

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ НА ТЕМУ:

«Создание информационной системы настольных игр и игротек»

Студент:	<u>ИУ7-63Б</u>		М. Д. Маслова
	(группа)	(подпись, дата)	(И. О. Фамилия)
Руководитель	:		О. В. Кузнецова
		(подпись, дата)	(И. О. Фамилия)

СОДЕРЖАНИЕ

Bl	ВВЕДЕНИЕ			4
1	Ана	литич	еская часть	6
	1.1	Анали	из существующих аналогов	6
		1.1.1	Российский рынок	6
		1.1.2	Зарубежный рынок	6
	1.2	Форма	ализация задачи	8
	1.3 Формализация данных		ализация данных	10
	1.4 Описание типов пользователей		ание типов пользователей	. 12
	1.5	Выбој	р модели базы данных	12
		1.5.1	Реляционные базы данных	14
		1.5.2	Нереляционные базы данных	15
	1.6	Выбој	р системы управления базами данных	16
		1.6.1	Microsoft SQL Server	16
		1.6.2	PostgreSQL	17
		1.6.3	Oracle	17
		1.6.4	MySQL	18
2	Кон	структ	горская часть	19
3	Tex	нологи	ческая часть	20
4	Исс	ледова	тельская часть	21
3 A	КЛН	ОЧЕН	ИЕ	22
Cl	ПИС	ок ис	СПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	23

ВВЕДЕНИЕ

Настольные игры — это игры, основанные на манипуляции инвентарем (карточками, кубиками, фишками и т. п.), размещаемым на обычном или специально сделанном столе [1].

На сегодняшний день рынок настольных игр представляет собой одну из наиболее молодых и стремительно развивающихся областей мировой экономики [2]. Это связно с тем, что несмотря на современные условия информатизации настольные игры набирают популярность и продолжают сохранять востребованность в широкой среде потребителей.

Отечественный рынок настольных игр молод, но стремительно усиливает свои позиции: за счет сегментации рынка по возрасту и категориям (семейные, стратегические, для вечеринок и др.) настольные игры отделились от рынка детских товаров и стали самостоятельным сектором экономики.

В отличие от других рынков прямая реклама настольных игр работает не эффективно. При этом наилучший способ прорекламировать игру — посадить человека играть. Поэтому в сфере настольных игры приобрели популярность игротеки — мероприятия, на котором гости могут поиграть в различные игры, завести знакомства, опробовать новинки или ознакомиться с ассортиментом [3].

В силу молодости рынка программные решения в сфере настольных игр, как будет показано в одном из разделов данной работы, по большей части представлены в виде интернет-магазинов, в которых информация об игротеках, регистрации на них, получения информации об проводимых играх либо представляется текстовым списком на отдельной странице, либо появляется в новостном разделе, либо вовсе отсутствует. Поэтому поиск необходимых игротек и регистрация на них становятся проблематичными.

Таким образом, **целью данной работы** является проектирование и реализация базы данных настольных игр и игротек, а также разработка приложения доступа к базе данных с возможностью просмотра, добавления, удаления и редактирования информации о настольных играх и игротеках, регистрации на игротеки и составления списка предпочитаемых игр.

Для достижения поставленной цели необходимо решить следующие задачи:

- провести анализ предметной области;

- формализовать задачу;
- провести анализ баз данных и систем управления базами данных;
- спроектировать базу данных и архитектуру приложения;
- реализовать базу данных и приложение для доступа к ней.

1 Аналитическая часть

В данном разделе проводится анализ предметной области: на основе рассмотрения существующих решений делаются выводы о представлении информации о настольных играх и игротеках, а также о необходимых возможностях пользователей. На базе анализа предметной области формулируются требования к информационной системе, формализуются данные и типы пользователей. Также проводится сравнение существующих моделей баз данных и систем управления базами данных, из которых выбираются оптимальные для решения поставленной задачи.

1.1 Анализ существующих аналогов

В силу молодости рынка настольных игр анализ предметной области проводится на основе рассмотрения программных решений, представляющих интернет-магазины крупных компаний настольных игр или тематических сайтов.

Так как рынки настольных игр в России и за рубежом имеют разные уровни развития существующие программные решения рассматриваются отдельно для российского и зарубежного рынков.

