Package 'algaeClassify'

March 17, 2022

Title Determine Phytoplankton Functional Groups Based on Functional Traits

Version 1.4.0

Date 2022-03-15

Author Vijay Patil [aut, cre],

Torsten Seltmann [aut],

Nico Salmaso [aut],

Orlane Anneville [aut],

Marc Lajeunesse [aut],

Dietmar Straile [aut]

Maintainer Vijay Patil Vpatil@usgs.gov>

Description Functions that facilitate the use of accepted taxonomic nomenclature, collection of functional trait data, and assignment of functional group classifications to phytoplankton species. Possible classifications include Morpho-functional group (MFG; Salmaso et al. 2015 <doi:10.1111/fwb.12520>) and CSR (Reynolds 1988; Functional morphology and the adaptive strategies of phytoplankton. In C.D. Sandgren (ed). Growth and reproductive strategies of freshwater phytoplankton, 388-433. Cambridge University Press, New York). Versions 1.3.0 and later no longer include the algae search() function for querying the algaebase online taxonomic database (www.algaebase.org). Users are advised to verify taxonomic names directly using algaebase and cite the database in resulting publications. Note that none of the algaeClassify authors are affiliated with algaebase in any way. However, species lists can be checked against a variety of taxonomic databases using the geographic name resolution service (GNRS) via wrapper functions for the taxize package, with convenient output format and unlikely names for phytoplankton taxa removed. Currently accepted and outdated synonyms, and higher taxonomy, can be extracted for lists of species from the ITIS database using wrapper functions for the ritis package. The algaeClassify package is a product of the GEISHA (Global Evaluation of the Impacts of Storms on freshwater Habitat and Structure of phytoplankton Assemblages), funded by CESAB (Centre for Synthesis and Analysis of Biodiversity) and the USGS John Wesley Powell Center for Synthesis and Analysis, with data and other support provided by members of GLEON (Global Lake Ecology Observation Network). This software is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The software has not received final approval by the U.S. Geological Survey (USGS). No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. The software is provided on the condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the software.

Depends R (>= 3.4.0)

2 R topics documented:

Imports lubridate, stats, taxize, ritis
License GPL-2 GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
RemoteType github
RemoteHost api.github.com
RemoteRepo GEISHA_phytoplankton
RemoteUsername vppatil
RemoteRef working
RemoteSha f7188b9197ddcd69980141d69a92d5f4b341837c
RemoteSubdir package builds/algaeClassify
GithubRepo GEISHA_phytoplankton
GithubUsername vppatil
GithubRef working
GithubSHA1 f7188b9197ddcd69980141d69a92d5f4b341837c
GithubSubdir package builds/algaeClassify

R topics documented:

NeedsCompilation no

cum	 	3
estmatch	 	4
rTraits	 	4
ite_mat	 	5
enus_search_itis	 	6
enus_species_extract	 	7
nr_simple	 	7
nr_simple_df	 	8
s_search_df	 	9
kegeneva	 	10
ean_naomit	 	10
fgTraits	 	11
fg_csr_convert		
fg_csr_convert_df	 	12
fg_csr_library	 	13
nyto_ts_aggregate	 	13
mpeff	 	14
ecies_mfg_library	 	15
ecies_search_itis	 	16
ecies_to_mfg		
ecies_to_mfg_df		
nitranges	 	18
nits_to_csr	 	19
nits_to_csr_df		
nits_to_mfg	 	21
aits to mfg df	 	2.2.

accum 3

Index 23

Split a dataframe column with binomial name into genus and species columns. Plots change in species richness over time, generates species accumulation curve, and compares SAC against simulated idealized curve assuming all unique taxa have equal probability of being sampled at any point in the time series. (author Dietmar Straile)

Description

Split a dataframe column with binomial name into genus and species columns. Plots change in species richness over time, generates species accumulation curve, and compares SAC against simulated idealized curve assuming all unique taxa have equal probability of being sampled at any point in the time series. (author Dietmar Straile)

Usage

```
accum(
  b_data,
  phyto_name = "phyto_name",
  column = NA,
  n = 100,
  save.pdf = FALSE,
  lakename = "",
  datename = "date_dd_mm_yy",
  dateformat = "%d-%m-%y"
)
```

