

SECURITY Risikomanagement

May 10, 2024

Marc Stöttinger

More people are killed every year by pigs than by sharks, which shows you how good we are at evaluating risk.

Bruce Schneier

MOTIVATION RISKOMANAGEMENT

- → **Bisher:** Aufsetzen eines ISMS und Durchführen des PDCA Zyklus zum strukturierten Behandeln von IT-Sicherheit
 - → Beispiel: Kernprozess "Notenpflege in COMPASS"
 - → Plan: Identifikation und Priorisierung der IT-Sicherheitsmaßnahmen
 - → Do: Implementierung des Backup Systems
 - → Check: Verifikation der Backup Lösung
 - → Act: Implementierung der ISMS Verbesserungen

MOTIVATION RISKOMANAGEMENT

- → **Bisher:** Aufsetzen eines ISMS und Durchführen des PDCA Zyklus zum strukturierten Behandeln von IT-Sicherheit
 - → Beispiel: Kernprozess "Notenpflege in COMPASS"
 - → Plan: Identifikation und Priorisierung der IT-Sicherheitsmaßnahmen
 - → Do: Implementierung des Backup Systems
 - → Check: Verifikation der Backup Lösung
 - → Act: Implementierung der ISMS Verbesserungen

Prio	Maßnahme
?	Backupsystem
?	Schulung
?	Multi-Faktor
	Authentifizierung

MOTIVATION RISKOMANAGEMENT

- → **Bisher:** Aufsetzen eines ISMS und Durchführen des PDCA Zyklus zum strukturierten Behandeln von IT-Sicherheit
 - → Beispiel: Kernprozess "Notenpflege in COMPASS"
 - → Plan: Identifikation und Priorisierung der IT-Sicherheitsmaßnahmen
 - → Do: Implementierung des Backup Systems
 - → Check: Verifikation der Backup Lösung
 - → Act: Implementierung der ISMS Verbesserungen
- → Heute:
 - → Inhalt: Identifikation und Priorisierung von Maßnahmen im Plan Schritt

Prio	Maßnahme
?	Backupsystem
?	Schulung
?	Multi-Faktor
	Authentifizierung

- → Einsatz von IT-Systemen soll den Profit erhöhen, indem z.B.
 - → Geschäftsprozesse optimiert und Kosten reduziert werden
 - → der Umsatz gesteigert wird

- → Einsatz von IT-Systemen soll den Profit erhöhen, indem z.B.
 - → Geschäftsprozesse optimiert und Kosten reduziert werden
 - → der Umsatz gesteigert wird
- → IT-Sicherheitsmaßnahmen reduzieren typischerweise weder Kosten noch steigern sie den Umsatz

- → Einsatz von IT-Systemen soll den Profit erhöhen, indem z.B.
 - → Geschäftsprozesse optimiert und Kosten reduziert werden
 - → der Umsatz gesteigert wird
- → IT-Sicherheitsmaßnahmen reduzieren typischerweise weder Kosten noch steigern sie den Umsatz
- → IT-Sicherheit verhindert Schäden, die mit gewisser Eintrittswahrscheinlichkeit anfallen

- → Einsatz von IT-Systemen soll den Profit erhöhen, indem z.B.
 - → Geschäftsprozesse optimiert und Kosten reduziert werden
 - → der Umsatz gesteigert wird
- → IT-Sicherheitsmaßnahmen reduzieren typischerweise weder Kosten noch steigern sie den Umsatz
- ightarrow IT-Sicherheit verhindert Schäden, die mit gewisser Eintrittswahrscheinlichkeit anfallen
- → Benötigt wird also eine Wirtschaftlichkeitsbetrachtung von IT-Sicherheit, die potentielle Schäden ihrer Eintrittswahrscheinlichkeit gegenüberstellt

