What and why a discrete computer image?

Movie courtesy "Sleepers" by W. Allen

- Classical image processing is based on discrete mathematics (most of it)
 - Sums instead of integrals

 Re-definition of classical continuous operators such as gradients, Laplacian, etc

The PDEs approach

- Images are continuous objects
- Image processing is the results of iteration of infinitesimal operations: PDEs
- Differential geometry on images
- Computer image processing is based on numerical analysis

Why? Why Now? Who?

• Why now:

- Computers!!!
- People

Why:

- New concepts
- Accuracy
- Formal analysis (existence, uniqueness, etc)

Consequences:

- Many state of the art results
- · New tools in the bookshelf

Planar Curves

•
$$C(p)=\{x(p),y(p)\}, p \in [0,1]$$
 $C(0)=(1)$ $C(0.1)$ $C(0.95)$ $C(0.7)$ $C(0.7)$ $C(0.7)$

Planar Curves

•
$$C(p)=\{x(p),y(p)\}, p \in [0,1]$$

Planar Curves

Linear Transformations

Equi-Affine: $\{\widetilde{x},\widetilde{y}\}^T = A\{x,y\}^T + \overline{b}$, $\det(A) = 1$.

E PURA TRING

Euclidean

• Euclidean invariant signature $\{s, \kappa(s)\}$

• Euclidean invariant signature $\{s, K(s)\}$

• Euclidean invariant signature $\{s, \kappa(s)\}$

• Euclidean invariant signature

$$\{s, \kappa(s)\}$$

• Euclidean invariant signature $\{K(S), K_s(S)\}$

~Affine

~Affine

Image transformation

$$I_2(x, y) = I_1(T_1(x, y), T_2(x, y))$$

$$\begin{pmatrix} T_1(x,y) \\ T_2(x,y) \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

Equi-affine:

$$\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = 1$$

(P) (Invariant arclength should be

1. Re-parameterization invariant

$$w = \int F(C, C_p, C_{pp},...)dp = \int F(C, C_r, C_{rr},...)dr$$

2. Invariant under the group of transformations

Invariant arclength should be

1. Re-parameterization invariant

Geometric measure

$$w = \int F(C, C_p, C_{pp}, ...) dp = \int F(C, C_r, C_{rr}, ...) dr$$

2. Invariant under the group of transformations

Euclidean arclength

Length is preserved, thus

$$ds = \sqrt{dx^2 + dy^2} = \frac{dp}{dp} \sqrt{dx^2 + dy^2} = dp \sqrt{\left(\frac{dx}{dp}\right)^2 + \left(\frac{dy}{dp}\right)^2} = |C_p| dp$$

$$s = \int |C_p| dp$$

$$|C_s| = 1$$

$$|C_p| dp = \int_0^1 \langle C_p, C_p \rangle^{\frac{1}{2}} dp = \int_0^L ds$$
Length $L = \int_0^1 |C_p| dp = \int_0^1 \langle C_p, C_p \rangle^{\frac{1}{2}} dp = \int_0^L ds$

Equi-affine arclength

Area is preserved, thus

$$dv = \kappa^{\frac{1}{3}} ds$$

Equi-affine arclength

Area is preserved, thus

re-parameterization invariance

$$(C_v, C_{vv}) = 1$$

$$v = \int (C_p, C_{pp})^{\frac{1}{3}} dp$$

$$v = \int (C_s, C_{ss})^{\frac{1}{3}} ds = \int \kappa^{\frac{1}{3}} ds$$

<(s,(s)=| Equi-affine curvature

$$(C_{v}, C_{vv}) = 1 \implies \frac{d}{dv}(C_{v}, C_{vv}) = 0$$

$$\Rightarrow (C_{vv}, C_{vv}) + (C_{v}, C_{vvv}) = 0$$

$$\Rightarrow (C_{v}, C_{vvv}) = 0$$

$$\Rightarrow C_{v} \| C_{vvv} \implies C_{vvv} = \mu C_{vvv}$$

u is the affine invariant curvature

Surfaces

Topology (Klein Bottle)

Surface

$$S(u, v) = \{x(u, v), y(u, v), z(u, v)\}$$

• Total area $A = \iint |S_u \times S_v| dudv$

Surface

$$S(u,v) = \big\{x(u,v),y(u,v),z(u,v)\big\}$$

Example: Surface as graph of function

A surface, S:R² → R³

$$S(u,v) = \left\{ x = u, y = v, z(u,v) \right\}$$

Principal

Normal Curvature

$$\kappa_n = \left\langle C_{ss}, \vec{N} \right\rangle$$

Principle Curvatures

$$\kappa_1 = \max_{\theta}(\kappa)$$

$$\kappa_2 = \min_{\theta}(\kappa)$$

Mean Curvature
$$H = \frac{K_1 + K_2}{2}$$

Gaussian Curvature $K = \kappa_1 \kappa_2$

$$K = \kappa_1 \kappa_2$$

Normal Curvature

$$\kappa_n = \left\langle C_{ss}, \vec{N} \right\rangle$$

Gauss

Principal

Principle Curvatures

$$\kappa_1 = \max_{\theta}(\kappa)$$

$$K_2 = \min_{\theta}(K)$$

Mean Curvature
$$H = \frac{\kappa_1 + \kappa_2}{2}$$

Gaussian Curvature $K = \kappa_1 \kappa_2$

$$K = \kappa_1 \kappa_2$$

Important property

 Tangential components do not affect the geometry of an evolving curve

$$C_{t} = \vec{V} \Leftrightarrow C_{t} = \langle \vec{V}, \vec{n} \rangle \vec{n}$$

$$C_{t} = \mathcal{L}$$

Curvature flow

Euclidean geometric heat equation

$$C_t = \kappa \vec{n}$$

$$C_t = C_{ss}$$
 where $C_{ss} = \kappa \vec{n}$

Curvature flow $C_t = \kappa \vec{n}$

Affine heat equation $C_{\xi} = C_{vv}$

• Special (equi-)affine heat flow $C_t = \kappa^{\frac{1}{3}}\vec{n}$

$$C_t = \langle C_{vv}, \vec{n} \rangle \vec{n}$$
 where $\langle C_{vv}, \vec{n} \rangle = \kappa^{\frac{1}{3}}$

Given any simple planar curve

First becomes convex

Vanish at an elliptical point

Constant flow

- Offset curves
- Equal-height contours of the distance transform
- Envelope of all disks of equal radius centered along the curve (Huygens principle)

Constant flow

$$C_t = \vec{n}$$

Offset curves

So far we defined

Constant flow
Curvature flow
Equi-affine flow

$$C_t = \vec{n}$$

$$C_t = \kappa \vec{n}$$

$$C_{t} = \kappa^{\frac{1}{3}} \vec{n}$$

$$C_t = V\vec{n}$$

$$\begin{split} \frac{\partial}{\partial t} L &= \frac{\partial}{\partial t} \oint \left\langle C_p, C_p \right\rangle^{\frac{1}{2}} dp = 2 \oint \left\langle \frac{\partial}{\partial t} C_p, C_p \right\rangle dp = \ldots = -\int_0^L \kappa V ds \\ \frac{\partial}{\partial t} A &= \frac{1}{2} \frac{\partial}{\partial t} \oint \left(C, C_p \right) dp = \oint \left(\frac{\partial}{\partial t} C, C_p \right) dp + \oint \left(C, \frac{\partial}{\partial t} C_p \right) dp = \ldots = -\int_0^L V ds \\ \frac{\partial}{\partial t} \kappa &= \frac{\partial}{\partial t} \left(\frac{\left(C_p, C_{pp} \right)}{\left\langle C_p, C_p \right\rangle^{\frac{3}{2}}} \right) = \ldots = V_{ss} + \kappa^2 V \end{split}$$

$$Length \qquad L_t = -\int_0^L \kappa V ds$$

$$A_{t} = \int_{0}^{L} V ds$$

$$K_{t} = V_{ss} + \kappa^{2} V$$

Constant flow (V = 1)

Length
$$L_i = -\int_0^L \kappa V ds = -\int_0^L \kappa ds = -2\pi$$

Area
$$A_{t} = -\int_{0}^{L} V ds = -\int_{0}^{L} ds = -L$$

Curvature
$$\kappa_t = V_{ss} + \kappa^2 V = \kappa^2$$

The curve vanishes at

Riccati eq.

