- 1. Pentru ce valoare $a \in \mathbb{R}$ vectorii $\vec{u} = 3\vec{i} + a\vec{j}$ şi $\vec{v} = (a+1)\vec{i} + a\vec{j}$ sunt perpendiculari? (5 pct.) a) a = 0; b) $a = \frac{1}{2}$; c) a = -1; d) a = 5; e) nu există o astfel de valoare; f) a = -2, 5.
- 2. Ecuația dreptei care trece prin punctele A(1,2) și B(3,5) este (5 pct.)

a)
$$3x + y + 2 = 0$$
; b) $2x - 3y + 1 = 0$; c) $2x - 3y + 2 = 0$; d) $3x - 2y + 1 = 0$; e) $x - 2y + 1 = 0$; f) $3x - 4y + 2 = 0$.

- 3. Fie vectorii $\vec{a} = \vec{i} + \vec{j}$, $\vec{b} = \vec{i} \vec{j}$ şi $\vec{u} = 6\vec{i} + 2\vec{j}$. Să se determine $p, q \in \mathbb{R}$ astfel încât $\vec{u} = p\vec{a} + q\vec{b}$. (5 pct.) a) p = -3, q = -2; b) p = 0, q = 0; c) p = 4, q = 2; d) p = 7, q = 1; e) p = 3, q = 3; f) p = 1, q = -2.
- 4. Între lungimile laturilor unui triunghi ABC există relația $a^2 = b^2 + c^2$. Atunci, măsura unghiului \hat{A} este (5 pct.)
 - a) 90°; b) 60°; c) 120°; d) 45°; e) 210°; f) 30°.
- 5. Dacă $A = \{x \in [0, 2\pi] \mid \cos x = -2\}$, atunci (5 pct.)

a)
$$A = \{\pi\}$$
; b) $A = \{\frac{\pi}{4}, \frac{7\pi}{4}\}$; c) $A = \emptyset$; d) $A = \{\frac{\pi}{2}, \frac{3\pi}{2}\}$; e) $A = \{0, 2\pi\}$; f) $A = \{\frac{\pi}{3}, \frac{5\pi}{3}\}$.

- 6. Să se calculeze $\sin x + \cos x$ pentru $x = \frac{3\pi}{4}$. (5 pct.)
 - a) -2; b) 1; c) 0; d) -1; e) 2; f) $-\sqrt{2}$.
- 7. Să se determine $\lambda \in \mathbb{R}$ pentru care vectorii $\vec{u} = (\lambda 1)\vec{i} 3\vec{j}$ și $\vec{v} = \lambda \vec{i} + \vec{j}$ sunt coliniari. (5 pct.) a) $\frac{1}{4}$; b) $-\frac{1}{2}$; c) 0; d) 2; e) 1; f) 3.
- 8. Forma trigonometrică a numărului complex z = i este (5 pct.)

a)
$$\cos\left(-\frac{\pi}{4}\right) + i \sin\left(-\frac{\pi}{4}\right)$$
; b) $\cos\left(-\frac{\pi}{2}\right) + \sin\left(-\frac{\pi}{2}\right)$; c) $\cos\frac{\pi}{4} + i \sin\frac{\pi}{4}$; d) $\cos\frac{\pi}{3} + i \sin\frac{\pi}{3}$; e) $\cos\pi + i \sin\pi$; f) $\cos\frac{\pi}{2} + i \sin\frac{\pi}{2}$.

- 9. Fie, într-un reper cartezian, punctele M(0,3), N(1,1), P(-1,2). Centrul de greutate al triunghiului MNP este (5 pct.)
 - a) (-1,2); b) (0,2); c) (1,1); d) (2,2); e) (2,0); f) (0,6).
- 10. Produsul $\cos 30^{\circ} \cdot \cos 60^{\circ} \cdot \cos 90^{\circ}$ este egal cu (5 pct.)

a)
$$-1$$
; b) $\frac{\sqrt{3}}{2}$; c) $\frac{1}{2}$; d) 1; e) $\sqrt{2}$; f) 0.

- 11. Ştiind că $\sin x = 1$, să se calculeze $\cos x$. (5 pct.)
 - a) $\frac{2}{3}$; b) -1; c) 1; d) $\frac{1}{\sqrt{2}}$; e) 0; f) $\frac{3}{2}$.
- 12. Perimetrul unui triunghi ABC este 24, iar lungimile laturilor sunt proporționale cu numerele 3,4,5. Să se determine lungimile laturilor acestui triunghi. (5 pct.)

a)
$$\left\{\frac{11}{2}, 11, \frac{15}{2}\right\}$$
; b) $\{7, 8, 9\}$; c) $\{3, 4, 5\}$; d) $\{9, 12, 15\}$; e) $\{6, 7, 11\}$; f) $\{6, 8, 10\}$.

- 13. Fie ABC un triunghi echilateral de arie $\sqrt{3}$. Latura triunghiului este (5 pct.)
 - a) 3; b) 5; c) 2; d) 1; e) $-\sqrt{3}$; f) $\frac{3}{2}$.
- 14. Să se calculeze modulul numărului complex z = 1 + i. (5 pct.)

a)
$$|z| = \sqrt{2}$$
; b) $|z| = 1 + \sqrt{2}$; c) $|z| = -1$; d) $|z| = 0$; e) $|z| = 1$; f) $|z| = i$.

- 15. Unul din unghiurile unui trapez isoscel de înălțime $\sqrt{2}$ are măsura de 45°. Atunci, suma lungimilor laturilor neparalele este (5 pct.)
 - a) $2 + \sqrt{2}$; b) 4; c) 2; d) 1; e) $2\sqrt{2}$; f) $\sqrt{2}$.
- 16. Dreptele y = x, y = -x şi 2x + 3y = 0 se taie în punctele **(5 pct.)** a) (-1, -1), (-1, 2), (1, -1); b) (0, -1), (1, 0), (1, 1); c) (0, 1), (-1, 0); d) (0, 1), (1, 0), (1, 1); e) (2, 2); f) (0, 0).

- 17. În planul complex se dă un paralelogram ABCD. Știind că afixele punctelor A,B,C sunt, respectiv, $z_A=1,\,z_B=-1,\,z_C=\mathrm{i}$ să se determine afixul punctului D. (5 pct.)
 - a) $z_D = 2 + i$; b) $z_D = 1 + 3i$; c) $z_D = 1 i$; d) $z_D = 1 + i$; e) $z_D = 3 + 2i$; f) $z_D = 0$.
- 18. Care este mulțimea valorilor pentru tga, dacă sin $a = \frac{1}{2}$? (5 pct.)
 - a) $\{-1\}$; b) $\left\{\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right\}$; c) $\{1\}$; d) $\left\{\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}\right\}$; e) $\{0\}$; f) $\{2,3\}$.