2 Árvores

As árvores constituem uma das mais importantes famílias de grafos devido a suas inúmeras aplicações em Ciência da Computação e outras áreas em Ciências Exatas e Engenharias. Neste capítulo estudaremos os principais resultados sobre a estrutura das árvores.

2.1 Conceito de árvore

Dizemos que um grafo é *acíclico* se não possui ciclos. Uma *árvore* é um grafo acíclico e conexo.

Um grafo acíclico não necessariamente conexo também é chamado de *floresta*. Cada componente conexa de uma floresta é uma árvore.

O teorema a seguir é a primeira caracterização de árvores que estudaremos.

Teorema 2.1. Um grafo T é uma árvore se e somente se existe um único caminho entre cada par de vértices de T.

Demonstração. Suponha inicialmente que exista um único caminho entre cada par de vértices de T. Isto implica claramente que T é um grafo conexo. Além do mais, se T contivesse um ciclo, haveria pelo menos dois caminhos entre qualquer par de vértices distintos neste ciclo, contrariando a hipótese assumida. Logo, além de conexo, T é acíclico, isto é, T é uma árvore.

Suponha agora que T seja uma árvore. Como T é conexo, existe pelo menos um caminho entre cada par de vértices de T. Suponha por absurdo que existam dois caminhos diferentes P_1 e P_2 entre um certo par de vértices $u, v \in V(T)$. Seja w o vértice de T com as seguintes propriedades: (a) $w \in V(P_1) \cap V(P_2)$; (b) $P_1[u, w] = P_2[u, w]$; (c) $P_1[u, w]$ e $P_2[u, w]$ têm o maior comprimento possível. Seja agora $x \in V(P_1) \cap V(P_2)$ o vértice de T tal que $P_1[w, x]$ e $P_2[w, x]$ são caminhos internamente disjuntos em vértices (isto é, possuem apenas os extremos em comum). Observe que o subgrafo $P_1[w, x] \cup P_2[w, x]$ é claramente um ciclo, e isto contradiz a hipótese de T ser uma árvore. Portanto, existe necessariamente um único caminho entre cada par de vértices de T.

2.2 Folhas

Uma folha é um vértice de grau um. As folhas desempenham um papel importante nos teoremas a seguir.

Teorema 2.2. Toda árvore não trivial tem pelo menos duas folhas.

Demonstração. Seja T uma árvore não trivial e considere um caminho P em T de comprimento máximo. Sejam u e v os vértices inicial e final de P. É claro que u tem um vizinho x em P. Se u tiver outro vizinho $y \neq x$, temos dois casos: $y \in V(P)$ e $y \notin V(P)$. O primeiro caso é impossível, pois o grafo P[u,y] + uy seria um ciclo. O segundo caso também é impossível, pois contradiz o fato de P ser um caminho de comprimento máximo. Logo x é o único vizinho de u em T, isto é, u é uma folha. O raciocício para mostrar que v também é uma folha é idêntico.

Teorema 2.3. Se T é uma árvore então m = n - 1.

Demonstração. Faremos a demonstração por indução em n. Para a base da indução, consideramos o caso n=1. Nesta situação, T é um grafo trivial, e portanto vale m=0=1-1=n-1. Para o passo da indução, seja T uma árvore com n>1 vértices e m arestas, e suponha que qualquer árvore T' com n'< n vértices tem exatamente m'=n'-1 arestas. Pelo Teorema 2.2, T possui uma folha x. Observe que o grafo T-x é claramente uma árvore com n'=n-1< n vértices. Pela hipótese de indução, T-x tem n'-1=(n-1)-1=n-2 arestas. Como T tem exatamente uma aresta a mais do que T-x, segue que T tem m=(n-2)+1=n-1 arestas. \square

2.3 Centro de uma árvore

Nesta seção veremos que o centro de uma árvore pode ser determinado algoritmicamente de modo bastante simples.

