5. 識別 一生成モデルと識別モデルー

- ラベル特徴
- 数值特徵

5.1 数値特徴に対する「教師あり・識別」問題の定義

クラス境界が複雑 非線形識別面 ⇒ ニューラルネット 高次元へマッピング⇒ SVM

5.2 数値特徴に対するベイズ識別 5.2.1 数値特徴に対するナイーブベイズ識別

$$C_{NB} = \arg\max_{i} P(\omega_i) \prod_{j=1}^{d} p(x_j | \omega_i)$$

- 確率密度関数 $p(x_j|\omega_i)$ の推定
 - 正規分布を仮定

$$p(z) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(z-\mu)^2}{2\sigma^2})$$

5.2.1 数値特徴に対するナイーブベイズ識別

diabetes データ

No.	1: preg Numerio	2: plas Numerio	3: pres Numerio	4: skin Numerio	5: insu Numerio	6: mass Numerio	7: pedi Numerio	8: age Numerio	9: class Nominal	
1	6.0	148.0	72.0	35.0	0.0	33.6	0.627	50.0	tested_positive	_
2	1.0	85.0	66.0	29.0	0.0	26.6	0.351	31.0	tested_negative	
3	8.0	183.0	64.0	0.0	0.0	23.3	0.672	32.0	tested_positive	
4	1.0	89.0	66.0	23.0	94.0	28.1	0.167	21.0	tested_negative	
5	0.0	137.0	40.0	35.0	168.0	43.1	2.288	33.0	tested_positive	
6	5.0	116.0	74.0	0.0	0.0	25.6	0.201	30.0	tested_negative	
7	3.0	78.0	50.0	32.0	88.0	31.0	0.248	26.0	tested_positive	
8	10.0	115.0	0.0	0.0	0.0	35.3	0.134	29.0	tested_negative	
9	2.0	197.0	70.0	45.0	543.0	30.5	0.158	53.0	tested_positive	
10	8.0	125.0	96.0	0.0	0.0	0.0	0.232	54.0	tested_positive	
11	4.0	110.0	92.0	0.0	0.0	37.6	0.191	30.0	tested_negative	
12	10.0	168.0	74.0	0.0	0.0	38.0	0.537	34.0	tested_positive	
13	10.0	139.0	80.0	0.0	0.0	27.1	1.441	57.0	tested_negative	
14	1.0	189.0	60.0	23.0	846.0	30.1	0.398	59.0	tested_positive	
15	5.0	166.0	72.0	19.0	175.0	25.8	0.587	51.0	tested_positive	
16	7.0	100.0	0.0	0.0	0.0	30.0	0.484	32.0	tested_positive	
17	0.0	118.0	84.0	47.0	230.0	45.8	0.551	31.0	tested_positive	
18	7.0	107.0	74.0	0.0	0.0	29.6	0.254	31.0	tested_positive	
19	1.0	103.0	30.0	38.0	83.0	43.3	0.183	33.0	tested_negative	
20	1.0	115.0	70.0	30.0	96.0	34.6	0.529	32.0	tested_positive	+
Undo OK Cancel										

5.2.1 数値特徴に対するナイーブベイズ識別

5.2.2 生成モデルの考え方

- 事後確率を求めるにあたって、同時確率を求め ている
 - データが生成される様子をモデル化していると見る ことも出来る
 - 事前確率に基づいてクラスを選ぶ
 - そのもとで、特徴ベクトルを出力する

$$P(\omega_i|m{x}) = rac{p(m{x}|\omega_i)P(\omega_i)}{p(m{x})}$$
 事後確率を求めるより、 $= rac{p(\omega_i,m{x})}{p(m{x})}$ のではないか?

難しい問題を解いている のではないか?

5.3.1 識別モデルの考え方

• 事後確率を直接求める

この値が正なら正例、 負なら負例となるように 重み w を学習する この平面を 求めている ことになる

確率と対応づけるには?

5.3.1 識別モデルの考え方

- ロジスティック識別
 - 入力が正例である確率

$$P(\oplus | \boldsymbol{x}) = \frac{1}{1 + \exp(-(\boldsymbol{w} \cdot \boldsymbol{x} + w_0))}$$

-∞ ~ +∞ の値域を持つ ものを、順序を変えずに 0 ~ 1 にマッピング

• 最適化対象 = モデルが学習データを生成する確率

$$E(\boldsymbol{w}) = -\log P(D|\boldsymbol{w}) = -\log \prod_{\boldsymbol{x}_i \in D} o_i^{y_i} (1 - o_i)^{(1 - y_i)}$$

 $o = P(\oplus | \boldsymbol{x})$

 $y = o \ or \ 1$

正解ラベル

 $oldsymbol{E}(oldsymbol{w})$ を最急勾配法で最小化

• 重み更新量の計算

$$\frac{\partial E(\boldsymbol{w})}{\partial w_j} = \sum_{\boldsymbol{x}_i \in D} \left(\frac{y_i}{o_i} - \frac{1 - y_i}{1 - o_i}\right) o_i (1 - o_i) x_{ij}$$
$$= \sum_{\boldsymbol{x}_i \in D} (y_i - o_i) x_{ij}$$

• 重みの更新式

$$w_j \leftarrow w_j - \eta \sum_{\boldsymbol{x}_i \in D} (y_i - o_i) x_{ij}$$

diabetes データ

<u>≰</u> Viewer											
Relation: pima_diabetes											
No.	1: preg Numerio	2: plas Numerio	3: pres Numerio	4: skin Numerio	5: insu Numerio	6: mass Numeric	7: pedi Numerio	8: age Numerio	9: class Nominal		
1	6.0	148.0	72.0	35.0	0.0	33.6	0.627	50.0	tested_positive		
2	1.0	85.0	66.0	29.0	0.0	26.6	0.351	31.0	tested_negative		
3	8.0	183.0	64.0	0.0	0.0	23.3	0.672	32.0	tested_positive		
4	1.0	89.0	66.0	23.0	94.0	28.1	0.167	21.0	tested_negative		
5	0.0	137.0	40.0	35.0	168.0	43.1	2.288	33.0	tested_positive		
6	5.0	116.0	74.0	0.0	0.0	25.6	0.201	30.0	tested_negative		
7	3.0	78.0	50.0	32.0	88.0	31.0	0.248	26.0	tested_positive		
8	10.0	115.0	0.0	0.0	0.0	35.3	0.134	29.0	tested_negative		
9	2.0	197.0	70.0	45.0	543.0	30.5	0.158	53.0	tested_positive		
10	8.0	125.0	96.0	0.0	0.0	0.0	0.232	54.0	tested_positive		
11	4.0	110.0	92.0	0.0	0.0	37.6	0.191	30.0	tested_negative		
12	10.0	168.0	74.0	0.0	0.0	38.0	0.537	34.0	tested_positive		
13	10.0	139.0	80.0	0.0	0.0	27.1	1.441	57.0	tested_negative		
14	1.0	189.0	60.0	23.0	846.0	30.1	0.398	59.0	tested_positive		
15	5.0	166.0	72.0	19.0	175.0	25.8	0.587	51.0	tested_positive		
16	7.0	100.0	0.0	0.0	0.0	30.0	0.484	32.0	tested_positive		
17	0.0	118.0	84.0	47.0	230.0	45.8	0.551	31.0	tested_positive		
18	7.0	107.0	74.0	0.0	0.0	29.6	0.254	31.0	tested_positive		
19	1.0	103.0	30.0	38.0	83.0	43.3	0.183	33.0	tested_negative		
20	1.0	115.0	70.0	30.0	96.0	34.6	0.529	32.0	tested_positive	+	
Undo OK Cancel											

実行例

入力

```
姓城 血糖値 血圧 ....
\mathbf{x}=(6, 148, 72, 35, 0, 33.6, 0.627, 50)
g(\mathbf{x}) = 6 \times 0.06 + 148 \times 0.02 - 72 \times 0.01 + 33.6 \times 0.04 + 0.627 \times 0.47 + 50 \times 0.01 - 4.18
= 0.559
P(tested\_positive) = 1/(1 + \exp(-g(\mathbf{x}))) = 0.636
```

• 出力

tested_positive