What is claimed is:

1. A catalyst of formula:

$$R^{6}$$
 N
 $M^{m}X_{m-2}Y_{n}$
 R^{5}
 R^{4}
 R^{3}
 R^{2}

wherein:

 $R^1-R^7 \ are \ each \ independently \ -H, \ -halo, \ -NO_2, \ -CN, \ -(C_1-C_{30})hydrocarbyl,$ $-O(C_1-C_{30})hydrocarbyl, \ -N((C_1-C_{30})hydrocarbyl)_2, \ -Si((C_1-C_{30})hydrocarbyl)_3,$ $-(C_1-C_{30})heterohydrocarbyl, \ -aryl, \ or \ -heteroaryl, \ each \ of \ which \ may \ be \ unsubstituted \ or \ substituted \ with \ one \ or \ more \ -R^8 \ groups; \ or \ two \ R^1-R^7 \ may \ be \ joined \ to \ form \ cyclic \ group;$ $R^8 \ is \ -halo, \ -(C_1-C_{30})hydrocarbyl, \ -O(C_1-C_{30})hydrocarbyl, \ -NO_2, \ -CN,$

-Si((C_1-C_{30}) hydrocarbyl)₃, -N((C_1-C_{30}) hydrocarbyl)₂, - (C_1-C_{30}) heterohydrocarbyl, -aryl, or -heteroaryl;

T is $-CR^9R^{10}$ — wherein R^9 and R^{10} are defined as for R^1 above; E is a Group 16 element;

M is a metal selected from the group consisting of metallic Group 3-Group 10 elements and the Lanthanide series elements;

m is the oxidation state of the M;

X is R¹ excluding -H, wherein X is bonded to M;

Y is neutral ligand datively bound to M; and

n is an integer ranging from 0 to 5.

- 2. The catalyst of claim 1, wherein M is titanium, zirconium or hafnium.
- 3. The catalyst of claim 2, wherein X is halide, unsubstituted $-(C_1-C_{30})$ hydrocarbyl or substituted $-(C_1-C_{30})$ hydrocarbyl.
 - 4. The catalyst of claim 3, wherein X is benzyl.
 - 5. The catalyst of claim 2, wherein E is -O-.

- 6. An olefin polymerization catalyst system prepared from the catalyst of claim 1 and an activator.
- 7. The olefin polymerization catalyst of claim 6, wherein the activator is selected from the group consisting of trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum chloride, diethylaluminum chloride, aluminoxanes, tetrakis(pentafluorophenyl)borate, dimethylphenylammonium tetra(pentafluorophenyl)borate, trityl tetra(pentafluorophenyl)borate, tris(pentafluorophenyl)boron, tris(pentafluorophenyl)boron, and mixtures thereof.
- 8. A method for polymerizing an olefin comprising contacting an olefin with the olefin polymerization catalyst system of claim 7.
- 9. The method of claim 8, wherein the olefin is ethylene, propylene, 1-butene, 2-pentene, 1-hexene, 1-octene, styrene, 1,3-butadiene, norbornene, each of which may be substituted or unsubstituted, or mixtures thereof.
 - 10. The method of claim 9, wherein the olefin is ethylene or 1-hexene.
- 11. The method of claim 8, wherein at least one of R^1 - R^7 and R^9 - R^{10} is selected from the group consisting of -C(halide)₃, CH(halide)₂ and -CH₂(halide).
 - 12. A catalyst of formula:

$$R^9$$
 R^{10} R^1 R^7 R^6 N $M^mX_{m\cdot 2}Y_n$ E R^4 R^1 R^3 R^2 , wherein

 $R^1-R^{11} \ \ each \ independently \ -H, \ -halo, \ -NO_2, \ -CN, \ -(C_1-C_{30})hydrocarbyl, \\ -O(C_1-C_{30})hydrocarbyl, \ -N((C_1-C_{30})hydrocarbyl)_2, \ -Si((C_1-C_{30})hydrocarbyl)_3, \\ -(C_1-C_{30})heterohydrocarbyl, \ -aryl, \ -heteroaryl, \ each \ of \ which \ may \ be \ unsubstituted \ or$

substituted with one or more -R¹² groups; or two R¹-R⁷ may be joined to form a cyclic group;

each R^{12} is independently -halo, -NO₂, -CN, -(C₁-C₃₀)hydrocarbyl, -O(C₁-C₃₀)hydrocarbyl, -N((C₁-C₃₀)hydrocarbyl)₂, -Si((C₁-C₃₀)hydrocarbyl)₃, -(C₁-C₃₀)heterohydrocarbyl, -aryl, or -heteroaryl;

