Math 351: Homework 1 (Due September 14)

Name: Jack Ellert-Beck

Section 0.2

Problem 1

Prove the following equivalences:

a)
$$\neg (P \lor Q) \equiv (\neg P \land \neg Q)$$

We can write a truth table that lists the truth values of $\neg(P \lor Q)$ and $(\neg P \land \neg Q)$ for all truth values of P and Q:

P	Q	$\neg P$	$\neg Q$	$P \vee Q$	$\neg(P\vee Q)$	$ (\neg P \land \neg Q) $
T	l		F	T	\mathbf{F}	F
$\mid T$	F	F	T	T	${f F}$	\mathbf{F}
$\mid F \mid$	T	T	F	T	${f F}$	\mathbf{F}
$\mid F$	F	T	T	F	${f T}$	$oxed{\mathbf{T}}$

Since the two statements have the same truth value in all cases, they are equivalent.

b)
$$\neg (P \land Q) \equiv (\neg P \lor \neg Q)$$

We can write a truth value to test every case:

	P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$\neg(P \land Q)$	$(\neg P \vee \neg Q)$
ĺ	T	T	F	F	T	\mathbf{F}	F
	T	F	F	T	F	${f T}$	${f T}$
	F	T	T	F	F	${f T}$	${f T}$
	F	F	T	T	F	${f T}$	${f T}$

Since both statements have the same truth value for any value of P or Q, they are equivalent.

Problem 2

Prove that $P \implies Q \equiv (\neg P) \lor Q$. Deduce that the negation of $P \implies Q$ is $P \land (\neg Q)$.

We write a truth table to show that $P \implies Q$ has the same truth value as $(\neg P) \lor Q$ in all cases:

P	Q	$\neg P$	$(\neg P) \lor Q$	$P \Longrightarrow Q$
T	T	F	${f T}$	\mathbf{T}
T	F	F	${f F}$	${f F}$
\overline{F}	T	T	${f T}$	${f T}$
F	F	T	${f T}$	${f T}$

Since $P \implies Q$ is equivalent to $(\neg P) \lor Q$, their negations will be equivalent. So we negate $(\neg P) \lor Q$ and manipulate using equivalences from Problem 1 to find the negation:

$$\neg(P \implies Q) = \neg(\neg P \lor Q)
= \neg(\neg P \lor \neg(\neg Q))
= \neg(\neg(P \land (\neg Q)))
= P \land (\neg Q).$$

We also used the fact that $\neg(\neg P) \equiv P$, which we now show with a truth table:

$$\begin{array}{c|c|c|c} P & \neg P & \neg (\neg P) \\ \hline \mathbf{T} & F & \mathbf{T} \\ \mathbf{F} & T & \mathbf{F} \end{array}$$

Problem 3

Find the negation of the following statements.

a)
$$\neg (P \land \neg Q) \lor R$$

$$\neg (\neg (P \land \neg Q) \lor R) = (P \land \neg Q) \land \neg R$$

= $P \land \neg Q \land \neg R$.

b)
$$P \implies (Q \vee R)$$

$$\neg(P \implies (Q \lor R)) = P \land \neg(Q \lor R)$$
$$= P \land \neg Q \land \neg R.$$

c)
$$\neg (P \lor Q) \implies (R \lor S)$$

$$\neg(\neg(P \lor Q) \implies (R \lor S)) = \neg((P \lor Q) \lor (R \lor S))$$
$$= \neg(P \lor Q) \land \neg(R \lor S)$$
$$= \neg P \land \neg Q \land \neg R \land \neg S.$$

Problem 5

Prove that an implication is equivalent to its contrapositive.

The contrapositive of $P \implies Q$ is the statement $\neg Q \implies \neg P$. We can manipulate the statement $\neg P \lor Q$, noting that it is equivalent to $P \implies Q$:

$$\neg P \lor Q = Q \lor \neg P
= \neg(\neg Q) \lor \neg P
= \neg Q \Longrightarrow \neg P.$$

Problem 6

An example of an implication whose converse is not true:

If polygon ABCD is a square, then its interior angles are all 90 degrees.

An example of an implication whose converse is true:

$$(x=4) \implies (x+2=6)$$

Problem 7

Negate the following statements:

a) For every ice cream flavor there is a pie that goes with that flavor

There exists an ice cream flavor for which there are no pies that go with it.

b) For every race car there is a driver who can drive that car.