1.1.1 Российский рынок

На российском рынке программные решения в сфере настольных игр представлены интернет-магазинами крупных продавцов: Hobby Games [4], «Мосигра» [5], «Низа Гамс» [6] и др. Их веб-сайты ориентированы именно на продажу игр, в то время как анонсы игротек являются второстепенными и располагаются либо в специализированном разделе сайта, либо в новостях, при этом регистрация проходит либо через сторонний сервис, либо через сообщения в социальных сетях.

1.1.2 Зарубежный рынок

На зарубежном рынке преобладают тематические сайты. Например, BoardGameGeek [7] — многофункциональный сайт для любителей настоль-

ных игр, — содержит информацию о многочисленных настольных играх, их авторах, предоставляет ссылки на интернет-магазины, в которых можно купить игру, а также возможность продать свою игру и пообщаться на форуме. Данный сайт также содержит страницу с актуальными данными по игровым конференциям всего мира, на которых проводятся игротеки. Аналогичными проектами, но с меньшими наборами функций являются Тор Tier Board Games [8] и Board Game Halv [9], они представляют информацию о настольных играх и игротеках в формате новостей.

Существует также программное решение, предоставляющее возможность играть в популярные настольные игры онлайн — Board Game Arena [10]. Здесь реализованы виртуальные копии многих настольных игр, ведутся рейтинги по каждой игре и по всем играм в целом. Благодаря возможности перевода сайта пользователями, он доступен на нескольких языках, в том числе и на русском.

Вывод

Таким образом, программные решения для поиска информации о настольных играх широко распространены, однако решение задачи поиска необходимой игротеки для игрока требует многих усилий. Если организаторы игротек, используя свои сайты, имеют возможность в любом удобном для них формате выкладывать информацию об игротеках, то для поиска нужной игротеки игроку придется посетить многочисленные сайты организаторов, найти раздел или страницу игротек на каждом из них и зарегистрироваться через сторонний ресурс.

То есть встает необходимость реализации информационной системы, в которой информация о всех игротеках будет собрана в одном месте, а регистрация будет происходить единообразно в самой системе. При этом в данной системе должна содержатся информация о настольных играх, так как на их основе происходит выбор игротеки. А в силу того, что реализация регистрации на игротеки, потребует регистрации в системе, как организаторов, так и игроков, появится возможность включения в систему рейтинговых списков.

1.2 Формализация задачи

Для создания информационной системы необходимо формализовать процесс проведения игротеки. Для этого выделим необходимые и возможные действия пользователей, которые будут соответствовать требованиям, предъявляемым к создаваемому программному обеспечению.

И так, при проведении игротеки сначала организатор:

- 1) выбирает время и место проведения игротеки, а также настольные игры, по которым она проводится;
- 2) определяет другие характеристики игротеки (название, продолжительность, стоимость участия, возможность купить игры);
- 3) регистрирует игротеку.

Далее игрок — участник игротеки:

- 1) просматривает список настольных игр;
- 2) выбирает понравившиеся игры, добавляя их в свой список избранных;
- 3) выбирает игротеку по понравившимся играм или из всего списка зарегистрированных игротек;
- 4) регистрируется на игротеку.

При этом игрок может пропустить этапы просмотра и выбора настольных игр и сразу перейти к выбору игротеки.

Описанные выше действия субъектов игротеки соответствуют необходимым функциям, которые являются обязательными требованиями к разрабатываемой информационной системе и должны быть реализованы в первую очередь. Также различия в возможных действиях пользователей формируют еще одно обязательное требование: регистрацию различных типов пользователей в системе.

Также у организатора должна быть возможность:

- просмотреть список участников, зарегистрированных на игротеку;
- отменить игротеку;
- перенести игротеку (изменить место проведения или время начала);
- изменить другую информацию о ней;
- сформировать заявку на добавление в базу места проведения или настольной игры при их отсутствии.

Игрок, в свою очередь, должен иметь возможность:

- удалить игру из списка понравившихся игр;
- отменить регистрацию на игротеку.

Данные требования являются желательными и реализуются сразу после обязательных.

