TECHNISCHE UNIVERSITÄT MÜNCHEN

Summary of the lecture MA4800 Foundations in Data Analysis

Instructors: Prof. Felix Krahmer and Dr. Anna Veselovska

Contents

1	Linear Algebra Review		
	1.1	Matrices	2
	1.2	Matrix multiplication	2
2	The	e Singular Value Decomposition	2
	2.1	The leading singular vector	2
	2.2	Principal components	2
	2.3	Further singular vectors	2
	2.4	Best k-rank approximation	2
	2.5	The power method	2

1 Linear Algebra Review

- We work on $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$
- $A^H = \overline{(A^T)}$.
- A Hermitian matrix A satisfies $A = A^H$.
- $A^{(i)}$ are rows and $A_{(i)}$ are the columns.
- $A^{(i)} = (a_{ij})_{j \in J}$ and $A_{(j)} = (a_{ij})_{i \in I} = (A^T)^{(j)}$
- The matrix-vector product between $A \in \mathbb{K}^{I \times J}$ and $x \in \mathbb{K}^I$ results in the vector in $Ax \in K'$ with entries

1.1 Matrices

$$(Ax)_i = \sum_{j \in J} a_{ij} x_j.$$

1.2 Matrix multiplication

The matrix-matrix product between $A \in \mathbb{K}^{I \times J}$ and $B \in \mathbb{K}^{J \times L}$ yields the matrix in $\mathbb{K}^{I \times L}$ with entries

$$(AB)_{i\ell} = \sum_{j \in J} A_{ij} B_{j\ell}.$$

2 The Singular Value Decomposition

- 2.1 The leading singular vector
- 2.2 Principal components
- 2.3 Further singular vectors
- 2.4 Best k-rank approximation

2.5 The power method

Lemma 2.1 Let $x \in \mathbb{R}^d$ be a unit d-dimensional vector of components $x = (x_1, \dots, x_d)$ with respect to the canonical basis and picked uniformly at random from the sphere $\{x : ||x||_2 = 1\}$. The probability that $|x_1| \ge \alpha > 0$ is at least $1 - C\alpha\sqrt{d}$ for some absolute constant.

Proof

We want the probability of y picked uniformly at random from

$$B^{d}(1) = \{ y \in \mathbb{R}^{d}, ||y||_{2} \le 1 \}$$

satisfies $|y_1| > \alpha$. In other words, we are looking for the fraction of $B^d(1)$ that satisfies $|y_1| > \alpha$. This corresponds to

$$V_{\alpha} := \operatorname{Vol}(B^d(1) \cap \{y : |y_1| \le \alpha\})$$

$$= \int_{y \in B^d(1) \cap \{y: |y_1| \le \alpha\}} 1 dy$$

$$= \int_{-\alpha}^{\alpha} \left(\int_{\mathbb{R}^{d-1}} 1_{y_2^2 + \dots + y_d^2 \le 1 - y_1^2} \, dy_2 \dots dy_d \right) dy_1$$
$$= \int_{-\alpha}^{\alpha} \text{Vol}\left(B^{d-1} \left(\sqrt{1 - y_1^2} \right) \right) dy_1$$

Replacing Vol $\left(B^{d-1}\left(\sqrt{1-y_1^2}\right)\right)$ with $(\sqrt{1-y_1^2})^{d-1}$ Vol $\left(B^{d-1}(1)\right)$ since the volume the unit ball with a factor proportional to radius in the power of d-1.

$$= \int_{-\alpha}^{\alpha} (\sqrt{1 - y_1^2})^{d-1} \operatorname{Vol}(B^{d-1}(1)) dy_1$$

$$= \operatorname{Vol}\left(B^{d-1}(1)\right) \int_{-\alpha}^{\alpha} (1 - y_1^2)^{(d-1)/2} dy_1$$

In the integral part, $\int_{-\alpha}^{\alpha} (1-y_1^2)^{(d-1)/2} dy_1$, notice that $(1-y_1^2)^{(d-1)/2} < 1$ in the whole integration domain. Thus we can write

$$= \operatorname{Vol}\left(B^{d-1}(1)\right) \int_{-\alpha}^{\alpha} (1 - y_1^2)^{(d-1)/2} dy_1$$

$$\leq \operatorname{Vol}\left(B^{d-1}(1)\right) \int_{-\alpha}^{\alpha} 1 dy_1$$

$$= 2\alpha \operatorname{Vol}\left(B^{d-1}(1)\right)$$

Recall that volume of unit ball in d dimensions is asymptotically

$$V_1 = \frac{1}{\sqrt{d\pi}} \left(\frac{2\pi e}{d}\right)^{d/2}$$

Hence the probability $p = \Pr(\alpha \leq |y_1|)$ we are interested in satisfies asymptotically

$$p = \frac{V_{\alpha}}{V_{1}} \propto \frac{2\alpha \frac{1}{\sqrt{(d-1)\pi}} \left(\frac{2\pi e}{d-1}\right)^{(d-1)/2}}{\frac{1}{\sqrt{d\pi}} \left(\frac{2\pi e}{d}\right)^{d/2}} = \frac{2\alpha \frac{1}{\sqrt{(d-1)\pi}} \left(\frac{2\pi e}{d-1}\right)^{(d-1)/2}}{\frac{1}{\sqrt{d\pi}} \left(\frac{2\pi e}{d}\right)^{(d-1)/2} \left(\frac{2\pi e}{d}\right)^{1/2}}$$

We simplify the last term

$$= 2\alpha * \left(\frac{d}{d-1}\right)^{1/2} * \left(\frac{d}{d-1}\right)^{(d-1)/2} * \left(\frac{d}{2\pi e}\right)^{1/2}$$

$$=2\alpha*\left(\frac{d}{\sqrt{2\pi e(d-1)}}\right)*\left(\frac{d}{d-1}\right)^{(d-1)/2}$$

Since $\frac{d}{d-1} = 1 + \frac{1}{d-1}$

$$=2\alpha*\left(\frac{d}{\sqrt{2\pi e(d-1)}}\right)*\left(1+\frac{1}{d-1}\right)^{(d-1)/2}$$

We modify the power of the same term, to show it as

$$= 2\alpha * \left(\frac{d}{\sqrt{2\pi e(d-1)}}\right) * \left(\left(1 + \frac{1}{d-1}\right)^{(d-1)}\right)^{1/2}$$

Recall that

$$e = \lim_{n \to \infty} \left(1 + 1/n\right)^n$$

Thus this term is bounded with \sqrt{e}

$$\leq 2\alpha * \left(\frac{d}{\sqrt{2\pi e(d-1)}}\right) * \sqrt{e}$$

We reformulate as

$$=\alpha\sqrt{d}\sqrt{\frac{2d}{\pi(d-1)}}$$

Since $\sqrt{\frac{d}{d-1}} \le 2$ for $d \ge 2$

$$\leq \frac{2\sqrt{2}}{\pi} \alpha \sqrt{d}$$

Given that all of this only holds asymptotically; we might need another multiplicative constant to make it hold in general. Hence the constant C in the theorem.

$$p \le C\alpha\sqrt{d}$$

This bounds the probability $p = \Pr(\alpha \le |y_1|) \le C\alpha\sqrt{d}$. Considering the probability of the complement event the bounds $1 - \Pr(\alpha > |y_1|) \le C\alpha\sqrt{d}$ can be stated as

$$1 - C\alpha\sqrt{d} \le \Pr(\alpha > |y_1|).$$

Remark 2.1 Notice that in the previous result essentially shows also that, independently of the dimension d, the $x_1 = \langle x, u_1 \rangle$ component of a random unit vector x with respect to any orthonormal basis $\{u_1, ..., u_d\}^1$ is bounded away from zero with overwhelming probability.

Remark 2.2 Consider the isometric mapping $(a,b) \to a+bi$ from \mathbb{R}^2 to \mathbb{C} . The previous result extends to random unit vectors in \mathbb{C}^d simplify by modifying the statement as follows: The probability that, for a randomly chosen unit vector $z \in \mathbb{C}^d$, $|z_1| \ge \alpha > 0$ holds is at least $1 - C\alpha\sqrt{2d} = 1 - C'\alpha\sqrt{d}$.

It is important to note that remark 2.1 and remark 2.2 holds with any orthonormal basis by rotating it to coincide with the canonical basis.

