AARHUS SCHOOL OF ENGINEERING

SUNDHEDSTEKNOLOGI 4. SEMESTERPROJEKT ST4MTV

Medicinsk Teknologi Vurdering

af Virtuel hjemmepleje i Favrskov Kommune

Gruppe med lemmer

Lise Skytte Brodersen (201407432)

Sara Sofie Kirkeby ()

Jakob Degn Christensen (201408532)

Jeppe Tinghøj Honoré ()

Melissa Karina Døssing Christensen ()

Mohamed Hussein Qoosh ()

Vejleder

Uddannelsesansvarlig

Bente Besenbacher

Aarhus Universitet

Lektor

Jesper Rosholm Tørresø

Aarhus Universitet

Abstract

Background

Materials and methods

Results

Discussion

Conclusion

Resume

 $Det\ samme\ som\ Abstract$

Baggrund

Materiale og metoder

Resultater

Diskussion

Konklusion

Forord

Forkortelser

Indholdsfortegnelse

Abstra		1
	Background	i
	Materials and methods	i
	Results	i
	Discussion	i
	Conclusion	i
Resum	ne	ii
	Baggrund	ii
	Materiale og metoder	ii
	Resultater	ii
	Diskussion	ii
	Konklusion	ii
Forord		iii
Forkor	telser	iv
Kapite	el 1 Indledning	1
1.1	Baggrund	1
1.2	Formål	2
1.3	Fokuserede spørgsmål	2
Kapite	el 2 Metoder	4
-	Projektorganisation	4
Kapite	el 3 Teknologi	5
3.1	Indledning	5
3.2	Metoder	5
3.3	Resultater	5
	3.3.1 Appinux	6
	3.3.2 Infrastruktur	7
	3.3.3 Sikkerhed	8
3.4	Diskussion	9
	3.4.1 Appinux på netværket	9
	3.4.2 Opfyldning af sikkerhedskrav	10
	3.4.3 Implementeringsprocessen	10
	•	10
3.5		11
Kanite	ol 4 Borger	12

4.1	Indledning	12
	4.1.1 Fokuserede spørgsmål	12
4.2	Målgruppe	12
4.3	Metode	13
4.4	Resultater	13
	4.4.1 Tilfredshed	13
	4.4.2 Tryghed	15
4.5	Diskussion	16
Kapite	l 5 Organisation	17
5.1	Indledning	17
5.2	Case	17
5.3	Metode	18
5.4	Resultater	18
	5.4.1 Ændringer i arbejdsgange	18
	5.4.2 Implementering	19
5.5	Diskussion	20
5.6	Delkonklusion	21
Kapite	l 6 Økonomi	22
6.1	Indledning	22
6.2	Metode	22
6.3	Resultater	22
	6.3.1 Omkostninger ved Telesundhed (Appinux)	22
6.4	Diskussion	25
6.5	Konklusion	25
Kapite	l 7 Konklusion	26
Kapite	l 8 Perspektivering	27
Refere	ncer	28

Indledning

1.1 Baggrund

Den demografiske udvikling er en kendt og omtalt faktor i store dele af verden og det danske samfundet er også under pres. Vi bliver flere ældre og færre erhvervsaktive [1]. Udviklingen gør, at der er færre i den arbejdsdygtige aldre til at forsørge de flere udenfor denne aldre. På sigt vil det skabe store problemer, særligt indenfor sundheds- og plejesektoren både samfundsøkonomisk og ressourcemæssigt. Med disse demografiske samt økonomiske udfordringer Danmark står overfor, er det nødvendigt at tænke i andre baner. Digitaliseringsstyrelsen mener, at sundhed skal leveres på nye mere smarte og teknologiske måder [2].

Telemedicin er derfor for alvor kommet på dagsorden hos regeringen, regionerne og kommunerne. I 2012 udarbejdede disse parter en ambitiøs national handlingsplan for udbredelsen af telemedicin i Danmark [2] [3].

Digitaliseringsstyrelsen er ved at lave en ny fællesoffentlig digitaliseringsstrategi frem mod 2020, hvor datadeling, datasikkerhed og it-infrastruktur er temaer [4]. Denne strategi skal understøtte de teknologiske muligheder for smartere og mere sikker deling af data mellem borger og offentlige sektor [5].

Kommunernes strategi er fokuseret bredere - nemlig på telesundhed og ikke telemedicin.

Telemedicin er en underbegreb indenfor telesundhed, hvor telesundhed indgår i det overordnede begreb velfærdsteknologi [6]. Forholdet mellem de tre begreber er illustreret i figur 1.3.

Figur 1.1: Forholdet mellem velfærdsteknologi, telesundhed og telemedicin [6].

I "Kommunernes strategi for telesundhed" [6] defineres telesundhed som brugen af

informations- og kommunikationsteknologi til at understøtte forebyggende, behandlende eller rehabiliterende aktiviteter over afstand. Hvorimod telemedicin er mere fokuseret på selve diagnosen og behandlingen, som borgeren har behov for. Telesundhed fokuserer på borgernes helbred, inden de bliver patienter [6] [7].

Kommunernes mål med telesundhed er at gøre borgerne mere selvstændige, uafhængige af tid og sted og øge deres følelsen af at kunne mestre eget liv. Telesundhed skal som minimum kunne levere ydelserne af samme kvalitet som før [6].

Kommunerne mener, at telesundhedsløsningerne har et stort potentiale og kan være med til at varetage forskellige kommunale opgaver. I hjemmeplejen har man i flere kommuner blandt andet Viborg [8], Halsnæs [9] og Favrskov forsøgt sig med virtuel hjemmepleje.

I 2015 startede Favrskov kommune et projekt op omkring telesundhed, virtuel hjemmepleje. Projektet forløber i to dele, hvor den første del er et pilotprojekt, hvor formålet er at opnå erfaringer, identificere ydelsestyper samt at kunne udarbejde en businesscase for virtuel hjemmepleje i Favrskov kommune. Anden del af projektet er den brede udrulning i hele kommunen. Hele projektets mål er at erstatte fysisk tilstedeværelse hos borgeren, hvor ydelsen blot indebærer påmindelse eller støtte, med videokonference. Borgerens sikkerhed og tryghed skal bevares, samtidig med at kommunen opnår en effektivisering [10].

Projektet startede op på baggrund af et kørende projekt i Lyngby-Tårbæk, som havde til formål at screene KOL patienter. Lyngby-Tårbæk benyttede Appinux's telemedicinske platform og på baggrund af Lyngby-Tårbæk's erfaringer, valgte Favrskov kommune Appinux's telemedicinske løsning (Bilag? mail fra Karin).

1.2 Formål

Konsulenthuset, Netplan Care og Favrskov Kommune er i gang med et innovationssamarbejde om udviklingen af en kommunal digital velfærdsteknologisk sundhedsstrategi for telesundhed. Som et led i denne sundhedsstrategi har sundhedsteknologistuderende fra Aarhus Ingeniørhøjskole udarbejdet denne mini-MTV, der har til formål at vurdere brugen af Appinux's telemedicinske løsning i Farvskov kommune, hvor ydelserne påmindelse om medicin- og fødeindtag leveres via videokonference. Vurderingen vil tage udgangspunkt i teknologien omkring Appinux's telemedicinske løsning, de borgmæssige- og organisatoriske betydninger samt de økonomiske omkostninger ved indførelsen af virtuel hjemmepleje i Farvskov kommune.

