

00/10/60
JC913 U.S. PTO

09-05-00 A

PATENT APPLICATION TRANSMITTAL LETTER

TO THE COMMISSIONER OF PATENTS AND TRADEMARKS:

Transmitted herewith for filing is the patent application of: **JOSEPH E. PECHTER and WILLIAM H. PECHTER** entitled "**METHOD FOR PRODUCING A VIABLE SPEECH RENDITION OF TEXT**" including specification, abstract, and claims totalling **twenty-nine (29)** pages.

jc714 U.S. PTO
09/653382
09/01/00

Enclosed are:

- 1 sheet of [x] formal drawing(s), [] informal drawing(s).
 an assignment of the invention to _____.
 a certified copy of a _____ application.
 Information Disclosure Statement, [] Form PTO-1449.
 Two (2) Verified Statements claiming small entity status under 37 CFR 1.9 & 1.27.
 Executed Declaration by the Inventor(s).
 Preliminary Amendment.
 Associate Power of Attorney.

CLAIMS AS FILED SMALL ENTITY

Basic Filing Fee	\$345.00
Total Claims 6 - 20 = 0 exce	x \$9.00 = \$0.00
Indep Claims 2 - 3 = 0 excess	x \$39.00 = \$0.00
Multiple Dependent Claims 0	x \$130.00 = \$0.00
=====	
TOTAL	\$345.00

CLAIMS AS FILED OTHER THAN A SMALL ENTITY

Basic Filing Fee	\$760.00
Total Claims ____ - 20 = 0 excess	x \$18.00 = \$
Indep Claims ____ - 3 = 0 excess	x \$78.00 = \$
Multiple Dependent Claims ____	x \$260.00 = \$
=====	
TOTAL	\$

- A duplicate copy of this sheet is enclosed.
 Certificate of Express Mail.
 A check in the amount of \$345.00 to cover the filing fee is enclosed.
 The Commissioner is hereby authorized to charge and credit Deposit Account No. 50-1111 as described below. I have enclosed a duplicate copy of this sheet.

- Charge the amount of \$345 as filing fee.
 Credit any overpayment.
 Charge any additional filing fees required under 37 CFR 1.16 and 1.17.
 Charge the issue fee set in 37 CFR 1.18 at the mailing of the Notice of Allowance, pursuant to 37 CFR 1.311(b).

DATE

8/31/00

KEVIN P. CROSBY, Reg. No. 32,123

Brinkley, McNerney, Morgan Solomon & Tatum, LLP
200 East Las Olas Blvd., Suite 1800, New River Center
Fort Lauderdale, Florida 33301
Tel: (954) 522-2200 / Fax: (954) 522-9123

Attorney Docket No. 6984.20036

Applicant or Patentee: William H. Pechter
Serial No. or Patent No.: TO BE ASSIGNED

Attorney's
Docket: 6984.20036

Filed or Issued: FILED CONCURRENTLY HEREWITH
For: "METHOD FOR PRODUCING A VIABLE SPEECH RENDITION OF TEXT"

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY STATUS
(37 CFR 1.9(c) and 1.27(b)) - INDEPENDENT INVENTOR

As a below named inventor, I hereby declare that I qualify as an independent inventor as defined in 37 CFR 1.9(c) for purposes of paying reduced fees under §41(a) and (b) of Title 35, United States Code, to the Patent and Trademark Office with regard to the invention entitled "METHOD FOR PRODUCING A VIABLE SPEECH RENDITION OF TEXT" described in

- the specification filed herewith
 application serial no. _____, filed _____
 patent no. _____, issued _____

I have not assigned, granted, conveyed or licensed and am under no obligation under contract or law to assign, grant, convey or license, any rights in the invention to any person who could not be classified as an independent inventor under 37 CFR 1.9(c) if that person had made the invention, or to any concern which would not qualify as a small business concern under 37 CFR 1.9(d) or a nonprofit organization under 37 CFR 1.9(e).

Each person, concern or organization to which I have assigned, granted, conveyed, or licensed or am under an obligation under contract or law to assign, grant, convey, or license any rights in the invention is listed below:

- no such person, concern, or organization
 persons, concerns, or organizations listed below*

NOTE: Separate Verified Statements are required from each named person, concern, or organization having rights to the invention averring to their status as small entities. (37 CFR 1.27)

FULL NAME:

ADDRESS:

INDIVIDUAL SMALL BUSINESS CONCERN NONPROFIT ORGANIZATION

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28(b))

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under §1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

William H. Pechter

William H. Pechter

Signature

Date: 8/31/2000

Applicant or Patentee: Joseph E. Pechter
Serial No. or Patent No.: TO BE ASSIGNED

Attorney's
Docket: 6984.20036

Filed or Issued: FILED CONCURRENTLY HEREWITH
For: "METHOD FOR PRODUCING A VIABLE SPEECH RENDITION OF TEXT"

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY STATUS
(37 CFR 1.9(c) and 1.27(b)) - INDEPENDENT INVENTOR

As a below named inventor, I hereby declare that I qualify as an independent inventor as defined in 37 CFR 1.9(c) for purposes of paying reduced fees under §41(a) and (b) of Title 35, United States Code, to the Patent and Trademark Office with regard to the invention entitled "METHOD FOR PRODUCING A VIABLE SPEECH RENDITION OF TEXT" described in

- the specification filed herewith
 application serial no. _____, filed _____
 patent no. _____, issued _____

I have not assigned, granted, conveyed or licensed and am under no obligation under contract or law to assign, grant, convey or license, any rights in the invention to any person who could not be classified as an independent inventor under 37 CFR 1.9(c) if that person had made the invention, or to any concern which would not qualify as a small business concern under 37 CFR 1.9(d) or a nonprofit organization under 37 CFR 1.9(e).