Verschiedene Versicherungsmodelle für Fahrzeuge

→ Haftpflicht

Quelle: https://www.check24.de/kfz-

versicherung/automarken/bmw/1er/

Verschiedene Versicherungsmodelle für Fahrzeuge

- → Haftpflicht
- → Teilkaskoversicherung

Quelle: https://www.check24.de/kfz-

versicherung/automarken/bmw/1er/

Verschiedene Versicherungsmodelle für Fahrzeuge

- → Haftpflicht
- → Teilkaskoversicherung
- → Vollkaskoversicherung

Quelle: https://www.check24.de/kfz-

versicherung/automarken/bmw/ler/

Verschiedene Versicherungsmodelle für Fahrzeuge

- → Haftpflicht
- → Teilkaskoversicherung
- → Vollkaskoversicherung

Quelle: https://www.check24.de/kfz-

versicherung/automarken/bmw/ler/

BEDROHUNGS- UND RISIKOANALYSE (TARA)

- → Eine Bedrohungen ist ein Umstand, der zu einem Schaden führen könnte
 - → Beispiel: Passwort raten
- → Eine **Gefährdung** ist eine Bedrohung, die konkret eine Schwachstelle ausnutzt
 - → Beispiel: Angreifer rät schwaches Passwort

BEDROHUNGS- UND RISIKOANALYSE (TARA)

- → Eine Bedrohungen ist ein Umstand, der zu einem Schaden führen könnte
 - → Beispiel: Passwort raten
- → Eine **Gefährdung** ist eine Bedrohung, die konkret eine Schwachstelle ausnutzt
 - → Beispiel: Angreifer rät schwaches Passwort
- → Ein Risiko ist die Kombination aus dem Ausmaß des Schadens einer Bedrohung und deren Eintrittswahrscheinlichkeit
- → Die Bedrohungs- und Risikoanalyse (auch Threat Analysis and Risk Assessment, TARA) ist ein strukturierter Vorgang, um Risiken zu identifizieren und priorisieren

BEDROHUNGSANALYSE

- → Eine Bedrohungsanalyse als ein strukturierter Prozess, um potentielle Bedrohungen möglichst vollständig zu identifizieren
- → Vorgehen bei der Bedrohungsanalyse:
 - → Welche Vermögenswerte (Assets) sind am System beteiligt
 - → Welchen **Schutzbedarf** haben die Assets?
 - → Wie hoch ist der Schaden bei Verlust des Schutzbedarfs?
 - → Was sind abstrakte Bedrohungen?

TECHNISCHE VORRAUSETZUNG - KERNPROZESS LEHRE UND PRÜFUNG

- → Kernprozess Lehre und Prüfungen mit Use-Cases
 - → Studierende melden sich zu einer Prüfung an
 - → Lehrende tragen Noten ein
 - → Studierende rufen Noten ab

ASSEST IDENTIFIZIEREN

- → Assets: Etwas von (ideellem) Wert für die Teilnehmenden
- → Use-Cases für Lehre und Prüfung
 - → Prüfungsanmeldung
 - → Notenmanagement

ASSEST IDENTIFIZIEREN

- → Assets: Etwas von (ideellem) Wert für die Teilnehmenden
- → Use-Cases für Lehre und Prüfung
 - → Prüfungsanmeldung
 - → Notenmanagement
- → Assets für Lehre und Prüfung
 - → Noten (Daten)
 - → Prüfungsanmeldungen (Daten)
 - → COMPASS Funktionen (System)

SCHUTZBEDARFS- UND SCHADENSANALYSE

- → Der Schutzbedarf liefert eine Unterteilung für mögliche Schäden an Assets
 - → Unterteilung anhand ausgewählter Sicherheitsziele (z.B. CIA, CIAA, STRIDE, ...)
- → Für jede Kombination aus (Sicherheitsziel x Asset) sollte der mögliche Schaden mittels Schadensnormen (z.B. HEAVENS Standard) abgeschätzt werden

[HEAVENS] Bewertung	Beschreibung
Keine	Keine Verluste
Niedrige	Geringe Verluste
Mittel	Tolerlierbare Verluste
Hoch	Substantielle Verluste
Kritisch	Verluste bedrohen Existenz

