Notas do Tales

Tales da Silva Amaral 29 de março de 2024

Sumário

1	Intr	rodução	3	
2	Lógica 3			
	2.1	Cálculo Proposicional	3	
	2.2		3	
3	Teoria de conjuntos			
	3.1	Axioma da Extensão	4	
	3.2	Organizar Ainda	6	
	3.3	Produto Cartesiano	0	
	3.4		0	
			0	
			0	
		3	$^{-1}$	
		3.4.4 Funções	2	
	3.5	3	2	
			2	
			13	
			16	
			17	
	3.6		22	
	0.0	v	22	
		U	24	
		0.0.2 Conjuncos minimos	,-	
4	Ané	is 3	1	
	4.1	Definições iniciais	31	
			33	
	4.2	Invertibilidade	33	
	4.3		33	
_			_	
5			55	
	5.1		35	
		1	35	
			37	
	5.2	1	38	
	5.3	Organizar	39	
6	Aná	ilise no \mathbb{R}^n	10	
	6.1	Topologia	10	
		6.1.1 Métrica e Norma	10	
	6.2		12	
	6.3	· ·	12	
	6.4		14	
			15	

1 Introdução

Aqui estão depositadas as notas do aluno de graduação Tales da Silva Amaral.

2 Lógica

2.1 Cálculo Proposicional

Axioma 1. Para todas fórmulas P, Q, R, são considerados teoremas as fórmulas:

1.
$$P \implies (Q \implies P)$$

Regra de Inferência 1. É tomada como regra de inferência o modus ponens: Se P e $P \implies Q$ são teoremas, então Q é um teorema. Portanto

$$\{P, P \implies Q\} \vdash Q.$$

2.2 Organizar

Tomando como termos primitivos: o alfabeto $\{a,b,c,\cdots\}$; e (\land); ou (\lor); negação (\neg); existe (\exists); igual (=).

Definição 2.1 (\equiv , Equivalência). $p \equiv q$ significa p é equivalente a q.

Definição 2.2 (\Longrightarrow , Implicação). $p \Longrightarrow q \equiv \neg p \lor q$. Diz-se "p implica q", "Se p, então q"etc.

Definição 2.3 (\iff). $p \iff q \equiv (p \implies q) \land (q \implies p)$. Diz-se "p se, e somente se, q".

Definição 2.4 (c, Contradição). A letra c é reservada para a "contradição".

Definição 2.5 (t, Tautologia). A letra t é reservada para a "contradição".

Definição 2.6 ($\nexists x P(x)$, Não existe). $\neg(\exists x P(x)) \equiv \nexists P(x)$. Diz-se "Não existe x tal que P(x)".

Definição 2.7 (\forall , Para todo). $\forall x P(x) \equiv \neg \exists x (\neg P(x))$. Diz-se "Para todo x, temos P(x)".

Definição 2.8 ($\exists !xP(x)$, Existe um único). $\exists !xP(x) \equiv \exists xP(x) \land \forall y(P(y) \implies y = x)$. Diz-se "Existe um único x tal que P(x)".

Axioma 2. Para quaisquer p, q, temos:

- 1. $p \equiv p$
- 2. Se $p \equiv q$, então $q \equiv p$.
- 3. Se $p \equiv q$ e $q \equiv r$, então $p \equiv r$.
- 4. Se $p \equiv q$, então $p \equiv q$.

5.
$$\neg(\neg p) \equiv p$$
.

Axioma 3. Para quaisquer p, q, temos:

- 1. $p \lor q \equiv q \lor p$.
- 2. $(p \lor q) \lor r \equiv p \lor (q \lor r)$.
- 3. $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$.
- 4. $p \lor p \equiv p$
- 5. $\neg (p \lor q) \equiv (\neg p \land \neg q)$

3 Teoria de conjuntos

3.1 Axioma da Extensão

Conceito Primitivo 1 (Conjunto). Temos como conceito primitivo a noção de Conjunto, Coleção. Ou seja, não tentarei definir tal conceito.

Conceito Primitivo 2 (Elementos de um Conjunto). A noção de elementos ou membros de um conjunto também será tomada como conceito primitivo.

Definição 3.1 (Pertinência). Se x é um elemento de A, ou x pertence a A, escrevemos $x \in A$.

Definição 3.2 (Não Pertinência). Se x não pertence a A, escrevemos $x \notin A$. Ou seja:

$$x \notin A \iff \neg(x \in A)$$

Axioma 4 (Axioma da Extensão). *Dois conjuntos são iguais se, e somente se, possuem os mesmos elementos. Ou seja:*

$$A = B \iff \forall x (x \in A \iff x \in B)$$

Definição 3.3 (Diferente). Dois conjuntos A e B são diferentes se não são iguais e escrevemos $A \neq B$. Ou seja:

$$A \neq B \iff \neg(A = B)$$

Proposição 3.1. Dois conjuntos A e B são diferentes se existe $x \in A$ com $x \notin B$ ou $x \in B$ com $x \notin A$. Ou seja:

$$A \neq B \iff \exists x ((x \in A \land x \notin B) \lor (x \in B \land x \notin A))$$

Demonstração.

$$A \neq B \iff \neg(A = B)$$

$$\iff \neg(\forall x (x \in A \iff x \in B))$$

$$\iff \exists x (\neg(x \in A \iff x \in B))$$

$$\iff \exists x (\neg((x \in A \implies x \in B) \land (x \in B \implies x \in A)))$$

$$\iff \exists x (\neg((x \notin A \lor x \in B) \land (x \notin B \lor x \in A)))$$

$$\iff \exists x ((x \in A \land x \notin B) \lor (x \in B \land x \notin A))$$

Definição 3.4 (Subconjunto). Dizemos que A é um subconjunto de B se todo elemento de A for um elemento de B e escrevemos $A \subset B$. Ou seja:

$$A \subset B \iff \forall x (x \in A \implies x \in B)$$

Proposição 3.2.

$$A \subset A$$

Demonstração. Temos $p \Longrightarrow p$ uma tautologia para toda fórmula p,logo $x \in A \Longrightarrow x \in A$ é uma tautologia. Portanto $A \subset A \Longleftrightarrow \forall x (x \in A \Longrightarrow x \in A)$ é uma tautologia. \Box

Proposição 3.3.

$$A \subset B \land B \subset C \implies A \subset C$$

$$A \subset B \land B \subset C \implies A \subset C \iff \neg(A \subset B \land B \subset C) \lor A \subset C$$

Definição 3.5 (Subconjunto Próprio). Se A e B são conjuntos tais que $A \subset B$ e $A \neq B$, então A é chamado de subconjunto próprio.

3.2 Organizar Ainda

Proposição 3.4.

$$(A-B) \cup B = A \cup B$$

Demonstração.

$$x \in (A - B) \cup B \iff$$

$$(x \in A \land x \notin B) \lor x \in B \iff$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \in B) \iff$$

$$(x \in A \lor x \in B) \land t \iff$$

$$x \in A \lor x \in B \iff$$

$$x \in A \cup B \iff$$

Proposição 3.5.

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

Demonstração.

$$(x,y) \in A \times (B \cup C) \iff x \in A \land (y \in B \cup C)$$

$$\iff x \in A \land (y \in B \lor y \in C)$$

$$\iff (x \in A \land y \in B) \lor (x \in A \land y \in C)$$

$$\iff ((x,y) \in A \times B) \lor ((x,y) \in A \times C)$$

$$\iff (x,y) \in (A \times B) \cup (A \times C)$$

Proposição 3.6. Se $A \subset B$ e $B - A = \emptyset$, então A = B.

Demonstração. O caso $A=B=\emptyset$ é trivial. Supondo $B\neq\emptyset$. Supondo $A\subset B$ e $B-A=\emptyset$. Como já temos $A\subset B$, basta provar $B\subset A$.

Supondo $x \in B$ e $x \notin A$. Como $B - A = \emptyset$, temos $x \in \emptyset$ (contradição). Logo se $x \in B$, devemos ter $x \in A$. Logo $B \subset A$. Logo A = B.

Lema 1. Existe uma bijeção entre X e $X \times \{a\}$.

Demonstração. Seja a função $g: X \to X \times \{a\}$, dada por g(x) = (x, a). Temos $g(p) = g(q) \iff (p, a) = (q, a) \iff p = q$, logo g é injetiva. Dado $(x, a) \in X \times \{a\}$, temos $x \in X$ e $a \in \{a\}$. Logo existe $x \in X$ tal que g(x) = (x, a). Portanto g é sobrejetiva. Como g é injetiva e sobrejetiva, temos g bijetiva. \square

Lema 2. Existe uma bijeção entre $X \in \mathcal{F}(\{a\}, X)$.

Demonstração. Seja a função $g: X \to \mathcal{F}(\{a\}, X)$, dada por $g(x) = f_x$, onde $f_x: \{a\} \to X, f_x(a) = x$. Temos $g(p) = g(q) \iff f_p(a) = f_q(a) \iff p = q$, logo g é injetiva. Dado $f \in \mathcal{F}(\{a\}, X)$, seja p = f(a). Temos $g(p) = f_p = f$. Logo existe $p \in X$ tal que g(p) = f. Portanto g é sobrejetiva. Como g é injetiva e sobrejetiva, temos g bijetiva.

Lema 3. Existe uma bijeção entre $\mathcal{F}(X,Y) \times \mathcal{F}(\{a\},Y)$ e $\mathcal{F}(X \cup \{a\},Y)$, com $a \notin X$.

Demonstração. Seja $\phi: \mathcal{F}(X \cup \{a\}, Y) \to \mathcal{F}(X, Y) \times \mathcal{F}(\{a\}, Y)$. Que associa $f: X \cup \{a\} \to Y$ a (g, h), onde $g: X \to Y, g(x) = f(x)$ e $h: \{a\} \to Y, h(a) = f(a)$. Se $\phi(f_1) = \phi(f_2)$, temos $(g_1, h_1) = (g_2, h_2)$, que implica $g_1 = g_2$ e $h_1 = h_2$. Logo $f_1 = f_2$. Logo $f_2 = f_3$ for $f_3 = f_4$ logo $f_3 = f_4$ logo $f_3 = f_4$ logo $f_4 = f_4$ logo $f_5 = f_4$ logo $f_6 = f_4$ logo $f_7 = f_4$ logo $f_8 = f_$

Seja $(g_0, h_0) \in \mathcal{F}(X, Y) \times \mathcal{F}(\{a\}, Y)$. Seja $f: X \cup \{a\}, f(x) = \begin{cases} g_0(x), & x \in X \\ h_0(a), & x = a \end{cases}$.

Temos $\phi(f) = (g_0, h_0)$, logo ϕ é sobrejetiva.

Como ϕ é injetiva e sobrejetiva, temos ϕ bijetiva.

Proposição 3.7. Se $f: X \to Y$ e $g: Y \to Z$ são bijeções, então $(g \circ f): X \to Z$ é uma bijeção.

Demonstração. Temos $g(f(a))=g(f(b)) \implies f(a)=f(b) \implies a=b$. Logo $g\circ f$ é injetiva.

Tomando $z \in Z$. Como g é sobrejetiva, existe $y \in Y$ tal que g(y) = z. Como f é sobrejetiva, existe $x \in X$ tal que f(x) = y. Logo existe $x \in X$ tal que g(f(x)) = g(y) = z. Logo $g \circ f$ é sobrejetiva.

Proposição 3.8. Seja $f: X \to Y$ uma função sobrejetiva. f admite inversa à direita.

Demonstração. Para todo $y \in Y$, temos $f^{-1}(y) \neq \emptyset$, logo existe $x_y \in f^{-1}(y)$ tal que $f(x_y) = y$. Defina $g: Y \to X$, que associa $y \to x_y$ (axioma da escolha). Logo temos $f(g(y)) = f(x_y) = y$.

Proposição 3.9. Seja $f: X \to Y$ uma função injetiva. f admite inversa à esquerda.

Demonstração. Queremos definir $g: Y \to X$. Dado $y \in f(X)$, existe um único $x \in X$ tal que f(x) = y. Defina g(y) = x. Para $y \in Y - f(x)$, colocamos $g(y) = x_0$, onde $x_0 \in X$ qualquer. Para todo $x \in X$, temos $f(x) \in f(X)$, logo $g \circ f(x) = x$.

Proposição 3.10. Se $f: X \to Y$ é uma função então $f': X \to f(X)$, definida como f'(x) = f(x), é uma sobrejeção.

Demonstração. Seja $y \in f(X)$. Por definição de f(X), existe $x \in X$ tal que f(x) = f'(x) = y. Logo f' é sobrejetiva.

Proposição 3.11. Se $f: X \to Y$ é uma injeção então $f': X \to f(X)$, definida como f'(x) = f(x), é uma bijeção.

Demonstração. Pela proposição anterior, f' é sobrejetiva. Dados $a, b \in X$ com f'(a) = f(a) = f(b) = f'(b). Como f é injetiva, temos a = b, logo f' é injetiva.

Proposição 3.12. Se $f: A \cup B \to C$ é uma bijeção, então $f': A \to C - f(B)$, $a \mapsto f(a)$ é uma bijeção.

Demonstração. Se $a, b \in A \subset A \cup B$, temos $f'(a) = f'(b) \iff f(a) = f(b) \implies a = b$ (f é injetiva). Logo f' é injetiva.

Tomando $y \in C - f(B)$. Como f é sobrejetiva, existe $x \in A \cup B$ tal que f(x) = y. Se $x \in B$, teríamos $f(x) \in f(B)$, logo $f(x) \notin C - f(b)$ (contradição). Logo devemos ter $x \in A$. Logo existe $x \in A$ tal que f'(x) = f(x) = y. Logo f' é sobrejetiva.

Proposição 3.13. Se $f: A \to B$ é uma bijeção e $C \subset B$, então $f': f^{-1}(C) \to C$, $x \mapsto f(x)$ é uma bijeção.

Demonstração. Se $a, b \in f^{-1}(C) \subset A$, temos $f'(a) = f'(b) \iff f(a) = f(b) \implies a = b$ (f é injetiva). Logo f' é injetiva.

Tomando $y \in C$. Como f é sobrejetiva, existe $x \in A$ tal que $f(x) = y \in C$. Como $f(x) \in C$, temos $x \in f^{-1}(C)$. Logo existe $x \in f^{-1}(X)$ tal que f(x) = f'(x) = y. Logo f' é sobrejetiva.

Proposição 3.14. Seja $f:A\to B$ uma função e $X\subset Y\subset B$. Temos $f^{-1}(X)\subset f^{-1}(Y)$.

Demonstração. Se $x \in f^{-1}(X)$, temos $f(x) \in X$. Como $X \subset Y$, temos $f(x) \in Y$. Portanto $x \in f^{-1}(Y)$. Como $x \in f^{-1}(X) \implies x \in f^{-1}(Y)$, temos $f^{-1}(X) \subset f^{-1}(Y)$.

Proposição 3.15. Seja $f: A \to B$ uma função bijetiva $eX, Y \subset B$. Temos $f^{-1}(X) = f^{-1}(Y) \iff X = Y$.

Demonstração. Se X=Y é direto. Supondo $f^{-1}(X)=f^{-1}(Y)$. Se $x\in X$, existe $a\in A$ tal que f(a)=x. Logo $a\in f^{-1}(X)$. Portanto $a\in f^{-1}(Y)$. Logo $x=f(a)\in Y$. Temos $x=f(a)\in X$ $\Longrightarrow x=f(a)\in Y$. Para $y\in Y$ é análogo. Logo temos X=Y.

Proposição 3.16. Se existe a bijeção $f:\{a\} \to X$, então $X=\{b\}$ para algum b.

Demonstração. Seja $b = f(a) \in X$. Seja $c \in X$. Como f é sobrejetiva, existe $k \in \{a\}$ tal que f(k) = c. Temos obrigatoriamente que k = a, logo b = f(a) = c. Logo $X = \{b\}$.

Proposição 3.17. Se $f: A \to B$ e $g: C \to D$ são bijeções, então $h: A \times B \to B \times D$, h(a,c) = (f(a),g(c)) é uma bijeção.

Demonstração. Seja $(b,d) \in B \times D$. Como f e g são sobrejetivas, existem $a \in A$ e $c \in C$ tal que f(a) = b e g(c) = d. Logo existe $(a,c) \in A \times C$ tal que h(a,c) = (f(a),g(c)) = (b,d). Logo h é sobrejetiva.

Suponha $h((a,b)) = h((c,d)) \iff (f(a),g(b)) = (f(c),g(d)) \iff f(a) = f(c) \land g(b) = g(d)$. Como f e g são injetivas, temos $f(a) = f(c) \implies a = c$ e $g(b) = g(d) \implies b = d$. Logo h é injetiva. Como h é injetiva e sobrejetiva, temos que h é bijetiva.

Proposição 3.18. Se $f: A \to B$ é uma bijeção, então existe uma bijeção entre $\mathcal{F}(A,C)$ e $\mathcal{F}(B,C)$.

Demonstração. Definimos $\phi: \mathcal{F}(A,C) \to \mathcal{F}(B,C)$, que associa $g: A \to C$ a $h = g \circ f^{-1}: B \to C$. Se $\phi(p) = \phi(q)$, temos $p \circ f^{-1} = q \circ f^{-1}$, logo $(p \circ f^{-1}) \circ f = (q \circ f^{-1}) \circ f \implies p = q$, logo ϕ é injetiva. Seja $p \in \mathcal{F}(B,C)$. Seja $h = p \circ f: A \to C$. Temos $h \in \mathcal{F}(A,C)$ com $\phi(h) = (p \circ f) \circ f^{-1} = p$, logo ϕ é sobrejetiva.

Proposição 3.19. Se $f: A \to B$ é uma bijeção, então existe uma bijeção entre $\mathcal{F}(C, A)$ e $\mathcal{F}(C, B)$.

Demonstração. Definimos $\phi: \mathcal{F}(C,A) \to \mathcal{F}(C,B)$, que associa $g: C \to A$ a $h = f \circ g: C \to B$. Se $\phi(p) = \phi(q)$, temos $f \circ p = f \circ q$, logo $f^{-1} \circ (f \circ p) = f^{-1} \circ (f \circ q) \implies p = q$, logo ϕ é injetiva. Seja $p \in \mathcal{F}(C,B)$. Seja $h = f^{-1} \circ p: C \to A$. Temos $h \in \mathcal{F}(C,A)$ com $\phi(h) = f^{-1} \circ (f \circ p) = p$, logo ϕ é sobrejetiva.

Proposição 3.20. Não existe sobrejeção entre $X \in \mathcal{P}(X)$.

Demonstração. Suponha que exista a sobrejeção $f: X \to \mathcal{P}(X)$. Seja $A = \{x \in X \mid x \not\in f(x)\}$. Temos $A \in \mathcal{P}(X)$. Como f é sobrejetica, existe $p \in X$ tal que f(p) = A. Temos $p \in A$ ou $p \not\in A$. Se $p \in A$, obtemos uma contradição, pois $x \in A \iff x \not\in f(x)$ e f(p) = A. Se $p \not\in A$, temos $p \in A$, pela definição de A. Em ambos os casos, obtemos uma contradição. Logo não existe sobrejeção entre X e $\mathcal{P}(X)$.

Proposição 3.21. Existe injeção entre $X \in \mathcal{P}(X)$.

Demonstração. Seja $f: X \to \mathcal{P}(X), f(x) = \{x\}$. Temos $f(x) = f(y) \iff \{x\} = \{y\} \iff x = y$. Logo f é injetiva. \square

Proposição 3.22. Existe injeção entre X e $\mathcal{F}(X,Y)$ se Y possui pelo menos 2 elementos.

Demonstração. Y possuir 2 elementos implica na existência de $y_1,y_2\in Y$ com $y_1\neq y_2$. Logo seja $h:X\to \mathcal{F}(X,Y)$, que associa $a\in X$ a $g_a:X\to Y$, dada por

$$g_a(x) = \begin{cases} y_1, & x = a \\ y_2, & x \neq a \end{cases}.$$

Se h(a) = h(b), temos $g_a = g_b$, logo $g_a(x) = g_b(x)$ para todo $x \in X$. Em particular, $g_a(a) = g_b(a)$. Se $a \neq b$, temos $g_a(a) = y_1 = y_2 = g_b(a)$ (contradição). Logo temos a = b. Logo h é injetiva.Logo existe injeção entre X e $\mathcal{F}(X, Y)$. \square

Proposição 3.23. Não existe função sobrejetiva entre X e $\mathcal{F}(X,Y)$ se Y possui pelo menos 2 elementos.

Demonstração. Seja $f: X \to \mathcal{F}(X,Y)$ uma função qualquer.Logo f associa $a \in X$ a uma função $\phi_a: X \to Y$. Para simplificar notação, chamaremos $f(a) = \phi_a$. Seja $g: \mathcal{P}(Y) - \emptyset \to Y$ a função escolha definida em $\mathcal{P}(Y) - \emptyset$. Seja $h: X \to Y$ definida por $h(a) = g(Y - \{\phi_a(a)\})$. Como Y tem pelo menos 2 elementos, temos $Y - \{\phi_a(a)\} \neq \emptyset$ para todo $a \in X$. Pela definição de função escolha, temos $h(a) \in Y - \{\phi_a(a)\}$, logo $h(a) \neq \phi_a(a)$ para todo $a \in X$. Logo temos $h \neq \phi_a$ para todo $a \in X$. Logo $h \notin f(X)$. Logo f não é sobrejetiva. \square

3.3 Produto Cartesiano

3.4 Relações

3.4.1 Definições iniciais

Definição 3.6 (Relação). Uma relação R entre os conjuntos A e B é um subconjunto do conjunto $A \times B$.

Definição 3.7 (a R b). Dado uma relação entre A e B, dizemos que $a \in A$ está relacionado a $b \in B$ se $(a, b) \in R$. Escrevemos nesse caso a R b. Portanto:

$$a R b \iff (a, b) \in R$$

Não utilizarei essa notação, mas algumas fontes usam.

3.4.2 Relações de Equivalência

Definição 3.8 (Relação de equivalência). Uma relação $R \subset A \times A$ é de equivalência, se para todos $a,b,c \in A$:

- (Simetria) $(a,b) \in R \iff (b,a) \in R$.
- (Transitividade) $(a,b) \in R \land (b,c) \in R \implies (a,c) \in R$.
- (Reflexividade) $(a, a) \in R$.

Definição 3.9 $(\stackrel{R}{\sim})$. Quando uma relação R entre A e B for de equivalência, escrevemos $a \stackrel{R}{\sim} b$ no lugar de $(a,b) \in R$.

Observação 3.1. Quando não houver confusão sobre a relação que estamos tratando, escreverei somente $a \sim b$ no lugar de $a \stackrel{R}{\sim} b$.

Observação 3.2. Re-escrevendo a definição de relação de equivalência usando a nova notação, temos:

Uma relação $R\subset A\times A$ é de equivalência, se para todos $a,b,c\in A$:

- (Simetria) $a \sim b \iff b \sim a$.
- (Transitividade) $a \sim b \wedge b \sim c \implies a \sim c$.
- (Reflexividade) $a \sim a$.

Definição 3.10 (Classe de equivalência). Dado uma relação de equivalência $R \subset A \times A$, a classe de equivalência de um elemento $a \in A$ (denotada por \bar{a}) é dada por

$$\bar{a} = \{ x \in A \mid x \sim a \}$$

.

Proposição 3.24. Dada uma relação de equivalência $R \subset A \times A$ e $a \in A$, temos $a \in \bar{a}$.

Demonstração. Temos $\bar{a}=\{x\in A\mid x\sim a\}$. Como $a\sim a$ pela reflexividade, temos $a\in \bar{a}$.

Proposição 3.25. Dado uma relação $R \subset A \times A$ e $a, b \in A$, as afirmações abaixo são equivalentes:

- (a) $\bar{a} = \bar{b}$
- (b) $a \sim b$
- (c) $\bar{a} \cap \bar{b} \neq \emptyset$

Demonstração. (a) \Longrightarrow (b): Supondo $\bar{a} = \bar{b}$. Como $a \in \bar{a}$, temos $a \in \bar{b}$ pela hipótese. Logo $a \sim b$ pela definição de \bar{b} .

- (b) \Longrightarrow (c): Supondo $a \sim b$. Logo $a \in \bar{b}$. Como $a \in \bar{a}$ e $a \in \bar{b}$, temos $a \in \bar{a} \cap \bar{b} \Longrightarrow \bar{a} \cap \bar{b} \neq \emptyset$.
- (c) \Longrightarrow (a): Supondo $\bar{a} \cap \bar{b} \neq \emptyset$, logo existe $c \in \bar{a} \cap \bar{b}$, logo $c \sim a$ e $c \sim b$. Se $y \in \bar{a}$, temos $y \sim a$. Como $c \sim a$, temos $y \sim c$. Como $c \sim b$, temos $y \sim b \Longrightarrow y \in \bar{b}$. Supondo $y \in \bar{b}$, logo $y \sim b$. De $y \sim b \wedge b \sim c \wedge c \sim a$, temos $y \sim a \Longrightarrow y \in \bar{a}$. Logo $\bar{a} = \bar{b}$.

3.4.3 Relação de Ordem

Definição 3.11 (Ordem Parcial). Uma relação $R \subset A \times A$ é uma ordem parcial, se para todos $a, b, c \in A$:

- (Anti-Simetria) $(a,b) \in R \land (b,a) \in R \iff a=b$.
- (Transitividade) $(a,b) \in R \land (b,c) \in R \implies (a,c) \in R$.
- (Reflexividade) $(a, a) \in R$.

Definição 3.12 (\leq). Se R é uma ordem parcial de A, geralmente escrevemos $a \leq b$ no lugar de $(a,b) \in R$.

Observação 3.3. Re-escrevendo a definição de relação de ordem parcial usando a nova notação, temos:

Uma relação $R \subset A \times A$ é uma ordem parcial, se para todos $a, b, c \in A$:

- (Anti-Simetria) $a \le b \land b \le a \iff a = b$.
- (Transitividade) $a \le b \land b \le c \implies a \le c$.
- (Reflexividade) $a \leq a$.

Definição 3.13 (Comparável). Dado um conjunto A e uma relação de ordem R, dois elementos $a,b \in A$ são comparáveis se $a \le b$ ou $b \le a$.

Observação 3.4. Dois elementos de um conjunto parcialmente ordenado podem não ser comparáveis.

Definição 3.14 (Ordem Total). Uma ordem parcial R onde quaisquer dois elementos são comparáveis é uma ordem total. Outros possíveis nomes são ordem linear ou ordem simples.

3.4.4 Funções

Definição 3.15 (Produto Cartesiano de uma Família). Se $\{A_i\}_{i\in I}$ é uma família de conjuntos indexada por I, definimos $\prod_{i\in I} A_i$ como o conjunto de todas

as funções
$$f: I \to \bigcup_{i \in I} A_i$$
 com $f(i) \in A_i$ para todo $i \in I$.

3.5 Números Naturais

3.5.1 Axiomas de Peano

Temos como conceitos primitivos o conjunto dos naturais, denotado por \mathbb{N} , cujos elementos são os números naturais, e uma função $s: \mathbb{N} \to \mathbb{N}$. Para cada $n \in \mathbb{N}$, o número s(n) é o sucessor de n. Temos os axiomas:

Axioma 5. $s: \mathbb{N} \to \mathbb{N}$ é injetiva.

Axioma 6. $\mathbb{N} - s(\mathbb{N}) = \{1\}$. Ou seja, só existe um número natural que não é sucessor de nenhum outro, e ele é denotado por 1.

Proposição 3.26. Todo natural diferente de 1 possui um antecessor.

Demonstração. Seja $n \neq 1$ um número natural. Suponha que não exista n_0 natural com $s(n_0) = n$. Logo $n \notin s(\mathbb{N})$. Logo $n \in \mathbb{N} - s(\mathbb{N})$. Mas $\mathbb{N} - s(\mathbb{N}) = \{1\}$. Logo n = 1. Contradição. Logo existe $n_0 \in \mathbb{N}$ tal que $s(n_0) = n$.

Observação 3.5. Observe que a função $s: \mathbb{N} \to \mathbb{N} \setminus \{1\}$ é injetiva por definição e sobrejetiva pela proposicao 3.26, logo é uma bijeção entre um subconjunto dos naturais com os naturais.

Axioma 7 (Princípio de indução). Se $X \subset \mathbb{N}$ é um subconjunto tal que:

$$\begin{cases} 1 \in X \\ n \in X \implies s(n) \in X \end{cases}$$

 $Ent\tilde{ao} \mathbb{N} = X.$

3.5.2 Soma nos Naturais

Definição 3.16 (Soma). Dados $m, n \in \mathbb{N}$, sua soma m + n é definida como:

$$m+n \coloneqq s^n(m)$$
.

A soma deve obedecer

$$m+1 = s(m) \tag{1}$$

$$m + s(n) = s(m+n) \tag{2}$$

para todos os m, n naturais.

Observação 3.6. Dedekind prova o "Teorema da Definição por Indução" para garantir que a notação $s^n(m)$ faça sentido.

Proposição 3.27 (Associatividade da Soma). Para todos $p, m, n \in \mathbb{N}$, temos m + (n + p) = (m + n) + p.

Demonstração. Seja $X = \{p \in \mathbb{N} \mid \forall m, n \in \mathbb{N} : m + (n+p) = (m+n) + p\}$. Da definição de adição, temos pra qualquer m, n que n+1 = s(n), logo $m+(n+1) = m+s(n) = s(m+n) = (m+n)+1 \implies m+(n+1) = (m+n)+1$. Logo $1 \in X$. Se $p \in X$, temos m+(n+p) = (m+n)+p. Logo

$$m + (n + s(p)) = m + s(n + p)$$
$$= s(m + (n + p))$$
$$= s((m + n) + p)$$
$$= (m + n) + s(p).$$

Logo $p \in X \implies s(p) \in X$. Temos que $X = \mathbb{N}$ pelo princípio de indução. Logo a soma é associativa nos naturais.

Lema 4 (Comutatividade da soma com o 1). *Para todo* $m \in \mathbb{N}$, temos m+1=1+m.

Demonstração. Seja $X=\{m\in\mathbb{N}\ | m+1=1+m\}$. Temos $1\in X$, pois 1+1=1+1. Supondo $m\in X$, logo m+1=1+m. Temos

$$1 + s(m) = s(1 + m)$$
$$= s(m + 1)$$
$$= (m + 1) + 1$$
$$= s(m) + 1$$

Como $m \in X \implies s(m) \in X \text{ e } 1 \in X, \text{ temos } X = \mathbb{N}.$

Proposição 3.28 (Comutatividade da soma). Para todos $m, n \in \mathbb{N}$, temos m+n=n+m.

Demonstração. Seja $X=\{m\in\mathbb{N}\ | \forall n\in\mathbb{N}: m+n=n+m\}$. Temos $1\in X$ pelo Lema 4. Supondo $m\in X$, logo m+n=n+m para todo $n\in\mathbb{N}$. Temos

$$n + s(m) = s(n + m)$$

$$= s(m + n)$$

$$= (m + n) + 1$$

$$= 1 + (m + n)$$

$$= (1 + m) + n$$

$$= (m + 1) + n$$

$$= s(m) + n$$

Como 1 $\in X$ e $m \in X \implies s(m) \in X,$ temos $X = \mathbb{N}$ pelo princípio de indução. \Box

Proposição 3.29 (Lei do corte). Para todos $m, n, p \in \mathbb{N}$, temos $m + n = m + p \implies n = p$.

