$Math\ 307-PS3$

Due: 5pm on 10/01/2014

(1) Prove that

$$H := \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} : n \in \mathbb{Z} \right\}$$

Name: Alexander Powell

is a cyclic subgroup of $GL_2(\mathbb{R})$.

Proof. Let $n \in \mathbb{N}$. Then we prove by induction that when n=1, then $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$. Next let n=k+1, then we can shoe that $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{k+1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^k \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & k+1 \\ 0 & 1 \end{bmatrix}$. Thus, via the principle of mathematical induction, it is proven that $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ if n>0.

Next, if n < 0, we can write that $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-n} = (\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n)^{-1} = (\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix})^{-1} = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}$.

Therefore, we have proven that

$$H:=\left\{\begin{bmatrix}1&n\\0&1\end{bmatrix}:n\in\mathbb{Z}\right\}$$

is a cyclic subgroup of $GL_2(\mathbb{R})$.

- (2) Let G be a group and $H \leq G$. For any fixed $x \in G$, let $xHx^{-1} := \{xhx^{-1} : h \in H\}$. Prove that:
 - (a) $xHx^{-1} \le G$.

Proof. We must begin by proving that xHx^{-1} is nonempty. This is easy to show because $e \in H$ and $xex^{-1} = e \in xHx^{-1}$. Next, we have that $xax^{-1} \cdot (xbx^{-1})^{-1} = xax^{-1} \cdot (xb^{-1}x^{-1}) = xab^{-1}x^{-1}$.

(b) if H is cyclic, then xHx^{-1} is cyclic.

Proof. To prove xHx^{-1} is cyclic we must show that $xHx^{-1} = \langle xhx^{-1} \rangle$. We prove by induction that $(xhx^{-1})^n = xh^nx^{-1}$. If n = 1, then $(xhx^{-1}) = xhx^{-1}$, so the base step is true. Then, let n = k+1, so $(xhx^{-1})^{k+1} = xh^{k+1}x^{-1}$ can be rewritten as $(xhx^{-1})^k(xhx^{-1}) = xh^kkx^{-1}$. Also, if n < 0 the same inductive proof can be used but the n's in the exponents will be negated. Therefore, it is proven that xHx^{-1} is cyclic if H is cyclic.

(c) if H is Abelian, then xHx^{-1} is Abelian.

Proof. Let $A, B \in xHx^{-1}$, then $A = xax^{-1}$ and $B = xbx^{-1}$ for some a and b in H. Since $AB = (xax^{-1})(xbx^{-1}) = xax^{-1}xbx^{-1} = xabx^{-1} = xbx^{-1}xax^{-1} = BA$. Thus, we have that xHx^{-1} is Abelian.

(3) Given a group G, prove that

$$Z(G) = \bigcap_{a \in G} C(a).$$

Proof. Let some element $b \in Z(G)$. Then we have that $ba = ab, \forall a \in G$. Also, $b \in C(a), \forall a \in G$, and finally, $b \in \bigcap_{a \in G} C(a)$. \Box

1

(4) If a is an element of G, prove that $|gag^{-1}| = |a|$ for any $g \in G$.

Proof. There are two cases to this proof: the cardinality of a, or |a| is finite or infinite.

Case 1: $|a| < \infty$

Then $(gag^{-1})^n = ga^ng^{-1} = geg^{-1} = e$. Next, we use proof by contradiction: we make the assumption that $|gag^{-1}| = m < n$. Then $(gag^{-1})^m = ga^mg^{-1} = e$. However, this leads to $a^m = g^{-1}eg = e$, which is a contradiction. Therefore, $|a| = |gag^{-1}|$.

Case 2: $|a| = \infty$

Then make the assumtion that $|gag^{-1}|=m<\infty$. If this is the case, then $(gag^{-1})^m=ga^mg^{-1}=e$. However, this implies that $a^m=g^{-1}eg=e$, which is a contradiction. Therefore, $|gag^{-1}|=|a|$. \square