	Solution	Marks	Remarks
•	$\int \cos^2 \theta d\theta$		
	$= \int_{2}^{1} (1 - \cos 2\theta) \mathrm{d}\theta$	lΑ	
	$= \frac{1}{2}\theta + \frac{1}{4}\sin 2\theta + c \qquad (c \text{ is a constant})$	lM+lA	$1M \text{ for } \int \cos k\theta d\theta = \frac{1}{k} \sin k\theta$
		3	withhold 1A if c was omitted
	$\frac{(x + \Delta x)^3 - x^3}{\Delta x} = \frac{x^3 + 3x^2 (\Delta x) + 3x(\Delta x)^2 + (\Delta x)^3 - x^3}{\Delta x}$	1A	For expanding $(x + \Delta x)^3$
	$\Delta x \qquad \Delta x$ $= 3x^2 + 3x(\Delta x) + (\Delta x)^2$	1A	
	$\frac{\left[\left(x+\Delta x\right)^{3}-x^{3}\right]}{\Delta x}=\frac{\left[\left(x+\Delta x\right)-x\right]\left[\left(x+\Delta x\right)^{2}+\left(x+\Delta x\right)x+x^{2}\right)\right]}{\Delta x}$	1A	
	$= (x + \Delta x)^2 + (x + \Delta x)x + x^2$	1A	
	$\frac{\mathrm{d}}{\mathrm{d}x}x^3 = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^3 - x^3}{\Delta x}$	1 A	
	$= \lim_{\Delta x \to 0} \left[3x^2 + 3x(\Delta x) + (\Delta x)^2 \right]$		no mark if $\lim_{\Delta x \to 0}$ was omitted
	$=3x^2$	1A 4	

Solution	Marks	Remarks
$\begin{cases} \alpha + \beta = 5 \\ \alpha \beta = k \end{cases}$	1M	
$ \alpha - \beta = 3$		
$(\alpha + \beta)^2 = 3^2$	1M	
$\alpha^2 - 2\alpha\beta + \beta^2 = 9$		
$(\alpha + \beta)^2 - 4\alpha\beta = 9$	1M	
$5^2 - 4k = 9$		
k = 4	1A	
Alternative Solution (1)		
$5 \pm \sqrt{25 - 4k}$	į	
$x = \frac{5 \pm \sqrt{25 - 4k}}{2}$	1M	
$ \alpha - \beta = 3$		
$\left \frac{5 + \sqrt{25 - 4k}}{2} - \frac{5 - \sqrt{25 - 4k}}{2} \right = 3$	1M	Accept without absolute sign
$\left \sqrt{25 - 4k} \right = 3$		
$\begin{vmatrix} \sqrt{25-4k} & -3 \\ 25-4k & = 3^2 \end{vmatrix}$	1M	
$\begin{vmatrix} 25 - 4k = 3 \\ k = 4 \end{vmatrix}$	1A	
Alternative Solution (2)		1
$\int \alpha + \beta = 5$		
$\int \alpha \beta = k$	1M	
$ \alpha - \beta = 3$		
$\alpha - \beta = 3$ or $\alpha - \beta = -3$	1M	
$\begin{vmatrix} \alpha - \beta = 3 \\ \alpha - \beta = 3 \end{vmatrix} \text{ or } \alpha - \beta = -3 $ $\begin{vmatrix} \alpha + \beta = 5 \\ \alpha - \beta = 3 \end{vmatrix} \qquad \qquad \begin{vmatrix} OR & \alpha + \beta = 5 \\ \alpha - \beta = -3 \\ \alpha = 4 \text{ and } \beta = 1 \end{vmatrix}$ $\alpha = 4 \text{ and } \beta = 1$ $\alpha = 1 \text{ and } \beta = 4$	1M	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\alpha = 4$ and $\beta = 1$		
$\begin{vmatrix} k = \alpha \beta \\ = 4 \end{vmatrix}$	1A	
		+
	4	

只限教師參閱 FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
$3x^2 + 3y^2 - 2xy = 12$		
$6x + 6y \frac{dy}{dx} - 2y - 2x \frac{dy}{dx} = 0$	1A+1A+1A	1A for $\frac{d}{dx}(3x^2 + 3y^2)$,
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y - 3x}{3y - x}$		1A for $\frac{d}{dx}(3x^2 + 3y^2)$, 1A for $\frac{d}{dx}(2xy)$, 1A for $\frac{d}{dx}(12)$
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1A for $\frac{d}{dx}$ (12)
Put $x = 2$, $y = 0$:		
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-6}{-2}$		
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3$	1A	
	4	

