定式

一、伴随矩阵

$$A^* = (A_{ji})_{n \times n}$$
 $A^* = (\det A)A^{-1}$ (A可逆时)
 $A^*A = AA^* = (\det A)E$ (一般情形)
 $\operatorname{rank} A^* = \begin{cases} n, & \operatorname{rank} A = n \\ 1, & \operatorname{rank} A = n-1 \\ 0, & \operatorname{rank} A < n-1 \end{cases}$

二、 $A=ba^{T}$, a和b是n维列向量且 $a^{T}b=d$ 0

1)
$$A^{k} = (ba^{T})^{k} = b(a^{T}b)^{k-1}a^{T} = d^{k-1}A$$

- 2) $\operatorname{rank} A = 1$ $(1 \le \operatorname{rank} A \le \operatorname{rank} b \le 1)$
- 3) A的非零特征值为d,对应的特征向量为b; $(Ab = (ba^{T})b = b(a^{T}b) = db)$
- 4) 0为A的n-1重特征值。

Ax = 0的基础解系含n-1个线性无关的特征向量;或直接计算得 $\det(A - IE) = (d - I)(-I)^{n-1}$

5) A相似于对角矩阵 $diag(d,0,\dots,0)$

三、矩阵的秩的有关结果 $设A为m \times n$ 矩阵

- 1) $\operatorname{rank} A \leq m$ $\operatorname{rank} A \leq n$
- 2) 若 $A \neq O$,则rankA > 0;
- 3) $\operatorname{rank} A^{\mathrm{T}} = \operatorname{rank} A$
- 4) $\operatorname{rank}(\mathbf{I}\mathbf{A}) = \begin{cases} \operatorname{rank}\mathbf{A} & \mathbf{I} \neq 0 \\ 0 & \mathbf{I} = 0 \end{cases}$
- 5) $\operatorname{rank}(A + B) \leq \operatorname{rank} A + \operatorname{rank} B$
- 6) $\operatorname{rank}(AB) \le \operatorname{rank} A$ $\operatorname{rank}(AB) \le \operatorname{rank} B$
- 7) 若A可逆,则 rank(AB) = rankB; rank(CA) = rankC;

- 8) $\operatorname{rank}(A^{\mathrm{T}}A) = \operatorname{rank}(AA^{\mathrm{T}}) = \operatorname{rank}A$
- 9) 设A为 $m \times n$ 矩阵,B为 $n \times s$ 矩阵, 且AB = O , 则 rank $A + \text{rank } B \leq n$
- 10) 设A为n阶方阵,则

$$\operatorname{rank} \mathbf{A}^* = \begin{cases} n, & \operatorname{rank} \mathbf{A} = n \\ 1, & \operatorname{rank} \mathbf{A} = n - 1 \\ 0, & \operatorname{rank} \mathbf{A} < n - 1 \end{cases}$$

11) rank A = A的行向量组的秩 = A的列向量组的秩

四、向量组的有关性质

- 1)向量组与它的任一个极大无关组等价。
- 2) 设向量组 T_1 含r个向量,向量组 T_2 含s个向量, 且 T_1 可由 T_2 线性表示。 如果 T_1 线性无关, 则 $r \le s$ 如果 r > s 则 T_1 线性相关。
- 3) 设向量组 T_1 的秩为r,向量组 T_2 的秩为s,若 T_1 可由 T_2 线性表示,则 $r \le s$ 。
- 4) 等价的向量组有相同的秩。

五、线性方程组的有关结论

设系数矩阵
$$A = (a_{ij})_{m \times n} = (a_1, a_2, \dots, a_n)$$

 $\operatorname{rank} A = r$ 右端向量 $b \neq 0$ 增广矩阵 $\hat{A} = (A, b)$ 。
1) $Ax = b$ 有解 $\hat{\mathbf{U}}$ $\operatorname{rank} \hat{A} = \operatorname{rank} A$
 $\hat{\mathbf{U}}$ b 可由 a_1, a_2, \dots, a_n 线性表示
 $\hat{\mathbf{U}}$ 向量组 a_1, a_2, \dots, a_n 与 a_1, a_2, \dots, a_n, b 等价
 $\hat{\mathbf{U}}$ $\operatorname{rank} A = m$
 $\hat{\mathbf{U}}$ $m = n$ 时 $\det A \neq 0$

Ax = 0 必有解

2) Ax = b 有解时

(1) 解唯一 $\hat{\mathbf{U}}$ rank $\mathbf{A} = n$ ($\mathbf{A}\mathbf{x} = \mathbf{0}$ $\hat{\mathbf{U}}$ a_1, a_2, \dots, a_n 线性无关 只有零解) $\hat{\mathbf{U}}$ m = n 时 $\det \mathbf{A} \neq 0$

(2) 无穷多解 $\hat{\mathbf{U}}$ rank A < n

(Ax = 0 \hat{U} a_1, a_2, \dots, a_n 线性相关有非零解) \hat{U} m = n 时 $\det A = 0$

(3) Ax = 0 的解向量构成向量空间, 其维数为 n - rank A (4) Ax = b 的解向量不构成向量空间。 若 h_1 h_2 是 Ax = b 的解,则 $h_1 - h_2$ 是 Ax = 0 的解: 若 n 是 $^{Ax}=b$ 的解 X 是 $^{Ax}=0$ 的解 A 则 h+X 是 Ax=b 的解。 若 h_1, \dots, h_t 是 Ax = b 的解 ,则 $k_1 h_1 + \dots + k_t h_t \quad (k_1 + \dots + k_t = 1)$ 是 Ax = b 的解。

