DUAL OPERATIONAL AMPLIFIER JRC4580

DESCRIPTION

JRC4580 is the dual operational amplifier, specially designed for improving the tone control, which is most suitable for the audio application.

Featuring noiseless, higher gain bandwidth, high output current and low distortion ratio, and it is most suitable not only for acoustic electronic part of audio pre-amp and active filter, but also for the industrial measurement tools. It is also suitable for the head phone amp at higher output current. And further more, it can be applied for the handy type set operational amplifier of general purpose in application of low voltage single supply type which is properly biased of the input low voltage source.

FEATURE

- Operating Voltage $(\pm 2V \sim \pm 16V)$
- Low Input Noise Voltage (0.8μVrms Typ.)
- Wide Gain Bandwidth Product (15mhz Typ.)
- Low Distortion (0.0005% Typ.)
- Slew Rate (5V/μA Typ.)
- Package Outline DIP8, SIP8, SOP8
- Bipolar Technology

Outline Drawing

EQUIVALENT CIRCUIT

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Characteristic	Symbol	Value	Unit	
Supply Voltage	V+/V-	±16	V	
Input Voltage	Vic	±15	V	
Differential Input Voltage	VID	±30	V	
Output Current	Ic	±50	mA	
Power Dissipation	PD	800	mW	
Operating Temperature Range	Tamb	-40~85	°C	
Storage Temperature Range	Tstg	-40~125	°C	

SUM 2/5

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified: Ta=25°C, V+/V-=±15V)

Parameter	Symbol	Test condition	Min	Тур	Max	Unit
Input Offset Voltage	Vio	$Rs \le 10k\Omega$		0.5	3	mV
Input Offset Current	I10			5	200	пA
Input Bias Current	Ів			100	500	пA
Large Signal Voltage Gain	Av	$RL \ge 2k\Omega$, $Vo=\pm 10V$	90	110		dB
Output Voltage Swing	Vом	$RL \ge 2k\Omega$	±12	±13.5		V
Input Common Mode Voltage Range	VICM		±12	±13.5		V
Common Mode Rejection Ratio	CMR	$Rs \leq 10k\Omega$	80	110		dB
Supply Voltage Rejection Ratio	SVR	$Rs \leq 10k\Omega$	80	110		dB
Operating Current	Icc			6	9	mA
Slew Rate	SR	$RL \ge 2k\Omega$		5		V/µA
Gain Bandwidth Product	GB	f=10kHz		15		MHz
Total Harmonic Distortion	THD	$Av=20dB$, $Vo=5V$, $f=1kHz$, $RL=2k\Omega$		0.0005		%
Input Noise Voltage	Vni	RIAA Rs= $2.2k\Omega$, $30kHzLPF$		0.8		μVrms

CHARACTERISTICS CURVES

Maximum Output Voltage Swing

Maximum Output Voltage Swing vs. Frquency

Output Voltage Swing vs. Output Current

Equivalent Input Noise Voltage vs. Frequency

Operating Current vs. Temperature

Output Voltage Swing vs. Temperature

■ TYPICAL CHARACTERISTICS

Input Offset Voltage vs. Temperature

Input Bias Current vs. Temperature

Maximum Output Voltage Swing vs. Operating Voltage

Operating Current vs. Operating Voltage

Total Harmonic Distortion vs. Output Voltage

Voltage Gain, Phase vs. Frequency

