p} = [\beta_1 \ \beta_2 \ \beta_3]$$
 $\mathbf{v} = [\alpha_1 \ \alpha_2 \ \alpha_3]$ which confuses the point with the vector \mathbf{v} \mathbf{p} \mathbf{A} vector has no position

Vector can be placed anywhere

point: fixed

A Single Representation

>> If we define $0 \cdot P = 0$ and $1 \cdot P = P$ then we can write

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3 0] [v_1 v_2 v_3 P_0]^T$$

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 = [\beta_1 \beta_2 \beta_3 1] [v_1 v_2 v_3 P_0]^T$$

Thus we obtain the four-dimensional homogeneous coordinate representation

$$\mathbf{v} = [\alpha_1 \, \alpha_2 \, \alpha_3 \, 0]^T$$
$$\mathbf{p} = [\beta_1 \, \beta_2 \, \beta_3 \, 1]^T$$

Homogeneous Coordinates

 The homogeneous coordinates form of a three dimensional point [x y z] is given as

$$\mathbf{p} = [x', y', z', w]^T = [wx wy wz w]^T$$

• We return to a three dimensional point (for $w\neq 0$) by

$$x \leftarrow x'/w$$

 $y \leftarrow y'/w$
 $z \leftarrow z'/w$

- If w=0, the representation is that of a vector
- Note: homogeneous coordinates replaces points in
 3-dimensions by lines through the origin in 4-dimensions
- For w=1, the representation of a point is [x y z 1]

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
 - All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 x 4 matrices
 - Hardware pipeline works with 4 dimensional representations
 - For orthographic viewing, we can maintain $w\!=\!0$ for vectors and $w\!=\!1$ for points
 - For perspective we need a perspective division

Change of Coordinate Systems

 Consider two representations of the same vector with respect to two different bases. The representations are

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \alpha_3]$$
$$\mathbf{b} = [\beta_1 \ \beta_2 \ \beta_3]$$

where

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3] [v_1 v_2 v_3]^T$$

$$= \beta_1 u_1 + \beta_2 u_2 + \beta_3 u_3 = [\beta_1 \beta_2 \beta_3] [u_1 u_2 u_3]^{\mathrm{T}}$$

Representing second basis in terms of first

Each of the basis vectors, u1,u2, u3, are vectors that can be represented in terms of the first basis

$$\begin{aligned} u_1 &= \gamma_{11} v_1 + \gamma_{12} v_2 + \gamma_{13} v_3 \\ u_2 &= \gamma_{21} v_1 + \gamma_{22} v_2 + \gamma_{23} v_3 \\ u_3 &= \gamma_{31} v_1 + \gamma_{32} v_2 + \gamma_{33} v_3 \end{aligned}$$

Matrix Form

The coefficients define a 3 x 3 matrix

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix}$$

and the bases can be related by

$$a=M^Tb$$

see the textbook for numerical examples

Change of Frames

 We can apply a similar process in homogeneous coordinates to the representations of both points and vectors

Consider two frames:

$$(P_0, v_1, v_2, v_3)$$

 (Q_0, u_1, u_2, u_3)

- Any point or vector can be represented in either frame
- We can represent Q_0 , u_1 , u_2 , u_3 in terms of P_0 , v_1 , v_2 , v_3

Representing One Frame in Terms of the Other

Extending what we did with change of bases

$$\begin{aligned} u_1 &= \gamma_{11} v_1 + \gamma_{12} v_2 + \gamma_{13} v_3 \\ u_2 &= \gamma_{21} v_1 + \gamma_{22} v_2 + \gamma_{23} v_3 \\ u_3 &= \gamma_{31} v_1 + \gamma_{32} v_2 + \gamma_{33} v_3 \\ Q_0 &= \gamma_{41} v_1 + \gamma_{42} v_2 + \gamma_{43} v_3 + \gamma_{44} P_0 \end{aligned}$$

defining a 4 x 4 matrix

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\ \gamma_{41} & \gamma_{42} & \gamma_{43} & \gamma_{44} \end{bmatrix}$$

