TO LOS OF THE PROPERTY OF THE

REFRACTION OF UNDERWATER EXPLOSION SHOCK WAVES: PRESSURE HISTORIES MEASURED AT CAUSTICS IN A FLOODED QUARRY

19 APRIL 1967

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND

NOLTR 67-9

Distribution of this document is unlimited.

ARCHIVE GOPY

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

7500

REFRACTION OF UNDERWATER EXPLOSION SHOCK WAVES:
PRESSURE HISTORIES MEASURED AT CAUSTICS IN A FLOODED QUARRY

by

Robert M. Barash Jean A. Goertner

ABSTRACT: High explosive charges were fired in a flooded quarry having a refractive sound velocity structure, in order to observe shock wave pressure histories at caustics, or focal surfaces. For such regions, present theoretical understanding and conventional acoustic ray-tracing techniques are inadequate. Peak pressure amplification factors up to 5.8 were measured; the smaller the charge, the more extreme the focusing. Energy flux density was also enhanced, but impulse per unit area was relatively unaffected.

UNDERWATER EXPLOSIONS DIVISION EXPLOSIONS RESEARCH DEPARTMENT U. S. NAVAL ORDNANCE LABORATORY WHITE OAK, SILVER SPRING, MARYLAND

19 April 1967

REFRACTION OF UNDERWATER EXPLOSION SHOCK WAVES: PRESSURE HISTORIES MEASURED AT CAUSTICS IN A FLOODED QUARRY

A continuing study is being made of the refractive effects of oceanic sound velocity gradients upon the propagation of shock waves from large underwater explosions. This report gives the results of a small-scale experimental investigation of shock wave focusing. This work was performed under Task RRRE 51001/212-8/F008-21-03 (NWER 14.038) and was supported by the Defense Atomic Support Agency.

E. F. SCHREFTER Captain, USN Commander

C. J. ARONSON By direction

nolar 67-9

23

CONTENTS	
Pag	ţе
SYMBOLS AND UNITS	7
I. INTRODUCTION	L
II. SUMMARY OF RESULTS ,	Ļ
III. EXPERIMENTAL ARRANGEMENTS	2
IV. GENERAL NATURE OF THE EXPECTED PRESSURE FIELD	÷
V. EXPERIMENTAL DATA	5
VI. DISCUSSION OF RESULTS A. Arrival Times and Ray Angles B. Pressure Distribution in the Caustic Region C. Impulse D. Shock Wave Energy Flux Density E. Additional Results 12	7 3 0 L
ACKNOWLEDGEMENTS	5
REFERENCES	}
ILLUSTRATIONS	
Figure Title Pag	ţe
1 Experimental Layout	
2 Gage Rig	;
Ray Diagram	,
a. Isovelocity Pulse 17	
b. 53-1b Charges Fired at 35-ft Depth 18	
c. 8-lb Charges Fired at 35-ft Depth 19	
d. 1-lb Charges Fired at 35-ft Depth 20	
e. 0.122-1b Charges Fired at 35-ft Depth 21	
f. Charges Fired at 25-ft Depth 22	
g. Charges Fired at 50-ft Depth 23	
5a Exponentially Decaying Shock Wave Pulse in Isovelocity Water	
5b A Sample Pressure Pulse in Refractive Water 24 6 Representative Sound Velocity Profiles 25	

CONTENTS (continued)

Figure	Title	Page
7	Peak Pressure Amplification Factor vs Gage Depth for Shot 1104	. 26
8 (a-n)	Peak Pressure Amplification Factor vs	
9	Vertical Distance from Caustic	27
	a. Charge Weight = 8.1 lb	40
10a	c. Charge Veight = 0.122 lb	41
	Weight at 300-ft Horizontal Range and 35-ft Firing Depth	42
10b	Maximum Fp vs Charge Diameter	43
10c	Caustic Thickness vs Charge Diameter	43
	Horizontal Range at 35-ft Firing Depth a. Ave. Charge Weight = 8.2 lb	
12 (a-g)	Sizes at 35-ft Firing Depth	46
13 (a-g)	from Caustic	47
13 (8 - 8)	Energy Amplification Factor vs Vertical Distance from Caustic	52
	TABLES	
Table	Title	Page
ı.	Experimental Data Terms, Symbols and Units in Table I	
II. III.	Tabulation of Velocity Profile Data	76
IV.	Maximum Peak Pressure Amplification Factor and Caustic Thickness from F_p vs z - z Curves	94

日本のできると、日本の日本の日本のできる

NOLITR 61-9

SYMBOLS AND UNITS

Symbol	Units	Explanation
z	ft	depth
² c	ft	observed depth of caustic for given shot
x	ft	horizontal charge-to-gage distance
R	ft	radial charge-to-gage distance
W	1b	charge weight
p	lb/in ²	pressure, above hydrostatic
t	specified	time
<pre>pm(iso)</pre>	lb/in ²	initial shock wave peak pressure in isovelocity water
θ	time units	time constant of exponential decay
P _m	lb/in ²	maximum p in refractive water for given pressure-time record
Fp	dimensionless	peak pressure amplification factor,
F		defined by $I_p = \frac{p_m}{p_{m(iso)}}$
Fp(max)	dimensionless	maximum F_p measured on smoothed curve of F_p vs $(z - z_c)$ for a given test condition
T_z	ft	vertical caustic thickness as defined in Section VI. B.
Ţ.	lb/in ²	maximum p observed for first caustic- related arrival
P ₂	lb/in ²	<pre>maximum p observed for second caustic- related arrival; multi-peak records only</pre>
p _{l(rise)}	lb/in ²	p ₁ - precursor pressure at t = t _c
I	lb/in ² -sec	"total impulse" in refractive water, defined
I _e	lb/in ² -sec	by $I = \int_0^{\infty} p dt$ "caustic-related impulse" in refractive water, defined by $I_c = \int_{t_c}^{t_i} p dt$
^t c	time units	arrival time of first caustic-related pressure increase

NOLTR 67-9

SYMBOLS AND UNITS (continued)

Coloran The Car San Cont.

Symbol	Units	Explanation
ti	time units	upper integration limit used in this study for pulses in refractive water; t = t, at p = .07 pm
FI	dimensionless	impulse amplification factor for "total impulse" $F_{I} = \frac{I}{\left(\int_{0}^{5\theta} p dt\right)_{iso}}$
F _{Ic}	dimensionless	impulse amplification factor for "caustic- related impulse" $F_{1_c} = \underbrace{\int_{0}^{5\theta} p dt}_{iso}$
F _E	dimensionless	energy amplification factor, defined by $F_{E} = \frac{\begin{bmatrix} \int_{0}^{t_{1}} p^{2} dt \\ \int_{0}^{5\theta} p^{2} dt \end{bmatrix}_{refr}}{\begin{bmatrix} \int_{0}^{5\theta} p^{2} dt \\ \int_{0}^{5\theta} p^{2} dt \end{bmatrix}_{iso}}$
F _E (max)	dimensionless	maximum F_E measured on smoothed curve of F_E vs $(z - z_c)$ for a given shot

REFRACTION OF UNDERWATER EXPLOSION SHOCK WAVES:
PRESSURE HISTORIES MEASURED AT CAUSTICS IN A FLOODED QUARRY

I. INTRODUCTION

Experimental and theoretical studies (Refs. 1, 2, 3)* have shown that the propagation of underwater explosion shock waves can be strongly influenced by gradients in the propagation velocity. Such gradients, which commonly occur in the ocean, refract pressure waves so that at particular points of observation, the pressure amplitudes and wave shapes (pressure vs time) may differ from those that would have been observed in isovelocity water.

There is particular interest in those regions of the pressure field where the shock wave is focused. Focal points, lines, and surfaces are called caustics. Underwater acoustic and shock wave propagation experiments have verified theoretical indications that pressure amplitudes at and near caustics can be substantially greater than those that would be expected in the absence of refraction.

The quantitative prediction of shock wave pressures at caustics is a difficult problem. The conventional ray tracing methods that are commonly used for acoustic refraction calculations are not rigorously valid for a pressure pulse that has a broad frequency spectrum, that emanates from a source of finite size rather than from a point source, and that has a finite (non-acoustic) amplitude. Although these conventional methods yield acceptable predictions in many regions of a refractive field, their limitations become critical in caustic regions (Ref. 1). In particular, unmodified conventional ray calculations unrealistically indicate infinite pressure at the caustic.

The experiment reported here was performed in order to obtain the data required for a better theoretical understanding of the caustic and for the development of improved prediction methods.

Explosive charges were fired in a flooded quarry having a sound velocity structure that was a scale model of a common type of oceanic sound velocity structure. The innovation in this experiment was the concentration of a finely-spaced array of pressure gages at the caustic in order to observe in detail the spatial variation of the pressure pulses in this region.

II. SUMMARY OF RESULTS

Pressure histories in the region of the caustic were observed as a function of charge size, firing depth, and distance from the charge.

^{*} References are given on page 13.

Each pressure history exhibits up to four arrivals, each identifiable by its characteristic pressure-vs-time form and by the angle at which the particular wave front was observed to sweep across the gage array.

The peak pressure in the pulse was observed to undergo refractive amplification by factors up to 5.8, depending upon the test conditions. In general, the smaller the charge size, the sharper is the region of focusing and the greater is the maximum value (i.e., right on the caustic itself) of the peak pressure amplification factor. Although the degree of focusing was observed to vary also with variations in the firing depth and the distance from the charge, no reliable uniform trends were discernible.

The refractive amplification of shock wave energy flux density appears to occur in a similar manner and with roughly similar magnitudes to the peak pressure amplification. Except at the close-in ranges, however, maximum energy amplification apparently takes place below rather than at the caustic depth.

Shock wave impulse amplification factors remain much closer to unity than do the peak pressure and energy factors. Values of impulse factor do not go through a maximum at the caustic position.

These results are described and discussed more fully in Sections V and VI. A comparison of the experimental results with theory is in progress but is not reported herein.

III. EXPERIMENTAL ARRANGEMENTS

The experiment was performed during August-September 1964 in a flooded quarry known as Dickerson Quarry, near Dickerson, Maryland. Figure 1 is a photograph of the experimental layout.

The quarry extends 250 ft x 500 ft, and has a maximum water depth of 70 ft. No currents were discernible. The surface state varied from glassy to having small ripples.

The main longitudinal wire cable, with plastic foam floats attached, was extended between two rafts which were restrained by ropes tied to trees. The 15 pressure gages were suspended through a hole in the gage raft. The charge was suspended from a point along the longitudinal cable, at a horizontal range which varied from 160 ft to 300 ft on the various shots. One vertical string of electrical temperature sensors was suspended from a float at Temperature Station 1, 15 ft laterally from the gage raft; and a second string was at Station 2, near the charge end of the quarry. The various signal and control cables, all with foam floats, extended to the instrumentation trailers at the edge of the quarry.

The 32 charges were bare, centrally-detonated, cast pentolite spheres of four different weights, approximately 1/8, 1, 8, and 53 lbs. Charges were fired at depths of 25, 35, and 50 ft.

The pressure sensors were 1/2-inch diameter tournaline piezoelectric gages, with a Bostik coating that appears to yield a somewhat more valid and reproducible gage response than the wax coatings used in previous experiments.

The gages were mounted on wires stretched along a steel frame, as shown in Figure 2. The gages were, at first, spaced over a 32-inch vertical span, with one-inch vertical spacing at the center of the array and increasingly greater spacing toward the top and bottom. Then, beginning with Shot 1097, the vertical spacings were increased—roughly doubled. The gages were staggered laterally, in order to increase the distances between gages and thereby minimize mechanical reflections of the pulses. The gage frame was suspended, by several sections of pipe, from a gallows over the hole in the gage raft. The depth of the gage frame was varied by raising and lowering the pipe, removing and adding sections. The gages were directed edge-on toward the charge.

Voltages proportional to the instantaneous pressures sensed by each gage were displayed as vertical deflections of a spot on an oscilloscope. The deflections were photographed by a rotating drum camera, to produce pressure-vs-time traces. The upper limit of the frequency response of the recording system was determined largely by the size of the gage; a sudden rise in pressure was recorded with a 10 usec rise time.

The temperature sensors were thermistors spaced along a vertical array suspended from each of the two temperature station locations. There were 15 thermistors at Station 1 and 8 thermistors at Station 2. Near each shot time the thermistors were sequentially switched into a special bridge circuit in the instrumentation trailer, and temperatures were read on a direct-reading meter.

We endeavored to place the center of the gage array at the depth of the caustic on each shot. For most shots this was attempted by probing for the caustic produced by an acoustic signal. First, the gage array was centered at the caustic depth expected on the basis of calculations for a pre-experiment profile, or on the basis of data from preceding shots. Then, after the charge was placed, an expendable piezoelectric transducer at the charge location was repeatedly driven to produce an acoustic pulse, while the gage frame was raised and lowered incrementally. The output of a hydrophone mounted at the center of the gage array was observed on an oscilloscope to determine the depth of the caustic. It was expected that this depth would be indicated by a maximum in the amplitude of the received pulse and by the vanishing of the time difference between the two caustic-related pulses. Unfortunately, however, the transducer produced an oscillating output which in many cases made the interpretation ambiguous. Even so, the placement of the gage array turned out to be adequately successful throughout the experiment.

IV. GENERAL NATURE OF THE EXPECTED PRESSURE FIELD

Figure 3 shows the type of velocity profile which occurred in the quarry and the resultant ray diagram calculated for it. This profile has been slightly idealized in order to incorporate all the major features er matered throughout the experiment and show how the location of the gabe string was varied in an attempt to make measurements in the several regions of interest.

Consider a charge fired at 35-ft depth and a pressure gage at 30-ft depth placed at any horizontal distance out to about 150 ft. Such a gage would register a pressure pulse arriving along a slightly bent but fairly direct path from the charge. This pulse should look like a "typical" shock wave propagated in isovelocity water. As we move the gage farther away from the source, however, we see that in addition to a direct shock arrival, we will be measuring other pulses which have traveled via different routes at varying velocities.

Suppose we now place our gage at a range of 260 ft and vary its depth. What will be the effect on the pressure-time histories? Let us first consider a gage placed at the caustic. This is a region in which adjacent rays converge and intersect rather than diverging as under isovelocity conditions. One would expect a gage placed at the caustic to measure a pressure higher than that in the isovelocity case since there is a focusing of energy here. If we now move our gage deeper, we see that there will be two different groups of rays reaching it: those approaching the caustic along a fairly direct path (to be designated as the "first caustic-related arrival") and those reaching the gage after having already touched the caustic (to be designated as the "second caustic-related arrival"). The groups arrive in this order because the greater average velocity of the second group of rays does not quite compensate for their longer path of travel. One would expect to see doublepeaked pressure-time histories in this region. The farther below the caustic the gage is placed, the greater will be the time difference between the two arrivals. Just above the caustic is a region called the "pseudo-shadow zone", into which no conventionally computed rays penetrate.

Another type of arrival we can trace is the wave reflected from the free water surface as a rarefaction wave. This pulse, which travels a longer ray path, is usually evident as a pressure decrease superimposed on the positive pressure pulse when the reflected wave arrives at the gage. The first portions of the reflected paths are shown as dashed lines.

With different charge depths and changing temperature conditions, the actual position of the caustic formed by the major velocity gradient of the quarry profiles varied from shot to shot. In some cases, the calculated caustic had two branches. Also, a shallow caustic sometimes occurred on warm afternoons as a result of a small negative gradient near the water surface.

V. EXPERIMENTAL DATA

A. Long-Range Data

The coordinates of the pressure-vs-time traces and calibrating traces on the film records were measured on a Telereadex, a mechanical record reader with punched-card output. Resulting data points were processed by an IBM 7090 computer and a CalComp plotter, to produce plots of pressure* vs time, both in conventional units and in reduced units. All the plots of the latter type are shown in Figure 4. In these plots, unit pressure and unit time are the peak pressure and the decay constant, respectively, of a pulse that would be expected** at the particular gage location if refractive effects were absent.

In Figure 4 the shots are grouped according to test conditions: charge weight, firing depth, and horizontal range. For each shot the records are shown in order of increasing gage depth and are aligned in time, not with respect to an absolute time reference, but rather to the time of each record's own first observable pressure signal. All records are drawn to the same scale of the reduced units, $p/p_m(iso)$ vs t/θ . An unrefracted pulse, having isovelocity values of $p_m(iso)$ and θ , and drawn to the same scale, is shown for comparison purposes in Figure 4a.

Table I presents the values of several useful types of quantities derived from the pressure records. First, for each gage depth, the highest observed pressure (above hydrostatic) for each measurable peak is given. Also included is the increase in pressure at t = t_c due to the first (or only) caustic-related arrival, along with the ratio of this pressure rise to $p_m(iso)$. The quantity p_m is the maximum shock wave pressure observed (or extrapolated***) in a particular record; values of $\int p \ dt$ and $\int p^2 \ dt$ are also presented. In addition, Table I lists amplification factors (as defined in List of Symbols) for p_m , $\int p \ dt$, and $\int p^2 \ dt$.

An especially significant quantity is the peak pressure amplification factor, F_p , defined as $p_m/p_{m(1so)}$. This quantity indicates the

* All pressures are measured as excess above hydrostatic.

[&]quot;Expected" isovelocity peak pressures were obtained by averaging the values computed with the two similitude equations reported in Refs. 4 and 5 for pentolite. The similitude equations are empirical descriptions of $p_m(iso)$ as a function of $w^{1/3}/R$ in homogeneous water.

Extrapolation is performed to compensate for distortion in the recorded pressure peak due to the finite size of the gage. Because of the great variation in pulse shapes, the usual method of determining p_m by a straight-line extrapolation on a semi-log plot, suitable for exponentially-decaying pulses, was not used. (See Ref. 6). Rather, a linear plot was used, and a simple straight-line extension of the initial decay back 5 usecs (~1/2 the gage transit time) from the apparent peak was made. Only those peaks whose sharpness was obviously limited by gage response were extrapolated. This method of extrapolation is admittedly subjective.

observed peak pressure relative to that which would have been observed in isovelocity water, all other things being equal. Thus, the pressure factor completely suppresses the first order effects of charge yield and test geometry upon the peak pressure and indicates only the effects of refraction and of the interactions of refraction with charge size and test geometry. These interactions are the primary interest of this study.

