Семинар 23

Двойственное пространство

Пусть у нас дано векторное пространство V над полем F. Тогда по определению

$$V^* = \{f \colon V \to F \mid f$$
 – линейное $\}$

будет множеством линейных отображений из V в поле F. Это множество можно снабдить операциями сложения и умножения на число, потому что это линейные отображения из векторного пространства V в векторное пространство F. Давайте я явно напомню, как они выглядят. Если $f,g\colon V\to F$ — два линейных отображения, то их сумма $f+g\colon V\to F$ — это такое линейное отображение, которое действует по правилу (f+g)(v)=f(v)+g(v). Если $\lambda\in F$ произвольное число, то отображение $\lambda f\colon V\to F$ — это отображение по правилу $(\lambda f)(v)=\lambda f(v)$. Можно проверить, что V^* превращается в векторное пространство. Это векторное пространство называется двойственным к V.

Пример Пусть $V = F^n$ – это пространство столбцов высоты n. Тогда любое отображение из $V = F^n$ в F описывается матрицей размера 1 на n. То есть описывается строкой вида (a_1, \ldots, a_n) , где $a_i \in F$. При этом, если отображение $F^n \to F$ задано строкой a, то применение ее к вектору x означает умножение строки на вектор ax. Кроме того, операции сложения и умножения на скаляр для линейных функций превращаются в операции сложения и умножения на скаляр для строк, соответственно. Таким образом $V^* = F^n$ – пространство строк длины n, а операция применения функции к вектору – это операция умножения строки на вектор.

Пусть в примере выше e_1, \ldots, e_n – стандартный базис $V = F^n$, а e^1, \ldots, e^n – стандартный базис для $V^* = F^n$. Обратим внимание, что $e^i(e_j)$ будет 1, если i=j и ноль иначе. В этом случае функции e^i – это как бы индикаторы базисных векторов, i-я функция e^i равна единичке только на e_i , а на всех остальных ноль. Оказывается, что подобное наблюдение можно обобщить на случай любых базисов в любых конечномерных векторных пространствах. А именно, можно построить процедуру, которая по любому базису V предъявляет некий специальным образом согласованный базис пространства V^* . Такой специальный базис будет называться двойственным к исходному базису. Теперь аккуратнее.

Пусть V – векторное пространство над F и пусть e_1, \ldots, e_n – произвольный базис V. Тогда для любого i существует функция $\xi_i \colon V \to F$ такая, что e_i идет в 1, а все остальные базисные векторы идут в $0.^1$ В итоге мы построили функции ξ_1, \ldots, ξ_n со свойством $\xi_i(e_j) = \delta_{ij}$, то есть 1, если i=j и ноль иначе. При таком выборе оказывается верно следующее утверждение.

Утверждение. Пусть V – векторное пространство c базисом e_1, \ldots, e_n , а $\xi_i \colon V \to F$ – такие функции, что $\xi_i(e_j) = \delta_{ij}$. Тогда ξ_i являются базисом V^* .

Функции ξ_1, \dots, ξ_n называются базисом двойственным к базису e_1, \dots, e_n . Теперь обратите внимание, какое главное свойство у двойственного базиса. Если мы выберем базис e_1, \dots, e_n в V, то оно превратится в пространство столбцов F^n . Если мы теперь выберем базис ξ_1, \dots, ξ_n , то его мы будем считать пространством строк F^n . При этом если $v = x_1e_1 + \dots + x_ne_n$ и $f = y_1\xi_1 + \dots + y_n\xi_n$, то

$$f(v) = \sum_{i} x_i f(e_i) = \sum_{ij} x_i y_j \xi_j(e_i) = \sum_{i} y_i x_i = yx$$

То есть, при таком выборе базиса V^* мы не просто превратили функции в строки длины n, но при этом операция применения функции к вектору превратилась в операцию умножения строки на вектор.

Двойственный базис и координаты Пусть $e_1, \ldots, e_n \in V$ – некоторый базис пространства и $\xi_1, \ldots, \xi_n \in V^*$ – двойственный к нему базис. Тогда любой вектор $v \in V$ раскладывается по базису так $v = x_1e_1 + \ldots + x_ne_n$. Если мы применим к v функция ξ_i , то получим

$$\xi_i(v) = \xi_i(x_1e_1 + \dots + x_ne_n) = x_1\xi_i(e_1) + \dots + x_i\xi_i(e_i) + \dots + x_n\xi_i(e_n) = x_i$$

То есть двойственный базис – это в точности функции вычисления координат у векторов.

¹Такая функция существует, так как для задания линейного отображения, нам достаточно отправить базисные векторы пространства куда угодно. Мы это и сделали, мы отправили базисные векторы в числа 0 или 1.

Теперь пусть $\xi \in V^*$ какая-то линейная функция. Она как-то раскладывается по двойственному базису $\xi = \lambda_1 \xi_1 + \ldots + \lambda_n \xi_n$. Давайте поймем, как устроены координаты λ_i . Для этого применим ξ к базисному вектору e_i . Получим

$$\xi(e_i) = (\lambda_1 \xi_1 + \ldots + \lambda_n \xi_n)(e_i) = \lambda_1 \xi_1(e_i) + \ldots + \lambda_i \xi_i(e_i) + \ldots + \lambda_n \xi_n(e_i) = \lambda_i$$

Таким образом, координаты в двойственном базисе для линейных функций – это значения этих функций на исходном базисном векторе. Кратко можно резюмировать сказанное так: если вы знаете одновременно базис e_i и двойственный к нему базис ξ_i , то вы легко можете считать координаты в обоих базисах.

Вычисление двойственного базиса Полезно рассмотреть следующую задачу. Пусть $V = F^n$ и g_1, \ldots, g_n – некоторый базис V. Надо найти двойственный ему базис в $V^* = F^n$. Так как любой элемент V^* можно считать строкой длины n, то мы будем искать строки f_1, \ldots, f_n со следующим свойством

$$\left(\begin{array}{c} f_1 \\ \hline \dots \\ \hline f_n \end{array}\right) \left(\begin{array}{c} g_1 \mid \dots \mid g_n \end{array}\right) = E$$

Таким образом двойственный базис к g_1, \ldots, g_n ищется так: составляем матрицу $B = (g_1 | \ldots | g_n)$, ищем к ней обратную B^{-1} , нарезаем ее на строки – это и будет двойственным базисом.