Возможными требования к реализуемой системе являются:

- подтверждение организатором посещения игроком игротеки;
- изменение организатором рейтинга игрока после посещения им игротеки;
- уменьшение рейтинга игрока вследствие пропуска игротеки, на которую он был зарегистрирован;
- оценка игроком посещенной игротеки и организатора.

Также при реализации необходимо учесть ряд правил делового регламента:

- организатор не может зарегистрировать игротеку, дата и время начала которой прошли или соответствуют текущему дню;
- игротека считается прошедшей, если наступила дата проведения и время ее окончания;
- игрок не может зарегистрироваться на прошедшую или отмененную игротеку;
- игрок может зарегистрироваться на игротеку не позднее, чем за установленное организатором время до ее начала;
- при отмене игротеки список зарегистрированных на нее участников сохраняется;
- регистрация игротеки считается незавершенной до тех пор, пока не будут приняты заявки организатора на добавление в базу места проведения и хотя бы одной игры, если такие оформлялись.

Таким образом, необходимо разработать приложение, отвечающее выше перечисленным требованиям. В силу необходимости хранения информации о различных объектах предметной области также требуется спроектировать и реализовать базу данных, которая должна хранить информацию о настольных играх и игротеках, и взаимодействие с которой должно осуществляться с помощью интерфейса разрабатываемого приложения.

1.3 Формализация данных

На основании сформулированных требований база данных должна содержать информацию о:

- игротеках;
- настольных играх, по которым проводятся игротеки;
- организаторах;
- местах проведения;
- игроках;
- пользователях.

Последние четыре сущности характерны для многих предметных областей, поэтому для них приведено только краткое описание, а подробный анализ приводится для первых двух сущностей, являющихся основными в рассматриваемой предметной области.

На основе анализа существующих решений можно выявить основные сведения о настольных играх и игротеках, которые используются при их описании. Так, для описания настольной игры используют следующие характеристики:

- название;
- производитель;
- год выпуска;
- возможное количество игроков в формате «от ... до ...»;
- время игры также в формате «от ... до ...»;
- рекомендованный возраст участников в формате возрастных категорий («6+», «12+», «18+» и т. п.) или диапазона возрастов («от ... до ...»);

Также возможно использование следующих характеристик:

- вес:
- комплектация;
- правила в виде отдельного файла;
- описание игры;
- изображения коробки и комплектующих.

Так как по сформулированным требованиям настольные игры используются для поиска необходимых игротек, последние описанные характеристики в сущность настольной игры включены не будут.

Для описания игротеки в рассмотренных решениях используются:

- название;
- адрес места проведения;
- время начала и продолжительность;
- стоимость участия;
- ссылка на регистрацию.

Так как регистрация на игротеку будет происходить в самой системе, ссылка на регистрацию, как сведение об игротеке храниться не будет, но в соответствии с сформулированными требованиями будет добавлено время, за которое можно зарегистрироваться на игротеку.

В таблице 1.1 представлены краткие сведения обо всех выше описанных категорий данных.

Таблица 1.1 – Категории данных и сведения о них

Категория	Сведения	
Игротека	ID	Возможность покупки игр
	Название	Место проведения
	Организатор	Продолжительность
	Время начала	Стоимость участия
	Дата проведения	Время регистрации
Организатор	ID	Сайт
	Название	Email
	Адрес	Телефон
Место	ID	Тип
проведения	Адрес	Email
	Сайт	Телефон
	Название	
Настольная	ID	Макс. число игроков
игра	Название	Мин. возраст
	Производитель	Макс. возраст
	Год выпуска	Мин. время игры
	Мин. число игроков	Макс. время игры
Игрок	ID	Лига
	Имя	Рейтинг
Пользователь	ID	Логин
	Роль	Пароль

Связи между описанными сущностями представлены на ER-диаграмме (рисунок 1.1).

Рисунок 1.1 – ER-диаграмма

1.4 Описание типов пользователей

В соответствии с поставленными требованиями необходимо выделить 4 типа пользователей, описание которых представлено в таблице 1.2.

1.5 Выбор модели базы данных

На основании сформулированных требований система должна включать базу данных для хранения информации обо всех сущностях, описанных в подразделе 1.3.

