# **Data Warehousing Project**

# **Electric Vehicle Population Data**

## MIS 6309: Business Data Warehousing

### **Group Members:**

Sai Pranay Reddy Aare SXA220072 Kumar Srinivasa KXS220073 Sandeep D Arasappa SDA200000

### **CONTENTS**

| 1. | Abstract:                           | 2 |
|----|-------------------------------------|---|
| 2. | Data Source:                        | 3 |
| 3. | Data Description:                   | 4 |
| 4. | Logical Design and Physical Design: | 6 |
|    | Star Schema:                        | 6 |
|    | Data Cleaning and Normalization:    | 7 |
| 5. | Entity Relationship Diagram(ERD):   | 7 |
| 6. | Forward Engineering:                | 8 |

|    | For  | vard Engineering Code:                                                                | 8    |
|----|------|---------------------------------------------------------------------------------------|------|
| 7. | Insi | ghts:                                                                                 | . 11 |
|    | Insi | ght 1: Find the most popular electric vehicle type per year                           | . 11 |
|    | Q    | uery 1:                                                                               | . 11 |
|    | Insi | ght 2: Find the top 3 vehicle makes with the most electric vehicles each year         | . 12 |
|    | Q    | uery:                                                                                 | . 13 |
|    |      | ght 3: Find the average Base MSRP of electric vehicles per year, broken down by       | . 14 |
|    | Q    | uery:                                                                                 | . 15 |
|    | Insi | ght 4: Find the county with the most electric vehicles for each electric vehicle type | . 16 |
|    | Q    | uery 4:                                                                               | . 16 |
|    | Insi | ght 5: Find the number of Electric cars per year                                      | . 17 |
|    | Q    | uery:                                                                                 | . 18 |
|    | Insi | ght 6: Average electric range of each vehicle type                                    | . 18 |
|    | Q    | uery:                                                                                 | . 19 |
|    | Insi | ght 7: Number of electric vehicles per legislative district                           | . 19 |
|    | Q    | uery:                                                                                 | 20   |
|    | Insi | ght 8: Number of electric vehicles for each electric utility                          | . 21 |
|    | Q    | uery:                                                                                 | . 21 |
|    | Insi | ght 9: Model year with the highest average base MSRP for electric vehicles            | . 22 |
|    | Q    | uery:                                                                                 | . 23 |
| 8. | Visu | ualizations:                                                                          | . 23 |
|    | 1.   | Number of Electric Vehicles by County:                                                | . 24 |
|    | 2.   | Number of EV's by year:                                                               | . 24 |
|    | 3.   | Top 5 Cities by Sum of Base MSRP:                                                     | . 25 |
|    | 4.   | Number of EV's in all states excluding Washington:                                    | . 25 |
|    | 5.   | Top 5 Manufacturing Companies:                                                        | 26   |
|    | 6.   | Count of Vehicles by EV Type:                                                         | 26   |
|    | 7    | Dashboard of Tesla Vehicles                                                           | 27   |

## 1. Abstract:

This report provides an exhaustive exploration of the Electric Vehicle (EV) population dataset sourced from the Research and Analysis Office of the Department of Licensing in Washington. Comprising 139,000 rows and 17 columns, the dataset offers an encompassing understanding of the EV landscape, with each column serving as a key to unlock insights into EV characteristics and distribution trends.

The dataset's intricate columns include:

Model: Derived from Vehicle Identification Number (VIN) decoding, this column
presents the specific model of each vehicle, aiding in the analysis of model
preferences and market segmentation.

- **Electric Vehicle Type:** This column distin This column distinguishes between allelectric and plug-in hybrid vehicles, providing a clear classification of EVs based on their propulsion technology.
- Clean Alternative Fuel Vehicle (CAFV) Eligibility: Categorizing vehicles as Clean Alternative Fuel Vehicles (CAFVs), this column aligns with House Bill 2042, enacted in the 2019 legislative session, outlining fuel and electric-only range requirements for alternative fuel vehicle tax exemptions.
- **Electric Range:** Expressing the distance a vehicle can travel solely on electric power, this numeric column contributes valuable insights into the EV's operational range.
- Base MSRP: Providing the lowest Manufacturer's Suggested Retail Price (MSRP) for the vehicle's model, this numeric attribute aids in understanding the affordability of various EV options.
- Legislative District: Representing the vehicle owner's residing area within Washington State's legislative divisions, this numeric value offers insights into EV distribution across different legislative districts.
- **DOL Vehicle ID:** A unique identifier assigned by the Department of Licensing to each vehicle, this attribute facilitates streamlined data management and identification.
- Vehicle Location: Displaying the geographical center of the registered vehicle's ZIP Code, this point-based attribute adds a spatial dimension to the dataset, enabling geospatial analyses.
- Electric Utility: This column signifies the electric power retail service territories serving the vehicle's address. It encompasses diverse ownership types and territorial divisions, offering insights into power supply patterns influencing EV charging infrastructure.
- 2020 Census Tract: Reflecting the United States Census Bureau's GEOID identifier, this alphanumeric entry connects the dataset to census tract demographics, enriching the analysis with socio-economic context.

Incorporating these diverse columns, the report offers an indispensable resource for stakeholders, policymakers, and researchers aiming to comprehend the intricacies of EV adoption, distribution, and relevant contextual factors. By leveraging the dataset's comprehensive attributes, this report contributes to the discourse on sustainable transportation solutions within the evolving landscape of electric mobility.

### 2. Data Source:

The dataset is open-source, and it is available to the public on the website below: https://data.wa.gov/Transportation/Electric-Vehicle-Population-Data/f6w7-q2d2

## 3. Data Description:

This dataset shows the Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) that are currently registered through Washington State Department of Licensing (DOL).

A Battery Electric Vehicle (BEV) is an all-electric vehicle using one or more batteries to store the electrical energy that powers the motor and is charged by plugging the vehicle in to an electric power source. A Plug-in Hybrid Electric Vehicle (PHEV) is a vehicle that uses one or more batteries to power an electric motor; uses another fuel, such as gasoline or diesel, to power an internal combustion engine or other propulsion source; and is charged by plugging the vehicle in to an electric power source.

