

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány. Megj: (1) A fentieket nem csak egyszerű gráfokra definiáltuk.

- (2) A SRt gráf nem csupán egy gráf, hanem egy konkrét diagram.
- (3) Ugyanannak a SRható gráfnak nagyon sok lényegesen különböző síkbarajzolt diagramja (lerajzolása) lehet.
- (4) A gömbre (tóruszra) rajzolhatóság hasonlóan definiálható.



Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány. Állítás: (A G gráf SRható)  $\iff$  (G gömbre rajzolható) Biz: A sztereografikus projekcióban az északi-sarkból történő vetítés kölcsönösen egyértelmű megfeleltetés a sík pontjai és a

vetítés kölcsönösen egyértelmű megfeleltetés a sík pontjai és a síkot a déli-sarkon érintő gömbfelszín pontjai (mínusz északi-sark) között. A síkbarajzolt diagram vetülete gömbre rajzolt lesz ( $\Rightarrow \checkmark$ ), és az  $\acute{E}$ -t nem tartalmazó gömbre rajzolt diagram pedig síkbarajzolttá válik. A  $\Leftarrow$  irány igazolásához csupán annyi kell, hogy úgy rajzoljuk  $\emph{G}$ -t a gömbre, hogy az  $\acute{E}$ -n ne menjen át él.  $\square$ 



Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány. Állítás: (A G gráf SRható)  $\iff$  (G gömbre rajzolható)

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Biz: Bármely lerajzolás "kifordítható": a diagram átrajzolható úgy, hogy a kiválasztott tartomány legyen a külső tartomány.

- 1. Vetítsük fel a diagramot a gömbre.
- 2. Állítsuk az  $\acute{E}$ -t a kiválasztott tartománynak megfelelő gömbi tartomány belsejébe.
- 3. Vetítsük vissza a gömbre rajzolt gráfot a síkra.



Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja.

Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Allítás: (A G gráf SRható)  $\iff$  (G gömbre rajzolható)

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Köv: Bármely konvex poliéder élhálója SRható gráf.

Biz: A kx poliéder belső pontjából az élháló kivetíthető egy, a poliédert tartalmazó gömbre. Így az élhálóból gömbre rajzolt gráf lesz. Láttuk, hogy minden gömbre rajzolható gráf SRható.

Megj: A kx poliéder élgráfjának tartományai a poliéder lapjainak felelnek meg.



Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja.

Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Allítás: (A G gráf SRható)  $\iff$  (G gömbre rajzolható)

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Köv: Bármely konvex poliéder élhálója SRható gráf.

Terminológia: SRt G gráf esetén n, e, t ill. k jelöli rendre a G csúcsai, élei, tartományai és komponensei számát.

Duális kézfogáslemma (DKFL): Ha G SRt gráf, akkor  $\sum_{i=1}^{t} \ell_i = 2e$  ahol  $\ell_i$  az i-dik lapot határoló élek számát jelöli.

Biz: Minden él vagy két különböző lapot határol, vagy ugyanazt a lapot 2-szer. Így minden él 2-vel járul a BO-hoz és a JO-hoz is.



Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja.

Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Allítás: (A G gráf SRható)  $\iff$  (G gömbre rajzolható)

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Köv: Bármely konvex poliéder élhálója SRható gráf.

Terminológia: SRt G gráf esetén n, e, t ill. k jelöli rendre a G csúcsai, élei, tartományai és komponensei számát.

Duális kézfogáslemma (DKFL): Ha G SRt gráf, akkor  $\sum_{i=1}^{t} \ell_i = 2e$  ahol  $\ell_i$  az i-dik lapot határoló élek számát jelöli. Megj: A DKFL akkor hasznos, ha a SRt gráf lapjairól, a KFL pedig akkor, ha a fokszámairól van információnk.



Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja.

Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Allítás: (A G gráf SRható)  $\iff$  (G gömbre rajzolható)

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Köv: Bármely konvex poliéder élhálója SRható gráf.

