Programación Distribuida y Tiempo Real

• ¿Definición?

- Definición
 - Procesos + Mensajes
- Utilidad
 - Garbage collection (compactación)
 - Interbloqueo
 - Terminación

- Definición
 - Procesos + Mensajes
- Utilidad
 - Garbage collection (compactación)
 - Interbloqueo
 - Terminación
 - Coulouris

- Definición
 - Procesos + Mensajes
- Utilidad
 - Garbage collection (compactación)
 - Interbloqueo
 - Terminación
- Orientado a
 - Ejecución: $S0 \rightarrow S1 \rightarrow S2 \dots$
 - Estado vs. Estados

- Definición
 - Procesos + Mensajes
- Utilidad
 - Garbage collection (compactación)
 - Interbloqueo
 - Terminación
- Orientado a
 - Ejecución: $S0 \rightarrow S1 \rightarrow S2 \dots$
 - Estado vs. Estados
 - Evaluación formal

- Evolución de estados $S0 \rightarrow S1 \rightarrow S2 \dots$
 - → Evento o mensaje, depende de lo que se analice

- Evolución de estados $S0 \rightarrow S1 \rightarrow S2 \dots$
 - → Evento o mensaje, depende de lo que se analice
- Historia de un proceso:
 - $h(p_i) = \langle e_i^0, e_i^1, e_i^2, e_i^3, ... \rangle, p_i, \text{ proceso i, i} = 1, ..., n$

- Evolución de estados $S0 \rightarrow S1 \rightarrow S2 \dots$
 - → Evento o mensaje, depende de lo que se analice
- Historia de un proceso:
 - $h(p_i) = \langle e_i^0, e_i^1, e_i^2, e_i^3, ... \rangle, p_i, \text{ proceso i, i} = 1, ..., n$
- Prefijo k-ésimo de la historia:
 - $h_i^k = \langle e_i^0, e_i^1, e_i^2, ..., e_i^k \rangle$, prefijo de k eventos

- Evolución de estados $S0 \rightarrow S1 \rightarrow S2 ...$
 - → Evento o mensaje, depende de lo que se analice
- Historia de un proceso:
 - $h(p_i) = \langle e_i^0, e_i^1, e_i^2, e_i^3, ... \rangle, p_i, \text{ proceso i, i} = 1, ..., n$
- Prefijo k-ésimo de la historia:
 - $h_i^k = \langle e_i^0, e_i^1, e_i^2, ..., e_i^k \rangle$, prefijo de k eventos
- Uniendo todos los prefijos: Corte
 - $C = h_1^{c1} \cup h_2^{c2}, ..., h_n^{cn}, i = 1, ..., n$

- Evolución de estados $S0 \rightarrow S1 \rightarrow S2 \dots$
 - → Evento o mensaje, depende de lo que se analice
- Historia de un proceso:
 - $h(p_i) = \langle e_i^0, e_i^1, e_i^2, e_i^3, ... \rangle, p_i, \text{ proceso i, i} = 1, ..., n$
- Prefijo k-ésimo de la historia:
 - $h_i^k = \langle e_i^0, e_i^1, e_i^2, ..., e_i^k \rangle$, prefijo de k eventos
- Uniendo todos los prefijos: Corte ==> sistema distribuido
 - $C = h_1^{c1} \cup h_2^{c2}, \dots, h_n^{cn}, i = 1, \dots, n$

- Evolución de estados $S0 \rightarrow S1 \rightarrow S2 \dots$
 - → Evento o mensaje, depende de lo que se analice
- Historia de un proceso:
 - $h(p_i) = \langle e_i^0, e_i^1, e_i^2, e_i^3, ... \rangle, p_i, \text{ proceso i, i} = 1, ..., n$
- Prefijo k-ésimo de la historia:
 - $h_i^k = \langle e_i^0, e_i^1, e_i^2, ..., e_i^k \rangle$, prefijo de k eventos
- Uniendo todos los prefijos: Corte ==> sistema distribuido

•
$$C = (h_1^{c1}) \cup (h_2^{c2}) \dots , (h_n^{cn}), i = 1, \dots, n$$

Un prefijo para cada proceso

- Evolución de estados $S0 \rightarrow S1 \rightarrow S2 \dots$
 - → Evento o mensaje, depende de lo que se analice
- Historia de un proceso:
 - $h(p_i) = \langle e_i^0, e_i^1, e_i^2, e_i^3, ... \rangle, p_i, \text{ proceso i, i} = 1, ..., n$
- Prefijo k-ésimo de la historia:
 - $h_i^k = \langle e_i^0, e_i^1, e_i^2, ..., e_i^k \rangle$, prefijo de k eventos
- Uniendo todos los prefijos: Corte ==> sistema distribuido

•
$$C = h_1^{c1} \cup h_2^{c2}, \dots, h_n^{cn}, i = 1, \dots, n$$

Cantidad de eventos es dependiente de cada proceso

- Evolución de estados $S0 \rightarrow S1 \rightarrow S2 \dots$
 - → Evento o mensaje, depende de lo que se analice
- Historia de un proceso:
 - $h(p_i) = \langle e_i^0, e_i^1, e_i^2, e_i^3, ... \rangle, p_i, \text{ proceso i, i} = 1, ..., n$
- Prefijo k-ésimo de la historia:
 - $h_i^k = \langle e_i^0, e_i^1, e_i^2, ..., e_i^k \rangle$, prefijo de k eventos
- Uniendo todos los prefijos: Corte ==> sistema distribuido
 - $C = h_1^{c1} \cup h_2^{c2}, \dots, h_n^{cn}, i = 1, \dots, n$
- Consistencia del corte C
 - No "mezclar" eventos en el tiempo: evitar que haya eventos en el corte y no se incluyan los eventos anteriores *necesarios* para su ocurrencia

