# **AttackOnStats**

- Aryan Chaudhary (MT22019) Shubham Dattatray Patil (MT22125) Vimal Kirti Singh (MT22089)

#### **Problem Statement**

Predicting whether a person has COVID-19 based on cough audio and diagnostic data.

#### **Importance**

- 1. Widespread testing became a significant bottleneck.
- 2. Swab tests are invasive, expensive, and time consuming
- 3. The time required to receive test results is significant
- Contamination risk is high when individuals travel to testing sites to obtain their tests
- 5. Tests need to be administered by trained clinicians, severely limiting throughput

### Plan of action





## Important Features - Post Hypothesis Testing

- 1. Season
- 2. Age Group
- 3. Geographical Clusters
- 4. Weather Data
- 5. Severity of Symptoms
- 6. Spectrogram
- 7. MFCC
- 8. Spectral Bandwidth
- 9. Chroma Feature
- 10. Spectral Features ...... And 58 other features

# Model Development: Cough Detection

| Model               | Accuracy | AUC    | Recall | F1     | Карра  |
|---------------------|----------|--------|--------|--------|--------|
| Decision Trees      | 0.9999   | 0.9999 | 0.9999 | 0.9999 | 0.9998 |
| Random Forest       | 0.9999   | 0.9999 | 0.9999 | 0.9999 | 0.9997 |
| AdaBoost            | 0.9999   | 0.9999 | 0.9999 | 0.9999 | 0.9998 |
| Gradient Boosting   | 0.9999   | 0.9999 | 0.9999 | 0.9999 | 0.9998 |
| Logistic Regression | 0.8816   | 0.9431 | 0.8816 | 0.8797 | 0.7277 |
| Naive Bayes         | 0.7296   | 0.8065 | 0.7296 | 0.7134 | 0.3428 |
| KNN                 | 0.7162   | 0.6842 | 0.7162 | 0.7024 | 0.3186 |



# Model Development: Covid19 Classification

| Model                               | Accuracy | AUC    | Recall | Precision | F1     |
|-------------------------------------|----------|--------|--------|-----------|--------|
| Blended Model (LR, RF, Ada)         | 0.7581   | 0.5416 | 0.7581 | 0.5746    | 0.6537 |
| Random Forest                       | 0.7567   | 0.5447 | 0.7567 | 0.6162    | 0.6544 |
| AdaBoost                            | 0.7548   | 0.5412 | 0.7548 | 0.6034    | 0.6546 |
| Gradient Boosting                   | 0.7536   | 0.5563 | 0.7536 | 0.5972    | 0.6541 |
| Logistic Regression                 | 0.7578   | 0.5426 | 0.7578 | 0.5747    | 0.6536 |
| Stacked Model<br>(Meta=LR, RF, Ada) | 0.7578   | 0.5425 | 0.7578 | 0.5747    | 0.6536 |
| KNN                                 | 0.7196   | 0.4962 | 0.7196 | 0.6027    | 0.6459 |

## **Model Behavior**







#### Conclusion

After considering features from Audio(cough recordings) and metadata(JSON files), We can conclude that, out of all the Models shown before **Blended Model** (LR, RF, Ada) performs best for us with an overall accuracy of **0.7581** 



### Future Scope

We can use this methodology in order to predict and classify any chronic disease like:

- 1. Asthma
- 2. Cancer
- 3. Tuberculosis
- 4. Pneumonia

# Thank You