In order to compare values of impulse and energy flux among the refractive pulses and with reference isovelocity pulses, comparable durations must be used for integration of the pressure-time histories. Figure 5 shows sketches of a typical pressure pulse in isovelocity water (approximated as $p = p_m(iso) e^{-t/\theta}$)* and a sample of one of the various pulse shapes obtained under refractive conditions. In explosive comparison studies, integrations of the simple exponentially-decaying pulses are usually carried out to the arbitrary standard limit $t = 5\theta$, as shown in Figure 5a, the isovelocity case. But a limit stated in terms of θ is not generally applicable to the shapes of refractive pulses. Study of records from previous isovelocity experiments indicates that at the time $t = 5\theta$, the pressure in the shock wave has fallen to roughly .07 of its value at the peak. For the present analysis, it was therefore decided to carry out integrations to the time, to be designated as t_1 , at which the pressure has decreased to .07 p_m .

In the refractive case, as represented in Figure 5b, the pressure pulses vary in shape, with the "caustic-related" shock wave having one or more "peaks" and sometimes being preceded by an earlier arrival. The values reported for $\int_0^t p \, dt$ and $\int_0^t p^2 \, dt$ were measured over the interval from the first observed increase in pressure (t=0) to the time $t=t_1$. The first quantity has been designated as the "total impulse", I. In cases having arrivals preceding the first caustic-related shock front, "caustic-related impulse", I_c , designates $\int_{t_c}^{t_1} p \, dt$, where t_c = arrival time of first caustic-related pressure increase. The designation "caustic-related impulse" is not strictly accurate, since an undeterminable amount of non-caustic-related impulse may persist beyond t_c .

B. Near-Field Data

In addition to the string of gages at long ranges, one pressure gage was placed at a radial distance of 10 ft from the charge to obtain reference measurements of unrefracted pulses. $p_{m(iso)}$ and θ , the decay constant, were measured by extrapolation of semi-log plots of pressure vs time as in Ref. 6.

With the average of similitude values given by Ref. 4 and 5 as the standard for comparison, the average values of $p_{m(iso)}$ were generally high but within normal scatter for all but the smallest size charge; i.e., 4% high for the 53-lb charges, 8% for the 8-lb charges and 2% high for the 1-lb charge size. The 0.122-lb charges averaged 25% lower

^{*} For general discussion of underwater explosion shock waves, see Ref. 7.

peak pressure than the average similitude values. But the peak pressure extrapolations in this case are unreliable because of very large oscillations in the traces.

The time constant, θ , fell within normal scatter even in the case of the smallest charges.

C. Velocity Profiles

From one to three sets of temperature readings were taken for each shot, with one as close as possible to (usually prior to) the time of firing. Temperatures were converted to sound velocities using Wilson's equation for distilled water (Ref. 8).

Velocity profiles for each station are tabulated in Table II. The accuracy of the values given is limited by precision of meter reading, of the calibration curves, and of Wilson's equation. It is estimated that the velocities may be in absolute error by as much as 2 ft/sec, but that the relative error within each profile, the more significant quantity in this experiment, is probably substantially smaller.

Figure 6 is a velocity profile plot showing average curves (using data points from both stations at one or more times close to shot time) for each of three different shots. These three profiles indicate the range of variation occurring during the firing program. Shot 1078 was the first shot fired (8/18/64); Shot 1091 was fired about midway in the series (8/31/64); Shot 1109, fired on 9/14/64, was the final shot of the program. In addition, the upper portion of the profile for Shot 1106 (9/11/64) is included to indicate the variations which occurred in the shallow layer with the passage of time.

The curve identified by a 5 was obtained on the day following the final shot. This profile is the result of lowering a single thermistor very slowly, with a much finer depth spacing between temperature readings than was employed previously. These measurements were made following an unusually cool and windy weekend, during which the surface layer cooled appreciably. Whether the gradient discontinuity observed in this profile was actually present during any of the firing program is not known. The profile shapes and locations of data points are such that a discontinuity prior to Shot 1099 seems highly unlikely. Subsequent to Shot 1099, however, the possibility seems to increase with the passage of time and cooling of the upper layer of water.

VI. DISCUSSION OF RESULTS

A. Arrival Times and Ray Angles

Using plots of arrival time vs gage depth, we can calculate for each shot the angle at which each particular pressure front traversed the vertical gage string. The scatter of data points in the present study, however, limited the accuracy. Table III lists the calculated angles of arrival of all four types of wave fronts observed: the first and the

second caustic-related arrivals, the precursor, and the surface-reflected arrival.

All four types of wave fronts arrived at small downward angles, sweeping across the gage string from top to bottom. In each case the first caustic-related wave front arrived along the smallest downward ray angle, and the second arrived along a slightly greater downward angle. The precursor, in cases where present, usually arrived at a greater angle, and the surface-reflected wave usually arrived at the greatest angle.

The application of Snell's Law to the arrival angle of the precursor wave front indicates that the beginning of the precursor arrived along a ray having a vertex velocity such that its vertex must have occurred somewhere within the high-velocity near-surface layer. This indication is consistent with the finding that the precursor occurs only at gages in regions where the calculations show this type of arrival to be possible.

The angles listed in Table III were determined assuming a vertical gage array. During the ray angle analysis, it was found that the array probably deviated from vertical by about 1 to 3 degrees, with the top end tilted toward the charge. This was taken into account in determining the path of the precursor wave front.

B. Pressure Distribution in the Caustic Region*

The spatial variation of peak pressure amplification factor, F_p , in the caustic region is of major interest. For each set of shots having the same nominal test conditions, plots representing this variation were superimposed on the same graph in order to reduce the uncertainty due to experimental scatter. For the same test conditions, the plots appeared to have similar shapes; but the depths of maximum F_p varied somewhataresult to be expected with a velocity profile that varied slightly from shot to shot. Therefore the superimposed plots are drawn with reference to each shot's depth of maximum F_p , designated as the caustic depth, rather than to the absolute depth. Figure 7 illustrates the difficulties one encounters in attempting to determine the depth of maximum F_p , especially if one or more points in this region appear to be in error. Figure 8 (a through n) shows the composite plots with the original data points and a smooth average curve drawn through them**.

^{*} The two shots at 160-ft range (1091 and 1092) and the three shots with gages in the near-surface layer (1088, 1098, and 1101) are not included here, but are discussed separately in VI. E.

^{**} A rough calculation was made of the deviation of data points above and below the average curves shown in these figures. Considering those conditions for which there was only one shot, the approximate spread of points was about ± 5%. For the cases with three or more shots at one nominal test condition, the overall spread of points was about ± 8%, with perhaps the same spread or slightly less in the immediate vicinity of the peak.

If we now use the average curves obtained in the above manner, we can attempt some comparisons among the various firing conditions tested. One must bear in mind when doing this, however, both the large degree of scatter, well documented over years of experience in underwater explosion shock wave measurements, and the probable errors resulting from the subjective nature of many of the measurements made during analysis of the present experiment.

The distribution of peak pressure amplification factors in the caustic region can be characterized by the sharpness of the curve of F_p vs vertical distance from the caustic. A quantitative measure of this sharpness can be obtained from the peak pressure amplification factor at the peak, $F_{p(\max)}$, and the distance between the points of inflection of the curve, the quantity T_z^* , which may be thought of as the vertical caustic thickness. $F_{p(\max)}$ and T_z are listed in Table IV for all the test geometries and are plotted in Figures 10b and 10c vs charge diameter.

In Figures 9, 10, and 11, the smooth average curves from Figure 8 are compared with each other in combinations that illustrate the effects of varying, respectively, the charge depth, the charge size, and the range.

Figures 9a, 9b, and 9c illustrate, each for a different charge weight, the effect of varying the charge depth, while holding range constant at 300 ft. No uniform trends are apparent, for either $F_{p(max)}$ or T_z . However, this result does not disprove the existence of relationships too small to be discerned through the experimental scatter.

The effect of charge size (for charges fired at 35 ft and gages placed at a horizontal range of 300 ft) is indicated by the plot of average curves for all four charge weights tested (Fig. 10a). Here we can see that the general effect of increasing charge size is to broaden and flatten the curve (i.e., to decrease its sharpness).

The values of $F_{p(max)}$ from the curves of Figure 10a are plotted in Figure 10b as a function of charge diameter. $F_{p(max)}$ decreases substantially as charge diameter increases. The value of 5.1 for the smallest charge is about 38 percent higher than the value of 3.7 for the largest charge. It may be seen in Table IV that no trend of this magnitude is evident for the other test geometries.

The vertical caustic thicknesses from Figure 10a are plotted in Figure 10c as a function of charge diameter. $T_{\rm Z}$ appears to be approximately proportional to the charge diameter, except for the smallest charge. This exception, and other data in Table IV, suggest the existence of a lower limit of about 0.7 ft in the quarry tests.

(i.e.,
$$\frac{\Delta F_p}{\Delta z}$$
 vs z).

^{*} In order to make the determination of T_2 as objective as possible, this quantity was determined by observing the relative maxima and minima on plots of slopes of straight-like segments drawn between data points

Figure 11 shows the effect of range upon the peak pressure amplification factor distribution. Curves are shown for 0.122-lb and 8-lb shots with a charge depth of 35 ft, for which data are available at three ranges. Figures 11a and 11b show that for both charge sizes, the curves are sharper at the 190-ft range than at the 300-ft range. The data for the 230-ft range, however, indicate a non-uniform trend which is inconsistent between the two charge weights. The reliability of the range effect data is therefore put in doubt. But for what it may be worth, Figure 11c suggests that a decrease in range from 300 ft to 190 ft sharpens the curve by about as much as does a decrease in charge weight from 8 lbs to 0.122 lb.

It shou'd be noted that for the 0.122-lb charges the peak pressure values measured close to the charge (i.e., the isovelocity values) in this experiment fell approximately 25% below those predicted by previous studies (see Section V. B.). If this difference is indeed real, then for the smallest charges actual pressure factors are about 1/3 greater than are reported herein.

C. Impulse

According to the Impulse Theorem (Ref. 9), at a given point in an unbounded medium, the impulse of a pressure pulse, integrated to infinite time, is independent of the velocity structure of the medium. This implies that no matter what changes in peak pressure and pulse shape occur in refractive water, the impulse will be the same as it would have been at the same point under isovelocity conditions. Study of the pressure-time records from the present experiment indicates agreement with the finding of Ref. 1 that a refraction-induced increase in peak pressure is accompanied by a compensating tendency for the pulse to decay more rapidly than in isovelocity water.

The present data do not provide a rigorous test of the Impulse Theorem because the noise and the time constant of the recording system limit the time to which impulse can be accurately integrated. However, as a matter of interest, plots of impulse amplification factors for both "total impulse" (F_I) and "caustic-related impulse" (F_I) (both defined in List of Symbols) vs vertical distance from the caustic were made. Figures 12 (a through g) show a few representative plots, with the similitude values from Ref. 10 used for isovelocity impulse. For a straight line eye-fitted through each set of data points, the following general observations can be made*:

- 1. The impulse plots have no peak at the caustic. The general tendency, within the limits tested, appears to be an increase in impulse with increasing depth, regardless of caustic location. Also, in general, the smaller the charge, the larger the impulse amplification factor.
- 2. For records having no precursor: Except for the 1/8-lb shots, under all conditions tested the $F_{\rm I}$ lines fall close to unity; for the
- * The three shallow layer shots. (1088, 1098, 1101) are not included in this comparison since surface reflection occurred early in the decay.

े के ⁵ त्ये

smallest charge the impulse is 15 to 60% greater than isovelocity values.

- 3. For records having precursor, "total impulse": Except for 0.122-1b shots, all lines have nearly zero slope. The 53- and 8-1b values fall within about 10% of the isovelocity impulse; 1-1b shots give impulse amplification factors of 1.11 to 1.30.
- 4. For records having precursor, "caustic-related impulse": Since precursor impulse decreases with increasing depth because of arrival time relationships, all lines have definite negative slope. All 8-lb shots fall below the isovelocity value; some 1-lb shots lie below, some are slightly higher than isovelocity (up to 10%) for the deeper gage positions. The range of impulse amplification factor values for the 53-lb charges is from 0.6 to 0.9.
- 5. For 0.122-1b records having precursor: Measurements of "total impulse" for all gage positions lie above the isovelocity values. All FI lines have negative slope, with values at the upper end of 1.65 to 1.9. "Caustic-related impulse" lines generally have greater slope, with the lower end falling below unity and the higher end about the same as or slightly lower than the "total impulse" line. The portions of these lines from double arrival records all fall above the isovelocity values.

D. Shock Wave Energy Flux Density

For simple pressure pulses having amplitudes as low as those observed in this experiment, the energy flux density is, to a close approximation, given by:

$$E = \frac{1}{\rho_0 c_0} \int p^2 dt$$

where ρ_0 and c_0 are the ambient density and sound velocity of the water. This relationship is not strictly valid in cases where pressure waves from different directions are superimposed at the gage point. For the purpose of this report, we consider not strictly the energy flux density, but rather the measurable quantity $\frac{1}{p_0 c_0} \int p^2 dt$. Differences in $\rho_0 c_0$ will be ignored, since this quantity varies by only 1% in the cases analyzed here.

Using $p_0c_0 = 5.26$ lb·sec·in⁻³ and average similitude values for energy flux density (Ref. 10), isovelocity values of $\int_0^{50} p^2 dt$ were calculated

for comparison with experimental data listed in Table I. Figure 13 (a through g) shows representative plots of energy amplification factor, F_E (defined in List of Symbols) vs vertical distance from the caustic. Although the scatter is large, some general observations can be made:

- 1. For all ranges, $F_{E(max)}$ increases as charge size is decreased.
- 2. For a given charge size, $F_{E(max)}$ increases with decreasing charge-to-gage distance (except for W = 8 at x = 190, which is based on one shot only).

- 3. $F_{E(max)}$ is approximately equal to the maximum peak pressure amplification factor, $F_{p(max)}$, for the 8- and 53-lb charges; but for the two smallest size charges, $F_{E(max)}$ increases at a faster rate than $F_{p(max)}$ as the gage is moved closer to the charge.
- 4. At x = 190, the $F_{\rm F}$ curves rise to a relatively sharp peak at the caustic, after which they fall off rapidly, so that the curve is nearly symmetrical about the caustic depth.
- 5. As range increases, the curves become broader, and the peak is reached at some point below rather than at the caustic. At x=300, the peaks are very broad, and the curves maintain a fairly high level to depths well below the caustic, despite a decrease in corresponding pressures.

E. Additional Results

かはのでは あったの

The preceding sections treat data from all but five of the 32 quarry shots. For two of these remaining shots (1091 and 1092), data were obtained in the region off the near end of the caustic (x = 160 ft). This is a region in which the rays do not cross but are converging. Therefore, we would expect peak pressures somewhat greater than isovelocity. The peak pressure amplification factors measured for these two shots ranged in value from 1.5 to 2.8.

For the other three shots (1088, 1098, and 1101), the gage string was placed near the surface in order to make measurements in a shallow caustic zone. On Shot 1088, for which either there was no shallow caustic or else the gage string was relatively far from the caustic, peak pressures were less than half the isovelocity values. On Shot 1101, for which the uppermost gages were close to the caustic, peak pressure amplification factors ranged up to ~ 0.9 . The gage string passed through the caustic on Shot 1098 giving a maximum $F_{\rm p}$ of ~ 1.5 . While this value, compared with even non-caustic peak pressure amplification factors discussed in previous sections at first may seem rather low for a caustic region, it is explainable by noting (see Fig. 3) that the caustic forms from an already highly-divergent group of rays.

ACKNOWLEDGEMENTS

The need for and the concept of this experiment were suggested by Dr. Hans G. Snay of the Explosions Research Department. The experimental team was led by Bernard E. Cox and included Wilfred W. Hammack, Richard L. Marbury, Denard L. Marks, and Harold G. Thomas. Robert Thrun calculated refraction patterns before and during the experiment. Jean Rowe performed the basic data reduction. T. M. Leibig of the Public Works Department handled arrangements for sub-leasing the quarry from the Hydrospace Research Corporation, Rockville, Maryland.

NOLUTE 67-9

REFERENCES

- 1. Brockhurst, R. R., J. J. Bruce, A. B. Arons, "Refraction and Diffraction of Explosion Pressure Pulses by Gradients in the Propagation Velocity. I. Observations with 56-1b TNT Charges in a Late Summer Thermocline in a Flooded Quarry", unpublished manuscript, Woods Hole Oceanographic Institution Reference No. 57-10, Jan 1957.
- 2. Hall, H. H., D. G. Clark, "Small Scale Studies of Refraction of Underwater Shock Waves", University of New Hampshire Ref. No. 41, 1961, Confidential.
- 3. Hall, H. H., D. G. Clark, R. M. Barash, "Small Scale Studies of Refraction of Underwater Shock Waves", supplement to University of New Hampshire Ref. No. 41, 1961, Confidential.
- 4. Christian, E. A., E. M. Fisher, "Explosion Effects Data Sheets", NAVORD Report 2986, 14 Jun 1955, Confidential.
- 5. Thiel, M. A., "Revised Similitude Equations for the Underwater Shock Wave Performance of Pentolite and HBX-1 (U)", NAVWEPS Report 7380, 1 Feb 1961, Confidential.
- 6. Slifko, J. P., T. E. Farley, "Underwater Snock Wave Parameters for TNT", NAVORD Report 6634, 1 June 1959.
- 7. Cole, R. H., "Underwater Explosions", Princeton University Press, 1948.
- 8. Wilson, W., "Tables for the Speed of Sound in Distilled Water and in Sea Water", NAVORD Report 6747, 13 Nov 1959.
- 9. Towne, D. H., K. G. Wilson, "Refraction and Diffraction of Explosive Pressure Pulses by Gradients in the Propagation Velocity. II. Status of Application of Mathematical Analysis to the Problem of Calculation of Pulse Shapes", unpublished manuscript, Woods Hole Oceanographic Institution, Ref. No. 57-45, Jul 1957.
- 10. Arons, A. B., "Underwater Explosion Shock Wave Parameters at Large Distances from the Charge", Journal of the Acoustical Society of America, Vol. 26, No. 3, 343-346, May 1954.

FIG. 1 EXPERIMENTAL LAYOUT

Ì

-, **t**

FIG. 2 GAGE RIG

FIG. 3 IDEALIZED SOUND-VELOCITY PROFILE AND RAY DIAGRAM

For purposes of making direct comparisons with isovelocity and other refractive pulses, all plots in Figure 4 (b through g) are drawn to the same reduced pressure and time scales as the isovelocity pulse shown above. Each curve is preceded by a baseline of length $t=\theta$.

