Apellidos, Nombre:

Grupo:

## Problema 1

Un depósito A de grandes dimensiones alimenta una línea constituida por dos tuberías 1 (longitud  $L_1$ =10 m, diámetro interior  $d_1$ =100 mm y rugosidad  $\epsilon_1$ =0,15 mm) y 2 ( $L_2$ =25 m y  $d_2$ =200 mm). Hay dispuestas una bomba B y una válvula V. El fluido de trabajo es agua (1000 kg/m³ y 10<sup>-6</sup> m²/s). Tomar g=9,81 m/s².



## Calcular:

- a) La altura h<sub>1</sub> en el depósito A para que la fuerza hidrostática debida a la acción del agua sobre la base cuadrada de 10x10 m sea de 10<sup>7</sup> N (Sol. 10.194 m).
- b) Caudal que circula sabiendo que el módulo de la componente horizontal de la fuerza total que se ejerce sobre el fluido contenido en el volumen de control E es de 150 N (Sol. 0.0382 m³/s).
- c) Potencia mecánica absorbida por la bomba si su rendimiento total es del 86%. Las tomas presión del piezómetro diferencial están justo en la entrada y la salida de la bomba (Sol. 1306 W).
- d) Coeficiente de pérdida de carga de la válvula V si el resto de pérdidas de carga localizadas (o secundarias) son nulas y teniendo en cuenta, además, que las pérdidas de carga por fricción (o primarias) sólo son significativas en el tramo 1 (Sol. 14.492).
- e) Altura estacionaria que alcanzará el fluido en el depósito A', sabiendo que tiene practicado un orificio de 0,004 m² en el fondo del mismo, por el que se descarga el fluido sin pérdida de carga alguna (Sol. 4.642 m).