Singularity (`shock') at

$$t = \frac{L(0)}{2\pi}$$

$$\kappa(p,t) = \frac{\kappa(p,0)}{1-t\kappa(p,0)}$$

$$t = \rho(p,0)$$

Curvature flow $(V = \kappa)$

$$L_{t} = -\int_{0}^{L} \kappa V ds = -\int_{0}^{L} \kappa^{2} ds$$

$$A_t = -\int_0^L V ds = -\int_0^L \kappa ds = -2\pi \dots$$

Curvature
$$\kappa_t = V_{ss} + \kappa^2 V = \kappa_{ss} + \kappa^3$$

The curve vanishes at

$$t = \frac{A(0)}{2\pi}$$

Equi-Affine flow $(V = \kappa^{1/3})$

Length

$$L_{t} = -\int_{0}^{L} \kappa V ds = -\int_{0}^{L} \kappa^{4/9} ds$$

<

Area

$$A_{t} = -\int_{0}^{L} V ds = -\int_{0}^{L} \kappa^{\frac{1}{3}} ds$$

Curvature

$$K_t = V_{ss} + \kappa^2 V = \frac{1}{3} \kappa^{-\frac{2}{3}} K_{ss} - \frac{2}{9} \kappa^{-\frac{5}{3}} K_s^2 + \kappa^{\frac{7}{3}}$$

Geodesic active contours

$$C_{t} = (g(x, y)\kappa - \langle \nabla g(x, y), \vec{n} \rangle) \vec{n}$$

gn/ VI

Geodesic active contours

$$C_{t} = \left(g(x, y)\kappa - \left\langle \nabla g(x, y), \vec{n} \right\rangle \right) \vec{n}$$

gr / VI

Surface evolution...

Implicit representation

Consider a closed planar curve $C(p): \mathbf{S}^1 \to \mathbf{R}^2$

The geometric trace of the curve can be alternatively represented implicitly as $C = \{(x, y) | \phi(x, y) = 0\}$

Properties of level sets

$$\vec{N} = -\frac{\nabla \phi}{|\nabla \phi|} \qquad \left(\vec{T} = \frac{\overline{\nabla} \phi}{|\nabla \phi|}\right)$$

Proof. Along the level sets we have zero change, that is $\phi_s = 0$, but by the chain rule

$$\phi_s(x, y) = \phi_x x_s + \phi_y y_s = \langle \nabla \phi, \vec{T} \rangle$$

So,

$$\left\langle \frac{\nabla \phi}{|\nabla \phi|}, \vec{T} \right\rangle = 0 \Rightarrow \frac{\nabla \phi}{|\nabla \phi|} \perp \vec{T} \Rightarrow \vec{N} = -\frac{\nabla \phi}{|\nabla \phi|}$$

Properties of level sets

The level set curvature

Gs=
$$k \tilde{\Lambda}$$
 $\kappa = \operatorname{div}\left(\frac{\nabla \phi}{|\nabla \phi|}\right) \int_{-\infty}^{\infty} V\left(\frac{\partial^{2} \beta}{\partial x^{2}}\right) \int_{-\infty}^{\infty} V\left(\frac{\partial^{2} \beta$

Proof: zero change along the level sets, $\phi_{ss} = 0$, also

$$\phi_{ss}(x,y) = \frac{d}{ds} (\phi_x x_s + \phi_y y_s) = \frac{d}{ds} \langle \nabla \phi, \vec{T} \rangle = \left\langle \frac{d}{ds} \nabla \phi, \vec{T} \right\rangle + \left\langle \nabla \phi, \kappa \vec{N} \right\rangle$$

$$\kappa \left\langle \nabla \varphi, \frac{\nabla \varphi}{|\nabla \varphi|} \right\rangle = \kappa |\nabla \varphi| = -\left\langle [\varphi_{xx} x_s + \varphi_{xy} y_s, \varphi_{xy} x_s + \varphi_{yy} y_s], \frac{\overline{\nabla} \varphi}{|\nabla \varphi|} \right\rangle$$

Properties of level sets

The level set curvature

Gs=
$$k \tilde{\Lambda}$$
 $\kappa = \operatorname{div}\left(\frac{\nabla \phi}{|\nabla \phi|}\right) \operatorname{div}\left(\frac{\partial \beta}{\partial \nabla \phi}\right)$
 $= \frac{\partial \gamma}{\partial \gamma} + \frac{\partial \gamma}{\partial \gamma}$

Proof: zero change along the level sets, $\phi_{ss} = 0$, also

$$\phi_{ss}(x,y) = \frac{d}{ds} (\phi_x x_s + \phi_y y_s) = \frac{d}{ds} \langle \nabla \phi, \vec{T} \rangle = \left\langle \frac{d}{ds} \nabla \phi, \vec{T} \right\rangle + \left\langle \nabla \phi, \kappa \vec{N} \right\rangle$$

$$\kappa \left\langle \nabla \varphi, \frac{\nabla \varphi}{|\nabla \varphi|} \right\rangle = \kappa |\nabla \varphi| = -\left\langle [\varphi_{xx} x_s + \varphi_{xy} y_s, \varphi_{xy} x_s + \varphi_{yy} y_s], \frac{\overline{\nabla} \varphi}{|\nabla \varphi|} \right\rangle$$

(Osher-Sethian)

$$\phi(x,y) \colon \mathbf{R}^{2} \to \mathbf{R} \qquad C = \{(x,y) \colon \phi(x,y) = 0\}$$

$$\frac{dC}{dt} = V\vec{N} \iff \frac{d\phi}{dt} = V |\nabla\phi|$$

$$0 = \frac{\partial\phi(x,y;t)}{\partial t} = \phi_{x}x_{t} + \phi_{y}y_{t} + \phi_{t} \qquad C(t) \text{ level set}$$

$$-\phi_{t} = \phi_{x}x_{t} + \phi_{y}y_{t} = \langle \nabla\phi, C_{t} \rangle = \langle \nabla\phi, V\vec{N} \rangle = V \langle \nabla\phi, \vec{N} \rangle$$

$$\vec{N} = -\frac{\nabla\phi}{|\nabla\phi|} \qquad -V \langle \nabla\phi, \vec{N} \rangle = V \langle \nabla\phi, \frac{\nabla\phi}{|\nabla\phi|} \rangle = V |\nabla\phi|$$

$$\phi_t = V | \nabla \phi |$$

- Handles changes in topology
- Numeric grid points never collide or drift apart.
- Natural philosophy for dealing with gray level images.

- Handles changes in topology
- Numeric grid points never collide or drift apart.
- Natural philosophy for dealing with gray level images.

 Numeric grid points never collide or drift apart.

Natural philosophy for dealing with gray level images.

Calculus of Variations

Generalization of Calculus that seeks to find the path, curve, surface, etc., for which a given Functional has a minimum or maximum.

Goal: find extrema values of integrals of the form

$$\int F(u,u_x)dx$$

It has an extremum only if the Euler-Lagrange Differential Equation is satisfied,

$$\left(\frac{\partial}{\partial u} - \frac{d}{dx}\frac{\partial}{\partial u_x}\right)F(u, u_x) = 0$$

Calculus of Variations

Example: Find the shape of the curve $\{x,u(x)\}$ with

shortest length:

given u(x0), u(x1)

Solution: a differential equation that u(x) must

$$\left(\frac{\partial}{\partial u} - \frac{d}{dx} \frac{\partial}{\partial u_x}\right) F(u, u_x) = 0$$

$$\frac{u_{xx}}{\left(1 + u_x^2\right)^{3/2}} = 0 \implies u_x = a \implies u(x) = ax + b$$

Calculus of Variations

Example: Find the shape of the curve $\{x,u(x)\}$ with

shortest length:

given u(x0), u(x1)

Solution: a differential equation that u(x) must

$$\left(\frac{\partial}{\partial u} - \frac{d}{dx} \frac{\partial}{\partial u_x}\right) F(u, u_x) = 0$$

$$\frac{u_{xx}}{\left(1 + u_x^2\right)^{3/2}} = 0 \implies u_x = a \implies u(x) = ax + b$$

Extrema points in calculus

$$\forall \eta: \lim_{\varepsilon \to 0} \left(\frac{df(x + \varepsilon \eta)}{d\varepsilon} \right) = 0 \Leftrightarrow \forall \eta: f_x(x) \eta = 0 \Leftrightarrow f_x(x) = 0$$

Gradient descent process
$$x_t = -f_x$$

Extrema points in calculus

$$\forall \eta : \lim_{\varepsilon \to 0} \left(\frac{df(x + \varepsilon \eta)}{d\varepsilon} \right) = 0 \Leftrightarrow \forall \eta : f_x(x) \eta = 0 \Leftrightarrow f_x(x) = 0$$
Gradient descent process $x_t = -f_x$

$$x_t = -f_x$$

Extrema points in calculus

$$\forall \eta : \lim_{\varepsilon \to 0} \left(\frac{df(x + \varepsilon \eta)}{d\varepsilon} \right) = 0 \Leftrightarrow \forall \eta : f_x(x) \eta = 0 \Leftrightarrow f_x(x) = 0$$

Gradient descent process
$$x_t = -f_x$$

$$f(x)$$

$$x_0 \quad x_1 = x_0 - dt f_x(x_0)$$

Calculus of variations

$$E(u(x)) = \int F(u, u_x) dx$$

$$\widetilde{u}(x) = u(x) + \varepsilon \eta(x)$$

$$\forall \eta(x) : \lim_{\varepsilon \to 0} \left(\frac{d}{d\varepsilon} \int F(\widetilde{u}, \widetilde{u}_x) dx \right) = 0$$

$$\frac{\delta E(u)}{\delta u} = \left(\frac{\partial}{\partial u} - \frac{d}{dx} \frac{\partial}{\partial u_x}\right) F(u, u_x)$$

Gradient descent process

$$u_t = -\frac{\delta E(u)}{\delta u}$$

Calculus of variations

$$E(u(x)) = \int F(u, u_x) dx$$

$$\widetilde{u}(x) = u(x) + \varepsilon \eta(x)$$

$$\forall \eta(x) : \lim_{\varepsilon \to 0} \left(\frac{d}{d\varepsilon} \int F(\widetilde{u}, \widetilde{u}_x) dx \right) = 0$$

$$\frac{\delta E(u)}{\delta u} = \left(\frac{\partial}{\partial u} - \frac{d}{dx} \frac{\partial}{\partial u_x}\right) F(u, u_x)$$

Gradient descent process

$$u_{t} = -\frac{\delta E(u)}{\delta u}$$

Conclusions

Gradient descent process

Calculus $\underset{x}{\operatorname{arg\,min}} f(x) \implies x_t = -f_x$ Calculus of variations $\underset{u(x)}{\operatorname{arg\,min}} \int_{F(u,u_x)dx} f(u,u_x) dx \implies u_t = -f_x$

E(u)

Euler-Lagrange $\delta E(u)$

Anisotropic diffusion Isotropic vs. Anisotropic Smoothing

Isotropic smoothing

Anisotropic smoothing

Isotropic (Heat equation)

Anisotropic

$$\frac{\partial I(x,y,t)}{\partial t} = \Delta I$$

$$\frac{\partial I(x,y,t)}{\partial t} = div(g(|\nabla I|)\nabla I)$$

$\min_{I \int_{\Omega} \rho(|\nabla I|) d\Omega$

$$P(a) = a^2$$

$$|\nabla I|^2$$

$$\frac{\partial I(x,y,t)}{\partial t} = div \frac{\nabla I}{\nabla I}$$

$$\beta(\alpha) = \alpha = 10^{1} = 1 \text{ Total Variation}$$

$$\int |\nabla I| = 1 \text{ Total Variation}$$

Edge Detection

Edge Detection:

The process of labeling the locations in the image where the

gray level's "rate of change" is high.

 OUTPUT: "edgels" locations, direction, strength

Edge Integration:

- The process of combining "local" and perhaps sparse and non-contiguous "edgel"-data into meaningful, long edge curves (or closed contours) for segmentation
 - OUTPUT: edges/curves consistent with the local data

Edge Detection

Edge Detection:

The process of labeling the locations in the image where the

gray level's "rate of change" is high.

 OUTPUT: "edgels" locations, direction, strength

Edge Integration:

- The process of combining "local" and perhaps sparse and non-contiguous "edgel"-data into meaningful, long edge curves (or closed contours) for segmentation
 - OUTPUT: edges/curves consistent with the local data

Active Contours

Segmentation

Potential Functions I(x,y)I(x)Image g(x,y) Edges g(x) $1+|\nabla(G_{\sigma}*I)|^2$

Geodesic Active Contours in 1D

Geodesic active contours are reparameterization invariant

$$\frac{dC}{dt} = \left(g(C)\kappa - \left\langle \nabla g(C), \vec{N} \right\rangle \right) \vec{N}$$

Geodesic Active Contours in 2D

$$\frac{dC}{dt} = \left(g(C)\kappa - \left\langle \nabla g(C), \vec{N} \right\rangle \right) \vec{N}$$

Geodesic Active Contours in 2D

$$\frac{dC}{dt} = \left(g(C)\kappa - \left\langle \nabla g(C), \vec{N} \right\rangle \right) \vec{N}$$

Image courtesy of Goldenberg Kimmel Rivlin Rudzsky,

Contrast Enhancement

- Contrast enhancement via image deformations
 - Approach: Histogram modification

$$\int \frac{\partial I(x,y)}{\partial t} = I(x,y) - (\#pixels \ of \ value \ge I(x,y))$$

Contrast Enhancement

- Contrast enhancement via image deformations
 - Approach: Histogram modification

$$\frac{\partial I(x,y)}{\partial I(x,y)} = I(x,y) - (\# pixels of value \ge I(x,y))$$

$$U(I) = \frac{1}{2} \int [I(\vec{x}) - 1/2]^2 d\vec{x} - \frac{1}{4} \iint [I(\vec{x}) - I(\vec{z})] d\vec{x} d\vec{z}$$

Images courtesy JDE and IEEE