

INTERNATIONAL COLLEGE OF PHARMACEUTICAL INNOVATION

国际创新药学院

Class Pharm, BioPharm

Course Fundamentals of Medicinal & Pharmaceutical Chemistry

Code FUNCHEM.7

Title Ionic Bonding and the "electrolyte status" of body fluid

Lecturer Prof. Xinchen Teng

Date 2024-10-23

Recommended Reading

- General Chemistry The Essential Concepts by Chang and Goldsby (7th edition)
 - Section 9.1, 9.2, 9.4, 9.5

FUNCHEM.7 Learning Outcomes

- Define 'octet rule' and recall 'electronegativity'.
- Differentiate between 'pure covalent' and 'polar covalent' bonding.
- Explain 'ionic bonding' and 'ionic character'.
- Predict whether a covalent, polar covalent or ionic bond will form based on a knowledge of electronegativity values.
- Explain the formation of ionic compounds using electronic configurations.
- Differentiate between 'electrolytes' and 'non-electrolytes' and recall principal electrolytes in body fluids.
- Solve calculations regarding electrolyte concentrations in mEq/L.
- Explain the importance of electrolytes in the body and consequences of electrolyte overload or deficiencies (e.g. hypo or hyperkalemia and hypo or hypernatremia).

Noble Gas Configuration

- Noble gases are chemically stable (chemically inert).
- They share a common e⁻ configuration of 8 valence electrons that is very stable.
- He is an exception with 2 e⁻.

Octet Rule

- An atom other than hydrogen tends to form bonds until it is surrounded by eight valence electrons
 - Atoms are most stable if they have a filled or empty outer shell of electrons.
 - Except for H and He, a filled outer shell contains 8 valence e⁻.
 - Atoms will:
 - gain or lose electrons (ionic)
 - share electrons (covalent)
 - to achieve a noble gas configuration.

Chemical bonds

- Ionic bond
 - An ionic bond is the electrostatic force that holds the cations and anions in an ionic compound.
 - Atoms either completely lose one or more e⁻ to become positive cations or gain one or more e⁻ to become negative anions.

IONIC BONDS FORM WHEN A HIGHLY ELECTRO-NEGATIVE ATOM MEETS A HIGHLY ELECTRO-POSITIVE ONE. ELECTRONS ARE HANDED OFF, AND ONE ATOM GETS SOLE CUSTODY.

Chemical bonds

- Covalent
 - A covalent bond is formed when atoms share one pair of electrons
 - Neither atom is willing to give up e⁻ or is strong enough to take e⁻ away.

Ionic vs Covalent

- How do you know whether an ionic or covalent bond will form?
 - Knowing the electronegativity of individual atoms can help determine the type of interaction between atoms
 - Electronegativity values can be used to distinguish between covalent, polar covalent and ionic bonds

Electronegativity

- The ability of an atom in a molecule to attract towards itself electrons in a chemical bond
- Electronegativity the same, electrons shared equally.
 - $-H_2, N_2, O_2$
- One atom more electronegative than the other, e⁻ not equally shared.
 - H-F, H-Cl

Electronegativity trends

Pauling scale of relative electronegativity values

Types of chemical bonds

The most electronegative elements are the nonmetals (Groups 5A–7A) and the least electronegative elements are the alkali and alkaline earth metals (Groups 1A–2A) – Ionic bonds

Pure covalent – H₂ and F₂

$$H \cdot + \cdot H \longrightarrow H : H$$

or

 $H \longrightarrow H : H$
 $\vdots \vdots \cdot + \cdot \vdots : \longrightarrow : \vdots : \vdots : \vdots$

or

 $\vdots : \vdots \longrightarrow : \vdots : \vdots : \vdots : \vdots$
 $\vdots : \vdots \longrightarrow : \vdots : \vdots : \vdots : \vdots$

$$\Delta E.N. = 2.1 - 2.1 = 0$$

Pure covalent bond

$$\Delta E.N. = 4.0 - 4.0 = 0$$

Pure covalent bond

Polar covalent – H2O

H.
$$+ \cdot \ddot{O} \cdot + \cdot H$$
 \longrightarrow H: $\ddot{O} : H$

or

 $H \longrightarrow \ddot{O} \longrightarrow H$
 $\delta - O - H$
 $\delta + O - H$

$$\Delta$$
E.N. = 3.5 – 2.1 = 1.4

Polar covalent bond

Ionic and ionic character

Li. +
$$: \vec{F}: \longrightarrow \text{Li}^+ : \vec{F}: \vec{$$

E.N. [Li] =
$$1.0$$
 E.N. [F] = 4.0

$$\Delta E.N. = 4.0 - 1.0 = 3$$

Ionic bond

The greater the difference in electronegativity, the greater the 'ionic character'

Some salt for practice

• NaCl E.N. [Na] = 0.9 E.N. [Cl] = 3.0 Δ E.N. = 2.1

 $_{11}$ Na: $1s^22s^22p^63s^1$

Removal of this e⁻ gives a very stable configuration

 $[Na]^+ : 1s^2 2s^2 2p^6$

 $_{17}\text{CI}: 1\text{s}^22\text{s}^22\text{p}^63\text{s}^23\text{p}^5$

Requires an e⁻ to give a very stable configuration

 $[CI]^{-}$: $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}$

A 3s electron from a sodium atom is transferred completely to a 3p orbital of a chlorine atom.

