Morfismi

Def

- Morfismo di gruppi > $(G,\cdot),(H,\cdot)$ gruppi > $f:G\to H$ > f morfismo di gruppi $\iff f(x\cdot y)=f(x)\cdot f(y) \quad \forall x,y\in G$
- Morfismo di anelli > $(A,+,\cdot),(B,+,\cdot)$ anelli > $f:A\to B>$ f morfismo di anelli $\iff f(x+y)=f(x)+f(y)$ e $f(x\cdot y)=f(x)\cdot f(y)$ $\forall x,y\in A>$ la stessa definizione si applica per morfismo di campi

Oss

```
• Hp
 - (G, \cdot), (H, \cdot) \text{ gruppi} 
 - 1_G \text{ neutro per } G
 - 1_H \text{ neutro per } H
 - f: G \to H \text{ morfismo} 
• Th
 - f(1_G) = 1_H
• Dim
 - \forall g \in G \quad f(g) = f(1_G \cdot g) = f(1_G) \cdot f(g) \text{ poiché } f \text{ morfismo} 
 - \text{ quindi } f(g) = f(1_G) \cdot f(g) \implies f(g) \cdot f(g)^{-1} = f(1_G) \cdot f(g) \cdot f(g)^{-1} 
 + f(g)^{-1} \implies 1_H = f(1_G) \cdot 1_H \implies 1_H = f(1_G) \text{ (poiché } f(g), f(g)^{-1} \in H \text{ per definizione di } f)
```

Oss

```
• Hp
-(G,\cdot),(H,\cdot) \text{ gruppi}
-1_G \text{ neutro per } G
-1_H \text{ neutro per } H
-f:G\to H \text{ morfismo}
• Th
-f(g^{-1})=f(g)^{-1}
• Dim
-\text{ per dimostrazione precedente, } 1_H=f(1_G)=f(g\cdot g^{-1})=f(g)\cdot f(g^{-1})\Longrightarrow 1_H=f(g)\cdot f(g^{-1})\Longrightarrow f(g)^{-1}=f(g^{-1})
```

Isomorfismi

Def

• Isomorfismo > - f isomorfismo $\iff f$ morfismo e f biiettiva

Oss

 $\mathbf{E}\mathbf{x}$

• Hp

-
$$z \in \mathbb{C} \mid z^n = 1$$
 sono le radici n -esime di 1

- $\zeta := e^{i\frac{2\pi}{n}}$

- $H := \{\zeta^0, \zeta^1, \zeta^k, \dots, \zeta^{n-1}\}$ è l'insieme delle radici n -esime di 1

• Th

- $(H, \cdot) \subset (\mathbb{C} - \{0\}, \cdot)$ è un sottogruppo

• Dim

- $\zeta^0 = 1 \implies 1 \in H$

- $z, w \in H \iff z^n = w^n = 1$, allora $1 = z^n \cdot w^n = (z \cdot w)^n = 1 \implies z \cdot w \in H$ per definizione di H

- $z^n = 1 \implies \frac{1}{z^n} = 1 \iff (z^{-1})^n = 1 \implies z^{-1} \in H$ per definizione di H

 $\mathbf{E}\mathbf{x}$

• Hp

-
$$f: \mathbb{Z}_n \to H: [k] \to \zeta^k$$
• Th

- f morfismo di gruppi $(\mathbb{Z}_n, +)$ e (H, \cdot)
• Dim

- f è biiettiva per costruzione di $\mathbb{Z}_n := \{[0], [1], \dots, [n-1]\}$ e $H:= \{\zeta^0, \zeta^1, \dots, \zeta^{n-1}\}$

- f morfismo

* $f([i] + [j]) = f([i]) \cdot f([j])$

· $[i] + [j] = [k]$ per un certo $k \in \mathbb{Z}_n \implies \exists h \in \mathbb{Z} \mid i+j=k+hn$

· $f([i] + [j]) = f([k]) = \zeta^k$

· $f([i]) \cdot f([j]) = \zeta^i \cdot \zeta^j = \zeta^{i+j}$, ma per osservazione precedente $\zeta^{i+j} = \zeta^{k+nh} = \zeta^k \cdot (\zeta^n)^h$

