CSC 311	HW 7	43961298	251-jl-
() ₀ -\:			
Play	$= 0.6 \text{n}^3 - 4 \text{n}^2 + 2$	€ O(n3)	
Ster I'.	12/ave 0.543-442	- (n³)	
	≤ 0.5 n³+2		
	$\leq 2.5 \mathrm{n}^3$	i n > 1	
	Chase C=2,5	5 h. = 1	<u> </u>
Step 2	! Prove 0,5 n3 - 4	$n^{2}+2 \in \Omega (r$	1 ³)
	$\frac{1}{2} \cos n^3 - 1$	In² { ōLi	عد د
	> 0.25 k3		> LIN2 =
	Charse C= 0.2	5 & n _o = 16 h _o	3=16
Ster 3:	Since we pop	wal big oh and	big
	chase U=2.5,	5 n3 - 4 n2 + 2 = 6 cn3) i	mac(), w = \$

TO STATE OF THE PROPERTY.
(A2!
Since $f(n) \in O(\mathcal{S}_{C^{n}}) \iff C_{L}\mathcal{S}_{C^{n}} \geq f(n) \geq n$
$h(n) \in O(a_1(n)) \iff c_2 q_2(n) \ge h(n) + h_2$
14 14 14 14 14 14 14 14 14 14 14 14 14 1
then Let cm = max(c1,c2), nm = max(ny h2)
$c \leftarrow c \leftarrow c \rightarrow $
<u> </u>
\rightarrow $f^{cn} + h^{cn}$
$\leq c_{m}q_{1}(n) + c_{m}q_{2}(n)$ in $\sum_{n} n_{m}$ (Since $c_{m} = m_{mn}(c_{1}(c_{2}))$
(3, cm + 9, cm) & h > n,
≤ Cn: 2 max (3, cn) = 12(n)
Choose C= 2 max(<1, (2) h= max(h, n2)
L(x) + as h(x) (more () (nore () () () ()
Oz: Lovest -> Highest
$\ln^2 n$
5100 (n+Loc)
$\sqrt[3]{n}$
3 n 2 t L
3
224
(n-2)!

