WHAT IS CLAIMED IS:

medionaly

1. A method of treating or suppressing the symptoms

5 of at least one disorder selected from addictive
disorders, psychoactive substance use disorders,
intoxication disorders, inhalation disorders alcohol
addiction, tobacco addiction, and nicotine addiction,
said method comprising the step of administering a

10 therapeutically effective, nontoxic amount of an active
agent selected from the group consisting of a
heterocyclic amine, a phenylazacycloalkane, a
cabergoline, an aromatic bicyclic amine, and
pharmaceutically acceptable derivatives or salts of any

15 said active agent, to a patient in need of treatment.

2. The method of claim 1 wherein the active agent is a heterocyclic amine of the formula:

$$\begin{array}{c|c}
R^{1} & R^{2} \\
\hline
 & R^{3} \\
\hline
 &$$

or a pharmaceutically acceptable salt thereof, wherein: R^1 , R^2 , and R^3 are each independently hydrogen, C_{1-6} alkyl, C_{3-5} alkenyl, C_{3-5} alkynyl, C_{3-7} cycloalkyl,

 C_{4-10} cycloalkyl- or phenyl- substituted C_{1-6} alkyl, or R^1 and R^2 are joined to form a C_{3-7} cyclic amine which can contain additional heteroatoms and/or unsaturation;

n is 0 or 1;

X is hydrogen, C₁₋₆ alkyl, halogen, hydroxy, alkoxy, 10 cyano, carboxamide, carboxyl, or carboalkoxyl;

A is CH, CH₂, CH-halogen, CHCH₃, C=O, C=S, C-SCH₃, C=NH, C-NH₂, C-NHCH₃, C-NHCOOCH₃, C-NHCN, SO₂, or N;

B is CH_2 , CH, CH-halogen, C=0, N, NH, N- CH_3 , or 0; and

D is CH, CH₂, CH-halogen, C=O, O, N, NH, or N-CH₃.

3. The method of claim 2, wherein:

D is N or NH, n is 0, and R^1 , R^2 , R^3 , X, A, and B are as defined in claim 2; or

20 A is CH, CH_2 , $CHCH_3$, C=O, C=S, $C-SCH_3$, C=NH, $C-NH_2$, $C-NHCH_3$, $C-NHCOOCH_3$, or C-NHCN, and R^1 , R^2 , R^3 , n, X, B, and D are as defined in claim 2; or

A is CH or C=0, and R^1 , R^2 , R^3 , n, X, B, and D are as defined in claim 2.

4. The method of claim 2 wherein the active agent is selected from the group consisting of:

(5R)-5-(methylamino)-5,6-dihydro-4H-

imidao(4,5,1-ij)quinolin*(2H)-one;

(5R) -5- (methylamino) -5, 6-dihydro-4H-

imidazo[4,5,1-ij]quinoline-2(1H)-thione;

5 (5R)-5-(methylamino)-5,6-dihydro-4H-

imidazo[4,5,1-ij]quinoline-2(1H)-thione maleate; and

(5R)-5-(methylamino)-5,6-dihydro-4H-

imidazo[4,5,1-ij]quinoline-2(1H)-thione 2-butenedioanate.

5. The method of claim 1 wherein the active agent is a phenylazacycloalkane compound of the formula:

$$R^{4}$$
 R^{5}
 R^{7}
 $(CH_{2})_{n2}$

15

10

or a pharmaceutically acceptable salt thereof, wherein:

n2 is 0-3;

 R^4 and R^5 are independently hydrogen, -OH, CN, $\text{CH}_2\text{CN}\text{,}$

25

PATENT APPLOTION 00287 PRO2

2- CF₃, 4-CF₃, CH₂CF₃, CH₂CHF₂, CH=CF₂, (CH₂)₂CF₃, ethenyl, 2-propenyl, OSO₂CH₃, OSO₂CF₃, SSO₂CF₃, COR⁷, COOR⁷, CON(R⁷)₂, SO_{x1}CH₃, wherein x1 is 0-2, SO_{x1}CF₃, O(CH₂)_{x1}CF₃, SO₂N(R⁷)₂, CH=NOR⁷, COCOOR⁷, COCOON(R⁷)₂, C₁₋₈ alkyl, C₃₋₈ cycloalkyl,

