Recall

Conditional distribution

- Let X, Y be discrete r.v.s. Then given $\{Y = y\}$ with P(Y = y) > 0,
 - the conditional PMF: $p_{X|Y}(x|y) := P(X = x|Y = y) = \frac{p(x,y)}{p_Y(y)}, \forall x \in \mathbb{R}.$
 - the conditional CDF: $F_{X|Y}(t|y) := P(X \le t|Y = y) = \sum_{x \le t} p_{X|Y}(x|y), \forall t \in \mathbb{R}.$

 $X, Y \text{ independent } \iff p_{X|Y}(x|y) = p_X(x), \ \forall x, y \in \mathbb{R} \text{ with } P(Y = y) > 0.$

- Let X, Y be joint continuous r.v.s. Then for $y \in \mathbb{R}$ with $f_Y(y) > 0$,
 - the conditional PDF: $f_{X|Y}(x|y) := \frac{f_{X,Y}(x,y)}{f_{Y}(y)}, \forall x \in \mathbb{R}.$
 - the conditional CDF: $F_{X|Y}(t|y) := \int_{-\infty}^{t} f_{X|Y}(x|y) dx, \ \forall t \in \mathbb{R}$

 $X, Y \text{ independent } \iff f_{X|Y}(x|y) = f_X(x), \ \forall x, y \in \mathbb{R} \text{ with } f_Y(y) > 0.,$

Joint distributions of functions of random variables

Let X_1, X_2 be joint continuous random variables. For i = 1, 2, let $g_i : \mathbb{R} \to \mathbb{R}$ be some function and define $Y_i = g_i(X_1, X_2)$. Suppose

- (i) for i = 1, 2, there exists $h_i : \mathbb{R} \to \mathbb{R}$ uniquely determined by $h_i(g_1(x_1), g_2(x_2)) = x_i, \forall x_i \in \mathbb{R}$.
- (ii) the partial derivatives $\frac{\partial g_i}{\partial x_i}$, i, j = 1, 2 are continuous and the Jacobian $J(x_1, x_2) \neq 0$ for $x_1, x_2 \in \mathbb{R}$.

Then for $y_1, y_2 \in \mathbb{R}$,

$$f_{Y_1,Y_2}(y_1, y_2) = f_{X_1,X_2}(x_1, x_2) |J(x_1, x_2)|^{-1}$$

= $f_{X_1,X_2}(h_1(y_1, y_2), h_2(y_1, y_2)) |J(h_1(y_1, y_2), h_2(y_1, y_2))|^{-1}$. (1)

Examples

Example 1. There is a box containing 6 balls $\begin{cases} 3 & \text{blue} \\ 2 & \text{green} \end{cases}$ Randomly select a ball from the box 1 yellow. $\begin{cases} B \text{ be the number of blue balls} \\ G \text{ be the number of green balls} \end{cases}$ Find the conditional Y be the number of yellow balls.

PMF of B, Y given G.

Solution. Fix any $g \in \{0, \dots, 10\}$. For any $b, y \in \{0, \dots, 10\}$ with b + g + y = 10,

$$p_{B,Y|G}(b,y|g) = \frac{P(B=b,G=g,Y=y)}{P(G=g)}$$

$$= \frac{\binom{10}{b,g,y} (\frac{1}{2})^b (\frac{1}{3})^g (\frac{1}{6})^y}{\binom{10}{g} (\frac{1}{3})^g (1-\frac{1}{3})^{10-g}}$$

$$= \binom{b+y}{b} (\frac{3}{4})^b (\frac{1}{4})^y.$$

Hence given $\{G = g\}$ where g = 0, ..., 10, B and Y are respectively the number of successes and that of failures in a Binomial experiment $\sim Bin(10 - g, 3/4)$.

Example 2. Let X, Y be r.v.s. with joint PDF

$$f(x,y) = \begin{cases} \frac{4y}{x} & 0 < x < 1, 0 < y < x \\ 0 & \text{otherwise.} \end{cases}$$

Find the conditional PDF of Y given X and the PDF of X + Y.

Solution. First determine the PDF of X. For $x \in (0,1)$,

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{0}^{x} \frac{4y}{x} dy = \frac{1}{x} \int_{0}^{x} 4y dy = 2x.$$

Then given $X = x \in (0,1)$, for $y \in \mathbb{R}$,

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f(x)} = \frac{2y}{x^2} \chi_{(0,x)}(y).$$

Next we determine the PDF of X+Y. (Can we use the convolution formula? No, X,Y are not independent.) Define

$$\begin{cases} U = X + Y \\ V = X \end{cases} \iff \begin{cases} X = V \\ Y = U - V \end{cases}$$

Then (i) is satisfied. Since the Jacobian for the map $(x,y) \mapsto (x+y,x)$ is

$$J(x,y) = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1,$$

we have (ii) holds. Notice that 0 < x < 1, 0 < y < x implies 0 < u < 2, u/2 < v < u.

Then by (1),

$$f_{U,V}(u,v) = f(x,y) |J(x,y)|^{-1}$$

$$= f(v,u-v) \times 1$$

$$= \begin{cases} \frac{4(u-v)}{v} & 0 < u < 2, u/2 < v < u \\ 0 & \text{otherwise.} \end{cases}$$

Finally the PDF of U = X + Y is

$$f_{X+Y}(u) = f_U(u) = \int_{-\infty}^{\infty} f_{U,V}(u,v) dv$$

$$= \begin{cases} \int_{u/2}^{u} \frac{4(u-v)}{v} dv & 0 < u < 1\\ \int_{u/2}^{1} \frac{4(u-v)}{v} dv & 1 < u < 2 \end{cases}$$

$$= \begin{cases} (4 \ln 2 - 2)u & 0 < u < 1\\ -4u \ln u + (4 \ln 2 + 2)u - 4 & 1 < u < 2. \end{cases}$$

Alternatively, we follow our familiar CDF-PDF-style argument. Let Z = X + Y. To determine the CDF of Z, since $F_Z(t) = P(X + Y \le t) = P(Y \le -X + t)$ for $t \in \mathbb{R}$, we have to compute the probability (integral) on the red shadowed region below **as** t **varies**. Then take differentiation to obtain the PDF.

Figure 1: CDF-PDF-style

Alternatively, we can also apply the (density=mass/volume)-style argument (see e.g., [Tutorial 10, Ex. 1]). Let Z = X + Y. Fix any $z \in \mathbb{R}$. Let $\varepsilon > 0$ small. To determine the PDF $f_Z(z)$, we have to compute the probability (integral) on the blue shadowed region below **as** z **varies**. Then divide by ε and let $\varepsilon \to 0$ to obtain the PDF.

Figure 2: (density=mass/volume)-style

Remark. Although logically the alternative solutions in Example 2 seem more natural, the computational work might be relatively heavier.

Example 3. Let X, Y be r.v.s. with joint PDF

$$f(x,y) = \begin{cases} \frac{1}{x^2y^2} & x > 1, y > 1\\ 0 & \text{otherwise.} \end{cases}$$

Find the joint PDF of U = XY, V = X/Y.

Solution. Since when x > 1, y > 1,

$$\begin{cases} u = xy \\ v = \frac{x}{y} \end{cases} \iff \begin{cases} x = \sqrt{uv} \\ y = \sqrt{\frac{u}{v}} \end{cases}$$

and

$$J(x,y) = \begin{vmatrix} y & x \\ \frac{1}{y} & -\frac{x}{y^2} \end{vmatrix} = -\frac{2x}{y},$$

the conditions for (1) are satisfied.

Notice that x > 1, y > 1 implies $u = xy > x/y = v, uv = x^2 > 1$. Hence for u > v, uv > 1,

$$f_{U,V}(u,v) = f_{X,Y}(x,y) |J(x,y)|^{-1} = \frac{1}{x^2 y^2} \cdot \frac{y}{2x} = \frac{1}{2(uv)^{3/2} \sqrt{u/v}} = \frac{1}{2u^2 v}.$$

Together we have the joint PDF of U, V

$$f_{U,V}(u,v) = \begin{cases} \frac{1}{2u^2v} & u > v, uv > 1\\ 0 & \text{otherwise.} \end{cases}$$
 (2)

Example 3'. We split the joint PDF of X, Y in Example 3 into

$$\tilde{f}(x,y) = \begin{cases} \frac{1}{2x^2y^2} & x > 1, y > 1\\ \frac{1}{2x^2y^2} & x < -1, y < -1\\ 0 & \text{otherwise.} \end{cases}$$

Let $\widetilde{X}, \widetilde{Y}$ be r.v.s with the above joint PDF. What will be the joint PDF of $\widetilde{U} = \widetilde{X}\widetilde{Y}, \widetilde{V} = \widetilde{X}/\widetilde{Y}$? By a symmetry observation, the answer should be the same as (2). However, what matters more is that can we still apply (1) without modification?