Solution	Marks	Remarks
$ x^2> x $		
$ x ^2 > x $	1M	
x (x -1)>0	1A	
$x \neq 0$ and $ x -1>0$	1A	x >1 or $ x <0$
	17.1	
x >1		
x > 1 or $x < -1$	1A	
Alternative Solution (1)		
$ x < x^2$ $ -x^2 < x < x^2 $	lM	
·	1A+1A	
$x^2 + x > 0 \qquad \text{and} \qquad x^2 - x > 0$	IATIA	
$x(x+1) > 0 \qquad \text{and} \qquad x(x-1) > 0$		
x > 0 or $x < -1$ and $x > 1$ or $x < 0$	1 ,	
Combining the two cases, $x > 1$ or $x < -1$.	1A	<u> </u>
Alternative Solution (2) Consider the two cases: (1) $x > 0$, (2) $x < 0$. Case 1 $(x > 0)$: The inequality becomes	1M	Accept including $x = 0$.
$x^2 > x$	1A	
x(x-1) > 0		
Since $x > 0$, so $x > 1$.		
Case 2 $(x < 0)$: The inequality becomes	1A	
$x^2 > -x$	IA	
x(x+1) > 0 Since $x < 0$, so $x < -1$.		
Combining the two cases, $x > 1$ or $x < -1$.	1A	
Alternative Solution (3)		
$ x^2> x $		
$x^4 > x^2$	1M	
$x^2(x^2-1)>0$	1A	
$\begin{cases} x \neq 0 \text{ and } x^2 - 1 > 0 \end{cases}$	1A	$ x^2>1 \text{ or } x^2<0$
$\frac{x^2 > 1}{x^2}$		
x > 1 x > 1 or $x < -1$	1A	
Alternative Solution (4)		+
 	lM+lA	1M for sketching the two graphs
$y = x^2$ $y = x $	1A	For intersecting at $x = 1$ and $x = 1$
		To morseeing at x 1 and x
-1 0 ·1		
From the above graph, $x^2 > x $ when $x > 1$ or $x < -1$.	1A	
	4	-
	1	-

Solution	Marks	Remarks
A C		
P		
\vec{a}		
\nearrow B		
\overline{b}		
$\rightarrow \bar{a} + 3\bar{b}$		·
(a) $\overrightarrow{OP} = \frac{\overrightarrow{a} + 3\overrightarrow{b}}{4}$	1A	
(b) $\overrightarrow{OC} = \frac{4}{3} \overrightarrow{OP}$		
$=\frac{4}{3}(\frac{\bar{a}+3\bar{b}}{4})$	1M	
$=\frac{1}{3}\vec{a}+\vec{b}$	1A	
$\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB}$		
$=\frac{1}{3}\vec{a}+\vec{b}-\vec{b}$	1M	
$=\frac{1}{3}.\overline{a}$		
$\frac{-\frac{1}{3}u}{3}$		
$=\frac{1}{3}\overline{OA}$		
3 011		
*		
\therefore OA is parallel to BC.	1	Omitting vector sign in most cases (pp-1)
	5	
1		
For $n=1$, LHS = $\frac{1}{2}$		
RHS = $2 - \frac{1+2}{2^1} = \frac{1}{2} = LHS$		
2 -		
$\therefore \text{ the statement is true for } n = 1.$	1	
Assume $\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{k}{2^k} = 2 - \frac{k+2}{2^k}$,	1	
where k is a positive integer.		
$\frac{1}{2} - \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{k}{2^k} + \frac{k+1}{2^{k+1}}$		
$=2-\frac{k+2}{2^k}+\frac{k+1}{2^{k+1}}$	1	
2^{k} 2^{k+1}	ļ. *	
$=2-\frac{2(k+2)-(k+1)}{2^{k+1}}$		
<u> -</u>		
$=2-\frac{(k+1)+2}{2^{k+1}}$	1	
The statement is also true for $n = k + 1$ if it is true for		
n = k. By the principle of mathematical induction,		
the statement is true for all positive integers n .	5	Not awarded if any one of the above marks was withheld
		400VE HIMIKS WAS WILLIAM

	Solution	Marks	Remarks
(a)	The equation of the family of straight line is $2x-3y+4+\lambda(x+y-3)=0$, where λ is a constant, and $x-y-3=0$	1A	<u>OR</u> $(x+y-3) + \lambda'(2x-3y+4) = 0.$
٠	OR $h(2x-3y+4)+k(x-y-3)=0$, where h, k are constants	1A	
	Alternative Solution		
	$\begin{cases} 2x - 3y + 4 = 0 \\ x + y - 3 = 0 \end{cases}$		
	Solve the equations, $x = 1$ and $y = 2$. The point of intersection of L_1 and L_2 is $(1, 2)$. The equation of the family of straight line is		
	y-2=m(x-1)	1A	
(b)	$2x - 3y + 4 + \lambda(x + y - 3) = 0$ (2 + \lambda)x + (\lambda - 3)y + (4 - 3\lambda) = 0		
	$\frac{ 4-3\lambda }{\sqrt{(2+\lambda)^2+(\lambda-3)^2}}=1$	1M+1M	1M for distance formula, 1M for substituting (0, 0) & distance Accept omitting absolute sign
	$(4-3\lambda)^2 = (2+\lambda)^2 + (\lambda-3)^2$		
	$7\lambda^2 - 22\lambda - 3 = 0$		
	$\lambda = 3$ or $\frac{1}{7}$		
	Put $\lambda = 3$ and $\frac{1}{7}$ into (1), the equation of the two		
	lines are $x-1=0$ and $3x-4y+5=0$.	1A-1A	
	Alternative Solution		
	$ mx - y + (2 - m) = 0$ $\frac{ 2 - m }{\sqrt{ m }} = 1$		
	1./2 (1	1M+1M	Same as above
,			
	\therefore the equation of the line is $y-2=\frac{3}{4}(x-1)$		
	i.e. $3x-4y+5=0$. Another line which is of distance 1 from the origin is	1A	
	x-1=0.	1A	
		5	-

