report.md 2025-06-10

CUDA 2025 HW3

Problem statement

We solve the 3-D Poisson equation

$$abla^2\phi({f r})=-
ho({f r})$$

inside a cubic box of edge L (with lattice spacing h=1) under boundary conditions $\phi=0$ on every face. A unit point charge is placed at the cube centre:

$$ho({f r}) = \delta_{i,i_c}; \delta_{j,j_c}; \delta_{k,k_c}.$$

Numerical method (CUDA)

Item	Design choice
Discretisation	7-point Jacobi update with a ghost layer (array size $(L!+!2)^3$) so no branch is needed at the faces.
Source term	Centre cell adds $+h^2 ho/6=+1/6$ each sweep.
Memory	Two ping-pong buffers ($in \rightarrow out$, then swap).
Kernel launch	Blocks $8 imes 8 imes 8$; grid $\lceil L/8 ceil^3$.
Convergence	Fixed sweep counts that were benchmarked once: 800, 1 500, 3 500, 7 500 for $L=8,16,32,64$

Results

report.md 2025-06-10

Discussion

On log-log axes every numerical curve is parallel to the dashed r^{-1} guide for small r. This confirms the discrete Laplacian reproduces Coulomb's law.

Enviroment

• OS: Ubuntu 22.04.3 LTS

CPU: Intel(R) Core(TM) i7-9800X CPU @ 3.80GHz

• GPU: NVIDIA GeForce RTX 2080 Ti

Usage

1. Source Files

Cuda Code: hw3.cuDriver Code: driver.py

2. Compile

nvcc hw3.cu -o hw3

report.md 2025-06-10

3. Single Run

./hw1 <L> <maxiter>

4. Poisson experiment

python3 driver.py