Domácí úkol na 18.5.2023

Fourierova transformace

1. Bílý a Brownův šum

Vytvořte časovou řadu délky N=2000 se vzorkovací frekvencí $f_s=2000\,\mathrm{Hz}$ (signál tedy bude trvat přesně 1 s), jejíž elementy budou tvořeny nekorelovaným výběrem z rovnoměrného rozdělení na intervalu (-1,1),

$$h_j \in R(-1,1), \qquad j = 0, \dots, N-1,$$

a časovou řadu vzniklou postupným sčítáním řady h_i ,

$$l_j = \sum_{k=0}^j h_k.$$

Spočítejte Fourierovu transformaci H_k a L_k obou časových řad a vykreslete do log-log grafu (pomocí funkce loglog z knihovny matplotlib.pyplot) kvadráty amplitud $S_k^{(H)} = |H_k|^2$ a $S_k^{(L)} = |L_k|^2$ v závislosti na frekvencích $f_k = kf_s/(N-1)$ pro $k = 1, \ldots, N/2$. Přesvědčte se, že v případě časové řady h_j je frekvenční spektrum téměř konstantní (až na fluktuace),

$$H_k \approx \text{konst.},$$

zatímco v případě časové řady l_i klesá podle zákona

$$L_k \approx \frac{1}{f_k^2}.$$

První časová řada odpovídá tzv. bílému šumu (v analogii se světlem — všechny frekvence jsou zastoupeny se stejnou vahou), druhá pak Brownovskému šumu (l_j odpovídá poloze Brownovské částice pohybující se na přímce).

2. Srážka černých děr

Ve složce sounds v souboru **BlackHolesCollision.wav** je nasimulovaný průběh gravitačních vln těsně před srážkou dvou černých děr. Načtěte tento soubor pomocí knihovny **soundfile** příkazem

V proměnné fs bude vzorkovací frekvence použitá v souboru. Pozor, soubor má dva kanály, pro následující analýzu vyberte pouze jeden z nich příkazem signal[:,0].

Signál si můžete přehrát pomocí funkce sounddevice.play(sound, fs) z knihovny sounddevice. Uslyšíte charakteristický tzv. chirp sound.

Rozdělte časovou řadu na časová okna délky $N_W = 2000$ bodů a pro každé okno spočítejte Fourierovu transformaci a kvadráty amplitud S_k . Následně vykreslete konturový graf (spektrogram), kde na ose x bude čas (začátku nebo středu použitého časového okna), na ose y frekvence a na ose z (barevný kód) amplituda. Frekvence omezte pomocí příkazu plt.ylim(0, 500) na hodnoty $\langle 0 \, \text{Hz}, 500 \, \text{Hz} \rangle$.

Vypracovaný úkol odešlete na e-mailovou adresu pcfyzika@pavelstransky.cz. Před odesláním se přesvědčte, že program neobsahuje žádné syntaktické chyby a že je z kódu pochopitelné, jak ho spustit, aby vrátil hledaný výsledek.

¹Soubor pochází z http://web.mit.edu/sahughes/www/sounds.html.