Demonstração. Seja $X = \{m \in \mathbb{N} \mid \forall n \in \mathbb{N} \forall p \in \mathbb{N} : m+n=m+p \Longrightarrow n=p\}$. Temos $1 \in X$ pois $1+n=1+p \Longrightarrow n+1=p+1 \Longrightarrow s(n)=s(p) \Longrightarrow n=p$ pela injetividade de s. Supondo $m \in X$, temos $m+n=m+p \Longrightarrow n=p$ para todos n,p naturais. Temos

$$s(m) + n = s(m) + p \implies$$

$$n + s(m) = p + s(m) \implies$$

$$s(n + m) = s(p + m) \implies$$

$$n + m = p + m \implies$$

$$m + n = m + p \implies$$

$$n = p.$$

Logo $s(m)+n=s(m)+p \implies n=p$. Como $1\in X$ e $m\in X \implies s(m)\in X$, temos $X=\mathbb{N}$ pelo princípio de indução.

Lema 5 (Não existem ciclos nos naturais). Para todos $m, p \in \mathbb{N}$, temos $m \neq m + p$.

Demonstração. Suponha que m=m+p com $m,p\in\mathbb{N}$. Logo $s(m)=s(m+p)\Longrightarrow m+1=(m+p)+1\Longrightarrow m+1=m+(p+1)\Longrightarrow 1=p+1\Longrightarrow s(p)=1$. Como 1 não é sucessor de nenhum natural, temos uma contradição. Logo $m\neq m+p$ para todos naturais m,p.

Lema 6 (Unicidade da Tricotomia). Dados dois naturais m e n, apenas uma das 3 possibilidades ocorre:

$$\begin{cases} m = n \\ \exists p \in \mathbb{N} : m = n + p \\ \exists q \in \mathbb{N} : n = m + q \end{cases}$$

 $\begin{array}{ll} Demonstração. \ \ \text{Pelo lema 5, se} \ m=n, \ \text{não podemos ter} \ m=n+p=m+p \ \text{ou} \\ n=m+q=n+q \ \text{para algum} \ p,q\in\mathbb{N}. \ \ \text{Se} \ \exists p\in\mathbb{N}: \ m=n+p, \ \text{não podemos} \\ \text{ter} \ m=n \ \text{pelo lema 5 e não podemos} \ \text{ter} \ \exists q\in\mathbb{N}: \ n=m+q, \ \text{pois teríamos} \\ m=n+p=(m+q)+p=m+(q+p) \implies m=m+(q+p), \ \text{que contradiz o} \\ \text{lema 5.} \end{array}$

Proposição 3.30 (Tricotomia). Dados dois naturais m e n, exatamente uma das 3 possibilidades ocorre:

$$\begin{cases} m = n \\ \exists p \in \mathbb{N} : m = n + p \end{cases}$$
$$\exists q \in \mathbb{N} : n = m + q$$

Demonstração. Seja $X = \{m \in \mathbb{N} | \forall n \in \mathbb{N} : (m = n) \lor (\exists p \in \mathbb{N} : m = n + p) \lor (\exists q \in \mathbb{N} : n = m + q) \}$, ou seja: o conjunto dos números naturais que satisfazem pelo menos uma das condições da tricotomia para todo n.

 $1 \in X$, pois dado $n \in \mathbb{N}$, temos n = 1 ou $n \neq 1$. Se n = 1, temos m = 1 = n. Se $n \neq 1$, como $\mathbb{N} - s(\mathbb{N}) = \{1\}$, temos que existe um $n_0 \in \mathbb{N}$ tal que $s(n_0) = n$. Logo $n = n_0 + 1 \implies \exists q : n = q + 1 = q + m$.

Supondo $m \in X$. Dado $n \in \mathbb{N}$, se m = n, temos s(m) = s(n) = n+1, logo $\exists p \in \mathbb{N} : s(n) = n+p$. Se $\exists p \in \mathbb{N} : m = n+p$, temos s(m) = s(n+p) = (n+p+1) = n+s(p), logo $\exists p' \in \mathbb{N} : s(n) = n+p'$. Se $\exists q \in \mathbb{N} : n = m+q$ com q = 1, temos n = m+1 = s(m). Se $\exists q \in \mathbb{N} : n = m+q$ com $q \neq 1$, existe $q_0 \in \mathbb{N}$ tal que $s(q_0) = q$, logo temos $n = m+q = m+s(q_0) = m+(q_0+1) = m+1+q_0 = s(m)+q_0 \implies \exists q' \in \mathbb{N} : n = s(m)+q'$.

Como $1 \in X$ e $m \in X \implies s(m) \in X$, temos $X = \mathbb{N}$. Logo para todo par $m, n \in \mathbb{N}$, pelo menos uma das condições da tricotomia ocorre. Pelo lema 6, apenas uma das possbilidades ocorre.

3.5.3 Ordem nos Naturais

Definição 3.17 (<).

$$m < n \iff \exists p \in \mathbb{N} : n = m + p$$

Dados m, n naturais, dizemos que m é menor que n (m < n) quando existe $p \in \mathbb{N}$ tal que n = m + p.

Proposição 3.31. Temos 1 < n para todo $1 \neq n \in \mathbb{N}$.

Demonstração. Como $n \neq 1$, temos pela proposição 3.26 que n possui um antecessor. Logo existe n_0 tal que $s(n_0) = n \implies n = 1 + n_0$. Logo 1 < n.

Definição 3.18 (\leq).

$$m < n \iff (m = n) \lor (m < n)$$

Proposição 3.32 (Transitividade da relação <). $m < n \land n < p \implies m < p$

Demonstração. Se m < n e n < p, temos n = m + q e p = n + r para algum par $q, r \in \mathbb{N}$. Logo p = n + r = (m + q) + r = m + (q + r). Logo m < p.

Proposição 3.33 (Tricotomia da relação <). Dados $m, n \in \mathbb{N}$, exatamente uma das afirmações ocorre: m = n, ou m < n, ou n < m.

Demonstração. Segue diretamente da proposição 3.30.

Proposição 3.34.

$$p \le q \land q \le p \iff p = q$$

Demonstração. Supondo p = q, temos $p \le q$ e $q \le p$.

Supondo $p \le q \land q \le p$. Se p = q, acabou a demonstração. Supondo $p \ne q$. Logo devemos ter p < q e q < p (contradição). Logo devemos ter p = q.

Proposição 3.35. Dados m, n, p naturais, temos

$$m + p < n + p \implies m < n.$$

Demonstração. Temos $m+p < n+p \implies \exists q \in \mathbb{N} : n+p = (m+p)+q \implies \exists q \in \mathbb{N} : n=m+q \implies m < n.$

Lema 7.

$$m < n + 1 \iff m \le n$$

Demonstração. Supondo m < n+1. Logo existe $q \in \mathbb{N}$ tal que n+1=m+q. Se q=1, temos $n+1=m+1 \implies n=m \implies m \le n$. Se $q \ne 1$, existe q_0 tal que $s(q_0)=q$. Logo $n+1=m+s(q_0)=m+q_0+1 \implies n=m+q_0 \implies m < n \implies m < n$.

Se
$$m \le n$$
, temos $m \le n < n+1 \implies m < n+1$.

3.5.4 Produto nos Naturais

Definição 3.19 (Multiplicação). Para todo $m \in \mathbb{N}$, seja $f_m : \mathbb{N} \to \mathbb{N}$ que associa cada $p \in \mathbb{N}$ a $f_m(p) = m + p$. Dados $m, n \in \mathbb{N}$, o produto entre naturais satisfaz $m \cdot 1 = m$ e $m \cdot (n+1) = (f_m)^n(m)$.

Lema 8 (Distributiva do sucessor).

$$m \cdot (n+1) = mn + m$$

Demonstração. Se n = 1, temos $m \cdot (1+1) = (f_m)^1(m) = f_m(m) = m + m = m \cdot 1 + m$. Se $n \neq 1$, existe $n_0 \in \mathbb{N}$ tal que $s(n_0) = n$. Logo temos $m \cdot (n+1) = (f_m)^n(m) = (f_m)^{s(n_0)}(m) = f_m((f_m)^{n_0}(m)) = f_m(m(n_0+1)) = f_m(m \cdot n) = mn + m$.

Proposição 3.36 (Distributiva à esquerda).

$$m \cdot (n+p) = mn + mp$$

Demonstração. Seja $X=\{p\in\mathbb{N}|\forall m,n\in\mathbb{N}:n\cdot(m+p)=nm+np\}$. Temos $1\in X$ pelo lema 3.5.4. Supondo $p\in X$. Temos

$$n \cdot (m+s(p)) = n \cdot ((m+p)+1)$$

$$= n \cdot (m+p) + n$$

$$= nm + np + n$$

$$= nm + n(p+1)$$

$$= nm + n \cdot s(p)$$

Como $p \in X \implies s(p) \in X$ e $1 \in X$, temos $X = \mathbb{N}$.

Proposição 3.37 (Distributiva à direita).

$$(m+n) \cdot p = mp + np$$

Demonstração. Seja $X=\{p\in\mathbb{N}|\forall m,n\in\mathbb{N}:(m+n)\cdot p=mp+np\}$. Temos $1\in X,$ pos $(m+n)\cdot 1=m+n=m\cdot 1+n\cdot 1$. Supondo $p\in X$. Temos

$$(m+n) \cdot s(p) = (m+n) \cdot (p+1)$$

$$= (m+n) \cdot p + (m+n)$$

$$= mp + np + m + n$$

$$= mp + m + np + n$$

$$= m(p+1) + n(p+1)$$

$$= m \cdot s(p) + n \cdot s(p)$$

Como $p \in X \implies s(p) \in X$ e $1 \in X$, temos $X = \mathbb{N}$.

Proposição 3.38 (Associatividade).

$$m \cdot (n \cdot p) = (m \cdot n) \cdot p$$

Demonstração. Seja $X=\{p\in\mathbb{N}|\forall m,n\in\mathbb{N}:m\cdot(n\cdot p)=(m\cdot n)\cdot p\}$. Temos $m\cdot(n\cdot 1)=m\cdot n=(m\cdot n)\cdot 1,$ logo $1\in X.$

Supondo $p \in X$. Temos

$$m \cdot (n \cdot s(p)) = m \cdot (n \cdot (p+1))$$

$$= m \cdot (n \cdot p + n)$$

$$= m \cdot (n \cdot p) + m \cdot n$$

$$= (m \cdot n) \cdot p + (m \cdot n)$$

$$= (m \cdot n) \cdot (p+1)$$

$$= (m \cdot n) \cdot s(p)$$

Como $p \in X \implies s(p) \in X$ e $1 \in X$, temos $X = \mathbb{N}$.

Lema 9 (Comutatividade com 1).

$$m \cdot 1 = 1 \cdot m$$

Demonstração. Seja $X=\{m\in\mathbb{N}|m\cdot 1=1\cdot m\}.$ Temos $1\cdot 1=1\cdot 1,$ logo $1\in X.$ Supondo $m\in X.$ Temos

$$s(m) \cdot 1 = (m+1) \cdot 1$$

$$= m+1$$

$$= m \cdot 1 + 1 \cdot 1$$

$$= 1 \cdot m + 1 \cdot 1$$

$$= 1 \cdot (m+1)$$

$$= 1 \cdot s(m)$$

Como $m \in X \implies s(m) \in X$ e $1 \in X$, temos $X = \mathbb{N}$.

Proposição 3.39 (Comutatividade).

$$m \cdot n = n \cdot m$$

Demonstração. Seja $X=\{n\in\mathbb{N}|\forall m\in\mathbb{N}:m\cdot n=n\cdot m\}.$ Temos $1\in X$ pelo lema 9. Supondo $n\in X.$ Temos

$$m \cdot s(n) = m \cdot (n+1)$$

$$= mn + m \cdot 1$$

$$= nm + 1 \cdot m$$

$$= (n+1) \cdot m$$

$$= s(n) \cdot m$$

Como $p \in X \implies s(p) \in X$ e $1 \in X$, temos $X = \mathbb{N}$.

Proposição 3.40 (Monotonicidade).

$$m < n \implies mp < np$$

Demonstração. Supondo m < n. Logo n = m + q com $q \in \mathbb{N}$. Logo np = (m+q)p = mp + qp. Como $qp \in \mathbb{N}$, temos mp < np.

Proposição 3.41 (Lei do cancelamento).

$$mp < np \implies m < n$$

Demonstração. Supondo mp < np. Pela tricotomia, temos n < m, m = n, ou m < n. Se n < m, temos np < mp (contradição). Se m = n, temos mp = np (contradição). Logo devemos ter m < n.

Definição 3.20 (Elemento Mínimo). Dado $X \subset \mathbb{N}$, dizemo que $p \in X$ é o menor elemento (ou elemento mínimo) de X se $\forall n \in X: p \leq n$.

Observação 3.7. Como $\forall n \in \mathbb{N} : 1 \leq n$, temos que $1 \in X$ implica 1 menor elemento de X.

Proposição 3.42. O elemento mínimo de um conjunto $X \subset \mathbb{N}$, quando existir, é unico.

Demonstração. Suponha que dado um conjunto $X\subset \mathbb{N}$, existam $p,q\in X$ elementos mínimos. Logo $p\leq q$ e $q\leq p$. Logo p=q.

Definição 3.21 (Maior elemento). Dado $X \subset \mathbb{N}$, dizemo que $p \in X$ é o maior elemento (ou elemento máximo) de X se $\forall n \in X : p \geq n$.

Proposição 3.43. Os naturais não possuem maior elemento.

Demonstração. Suponha que $x \in \mathbb{N}$ seja o maior elemento de \mathbb{N} . Teríamos $s(x) \in \mathbb{N}$ e x < s(x) (contradição). Logo os naturais não possuem maior elemento.

Proposição 3.44. O elemento máximo de um conjunto $X \subset \mathbb{N}$, quando existir, é unico.

Demonstração. Exercício.

Definição 3.22 (I_n) .

$$I_n := \{ x \in \mathbb{N} \mid x \le n \}$$

Lema 10.

$$I_{n+1} = I_n \cup \{n+1\}$$

Demonstração.

$$x \in I_{n+1} \iff$$

$$x \le n+1 \iff$$

$$x < n+1 \lor x = n+1 \iff$$

$$x \le n \lor x = n+1 \iff$$

$$x \in I_n \lor x \in \{n+1\} \iff$$

$$x \in I_n \cup \{n+1\}$$

Teorema 1 (Princípio da boa Ordenação). Todo subconjunto $A \neq \emptyset$ dos naturais admite menor elemento.

Demonstração. Dado $A \subset \mathbb{N}$ não vazio. Se $1 \in A$, temos 1 menor elemento.

Supondo $1 \not\in A$. Logo $1 \in \mathbb{N} - A$. Seja $X = \{x \in \mathbb{N} \mid I_n \subset \mathbb{N} - A\}$. Como $1 \in \mathbb{N} - A$, temos $I_1 = \{1\} \subset \mathbb{N} - A$, logo $1 \in X$. Como A é não vazio, existe $a \in A$. Logo $a \not\in \mathbb{N} - A$. Temos $a \leq a \implies a \in I_a$. Logo $I_a \not\subset \mathbb{N} - A$. Logo $a \not\in X$. Temos $1 \in X$ e $X \neq \mathbb{N}$, logo o axioma da indução deve falhar. Logo deve existir $n \in X$ com $n+1=s(n) \not\in X$.

Afirmo que n+1 é o menor elemento de A. Como $n \in X$, temos $I_n \subset \mathbb{N} - A$, logo $x \leq n \implies x \in \mathbb{N} - A$. Como $n+1 \not\in X$, temos $I_{n+1} \not\subset \mathbb{N} - A$. Logo existe um $m \in I_{n+1}$ com $m \not\in \mathbb{N} - A \implies m \in A$. Observe que $m \in I_{n+1} \implies m \leq n+1 \implies m=n+1 \vee m < n+1$. Se m < n+1, temos pelo Lema 7 que $m \leq n$, que implica $m \in I_n$, logo $m \in \mathbb{N} - A$ (contradição). Logo devemos ter m = n+1. Temos portanto que $n+1 \in A$.

Suponha que exista $p \in A$ tal que p < n + 1. Teríamos $p \le n \implies p \in I_n \implies p \in \mathbb{N} - A \implies p \notin A$. Contradição. Logo temos $n + 1 \le p$ para todo $p \in A$. Logo n + 1 é o menor elemento de A.

