Potential problem:

The normalization constants N_m can become very large (think of E_0^m)

Solution:

generate the normalized basis directly

start with Iφ₀> arbitrary, normalized, and then

$$|\phi_1\rangle = \frac{1}{N_1} (H|\phi_0\rangle - a_0|\phi_0\rangle).$$

$$|\phi_{m+1}\rangle = \frac{1}{N_{m+1}} (H|\phi_m\rangle - a_m|\phi_m\rangle - N_m|\phi_{m-1}\rangle) = \frac{|\gamma_{m+1}\rangle}{N_{m+1}}$$

The definition of N_m is different, and no b_m :

$$a_m = \langle \phi_m | H | \phi_m \rangle$$

 $N_m = \langle \gamma_m | \gamma_m \rangle^{-1/2}$

Generate $|\gamma_m\rangle$ first, normalize to get N_m

The H-matrix is

$$\langle \phi_{m-1} | H | \phi_m \rangle = N_m$$

$$\langle \phi_m | H | \phi_m \rangle = a_m$$

$$\langle \phi_{m+1} | H | \phi_m \rangle = N_{m+1}$$

Example in two dimensions: box with open boundaries

Constructing $H|f_n\rangle$

(open corresponds to hard walls)

```
State n stored in f1[1:nx*ny]
State H|f_n\rangle in f2[1:nx*ny]
```

t = hopping (kinetic) matrix element

- consider hopping into all boxes j

function hoperation(f1,f2)

```
f2.=vpot.*f1
for j=1:nx*ny
    x=1+mod(j-1,nx)
    y=1+div(j-1,nx)
    if y!=1 f2[i-1
```

end

labeling for 4*4 elements

13	14	15	16
9	10	11	12
5	6	7	8
1	2	3	4

```
if x!=1 f2[j-1]=f2[j-1]-t*f1[j]
if x!=nx f2[j+1]=f2[j+1]-t*f1[j]
if y!=1 f2[j-nx]=f2[j-nx]-t*f1[j]
if y!=ny f2[j+nx]=f2[j+nx]-t*f1[j]
```

One step in the iteration of the a and b coefficients

$$\begin{split} |\phi_1\rangle &= \frac{1}{N_1} \big(H |\phi_0\rangle - a_0 |\phi_0\rangle \big). \\ |\phi_{m+1}\rangle &= \frac{1}{N_{m+1}} \big(H |\phi_m\rangle - a_m |\phi_m\rangle - N_m |\phi_{m-1}\rangle \big) = \frac{|\gamma_{m+1}\rangle}{N_{m+1}} \\ \text{if $m==1$} & a_m &= \langle \phi_m | H |\phi_m\rangle \\ & \text{aa} [1] = \det(\mathsf{f0},\mathsf{f1}) & n_m = \langle \gamma_m |\gamma_m\rangle^{-1/2} \\ & \text{f1.=f1.-aa} [1].*\mathsf{f0} & n_m [2] = \det(\mathsf{f1},\mathsf{f1})^0.5 \\ & \text{f1.=f1./nn} [2] & \text{The method of constructing} \\ & \text{else} & \text{hoperation} (\mathsf{f1},\mathsf{f2}) & \text{the normalized} \\ & \text{f2.=f2.-aa} [m].*\mathsf{f1-nn} [m].*\mathsf{f0} & \text{states directly} \\ & \text{nn} [m+1] = \det(\mathsf{f2},\mathsf{f2})^0.5 \\ & \text{f2.=f2./nn} [m+1] \\ & \text{f0.=f1} \\ & \text{f1.=f2} \end{split}$$

end

The full basis and Hamiltonian construction

Random initial state

```
for i=1:n
    psi[i]=rand()-0.5
end
norm=1./(psi,psi)^0.5
Psi.=psi.*norm
```

Perform niter Lanczos steps and diagonalize

```
f0=copy(psi)
nn[1].=1.
for m=1:niter
   perform code on previous page
end
```

Diagonalize the matrix of size (niter+1)*(niter+1) made using The diagonal and subdiagonal elements from aa and nn

Calculation of the states

In order to calculate states (wave functions) we have to perform another Lanczos procedure, since we have not saved all the states |f_n>

If we want the m-th lowest state, we transform with the m-th eigenvector obtained in the diagonalization. The eigenvectors are in the matrix states; vec=states(:,m)

```
Normalized states |\phi_n\rangle = N_n^{-1/2}|f_n\rangle
f0.=psi
psi.=psi.*vec[1]
hoperation(f0,f1)
f1.=f1.-aa[0].*f0
psi.=psi.+vec[1].*f1./nn[2]^0.5
for i:2, niter-1
   hoperation(f1, f2)
   f2.=f2.-aa[i].*f1.-bb[i-1].*f0
   psi.=psi.+vec[i].*f2/nn[i+1]^0.5
   f0.=f1
   f1.=f2
end
```