

Физтех-школа аэрокосмических технологий 15 марта 2024 года

Лабораторная работа 2.1.6

# ЭФФЕКТ ДЖОУЛЯ-ТОМСОНА Зайцев Александр Б03-305

**Цель работы:** определение изменения температуры углекислого газа при протекании через слабопроницаемую перегородку при разных начальных значениях давления и температуры; вычисление коэффициентов Ван-дер-Ваальса.

**В работе используются:** трубка с пористой перегородкой, труба Дьюара, термостат, термометры, дифференциальная термопара; микровольтметр, балластный баллон, манометр.

## Модель Ван-дер-Ваальса.

Уравнение состояния реального газа:

$$(P + \frac{a}{V^2})(V - b) = RT \tag{1}$$

Коэффициент Джоуля-Томсона:

$$\mu = \frac{1}{C_p} \left( \frac{2a}{RT} - b \right) \tag{2}$$

### Модель Бертло.

Уравнение состояния реального газа:

$$(P + \frac{a}{TV^2})(V - b) = RT \tag{3}$$

Коэффициент Джоуля-Томсона:

$$\mu = \frac{1}{C_n} \left( \frac{3a}{RT^2} - b \right) \tag{4}$$

#### Экспериментальная установка.



Рис. 1 Экспериментальная установка

Схема установки для исследования эффекта Джоуля-Томсона в углекислом газе представлена на рисунке 1. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d = 3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Пористость и толщина пробки (l = 5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений  $\Delta P = 4$  атм (расход газа составляет около 10 см3/с); при этом в результате эффекта Джоуля-Томсона создается достаточная разность температур. Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется термометром  $T_{_{\mathrm{B}}}$ , помещенным в термостате. температура воды устанавливается и поддерживается эксперимента при помощи контактного термометра  $T_{_{\!\scriptscriptstyle K}}$ . Давление газа в трубке измеряется манометром М и регулируется вентилем В (при открывании вентиля В, т. е. при повороте ручки против часовой стрелки, давление  $P_{_1}$  повышается). Манометр M измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Так как

углекислый газ после пористой перегородки выходит в область с атмосферным давлением  $P_2$ , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки  $\Delta P = P_1 - P_2$ . Разность ДО перегородки нее температур газа И после измеряется дифференциальной термопарой медь – константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к цифровому вольтметру 7. Отвод тепла проволоку столь малого сечения пренебрежимо мал. уменьшения теплоотвода трубка с пористой перегородкой помещена в Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью трубы и атмосферой.

## Ход работы.

Измерения в соответствии с инструкцией записаны в таблицу. Погрешности измерительных приборов:

$$\sigma_{_{\! P}}=\,$$
 0, 1 бар  $\sigma_{_{\! T}}=\,$  0, 01 $K$   $\sigma_{_{\! E}}=\,$  1 мкВ

Класс точности манометра 1. Температура в комнате на момент начала регистрации данных 21,7°C.