Working with Representations

Within the two frames, any point or vector has a representation of the same form

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4]$$
 in the first frame $\mathbf{b} = [\beta_1 \ \beta_2 \ \beta_3 \ \beta_4]$ in the second frame

where $\alpha_4 = \beta_4 = 1$ for points and $\alpha_4 = \beta_4 = 0$ for vectors and

$$\mathbf{a} = \mathbf{M}^{\mathrm{T}} \mathbf{b}$$

The matrix M is 4 x 4 and specifies an affine transformation in homogeneous coordinates

Affine Transformations

- Every linear transformation is equivalent to a change in frames
- Every affine transformation preserves lines
 - preserves collinearity: so Affine Transformations
 - transform parallel lines into parallel lines
 - and preserve ratios of distances along parallel lines.
- However, an affine transformation has only 12 degrees
 of freedom because 4 of the elements in the matrix are
 fixed and are a subset of all possible 4 x 4 linear
 transformations

The World and Camera Frames

- When we work with representations, we work with n-tuples (arrays of n scalars)
- Changes in frame are then defined by 4 x 4 matrices
- In OpenGL, the base frame that we start with is the world frame
- Eventually we represent entities in the camera frame by changing the world representation using the model-view matrix
- Initially these frames are the same (M=I) until we change them using the model-view matrix

Moving the Camera

If objects are on both sides of z=0, we must move

camera frame

TRANSFORMATIONS

Lecturer: Asst. Prof. Ufuk Çelikcan

Based on the slides by: E. Angel and D.

Shreiner

General Transformations

A transformation

- maps points to other points
- and/or maps vectors to other vectors

Affine Transformations

- Line preserving
- Characteristic of many physically important transformations
 - Rigid body transformations: rotation, translation
 - Scaling, shear
- Importance in computer graphics is that:
 - we need to transform only endpoints of line segments
 - and let implementation draw line segment between the transformed endpoints

Pipeline Implementation

Notation

We will be working with both: coordinate-free representations of transformations and representations within a particular frame

Our choice of notation:

- P,Q, R: points in an affine space
- u, v, w: vectors in an affine space
- α , β , γ : scalars
- p, q, r: representations of points
 -array of 4 scalars in homogeneous coordinates
- u, v, w: representations of vectors
 -array of 4 scalars in homogeneous coordinates

Translation

Move (translate, displace) a point to a new location

- Displacement determined by a vector d
 - Three degrees of freedom
 - P'=P+d

How many ways?

Although we can move a single point to a new location in infinite ways, when we move many points there is usually only one way

object

translation: every point displaced by same vector

Translation Using Representations

Using the homogeneous coordinate representation in some frame

$$\mathbf{p} = [x \ y \ z \ 1]^{T}$$

 $\mathbf{p}' = [x' \ y' \ z' \ 1]^{T}$
 $\mathbf{d} = [dx \ dy \ dz \ 0]^{T}$

Hence $\mathbf{p'} = \mathbf{p} + \mathbf{d}$ or

$$x'=x+d_X$$
 $y'=y+d_Y$
 $z'=z+d_Z$

note that this expression is in four dimensions and expresses point = vector + point

Translation Matrix

We can express translation using a 4 x 4 matrix **T** in homogeneous coordinates **p**'=**Tp** where

$$\mathbf{T} = \mathbf{T}(d_{x}, d_{y}, d_{z}) = \begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This form is better for implementation because

- all affine transformations can be expressed this way
- and multiple transformations can be concatenated together

Rotation (2D)

Consider rotation about the origin by θ degrees

• radius stays the same, angle increases by θ

Rotation (2D)

Consider rotation about the origin by θ degrees

• radius stays the same, angle increases by θ

Rotation about the z-axis

- Rotation about z-axis in three dimensions leaves all points with the same z
 - Equivalent to rotation in two dimensions in planes of constant z

$$x' = x \cos \theta - y \sin \theta$$

 $y' = x \sin \theta + y \cos \theta$
 $z' = z$

or in homogeneous coordinates

$$\mathbf{p}' = \mathbf{R}_{\mathbf{z}}(\mathbf{\theta}) \mathbf{p}$$

Rotation Matrix

$$\mathbf{R} = \mathbf{R}_{\mathbf{Z}}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about x and y axes

