数字信号处理期末试卷(含答案)

一、单项选择题(在每小题的四个备选案的序号填在括号内。	答案中,选出一个正确答	· 案,并将止傰答		
1. 若一模拟信号为带限,且对其抽样满通过()即可完全不失真恢复原信号		川只要将抽样信号		
A. 理想低通滤波器 B. 理想高通滤波器	ß C. 理想带通滤波器 D.	理想带阻滤波器		
2. 下列系统(其中 y(n) 为输出序列, ()	x(n) 为输入序列)中哪个	入属于线性系统?		
A. $y(n) = x^3(n)$ B. $y(n) = x(n) x(n+2)$	C. $y(n) = x(n) + 2$ D. $y(n) = x(n) + 2$	$y(n) =_X (n^2)$		
3 设两有限长序列的长度分别是 M 与则圆周卷积的长度至少应取()。		万者的线性卷积 ,		
A. M+N B. M+N-1	C. M+N+1	D. 2 (M+N)		
D. M. IV	4. 若序列的长度为 M, 要能够由频域抽样信号 $X(k)$ 恢复原序列,而不发生时域混叠现象,则频域抽样点数 N 需满足的条件是()。			
4. 若序列的长度为 M, 要能够由频域抽		而不发生时域混		
4. 若序列的长度为 M, 要能够由频域抽		而不发生时域混 D. N≥2M		
 4. 若序列的长度为 M, 要能够由频域抽叠现象,则频域抽样点数 N 需满足的A. N≥M B. N≤M 5. 直接计算 N点 DFT 所需的复数乘法次A. N B. N² C. N³ D. N1c 6. 下列各种滤波器的结构中哪种不是 FA. 直接型 B. 级联型 C. 并第7. 第二种类型线性 FIR 滤波器的幅度响A 关于 w=0、π、2π偶对称 	A件是()。 C. N≤2M C数与()成正比。 pg ₂ N IR 滤波器的基本结构(E型 D. 频率抽样 TATURE	D. N≥2M)。		
 4. 若序列的长度为 M, 要能够由频域抽叠现象,则频域抽样点数 N 需满足的 A. N≥M B. N≤M 5. 直接计算 N点 DFT 所需的复数乘法符 A. N B. N² C. N³ D. N1 G. 下列各种滤波器的结构中哪种不是 F A. 直接型 B. 级联型 C. 并取 7. 第二种类型线性 FIR 滤波器的幅度响 A 关于 w=0、π、2π 偶对称 B 关于 w=0、π、2π 奇对称 	A件是()。 C. N≤2M X数与()成正比。 Dog ₂ N TIR 滤波器的基本结构(K型 D. 频率抽样型 D应 H(w)特点():	D. N≥2M)。		
4. 若序列的长度为 M,要能够由频域抽叠现象,则频域抽样点数 N 需满足的 A. N \geq M B. N \leq M B. N \leq M B. N \leq C. N 3 D. N16 6. 下列各种滤波器的结构中哪种不是 F A. 直接型 B. 级联型 C. 并取 7. 第二种类型线性 FIR 滤波器的幅度响 A 关于 $w=0$ 、 π 、 2π 倚对称 B 关于 $w=0$ 、 π 、 2π 倚对称 C 关于 $w=0$ 、 π 、 2π 倚对称 关于 $w=\pi$	A件是()。 C. N≤2M X数与()成正比。 pg₂N TR 滤波器的基本结构(K型 D. 频率抽样型 可应 H(w)特点(): 奇对称	D. N≥2M)。		
 4. 若序列的长度为 M, 要能够由频域抽叠现象,则频域抽样点数 N 需满足的 A. N≥M B. N≤M 5. 直接计算 N点 DFT 所需的复数乘法符 A. N B. N² C. N³ D. N1 G. 下列各种滤波器的结构中哪种不是 F A. 直接型 B. 级联型 C. 并取 7. 第二种类型线性 FIR 滤波器的幅度响 A 关于 w=0、π、2π 偶对称 B 关于 w=0、π、2π 奇对称 	A件是()。 C. N≤2M X数与()成正比。 pg₂N TR 滤波器的基本结构(K型 D. 频率抽样型 可应 H(w)特点(): 奇对称	D. N≥2M)。		
4. 若序列的长度为 M,要能够由频域抽叠现象,则频域抽样点数 N 需满足的 A. N \geq M B. N \leq M B. N \leq M B. N \leq M B. N \leq C. N 3 D. N1 G. 下列各种滤波器的结构中哪种不是 F. A. 直接型 B. 级联型 C. 并取 7. 第二种类型线性 FIR 滤波器的幅度响 A. 关于 $w=0$ 、 π 、 2π 衙对称 B. 关于 $w=0$ 、 π 、 2π 衙对称 π C. 关于 π C. π	条件是()。 C. N≤2M X数与()成正比。 Og ₂ N TR 滤波器的基本结构() 类型 D. 频率抽样型 可应 H(w)特点(): 奇对称 偶对称	D. N≥2M)。		

