

Cox Regression ... and a review of the hazard function

Steve Simon

Abstract

When you have data measuring the time to an event, you can examine the relationship between various predictor variables and the time to the event using a Cox proportional hazards model. In this talk, you will see what a hazard function is and describe the interpretations of increasing, decreasing, and constant hazard. Then you will examine the log rank test, a simple test closely tied to the Kaplan-Meier curve, and the Cox proportional hazards model.

Rates versus proportions

There is an important, but subtle distinction

- Both proportions and rates involve division.
- A proportion is a count divided by another count.
 - It can never be larger than 1.
- A rate is a count divided by a measure of time (or sometimes area).
 - It can sometimes be larger than 1.

Are you comparing apples and oranges?

Three problems with these comparisons

- 1. The number of people alive at age 20 is much larger than the number of people alive at age 40.
- The probabilities are measured across different time ranges.
- 3. The probabilities are quite heterogenous across the time intervals.

To make a "fair" comparison

- 1. Adjust by the probability of surviving up to age 20 or age 40.
- 2. Calculate a death rate by dividing by the time range.
- 3. Calculate over a narrow time interval, Δt .

Calculating a hazard function

The hazard function is defined as

$$h(t) = (P[t \le T \le t + \Delta t] / \Delta t) / P[T \ge t]$$

Key points

- 1. adjusted for the number surviving to that time ($P[T \ge t]$),
- 2. calculated as a rate $(P[t \le T \le T + \Delta t] / \Delta t)$, not a probability, and
- 3. computed over a narrow time interval.

Why is the Hazard Function Important?

- 1. Knowledge of the hazard function for an industrial product can help you decide on how and when to employ preventive maintenance.
- 2. It can also help you extrapolate survival patterns beyond the range of observed values, such as for long-term reliability testing.
- 3. If you are planning a new research study, the hazard function can help you decide how many patients to study and the length of follow-up for these patients.
- Assumptions about the hazard function are critical for regression models of survival.

The Cumulative Hazard Function

The cumulative hazard function, H(t), is defined as

$$H(t) = \int_0^t h(u) du$$

and it has an interesting relationship to the survival function.

$$S(t) = e^{-H(t)}$$

The Cumulative Hazard Function

Calculation of the hazard function, h(t), from a set of data is quite difficult. Fortunately, you can calculate the cumulative hazard function, H(t), without much difficulty.

$$\hat{H}(t_j) = \sum_{i=1}^j \frac{d_i}{n_i}$$

where d_i and n_i are the number of deaths and the number at risk at time t_i.

Recall the Limitations of the Log Rank Test

The log rank test

- works well when you're comparing a treatment group to a control group
- you can also use it when you have three or more groups.

But the log rank test does not extend beyond this:

- you cannot include a continuous predictor,
- you cannot analyze data with multiple predictors, and
- you cannot do risk adjustment.

Always Start with a Plot of Overall Survival

Then a Kaplan-Meier Curve by Groups

The Log Rank Test


```
Call:
```

```
N Observed Expected (O-E)^2/E (O-E)^2/V gender=Male 65 28 34.6 1.27 3.97 gender=Female 35 23 16.4 2.68 3.97
```

Chisq= 4 on 1 degrees of freedom, p=0.0463


```
Call:
coxph(formula = Surv(time_yrs, whas100$fstat == "Dead") ~
gender,
    data = whas100)

n= 100, number of events= 51

    coef exp(coef) se(coef) z Pr(>|z|)
genderFemale 0.5548  1.7416  0.2824 1.965  0.0494 *
```



```
exp(coef) exp(-coef) lower .95 upper .95
genderFemale 1.742 0.5742 1.001 3.029

Concordance= 0.565 (se = 0.035)

Rsquare= 0.037 (max possible= 0.985)

Likelihood ratio test= 3.75 on 1 df, p=0.05293

Wald test = 3.86 on 1 df, p=0.04945

Score (logrank) test = 3.96 on 1 df, p=0.04665
```

A Full Likelihood Approach

Let's suppose that an event or censored value at time t_i has a covariate X_i associated with it that may help in prediction. You no longer has a single density, but a family of densities

$$f(t_i, X_i, \beta)$$

where β is an unknown constant that measures the influence of the covariate. A value of $\beta=0$ implies no influence, a value of $\beta>0$ implies an increase in hazard and $\beta<0$ implies a decrease in hazard.

A Full Likelihood Approach

The likelihood function, given times t_i , covariates X_i and indicators c_i equal to zero for censored observation and one for deaths, is

$$L(\beta) = \prod_i f(t_i, X_i, \beta)^{c_i} S(t_i, X_i, \beta)^{1-c_i}$$

Notice that the likelihood for a censored observation is an average density because

$$S(t, X, \beta) = \int_{t}^{\infty} f(u, X, \beta) du$$

Proportional Hazards Assumption

Let's assume that the density function has an associated hazard function of the form

$$h(t_i, X_i, \beta) = e^{X_i \beta} h_0(t_i)$$

This is called the proportional hazards assumption.

