Listing of Claims

1-38. Canceled

39. (Currently amended) by formula II:

A collection of compounds all of which are represented

wherein:

A is O, S, NH, or a single bond;

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3;

 $R_{6},\,R_{7},$ and R_{9} are independently selected from H, R, OH, OR, halo, nitro, amino, Me $_{3}Sn;$

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R;

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1; and

n is a positive integer from 1 to 16.

- 40. (Currently amended) A collection of compounds according to claim 39 wherein R and HY are independently selected from lower alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms, or an aryl group[[,]] of up to 12 carbon atoms, optionally substituted by one or more halo, hydroxy, amino, or nitro groups.
- 41. (Previously presented) A collection of compounds according to claim 39, wherein R and HY are independently selected from lower alkyl groups having 1 to 10 carbon atoms optionally substituted by one or more halo, hydroxy, amino, or nitro groups.
- 42. (Previously presented) A collection of compounds according to claim 39, wherein R or HY are independently selected from unsubstituted straight or branched chain alkyl groups, having 1 to 10 carbon atoms.
- 43. (Previously presented) A collection of compounds according to claim 39 wherein R₇ is an electron donating group.
- 44. (Previously presented) A collection of compounds according to claim 39 wherein R_6 and R_9 are H.
- 45. (Previously presented) A collection of compounds according to claim 39, wherein R_2 and R_3 of are H.
- 46. (Previously presented) A collection of compounds according to claim 45, wherein R₇ is an alkoxy group.
- 47. (Previously presented) A collection of compounds according to claim 39 wherein there is no double bond between C2 and C3.
- 48. (Previously presented) A collection of compounds according to claim 39, wherein -Y-A- is an alkoxy chain.
- 49. (Previously presented) A collection of compounds according to claim 39, wherein X' is either CO or NH.

- 50. Canceled.
- 51. (Currently amended) A collection of compounds all of which are represented by formula VIII:

$$\begin{array}{c|c}
R_2 \\
\hline
R_3 \\
\hline
R_7 \\
R_7 \\
\hline
R_7 \\
R_7 \\
\hline
R_7 \\
R_7$$

$$R_9$$
 R_7
 R_7

A is O, S, NH, or a single bond;

R₂ and R₃ are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3;

 R_6 , R_7 , and R_9 are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R;

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

n is a positive integer from 1 to 16;

m is a positive integer from 1 to 16;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is

greater than 1;

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X'; and

p is a positive integer from 1 to 16, where if p is greater than 1, for each repeating unit the meaning of X', Y, A, R_2 , R_3 , R_6 , R_7 , R_9 , T, T', T" and values of n and m are independently selected.

52. (Currently amended) A collection of compounds all of which are represented by formula XII:

$$R_{g}$$
 R_{g}
 R_{g}

$$R_{9} \longrightarrow R_{6}$$

$$R_{7} \longrightarrow R_{7}$$

$$R_{7} \longrightarrow R_{7}$$

$$R_{7} \longrightarrow R_{7}$$

$$R_{7} \longrightarrow R_{8}$$

A is O, S, NH, or a single bond;

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3;

 R_6 , R_7 , and R_9 are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R;

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

n is a positive integer from 1 to 16;

m is a positive integer from 1 to 16;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1;

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X'; and

p is a positive integer from 1 to 16, where if p is greater than 1, for each repeating unit the meaning of X', Y, A, R_2 , R_3 , R_6 , R_7 , R_9

X", Y', A', R'₇, R'₂, R'₃, R'₆, R'₉ are selected from the same possibilities as X', Y, A, R₇, R₂, R₃, R₆, and R₉ respectively.

53. (Currently amended) A collection of compounds all of which are represented by formula XVI:

$$\begin{array}{c|c}
 & H \\
\hline
 & (T')_{m} & T'' & (T)_{n-p} \\
\hline
 & R_{7} & R_{9} \\
\hline
 & R_{7} & C_{2} \\
\hline
 & R_{2} & R_{2}
\end{array}$$
(XVI)

wherein:

A is O, S, NH, or a single bond;

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3;

 R_6 , R_7 , and R_9 are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R;

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

n is a positive integer from 1 to 16;

m is a positive integer from 1 to 16;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1;

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X'; and

p is a positive integer from 1 to 16, where if p is greater than 1, for each repeating unit the meaning of X', Y, A, R₂, R₃, R₆, R₇, R₉, T, T', T" and values of n and m are independently selected; and

T" and q are selected from the same possibilities as T and n respectively, and where if p is greater than 1, the meanings of T, T', T", T" and values of n, m and q may be independently selected.

54. (Currently amended) A collection of compounds all of which are represented by formula III:

$$\begin{array}{c|c}
 & R_9 \\
\hline
 & R_7
\end{array}$$

$$\begin{array}{c|c}
 & R_9 \\
\hline
 & R_7
\end{array}$$

$$\begin{array}{c|c}
 & C2 \\
\hline
 & R_3
\end{array}$$

$$\begin{array}{c|c}
 & C2 \\
\hline
 & R_3
\end{array}$$

$$\begin{array}{c|c}
 & R_2
\end{array}$$

A is O, S, NH, or a single bond;

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3;

 R_6 , R_7 , and R_9 are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R;

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

n is a positive integer from 1 to 16;

L is a linking group, or a single bond; and

• is a solid support.

55. (Currently amended) A collection of compounds all of which are represented by formula VI:

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

$$R_9$$
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7

A is O, S, NH, or a single bond;

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3;

 R_6 , R_7 , and R_9 are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R;

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

• is a solid support;

n and m are positive integers from 1 to 16, or one of them may be zero;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1;

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X'; and

p is a positive integer from 1 to 16, where if p is greater than 1, for each repeating unit, the meaning of X', Y, A, R_2 , R_3 , R_6 , R_7 , R_9 , T, T', T" and the values of n and m are independently selected.

56. (Currently amended) A collection of compounds all of which are represented by formula X:

$$R_{9}$$

$$R_{9}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

$$R_{8}$$

$$R_{9}$$

$$R_{9}$$

$$R_{9}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{3}$$

$$R_{3}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{6}$$

$$R_{7}$$

$$R_{8}$$

$$R_{8}$$

$$R_{8}$$

$$R_{8}$$

$$R_{8}$$

$$R_{9} \longrightarrow R_{6}$$

$$R_{7} \longrightarrow R_{7}$$

$$R_{7} \longrightarrow R_{7}$$

$$R_{7} \longrightarrow R_{7}$$

$$R_{7} \longrightarrow R_{7}$$

$$R_{7} \longrightarrow R_{8}$$

$$R_{7} \longrightarrow R_{8}$$

$$R_{8} \longrightarrow R_{8}$$

A is O, S, NH, or a single bond;

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3;

 R_6 , R_7 , and R_9 are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R;

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

• is a solid support;

n and m are positive integers from 1 to 16, or one of them may be zero;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1;

T" is an amino acid combinatorial unit which provides a site for the attachment of X';

p is a positive integer from 1-to 16, where if p is greater than 1, for each repeating unit, the meaning of X', Y, A, R_2 , R_3 , R_6 , R_7 , R_9 , T, T', T" and the values of n and m are independently selected; and

X", Y', A', R'₂, R'₃, R'₆, R'₇ and R'₉ are selected from the same possibilities as X', Y, A, R₂, R₃, R₆, R₇ and R_{9.}

57. (Currently amended) A collection of compounds all of which are represented by formula XIV:

$$\begin{array}{c|c}
 & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & & & & \\
\hline$$

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

wherein:

A is O, S, NH, or a single bond;

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3:

 R_6 , R_7 , and R_9 are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R;

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

L is a linking group, or a single bond;

• is a solid support;

n and m are positive integers from 1 to 16, or one of them may be zero:

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1;

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X';

p is a positive integer from 1 to 16, where if p is greater than 1, for each repeating unit, the meaning of X', Y, A, R_2 , R_3 , R_6 , R_7 , R_9 , T, T', T" and the values of n and m are independently selected; and

T" and q are selected from the same possibilities as T and n respectively, and where if p is greater than 1, for each repeating unit the meaning of T, T', T", T" and the values of n, m and q may be independently selected.

