

Remote Diagnosis of Parkinson's Disease from Finger-tapping Videos

A Graph Signal Processing Approach

Raiyan Abdul Baten

Electrical and Computer Engineering
University of Rochester
rbaten@ur.rochester.edu

Pooja Bansal

Simon School of Business University of Rochester pbansal@ur.rochester.edu

October 15, 2018

Overview

Motivation

Previous work

Methodology

Results

Future Directions

Motivation

► Project goal: Estimating finger tapping frequency from videos using Graph Signal Processing

 $\label{lem:https://medium.com/parkinsons-uk/taking-part-to-improve-how-parkinsons-symptoms-are-measured-ea04e910c62d \\ \mbox{ww.youtube.com/watch?v=Cleuxtf_YeU}$

Previous Work

Graph Image Processing has been used for

- de-noising
- compression
- segmentation

among other applications

Dataset

- ► Recorded 11 videos ourselves
- A dataset is being collected by a collaboration project between URMC and ROC-HCI, but the process is delayed by a scarcity of study subjects

Analysis: Preprocessing

Video data

- ▶ A video file can be represented as a tensor $T_{x,y,c,t} \in \mathbb{R}^4$
- ▶ x and y represent pixel coordinates, $c \in \{\text{red}, \text{green}, \text{blue}\}$ represents color channels and t represents frame index
- ► A ten-second 1080p video recorded at 30 fps has 1,866,240,000 entries in *T*

Preprocessing contd.

RGB to Gray-scale

lacktriangle Merge RGB color channels to create gray-scale frame lacktriangle ($t)\in\mathbb{R}^2$ as

$$\mathbf{I}(t) := T'_{:,:,t} = \sum_{c} w_c T_{:,:,c,t}$$

Down-sampling

► Resize each frame **I**(*t*) to a height of 480px using Bi-cubic Interpolation, keeping aspect ratio intact

Total Variation Analysis

- Intuition: Pixel coordinates through which fingers cross are more non-smooth than others
- ► Total Variation (TV) captures smoothness efficiently

- ► TV for an undirected graph with
 - ▶ Adjacency matrix $\mathbf{A} \in \{0,1\}^{N_{\nu} \times N_{\nu}}$
 - Graph Laplacian $\mathbf{L} := diag(\mathbf{A}\mathbf{1}_{N_{\mathbf{v}}}) \mathbf{A}$
 - ▶ associated graph signal vector $\mathbf{f} \in \mathbb{R}^{N_v}$

is given by

$$\mathsf{TV}(\mathbf{f}) := \mathbf{f}^\mathsf{T} \mathsf{L} \mathbf{f} = \sum_{i,j=1,i>j}^{N_\mathsf{v}} A_{ij} (f_i - f_j)^2$$

Total Variation Analysis contd.

- ▶ Define temporal line graph G(V, E) through each pixel location, with $N_V = N_{frame}$ nodes and uniform-weight edges
- ▶ L and its eigenvectors are same for all pixel locations
- ▶ Graph signal $\mathbf{f}(x, y)$ contains the greyscale intensities of the nodes in the line graph as

$$\mathbf{f}(x,y) := T'_{x,y,:}$$

ROI Extraction

- ightharpoonup Compute TV for each pixel coordinate (x, y)
- ► Mark coordinates with 98th percentile TV as region of interest (ROI)

ROI Extraction contd.

- ► Crop ROI: Makes remaining analyses computationally less costly
- ► Mark coordinates with 85th percentile TV within this cropped region to include motion blur coordinates
- ► Frequency analysis to be run only on these coordinates

First Difference Trajectory: An Example

- ► Example showing progression of **f**(145,81)
- First differences computed as I'(t) = I(t) I(t-1)

Frequency Analysis

▶ Graph Fourier Transform \hat{f} of signal vector f in terms of eigenvectors $U = [u_0 \ u_1 \dots u_{N-1}]$ of L is given by:

$$\hat{\mathbf{f}} := \mathbf{U}^\mathsf{T} \mathbf{f}$$

- ► Compute dominant frequency for each selected coordinate's graph
- ► Report their mode

Results

Video #	Original frequency (Hz)	Estimated frequency (Hz)	Accuracy
1	5.06	5.46	92.09%
2	4.36	4.49	97.01%
3	3.87	3.98	97.16%
4	2.01	2.16	92.54%
5	3.06	3.10	98.69%
6	2.271	2.278	99.69%
7	2.29	2.35	97.38%
8	3.01	2.98	99.00%
9	1.645	1.65	99.70%
10	2.481	2.495	99.44%
11	4.395	4.497	97.68%

Future Directions

- ► Improve robustness for unsteady hand: Combine with CNN based approaches
- ► Test on a dataset from real patients

Summary

- ▶ TV analysis makes motion blur a blessing
- ▶ GFT provides a reasonable alternative to FFT in this application

Thank You!