2013-2014 学年第一学期《线性代数》课内考试卷(A卷)

授课班号_____ 年级专业_2013 级信息_ 学号_____ 姓名

题号		1]	三	四	五	六	总分	审核
题分	32	24	12	12	12	8		
得分								

得分	评阅人

- **一、填空**(共 32 分, 每空格 4 分)

1. **已知四**阶**行列式** D **中第** 4 **列元素依次**为 1.2.3.4,**它**们对应**的余**

子

式依次为a,b,c,d,则该行列式D=______。

3. 设四阶矩阵
$$A$$
 的伴随阵为 A^* , $|A|=1/2$, 则 $|(3A)^{-1}-2A^*|=$ ______。

$$4. \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{2013} \begin{bmatrix} 1 & 2 & 3 \\ f & e & d \\ a & b & c \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \underline{\hspace{1cm}} \circ$$

5. 已知向量组
$$\vec{\alpha}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \vec{\alpha}_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \vec{\alpha}_3 = \begin{bmatrix} -1 \\ -8 \\ t \end{bmatrix}$$
线性相关,则 $t = \underline{\qquad}$ 。

6. 已知 $\bar{\eta}_1, \bar{\eta}_2, \bar{\eta}_3$ 是四元线性方程组 $A\vec{x} = \vec{b}$ 的三个解向量,其中 $\bar{\eta}_1 = \begin{bmatrix} 2 & 0 & 1 & 3 \end{bmatrix}^T$,

$$\bar{\eta}_2 + \bar{\eta}_3 = \begin{bmatrix} 2 & 0 & 1 & 4 \end{bmatrix}^T$$
,且 $R(A) = 3$,则线性方程组 $A\vec{x} = \vec{b}$ 的通解 $\vec{x} = \vec{b}$

7. 已知
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & m \end{bmatrix}$$
与 $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & n & 0 \\ 0 & 0 & -1 \end{bmatrix}$ 相似,则 $(m,n) = \underline{\qquad}$ 。

8. **已知**
$$f = 2x_1^2 + 2x_1x_2 + x_2^2 + x_3^2 + tx_2x_3$$
为正定二次型,则 t 满足_____。

得分

评阅人 二、计算 (共24分,每小题6分)

3.已知矩阵
$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$
, $A + X = AX$, 求矩阵 X .

设三阶矩阵 A 的特征值分别为 4.5.6,求(1) $A^2 - 5A + 6E$ 的特征值;(2) $|A^2-5A+6E|_{\circ}$

2 -

得分	评阅人

三、(本题 12 分)

1) 求下列向量组的秩 2) 求它的一个极大线性无关组, 3) 用该极大

$$\vec{\alpha}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} \ \vec{\alpha}_{2} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \ \vec{\alpha}_{3} = \begin{bmatrix} 3 \\ 3 \\ 2 \\ 0 \end{bmatrix} \ \vec{\alpha}_{4} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \vec{\alpha}_{5} = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix} \vec{\alpha}_{5} = \begin{bmatrix} 4 \\ 3 \\ 2 \\ 0 \end{bmatrix}$$

得分	评阅人

回、(本恕
$$12$$
 分) 讨论线性方程组
$$\begin{cases} -2x_1 & -4x_2 + (5-\lambda)x_3 = -\lambda - 1 \\ 2x_1 + (5-\lambda)x_2 & -4x_3 = 2 \end{cases}$$
 当 λ 取何值时,线性方程
$$(2-\lambda)x_1 + 2x_2 - 2x_3 = 1$$

组有惟一解、无解、有无穷多解,在线性方程组有无穷多解时,求出其通解。

3 -

得分	评阅人

五、(本题 12 分) 设二次型 $f(x_1,x_2,x_3)=x_1^2-4x_1x_2+4x_1x_3+4x_2^2+4x_3^2-8x_2x_3$, 1)求

二次型矩阵 A ; 2) A 的特征值与特征向量 ; 3) 求一正交变换 $\bar{x} = Q\bar{y}$, 使二次型化为标 准形。

得分	评阅人

六、证明(本题8分)

设向量组 $\vec{\alpha}_1,\vec{\alpha}_2,\cdots\vec{\alpha}_n(n>1)$ 中前n-1个向量线性无关,后n-1个向量线性相关,试证:1) $\vec{\alpha}_1$ 能否由向量组 $\vec{\alpha}_2,\cdots\vec{\alpha}_{n-1}$ 线性表示;2) $\vec{\alpha}_n$

能否由向量组 $\vec{\alpha}_1, \cdots \vec{\alpha}_{n-1}$ 线性表示。

4 -