on fait un DFS ~~ G(n)

on calcule les degrées et on donne les sommets de degrée 1: (0 6(2m)

(m) (d

(on peut aussi procéder à un tri à l'aide d'un bucket don) Q2. (a) Gn fait de la programmation dynamique:

mwore G: min { poids (x) + 2 mwoe [y] , = mwoc [y] }.

(b) On fait un 1er DFS pour trouver le sommet ele plus loin de bommet choixi arbitrairement. Ensuite, avec un 2^{md} DFS, on pout ou x et on sugarde le sommet y le plus boin de x.

diam (T) = profondeur de y dans le 2nd porton

Q3. 6643633

On crée une file de priorilé seu [1, lwl+2] où les priocités bent les mb d'acc dans us, plus un.

Solution: Em barre des sommets. Sont que la file de prio n'est pas viole foire 6m lit le mot, à une lettre on la relie au plus petit qui n'est pas barrie et qui n'est pos dons la téquence restante; puis en boire la

Extraire le min x. Relin x à wi

Retiren 1 à la prio de Wi et 2. Si prio = 0 alous on le retire.

Q5. $|\mathcal{I}_{m}| = n^{m-2}$

Q1. (a) Soient T_1 et T_2 deux avores convrant de poids minimum. Supposens $T_1 \neq T_2$ d'avi $E(T_1) \triangleq E(T_2) \neq \emptyset$. Soif $e \in E(T_1) \triangleq E(T_2)$ de poids min.

Sans perdre en généralité, supposons ec $E(T_1)$. de graphe T_2 + e a un cycle C.

Soit e'e($C \cdot le$) n ($E(T_2) \cdot E(T_2)$).

tAloss, $T_2 + e^2 - e$ est un evere conviront de poids < poids de T_2 .

Gm condut T1 = T2.

(b) Soit E = 7 e2, ..., en ? tels que w(e2) ≤ ... ≤ w(en).
Gov pose w'(ei) := i.

Comme les poids (w'(e)) sont tous différents, alors on peut appliquer l'algorithme et avoir T.

Et, comme l'ordre défini per w'est un reffinement de l'ordre défini par w, en a que T est un ACPM pour w.

Q2. Gn considère 6: (V, 8, (V), w) où w(v,v):=d(v,v).

Gn fait n-k étapes de Kruskal.

Complexité en G((n-k) d(n)).

Soit C le résultat d'expocemment E.

Soit () um autre k-clustering.

Il existe 11,10 dans 2 composantes différentes de c'et dans la même composante de C

Cloritions que d(11,10) & E (ce qui implique exportement (C') & E).

Soit it tel que d(s, t) = E.

Si $d(s,t) = \varepsilon < d(u,v)$ et en suit que st me crée pas de cycle alors absorde on Kruskal await choisit st.

Q3. Utibres mon enracines

- · Reflexivate: Φ = id
- · Symétice : φ' = φ-1
- Transikuité: $\phi' = \phi' \circ \phi$ $V_1 \xrightarrow{\phi} V_2 \xrightarrow{\phi'} \circ V_3$

$$V_1 \stackrel{\phi}{\longrightarrow} V_2 \stackrel{\phi'}{\longrightarrow} V_3$$

$$\Phi'' = \Phi' \circ \Phi$$

Mibre enracine:

- · Réflexivité : 0 = id
- Symétie : $\phi' = \phi^{-1}$ Transitivité : $\phi'' = \phi' \circ \phi$

Q4.

$$A \sim D$$
 are c l'isomorphisme

- aw fukr

Cop A,D con il existe un sommet de degré 4 relié à trois fauilles dons C mais pas dons A.

$$B \neq A, C, D$$
 can deg (2) = 2 et deg (·) $\neq 2$ deg (·) $\neq 2$.

$$C(T-F) = \{x \in V(T-F) \mid R_{T-F}(x) = R(T-F)\}$$

$$= \{x \in V(T-F) \mid R_{T}(x) = R(T)\}$$

$$= C(T)$$

Q6.	Par	Nécussence	forte	Sec	# 7.	Gomplexité on G(n),	c.f. TD 5.
QЭ	Τ.	~ T'	=	Эл	e CTT)	, Эл' е C(T') , (T,	z) ~ (T', z')
	<u>"="</u>						
	=)	R(Φ(:			A (-1)	h (a c = 1)	
		đơù	CLT]	<i>=</i>	Ψ(1).	$= \phi(c(\tau)).$	
Q 8 .	Gm	alail	e CCT) ek	C(T')	en G(n).	
		it xe					
	Pa	n tout a	e'e C(T	'),	tester	$(\tau, \mathbf{x}) \sim (\tau', \mathbf{x}')$	
	જ	emplexité d	en G	(q. 4 2	f(nj):	= G(f(n)+n).	

710 m 7
T Graphen bipartis
Q1. S'il est biponti et qu'il a un (2k+1)-ayell alous
7.1.4. 10.7.
—— othered on Y ± Y
X = Y Abourde can X = 4.
المن من حالما
Réciproquement, si 6 n'est
Q2. DFS en O(n+m) pour avoir un 2-rologiage
<u> </u>
II Tri topologique par élagage
·
Q3. On part que uev. Nont que deg+(u) > 0 faire Lu - un prédévassem de u
$lowt$ our $dea^+(u) > 0$ fairs
1 11 10 ADT ÉCHÉRONANIA MA
L IL = MM quesculation at M
0)
Qh. cycle => x1 < < xn dans le tri tope
$x_1 \rightarrow \cdots \rightarrow x_n \rightarrow x_1$ $x_n \rightarrow x_n \rightarrow x_n$ $x_n \rightarrow x_n \rightarrow x_n$
acyclique => tri topo

Soit is de degt (v) =0.

N 4 This tops de 6-10

C acyclique

Q5. On calcule tous les degt que l'on maintient.
On extrait tous les sommets de degt = 0 (dans une pile)

I. Ju des erreurs
Q.1. Vrai
a.2. Faux : 15 4
м
3
% 3
1 4
15
Q3. Faux: 20 18 il faut faire de 7 à 1
Q3. Paux : 20 18 il faut faire de 7 à 1
Of theme and the Mine and the second
Qh. Foux: pas d'hypothèse sur le poids de e
as. Vrai:
:
pointeus
domnées
Q6. En fait l'algorithme de Prim Jornik avec trois buckets
LI LI on peut remplic
crétes crétes as arêles par DFS
de poide 1 de poide 2 de poide 3 dugraphe

1) Coloriage minimal et k-ième minimum
Q7. Par programmation dynamique: opt: Vx [1,0+1] -0 N où D=max deg(1) NeV
opt $(U, i) = i + \sum_{u = 0}^{\infty} \min_{1 \leq i \leq deg} \sup_{v \neq 1} (v, j)$
Algo en $\sum_{u \in V} \sum_{u \to u} d(u)$
Q8. las & k extractions de min
ou quick select
III Graphes dynamiques
QS. (a) gi (b) \Rightarrow gi \Leftarrow $C_i = max(k_i, k_{i+2})$
т э
[] no compre-exemple
<u> </u>
C) TCM:= mim Ce Chemins
de combacjon
parcours du graphe en G(IVI+IEI)
O 10 6 0 11
a 10. On fait un parcours avec une file de priorité.