抗菌薬耐性菌(Anti-Microbial Resistant) - ③

カルバペネマーゼ産生腸内細菌科細菌(CPE)と新規抗菌薬

https://l-hospitalier.github.io

2018.3

2010年10月の日本感染症学会、日本化学療法学会、日本環境感染学会、日本臨床微生 物学会の4学会による「多剤耐性アシネトバクター感染症に関する四学会からの提言」 のタイガシル+コリスチン併用やカルバペネム+コリスチン併用がコケた?ので、4学 会は 2017/10/25 に再度「カルバペネム耐性化傾向を示す腸内細菌科細菌の問題」を提 言。 米 FDA は 2015、欧州の EMA(European Medicines Agency)は 2016 年に新規 の非 β ラクタム環構造をもつ β ラクタマーゼ阻害剤「アビバクタム」とセフタジジム(モ ダシン)の合剤の使用を認可、使用を開始しているので、これらの日本への導入を提起 した。【セフタジジム・アビバクタム合剤】はコリスチンベースの併用療法に比べ、生 存率は有意に高い。 しかしアビバクタム合剤も IMP (90 年代に秋田で発見された **Imipenamase** でメタロ β -ラクタマーゼ)、**VIM**(イタリアのベロナで発見、**Verona** integrin-encoded metallo-β-lactamase),NDM(New Delhi metallo-β-lactamase)など の Ambler の B 分類のメタロβラクタマーゼにはほとんど効果がないことが分かってい る。 またアビバクタム・セフタジジム合剤使用例の 10%に耐性が発生することも判明 した。 今後認可待ちの薬剤としてβラクタム環・βラクタマーゼ阻害剤の<mark>【バボルバ</mark> <mark>クタム・メロペネム合剤】</mark>がある。 ボロン酸(ホウ素を含む)をベースにした新規β ラクタマーゼ阻害剤で、AmblerのクラスAのKPC型カルバペネマーゼを阻害するが、 やはりメタロβラクタマーゼには無効と思われる。 もう一つは新規アミノグリコシド の<mark>【プラゾマイシン】</mark>だが、NDM-1 メタロ β ラクタマーゼ産生菌はアミノグリコシド の作用部位である 16S リボゾーム RNA のメチル化酵素産生能を持ち、その場合はプラ ゾシンに耐性をもつと予想される。 最後はシオノギが開発中の鉄と結合して鉄キレー

ト体として鉄を取り込む傾 向の強いグラム陰性菌のペ リプラズム空間に優先的に 取り込まれる性質を持たせ た【シデロフォア・セファロ スポリン、セフィドロコル】 で、Ambler 分類の A、B(メ $\beta u - \beta \bar{\beta} \bar{\beta} \bar{\beta} \bar{\beta} \bar{\beta} \bar{\beta} \bar{\beta} = 0$, D のすべてに強力な抗菌力を 発揮する。 グローバル治験 Ⅲ相にあるが期待される(シ デロフォア・ペニシリンも合 成された)。 βラクタマー ゼの分類は複雑であるが、 Sawai らが 1968 年に初めて 分類。 Ambler の分類は β ラ クタマーゼ酵素の保存され ているアミノ酸配列(モチー フ) に基づいた分類で必ずし も酵素の基質特異性と一致 するわけではないがプラス ミドで伝搬することの多い βラクタマーゼの特徴を良 く反映するので現在でも使 われる。

カルバペネマーゼの種類

	クラスA	クラスB	クラスD
代表的な酵素	КРС型	NDM型 IMP型	OXA-48型 OXA-23型
特徴	β-ラクタムを 広く分解	アズトレオナムを除く β-ラクタムを広く分解	ペニシリンとカルバペ ネムを分解 セファロスポリンは分 解しない
菌種	肺炎桿菌など 腸内細菌科	腸内細菌科 緑膿菌	腸内細菌科 アシネトバクター
疫学	北南米、欧州南部、中国	NDM=世界的に分布 (特にインド亜大陸) IMP-日本を含むアジ ア	OXA-48=欧州からインド 亜大陸 OXA-23=世界的に分布

カルバベネマーゼ産生菌感染症の治療

	コリスチン	チゲサイクリン	ゲンタマイシン	カルバペネム
クラス	リポペプチド系	テトラサイクリン 系	アミノグリコシ ド系	β- ラ クタム
抗菌スペク トラム	-カルバベネマーゼ 産生菌 腸内細菌科 緑腺菌 アシネトバクター	-カルバペネマーゼ 産生菌 腸内細菌科 アシネトバクター -緑膿菌には抗菌力 なし	・カルバベネマー ゼ産生菌の一部 特に腸内細菌科	-単剤ではカルパ ペネマーゼ産生 菌にほぼ耐性を 示す
特徴	- 殺菌的作用 - プロドラッグとし て投与 - 腎毒性が強い	- 静薗的作用 - 血漿中濃度が低い - 重症感染症で死亡 率が高い	-殺菌的作用 -腎毒性に注意	コリスチンやゲ ンタマイシンと の併用療法に用 いられる

^{1*} KPC: Klebsiella Pneumoniae Carbapenemase, OXA-はオキサシリンを分解するので Active on Oxacillin