Таблица 1. Результаты измерений

| №  | $T_{\text{rep}}$ ,°C | Е, мкВ         | $\frac{dV}{dT}$ , MKB/°C | Δ <i>T</i> ,°C | $\Delta P$ , бар |
|----|----------------------|----------------|--------------------------|----------------|------------------|
| 1  |                      | 125 <u>±</u> 1 |                          | 3,07±0,01      | 4,0±0,1          |
| 2  |                      | 104 <u>±</u> 1 |                          | 2,56±0,01      | 3,6±0,1          |
| 3  | $20,00\pm0,01$       | 81 <u>±</u> 1  | 40,7                     | 1,99±0,01      | 3,0±0,1          |
| 4  |                      | 61 <u>±</u> 1  |                          | 1,50±0,01      | 2,5±0,1          |
| 5  |                      | 42 <u>±</u> 1  |                          | 1,03±0,01      | 2,0±0,1          |
| 6  |                      | 26 <u>±</u> 1  |                          | 0,64±0,01      | 1,5±0,1          |
| 7  |                      | 124 <u>±</u> 1 |                          | 2,99±0,01      | 4,0±0,1          |
| 8  |                      | 97 <u>±</u> 1  |                          | 2,34±0,01      | 3,6±0,1          |
| 9  | $35,00\pm0,01$       | 70±1           | 41,5                     | 1,69±0,01      | 3,0±0,1          |
| 10 |                      | 51±1           |                          | 1,23±0,01      | 2,5±0,1          |
| 11 |                      | 44 <u>±</u> 1  |                          | 1,06±0,01      | 2,2±0,1          |
| 12 |                      | 29 <u>±</u> 1  |                          | 0,70 ±0,01     | 1,7±0,1          |
| 13 |                      | 101±1          |                          | 2,38±0,01      | 4,0±0,1          |
| 14 |                      | 85 <u>±</u> 1  |                          | 2,00±0,01      | 3,5±0,1          |
| 15 | 45,00±0,01           | 64 <u>±</u> 1  | 42,4                     | 1,51±0,01      | 3,0±0,1          |
| 16 |                      | 49 <u>±</u> 1  |                          | 1,16±0,01      | 2,5±0,1          |
| 17 |                      | 34 <u>±</u> 1  |                          | 0,80±0,01      | 2,0±0,1          |
| 18 |                      | 25 <u>±</u> 1  |                          | 0,59±0,01      | 1,6±0,1          |
| 19 |                      | 97 <u>±</u> 1  |                          | 2,25±0,01      | 4,0±0,1          |
| 20 |                      | 78±1           |                          | 1,81±0,01      | 3,5±0,1          |
| 21 | 55,00±0,01           | 54 <u>+</u> 1  | 43,2                     | 1,25±0,01      | 2,8±0,1          |
| 22 |                      | 40 <u>±</u> 1  |                          | 0,93±0,01      | 2,3±0,1          |
| 23 |                      | 24 <u>+</u> 1  |                          | 0,56±0,01      | 1,8±0,1          |
| 24 |                      | 16 <u>±</u> 1  |                          | 0,37±0,01      | 1,5±0,1          |

Графики зависимости разности температур  $\Delta T$  от перепада давлений  $\Delta P$  на одних координатных осях для всех четырех значений температуры термостата приведены на рисунке 2.



Рис. 2 Графики зависимостей

Угловые коэффициенты прямой это коэффициенты Джоуля-Томсона:

$$T = 20^{\circ}C$$
  $\rightarrow$   $\mu$  = 0,97  $\pm$  0,01 K/6ap  $T = 35^{\circ}C$   $\rightarrow$   $\mu$  = 0,98  $\pm$  0,06 K/6ap  $T = 45^{\circ}C$   $\rightarrow$   $\mu$  = 0,77  $\pm$  0,02 K/6ap  $T = 55^{\circ}C$   $\rightarrow$   $\mu$  = 0,75  $\pm$  0,02 K/6ap

Погрешность коэффициентов Джоуля-Томсона находится по формуле

$$\sigma_{k} = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^{2} \rangle - \langle y \rangle^{2}}{\langle x^{2} \rangle - \langle x \rangle^{2}} - k^{2}}$$
 (5)

Табличные значения коэффициентов Джоуля-Томсона для некоторых температур:

$$T = 20^{\circ}C \rightarrow \mu_{tab} = 1,09 \text{ K/fap}$$

T = 
$$40^{\circ}$$
C  $\rightarrow$   $\mu_{tab}$  = 0,95 K/бар

$$T = 50$$
°C  $\rightarrow \mu_{tah} = 0,83$  K/бар

#### Модель Ван-дер-Ваальса.

График зависимости коэффициентов Джоуля-Томсона от обратной температуры термостата для определения коэффициентов в модели реального газа Ван-дер-Ваальса (1):



Погрешность углового коэффициента была найдена по формуле (5). Погрешность свободного члена найдена по формуле

$$\sigma_m = \sigma_k \cdot \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \tag{6}$$

Несовпадение прямой с крестами погрешностей и высокая погрешность углового коэффициента свидетельствует о том,

что модель Ван-дер-Ваальса слабо применима в условиях данного эксперимента. Его применение возможно лишь только для качественного описания изменений состояния реального газа. Тем не менее, пользуясь формулой (2) можно определить коэффициенты а и b в уравнении состояния реального газа, приняв  $C_p = 36$ ,  $5\frac{\text{Дж·моль}}{\text{кг}}$ .