© Marc Stöttinger Security 1

SCHUTZBEDARFS- UND SCHADENSANALYSE

- → Der Schutzbedarf liefert eine Unterteilung für mögliche Schäden an Assets
 - → Unterteilung anhand ausgewählter Sicherheitsziele (z.B. CIA, CIAA, STRIDE, ...)
- → Für jede Kombination aus (Sicherheitsziel x Asset) sollte der mögliche Schaden mittels Schadensnormen (z.B. HEAVENS Standard) abgeschätzt werden
 - → Beispiel: Verfügbarkeit der Noten
 - → Studierenden könnten das Studium nicht abschließen
 - → Imageschaden (Rückgang der Studierendenzahlen)
 - → Schaden = Mittel

[HEAVENS] Bewertung	Beschreibung
Keine	Keine Verluste
Niedrige	Geringe Verluste
Mittel	Tolerlierbare Verluste
Hoch	Substantielle Verluste
Kritisch	Verluste bedrohen Existenz

BEDROHUNGSANALYSE COMPASS ERGEBNIS FÜR ASSET NOTEN

Asset	Sicherheitsziel	Bedrohung		Schaden	Begründung
	Vertraulichkeit Integrität	Veröffentlichung der N Verfälschung der Note		Hoch Mittel	DSGVO Strafzahlungen, Imageschaden Klagen durch Studierende, Studierende
	megnat	verialisation and der 140 ce		Tirece	könnten Studium nicht abschließen, Imageschaden
Noten	Authentizität	Note zu Modul nicht ki zugeordnet	orrekt	Niedrig	Verfälschung des Notendurchschnitts für Studierende
	Verfügbarkeit	Noten nicht mehr verf	ügbar	Mittel	Studierende können Studium nicht abschließen, Imageschaden
	Autorisierung	Unbefugter Zugriff Noten	auf	Hoch	(Verweis auf Vertraulichkeit und Integrität)
	Nicht-Abstreitbarkeit	Leugnung einer fungsleistung	Prü-	Niedrig	Verbesserung der Note, Studierende nicht exmatrikulierbar

© Marc Stöttinger Security

STRIDE: METHODIK

Nutzt die Schutzzielspezifischen Bedrohung und ordnet abstrakt dies einem Basiselement einer Datenfluss-Architektur zu. Die sogenannte **Stride-per-Element** Methode. Somit können Systeme abstrakt modelliert und analysiert werden.

STRIDE Typ	Datentransfer	Speicher	Prozess	Actor
S poofing			Х	Х
Tampering	Х	Х	Х	
Repudiation	Х		Х	Х
Information Disclosure	Х	Х	Х	
D enial of Service	Х	Х	Х	
E valuation of Privlages	Х	Х	Х	

© Marc Stöttinger Security

STRIDE: BEISPIEL

STRIDE: WERKZEUG

Das **Threat Modeling Tool** und **Threat-Dragon Tools** könnenzur Erstellung von Bedrohungsmodellen für die Bedrohungsanalyse genutzt werden.

- → Modellierung des Systems per Datenflussgraph
- → Bedrohungsanalyse mittels Stride-per-Element Ansatz
- → Tools sind lizenzfrei verfügbar:
 - → Threat Modeling Tool (nur für Windows) [Download]
 - → Threat-Dragon (für Windows, Linux, Mac) [Download]

Quelle: https://owasp.org/www-project-threat-dragon/

Quelle: https://learn.microsoft.com/de-

de/azure/security/develop/threat-modeling-tool-getting-started

Das DREAD Modell wird genutzt, um potentielle Bedrohungen besser zu Kategorisierung und zu bewerten. Dabei wird die Bedrohungen nach folgenden Kriterien bewertet:

→ Damage (Schaden):

Wie schwer ist der versuchte Schaden durch den Angriff?

- → Damage (Schaden): Wie schwer ist der versuchte Schaden durch den Angriff?
- → Reproducibility (Reproduzierbarkeit): Wie leicht lässt sich der Angriff reproduzieren/anwenden/wiederholen?

