

Mathematisch-Naturwissenschaftliche Fakultät

Institut für Theoretische Physik

Prof. Dr. Igor Lesanovsky PD Dr. Davide Campagnari

Tutorial Advanced Quantum Mechanics

Winter semester 2021/2022

Tübingen, 6th December 2021

Problem Set 8

Problem 24 (Periodic system)

(2 points)

- a. (1 point) What determines the period and the group of an element?
- **b.** (1 point) The electronic configuration of potassium (Z = 19) is $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 = [Ar] 4s^1$ and not [Ar] $3d^1$ as one might expect. Can you explain why?

Problem 25 (Hund's rules)

(4 points)

As an example of Hund's rules we treat the outer shell of a titanium atom, whose electron configuration is [Ar] 4s² 3d². Since the 4s subshell is filled up, the relevant electrons are the two occupying the 3d subshell.

- **a.** (2 points) How many states are there in a d shell? What is the degeneracy of the configuration d²? How do the Hilbert spaces of the total spin (\mathcal{H}_S) and of the total orbital angular momentum (\mathcal{H}_L) decompose? Which are the antisymmetric states for the product Hilbert space $\mathcal{H}_S \otimes \mathcal{H}_L$? What are the multiplet representations ^{2S+1}L of these states?
- b. (1 point) Which of these states is the ground state according to the first two Hund rules?
- **c.** (1 point) Take the spin-orbit interaction into consideration, and find the corresponding L–S multiplets ${}^{2S+1}L_J$. What is the ground state according to the third Hund rule?

Problem 26 (Landé projection theorem)

(3 points)

Let **A** be an arbitrary vector operator, i.e. a set of three operators A_i satisfying the commutation relations $[J_i, A_i] = i \hbar \varepsilon_{ijk} A_k$ with the total angular momentum **J**.

a. (1 point) Retrace the steps performed in Problem 20 and prove the equation

$$[\mathbf{J}^2, [\mathbf{J}^2, A_i]] = 2\hbar^2(\mathbf{J}^2A_i + A_i\mathbf{J}^2) - 4\hbar^2\mathbf{A} \cdot \mathbf{J}J_i.$$

b. (2 points) Show the identity

$$\langle j,m|A_i|j,m'
angle = rac{\langle j,m|{f A}\cdot{f J}\,J_i|j,m'
angle}{\hbar^2 j(j+1)}.$$

Problem 27 (Magnetic dipole moment of deuteron)

(14 points)

The deuteron 2H (i.e. the nucleus of a deuterium atom) is a bound state of a proton and a neutron (each being a particle with spin 1/2). The total spin I of deuteron is hence the sum of the two spins S_p and S_n and of the relative orbital angular momentum L:

$$\boldsymbol{I} = \boldsymbol{S}_p + \boldsymbol{S}_n + \boldsymbol{L}.$$

a. (3 points) The deuteron has spin i=1 and positive parity. Couple the proton's and neutron's spins \mathbf{S}_p and \mathbf{S}_n to $\mathbf{S}=\mathbf{S}_p+\mathbf{S}_n$, and then couple \mathbf{S} to the orbital angular momentum \mathbf{L} . Give all possible multiplets ${}^{2S+1}L_1$ and show that the most general state vector of the deuteron can be written as

$$|^{2}H\rangle = \alpha_{s}|^{3}S_{1}\rangle + \alpha_{d}|^{3}D_{1}\rangle, \qquad |\alpha_{s}|^{2} + |\alpha_{d}|^{2} = 1.$$

Of which angular momentum operators is this state an eigenstate? *Hint:* Because of parity only *even* values of ℓ are allowed.

The nuclear magnetic moment is defined as the expectation value

$$\mu = \langle i, m_i = i | \mu_3 | i, m_i = i \rangle$$

of the z component of the magnetic moment operator

$$oldsymbol{\mu} = rac{\mathsf{L}}{2\hbar}\,\mu_\mathsf{N} + g_\mathsf{p}rac{\mathsf{S}_\mathsf{p}}{\hbar}\,\mu_\mathsf{N} + g_\mathsf{n}rac{\mathsf{S}_\mathsf{n}}{\hbar}\,\mu_\mathsf{N},$$

where $\mu_{\rm N}=e\hbar/(2m_{\rm p})=31,5\,{\rm neV/T}$ is the nuclear magneton, and the g-factors of proton and neutron are $g_{\rm p}=5,5857$ and $g_{\rm n}=-3,8261$.

b. (2 points) Show that the deuteron's magnetic moment can be written as

$$\mu = rac{1}{2\hbar} \langle ^2 \mathsf{H} | m{\mu} \cdot \mathbf{I} |^2 \mathsf{H}
angle \equiv rac{1}{2\hbar} \langle m{\mu} \cdot \mathbf{I}
angle.$$

(From now on we will use the notation $\langle ... \rangle$ to represent expectation values $\langle {}^{2}H|...|{}^{2}H\rangle$.)

c. (2 points) Use the explicit definition of the operator μ and bring the result of part **b.** into the form

$$rac{\mu}{\mu_{
m N}} = rac{1}{4\hbar^2} \Big[ig(g_{
m p} + g_{
m n} ig) \langle {f I} \cdot {f S}
angle + \langle {f I} \cdot {f L}
angle + ig(g_{
m p} - g_{
m n} ig) \langle {f I} \cdot ({f S}_{
m p} - {f S}_{
m n})
angle \Big].$$

d. (3 points) Rewrite the products $I \cdot S$ and $I \cdot L$ as suitable combinations of I^2 , S^2 and L^2 , and show

$$rac{\mu}{\mu_{ extsf{N}}} = rac{g_{ extsf{p}} + g_{ extsf{n}}}{2} + rac{1 - g_{ extsf{p}} - g_{ extsf{n}}}{8\hbar^2} \langle \mathbf{L}^2
angle + rac{g_{ extsf{p}} - g_{ extsf{n}}}{4\hbar^2} \langle \mathbf{I} \cdot (\mathbf{S}_{ extsf{p}} - \mathbf{S}_{ extsf{n}})
angle.$$

e. (3 points) Explain (without calculations) why the term $\langle \mathbf{I} \cdot (\mathbf{S}_p - \mathbf{S}_n) \rangle$ vanishes. Work out the remaining expectation value and show

$$rac{\mu}{\mu_{\mathsf{N}}} = rac{g_{\mathsf{p}} + g_{\mathsf{n}}}{2} + rac{3}{4} \left| lpha_{\mathsf{d}}
ight|^2 ig(1 - g_{\mathsf{p}} - g_{\mathsf{n}} ig).$$

f. (1 point) Compare the result for the magnetic moment to the experimental value 0.85744 $\mu_{\rm N}$ and determine $|\alpha_d|^2$.