Each person, concern or organization to which I have assigned, granted, conveyed, or licensed or am under an obligation under contract or law to assign, grant, convey, or license any rights in the invention is listed below:

- no such person, concern, or organization
 persons, concerns, or organizations listed below*

NOTE: Separate Verified Statements are required from each named person, concern, or organization having rights to the invention averring to their status as small entities. (37 CFR 1.27)

FULL NAME:
ADDRESS:

INDIVIDUAL SMALL BUSINESS CONCERN NONPROFIT ORGANIZATION

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28(b))

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under §1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

Joseph E. Pechter

Joseph E. Pechter
Signature

Date: 8/31/2000

In re application serial no.: TO BE ASSIGNED

File No.: 6984.20036

CERTIFICATE OF EXPRESS MAILING

I HEREBY CERTIFY that the following correspondence: **PATENT APPLICATION** totaling **29 pages; one (1) SHEET OF DRAWING; TRANSMITTAL LETTER; two executed VERIFIED STATEMENTS CLAIMING SMALL ENTITY STATUS - INDIVIDUAL INVENTORS; executed DECLARATION AND POWER OF ATTORNEY; CHECK IN THE AMOUNT OF \$345.00 for filing fee; postage-paid RETURN POSTCARD** for confirmation of receipt is being deposited with the United States Postal Service as Express Mail No. **EL 473567478US**, addressed to: **Commissioner of Patents, Box: New Patent Application, Washington, D.C. 20231**, this **1st** day of **SEPTEMBER, 2000**.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment or both, under Section 1001 of Title 18 of the United States Code. Any additional charges, please bill our Account No. 50-1111

Mara Matos, Legal Assistant

Date: 9/1/00

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
NON-PROVISIONAL PATENT APPLICATION

“METHOD FOR PRODUCING A VIABLE SPEECH RENDITION OF TEXT”

5

BACKGROUND OF THE INVENTION

Cross-reference to a Related Application

This application claims priority from U.S. Provisional Application Serial No. 60/157,808, filed October 4, 1999, the disclosure of which is incorporated herein by reference.

Field of the Invention

The present invention relates to speech synthesis systems and more particularly to algorithms and methods used to produce a viable speech rendition of text.

Description of the Prior Art

Phonology involves the study of speech sounds and the rule system for combining speech sounds into meaningful words. One must perceive and produce speech sounds and acquire the rules of the language used in one's environment. In American English a blend of two consonants such as "s" and "t" is permissible at the beginning of a word but blending the two consonants "k" and "b" is not; "ng" is not produced at the beginning of words; and "w" is not produced at the end of words (words may end in the letter "w" but not the sound "w"). Marketing experts demonstrate their knowledge of phonology when they coin words for new products; product names, if, chosen correctly using phonological rules, are recognizable to the public as rightful words. Slang also follows these rules. For example, the word "nerd" is recognizable as an acceptably formed noun.

10
15
20
25

20

Articulation usually refers to the actual movements of the speech organs that occur during the production of various speech sounds. Successful articulation requires (1) neurological integrity, (2) normal respiration, (3) normal action of the larynx (voice box or Adam's apple), (4) normal movement of the articulators, which include the tongue, teeth, hard palate, soft palate, 5 lips, and mandible (lower jaw), and (5) adequate hearing.

Phonics involves interdependence between the three cuing systems: semantics, syntax, and grapho-phonics. In order to program words and use phonics as the tool for doing that, one has to be familiar with these relationships. Semantic cues (context: what makes sense) and syntactic cues (structure and grammar: what sounds right grammatically) are strategies the reader needs to be using already in order for phonics (letter-sound relationships: what looks right visually and sounds right phonetically) to make sense. Phonics proficiency by itself cannot elicit comprehension of text. While phonics is integral to the reading process, it is subordinate to semantics and syntax.

There are many types of letter combinations that need to be understood in order to fully understand how programming a phonics dictionary would work. In simple terms, the following letter-sound relationships need to be developed: beginning consonants, ending consonants, consonant digraphs ("sh," "th," "ch," "wh"), medial consonants, consonant blends, long vowels and short vowels.

Speech and language pathologists generally call a speech sound a "phoneme".

Technically, it is the smallest sound segment in a word that we can hear and that, when changed, modifies the meaning of a word. For example the words "bit" and "bid" have different meanings yet they differ in their respective sounds by only the last sound in each word (i.e., "t" and "d").

These two sounds would be considered phonemes because they are capable of changing meaning.

Speech sounds or phonemes are classified as vowels and consonants. The number of letters in a word and the number of sounds in a word do not always have a one-to-one correspondence. For example, in the word "squirrel", there are eight letters, but there are only five sounds: "s"- "k"-
5 "w"- "r"- "l."

A "diphthong" is the sound that results when the articulators move from one vowel to another within the same syllable. Each one of these vowels and diphthongs is called a speech sound or phoneme. The vowel sounds are a, e, i, o, u, and sometimes y, but when we are breaking up words into sounds there may be five or six vowel letters, but approximately 17 distinct vowel sounds. One should note that there are some variations in vowel usage due to regional or dialectical differences.

Speech-language pathologists often describe consonants by their place of articulation and manner of articulation as well as the presence or absence of voicing. Many consonant sounds are produced alike, except for the voicing factor. For instance, "p" and "b" are both bilabial stops. That is, the sounds are made with both lips and the flow of air in the vocal tract is completely stopped and then released at the place of articulation. It is important to note, however, that one type of consonant sound is produced with voicing (the vocal folds are vibrating) and the other type of consonant sound is produced without voicing (the vocal folds are not vibrating).

The concepts described above must be taken into account in order to enable a computer to generate speech which is understandable to humans. While computer generated speech is known to the art, it often lacks the accuracy needed to render speech that is reliably understandable or consists of cumbersome implementations of the rules of English (or any language's)

pronunciation. Other implementations require human annotation of the input text message to facilitate accurate pronunciation. The present invention has neither of these limitations.

SUMMARY OF THE INVENTION

5 It is a principle object of this invention to provide a text to speech program with a very high level of versatility, user friendliness and understandability.

In accordance with the present invention, there is a method for producing viable speech rendition of text comprising the steps of parsing a sentence into a plurality of words and punctuation, comparing each word to a list of pre-recorded words, dividing a word not found on the list of pre-recorded words into a plurality of diphones and combining sound files corresponding to the plurality of diphones, and playing a sound file corresponding to the word.

The method may also include the step of adding inflection to the word in accordance with the punctuation of the sentence.

The method may further include using a database of diphones to divide the word into a plurality of diphones.

These and other objects and features of the invention will be more readily understood from a consideration of the following detailed description, taken with the accompanying drawings.

