Short Syllabus

BCSE332L Deep Learning (3-0-0-3)

Neural Networks Basics - Deep Neural Networks - Forward and Back Propagation; Deep Convolutional Models - ResNet, AlexNet, InceptionNet; Mini-batch Gradient Descent - Exponential Weighted Averages - Hyperparameter tuning - Batch Normalization; Recurrent Neural Networks - Bidirectional RNN - BERT; Recursive Neural Networks - Echo State Networks - Long Short-Term Memory; Transfer Learning - Generative Adversarial Network-Region based CNN - Fast RCNN - You Only Look Once - Single shot detector; Deep Reinforcement Learning - Deep Q-Learning - Model based Reinforcement Learning.

BCSE332L Pre-requisit	е	Course Title	L T P C				
Pre-requisit		Deep Learning	3 0 0 3				
	:e	NIL	Syllabus version				
1.0							
Course Objectives							
		najor deep neural network frameworks and issue	s in basic neural				
netwo	-						
2. 10 sc	olve rea	al world applications using Deep learning					
Course Outcomes							
		ourse, student will be able to:					
		the methods and terminologies involved in dee	n neural network				
		the learning methods used in Deep-nets.	p nodiai notwork				
		apply suitable deep learning approaches for given app	olication.				
	-	develop custom Deep-nets for human intuitive applicat					
	-	est procedures to assess the efficiency of the developed					
5. To understand the need for Reinforcement learning in real – time problems.							
		-					
		uction to neural networks and deep neural network					
		asics - Functions in Neural networks - Activation funct					
		ation - Classification and Clustering problems - Deep					
		works – Activation Functions – Gradient Descent – E					
		orks – Forward and Back Propagation – Parameters - F					
Module:2	Convo	lution neural networks	6 hours				
Foundations	of Co	nvolutional Neural Networks - CNN operations - Arc	chitecture - Simple				
		rk – Deep Convolutional Models – ResNet, AlexNet	-				
others		·	·				
Module:3	Improv	ring deep neural networks	8 hours				
Mini-batch (Gradier	nt Descent – Exponential Weighted Averages – Gra	dient Descent with				
		ISProp and Adam Optimization – Hyperparamete					
		oftmax Regression – Softmax classifier – Deep Learn	•				
		- Under-fitting Vs Over-fitting	gaaa				
		rent networks	6 hours				
		letworks - Bidirectional RNNs, Encoder, Decoder, Sequ					
		ep Recurrent Networks, Auto encoders - Bidi					
Representat	ions fro	om Transformers (BERT)					
Module:5	Recur	sive neural networks	6 hours				
	Long-Term Dependencies - Echo State Networks - Long Short-Term Memory and Other						
			Memory and Othe				
Gated RNNs	s - Öpti	mization for Long-Term Dependencies - Explicit Memo	Memory and Othe				
Gated RNNs Module:6	s - Öpti Advan	mization for Long-Term Dependencies - Explicit Memo ced Neural networks	Memory and Otherry 6 hours				
Gated RNNs Module:6 Transfer Lea	s - Öpti Advan arning -	mization for Long-Term Dependencies - Explicit Memo ced Neural networks - Transfer Learning Models – Generative Adversarial N	Memory and Otherry 6 hours letwork and their				
Gated RNNs Module:6 Transfer Leavariants – Re	s - Öpti Advan arning - egion b	mization for Long-Term Dependencies - Explicit Memoced Neural networks - Transfer Learning Models – Generative Adversarial Neased CNN – Fast RCNN - You Only Look Once – Sing	Memory and Otherry 6 hours letwork and their gle shot detector				
Gated RNNs Module:6 Transfer Lea variants – Ro Module:7	s - Öpti Advan arning - egion b Deep r	mization for Long-Term Dependencies - Explicit Memoced Neural networks - Transfer Learning Models – Generative Adversarial Neased CNN – Fast RCNN - You Only Look Once – Singerinforcement learning	Memory and Other ry 6 hours letwork and their gle shot detector 5 hours				
