Supervised

1. Decision Stump

fit: O(ndk), or for k = n, $O(nd \log n)$

for each feature, O(d)

for each threshold O(k)

label example if it satisfies and predict compute score O(n)

store rule.

2. Decision Tree

fit: $O(mnd \log n)$ m depth

predict: O(m) m depth

PSEUDO CODE HERE with O(n) on steps

3. Naive Bayes

Bayes Rule: $p(y_i|x_i) = \frac{p(x_i|y_i) \cdot p(y_i)}{p(x_i)}$

runtime fit: O(nd) go thru X and count

- 4. KNN
 - Non-Parametric
 - Prediction Cost: $O(n^2(d+k))$
 - depends on norm
 - Usage:

for each x_i O(n),

find the distance O(d)

to each example O(n).

compute the average of the closest k O(k)

- 5. Linear Regression
- 6. Non-linear Regression (Supervised)

Unsupervised

- 1. K-Means
 - Parametric (k, W weights)
 - fit cost: store O(ndk)
 - update: O(ndk)
 - depends on initialization
 - Usage: convex clustering, vector quantization, Outlier Detection

for each x_i O(n), find the distance O(d) to k centers O(k);

assign x_i to closest center;

update means (centers) O(ndk);

repeat this until the closest center does not change O(1) bounded

- 2. DBSCAN
 - Non-Parametric (ϵ , MinNbr)
 - problem: different densities

for each x_i O(n),

if already assigned, do nothing

check if $\geq MinNbrs$ within ϵ

if not, do nothing, if so 'expand' cluster.

To expand,

assign all ϵ nbrs to this cluster.

repeat for each added points.

- 3. Outlier Detection Methods
 - Model-based methods
 - Graphical approaches (scatter plot)
 - Cluster-based methods (k-means DBSCAN)
 - Distance-based methods (KNN)
 - Supervised-learning methods

Something

1. Golden Rule:

Test data must not influence in the training phase in any way.

2. Fundamental Trade Off:

 $E_{test} = (E_{test} - E_{train}) + E_{train}$

 E_{appx} gets smaller as n larger, grows as model gets complicated

- 3. Random Forest
 - Parametric (trees, depth of each)
 - fit cost: store O(ndk)
 - update: O(ndk)
- 4. Cross-Validation

runtime (fit): k x runtime of the fit

runtime (predict): k x runtime of the predict

if sorted, choose randomly

for each k fold O(k),

train on the rest $O(((k-1)/k)n) \times \text{fit time}$ predict on the fold $O(n/k) \times \text{predict time}$

5. Linear Algebra Notes

Basics

- $w^T x_i = \sum_{j=1}^d w_j x_{ij}, x_i, w \text{ is } d \ge 1$ $a^T A b = b^T B^T a \text{ both sides are vectors}$
- $\frac{1}{2} ||Xw y||_2^2 = \frac{1}{2} \sum_{i=1}^n (w^T x_i y_i) = \frac{1}{2} w^T X^T X w w^T X^T y + \frac{1}{2} y^T y$ $\nabla w^t b = w, \nabla \frac{1}{2} w^T A w = A w$ if A symmetric
- $\nabla \frac{1}{2} ||Xw y||_2^2 = X^T X w X^T y$ Normal equation $X^T X w = X^T y$
- $(Xw y)^T V(Xw y) = \sum_{i=1}^n v_i (w^T x_i y_i)^2$ $= \frac{1}{2} w^T X^T V X w w^T X^T V y + \frac{1}{2} y^T V y$ $\nabla (Xw y)^T V(Xw y) = X^T V X w X^T V y$

Run Time

- $\bullet \ X^Ty:O(nd)$
- $\bullet X^TX : O(nd^2)$
- solve d x d system of equations : $O(d^3)$
- solve normal equation : $O(d^3 + nd^2)$

Gradient Descent

- $w^{t+1} = w^t \alpha^t \nabla f(w^t) = w^t X^T (Xw^t y)$ (least square)
- cost O(nd) no need to form X^TX
- total cost O(ndt) t iterations
- faster for large d, works generally

Naïve Bayes Training Phase $\rho_{(\gamma_i^-)^-} = \rho_{(\gamma_i^-)^-} = \rho$