

Canadian Bioinformatics Workshops

www.bioinformatics.ca

bioinformaticsdotca.github.io

Attribution-ShareAlike 4.0 International

Canonical URL: https://creativecommons.org/licenses/by-sa/4.0/

See the legal code

You are free to:

 $\label{eq:Share-copy} \textbf{Share} - \textbf{copy} \ \text{and} \ \textbf{redistribute} \ \textbf{the material in any medium} \ \textbf{or format for any} \\ \textbf{purpose, even commercially.}$

 $\label{eq:Adapt-problem} \textbf{Adapt}-\text{remix}, \text{transform, and build upon the material for any purpose, even commercially.}$

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give <u>appropriate credit</u>, provide a link to the license, and <u>indicate if changes were made</u>. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the <u>same license</u> as the original.

No additional restrictions — You may not apply legal terms or <u>technological</u> measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as <u>publicity</u>, <u>privacy</u>, <u>or moral rights</u> may limit how you use the material.

Introduction to RNA sequencing (lecture)

Malachi Griffith, Obi Griffith, Isabel Risch, Vida Talebian

RNA-seq Analysis 2024. June 17-19, 2024

Learning objectives of the course

- Module 1: Introduction to RNA Sequencing
- Module 2: Alignment and Visualization
- Module 3: Expression and Differential Expression
- Module 4: Alignment Free Expression Estimation

- Tutorials
 - Provide a working example of an RNA-seq analysis pipeline
 - Run in a 'reasonable' amount of time with modest computer resources
 - Self contained, self explanatory, portable

Learning objectives of module 1

- Introduction to the theory and practice of RNA sequencing (RNA-seq) analysis
 - Background molecular biology
 - Challenges specific to RNA-seq
 - General goals and themes of RNA-seq analysis work flows
 - Common technical questions related to RNA-seq analysis
 - Introduction to the RNA-seq hands on tutorial

Gene expression

RNA sequencing

Challenges

- Sample
 - Purity?, quantity?, quality?
- RNAs consist of small exons that may be separated by large introns
 - Mapping reads to genome is challenging
- The relative abundance of RNAs vary wildly
 - $-10^5 10^7$ orders of magnitude
 - Since RNA sequencing works by random sampling, a small fraction of highly expressed genes may consume the majority of reads
 - Ribosomal and mitochondrial genes
- RNAs come in a wide range of sizes
 - Small RNAs must be captured separately
 - PolyA selection of large RNAs may result in 3' end bias
- RNA is fragile compared to DNA (easily degraded)

Agilent example / interpretation

- https://goo.gl/uC5a3C
- 'RIN' = RNA integrity number
 - 0 (bad) to 10 (good)

Design considerations

- Standards, Guidelines and Best Practices for RNA-seq
 - The ENCODE Consortium
 - Download from the Course Wiki
 - Meta data to supply, replicates, sequencing depth, control experiments, reporting standards, etc.
- https://goo.gl/6LePBW
- Several additional initiatives are underway to develop standards and best practices that cover many of these concepts. These include: the Sequencing Quality Control (SEQC) consortium, the Roadmap Epigenomics Mapping Consortium (REMC), and the Beta Cell Biology Consortium (BCBC).

There are many RNA-seq library construction strategies

- Total RNA versus polyA+ RNA?
- Ribo-reduction?
- Size selection (before and/or after cDNA synthesis)
 - Small RNAs (microRNAs) vs. large RNAs?
 - A narrow fragment size distribution vs. a broad one?
- Linear amplification?
- Stranded vs. un-stranded libraries
- Exome captured vs. un-captured
- Library normalization?
- These details can affect analysis strategy
 - Especially comparisons between libraries

RNA sequence enrichment (selection/depletion)

A. Depiction of cDNA fragments from an unstranded library

Legend Transcription start site and direction PolyA site (transcription end) Read sequenced from positive strand (forward)

B. Depiction of cDNA fragments from an stranded library

Stranded vs. unstranded

C. Viewing strand of aligned reads in IGV

https://rnabio.org/module-09-appendix/0009/12/01/StrandSettings/ (detailed discussion and cheat sheet)

Replicates

- Technical Replicate
 - Multiple instances of sequence generation
 - Flow Cells, Lanes, Indexes
- Biological Replicate
 - Multiple isolations of cells showing the same phenotype, stage or other experimental condition
 - Some example concerns/challenges:
 - Environmental Factors, Growth Conditions, Time
 - Correlation Coefficient 0.92-0.98

Common analysis goals of RNA-Seq analysis (what can you ask of the data?)

- Gene expression and differential expression
- Alternative expression analysis
- Transcript discovery and annotation
- Allele specific expression
 - Relating to SNPs or mutations
- Mutation discovery
- Fusion detection
- RNA editing

General themes of RNA-seq workflows

- Each type of RNA-seq analysis has distinct requirements and challenges but also a common theme:
- 1. Obtain raw data (convert format)
- 2. Align/assemble reads
- 3. Process alignment with a tool specific to the goal
 - e.g. 'cufflinks' for expression analysis, 'defuse' for fusion detection, etc.
- 4. Post process
 - Import into downstream software (R, Matlab, Cytoscape, Ingenuity, etc.)
- 5. Summarize and visualize
 - Create gene lists, prioritize candidates for validation, etc.

Examples of RNA-seq data analysis workflows for differential gene expression

Discussion of bulk vs single cell RNA-seq

Factors to compare: Cost, complexity of library prep, complexity of analysis, qualitative and quantitative differences in richness of information obtained.

Common questions (and answers)

Supplementary Table 7

- Malachi Griffith*, Jason R. Walker, Nicholas C. Spies, Benjamin J. Ainscough,
 Obi L. Griffith*. 2015. Informatics for RNA-seq: A web resource for analysis on
 the cloud. 11(8):e1004393. 2015.
 - http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

Introduction to tutorial (Module 1)

HISAT2/StringTie/Ballgown RNA-seq Pipeline

We are on a Coffee Break & Networking Session

Workshop Sponsors:

