

Turing Machines

- Deterministic TM
 - Configuration; initial configuration
 - Computation
 - Halting
 - Accepting
 - Rejecting
 - Description
 - Graph
 - Shorthand
 - Deciding = the D class of languages
 - Semideciding = the SD class of languages
 - Computing functions

TM Extensions

- Multiple tapes
 - Multi-tape TM is equivalent to deterministic TM
- Nondeterministic TM
 - Accepting, Rejecting
 - Deciding, Semideciding, Computing functions
 - Nondeterministic TM are equivalent with deterministic TM
 - For deciding, semideciding, computing functions
- One-way tape TM
 - One-way tape TM is equivalent to deterministic TM
 - PDA with two stacks can simulate a TM
- TM can simulate real computers

Universal TM

- TM encoding
 - States, tape alphabet, transitions
- Encoding multiple inputs
- Enumerating TMs
- Universal TM
 - Specification
 - On input $\langle M, w \rangle$, simulate M on w
 - Construction

Church-Turing thesis

The Halting Problem

- Halting Problem for TM is in SD \ D
 - Semidecidable (in SD)
 - Not decidable (not in D)
 - Trouble
 - Diagonalization
- $H \in D \Rightarrow D = SD$

D and SD

- D ⊂ SD
- SD \ D ≠ Ø (H is here)
- SD is countable

 $\forall \neg SD$ is uncountable

- D is closed under complement
- SD is not closed under complement
- L \in D iff L, \neg L \in SD

$$\forall \neg H \in \neg SD$$

Enumeration

- TM enumerates
- Turing-enumerable language
- $L \in SD$ iff L is Turing enumerable
- TM lexicographically enumerates
- Lexicographically Turing-enumerable language
- $L \in D$ iff L is lexicographically Turing enumerable

Reduction

- Reduction:
 - $-L_1 \leq L_2$
 - L₁ is reducible to L₂
 - L₂ is harder than L₁
- Using reduction for undecidability
 - Prove that L₂ is not in D
 - Find suitable L₁ not in D
 - Show that $L_1 \leq L_2$
- H, H_{ϵ} , H_{ANY} , A, A_{ϵ} , $A_{ANY} \in SD \setminus D$
- Rice's Theorem:
 - Any nontrivial property of SD is undecidable.
- Practical implications on programs

Non-SD languages

- Proving a language L in not in SD
 - $\Box \neg L \in SD \setminus D$
 - Reduction from non-SD language
- $\forall \neg H, H_{\neg ANY}, EqTMs, H_{ALL}, A_{ALL}, TMreg, A_{anbn} \notin SD$

Unrestricted grammars

- Unrestricted grammars
- Equivalence with SD
 - Grammar → TM
 - TM → Grammar
- Decision problems
 - Undecidability follows from SD

Non-TM problems

- Post Correspondence Problem (PCP)
- PCP ∈ SD \ D
 - $-L_a \leq MPCP \leq PCP$
- Problems of context-free languages
 - CFG_{ALL} \notin D
 - Reduction from H
 - Computation histories
 - CFG₌, PDA_{MIN} \notin D
 - Reduction from CFG_{ALL}
 - IntEmpty, CFG_{UNAMBIG} ∉ D
 - Reduction from PCP