- Same argument as for rotation about z-axis
 - For rotation about x-axis >> x is unchanged
 - For rotation about y-axis >> y is unchanged

$$\mathbf{R} = \mathbf{R}_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

Expand or contract along each axis (fixed point of origin)

$$\mathbf{x}' = \mathbf{s}_{x} \mathbf{x}$$

$$\mathbf{y}' = \mathbf{s}_{y} \mathbf{x}$$

$$\mathbf{z}' = \mathbf{S}_{z} \mathbf{x}$$

$$\mathbf{p}' = \mathbf{S}\mathbf{p}$$

$$\mathbf{S} = \mathbf{S}(\mathbf{s}_{x}, \mathbf{s}_{y}, \mathbf{s}_{z}) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Reflection

corresponds to negative scale factors

Inverses

- Although we could compute inverse matrices by general formulas, we can use simple geometric observations
 - Translation: $\mathbf{T}^{-1}(d_x, d_y, d_z) = \mathbf{T}(-d_x, -d_y, -d_z)$
 - Rotation: $\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$
 - Holds for any rotation matrix
 - Note that since $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta)$ >> $\mathbf{R}^{-1}(\theta) = \mathbf{R} (-\theta) = \mathbf{R}^{\mathrm{T}}(\theta)$
 - Scaling: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$

Concatenation

- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices in any order
- Because the same transformation is applied to many vertices, the cost of forming a matrix
 M=ABCD is not significant compared to the cost of computing Mp for many vertices p
- The difficult part is how to form a desired transformation from the specifications in the application

Order of Transformations

- Note that matrix on the right is the first applied
- Mathematically, the following are equivalent
 p' = ABCp = A(B(Cp))
- Note that many references use column matrices to represent points. In terms of column matrices

$$\mathbf{p}^{\mathsf{T}} = \mathbf{p}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}}$$

General Rotation About the Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes

$$\mathbf{R}(\theta) = \mathbf{R}_{z}(\theta_{z}) \; \mathbf{R}_{y}(\theta_{y}) \; \mathbf{R}_{x}(\theta_{x})$$

 $\theta_x\,\theta_y\,\theta_z$ are called the Euler angles

Note: rotations do not commute.

>> We can use rotations in another order but with different angles.

Rotation About a Fixed Point other than the Origin

- Move fixed point to origin
- 2. Rotate
- 3. Move fixed point back

$$\mathbf{M} = \mathbf{T}(\mathbf{p}_{f}) \mathbf{R}(\theta) \mathbf{T}(-\mathbf{p}_{f})$$

Instancing

- In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size
- We apply an instance transformation to its vertices to
- Scale
- Orient
- Locate

Shear

- Helpful to add one more basic transformation
- Equivalent to pulling faces in opposite directions

Shear Matrix

Consider a simple shear along *x*-axis

$$x' = x + y \cot \theta$$

 $y' = y$
 $z' = z$

$$\mathbf{H}(\theta) = \begin{bmatrix} 1 & \cot \theta & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

OPENGL TRANSFORMATIONS

Lecturer: Asst. Prof. Ufuk Çelikcan

Based on the slides by: E. Angel and D. Shreiner

Objectives

- Learn how to carry out transformations in OpenGL
 - Rotation
 - Translation
 - Scaling
- Introduce mat.h and vec.h transformations
 - Model-view
 - Projection

3D Transformations

- A vertex is transformed by 4x4 matrices
 - all affine operations are matrix multiplications
- Perspective projections and translations require the 4th row and column.
 - Otherwise, these operations would require a vector-addition operation, in addition to the matrix multiplication.
 - For operations other than perspective projection, the fourth row is always (0, 0, 0, 1) which leaves the w-coordinate unchanged..
- All matrices are stored column-major in OpenGL
 - this is opposite of what "C" programmers expect
- Matrices are always post-multiplied
 - product of matrix and vector is $\mathbf{M}\vec{v}$

$$\mathbf{M} = \begin{bmatrix} m_0 & m_4 & m_8 & m_{12} \\ m_1 & m_5 & m_9 & m_{13} \\ m_2 & m_6 & m_{10} & m_{14} \\ m_3 & m_7 & m_{11} & m_{15} \end{bmatrix}$$

Transformations

- The processing required for converting a vertex from 3D or 4D space into a 2D window coordinate is done by the transform stage of the graphics pipeline. The operations in that stage are illustrated below.
 - The orange boxes represent a matrix multiplication operation.
- Transformations take us from one "space" to another
 - All of our transforms are 4x4 matrices

Transformations

- When we want to draw a geometric object, like a chair for instance, we first determine all
 of the vertices that we want to associate with the chair.
- Next, we determine how those vertices should be grouped to form geometric primitives, and the order we're going to send them to the graphics subsystem. This process is called *modeling*. Quite often, we'll model an object in its own 3D coordinate system (called **object coordinates**, also called as **model coordinates**).
- When we want to add that object into the scene we're developing, we need to determine
 its world coordinates.
- We do this by specifying a modeling transformation, which tells the system how to move from one coordinate system to another. i.e., modeling transforms bring the object into world space.

