Concrete Math: Homework 1

Due on March-09, 2022 at 14:00

Professor Chen Xue

SA21011018 Zhou Enshuai

2022年3月8日

Let $z_1 < z_2 < ... < z_n$ be the correct order of all elements in the array A. Then consider those pivots chosen in the natural order of QuickSort. For any z_j and z_k , argue that

- 1. If the 1st pivot chosen among $z_i, ..., z_k$ is not z_i or z_k , the algorithm won't compare z_i and z_k .
- 2. z_j or z_k get compared only if the 1st pivot chosen among $z_j, ..., z_k$ is either z_j or z_k .

Solution

不妨设 j < k, 则 $z_i < z_k$ 。

- 1. 设第一个选自 z_j , ..., z_k 的 pivot 是 z_i , 且 $z_i \neq z_j$, $z_i \neq z_k$, 那么 $z_j < z_i < z_k$, 这时区间 z_j , ..., z_k 会以 z_i 为 pivot 划分成两个子区间, z_j 在前一子区间, z_k 在后一子区间。在此之后, z_j 和 z_k 不 在同一子区间内,自然不会比较;而在此之前, z_j 和 z_k 也没有成为 pivot(否则 z_i 不是第一个 pivot),自然也不会比较。所以, z_j 和 z_k 不会比较。
- 2. 即证明: " z_j 和 z_k 发生比较" \Leftrightarrow "第一个选自 z_j ,…, z_k 的 pivot 是 z_j 或 z_k "。先证明充分性: 由 1 的逆否命题可知,若 z_j 和 z_k 发生比较,则第一个选自 z_j ,…, z_k 的 pivot 是 z_j 或 z_k ; 再证明必要性: 若第一个选自 z_j ,…, z_k 的 pivot 是 z_j 或 z_k , 不妨设选的 pivot 是 z_j ,则说明之前没有选自该区间的 pivot,那么该区间还未被划分。此时,该区间内的每一个元素都要和 pivot z_j 比较, z_k 也不例外,所以 z_j 和 z_k 发生比较。

在一块厚奶酪上划出五道直的切痕,可以得到多少块奶酪?(在你划切痕时,奶酪必须保持在它原来的位置上,且每道切痕必定与三维空间中的一个平面相对应。)对 P_n 求一个递归关系,这里 P_n 表示 n个不同的平面所能定义的三维区域的最大个数。

Solution

切第 n 刀时,第 n 刀平面与之前的 n-1 个平面相交,这 n-1 个平面在第 n 个平面上产生 n-1 条交线,这 n-1 条交线将第 n 个平面划分成 L_{n-1} 个子平面。对第 n 刀而言,增加的奶酪块是从原有的奶酪块区域分裂出来的,第 n 刀平面上每个子平面和原有的 1 个奶酪块区域相交,从而将该区域分裂成了 2 个子区域,也即增加了一个奶酪块区域。所以第 n 刀平面上子平面的个数就是切第 n 刀时新增的奶酪块数。由此可得:

$$P_n = P_{n-1} + L_{n-1}$$

由之前二维平面分割数 L_n 的递归关系可得:

$$L_n = \frac{n(n+1)}{2} + 1$$

则 P_n 的递归关系为:

$$P_n = \begin{cases} P_{n-1} + \frac{n(n-1)}{2} + 1 & (n \ge 2) \\ 2 & (n = 1) \end{cases}$$

当 $n \ge 2$ 时,可以累加求和:

$$P_n = P_1 + \sum_{i=2}^n L_{i-1}$$

$$= 2 + \sum_{i=2}^n \left(\frac{i(i-1)}{2} + 1\right)$$

$$= n + 1 + \sum_{i=2}^n \frac{i(i-1)}{2}$$

$$= n + 1 + \sum_{i=1}^{n-1} \frac{i(i+1)}{2}$$

$$= n + 1 + \frac{1}{2} \sum_{i=1}^{n-1} i^2 + \frac{1}{2} \sum_{i=1}^{n-1} i$$

$$= n + 1 + \frac{n(n-1)(2n-1)}{12} + \frac{n(n-1)}{4}$$

可以发现 n=1 时, P_n 也满足上述公式,所以综上:

$$P_n = n + 1 + \frac{n(n-1)(2n-1)}{12} + \frac{n(n-1)}{4}$$

约瑟夫有一个朋友,他站在倒数第二的位置上因而获救。当每隔一个人就有一人被处死时,倒数第二个幸存者的号码 I(n) 是多少?

