

EMI - TEST REPORT

- FCC Part 15.245 -

Test Report No. : T38148-00-00HS 21. May 2014

Date of issue

Type / Model Name : UMRR-0Axxxx-1Exxxx-0306xx

Product Description: Field disturbance sensor

Applicant: s.m.s. smart microwave sensors GmbH

Address : In den Waashainen 1

38108 BRAUNSCHWEIG, GERMANY

Manufacturer: s.m.s. smart microwave sensors GmbH

Address : In den Waashainen 1

38108 BRAUNSCHWEIG, GERMANY

Licence holder : s.m.s. smart microwave sensors GmbH

Address : In den Waashainen 1

38108 BRAUNSCHWEIG, GERMANY

Test Result according to the standards listed in clause 1 test standards:

POSITIVE

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test results without the written permission of the test laboratory.

Contents

1 _	IEST STANDARDS	3
2 5	SUMMARY	4
•	OENEDAL DEMARKO	
2.1	GENERAL REMARKS:	4
2.2	Test result summery	5
2.3	FINAL ASSESSMENT:	5
3 <u>I</u>	EQUIPMENT UNDER TEST	6
3.1	Photo documentation of the EUT – Please see attachment A	6
3.2	Power supply system utilised	6
3.3	Short description of the equipment under test (EUT)	6
4	TEST ENVIRONMENT	7
4.1	Address of the test laboratory	7
4.2	Environmental conditions	7
4.3	Statement of the measurement uncertainty	7
4.4	Measurement protocol for FCC	8
4.5	Determination of worst case measurement conditions	10
5 _	TEST CONDITIONS AND RESULTS	11
5.1	AC power line conducted emissions	11
5.2	Field strength of fundamental	14
5.3	Out-of-band emission, radiated	16
5.4	EBW	37
5.6	Antenna application	40
6 <u>l</u>	USED TEST EQUIPMENT AND ACCESSORIES	41

Attachment A as seperately supplement

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15, Subpart A - General (September, 2013)

Part 15, Subpart A, Section 15.31 Measurement standards

Part 15, Subpart A, Section 15.33 Frequency range of radiated measurements

Part 15, Subpart A, Section 15.35 Measurement detector functions and bandwidths

FCC Rules and Regulations Part 15, Subpart C - Intentional Radiators (September, 2013)

Part 15, Subpart C, Section 15.203 Antenna requirement

Part 15, Subpart C, Section 15.204 External radio frequency power amplifiers and antenna modifications

Part 15, Subpart C, Section 15.205 Restricted bands of operation

Part 15, Subpart C, Section 15.207 Conducted limits

Part 15, Subpart C, Section 15.209 Radiated emission limits, general requirements

Part 15, Subpart C, Section 15.245 Operation within the bands 902 - 928 MHz, 2435 - 2465 MHz,

5785 - 5815 MHz, 10500 - 10550 MHz and 24075 - 24175 MHz

ANSI C63.4: 2009 Methods of Measurement of Radio-Noise Emissions from Low-

Voltage Electrical and Electronic Equipment in the Range of 9 kHz

to 40 GHz.

ANSI C95.1:2005 IEEE Standard for Safety Levels with respect to Human Exposure

to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

CISPR 16-4-2: 2003 Uncertainty in EMC measurement

CISPR 22: 2005 Information technology equipment

EN 55022: 2006

File No. T38148-00-00HS, page 3 of 41

2 SUMMARY

2.1 GENERAL REMARKS:

The EUT is a field disturbance sensor with frequency emissions in 7 settable ranges the operating band of 24075 MHz to 24175 MHz. The sensor is fully tested and approved according to FCC 15.245 under the FCC ID: W34UMRROA.

As an additional variant the EUT is changed in power supply and interface. This variant provides a LAN interface with PoE. This test report shows the further compliance according the FCC 15.245.

Variants of the EUT

- CAN/RS485 Interface,
- Relay Interface

Antennas

The following integrated antennas are used with the EUT:

- Integrated linear polarised mocro strip patch array antenna.

The antennas cannot be unattached by the user.

Operation frequency and channel plan

The operating frequency is 24075 MHz to 24175 MHz.

Frequency range	Start frequency (GHz)
6	24.081
7	24.0935
8	24.106
9	24.1185
10	24.131
11	24.1435
12	24.156

Note: the marked frequency ranges are determined for testing.

Transmit operating modes

As soon as the equipment is powered on, TX starts operating independent of a possible connected PC. For TX continuous no special test software is needed.

File No. **T38148-00-00HS**, page **4** of **41**

2.2 Test result summery

Operating in the 24075 MHz – 24175 MHz band:

FCC Rule Part	Description	Result
15.203	Antenna requirement	passed
15.204	External radio frequency power amplifiers	passed
15.205(a)	Emissions in restricted bands	passed
15.207(a)	AC power line conducted emissions	passed
15.209(a)	Radiated emission limits; general requirements	passed
15.215(c)	EBW	passed
15.245(b)	Field strength of fundamental	passed
15.245(b)	Out-of-band emission, radiated	passed

2.3 FINAL ASSESSMENT:

Date of receipt of test sample	:	acc. to storage records		
Testing commenced on	:	28 April 2014		
Testing concluded on	:	20 May 2014		
Checked by:			Tested t	py:
Klaus Gegenfurtner				Hermann Smetana

The equipment under test fulfills the EMI requirements cited in clause 1 test standards.

3 EQUIPMENT UNDER TEST

3.1 Photo documentation of the EUT - Please see attachment A

3.2	Power	supply	system	utilised
-----	-------	--------	--------	----------

Power supply voltage : PoE via PoE Injector (48 VDC)

3.3 Short description of the equipment under test (EUT)

The sensor is a 24 GHz Radar for traffic management applications. Based on the object list as a generic data interface, following applications are possible:

- Stop bar detection
- Queue length measurement
- Advance detection (exploiting the long detection range)
- Loop replacement (non-intrusive detection)
- Speed measurement.
- Traffic counting and statistic.
- Incident detection.
- Wrong way detection.

Number of tested samples: 1

 Serial number:
 #0x000247F5

 DSP:
 #0x000247F5

 PEO:
 #0x00000138

 RF:
 #0x00024BDE

EUT operation mode:

						4.1					1111
Ine	a earrinament	under	PS W 1991	onerated	durina	tne r	neasurement	HINGER	the t		COUDITIONS.
111	, caaibiiiciii	unuci	icsi was	obciaca	uuiiiu	ию і	11043416111611	under	uici	Ollowilla	conditions.

- IX continuous			

EUT configuration:

(The CDF filled by the applicant can be viewed at the test laboratory.)

The following peripheral devices and interface cables were connected during the measurements:

- <u>P</u>	oE Injector, 100 – 250 VAC, 50 – 60 Hz	Model:	Sonicwall, GS-6083-01N A02
	^^\		
- <u>L/</u>	AN cable, 1.5 m	Model:	Commercial type
- Si	iemens notebook	Model :	

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

CSA Group Bayern GmbH Ohmstrasse 1-4 94342 STRASSKIRCHEN GERMANY

4.2 Environmental conditions

During the measurement the environm	ental conditions we	re within the listed ranges:
Temperature:	15-35 ° C	
Humidity:	30-60 %	
Atmospheric pressure:	86-106 kPa	

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. It is noted that the expanded measurement uncertainty corresponds to the measurement results from the standard measurement uncertainty multiplied by the coverage factor k = 2. The true value is located in the corresponding interval with a probability of 95 % The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16-4-2 / 11.2003 "Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements" and is documented in the quality system acc. to DIN EN ISO/IEC 17025. For all measurements shown in this report, the measurement uncertainty of the test laboratory, CSA Group Bayern GmbH, is below the measurement uncertainty as defined by CISPR. Therefore, no special measures must be taken into consideration with regard to the limits according to CISPR. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

4.4 Measurement protocol for FCC

4.4.1 General information

4.4.1.1 Justification

The equipment under test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral using the appropriate impedance characteristic or left unterminated. Where appropriate, cables are manually manipulated with respect to each other thus obtaining maximum disturbances from the unit.

4.4.1.2 Test methodology

In compliance with 47 CFR Part 15 Subpart A, Section 15.38 testing for FCC compliance may be achieved by following the procedures set out in ANSI C63.4 and applying the CISPR 22 limits.

4.4.2 Conducted emission

4.4.2.1 Description of measurement

The final level, expressed in $dB_{\mu}V$, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the FCC limit or to the CISPR limit.

To convert between $dB\mu V$ and μV , the following conversions apply:

$$dB\mu V = 20*log(\mu V)$$

 $\mu V = 10*(dB\mu V/20)$

Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection and a Line Impedance Stabilization Network (LISN) with 50 Ω / 50 μ H (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimetres above the floor and is positioned 40 centimetres from the vertical ground plane (wall) of the screen room. If the minimum limit margin appears to be less than 20 dB with a peak mode measurement, the emissions are re-measured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.

