

郑州十一中2021届高二分班考试化学试卷

可能用到的相对原子质量: C-12, N-14, 0-16, H-1, Ag-108, S-32 -、单项选择题(每题3分, 共48分)

- 1. 化学与生活、社会发展息息相关。下列有关说法不正确的是 ()
- A. "霾尘积聚难见路人",雾霾所形成的气溶胶有丁达尔效应
- B. "熬胆矾铁釜,久之亦化为铜",该过程发生了置换反应
- C. "青蒿一握,以水二升渍,绞取汁",屠呦呦对青蒿素提取属于化学变化
- D. "凡酸坏之酒,皆可蒸烧""以烧酒复烧二次价值数倍也",这里用到的实验方法是蒸馏,可以分离乙酸乙酯和乙酸
- 2. 下列各组物质分类方法正确的一组是()

,	纯净物	混合物	强电解质	弱电解质	非电解质
A	硫酸	水煤气	盐酸	硫化氢	二氧化碳
В	冰醋酸	Fe(OH)₃胶 体	碳酸钙	氟化氢	氢气
С	纯碱	酒精溶液	硫酸钡	氨水	三氧化硫
D	CuSO ₄ ·5H ₂ O	福尔马林	氢氧化钡	碘化氢	甲烷

- 3. 阿伏加德罗常数的值为 N₄,下列说法正确的是()
- A. 标准状况下, 0.1mol Cl2溶于水, 转移的电子数目为 0.1NA
- B. 1mol Na₂O₂与足量潮湿的 CO₂充分反应,转移的电子数为 2 N_A
- C. 1mo1NaHSO4熔融时电离出的离子总数为3NA
- D. 0. $1 mol H_2$ 和 0. $1 mol I_2$ 于密闭容器中充分反应后,容器内分子总数为 0. $2 N_A$
- 4. 下列反应的离子方程式正确的是()
- A. 用过量氨水吸收工业尾气中的 SO₂: 2NH₃ · H₂D+SO₂ ===2NH₄ + SO₃ ²⁻+H₂O
- B. 向 Fe (NO₃) ₃溶液中加过量 HI 溶液: 8H⁺+2NO₃ +6I == 2NO ↑ +4H₂O+3I₂
- C. 向酸性高锰酸钾溶液中滴加少量双氧水,溶液退色: 2MnO₄ +H₂O₂+6H⁺===2Mn²⁺+3O₂↑+4H₂O
- D. 向 Na₂SiO₃溶液中通入过量 CO₂: SiO₃²⁻ +CO₂+H₂O== H₂SiO₃ ↓ +CO₃²⁻
- A. K^+ , A1[OH]₄, C1, MnO₄

 $c (K^{+}) < c (C1^{-})$

第1页共6页

B. Fe^{3+} , NO_3 , I, HCO_3

逐滴滴加盐酸立即有气体产生

C. Na⁺、Mg²⁺、Cl⁻、SO₄²⁻ 逐滴滴加氨水有沉淀产生,沉淀不消失

D. NH₄, A1³⁺, SO₄²⁻, CH₃COOH

滴加 NaOH 浓溶液立刻有气体产生

6. 下列事实不能说明元素的金属性或非金属性相对强弱的是()

选项	事实	推论
A	与冷水反应, Na 比 Mg 剧烈	金属性: Na>Mg
В	Ca(OH) ₂ 的碱性强于 Mg(OH) ₂	金属性: Ca>Mg
С	2HC10 ₄ +Na ₂ C0 ₃ =2NaC10 ₄ +H ₂ O+C0 ₂	非金属性: C1>C
D	C与SiO。高温反应制粗硅	非金属性: C>Si