(5) Ax = 0 的通解为 $x = t_1X_1 + t_2X_2 + \dots + t_{n-r}X_{n-r}$ 其中 X_1, X_2, \dots, X_{n-r} 是Ax = 0 的基础解系,

 t_1, t_2, \dots, t_{n-r} 任取。

(6) Ax = b 的通解为

$$x = h^* + t_1 x_1 + t_2 x_2 + \dots + t_{n-r} x_{n-r}$$

其中 h^* 是Ax = b 的特解, X_1, X_2, \dots, X_{n-r}

是Ax = 0 的基础解系, t_1, t_2, \dots, t_{n-r} 任取。

六、初等矩阵

七、A是正交矩阵

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \boldsymbol{A}\boldsymbol{A}^{\mathrm{T}} = \boldsymbol{E} \qquad \boldsymbol{A}^{-1} = \boldsymbol{A}^{\mathrm{T}}$$

 $\det A = \pm 1$

 A^{T} , A^{-1} , A^{*} , A^{k} 均为正交矩阵

当B也为正交矩阵时,AB是正交矩阵。

当 $k=\pm 1$ 时,kA也是正交矩阵。

A的列(或行)向量是两两正交的单位向量。

八、特征值与特征向量

- 1.已知x是A的特征向量,列出 Ax = Ix
- 2.已知 I_0 是A的特征值,列出 $det(A I_0E) = 0$ 。

3. 设
$$I_1$$
 I_2 ;… I_n 是 $A = (a_{ij})_n$ 的特征值,则 $I_1 + I_2 + \cdots + I_n = a_{11} + a_{22} + \cdots + a_{nn}$ $I_1 I_2 \cdots I_n = \det A$

4.与A有关矩阵的特征值和特征向量

矩阵	A	l A	\boldsymbol{A}^k	f(A)	A^{-1}	$oldsymbol{A}^*$	$\boldsymbol{A}^{\mathrm{T}}$	$P^{-1}AP$
特征值	1	l 1	$m{l}^k$	$f(\boldsymbol{l})$	$\frac{1}{I}$	$\frac{\det A}{I}$	1	1
特征向量	x	x	\boldsymbol{x}	x	x	x		$P^{-1}x$

5. 不同特征值对应的特征向量线性无关。

6.A的各行(列)元素之和为a。

$$A \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \quad (或A^{\mathsf{T}} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix})$$

- 7.向量 a 是齐次线性方程组 Ax = 0 的解向量,则 a 是A 对应特征值 0 的特征向量。
- 8. 已知 f(A) = 0 则A的特征值满足 f(I) = 0 求A的可能特征值。

九、A是实对称矩阵

$$A^{\mathrm{T}} = A$$

- 1.特征值均为实数。
- 2.不同的特征值对应的特征向量正交。
- 3. 必可相似于对角矩阵。
- 4.存在正交矩阵Q,使得

$$\boldsymbol{Q}^{-1}\boldsymbol{A}\boldsymbol{Q} = \boldsymbol{Q}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{Q} = \begin{pmatrix} \boldsymbol{I}_{1} & & & \\ & \boldsymbol{I}_{2} & & \\ & & \ddots & \\ & & & \boldsymbol{I}_{n} \end{pmatrix}$$

十、A是正定矩阵

$$A^{T} = A$$
 (实对称矩阵)

- 1.对任意 $x \neq 0$ 都有 $x^{T}Ax > 0$ 。
- 2.特征值均大于零。
- 3.顺序主子式均大于零。
- 4.存在正交矩阵Q,使得

$$\boldsymbol{Q}^{-1}\boldsymbol{A}\boldsymbol{Q} = \boldsymbol{Q}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{Q} = \begin{pmatrix} \boldsymbol{I}_{1} & & & \\ & \boldsymbol{I}_{2} & & \\ & & \ddots & \\ & & & \boldsymbol{I}_{n} \end{pmatrix} \quad \boldsymbol{I}_{i} > 0$$

十一、已知f(A) = 0

用待定法求逆矩阵 A^{-1} 或 $(A + E)^{-1}$ 等; 求A的部分特征值:A的特征值满足f(I) = 0。

 $+ \equiv AB = O$

B的列向量是Ax = 0的解向量。

 $\operatorname{rank} A + \operatorname{rank} B \leq n (A, B均为n阶方阵)$

十三、A与B等价 $(A \cong B : PAQ = B)$

 $\operatorname{rank} A = \operatorname{rank} B$

特例: $A \to E_n$ 等价

 $\operatorname{rank} \mathbf{A} = n \quad \det \mathbf{A} \neq 0$

十四、A与B相似($A \sim B: P^{-1}AP = B$)
rank A = rank B $\det A = \det B$ $\det (A - lE) = \det (B - lE)$

A与B有相同的特征值

十五、A与B合同 $(A \sim B : P^{T}AP = B)$ rank A = rank B

当A对称时B也对称

实对称矩阵A与B的正负惯性指数相同

十六、等价、相似与合同的关系

1. 一般方阵

相似 Þ 等价 合同 Þ 等价 特征值相同且可对角化 Þ 相似

2. 实对称矩阵

特征值相同 Þ 相似且合同

特征值不同但正、负及零特征值个数相同

P 不相似但合同

十七、有关概念的关系

设A为n阶方阵

$$A$$
非奇异 $\hat{\mathbf{U}}$ A 可逆($AB = BA = E$)

 $(\det A \neq 0)$ Û A满秩 $(\operatorname{rank} A = n)$

Û A能表示为一些初等矩阵的乘积

 \hat{U} A的列(行)向量组线性无关

 $\hat{U} Ax = 0$ 只有零解

 $\hat{\mathbf{U}} Ax = b$ 有唯一解

 \hat{U} A无零特征值