Teorema 2 (Indução completa). Seja $X \subset \mathbb{N}$ tal que $(\forall m \in \mathbb{N} : m < n \implies m \in X) \implies n \in X$. Então $X = \mathbb{N}$

Demonstração. Temos $1 \in X$, pois $1 \notin X$ implicaria na existência de um m < 1 com $m \notin X$. Supondo $X \neq \mathbb{N}$ e $A = \mathbb{N} - X$. Como $X \neq \mathbb{N}$, temos $A \neq \emptyset$. Logo A possui um menor elemento $a \in A$. Se $p \in \mathbb{N}$ com p < a, então $p \notin A$, logo $p \in X$. Como $\forall p \in \mathbb{N} : p < a \implies p \in X$, temos $a \in X$. Contradição. Logo A é vazio. Logo $X = \mathbb{N}$.

3.6 Conjuntos Finitos e Infinitos

3.6.1 Conjuntos Finitos

Definição 3.23 (Conjuntos finitos). Um conjunto X é finito quando for vazio ou quando existir para algum $n \in \mathbb{N}$ uma bijeção $\phi: I_n \to X$

Definição 3.24 (Tamanho de um conjunto). Dado um conjunto finito. Dizemos que ele tem zero elementos se for vazio e que ele tem n elementos se tiver bijeção com I_n .

Observação 3.8. O conjunto I_n é finito e possui n elementos.

Observação 3.9. Denota-se |A| como o tamanho do conjunto A.

Proposição 3.45. Se $f: X \to Y$ é uma bijeção, então X é finito se, e somente se, Y for finito.

Demonstração. Se X for finito, então existe um bijeção $\phi:I_n\to X$. A composição $(\phi\circ f):I_n\to Y$ é uma bijeção, logo Y é finito. O caso Y finito é análogo.

Teorema 3. Seja $A \subset I_n$ não vazio. Se exite uma bijeção $f: I_n \to A$, então $A = I_n$.

Demonstração. Seja $X = \{n \in \mathbb{N} \mid \forall A \subset I_n : (\text{Existe uma bijeção } f : I_n \to A) \implies A = I_n\}$. Temos $1 \in X$, pois $I_1 = \{1\}$ e $A \subset I_1 \implies A = \{1\} = I_1$. Supondo $n \in X$. Seja $A \subset I_{n+1}$ com uma bijeção $f : I_{n+1} \to A$. Restringindo f a I_n , obtemos $f' : I_n \to A - \{f(n+1)\}$, que é uma bijeção pela proposição 3.12.

Se $A - \{f(n+1)\} \subset I_n$, temos por $n \in X$ que $A - \{f(n+1)\} = I_n$. Como o contra-domínio de f é A e $A \subset I_{n+1}$, temos que $f(n+1) \in A \implies f(n+1) \in I_{n+1} \implies f(n+1) \in I_n \vee f(n+1) \in \{n+1\}$. Se $f(n+1) \in I_n$, temos $f(n+1) \notin A - \{f(n+1)\}$, logo $A - \{f(n+1)\} \neq I_n$ (contradição). Logo temos f(n+1) = n+1. Logo $f(n+1) = n+1 \in A$. Como $A - \{n+1\} = A - \{f(n+1)\} = I_n$, temos $(A - \{n+1\}) \cup \{n+1\} = I_n \cup \{n+1\} \implies A \cup \{n+1\} = I_{n+1} \implies A = I_{n+1}$. Logo temos $A = I_{n+1}$.

Se $A - \{f(n+1)\} \not\subset I_n$. Logo existe $a \in A$ tal que $a \not\in I_n$ e $a \neq f(n+1)$. Mas $A \subset I_{n+1}$. Logo $a \in I_{n+1} = I_n \cup \{n+1\}$. Logo devemos ter a = n+1. Como f é sobrejetiva, existe $m \in I_{n+1}$ tal que f(m) = n+1. Definindo a função

```
g\ :\ I_{n+1}\to A,\ \text{como}\ g(x)=\begin{cases} f(x), & x\neq f(n+1)\wedge x\neq n+1\\ n+1, & x=n+1\\ f(n+1), & x=m \end{cases}. \ \text{Temos}\ g
```

uma bijeção. Logo a restrição $g': I_n \to A - \{g(n+1)\}$ é uma bijeção com $A - \{g(n+1)\} \subset I_n$. Portanto temos $A - \{g(n+1)\} = I_n$ com $A = I_{n+1}$. \square

Proposição 3.46. Se existe uma bijeção $f: I_n \to I_m$, então $I_m = I_n$.

Demonstração. Se $m \leq n$, então existe uma bijeção $f: I_n \to I_m$ com $I_m \subset I_n$. Logo pelo teorema anterior, temos $I_m = I_n$. Se n > m, temos a bijeção $f^{-1}: I_m \to I_n$ com $I_n \subset I_m$. Logo pelo teorema anterior $I_m = I_n$.

Proposição 3.47. Não existe uma bijeção $f: X \to Y$ entre um conjunto finito X e uma parte própia $Y \subset X$.

Demonstração. Como X é finito, existe uma bijeção $g:I_n\to X$. Suponha que exista uma bijeção $f:X\to Y$. Como Y é parte própria, existe um $x\in X-Y$. Tome $A=g^{-1}(Y)\subset g^{-1}(X)=I_n$. Temos $g^{-1}(x)\not\in A$, logo A é uma parte própria de I_n . Queremos achar uma bijeção $h:I_n\to A$. Restringindo g a A, obtendo a bijeção $g':A\to Y$. Definindo a bijeção $h=(g')\circ f\circ g:I_n\to A$. Pelo teorema 3, temos que $A=I_n$. Uma contradição, pois A é parte própria de I_n . Logo não existe bijeção entre um conjunto finito X e uma parte própria $Y\subset X$.

Lema 11. Todo subconjunto A de I_n é finito e temos $|A| \leq n$

Demonstração. Seja $X=\{n\in\mathbb{N}\mid A\subset I_n\Longrightarrow A \text{ finito } \land |A|\leq n\}$. Temos $1\in X$, pois os subconjuntos de $I_1=\{1\}$ são $\{\}$ e $\{1\}=I_1$, ambos finitos.

Suponha $n \in X$. Seja $A \subset I_{n+1} = I_n \cup \{n+1\}$. Se $n+1 \notin A$, então temos $A \subset I_n$. Pela hipótese de indução, temos A finito e $|A| \le n < n+1$.

Supondo $n+1 \in A$. Se $A=\{n+1\}$, temos A finito e $|A|=1 \le n$. Supondo $A \ne \{n+1\}$, temos $B=A-\{n+1\}\ne \emptyset$ e $B\subset I_n$. Logo B é finito e temos $k=|B|\le n$. Como B é finito, existe a bijeção $f:I_k\to B$. Definindo a bijeção $f':I_{k+1}\to A$ pondo f'(x)=f(x) para $x\in I_n$ e f(k+1)=n+1. Logo A é finito e temos $|A|=k+1\le n+1$.

Lema 12. Seja $A \subset I_n$. Temos $|A| = n \iff A = I_n$.

Demonstração. Se |A|=n, existe a bijeção $f:I_n\to A$,com $A\subset I_n$, logo $A=I_n$.

Teorema 4. Todo subconjunto Y de um conjunto finito X é finito $e |Y| \le |X|$, $com |Y| = |X| \iff X = Y$.

Demonstração. Se X é finito, existe uma bijeção $f:I_n\to X$. Seja $A=f^{-1}(Y)\subset I_n$ e seja a bijeção $f':A\to Y$ a restrição de f a A. Como $A\subset I_n$, temos A finito e $|A|\le n$. Logo Y é finito e $|Y|=|A|\le n$. Temos $|Y|=|A|=n=|X|\iff |A|=I_n$. Logo $f^{-1}(Y)=I_n=f^{-1}(X)$. Logo X=Y.

Proposição 3.48. Seja $f: X \to Y$ uma função injetiva. Se Y é finito, então X é finito e $|X| \le |Y|$.

Demonstração. Como existe a injeção $f: X \to Y$, temos a bijeção $f': X \to f(X)$, com $f(X) \subset Y$. Como Y é finito, temos f(X) finito e $|f(X)| \leq Y$. Como existe a bijeção $f': X \to f(X)$, temos $|X| = |f(X)| \leq Y$.

Proposição 3.49. Seja $f: X \to Y$ uma função sobrejetiva. Se X é finito, então Y é finito e $|Y| \le |X|$.

Demonstração. Como f é sobrejetiva, ela admite inversa à direita. Seja $g: Y \to X$ a inversa à direita de f. Se g(y) = g(y'), temos f(g(y)) = f(g(y')), logo y = y'. Logo g é injetiva. Pela proposição anterior, temos Y finito com $|Y| \leq |X|$.

3.6.2 Conjuntos Infinitos

Definição 3.25 (Conjunto infinito). Um conjunto é infinito quando não for finito.

Observação~3.10. A função sucessor com o contradomínio reduzido é uma bijeção entre uma parte dos naturais com os naturais:

$$s: \mathbb{N} \to \mathbb{N} - \{1\}$$

Logo os naturais são infinitos.

Definição 3.26 (Conjunto limitado). Um conjunto $X \subset \mathbb{N}$ é limitado quando existe $p \in \mathbb{N}$ tal que $\forall n \in X : n \leq p$.

Teorema 5. Seja $X \subset \mathbb{N}$ não vazio. As sequintes afirmações são equivalentes:

- $X \notin finito$.
- X é limitado.
- X possui maior elemento.

Demonstração. (a) \Longrightarrow (b)

Seja $A = \{n \in \mathbb{N} \mid |X| = n \Longrightarrow X \text{ limitado } \}$. Se |X| = 1, temos que $X = \{a\}$ para algum $a \in \mathbb{N}$. Logo X é limitado pelo a, pois $a \le a$. Supondo $n \in X$. Seja |X| = n + 1. Logo existe uma bijeção $f: I_{n+1} \to X$. Tomando a bijeção $f': I_n \to X - \{f(n+1)\}$. Logo $X - \{f(n+1)\}$ tem tamanho n. Pela hipótese de indução, temos $X - \{f(n+1)\}$ limitado por um $p \in \mathbb{N}$, ou seja: $\forall t \in X - \{f(n+1)\}$: $t \le p$. Se $f(n+1) \le p$, temos que p limita X. Se $p \le f(n+1)$, temos para todo $t \in X - \{f(n+1)\}$ que $t \le p \le f(n+1)$ e $f(n+1) \le f(n+1)$, logo f(n+1) limita X.

Como $1 \in A$ e $n \in A \implies n+1 \in A$, temos $A = \mathbb{N}$

(a) \Longrightarrow (b) [Outra forma] Seja $X=\{x_1,x_2,\cdots x_n\}$, defina $a=x_1+x_2+\cdots x_n$. Temos $x\leq a$ para todo $x\in X$, logo X é limitado.

$$(b) \implies (c)$$

Como X é limitado, existe um $p \in \mathbb{N}$ tal que $\forall n \in X: n \leq p$. É natural pensar que o maior elemento será o menor dos "limitadores". Logo seja $A = \{p \in \mathbb{N} \mid \forall n \in X: n \leq p\}$. A é não vazio, logo é limitado inferiormente por um $a \in A$. Se $a \in X$, a é o maior elemento de X. Supondo $a \notin X$. Logo temos para todo $n \in X$ que $n \leq a$, mas nunca n = a, logo temos n < a. Se a = 1, temos n < 1 (contradição) . Se $a \neq 1$, existe a_0 tal que $a_0 + 1 = a$. Pelo lema 7, obtemos $n < a_0 + 1 \implies n \leq a_0$ para todo $n \in X$. Uma contradição, pois $a_0 \in A$ com $a_0 < a$ (a é o menor elemento de A). Logo devemos ter $a \in X$. Logo X possui maior elemento.

$$(c) \implies (a)$$

Seja $p \in X$ o maior elemento de X. Conjecturo que $|X| \leq p$. Vamos mostrar que $X \subset I_p$. Seja $x \in X$. Como p é o maior elemento de X, temos $x \leq p$. Como $X \subset \mathbb{N}$, temos $x \in \mathbb{N}$. Como $x \in \mathbb{N}$ e $x \leq p$, temos $x \in I_p$. Como $x \in X \implies x \in I_p$, temos $X \subset I_p$. Logo X é finito e $|X| \leq p$.

Teorema 6. Sejam X,Y conjuntos finitos disjuntos, então $X \cup Y$ é finito e $|X \cup Y| = |X| + |Y|$.

Demonstração. Sejam $f_x:I_n\to X$ e $f_y:I_m\to Y$ bijeções. Seja $f_{xy}:I_{n+m}\to X\cup Y$ definida como:

$$f_{xy}(p) = \begin{cases} f_x(p), & p \le n \\ f_y(r), & n$$

Se n < p, existe $r \in \mathbb{N}$ tal que p = n + r. Como $p \le n + m$, temos $r \le m$.

Supondo $f_{xy}(p) = f_{xy}(q)$ com $p \neq q$. Logo p < q ou q < p. Supondo sem perda de generalidade que p < q. Se $n < q \le n + m$ e $p \le n$, temos $f_x(p) = f_y(q)$, mas X e Y são disjuntos, logo devemos ter ou $p < q \le n$ ou $n . Se <math>p < q \le n$, temos $f_x(p) = f_x(q) \Longrightarrow p = q$ (f_x injetiva). O caso $n é analogo. Logo <math>f_{xy}(p) = f_{xy}(q) \Longrightarrow p = q$ (contradição). Logo devemos ter p = q. Logo f_{xy} é injetiva.

Seja $p \in X \cup Y$. Logo $p \in X$ ou $p \in Y$. Supondo $p \in X$. Como f_x é sobrejetiva, existe $n_x \in I_n$ tal que $f_x(n_x) = p$. Como $n_x \le n$, temos $f_{xy}(n_x) = f_x(n_x) = p$. Se $p \in Y$. Como f_y é sobrejetiva, existe $n_y \in I_m$ tal que $f_y(n_y) = p$. Como $n_y \le m$, temos $n < n + n_y \le m$ e $f_{xy}(n + n_y) = f_y(n_y) = p$ $(n_y = r)$. Logo f_{xy} é sobrejetiva.

Logo f_{xy} é bijetiva.

Logo $X \cup Y$ é finito e tem tamanho n + m = |X| + |Y|.

Proposição 3.50. Sejam X, Y conjuntos finitos , então $X \cup Y$ é finito e $|X \cup Y| \le |X| + |Y|$.

Demonstração. Sejam $f_x:I_n\to X$ e $f_y:I_m\to Y$ bijeções. Seja $f_{xy}:I_{n+m}\to X\cup Y$ definida como:

$$f_{xy}(p) = \begin{cases} f_x(p), & p \le n \\ f_y(r), & n$$

Se n < p, existe $r \in \mathbb{N}$ tal que p = n + r. Como $p \le n + m$, temos $r \le m$.

Seja $p \in X \cup Y$. Logo $p \in X$ ou $p \in Y$. Supondo $p \in X$. Como f_x é sobrejetiva, existe $n_x \in I_n$ tal que $f_x(n_x) = p$. Como $n_x \le n$, temos $f_{xy}(n_x) = f_x(n_x) = p$. Se $p \in Y$. Como f_y é sobrejetiva, existe $n_y \in I_m$ tal que $f_y(n_y) = p$. Como $n_y \le m$, temos $n < n + n_y \le m$ e $f_{xy}(n + n_y) = f_y(n_y) = p$ $(n_y = r)$. Logo f_{xy} é sobrejetiva.

Logo $X \cup Y$ é finito e $|X| + |Y| \le |X| + |Y|$.

Proposição 3.51. Temos para todos $m, n \in \mathbb{N}$ que $I_n \times I_m$ é finito e $|I_n \times I_m| = n \cdot m$.

Demonstração. Seja $X = \{n \in \mathbb{N} \mid \forall m \in \mathbb{N} : |I_n \times I_m| = n \cdot m\}$. Temos $1 \in X$, pois para qualquer $m \in \mathbb{N}$, existe uma bijeção entre I_m e $I_m \times I_1$, logo $I_m \times I_1$ é finito e $|I_m \times I_1| = |I_m| = m = 1 \cdot m$.

Supondo $n \in X$. Dado $m \in \mathbb{N}$, seja $I_m \times I_{n+1} = I_m \times (I_n \cup \{n+1\}) = (I_m \times I_n) \cup (I_m \times \{n+1\})$. Temos $(I_m \times I_n)$ finito e $|I_m \times I_n| = m \cdot n$ (hipótese de indução) e $I_m \times \{n+1\}$ finito com $|I_m \times \{n+1\}| = m$. Logo $|I_m \times I_{n+1}| = |(I_m \times I_n) \cup (I_m \times \{n+1\})| = mn + m = m \cdot (n+1)$.

Como $1 \in X$ e $n \in X \implies n+1 \in X$, temos $X = \mathbb{N}$.

Proposição 3.52. Sejam X,Y conjuntos finitos , então $X\times Y$ é finito e $|X\times Y|=|X|\times |Y|$.

Demonstração. Sejam $f_x:I_n\to X$ e $f_y:I_m\to Y$ bijeções. Logo $g:I_n\times I_m\to X\times Y$, definida por $g(p,q)=(f_x(p),f_y(q))$ é uma bijeção. Logo $|X\times Y|=|I_n\times I_m|=m\cdot n=|X|\times |Y|$.

Proposição 3.53. Temos para todos $m, n \in \mathbb{N}$ que $\mathcal{F}(I_n, I_m)$ é finito e $|\mathcal{F}(I_n, I_m)| = m^n$.

Demonstração. Seja $X = \{n \in \mathbb{N} \mid \forall m \in \mathbb{N} : |\mathcal{F}(I_n, I_m)| = m^n\}$. Temos $1 \in X$, pois para qualquer $m \in \mathbb{N}$, existe uma bijeção entre I_m e $\mathcal{F}(I_1, I_m)$, logo $\mathcal{F}(I_1, I_m)$ é finito e $|\mathcal{F}(I_1, I_m)| = |I_m| = m = m^1$.

Supondo $n \in X$. Temos $\mathcal{F}(I_{n+1}, I_m) = \mathcal{F}(I_n \cup \{n+1\}, I_m)$. Existe uma bijeção entre $\mathcal{F}(I_n \cup \{n+1\}, I_m)$ e $\mathcal{F}(I_n, I_m) \times \mathcal{F}(\{n+1\}, I_m)$. Existe uma bijeção entre $\mathcal{F}(\{n+1\}, I_m)$ e $\mathcal{F}(I_1, I_m)$. Logo existe uma bijeção entre $\mathcal{F}(I_n, I_m) \times \mathcal{F}(\{n+1\}, I_m)$ e $\mathcal{F}(I_n, I_m) \times \mathcal{F}(I_1, I_m)$. Como $\mathcal{F}(I_n, I_m)$ é finito e possui tamanho m^n e $\mathcal{F}(I_1, I_m)$ é finito epossui tamanho m^n , temos $\mathcal{F}(I_n, I_m) \times \mathcal{F}(I_1, I_m)$

finito e de tamanho $m^n \cdot m = m^{n+1}$. Como existe uma bijeção entre $\mathcal{F}(I_n, I_m) \times \mathcal{F}(I_1, I_m)$ e $\mathcal{F}(I_{n+1}, I_m)$, temos $\mathcal{F}(I_{n+1}, I_m)$ finito e de tamano m^{m+1} . Como $n \in X \implies n+1 \in X$ e $1 \in X$, temos $X = \mathbb{N}$.

Definição 3.27 (Conjunto Enumerável). Um conjunto é dito enumerável se é finito ou se existe uma bijeção $f: \mathbb{N} \to X$.

Lema 13. N é enumerável

Demonstração. Seja $f: \mathbb{N} \to \mathbb{N}$ a função indentidade. f é uma bijeção, logo \mathbb{N} é enumerável.

Proposição 3.54. Se existe uma injeção $f: \mathbb{N} \to Y$, então $f(\mathbb{N})$ é enumerável.

Demonstração. Definindo a bijeção $f': \mathbb{N} \to f(\mathbb{N}), f'(x) = f(x)$. Temos $f(\mathbb{N})$ contável.

Proposição 3.55. Todo conjunto infinito X tem um subconjunto enumerável.

Demonstração. Basta construir uma injeção $f: \mathbb{N} \to X$. Seja $A = \mathcal{P}(X) - \emptyset$. Temos $\bigcup A = X \in \emptyset \not\in A$. Seja $g: A \to X$ a função escolha aplicada em A. Logo temos $g(a) \in a \subset X$ para todo $a \in A$. Seja $f: \mathbb{N} \to X$ definida indutivamente por

$$\begin{cases} f(1) = g(A) \\ f(n+1) = g(A - f(I_n)) \end{cases}$$

Se $A-f(I_n)=\emptyset$, teríamos $A=f(I_n)$, uma contradição, pois A é infinito e $f(I_n)$ é finito. Logo $A-f(I_n)\neq\emptyset$ para todo $n\in\mathbb{N}$. Logo $g(A-f(I_n))$ está sempre definida.

Queremos mostrar que f é injetiva. Suponha f(m+1) = f(n+1) com $m \neq m$. Suponha sem perda de generalidade que n < m. Logo temos $n+1 \in I_m \implies f(n+1) \in f(I_m)$. Por definição, temos $f(n+1) = f(m+1) = g(A - f(I_m)) \in A - f(I_m)$. Contradição, pois $f(n+1) \in f(I_m) \implies f(n+1) \not\in A - f(I_m)$. Logo $f(m+1) = f(n+1) \implies m = n$. Logo f é injetiva. Logo $f': \mathbb{N} \to f(\mathbb{N})$ é bijetiva e $f(\mathbb{N})$ é contável. Logo existe um subconjunto f (\mathbb{N}) de X contável. \square

Proposição 3.56. Um conjunto X é infinito se, e somente se, existir uma bijeção entre X e uma parte própria.

Demonstração. Pela proprosição 3.6.1, se existir bijeção X não é finito.

Suponto X infinito. Logo existe subconjunto $Y\subset X$ enumerável. Seja $f:\mathbb{N}\to Y$ uma bijeção (uma enumeração). Vamos usar o fato da função $s:\mathbb{N}\to\mathbb{N}-\{1\}$ ser uma bijeção. Seja $A=(X-f(\mathbb{N}))\cup f(\mathbb{N}-\{1\})=(X-Y)\cup (Y-\{f(1)\})$. Temos $f(1)\not\in A$, logo A é parte própria de X. Seja $h:A\to X$ definida por

$$h(x) = \begin{cases} x, & x \in X - Y \\ f(s^{-1}(f^{-1}(x))), & x \in Y - \{f(1)\} \end{cases}$$

Se $x \in Y - \{f(1)\}$, temos $x \in Y$, logo $x \notin X - Y$. Se $x \in Y - \{f(1)\} = f(\mathbb{N} - \{1\})$, temos $f^{-1}(x) \in \mathbb{N} - \{1\}$, logo $s^{-1}(f^{-1}(x))$ está definida. Logo h está bem definida.

Se h(x)=h(y), com $x,y\in X-Y$, temos $h(x)=h(y)\Longrightarrow x=y$. Se h(x)=h(y) com $x,y\in Y-\{f(1)\}$, temos $f(s^{-1}(f^{-1}(x)))=f(s^{-1}(f^{-1}(y)))\Longrightarrow x=y$ $(f,s^{-1}$ são bijeções). Se h(x)=h(y) com $x\in X-Y$ e $y\in Y-\{f(1)\}$, temos $h(x)=x=f(s^{-1}(f^{-1}(y)))=h(y)$. Temos $f(a)\in Y$ para todo $a\in \mathbb{N}$. Logo $f(s^{-1}(f^{-1}(y)))=x\in Y$. Contradição, pois $x\in X-Y$. Logo h é injetiva.

Seja $x \in X$. Temos $x \in Y$ ou $x \notin Y$. Se $x \notin Y$, temos $x \in X - Y$, logo h(x) = x. Se $x \in Y$, temos x = f(n) com $n \in \mathbb{N}$. Temos $s(n) \in \mathbb{N} - \{1\}$, logo $y = f(s(n)) \in Y - \{f(1)\}$. Logo $h(y) = f(s^{-1}(f^{-1}(y))) = f(n) = x$. Logo h é sobrejetiva.

Como $h:A\to X$ é bijetiva, existe bijeção entre X e uma parte própria de X.

Proposição 3.57. Todo subconjunto $X \subset \mathbb{N}$ é enumerável.

Demonstração. Se X for finito, ele é enumerável por definição. Se X for infinito. Seja $f:\mathbb{N}\to X$ definida indutivamente por

$$\begin{cases} f(1) = \min(X) \\ f(n+1) = \min(X - f(I_n)) \end{cases}$$

Como $f(I_n)$ é sempre finito, temos $X - f(I_n) \neq \emptyset$ para todo $n \in \mathbb{N}$. Logo o princípio da boa ordenação vale para $X - f(I_n)$. Logo f está bem definida.

Se f(x+1) = f(y+1), com x < y (sem perda de generalidade), temos $x+1 \in I_y \implies f(x+1) \in f(I_y)$. Logo $f(x+1) \not\in X - f(I_y)$. Logo $f(x+1) \neq f(y+1)$, pois $f(y+1) \in X - f(I_y)$. Logo f é injetiva.

Suponha $X \neq f(\mathbb{N})$. Logo $X - f(\mathbb{N}) \neq \emptyset$. Seja $y \in X - f(\mathbb{N})$. Seja $x \in f(\mathbb{N})$ qualquer. Logo x = f(n) para algum $n \in \mathbb{N}$. Se x = f(1), temos $x = \min(X)$. Como $y \in X$, temos $x \leq y$. Se $x \neq f(1)$, temos $x = f(n+1) = \min(X - f(I_n))$. Como $y \in X - f(\mathbb{N}) \subset X - f(I_n)$, temos $y \in X - f(I_n)$, logo $x \leq y$. Ou seja: $\forall x \in \mathbb{N} : x \leq y$. Logo \mathbb{N} é limitado superiormente por y. Contradição (conjunto finito não possui limite superior). Logo $X = f(\mathbb{N})$.

Como f é injetiva e sobrejetiva, temos f bijetiva. Logo X é enumerável.

Proposição 3.58. Se $f: X \to Y$ é uma bijeção e Y é enumerável, então X é enumerável.

Demonstração. Se X for finito, ele é enumerável. Se X for infinito, então Y é infinito. Como Y é enumerável, existe uma bijeção $g:Y\to\mathbb{N}$. Logo existe a bijeção $g\circ f:X\to\mathbb{N}$. Logo X é enumerável.

Proposição 3.59. Todo subconjunto X de um conjunto enumerável Y é enumerável.

Demonstração. Se X for finito, ele é enumerável. Se X for infinito, então Y é infinito. Logo existe uma bijeção $f: Y \to \mathbb{N}$. Seja a bijeção $f': X \to f(X)$ a restrição de f a X. Como $f(X) \subset \mathbb{N}$, temos f(X) enumerável. Como existe uma bijeção entre X e um conjunto enumerável, temos X enumerável. **Proposição 3.60.** Se $f: X \to Y$ é uma injeção e Y é enumerável, então X é enumerável. Demonstração. Se X for finito, ele é enumerável. Se X for infinito, então Y é infinito. Temos $f(X) \subset Y$ é enumerável (subconjunto de conjunto enumerável). Seja a bijeção $f': X \to f(X)$ a restrição de f a X. Como existe uma bijeção entre X e um conjunto enumerável, temos X enumerável. **Proposição 3.61.** Se $f: X \to Y$ é uma sobrejeção e X é enumerável, então Y é enumerável. Demonstração. Como f é sobrejetiva, ela admite inversa à direita. Seja g: $Y \to X$ a inversa à direita de f. Se q(y) = q(y'), temos f(q(y)) = f(q(y')), logo y = y'. Logo g é injetiva. Pela proposição anterior, temos Y enumerável. Lema 14. Um conjunto X é enumerável se, e somente se, existir uma injeção $f: X \to \mathbb{N}$. Demonstração. Supondo X for enumerável. Se X for finito, existe uma bijeção $h: X \to I_n$. Como $I_n \subset \mathbb{N}$, existe uma injeção $X \to \mathbb{N}$. Se X for infinito, existe uma bijeção $g:X\to\mathbb{N}$. Em ambos os casos existe uma injeção entre X e \mathbb{N} . Supondo que existe uma injeção $f: X \to \mathbb{N}$. Como \mathbb{N} é enumerável, temos X enumerável. Lema 15. (Teorema fundamental da aritmética) Todo número natural ou é primo ou se escreve de modo único como um produto de números primos. Demonstração. Aritmética, Ahbramo. Lema 16. $\mathbb{N} \times \mathbb{N}$ é enumerável Demonstração. Seja $h: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $h(m,n) = 2^m \cdot 3^n$. Se h(m,n) = h(v,w), temos $2^m \cdot 3^n = 2^v \cdot 3^w$. Pelo lema anterior, temos m = v e n = w. Logo (m,n)=(v,w). Logo h é injetiva. Logo $\mathbb{N}\times\mathbb{N}$ é enumerável. **Proposição 3.62.** Se X, Y são enumeráveis, temos $X \times Y$ enumerável. Demonstração. Existem injeções $f: X \to \mathbb{N}$ e $g: Y \to \mathbb{N}$. Logo a função

Demonstração. Existem injeções $f: X \to \mathbb{N}$ e $g: Y \to \mathbb{N}$. Logo a função $h: X \times Y \to \mathbb{N} \times \mathbb{N}$, h(x,y) = (f(x),g(y)) é uma injeção entre $X \times Y$ e um conjunto enumerável. Logo $X \times Y$ é enumerável.

Proposição 3.63. Seja $(X_{\lambda})_{{\lambda}\in L}$ uma família enumerável de conjuntos enumeráveis. Temos $Y=\bigcup_{{\lambda}\in L}X_{\lambda}$ enumerável.

Demonstração. Como X_{λ} é enumerável para todo $\lambda \in L$, temos que existe uma função $f_{\lambda}: X \to \mathbb{N}$ injetiva para todo $\lambda \in L$. Definindo $g: Y \to \mathbb{N}$, dada por $g(x) = \min\{n \in \mathbb{N} | x \in X_n\}$. Se $x \in Y$, temos $x \in X_{\lambda}$ para algum $\lambda \in L$, logo $\{n \in \mathbb{N} | x \in X_n\}$ é não vazio. Para simplificar notação, vamos chamar $g(x) = n_x$. Seja $h: Y \to \mathbb{N} \times \mathbb{N}$, definida por $h(x) = (f_{n_x}(x), n_x)$. Afirmo que h é injetiva. De fato, se h(x) = h(y), temos $(f_{n_x}(x), n_x) = (f_{n_y}(y), n_y) \iff f_{n_x}(x) = f_{n_y}(y) \wedge n_x = n_y$. Como $n_x = n_y$, temos $f_{n_x} = f_{n_y}$, logo $f_{n_x}(x) = f_{n_y}(y) = f_{n_y}(y)$. Mas f_y é injetiva, logo $f_{n_x}(x) = f_{n_y}(x) = f_{n_y}(y)$. Logo $f_{n_x}(x) = f_{n_y}(y)$.

Proposição 3.64. Dados dois conjuntos X, Y, apenas um das 3 possibilidades ocorre:

- Existe uma injeção $f: X \to Y$ e não existe sobrejeção $g: X \to Y$.
- Existe bijeção $f: X \to Y$.
- Existe uma injeção $f: Y \to X$ e não existe sobrejeção $g: Y \to X$.

Demonstração. Naive Set Theory.

