Introduction to Statistical Analysis

Stat Bootcamp Autumn 2014
Session 1

Sema Barlas

What is Statistics?

- Statistics is a tool helping us to make intelligent decisions in the presence of uncertainty and variation.
- It is a tool to turn uncertainty into calculated risk.
- Decision: Conversion rates on a web page across regions are:
 - **%13.8 %18.3 %32.2 %32.5**
 - Probability of observing %32.5 conversion for a website at an ordinary region (OR) is 0.02 – so, this region is extra-ordinary
 - -P(%18.3 | OR) = 0.6 so, this region is ordinary

What is Statistics?

- Communication tell more with less
- Data on millions of website
- Summarizing data descriptive statistics
 - Mean
 - Standard deviation
 - Distribution
 - Modality
 - Skewedness
 - Kurtosis

Variation

- Total variation = systematic variation + random
 Variation
 - Variation in conversion rates = variation among regions + variation within a region
- Random variation: Due to unknown sources or inherent to the process — variation within a region (error).
- Systematic variation: Due to known or knowable
 sources variation across regions (explained variance).

Population, Sample, and Sampling Variance

Sampling Strategy

- Random Samples 1 to 6 will be somewhat different
 - Sample is representative of the population depending on the size of sampling variance
- Stratified Variation due to an important variable can be controlled for
 - Sample is unlikely to be representative of the population
- Probability Sampling variation can be reduced
- Convenience Sample is unlikely to be representative of the population

Types of Statistics

- Descriptive statistics
 - Understanding the sample- mean, median, mode, standard deviation, variance
- Probability
- Inferential statistics
 - Understanding the population on the basis of information from the sample z test, t test, ANOVA, Regression

Does the Distribution in the Population Looks Like a Known Distribution?

Given that average hit rate is 15% in the population of ordinary websites. How many of such sites in a sample of 100 can we expect to have %32 or more suspicious hits?

Given that average hit rate is %18.5 in the sample of 100 websites. Is this sample coming from the population of ordinary websites?

Variables

- Characteristics of some event, object, or person that take on different values (has variability)
 - Dependent variable sales (\$)
 - Independent variable marketing expenditures
- Discrete
 - Nominal race
 - Ordinal latter grade
- Continuous
 - Interval Fahrenheit
 - Ratio weight in kilograms

Distributions of Variables

Normal distribution

Central tendency: Mean, median mode

Dispersion: Standard deviation, variance

Shape - Symmetric (skewness = 0)

Uni-modal

Mezokurtic – Kurtosis = 0

Central Tendency Measures

Stem	Leaf	
0	1 3 6	
1	2888	
2	3567	

Mean: 16.09 - Ratio, interval, and ordinal level variables

Median: 18 – the observation at the middle – Ratio, Interval, and ordinal variables

Mode: 18 – the most frequent observation – Ratio, interval, ordinal, and nominal variables

Dispersion Measures Ratio, Interval, and ordinal variables

Variance

- $var = sum((x-\mu)^2 / (N-1)))$
- 87.29 in the example before

- Standard Deviation
 - average distance from mean
 - Std = sqrt(var) = 9.34

Test Scores

Score	Score - Mean	Mean Square
90	20	400
80	10	100
80	10	100
70	0	0
60	-10	100
40	-30	900
420	0	1,600

Variance =
$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$
$$= 1,600/5$$
$$= 320$$

Std =
$$\sqrt{320}$$
 = 17.89
Range = highest – lowest = 90 – 40 = 50
IQR = Q3 – Q1 = 77.5 - 52.5 = 25

Skewness

Kurtosis

Characteristic

Bimodal Distribution

Nominal Variables – Bar Chart

Future Wealth Holder's Gender Shift

Nominal Variables – Pie Chart

Frequency Tables

Ratings	Frequency	Cumulative Frequency	Relative Frequency	Cumulative Relative Frequency
2	1	1	.006	.006
3	2	3	.011	.017
4	13	16	.074	.091
5	45	61	.256	.347
6	33	94	.187	.534
7	56	150	.318	.852
8	21	171	.119	.972
9	5	176	.028	100

N=176 Mean = 6.18

Mod = 7

median = 6

std = 1.33

Central Tendency

Variability

Continuous Variables - Histogram

Linear Transformation of Variables

•
$$Z = a + b*X$$

•
$$\bar{z} = a + b^* \bar{x}$$

•
$$Std_z = b^*(std_x)$$

X	z=2+2X	(x-mean) ²	
90	182	1600	
80	162	400	
80	162	400	
70	142	0	
60	122	400	
40	82	3600	
Mean	Mean	std	
70	142	35.77	

Two Variables, X and Y

Covariance between X and Y

Covariance =
$$\frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \bar{x}) \quad (y_i - \bar{y})$$
$$-\frac{\chi}{\chi}$$

_	X is below and y is above the mean	Both X and Y are above mean	
y	Both, x and y are below the mean	X is above and y is below the mean	

Correlation between X and Y

$$Correlation = \frac{Cov(x, y)}{std(x)std(y)}$$

Covariance is about the Direction of the Relationship

x	у	$(x-\overline{x})$	$(y - \overline{y})$	Covariance
23	11	1.4	0.8	1.12
20	9	-1.6	-1.2	1.92
14	4	-7.6	-6.2	47.12
27	15	5.4	4.8	25.92
22	10	0.4	-0.2	-0.08
20	11	-1.6	0.8	-1.28
26	11	4.4	0.8	3.52
16	7	-5.6	-3.2	17.92
25	13	3.4	2.8	9.52
23	11	1.4	0.8	1.12

Mean: 21.6 Std:

4.20

10.2 3.05 Sum: 106.8

Cov: 11.86

Corr: 0.98

Optimize Publisher Strategy—Results

Formulate Publisher Strategy Note: (Bubble Size=Current Funding)

Line is at Average Probability Across All Publishers