База данных (БД) — это совокупность данных, организованных по определенным правилам, предусматривающим общие принципы описания, хранения и манипулирования данными, независимая от прикладных программ [11].

Основой любой базы данных является модель данных — формализованное описание структур единиц информации и операций над ними в информационной системе. Модель данных определяет логическую структуру базы данных, то есть способ хранения, организации и обработки информации [12].

Таблица 1.2 – Описание типов пользователей

Тип	Функциональность
Гость (неавторизованный пользователь)	 Просмотр списка настольных игр и игротек Поиск игротек по настольной игре Авторизация Регистрация
Игрок (авторизованный пользователь)	 Просмотр списка настольных игр и игротек Составление списка предпочитаемых игр Поиск игротек по настольным играм Регистрация на игротеки и ее отмена
Организатор (авторизованный пользователь)	 Просмотр списка настольных игр, игротек, мест проведения Регистрация новых игротек и их отмена Изменение информации о зарегистрированных игротеках Просмотр списка зарегистрированных на игротеку участников Формирование заявки на добавление нового места проведения при его отсутствии в базе Формирование заявки на добавление игры при ее отсутствии в базе
Администратор (авторизованный пользователь с повышенным уровнем полномочий)	 Просмотр списка настольных игр, игротек, мест проведения, организаторов, пользователей Изменение информации о настольных играх, местах проведения, организаторах, игротеках Одобрение или отклонение заявок от организаторов Изменение прав доступа пользователей Удаление пользователей

Существуют различные модели данных, каждая из которых имеет свои достоинства и недостатки, поэтому необходимо провести анализ моделей и выбрать модель базы данных, соответствующая модель данных которой наиболее полно удовлетворяет требованиям реализуемой системы.

Модели баз данных можно разделить на две основные категории: реляционные и нереляционные.

1.5.1 Реляционные базы данных

Реляционные базы данных основаны на реляционной модели, представляющей сущности и связи между ними представлены в виде отношений — двумерных таблиц, каждая строка (кортеж) является записью, содержащей данные о конкретном объекте данной сущности, а столбцы ее свойствам, или атрибутам. То есть реляционная база данных — это совокупность отношений, содержащих всю информацию, которая должна храниться в базе данных.

В каждом отношении выделяют первичный ключ — атрибут или набор атрибутов, однозначно идентифицирующий каждый из кортежей отношения. В этом же или другом отношении может быть создан столбец (их набор), ссылающийся на первичный ключ — внешний ключ, с помощью которого реализуются связи между таблицами базы данных [13].

При этом для поддержания целостности данных в реляционных БД соблюдаются требованиям ACID:

- атомарность (atomicity) для каждой транзакции либо выполняются все операции внутри нее, либо не выполняется ни одной, то есть транзакции являются атомарными и работает принцип «все или ничего»;
- согласованность (consistency) выполнение транзакции не может перевести систему в несогласованное состояние, то есть база данных всегда остается в согласованном состоянии;
- изолированность (isolation) на результат транзакции не влияют другие транзакции, которые происходят параллельно с ней;
- долговечность (durabiliry) любые изменения сохраняются в базе данных несмотря на сбои и действия пользователей.

Реляционные базы данных поддерживают SQL — язык структурированных запросов для определения и обработки данных. SQL является одним из наиболее гибких и стандартизированных языков запросов, что позволяет минимизировать ряд рисков для разработчиков [14].

Достоинствами реляционных баз данных являются:

- единый способ представления сущностей и связей между ними: все отношение;
- эффективная поддержка целостности данных;
- использование стандартизированного языка запросов SQL.

Недостатками реляционных баз данных являются:

- вертикальная масштабируемость;
- отсутствие возможности представить некоторые данные в виде отношения;
- увеличение времени работы при увеличении числа отношений (например, при нормализации);
- трудозатраты на проектирование базы данных.

1.5.2 Нереляционные базы данных

Нереляционные (или NoSQL) базы данных — базы данных с динамическим представлением структуры данных [14]. В таких базах данных используются гибкие модели данных, которые определяют следующие типы NoSQL баз данных [15]:

- колоночные БД хранят данные по столбцам, число которых от строки к строке может изменяться;
- хранилища «ключ-значение» для хранения объектов используют хештаблицу, в которой находятся пары из уникального ключа и указателя на конкретный объект данных;
- документноориентированные БД хранят данные в виде коллекций документов (например, в форматах JSON, XML и др.), причем каждая запись может содержать различные по количеству и типам данные.
- графовые БД используются для хранения данных с большим числом связей и представляют элементы базы данных в виде вершин графа, а отношения между ними — в виде ребер между соответствующими вершинами.