4.4.3 Radiated Measurement

The radiated measurements are done in 2 steps

- Exploratory measurements
- Final measurements

4.4.3.1.1 Method of exploratory radiated emission maximization

The maximum radiated emission for a given mode of operation may be found during exploratory testing by using the following step-by-step procedure:

- a) Monitor received signal across the frequency range of interest at a fixed antenna height and EUT azimuth.
- b) If appropriate, manipulate the system cables to produce the highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.
- c) Rotate the EUT 360° to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, go back to the corresponding azimuth position and repeat step b). Otherwise, orient the EUT azimuth to repeat the highest amplitude observation and proceed.
- d) Move the antenna over its fully allowed range of travel to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by

File No. **T38148-00-00HS**, page **8** of **41**

- 1 dB or more, then return to step b) with the antenna fixed at this height. Otherwise, move the antenna to the height that repeats the highest amplitude observation and proceed.
- e) Change the polarization of the antenna and repeat step b) through step d). Compare the resulting suspected highest amplitude signal with that found for the other polarization. Select and note the higher of the two signals. This signal is termed the highest observed signal with respect to the limit for this EUT operational mode.
- f) The effects of various modes of operation shall be examined. One way to do this is to vary the equipment modes as step a) through step g) are being performed.
- g) After completing step a) through step f), record the final EUT arrangement, mode of operation, and cable arrangement to use for the final radiated emission test in 8.3.2.

4.4.3.1.2 Final radiated emission measurements (9 kHz to 1 GHz)

Based on the measurement results from 8.3.1.1, the single EUT, cable and wire arrangement, and mode of operation that produces the emission that has the highest amplitude relative to the limit is selected for the final measurement. The final measurements are then performed on a site meeting the requirements of 5.3 or 5.4, as appropriate. If the EUT is relocated from an exploratory test site to a final test site, the highest emission relative to the limit shall be re-maximized at the final test location before final radiated emissions measurements are performed. However, antenna height and polarization and EUT azimuth are to be varied.

In addition, the full frequency spectrum (for the range to be checked for meeting compliance) shall be investigated. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated by 90° relative to the ground plane to repeat the measurements for both the horizontal and vertical antenna polarizations. During the full frequency spectrum investigation, particular focus should be made on those frequencies found in exploratory testing that were used to find the final test configuration, mode of operation, and arrangement (associated with achieving the least margin with respect to the limit). This full spectrum test constitutes the compliance measurement.

4.4.3.1.3 Final radiated emission measurements (1 GHz to 40 GHz)

The final measurements are performed on a site meeting the requirements of ANSI C63.4, Clause 5.5. For measurements above 1 GHz, use the cable, EUT arrangement, and mode of operation determined in the exploratory testing to produce the emission that has the highest amplitude relative to the limit. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the antenna in the "cone of radiation" from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response. The antenna may have to be higher or lower than the EUT, depending on the size and mounting height of the EUT, but the antenna should be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. If the transmission line for the measurement antenna restricts its range of height and polarization, the steps needed to ensure the correct measurement of the maximum emissions, shall be described in detail in the report of measurements. The data collected shall satisfy the report requirements of ANSI C63.4, Clause 10.

- NOTE 1 Where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- NOTE 2 Use of waveguide and flexible waveguide may be necessary at frequencies above 10 GHz to achieve usable signal-to-noise ratios at required measurement distances. If so, it may be necessary to restrict the height search of the antenna, and special care should be taken to ensure that maximum emissions are correctly measured.
- NOTE 3 Most devices that cause emissions above 10 GHz are physically small compared with the beam widths of typical horn antennas used for EMC measurements. For such EUTs and frequencies, it may be preferable to vary the height and polarization of the EUT instead of the receiving antenna to maximize the measured emissions.

File No. T38148-00-00HS, page 9 of 41

4.5 Determination of worst case measurement conditions

Measurements have been made in all three orthogonal axes and the settings of the EUT were changed to locate at which position and at what setting of the EUT produce the maximum of the emissions. For the further measurement the EUT is set in Y position.

5 TEST CONDITIONS AND RESULTS

5.1 AC power line conducted emissions

For test instruments and accessories used see section 6 Part A 4.

5.1.1 Description of the test location

Test location: AREA4

5.1.2 Photo documentation of the test set-up - Please see attachment A

5.1.3 Applicable standard

According to FCC Part 15, Section 15.207(a):

Except as shown in paragraphs (b) and (c) of this Section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the given limits.

5.1.4 Description of Measurement

The measurements are performed following the procedures set out in ANSI C63.4 described under item 4.4.3. If the minimum limit margin appears to be less than 20 dB with a peak mode measurement, the emissions are remeasured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.