Arguments

b_data	Name of data.frame object
phyto_name	Character string: field containing phytoplankton id (species, genus, etc.)
column	column name or number for field containing abundance (biomass,biovol, etc.). Can be NA if the dataset only contains a species list for each sampling date.
n	number of simulations for randomized ideal species accumulation curve
save.pdf	TRUE/FALSE- should plots be displayed or saved to a pdf?
lakename	optional character string for adding lake name to pdf output
datename	character string name of b_data field containing date
dateformat	character string: posix format for datename column

Value

a two panel plot with trends in richness on top, and cumulative richness vs. simulated accumulation curve on bottom

4 csrTraits

Examples

```
data(lakegeneva)
#example dataset with 50 rows
head(lakegeneva)
accum(b_data=lakegeneva,column='biovol_um3_ml',n=10,save.pdf=FALSE)
```

bestmatch fuzzy partial matching between a scientific name and a list of possible matches

Description

fuzzy partial matching between a scientific name and a list of possible matches

Usage

```
bestmatch(enteredName, possibleNames, maxErr = 3, trunc = TRUE)
```

Arguments

enteredName Character string with name to check possibleNames Character vector of possible matches

maxErr maximum number of different bits allowed for a partial match

trunc TRUE/FALSE. if true and no match, retry with last three letters truncated

Value

a character string with the best match, or 'multiplePartialMatches' $\,$

Examples

```
possibleMatches=c('Viburnum edule','Viburnum acerifolia')
bestmatch(enteredName='Viburnum edulus',possibleNames=possibleMatches)
```

csrTraits Database of functional traits for MFG classification, derived from Rimet et al. 2019

Description

Database of functional traits for MFG classification, derived from Rimet et al. 2019

Usage

```
data(mfgTraits)
```

date_mat 5

Format

A data frame with columns:

phyto_name binomial scientific name

genus genus name

species species name

SAV surface area:volume ratio

MLD maximum linear dimension (micrometers)

MSV product of SAV and MLD; unitless

volume.um3 cell or colony biovolume

surface.area.um2 biological unit (cell or colony) surface area accounting for mucilage

Colonial 1/0 indicates colonial growth form

Number.of.cells.per.colony literature-based average colony abundance

Geometrical.shape.of.the.colony Shape descriptions. See Rimet et al. 2019 for abbreviations

traitCSR CSR classification using traits_to_CSR function and criteria from Reynolds 2006

date_mat

Transform a phytoplankton timeseries into a matrix of abundances for ordination

Description

Transform a phytoplankton timeseries into a matrix of abundances for ordination

Usage

```
date_mat(
  phyto.df,
  abundance.var = "biovol_um3_ml",
  summary.type = "abundance",
  taxa.name = "phyto_name",
  date.name = "date_dd_mm_yy",
  format = "%d-%m-%y",
  time.agg = c("day", "month", "year", "monthyear"),
  fun = mean_naomit
)
```

Arguments

phyto.df Name of data.frame object

abundance .var Character string: field containing abundance data. Can be NA if the dataset only

contains a species list for each sampling date.

summary.type 'abundance' for a matrix of aggregated abundance, 'presence.absence' for 1 (present)

and 0 (absent).

taxa.name Character string: field containing taxonomic identifiers.

date.name Character string: field containing date.

format Character string: POSIX format string for formatting date column.

time.agg Character string: time interval for aggregating abundance. default is day.

fun function for aggregation. default is mean, excluding NA's.

6 genus_search_itis

Value

A matrix of phytoplankton abundance, with taxa in rows and time in columns. If time.agg = 'monthyear', returns a 3dimensional matrix (taxa,month,year). If abundance.var = NA, matrix cells will be 1 for present, 0 for absent

Examples

```
data(lakegeneva)
#example dataset with 50 rows

geneva.mat1<-date_mat(lakegeneva,time.agg='month',summary.type='presence.absence')
geneva.mat2<-date_mat(lakegeneva,time.agg='month',summary.type='abundance')

geneva.mat1
geneva.mat2</pre>
```

genus_search_itis

Wrapper function for several functions in ritis:: Searches ITIS database for matches to a genus name outputs matches, current accepted names, synonyms, and higher taxonomy