· $\zeta^n = 1$ per definzione di $\zeta \implies$ entrambe i membri dell'equazione sono pari a ζ^k

$\mathbf{E}\mathbf{x}$

Oss

- Hp
 !!! MANCA UN TEOREMA CHE NON HO CAPITO
 NIENTE
- Th
- Dim

$\mathbf{E}\mathbf{x}$

$\mathbf{E}\mathbf{x}$

$\mathbf{E}\mathbf{x}$

• Hp
$$\begin{array}{l} - (G,\cdot) \text{ gruppo} \\ - \text{Bij}(G) := \{f \mid f:G \to G\} \\ - \text{L}_q \in G \mid \text{L}_q:G \to G:g \to gh \end{array}$$

$$-f:G\to \mathrm{Bij}(G):g\to \mathrm{L}_g$$

- Th
 - -f morfismo di gruppi (Bij(G), \circ) e (G, \cdot)
- Dim
 - !!! MANCA DIMOSTRAZIONE

$\mathbf{E}\mathbf{x}$

- Hp
 - -G gruppo
 - $-\ f:G\to G:h\to g\cdot h\cdot g^{-1}$ per qualche $g\in G$
- Th
 - -f morfismo di gruppi (G,\cdot) e (G,\cdot)
- Dim
 - $-\ \forall h,h'\in G\quad f(h)\cdot f\left(h'\right)=\left(ghg^{-1}\right)\cdot \left(gh'g^{-1}\right)=gh(g^{-1}\cdot g)h'g^{-1}=ghh'g^{-1}=f\left(hh'\right)$

Kernel e Immagine

Def

- Kernel e Immagine di gruppi > G, H gruppi > $f: G \to H$ morfismo > $\operatorname{Ker}(f) := \{g \in G \mid f(g) = 1_H\} >$ $\operatorname{Im}(f) := \{h \in H \mid \exists g \in G : f(g) = h\}$
- Kernel e Immagine di anelli > A, B gruppi > $f: A \to B$ morfismo > $Ker(f) := \{a \in A \mid f(a) = 0_B\} >$ $Im(f) := \{b \in B \mid \exists a \in A: f(a) = b\}$

Oss

- **Hp**
 - -G, H gruppi
 - $-f:G\to H$ morfismo
- Th
 - $-\operatorname{Ker}(f)\subset G$ è sottogruppo
- Dim
 - per dimostrazione precedente, $f(1_G) = 1_H \implies 1_G \in \text{Ker}(f)$ per definizione
 - $-x,y \in \text{Ker}(f) \implies f(x) = f(y) = 1_H$ per definizione, dunque $f(x) \cdot f(y) = 1_H \cdot 1_H = 1_H$, e $f(x) \cdot f(y) = f(x \cdot y) = 1_H$ perché f morfismo, quindi $x \cdot y \in \text{Ker}(f)$ per definizione
 - $-g \in \operatorname{Ker}(f) \Longrightarrow f(g) = 1_H \Longrightarrow f(g)^{-1} = 1_H^{-1} = 1_H$, ma poiché per dimostrazione precedente $f(g)^{-1} = f(g^{-1}) \Longrightarrow f(g^{-1}) = 1_H \Longrightarrow g^{-1} \in \operatorname{Ker}(f)$ per definizione

Oss

- \mathbf{Hp} -G, H gruppi $-f: G \to H$ morfismo
 \mathbf{Th} $-\operatorname{Im}(f) \subset G$ è sottogruppo
 \mathbf{Dim}
 - per dimostrazione precedente $f(1_G) = 1_H \implies 1_H \in \text{Im}(f)$ per definizione
 - $-x,y\in \text{Im}(f)\implies \exists g,g'\in G\mid x=f(g)\land y=f(g')\implies x\cdot y=f(g)\cdot f(g')=f(g\cdot g')$ perché f morfismo, quindi $x\cdot y\in \text{Im}(f)$ per definizione
 - $-x \in \text{Im}(f) \implies \exists g \in G \mid f(g) = x \implies x^{-1} = f(g)^{-1} = f(g^{-1}) \text{ per dimostrazione precedente, quindi } x^{-1} \in \text{Im}(f) \text{ per definizione}$