Definição 3.28. Definimos para conjuntos infinitos $\operatorname{card}(X) = \operatorname{card}(Y)$ se, e somente se, existir bijeção $f: X \to Y$. Definimos $\operatorname{card}(X) < \operatorname{card}(Y)$ se existir injeção $f: X \to Y$ e não existir sobrejeção $g: X \to Y$. E $\operatorname{card}(X) > \operatorname{card}(Y)$ caso contrário.

Proposição 3.65. (Cantor-Bernstein-Schröder Theorem) Se existir injeções $f: X \to Y$ e $g: Y \to X$, então existe bijeção $h: X \to Y$.

$$Demonstração$$
.

Proposição 3.66. Seja $(X_{\lambda})_{{\lambda}\in\mathbb{N}}$ uma família de conjuntos de tamanho maior ou igual a 2. Temos $Y=\prod_{{\lambda}\in\mathbb{N}}X_{\lambda}$ não é enumerável.

Demonstração. Lembrando que cada elemento de Y é uma função $\phi: \mathbb{N} \to \bigcup_{\lambda \in \mathbb{N}} X_{\lambda}$, onde $\phi(n) \in X_n$. Suponha Y enumerável. Logo existe uma bijeção

 $f: \mathbb{N} \to Y$. Para simplificar a notação, denotaremos a função f(n) por f_n . Como X_{λ} possui pelo menos 2 elementos, existem $a_{\lambda}, b_{\lambda} \in X_{\lambda}$ para todo $\lambda \in \mathbb{N}$. Seja $h: \mathbb{N} \to \bigcup_{\lambda \in \mathbb{N}} X_{\lambda}$, definida por

$$h(x) = \begin{cases} a_x, & f_x(x) \neq a_x \\ b_x, & f_x(x) = a_x \end{cases}.$$

Temos $h(n) \neq f_n(n)$ para todo $n \in \mathbb{N}$, logo $h \neq f_n$ para todo $n \in \mathbb{N}$. Como $h \in Y$ e $h \notin f(\mathbb{N})$, temos que f não é sobrejetiva. Logo f não é bijetiva (contradição). Logo Y não é enumerável.

4 Anéis

4.1 Definições iniciais

Definição 4.1 (Anel). Seja A um conjunto $e + : A \times A \to A$, $\cdot : A \times A \to A$ funções. Dizemos que $(A, +, \cdot)$ é um anel se :

1.
$$\forall x, y, z \in A : x + (y + z) = (x + y) + z$$

$$2. \ \forall x, y \in A : x + y = y + x$$

3. Existe $0_A \in A$ tal que para todo $x \in A$,

$$x + 0_A = x$$

.

4. Para todo $x \in A$, existe $x' \in A$ tal que:

$$x + x' = 0_A$$

5. $\forall x, y, z \in A : x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

6. $\forall x, y, z \in A$:

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

$$(x+y) \cdot z = x \cdot z + y \cdot z$$

7. Existe um elemnto $1_A \in A$ tal que para todo $x \in A$:

$$x \cdot 1_A = 1_A \cdot x = x.$$

8. $\forall x, y \in A : x \cdot y = y \cdot x$.

Proposição 4.1. Existe um único elemento $0_A \in A$ tal que $\forall x \in A : x+0_A = x$.

Demonstração. Suponha que existam $0_A, 0_A' \in A$ tal que $\forall x \in A : \begin{cases} x + 0_A = x \\ x + 0_A' = x \end{cases}$

Como $0_A, 0_A' \in A$, temos $0_A' + 0_A = 0_A'$ e $0_A + 0_A' = 0_A$. Logo pelà comutatividade da soma $0_A' = 0_A' + 0_A = 0_A + 0_A' = 0_A \iff 0_A = 0_A'$. Logo existe um único $0_A \in A$ tal que $\forall x \in A : x + 0_A = x$.

Definição 4.2 (Elemento Neutro da Soma). O único elemento $0_A \in A$ tal que $\forall x \in A : x + 0_A = x$ é chamado de elemento neutro da soma.

Proposição 4.2. Para todo $x \in A$, existe um único $y \in A$ tal que $x + y = 0_A$.

Demonstração. Suponha que existam $y,y'\in A$ tal que x+y=x+y'=0. Logo $y=y+0_A=y+(x+y')=y+(x+y')=(y+x)+y'=(x+y)+y'=0_A+y'=y'+0_A=y'\iff y=y'.$

Logo existe um único $y \in A$ tal que $x + y = 0_A$.

Definição 4.3 (Simétrico). Dado $x \in A$, chamamos o único elemento $y \in A$ tal que $x + y = 0_A$ de simétrico e escrevemos y = -x. Logo $x + (-x) = 0_A$.

Definição 4.4 (Subtração). A operação "somar com inverso" é chamada subtração e escrevemos

$$x + (-y) = x - y$$

.

Proposição 4.3. Existe um único elemento $1_A \in A$ tal que $\forall x \in A \ x \cdot 1_A = 1_A \cdot x = x$.

 $Demonstração. \text{ Suponha que existam } 1_A, 1_A' \in A \text{ tal que } \forall x \in A : \begin{cases} x \cdot 1_A = x \\ x \cdot 1_A' = x \end{cases}$

Em particular, temos $\begin{cases} 1'_A \cdot 1_A = 1'_A \\ 1_A \cdot 1'_A = 1_A \end{cases} \implies 1'_A = 1'_A \cdot 1_A = 1_A \cdot 1'_A = 1_A. \text{ Logo}$ existe um único elemento $1_A \in A$ tal que $\forall x \in A \ x \cdot 1_A = 1_A \cdot x = x.$

Definição 4.5 (Elemento Neutro do Produto). O único elemento $1_A \in A$ tal que $\forall x \in A \ x \cdot 1_A = 1_A \cdot x = x$ é chamado de elemento neutro do produto.

Proposição 4.4. Se A é um anel $x, y, z \in A$, então $x + z = y + z \implies x = y$.

Demonstração. Supondo
$$x+z=y+z$$
, temos $y=y+0_A=y+(z-z)=(y+z)-z=(x+z)-z=x+(z-z)=x+0_A=x$. Logo $x+z=y+z \implies x=y$. \square

Proposição 4.5. Se $A \notin um \ anel, \ então \ \forall x \in A : x \cdot 0_A = 0_A$

Demonstração. Temos
$$x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A \iff x \cdot 0_A + 0_A = x \cdot 0_A + x \cdot 0_A \implies x \cdot 0_A = 0_A$$
 pela proposição anterior.

Proposição 4.6. Seja A um anel. Para todos $x, y, z \in A$, temos:

- (a) -(-x) = x
- (b) -(xy) = (-x)y = x(-y)
- (c) (-x)(-y) = xy
- (d) $(-1_A)x = -x$

Demonstração.

- (a) Definimos -y=z como o único elemento $z\in A$ tal que $y+z=0_A$. Logo $(-x)+(-(-x))=0_A$ por definição. Mas $x+(-x)=0_A$. Logo pela unicidade, temos x=-(-x).
- (b) Temos $(-x)y + xy = (-x + x)y = 0_A y = 0_A$ e $x(-y) + xy = x(-y + y) = x \cdot 0_A = 0_A$, que implica (-x)y e x(-y) inversos aditivos de xy. Da unicidade, temos -(xy) = (-x)y = x(-y).

(c) Pelos itens anteriores, temos $(-x)(-y) = -(x \cdot (-y)) = -(-(xy)) = xy$.

(d) Do item (b), temos $(-1_A)x = -(1_A \cdot x) = -x$.

4.1.1 Exercícios

Exercício 4.1.1. Se A é um anel e $x, y, z \in A$, então $x + y = x \implies y = 0_A$.

Demonstração. Se x+y=x, temos $x+y=x=x+0_A \implies y=0_A$, pelo item anterior. \Box

4.2 Invertibilidade

Definição 4.6 (Invertível). Um elemento $x \in A$ é invertível em A se existe $y \in A$ tal que

$$x \cdot y = 1_A$$
.

Proposição 4.7. Se $x \in A$ é invertível, então existe um único $y \in A$ tal que $x \cdot y = 1_A$.

Demonstração. Dado $x \in A$ invertível, suponha que existam $y, y' \in A$ tal que $x \cdot y = x \cdot y' = 1_A$.

Logo $y' = 1_A \cdot y' = (x \cdot y) \cdot y' = x \cdot (y \cdot y') = x \cdot (y' \cdot y) = (x \cdot y') \cdot y = 1_A \cdot y = y \iff y' = y.$

Logo existe um único $y \in A$ tal que $x \cdot y = 1_A$.

Definição 4.7 (Inverso multiplicativo). Dado um anel $A \in x \in A$ invertível, definimos x^{-1} como o único elemento de A tal que $x \cdot x^{-1} = 1_A$.

Definição 4.8 (Conjunto dos invertíveis). Dado um anel A, o conjunto dos invertíveis em A é denotado por A^{\times} .

Definição 4.9 (Conjunto dos não-nulos). Dado um anel A, o conjunto dos não-nulos em A é denotado por $A^* = A - \{0\}$.

Definição 4.10 (Anel Nulo). Dizemos que um anel A é nulo se $A = \{0_A\}$.

4.3 Corpos, domínios e anéis reduzidos

Definição 4.11 (Divisor de Zero). Dado A um anel, $x \in A$ é um divisor de zero em A se existe $y \in A - \{0\}$ tal que $xy = 0_A$.

Proposição 4.8. Dado um anel não-nulo A, 0_A é um divisor de zero.

Demonstração. Como A é não nulo, existe $y \in A - \{0\}$. Além disso, $0_A \cdot y = 0_A$. Logo 0_A é um divisor de zero. \Box

Definição 4.12 (Domínio). Um anel não nulo A é um Domínio se $0_A \in A$ for o único divisor de zero.

Proposição 4.9. Dado um anel A não nulo, as afirmações a seguir são equivalentes:

- (a) A é um Domínio;
- (b) $\forall x, y \in A \{0_A\} : xy \neq 0_A$
- (c) $\forall x, y \in A : xy = 0_A \implies x = 0_A \lor y = 0_A$
- Demonstração. (a) \Longrightarrow (b): Supondo A um domínio. Dados $x,y \in A$ com $x,y \neq 0_A$, se $xy = 0_A$, teríamos x,y divisores de zero em A. Logo teríamos divisores de zero em A diferentes de 0_A . Logo A não seria um domínio (contradição). Portanto devemos ter $xy \neq 0_A$.
- (b) \implies (c): Supondo $x, y \in A$ com $xy = 0_A$. Se $x, y \neq 0_A$, teríamos de (b) que $xy \neq 0_A$, logo devemos ter $x = 0_A$ ou $y = 0_A$.
- (c) \Longrightarrow (a): Supondo x um divisor de zero em A, logo $xy = 0_A$ com $y \in A \{0_A\}$. De (c), temos $xy = 0_A \Longrightarrow x = 0_A \lor y = 0_A$. Como $y \neq 0_A$, devemos ter $x = 0_A$. Mostramos que qualquer divisor de zero em A é igual a 0_A . Logo A é um domínio.

Proposição 4.10. Se A é um domínio, $n \in \mathbb{N}$ e $x_1, \dots x_n \in A - \{0_A\}$, então $x_1 \dots x_n \neq 0_A$.

Demonstração. A prova será por indução. Para n=1, é imediato. Para n=2, segue da proposição anterior. Supondo válido para um $n\in\mathbb{N}$ qualquer. Supondo $x_1, \dots x_n, x_{n+1}\in A-\{0_A\}$, então $x_1\cdot x_2\cdots x_n\cdot x_{n+1}=(x_1\cdot x_2\cdots x_n)\cdot x_{n+1}$. Pelo passo de indução, temos $y=x_1\cdot x_2\cdots x_n\neq 0_A$. Como $y\neq 0_A$ e $x_{n+1}\neq 0_A$, temos $y\cdot x_{n+1}\neq 0_A$ pelo caso n=2. Logo vale para qualquer $n\in\mathbb{N}$.

Proposição 4.11. Se A é um domínio, $n \in \mathbb{N}$ e $x \in A - \{0_A\}$, então $x^n \neq 0_A$.

 $\begin{array}{ll} \textit{Demonstração}. \ \ \text{Tomando} \ x \in A - \{0\} \ \text{e} \ x^n = \underbrace{x \cdot x \cdot \cdots \cdot x}_{n \text{ vezes}} \ \text{e} \ \text{usando a proposição} \\ \text{anterior com} \ x_1 = x_2 = \cdots = x_n = x \neq 0, \ \text{temos} \ x^n \neq 0. \end{array}$

Proposição 4.12 (Lei do Corte). Seja A um domínio. Se $a, x, y \in A$ e $a \neq 0_A$, então

$$ax = ay \implies x = y.$$

Demonstração. Supondo $a, x, y \in A$ com $a \neq 0_A$ e ax = ay. Temos $ax - ay = 0_A \iff a(x - y) = 0_A \implies a = 0_A \lor x - y = 0_A$. Como $a \neq 0_A$, temos $x - y = 0_A \implies x = y$.

Definição 4.13 (Nilpotente). Dado um anel A. Um elemento $x \in A$ é nilpotente se $x^n = 0_A$ para algum $n \in \mathbb{N}$.

Proposição 4.13. Dado um anel $A, 0_A \in A$ é nilpotente.

Demonstração. Tem
s $0^1_A=0_A,$ logo 0_A é nil
potente.

Definição 4.14 (Anel Reduzido). Um anel A é um Anel Reduzido se o único elemento nilpotente de A for 0_A .

Definição 4.15 (Corpo). Um anel não nulo A é um corpo se $A^* = A^{\times}$, ou seja, todo elemento não nulo for invertível.

Proposição 4.14. Se um anel A é um corpo, então é um domínio.

Demonstração. Supondo A um corpo. Supondo $x, y \in A$ com $xy = 0_A$. Queremos mostrar que $x = 0_A$ ou $y = 0_A$. Se $y = 0_A$, não temos nada a demonstrar, supondo $y \neq 0_A$. Logo $y \in A^* = A^*$ (A é um corpo). Logo $x = x \cdot 1_A = x \cdot (y \cdot y^{-1}) = (x \cdot y) \cdot y^{-1} = 0_A \cdot y^{-1} = 0_A$. Logo A é um domínio.

Proposição 4.15. Se um anel A é um domínio, então é um reduzido.

Demonstração. Supondo A um domínio. Seja $x \in A$ nilpotente, ou seja, $x^n = 0_A$ com $n \in \mathbb{N}$. Se $x \neq 0$, temos pela proposição 4.11 que $x^n \neq 0$. Logo devemos ter x = 0.

5 Análise Real

5.1 Números Reais

5.1.1 Corpo Ordenado

Definição 5.1 (Corpo Ordenado). Um corpo K é ordenado se existe um conjunto $P \subset K$ tal que :

- 1. Para todos $x, y \in P$, temos $x + y \in P$ e $x \cdot y \in P$.
- 2. Dado $x \in K$, apenas uma das possibilidades ocorre: ou $x \in P$, ou $x = 0_K$ ou $-x \in P$.

Definição 5.2 (Positivos). Dado um corpo ordenado K, chamamos os elementos $x \in P$ de positivos.

Definição 5.3 (Negativos). Dado um corpo ordenado K, chamamos os elementos y = -x com $x \in P$ de negativos.

Definição 5.4 (Conjunto dos Negativos). Dado um corpo ordenado K, denotamos por $-P = \{-x \mid x \in P\}$ como o conjunto dos elementos negativos.

Proposição 5.1. Se K é um corpo ordenado, $K = (-P) \cup \{0_K\} \cup P$.

Demonstração. Dado $x \in K$, pela definição, temos $x \in P$ ou $x = 0_K \iff x \in \{0_K\}$ ou $-x \in P \iff x \in -P$, logo $x \in (-P) \cup \{0_K\} \cup P$. Temos $P, \{0_K\}, -P \subset K$, logo $(-P) \cup \{0_K\} \cup P \subset K$. Portanto $(-P) \cup \{0_K\} \cup P = K$

Proposição 5.2. Se K é um corpo ordenado, $(-P) \cap \{0_K\} \cap P = \emptyset$.