Solution

和求 J(n) 的思路一样,分成奇数和偶数两种情况讨论:

$$I(2) = 2$$

 $I(3) = 1$
 $I(2n) = 2I(n) - 1$ $(n > 1)$
 $I(2n + 1) = 2I(n) + 1$ $(n > 1)$

当 n 为 2 的幂次时, 即 $n=2^k$, I(2n)-1=2(I(n)-1), 代入可得:

$$I(2^{k}) - 1 = 2^{1}(I(2^{k-1}) - 1)$$

$$= 2^{2}(I(2^{k-2}) - 1)$$
...
$$= 2^{k-1}(I(2) - 1)$$

$$= 2^{k-1}$$

也就是说, $I(2^k) = 2^{k-1} + 1$ 。

回归本题,讨论一般情况下的 n,设 $n = 2^m + l$ $(0 \le l < 2^m)$,在删去 l 个人之后,剩下 2^m 个人,将这 2^m 个人重新编号为 $1, 2, 3, 4, ..., 2^m$,原编号与新编号映射关系为:

在 $1,2,...,2^m$ 新编号中,被删去的倒数第二个幸存者新编号为 $I(2^m)=2^{m-1}+1$,根据该新编号和映射表可以得到:

- 当 $2^{m-1}+1 \le 2^m-l$,即 $l < 2^{m-1}$ 时, $2^{m-1}+1$ 对应的原编号为 $2^{m-1}+1+2l$,即 $I(n) = 2l+1+2^{m-1}$ 。
- 当 $2^{m-1}+1>2^m-l$,即 $l\geq 2^{m-1}$ 时, $2^{m-1}+1$ 对应的原编号为 $2(2^{m-1}+1-(2^m-l))-1$,即 $I(n)=2l+1-2^m$ 。

综上:

$$I(n) = \begin{cases} 2l + 1 + 2^{m-1} = J(n) + 2^{m-1} & 0 \le l < 2^{m-1} \\ 2l + 1 - 2^m = J(n) - 2^m & 2^{m-1} \le l < 2^m \end{cases}$$

其中 $n = 2^m + l \ (0 < l < 2^m)$ 。

利用求和因子来求解递归式:

$$T_0 = 5;$$

 $2T_n = nT_{n-1} + 3 \times n!, \quad n > 0.$

Solution

$$a_n = 2, \ b_n = n, \ c_n = 3n!$$

求和因子设为 s_n :

$$\frac{s_n}{s_{n-1}} = \frac{a_{n-1}}{b_n}$$

由于 s_1 最后会消去,所以不妨设 $s_1 = 1$,则:

$$s_n = \frac{a_{n-1}a_{n-2}...a_1}{b_nb_{n-1}...b_2} = \frac{2^{n-1}}{n!}$$

代入 s_n 可得:

$$T_n = \frac{s_1 b_1 T_0 + \sum_{k=1}^n s_k c_k}{s_n a_n}$$

$$= \frac{5 + \sum_{k=1}^n 3 \times 2^{k-1}}{\frac{2^n}{n!}}$$

$$= \frac{3 \times 2^n + 2}{\frac{2^n}{n!}}$$

$$= n! \cdot (3 + 2^{1-n})$$

证明拉格朗日恒等式:

$$\sum_{1 \le j < k \le n} (a_j b_k - a_k b_j)^2 = \left(\sum_{k=1}^n a_k^2\right) \left(\sum_{k=1}^n b_k^2\right) - \left(\sum_{k=1}^n a_k b_k\right)^2$$

Solution

可以交换求和式中的 k,j 变量名得到:

$$\sum_{1 \leq j < k \leq n} (a_j b_k - a_k b_j)^2 = \sum_{1 \leq j < k \leq n} (a_k b_j - a_j b_k)^2 = \sum_{1 \leq k < j \leq n} (a_j b_k - a_k b_j)^2$$

所以:

$$\sum_{1 \le j,k \le n} (a_j b_k - a_k b_j)^2 = \sum_{1 \le j < k \le n} (a_j b_k - a_k b_j)^2 + \sum_{1 \le k < j \le n} (a_j b_k - a_k b_j)^2 + \sum_{1 \le j < k \le n} (a_j b_k - a_k b_j)^2$$

$$= 2 \sum_{1 \le j < k \le n} (a_j b_k - a_k b_j)^2 + \sum_{1 \le j \le n} (a_j b_j - a_j b_j)^2$$

$$= 2 \sum_{1 \le j < k \le n} (a_j b_k - a_k b_j)^2$$

即:

$$\begin{split} \sum_{1 \leq j < k \leq n} (a_j b_k - a_k b_j)^2 &= \frac{1}{2} \sum_{1 \leq j, k \leq n} (a_j b_k - a_k b_j)^2 \\ &= \frac{1}{2} \sum_{1 \leq j, k \leq n} (a_j^2 b_k^2 + a_k^2 b_j^2 - 2 a_j b_j a_k b_k) \\ &= \frac{1}{2} \left[\sum_{1 \leq j, k \leq n} a_j^2 b_k^2 + \sum_{1 \leq j, k \leq n} a_k^2 b_j^2 - 2 \sum_{1 \leq j, k \leq n} a_j b_j a_k b_k \right] \\ &= \frac{1}{2} \left[\left(\sum_{k=1}^n a_k^2 \right) \left(\sum_{k=1}^n b_k^2 \right) + \left(\sum_{k=1}^n a_k^2 \right) \left(\sum_{k=1}^n b_k^2 \right) - 2 \left(\sum_{k=1}^n a_k b_k \right) \left(\sum_{k=1}^n a_k b_k \right) \right] \\ &= \left(\sum_{k=1}^n a_k^2 \right) \left(\sum_{k=1}^n b_k^2 \right) - \left(\sum_{k=1}^n a_k b_k \right)^2 \end{split}$$

证毕。