FIG. 4a REDUCED PRFSSURE - TIME PLOT FOR AN ISOVELOCITY PULSE

FIG. 4b REDUCED PRESSURE - TIME PLOTS FOR 53 - LB CHARGES FIRED AT 35 - FT DEPTH

SHOT 1091

A

FIG. 4c REDUCED PRESSURE - TIME PLOTS FOR 8 - LB

FIG. 4c REDUCED PRESSURE-TIME PLOTS FOR 8-LB CHARGES FIRED AT 35-FT DEPTH

19

C

8 **-** LB

1080

FIG. 4d REDUCED PRESSURE TIME PLOTS FOR 1-LB CHARG

1081

CHARG

FIG. 4d REDUCED PRESSURE TIME PLOTS FOR 1-LB CHARGES FIRED AT 35-FT DEPTH

x = 230 FTW = 0.122 LBSHO

FIG. 4e REDUCED

P

SHOT

EDUCED

FIG. 4e REDUCED PRESSURE - TIME PLOTS FOR 0.122 - LB CHARGES FIRED AT 35-FT DEPTH

21

B

FIG. 4F REDUCED PRESSURE - TIME PLOTS FOR CHARC

R CHARG

		N2		
		NI		
		С		
		G		
		Α		
•	<u> </u>	D		
	× = 230	В		
		Ε		
1	8.4 LB	Н		
	≡ ≽	J	^	
		K	<u></u>	
		L	<u>_7</u>	
		М	·—~~	
		N3	I ——~	
			SHOT 1101	

	N2^	
	N1 _~	
	С _л	
	G7	
	A —¬	
) FT	D -~	
× = 300	В —¬	
	E —~	
8.1 LB	н —	
≡ ≫	J —~	
	К	_/
	r	
	M —	
	N3 —	
	N4 —~ SHOT 1088	 SHOT 1098

FIG. 4F REDUCED PRESSURE-TIME PLOTS FOR CHARGES FIRED AT 25-FT DEPTH

FIG. 4g REDUCED PRESSURE - TIME

FIG. 4g REDUCED PRESSURE - TIME PLOTS FOR CHARGES FIRED AT 50-FT DEPTH

FIG. 50 EXPONENTIALLY DECAYING SHOCK WAVE PULSE IN ISOVELOCITY WATER

FIG. 5b A SAMPLE PRESSURE PULSE IN REFRACTIVE WATER

FIG. 6 REPRESENTATIVE SOUND VELOCITY PROFILES

FIG. 7 PEAK PRESSURE AMPLIFICATION FACTOR VS GAGE DEPTH FOR SHOT 1104

FIG. 89 PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

The state of the s

FIG. 86 PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

FIG. 8º PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

...

FIG. 8d PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

FIG. 8e PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

FIG. 8F PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

1 -

FIG. 89 PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

FIG. 8" FEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

FIG. 8: PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

FIG. 8; & k PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

FIG. 8 1&m PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

FIG. 8n PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

FIG. 90 PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC: VARIATION WITH FIRING DEPTH AT HORIZONTAL RANGE OF 300 FT

FIG. % PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC: VARIATION WITH FIRING DEPTH AT HORIZONTAL RANGE OF 300 FT

FIG. 9° PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC: VARIATION WITH FIRING DEPTH AT HORIZONTAL RANGE OF 300 FT

FIG. 10a PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC; VARIATION WITH CHARGE WEIGHT AT 300-FT HORIZONTAL RANGE AND 35-FT FIRING DEPTH

FIG. 10c CAUSTIC THICKNESS VS CHARGE DIAMETER

FIG. 110 PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC: VARIATION WITH HORIZONTAL RANGE AT 35-FT FIRING DEPTH

FIG. 116 PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC: VARIATION WITH HORIZONTAL RANGE AT 35-FT FIRING DEPTH

FIG. 11° PEAK PRESSURE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC: EFFECT OF VARYING RANGE FOR TWO CHARGE SIZES AT 35-FT FIRING DEPTH

, T.

... Š

FIG. 12 386 IMPULSE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

 $\lambda \downarrow$

FIG. 12° IMPULSE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

The state of the s

~. 1

FIG. 12 d& IMPULSE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

A MANAGE

3

FIG. 12F IMPULSE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

FIG. 129 IMPULSE AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

The second of th

FIG. 13ª ENERGY AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

··· *

FIG. 136 ENERGY AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

^ .`

Salve of the salve of

?

THE PROPERTY OF THE PARTY OF TH

FIG. 13c ENERGY AMPLITUDE FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

FIG. 13d ENERGY AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

FIG. 13e ENERGY AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

£, ¥

FIG. 13f ENERGY AMPLITUDE FACTOR VS VERTICAL DISTANCE FROM CALISTIC

9

FIG. 139 ENERGY AMPLIFICATION FACTOR VS VERTICAL DISTANCE FROM CAUSTIC

TABLE I EXPERIMENTAL DATA

TERMS, SYMBOLS AND UNITS IN TABLE I ARE AS FOLLOWS;

DEPTH IN FT, PRESSURE IN L'B/SQ IN, TIME IN SEC

PI AND P2 ARE DBSERVED MAXIMUM PRESSURES FOR FIRST AND SECOND ARRIVALS, RESPECTIVELY (* INDICATES NO SECOND ARRIVAL OBSERVED)
PIRISE = PI - PRECURSOR PRESSURE AT TC
PM = MAXIMUM PEAK PRESSURE (EXTRAPOLATED OR OBSERVED, SEE SECTION V. A.)
I = TOTAL IMPULSE

IC = CAUSTIC-RELATED IMPULSE

for the control of th

IMPULSE AND $f_{
m p}^2$ at calculated using observed maximum peak pressure

		u. u.	2.57	. ~		5.	5		٠ •	3.34	-					<u>ተ</u>	٥.	٠.	3.60	، د	، د	ۍ ر د	٠,	~	5.	Ų
	FACTORS	FIC	0.67	``		٠,٠	•			ر:, 5	~			FACTORS		F 1 C	٠,	~	C • 8 2	Ç,	Č,	<u>م</u>	•	S)	ಣ (ထ
		F.1	1.03	•	0	0	•		0	1.12	0					ш ц	1.04	1.06	1.05	1.14	11.1	70.1	1.03	1.05	1.07	1.06
	AMPL I FI CAT I CN	r. G	2.01	. 6	3	4.	Š	7.	8	3.05	٦,	1		APPLIFICAT 10N		q.	,	4.	3.63	9.	٠.	÷ (٠,	ထ္	6,	æ
	⋖	FIRISE	1.24	, m	ŝ	ς.	۰٥	8	6	2.04	7) ,		7		FIRISE	φ,	4.	2.57	ċ,	٠,	9 1	•	φ,	8	6
	$\int_{\mathbf{p}^2 \mathrm{dt}}$		2.31	, r.	14	\$	•		•	3.01	•)		fp ² at	,		• 9	o;	3.24	۰	ů,	î,	7.	, ·	Ų,	r.
CONTINUED	%	IC	. 0198	7 7	020	c21	C21		021	. 0234	C 2 2	1		i SE		10	022	C23	.0226	2 2 2	024	C23	023	C23	024	024
TABLE I CC	IMPULSE	H	.0364	מה ל	300	C31	C31		S	C331	S)		I MP UL SE		1	30	031	.0310	200	222	7 5 5 C 3 T	030	031	C31	C31
	PEAKS	M.	ر ش ن	oα	e c	95	8 2	۷	4 L	733.	5 7	r		PEAKS		g Æ	57	67	285 505	200	ສຸ	3	S	00	10	င္ပ
ន្ទ	MEASURED AT	PIRISE	∞ (• • • • •		2.5	28	7				•	7. 1.	ASU: "E AT		P IR ISE	: .	90	201.	5 6	S :	2:)	20	22	27
O PCUNDS ET O. FEET FEET		G N	* >	* *	* *	*	*	*	* *	*	*	:	PCUR FEE	SURES ME.		P 2	*	*	* *	k *	k	k >	k :	* :	* :	*
= 8.1C0 P 35. FEET IGE = 300. = 38.6 FEE	PRESSURES	ă	158.	163.	179.	188.	191.	C	7 7	2.00	70	V	9 I = 8.095 =35. FEET ANGE = 3CCAH = 38.6 FE	PRESSU		P 1	CC.	43	253	200	ζ;	9	65	68		73
NO. 1078 E WEIGHT = E DEPTH = ONTAL RANGI	DEPTH		5.5	7.0	7.0	6.2	36.33	4. 4	L. 0	- 0,	, -	•	C. 107 WEIGH DEPTH ONTAL R	CEPTH			7 - 1	7.4	٠. د د	· · ·	٠. د	8.0	0.8	8.2	8.4	38.58 38.83
SHOT CHARGE CHARGE HCRIZE	G AG E		Ų.	ტ 🖣	a C.	മ	ເມ	x -	7 5	۷ ـ	ג נ	Ε	SHCT CHARGE CHARGE HCRIZO	GAGE			ပ	ၒ	∢ (5	Ωt	ָ עו	T '	7	¥.	Z

The state of the s

, ñ

A STATE OF THE STA

-, 5

TABLE I CONTINUED

SHCT NC. 1080 CHARGE WEIGHT = 8.091 PCUNCS CHARGE DEPTH = 35. FEET HORIZCNTAL RANGE = 360. FEET CAUSTIC CEFTH = 38.6 FEET

			4 17	r	80	7	J	٠,٠	, ,		ı			٠.,		. .							_		_											
	T.		60 6	•	٦	•	7			7		u'			١.	70.7				Ŧ		ပ	4	۲.	~	ပ္	7		•		ייי		4-73	•	4.82	-
FACTCRS	F1C		77.0		8	8	8	3	α,	0.87		φ,	٥.	0	0	0.89		FACTORS	,	FIC		•	ä	ಘ	a,	6.	5	٥,	Ü		. 6	ď	96.0	(1.04	ပ္
CAT ICN	b-ra Ma		1.06)	1.11	1.14	1.11	1.06	1.09	1.09		7	0	7	0	1.05				14	•	7	ŗ	۲	ç	÷	e,	٣,	۳,	~		۳,	1.27	•	1.32	7
AP FLIFICATION	9.	•	3.45		?	4.40	e,	7	7	¢.10		•	•	•	•	3.30		APPLIFICATION		đ.	•	•		m,	ç	?	?	7	7	9	3.03	6	2.83	r	2.63	•
•	FIRISE	•	2.88		3.06	۲	٦.	٦.	٦.	٦.		٠,	8	9	9	2.60		⋖		FIRISE	-	•	•	٦	ů	۲.	۲.	۰	ø	ď	1.80	۲.	9			
∫p² dt		•	3.27		3.66	•	٥.	8	ပ္	6.		ပ္	•	٥	6	3.83		$\int_{ m p}^2 { m dt}$	•		1	• 4	•	•	3 (ŝ	ŝ	9	ŝ	ń	0.55	ń	S	ď	ָ	•
ıt se	10	600	.0228	-	.0241	2 1	625	024	C25	025		- 0262	97	027	27	26		ı se		IC	ò	6				2 6	วอ	00	ဥ	5	.0077	င်	C	8	[800	;
IMPULSE	-	0.50	0060*	- 7	\$150°	֓֞֜֜֜֜֜֜֜֜֜֜֜֓֜֓֓֓֜֜֜֜֓֓֓֓֜֜֜֜֓֓֓֓֜֜֜֜֜֓֓֓֜֜֜֜	200	3	032	032		• 0325	200	633	035	C31		IMPULSE			500	010	ָר בי בי	יט פי פי	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֓֓֓֜֜֜֜֜	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֓֓֓֓֜֜֜֜֜֓֓֓֜֜֜֜֓֓֓֜֜֜֓֡֓֜֜֜֜֓֡֓֡֜֜֡֓֜֡֡֜֜֡֓֡֜֜֡֓֡֜֜֡֡֜֡֓֡֡֜֜֡֓֜֡֡֜֜֡֓֜֡֜֜֡֡֜֜֡֓֜֡֜֜֡֡ ֓֓֓֓֓֞֓֓֓֞֓֓֓֞֓֓֓֞֓֓֓֓֓֓֓֓֓֓	ָ כוריים בוריים	3	3 (מוכ	-010-	275	0.70	07	-0102)
PEAKS	X.	ω	300,	,		, ,	, ,	חו	2	٠,	(3 (8	<u>,</u>	2		PEAKS		Æ.	120.	ın	•	110.	٠.	117	. 11	٠.	~ ~	•	110.	^ -	163.	-65	100.	
EASUREC AT	PIRISE	9	226.		• • • • • • • •	7 7	٠,	ָר ק	τ,	0	,	• • • • • • • • • • • • • • • • • • • •) (2 0	S	9	8	ASUREC AT		PIRISE	100.	105.	104.	92.5	0.85	, u	י נ ט ני	7 0	0 0		7.00		•			
ES R	P2	*	*	*	*	*	: *	: 1	* *	ĸ	*	· *	: *	k :	k :	*	POUNDS ET 3. FEET	S		P.2	*	*	*	*	*	*	*		: *	2	106		•	-66	100.	
PRESSUR	P1	252.	9	78	297.	6	. 5	. 0	5 0	-	7	263.	2) v	•	3	= 1.060 = 35. FEE1 NGE = 300, = 37.0 FE	PRESSURE	ć	T a	120.	125.	122.	110.	117.	117.	115.	115.	1001		80.5					
СЕРТН		7.6	37.92	9	. S	3.7			, ,	?	7		8		•	•	NC. 1081 E WEIGHT = E DEPTH = 35 CNTAL RANGE IC CEPTH = 3	СЕРТЬ					2.	3.	3.2	8.4	8	3.6		6	9		39.50	~	0	
. GAGE		3.2	Z .	ა დ	4	٥	60	tt.	ı	: ¬	¥	ب.	X	82	2	ţ	SHCT NC. CHARGE WE CHARGE DE HCRIZCNIA	GAGE															2	•		

The state of the s

できる 金田 は はない かんかん かんかん

		F.	4	2.76	ų a		÷	40	יעי	9	5	7	7	1	'n			m m	۲.	4.16	٠,٠		: -:	3	٠,	7	4	٠, ١	"	5.05
	FACTORS	F 1 C	~	0 ° 0	: `	a,	۲,	٠ ۵	٠.		~	a.	ಎ	a,	<u>.</u>		FACTCRS	F 1 C		0.52	٠.	ů		• 6	Ç	5	۲	6.	ပ္	1.06
	CAT ICA	II.	•		٠ د	~	1.08	<u>ء</u> د	ָרָי פּי	10-1	1.03	90.1	1.03	1.02	1.07			. H	?	1-27	۲۰	, ,	; 0	ď.	e.	~	2	2	, ,	1.23
	MFLIFICAT ICN	r G		2.50	٠,	~	w.	* ^	: =	9	.2	ŝ	C,	•	6		APPLIFICAT 1CA	g.	3.70	4.00	4.40	50.4	3.90	3.95	4.00	9	\$	4.	* .	3.25
	a	FIRISE	0	1.16	• "	٠,	۲.	. 4		8	٥.	٠,	7	6	o,		ય	FIRISE	4	2.73	٠, ٥	• 0	``	φ,	8	ç	•	1.87	•	1.60
	$\int_{\mathbf{p}^2} dt$		S,	2.50	'n	7	٠,	• "	7	7	ŝ		ထ္	æ ·	7		$\int_{\mathbf{p}^2}^2 \mathrm{d} \mathfrak{t}$		*	0.47		, ,	ŝ	•	9	ŝ	9	0.58	٥٠	ŝ
CONTINUED	L SE	22	021	.0230	02 C	C23	023	227	022	022	023	023	024	024	026		L SE	10	.0061	0	ဗို ဗိ	מנים	007	C7	ဗ	ວ	0	0 0) C	.0085
TABLE I CC	IMPUL SE		L3 (. C329	าณ	င္မ	m (ວິວ	ິດ	62	C	င္ပ	S	ဗ္ဗ	9		IMPULSE	•-	65	-0102	200	010	12	010	011	၁	C	6630*	3 2	40
	PEAKS	T.	5	195.	` -	45	5 5	ک در ت	900	30	ti S	S.	5	، ب	ပ		PEAKS	Æ	•	145.	163	٠,	142.	0	146.	23	77	124.	9 6	17
S +	MEASUREC AT	PIRISE	83.0	2.4.	4 (1)	5	~ u	9 0	2	20	28	45	25	7) (7	N	Š.	MEASURED AT	PIRISE		0.96		'n	σ		4	Š	ų,	67.5	10	80
7 POUN ET 0. FEE FEET	RES	P 2	* :	* *	: *	*	* *	* *	*	*	*	*	* ;	\$;	ŧ	O PCUNDS ET G. FEET FEET	RES	P 2	*	* *	* *	*	*	* :	*	~	5	110.	3 6	03
= 8.08 = 50. FE NGE = 300 = 27.6	PRESSU	р1	157.	8 9	03	28	Jr u	5 6	78	87	on .	2	20	20 0	Ž,	= 1.06 = 50. FE NGE = 30 = 27.2	PRESSU	PI	15	124.	30	33	28	2	31	8	∹,	86.0	;	. v
NC. 1082 GE WEIGHT = GE DEPTH = 2CNTAL RANG TIC CEPTH =	CEFTH		25.75	9.0	645	9.0	9 c	0	7.3	7.3	7.5	7.6	6.7		\$ \$	NC. 1083 E WEIGHT E DEPTH CNTAL RA IC CEPTH	CEFTH		6.6	6° 6	, 7 . 4	7.5	7.7	6.7	28.00	8.2	4 4	ຄຸດ	0.6	9.3
SHCT CHARGE CHARGE HCRIZC	G AGE		% S	ں گ	ပ	⋖ (= 4	o uu	I	~>	× .	: بــ	a: 2	Ž :	ţ	SHCT CHARG CHARG HORIZ CAUST	GAGE		NS		ی د	A	٥	cΩι	μI	٦	¥.	X	2	N.