Clean Alternative Fuel Vehicle (CAFV) Eligibility is based on the fuel requirement and electric-only range requirement as outlined in RCW 82.08.809 and RCW 82.12.809 to be eligible for Alternative Fuel Vehicles retail sales and Washington State use tax exemptions. Sales or leases of these vehicles must occur on or after 8/1/2019 and meet the purchase price requirements to be eligible for Alternative Fuel Vehicles retail sales and Washington State use tax exemptions.

Monthly count of vehicles for a county may change from this report and prior reports. Processes were implemented to more accurately assign county at the time of registration. Electric Range is no longer maintained for Battery Electric Vehicles (BEV) because new BEVs have an electric range of 30 miles or more. Zero (0) will be entered where the electric range has not been researched.

### **Columns in this Dataset:**

| Column Name | Description                          | Data Type | Field Name |
|-------------|--------------------------------------|-----------|------------|
| VIN (1-10)  | The 1st 10                           | Text      | vin_1_10   |
|             | characters of each vehicle's Vehicle |           |            |
|             | Identification                       |           |            |
|             | Number (VIN).                        |           |            |

| County                                                  | This is the geographic region of a state that a vehicle's owner is listed to reside within. Vehicles registered in Washington state may be located in other states. | Text | county     |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|
| City                                                    | The city in which the registered owner resides.                                                                                                                     | Text | city       |
| State                                                   | This is the geographic region of the country associated with the record. These addresses may be located in other states.                                            | Text | state      |
| Postal Code                                             | The 5 digit zip code in which the registered owner resides.                                                                                                         | Text | zip_code   |
| Model Year                                              | The model year of<br>the vehicle,<br>determined by<br>decoding the Vehicle<br>Identification<br>Number (VIN).                                                       | Text | model_year |
| Make                                                    | The manufacturer of<br>the vehicle,<br>determined by<br>decoding the Vehicle<br>Identification<br>Number (VIN).                                                     | Text | make       |
| Model                                                   | The model of the vehicle, determined by decoding the Vehicle Identification Number (VIN).                                                                           | Text | model      |
| Electric Vehicle Type                                   | This distinguishes the vehicle as all electric or a plug-in hybrid.                                                                                                 | Text | ev_type    |
| Clean Alternative<br>Fuel Vehicle (CAFV)<br>Eligibility | This categorizes vehicle as Clean Alternative Fuel Vehicles (CAFVs) based on the fuel requirement and electric-only range                                           | Text | cafv_type  |

| Electric Range       | requirement in House Bill 2042 as passed in the 2019 legislative session.  Describes how far a                         | Number | electric_range       |
|----------------------|------------------------------------------------------------------------------------------------------------------------|--------|----------------------|
| Lieutic Kange        | vehicle can travel purely on its electric charge                                                                       | Number | electric_range       |
| Base MSRP            | This is the lowest Manufacturer's Suggested Retail Price (MSRP) for any trim level of the model in question.           | Number | base_msrp            |
| Legislative District | The specific section of Washington State that the vehicle's owner resides in, as represented in the state legislature. | Number | legislative_district |
| DOL Vehicle ID       | Unique number assigned to each vehicle by Department of Licensing for identification purposes.                         | Text   | dol_vehicle_id       |
| Vehicle Location     | The center of the ZIP Code for the registered vehicle.                                                                 | Point  | geocoded_column      |
| Electric Utility     | This is the electric power retail service territories serving the address of the registered vehicle.                   | Text   | electric_utility     |
| 2020 Census Tract    | The census tract identifier is a combination of the state, county, and census tract codes.                             | Text   | _2020_census_tract   |

# 4. Logical Design and Physical Design:

### **Star Schema:**

To comply with the STAR Schema, we normalized our main dataset and created 5 tables (i.e. 1 Fact table and 4 dimension tables). While performing EDA, we removed redundant columns to optimize memory and handled missing data in multiple fields by populating them with generic values to help with our analysis.

### **Data Cleaning and Normalization:**



ERD is created in such a way that 3NF Normalization is achieved using STAR schema. The relationship between the fact table and all dimension tables is one to many.

Vehicle Location and 2020 Census Tract columns are removed because these columns determine the location, and we already have location columns. So, we removed these columns.

# 5. Entity Relationship Diagram(ERD):



## 6. Forward Engineering:

#### 1. Schema Creation:

The script begins by dropping any existing schema named mydb and then creates a new one with the same name using the CREATE SCHEMA statement. The schema is set to use the utf8mb3 character set by default.

#### 2. Table Creation:

The script defines four tables - cafv, location, model, and vehicle\_type, using the CREATE TABLE statements. Each table is created with specific columns and data types. For example, the cafv table has columns CAFV\_Eligibility (INT) and CAFV\_Eligibility\_Description (VARCHAR). Similarly, other tables are created with their respective columns.

### 3. Primary Keys and Indexes:

The script sets the primary keys and indexes for certain columns. For instance, the cafv table's primary key is set on the CAFV\_Eligibility column, while indexes are defined for various columns in the fact table, like Model, Electric\_Vehicle\_Type, CAFV\_Eligibility, and DOL\_Vehicle\_ID. Indexes help in optimizing search and retrieval operations.

### 4. Foreign Key Constraints:

The script establishes relationships between the tables using foreign key constraints. These constraints ensure referential integrity, meaning data in one table must correspond to data in another table. For example, the fact table has foreign keys referencing the model, vehicle\_type, cafv, and location tables.

#### 5. Storage Engine and Character Set:

The script explicitly specifies that all the tables will use the InnoDB storage engine and have the utf8mb3 character set by default. The storage engine determines how data is stored and managed within the tables, while the character set defines the encoding used for text data. Finally, the script resets the SQL mode and foreign key checks to their original values, ensuring that any changes made during the script execution do not affect subsequent queries.

