ECE 587 / STA 563: Lecture 2 – Measures of Information

Information Theory Duke University, Fall 2016

Author: Galen Reeves

Last Modified: August 31, 2016

Outline of lecture:

2.1	Quantifying Information
2.2	Entropy and Mutual Information
	2.2.1 Entropy
	2.2.2 Mutual Information
	2.2.3 Example: Testing for a disease
	2.2.4 Relative Entropy
2.3	Convexity & Concavity
2.4	Data Processing Inequality
2.5	Fano's Inequality
2.6	Summary of Basic Inequalities
2.7	Axiomatic Derivation of Mutual Information [Optional]
	2.7.1 Proof of uniqueness of $i(x,y)$

2.1 Quantifying Information

- How much "information" do the answers to the following questions provide?
 - (i) Will it rain today in Durham? (two possible answers)
 - (ii) Will it rain today in Death Valley? (two possible answers)
 - (iii) What is today's winning lottery number? (for the Mega Millions Jackpot, there are 258,890,850 possible answers)
- The amount of "information" is linked to the number of possible answers. In 1928, Ralph Hartley gave the following definition:

Hartley Information = $\log \#$ answers

- Hartley's measure of information is additive. The number of possible answers for two questions corresponds to the *product* of the number of answers for each question. Taking the logarithm turns the product into a sum.
 - What is today's winning lottery number?

$$\log_2(258, 890, 850) \approx 28(\text{bits})$$

• What are the winning lottery numbers for today and tomorrow?

 $\log_2(258,890,850\times258,890,850) = \log_2(258,890,850) + \log_2(258,890,850) \approx 56(\text{bits})$

- But Hartley's information does not distinguish between likely and unlikely answers (e.g. rain in Durham vs. rain in Death Valley).
- In 1948, Shannon introduced measures of information which depend on the *probabilities* of the answers.

2.2 Entropy and Mutual Information

2.2.1 Entropy

- Let X be discrete random variable with pmf p(x) and finite support \mathcal{X} .
- The entropy of X is

$$H(X) = \sum_{x \in \mathcal{X}} p(x) \log \left(\frac{1}{p(x)}\right)$$

• Note that this is the expect value of the random variable g(X) where $g(x) = \log(1/p(x))$, i.e.

$$H(X) = \mathbf{E}\left[\log\left(\frac{1}{p(X)}\right)\right]$$

• Binary Entropy: If X is a Bernoulli(p) random variable (i.e. P[X = 1]p and P[X = 0] = 1 - p), then its entropy is given by the binary entropy function

$$H_b(p) = -p \log p - (1-p) \log(1-p)$$

- \circ $H_b(p)$ is concave, the maximum at $H_b(1/2) = \log(2)$ and has minimum is at $H_b(0) = H_b(1) = 0$.
- Example: Two Questions
 - Will it rain Today in Durham?

$$H_b \left(\frac{104}{365} \right) \approx 0.862$$
 bits

• Will it rain Today in Death Valley?

$$H_b\left(\frac{1}{365}\right) \approx 0.027$$
 bits

• Fundamental Inequality For any bases b > 0 and x > 0,

$$\left(1 - \frac{1}{x}\right) \log_b(e) \le \log_b(x) \le (x - 1) \log_b(e)$$

with equalities on both sides if, and only if, x = 1.

Proof:

• For the natural log, this simplifies to

$$\left(1 - \frac{1}{x}\right) \le \ln(x) \le (x - 1)$$

 \circ To prove the upper bound, note that equality is attained at x=1. For x>1,

$$(x-1) - \ln(x) = \int_{1}^{x} \underbrace{\left(1 - \frac{1}{x}\right)}_{\text{strictly positive}} dx > 0$$

and for x < 1,

$$(x-1) - \ln(x) = \int_{x}^{1} \underbrace{\left(\frac{1}{x} - 1\right)}_{\text{strictly positive}} dx > 0$$

 \circ To prove the lower bound, let y = 1/x so that

$$ln(y) \le y - 1 \Rightarrow \frac{1}{y - 1} \le ln\left(\frac{1}{y}\right) \Rightarrow \frac{x}{1 - x} \le ln(x)$$

