

## **Mid Semester Examination**

| Branch              | Date                    | Sem.  | Roll No. /<br>Exam Seat No. |                                                               | Subject |               | Student's<br>Signature |                  | Junior Supervisor's Name and<br>Sign |                                                        |
|---------------------|-------------------------|-------|-----------------------------|---------------------------------------------------------------|---------|---------------|------------------------|------------------|--------------------------------------|--------------------------------------------------------|
| CMPN                | 19/03/2                 | VII)  |                             |                                                               | DL      | _             |                        |                  |                                      |                                                        |
| Question<br>No.     | A                       | В     | С                           | D                                                             | Е       | F             | G                      | Н                | Total                                | Total out of (20 /30 / 40)                             |
| 1                   |                         |       |                             |                                                               |         |               |                        |                  |                                      |                                                        |
| 2                   |                         |       |                             |                                                               |         |               |                        |                  |                                      |                                                        |
| 3                   |                         |       |                             |                                                               |         |               |                        |                  |                                      |                                                        |
| 4                   |                         |       |                             |                                                               |         |               |                        |                  |                                      |                                                        |
| Examiners Signature |                         |       |                             | Student's Sign<br>(After receiving the assessed answer sheet) |         |               |                        |                  |                                      |                                                        |
|                     |                         | ege c | e visace                    | che                                                           | L ge    | the           | y er                   | ros              | the per to                           | higher<br>the slop                                     |
| B)                  | Ea<br>Det<br>Date<br>Do | At of | ting<br>equi                | ires                                                          | The les | s<br>s<br>ula | elpan<br>an<br>lex     | ved<br>our<br>ti | gener<br>fof<br>ime comme            | dueing<br>ratisation<br>training<br>ompared<br>schols. |
|                     |                         |       |                             |                                                               |         |               |                        |                  |                                      | method ing of                                          |

outputs are ignored or dropped at random, reducing the overlithing problems in deep learning. D) The accuracy of predictions in supervised deep leaving I madel's depends to a large extent on the amount of data available to the model during training and the level of diversity in that E yes, gradient descent can escape sandle points: gradient descent updates the parameters in the direction opposite to the gradient of the loss Lunchion to minimize it F) A high learning rate in gradient descart can cause overshooting, leading to the minimum of the loss function. Momentum in optimization refers to the technique of incorporating past gradients to accelerate convergence and smooth out oscillations. It introduces a velocity term that accumulates a gradients over iterations, allowing for faster programs through flat regions and overcoming saddle point The two steps of the goodient descent optimization are of the los Suction with supert to the parameter

| 2. Update parameters: - Update the parameters in the opposite direction of the gradient to minimize the loss hunchion.                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Or A) Robertness to outliers  (1) Li regularization (Lasso) is less robust to outliers compared to L2 regularization (Ridge) due to its terdency to shrink coefficients to dono which can make the model overly sensitive to individual data points  1) L2 regularization spready the penalty more everly across all weights, making it more robust to outliers |
| Penalty Term  Sum of absolute values of weights  Sum of Squared magnitudes of  weights                                                                                                                                                                                                                                                                          |
| Effect  I Encourage sparcity, some weight  become dero  (4 Encourages Smaller weights, prevots  overfitting                                                                                                                                                                                                                                                     |
| Computational Efficiency  12 regularization is computationally more efficient to optimize compared to  14 originarization especially for large scale clatasete, due to its smooth and convex penalty term.                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                 |

|   | Feature Correlation                                                                                                                                                                   |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Feature Correlation  Le regularization tends to select one features, while L2 regularization spreads  the penalty equally among them allowing correlated feature to share importance. |
|   | De Live while 12 regularization corrects                                                                                                                                              |
|   | teatures, while among them                                                                                                                                                            |
|   | the penalty equation is shown                                                                                                                                                         |
|   | allowing Corociated Feature 20 stare                                                                                                                                                  |
|   | impostance.                                                                                                                                                                           |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
| - |                                                                                                                                                                                       |
|   | <del></del>                                                                                                                                                                           |
|   |                                                                                                                                                                                       |
| _ |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |
|   |                                                                                                                                                                                       |

