KTH Matematik

Examinator: Petter Brändén Kursansvarig: Olof Sisask

Σρ	G/U	bonus

Efternamn	förnamn	pnr	programkod

Kontrollskrivning 3A till Diskret Matematik SF1610, för CINTE, vt2018

Inga hjälpmedel tillåtna.

Minst 8 poäng ger godkänt.

Godkänd KS nr n medför godkänd uppgift n vid tentor till (men inte med) nästa ordinarie tenta (högst ett år), n = 1, ..., 5.

13–15 poäng ger ett ytterligare bonuspoäng till tentamen.

Uppgifterna 3)-5) kräver väl motiverade lösningar för full poäng. Uppgifterna står inte säkert i svårighetsordning.

Spara alltid återlämnade skrivningar till slutet av kursen!

Skriv dina lösningar och svar på samma blad som uppgifterna; använd baksidan om det behövs.

1) (För varje delfråga ger rätt svar $\frac{1}{2}$ p, inget svar 0p, fel svar $-\frac{1}{2}$ p. Totalpoängen på uppgiften rundas av uppåt till närmaste icke-negativa heltal.)

Kryssa för om påståendena a)-f) är sanna eller falska (eller avstå)!

		sant	falskt
a)	Om H är en delgrupp till en kommutativ grupp G , då är H också kommutativ.	X	
b)	Den symmetriska gruppen S_8 har en delgrupp av storlek 6.	X	
c)	Permutationen $(1\ 2)(3\ 4\ 5)(6\ 7\ 9\ 8)$ har ordning 24.		X
d)	Om a är ett element i en grupp G och a har ordning k , då måste k dela $ G $.	X	
e)	Varje ändlig grupp är cyklisk.		X
f)	Låt $\pi = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 4 & 5 & 6 \end{bmatrix}$ och $\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 5 & 6 & 4 \end{bmatrix}$. Då är $\pi \circ \sigma = \sigma \circ \pi$.	X	

poäng uppg.1

Namn	poäng uppg.2

2a) (1p) Ge ett exempel på en udda permutation i S_5 . Svaret ska ges i 2-radsform/tablåform.

(Det räcker att ange rätt svar.)

Svar: t.ex. $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{bmatrix}$

b) (1p) Skriv ned ett exempel på en delgrupp av storlek 2 till gruppen $(\mathbb{Z}_8,+).$

(Det räcker att ange rätt svar.)

Svar: $\{0, 4\}$

c) (1p) Ge ett exempel på en permutation i S_5 med ordning 6. (Det räcker att ange rätt svar.)

Svar: t.ex. $(1\ 2\ 3)(4\ 5)$

Namn	poäng uppg.3

3) (3p) Låt G vara en mängd och låt \circ vara en binär operation på G. Skriv ned i detalj tre av de fyra axiomen som gör (G, \circ) till en grupp.

OBS. De kompletta axiomen skall ges: det räcker inte bara att ge ett axioms namn.

Lösning: De fyra axiomen är:

- (1) Slutenhet: $a \circ b \in G$ för alla $a, b \in G$.
- (2) **Identitet:** det finns ett element $e \in G$ sådant att

$$a \circ e = e \circ a = a$$
 för varje $a \in G$.

(Ett sådant element e kallas ett identitetselement.)

(3) **Inverser:** för varje $a \in G$ finns det ett element $b \in G$ sådant att

$$a \circ b = b \circ a = e$$
,

där e är ett identitetselement som ovan.

(4) **Associativitet:** för alla $a, b, c \in G$ så är

$$a \circ (b \circ c) = (a \circ b) \circ c.$$

Namn	poäng uppg.4

4) (3p) Låt G vara gruppen $G = (\mathbb{Z}_{10}, +)$. Bestäm en delgrupp H till G och två olika sidoklasser $S_1 \neq S_2$ till H med egenskapen att $S_1 \cup S_2 = G$.

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Lösning: Vi bestämmer först delgruppen H. Eftersom varje sidoklass till H har samma storlek som H, och olika sidoklasser är disjunkta, så följer det från $G=S_1\cup S_2$ att

$$10 = |G| = |S_1| + |S_2| = |H| + |H| = 2|H|,$$

och därmed att

$$|H| = 5.$$

Den enda delgruppen av denna storlek i \mathbb{Z}_{10} är

$$H = \{0, 2, 4, 6, 8\}.$$

Denna delgrupp har endast två olika sidoklasser, nämligen

$$S_1 = H \quad \text{och} \quad S_2 = 1 + H,$$

och dessa uppfyller den önskade egenskapen.

Namn	poäng uppg.5

5) (3p) Låt π , σ , φ vara följande permutationer av elementen i mängden $\{1, 2, 3, 4, 5\}$ (skrivna i cykelform).

$$\pi = (1\ 5\ 2\ 4), \qquad \sigma = (1\ 2)(3\ 4), \qquad \varphi = (1\ 5)(2\ 4).$$

Bestäm ordningen av permutationen $\pi \circ \sigma \circ \varphi$, och bestäm om denna permutation är udda eller jämn.

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Om du använder en sats i din lösning måste du beskriva vad satsen påstår.

Lösning: Multiplikation av permutationer ger

$$\pi \circ \sigma \circ \varphi = (1\ 2\ 3)(4\ 5).$$

Enligt satsen om ordningen av en produkt av disjunkta cykler, som säger att ordningen av en produkt av disjunkta cykler av längder k_1, \ldots, k_m är $\operatorname{lcm}(k_1, \ldots, k_m)$, är ordningen av denna permutation $\operatorname{lcm}(3, 2) = 6$.

Eftersom $(1\ 2\ 3) = (1\ 2)(2\ 3)$ så är

$$\pi \circ \sigma \circ \varphi = (1\ 2)(2\ 3)(4\ 5)$$

en udda permutation, enligt definition.