Exercício 1 (Capítulo 6, exercício 23). Mostre que $n = \sum_{d|n} \phi(d)$, para todo $n \in \mathbb{N} = \{1, 2, \dots\}$.

Solução:

Seja G um grupo cíclico de ordem n gerado por g. Sabemos que dado d um divisor de n, existe $g^k \in G$ tal que $|g^k| = d$. Assim, podemos escrever

$$G = \bigcup_{d|n} \{ \text{elementos de ordem } d \},$$

onde a união é disjunta. Logo $n=|G|=\sum_{d\mid n}\#\{\text{elementos de ordem }d\}$. Lembre-se de que

$$\phi: \mathbb{N} \to \mathbb{N}$$

$$n \mapsto \#\{m \le n \mid \operatorname{mdc}(m, n) = 1\}$$

Assim, dado $d \mid n$, vamos mostrar que #{elementos de ordem d} = $\phi(d)$. Note que o único elemento de ordem 1 em G é a identidade, logo $\phi(1) = 1 = \#\{\text{elementos de ordem 1}\}$. Seja $d \neq 1$ um divisor de G, isto é, $n = d\ell$. Sabemos que g^k , com $1 \leq k \leq n$, tem ordem d, se e somente se, $\frac{n}{\text{mdc}(k,n)} = d$, ou seja, se e somente se $\text{mdc}(k,n) = \frac{n}{d} = \ell$. Isso equivale a $\text{mdc}(\frac{k}{\ell},\frac{n}{\ell}) = 1$. Como $\frac{n}{\ell} = d$ e denotando $K = \frac{k}{\ell}$. Dessa forma, g^k em G tem ordem d, se e somente se mdc(K,d) = 1, onde $1 \leq K \leq d$, já que $1 \leq k \leq n$. Portanto, a quantidade de elementos em G que têm ordem d é a quantidade de k tais que $|g^k| = d$, o que equivale a quantidade de K tais que mdc(K,d) = 1. Isso significa que mdc(K,d) = 1. Isso significa que mdc(K,d) = 0.