CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Agenda

- Prove set properties using
 - set identities
 - element argument

Proof using set identities (Algebraic proof)

Review example

Proposition

• Construct an algebraic proof that for all sets A, B, and C, $(A \cup B) - C = (A - C) \cup (B - C)$

Proof

```
• (A \cup B) - C

= (A \cup B) \cap C' (: set difference law)

= C' \cap (A \cup B) (: commutative law)

= (C' \cap A) \cup (C' \cap B) (: distributive law)

= (A \cap C') \cup (B \cap C') (: commutative law)

= (A - C) \cup (B - C) (: set difference law)
```

Prove set properties using element argument

Facts for element arguments

 $A \subseteq B \text{ if and only if } \forall x, x \in A \rightarrow x \in B$

Facts for element arguments

Let X and Y be subsets of a universal set U and suppose x and y are elements of U.

- $x \in X \cup Y \Leftrightarrow x \in X \text{ or } x \in Y$
- $x \in X \cap Y \Leftrightarrow x \in X$ and $x \in Y$
- $x \in X Y \Leftrightarrow x \in X$ and $x \notin Y$
- $x \in X' \Leftrightarrow x \notin X$
- $(x,y) \in X \times Y \Leftrightarrow x \in X \text{ and } y \in Y$

Element argument — situation 1

Basic method for proving that a set is a subset of another

- ullet Let sets X and Y be given. To prove that $X\subseteq Y$,
 - 1. suppose that x is a particular but arbitrarily chosen element of X.
 - 2. show that x is an element of Y.

Element argument — situation 2

Basic method for proving that two sets are equal

- ullet Let sets X and Y be given. To prove that X=Y,
 - 1. Prove that $X \subseteq Y$.
 - 2. Prove that $Y \subseteq X$.

Element argument — situation 3

Basic method for proving a set equals the empty set

- To prove that a set X is equal to the empty set ϕ , prove that X has no elements.
- To do this, suppose X has an element and derive a contradiction.

Proposition

• Prove that for all sets A, B, and C $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Proof

We need to prove:

- 1. $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$
- 2. $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$

```
Proof (continued)
Proof that A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C).
Suppose x \in A \cup (B \cap C).
x \in A \text{ or } x \in B \cap C (: defn. of union)
• Case 1. [x \in A.]
  x \in A \cup B (: defn. of union)
  x \in A \cup C (: defn. of union)
  x \in (A \cup B) \cap (A \cup C) (: defn. of intersection)
• Case 2. [x \in B \cap C.]
  x \in B and x \in C (: defn. of intersection)
  x \in A \cup B (:: defn. of union)
  x \in A \cup C (: defn. of union)
  x \in (A \cup B) \cap (A \cup C) (: defn. of intersection)
```

```
Proof (continued)
Proof that (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).
Suppose x \in (A \cup B) \cap (A \cup C).
x \in A \cup B and x \in A \cup C (: defn. of intersection)
• Case 1. [x \in A.]
  x \in A \cup (B \cap C) (: defn. of union)
• Case 2. [x \notin A.]
  x \in A \text{ or } x \in B (: defn. of union)
  x \in B \qquad (\because x \not\in A)
  x \in A \text{ or } x \in C (: defn. of union)
  x \in C \qquad (\because x \not\in A)
  x \in B \cap C (: defn. of intersection)
  x \in A \cup (B \cap C) (: defn. of union)
```

Proposition

• Prove that for all sets A and B, $(A \cup B)' = A' \cap B'$.

Proof

We need to prove:

- 1. $(A \cup B)' \subseteq A' \cap B'$
- 2. $A' \cap B' \subseteq (A \cup B)'$

Proof (continued)

```
• Proof that (A \cup B)' \subseteq A' \cap B'.

Suppose x \in (A \cup B)'.

x \not\in A \cup B (: defn. of complement)

It is false that (x \text{ is in } A \text{ or } x \text{ is in } B).

x \text{ is not in } A \text{ and } x \text{ is not in } B \text{ (: De Morgan's law of logic)}

x \not\in A \text{ and } x \not\in B

x \in A' \text{ and } x \in B' (: defn. of complement)

x \in (A' \cap B') (: defn. of intersection)

Hence, (A \cup B)' \subseteq A' \cap B' (: defn. of subset)
```

Proof (continued)

```
• Proof that A' \cap B' \subseteq (A \cup B)'.
  Suppose x \in A' \cap B'.
  x \in A' and x \in B' (: defn. of intersection)
  x \not\in A and x \not\in B (: defn. of complement)
  x is not in A and x is not in B
  It is false that (x \text{ is in } A \text{ or } x \text{ is in } B)
  (∵ De Morgan's law of logic)
  x \not\in A \cup B
  x \in (A \cup B)' (: defn. of complement)
  Hence, A' \cap B' \subseteq (A \cup B)' (: defn. of subset)
```

Proposition

• For any sets A and B, if $A \subseteq B$, then (a) $A \cap B = A$ and (b) $A \cup B = B$.

Proof

Part (a): We need to prove:

- 1. $A \cap B \subseteq A$
- 2. $A \subseteq A \cap B$

Part (b): We need to prove:

- 1. $A \cup B \subseteq B$
- 2. $B \subseteq A \cup B$

Proof (continued)

Part (a).

1. Proof that $A \cap B \subseteq A$. $A \cap B \subseteq A$ (:: inclusion of intersection)

2. Proof that $A \subseteq A \cap B$.

Suppose
$$x \in A$$

 $x \in B$ $(::A \subseteq B)$
 $x \in A$ and $x \in B$

$$x \in A \cap B$$
 (: defn. of intersection)

Proof (continued)

Part (b).

1. Proof that $A \cup B \subseteq B$.

```
Suppose x \in A \cup B
```

 $x \in A \text{ or } x \in B$ (: defn. of union)

If $x \in A$, then $x \in B$ $(:: A \subseteq B)$

 $x \in B$ (: Modus Ponens and division into cases)

2. Proof that $B \subseteq A \cup B$.

 $B \subseteq A \cup B$ (: inclusion in union)

Proposition

• If E is a set with no elements and A is any set, then $E \subseteq A$.

Proof

Proof by contradiction.

- Suppose there exists a set E with no elements and a set A such that $E \not\subseteq A$.
- $\exists x \text{ such that } x \in E \text{ and } x \not\in A$ (: defn. of a subset)
- ullet But there can be no such element since E has no elements.
- Contradiction!
- Hence, if E is a set with no elements and A is any set, then $E \subseteq A$.

Proposition

• There is only one set with no elements.

Proof

- Suppose E_1 and E_2 are both sets with no elements.
- $E_1 \subseteq E_2$ (: previous proposition)
- $E_2 \subseteq E_1$ (: previous proposition)
- Thus, $E_1 = E_2$

Proposition

• Prove that for any set A, $A \cap \phi = \phi$

Proof

Proof by contradiction.

- Suppose there is an element x such that $x \in A \cap \phi$
- $x \in A$ and $x \in \phi$ (: defn. of intersection)
- $x \in \phi$
- ullet Impossible because ϕ cannot have any elements
- Hence, the supposition is incorrect.
- So, $A \cap \phi = \phi$

Proposition

• For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C'$, then $A \cap C = \phi$.

Proof

Proof by contradiction.

- Suppose there is an element x such that $x \in A \cap C$
- $x \in A$ and $x \in C$ (: defn. of intersection)
- $\bullet \ x \in A$
- $x \in B$ $(\because x \in A \text{ and } A \subseteq B)$
- $x \in C'$ $(:: x \in B \text{ and } B \subseteq C')$
- $x \notin C$ (: defn. of complement)
- $x \in C$ and $x \notin C$
- Contradiction!
- Hence, the supposition is incorrect.
- So, $A \cap C = \phi$