Solution	Marks	Remarks
$C: y = x^2$ $(2, 4)$		
$ \begin{array}{c c} \hline & (1,0) \\ \hline \end{array} $		
$Area = \int_0^4 (x_2 - x_1) dy$		
$= \int_0^4 \left(\frac{y+4}{4} - y^{\frac{1}{2}} \right) \mathrm{d}y$	1M+1A+1A	1M for $A = \int_{a}^{b} x dy$, 1A for integrand, 1A for limit
$= \left[\frac{y^2}{8} + y - \frac{2}{3}y^{\frac{3}{2}}\right]_0^4$	1M	For evaluating $\int \frac{y+4}{4} dy & \int y^{\frac{1}{2}} dy$
$=\frac{4^{2}}{8}+4-\frac{2}{3}\left(4^{\frac{3}{2}}\right)-0$		
$=\frac{2}{3}$	1A	
Area = $\int_{0}^{2} y_{2} dx - \int_{1}^{2} y_{1} dx$		
$= \int_0^2 x^2 dx - \int_1^2 (4x - 4) dx$	1M+1A+1A	J_a
$\frac{OR}{} = \int_0^2 x^2 dx - \frac{1}{2}(4)(2-1)$		1A for any correct expression
$= \left[\frac{x^3}{3}\right]_0^2 - \left[2x^2 - 4x\right]_1^2$	1M	For evaluating all primitive function
$=\frac{8}{3}-2$ $=\frac{2}{3}$	1A	
3	5	

		Solution	Marks	Remarks
10.	(a)	$\frac{\sin \alpha + \sin \beta}{\cos \alpha + \cos \beta} = \frac{2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}}{2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}}$	1A	
	•	$=\tan\frac{\alpha+\beta}{2}$	1	
	(b)	$3 \sin \alpha - 4 \cos \alpha = 4 \cos \beta - 3 \sin \beta$ $3 \sin \alpha + 3 \sin \beta = 4 \cos \alpha + 4 \cos \beta$ $\frac{\sin \alpha + \sin \beta}{\cos \alpha + \cos \beta} = \frac{4}{3}$ Using (a), $\tan \left(\frac{\alpha + \beta}{2}\right) = \frac{4}{3}$ $\tan \left(\alpha + \beta\right) = \frac{2 \tan \left(\frac{\alpha + \beta}{2}\right)}{1 - \tan^2 \left(\frac{\alpha + \beta}{2}\right)}$	1M	
		$=\frac{2\left(\frac{4}{3}\right)}{1-\left(\frac{4}{3}\right)^2}$	1M	
		$=-\frac{24}{7}$	<u>1A</u>	
		,	5	<u></u>

Solution	Marks	Remarks
1. $\left(\frac{1+3i}{1-2i}\right)^{20}$		
$\frac{1+3i}{1-2i} = \frac{1+3i}{1-2i} \left(\frac{1+2i}{1+2i} \right)$	1M.	
$=\frac{1+2i+3i-6}{1+4}$		
=-1+i	1A	
$=\sqrt{2}\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right)$	1M	For expressing in polar form
$\left(\frac{1+3i}{1-2i}\right)^{20} = \left[\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)\right]^{20}$		
$= (\sqrt{2})^{20} \left[\cos \left(\frac{3\pi}{4} \times 20 \right) + i \sin \left(\frac{3\pi}{4} \times 20 \right) \right]$	1M	To the state of th
$= (\sqrt{2})^{20} (\cos \pi + i \sin \pi)$		
$= (\sqrt{2})^{20} (-1)$		
$= -2^{10} \qquad (= -1024)$	1A	Accept $2^{10}(\cos \pi + i \sin \pi)$
Alternative Solution		
$\frac{1+3i}{1-2i} = \cdots = -1+i$	1M+1A	same as above
$(-1+i)^2 = (-1)^2 - 2i + i^2$	1M	
=-2i $1+3i$		
$\left(\frac{1+3i}{1-2i}\right)^{20} = (-2i)^{10}$		
$= (-2)^{10} (-1)^5$	1M	
$=-2^{10}$	1A	
	5	•