- → Damage (Schaden): Wie schwer ist der versuchte Schaden durch den Angriff?
- → Reproducibility (Reproduzierbarkeit): Wie leicht lässt sich der Angriff reproduzieren/anwenden/wiederholen?
- → Exploitability (Ausnutzbarkeit): Wie schwer ist es, den Angriff durchzuführen?

- → Damage (Schaden): Wie schwer ist der versuchte Schaden durch den Angriff?
- → Reproducibility (Reproduzierbarkeit): Wie leicht lässt sich der Angriff reproduzieren/anwenden/wiederholen?
- → Exploitability (Ausnutzbarkeit): Wie schwer ist es, den Angriff durchzuführen?
- → Affected users (Betroffene): Wie viele Personen/Systeme/Komponenten sind vom Angriff betroffen?

- → Damage (Schaden): Wie schwer ist der versuchte Schaden durch den Angriff?
- → Reproducibility (Reproduzierbarkeit): Wie leicht lässt sich der Angriff reproduzieren/anwenden/wiederholen?
- → Exploitability (Ausnutzbarkeit): Wie schwer ist es, den Angriff durchzuführen?
- → Affected users (Betroffene): Wie viele Personen/Systeme/Komponenten sind vom Angriff betroffen?
- → Discoverability (Auffindbarkeit): Wie einfach kann die Angriffsprozedur gefunden werden?

BEWERTUNGSBEISPIEL - DREAD

Bewertung	Gering	Mittel	Hoch
Damage: Schaden	Verarbeitung unbedeutender Information ist möglich	Verbreitung relevanter Infor- mationen ist möglich	Sicherheitslücke untergraben und vollständige Bescheini- gungen erlangt
R eproducibility: Reproduzierbarkeit	Nur mit Kenntnis der Sicher- heitslücke schwer repro- duzierbar	Angriff kann innerhalb eines bestimmten Zeitfensters re- produziert werden	Angriff kann jederzeit reproduziert werden.
E xploitability: Ausnutzbarkeit	Nur Experten mit Fachwissen können den Angriff durchführen	Erfahrene Programmierer können den Angriff ausführen	Programmieranfänger kann den Angriff in kurzer zeit durchführen.
Affected users: Betroffene	Ein sehr geringer Prozentsatz von Benutzern ist betroffen	Einzelne sind betroffen; keine Standardkonfiguration	Alle Benutzer sind betroffen; Standardkonfiguration
D iscoverability: Auffindbarkeit	Der Fehler ist unbekannt und es ist unwahrscheinlich, dass Benutzer das Schadenspo- tential erkennen.	Die Sicherheitslücke befindet sich in einem selten verwendeten Teil des Produkts. Die bösartige Verwendbarkeit ist nur mit einigem Aufwand erkennbar.	Angriff wird über öffentlich zugängliche Medien erklärt. Die Sicherheitslücke findet sich in einer viel verwendeten Funktion und ist leicht wahrnehmbar.

EINTRITTSWAHRSCHEINLICHKEITEN VON ANGRIFFEN (1/2)

Ermittlung der Eintrittswahrscheinlichkeit am Beispiel der Versicherungen und von COMPASS

© Marc Stöttinger Security 17

EINTRITTSWAHRSCHEINLICHKEITEN VON ANGRIFFEN (1/2)

Ermittlung der Eintrittswahrscheinlichkeit am Beispiel der Versicherungen und von COMPASS

- → Beispiel Versicherungen Unfall
 - → Rückschluss aus empirischen Datenmengen (Unfälle / Jahr)
 - → Unfallsituationen vergleichbar
 - → Unfall wird (meist) nicht durch Menschen beabsichtigt

© Marc Stöttinger Security 17

EINTRITTSWAHRSCHEINLICHKEITEN VON ANGRIFFEN (1/2)

Ermittlung der Eintrittswahrscheinlichkeit am Beispiel der Versicherungen und von COMPASS

