Blockwise polynomial approximation to permutation-equivalence tensor model Miaoyan Wang, Aug 23, 2021

1 Results

For notational convenience, we make the convention that blockwise constant tensor is of degree 1 (not 0 as in classical conventions). We use $z:[d] \to [k]$ to denote the canonical clustering function that partitions [d] into k equal-sized clusters; i.e.,

$$z \colon [d] \to [k]$$
$$i \mapsto z(i) = \lceil ki/d \rceil.$$

By construction, the inverse images $\{z^{-1}(j): j \in [k]\}$ is a collection of disjoint, equal-sized subsets satisfying $\bigcup_{j \in [k]} z^{-1}(j) = [d]$. We use \mathcal{E}_k to denote the *m*-way partition that collects k^m disjoint, equal-sized blocks in $[d]^m$; i.e.,

$$\mathcal{E}_k = \{ z^{-1}(j_1) \times \dots \times z^{-1}(j_m) \colon (j_1, \dots, j_m) \in [k]^m \}.$$

• blockwise degree-1 (constant) tensor:

$$\mathscr{B}(k,1) = \left\{ \mathcal{B} \in (\mathbb{R}^d)^{\otimes m} \colon \mathcal{B}(\omega) = \sum_{\Delta \in \mathcal{E}_k} c_{\Delta} \mathbb{1}\{\omega \in \Delta\} \right\}$$
$$\cong \mathbb{R}^{k^m},$$

where, for each block $\Delta \in \mathcal{E}_k$, the coefficients $c_{\Delta} \in \mathbb{R}$ represent the block means. Note that there are in total k^m free parameters in $\mathcal{B}(k,1)$, so the parameter space $\mathcal{B}(k,1)$ is isomorphic to the linear space \mathbb{R}^{k^m} .

• blockwise degree-2 linear tensor:

$$\mathscr{B}(k,2) = \left\{ \mathcal{B} \in (\mathbb{R}^d)^{\otimes m} \colon \mathcal{B}(\omega) = \sum_{\Delta \in \mathcal{E}_k} \left[c_{\Delta} + \langle \beta_{\Delta}, \omega \rangle \right] \mathbb{1}\{\omega \in \Delta\} \text{ for all indices } \omega \in [d]^m \right\}$$
$$\cong \mathbb{R}^{(1+m)k^m},$$

where, for each block $\Delta \in \mathcal{E}_k$, the coefficients $(c_{\Delta}, \beta_{\Delta}) \in \mathbb{R} \times \mathbb{R}^d$ represent the means and coordinate-wise slopes within blocks. Note that there are in total k^m blocks in \mathcal{E}_k , each of which is associated with R^{1+d} free coefficients. By the same argument as before, the parameter space $\mathcal{B}(k,2)$ is isomorphic to the linear space $\mathbb{R}^{(1+m)k^m}$.

• blockwise degree- $(\ell + 1)$ polynomial tensor:

$$\mathcal{B}(k,\ell+1) = \left\{ \mathcal{B} \in (\mathbb{R}^d)^{\otimes m} \colon \mathcal{B}(\omega) = \sum_{\Delta \in \mathcal{E}_k} \operatorname{Poly}_{\ell,\Delta}(\omega) \mathbb{1}\{\omega \in \Delta\} \text{ for all indices } \omega \in [d]^m \right\}$$
$$\subset \mathbb{R}^{(\ell+m)^\ell k^m},$$

where, for each block $\Delta \in \mathcal{E}_k$, the polynomial function $\operatorname{Poly}_{\ell,\Delta}(\cdot)$ has at most $(\ell+m)^{\ell}$ free coefficients. By the same argument as before, the parameter space $\mathcal{B}(k,\ell+1)$ is embedded in the linear space $\mathbb{R}^{(\ell+m)^{\ell}k^m}$.

Model. Suppose the data tensor \mathcal{Y} is generated from the model

$$\mathcal{Y} = \Theta \circ \pi + \mathcal{E}, \text{ where } \Theta(i_1, \dots, i_m) = f\left(\frac{i_1}{d}, \dots, \frac{i_m}{d}\right) \text{ for all } (i_1, \dots, i_d) \in [d]^m,$$
 (1)

where $\pi \colon [d] \to [d]$ is an unknown permutation, $f \colon \mathbb{R}^m \to \mathbb{R}$ is an unknown α -Hölder smooth function with $\alpha \in (0, \infty)$, and \mathcal{E} is a noise tensor with i.i.d. sub-Gaussian entries. We use $\mathcal{P}(\alpha)$ to denote the collection of signal tensors from model (1). The goal is to estimate signal $\Theta \in \mathcal{P}(\alpha)$ from data \mathcal{Y} .

The parameters (Θ, π) are not separately identifiable from model (1). However, the tensor $\Theta \circ \pi$ is always identifiable as a composite parameter. We impose the following marginal monotonicity assumption to ensure the separate identifiability.

Theorem 1 (Identifiability). Suppose $f \in \mathcal{M}(\beta)$ with $\beta \in (0, \infty)$. Then, the parameters (Θ, π) are separately identifiable from model (1).

Theorem 2. (Blockwise polynomial tensor approximation) Suppose the function $f: [0,1]^m \to \mathbb{R}$ generating the signal tensor Θ is α -Hölder smooth with $\alpha \in (0,\infty)$. Then, for every block size $k \leq d$ and degree $\ell \in \mathbb{N}_+$, we have the approximation error

$$\inf_{\mathcal{B} \in \mathscr{B}(k,\ell)} \frac{1}{d^m} \|\Theta - \mathcal{B}\|_F^2 \lesssim \frac{m^2}{k^{2\min(\alpha,\ell)}}.$$

We propose a least-square estimate based on the blockwise polynomial tensor approximation,

$$(\hat{\Theta}^{\mathrm{LSE}}, \hat{\pi}^{\mathrm{LSE}}) = \underset{\substack{\Theta \in \mathscr{B}(k,\ell) \\ \pi \colon [d] \to [d]}}{\arg \min} \|\mathcal{Y} - \Theta \circ \pi\|_F^2.$$

Although not reflected in the notation, the least-square estimate $\hat{\Theta}^{\text{LSE}}$ depends on the tuning parameters (k,ℓ) . We provide the optimal choice of (k,ℓ) in the following theorem. We focus on the asymptotic error rates as $d \to \infty$ while treating (m,α) as constants.

Theorem 3 (Least-square estimator). Let $(\hat{\Theta}^{LSE}, \hat{\pi}^{LSE})$ denote the least-square estimate with

degree $\ell^* = \min(\lceil \alpha \rceil, \frac{m(m-1)}{2})$ with block size $k^* = \lceil d^{\frac{m}{m+2\ell^*}} \rceil$. Then, $(\hat{\Theta}^{LSE}, \hat{\pi}^{LSE})$ obeys the error bound

$$\begin{split} \frac{1}{d^m} \| \hat{\Theta}^{\mathrm{LSE}} \circ \hat{\pi}^{\mathrm{LSE}} - \Theta \circ \pi \|_F^2 &\lesssim \inf_{(k,\ell) \in [d] \times \mathbb{N}_+} \left\{ \frac{m^2}{k^{2 \min(\alpha,\ell)}} + \frac{k^m (\ell+m)^\ell}{d^m} + \frac{\log d}{d^{m-1}} \right\} \\ & \lesssim \begin{cases} d^{-\frac{2m\alpha}{m+2\alpha}} & \text{when } \alpha < m(m-1)/2, \\ d^{-(m-1)} \log d & \text{when } \alpha \geq m(m-1)/2. \end{cases} \end{split}$$

Remark 1 (Comparison with block tensor approximation). For matrices (i.e., m=2), the optimal polynomial is obtained by block matrix approximation. For order-3 α -smooth tensors the optimal degree and block size are $(\ell^*, k^*) = (3, \lceil d^{1/3} \rceil)$ for all $\alpha \geq 3$. In other words, blockwise quadratic tensors suffice for estimating sufficiently smooth tensors. Further increment of polynomial degree ℓ is of no help for smooth signal estimation.

Theorem 4 (Polynomial-time estimator). Suppose that the signal tensor Θ is generated from model (1) with $f \in \mathcal{H}(\alpha) \cap \mathcal{M}(\beta)$. Let $\hat{\Theta}^{BC}$ be the estimator in with degree $\ell^* = \min(\lceil \alpha \rceil, \frac{m(m-1)}{2})$ and block size $k^* = \lceil d^{\frac{m}{m+2\ell^*}} \rceil$. Then the estimator $\hat{\Theta}^{BC}$ satisfies

$$\frac{1}{d^m} \|\hat{\Theta}^{\mathrm{BC}} \circ \hat{\pi}^{\mathrm{BC}} - \Theta \circ \pi\|_F^2 \lesssim d^{-\beta(m-1)} + \begin{cases} d^{-\frac{2m\alpha}{m+2\alpha}} & \text{when } \alpha < m(m-1)/2, \\ d^{-(m-1)} \log d & \text{when } \alpha \geq m(m-1)/2. \end{cases}$$

with very high probability.

Theorem 5 (Minimax lower bound). For any given $\alpha \in (0, \infty)$, the estimation problem based on model (1) obeys the minimax lower bound

$$\inf_{\substack{(\hat{\Theta}, \hat{\pi}) \\ \pi \colon [d] \to [d]}} \mathbb{P}\left(\|\Theta \circ \pi - \hat{\Theta} \circ \hat{\pi}\|_F^2 \ge d^{-\frac{2m\alpha}{m+2\alpha}} + d^{-(m-1)} \log d \right) > 0.8.$$

Remark 2. By comparing Theorems 3 and 5, we find that the constrained least-square estimator achieves the minimax optimal rate.

2 Proofs

Proof of Theorem 3. The proof is similar to theorem 2.1 on note 030721. By Theorem 2, there exists a blockwise polynomial tensor $\mathcal{B} \in \mathcal{B}(k,\ell)$ such that

$$\|\mathcal{B} - \Theta\|_F^2 \lesssim \frac{d^m m^2}{k^{2\min(\alpha,\ell)}}.$$
 (2)

By the triangle inequality,

$$\|\hat{\Theta}^{\text{LSE}} \circ \hat{\pi}^{\text{LSE}} - \Theta \circ \pi\|_F^2 \le 2\|\hat{\Theta}^{\text{LSE}} \circ \hat{\pi}^{\text{LSE}} - \mathcal{B} \circ \pi\|_F^2 + 2\underbrace{\|\mathcal{B} \circ \pi - \Theta \circ \pi\|_F^2}_{\text{Theorem 2}}.$$
 (3)

Therefore, it suffices to bound $\|\hat{\Theta}^{LSE} \circ \hat{\pi}^{LSE} - \mathcal{B} \circ \pi\|_F^2$. By the global optimality of least-square estimator, we have

$$\begin{split} \|\hat{\Theta}^{\text{LSE}} \circ \hat{\pi}^{\text{LSE}} - \mathcal{B} \circ \pi\|_{F} &\leq \left\langle \frac{\hat{\Theta}^{\text{LSE}} \circ \hat{\pi}^{\text{LSE}} - \mathcal{B} \circ \pi}{\|\hat{\Theta}^{\text{LSE}} \circ \hat{\pi}^{\text{LSE}} - \mathcal{B} \circ \pi\|_{F}}, \ \mathcal{E} + (\mathcal{B} \circ \pi - \Theta \circ \pi) \right\rangle \\ &\leq \sup_{\pi, \pi' : \ [d] \to [d]} \sup_{\mathcal{B}, \mathcal{B}' \in \mathscr{B}(k, \ell)} \left\langle \frac{\mathcal{B}' \circ \pi' - \mathcal{B} \circ \pi}{\|\mathcal{B}' \circ \pi' - \mathcal{B} \circ \pi\|_{F}}, \mathcal{E} \right\rangle + \underbrace{\|\mathcal{B} \circ \pi - \Theta \circ \pi\|_{F}}_{\text{Theorem 2}}. \end{split}$$

Now, for fixed π, π' , the space embedding $\mathscr{B}(k, \ell) \subset \mathbb{R}^{(\ell+m)^{\ell}k^m}$ implies the space embedding $\{(\mathcal{B}' \circ \pi' - \mathcal{B} \circ \pi) \colon \mathcal{B}, \mathcal{B}' \in \mathscr{B}(k, \ell)\} \subset \mathbb{R}^{2(\ell+m)^{\ell}k^m}$. Therefore, with very high probability,

$$\sup_{\mathcal{B},\mathcal{B}'\in\mathscr{B}(k,\ell)}\left\langle \frac{\mathcal{B}'\circ\pi'-\mathcal{B}\circ\pi}{\|\mathcal{B}'\circ\pi'-\mathcal{B}\circ\pi\|_F},\mathcal{E}\right\rangle\lesssim \sup_{\boldsymbol{x}\in\mathbb{R}^{2(\ell+m)\ell_k m}}\left\langle \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|_2},\ e\right\rangle\lesssim \sqrt{(\ell+m)^{\ell_k m}},$$

where e is a vector of consistent length that consists of i.i.d. sub-Gaussian entries. By the union bound of Gaussian maxima over countable set $\{\pi, \pi' : [d] \to [d]\}$, we obtain

$$\mathbb{E}\|\hat{\Theta}^{LSE} \circ \hat{\pi}^{LSE} - \mathcal{B} \circ \pi\|_F^2 \lesssim (\ell + m)^{\ell} k^m + d \log d. \tag{4}$$

Combining the inequalities (2), (3) and (4) yields the desired conclusion

$$\mathbb{E}\|\hat{\Theta}^{\mathrm{LSE}} \circ \hat{\pi}^{\mathrm{LSE}} - \Theta \circ \pi\|_F^2 \lesssim \frac{d^m m^2}{k^{2 \min(\alpha, \ell)}} + (\ell + m)^{\ell} k^m + d \log d.$$

Proof of Theorem 5. By the definition of the tensor space, we seek the minimax rate ε^2 in the following expression

$$\inf_{(\hat{\Theta}, \hat{\pi})} \sup_{\Theta \in \mathcal{P}(\alpha)} \sup_{\pi \colon [d] \to [d]} \mathbb{P} \left(\|\Theta \circ \pi - \hat{\Theta} \circ \hat{\pi}\|_F^2 \ge \varepsilon^2 \right).$$

On one hand, if we fix permutation $\pi \colon [d] \to [d]$, the problem can be viewed as a classical m-dimensional α -smooth nonparametric regression with d^m sample points. The minimax lower bound is known to be $\varepsilon^2 = d^{-\frac{2m\alpha}{m+2\alpha}}$. On the other hand, if we fix $\Theta \in \mathcal{P}(\alpha)$, the problem become a new type of convergence rate due to the unknown permutation. We refer it to the permutation rate, and will prove that $\varepsilon^2 = d^{-(m-1)} \log d$. Since our target is the sum of the two rate, it suffice to prove the two different rates separately. In the following arguments, we will proceed by this strategy.

4

Nonparametric rate. The nonparametric rate for α -smooth function is readily available in the literature; see Wasserman [2019, Example 16] and Stone [1982, Section 2]. We state the results here for self-completeness.

Lemma 6 (Minimax rate for α -smooth function estimation). Consider data $(\boldsymbol{x}_1, Y_1), \ldots, (\boldsymbol{x}_N, Y_N)$, where $\boldsymbol{x}_n = (\frac{i_1}{d}, \ldots, \frac{i_m}{d}) \in [0, 1]^d$ is the m-dimensional predictor and $Y_n \in \mathbb{R}$ is the scalar response. Consider the observation model

$$Y_n = f(\boldsymbol{x}_n) + \varepsilon_n$$
, with $\varepsilon_n \sim \text{i.i.d. } N(0,1)$, for all $n \in [N]$.

Assume f is in the α -Holder smooth function class, denoted by $\mathcal{F}(\alpha)$. Then,

$$\inf_{\hat{f}} \sup_{f \in \mathcal{F}(\alpha)} \|f - \hat{f}\|_2 \ge N^{-\frac{2\alpha}{m+2\alpha}}.$$

Our conclusion readily follows from Lemma 6 by taking sample size $N=d^m$ and function norm $||f-\hat{f}||_2=\frac{1}{d^m}||\Theta-\hat{\Theta}||_F^2$.

Permutation rate. The permutation rate is obtained by the following two steps. We first show that estimating the unknown permutation for a α -smooth ($\alpha \ge 1$) function is at least as difficult as that for a block tensor ($\alpha = 0$). Then, we prove the permutation rate for the tensor block problem is lower bounded by $d \log d$. For $\alpha \in (0,1)$, the permutation rate is dominated by the nonparametric rate, therefore, we

References

Larry Wasserman. Minimax theory. Lecture notes, 2019.

Charles J Stone. Optimal global rates of convergence for nonparametric regression. *The annals of statistics*, pages 1040–1053, 1982.