		Solution	Marks	Remarks
($(2x^2)$	$+\frac{1}{x}$) 9		
C	Gener	ral term = ${}_{9}C_{r}(2x^{2})^{9-r}(\frac{1}{r})^{r}$	1A	$_{9}C_{r}(2x^{2})^{r}(\frac{1}{x})^{9-r}$
	ı	$= {}_{9}C_{r}(2^{9-r})(x^{18-3r})$	1M	$_{9}C_{r}(2^{r})(x^{3r-9})$
(;	a)	Put $18-3r = 0$: $r = 6$	1 M	
		$\therefore \text{ constant term } = {}_{9}C_{6}(2^{9-6})$ $= 84(8) = 6.72$	1 A	
(1	b)	Put $18 - 3r = 2$:		
		$r = \frac{16}{3}$ which is not an integer.		
		\therefore there is no x^2 term.	1A+1M	
		Alternative Solution (1)		
		$\left(2x^2 + \frac{1}{x}\right)^9$		
		$= (2x^{2})^{9} + {}_{9}C_{1}(2x^{2})^{8}(\frac{1}{x}) + {}_{9}C_{2}(2x^{2})^{7}(\frac{1}{x})^{2}$		
		$+_{9}C_{3}(2x^{2})^{6}(\frac{1}{x})^{3}+_{9}C_{4}(2x^{2})^{5}(\frac{1}{x})^{4}+_{9}C_{5}(2x^{2})^{4}(\frac{1}{x})^{5}$		
		$ + {}_{9}C_{6}(2x^{2})^{3}(\frac{1}{x})^{6} + {}_{9}C_{7}(2x^{2})^{2}(\frac{1}{x})^{7} + {}_{9}C_{8}(2x^{2})^{1}(\frac{1}{x})^{8} $) 1M+1A	
		$+\left(\frac{1}{r}\right)^{9}$		
		$= 2^{9}x^{18} + 9(2^{8})x^{15} + 36(2^{7})x^{12} + 84(2^{6})x^{9}$		
		$+126(2^5)x^6 + 126(2^4)x^3 + 84(2^3) + 36(2^2)x^{-3}$		
		$+9(2)x^{-6} + x^{-9}$ $= 512x^{16} + 2304x^{15} + 4608x^{12} + 5376x^{9}$		
		$+4032x^{6} + 2016x^{3} + 672 + 144x^{-3} + 18x^{-6} + x^{-9}$		
		Constant term $= {}_{9}C_{6}(2^{3})$	1M	
		$= 84(8) = 672$ The above expansion indicates that there is no x^2 term.	1A 1A+1M	
		Alternative Solution (2)	111 1111	
		$\left (2x^2 + \frac{1}{x})^9 \right = \frac{(2x^3 + 1)^9}{x^9}$	1M	
		Constant term = $\frac{{}_{9}C_{3}(2x^{3})^{3}}{x^{9}}$	1M+1A	
		$= {}_{9}C_{3}(2^{3})$ $= 84(8) = 672$	1A	
		The numerator does not contain an x^{11} term, so there is no x^2 term.	} 1A+IM	
			6	

Solution	Marks	Remarks
$f(x) = 2\sin x - x$		
$f'(x) = 2\cos x - 1$		
$f'(x) = 0 2\cos x - 1 = 0$	1M	
$\cos x = \frac{1}{2}$		
$\cos x - \frac{1}{2}$		
$x = \frac{\pi}{3}$	1A	Withhold this mark for $x = 60^{\circ}$
$f''(x) = -2\sin x$		
$f''(\frac{\pi}{3}) = -\sqrt{3} < 0$	1	
$\left(\frac{-1}{3}\right) = -\sqrt{3}$	1M+1A	
\therefore f(x) attains a maximum at $x = \frac{\pi}{3}$.])	
3		
Alternative Solution for checking $f'(x) = 2\cos x - 1$		
$x \qquad 0 \le x < \frac{\pi}{3} \qquad \frac{\pi}{3} \qquad \frac{\pi}{3} < x \le \pi $		
· · · · · · · · · · · · · · · · · · ·	134.11	
f'(x) = 0 + ve) 1M+1A	
Since f'(x) changes from +ve to -ve at $x = \frac{\pi}{3}$,	IJ	
$f(x)$ attains a maximum at $x = \frac{\pi}{3}$.		
$f(\frac{\pi}{3}) = 2\sin\frac{\pi}{3} - \frac{\pi}{3}$		· ·
$=\sqrt{3}-\frac{\pi}{3}$		
Since $f(x)$ is continuous and has only one turning point,		
Since $\Gamma(x)$ is continuous and has only one turning point,		
the greatest value of $f(x)$ is $\sqrt{3} - \frac{\pi}{2}$.	1A	Not awarded if checking was incomple
The least value of $f(x)$ occurs at one of the end-points.	1M	(can be omitted)
f(0) = 0	1111	(our oc dimend)
$f(\pi) = -\pi$	1.4	
\therefore the least value of $f(x)$ is $-\pi$.	1 <u>A</u>	