Demonstração. Dado $x \in K$, pela definição, apenas um dos três ocorre: $x \in P$ ou $x = 0_K \iff x \in \{0_K\}$ ou $-x \in P \iff x \in -P$. Logo $(-P) \cap \{0_K\} \cap P = \emptyset$.

Proposição 5.3. Se K é um corpo ordenado, temos $\forall a \in K - \{0_K\} : a^2 \in P$.

Demonstração. Dado $a \in K - \{0_K\}$, temos $-a \in P$ ou $a \in P$. Se $a \in P$, temos $a^2 = a \cdot a \in P$. Se $-a \in P$, temos $(-a) \cdot (-a) = a^2 \in P$. Em ambos os casos, temos $a^2 \in P$.

Proposição 5.4. Se K é um corpo ordenado, então $1_K \in P$.

Demonstração. Temos $1_K = 1_K \cdot 1_K = 1_K^2 \implies 1_K \in P$, pela proposição anterior. \square

Observação 5.1. Segue da proposição anterior que $-1_K \in -P$ para todo corpo ordenado K. Logo num corpo ordenado -1_K nunca é um quadrado.

Definição 5.5 (<). Num corpo ordenado $K \operatorname{com} x, y \in K$, definimos:

$$x < y \iff y - x \in P$$
.

Definição 5.6 (>). Num corpo ordenado K com $x, y \in K$, definimos:

$$y > x \iff x < y$$
.

Proposição 5.5. Dado um corpo ordenado K, temos para todos $x, y, z \in K$:

- 1. $x < y \land y < z \implies x < z$
- 2. Apenas uma das três possibilidades ocorre: x < y ou x = y, ou y < x.
- $3. \ x < y \iff x \pm z < y + z$
- 4. Se z > 0, temos $x < y \implies xz < yz$
- 5. Se z < 0, temos $x < y \implies xz > yz$

Demonstração. 1. Se x < y e y < z, temos $y - x \in P$ e $z - y \in P$, logo $(y - x) + (z - y) = z - x \in P$, que equivale a x < z.

- 2. Dado $x, y \in K$, tomando $w = x y \in K$, temos $w \in P$, ou w = 0 ou $-w \in P$. Logo $x y \cdot P$, ou x y = 0 ou $-(x y) = y x \in P$. Portanto y < x, ou $x = y \cdot P$ ou x < y.
- 3. Se x < y, temos $y x \in P$. Logo $y x = y + 0_K x = y + (z z) x = (y + z) (x + z) \in P \iff x + z < y + z$.
- 4. Se z > 0 e $x < y \iff y x \in P$, temos que $yz xz = (y x) \cdot z \in P \iff xz < yz$.

5. Se $z < 0 \iff -z \in P$ e $x < y \iff y - x \in P$, temos que $xz - yz = (y - x) \cdot (-z) \in P \iff yz < xz$.

Proposição 5.6. Dado um corpo ordenado K, temos para todos $x, y, z, w \in K$:

$$x < y \land z < w \implies x + z < y + w$$

Demonstração. Temos $x < y \implies x + z < y + z$ e $z < w \implies y + z = z + y < w + y = y + w$, logo x + z < y + w.

Proposição 5.7. Dado um corpo ordenado K, temos para todos $x, y, z, w \in K$:

$$0 < x < y \land 0 < z < w \implies 0 < xz < yw$$

Demonstração. Como z>0 e x< y,temos xz< yz. Como y>0 e z< w,temos yz< yw. Logo xz< yw.

Definição 5.7 (\leq e \geq). Num corpo ordenado K com $x, y \in K$, definimos:

$$y \ge x \iff x \le y \iff x < y \lor x = y$$

5.1.2 Números Reais

Definição 5.8 (Cota Superior). Seja K um corpo ordenado e $X \subset K$. Um elemento $s \in K$ é cota superior de X quando

$$\forall x \in X : x < s.$$

Definição 5.9 (Limitado superiormente). Seja K um corpo ordenado e $X \subset K$. Dizemos que X é limitado superiormente se existe uma cota superior de X.

Definição 5.10 (Supremo). Seja K um corpo ordenado e $X \subset K$. Um elemento $s \in K$ é o supremo de X quando:

- 1. s é cota superior de X.
- 2. Se $c \in K$ é cota superior de X, então $s \leq c$.

Observação 5.2. Uma forma mais humana de dizer a definição de supremo é: O supremo de um conjunto X é a menor cota superior deste conjunto.

Observação 5.3. Podemos tomar a contrapositiva na segunda condição e obter: Se c < s, então c não é cota superior. Mas não ser cota superior é o mesmo que existir um $x \in X$ com c < x. Logo obtemos uma definição equivalente: Seja K um corpo ordenado e $X \subset K$. Um elemento $s \in K$ é o supremo de X quando:

- 1. s é cota superior de X.
- 2. Se $c \in K$ com c < s, então existe $x \in X$ com c < x.

Proposição 5.8. Podemos trocar a segunda condição da definição de supremo do conjunto X por:

$$\forall \varepsilon > 0 \,\exists x \in X : x > s - \varepsilon$$

Demonstração. Seja s o supremo de X pela definição usual. Dado $\varepsilon > 0$, sabemos que $s - \varepsilon < s$, logo existe $x \in X$ com $s - \varepsilon < x$ pela definição equivalente acima.

Supondo que s seja cota superior de X e $\forall \varepsilon > 0 \; \exists x \in X : x > s - \varepsilon$. Se c é uma cota superior de X com c < s, temos s - c > 0. Tomando $\varepsilon = s - c > 0$, existe $x \in X$ tal que $x > s - \varepsilon = s - (s - c) = c$, logo c não é cota superior (contradição). Logo se c é uma cota superior de X, temos $s \le c$. Logo s é a menor cota superior. Logo s é um supremo de X.

Observação5.4. Vou usar a segunda condição que for mais conveniente na situação.

Proposição 5.9. O supremo de um conjunto $X \subset K$, quando existir, é único.

Demonstração. Suponha que $s_0, s_1 \in K$ sejam supremos do conjunto X. Temos que ambos são cotas superiores para X (condição 1). Da condição 2, obtemos $s_0 \leq s_1$ e $s_1 \leq s_0$, logo $s_0 = s_1$.

Definição 5.11 (sup X). Quando existir o supremo de um conjunto $X \subset K$, escreveremos sup X.

Definição 5.12 (Corpo Completo). Um corpo orderna
o K é completo se todo subconjunto não-vazi
o $X \subset K$, limitado superiormente, possui supremo em K.

Axioma 8. Existe um corpo ordenado completo, denotado por \mathbb{R} .

5.2 Sequências

Definição 5.13 (Sequência estritamente crescente). Uma sequência (x_n) é estritamente crescente se $\forall n \in \mathbb{N} : x_{n+1} > x_n$.

Definição 5.14 (Sequência crescente). Uma sequência (x_n) é crescente se $\forall n \in \mathbb{N} : x_{n+1} \geq x_n$.

Proposição 5.10. Uma sequência é estritamente crescente se, e somente se, $\forall m, n \in \mathbb{N} : m > n \implies x_m > x_n$.

Demonstração. Supondo (x_n) crescente. Logo $\forall n \in \mathbb{N} : x_{n+1} > x_n$. Seja $X = \{p \in \mathbb{N} \mid \forall n \in \mathbb{N} : x_{n+p} > x_n\}$. Temos $1 \in X$, pois (x_n) é crescente. Supondo $m \in X$. Logo $\forall n \in \mathbb{N} : x_{n+m} > x_n$. Tomando $n \in \mathbb{N}$ qualquer, temos $x_{n+m+1} = x_{(n+m)+1} > x_{n+m} > x_n \Longrightarrow x_{n+m+1} > x_n$. Logo $m+1 \in X$. Logo $X = \mathbb{N}$. Se m > n, temos m = n + p, com $p \in \mathbb{N}$, logo $x_m = x_{n+p} > x_n$.

Supondo $\forall m, n \in \mathbb{N} : m > n \implies x_m > x_n$. Temos $\forall n \in \mathbb{N} : n+1 > n \implies x_{n+1} > x_n$. Logo (x_n) é crescente.

Definição 5.15 (Sequência estritamente decrescente). Uma sequência (x_n) é estritamente decrescente se $\forall n \in \mathbb{N} : x_{n+1} < x_n$.

Definição 5.16 (Sequência decrescente). Uma sequência (x_n) é decrescente se $\forall n \in \mathbb{N} : x_{n+1} \leq x_n$.

Proposição 5.11. Uma sequência é estritamente decrescente se, e somente se, $\forall m, n \in \mathbb{N} : m > n \implies x_m < x_n$.

 $\begin{array}{lll} Demonstraç\~ao. & \text{Supondo } (x_n) \text{ decrescente. Logo } \forall n \in \mathbb{N} : x_{n+1} < x_n. \text{ Seja } X = \{p \in \mathbb{N} \mid \forall n \in \mathbb{N} : x_{n+p} < x_n\}. & \text{Temos } 1 \in X, \text{ pois } (x_n) \text{ \'e decrescente.} \\ \text{Supondo } m \in X. & \text{Logo } \forall n \in \mathbb{N} : x_{n+m} < x_n. & \text{Tomando } n \in \mathbb{N} \text{ qualquer, temos } \\ x_{n+m+1} = x_{(n+m)+1} < x_{n+m} < x_n & \Longrightarrow x_{n+m+1} < x_n. & \text{Logo } m+1 \in X. & \text{Logo } X = \mathbb{N}. & \text{Se } m > n, \text{ temos } m = n+p, \text{ com } p \in \mathbb{N}, \text{ logo } x_m = x_{n+p} < x_n. \\ \end{array}$

Supondo $\forall m, n \in \mathbb{N} : m > n \implies x_m < x_n$. Temos $\forall n \in \mathbb{N} : n + 1 > n \implies x_{n+1} < x_n$. Logo (x_n) é decrescente.

Definição 5.17 (Sequência monótoma). Uma sequência (x_n) é monótoma se é crescente ou decrescente.

Teorema 7. Toda sequência monótona limitada é convergente.

Se (x_n) é decrescente, tomando $X = \{x_n \mid n \in \mathbb{N}\}$, temos que $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : x_{n_0} > \inf X + \varepsilon$. Temos $m > n_0 \implies x_m \le x_{n_0} \iff x_m - \inf X \le x_{n_0} - \inf X < \varepsilon$, logo $m > n_0 \implies -\varepsilon \le 0 \le x_m - \inf X < \varepsilon \iff |x_m - \inf X| < \varepsilon$. Logo $\lim(x_n) = \inf X$.

5.3 Organizar

Proposição 5.12. Sejam $A, B \subset \mathbb{R}^+ - \{0\}$ limitados, então $C = \{ab \mid (a, b) \in A \times B\}$ é limitado e sup $C = \sup A \times \sup B$.

Demonstração. Como A,B são limitados, então existe sup A e sup B. Dado $(a,b) \in A \times B$, temos $0 \le a \le \sup A$ e $0 \le b \le \sup B$, logo $0 \le ab \le \sup A \cdot \sup B$, logo sup $A \sup B$ é uma cota superior para $C = \{ab | (a,b) \in A \times B\}$. Portanto C é limitado. Além disso sup $C \le \sup A \cdot \sup B$.

Seja $(x_n)_{n\in\mathbb{N}}$ uma sequência em A com $\lim x_n = \sup A$ e $(y_n)_{n\in\mathbb{N}}$ uma sequência em B com $\lim y_n = \sup B$, temos $(x_n \cdot y_n)_{n\in\mathbb{N}}$ uma sequência em C com $\lim x_n \cdot y_n = \sup A \sup B$. Logo $\sup A \cdot \sup B \leq \sup C$.

Como sup $A \sup B \le \sup C \in \sup A \sup B$, temos sup $C = \sup A \sup B$.

Proposição 5.13. Sejam $A, B \subset \mathbb{R}^+ - \{0\}$ limitados, então $C = \{ab \mid (a, b) \in A \times B\}$ é limitado e sup $C = \sup A \times \sup B$.

Demonstração. Exercício.

6 Análise no \mathbb{R}^n

6.1 Topologia

6.1.1 Métrica e Norma

Definição 6.1 (Métrica). Dado um espaço vetorial E sobre um corpo K, uma métrica é uma função $d: E \times E \to \mathbb{R}$, que satisfaz para todos $a, b \in E$ e $\lambda \in K$:

- 1. $d(a,b) \ge 0$
- 2. $d(a,b) = 0 \iff a = b$
- 3. d(a,b) = d(b,a)
- 4. $d(a,b) \le d(a,c) + d(c,b)$

Definição 6.2 (Norma). Dado um espaço vetorial E sobre um corpo K, uma norma é uma função $\|\cdot\|: E \to \mathbb{R}$, que satisfaz para todos $x, y \in E$ e $\lambda \in K$:

- 1. $||x|| = 0 \implies x = 0$
- $2. \|\lambda x\| = |\lambda| \cdot \|x\|$
- 3. $||x + y|| \le ||x|| + ||y||$

Proposição 6.1. Dada uma norma $\|\cdot\|: E \to \mathbb{R}$, temos:

$$||x|| = 0 \iff x = 0$$

Demonstração. Temos $||x||=0 \implies x=0$ por definição. Basta mostrar que $||\vec{0}||=0$ Temos $||\vec{0}||=||0\cdot\vec{0}||=|0|\cdot||\vec{0}||=0\cdot||\vec{0}||=0$.

Proposição 6.2. Dada uma norma $\|\cdot\|: E \to \mathbb{R}$, temos para todo $x \in E$:

$$||x|| \ge 0$$

 $\begin{array}{ll} \textit{Demonstração}. \text{ Temos para todo } x,y \in E \text{ que } \|x+y\| \leq \|x\|+\|y\|. \text{ Tomando} \\ y = -x, \text{ temos } \|x-x\| \leq \|x\|+\|-x\| \iff \|0\| \leq \|x\|+|-1| \cdot \|x\| \iff 0 \leq \|x\|+\|x\| \iff 2\|x\| \geq 0 \iff \|x\| \geq 0. \end{array}$

Proposição 6.3. Dada uma norma $\|\cdot\|: E \to \mathbb{R}$, a função $d: E \times E \to \mathbb{R}$, $d(a,b) = \|a-b\|$ é uma métrica.

Demonstração. Para todo $a, b, c \in E$, temos:

• d(a,b) = |a-b| > 0.

- $d(a,b) = 0 \iff |a-b| = 0 \iff a-b = 0 \iff a = b$.
- d(a,b) = |a-b| = |b-a| = d(b,a)
- $d(a,b) = |a-b| = |a-c+c-b| \le |a-c| + |c-b| = d(a,c) + d(c,b)$.

Definição 6.3 (Métrica proveniente da norma). Dada uma norma $\|\cdot\|: E \to \mathbb{R}$, a função $d: E \times E \to \mathbb{R}$, $d(a,b) = \|a-b\|$ é chamada de métrica proveniente da norma.

Proposição 6.4. Num espaço vetorial E, uma métrica d é proveniente de uma norma, se e somente se, para quaisquer $x, y, a \in E$ e $\lambda \in K$, tem-se d(x+a, y+a) = d(x,y) e $d(\lambda \cdot x, \lambda \cdot y) = |\lambda| \cdot d(x,y)$.

Demonstração. Se d provém de uma métrica, para $x, y, a \in E$ e $\lambda \in K$, temos $d(x+a,y+a) = \|(x+a)-(y+a)\| = \|x-y\| = d(x,y)$ e $d(\lambda \cdot x, \lambda \cdot y) = \|\lambda \cdot x - \lambda \cdot y\| = \|\lambda \cdot (x-y)\| = |\lambda| \cdot \|x-y\| = |\lambda| \cdot d(x,y)$.