		A A	~	3-12	4	ω,	۰	υ,	٦,	•	، ر	٠,	' '	. 7		1. 2E				A E	_	• ~		41	۲.	٠, ١	י ר	١,	٠,	4)	٠,	ပ္	4.23
	FACTERS	FIC	2	۰.	.74	, E0	08.	8.	٠ د د	200	2 4	, c			0	05.			FACTORS	FIC	75		- 80	٠ د د	ယ္မ	ָ מי מי מי מי	26.	88	.87	* F.5	79.	25.	0.82
		13	1,12	1.06	1.04	0	1.06	o, (ခုဇ	, (, 0	•	2	20.1	1.03	1.02				-	1.32	. ~	~	Ľ,	ů.	. "	, ,	i w	4	1.30	?	.35	1.13
	AMFLIFICATICN	ŭ.	7	3.13	9,	7	4.	٦	ů .	י י	•	ıα	9 0	١ ٩	9	9			APPLIFICATICA	9	3,20	3.40	3.65	3.80	9.00	4.00	3.40	4.10	3.90	3.65	3.55	3.40	3.18 3.25
	4	FIRISE	1.85	1.93	2,33	2.69	2.88	3.00	20.0	0 0	70.7	2,75	7.87	1.66	1.60	1.57			44	FIRISE	-	~	č	~ (•	'nα	9	6	8		9,	۰	2.56
·	$\int p^2 dt$		2.81	2.81	3.08	3.48	3.62	0 · 0	י מ מ	4.60		3.95	3 93	4.03	3.94	3.94		,	$\int_{\mathbf{p}^2} dt$		4	4	4	* '	ה ט	j	4	Ň	Ž.	ď.	ďα	Ü	0.43
CONTINUED	SE	10	.0243	.0227	.0219	. 0236	, 620.	2620	6670	.0237	.0250	0259	.0258	.0267	.0263	. 0267			SE	<u>ე</u>	0900.	- 0062	-0064	* 6664	1007	1930	.0061	.0071	2620	8900	2630		5920.
TABLE I CO	IMPULSE		O	.0315	O	.0321	,) C	, C	Ų	. 0	Q		0	Ç	0			IMPUL SE	-	.0106	.0102	5		3 6	55	9	5		ีว :	วั	٠ د	0600*
	PEAKS	E G	218.	240-	~ (330.		, ,	<i>)</i> (1)	1 12	~	u	ບ	ு	ш	w			PEAKS	X Q	118.	120.	134.	158.	. 871	144.	148.	150.		in i	126.	116.	120.
X _	EASURED AT	PIRISE	L)	151.	ന	210.			•	ന	N	n	\sim	129.	125.	123.	y,		MEASUREC AT	PIRISE	76.2	81.7	51.c	F & W C &	, , ,	104.	109.	115.	161.	0.66	ວ້າ	0 0	24.7
99 POUNCS EET SO. FEET FEET	ES M	P2	*	*	*	* 1	· *	*	*	*	*	*	*	~	r)	57	.056 POUNES FEET 3C0. FEET	;	RES	P.2	*	*	* *	* *	*	*	*	*:	* 3	* 4	* *	. *	r 4 x
= 8.109 PC = 50. FEET NGE = 3C0. C	PRESSUR	ī	205.	222	257	205	300.	305	3033	288.	293.	275.	277.	186.	174.	169.	35.1		PRESSU	P1	04	80	18	7 7	200	126.	28	129.	9 6	122.	2 5	108	108.
SHCT NC. 1084 CHARGE HEIGHT = 8. CHARGE DEPTH = 50. HORIZCATAL RANGE = CAUSTIC DEPTH = 27.	CEPTE		26.33	26.58	پ و	٠,	, 4		9	۲.	o.	٩	~	ň	~	ó	SHCT AC. 1085 CHARGE WEIGHT = CHARGE DEPTH = HORIZCATAL RANGI CAUSTIC CEPTH =		СЕЕТЬ		7.0	2.7	~ r		0.8	8.2	8.3	4	ָ קַּי	`	39.17	4	9.6
SHCT CHARG CHARG HORIZ CAUST	GAGE		N2	7	υ¢	۰ <	: 0	o 60	ш	x	7	×	۔۔	2.	2	Ī	SHCT CHARG CHARG HORIZ		GAGE		NZ	Z (ن ر	> <	۵ :	യ	w	Ι.	2 7	ĸ.	2.	8	1

G AG E	CEFTE	PRESSU	α,	ES MEASUREC AT	PEAKS	IMP	IMPULSE	$\int_{\mathbf{p}^2} dt$	Q	AMPLIFICATICN		FACTERS	
		P1	P2	PIRISE	g.	H	10		FIRISE	9.	ш ш	F 1C	T.
22	9	00	*	ď	Œ,			•	0	4			
Z	6.25	34.5	*	3 C	101				0.44	0.44			
ပ	ŝ	•	*	ψ,	v				0.46	4			
ی	٠,	Ġ	*	÷	v				0.46	4.			
⋖ (٠,	ค์ เ	*	m I	ന				0.42	4.			
، د	0	۲.	*	۲.	~				0.48	4.			
ω ι	ૡ	ก๋เ	*	m i	സ				0.43	4.			
: ע		Š.	*	ď.	ທ				95.0	4			
ŗ.	. .	ζ,	*	•	຺				94.0	4			
נכ	٠	• (* :	÷ (J				74.0	4.			
۷.	• (· •	*	,	n 1				0.43	٠,			
: بـ	٤,	'n	**	ċ	\sim				0.42	4			
٤.	٦.	ή,	*	m.	"				0.43	4.			
2	\$:	*	:	~				0.40	4.			
*	ģ	·	*	ပံ	0	,			0.39				
SHCT NC- CHARGE V CHARGE D	. 50.5	. 8 .09 35 . FE	E O	sa									
C AUS 1		33.9	FEET	_									
GAGE	CEPTH	PRESSUR	ES	MEASUREC AT	PEAKS	IdwI	IMPULSE	$\int_{\mathbb{P}^2} dt$	*4	AMPLIFICATION		FACTURS	
		r d	p2	PIRISE	Œ.	-	10		FIRISE	д	FI	F 1C	Ŧ
N2	33.25	422.	*		450.	•0356	.0343	7.3	3-09	4.45	66.03	06.0	4
Z	33.50	440.	*		480.	.0357	0349	7-6	3.29	4.70	0.00	0.00	7
ပ	33.75	460.	*		52C.	c C368	. 0365	8.1	3.52	5.00	0.96	95.0	ų
ပ	34.00	445.	*	445.	520.	.0369	.0369	4.00	4.20	5.00	0.97	0.97	,
< 1	34.17	Š	*		.075	.0397	.0384	8.9	2.71	4.85	1.04	1.01	5.
م (34.33	o i	435.		45C.	.0377	.0377	7.7	1.68	4.70	66.0	65.0	7
æ u	34.50	175.	2		4.70-		• 0382	7.8	1.65	4-70	1.00	00:	7.
נט	24.08	;	5		460-	.0384	• 0384	8.0		4.37	1.01	10-1	2.
r -	34.00	\$ 5	3. L	, .	446.	. C368	• 0368	7.2.	ů,	4.20	96.0	96.0	4
ציי	ה מי יינית יינית	04	9 7	• [•	4.00.	•0376	• 0376	6.7	ŝ	3.90	86.0	0.98	,
٠	35,17	3 7	2 2	• • •	יי טיי	76.0	. 03 / 7	D ('n.	3.80	0.99	55.0	,
I	35.42	160.	339		355	0300	8060	2 4	ָרָי בּילָי ביילי	0 0	- C] : - -	1 4
83	15.67	0	-					•	١,				1
	- > - > - > - > - > - > - > - > - > - >	٥	330	ď	160	2362	0300	7 7	ט	י י י י) C	, ,	

66

	FACTORS	FICF	00.	69.	38	.92	.13 3	52.	0,99	 היי	.080		. 10	01:	828	6.5			FACTORS	FICF	754	555	.60	.59 2	•65 2	.65	0.65 2.	940	. t 7	2 29-	.67	.68 2	•
		۴I	9	8	6	٥.		0,	66.0	•	9	7.	7	7	o, c	0				f 1	۲.	. ^	ူဆ	۲.	ဆ္	တ္	0.85	•	8	8	8	ω	0
	APPLIFICATION	я. С	ιn •	'n	9	'n	4.	ٿ .	2.13	•	Ò	8	7	۲,	ه د	•			AMPLIFICATION	g.	~	_	8	8	0	9	2.07	: 0	?	2	w.	φ.	ı
		FIRISE	,	ິ	•	ů	4	ů.	2.13	, ס	`α	8	7	۲,	9 4	•			•	FIRISE	80	8	6	÷	•	╗.	1.13	,	. 2	'n	4.	Š	•
	$\int_{\mathbf{p}^2}^{2} \mathrm{d} t$		4.	-2	4.	ű	ŝ	٠, ۱	1,34	. "	Š	5	۳,	٠, ١	۲-	•			$\int_{\mathbf{p}^2}^{2} dt$		N	n	v	m	เกเ		15.9	ഥ	vo.	ഹ	S.	ഹം	u
	1 SE	10	6	5	5	5	5	3 8	0710	; ;	5	0	0	3 8	35	;			r se	10	0	•056	.061	0	0 ()	000	S	C	ပ	0	9	C
	J MP UL SE	.	C14	C12	C14	C 13	C16	ביי ביי	0144	015	015	C16	616 C16	210	מוני מוני	-			IMPULSE		~	0	ဆ	ဆ	50	ט כ	200	8	90	8	a	n	•
	PEAKS	X d	5	85	55	ຜູ້	3	£ 0	153	5	£,	C) 1	9 0	V 45	7				PEAKS	Æ.	_	~	25	5 00	7 6	יז ני	334.	22	41	ŝ	2	- c	۵
ET	EASURED AT	PIRISE	90	85	S	84	֚֡֝֟֝֟֝֟֝֟֝֝ ֚	7 Q	153.	40	3	en e	200	VΩ	7		SJ 1		ASUREC AT	PIRISE		9	∞ ⋅	ο.	~ 0	4 -	192.	\sim	204.	~	m /	-010	
60. FE	ES 3	P 2	*	*	*	* :	* *	ĸ		45	43	34	א ער	113	90		eT o	FEET	SURES ME	P 2	*	*	* '	ķ :	* *	*	*	*	*	*	* 4	: *	ķ
GE = 1	PRESSUR	P1	190.	82	95	84	4 4	• 6	153.	6	35	9	9 0	v n	7		= 5 . 35	1 42.	PRESSI	F.	277.	279.	297.	- 066	330	330	2.4	332.	351.	355.	362.	200	-
HCRIZCNTAL RAN	CEPTH		24-17	J.	٠,						ς.	٠.	٠.,	• •	* .*		NC. 1093 E WEIGHT E DEPTH CATAL RA	16. CEP	CEPTH		7-0	7.2	~ • • •	• •	, 6		38.33	3.4	ر د د د	· ·	` -	7	
HCR12	GAGE		N2	Z (ں ر	- د	٦ ۵		w	I	: כ־	¥ -	ב ע	. X	ž		SHCT CHARGE CHARGE	CAUST	د ۱6E		22	Z (ن ر	> <	: C	ω .	ш	x	: ר־	×.	2 د	. ž	1

GAGE	CEFTH	PRESSUR	ES	MEASUREC AT	PEAKS	1 dW I	IMPLLSE	$\int_{p^2} dt$	٩	APPLIFICATICA		FACTCRS	
		ā	P 2	PIRISE	Æ	-	21		FIRISE	ď.	F1	F1C	A.
N N N	36.83	77.0	* * *	50,7	77.0	ပပ	00	0.320	1.38	2.11	1.25	0.70	2.64
ာ ၒ			• •				ပိပိ	96.	~ 0	7, (~ '	
∢ (-	106.	*		8	5	200	3	• ~	ָרָייַ	10	`	•
<u>د</u> د	•	2;	*:		124.	5	900	45	. ~	יאו		• ~	
o u	ה המ	7:	* :		97	ວ	900	43	4	S	ויין נ	٠,	. د
בי	• •	7 .	k :		80 (Ö	CC2	37	ŝ	Š	0		, הי
-	7 7	7 6	k x		45	<u> </u>	8	46	9	٥,	m	٦,	•
×		124.	* *		13 %	3 (900	. 45	•	۲.	?	~	ျှ
	3.7	. 6	: *		7 U	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֡֓֡	နိုင် ၁	48	۲.	ç	'n.	ä	۳,
2	•	2	•)	١ .	ر د	70	\$	တ္	0	~	~	7
SN :	4.	132.	*	116.	~	60	Ý	2	-	r	r	•	•
4	• 2	35	*	117.	u١	8500	• 0065	0.497	3.14	4.30	1.22	0.0	4.45
GAGE	IGE CEPTH P	PRESSUR	ES ME	ASUREC AT	PEAKS	IMPUL	SE	$\int_{\mathbf{p}^2 \mathrm{dt}}$	4	P PL I F I CAT I CA	AT ICN F	ACTORS	
		ć											
		i a	24	PIRISE	E C	-	2		FIRISE	r Gu	14	FIC	n n
75	7	.6	*	ر د		33	2	٠	:	•			
Z	8.4	í,	*	. 40	-	8	1 6	•	17.	7	1.10	•	w.
U	8.6	8	*	22.		3 8	֓֞֜֜֜֝֜֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֜֓֓֓֓֓֓֡֓֜֓֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֡֓֡֓֡֡֡֓֡֡֡֡֓֡֡֡֡֡֡	•	15.	٠,	1.03	~	•
დ -	8.9	86	*	25.	m	33	2.5	•	90.4	•	1.14	•	7
∢ :	0.6	8	*	38,	ပ	032	. "	•	. 0.	•	50-1	~ '	Ç
۵	6	=	*	47.	~	3	C25	, ר	0 4	•	o	. ·	.
ao u	4	7	*	54.	æ	C33	024	;	0 0	•	; -		Ÿ
נת	י ני	25	*	. 9,		~	. 2	9	88	, ,	57.	אָ ר	~; c
c -		20	*		æ	031	C22	8	80		, (•	` '
צי	, c	200	* 1	. 5.5	ပ	63	021	~	56.	: 7	, 0	•	
۷ ـ	י י	2 0	ık :	<u>.</u>	æ	632	023	~	25		7	• ~	- "
. Z		. 652	* *	• æ ç	- (030	C22	0	.27	7	1.03	۲.	۱۳.
. RN	40.58	256.	* *	700	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-0320	. 0236	3.22	2.41	3.40	1.08	0.80	3.60
74	8	264.	: *	• -) u	7 5	220	٠	.61	æ,	1.06	~	÷
))		ı.	•		2	m	Ň	69	ď	1.03	۲.	v

TABLE I CONTINUED

SHCT NC. 1094 CHARGE WEIGHT = 1.074 POUNDS CHARGE DEPTH = 35. FEET HCRIZCNIAL RANGE = 300. FEET CAUSTIC CEPTH = 39.2 FEET

N2 42.00 N1 41.25 C 41.50 G 41.75 A 41.92 D 42.08 B 42.25 E 42.33 H 42.42 J 42.92 K 42.75 L 42.92 N 43.17 N3 43.42 N4 43.67	268. 274. 284. 284. 285. 273. 273. 259. 259. 259. 259. 251. 241. 163. 163. 163. 163.	P2	PIRISE 215. 223. 233. 233. 222. 222. 217. 203. 200. 1197.	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0327 0327 0337 0332 0332 0332 0325 0325 0326	1 C C C S S C C C S S C C C S S C C C S S C C C S C	3.75 3.60 4.20 4.25 4.30 4.35 4.25 4.22 4.22 4.22	F1RISE 2.75 2.85 2.96 2.96 2.97 2.83 2.77 2.69 2.69 2.55 2.55 2.53 1.52	# # 4 # # # # # # # # # # # # # # # # #	1.10 1.05 1.16 1.16 1.18 1.18 1.18 1.10 1.10 1.10	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44444 4044444444
4422-20 4422-20 4422-20 4422-20 443-20 43	268. 274. 284. 284. 285. 273. 273. 273. 259. 259. 259. 259. 259. 251. 261. 163. 163. 35. FE	33 ***********************************	215. 223. 233. 233. 223. 222. 217. 217. 200. 1197.	200 - 200 -		022 022 022 022 022 022 022 022 022 022	. 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				0412440404040444
4422-50 44422-50 44422-50 44422-50 4442-50	274. 284. 284. 285. 273. 273. 273. 273. 268. 273. 241. 163. 163. 163. 163. 163.	******	223. 233. 231. 223. 222. 222. 208. 200. 198.	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		002 002 002 002 002 022 023 023 023 023	- 0 - 0 u 0 u u u 0 u - 0 u 0	The second secon	, , _ , , , , , , , , , , , , , , , , ,	~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	284. 284. 285. 273. 273. 268. 259. 259. 251. 241. 163. 163. 163.	*******	233. 231. 223. 221. 222. 202. 200. 119.	2010 2010 2010 2010 200 200 200 200 200		10000000000000000000000000000000000000	- 44 0 0 W W W O W H W O O	4 2 2 0 M M W W M M M M M M M M M		~~~~~~~~~~	m, a,	041244040404040444
4 4 4 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	284. 285. 273. 273. 268. 259. 259. 241. 241. 163. 163. 35. FE GE = 30	* * * * * * * * * * * * * * * * * * * *	231. 223. 222. 222. 217. 200. 200. 1197.	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2000 2000 2000 2000 2000 2000 2000 200	-44000 W-4000	S O M M IN A M M M M M M			, , , , , , , , , , , , , , , , , , ,	211-M40M9WP4W
422.00 422.00 422.00 422.00 422.00 43.01 43.01 43.01	285. 273. 273. 268. 259. 259. 241. 241. 163. 163. 35. FE GE = 30	*****	233. 221. 222. 217. 217. 201. 203. 1197. 1198.	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0000 0000 0000 0000 0000 0000 0000 0000 0000	14000 W 400 W 400	a a a a a a a a a a a a a			2,0,000,000,000	1-00 4 C D D D D D D D D D D D D D D D D D D
422.0 422.2 422.3 422.4 43.1 43.4 43.4 43.4 43.4	273. 268. 268. 259. 251. 241. 241. 163. = 53.37 35. FE GE = 30	**************************************	221. 222. 222. 221. 208. 203. 200. 1197. 1198.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2000 2000 2000 2000 2000 2000 2000 200	40 0 4 4 0 0 0	o, m m in si m m m m m	24444444	7977797979	, m a a a a a a a a a a	m40m0w0w-4w
42.2 42.3 42.5 42.5 42.9 43.1 43.6 43.6	273. 268. 259. 251. 251. 241. 163. 163. 35. FE GE = 30	*****	222. 217. 208. 203. 200. 119.	2682. 2682. 2682. 248. 241.		200 120 120 120 120 120 120 120 120 120	0 W W 40 W 4 W 0 0	m m in a a a a w w w w	4004000-00	977797979	85000000000	4000000000
42.34 42.54 42.57 42.93 43.11 43.67 43.67 43.67	268. 259. 259. 241. 241. 241. 163. 163. 35. FE GE = 30	. * * * * * * * * * * * * * * * * * * *	200- 201- 201- 200- 200- 1197- 1199-	2000 2000 2000 2000 2000 2000 2000 200		2000 2000 2000 2000 2000 2000 2000	N. W. 40 N. 40 0	M LA A A A W W W W	444444000			
4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	259. 259. 259. 241. 241. 163. 163. 35. FE GE = 30	****** C L L L L L L L L L L L L L L L L	201. 201. 203. 200. 197. 1198.	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# M H M M M M M M M M M M M M M M M M M	720 720 720 720 720 720 720 720	4004400	L A A A W W W W	44444	77979769	, , , , , , , , , , ,	2 m 0 m m W L 4 W
42.57 42.97 43.1 43.67 7.1	257. 251. 241. 241. 163. = 53.37 35. FE GE = 30	***** C	202. 203. 203. 200. 198. 1198.	682. 262. 262. 243. 6.		2228 2228 2228 2228	4044400	สลัลท์เทเทเท	4 4 4 4 4 6 6		, 0, 0, 0, 0, 0, 0	1 4 W S W L 4 W
42-7 43-1 43-5 43-6 43-6 43-6	251. 243. 241. 163. = 53.37 35. FE GE = 30	**** 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	203. 203. 200. 198. 119.	26.7. 26.7. 24.8. 29.1. 29.1.		522 522 522 522 523 523 523	04440	ັດດາບຸດເ <i>ກ</i> ເບ	2444-00	1070700	, 0, 0, 0, 0, 0, 0	0 2 2 2 2 2
42.9 43.4 43.4 43.6	251. 241. 241. 163. 163. 35. FE GE = 30	***	203. 200. 198. 119.	2662. 260. 241. 261.	20000 20000 20000	022 8 022 9 022 7 7	44460	A N N N N	444	24240	,,,,,,,,	V @ N L 4 N
43.4 43.4 43.6 43.6	247- 243- 241- 163- 163-37 35- FE 6E = 30	** (38)	200. 197. 1198.	260. 243. 231. 236.	0000	22.9 22.9 7.20 7.20	1-1460	กณ์เหมีเห	J 64 - 6 6		νοσνο	めんしょん
43.45.45.45.45.45.45.45.45.45.45.45.45.45.	243. 241. 163. = 53.37 35. FE GE = 30	* 335	197. 1196.	243. 241. 236.		22.2	1000	ப் பைய	~-00	ე ~ ი ი	σονσ	ひとなび
43.45 43.65 43.61 VC. 10	241. 163. = 53.37 35. FE GE = 30	: 35 T PO F F F	198. 119.	236.	000	727	100	សមាស	700	1.03	0,00	L 4 N
43.67	163. = 53.37 35. FE GE = 30	335 T PO F F F	119.	99	3 C	7 20	φ _. Ο	ທທ	00	1.03	ο σ	A 10
VC. 10	= 53.37 35. FE GE = 30 = 42.4		•	• 0 0 0	ກ ກ	720	0	r.	0	1.04	σ.	, w
VC. 10	= 53.37 35. FE GE = 30 = 42.4	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.						1			
GAGE DEPTH	ESSUR	ES ME	ASUREC AT 6	PEAKS	IMPUL	r se	$\int_{\mathbf{p}^2} \mathrm{dt}$	4	PPLIFIC	CAT 10N F	FACTCRS	
	P.I	P2	PIRISE	M.	boq.	10		FIRISE	4	1	1	u
,										•		
4 ,	433	*	333.		ũ	Ċ		6	ć			
40.	2	¥	20.		٦	ċ		80	06•	٠.		
41-	4P.	*	90.	8	6	> c		· []	00.	٣,	٠.	' -
41.	8	*	. 26	50	6	Ö		.37	• 59	٣,	7	-
٠.	2	*	.7.		5	ò		84.	•45	٣	~	-
41.6	501.	*	, ,		, č	šě		• 55	.50	٠,	۳,	٠,
41.8	7	*	. 70	٠.	, č	รัง		•46	45	·/		, ,
45.0	9	*		? 5	5 6	3		•65	45	۳,	-	, "
42.5	2	*		9	5	ລຸ		99.	45	٠,		` "
42.5	532	: *	• •	ې ږ		.078		.72	20			•
43.0	<u></u>	*			~ 6	ö.		.73	20			ייי
43.5	ι α	· *		2 9	ָ ֭֓֞֝֞֜֝	ä		.73	09	3		" <
44	9 4	¢ x	. v (8	8		73	9	2 0	۰	•
44.7	. 404	k a			• CE7	• 086	23.4	2.74	3.40	, d	000	,,
45.5	,		•		3	• 086		10	2	9	, ,	Ų,
	•		•		င္ပ	• 092		2	\ C	9 0	9	ņ