Description

Wrapper function for several functions in ritis:: Searches ITIS database for matches to a genus name outputs matches, current accepted names, synonyms, and higher taxonomy

Usage

```
genus_search_itis(genus, higher = FALSE)
```

Arguments

genus Character string. genus name to search for in ITIS

higher Boolean. If TRUE, add higher taxonomic classifications to output

Value

input data frame with a new character column of MFG classifications and diagnostic information

```
genus='Anabaena'
genus_search_itis(genus,higher=TRUE)
```

genus_species_extract 7

```
genus_species_extract Split a dataframe column with binomial name into genus and species columns.
```

Description

Split a dataframe column with binomial name into genus and species columns.

Usage

```
genus_species_extract(phyto.df, phyto.name)
```

Arguments

```
phyto.df Name of data.frame object
phyto.name Character string: field in phyto.df containing species name.
```

Value

A data.frame with new character fields 'genus' and 'species'

Examples

```
data(lakegeneva)
#example dataset with 50 rows
head(lakegeneva) #need to split the phyto_name column
new.lakegeneva=genus_species_extract(lakegeneva,'phyto_name')
head(new.lakegeneva)
```

gnr_simple

Wrapper function for taxize::gnr_resolve() checks species names against a variety of online databases supports fuzzy partial matching

Description

Provides convienent output with a single result, using a variety of criteria for the best match

Usage

```
gnr_simple(
  name,
  sourceid = NULL,
  topscore = TRUE,
  numhits = TRUE,
  canonical = TRUE,
  with_context = TRUE,
  ...
)
```

8 gnr_simple_df

Arguments

name character string binomial scientific name to resolve sourceid integer with data source id from taxize::gnr_datasources() boolean. Should the best match be returned based on score? topscore boolean. Should the best match be returned based on the number of sources with numhits a match? canonical If TRUE, names do not include authorship or date If TRUE, Match scores are weighted for taxonomic consistency with_context

Other parameters passed to taxize::gnr_resolve() . . .

Value

new data.frame with name matches, column indicating an exact match, scores, and number of hits (matches) from different data sources in gnr_resolve()

Examples

```
#use taxize::gnr_datasources() to see all possible data sources for name checking.
name<-"Aphanazomenon flos-aquae"
#sourceid=3 for ITIS database,195 for Algaebase
gnr_simple(name, sourceid=3)
```

gnr_simple_df

Wrapper function to apply gnr_simple across a data.frame or list of species names

Description

Provides convienent output with a row per name. To streamline merging with original data.

Usage

```
gnr_simple_df(
 df,
 name.column,
  sourceid = NA,
  topscore = TRUE,
  numhits = TRUE,
 canonical = TRUE,
 with_context = TRUE,
```

Arguments

df data.frame containing names to check

integer or character string with column name containing species names name.column

sourceid integer with data source id from taxize::gnr_datasources() boolean. Should the best match be returned based on score? topscore

itis_search_df

numhits boolean. Should the best match be returned based on the number of sources with

a match?

canonical If TRUE, names do not include authorship or date

with_context If TRUE, Match scores are weighted for taxonomic consistency

... Other parameters passed to taxize::gnr_resolve()

Value

new data.frame original names (orig.name), 1/0 flag for an exact match, the best match (matched.name), and other output from gnr_simple(). scores, and number of hits (matches) from different data sources in gnr_resolve()

Examples

```
data(lakegeneva)
#example dataset with 50 rows

new.lakegeneva <- genus_species_extract(lakegeneva,'phyto_name')
new.lakegeneva$genus_species <- trimws(paste(new.lakegeneva$genus,
new.lakegeneva$species))

#checking for matches from all GNRS sources:
lakegeneva.namematches <- gnr_simple_df(new.lakegeneva,"genus_species")
head(lakegeneva.namematches)</pre>
```

 $\verb|itis_search_df| & \textit{Wrapper function for applying genus_search_itis} & \textit{and} \\$

species_search_itis to a whole data.frame containing scientific

names

Description

Wrapper function for applying genus_search_itis and species_search_itis to a whole data.frame containing scientific names

Usage

```
itis_search_df(df, namecol = NA, higher = FALSE, genus.only = FALSE)
```

Arguments

df data.frame containing names to check

namecol integer or character string with column name containing species or genus names

higher Boolean. If TRUE, add higher taxonomic classifications to output

genus.only boolean If TRUE, search for matches with just the genus name using genus_search_itis

Value

data.frame with submitted names (orig.name), matched names (matched.name), 1/0 flag indicating that original name is currently accepted (orig.name.accepted), 1/0 flag indicating if search was genus_only (for distinguishing genus_search_itis and species_search_itis results), synonyms if any, and higher taxonomy (if higher=TRUE)

10 mean_naomit

Examples

```
data(lakegeneva)
#example dataset with 50 rows

new.lakegeneva <- genus_species_extract(lakegeneva, 'phyto_name')

#checking for genus-only name matches in ITIS, and extracting higher taxonomy
#flagging names with imperfect or no matches

lakegeneva.genus.itischeck <- itis_search_df(new.lakegeneva, "genus", genus.only=TRUE)
head(lakegeneva.genus.itischeck)</pre>
```

lakegeneva

example dataset from lake Geneva, Switzerland

Description

example dataset from lake Geneva, Switzerland

Usage

```
data(lakegeneva)
```

Format

A data frame with columns:

lake lake name
phyto_name phytoplankton species name
month month of sampling
year year of sampling
date_dd_mm_yy date of sampling
biovol_um3_ml biovolume

mean_naomit

Compute mean value while ignoring NA's

Description

Compute mean value while ignoring NA's

Usage

```
mean_naomit(x)
```

Arguments

Х

A numeric vector that may contain NA's

mfgTraits 11

Value

the mean value

Examples

```
data(lakegeneva)
#example dataset with 50 rows
mean_naomit(lakegeneva$biovol_um3_ml)
```

mfgTraits

Functional Trait Database derived from Rimet et al.

Description

Functional Trait Database derived from Rimet et al.

Usage

```
data(mfgTraits)
```

Format

A data frame with columns:

phyto_name binomial scientific name

genus genus name

species species name

Mobility.apparatus 1/0 indicates presence/absence of flagella or motility

Size character values 'large' or 'small'; based on 35 micrometer max linear dimension

Colonial 1/0 indicates typical colonial growth form or not

Filament 1/0 indicates filamentous growth form or not

Centric 1/0 indicates diatoms with centric growth form

Gelatinous 1/0 indicates presence/absence of mucilage

Aerotopes 1/0 indicates presence/absence of aerotopes

Class Taxonomic class

Order Taxonomic order

MFG.fromtraits MFG classification using traits_to_mfg function

12 mfg_csr_convert_df

mfg_csr_convert	Returns a CSR classification based on Morphofunctional group
	(MFG). Correspondence based on Salmaso et al. 2015 and Reynolds et al. 1988

Description

Returns a CSR classification based on Morphofunctional group (MFG). Correspondence based on Salmaso et al. 2015 and Reynolds et al. 1988

Usage

```
mfg_csr_convert(mfg)
```

Arguments

mfg

Character string with MFG name, following Salmaso et al. 2015

Value

A character string with values 'C','S','R','CR','SC','SR', or NA

Examples

```
mfg_csr_convert("11a-NakeChlor")
```

mfg_csr_convert_df

Returns a CSR classification based on Morphofunctional group (MFG). Correspondence based on Salmaso et al. 2015 and Reynolds et al. 1988

Description

Returns a CSR classification based on Morphofunctional group (MFG). Correspondence based on Salmaso et al. 2015 and Reynolds et al. 1988

Usage

```
mfg_csr_convert_df(phyto.df, mfg)
```

Arguments

phyto.df dataframe containing a character field containing MFG classifications
mfg Character string with MFG name, following Salmaso et al. 2015

Value

A dataframe with an additional field named CSR, containing CSR classifications or NA

mfg_csr_library 13

Examples

```
data(lakegeneva)
lakegeneva<-genus_species_extract(lakegeneva, 'phyto_name')
lakegeneva<-species_to_mfg_df(lakegeneva)
lakegeneva<-mfg_csr_convert_df(lakegeneva, mfg='MFG')
head(lakegeneva)</pre>
```

mfg_csr_library

MFG-CSR correspondence based on CSR-trait relationships in Reynolds et al. 1988 and MFG-trait relationships in Salmaso et al. 2015