5.1.5 Test result

Frequency range: 0.15 MHz - 30 MHz

Min. limit margin -13.9 dB at 0.318 MHz

Limit according to FCC Part 15, Section 15.207(a):

Frequency of Emission	Conducted limit (dBµV)				
(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency

The requirements are **FULFILLED**.

Remarks: For detailed test result please refer to following test protocols.

File No. **T38148-00-00HS**, page **11** of **41**

5.1.6 Test protocol

Test point L1 Result: passed

Operation mode: TX continuous

Remarks:

Freq	SR	QP	margin	limit	AV	margin	limit	line
MHz		dB(μV)	dB	dB	dB(μV)	dB	dB	
0.155	1	26.2	-39.6	65.8	6.3	-49.4	55.8	Phase 1
0.173	1	23.9	-40.9	64.8	15.9	-39.0	54.8	Phase 1
0.290	1	30.7	-29.9	60.5	29.0	-21.5	50.5	Phase 1
0.318	2	37.3	-22.5	59.8	35.9	-13.9	49.8	Phase 1
0.575	2	21.4	-34.6	56.0	18.1	-28.0	46.0	Phase 1
0.600	2	19.7	-36.3	56.0	12.8	-33.2	46.0	Phase 1
0.690	3	20.9	-35.1	56.0	19.4	-26.6	46.0	Phase 1
0.753	3	21.6	-34.4	56.0	16.0	-30.0	46.0	Phase 1
0.915	3	22.5	-33.5	56.0	13.2	-32.8	46.0	Phase 1
0.924	3	25.5	-30.5	56.0	23.6	-22.4	46.0	Phase 1
2.990	5	22.8	-33.2	56.0	13.4	-32.6	46.0	Phase 1
3.552	5	22.3	-33.7	56.0	14.5	-31.5	46.0	Phase 1
3.998	5	21.6	-34.4	56.0	12.4	-33.6	46.0	Phase 1
6.015	6	21.1	-38.9	60.0	14.5	-35.5	50.0	Phase 1
9.785	7	20.3	-39.7	60.0	12.4	-37.6	50.0	Phase 1
15.999	7	21.1	-38.9	60.0	19.0	-31.0	50.0	Phase 1
21.711	8	4.9	-55.1	60.0	-1.2	-51.2	50.0	Phase 1
24.132	8	6.5	-53.5	60.0	0.2	-49.8	50.0	Phase 1

Test point: N Result: passed

Operation mode: TX continuous

Remarks:

Freq	SR	QP	margin	limit	AV	margin	limit	line
MHz		dB(μV)	dB	dB	dB(μV)	dB	dB	
0.150	9	27.4	-38.7	66.0	18.2	-37.8	56.0	Neutral
0.579	10	21.2	-34.8	56.0	19.5	-26.5	46.0	Neutral
0.605	11	22.9	-33.1	56.0	20.4	-25.6	46.0	Neutral
0.924	11	23.6	-32.4	56.0	21.8	-24.2	46.0	Neutral
0.929	11	23.5	-32.6	56.0	18.0	-28.0	46.0	Neutral
1.214	12	19.6	-36.4	56.0	16.5	-29.5	46.0	Neutral
1.479	12	21.8	-34.2	56.0	13.6	-32.4	46.0	Neutral
1.731	12	22.6	-33.5	56.0	18.2	-27.8	46.0	Neutral
1.740	12	22.8	-33.2	56.0	13.2	-32.8	46.0	Neutral
6.807	14	23.5	-36.6	60.0	14.8	-35.2	50.0	Neutral
7.406	14	23.0	-37.0	60.0	15.1	-34.9	50.0	Neutral
10.113	15	19.2	-40.9	60.0	11.8	-38.2	50.0	Neutral
10.307	15	19.2	-40.8	60.0	11.2	-38.8	50.0	Neutral
24.398	16	8.6	-51.4	60.0	6.0	-44.0	50.0	Neutral

5.2 Field strength of fundamental

For test instruments and accessories used see section 6 Part CPR 3.

5.2.1 Description of the test location

Test location: Anechoic chamber 2

Test distance: 3 m

5.2.2 Applicable standard

According to FCC Part 15C, Section 15.245(a):

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the effective limits.

5.2.3 Photo documentation of the test set-up - Please see attachment A

5.2.4 Description of Measurement

The radiated emission of the fundamental wave from the EUT is measured using a spectrum analyser and appropriate linear polarized antennas. The setup of the EUT and the measurement procedure is in accordance to ANSI C63.4. Item 8.3. The EUT is measured in TX continuous under normal conditions.

