Last class - June 1, 2023
D Review of Heferoskedasticity
2) Mini Batch & Stochastic Gradient Descent
3) Polynomial Regression
Today - June 3, 2023
D) Re cap - Quizzes
-> 2) Generalization & Occam's Razor
-) 3) Underfitting Overfitting & Trade off
-> 4) Bias & Variance
-> 5) Regularization - L2, L1, Elastic Net
-> 6) Hypenparameter tuning wit Regularization
7) AMA
I) Generalization 20 % vol +
Degree of Polynamial 20% test
Should music for both train data & val date
J) PC(am's Razor
- K C SON
Pick the Simplest model which dre
the job well
d=[], 2, B, E, S] simplest
X

Cambining I & I, => Pick the simplest model which gives best ... choose d'which gives highest R2 score/ val Inta Receivacy / min. eman M, 7 og trans error

maxima Vollerror d: 1 (linear) High

Vd: 2 (Orand) Low

d: 3 (Orbit) Low

d: 4 (Bigrand) Low 7(w) Linear, Quadratic, Cubic, Biguadratic Train Train, Vol, Test
60'/, 201/, 201/.

Under titting, Over fitting & Trade-off Train error Text error low _ soventiting < high high -> under titing (thigh over fit " Decent

Test ACC

Small <= 41/2 Trown ACC 190% -> diff = 30%.

190% -> diff = 88%.

Small high bim Close to target low bim town acc is high low bian J. low deviation from train ace is low shigh bias 2) Diff between train acc & val acc is high -) high variance Dift between train acc & val acc is form your

High Bim High Vouciance d = 40 - , trois det Volents Hirry _____ is cream the legree of the roudel (complexity) fwz x2 fw3 x3 twent of o Regularization Term: + > (Wit + W2 + W32 + W42)

 $\lambda \left(w_1^2 + w_2^2 + w_3^2 + w_4^2 \right)$ regulari Zution [W2 (kidn) I to 6 W2 -> high [W] (Solvy)
1 L to 10 L p to 1 (~ low