Transformations

- Viewing transformations dictate where the viewing frustum is in world coordinates.
- Modeling transforms, in combination with viewing transforms, are the first transformation that a vertex goes through.
- After model-view transformations, vertices are at the eye coordinates (camera coordinates) where the camera [=eye] works in.
- Next, the projection transform is applied which maps the vertex into clip coordinates, which is where clipping occurs.
- After clipping, we divide by the w value of the vertex (perpective division), which is
 modified by projection. This division operation is what allows the farther-objects-beingsmaller activity.
- The transformed, clipped coordinates are then mapped into the window (viewport transform).

Camera Analogy and Transformations

- Modeling transformations >> world coordinates
 - moving the model in the scene
- Viewing transformations >> eye coordinates
 - tripod—define position and orientation of the camera in the world
 - Can be done by rotations and translations but is often easier to use LookAt()
- Projection transformations >> clip coordinates
 - adjust the lens of the camera
 - The projection matrix is used to define the view volume and to select a camera lens
- Viewport transformations >> screen coordinates
 - enlarge or reduce the physical photograph

Model-view and Projection Matrices

- Although both are manipulated by the same functions, we have to be careful because incremental changes are always made by postmultiplication
 - For example, rotating model-view and projection matrices by the same matrix are not equivalent operations. Postmultiplication of the model-view matrix is equivalent to premultiplication of the projection matrix

Smooth Rotation

- From a practical standpoint, we often want to use transformations to move and reorient an object smoothly
- Problem: find a sequence of model-view matrices \mathbf{M}_0 , $\mathbf{M}_1, \ldots, \mathbf{M}_n$ so that when they are applied successively to one or more objects we see a smooth transition
- >> For orientating an object, we can use the fact that every rotation corresponds to part of a great circle on a sphere
 - Find the axis of rotation and angle
 - Virtual trackball (see text)

Incremental Rotation

- Consider the two approaches
 - a) For a sequence of rotation matrices R_0, R_1, \ldots, R_n , find the Euler angles for each and use $R_i = R_{iz} \, R_{iy} \, R_{ix}$
 - Not very efficient
 - instead: Use the final positions to determine the axis and angle of rotation, then increment only the angle
- Quaternions can be more efficient than either
 - But we keep those for advanced computer graphics class

Interfaces

- One of the major problems in interactive computer graphics is how to use two-dimensional devices such as a mouse to interface with three dimensional objects
- Example: how to form an instance matrix?
- Some alternatives
 - Virtual trackball
 - 3D input devices such as the spaceball
 - Use areas of the screen
 - Distance from center controls angle, position, scale depending on mouse button depressed

BUILDING MODELS

Lecturer: Asst. Prof. Ufuk Çelikcan

Based on the slides by: E. Angel and D.

Shreiner

Representing a Mesh

Consider a mesh

- There are 8 nodes and 12 edges
 - 5 interior polygons
 - 6 interior (shared) edges
- Each vertex has a location $v_i = (x_i y_i z_i)$

Simple Representation

- Define each polygon by the geometric locations of its vertices
- Leads to OpenGL code such as

```
vertex[i] = vec3(x1, x1, x1);
vertex[i+1] = vec3(x6, x6, x6);
vertex[i+2] = vec3(x7, x7, x7);
i+=3;
```

- Inefficient and unstructured
 - For example: Consider moving a vertex to a new location
 - Must search for all occurrences

Inward and Outward Facing Polygons

- The order $\{v_1, v_6, v_7\}$ and $\{v_6, v_7, v_1\}$ are equivalent in that the same polygon will be rendered by OpenGL but the order $\{v_1, v_7, v_6\}$ is different
- The first two describe outwardly facing polygons
- Use the *right-hand rule* = counter-clockwise encirclement of outward-pointing normal
- OpenGL can treat inward and outward facing polygons differently

