MATH2040C Homework 7

ZHENG Weijia (William, 1155124322)

April 25, 2021

1 Section 6.3, Q3(c)

For each of the following inner product spaces V and linear operators T on V, evaluate T^* at the given vector in V.

(c)
$$V = P_1(R)$$
 with $\langle f, g \rangle = \int_{-1}^1 f(t)g(t) dt$, $T(f) = f' + 3f$, $f(t) = 4 - 2t$

The first thing we need to do is to find a orthonormal basis for V.

A basis for V is $\alpha=\{1,t\}$. Note that $\int_{-1}^1 1 \cdot t \ dt=0$. Therefore α is an orthogonal basis. Applying the Gram-Schmidt process, we can generate an orthonormal basis $\beta=\{\frac{1}{\sqrt{2}},\frac{\sqrt{3}t}{\sqrt{2}}\}$.

Then according to Remark 16.3, we can have

$$T^*(g(t)) = \sum_{i=1}^n \overline{\langle T(v_i), g(t) \rangle} v_i.$$

With $T(\frac{1}{\sqrt{2}})=\frac{3}{\sqrt{2}}.$ And $T(\sqrt{\frac{3}{2}}t)=\sqrt{\frac{3}{2}}+3\sqrt{\frac{3}{2}}t..$ Therefore,

$$T^*(g(t)) = \frac{3}{2} \int_{-1}^{1} g(t)dt + \frac{3}{2}t \int_{-1}^{1} (1+3t)g(t)dt.$$

The given vector is f(t) = 4 - 2t. Hence the answer should be

$$T^*(4-2t) = 12 + 6t.$$

Done.

2 Section 6.3, Q13

Let T be a linear operator on a finite-dimensional vector space V. Prove the following results.

- (a) $N(T^*T) = N(T)$. Deduce that $rank(T^*T) = rank(T)$.
- (b) $rank(T) = rank(T^*)$. Deduce from (a) that $rank(TT^*) = rank(T)$.
- (c) For any $n \times n$ matrix A, rank $(A^*A) = \text{rank}(AA^*) = \text{rank}(A)$.

2.1 (a)

Note that $\forall x \in N(T)$,

$$T^*Tx = T^*(Tx) = T^*(0) = 0.$$

Therefore $x \in N(T^*T)$. Hence $N(T) \subset N(T^*T)$.

Forall $y \in N(T^*T)$, consider the norm of Ty:

$$||Ty||^2 = \langle Ty, Ty \rangle = \langle y, T^*Ty \rangle = \langle y, 0 \rangle = 0.$$

Which implies that Ty=0. Therefore $y\in N(T)$. Hence $N(T^*T)\subset N(T)$. Based on all above, $N(T^*T)=N(T)$.

Recall that $T \in \mathcal{L}(V)$. Hence $T: V \to V$. And according to $\forall y \in V$,

$$T^*(y) = \sum_{i=1}^n \overline{\langle T(v_i), y \rangle} v_i.$$

We know that $T^*: V \to V$. Therefore $T^*T: V \to V$.

Applying the rank nullity theorem, we have that

$$\dim V = rank(T^*T) + \dim N(T^*T) , \ \dim V = rank(T) + \dim N(T).$$

Using the just proved fact $N(T^*T) = N(T)$, we can simply deduce

$$rank(T^*T) = rank(T).$$

2.2 (b)

By changing name of the identity in (a), we can have $N(TT^*)=N(T^*)$ and $rank(TT^*)=rank(T^*).$

Notice that

$$rank(T) = rank[T]_{\beta} = rank[T]_{\beta}^* = rank[T^*]_{\beta} = rank(T^*).$$

And then $rank(TT^*) = rank(T)$ follows.

2.3 (c)

From (b), $rank(AA^*) = rank(A)$ follows naturally. And note that $(AA^*)^* = A^*A$, then

$$rank(AA^*) = rank(A^*A).$$

Therefore,

$$rank(AA^*) = rank(A^*A) = rank(A).$$

Done.

3 Section 6.3, Q14

Let V be an inner product space, and let $y, z \in V$. Define T: V \rightarrow V by $T(x) = \langle x, y \rangle z$ for all $x \in V$. First prove that T is linear. Then show that T* exists, and find an explicit expression for it.