Достоинствами нереляционных баз данных являются:

- горизонтальная масштабируемость;
- высокая производительность;
- гибкость моделей данных;
- возможность хранения неструктурированной информации.

Недостатками нереляционных баз данных являются:

- смягчение требований ACID;
- привязанность приложения к конкретной СУБД в силу собственных

языков запросов (отсутствие поддержки SQL).

Вывод

В разрабатываемой базе:

- данные являются структурированными, причем их структура не подвержена частым изменениям;
- необходима поддержка целостности данных при наличии нескольких пользователей, то есть соответствие требованиям к транзакционным системам;
- необходимо выполнение сложных запросов.

Таким образом, в соответствии с перечисленными требованиями к базе данных и свойствами основных категорий моделей данных необходимо выбрать реляционную базу данных.

1.6 Выбор системы управления базами данных

Система управления базами данных (СУБД) — это совокупность программ и языковых средств, предназначенных для управления данными в базе данных, ведения базы данных и обеспечения взаимодействия ее с прикладными программами [11].

В предыдущем подразделе для реализуемой системы были выбраны реляционные базы данных, следовательно, необходимо рассмотреть СУБД, предоставляющие возможность работы с ними:

- Microsoft SQL Server,
- PostgreSQL,
- Oracle,
- MySQL.

1.6.1 Microsoft SQL Server

Microsoft SQL Server — реляционная система управления базами данных, разработанная корпорацией Microsoft, основным языком запросов которой является Transact-SQL [16].

Достоинствами данной СУБД являются:

- устойчивая производительность;
- возможность работы с облачными хранилищами;
- возможность интеграции с другими продуктами Microsoft.

Недостатками данной СУБД являются:

- высокая стоимость корпоративной версии;
- поддержка меньшего числа операционных систем (только Windows и Linux) по сравнению с другими реляционными СУБД [17].

1.6.2 PostgreSQL

PostgreSQL — это объектно-реляционная система управления базами данных с открытым исходным кодом, поддерживающая соответствие стандартам ANSI SQL [18].

Достоинствами данной СУБД являются:

- открытый исходный код и свободная лицензия;
- полное соответствие требованиям ACID;
- поддержка пользовательских типов данных, в том числе неструктурированных (JSON и XML);
- поддержка большого количества сторонних инструментов;
- кроссплатформенность.

Недостатками данной СУБД являются:

— более низкая скорость по сравнению с другими СУБД.

1.6.3 Oracle

Oracle — это объектно-реляционная система управления базами данных, созданная корпорацией Oracle [19].

Достоинствами данной СУБД являются:

- поддержка работы с крупными базами данных и большим количеством пользователей;
- высокая производительность;
- сильная техническая поддержка, подробная документация;
- кроссплатформенность.

Недостатками данной СУБД являются:

- высокаяя стоимость;
- ресурсоемкость.

1.6.4 MySQL

MySQL — это бесплатная реляционная система управления базами данных, разработку и поддержку которой осуществляет корпорация Oracle [16].

Достоинствами данной СУБД являются:

- бесплатное распространение;
- масштабируемость и производительность;
- возможность работы с облачными хранилищами;
- кроссплатформенность.

Недостатками данной СУБД являются:

- платная поддержка;
- меньшая надежность по сравнению с другими СУБД.

Вывод

Для решения задачи была выбрана система управления базами данных PostgreSQL, так как она:

- поддерживает полное соответствие требованиям ACID, что позволит сохранять целостность данных в том числе при параллельной работе нескольких пользователей с системой;
- имеет открытый исходный код;
- является гибкой в работе с типами данных и расширениями.

Вывод

В данном разделе был проведен анализ предметной области настольных игр и игротек с помощью исследования существующих решений. На основе анализа предметной области была формализована задача и данные и описаны типы пользователей. Также по результатам сравнения моделей баз данных для решения задачи была выбрана реляционная модель данных, а в качестве СУБД для работы с ней — PostgreSQL.

