تمرین سری چهارم درس هوش مصنوعی

سؤال 1:

$\neg A$	(1
$A \wedge B$	(۲
$A \Longrightarrow \neg B$	(۳
$A \lor ((\neg A) \Longrightarrow B)$	(r
$(A \land B) \lor ((\neg A) \land (\neg B))$	۵)

سؤال ۲:

جمله از نظر منطق گزارهای درست است؛ زیرا می توان جمله ی اول را به صورت $Guilty(I) \Rightarrow Punish(I)$ فرموله کرد. حال او باید او می گوید: من گناهکار هستم؛ یعنی Guilty(I) = True. پس طبق گزاره ی فوق، Punish(I) = True. پس او باید مجازات شود.

سؤال ٣:

جمله از نظر منطق گزارهای نادرست است؛ زیرا میتوان جمله ی اول را به صورت $Guilty(I) \Rightarrow Punish(I)$ فرموله کرد. حال او می گوید: من گناهکار نیستم؛ یعنی Guilty(I) = False. اما طبق گزاره ی فوق نمی توان درباره ی مجازات شدن اظهار نظر کرد؛ زیرا ممکن است او با این که گناهکار نیست، مجازات شود. طبق منطق گزارهای نیز هر دو عبارت $False \rightarrow False$ برقرارند. پس نمی توان گفت که او نباید مجازات شود.

سؤال 4:

اگر به طور موقت فرض کنیم که هر دو نوشته درست هستند، می توان جعبه ی B را با اطمینان انتخاب کرد؛ زیرا طبق جمله ی اول می توان دریافت که حتماً یکی از این دو جعبه حاوی گنج است و طبق جمله ی دوم جعبه ی A حاوی یک تله ی مرگبار است. از آنجا که علی می داند که یک جعبه یا حاوی تله است یا گنج (نه هر دو)، می تواند نتیجه بگیرد که گنج درون جعبه ی A نیست. پس گنج درون جعبه ی B خواهد بود؛ زیرا حتماً یکی از این دو جعبه حاوی گنج است. پس می توان با اطمینان جعبه ی B را انتخاب کرد.

اگر به طور موقت فرض کنیم که هر دو نوشته نادرست هستند، چون نوشتهی روی جعبهی A نادرست است، پس هیچکدام از دو جعبه حاوی گنج نیستند. بدین ترتیب، هر دو حاوی تلهی مرگبار خواهند بود. از طرفی دیگر، نوشتهی روی جعبهی B نیز نادرست است که از آن نتیجه می گیریم که جعبهی A حاوی تلهی مرگبار نیست. این یک تناقض است و بنابراین امکان ندارد هر دو جمله نادرست باشند. بنابراین هر دو جمله حتماً درست هستند و می توان با اطمینان همان جعبهی B را انتخاب کرد.

سؤال ۵:

$\forall x \in Students Intelligent(x)$	(1
$\exists x \in Students$	(۲
$\exists x \in Students Intelligent(x)$	(m
$\forall x \in Students \exists somethings \subseteq Things \forall t \in somethings \ Likes(x,t)$	(۴
$\exists t \in Things \forall x \in Students Likes(x,t)$	۵)
$Ahmad \in Students$	(۶
$(TakesCourse(Ahmad, Analysis) \land \neg TakesCourse(Ahmad, Geometry)) \lor (TakesCourse(Ahmad, Geometry) \land \neg TakesCourse(Ahmad, Analysis))$	
$TakesCourse(Ahmad, Analysis) \land TakesCourse(Ahmad, Geometry)$	(٨
$\neg TakesCourse(Ahmad, Analysis)$	(ዓ
$\nexists x \in Students Likes(x, Ahmad)$	(10

سؤال 6:

- الف) به ازای هر x، اگر x بستنی باشد، آن گاه x خوراکی است.
- به ازای هر x، اگر x تافی کُرهای باشد، آنگاه x خوراکی است.
- به ازای هر x و y، اگر x و y هر دو خوراکی باشند و x خنک باشد و x و y با هم ترکیب (قاطی) شوند، آنگاه y نیز خنک است (خواهد بود).
- x و yای وجود دارند به طوری که x بستنی و خنک باشد و y تافی کَرهای باشد و x و y با هم ترکیب (قاطی) شده باشند.
- i. $\neg icecream(x) \lor food(x)$
- ii. $\neg fudge(x) \lor food(x)$
- iii. $\neg food(x) \lor \neg food(y) \lor \neg cold(x) \lor \neg combine(x, y) \lor cold(y)$
- iv. $icecream(a) \wedge cold(a) \wedge fudge(b) \wedge combine(a, b)$
 - 1. icecream(a)
 - 2. cold(a)
 - 3. *fudge(b)*
 - 4. combine(a, b)
- v. $\neg fudge(x) \lor \neg cold(x)$
- vi. [(i), (iv. 1)]: food(a)

```
vii.
        [(ii), (iv.3)]: food(b)
        [(v)]: \neg fudge(b) \lor \neg cold(b)
viii.
        [(viii), (iii)]: \neg fudge(b) \lor \neg food(a) \lor \neg food(b) \lor \neg cold(a) \lor
ix.
        \neg combine(a, b)
        [(ix),(iv.4)]: \neg fudge(b) \lor \neg food(a) \lor \neg food(b) \lor \neg cold(a)
X.
        [(x),(iv.2)]: \neg fudge(b) \lor \neg food(a) \lor \neg food(b)
xi.
        [(xi),(vii)]: \neg fudge(b) \lor \neg food(a)
xii.
        [(xii),(vi)]: \neg fudge(b)
xiii.
xiv.
        [(xiii),(iv.3)]:
```

سؤال ٧:

- $\{fox/X, mouse/Y\}: eats(fox, mouse)$
- $\{fox/X, mouse/Y\}: eats(fox, mouse) \Rightarrow larger(fox, mouse)$
- $\{lion/X, fox/Y\}: larger(lion, fox)$
- {lion/X, fox/Y, mouse/Z}: $larger(lion, fox) \land larger(fox, mouse) \Rightarrow larger(lion, mouse)$
- \ \{elephant/X, \lion/Y\}: \larger(elephant, \lion)
- {elephant/X, lion/Y, mouse/Z}: $larger(elephant, lion) \land larger(lion, mouse) \Rightarrow larger(elephant, mouse)$