CS 4495 Computer Vision RANdom SAmple Consensus

Aaron Bobick
School of Interactive
Computing

Administrivia

- PS 3:
 - Check Piazza good conversations
 - The F matrix: the actual numbers may vary quite a bit. But check the epipolar lines you get.
 - Normalization: read extra credit part. At least try removing the centroid.
 Since we're using homogenous coordinates (2D homogenous have 3 elements) it's easy to have a transformation matrix that subtracts off an offset.
 - Go back an recheck slides: A 3 vector in these projective geometry is both a point and a line.

Matching with Features

- Want to compute transformation from one image to the other
- Overall strategy:
 - Compute features
 - Match matching features (duh?)
 - Compute best transformation (translation, affine, homography) from matches

An introductory example:

Harris corner detector

C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988

Harris Detector: Mathematics

$$M = A^{T} A = \begin{bmatrix} \sum I_{x} I_{x} & \sum I_{x} I_{y} \\ \sum I_{x} I_{y} & \sum I_{y} I_{y} \end{bmatrix}$$

Measure of corner response:

$$R = \det M - k \left(\operatorname{trace} M \right)^2$$

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

(k - empirical constant, k = 0.04 - 0.06)

Harris Detector: Mathematics

- *R* depends only on eigenvalues of M
- R is large for a corner
- *R* is negative with large magnitude for an edge
- |R| is small for a flat region

Key point localization

- General idea: find robust extremum (maximum or minimum) both in space and in scale.
- SIFT specific suggestion: use DoG pyramid to find maximum values (remember edge detection?) – then eliminate "edges" and pick only corners.
- More recent: use Harris detector to find maximums in space and then look at the Laplacian pyramid (we'll do this later) for maximum in scale.

Each point is compared to its 8 neighbors in the current image and 9 neighbors each in the scales above and below.

Point Descriptors

- We know how to detect points
- How to match them? Two parts:
 - Compute a descriptor for each and make the descriptor both as invariant and as distinctive as possible. (Competing goals) SIFT one example.

Another version of the problem...

Want to find

... in here

Idea of SIFT

 Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

SIFT Features

SIFT vector formation

- 4x4 array of gradient orientation histograms over 4x4 pixels
 - not really histogram, weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.

showing only 2x2 here but is 4x4

Point Descriptors

- We know how to detect points
- How to match them? Two parts:
 - Compute a descriptor for each and make the descriptor both as invariant and as distinctive as possible. (Competing goals) SIFT one example
 - Need to figure out which point matches which...

Extract features

- Extract features
- Compute putative matches e.g. "closest descriptor"

- Extract features
- Compute putative matches e.g. "closest descriptor"
- Loop:
 - Hypothesize transformation T from some matches

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T from some matches
 - Verify transformation (search for other matches consistent with T)

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T from some matches
 - Verify transformation (search for other matches consistent with T)
 - Apply transformation

How to get "putative" matches?

Feature matching

- Exhaustive search
 - for each feature in one image, look at all the other features in the other image(s) – pick best one
- Hashing
 - compute a short descriptor from each feature vector, or hash longer descriptors (randomly)
- Nearest neighbor techniques
 - k-trees and their variants

Feature-space outlier rejection

- Let's not match all features, but only these that have "similar enough" matches?
- How can we do it?
 - SSD(patch1,patch2) < threshold
 - How to set threshold?

Feature-space outlier rejection

- A better way [Lowe, 1999]:
 - 1-NN: SSD of the closest match
 - 2-NN: SSD of the second-closest match
 - Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN
 - That is, is our best match so much better than the rest?

Feature matching

- Exhaustive search
 - for each feature in one image, look at all the other features in the other image(s) – pick best one
- Hashing
 - compute a short descriptor from each feature vector, or hash longer descriptors (randomly)
- Nearest neighbor techniques
 - k-trees and their variants
- But...
- Remember: distinctive vs invariant competition? Means:
- Problem: Even when pick best match, still lots (and lots) of wrong matches – "outliers"

Another way to remove mistakes

- Why are we doing matching?
 - To compute a model of the relation between entities
- So this is really "model fitting"

Fitting

 Choose a parametric model to represent a set of features – remember this???

