NSR Search Results Page 1 of 3

Visit the <u>Isotope Explorer</u> home page!

17 reference(s) found:

Keynumber: 1988KR07

Reference: J.Phys.(London) G14, Supplement S183 (1988)

Authors: B.Krusche, K.P.Lieb

Title: Gamma-Ray Flux in $A \le 80$ Odd-Odd Nuclei after Thermal Neutron Capture

Keyword abstract: NUCLEAR STRUCTURE 46 Sc, 72 Ga; analyzed capture data; deduced $\Gamma\gamma$ vs

excitation energy.

Keyword abstract: NUCLEAR REACTIONS ⁴¹K, ⁶⁵Cu(n,γ),E not given; calculated Eγ,Iγ. Monte-

Carlo simulation.

Keynumber: 1986KR16

Reference: Phys.Rev. C34, 2103 (1986)

Authors: B.Krusche, K.P.Lieb

Title: Dipole Transition Strengths and Level Densities $A \le 80$ Odd-Odd Nuclei Obtained from Thermal

Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³¹P, ³⁵Cl, ³⁹, ⁴¹K, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, ⁶³, ⁶⁵Cu, ⁷¹Ga, ⁷⁵As, ⁷⁹Br(n, γ),E=thermal; analyzed data. ²⁰F, ²⁴Na, ²⁸Al, ³²P, ³⁶Cl, ⁴⁰, ⁴²K, ⁴⁶Sc, ⁵⁶Mn, ⁶⁰Co, ⁶⁴, ⁶⁶Cu, ⁷²Ga, ⁷⁶As, ⁸⁰Br deduced primary E1,M1 transition strengths,level density parameters. Bethe, constant temperature Fermi gas models.

Keynumber: 1985VOZV

Reference: Proc.AIP Conf.Capture Gamma-Ray Spectroscopy and Related Topics, Knoxville, Tenn., (1984), S.Raman, Ed., AIP, New York, p.305 (1985)

Authors: T.von Egidy, P.Hungerford, H.H.Schmidt, H.J.Scheerer, A.N.Behkami, G.Hlawatsch,

B.Krusche, K.P.Lieb, H.G.Borner, S.A.Kerr, K.Schreckenbach

Title: Structural and Statistical Aspects of Extensive Level Schemes from (n, γ) and Transfer Reactions **Keyword abstract:** NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³⁵Cl, ³⁹, ⁴⁰, ⁴¹K, ¹¹³Cd, ¹³³Cs, ¹⁵⁴Sm, ¹⁵³Eu, ¹⁵⁴Gd, ¹⁶⁰, ¹⁶²Dy(n, γ), (n,e),E not given; measured not given. ²⁰F, ²⁴Na, ²⁸Al, ³⁶Cl, ⁴⁰, ⁴¹, ⁴²K, ¹¹⁴Cd, ¹³⁴Cs, ¹⁵⁵Sm, ¹⁵⁴Eu, ¹⁵⁵Gd, ¹⁶¹, ¹⁶³Dy deduced levels,γ-transition multipolarity, strength distribution.

Keynumber: 1985KR06

Reference: Nucl. Phys. A439, 219 (1985)

Authors: B.Krusche, Ch.Winter, K.P.Lieb, P.Hungerford, H.H.Schmidt, T.Von Egidy, H.J.Scheerer,

S.A.Kerr, H.G.Borner

Title: Level Structure of ^{42}K from the $^{41}K(n,\gamma)$ and $^{41}K(d,p)$ Reactions

Keyword abstract: NUCLEAR REACTIONS 41 K(n,γ),E=thermal; measured Eγ,Iγ. 41 K(d,p),E=20 MeV; measured σ (Ep), σ (θ). 42 K deduced levels,L,J, π ,γ-branching,neutron binding energy,level density,primary transition relative strengths. Statistical analysis.

Keynumber: 1984MA40

Reference: Nucl.Sci.Eng. 88, 129 (1984)

Authors: R.L.Macklin

Title: Resonance Neutron Capture by ³⁹, ⁴¹K

Keyword abstract: NUCLEAR REACTIONS 41 K(n, γ),E=11-9850 eV,2.6-2000 keV; 39 K(n, γ),E \approx

NSR Search Results Page 2 of 3

9.05-110 keV; measured γ yield vs E. ⁴⁰, ⁴²K deduced resonances,J, $\Gamma\gamma$, (g Γ n), (g Γ n $\Gamma\gamma$)/ Γ ,Maxwellian average capture vs stellar temperatures.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part 3, P270, Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1976SC16

Reference: Nucl.Phys. A264, 105 (1976)

Authors: O.Schwerer, M.Winkler-Rohatsch, H.Warhanek, G.Winkler **Title:** Measurement of Cross Sections for 14 MeV Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁵Mn, ⁷¹Ga, ⁸⁷Rb, ⁸⁹Y, ¹²⁷I, ¹³⁰Te, ¹³⁸Ba, ¹³⁹La, ¹⁴²Ce, ¹⁸⁶W, ¹⁹⁸Pt, ¹⁹⁷Au(n,γ).E=14.6 MeV; measured σ. Natural targets.

Keynumber: 1973SCYA

Coden: REPT INDC(SEC)-36/L P8

Keyword abstract: NUCLEAR REACTIONS 26 Mg, 37 Cl, 41 K, 55 Mn, 71 Ga, 81 Br, 87 Rb, 100 Mo, 115 In, 127 I, 133 Cs, 138 Ba, 139 La, 142 Ce, 181 Ta, 198 Pt(n,γ); measured σ.

Keynumber: 1973OPZZ **Coden:** REPT RCN-184

Keyword abstract: NUCLEAR REACTIONS K, 39 , 41 K, 57 Fe(n,γ); measured Eγ,Iγ,γγ(θ),Q. 40 , 42 K

deduced levels, J, π , γ -branching. ⁵⁸Fe levels deduced J.

Keyword abstract: RADIOACTIVITY ⁴⁰, ⁴²K; measured Εγ,Ιγ.

Keynumber: 1972OP01

Reference: Nucl.Phys. A180, 569 (1972) **Authors:** A.M.F.Op den Kamp, A.M.J.Spits

Title: Gamma Rays from Thermal-Neutron Capture in Natural and ³⁹K Enriched Potassium

Keyword abstract: NUCLEAR REACTIONS ³⁹, ⁴¹K, ¹H, ⁶Li, ¹²C, ¹⁹F, ⁴⁰Ar, ⁵⁶Fe, ²⁰⁷Pb(n,γ),E= thermal; ¹⁹F, ²⁸Si(n,n'γ),E=fast; measured Eγ,Iγ, ³⁹K(n,γ),E=thermal; measured Eγ,Iγ,γγ-coin; deduced Q. ⁴⁰, ⁴²K deduced levels,γ-branching. Ge(Li),NaI detectors.

NSR Search Results Page 3 of 3

Keynumber: 1972KI24

Reference: Radiochim.Acta 17, 191 (1972)

Authors: J.I.Kim, E.Gryntakis

Title: The Thermal Neutron Cross Section and the Resonance Integral of ¹⁴⁶Nd, ¹⁴⁸Nd, ¹⁵⁰Nd and ⁴¹K

Keyword abstract: NUCLEAR REACTIONS ¹⁴⁶, ¹⁴⁸, ¹⁵⁰Nd, ⁴¹K(n,γ);E=thermal; measured

Iγ, deduced σ , resonance integral.

Keynumber: 1972CAYH

Coden: JOUR FZKAA 4 Suppl,59

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³⁷Cl, ⁵⁵Mn, ⁴¹K, ¹²⁷I(n,γ),E=14 MeV;

measured activation σ .

Keynumber: 1971RYZZ

Reference: Proc.Int.Conf.Chemical Nuclear Data, Measurements and Applications, Canterbury,

England, M.L.Hurrell, Ed., Institution of Civil Engineers, London, p.139 (1971)

Authors: T.B.Ryves

Title: Thermal Neutron Capture Cross Section Measurements at the NPL

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ²⁷Al, ³⁰Si, ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁸Fe, ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁹, ⁷¹Ga, ⁷⁵As, ⁷⁹, ⁸¹Br, ⁸⁹Y, ¹⁰⁷, ¹⁰⁹Ag, ¹¹⁵In, ¹²¹, ¹²³Sb, ¹²⁷I, ¹³⁹La, ¹⁵¹Eu, ¹⁹⁶, ¹⁹⁸Pt (n,γ),E=thermal; measured σ.

(II, /),L=tiletillat, filea

Keynumber: 1971RYZX

Coden: CONF Canterbury(Chem Nucl Data),P139,12/10/72

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ²⁷Al, ³⁰Si, ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁸Fe, ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁹, ⁷¹Ga, ⁷⁵As, ⁷⁹Br, ⁸¹Br, ⁸⁹Y, ¹⁰⁷, ¹⁰⁹Ag, ¹¹⁵In, ¹²¹, ¹²³Sb, ¹²⁷I, ¹³⁹La, ¹⁵¹Eu, ¹⁹⁶, ¹⁹⁸Pt (n,γ),E=thermal; measured σ; deduced resonance integrals.

Keynumber: 1970STZZ

Reference: Thesis, Virginia Poly. (1970); Diss. Abst. Int. 31B, 3638 (1970)

Authors: E.P.Stergakos

Title: Studies of Resonances in ²³Na, ²⁶Mg, ⁴¹K, ⁵⁵Mn and ⁵⁹Co

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ⁴¹K, ⁵⁵Mn, ⁵⁹Co(n,γ),E=thermal;measured

Ey,Iy. ²⁴Na, ²⁷Mg, ⁴²K, ⁵⁶Mn, ⁶⁰Co deduced resonances, level-width.

Keynumber: 1970JO04

Reference: Can.J.Phys. 48, 1109 (1970) **Authors:** L.V.Johnson, T.J.Kennett

Title: Study of Thermal Neutron Capture in Potassium

Keyword abstract: NUCLEAR REACTIONS ³⁹, ⁴¹K(n, γ), E=thermal; measured E γ , I γ , $\gamma\gamma$ -coin;

deduced Q. 40 K deduced levels, J, π , γ -branching. Ge(Li) detectors.