Theorem 2.2 Let $A \in \mathbb{K}^{I \times J}$ and $x \in \mathbb{K}^{I}$. Let V be the space spanned by the left singular vectors of A corresponding to singular values greater than $(1 - \epsilon)\sigma_1$. Let $m \in \Omega\left(\frac{\ln(d/\epsilon)}{\epsilon}\right)$. Let w^* be the unit vector after m iterations of the power method, namely,

$$w^* = \frac{(AA^H)^m x}{||(AA^H)^m x||_2} \tag{1}$$

The probability that w^* has a component of at most l, where $l \in O\left(\frac{\epsilon}{\alpha d}\right)$, orthogonal to V is at least $1 - C\alpha\sqrt{d}$ i.e. $1 - C\alpha\sqrt{d} < \Pr\left(\|Proj_{V^{\perp}}(w^*)\|_2 < l\right)$.

Proof

Let the SVD of A be given by

$$A = \sum_{k=1}^{r} \sigma_k u_k v_k^H$$

If the rank of A is less than n = |I| we complete the orthonormal set of vectors $\{u_1, ..., u_r\}$ into a full orthogonal basis $\{u_1, ..., u_n\}$ of the n-dimensional space. We can expand x in the terms of this basis as

$$x = \sum_{k=1}^{n} \langle x, u_k \rangle u_k$$

We set $\sigma_k = 0$ for k > r so that we can write A as

$$A = \sum_{k=1}^{n} \sigma_k u_k v_k^H$$

It follows that

$$(AA^{H})^{m}x = \sum_{k=1}^{n} \sigma_{k}^{2m} u_{k} u_{k}^{H} x = \sum_{k=1}^{n} \sigma_{k}^{2m} u_{k} \langle x, u_{k} \rangle$$

By lemma 2.1, remark 2.1 and remark 2.2 one has $|\langle x_1, u_1 \rangle| \ge \alpha > 0$ with probability at least $1 - C\alpha\sqrt{d}$. We choose r_{ϵ} such that $\sigma_1, ..., \sigma_{r_{\epsilon}}$ are the singular values of A that are greater or equal to $(1 - \epsilon)\sigma_1$ and $\sigma_{r_{\epsilon}+1}, ..., \sigma_n$ are those that are less than $(1 - \epsilon)\sigma_1$. Notice that $V = \operatorname{span} \{\sigma_1, ..., \sigma_{r_{\epsilon}}\}$ and $V^{\perp} = \operatorname{span} \{\sigma_{r_{\epsilon+1}}, ..., \sigma_n\}$. The component of w^* orthogonal to V^{\perp} is $\operatorname{Proj}_{V^{\perp}}(w^*)$ which can be written as

$$\operatorname{Proj}_{V^{\perp}}(w^{*}) = \frac{\operatorname{Proj}_{V^{\perp}}\left(\left(AA^{H}\right)^{m}x\right)}{\|\left(AA^{H}\right)^{m}x\|_{2}} \tag{2}$$

We find denominator of equation 2 by Pythagoras-Fourier theorem

$$||(AA^{H})^{m}x||_{2}^{2} = \sum_{k=1}^{n} \sigma_{k}^{4m} |\langle x, u_{k} \rangle|^{2}$$
(3)

$$\sum_{k=1}^{n} \sigma_k^{4m} |\langle x, u_k \rangle|^2 \ge \sigma_1^{4m} |\langle x, u_1 \rangle|^2 \ge \sigma_1^{4m} \alpha^2 \tag{4}$$

with probability at least $1 - C\alpha\sqrt{d}$. To find the nominator of equation 2, we check component of $(AA^H)^m x$ that is orthogonal to $V = span\{u_1, \ldots, u_{r_{\epsilon}}\}$, namely,

$$\operatorname{Proj}_{V^{\perp}}\left(\left(AA^{H}\right)^{m}x\right) = \sum_{k=1}^{n} \sigma_{k}^{2m} |\langle x, u_{k} \rangle|_{2} = \sum_{k=r,+1}^{n} \sigma_{k}^{2m} |\langle x, u_{k} \rangle|_{2}$$

$$\tag{5}$$

$$\operatorname{Proj}_{V^{\perp}}\left(\left(AA^{H}\right)^{m}x\right) \leq (1-\epsilon)^{2m}\sigma_{1}^{2m}\sum_{k=r_{\epsilon}+1}^{n}|\langle x, u_{k}\rangle|_{2} \leq (1-\epsilon)^{2m}\sigma_{1}^{2m}\tag{6}$$

since $\sum_{k=r_{\epsilon}+1}^{n} \le ||x||_2^2 = 1$ and $(1-\epsilon)\sigma_1 > \sigma_k$ for $r_{\epsilon} < k$.

