TC1017 Solución de problemas con programación

Matrices

ITESM Campus Querétaro

La sesión pasada vimos...

Arreglos

Un arreglo lo definimos como la relación entre un nombre y un conjunto de localidades. Decimos que la estructura de datos que definimos en el arreglo es de una sola dimensión ya que utilizamos un solo valor para identificar a cada localidad (0,1,2,...,n-1).

Una matriz también es una colección de localidades asociadas a un nombre, sólo que los datos se organizan en dos dimensiones. Por ello, para hacer referencia a una localidad del arreglo se necesitan de dos números:

- * El número de renglón
- * El número de columna

- De la misma manera que en los arreglos, la numeración de renglones y de columnas inicia desde 0.
- Si por ejemplo definimos una matriz de 6 renglones y 6 columnas,
 el primer elemento de la colección se encontraría en:
 - renglón 0
 - columna 0
- Y el último elemento se encontraría en:
 - renglón 5
 - columna 5

Definición de una matriz

La definición de variables de tipo matriz es similar a los arreglos,
 la forma general de declarar una variable matriz es la siguiente:

tipo nombre [#renglones][#columnas];

- tipo es un tipo de datos (int, double, char).
- nombre es el nombre de la variable.
- #renglones es el número de renglones de la matriz.
- #columnas el número de columnas de la matriz.

Localidades de una matriz

 Una vez que hemos declarado la variable matriz, ¿Cómo tenemos acceso a los valores? indicando el renglón y la columna de dicha localidad.

Para esto debemos recordar que los renglones están numerados de 0 a r-1 (en donde r es el número de renglones del arreglo) y que las columnas están numeradas de 0 a c-1 (en donde c es el número de columnas del arreglo).

Localidades de una matriz

Para hacer referencia a una localidad específica del arreglo debemos escribir el nombre de la variable y entre corchetes el número de renglón y el número de columna de la localidad.

int M[8][6];

Así por ejemplo, la manera como referenciamos a la primera localidad del arreglo M que se definió anteriormente es M[0][0] y la última localidad es M[7][5]

1 2 3 4 5 6 7 8 9

Asignaciones a una localidad de la matriz

 La forma de asignar un valor a una localidad específica de la matriz es la siguiente:

nombre[renglon][columna] = valor;

en donde nombre es el nombre de la variable matriz, renglon es el número del renglón de la localidad y columna el número de columna de la localidad de la matriz y valor es cualquier valor del tipo con que fue definida la matriz.

1 2 3

4 5 6

789

Actividad Grupal

Realizar ejercicios con matrices para comprender su funcionamiento.

¿Cómo quedaría la matriz siguiente al ejecutar las

instrucciones descritas?

int M[4][4];
int x1=10;
int x2=20;
M[0][0] = X1;
M[1][0] = X2;
M[0][3] = M[0][0] * x2;

¿Cual sería el valor de X dada la siguiente matriz?

int M[4][4];

$$X = M[0][0] + M[0][1] + M[0][2] + M[0][3]$$

Actividad colaborativa

(3 minutos)

Escribe las instrucciones necesarias para poder llenar la diagonal de una matriz con ceros, la matriz es de dimensión 4 X 4

_	0	1	2	3
0	0			0
1		0	0	
2		0	0	
3	0			0

La estructura compañera de las matrices es dos ciclos for anidados. Como te darás cuenta, la mayoría de los problemas de matrices tendrán un código similar al siguiente:

```
int i, j;
for (i=0; i<renglones; i++)
{
    for (j=0;j<columnas; j++)
    {
        }
}</pre>
```


For anidados

- Esta estructura de doble ciclo nos permite recorrer todas las localidades el arreglo, con el primer ciclo for se recorren los renglones, y con el segundo ciclo se recorren las columnas.
- En el primer ciclo se recorre cada renglón, para ello la variable del ciclo (i) toma los valores:

que son precisamente los números de cada renglón de la matriz.

For anidados

En el segundo ciclo para el renglón i, se recorre cada columna de la matriz, para ello la variable del ciclo (j) toma los valores:

que son precisamente los números de cada columna de la matriz.

1 2 3 4 5 6 7 8 9

Actividad Grupal

Escriba el código del procedimiento

iniciaMatriz, que recibe una matriz de enteros

de 3 renglones y 3 columnas y le asigna a cada

localidad el valor de 5.


```
#define renglones 3
#define columnas 3
void iniciaMatriz (int M[renglones][columnas])
    int i, j;
    for (i=0; i<renglones; i++)
         for (j=0; j<columnas; j++)
               M[i][j] = 5;
```

Solución

Actividad Grupal

Escriba el código del procedimiento

imprimeMatriz, que recibe una matriz de

enteros de 3 renglones y 3 columnas y

despliega en pantalla el contenido de la matriz.


```
#define renglones 3
#define columnas 3
void imprimeMatriz (int M[renglones][columnas])
{
    int i, j;
    for (i=0; i<renglones; i++)
         for (j=0; j<columnas; j++)
           printf("%i ", M[ i ][ j ]);
        printf("\n");
```

Solución

Actividad colaborativa

(3 minutos)

Escriba el código del procedimiento iniciaMatriz2, que recibe una matriz de enteros de 3 renglones y 3 columnas y le asigna a cada localidad un número consecutivo correspondiente del 1 al 9

_	0	1	2
0	1	2	3
1	4	5	6
2	7	8	9

```
#define renglones 3
#define columnas 3

void iniciaMatriz2 (int M[renglones][columnas])
{
   int aux=1, i, j;
   for (i=0; i<renglones; i++)
   for (i=0; i<renglones)</pre>
```

for (j=0; j<columnas; j++)

M[i][j] = aux;

aux++;

Solución

Actividad colaborativa

(10 minutos)

- Escriba el código del procedimiento sumaMatrices, que recibe las matrices A, B y C de enteros de 3 renglones y 3 columnas cada una.
- El procedimiento asignará en la localidad correspondiente de la matriz C la suma de las matrices A más B.

$$\begin{bmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 9 & 10 & 11 \end{bmatrix} + \begin{bmatrix} 1 & 3 & 5 \\ 9 & 11 & 13 \\ 17 & 19 & 21 \end{bmatrix} = \begin{bmatrix} 2 & 5 & 8 \\ 14 & 17 & 20 \\ 26 & 29 & 32 \end{bmatrix}$$

```
#define renglones 3 #define columnas 3
```

```
void sumaMatrices (int A[renglones][columnas],
                    int B[renglones][columnas],
                    int C[renglones][columnas])
  int i, j;
  for (i=0; i<renglones; i++)
     for (j=0; j<columnas; j++)
         C[i][j] = A[i][j] + B[i][j];
```


Solución

Actividad Grupal

Integrar todos los procedimientos vistos anteriormente en un solo programa para verificar su funcionamiento

¿Cómo crear una matriz?

Con el método insert

Con el método append