- Evolución de estados $S0 \rightarrow S1 \rightarrow S2 \dots$
 - → Evento o mensaje, depende de lo que se analice
- Historia de un proceso:
 - $h(p_i) = \langle e_i^0, e_i^1, e_i^2, e_i^3, ... \rangle, p_i, \text{ proceso i, i} = 1, ..., n$
- Prefijo k-ésimo de la historia:
 - $h_i^k = \langle e_i^0, e_i^1, e_i^2, ..., e_i^k \rangle$, prefijo de k eventos
- Uniendo todos los prefijos: Corte ==> sistema distribuido
 - $C = h_1^{c1} \cup h_2^{c2}, \dots, h_n^{cn}, i = 1, \dots, n$
- Consistencia del corte C
 - No "mezclar" eventos en el tiempo
 - Definición de Corte Consistente
 - $\forall e \in C, f \rightarrow e ==> f \in C (\rightarrow \text{``antes de''} de Lamport)$

- Definición de Corte Consistente
 - $\forall e \in C, f \rightarrow e ==> f \in C (\rightarrow \text{``antes de''} de Lamport)$

→ Mensaje

- Definición de Corte Consistente
 - $\forall e \in C, f \rightarrow e ==> f \in C (\rightarrow \text{``antes de''} de Lamport)$

→ Mensaje

..... Corte Consistente

- Definición de Corte Consistente
 - $\forall e \in C, f \rightarrow e ==> f \in C (\rightarrow \text{``antes de''} de Lamport)$

- Definición de Corte Consistente
 - $\forall e \in C, f \rightarrow e ==> f \in C (\rightarrow \text{``antes de''} de Lamport)$

- Definición de Corte Consistente
 - $\forall e \in C, f \rightarrow e ==> f \in C (\rightarrow \text{``antes de''} de Lamport)$

Mensaje

Corte Consistente

Corte Inconsistente

Recordar que en ejecución solamente se tienen secuencias de eventos por proceso/sitio individual

- Estado global consistente <==> Corte consistente
- ¿Cómo "ordenar" los eventos de un corte consistente?
 - Los eventos de $h_1^{c1} \cup h_2^{c2}$, ..., h_n^{cn} se "intercalan"
 - Linealización: orden total que es consistente con la relación "antes de" de Lamport

- Estado global consistente <==> Corte consistente
- ¿Cómo "ordenar" los eventos de un corte consistente?
 - Los eventos de $h_1^{c1} \cup h_2^{c2}$, ..., h_n^{cn} se "intercalan"
 - Linealización: orden total que es consistente con la relación "antes de" de Lamport
- En general:
 - Orden total
 - Orden parcial
 - Ejecución real (posible vs. real)
- No es necesario tener un orden total: eventos concurrentes

- Predicados de estados globales
 - Función: Procesos $\rightarrow \{V, F\}$
 - Propiedad del sistema (o de un estado global) que nos interesa mantener o evitar
 - Predicados Estables: una vez que se llega a V, se mantienen (ej: deadlock, finalización)
 - Predicados Transitorios: pueden ser V en algunos estados y luego en otros no (ej: memoria libre)
 - •

- Tener la definición de EGC =/=> Saber cómo obtenerlo
- Algoritmo de instantánea (snapshot) de Chandy-Lamport
- Estado consistente
- Relación con estado real
 - Estado que *podría ser* el real (linealización y conc.)

- Tener la definición de EGC =/=> Saber cómo obtenerlo
- Algoritmo de instantánea (snapshot) de Chandy-Lamport
- Estado consistente
- Relación con estado real
 - Estado que *podría ser* el real (linealización y conc.)
- Requerimientos
 - Todos los pares de procesos conectados
 - Los mensajes no se pierden ni se duplican
 - Los mensajes llegan en orden
- Cualquier proceso puede iniciar el algoritmo
- Todo el sistema sigue funcionando concurrentemente con la ejecución del algoritmo

- Proceso inicial:
 - Registra su estado
 - Empieza a registrar todos los mensajes que llegan
 - Son mensajes "en tránsito", estado de los canales
 - Envía un mensaje "marcador" por todos los canales
- Proceso sin estado registrado que recibe marcador
 - Registra su estado
 - Define como vacío el canal de recepción del marcador
 - Empieza a registrar todos los mensajes que llegan por los demás canales
 - Envía un marcador por todos los canales

- Proceso con estado registrado que recibe marcador
 - Deja de registrar los mensajes por los que llegó el marcador
 - Si no quedan canales en los que registrar mensajes, termina su recolección de estados de canales
 - No tiene nada más para hacer en esta recolección de estado global
- Se "inunda" el sistema con marcadores
 - Se asegura que el sistema termina
 - Todos los procesos conectados
 - Se controla la "inundación" porque el marcador solo se replica 1 vez en cada proceso

Número de secuencia de marcadores

Número de secuencia de marcadores

- Podría iniciarse y/o recolectarse estados desde dos o más proc.
 - Identificar los marcadores con proceso de inicio
- Se puede demostrar que termina
 - A todos los procesos llega un marcador en algún t
 - No se continúa indefinidamente
- El estado global queda "distribuido" en cada sitio
 - Si se quiere analizar ==> enviar todo a un proceso
- Genera sobrecarga
 - No se detiene el sistema
 - Solamente se utiliza cuando es *necesario*

Dudas/Consultas

• Plataforma Ideas