Construction of \mathbb{Z}

March 9, 2024

Assumptions

- There exists a set $\mathbb{N} = \{0, 1, 2, ...\}$.
- There exists $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that $(\mathbb{N}, +)$ forms a commutative monoid with identity $0 \in \mathbb{N}$.
- The function $succ: \mathbb{N} \to \mathbb{N}^+, n \mapsto n+1$ is injective.

¹We will use infix notation for +

Goals

- Constructing the set \mathbb{Z} .
- Defining $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and $\cdot: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ ²
- ullet Showing $(\mathbb{Z},+,\cdot)$ is a commutative ring with multiplicative identity 1.

 $^{^2}$ We will use infix notation for + and \cdot

Defining the set \mathbb{Z}

Idea

We want
$$z \equiv (a, b) \Leftrightarrow z = a - b$$
.

Issue: This representation is not unique. E.g. $0 = 1 - 1 = 2 - 2 = \dots$

Definition: \sim

$$(a,b) \sim (c,d) :\Leftrightarrow a+d=b+c$$

Lemma

 \sim is an equivalence relation

Defining the set \mathbb{Z}

Proof.

Reflexivity:

$$\forall (a, b) \in \mathbb{N} \times \mathbb{N} : a + b = b + a.$$

Symmetry:

$$(a,b) \sim (c,d) \Rightarrow c+b=b+c \underset{(a,b) \sim (c,d)}{=} a+d=d+a \Rightarrow (c,d) \sim (a,b).$$

Transitivity:

Let
$$(a, b) \sim (c, d), (c, d) \sim (e, f)$$
. Then $succ^{c+d}(a+f) = \underbrace{a+d}_{=b+c} + \underbrace{c+f}_{=d+e} = b+c+d+e = succ^{c+d}(b+e)$
 $\Rightarrow a+f = b+e \Rightarrow (a, b) \sim (e, f)$

Construction of $\ensuremath{\mathbb{Z}}$

Defining the set \mathbb{Z}

Definition: \mathbb{Z}

$$\mathbb{Z} := \mathbb{N} \times \mathbb{N} / \sim = \{ [(a, b)] \mid a, b \in \mathbb{N} \}$$

Defining +

Remark

 $(\mathbb{N} \times \mathbb{N}, +_2)$ as direct product of $(\mathbb{N}, +)$ with itself is a semigroup.

Lemma

 \sim is comptabile with $+_2$.

Proof.

Let
$$(a, b) \sim (a', b'), (c, d) \sim (c', d')$$
. Then
$$(a + c) + (b' + d') = \underbrace{(a + b')}_{=b+a'} + \underbrace{(c + d')}_{=d+c'} = (b + d) + (a' + c')$$

$$\Rightarrow (a, b) +_2 (c, d) = (a + c, b + d) \sim (a' + c', b' + d') = (a', b') +_2 (c', d')$$

Defining +

Corollary: Definition of +

 $[(a,b)] +_3 [(c,d)] := [(a,b) +_2 (c,d)] = [(a+c,b+d)]$ is well-defined and makes $(\mathbb{Z},+_3)$ a semigroup.

Remark

This gives us the usual Addition on \mathbb{Z} :

$$y = a - b, z = c - d \Rightarrow y + z = a + c - (b + d)^{a}$$

^aFrom now on we will not distinguish between $+, +_2$ and $+_3$

Lemma

 $(\mathbb{Z},+)$ is an abelian group.

Defining +

Proof.

Commutativity: $\forall [(a,b)], [(c,d)] \in \mathbb{Z}$:

$$[(a,b)] + [(c,d)] = [(a+c,b+d)] = [(c+a,d+b)] = [(c,d)] + [(a,b)]$$

Neutral Element: $\forall [(a, b)] \in \mathbb{Z} : [(a, b)] + [(0, 0)] = [(a, b)]$

Inverses:
$$\forall [(a,b)] \in \mathbb{Z} : [(a,b)] + [(b,a)] = [(a+b,b+a)] = [(0,0)]$$

Construction of \mathbb{Z}

Difference representation

Definition: -

For $\alpha, \beta \in \mathbb{Z}$ we define: $\alpha - \beta := \alpha + (-\beta)$

Identification of $\mathbb N$

The Map $\iota : \mathbb{N} \to \mathbb{Z}$, $n \mapsto [(n,0)]$ is injective and compatible with +.

Proof.

Injective:

$$[(a,0)] = [(b,0)] \Rightarrow a+0 = b+0 \Rightarrow a = b$$

Compatible: $\forall a, b \in \mathbb{N}$:

$$\iota(a+b) = [(a+b,0)] = [(a,0)] + [(b,0)] = \iota(a) + \iota(b)$$

Difference representation

Identification of $\mathbb N$

We identify \mathbb{N} with the isomorphic set $\iota(\mathbb{N}) \subseteq \mathbb{Z}$.

Difference representation

We can now represent integers as

$$[(a,b)] = [(a,0)] + [(0,b)] = [(a,0)] - [(b,0)] = a - b$$