- Theorem: $0 \le H(X) \le \log |\mathcal{X}|$
 - \circ Left side follows from $0 \le p(x) \le 1$.
 - For right side, observe that

$$\begin{split} \sum_{x} p(x) \log \left(\frac{1}{p(x)} \right) &= \sum_{x} p(x) \log \left(\frac{|\mathcal{X}|}{p(x)|\mathcal{X}|} \right) \\ &= \log(|\mathcal{X}|) + \sum_{x} p(x) \log \left(\frac{1}{p(x)|\mathcal{X}|} \right) \\ &\leq \log(|\mathcal{X}|) + \sum_{x} p(x) \log(e) \left(\frac{1}{p(x)|\mathcal{X}|} - 1 \right) \qquad \text{Fundamental Inq.} \\ &= \log(|\mathcal{X}|) + \log(e) - \log(e) \\ &= \log(|\mathcal{X}|) \end{split}$$

• The entropy of an *n*-dimensional random vector $\mathbf{X} = (X_1, X_2, \dots, X_n)$ with pmf $p(\mathbf{x})$ is defined as

$$H(\boldsymbol{X}) = H(X_1, X_2, \cdots, X_n) = \sum_{\boldsymbol{x} \in \mathcal{X}} p(\boldsymbol{x}) \log \left(\frac{1}{p(\boldsymbol{x})}\right)$$

• The **joint entropy** of random variables X and Y is simply the entropy of the vector (X,Y)

$$H(X,Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \left(\frac{1}{p(x,y)}\right)$$

• Conditional Entropy: The entropy of a random variable Y conditioned on the event $\{X = x\}$ is a function of the conditional distribution $p_{Y|X}(\cdot|x)$ and is given by:

$$H(Y|X=x) = \sum_{y \in \mathcal{Y}} p(y|x) \log \left(\frac{1}{p(y|x)}\right)$$

The conditional entropy of Y given X is a function of the joint distribution p(x,y):

$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X=x) = \sum_{x,y} p(x,y) \log \left(\frac{1}{p(y|x)}\right)$$

- Warning: Note that H(Y|X) is not a random variable! This is differs from the usual convention for conditioning where, for example, $\mathbf{E}[Y|X]$ is a random variable.
- Chain Rule: The joint entropy of X and Y can be decomposed as

$$H(X,Y) = H(X) + H(Y|X)$$

and more generally,

$$H(X_1, X_2, \dots, X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, \dots, X_1)$$

Proof of chain rule:

$$\begin{split} H(X;Y) &= \sum_{x,y} p(x,y) \log \left(\frac{1}{p(x,y)} \right) \\ &= \sum_{x,y} p(x,y) \log \left(\frac{1}{p(x)} \frac{1}{p(y|x)} \right) \\ &= \sum_{x,y} p(x,y) \left[\log \left(\frac{1}{p(x)} \right) + \log \left(\frac{1}{p(y|x)} \right) \right] \\ &= H(X) + H(Y|X) \end{split}$$

2.2.2 Mutual Information

Measure of the amount of information that one RV contains about another RV

$$I(X;Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{V}} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right)$$

It can also be expressed as an expectation:

$$I(X;Y) = \mathbf{E}[i(X,Y)]$$
 where $i(x,y) = \log\left(\frac{p(x,y)}{p(x)p(y)}\right)$

• Mutual information between X and Y can be expressed as the amount by which knowledge of X reduces the entropy of Y:

$$I(X;Y) = H(Y) - H(Y|X)$$

and by symmetry

$$I(X;Y) = H(X) - H(X|Y)$$

Proof:

$$\begin{split} \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right) &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \left[\log \left(\frac{1}{p(y)} \right) - \log \left(\frac{1}{p(y|x)} \right) \right] \\ &= \underbrace{\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \left(\frac{1}{p(y)} \right)}_{H(Y)} - \underbrace{\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \left(\frac{1}{p(y|x)} \right)}_{H(Y|X)} \end{split}$$

