CS/ECE 766: Computer Vision

University of Wisconsin-Madison

Image Alignment and Stitching

(Review) Panorama Stitching

(Review) Image Stitching Process

(Review) Image Stitching Process

Warp images so that corresponding points align.

(Review) Global Warping/Transformation

Transformation T is the same over entire domain. Linear Transformation of Homogeneous Coordinates

(Review) Scaling, Rotation, Skew, Translation

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

Scaling

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & m_x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

Horizontal Skew

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

Rotation

Translations cannot be represented!

(Review) 2x2 Matrix Transformations

Any transformation of the form:

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

- Origin maps to the origin
- Lines map to lines
- Parallel lines remain parallel
- Closed under composition

$$\begin{array}{c}
\mathbf{p}_{2} = T_{21}\mathbf{p}_{1} \\
\mathbf{p}_{3} = T_{32}\mathbf{p}_{2} \\
\mathbf{p}_{3} = T_{31}\mathbf{p}_{1}
\end{array}$$

$$\mathbf{p}_{3} = T_{32}\mathbf{p}_{2} = T_{32}T_{21}\mathbf{p}_{1} \implies T_{31} = T_{32}T_{21}$$

(Review) Homogenous Coordinates

The homogenous representation of a 2D point $\mathbf{p} = (x, y)$ is a 3D point $\widetilde{\mathbf{p}} = (\widetilde{x}, \widetilde{y}, \widetilde{z})$. The third coordinate $\widetilde{z} \neq 0$ is fictitious such that:

$$x = \frac{\tilde{x}}{\tilde{z}} \qquad y = \frac{\tilde{y}}{\tilde{z}}$$

$$x = \frac{\widetilde{x}}{\widetilde{z}}$$
 $y = \frac{\widetilde{y}}{\widetilde{z}}$ $\mathbf{p} \equiv \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \widetilde{z}x \\ \widetilde{z}y \\ \widetilde{z} \end{bmatrix} \equiv \begin{bmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{z} \end{bmatrix} = \widetilde{\mathbf{p}}$

Converting to homogeneous:

$$(x,y) = \left(\frac{\tilde{x}}{\tilde{z}}, \frac{\tilde{y}}{\tilde{z}}\right)$$

Converting from homogeneous:

$$(\tilde{x}, \tilde{y}, \tilde{z}) = (x, y, 1)$$

(Review) Scaling, Rotation, Skew, Translation

$$\begin{bmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Scaling

$$\begin{bmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{bmatrix} = \begin{bmatrix} 1 & m_{\chi} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Horizontal Skew

$$\begin{bmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Translation

$$\begin{bmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Rotation

Any transformation of the form:

$$\begin{bmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{y}_1 \\ \tilde{z}_1 \end{bmatrix} \qquad \qquad \widetilde{\mathbf{p}}_2 = H \widetilde{\mathbf{p}}_1$$

$$\widetilde{\mathbf{p}}_2 = H\widetilde{\mathbf{p}}_1$$

Also called Homography.

Mapping of one plane to another through a pinhole

Same as imaging a plane through a pinhole.

Homography can only be defined up to a scale.

$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{y}_1 \\ \tilde{z}_1 \end{bmatrix} \equiv \begin{bmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{bmatrix}$$

Because homogeneous coordinates are only defined up to a scale.

If we fix scale such that $\sqrt{\Sigma(h_{ij})^2} = 1$ then 8 free parameters

Transformation that represents mapping a plane into another through a pinhole.

- Origin does not necessarily map to the origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Closed under composition

(Review) Homography Composition

Useful in stitching planar panoramas.

(Review) Computing Homography

Given a set of matching points between images 1 and 2, find the homography *H* that best "agrees" with the matches.

The scene points should lie on a plane, or be distant (plane at infinity), or imaged from the same point.

(Review) Computing Homography

Source Image

Destination Image

$$\begin{bmatrix} x_d \\ y_d \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \tilde{x}_d \\ \tilde{y}_d \\ \tilde{z}_d \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_s \\ y_s \\ 1 \end{bmatrix}$$

How many pairs of points are needed to define the homography?

There are 9 unknowns, but only 8 degrees of freedom.

Each pair provides 2 constraints. So, 4 pairs are needed.

(Review) Computing Homography

For a given pair i of corresponding points (2 constraints):

$$x_{d}^{(i)} = \frac{\tilde{x}_{d}^{(i)}}{\tilde{z}_{d}^{(i)}} = \frac{h_{11}x_{s}^{(i)} + h_{12}y_{s}^{(i)} + h_{13}}{h_{31}x_{s}^{(i)} + h_{32}y_{s}^{(i)} + h_{33}} \qquad y_{d}^{(i)} = \frac{\tilde{y}_{d}^{(i)}}{\tilde{z}_{d}^{(i)}} = \frac{h_{21}x_{s}^{(i)} + h_{22}y_{s}^{(i)} + h_{23}}{h_{31}x_{s}^{(i)} + h_{32}y_{s}^{(i)} + h_{33}}$$

Rearranging the terms and writing as linear equation:

$$\begin{bmatrix} x_s^{(1)} & y_s^{(1)} & 1 & 0 & 0 & 0 & -x_d^{(1)}x_s^{(1)} & -x_d^{(1)}y_s^{(1)} & -x_d^{(1)} \\ 0 & 0 & 0 & x_s^{(1)} & y_s^{(1)} & 1 & -y_d^{(1)}x_s^{(1)} & -y_d^{(1)}y_s^{(1)} & -y_d^{(1)} \\ \vdots & & & \vdots & & & & \\ x_s^{(i)} & y_s^{(i)} & 1 & 0 & 0 & 0 & -x_d^{(i)}x_s^{(i)} & -x_d^{(i)}y_s^{(i)} & -x_d^{(i)} \\ 0 & 0 & 0 & x_s^{(i)} & y_s^{(i)} & 1 & -y_d^{(i)}x_s^{(i)} & -y_d^{(i)}y_s^{(i)} & -x_d^{(i)} \\ 0 & 0 & 0 & x_s^{(i)} & y_s^{(i)} & 1 & -y_d^{(i)}x_s^{(i)} & -y_d^{(i)}y_s^{(i)} & -y_d^{(i)} \\ 0 & \vdots & & & \vdots & & \\ x_s^{(n)} & y_s^{(n)} & 1 & 0 & 0 & 0 & -x_d^{(n)}x_s^{(n)} & -x_d^{(n)}y_s^{(n)} & -x_d^{(n)} \\ 0 & 0 & 0 & x_s^{(n)} & y_s^{(n)} & 1 & -y_d^{(n)}x_s^{(n)} & -y_d^{(n)}y_s^{(n)} & -y_d^{(n)} \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \\ h_{31} \\ h_{32} \\ h_{33} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

$$A$$
 (Known)

(Review) Constrained Least Squares

Solve for h:

$$A \mathbf{h} = \mathbf{0}$$

 $A \mathbf{h} = \mathbf{0}$ such that $\|\mathbf{h}\|^2 = 1$

Define least squares problem:

$$\min_{\mathbf{h}}(\mathbf{h}^T A^T A \mathbf{h})$$
 such that $\mathbf{h}^T \mathbf{h} = 1$

Solve (unconstrained) Lagrangian function $L(\mathbf{h}, \lambda)$:

$$L(\mathbf{h}, \lambda) = \mathbf{h}^T A^T A \mathbf{h} - \lambda (\mathbf{h}^T \mathbf{h} - 1)$$

Taking derivatives of $L(\mathbf{h}, \lambda)$ w.r.t \mathbf{h} : $2A^TA\mathbf{h} - 2\lambda\mathbf{h} = \mathbf{0}$

$$A^T A \mathbf{h} = \lambda \mathbf{h}$$
 Eigenvalue Problem

Eigenvector \mathbf{h} with smallest eigenvalue λ of matrix A^TA minimizes the loss function $L(\mathbf{h})$.

What Could Go Wrong?

Outliers!