Lema 2.4. Seja T uma árvore com pelo menos três vértices. Seja F o conjunto das folhas de T. Seja T' = T - F. Então, T e T' têm o mesmo centro.

Demonstração. Sejam T e T' como no enunciado. Denote por exc(u, G) a excentricidade do vértice u no grafo G. A demonstração se baseia nos seguintes fatos, de verificação simples:

- (a) Nenhuma folha de T pertence ao seu centro;
- (b) Se $v \in V(T')$ então exc(v, T') = exc(v, T) 1.

Pelo item (a), os vértices do centro de T estão em T'. Pelo item (b), um vértice de excentridade mínima em T também é um vértice de excentricidade mínima em T', e vice-versa. Logo, o lema segue.

Teorema 2.5. (Jordan 1869) O centro de uma árvore ou é formado por apenas um vértice ou por dois vértices vizinhos.

Demonstração. Seja T uma árvore. O lema anterior sugere um algoritmo para encontrar o centro de T:

```
Algoritmo 1: Algoritmo para encontrar o centro de uma árvore T
```

```
Entrada: Uma árvore T
Saída: O centro de T
T' \leftarrow T
enquanto |V(T')| \ge 3 faça
F \leftarrow \text{conjunto das folhas de } T'
T' \leftarrow T' - F
retornar V(T')
```

Pelo Lema 2.4, as sucessivas árvores referenciadas pela variável T', geradas ao longo das iterações do comando **enquanto** no Algoritmo 1, possuem todas o mesmo centro. Ao final das iterações, é claro que T' possuirá um ou dois vértices. Isto completa a demonstração.

2.4 Pontes

Uma ponte ou aresta de corte de um grafo G é uma aresta e tal que w(G-e) > w(G). Uma caracterização alternativa de árvores pode ser formulada por meio de pontes, como veremos a seguir.

Teorema 2.6. Uma aresta e \acute{e} uma ponte de G se e somente se não existe ciclo contendo e em G.

Demonstração. Suponha por absurdo que e é uma ponte de G e que exista um ciclo C contendo e. Se existe um caminho P entre dois vértices u

e v contendo a aresta e, então $P \cup (C - e)$ é um passeio entre u e v. Pelo Exercício 1.10, existe um caminho P' entre u e v que não contém a aresta e. Portanto, após a remoção de e, continua havendo caminho entre todo par de vértices pertencentes à componente conexa de G que continha e. Isto implica w(G - e) = w(G), o que contradiz a hipótese de e ser uma ponte.

Suponha agora que não exista ciclo contendo e em G. Escreva e = xy. Se existisse algum caminho P entre x e y no grafo G - e, P + e seria um ciclo em G contendo e, uma contradição. Logo, x e y pertencem a componentes conexas distintas no grafo G - e, o que implica w(G - e) > w(G); em outras palavras, e é uma ponte.

Teorema 2.7. Um grafo conexo T é uma árvore se e somente se toda aresta de T é uma ponte.

Demonstração. Suponha que T é uma árvore. Como T é um grafo acíclico, é claro que nenhuma aresta de T pode pertencer a um ciclo. Logo, pelo Teorema 2.6, toda aresta de T é uma ponte.

Reciprocamente, se toda aresta de um grafo T é uma ponte, pelo Teorema 2.6 nenhuma delas pertence a um ciclo. Logo o grafo T é acíclico. Como por hipótese T é conexo, segue que T é uma árvore.

2.5 Árvores geradoras

Uma árvore geradora de um grafo G é um subgrafo gerador conexo e acíclico de G.

Proposição 2.8. Todo grafo conexo possui uma árvore geradora.

Demonstração. Seja G um grafo conexo. O seguinte algoritmo constrói uma árvore geradora de G.

Algoritmo 2: Algoritmo para determinar uma árvore geradora

Entrada: Um grafo conexo G

Saída: Uma árvore geradora T de G

 $T \leftarrow G$

enquanto existe aresta e tal que T-e é conexo **faça** $T\leftarrow T-e$

retornar T

Observe que o grafo T retornado pelo Algoritmo 2 satisfaz V(T) = V(G), isto é, T é um subgrafo gerador de G. Além do mais, as sucessivas remoções de arestas no comando **enquanto** preservam a conexidade de T; logo, ao final das iterações, T será um subgrafo conexo. Finalmente, quando o teste do comando **enquanto** falhar, todas as arestas remanescentes em T serão pontes; pelo Teorema 2.7, o grafo T retornado é uma árvore. Isto conclui a demonstração.

Teorema 2.9. Se G é conexo, então $m \ge n - 1$.

Demonstração. Pela Proposição 2.8, G possui uma árvore geradora T. Obviamente, |V(T)| = n e |E(T)| = n - 1. Como |E(G)| = m e $E(T) \subseteq E(G)$, segue o resultado.

Concluímos pelos Teoremas 2.3 e 2.9 que as árvores são os grafos conexos que atingem o limite mínimo n-1 para o número de arestas, no sentido de que todo grafo com menos do que n-1 arestas é necessariamente desconexo.

Pode-se mostrar (Exercício 2.8) que toda floresta é um subgrafo gerador de uma árvore. Este resultado, juntamente com o Teorema 2.3, permite enunciar:

Teorema 2.10. Se G é acíclico, então $m \leq n-1$.

Pelos Teoremas 2.3 e 2.10, as árvores são os grafos acíclicos que atingem o limite máximo n-1 para o número de arestas, no sentido de que todo grafo com mais do que n-1 arestas contém pelo menos um ciclo.

Corolário 2.11. Seja G um grafo qualquer com n vértices e m arestas. Então:

- (a) $Se \ m < n-1 \ ent \ ao \ G \ \'e \ desconexo;$
- (b) Se m = n 1 e G é conexo ou acíclico então G é uma árvore;
- (c) $Se \ m > n-1 \ ent \ \tilde{ao} \ G \ cont \ \tilde{e}m \ pelo \ menos \ um \ ciclo.$

Encerramos esta seção com este importante teorema:

Teorema 2.12. Seja T uma árvore geradora de um grafo conexo G, e seja $e \in E(G) \setminus E(T)$. Então, T + e contém um único ciclo.

Demonstração. Escreva e = xy. Pelo Teorema 2.1, em T existe um único caminho P entre x e y. Logo, o subgrafo P + e é um ciclo em T + e. Se C é um outro ciclo em T + e, é claro que C contém a aresta e. Assim, C - e é um caminho entre x e y em T, donde concluímos que C - e é o próprio caminho P, isto é, os ciclos C e P + e são na verdade o mesmo ciclo.

2.6 Exercícios

- 2.1. Mostre que se G é uma árvore com $\Delta(G) \geq k$, então G contém pelo menos k folhas.
- 2.2. Desenhe todas as árvores não isomorfas com 7 vértices.
- 2.3. Prove que um grafo é uma floresta se e somente se o seu número de arestas é igual ao seu número de vértices menos o seu número de componentes conexas.
- 2.4. Prove ou refute: Se G é acíclico então G possui no mínimo 2(w(G) i(G)) vértices de grau um, onde w(G) é o número de componentes conexas de G e i(G) é o número de vértices isolados de G.
- 2.5. Seja G um grafo conexo e e uma aresta de G. Mostre que e está em toda árvore geradora de G se e somente se e é uma ponte de G.
- 2.6. Mostre que se G tem exatamente uma árvore geradora T então G = T.
- 2.7. Mostre que qualquer grafo G=(V,E) contém pelo menos m-n+w ciclos distintos, onde $|V|=n,\,|E|=m$ e w é o número de componentes conexas de G.
- 2.8. Mostre que toda floresta é um subgrafo gerador de uma árvore.
- 2.9. A cintura de um grafo G é o comprimento de seu menor ciclo. Se G for acíclico, sua cintura é infinita. Mostre que um grafo k-regular de cintura 4 possui pelo menos 2k vértices.