Домашна работа 2 Увод в теория на кодирането

Кристиян Стоименов ф.н 3МI0400121, ФМИ

Май 2023

Задача 1

Да се напише векторът, който съответства на булевата функция $f = 1 + v_3 + v_1 v_2$

- ullet ако f е функция на три променливи
- \bullet ако f е функция на четири променливи

Решение:

Ако f е функция на три промеливи:

Откриваме стойностите за f като заместим v_1 , v_2 и v_3 в полинома, вземайки стойности от всеки един от редовете. Решението е написано на Таблица 1.

Стойност	v_1	v_2	v_3	f
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

Таблица 1: Стойности на $f(v_1, v_2, v_3) = 1 + v_3 + v_1 v_2$

 $A \kappa o f e \phi y н \kappa u u s на четири промеливи:$

Тъй като v_4 не участва в полинома, то неговата стойност няма отражение върху функционалната стойност. Поради тази причина, няма нужда отново да смятаме $f(v_1, v_2, v_3, *)$. Решението е написано на Таблица 2.

Задача 2

Да се намери полинома на Жегалкин, съответстващ на f, зададена със Таблица 3.

Решение:

Стойност	v_1	v_2	v_3	v_4	f
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0

Стойност	x_1	x_2	x_3	x_4	f
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	0	0	0
11	1	0	1	1	0
12	1	1	1	0	0
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	1

Таблица 2: Стойности на $f(v_1, v_2, v_3, v_4) = 1 + v_3 + v_1 v_2$

Стойност	x_1	x_2	x_3	x_4	f
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0

Стойност	x_1	x_2	x_3	x_4	f
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

 ${}$ Таблица 3: Φ ункцията f, чието представяне чрез полином се т 2 рси в 2 Задача .

Представяме функцията f като функция с един по-малко аргумент и други две функции f_0 и f_1 . Извършваме аналгични действия, докато не стигнем до функция на една променлива, чиято стойност можем да определим непострествено - това са функциите f_{***} .

$$f_{000} = 1$$

$$f = (1 + x_1)f_0 + x_1f_1$$

$$f_{001} = x_4$$

$$f_{0} = (1 + x_2)f_{00} + x_2f_{01}$$

$$f_{010} = 0$$

$$f_{1} = (1 + x_2)f_{10} + x_2f_{11}$$

$$f_{011} = 0$$

$$f_{00} = (1 + x_3)f_{000} + x_3f_{001}$$

$$f_{100} = 1 + x_4$$

$$f_{01} = (1 + x_3)f_{100} + x_3f_{101}$$

$$f_{101} = 1$$

$$f_{10} = (1 + x_3)f_{100} + x_3f_{101}$$

$$f_{110} = x_4$$

$$f_{111} = 1$$

Сега "се връщаме нагоре за да получим полином за функцията f.

$$f_{00} = (1+x_3)f_{000} + x_3f_{001} = (1+x_3) + x_3x_4 = 1 + x_3x_4 + x_3$$

$$f_{01} = (1+x_3)f_{010} + x_3f_{011} = (1+x_3).0 + x_3.0 = 0$$

$$f_{10} = (1+x_3)f_{100} + x_3f_{101} = (1+x_3)(1+x_4) + x_3 = 1 + x_3x_4 + x_4$$

$$f_{11} = (1+x_3)f_{110} + x_3f_{111} = (1+x_3)x_4 + x_3 = x_3x_4 + x_3 + x_4$$

$$f_0 = (1+x_2)f_{00} + x_2f_{01} = (1+x_2)(1+x_3x_4+x_3) + x_2.0 = 1 + x_3x_4 + x_3 + x_2 + x_2x_3x_4 + x_2x_3$$

$$f_1 = (1+x_2)f_{10} + x_2f_{11} = (1+x_2)(1+x_3x_4+x_4) + x_2(x_3x_4+x_3+x_4) = 1 + x_3x_4 + x_2x_3 + x_4 + x_2$$

$$f = (1+x_1)f_0 + x_1f_1 = (1+x_1)(1+x_3x_4 + x_3 + x_2 + x_2x_3x_4 + x_2x_3) + x_1(1+x_2x_3 + x_3x_4 + x_2 + x_4) = 1 + x_1x_2x_3x_4 + x_2x_3x_4 + x_1x_4 + x_1x_3 + x_2x_3 + x_3x_4 + x_2 + x_3$$

Задача 3

Да се опишат параметрите на всички RM кодове на пет промеливи и да се посочи количеството грешки, които могат да поправят.