1.3 Fokuserede spørgsmål

De opstillede fokuserede spørgsmål er dem, der ønskes besvares gennem denne mini-MTV.

- Hvordan fungerer Appinux-løsningen med videokonference i Favrskov Kommune? Spørgsmålet søges besvaret med udgangspunkt i følgende punkter:
 - Sikkerhedskrav
 - Dækning

- Kompatibilitet
- Hvilke borgermæssige betydninger er der ved implementering og drift af virtuel hjemmepleje med videokonference i Favrskov Kommune? Spørgsmålet søges besvaret med udgangspunkt i følgende punkter:
 - Tilfredshed
 - Borgeraccept
 - Tryghed
- Hvilke organisatoriske betydninger er der ved implementering og drift af virtuel hjemmepleje med videokonference sammenlignet med konventionel fysisk hjemmepleje i Favrskov Kommune? Spørgsmålet søges besvaret med udgangspunkt i følgende punkter:
 - Forskel i medarbejdernes arbejdsgange før/efter virtuel hjemmepleje
 - Medarbejdernes reaktion
 - Beslutningsgrundlag for valg af Appinux-løsningen
- Hvilke økonomiske omkostninger er der ved implementering og drift af virtuel hjemmepleje med videokonference sammenlignet med konventionel fysisk hjemmepleje i Favrskov Kommune?

2.1 Projektorganisation

Projektgruppen har bestået af seks sundhedsteknologi ingeniørstuderende fra Aarhus ingeniørhøjskole. Fra projektets start blev der udvalgt en projektleder, Lise, der har til opgave at have det store overblik. Projektgruppen er endvidere blevet delt op i to, hvor den ene gruppe har haft ansvaret for borger- og organisations afsnittet, mens den anden gruppe har haft ansvaret for teknologi- og økonomi afsnittet. Indenfor hver gruppe er der blevet udvalgt en til hvert afsnit, som har det endelige ansvar.

	Lise	Sara	Melissa	Jeppe	Mohamed	Jakob
Projektleder	X					
Borger/Organisation	X	X	X			
Ansvaret for Borger			X			
Answaret for Organisation		X				
Teknologi/Økonomi				X	X	X
Ansvaret for Teknologi				X		
Ansvaret for Økonomi						X

Hver torsdag klokken 10.15 har der været opsamlingsmøde, hvor alle grupper har fortalt om det de har fået lavet og hvad næste step er. Alle har til dette møde kunne komme med indvendinger og forslag til de forskellige afsnit.

Teknologi 3

3.1 Indledning

Realtidskommunukation giver i dag mulighed for, at sundhedsfagligt personale kan kommunikere med borgere på en måde, der for få år siden syntes utænkelig.

Telesundhed er brugen af telekommunikationsteknologier til at levere sundhedsmæssige ydelser, såsom udveksling af patientdata, hjemmemonitorering og videokonferencer, hvor distance ofte er en væsentlig faktor. KILDE

Som konsekvens af den teknologiske udvikling opstår der nye problemstillinger, hvor bl.a. infrastruktur og patientsikkerhed er nøglebegreber, der sætter tekniske og lovmæssige krav til behandlingen og ikke mindst overførsel af data.

I dette afsnit kigges der nærmere på Appinux, som leverer videokonferencesystemet til Favrskov Kommune, og det undersøges, hvorvidt denne løsning harmonerer med de nævnte forudsætninger og diskuteres, hvilke andre teknologiske foranstaltninger man som leverandør af sundhedsydelser i form af Favrskov Kommune bør være opmærksom på.

3.2 Metoder

Dette afsnit bygger i høj grad på informationer fra møder og emailkorrespondencer med Appinux' salgdirektør, Michael Ellegaard. Det har været været vanskeligt at finde litteratur, der direkte undersøger Appinux' løsning, så fokus har i stedet ligget på de delelementer og standarder, som Appinux anvender og bygger på. Der er deraf foretaget litteratursøgning på dette med henblik på at klarlægge både mangler og muligheder. Metodeafsnit ikke færdiggskrevet.

3.3 Resultater

På baggrund af de fundne resultater, er der udarbejdet en oversigt over elementer, der bør tages med i betragtning i forbindelse med implementering af Appinux løsning, hvilket ses i tabel 3.1.

Tabel 3.1: Oversigt over forudsætninger, der skal være opmærksomhed på i forbindelse med implementeringen af Appinux' videomodul.

Forsætninger	
Infrastruktur	BåndbreddeDækning
Sikkerhed	LovkravKryptering
Udstyr	HardwarespecifikationerOpdateringerSupport

3.3.1 Appinux

Dette afsnit bygger på mødereferat med salgdirektør fra Appinux, Michael Ellegaard [11], samt Appinux' website [12].

Der er taget udgangspunkt i, at de givne informationer er korrekte, da det ikke har været muligt at finde relevant information om Appinux' løsning andetsteds.

Appinux er en multiplatformsløsning, der giver mulighed for at vælge og fravælge over 70 moduler efter den gågældende kundes behov. Appinux er platformsuafhængig i den forstand, at det kan køre på PC'er via Google Chrome, samt smartphones og tablets, der er forsynet med Android v. 4.02.

Der gives, udover Appinux' egne moduler, også adgang til, at 3. partsfirmaer kan implementere deres egne moduler under forudsætning af, at der finder et samarbejde sted. Dette er fx i form af et genoptræningsmodul.

Videokonferencesystemet er Appinux' eget modul. Platformen fungerer ved, at Chrome åbnes på enten en PC eller via en app på en smartphone eller tablet, hvorved der er adgang til modulet, som anvender WebRTC. WebRTC er et open source-projekt, som giver mulighed for realtidskommunikation [13]. Det har den funktion, at videokvaliteten bliver justeret efter tilgængelig båndbredde og CPU-kraft hos hhv. afsender og modtager. Det vurderes af Appinux, at en båndbredde på 512kbit/s er minimumskrav for at videokonferencesystemet kører flydende, hvilket deraf stiller krav om, at enheden er koblet på internettet i form af enten kablet forbindelse, herunder wifi, eller mobilt bredbånd via sim-kortet.

Appinux følger en række standarder, som er væsentlige er nævne. Continua Health Alliance giver mulighed for plug-and-play af diverse apparater, såsom en blodtrykmåler, hvilket øger tilslutningsmulighederne. Der gives dog udtryk for, at det primært sker gennem aftaler mellem Appinux og 3.-partsleverandører. Inden for integration understøttes

HL7, herunder også *FHIR*, som er en standard der sikrer konsistent dataudvekling mellem medicinske systemer. Derudover giver Appinux mulighed for at opsamle en række data om borgeren, som kan tilgås via grafer og eksporteres ud af systemet.

3.3.2 Infrastruktur

Telekommunikation som videokonferencesystemer er afhængig af tilstedeværelsen af en internetforbindelse.

En internetforbindelse er efterhånden blevet en selvfølge i Danmark. I 2014 havde 93% af danske familier adgang til PC og internet i hjemmet, mens brugen af internettet blandt ældre har de seneste år været stødt stigende [14].