Solution	Marks	Remarks
14.		
B		
C		
O A	,	
(a) $\vec{a} \cdot \vec{b} = \vec{a} \vec{b} \cos \angle AOB$		
$= 3(1)\cos 120^{\circ}$	1M	
$=-\frac{3}{2}$	_1A	
2	_2	
$\rightarrow 2\bar{a} + 3\bar{b} 2 3 \rightarrow$		
(b) $\overline{OC} = \frac{2\overline{a} + 3\overline{b}}{2 + 3} = \frac{2}{5}\overline{a} + \frac{3}{5}\overline{b}$		
$\overrightarrow{OD} = k\overrightarrow{OC}$		
$=\frac{2k}{5}\bar{a}+\frac{3k}{5}\bar{b}$		
$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA}$		
$=\frac{2k}{5}\bar{a}+\frac{3k}{5}\bar{b}-\bar{a}$	1M	
$=(\frac{2k}{5}-1)\;\bar{a}+\frac{3k}{5}\;\bar{b}$	1	
$\overrightarrow{AD} \cdot \overrightarrow{AB} = 0$		
$\left[\left(\frac{2k}{5}-1\right)\bar{a}+\frac{3k}{5}\bar{b}\right]\cdot\left(\bar{b}-\bar{a}\right)=0$	1M	
$(\frac{2k}{5} - 1) \ \vec{a} \cdot \vec{b} - (\frac{2k}{5} - 1) \ \vec{a} \cdot \vec{a} + \frac{3k}{5} \ \vec{b} \cdot \vec{b} - \frac{3k}{5} \ \vec{b} \cdot \vec{a} = 0$	1M	For distributive law
$\left(\frac{2k}{5} - 1\right)\left(-\frac{3}{2}\right) - \left(\frac{2k}{5} - 1\right)\left(3\right)^{2} + \frac{3k}{5}\left(1\right)^{2} - \frac{3k}{5}\left(-\frac{3}{2}\right) = 0$	1M	For $\vec{a} \cdot \vec{a} = 9$ or $\vec{b} \cdot \vec{b} = 1$
$\frac{105}{2} - \frac{27}{2}k = 0$		
$k = \frac{35}{9}$	_1A	
9	6	
(c) $\overrightarrow{OC} \cdot \overrightarrow{OB} = (\frac{2}{5} \vec{a} + \frac{3}{5} \vec{b}) \cdot \vec{b}$	1M .	
$=\frac{2}{5}\vec{a}\cdot\vec{b}+\frac{3}{5}\vec{b}\cdot\vec{b}$		
$= \frac{2}{5} \left(-\frac{3}{2}\right) + \frac{3}{5} \left(1\right)^2 = 0$		
$\therefore \angle BOC = \frac{\pi}{2} \qquad (\underline{OR} \ \overline{OC} \perp \overline{OB})$	1A	
$\angle BOC = \angle DAC = \frac{\pi}{2}$		
$\angle BCO = \angle DCA \qquad \text{(vertically opposite } \angle s\text{)}$ $\angle OBC = \angle ADC \qquad (\angle \text{ sum of } \Delta)$	1A	
$\therefore \triangle OCB \sim \triangle ACD \ (AAA)$	1	Omitting vector sign or dot product sign in most cases (pp-1)
2003-CE-A MATH-14		}

Solution	Marks	Remarks
Alternative solution (1)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$AB^2 = 3^2 + 1^2 - 2(3)$ (1) cos 120° $AB = \sqrt{13}$		
$\cos \angle OAB = \frac{3^2 + (\sqrt{13})^2 - 1^2}{2(3)(\sqrt{13})} = \frac{7}{2\sqrt{13}}$		
$AC = \frac{3}{5}(AB) = \frac{3\sqrt{13}}{5}$	1M	
$OC^{2} = 3^{2} - (\frac{3\sqrt{13}}{5})^{2} - 2(3)(\frac{3\sqrt{13}}{5})(\frac{7}{2\sqrt{13}}) = \frac{27}{25}$ $OB^{2} + OC^{2} = 1^{2} + \frac{27}{25}$		
$= \frac{52}{25} = (\frac{2\sqrt{13}}{5})^2 = BC^2$		
$\therefore OB \perp OC (OR \angle BOC = \frac{\pi}{2})$:	1A 1A+1	(same as above)
: . Alternative solution (2)		
B $\frac{2\sqrt{13}}{5}$ $D \frac{26\sqrt{3}}{15}$ $O \frac{3\sqrt{3}}{5}$ $A \frac{3\sqrt{13}}{5}$		
$BC = \frac{2\sqrt{13}}{5}, AC = \frac{3\sqrt{13}}{5}$ $OC = \frac{3\sqrt{3}}{5}$		
$CD = (\frac{35}{9} - 1) OC = \frac{26\sqrt{3}}{15}$		
$\frac{OC}{BC} = \frac{3\sqrt{3}}{5} / \frac{2\sqrt{13}}{5} = \frac{3\sqrt{3}}{2\sqrt{13}}$ $AC = 3\sqrt{13} / 26\sqrt{3} = 3\sqrt{3} = OC$	1M+1A	
$\frac{AC}{CD} = \frac{3\sqrt{13}}{5} / \frac{26\sqrt{3}}{15} = \frac{3\sqrt{3}}{2\sqrt{13}} = \frac{OC}{BC}$ $\angle BCO = \angle DCA \text{(vertically opposite } \angle \text{s)}$ $\triangle OCB \sim \triangle ACD \text{(ratio of 2 sides, incl. } \angle \text{)}$	1A 1	
	4	

Solution	Marks	Remarks
(a) (i) $x^2 = 4y$		
$2x = 4\frac{\mathrm{d}y}{\mathrm{d}x}$		
dγ		
At S, $\frac{\mathrm{d}y}{\mathrm{d}x} = s$		
Equation of L_1) 1M	
$\frac{y-s^2}{x-2s}=s$		
x-2s		
$sx - y = s^2$	1A	
Alemania aluia (1)		•
Alternative solution (1) Using the formula $xx_1 = 2(y + y_1)$, equation of L_1 i	S	
$x(2s) = 2(y + s^2)$	1A	
$sx - y = s^2$	1A	
Alternative solution (2)		+
Let the equation of L_1 be $y-s^2 = m(x-2s)$		
	h	
$\begin{cases} x^2 = 4y \\ y - s^2 = m(x - 2s) \end{cases}$		
$x^2 - 4mx + (8ms - 4s^2) = 0$	IM	
$\Delta = 16m^2 - 4(8ms - 4s^2) = 0$		
$\Delta = 10m - 4(8ms - 4s) = 0$ $m = s$		
\therefore the equation of L_1 is $y = sx - s^2$.	IA	
(ii) Equation of L_2 is $tx - y = t^2$.	1M	For replacing s by t
•		$y \wedge x^2 =$
$ \begin{cases} sx - y = s^2 (1) \\ tx - y = t^2 (2) \end{cases} $		
•	124	
(1) - (2): $(s-t) x = s^2 - t^2$ x = s + t	1M	
Substitute $x = s + t$ into (1):		$T(2t, t^2)$ $S(2s, s^2)$
$s(s+t)-y=s^2$	1M	$T(2t, t^2)$
y = st	· ·	
Since the two tangents meet at the point $P(\alpha, \beta)$,		
$\int s + t = \alpha$	1	
$\int st = \beta$		
Alternative solution	-	
Equation of L_2 is $tx - y = t^2$.	1M	
Since $P(\alpha, \beta)$ lies on both tangents,		
s, t are the roots of the equation $z\alpha - \beta - z^2 = 0$	2M	
in z.		
$z^2 - \alpha z + \beta = 0$		
$\int s + t = \alpha$	1	
$st = \beta$	1	
	1	

