展现下单率模型

ads-recommend@jd.com 郭文涛

内容

- 应用场景
- 问题建模
- 算法实现
- 算法效果
- 后续工作

应用场景

应用场景

推荐配件

优惠套装

最佳组合

金士顿(Kingston)骇客神 条 Fury系列 DDR3 1600 ¥279.00

安钛克(Antec)额定45 0W VP 450P 电源(主 ¥259.00

九州风神 (DEEPCOOL) 玄冰400 CPU散热器 ¥99.90

技嘉 (GIGABYTE) B8 5M-D3H主板 (Intel B85/ ¥499.00

英特尔 (Intel) 酷睿四 核 i5-4590 1150接口 盒 ¥1389.00

西部数据(WD)蓝盘 1TB SATA6Gb/s 7200转64M

¥329.00

- 共约20+个推荐位
- 推荐场景复杂,至少四种以上
- 每天的流量约?亿,点击量约有1500w

问题建模-传统方案

- 广告系统: pctr*bid
 - 建模点击率绝对值
 - 采用point-wise训练
 - 评估auc
 - 线上评估:收入,点击量等
- 推荐系统/搜索引擎:相关性排序
 - 建模相对序关系learning to rank
 - 评估dcg , ndcg
 - 训练样本多采用pair-wise
 - 电商中线上评估:gmv,订单量

问题建模-传统方案

- Learning to rank
 - 框架 https://en.wikipedia.org/wiki/Learning_to_rank#Pairwise_approach_

问题建模-原方案

- 排序公式
 - 自然结果Pctr * Pgmv,
 - 广告坑位制插入,广告内部pctr*bid
 - Gmv和收入不能很好平衡
- 建模方式
 - Pctr展现→点击
 - Pgmv 点击→下单金额,样本稀疏
 - 训练样本:point-wise样本

问题建模

- 业务目标:Gmv不降,订单行不降低20%,增加广告收入
- 建模分析
 - 广告系统+推荐系统:既有收入目标,又有转化指标约束
 - gmv,回归模型
 - 订单数,二分类
 - 点击,二分类
 - 转化相关指标不降
 - Point-wise预估绝对值
 - Pair-wise预估相互序关系

问题建模-多指标统一

• 购买路径-概率图模型解释

$$p(B|R) = p(B|C) * p(C|E) * p(E|R)$$

$$p(B|R) = (p(B|F)p(F|C) + p(B|H)p(H|C) + p(B|CR)p(CR|C))*$$

$$p(C|E)*p(E|R)$$

- 建模更逼近真实场景
- 可以刻画点击未购买的样本之间的差异

H:hold 停留CR: cart购物车F: favorite关注

B:buy 购买

问题建模-多指标统一

• 购买路径-概率图模型解释

- 解决多种标注问题
- 扩展更多若标注数据,建模充分
- 解决购买数据稀疏问题,整体优化

问题建模-最终方案

算法实现-损失函数

- Pair-wise:优化序关系
 - Hinge Loss for soft margin (refer symrank)
 - Regularlization: L1, L2
- Hinge loss For svm

$$f = max(0, 1 - ty)$$

Hinge loss For "rank"

$$f_{hinge} = \sum_{i=0}^{N} max(0, m - (t_{1i} - t_{2i}) * (y_{1i} - y_{2i}))$$

算法实现-损失函数

- mean squared error:优化最小误差
 - mean absolute error区别
- MSE Loss For point-wise

$$f = \sum_{i=0}^{N} (y_i - t_i)^2$$

MSE LOSS For "pair-wise"

$$f_{mse} = \sum_{i=0}^{N} (t_{1i} - y_{1i})^2 + (t_{2i} - y_{2i})^2$$

算法实现-损失函数

Loss function 优化gmv、点击 $f = \sum_{i} (t_{1i} - y_{1i})^2 + (t_{2i} - y_{2i})^2 +$ 优化序关系 $\lambda \sum max(0, m - (t_{1i} - t_{2i}) * (y_{1i} - y_{2i}))$

• 拟合目标 $t_i = f(click, gmv, action, ...)$

算法实现-模型

• 模型结构

结构说明

- 左右结构完全相同
- 左右参数共享
- 第一层参数40M
- 激活函数leakly relu
- Sgd训练

效果

- 相比使用cnn结构,逆序 比降低5%,ndcg提高 3%。
- 训练速度是cnn100+倍 (dnn多线程,cnn单线 程gpu).

算法实现-样本选择

- pair构造
 - Click > Skip above?
 - Last click > Skip above?
 - Click > click earlier?
 - Lask click > skip Previous?
 - Click > No-Click Next?
 - Buy > Click >.....
- 无点击数据利用
 - 直接使用, 无hinge loss只有mse loss
 - $Ad_nth > Ad_(n+m)th$

算法效果

- Abtest小流量效果
 - 点击增加2.74%±0.56%
 - App gmv 提升12.62%±7.37%
 - App 订单提升 12.13%±2.43%
- 全流量效果
 - 整体效果:appgmv和订单重新建立优势。
 - 减低系统复杂性,单模型代替多模型,节省predictor机器约70%
- 其他
 - 更方便引入更多优化目标
 - 优化目标统一,在线简单

后续工作

• 数据优化

p(B|R) = P(E|R) * f(C, B, H, CR, F)

真实曝光 更多行为引入

算法升级

- 使用统一模型
- 各种维度sku embedding
- Loss functions 优化
- Pair样本构造

Thank You