

- 分析各變數間的關聯性,看是否有預料之外的有趣發現
- 觀察資料內容是否符合預期,若否,檢查資料是否有誤
- 檢查資料是否符合分析前的假設

透過探索性分析來調整分析的方向,減少因分析方向錯誤所造成的時間浪費。

探索式資料分析

- 圖形化Graphical
 - 。 單變量Univariate
 - 。 雙變量Bivariate
 - 。 多變量Multivariate
- 量化Quantitative
 - 。 單變量Univariate
 - 。 雙變量Bivariate
 - 。 多變量Multivariate

圖形化的分析

包括做圖與列表,將會在下章節介紹,本章節著重於量化的分析方式。

量化的分析方式: 單變量

資料初步統計,量化的分析方式可包含

- 計算集中趨勢
 - 平均值 Mean mean()
 - 中位數 Median median()
 - 。 眾數 Mode, R無內建函數,可直接用 table() 找出現次數最多的資料

量化的分析方式: 單變量-集中趨勢

```
mean(iris$Sepal.Length)

[1] 5.843333

median(iris$Sepal.Length)

[1] 5.8

table(iris$Species)

setosa versicolor virginica
50 50 50
```

量化的分析方式: 單變量

資料初步統計,量化的分析方式可包含

- 計算資料分散程度
 - 。 最小值 Min min()
 - 。 最大值 Max max()
 - 。 範圍 Range range()
 - 四分位差 Quartiles quantile()
 - 。 變異數 Variance var()
 - 。 標準差 Standard deviation sd()

量化的分析方式: 單變量-分散程度

```
min(iris$Sepal.Length)

[1] 4.3

max(iris$Sepal.Length)

[1] 7.9

range(iris$Sepal.Length)

[1] 4.3 7.9
```

量化的分析方式: 單變量

```
quantile(iris$Sepal.Length)

0% 25% 50% 75% 100%
4.3 5.1 5.8 6.4 7.9

var(iris$Sepal.Length)

[1] 0.6856935

sd(iris$Sepal.Length)
```

量化的分析方式: 雙變量

- 列聯表 Crosstabs table(), prop.table()
- 相關性 Correlation cor()

量化的分析方式: 雙變量-列聯表

輪子的數目與自手排的關係

```
table(mtcars$cyl,mtcars$am)
```

0 1 4 3 8 6 4 3 8 12 2

量化的分析方式: 雙變量-相關性

油耗跟馬力的關聯性(相關係數)

cor(mtcars\$mpg,mtcars\$hp)

[1] -0.7761684

量化的分析方式 w/R

- 大多可用R的內建函數完成計算
- 但是在探索式分析時,常常需要資料分組
 - 。 觀察男性和女性的血壓差異
 - 。 A隊與B隊的三分球命中率差異
 - 。 **中鋒和後衛**的助攻次數
 - 。 ...等
- 若只用基本的內建函數計算,相當耗時
 - 。 data.table 和 dplyr packages可以快速完成**分組分析!**

data.table 參考文件與資源

- 官網
- 指令全集The data.table R package cheat sheet
- A data.table R tutorial by DataCamp
- DataCamp 互動式教學課程

dplyr

type:sub-section

- Hadley Wickham開發
- 使用以下函數分析整理資料:
 - 。 select(): 選要分析的欄位,欄位子集 (Column)
 - 。 filter(): 選要分析的觀察值,觀察值子集 (Row)
 - mutate():增加新欄位
 - summarise():計算統計值

dplyr

type:sub-section

- 使用以下函數分析整理資料:
 - o group_by():分組依據
 - o arrange():觀察值排序
 - o rename(): 欄位重新命名
 - 。 %>%: the "pipe" operator 連結上數函式,將所有函式計算串在一起執行

dplyr

如要使用必須安裝並載入 dplyr package

install.packages("dplyr") ##安裝

library(dplyr) ##載入

以上述NBA資料為例,首先先讀入資料

```
library(SportsAnalytics)
NBA1516<-fetch_NBAPlayerStatistics("15-16")</pre>
```

欄位(Column)子集 select()

- 針對欄位 (Column)做子集
- select(資料名稱,欄位條件1,欄位條件2,...)
- 條件1與條件2是使用或的連結概念

欄位(Column)子集 select()