5 CH₂OR⁷, CH₂(R⁷)₂, NR⁷SO₂CF₃, NO₂, halogen, a phenyl at positions 2, 3 or 4, thienyl, furyl, pyrrole, oxazole, thiazole, N-pyrroline, triazole, tetrazole or pyridine; provided that at least one of R⁴ and R⁵ is a substituent other than hydrogen and provided that when R⁴ or R⁵ is -OH R⁷ is other than hydrogen;

 R^5 is hydrogen, CF_3 , CH_2CF_3 , C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, C_4 - C_9 cycloalkyl-methyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, 3,3,3-trifluoropropyl, 4,4,4-trifluorobutyl, $-(CH_2)_m$ - R^8 , wherein m is 1-8, CH_2SCH_3 or a C_4 - C_8 alkyl bonded to said nitrogen and one of its adjacent carbon atoms inclusive to form a heterocyclic structure;

 R^7 is independently hydrogen, CF_3 , CH_2CF_3 , C_1-C_8 alkyl, C_3-C_8 cycloalkyl, C_4-C_9 cycloalkyl-methyl, C_2-C_8 alkenyl, C_2-C_8 alkynyl, 3,3,3-trifluoropropyl,

20 4,4,4-trifluorobutyl, $-(CH_2)_m-R^8$, wherein m is 1-8;

 R^8 is phenyl optionally substituted with a CN, CF_3 , CH_2CF_3 , C_1-C_8 alkyl, C_3-C_8 cycloalkyl, C_4-C_9 cycloalkyl-methyl, C_2-C_8 alkenyl, C_2-C_8 alkynyl, 2-thiophenyl, 3-thiophenyl, $-NR^9CONR^9R^{10}$, or $-CONR^9R^{10}$; and

 R^9 and R^{10} are each independently hydrogen, C_1-C_8 alkyl, C_3-C_8 cycloalkyl, C_4-C_9 cycloalkylmethyl, C_2-C_8

alkenyl or C2-C8 alkynyl.

6. The method of claim 5 wherein:

 R^4 is CN, and n2, R^5 , R^5 , and R^7 are as defined in 5 claim 5; or

 R^5 is H, R^6 is n-propyl, and n2, R^4 , and R^7 are as defined in claim 5; or

 R^4 is $-OSO_2CF_{3,}$ and n2 and $R^5\!-\!R^7$ are as defined in claim 5; or

10 R^5 is H, R^6 is C_{1-8} alkyl, and n2, R^4 , and R^7 are as defined in claim 5; or

 R^4 is 3-OH, R^5 is H, R^6 is n-propyl, R^7 is a C_{1-8} alkyl, and n is as defined in claim 5; or

n2 is 2, and R^4-R^7 are as defined in claim 5; or n2 is 0, and R^4-R^7 are as defined in claim 5.

- 7. The method of claim 5 wherein the phenylazacycloalkane compound is selected from the group consisting of:
- 20 (3S)-3-[3-(methylsulfonyl)phenyl]-1-propylpiperidine hydrochloride;
 - (3S)-3-[3-(methylsulfonyl)phenyl]-1-propylpiperidine hydrobromide; and
- (3S) -3-[3-methylsulfonyl)phenyl] -1-propylpiperidine
 25 (2E) -2-butenedioate.

