An Event-based Architecture for Multi-population Optimization Algorithms*

Erick Vargas Minguela $^{1[0000-1111-2222-3333]},$ Mario Garcia Valdez $^{2,3[1111-2222-3333-4444]},$ and Third Author $^{3[2222--3333-4444-5555]}$

National Technological Institute of Mexico erick.vargas.minguela@gmail.com http://www.springer.com/gp/computer-science/lncs {abc,lncs}

Abstract. Having the knowledge that both of them are population-based algorithms it can be defined that a migration between 2 or more populations are possible, and this kind hybrid can be helpful to increase the possibility to find the optimal result (the best of the best), there is where fits the concept of Multi-population. For this kind of work we used asynchronous functions, serverless functions, multithread and a distributed architecture taking advantage for functional programming and serverless architecture. Even nature works like that... parallel, asynchronous and distributed.

Keywords: Multi-population \cdot Asynchronous \cdot Sub-population \cdot Serverless \cdot Distributed.

1 Introduction

A universe of solutions can exist for a single problem and sometimes is too big and complex to solve them in a traditional way. That is why heuristic and population based algorithms are required. This kind of algorithms are very useful to solve combinatories problems, however, usually one is better than others to solve one thing and another is great to solve another problem, and there are several cases stucked in optimal local values.

Here we propose an architecture composed by serverless functions to create a multi-populations that will process sub-populations in distributed function architecture and they are going to be parallel and asynchronous making each sub-population distributed and independent. And comunicating using migrations to help each other preventing fall into optimal local values.

The distributed architectures are having extensive use in the software industry because of their high performance, many systems are being created and migrating step by step to microservices and... in a nearly future... the new architectures called serverless, which proposes the use of "Function as a Service" (FaaS).

^{*} Supported by organization x.

1.1 Serverless

Recently, the cloud providers as Amazon Web Services (AWS), Google Cloud, etc. Offers a new alternative to programming throught interfaces called Serverless Computing, this kind of platform consist in a very simple mecanism where the developer upload the code into the platform and execute it as mamy times it is required scalling and allowing do this in a parallel way. This way the developers do not worry about servers, connections and other configurations. In serverless it pays only for what is used. Even there are some platform that allows to install them into your own server to do your own local architecture serverless.

Fig. 1. Software architecture generations.

Serverless Function In math a function is a relation between a set of inputs and an allowed set of outputs with the idea that each input goes to a single output. But in computer science is small bits of code that do only one thing and are easily to understand and support. In serverless this functions could be triggered by an event that would be menssages, http request, etc. Also is known that each function scales independently and is stateless with a short duration.

2 Proposed architecture

This architecture consist in 3 nodes, they are explained on the next points:

Manager: Here the multi-population is managed, it is initialized how to process it, followed by the subpopulations, which when they are concepted trigger an event that sends the subpopulations to be stored in a file JSON of

MongoDB (preventing to saturate the memory) and to a message queue that is directed to its subsequent processing in the "Receiver" section that is our cluster of functions (Faas), because each subpopulation requires the execution of a different algorithm, there is a different channel in the web sockets for each type of algorithm that triggers its respective serverless function. Once a subpopulation is processed, it is returned and a selection is made for the sub-population migration. The migration selection is made by taking the population attribute of the subpopulation that was returned and the subpopulation that it have been selected among the best 2, it should be noted that the decision to identify the best from the 2 is made randomly. Once the selection is made, a Splitting Point Uniform crossing will be made. The 2 new subpopulations replace their self and are resent it back to their respective serverless function and this process is repeited until completing the number of assigned migrations for the multi-population. Of course this whole process is performed asynchronously avoiding wait for all responses from serverless functions to perform a crossover or a update of the multi-population status [20, 21]. In the following figure you can see from illustrative way how the multi-population is composed.

- Message Provider: Its purpose is the creation of a sub-population messages queue which is the comunication channel between the sub-population Manager and the Receiver (FaaS), each message is a trigger for the execution of a GA or PSO function. Thanks to the message queue, it is possible to perform the serverless functions asynchronously, avoiding that the algorithm wait for responses independently of their duration and the simultaneous evaluation of different sub-populations independent of its algorithm or characteristics.
- Receiver: The following section contains the Serverless functions of the algorithms to be executed, reduced the best possible using the functional programming paradigm so that they can be converted into FaaS without problems, in addition to achieving a completely clean and fast execution [22]. Each message received on this node is executed in the form of a multi-threaded process in parallel, this allows to having more than one population-based search algorithm running at the same time, and making a copy of itself each algorithm function as required.