- dplyr 提供幾個方便篩選名稱的函式:
 - o starts_with()
 - o ends_with()
 - o contains()
 - o matches(): matches a regular expression
 - o num_range(): num_range("x", 8:11).
 - o one_of(): variables in character vector
 - o everything()

詳細說明可在R執行視窗中輸入?select_helpers 查看。

欄位(Column)子集 select()

篩選欄位名稱為 Name 、開頭是 Threes 或是開頭是 FieldGoals 的欄位

```
##等於NBA1516[,c("Name","ThreesMade","ThreesAttempted",
## "FieldGoalsMade","FieldGoalsAttempted")]
select1<-
select(NBA1516,Name,starts_with("Threes"),
starts_with("FieldGoals"))
head(select1)
```

Name	ThreesMade	ThreesAttempted	FieldGoalsMade	FieldGoalsAttempted
Quincy Acy	19	49	119	214

欄位(Column)子集 select()

若想篩選欄位 Name 到欄位 FieldGoalsMade 間的所有欄位,但不想要 GamesPlayed 欄位

• 用:串連欄位名稱

• 用 - 去除不要的欄位

```
##等同於NBA1516[,c(2:4,612)]
select3<-
select(NBA1516,Name:FieldGoalsMade,-GamesPlayed)
head(select3,3)
```

Name	Team	Position	TotalMinutesPlayed	FieldGoalsMade
Quincy Acy	SAC	SF	877	119
Jordan Adams	MEM	SG	15	2

Name	Team	Position	TotalMinutesPlayed	FieldGoalsMade
Steven Adams	OKL	С	2019	261

觀察值(Row)子集 filter()

- 是針對列 (Row)做子集
- filter(資料名稱,篩選條件1,篩選條件2) 篩選條件們是用且的邏輯串連
- 出場分鐘數超過2850分鐘的球員資料,可輸入下列指令

##等於NBA1516[NBA1516\$TotalMinutesPlayed>2850,] filter(NBA1516,TotalMinutesPlayed>2850)

League	Name	Team	Position	GamesPlayed	TotalMinutesPlayed	FieldGoalsMade	FieldG
NBA	Trevor Ariza	HOU	SF	81	2860	357	
NBA	James Harden	HOU	SG	82	3121	710	
NBA	Gordon Hayward	UTA	SG	80	2889	521	
NBA	Kyle Lowry	TOR	PG	77	2853	512	
NBA	Khris Middleton	MIL	SF	79	2855	507	
NBA	Marcus Morris	DET	SF	80	2852	410	
NBA	Kemba Walker	СНА	PG	81	2885	568	

觀察值(Row)子集 filter()

也可選擇隊伍名稱為"BOS"或"SAN"的球員資料

##等於NBA1516[NBA1516\$Team %in% c("BOS","SAN"),]filter(NBA1516,Team %in% c("BOS","SAN"))

League	Name	Team	Position	GamesPlayed	TotalMinutesPlayed	FieldGoalsMade	FieldG
NBA	Lamarcu Aldridge	SAN	PF	74	2260	536	
NBA	Kyle Anderson	SAN	SF	78	1247	138	
NBA	Matt Bonner	SAN	С	30	210	29	
NBA	Avery Bradley	BOS	PG	76	2536	456	
NBA	Rasual Butler	SAN	SF	46	432	49	
NBA	Coty Clarke	BOS	NA	4	8	2	

觀察值(Row)子集 filter()

也可使用 & 和 | 等符號串連邏輯

League	Name	Team	Position	GamesPlayed	TotalMinutesPlayed	FieldGoalsMade	FieldGoa
NBA	Deandre Jordan	LAC	С	77	2600	357	

dplyr 子集練習

type:alert incremental:true

• 讀入NBA資料

```
library(SportsAnalytics)
library(dplyr)
NBA1516<-fetch_NBAPlayerStatistics("15-16")</pre>
```

- 試著用dplyr語法篩選出所有助攻數(Assists)超過100且抄截數大於20的球員資料
- 只留下Name Team Position GamesPlayed TotalMinutesPlayed Assists Steals 七個欄位

增加新欄位 mutate()

• 新增新欄位 FGRate ,欄位值為 FieldGoalsMade/FieldGoalsAttempted

[1] 0.5560748 0.3333333 0.6126761 0.4430538 0.4777070

計算統計值 summarise()

- 球員個數、不重複的隊伍數以及不重複的守備位置數等
- n(), n_distinct()

計算統計值 summarise()

