

Braver Cat

Brain and Liver cancer segmentation via Transfer Learning

Daniele Solombrino, Emanuele Volanti

Project idea

- Basic: brain tumor segmentation
 - o End-to-end train
- Advanced: liver tumor segmentation
 - Transfer Learning
 using NN trained in brain step

Motivations

- Work on a typical Computer Vision task
 - Segmentation
- Experience a full Deep Learning pipeline
 - Data gathering
 - Data pre-processing
 - Model engineering
 - Model evaluation
 - Result analysis
- Very small datasets for very specific pathologies

Paper hunt

- Literature research process
 - Find interesting papers in surveys
 - Deep dive on specific papers
- Literature review results
 - "Cheplygina et al., 2019" → shallow models
 - "A Survey on DL in Medical Image Analysis" → Deep Learning
 - "GANs for Medical Image Analysis" → computationally expensive
 - "Adversarial Methods in Medical Analysis" → computationally expensive
 - "Brain Tumor Segmentation with DNNs" → DL ♣, computationally feasible ♣, novelties ♣

TwoPathCNN

- Multiple filter scales adoption → different scale representations
- Combining them → CNN learns much more feature interactions
- Medical domain: non-local, potentially unknown tissue relationships

CNN concatenation

- TwoPathCNN: multi-scale interactions, single input...
- ... what about multiple inputs?
- Boosts TwoPathCNN benefits
- Multiple concatenation strategies
 - Task-dictated

Dataset and patched inputs

- Dataset → brain scans w/ segmentation masks
- 4-channeled inputs → 4 CT modalities
- 5 labels → possible tumor stages
- For every pixel p, model:
 - Sees differently-scaled patches centered on p
 - Predicts segmentation label for pixel p

Dual-stage training as unbalanced data remedy

- Unbalancement towards "non-tumor" label
- g Idea: dual-stage training
- 1st stage → balanced data
- 2nd stage → unbalanced data
 - Resume from 1st stage w/ all but last layer frozen

Convolutional output layer

- Typical CNNs use a **fully-connected** output layer
 - Needs 1D flattening → wastes time and memory \(\bar{\mathbf{F}}\)
 - Can not be parallelized •
- g Idea: 1x1 conv layer, w/ c channels
 - \circ c \rightarrow number of classes
 - Way easier to parallelize
 - Weight sharing

Challenges

- Complex pre-processing
- Custom Neural Networks from scratch
- Hyperparameter tuning
- Transfer Learning
 - What layers to freeze?
 - Input channels mismatch

Non-trivial pre-processing

Custom Neural Networks from scratch

- Defined PyTorch modules for TwoPathCNN
- Maxout activation → no out of the box PyTorch support
- Implemented InputCascadeCNN model → two concatenated TwoPathCNN

Hyperparameter tuning

- Paper lists hyperparameters...
- ... but
 - No values disclosed, or
 - Proposed values perform badly
- ... so we worked on
 - Weights init method, dropout
 - Optimizer, LR w/ decay, momentum
 - Regularization
 - o Input normalization, batch size

End-to-end dual-stage training

1st stage

- ~2.2M trainable parameters
- o 600 epochs
- ~5h, 30s per epoch
- >90% train, val and test acc

2nd stage

- ~600k trainable parameters
- o 300 epochs
- o 40 mins, 4s per epoch
- >92% train, val and test acc

Transfer Learning: local scale

Transfer Learning: global scale

Transfer Learning: local and global scales

Transfer Learning: results

Transfer Learning setup	# trainable params	Epoch train time	Train accuracy	Validation accuracy
Local scale	600k	4s	52%	48%
Global scale	600k	4s	66%	61%
Global & Local scale	1.2M	9.5s	87%	85%
E2E	2.2M	30s	89%	86%

Hypothesis: parameter pruning

- | Idea: are all learnt parameters actually useful?
- Test time → replace some layers with identity operation
- Same TL configs → ▼
- Keep local NN only → ▼
- Keep global NN only → ▼

Hypothesis: layer switch

Hypothesis: layer copy (1/2)

Hypothesis: layer copy (2/2)

Bonus section

- Data exploration → NiBabel
- Data cleaning
- Data pre-processing → parallelization
- Data normalization
- Time and resource-constrained hyperparam tuning process
- Theory behind tested hypotheses
- Weights and Biases tracking
- Custom-made train dashboard 💜

Recap

- Brain and liver tumor segmentation via Transfer Learning
- Paper novelties:
 - TwoPathCNN, CNN concatenation, maxout activation, conv out layer, dual-stage training
- E2E brain tumor segmentation
- Multiple TL setups for liver tumor segmentation
 - 1/3 training time → -1% train and validation accuracy w.r.t. E2E
- Challenges:
 - Pre-processing, custom modules, hyperparam tuning, Transfer Learning
- Brain NN at test time not invariant w.r.t.
 - Parameter pruning, layer switch, layer copy