| 4-1         | 1, 2, 3, 4, 5) $ne = [2, 4, 6, 8, 10]$ $= 0.5 \cdot 8 \cdot 10 = 0.5  7 = 0.1$ $= 0.5 \cdot 10.5 \times [1, 2, 13, 4, 15]$ $= [1.0, 1.5, 2.0, 2.5, 3.0]$ |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Co          | mpute the loss for each data point<br>Lossi = 14 true 4 proed 1 + 0 x (1 wol +1 wil)                                                                     |
| Sim         | $1055 = 12 (10) 1 + 0.1 \times (10.51 + 10.51)$ $= 0.5 + (1.0 \times 1.0) = 0.6$ $1053 = 2.6$ $1053 = 4.1$ $1055 = 5.6$ $1055 = 7.1$                     |
| Fin<br>13 t | elly total loss with LI regularization<br>Le sum of these individual Losses<br>= 0.6 + 2.6 + 4.1 + 5.6 + 7.1<br>= 20.0                                   |
| So<br>Sx    | te gives data is 20:0                                                                                                                                    |
|             |                                                                                                                                                          |
|             |                                                                                                                                                          |

| 1. Initialization: Initialize model parameters                              |
|-----------------------------------------------------------------------------|
| O randomly                                                                  |
| a Herative potimization                                                     |
| 2. Iterative optimization<br>+ Shuffle training data to introduce           |
| randomness                                                                  |
| · For each data point (M;, y;) or                                           |
| mini-butch                                                                  |
| of the loss function with respect                                           |
| of the loss function with respect                                           |
| to the parameters                                                           |
| · Update parametes.                                                         |
| 0-0-175(0; 1141),                                                           |
| where m is the learning rate                                                |
| - Repeat until ell date points                                              |
| are used.                                                                   |
|                                                                             |
| 3. Termination: Repeat ontil convergence<br>Criteria are met or for a fixed |
| criteria are met or for a fixed                                             |
| number of epochs                                                            |
|                                                                             |
| SGD updates parameters more frequently benefiting from stochasticity to     |
| benediting from stochasticity to                                            |
| escape local minima and aethre                                              |
| fuster convergence making it efficient<br>for larger detaset                |
| 108 larger Derbet                                                           |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |

0301 given data n= [3,4] and y= [4,5] and w = 0.5 we have our gral to minimize the msE (Loss Runchian) 1= 1 (y pred -y)2 ypred = 05x3=15 gt = aldw = 2 x (y pred -4) x x = -15 9+2=(-15)2 =225 m1= 019 x 0+ (1-019) x=15=-15 V1=0.999 × 0+(1-0.999) × 225=0.225  $\frac{n}{m} = -15$ Whi = Ot - [d, m] 0-5-0/1 /-15/ 0.5 - C 0.1 x 15 05 m - (-01) = 0.5+0.1=0.6 W++1=0.6

| 4 prod = 0.5 x4 = 4 pred = 0.6 x 4 = 2.4                                                               |
|--------------------------------------------------------------------------------------------------------|
| gt = d4-db = 2 * (2.4-5) ×4 =-20.8                                                                     |
| $g+2=(-20.8)^2=432.64$                                                                                 |
| $m_1 = 0.9 \times -15 + (1-0.9) \times (-20.8) = 11.42$                                                |
| $V_{1} = 0.999 \times 225 + (1-0.999) \times (432.64)$ $= 224.775 + (0.001 \times 3432.64)$ $= 225.20$ |
| $\frac{n_2}{1-0.9} = \frac{11.42}{1-0.9}$ $\frac{1-0.999}{1-0.999}$                                    |
| 0.6 - (0.1<br>1225200 + 108) ×11415                                                                    |
| 0.6-0.02                                                                                               |
| = 0.58                                                                                                 |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |

ass) AJ(W) = 1 [2+ (0.5 x[1-2]) x1 + 2(0.5 (24)) x2 +2(05(3-6)x3)  $= \frac{1}{3} \left( 2 \times (-1.5) \times 1 + 2 \times (-3) \times 2 + 2 \times (-5.5) \times 3 \right)$  $=\frac{1}{2}\left[-3+(-12)+(-33)\right]$  $=\frac{1}{3}\times\left(-\frac{1}{8}\right)=-1$ G=0 we have G= 0+(-16)2=256 update the w wing Adagrad update w= w - d x 7 J(0) 05-011 x (-16) 1256+108 = 0.2 to. = 0.6 After one itention using the Adagrad
the update weight wo or 6.