- 通常會與其他功能合併使用
- 計算出場分鐘數大於2500分鐘的球員個數、平均投進的兩分球數以及平均投出的兩分球數

dplyr filter()+summarise() 練習

type:alert incremental:true

• 讀入NBA資料

```
library(SportsAnalytics)
library(dplyr)
NBA1516<-fetch_NBAPlayerStatistics("15-16")</pre>
```

- 試著用dplyr語法篩選出所有助攻數(Assists)超過100且抄截數大於20的球員資料
- 計算這些球員的平均出場數GamesPlayed,平均出場分鐘數TotalMinutesPlayed

pipe %>%

• 直接用pipe符號 %>% 將指令串連,減少暫存物件(filter1)的生成

```
filter(NBA1516,TotalMinutesPlayed>2500) %>%
    summarise(nPlayer=n(),
        meanFGMade=mean(FieldGoalsMade),
        meanFGAtt=mean(FieldGoalsAttempted))

nPlayer meanFGMade meanFGAtt
1     40     512     1120.6
```

分組 group_by()

- 設定分組依據
- 與 summarise() 函式合併使用
- 計算各隊(以Team作為分組依據)的球員數、平均投進的兩分球數以及平均投出的兩分球數

```
group_by(NBA1516,Team)%>%
    summarise(nPlayer=n(),
         meanFGMade=mean(FieldGoalsMade),
         meanFGAtt=mean(FieldGoalsAttempted))
```

Team	nPlayer	meanFGMade	meanFGAtt
ATL	15	215.0000	471.1333
BOS	15	208.6000	475.0667
BRO	16	181.0625	395.8750
СНА	14	199.1429	450.7857

分組 group_by()

• 可設定多個分組依據

• 計算各隊各守備位置(以Team和Position作為分組依據)的球員數、平均投進的兩分球數以及平均投出的兩分球數

Team	Position	nPlayer	meanFGMade	meanFGAtt
ATL	С	1	11.0000	19.0000
ATL	PF	6	247.3333	515.6667
ATL	PG	2	381.5000	884.0000

排序 arrange()

排序功能,預設為**遞增排序**

arrange(NBA1516,TotalMinutesPlayed)

League	Name	Team	Position	GamesPlayed	TotalMinutesPlayed	FieldGoalsMade	F
NBA	J.j. O'brien	UTA	SF	1	2	0	
NBA	Rakeem Christmas	IND	PF	1	6	2	
NBA	Th Antetokounmpo	NYK	SF	3	7	3	
NBA	Sam Dekker	HOU	SF	3	7	0	
NBA	Coty Clarke	BOS	NA	4	8	2	
NBA	Jordan Adams	MEM	SG	2	15	2	

遞減排序 arrange()

使用 desc() 將要**遞減排序**的變數包起來,就可以遞減排序

League	Name	Team	Position	GamesPlayed	TotalMinutesPlayed	FieldGoalsMade	FieldGo
NBA	James Harden	HOU	SG	82	3121	710	
NBA	Gordon Hayward	UTA	SG	80	2889	521	
NBA	Kemba Walker	СНА	PG	81	2885	568	

dplyr綜合範例

- 結合 group_by() 、 summarise() 、 arrange() ,可完成一連串的資料分析
- 計算各**隊**各**守備**位置(以Team和Position作為分組依據)的球員數、平均投進的兩分球數以及平均投出的兩分球數,並依平均投進的兩分球數**由大到小排序**

```
group_by(NBA1516,Team,Position) %>%
  summarise(nPlayer=n(),
    meanFGMade=mean(FieldGoalsMade),
    meanFGAtt=mean(FieldGoalsAttempted)) %>%
  arrange(desc(meanFGMade))
```

Team	Position	nPlayer	meanFGMade	meanFGAtt
GSW	PG	2	504	988
CLE	SF	2	440	864
ORL	SG	1	425	969

修改欄位名稱 rename()

新名稱=舊名稱

```
rename1<-rename(NBA1516,Po=Position)
rename1[1:5,1:5]</pre>
```

	League	Name	Team	Ро	GamesPlayed
1	NBA	Quincy Acy	SAC	SF	59
2	NBA	Jordan Adams	MEM	SG	2
3	NBA	Steven Adams	OKL	C	80
4	NBA	Arron Afflalo	NYK	SG	71
5	NBA	Alexis Ajinca	NOR	С	59

dplyr 綜合練習

type:alert incremental:true

• 讀入NBA資料

```
library(SportsAnalytics)
library(dplyr)
NBA1516<-fetch_NBAPlayerStatistics("15-16")</pre>
```