We need to robustly compute transformation in the presence of wrong matches.

How?

If number of outliers < 50%, then RANSAC to the rescue!

RANSAC Example: Line Fitting

Robust line fitting:

Least Squares Fitting Inliers: 2

RANSAC Iteration 1
Inliers: 4

RANSAC Example: Line Fitting

Robust line fitting:

Least Squares Fitting Inliers: 2

RANSAC Iteration 2
Inliers: 3

RANSAC Example: Line Fitting

Robust line fitting:

Least Squares Fitting Inliers: 2

RANSAC Iteration i Inliers: 20

RANdom SAmple Consensus

General RANSAC Algorithm:

- 1. Randomly choose s samples. Typically s is the minimum samples to fit a model.
- 2. Fit the model to the randomly chosen samples.
- 3. Count the number M of data points (inliers) that fit the model within a measure of error ε .
- 4. Repeat Steps 1-3 N times
- 5. Choose the model that has the largest number *M* of inliers.

For homography:

s = 4 points. ϵ is acceptable alignment error in pixels.

Back to Warping Images

Given a transformation T and a source image f(x,y), compute the transformed image g(x,y)

$$g(x,y) = f(T(x,y))$$

Forward Warping

Send each pixel (x,y) in f(x,y) to its corresponding location T(x,y) in g(x,y)

$$g(x,y) = f(T(x,y))$$

What if pixel lands in between pixels? What if not all pixels in g(x,y) are filled? Can result in holes!

Backward Warping

Get each pixel (x, y) in g(x, y) from its corresponding location $T^{-1}(x, y)$ in f(x, y)

$$g(x,y) = f(T(x,y))$$

What if pixel lands between pixels?
No problem. Use Nearest Neighbor or
Interpolate (Weighted Average of Neighbors)!

Source Image 1

Source Image 2

Source Image 3

Reference Image (Source Image 2)

Compute the bounds of Image 1 and Image 3 in reference image space

For each pixel within bounds, compute its location in source image

For each pixel within bounds, compute its location in source image

Blending Images

Overlaid Aligned Images

Hard seams due to vignetting, exposure differences, etc.

Blending Images: Averaging

Averaged Images

Seams still visible.

Blending Images

Say we want to blend images I_1 and I_2 at the center.

Weighted Blending

Weighted Blending

Pixels closer to the edge get a lower weight.

Python: scipy.ndimage.distance_transform_edt

Weighted Blending

Image Stitching Example

Aligned Images

Image Stitching Example

Blended Images

References: Textbooks

Computer Vision: Algorithms and Applications (Chapter 2, 9) Szeliski, R., Springer

References: Papers

[Fischler 1981] Fischler M. A. and Bolles R. C. "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography", 1981.

Image Credits

- I.1 http://www.flickr.com/photos/byspice/4577634277
- 1.2 http://www.ptgui.com/examples/quicktour5/
- I.3 Figure 2.4, Table 2.1, Computer Vision: Algorithms and Applications, Szeliski, R., Springer

Appendix A: Linear Transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c c} ig[oldsymbol{I} ig oldsymbol{t} ig]_{2 imes 3} \end{array}$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg[egin{array}{c c} R & t \end{bmatrix}_{2 imes 3}$	3	lengths $+\cdots$	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 \times 3}$	4	angles $+\cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	$\begin{bmatrix} \boldsymbol{A} \end{bmatrix}_{2\times 3}$ 6 parallelism $+\cdots$		
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Appendix B: RANSAC

How many iterations?

Suppose,

- p: probability or confidence with which we need the correct fit.
- α : probability of choosing an inlier while selecting the s samples.

If the s points are selected independently. Then,

Minimum number of iterations required:

$$N = \frac{\log(1-p)}{\log(1-\alpha^s)}$$

Appendix B: RANSAC

Minimum number of iterations required:

$$k = \frac{\log(1-p)}{\log(1-\alpha^s)}$$

	Proportion of inliers α							
S	95%	90%	80%	75%	70%	60%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

$$s = 8, \alpha = 60\%$$