By using 3 and 5 we find squared norm of the component of w^* orthogonal to V, that is $\|\operatorname{Proj}_{V^{\perp}}(w^*)\|_2^2$, as

$$\|\operatorname{Proj}_{V^{\perp}}(w^*)\|_2^2 = \frac{\sum_{k=r_{\epsilon}+1}^n \sigma_k^{4m} |\langle x, u_k \rangle|^2}{\sum_{k=1}^n \sigma_k^{4m} |\langle x, u_k \rangle|^2}$$

We bound this term by using the relations 4 and 6

$$\|\mathrm{Proj}_{V^{\perp}}(w^*)\|_2^2 = \frac{\sum_{k=r_{\epsilon}+1}^n \sigma_k^{4m} |\langle x, u_k \rangle|^2}{\sum_{k=1}^n \sigma_k^{4m} |\langle x, u_k \rangle|^2} \leq \frac{(1-\epsilon)^{4m} \sigma_1^{4m}}{\alpha^2 \sigma_1^{4m}} = \frac{(1-\epsilon)^{4m}}{\alpha^2}$$

Thus, by taking the square root we have

$$\|\operatorname{Proj}_{V^{\perp}}(w^*)\|_2 \le \frac{(1-\epsilon)^{2m}}{\alpha}$$

In terms of $Big\ O$ notation we have

$$\|\operatorname{Proj}_{V^{\perp}}(w^*)\|_2 \in \mathcal{O}\left(\frac{(1-\epsilon)^{2m}}{\alpha}\right)$$

Notice that $1 - \epsilon$ is a linear approximation of $e^{-\epsilon}$. Similarly, $(1 - \epsilon)^{2m}$ approximates e^{-2m} for small ϵ . Using this approximation,

$$\|\operatorname{Proj}_{V^{\perp}}(w^*)\|_2 \in \mathcal{O}\left(\frac{e^{-2\epsilon m}}{\alpha}\right)$$

Recall that $m \in \Omega\left(\frac{\ln(d/\epsilon)}{\epsilon}\right)$. This is another way of saying there exists m_0 and some constant c > 0 such that $m \ge c\frac{\ln(d/\epsilon)}{d}$ for all $m > m_0$. Similarly, this also means there exists m_0 and some constant c > 0 such that $-\frac{m}{c} \le -\frac{\ln(d/\epsilon)}{d}$ for all $m > m_0$. Since exponentiation is a non-decreasing function $e^{-\frac{m}{c}} \le e^{-\frac{\ln(d/\epsilon)}{\epsilon}} = e^{\frac{\ln(\epsilon/d)}{\epsilon}} = (\epsilon/d)^{1/\epsilon}$. We have

$$e^{-\frac{m}{c}} \le (\epsilon/d)^{1/\epsilon}$$

for some constant c > 0 and $m > m_0$. We take the power of ϵ of both sides

$$e^{-\frac{m\epsilon}{c}} \le \frac{\epsilon}{d}$$

Let $c_1 = c/2$

$$e^{-\frac{2m\epsilon}{c_1}} \le \frac{\epsilon}{d}$$

For some constant $e^{-1/c_1} > 0$ and all $m > m_0$. We divide both sides with α

$$\frac{e^{-\frac{2m\epsilon}{c_1}}}{\alpha} \le \frac{\epsilon}{\alpha d}$$

$$\alpha^{-1}e^{-\frac{2m\epsilon}{c_1}} \le \frac{\epsilon}{\alpha d}$$

Which means

$$\frac{e^{-2m\epsilon}}{\alpha} \in \mathcal{O}\left(\frac{\epsilon}{\alpha d}\right)$$

Consequently

$$\|\operatorname{Proj}_{V^{\perp}}(w^*)\|_2 \in \mathcal{O}\left(\frac{\epsilon}{\alpha d}\right)$$