If you compare the ratio of the hazard function with covariates X_i and X_j , you get

$$\frac{h(t,X_i,\beta)}{h(t,X_j,\beta)} = e^{(X_i - X_j)\beta}$$

which is called the hazard ratio. Notice that the hazard function cancels out, greatly simplifying things.

Estimation Via Partial Likelihood

You cannot use maximum likelihood principles to get an estimate for β . You can, however, treat the baseline hazard ratio, $h_0(t_i)$ as a nuisance parameter, and maximize the partial likelihood of β . This maximization simplifies to

$$l(\beta) = \prod_i \frac{e^{X_i \beta}}{\sum_j e^{X_j \beta}}$$

where the summation in the denominator is across all patients still at risk at time t_i .

The Information Matrix

Define the information matrix,

$$I(\beta) = \frac{\partial^2 L_p(\beta)}{\partial^2 \beta},$$

where L_p is the log partial likelihood ($L_p = log(l_p)$).

Then the standard error of \hat{eta} is

$$se(\hat{\beta}) = \sqrt{I^{-1}(\hat{\beta})}$$

The Wald, Score, and Likelihood Ratio Tests

This leads to three statistical tests.

Wald test:
$$\frac{\hat{\beta}}{se(\hat{\beta})}$$

Score test:
$$\frac{\partial L_p/\partial \beta}{\sqrt{I(\beta)}}\big|_{\beta=0}$$

LR test:
$$G = 2(L_p(\beta) - L_p(0))$$

The Wald test is the easiest test to compute, but may not be as accurate as the others, especially for small sample sizes.

Revisiting the Cox Regression Model

This leads to three statistical tests.

Wald test:
$$\frac{\hat{\beta}}{se(\hat{\beta})}$$

Score test:
$$\frac{\partial L_p/\partial \beta}{\sqrt{I(\beta)}}\big|_{\beta=0}$$

LR test:
$$G = 2(L_p(\beta) - L_p(0))$$

The Wald test is the easiest test to compute, but may not be as accurate as the others, especially for small sample sizes.

Revisiting the Cox Regression Model


```
exp(coef) exp(-coef) lower .95 upper .95 genderFemale 1.742 0.5742 1.001 3.029
```

Since you used an indicator variable for gender, the exponential of the coefficient, 1.742, is the hazard ratio. Women are at 74% greater risk of mortality in this data set than men.

Revisiting the Cox Regression Model


```
coef exp(coef) se(coef) z Pr(>|z|) genderFemale 0.5548 1.7416 0.2824 1.965 0.0494 *  \exp(\text{coef}) \ \exp(-\text{coef}) \ \text{lower .95 upper .95}  genderFemale 1.742 0.5742 1.001 3.029  \text{The 95\% confidence interval for the hazard ratio is }  \exp(0.5548 + /-1.96*0.2824) = 1.001 \text{ to } 3.029.
```



```
Likelihood ratio test= 3.75 on 1 df, p=0.05293 Wald test = 3.86 on 1 df, p=0.04945 Score (logrank) test = 3.96 on 1 df, p=0.04665
```

The three different statistical tests all produce (more or less) the same result. Note that the Wald test here is a square of the Z value of 1.965, and you should compare this to a chi-squared distribution.

You Can Plot the Two Estimated Survival Curves

..and the Estimated Cumulative Hazard Functions

Start with the Basic Kaplan-Meier Curves

...and the Logrank Test

	N	Observed	Expected	$(O-E)^2/E$	$(O-E)^2/V$
age_group=<60	25	8	15.5	3.64	5.29
age_group=60-69	23	7	12.9	2.71	3.68
age_group=70-79	22	14	10.2	1.39	1.76
age_group=>=80	30	22	12.3	7.57	10.18

Chisq= 15.6 on 3 degrees of freedom, p= 0.00139


```
coef exp(coef) se(coef) z p

age_group60-69 0.0472 1.0484 0.5186 0.09 0.9274

age_group70-79 0.9866 2.6820 0.4454 2.22 0.0267

age_group>=80 1.2634 3.5373 0.4155 3.04 0.0024
```

```
Likelihood ratio test=15.3 on 3 df, p=0.00155 n=100, number of events= 5139
```


exp(coef)	exp(-co	ef) lower .	.95 upper	. 95	
age_group60) – 69	1.048	0.9539	0.3794	2.897
age_group70	79	2.682	0.3729	1.1204	6.420
age group>=	=80	3.537	0.2827	1.5666	7.987

But You Can Include Age as a Continuous Covariate


```
coef exp(coef) se(coef) z Pr(>|z|) age 0.04567 1.04673 0.01195 3.822 0.000132 ***

exp(coef) exp(-coef) lower .95 upper .95 age 1.047 0.9554 1.022 1.072

Each additional year in age increases the risk of death by 4.7\%. Each additional decade increase in age leads to a hazard ratio of 1.047^{10} = 1.579.
```

What Have You Learned Today?

- The hazard function is the short term death rate among those patients surviving to a specific time.
- 2. The log rank test is a simple test for comparing two or more Kaplan-Meier curves.
- 3. The Cox regression model allows for continuous predictors and risk adjustment.
- 4. The Cox model assumes proportional hazard functions and compares groups using a hazard ratio.