### Forward Engineering Code:

-- MySQL Workbench Forward Engineering

SET @OLD\_UNIQUE\_CHECKS=@@UNIQUE\_CHECKS, UNIQUE\_CHECKS=0; SET @OLD\_FOREIGN\_KEY\_CHECKS=@@FOREIGN\_KEY\_CHECKS, FOREIGN\_KEY\_CHECKS=0;

MIS 6309: Group 2 SET @OLD\_SQL\_MODE=@@SQL\_MODE, SQL\_MODE='ONLY\_FULL\_GROUP\_BY,STRICT\_TRANS\_TABLES,NO\_ZERO\_IN\_DATE, NO ZERO DATE, ERROR FOR DIVISION BY ZERO, NO ENGINE SUBSTITUTION'; \_\_\_\_\_\_ -- Schema mydb -- -----DROP SCHEMA IF EXISTS `mydb`; -- Schema mydb CREATE SCHEMA IF NOT EXISTS 'mydb' DEFAULT CHARACTER SET utf8mb3; USE `mydb`; -- Table `mydb`.`cafv` DROP TABLE IF EXISTS `mydb`.`cafv`; CREATE TABLE IF NOT EXISTS 'mydb'.'cafv' ( `CAFV\_Eligibility` INT NOT NULL, `CAFV\_Eligibility\_Description` VARCHAR(80) NULL DEFAULT NULL, PRIMARY KEY (`CAFV\_Eligibility`)) ENGINE = InnoDB DEFAULT CHARACTER SET = utf8mb3; -- Table `mydb`.`location` DROP TABLE IF EXISTS `mydb`.`location`; CREATE TABLE IF NOT EXISTS 'mydb'. 'location' ( `DOL\_Vehicle\_ID` VARCHAR(45) NOT NULL, `County` VARCHAR(45) NULL DEFAULT NULL, `City` VARCHAR(45) NULL DEFAULT NULL, `State` VARCHAR(45) NULL DEFAULT NULL, `Postal\_Code` INT NULL DEFAULT NULL, `Legislative\_District` INT NULL DEFAULT NULL, `Electric\_Utility` VARCHAR(150) NULL DEFAULT NULL, PRIMARY KEY ('DOL Vehicle ID')) ENGINE = InnoDB DEFAULT CHARACTER SET = utf8mb3; .....

-- Table `mydb`.`model`

```
MIS 6309: Group 2
DROP TABLE IF EXISTS `mydb`.`model`;
CREATE TABLE IF NOT EXISTS `mydb`.`model` (
 'Model' VARCHAR(45) NOT NULL,
 'Make' VARCHAR(45) NULL DEFAULT NULL,
 PRIMARY KEY ('Model'))
ENGINE = InnoDB
DEFAULT CHARACTER SET = utf8mb3:
-- Table `mydb`.`vehicle_type`
------
DROP TABLE IF EXISTS 'mydb'. 'vehicle type';
CREATE TABLE IF NOT EXISTS 'mydb'.'vehicle type' (
 `Electric_Vehicle_Type` INT NOT NULL,
 `Electric_Vehicle_Type_Description` VARCHAR(45) NULL DEFAULT NULL,
 PRIMARY KEY (`Electric_Vehicle_Type`))
ENGINE = InnoDB
DEFAULT CHARACTER SET = utf8mb3;
-- Table `mydb`.`fact`
DROP TABLE IF EXISTS `mydb`.`fact`;
CREATE TABLE IF NOT EXISTS `mydb`.`fact` (
 `Electric_Range` INT NULL DEFAULT NULL,
 'Base MSRP' INT NULL DEFAULT NULL,
 `Model` VARCHAR(45) NOT NULL,
 `Electric_Vehicle_Type` INT NOT NULL,
 `CAFV_Eligibility` INT NOT NULL,
 `DOL Vehicle ID` VARCHAR(45) NOT NULL,
 'VIN' VARCHAR(45) NOT NULL,
 `Model_Year` VARCHAR(45) NULL DEFAULT NULL,
 PRIMARY KEY (`Model`, `Electric_Vehicle_Type`, `CAFV_Eligibility`, `DOL_Vehicle_ID`),
 INDEX `fk_Fact_table_Model_idx` (`Model` ASC) VISIBLE,
 INDEX `fk_Fact_table_Vehicle_type1_idx` (`Electric_Vehicle_Type` ASC) VISIBLE,
 INDEX 'fk Fact table CAFV1 idx' ('CAFV Eligibility' ASC) VISIBLE,
 INDEX `fk_Fact_Location1_idx` (`DOL_Vehicle_ID` ASC) VISIBLE,
 CONSTRAINT `fk_Fact_Location1`
      FOREIGN KEY (`DOL_Vehicle_ID`)
      REFERENCES `mydb`.`location` (`DOL_Vehicle_ID`),
 CONSTRAINT `fk_Fact_table_CAFV1`
      FOREIGN KEY ('CAFV Eligibility')
```

```
REFERENCES `mydb`.`cafv` (`CAFV_Eligibility`),

CONSTRAINT `fk_Fact_table_Model`
FOREIGN KEY (`Model`)
REFERENCES `mydb`.`model` (`Model`),

CONSTRAINT `fk_Fact_table_Vehicle_type1`
FOREIGN KEY (`Electric_Vehicle_Type`)
REFERENCES `mydb`.`vehicle_type` (`Electric_Vehicle_Type`))

ENGINE = InnoDB

DEFAULT CHARACTER SET = utf8mb3;

SET SQL_MODE=@OLD_SQL_MODE;
SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;
SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;
```

# 7. Insights:

# Insight 1: Find the most popular electric vehicle type per year.

- A. Electric Vehicle Adoption Trend: The output provides insights into the electric vehicle adoption trend over the years. By grouping the data by Model\_Year, we can observe which years had the highest number of electric vehicles registered. The Max\_Vehicle\_Count column shows the peak number of electric vehicles for each year, indicating the periods of significant growth in electric vehicle adoption.
- B. Popular Electric Vehicle Types: The Electric\_Vehicle\_Type\_Description column in the output reveals the most popular types of electric vehicles for each Model\_Year. By analyzing the maximum vehicle count for different electric vehicle types, we can identify which types were more prevalent during specific years. This information can help understand the preferences and demand for specific electric vehicle categories over time.
- C. Demand Analysis: The output enables us to analyze the demand for electric vehicles over the years. By examining the highest vehicle counts for each year, we can identify trends in consumer interest and how the demand for electric vehicles has evolved. This insight can be valuable for businesses, policymakers, and researchers to understand the growth of the electric vehicle market and make informed decisions related to sustainability and infrastructure planning.