• The mutual information between X and itself is equal to entropy:

$$I(X;X) = H(X) - H(X|X) = H(X)$$

Thus entropy is sometimes known as "self-information"

• Venn diagram

• The conditional mutual information between X and Y given Z is

$$I(X;Y|Z) = \sum_{x,y,z} p(x,y,z) \log \left(\frac{p(x,y|z)}{p(x|z)p(y|z)} \right)$$

or equivalently

$$I(X;Y|Z) = \mathbf{E}[i(X,Y|Z)], \qquad i(x,y|z) = \log\left(\frac{p(x,y|z)}{p(x|z)p(y|z)}\right)$$

• Chain Rule for mutual information:

$$I(X; Y_1, Y_2) = I(X; Y_1) + I(X; Y_2|Y_1)$$

and more generally

$$I(X; Y_1, Y_2, \dots, Y_n) = \sum_{i=1}^n I(X; Y_i | Y_1, Y_2, \dots, Y_{k-1})$$

2.2.3 Example: Testing for a disease

There is a 1% chance I have a certain disease. There exists a test for this disease which is 90% accurate (i.e. P[test is pos|I have disease] = P[test is neg|I don't have disease] = 0.9). Let

$$X = \begin{cases} 1, & \text{I have disease} \\ 0, & \text{I don't have disease} \end{cases} \quad \text{and} \quad Y_i = \begin{cases} 1, & \text{ith test is positive} \\ 0, & \text{ith test is negative} \end{cases}$$

Assume the test outcomes $Y = (Y_1, Y_2)$ are conditionally independent given X.

• The probability mass functions can be computed as

and

• The individual entropies are

$$H(X) = H_b(0.01) \approx 0.0808$$

 $H(Y_1) = H(Y_2) = H_b(0.1080) \approx 0.4939$

• The conditional entropy of X given Y_1 is computed as follows:

$$H(X|Y_1 = 1) = H_b(0.9167) \approx 0.4137$$

 $H(X|Y_1 = 0) = H_b(0.0011) \approx 0.0126$

and so

$$H(X|Y) = \mathbf{P}[Y_1 = 1]H(X|Y_1 = 1) + \mathbf{P}[Y = 0]H(H|Y_1 = 0) \approx 0.0559$$

• Furthermore

$$H(X|Y_1, Y_2) = H(X, Y_1, Y_2) - H(Y_1, Y_2) \approx 0.0339$$

 $H(Y_1|Y_2) = H(Y_1, Y_2) - H(Y_2) \approx 0.4930$

• The mutual information is

$$I(X; Y_1) = H(X) - H(X|Y_1) \approx 0.0249$$

 $I(X; Y_1, Y_2) = H(X) - H(X|Y_1, Y_2) \approx 0.0469$

• The conditional mutual information is

$$I(X; Y_2|Y_1) = H(X|Y_1) - H(X|Y_1, Y_2) \approx 0.0220$$

2.2.4 Relative Entropy

• The relative entropy between a distributions p and q is defined by

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \left(\frac{p(x)}{q(x)}\right)$$

This is also known as the Kullback-Leibler divergence. It can be expressed as the expectation of the expectation of the log likelihood ratio

$$D(p||q) = \mathbf{E}[\Lambda(X)], \qquad X \sim p, \qquad \Lambda(x) = \log\left(\frac{p(x)}{q(x)}\right)$$

- Note that if there exists x such that p(x) > 0 and q(x) = 0, then $D(p||q) = \infty$.
- Warning: D(p||q) is not a metric since it is not symmetric and it does not satisfy the triangle inequality.
- Mutual information between X and Y is equal to the relative entropy between $p_{X,Y}(x,y)$ and $p_X(x)p_Y(y)$,

$$I(X;Y) = D(p_{X,Y}(x,y)||p_X(x)p_Y(y))$$

• Theorem: Relative entropy is nonnegative, i.e $D(p||q) \ge 0$. It is equal to zero if and only if p = q. The proof is given in CT problem 2.26.

