

Hot models: projecting future climate-driven distributions of two ambush bug species, *Phymata americana* and *Phymata pennsylvanica*

Vicki M. Zhang

Supervisor: Locke Rowe, David Punzalan

Climate change

...and ambush bugs?

- Changes in Earth's climate, resulting in new, long-term weather patterns
 - Can be due to internal variability or human activity
- Increased CO₂ from human activity
 - Increased temperature
 - Heavier rainfall

Two *Phymata* species in S. Ontario

- Jagged ambush bugs
- Generalist
- Sit-and-wait predation
- Eggs laid on plants and overwinter
- Nymphs and adults lie

P. americana

P. pennsylvanica

P. pennsylvanica with common aerial yellowjacket

In Ontario, *P. americana* and *P. pennsylvanica* are found in overlapping distribution

Maxent, a species distribution modeling software

Species distribution data:

- Museum data
- BugGuide.net
- iNaturalist.com

Environmental data:

- Temperature
- Precipitation

SPECIES ENVIRONMENTAL DISTRIBUTION DATA DATA

FORECAST FUTURE DISTRIBUTIONS

Representative Concentration Pathways (RCP)

- RCP2.6: best-case scenario
 - peak CO₂ emissions in 2025
 - Low greenhouse gas (GHG) emissions
- RCP4.5: peak CO₂ emissions in 2045
- RCP6: peak CO₂ emissions in 2060
- RCP8.5: worse-case scenario
 - continuously increasing emissions
 - High GHG emissions

Outline

What do future distributions look like?

Why do future distributions look the way they do?

Why is the range of *P. americana* shifting?

- RCP2.6:
 - Slightly warmer temperature increases ranges
 - More variable precipitation
- RCP4.5: temperatures rise until 2060s, in decline in 2070
- Temperatures that are too high affect colouration

Why is the range of *P. pennsylvanica* shifting?

- Smaller ranges, but less affected by temperature and precipitation than *P. americana*
 - More obvious range shifts in 2070
- More eastward and westward shifts
- 2070: RCP4.5 has the greatest range

What does this mean?

- Predictions:
 - Slight latitudinal increase in ranges at lower RCPs
 - Decreases in ranges at higher RCPs
- Caveats
 - Actual distributions may be smaller than predicted
 - Other variables not captured by the model
- Future goals:
 - Pinpointing the effect of environmental/climatic variables on

Acknowledgements

David Punzalan

Locke Rowe

Rowe lab members

Douglas Currie

Members of TEA

AM 2050

https://media.giphy.com/media/65R6ytfnGtnbnyEPQo/source.mp4

AM2050

https://media.giphy.com/media/xlWQHHBADUVj28NZIv/source.mp4

PE 2050

https://media.giphy.com/media/1n7BsNcc2QhCxisy7u/source.mp4

PE 2070

https://media.giphy.com/media/WO5BGbUPSneHkKWYHa/source.mp4