58. (Currently amended) A collection of compounds all of which are represented by formula IV:

$$\begin{array}{c|c} & & & \\ &$$

A is O, S, NH, or a single bond;

R₂ and R₃ are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3:

 R_6 , R_7 , and R_9 are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R;

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

L is a linking group, or a single bond;

• is a solid support;

n is a positive integer from 1 to 16;

R₁₁ is either H or R;

Q is S, O or NH; and

R₁₀ is a nitrogen protecting group.

59. (Previously presented) A collection of compounds according to claim 58, wherein R_{10} has a carbamate functionality where it binds to the nitrogen atom at the 10 position of a PBD ring structure.

- 60. (Previously presented) A collection of compounds according to claim 58, wherein Q is O, and/or R_{11} is H.
- 61. (Currently amended) A collection of compounds all of which are represented by formula VII:

$$R_{11}Q$$
 $R_{11}Q$
 R_{10}
 R_{10}

$$R_{11}Q$$
 $R_{11}Q$
 R_{10}
 R_{10}

A is O, S, NH, or a single bond;

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3;

 R_6 , R_7 , and R_9 are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R;

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

o is a solid support;

n and m are positive integers from 1 to 16, or one of them may be zero;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1;

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X';

p is a positive integer from 1 to 16;

R₁₁ is either H or R;

Q is S, O or NH;

R₁₀ is a nitrogen protecting group; and

where if p is greater than 1, for each repeating unit the meanings of X', Y, A, R_2 , R_3 , R_6 , R_7 , R_9 , T, T', T", Q, R_{10} , R_{14} and the values of n and m are independently selected.

62. (Currently amended) A collection of compounds all of which are represented by formula XI:

$$R_{1}Q \xrightarrow{H} C1 \xrightarrow{C3} R_{3}$$

$$R_{1}Q \xrightarrow{R_{1}} T \xrightarrow{R_{2}} R_{3}$$

$$R_{2} \xrightarrow{R_{2}} R_{3}$$

$$R_{3} \xrightarrow{R_{2}} R_{4}$$

$$R_{4} \xrightarrow{R_{2}} R_{5}$$

$$R_{1}Q \xrightarrow{R_{2}} R_{5}$$

$$R_{2} \xrightarrow{R_{3}} R_{5}$$

$$R_{3} \xrightarrow{R_{4}} R_{5}$$

$$R_{4} \xrightarrow{R_{5}} R_{5}$$

$$R_{5} \xrightarrow{R_{5}} R_{5}$$

$$R_{7} \xrightarrow{R_{5}} R_{5}$$

A is O, S, NH, or a single bond;

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3;

 R_6 , R_7 , and R_9 are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R;

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

L is a linking group, or a single bond;

is a solid support;

n and m are positive integers from 1 to 16, or one of them may be zero;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1;

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X';

p is a positive integer from 1 to 16;

R₁₁ is either H or R;

Q is S, O or NH;

R₁₀ is a nitrogen protecting group; and

Q', R'₁₀, R'₁₁, have the same definitions as Q, R₁₀, R₁₁, respectively, and where if p is greater than 1, for each repeating unit the meanings of X', Y, A, R₂, R₃, R₆, R₇, R₉, T, T', T'', P_{10} , P_{10} , P_{11} and the values of n and m are independently selected.

63. (Currently amended) A collection of compounds all of which are represented by the formula XV:

A is O, S, NH, or a single bond;

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3;

 $R_{6},\,R_{7},\,\text{and}\,\,R_{9}$ are independently selected from H, R, OH, OR, halo, nitro, amino, Me $_{3}Sn;$

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R;

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

• is a solid support;

n and m are positive integers from 1 to 16, or one of them may be zero;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1;

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X';

p is a positive integer from-1 to 16, where if p is greater than 1, for each repeating unit, the meaning of X', Y, A, R_2 , R_3 , R_6 , R_7 , R_9 , T, T', T" and the values of n and m are independently selected;

T" and q are selected from the same possibilities as T and n respectively, and where if p is greater than 1, for each repeating unit the meaning of T, T', T", T" and the values of n, m and q may be independently selected;

R₁₁ is either H or R;

Q is S, O or NH;

R₁₀ is a nitrogen protecting group;

64. Canceled.