C h(n) = h(N-1-n) N 为偶数

9. 两序列 $h(n)=\delta(n)+2\delta(n-1)+3\delta(n-2)$, $x(n)=\delta(n)+\delta(n-1)$, 两者的线性卷积为 y(n),则 y(2)______; 若两者 3 点圆周卷积为 $y_1(n)$,则 $y_1(0)=$ ______。

- 三 计算题
- 1. 有一个线性移不变的系统,其系统函数为:

$$H(z) = \frac{-\frac{3}{2}z^{-1}}{(1-\frac{1}{2}z^{-1})(1-2z^{-1})} \quad \frac{1}{2} < |z| < 2$$

- 1) 用直接型结构实现该系统
- 2) 讨论系统稳定性, 并求出相应的单位脉冲响应 h(n)
- 4. 试用冲激响应不变法与双线性变换法将以下模拟滤波器系统函数变换为数字滤波器系统函数:

$$H(s) = \frac{2}{(s+1)(s+3)}$$
其中抽样周期 T=1s。

G

三、有一个线性移不变的因果系统,其系统函数为:

$$H(z) = \frac{-\frac{3}{2}z^{-1}}{(1-\frac{1}{2}z^{-1})(1-2z^{-1})}$$

- 1 用直接型结构实现该系统
- 2) 讨论系统稳定性,并求出相应的单位脉冲响应 h(n)

七、用双线性变换设计一个三阶巴特沃思数字低通虑波器,采样频率为 $f_s = 4kHz$

(即采样周期为 $T=250\mu s$), 其 3dB 截止频率为 $f_c=1kHz$ 。三阶模拟巴特沃思滤波器为:

$$H_a(s) = \frac{1}{1 + 2(\frac{s}{\Omega_c}) + 2(\frac{s}{\Omega_c})^2 + (\frac{s}{\Omega_c})^3}$$

答案

- 一**、**选择题(10分,每题1分)
- 1. A 2. D 3. B 4. A 5. B 6. C 7. C 8. D 9. D 10. D
- 二、填空题(共25分3、4、7、9每空2分;其余每空1分)

1. 栅栏效应 2. $x(z) | z=w_N^{-k} x(k) = X(e^{jw}) | w = \frac{2\pi}{N}k$ 3. $a+bz^{-1}+cz^{-2}$ 4. 8 6144us 5. 线性相位 频谱混迭、低通带通 6. 2、5、-2w 7、14

9. $H_k = -H_{N-k}$, $-\pi k(1-\frac{1}{N})$ 10, 5, 4, 5

三计算题

1. (15分)

解 1)
$$H(z) = \frac{-\frac{3}{2}z^{-1}}{(1-\frac{1}{2}z^{-1})(1-2z^{-1})} = \frac{-\frac{3}{2}z^{-1}}{1-\frac{5}{2}z^{-1}+z^{-2}}$$
 2 分

当 $2 > |z| > \frac{1}{2}$ 时:

收敛域包括单位圆 · · · · · · · · 6 分

$$h(n) = (\frac{1}{2})^n u(n) + 2^n u(-n-1) \cdots 15 \, \text{f}$$

4. (10分)解:

$$H(z) = \frac{T}{1 - e^{-T}Z^{-1}} - \frac{T}{s - e^{-3T}Z^{-1}} \dots 3\%$$

$$= \frac{0.318 z^{-1}}{1 - 0.418 z^{-1} + 0.018 z^{-2}} \dots 5\%$$

2)
$$H(z) = H(s)|_{s = \frac{2}{T} \frac{1 - Z^{-1}}{1 + Z^{-1}}} = \frac{2}{(1 + \frac{2}{T} \frac{1 - Z^{-1}}{1 + Z^{-1}})(3 + \frac{2}{T} \frac{1 - Z^{-1}}{1 + Z^{-1}})} \dots 8$$
 \Rightarrow

$$= \frac{2 + 4z^{-1} + 2z^{-2}}{15 - 2z^{-1} - z^{-2}} \dots 10$$
 \Rightarrow

 Ξ , (15)

分

2) 当 2 >
$$|z|$$
 > $\frac{1}{2}$ 时:

$$h(n) = (\frac{1}{2})^n u(n) + 2^n u(-n-1) \cdots 15$$

七、(12分)解:

$$\Omega_C = \frac{2}{T} tan(\frac{w_c}{2}) = \frac{2}{T} \dots 5$$

$$H_{a}(s) = \frac{1}{1 + 2(Ts/2) + 2(Ts/2)^{2} + (Ts/2)^{3}} \dots 8$$

$$H(z) = H_a(s)|_{s = \frac{2}{T} \frac{1 - Z^{-1}}{1 + Z^{-1}}} = \frac{1}{1 + 2 \frac{1 - Z^{-1}}{1 + Z^{-1}} + 2(\frac{1 - Z^{-1}}{1 + Z^{-1}})^2 + (\frac{1 - Z^{-1}}{1 + Z^{-1}})^3}$$

$$= \frac{1}{2} \frac{1 + 3z^{-1} + 3z^{-2} + z^{-3}}{3 + z^{-2}}$$

Α

一、选择题 (每题 3 分, 共 5 题)

1、
$$x(n)=e^{j(\frac{n}{3}-\frac{\pi}{6})}$$
,该序列是_____。
A.非周期序列 B.周期 $N=\frac{\pi}{6}$ C.周期 $N=6\pi$ D. 周期 $N=2\pi$

2、 序列
$$x(n)=-a^nu(-n-1)$$
 ,则 $X(Z)$ 的收敛域为_____。 A. $\left|Z\right|<\left|a\right|$ B. $\left|Z\right|\leq\left|a\right|$ C. $\left|Z\right|>\left|a\right|$ D. $\left|Z\right|\geq\left|a\right|$

3、对 x(n) $(0 \le n \le 7)$ 和 y(n) $(0 \le n \le 19)$ 分别作 20 点 DFT,得 X(k) 和 Y(k), $F(k) = X(k) \cdot Y(k)$, $k = 0, 1, \cdots 19$, f(n) = IDFT[F(k)], $n = 0, 1, \cdots 19$, n 在_______ 范围内时, f(n) 是 x(n) 和 y(n) 的线性卷积。

A. $0 \le n \le 7$ B. $7 \le n \le 19$ C. $12 \le n \le 19$ D. $0 \le n \le 19$

4、 $x_1(n)=R_{10}(n)$, $x_2(n)=R_7(n)$,用 DFT 计算二者的线性卷积,为使计算量尽可能的少,应 使 DFT 的长度 N 满足 。

A.
$$N > 16$$
 B. $N = 16$ C. $N < 16$ D. $N \ne 16$

5.已知序列 Z 变换的收敛域为 | z | <1,则该序列为。

A.有限长序列 B.右边序列 C.左边序列 D.双边序列

- 二、填空题 (每题3分,共5题)
- 1、 对模拟信号 (一维信号,是时间的函数)进行采样后,就是_____信号,再进行幅度量化后就是信号。

2、要想抽样后能够不失真的还原出原信号,则抽样频率必须	这就是奈奎斯特抽样
3、对两序列 x(n)和 y(n),其线性相关定义为。	
4、快速傅里叶变换(FFT)算法基本可分为两大类,分别是:; _	
5、无限长单位冲激响应滤波器的基本结构有直接 I 型,,和	
$\equiv x(n) = \begin{cases} a^n & n \ge 0 \\ -b^n & n \le -1 \end{cases}$ 求该序列的 Z 变换、收敛域、零点和极点。(1	0分)
四、求 $X(Z) = \frac{1}{(1-z^{-1})(1-2z^{-1})}$, $1 < z < 2$ 的反变换。 (8分)	
В	
一、单项选择题(本大题 12 分,每小题 3 分)	
1、 $x(n) = \cos(0.125\pi n)$ 的基本周期是。	
(A) 0.125 (B) 0.25 (C) 8 (D) 16.	
2 — 个 字 列 r (n) 的 喜 数 傅 甲 叶 李 掐 的 李 掐 完 义 为	
(A) $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-jn\omega}$ (B) $X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nk/N}$	
(C) $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ (D) $X(z_k) = \sum_{n=0}^{N-1} x(n)A^{-n}W^{kn}$.	
3、对于 M 点的有限长序列,频域采样不失真恢复时域序列的条件是频域采样	∮点数 №。
(A) 不小于 M (B) 必须大于 M (C) 只能等于 M (D) 必须小于 M	1.
4、有界输入一有界输出的系统称之为。	
(A) 因果系统 (B) 稳定系统 (C) 可逆系统 (D) 线性系统。	
三、填空题(本大题 10 分,每小题 2 分)	
1、在对连续信号进行频谱分析时,频谱分析范围受速率的限制。	
2. $\int_{-\infty}^{\infty} \delta(\omega d\omega) = \underline{\hspace{1cm}}$	
$\mathbf{J}^{-\infty}$ 3、对于一个系统而言,如果对于任意时刻 n_0 ,系统在该时刻的响应仅取决 \mathbf{J}^{-1}	平左时刻及甘以前的埝 λ
•	
则称该系统为系统。。 4、对一个 LSI 系统而言,系统的输出等于输入信号与系统单位采样响应的线	₩-
4、对一个LSI系统问言,系统的制造等了制入信号与系统单位未件响应的线 5、假设时域采样频率为 32kHz,现对输入序列的 32 个点进行 DFT 运算。」	
间隔为 Hz。	心心,DFI 制山口岩点火华
七、综合题 (本大题 20 分)	
已知连续时间信号 $x_a(t) = \cos(16000\pi t)$,用 $T = 1/6000$ 对其采样。	
•	
(1) 求最小采样频率;	
(2) 图示其频谱特性;	
(3) 分析其频谱是否有混叠。	
C	
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)	
1.在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样角频率	 与信号最高截止频率○
应满足关系()	> JID JAXIDIEVITAX-1-77(
$A.\Omega_s > 2\Omega_c$ $B.\Omega_s > \Omega_c$ $C.\Omega_s < \Omega_c$ $D.\Omega_s < 2\Omega_c$	
2.下列系统(其中 y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统? ()

A.y(n)=y(n-1)x(n) B.y(n)=x(n)/x(n+1) C.y(n)=x(n)+1 D.y(n)=x(n)-x(n-1)3.已知某序列 Z 变换的收敛域为 5>|z|>3,则该序列为 () A.有限长序列 B.右边序列 C.左边序列 D.双边序列 4.实偶序列傅里叶变换是() B.实奇序列 C.虚偶序列 A.实偶序列 D.虚奇序列 5.已知 x(n)=δ(n), 其 N 点的 DFT [x(n)] =X(k), 则 X(N-1)= () A.N-1 B.1 C.0 D.-N+1 6.设两有限长序列的长度分别是 M 与 N,欲通过计算两者的圆周卷积来得到两者的线性卷积,则圆周卷积 的点数至少应取 () A.M+N C.M+N+1 D.2(M+N) B.M+N-1 7.下面说法中正确的是() A.连续非周期信号的频谱为周期连续函数 B.连续周期信号的频谱为周期连续函数 C.离散非周期信号的频谱为周期连续函数 D.离散周期信号的频谱为周期连续函数 8.下列各种滤波器的结构中哪种不是 IIR 滤波器的基本结构? (B.级联型 C.频率抽样型 D.并联型 A.直接型 9.下列关于 FIR 滤波器的说法中正确的是 (A.FIR 滤波器容易设计成线性相位特性 B.FIR 滤波器的脉冲响应长度是无限的 C.FIR 滤波器的脉冲响应长度是确定的 D.对于相同的幅频特性要求,用 FIR 滤波器实现要比用 IIR 滤波器实现阶数低 10.下列关于冲激响应不变法的说法中错误的是(A.数字频率与模拟频率之间呈线性关系 B.能将线性相位的模拟滤波器映射为一个线性相位的数字滤波器 C.具有频率混叠效应 D.可以用于设计低通、高通和带阻滤波器 三、填空题(本大题共 5 小题, 每空 2 分, 共 20 分)。

- 16.线性移不变系统是因果系统的充分必要条件是
- 17.傅里叶变换的四种形式_____,_ 和
- 18.使用 DFT 分析模拟信号的频谱时,可能出现的问题有
- 19.下图所示信号流图的系统函数为

20.对于 N 点 $(N = 2^{L})$ 的按时间抽取的基 2FFT 算法,共需要作 次复数乘和 次复数加。

四、计算题

23. (10 分)考虑一个具有系统函数
$$H(z) = \frac{-\frac{1}{16} + z^{-4}}{1 - \frac{1}{16} z^{-4}}$$
 的稳定系统。

- 1) 求系统的零点和极点,并作出图表示;
- 2) 画出系统的级联型结构图。
- 24.(10 分)有一用于频谱分析的 FFT 处理器, 其抽样点数必须是 2 的整数次幂, 假定没有采用任何特殊的数 据处理措施,已知条件为: 1)频率分辨率小于10Hz; 2)信号最高频率小于4kHz。试确定以下参量:
- 最小记录长度 t_p;
- 2) 最大抽样间隔 T;

25.	(10 分)将双线性变换应原	用于模拟巴特沃兹滤》	波器 $H_a(s) = \frac{1}{1 + s/\Omega_c}$,	设计一个 3dB 截止频率
	$\omega_c = \frac{\pi}{3}$ 的一阶数字滤波 Ω_c)	器。(注:式中模拟巴	特沃兹滤波器的 3dB 截止线	项率为
D —,	单项选择题(每小题 3 分,	共 24 分)		
	在对连续信号均匀采样时, 起关系	要从离散采样值不失	真恢复原信号,则采样周期	Ts与信号最高截止频率 fh
	$A.T_s>2/f_h$	$B.T_s > 1/f_h$	C.T _s <1/f _h	$D.T_s < 1/(2f_h)$
2、	下列系统(其中 y(n)为输出	出序列,x(n)为输入序列	列)中哪个属于线性系统?(()
	$A.y(n) = x^3(n)$	B.y(n) = x(n)x(n+2)	C.y(n)=x(n)+2	$D.y(n)=x(n^2)$
3、	已知某序列 z 变换的收敛域	成为 z <1,则该序列为	J().	
	A.有限长序列 列	B.右边序列	C.左边序列	D.双边序
4、设两有限长序列的长度分别是 M 与 N,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取()。				
	A. M+N	B.M + N - 1	C.M + N + 1	D.2(M + N)
5、	计算 N=2 ^L (L 为整数)点	的按时间抽取基-2FFT	需要()级蝶形运算。	
	A. L B.L/2	C.N	D.N/2	
6.、	因果 FIR 滤波器的系统函数	牧 H(z)的全部极点都在	E()处。	
	A.z = 0	B.z = 1	C.z = j	D.z =∞
7、	下列对 IIR 滤波器特点的论	述中错误的是().	
	A. 系统的单位冲激响应 h	n(n)是无限长的	B.结构必是递归型的	
	C.系统函数 H(z)在有限 z =	平面 (0< z <∞) 上有	可极点 D.肯定是稳定的	

3) 在一个记录中的最少点数 N。

8、线性相位 FIR 滤波器主要有以下四类

(I)h(n)偶对称,长度N为奇数 (Ⅱ)h(n)偶对称,长度N为偶数

(Ⅲ)h(n)奇对称,长度 N 为奇数 (IV)h(n)奇对称,长度 N 为偶数

则其中不能用于设计高通滤波器的是()。

A.I, II B.II, III C.III, IV D.IV, I

- 二、填空题 (每题 3 分, 共 24 分)
- 2、序列 R₄(n)的 Z 变换为_______,其收敛域为______。
- 3、对序列 $x(n) = \delta(n-n_0)$, $0 < n_0 < N$ 的 N 点的 DFT 为______ , $0 \le K \le N$ 。
- 4、用 DFT 对连续信号进行频谱分析时,可能出现的问题有 、__ 、 和 DFT 的分辨力。
- 5、下图所示信号流图的系统函数为 H(z) =____。___。

6、有一模拟系统函数 $H_a(s)=\frac{2}{s+3}$,已知采样周期为 T,采用脉冲响应不变法将其转换为数字系统函数 H(z)是 。

7、在利用窗函数法设计 FIR 滤波器时,一般希望窗函数能满足两项要求:①______;

②______。但是,一般来说,以上两点很难同时满足。

五、用双线性变换法设计一个三阶巴特沃思数字低通滤波器,采样频率 1.2kHz,截止频率为 400Hz 。要求(1)求该数字滤波器的系统函数,并画出其级联型结构;(归一化的三阶巴特沃思低通滤波器的模拟系统函

数为
$$H_a^1(s) = \frac{1}{1 + 2s + 2s^2 + s^3}$$
 (14分)

六、用矩形窗设计一线性相位低通 FIR 滤波器,设计要求: (1) 若截止频率 ω_{C} 、窗口长度 N 为已知,求该滤波器的单位抽样响应; (2) 若 $\omega_{C}=0.25\pi$,N = 33,

F

- 2. 设采样频率 $f_s=1000Hz$,则当 ω 为 π /2 时,信号的模拟角频率 Ω 和实际频率 f 分别 为 、 。
- 3. N点序列 x(n) 的 DFT 表达式为 , 其物理意义是 。

- 4. 序列 x(n)和 h(n), 长度分别为 N 和 M (N>M), 二者线性卷积的长度为 N 点循环卷积中混叠的点有 个,循环卷积与线性卷积的关系是
- 5. 全通系统的极零点分布特点是
- 三、分析计算题: (共 50 分)
- 1. (15 分) 已知序列 $x(n) = \{-1, 2, -3, 2, -1\}$, n=0,1...,4
- (1) 该序列是否可以作为线性相位 FIR 滤波器的单位脉冲响应? 为什么?
- (2) 设序列 X(n) 的傅立叶变换用 $X(e^{j\omega})$ 表示,不用求 $X(e^{j\omega})$,分别计算 $X(e^{j0})$ 、 $X(e^{j\pi})$ 、 $\int_{-\pi}^{\pi} X(e^{j\omega}) d\omega \cdot \int_{-\pi}^{\pi} \left| X(e^{j\omega}) \right|^2 d\omega.$
- (3) 求x(n)与序列 $y(n) = R_4(n)$ 的线性卷积及7点循环卷积。
- 2. (15分) 已知一因果系统的系统函数为

$$H(z) = \frac{1 + 0.5z^{-1}}{1 - \frac{3}{5}z^{-1} + \frac{2}{25}z^{-2}}$$

试完成下列问题:

(1) 系统是否稳定? 为什么?

(2) 求单位脉冲响应 h(n)

(3) 写出差分方程;

(4) 画出系统的极零图;

(5) 画出系统的所需存储器最少的实现结构。

3. (5 分) 已知模拟滤波器的传输函数 $H_a(s) = \frac{s+a}{(s+a)^2+b^2}$: 式中, a、b 为常数, 设 $H_a(s)$ 因果 稳定,试用脉冲响应不变法将其转换成数字滤波器 H(z)。

- 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。
- 1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过()即可完全不失真 恢复原信号。

A.理想低通滤波器

B.理想高通滤波器 C.理想带通滤波器

D.理想带阻滤波器

2. 下列系统(其中 y(n)为输出序列, x(n)为输入序列)中哪个属于线性系统?(

 $A.y(n)=x^3(n)$

B.y(n)=x(n)x(n+2) C.y(n)=x(n)+2 D.y(n)= $x(n^2)$

3.. 设两有限长序列的长度分别是 M 与 N,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应 取()。

A. M+N

B.M+N-1

C.M+N+1

4.若序列的长度为 I	M,要能够由频域抽样信号 X	((k)恢复原序列,	而不发生时域混叠现象,	则频域抽样点数
N 需满足的条件是	륃()。			
A.N≥M	B.N≤M	C.N≤2M	D.N≥2M	
5.直接计算 N 点 DI	FT 所需的复数乘法次数与()成正比。		
A.N B.N	² C.N ³ D.Nlog ₂ N	·		
6.下列各种滤波器的	り结构中哪种不是 FIR 滤波器	的基本结构()。	
A.直接型	B.级联型 C.并联型	D.频率抽样型		
7.第二种类型线性 F	FIR 滤波器的幅度响应 H(w)特	詩点():		
A 关于 $w=0$ 、 π	:、2π偶对称			
B 关于 $w=0$ 、	π 、 2π 奇对称			
C 关于 $w=0$ 、	2π 偶对称 关于 $w=\pi$ 奇对	村称		
$D \not \exists w = 0$	2π 奇对称 关于 $w=\pi$ 偶对	対称		
8.适合带阻滤波器设	设计的是: ()			
A h(n) = -h(N - n)	-1-n) N 为偶数			
B h(n) = -h(N -	-1-n) N 为奇数			
C h(n) = h(N-1)	l-n) N 为偶数			
D h(n) = h(N-1)	l-n) N 为奇数			
ᇬᇇᆍᆉᄱᄽᄽ	2664#*\+\\-\\-\\-\\-\-\-\-\-\-\-\-\-			
9.以下对双线性变换	段的描述中不正确的是()。			
A.双线性变换是一种	中非线性变换			
		N=11 N IE		
B.双线性变换可以F	用来进行数字频率与模拟频率	间的变换		
C.双线性变换把 s ⁻	P面的左半平面单值映射到 z	平面的单位圆内		
D.以上说法都不对				
10.关于窗函数设计	法中错误的是:			
	·····································			
B 窗函数的旁瓣相双	寸幅度取决于窗函数的形状,	与窗函数的截取	长度无关;	
C为减小旁瓣相对帧	ā度而改变窗函数的形状, 通	常主瓣的宽度会	增加;	
D 窗函数法不能用于	于设计高通滤波器;			
二、填空题(每空 2	分, 共 20 分)			
1 田 DET 沿小公共	f连续信号频谱时,	h応目반 DET 디	纶计等比离 数占上的场	<u>:</u>
1. 用 DF1	建终后亏赕旧的,X	双座相 ロロ 六	能以 异一 全角取点工的类	归。
2.有限长序列 X(z)与	ヺX (k) 的关系			
X (k) 与 $X(e^{jw})$	的关系			
3.下图所示信号流图				
$x(n)$ z^{-1}	z ⁻¹			
a b	y(n)			
4.如果通用计算机的	· 的速度为平均每次复数乘需要	4μs,每次复数	加需要 1µs,则在此计算	算机上计算 210 点

5.单位脉冲响应不变法优点	缺点	,适合		認法器设计
6.已知 FIR 滤波器 $H(z) = 1 + 2z^{-1} + 5z^{-1}$	$^{2} + az^{-3} + z^{-}$	4 具有线性相位,则	a =,冲激响应	h (2) =,
相位 ^{θ(w)=}				
7. $x(n) = A\cos(\frac{3\pi}{7}n + \frac{\pi}{6})$ 的周期		_		
8.用频率采样法设计数字滤波器,对第二	类型相位滤波	皮器 H(k)应具有的约	」束条件:幅值	,相位
9.两序列 h(n)=δ(n)+2δ(n-1)+3δ(n-2),	$\kappa(n) = \delta(n) + \delta(n)$	n-1),两者的线性卷和	识为 y(n),则 y(2)	;
若两者 3 点圆周卷积为 y ₁ (n),则 y ₁ (0) =		y ₁ (2) =	°	

三 计算题

1. 有一个线性移不变的系统, 其系统函数为:

$$H(z) = \frac{-\frac{3}{2}z^{-1}}{(1-\frac{1}{2}z^{-1})(1-2z^{-1})} \quad \frac{1}{2} < |z| < 2$$

- 1) 用直接型结构实现该系统
- 2)讨论系统稳定性,并求出相应的单位脉冲响应 h(n)
- 4. 试用冲激响应不变法与双线性变换法将以下模拟滤波器系统函数变换为数字滤波器系统函数:

$$H(s) = \frac{2}{(s+1)(s+3)}$$
 其中抽样周期 T=1s。

G

三、有一个线性移不变的因果系统, 其系统函数为:

$$H(z) = \frac{-\frac{3}{2}z^{-1}}{(1-\frac{1}{2}z^{-1})(1-2z^{-1})}$$

- 1 用直接型结构实现该系统
- 2)讨论系统稳定性,并求出相应的单位脉冲响应 h(n)

七、用双线性变换设计一个三阶巴特沃思数字低通虑波器,采样频率为 $f_s=4kHz$ (即采样周期为 $T=250\,\mu s$),其 3dB 截止频率为 $f_c=1kHz$ 。三阶模拟巴特沃思滤波器为:

$$H_{a}(s) = \frac{1}{1 + 2(\sqrt[S]{\Omega_{c}}) + 2(\sqrt[S]{\Omega_{c}})^{2} + (\sqrt[S]{\Omega_{c}})^{3}}$$

答案

- 二、 选择题 (10分, 每题 1分)
- 1.A 2.D 3.B 4.A 5.B 6.C 7.C 8.D 9.D 10.D
- 二、填空题 (共25分 3、4、7、9每空2分; 其余每空1分)

1.栅栏效应 2.x(z)|z=w_N-k x(k) = X(e^{jw})|w = $\frac{2\pi}{N}k$ 3. $a + bz^{-1} + cz^{-2}$ 4. 8 6144us 5.线性相

位 频谱混迭、低通带通 6.2、5、-2w 7、14

9.
$$H_k = -H_{N-k}$$
, $-\pi k(1-\frac{1}{N})$ 10, 5, 4, 5

三计算题

1. (15分)

当
$$2 > |z| > \frac{1}{2}$$
时:

收敛域包括单位圆......6分

系统稳定系统。.....10分

$$H(z) = \frac{-\frac{3}{2}z^{-1}}{(1 - \frac{1}{2}z^{-1})(1 - 2z^{-1})} = \frac{1}{1 - \frac{1}{2}z^{-1}} - \frac{1}{1 - 2z^{-1}}$$
.....12 \(\frac{2}{2}\)

4. (10分)解:

$$H(z) = \frac{T}{1 - e^{-T}Z^{-1}} - \frac{T}{s - e^{-3T}Z^{-1}} \dots 35$$

$$= \frac{0.318 z^{-1}}{1 - 0.418 z^{-1} + 0.018 z^{-2}} \dots 5$$

三、(15)

2)当
$$2 > |z| > \frac{1}{2}$$
时:

收敛域包括单位圆......6分

系统稳定系统。.....10分

$$H(z) = \frac{-\frac{3}{2}z^{-1}}{(1 - \frac{1}{2}z^{-1})(1 - 2z^{-1})} = \frac{1}{1 - \frac{1}{2}z^{-1}} - \frac{1}{1 - 2z^{-1}} \dots 12$$

七、(12分)解:

$$w_c = 2\pi f_c T = 0.5\pi$$

$$\Omega_C = \frac{2}{T} tan(\frac{w_c}{2}) = \frac{2}{T} \dots 5$$

$$H_a(s) = \frac{1}{1 + 2(Ts/2) + 2(Ts/2)^2 + (Ts/2)^3} \dots 8$$

$$H(z) = H_a(s) \Big|_{s = \frac{2}{T} \frac{1 - Z^{-1}}{1 + Z^{-1}}} = \frac{1}{1 + 2 \frac{1 - Z^{-1}}{1 + Z^{-1}} + 2 \left(\frac{1 - Z^{-1}}{1 + Z^{-1}}\right)^2 + \left(\frac{1 - Z^{-1}}{1 + Z^{-1}}\right)^3}$$

$$= \frac{1}{2} \frac{1 + 3z^{-1} + 3z^{-2} + z^{-3}}{3 + z^{-2}}$$