Algorytm genetyczny - problem plecakowy

Szymon Dopieralski 6548

Opis algorytmu

Celem problemu plecakowego jest odnalezienie odpowiedniego balansu pomiędzy wartością przedmiotów, a ich wagą. Wyobraźmy sobie, że posiadamy plecak o udźwigu 20 kg i musimy do niego zmieścić jak najwięcej przedmiotów o jak największej wartości. Algorytm genetyczny ma za zadanie dopasowywać jak najbardziej optymalny zestaw przedmiotów, a gdy zdarzy się że przekroczy on maksymalną wagę, wyrzucamy z niego losowy element.

Dane do zadania

nr przedmiotu	1	2	3	4	5	6	7	8	9	10
waga	12	4	12	5	8	15	18	10	8	9
wartość	6	15	10	14	6	12	5	8	13	6

Waga maksymalna: 59

Pk - współczynnik krzyżowania = 0.8 **Pm** - współczynnik mutacji = 0.2

Liczba chromosomów: 6

1. Pula początkowa chromosomów - chromosomy tworzymy na 10 bitach, po jednym dla każdego elementu.

 $Ch_1 = 1110110100$

 $Ch_2 = 1100001010$

 $Ch_3 = 0011011111$

 $Ch_4 = 1011000110$

 $Ch_5 = 0100011110$

 $Ch_6 = 1000110101$

2. Obliczenie wartości funkcji przystosowania - suma wartości elementów Tabela z wartościami

Tabola 2 Waltoodaliii											
Chromosom	El. 1	El. 2	EI. 3	El. 4	El. 5	EI. 6	El. 7	EI. 8	El. 9	El. 10	Suma
F(Ch₁)	6	15	10	0	6	12	0	8	0	0	57
F(Ch ₂)	6	15	0	0	0	0	5	0	13	0	39
F(Ch ₃)	0	0	10	14	0	12	5	8	13	6	68
F(Ch ₄)	6	0	10	14	0	0	0	8	13	0	51
F(Ch ₅)	0	15	0	0	0	12	5	8	13	0	53
F(Ch ₆)	6	0	0	0	6	12	0	8	0	6	38

Tabela z waga

Chromosom	El. 1	El. 2	El. 3	El. 4	El. 5	El. 6	El. 7	El. 8	El. 9	El. 10	Suma
F(Ch₁)	12	4	12	0	8	15	0	10	0	0	61
F(Ch ₂)	12	4	0	0	0	0	18	0	8	0	42
F(Ch ₃)	0	0	12	5	0	15	18	10	8	9	77
F(Ch ₄)	12	0	12	5	0	0	0	10	8	0	47
F(Ch ₅)	0	4	0	0	0	15	18	10	8	0	55
F(Ch ₆)	12	0	0	0	8	15	0	10	0	9	54

Sprawdzamy czy dla kolejnych chromosomów nie została przekroczona waga plecaka. Dla chromosomu Ch_1 i Ch_3 została przekroczona waga maksymalna. Musimy wyrzucić

losowy element z plecaka. $Ch_1 = 1110110100$

 $Ch_3 = 0011011111$

Sprawdzamy wagę:

 Ch_1 12 + 4 + 12 + 8 + 15 = 51

Ch₃ 12 + 15 + 18 + 10 + 8 + 9 = 72

Waga Ch₁ jest prawidłowa, ponieważ 51 < 59.

Waga Ch₃ jest nieprawidłowa, ponieważ 72 > 59. Wyrzucamy kolejny losowy element.

 $Ch_3 = 0010011111$

Sprawdzamy:

 Ch_3 12 + 18 + 10 + 8 + 9 = 57

Waga Ch₃ jest prawidłowa, ponieważ 57 < 59.

Obliczamy wartość:

 Ch_1 6 + 15 + 10 + 6 + 12 = 49

Ch₃ 10 + 5 + 5 + 13 + 6 = 39

Pula po weryfikacji:

 $Ch_1 = 1110110000$

 $Ch_2 = 1100001010$

 $Ch_3 = 0010001111$

 $Ch_4 = 1011000110$

 $Ch_5 = 0100011110$

 $Ch_6 = 1000110101$

3. Selekcja chromosomów metodą koła ruletki - wybranie najlepiej przystosowanych chromosomów do naszego zadania.

Określamy procentowy udział wartości funkcji przystosowania na kole ruletki.

Suma wartości wszystkich funkcji przystosowania:

$$49 + 39 + 39 + 51 + 53 + 38 = 269$$

Wartość procentowa dla kolejnych funkcji przystosowania:

$$F(Ch_1)$$
 % = 49 / 269 * 100% = 18.21 %

$$F(Ch_2)$$
 % = 39 / 269 * 100% = 14.5 %

$$F(Ch_3)$$
 % = 39 / 269 * 100% = 14.5 %

$$F(Ch_5)$$
 % = 53 / 269 * 100% = 19.7 %

$$F(Ch_6)$$
 % = 38 / 269 * 100% = 14.13 %

Koło ruletki

Pula po losowaniu:

 $Ch_1 \rightarrow Ch_5 = 0100011110$ $Ch_2 \rightarrow Ch_6 = 1000110101$ $Ch_3 \rightarrow Ch_4 = 1011000110$ $Ch_4 \rightarrow Ch_5 = 0100011110$ $Ch_5 \rightarrow Ch_5 = 0100011110$ $Ch_6 \rightarrow Ch_2 = 1100001010$

4. Operacje genetyczne

Krzyżowanie - dobieramy chromosomy w pary. Dla każdej pary losujemy Pk oraz locus (od 1 do n-1) dla każdej pary.

Pk = 0.4 locus = 9 $Ch_1 = 0100011110$ -> $Ch_2 = 1000110101$ ->

 $Ch_1 = 0100011111$ $Ch_2 = 1000110100$

Pk = 0.2 **locus** = 7

 $Ch_3 = 1011000110$ -> $Ch_3 = 1011000110$ $Ch_4 = 0100011110$ -> $Ch_4 = 0100011110$

Pk = 0.7 **locus** = 5

 $Ch_5 = 0100011110$ -> $Ch_5 = 0100001010$ $Ch_6 = 1100001010$ -> $Ch_6 = 1100011110$

Pula po krzyżowaniu:

 $Ch_1 = 0100011111$ $Ch_2 = 1000110100$ $Ch_3 = 1011000110$

 $Ch_4 = 0100011110$

 $Ch_5 = 0100001010$

 $Ch_6 = 1100011110$

Mutacja - dla każdego chromosomu losujemy **Pm** oraz **locus** (od 1 do n)

$Ch_1 = 0100011111$	Pm = 0.87	locus = 4	brak mutacji
$Ch_2 = 1000110100$	Pm = 0.17	locus = 5	mutacja
$Ch_3 = 1011000110$	Pm = 0.32	locus = 1	brak mutacji
$Ch_4 = 0100011110$	Pm = 0.02	locus = 1	mutacja
$Ch_5 = 0100001010$	Pm = 0.12	locus = 6	mutacja
$Ch_6 = 1100011110$	Pm = 0.98	locus = 6	brak mutacji

Pula po mutacji:

 $Ch_1 = 0100011111$ $Ch_2 = 1000010100$ $Ch_3 = 1011000110$ $Ch_4 = 1100011110$ $Ch_5 = 0100011010$ $Ch_6 = 1100011110$

Obliczenie wartości funkcji przystosowania - wartości plecaka

Tabela z wartościami

Chromosom	El. 1	El. 2	El. 3	El. 4	El. 5	El. 6	El. 7	El. 8	El. 9	El. 10	Suma
F(Ch₁)	0	15	0	0	0	12	5	8	13	6	59
F(Ch ₂)	6	0	0	0	0	12	0	8	0	0	26
F(Ch ₃)	6	0	10	14	0	0	0	8	13	0	51
F(Ch ₄)	6	15	0	0	0	12	5	8	13	0	59
F(Ch ₅)	0	15	0	0	0	12	5	0	13	0	45
F(Ch ₆)	6	15	0	0	0	12	5	8	13	0	59

Suma funkcji przystosowania: 299

Suma większa oznacza lepszą populację chromosomów.

Tabela z waga

Tabela 2 Wagą												
Chromosom	El. 1	El. 2	El. 3	El. 4	El. 5	El. 6	El. 7	EI. 8	El. 9	El. 10	Suma	
F(Ch₁)	0	4	0	0	0	15	18	10	8	9	64	
F(Ch ₂)	12	0	0	0	0	15	0	10	0	0	37	
F(Ch ₃)	12	0	12	5	0	0	0	10	8	0	47	
F(Ch ₄)	12	4	0	0	0	15	18	10	8	0	67	
F(Ch ₅)	0	4	0	0	0	15	18	0	8	0	45	
F(Ch ₆)	12	4	0	0	0	15	18	10	8	0	67	

Dla chromosomu Ch₁, Ch₄ i Ch₆ została przekroczona waga maksymalna. Musimy wyrzucić losowy element z plecaka.

 $Ch_1 = 0100011111$

 $Ch_4 = 1100011110$

 $Ch_6 = 1100011110$

Sprawdzamy wagę:

 Ch_1 4 + 15 + 10 + 8 + 9 = 46

 Ch_4 12 + 4 + 18 + 10 + 8 = 52

 Ch_6 4 + 15 + 18 + 10 + 8 = 55

Waga Ch₁ jest prawidłowa, ponieważ 46 < 59.

Waga Ch₄ jest prawidłowa, ponieważ 52 < 59.

Waga Ch₆ jest prawidłowa, ponieważ 55 < 59.

Pula po weryfikacji:

 $Ch_1 = 0100010111$

Ch₂ = 1000010100

 $Ch_3 = 1011000110$

 $Ch_4 = 1100001110$

 $Ch_5 = 0100011010$

 $Ch_6 = 0100011110$