Topology Recitation

Recitation 1, Sunday March 19, 2022 Ari Feiglin

Definition 1.0.1:

If M is a metric space, then the diameter of a set $A \subseteq M$ is:

$$diam(A) = \sup \{ \rho(x, y) \mid x, y \in A \}$$

and A is bounded if $diam(A) < \infty$.

Proposition 1.0.2:

The union of two bounded sets is itself bounded.

Proof:

Suppose A and B are bounded, let $a \in A$ and $b \in B$, then $M = \operatorname{diam}(A) + \operatorname{diam}(B) + \rho(a, b)$. We claim $\operatorname{diam}(A \cup B) \leq M$. Let $x, y \in A \cup B$. If both x and y are in the same set then $\rho(x, y) \leq \operatorname{diam}(A)$ or $\operatorname{diam}(B)$ depending on which set they're in, and necessarily $\rho(x, y) \leq \operatorname{diam}(A) + \operatorname{diam}(B) \leq M$. Otherwise suppose $x \in A$ and $y \in B$ then $\rho(x, y) \leq \rho(x, a) + \rho(a, b) + \rho(b, y) \leq \operatorname{diam}(A) + \rho(a, b) + \operatorname{diam}(B) = M$ as required.

Definition 1.0.3:

An ultrametric space is a set M equipped with an ultrametric, a function $\rho: M \times M \longrightarrow \mathbb{R}_{>0}$ where

- (1) $\rho(x,y) = 0$ if and only if x = y
- (2) $\rho(x,y) = \rho(y,x)$
- (3) $\rho(x,y) \le \max\{\rho(x,z), \rho(z,y)\}\$

An ultrametric is trivially also a metric.

Let X be the set of infinite sequences above $\{0, \ldots, n-1\}$, ie $X = \{0, \ldots, n-1\}^{\mathbb{N}}$. If $w \in X$ is a sequence we understand that w_i is the *i*th index of w. Then for $w, v \in X$ we define:

$$k(w, v) = \begin{cases} \infty & w = v \\ \min\{i \in \mathbb{N} \mid w_i \neq v_i\} \end{cases}$$

and we define:

$$\rho(w,v) = \begin{cases} 0 & u = v \\ \frac{1}{p^{k(w,v)}} & u \neq v \end{cases}$$

for 1 < p. We claim that ρ is an ultrametric. It is obvious that it is both nonnegative and symmetric, as well as that it is 0 only when w = v. So we must prove the triangle inequality. Suppose $w, u, v \in X$ then if any one of them are equal, this is trivial. Otherwise we must show that

$$\rho(w,v) \le \max\{\rho(w,u),\rho(u,v)\} \iff \frac{1}{p^{k(w,v)}} \le \max\left\{\frac{1}{p^{k(w,u)}},\frac{1}{p^{k(u,v)}}\right\}$$

This is equivalent to

$$p^{-k(w,v)} \leq \max\Bigl\{p^{-k(w,u)}, p^{-k(u,v)}\Bigr\}$$

and since p > 1 this is only if

$$-k(w,v) \le \max\{-k(w,u), -k(u,v)\} \iff k(w,v) \ge \min\{k(w,u), k(u,v)\}$$

Suppose for the sake of a contradiction that this is false, ie $k(w, v) < \min\{k(w, u), k(u, v)\}$. Let i = k(w, v) and so $w_i \neq v_i$, and we furthermore know that i < k(w, u), so $u_i = w_i$ and i < k(u, v) so $u_i = v_i$ so $w_i = v_i$ in contradiction to $w_i \neq v_i$. So ρ is in fact a metric.

Definition 1.0.4:

Let p be prime, then we define the metric d_p over the integers \mathbb{Z} by:

$$d_p(x,y) = \begin{cases} 0 & x = y\\ \frac{1}{p^{k(x,y)}} & x \neq y \end{cases}$$

where

$$k(x,y) = \max\{n \in \mathbb{N}_{>0} \mid p^n \mid (x-y)\}$$

This is called the p-adic metric.

We claim that d_p is an ultrametric:

$$d_p x, y \le \max\{d_p x, z, d_p z, y\} \iff k(x, y) \ge \min\{k(x, z), k(z, y)\}$$

Suppose $i = \min\{k(x, z), k(z, y)\}$ then $p^i \mid (x - z), (z - y)$ and so $p^i \mid ((x - z) + (z - y)) \implies p^i \mid (x - y) \implies i \le k(x, y)$ as required.

There is a connection between the two metric spaces we defined above.

Definition 1.0.5:

A iosmetry between two metric spaces (M, ρ) and (N, σ) is a function $f: M \longrightarrow N$ such that for every $x, y \in M$:

$$\rho(x,y) = \sigma(f(x), f(y))$$

Every isometry is an injection: if f(x) = f(y) then $\rho(x,y) = \sigma(f(x),f(y)) = 0$ so x = y.

Recall that every $z \in Z$ has a unique representation in base p, that is there is a unique sequence $\{a_i\}_{i=0}^k \in \{0, \dots, p-1\}$ such that:

$$z = \pm \sum_{i=0}^{k} z_i p^i$$

So if we let C_p be the set of all sequences above $\{0,\ldots,p-1\}$ with the metric defined above, we define an isometry:

$$\varphi\colon \mathbb{Z} \longrightarrow C_p$$

By

$$\varphi(z) = \begin{cases} \{z_0, z_1, \dots, a_k, 0, \dots\} & z \ge 0 \\ \{z_0, \dots, z_k, (p-1), \dots\} & z < 0 \end{cases}$$

We claim that φ is indeed an isometry. So we must prove that:

$$d_p(z,w) = p^{-k(\{z_i\},\{w_i\})} = \rho(\{z_i\},\{w_i\})$$

where k is the function defined on C_p . Let $t = k(\{z_i\}, \{w_i\})$, so t is the first index where $z_i \neq w_i$, that is the first index where $z_i - w_i \neq 0$. So we must show that $p^t \mid (z - w)$ and p^{t+1} does not. We know that p^t divides z - w since $z - w = (z_i - w_i)p^t + \ldots$ so p^t divides z - w, and since $z_i - w_i \neq 0$ p^{t+1} does not. So we have shown that k(z, w) in \mathbb{Z} is equal to $k(\{z_i\}, \{w_i\}) = k(f(z), f(w))$ in C_p , and so $d_p(z, w) = \rho(f(z), f(w))$ as required.

Proposition 1.0.6:

If M is an ultrametric space, then if $y \in B_r(x)$ then $B_r(y) = B_r(x)$, that is every point in a ball is its center.

Proof:

We will show that $B_r(y) \subseteq B_r(x)$. Suppose $z \in B_r(y)$, so $\rho(z,x) \le \max\{\rho(z,y),\rho(x,y)\} < \max\{r,r\} = r$. So $z \in B_r(x)$. Then by symmetry (since $x \in B_r(y)$), $B_r(x) \subseteq B_r(y)$.

Notice that p^n converges to 0 in the p-adics: $d_p p^n, 0 = p^{-n}$ which converges to 0 (in \mathbb{R}), so p^n converges to 0 in the p-adics.