8. The method of claim 1 wherein the active agent is a cabergoline of the formula:

$$R^{13}$$
 R^{13}
 R^{13}
 R^{14}
 R^{11}
 R^{12}
(III)

10 or a pharmaceutically acceptable salt thereof, wherein:

R¹¹ is hydrogen or methyl;

R12 is independently hydrogen, halogen, methyl,

-30-

PATENT APPLOTION 00287 PRO2

formyl, $S-R^{17}$, or $SO-R^{17}$, wherein R^{17} is C_1-C_4 alkyl or phenyl;

R¹³ is hydrogen or methoxy;

 R^{14} is independently C_1-C_4 alkyl, C_1-C_4 alkenyl, C_1-C_4 alkynyl, benzyl, or phenyl; and

 R^{15} and R^{16} are each independently $C_1 - C_4$ alkyl, cyclohexyl, benzyl, phenyl optionally substituted with halogen or methoxy, or $(CH_2)_{\,n3}N\,(CH_3)_{\,2},$ wherein n3 is an integer.

10

- 9. The method of claim 8 wherein the active agent is 1-((6-allylergolin-8 β -yl)carbonyl)-1- (3-(dimethylamino)propyl)-3-ethylurea.
- 15 10. The method of claim 1 wherein the active agent is an aromatic bicyclic amine compound of the formula:

$$R^{23}$$
 R^{24}
 R^{25}
 R^{19}
 R^{19}
 R^{19}

n3 is 0 or 1;

n4 is 0 or 1, provided that R²⁰ is not present when n4 is 0;

 $R^{18} \text{ is } \alpha\text{-}R^{18\text{-}1}\text{:}\beta\text{-}R^{18\text{-}2} \text{ where one of } R^{18\text{-}1} \text{ or } R^{18\text{-}2} \text{ is}$ selected from the group consisting of H or $C_1\text{-}C_6$ alkyl, and the other of $R^{18\text{-}1}$ or $R^{18\text{-}2}$ is a group of the formula:

$$\begin{array}{c|c}
R^{26} \cdot R^{28} \\
 & | \\
 & | \\
 & | \\
 & C - C - R^{29} - R^{30} \\
 & | \\
 & R^{27}
\end{array}$$

wherein R^{26} and R^{27} are independently selected from H or C_1 - C_6 -alkyl; R^{28} is oxygen (O) or R^{28} is α - R^{28-1} : β - R^{28-2} , wherein R^{28-1} and R^{28-2} are independently selected from H or C_1 - C_6 alkyl; R^{29} is selected from the group consisting of:

wherein R^{31} and R^{33} are independently selected from H or C_1 - C_6 alkyl; R^{32} is nitrogen (N-) or methine (HC-); and s is 1 or 2;

OSDES CELLO

$$\sim N$$
 $\sim N$ $\sim N$

wherein R^{34} is selected from the group consisting of H, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, $-C_1$ - C_3 alkyl- $(C_3$ - C_7 cycloalkyl); and S2 is 0, 1, or 2;

wherein R^{34} and s2 are as defined above;

 R^{19} is oxygen (O) or sulfur (S);

10 $R^{20} \text{ is } \alpha\text{-}R^{20\text{-}1}\text{: } \beta\text{-}R^{20\text{-}1}\text{, wherein one of } R^{20\text{-}1} \text{ and } R^{20\text{-}2} \text{ is }$ $H, \ C_1\text{-}C_6 \text{ alkyl, and the other of } R^{20\text{-}1} \text{ or } R^{20\text{-}2} \text{ is } H, \ C_1\text{-}C_6$ $\text{alkyl, phenyl, hydroxy, and -O-(}C_1\text{-}C_3 \text{ alkyl);}$

 R^{21} is $\alpha\text{-}R^{21\text{-}1}\colon$ $\beta\text{-}R^{21\text{-}1},$ wherein one of $R^{21\text{-}1}$ and $R^{21\text{-}2}$ is

