EECS332 Digital Image Analysis

Hough Transform

Ying Wu

Electrical Engineering & Computer Science Northwestern University Evanston, IL 60208

http://www.ece.northwestern.edu/~yingwu yingwu@ece.northwestern.edu

Motivations

- In our previous lecture on line fitting, we have a hidden assumption:
 - All the edge points belong to the same shape
- What if we don't have such an assumption?
 - We need to "detect" a shape
 - Let's work on the simplest case: line detection

- How many lines are there?
- Where are they?

A real example

Can you find the "panel"?

3

Outline

- Motivation
- Basic idea
- Implementation
- Extensions

ļ

Basic idea

- A point (x_k,y_k) in x-y space is mapped to a line in m-c space, i.e., $c=(-x_k)m+y_k$
- A set of co-linear points in x-y space is mapped to a set of lines intersecting at a particular point (m,c)!
- We call m-c space as the "parameter space"
- This is like the voting in a parameter space

Basic algo

- Edge detection → E
- $\forall (x,y) \in E$
 - Draw a line c=-xm+y in the m-c plane
 - i.e., if the line passes through (m,c), A[m,c] ++
- Find local maxima of A \rightarrow lines in E

7

Are we done?

- Of course, we need to quantize the parameter space for implementation
- m?
- **■** c?
- Do we expect any problem?
- What about a vertical line? $m=\infty$
- Solution?

Using polar form

9

Q1: range of ρ and θ ?

■ Before we can quantize the parameter space, we need to know the range of the parameters

$$-\frac{\pi}{2} \le \theta < \frac{\pi}{2}$$

$$-\sqrt{R^2 + C^2} \le \rho \le \sqrt{R^2 + C^2}$$

Q2: what is the curve in ρ - θ space?

- An edge point in x-y space corresponds (or vote) a curve in the ρ - θ space
- So, what does such a curve look like?

Extension

■ Can we use this idea to detect a circle?

$$(x-a)^2 + (y-b)^2 = r^2$$

It is doable, but ...

- ✓ The # of cells grows exponentially with the dim of the parameter space!
- ✓ Too much computation ← an inherent problem of Hough transform

Play a trick

- But for circle detection, we can play a trick:
 - Using the direction of an edge
 - s.t., to reduce the parameter space
- Edge detection
 - We have both edge magnitude & direction!

17

Trick

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$

$$\Rightarrow \begin{cases} x = a + r \cos \theta \\ y = b + r \sin \theta \end{cases}$$

$$\Rightarrow \begin{cases} a = x - r \cos \theta \\ b = y - r \sin \theta \end{cases}$$

$$\xrightarrow{\text{eliminate } r} b = a \tan \theta - x \tan \theta + y$$

Edge detector gives us $(x, y, \tan \theta)!$

x-y-
$$\theta$$
 space \longleftrightarrow a-b space