Równania różniczkowe zwyczajne. Problem brzegowy a problem początkowy. Metoda Numerowa. *

5 kwietnia 2011

Podczas poprzednich zajęć rozwiązywaliśmy równanie lub układ równań różniczkowych z narzuconym warunkiem początkowym. Dziś spróbujemy rozwiązać problem brzegowy. Użyjemy podejścia podobnego do stosowanego w zagadnieniu początkowym. Startując od jednego z brzegów wyliczamy wartości funkcji w kolejnych punktach, z nadzieją na odzyskanie warunku brzegowego na drugim.

Zajmiemy się problemem brzegowym drugiego rzędu z określoną wartością funkcji na obydwu brzegach (warunek brzegowy Dirichleta). Dla zagadnienia początkowego drugiego rzędu musimy natomiast znać wartości zarówno funkcji jak i pochodnej w punkcie początkowym (na lewym brzegu), lub wartości funkcji w punkcie początkowym i w punkcie sąsiednim.

Zajmiemy się równaniem Poissona na potencjał pola elektrycznego $\phi(r)$ pochodzącego od n(r) - gęstości ładunku elektronu związanego w atomie wodoru

$$\nabla^2 \phi = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\phi}{dr} \right) = -4\pi n(r), \tag{1}$$

z $n(r) = -\exp(-2r)/\pi$. Zastosujemy podstawienie $\phi(r) = f(r)/r$ i rozwiązywać będziemy równanie na funkcję pomocniczą f(r)

$$\frac{d^2f}{dr^2} = -4\pi rn. (2)$$

 $^{^*}$ Laboratorium z inżynierskich metod numerycznych, Wydział Fizyki i Informatyki Stosowanej AGH 2008/2009. bszafran@agh.edu.pl

Warunki brzegowe na f: f(0) = 0 bo $\phi(r)$ skończone. $f(r \to \infty)$ =-1, bo $\phi(r \to \infty) = -1/r$. Równanie (2) posiada rozwiązanie analityczne:

$$f = -1 + (r+1)\exp(-2r). \tag{3}$$

Zadanie 1 Metoda relaksacji Zdyskretyzować równanie (2) w oparciu o trójpunktowy iloraz różnicowy drugiej pochodnej, znaleźć przepis na wartość f_n w punkcie r_n w funkcji f_{n-1} oraz f_{n+1} . Rozwiązać otrzymane równanie (2) metodą relaksacji dla $r \in [0,20]$ przy skoku siatki $\Delta r = 0.1$ z warunkami brzegowymi f(0) = 0, f(20) = -1, Zbieżność procedury iteracyjnej obserwujemy na podstawie całki "działania"

 $a = \int_0^{20} \left(\frac{1}{2} \left(\frac{df}{dr} \right)^2 - 4\pi r n(r) f(r) \right) dr$. Po uzyskaniu zbieżności narysować f(r) (20 pkt).

Zadanie 2 Rozwiązanie wstecz Ze zdyskretyzowanego równania (2) znaleźć przepis na f_{n-1} w funkcji dwóch sąsiadów z prawej strony: f_n i f_{n+1} . Na dwóch ostatnich punktach siatki przyjmujemy $f_N = f_{N-1} = -1$, liczymy wartości funkcji w punktach N-2, N-3, ... 1 korzystając z uzyskanego przepisu. Policzyć odchylenie rozwiązania numerycznego od analitycznego i porównać z wynikiem zadania 1 (20 pkt)

Zadanie 3 Rozwiązanie w przód Znaleźć przepis na f_{n+1} w funkcji dwóch sąsiadów z lewej. Przyjąc $f_0 = 0$, a f_1 przyjąć ze wzoru analitycznego. Narysować rozwiązanie. (5 pkt) Przekonać się, że odchylenie znika jeśli przyjąć skok siatki $\Delta r = 0.01$ (5 pkt). Wracamy do $\Delta r = 0.1$. Jako f_1 przyjąć wartość uzyskaną w zadaniu pierwszym (5 pkt). Policzyć odchylenie wyniku numerycznego od analitycznego i porównać z wcześniejszymi wynikami (5 pkt).

Zadanie 4 Metoda Numerowa Przepisy uzyskane powyżej mają błąd obcięcia $O(\Delta r^4)$. Metoda Numerowa daje przepis z błędem $O(\Delta r^6)$:

$$\frac{\Delta r^2}{12} \left(S_{i+1} + 10S_i + S_{i-1} \right) + 2f_i - f_{i+1} - f_{i-1} = 0, \tag{4}$$

gdzie $S=-4\pi rn$. Przy pomocy tego przepisu powtórzyć wszystkie rachunki z zadań 2 (10 pkt) i 3 (10 pkt).

Zadanie 5 Rozwiążemy równanie (2) przy pomocy metody RK4. W tym celu wprowadzamy pomocniczą funkcję

$$\frac{df}{dr} = \epsilon(r),\tag{5}$$

wtedy równanie (2) wygląda:

$$\frac{d\epsilon}{dr} = -4\pi r n. \tag{6}$$

Równania całkować wstecz (we wzorach RK - wstawić ujemne wartości przesunięcia), $\epsilon(r=20)=0$. Porównać wynik z analitycznym, oraz wynikiem zadania 4 (20 pkt).