QCM n° 8

Un peu de calcul.

Échauffement n°1 Déterminer les limites suivantes (écrire PAS DE LIMITE le cas échéant).

$$\left(\frac{\ln x}{x}\right)^{\frac{1}{x}} \tag{1}$$

$$\cos\left(\frac{e^x - e^{x+1}}{2^x - x^2}\right) \xrightarrow[x \to +\infty]{} (2)$$

$$x. \left| \frac{1}{x} \right| \qquad \qquad \xrightarrow[x \to +\infty]{} \tag{3}$$

QCM - cocher une case si la phrase qui suit est correcte.

Question n°1 Laquelle des parties suivantes est un sous-groupe de $(\mathbb{Z}, +)$?

 $\square \ \{-1,0,1\} \qquad \qquad \square \ \mathbb{N}$

 \square l'ensemble des nombres pairs \square l'ensemble des nombres impairs

Question n°2 — Lequel des ensembles suivants n'est pas un sous-corps de $\mathbb C$?

 \square \mathbb{C} \square \mathbb{Q} \square \mathbb{R} \square $i\mathbb{R} \cup \mathbb{R}$

Question n°3 Parmi les applications suivantes, laquelle n'est pas un morphisme du groupe multiplicatif \mathbb{R}_+^* dans lui-même ?

Question n°4 Soit f un morphisme d'un groupe G dans un groupe H. Laquelle des propriétés suivantes implique que f est injectif ?

 $\square \ x = e_G \Rightarrow f(x) = e_H$

 $\Box f(x) = e_H \Rightarrow x = e_G$

 $\square \ x = y \Longrightarrow f(x) = f(y)$

 $\square \quad y \in H \Longrightarrow \exists x \in G, y = f(x)$

Si x et y sont deux éléments d'un anneau commutatif tels que $x^2 = y^2$, alors Question n°5 $\square |x| = |y|$ $\square \ x = y$ $\Box x = \pm y$ □ on ne peut rien dire en général Soit G un groupe dont la loi est notée multiplicativement et a un élément de G. Question n°6 Laquelle des applications suivantes est toujours un morphisme de groupes de G dans G? $\Box f_3: x \mapsto axa$ $\Box f_1: x \mapsto ax$ $\Box f_2: x \mapsto axa^{-1}$ $\Box f_4: x \mapsto x^{-1}$ Question n°7 \square Toute suite monotone a une limite. ☐ Toute fonction monotone a une limite en tout point. ☐ Toute fonction monotone a une limite à droite en tout point. □ Toute fonction décroissante et minorée a une limite à droite finie en tout point. Question n°8 Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$. Soit $l, M \in \mathbb{R}$ et $a \in \overline{I}$. \square Si une suite converge vers l et l < M, alors $u_n < M$. \square Si f tend vers l en a et l < M, alors on a f < M. \square Si f tend vers l en a et l < M, alors au voisinage de a on a f < M. \square Si f tend vers l en a et au voisinage de a on a f < M, alors l < M. Question n°9 Soit f une fonction de \mathbb{R} dans \mathbb{R} , A l'assertion « f(x) tend vers 0 quand x tend vers $+\infty$ » et B l'assertion «la suite f(n) converge vers 0 ». Alors \square A implique B \square A et B sont équivalentes \square B implique A \square il n'y a pas d'implication entre A et B Soit $f: \mathbb{R} \to \mathbb{R}$. On suppose que $\frac{f(x)}{x}$ tend vers 1 quand x tend vers $+\infty$. Alors Question n°10 sur un voisinage de $+\infty$ $\Box f(x) \geqslant \frac{x}{2}$ $\Box f(x) \geqslant 2x$ $\Box f(x) = x$ $\Box f(x) \geqslant x$