Proof:

$$-D(p||q) = \sum_{x} p(x) \log \frac{q(x)}{p(x)}$$

$$\leq \sum_{x} p(x) \log(e) \left(\frac{q(x)}{p(x)} - 1\right)$$
 Fundamental Inq.
$$= \log(e) \sum_{x} q(x) - \log(e) \sum_{x} p(x)$$

$$= 0$$

- Important consequences of the non-negativity of relative entropy:
 - Mutual information is nonnegative, $I(X;Y) \ge 0$, with equality if an only if X and Y are independent.
 - This means that $H(X) H(X|Y) \ge 0$, and thus conditioning cannot increase entropy,

$$H(X|Y) \le H(X)$$

• Warning: Although conditioning cannot increase entropy (in expectation), it is possible that the entropy of X conditioned on an specific event, say $\{Y = y\}$, is greater than H(X), i.e. H(X|Y = y) > H(X).

2.3 Convexity & Concavity

• A function f(x) is convex over an interval $(a,b) \subseteq \mathbb{R}$ if for every $x_1, x_2 \in (a,b)$ and $0 \le \lambda \le 1$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2).$$

The function is strictly convex if equality holds only if $\lambda = 0$ or $\lambda = 1$.

• Illustration of convexity. Let $x^* = \lambda x_1 + (1 - \lambda)x_2$

• Theorem: H(X) is a concave function p(x), i.e.

$$H(\underbrace{\lambda p_1 + (1 - \lambda)p_2}_{p^*}) \ge \lambda H(p_1) + (1 - \lambda)H(p_2)$$

- This can be proved using the fundamental inequality (try it yourself)
- \circ Here is an alternative proof which uses the fact that conditioning cannot increase entropy. Let Z be Bernoulli(λ) and let

$$X \sim \begin{cases} p_1, & Z = 1\\ p_2, & Z = 0 \end{cases}$$

Then,

$$H(X) = H(\lambda p_1 + (1 - \lambda)p_2)$$

Since conditioning cannot increase entropy,

$$H(X) > H(X|Z) = \lambda H(X|Z = 1) + (1 - \lambda)H(X|Z = 0).$$

Combining the displays completes the proof.

• Jensen's Inequality If $f(\cdot)$ is a convex function over an interval \mathcal{I} and X is a random variable with support $\mathcal{X} \subset \mathcal{I}$ then

$$\mathbf{E}[f(X)] \ge f(\mathbf{E}[X])$$

Moreover, if $f(\cdot)$ is strictly convex, equality occurs if and only if $X = \mathbf{E}[X]$ is a constant.

- The proof of Jensen's Inequality is given in [C&T]
- Example For any set $\{x_i\}_{i=1}^n$, the geometric mean is no greater than the arithmetic mean:

$$\left(\prod_{i=1}^{n} x_i\right)^{1/n} \le \frac{1}{n} \sum_{i=1}^{n} x_i$$

Proof: Let Z be uniformly distributed on $\{x_i\}$ so that $\mathbf{P}[Z=x_i]=1/n$. By Jensen's inequality,

$$\log\left(\prod_{i=1}^{n} x_i\right)^{1/n} = \frac{1}{n} \sum_{i=1}^{n} \log x_i = \mathbf{E}[\log(Z)] \le \log(\mathbf{E}[Z]) = \log\left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)$$

2.4 Data Processing Inequality

• Markov Chain: Random variables X, Y, Z form a Markov chain, denoted

$$X \to Y \to Z$$

if X and Z are independent conditioned on Y.

$$p(x, z|y) = p(x|y)p(z|y)$$

alternatively

$$p(x, y, z) = p(x)p(y, z|x)$$
 always true
= $p(x)p(y|x)p(z|x, y)$ always true
= $p(x)p(y|x)p(z|y)$ if Markov chain

- \circ Note $X \to Y \to Z$ implies $Z \to Y \to X$
- \circ If Z = f(Y) then $X \to Y \to Z$.
- **Theorem:** (Data Processing Inequality) If $X \to Y \to Z$, then

$$I(X;Y) \ge I(X;Z)$$

• In particular, for any function $g(\cdot)$, we have $X \to Y \to g(Y)$ and so

$$I(X;Y) \ge I(X;g(Y)).$$

No clever manipulation of Y can increase the mutual information!

