L-functions of elliptic curves with complex multiplication

Daniel Miller

March 2, 2017

Let $A_{/\mathbf{Q}}$ be an abelian variety with complex multiplication (over \mathbf{Q} !) by F. That is, if we write $\mathrm{End}^{\circ}(A) = \mathrm{End}_{\mathbf{Q}}(A) \otimes \mathbf{Q}$, then $F \simeq \mathrm{End}^{\circ}(A)$. Let p be a prime at which A is unramified. Then

$$\operatorname{fr}_p \in \operatorname{End}^{\circ}(A_{\mathbf{F}_p}) = \operatorname{End}^{\circ}(A) = F.$$

Moreover, for each prime l, the Galois representation $\rho_{A,l}$ takes values in $F_l^{\times} = (F \otimes \mathbf{Q}_l)^{\times}$. In fact, if we write O for the ring of integers of F, then $\rho_{A,l} \colon G_{\mathbf{Q}} \to O_l^{\times}$. Moreover, for each p, $\operatorname{fr}_p \in F^{\times}$ as a p-Weil number of weight 1, i.e. $|\operatorname{fr}_p| = \sqrt{p}$ under each embedding $F \hookrightarrow \mathbf{C}$.

We will define an algebraic Hecke character associated with E. For every unramified prime p, the Frobenius fr_p lives in F^\times . There is, for each $\sigma\colon F\hookrightarrow \mathbf{C}$, a weight-1 Hecke character $\chi_\sigma\colon \mathbf{A}^\times/\mathbf{Q}^\times\to \mathbf{C}^\times$, such that

$$L^{\mathrm{alg}}(A,s) = \prod_{\sigma \colon F \hookrightarrow \mathbf{C}} L(s,\chi_{\sigma}).$$

Thus

$$L^{\mathrm{an}}(A,s) = L^{\mathrm{alg}}\left(A,s+\frac{1}{2}\right) = \prod_{\sigma} L\left(s+\frac{1}{2},\chi_{\sigma}\right),$$

where $L(s+1/2,\chi_{\sigma})=L(s,\chi_{\sigma}\|\cdot\|^{-1/2})$, for $\|\cdot\|\colon \mathbf{A}^{\times}\to \mathbf{R}^{+}$ the adele norm.

The Sato–Tate group for A is the compact torus $R_{F/\mathbf{Q}} \mathbf{G}_{\mathrm{m}}^{\mathrm{N}=1}(\mathbf{R}) = F_{\infty}^{\times,\mathrm{N}=1}$, which is isomorphic to $\prod_{\sigma \in \Phi} S^1$. The group of characters of $\mathrm{ST}(A)$ is generated by $\{\chi_{\sigma}\}$, so we know that if the Akiyama–Tanigawa conjecture for A is true, then each $L(s,\prod\chi_{\sigma}^{m_{\sigma}})$ satisfies the Riemann Hypothesis. My counterexample shows: the converse does not hold! Even if all the $L(s,\prod\chi_{\sigma}^{m_{\sigma}})$ satisfy the Riemann Hypothesis, it does not follow that Akiyama–Tanigawa holds.