- → Beispiel Versicherungen Unfall
 - → Rückschluss aus empirischen Datenmengen (Unfälle / Jahr)
 - → Unfallsituationen vergleichbar
 - → Unfall wird (meist) nicht durch Menschen beabsichtigt

- → IT-Sicherheit Verfügbarkeit der Noten
 - → Datenmengen recht klein bis sogar individue!
 - → Situation sehr individuell (wer hat Zugriff, wo wird gehostet, ...)
 - → Angreifer beabsichtigt Schaden

EINTRITTSWAHRSCHEINLICHKEITEN VON ANGRIFFEN (2/2)

Alternative: Modellierung der Eintrittswahrscheinlichkeit durch Voraussetzungen für einen erfolgreichen Angriff (z.B. aus [HEAVENS])

© Marc Stöttinger Security 18

EINTRITTSWAHRSCHEINLICHKEITEN VON ANGRIFFEN (2/2)

Alternative: Modellierung der Eintrittswahrscheinlichkeit durch Voraussetzungen für einen erfolgreichen Angriff (z.B. aus [HEAVENS])

[HEAVENS] Faktoren	Kritisch(3)	Hoch(2)	Mittel(1)	Niedrig(0)
Zugriffsmöglichkeiten	Internet	Lokales Netzwerk	Systemzugriff	Physischer Zugriff
Expertise	Laie	Kompetent	Experte	Mehrere Experten
Wissen über das Ziel	Öffentlich	Branchenspezifisch	Unternehmensspezifisch	Geheim
Benötigte Geräte	Standard	Spezialisierte Geräte	Speziell Produzierte Geräte	Mehrere Speziell Pro- duzierte Geräte

© Marc Stöttinger Security 18

EINTRITTSWAHRSCHEINLICHKEITEN VON ANGRIFFEN - BEISPIELE

- → Beispiel A: Phishing eines Passwortes
 - → Angreifer identifiziert Opfer via HSRM Homepage
 - → Angreifer baut Login-Seite nach und sendet sie an Opfer

Faktor	Phising
Zugriffs- möglichkeiten	Internet (3)
Expertise	Laie (3)
Wissen über das Ziel	Öffentlich (3)
Benötigte Geräte	Standard (3)
Summe	12

EINTRITTSWAHRSCHEINLICHKEITEN VON ANGRIFFEN – BEISPIELE

- → Beispiel A: Phishing eines Passwortes
 - → Angreifer identifiziert Opfer via HSRM Homepage
 - → Angreifer baut Login-Seite nach und sendet sie an Opfer
- → Beispiel B: USB-Stick mit Trojaner an COMPASS Server anschließen
 - → Angreifer verschafft sich Zugang zum Serverraum
 - → Angreifer schließt bösartigen USB Stick an, der einen Trojaner installiert

Faktor	Phising
Zugriffs-	Internet (3)
	internet (3)
möglichkeiten	
Expertise	Laie (3)
Wissen über	Öffentlich

das Ziel	(3)
Benötigte	Standard (3)
Geräte	, ,
Ocrate	
Summe	12
Summe	12

EINTRITTSWAHRSCHEINLICHKEITEN VON ANGRIFFEN – BEISPIELE

- → Beispiel A: Phishing eines Passwortes
 - → Angreifer identifiziert Opfer via HSRM Homepage
 - → Angreifer baut Login-Seite nach und sendet sie an Opfer
- → Beispiel B: USB-Stick mit Trojaner an COMPASS Server anschließen
 - → Angreifer verschafft sich Zugang zum Serverraum
 - → Angreifer schließt bösartigen USB Stick an, der einen Trojaner installiert

Summe	12	5
Benötigte Geräte	Standard (3)	Spezialisiert (2)
Wissen über das Ziel	Öffentlich (3)	Unternehmensspez. (1)
Expertise	Laie (3)	Kompetent (2)
Zugriffs- möglichkeiten	Internet (3)	Physisch (0)
Faktor	Phising	USB-Stick mit Trojaner

