Chapitre 1 Programmation récursive

TD 1

Exercices d'application

TD d'informatique du Lycée Louis Legrand – Jean-Pierre Becirspahic http://info-llg.fr/

Savoirs et compétences :

Alg – C15 : Récursivité : avantages et inconvénients.

Exercice 1

On considère la fonction récursive suivante :

```
■ Python
def f(n):
    if n>100:
       return n-10
   return f(f(n+11))
```

Question Prouver sa terminaison lorsque $n \in \mathbb{N}$ et déterminer ce qu'elle calcule (sans utiliser l'interpréteur de commande).

Exercice 2

Prouver la terminaison de la fonction G de Hofstadter, définie sur $\mathbb N$ de la façon suivante :

```
■ Python
def g(n):
   if n==0:
       return 0
   return n-g(g(n-1))
```

Exercice 3

Question Écrire une fonction récursive qui calcule a^n en exploitant la relation : $a^n = a^{n/2} \times a^{n/2}$.

```
Question
               Écrire une fonction qui utilise de plus la
remarque suivante : n/2 =
```

Question Effectuer le nombre de multiplications effectuées dans les deux cas.

Exercice 4

On démontre que sur l'ensemble $\mathbb{N} \times \mathbb{N}$ est dénombrable en numérotant chaque couple $(x, y) \in \mathbb{N}^2$ suivant le procédé suggéré par la figure ci-dessous.

Question Rédiger une fonction récursive qui retourne le numéro du point de coordonnées (x, y).

Question Rédiger la fonction réciproque, là encore de façon récursive.

Exercice 5

On suppose donné un tableau t[0,..,n-1] (contenant au moins trois éléments) qui possède la propriété suivante : $t_0 \ge t_1$ et $t_{n-2} \le t_{n-1}$. Soit $k \in [|1,n-2|]$; on dit que t_k est un minimum local lorsque $t_k \le t_{k-1}$ et $t_k \le t_{k+1}$.

Question Justifier l'existence d'un minimum local dans t.

Question Il est facile de déterminer un minimum local en coût linéaire : il suffit de procéder à un parcours de tableau. Pourriez-vous trouver un algorithme récursif qui en trouve un en réduisant le coût logarithmique ?

Exercice 6

Les processeurs graphiques possèdent en général une fonction de bas niveau appelée *blit* (ou transfert de bloc) qui copie rapidement un bloc rectangulaire d'une image d'un endroit à un autre.

L'objectif de cet exercice est de faire tourner une image carrée de $n \times n$ pixels de 90° dans le sens direct en adoptant une stratégie récursive : découper l'image en quatre blocs de tailles $n/2 \times n/2$, déplacer chacun des ces blocs à sa position finale à l'aide de 5 *blits*, puis faire tourner récursivement chacun de ces blocs.

On supposera dans tout l'exercice que n est une puissance de 2.

Question Exprimer en fonction de n le nombre de fois que la fonction blit est utilisée.

Question Quel est le coût total de cet algorithme lorsque le coût d'un blit d'un bloc $k \times k$ est en $\mathcal{O}(n^2)$?

Question Et lorsque ce coût est en O(n)?

Question En supposant qu'une image est représentée par une matrice numpy $n \times n$, rédiger une fonction qui adopte cette démarche pour effectuer une rotation de 90° dans le sens direct (on simulera un blit par la copie d'une partie de la matrice vers une autre en décrivant ces parties par le slicing).

Exercice 7

On suppose disposer d'une fonction circle([x, y], r) qui trace à l'écran un cercle de centre (x; y) de rayon r.

Question Définir deux fonctions récursives permettant de tracer les dessins présentés figure suivante (chaque cercle est de rayon moitié moindre qu'à la génération précédente).

Question On suppose disposer d'une fonction polygon((xa, ya), (xb, yb), (xc, yc)) qui trace le triangle plein dont les sommets ont pour coordonnées (xa; ya), (xb; yb), (xc; yc).

Question Définir une fonction récursive permettant le tracé présenté figure suivante (tous les triangles sont équilatéraux).

