Data converters for high frame rate imaging detectors

Kennedy Caisley¹, Hans Krüger¹, Jochen Dingfelder¹, Bart Dierickx²

- 1. University of Bonn, DE
- 2. Caeleste, Mechelen, BE

	$65nm \rightarrow 28nm$	
Design	CORDIA	FRIDA
ADC resolution	10-bit	10/12-bit
Conversion rate	2.5MHz	10 MHz
Area of one ADC	80x330 μm²	50x200 μm²
Power of one ADC	30 μW	100 μW
FOM_csa (conv/sec/area)	95 Hz/µm²	5000 Hz/μm²
FOM_epc (energy/conv)	12 pJ	10 pJ
FOM_ppa (power/area)	0.11 W/cm ²	5.0 W/cm ²
ADC qty Mpix @ 100 KHz	40000	10000
ADCs total pixel rate	100 Gpx/s	100 Gpx/s
ADCs total data rate	1 Tb/s	1 Tb/s
ADCs total area	10.5 cm ²	0.2 cm ²
ADCs total power	1.2 W	1.0 W

Basic ideal operation

Threshold and reference noise (dynamic error)

Settling error (dynamic error)

Mismatch errors (static error)

CDAC construction principles

For complete capacitor array. We'd like to be as close to min capacitance as possible, to the point that we'd have 125aF for unit caps in 10-bit design

CDAC construction principles

For individual capacitor weights

- Defining each bit weights as integers simplifies cap implementation; improves matching
- And defining each bit weight as sum of binary scaled values keeps DEC to just adders
- Finally, keeping sum total to binary scaled total prevents overflow

SAR modeling

- ► Threshold noise and variation, reference noise, settling error, capacitor mismatch supported
- Arbitrary CDAC weights, with support for "extended range bits"
- Monotonic and bidirectional-single-side switching supported (CRS, CAS, MCS to be added)
- Analyses for static and dynamic performance analyses (ENOB@f_s)
- Single test case requires 20 seconds
- Compatibility with T-Spice, AFS, and Spectre simulator (30hr run, 4hr with Spectre)

SAR modeling status

Error tolerance strategies

Sub-radix 2 steps

- Creates overlapping search voltages
- ▶ In D_{out} processed as $W_i \times B_i$
- Can also satisfy calibratability requirements

Extended search steps

- ▶ In D_{out} processed as $W_i \times (B_i 0.5)$
- lacktriangle Decreases input amplitude swing to $V_{ref} imes rac{{\sf C}}{d}$
- ▶ Introduced by CC Liu 2010, where they were additional cap,

Device and reference noise correction

- ▶ In most common case, only small LSBs errors will occur from thermal noise.
- ► Can be corrected by single post-bits, or more comparator power

$$\sigma_n^2 \le LSB^2/2 \times 12$$

Settling error correction

Most pronounced in MSBs, recovery determined by remaining caps:

Error tolerance
$$@B_i = \frac{\sum_{i=1}^M B_j - B_i}{\sum_{i=1}^M B_j} \times 100\%$$

Mismatch static error & calibratability

Radix β and min. steps vs unit cap mismatch $\sigma_{C_{unit}}$ (A. Hsu 2013)

12-bit w/ device noise, mismatch, etc