Geometry vs Topology

- Generally it is a good idea to look for data structures that separate the geometry from the topology
 - Geometry: locations of the vertices
 - Topology: organization of the vertices and edges
 - Example: a polygon is an ordered list of vertices with an edge connecting successive pairs of vertices and the last to the first
 - Topology holds even if geometry changes

Vertex Lists

- Put the geometry in an array
- Use pointers from the vertices into this array

Introduce a polygon list

Shared Edges

 Vertex lists will draw filled polygons correctly but if we draw the polygon by its edges, shared edges are drawn twice

Better Alternative: Can store mesh by edge list

Edge List

Note: polygons are not represented

Modeling a Cube

Model a color cube for the rotating cube program

Define global arrays for vertices and colors

Drawing a triangle from a list of indices

Draw a triangle from a list of indices into the array vertices and assign a color to each index

```
void triangle(int a, int b, int c, int d)
{
   vcolors[i] = colors[d];
   position[i] = vertices[a];
   vcolors[i+1] = colors[d]);
   position[i+1] = vertices[b];
   vcolors[i+2] = colors[d];
   position[i+2] = vertices[c];
   i+=3;
}
```

Draw cube from faces

```
void colorcube()
{
    quad(0,3,2,1);
    quad(2,3,7,6);
    quad(0,4,7,3);
    quad(1,2,6,5);
    quad(4,5,6,7);
    quad(0,1,5,4);
}
```


Note that vertices are ordered so that we obtain correct outward facing normals

Efficiency

 The weakness of this approach is that we are building the model in the application and must do many function calls to draw the cube

Vertex Arrays

- OpenGL provides a facility called vertex arrays that allows us to store array data in the implementation
- Vertex arrays can be used for any attributes including
 - Vertices
 - Colors
 - Color indices
 - Normals
 - Texture coordinates
 - Edge flags

Mapping indices to faces

So instead, we can form an array of face indices

```
GLubyte cubeIndices[24] = \{0,3,2,1,2,3,7,6,4,7,3,1,2,6,5,4,5,6,7,0,1,5,4\};
```

- Each successive four indices describe a face of the cube
 - But we will not pursue efficiency in our example

Rotating Cube

Full example

- Model Colored Cube
- Use 3 button mouse to change direction of rotation
- Use idle function to increment angle of rotation

Cube Vertices

```
// Vertices of a unit cube centered at
  origin, sides aligned with axes
point4 vertices[8] = {
   point4( -0.5, -0.5, 0.5, 1.0 ),
   point4( -0.5, 0.5, 0.5, 1.0 ),
   point4( 0.5, 0.5, 0.5, 1.0),
   point4( 0.5, -0.5, 0.5, 1.0),
   point4(-0.5, -0.5, -0.5, 1.0),
   point4( -0.5, 0.5, -0.5, 1.0 ),
   point4( 0.5, 0.5, -0.5, 1.0),
   point4( 0.5, -0.5, -0.5, 1.0)
```

Colors

```
// RGBA colors
color4 vertex_colors[8] = {
   color4( 0.0, 0.0, 0.0, 1.0 ), // black
   color4( 1.0, 0.0, 0.0, 1.0 ), // red
   color4( 1.0, 1.0, 0.0, 1.0 ), // yellow
   color4( 0.0, 1.0, 0.0, 1.0 ), // green
   color4( 0.0, 0.0, 1.0, 1.0 ), // blue
   color4( 1.0, 0.0, 1.0, 1.0 ), // magenta
   color4( 1.0, 1.0, 1.0, 1.0 ), // white
   color4(0.0, 1.0, 1.0, 1.0) // cyan
};
```

Quad Function

```
// quad generates two triangles for each face
// and assigns colors to the vertices
int Index = 0;
void quad( int a, int b, int c, int d )
      colors[Index] = vertex_colors[a];
      points[Index] = vertices[a]; Index++;
      colors[Index] = vertex_colors[b];
      points[Index] = vertices[b]; Index++;
      colors[Index] = vertex_colors[c];
      points[Index] = vertices[c]; Index++;
      colors[Index] = vertex_colors[a];
      points[Index] = vertices[a]; Index++;
      colors[Index] = vertex colors[c];
      points[Index] = vertices[c]; Index++;
      colors[Index] = vertex_colors[d];
      points[Index] = vertices[d]; Index++;
```

