2. Digite na janela de comando os itens em negrito e preencha a tabela.

Constante	Descrição	Valor
pi	π	3.1416
i ou j	Raiz imaginária	0.0000 + 1.0000i
eps	Precisão numérica relativa	2.2204e-16
realmin	Menor número real	2.2251e-308
realmax	Maior númeto real	1.7977e+308
Inf	Infinito. Exemplo: 1/0	_
NaN	Not a number (não número). Exemplo: 0/0	_

4. Os vetores e matrizes são definidos da seguinte forma: Os valores numéricos devem ser definidos entre [] Valores de colunas são delimitados por ' ou , Linhas são delimitadas por ;

Com essas informações, crie:

a. Um escalar de valor qualquer na variável x1.

$$x1 = 10$$

b. Um vetor linha com quaisquer cinco valores na variável vet1.

$$vet1 = [1, 2, 3, 4, 5]$$

c. Um vetor coluna com quaisquer cinco valores na variável vet2.

$$vet2 = [6; 7; 8; 9; 10]$$

d. Uma matriz 3x3 com quaisquer valores na variável mat1.

```
mat1 = [1,2,3;4,5,6;7,8,9]
```

e. Uma matriz 4x2 com quaisquer valores na variável Mat1.

$$Mat1 = [1,2;3,4;5,6;7,8]$$

Observe as informações sobre as variáveis no Workspace.

6. Crie as matrizes 2x2 abaixo nas variáveis x e y, e utilize os operadores da tabela 3 para completá-la.

$$x = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 e $y = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$

Operador	Descrição	Resposta (ans =)		
+	Soma	6 8 10 12		
-	Subtração	-4 -4 -4 -4		
*	Multiplicação matricial	19 22 43 50		
.*	Multiplicação escalar	5 12 21 32		
I	Divisão matricial (equivale a x * y^-1)	3.0000 -2.0000 2.0000 -1.0000		
.J	Divisão escalar (x./y)	0.2000 0.3333 0.4286 0.5000		
\	Divisão "esquerda" (equivale a x^-1 * y)	-3 -4 4 5		
۸	Potência (x^3 equivale a x*x*x)	37 54 81 118		
.^	Potência escalar (xij^3)	1 8 27 64		
4	Transposta	1 3 2 4		

7. Defina:

$$a = 0.48$$
 e $b = \begin{pmatrix} 2 & 3 \\ 5 & -8 \end{pmatrix}$

Obtenha:

a. O valor do seno de a.

ans =

0.4618

b. O valor do cos de a.

ans =

0.8870

c. O valor da raiz quadrada de a.

ans =

0.6928

d. O valor do determinante de b.

ans =

-31

e. A matriz inversa de b.

$$>> invb = b^{-1}$$

invb =

0.2581 0.0968

0.1613 -0.0645

ou:

>> invb = inv(b)

invb =

0.2581 0.0968

0.1613 -0.0645

8. Definimos vetores sequenciais da seguinte forma:

ValorInicial: incremento: ValorFinal

a. Criar v1 de 0 a 10, com incremento 2;

$$v3 = 10:-3:30;$$

b. Criar v2 de 30 a 10, com incremento -3;

$$v2 = 30:-3:10;$$

c. Criar v3 de 10 a 30, com incremento 3;

$$v3 = 10:-3:30;$$

Obs: Para saber as dimensões do vetor obtido, utilize a função size que retorna dois parâmetros (número de linhas e número de colunas).

9. Podemos usar a função plot para gerar gráficos.

Gerar o gráfico de: f(x) = seno(x), 0 < x < 2*pi (com incremento de 0.1)

```
x = 0:0.1:2*pi;
f = sin(x);
```

plot(x,f);

grid on;

10. Crie a matriz abaixo e complete a tabela 4 com o resultado obtido da operação realizada.

$$m = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{pmatrix}$$

Operação	Resposta (ans =)	
m(2,4)	9	
m(11)	9	
n = m(2,2,4)	n =	
	7 8 9	
o = m(:,3)	o =	
	3 8 13	
p = m(1,:)	p =	
	1 2 3 4 5	
q = m(3,3:end)	q =	

	13	14	15	
r = m([1 13; 3 15])	r =			
	1 11	5 15		