Sei $K = \mathbb{Q}$ und $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Man bestimme die Galoisgruppe $\operatorname{Gal}(L/K)$ der Erweiterung L/K. Lösung. Setze $K_1 := \mathbb{Q}(\sqrt{2})$ und $K_2 := \mathbb{Q}(\sqrt{3})$. Die Minimalpolynome von $\alpha_1 = \sqrt{2}$ und $\alpha_2 = \sqrt{3}$ über \mathbb{Q} sind

$$m_{\mathbb{Q},\alpha_1} = X^2 - 2$$

$$m_{\mathbb{Q},\alpha_2} = X^2 - 3$$

Also sind die Erweiterungen K_i/K quadratisch, und damit normal. Außerdem sind sie separabel, folglich Galois'sch.

Wir haben bereits gesehen, daß die Körper K_1 und K_2 nicht isomorph sind. Daraus folgt, daß der Schnitt $K_1 \cap K_2$ jeweils ein echter Unterkörper ist rund $K_1 \cap K_2 = \mathbb{Q}$. Ebenso ist das Kompositum K_1K_2 jeweils ein echter Oberkörper, genauer $K_1K_2 = L$.

Die natürliche Abbildung

$$\psi: \operatorname{Gal}(K_1K_2/\mathbb{Q}) \to \operatorname{Gal}(K_1/\mathbb{Q}) \times \operatorname{Gal}(K_2/\mathbb{Q}), \sigma \mapsto (\sigma|_{K_1}, \sigma|_{K_2})$$

ist ein Isomorphismus. Also gengut es die Galoisgruppen von K_i/\mathbb{Q} zu betimmen. Es gilt $|\operatorname{Gal}(K_i/\mathbb{Q})| = [K_i : \mathbb{Q}] = 2$, und

$$\operatorname{Gal}(K_i/\mathbb{Q}) = \{\operatorname{id}, \sigma_i\}$$

wobei σ_i eindeutig bestimmt ist durch $\sigma_i(\alpha_i) = -\alpha_i$. Also ist $\operatorname{Gal}(K_i/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z}$. Und

$$\operatorname{Gal}(L/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$
.

Genauer ist $Gal(L/\mathbb{Q}) = \{id, \sigma_1, \sigma_2, \sigma_1\sigma_2\}$, wobei diese Elemente eindeutig bestimmt sind durch

$$id(\alpha_1) = \alpha_1 \qquad id(\alpha_2) = \alpha_2$$

$$\sigma_1(\alpha_1) = -\alpha_1 \qquad \sigma_1(\alpha_2) = \alpha_2$$

$$\sigma_2(\alpha_1) = \alpha_1 \qquad \sigma_2(\alpha_2) = -\alpha_2$$

$$\sigma_1\sigma_2(\alpha_1) = -\alpha_1 \qquad \sigma_1\sigma_2(\alpha_2) = -\alpha_2$$