15

20

25

PATENT APPLOTION 00287 PRO2

H, C_1 - C_6 alkyl, and the other of R^{21-1} or R^{21-2} is H, C_1 - C_6 alkyl, phenyl, hydroxy, and -O- $(C_1$ - C_3 alkyl);

and when n4 is 1, one of R^{20-1} or R^{20-2} and one of R^{21-1} or R^{21-2} can be taken together with the carbon atoms to which they are attached to form a carbon ring of 5-, 6-, or 7- members;

 R^{22} is H, F, Cl, Br, I, $-CONR^{35}R^{36}$, $-SONR^{35}R^{36}$, CF_3 , $NR^{35}R^{36}$, NO_2 , CN, $-NR^{35}-CO-R^{36}$, $-SO_2CF_3$, C_1-C_4 alkyl, $Si(CH_3)_3$, and phenyl optionally substituted with one or two substituents selected from the group consisting of F, Cl, Br, I, and $-CO-NR^{35}R^{36}$, wherein R^{35} and R^{36} are independently selected from the group consisting of H, C_1-C_6 alkyl, C_3-C_7 cycloalkyl, and $-C_1-C_3$ alkyl- (C_3-C_7) cycloalkyl;

and where R^{22} and one of R^{21-1} or R^{21-2} are taken together with the carbon atoms to which they are attached to form a carbon ring of 5-, 6-, or 7-members;

 R^{23} is H, F, Cl, Br, I, $-CONR^{37}R^{38}$, $-SONR^{37}R^{38}$, CF_3 , $NR^{37}R^{38}$, NO_2 , CN, $-NR^{37}-CO-R^{38}$, $-SO_2CF_3$, C_1-C_4 alkyl, $Si(CH_3)_3$, and phenyl optionally substituted with one or two substituents selected from the group consisting of F, Cl, R^{37} , R^{38} , wherein R^{37} and R^{38} are independently selected from the group consisting of H, R^{37} , R^{38} , wherein R^{37} and R^{38} are independently selected from the group consisting of H, R^{37} , R^{38} , R^{3

 $\rm R^{24}$ is H, F, Cl, Br, I, -CONR^{39}R^{40}, -SONR^{39}R^{40}, CF_3, \$\$NR^{39}R^{40}, NO_2, CN, -NR^{39}-CO-R^{40}, -SO_2CF_3, C_1-C_4 alkyl, Si(CH_3)_3, \$\$and phenyl optionally substituted with one or two substituents selected from the group consisting of F, Cl,

30 Br, I, and -CO-NR³⁹R⁴⁰, wherein R³⁹ and R⁴⁰ are independently selected from the group consisting of H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, and -C₁-C₃ alkyl-(C₃-C₇ cycloalkyl);

 $R^{25} \text{ is H, F, Cl, Br, I, -CONR}^{41}R^{42}, -SONR^{41}R^{42}, CF_3,$ $NR^{41}R^{42}, NO_2, CN, -NR^{41}-CO-R^{42}, -SO_2CF_3, C_1-C_4 \text{ alkyl, Si(CH}_3)_3,$

15

20

cycloalkyl);

and phenyl optionally substituted with one or two substituents selected from the group consisting of F, Cl, Br, I, and $-CO-NR^{41}R^{42}$, wherein R^{41} and R^{42} are independently selected from the group consisting of H, $-C_1--C_6$ alkyl, C_3-C_7 cycloalkyl, and $-C_1-C_3$ alkyl- (C_3-C_7)

with the proviso that not more than two of R^{22} , R^{23} , R^{24} , and R^{25} are other than H; and

 R^{30} is selected from the group consisting of:

phenyl optionally substituted with one or two substituents selected from the group consisting of CF_3 , COR^{43} , COR^{43} , CN, NO_2 , $NR^{44}-CO-R^{45}$, $-S-(C_1-C_6 \ alkyl)$, $NR^{44}R^{45}$, or a group represented by R^{46} ;

2-, 3-, and 4-pyridinyl optionally substituted with one or two substituents represented by R^{46} ; and