Analyser settings:

Peak measurement: RBW: 1 MHz VBW: 3 MHz Detector: Max peak AV measurement: RBW: 1 MHz VBW: 3 MHz Detector: RMS

5.2.5 Test result

Frequency	Level PK	Polarisation	Limit PK	Margin PK
(MHz)	dB(μV/m)		dB(μV/m)	(dB)
24088	115.9	V	148.0	-32.1
24081	86.0	Н	148.0	-62.0
24126	116.7	V	148.0	-31.3
24118	86.0	Н	148.0	-62.0
24156	116.4	V	148.0	-31.6
24158	85.0	Н	148.0	-63.0

Frequency	Level AV	Polarisation	Limit AV	Margin AV
(MHz)	dB(μV/m)		dB(μV/m)	(dB)
24088	115.38	V	128.0	-12.6
24126	116.55	V	128.0	-11.4
24163	116.23	V	128.0	-11.7

Average-Limit according to FCC Part 15C, Section 15.245(b):

Fundamental frequency	Field strength of fundamental		
(MHz)	mV/m dB(μV/m)		
24075 - 24175	2500	128.0	

CSA Group Bayern GmbH File No. **T38148-00-00HS**, page **14** of **41**

Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481440

Peak-Limit according to FCC Part 15C, Section 15.245(b4):
Emission limits shown above are based on measurement instrumentation using an average detector. The provision in §15.35 for limiting peak apply. However the peak field strength shall not exceed the maximum permitted average limit by more than 20 dB.

The requirements are **FULFILLED**.

Remarks:

5.3 Out-of-band emission, radiated

For test instruments and accessories used see section 6 Part SER1, SER 2, SER 3.

5.3.1 Description of the test location

Test location: OATS 1

Test location: Anechoic chamber 2

Test distance: 3 m

5.3.2 Photo documentation of the test set-up - Please see attachment A

5.3.3 Applicable standard

According to FCC Part 15C, Section 15.245 (b):

Emission radiated outside of the specified frequency bands, except harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated limit in FCC Part 15C, Section 15.209, whichever is the lesser attenuation.

5.3.4 Description of Measurement

The radiated emissions from the EUT are measured in the frequency range of 9 kHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. The setup of the EUT and the measurement procedure is in accordance to ANSI C63.4, Item 6 and Item 8.3. In the frequency range above 1 GHz a spectrum analyser is used with appropriate linear polarized antennas. If the emission level in peak mode complies with the average limit testing is stopped and peak values will be reported, otherwise, the emission is measured in average mode again and reported. The EUT is measured in TX continuous mode unmodulated under normal conditions.

Instrument settings:

9 kHz – 150 kHz RBW: 200 Hz 150 kHz - 30 MHz RBW: 9 kHz 30 MHz – 1000 MHz: RBW: 120 kHz 1000 MHz – 100 GHz RBW: 1 MHz

5.3.1 Test result f < 30 MHz

Note: In the frequency range 9 kHz to 30 MHz no emission could be detected. The frequencies mean the noise level. The measurement results from distance 3 m are extrapolated (D factor) to the specified distance.

Frequency	Reading PK	D factor	Level PK	Limit AV	Delta
(MHz)	dB(μV)	dB(μV/m)	dB(μV/m)	dB(μV/m)	(dB)
0.047	52.0	-80.0	-28.0	34.2	-62.2
1.5	51.0	-40.0	11.0	24.1	-13.1
18.2	39.0	-40.0	-1.0	29.5	-30.5

5.3.2 Test result f < 1 GHz

Frequency (MHz)	Reading Vert. (dBµV)	Reading Hor. (dBµV)	Correct. Vert. (dB)	Correct. Hor. (dB)	Level Vert. (dBµV/m)	Level Hor. (dBµV/m)	Limit (dBµV/m)	Dlimit (dB)
31.65	15.6	2.3	13.6	12.3	29.2	14.6	40.0	-10.8
33.38	16.2	-0.7	13.5	12.3	29.7	11.6	40.0	-10.3
128.00	4.0	4.7	12.6	13.2	16.6	17.9	43.5	-25.6
330.00	2.5	2.0	17.2	16.8	19.7	18.8	46.0	-26.3
490.00	-2.5	-2.0	21.5	21.1	19.0	19.1	46.0	-26.9
620.00	-3.3	-3.2	24.9	24.5	21.6	21.3	46.0	-24.4
850.00	-2.8	-2.8	28.9	28.4	26.1	25.6	46.0	-19.9
990.00	-3.3	-3.1	30.3	29.9	27.0	26.8	54.0	-27.0

Note: The frequencies 128 MHz to 990 MHz means the noise level.

Note: For frequencies < 1 GHz the general radiated limits has been applied.

