Modeling Languages for Optimization

DS 775

Topics

- Optimization Programming Language (OPL)
 - overview of IDE
 - programming basics
- Numerical Methods for Linear Programming

Two Numerical Methods

- Simplex Method (Dantzig 1947)
 - widely considered one of top 10 numerical algorithms from the 20th century (link below)
- Interior Point Method (Karmakar 1984)

Wyndor Problem - Simplex Method

Wyndor Problem - Interior Point Method

Simplex - Pros and Cons

- Pros
 - n variables, usually works with O(n) operations
 - exploits geometry to visit vertices
 - good for small problems
- Cons
 - worst case $O(2^n)$ operations
 - gets expensive for large problems

Interior Point - Pros and Cons

- Pros
 - modern methods require $O(n^3L)$ operations
 - better for large, sparse problems
- Cons
 - harder to understand
 - for small problems Simplex is usually faster

Optimization Programming Language (OPL)

- easier model specification
- separate model from data
- relies on IBM CPLEX solvers for numerics
- interfaces to R, Python, C, and others
- similar to AMPL, LINGO, and others
- also can use with constraint programming

A simple OPL model

ctPlant2Hours:

```
dvar float+ Doors: /* batches of doors */
dvar float+ Windows: /* batches of windows */
maximize /* profit per batch in thousands */
  3 * Doors + 5 * Windows:
subject to {
  ctPlant1Hours:
                            <= 4:
        Doors
```

2 * Windows <= 12;

ctPlant3Hours:
 3 * Doors + 2 * Windows <= 18;</pre>

Introduction to Optimization Studio

Indexing using names

Infeasible constraints

Model and Data - Separate Files

A Transportation Problem

- Shipment of products pairs of cities
 - transport has per product cost
 - transport cannot exceed a given limit
 - transport amount subject to supply and demand constraints
 - Assumes total supply = total demand
 - Minimize total cost subject
- Usually constraint equations are sparse
 - each equation involves only a few of the many decision variables

A Transportation Problem - a picture

Install Example into Workspace

First Model

Sparse Model with Tuples