

Deadlocks - 3

Nitin V Pujari Faculty, Computer Science Dean - IQAC, PES University

Course Syllabus - Unit 2

12 Hours

Unit 2: Threads & Concurrency

Introduction to Threads, types of threads, Multicore Programming, Multithreading Models, Thread creation, Thread Scheduling, PThreads and Windows Threads, Mutual Exclusion and Synchronization: software approaches, principles of concurrency, hardware support, Mutex Locks, Semaphores. Classic problems of Synchronization: Bounded-Buffer Problem, Readers -Writers problem, Dining Philosophers Problem concepts. Synchronization Examples - Synchronisation mechanisms provided by Linux/Windows/Pthreads. Deadlocks: principles of deadlock, tools for detection and Prevention.

Course Outline

Topic Outline

Examples : Deadlock
Avoidance & Deadlock
Detection

Deadlocks: Deadlock Avoidance & Detection - Examples

Example 1 - Safety Algorithm

RMax								
Α	В	С						
10	5	7						

Available=>Rmax-Allocated								
А В С								
3	3	2						

		Allocation		Мах			
Process	Α	В	С	А	В	С	
Р0	0	1	0	7	5	3	
P1	2	0	0	3	2	2	
P2	3	0	2	9	0	2	
Р3	2	1	1	2	2	2	
P4	0 0		2	4	3	3	
Total	7	2	5	25	12	12	

Deadlocks: Deadlock Avoidance & Detection - Examples

Example - Safety Algorithm

	RMax		work<= A	vailable => (Rmax-A	Allocated)
Α	В	С	Α	В	С
10	5	7	3	3	2

i	Not Initialised
---	--------------------

Process	Allocation			Max			Need=>Max-Allocated		
Process	Α	В	С	Α	В	С	А	В	С
Р0	0	1	0	7	5	3	7	4	3
P1	2	0	0	3	2	2	1	2	2
P2	3	0	2	9	0	2	6	0	0
Р3	2	1	1	2	2	2	0	1	1
P4	0	0	2	4	3	3	4	3	1
Total	7	2	5	25	12	12	18	10	7

Deadlocks: Deadlock Avoidance & Detection - Examples

Example - Safety Algorithm

	RMax			Work	
Α	В	С	Α	В	С
10	5	7	3	3	2

1	i	Not Initialised
ľ		

Dunnan	Allocation				Max			Need=>Max-Allocated		
Process	Α	В	С	А	В	С	Α	В	С	
P0	0	1	0	7	5	3	7	4	3	
P1	2	0	0	3	2	2	1	2	2	
P2	3	0	2	9	0	2	6	0	0	
Р3	2	1	1	2	2	2	0	1	1	
P4	0	0	2	4	3	3	4	3	1	
Total	7	2	5	25	12	12	18	10	7	

Process		Flag		
P0	F	alse		
P1	F	alse		
P2	F	alse		
Р3	F	alse		
P4	F	alse		
	Safe	e Seque	ence	

Deadlocks: Deadlock Avoidance & Detection - Examples

Example - Safety Algorithm

	RMax			Work			
А	В	С	Α	В	С	i	1
10	5	7	3	3	2		

Dunnan	Allocation			Max			Need=>Max-Allocated		
Process	Α	В	С	А	В	С	Α	В	С
P0	0	1	0	7	5	3	7	4	3
P1	2	0	0	3	2	2	1	2	2
P2	3	0	2	9	0	2	6	0	0
Р3	2	1	1	2	2	2	0	1	1
P4	0	0	2	4	3	3	4	3	1
Total	7	2	5	25	12	12	18	10	7

Process	Flag	
P0	False	
P1	True	
P2	False	
Р3	False	
P4	False	
	Safe Sequ	ence

Work							
А В С							
3+2	3+0	2+0					

Deadlocks: Deadlock Avoidance & Detection - Examples

PES UNIVERSITY

Example - Safety Algorithm

	RMax			Work			
А	В	С	А	В	С	i	3
10	5	7	5	3	2		

Process		Allocation		Max		Need=>Max-Allocated				
	Α	В	С	А	В	С	А	В	С	
P0	0	1	0	7	5	3	7	4	3	
P1	2	0	0	3	2	2	1	2	2	
P2	3	0	2	9	0	2	6	0	0	
Р3	2	1	1	2	2	2	0	1	1	
P4	0	0	2	4	3	3	4	3	1	
Total	7	2	5	25	12	12	18	10	7	

١.		
	Process	Flag
	P0	False
	P1	True
	P2	False
	Р3	True
	Р4	False
	·	_

Work								
A B C								
5+2	3+1	2+1						

Safe Sequence									
P1	Р3								

Deadlocks: Deadlock Avoidance & Detection - Examples

PES UNIVERSITY ONLINE

C

3+2

Example - Safety Algorithm

Suppose we have 5 processes(P0, P1, P2, P3, P4) and 3 resource types(A, B, C) each having (10,5,7) instances. Suppose at time t1 if the snapshot of the system taken is as follows then find the system is in a safe state or not, after finding the need