Overordnet set skelner denne MTV mellem mobilt bredbånd og en kablet forbindelse, som inkluderer fiber-, coaxial- og kobberforbindelser, da det er her det største skel ift. videokonferencesystemer ligger.

Internethastigheden eller båndbredden er ofte den parameter, der kigges på, når kvaliteten på en internetopkobling vurderes. Den mest udbredte opkoblingstype i Danmark er ADSLbredbånd med over en million abonnementer i Danmark [15]. Hastighed på disse ligger typisk fra 10/1 Mbit/s til 100/20 Mbit/s [16] [17]. Det har ikke været muligt at finde et dækningskort, der viser fiber- og bredbåndsdækningen i Favrskov Kommune, men denne MTV tager udgangs på i, at hvis en borger har købt bredbånd med en given hastighed, bliver produktet også leveret.

Udover den kablede internetopkobling, er det også muligt at tilgå internettet via det mobile netværk. Eftersom det hele kører trådsløs, er dækningen utrolig vigtig for, at et videokonferencesystem kører optimalt. TDC's dækningskort viser, at Favrskov Kommune har min. 5Mbit/s på enten 3G- eller 4G-netværket udendørs [18]. Det kan dog være svært at sige, hvorledes hastigheden stemmer overens indendørs, og det er dermed vigtigt at undersøge dette i hver given sitution. Der har været indberetninger fra borgere, der antyder, at der i kommunen i efteråret 2015 var problemer med mobildækningen indendørs [19], hvilket har udmøntet sig sig et dækningskort som vist på figur 3.1, hvilket indikerer, at kommunen er opmærksom på problemet.

Der arbejdes løbende på en forbedret dækning og bredbåndshastighed med en målsætning på 100Mbit/s download og 30Mbit/s upload til alle danskere i 2020 [20].

Figur 3.1: Dækningskort for mobildækning i Favrskov Kommune fra sommer 2015. De røde pletter angiver områder med dårlig dækning [21].

3.3.3 Sikkerhed

Når patientfølsomme data sendes rundt i cyberspace, er der visse lovkrav, der skal sikre, at der i tilstrækkelig grad værnes om disse data. Sundhedsstyrelsen udgav i 2008 vejledningen Vejledning om informationssikkerhed i sundhedsvæsenet, som omhandler ændringer i sundhedsloven vedr. elektroniske systemer. Den stigende digitalisering siden da har udmyntet sig i, at denne vejledning i 2015 blev revideret med aktørerne inde for IT-delen af sundhedssystemet som målgruppe, og det er primært denne, der er anvendt som informationskilde [22].

Det bemærkes, at kilden er et høringsudkast, så ændringer må forventes at forekomme. Offentlige institutioner inden for sundhedssektoren, der kommunikerer via internettet skal anvende en krypteret forbindelse, og brugeren skal anvende en såkaldt tofaktor-autentifikation, som består i en logind-funktion, der både indeholder noget de ved og noget de har. Nem-ID er et eksempel herpå. Private er ikke underlagt samme restriktioner, men det anbefales, at der anvendes tilsvarende eller samme løsning.

Den dataansvarlige skal overholde sikkerhedsbekendtgørelsens krav, hvilket blandt andet indebærer, at det data, der lagres på enheden skal være krypteret og beskyttet med kode og kommunikation mellem enhed og database skal være krypteret [23]. Yderligere skal det sikres, at andre væsentlige forhold fra sundhedsloven, autorisationsloven samt persondataloven overholdes.

3.4 Diskussion

3.4.1 Appinux på netværket

Med udgangspunkt i det foregående, er der fundet evidens for, at den digitale infrastruktur i Favrskov Kommune i teorien er stærk nok til, at videokonferencesystemet fra Appinux kan køre stabilt. Eftersom videoløsningen selv kan justere kvaliteten på baggrund af internetforbindelsen, er systemet ikke så afhængig af stabilitet i båndbredden, men dækningen skal stadig være tilstrækkelig, hvilket kan volde problemer i nogle områder af kommunen. Det findes derfor nødvendigt at teste forbindelsen hos den enkelte borger, såfremt borgeren er nødsaget til at køre over det mobile netværk via et SIM-kort. Et andet problem med det mobile netværk er, at der kan opstå forsinkelse i samtalen.

Det er blevet konkluderet i studiet Performance analysis of topologies for Web-based Real-Time Communication (WebRTC) [24], der har undersøgt WebRTC på en 3G-forbindelse, at der kan være forsinkelse på op til næsten to sekunder, og dette bliver igen påvirket af flere parametre og giver ifølge studiet svingninger i forsinkelsestiden. Det er altså svært at forudse, hvor godt Appinux kører hos den enkelte borger, og Favrskov Kommune bør være påpasselig med at henlægge sig til teoretiske forbindelseshastigheder. Det bør dog nævnes, at det er uklart, hvorvidt Appinux har inkorporeret yderligere tiltag ift denne problemstilling, samt at 4G-dækning ikke er med i undersøgelsen. Desuden er undersøgelsen lavet i 2013, mens WebRTC stadig var i udviklingsfasen, så omstændighederne kan være anderledes, og en ny tilsvarende undersøgelse er relevant.

Struktureret interviewundersøgelse

Dette bakkes yderligere op af en spørgeskemaundersøgelse, der bl.a. spurgte sygeplejerskerne om, hvorvidt de havde haft tekniske problemer med produktet. Her blev svaret, at der kunne være forsinkelse på lyd og billede alt efter, hvor de befandt sig geografisk, hvilket kan stemme overens med dækningskortet fra TDC.

Yderligere blev der rapporteret om billedudfald, samt at billedekvaliteten kunne forbedres. (kilde) I spørgeskemaet er der blevet spurgt fire borgere og to sygeplejesker, så generaliserbarheden kunne forbedres. Ligeledes bør konklusioner inden for disse områder drages på baggrund af mere tekniske undersøgelser af kvantitativ karakter.

I og med at systemet selv justerer billedkvaliteten efter CPU-kraft og tilgængelig båndbedde, kan der opleves svingende billedkvalitet. I Favrskov Kommune skal systemet primært bruges til samtaler, hvor billedkvaliteten ikke er væsentlig, men ønskes Appinux anvendt til ydelser, der stiller højere krav til billedkvaliteten, bør dette tages med i betragtning.

Det har ikke været muligt at finde videnskabelige artikler, der undersøger WebRTC på forskellige båndbredder, men videolink2.me er en levarandør af en tilsvarende løsning, der også anvender WebRTC, og denne leverandør har opsat en række minimumskrav og anbefalinger til båndbredden, som ses i tabel 3.2. Disse stemmer godt overens med Appinux' anbefalinger.

Antal brugere	f Minimum~[kb/s]	$\textbf{Anbefalet} \; [kb/s]$
1	150	256
2	300	512
3	450	768
4	600	1024
5	750	1280

Tabel 3.2: Bud på hastighedskrav til internetopkoblingen ved brug af WebRTC lavet baseret på tabel af VideoLink2.me [25]

3.4.2 Opfyldning af sikkerhedskrav

Anbefalingen om en tofaktor-autentifikation, der er pålagt offentlige institutioner at følge, anvendes ikke af Appinux. For at logge ind anvendes blot brugernavn og kodeord, og så er brugeren logget ind i en given periode. For at højne sikkerheden kunne borgeren logge ind med Nem-ID. Dette ville dog tidsmæssigt besværliggøre processen og muligvis være til gene. Teknologien der muliggør Nem-ID på Android-systemer findes, og anvendes af bl.a. Nets [26].