Gated RNNs Module:6 Transfer Lea variants – Re Module:7 Deep Reinf	Advan Advan arning - egion b Deep r orceme	mization for Long-Term Dependencies - Explicit Memoced Neural networks - Transfer Learning Models – Generative Adversarial Neased CNN – Fast RCNN - You Only Look Once – Singreinforcement learning - Teinforcement learning – Deep Q-Learning –	Memory and Otherry 6 hours letwork and their gle shot detector 5 hours Policy Gradients				
Gated RNNs Module:6 Transfer Leavariants – Ro Module:7 Deep Reinf Advantage	Advan Advan Arning - egion b Deep r Forcement Actor (mization for Long-Term Dependencies - Explicit Memoced Neural networks - Transfer Learning Models - Generative Adversarial Neased CNN - Fast RCNN - You Only Look Once - Single inforcement learning ent Learning - Q-Learning - Deep Q-Learning - Critic (A2C) and Asynchronous Advantage Actor Crit	Memory and Other ry 6 hours letwork and their gle shot detector 5 hours Policy Gradients				
Gated RNNs Module:6 Transfer Lea variants – Ro Module:7 Deep Reinf Advantage based Reinf	Advanarning - egion beorement forcement Actor Corcement	mization for Long-Term Dependencies - Explicit Memoced Neural networks - Transfer Learning Models - Generative Adversarial Neased CNN - Fast RCNN - You Only Look Once - Single inforcement learning ent Learning - Q-Learning - Deep Q-Learning - Critic (A2C) and Asynchronous Advantage Actor Critic int Learning - Challenges	Memory and Other ry 6 hours letwork and their gle shot detector 5 hours Policy Gradients ic (A3C) – Mode				
Gated RNNs Module:6 Transfer Lea variants – Ro Module:7 Deep Reinf Advantage based Reinf	Advanarning - egion beorement forcement Actor Corcement	mization for Long-Term Dependencies - Explicit Memoced Neural networks - Transfer Learning Models - Generative Adversarial Neased CNN - Fast RCNN - You Only Look Once - Single inforcement learning ent Learning - Q-Learning - Deep Q-Learning - Critic (A2C) and Asynchronous Advantage Actor Crit	Memory and Other ry 6 hours letwork and their gle shot detector 5 hours Policy Gradients ic (A3C) – Mode				
Gated RNNs Module:6 Transfer Lea variants – Ro Module:7 Deep Reinf Advantage based Reinf	Advanarning - egion beorement forcement Actor Corcement	mization for Long-Term Dependencies - Explicit Memoced Neural networks - Transfer Learning Models - Generative Adversarial Neased CNN - Fast RCNN - You Only Look Once - Single inforcement learning ent Learning - Q-Learning - Deep Q-Learning - Critic (A2C) and Asynchronous Advantage Actor Critic int Learning - Challenges	Memory and Other ry 6 hours letwork and their gle shot detector 5 hours Policy Gradients ic (A3C) – Mode				
Gated RNNs Module:6 Transfer Lea variants – Ro Module:7 Deep Reinf Advantage based Reinf	Advanarning - egion beorement forcement Actor Corcement	mization for Long-Term Dependencies - Explicit Memoced Neural networks - Transfer Learning Models - Generative Adversarial Neased CNN - Fast RCNN - You Only Look Once - Single inforcement learning ent Learning - Q-Learning - Deep Q-Learning - Critic (A2C) and Asynchronous Advantage Actor Critic int Learning - Challenges	Memory and Other ry 6 hours letwork and their gle shot detector 5 hours Policy Gradients ic (A3C) – Mode 1 hours				

Text Book(s)						
1.	Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017					
2	Neural Networks and Deep Learning, Michael Nielsen,, Determination Press					
Reference Books						
1.	Deep Learning Step by Step with Python, N D Lewis, 2016					
2.	Deep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017					
3	Applied Deep Learning. A Case-based Approach to Understanding Deep Neural Networks, Umberto Michelucci, Apress, 2018.					
4	Deep Learning with TensorFlow: Explore neural networks with Python, Giancarlo					
	Zaccone, Md. RezaulKarim, Ahmed Menshawy, Packt Publisher, 2017.					
Mode of Evaluation: CAT / Written Assignment / Quiz / FAT						
Red	commended by Board of Studies	09-05-2022				
App	proved by Academic Council	No. 66	Date	16-06-2022		