Desarrollo de Circuitos Integrados CMOS para Aplicaciones de RFID

Maestría en Ciencias de la Ingeniería

Andrew Parlane Agosto 2022

Director: Codirectores:

Dr. Ing. Mariano Garcia-Inza Ing. Federico G. Zacchigna Ing. Octavio Alpago

https://github.com/andrewparlane/fiuba_thesis

Radioterapia

- Radioterapia
- QA (Quality Assurance)
- IVD (Dosimetría in-vivo)
- Sensores de radiación MOSFET.

Objetivo y Proyecto Marco

- Proyecto Marco: Dosimetría MOS de Bajas Dosis. Aplicaciones Médicas (PDTS-0359)
 - Objetivo: Diseñar y fabricar un chip CMOS que contiene un sensor de radiación MOSFET y los circuitos necesarios para su muestreo y el posterior transmisión inalámbricamente del resultado.
 - Debe tener un número mínimo de conexiones externos.
 - Debe funcionar bajo norma.
- Objetivo de esta tesis: Diseñar un circuito integrado digital que consiste en una implementación de la norma ISO/IEC 14443A y un protocolo propietario que permite la lectura de un sensor.
 - La implementación de la norma ISO/IEC 14443A debe ser genérico.

ISO/IEC 14443

- Un sistema consiste en un PCD y hasta 15 PICCs.
- PCD El Lector.
- PICC Un tag.
- Cada PICC consiste en un chip CMOS y una antena.
- $f_c = 13,56 \text{ MHz} \pm 7 \text{ Khz}.$

ISO/IEC 14443

La norma es dividida en 4 partes:

- Parte 1 Características Físicas.
- Parte 2 Radiofrecuencia Potencia y Señal Interfaz.
- Parte 3 Inicialización y Anticolisión.
- Parte 4 Protocolo de Transmisión.

14443 - 4
Transmission Protocols

14443 - 3
Initialisation and Anti-collision

14443 - 2
Radio Frequency Power and Signal

Flujo de Datos

Flujo de Datos

Recepción de Datos

Recepción de Datos

- Simulación SPICE de la recepción de una pausa en el AFE de Fabricio Alcade Bessia.
- Diseñado por otro proceso de fabricación (ON C5N).
- El reloj es recuperado de la portadora y se detiene durante las pausas.
- La relación entre la pausa enviada por el PCD y la pausa y el reloj generados por el AFE dependen en las propiedades del PCD y de la AFE.

Transmisión de Datos (PICC a PCD)

- Tasa de bits: $f_c / 128 = ~106$ Khz.
- Subportadora con frecuencia $f_s = f_c / 16 = 847,5 \text{ KHz}.$

Envió de tramas entre los módulos - Rx

Implementación – ISO/IEC 14443-2A

Recepción de Datos – ISO/IEC 14443-2A

- Start Of Communications (SOC) Secuencia Z.
- '1' Lógico Secuencia X.
- '0' Lógico Secuencia Y o Z.
- End Of Communications (EOC) '0' Lógico + Secuencia Y.

Recepción de Datos – ISO/IEC 14443-2A

- ¿Cómo decodificar las pausas a secuencias cuando el reloj puede detenerse?
- Se cuenta ciclos del reloj entre flancos ascendentes de las pausas.
- Simulación de la recepción de dos secuencias Z.
- $T_b = 128 \text{ ciclos}.$
- T_{nc} es el tiempo que el reloj permanece detenido.

Recepción de Datos – ISO/IEC 14443-2A

- $T_{nc_min} = 0$.
- $T_{nc_max} = 56$.
- Permite ±3 ciclos de jitter en la detección de la pausa.

ISO/IEC 14443-2A

Implementación – ISO/IEC 14443-3A

Implementación – ISO/IEC 14443-3A

ISO/IEC 14443-3A - Framing

ISO/IEC 14443-3A - FDT

- Tiempo entre la última pausa y el primer flanco de modulación de la respuesta.
- Depende en la última bit de la solicitud:
 - '0' lógico: $T_{FDT} = 128 \text{ n} + 20$
 - '1' lógico: $T_{FDT} = 128 \text{ n} + 84$
- Tramas de inicialización: n = 9
- Otras tramas: n ≥ 9

Implementación – ISO/IEC 14443-3A

ISO/IEC 14443-3A - Initialisation

$\mathbf{PCD} \to \mathbf{PICC}$			$\mathbf{PICC} \to \mathbf{PCD}$		
Solicitud	Tipo	CRC	Respuesta	Tipo	CRC
REQA	Corta	No	ATQA	Estándar	No
WUPA	Corta	No	ATQA	Estándar	No
ANTICOLLISION	Anticolisión	No	ANTICOLLISION	Anticolisión	No
SELECT	Estándar	Sí	SAK	Estándar	Sí
HLTA	Estándar	Sí	Sin Respuesta		

- HALT solo acepta la trama WUPA, y no REQA.
- READY* y ACTIVE* tienen transiciones a HALT en el caso de un error, en vez de a IDLE.
- Esto permite el PCD excluir unas PICCs del proceso de descubrimiento.

ISO/IEC 14443-3A - UIDs

- Tres tamaños:
 - Simple 4 bytes
 - Doble 7 bytes
 - Triple 10 bytes
- Esta tesis usa UIDs simples.
 UID[31:0] =
 0xEFFEC700 | uid_variable[2:0];
- uid_variable es una entrada al diseño.

Implementación – ISO/IEC 14443-3A

Implementación – ISO/IEC 14443-4

Implementación – ISO/IEC 14443-4

- La trama RATS es necesario para terminar activación (solo por PICCs de tipo A), contiene un CID único para esa PICC. La respuesta es ATS.
- Después del RATS y ATS, el PCD puede enviar la trama PPS para configurar las tasa de bits de comunicación
- Después la PICC está activada.
- Bloques estándares: Tipo I (información), R (reconocimiento) y S (supervisión).

P	rologue fi	eld	Information field	Epilogue field	
PCB	[CID]	[NAD]	[INF]	CRC16	
1 byte	1 byte	1 byte		2 bytes	

Implementación – ISO/IEC 14443-4

- Bloques-I:
 - Contienen el protocolo de nivel aplicación en el campo INF.
- Bloques-S
 - La única soportada en mi núcleo IP es S(DESELECT) para desactivar la PICC y transaccionar al estado HALT.
- Bloques-R
 - R(ACK) y R(NAK), usadas para:
 - Verificar la presencia de la PICC
 - Pedir la repetición de la última respuesta en caso de un error.

Implementación - Aplicación

Implementación - Aplicación

- El diseño del ADC es un trabajo futuro, motivo por el cual no se dispone de un modelo.
- Este trabajo soporta un ADC de hasta 16 bits.
- La interpretación de las señales del sensor y el ADC está fuera del alcance de esta tesis.

Implementación - Aplicación

- El protocolo de nivel aplicación consiste en 5 comandos:
 - IDENTIFY Devuelve la versión de todos los bloques en el diseño.
 - SET_SIGNAL Cambia una o más de las salidas al sensor y ADC.
 - AUTO_READ Realiza un muestreo automático del sensor.
 - GET RESULT Devuelve el resultado de la última muestra.
 - ABORT Abandona la operación actual.
- SET_SIGNAL y AUTO_READ pueden ser sincronizados entre todas las PICCs activadas.
- Cada comando y respuesta comienza con una cabecera que consiste en un valor mágico y el tipo del comando.

Tiempo

- Basado en técnicas de UVM.
- El marco consiste en un conjunto de clases, paquetes y módulos de SystemVerilog.
 - Transacciones Representan tramas. Tx y Rx, Bytes, Bits y Secuencias (X, Y y Z).