$$a = \frac{1}{2} RC_p k \cdot 10^{-5} \approx 1,05 \frac{\text{Дж·м}^3}{\text{моль}^2}$$

$$b = -C_{p}m \cdot 10^{-5} \approx 0,05 \cdot 10^{-6} \frac{M^{3}}{MOJD}$$

$$\sigma_{a} = a \frac{\sigma_{k}}{k} = 0,30 \frac{JJW \cdot M^{3}}{MOJD^{2}}$$

$$\sigma_{b} = b \frac{\sigma_{m}}{m} = 0,01 \cdot 10^{-6} \frac{M^{3}}{MOJD}$$

Табличные значения этих коэффициентов для углекислого газа:

$$a_{tab} = 0,365 \frac{\text{Дж·м}^3}{\text{моль}^2}$$

$$b_{tab} = 42,9 \cdot 10^{-6} \frac{\text{м}^3}{\text{моль}}$$

Температура инверсии по модели Ван-дер-Ваальса рассчитывается по формуле:

$$T_{_{\text{NHB}}} = \frac{2a}{Rb} \tag{7}$$

Найденные коэффициенты можно подставить в формулу (7). Получается

$$T_{_{\text{MHB}}} = 5,11 \cdot 10^6 \,\text{K}$$

Табличное значение температуры инверсии:

$$T_{_{\text{MHR}}} = 2047,69 \text{ K}$$

## Модель Бертло.

График зависимости коэффициентов Джоуля-Томсона от обратного квадрата температуры термостата для определения коэффициентов в модели реального газа Бертло (3):



Погрешности углового коэффициента и свободного члена определены по формулам (5) и (6) соответственно.

Несовпадение прямой с крестами погрешностей и высокая погрешность углового коэффициента свидетельствует о том,

что модель Ван-дер-Ваальса слабо применима в условиях данного эксперимента. Его применение возможно лишь только для качественного описания изменений состояния реального газа. Тем не менее, пользуясь формулой (4) можно определить коэффициенты а и b в уравнении состояния реального газа, приняв  $C_p = 36$ ,  $5\frac{\text{Дж·моль}}{\text{кг}}$ .

$$a = \frac{1}{3}RC_{p}k \cdot 10^{-5} \approx 107 \frac{\text{Дж·К·м}^{3}}{\text{моль}^{2}}$$

$$b = -C_{p}m \cdot 10^{-5} \approx 0,83 \cdot 10^{-6} \frac{\text{м}^{3}}{\text{моль}}$$

$$\sigma_{a} = a \frac{\sigma_{k}}{k} = 31,79 \frac{\text{Дж·К·м}^{3}}{\text{моль}^{2}}$$

$$\sigma_{b} = b \frac{\sigma_{m}}{m} = 0,10 \cdot 10^{-6} \frac{\text{м}^{3}}{\text{моль}}$$

Табличные значения этих коэффициентов для углекислого газа:

$$a_{tab} = 110 \frac{\text{Дж·м}^3}{\text{моль}^2}$$
 $b_{tab} = 42, 7 \cdot 10^{-6} \frac{\text{м}^3}{\text{моль}}$ 

Вывод.

В модели газа Ван-дер-Ваальса сильно экспериментально полученные коэффициенты (в т.ч. температура инверсии) сильно не сошлись с табличными. Аналогичная ситуация в модели газа Бертло, где сошелся только коэффициент а, но при этом его погрешность составила целых 29%. Модель реального газа Ван-дер-Ваальса и модель реального газа Бертло имеют свои ограничения и ограниченную область применения. Экспериментально полученные коэффициенты а и в могут не совпадать с табличными из-за несовершенства самой модели или из-за неточностей в измерениях. Это может привести к искажению результатов и невозможности точного применения моделей на практике.

Таким образом, несмотря на то, что модели реального газа Ван-дер-Ваальса и Бертло имеют свою ценность в теоретических исследованиях, их применение в реальной жизни может быть ограничено из-за несовершенства и неточности.