BenTalbot Calc 323 11/29/21 318. ? Surface Integrals Last time: Is f(x,y, z) d5 = Sp f(x(u,v), y(u,v), z(u,v)) Sux Syld where S(u,v) parameterizes Son domain D. Ex: Compute Is X2 dS for S, the unit sphere @origin. Sol: First we parameterize the net sphere by $\overline{S}(\Theta, \phi) = \left(\sin(\phi) \cos(\Theta), \sin(\phi) \sin(\Theta), \cos(\phi) \right)$ on $(\Theta, \phi) \in [0, 2\pi] \times [0, \pi]$

 $\overline{J}_{\theta} = \left\langle -\sin(\phi)\sin(\theta), \sin(\phi)\cos(\theta), 0 \right\rangle$ $= \sin(\phi) \left\langle -\sin(\theta), \cos(\theta), 0 \right\rangle$

 $\overline{S}_{\phi} = \langle \cos(\phi)\cos(\phi), \cos(\phi)\sin(\phi), -\sin(\phi) \rangle$

 $\frac{1}{100} \cdot \frac{1}{100} \cdot \frac{1}$

= $sin(\phi) \langle -sin(\phi)cos(\phi), -sin(\phi)sin(\phi),$ - $cos(\phi)sin^2(\theta) - cos(\phi)cos^2(\phi) \rangle$

= $sin(\phi)\langle -sin(\phi)cos(\phi), -sin(\phi)sin(\phi), -cos(\phi) \rangle$

 $= \int_{\Omega} \sin^{3}(\Phi)\cos^{2}(\Phi) \sqrt{\sin^{2}(\Phi)\cos^{2}(\Phi)} + \sin^{2}(\Phi)\sin^{2}(\Phi)\sin^{2}(\Phi)\sin^{2}(\Phi)\sin^{2}(\Phi)\sin^{2}(\Phi)\sin^{2}(\Phi)\sin^{2}(\Phi)\sin^{2}(\Phi)\sin^{2}(\Phi)\sin^{2}(\Phi)\sin^{2}(\Phi)\sin^{2}(\Phi)\sin^{2}(\Phi)\cos^{2}(\Phi) dA$

= \$\in^3(\phi)\cos^2(\phi) dA =

Q: Can we do this for every surface?

Mobius strip - non-orientable...

NB: Our theory of surface integrals chokes on non-orientable surfaces... From here on, the surfaces we work with are orientable

NB2: Choosing a parameterization of S by $\overline{S(u,v)}$ automatically chooses an orientation: $\overline{n(u,v)} = \frac{\overline{S_u \times S_v}}{|S_u \times S_v|}$

Defin: The flux of vector field vacross surface 5 is Ssv. d5 = Ssv. nds

= So v(u,v). 15, x5, dA

· Spr. (5, x5,) dA

where S(u, v) is a parameterization of Son domain D.

Ex: Compute the flux of V= (Z, y, x) a cross the sphere of radius 1, centered @ origin.

Sot Convention if oisentation not explicitly given, it is implicitly the positive orientation.

Sol: At before, $\overline{S}(\theta, \phi) = (\sin\phi\cos\theta, \sin\phi\sin\theta, \cos\phi)$ on $D = [0, 2\pi] \times [0, \pi]$ and

So x Sq = - sin & (sin doso, sin & sin o, cos o)

Check: outward orientation?

At a test point the north pole, (0,0,1) (1,0,0)

i.e. (0, 0)= (0, 1/2)

$$(50 \times 5)(0, \frac{\pi}{2}) = -(1,0,0) = (-1,0,0)$$
(inword orientation)

" we need to use - (50 × 50) instead.

now, V(0, 4). (5, 5, 5)

= {cos of sindsino, sind cos o}

·-sin & sin & cos Ø0, sin Ø sin O, cos Ø>

= -sin \$ (2cos \$ sin \$ cos \$ + sin \$ \$ sin 2 6 >=

= In sin(4)(2cos\$ sin\$cos @ + sin2\$ sin2 @)dA

= 2 1/2 cospsin2 pcosed dA + 1/2 sin3 psin2 edA

Now Spoos & sin2 & cos & dA