我的数学笔记

邱彼郑楠

2024年4月8日

目录

1	同伦	方法	2
	1.1	预备知识	2
		1.1.1 光滑映射	2
		1.1.2 正则值	2
		1.1.3 微分同胚	2
		1.1.4 Sard 定理	3
	1.2	连续同伦算法	3
		1.2.1 Householder 变换	3
	1.3	单个零点的同伦算法	4
	1.4	基本微分方程	4
	1.5	路径跟踪算法	5
	1.6	切向量的计算方法	5

1 同伦方法

1.1 预备知识

1.1.1 光滑映射

定义 1.1. 如果映射 $f: D \subset \mathbb{R}^m \to \mathbb{R}^n$ 在定义域 D 中每一点都具有 r 阶连续偏导数,则称 f 为 C^r 映射; 如果对任一个正整数 r, 映射 f 是 C^r 映射,则称 f 是光滑映射.

- 1. 光滑映射在其定义域内每一点处都可微.
- 2. 如果 $f: X \to Y$, $g: Y \to Z$ 都是光滑映射, 则复合映射 $g \circ f: X \to Z$ 也是光滑的.
- 3. 任意集合上的恒同映射和常值映射都是光滑映射.
- $4. \mathbb{R}^m$ 中的任意紧集上的连续映射都可由光滑映射任意逼近.

定理 1.1. 设 $X \subset \mathbb{R}^m$ 是紧集, $f: X \to \mathbb{R}^n$ 是连续映射, 则对任意 $\varepsilon > 0$, 存在光滑映射 $g: X \to \mathbb{R}^n$, 使得对任意 $x \in X$, 成立

$$||f(x) - g(x)|| < \varepsilon.$$

1.1.2 正则值

定义 1.2. 设 $f: D \subset \mathbb{R}^m \to \mathbb{R}^n$ 是光滑映射, 对 D 中的某一点 \mathbf{x}_0 , 如果 f 在 \mathbf{x}_0 处的 Jacobi 矩阵 $\frac{\partial f}{\partial x}(\mathbf{x}_0)$ 行满秩, 则称 \mathbf{x}_0 是映射 f 的正则点. 若 \mathbf{x}_0 不是映射 f 的正则点, 即映射 f 在 \mathbf{x}_0 点处的 Jacobi 矩阵行降秩, 则称 \mathbf{x}_0 是映射 f 的临界点.

定义 1.3. 设 $y_0 \in \mathbb{R}^n$, 如果所有 $x_0 \in f^{-1}(y_0)$ 都是映射 f 的正则点, 则称 y_0 为映射的正则值; 如果 y_0 不是映射的正则值, 亦即存在 $x_0 \in f^{-1}(y_0)$ 使得 x_0 是 f 的临界点, 则称 y_0 是映射 f 的临界值. 特别地, 如果 $y_0 \notin f(D) = \{f(x) : x \in D\}$, 即 $y_0 \in \mathbb{R}^n \setminus f(D)$, 则 y_0 是映射 f 的正则值.

临界点的像一定是临界值,但正则点的项不一定是正则值. 只要 $f^{-1}(y_0)$ 中有一个临界点, y_0 就是临界值,同时 $f^{-1}(y_0)$ 中可能有多个正则点.

如果 m = n, 使得 Jacobi 行列式 $\frac{\partial f}{\partial x}(x) = 0$ 的点 x 称为 f 的临界点.

1.1.3 微分同胚

定义 1.4. 设 X 和 Y 分别是两个欧式空间中的子集, 如果映射 $f: X \to Y$ 是双射 (即一一对应), 且 f 与 f 的逆映射 f^{-1} 都是光滑映射, 则称 f 是 X 到 Y 的一个微分同胚. 如果这样的同胚存在, 则称 X 与 Y 是微分同胚的.

定义 1.5. 设 X 和 Y 是某两个欧式空间中的子集, 如果 f 给出 X 中点 x_0 的某个邻域到 Y 中 $f(x_0)$ 的某个邻域的微分同胚, 则称映射 $f: X \to Y$ 在 x_0 点处是局部微分同胚. 如果 f 在 X 的每一点处是局部微分同胚的, 则称 f 是 X 到 Y 的一个局部微分同胚.

定理 1.2 (反函数定理). 设 W 和 V 是 \mathbb{R}^n 中的两个开集, $f:W\to V$ 是光滑映射. 若 f 在 $x_0\in W$ 处的导映射 $\mathrm{d}f_{x_0}$ 是 \mathbb{R}^n 到 \mathbb{R}^n 的同构映射, 则 f 在 x_0 处是局部微分同胚.

推论 1.1. 设 W 和 V 是 \mathbb{R}^n 中的开集, $f:W\to V$ 是光滑映射, 则 f 在 $x_0\in W$ 是局部微分同胚的充分必要条件是: $\mathrm{d}f_{x_0}$ 是同构映射.

1.1.4 Sard 定理

定义 1.6. 设 $X \in \mathbb{R}^n$ 的一个子集, 如果对任意 $x \in X$, 存在 x 在 X 的一个邻域 $V \subset X$, 使得 $V \to \mathbb{R}^k$ 的一个开集微分同胚, 则称 $X \in \mathbb{R}^k$ 维光滑流形. 若光滑流形 X 的子集 Y 也是光滑流形, 就说 $Y \in X$ 的子流形.

常见的光滑流形:

- \mathbb{R}^n 是 n 维光滑流形;
- $(0,1) \times \mathbb{R}^n$ 是 n+1 维光滑流形;
- \mathbb{R}^n 中的单位开球 $B(1) = \{x \in \mathbb{R}^n : ||x|| < 1\}$ 和单位球面 $S(1) = \{x \in \mathbb{R}^n : ||x|| = 1\}$ 分别是 n 维光滑流形和 n-1 维光滑流形.

流形之间光滑映射的任一正则值的逆象是一个光滑流形.

定理 1.3 (逆象定理). 设 X 和 Y 分别是 k 维的和 l 维的光滑流形, k > l, $f: X \to Y$ 是光滑映射, 如果 $y \in Y$ 是映射 f 的正则值, 则 $f^{-1}(y)$ 或者是空集, 或者是 X 中的 k-l 维子流形.

逆象定理表明, 正则值的逆象有很好的几何结构. 那么 Y 中有多少点是光滑映射 $f: X \to Y$ 的 正则值?

定理 1.4 (Sard 定理). 设 X 和 Y 是光滑流形, $f: X \to Y$ 是光滑映射. 记 D 是 f 的临界点集,则 f 的临界点集 $f(D) \subset Y$ 在 Y 中的测度为零.

1.2 连续同伦算法

定义 1.7. 设 X 与 Y 是拓扑空间, $f_0, f_1: X \to Y$ 是连续映像. 记 I = [0,1]. 若存在连续映像 $H: X \times I \to Y$,使得对一切 $x \in X$ 成立 $H(x,0) = f_0(x)$ 与 $H(x,1) = f_1(x)$,则称 f_0 同伦于 f_1 ,记为 $f_0 \simeq f_1: X \to Y$. 称映像 H 为从 f_0 到 f_1 的同伦或伦移,记为 $H: f_0 \simeq f_1$ 或 $f_0 \overset{H}{\simeq} f_1$. 若一个映像 $f: X \to Y$ 同伦于常值映像,就说 f 是一个零伦,记为 $f \simeq 0$.

定理 1.5. 记 C(X,Y) 是 X 到 Y 的一切连续映像之集合,则同伦关系在 C(X,Y) 中是一种等价关系.

根据这一定理, 从 X 到 Y 的连续映像集合 C(X,Y) 按同伦关系可分成若干互不相交的等价类, 其中每一类成为一个**同伦类**.

常见同伦:

线性同伦 H(x,t) = tg(x) + (1-t)f(x);

Newton 同伦 H(x,t) =;

1.2.1 Householder 变换

定义 1.8. 对任意单位向量 $u \in \mathbb{R}^n$, 矩阵

$$Q = I - 2\boldsymbol{u}\boldsymbol{u}^{\mathrm{T}}$$

称为关于 u 的 Householder 变换矩阵.

Householder 变换的性质:

- $Qx = x, \forall x \in P$, 即超平面 P 中的任何向量不能反射到其他任何地方.
- Qu = -u.
- Q 是一个正交矩阵, 向量经反射变换 Q 后不改变长度, $\|Qx\|_2 = \|x\|_2$, $\forall x \in \mathbb{R}^n$.
- $Q^2 = I$, 即 Q 是对合的, 从而 $Q^T = Q$.
- Q 有一个 n-1 重特征值 1 和一个单重特征值 -1, 从而有 $\det Q = -1$.

1.3 单个零点的同伦算法

定理 1.6 (广义 Sard 定理, 参数化 Sard 定理). 设 $U \subset \mathbb{R}^m, V \subset \mathbb{R}^q$ 是升集, $\phi: U \times V \to \mathbb{R}^p$ 是 C^r 映射, $r \geq \max\{0, m-p\}$. 若 $0 \in \mathbb{R}^p$ 是 ϕ 的正则值, 则对几乎所有 $a \in V$, 0 是映射 $\phi(\cdot,a):U\to\mathbb{R}^p$ 的正则值.

1.4 基本微分方程

定理 1.7. 设 $\Omega \subset \mathbb{R}^n$ 是一有界开凸集, f 是映 $\bar{\Omega}$ 到其自身上的连续映像, 则 f 在 $\bar{\Omega}$ 中有不动 点 x^* , 即 $f(x^*) = x^*$. 如果进一步假定 $f \in C^2(\Omega)$, 则对几乎每个 $x_0 \in \Omega$, 存在一光滑的简单曲线

$$\{(x(s), t(s)) \in \bar{\Omega} \times [0, 1] : s \in [0, S)\},\$$

这里 S 是一正实数或 $+\infty$, 使得

(i) $(x(s), t(s)) \in H^{-1}(0)$, 其中

$$H(x,t) = x - ((1-t)x_0 + tf(x)),$$

且 $(x(0), t(0)) = (\boldsymbol{x}_0, 0);$

- (ii) $\lim_{s \to S} t(s) = 1$, 因而 $\lim_{s \to S} (f(x(s)) x(s)) = 0$; (iii) (x(s), t(s)) 满足代数微分方程初值问题:

$$\begin{cases} H_x \frac{\mathrm{d}x}{\mathrm{d}s} + H_t \frac{\mathrm{d}t}{\mathrm{d}s} = 0, \\ \left\| \frac{\mathrm{d}x}{\mathrm{d}s} \right\|_2^2 + \left(\frac{\mathrm{d}t}{\mathrm{d}s} \right)^2 = 1, \\ x(0) = \mathbf{x}_0, \\ t(0) = 0. \end{cases}$$

$$(1)$$

该定理的第一部分是 Brouwer 不动点定理, 即:

定理 1.8. 设 Ω 为 \mathbb{R}^n 中的有界闭凸集, 映像 $F:\Omega\to\Omega$ 连续. 则 F 在 Ω 中必有不动点, 即 必有 $x^* \in \Omega$, 使得 $F(x^*) = x^*$.

后半部分可以看成较弱的 Brouwer 不动点定理的构造型证明. 附加假设 $f \in C^2(\Omega)$ 较弱是因 为实际应用中非光滑算子并不多.

任何求解初值问题 (1) 的可靠方法都可以用来求解不动点问题 x = f(x). 同伦延拓法的一个较 重要的分支实际上是为了求解(1)而设计的算法.

微分方程 (1) 确定了 $\left(\frac{\mathrm{d}x}{\mathrm{d}s},\frac{\mathrm{d}t}{\mathrm{d}s}\right)$ 的两个解向量集 (根据其方向相反而区分), 但在计算上是麻烦 的. 下述定理解决了这一麻烦:

定理 1.9 (基本微分方程). 设 $H: \bar{\Omega} \times [0,1] \to \mathbb{R}^n$ 连续可微, $\Omega \subset \mathbb{R}^n$ 为开集. 假定

(i) 0 是 H 的正则值;

- (*ii*) $H(x_0, 0) = 0$ 且 $x_0 \in \Omega$ 是 $H(\cdot, 0)$ 的一个正则点;
- (iii) $\{(\mathbf{x}(s), t(s)) \in \bar{\Omega} \times [0, 1] : s \in [0, S)\} \subset H^{-1}(\mathbf{0})$ 是以弧长为参数的同伦道路, 沐足初始条件 $(\mathbf{x}(0), t(0)) = (\mathbf{x}_0, 0)$.

则同伦道路 (x(s),t(s)) 由以下微分方程初值问题所确定:

$$\begin{cases} \frac{\mathrm{d}x_i}{\mathrm{d}s} = (-1)^i C(\boldsymbol{x}, t) \cdot \det(\mathrm{DH}_{-i}(\boldsymbol{x}, t)), & i = 1, 2, \dots, n, \\ \frac{\mathrm{d}t}{\mathrm{d}s} = (-1)^{n+1} C(\boldsymbol{x}, t) \cdot \det(H_{\boldsymbol{x}}(\boldsymbol{x}, t)), \\ (\boldsymbol{x}(0), t(0)) = (\boldsymbol{x}_0, 0), \end{cases}$$

这里

$$C(x,t) = \frac{(-1)^{n+1} \operatorname{sgn}(\det(H_x(x_0,0)))}{\sqrt{\sum_{i=1}^{n+1} (\det(DH_{-i}))^2}}$$

其中 sgn 为符号函数.

1.5 路径跟踪算法

- 1. 初始化步. 确定以下三个量:
 - 初始点 $(x,t)_0 = (x_0,0)$;
 - 初始步长 δ;
 - 容许误差 ε.
- 2. **预估步**. 计算 $(x,t)_0$ 处的切向量 $\left(\frac{\mathrm{d}x}{\mathrm{d}s},\frac{\mathrm{d}t}{\mathrm{d}s}\right)$, 并且用 Euler 法计算一步得

$$(\boldsymbol{x},t)_1 = (\boldsymbol{x},t)_0 + \delta \left(\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}s}, \frac{\mathrm{d}t}{\mathrm{d}s}\right).$$

如果 $(x,t)_1$ 中的 t 分量大于 1, 则调整步长 δ 使预估在超平面 t=1 上.

- 3. **校正步**. 以 $(\boldsymbol{x},t)_1$ 为初值, 用迭代法产生一个序列 $\{(\boldsymbol{x},t)_i\}_{i=1}^k$, 使 $(\boldsymbol{x},t)_* = (\boldsymbol{x},t)_k$ 为 $H^{-1}(\boldsymbol{0})$ 中点的近似且其误差小于 ε . 如果迭代法不收敛, 则缩小步长转回预估步.
- 4. **调换步**. 根据某判别准则, 若 $(\boldsymbol{x},t)_*$ 已满足要求, 则置 $(\boldsymbol{x},t)_0 = (\boldsymbol{x},t)_*$, 并调整步长 δ , 否则缩 小步长转预估步.
- 5. **调换步**. 如果 $(x,t)_*$ 的 t 分量等于 1, 停止, 这时 $(x,t)_*$ 的 x 分量是 f(x) = 0 的一个近似解. 若 $(x,t)_*$ 的 t 分量小于 1, 转预估步.

1.6 切向量的计算方法