simple model: lines simple model: circles

complicated model: car

Fitting: Issues

- Noise in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions

Slide: S. Lazebnik

Typical least squares line fitting

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

- •Data: $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation: $y_i = mx_i + b$
- •Find (*m*, *b*) to minimize

$$y=mx+b$$

$$(x_i, y_i)$$

$$E = \sum_{i=1}^{n} \left(y_i - \begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} \right)^2 = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix}^2 = \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2$$

=
$$(\mathbf{y} - \mathbf{X}\mathbf{b})^T (\mathbf{y} - \mathbf{X}\mathbf{b}) = \mathbf{y}^T \mathbf{y} - 2(\mathbf{X}\mathbf{b})^T \mathbf{y} + (\mathbf{X}\mathbf{b})^T (\mathbf{X}\mathbf{b})$$

$$\frac{dE}{d\mathbf{b}} = 2\mathbf{X}^T \mathbf{X} \mathbf{b} - 2\mathbf{X}^T \mathbf{y} = 0$$

$$\mathbf{X}^{T}\mathbf{X}\mathbf{b} = \mathbf{X}^{T}\mathbf{y} \Longrightarrow \mathbf{b} = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$$

Standard least squares solution to except weird switch of typical names from **Ax**=**b**

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

Total least squares

•Distance between point (x_i, y_i) and line ax+by=d $(a^2+b^2=1)$: $|ax_i + by_i - d|$

Total least squares

- Distance between point (x_i, y_i) and line ax+by=d
- Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

Total least squares

- •Distance between point (x_i, y_i) and line ax+by=d
- •Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

$$\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0$$

$$E = \sum_{i=1}^{n} (a(x_i - \overline{x}) + b(y_i - \overline{y}))^2 =$$

$$\frac{dE}{dx} = 2(U^T U)N = 0$$

 (x_i, y_i) ax+by=dUnit normal: (x_i, y_i) N=(a, b) $d = \frac{a}{n} \sum_{i=1}^{n} x_i + \frac{b}{n} \sum_{i=1}^{n} x_i = a\overline{x} + b\overline{y}$

$$\frac{\overline{\partial d}}{\overline{\partial d}} = \underline{\sum}_{i=1}^{n} -2(dx_i + by_i - d) = 0 \qquad d = -\frac{1}{n} \underline{\sum}_{i=1}^{n} x_i + \frac{1}{n} \underline{\sum}_{i=1}^{n} x_i - dx + by$$

$$E = \underline{\sum}_{i=1}^{n} (a(x_i - \overline{x}) + b(y_i - \overline{y}))^2 = \begin{vmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{vmatrix}^2 = (UN)^T (UN)$$

$$\frac{dE}{dN} = 2(U^T U)N = 0$$

Solution to $(U^TU)N = 0$, subject to $||N||^2 = 1$: eigenvector of U^TU associated with the smallest eigenvalue (Again SVD to least squares solution to homogeneous linear system UN = 0)

ax+by=d

(u, v)

Least squares as likelihood maximization

 Generative model: line points are corrupted by Gaussian noise in the direction perpendicular to the line

Least squares: Robustness to (very) non-Gaussian noise

Least squares fit to the red points:

Least squares: Robustness to (very) non-Gaussian noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Robust estimators

• General approach: minimize
$$\sum_{i} \rho(r_i(x_i, \theta); \sigma)$$

 $r_i(x_i, \theta)$ – residual of ith point w.r.t. model parameters θ ρ – robust function with scale parameter σ

The robust function ρ behaves like squared distance for small values of the residual *u* but saturates for larger values of u

Choosing the scale: Just right

The effect of the outlier is minimized

Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor

Choosing the scale: Too large

Behaves much the same as least squares

"Find consistent matches"???

- Some points (many points) are static in the world
- Some are not
- Need to find the right ones so can compute pose.
- Well tried approach:
 - Random Sample Consensus (RANSAC)

Simpler Example

Fitting a straight line

Discard Outliers

- No point with d>t
- RANSAC:
 - RANdom SAmple Consensus
 - Fischler & Bolles 1981
 - Copes with a large proportion of outliers

M. A. Fischler, R. C. Bolles. <u>Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography</u>. Comm. of the ACM, Vol 24, pp 381-395, 1981.

