Московский Физико-Технический Институт (государственный университет)

Вычислительная математика

Лабораторная работа №10

Автор:

Овсянников Михаил Б01-008

Долгопрудный, 2023

Содержание

Цель			•	•		3
Теоретические сведения						3
Общая задача			•	•	•	3
Сама система						3
Постановка задачи						3
Результаты						7
Вывод						16

Цель

Найти собственные значения и собственные функции заданного уравнения.

Теоретические сведения

Общая задача

Задача нахождения собственных значений и функций дифференциального уравнения называется задачей Штурма-Лиувилля. Выглядит это так:

$$\begin{cases} \frac{d}{dx} \left[k(x) \frac{dy}{dx} \right] + \left[p(x) + \lambda q(x) \right] y = 0, \\ \mu_0 y(0) + \mu_1 y'(0) = 0, \\ \nu_0 y(x_L) + \nu_1 y'(x_L) = 0. \end{cases}$$

Здесь λ – искомое собственное значение.

Такую задачу решают с помощью метода стрельбы, используя λ как параметр. Останавливаться на данном методе не будем, поскольку он был описан в лабораторной работе \mathbb{N} 8, а перейдем сразу к уже данной задаче.

Сама система

Постановка задачи

В качестве примера задачи на поиск собственных значений и функций был выбран номер **XI.9.19** второй части сборника Аристовой и Лобанова.

По теории речеобразования речевой аппарат человека представляет собой единую акустическую систему, возбуждаемую периодическими колебаниями голосовых связок либо турбулентным шумом. При этом голосовой тракт можно рассматривать как резонатор или фильтр, собственные частоты и собственные функции которого определятся из решения следующей спектральной задачи:

$$\begin{cases} (S(x)\Psi'_x(x))'_x + \lambda^2 S(x)\Psi(x) = 0, & 0 < x < L, \\ \Psi'_x(0) = 0, \\ 8\sqrt{S(L)}\Psi'_x(L) + 3\pi\sqrt{\pi}\Psi(L) = 0. \end{cases}$$

Здесь x — расстояние вдоль оси распространения волн от голосовых связок до рассматриваемого сечения голосового тракта (рис. 1). Функция S(x) — функция площади сечения голосового тракта вдоль оси распространения волн; L — длина голосового тракта.

Рис. 1. Аппроксимация голосового тракта

Функция S(x) задана таблично:

x, MM	S(x), mm ²
0,0	78,2
2,5	66,4
5,0	43,0
7,5	39,1
10,0	33,2
12,5	25,4
15,0	31,3
17,5	50,8
20,0	87,7
22,5	444,0
25,0	523,2
27,5	532,2
30,0	538,5
32,5	531,7
35,0	527,2
37,5	504,5
40,0	498,7
42,5	527,0
45,0	570,6
47,5	572,5
50,0	566,7
52,5	549,1
55,0	535,4

x, MM	S(x), mm ²
57,5	515,9
60,0	486,6
62,5	453,3
65,0	434,8
67,5	420,0
70,0	420,7
72,5	437,2
75,0	470,5
77,5	480,8
80,0	457,2
82,5	408,4
85,0	361,5
87,5	340,0
90,0	295,1
92,5	257,9
95,0	203,2
97,5	144,6
100,0	103,6
102,5	80,1
105,0	64,5
107,5	33,2
110,0	21,5
112,5	13,7

2

Таблица 1. Площадь поперечного сечения голосового тракта S(x)

Графически:

Рис. 2. Графическое представление S(x)

Найдем первые 4 собственных значения и соответствующие собственные функции для этого уравнения.

Обращаясь к методу стрельбы, распишем получившиеся системы. Пусть $u=\Psi,\ v=\Psi_x',\ A=\frac{\partial u}{\partial \lambda},\ B=\frac{\partial v}{\partial \lambda},\ a$ дополнительное условие:

$$F(\lambda) = 8\sqrt{S(L)}\Psi'_x(L) + 3\pi\sqrt{\pi}\Psi(L) = 8\sqrt{S(L)}v(L) + 3\pi\sqrt{\pi}u(L).$$

Тогда:

$$\begin{cases} u' = v, \\ v' = -\lambda^2 u - v \frac{S'(x)}{S(x)}, \\ u(0) = 1, \\ v(0) = 0. \end{cases}$$

Условие u(0)=1 выбрано потому, что функция $\Psi(x)$ определена с точностью до постоянного множителя (который ищется из условия нормировки).

На A и B будет система:

$$\begin{cases} \frac{dA}{dx} = B, \\ \frac{dB}{dx} = -2\lambda u - \lambda^2 A - B \frac{S'(x)}{S(x)}, \\ A(0) = 0, \\ B(0) = 0 \end{cases}$$

Тогда также:

$$F'(\lambda) = 8\sqrt{S(L)}\frac{\partial v}{\partial \lambda}(L) + 3\pi\sqrt{\pi}\frac{\partial u}{\partial \lambda}(L) = 8\sqrt{S(L)}B(L) + 3\pi\sqrt{\pi}A(L).$$

Результаты

Приведем графики первых нескольких собственных состояний.

• $\lambda_1 \approx 0.0025707 \text{ mm}^{-1}$

Рис. 3. График решения при $\lambda = \lambda_1$

• $\lambda_2 \approx 0.0421654 \text{ mm}^{-1}$

Рис. 4. График решения при $\lambda=\lambda_2$

• $\lambda_3 \approx 0.0656407 \text{ mm}^{-1}$

Рис. 5. График решения при $\lambda=\lambda_3$

• $\lambda_4 \approx 0.0833594 \text{ mm}^{-1}$

Рис. 6. График решения при $\lambda=\lambda_4$

• $\lambda_5 \approx 0.1134456 \text{ mm}^{-1}$

Рис. 7. График решения при $\lambda=\lambda_5$

• $\lambda_6 \approx 0.1182225 \text{ mm}^{-1}$

Рис. 8. График решения при $\lambda=\lambda_6$

• $\lambda_7 \approx 0.1492184 \text{ mm}^{-1}$

Рис. 9. График решения при $\lambda=\lambda_7$

• $\lambda_8 \approx 0.1846243~\mathrm{mm}^{-1}$

Рис. 10. График решения при $\lambda=\lambda_8$

Кажется, что графики выглядят довольно случайно, но это не так. Построим все эти графики в одном фиксированном масштабе.

Рис. 11. График решения при $\lambda=\lambda_1$

Рис. 12. График решения при $\lambda=\lambda_2$

Рис. 13. График решения при $\lambda=\lambda_3$

Рис. 14. График решения при $\lambda=\lambda_4$

Рис. 15. График решения при $\lambda=\lambda_5$

Рис. 16. График решения при $\lambda=\lambda_6$

Рис. 17. График решения при $\lambda = \lambda_7$

Рис. 18. График решения при $\lambda=\lambda_8$

Получается своеобразная волна! И она сжимается. Это и понятно, мы рассматриваем резонатор.

Чтобы лучше увидеть движение этой волны, можно посмотреть Scaled.gif файл.

Вывод

В работе был использован метод стрельбы для нахождения собственных чисел и состояний уравнения, описывающего голосовой тракт как резонатор.