

COMP 9517 Computer Vision

Tracking

Motion Tracking

- Tracking is the problem of generating an inference about the motion of an object given a sequence of images
 - What do we infer about an object's future position from a sequence of measurements?
- Applications
 - Motion capture
 - Control a cartoon
 - Modify the motion record to obtain slightly different motions
 - Recognition from motion
 - Determine the identity of the object
 - Tell what it is doing
 - Surveillance
 - Monitor activities and give a warning if it detects a problem case
 - Targeting
 - Decide what to shoot and hitting it

Motion Tracking

 When moving points are not tagged with unique texture or colour information, the characteristics of the motion itself must be used to collect points into trajectories

Assumption:

- The location of an object changes smoothly over time
- The velocity (speed and direction) of an object changes smoothly over time
- An object can be at only one location in space at a give time
- Two objects cannot occupy the same location at the same time

- Tracking can be considered as the problem of generating an (probabilistic) inference about the motion of an object given a sequence of images
- Tracking is properly thought of as an probabilistic inference problem
 - The moving object has internal state, which is measured at each frame
 - Measurements are combined to estimate the state of the object

- State: the representation of an object at time (frame) t
 - Position
 - Transformation parameters
 - **—** ...
- Measurement: the observation
 - Colour
 - Texture
 - **—** ...

Given

- X_i : the state of the object at the i_{th} frame
- Y_i: the measurement obtained in the i_{th} frame
- There are three main problems:
 - Prediction: predict the state for the i_{th} frame by having seen a set of measurements $y_0, y_1, ..., y_{i-1}$

$$P(X_i | Y_0 = y_0, Y_1 = y_1, ..., Y_{i-1} = y_{i-1})$$

- Data association: select the measurements that are related to the object's state
- Correction: correct the predicted state by obtained relevant measurements y_i

$$P(X_i | Y_0 = y_0, Y_1 = y_1, ..., Y_i = y_i)$$

- Independence Assumptions (Markov Assumption)
 - Only the immediate past matters

•
$$p(x_i|x_{i-1},...,x_1) = p(x_i|x_{i-1})$$

Measurements depend only on the current state

•
$$p(y_i|y_i, y_{i-1}, ..., y_1, x_i) = p(y_i|x_i)$$

 These assumptions mean that a tracking problem has the structure of inference on a hidden Markov model

- Tracking as Inference
 - Prediction

$$P(X_{i} | y_{0}, y_{1},..., y_{i-1}) = \int P(X_{i}, X_{i-1} | y_{0}, y_{1},..., y_{i-1}) dX_{i-1}$$

$$= \int P(X_{i} | X_{i-1}, y_{0}, y_{1},..., y_{i-1}) P(X_{i-1} | y_{0}, y_{1},..., y_{i-1}) dX_{i-1}$$

$$= \int P(X_{i} | X_{i-1}) P(X_{i-1} | y_{0}, y_{1},..., y_{i-1}) dX_{i-1}$$

Correction

$$\begin{split} P(X_i \mid y_0, y_1, ..., y_i) &= \frac{P(X_i, y_0, y_1, ..., y_i)}{P(y_0, y_1, ..., y_i)} \\ &= \frac{P(y_i \mid X_i, y_0, y_1, ..., y_{i-1}) P(X_i \mid y_0, y_1, ..., y_{i-1}) P(y_0, y_1, ..., y_{i-1})}{P(y_0, y_1, ..., y_i)} \\ &= P(y_i \mid X_i) P(X_i \mid y_0, y_1, ..., y_{i-1}) \frac{P(y_0, y_1, ..., y_{i-1})}{P(y_0, y_1, ..., y_i)} \\ &= \frac{P(y_i \mid X_i) P(X_i \mid y_0, y_1, ..., y_{i-1})}{\int P(y_i \mid X_i) P(X_i \mid y_0, y_1, ..., y_{i-1}) dX_i} \\ &= \frac{P(y_i \mid X_i) P(X_i \mid y_0, y_1, ..., y_{i-1})}{\int P(y_i \mid X_i) P(X_i \mid y_0, y_1, ..., y_{i-1}) dX_i} \end{split}$$

5/10/2018

Probability Density Propagation

Probability Density Propagation

- Linear Dynamic Models
 - A random probability distribution with mean and covariance
 - $x \sim N(x; m, \Sigma)$
 - The state is advanced by multiplying it by some known matrix and then adding a normal random variable
 - $x_i \sim N(x_i; Ax_{i-1}, P_i)$, i.e. $x_i = Ax_{i-1} + w_i$
 - The measurement is obtained by multiplying the state by some matrix and then adding a normal random variable of zero mean and known covariance
 - $y_i \sim N(y_i; Hx_i, R_i)$, i.e. $y_i = Hx_i + v_i$

Kalman Filtering

Kalman filtering – 1D example

$$-x_i = x_{i-1} + u + w_i$$

•
$$\Delta_i = x_i - x_{i-1} = u + w_i$$

•
$$w_i \sim N(w_i; 0, \sigma_w^2)$$

$$-y_i = x_i + v_i$$

•
$$v_i \sim N(v_i; 0, \sigma_v^2)$$

5/10/2

- Kalman filtering problem
 - Estimate $x_i | y_1, \dots, y_i$
 - $x_{i-1}|y_1, ..., y_{i-1} \sim N(x_{i-1}; m_{i-1}, \sigma_{i-1}^2)$
 - $x_i = x_{i-1} + u + w_i$
 - $y_i = x_i + v_i$

- Kalman filtering prediction
 - Estimate $x_i | y_1, \dots, y_{i-1}$
 - $x_{i-1}|y_1, ..., y_{i-1} \sim N(x_{i-1}; m_{i-1}, \sigma_{i-1}^2)$
 - $x_i = x_{i-1} + u + w_i$
 - $-p(x_i|y_1,...,y_{i-1}) = \int p(x_i|x_{i-1})p(x_{i-1}|y_1,...,y_{i-1}) dx_{i-1}$