TABLE I CONTINUED

SHCT NC. 1096 CHARGE WEIGHT = 8.054 POUNCS CHARGE DEPTH = 35. FEET HGRIZCNTAL RANGE = 300. FEET CAUSTIC CEFTH = 41.6 FEET

SHCT NC. CHARGE N CHARGE D HURIZCNI	NC. 1098 SE WEIGHT = SE DEPTH = 2 ZCNTAL RANGE	= 8.08 = 25. FE AGE = 30.	17 PCUNCS EF 10. FEET FEET	8 -		TABLE 1 C	CONTINUED						
GAGE	CEFTH	PRESSU	RES	MEASUREC AT	PEAKS	IMP UL. SE	J. SE	$\int_{\mathbf{p}^2} d\mathbf{t}$		APFLIFICATICA	CAT ICh	FACTCRS	
		P1	P.2	PIRISE	¥.	H	21		FIRISE	r G	F	F I C	T.
N2	· v	•	*	ď	75.6				6	•			
Z	٠,	8	*		100.				2 6	00.1			
، ن	ų.	5	*	Š	168.				1.10	1.46			
ტ <	2,58	2.00	* >	75.5	167.				1.02	1.26			
٠ .	•	,		2	162.				1.06	1.34			
Σ α	<u>٠</u> د		7.0		J*5					1.28			
e u	٠, د	-	7 n	_	168.					1.22			
, <u>r</u>	,	ייי טיי		n - C	. 6. 6				99.0	1.18			
; ¬	30	•		•	3 • 0 0				٥	1.10			
¥	'n	8	င်	æ	~				4				
ب		•	-	ç	·	•			. ע				
2	7		ייי	S	ο				. ני	01.1			
S.	0	40.4	57.2	40.4	74.0				, «	95.0			
4	8	æ	:	œ					0.50	0.84			
CHL	1000												
CHARG	E WEIGHT	8.42	•	s									
CHARG	E DEPTH :	FE	Ę,										
CAUST	CAUSTIC DEFIF = 3	4.7	0. reel FEET										
GAGE	CEFTH	PRESSU	æ	S MEASUREC AT	PEAKS	IMPULSE	LSE	$\int_{\mathbb{P}^2}^2 \mathrm{d} t$	4	IPFLIFICAI ICA		FACTORS	
		P1	P2	PIRISE	æ	-	IC		FIRISE	я 9	F."	F 1 C	Ħ
ç	,	;	1										
7 4	•	8 5	k :	0	4CC.	34	032		•	٦.	۳	۳,	w
ر د د		410-	* *	316.	460.	COS	033	•	2.93	1,3	0.91	٠,	
ی د	9	9 (2	< *	u r	F 7 7 9	יינו מיני	038	•	٠		٥.	٠,	٠
A	. 8	80	*	480.		9 6	200	•	•	~ ~	σ, ι	ų, ί	~;
۰	2.0	ø	*	(2)	520.	C 3 7	037		• (~α	ָיַ י	, O	•
a D (u		ţ,	٠,	LCI.	ecc.	035	035			2 80	٠,	•	7
ב ט	η u	,	5	1	450.	560	638	•		ະ	٥,	٠	
: ¬	, 0	162	- -	~ 4	47C•	036	036	•	Ĉ.	4.	٥.	5	٠,
×	5.3	70	י מו	200	3,00	ייר הייר	700	•	ů,	٠,	٠,	5	4
۔	5.8	S	0	5 6	020	. 40 . 0	7 40	•	•	~ 0	٥, ٥	σ,	ပ္၊
3 . 8	37.42	153.	263.	153.	275.	.0397	.0397	- O-	1.42	2.55	20.7	50.	
2 7	0 0	4.	N.	43	.822	563	039		. 6	٠	? 9	ے د	יי ע
\$	6.8	, 2	C)	42	151.	35	35		, (1)	٠.	1.00	2	7. B.

大学 一等の 小陽 ののできる

THE REAL PROPERTY OF THE PARTY OF THE PARTY

~ 1

TABLE I CONTINUED

SHCT NC. 1100 CHARGE WEIGHT = 0.122 PCUWGS CHARGE DEPTH = 35. FEET HCRIZCNTAL RANGE = 230. FEET CAUSTIC CEPTH = 33.0 FEET

	r. Tr	~~・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	n n	
APFLIFICATION FACTORS	FIC		FACTORS F1C	
AT ICN	1	24440000000000000000000000000000000000		
PFL1F10	a a	44444444444 444444444 4444 444 444 444	APPLIFICATIGN FP FI	0.90 0.91 0.92 0.88 0.88 0.88 0.71 0.71 0.67
٩	FIRISE	3.005 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	FIRISE	0.90 0.91 0.92 0.88 0.77 0.72 0.69 0.65
$\int_{\mathbf{p}^2 \mathrm{dt}}$		0.164 0.176 0.176 0.193 0.193 0.165 0.165 0.1157 0.1157 0.1157	$\int_{ m p^2}$ dt	
JL SE	2		MP UL SE I C	
IMPULSE	-		IMPU	
PEAKS	X.	98.00 94.00 94.00 94.00 94.00 97.00 97.00 97.00 97.00 97.00	P EAKS	66 94 66 66 66 66 66 66 66 66 66 66 66 66 66
MEASUREC AT	P 1R ISE	00000000000000000000000000000000000000	MEASUREC AT	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
ES	P 2	*** 78.5 81.6 77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 76.4 76.4 76.4	ES P2	* * * * * * * * * * * * * * * * * * *
PRESSUR	Ь	86.3 80.1 79.2 81.2 81.2 81.2 35.0 35.0 34.2 34.2 34.2 37.0 30.1 30.3	PRESSUR P1	998-10 998-10 998-10 998-10 998-10 998-10 998-10 998-10
DEFTH		33.67 34.42 34.42 34.67 34.63 35.00 35.11 35.33 35.92 36.83 37.42 38.92 C. 1101 WEIGHT	CEFTH	10.67 11.667 11.642 11.642 11.642 11.643 11.
GAGE		N1 N1 N1 N2 N3 N4 N4 N4 N4 N4 N4 N4 N4 N4 N4 N4 N4 N4	GAGE	ZXVXLXCIMBOPOORXZ ZXXX

71

SHET CHARGICHARGICHARGICAUST	MC. 1102 E WEIGHT : E DEPTH = CNIAL RAN IC CEPTH	= 0.12 35. FE GE = 23	2 PCUMDS ET O. FEET FEET	S		TABLE I C	CONTINUED						
GAGE	CEPTH	PRESSUR	RES MEA	EASUREC AT	PEAKS	IMPULSE	it se	$\int_{\mathbf{p}^2 dt}$	4	AMPLIFICATICA		FACTORS	
		PI	P 2	PIRISE	¥.		21		FIRISE	Q. L	<u>.</u>	F16	A.
Ş		r	*	r		0.500	α		1.50	~	1.29	۲.	2 • 43
2 7	32.11	26.0	* *	47.67	7 Y	, CC31.	. 60207	0.087	1.97	2.95	1.25	0.82	4.10
ں غ	2 .	, ,	*	1 4		5633	0022	-	2.53	٦.	4.	6	5.60
ပ	3.1	-	*	4	24°C	0034	CC24	2	2.96	ů.	۳.	5,	
⋖	3.3	Š	*	S.	100.	CC35	26	⋆.	3.02	9.	1.41	ပ္	
۵	3.5	8	*	O,	164.	5623	C025	٠ خۍ	3.20	Ģ	4	٠,٠	
ဆ	3.6	ö	*	O	164.	CC36	CC28	oι	3.10	•	*	-	7.1
w	3.8	æ	*	~	103.	5535	3203	nι	3.11	• '	ָי י	-	
I	4.0	ċ		m	91.0	5533	CC28	Λ,	76.7	"	ů	• '	2
7	4.4		•		23.0	2032	7500	10		•		, ,	76.0
¥	4.8	ë.	•		. I. C	5633	0034	- 1		•	•	•	
ر	5.3	ŝ	•		0.05	2622	ל ני	٠.	u	ָּרָ	ņu	•	
2	5.9	34.2	78.0	34.2	25.0	6037	5037	ດເ	1.09	• 0	744	, 4	
e :	6.5	2	٠	A (2000	ט מ חים	U C	† ·1	, ,	-	• -	
† ∠	7.4	•		•	0.60	500		J	•	•	:	:	
1													
CHARG	<u>ب</u> 24	~	S PGUNES	Ş									
CHARG	DEPTH	35. FE	-	! .									
HORIZO CAUSTI	CATAL RANGIC CEPTE =	GE ≈ 19. = 28.8	N. FEET FEET						•				
								,					
GAGE	DEFTH	PRESSUF	RES MEA	ASURED AT	PEAKS	IMPL	I MP UL SE	$\int_{\mathbf{p}^2 \ dt}$	a a	APPLIFICATICA		FACTORS	
		р1	P2	PIRISE	¥.		21		FIRISE	or Or	1,	F I C	Ψ.
2	9	ú	*	v	0.12	4600	C	۲	~	Š	1.14	1.14	e w
2 2	2.0	١0	*	v	40.5	0033	, 0	9	1.36	1.50	1.12	1.12	2.12
ں :	7.5		*	2	50°8	CC 37	O	7	.5	6	1.23	1.23	•
ပ	7.8	8.	*	8	58.7	3C39	O	7	₹,	7	. 30	۳,	س ۵
4	0.8	:	* *	.	78°C	0037	o,	ີ '	9 1	٥, ٥	1.24	•	, n
۵۰	8.1	'n.	* *	'n	ນ -	25.25	9 (- '	- 4	? -	1.1	1.16	• 5
ը Ա	0 & 0 &	112.	* *	112.	12.7	.00382	. 0382	0.262	4.15	. 0	1.26		C.
T	8.7	!	*							•	•	•	•
ר:	0.6	\$	* ;	ζ,		m (C035	\sim	٠.	٠-	٦,۲	٦,	
×.	υ. υ.	, ,	u	ໍ່ດ		9 6	7000	u -	•	7	, "	יי י	N
. .	30.58	50.8	47.1	0 4 0 4 0 8	2 e 0	.00411	.00413	0.159	1.89	1.89	1.36	1.36	5.05
. X	1.5	4		, ,		004	0040	~	•	٠,	'n	۲,	•
Ž	2-0	8		တ်		004	C041		4.	4.	m	φ.	۲۱

-i, ‡

TABLE I CONTINUED

SHCT NC. 1104 CHARGE WEIGHT = 8.386 PGUNCS CHARGE DEPTH = 35. FEET HCRIZCNTAL RANGE = 190. FEET CAUSTIC CEPTH = 29.3 FEET

,,	FE	ら な こ こ こ き み み み き こ ら ら さ さ さ な み み き こ ら ら は も ま な ひ ひ ひ し も な さ こ も ほ は し ま は も さ ひ ひ む ち な ひ し も ほ は	44000	ñ		8.36.77.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	01:~11
FACTERS	FIC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70040	FACTCRS		1.76	יין היין היי
PPLIFICATION	1.5	0.85 0.82 0.82 0.88 0.887 0.87 0.90 0.90	joo40		7.7	1.26 1.23 1.29 1.33	N M M M
APPLIFI		2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	100 N 4	AMPLIFICATION FP FI	14 6	5.30 4.25 4.35	2044
	FIRISE	1.93 2.21 2.21 2.82 2.98 3.50 3.50 3.75 3.75 3.75	11.00	FIRISE	77.	7 10 0	1.79 1.67 1.49 1.47
$\int_{\mathbf{p}^2} d\mathfrak{t}$,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$\int_{\mathbf{p}^2} d\mathfrak{t}$	· ·	C.298 C.247 C.233 C.233	7577.
IMPULSE	IC	.0355 .0378 .0424 .0402 .0402 .0412 .0401	. 0440 . 0437 . 0658 . 0497	ı SE IC	0000	. 0383 . 0374 . 00391	2000
IMP		.0355 .0378 .0424 .0462 .0462 .0414 .0412	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IMPLLSE		888888	
T PEAKS	W.	10 4 10 10 10 10 10 10 10 10 10 10 10 10 10		PEAKS		142. 126. 116. 115.	81.0 68.0 76.5
MEASUREC A	P IR ISE	7558 7666 7666 7666 7666 7666 7666 7666	N. N.	ASUREC AT PIRISE	30 31 20	ന്ദ് ക്	7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
ES	P 2		256. 215. 187. POUN	ES ME P2	***		72.0 60.0 51.4 39.5
PRESSUR	Ы	258. 293. 397. 466. 466. 580. 500. 491. 405.	221 191 187 187 187 187 187 187	PRESSUR P1	α α Ο (, a a	45.0 40.0 39.4 8.8
CEPTH		27.67 28.08 28.42 28.67 28.67 29.00 29.17 29.58 29.92 30.33	11.42 2.08 2.92 2.92 WEIGH	CEPTA	9 0 0 0	29.17 29.33 29.50 29.67	7977
GAGE		L X C I W B D P O C N N	_ 9,9,7 <u>1.</u>	GAGE		400WI.	