Supondo d uma métrica qualquer com d(x+a,y+a)=d(x,y) e $d(\lambda\cdot x,\lambda\cdot y)=|\lambda|\cdot d(x,y)$. Definindo $\|\cdot\|:E\to\mathbb{R},$ com $\|x\|=d(x,0).$ De fato, $\|\cdot\|$ é uma norma, pois:

- 1. $||x|| = 0 \iff d(x,0) = 0 \iff x = 0.$
- $2. \ \|\lambda \cdot x\| = d(\lambda \cdot x, 0) = d(\lambda \cdot x, \lambda \cdot 0) = |\lambda| \cdot d(x, 0) = |\lambda| \cdot \|x\|.$
- 3. $||x+y|| = d(x+y,0) \le d(x+y,y) + d(y,0) = d(x,0) + d(y,0) = ||x|| + ||y|| \implies ||x+y|| \le ||x|| + ||y||.$

Logo $\|\cdot\|$ é uma norma que induz d.

Proposição 6.5.

$$|||x|| - ||y||| \le ||x - y||$$

 $\begin{array}{ll} Demonstraç\~ao. \ \ Temos \ \|x\|=\|x-y+y\|\leq \|x-y\|+\|y\| \implies \|x\|-\|y\|\leq \|x-y\|. \ \ Al\'em \ \ disso \ \|y\|\leq \|y-x\|+\|x\|=\|x-y\|+\|x\| \implies \|y\|-\|x\|\leq \|x-y\| \implies -\|x-y\|\leq \|x\|-\|y\|. \end{array}$

Como $-\|x - y\| \le \|x\| - \|y\| \le \|x - y\|$, temos $\|x\| - \|y\| \le \|x\| - \|y\|$.

Definição 6.4 (Normas equivalentes). Duas normas $\|\cdot\|_1, \|\cdot\|_2 : E \to \mathbb{R}$ são equivalentes se existirem $C_1, C_2 > 0$ tal que

$$C_1 \cdot ||x||_1 \le ||x||_2 \le C_2 \cdot ||x||_1$$

Proposição 6.6. Se um espaço normado E tiver dimensão finita, então todas as suas normas são equivalentes.

6.2 Organizar

Definição 6.5 $(L(\mathbb{R}^n, \mathbb{R}^m))$.

$$L(\mathbb{R}^n, \mathbb{R}^m) = \{ T \in F(\mathbb{R}^n, \mathbb{R}^m) \mid T \text{ \'e linear} \}$$

Definição 6.6 $(L(\mathbb{R}^n))$.

$$L(\mathbb{R}^n) = L(\mathbb{R}^n, \mathbb{R}^n)$$

Definição 6.7 $(GL(\mathbb{R}^n))$.

$$GL(\mathbb{R}^n) = \{ T \in L(\mathbb{R}^n) \mid T \text{ \'e bijetiva} \}$$

Proposição 6.7. $GL(\mathbb{R}^n)$ é aberto.

Demonstração. Seja $T \in GL(\mathbb{R}^n)$. Logo T é invertível (bijetiva).

Proposição 6.8. $f: GL(\mathbb{R}^n) \to GL(\mathbb{R}^n)$, dada for $f(T) = T^{-1}$ é contínua.

Demonstração.

6.3 Diferenciação

Proposição 6.9. Seja $f: GL(\mathbb{R}^n) \to GL(\mathbb{R}^n)$, dada por $f(T) = T^{-1}$. Temos f diferenciável.

Demonstração. Temos

$$(T+H)(T+H)^{-1}=I\iff$$

$$T(T+H)^{-1} + H(T+H)^{-1} = I \iff$$

$$T(T+H)^{-1} = I - H(T+H)^{-1} \iff$$

$$(T+H)^{-1} = T^{-1}(I-H(T+H)^{-1}) \iff$$

Vou substituir $(T+H)^{-1}$ na equação acima.

$$(T+H)^{-1} = T^{-1}(I - H(T+H)^{-1})$$

$$= T^{-1}(I - H\left[T^{-1}(I - H(T+H)^{-1})\right])$$

$$= T^{-1}(I - HT^{-1}(I - H(T+H)^{-1}))$$

$$= T^{-1}(I - HT^{-1} + HT^{-1}H(T+H)^{-1})$$

$$= T^{-1} - T^{-1}HT^{-1} + T^{-1}HT^{-1}H(T+H)^{-1}$$

Se chamarmos $S_T(H) = -T^{-1}HT^{-1}$, temos

$$f(T+H) = (T+H)^{-1}$$

$$= T^{-1} - T^{-1}HT^{-1} + T^{-1}HT^{-1}H(T+H)^{-1}$$

$$= f(T) + S_T(H) + T^{-1}HT^{-1}H(T+H)^{-1}$$

Afirmo que $S_T(H) = Df(T)(H)$. De fato, S_T é linear (confia) e temos

$$\lim_{H \to 0} \frac{|f(T+H) - f(T) - S_T(H)|}{|H|} = \lim_{H \to 0} \frac{|+T^{-1}HT^{-1}H(T+H)^{-1}|}{|H|}$$

$$\leq \lim_{H \to 0} \frac{|T^{-1}| \cdot |H| \cdot |T^{-1}| \cdot |H| \cdot |(T+H)^{-1}|}{|H|}$$

$$= ||T^{-1}||^2 \cdot \lim_{H \to 0} |H| \cdot |(T+H)^{-1}|$$

$$= 0$$

6.4 Integração

Definição 6.8 (Retângulo). Um retângulo ou bloco é um produto cartesiano $A = \prod_{i=1}^{m} [a_i, b_i] \subset \mathbb{R}^m$, com $a_i < b_i$ para $i \in \{1, 2, \dots, m\}$.

Definição 6.9 (Partição do intervalo). Uma partição de um intervalo $[a,b] \subset \mathbb{R}$ é uma sequência t_1, t_2, \cdots, t_k com $a = t_1 \leq t_2 \leq \cdots \leq t_k = b$.

Definição 6.10 (Partição de um retângulo). Uma partição de um retângulo $A \subset \mathbb{R}^m$ é uma coleção $P = (P_1, P_2, \cdots P_m)$, onde P_i é uma partição do intervalo $[a_i, b_i]$ para todo $i \in \{1, 2, \cdots, m\}$.

Definição 6.11 (Subretângulo de uma Partição). Dada uma partição $P = (P_1, P_2, \cdots P_m)$ do retângulo $A \subset \mathbb{R}^n$, um subretângulo S de P é um retângulo da forma $S = \prod_{j=1}^m I_j$, onde I_j é um intervalo da partição P_j .

Definição 6.12 (Refinamento de uma partição). Dada uma partição P de um retângulo A, dizemos que Q é um refinamento de P se todo subretângulo de Q está contido em um subretângulo de P.

Definição 6.13 (Medida Nula). Um conjunto $A \subset \mathbb{R}^n$ tem medida nula se para todo $\varepsilon > 0$, existe uma cobertura enumerável $\{U_i\}_{i \in L}$ de A por retângulos fechados tal que $\sum_{i=1}^{\infty} v\left(U_i\right) < \varepsilon$.

Definição 6.14 (Conteúdo Nulo). Um conjunto $A \subset \mathbb{R}^n$ tem conteúdo nulo se para todo $\varepsilon > 0$, existe uma cobertura finita $\{U_i\}_{i \in L}$ de A por retângulos fechados tal que $\sum_{i=1}^{\infty} v\left(U_i\right) < \varepsilon$.

Proposição 6.10. Se A tem conteúdo nulo, então A tem medida nula.

Demonstração. Se A tem conteúdo nulo, então dado ε , existe uma cobertura finita $\{U_i\}_{i\in L}$ de A tal que $\sum_{i=1}^{\infty}v\left(U_i\right)<\varepsilon$. Como todo conjunto finito é enumerável, temos $\{U_i\}_{i\in L}$ enumerável, logo A tem medida nula.

Proposição 6.11. Uma união enumerável de conjuntos com medida nula tem medida nula.

Demonstração.

Proposição 6.12. Se A é compacto e tem medida nula, então A tem conteúdo nulo.

Demonstração.

6.4.1 Exercícios

Exercício 6.4.1. Sejam $f: A \to \mathbb{R}, g: B \to \mathbb{R}$ funções limitadas não-negativas nos blocos A, B. Defina $\phi: A \times B \to \mathbb{R}$ pondo $\phi(x, y) = f(x) \cdot g(y)$. Prove que

$$\overline{\int_{A\times B}}\phi(z)\mathrm{d}z=\overline{\int_{A}}f(x)\mathrm{d}x\cdot\overline{\int_{B}}g(y)\mathrm{d}y$$

e que vale um resultado análogo para integrais inferiores.

 $\begin{array}{ll} Demonstração. \ \ {\rm Temos} \ \int_{A\times B} \phi(z) {\rm d}z = \inf_Q \left\{ U(\phi;Q) \right\}. \ \ {\rm Seja} \ Q = (P,P') \ \ {\rm uma} \\ {\rm partição} \ {\rm de} \ A\times B. \ \ {\rm Temos} \ P \ {\rm partição} \ {\rm de} \ A \ {\rm e} \ P' \ {\rm partição} \ {\rm de} \ B. \ {\rm Seja} \ S_b = S\times S' \\ {\rm um} \ \ {\rm subretângulo} \ {\rm de} \ Q, \ {\rm temos} \ S \ \ {\rm subretângulo} \ {\rm de} \ P \ {\rm e} \ S' \ \ {\rm subretângulo} \ {\rm de} \ P'. \\ {\rm Temos} \ \forall x \in S : \ 0 \le f(x) \le M_S(f) \ {\rm e} \ \forall y \in S' : \ 0 \le g(y) \le M_{S'}(g), \ {\rm logo} \\ \forall (x,y) \in S\times S' = S_b : \ 0 \le f(x) \cdot g(y) \le M_S(f) \cdot M_{S'}(g). \ {\rm Logo} \ M_S(f) \cdot M_{S'}(g) \ {\rm e} \\ {\rm cota \ superior \ para} \ f(x) \cdot g(y) \ {\rm em} \ S\times S', \ {\rm logo \ sup} \left\{ f(x) \cdot g(y) \ | \ (x,y) \in S\times S' \right\} = M_{S\times S'}(\phi) \le M_S(f) \cdot M_{S'}(g). \end{array}$

Se $M_S(f)=0$, temos $0 \le f(x) \le M_S(f) \le 0 \implies f(x)=0$ para todo $x \in S$, logo $\forall (x,y) \in (S \times S'): f(x) \times g(y)=0 \cdot g(y)=0$, logo $M_{S \times S'}(\phi)=0$. É análogo se $M_{S'}(g)=0$.

Supondo $M_S(f) \neq 0$ e $M_{S'}(g) \neq 0$. Dado $\varepsilon > 0$, existe $x_1 \in S$ tal que $f(x_1) > M_S(f) - \frac{\varepsilon}{2 \cdot M_{S'}(g)}$ e existe $y_1 \in S'$ tal que $g(y_1) > M_S'(g) - \frac{\varepsilon}{2 \cdot M_S(f)}$.

Logo existe $(x_1, x_2) \in S \times S'$ tal qu $f(x_1) \cdot f(x_2) > \left(M_S(f) - \frac{\varepsilon}{2 \cdot M_{S'}(g)}\right)$.

$$\begin{pmatrix} M_{S'}(g) - \frac{\varepsilon}{2 \cdot M_S(f)} \end{pmatrix} = M_S(f) \cdot M_{S'}(g) - \frac{\varepsilon}{2} - \frac{\varepsilon}{2} + \frac{\varepsilon^2}{2M_S(f) \cdot M_{S'}(g)} > M_S(f) \cdot M_{S'}(g) - \varepsilon. \text{ Como dado } \varepsilon > 0, \text{ existem } (x_1, y_1) \in S \times S' \text{ tal que } f(x_1) \cdot g(y_1) < M_S(f) \cdot M_{S'}(g) - \varepsilon \text{ e } M_S(f) \cdot M_{S'}(g) \text{ \'e cota superior para } \{f(x) \cdot g(y) | (x, y) \in S \times S'\}, \text{ temos } M_{S \times S'}(\phi) = M_S(f) \times M_S(g).$$

Logo

$$\begin{split} U(\phi,Q) &= \sum_{S\times S'\in(P,P')} M_{S\times S'}(\phi) \cdot V(S\times S') \\ &= \sum_{S\times S'\in(P,P')} M_S(f) \cdot M_{S'}(g) \cdot V(S) \cdot V(S') \\ &= \sum_{S\in P} [M_S(f) \cdot V(S)] \cdot [M_{S'}(g) \cdot V(S')] \\ &= \sum_{S\in P} \sum_{S'\in P'} [M_S(f) \cdot V(S)] \cdot [M_{S'}(g) \cdot V(S')] \\ &= \sum_{S\in P} [M_S(f) \cdot V(S)] \cdot \sum_{S'\in P'} [M_{S'}(g) \cdot V(S')] \\ &= \left[\sum_{S'\in P'} M_{S'}(g) \cdot V(S')\right] \cdot \left[\sum_{S\in P} M_S(f) \cdot V(S)\right] \\ &= U(f,P) \cdot U(g,P') \\ &= \log \overline{\int_{A\times B} \phi(z) \mathrm{d}z} = \inf_{Q} \{U(\phi;Q)\} = \inf_{(P,P')} \{U(f,P) \cdot U(g,P')\} = \inf_{P} \{U(f,P)\} \cdot \lim_{P'} \{U(g,P')\} = \overline{\int_{A} f(x) \mathrm{d}x} \cdot \overline{\int_{B} g(y) \mathrm{d}y} \\ &\square \end{split}$$

Exercício 6.4.2. Se $X\subset\mathbb{R}^m$ tem medida nula, então para todo $Y\subset\mathbb{R}^m$, o produto cartesiano $X\times Y\subset\mathbb{R}^{m+n}$ tem medida nula.

Demonstração. Basta provar que se $X \subset \mathbb{R}^n$ tem medida nula, então $X \times \mathbb{R}^m$ tem medida nula. Pois uma cobertura do conjunto $X \times \mathbb{R}^m$ cobre o conjunto $X \times Y \subset X \times \mathbb{R}^m$.

Chamando
$$C_p = \prod_{i=1}^m [-p,p] = \underbrace{[-p,p] \times [-p,p] \times \cdots \times [-p,p]}_{m \text{ vezes}} \subset \mathbb{R}^m$$
. Temos $\mathbb{R}^m = \bigcup_{p \in \mathbb{N}} C_p$, logo $X \times \mathbb{R}^m = X \times \bigcup_{p \in \mathbb{N}} C_p = \bigcup_{p \in \mathbb{N}} X \times C_p$. Como é uma união enumerável de conjuntos, basta mostrar que $X \times C_p$ tem medida nula para todo $p \in \mathbb{N}$.

Fixando $p \in \mathbb{N}$, temos $v\left(C_p\right) = (2p)^m$. Dado $\varepsilon > 0$, existe uma cobertura enumerável $\left\{U_i\right\}_{i \in L}$ de retângulos fechados tal que $\sum_{i \in L} v\left(U_i\right) < \frac{\varepsilon}{(2p)^m}$. Temos

$$X\times C_p\subset \left(\bigcup_{i\in L}U_i\right)\times C_p=\bigcup_{i\in L}U_i\times C_p. \text{ Como }C_p\text{ e }U_i\text{ são retângulos, temos}\\ v\left(U_i\times C_p\right)=v\left(U_i\right)\cdot v\left(C_p\right). \text{ Logo temos }\sum_{i\in L}v\left(U_i\times C_p\right)=\sum_{i\in L}v\left(U_i\right)\cdot v\left(C_p\right)=\\ \sum_{i\in L}v\left(U_i\right)\cdot (2p)^m=(2p)^m\cdot \sum_{i\in L}v\left(U_i\right)<(2p)^m\cdot \frac{\varepsilon}{(2p)^m}=\varepsilon. \text{ Logo }X\times C_p\text{ tem}\\ \text{medida zero para todo }p\in \mathbb{N}.$$

Como $X \times \mathbb{R}^n = \bigcup_{p \in \mathbb{N}} X \times C_p$ é uma união enumerável de conjuntos de medida nula, temos que $X \times \mathbb{R}^n$ tem medida nula.