BEISPIEL NOTENPFLEGE VIA COMPASS

- → Die Risikoanalyse setzt Kenntnisse technischer Details voraus
 - → Umso mehr Details bekannt sind, desto besser die Abschätzung
 - ightarrow Technisches Verständnis entwickelt sich über die ISMS Zyklen

BEISPIEL NOTENPFLEGE VIA COMPASS

- → Die Risikoanalyse setzt Kenntnisse technischer Details voraus
 - → Umso mehr Details bekannt sind, desto besser die Abschätzung
 - → Technisches Verständnis entwickelt sich über die ISMS Zyklen

→ Technische Details zu COMPASS

- → Die COMPASS Webseite authentifiziert alle User nur via Passwort
- → Auf dem COMPASS Server existiert ein ssh Zugang für Administratoren
- → Der Serverraum ist mit einem Gebäudeschlüssel zugänglich

ANGRIFFSBÄUME ZUR ABSCHÄTZUNG DER EINTRITTSWAHRSCHEINLICHKEIT

- → Unterschiedlicher Detailgrad der Informationen in der Risikoanalyse
 - → Abstrakte Bedrohung: Verlust der Verfügbarkeit der Noten
 - → Konkrete Angriffe: Phishing oder Anschluss bösartiger Hardware

ANGRIFFSBÄUME ZUR ABSCHÄTZUNG DER EINTRITTSWAHRSCHEINLICHKEIT

- → Unterschiedlicher Detailgrad der Informationen in der Risikoanalyse
 - → Abstrakte Bedrohung: Verlust der Verfügbarkeit der Noten
 - → Konkrete Angriffe: Phishing oder Anschluss bösartiger Hardware

- → Methode zum Verknüpfen der Informationen: Angriffsbäume
 - → Abstrakte Bedrohungen als Wurzelknoten
 - → Konkrete und abschätzbare Angriffe als Blätter
 - → Knoten als logische Unterteilung möglicher Angriffe
 - → Knoten werden mittels logischer Verknüpfungen (AND oder OR) verbunden

Verfügbarkeit Noten

Faktor	Phising	USB-Stick mit Trojaner
Zugriffs- möglichkeiten	Internet (3)	Physisch (0)
Expertise	Laie (3)	Kompetent (2)
Wissen über das Ziel	Öffentlich (3)	Unternehmensspez. (1)
Benötigte Geräte	Standard (3)	Spezialisiert (2)
Summe	12	5

Wert	0-2	3-5	6-8	9-10	11-12
Bewertung	Keine	Niedrig	Mittel	Hoch	Kritisch

Faktor	Phising	USB-Stick mit Trojaner
Zugriffs- möglichkeiten	Internet (3)	Physisch (0)
Expertise	Laie (3)	Kompetent (2)
Wissen über das Ziel	Öffentlich (3)	Unternehmensspez. (1)
Benötigte Geräte	Standard (3)	Spezialisiert (2)
Summe	12	5

Wert	0-2	3-5	6-8	9-10	11-12
Bewertung	Keine	Niedrig	Mittel	Hoch	Kritisch

Faktor	Phising	USB-Stick mit Trojaner
Zugriffs- möglichkeiten	Internet (3)	Physisch (0)
Expertise	Laie (3)	Kompetent (2)
Wissen über das Ziel	Öffentlich (3)	Unternehmensspez. (1)
Benötigte Geräte	Standard (3)	Spezialisiert (2)
Summe	12	5

Wert	0-2	3-5	6-8	9-10	11-12
Bewertung	Keine	Niedrig	Mittel	Hoch	Kritisch

Faktor	Phising	USB-Stick mit Trojaner
Zugriffs- möglichkeiten	Internet (3)	Physisch (0)
Expertise	Laie (3)	Kompetent (2)
Wissen über das Ziel	Öffentlich (3)	Unternehmensspez. (1)
Benötigte Geräte	Standard (3)	Spezialisiert (2)
Summe	12	5