There exists at least one race car with no driver who can drive it.

c) There exists a race car that every driver can drive.

For each race car there exists at least one driver who cannot drive it.

d) There exists a driver that can drive every race car.

For all race car drivers there exists at least one car they cannot drive.

Section 0.3

Problem 1

Let $A, B \subseteq X$. Which of the statements is equivalent to $A \cup B \neq \emptyset$?

Answer: (b) $A \neq \emptyset \lor B \neq \emptyset$. For the union of A and B to be nonempty it is sufficient for at least one of A or B to be nonempty.

Problem 2

Let $A, B \subseteq X$. Which of the statements is equivalent to $A \cap B = \emptyset$?

Answer: (b) $A = \emptyset \lor B = \emptyset$. If any one of A or B is empty, then their intersection will be empty.

Problem 3

Let A and B be sets. Prove that $A = (A \cap B) \cup (A \setminus B)$.

We consider the definitions of $A \cap B$ and $A \setminus B$. The set $A \cap B$ is the set of all elements of A that are also in B. The set $A \setminus B$ is the set of all elements of A that are not in B. The union of these two sets, $(A \cap B) \cup (A \setminus B)$, is the set of all elements of A that are also in B or that are not also in B. Since everything is either in B or not in B, this set contains all elements of A. Thus, $A = (A \cap B) \cup (A \setminus B)$.

Problem 4

Let A and B be sets. Prove that $A \setminus (A \setminus B) = B$.

The premise is actually false. Let $A = \{1, 2\}$ and $B = \{2, 3\}$. We can see that $A \setminus B = \{1\}$ and that $A \setminus \{1\} = \{2\} \neq \{2, 3\}$.

If instead the condition had been added that $B \subseteq A$, it would have been a good problem.

Problem 5

Let $A, B \subseteq X$. Prove that $A \subseteq B \iff B^c \subseteq A^c$.

We first prove that $A \subseteq B \implies B^c \subseteq A^c$. $A \subseteq B$ means that all elements of A are also in B. Also, by definition, $x \in B^c \implies x \notin B$. So, $\forall x \notin B^c$, $x \in B^c$ cannot be in A, which means that $x \in A^c$. Thus, $B^c \subseteq A^c$.

We now prove the other direction, that $B^c \subseteq A^c \implies A \subseteq B$. Note that any $x \in B^c$ is also in A^c . In other words, x cannot be in B^c and also be in A. So, any element of A is also in B, which means $A \subseteq B$.

Problem 17

Let A and B be two sets such that $A \subseteq B$. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Let S be any element of $\mathcal{P}(A)$. By the definition of $\mathcal{P}(A)$, $S \subseteq A$. Since $A \subseteq B$, every element of S is in B as well, so $S \subseteq B$. Hence, $S \in \mathcal{P}(B)$. So, every $S \in \mathcal{P}(A)$ is also in $\mathcal{P}(B)$, which means $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Section 0.4

Problem 10

Let $f: X \to Y$ be a function.

a) Prove that $f(f^{-1}(B)) \subseteq B$ for all $B \subseteq Y$.

Take any $y \in f(f^{-1}(B))$. This means that y = f(x) for some $x \in f^{-1}(B)$. By the definition of $f^{-1}(B)$, $f(x) \in B$, so $y \in B$. Thus, $f(f^{-1}(B)) \subseteq B$.

b) Prove that $f(f^{-1}(B)) = B$ when f is surjective.

We have already shown that $f(f^{-1}(B)) \subseteq B$ in general, so it is also true if f is surjective. We will show that if f is surjective, then $B \subseteq f(f^{-1}(B))$, and thus that $f(f^{-1}(B)) = B$. For f to be surjective, it is necessary that for all $y \in Y$ there exists some $x \in X$ such that f(x) = y. In particular, for all $y \in B$ there exists an $x \in f^{-1}(B)$ where f(x) = y. Hence, $y \in f(f^{-1}(B))$ for any $y \in B$. So, when f is surjective, $B \subseteq f(f^{-1}(B))$, and thus $B = f(f^{-1}(B))$.

Problem 17

Let $f: X \to Y$ be a function. Prove that $f(A \cup B) = f(A) \cup f(B)$ for all $A, B \in X$.

Let $y \in Y$ and $x \in X$ such that f(x) = y and $y \in f(A \cup B)$. $y \in f(A \cup B)$ if and only if $x \in A \cup B$. Equivalently we can say $x \in A$ or $x \in B$, which is true if and only if $y \in f(A)$ or $y \in f(B)$. By definition, this means $y \in f(A) \cup f(B)$. Since $y \in f(A \cup B) \iff y \in f(A) \cup f(B)$, $f(A \cup B) = f(A) \cup f(B)$ for all $A, B \in X$.

Problem 18

Let $f: X \to Y$ be a function.

a) Prove that $f(A \cap B) \subseteq f(A) \cap f(B)$ for all sets $A, B \subseteq X$ but that equality does not hold in general.

Let $y \in f(A \cap B)$. There must exist at least one $x \in A \cap B$ such that f(x) = y. By definition $x \in A$ and $x \in B$, so $y \in f(A)$ and $y \in f(B)$. Since this is true for any $y \in f(A \cap B)$, it must be that $f(A \cap B) \subseteq f(A) \cap f(B)$.

We can show a case where $f(A \cap B) \subseteq f(A) \cap f(B)$.

Take $X = \{1, 2, 3\}, Y = \{8, 9\}$ and $A, B \subseteq X$ where $A = \{1, 2\}$ and $B = \{1, 3\}$. Define $f: X \to Y$ such that f(1) = 9, f(2) = 8, f(3) = 8. Now we find that $(A \cap B) = \{1\}, f(A \cap B) = \{9\}, f(A) = \{8, 9\}, f(B) =$

and $(f(A) \cap f(B)) = \{8, 9\}$. Note that $\{9\} \subseteq \{8, 9\}$ in this case, but it still satisfies the property we proved above.

b) Prove that if f is injective, $f(A \cap B) = f(A) \cap f(B)$.

We already showed that for general f, $f(A \cap B) \subseteq f(A) \cap f(B)$. So we only need to prove that $f(A) \cap f(B) \subseteq f(A \cap B)$ in order to conclude that $f(A \cap B) \subseteq f(A) \cap f(B)$. Let $y \in f(A) \cap f(B)$, which means that $y \in f(A)$ and $y \in f(B)$. Since f is injective, there exists a unique x such that f(x) = y. This means that x must be in both A and B. Thus, $x \in A \cap B$, so $y \in f(A \cap B)$. Since all $y \in f(A) \cap f(B)$ is also in $f(A \cap B)$, $f(A) \cap f(B) \subseteq f(A \cap B)$ and thus $f(A \cap B) = f(A) \cap f(B)$.

Problem 19

Let $f: X \to Y$ be a function and let $A, B \subseteq Y$.

Show that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$:

For all $x \in X$,

$$\begin{split} x \in f^{-1}(A \cup B) &\iff f(x) \in A \cup B \\ &\iff f(x) \in A \vee f(x) \in B \\ &\iff x \in f^{-1}(A) \vee x \in f^{-1}(B) \\ &\iff x \in f^{-1}(A) \cup f^{-1}(B). \end{split}$$

Since $x \in f^{-1}(A \cup B) \iff x \in f^{-1}(A) \cup f^{-1}(B)$, we conclude that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

Show that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$:

For all $x \in X$,

$$\begin{array}{ll} x \in f^{-1}(A \cap B) & \iff f(x) \in A \cap B \\ & \iff f(x) \in A \wedge f(x) \in B \\ & \iff x \in f^{-1}(A) \wedge x \in f^{-1}(B) \\ & \iff x \in f^{-1}(A) \cap f^{-1}(B). \end{array}$$

Since $x \in f^{-1}(A \cap B) \iff x \in f^{-1}(A) \cap f^{-1}(B)$, we conclude that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

Show that $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$:

For all $x \in X$,

$$x \in f^{-1}(A \setminus B) \quad \iff f(x) \in A \setminus B$$
$$\iff f(x) \in A \land f(x) \notin B$$
$$\iff x \in f^{-1}(A) \land x \notin f^{-1}(B)$$
$$\iff x \in f^{-1}(A) \setminus f^{-1}(B).$$

Since $x \in f^{-1}(A \setminus B) \iff x \in f^{-1}(A) \setminus f^{-1}(B)$, we conclude that $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$.