Samtaletidspunkt, varighed og opringninger logges, men selve samtalen gemmes ikke. Det er derved ikke aktuelt at bedømme, hvorledes denne krypteres på enheden. Selve videokonferencen foregår via en sikker protokol i form af HTTPS.

Som udgangspunkt opfylder Appinux altså minimumskravene, men der gøres opmærksom på, at det er Favrskov Kommunes ansvar, at sikkerhedskrav samt lovgivning bliver overholdt. Desuden er det vigtigt, at kommunen sørger for, at hvis lovgivningen ændres, kan Appinux opdateres tilsvarende.

3.4.3 Implementeringsprocessen

Appinux lægger vægt på, at kommunen skal være selvhjulpne og blander sig nødigt i implementeringsfasen. Som konsekvens stod kommunen med nogle tablets, som ikke opfyldte minimumskravene til at køre Appinux, og de måtte erstattes af nye. Der bør i den forbindelse være nogle klare minimumskrav til både internethastighed og specifikationer til PC, tablet og smartphone fra Appinux' side.

Disse kunne pr. efterspøgsel ikke opgives, hvilket stiller Favrskov Kommune i den situation, at de reelt set ikke ved, hvilket udstyr, der virker med Appinux og må så at sige prøve sig frem. Det er ligeledes kommunens ansvar at undgå opdateringer af styresystemet på enheden, da Appinux ikke tager ansvar for, at app'en derefter stadig virker. Der bør derfor være en sikring i selve enheden, der sørger for dette ikke sker, da en nedgradering kan være vanskelig at udføre.

3.4.4 Komtabilitet

Det anbefales også, at kommunen tester, at det er muligt at hive data ud af systemet, således at den ikke binder sig til Appinux på længere sigt. I og med at Appinux understøtter FHIR-standarden, bør det være muligt at udveklse data mellem andre systemer, der understøtter standarden. Som udgangspunkt vurderes det, at Appinux er en åben platform og at det er simpelt at udvide med nye komponenter, hvilket gør systemet meget alsidigt.

Appinux bygger på open source-komponenter og erklærer sig selv som et open source-system. Det har dog pr. efterspørgsmål ikke været muligt at få adgang til kildekoden, så dette stilles der spørgsmålstegn ved.

Open source giver mulighed for, at andre levenrandørere nemt kan lave et tilsvarende system og bygge oven på den eksisterende løsning. Er der mulighed for at anvende et open source-system, vil det være anbefalelsesværdigt. Jeg savner nogle punkter hertil???

3.5 Konklusion

I dette teknologiafsnit er det blevet undersøgt, hvorvidt Appinux' produkt til videoopkald harmonerer den digitale infrastrutur i form af mobildækning og bredbåndshastigheder i Favrskov Kommune. Derudover er sikkerhedsaspektet i løsningen blevet undersøgt.

Ud fra de mængde informationer, der var tilgængelig, kan det konkluderes, at Appinux' produkt til virtuel hjemmepleje kan erstatte eller supplere fysiske besøg på et acceptabelt billedkvalitet, såfremt dækning og båndbredde er tilstrækkelig.

Flere steder i kommunen er der fra borgernes side indberettet dækningsproblemer, og Favrskov Kommune bør i den forbindelse undersøge dækningsforholdende inden løsningen implementeres hos den pågældende borger, da der ellers i følge studiet *Performance analysis of topologies for Web-based Real-Time Communication (WebRTC)* og den strukturerede interviewundersøgelse kan opstå forsinkelse og lav billedkvalitet.

Appinux overholder minimumskravene ift. datakryptering, da løsningen kører på en sikker protokol i form af HTTPS. Udover dette anvendes et login, som består af et brugernavn samt kodeord. For at forbedre sikkerheden anbefaler Sundhedsstyrelsen en tofaktorautentifikation i form af Nem-ID eller lignende. Det er Favrskov Kommunes ansvar at beskytte patienters oplysninger i henhold til sundhedsloven.

Favrskov Kommune stod for at implementere løsningen, da Appinux ikke har et implementeringshold, som varetager denne opgave. Dette har resulteret i nogle komplikationer i implementeringsfasen, fx at kommunen ikke har sikret sig minimumskravene til de tablets, som skulle anvendes til opgaven. Det viste sig, at de tiltænkte tablets til opgaven ikke opfyldte minimumskravene til at kunne køre Appinux, og heraf var kommunen nødsaget til at købe nye tablets, hvilket kunne have været undgået, hvis der på forhånd var opstillet minimumskrav fra Appinux' side. Det er yderligere vigtigt, at det på forhånd er undersøgt, hvorledes data kan hives ud af systemet, og hvorvidt der kan bygges videre på løsningen, så et evt. leverandørskifte forekommer så gnidningsfrit som muligt.

4.1 Indledning

I dette afsnit fokuseres på borgeraspektet i forhold til indførelse af virtuel hjemmepleje i Favrskov Kommune, og der tages især udgangspunkt i 'Pilotprojekt Videokommunikation' fra Sundhedscenter Hadsten.

Der gives indledningsvist en introduktion til målgruppen for levering af virtuel hjemmepleje. En klar borgerkarakteristik er nødvendig, idet borgeraspektet afhænger heraf. Definitionen tager udgangspunkt i 'Pilotprojekt Videokommunikation' fra Sundhedscenter Hadsten, men er ikke afgrænset hertil.

Formålet med afsnittet er at belyse borgernes oplevelser og erfaringer med brugen af virtuel hjemmepleje i pilotprojektet i Favrskov Kommune. Dette belyses ud fra en strutkureret interviewundersøgelse fra pilotprojektet sammenholdt med videnskabelige studier fra andre lande samt øvrig materiale og viden indhentet gennem møder med interessenter.

Hernæst fremlægges de væsentligste resultater og disse inddrages i en analyse af og diskussion. Afsnittet afsluttes med en konklusion på resultaterne og dermed en besvarelse af det fokuserede spørgsmål.

4.1.1 Fokuserede spørgsmål

- Hvilke borgermæssige betydninger er der ved implementering og drift af virtuel hjemmepleje med videokonference i Favrskov Kommune? Spørgsmålet søges besvaret med udgangspunkt i følgende punkter:
 - Tilfredshed
 - Borgeraccept
 - Tryghed

4.2 Målgruppe

Målgruppen er borgere i ældregruppen visiteret til hjemmehjælp karakteriseret ved, at hjemmehjælpen i realiteten ikke kræver fysisk tilstedeværelse af en medarbejder. Ergo er målgruppen ældre borgere, der modtager hjælp til at udføre opgaver, som disse med rette påmindelse og støtte selv kan udføre. En klar og entydig, aldersmæssig afgrænsning af begrebet "ældre" synes svær at finde. Denne mini-MTV læner sig op ad Kommunernes

Landsforening og afgrænser dermed "ældre" til at omfatte borgere på 65 år eller derover [1].

Visitationen af virtuel hjemmehjælp med henblik på følgende ydelser: Medicinadministration og Mellemmåltider. Af borgere med tilbud om ovenstående ydelser er kun inkluderet de, der er i stand til at betjene en tablet (kilde: bilag: evalueringsmøde).

4.3 Metode

Data og informationer anvendt i borgerafsnittet er indhentet ved litteraturstudie i videnskabelige databaser, generel dataindsamling samt empirisk dataindsamling i form af en interviewundersøgelse fra 'Pilotprojekt Videokommunikation' fra Sundhedscenter Hadsten. For en dybdegående beskrivelse af metoden henvises til afsnittet Metode.

Specifikke emneord: Home Telemedicine, Telemedicine, Tele Care, Health Care, Tele Health Care.

4.4 Resultater

I dette afsnit fremlægges de resultater i forbindelse med virtuel hjemmepleje, som relaterer sig til følgende forhold:

- Tilfredshed
- Borgeraccept
- Tryghed

4.4.1 Tilfredshed

Resultater tyder på en høj tilfredshed blandt borgere, der har modtaget virtuel hjemmepleje i form af videoopkald. Ifølge et norsk systematisk review "Virtual Visits in Home Health Care for Older Adults" fra 2014 var tilfredsheden med kvaliteten i hjemmeplejen højere blandt borgere, der modtog virtuel hjemmepleje sammenlignet med borgere, der modtog traditionel fysisk hjemmepleje [27]. Ligeledes viste et pilotstudie i Australien fra 2009 blandt ni borgere høj grad af tilfredshed med levering af virtuel hjemmepleje i en periode på seks måneder. Fem ud af otte adspurgte borgere var meget tilfredse og de resterende tre borgere noget tilfredse med videoopkaldene. Ingen af de deltagende borgere var neutrale eller utilfredse med videoopkaldene. Formålet med pilotprojektet var at vurdere praktisk funktionalitet, egnethed, sikkerhed samt omkostningerne ved levering af ydelsen medicinadministration via videoopkald [28].

Ifølge et amerikansk studie, hvor borgeres tilfredshed på baggrund af oplevede fordele og ulemper ved virtuel hjemmepleje blev undersøgt, var tilfredsheden høj, især i forhold til muligheden for vejledning og instruktion ved medicintagning. Studiet blev udført ved spørgeskemaer og efterfølgende individuelle interviews via telefon (kilde: Home telehealth: Patient satisfaction, program functions, and the challanges for the care coordinator, nr. 88 i kandidatspeciale)..

I forlængelse heraf indikerede interviewundersøgelsen fra 'Pilotprojekt Videokommunikation' fra Sundhedscenter Hadsten samme tendens, idet tre ud af fire adspurgte borgere angav høj tilfredshed med videoopkaldene. Borgerne var samlet set positive over videoopkaldene, og fandt det nye virtuelle tiltag spændende (kilde: interviewundersøgelse).

I modsætning hertil blev der i det engelske systematiske review "Telemedicine versus face to face patient care: Effects on professional practice and health care outcomes" fra 2000 ikke fundet signifikant forskel på tilfredsheden blandt modtagere af virtuelle besøg sammenlignet med modtagere af fysiske hjemmeplejebesøg [29]. Dette var ligeledes gældende i et Hollandsk studie fra 2007-2008, hvor formålet var at undersøge borgeres tilfredshed med virtuelle besøg. Studiets resultater viste ingen forskel i tilfredsheden i de virtuelle besøg sammenlignet med konventionelle hjemmeplejebesøg [Kilde: Van Offenbeek og Boonstra (nr. 49 i kandidatspeciale)]. Samme resultat fremkom i 2015 fra et mixed method studie "Evaluering og dokumentation af telesundhed i kommunal hjemmepleje/sygepleje" fra Viborg Kommune om borgeres tilfredshed samt oplevelser med virtuel hjemmepleje ved medicinadministration sammenlignet med konventionel fysisk hjemmeplejebesøg. I dette studie blev der ikke fundet signifikant forskel i den samlede tilfredshedsscore blandt borgere, der modtog virtuel hjemmepleje og borgere, der modtog konventionel fysisk hjemmepleje [30].

Borgeraccept

Borgeraccept retter fokus mod, hvorvidt borgerne accepterede anvendelsen af videoopkald som alternativ til konventionel fysisk hjemmepleje. Et belgisk systematisk review "Telenursing for the elderly. The case for care via video-telephony" fra 2001 havde til formal at diskutere mulighederne for anvendelsen og levering af virtuel hjemmepleje via videotelefoni. Her blev det påpeget, at videotelefoni blev taget godt imod på baggrund af den visuelle kontakt [31]. I forlængelse heraf viste resultater fra dette systematiske review ligeledes, at borgeraccepten voksede proportionalt med erfaring med videoopkaldene. Jo bedre erfaring med teknologien blandt borgerne, desto større accept af virtuel hjemmepleje.

I interviewundersøgelsen fra 'Pilotprojekt Videokommunikation' fra Sundhedscenter Hadsten angav tre ud af fire borgere, at de oplevede frihed i forbindelse med den virtuelle hjemmepleje (kilde: interviewundersøgelsen). Oplevelsen af frihed ved virtuel hjemmepleje blev ligeledes undersøgt i "Evaluering og dokumentation af telesundhed i kommunal hjemmepleje/sygepleje" fra Viborg Kommune. Her gav flertallet af borgere udtryk for frihed, idet fleksibiliteten af tidspunktet for levering af virtuelle hjemmeplejebesøg var høj. Desuden gav borgere udtryk for, at virtuelle hjemmeplejebesøg blev leveret mere regelmæssigt end fysiske besøg [30].

I kontrast hertil påpegede andre borgere i "Evaluering og dokumentation af telesundhed i kommunal hjemmepleje/sygepleje" fra Viborg Kommune at være bundet af de virtuelle hjemmeplejebesøg, idet levering af virtuelle hjemmeplejebesøg forudsatte, at borgeren skulle være i eget hjem og klar ved skærmen på et bestemt klokkeslæt. Desuden udtrykte borgere fra Viborg Kommune utilfredshed, hvis ikke videoopkaldet var planlagt på et fast tidspunkt [30].

I et australsk pilotprojekt "Videophone delivery of medication management in community nursing" var det muligt for en borger at modtage videoopkald før arbejdets start, hvorved følelsen af frihed og fleksibilitet ved virtuelle hjemmeplejebesøg var større end ved fysisk hjemmeplejebesøg [28].

Resultater fra et pilotprojekt i Viborg Kommune gennemført i 2013 med afprøvning af videoopkald som alternativ til traditionel fysisk hjemmeplejebesøg viste, at borgeren oplevede en mindre grad af stigmatisering, idet virtuel hjemmepleje muliggjorde diskretion for borgeren. Borgeren kunne i fuld fortrolighed modtage konkrete ydelser, uden at hjemmeplejens bil var parkeret uden for borgerens hus [30].

4.4.2 Tryghed

Individuelle forhold

Individuelle oplevelser i forbindelse med virtuel hjemmepleje peger overordnet på en stor tilfredshed med videoopkald blandt borgere. I interviewundersøgelsen fra 'Pilotprojekt Videokommunikation' fra Sundhedscenter Hadsten angav tre ud af fire borgere, at virtuel hjemmepleje gav en følelse af tryghed, idet virtuel hjemmepleje i modsætning til et telefonopkald gav mulighed for en visuel kontakt mellem borgeren og den sundhedsprofessionelle. En borger udtrykte endvidere, at det var rart at kunne sætte ansigt på den pågældende sundhedsprofessionelle (kilde: interviewundersøgelsen).