### Query 1:

```
SELECT Model_Year, Electric_Vehicle_Type_Description, MAX(Vehicle_Count) AS Max_Vehicle_Count FROM (
```

```
SELECT Fact.Model_Year, Vehicle_Type.Electric_Vehicle_Type_Description, COUNT(*)
AS Vehicle_Count
FROM Fact
JOIN Vehicle_Type ON Fact.Electric_vehicle_Type =
Vehicle_Type.Electric_Vehicle_Type
GROUP BY Fact.Model_Year, Vehicle_Type.Electric_Vehicle_Type_Description
) AS SubQuery
GROUP BY Model_Year,Electric_Vehicle_Type_Description
Order by Model Year;
```

### Output:

| _ |            |                                        |                   |
|---|------------|----------------------------------------|-------------------|
|   | Model_Year | Electric_Vehicle_Type_Description      | Max_Vehicle_Count |
| • | 1997       | Battery Electric Vehicle (BEV)         | 1                 |
|   | 1998       | Battery Electric Vehicle (BEV)         | 1                 |
|   | 1999       | Battery Electric Vehicle (BEV)         | 4                 |
|   | 2000       | Battery Electric Vehicle (BEV)         | 9                 |
|   | 2002       | Battery Electric Vehicle (BEV)         | 2                 |
|   | 2003       | Battery Electric Vehicle (BEV)         | 1                 |
|   | 2008       | Battery Electric Vehicle (BEV)         | 19                |
|   | 2010       | Battery Electric Vehicle (BEV)         | 21                |
|   | 2010       | Plug-in Hybrid Electric Vehicle (PHEV) | 3                 |
|   | 2011       | Battery Electric Vehicle (BEV)         | 710               |
|   | 2011       | Plug-in Hybrid Electric Vehicle (PHEV) | 76                |
|   | 2012       | Battery Electric Vehicle (BEV)         | 786               |
|   | 2012       | Plug-in Hybrid Electric Vehicle (PHEV) | 865               |
|   | 2013       | Battery Electric Vehicle (BEV)         | 2940              |
|   | 2013       | Plug-in Hybrid Electric Vehicle (PHEV) | 1630              |
|   | 2014       | Battery Electric Vehicle (BEV)         | 1771              |
|   | 2014       | Plug-in Hybrid Electric Vehicle (PHEV) | 1810              |
|   | 2015       | Battery Electric Vehicle (BEV)         | 3607              |
|   | 2015       | Plug-in Hybrid Electric Vehicle (PHEV) | 1314              |
|   | 2016       | Battery Electric Vehicle (BEV)         | 3875              |
|   | 2016       | Plug-in Hybrid Electric Vehicle (PHEV) | 1783              |
|   | 2017       | Battery Electric Vehicle (BEV)         | 4450              |
|   | 2017       | Plug-in Hybrid Electric Vehicle (PHEV) | 4105              |
|   | 2018       | Battery Electric Vehicle (BEV)         | 10018             |
|   | 2018       | Plug-in Hybrid Electric Vehicle (PHEV) | 4351              |
|   | 2019       | Battery Electric Vehicle (BEV)         | 8595              |
|   |            |                                        |                   |

# Insight 2: Find the top 3 vehicle makes with the most electric vehicles each year.

- A. Top Vehicle Makes by Model Year: The output provides insights into the top vehicle makes for each Model\_Year. By using the ROW\_NUMBER() function with the PARTITION BY Fact.Model\_Year clause, the query ranks the vehicle makes based on their counts (Vehicle\_Count) within each Model\_Year. The WHERE rn <= 3 condition restricts the results to only the top three vehicle makes for each year, based on their popularity (count of occurrences) in the dataset.
- B. Popular Vehicle Makes Over Time: By analyzing the results, we can identify the vehicle makes that have consistently been among the top three most common in each Model\_Year. This insight can provide valuable information about the sustained popularity and market presence of certain vehicle manufacturers across different years. It also indicates which makes have remained competitive and appealing to consumers over time.
- C. Temporal Analysis of Vehicle Makes: The output enables a temporal analysis of vehicle makes' popularity. The data showcases how the top three vehicle makes change from one Model\_Year to another. Changes in the ranking of vehicle makes

over time can reflect shifts in consumer preferences, the introduction of new models, or the impact of marketing and innovation strategies by different manufacturers.

```
Query:

SELECT Model_Year, Make, Vehicle_Count
FROM (

SELECT Fact.Model_Year, Model.Make, COUNT(*) AS Vehicle_Count,
ROW_NUMBER() OVER(PARTITION BY Fact.Model_Year ORDER BY
COUNT(*) DESC) as rn
FROM Fact
JOIN Model ON Fact.Model = Model.Model
GROUP BY Fact.Model_Year, Model.Make
) AS SubQuery
WHERE rn <= 3;
```

### Output:

|   | Model_Year | Make                 | Vehide_Count |
|---|------------|----------------------|--------------|
| Þ | 1997       | CHEVROLET            | 1            |
|   | 1998       | FORD                 | 1            |
|   | 1999       | FORD                 | 4            |
|   | 2000       | FORD                 | 9            |
|   | 2002       | TOYOTA               | 2            |
|   | 2003       | TOYOTA               | 1            |
|   | 2008       | TESLA                | 19           |
|   | 2010       | TESLA                | 21           |
|   | 2010       | WHEEGO ELECTRIC CARS | 3            |
|   | 2011       | NISSAN               | 694          |
|   | 2011       | CHEVROLET            | 76           |
|   | 2011       | TESLA                | 7            |
|   | 2012       | NISSAN               | 589          |
|   | 2012       | CHEVROLET            | 475          |
|   | 2012       | TOYOTA               | 387          |
|   | 2013       | NISSAN               | 1940         |
|   | 2013       | CHEVROLET            | 800          |
|   | 2013       | TESLA                | 772          |
|   | 2014       | CHEVROLET            | 719          |
|   | 2014       | TESLA                | 654          |
|   | 2014       | NISSAN               | 642          |
|   | 2015       | NISSAN               | 1844         |
|   | 2015       | TESLA                | 1074         |
|   | 2015       | FORD                 | 547          |
|   | 2016       | TESLA                | 1623         |
|   | 2016       | NISSAN               | 1172         |
|   | 2016       | FORD                 | 777          |
|   | 2017       | CHEVROLET            | 2740         |
|   | 2017       | TESLA                | 1641         |
|   | 2017       | NISSAN               | 936          |
|   | 2018       | TESLA                | 8045         |
|   | 2018       | NISSAN               | 1227         |
|   | 2018       | CHEVROLET            | 1154         |
|   | 2019       | TESLA                | 4657         |