First we would prove that T is linear. $\forall x_1, x_2 \in V, \forall c \in F$,

$$T(cx_1 + x_2) = \langle cx_1 + x_2, y \rangle z = \langle cx_1, y \rangle z + \langle x_2, y \rangle z = c \langle x_1, y \rangle z + \langle x_2, y \rangle z.$$

The equalities are deduced from the properties of inner product. And hence

$$T(cx_1 + x_2) = cT(x_1) + T(x_2).$$

Therefore, T is linear.

From course not we directly construct $\forall x \in V$,

$$T^*(x) = \sum_{i=1}^n \overline{\langle T(v_i), x \rangle} v_i = \sum_{i=1}^n \overline{\langle \langle v_i, y \rangle z, x \rangle} v_i = \overline{\langle z, x \rangle} \sum_{i=1}^n \overline{\langle v_i, y \rangle} v_i = \overline{\langle z, x \rangle} y.$$

Recall that $y = I(y) = I^*(y) = \sum_{i=1}^n \overline{\langle I(v_i), y \rangle} v_i = \sum_{i=1}^n \overline{\langle v_i, y \rangle} v_i$. Hence the last equality holds properly.

4 Section 6.3, Q15

Definition. Let $T: V \to W$ be a linear transformation, where V and W are finite-dimensional inner product spaces with inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$, respectively. A function $T^*: W \to V$ is called an **adjoint** of T if $\langle T(x), y \rangle_2 = \langle x, T^*(y) \rangle_1$ for all $x \in V$ and $y \in W$.

- **15.** Let $T: V \to W$ be a linear transformation, where V and W are finite-dimensional inner product spaces with inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$, respectively. Prove the following results.
 - (a) There is a unique adjoint T* of T, and T* is linear.
 - (b) If β and γ are orthonormal bases for V and W, respectively, then $[\mathsf{T}^*]_{\gamma}^{\beta} = ([\mathsf{T}]_{\beta}^{\gamma})^*$.
 - (c) $\operatorname{rank}(T^*) = \operatorname{rank}(T)$.
 - (d) $\langle \mathsf{T}^*(x), y \rangle_1 = \langle x, \mathsf{T}(y) \rangle_2$ for all $x \in \mathsf{W}$ and $y \in \mathsf{V}$.
 - (e) For all $x \in V$, $T^*T(x) = 0$ if and only if T(x) = 0.

4.1 (a)

Define $g:V\to F$ by $g(x)=\langle T(x),y\rangle_2$. Obviously, note that g is linear for sure.

Then apply the theorem 6.8, there exists a unique vector $y' \in W$ such that

$$g(x) = \langle x, y' \rangle_1.$$

Recall g's definition, we have $\langle T(x), y \rangle_2 = \langle x, y' \rangle_1, \ \forall x \in V$.

Define that $T^*:W\to V$ by $T^*(y)=y'.$

Then we have $\langle T(x), y \rangle_2 = \langle x, T^*(y) \rangle_1$.

Hence the wanted T^* function exists, and becasue the y' is "unique" as mentioned above (for any y), then the T^* is also unique.

Then we prove the linearity of T^* . $\forall y_1, y_2 \in W$ and $\forall c \in F$,

$$\langle x, T^*(cy_1 + y_2) \rangle_1 = \langle T(x), cy_1 + y_2 \rangle_2 = \langle x, cT^*(y_1) \rangle_1 + \langle x, T^*(y_2) \rangle_1$$

= $\langle x, cT^*(y_1) + T^*(y_2) \rangle_1, \forall x \in V.$

4

Therefore $T^*(cy_1 + y_2) = cT^*(y_1) + T^*(y_2)$. Hence T^* is linear.

4.2 (b)

For such kind of problem, we need to compare the two matrices entry wise. Denote $\beta = \{v_1, v_2, \dots, v_n\}, \gamma = \{w_1, w_2, \dots, w_m\}.$

Inspect
$$[T^*]_{\gamma}^{\beta} = [T^*(w_1), T^*(w_2), \dots, T^*(w_m)]_{\beta}$$
.

Note that
$$T^*(w_j) = \sum_{i=1}^n \overline{\langle v_i, T^*(w_j) \rangle_1} v_i, \ \forall j = 1, 2, \dots, m$$
.

From this we know that the i-th row, j-th column of $[T^*]_{\gamma}^{\beta}$ is $\overline{\langle v_i, T^*(w_j) \rangle_1}$.

Inspect
$$[T]^{\gamma}_{\beta} = [T(v_1), T(v_2), \dots, T(v_n)]_{\gamma}$$
.

Note that
$$T(v_i) = \sum_{k=1}^m \overline{\langle w_k, T(v_i) \rangle_2} w_k, \ \forall i = \underline{1, 2, \dots, n}.$$
 Therefore, the i-th column, k-th row of $[T]_{\beta}^{\gamma} = \overline{\langle w_k, T(v_i) \rangle_2}.$

Hence, for $([T]^{\gamma}_{\beta})^*$, the i-th row, j-th column is $\langle w_j, T(v_i) \rangle_2$.

What remains to be done is to show

$$\langle w_j, T(v_i) \rangle_2 = \overline{\langle v_i, T^*(w_j) \rangle_1}.$$

This is equivalent to show $\overline{\langle w_i, T(v_i) \rangle_2} = \langle v_i, T^*(w_i) \rangle_1$.

Note that the L.H.S.= $\langle T(v_i), w_j \rangle_2$ =R.H.S. from the definition of T^* . Hence this is proved.

4.3 (c)

 $rank(T^*) = rank([T^*]^{\beta}_{\gamma}) \text{ and } rank(T) = rank([T]^{\gamma}_{\beta}) = rank(([T]^{\gamma}_{\beta})^*).$ Followed from (b), we have $rank(T^*) = rank(T)$.

4.4 (d)

We want to prove $\langle T^*(y), x \rangle_1 = \langle y, T(x) \rangle_2, \forall y \in W, x \in V$. which is equivalent to prove $\langle x, T^*(y) \rangle_1 = \langle T(x), y \rangle_2$.

And L.H.S.= $\langle T(x), y \rangle_2$ followed from the definition of T^* .

Done.

4.5 (e)

It is suffice to prove $N(T) = N(T^*T)$. And it is obvious to see that

$$N(T) \subset N(T^*T).$$

Take any x such that $T^*Tx = 0$. We have $\langle Tx, Tx \rangle_2 = \langle x, T^*Tx \rangle_1 = 0$. Which implies that Tx = 0. Hence $x \in N(T)$, and $N(T^*T) = N(T)$.

Done.

5 Section 6.4, Q2(d)

For each linear operator T on an inner product space V, determine whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of T for V and list the corresponding eigenvalues.

(d) $V = P_2(R)$ and T is defined by T(f) = f', where

$$\langle f, g \rangle = \int_0^1 f(t)g(t) dt.$$

Let $\{1,t,t^2\}$ be a basis for $P_2(\mathbb{R})$, then apply Gram-Schmidt process upon it, we can have an orthonormal basis $\beta=\{1,2\sqrt{3}(t-\frac{1}{2}),6\sqrt{5}(t^2-t+\frac{1}{6})\}.$

First, we claim that T is not self-adjoint, by the spectral theorem, T is self-adjoint iff, T is diagnoalizable, which implies that it will lead to the eigenspace decomposition of V. Note that there is only one eigenvalue of T, which is 0 and the only corresponding set of eigenvectors is $span\{1\}$. It is obvious that $E_0 \neq V$, since $t^2 \notin E_0$. Therefore T is not self-adjoint and meanwhile, it is impossible to derive a orthonormal basis of eigenvectors of T for V.

Also, T is not normal.

6 Section 6.4, Q7

Let T be a linear operator on an inner product space V, and let W be a T-invariant subspace of V. Prove the following results.

- (a) If T is self-adjoint, then T_W is self-adjoint.
- (b) W[⊥] is T*-invariant.
- (c) If W is both T- and T*-invariant, then $(T_W)^* = (T^*)_W$.
- (d) If W is both T- and T*-invariant and T is normal, then T_W is normal.

6.1 (a)

Denote dim V = n, dim W = m, with $m \le n$. Let $\beta = \{v_1, v_2, \dots, v_n\}$ be an orthonormal basis for V, $\beta_W = \{v_1, v_2, \dots, v_m\}$ be an orthonormal basis for W.