Ifølge et norsk systematisk review "Virtual Visits in Home Health Care for Older Adults" fra 2014 oplevede borgerne en formindskelse i ensomhed, en forbedret psykosocial kontakt, en formindskelse i følelsen af at være isoleret, en følelse af tryghed og sikkerhed og virtuelle besøg skabte desuden en følelse af være "cared for" [27].

Kommunikative forhold

Ifølge det systematiske review "Virtual Visits in Home Health Care for Older Adults" oplevede borgerne en koncentreret kommunikation med sygeplejerskerne. Følelsen af personlig kontakt var højere blandt borgere, der modtog virtuelle besøg sammenlignet med borgere, der modtog fysiske hjemmeplejebesøg [27].

I interviewundersøgelsen fra 'Pilotprojekt Videokommunikation' fra Sundhedscenter Hadsten fortalte en borger, at kommunikationen med en sygeplejerske via videoopkald var positiv, og borgeren oplevede at få det bedre efter samtalen via videoopkald med sygeplejersken (kilde: interviewundersøgelsen).

Resultater fra "Evaluering og dokumentation af telesundhed i kommunal hjemmepleje/sygepleje" i Viborg Kommune viser blandede præferencer ved levering af virtuelle hjemmeplejebesøg sammenlignet med fysiske hjemmeplejebesøg. Ifølge individuelle interviews med borgere fremkom det, at nogle borgere oplevede relationen med den sundhedsprofessionelle som mere menneskelig og naturlig ved fysiske hjemmeplejebesøg. I modsætning hertil angav andre borgere i de individuelle interviews at foretrække virtuelle hjemmeplejebesøg [30].

4.5 Diskussion

Med udgangspunkt i ovenstående resultatafsnit tyder det generelt på en høj tilfredshed blandt borgere, der har modtaget virtuel hjemmepleje. I de respektive studier fremkom det, at borgere og patienter oplevede virtuel hjemmepleje som et positivt alternativ til konventionel fysisk hjemmepleje [28], [27],[30],

Organisation 5

5.1 Indledning

I dette kapitel vil der analyseres på effekterne af indført telesundhed i Favrskov Kommune som en organisation. Der vil tages udgangspunkt i arbejdsgangen på et specifikt sundhedscenter i kommunen, Hadsten Sundhedscenter.

Analysen vil primært fokusere på pilotprojektet udført af Favrskov kommune, da projektet ikke er blevet integreret til fulde endnu. Der er på baggrund af samtaler med kommunen udviklet en case, som beskriver en typisk situation, hvor der bruges et virtuelt opkald i stedet for et fysisk møde. Det er ud fra denne case, at dele af analysen vil tage udgangspunkt.

Afsnittet har følgende fokusspørgsmål:

• Hvilke organisatoriske betydninger er der ved implementering og drift af virtuel hjemmepleje med videokonference sammenlignet med konventionel fysisk hjemmepleje i Favrskov Kommune?

Spørgsmålet søges besvaret med udgangspunkt i følgende punkter:

- Forskel i medarbejdernes arbejdsgange før/efter virtuel hjemmepleje
- Medarbejdernes reaktion
- Beslutningsgrundlag for valg af Appinux-løsningen Det her har vi altså ikke en dyt om. Lad os erstatte med Implementation.

5.2 Case

Casen er blevet udviklet i samarbejde med Favrskovkommune [Møde med Karin], og beskriver hvordan en typisk medicingivningssituation vil foregå, med og uden Appinuxløsningen implementeret.

Her skal Casen eventuelt være?

5.3 Metode

Informationer i dette afsnit baseret på data indsamlet ved hjælp af møder og e-mail-korrespondancer med repræsentanter fra Favrskov kommune. Disse informationer er understøttet af data fra en litteratursøgning i videnskabelige databaser. Litteraturstudiet er beskrevet detaljeret i Metode-afsnittet.

5.4 Resultater

5.4.1 Ændringer i arbejdsgange

Favrskov kommune deler overordnet ældreområdet op i tre; plejecentre, hjemmehjælp og visitationen. Plejecentrene er yderligere delt i syd, nord og vest, og hjemmehjælpen er delt i øst og vest. Hadsten sundhedshus hører under hjemmeplejen og ligger under organisationens østlige afdeling. Hele kommunen er opbygget op efter BUM-modellen. Video opkald er forsøgt implementeret i de ydreområder. Projektet er forsøgt implementeres med henblik på, at der skal spares minutter i sygeplejernes arbejdsdag. Dette skal give plads til andre opgaver, og derved mulighed for økonomiske besparelser i kommunen.

De sundhedsprofessionelle i hjemmeplejen er overodnet delt i fire teams, som svarer til to i hvert distrikt. Der er arbejdes i teams med op til 25 medarbejdere i hver. Ud af disse er 3 i hver gruppe ansvarlig for videoopkald på nuværende øjeblik, men der er flere som udføre dem.

Appinux's løsning er tiltænkt som en erstatning for de medicingivningsbesøg som kommunen ellers tilbyder. Medicingivning er et tilbud, som hjælper patienter med at indtage deres medicin. Denne opgave afhænger af at der foregående er sket medicinadministration. Medicinadministration skal foretages af en sygeplejerske frem for en hjemmeplejer, og består i at dele medicinen op i korrekte portioner til hver dag i ugen.

Før Appinux's løsning blev implementeret, kørte de sundhedsprofessionelle ud til borgeren, hver gang borgeren skulle indtage medicin [Referat fra første møde med kommunen]. Med Appinux løsning, sidder de sundhedsprofessionelle foran en tablet og ringer borgeren op. Borgeren er ved hjælp af en tablet i deres eget hjem, i stand til at høre og se den sundhedsprofessionelle, og kan derved blive guidet igennem medicingivningen. Mere information om Appinux-løsningen kan hentes fra det tekniske afsnit.

Der er etableret et call-center i Hadstens sundhedscenter, hvor de sundhedsprofessionelle kan foretage opringingerne til borgerne. [Den der mail med callcenteret] Videoopkaldene kan enten foretages i dette call-center, eller det kan foretages på en transportabel tablet. Call-centeret var etableret før video-opkald kom på tale i kommunen, og blev brugt som en regulært call center, hvor borgere kan ringe ind, hvis de har brug of hjælp.

De sundhedsprofessionelle holder øje med observationsoverblikket i Appinux, og kan her se hvem der skal ringes til, og om en borger har ringet til centralen uden at have en aftale med centeret. Der er op til tre sundhedsprofessionelle som har ansvaret for video opkald fra callcenteret, og der aftales internt i denne gruppe, hvem der er designeret de forskellige opkald. Der aftales internt i blandt de sundhedsprofessionelle om morgenen, hvem der bliver designeret de forskellige opkald.

