Университет ИТМО, кафедра ВТ

Лабораторная работа №4 по Физике

Работу выполнил студент группы Р3200 **Рогов Я. С.**

Преподаватели: Зинчик А.А.

Задание: Измерить температуру и интегральный коэффициент излучения тела методом спектральных отношений.

Цель: Определить значения интегрального коэффициента излучения A_T источника, исследовать зависимость A_T от температуры.

Краткое теоретическое введение:

Измерение температуры источника излучения

Испускательная способность абсолютно черного тела может быть определена для различных длин волн и температур по формуле Планка

$$r_{\lambda,T}^* = rac{2\pi h c^2}{\lambda^5} * rac{1}{e^{rac{hc}{\lambda k T}} - 1};$$
 где h — постоянная Планка; λ — длина волны; k — постоянная Больцмана;

T – температура

Следовательно, для узкого диапазона длин волн от λ до λ +d λ , в котором испускательную способность $r^*(\lambda, T)$ можно считать постоянной, энергетическая светимость абсолютно черного тела равна $dR^* = r^*(\lambda, T) d\lambda$

Если тело не является абсолютно черным, то его испускательная способность выражается формулой

$$r(\lambda, T) = A(\lambda, T)r^*(\lambda, T)$$
,

где $A(\lambda,T)<1$ – спектральный коэффициент излучения тела. Следовательно, энергетическую светимость тела для диапазона длин волн от λ до λ +d λ найдем по формуле

$$dR = A(\lambda, T)r^*(\lambda, T)d\lambda$$
.

Измерение интегрального коэффициента излучения тела

Интегральный коэффициент излучения тела $A_{\scriptscriptstyle T}$ определяется отношением:

$$A_T = \frac{R_T}{R_T^*}$$

где RT – энергетическая светимость тела при температуре T,

RT* – энергетическая светимость абсолютно черного тела при этой же температуре.

В данной лабораторной работе в качестве источника излучения используется вольфрамовая нить накала электролампы. Интегральный коэффициент излучения при температуре Т = 2000К для вольфрама A_{2000} = 0,249 . Это позволяет применить относительный метод исследования зависимости интегрального коэффициента излучения от температуры излучающего тела. Выразим интегральный коэффициент излучения при некоторой температуре Т через измеряемые величины и А2000

$$A_{2000} = \frac{R_{2000}}{R_{2000}^*}$$

Учтём, что по закону Стефана-Больцмана энергетические светимости абсолютно чёрного тела в этих выражениях равны:

$$R_T^* = \sigma T^4$$
, $R_{2000}^* = \sigma * 2000^4$

Если считать, что потери энергии за счет теплопроводности и конвекции малы, т.е. вся подводимая к вольфрамовой нити лампы энергия электрического тока превращается в энергию излучения, то энергетическую светимость источника можно выразить через мощность $P_{\text{ист}}$, которая рассеивается на нём:

$$R_{\scriptscriptstyle T} = \frac{P_{\scriptscriptstyle ucm}}{S}$$
 , где S – площадь излучающей поверхности.

Тогда отношение коэффициентов излучения:

$$\frac{A_T}{A_{2000}} = \frac{R_T R_{2000}^*}{R_T^* R_{2000}} = \frac{P_{ucm} \sigma * 2000^4 * S}{S * \sigma T^4 * P_{ucm2000}} = \frac{2000^4}{P_{ucm2000}} \frac{P_{ucm}}{T^4} = K \frac{P_{ucm}}{T^4}$$

Величину К в последней формуле можно вычислить на основе опытов по определению температуры по формуле (2), если в процессе измерений записывать значения мощности, рассеиваемой источником. Затем необходимо построить график зависимости Р ист (Т) и определить по нему Р ист 2000 - величину мощности, соответствующей температуре 2000 К. Следовательно, для интегрального коэффициента излучения получаем формулу

$$A_{T} = A_{2000} K \frac{P_{ucm}}{T^4}$$
 (4), где $K = \frac{2000^4}{P_{ucm2000}}$, $A_{2000} = 0.249$

Обработка результатов

	λ_1 = 660 нм	λ ₂ = 940 нм	P ₂₀₀₀ = 2900 BT				
І, мА	U, B	J_1/J_0	J_2/J_0	J_1/J_2	Т, К	Р, Вт	A_{T}
195	5.06	0.006	0.098	0.061	1418.88	986.7	0.334
202	5.46	0.010	0.137	0.073	1475.56	1102.92	0.320
207	5.84	0.016	0.179	0.089	1546.76	1208.88	0.290
213	6.19	0.023	0.230	0.100	1589.23	1318.47	0.284
219	6.60	0.033	0.294	0.112	1635.46	1445.4	0.278
226	7.05	0.047	0.378	0.124	1678.71	1593.3	0.276
231	7.43	0.062	0.453	0.137	1721.43	1716.33	0.269
236	7.79	0.079	0.535	0.148	1756.79	1838.44	0.265
241	8.20	0.102	0.634	0.161	1798.50	1976.2	0.259
248	8.66	0.132	0.755	0.175	1840.89	2147.68	0.257
252	9.03	0.160	0.866	0.185	1870.16	2275.56	0.256
257	9.43	0.195	0.992	0.197	1904.15	2423.51	0.253
263	9.84	0.236	1.132	0.208	1937.56	2587.92	0.252
268	10.20	0.275	1.256	0.219	1966.30	2733.6	0.251
273	10.67	0.332	1.430	0.232	2001.83	2912.91	0.249
277	10.95	0.370	1.538	0.241	2024.01	3033.15	0.248

1. Вычислим значения температуры источника излучения при различных значениях мощности, выделяемой ни источнике, пользуясь формулой ниже и заполним таблицу:

$$T = \frac{L}{\ln \frac{J_1}{J_2} - Z_0} = \frac{C_2(\frac{1}{\lambda_2} - \frac{1}{\lambda_1})}{\ln \frac{J_1}{J_2} - Z_0}; \quad Z_0 = 1.784; \quad C_2 = \frac{hc}{k} = 1.439 * 10^{-2} (K * M)$$

- **2.** Вычислим по формуле $P_{\text{ист}}$ =UI мощность, выделяющуюся на спирали источника излучения для каждого значения температуры и заполним таблицу.
- **3.** Построим график зависимости $P_{\text{ист}}(T)$ и определим по нему $P_{\text{ист2000}}$ величину мощности, соответствующей температуре 2000 К.

Можно наблюдать зависимость $P \sim T^4$, которую можно заметить в формуле (4). $P_{2000} \approx 2900$ Вт.

4. Пользуясь рабочей формулой (4), вычислим значения интегрального коэффициента излучения A_T источника в исследованном диапазоне температур и заполним таблицу.

5. Построим график $A_T(T)$.

Вывод: в ходе выполнения данной лабораторной работы я научился измерять температуру и интегральный коэффициент излучения тела методом спектральных отношений, а также определил значения интегрального коэффициента излучения $A_{\rm T}$ источника с вольфрамовой нитью (см. таблицу) и исследовал зависимость $A_{\rm T}$ от температуры.