Oss

• Hp -G, H gruppi $-f:G\to H$ morfismo • Th -f iniettiva \iff Ker $(f) = \{1_G\}$ • Dim $- f \text{ iniettiva } \Longrightarrow \operatorname{Ker}(f) = \{1_G\}$ * $f(1_G) = 1_H$ per dimostrazione precedente, dunque $1_G \in \text{Ker}(f)$ per definizione * f iniettiva $\implies \nexists x, y \in G \mid x \neq y \implies f(x) = f(y)$, di conseguenza è unico $1_G \in G \mid f(1_G) = 1_H$, dunque Ker(f)conterrà esclusivamente 1_G per definizione -f iniettiva $\iff \operatorname{Ker}(f) = \{1_G\}$ $* \ \forall g,g' \in G \quad f(g) = f(g') \iff f(g)^{-1} \cdot f(g) = f(g)^{-1} \cdot f(g') \iff$ $1_H = f(g) \cdot f(g') = f(g \cdot g')$ * $\operatorname{Ker}(f) = \{1_G\} \implies f(1_G) = 1_H$ per definizione, allora $f(g \cdot g') =$ $1_H \implies g \cdot g' = 1_G$ necessariamente, e $g \cdot g' = 1_G \iff g = g'$ $g' \implies f(g) = f(g') \implies g = g' \implies f$ iniettiva

Oss

- **Hp** -A, B anelli $-f: A \to B \text{ morfismo di anelli}$ **Th** $-\operatorname{Ker}(f) \text{ ideale}$
 - Dim $(\operatorname{Ker}(f), +) \subset (A, +)$ sottogruppo per dimostrazione precedente

```
– per analogia con dimostrazione precedente, f(0_A) = 0_B
```

$$-x \in \text{Ker}(f) \implies f(x) = 0_B$$
 per definizione, quindi $\forall x \in \text{Ker}(f), y \in A$ $f(x \cdot y) = f(x) \cdot f(y) = 0_B \cdot f(y) = 0_B \implies x \cdot y \in \text{Ker}(f)$ per definizione, quindi $\text{Ker}(f) \cdot A \subset \text{Ker}(f)$

Oss

- Hp
 - -A, B anelli
 - $-f:A\rightarrow B$ morfismo di anelli
- Th
 - $-\operatorname{Im}(f)$ sottoanello
- Dim
 - $-(\operatorname{Im}(f),+)\subset (A,+)$ sottogruppo per dimostrazione precedente

$$-x,y \in \operatorname{Im}(f) \implies \exists a,a' \mid x = f(a) \land y = f(a') \implies x \cdot y = f(a) \cdot f(a') = f(a \cdot a')$$
 perche f morfismo, quindi $\exists a \cdot a' \mid x \cdot y = f(a \cdot a') \implies x \cdot y \in \operatorname{Im}(f) \implies \operatorname{Im}(f) \cdot \operatorname{Im}(f) \subset \operatorname{Im}(f)$

Oss

- Hp
 - $-f: \mathbb{Z} \in \mathbb{C} \{0\}: k \to \zeta^k$
 - fmorfismo di gruppi $(\mathbb{Z},+)$ e $(\mathbb{C}-\{0\},\cdot)$
 - -I(n) ideale generato da n !!! CHI È N
- Th
 - $-\operatorname{Ker}(f) = I(n)$
- Dim
 - pass

Oss

• !!! coso finale su H che non ho capito niente

Oss

- Hp
 - -G, H gruppi
 - $-f:G\to H$ morfismo
- Th
 - $\operatorname{Ker}(f)$ è sottogruppo normale
- Dim
 - per la formulazione 2 della definizione di sottogruppo normale, $\forall g \in G, h \in \text{Ker}(f) \implies ghg^{-1} \in \text{Ker}(f)$
 - $-f(ghg^{-1}) = f(g) \cdot f(h) \cdot f(g^{-1})$
 - $-h \in \operatorname{Ker}(f) \implies f(h) = 1_H \text{ per definizione}$
 - per dimostrazione precedente $f(g^{-1}) = f(g)^{-1}$

$$-f(ghg^{-1}) = f(g) \cdot 1_H \cdot f(g)^{-1} = 1_H \implies ghg^{-1} \in \text{Ker}(f) \text{ per definizione}$$