To develop this architecture the applied technologies are based in JavaScript using Node JS as it can be see it in the General Architecture Flowchart.

3 Experiments and Results

3.1 Experiments

Now that an interaction between sub-populations with different algorithms it is working and hybridation have been a success, using until now the added algorithms (GA and PSO) algorithms, all thanks to the developed architecture, lets procede to the experiments. This section is going to be the execution of several experiments from 2 to 40 dimensions, with a stop criterial of an error below

4 F. Author et al.

Fig. 2. General Architecture Flowchart.

0.5E-8, without a parameter optimization method, waiting that the architecture by its self would be enough to increase the possibility to find a better optimal result than the traditional methods. All this hoping that the results will probe the needness of this kind of architecture on increasing dimensions. To test if the architecture was useful, several experiments were made to solve benchmark functions, for this case the functions are Sphere, Rastrigin and Rosenbrock. Using 10 sub-population for each experiment and maximum 4 migrations per sub-population with different algorithms and parameters for each sub-population.

Fig. 3. Benchmark functions for experimentation.

3.2 Parameters Configuration

This architecture modifies the traditional way to work with population based algorithms, then the experiments could not be parameterized as usually are.

Then the experiments are scaled by their number of evaluations and the parameters must be configured to be adjusted to the next criterial, using the next expression:

$$Evaluations = 10^5 Dimensions \tag{1}$$

For example, if the experiment has 2 dimensions, the maximum number of evaluations will be 200,0000, for 10 dimensions will be 1,000,000 of evaluations and the same with the others dimensions.

Parameter	Value
	Minimize
GA Optimization	
GA Generations	50
GA Dimensions	2
GA Population size	100
GA Mutation	Random(Tournament2, Tournament3, Random)
	,RandomLinearRank,Sequential,Fittest)
GA Crossover	Tournament3
GA Crossover percentage	Random[10%, 80%]
GA Mutation percentage	Random[10%,50%]
GA Crossover function	Uniforme de punto medio
GA Mutation Function	gaussian
PSO Optimization	Minimiza
PSO Iterations	50
PSO Dimensions	2
PSO Vector size	100
PSO Social factor	Random[0.5,4.0]
PSO Individual factor	Random[0.5,4.0]
PSO Inercia factor	Random[0.5,4.0]

Table 1. 2 dimension parameters

References

- J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti, A. Tumanov, and C. Wu, "Serverless Computing: One Step Forward, Two Steps Back," vol. 3, 2018.
- O. Kramer, "Genetic Algorithm Essentials," Springer International Publishing AG, vol. 679, pp. 11–20, 2017.
- 3. C. Guerrero, I. Lera, and C. Juiz, "Genetic Algorithm for Multi-Objective Optimization of Container Allocation in Cloud Architecture," *Journal of Grid Computing*, pp. 1–23, 2017.
- 4. S. Lalwani, H. Sharma, S. Chandra, S. Kusum, D. Jagdish, and C. Bansal, "RE-VIEW COMPUTER ENGINEERING AND COMPUTER SCIENCE A Survey on Parallel Particle Swarm Optimization Algorithms," *Arabian Journal for Science and Engineering*, 2019.

F. Author et al.

6

Fig. 4. 2 dimension experiments Sphere.

Fig. 5. 2 dimension experiments Rastrigin.

 ${f Fig.\,6.}$ 2 dimension experiments Rosenbrock.