E is a Group 16 element;

M is a metal selected from the group consisting of metallic Group 3 - Group 10 elements and the Lanthanide series elements;

m is the oxidation state of M; X is R¹ excluding -H, wherein X is bonded to M; Y is neutral ligand datively bound to M; and n is an integer ranging from 0 to 5.

- 13. The catalyst of claim 12, wherein M is titanium, zirconium or hafnium.
- 14. The catalyst of claim 13, wherein M is Ti or Zr; E is -O-; m is 4; n is 0 or 1; and X is halo, $-(C_1-C_{30})$ hydrocarbyl or benzyl.
 - 15. The catalyst of claim 13, wherein R¹¹ is -CF₃.
- 16. The catalyst of claim 14, wherein M is Zr; R^1 and R^3 are $-C(CH_3)_3$; R^2 and R^4 - R^{11} are -H; X is $-CH_2(C_6H_5)$; and n is 0.
- 17. The catalyst of claim 14, wherein M is Zr; R^1 and R^3 are $-C(CH_3)_3$; R^2 and R^4 - R^{11} are -H; X is -Cl; n is 1; and Y is -tetrahydrofuran.
- 18. The catalyst of claim 14, wherein M is Zr; R^1 and R^3 are $-C(CH_3)_3$; R^9 and R^{11} are $-CF_3$; R^2 , R^4 - R^8 and R^{10} are -H; X is $-CH_2(C_6H_5)$; and n is 0.
- 19. The catalyst of claim 14, wherein M is Ti; R^1 and R^3 are $-C(CH_3)_3$; R^9 and R^{11} are $-CF_3$; R^2 , R^4 - R^8 and R^{10} are -H; X is $-CH_2(C_6H_5)$; and n is 0.
- 20. The catalyst of claim 14, wherein M is Zr; R^1 and R^3 are $-C(CH_3)_3$; R^9 is $-CF_3$; R^2 , R^4 - R^8 and R^{10} - R^{11} are -H; X is $-CH_2(C_6H_5)$; and n is 0.
- 21. The catalyst of claim 14, wherein M is Zr; R¹ and R³ are -C(CH₃)₃; R⁹ is -CF₃; R¹¹ is -F; R², R⁴-R⁸ and R¹⁰ are -H; X is -Cl; n is 1; and Y is tetrahydrofuran.

- 22. An olefin polymerization catalyst system prepared from the catalyst of claim 12 and an activator.
- 23. The olefin polymerization catalyst system of claim 22, wherein the activator is selected from the group consisting of trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum chloride, diethylaluminum chloride, aluminoxanes, tetrakis(pentafluorophenyl)borate, dimethylphenylammonium tetra(pentafluorophenyl)borate, trityl tetra(pentafluorophenyl)borate, tris(pentafluorophenyl)boron, tris(pentafluorophenyl)boron, and mixtures thereof.
- 24. A method for polymerizing an olefin comprising contacting an olefin with the olefin polymerization catalyst system of claim 23.
- 25. The method of claim 24, wherein the olefin is ethylene, propylene, 1-butene, 2-pentene, 1-hexene, 1-octene, styrene, 1,3-butadiene, norbornene, each of which may be substituted or unsubstituted, or mixtures thereof.
 - 26. The method of claim 25, wherein the olefin is ethylene or 1-hexene.
- 27. The method of claim 24, wherein at least one of R¹-R¹¹ is selected from the group consisting of -C(halide)₃, CH(halide)₂ and -CH₂(halide).