5.3.3 Test result f > 1 GHz

Frequency range 6:

Frequency	Level PK	Level AV	Limit PK	Margin PK	Polarisation	Limit AV	Margin AV
(MHz)	dB(μV/m)	dB(μV/m)	dB(μV/m)	(dB)		dB(μV/m)	(dB)
1145	43.3	-	98.0	-54.7	Н	78.0	-
9817	47.8	-	98.0	-50.2	Н	78.0	-
17616	48.6	1	98.0	-49.4	Н	78.0	-
23895	-	61.9	98.0	-	V	78.0	-16.1
23932	-	62.9	98.0	-	V	78.0	-15.1
23970	-	60.1	98.0	-	V	78.0	-17.9
24231	-	63.52	98.0	-	V	78.0	-14.4
24269	-	61.5	98.0	-	V	78.0	-16.5
24307	-	50.2	98.0	-	V	78.0	-27.8

Note: For frequencies > 24307 MHz the noise level could be measured only.

Frequency range 9:

Frequency	Level PK	Level AV	Limit PK	Margin PK	Polarisation	Limit AV	Margin AV
(MHz)	dB(µV/m)	dB(µV/m)	dB(µV/m)	(dB)	- Clarication	dB(µV/m)	(dB)
1077	43.7	α Β (μν/π)	98.0	-54.3	Н	78.0	(GD)
8395	48.7	_	98.0	-49.3	H	78.0	_
11947	50.1	_	98.0	-47.9	V	78.0	_
17617	48.5		98.0	-49.5	H	78.0	_
23932		63.0	98.0	-49.5	V	78.0	-15.0
	-			-	V		
23969	-	65.4	98.0	-	v	78.0	-12.6
24008	-	61.7	98.0	-	V	78.0	-16.3
24268	-	64.9	98.0	-	V	78.0	-13.1
24275	-	61.5	98.0	-	V	78.0	-16.5
24306	-	61.5	98.0	-	V	78.0	-16.5

Note: For frequencies > 25306 MHz the noise level could be measured only.

Frequency range 12:

Frequency	Level PK	Level AV	Limit PK	Margin PK	Polarisation	Limit AV	Margin AV
(MHz)	dB(μV/m)	dB(μV/m)	dB(μV/m)	(dB)		dB(μV/m)	(dB)
1078	43.1	-	98.0	-54.9	Н	78.0	-
6654	46.9	-	98.0	-51.1	Н	78.0	-
11882	49.7	-	98.0	-48.3	Н	78.0	-
17607	48.5	-	98.0	-49.5	V	78.0	-
23970	-	60.6	98.0	-	V	78.0	-17.4
24008	-	64.5	98.0	-	V	78.0	-13.5
24044	-	60.2	98.0	-	V	78.0	-17.8
24306	-	63.0	98.0	-	V	78.0	-15.0
24312	-	60.7	98.0	-	V	78.0	-17.3
25735	-	53.8	98.0	-	V	78.0	-24.2

Note: For frequencies > 25735 MHz the noise level could be measured only.

Average limit according to FCC Part 15C, Section 15.245(b):

Determination of the limit: Emissions shall be attenuated by at least 50 dB below the level of the fundamental.

Fundamental field strength: 2500 mV/m = 128 dBµV/m

Emission limit: Fundamental field strength -50 dB = $128 \text{ dB}\mu\text{V/m} - 50 \text{ dB}$ = $78 \text{ dB}\mu\text{V/m}$;

The field strength limits are specified in 3 m distance.

The measurement from 40 GHz to 100 GHz is done in a distance of 1 m. Therefore the measurement limit has to be changed from 78 dB μ V/m to 88 dB μ V/m.

General radiated limit according to FCC Part 15C, Section 15.209:

Frequency	15.209 Limits	Measurement
(MHz)	(µV/m)	distance (m)
0.0090.49	2400/f(kHz)	300
0.49 – 1.705	24000/f(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

The limit according FCC Part 15C, Section 15.245 (b) applies, whichever is the lesser attenuation.

5.3.4 Test result Harmonics

The measurement of the harmonics is done in 1 m distance.

Harmonics at 48 GHz:

Frequency range	Frequency	Level PK	Limit PK	Margin PK	Polarisation	Level AV	Limit AV	Margin AV
(MHz)	(MHz)	dB(µV/m)	dB(μV/m)	(dB)		dB(μV/m)	dB(μV/m)	(dB)
FR6	48170.0	67.9	108.0	-40.1	Н	64.1	88.0	-23.9
FR9	48264.0	69.9	108.0	-38.1	Н	68.3	88.0	-19.7
FR12	48327.0	67.5	108.0	-40.5	V	65.8	88.0	-22.2

Note: Due to the comfortable distance to the 3 m limit, the 1 m limit is not applied.

