

CAPI SNAP Education Series: User Guide

CAPI SNAP Education hls_memcopy : howto? V2.3

Action overview

<u>Purpose:</u> Transferring data between different resources :

- host memory,
- DDR,
- NVMe (soon)

When to use it:

- Understand Basic access to different interfaces
- Memcopy benchmarking

Memory management:

- Application is managing address of Host memory and DDR
- Action is testing if size of transfer is greater than DRAM size (see constants)
- Size of buffer (BRAM) used to copy data can be configured (see constants)

Known limitations:

- HLS requires transfers to be 64 byte aligned and a size of multiples of 64 bytes
- DDR simulation model reads will return wrong values if non 64 bytes words or non initialized words are read (this is due to the simulation model only)

CAPI SNAP Enabled Card

Action usage (1/2)


```
Usage: ./snap_memcopy [-h] [-v, --verbose] [-V, --version]

-C, --card <cardno> can be (0...3)

-i, --input <file.bin> input file.

-o, --output <file.bin> output file.

-A, --type-in <CARD_DRAM, HOST_DRAM, ...>.

-a, --addr-in <addr> address e.g. in CARD_RAM.

-D, --type-out <CARD_DRAM, HOST_DRAM, ...>.

-d, --addr-out <addr> address e.g. in CARD_RAM.

-s, --size <size> size of data.

-t, --timeout Timeout in sec to wait for done. (10 sec default)

-X, --verify verify result if possible (only CARD_DRAM)

-N, --no irg Disable IROs
```

Example:

```
export SNAP TRACE=0x0
snap_maint -vv

echo move 4kB from Host to DDR@0x0 and back from DDR@0x0 to Host
rm t2; dd if=/dev/urandom of=t1 bs=1K count=4
SNAP CONFIG=FPGA snap_memcopy -i t1 -D CARD_DRAM -d 0x0
SNAP_CONFIG=FPGA snap_memcopy -o t2 -A CARD_DRAM -a 0x0 -s0x1000

diff t1 t2
  if diff t1 t2 >/dev/null; then echo "RC=$rc file_diff ok"; else
    echo -e "$t RC=$rc file_diff is wrong\n$del"; exit 1;
fi
```

```
Options: (default option in bold)

SNAP_TRACE = 0x0 → no debug trace

SNAP_TRACE = 0xF → full debug trace

SNAP_CONFIG = FPGA → hardware execution

SNAP_CONFIG = CPU → software execution
```

Action usage (2/2)

Different cases that can be run

```
snap maint -vv -C0
echo create a 512MB file with random data ...wait...
rm t2; dd if=/dev/urandom of=t1 bs=1M count=512
echo READ 512MB from Host - one direction
snap memcopy -C0 -i t1
echo WRITE 512MB to Host - one direction - (t1!=t2 since buffer is 256KB)
snap memcopy -C0 -o t2 -s0x2000 0000
echo READ 512MB from DDR - one direction
snap memcopy -C0 -s0x2000 0000 -ACARD DRAM -a0x0
echo WRITE 512MB to DDR - one direction
snap memcopy -C0 -s0x2000 0000 -DCARD DRAM -d0x0
Move 4KB from Host to DDR and back to Host and compare
rm t2; dd if=/dev/urandom of=t1 bs=1K count=4
snap memcopy -i t1 -D CARD DRAM -d 0x0
snap memcopy -o t2 -A CARD DRAM -a 0x0 -s0x1000
diff t1 t2
echo same test using polling instead of IRQ waiting for the result
snap memcopy -o t2 -A CARD DRAM -a 0x0 -s0x1000 -N
```

Take in account that running on a simulator is far more slow than an execution on a FPGA:

→ moving 512MB with a simulator is a HUGE challenge. May be just trying 4K should be sufficient!

memcopy registers

Application Code + software action code : what's in it?

Hardware action Code: what's in it?

