Apellido y Nombre:	
Carrera:	Comisión: Condición:

Análisis Matemático I Examen

A tener en cuenta:

- Enumerar las hojas.
- No usar calculadora ni teléfono celular.

PARTE PRÁCTICA: Para aprobar el examen hay que sumar por lo menos 30 puntos en esta parte.

- (1) (15 ptos)
 - (a) Calcular los siguientes límites:

a)
$$\lim_{x \to \infty} (\sqrt{x^2 + x + 1} - \sqrt{x^2 + x})$$
. b) $\lim_{x \to 0} \frac{\arctan(x)}{x}$.

(b) Calcular las siguientes derivadas

a)
$$f(x) = \ln(x^{2011}) \frac{1}{x+y}$$
. b) $g(x) = e^{\sin(x)} \sqrt[3]{x^5 + 1}$.

b)
$$g(x) = e^{\sin(x)} \sqrt[3]{x^5 + 1}$$

(2) (25 ptos) Sea

$$f(x) = \begin{cases} \frac{x}{x-1}, & \text{si } x \ge 0 \text{ y } x \ne 1; \\ x^3 + 2x, & \text{si } x < 0. \end{cases}$$

- (a) Dar el conjunto de puntos donde f es continua. Justificar.
- (b) Dar el conjunto de puntos donde f es derivable. Justificar.
- (c) Calcular $\lim_{x\to+\infty} f(x)$, $\lim_{x\to-\infty} f(x)$, $\lim_{x\to-1^+} f(x)$ y $\lim_{x\to-1^-} f(x)$.
- (d) Determinar máximos y/o mínimos locales. ¿ Existe máximo y/o mínimo global?
- (e) Determinar zonas de crecimiento y decrecimiento de f.
- (f) Determinar donde f es cóncava para arriba y cóncava hacia abajo.
- (g) Graficar f.

(3) (8 ptos) Si f es una función par y derivable en \mathbb{R} , entonces existe $x_0 \in \mathbb{R}$ tal que $f'(x_0) = 0$.

(4) (12 ptos) Supongamos que h es una función tal que $h'(x) = \sin^2(\sin(x+1))$ y h(0) = 3.

(a) Hallar $(h^{-1})'(3)$ y la ecuación de la recta tangente al gráfico de h^{-1} en el punto $(3, h^{-1}(3))$.

(b) Hallar $(g^{-1})'(3)$, donde g(x) = h(x+1).