(RANdom SAmple Consensus):

Fischler & Bolles in '81.

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using sample
- 3. **Score** by the fraction of *inliers* within a preset threshold of the model

Line fitting example

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using sample
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using sample
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

$$N_I = 6$$

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using the sample
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using sample
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Best Line has most support

More support -> better fit

RANSA for general model

- A given model has a minimal set the smallest number of samples from which the model can be computed.
 - Line: 2 points
- Image transformations are models. Minimal set of s of point pairs/matches:
 - Translation: pick one point pair
 - Homography (for plane) pick 4 point pairs
 - Fundamental matrix pick 8 point pairs (really 7 but lets not go there)
- Algorithm
 - Randomly select s points (or point pairs) to form a sample
 - Instantiate a model
 - Get consensus set S_i
 - If | S_i |>T, terminate and return model
 - Repeat for N trials, return model with max | S_i |

Distance Threshold

- Requires noise distribution
- If **Location**: Gaussian noise with $\sigma^2 = 1$
- Then Distance d has Chi distribution with k degrees of freedoms
- If one dimension, e.g.distance off a line, then 1DOF

$$f(t) = \frac{\sqrt{2}e^{-\frac{t^2}{2}}}{\sqrt{\pi}}, t \ge 0$$

• For 95% cumulative threshold when Gaussian with σ^2 :

$$t^2 = 3.84\sigma^2$$

• That is: if $t^2 = 3.84\sigma^2$ then 95% prob that d < t when point is inlier

How many samples?

- We want: at least one sample with all inliers
- Can't guarantee: probability p e.g. p = 0.99

Choosing the parameters

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose *t* so probability for inlier is high (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ : $t^2 = 3.84\sigma^2$
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Source: M. Pollefeys

Calculate N

- s number of points to compute solution
- p probability of success
- e proportion outliers, so % inliers = (1 e)
- $P(sample \ set \ with \ all \ inliers) = (1 e)^s$
- $P(sample set will have at least one outlier) = (1 (1 e)^s)$
- $P(all\ N\ samples\ have\ outlier) = (1 (1 e)^s)^N$
- We want $P(all\ N\ samples\ have\ outlier) < (1-p)$
- So $(1 (1 e)^s)^N < 1 p$

$$N > \log(1-p)/\log(1-(1-e)^s)$$

Samples required for inliers only in a sample

Set p=0.99 – chance of getting good sample

$$s = 2, e = 5\%$$
 => N=2
 $s = 2, e = 50\%$ => N=17
 $s = 4, e = 5\%$ => N=3
 $s = 4, e = 50\%$ => N=72
 $s = 8, e = 5\%$ => N=5
 $s = 8, e = 50\%$ => N=1177

	proportion of outliers e						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

N increases steeply with s

$$N > \log(1-p)/\log(1-(1-e)^s)$$

N = f(e), not the number of points!

Matching features

RAndom SAmple Consensus (1)

RAndom SAmple Consensus (2)

Least squares fit

RANSAC for estimating homography

- RANSAC loop:
- 1. Select four feature pairs (at random)
- 2. Compute homography *H* (exact)
- 3. Compute *inliers* where $SSD(pi', \mathbf{H} p_i) < \varepsilon$
- 4. Keep largest set of inliers
- 5. Re-compute least-squares *H* estimate on all of the inliers

2D transformation models

Similarity

 (translation,
 scale, rotation)

Affine

Projective (homography)

Adaptively determining the number of samples

- Inlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield e=0.2
- Adaptive procedure:
 - N= ∞ , sample_count =0, e = 1.0
 - While N >sample_count
 - Choose a sample and count the number of inliers
 - Set $e_0 = 1 (number\ of\ inliers)/(total\ number\ of\ points)$
 - If $e_0 < e$ Set $e = e_0$ and recompute N from e:

$$N = \log(1-p)/\log(1-(1-e)^s)$$

Increment the sample_count by 1

RANSAC conclusions

Good

- Simple and general
- Applicable to many different problems, often works well in practice
- Robust to outliers
- Applicable for larger number of parameters than Hough transform
- Parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly number of parameters
- Not as good for getting multiple fits
- Really not good for approximate models

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)
- Every problem in robot vision