Table 1
 Microeconomic Model Calibration

Calibrated Parameters			
Description	Parameter	Value	Source
Permanent Income Growth Factor	Γ	1.03	PSID: Carroll (1992)
Interest Factor	R	1.04	Conventional
Time Preference Factor	β	0.96	Conventional
Coefficient of Relative Risk Aversion	ρ	2	Conventional
Probability of Zero Income	\wp	0.005	PSID: Carroll (1992)
Std Dev of Log Permanent Shock	σ_{ψ}	0.1	PSID: Carroll (1992)
Std Dev of Log Transitory Shock	$\sigma_{ heta}$	0.1	PSID: Carroll (1992)

 Table 2
 Model Characteristics Calculated from Parameters

				Approximate
				Calculated
Description	Syr	nbol	and Formula	Value
Finite Human Wealth Factor	\mathcal{R}^{-1}	=	Γ/R	0.990
PF Finite Value of Autarky Factor	⊐	\equiv	$eta\Gamma^{1- ho}$	0.932
Growth Compensated Permanent Shock	$\underline{\psi}$	\equiv	$(\mathbb{E}[\psi^{-1}])^{-1}$	0.990
Uncertainty-Adjusted Growth	Γ	=	$\Gamma \underline{\psi}$	1.020
Utility Compensated Permanent Shock	$\underline{\underline{\psi}}$	≡	$(\mathbb{E}[\psi^{1-\rho}])^{1/(1-\rho)}$	0.990
Utility Compensated Growth	$\overline{\underline{\Gamma}}$	=	$\Gamma \underline{\psi}$	1.020
Absolute Patience Factor	Þ	\equiv	$(R\beta)^{1/ ho}$	0.999
Return Patience Factor	\mathbf{p}_{R}	\equiv	\mathbf{P}/R	0.961
Growth Patience Factor	\mathbf{b}_{Γ}	\equiv	\mathbf{p}/Γ	0.970
Normalized Growth Patience Factor	$\mathbf{b}_{\underline{\Gamma}}$	\equiv	$\mathbf{P}/\underline{\Gamma}$	0.980
Finite Value of Autarky Factor	I⊒	\equiv	$\beta\Gamma^{1-\rho}\underline{\psi}^{1-\rho}$	0.941
Weak Impatience Factor	$\wp^{1/ ho}\mathbf{p}$	=	$(\wp \beta R)^{\overline{1/\rho}}$	0.071

 ${\bf Table~3}~~{\bf Definitions~and~Comparisons~of~Conditions}$

D. C. J. D 14 M	TT			
Perfect Foresight Versions	Uncertainty Versions			
Finite Human Wealth Condition (FHWC)				
$\Gamma/R < 1$	$\Gamma/R < 1$			
The growth factor for permanent income	The model's risks are mean-preserving			
Γ must be smaller than the discounting	spreads, so the PDV of future income is			
factor R for human wealth to be finite.	unchanged by their introduction.			
Absolute Impatience				
$\mathbf{p} < 1$	p < 1			
The unconstrained consumer is	If wealth is large enough, the expectation			
sufficiently impatient that the level of	of consumption next period will be			
consumption will be declining over time:	smaller than this period's consumption:			
consumption will be deciming over time.	smaller than this period is consumption.			
$\mathbf{c}_{t+1} < \mathbf{c}_t$	$\lim_{m_t o \infty} \mathbb{E}_t[\mathbf{c}_{t+1}] < \mathbf{c}_t$			
· ·	, , , , , , , , , , , , , , , , , , ,			
Return Impatience Conditions				
Return Impatience Condition (RIC)	Weak RIC (WRIC)			
$\mathbf{P}/R < 1$	$\wp^{1/\rho}\mathbf{P}/R < 1$			
The growth factor for consumption b	If the probability of the zero-income			
must be smaller than the discounting	event is $\wp = 1$ then income is always zero			
factor R, so that the PDV of current and	and the condition becomes identical to			
future consumption will be finite:	the RIC. Otherwise, weaker.			
$c'(m) = 1 - \mathbf{P}/R < 1$	$c'(m) < 1 - \wp^{1/\rho} \mathbf{P} / \mathbf{R} < 1$			
$C(m) = 1 - \mathbf{P}/K < 1$	$C(m) < 1 - \wp \cdot P/R < 1$			
Growth Impati	l ence Conditions			
PF-GIC	GIC-Nrm			
$\mathbf{p}/\Gamma < 1$	$\mathbf{p} \mathbb{E}[\psi^{-1}]/\Gamma < 1$			
,	$\mathbf{F}^{\mathbf{H}}[\psi]/1 \setminus 1$			
For an unconstrained PF consumer, the ratio of c to p will fall over time. For	By Jensen's inequality stronger than PF-GIC.			
constrained, guarantees the constraint	Ensures consumers will not expect to			
eventually binds. Guarantees	accumulate m unboundedly.			
$\lim_{m_t \uparrow \infty} \mathbb{E}_t[\psi_{t+1} m_{t+1}/m_t] = \mathbf{p}_{\Gamma}$				
morphic off, of I of I'm	$\lim_{m_t \to \infty} \mathbb{E}_t[m_{t+1}/m_t] = \mathbf{P}_{\underline{\Gamma}}$			
Finite Value of Autarky Conditions				
PF-FVAC	FVAC			
$\beta\Gamma^{1-\rho} < 1$	$\beta \Gamma^{1-\rho} \mathbb{E}[\psi^{1-\rho}] < 1$			
equivalently $\mathbf{P} < R^{1/\rho} \Gamma^{1-1/\rho}$				
The discounted utility of constrained	By Jensen's inequality, stronger than the			
consumers who spend their permanent	PF-FVAC because for $\rho > 1$ and			
income each period should be finite.	nondegenerate ψ , $\mathbb{E}[\psi^{1-\rho}] > 1$.			
	<u> </u>			

 Table 4
 Sufficient Conditions for Nondegenerate[‡] Solution

Consumption Model(s)	Conditions	Comments
$\bar{\mathbf{c}}(m)$: PF Unconstrained	RIC, FHWC°	$RIC \Rightarrow v(m) < \infty; FHWC \Rightarrow 0 < v(m) $
$\underline{c}(m) = \underline{\kappa}m$		PF model with no human wealth $(h = 0)$
Section 2.5.3:		RIC prevents $\bar{\mathbf{c}}(m) = \underline{\mathbf{c}}(m) = 0$
Section 2.5.3:		FHWC prevents $\bar{\mathbf{c}}(m) = \infty$
Eq (25) :		$PF-FVAC+FHWC \Rightarrow RIC$
Eq (26):		$GIC+FHWC \Rightarrow PF-FVAC$
$\grave{\mathrm{c}}(m)$: PF Constrained	PF-GIC, RIC	FHWC holds $(\Gamma < \mathbf{p} < R \Rightarrow \Gamma < R)$
Section 2.5.6:		$\grave{\mathbf{c}}(m) = \bar{\mathbf{c}}(m) \text{ for } m > m_{\#} < 1$
		(RHC would yield $m_{\#} = 0$ so $\grave{c}(m) = 0$)
Appendix 7:	PF-GIC,RIC	$\lim_{m\to\infty} \grave{c}(m) = \bar{c}(m), \lim_{m\to\infty} \grave{\kappa}(m) = \underline{\kappa}$
		kinks where horizon to $b = 0$ changes*
Appendix 7:	PF-GIC,RIC	$\lim_{m\to\infty} \hat{\boldsymbol{\kappa}}(m) = 0$
		kinks where horizon to $b = 0$ changes*
c(m): Friedman/Muth	Section 3.1,	$\underline{\mathbf{c}}(m) < \mathbf{c}(m) < \overline{\mathbf{c}}(m)$
	Section 3.2	$ \underline{\mathbf{v}}(m) < \mathbf{v}(m) < \overline{\mathbf{v}}(m)$
Section 2.10:	FVAC, WRIC	Sufficient for Contraction
Section 2.12:		WRIC is weaker than RIC
Figure 3:		FVAC is stronger than PF-FVAC
Section 2.12.2:		EHWC+RIC \Rightarrow GIC, $\lim_{m\to\infty} \kappa(m) = \underline{\kappa}$
Section 2.12.1:		RHC \Rightarrow EHWC, $\lim_{m\to\infty} \kappa(m) = 0$
Section 3.3:		"Buffer Stock Saving" Conditions
Section 3.3.2:		$GIC \Rightarrow \exists 0 < \check{m} < \infty$
Section 3.3.1:		GIC-Nrm $\Rightarrow \exists 0 < \hat{m} < \infty$

[‡]For feasible m satisfying $0 < m < \infty$, a nondegenerate limiting consumption function defines a unique optimal value of c satisfying $0 < c(m) < \infty$; a nondegenerate limiting value function defines a corresponding unique value of $-\infty < \mathrm{v}(m) < 0$. °RIC, FHWC are necessary as well as sufficient for the perfect foresight case. *That is, the first kink point in c(m) is $m_{\#}$ s.t. for $m < m_{\#}$ the constraint will bind now, while for $m > m_{\#}$ the constraint will bind one period in the future. The second kink point corresponds to the m where the constraint will bind two periods in the future, etc. **In the Friedman/Muth model, the RIC+FHWC are sufficient, but not necessary for nondegeneracy

Table 5 Taxonomy of Perfect Foresight Liquidity Constrained Model Outcomes For constrained \grave{c} and unconstrained \bar{c} consumption functions

Main Condition				
Subcondition		Math		Outcome, Comments or Results
PF-GIC		1 <	\mathbf{P}/Γ	Constraint never binds for $m \geq 1$
and RIC	\mathbf{P}/R	< 1		FHWC holds $(R > \Gamma)$; $\dot{c}(m) = \bar{c}(m)$ for $m \ge 1$
and RHC		1 <	\mathbf{P}/R	$\grave{\mathbf{c}}(m)$ is degenerate: $\grave{\mathbf{c}}(m) = 0$
PF-GIC	\mathbf{p}/Γ	< 1	•	Constraint binds in finite time for any m
and RIC	\mathbf{p}/R	< 1		FHWC may or may not hold
				$\lim_{m\uparrow\infty} \bar{\mathbf{c}}(m) - \grave{\mathbf{c}}(m) = 0$
				$\lim_{m\uparrow\infty} \grave{\boldsymbol{\kappa}}(m) = \underline{\kappa}$
and RIC		1 <	₽ /R	EHWC
			,	$\lim_{m\uparrow\infty} \hat{\mathbf{k}}(m) = 0$

Conditions are applied from left to right; for example, the second row indicates conclusions in the case where PF-GIC and RIC both hold, while the third row indicates that when the PF-GIC and the RIC both fail, the consumption function is degenerate; the next row indicates that whenever the PF-GICholds, the constraint will bind in finite time.