Topic: The p-value and rejecting the null

Question: Which pair of p-value and significance level would lead us to reject the null hypothesis of the test?

Answer choices:

- A lower-tailed test with p = 0.002 and $\alpha = 0.001$
- B An upper-tailed test with p = 0.925 and $\alpha = 0.95$
- C A two-tailed test with p = 0.07 and $\alpha = 0.05$
- D A lower-tailed test with p = 0.085 and $\alpha = 0.05$

Solution: B

We reject, or fail to reject, the null hypothesis based on the relationship between the p-value and the α level, regardless of the type of test.

If $p \le \alpha$, we reject the null hypothesis

If $p > \alpha$, we don't reject the null hypothesis

In answer choice A with p=0.002 and $\alpha=0.001,\,0.002>0.001$ so $p>\alpha,$ which means we fail to reject the null hypothesis.

In answer choice B with p=0.925 and $\alpha=0.95,\,0.925<0.95$ so $p\leq\alpha,$ which means we reject the null hypothesis.

In answer choice C with p=0.07 and $\alpha=0.05,\,0.07>0.05$ so $p>\alpha,$ which means we fail to reject the null hypothesis.

In answer choice D with p=0.085 and $\alpha=0.05,\,0.085>0.05$ so $p>\alpha,$ which means we fail to reject the null hypothesis.

Topic: The p-value and rejecting the null

Question: The smaller the p-value...

Answer choices:

- A the more significant the result.
- B the less likely it is that we found this result purely by chance.
- C the more likely we are to reject the null hypothesis.
- D All of these

Solution: D

The smaller the p-value is in a statistical significance test, the more likely we are to reject the null hypothesis and make a claim that the alternative hypothesis is true.

If we find a very smaller p-value, it means it was unlikely that we obtained our result by chance, which means the conclusion is significant at a higher level.

Topic: The p-value and rejecting the null

Question: If we're running an upper-tailed test and find p = 0.0643, what is the *z*-value that gives the boundary between the region of acceptance and the region of rejection?

Answer choices:

A
$$z = -1.85$$

B
$$z = -1.52$$

C
$$z = 1.52$$

D
$$z = 1.85$$

Solution: C

In an upper-tailed test, the entire region of rejection will lie in the upper tail, with the region of acceptance (non-rejection region) to the left of the region of rejection.

Which means the full p=0.0643 will lie in the upper tail. If we subtract this value from 1, we'll get the value that we'll be looking for in the body of the z-table.

1 - 0.0643

0.9357

If we look for 0.9357 in the body of the z-table, we find z = 1.52.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545