	Solution	Marks	Remarks
	(iii) Slope of $L_1 = s$		
	Slope of $L_2 = t$		
	If the line makes equal angles with L_1 and L_2 .		m m.
	$\frac{s-1}{1+s} = \frac{1-t}{1+t} \qquad \boxed{\underline{OR} \left \frac{1-s}{1+s} \right = \left \frac{1-t}{1+t} \right }$	1M+1M	1M for $\tan \theta = \frac{m_2 - m_1}{1 + m_2 m_1}$,
	(s-1)(1+t) = (1+s)(1-t)		1M for substitution
	st = 1	1	TIVE TO DESCRIPTION
	51 - 1	9	
(p)	Let the coordinates of R be (α, β) and the two points		
	of tangency be $(2s, s^2)$ and $(2t, t^2)$.		
	From (a) (ii), $\begin{cases} s+t=\alpha \\ st=\beta \end{cases}$.		
	$\int st = \beta$		
	From (a) (iii), $st = 1$.		
	$\beta = st = 1$	1A	
	Since R lies on the line $x - y + 4 = 0$,		
	$\alpha - 1 + 4 = 0$ $\alpha = -3$	1M	
	$\alpha = -3$ $\therefore \text{ the coordinates of } R \text{ are } (-3, 1).$	1A	
		_3	
)
	•		
		Ì	

		Solution	Marks	Remarks
6.	(a)	Imaginary		
		$ \begin{array}{c} B(z_2) \\ \nearrow \end{array} $ $ C(z_3)$	1A	Position of A and B
			1M	Position of C
			1A .	Quadrilateral OABC (a #-gram with OA = OB)
		$O \xrightarrow{1} A(z_1) \longrightarrow \text{Real}$	1A 4	Label θ Not labelling the axes (pp-1)
	(b)	(i) $z_4 = z_2 - z_1$		
		$=(\cos\theta-1)+i\sin\theta$		
		$z_3 = z_1 + z_2$	\rightarrow 1A	
		$= (1 + \cos \theta) + i \sin \theta$		
		$\frac{z_4}{z_3} = \frac{(\cos \theta - 1) + i \sin \theta}{(1 + \cos \theta) + i \sin \theta} \cdot \frac{(1 + \cos \theta) - i \sin \theta}{(1 + \cos \theta) - i \sin \theta}$	1M	
		$=\frac{(\cos\theta-1)(1-\cos\theta)-i\sin\theta(\cos\theta-1)+i\sin\theta(1-\sin\theta)}{(1+\cos\theta)^2+\sin^2\theta}$	$-\frac{\cos\theta}{\cos\theta} - \sin^2\theta$	Ą
		$\cos^2\theta - 1 + i\left[-\sin\theta\cos\theta + \sin\theta + \sin\theta + \sin\theta\cos\theta\right]$	1	
		$=\frac{\cos \theta + \sin \theta + \sin \theta + \sin \theta}{1 + 2\cos \theta + \cos^2 \theta + \sin^2 \theta}$	330 1 3111 0	
		$i2\sin\theta$		
		$\frac{1}{2(1+\cos\theta)}$		
		$=\frac{i\sin\theta}{}$	1	
		$1 + \cos \theta$		
		Alternative solution (1)	-	
		$z_4 = (\cos \theta - 1) + i \sin \theta$	h	
		$z_3 = (1 + \cos \theta) + i \sin \theta$	} 1A	
		$z_4 (1 + \cos \theta) = [(\cos \theta - 1) + i \sin \theta] (1 + \cos \theta)$	1M	
		$= (\cos \theta - 1) (1 + \cos \theta) + i \sin \theta (1$		\
		$= -\sin^2\theta + i\left(\sin\theta + \sin\theta\cos\theta\right)$		
		$z_3(i\sin\theta) = [(1+\cos\theta)+i\sin\theta]i\sin\theta$	i i	
		$= i(\sin\theta + \sin\theta\cos\theta) - \sin^2\theta -$		
		$\therefore z_4 (1 + \cos \theta) = z_3 (i \sin \theta)$		
		$\frac{z_4}{z_4} = \frac{i \sin \theta}{1 + i \sin \theta}$	1	
		$z_3 = 1 + \cos \theta$	·	

