Assignment tutorial -6 Divakar landey
Assignment tutorial - 6 Divakar landey Design and analysis of algorithm DS± 14
(3) what do you mean by minimum spanning tree? What are the application of MST?
A minimum spanning tree (MST) is a subset of edges of a connected undirected graph that connect all the vertices together, without any cycles and with the minimum
in a graph in way that minimize the total weight of the
edge in a tree. Application of MST.
) Network design. 2) Cluster analysis.

- e) Clus
- Approximation Algorithm.
- 2) Routing algorithm
 2) 2 mage segmentation

V	110000	and space	e complexity	0	rism, busker,
(02) Analyse th	e ume c	wich space	1 (U	
and and	Rellman	ford Alg	prithm.		
Oz) Analyse the Digkstra and		0	wiki		Space Complexity

Digkstra and	Time complexity	Space Complexity
Prim	$O(V^2)$	O(Elogy)
Rrushkal	O(Eloge)	o(vte)
Dijkstu		O(V+E)
Bellman ford	O(VE)	,

@ Apply krushkal and Prim's Algorithm on given on right side to compute MST and its weight. 10 Prim Algorithm. MST. 2

11

Apply Dijkstra and Bellman algorithm on given graph pute the shortest path to all nodes from node S.

8

@ Apply all pair shorter path algorithm - Floyd warshall on below mentioned graph and also analyse time and apply amplexity of an algorithm

$$A^{2} = \begin{pmatrix} 1 & 3 & 2 & 4 \\ 6 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 16 \\ 2 & 3 & 0 & 2 & 87 \\ 4 & 4 & 1 & 1 & 0 & 9 \\ 5 & 7 & 4 & 3 & 2 & 0 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 7 & 4 & 3 & 2 & 0 \\ 3 & 3 & 0 & 2 & 7 \\ 4 & 4 & 1 & 1 & 0 & 13 \\ 3 & 4 & 1 & 1 & 0 & 14 \\ 5 & 7 & 4 & 3 & 2 & 0 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 0$$

1 0 0 6 8 10 2 3 0 9 10 13 3 6 3 0 2 7 4 4 1 1 0 14 5 7 4 3 2 0