- 試著用dplyr語法篩選出所有助攻數(Assists)超過100且抄截數大於20的球員資料
- 依守備位置Position分組,計算球員的平均出場數GamesPlayed,平均出場分鐘數TotalMinutesPlayed
- 依平均出場數GamesPlayed由大到小排序
- 用pipe %>%

dplyr 參考文件與資源

- Introduction to dplyr
- DataCamp互動式教學課程 Data Manipulation in R with dplyr

長表與寬表

type:sub-section

- 在資料處理的過程中,常因各種需求,需要執行長寬表互換的動作
- reshape2 package提供完整的轉換功能
 - 寬表轉長表 melt(資料框/寬表,id.vars=需要保留的欄位)
 - 。 長表轉寬表 dcast(資料框/長表,寬表分列依據~分欄位依據)

長表與寬表

原來的 airquality 資料框中,有Ozone, Solar.R, Wind, Temp, Month, Day等六個欄位 (Column),屬於寬表

head(airquality,3)

Ozone	Solar.R	Wind	Temp	Month	Day
41	190	7.4	67	5	1
36	118	8.0	72	5	2
12	149	12.6	74	5	3

寬表轉長表 melt ()

- 保留Month和Day兩個欄位
- 將其他欄位的名稱整合至variable欄位,數值整合至value欄位

```
library(reshape2)
airqualityM<-melt(airquality,id.vars = c("Month","Day")) ##欄位需要保留"Month","Day"
```

head(airqualityM)

Month	Day	variable	value
5	1	Ozone	41
5	2	Ozone	36
5	3	Ozone	12
5	4	Ozone	18
5	5	Ozone	NA
5	6	Ozone	28

長表轉寬表 dcast ()

- airqualityM 資料框中,剩下Month, Day, variable, value等四個欄位 (Column),屬於長表
- variable欄位的值轉換為新欄位,並將value欄位填回新增的欄位

```
#欄位保留"Month","Day"外,其他欄位由variable定義
airqualityCast<-dcast(airqualityM, Month +Day~variable)
```

head(airqualityCast)

Month	Day	Ozone	Solar.R	Wind	Temp
5	1	41	190	7.4	67
5	2	36	118	8.0	72
Month 5	Day 3	Ozone 12	Solar.R 149	Wind 12.6	Temp 74
5	4	18	313	11.5	62
5	5	NA	NA	14.3	56
5	6	28	NA	14.9	66

資料視覺化大綱

type:sub-section

- 資料視覺化的目的
- ggplot2
- ggplot2+地圖
- 台灣面量圖
- Heatmap
- Treemap

資料視覺化的目的

type:sub-section

- 探索圖 (Exploratory graphs)
 - 。 了解資料的特性
 - 。 尋找資料的模式(patterns)
 - 。 建議資料分析與建模的策略
- 結果圖 (Final graphs)
 - 。 結果呈現與溝通

探索圖特性

- 很快就可以做一張圖
- 主要目的是了解資料的樣子
- 不用做圖形格式調整美化

結果圖特性

- 比較,呈現差異
 - 。 比較什麼?誰跟誰比較?
- 呈現因果關係(causality),機制(mechanism),結果解釋(explanation),系統化的結構(systematic structure)
 - 。 因果模型?為什麼你想要做這樣的比較
- 呈現多變數 (Multivariate) 資料
 - 。 多變數(Multivariate): 超過兩個變數就叫多變數
 - 。 所有真實事件都是多變數的

結果圖特性

- 將證據整合呈現
 - 。 在同一個畫面呈現文字、數字、圖表
 - 。 盡量用圖形呈現資料
- 將圖表做適當的標記與說明,包括xy軸名稱、單位、資料來源等
 - 。 資料圖表必須可以呈現你想說的故事
- 內容才是最重要的
 - 。 資料不好,分析不好,圖表再美也沒有用

常用的畫圖套件

type:sub-section

• 基本功能(Base):可自學

• lattice : 可自學

• ggplot2

ggplot2簡介

type:sub-section

• Dr. Leland Wilkinson Grammar of Graphics

"In brief, the grammar tells us that a statistical graphic is a mapping from data to aesthetic attributes (colour, shape, size) of geometric objects (points, lines, bars). The plot may also contain statistical transformations of the data and is drawn on a specific coordinate system"

-from ggplot2 book

ggplot2簡介

- Hadley Wickham開發
- 一直是最熱門的R packages之一
- ggplot2 GitHub

ggplot2簡介

• 做圖的文法包括兩個最主要元素

。 Aesthetic attributes:包括顏色、形狀、點的大小與線的粗細等

。 Geometric objects:包括點、線、盒狀圖、直條圖等

• 其他元素

。 Facets:提供在同一張圖內做多個子圖的方法,只要使用Faceting功能設定子圖分類的依據參數即可

。 Stats:將資料做統計轉換

。 Scales:修改點線的顏色、形狀、xy軸的範圍等

ggplot()

type:sub-section

使用ggplot2作圖有以下步驟:

- 準備好資料
- 設定Aesthetic attributes
 - 。 使用 aes(x, y, ...) 指定
- 指定Geometric objects
 - o geom_point()
 - o geom_line()
 - o geom_polygon()
 - o geom_errorbar()

ggplot()

```
library(ggplot2)
##先安裝 install.packages("ggplot2")
```

• ggplot(data,...)

ggplot() 設定重要元素

- · Aesthetic attributes
 - o aes(x = Species, y = Sepal.Length)

Species

ggplot() geom_boxpolt()

```
用 geom_boxplot() 改畫盒狀圖
```

```
ggplot(iris,
    aes(x = Species,
    y = Sepal.Length)) +
geom_boxplot()
```


ggplot() Faceting

直向分類~橫向分類

```
ggplot(iris,
    aes(x = Sepal.Width,
    y = Sepal.Length)) +
    geom_point()+facet_grid(Species~.)
```


ggplot() Faceting

直向分類~橫向分類

```
ggplot(iris,
    aes(x = Sepal.Width,
    y = Sepal.Length)) +
geom_point()+facet_grid(.~Species)
```


ggplot() geom_smooth()

替xy散佈圖加上趨勢線

```
ggplot(iris,
    aes(x = Sepal.Width,
    y = Sepal.Length)) +
    geom_point()+facet_grid(Species~.)+
    geom_smooth()
```


ggplot() geom_smooth()

替xy散佈圖加上趨勢線,使用linear regresion

```
ggplot(iris,
    aes(x = Sepal.Width,
    y = Sepal.Length)) +
    geom_point()+facet_grid(Species~.)+
    geom_smooth(method='lm')
```


ggplot() geom_line()

改用 geom_line() 畫線

```
ggplot(iris,
    aes(x = Sepal.Width,
    y = Sepal.Length)) +
    geom_line()+facet_grid(Species~.)
```


ggplot() 顏色分組

```
改用顏色分組,使用 aes(color='group name')
```

```
ggplot(iris,
    aes(x = Sepal.Width,
    y = Sepal.Length,
    color=Species)) +
geom_line()
```


ggplot() 綜合練習

type:alert incremental:true

- 讀入內建iris資料
- 用**ggplot()**畫xy散佈圖

x軸: Sepal.Lengthy軸: Sepal.Width

。 子圖: Species, 每個Species畫在新的欄位

• 用**ggplot()**做盒狀圖

。 x軸:Species

ggplot() 注意事項

。 y軸: Sepal.Width

- 提供資料時,把資料修改為想要在圖片顯示的文字
- 如果是離散性的資料,但卻又是數值時(像是1,2,3)可以用factor()轉換

ggplot() 資料標示+參數設定

- 標籤 xlab(), ylab(), labs(x=,y=), ggtitle()
- 每一個 geom_*() 都有參數可設定
- 圖形樣式設定 theme(),可使用內建樣式
 - theme_gray():灰背景,預設樣式
 - theme_bw():黑白樣式
- 使用其他樣式套件
 - o ggthemes packages Website
 - o xkcd packages Website

ggplot2 參考資料

- ggplot2 官網
- ggplot2 package source code
- ggplot2 cheat sheet
- ggplot2 doc

ggplot2+地圖

type:sub-section

- Choropleth map面量圖
- ggmap()

- Density Map
- 參考資料

ggmap package

- 把google map載入並作圖的套件
- 基於 ggplot2 套件開發
- 第一次使用前需要安裝

```
##第一次使用前先安裝 install.packages("ggmap")
```

- get_map() 函式取得google map圖層
 - 。 location 地點,可以是地名,也可以是經緯度座標
 - 。 zoom 放大倍率
 - 。 language 地圖語言
- ggmap() 函式將取得的圖層畫出來

get_map() + ggmap()

ggmap + open data 資料載入

- 只要資料有經緯度等資訊,就可以使用 ggmap package與各式資料結合呈現
- 台北市水質資料

```
library(jsonlite)
library(RCurl)
WaterData<-fromJSON(getURL("http://data.taipei/opendata/datalist/apiAccess?scope=resourceAquire&rid=190796c8-7c56-42e
WaterDataFrame<-WaterData$result$results
WaterDataFrame$longitude<-as.numeric(WaterDataFrame$longitude)
WaterDataFrame$latitude<-as.numeric(WaterDataFrame$latitude)
WaterDataFrame$qua_cntu<-as.numeric(WaterDataFrame$qua_cntu)
WaterDataClean<-WaterDataFrame[WaterDataFrame$qua_cntu>=0,]
head(WaterDataClean)
```

```
code_name
 _id update_date update_time
                                qua_id
   1 2017-05-04 23:00:00
                                                   雙溪淨水場
      2017-05-04 23:00:00
                          CS01
                                                     衛理女中
     2017-05-04 23:00:00
                                       雙溪國小
                          CS02
   4 2017-05-04 23:00:00
                                                   華興加壓站
   5 2017-05-04 23:00:00
                                                   長興淨水場
                          CX00
   6 2017-05-04 23:00:00
                          CX02
                                                     市政大樓
 longitude latitude qua_cntu qua_cl qua_ph
1 121.5609 25.11574
                     0.02 0.54
 121.5440 25.10325
                      0.09
 121.5556 25.10763
                      0.06
                           0.42
                                   7.4
                                   7.2
  121.5348 25.10356
                      0.12
                            0.46
  121.5404 25.01633
                      0.03
                            0.44
                                   7.2
  121.5566 25.04250
                      0.04
```

ggmap + open data 繪圖

ggmap + open data

ggmap + 地圖型態

ggmap 套件提供多種地圖型態,使用者可透過設定 maptype 自行選擇適合的地圖樣式,樣式有:

terrain

- · terrain-background
- satellite
- roadmap
- hybrid (google maps)
- watercolor
- toner (stamen maps)

ggmap + extent

透過設定 extent 參數可將地圖輸出樣式改為滿版

```
library(ggmap)
TaipeiMap = get_map(
    location = c(121.43,24.93,121.62,25.19),
    zoom = 14, maptype = 'roadmap')
#extent = 'device' 滿版
ggmap(TaipeiMap,extent = 'device')
```

ggmap + extent

透過設定 extent 參數可將地圖輸出樣式改為滿版

ggmap() 練習

type:alert incremental:true

- 利用get_map() + ggmap()取得桃園地區的google 圖層
 - o location = 'Taoyuan'
 - o zoom = 11
 - language = "zh-TW"
- 在長庚大學所在地 (座標121.389539,25.035225) 加上一個紅色的點
 - o geom_point()
 - o x= 121.389539
 - o y= 25.035225

o color ="red"

ggmap()練習輸出圖檔

ggmap 參考資料

- ggmap package source code
- ggmap cheat sheet
- ggmap doc

Choropleth map面量圖

- Choropleth map面量圖
- 把統計資料用顏色畫在對應的地圖上
- choroplethr package來畫面量圖
- 基於 ggplot2 package的 面量圖 做圖工具
- 建議同時安裝 choroplethrMaps package

library(choroplethr)

choroplethr package

- 內建美國各州地圖與人口學資料
- 使用 state_choropleth() 函式畫出美國人口分布

data(df_pop_state) #記載各州人口數的資料 #把各州人口畫在地圖上 state_choropleth(df_pop_state)

Taiwan的面量圖

type:sub-section

- 台灣的面量圖尚無好的套件輔助
- Open Data: 台灣鄉鎮市邊界的經緯度檔案
 - 。 鄉鎮市區界線
 - 。 空間資料開放格式 shapefile .shp
- 使用 shapefile 與 ggplot2 畫圖的步驟如下:
 - 。 取得空間資料檔案
 - 。 使用 rgdal, rgeos, maptools package處理地圖檔shapefile
 - 使用 ggplot2 & RColorBrewer 畫圖
- 實作範例網址

