AdaBoost and Exponential Loss

 so AdaBoost is greedy procedure for minimizing exponential loss

$$\prod_{t} Z_{t} = \frac{1}{m} \sum_{i} \exp(-y_{i}F(x_{i}))$$

where

$$F(x) = \sum_{t} \alpha_t h_t(x)$$

- why exponential loss?
 - intuitively, strongly favors $F(x_i)$ to have same sign as y_i
 - upper bound on training error
 - smooth and convex (but very loose)
- how does AdaBoost minimize it?