NETWORK & INFRASTRUCTURE SECURITY

Topics

- □ Basic of Networks
- □ OSI Model & TCP IP Protocol Suite
- □ Introduction to network devices & functionality
- Network Security
- □ Perimeter Security
- □ Host & End Point Security
- □ Security challenges in the boundaryless Organization
- Mobile Security
- □ References

A network is a collection of computers / servers / network devices / peripherals or other devices connected to one another to allow the sharing of data.

☐ Local Area Network (LAN)

- ✓ Is limited in size, typically spanning a few hundred meters, and no more than a mile
- ✓ Is fast, with speeds from 10 Mbps to 10 Gbps
- ✓ Requires little wiring, typically a single cable connecting to each device or Wireless Connection.

□ Personal Area Network (PAN)

✓ A network that is used for communicating among computers and computer devices (including telephones) in close proximity of around a few meters within a room.

■ Metropolitan Area Network (MAN)

- ✓ Acts a high speed network to allow sharing of regional resources.
- √ Typically covers an area of between 5 and 50 km diameter.
- ✓ Example: Telephone company network that provides a high speed DSL to customers.

☐ Wide Area Network (WAN)

- ✓ Covers a large geographic area such as country, continent or even whole of the world.
- ✓ Example: ISP Networks

OSI Model

PDU and layer addressing

Protocols at OSI Layers

OSI Model	Protocols					
Application Layer	DNS, DHCP, FTP, HTTPS, IMAP, LDAP, NTP, POP RTP, RTSP, SSH, SIP, SMTP, SNMP, Telnet, TFTF					
Presentation Layer	JPEG, MIDI, MPEG, PICT, TIFF					
Session Layer	NetBIOS, NFS, PAP, SCP, SQL, ZIP					
Transport Layer	TCP, UDP					
Network Layer	ICMP, IGMP, IPsec, IPv4, IPv6, IPX, RIP					
Data Link Layer	ARP, ATM, CDP, FDDI, Frame Relay, HDLC, MPLS, PPP, STP, Token Ring					
Physical Layer	Bluetooth, Ethernet, DSL, ISDN, 802,11 Wi-Fi					

Collision domains:

A collision domain is a section of a network connected by a shared medium or through repeaters where data packets can collide with one another when being sent, particularly when using early versions of Ethernet.

Broadcast domains:

A Broadcast Domain consists of all the devices that will receive any broadcast packet originating from any device within the network segment.

Physical Media Types

Hub

A hub (concentrator) is a device that repeats the signals it receives on one port to all other ports. It is a central connection point for several network devices.

Switch

When a switch receives data the switch examines the data link header for the MAC address of the destination station and forwards it to the correct port. This opens a path between ports that can use the full bandwidth of the topology.

Router

The devices that operate at the Network layer are routers and Layer 3 Switches

172.16.10.0/24

Router B

Router C

Firewall

Recap and Questions

NETWORK SECURITY - FIREWALLS//

Packet Filtering

Stateful Firewalls

Application Gateways

Next -Gen Firewalls, UTM

Traditional Firewall - Shortcomings

□ Legacy firewalls were built on the assumption that an application would respect its protocol which would respect the port.

For example, Port 80 must mean HTTP and that must mean Web browsing. Port 25 must mean SMTP and that must mean e-mail.

- ☐ Modern applications are deliver content using a wide range / random ports.
- ☐ Its easy to mimic an application and tunnel harmful content.
- ☐ Lacked intelligence to distinguish different kinds of web traffic.
- □ Operation was limited to Data Link and Transport layers of network operation. As a result, firewall software could identify and control traffic (moving data) but not analyze it.