Description

MFG-CSR correspondence based on CSR-trait relationships in Reynolds et al. 1988 and MFG-trait relationships in Salmaso et al. 2015

Usage

```
data(mfg_csr_library)
```

Format

A data frame with columns:

MFG full MFG name from Salmaso et al. 2015

CSR CSR classification including intermediate classes

phyto_ts_aggregate

Aggregate phytoplankton timeseries based on abundance. Up to 3 grouping variables can be given: e.g. genus, species, stationid, depth range. If no abundance var is given, will aggregate to presence/absence of grouping vars.

Description

Aggregate phytoplankton timeseries based on abundance. Up to 3 grouping variables can be given: e.g. genus, species, stationid, depth range. If no abundance var is given, will aggregate to presence/absence of grouping vars.

Usage

```
phyto_ts_aggregate(
  phyto.data,
  DateVar = "date_dd_mm_yy",
  SummaryType = c("abundance", "presence.absence"),
  AbundanceVar = "biovol_um3_ml",
  GroupingVar1 = "phyto_name",
  GroupingVar2 = NA,
  GroupingVar3 = NA,
```

14 sampeff

```
remove.rare = FALSE,
fun = sum,
format = "%d-%m-%y"
)
```

Arguments

phyto.data data.frame

DateVar character string: field name for date variable. character or POSIX data.

SummaryType 'abundance' for a matrix of aggregated abundance, 'presence.absence' for 1 (present)

and 0 (absent).

AbundanceVar character string with field name containing abundance data Can be NA if data is

only a species list and aggregated presence/absence is desired.

GroupingVar1 character string: field name for first grouping variable. defaults to spp.

GroupingVar2 character string: name of additional grouping var field GroupingVar3 character string: name of additional grouping var field

remove.rare TRUE/FALSE. If TRUE, removes all instances of Grouping Var1 that occur < 5

of time periods.

fun function used to aggregate abundance based on grouping variables

format character string: format for DateVar POSIXct conversion

Value

a data.frame with grouping vars, date_dd_mm_yy, and abundance or presence/absence

Examples

sampeff

Visually assess change in sampling effort over time (author: Dietmar Straile)

Description

Visually assess change in sampling effort over time (author: Dietmar Straile)

Usage

```
sampeff(
  b_data,
  column,
  save.pdf = F,
  lakename = "",
  datecolumn = "date_dd_mm_yy",
  dateformat = "%d-%m-%y"
)
```

species_mfg_library 15

Arguments

b_data	Name of data.frame object
column	column name or number for field containing abundance (biomass,biovol, etc.) can be NA for presence absence
save.pdf	TRUE/FALSE Should the output plot be saved to a file? defaults to FALSE
lakename	Character string for labeling output plot
datecolumn	Character String or number specifying dataframe field with date information
dateformat	Character string specifying POSIX data format

Value

a time-series plot of minimum relative abundance over time. This should change systematically with counting effort.

Examples

```
data(lakegeneva)
#example dataset with 50 rows
sampeff(lakegeneva,column=6) #column 6 contains biovolume
```

species_mfg_library	Trait-based MFG classifications for common Eurasion/North Ameri-
	can phytoplankton species. See accompanying manuscript for sources

Description

Trait-based MFG classifications for common Eurasion/North American phytoplankton species. See accompanying manuscript for sources

Usage

```
data(species_mfg_library)
```

Format

A data frame with columns:

genus genus namespecies species name

MFG corresponding MFG classification based on Salmaso et al. 2015

source literature or online source for MFG classification

species_search_itis

References

```
Algaebase https://www.algaebase.org
```

Phycokey http://www.cfb.unh.edu/phycokey/phycokey.htm

Western Diatoms of North America https://diatoms.org

CyanoDB 2 http://www.cyanodb.cz/

Nordic Microalgae http://nordicmicroalgae.org

Phytopedia https://www.eoas.ubc.ca/research/phytoplankton/

Kapustin, D., Sterlyagova, I. and Patova, E., 2019. Morphology of Chrysastrella paradoxa stomatocysts from the Subpolar Urals (Russia) with comments on related morphotypes. Phytotaxa, 402(6), pp.295-300.

species_search_itis

Wrapper function for several functions in ritis:: Searches ITIS database for matches to a binomial scientific name outputs matches, current accepted names, synonyms, and higher taxonomy

Description

Wrapper function for several functions in ritis:: Searches ITIS database for matches to a binomial scientific name outputs matches, current accepted names, synonyms, and higher taxonomy

Usage

```
species_search_itis(genspp, higher = FALSE)
```

Arguments

genspp Character string. Binomial scientific name with space between genus and species.

higher Boolean. If TRUE, add higher taxonomic classifications to output

Value

data.frame with submitted name (orig.name), matched name (matched.name), 1/0 flag indicating that original name is currently accepted (orig.name.accepted), 1/0 flag indicating if search was genus_only (for distinguishing genus_search_itis and species_search_itis results), synonyms if any, and higher taxonomy (if higher=TRUE)

```
species="Aphanizomenon flosaquae"
species_search_itis(species,higher=TRUE)
```

species_to_mfg 17

species_to_mfg	Conversion of a single genus and species name to a single MFG. Uses species.mfg.library
Species_to_mrg	

Description

Conversion of a single genus and species name to a single MFG. Uses species.mfg.library

Usage

```
species_to_mfg(genus, species = "", flag = 1, mfgDbase = NA)
```

Arguments

genus Character string: genus name species Character string: species name

flag Resolve ambiguous mfg: 1 = return(NA), 2 = manual selection

mfgDbase data.frame of species MFG classifications. Defaults to the supplied species.mfg.library

data object

Value

a data frame with MFG classification and diagnostic information. ambiguous.mfg=1 if multiple possible mfg matches genus.classification=1 if no exact match was found with genus + species name partial.match=1 if mfg was based on fuzzy matching of taxonomic name.

Examples

```
species_to_mfg('Scenedesmus','bijuga')
#returns "11a-NakeChlor"
```

Description

Wrapper function to apply species_phyto_convert() across a data.frame

Usage

```
species_to_mfg_df(phyto.df, flag = 1, mfgDbase = NA)
```

Arguments

phyto.df Name of data.frame. Must have character fields named 'genus' and 'species'

flag Resolve ambiguous MFG: 1 = return(NA), 2 = manual selection

mfgDbase specify library of species to MFG associations.

18 traitranges

Value

input data.frame with a new character column of MFG classifications and diagnostic information

Examples

```
data(lakegeneva)
#example dataset with 50 rows

new.lakegeneva <- genus_species_extract(lakegeneva,'phyto_name')
new.lakegeneva <- species_to_mfg_df(new.lakegeneva)
head(new.lakegeneva)</pre>
```

traitranges

surface/volume ratio and max linear dimension criteria for CSR From Reynolds 1988 and Reynolds 2006

Description

surface/volume ratio and max linear dimension criteria for CSR From Reynolds 1988 and Reynolds 2006

Usage

```
data(traitranges)
```

Format

A data frame with columns:

Measurement measurement type

C.min minimum value for C

S.min minimum value for S

R.min minimum value for R

C.max maximum value for C

S.max maximum value for S

R.max maximum value for R

units units of measurement

source source for criteria

traits_to_csr 19

traits_to_csr	Assign phytoplankton species to CSR functional groups, based on surface to volume ratio and maximum linear dimension ranges proposed by Reynolds et al. 1988:2006
	by Reynolds et al. 1988;2006

Description

Assign phytoplankton species to CSR functional groups, based on surface to volume ratio and maximum linear dimension ranges proposed by Reynolds et al. 1988;2006

Usage

```
traits_to_csr(
   sav,
   msv,
   msv.source = "Reynolds 2006",
   traitrange = algaeClassify::traitranges
)
```

Arguments

sav	numeric estimate of cell or colony surface area /volume ratio
msv	numeric product of surface area/volume ratio and maximum linear dimension
msv.source	character string with reference source for distinguishing criteria
traitrange	data frame with trait criteria for c,s,r groups. The included table can be replaced with user-defined criteria if desired. Measurements are: Surface area/volume ratio (sav), maximum linear dimension (mld) and mld*sav (msv).

Value

a character string with one of 5 return values: C,CR,S,R, or SR. CR and SR groups reflect overlap between criteria for the 3 main groups.

See Also

/urlhttps://powellcenter.usgs.gov/geisha for project information

```
traits_to_csr(sav=0.2,msv=10,msv.source='Reynolds 2006',traitrange=traitranges)
```

20 traits_to_csr_df

traits_to_csr_df	Add CSR functional group classifications to a dataframe of phyto- plankton species, based on surface to volume ratio and maximum lin-
	ear dimension ranges proposed by Reynolds et al. 1988;2006

Description

Add CSR functional group classifications to a dataframe of phytoplankton species, based on surface to volume ratio and maximum linear dimension ranges proposed by Reynolds et al. 1988;2006

Usage

```
traits_to_csr_df(
   df,
   sav,
   msv,
   msv.source = "Reynolds 2006",
   traitrange = algaeClassify::traitranges)
```

Arguments

df	name of dataframe
sav	character string with name of column that contains surface to volume ratio values
msv	character string with name of column that contains maximum linear dimension * surface to volume ratio values
msv.source	character string with reference source for distinguishing criteria
traitrange	data frame with trait criteria for c,s,r groups. The included table can be replaced with user-defined criteria if desired. Measurements are: Surface area/volume ratio (sav), maximum linear dimension (mld) and mld*sav (msv).

Value

a character string with one of 5 return values: C,CR,S,SR, or R

```
csr.df<-data.frame(msv=10, sav=1)
csr.df$CSR<-traits_to_csr_df(csr.df, 'msv', 'sav')
print(csr.df)</pre>
```

traits_to_mfg 21

_	Assign MFG based on binary functional traits and taxonomy (Class and Order)
--------------	---

Description

Assign MFG based on binary functional traits and taxonomy (Class and Order)

Usage

```
traits_to_mfg(
  flagella = NA,
  size = NA,
  colonial = NA,
  filament = NA,
  centric = NA,
  gelatinous = NA,
  aerotopes = NA,
  class = NA,
  order = NA
)
```

Arguments

flagella	1 if flagella are present, 0 if they are absent.
size	Character string: 'large' or 'small'. Classification criteria is left to the user.
colonial	1 if typically colonial growth form, 0 if typically unicellular.
filament	1 if dominant growth form is filamentous, 0 if not.
centric	1 if diatom with centric growth form, 0 if not. NA for non-diatoms.
gelatinous	1 mucilagenous sheath is typically present, 0 if not.
aerotopes	1 if aerotopes allowing buoyancy regulation are typically present, 0 if not.
class	Character string: The taxonomic class of the species
order	Character string: The taxonomic order of the species

Value

A character string of the species' morphofunctional group

22 traits_to_mfg_df

traits_to_mfg_df

Assign morphofunctional groups to a dataframe of functional traits and higher taxonomy

Description

Assign morphofunctional groups to a dataframe of functional traits and higher taxonomy

Usage

Arguments

dframe An R dataframe containing functional trait information and higher taxonomy arg.names Character string of column names corresponding to arguments for traits_to_mfg()

Value

A character vector containing morpho-functional group (MFG) designations

Index

```
* datasets
    csrTraits, 4
    lakegeneva, 10
    mfg_csr_library, 13
    mfgTraits, 11
    species\_mfg\_library, 15
    traitranges, 18
accum, 3
bestmatch, 4
csrTraits, 4
date_mat, 5
genus_search_itis, 6
genus_species_extract, 7
gnr_simple, 7
{\tt gnr\_simple\_df, 8}
\verb|itis_search_df|, 9
lakegeneva, 10
mean_naomit, 10
mfg\_csr\_convert, 12
mfg_csr_convert_df, 12
mfg_csr_library, 13
mfgTraits, 11
phyto_ts_aggregate, 13
sampeff, 14
species_mfg_library, 15
species_search_itis, 16
species_to_mfg, 17
species\_to\_mfg\_df, 17
traitranges, 18
traits_to_csr, 19
\texttt{traits\_to\_csr\_df}, \textcolor{red}{20}
traits_to_mfg, 21
{\tt traits\_to\_mfg\_df}, \textcolor{red}{22}
```