Tabela 1: Leis da negação, conjunção e disjunção

Leis	Nome
$\alpha \wedge \neg \alpha \equiv falso$	Lei da contradição
$\alpha \vee \neg \alpha \equiv verdade$	Lei do meio excluído
$\alpha \wedge verdade \equiv \alpha$	
$\alpha \vee falso \equiv \alpha$	Leis da identidade
$\alpha \wedge falso \equiv falso$	
$\alpha \vee verdade \equiv verdade$	Leis da dominação
$\alpha \wedge \alpha \equiv \alpha$	
$\alpha \vee \alpha \equiv \alpha$	Leis idempotentes
$\neg(\neg\alpha) \equiv \alpha$	Lei da dupla negação
$\alpha \wedge \beta \equiv \beta \wedge \alpha$	
$\alpha \vee \beta \equiv \beta \vee \alpha$	Leis comutativas
$(\alpha \wedge \beta) \wedge \gamma \equiv \alpha \wedge (\beta \wedge \gamma)$	
$(\alpha \vee \beta) \vee \gamma \equiv \alpha \vee (\beta \vee \gamma)$	Leis associativas
$\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$	
$\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$	Leis distributivas
$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$	
$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$	Leis De Morgan

Equivalências da condicional e da bicondicional:

$(\alpha \to \beta)$	$\equiv \neg \alpha \lor \beta$
$(\alpha \leftrightarrow \beta)$	$\equiv (\alpha \to \beta) \land (\beta \to \alpha)$
$(\alpha \leftrightarrow \beta)$	$\equiv (\alpha \to \beta) \land (\beta \to \alpha)$
	$\equiv (\neg \alpha \vee \beta) \wedge (\neg \beta \vee \alpha)$

Equivalências importantes:

$\alpha \vee (\alpha \wedge \beta)$	$\equiv \alpha$	absorção
$\alpha \wedge (\alpha \vee \beta)$	$\equiv \alpha$	absorção
$(\alpha \wedge \beta) \vee (\neg \alpha \wedge \beta)$	$\equiv \beta$	
$(\alpha \vee \beta) \wedge (\neg \alpha \vee \beta)$	$\equiv \beta$	

Tabela 2: Regras de inferência

Regra Nome				
Regra				
$\alpha, \alpha \to \beta \models \beta$	modus ponens			
$\alpha \to \beta, \neg \beta \models \neg \alpha$	modus tollens			
$\alpha \to \beta, \beta \to \gamma \models \alpha \to \gamma$	silogismo hipotético (regra da cadeia)			
$\alpha \vee \beta, \neg \alpha \models \beta$	silogismo disjuntivo			
$\alpha \lor \beta, \neg \beta \models \alpha$	silogismo disjuntivo (variante)			
$\alpha \wedge \beta \models \alpha$	simplificação			
$\alpha \wedge \beta \models \beta$	simplificação (variante)			
$\alpha, \beta \models \alpha \land \beta$	conjunção (ou combinação)			
$\alpha \to \beta, \neg \alpha \to \beta \models \beta$	de casos			
$\alpha \models \alpha \lor \beta$	adição			
$\beta \models \alpha \lor \beta$	adição (variante)			
$\alpha \to \beta, \gamma \to \delta, \alpha \lor \gamma \models \beta \lor \delta$	dilema construtivo			
$\alpha \to \beta, \gamma \to \delta, \neg \beta \lor \neg \delta \models \neg \alpha \lor \neg \gamma$	dilema destrutivo			
$\alpha \to \beta \models \neg \beta \to \neg \alpha$	contraposição			
$\alpha, \neg \alpha \models \beta$	da inconsistência			
$\alpha \to \beta, \beta \to \alpha \models \alpha \leftrightarrow \beta$	introdução da equivalência			
$\alpha \leftrightarrow \beta \models \alpha \to \beta$	eliminação da equivalência			
$\alpha \leftrightarrow \beta \models \beta \to \alpha$	eliminação da equivalência (variante)			

Tabela 3: Regras do Algoritmo de Wang

Regra		torna-se
R_1	$(\ldots, \neg \alpha, \cdots \Rightarrow \ldots, \beta)$	$(\cdots \Rightarrow \ldots, \beta, \alpha)$
R_1	$(\alpha, \dots \Rightarrow \dots, \neg \beta, \dots)$	$(\beta, \alpha, \dots \Rightarrow \dots)$
R_2	$(\ldots, \alpha \land \beta, \cdots \Rightarrow \ldots)$	$(\ldots, \alpha, \beta, \cdots \Rightarrow \ldots)$
R_2	$(\cdots \Rightarrow \ldots, \alpha \vee \beta, \ldots)$	$(\cdots \Rightarrow \ldots, \alpha, \beta, \ldots)$
R_3	$(\ldots, \alpha \vee \beta, \cdots \Rightarrow \ldots)$	$(\ldots, \alpha, \cdots \Rightarrow \ldots)$ e
		$(\ldots,\beta,\cdots\Rightarrow\ldots)$
R_4	$(\cdots \Rightarrow \ldots, \alpha \land \beta, \ldots)$	$(\cdots \Rightarrow \ldots, \alpha, \ldots)$ e
		$(\cdots \Rightarrow \ldots, \beta, \ldots)$
R_5	$(\cdots \Rightarrow \ldots, \alpha \to \beta, \ldots)$	$(\cdots \Rightarrow \ldots, \neg \alpha \lor \beta, \ldots)$
R_5	$(\ldots, \alpha \to \beta, \cdots \Rightarrow \ldots)$	$(\ldots, \neg \alpha \lor \beta, \cdots \Rightarrow \ldots)$
R_6	$(\ldots, \alpha \leftrightarrow \beta, \cdots \Rightarrow \ldots)$	$(\ldots, (\alpha \to \beta) \land (\beta \to \alpha), \cdots \Rightarrow \ldots)$
R_6	$(\cdots \Rightarrow \ldots, \alpha \leftrightarrow \beta, \ldots)$	$(\cdots \Rightarrow \ldots, (\alpha \to \beta) \land (\beta \to \alpha), \ldots)$
R_7	$(\ldots,\alpha,\cdots\Rightarrow\ldots,\alpha,\ldots)$	v, ou seja, é um teorema