Heatmap

type:sub-section

- 熱度圖
- 使用顏色的深淺來表示數值的大小
- 搭配XY兩軸的變量
- 使用一張圖就能表示三個維度的資訊
- 在ggplot2套件中,可以使用 geom_tile() 來畫Heatmap
- 以下以NBA球員的資料作為範例

Heatmap

```
nba <- read.csv("http://datasets.flowingdata.com/ppg2008.csv")
head(nba,3)

Name G MIN PTS FGM FGA FGP FTM FTA FTP X3PM X3PA X3PP

1 Dwyane Wade 79 38.6 30.2 10.8 22.0 0.491 7.5 9.8 0.765 1.1 3.5 0.317

2 LeBron James 81 37.7 28.4 9.7 19.9 0.489 7.3 9.4 0.780 1.6 4.7 0.344

3 Kobe Bryant 82 36.2 26.8 9.8 20.9 0.467 5.9 6.9 0.856 1.4 4.1 0.351

ORB DRB TRB AST STL BLK TO PF

1 1.1 3.9 5.0 7.5 2.2 1.3 3.4 2.3

2 1.3 6.3 7.6 7.2 1.7 1.1 3.0 1.7

3 1.1 4.1 5.2 4.9 1.5 0.5 2.6 2.3
```

Heatmap

為了做圖,將寬表轉長表

```
library(reshape2) #for melt()
#寬表轉長表,以名字作依據
nba.m <- melt(nba,id.vars = "Name")
head(nba.m,5)
```

Name	variable	value
Dwyane Wade	G	79
LeBron James	G	81
Kobe Bryant	G	82
Dirk Nowitzki	G	81
Danny Granger	G	67

geom_tile()

```
將Geometric objects指定為 geom_tile()
```

geom_tile() + scale()

- 因為G欄資料明顯大於其他欄位,導致顏色差異不明顯
- 將個欄位的資料標準化處理

```
#scale處理
library(dplyr)
nba.s<-nba %>%
mutate_each(funs(scale), -Name)
head(nba.s,2)
```

Name	G	MIN	PTS	FGM	FGA	FGP	FTM	F.
Dwyane Wade	0.6179300	1.0019702	3.179941	2.920022	2.596832	0.5136017	1.917475	2.1107
LeBron James	0.7693834	0.6119299	2.566974	1.957185	1.697237	0.4649190	1.778729	1.8965

geom_tile() + scale()

How to Make a Heatmap - a Quick and Easy Solution

Heatmap 練習

type:alert incremental:true

- 下載小兒麻痺盛行率資料
- 將資料載入R
- 表格是寬表,需要轉成長表
- 有缺值 (-) ,用NA取代
 - 。 方法一 gsub()
 - 。 方法二 ifelse()
- 盛行率欄位轉換成數值
 - as.numeric()
- 用年份當x軸,州名當y軸,區塊顏色用盛行率填入
 - o low = "white",high = "steelblue"

Treemap

type:sub-section

- Treemap(矩形式樹狀結構繪圖法)
- 以二維平面的方式展示包含階層結構(hierarchical)形式的統計資訊
- treemap packages

treemap() data

```
library(treemap)
data(GNI2014)
knitr::kable(head(GNI2014))
```

	iso3	country	continent	population	GNI
3	BMU	Bermuda	North America	67837	106140
4	NOR	Norway	Europe	4676305	103630
5	QAT	Qatar	Asia	833285	92200
6	CHE	Switzerland	Europe	7604467	88120
7	MAC	Macao SAR, China	Asia	559846	76270
8	LUX	Luxembourg	Europe	491775	75990

treemap()

```
library(treemap)
data(GNI2014)
treemap(GNI2014,
```

```
index=c("continent", "iso3"), #分組依據
vSize="population", #區塊大小
vColor="GNI", #顏色深淺
type="value")
```

互動式資料呈現

- 互動式資料呈現
- ggvis
- googleVis
- Plot.ly

參考資料

type:sub-section

- 官方網站文件
- RStudio製作的ggplot cheat sheet
- DataCamp課程1 Data Visualization with ggplot2 (Part 1)
- DataCamp課程2 Data Visualization with ggplot2 (Part 2)
- DataCamp課程3 Data Visualization with ggplot2 (Part 3)
- 每個人心中都有一碗巷口的牛肉湯

© 2017 GitHub, Inc. Terms Privacy Security Status Help

Contact GitHub API Training Shop Blog About