

PER ORDER OF CILK HUB

FROM

Modern Algorithms Workshop Parallel Algorithms

Prof. Charles E. Leiserson

Dr. Tao B. Schardl

September 19, 2018

Outline

- Introduction
- Cilk Model
- Detecting Nondeterminism
- What Is Parallelism?
- Scheduling Theory Primer
- Lunch Break
- Analysis of Parallel Loops
- Case Study: Matrix Multiplication
- Case Study: Jaccard Similarity
- Post–Moore Software

CASE STUDY: JACCARD SIMILARITY

Graphs

Many problems can be formulated on *graphs*. A graph G=(V,E) is a set V of vertices and a set E of edges connecting pairs of vertices.

A graph can be represented as an *adjacency matrix*.

Problem Statement

Problem: Given a graph G=(V,E), compute the **Jaccard similarity** of every pair of vertices $u,v \in V$, that is,

|Adj[u] ∩ Adj[v]| |Adj[u] ∪ Adj[v]|

where Adj[u] denotes the set of vertices

connected to u by an edge.

Jaccard similarities

Using Matrix Multiplication

Let A denote the adjacency matrix of graph G=(V,E). Then one can compute the Jaccard-similarity matrix JS as follows:

Intersection = $A \cdot_{\&} A$ Union = $A \cdot_{|} A$

 $JS = Intersection \div_{el} Union$

$$T_1 = \Theta(M_1(A)) = \Theta(V^3)$$

Matrix multiply using bitwise AND

Matrix multiply using bitwise OR

Element-wise division

Work of matrix multiplication

Can we do better for *sparse graphs*, where $|E| \ll |V|^2$?

Sparsity

The idea of exploiting sparsity is to avoid storing and computing on zeroes. "The fastest way to compute is not to compute at all."

Example: Matrix-vector multiplication

$$y = \begin{pmatrix} 3 & 0 & 0 & 0 & 1 & 0 \\ 0 & 4 & 1 & 0 & 5 & 9 \\ 0 & 0 & 0 & 2 & 0 & 6 \\ 5 & 0 & 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 9 & 7 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ 2 \\ 8 \\ 5 \\ 7 \end{pmatrix}$$

Dense matrix-vector multiplication performs $n^2 = 36$ scalar multiplies, but only 14 entries are nonzero.

Sparsity

The idea of exploiting sparsity is to avoid storing and computing on zeroes. "The fastest way to compute is not to compute at all."

Example: Matrix-vector multiplication

$$y = \begin{pmatrix} 3 & & & 1 & \\ & 4 & 1 & & 5 & 9 \\ & & & 2 & & 6 \\ 5 & & & 3 & & \\ 5 & & & 8 & & 5 \\ & & & 9 & 7 & \end{pmatrix} \begin{pmatrix} 1 & \\ 4 & \\ 2 & \\ 8 & \\ 5 & \\ 7 \end{pmatrix}$$

Dense matrix-vector multiplication performs $n^2 = 36$ scalar multiplies, but only 14 entries are nonzero.

Sparsity (2)

Compressed Sparse Row (CSR)

```
9
                          6
                                       10
                                          11
                                             12
                                                 13
           6
rows: 0
               8
                  10 11 14
cols: 0
         4
                      5 |
                1 5
                      9
                         2
vals: 3
         1
```

Storage is O(n+nnz) instead of n²

Sparse Graph Representation

Storing a sparse graph G=(V,E) using compressed sparse rows (CSR).

Can run many graph algorithms efficiently on this representation, e.g., breadth-first search, PageRank.

Storage is $\Theta(V+E)$ instead of $|V|^2$.

Adjacency lists are typically sorted.

Key Computation: List Intersection

Using CSR, computing $|Adj[u] \cap Adj[v]|$ involves computing the size of the intersection of two sorted lists of integers.

Intersecting Two Adjacency Lists

```
int intersect(const int *AdjA, int na,
              const int *AdjB, int nb) {
  int intersection = 0;
  while (na>0 && nb>0) {
    if (*AdjA == *AdjB) {
      intersection++;
      AdjA++; na--; AdjB++; nb--;
    } else if (*AdjA < *AdjB) {</pre>
      AdjA++; na--;
    } else { // *AdjB < *AdjA</pre>
                                  Time to intersect two
      AdjB++; nb--;
                                   lists Adj[u] and Adj[v]
                                   is \Theta(Adj[u] + Adj[v]).
  return intersection;
```

intersection 2

AdjA 0 2 3 4
AdjB 1 3 4

For simplicity, let us focus on computing the intersection of each pair of adjacency lists.