	RMax			Work			
А	В	С	Α	В	С	i	4
10	5	7	7	4	3		

Process		Allocation			Max			=>Max-Allo	cated
	Α	В	С	А	В	С	Α	В	С
P0	0	1	0	7	5	3	7	4	3
P1	2	0	0	3	2	2	1	2	2
P2	3	0	2	9	0	2	6	0	0
Р3	2	1	1	2	2	2	0	1	1
P4	0	0	2	4	3	3	4	3	1
Total	7	2	5	25	12	12	18	10	7

Α		В
7+0		4+0

Process

P0

P1

P2

Р3

P4

Flag

False

True

False

True

True

Safe Sequence										
P1	Р3	Р4								

Work

Deadlocks: Deadlock Avoidance & Detection - Examples

PES UNIVERSITY

Example - Safety Algorithm

	RMax			Work			
А	В	С	Α	В	С	i	2
10	5	7	7	4	5		

Process		Allocation			Max			Need=>Max-Allocated			
	Process	Α	В	С	А	В	С	Α	В	С	
	P0	0	1	0	7	5	3	7	4	3	
	P1	2	0	0	3	2	2	1	2	2	
	P2	3	0	2	9	0	2	6	0	0	
	Р3	2	1	1	2	2	2	0	1	1	
	P4	0	0	2	4	3	3	4	3	1	
	Total	7	2	5	25	12	12	18	10	7	

Process	Flag
P0	False
P1	True
P2	True
Р3	True
Р4	True

Work						
Α	В	С				
7+3	4+0	3+2+2				

	Safe Sequence					
P1	Р3	P4	P2			

Deadlocks: Deadlock Avoidance & Detection - Examples

PES UNIVERSITY ONLINE

Example - Safety Algorithm

	RMax			Work			
А	В	С	Α	В	С	i	0
10	5	7	10	4	7		

Dwaaaa		Allocation			Max		Need:	=>Max-Allo	cated
Process	Α	В	С	А	В	С	Α	В	С
P0	0	1	0	7	5	3	7	4	3
P1	2	0	0	3	2	2	1	2	2
P2	3	0	2	9	0	2	6	0	0
Р3	2	1	1	2	2	2	0	1	1
P4	0	0	2	4	3	3	4	3	1
Total	7	2	5	25	12	12	18	10	7

cess	Flag	
90	True	
P1	True	
P2	True	
P3	True	
P4	True	
		ı

Work							
Α	A B						
10+0	4+1	7+0					

Safe Sequence						
P1	P3	P4	P2	P0		

Deadlocks: Deadlock Avoidance & Detection - Examples

PES UNIVERSITY

Example - Safety Algorithm

RMax							
А	В	С	Α	В	С	i	0
10	5	7	10	5	7		

Duana	Allocation				Max			Need=>Max-Allocated			
Process	Α	В	С	А	В	С	Α	В	С		
P0	0	1	0	7	5	3	7	4	3		
P1	2	0	0	3	2	2	1	2	2		
P2	3	0	2	9	0	2	6	0	0		
Р3	2	1	1	2	2	2	0	1	1		
P4	0	0	2	4	3	3	4	3	1		
Total	7	2	5	25	12	12	18	10	7		

Ι.		
	Process	Flag
	P0	True
	P1	True
	P2	True
	Р3	True
	P4	True

Work		
Α	В	С
10	5	7

Safe Sequence				
P1	P3	P4	P2	P0

Deadlocks: Deadlock Avoidance & Detection - Examples

PES UNIVERSITY ONLINE

Example 1 - Resource Request Algorithm

Suppose we have 5 processes(P0, P1, P2, P3, P4) and 3 resource types(A, B, C) each having (10,5,7) instances. Suppose at time t1 if the snapshot of the system taken if the system is safe; a new request comes from P1 =>(1,0,2). Can the resource request be granted immediately and safely

	RMax	
А	В	С
10	5	7

Available=>Rmax-Allocated		
Α	В	С
3	3	2

Duagas	Allocation		Max			
Process	Α	В	С	Α	В	С
P0	0	1	0	7	5	3
P1	2	0	0	3	2	2
P2	3	0	2	9	0	2
Р3	2	1	1	2	2	2
P4	0	0	2	4	3	3
Total	7	2	5	25	12	12

Request by P1		
Α	В	С
1	0	2

Deadlocks: Deadlock Avoidance & Detection - Examples

Example 1 - Resource Request Algorithm

Suppose we have 5 processes(P0, P1, P2, P3, P4) and 3 resource types(A, B, C) each having (10,5,7) instances. Suppose at time t1 if the snapshot of the system taken if the system is safe; a new request comes from P1 =>(1,0,2). Can the resource request be granted immediately and safely

	RMax	
Α	В	С
10	5	7

	Work	
Α	В	С
5	3	2

Drococc		Allocation			Max	
Process	A	В	С	Α	В	С
Р0	0	1	0	7	5	3
P1	0	0	0	3	2	2
P2	3	0	2	9	0	2
Р3	2	1	1	2	2	2
P4	0	0	2	4	3	3
Total	7	2	5	25	12	12

Process	Flag
P0	False
P1	True
P2	False
Р3	False
P4	False

Request by P1		
Α	В	С
1	0	2

1
-

Work				
A	В	С		
5	3	2		

Safe Sequence					
P1					

THANK YOU

Nitin V Pujari Faculty, Computer Science Dean - IQAC, PES University

nitin.pujari@pes.edu

For Course Deliverables by the Anchor Faculty click on www.pesuacademy.com