Решение:

Щом разглеждаме код на пет промеливи, то той ще съдържа всички двоични вектори с дължина $2^5 = 32$ (т. е m = 5). Също така най-високата възможна степен за едночлен, и респективно за полиноми, е 5. Тогава трябва да изследваме RM(r,5), където $0 \le r \le 5$.

Дължината на кодовите думи е фиксирана: 2^5 . При зададено r от посочения интервал размерността k пресмятаме като

$$k = \sum_{i=0}^{r} \binom{m}{i}$$

За минималното разстояние знаем, че се получава като $d=2^{m-r}$. Количеството грешки, които открива коът е $\leq 2^{m-r}-1$, а количеството на тези, които поправя -

$$t \le \lfloor \frac{2^{m-r}-1}{2} \rfloor$$

Обобщено получаваме

Код	Параметри	Γ раница за t
RM(0,5)	[32, 1, 32]	$t \le 15$
RM(1,5)	[32, 6, 16]	$t \leq 7$
RM(2,5)	[32, 16, 8]	$t \leq 3$
RM(3,5)	[32, 26, 4]	$t \leq 1$
RM(4,5)	[32, 31, 2]	$t \le 0$
RM(5,5)	[32, 32, 1]	$t \le 0$

Таблица 4: Описание на кодове RM(r,5), където $0 \le r \le 5$

3

Задача 4

Да се напише пораждащата матрица на кода RM(1,4) и да се декодират следните вектори чрез декодера на Pид:

- y = 1000010111100101
- z = 1001011001101001
- t = 1110111011101110

Решение:

Размерността на кода е

$$k = \sum_{i=0}^{1} {4 \choose i} = {4 \choose 0} + {4 \choose 1} = 5,$$

а дължината на всеки вектор от него е

$$2^4 = 16.$$

В пораждащата матрица трябва да включим двоичните вектои, съответстващи на едночлени от степени 0 и 1 (<=r, където r=1).

Аналогично прилагаме и за $f = x_2$, $f = x_3$ и $f = x_4$, за да получим още четири вектора. Накрая, получените вектори подреждаме в матрица, за да получим пораждащата:

Декодираме получена дума y, търсейки изпратения информационен вектор $a=(a_1,a_2,a_3,a_4,a_5)$. Връзката между двете е чрез пораждащата матрица:

$$y = a.G = (a_1, a_1 + a_5, a_1 + a_4, a_1 + a_4 + a_5, a_1 + a_3, a_1 + a_3 + a_5, a_1 + a_3 + a_4, a_1 + a_3 + a_4 + a_5, a_1 + a_2, a_1 + a_2 + a_5, a_1 + a_2 + a_4, a_1 + a_2 + a_4 + a_5, a_1 + a_2 + a_3, a_1 + a_2 + a_3 + a_5, a_1 + a_2 + a_3 + a_4, a_1 + a_2 + a_3 + a_4 + a_5)$$

Ако полученият вектор $y = (y_1, y_2, \dots, y_{16})$, то можем да получим следните равенства:

$$y_1 = a_1$$

$$y_9 = a_1 + a_2 = y_1 + a_2 \Rightarrow a_2 = y_1 + y_9$$

$$y_{10} = a_1 + a_2 + a_5 = a_2 + (a_1 + a_5) = y_2 + a_2 \Rightarrow a_2 = y_2 + y_{10}$$

$$y_{11} = a_1 + a_2 + a_4 = a_2 + (a_1 + a_4) = a_2 + y_3 \Rightarrow a_2 = y_3 + y_{11}$$

$$y_{12} = a_1 + a_2 + a_4 + a_5 = a_2 + (a_1 + a_4 + a_5) = a_2 + y_4 \Rightarrow a_2 = y_4 + y_{12}$$

$$y_{13} = a_1 + a_2 + a_3 = a_2 + (a_1 + a_3) = a_2 + y_5 \Rightarrow a_2 = y_5 + y_{13}$$

$$y_{14} = a_1 + a_2 + a_3 + a_5 = a_2 + (a_1 + a_3 + a_5) = a_2 + y_6 \Rightarrow a_2 = y_6 + y_{14}$$

$$y_{15} = a_1 + a_2 + a_3 + a_4 = a_2 + (a_1 + a_3 + a_4) = a_2 + y_7 \Rightarrow a_2 = y_7 + y_{15}$$

$$y_{16} = a_1 + a_2 + a_3 + a_4 + a_5 = a_2 + (a_1 + a_3 + a_4 + a_5) = a_2 + y_8 \Rightarrow a_2 = y_8 + y_{16}$$

$$y_5 = a_3 + a_1 = a_3 + y_1 \Rightarrow a_3 = y_1 + y_5$$

$$y_6 = a_3 + (a_1 + a_5) = a_3 + y_2 \Rightarrow a_3 = y_2 + y_6$$

$$y_7 = a_3 + (a_1 + a_4) = a_3 + y_3 \Rightarrow a_3 = y_3 + y_7$$

$$y_8 = a_3 + (a_1 + a_3 + a_5) = a_3 + y_4 \Rightarrow a_3 = y_4 + y_8$$

$$y_{13} = a_3 + (a_1 + a_2) = a_3 + y_9 \Rightarrow a_3 = y_9 + y_{13}$$

$$y_{14} = a_3 + (a_1 + a_2 + a_5) = a_3 + y_{10} \Rightarrow a_3 = y_{10} + y_{14}$$

$$y_{15} = a_3 + (a_1 + a_2 + a_4) = a_3 + y_{11} \Rightarrow a_3 = y_{11} + y_{15}$$

$$y_{16} = a_3 + (a_1 + a_2 + a_4 + a_5) = a_3 + y_{12} \Rightarrow a_3 = y_{12} + y_{16}$$

$$y_3 = a_4 + a_1 = a_4 + y_1 \Rightarrow a_4 = y_1 + y_3$$

$$y_4 = a_4 + (a_1 + a_5) = a_4 + y_2 \Rightarrow a_4 = y_2 + y_4$$

$$y_7 = a_4 + (a_1 + a_3) = a_4 + y_5 \Rightarrow a_4 = y_5 + y_7$$

$$y_8 = a_4 + (a_1 + a_3 + a_5) = a_4 + y_6 \Rightarrow a_4 = y_6 + y_8$$

$$y_{11} = a_4 + (a_1 + a_2) = a_4 + y_9 \Rightarrow a_4 = y_9 + y_{11}$$

$$y_{12} = a_4 + (a_1 + a_2 + a_5) = a_4 + y_{10} \Rightarrow a_4 = y_{10} + y_{11}$$

$$y_{15} = a_4 + (a_1 + a_2 + a_3) = a_4 + y_{13} \Rightarrow a_4 = y_{13} + y_{15}$$

$$y_{16} = a_4 + (a_1 + a_2 + a_3 + a_5) = a_4 + y_{14} \Rightarrow a_4 = y_{14} + y_{16}$$

$$y_2 = a_5 + a_1 = a_5 + y_1 \Rightarrow a_5 = y_1 + y_2$$

$$y_4 = a_5 + (a_1 + a_4) = a_5 + y_3 \Rightarrow a_5 = y_3 + y_4$$

$$y_6 = a_5 + (a_1 + a_3) = a_5 + y_5 \Rightarrow a_5 = y_5 + y_6$$

$$y_8 = a_5 + (a_1 + a_3 + a_4) = a_5 + y_7 \Rightarrow a_5 = y_7 + y_8$$

$$y_{10} = a_5 + (a_1 + a_2) = a_5 + y_9 \Rightarrow a_5 = y_9 + y_{10}$$

$$y_{12} = a_5 + (a_1 + a_2 + a_4) = a_5 + y_{11} \Rightarrow a_5 = y_{11} + y_{12}$$

$$y_{14} = a_5 + (a_1 + a_2 + a_3) = a_5 + y_{13} \Rightarrow a_5 = y_{13} + y_{14}$$

$$y_{16} = a_5 + (a_1 + a_2 + a_3 + a_4) = a_5 + y_{15} \Rightarrow a_5 = y_{15} + y_{16}$$

Обобщено:

$$a_1 = y_1$$

$$a_2 = y_1 + y_9 = y_2 + y_{10} = y_3 + y_{11} = y_4 + y_{12} = y_5 + y_{13} = y_6 + y_{14} = y_7 + y_{15} = y_8 + y_{16}$$

$$a_3 = y_1 + y_5 = y_2 + y_6 = y_3 + y_7 = y_4 + y_8 = y_9 + y_{13} = y_{10} + y_{14} = y_{11} + y_{15} = y_{12} + y_{16}$$

$$a_4 = y_1 + y_3 = y_2 + y_4 = y_5 + y_7 = y_6 + y_8 = y_9 + y_{11} = y_{10} + y_{12} = y_{13} + y_{15} = y_{14} + y_{16}$$

$$a_5 = y_1 + y_2 = y_3 + y_4 = y_5 + y_6 = y_7 + y_8 = y_9 + y_{10} = y_{11} + y_{12} = y_{13} + y_{14} = y_{15} + y_{16}$$

Нека получената кодова дума за декодиране е y = (1000010111100101). Тогава пресмятаме всички възможни стойности за всеки един от битовете на информационния вектор, за да получим

Бит	Брой на "0"	Брой на "1"	Стойност
a_1	-	-	1
a_2	6	2	0
a_3	2	6	1
a_4	6	2	0
a_5	2	6	1

Таблица 5: Декодиране на y = (10000101111100101)

Окончателно получаваме, че думата y се декодира до 10101.

Нека сега получената кодова дума за декодиране е z = (1001011001101001). Тогава пресмятаме по сходен начин

Бит	Брой на "0"	Брой на "1"	Стойност
a_1	-	-	1
a_2	0	8	1
a_3	0	8	1
a_4	0	8	0
a_5	0	8	1

Таблица 6: Декодиране на z = (1001011001101001)

Окончателно получаваме, че думата z се декодира до 11111.

Нека накрая получената кодова дума да бъде t = (1110111011101110). Тогава пресмятаме по сходен начин

Бит	Брой на "0"	Брой на "1"	Стойност
a_1	-	-	1
a_2	8	0	0
a_3	8	0	0
a_4	4	4	-
a_5	4	4	-

Таблица 7: Декодиране на t = (1110111011101110)

Така можем да заключим, че t не се декодира недвусмислено.

Задача 5

Да се декодират следните вектори чрез постъпково мажоритарно декодиране, приложено върху RM(1,3) код:

- y = 10111010
- z = 10011001
- t = 01110111

Решение:

При RM(1,3) се интересуваме от точките на афинната геометрия AG(3,2), които са $P_0=(000)$, $P_1=(001)$, $P_2=(010)$, $P_3=(011)$, $P_4=(100)$, $P_5=(101)$, $P_6=(110)$, $P_7=(111)$.

Нека разглеждаме получените вектори като характеристични вектори на подмножество от точки от афинната геометрия AG(3,2).

$$\begin{split} M_y &= \{P_0, P_2, P_3, P_4, P_6\} \subset AG(3, 2), \\ M_z &= \{P_0, P_3, P_4, P_7\} \subset AG(3, 2), \\ M_t &= \{P_1, P_2, P_3, P_5, P_6, P_7\} \subset AG(3, 2) \end{split}$$

Разглеждаме всички равнини (двумерни подпространства на AG(3,2)) и тяхната четност при пресичане с тези подмножества от точки M като ги подреждаме в таблица.

Разглеждаме всички прави, зададени чрез две от точките P и техните четности, определени от четностите на равнините, в които се срещат. Представяме ги сходно на това равнините и техните четности.

Накрая разглеждаме и четностите на точките в съответните подмножества.

За изпратени кодови думи получаваме съответно

$$a_y = (),$$

 $a_z = (),$
 $a_t = ().$

Споменатите таблици се намират на следващата страница.

								Права	M_y	M_z	M_t
Равнина	M_y	M_z	M_t	Равнина	M_y	M_z	M_t	P_0, P_1	0	0	1
P_0, P_1, P_2, P_3	1	0	1	P_1, P_2, P_3, P_4	1	0	1	P_{0}, P_{2}	1	0	1
P_0, P_1, P_2, P_4	1	0	0	P_1, P_2, P_3, P_5	0	1	0	P_0, P_3	1	1	1
P_0, P_1, P_2, P_5	0	1	1	P_1, P_2, P_3, P_6	1	1	0	P_0, P_4	1	1	0
P_0, P_1, P_2, P_6	1	1	1	P_1, P_2, P_3, P_7	0	0	0	P_0, P_5	0	0	1
P_0, P_1, P_2, P_7	0	0	1	P_1, P_2, P_4, P_5	0	1	1	P_0, P_6	1	0	1
P_0, P_1, P_3, P_4	1	1	0	P_1, P_2, P_4, P_6	1	1	1	P_0, P_7	0	1	1
P_0, P_1, P_3, P_5	0	0	1	P_1, P_2, P_4, P_7	0	0	1	P_1, P_2	0	1	1
P_0, P_1, P_3, P_6	1	0	1	P_1, P_2, P_5, P_6	0	0	0	P_1, P_3	0	0	1
P_0, P_1, P_3, P_7	0	1	1	P_1, P_2, P_5, P_7	1	1	0	P_1, P_4	0	0	1
P_0, P_1, P_4, P_5	0	0	0	P_1, P_2, P_6, P_7	0	1	0	P_1, P_5	0	1	1
P_0, P_1, P_4, P_6	1	0	0	P_1, P_3, P_4, P_5	0	0	1	P_1, P_6	0	1	1
P_0, P_1, P_4, P_7	0	1	0	P_1, P_3, P_4, P_6	1	0	1	P_1, P_7	0	0	1
P_0, P_1, P_5, P_6	0	1	1	P_1, P_3, P_4, P_7	0	1	1	P_2, P_3	1	0	1
P_0, P_1, P_5, P_7	1	0	1	P_1, P_3, P_5, P_6	0	1	0	P_2, P_4	1	0	1
P_0, P_1, P_6, P_7	0	0	1	P_1, P_3, P_5, P_7	1	0	0	P_2, P_5	0	1	1
P_0, P_2, P_3, P_4	0	1	0	P_1, P_3, P_6, P_7	0	0	0	P_2, P_6	1	1	1
P_0, P_2, P_3, P_5	1	0	1	P_1, P_4, P_5, P_6	0	1	1	P_2, P_7	0	0	1
P_0, P_2, P_3, P_6	0	0	1	P_1, P_4, P_5, P_7	1	0	1	P_3, P_4	1	1	1
P_0, P_2, P_3, P_7	1	1	1	P_1, P_4, P_6, P_7	0	0	1	P_3, P_5	0	0	1
P_0, P_2, P_4, P_5	1	0	0	P_1, P_5, P_6, P_7	1	1	0	P_3, P_6	1	0	1
P_0, P_2, P_4, P_6	0	0	0	P_2, P_3, P_4, P_5	1	0	1	P_3, P_7	0	1	1
P_0, P_2, P_4, P_7	1	1	0	P_2, P_3, P_4, P_6	0	0	1	P_4, P_5	0	0	1
P_0, P_2, P_5, P_6	1	1	1	P_2, P_3, P_4, P_7	1	1	1	P_4, P_6	1	0	1
P_0, P_2, P_5, P_7	0	0	1	P_2, P_3, P_5, P_6	1	1	0	P_4, P_7	0	1	1
P_0, P_2, P_6, P_7	1	0	1	P_2, P_3, P_5, P_7	0	0	0	P_5, P_6	0	1	1
P_0, P_3, P_4, P_5	1	1	0	P_2, P_3, P_6, P_7	1	0	0	P_5, P_7	0	0	1
P_0, P_3, P_4, P_6	0	1	0	P_2, P_4, P_5, P_6	1	1	1	P_6, P_7	0	0	1
P_0, P_3, P_4, P_7	1	0	0	P_2, P_4, P_5, P_7	0	0	1	Точка	M_y	M_z	M_t
P_0, P_3, P_5, P_6	1	0	1	P_2, P_4, P_6, P_7	1	0	1				
P_0, P_3, P_5, P_7	0	1	1	P_2, P_5, P_6, P_7	0	1	0	P_0	0	0	1
P_0, P_3, P_6, P_7	1	1	1	P_3, P_4, P_5, P_6	1	0	1	P_1	1	0	1
P_0, P_4, P_5, P_6	1	0	0	P_3, P_4, P_5, P_7	0	1	1	P_2	1	1	1
P_0, P_4, P_5, P_7	0	1	0	P_3, P_4, P_6, P_7	1	1	1	P_3	1	1	0
P_0, P_4, P_6, P_7	1	1	0	P_3, P_5, P_6, P_7	0	0	0	P_4	0	0	1
P_0, P_5, P_6, P_7	0	0	1	P_4, P_5, P_6, P_7	0	0	1	P_5	1	0	1
								P_6	0	1	1
								P_7	0	1	1

Таблица 8: Подпространсва на AG(3,2) и техните четности спрямо множествата от точки зададени от подадените кодови вектори.