Constants - Ports

Constants: → \$ACTION_ROOT = snap/actions/hls_memcopy

Constant name	Value	Туре	Definition location	Usage
MEMCOPY_ACTION_TYPE	0x10141000	Fixed	\$ACTION_ROOT/include/action_memcopy.h	memcopy ID - list is in snap/ActionTypes.md
RELEASE_LEVEL	0x00000023	Variable	\$ACTION_ROOT/hw/hw_action_memcopy. H	release level – user defined
MAX_NB_OF_BYTES_READ	(256 * 1024)	Variable	\$ACTION_ROOT/hw/hw_action_memcopy. H	Max size in Bytes of the buffer for read/write access
MAX_NB_OF_WORDS_READ	(MAX_NB_OF_BYTES_READ/BPERDW)	Operation	\$ACTION_ROOT/hw/hw_action_memcopy. H	Max size in 64B words of the buffer for read/write access
CARD_DRAM_SIZE	(1 * 1024 *1024 * 1024)	Variable	SACTION ROOT/NW/NW action memcony H	Max size of the DDR - prevents from moving data with a size larger than this value

Ports used:

Ports name	Description	Enabled
	Host memory data bus input Addr : 64bits - Data : 512bits	Yes
	Host memory data bus output Addr : 64bits - Data : 512bits	Yes
d_ddrmem	DDR3 - DDR4 data bus in/out Addr : 33bits - Data : 512bits	Yes
nvme	NVMe data bus in/out Addr : 32bits - Data : 32bits	No (soon)

MMIO Registers

Read and	Write are c	onsidered j	from the application / s	software side						
act_reg.Control This header is initialized by the SNAP job manager. The action will update the Return code and rea						ad the flags v	alue.			
cor	CONTROL If the flags value is 0, then action sends only the action_RO_config_reg value and exit the action, otherwise it will process the action									
Simu - WR	Write@	Read@	3 2 1		0	Typical Write value		Typical Read value		
0x3C40	0x100	0x180	seque	ence	flags	short action type	f001_01_00			
0x3C41	0x104	0x184	Retc (return code 0x102/0x104)				0		0x102 - 0x104	SUCCESS/FAILURE
0x3C42	0x108	0x188	Private Data				c0febabe			
0x3C43	0x10C	0x18C		Private Data			deadbeef			
action_	reg.Data	Action sp	ecific - user defined - n	eed to stay in 108 By	tes					
_	reg.Data py_job_t					gh this set of registers				
_						gh this set of registers	Typical V	/rite value	Туріса	Read value
_	py_job_t	This is th	e way for application a	nd action to exchang		1	Typical W	/rite value	Typica	Read value
memco	py_job_t Write@	This is the	e way for application a	nd action to exchang 2 snap_addr.	ge information throu	1	Typical V	/rite value	Typica	Read value
<i>memco</i> 0x3C44	write@ 0x110	This is the Read@ 0x190	e way for application a	2 snap_addr. snap_addr.	ge information throu 1 addr_in (LSB)	1	Typical W	/rite value	Typica	Read value
0x3C44 0x3C45	write@ 0x110 0x114	This is the Read@ 0x190 0x194	e way for application a	nd action to exchang 2 snap_addr.a snap_addr.a	ge information throu 1 addr_in (LSB) addr_in (MSB) ddr_in.size	1	Typical W	/rite value	Typica	Read value
0x3C44 0x3C45 0x3C46	Write@ 0x110 0x114 0x118	This is the Read@ 0x190 0x194 0x198	e way for application a 3	2 snap_addr. snap_addr. snap_ac	ge information throu 1 addr_in (LSB) addr_in (MSB) ddr_in.size	0	Typical V	/rite value	Typica	Read value
0x3C44 0x3C45 0x3C46 0x3C47	Write@ 0x110 0x114 0x118 0x11C	This is the Read@ 0x190 0x194 0x198 0x19C	e way for application a 3	2 snap_addr. snap_addr. snap_addr. snap_addr.a	addr_in (MSB) ddr_in.size snap.addr_in.type	0	Typical W	/rite value	Typica	Read value
0x3C44 0x3C45 0x3C46 0x3C47 0x3C48	write@ 0x110 0x114 0x118 0x11C 0x120	This is the Read@ 0x190 0x194 0x198 0x19C 0x1A0	e way for application a 3	snap_addr.a snap_addr.a snap_addr.a snap_ad gs (SRC, DST,) snap_addr.a snap_addr.a	addr_in (LSB) addr_in (MSB) ddr_in.size snap.addr_in.type addr_out (LSB)	0	Typical V	/rite value	Typica	Read value

```
$ACTION_ROOT/hw/hw_action_memcopy.H
                                                                                 $SNAP_ROOT/actions/include/hls_snap.H
                                                                                 typedef struct {
typedef struct {
                                                                                     snapu8_t sat; // short action type
    CONTROL Control;
                           /* 16 bytes */
                                                                                     snapu8 t flags;
    memcopy_job_t Data; /* 108 bytes */
                                                                                     snapu16 t seq;
    uint8_t padding[SNAP_HLS_JOBSIZE - sizeof(memcopy_job_t)];
                                                                                     snapu32 t Retc;
} action_reg;
                                                                                     snapu64 t Reserved; // Priv data
                                                                                 CONTROL:
     $ACTION ROOT/include/action memcopy.h
     typedef struct memcopy_job {
         struct snap_addr in; /* input data */
          struct snap_addr out; /* output data */
     } memcopy_job_t;
```