- 7. 已知 W、X、Y、Z 为短周期元素,原子序数依次增大。W、Z 同主族, X、Y、 Z 同周期, 其中只有 X 为金属元素。下列说法一定正确的是(
- A. 原子半径: X>Y>Z>W
- B. ₩ 的含氧酸的酸性比 Z 的含氧酸的酸性强
- G. W 的气态氢化物的稳定性小于 Y 的气态氢化物的稳定性
- D. 若 W 与 X 的原子序数差为 5,则形成化合物的化学式一定是 X_0W_0
- 8. 已知 H₂SO₃+I₂+H₂O==H₂SO₄+2HI,将 0.1 mol Cl₂通入 100 mL 含等物质的 量的 HI 与 H₂SO₃ 的混合溶液中,有一半的 HI 被氧化,则下列说法正确的是 ()
- A. 物质的还原性: HI>H₂SO₃>HCl
- B. H₂SO₃的物质的量浓度为 0.6 mol·L⁻¹
- C. 若再通入 0.05 mol Cl2,则恰好能将 HI 和 H2SO3 完全氧化
- D. 通入 0. 1 mol Cl。发生反应的离子方程式为 5Cl。+4H。SO3+2I-+4H。O=4SO2- $+I_2+10C1^-+16H^+$
- 9. 下列关于热化学反应的描述中正确的是()
- A. HCl 和 NaOH 反应的中和热 $\Delta H = -57.3 \text{ kJ/mol}$,则 H₂SO₄和 Ca(OH),反应的 中和热 $\Delta H=2\times (-57.3)$ kJ/mol
- B. CO(g) 的燃烧热是 283.0 kJ/mol,则 $2CO_2(g) == 2CO(g) + O_2(g)$ 反应的 ΔH $=+2\times283.0 \text{ kJ/mol}$
- C. 某反应的 $\Delta H = +100 \, \text{kJ/mol}$,正反应活化能比逆反应活化能小 100 kJ/mol
- D. 已知, 101 kPa 时 2C(s) $+0_2(g)$ == 2C0(g) ΔH = -221 kJ/mol,则碳的 燃烧热等于 110.5 kJ/mol

- 10. 铝一空气电池以高纯度铝(含铝99.99%)为负极,铂铁合金为正极,海水为 电解质溶液,工作原理如图所示。下列说法正确的是(
- A. 铝一空气电池要及时回收处理,以免造成重金属污染
- B. 正极制成鱼鳃状的目的是增大铂铁合金与海水中溶解 氧的接触面积

- D. 该电池工作时, 铂铁合金比高纯铝更容易被腐蚀
- CH=CH-COOH. T 11. 咖啡酸具有止血功效, 其结构简式为HO 列说法不正确的是(
- A. 咖啡酸可以发生取代、加成、氧化、酯化、加聚反应
- B. 咖啡酸分子中所有原子可能共面
- C. 1 mol 咖啡酸最多能与 5 mol H₂ 反应
- D. 蜂胶的分子式为 C17H16O4, 在一定条件下可水解生成咖啡酸和一种一元醇
- A, 则醇 A 的分子式为 C₈H₁₀O
- 12. 下列实验过程可以达到实验目的的是()

编号	实验目的	实验过程		
A	检验蔗糖是否水解	向 20%蔗糖溶液中加入少量稀硫酸,加热,再加入新制氢氧化铜悬浊液,观察现象		
В	探究维生素C的还原性	向盛有 2 mL 黄色氯化铁溶液的试管中滴加浓的维生素 C 溶液,观察颜色变化		
C	除去 CO2 中少量的 HC1 气体	通入饱和食盐水中		
D	探究浓度对反应速率的影响	向 2 支盛有 5 mL 不同浓度 NaHSO ₃ 溶液的 试管中同时加入 2 mL 5% H ₂ O ₂ 溶液,观察 实验现象		

- 13. 1molX 气体跟 a molY 气体在体积可变的密闭容器中发生如下反应: $X(g)+aY(g) \Longrightarrow bZ(g)$, 反应达到平衡后,测得 X 的转化率为 50%, 在同温同压 下测得反应前混合气体的密度是反应后混合气体密度的 3/4,则 a 和 b 的数值 可能是(
- A. a=2, b=1 B. a=3, b=3 C. a=2, b=2

- D. a=3, b=2

鱼鳃状铂铁合

高纯铝

14. 一定温度下反应 $N_2O_4(g)$ —— $2NO_2(g)$ 的焓变为 Δ H。现将 $1mo1N_2O_4$ 充入一恒压密闭容器中,下列图正确且能说明反应达到平衡状态的是(

15. 已知: Ag₂SO₄微溶于水,可溶于硝酸。溶液 X 中可能含有 Na⁺、Ca²⁺、Fe²⁺、Cl[−]、Br[−]、CO₃^{2−}、SiO₃^{2−}、SO₄^{2−}中的几种离子。为了确定其组成,某同学进行、如下实验:

下列说法正确的是()

- A. 溶液 X 中一定含有 Na⁺、C1⁻和 Si0²-
- B. 溶液 X 中一定不含 Ca2+、Br
- C. 为确定溶液 X 中是否含有 SO₄², 可取溶液 2, 加入 BaCl₂溶液
- D. 在溶液 X 中依次滴入盐酸、双氧水和硫氰化钾溶液后,溶液将变为红色 16. 向含有 Fe²⁺、I⁻、Br⁻的溶液中通入适量氯气,溶液中各种离子的物质的量变化如图所示。有关说法不正确的是()

- A. 线段 BC代表 Fe3+物质的量的变化情况
- B. 当通入 Cl₂ 2 mol 时,溶液中已发生的离子反应可表示为 2Fe²⁺+2I⁻+2Cl₂==2Fe³⁺+I₂+4Cl⁻
- C. 原混合溶液中 FeBr₂的物质的量浓度为 3 mol·L⁻¹
- D. 原溶液中 n(Fe²⁺):n(I⁻):n(Br⁻)=2:1:3

二、填空题

17. (8分) W、X、Y、Z为原子序数依次增大的短周期元素。已知 W 的某种单质是自然界中硬度最大的物质, a 为 W 的最高价氧化物, Y 是地壳中含量最高的金属元素, Z 的最高正价与最低负价的代数和为 4, b、c、d 分别为 X、Y、Z 的最高价氧化物对应的水化物。化合物 a~g 的转化关系如图所示(部分产物已略去)。

P-1
(1) X 在周期表中的位置为
(2) X、Y、Z的简单离子半径大小关系为(用离子符号表示)
(3) f 与过量 a 反应生成 c 的离子方程式为
(4) g 与过量 e 反应也是制备 c 的方法之一,则 e 的化学式为
(5) 工业上通过电解其熔融氧化物的方法制取 Y 的单质,写出电解过程制备
Y 单质的化学方程式
18. (10分)按要求正确书写"电离方程式或离子方程式"
(1) 水是一种电解质,发生电离会产生电子总数相同的两种微粒,其电离方程
式为:。
(2) Cr (OH) ₃ 性质与 A1 (OH) ₃ 相似,与 NaOH 溶液反应产生[Cr (OH) ₄],与稀盐
酸反应产生 Cr³+, 写出 Cr(OH)3在水中的电离方程式(两个)
(3) +6 价铬的化合物毒性较大,常用 NaHSO ₃ 将废液中 Cr ₂ O ₇ 还原成
Cr³+,反应的离子方程式为;
(4) 次磷酸(H ₃ PO ₂) 是一元中强酸,可将溶液中的 Ag+还原为银单质,从而可
用于化学镀银。利用 H,PO。进行化学镀银反应中,氧化剂与还原剂的物质的量
之比为4:1,则该反应的离子方程式为
(5) 高铁酸钾 (K_2FeO_4) 是一种是一种既能杀菌、消毒、又能絮凝净水的水
处理剂。其水解产生的 Fe(OH)。胶体能吸附水中悬浮物,达到净水的目的,用
离子方程式表示 K ₂ FeO ₄ 净水的原理:。
19. (12分)某化学兴趣小组在实验室探究氨的催化氧化反应及其产物的有关
性质。设计了加图所示装置讲行实验(实持及加热装置已略去)。

回答下列问题:

- (1) 装置 A 中先后发生两个反应,反应生成 O2 的化学方程式为_____。
- (2) C 中氨催化氧化方程式为_____。
- (2)装置 D 的作用是______;

若取消装置 D, 在装置 E 中可观察到白烟, 请用文字叙述白烟产生的原因:

- (3) 装置 F 中发生反应的离子方程式为_____
- (4) 装置 G 的作用是将 NO 转化成 NO₂, NO 和 NO₂混合气体的组成为 NOx (1<x<2),要使混合气体完全被装置 H 中的 NaOH 溶液吸收(己知: NO 不能和 NaOH 反应; NO+NO₂+2NaOH===2NaNO₂+H₂O; 2NO₂+2NaOH===NaNO₂+NaNO₃+H₂O),NOx 中的 x 的取值范围是_____。
- 20. (12分)
- (1) 肼(H₂N-NH₂) 是一种高能燃料,有关化学反应的能量变化如图所示。已知断裂 1 mol 化学键所需的能量(kJ): N=N 为 942、0==0 为 500、N-N 为 154,则断裂 1 mol N—H 键所需的能量是 KJ。