Appinuxsystemet blev oprindeligt implementeret med modulet TOBS, men Appinux har

senere givet Favrskov kommune lov til at afprøve video opkald i kommunen. I forbindelse med at systemet blev implementeret, blev der oprettet superbrugerroller, som blev pådraget enkelte sundhedsprofessionelle. Disse superbrugere har det overordnede ansvar omkring applikationen. De sørger for oprette nye brugere i systemet, samt at slette brugere i tilfælde af for eksempel død. Superbrugerne holder styr også styr på at opdatere ændringer i sammenhæng med borgere, såsom adresse ændring og reorganisering af teamsne.

Der er lavet vejledninger til superbrugerne, som detaljeret beskriver fremgangsmetoden til de forskellige scenarier. [Vejledning til Superbruger]. Superbrugerne holder møde en gang hvert halve år. Ud over disse superbrugere har Karin Juhl og Rekha Kotyza hovedansvarlige for projektet.

5.4.2 Implementering

Virtuel hjemmepleje blev først afprøvet i Favrskovkommune i form af et pilotprojekt, som blev udført i starten af 2015. Det primære ansvar for implementering af teknologien, har lagt ved Karin Juhl og Rekha Kotyza. Implementeringen har således ikke været drevet af Appinux, som dog har givet indledende support om blandt andet valg af udstyr. Pilotprojektet var centraliseret omkring Hadstens sundhedscenter, og gjorde brug af borgere over i hele Favrskov kommune.

Kommunen forventer at projektet er færdigimplementeret i de to ydre distrikter af Favrkov kommune i maj 2016. I forbindelse den fulde implementering, forventes det at videoopkald kommer til at blive brugt af samtlige medlemmer af de fire teams. Kommunen forventer at det er klart til, at visitationen kan overtage projektet fra oktober, og derved kan tilbyde video opkald i stedet for fysiske forsøg, til borgere som er egnede.

Karin Juhl og Rekha Kotyza har sørget for give undervisningstimer til de sundhedsprofessionelle som har været berørt af pilotprojektet. Desuden blev der ved opstart af projektet, givet vejledninger til de sundhedsprofessionelle, som beskriver opkalds forløbet til borgerne [Ref – Videoopkald til borger i Appinux]. Denne vejledninger er udstyret med billeder for lettere forståelse. Vejledningen dikterer samtidig opførsel i skærmopkaldet med henblik på at der skal være så minimal en forskel mellem et fysisk besøg og et skærmbesøg, og samtidig give tryghed til brugeren.

Denne vejledning har vist sig brugbar for de sundhedsprofessionelle. De vil dog gerne have en ajourført guide i fremtiden, og efterspørger generelt undervisning i applikationen.

Modtagelse og støtte

Projektet blev først introduceret til de berørte teams, som en anderledes måde at udføre en opgave, som allerede blev tilbudt af teamene. Det blev introduceret som en obligatorisk opgave, og blev præsenteret af teamlederne. Førstehåndsmodtagelsen var blandet.

Favrskov kommune lavede en interview undersøgelse, hvor to medarbejdere fra pilotprojektet svarede på spørgsmål. Disse fortæller at medarbejdere som var indblandede, også havde blandede følelser omkring applikationen. Interviewundersøgelsen fortæller også at medarbejderne har reflekteret over hvordan videoopkald kunne videreudvikles i kommunen.

Der har været positiv respons fra mange af de sundhedsprofessionelle omkring projektet. Responsen påpeger primært hvor meget tid det er muligt at spare.

De primære negative følelser omkring projektet omhandler de tekniske problemer som de sundhedsprofessionelle stødte ind i sammenhæng med applikationen. Specifikt oplevede de sundhedsprofessionelle problemer med forsinkelser med lyd og forringet billedkvalitet. De er desuden opmærksom på at der skal være strenge regler omkring hvilke borgere der skal godkendes til at være egnede til videoopkaldsydelsen. Dette involvere folk som er kognitiv dårlige, eller ældre som har dårlige tekniske evner.

Efter pilotprojektets opstart har der været et møde omkring projektet, hvor involverede sundhedsprofessionelle og projektansvarlige har evalueret på projektets udførelse. På dette møde blev der nævnt de samme tekniske problemer, som der tideligere var hørt fra medarbejdere. Der blev desuden fastlagt procedurer, for scenarier der kunne udfoldes i forbindelse med ikke at kunne få kontakt med borgeren.

Det har til dagsdato ikke været muligt at finde informationer vedrørende beslutningstagningen for at indføre projektet.

5.5 Diskussion

På trods af mærkbare tekniske problemer har medarbejdernes tanker omkring virtuelle besøg primært været positive. De sundhedsprofessionelle mener at deres arbejder bliver nemmere ved hjælp af denne teknik. Der har dog også været negative tanker omkring det fra andre forsøg, hvor der har været skræk for at deres job ville blive overtaget. [Den der artikel som Melissa linkede mig]. Der har altså ikke været nogen specifikke frygt for at arbejdet kan erstatte arbejdsopgaver som de sundhedsprofessionelle på nuværende tidspunkt udfører, som der f.eks. har været grundlag for i et randomniseret forsøg i det nordlige England. [Patient-and-provider-perspectives-on-home]. Tværtimod har støtten været overvældende, og flere af de sundhedsprofessionelle kan se mulighederne i projektet og selv kommet med forslag til at udvide applikationen. Det virker som om organisationen kollektivt har valgt at se applikationen som et hjælpemiddel, frem for en erstatning.

Det er dog tydeligt at mærke at der er enthusiasme omkring projektet fra de sundhedsprofessionelle. Det er næsten endeløst så mange muligheder de kan se i projektet, og det er tydeligt at projektet har været godt støttet op omkring fra ledelsens side. Dette giver også projektet bedre muligheder fra start, da der er større risici for at et projekt mislykkedes, hvis der er ikke støtte omkring projektet fra lederne. [Mangler kilde]

Arbejdsgangene i Favrskov kommune har ændret sig marginalt i forhold til hvordan det fungerede før i tiden. Ændringen der er foretaget er i stedet en ændring i arbejdsmetode, idet de sundhedsprofessionelle sidder foran en tablet, og udfører det arbejde, som de eller ville have kørt ud til borgeren for at udføre. Dette passer også overens med, at videopkald i visse kredse, ikke sanses som en ændring i en arbejdsgang, men istedet bliver defineret som en ny arbejdsteknik. [J Telemed Telecare-2001-Arnaert-311-6] Video opkald har erstattet nogen af de mindre opgaver som hjemmehjælperne står over for i deres hverdag, og er forsøgt præsenteret på en måde så det så vidt som muligt ligner medarbejdernes tideligere arbejdsgang. Der er dog udvidet i de korrekte organisatoriske afdelinger, så som udvikling af superbrugere og fastlæggelser af scenarier. Kommunen har varetaget de vig-

tige beslutninger og overvejelser som det kræves, når man indfører en ny teknologi til en arbejdsplads.

Et problem som de sundhedsprofessionelle hurtigt tog til sig, var problemerne med at borgere måske ikke var kompatible med den ydelse der kunne tilbydes nu. En bekymring var at de ældre, de tager sig af, måske ikke har de mentale eller tekniske egenskaber, der skal til, for at kunne udføre et videomøde. Dette er dog imødekommet ved at starte ud småt, og kun tilbyde støtte til medicintagnings- og måltidshjælp. Problemer kan dog stadig forekomme i takt med at ydelsen bliver udvidet, og flere kan blive egnet. Dette kan for eksempel være, at nogle ældre som er egnet til at modtage ydelsen, har deres medicin låst væk. På nuværende tidspunkt har Favrskov kommune ingen måde at kunne låse en medicin op digitalt, og derved vil videoopkald ikke være egnet i den sammenhæng. [Møde med Karin Juhl]. Desuden vil visitationen altid foretrække at give ældre rehabiliteringskurser, frem for at tilbyde ydelser. Med medicingivning giver du ydelser, og ikke selvoptræning.

