ECE408/CS483/CSE408 Fall 2022

Applied Parallel Programming

Lecture 4: Memory Model

Course Reminders

- Lab 1 submission deadline is coming up
 - Instructions about how to submit will be posted any time now
 - Make sure to submit it by the deadline, no late submissions will be accepted
 - Make sure to submit the code AND only then answer the questions
- Lab 2 will be out soon, it is due next Friday
- The course staff only replies to questions posted on Campuswire
- Check out office hours schedule, there are many options

Objective

- To learn the basic features of the memories accessible by CUDA threads
- To prepare for MP-2 basic matrix multiplication
- To learn to evaluate the performance implications of global memory accesses

The Von-Neumann Model

Instructions are Stored in Memory

 Every instruction needs to be fetched from memory, decoded, then executed.

Instruction processing breaks into steps:

Fetch | Decode | Execute | Memory

Instructions come in three flavors:
 Operate, Data Transfer, and Control Flow.

Example: Processing an Add Instruction

- Example of an (LC-3) operate instruction:
 ADD R1, R2, R3
- meaning:
 - read R2 and R3
 - add them as unsigned/2's complement
 - write sum to R1

Instruction processing for an operate instruction:
 Fetch | Decode | Execute | Memory

Example: Processing a Load Instruction

• Example of an (LC-3) data transfer instruction:

```
LDR R4, R6, #3 ; a load
```

- meaning:
 - read R6
 - add the number 3 to it
 - load the contents of memory at the resulting address
 - write the bits to R4
- Instruction processing for a load instruction:

Fetch | Decode | Execute | Memory

Registers vs Memory

Registers

- Fast: 1 cycle; no memory access required
- Few: hundreds for CPU, O(10k) for GPU SM

Memory

- Slow: hundreds of cycles
- Huge: GB or more

Programmer View of CUDA Memories

Each thread can:

- read/write per-thread registers (~1 cycle)
- read/write per-block shared memory (~5 cycles)
- read/write per-grid global memory (~500 cycles)
- read/only per-grid constant memory (~5 cycles with caching)

CUDA Variable Type Qualifiers

Variable declaration			Memory	Scope	Lifetime
		<pre>int LocalVar;</pre>	register	thread	thread
device	shared	int SharedVar;	shared	block	block
device		int GlobalVar;	global	арр.	application
device	constant_	<pre>int ConstantVar;</pre>	constant	арр.	application

- device
 - optional with shared or constant
 - not allowed by itself within functions
- Automatic variables with no qualifiers
 - in registers for primitive types and structures
 - in global memory for per-thread arrays

Next Application: Matrix Multiplication

- Given two Width × Width matrices, M and N,
 - we can multiply M by N
 - to compute a third Width × Width matrix, P:
 - P = MN

In terms of the elements of P, matrix multiplication implies computing...

$$P_{ij} = \sum_{k=1}^{Width} M_{ik} N_{kj}$$

Matrix Multiplication

$$P_{ij} = \sum_{k=1}^{Width} M_{ik} N_{kj}$$

- Graphically, imagine
 - taking each element in a row of M,
 - multiplying it by the corresponding element in a column of N, and
 - summing up the products.
- Do that for every row and every column to produce P.

Matrix Multiplication Example A Simple Host Version in C

```
// Matrix multiplication on the (CPU) host
void MatrixMul(float *M, float *N, float *P, int Width)
                                                                           k
   for (int i = 0; i < Width; ++i)
      for (int j = 0; j < Width; ++j) {
          float sum = 0;
          for (int k = 0; k < Width; ++k) {
              float a = M[i * Width + k];
              float b = N[k * Width + j];
                                             M
              sum += a * b;
          P[i * Width + j] = sum;
                                                                             13
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
```

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign

Parallelize Elements of P

- What can we parallelize?
 - start with the two outer loops
 - parallelize computation of elements of P

- What about the inner loop?
 - Technically, floating-point is NOT associative.
 - The parallel sum is called a reduction—we'll come back to it in a few weeks.
 - For now, use a single thread for each P_{ij}.

Compute Using 2D Blocks in a 2D Grid

- P is 2D, so organize threads in 2D as well:
 - Split the output P into square tiles
 - of size TILE_WIDTH × TILE_WIDTH
 - (a preprocessor constant).
 - Each thread block produces one tile of TILE_WIDTH² elements.
 - -Create [ceil (Width / TILE_WIDTH)]² thread blocks to cover the output matrix.

Kernel Function - A Small Example

- Have each 2D thread block to compute a (BLOCK_WIDTH)² sub-matrix of the result matrix
 - Each block has (BLOCK_WIDTH)² threads
- Generate a 2D Grid of (WIDTH/BLOCK_WIDTH)² blocks
- This concept is called tiling.
 Each block represents a tile.

