

Show $\forall n \geq 0$ P(n) where $P(n) \equiv \sum_{i=1}^{n} C = \frac{n(n+1)}{2}$ by induction,

Base ease his n=0, show P(0), i.e. $\sum_{i=1}^{n} C = \frac{0(0+1)}{2}$ (onsider arbitrary $k \geq 0$ and show $P(k) \rightarrow P(k+1)$ using deduction method.

Abrum P(k), i.e. $\sum_{i=1}^{n} \frac{1}{2} \frac{1}{2}$

Prove $\forall n \geq 1 \text{ } n = \lambda^{N}$ $\forall n \geq 1 \text{ } P(n)$ | root |

Mere are 2ⁿ⁺¹ nodes in

a complete binary true

of Lepty n. Show by induction.

Plus are 2-1-1 role in a depth o thee, Ev lase as. Consider o.b. k=0 and supposed for induction them are 2 let 1 naber in a light k binary free. Then a light both binny tree hois - 2(26+1)+1 nodes, as besined 1