Quiz 2 (75 minutes)

1. Use Naive Bayes' algorithm to classify Red, Domestic, SUV. Write down the steps. (5)

Example No.	Color	Type	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

- 2. What is Markov assumption? (3)
- 3. What kind of challenges arise with higher higher order Markov chains? Explain in the context of gene finding. (5)
- 4. Explain the time complexity analysis for the Viterbi algorithm. (5)
- 5. Write down the steps of Neighbor Joining algorithm for constructing phylogenetic trees. (7)
- 6. Discuss an algorithm for gene finding in prokaryotes. (5)
- 7. Construct the maximum parsimony tree for the below taxa. (5)
 - a. ACT
 - b. ACA
 - c. GTT
 - d. GTA