

Hoja 4

A tenemos x1, x2 y x2 mínimos relativos y que facilita va en Por el teoremo do Lagrange podomos deser se 2

 $3x_{j} \in (x_{1}x_{2})/f'(x_{j}) = \frac{f(x_{2}) - f(x_{1})}{x_{1} - x_{1}}$

for hipotesis subemos que xxxx .. xx-xx>0

Por hipotesis y definición de másimo obsolutorio) sobomos

que $f(x_0) > f(x_0) \times_y$ tembreis sobemes que son alcohortes per injectes of $f(x_0) - f(x_0) > 0$

Entonces $f'(x_5) > 0$ $y \times_5 e(x_1, x_2) \subset \mathbb{R}$ Por otro lado $\exists x_4 \in (x_2, x_3) / f'(x_4) = \underline{f(x_5)} - F(x_5)$

Ror looms mismo que el coso anterior tenemos F(N)>f(xi)

Entonces $f'(x_4) < 0$ 7 $x_4 \in (x_2, x_3) \subset \mathbb{R}$ Dueds demostrate que existen $x_4, x_5 \in \mathbb{R} / \Gamma'(x_4) < 0 < \Gamma'(x_6)$

Hoja 7

a) Tenemos que x es continuo y creciente en tede su dominio por ser la función continua en E \overline{u} , \overline{u} \overline{u}

Dodos xxxxxxxxx1-4.43

timemos que tan $(x_1) \times \text{ten}(v_2) = 3 \times_{1} + \text{tan}(x_1) \times x_2 + \text{tan}(x_2)$ y restamos 4 de embos lodos = $2 \times_{1} + \text{tan}(x_1) \times x_2 + \text{tan}(x_2) = 4$ Demostranos que f(x) es creciente y cortinua (por ma de facces
continuas) en [$\frac{\pi}{4}$, $\frac{\pi}{4}$]. Entonces admite inversa y va
a estar definida en [$f(-\frac{\pi}{4})$, $f(-\frac{\pi}{4})$] = Dom(f^{-1}) y su recorrido
será $\text{Rec}(f^{-1})$ = $\{-\frac{\pi}{4}, \frac{\pi}{4}\}$

Índice de comentarios

5.1

1.1 0<=H
1.2 x<= -H
2.1 f(1)=b.....¿Por qué b=a+1 ? ¿Cómo obtuviste eso?
2.2 ¿Por qué c=a+1 ? ¿Cómo obtuviste eso?
3.1 ¿Puede valer 0 la derivada de la función en x=1?...según tus cálculos, el límite del cociente incremental te dio 2.....¿Cómo se define la derivada de la función en un punto?
3.2 ¿acotada?
4.1 en x_2 la función f tiene un Mínimo absoluto.

¿Puede explicitar la ley de una función que sirva de contraejemplo?