Introduction to Machine Learning

Random Forest Proximities

Learning goals

- Understand how RF can be used to define proximities of observations
- Know how proximities can be used for visualization, outlier detection and imputation

PROXIMITIES

RFs have built-in similarity measure for pairs of observations:

ID	Color	Form	Length
1	yellow	oblong	14
Tree	×	Tree 2	Tree 3

ID	Color	Form	Length
2	brown	oblong	10
Tree	Tro	ee 2	Tree 3

- After training, push all observations through each tree
- To calculate $prox(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$: Percentage of how often both points are placed in **same terminal node of a tree**
- Here: $prox(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = 2/3$
- All proximities are arranged in symmetric $n \times n$ matrix

VISUALIZING PROXIMITIES

Can visualize the proximity matrix by projecting it into lower-dim. space, e.g., via multidim. scaling (might have to turn proximities into distances)

- Samples from same class usually form identifiable clusters
- Offers some error-inspection, e.g., Adelie has high within-class variance and has overlaps with other classes

OUTLIER DETECTION

- Can also be used to locate outliers
- Or mislabeled points, especially in manually labeled data sets

IMPUTING MISSING DATA

ID	Color	Form	Origin	Length
1	yellow	round	domestic	14
2	brown	oblong	imported	???
3	brown	oblong	imported	19
4	???	round	domestic	14

- Replace missings per feature by median (of available values)
- 2 Compute proximities (NB: data has changed)
- $oldsymbol{3}$ Replace missings in $\mathbf{x}^{(i)}$ by weighted average of non-missings; weights proportional to proximities

Steps 2 and 3 are iterated a few times.

IMPUTING MISSING DATA

ID	Color	Form	Origin	Length
1	yellow	round	domestic	14
2	brown	oblong	imported	14
3	brown	oblong	imported	19
4	brown	round	domestic	14

- Replace missings per feature by median (of available values)
- 2 Compute proximities (NB: data has changed)
- 3 Replace missings in $\mathbf{x}^{(i)}$ by weighted average of non-missings; weights proportional to proximities

Steps 2 and 3 are iterated a few times.

IMPUTING MISSING DATA

ID	Color	Form	Origin	Length	
1	yellow	round	domestic	14	
2	brown	oblong	imported	17	weighted average using proximities
3	brown	oblong	imported	19	
4	brown	round	domestic	14	

- Replace missings per feature by median (of available values)
- 2 Compute proximities (NB: data has changed)
- 3 Replace missings in $\mathbf{x}^{(i)}$ by weighted average of non-missings; weights proportional to proximities

Steps 2 and 3 are iterated a few times.