Chapitre M5 - Moment cinétique

Plan du cours

- I Moment cinétique
 - **I.1** Par rapport à un point
 - I.2 Par rapport à un axe
- II Moment d'une force
 - II.1 Par rapport à un point
 - II.2 Par rapport à un axe
 - II.3 Bras de levier
- III Théorème du moment cinétique

Ce qu'il faut savoir et savoir faire

- → Relier la direction et le sens du vecteur moment cinétique aux caractéristiques du mouvement.
- → Calculer le moment d'une force par rapport à un axe orienté en utilisant le bras de levier.
- → Identifier les cas de conservation du moment cinétique.

Questions de cours

- → Définir le moment cinétique d'un point matériel par rapport à un point et/ou à un axe et relier sa direction, son sens et/ou son signe aux caractéristiques du mouvement.
- → Définir le moment d'une force par rapport à un point et/ou un axe et l'exprimer en fonction du bras de levier.
- \rightarrow Énoncer le théorème du moment cinétique par rapport à un point fixe et/ou un axe fixe pour un point matériel.
- → Établir l'équation différentielle associée au pendule simple en utilisant le TMC/TMCS.

Documents

Document 1 - Balance romaine

En négligeant la masse du fléau, à l'équilibre, on montre que la masse m_W de l'objet à peser est liée au rapport d_P/d_A et à la masse m_P de la masselotte :

$$m_W = m_P \frac{d_P}{d_A}.$$

La masse m_W se déduit donc de la mesure de d_P .

1 Moment cinétique

1.1 Par rapport à un point

Définition

Soit un point matériel M de masse m et de vecteur vitesse \vec{v} , donc de quantité de mouvement $\vec{p} = m\vec{v}$. On définit son **moment cinétique** \vec{L}_O **par rapport au point** O:

$$\overrightarrow{L}_O = \overrightarrow{OM} \wedge \overrightarrow{p} = \overrightarrow{OM} \wedge (m \overrightarrow{v}).$$

Il s'exprime en J \cdot s.

On déduit de cette définition, dans le cas :

- d'un mouvement rectiligne passant par $O: \overrightarrow{L}_O = \overrightarrow{0}$ car \overrightarrow{OM} et \overrightarrow{v} sont colinéaires;
- d'un mouvement plan, si O appartient au plan du mouvement, alors \overrightarrow{L}_O est à tout instant orthogonal à ce plan. La réciproque est également vraie.

Rq: Le moment cinétique \overrightarrow{L}_O dépend du choix du point O. Si $O' \neq O$:

$$\overrightarrow{L}_{O'} = \overrightarrow{O'M} \wedge \overrightarrow{p} = \left(\overrightarrow{O'O} + \overrightarrow{OM}\right) \wedge \overrightarrow{p} = \overrightarrow{O'O} \wedge \overrightarrow{p} + \overrightarrow{OM} \wedge \overrightarrow{p} = \overrightarrow{L}_O + \overrightarrow{O'O} \wedge \overrightarrow{p}.$$

On a donc $\overrightarrow{L}_O \neq \overrightarrow{L}_{O'}$, sauf si $\overrightarrow{OO'}$ et \overrightarrow{p} sont colinéaires.

Application 1 – Moment cinétique en coordonnées cylindriques

On considère un point matériel M de masse m dont le mouvement est contenu dans le plan z=0. Le point M est repéré en coordonnées cylindriques.

- 1. Donner l'expression du vecteur position \overrightarrow{OM} et celle du vecteur vitesse \overrightarrow{v} .
- 2. En déduire l'expression du moment cinétique \overrightarrow{L}_O de M.
- 3. La trajectoire du point M et son moment cinétique sont représentés ci-dessous dans trois situations. Donner le signe de la vitesse angulaire $\omega = \dot{\theta}$ et indiquer le sens du mouvement.

Propriété

Dans le cas d'un d'un mouvement circulaire d'axe $(O, \vec{e_z})$ contenu dans le plan z=0:

$$\vec{L}_O = mr^2 \dot{\theta} \vec{e_z}.$$

Pour déterminer le sens du mouvement on peut utiliser :

- la règle du **tire-bouchon** : le sens dans lequel se déplace une tire-bouchon, une vis, une bouchon d'eau minérale, etc. quand on le tourne dans le même sens que le mouvement, indique le sens du moment cinétique;
- la règle de la main droite : le pouce indique le sens du moment cinétique tandis que les autres doigts s'enroulent dans le sens du mouvement.

Application 2 – Ordres de grandeurs des moments cinétiques

Dans les deux cas ci-dessous, déterminer la valeur de la norme du moment cinétique du système par rapport au centre de la trajectoire.

- 1. Dans le référentiel héliocentrique, l'orbite de la Terre autour du Soleil est quasi circulaire uniforme, de centre confondu avec celui du Soleil S et de rayon égal à $d=150\times 10^6$ km. La masse de la Terre vaut $m_T=6\times 10^{24}$ kg.
- 2. Dans le modèle de Bohr, le mouvement de l'électron autour du noyau est assimilé à un mouvement circulaire uniforme de centre O confondu avec le noyau. La trajectoire de rayon $r_0 = 53 \,\mathrm{pm}$ est parcourue à la fréquence $f = 6.6 \times 10^{15} \,\mathrm{Hz}$. La masse d'un électron est $m_e = 9.1 \times 10^{-31} \,\mathrm{kg}$.

1.2 Par rapport à un axe

Définition _

Soit un axe orienté $\Delta = (O, \overrightarrow{e_{\Delta}})$. Le **moment cinétique** L_{Δ} **de** M **par rapport à l'axe** Δ , également appelé **moment scalaire** est la projection de \overrightarrow{L}_O sur l'axe Δ :

$$L_{\Delta} = \overrightarrow{L}_{O} \cdot \overrightarrow{e_{\Delta}}.$$

 \mathbf{Rq} : Il s'agit d'une **grandeur scalaire algébrique**, dont le signe dépend de l'orientation de l'axe Δ . Le sens direct est défini avec la règle de la main droite :

 L_{Δ} ne dépend pas du point de l'axe choisi pour calculer \overrightarrow{L}_{O} . Pour un point quelconque O' de l'axe $(O, \overrightarrow{e_{\Delta}})$, on a

$$\overrightarrow{L}_{O'} \cdot \overrightarrow{e_{\Delta}} = \overrightarrow{L}_O \cdot \overrightarrow{e_{\Delta}} + \underbrace{\left(\overrightarrow{O'O} \wedge \overrightarrow{p}\right) \cdot \overrightarrow{e_{\Delta}}}_{0} = \overrightarrow{L}_O \cdot \overrightarrow{e_{\Delta}}.$$

Application 3 - Moment cinétique sur un vélo

Un vélo avance sur une route rectiligne à vitesse constante. Le vecteur $\overrightarrow{e_x}$ est dans la direction et le sens du mouvement, le vecteur $\overrightarrow{e_y}$ est vertical et orienté vers le haut.

- 1. Sur un schéma, indiquer le sens de rotation des roues. Représenter la base cartésienne $(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$.
- 2. Représenter le moment cinétique de la valve de la roue arrière. En déduire le signe de son moment cinétique scalaire par rapport à l'axe de la roue orienté par $\overrightarrow{e_z}$.

Dans le cas d'un mouvement circulaire de rayon R à la vitesse angulaire $\omega = \dot{\theta}$ autour de l'axe Δ , on a $L_{\Delta} = mR^2\omega$.

2 Moment d'une force

Comme pour le moment cinétique, le moment d'une force peut être défini par rapport à un point ou par rapport à un axe.

2.1 Par rapport à un point

Définition

Soient \overrightarrow{F} une force et M son point d'application. Le moment $\overrightarrow{\mathcal{M}}_O(\overrightarrow{F})$ de la force \overrightarrow{F} par rapport au point O est défini par

$$\overrightarrow{\mathcal{M}}_O(\overrightarrow{F}) = \overrightarrow{OM} \wedge \overrightarrow{F}.$$

Il est homogène à une énergie mais s'exprime en $N \cdot m$.

Expérience : Positionnement d'une poignée de porte.

Pourquoi place-t-on les poignées de porte loin des gonds?

Le moment de la force dépend du point d'application (Doc. 1).

2.2 Par rapport à un axe

Définition _

Soit un axe orienté $\Delta = (O, \overrightarrow{e_{\Delta}})$. Le moment $\mathcal{M}_{\Delta}(\overrightarrow{F})$ de la force \overrightarrow{F} par rapport à l'axe Δ , également appelé moment scalaire est la projection de $\overrightarrow{\mathcal{M}}_O(\overrightarrow{F})$ sur l'axe Δ :

$$\mathcal{M}_{\Delta}(\vec{F}) = \overrightarrow{\mathcal{M}}_{O}(\vec{F}) \cdot \overrightarrow{e_{\Delta}}.$$

 $\mathbf{Rq}:$ Comme précédemment $\mathcal{M}_{\Delta}(\overrightarrow{F})$ ne dépend pas du choix de O de l'axe Δ .

Le moment scalaire d'une force quantifie sa tendance à mettre en rotation le système par rapport à un axe. Deux cas particuliers notables :

- si \overrightarrow{F} est colinéaire à l'axe : $(\overrightarrow{OM} \wedge \overrightarrow{F}) \cdot \overrightarrow{e_{\Delta}} = 0$;
- si \vec{F} coupe l'axe en un point O', $\mathcal{M}_{\Delta}(\vec{F}) = \overrightarrow{\mathcal{M}}_{O'}(\vec{F}) \cdot \overrightarrow{e_{\Delta}} = \overrightarrow{0} \cdot \overrightarrow{e_{\Delta}}$;

Propriété _

Si \vec{F} et Δ appartiennent au même plan, alors $\mathcal{M}_{\Delta}(\vec{F}) = 0$.

Expérience : Ouvrir une porte ____

Dans quelle direction faut-il pousser la poignée de la porte pour l'ouvrir le plus facilement possible?

Application 4 – Serrage d'un écrou

Le constructeur d'un vélo donne l'indication de la valeur du moment du couple de serrage à utiliser pour fixer les pédales : $\Gamma = 35 \,\mathrm{N} \cdot \mathrm{m}$. On dispose d'une clé de longueur $L = 20 \,\mathrm{cm}$.

- 1. Préciser sur un schéma le point d'application et la direction de la force nécessaire pour atteindre la valeur indiquée avec le moins d'effort possible.
- 2. En déduire l'intensité minimale de la force à appliquer pour un serrage correct.

2.3 Bras de levier

 \overrightarrow{F} s'applique en un point du plan M repéré en coordonnées cylindriques. On suppose, sans perte de généralité, que \overrightarrow{F} est dans le plan $(O, \overrightarrow{e_r}, \overrightarrow{e_\theta})$. En effet, une éventuelle composante de \overrightarrow{F} selon $\overrightarrow{e_z}$ aurait un moment scalaire nul par rapport à l'axe $(O, \overrightarrow{e_z})$.

On a:

$$\mathcal{M}_z(\overrightarrow{F}) = \left(\overrightarrow{OM} \wedge (F_r \overrightarrow{e_r} + F_\theta \overrightarrow{e_\theta})\right) \cdot \overrightarrow{e_z} = rF_\theta.$$

Seule la composante tangentielle de \overrightarrow{F} intervient dans l'expression de son moment scalaire. Or

$$|rF_{\theta}| = rF|\sin\alpha| = \underbrace{r|\sin\alpha|}_{d}F = d \times F.$$

Le moment de la force \overrightarrow{F} est le même que si elle s'appliquait en H.

Cas général

Définition

Soit \overrightarrow{F} une force s'appliquant au point M. On appelle **droite d'action** de la force \overrightarrow{F} la droite passant par M et de vecteur directeur \overrightarrow{F} .

On appelle bras de levier la distance d séparant la droite d'action de \overrightarrow{F} de l'axe Δ .

Propriété

Soit \overrightarrow{F} une force appartenant au plan orthogonal à l'axe orienté Δ s'appliquant en un point M. Le moment scalaire de \overrightarrow{F} par rapport à Δ est donné par :

$$\mathcal{M}_{\Delta}(\overrightarrow{F}) = \pm d \times F,$$

avec

- $\mathcal{M}_{\Delta}(\vec{F}) > 0$ si \vec{F} tend à faire tourner M dans le sens direct défini par $\vec{e_{\Delta}}$;
- $\mathcal{M}_{\Delta}(\vec{F}) < 0$ sinon.

Application 5 – Levier

Archimède utilise un levier afin de soulever un rocher de masse $M=200\,\mathrm{kg}$. On note O le point fixe, $d_1=50\,\mathrm{cm}$ la distance entre le point fixe et le rocher, $d_2=1,5\,\mathrm{m}$ la distance entre le point fixe et Archimède et $\alpha=60^\circ$ l'angle du levier par rapport à l'horizontale (la figure ci-dessous n'est pas à l'échelle).

On admet que le rocher commence à se soulever quand les moments par rapport à l'axe $(O, \overrightarrow{e_z})$ du poids du rocher et de la force exercée par Archimède sont opposés.

- 1. Déterminer la masse minimale m d'Archimède pour qu'il puisse soulever le rocher en se suspendant au levier.
- 2. Il décide de faire varier la direction de la force qu'il exerce sur le levier. Comment doit-on procéder pour être plus efficace et quelle force doit-il exercer? Quel est le gain par rapport au cas précédent?

 \mathbf{Rq} : Dans le cas où la force \overrightarrow{F} n'est pas dans le plan orthogonal à l'axe Δ , on utilise sa projection dans ce plan car la composante colinéaire à Δ a un moment scalaire nul.

3 Théorème du moment cinétique

Soit un point M de masse m soumis à des forces extérieures $\{\vec{F}_i\}$ dont on étudie le mouvement dans un référentiel \mathcal{R} galiléen. Pour un point O fixe dans \mathcal{R} , on a

$$\frac{\mathrm{d}\vec{L}_O}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\overrightarrow{OM} \wedge \overrightarrow{p} \right) = \frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}t} \wedge \overrightarrow{p} + \overrightarrow{OM} \wedge \frac{\mathrm{d}\overrightarrow{p}}{\mathrm{d}t}.$$

Le premier terme est nul, car, puisque O est fixe, on a

$$\frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}t} = \overrightarrow{v}, \quad \text{et} \quad \overrightarrow{v} \wedge (m\overrightarrow{v}) = \overrightarrow{0}.$$

D'autre part, en utilisant le PFD :

$$\overrightarrow{OM} \wedge \frac{\mathrm{d}\overrightarrow{p}}{\mathrm{d}t} \stackrel{=}{\underset{\mathrm{PFD}}{=}} \overrightarrow{OM} \wedge \left(\sum_{i}\overrightarrow{F}_{i}\right) = \sum_{i} \overrightarrow{\mathcal{M}}_{O}(\overrightarrow{F}_{i}).$$

Théorème du moment cinétique (TMC)

Pour un point matériel M de masse m soumis à des forces extérieures $\{\vec{F}_i\}$ et un point O fixe dans le référentiel \mathcal{R} supposé galiléen, le **théorème du moment cinétique scalaire** s'écrit

$$\frac{\mathrm{d}\vec{L}_O}{\mathrm{d}t} = \sum_i \vec{\mathcal{M}}_O(\vec{F}_i).$$

En projetant le TMC sur un axe (Oz) fixe dans \mathcal{R} , on obtient le TMCS.

Théorème du moment cinétique scalaire (TMCS)

Pour un point matériel M de masse m soumis à des forces extérieures $\{\overrightarrow{F}_i\}$ et un axe (Oz) fixe dans le référentiel $\mathcal R$ supposé galiléen, le **théorème du moment cinétique scalaire** s'écrit

$$\frac{\mathrm{d}L_z}{\mathrm{d}t} = \sum_i \mathcal{M}_z(\vec{F}_i).$$

Application 6 - Pendule simple (encore!)

On considère un point matériel M de masse m suspendu à un fil inextensible de longueur ℓ et de masse négligeable, accroché au point O fixe dans le référentiel du laboratoire. La position du pendule est repérée par l'angle θ formé par le pendule avec la verticale. On note \overrightarrow{g} l'accélération de la pesanteur.

Retrouver l'équation différentielle vérifiée par l'angle $\theta(t)$.

- 1. En utilisant le TMC.
- 2. En utilisant le TMCS et un bras de levier.

Dans le cas où

$$\frac{\mathrm{d}\vec{L}_O}{\mathrm{d}t} = \vec{0},$$

le moment cinétique est **conservé**, c'est-à-dire $\overrightarrow{L}_O = \overrightarrow{\text{cste}}$. Cela correspond à deux situations :

- le point matériel M est isolé ou pseudo-isolé, c'est-à-dire $\sum_i \overrightarrow{F}_i = \overrightarrow{0}$;
- la droite d'action de la résultante des forces passe par O, c'est-à-dire $\sum_i \overrightarrow{F}_i /\!\!/ \overrightarrow{OM}$: c'est le cas des mouvements dits à **force centrale** dont l'étude fait l'objet du chapitre suivant.