• **proof:** By chain rule, we can expand mutual information two different ways:

$$I(X;Y,Z) = I(X;Z) + I(X;Y|Z)$$
$$= I(X;Y) + I(X;Z|Y)$$

Since X and Z are conditionally independent given Y, we have I(X;Z|Y)=0. Since $I(X;Y|Z)\geq 0$, we have

2.5 Fano's Inequality

- Suppose we want to estimate a random variable X from an observation Y.
- The probability of error for an estimator $\hat{X} = \phi(Y)$ is

$$P_e = \mathbf{P} \Big[\hat{X} \neq X \Big]$$

• **Theorem:** (Fano's Inequality) For any estimator \hat{X} such that $X \to Y \to \hat{X}$,

$$H_b(P_e) + P_e \log(|\mathcal{X}|) \ge H(X|Y)$$

and thus

$$P_e \ge \frac{H(X|Y) - 1}{\log(|\mathcal{X}|)}$$

- Remark: Fano's Inequality provides a lower bound on P_e for any possible function of Y!
- Proof:
 - Let E be a random variable that indicates whether an error has occured:

$$E = \begin{cases} 1, & \hat{X} = X \\ 0, & \hat{X} \neq X \end{cases}$$

 \circ By the chain rule, the entropy of (E,X) given \hat{X} can be expanded two different ways

$$H(E, X|\hat{X}) = H(X|\hat{X}) + \underbrace{H(E|X, \hat{X})}_{=0}$$

$$= \underbrace{H(E|\hat{X})}_{\leq H_b(P_e)} + \underbrace{H(X|E, \hat{X})}_{\leq P_e \log |\mathcal{X}|}$$

- $H(E|\hat{X}) \leq H(E) = H_b(P_e)$ since conditioning cannot increase entropy
- $\circ \ H(E|X,\hat{X}) = 0$ since E is a deterministic function of X and \hat{X} .
- By the data processing inequality,

$$H(X|\hat{X}) \ge H(X|Y)$$

Furthermore,

$$H(X|E, \hat{X}) = \mathbf{P}[E=1] \underbrace{H(X|\hat{X}, E=1)}_{=0} + \mathbf{P}[E=0] \underbrace{H(X|\hat{X}, E=0)}_{<\log|\mathcal{X}|}$$

• Putting everything together proves the desire result.

2.6 Summary of Basic Inequalities

- Jensen's inequality:
 - \circ If f is a convex function then

$$\mathbf{E}[f(X)] \ge f(\mathbf{E}[X])$$

 \circ if f is a concave function then

$$\mathbf{E}[f(X)] \le f(\mathbf{E}[X])$$

• Data Processing Inequality: If $X \to Y \to Z$ form a Markov chain, then

$$I(X;Y) \ge I(X;Z)$$

• Fano's Inequality: If $X \to Y \to \hat{X}$ forms a Markov chain, then

$$\mathbf{P}\Big[X \neq \hat{X}\Big] \ge \frac{H(X|Y) - 1}{\log(|\mathcal{X}|)}$$

2.7 Axiomatic Derivation of Mutual Information [Optional]

This section is based on lecture notes from Toby Berger.

- Let X, Y denote discrete random variables with respective alphabets \mathcal{X} and \mathcal{Y} . (Assume $|\mathcal{X}| < \infty$ and $|\mathcal{Y}| < \infty$.)
- Let i(x,y) be the amount of information about event $\{X=x\}$ conveyed by learning $\{Y=y\}$
- Let i(x,y|z) be the amount of information about event $\{X=x\}$ conveyed by learning $\{Y=y\}$ conditioned on the event $\{Z=z\}$
- Consider the four postulates:
 - (A) **Bayesianness:** i(x,y) depends only on p(x,y), i.e.

