Planning Techniques: POP

Dra. Mª Dolores Rodríguez Moreno

Objectives

Specific Objectives

Understand POP techniques

Source

- D. Weld. An Introduction to Least Commitment Planning. AI Magazine, 1994
- Eva Onaindia De La Rivaherrera. Planificación Automática. Videos. UPV. https://media.upv.es/

- Motivation
- Definition
- POP tree
- UCPOP
- Conclusions

Motivation

- Having a totally ordered list of steps is restrictive
- Can we only do something if it's necessary?
- POP uses the principle of least commitment: never making a choice unless required to do so

- Motivation
- Definition
- POP tree
- UCPOP
- POP planners
- Conclusions

Definition (I)

- Perform PSS
- Partial Plan: $\mathcal{P} = (\mathcal{A}, \mathcal{O}, \mathcal{L}, \mathcal{OC}, \mathcal{UL})$ Action, Ordering constraints, causal Link, Open Conditions (flaws), Unsafe Links
- Backward search
- Each node has:
 - Partially instantiated actions
 - Set of constraints
 - Process stops if the solution is found, after several refinements (adding new operators)

Definition (II)

- The planning algorithm implements the *least commitment* technique
 - Only essential planning decisions are saved because it is not necessary to commit
 - The causal link structure is responsible for storing them
 - 3 fields: producer, consumer and the proposition
 - As can be actions that threaten it, we can apply:
 - Demotion: add the restriction before the step that threats it
 - Promotion: add the restriction after the step that threats it
 - Separation: add the restriction to the variable binding
 - Confrontation: add the negation to the conditional effects
- Examples: UCPOP, Cassandra, ZENO, VHPOP

- Motivation
- Definition
- POP tree
- POP planners
- UCPOP
- Conclusions

POP tree (I)

POP tree (III)

- The initial plan is created from the initial state description and the goal description by creating two "pseudo-steps:"
 - Start
 - P: none
 - E: all positive literals defining the initial state
 - Finish
 - P: literals defining the conjunctive goal to be achieved
 - E: none
- Then creating the initial plan as: Start -----> Finish
- Searching for a Solution in Plan Space

- Motivation
- Definition
- POP tree
- POP planners
- UCPOP
- Conclusions

POP Planners

- UCPOP
- Cassandra
- ZENO
- VHPOP

- Motivation
- Definition
- POP tree
- POP planners
- UCPOP: example
- Conclusions

UCPOP(I)

start

(on c a) (clear b) (clear c) (on a table) (on b table)

After adding a causal link to support (on B C), the plan is as shown and agenda contains $\{(clear\ B)\ (clear\ C)\ (on\ B\ Table)\ (on\ A\ B)\}$ as open propositions.

After adding a causal link to support (clear B), the plan has two causal links and agenda is set to {(clear C) (on B Table) (on A B)}.

UCPOP (II)

Since the move-A action could possibly precede the move-B action, it threatens the link labeled (clear B) as indicated by the dashed line.

UCPOP (III)

After promoting the threatening action, the plan's actions are totally ordered.

UCPOP (IV)

- Motivation
- Definition
- POP tree
- UCPOP
- Conclusions

Conclusions

- Idea
 - Work on several subgoals independently
 - Solve them with subplans
 - Combine the subplans
 - Flexibility in ordering the subplans
- Least Commitment strategy: delaying a choice during search
- Causal links lead to early pruning of portions of the search space because of irresolvable conflicts

ToDo example

- Goal: Set the table, i.e., on(Tablecloth) ^ out(Glasses) ^ out(Plates) ^ out(Silverware)
- Initial State: clear(Table)
- Operators:
 - Lay-tablecloth
 P: clear(Table)
 E: on(Tablecloth), ~clear(Table)
 - Put-out(x)
 - P: none
 - E: out(x), ~clear(Table)