Example: Width 8, TILE_WIDTH 2

P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}	P _{0,4}	P _{0,5}	P _{0,6}	P _{0,7}
P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}	P _{1,4}	P _{1,5}	P _{1,6}	P _{1,7}
P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}	P _{2,4}	P _{2,5}	P _{2,6}	P _{2,7}
P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}	P _{3,4}	P _{3,5}	P _{3,6}	P _{3,7}
P _{4,0}	P _{4,1}	P _{4,2}	P _{4,3}	P _{4,4}	P _{4,5}	P _{4,6}	P _{4,7}
P _{5,0}	P _{5,1}	P _{5,2}	P _{5,3}	P _{5,4}	P _{5,5}	P _{5,6}	P _{5,7}
P _{6,0}	P _{6,1}	P _{6,2}	P _{6,3}	P _{6,4}	P _{6,5}	P _{6,6}	P _{6,7}
P _{7,0}	P _{7,1}	P _{7,2}	P _{7,3}	P _{7,4}	P _{7,5}	P _{7,6}	P _{7,7}

Each block has 2*2 = 4 threads.

WIDTH/TILE_WIDTH = 4 Use 4×4 = 16 blocks.

Example: Same Matrix, Larger Tiles (Width 8, TILE_WIDTH 4)

P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}	P _{0,4}	P _{0,5}	P _{0,6}	P _{0,7}
				P _{1,4}			
				P _{2,4}			
	P _{3,1}						
				P _{4,4}			
P _{4,0}	P _{4,1}	P _{4,2}	P _{4,3}		P _{4,5}	P _{4,6}	P _{4,7}
P _{4,0}	P _{4,1}	P _{4,2}	P _{4,3}	P _{4,4}	P _{4,5}	P _{4,6}	P _{4,7}

Each block has 4*4 = 16 threads.

WIDTH/TILE_WIDTH = 2 Use 2* 2 = 4 blocks.

Kernel Invocation (Host-side Code)

```
// TILE WIDTH is a #define constant
dim3 dimGrid(ceil((1.0*Width)/TILE WIDTH),
       ceil((1.0*Width)/TILE WIDTH), 1);
dim3 dimBlock (TILE WIDTH, TILE WIDTH, 1);
// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);
```

Kernel Function

```
// Matrix multiplication kernel - per thread code
 global
void MatrixMulKernel(float* d M, float* d N, float* d P, int Width)
    // Pvalue is used to store the element of the matrix
    // that is computed by the thread
    float Pvalue = 0;
    d P[ ] = Pvalue;
```

Work for Block (0,0) with TILE_WIDTH 2

Row = 0

Row = 1

Work for Block (0,1)

$$Row = 0$$
$$Row = 1$$

A Simple Matrix Multiplication Kernel

```
global
void MatrixMulKernel(float* d M, float* d N, float* d P, int Width)
 // Calculate the row index of the d P element and d M
 int Row = blockIdx.y*blockDim.y+threadIdx.y;
 // Calculate the column idenx of d P and d N
 int Col = blockIdx.x*blockDim.x+threadIdx.x;
 if ((Row < Width) && (Col < Width)) {
     float Pvalue = 0;
     // each thread computes one element of the block sub-matrix
     for (int k = 0; k < Width; ++k)
        Pvalue += d M[Row*Width+k] * d N[k*Width+Col];
     d P[Row*Width+Col] = Pvalue;
```

Memory Bandwidth is Overloaded!

- That's a simple implementation:
 - –GPU kernel is the CPU code with the outer loops replaced with per-thread index calculations!
- Unfortunately, performance is quite bad.
- Why?
- With the given approach,
 - -global memory bandwidth can't supply enough data to keep the SMs busy!

Where Do We Access Global Memory?

```
global
void MatrixMulKernel(float* d M, float* d N, float* d P, int Width)
 // Calculate the row index of the d P element and d M
 int Row = blockIdx.y*blockDim.y+threadIdx.y;
 // Calculate the column idenx of d P and d N
 int Col = blockIdx.x*blockDim.x+threadIdx.x;
 if ((Row < Width) && (Col < Width)) {
     float Pvalue = 0;
     // each thread computes one element of the block sub-matrix
     for (int k = 0; k < Width; ++k)
                                                               accesses
        Pvalue += d M[Row*Width+k] * d N[k*Width+Col];
                                                               to global
     d P[Row*Width+Col] = Pvalue;
                                                               memory
```

Each Thread Requires 4B of Data per FLOP

- Each threads access global memory
 - -for elements of M and N:
 - -4B each, or 8B per pair.
 - –(And once TOTAL to P per thread—ignore it.)
- With each pair of elements,
 - a thread does a single multiply-add,
 - -2 FLOP—floating-point operations.
- So for every FLOP,
 - -a thread needs 4B from memory:
 - **-4B / FLOP.**

150 GB/s Bandwidth Implies 37.5 GFLOPs

One generation of GPUs:

-1,000 GFLOP/s of compute power, and

−150 GB/s of memory bandwidth.

 Dividing bandwidth by memory requirements:

$$\frac{150 GB/s}{4 B/FLOP} = 37.5 GFLOP/s$$

which limits computation!

What to Do? Reuse Memory Accesses!

But 37.5 GFLOPs is a limit.

In an actual execution,

- memory is not busy all the time, and
- the code runs at about 25 GFLOPs.

To get closer to 1,000 GFLOPs

- we need to drastically cut down
- accesses to global memory.

ANY MORE QUESTIONS? READ CHAPTER 4!