Harmonics at 72 GHz:

Note: this measurement is done with a down converter for frequency range 60 - 90 GHz. The LO-frequency is fixed at 59 GHz. This means the frequency range 60 - 90 GHz is converted to 1 GHz to 31 GHz. That the frequency displayed at spectrum analyser corresponds to the real frequency a frequency offset -1 GHz is set. Now a displayed frequency of 12 GHz corresponds to 72 GHz. All other frequencies may be calculated as follows:

Marker frequency + 60 GHz = Emission frequency;

Frequency range	Emission frequency	Reading level PK	Polarisation	Correction factor	Corrected PK level	Limit PK	Limit AV	Margin PK
(MHz)	(MHz)	dB(μV)		dB(μV/m)	dB(μV/m)	dB(μV/m)	dB(μV/m)	(dB)
FR6	72185.0	35.4	V	19.2	54.6	108.0	88.0	-53.3
FR9	72362.0	36.1	V	19.2	55.3	108.0	88.0	-52.7
FR12	72438.0	36.4	V	19.2	55.6	108.0	88.0	-52.4

Note: Due to the comfortable distance to the 3 m limit, the 1 m limit is not applied.

Harmonics at 96 GHz:

No harmonics could be detected.

Average limit according to FCC Part 15C, Section 15.245(b):

Determination of the limit: Emissions shall be attenuated by at least 50 dB below the level of the fundamental. Harmonic field strength: $25 \text{ mV/m} = 88 \text{ dB}\mu\text{V/m}$

The field strength limits are defined in 3 m distance.

The measurement from 40 GHz to 100 GHz is done in a distance of 1 m. Therefore the measurement limit has to be changed from 88 dB μ V/m to 98 dB μ V/m.

Fundamental frequency	Field strength	of harmonics
(MHz)	mV/m	dB(μV/m)
24075 - 24175	25	88.0

The requirements are **FULFILLED**.

Remarks: The measurement was performed up to 100 GHz. For detailed test result please refer to following

test protocols.

5.3.5 Test protocols out of band emission

Note: The limits displayed in the plots are "general radiated limits" which are more stringent. The limits apply are the limits according FCC 15.245.

5.3.5.1 Frequency range 6

Spurious emissions from 1 to 4 GHz

Spurious emissions from 4 to 12 GHz

Spurious emissions from 12 to 18 GHz

Spurious emissions from 18 to 24.075 GHz

Spurious emissions from 24.075 to 32 GHz

Spurious emissions from 32 to 40 GHz

Rev. No. 3.0, 2014-01-30

Spurious emissions from 40 to 60 GHz

Spurious emissions from 60 to 75 GHz

Spurious emissions from 75 to 100 GHz

5.3.5.2 Frequency range 9

Spurious emissions from 1 to 4 GHz

Spurious emissions from 4 to 12 GHz

Spurious emissions from 12 to 18 GHz

Spurious emissions from 18 to 24.075 GHz

Spurious emissions from 24.175 to 32 GHz

Spurious emissions from 32 to 40 GHz

Spurious emissions from 40 to 60 GHz

Rev. No. 3.0, 2014-01-30

Spurious emissions from 60 to 75 GHz

Spurious emissions from 75 to 100 GHz

5.3.5.3 Frequency range 12

Spurious emissions from 1 to 4 GHz

Spurious emissions from 4 to 12 GHz

Spurious emissions from 12 to 18 GHz

Spurious emissions from 18 to 24.075 GHz

Spurious emissions from 24.075 to 32 GHz

Spurious emissions from 32 to 40 GHz

Rev. No. 3.0, 2014-01-30

Spurious emissions from 40 to 60 GHz

Spurious emissions from 60 to 90 GHz

Spurious emissions from 75 to 100 GHz

5.3.6 Test protocols harmonics

Harmonics 48 GHz:

FR6

FR9

FR12

Harmonics 72 GHz:

FR6

FR9

FR12

5.4 EBW

For test instruments and accessories used see section 6 Part MB.

5.4.1 Description of the test location

Test location: AREA4

5.4.2 Photo documentation of the test set-up - Please see attachment A

5.4.3 Applicable standard

According to FCC Part 15, Section 15.215(c):

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in Section 15.217 through Section 15.257, must be designed to ensure that the 20 dB bandwidth of the emission is contained within the frequency band designated in the rule section under which the equipment is operated.

5.4.4 Description of Measurement

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio of -20 dB. The x-dB-down function of the analyser is used. The measurement is performed with normal modulation in TX continuous mode.

Spectrum analyser settings:

RBW: 1 MHz, VBW: 3 MHz, Span: 15 MHz, Trace mode: max hold, Detector: max peak;

5.4.5 Test result

Centre f	20dB bandwidth	20dB bandwidth	Measured EBW
(MHz)	f ₁	f_2	(MHz)
24084.954	24079.518	24090.390	10.872
24122.645	24117.296	24127.994	10.698
24160.010	24154.493	24165.528	11.034

Operating frequency band	20 dB Bandwidth		
(MHz)		(MHz)	
f _{low} > 24075	f _{low} =	24079.518	
f _{high} < 24175	f _{high} =	24165.528	

Limit according to FCC Part 15C, Section 15.215(c):

If frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

File No. **T38148-00-00HS**, page **37** of **41**

Due to the operation with a small OBW in an operating band of 100 MHz a virtual channelizing of the operating band is assumed. Therefore the stability of the EUT will be shown to the distance to the operating band edges.

Distance to the lower band edge	4.518	MHz
Distance to the lower band edge	41.6	%
Distance to the upper band edge	9.472	$M\!H\!z$
Distance to the upper band edge	85.8	%

The requirements are **FULFILLED**.

Remarks:	For detailed test result please refer to following test protocols.

5.4.6 Test protocols

20 dB bandwidth

5.6 Antenna application

5.6.1 Applicable standard

According to FCC Part 15C, Section 15.203(a):

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.

5.6.2 **Result**

The EUT use an integrated PCB antenna. No other antenna than that furnished by the responsible party or external power amplifier can be applied by a customer.

The antenna of the EUT meets the requirement of FCC Part 15C, Section 15.203 and 15.204.

6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used are calibrated and verified regularly. The calibration history is available on request.

Test ID A 4	Model Type ESHS 30	Equipment No. 02-02/03-05-002	Next Calib. 16/07/2014	Last Calib. 16/07/2013	Next Verif.	Last Verif.
	ESH 2 - Z 5 EMV D 30000/PAS N-4000-BNC N-1500-N	02-02/20-05-004 02-02/30-05-006 02-02/50-05-138 02-02/50-05-140	18/10/2014	18/10/2013	28/08/2014	28/02/2014
	ESH 3 - Z 2	02-02/50-05-155	10/10/2014	10/04/2014		
CPR 3	FSP 40	02-02/11-11-001 02-02/30-09-002	30/09/2014	30/09/2013		
	R1 _ 18 - 40 GHz	02-02/30-09-002	08/01/2015	08/01/2014		
MB	FSP 40	02-02/11-11-001	30/09/2014	30/09/2013		
	R1 _ 18 - 40 GHz	02-02/30-09-002	08/01/2015	08/01/2014		
SER 1	FMZB 1516	01-02/24-01-018	13/02/2015	13/02/2014		
	ESR 7	02-02/03-13-001	21/05/2014	21/05/2013		
	S10162-B	02-02/50-05-031				
	KK-EF393-21N-16	02-02/50-05-033				
	NW-2000-NB	02-02/50-05-113				
SER 2	ESVS 30	02-02/03-05-006	28/06/2014	28/06/2013		
	VULB 9168	02-02/24-05-005	08/04/2015	08/04/2014	08/10/2014	08/04/2014
	S10162-B	02-02/50-05-031				
	NW-2000-NB	02-02/50-05-113				
	KK-EF393/U-16N-21N20 m	02-02/50-12-018				
SER 3	FSP 40	02-02/11-11-001	30/09/2014	30/09/2013		
	FS-Z60	02-02/11-14-001	26/03/2015	26/03/2014	26/09/2014	26/03/2014
	FZ-Z110	02-02/11-14-002	12/05/2015	12/05/2014	12/11/2014	12/05/2014
	JS4-18004000-30-5A	02-02/17-05-017				
	AFS5-12001800-18-10P-6	02-02/17-06-002				
	AFS4-01000400-10-10P-4	02-02/17-13-002				
	AMF-4F-04001200-15-10P	02-02/17-13-003	05/05/2015	07/05/2014		
	3117	02-02/24-05-009	07/05/2015	07/05/2014		
	BBHA 9170	02-02/24-05-014				
	QWH-UPRR00/WR-19/40-60 QWH-EPRR00/WR-12/60-90					
	QWH-WPRR00/WR-10/75-11					
	Sucoflex N-1600-SMA	02-02/24-14-000				
	Sucoflex N-2000-SMA	02-02/50-05-075				
	RE-15; GE-590	02-02/50-07-017				
	KMS102-0.2 m	02-02/50-11-020				
	SF104/11N/11N/1500MM	02-02/50-13-015				