 $\forall y \in W, T_W(y) = T(y) = \sum_{i=1}^n \langle T(y), v_i \rangle v_i = T^*(y)$. Because T is a self adjoint operator.

From the construction rule of adjoint, we have $T^*(y) = \sum_{i=1}^n \overline{\langle T(v_i), y \rangle} v_i$.

From the question, we know that W is T-invarian, then $T_W(y) \in W$. Combined with v_i 's are linear independent, then

$$T_W(y) = \sum_{i=1}^m \overline{\langle T(v_i), y \rangle} v_i = \sum_{i=1}^m \overline{\langle T_W(v_i), y \rangle} v_i.$$

Note that the R.H.S. is the definition of $T_W^*(y)$. Hence

$$T_W(y) = T_W^*(y), \forall y \in W.$$

6.2 (b)

Make it clear that what we want is $T^*(W^{\perp}) \subset W^{\perp}$. By the construction of T^* , we have

$$T^*(y) = \sum_{i=1}^n \overline{\langle T(v_i), y \rangle} v_i.$$

Note that $\forall y \in W^{\perp}, y = \sum_{j=m+1}^{n} \langle y, v_i \rangle v_i$.

Therefore

$$T^*(y) = \sum_{i=1}^n v_i \left(\sum_{j=m+1}^n \langle y, v_j \rangle \langle v_j, T(v_i) \rangle \right).$$

Recall that W is T-invariant, hence $T(v_i) \in W$, then $\langle v_j, T(v_i) \rangle = 0, \forall i \leq m$. Hence $T^*(y) = \sum_{i=m+1}^n v_i \sum_{j=m+1}^n \langle y, v_j \rangle \langle v_j, T(v_i) \rangle \in W^{\perp}$.

6.3 (c)

 $\forall y \in W, (T_W)^*(y) = \sum_{i=1}^m \overline{\langle T_W(v_i), y \rangle} v_i$. Because $(T_W)^*(y) \in W$ assumed in question.

Note that $y \in W$, then $y \in V$. Hence we can use the original definition of T. We then have

$$(T^*)_W(y) = T^*(y) = \sum_{i=1}^n \overline{\langle T(v_i), y \rangle} v_i.$$

Inspect the $\langle T(v_i), y \rangle$ terms, here $y \in W$. If i = 1, 2, ..., m then $T(v_i) \in W$, when i = m + 1, m + 2, ..., n then $v_i \in W^{\perp}$ and hence $T(v_i) \in W^{\perp}$. Therefore $\langle T(v_i), y \rangle = 0, \forall i = m + 1, m + 2, ..., n$.

Hence, we have

$$(T^*)_W(y) = T^*(y) = \sum_{i=1}^m \overline{\langle T(v_i), y \rangle} v_i = \sum_{i=1}^m \overline{\langle T_W(v_i), y \rangle} v_i = (T_W)^*(y).$$

Done.

6.4 (d)

Note that as mentioned in the question, W is both T- and T^*- invariant. Hence $\forall y \in W$,

$$T_W(T_W)^*(y) = T_W(T^*(y)).$$

Where $T^*(y) \in W$. Then $T_W(T_W)^*(y) = TT^*(y)$, where $TT^*(y) \in W$ as well. On the other hand,

$$(T_W)^*T_W(y) = (T_W)^*T(y) = T^*T(y).$$

Which is valid for similar reasons.

Recall that T is normal. Hence $(T_W)^*T_W(y) = T_W(T_W)^*(y), \forall y \in W$. Therefore, T_W is normal.

7 Section 6.4, Q9

Let T be a normal operator on a finite-dimensional inner product space V. Prove that $N(T) = N(T^*)$ and $R(T) = R(T^*)$. Hint: Use Theorem 6.15 and Exercise 12 of Section 6.3.

From theorem 6.15, we know that $||T(x)|| = ||T^*(x)||, \forall x \in V$.

 $\forall x \in N(T)$, then T(x) = 0, which is equivalent to ||T(x)|| = 0. Then $||T^*(x)|| = 0$, which is equivalent to $T^*(x) = 0$. Thus $x \in N(T^*)$. Note that each step above is revertible, then $N(T) = N(T^*)$.