Solution	Marks	Remarks
Alternative solution (2)		;
$z_4 = (\cos \theta - 1) + i \sin \theta$, $z_3 = (1 + \cos \theta) + i \sin \theta$	1A	
$\frac{z_4}{z_3} = \frac{-1 + \cos\theta + i\sin\theta}{1 - \cos\theta + i\sin\theta}$		
$-2\sin^2\frac{\theta}{2} + 2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}$		
$= \frac{-2\sin^2\frac{\theta}{2} + 2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2} + 2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}}$	1M	
$2\cos^2\frac{\theta}{2} + 2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}$	11/1	
$\theta_{i} = \theta_{i} = \theta_{i} = \theta_{i}$		
$= \frac{2i\sin\frac{\theta}{2}(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2})}{2\cos\frac{\theta}{2}(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2})}$		
$-\frac{\theta}{2\pi^2\theta}$	i	
$\frac{2\cos\frac{\pi}{2}(\cos\frac{\pi}{2}+t\sin\frac{\pi}{2})}{2}$		
. $ heta$		
$=i\tan\frac{\theta}{2}$	1A	
θ / θ		
$= i \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} \left(\frac{\cos \frac{\theta}{2}}{\cos \frac{\theta}{2}} \right)$		
$=i-\frac{2}{Q}\left -\frac{2}{Q}\right $		
$\left \cos \frac{\sigma}{2} \right \cos \frac{\sigma}{2} \right $		
$=\frac{i\sin\theta}{1-\cos\theta}$	1	
	1	
$\arg\left(\frac{z_4}{z_3}\right) = \frac{\pi}{2}$	1A	
z_3 2	111	
(ii) Let ϕ be the angle between OC and AB .		
Imaginary	,	
↑		
$D(z^4)$ B		
$\langle \langle \alpha \rangle \rangle \beta$		
O A Real		
Keai		
$\arg\left(\frac{z_4}{z_3}\right) = \frac{\pi}{2}$		
z_3 2		
, , , π	13.4	Z4\(\)
$\arg(z_4) - \arg(z_3) = \frac{\pi}{2}$	1M	For arg $(\frac{z_4}{z_3}) = \arg(z_4) - \arg(z_3)$
<u> </u>	1A	- J
$arg(z_4) = \beta,$		
$arg(z_3) = \alpha$ (see Figure above)		
$arg(z_4) - arg(z_3) = \beta - \alpha$		
$=\phi$		
'		
$\therefore \ \phi = \frac{\pi}{2} ,$		
i.e. the diagonals of OACB are perpendicular to	1	
each other.		
	8	
2 CE A NAATH 10	1	I .

	Solution	Marks	Remarks
7. (a)	The co-ordinates of P are (a, b) .	1A 1	
(b)	(i) $g(x) = (x-b)^2 + a$ Substitute $Q(b, a)$ into $y = f(x)$:	1A	
	$a = -(b-a)^2 + b$ $(b-a)^2 = b-a \cdots (1) \overline{OR} \ a^2 - 2ab + b^2 + a - b = 0$	1A 0	
	$g(a) = (a-b)^2 + a$	i 1M	
		1M	For using (1)
	$\therefore y = g(x) \text{ passes through } P.$	1	
	Alternative Solution Substitute $Q(b, a)$ into $y = f(x)$:		
	$a = -(b-a)^{2} + b$ $(b-a)^{2} = b-a$ $b-a = 0 \text{ or } b-a = 1$	1A	;
	Case 1: $(b-a) = 0$, i.e. $b = a$ $g(a) = (a-a)^{2} + a$ $= a = b$	1M÷1M	1M for considering $g(a)$, 1M for using $b - a = 0$ or $b - a = 0$
	Case 2: $(b-a) = 1$ = $g(a) = (a-b)^2 + a$		
	=1+a=b		
	g(a) = b in both cases. $\therefore y = g(x)$ passes through P .	1	
	(ii) Since $y = f(x)$ touches the x-axis, y-coordinate of vertex = 0, i.e. $b = 0$. Substitute $b = 0$ into (1):	1M	$\begin{vmatrix} -x^2 + 2ax + (b - a^2) = 0 \\ \Delta = 4a^2 + 4(b - a^2) = 0 \\ b = 0 \end{vmatrix}$
	$(0-a)^2 = 0-a$ $a = 0 \text{or} -1$	IM	
	Case 1: $a = 0$, $b = 0$ $f(x) = -x^2 \text{ and } g(x) = x^2$		
	y = g(x)	1A+1A	Axes not labelled (pp-1)
	y = f(x)		
	1		

Solution	Marks	Remarks
Case $\lambda \ a = -1, \dot{b} = 0$		
$f(x) = -(x+1)^2$ and $g(x) = x^2 - 1$		
*		
y = g(x)		
(-1, 0)		
(1,0)	1A+1A	Withhold 1A if $(-1, 0)$ or $(0, -1)$ was
(0,-1)		not labelled
y = f(x)		
i		
	11	
		<u> </u>
		·
	1	

