Load samples from "jain_feats.txt" into a 2d numpy array **X**. [For N samples shape should be Nx2]

Load initial centroids from "jain_centers.txt" into another 2d numpy array centroid_old. [For two centroids shape should be 2x2]

Take another 2d numpy array named **centroid_new** and initialize it with zeros. [For two centroids shape should be 2x2]

The initial scatter plot containing **X** and **centroid old** should look like this:

For **e** in iterations(1000):

Assign points to centroids/clusters:

Take a 1D numpy array named **label** with size equals to number of rows in **X**. For each row **i** in **X**:

Take a 1D numpy array named **dist** with size equals to number of rows in **centroid_old** For each row **j** in **centroid_old**:

Assign **dist**[**j**] := distance between **X**[**i**, :] and **centroid_old**[**j**, :] **label**[**i**] := **j**, for which **dist**[**j**] is minimum *[Can easily done by numpy argmin method]*

Update Centroids:

For each row **j** in **centroid_new**:

Assign centroid_new[j] := Average(X[label == j, :]) [Can easily done by numpy methods]

Stop condition check:

If:

For each row **j** in **centroid_new**:

Calculate difference between **centroid_new**[**j**] and **centroid_old**[**j**]

If the maximum value among differences found above is less than 1E-7: **STOP** Else:

centroid_old := centroid_new

MOVE to next Iteration

Finally **centroid_old** array holds the final cluster centroids

The final plot should look similar to the following:

