FINAL REMARKS I

1 Final remarks I

Definition 1 (Sylvester matrix). Let $f(x) = a_0 + a_1x + \cdots + a_mx^m$ and $g(x) = b_0 + b_1x + \cdots + b_nx^n$ be two polynomials in $\mathbb{K}[x]$. The *Sylvester matrix* of f and g, denoted S(f,g), is the $(m+n) \times (m+n)$ matrix whose first n rows are the coefficients of f shifted right, and whose last m rows are the coefficients of g shifted right. Concretely,

$$S(f,g) = \begin{pmatrix} a_m & a_{m-1} & \cdots & a_0 & 0 & \cdots & 0 \\ 0 & a_m & a_{m-1} & \cdots & a_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & a_m & a_{m-1} & \cdots & a_0 \\ b_n & b_{n-1} & \cdots & b_0 & 0 & \cdots & 0 \\ 0 & b_n & b_{n-1} & \cdots & b_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & b_n & b_{n-1} & \cdots & b_0 \end{pmatrix}.$$

Definition 2 (Resultant). The *resultant* of f and g is

$$R(f,g) = \det(S(f,g)).$$

Equivalently, if $\alpha_1, \ldots, \alpha_m$ are the roots of f in an algebraic closure of K, then

$$R(f,g) = a_m^n \prod_{i=1}^m g(\alpha_i).$$

Theorem 1.1. Let α_i be roots of f and β_j be roots of g. Then

$$R(f,g) = a_0^m b_0^n \prod_i (\alpha_i - \beta_j)$$
$$= a_0^m \prod_i g(\alpha_i) = b_0^n \prod_i f(\beta_i)$$

Corollary 1. 1. $R(f,g) = (-1)^{\deg f \cdot \deg g} R(g,f)$

- 2. If $f = gq + r \implies R(f,g) = b_0^{\deg f \deg R} R(r,g)$
- 3. R(f, gh) = R(f, g)R(f, h)

Corollary 2. Let $f(t) = a_0 t^n + \dots + a_n$, $a_0 \neq 0$. Then $R(f, f') = (-1)^{\frac{n(n-1)}{2}} \prod_{i < j} (\alpha_i - \alpha_j)^2$