\$SNAP_ROOT/software/include/snap_types.h

typedef struct snap_addr {
 uint64_t addr;
 uint32_t size;

snap_addrtype_t type; snap_addrflag_t flags;

/* DRAM, NVME, ... */
/* SRC, DST, EXT, ... */

} snap_addr_t;

Performances measurements

Measurements on ADKU3 card

hls_memcopy / ADKU3 board	1-direction access				
256KBytes buffer - 64 access/burst	Read from Host	Write to Host	Read from DDR3	Write to DDR3	
Bytes transfered	BW (GBps)	BW (GBps)	BW (GBps)	BW (GBps)	
512MB memory area transfer	3.337	3.305	10.336	9.584	

To run these performances, run the following:

```
snap_find_card -A ADKU3
1
snap_maint -vvv -C1
echo create a 512MB file ...wait...
dd if=/dev/urandom of=t1 bs=1M count=512
echo READ 512MB from Host
snap_memcopy -C1 -i t1
echo WRITE 512MB to Host
snap_memcopy -C1 -o t2 -s0x2000_0000
echo READ 512MB from DDR
snap_memcopy -C1 -s0x2000_0000 -ACARD_DRAM -a0x0
echo WRITE 512MB to DDR
snap_memcopy -C1 -s0x2000_0000 -DCARD_DRAM -d0x0
```

Latency to access DDR3 memory:

Read: from HLS_action request to data in HLS: 232ns
Write: from HLS_action request to data in DDR: 226ns

Performances measurements

Measurements on N250S card

hls_memcopy / N250S board	1-direction access				
256KBytes buffer - 64 access/burst	Read from Host	Write to Host	Read from DDR4	Write to DDR4	
Bytes transfered	BW (GBps)	BW (GBps)	BW (GBps)	BW (GBps)	
512MB memory area transfer	3.166	3.569	14.854	13.524	

Latency to access DDR4 memory:

Read: from HLS_action request to data in HLS: 184ns
Write: from HLS_action request to data in DDR: 105ns

To run these performances, run the following:

```
snap_find_card -A N250S
0
snap_maint -vvv -C0
echo create a 512MB file ...wait...
dd if=/dev/urandom of=t1 bs=1M count=512
echo READ 512MB from Host
snap_memcopy -C0 -i t1
echo WRITE 512MB to Host
snap_memcopy -C0 -o t2 -s0x2000_0000
echo READ 512MB from DDR
snap_memcopy -C0 -s0x2000_0000 -ACARD_DRAM -a0x0
echo WRITE 512MB to DDR
snap_memcopy -C0 -s0x2000_0000 -DCARD_DRAM -d0x0
```

Path of improvements

1. HLS memcpy function waits for the end of the request before starting a new one. Being able to parallelize reads with writes since both ports are independent would increase performance since the DMA is able to pipeline requests.

V2.0: initial document

V2.1: new files directory structure applied

V2.2: changes to have one direction access to get real performances

V2.3: simplification of paths thanks to new SNAP features - updates in documentation – Issue#320 circumvention removed