The state of the s

1

TABLE I CONTINUED

SHCT NC. 1106 CHARGE WEIGHT = 0.122 POUNCS CHARGE DEPTH = 35, FEET HCRIZCNTAL RANGE = 190. FEET CAUSTIC CEPTH = 29.4 FEET

G A G E	CEPTH	PRESSUR	***	S MEASUREC AT	PEANS	W.	IMPULSE	$\int_{\mathbf{p}}^{2} dt$	•	APFLIFI	PL I F I CAT I CN	FACTERS	
		1	P2	P IR ISL	g X	-	10	,	FIRISE	ď.		FIC	ir M
N N	27.25	48.8	* *	2° 6	4. 0.		• 00353	_	~	~	7	7	u
ပ	3.	m	*		,	ч (•	0.26	2.00	1.15		77 %
ပ	7	ν,	*	•	יו ר	֓֞֜֞֜֜֞֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֡֓֜֝֓֡֓֡֓֡֓֡		~	٥.	4	?		~
4	:	'n	*	, ,	ι α	֓֞֜֜֜֜֜֝֜֜֜֜֜֓֓֓֓֜֜֜֜֓֓֓֓֓֜֜֜֓֓֓֓֓֜֜֜֓֓֓֡֓֜֝֡֓֡֓֡֓֜֝֡֓֡֓֡֡֡֡֡֓֜֡֡֡֡֡֡֡֡	֓֞֞֜֞֜֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֡֓֜֓֓֡֓֞֡֓֡֓֡֓֡֓	~	٩	۲,	1.21		•
۵	<u>:</u>		*	ď) r	יי ני		•	∹	~	\sim		
Œ		00	*	,		֓֞֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֜֜֜֓֓֓֡֓֜֝֓֡֓֜֝֓֡֓֡֡֡֡֡֡֓֡֓֡֡֡֡֡֡֡֡	5 5	~	4	'n	,		ن ۱
ш	5	112	*			֓֞֜֜֝֓֓֓֓֓֓֟֝֓֓֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֡֓֡֓֡		ņ	9	7		• •	
Ι	_	1,0	: 1	•	٠, :	CC 3		N	-	0	יי	, (
ר"		J	٠ .	•	9	003		N		١ ٩	71.6	٠,	
×								•		2	•	-	4
: -		·	٠,	- 1	ż	៊	~			•	•		
	ָּרָ כ	ů,	٠.	41	'n	S	50403 ·	20	٦	•	'n	``	·
. 2	•		\$	S	ä	2	004	2 -	•	•	ņ	۲,	٠,
5 ;	•	42.1	42-1	42-1	46.C	U	60366		1.08	72-7	-33	ų,	·
Ž	•	•	,	0	4	7		¥ .	ů	~	٠	۲;	6
					!	,	67400.	<u>.</u>	ţ	•	ç	1.37	(C)
													•
SHET	=												
CHARG	5	- 0.12	PCUNDS										
CTARCO DY CTARCO		50. FE											
CAUST IC C	IC CEPTH =		• FEET EET										
GAGE	DEFTH	PRESSUR	ES MEAS	EASURED AT	PFAK	-	į	α,					
) L	ראב	Jp_dt	4	PPLIFIC	CATION F	FACTORS	
		P.	P2	PIRISE	Z Q	•							
						-	2		FIRISE	g.	FI	F 1C	Ħ.
N.S	27.17		*	~	•	76677		,					
			*	ď	in	46600	24100.	0.025	-12	•	17	٠.	7
	ž		*	~		, c	3 8	0.030	• 48	•	6	٠.	
	<u>.</u>		*	~	`~	ָּהָ בְּיֵהְ בְּיִהְ בִּיהְ	3 8	0.048	.07	•	.41		. ~
	~		*			ָ מַנְי	3 6	0.052	.35	-:	.43	. ~	
			*			200	3	0-063	- 55	٣.	87.		
	~		*		: -	27620	3	0.077	50.	٧.	62	. `	- ''
	. 8		*	٠	•	200	• 00192	0.079	.25	':	5,5		: '
			*	• -	•	• 60253	<u> </u>	0.081	.42		07		
			*	• -	• .	CCZE	.00201	0.083	35		. 4	? •	
	8			•	•	222	8	C. 084	17	. 4	77	, (
	, m					CC 2 8	. 00227	C.079	74	- α	940	٠ ب	v i
	٥		• •	٠	٠	50630	.00271	0.084	. 6	? <	ט פי	7.	"
			٠,	*	٠	၁၉၁၁	• CC278	0.080	64	, 4	, ,	٠, ،	v ,
	4	22.8	7.05	2.10) · / · ·	* CC328	.0315	C. 079	1.54	7.07		1.4.1	υ c
			•	٠	¢	• cc311	.00307	C • 06 7	37	· C	2 0	U U	., .
										•	0	11	41

CHARGE WEIGHI CHARGE DEPTH = HCRIZCNTAL RAN CAUSTIC CEPTH	50. FE IGE = 30 = 29.2	ET	١				Ç					
AGE CEFTH	PRESSUR	RES MEA	MEASUREC AT	PEAKS	IHPL	I MPUL SE	fp ² at	7	AMFLIFICATICA		FACTORS	
	l d	P 2	PIRISE	£	nud.	10		FIRISE	ű.	-	F 1 C	2
27.1	0	*	-	۶.	212	. 00218	•	0.71	1,40	1.11	Ŷ	a
27.5	•	*	*		0023	. 00115	•	0.0	1.80	1.21	יט	-
C 27.92	34.7	* *	20°3	د. د. د	222	.00:46	C. 040	1.26	2.38	1.39	92.0	3.29
28.3	່ເບ	* *		;	0029	. CC157		1.89	3.20	1.47	. &	• •
28.5	~	*	0	-	26	.00145	•	2-00	3.45	1.33	~	5
28.8	20	* *	, 6	, ,	CC28	. CC168	•	2.50	3.85	1.45	, a	<u> </u>
29.0	,	*	; ;	'n	0020	.00176		3.15	4.55	1.35	່ຜ	. 4
29.4	S	*	ę.	ŝ	0029	. 00200	•	3.55	6.95	1.49	Ç	-
29.8	- 1	56.2	٠,	÷ ;	28	. 002CB	•	•	4.10	1.42	Ç,	77
200	36.0	2.55	3.5 5.6 6.6 6.6		7700	* CO235		16-7	د . د	1.52	- "	
31.5	- 0	42.0	, 5		0030	.00264		1.60	00.6	1.54		ای -
32.4	~	37.6	4	m	35	. CC311		, v	2.73	1.60	ישי	
SHCT NC. 1109 CHARGE WEIGHT CHARGE DEPTH = HORIZCATAL RAN	1109 IGHT = 0.122 PTH = 35. FEE L RANGE = 300 EFTP = 40.2 F	PCUNCS FT FEET	Ņ									
AGE CEFTH	PRESSUR	ES	MEASUREC AT	PEAKS	IMPULSE	אר SE	$\int_{\mathbb{p}^2} dt$	4	APPLIFICATION FACTORS	SAT ICA	FACTCRS	
	P1	P 2	PIRISE	Σ	H	10		FIRISE	a. u.		F1C	H.
0	•	*		•	5		ć	c	6	c	r	•
39.3		× *		ů	, CC 156		•	• •	200	200	• 4	- 0
39.6	Š	*	ιά	0	CCZ	, _		:0	4.30	1.36	, an	Š
39.9	•	*	•	a)	Ç05	$\overline{}$	•	7.	4.40	1.17		!?
40.0	. .	* *	☆.	m (ပ္ပ	•	•	ή.	2.00	1.32	۳,	w.
1.2	• •	* *	, ,	v 4	202	•		\$ W	4.30	1.42	ນຸທຸ	. 4
40.5	å	*	2	C.	CCS	_		. ~	4.50	1.35	9	7
40.8	ů,	* ;	8	4	.00286	\sim		0,	4.00	1.45	5	۵, ن
41.17	35.0	4.8 8.8	4 0 0 0 0 0 0	2 0 0	• CC286	co196	C. 066	2.83	3.80	2.45	200	7
42.0	ı ıçı	ŝ	6	9	500	,		- &	3.31	1.52	? ~	: 5
45.6	å.	41.8		8	CC2	\sim		۲,	3.01	1.44	~	4.
43.3	. . ,	~		ο,	, CC323	•	•	•	3.12	1.64		ייף
7.4.4		υ	*1	3	30F77•	_	•	1.46	81.2	æ.	Ý	a,

TABLE II TABULATION OF VELOCITY PROFILE DATA

SHCT	NC.	1078	
DATE	8/	18/64	
TIRE	OF	FIRING	1419
TIPE	OF	PROFILE	1405

SHCT NO. 1078
DATE 8/18/64
TIME OF FIRING 1419
TIME OF PROFILE 1410

DEPTH (FT)	SOUND VELOCITY STA. 1		DEPTH (FT)	SOUND VELOCITY	(FT/SEC) STA. 2
	SIA. I	STA. 2		3174 1	3174 2
0.17	4910.02		0.17	4910.C2	
0.25		4902.48	0.25		4902.99
2.50	4898.12		2.50	4897.87	
5.00	4896.48		5.00	4896.48	
10.00	4895.54	4895.39	10.00	4895.54	4895.13
12.50	4894.81		12.50	4894.81	
15.00	4889.72	4892.06	15.00	4890.76	4891.54
20.00	4801.63	4799.73	20.00	4801.63	4799.08
25.00	4747.86		25.00	4747.36	
30.00	4724.30		30.00	4724.30	
35.00	4715.81	4718.66	35.00	4715.81	4717.89
40.00	4710.94		40.00	4710.94	
45.00	4709.69		45.00	4709.69	
50.00	4708.99	4710.16	50.00	4708.21	4709.38
55.00	4708.99		55.00	4708.21	
65.00	4703.89	4706.01	65,00	4703.89	4766.01

SHOT NO. 1078
DATE 8/18/64
TIME OF FIRING 1419
TIME OF PROFILE 1419

SHCT NO. 1979
DATE 8/20/64
TIME OF FIRING 1955
TIME CF PROFILE 1000

DEPTH (FT)	SOUND VELOCITY (FT/SEC) STA. 1 STA. 2	DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2
0.17	4909.53	0.17	4893.94	
0.25		0.25		4891.77
2.50	4898.63	2.50	4891.96	
5.00	4896.48	5.00	4892.37	
10.00	4895.80	10.00	4891.93	4891.51
12.50	4895.07	12.50	4891.71	
15.00	4890.50	15.00	4889.72	4897.50
20.00		20.00	4802.93	4803.65
25.00		25.00	4749.31	
30.00		30.00	4726.58	
35.00		35.00	4718.12	4719.43
40.00		40.00	4714.81	
45.00		45.00	4711.25	
50.00		50.00	4710.55	4710.94
55.00		55.00	4710.55	
65.00		65.00	47:09.38	4711.48

TABLE II CONTINUED

SHCT	NC.	1979	
DATE	8/	/20/64	
TIME	OF	FIRING	1055
TIME	0F	PROFILE	1038

SHOT NO. 1080
DATE 8/20/64
TIME OF FIRING 1518
TIME OF PROFILE 1502

DEPTH (FT)	SOUND VELOCITY		DEPTH (FT)	SOUND VELOCITY	
	STA. 1	STA. 2		STA. I	STA. 2
0.17	4893.42		0.17	4913.91	
0.25		4894.35	0.25		4907.96
2.50	4893.00		2.50	4898.12	
5.00	4892.37		5.00	4893.40	
10.00	4891.41	4891.51	10.00	4892.19	4892.55
12.50	4890.67		12.50	4891、45	
15.00	4890.24	4889.98	15.00	4888.15	4889.46
20.00	4801.63	4803.00	20.00	4802.93	4802.35
25.00	4748.59		25.00	4747.13	
30.00	4725.06		30.00	4721.26	
35.00	4716.58	4719.43	35.00	4714.27	4715.58
40.00	4712.49		40.00	4710.16	
45.00	4710.47		45.00	4709,69	
50.00	4709.77	4710.16	50.00	4708.99	4709.38
55.00	4709.77		55.00	4708.21	
65.00	4707.03	4709.14	65.00	4703.89	4709.14

SHOT NO. 1089 DATE 8/20/64 TIME OF FIRING 1518 TIME OF PROFILE 1519 SHOT NO. 1081 DATE 8/21/64 TIME OF FIRING 1555 TIME OF PROFILE 1536

DEPTH (FT)	SOUND VELOCITY	(FT/SEC)	DEPTH (FT)	SOUND VELOCITY	
	STA. 1	STA. 2		STA. I	STA. 2
0.17	4914.88		0.17	4919.66	
0.25		4908.20	0.25		4925.21
2.50	4899.39		2.50	4903.67	
5.00	4893.92		5.00	4899 . ¢3	
10.90	4893.48	4893.59	10.00	4896.56	4897.18
12.50	4892.75		12.50	4894.81	
15.00	4889.20	4891.02	15.00	4889.72	4889.98
20.00	4804.88	4810.74	20.00	4806.82	4801.69
25.00	4744.94		25.00	4749.31	
30.00	4724.30		30.00	4726.58	
35.00	4715.81	4719.43	35.00	4718.12	4719.43
40.00	4710.94		40.00	4714.81	
45.00	4709.69		45.00	4711.25	
50.00	4708.99	4710.16	50.00	4711.33	4710.16
55.00	4708.99		55.00	4710.55	
65.00	4704.68	4719.70	65.00	4709.38	4710.70

TABLE II CONTINUED

SHCT NO. 1081	SHOT NO. 1.)82
DATE 8/21/64	DATE 8/24/64
TIPE OF FIRING 1555	TIME OF FIRING 1202
TIME OF PROFILE 1600	TIPE OF PROFILE 1135

DEPTH (FT)	SOUND VELOCITY	(FT/SEC)	DEPTH (FT)	FOUND VELOCITY	(FT/SEC)
	STA. 1	STA. 2		STA. 1	STA. 2
0.17	4924.37		0.17	4919,19	
0.25		4929.37	0.25		4913.33
2.50	4996.66		2.50	4911.57	
5.00	4901.05		5.00	4910.00	
10.00	4896.56	4897.18	10.00	4970.63	4904.25
12.50	4895.32		12.50	4897.88	
15.00	4889.72	4889.98	15.00	4889.72	4889.46
20.00	4806.82	4804.30	20.20	4868.11	4808.17
25.00	4750.76		25.00	4749.31	
30.00	4726.58		30.00	4726.58	
35.00	4718.12	4719.43	35.00	4718.12	4720.19
40.00	4714.81		40.00	4715.58	
45.00	4711.25		45.00	4712.80	
50.00	4711.33	4710.94	50.00	4710.55	4712.49
55.00	4710.55		55.00	4710.55	
65.00	4709.38	4710.70	65.00	4709.38	4719.70

SHCT NO. 1082	SHGT NO. 1983
DATE 8/24/64	DATE 8/24/64
TIME OF FIRING 1202	TIME OF FIRING 1527
TIME OF PROFILE 1145	TIME OF PROFILE 1315

DEPTH (FT)	SOUND VELUCITY	(FT/SEC)	DEPTH (FT)	SOUND VELOCITY	(FT/SEC)
	STA. 1	STA. 2		STA. 1	STA. 2
0.17	4921.55		0.17	4922.02	
0.25		4912.85	0.25		4919.57
2.50	4912.55		2.50	4913.03	
5.00	4910.49		5.00	4910.00	
10.00	4900.12	4904.25	10.00	4901.64	4904.25
12.50	4898.90		12.50	4898.39	
15.00	4889.72	4889.98	15.00	4893.36	4890.50
20.00	4808.11	4806.88	20.00	4805.53	4807.53
25.00	4748.59		25.00	4749.31	
30.00	4726.58		30.00	4725.06	
35.00	4718.12	4719.43	35.00	4715.81	4719.43
40.00	4714.81		40.00	4710.94	
45.00	4711.25		45.01	4710.47	
50.00	4710.55	4710.94	50.00	4709.77	4710,16
55.00	4710.55		55.00	4709.77	
65.J0	4798.60	4710.70	65.00	4707.03	4709.92

TABLE II CONTINUED

SHCT NO. 1083	SHCT NO. 1083
DATE 8/24/64	DATE 8/24/64
TIME OF FIRING 1527	TIME OF FIRING 1527
TIME OF PROFILE 1445	TIME OF PROFILE 1530

DEPTH (FT)	SOUND VELOCITY	(FT/SEC) STA. 2	DEPTH (FT)	SCUND VELOCITY	(FT/SEC) STA. 2
0.17	4926.23		0.17	4932.65	
0.25		4928.91	0.25		4928.91
2.50	4913.03		2.50	·>914.48	
5.00	4910.98		5.00	4911.47	
10.00	4902.64	4905.24	10.90	4903.65	4904.74
12.50	4899.41		12.50	4900.42	
15.00	4890.24	4889.98	15.00	4899.72	4891.02
20.00	4808.75	4808.17	20.00	4898.75	4804.30
25.00	4748.59		25.00	4750.04	
30.00	4725.06		30.00	4726.58	
35.00	4717.35	4719.43	35.00	4718.12	4720.19
40.00	4710.94		40.00	4713.27	
45.00	4710.47		45.00	4711.25	
50.00	4709.77	4710.16	50.00	4709.77	4710.16
55.00	4708.99		55.00	4709.77	
65.00	4737.03	4709.92	65.00	4709.38	4709.92

SHOT NO. 1984	SHOT NO. 1984
DATE 8/25/64	DATE 8/25/64
TIME CF FIRING 1209	TIME OF FIRING 1209
TIME OF PROFILE 1100	TIME OF PROFILE 1214

DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2	DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2
0.17	4918.71		0.17	4922.96	
0.25		4912.36	0.25		4914.78
2.50	4912.06		2.50	4912.06	
5.00	4910.98		5.00	4910.98	
10.00	4904.65	4906.24	10.00	4903.65	4902.24
12.50	4900.92		12.50	4900.92	
15.00	4888.15	4889.46	15.00	4888.68	4887.89
20.00	4807.46	4808.81	20.00	4808-75	4820.23
25.00	4749.31		25.00	4749.31	
30.00	4726.58		30.00	4726.58	
35.00	4718.12	4719.43	35.00	4718.12	4719,43
40.00	4710.94		40.00	4710.94	
45.00	4710.47		45.00	4710.47	
50.00	4710.55	4710.94	50.00	471C.55	4710.16
55.00	4709.77		55.20	4729.77	
65.00	4707.82	4709.92	65.00	4709.38	4710.70

TABLE II CONTINUED

SHCT	NO.	1085	
DATE	9/	25/64	
TIME	0F	FIRING	1516
TIPE	0F	PROFILE	1333

SHCT NO. 1085 DATE 8/25/64 TIME OF FIRING 1516 TIME OF PROFILE 1457

DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2	DEPTH (FT)	SOUNC VELOCITY	(FT/SEC) STA. 2
0.17	4928.08		0.17	4928.54	
0.25		4923.81	0.25		4925.21
2.50	4914.00		2.50	4915.93	1,2,2621
5.00	4912.44		5.00	4911.95	
10.00	4905.14	4906.24	10.00	4904.65	4905.74
12.50	4900.92		12.50	4900.42	1702111
15.00	4889.20	4888.94	15.00	4900.51	4890.50
20.0ú	4808.11	4807.53	20.00	4828.11	4803.00
25.00	4755.80		25.00	4750.04	100300
30.00	4727.33		30.00	4726.58	
35.00	4718.12	4719.43	35.00	4717.35	4719.43
40.00	4710.94		40.00	4712.49	7147073
45.00	4710.47		45.00	4710.47	
50.00	4710.55	4710.16	50.00	4708.99	4710.16
55.00	4710.55		55.00	4708.99	4110110
65.00	4709.38	4710.70	65.00	4706.25	4710.70