Compute the intersection of the adjacency lists and store the result.

Analysis of Serial Jaccard Similarity

For simplicity, let us focus on computing the intersection of each pair of adjacency lists.

Work: $T_1(G) = \sum_{u \in V} \sum_{v \in V} (d(u) + d(v))$

```
void jaccard(int *JS,
                const int *V, int nv, const int *E) {
  for (int ui = 0; ui < nv; ++ui)</pre>
     for (int vi = 0; vi < nv; ++vi)</pre>
       JS[ui*nv+vi] =
          intersect(E[V[ui]], V[ui+1]
                                              Handshaking Lemma:
                      E[V[vi]], V[vi+1]
                                               \sum_{u \in V} d(u) = 2|E|
                 T_1(G) = \sum_{u \in V} \sum_{v \in V} (d(u) + d(v))
                           = \sum_{u \in V} \sum_{v \in V} d(v) + \sum_{v \in V} \sum_{u \in V} d(u)
                           = 2|V||E|+2|V||E|
                           = \Theta(VE)
```

Exploiting Symmetry

In an undirected graph, we have $|Adj[u] \cap Adj[v]| = |Adj[v] \cap Adj[u]|$. Hence, the intersection of each pair of adjacency lists can be computed just once.

Work: $T_1(G) = \Theta(VE)$

Parallel Jaccard Similarity V.1

```
Span: T_{\infty}(G) = |g|V| + \max_{u \in V} \{\sum_{v \in V} (d(u) + d(v))\}

= |g|V| + \max_{u \in V} \{\sum_{v \in V} d(u) + \sum_{v \in V} d(v)\}
= |g|V| + \max_{u \in V} \{|V|d(u) + 2|E|\}
= \Theta(V\Delta + E), \text{ where } \Delta = \max_{u \in V} \{d(u)\}
= \Theta(V\Delta)
```

Parallelism of Jaccard Similarity V.1

Work:
$$T_1(n) = \Theta(VE)$$

Span:
$$T_{\infty}(n) = \Theta(V\Delta + E)$$

Parallelism:
$$\frac{T_1(n)}{T_{\infty}(n)} = \Theta(VE/(V\Delta))$$
$$= \Theta(E/\Delta)$$

Parallel Jaccard Similarity V.2

Span:
$$T_{\infty}(G) = 2 |g|V| + \max_{u \in V} \{ \max_{v \in V} \{ d(u) + d(v) \} \}$$

= $\Theta(|g|V + \Delta)$

Parallelism of Jaccard Similarity V.2

Work:
$$T_1(n) = \Theta(VE)$$

Span:
$$T_{\infty}(n) = \Theta(\lg V + \Delta)$$

Parallelism:
$$\frac{T_1(n)}{T_{\infty}(n)} = \Theta(VE/(lg V + \Delta))$$

= Ω(E) worst case

Parallel Intersect

KEY IDEA: If the total number of elements to be intersected in the two arrays is n = na + nb, the total number of elements in the larger of the two recursive merges is at most (3/4) n.

Parallel Intersect Code

```
int p_intersect(const int *AdjA, int na, const int *AdjB, int nb) {
 if (na < nb) {
    return p_intersect(AdjB, nb, AdjA, na);
  } else if (na < THRESHOLD) {</pre>
    return intersect(AdjA, na, AdjB, nb);
  } else {
    int ma = na/2;
    int mb = binary_search(AdjA[ma], AdjB, nb);
    int intersection 1, intersection r;
    intersection_l = cilk_spawn p_intersect(AdjA, ma, AdjB, mb);
    intersection_r = p_intersect(AdjA+ma, na-ma, AdjB+mb, nb-mb);
    cilk sync;
    return intersection_l + intersection_r;
```

