

THE 3rd VIETNAM SCHOOL OF BIOLOGY (VSOB-3)

Gene Quantification

Bulk RNAseq course 2024

Duy Dao khuongduying@gmail.com

December 06th-08th, 2024, ICISE, Quy Nhon, Vietnam

RNA-SEQ: STEP IN QUANTIFICATION

Definition: Measuring the abundance of transcripts for each gene in a sample

Key Processes:

- Read Alignment or Alignment-Free Mapping
- Assigning Reads to Genes
- Counting Reads per Gene

Quantification - Read Count

Count how many reads have mapped to each gene.

→Using the **featureCounts** tool to get the gene counts

Input: BAM + GTF

Output: Number of reads (counts) associated with each feature of interest (genes, exons, transcript, etc.).

Counting reads with featureCounts

- Accurate, fast and is relatively easy to use
- Counts reads that map to a single location (uniquely mapping) and follows the scheme in the figure below for assigning reads to a gene/exon.

GTF

Counting reads using featureCounts

- A read is said to overlap a feature if at least one read base is found to overlap the feature.
- For paired-end data, a fragment (or template) is said to overlap a feature if any of the two reads from that fragment is found to overlap the feature.
- If strandedness is specified, then in addition to considering the genomic coordinates it will also take the strand into account for counting.

Counting reads using featureCounts

jene		Location	St	rand	Length	1		C	Count						
# Progr	am:fea	tureCounts	v2.0.2:	Comman	d:"featur	eCounts'	"-p" ".	a" "/mnt	/d4t/DAT	A/PROJEC	T/RNA <	seg/sacCe	r2/ref/	annotation/sac	Cer3.ensG
Geneid		Start	End	Strand						WT_E_2			/ /		
YDL248W			2953	+	1152	164	132	148	337	94	378	2			
YDL247W		chrIV	3762	3836	+	75	0	0	3	0	0	6			
YDL247W			7814	+	1830	0	0	1	0	0	4				
YDL246C			9756	5	1074	0	0	2	0	0	6				
/DL245C	chrIV		13360	-	1704	14	2	6	38	6	12				
/DL244W			17226	+	1023	14	6	6	39	19	27				
/DL243C			18566	-	990	115	94	100	292	142	215				
/DL242W			19312	+	354	5	13	9	16	4	26				
/DL241W			21006	+	372	89	46	60	16	2	13				
/DL240C	- A	chrIV	22471	22608	-	138	5	1	1	1	2	2			
/DL240W	chrIV		25876	+	3054	191	166	245	112	27	200				
DL2390	chrIV		28775	5	2373	82	146	128	409	136	506				
DL238C	chrIV	28985	30454	-	1470	101	79	92	555	91	346				
/DL237W	chrIV	30657	31829	+	1173	553	381	536	827	322	1330				
/DL236W			33234	+	939	1886	1855	1661	3095	459	1820				
/DL235C	chrIV	33415	33918	-	504	1306	1405	900	1364	385	965				
/DL234C			36477	-	2241	648	601	881	2822	1148	2386				
/DL233W	chrIV	36797	38173	+	1377	132	158	147	391	193	463				
/DL232W	chrIV	38487	38597	+	111	545	533	443	353	153	429				
YDL2310	chrIV	38867	42244		3378	681	565	552	586	139	451				
/DL230W	chrIV	42700	43707	+	1008	398	429	411	590	460	1119				
/DL229W	chrIV	44065	45906	+	1842	6625	4502	4656	2168	124	744				
DL2280	chrIV	45277	45918	-	642	31	28	34	12	1	1				
YDL227C	chrIV	46271	48031	-	1761	1006	837	556	97	8	102				
YDL226C	chrIV	51115	52173	-	1059	1264	1219	1326	1657	603	1801				
YDL225W	chrIV	52445	54100	+	1656	1116	1061	1044	1430	366	1444				
YDL224C	chrIV	54397	56346	-	1950	310	174	264	272	183	584				
YDL223C	chrIV	57265	60405	-	3141	124	104	92	1487	845	3016				
YDL222C	chrIV	60872	61801	-	930	17	15	51	101	303	1036				
YDL221W	chrIV	62011	62562	+	552	27	28	13	35	24	39				
YDL220C	chrIV	62244	65018	-	2775	63	34	64	110	36	107				
YDL219W	chrIV	;chrIV	65242;6	5378	65306;6	5765	+;+	453	697	834	610	512	189	509	
/DL218W			67446	+	954	28	21	16	51	32	84				
YDL217C	chrIV	67983	68606	-	624	287	247	295	392	91	344				
VDI 2160	cheTV	69007	78310	42	1272	170	127	203	215	13/	100				

Output: Raw counts

These are the "raw" counts will be used in statistical programs downstream for differential gene expression.

Counting reads using featureCounts

	gene			Co	unt		
Geneid	gene_name	WT_C_2	WT_C_1	WT_E_1	WT_C_3	WT_E_2	WT_E_3
YDL246C	SOR2	0	0	0	2	0	6
YDL243C	AAD4	104	109	275	109	328	206
YDR387C	CIN10	263	274	747	492	695	810
YDL094C	NA	7	4	8	1	8	3
YDR438W	THI74	72	102	140	126	144	161
YDR523C	SPS1	39	30	27	61	31	12
YDR542W	PAU10	0	1	0	1	0	0
YDR492W	IZH1	420	619	2850	338	1651	749
YDR018C	NA	21	19	160	50	359	455
YDL189W	RBS1	380	405	376	518	408	515
YDR508C	GNP1	1661	2365	767	2126	972	1417
YDR462W	MRPL28	307	304	850	360	1081	700
YDR175C	RSM24	528	577	1456	617	1304	903
YDR186C	SND1	730	868	2061	681	1658	1643
YDR150W	NUM1	474	420	772	535	831	724
YDR243C	PRP28	189	176	282	192	147	232
YDL182W	LYS20	2163	2953	500	3361	318	710
YDR362C	TFC6	323	360	558	350	536	461
YDR232W	HEM1	616	579	845	642	542	452
YDR158W	HOM2	12602	14504	4521	14868	4053	5727
YDR439W	LRS4	93	136	163	113	197	202
YDL206W	NA	177	215	369	315	633	653
YDR125C	ECM18	82	87	111	93	145	228
YDR338C	NA	204	245	226	259	289	265
YDR526C	NA	0	2	0	4	1	0
YDR533C	HSP31	3469	3665	24999	1677	30821	22425
YDR272W	GL02	1591	1329	5826	1413	6536	7377
YDR197W	CBS2	329	393	573	380	732	648
YDR512C	EMI1	783	588	2009	670	2625	2619

A table of counts

Don't need information about the genomic coordinates, length

→ Cleaning up the featureCounts matrix

Final output:

A count matrix, with genes as rows and samples are columns

Normalization

Sequencing depth: Accounting for sequencing depth is necessary for comparison of gene expression between samples.

In the example below, each gene appears to have doubled in expression in Sample A relative to Sample B, however this is a consequence of Sample A having double the sequencing depth.

Normalization

Gene length: Accounting for gene length is necessary for comparing expression between different genes within the same sample.

Sample A Reads

In the example, Gene X and Gene Y have similar levels of expression, but the number of reads mapped to Gene X would be many more than the number mapped to Gene Y because Gene X is longer.

Normalization

RNA composition: A few highly differentially expressed genes between samples, differences in the number of genes expressed between samples, or presence of contamination can skew some types of normalization methods.

We are happy to help you!