## 03-10 - Cálculo Complexo

## Topologia de $\mathbb C$

- Fernandez e Bernardes, cap3
   Exemplos de funções holomorfas:
- $f(Z)=z^2$ Se  $z=re^{i heta}$ , coordenadas polares,  $f(z)=r^2e^{2i heta}$



## **Funções Lineares**

1. 
$$l(z_1 + z_2) = l(z_1) + l(z_2)$$

2. 
$$l(\lambda z) = \lambda l(z)$$

3. Se  $\lambda \in \mathbb{C}$  então l é chamada  $\mathbb{C}$ -linear e caso  $\lambda \in \mathbb{R}$  então l é chamada  $\mathbb{R}$ -linear.

$$egin{aligned} 4.\ l(0) &= l(z-z) = l(z) + l(-z) \ l(z) - l(z) &= 0 \ \mathbb{R}^2: l(x,y) = (ax+by,cx+dy) \end{aligned}$$

Suponhamos que  $l \in \mathbb{R}$ -linear.

$$egin{aligned} l(z) &= x l(1) + y l(i) \ lpha &= l(1); eta &= l(i) \ xlpha + yeta &= rac{z+ar{z}}{2}lpha - ietarac{z+ar{z}}{2} \ l(z) &= rac{lpha - ieta}{lpha}z + rac{lpha + ieta}{2}ar{z} \end{aligned}$$

 $\mathbb R$  linear com coeficientes com conjugada  $az+b\bar z \implies \bar a=b$  Suponha agora que  $l \in \mathbb C$  linear.

$$z=1z$$
  $l(z)=l(1)z=cz, c\in\mathbb{C}$  Dizemos que  $w=l(z)$   $w=u+iv$   $u+iv=(a_1+ia_2)(x+iy)+(b_1+ib_2)(x-iy)$   $u+iv=(a_1x-a_2y+b_1x+b_2y+i(-b_1y+b_2x+a_1y+a_2x)$   $u=a_1x+b_1x-a_2y+b_2y$   $v=-b_1y+b_2x+a_1y+a_2x$   $egin{bmatrix} u \\ v \end{bmatrix} = egin{bmatrix} a_1+b_1 & -(a_2-b_2) \\ a_2+b_2 & a_1-b_1 \end{bmatrix} egin{bmatrix} x \\ y \end{bmatrix}$ 

## Transformações lineares de $\mathbb{R}^2$

$$l(z) = az + bar{z}$$
  
 $\mu(z) = az$ 

Uma transformação é tal que se o espaço estiver limitado por retas, então a transformação também está limitada por retas.

$$egin{aligned} \mu(z) &= az \ a &= re^{i( heta+ heta_0)} \ z &= 
ho e^{i heta} \ \mu(z) &= 
ho re^{i( heta+ heta_0)} \ (equation (?equation )) \end{aligned}$$

$$z(z) = z + z^2$$

Vamos mudar a variável

$$w=1/z$$