Kalman filtering - prediction

$$-\int p(x_i|x_{i-1})p(x_{i-1}|y_1,\ldots,y_{i-1})\,dx_{i-1}$$

•
$$p(x_i|x_{i-1}) = N(x_i; x_{i-1} + u, \sigma_w^2)$$

•
$$p(x_{i-1}|y_1,...,y_{i-1}) = N(x_{i-1};m_{i-1},\sigma_{i-1}^2)$$

$$-x_i|y_1,...,y_{i-1}\sim N(x_i;m_{i|i-1},\sigma_{i|i-1}^2)$$

•
$$m_{i|i-1} = m_{i-1} + u$$

•
$$\sigma_{i|i-1}^2 = \sigma_{i-1}^2 + \sigma_w^2$$

5/10/2

16

- Kalman filtering-correction
 - Estimate $x_i | y_1, \dots, y_i$
 - $x_i|y_1, ..., y_{i-1} \sim N(x_i; m_{i|i-1}, \sigma_{i|i-1}^2)$
 - $y_i = x_i + v_i$
 - $-p(x_i|y_1,...,y_i) \propto p(y_i|x_i)p(x_i|y_1,...,y_{i-1})$
 - $p(y_i|x_i) = N(x_i; y_i, \sigma_v^2)$
 - $p(x_i|y_1, ..., y_{i-1}) = N(x_i; m_{i|i-1}, \sigma_{i|i-1}^2)$

5/10/2

Kalman filtering-correction

$$-x_i|y_1,\ldots,y_i\sim N(x_i;m_i,\sigma_i^2)$$

•
$$m_i = \frac{\sigma_v^2}{\sigma_{i|i-1}^2 + \sigma_v^2} m_{i|i-1} + \frac{\sigma_{i|i-1}^2}{\sigma_{i|i-1}^2 + \sigma_v^2} y_i$$

$$\bullet \ \sigma_i^2 = \frac{\sigma_{i|i-1}^2 \sigma_w^2}{\sigma_{i|i-1}^2 + \sigma_w^2}$$

Particle Filtering

- A non-linear dynamic model
- Also known variously as :
 - Sequential Monte Carlo method,
 - bootstrap filtering,
 - the condensation algorithm,
 - interacting particle approximations and
 - survival of the fittest

Particle Filtering

- The conditional state density at time t is represented by a set of sampling particles with weight (sampling probability).
- The weight define the importance of a sample (observation frequency)

- Particle Filtering
 - The common sampling scheme is importance sampling
 - Selection: select N random samples
 - Prediction: generate new samples with zero mean Gaussian Error and non-negative function
 - Correction: compute weights corresponding to the new samples using the measurement equation which can be modelled as a Gaussian density

Particle Filtering (A.Vlake and M.Isard, Active Contour)

Particle Filtering – the algorithm (SIS), A.Vlake and M.Isard

Iterate

From the "old" sample set $\{\mathbf{s}_{k-1}^{(n)}, \pi_{k-1}^{(n)}, c_{k-1}^{(n)}, n = 1, \dots, N\}$ at time-step t_{k-1} , construct a "new" sample set $\{\mathbf{s}_{k}^{(n)}, \pi_{k}^{(n)}, c_{k}^{(n)}, n = 1, \dots, N\}$ for time t_{k} .

Construct the n^{th} of N new samples as follows:

- 1. Select a sample $\mathbf{s}_{k}^{\prime (n)}$ as follows:
 - (a) generate a random number $r \in [0, 1]$, uniformly distributed.
 - (b) find, by binary subdivision, the smallest j for which $c_{k-1}^{(j)} \geq r$
 - (c) set $\mathbf{s}'_k{}^{(n)} = \mathbf{s}_{k-1}^{(j)}$
- 2. Predict by sampling from

$$p(\mathcal{X}_k|\mathcal{X}_{k-1} = \mathbf{s'}_k^{(n)})$$

to choose each $\mathbf{s}_k^{(n)}$. For instance, in the case that the dynamics are governed by a linear AR process, the new sample value may be generated as: $\mathbf{s}_k^{(n)} = A \, \mathbf{s}_k^{(n)} + (I-A) \overline{\mathcal{X}} + B \mathbf{w}_k^{(n)}$ where $\mathbf{w}_k^{(n)}$ is a vector of standard normal random variates, and BB^T is the process noise covariance.

3. Measure and weight the new position in terms of the measured features \mathbf{Z}_k :

$$\pi_k^{(n)} = p(\mathbf{Z}_k | \mathcal{X}_k = \mathbf{s}_k^{(n)})$$

then normalise so that $\sum_n \pi_k^{(n)} = 1$ and store together with cumulative probability as $(\mathbf{s}_k^{(n)}, \pi_k^{(n)}, c_k^{(n)})$ where

$$c_k^{(0)} = 0,$$

 $c_k^{(n)} = c_k^{(n-1)} + \pi_k^{(n)} \text{ for } n = 1, \dots, N.$

Particle Filtering (A.Vlake and M.Isard, Active Contour)

24

Tracking can be complex

- Loss of information caused by projection of the 3D world on a 2D image,
- Noise in images,
- Complex object motion,
- Non-rigid or articulated nature of objects,
- Partial and full object occlusions,
- Complex object shapes,
- Scene illumination changes, and
- Real-time processing requirements.

References and Acknowledgements

- Shapiro and Stockman 2001
- Chapter 19 Forsyth and Ponce 2003
- Chapter 5 Szeliski 2010
- Images drawn from the above references unless otherwise mentioned