Sequential Design

ELEC 311 Digital Logic and Circuits Dr. Ron Hayne

Images Courtesy of Cengage Learning

Sequence Detector

- Design a circuit that will produce an output Z=1 for any sequence (X) ending in 101
 - The circuit does not reset when a 1 output occurs

State Graph

State Graph

State Table

Present	Next State		Present
State	X = 0	X = 1	Output(Z)
So	S ₀	S ₁	0
S_1	S_2	S_1	0
S_2	S_0	S_3	0
S_3	S_2	S_1	1

Sequential Circuits

311_13

6

Serial Data Transmission

FIGURE 14-19

Serial Data Transmission

© Cengage Learning 2014

311_14

Serial Data Coding Schemes

FIGURE 14-20

Coding Schemes for Serial Data Transmission

© Cengage Learning 2014

NRZ to Manchester Conversion

FIGURE 14-22

Moore Circuit for NRZ to Manchester Conversion

© Cengage Learning 2014

(a) Timing chart

(b) State graph

Present	Next State		Present
State	X = 0	X = 1	Output (Z)
	S ₁	S ₃	0
S_1	S ₂	_	О
S ₂	S ₁	S ₃	1
S ₃	I —	s_{0}	1

(c) State table

State Graphs

State Graphs

Summary

- Sequential Design
 - State Graph
 - State Table
 - Transition Table
 - Next State Maps
 - Sequential Circuit