

(19)

(11) Publication number:

01151150 A

Generated Document.

PATENT ABSTRACTS OF JAPAN

(21) Application number: 62309875

(51) Int'l. Cl.: H01M 2/02

(22) Application date: 08.12.87

(30) Priority:

(43) Date of application publication: 13.06.89

(84) Designated contracting states:

(71) Applicant: MATSUSHITA ELECTRIC IND CO LTD

(72) Inventor: TANIGAWA MITSUMASA HAYAKAWA HAYASHI

(74) Representative:

(54) MANUFACTURE OF
POSITIVE ELECTRODE
CAN FOR CELL

(57) Abstract:

PURPOSE: To prevent the occurrence of burrs after punching by putting R suitable for the thickness of a metal thin plate to the corner section of a die punching the metal thin plate for a positive electrode can.

CONSTITUTION: A steel plate or a stainless steel plate with the thickness of about 0.15~0.35mm is formed into a positive electrode can via the punching process by a mold punch P and a die D. The R of the punching corner section of the die D is made 3~2 times the thickness of the plate to be punched, thereby burrs rarely occur on the punch section. This fact is based on the experimentally verified results on Rs with several sizes against plates with several thicknesses.

COPYRIGHT: (C)1989,JPO&Japio

④公開特許公報(A) 平1-151150

④Int.Cl.

H 01 M 2/02

識別記号

庁内整理番号

H-6435-5H

④公開 平成1年(1989)6月13日

審査請求 未請求 発明の数 1 (全4頁)

④発明の名称 電池用正極缶の製造法

④特願 昭62-309875

④出願 昭62(1987)12月8日

④発明者 谷川光政 大阪府門真市大字門真1006番地
 ④発明者 幸川林 大阪府門真市大字門真1006番地
 ④出願人 松下電器産業株式会社 大阪府門真市大字門真1006番地
 ④代理人 弁理士 中尾敏男 外1名

2ページ

明細書

1. 発明の名称

電池用正極缶の製造法

2. 特許請求の範囲

(1) 金属薄板を折り加工後、トリミング加工する缶の製造法であって、前記のトリミング工程におけるダイスの打抜きコーナー部のミを、被切断薄板の板厚の2~12倍にすることを特徴とした電池用正極缶の製造法。

(2) 金属薄板が、銅板またはステンレス鋼板である特許請求の範囲第1項記載の電池用正極缶の製造法。

3. 発明の詳細な説明

盛業上の利用分野

本発明は、ボタン形及びコイン形電池に用いる正極缶の製造法に関するものである。

従来の技術

近年、エレクトロニクスの発達と共に、特に電子機器用、カメラ用、電子車上計算機用及び各種精密測定機器用の資源として、ボタン、コイン

形電池が使用されているが、電池も精密部品として高信頼、高精度のものが要求されてきている。この様な状況下で、必然的に電池正極缶にも精度が求められ、従来の正極缶は、トランクファーフ式やプログレッシブ方式により、金型パンチPと金型ダイスDによって図3図4のように成形加工されているのが通常で、トリミング工程中で第3回の後に脱利ガバリが発生していた。

発明が解決しようとする問題点

このような従来の構成では、第3回図4~cの上うをバリ要因の為、切断直後やその次工程での研磨、洗浄工程において、フランジ部に発生したバリを除去し、精度をあげようとしているのが一般的であった。同じく電池製造工程での剥離状態においても発生する糸状バリ、粉は応用商品の中で外れ、回路のショートによるトラブルの要因となるので、あってはならないものでありながら、現行での加工法ではこれを防止することは難しかしい。この様にエレクトロニクス時代に対応し、電池の信頼性を高めていく為には電池製造工程で発

3ページ

生する上述の鋳金系状バリや粉をなくすことが急務であるという問題があった。

本発明は上述の欠点を解消し、電池用正極缶のプレスストリミング工程中で、電池用正極缶の切削面が極力滑らかな破断面となり、バリの発生をさえ、鋳金工程での鋳金系状バリや粉も発生しない精密な正極缶を作ることを目的とするものである。

問題点を解決するための手段

この問題点を解決するために本発明は、電池用正極缶のフランジ部を切断する際に、金型のトリミング工程のダイス部を、被切断金属薄板の板厚3~1.2倍の刃に加工し、バリの発生を極力おさえ、破断面を滑らかにしたものである。

作用

この構成により、本発明のコイン形、ボタン形電池用正極缶を図1の如く、トリミング工程の金型ダイスRの打抜きコーナー部の刃を、被切断薄板の板厚の3~1.2倍として打抜くことにより、フランジ部の破断面が滑らかとなり、従来のよう

に鉛ずりや石研磨等でバリを取り除く工程も必要とせず、精度の高いものとなる。上述の様に成すことによって、乾燥パッキングと金型正極缶を内方向に折曲する時に発生する鋳金粉、系状バリ等が無くなり、より電池用正極缶としての精度が向上することとなる。

実施例

第2図は本発明の一実施例による電池用正極缶を用いた電池の部分断面図であり、ボタン形及びコイン形電池共通である。1は金属等の導電性材料の上に、ニッケル鍍金を施して成る正極缶で、その内部には陽極活性物質2を収めし、その上面には隔膜3、陰極板間の内部短絡を防止する目的で用いる隔壁4、及び電解液貯蔵材5が位置し、更にその上方には金属封口銀6に収納された陽極活性物質2が位置している。第1図の本発明の正極缶打抜き時の正極缶板厚を0.18~0.35%として、トリミングダイスの打抜きコーナー部の刃を0.5~2.5%変化させて打抜いた正極缶を使用して、上記構成の電池を作成した際の正極缶の鋳金粉や

5ページ

系状バリ発生状態の一覧表を表1に示す。なお電池はアルカリボタン形電池しR44で試作した。

表1 破断寸法と厚み 単位%					
	0.16	0.20	0.25	0.30	0.35
メ	8.3	2.6	2.0	1.7	1.4
イ	○20 △21	△26 ▲40	△48		
ス	6.7	5.0	4.0	3.5	2.9
R	○2 ○12 ○18 ○21 △39				
単	10.0	7.6	6.0	5.0	4.3
位	○11 ○3 ○15 ○19 △36				
%	18.3	10.0	8.0	6.7	5.7
	△21 ○14 ○2 ○4 ○17				
	18.7	12.6	10.0	8.3	7.1
	△26 △24 ○16 ○11 ○2				

上段
下段

注) 上段: 敷道二^{1/2}倍

(左) 出現数/100個
下段: LR44 正極缶バリ出現率
△: 電解液漏れなし
○: 電解液漏れあり

同じくアルカリ一次電池で乾燥方式による正極缶、各々100個焼成して温度45度及び湿度90%の空気中に保存し、電解液の漏出率を調査した。その結果を表2に示す。尚、表中のAは従来方式切断の正極缶を採用したもので、Bは本発明

の切削方式のものである。表1の最適条件であるダイスR 2.0%板厚0.25%の正極缶系状バリ、粉の出現率最小の構成した電池を使用したものである。保存の電池はアルカリボタン電池しR 44でA、Bと共に実験した。従って表中の単位数字は漏出率%を示す。

表2

保存日数	3週	4週	5週	6週	7週	8週	10週	12週
	A	0	2	5	10	16	22	33
B	0	0	0	0	1	1	2	3

発明の効果

以上のように本発明によれば、電池用正極缶の製造法によって得た金属正極缶を用いた電池は、鋳金粉及び系状バリの発生が見られないものであり、その他の有機電解液質系、中性塩、酸性塩、アルカリ性塩系の電解液を用いたあらゆるボタン形やコイン形電池に至っても、極めて有効であるという効果が得られる。

4. 図面の簡単な説明

図1は本発明の切削金型ダイスの図、bはそれによる沿らかな断面となる拡大図、cは封口状態断面図、図2はボタン形電極の構成を説明する為の要部断面図、図3は～dは従来の金属正極板の要部断面図、拡大図、切削方法の詳細図及び封口状態を示す図である。

1……正極板、2……陽極活性質、3……隔離膜、4……電解液吸収材、5……陰極活性質、
6……封口板、7……絶縁パッキング、8……封口板表面、9……封口板内面。

代理人の氏名 特許士 中尾敏男 ほか1名

第一図

- | | |
|---|--------|
| 1 | 正極物質 |
| 2 | 隔膜 |
| 3 | 導電糊 |
| 4 | 活性物質 |
| 5 | 陰極板 |
| 6 | 封緘パッキン |
| 7 | 封緘表面 |
| 8 | 封緘板内面 |
| 9 | |

第 2 図

第 3 図

THIS PAGE BLANK (USPTO)