SHCT NC. 1086
DATE C 26/64
TIME OF FIRING 1405
TIME OF PROFILE 1238

SHOT NO. 1086 DATE 8/26/64 TIME OF FIRING 1405 TIME OF PROFILE 1350

DEPTH (FT)	SOUND VELOCITY	(FT/SEC)	DEPTH (FT)	SOUND VELOCITY	(FT/SEC)
	STA. 1	STA. 2		STA. 1	STA. 2
0.17	4918.71		0.17	4922.02	
0.25		4916.23	0.25		4919.09
2.50	4914.00		2.50	4915.45	
5.00	4913.90		5.00	4913.90	
10.00	4907.13	4907.23	10.00	4906.63	4907.23
12.50	4901.43		12.50	4901.43	1701425
15.00	4889.20	4889.46	15.00	4889.72	4889.98
20.00	4810.67	4808.17	20.00	4814.49	4808.17
25.00	4750.04	-	25.00	4750.76	1000121
30.00	4727.33		30.00	4726.58	
35.00	4718.12	4720.19	35.00	4718.12	4719.43
40.00	4714.81		40.02	4712.49	7127673
45.00	4711.25		45.00	4710.47	
50.00	4710.55	4710.94	50.00	4710.55	4710.16
55.00	4710.55	******	55.00	4709.77	4719.10
65.00	4709.38	4710.70	65.00	4705.47	4710.70

TABLE II CONTINUED

SHOT NG. 1986 DATE 8/26/64	SHCT NO. 1387
TIME OF FIRING 1405 TIME OF PROFILE 1409	DATE 8/27/64 TIME OF FIRING 1113 TIME OF PROFILE 1955

DEPTH (FT)	SOUND VELOCITY	(FT/SEC) STA. 2	DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2
0.17 0.25 2.50 5.00	4923.90 4915.45 4913.90	4918.14	0.17 0.25 2.50 5.00	4911.49 4912.55	4911.39
10.00 12.50 15.00	4907.13 4902.43 4889.20	4907.23 4888.94	10.00 12/50 15.00	4910.98 4910.57 4905.93 4890.24	4910.67
20.00 25.00 30.00	4811.31 4752.93 4726.58	4808.17	20.00 25.00 30.00	4814.49 4755.08 4730.35	4891.02 4812.65
35.00 40.00 45.00	4718.12 4713.27 4711.25	4719.43	35.00 40.00 45.00	4718.89 4715.58	4720.96
50.00 55.00 65.00	4709.77	4710.94 4709.92	50.00 55.00 65.00	4710.55	4714.81
		· / -	02130	4710.16	4713.03

	NO. 1088 8/27/64				1089	
TIME	OF FIRING OF PROFILE	1541 1535	MIT	E OF	/28/64 FIRING PROFILE	

DEPTH (FT)	SOUND VELOCITY	(FT/SEC) STA. 2	DEPTH (FT)	SOUND VELOCITY	(FT/SEC) STA. 2
0.17 0.25 2.50 5.00 10.00 12.50 15.00 20.00 25.00	4913.91 4913.03 4911.71 4910.57 4904.69 4889.20 4813.22 4752.93	4915.27 4910.67 4904.74 4889.46 4812.65	0.17 0.25 2.50 5.00 10.00 12.50 15.00 20.00	4911.00 4911.57 4910.00 4910.08 4904.94 4889.20 4812.59	4911.88 4909.20 4906.23 4889.98 4813.92
30.00 35.00 40.00 45.00 50.00 55.00	4709.77	4719.43 4710.16 4709.92	30.00 35.00 40.00 45.00 50.00 55.00	4752.93 4728.09 4718.12 4713.27 4711.25 4710.55 4710.55 4709.38	4720.19 4710.94 4710.70

TABLE II CONTINUED

SHCT NO. 1090	SHOT NG. 1090
DATE 8/31/64	DATE 8/31/64
TIME OF FIRING 1130	TIME OF FIRING 1130
TIME OF PROFILE 1050	TIME OF PROFILE 1120

DEPTH (FT)	SOUND VELOCITY	(FT/SEC)	DEPTH (FT)	SOUND VELOCITY	(FT/SEC)
	STA. 1	STA. 2		STA. 1	STA. 2
0.17	4918.24		0.17	4919.66	
0.25		4915.75	0.25		4915.75
2.50	4916.41		2.50	4915.45	
5.00	4915.34		5.00	4914.86	
10.00	4913.01	4912.62	10.20	4912.04	4911.65
12.50	4908.90	4908.21	12.50	4907.42	4907.71
15.00	4891.80	4893.62	15.00	4892.32	4889.98
20.00	4819.54	4820.85	20.00	4815.76	4820.23
25.00	4757.95		25.00	4756.52	
30.00	4733.34		30.00	4731.10	
35.00	4722.71	4725.52	35.00	4719.66	4723.24
40.00	4717.89		40.00	4715.58	
45.00	4715.12		45.00	4712.80	
50.00	4712.88	4715.58	50.00	4711.33	4712.49
55.00	4711.33		55:00	4710.55	
65.00	4710.16	4711.48	65.00	4710.16	4710.70

SHGT NO. 1091

DATE 8/31/64

TIME OF FIRING 1522

TIME OF PROFILE 1429

TIME OF PROFILE 1515

DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2	DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2
0.17	4933.10		0.17	4934.00	
0.25		4923.81	0.25		4924.74
2.50	4917.84		2.50	4917.37	
5.00	4916.31		5.90	4915.34	
10.00	4914.95	4914.08	10.00	4913.01	4911.65
12.50	4910.37	4911.15	12.50	4907.42	4907.71
15.00	4892.84	4895.16	15.00	4891.28	4890.50
20.00	4818.28	4825.82	20.00	4815.13	4820.23
25.00	4757.23		25.00	4756.52	
30.00	4734.09		30.00	4728.09	
35.00	4723.47	4726.28	35.00	4718.89	4720.96
49.00	4718.66		40.00	4712.49	
45.00	4713.58		45.00	4711.25	
50.00	4712.88	4715.58	50.00	4710.55	4710.94
55.00	4711.33		55.00	4710.55	
65.00	4710.94	4711.48	65.00	4709.38	4710.70

TABLE II CONTINUED

SHGT NO. 1092	SHCT NO. 1093
DATE 9/ 1/64	DATE 9/ 1/64
TIME OF FIRING 1048 TIME OF PROFILE 1040	TIME OF FIRING 1449 TIME OF PROFILE 1438

DEPTH (FT)	SOUND VELOCITY	(FT/SEC)	DEPTH (FT)	SOUND VELOCITY	(FT/SEC)
	STA. 1	STA. 2		STA. 1	STA. 2
9.17	4915.36		0.17	4922.02	
0.25		4914.30	0.25	. /2402	4916.71
2.50	4914.97		2.50	4917.84	4710111
5.00	4914.38		5.00	4915.34	
10.00	4913.98	4913.11	10.00	4914.95	4913.59
12.50	4907.42	4907.71	12.50	4907.91	
15.00	4889.72	4889.98	15.00	4892.32	4910.66
20.30	4815.13	4820.23	20.00	4815.76	4891.54
25.00	4756.52	1020.23	25.00		4822.10
30.00	4728.09			4756.52	
35.00	4718.89	4720.19	30.00	4730.35	
40.00	4713.27	4120.19	35.00	4718.89	4721.72
45.00			40.00	4714.04	
	4711.25		45.00	4712.80	
50.00	4710.55	4710.94	50.00	4710.55	4710.94
55.00	4710.55		55.00	4709.77	
65.00	4709.38	4710.70	65.00	4708.60	4710.70

SHCT NG. 1093 DATE 9/ 1/64	SHOT NO. 1093
TIME OF FIRING 1449 TIME OF PROFILE 1450	DATE 9/ 1/64 TIME OF FIRING 1449 TIME OF PROFILE 1450

DEPTH (FT)	SOUND VELUCITY STA. 1	(FT/SEC) STA. 2	DEPTH (FT)	SOUND VELOCITY	(FT/SEC) STA. 2
0.17	4920.61		0.17		
0.25	,,20001	4917.19	9.17		
2.50	4917.84	4721027	0.25		
			2.50		
5.00	4915.83		5.00		
10.00	4914.95	4914.08	10.00		
12.50	4908.90	4894.61	12.50		(000 7/
15.00	4892.84	4884.19	15.00		4902.74
20.00	4815.13	4793.80	20.00		
25.00	4756.52	4173400			4830.13
30.00	-		25.00		
	4727.33		30.00		
35.00	4718.89	4720.96	35.00		
40.00	4714.81		40.00		
45.00	4711.25		45.00		
50.00	4710.55	4710.94			
55.00	· · · ·	4110.94	50.00		
· · -	4709.77		55.00		
65.00	4708.60		65.00		4725.30

TABLE II CONTINUED

SHCT NG. 1094 DATE 9/ 2/64 TIME OF FIRING 1124 TIME OF PROFILE 1100	SHET NO. 1095 DATE 9/ 2/64 TIME OF FIRING 1409
TIME OF PROFILE 1100	TIME OF PROFILE 1403

· DEPTH (FT)	SOUND VELOCITY	(FT/SEC)	DEPTH (FT)	SOUND VELOCITY	(FT/SEC)
	STA. 1	STA. 2		STA. 1	STA. 2
0.17	4911.49		0.17	4919.66	
0.25		4910.90	0.25	4719200	(017 ()
2.50	4912.06	***************************************	2.50	(01/ 00	4917.66
5.00	4910.49		5.00	4914.00	
10.00	4910.57	4702 07		4912.44	
12,50	•	4792.97	10.00	4911.06	4911.16
	4909.39	4909.68	12.50	4910.86	4911.15
15.00	4890.24	4891.02	15.00	4893.87	4893.62
20.00	4815.76	4818.97	20.30	4817.65	4815.19
25.00	4756.52		25.00	4757.95	1013.17
30.00	4732.59		30.00	4734.09	
35.00	4720.42	4722.48	35.00	4722.71	/ 7 22 2 4 /
40.00	4717.12	1122440			4723.24
45.00	4712.80		40.00	4717.89	
50.00	4715.55	.715 00	45.00	4713.58	
		4713.27	50.00	4711.33	4716.36
55.00	4710.55		55.00	4710.55	
65.00	4710.16	4711.48	65.00	4710.16	4713.03

SHOT	NO.	1096		
DATE	9/	3/64		
TIME	0F	FIRING	1355	
TIME	٥F	PROFILE	1343	

SHCT NG. 1097 DATE 9/ 4/64 TIME OF FIRING 1223 TIME OF PROFILE 1208

DEPTH (FT)	SOUND VELOCITY	(FT/SEC)	DEPTH (FT)	SOUND VELOCITY	(FT/SEC)
	STA. 1	STA. 2		STA. 1	STA. 2
0.17	4918.71		0.17	4913.91	
0.25		4913.82	0.25	,,13.,1	4907.46
2.50	4910.11		2.50	4908.63	4701540
5.00	4909.51		5.00	4904.56	
10.00	4905.64	4907.23	10.00	4903.65	4905.74
12.50	4906.43	4906.72	12.50	4905.93	
15.00	4894.90	4897.72	15.00	4901.52	4905.23
20.00	4818.28	4818.97	20.00	4821.41	4901.77
25.00	4757.23		25.00	4761.50	4921.48
30.00	4731.85		30.00		
35.00	4720.42	4722.48	35.00	4733.34	
40.00	4716.35	1122440		4721.95	4724.76
45.00	4711.25		40.00	4717.89	
50.00	4710.55	4712.49	45.00	4713.58	
55.00		4112.49	50.00	4711.33	4715.58
	4710.55	4711 40	55.00	4711.33	
65.00	4710.16	4711.48	65.00	4710.16	4711.48

TABLE II CONTINUED

SHOT NC. 1098	SHCT NG. 1098
DATE 9/ 4/64	DATE 9/ 4/64
TIME OF FIRING 1540 TIME OF PROFILE 1530	TIME OF FIRING 1540 TIME OF PROFILE 1535

€, ₹

DEPTH (FT)	SCUND VELOCITY STA. 1	(FT/SEC) STA. 2	DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2
0.17 0.25 2.50 5.00	4924.83 4909.62 4906.06	4919.57	0.17 0.25 2.50 5.00	4927.62 4911.08	4919.57
10.00 12.50 15.00 20.00 25.00	4903.65 4905.43 4901.02 4819.54 4757.23	4906.24 4905.73 4892.06 4815.19	10.00 12.50 15.00 20.00	4908.03 4904.65 4905.43 4899.50 4822.04	4906.24 4905.73 4893.10 4818.97
30.00 35.00 40.00 45.00	4733.34 4719.66 4717.12 4711.25	4721.72	25.00 30.00 35.00 40.00 45.00	4762.92 4733.34 4719.66 4716.35	4721.72
50.00 55.00 65.00	4710.55 4710.55	4713.27 4711.48	50.00 55.00 65.00	4711.25 4710.55 4710.55 4710.16	4712.49 4711.48

NO. 1099 9/ 8/64				1100	
OF FIRING OF PROFILE	1443	TIME	OF	FIRING PROFILE	

DEPTH (FT)	SOUND VELOCITY	(FT/SEC) STA. 2	DEPTH (FT)	SOUND VELOCITY	
		51 N C		STA. 1	STA. 2
0.17	4911.00		0.17	4002.40	
0.25		4914.78	0.25	4903.08	
2.50	4902.67	7717010			4899.46
5.00	- · · ·		2.50	4900.66	
	4899.54		5.00	4898 . Cl	
10.20	4899.11	4903.73	10.00	4898.10	4898.71
12.50	4899.41	4899.71	12.50	4897.88	4897.68
15.00	4898.99	4898.74	15.20	4897.46	
20.00	4826.38	4827.06	20.00		4896.70
25.00	4763.62	1021100		4826.38	4826.44
30.00			25.00	4763.62	
	4734.83		30.00	4734.83	
35.00	4724.23	4726.28	35.00	4724.99	4726.28
40.00	4718.66		40.00	4718.66	1120.20
45.00	4715.89		45.00		
50.00	4715.20	4717.89	50.00	4717.43	
55.00	4713.65	1121609	·	4713.65	4717.13
65.00			55.00	4712.88	
07.00	4710.94	4716.13	65.00	4710.94	4713.03

TABLE II CONTINUED

SHGT	NO.	1101	
DATE	9/	9/64	
TIPE	0F	FIRING	1448
TIPE	0F	PROFILE	1405

SHOT NO. 1101 DATE 9/ 9/64 TIME OF FIRING 1448 TIME OF PROFILE 1430

DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2	DEPTH (FT)	SOUND VELOCITY	(FT/SEC) STA. 2
0.17	4916.32		0.17	4918.24	
0.25		4919.09	0.25	4310.24	(0)(70
2.50	4901.67	,	2.50	4901.67	4914.78
5.00	4898.52		5.00	-	
10.00	4898.60	4900.23	10.00	4898.52	
12.50	4898.90	4898.70	12.50	4898.60	4899.21
15.00	4897.97	4896.70	15.00	4898.90	4898.19
20.00	4826.38	4824.59		4896.44	4896.19
25.00	4765.03	7027637	20.00	4825.14	4827.06
30.00	4734,09		25.00	4763.62	
35.00		1301 00	30.00	4732.59	
40.00	4723.47	4726.28	35.00	4720.42	4721.72
	4718.66		40.00	4718.66	
45.00	4716.66		45.00	4712.80	
50.00	4712.88	4717.13	50.00	4711.33	4712.49
55.00	4711.33		55.00	4710.55	
65.00	4710.94	4713.03	65.00	4710.16	4710.70

SHCT NO. 1102 DATE 9/10/64 TIME OF FIRING 1142 TIME OF PROFILE 1130

SHCT NO. 1103 DATE 9/10/64 TIME OF FIRING 1458 TIME OF PROFILE 1408

DEPTH (FT)	SOUND VELOCITY	(FT/SEC)	DEPTH (FT)	SOUND VELOCITY	1ET/5EC1
	STA. I	STA. 2		STA. 1	STA. 2
0.17	4902.08		0.17	4917.28	
0.25		4900.97	0.25		4911.39
2•.50	4901.16		2.50	4901.67	4711.54
5.00	4897.50		5.00	4898,52	
10.00	4897.59	4898.20	10.00	4898.60	4000 21
12.50	4897.88	4895.63	12.50	4898.90	4899.21
15.00	4897.46	4895.16	15.00	4897.97	4898.70
20.00	4822.04	4827.67	20.00		4897.72
25.00	4764.33		25.00	4827.61	4827.67
30.00	4734.09		30.00	4765.03	
35.00	4724.23	4725.52	35,00	4734.83	
40.00	4718.66	4127.72		4724.23	4726.28
45.00	4714.35		40.00	4718.66	
50.00		/710 /0	45.00	4714.35	
	4711.33	4712.49	50.00	4711.33	4714.81
55.00	4711.33		55.00	4711.33	
65.00	4710.15	4710.70	65.00	4710.16	4711.48

TABLE II CONTINUED

SHCT NG. 1103 DATE 9/10/64 TIME OF FIRING 1458 TIME OF PROFILE 1437	•	DATE TIPE	9 0F	• 1104 /11/64 FIRING PROFILE	
--	---	--------------	---------	---------------------------------------	--

DEPTH (FT)	SOUND VELOCITY	(FT/SEC) STA _e 2	DEPTH (FT)	SOUND VELOCITY	(FT/SEC) STA. 2
				31.00 1	31A. Z
0.17	4916.80		0.17	4909.53	
0.25		4915.75	0.25		4907.96
2.50	4903.17		2.50	4908.63	4707470
5.00	4898.52		5.00	4902.06	
10.03	4898.10	4898.71	10.00	4899.62	4900.73
12.50	4897.88	4897.68	12.50	4399.41	4899.20
15.00	4897.46	4895.67	15.00	4897.97	4898.23
20.00	4828.23	4827.06	20.00	4828.23	4828.29
25.00	4762.92		25.00	4764.33	7020329
30.00	4734.09		30.00	4735,58	
35.00	4720.42	4725.52	35.00	4722.71	4726.28
40.00	4717.12		40.00	4718.66	4120020
45.00	4712.80		45.90	4716.66	
50.00	4711.33	4712.49	50.00	4712.88	4717.13
55.00	4710.55		55.00	4711.33	4111.15
65.00	4710.16	4711.48	65.00	4710.94	4713.03

SHGT NO. 1104	SHGT NO. 1105
DATE 9/11/64	DATE 9/11/64
TIME OF FIRING 1101	TIME OF FIRING 1258
TIME OF PROFILE 1048	TIME OF PROFILE 1246

