Дисциплина: Численные методы Лабораторное задание №4

Отчет

Тема: Интерполирование и проближение функций

Выполнил: студент 3 курса 61 группы Немцев А.А.

Проверила: старший ппеподаватель Фролова О.А. interpolation.md 2025-02-15

1. Постановка задачи

Интерполирование функции с помощью многочлена Лагранжа степени m на неравномерной сетке узлов.

Вычисляется значение интерполяционного многочлена Лагранжа в точке XX по значению функции в точках наименее удалённых от точки XX.

2. Теоретическая часть

Данная задача предполагает использование алгоритма интерполирования в форме Лагранжа на неравномерной сетке узлов, где

форма Лагранжа описывается:

1.2 Интерполяционная формула Лагранжа

Введём в рассмотрение вспомогательные многочлены

$$L_n^{(i)}(x) = \frac{(x - x_0)(x - x_1)\dots(x - x_{i-1})(x - x_{i+1})\dots(x - x_n)}{(x_i - x_0)(x_i - x_1)\dots(x_i - x_{i-1})(x_i - x_{i+1})\dots(x_i - x_n)}.$$
 (2)

Очевидно, что $L_n^{(i)}(x)$ есть многочлен степени n и что выполняются равенства

 $L_n^{(i)}(x)\Big|_{x_j} = \begin{cases} 1, & x_j = x_i \\ 0, & x_j \neq x_i \end{cases}, \quad i, j = 0, 1, \dots, n.$

Многочлены $L_n^{(i)}(x)$ называются **коэффициентами Лагранжа**, а интерполяционный многочлен $P_n(x)$, записанный в виде

$$P_n(x) = f(x_0)L_n^{(0)}(x) + f(x_1)L_n^{(1)}(x) + \dots + f(x_n)L_n^{(n)}(x),$$

называется **интерполяционным многочленом в форме** Лагранжа и обозначается $L_n(x)$:

$$L_n(x) = \sum_{i=0}^n f(x_i) \frac{(x - x_0)(x - x_1) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_n)}{(x_i - x_0)(x_i - x_1) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_n)}.$$
 (3)

Неравномерная сетка представляет собой набор значений такой, что разность между его элементами не константна. interpolation.md 2025-02-15

Также стоит учитывать погрешности:

Дана таблица значений некоторой функции f(x); требуется для заданного значения x^* вычислить значение $f(x^*)$ с заданной точностью EPS или с наилучшей возможной точностью при имеющейся информации.

Пусть есть некоторая формула или некоторое правило для построения интерполяционных многочленов $P_m(x)$. Каждый многочлен вычисляется по значению в узлах матрицы, наименее удалённых от точки x^* , поэтому перед началом всех вычислений перенумеруем узлы матрицы в порядке возрастания $\left|x_i-x^*\right|$. Предполагая функцию f(x) гладкой, примем следующий практический критерий оценки погрешности

$$\varepsilon_m = |f(x^*) - P_m(x^*)| \cong |P_{m+1}(x^*) - P_m(x^*)|.$$
 (35)

Далее строим интерполяционный процесс, вычисляем многочлены возрастающих степеней с одновременной оценкой погрешностей:

$$P_0(x^*), P_1(x^*), \varepsilon_0, P_2(x^*), \varepsilon_1, P_3(x^*), \varepsilon_2, \dots, P_{m+1}(x^*), \varepsilon_m, \dots (36)$$

Интерполяционный процесс прекращается при выполнении одного из следующих условий:

- \mathcal{E}_m < EPS, то есть достигается заданная точность интерполяции;
- $\mathcal{E}_m > \mathcal{E}_{m+1}$, то есть абсолютное значение разности между двумя последовательными интерполяционными значениями перестаёт уменьшаться (проверка начинается с m=2);

3. Алгоритм

- Функция lagrange_interpolation(X, Y, N, XX, m, eps) выполняет интерполяцию Лагранжа для заданной функции на неравномерной сетке узлов. Она принимает следующие аргументы:
 - Х: Массив координат узлов интерполяции.
 - Ү: Массив значений функции в узлах интерполяции.
 - N: Количество узлов интерполяции.
 - XX: Точка, в которой вычисляется значение интерполяционного многочлена.
 - т. Максимальная степень интерполяционного многочлена Лагранжа.
 - eps: Критерий остановки (точность).
- func_a(x): Функция, представляющая собой $y = (1/10)x^3 + x^2 + (1/2)x$.
- func_b(x): Функция, представляющая собой $y = (1/2)x^4 + 2x^3 + (1/2)x^2 + (1/5)x$.

4. Тестирование

Тест	Тестовая точка	Актуальное значение	Приближенное значение	Точность	Степень многочлена
1	-6.4	11.5456	11.545599999999999	1.7763568394002505e- 15	5

interpolation.md 2025-02-15

Тест	Тестовая точка	Актуальное значение	Приближенное значение	Точность	Степень многочлена
2	0	0	-3.0357660829594124e- 18	-3.0357660829594124e- 18	5
3	20	1210	1210.0000000000018	1.8189894035458565e-	5