Table 2. 2 dimensional experiment results

Fn	Best	AVG	Experiment Number
Rastrigin GA	0	1.65377E-08	15
Rastrigin PSO	0	1.8872E-12	15
Rastrigin GA-PSO	0	0	15
Sphere GA	4.53222E-18	4.36977E-10	15
Sphere PSO	0	7.8012E-12	15
Sphere GA-PSO	0	4.33161E-14	15
Rosenbrock GA		1.24176E-08	
Rosenbrock PSO	1.11674E-12	2.47795E-06	15
Rosenbrock GA-PSO	9.5809E-14	6.90695E-09	15

Table 3. 10 dimensions parameters

Parameter	Value
GA Optimization	Minimiza
GA Generations	70
GA Dimensions	10
GA Population size	200
GA Mutation	Random(Tournament2,Tournament3,Random)
	,RandomLinearRank,Sequential,Fittest)
GA Crossover	
GA Crossover percentage	Random[10%, 80%]
GA Mutation percentage	Random[10%,50%]
GA Crossover function	Uniforme de punto medio
GA Mutation Function	gaussian
PSO Optimization	Minimiza
PSO Iterations	70
PSO Dimensions	10
PSO Vector size	200
PSO Social factor	Random[0.5,4.0]
PSO Individual factor	Random[0.5,4.0]
PSO Inercia factor	Random[0.5,4.0]

10 Dimension Sphere

Fig. 7. 10 dimensions experiments Sphere.

Fig. 8. 10 dimensions experiments Rastrigin.

Fig. 9. 10 dimensions experiments Rosenbrock.

 $\textbf{Table 4.}\ 10\ \text{dimensional experiment results}$

Fn	Mejor	Promedio	No. Experimento
Rastrigin GA	3.21768E-09	2.38015E-06	15
Rastrigin PSO	7.8586E-11		-
Rastrigin GA-PSO	8.01492E-12	5.08668E-09	15
Sphere GA		2.5389E-08	
Sphere PSO	4.50351E-11	4.72855E-09	15
Sphere GA-PSO	3.33851E-11	1.30062E-09	15
Rosenbrock GA	9.58323E-07		
Rosenbrock PSO	4.16711E-07	4.431565444	15
Rosenbrock GA-PSO	3.62472E-07	0.000240251	15

Table 5. Parametros experimentos 20 dimensiones

Parameter	Value
GA Optimization	Minimiza
GA Generations	70
GA Dimensions	20
GA Population size	200
GA Mutation	Random(Tournament2, Tournament3, Random)
	,RandomLinearRank,Sequential,Fittest)
GA Crossover	Tournament3
GA Crossover percentage	Random[10%, 80%]
GA Mutation percentage	Random[10%,50%]
GA Crossover function	Uniforme de punto medio
GA Mutation Function	gaussian
PSO Optimization	Minimiza
PSO Iterations	70
PSO Dimensions	20
PSO Vector size	200
PSO Social factor	Random[0.5,4.0]
PSO Individual factor	Random[0.5,4.0]
PSO Inercia factor	Random[0.5,4.0]

Table 6. Resultados 20 dimensiones

Fn	Mejor	Promedio	No. Experimento
Rastrigin GA		0.220596203	
Rastrigin PSO	3.988070734	25.51777514	15
Rastrigin GA-PSO	9.13E-09	7.38E-02	15
Sphere GA	1.84051E-09	9.22715E-06	15
Sphere PSO	7.04E-11	3.50E-07	15
Sphere GA-PSO	9.11E-11	2.13E-08	15
Rosenbrock GA	0.000348015	0.010958941	15
Rosenbrock PSO	9.119539342	13.37613983	15
Rosenbrock GA-PSO	2.31663E-05	0.005608855	15

Fig. 10. 20 dimensions experiments Sphere.

 ${\bf Fig.\,11.}\ 20$ dimensions experiments Rastrigin.

20 Dimension Rosenbrock

Fig. 12. 20 dimensions experiments Rosenbrock.

Table 7. Parametros experimentos 40 dimensiones

Parameter	Value	
GA Optimization	Minimiza	
GA Generations	70	
GA Dimensions	40	
GA Population size	200	
GA Mutation	Random(Tournament2, Tournament3, Random)	
	,RandomLinearRank,Sequential,Fittest)	
GA Crossover		
GA Crossover percentage	Random[10%, 80%]	
GA Mutation percentage	Random[10%,50%]	
GA Crossover function	Uniforme de punto medio	
GA Mutation Function	gaussian	
PSO Optimization	Minimiza	
PSO Iterations	70	
PSO Dimensions	40	
PSO Vector size	200	
PSO Social factor	Random[0.5,4.0]	
PSO Individual factor	Random[0.5,4.0]	
PSO Inercia factor	Random[0.5,4.0]	

Fig. 13. 40 dimensions experiments Sphere.

Fig. 14. 40 dimensions experiments Rastrigin.

Fig. 15. 40 dimensions experiments Rosenbrock.

#Experiment

Table 8. Resultados 40 dimensiones

Fn	Mejor	Promedio	No. Experimento
Rastrigin GA	1.95478879	3.560837088	15
Rastrigin PSO	29.06596132	130.2865863	15
Rastrigin GA-PSO		2.13E+00	15
Sphere GA	0.002686956	0.005302951	15
Sphere PSO	8.68E-11	2.07E-03	15
Sphere GA-PSO		1.41E-04	15
Rosenbrock GA	0.000348015	106.9287542	15
Rosenbrock PSO	0.032708559	0.368395353	15
Rosenbrock GA-PSO	0.018538924	0.525086565	15

- S. Blum, R. Puisa, and M. Wintermantel, "Adaptive Mutation Strategies for Evolutionary Algorithms," 2nd Weimar Optimization and Stochastic Days, pp. 1–13, 2005.
- 6. S. Everywhere, "The Fn Project,"
- 7. H. Ma, S. Shen, M. Yu, Z. Yang, M. Fei, and H. Zhou, "Multi-population techniques in nature inspired optimization algorithms: A comprehensive survey," *Swarm and Evolutionary Computation*, vol. 44, no. July 2017, pp. 365–387, 2019.
- 8. S. Santander-jim and M. A. Vega-rodr, "Comparative Analysis of Intra-Algorithm Parallel Multiobjective Evolutionary Algorithms: Taxonomy Implications on Bioinformatics Scenarios," vol. 9219, no. c, pp. 1–15, 2018.
- 9. D. Sherry, K. Veeramachaneni, J. McDermott, and U. M. O'Reilly, "Flex-GP: Genetic programming on the cloud," *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics*), vol. 7248 LNCS, pp. 477–486, 2012.
- R. Goebel, 29th Australasian Joint Conference on Artificial Intelligence, AI 2016, vol. 9992 LNAI. 2016.
- J. J. M. Guerv and J. M. Garc, "Introducing an Event-Based Architecture for Concurrent and Distributed Evolutionary Algorithms," vol. 1, pp. 399–410, 2018.
- L. Moroney, The Definitive Guide to Firebase: Build Android Apps on Google's Mobile Platform. 2017.
- 13. T. Ambler and N. Cloud, JavaScript frameworks for modern web dev. 2015.
- 14. A. D. Barwell, C. Brown, and K. Hammond, "USING PROGRAM SHAPING AND ALGORITHMIC SKELETONS TO PARALLELISE AN EVOLUTIONARY MULTI-AGENT SYSTEM IN ERLANG Wojciech Turek, Aleksander Byrski," vol. 35, pp. 792–818, 2016.
- 15. C. Paper and E. Alba, "Distributed Genetic Algorithms on Portable Devices for Smart Cities," no. May, 2017.
- 16. J. L. Technische, "C6.3 Island (migration) models: evolutionary algorithms based on punctuated equilibria," no. January 2000, 2016.
- 17. J. Kunasaikaran and A. Iqbal, "A Brief Overview of Functional Programming Languages," electronic Journal of Computer Science and Information Technology (eJCSIT), vol. 6, no. 1, pp. 32–36, 2016.
- 18. D. Hows, P. Membrey, and E. Plugge, "MongoDB Basics," MongoDB Basics, 2014.
- 19. J. Cook, Docker for Data Science. 2017.
- 20. M. Løvbjerg and T. K. Rasmussen, "Hybrid Particle Swarm Optimiser with Breeding and Subpopulations," *Proc. 3rd Genetic Evolutionary Computation Conf.*, pp. 469 –476, 2001.
- H. M. A. Jimeno, M. J. L. Sánchez, and R. H. Rico, "Multipopulation based multi - level parallel enhanced Jaya algorithms," *The Journal of Supercomputing*, no. 0123456789, 2019.
- 22. M. Roberts, "Serverless Architectures," 2016.
- 23. Y. Kaya, M. Uyar, and R. Tek\D{j}n, "A Novel Crossover Operator for Genetic Algorithms: Ring Crossover," no. May 2014, 2011.