# Insight 3: Find the average Base MSRP of electric vehicles per year, broken down by CAFV eligibility.

- A. Average MSRP for CAFV Eligibility: The output provides insights into the average Manufacturer's Suggested Retail Price (MSRP) for vehicles categorized based on their CAFV (Clean Alternative Fuel Vehicle) eligibility. By joining the Fact table with the CAFV table on the CAFV\_Eligibility column, the query groups the data by Model\_Year and CAFV\_Eligibility\_Description. It then calculates the average MSRP for each group. The results are ordered in descending order of the average MSRP.
- B. Comparing Average MSRP of Different CAFV Eligibilities: By analyzing the output, we can observe the average MSRP values for different CAFV eligibility descriptions across various Model\_Years. This insight allows us to compare the price differences between clean alternative fuel vehicles with various eligibility criteria. Vehicles with higher average MSRP values might indicate premium offerings, advanced technology, or larger vehicle sizes, while lower average MSRP values could represent more affordable and accessible options.
- C. Trends in Average MSRP: The output reveals trends in the average MSRP for CAFVeligible vehicles over time. By examining the changes in average MSRP values for different Model\_Years, we can identify whether the cost of clean alternative fuel vehicles has increased, decreased, or remained relatively stable over the years. These insights can

help stakeholders in the automotive industry and policymakers understand the affordability and market dynamics of clean alternative fuel vehicles.

### Query:

SELECT Fact.Model\_Year, CAFV.CAFV\_Eligibility\_Description, AVG(Fact.Base\_MSRP)
AS Average\_MSRP
FROM Fact
JOIN CAFV ON Fact.CAFV\_Eligibility = CAFV.CAFV\_Eligibility
GROUP BY Fact.Model\_Year, CAFV.CAFV\_Eligibility\_Description
Order by Average\_MSRP DESC;

### Output:

| Model_Year | CAFV_Eligibility_Description                 | Average_MSRP |
|------------|----------------------------------------------|--------------|
| 2010       | Clean Alternative Fuel Vehicle Eligible      | 101205.6250  |
| 2008       | Clean Alternative Fuel Vehicle Eligible      | 98950.0000   |
| 2014       | Clean Alternative Fuel Vehicle Eligible      | 16314.9893   |
| 2013       | Clean Alternative Fuel Vehicle Eligible      | 14428.5561   |
| 2018       | Not eligible due to low battery range        | 13764.0544   |
| 2019       | Not eligible due to low battery range        | 10436.5886   |
| 2012       | Clean Alternative Fuel Vehicle Eligible      | 7282.0673    |
| 2016       | Clean Alternative Fuel Vehicle Eligible      | 2986.1911    |
| 2017       | Not eligible due to low battery range        | 2082.1834    |
| 2015       | Not eligible due to low battery range        | 1251.8519    |
| 2020       | Not eligible due to low battery range        | 1150.3546    |
| 2011       | Clean Alternative Fuel Vehicle Eligible      | 970.7379     |
| 2017       | Clean Alternative Fuel Vehicle Eligible      | 813.2538     |
| 2019       | Clean Alternative Fuel Vehicle Eligible      | 515.0333     |
| 2016       | Not eligible due to low battery range        | 346.0763     |
| 2018       | Clean Alternative Fuel Vehicle Eligible      | 289.4329     |
| 2015       | Clean Alternative Fuel Vehicle Eligible      | 0.0000       |
| 2020       | Clean Alternative Fuel Vehicle Eligible      | 0.0000       |
| 2021       | Clean Alternative Fuel Vehicle Eligible      | 0.0000       |
| 2022       | Clean Alternative Fuel Vehicle Eligible      | 0.0000       |
| 2023       | Clean Alternative Fuel Vehicle Eligible      | 0.0000       |
| 2024       | Clean Alternative Fuel Vehicle Eligible      | 0.0000       |
| 1997       | Clean Alternative Fuel Vehicle Eligible      | 0.0000       |
| 2022       | Eligibility unknown as battery range         | 0.0000       |
| 2023       | Eligibility unknown as battery range         | 0.0000       |
| 2021       | Eligibility unknown as battery range         | 0.0000       |
| 2024       | Eligibility unknown as battery range         | 0.0000       |
| 2020       | Eligibility unknown as battery range         | 0.0000       |
| 2019       | Eligibility unknown as battery range $\dots$ | 0.0000       |
| 2003       | Clean Alternative Fuel Vehicle Eligible      | 0.0000       |
| 2002       | Clean Alternative Fuel Vehide Eligible       | 0.0000       |
| 2021       | Not eligible due to low battery range        | 0.0000       |
| 2022       | Not eligible due to low battery range        | 0.0000       |
| 2023       | Not eligible due to low battery range        | 0.0000       |
|            |                                              |              |

# Insight 4: Find the county with the most electric vehicles for each electric vehicle type.

- A. Top EV Types by County: The output shows the electric vehicle type (EV\_Type) that has the highest number of vehicles (Max\_Vehicle\_Count) for each county. By joining the Fact table with the Vehicle\_Type and Location tables, the query groups the data by electric vehicle type and county. It then calculates the count of vehicles for each combination and orders the results in descending order of the maximum vehicle count.
- B. Popular EV Types in Counties: The results allow us to identify the most popular electric vehicle types in each county. For each county listed in the output, it shows the electric vehicle type with the highest number of vehicles. This information is valuable for understanding which types of electric vehicles are preferred or more prevalent in specific regions, indicating possible trends in consumer preferences or local policy incentives.
- C. Geographical EV Adoption Patterns: The output provides insights into the geographical adoption patterns of different electric vehicle types. By examining the data by county, we can observe how the popularity of electric vehicle types varies across different regions. For instance, some counties might favor plug-in hybrids, while others might show a higher preference for battery electric vehicles or other types. These adoption patterns can be influenced by factors such as charging infrastructure availability, local environmental policies, and consumer preferences.

Overall, the output of this code offers valuable insights into the distribution of electric vehicles across different types and counties, shedding light on regional EV adoption patterns and helping stakeholders in the automotive industry, policymakers, and researchers better understand the dynamics of electric vehicle markets on a more localized level.

```
Query 4:
```

```
SELECT EV_Type, county, MAX(Vehicle_Count) as Max_Vehicle_Count
FROM (
    SELECT Vehicle_Type.Electric_Vehicle_Type_Description AS EV_Type, Location.county,
COUNT(*) AS Vehicle_Count
    FROM Fact
    JOIN Vehicle_Type ON Fact.Electric_vehicle_Type =
Vehicle_Type.Electric_Vehicle_Type
    JOIN Location ON Fact.DOL_Vehicle_ID = Location.DOL_Vehicle_ID
    GROUP BY EV_Type, Location.county
) AS SubQuery
GROUP BY EV_Type, county
order by Max_vehicle_count DESC;
```

#### Output:

| EV_Type                                | county    | Max_Vehicle_Count |
|----------------------------------------|-----------|-------------------|
| Battery Electric Vehicle (BEV)         | King      | 58228             |
| Plug-in Hybrid Electric Vehicle (PHEV) | King      | 14691             |
| Battery Electric Vehicle (BEV)         | Snohomish | 12674             |
| Battery Electric Vehicle (BEV)         | Pierce    | 7844              |
| Battery Electric Vehicle (BEV)         | Clark     | 5912              |
| Battery Electric Vehicle (BEV)         | Thurston  | 3550              |
| Battery Electric Vehicle (BEV)         | Kitsap    | 3304              |
| Plug-in Hybrid Electric Vehicle (PHEV) | Snohomish | 3033              |
| Plug-in Hybrid Electric Vehicle (PHEV) | Pierce    | 2789              |
| Battery Electric Vehicle (BEV)         | Whatcom   | 2534              |
| Battery Electric Vehicle (BEV)         | Spokane   | 2331              |
| Plug-in Hybrid Electric Vehicle (PHEV) | Clark     | 2315              |
| Plug-in Hybrid Electric Vehicle (PHEV) | Thurston  | 1424              |
| Plug-in Hybrid Electric Vehicle (PHEV) | Kitsap    | 1278              |
| Battery Electric Vehicle (BEV)         | Benton    | 1147              |
| Battery Electric Vehicle (BEV)         | Skagit    | 1131              |
| Battery Electric Vehicle (BEV)         | Island    | 1101              |
| Plug-in Hybrid Electric Vehicle (PHEV) | Spokane   | 1087              |
| Plug-in Hybrid Electric Vehicle (PHEV) | Whatcom   | 875               |
| Battery Electric Vehicle (BEV)         | Chelan    | 666               |
| Battery Electric Vehicle (BEV)         | San Juan  | 636               |
| Battery Electric Vehicle (BEV)         | Jefferson | 575               |
| Battery Electric Vehicle (BEV)         | Clallam   | 564               |
| Plug-in Hybrid Electric Vehicle (PHEV) | Benton    | 558               |
| Battery Electric Vehicle (BEV)         | Yakima    | 505               |
| Battery Electric Vehide (BEV)          | Cowlitz   | 479               |
| Battery Electric Vehicle (BEV)         | Mason     | 451               |
| Plug-in Hybrid Electric Vehicle (PHEV) | Island    | 441               |
| Plug-in Hybrid Electric Vehicle (PHEV) | Skagit    | 410               |
| Battery Electric Vehicle (BEV)         | Kittitas  | 363               |
| Battery Electric Vehicle (BEV)         | Lewis     | 330               |
| Battery Electric Vehicle (BEV)         | Franklin  | 307               |
| Battery Electric Vehicle (BEV)         | Grays Har | 303               |
| Battery Electric Vehicle (BEV)         | Grant     | 290               |

### Insight 5: Find the number of Electric cars per year.

- A. Model Year Car Count: The output provides a summary of the number of cars (Number\_of\_Cars) available in the dataset for each Model\_Year. Each row in the result corresponds to a different Model\_Year, and the corresponding Number\_of\_Cars represents the total count of cars associated with that particular year.
- B. Temporal Car Distribution: By ordering the results in ascending order based on the Model\_Year, the output presents a chronological distribution of cars over the years. It allows us to observe how the number of cars in the dataset has changed over time. By analyzing this temporal distribution, we can identify trends, periods of growth, or any other patterns in car availability for different model years.
- C. Dataset Coverage: The output reveals the coverage of the dataset concerning different Model\_Years. For instance, if the dataset covers a wide range of years, it may indicate the availability of historical car data. On the other hand, if certain years are missing or have relatively low car counts, it may highlight potential gaps or limitations in the dataset.

In summary, the output of this query provides valuable insights into the distribution of cars across different model years in the dataset, allowing for a temporal analysis of car availability and offering an overview of dataset coverage concerning model years. These insights can be

beneficial for understanding the dataset's historical data, identifying trends over time, and assessing the dataset's completeness.

### Query:

SELECT Model\_Year, COUNT(\*) as Number\_of\_Cars FROM Fact GROUP BY Model\_Year ORDER BY Model\_Year;

### Output:

| Model_Year | Number_of_Cars |
|------------|----------------|
| 1997       | 1              |
| 1998       | 1              |
| 1999       | 4              |
| 2000       | 9              |
| 2002       | 2              |
| 2003       | 1              |
| 2008       | 19             |
| 2010       | 24             |
| 2011       | 786            |
| 2012       | 1651           |
| 2013       | 4570           |
| 2014       | 3581           |
| 2015       | 4921           |
| 2016       | 5658           |
| 2017       | 8555           |
| 2018       | 14369          |
| 2019       | 10506          |
| 2020       | 11056          |
| 2021       | 18258          |
| 2022       | 27697          |
| 2023       | 26986          |
| 2024       | 124            |

## Insight 6: Average electric range of each vehicle type.

- A. Average Electric Range by Vehicle Type: The output provides insights into the average electric range of different electric vehicle types. By joining the Fact table with the Vehicle\_Type table on the Electric\_vehicle\_Type column, the query groups the data by Electric\_Vehicle\_Type\_Description and calculates the average electric range (Electric\_Range) for each vehicle type. This information allows us to compare the typical driving distances offered by various electric vehicle types.
- B. Identifying High and Low Range EVs: By examining the output, we can identify which electric vehicle types offer the highest and lowest average electric ranges. Electric vehicle types with higher average ranges might be preferred by consumers seeking

- vehicles with longer driving ranges, suitable for long-distance travel without frequent charging. Conversely, electric vehicle types with lower average ranges may be more suitable for city driving and shorter commutes.
- C. EV Type Performance Comparison: The output allows for a performance comparison of different electric vehicle types in terms of their electric ranges. This comparison is valuable for consumers, policymakers, and researchers interested in understanding the capabilities and limitations of various electric vehicles. It can influence decisions related to individual vehicle choices, fleet management strategies, and the development of charging infrastructure to support different electric vehicle types.

In summary, the output of this code offers insights into the average electric range of different electric vehicle types, facilitates a performance comparison, and aids in understanding which types of electric vehicles are better suited for specific driving needs. These insights are crucial for promoting sustainable transportation solutions, addressing range anxiety concerns, and guiding consumers toward electric vehicles that align with their driving habits and preferences.

### Query:

SELECT Vehicle\_Type.Electric\_Vehicle\_Type\_Description, AVG(Fact.Electric\_Range) FROM Fact

JOIN Vehicle\_Type ON Fact.Electric\_vehicle\_Type = Vehicle\_Type.Electric\_Vehicle\_Type GROUP BY Vehicle\_Type.Electric\_Vehicle\_Type\_Description;

#### Output:

| Electric_Vehicle_Type_Description      | AVG(Fact.Electric_Range) |
|----------------------------------------|--------------------------|
| Battery Electric Vehicle (BEV)         | 84.8033                  |
| Plug-in Hybrid Electric Vehicle (PHEV) | 30.5813                  |

# Insight 7: Number of electric vehicles per legislative district

- A. Legislative District-wise Vehicle Count: The output provides insights into the distribution of vehicles based on legislative districts. By joining the Fact table with the Location table on the DOL\_Vehicle\_ID column, the query groups the data by Legislative\_District. Each row in the output represents a legislative district, and the corresponding count represents the total number of vehicles associated with that district. This information helps in understanding the concentration of vehicles in different legislative districts.
- B. Identifying High and Low Vehicle Density Districts: By analyzing the results, we can identify legislative districts with a higher and lower number of vehicles. Legislative districts with a higher vehicle count might indicate densely populated urban areas or regions with high vehicle ownership rates. On the other hand, districts with a lower vehicle count may represent less populated or rural areas with lower vehicle ownership rates.

C. Insights for Policy and Infrastructure Planning: The output provides valuable information for policymakers and urban planners. It offers insights into vehicle distribution patterns across legislative districts, which can be used to inform decisions related to transportation infrastructure planning, traffic management, and policy initiatives. For example, areas with high vehicle density might require better public transit options or initiatives to promote electric vehicles, while regions with low vehicle density might need targeted transportation solutions.

In summary, the output of this code offers insights into the vehicle distribution across legislative districts, identifies high and low vehicle density areas, and provides useful data for policymakers and planners to make informed decisions regarding transportation policies, infrastructure development, and sustainable mobility solutions.

### Query:

SELECT Location.Legislative\_District, COUNT(\*)
FROM Fact
JOIN Location ON Fact.DOL\_Vehicle\_ID = Location.DOL\_Vehicle\_ID
GROUP BY Location.Legislative District;

### Output:

|             | Legislative_District | COUNT(*) |
|-------------|----------------------|----------|
| <b>&gt;</b> | 42                   | 1933     |
|             | 40                   | 3136     |
|             | 21                   | 3336     |
|             | 25                   | 1387     |
|             | 43                   | 5414     |
|             | 23                   | 3117     |
|             | 35                   | 1910     |
|             | 48                   | 7823     |
|             | 41                   | 9255     |
|             | 31                   | 2403     |
|             | 11                   | 5030     |
|             | 36                   | 6119     |
|             | 19                   | 814      |
|             | 8                    | 1440     |
|             | 34                   | 4132     |
|             | 44                   | 3419     |
|             | 46                   | 5543     |
|             | 49                   | 1913     |
|             | 29                   | 872      |
|             | 32                   | 3308     |
|             | 37                   | 4206     |
|             | 12                   | 1262     |
|             | 18                   | 3713     |
|             | 15                   | 323      |
|             | 16                   | 713      |
|             | 9                    | 749      |
|             | 1                    | 5931     |
|             | 10                   | 2458     |
|             | 5                    | 5825     |
|             | 20                   | 1182     |
|             | 47                   | 2404     |
|             | 22                   | 3395     |
|             | 24                   | 1966     |
| _           | 45                   | 8516     |
| 0           | I± 0                 |          |

# Insight 8: Number of electric vehicles for each electric utility.

- A. Electric Vehicle Adoption by Electric Utility Providers: The output provides insights into the adoption of electric vehicles based on the electric utility providers (Electric\_Utility). By joining the Fact table with the Location table on the DOL\_Vehicle\_ID column, the query groups the data by Electric\_Utility. Each row in the result represents an electric utility provider, and the corresponding count (count) indicates the total number of electric vehicles associated with that utility provider.
- B. Identifying Leading Electric Utility Providers: By examining the output, we can identify the electric utility providers that have the highest number of electric vehicles associated with them. Providers with higher counts might indicate areas with stronger electric vehicle adoption rates or regions where the utility provider offers incentives or infrastructure to support electric vehicle charging.
- C. Insights for Utility Providers and Government: The output offers valuable data for electric utility companies and government organizations. It provides insights into the current state of electric vehicle adoption based on the electric utility providers. Utility companies can use this information to assess the impact of electric vehicles on their infrastructure and plan for future developments in charging stations and electricity demand. Government organizations can use this data to monitor the success of electric vehicle incentives and formulate policies to promote sustainable transportation.

In summary, the output of this query provides insights into the distribution of electric vehicles across different electric utility providers, highlights the leading utility companies in terms of electric vehicle adoption, and offers valuable information for utility providers and government organizations to make informed decisions regarding infrastructure planning and policies related to electric vehicles.

### Query:

SELECT Location.Electric\_Utility, COUNT(\*) as count FROM Fact
JOIN Location ON Fact.DOL\_Vehicle\_ID = Location.DOL\_Vehicle\_ID
GROUP BY Location.Electric\_Utility
Order by count DESC;

#### Output:

|   | Electric_Utility                                                                  | count |
|---|-----------------------------------------------------------------------------------|-------|
| • | PUGET SOUND ENERGY INC  CITY OF TACOMA - (WA)                                     | 51021 |
|   | PUGET SOUND ENERGY INC                                                            | 27353 |
|   | CITY OF SEATTLE - (WA) CITY OF TACOMA - (WA)                                      | 25379 |
|   | BONNEVILLE POWER ADMINISTRATION   PUD NO 1 OF CLARK COUNTY - (WA)                 | 8031  |
|   | BONNEVILLE POWER ADMINISTRATION   CITY OF TACOMA - (WA)   PENINSULA LIGHT COMPANY | 6159  |
|   | PUGET SOUND ENERGY INC  PUD NO 1 OF WHATCOM COUNTY                                | 3203  |
|   | BONNEVILLE POWER ADMINISTRATION   AVISTA CORP   INLAND POWER & LIGHT COMPANY      | 2065  |
|   | BONNEVILLE POWER ADMINISTRATION   PUD 1 OF SNOHOMISH COUNTY                       | 1248  |
|   | PACIFICORP                                                                        | 1024  |
|   | BONNEVILLE POWER ADMINISTRATION   PUD NO 1 OF BENTON COUNTY                       | 985   |
|   | MODERN ELECTRIC WATER COMPANY                                                     | 860   |
|   | PUD NO 1 OF CHELAN COUNTY                                                         | 826   |
|   | BONNEVILLE POWER ADMINISTRATION   PUGET SOUND ENERGY INC   PUD NO 1 OF JEFFERSO   | 814   |
|   | BONNEVILLE POWER ADMINISTRATION   ORCAS POWER & LIGHT COOP                        | 804   |
|   | BONNEVILLE POWER ADMINISTRATION   CITY OF RICHLAND - (WA)                         | 719   |
|   | BONNEVILLE POWER ADMINISTRATION   PUD NO 1 OF COWLITZ COUNTY                      | 693   |
|   | BONNEVILLE POWER ADMINISTRATION   PUD NO 1 OF CLALLAM COUNTY                      | 680   |
|   | BONNEVILLE POWER ADMINISTRATION   CITY OF TACOMA - (WA)   PUD NO 3 OF MASON COU   | 570   |
|   | BONNEVILLE POWER ADMINISTRATION   PUD NO 1 OF GRAYS HARBOR COUNTY                 | 479   |
|   | BONNEVILLE POWER ADMINISTRATION   PUD NO 1 OF FRANKLIN COUNTY                     | 414   |
|   | PUD NO 2 OF GRANT COUNTY                                                          | 414   |
|   | BONNEVILLE POWER ADMINISTRATION   CITY OF TACOMA - (WA)   ELMHURST MUTUAL POWE    | 340   |
|   | NON WASHINGTON STATE ELECTRIC UTILITY                                             | 312   |
|   | AVISTA CORP                                                                       | 302   |
|   | BONNEVILLE POWER ADMINISTRATION  CITY OF TACOMA - (WA)  PUD NO 1 OF LEWIS COUNTY  | 280   |
|   | BONNEVILLE POWER ADMINISTRATION  VERA IRRIGATION DISTRICT #15                     | 278   |
|   | PUD NO 1 OF DOUGLAS COUNTY                                                        | 270   |
|   | BONNEVILLE POWER ADMINISTRATION   INLAND POWER & LIGHT COMPANY                    | 260   |
|   | BONNEVILLE POWER ADMINISTRATION   PUD NO 1 OF KLICKITAT COUNTY                    | 223   |
|   | NO KNOWN ELECTRIC UTILITY SERVICE                                                 | 197   |
|   | CITY OF TACOMA - (WA)  TANNER ELECTRIC COOP                                       | 196   |
|   | BONNEVILLE POWER ADMINISTRATION   PACIFICORP   PUD NO 1 OF CLARK COUNTY - (WA)    | 187   |
|   | BONNEVILLE POWER ADMINISTRATION   CITY OF PORT ANGELES - (WA)                     | 170   |

# Insight 9: Model year with the highest average base MSRP for electric vehicles.

- A. Peak Average Manufacturer's Suggested Retail Price (MSRP) Year: The output identifies the specific Model\_Year that had the highest average MSRP among all the years in the dataset. This insight highlights the year when vehicles were, on average, priced at their highest point in the market. It indicates a period when luxury or high-end vehicles might have been prevalent or when new, advanced, and more expensive models were introduced.
- B. Trends in Vehicle Pricing: By analyzing the year with the highest average MSRP, we can gain insights into historical trends in vehicle pricing. It helps in understanding how the average pricing of vehicles has evolved over time and provides a glimpse into consumer preferences for premium features and luxury vehicles during that specific year.

C. Market Dynamics and Customer Preferences: The output sheds light on market dynamics and customer preferences during the year with the highest average MSRP. A surge in average MSRP might indicate strong demand for luxury or highperformance vehicles, signaling a willingness among consumers to pay a premium for certain vehicle features or brand names.

In summary, the output of this code provides valuable insights into the year with the highest average MSRP, highlighting historical trends in vehicle pricing, consumer preferences for premium vehicles, and market dynamics during that specific period. This information can be valuable for automotive manufacturers, researchers, and analysts seeking to understand historical market shifts and identify potential opportunities for high-end vehicle offerings.

### Query:

SELECT Fact.Model\_Year, AVG(Fact.Base\_MSRP) as Average\_MSRP FROM Fact
GROUP BY Fact.Model\_Year
ORDER BY Average\_MSRP DESC
LIMIT 1;

#### Output:



## 8. Visualizations:

Business Intelligence Tool: Tableau

# 1. Number of Electric Vehicles by County:



# 2. Number of EV's by year:



## 3. Top 5 Cities by Sum of Base MSRP:



## 4. Number of EV's in all states excluding Washington:



## 5. Top 5 Manufacturing Companies:



## 6. Count of Vehicles by EV Type:



### 7. Dashboard of Tesla Vehicles:

