Power Electronics

EE312
ODL WEEK 3 LECTURE

Contents for this lecture from the course plan for ODL

ODL Week 3
Multilevel Inverters:

Concept of multi-level inverters – Cascaded multi-level inverters

► Topics actually covered in this lecture presentation and division per Question Answer session

Session No.	Content of the Lecture presentation which students should have covered and can discuss in the Q/A session
1	Three phase inverters – Bridge circuit and sinusoidal PWM
2	Multi-level inverters – Inverters with independent DC sources
3	Equalizing source power with pattern swapping. Diode Clamped multi-level inverter

► Note:

The materials in this presentation are only for the use of students enrolled in this course in the specific campus; these materials are for purposes associated with this course and may not be further disseminated or retained after expiry of the course.

THREE-PHASE INVERTERS

Power Electronics Muhammad H. Rashid

Three-phase bridge inverter

Three phase bridge Rectifier

180-Degree Conduction

Switch States for Three-Phase Voltage-Source Inverter

State	State No.	Switch States	v_{ab}	v_{bc}	v_{ca}
S_1 , S_2 , and S_6 are on and S_4 , S_5 , and S_3 are off	1	100	V_S	0	$-V_S$
S_2 , S_3 , and S_1 are on and S_5 , S_6 , and S_4 are off	2	110	0	V_S	$-V_S$
S_3 , S_4 , and S_2 are on and S_6 , S_1 , and S_5 are off	3	010	$-V_S$	V_S	0
S_4 , S_5 , and S_3 are on and S_1 , S_2 , and S_6 are off	4	011	$-V_S$	0	$V_{\mathcal{S}}$
S_5 , S_6 , and S_4 are on and S_2 , S_3 , and S_1 are off	5	001	0	$-V_S$	$V_{\mathcal{S}}$
S_6 , S_1 , and S_5 are on and S_3 , S_4 , and S_2 are off	6	101	V_S	$-V_S$	0
S_1 , S_3 , and S_5 are on and S_4 , S_6 , and S_2 are off	7	111	0	0	0
S_4 , S_6 , and S_2 are on and S_1 , S_3 , and S_5 are off	8	000	0	0	0

Sinusoidal PWM for 3 Phase bridge inverter

FIGURE 6.20

Sinusoidal pulse-width modulation for three-phase inverter.

For comparison with what you have studied in single phase PWM

3 phase SPWM

Figure 8-22 Three-phase PWM waveforms and harmonic spectrum.

3 phase SPWM – $V_{LL1-rms} =$

$$(\hat{V}_{AN})_1 = m_a \frac{V_d}{2}$$

$$V_{LL_1}$$
(line-line, rms) = $\frac{\sqrt{3}}{\sqrt{2}} (\hat{V}_{AN})_1$

$$= \frac{\sqrt{3}}{2\sqrt{2}} m_a V_d$$

$$= 0.612 m_a V_d$$

Actual amplitude of sine wave will depend upon ma – For ma = 1,

- +ve peak will reach Vd, In other words,
- +ve peak will reach Vd/2 when measured from its own horizontal axis (which is not shown in fig)

Daniel W. Hart

8.9 MULTILEVEL INVERTERS

Multilevel Converters with Independent DC Sources

Figure 8-9 An inverter with two dc sources, each with an H bridge implemented with IGBTs.

Figure 8-1 (a) Full-bridge converter; (b) S_1 and S_2 closed; (c) S_3 and S_4 closed; (d) S_1 and S_3 closed; (e) S_2 and S_4 closed.

Fourier series for output voltages of inverter waveforms.

The Fourier series for a periodic function $v_o(\omega t)$ can be expressed as

$$v_o(\omega t) = a_o + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$

For an odd quarter-wave symmetry waveform,

$$a_{0} = 0$$
 $a_{n} = 0$

and

$$b_n = \begin{cases} \frac{4}{\pi} \int_0^{\frac{\pi}{2}} v_o \sin(n\omega t) d(\omega t) & \text{for odd } n \\ 0 & \text{for even } n \end{cases}$$

Therefore, $v_o(\omega t)$ can be written as

$$v_o(\omega t) = \sum_{n=odd}^{\infty} b_n \sin(n\omega t)$$

Square-wave

$$b_n = \frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} v_o \sin(n\omega t) d(\omega t)$$

$$= \frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} V_{dc} \sin(n\omega t) d(\omega t)$$

$$= \frac{4V_{dc}}{n\pi} \left[-\cos(n\omega t) \right]_{0}^{\frac{\pi}{2}}$$

$$= \frac{4V_{dc}}{n\pi}$$

Quasi square-wave

Audio correction -These are not on time and off time, These are +ve and -ve half cycles

Figure 8-9 An inverter with two dc sources, each with an H bridge implemented with IGBTs.

 $2V_{\rm dc}$

Figure 8-10 Voltage output of each of the H bridges and the total voltage for the two-source multilevel inverter of Fig. 8-9.

$$b_n = \frac{4}{\pi} \int_{a}^{\frac{\pi}{2}} v_o \sin(n\omega t) d(\omega t) \qquad v_o(t) = \frac{a_o}{2} + \sum_{n=1,2,\dots}^{\infty} (a_n \cos n\omega t + b_n \sin n\omega t)$$

$$= \frac{4}{\pi} \int_{\alpha}^{\frac{\pi}{2}} V_{dc} \sin(n\omega t) d(\omega t)$$

$$= \frac{4V_{dc}}{n\pi} \left[-\cos(n\omega t) \right]_{\alpha}^{\frac{\pi}{2}}$$

$$= \frac{4V_{dc}}{n\pi} \cos(n\alpha t)$$

$$b_n = \frac{1}{\pi} \int_{0}^{2\pi} v_o(\omega t) \cos n\omega t \, d(\omega t)$$

$$b_n = \frac{1}{\pi} \int_{0}^{2\pi} v_o(\omega t) \sin n\omega t \, d(\omega t)$$

$$v_o(t) = \frac{4V_{dc}}{\pi} \sum_{n=1,3,5,7,...}^{\infty} \left[\cos(n\alpha_1) + \cos(n\alpha_2) \right] \frac{\sin(n\omega_0 t)}{n}$$
 (8-23)

$$V_n = \frac{4V_{\rm dc}}{n\pi} \left[\cos(n\alpha_1) + \cos(n\alpha_2)\right]$$
 (8-24)

Modulation Index

$$M_i = \frac{V_1}{2(4V_{dc}/\pi)} = \frac{\cos\alpha_1 + \cos\alpha_2}{2}$$
 (8-25)

Harmonic Elimination

$$\cos(m\alpha_1) + \cos(m\alpha_2) = 0 \tag{8-26}$$

$$\cos(\alpha_1) + \cos(\alpha_2) = 2M_i \tag{8-27}$$

$$V_n = \frac{4V_{dc}}{n\pi} [\cos(n\alpha_1) + \cos(n\alpha_2)]$$
 (8-24)

EXAMPLE 8-6

A Two-Source Multilevel Inverter

For the two-source multilevel inverter of Fig. 8-9 with $V_{\rm dc} = 100$ V: (a) Determine the Fourier coefficients through n = 9 and the modulation index for $\alpha_1 = 20^{\circ}$ and $\alpha_2 = 40^{\circ}$. (b) Determine α_1 and α_2 such that the third harmonic (n = 3) is eliminated and $M_i = 0.8$.

Solution

Using Eq. 8-24 to evaluate the Fourier coefficients,

$$V_n = \frac{4V_{\text{dc}}}{n\pi} \left[\cos(n\alpha_1) + \cos(n\alpha_2) \right] = \frac{4(100)}{n\pi} \left[\cos(n20^\circ) + \cos(n40^\circ) \right]$$

resulting in $V_1 = 217$, $V_3 = 0$, $V_5 = -28.4$, $V_7 = -10.8$, and $V_9 = 0$. Note that the third and ninth harmonics are eliminated. The even harmonics are not present.

The modulation index M_i is evaluated from Eq. (8-25).

$$M_i = \frac{\cos \alpha_1 + \cos \alpha_2}{2} = \frac{\cos 20^\circ + \cos 40^\circ}{2} = 0.853$$

The amplitude of the fundamental frequency voltage is therefore 85.3 percent of that of a square wave of ± 200 V.

(b) To achieve simultaneous elimination of the third harmonic and a modulation index of $M_i = 0.8$ requires the solution to the equations

$$\cos(3\alpha_1) + \cos(3\alpha_2) = 0$$

and

$$\cos(\alpha_1) + \cos(\alpha_2) = 2M_i = 1.6$$

Using an iterative method, $\alpha_1 = 7.6^{\circ}$ and $\alpha_2 = 52.4^{\circ}$.

Figure 8-9 An inverter with two dc sources, each with an H bridge implemented with IGBTs.

$$V_n = \frac{4V_{\rm dc}}{n\pi} \left[\cos(n\alpha_1) + \cos(n\alpha_2)\right]$$
 (8-24)

$$M_i = \frac{V_1}{2(4V_{\rm dc}/\pi)} = \frac{\cos\alpha_1 + \cos\alpha_2}{2}$$
 (8-25)

$$\cos(m\alpha_1) + \cos(m\alpha_2) = 0 \tag{8-26}$$

$$\cos(\alpha_1) + \cos(\alpha_2) = 2M_i \tag{8-27}$$

Extending to Multiple DC sources

With k sources – 2k+1 levels may be achieved.

$$v_o(t) = \frac{4V_{dc}}{\pi} \sum_{n=1,3,5,7,...}^{\infty} \left[\cos(n\alpha_1) + \cos(n\alpha_2) + ... + \cos(n\alpha_k) \right] \frac{\sin(n\omega_0 t)}{n}$$
(8-28)

$$V_n = \frac{4V_{dc}}{n\pi} \left[\cos(n\alpha_1) + \cos(n\alpha_2) + \dots + \cos(n\alpha_k) \right]$$

for $n = 1, 3, 5, 7, \dots$ (8-29)

$$M_i = \frac{V_1}{4kV_{\rm dc}/\pi} = \frac{\cos(\alpha_1) + \cos(\alpha_2) + \dots + \cos(\alpha_k)}{k}$$
 (8-30)

$$\cos(m\alpha_1) + \cos(m\alpha_2) + \dots + \cos(m\alpha_k) = 0$$
 (8-31)

EXAMPLE

A Five-Source Multilevel Inverter

Determine the delay angles required for a five-source cascade multilevel converter that will eliminate harmonics 5, 7, 11, and 13 and will have a modulation index $M_i = 0.8$.

■ Solution

The delay angles must satisfy these simultaneous equations:

$$\cos(5\alpha_1) + \cos(5\alpha_2) + \cos(5\alpha_3) + \cos(5\alpha_4) + \cos(5\alpha_5) = 0$$

$$\cos(7\alpha_1) + \cos(7\alpha_2) + \cos(7\alpha_3) + \cos(7\alpha_4) + \cos(7\alpha_5) = 0$$

$$\cos(11\alpha_1) + \cos(11\alpha_2) + \cos(11\alpha_3) + \cos(11\alpha_4) + \cos(11\alpha_5) = 0$$

$$\cos(13\alpha_1) + \cos(13\alpha_2) + \cos(13\alpha_3) + \cos(13\alpha_4) + \cos(13\alpha_5) = 0$$

$$\cos(\alpha_1) + \cos(\alpha_2) + \cos(\alpha_3) + \cos(\alpha_4) + \cos(\alpha_5) = 5M_i = 5(0.8) = 4$$

An iteration method such as the Newton-Raphson method must be used to solve these equations. The result is $\alpha_1 = 6.57^{\circ}$, $\alpha_2 = 18.94^{\circ}$, $\alpha_3 = 27.18^{\circ}$, $\alpha_4 = 45.14^{\circ}$, and $\alpha_5 = 62.24^{\circ}$. See the references in the Bibliography for information on the technique.

$$M_i = \frac{V_1}{4kV_{\rm dc}/\pi} = \frac{\cos(\alpha_1) + \cos(\alpha_2) + \dots + \cos(\alpha_k)}{k}$$
 (8-30)

$$\cos(m\alpha_1) + \cos(m\alpha_2) + \dots + \cos(m\alpha_k) = 0$$
 (8-31)

Equalizing Average Source Power with Pattern Swapping

Figure 8-9 An inverter with two dc sources, each with an H bridge implemented with IGBTs.

Figure 8-10 Voltage output of each of the H bridges and the total voltage for the two-source multilevel inverter of Fig. 8-9.

Figure 8-13 Pattern swapping to equalize average power in each source for the two-source inverter of Fig. 8-9.

Figure 8-11 A five-source cascade multilevel converter.

Figure 8-14 Pattern swapping to equalize average source power for the five-source multilevel inverter of Fig. 8-11.

Diode-Clamped Multilevel Inverters

Figure 8-15 (a) A diode-clamped multilevel inverter implemented with IGBTs. (b) Analysis for one-half of the circuit for $v_1 = V_{de}$, (c) for $v_1 = 0$, and (d) for $v_1 = \frac{1}{2}V_{de}$.

$$v_o \in \left\{ V_{dc}, \frac{1}{2} V_{dc}, 0, -\frac{1}{2} V_{dc}, -V_{dc} \right\}$$
 (8-32)

Figure 8-16 A diode-clamped multilevel inverter that produces four voltage levels on each side of the bridge and seven output voltage levels.

$$v_o \in \left\{ V_{dc}, \frac{2}{3} V_{dc}, \frac{1}{3} V_{dc}, 0, -\frac{1}{3} V_{dc}, -\frac{2}{3} V_{dc}, -V_{dc} \right\}$$
 (8-33)

With k capacitors – 2k+1 levels may be achieved.

Figure 8-16 A diode-clamped multilevel inverter that produces four voltage levels on each side of the bridge and seven output voltage levels.

$$v_o \in \left\{ V_{dc}, \frac{2}{3} V_{dc}, \frac{1}{3} V_{dc}, 0, -\frac{1}{3} V_{dc}, -\frac{2}{3} V_{dc}, -V_{dc} \right\}$$
 (8-33)

With k capacitors – 2k+1 levels may be achieved.

