Name: Mostafa Mahmoud Khalil Hassan

No: 452

Procedure

a- Note down ratings and determine the rated currents for both the windings.

S(kVA) V1(V)		V2(V)	I1(A)	I2(A)	f(Hz)
16.750	970	194	17.26804124	86.34020619	50

Short-Circuit Test:

> Connect the circuit such that the transformer secondary is short circuited, keep the primary voltage at rated value

V ₁ =V _{rated}	l ₁	Psc		
970	190.7	131045.5920444		

Adjust the output of the autotransformer such that rated current flows through the windings. Record the applied voltage, current and input power.

V_1	l ₁	Psc		
87	17.1	1054.186906575		

Calculate R_{eq} and X_{eq}. (compare with R₁, R₂, X₁ and X₂)

$$Z_{sc} = \frac{V_{sc}}{I_{sc}} = \frac{87}{17.1} = 5.0877 \,\Omega$$

$$R_{eq} = R_{sc} = \frac{P_{sc}}{I_{sc}^2} = \frac{1054.1869}{17.1^2} = 3.60516 \,\Omega$$

$$X_{eq} = X_{sc} = \sqrt{{Z_{sc}}^2 - {R_{sc}}^2} = \sqrt{5.0877^2 - 3.60516^2} = 3.589918 \,\Omega$$

$$\cos(\varphi_{sc}) = \frac{P_{sc}}{I_{sc} V_{sc}} = \frac{1054.186906575}{87 * 17.1} = 0.70860$$

$$\varphi_{sc} = 44.8787^{\circ}$$

$$R_1 = 1.4043283 \Omega$$
 $R_2 = 0.087771 \Omega$

$$R_2 = 0.087771 \,\Omega$$

$$\frac{V_1}{V_2} = \frac{970}{194} = 5$$

$$\therefore R_2' = 0.087771 * 5^2 = 2.194275$$

$$R_2' + R_1 = R_{eq} = 2.194275 + 1.4043283 = 3.5986 \Omega$$

$$X_1 = j\omega L = j2\pi f L_1 = j2\pi * 50 * 0.004472 = 1.40492 \Omega$$

$$X_2 = j\omega L = j2\pi f L_2 = j2\pi * 50 * 0.00028 = 0.08796 \Omega$$

$$X_2' = 0.08796 * 25 = 2.199\Omega$$

$$X_2' + X_1 = X_{eq} = 3.89918\Omega$$

- No-Load Test:
 Connect the circuit such that the transformer secondary is short circuited
 - > Apply the rated voltage to the HV side and record primary current and power drawn from the source.

(Note: the test is usually performed in the LV side)

V_1	l ₁	Рос
970	0.4148	335.4931322603

> Calculate The parameters of the no load branch (compare with Rc and Xm)

$$\cos(\emptyset_o) = \frac{P_o}{I_o V_1} = \frac{335.4931322603}{0.4148 * 970} = 0.8338216$$

$$\emptyset_0 = 33.5066^{\circ}$$

$$I_c = I_o \cos \emptyset_o = 0.4148 \cos 33.5066 = 0.345869 A$$

$$I_m = I_o \sin \emptyset_o = 0.4148 \sin 33.5066 = 0.2289833 A$$

$$R_o = \frac{V_1}{I_c} = \frac{970}{0.345869} = 2804.53\Omega$$

$$X_m = \frac{V_1}{I_m} = \frac{970}{0.2289833} = 4236.11678\Omega$$

3 Loading Condition

Connect an RL load across the secondary side;

> Apply the rated voltage to the HV side and record primary current and power drawn from the source for different loading values. And record the secondary voltage, current and power.

n	LOAD	V ₁	l ₁	P1	V2	12	P2	%VR	Efficiency
		V1	'1	' -	V Z	12	12		-
	n*S _{rated} *(0.8+j							$= (V_{2nL} - V_2)/$	$=P_2/P_1*10$
	0.6)							V _{2nL} *100	0
0(no	0	970	0.414	335.49	193.8	0	0	0.103%	0%
· .			8						
load)									
0.1	1340+j1005	970.1	2.124	1660.4	192.1	8.55	1314.98	0.979%	79.19%
0.2	2680+j2010	970.1	3.802	2960.116	190.4	16.95	2582.62	1.855%	87.24%
0.3	4020+j3015	970.1	5.451	4234.436	188.8	25.21	3806.44	2.680%	89.89%
0.4	5360+j4020	970.1	7.072	5483.85	187.1	33.32	4987.16	3.556%	90.94%
0.5	6700+j5025	970	8.668	6714.27	185.5	41.3	6131.63	4.381%	91.32%
0.6	8040+j6030	970.1	10.23	7914.03	183.9	49.13	7228.99	5.206%	91.34%
0.7	9380+j7035	970	11.77	9101.75	182.4	56.84	8297.77	5.979%	91.16%
0.8	10720+j8040	970.1	13.28	10258.91	180.9	64.41	9321.32	6.752%	90.86%
0.9	12060+j9045	970	14.77	11400.19	179.4	71.86	10316.95	7.525%	90.49%
1.0	13400+j10050	970.1	16.24	12514.77	177.9	79.18	11270.68	8.298%	90.05%
1.1	14740+j11055	970	17.68	13615.86	176.5	86.4	12200.65	9.020%	89.60%
1.2	16080+j12060	970.1	19.09	14690.06	175	93.48	13089.62	9.793%	89.10%
1.3	17420+j13065	970.1	20.49	15753.05	173.6	100.5	13958.64	10.515%	88.60%

[▶] Plot VR vs n and Efficiency vs n.

> Apply the rated voltage to the HV side and record primary current and power drawn from the source for different loading values. And record the secondary voltage, current and power.

source for unferent loading values. And record the secondary voltage, current and power.									
φ(deg.)	LOAD	V ₁	I ₁	P1	V2	12	P2	%VR	Efficiency
	$S_{rated}^*(\cos \phi + j\sin \phi)$							=(V _{2nL} -	=P ₂ /P ₁ *100
	. , . ,.							V ₂)/	
								V _{2nL} *100	
-90	-j16750	970	18.21	1511.15	206.7	92.15	0	-6.54%	0%
-75	4335.21-j16179.25	970	17.93	6196.99	202.5	90.22	4717.54	-4.38%	76.12%
-60	8375-j14505.92	970	17.62	10137.03	197.8	88.09	8706.09	-1.95%	85.88%
-45	11844.03-j11844.03	970	17.31	13125.12	193.2	86	11748.94	0.412%	89.51%
-30	14505.92-j8375	970	17.01	15074.50	188.8	84.03	13740.34	2.68%	91.14%
-15	16179.25-j4335.21	970	16.75	16010.22	185	82.33	14711.00	4.63%	91.88%
0	16750	970	16.54	16001.33	181.9	80.96	14728.23	6.23%	92.04%
+15	16179.25+j4335.21	970	16.38	15131.36	179.6	79.96	13875.72	7.42%	91.70%
+30	14505.92+j8375	970	16.27	13487.23	178.2	79.32	12242.43	8.14%	90.77%
+45	11844.03+j11844.03	970	16.21	11172.92	177.7	79.07	9940.26	8.40%	88.96%
+60	8375+j14505.92	970	16.22	8323.77	178.2	79.3	7073.01	8.14%	84.94%
+75	4335.21+j16179.25	970	16.29	4994.78	179.6	79.88	3732.77	7.42%	74.73%
+90	j16750	970	16.41	1314.597	181.9	80.85	0	6.23%	0%

Plot VR vs ϕ and Efficiency vs ϕ .