Best Practices for Firewall Design

General Deployment Modes

Bastion Host Internet Intranet

Policy Samples - NGFWs

			Source				Destination						
	Name	Tags	Zone	Address	User	HIP Profile	Zone	Addr	Application	Service	Action	Profile	Options
1	Rule B	none	[70] Trust	5 192.168.1.3	any	any	(M) Untrust	any		💥 application-default	0	none	
2	Rule C	none	mag Trust	§ 192.168.1.3	any	any	(M) Untrust	any	any	any	0	none	<u></u>
3	Rule A	none	ma Trust	any	any	any	M Untrust	any	any	any	0	none	
4	Rule D	none	(M) Untrust	any	any	any	any	any	any	any	0	none	

Policy Samples - NGFWs

Recap and Questions

PERIMETER SECURITY

Traditional Perimeters

Perimeter Protection Technologies

- ☐ Firewalls
- ☐ Intrusion Detection and Prevention Systems (IDS/IDPS)
- □ DLP Data Loss Prevention

Typical Network Zones

Intrusion Detection and Prevention Systems (IDS/IDPS)

Two types of IDS:

- ☐ HIDS: Host IDS, monitor changes in the operating system and software
- □ NIDS: Network IDS, monitor network traffic

Two common detection methods:

- Signatures
- Behavior patterns

Data Loss Prevention- DLP

- ☐ To accurately identify sensitive data in its many forms
- ☐ To prevent the loss of that data.

Network Monitor

Email Monitor

Proxy

Legacy Perimeter defense – Assumptions:

- ☐ Everything on the inside of an organization's network can be trusted.
- ☐ Threat always originate from untrusted zone towards Trusted Zone via the Perimeter.
- ☐ Lateral movement of attacks posed low Risk.

Evolving Trust model – Zero Trust:

The original tenets of a Zero Trust network

Make security pervasive throughout the network, not just at the perimeter. Attackers or malicious insiders will penetrate threat-centric defenses.

Eliminate network trust

Assume that all traffic, regardless of location, is threat traffic until it is verified, which means authorized, inspected, and secured.

Segment network access

Adopt a least privilege strategy and strictly enforce controls so users have access only to the resources needed to perform their jobs.

Gain visibility and analytics

Continuously inspect and log all traffic internally as well as externally to monitor for malicious activity with real-time protection capabilities.

Determine the best enforcement points for firewalls using Traditional approach and Zero – Trust model

Recap and Questions

ENDPOINT SECURITY

Endpoint Security

Endpoint Security & Evolution

Introduction:

■ Endpoint security, or endpoint protection, are systems that protect computers and other devices on a network or in the cloud from security threats.

Traditional Endpoint Solutions:

- Deploying Anti-Viruses
- ☐ Frequent Signature updates.
- Effectiveness is based on the Signatures.
- Unable to cope up with the evolution of Malware and new types of threats.

Next-Gen Endpoint Solutions:

- □ Detection speed and confidence have improved with the incorporation of behavioral analysis, ML and AI.
- Near real-time protection against new Malwares and 0-day attacks.
- Endpoint Detection and Response (EDR)
- Application Whitelisting
- Forensics

Trends:

- Machine Learning and Al.
- ☐ SaaS-Based Endpoint Security
- Protection Against File less Attacks
- IoT Devices Under the Protective Umbrella
- Reducing Complexity and Consolidating Agents

Endpoint Security

Endpoint Security – NextGen Features

Next Gen AVs provides detailed forensics on the detections.

Example:

Detection Details display a wealth of information about the detection, including

Detection's name

Severity

Description

Number of events

Artifacts of interest

Automated responses associated with that detection.

Recap and Questions

BOUNDARYLESS ORGANIZATIONS – SECURITY CHALLENGES

Boundaryless Organizations – Security Challenges

Drivers for Cloud adoption:

- Business growth
- Efficiency
- Experience
- → Agility
- ☐ Cost
- Assurance

NIST – Definition of Cloud Computing

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.

Boundaryless Organizations – Security Challenges

Cloud Model:

Cloud Security Scope

Cloud – Responsibility Matrix

Examples

Platform Type	Common Examples
SaaS	Google Apps, Dropbox, Salesforce, Cisco WebEx, Concur, GoToMeeting
PaaS	AWS Elastic Beanstalk, Windows Azure, Heroku, Force.com, Google App Engine, Apache Stratos, OpenShift
laaS	DigitalOcean, Linode, Rackspace, Amazon Web Services (AWS), Cisco Metapod, Microsoft Azure, Google Compute Engine (GCE)

CASB:

CASB is on-premises or cloud based software that sits between cloud service users and cloud applications, and monitors all activity and enforces security policies.

CASBs work by intermediating or "proxying" traffic between cloud apps and users. Once proxied, these tools provide:

- ☐ Visibility—audit logs, security alerts, compliance reports, etc.
- □ Data Security—access control, data leakage prevention, encryption, etc.

Deployment

- ☐ On-Prem
- Cloud

Mode

- □ Forward Proxy
- □ Reverse Proxy
- □API based Systems

BYOD:

- □BYOD "Bring Your Own Device," a phrase that refers to the practice of allowing employees to bring their own mobile devices to work for use with company systems, software, networks, or information.
- ■BYOD has become a huge trend amongst enterprises, with nearly 1/3 of employees using personal devices at workplaces worldwide.

- √ Employee satisfaction
- ✓ Business productivity
- ✓ Enhanced collaboration and mobility
- ✓ Expanded mobile access to resources
- √ Reduced spending on sourcing and support of devices
- ✓ Lessened responsibility for device lifecycle management
- ✓ Consolidation of infrastructure and tools across many IT disciplines.

- ✓ Exposed data
- ✓ Data leakage
- ✓ Data loss
- ✓ Public exposure
- ✓ Malicious apps
- √ Cross contamination
- √ OS-specific security customization

The old world: Corporate-owned device

The new world: Personal-owned device interfacing with corporate devices

SCENARIO

Authorized users accessing approved cloud applications from unmanaged endpoint devices

SECURITY GAP

Unmanaged endpoints are vulnerable to breaches and other exploits that can steal legitimate credentials.

Authorized users accessing unapproved cloud applications (shadow IT) from unmanaged devices

Organizations can't enforce endpoint protection—even when using enterprise mobile management or mobile device management solutions—on unmanaged personal devices that access unsanctioned cloud applications over public, mobile, and wireless networks.

Authorized users accessing approved cloud applications on managed devices

Managed devices can be vulnerable to insider abuse, attacks, and theft.

Unauthorized users (that is, cybercriminals or insiders with malicious intent) using stolen credentials to access cloud applications (both approved and unapproved)

Approved cloud applications can be targets for account takeovers and malicious insider threats. Security teams have no visibility into company usage and storage of sensitive corporate data in unapproved cloud applications.

Recap and Questions

MOBILE SECURITY

☐ Mobile security is the protection of portable devices such as laptops, smartphones, tablets, and smartwatches from threats and vulnerabilities.

■ Major Security Concerns

Data Leakage

Unauthorized Access

Unsafe apps download

Malware

Any Network

Mobile Security Strategies

Mobile device Management

Endpoint Security Tools

Network Access Control

Typical MDM Architecture

Basic Operations

- □ Enrollment/Configuration
- **□** Distribution
- □ Authentication
- **□**Instruction
- □Control/Report

Network Access Control

Can identify users and devices by controlling access to the network using one or more forms of authentication, and controlling access to enterprise resources using one or more forms of authorization and policy enforcement.

The 802.1X protocol is an IEEE standard for port-based network access control (PNAC) on both wired and wireless access points. The primary intent of 802.1X is to define authentication controls for *any* user or device trying to access a LAN or WLAN.

Recap and Questions

References

OSI Model, Protocols, Load balancing: https://www.f5.com/pdf/certification/exams/Certification_Study_Guide_101.pdf

Firewalls, Endpoint Security, VPNs, NAC: https://www.cisco.com/c/en/us/support/security/index.html

DLP: https://www.bankinfosecurity.com/case-study-omni-american-bank-takes-on-data-loss-prevention-a-898

Traditional and NextGen AV: https://www.crowdstrike.com/wp-content/brochures/avc_mrg_biz_2016_nextgen_en.pdf

Cloud:

https://docs.microsoft.com/en-us/learn/modules/principles-cloud-computing/

https://aws.amazon.com/getting-started/?ref=docs_gateway