Звіт до лабораторної роботи №3: «Відстань Махаланобіса»

студента 1-го курсу магістратури факультету комп'ютерних наук та кібернетики Кравця Олексія

Зміст

1	Постановка задачі 1.1 Означення	2 2
2	Виконання роботи	2
Лi	Література	

1 Постановка задачі

Маємо 3 множини точок, кожна з яких представляє один з типів результату (Тип 1, Тип 2, Тип 3).

Необхідно згенерувати набір точок і класифікувати кожну точку. Приймати рішення про приналежність точки до одного з трьох типів будемо на основі відстані Махаланобіса.

1.1 Означення

Відстань Махалонобіса - міра відстані між векторами випадкових величин, що узагальнює поняття евклідової відстані [1].

Формально відстань Махалонобіса від вектора $x = (x_1, \dots, x_N)^T$ до множини із середнім значенням $\mu = (\mu_1, \dots, \mu_N)^T$ та матрицею коваріації S. Визначається наступним чином

$$D_M(x,\mu) = \sqrt{(x-\mu)^T S^{-1}(x-\mu)}$$
 (1)

Оскільки, для деяких точок не вдається знайти обернену матрицю коваріації, будемо вважати, що матриця S одинична. В такому випадку ми маємо евклідову відтань.

2 Виконання роботи

Зу умовою, точки Типу 1 і Типу 3 мають рівномірний розподіл, а точки Типу 2 — нормальний. Отже оберемо такі типи

- Тип 1. Рівномірний розподіл. Точки лежать всередині $(x,y) \in [3,4) \times [4,5)$;
- Тип 2. Нормальний розподіл. Його точки мають такі властивості $\mu_x=1, \sigma_x=0.1$ по x та $\mu_y=1, \sigma_y=0.7$ по y;
- Тип 3. Рівномірний розподіл. Точки лежать всередині $(x,y) \in [5,6) \times [0,1)$.

Згенеруємо по N=20 точок кожного типу.

Рис. 1: Точки типів

Тепер згенеруємо 100 тестових точок.

Рис. 2: Тестові точки

Класифікуємо точки.

Рис. 3: Тестові точки

Література

 $[1] \ \ https://en.wikipedia.org/wiki/Mahalanobis_distance$