2-, 4-, and 5-pyrimidinyl optionally substituted with one or two substituents represented by R^{46} ;

wherein $R^{43},\ R^{44}$ and R^{45} are independently selected from the group consisting of H, $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_7$ cycloalkyl,

-C₁-C₃ alkyl-(C₃-C₇ cycloalkyl); and R⁴⁶ is selected from the group consisting of F, Cl, Br, I, -CO-NR⁴⁴R⁴⁵, - $SO_2NR^{44}R^{45}$, OH, SH, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, -OR⁴⁷, - CH_2 -(C₃-C₆ cycloalkyl), -CH₂-phenyl, C₃-C₆ cycloalkyl, -

25 SO₂CF₃, and

-CH₂CF₃, wherein R^{44} and R^{45} are as previously defined and R^{47} is C_1 - C_6 alkyl; and

enantiomers and diasteromers thereof, where such exist, and pharmaceutically acceptable salts thereof.

30

11. The method of claim 10 wherein: one of the substituents represented by R^{18-1} or R^{18-2} is H, and the other substituent represented by R^{18-1} or R^{18-2} is a group of the formula:

wherein R^{26} , R^{27} , R^{28} , R^{29} and R^{30} are as defined in claim 10.

- 5 12. The method of claim 10 wherein the active agent is selected from the group consisting of:
 - 1-(4-fluorophenyl)-4-[2-(isochroman-1yl)ethyl]piperazine;
 - 1-[2-(isochroman-1-yl)ethyl]-4-phenylpiperazine;
- 10. 1-[2-(isochroman-1-yl)ethyl]-4-(4methoxyphenyl)piperazine;
 - (-)-4-[4-[2-(isochroman-1-yl)ethyl]piperazin-1-yl]benzamide; and
- (-)-4-[4-[2-(isochroman-1-yl)ethyl]piperazin-1-yl]benzenesulfonamide.
 - 13. The method of claim 1 wherein the active agent is used to treat or enhance the treatment of tobacco and/or nicotine addiction.

- 14. The method of claim 1 wherein the active agent is used to reduce the craving for tobacco and/or nicotine containing products.
- 25 15. The method of claim 1 wherein the active agent

15

25

is used to reduce the smoking and/or chewing of tobaccoor nicotine-containing products.

- 16. The method of claim 1 wherein the active agent
 5 is administered to the patient three times a day.
 - 17. The method of claim 1 wherein the active agent is selected from the group consisting of a heterocyclic amine, a phenylazacycloalkane, and a cabergoline administered in a dose of about 0.01 mg/day to about 10.0 mg/day.
 - 18. The method of claim 17 wherein the active agent is selected from the group consisting of a heterocyclic amine, a phenylazacycloalkane, a cabergoline, and a cabergoline-type derivative administered in a dose of about 0.125 mg/day to about 6 mg/day.
- 19. The method of claim 18/wherein the active agent is administered in an amount from about 0.375 mg/day to about 5 mg/day.
 - 20. The method of claim 19 wherein the active agent is administered in an amount from about 0.75 mg/day to about 4.5 mg/day.

10

- 21. The method of claim 17 wherein an initial dose of active agent of about 0.125 mg/day administered to the patient three times a day is titrated to higher levels every five to seven days until therapeutic effect is achieved.
- 22. The method of claim 1 wherein the active agent is an aromatic bicyclic amine administered in an amount of from about 5 mg/day to about 120 mg/day.
- 23. The method of claim 22 wherein the aromatic bicyclic amine is administered in an amount of from about 20 mg/day to about 100 mg/day.
- 24. The method of claim 23/wherein the aromatic bicyclic amine is administered in an amount of from about 40 mg/day to about 80 mg/day.
- 25. The method of claim 22 wherein an initial dose of active agent of about 5 mg/day is administered to the patient three times a day and is titrated to higher levels every five to seven days until therapeutic effect is achieved.