2 Конструкторская часть

3 Технологическая часть

4 Исследовательская часть

ЗАКЛЮЧЕНИЕ

	В процессе выполнения курсовой работы:
	_
	_
	_
	_
	Таким образом, все поставленные задачи были выполнены, а цель до-
стигн	ivta.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Своротова Ю. В. Использование настольных игр в образовательном процессе // Развитие современного образования: от теории к практике. Сборник материалов VII Всероссийской научно-практической конференции с международным участием, Чебоксары, 14 июня 2019 г. 2019. С. 145–150.
- 2. Журавков Д. Д. Роль маркетинга в процессе формирования новых типов бизнеса на примере мирового рынка настольных игр // ЭТАП: Экономическая Теория, Анализ, Практика. 2013. № 1. С. 139–148.
- Герасикова Е. Н., Родина Е. Н., Шпакова Г. А. Рынок настольных игр: тенденции и способы продвижения // Инновации в науке. 2018. № 6 (82). С. 58–60.
- 4. Магазины настольных игр Hobby Games [Электронный ресурс]. URL: https://hobbygames.ru/ (дата обращения: 24.04.2022).
- 5. Магазин настольных игр и подарков Мосигра [Электронный ресурс]. URL: https://www.mosigra.ru/(дата обращения: 24.04.2022).
- 6. Интернет-магазин настольных игр Низа Гамс [Электронный ресурс]. URL: https://nizagams.ru/ (дата обращения: 24.04.2022).
- 7. BoardGameGeek Gaming Unplugged Since 2000. URL: https://boardgamegeek.com/ (дата обращения: 26.04.2022).
- 8. Top Tier Board Games. URL: https://toptiergaming.com/ (дата обращения: 26.04.2022).
- 9. Board Game Halv | Board Game Culture and Enthusiasm. URL: https://www.boardgamehalv.com/ (дата обращения: 26.04.2022).
- 10. Board Game Arena. URL: https://boardgamearena.com/ (дата обращения: 26.04.2022).
- 11. ГОСТ 20886-85. Организация данных в системах обработки данных. Термины и определения [Электронный ресурс]. URL: https://docs.cntd.ru/document/1200015708 (дата обращения: 28.04.2022).

- 12. Аврунев О. Е., Стасышин В. М. Модели баз данных: учебное пособие. Новосибирск: Издательство НГТУ, 2018. с. 124.
- 13. Базы данных: учебное пособие / В. И. Халимон, Г. А. Мамаева, В. Н. Рогов [и др.]. СПб.: СПбГТИ(ТУ), 2017. с. 118.
- 14. Саидов Н. В. Основные преимущества реляционных SQL баз данных над нереляционными NoSQL // «Научное сообщество студентов XXI столетия. Технические науки»: Электронный сборник статей по материалам XCVIII студенческой международной научно-практической конференции. Новосибирск, 2021. № 2 (97). С. 17–21.
- 15. Зенцов Д. А., Галеева А. И., Додонов М. В. Сравнение реляционных и нереляционных (NoSQL) баз данных // «Научное сообщество студентов XXI столетия. Междисциплинарные исследования»: Электронный сборник статей по материалам XLIV студенческой международной научно-практической конференции. Новосибирск, 2018. № 9 (44). С. 76–80.
- Vershinin I. S., Mustafina A. R. Performance Analysis of PostgreSQL, MySQL, Microsoft SQL Server Systems Based on TPC-H Tests // 2021 International Russian Automation Conference (RusAutoCon). — Sochi, 2021. — P. 683–687.
- 17. Microsoft SQL Server and Oracle: Comparative Performance Analysis / M. Ilic, L. Kopanja, D. Zlatkovic [et al.] // The 7th International conference Knowledge management and informatics. Vrnjacka Banja, 2021. P. 33–40.
- 18. PostgreSQL: About [Электронный ресурс]. URL: https://www.postgresql.org/about/ (дата обращения: 13.05.2022).
- 19. Технологии баз данных Oracle. URL: https://www.oracle.com/cis/database/technologies/ (дата обращения: 12.05.2022).