Calcium and oxygen

• Ca – O E.N. [Ca] = 1.00 E.N. [O] = 3.5 Δ E.N. = 2.5

₂₀Ca: 1s²2s²2p⁶ 3s²3p⁶ 4s²

Removal of 2 e⁻ gives a very stable configuration (noble gas)

Requires 2 e⁻ to give a very stable configuration

 $_{8}O: 1s^{2}2s^{2}2p^{4}$

 $[Ca]^{2+}: 1s^22s^22p^6 3s^23p^6$ $[O]^{2-}: 1s^22s^22p^6$

Two 4s electrons from a calcium atom are transferred completely to a 2p orbitals of the oxygen atom.

Properties of ionic compounds

- Ionic interactions take place between metal and non-metal atoms.
- Can form lattice structures held together by electrostatic interactions.
- Have high melting points.
- Generally soluble in water.

Electrolytes - ions in solution

- An electrolyte is a substance that, when dissolved in water, results in a solution that can conduct electricity (separate into charged particles).
 - Both weak electrolytes (separate partially) and strong electrolytes (separate fully) exist
- Nonelectrolytes do not conduct electricity when dissolved in water (do not form charged particles).
- Ions are hydrated in aqueous solution. This is the process by which ions are surrounded by water molecules in a specific manner (Displayed to the right).

Electrolytes perform many important regulatory roles in our bodies by virtue of their charged properties.

Water – Dipole

- Hydrogen
 - E.N. = 2.1
- Oxygen
 - E.N. = 3.5
- Creation of a dipole moment.
 Area of partial negative charge
 & area of partial positive charge.

Electrolytes in the body

- Cell
 - -K⁺, Mg²⁺, Na⁺
 - -HPO₄²⁻, proteins, SO₄²⁻, HCO₃⁻, Cl⁻
- Interstitial fluid
 - -Na+, K+, Ca²⁺, Mg²⁺
 - -Cl⁻, HCO₃⁻, organic acids, HPO₄⁻, SO₄²⁻
- Blood
 - -Na+, K+, Ca+, Mg+
 - -Cl⁻, HCO₃⁻, proteins, organic acids, HPO₄⁻, SO₄²-

Equivalents

 An equivalent of any substance is an amount of material that will give or react with an Avogadro's number of electrical charges

Weight Eq = Atomic or Molecular Weight/ n (the charge)

Examples

Na
$$\longrightarrow$$
 Na⁺ + e-

23g 6 x 10²³ electrons

An equivalent of Na⁺ is 23g

Ca \longrightarrow Ca²⁺ + 2 e-

40g 2 moles of electrons

An equivalent of Ca²⁺ is 20g

Equivalents

In healthcare the most common representation of electrolyte concentration is **milliequivalents per litre** (mEq/L), which is equal to the ion concentration (mmol/L) multiplied by the number of electrical charges on the ion.

Equivalents = $\frac{\text{mass x charge}}{\text{molar mass}}$

In Clinical Situations

Measurement of electrolyte status of the blood plasma or serum

Medscapes www.medscape.com		
Test	Result	Normal Range
Glucose	74 mg/dL	60-105 mg/dL
Blood urea nitrogen (BUN)	8 mg/dL	7-22 mg/dL
Creatinine	0.4 mg/dL	0.3-0.7 mg/dL
Sodium	134 mEq/L	135-148 mEq/L
Potassium	3.7 mEq/L	3.5-5.0 mEq/L
Chloride	108 mEq/L	99-111 mEq/L
Carbon dioxide	30 mEq/L	20-24 mEq/L
Calcium	8.4 mg/dL	8.0-10.5 mg/dL
Uric acid	3.6 mg/dL	2.4-5.9 mg/dL
Total bilirubin	0.5 mg/dL	1 mg/dL
Total protein	4.4 g/dL	4.9-8.1 g/dL
Albumin	1.8 g/dL	3.5-5.0 g/dL
Aspartate aminotransferase (AST)	42 U/L	0-35 U/L
Alkaline phosphatase	242 U/L	100-320 U/L
Lactate dehydrogenase (LDH)	712 U/L	150-300 U/L

Source: J Pediatr Health Care @ 2003 Mosby-Year Book, Inc.

Importance of electrolytes

- Changes in the concentrations of sodium and potassium in blood can lead to serious medical emergencies
- Useful terms related to electrolyte disorders
 - -emia "in the blood"
 - hypo a condition of low concentration
 - hyper a condition of high concentration
 - -natr represents sodium (Latin natrium)
 - -kal represents potassium (Latin kalium)

Nervous system and electrolytes

- K⁺ and Na⁺ move in and out of channels in the membrane of nerve cell walls (some channels only permit K⁺ to pass through)
 - Net result electrical signal
- Deficiencies in these ions can lead to serious problems
 - Hypokalemia can lead to cardiac arrest. A diet low in K⁺ can lead to hypokalemia

LoSalt – essential and deadly

KCI

- 40% more potassium in our bodies than sodium.
- Potassium is found in all parts of the body.
- Red blood cells have most, followed by muscles & brain tissue.
- It is the main cationic electrolyte found inside cells.

33% NaCl 66% KCl

Deadly KCI

- If too much potassium outside the nerve cells, the potassium inside cannot escape and electrical impulse dies away.
- Potassium overdose paralyses the central nervous system, causes convulsions, diarrhoea, kidney failure and heart attack.
- In some countries condemned prisoners who agree to donate their organs for transplants may be executed by being given a 'non-toxic' lethal injection of potassium chloride.