Terminológia: SRt G gráf esetén n, e, t ill. k jelöli rendre a G csúcsai, élei, tartományai és komponensei számát.

Duális kézfogáslemma (DKFL): Ha G SRt gráf, akkor  $\sum_{i=1}^{t} \ell_i = 2e$  ahol  $\ell_i$  az i-dik lapot határoló élek számát jelöli. Fáry-Wagner-tétel: Ha G egyszerű SRható gráf, akkor olyan

síkbarajzolása is van, amiben minden él egyenes szakasz.



**Tétel**: Ha G SRt gráf, akkor n + t = e + k + 1.

**Biz:** Rajzoljuk meg G-t az n csúcsból kiindulva, az élek egyenkénti behúzásával. Kezdetben t=1, e=0 és k=n, így a bizonyítandó összefüggés fennáll. Tfh már néhány élt berajzoltunk, még mindig fennáll az összefüggés, és egy éppen az uv élt rajzoljuk meg.

- 1. u és v különböző komponenshez tartoznak. Ekkor k értéke 1-gyel csökken, e-é pedig 1-gyel nő. Az ÉHL miatt nem keletkezik kör, tehát nem zárunk körül új tartományt, vagyis t nem változik. Az összefüggés fennmarad.
- **2.** *u* és *v* ugyanahhoz a komponenshez tartoznak. Ekkor *k* nem változik, *e* viszont 1-gyel nő. Az ÉHL miatt keletkezik kör, tehát kettévágjuk az *uv* élt tartalmazó korábbi tartományt. Ezért *t* is 1-gyel nő, az összefüggés ismét fennmarad.



**Tétel:** Ha G SRt gráf, akkor n + t = e + k + 1. **Köv:** (1) Ha G SRható, akkor t nem függ a síkbarajzolástól. **Biz:** t = e + k + 1 - n, és a JO nem függ a síkbarajzolástól.



**Tétel:** Ha G SRt gráf, akkor n + t = e + k + 1. **Köv:** (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

(2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2. **Biz:** Mivel G öf, ezért a fenti Tételben k = 1.



Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és  $n \ge 3$ , akkor  $e \le 3n 6$ .

Biz: Ilyenkor G minden lapját legalább 3 él határolja, így a DKFL miatt  $2e = \sum_{i=1}^{t} \ell_i \geq 3t$ . A Tétel alapján

$$3n + 2e \ge 3n + 3t = 3e + 3k + 3 \ge 3e + 3 + 3 = 3e + 6$$
,

amit rendezve  $e \leq 3n - 6$  adódik.





**Tétel:** Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és  $n \geq 3$ , akkor  $e \leq 3n 6$ .
- (4) G egyszerű, SRható,  $C_3$ -mentes és  $n \ge 3 \Rightarrow e \le 2n 4$ .

Biz: Ilyenkor G minden lapját legalább 4 él határolja. A DKFL miatt  $2e = \sum_{i=1}^{t} \ell_i \ge 4t$ , így  $e \ge 2t$ . A Tétel miatt

$$2n + e \ge 2n + 2t = 2e + 2k + 2 \ge 2e + 2 + 2 = 2e + 4$$

Ezt rendezve e < 2n - 4 adódik.





**Tétel:** Ha G SRt gráf, akkor n+t=e+k+1. **Köv:** (1) Ha G SRható, akkor t nem függ a síkbarajzolástól. (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n+t=e+2. (3) Ha G egyszerű, SRható és  $n \geq 3$ , akkor  $e \leq 3n-6$ . (4) G egyszerű, SRható,  $C_3$ -mentes és  $n \geq 3 \Rightarrow e \leq 2n-4$ .

(5) Ha G egyszerű, SRható, akkor  $\delta(G) \leq 5$  (azaz  $\exists v : d(v) \leq 5$ ).

Biz: A KFL és (3) miatt  $\sum_{v \in V(G)} d(v) = 2e \le 6n - 12$ . Ezért van olyan csúcs, amire  $d(v) \le \frac{6n-12}{n} < 6$ .



**Tétel:** Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és  $n \geq 3$ , akkor  $e \leq 3n 6$ .
- (4) G egyszerű, SRható,  $C_3$ -mentes és  $n \ge 3 \Rightarrow e \le 2n-4$ .
- (5) Ha G egyszerű, SRható, akkor  $\delta(G) \leq 5$  (azaz  $\exists v : d(v) \leq 5$ ).
- (6) A  $K_5$  és  $K_{3,3}$  gráfok egyike sem SRható.

Biz: A  $K_5$  gráf egyszerű, de nem teljesül (3), hiszen

 $|E(K_5)| = {5 \choose 2} = 10 \not \le 9 = 3 \cdot 5 - 6$ . Ezért  $K_5$  nem SRható.

A  $K_{3,3}$  gráf egyszerű és  $C_3$ -mentes, de nem teljesül rá (4), u.i.

 $|E(K_{3,3})| = 9 \not\leq 8 = 2 \cdot 6 - 4$ . Ezért  $K_{3,3}$  nem SRható.



Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és  $n \ge 3$ , akkor  $e \le 3n 6$ .
- (4) G egyszerű, SRható,  $C_3$ -mentes és  $n \ge 3 \Rightarrow e \le 2n 4$ .
- (5) Ha G egyszerű, SRható, akkor  $\delta(G) \leq 5$  (azaz  $\exists v : d(v) \leq 5$ ).
- (6) A  $K_5$  és  $K_{3,3}$  gráfok egyike sem SRható.

Megj: Könnyen látható, hogy ha G SRható, akkor G + e tóruszra rajzolható bármely e él behúzása esetén. Nem nehéz látni, hogy  $K_6$  is tóruszra rajzolható. Sőt: még  $K_7$  is az, de  $K_8$  már nem.



**Tétel**: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és  $n \geq 3$ , akkor  $e \leq 3n 6$ .
- (4) G egyszerű, SRható,  $C_3$ -mentes és  $n \ge 3 \Rightarrow e \le 2n 4$ .
- (5) Ha G egyszerű, SRható, akkor  $\delta(G) \leq 5$  (azaz  $\exists v : d(v) \leq 5$ ).
- (6) A  $K_5$  és  $K_{3,3}$  gráfok egyike sem SRható.

Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése.

Élösszehúzás: az él törlése és két végpontjának azonosítása.

Topologikus G (soros bővítés): G-ből élfelosztásokkal képzett gráf.

Megf: Az éltörlés, csúcstörlés, élfelosztás, élösszehúzás operációk mindegyike megőrzi a gráf SRható tulajdonságát.

Köv: (1) Top.  $K_5$ , top.  $K_{3,3}$  nem SRható. (2) Ha G SRható, akkor

G-nek nincs se topologikus  $K_5$ , se topologikus  $K_{3,3}$ -részgráfja.



Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és  $n \ge 3$ , akkor  $e \le 3n 6$ .
- (4) G egyszerű, SRható,  $C_3$ -mentes és  $n \ge 3 \Rightarrow e \le 2n-4$ .
- (5) Ha G egyszerű, SRható, akkor  $\delta(G) \leq 5$  (azaz  $\exists v : d(v) \leq 5$ ).
- (6) A  $K_5$  és  $K_{3,3}$  gráfok egyike sem SRható.

Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése.

Élösszehúzás: az él törlése és két végpontjának azonosítása.

Topologikus G (soros bővítés): G-ből élfelosztásokkal képzett gráf.

Köv: (1) Top.  $K_5$ , top.  $K_{3,3}$  nem SRható. (2) Ha G SRható, akkor

G-nek nincs se topologikus  $K_5$ , se topologikus  $K_{3,3}$  részgráfja.

Kuratowski tétele: (G SRható)  $\iff$  (G-nek nincs se topologikus

 $K_5$ , se topologikus  $K_{3,3}$  részgráfja) Példa: Petersen-gráf

### Síkgráfok duálisa



**Def:** A G SRt gráf duálisa a  $G^*$  gráf, ha  $G^*$  csúcsai G tartományainak,  $G^*$  élei G éleinek felelnek meg. Az  $uv \in E(G)$  élnek megfelelő duális él az uv él altal határolt két tartománynak megfelelő duális csúcsokat köti össze.

Megf: (1) A SRt G gráf  $G^*$  duálisa SRható.  $(n^*, e^*, t^*, k^*)$ 

- (2)  $n^* = t$ ,  $e^* = e$ ,  $k^* = 1$ .
- (3) Ha v az i-dik laphoz tartozó duális csúcs, akkor  $d_{G^*}(v) = \ell_i$ .

Köv: KFL a duálisra  $\sum_{i=1}^{t} \ell_i = \sum_{v \in V(G^*)} d_{G^*}(v) = 2e^* = 2e$ .



**Def:** A G SRt gráf duálisa a  $G^*$  gráf, ha  $G^*$  csúcsai G tartományainak,  $G^*$  élei G éleinek felelnek meg. Az  $uv \in E(G)$  élnek megfelelő duális él az uv él altal határolt két tartománynak megfelelő duális csúcsokat köti össze.

Megf: (1) A SRt G gráf  $G^*$  duálisa SRható.  $(n^*, e^*, t^*, k^*)$ 

- (2)  $n^* = t$ ,  $e^* = e$ ,  $k^* = 1$ .
- (3) Ha v az i-dik laphoz tartozó duális csúcs, akkor  $d_{G^*}(v) = \ell_i$ . **Def**: A  $Q \subseteq E(G)$  élhalmaz a G gráf vágása, ha G Q szétesik (több komponense van, mint G-nek), de  $Q' \subsetneq Q$  esetén G Q' nem esik szét. Elvágó él: egyélű vágás. Soros élek: kétélű vágás. Kör-vágás dualitás: Tfh  $G^*$  a G SRt gráf duálisa. Ekkor

 $(C \text{ a } G \text{ k\"ore}) \iff (C^* \text{ a } G^* \text{ v\'ag\'asa}) \text{ ill.}$ 

 $(Q \text{ a } G \text{ vágása}) \Longleftrightarrow (Q^* \text{ a } G^* \text{ köre})$  .

Köv: Hurokél duálisa elvágó él, soros élpáré párhuzamos élpár.

### Whitney



Whitney tétele: Tfh  $G^*$  a G SRt gráf duálisa. Ekkor H pontosan akkor duálisa a G egy alkalmas síkbarajzolásának, ha H előáll  $G^*$ -ból a fenti Whitney-operációk alkalmas egymásutánjával. Def: A  $\varphi$  :  $E(G) \rightarrow E(H)$  kölcs. egyért. lekép. kör-vágás dualitás G és H között, ha C pontosan akkor G köre, ha  $\varphi(C)$  H vágása. Whitney másik tétele: Tfh G és H között kör-vágás dualitás van. Ekkor G SRható, és H a G egy alkalmas síkbarajzolásának duálisa. Megj: Egy G gráf által leírt villamos hálózat viselkedését az Ohmél Kirchhoff-törvények írják le. Ezek a G gráf éleire, köreire és vágásaira vonatkoznak. Ha G és H közt kör-vágás dualitás van, akkor H-n elkészíthető az előző hálózat duálisa. Az eredeti hálózat megoldásában ha az l és U értékeket felcseréljük, az utóbbi hálózat megoldását kapjuk. Whitney másik tétele miatt ez a különös szimmetria csak SRható gráfok által leírt hálózatokon lehetséges.