$$i(x,y) = f(\alpha,\beta) \Big|_{\substack{\alpha = p(x) \\ \beta = p(x|y)}}$$

for some function $f:[0,1]^2\to\mathbb{R}$

(B) **Smoothness:** partial derivatives of $f(\cdot, \cdot)$ exist.

$$f_1(\alpha, \beta) = \frac{\partial f(\alpha, \beta)}{\partial \alpha}, \quad f_2(\alpha, \beta) = \frac{\partial f(\alpha, \beta)}{\partial \beta}$$

(C) successive revelation: Let y = (w, z). Then

$$i(x,y) = i(x,w) + i(x,z|w)$$

where i(x, w) = f(p(x), p(x|w)) and i(x, z|w) = f(p(x|w), p(x|z, w)) and so the function $f(\cdot, \cdot)$ must obey

$$f(\alpha, \gamma) = f(\alpha, \beta) + f(\beta, \gamma), \quad 0 \le \alpha, \beta, \gamma \le 1$$

(D) **Additivity:** If (X,Y) and (U,V) are independent, i.e. p(x,y,u,v) = p(x,y)p(u,v), then

$$i((x, u), (y, v)) = i(x, y) + i(u, v)$$

where i(x, u) = f(p(x, u), p(x, u|y, v)) = f(p(x)p(u), p(x|y)p(u|v)) and so the function $f(\cdot, \cdot)$ must obey

$$f(\alpha \gamma, \beta \delta) = f(\alpha, \beta) + f(\gamma, \delta) \quad 0 < \alpha, \beta, \gamma, \delta < 1$$

• **Theorem:** The function

$$i(x,y) = \log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$

is the is the only function which satisfies our four postulates above.

2.7.1 Proof of uniqueness of i(x, y)

• Because of B, we can apply $\frac{\partial}{\partial \beta}$ to left and right sides of C

$$0 = f_2(\alpha, \beta) + f_1(\beta, \gamma)$$

so

$$f_2(\alpha, \beta) = -f_1(\beta, \gamma)$$

Thus $f_2(\alpha, \beta)$ must be a function only of β , say $g'(\beta)$.

Integrating w.r.t. β gives

$$\int f_2(\alpha,\beta)d\beta = f(\alpha,\beta) + c(\alpha)$$

i.e.

$$\int g'(\beta)d\beta = g(\beta) = f(\alpha, \beta) + c(\alpha)$$

and so

$$f(\alpha, \beta) = g(\beta) - c(\alpha)$$

• Put this back into C

$$f(\alpha, \gamma) = g(\gamma) - c(\alpha) = g(\beta) - c(\alpha) + g(\gamma) - c(\beta)$$

$$\Rightarrow c(\beta) = g(\beta)$$

$$\Rightarrow f(\alpha, \beta) = g(\beta) - g(\alpha)$$

• Next, write D in terms of $g(\cdot)$

$$g(\beta\delta) - g(\alpha\gamma) = g(\beta) - g(\alpha) + g(\delta) - g(\gamma)$$

Take derivative w.r.t δ of both sides to get

$$\beta q'(\beta \delta) = q'(\delta)$$

Set $\delta = 1/2$ (could be $\delta = 1$ but scared to try)

$$\beta g'(\beta/2) = g'(1/2) = K$$
, a constant

and so

$$g'(\beta/2) = K/\beta$$

Take the integral of both sides with respect to β to get

$$g(\beta/2) = K \ln(\beta) + C$$

So

$$g(x) = K \ln(2x) + C$$

or

$$g(x) = K \ln(x) + \tilde{C}$$

Thus

$$f(\alpha, \beta) = g(\beta) - g(\alpha) = K \ln(\beta) - K \ln(\alpha) = K \ln(\beta/\alpha)$$

 \bullet By A,

$$i(x,y) = K \ln \left(\frac{p(x|y)}{p(x)} \right)$$

Choosing K is equivalent to choosing the log base:

- $\circ~K=1$ corresponds to measuring information in nats
- $\circ~K = \log_2(e)$ corresponds to measuring information in bits