Integral de Henstock-Kurzweil

Pablo Stefan Quintana

Universidad del Valle de Guatemala Teoría de la Medida

19 de mayo del 2023

Problemas con la Integral de Riemann

La integral de Riemann presenta problemas al momento de calcular algunas funciones

En este caso se toma la siguiente función:

$$f(x) = 1 - \delta_x(\mathbb{Q}) \tag{1}$$

con [0,1] como dominio. Entonces, tómese $\epsilon=0.5$, por lo tanto no existe una partición $\mathbb{P}\in\mathbb{P}([a,b])$ ni $A\in\mathbb{R}$ tal que:

$$|\sum_{i=0}^{n} f(x_i)(t_{i+1} - t_i)| < \epsilon = 0.5$$

Por lo tanto se concluye que esta función no es Riemann integrable, por lo tanto, esto motiva a investigar integrales que acepten tales funciones.

Ralph Henstock y Jaroslav Kurzweil

Ralph Henstock fue un matemático inglés que tomó interés por la generalización de la integral de Riemann, nació en el año 1923 y murió el año 2007.

Jaroslav Kurzweil nació en el año 1926 y murió en 2022, un matemático checoslovaco que tomaba mucho interés en series divergentes pero aportó en la teoría de integración.

Conceptos a conocer

Relación de coberturas

Definición: Una relación de coberturas es una familia de parejas ([c,d], x) con $x \in [c,d]$

Gauge

Definición: Función positiva $\delta : [a, b] \to (0, \infty)$

Cubiertas de Cousin

Definición: β es una cubierta de Cousin de un intervalo [a,b] si para cada $x \in [a,b]$ existe $\delta > 0$ tal que β contiene todos los pares ([c,d], x), para los cuales $x \in [c,d] \subseteq [a,b]$ y $(d-c) < \delta$

Definición Integral HK

Una función $f:[a,b]\to\mathbb{R}$ es HK-integrable sobre su dominio si existe un número A tal que para todo $\epsilon>0$ podemos encontrar una cubierta de Cousin β de [a,b] con la propiedad que:

$$|\sum_{(I,x)\in\mathbb{P}}f(x)I(I)-A|<\epsilon$$

para toda partición $\mathbb P$ contenida en β

Una definición diferente es la siguiente:

f es HK-integrable si existe un número A tal que para todo $\epsilon>0$, existe un gauge δ con la propiedad de que si $\mathbb P$ es una partición δ -fina entonces se cumple la ecuacion mostrada.

Nota: Ser δ -fina significa que para toda pareja ([c, d], x) de la partición $x \in [c, d] \subset [x - \delta(x), x + \delta(x)]$

Teorema (Unicidad)

Si $f \in HK(I)$ entonces el valor de A que satisface la ecuación antes mostrada es único.

Teorema (Criterio de Cauchy)

Sea $f: I \to \mathbb{R}$ Entonces $f \in HK(I)$ ssi para todo $\epsilon > 0$ existe una cubierta de Cousin β tal que si \mathbb{P}_1 y \mathbb{P}_2 son particiones contenidas en β entonces:

$$|\sum_{\mathbb{P}_1} f - \sum_{\mathbb{P}_2} f| < \epsilon$$

Definición de integral HK superior e inferior

Sea β una cubierta de Cousin:

Se define la integral inferior como:

$$\underline{I} = \int_{\underline{a}}^{\underline{b}} f(x) dx := inf_{\beta} S(f, \beta)$$

donde
$$S(f,\beta) = \sup_{\mathbb{P} \in \beta} \sum_{(I,x) \in \mathbb{P}} f(x) I(i)$$

Se define la integral superior como:

$$\overline{I} = \overline{\int_a^b} f(x) dx := \sup_{\beta} L(f, \beta)$$

donde $L(f,\beta) = \inf_{\mathbb{P} \in \beta} \sum_{(I,x) \in \mathbb{P}} f(x) I(i)$

Definición alterna de integral HK

Se dice que $f:[a,b]\to\mathbb{R}$ es (*) integrable si $\underline{I}=\overline{I}$

Lema: $f:[a,b]\to\mathbb{R}$ es (*) integrable ssi para todo $\epsilon>0$ existe una cubierta de Cousin β tal que $S(f,\beta)-L(f,\beta)<\epsilon$

Teorema: f; $[a, b] \to \mathbb{R}$ es HK integrable ssi es (*) integrable.

Riemann integrable implica HK integrable, igualdad casi todo punto

Si $f:[a,b]\to\mathbb{R}$ es Riemann integrable entonces es HK integrable. Además:

$$\int_R f = A = \int_{HK}$$

Si f es HK integrable y existe g tal que f=g μ -c.t.p entonces g es HK integrable.

Propiedades

- Linealidad
- Si $f \ge 0$ entonces $\int_{HK} f \ge 0$
- Si $f \leq g$ entonces $\int_{HK} f \leq \int_{HK} g$
- ullet Si f y |f| son HK integrables entonces $|\int_{HK} f| \leq \int_{HK} |f|$
- Si f es HK integrable y $m \le f \le M$ entonces $m(b-a) \le \int_a^b f \le M(b-a)$
- Si $f \in HK([a,b])$ entonces $f \in HK([c,d])$ para todo $[c,d] \subseteq [a,b]$
- $\int_a^b f = \int_a^c f + \int_c^b f$ para algún $c \in (a, b)$

Propiedades

- Apiñamiento: Una función f es HK integrable sobre I ssi para todo epsilon > 0 existen ϕ, ψ HK integrables sobre I tal que $\phi \leq f \leq \psi$ tal que: $\int_I (\psi \phi) \leq \epsilon$
- Si f es continua en I entonces $f \in HK(I)$
- Si f es monotona y acotada entonces en I $f \in HK(I)$
- Sea f_n una sucesion de funciones en I tal que $f_n \le f$ y $\int f_n \ge n$ entonces $f \notin HK(I)$

Funciones reguladas

Definición: Una función $f:I\to\mathbb{R}$ es regulada sobre I si para todo $\epsilon>0$ existe una función escalonada $s:I\to\mathbb{R}$ tal que:

$$|f(x) - s(x)| \le \epsilon$$
 para todo x en l

Teorema: Si una función es regulada entonces es HK integrable

Funciones Nulas

Definición: Una función es nula si el conjunto $E:=\{x:f(x)\neq 0\}$ es de medida 0

Teorema: Si una función es nula entonces es HK integrable

Teoremas de convergencia - Uniforme

Definición: Una sucesión f_k de funciones reales definidas en un intervalo cerrado I converge uniformemente sobre I a una función f si para todo $\epsilon > 0$ existe $n \in \mathbb{N}$ tal que $|f_k(x) - f(x)| < \epsilon$ para todo $k \ge N$ y x en I

Teorema: Si la sucesión f_n en HK(I) converge uniformemente a f entonces $f \in HK(I)$ y:

$$\int_{I} lim_{n \to \infty} f_n = lim_{n \to \infty} \int_{I} f_n$$

Teoremas de convergencia - Monotona

Sea f_n una sucesion monotona en HK(I) y sea $f(x) = \lim_n f_n(x)$ para todo x en I. Entonces $f \in HK(I)$ ssi la sucesión $\int_I f_n$ es acotada. En este caso:

$$\int_I f = \lim_{n \to \infty} \int_I f_n$$

Teoremas de convergencia - Dominada

Lema de Fatou: Sea f_n una sucesión en HK(I) con $f(x) = \lim_n f_n(x)$ para cada x en I y $\phi \in HK(I)$ tales que:

$$\phi \leq f_n$$

Si $\liminf \int_I f_n < \infty$ entonces $\liminf_n f_n \in HK(I)$ y $\int_I \liminf_n \leq \liminf \int_I f_n$ Teorema: Sea f_n una sucesión en HK(I) con $f(x) = \lim_n f_n(x)$ para cada x en I y $\phi, \psi \in HK(I)$ tales que:

$$\phi \le f_n \le \psi$$

para todo $n \in \mathbb{N}$ Entonces $f \in HK(I)$ y se cumlple que:

$$\int_I f = \lim_{n \to \infty} \int_I f_n$$