ORIE 3120

Lecture 7: Foreign Keys

1

From first lecture: A database schema is a collection of tables related by keys

Primary Key

A primary key is a field (or collection of fields) in a table.

It must satisfy these properties:

- 1. Each record has a unique value
- 2. No record has a NULL value

It helps the database identify a record uniquely.

If you try to add two records with the same value for a primary key, the database will give you an error.

If we just say "key", we usually mean "primary key"

In our diagrams, we indicate primary keys with **boldface**

Definition: Foreign Key

- A foreign key is a field (or collection of fields) in one table that references another field (or collection of fields).
- Values in the referenced field(s) must be unique.
- The referenced field(s) is/are usually in a different table, but can be in the same table.

Foreign Key Example

- Orders.CustomerID "references" Customers.CustomerID
- It tells us which customer made the order
- The record in Customers with that CustomerID must be unique
- The information in the other fields in that record tell us about the customer who made the order

Foreign Key

- The table referencing is called the "child"
- The table being referenced is called the "parent"
- A foreign key indicates a many-to-one relationship:
 - A record in the parent table may be referenced by many records in the child table
 - A record in the child table references at most one parent

Foreign Key Example

- CustomerID in the child table (Orders) references CustomerID in the parent table (Customers)
- Orders.CustomerID is a foreign key
- This foreign key ensures that for every CustomerID in the Orders table, there is a corresponding CustomerID in the Customers table.

In our diagrams, we indicate foreign keys with a line labeled by ∞

Many-to-One Relationship

CustomerID	CompanyName	
1	Cactus Comidas para llevar	
2	Du Monde entier	
3	Bottom Dollar Markets	

OrderID	Customer ID	 ShippedDate	ShipVia	
1001	3	1/24/2020	4	
1002	2	1/24/2020	1	
1003	3	1/25/2020	2	

Referential Integrity

- For a value to be inserted for CustomerID in the child table (Orders), a value for CustomerID in the parent table (Customers) must exist.
- For a value to be removed for CustomerID in the parent table (Customers), all corresponding values for CustomerID must be removed from the child table (Orders).
- This is called "referential integrity"

- You can also have NULL values for a foreign key.
- This means that record in the child table does not refer to the parent table.

Q1: Foreign Key Example

OrderID	 ShippedDate	ShipVia	
1	1/24/2019	4	
2	1/24/2019	1	
3	1/25/2019	2	
4	1/26/2019	4	

ShipperID	CompanyName	Phone
1	UPS	888-123-4567
2	FedEx	888-314-1592
3	USPS	888-271-8281
4	DHL	888-141-4213

Question 1:

- (a) ShipVia 1, child ShipperID ∞, parent
- (b) ShipVia ∞, child ShipperID 1, parent
- (c) ShipVia 1, parent ShipperID ∞, child
- (d) ShipVia ∞, parent ShipperID 1, child

Q2: Another Foreign Key Example

Employee

EmplID	LastName
100	Tan
101	Frazier
102	Zhou

- (a) TestingData.EmplID 1, child EmployeeID.Emplid ∞, parent
- (b) TestingData.EmpIID ∞, child EmployeeID.Emplid 1, parent
- (c) TestingData.EmplID 1, parent EmployeeID.Emplid ∞, child
- (d) TestingData.EmplID ∞, parent EmployeeID.Emplid 1, child

Testing Data

.		
date	EmplID	Result
Feb 2	101	NOT DETECTED
Feb 3	102	NOT DETECTED
Feb 10	101	POSITIVE

 The ShipVia field is a foreign key for the Orders table.

 This foreign key references the ShipperID field in the Shippers table.

• The foreign key ensures that for every ShipVia in the Orders table, there is a corresponding ShipperID in the Shippers table.

Here are some more foreign keys

Creating foreign keys in SQLite Studio

Q3: Which of these are legal (foreign key, referenced field) pairs?

T1.A references T2.C **T1** (b) T1.A references T2.D B D 1 5 T2.C references T1.A (d) T2.D references T1.A 3 3 3 (e) None of the above

Q4: Which of these are legal (foreign key, referenced field) pairs?

T1.B references T2.C **T1** (b) T1.B references T2.D D 1 T2.C references T1.B 5 (d) T2.D references T1.B 3 3 (e) None of the above 4 5

(there are multiple correct answers)

Q5: How many legal (foreign key, referenced field) pairs can you identify in these two tables*?

	T1			T2		(a)
	Α	В		С	D	(b)
1	1	Α	1	5	Α	(c)
2	1	C	2	4	В	` '
3	1	В	3	3	С	(d)
4	2	D	4	2	D	(e)
5	3	E	5	1	Е	¥ 1

*do not include keys that reference themselves; only include keys that are a single field