	Solution	Marks	Remarks
3. (a)	Q STA		
	P Let S be the point on PQ such that $OS \perp PQ$ and $RS \perp PQ$.	1M	
	Area of $\triangle OPQ = \frac{1}{2}(PQ)(OS)$	1A	
	Area of $\triangle RPQ = \frac{1}{2}(PQ)(RS)$	lA	
	$\frac{\text{Area of } \Delta OPQ}{\text{Area of } \Delta RPQ} = \frac{\frac{1}{2}(PQ)(OS)}{\frac{1}{2}(PQ)(RS)}$		
	$= \frac{OS}{RS}$ $= \cos \theta$	<u>1</u> 4	
(b)	(i) B A Let M be the foot of perpendicular from C to AB and $\angle CME = \phi$. $\frac{1}{2}(AB)(CM) = 12$		
	$\frac{1}{2}(6)(CM) = 12$ $CM = 4$ $\sin \phi = \frac{CE}{CM}$	1M	For finding <i>CM</i>
	CM $= \frac{2}{4} = \frac{1}{2}$ $\phi = \frac{\pi}{6}$	1M	For finding ϕ , $\cos \phi$ or $ME = (\sqrt{12})$
	From (a), area of $\triangle EAB = (\text{area of } \triangle CAB) \cos \phi$ $= 12 \cos \frac{\pi}{6}$ $= 6\sqrt{3} \text{ m}^2$	1M	$\frac{OR}{=} = \frac{AB \times ME}{2} \qquad OR = 12\sqrt{1 - \sin^2 2}$ $= \frac{6 \times \sqrt{12}}{2} \qquad = 12\sqrt{1 - (\frac{1}{2})^2}$ $= 6\sqrt{3} \text{ m}^2 \qquad = \sqrt{144 - 6^2}$
	\therefore the area of the shadow is $6\sqrt{3}$ m ² .		$=6\sqrt{3}$

Let α be the angle between the board and the ground, h be the altitude of the board from the vertex fastened to the top of the pole. From (a), area of shadow = $12\cos\alpha$ In order for the area of the shadow to be the	
ground, h be the altitude of the board from the vertex fastened to the top of the pole. From (a), area of shadow = $12\cos\alpha$ In order for the area of the shadow to be the	
greatest,	
$\cos \alpha$ should be the greatest.	
1 "	$\tau(\alpha)$ should be the least
h should be the greatest. Since $6 > x > y$, the altitude from B to CA is the longest among the 3 altitudes. So vertex B should be fastened to the top of the pole.	
Alternative Solution If vertex B is fastened to the top of the pole, $h = \frac{12(2)}{y} = \frac{24}{y}$	
$ \sin \alpha = \frac{2}{24/y} = \frac{y}{12} $ $ \cos \alpha = \sqrt{1 - (\frac{y}{12})^2} $ 1M	
Area of shadow = $12\sqrt{1-(\frac{y}{12})^2} = \sqrt{144-y^2}$ 1A Similarly, if vertex A is fastened to the top of the pole, area of shadow = $\sqrt{144-x^2}$ Since $6 > x > y$,	
$\sqrt{144-6^2} < \sqrt{144-x^2} < \sqrt{144-y^2}$ area of the largest shadow = $\sqrt{144-y^2}$.	
So vertex B should be fastened to the top of the 1A pole.	
8	
	

Solution	Marks	Remarks
9. (a) $V = \int_0^h \pi x^2 dy$ $= \int_0^h \pi y dy$	1M+1A	$1M \text{ for } V = \int_{-\pi}^{b} \pi x^2 dy$
$= \left[\frac{\pi y^2}{2}\right]_0^h$	1141 121	$\int_a^{\pi} dy$
$V = \frac{1}{2}\pi h^2$ At $x = 2$, $y = 2^2 = 4$. Capacity of the tank $= \frac{1}{2}\pi (4)^2$	1A	
$= 8\pi$ Time required to fill the tank $= \frac{8\pi}{2\pi}$	} 1M	
$= 4 \text{ (minutes)}$ (b) $V = \frac{1}{2}\pi h^2$	5	
Differentiate with respect to t : $\frac{dV}{dt} = \frac{1}{2}\pi(2h)\frac{dh}{dt}$ Put $\frac{dV}{dt} = 2\pi$:	1M	
$2\pi = \pi h \frac{dh}{dt}$ $\frac{dh}{dt} = \frac{2}{h}$	1M	
(c) From (b), $\frac{dh}{dt} = \frac{2}{h}$. The rate of change of h decreases as t increases. So Sketch C best describes the variation of h with t.] 1M+1A	1M for a correct argument
Alternative solution (1) Sketch B is incorrect as $*\frac{dh}{dt}$ is not a constant. * the x-section of the tank is non-uniform.] IM	
As h increases, the surface area increases. Since $\frac{dV}{dt}$ is a constant, h will increase at a lower rate. So Sketch C best describes the variation of h with t .]]]	

Solution	Marks	Remarks
	17101103	ACHIMINS
Alternative solution (2) $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{2}{h}$		
$\frac{\mathrm{d}^2 h}{\mathrm{d}t^2} = \frac{-2}{h^2} \frac{\mathrm{d}h}{\mathrm{d}t}$	1M	
$= \frac{-4}{h^3} < 0$ So Sketch C best describes the variation of h with t.	1A	
Alternative solution (3) $\frac{dh}{dt} = \frac{2}{h}$ $\int h dh = \int 2 dt$	l IM	
$\frac{h^2}{2} = 2t + c$ At $t = 0$, $h = 0$ \therefore $c = 0$		
$h^2 = 4t$ So Sketch C best describes the variation of h with t.	1A	
	2	
(d) $ \begin{array}{c} h \\ 2 \\ \hline 0 \\ \hline 2 \\ Sketch C \end{array} $	1M+1A	1M for a straight line with +ve slope for h > 2 Withhold I mark if not drawn on the sketch chosen in (c)
·	2	