DEPTH (FT)	SOUND VELOCITY	(FT/SEC) STA. 2	DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2
0.17 0.25 2.50 5.00	4910.51 4902.63 4902.56	4909.92	0.17 0.25 2.50	4914.88 4908.14	4911.39
10.00 12.50 15.00 20.00	4899.62 4899.41 4897.97 4828.23	4900.73 4899.71 4898.23 4827.67	5.00 10.00 12.50 15.30 20.90	4902.31 4899.11 4899.41 4897.21 4824.52	4900.48 4898.70 4895.16 4828.90
25.00 30.00 35.00 40.00	4763.62 4735.58 4724.99 4719.43	4726.28	25.00 30.00 35.00 40.00	4764.33 4734.09 4723.47 4718.66	4724.00
45.00 50.00 55.00 65.00	4716.66 4712.88 4711.33 4710.94	4717.13 4713.03	45.00 50.00 55.00 65.00	4715.12 4712.88 4711.33 4709.38	4714.04 4711.48

TABLE II CONTINUED

SHCT NO. 1106
DATE 9/11/64
TIME OF FIRING 1429
TIME OF PROFILE 1411

the state of the the transfer of the

DEPTH (FT)	SOUND VELOCITY		DEPTH (FT)	SOUND VELOCITY	
	STA. 1	STA. 2		STA. 1	STA. 2
0.17	4916.32		0.17	4923.90	
0.25		4910.90	0.25		4916.23
2.50	4907.65		2.50	4910.11	
5.00	4902.56		5.00	4903.06	
10.00	4899.11	4900.23	10.00	4899.62	4900.73
12.50	4899.41	4899.20	12.50	4899.41	4899.20
15.00	4896.44	4895.93	15.00	4898.23	4897.72
20.00	4828.23	4827.67	20.00	4828.84	4828.90
25.00	4764.33		25.00	4765.03	
30.00	4734.09		30.00	4734.09	
35.00	4724.23	4724.00	35.00	4723.47	4726.28
40.00	4718.66		40.00	4718.66	
45.00	4714.35		45.00	4716.66	
50.00	4712.88	4714.04	50.00	4714.04	4714.81
55.00	4711.33	•	55.00	4712.88	
65.00	4709.38	4711.48	65.00	4709.38	4711.48

SHCT	NO. 1106		SHCT NO. 1106	
DATE	9/11/64		DATE 9/11/64	
TIME	OF FIRING	1429	TIME OF FIRING 14	29
TIPE	OF PROFILE	1415	TIME OF PROFILE 14	18

DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2	DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2
0,17	4923.90		0.17	4923.43	
0.25		4916.23	0.25		4915.27
2.50	4909.13		2.50	4909.13	
5.00	4903.06		5.00	4903.06	
10.00	4900.12	4901.24	10.00	4900.12	4900.73
12.50	4900.42	4900.72	12.50	4900.42	4899.71
15.00	4897.97	4897.72	15.00	4898.48	4896.70
20.00	4823.90	4828.29	20.00	4823.28	4827.06
25.00	4764.33		25.00	4765.03	
30.00	4734.09		30.00	4734.09	
35.00	4722.71	4727.03	35.00	4721.95	4727.03
40.00	4718.66		40.00	4718.66	
45.00	4715.12		45.00	4715.12	
50.00	4713.65	4714.81	50.00	4712.88	4714.81
55.00	4712.88		55.00	4711.33	
65.00	4710.16	4713.03	65.00	4710.16	4713.81

TABLE II CONTINUED

SHOT	NO. 1107	
DATE	9/14/64	
TIME	OF FIRING	1155
TIPE	OF PROFILE	1150

SHOT NC. 1107 DATE 9/14/64 TIME OF FIRING 1155 TIME OF PROFILE 1152

DEPTH (FT)	SOUND VELOCITY STA. I	(FT/SEC) STA. 2	DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2
0.17	4888.22		0.17	4888.75	
0.25		4883.37	0.25	4000.13	4002 27
2.50	4885.68		2.50	4885.68	4883.37
5.00	4882.91		5.00	4882.91	
10.00	4882.46	4883.10	10.00		(00)
12.50	4882.77	4882.56	12.50	4882.46	4883.10
15.00	4882.86	4882.06	15.00	4882.77	4882.02
20.00	4832.51	4828.29		4882.86	4881.53
25.00	4765.03	4020029	20.00	4832.20	4830.13
30.00	4734.83		25.00	4765.73	
- 35.00	4724.23	(727 A2	30.00	4734.09	
40.00	•	4727.03	35.00	4724.23	4726,28
45.00	4718.66		40.00	4718.66	
· · · · -	4713.58		45.00	4715.12	
50.00	4713.65	4715.58	50.00	4713.65	4714.81
55.00	4712.88		55.00	4712.88	
65.00	4710.16	4713.81	65.00		4713.03

SHCT NO. 1106 DATE 9/14/64 TIME OF FIRING 1330 TIME OF PROFILE 1325

SHCT NO. 1108 DATE 9/14/64 TIME OF FIRING 1330 TIME OF PROFILE 1329

DEPTH (FT)	SOUND VELOCITY		DEPTH (FT)	SOUND VELOCITY	(FT/SEC)
	STA. 1	STA. 2		STA. 1	STA. 2
0.17 0.25	4889.79	(000 00	0.17	4892.91	
2.50	4886.21	4883,90	0•25 2•56	4886.48	4883.90
5.00 10.00	4883.45 4883.00	4883.63	5.00 10.00	4883.98 4883.00	(000 07
12.50 15.00	4882.77 4882.86	4882.02 4881.80	12.50 15.00	4883.30	4883.37 4882.56
29.00 25.00	4829.45 4765.73	4832.57	20,00	4883.40 4830.07	4881.53 4830.13
30.00	4734.09		25.70 30.70	4765.38 4735.58	
35.01 40.00	4723.47 4718.66	4727.03	35.30 40.00	4724.23 4718.66	4147.03
45.00 50.00	4715.12 4713.65	4714.81	45.00	4715.12	
55.00	4712.88		50.00 55.00	4713.65 4712.88	4714.81
65.00	4710.16	4713.03	65.00	4 7 4 4 4	4713.03

TABLE II CONTINUED

SHCT	NC. 1109	
	9/14/64	
TIME	OF FIRING	1513
TIME	OF PROFILE	1505

SHOT NO. 0 DATE 9/15/64 TIME OF FIRING 0 TIME OF PROFILE 823

DEPTH (FT)	SOUND VELOCITY	(FT/SEC) STA. 2	DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2
0.17 0.25 2.50 5.00 10.00 12.50 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00	4892.39 4886.21 4884.24 4883.26 4883.30 4883.13 4829.76 4765.73 4734.83 4723.85 4718.66 4715.12 4713.65 4712.88	4888.64 4883.63 4882.56 4882.06 4828.29 4725.52 4714.81 4713.03	0.17 0.25 2.50 5.00 10.00 12.50 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 65.00	4878.66 4882.36 4879.71 4878.71 4878.48 4878.58 4831.29 4765.73 4736.32 4725.75 4719.43 0. 4712.88 4712.88 4710.16	4878.55 4878.82 4878.27 4878.85 4828.29 4727.79 4717.13 4713.03
65.00	4710.16	4172002			

SHCT NO. ?

DATE 9/15/64

TIME OF FIRING 0

TIME OF PROFILE 1005

SHOT NO. 0 DATE 9/15/64 TIME OF FIRING 0 TIME OF PROFILE 1015

DEPTH (FT)	SOUND VELOCITY	(FT/SEC) STA. 2	DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2
0.17 0.25 2.50 5.00 10.00 12.50 15.00 20.00 25.00 35.00 40.00 45.00 50.00	4881.88 4880.90 4879.71 4878.71 4878.48 4878.58 4831.29 4765.73 4735.58 4724.99 4719.43 4717.43 4712.88 4712.88	4879.63 4879.36 4878.81 4878.85 4831.96 4727.79 4717.89 4713.03	0.17 0.25 2.50 5.00 10.00 12.50 15.00 20.00 25.00 35.00 40.00 45.00 50.00	4862.41 4880.36 4879.71 4878.71 4878.48 4878.58 4831.29 4765.73 4735.58 4724.99 4719.43 4717.43 4712.88 4712.88 4712.88	4879.09 4878.28 -878.81 4878.85 4830.13 4726.28 4714.81 4711.48

TABLE II CONTINUED

SHOT NO.	-	SHOT NO.	-
DATE 9/15/6		DATE 9/15/6	
TIME OF PROF	· · -	TIME OF PROF	
DEPTH (FT)	SOUND VELOCITY (FT/SEC) STA. 1 STA. 2	DEPTK (FT)	SOUND VELO

DEPTH (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2	DEPTK (FT)	SOUND VELOCITY STA. 1	(FT/SEC) STA. 2
0.17	4883.47		0.17	4882.41	
0.25		4879.63	0.25		4879.63
2.50	4880.90		2.50	4880.90	
5.00	4880.24		5.90	4880.24	
10.90	4878.71	4878.82	10.90	4878.71	4878.82
12.50	4879.02	4878.81	12.50	4878.48	4878.81
15.00	4878.58	4878.85	15.00	4878.58	4878.85
20.00	4833.11	4834.39	20.00	4830.68	4832.57
25.00	4768.54		25.00	4767.14	
30.00	4735.58		30.00	4737.07	
35.00	4724.99	4726.28	35.00	4724.99	4727.03
40.00	4718,66		40.00	4719.43	
45.00	4715.89		45.00	4716.66	
50.00	4712.88	4715.58	50.00	4712.88	4717.13
55.00	4712.88		55.00	4712.88	
65.00	4710.16	4711,48	65.00	4710.16	4711.48

SHOY NO. O DATE 9/15/64 TIME OF FIRING O TIME OF PROFILE 1206

0.17
2.50 4881.43 5.00 4879.71 10.00 4878.71 4878.82 12.50 4878.48 4878.27 15.00 4876.58 4878.31 20.00 4830.68 4832.57
5.00 4879.71 10.00 4878.71 4878.82 12.50 4878.48 4878.27 15.00 4876.58 4878.31 20.00 4830.68 4832.57
10.09 4878.71 4878.82 12.50 4878.48 4878.27 15.00 4878.58 4878.31 20.00 4830.68 4832.57
12.50 4878.48 4878.27 15.00 4876.58 4878.31 20.00 4830.68 4832.57
15.00 4878.58 4878.31 20.00 4830.68 4832.57
20.00 4830.68 4832.57
25.00 4767.14
27100 TIO1117
30.00 4736.69
35.00 4724.99 4727.03
40.00 4718.66
45.00 4716.28
50.00 4713.65 4714.81
55.00 4712.88
65.00 4710.94 4713.03

NOLTR 67-9

	s [zontal]	Surface Reflection	ង ៩៩៩៩៩៩៩៩	88 82 83 83	ಸ್ಸೆಸ ¦	20 2 <u>7</u>	30
	Measured Ray Angles downward from hori	Second Caustic- Related Arrival	1110111110	118	172 172 172	351	: :
	Measured Ray Angles (Degrees downward from horizontal	First Caustic- Related Arrival	~ ちきますらうめる	901119	10 8 7 10	£, £,	50
IVAL ANGLES	(Degr	Precur- sor	81177777 1001000000000000000000000000000	12 1.5 1.9	1111	! !	1 1
MEASURED ARRIVAL ANGLES		Caustic Depth (ft)	38.88.38.38.38.66.39.39.39.39.39.39.39.39.39.39.39.39.39.	33.9 32.8 33.0 33.5	28.8 29.1 29.1 29.1	; ;	59.4 59.3
TABLE III.	Approximate Gage String	(ft) Bottom Gage	23 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	36 33 34 37	23 23 23 23 23 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	26 27	61
TABL	Appro Gage	Depth Top Gage	35.5 37 37 37 37 37 37 37 37 37 37 37 37 37	33 44 33 34 35 44 35 45 35 45 36 45 37 45 37 47 47 47 47 47 47 47 47 47 47 47 47 47	27 28 28 27	24.5 24	58 58
		Horizontal Range (ft)	86	230	190	160	300
		Charge Depth (ft)	35	35	35	35	25
		Shot No.	1078 1079 1080 1081 1094 1094 1097 11097	1089 1090 1100 1102	1103 1104 1105 1106	1091	1086

TARLE III. MEASURED ARRIVAL ANGLES (continued)

s (zontal)	Surface Reflection	L 19	สสสลล
Measured Ray Angles downward from hori	Second Saustic- Related Arrival		_∞ ឫ∞
Measured Ray Angles Degrees downward from horizontal	First Caustic- Related Arrival	1 1 1	เ พ ๗ ๗ ๗ ๗
(Degr	Frecur- sor		16 16 16 15
:	Caustic Depth (ft)	8:3	27.6 27.2 27.4 28.8 29.2
Approximate Gage String	lop Bottom	6.99 8.8	82 62 62 62 62 83 63 63 62 62 62 83 63 63 63 62 62 62 62 62 62 62 62 62 62 62 62 62
Appro Gage	Top	6 1.6 0.7	26 27 27 27
How to content	Range (ft)	300	300
e c	Depth (ft)	25	50
Shot	No.	1088 1098 1101	1082 1083 1084 1107 1108

NOLUTR 67-9

TABLE IV. MAXIMUM PEAK PRESSURE AMPLIFICATION FACTOR AND CAUSTIC THICKNESS FROM F $_{p}$ vs z - z $_{c}$ CURVES

	•						
Ave. Charge	Charge Depth	Horizontal Range	Ave. Caustic	Charge Diam.	Fp(max)	T_z	T _z Charge
Weight (1b)	(ft)	(rt)	Depth (ft)	(ft)		(ft)	Diam.
53.4	35	300	42.4	1.000	3.7	2.92	2.9
8.1			39.7	0.542	4.4	1.56	2.9
1.06			38.2	0.271	4.2	0.68	2.5
0.122			40.2	0.135	5.1	0.68	5.0
8.3	35	230	34.3	0.542	5.2	1.04	1.9
1.06			32.8	0.271	4.7	1.16	4.3
0.122			33.3	0.135	4.8	0.74	5•5
8.4	35	190	29.3	0.542	4.9	0.98	1.8
0.122			29.1	0.135	5.8	0.71	5.3
8.1	25*	300	59.4	0.542	4.7		
1.06			59•3	0.271	5.1		
8.1	50	300	27.5	0.542	4.6	0.84	1.6
1.06			27.2	0.271	4.4		
0.122			29.0	0.13	5.1	0.97	7.2

^{*} Excluding the three shallow layer shots.

Unclassified					
Security Classification					
DOCUMENT COM	NTROL DATA - R&		the assessed assessed in a family and		
	ng annotation must be an	2a. REPOF	T SECURITY CLASSIFICATION		
• • •		Unclassified			
•	DOCUMENT CONTROL DATA - R&D of title, body of abstract and indexing annotation must be entered when the overall report is classified) corporate author) Ordnance Laboratory Silver Spring, Maryland 20910 of Underwater Explosion Shock Waves: Pressure Histories Caustics in a Flooded Quarry of report and inclusive dates) It name, initial) Barash ortner 7a. TOTAL NO. OF PAGES 94 10 9a. DRIGINATOR'S REPORT NUMBER(S) NOLTR 67-9 9b. OTHER REFORT NO(S) (Any other numbers that may be assigned this report) FION NOTICES on of this report is unlimited.				
will be tak, Silver Spring, raryia					
3. REPORT TITLE					
Refraction of Underwater Explosi	on Shock Waves	Press	sure Histories		
Measured at Caustics in a Floode					
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)					
S AUTHOR/S) (Lest name, first name, initial)					
beam A. Goeroner					
6. REPORT DATE	74. TOTAL NO. OF P	AGE5	76. NO. OF REFS		
19 April 1967	94		1.0		
8a. CONTRACT OR GRANT NO.	9a. DRIGINATOR'S RI	PORT NUM	BER(S)		
	NOLTR 67-9				
(Security classification of title, body of abstract and indexis.) I. ORIGINATING ACTIVITY (Composets author) U. S. Naval Ordnance Laboratory White Oak, Silver Spring, Maryla B. REPORT TITLE Refraction of Underwater Explosi Measured at Caustics in a Floods I. DESCRIPTIVE NOTES (Type of report and inclusive dates) S. AUTHOR(S) (Last name, first name, initial) Robert M. Barash Jean A. Goertner 6. REPORT DATE 19 April 1967 8. CONTRACT OR GRANT NO. b. PROJECT NO. RRRE 51001/212-8/F008-21-03 c. NWER 14.008 d.	AL OTHER RECORT	NO(S) (Anv	other numbers that may be sesioned		
e. NWER 14.008	this report)				
d.					
10. A VAIL ABILITY/LIMITATION NOTICES					
	** ** *				
Distribution of this report is u	nlimited.				
	Les chausaning will	TABY ACT	IVITY		
11. SUPPLEMENTARY NOTES	12. SPUNSURING MILI	IARTACI	1411 1		
	Defense Atomic Support Agency				
					

13. ABSTRACT

High explosive charges were fired in a flooded quarry having a refractive sound velocity structure, in order to observe shock wave pressure histories at caustics, or focal surfaces. For such regions, present theoretical understanding and conventional acoustic ray-tracing techniques are inadequate. Peak pressure amplification factors up to 5.8 were measured; the smaller the charge, the more extreme the focusing. Energy flux density was also enhanced, but impulse per unit area was relatively unaffected.

DD 150RM 1473

Unclassified

Security Classification

Unclassified

Securit	y Classification
---------	------------------

KEY WORDS	LIN	LINK A		LINK B		LINK C	
KET WORUS	ROLE	WT	ROLE	WT	ROLE	WT	
Underwater explosions Shock waves Refraction Caustics							
]]]		

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURTY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive S200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES. Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER. If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S). Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. mulitary agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this rejort is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet s...*! be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.

Unclassified

Security Classification

UNCLASSIFIED

U.S. NAVAL ORDNANCE LABORATORY

WHITE OAK

SILVER SPRING, MARYLAND 20910

To all holders of NOLTR 67-9

Title: REFRACTION OF UNDERWATER EXPLOSION SHOCK WAVES:

PRESSURE HISTORIES MEASURED AT CAUSTICS IN A FLOODED QUARRY

3 Dec 1969

Change 1

Approved by Commander, U.S. NOL

1 pages

direction

This publication is changed as follows: On Page v

Symbol

Units

Explanation

FROM

deuth

£t

ft

observed depth of caustic for given shot

TO

z-z ft

vertical distance from caustic; this quantity is negative below caustic, positive above caustic

In footnote, page 9, change last line to (i.e., $\frac{\Delta F_p}{}$ vs depth).

Insert this change sheet between the cover and the title page of your copy. Write on cover "Change inserted"

UNCLASSIFIED

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va 22151