Wert	0-2	3-5	6-8	9-10	11-12
Bewertung	Keine	Niedrig	Mittel	Hoch	Kritisch

Faktor	Phising	USB-Stick mit Trojaner
Zugriffs- möglichkeiten	Internet (3)	Physisch (0)
Expertise	Laie (3)	Kompetent (2)
Wissen über das Ziel	Öffentlich (3)	Unternehmensspez. (1)
Benötigte Geräte	Standard (3)	Spezialisiert (2)
Summe	12	5

Wert	0-2	3-5	6-8	9-10	11-12
Bewertung	Keine	Niedrig	Mittel	Hoch	Kritisch

Faktor	Phising	USB-Stick mit Trojaner
Zugriffs- möglichkeiten	Internet (3)	Physisch (0)
Expertise	Laie (3)	Kompetent (2)
Wissen über das Ziel	Öffentlich (3)	Unternehmensspez. (1)
Benötigte Geräte	Standard (3)	Spezialisiert (2)
Summe	12	5

Wert	0-2	3-5	6-8	9-10	11-12
Bewertung	Keine	Niedrig	Mittel	Hoch	Kritisch

Faktor	Phising	USB-Stick mit Trojaner
Zugriffs- möglichkeiten	Internet (3)	Physisch (0)
Expertise	Laie (3)	Kompetent (2)
Wissen über das Ziel	Öffentlich (3)	Unternehmensspez. (1)
Benötigte Geräte	Standard (3)	Spezialisiert (2)
Summe	12	5

Wert	0-2	3-5	6-8	9-10	11-12
Bewertung	Keine	Niedrig	Mittel	Hoch	Kritisch

Faktor	Phising	USB-Stick mit Trojaner
Zugriffs- möglichkeiten	Internet (3)	Physisch (0)
Expertise	Laie (3)	Kompetent (2)
Wissen über das Ziel	Öffentlich (3)	Unternehmensspez. (1)
Benötigte Geräte	Standard (3)	Spezialisiert (2)
Summe	12	5

Wert	0-2	3-5	6-8	9-10	11-12
Bewertung	Keine	Niedrig	Mittel	Hoch	Kritisch

BERECHNUNG DES GESAMTRISIKOS

- → Schaden und Eintrittswahrscheinlichkeit werden zum Risiko kombiniert
- → Risiko: Verluste der Verfügbarkeit der Noten ist Hoch
 - → Schaden: Mittel
 - → Eintrittswahrscheinlichkeit: Kritisch

Risiko						
Eintrittswa	ahrscheinlichkeit	Klein	Niedrig	Mittel	Hoch	Kritisch
	Klein	Klein	Klein	Klein	Klein	Niedrig
	Niedrig	Klein	Niedrig	Niedrig	Niedrig	Mittel
Schaden	Mittel	Klein	Niedrig	Mittel	Mittel	Hoch
	Hoch	Klein	Niedrig	Mittel	Hoch	Hoch
	Kritisch	Niedrig	Mittel	Hoch	Hoch	Kritisch

ZIEL DER RISIKOBEHANDLUNG

Die Bedrohungs- und Risikoanalyse liefert eine Liste an Risiken zusammen mit detaillierten Angriffsbäumen

→ Fokus der Risikobehandlung: Die am höchsten priorisierten Risiken sinnvoll adressieren

Bedrohung	Bewertung
Noten nicht abrufbar	Hoch
Veröffentlichung der Noten	Hoch
Unbefugter Zugriff auf Noten	Hoch
Verfälschung der Noten	Mittel

ightarrow Es gibt verschiedene Möglichkeiten mit einem Risiko umzugehen

- → Es gibt verschiedene Möglichkeiten mit einem Risiko umzugehen
 - 1. **Mitigieren:** Mechanismen implementieren, um die Eintrittswahrscheinlichkeit und somit das Risiko zu reduzieren (z.B.: Zwei-Faktor Authentifizierung)

- → Es gibt verschiedene Möglichkeiten mit einem Risiko umzugehen
 - 1. **Mitigieren:** Mechanismen implementieren, um die Eintrittswahrscheinlichkeit und somit das Risiko zu reduzieren (z.B.: Zwei-Faktor Authentifizierung)
 - 2. **Vermeiden:** Schwachstelle entfernen; Funktion nicht umsetzen, Daten oder Zugang entfernen (z.B. Admin Zugang zum COMPASS Server nicht aus dem Internet erreichbar)