Color Cube

```
// generate 12 triangles: 36 vertices
// and 36 colors
void colorcube()
   quad(1,0,3,2);
   quad(2,3,7,6);
   quad(3,0,4,7);
   quad(6,5,1,2);
   quad(4, 5, 6, 7);
   quad(5, 4, 0, 1);
```

```
// Array of rotation angles (in degrees) for each
// coordinate axis
enum { Xaxis = 0, Yaxis = 1, Zaxis = 2, NumAxes = 3 };
int Axis = Xaxis;
GLfloat Theta[NumAxes] = { 0.0, 0.0, 0.0 };

GLuint theta;
// The location of the "theta" shader uniform variable
```

Initialization I

```
void
init()
{
    colorcube();

    // Create a vertex array object
    GLuint vao;
    glGenVertexArrays ( 1, &vao );
    glBindVertexArray ( vao );
```

Initialization II

```
// Create and initialize a buffer object
  GLuint buffer:
  glGenBuffers( 1, &buffer );
  glBindBuffer( GL ARRAY BUFFER, buffer );
  glBufferData( GL_ARRAY_BUFFER, sizeof(points) +
      sizeof(colors), NULL, GL STATIC DRAW );
  glBufferSubData(GL ARRAY BUFFER, 0,
       sizeof(points), points );
  glBufferSubData(GL_ARRAY_BUFFER, sizeof(points),
       sizeof(colors), colors );
// Load shaders and use the resulting shader program
  GLuint program = InitShader( "vshader36.glsl",
       "fshader36.glsl" );
  glUseProgram( program );
```

Initialization III

```
// set up vertex arrays
  GLuint vPosition = glGetAttribLocation( program,
      "vPosition" );
  glEnableVertexAttribArray( vPosition );
  glVertexAttribPointer( vPosition, 4, GL_FLOAT,
     GL_FALSE, 0, BUFFER_OFFSET(0) );
  GLuint vColor = glGetAttribLocation( program,
      "vColor" );
  glEnableVertexAttribArray( vColor );
  glVertexAttribPointer( vColor, 4, GL_FLOAT,
     GL FALSE, 0, BUFFER OFFSET(sizeof(points)) );
  theta = glGetUniformLocation( program, "theta"
  glEnable( GL DEPTH TEST );
  glClearColor( 1.0, 1.0, 1.0, 1.0);
```

Display Callback

Mouse Callback

```
void mouse( int button, int state, int x, int y )
{
   if ( state == GLUT_DOWN ) {
      switch( button ) {
      case GLUT_LEFT_BUTTON: Axis = Xaxis; break;
      case GLUT_MIDDLE_BUTTON: Axis = Yaxis; break;
      case GLUT_RIGHT_BUTTON: Axis = Zaxis; break;
   }
}
```

Idle Callback

```
void
idle( void )
    Theta[Axis] += 0.01;
    if ( Theta[Axis] > 360.0 )
        Theta[Axis] -= 360.0;
    glutPostRedisplay();
```

Vertex Shader

```
#version 150
in vec4 vPosition;
in vec4 vColor;
out vec4 color;
uniform vec3 theta;
void main()
   // Convert degrees to radians and compute the sines and cosines of theta for each of
   // the three axes in one computation.
   vec3 angles = radians( theta );
   vec3 c = cos(angles);
   vec3 s = sin(angles);
   //these matrices are column-major, and the rotation is with -theta
   mat4 rx = mat4(1.0, 0.0, 0.0, 0.0,
                                                               \sin(-\theta) = -\sin(\theta)
\mathbf{R}_{\mathbf{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
                            0.0, c.x, s.x, 0.0,
                            0.0, -s.x, c.x, 0.0,
                            0.0, 0.0, 0.0, 1.0);
```

Vertex Shader

// Workaround for bug in ATI driver ry[1][0] = 0.0; ry[1][1] = 1.0;

// Workaround for bug in ATI driver rz[2][2] = 1.0;

$$\sin(-\theta) = -\sin(\theta) \\
\mathbf{R}_{\mathbf{Z}}(\theta) = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

Fragment Shader

```
#version 150

in vec4 color;
out vec4 fColor;

void main()
{
   fColor = color;
}
```