Span of Parallel Intersect

```
int p_intersect(const int *AdjA, int na, const int *AdjB, int nb) {
 if (na < nb) {
    return p_intersect(AdjB, nb, AdjA, na);
  } else if (na < THRESHOLD) {</pre>
    return intersect(AdjA, na, AdjB, nb);
  } else {
    int ma = na/2;
    int mb = binary_search(AdjA[ma], AdjB, nb);
    int intersection_l, intersection_r;
    intersection_l = cilk_spawn p_intersect(AdjA, ma, AdjB, mb);
    intersection_r = p_intersect(AdjA+ma, na-ma, AdjB+mb, nb-mb);
    cilk sync;
    return intersection_l + intersection_r;
```

Span:
$$T_{\infty}(n) = T_{\infty}(3n/4) + \Theta(\lg n)$$

= $\Theta(\lg^2 n)$

Work of Parallel Intersect

```
int p_intersect(const int *AdjA, int na, const int *AdjB, int nb) {
 if (na < nb) {
    return p_intersect(AdjB, nb, AdjA, na);
  } else if (na < THRESHOLD) {</pre>
    return intersect(AdjA, na, AdjB, nb);
  } else {
    int ma = na/2;
    int mb = binary search(AdjA[ma], AdjB, nb);
    int intersection 1, intersection r;
    intersection_l = cilk_spawn p_intersect(AdjA, ma, AdjB, mb);
    intersection_r = p_intersect(AdjA+ma, na-ma, AdjB+mb, nb-mb);
    cilk sync;
    return intersection_l + intersection_r;
```

Work: $T_1(n) = T_1(\alpha n) + T_1((1-\alpha)n) + \Theta(\lg n),$ where $1/4 \le \alpha \le 3/4$.

Solution: $T_1(n) = \Theta(n)$.

Parallelism of Parallel Intersect

Work:
$$T_1(n) = \Theta(n)$$

Span:
$$T_{\infty}(n) = \Theta(\lg^2 n)$$

Parallelism:
$$\frac{T_1(n)}{T_{\infty}(n)} = \Theta(n/lg^2n)$$

Parallel Jaccard Similarity V.3

```
Span: T_{\infty}(G) = 2 |g|V| + \max_{u \in V} \{\max\{|g^2(d(u)+d(v))\}\}

\leq 2|g|V| + |g^2(2\Delta)

= \Theta(|g|V| + |g^2\Delta)
```

Parallelism of Jaccard Similarity V.3

Work:
$$T_1(n) = \Theta(VE)$$

Span:
$$T_{\infty}(n) = \Theta(\lg V + \lg^2 \Delta)$$

Parallelism:
$$\frac{T_1(n)}{T_{\infty}(n)} = \Theta(VE/(lg\ V + lg^2\Delta))$$

Another Approach

Observation: For any vertex u, for any pair of vertices $v,w \in Adj[u]$, vertex u contributes 1 to

 $|Adj[v] \cap Adj[w]|$.

Example: Vertex 3 increases by 1 the size of the intersections:

- |Adj[0] ∩ Adj[1]|
- |Adj[0] ∩ Adj[2]|
- |Adj[1] ∩ Adj[2]|

Idea: For each vertex u, iterate over all pairs of vertices in Adj[u] and increment the intersection size for the pair.

Push Algorithm for Jaccard Similarity

```
Work:  T_1(G) = \sum_{u \in V} \sum_{v \in Adj[u]} \sum_{w \in Adj[u]} \Theta(1) 
= \sum_{u \in V} d(u)^2 
\leq \Delta \sum_{u \in V} d(u) 
= O(\Delta E)
```

Hybrid Algorithm for Jaccard Similarity

Idea: Process the low-degree and high-degree vertices separately.

- Use the push algorithm to handle vertices with degree less than \sqrt{E} .
- Use the Θ(VE) algorithm to handle the remaining high-degree vertices.

```
Work: T(G) = O(V + min\{\Delta E, E^{3/2}\})
```

- Partitioning the vertices requires $\Theta(V)$ work.
- Processing low-degree vertices requires $O(min\{\Delta E, E^{3/2}\})$ work.
- At most $O(\sqrt{E})$ vertices can have high degree, i.e., degree at least \sqrt{E} .
- Processing high-degree vertices requires Θ(E^{3/2})
 work.

What About Parallelism?

Take-home puzzles

- How do you parallelize the Push algorithm for Jaccard similarity?
- How do you parallelize the Hybrid algorithm?
- How well do these parallel algorithms work in practice?