In Phase 1 of our project, we developed: a parser program in Qbasic; a file of over 10,000
20 individually recorded common words; and a macro program to link a scanning and optical character recognition program to these and a wav player so as to either say or spell each word in the text. We tested many different articles by placing them into the scanner and running the

5

program. We found that of the 20 articles we placed into the scanner, 86% of the words were recognized by our program from the 10,000 word list. Our major focus for Phase 2 of our project has been on the goal of increasing accuracy. Our 86% accuracy with phase one was reasonable, but this still meant that, on average, one to two words per line had to be spelled out, which could interrupt the flow of the reading and make understanding the full meaning of a sentence more difficult. We have found some dictionaries of words of the English language with up to 250,000 words. To record all of them would take over 1,000 hours and still would not cover names, places, nonsense words or expressions like “sheesh”, slang like “jumpin”, or new words that are constantly creeping into our language. If we recorded a more feasible 20,000 new words, it would probably only have increased the accuracy by 1 to 2%. A new approach was needed. We felt the most likely approach to make a more dramatic increase would involve phonetics. Any American English word can be reasonably reproduced as some combination of 39 phonetic sounds (phonemes). We researched phonetics and experimented linking together different phonemes, trying to create understandable words with them. Unfortunately, the sounds did not sound close enough to the appropriate word, rendering the process infeasible. Most spoken words have a slurring transition from one phoneme to the next. When this transition is missing, the sounds are disjointed and the word is not easily recognized. Overlapping phoneme wav files by 20% helped a but, not enough. Other possibilities then considered were the use of syllables or groupings of 2 or 3 phonemes (diphones and triphones). Concatenations of all of these produced a reasonable approximation of the desired word. The decision to use diphones was based on practicality. Only diphones are needed as opposed to 100,000 triphones. Due to the numbers, we elected to proceed with using diphones. The number could be further reduced by avoiding

20

combinations that never occur in real words. We elected to include all combinations because names, places and nonsense words can have strange combinations of sounds and would otherwise need to be spelled out. By experimentation, we found that simply saying the sound did not work well. This produced too many accentuated sounds that did not blend well. What worked best was cutting the diphone from the middle of a word, using a good ear and a wav editor to cut the sound out of the word. We initially tried to cut the diphones from 12 or more letter words, since long words would potentially have more diphones in them, but there was so much duplication that we shortly switched to a more methodical method of searching a phonetic dictionary for words with a specific diphone, cutting out that single diphone, and then going on to the next one on the list. If no word could be found, we would create a nonsense word with the desired diphone in the middle of the word, and then extract it with the editor. A considerable amount of time was spent perfecting the process of extracting the diphones. We needed to get the tempo, pitch, and loudness of each recording as similar as possible to the others in order to allow good blending.

We decided to use a hybrid approach in our project. Our program uses both whole words (from our list of 10,000 words) and also concatenated words (from the linking of diphones). Any word found on our main list would produce the wav recording of that entire word. All other words would be produced by concatenation of diphones unless it included a combination of letters and numbers (like B42) in which case it would be spelled out.

We next needed an algorithm to determine which phonemes and diphones to give for a given word. We first explored English texts and chapters dealing with pronunciation rules. Though many rules were found, they were not all inclusive and had many exceptions. We next

searched the Internet for pronunciation rules and found an article by the Naval Research Laboratory "Document AD/A021 929 published by National Technical Information Services". It would have required hundreds of nested if-then statements and reportedly it still had only mediocre performance. We decided to try to create our own set of pronunciation rules by working backwards from a phonetic dictionary. We were able to find one online. It had over 100,000 words followed by their phonetic representation. The site made it clear this was being made freely available for anyone's use "CMU dictionary (v0.6)

<ftp://ftp.cs.cmu.edu/project/speech/dict>.

Our strategy was to have every letter of each word represented by a single phoneme, and then to find the most common phoneme representation of a letter when one knew certain letters that preceded and followed it. Not all words have the same number of letters as phonemes, so we first had to go through the list and insert blank phonemes when there were too many letters for the original number of phonemes (like for ph, th, gh or double consonant...the first letter carried the phoneme of the sound made and the second letter would be the blank phoneme). In other cases we combined two phonemes into one in the less common situation when there were too many phonemes for the number of letters in the word. These manipulations left us with a dictionary of words and matching phonemes; each letter of each word now had a matching phoneme. We used this aligned dictionary as input for a Visual Basic program which determined which was the most common phoneme representation for a given letter, taking into account the one letter before and two letters after it. This was stored in 26x26x26x26 matrix form and output to a file so it could be input and used in the next program. Our next program tested the effectiveness of this matrix in predicting the pronunciation of each word on the original phoneme

DATE 02/25/00 BY SP 95

20

dictionary list. This program utilized the letter to phoneme rules of the matrix for each word and then directly compared this with the original phoneme assigned to that letter by the dictionary. It found 52% of the words were given the entirely correct pronunciation, 65% were either totally correct or had just one letter pronounced incorrectly, and overall 90% of all letters were assigned
5 the correct pronunciation.

In an attempt to obtain better accuracy we attempted to look at the 3 letters before and 3 letters after the given letter, but in order to put the results in a simple standard matrix by the same technique, we would have needed a 26x26x26x26x26x26x26x26 matrix, which required more space than our computer allowed. Instead, we created different types of matrices within separate file names for each letter of the alphabet. In our "a" file we included a list of 7 letters strings with the 10
3 letters before and 3 letters after every "a" found in our phonetic dictionary. We made additional files for b thru z. Again we found the most common phoneme representation of "a" for each distinct 7 letter string that had "a" as the middle letter. By reading these into 26 different 1 dimensional matrix files, the additional run-search time of the program was minimized. We kept the 1 before-2 after matrix as a backup to be used if letters in the input 15
word did not have a 7 letter match to any word in the phonetic dictionary. Using this technique, accuracy improved dramatically. 98% of all letters (804961/823343) were assigned to the correct pronunciation. 86% of words (96035/111571) were entirely correct and 98% (109196/111571) had, at most, one letter pronounced incorrectly. When only one letter was incorrect, the word was
20 actually still understandable.

We next turned our attention to solving other problems that can plague a text to speech program. Homographs are words that have the same spelling but different pronunciation

depending on context. For the word “wind” it is necessary to know whether it should be pronounced like “blowing in the wind” or like “to wind the clock”. The most common type homographs have one word as a noun and the other as a verb. We decided to use part of speech context to determine which was more likely in a given sentence. Searching the Internet, we found a public domain dictionary of 230,000 words with their parts of speech. “Moby Part-of-Speech Dictionary at <ftp://ftp.dcs.shef.ac.uk/share/ilash/Moby/mpos.tar.Z>”. We used this to create a decision matrix that looks at the part of speech of two words before and two after the given word to give the most likely part of speech for the given word. We primed this decision matrix by analyzing sentences from several novels. This result yielded almost a 70% likelihood of getting the right pronunciation.

We also included a prosodic variation into our project. This is an attempt to avoid an overly flat, monotone, machine-like pronunciation. We adjusted the tempo and pitch of the last word of each sentence to give a more reading tone to the program.

The program still allows the blind or visually impaired individual to run the entire program and read any typed material by just pressing one button. Our macro interface program does the rest. In addition, we have added a feature that allows this program to be used to verbalize any email or text file.

The accuracy of our current program has increased to 96%, with most errors being due to optical character recognition mistakes. It can still be fit onto a single CD. Its high accuracy rate, better clarity due to its hybrid nature, and simplicity of use from scan to speech make it better than anything at all similar we have seen to date.

The process(es) of this invention is carried out as follows:

- 1) Test aligned phoneme dictionary to make sure it is aligned and to make adjustments.
- 2) Compare each word in aligned phoneme dictionary to the list of phonemes, delete rarities.
- 3) Convert the 46 phoneme to numbers.
- 5 4) Look in aligned dictionary for the letter "a" and print out 1 letter before, 2 letters after and the corresponding phonemes. Repeat for all other letters.
- 5) Create entire 1 before, 2 after matrix using the most common phoneme for each combination.
- 6) Convert any word to phonemes using the 1 before, 2 after matrix.
- 7) Test accuracy of matrix by comparing the original phoneme representation of each word in the aligned dictionary with its phoneme representation as created by following matrix rules.
- 8) Find words that contain a given diphone so we can use that word to create the diphone database.
- 9) Create a pipe for each letter in aligned dictionary using 3 letters before, 3 letters after, use numbers to represent and create a separate file for each letter (26 files).
- 10) Create entire pipe of 3 before and 3 after using the most common phoneme for each combination.
- 11) Find most common phoneme for each letter in the aligned dictionary.
- 12) Add the most common phoneme for each letter to the 1 before, 2 after matrix to fill up all blank slots.
- 20 13) Read text file using the 1 before, 2 after matrix and the diphone database.
- 14) Read text file using the 3 before 2 after pipe and the diphone database.

- 15) Input the 3 by 3 pipe containing the most common phoneme for each slot at this start of the program and print the phoneme representation of a single word.
- 16) Compare the original phoneme representation of each word in the aligned dictionary with its phoneme representation as created by 3 by 3 pipe rules; check accuracy for phonemes and for complete words.
- 5
- 17) Convert a text file to sentences, parse it, find the part of speech of each word in the sentence, and output the data to a file to use with the homograph matrix.
- 18) Macro programmed at the click of one button to scanner to scan a document, run OCR, turn it into text, direct the text to be saved in a file, and run or Visual Basic program.
- 19) Macro programmed to select the text or email currently on the screen, to direct the text to be saved in a file, and run or Visual Basic program.
- 20) Visual Basic file programmed to open the text file saved by the Macro and input it line by line until the file is exhausted. The words and punctuation are parsed, checked with our 10,000 word dictionary of fully recorded words, checked for homographs and distinguished using our homograph matrix, checked for numbers. If none of the above apply the phoneme representation of a word is found using the 3 by 3 matrix and if not found there, then the 1 before, 2 after matrix is used. The word is then compiled from our diphone database. Prosodromic variation is used at the end of a sentence.

20

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a flow diagram of the speech rendition algorithm of the present invention.

DESCRIPTION OF A PREFERRED EMBODIMENT

Viable speech rendition of text obviously requires some text signal to be available as input to the algorithm. There are a variety of mechanisms known in the art to provide text to a software program. These methods include scanning a paper document and converting it into a computer text file, capturing a text message on a computer screen and saving it to a text file, or using an existing computer text file. Any of these or similar methods could be employed to provide input to the algorithm.

Referring now to the drawing, Figure 1 is a flow diagram of the algorithm used to produce a viable speech rendition of text. The flow diagram should be read in conjunction with the source code, which is set forth below. The basic program begins with an initialization routine. This initialization routine involves loading a file which contains the phoneme decision matrices and loading a wav (i.e. sound) file containing a list of pre-recorded words. The matrices are used in the operation of the program to decide the appropriate sound for a given letter. Certain other variables suited for use in the program execution which will be apparent to one of skill in the art may also be initialized.

Following initialization, the program loads the first sentence from the text file. The sentence is parsed, or broken up, into the sequence of words which form the sentence. Each word is examined in turn according to the criteria in steps 4, 7, and 8. The program uses both whole words (from an exemplary list of, for example, 10,000 words) and also concatenated words (from the linking of diphones). Any word found on the main list is produced using the sound recording of that entire word. All other words are produced by the concatenation of

diphones unless it included a combination of letters and numbers (like "B42") in which case it is spelled out.

The word is first checked against a list of homographs. If the word is a homograph, the parts of speech of the adjacent words are determined. Based on a decision tree, the most appropriate sound file is used. Alternatively, the word is checked against a list of pre-recorded words. If the word is contained in the list, the appropriate sound file is used. If the word is not on either list, the word is checked to see if it contains a combination of numbers and letters. If so, it is spelled out. Otherwise, the phoneme rules and a diphone database are used to create the sound file for the word. The phoneme rules create an algorithm to determine which phonemes and diphones to use for a given word based on pronunciation rules. A set of pronunciation rules was created by working backwards from the CMU phonetic dictionary found on the Internet containing over 100,000 words followed by their phonetic representation. The letter to phoneme rules database was created from the phonetic representations of the words from this phonetic dictionary. The representations are used as data for the letter to phoneme rules which use the phoneme decision matrices. The diphone database consists of combinations of two of the 46 phonemes, making a total of 46×46 files. The pronunciation rules are incorporated in the diphone concatenation. Prosodrome variation and homograph discrimination are also used to correctly pronounce words and sentences. Our strategy was to have every letter of each word represented by a single phoneme, and then to find the most common phoneme representation of a letter when one knew certain letters that preceded and followed it. Not all words have the same number of letters as phonemes, so we first had to go through the list and insert blank phonemes when there were too many letters for the original number of phonemes (e.g. for "ph", "th", "gh")

or double consonants, the first letter carries the phoneme of the sound made and the second letter would be the blank phoneme). In other cases we combined two phonemes into one in the less common situation when there were too many phonemes for the number of letters in the word. These manipulations left us with a dictionary of words and matching phonemes; each letter of each word now had a matching phoneme. We used this aligned dictionary as input for a Visual Basic program which determined which was the most common phoneme representation for a given letter, taking into account the one letter before and two letters after it. This was stored in a 26x 26x26x26 matrix form and output to a file so it could be input and used in the next program. Our next program tested the effectiveness of this matrix in predicting the pronunciation of each word on the original phoneme dictionary list. This program utilized the letter to phoneme rules of the matrix for each word and then directly compared this with the original phoneme assigned to that letter by the dictionary. It found 52% of the words were given the entirely correct pronunciation, 65% were either totally correct or had just one letter pronounced incorrectly, and overall 90% of all letters were assigned the correct pronunciation.

In an attempt to obtain better accuracy one could look at some other combination of letters, such as the 3 letters before and 3 letters after the given letter. In order to put the results in a simple standard matrix by the same technique, a 26x 26x26x26x26x 26x26 matrix is used.

Alternatively, different types of matrices can be created within separate file names for each letter of the alphabet. In our “a” file we included a list of 7 letter strings with the 3 letters before and 3 letters after every “a” found in the phonetic dictionary. We made additional files for b thru z. Again we found the most common phoneme representation of “a” for each distinct 7 letter string that had “a” as the middle letter. By reading these into 26 different dimensional

matrix files, the additional run-search time of the program was minimized. We kept the 1 before-
2after matrix as a backup to be used if letters in the input word did not have a 7 letter match to
any word in the phonetic dictionary. Using this technique, accuracy improved dramatically. 98%
of all letters were assigned to the correct pronunciation. 86% of words were entirely correct and
5 98% had, at most, one letter pronounced incorrectly. When only one letter was incorrect, the
word was usually still understandable.

If the word is the last one in the sentence, a modified version of the word is used to provide the proper inflection in accordance with the punctuation. This process is continued until the entire text file is read.

In practice, the invention is utilized by scanning the printed material to be converted to speech and starting the macro program. The macro program guides the computer to scan the text, perform optical character recognition, saved the result as a text file, and start the basic program. The basic program is carried out by loading the phoneme decision matrices that will be used to decide the appropriate sound for a given letter. The program also loads the list of full words that have previously been recorded. The program then inputs a line from the text file and a parser breaks it up into words. The program keeps doing this until it reaches an end of sentence punctuation or the end of the text file. Next, the program examines words one at a time. If the examined word is on the homograph list, the program checks the part of speech of two words before and two words after the examined word and uses the decision tree to decide the most appropriate sound file to use. If the examined word is on the list of pre-recorded entire words, the appropriate wav file is used. If the examined word is a number or a combination of letters and numbers, it is spelled out. Otherwise, the phoneme rules and the diphone database are used

to create the word wav file. If the examined word is the last word of a sentence, a modified version of the word is used to replicate natural/normal speech. The program continues to examine new sentences until the text file is exhausted. When email or computer text files are encountered, the file is saved and the process begins with the loading of the phoneme decision matrices as referenced above.

5

The source code for the program follows:

Visual Basic Code for Project1 (Project1.vbp): Hybrid Text to Speech 2000

```
Form1.frm
Label: "Reading... Press ESCAPE to Exit"

CODE:
Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)
If KeyCode = 27 Then End
End Sub

Private Sub Form_Load()
Form1.Visible = False
Clipboard.Clear
SendKeys "%", True
SendKeys "e", True
SendKeys "l", True
SendKeys "%", True
SendKeys "e", True
SendKeys "c", True
clipp = Clipboard.GetText
If RTrim(LTrim(clipp)) = "" Then
SendKeys "%EA", True
SendKeys "%EC", True
End If
clipp = Clipboard.GetText
If RTrim$(LTrim$(clipp)) = "" Then GoTo 500
Open "c:\hybrid2000\final\out.txt" For Output As #2
Open "c:\hybrid2000\final\input.txt" For Input As #1
Open "c:\hybrid2000\final\words.txt" For Input As #3
Open "c:\hybrid2000\final\homopipe.txt" For Input As #8
Open "c:\hybrid2000\final\homolist.txt" For Input As #6
Open "c:\hybrid2000\final\mata.txt" For Input As #4
Open "c:\hybrid2000\increase accuracy\list\list.txt" For Input As #5
Dim all(26)
all(1) = 3
all(2) = 7
all(3) = 20
all(4) = 9
```

```

all(5) = 46
all(6) = 14
all(7) = 15
all(8) = 46
5 all(9) = 17
all(10) = 19
all(11) = 20
all(12) = 21
all(13) = 22
10 all(14) = 23
all(15) = 25
all(16) = 27
all(17) = 20
all(18) = 28
15 all(19) = 29
all(20) = 31
all(21) = 46
all(22) = 35
all(23) = 36
20 all(24) = 41
all(25) = 18
all(26) = 38

25 'convert text file to sentences
Dim sep(1000)
Dim pun(1000)
Dim wor(100)
Dim homog(5)
30 Dim homogg(5)
Dim diphone(100)
k = 0
b = ""

35 10 a = clipp
b = b + LTrim$(RTrim$(a))
If LTrim$(RTrim$(b)) = "" Then GoTo 25
b = LTrim$(RTrim$(LCase$(b))) + " "
'dash
40 If Mid$(b, Len(b) - 1, 1) = "--" Then
    b = Mid$(b, 1, Len(b) - 2)
    GoTo 25
End If
'end dash check
45 15 l = Len(b)
If l = 0 Then GoTo 25
For i = 1 To l
    If Mid$(b, i, 1) = " " Then GoTo 20
    If Asc(Mid$(b, i, 1)) >= 48 And Asc(Mid$(b, i, 1)) <= 57 Then GoTo
50 20 'if a character isn't a letter, space, or number then:
    If Asc(Mid$(b, i, 1)) - 96 < 1 Or Asc(Mid$(b, i, 1)) - 96 > 26 Then
        'start apostrophe check

```

```

        If Mid$(b, i, 1) = "" Then
            If i = 1 Then
                b = Mid$(b, 2, l - 1)
                GoTo 15
            End If
            If Asc(LCase(Mid$(b, i - 1, 1))) > 97 And Asc(LCase(Mid$(b, i - 1, 1))) < 123 And Asc(LCase(Mid$(b, i + 1, 1))) > 97 And Asc(LCase(Mid$(b, i + 1, 1))) < 123 Then
                If Mid$(b, i, 2) = "'s" Then
                    b = Mid$(b, 1, i - 1) + Mid$(b, i + 1, l - i)
                    GoTo 15
                End If
                GoTo 20
            Else
                b = Mid$(b, 1, i - 1) + Mid$(b, i + 1, l - i)
                GoTo 15
            End If
        End If
        'end apostrophe check
        '@ check
        If Mid$(b, i, 1) = "@" Then
            If i = 1 Then
                b = "at " + Mid$(b, 2, Len(b) - 1)
                GoTo 15
            End If
            b = Mid$(b, 1, i - 1) + " at " + Mid$(b, i + 1, l - i)
            GoTo 15
        End If
        'end @ check
        'if it's a "," "." "!" "?" then:
        If Mid$(b, i, 1) = "," Or Mid$(b, i, 1) = "." Or Mid$(b, i, 1) = "!" Or Mid$(b, i, 1) = "?" Then
            If i = 1 Then
                b = Mid$(b, 2, Len(b) - 1)
                GoTo 15
            End If
            k = k + 1
            sep(k) = LTrim$(RTrim$(Mid$(b, 1, i - 1))) + " "
            pun(k) = Mid$(b, i, 1)
            b = LTrim$(RTrim$(Mid$(b, i + 1, Len(b) - i))) + " "
            GoTo 15
        End If
        'change every different character to a space
        If i = 1 Then
            b = Mid$(b, 2, l - 1)
            GoTo 15
        End If
        b = RTrim$(LTrim$(Mid$(b, 1, i - 1)) + " " + Mid$(b, i + 1, l - i)) + " "
        GoTo 15
        'end change to space
    End If
20   Next i

```

```

25
k = k + 1
If sep(k - 1) = b Then
    k = k - 1
5 Else
    sep(k) = RTrim$(LTrim$(b)) + " "
    pun(k) = ","
End If
'end convert text file into sentences
10

pauser = 0
For i = 1 To k
    If pun(i) = "." Or pun(i) = "!" Or pun(i) = "?" Then pauser = pauser
15 + 1
    If pauser = 5 Then
        Close #2
        Open "c:\hybrid2000\final\out.txt" For Input As #2
20        Me.Show
        Me.KeyPreview = True
        Do
            Line Input #2, www
            x% = sndPlaySound(www, SND_SYNC)
            DoEvents
            Loop Until EOF(2)
            Close #2
            Open "c:\hybrid2000\final\out.txt" For Output As #2
            pauser = 0
25        End If
        If RTrim$(LTrim$(sep(i))) = "" Then GoTo 41
        c = 1
        For ii = 1 To 5
30        homog(ii) = "10"
        homogg(ii) = ""
        Next ii
        For j = 1 To Len(sep(i))
            If Mid$(sep(i), j, 1) = " " Then
                a = LTrim$(RTrim$(Mid$(sep(i), c, j - c)))
35            c = j + 1
            If a = "" Then GoTo 40
            'now that we have a....
            If LCase$(a) = "headers" Then GoTo 500

40
45        'check for number in word, if yes, spell
        For i2 = 1 To Len(a)
            If Asc(Mid$(a, i2, 1)) >= 48 And Asc(Mid$(a, i2, 1)) <=
50        57 Then
            For i3 = 1 To Len(a)
                Print #2, "c:\hybrid2000\master\" + Mid$(a, i3,
1) + ".wav"
                Next i3
                If j = Len(sep(i)) Then Print #2,

```

```

"c:\hybrid2000\master\,.wav"
    homog(1) = homog(2)
    homog(2) = "zzzz"
    GoTo 40
5      End If
Next i2
'end number check

10     'homograph check
Close #6
Open "c:\hybrid2000\final\homolist.txt" For Input As #6
Do
Line Input #6, homot
homot = LCase$(homot)
15    If Mid$(homot, 1, Len(homot) - 2) = a Then
        homog(3) = a
        If c >= Len(sep(i)) Then GoTo 26
        If LTrim$(RTrim$(Mid$(sep(i), c, Len(sep(i)) - c))) = ""
Then GoTo 26
20
25
30
35
40
45
50
      homod = Mid$(sep(i), c, Len(sep(i)) - c)
      hii = 1
      hoo = 0
      For hoi = 1 To Len(homod)
          If Mid$(homod, hoi, 1) = " " Then
              hoo = hoo + 1
              If hoo = 3 Then GoTo 26
              homog(hoo + 3) = Mid$(homod, hii, hoi - 1)
              hii = hoi + 1
          End If
      Next hoi
      Open "c:\hybrid2000\final\pos7.txt" For Input As #7
      Do
Line Input #7, homop
      For jh = 1 To 5
          If homog(jh) = Mid$(homop, 1, Len(homop) - 2) Then
              homogg(jh) = Mid$(homop, Len(homop), 1)
          End If
      Next jh
      Loop Until EOF(7)
      Close #7
      For jh = 1 To 5
          If homog(jh) = 10 Then homogg(jh) = "10"
          If homogg(jh) = "" Then homogg(jh) = "11"
      Next jh
      homog(4) + " " + homogg(5)
      homog(4) + " " + homogg(5)
      homog(4) + " " + homogg(5)
      Close #8
      Open "c:\hybrid2000\final\homopipe.txt" For Input As #8
      Do
Line Input #8, homopi
If homog(1) = homopi Then

```

```

        Print #2, "c:\hybrid2000\homographs\" + a + "-n.wav"
        GoTo 40
    End If
    If homo2 = homopi Then
        Print #2, "c:\hybrid2000\homographs\" + a + "-v.wav"
        GoTo 40
    End If
    Loop Until EOF(8)
    If Val(Mid$(homot, Len(homot), 1)) = 1 Then Print #2,
10   "c:\hybrid2000\homographs\" + a + "-n.wav"
    If Val(Mid$(homot, Len(homot), 1)) = 2 Then Print #2,
    "c:\hybrid2000\homographs\" + a + "-v.wav"
        GoTo 40
    End If
15   Loop Until EOF(6)

```

```

20   'end homograph check

homog(1) = homog(2)
homog(2) = a

25   'Check in 10000 wordlist
Close #3
Open "c:\hybrid2000\final\words.txt" For Input As #3
Do
Line Input #3, aa
If a = aa Then
    If j = Len(sep(i)) Then
        If pun(i) = "," Then
            Print #2, "c:\hybrid2000\master\" + a + ".wav"
            Print #2, "c:\hybrid2000\master\,.wav"
            GoTo 40
        End If
        If pun(i) = "." Then
            If a > "funds" Then
                Print #2, "c:\hybrid2000\master3\" + a + ".wav"
                Print #2, "c:\hybrid2000\master2\,.wav"
            Else
                Print #2, "c:\hybrid2000\master2\" + a + ".wav"
                Print #2, "c:\hybrid2000\master2\,.wav"
            End If
            GoTo 40
        End If
        If pun(i) = "!" Then
            If a > "funds" Then
                Print #2, "c:\hybrid2000\master3\" + a + ".wav"
                Print #2, "c:\hybrid2000\master2\,.wav"
            Else
                Print #2, "c:\hybrid2000\master2\" + a + ".wav"
                Print #2, "c:\hybrid2000\master2\,.wav"
            End If
        End If
    End If
End Do

```

```

        End If
        GoTo 40
    End If
    If pun(i) = "?" Then
        Print #2, "c:\hybrid2000\question\" + a + ".wav"
        Print #2, "c:\hybrid2000\question\,.wav"
        GoTo 40
    End If
End If
Print #2, "c:\hybrid2000\master\" + a + ".wav"
GoTo 40
End If
Loop Until EOF(3)
'end 10000 check
15
'Check in added wordlist
Close #5
Open "c:\hybrid2000\increase accuracy\list\list.txt" For
Input As #5
20
Do
Line Input #5, aa
If a = aa Then
    Print #2, "c:\hybrid2000\increase accuracy\list\" + a +
".wav"
25
    If j = Len(sep(i)) Then
        If pun(i) = "," Then
            Print #2, "c:\hybrid2000\master\,.wav"
        End If
        If pun(i) = "." Then
            Print #2, "c:\hybrid2000\master2\,.wav"
        End If
        If pun(i) = "!" Then
            Print #2, "c:\hybrid2000\master2\,.wav"
        End If
        If pun(i) = "?" Then
            Print #2, "c:\hybrid2000\question\,.wav"
        End If
        End If
        GoTo 40
30
    End If
    Loop Until EOF(5)
    'end added words check
35

40
45

'apostrophe check
For i2 = 1 To Len(a)
50
    If Mid$(a, i2, 1) = "'" Then
        a = Mid$(a, 1, i2 - 1) + Mid$(a, i2 + 1, Len(a) - i2)
    End If
Next i2

```

```

'end app check

5
'Convert letters to phonemes, play diphones
LL = Len(a)
aa = " " + a + " "
For m = 4 To LL + 4
    wor(m - 3) = Mid$(aa, m - 3, 7)
Next m
For m = 1 To LL
    hh = Mid$(wor(m), 4, 1)
    Open "c:\hybrid2000\final\" + hh + "2.txt" For Input As
15    #9
        Do
            Line Input #9, y
            If Mid$(y, 1, 7) = wor(m) Then
                wor(m) = Mid$(RTrim$(y), 10, Len(y) - 9)
                Close #9
                GoTo 30
            End If
            Loop Until EOF(9)
            Close #9
            wor(m) = Mid$(wor(m), 3, 4)
        Next m
        For m = 1 To LL
            If Len(wor(m)) = 4 Then
                u = Mid$(wor(m), 2, 1)
                v = Mid$(wor(m), 1, 1)
                w = Mid$(wor(m), 3, 1)
                xx2 = Mid$(wor(m), 4, 1)
                matwor = v + u + w + xx2
                'matrix check
                Close #4
                Open "c:\hybrid2000\final\mat" + u + ".txt" For Input
30    As #4
                    Do
                        Line Input #4, matche
                        If Mid$(matche, 1, 4) = matwor Then
                            wor(m) = Val(Mid$(matche, 6, Len(matche) - 5))
                            GoTo 31
                        End If
                        Loop Until EOF(4)
                        wor(m) = all(Asc(u) - 96)
                        'end matrix check
40
45    31
                    End If
                    Next m
                    njw = ""
                    kjjw = 0
                    For m = 1 To LL
                        If Val(wor(m)) = 46 Then GoTo 35
                        If njw = "" Then

```

```

      njw = Str$(Val(wor(m)))
      GoTo 35
End If
kjh = kjh + 1
diphone(kjh) = LTrim$(njw) + "-" + LTrim$(Str$(Val(wor(m))))
5   + ".wav"
35
10  njw = ""
Next m
If njw = "" Then GoTo 36
kjh = kjh + 1
diphone(kjh) = LTrim$(njw) + ".wav"
36
15  If j = Len(sep(i)) Then
      If pun(i) = "," Then
          For m = 1 To kjh
              Print #2, "c:\hybrid2000\diphones\" +
diphone(m)
              Next m
              Print #2, "c:\hybrid2000\master\",.wav"
              GoTo 40
20
25  End If
      If pun(i) = "." Then
          For m = 1 To kjh
              Print #2, "c:\hybrid2000\diphones\" +
diphone(m)
              Next m
              Print #2, "c:\hybrid2000\master\",.wav"
              GoTo 40
30
35  End If
      If pun(i) = "!" Then
          For m = 1 To kjh
              Print #2, "c:\hybrid2000\diphones\" +
diphone(m)
              Next m
              Print #2, "c:\hybrid2000\master\",.wav"
              GoTo 40
40
45  End If
      If pun(i) = "?" Then
          For m = 1 To kjh
              Print #2, "c:\hybrid2000\diphones\" +
diphone(m)
              Next m
              Print #2, "c:\hybrid2000\master\",.wav"
              GoTo 40
45
50  End If
      For m = 1 To kjh
          Print #2, "c:\hybrid2000\diphones\" + diphone(m)
      Next m
      GoTo 40
End If
For m = 1 To kjh
    Print #2, "c:\hybrid2000\diphones\" + diphone(m)
Next m

```

```

        'end convert and play
    End If

5     40 Next j
      41 Next i

Close #2
Open "c:\hybrid2000\final\out.txt" For Input As #2
Me.Show
10    Me.KeyPreview = True
Do
Line Input #2, www
x% = sndPlaySound(www, SND_SYNC)
DoEvents
15    Loop Until EOF(2)
500
End

End Sub
20
MODULE1 (Module1.bas)
Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)
Declare Function sndPlaySound Lib "WINMM.DLL" Alias "sndPlaySoundA"
(ByVal lpszSoundName As String, ByVal uFlags As Long) As Long
25    Public Const SND_SYNC = &H0

Visual Basic Code for Project1 (Project1.vbp): Hybrid Increase
30    Accuracy

Form1 (Form1.frm)
Contains Textbox

CODE:
Private Sub Form_Load()
    Form1.Visible = True
    x% = sndPlaySound("c:\hybrid2000\increase accuracy\do.wav",
SND_SYNC)
40    End Sub

Private Sub Text1_KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then
    KeyAscii = 0
45    Form1.Visible = False
    a = Shell("c:\windows\sndrec32.exe", vbNormalFocus)
    x% = sndPlaySound("c:\hybrid2000\increase
accuracy\twosecs.wav", SND_SYNC)
    SendKeys " ", True
50    Sleep (2000)
    SendKeys " ", True

```

```

SendKeys "{TAB}", True
SendKeys "{TAB}", True
SendKeys "{TAB}", True
SendKeys " ", True
5   Sleep (2200)
SendKeys "%", True
SendKeys "{DOWN}", True
SendKeys "a", True
Sleep (1000)
10  bee = "c:\hybrid2000\increase accuracy\list\" +
RTrim$(LTrim$(LCase$(Text1.Text))) + "~"
    SendKeys bee, True
    Sleep (1000)
    SendKeys "~", True
15  Sleep (500)
    SendKeys "~", True
    Sleep (200)
    SendKeys "%", True
    SendKeys "{DOWN}", True
    SendKeys "x", True

    'update wordlist
    Dim wo(100)
    i = 0
20
    Open "c:\hybrid2000\increase accuracy\list\list.txt" For
Input As #1
    Do
        Line Input #1, w
        i = i + 1
        wo(i) = w
        Loop Until EOF(1)
        Close #1
        Open "c:\hybrid2000\increase accuracy\list\list.txt" For
30
Output As #2
        For j = 1 To i
        Print #2, wo(j)
        Next j
        Print #2, RTrim$(LTrim$(LCase$(Text1.Text)))
        End
35
End If
End Sub

MODULE1 (MODULE1.bas)
Declare Function sndPlaySound Lib "WINMM.DLL" Alias
40  "sndPlaySoundA" (ByVal lpszSoundName As String, ByVal uFlags As
Long) As Long
Public Const SND_SYNC = &H0

```

```
Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)
```

The present invention has been described with reference to a single preferred
5 embodiment. Obvious modifications of this process, including the elimination of the list of
prerecorded words in favor of using the diphone database, are intended to be within the scope of
the invention and of the claims which follow.

CLAIMS

1. A method for producing viable speech rendition of text comprising the steps of:
parsing a sentence into a plurality of words and punctuation;
comparing each word to a list of pre-recorded words;
dividing a word not found on the list of pre-recorded words into a plurality of diphones,
and combining sound files corresponding to the plurality of diphones; and
playing a sound file corresponding to each word.
- 5 2. The method of claim 1 further comprising the step of adding inflection to at least one word of the sentence in accordance with punctuation of the sentence.
3. The method of claim 1 wherein the step of dividing the word into a plurality of diphones is accomplished by comparing combinations of letters in the word to a database of diphones.
4. A method for producing viable speech rendition of text comprising the steps of:
parsing a sentence into a plurality of words and punctuation;
dividing each word into a plurality of diphones;
combining sound files corresponding to the plurality of diphones; and
playing a sound file corresponding to the word.
- 15 5. The method of claim 4 further comprising the step of adding inflection to the word in accordance with the punctuation of the sentence.
- 20 6. The method of claim 4 wherein the step of dividing the word into a plurality of diphones is accomplished by comparing combinations of letters in the word to a database of diphones.

"METHOD FOR PRODUCING A VIABLE SPEECH RENDITION OF TEXT"

ABSTRACT OF THE INVENTION

A method for producing a viable speech rendition of text based on dividing the words of
5 the sentence into component diphones. Analysis of the structure of the sentence is utilized to correctly pronounce homographs. Proper inflection, based on the punctuation of the sentence, is added to produce a more appealing rendition. The invention has particular application for permitting blind persons to receive information previously in text form and, hence, unavailable. The invention is highly versatile, user friendly and the overall flow of sounds highly
10 understandable. A phonetic dictionary is aligned so that each letter within each word has a single corresponding phoneme. The aligned dictionary is analyzed to determine the most common phoneme representation of the letter in the context of a string of letters before and after it. The results for each letter are stored in a phoneme rule matrix. A diphone database is then created by using a waive editor to cut 2,000 distinct diphones out of specially selected words. An algorithm used with the invention selects a phoneme for each letter. Then, two phonemes at a time are used
15 to create a diphone, which are then read aloud by concatenating sounds from the diphone database. Another algorithm is used to distinguish and use the correct form of homograph. Finally, the invention uses prosodromic variation by adding inflection to the final word of a
20 sentence in accordance with punctuation, e.g. question marks, periods and exclamation marks, to enhance the realisticness of the program. Three macros were created to allow aspects of the program to run at the touch of a single button. A 98% accuracy rate has been achieved.

FIG. 1

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION
(English Language Declaration)

File No. 6984.20036

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled "**METHOD FOR PRODUCING A VIABLE SPEECH RENDITION OF TEXT**", the specification of which (check one):

is attached hereto

was filed on _____ as Serial No. _____ and was amended on _____ (if applicable).

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose to the Office all information known to me to be material to patentability, as defined in Title 37, Code of Federal Regulations §1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, Section 119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

<u>Prior Foreign Application(s)</u>		<u>Day/Month/Year</u>	<u>Priority Claimed</u>	
<u>Number</u>	<u>Country</u>		<u>Yes</u>	<u>No</u>
			<input type="checkbox"/>	<input type="checkbox"/>
			<input type="checkbox"/>	<input type="checkbox"/>
			<input type="checkbox"/>	<input type="checkbox"/>

I hereby claim the benefit under Title 35, United States Code 120, of any United States application(s) or PCT international application(s) designating the United States of America listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code 112, I acknowledge the duty to disclose to the Office all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations 1.56, which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

<u>Serial No.</u>	<u>Filing Date</u>	<u>Status</u>
60/157,808	October 4, 1999	Pending provisional patent application

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith along with any and all foreign applications filed and foreign patents issued therefrom.

Kevin P. Crosby, Registration No. 32,123

Send all correspondence to:

**Kevin P. Crosby
Brinkley, McNerney, Morgan Solomon & Tatum, LLP
200 East Las Olas Blvd., Suite 1800
New River Center
Fort Lauderdale, FL 33301**

Direct telephone calls to:

**Kevin P. Crosby, Esq.
(954) 522-2200**

William H. Pechter
Full Name of Sole or First Inventor

United States
Citizenship

William H. Pechter
Inventor's Signature

8/31/2000
Date

**1295 Olde Doubloon Drive
Vero Beach, FL 32963**
Residence

same as above
Post Office Address

Joseph E. Pechter
Full Name of Second Joint Inventor, if any

United States
Citizenship

Joseph E. Pechter
Second Inventor's Signature

8/31/2000
Date

**1295 Olde Doubloon Drive
Vero Beach, FL 32963**
Residence

same as above
Post Office Address