ST2334 (2018/2019 Semester 2) Solutions to Questions in Tutorial 6

Question 1

$f_{X, Y}(x, y)$		X			
		1	2	3	$f_{y}(y)$
	1	0.05	0.05	0.10	0.20
y	2	0.05	0.10	0.35	0.50
	3	0	0.20	0.10	0.30
$f_x(x)$		0.10	0.35	0.55	1

(b)

(a)

\boldsymbol{x}	1	2	3
$f_X(x)$	0.10	0.35	0.55

0.20 0.50 0.30 $f_{V}(y)$

(c)
$$f_{Y|X}(y = 3|x = 2) = \frac{f_{X,Y}(2,3)}{f_X(2)} = \frac{0.20}{0.35} = \frac{4}{7}$$

(d) y 1 2 3
 $f_{Y|X}(y|x = 2)$ 0.05 /0.35 = 1/7 0.10 /0.35 = 2/7 0.20/0.35 = 4/7

X and Y are dependent if $f_{X,Y}(x,y) \neq f_X(x)f_Y(y)$ for some values of x and y. $f_{XY}(1,1) = 0.05$ and $f_X(1)f_Y(1) = (0.10)(0.20) = 0.02$ $f_{XY}(1,1) \neq f_X(1)f_Y(1)$ implies that X and Y are dependent.

Question 2

(a)
$$f_{X,Y}(x,y) = \begin{cases} \frac{\binom{3}{x}\binom{2}{y}\binom{3}{4-x-y}}{\binom{8}{4}}, & x = 0, 1, 2, 3; \ y = 0, 1, 2; \ 1 \le x + y \le 4 \\ 0, & \text{otherwise.} \end{cases}$$

(b)
$$\Pr(X = 1, Y = 1) = f_{X,Y}(1, 1) = \frac{\binom{3}{1}\binom{2}{1}\binom{3}{2}}{\binom{8}{4}} = 0.2571$$

(c)
$$\Pr(X + Y \le 2) = f_{X,Y}(0,1) + f_{X,Y}(0,2) + f_{X,Y}(1,0) + f_{X,Y}(1,1) + f_{X,Y}(2,0) = 0.5$$

(c)
$$\Pr(X + Y \le 2) = f_{X,Y}(0,1) + f_{X,Y}(0,2) + f_{X,Y}(1,0) + f_{X,Y}(1,1) + f_{X,Y}(2,0) = 0.5$$

(d) $f_X(x) = \frac{\binom{3}{x}\binom{5}{4-x}}{\binom{8}{4}}$, for $x = 0, 1, 2, 3$ and 0 otherwise.

(e) For
$$x = 0, 1, 2, 3$$
, $f_{Y|X}(y|x) = \frac{\binom{2}{y}\binom{3}{4-x-y}}{\binom{5}{4-x}}$ for $y = 0, 1, 2$; $1 \le x + y \le 4$ and 0 otherwise

$$f_{Y|X}(y|2) = \frac{\binom{2}{y}\binom{3}{2-y}}{\binom{5}{2}}$$
 for $y = 0, 1, 2$; and 0 otherwise.

$$Pr(Y = 0|X = 2) = \frac{1}{10} {2 \choose 0} {3 \choose 2} = \frac{1}{10} (1)(3) = 0.3$$

Question 3

	(x, y)	1	2	3	4	5	6
(a)	1	(0, 0)	(0, 0)	(0, 0)	(1,0)	(0, 1)	(0, 0)
	2	(0, 0)	(0, 0)	(0, 0)	(1,0)	(0, 1)	(0, 0)
	3	(0, 0)	(0, 0)	(0, 0)	(1,0)	(0, 1)	(0, 0)
	4	(1, 0)	(1, 0)	(1, 0)	(2, 0)	(1, 1)	(1, 0)
	5	(0, 1)	(0, 1)	(0, 1)	(1, 1)	(0, 2)	(0, 1)
	6	(0, 0)	(0, 0)	(0, 0)	(1, 0)	(0, 1)	(0, 0)

$f_{(X,Y)}(x,y)$			f (21)		
		0	1	2	$f_{Y}(y)$
у	0	16/36 = 4/9	8/36 = 2/9	1/36	25/36
	1	8/36 = 2/9	2/36 = 1/18	0	5/18
	2	1/36	0	0	1/36
$f_X(x)$		25/36	5/18	1/36	1

- (b) $Pr(2X + Y < 3) = f_{X,Y}(0,0) + f_{X,Y}(0,1) + f_{X,Y}(0,2) + f_{X,Y}(1,0) = 11/12$
- (c) *X* and *Y* are dependent if $f_{X,Y}(x,y) \neq f_X(x)f_Y(y)$ for some values of *x* and *y*. $f_X(0)f_Y(0) = (25/36)(25/36) = 625/1296 \neq f_{X,Y}(0,0) = 4/9$ $f_{X,Y}(x,y) \neq f_X(x)f_Y(y) \implies X$ and *Y* are dependent

Ouestion 4

(a)
$$k \int_3^5 \int_3^5 (x^2 + y^2) dy dx = k \int_3^5 \left[yx^2 + \frac{y^3}{3} \right]_3^5 dx = \frac{2}{3}k \int_3^5 3x^2 + 49 dx = \frac{2}{3}k[x^3 + 49x]_3^5 = \frac{392}{3}k$$

Hence, $k \int_3^5 \int_3^5 (x^2 + y^2) dy dx = 1$ implies $\frac{392}{3}k = 1$ or $k = \frac{3}{392}$

(b)
$$\Pr(3 \le X \le 4 \text{ and } 4 \le Y < 5) = \frac{3}{392} \int_3^4 \int_4^5 (x^2 + y^2) \, dy dx = \frac{3}{392} \int_3^4 \left[yx^2 + \frac{y^3}{3} \right]_4^5 \, dx = \frac{3}{392} \int_3^4 \left(x^2 + \frac{61}{3} \right) \, dx = \frac{1}{392} [x^3 + 61x]_3^4 = \frac{1}{392} (98) = \frac{1}{4}$$

(c)
$$f_X(x) = \frac{3}{392} \int_3^5 (x^2 + y^2) dy = \frac{3}{392} \left(2x^2 + \frac{98}{3} \right) = \frac{1}{196} (3x^2 + 49), \text{ for } 3 \le x \le 5$$

 $Pr(3.5 < X < 4) = \frac{1}{196} \int_{3.5}^4 (3x^2 + 49) dx = \frac{1}{196} [x^3 + 49x]_{3.5}^4 = \frac{1}{196} \frac{365}{8} = \frac{365}{1568} = 0.2328$

Question 5

$$f_{X,Y}(x,y) = \begin{cases} 24xy, & 0 \le x \le 1, & 0 \le y \le 1, & x+y \le 1 \\ 0, & \text{otherwise.} \end{cases}$$

(a)
$$f_X(x) = \int_0^{1-x} (24xy) \, dy = [12xy^2]_0^{1-x} = 12x(1-x)^2$$
, for $0 \le x \le 1$
 $f_Y(y) = \int_0^{1-y} (24xy) \, dx = [12x^2y]_0^{1-x} = 12y(1-y)^2$, for $0 \le y \le 1$

(b) $f_{X,Y}(x,y) \neq f_X(x)f_Y(y)$, for $0 \le x \le 1$ and $0 \le y \le 1$. Hence X and Y are not independent. Alternatively, we may consider a point, let say, $(x,y) = \left(\frac{2}{3}, \frac{1}{2}\right)$. Then $f_X\left(\frac{2}{3}\right) = \frac{8}{9}$ and $f_Y\left(\frac{1}{2}\right) = \frac{3}{2}$, while $f_{X,Y}\left(\frac{2}{3}, \frac{1}{2}\right) = 0$

(c) For
$$0 \le x \le 1$$
, $f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{24xy}{12x(1-x)^2} = \frac{2y}{(1-x)^2}$, for $0 \le y \le 1-x$

$$f_{Y|X}\left(y|x = \frac{3}{4}\right) = \frac{2y}{\left(1-\frac{3}{4}\right)^2} = 32y, \text{ for } 0 \le y \le \frac{1}{4}$$

$$\Pr\left(Y < \frac{1}{8}|x = \frac{3}{4}\right) = \int_0^{1/8} f_{Y|X}\left(y|x = \frac{3}{4}\right) dy = \int_0^{1/8} (32y) dy = [16y^2]_0^{1/8} = \frac{1}{4}$$