- → Es gibt verschiedene Möglichkeiten mit einem Risiko umzugehen
 - 1. **Mitigieren:** Mechanismen implementieren, um die Eintrittswahrscheinlichkeit und somit das Risiko zu reduzieren (z.B.: Zwei-Faktor Authentifizierung)
 - 2. **Vermeiden:** Schwachstelle entfernen; Funktion nicht umsetzen, Daten oder Zugang entfernen (z.B. Admin Zugang zum COMPASS Server nicht aus dem Internet erreichbar)
 - 3. **Transferieren:** Risiko auf eine andere Instanz übertragen; Schaden durch Verträge abdecken (z.B. Versicherung für Ransomware oder Weitergabe des Risikos an Zulieferer)

- → Es gibt verschiedene Möglichkeiten mit einem Risiko umzugehen
 - 1. **Mitigieren:** Mechanismen implementieren, um die Eintrittswahrscheinlichkeit und somit das Risiko zu reduzieren (z.B.: Zwei-Faktor Authentifizierung)
 - 2. **Vermeiden:** Schwachstelle entfernen; Funktion nicht umsetzen, Daten oder Zugang entfernen (z.B. Admin Zugang zum COMPASS Server nicht aus dem Internet erreichbar)
 - 3. **Transferieren:** Risiko auf eine andere Instanz übertragen; Schaden durch Verträge abdecken (z.B. Versicherung für Ransomware oder Weitergabe des Risikos an Zulieferer)
 - 4. **Akzeptieren:** Keine Aktionen durchführen (z.B. sinnvoll bei niedrigem Risiko)

- → Es gibt verschiedene Möglichkeiten mit einem Risiko umzugehen
 - 1. **Mitigieren:** Mechanismen implementieren, um die Eintrittswahrscheinlichkeit und somit das Risiko zu reduzieren (z.B.: Zwei-Faktor Authentifizierung)
 - 2. **Vermeiden:** Schwachstelle entfernen; Funktion nicht umsetzen, Daten oder Zugang entfernen (z.B. Admin Zugang zum COMPASS Server nicht aus dem Internet erreichbar)
 - 3. **Transferieren:** Risiko auf eine andere Instanz übertragen; Schaden durch Verträge abdecken (z.B. Versicherung für Ransomware oder Weitergabe des Risikos an Zulieferer)
 - 4. Akzeptieren: Keine Aktionen durchführen (z.B. sinnvoll bei niedrigem Risiko)
- → Entscheidung über Umgang mit Risiko muss von Person mit entsprechender Befugnis getroffen werden

→ Verschiedene Möglichkeiten im Beispiel Verfügbarkeit der Noten

- → Verschiedene Möglichkeiten im Beispiel Verfügbarkeit der Noten
 - → Implementierung eines Backup Systems

- → Verschiedene Möglichkeiten im Beispiel Verfügbarkeit der Noten
 - → Implementierung eines Backup Systems
 - → Implementierung einer 2-Faktor Authentifizierung (z.B. Smartphone)

- → Verschiedene Möglichkeiten im Beispiel Verfügbarkeit der Noten
 - → Implementierung eines Backup Systems
 - → Implementierung einer 2-Faktor Authentifizierung (z.B. Smartphone)
- Entscheidung zu Maßnahmen hängt u.a.
 von Umsetzbarkeit, Effektivität und
 Kosten ab

ZUSAMMENFASSUNG

- → Probleme bei der Wirtschaftlichkeitsbetrachtung von IT-Sicherheit
- → Bedrohungsanalyse mit STRIDE und DREAD
- → Bedrohungs- und Risikoanalyse an einem konkreten Beispiel durchführen
- → Verfeinerung der Risikoanalyse durch Angriffsbäume
- → Möglichkeiten der Risikobehandlung