33

- Controladores Llevan una interfaz virtual y una cola de transacciones.
 Transacciones empujados a la cola son enviadas sobre la interfaz.
- Monitores Llevan una interfaz virtual y una cola de transacciones. Monitorean la interfaz y construye una transacción por cada trama que detectan.
- Secuencias Generan series de tramas y verifican las respuestas.
- Modelos del ADC y del conjunto PCD & AFE.

Verificación

Preparación para la Fabricación

Tecnología CMOS

- XFAB XH018 (180 nm).
- 6 capas de metal: MET1 MET4, METTP, METTPL.
 - MET1, MET3, METTP Horizontal.
 - MET2, MET4, METTPL Vertical.
- Celdas:
 - D_CELLS_HD Velocidad estándar, Bajo potencia.
 - D_CELLS_HDLL Bajo potentia, Bajo corriente de Fuga

Síntesis y Place & Route

Síntesis y Place & Route

Síntesis y Place & Route

```
residue = 16'h0000;
if (high_bits == 2'b10)
   residue = state_table[index];
else
   state_table[index] = 16'h0000;
```


Conclusiones

- Todo el RTL es verificado con simulaciones funcionales.
- Área: $86\,930\,\mu\text{m}^2 = 0.087\,\text{mm}^2$ (295,68 μm , 294,00 μm).
- Consumo de potencia promedio: 256 μW, compuesto de:
 - 163 μW potencia interna.
 - 92 μW potencia dinámica.
 - 624 nW potencia estática.
- No hay slack negativo de setup ni de hold.
- El GDS II es verificado ser equivalente al RTL.
- No hay errores de DRC ni LVS.

Trabajos Futuros

- Realizar una mejor estimación del consumo de potencia, incluyendo consumo pico. Esto es importante al momento de diseñar el AFE.
- Implementar el AFE y el ADC en la tecnología XH018 de X-FAB.
- Agregar puntos de prueba al diseño para permitir realizar mediciones e inyectar señales de forma directa.
- Fabricar y medir el IC.
- Aumentar el núcleo IP con las partes opcionales de la norma, así que puede ser usado en un rango de proyectos más amplio.

- ISO Central Secretary. Identification cards Contactless integrated circuit cards Proximity cards Part 2: Radio frequency power and signal interface. en. Standard ISO/IEC 14443-1:2016. International Organization for Standardization, International Electrotechnical Commission, 2016. url: https://www.iso.org/standard/66288.html.
- ISO Central Secretary. Identification cards Contactless integrated circuit cards Proximity cards Part 3: Initialization and anticollision. en. Standard ISO/IEC 14443-3:2016. International Organization for Standardization, International Electrotechnical Commission, 2016. url: https://www.iso.org/standard/70171.html.
- ISO Central Secretary. Identification cards Contactless integrated circuit cards Proximity cards Part 4: Transmission protocol. en. Standard ISO/IEC 14443-4:2016. International Organization for Standardization, International Electrotech-nical Commission, 2016. url: https://www.iso.org/standard/70172.html.
- Gerald J. Kutcher y col. Comprehensive QA for Radiation Oncology. Inf. téc. 1994. doi: 10.37206/45.
- M. Garcia-Inza y col. ((6MV LINAC characterization of a MOSFET dosimeter fabricated in a CMOS process)). En: Radiation Measurements 117 (2018), págs. 63-69. issn: 1350-4487. doi: 10.1016/j.radmeas.2018.07.009.
- Arana Leandro Javier. ((Interfaz RFID para dosimetría MOS de aplicación médica)). Universidad de Buenos Aires, 2018.
- Fabricio Alcalde, Octavio Alpago y José Lipovetsky. ((CMOS design of an RFID interface compatible with ISO/IEC-14443 type A protocol)). En: (2014). doi: 10.1109/EAMTA.2014.6906077.
- IEEE Standard Verilog Hardware Description Language. en. Standard IEEE 1364-2001. 2001. url: https://standards.ieee.org/ieee/1364/2052/.