

Introduction to Splunk SOAR

Course Objectives

- Define Security Orchestration, Automation and Response
- Identify good use cases for Splunk SOAR
- Describe Splunk SOAR capabilities

Course Outline

- Topic 1: What is SOAR?
- Topic 2: How Splunk SOAR works

What is SOAR?

Topic Objectives

- List orchestration goals
- List automation goals
- List Response goals

Security Orchestration, Automation and Response

- The intent of SOAR is to make it as easy and fast as possible to detect and respond to security incidents
- SOAR provides tools for both manual and automated investigation and actions
- SOAR also incorporates tools to:
 - Respond in an organized and collaborative approach
 - Compile records of all stages of the response

Initial Detection

- SOAR monitors networked environments for:
 - Security incidents (breaches, unauthorized access, malicious activity)
 - Vulnerabilities that could make security incidents more likely
- The monitored data can come from virtually any data source
- Typically, SOAR ingests data from a Splunk search head or Splunk Enterprise Security server

Events

- Data ingested into SOAR is stored in a database and displayed as events
- The event contains information about the incident, like the date, time, objects and attributes that can help us understand what is happening

- Example: At 10:15:20 AM today, an unexpected process named "deepworm" began executing on server TCH1200-1, with hash ID 23ED3DAAHDE39D290
- Events also store descriptive information like status, owner, severity, comments, notes, and a record of all activities while the event is processed

Understanding What's Happening

- We can analyze the event information to plan a response
 - What servers or end-points are affected
 - What is the threat
 - Where did the threat come from
 - How serious is it
- All the information needs to be recorded
- Often many teams and systems are involved
- Time is always critical

Making Decisions

- We use the results of the analysis to make response decisions
- Decisions must be timely and based on good data
 - Some incidents are false positives
 - Others are real, but well understood, with known responses
 - Some might be new, or very complex, needing additional steps and analysis
- SOAR provides decision making via:
 - Human input
 - Automated scripts called playbooks

Taking Action

- Decisions lead to actions:
 - Kill processes
 - Isolate servers
 - Disable user accounts
 - Delete files
 - Update event record and status
- Everything we learn and do must be recorded to improve our security posture

Summary: Goals of SOAR

- Remember: Security Orchestration, Automation and Response
- Orchestration
 - Provide collaborative and open tools to work together on incidents
- Automation
 - Automate as much of the analysis, decision, and action steps as possible for rapid execution
- Response
 - Enable access to all available response tools via manual or automated methods

Quiz 1

Need help here, not sure how to create quiz

How Splunk SOAR Works

Topic Objectives

- Define common Splunk SOAR objects
- Describe the SOAR event life cycle
- Identify manual, coordinated and automated response options

SOAR User Interface

- SOAR is a web appliance
 - Cloud based or installed on premises
- A user name and password are required
 - Can be integrated with your enterprise authentication system
- After log on you'll see the ROI Summary and main menu
 - ROI summary is a dashboard showing current status of events in SOAR

Events in Splunk SOAR

- Data ingested into SOAR are displayed as events
- The events often come from Splunk Enterprise Security
 - Example: a virus has been detected
- Each event represents an incident or vulnerability
- The event will contain any relevant data sent by Splunk
 - Example: the infected host ID, how the virus was detected (files, processes, source addresses, etc.)

Event Life Cycle

- Events go through status changes as they are processed
- New
 - The event has just been created
- Open
 - The event is being actively processed
- Closed
 - the incident has been resolved
- All artifact and action results, along with comments, notes, files, etc., are preserved in the event for later study

Artifacts

- The event data is stored in Artifacts
- Each artifact contains one or more name/value pairs
- Artifact data provides the input for SOAR to work on to analyze the incident, make decisions, and take action to eliminate the threat

Actions

- An action is an operation SOAR can conduct based on an event's artifact data
- Actions can gather more information
 - For instance: find out if a virus type is known, or if the source of the infection is known, or even test run (detonate) a virus sample in a safe environment
 - All action results are stored in the event and can be used for further analysis and decision making
- Actions can also make changes in the environment
 - For instance, kill processes started by the suspect virus file, and isolate the server
- Actions can be executed manually or automatically

Running Actions Manually

- Actions can be executed manually or automatically
- To run an action manually, click the artifact value, and select the action desired
- The choice of available actions will depend on the context, or type of data, and the action libraries (called **apps**) which have been configured for your server

Playbooks

- A playbook is a script that can:
 - Use event artifacts as input
 - Run actions to gather information
 - Use artifacts and action results to make decisions
 - Use actions to correct or contain the incident
- Playbooks can be run manually, or automatically when:
 - An event's artifact data is first ingested
 - Later, if new artifacts are added

Visual Playbook Editor

- The VPE allows non-coding security professionals to build sophisticated automated responses
- In this example a simple playbook uses a **geolocate** action to identify the source country, formats the output from the action into human readable text, adds that as a comment to the event, and uses the decision block to check known threat records to decide if the SOC management team should be alerted

VPE in Action