Using the question 12 of section 6.3, we then have $N(T)^{\perp} = R(T^*)$ and $N(T^*)^{\perp} = R((T^*)^*) = R(T)$.

As $N(T) = N(T^{\perp})$, then $R(T) = R(T^*)$. Done.

8 Section 6.5, **Q2**(c)

For each of the following matrices A, find an orthogonal or unitary matrix P and a diagonal matrix D such that $P^*AP = D$.

(c)
$$\begin{pmatrix} 2 & 3-3i \\ 3+3i & 5 \end{pmatrix}$$

By solving its characteristic polynomial, we have 2 eigenvalues: $\lambda_1 = -1$ and $\lambda_2 = 8$.

And we can have $v_1 = \begin{pmatrix} 1-i \\ -1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ 1+i \end{pmatrix}$.

Normalize them, we then have $v_1' = \frac{1}{\sqrt{3}}v_1, v_2' = \frac{1}{\sqrt{3}}v_2$.

Then let $P = \begin{pmatrix} v_1' & v_2' \end{pmatrix}$.

And hence the $P^* = \begin{pmatrix} -\overline{v_1'} - \\ -\overline{v_2'} - \end{pmatrix}$.

Note that $P^*P = I_2$. Therefore P is a unitary matrix.

Then

$$P^*AP = P^*(\lambda_1 v_1', \lambda_2 v_2') = \begin{pmatrix} -\overline{v_1'} - \\ -\overline{v_2'} - \end{pmatrix} (\lambda_1 v_1', \lambda_2 v_2') = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}.$$

9 Section 6.5, Q6

Let V be the inner product space of complex-valued continuous functions on [0, 1] with the inner product

$$\langle f, g \rangle = \int_0^1 f(t) \overline{g(t)} dt.$$

Let $h \in V$, and define $T: V \to V$ by T(f) = hf. Prove that T is a unitary operator if and only if |h(t)| = 1 for $0 \le t \le 1$.

9.1 Only If

We would like to prove it by contradiction. Note that now we have the condition of T being unitary opeartor. This implies that

$$||T(f)|| = ||f||, \forall f \in V.$$

Doing the inner product, we left with

$$\int_0^1 |f(t)|^2 (|h(t)|^2 - 1) dt = 0.$$

Recall that all of the h, f are continuous functions defined on compact interval. On which we can apply the boundedness theorem to obtain that

$$\exists M > 0, s.t. - M < \int_0^1 |f(t)|^2 (|h(t)|^2 - 1) dt < M$$

Suppose $|h(t)| \neq 1$ for some $t_0 \in [0,1]$ (WLOG, we suppose $h(t_0) > 1$.) we will construct a g(t) s.t.

$$\int_0^1 |g(t)|^2 (|h(t)|^2 - 1) dt \neq 0.$$

Note that \exists a interval I such that $\forall t \in I, h(t) \ge \frac{1+h(t_0)}{2}$. Where I is defined in the following way: $\exists \delta > 0$ s.t.

$$I = [t_0 - \delta, t_0 + \delta] \quad (t_0 \in (0, 1))$$

$$I = [0, t_0 + \delta] \quad (t_0 = 0)$$

$$I = [t_0 - \delta, 1] \quad (t_0 = 1).$$

Applying the boundedness theorem on I, then $\int_I |f(t)|^2 (|h(t)|^2 - 1) dt$ is also finite. Which deduces that $\int_{[0,1]-I} |f(t)|^2 (|h(t)|^2 - 1) dt$ is a subtraction of 2 finite values, hence is also a finite number, denote it as M_1 .

Note that

$$\int_{I} |f(t)|^{2} (|h(t)|^{2} - 1) dt \ge (h(t_{0}) - 1) \int_{I} |f(t)|^{2} dt.$$

Manipulate the value of $f(t), t \in I$ such that $\int_I |f(t)|^2 dt > \frac{|M_1|+1}{h(t_0)-1}$. Thus we have

$$\int_0^1 |f(t)|^2 (|h(t)|^2 - 1) dt > M_1 + |M_1| + 1 > 0.$$

Which is a contradiction, hence $\forall t \in [0, 1], |h(t)| = 1$ at the first place.

9.2 If