5.6 Delkonklusion

De sundhedsprofessionelle har reageret med blandede følelser omkring projektet. Overordnet var modtagelsen positiv blandt de sundhedsprofessionelle, på trods af mærkbare tekniske problemer. Medarbejderne kan desuden se fordele ved at udvide videoopkald til andre aspekter af deres arbejdsdag.

Der er kun sket små forskelle i arbejdsgange i kommunen i forbindelse med reelt arbejde. Organisatorisk er der sket en større forskel, idet der er etableret en ny arbejdsgruppe, samt nye nøgle figuerer.

6.1 Indledning

Eksistensberettigelse for telesundhed – økonomisk besparelse og effektivisering, men er virkeligheden også sådan? Det vil der blive set nærmere på.

Økonomiafsnittet har til formål at belyse omkostningerne ved henholdsvis fysisk hjemmepleje og virtuel hjemmepleje i Favrskov Kommune, og derefter pointere økonomiske forskelle mellem de to scenarier ved hjælp af en ressourceopgørelse.

Følgende spørgsmål ønskes besvaret i økonomiafsnittet:

- Hvilke økonomiske konsekvenser medfører implementering af telesundhed?
- Er der økonomisk gevinst ved at implementere videoopkald, som erstatning for fysiske besøg i Favrskov Kommune?

6.2 Metode

Gennem møder med Appinux, Netplan Care og Favrskov Kommune er det nødvendige udstyr for at kunne implementere telesundhed – herunder virtuel hjemmepleje – blevet identificeret. Der er tilegnet informationer om diverse omkostninger ved dette udstyr, samt yderligere omkring arbejdsgange i Favrskov Kommune. Priserne til produktet er vejledende og ikke nødvendigvis gældende for Favrskov kommune. Det skyldes, at priserne der er opgivet af Appinux blot er liste priser, og der tages ikke højde for særlige tilbud. Yderligere økonomiske konsekvenser er forsøgt klarlagt gennem en søgning af studier omhandlende videobaserede telesundheds løsninger for hjemmepleje på følgende fem databaser: PubMed, Embase, CINAHL, Cochrane Libary og Google Scholar. Google i al almindelighed er ligeledes benyttet til at samle generel information om telesundhed.

6.3 Resultater

6.3.1 Omkostninger ved Telesundhed (Appinux)

Opstartsomkostninger

Opstartsomkostningerne for Appinux' telesundhedsløsning med skærmopkald ses i nedenstående tabel. Der er vigtigt at pointere, at indkøb af tablets til selve skærmopkaldende ikke er inddraget i opstartsomkostningerne. Det skyldes, at denne udgift er afhængig af

typen af tablets der indkøbes, samt antallet af borgere, der skal have en tablet til rådighed. Det har hverken været muligt, at få informationer omkring, hvilken type tablet der anbefales fra Appinux, eller antallet af borgere, der potentielt skal benytte telesundhed i Favrskov Kommune.

Figur 6.1: Opstartsomkostninger for skærmopkald. INDSÆT REFERENCE – MICHAEL ELLE-GAARD FRA APPINUX!

Driftsomkostninger

Månedligt abonnement

Der tages udgangspunkt i Appinux' løsning for skærmopkald, hvor der betales et månedligt beløb. Abonnementet varierer i pris alt efter, hvilke moduler der tilkøbes og hvor mange brugere der er. Nedenstående tabel skitserer de månedlige udgifter ved skærmopkaldsmodulet "Platform – Forløb, Kalender, Video", som er modulet der muliggør videoopkald.

Omkostning	Udgift
Månedligt abonnement ved Appinux (0-75 brugere)	Kr. 139,00 pr. bruger pr. måned
Månedligt abonnement ved Appinux (76-300 brugere)	Kr. 119,00 pr. bruger pr. måned
Månedligt abonnement ved Appinux (0-500 brugere)	Kr. 22.500,00 pr. måned (prisen er uafhængig af antallet af brugere, så længe det er mellem 0-500)

Figur 6.2: Tabel over variable driftsomkostninger alt efter antallet af brugere

Figur 6.3: Pris pr. bruger pr. år inkl. opstartsomkostninger. Kurven viser den umiddelbare pris for erhvervelse af telesundhedsløsning med videoopkald fra Appinux. Det er ikke et fuldgyldigt billede af prisen for skærmopkald, men blot et billede af, hvordan prisen er afhængig af tid og antal brugere.

Løn til personale

- Support(Fælles servicecenter)
- Call center
- Opdateringer

Total om kostninger

Omkostninger ved fysiske besøg

- Transportomkostninger INDDRAG ARTIKEL 7 OG 10 PUBMED
- Løn til personale

Ressourceopgørelse

- Appinux vs. fysiske besøg(pris pr. hjulpet borger)
- Indirekte økonomiske besparelser ved Telesundhed
- Færre indlæggelser, mere selvhjulpne
- Mere effektivt kan hjælpe flere brugere på kortere tid
- Bedre udnyttelse af medarbejdernes tid

Usikkerheder

- Yderligere omkostninger
- Omfang af målgruppen
- Tid brugt på opdatering
- Ugennemsigtige priser?

6.4 Diskussion

- Andre alternativer(fx Viewcare)
- Anden type betaling(ikke abonnement) fordel/ulempe?
- Mulighed for udvidelse af ydelser(fx TOBS)?
- Monopol på markedet
- Er der økonomisk gevinst ved at implementere Telesundhed i Favrskov Kommune ift. fysiske hjemmebesøg? INDDRAG ARTIKEL 6
- Kortsigtet
- Langsigtet
- Økonomiske udslagsgivende faktorer(fx antal borgere der benytter ydelsen)
- Fremtidige økonomiske fordele
- Andre ydelser(genoptræning, sårbehandling, psykiatri, mv.)

6.5 Konklusion

Konklusion 7

Perspektivering 8

Referencer

- [1] Danmark i forandring (1. kapitel). Kommunernes landsforening, 2014.
- [2] Udbredelse af telemedicin i hele landet. Digitaliseringsstyrelsen. 2016. URL: http://www.digst.dk/Digital-velfaerd/Initiativer-og-projekter/Projekter-i-Strategi-for-digital-velfaerd/Udbredelse-af-telemedicin-i-hele-landet_fokusomraade1 (sidst set 28. apr. 2016).
- [3] Telemedicin en nøgle til fremtidens sundhedsydelser. Regeringen, KL, Danske Regioner, 2012.
- [4] Fremdrift, styring og løbende tilpasning. Digitaliseringsstyrelsen. 2016. URL: http://www.digst.dk/Digitaliseringsstrategi/Ny-digitaliseringsstrategien-2016-2020/Kommissorium-og-maalbillede-2020 (sidst set 28. apr. 2016).
- [5] Foreløbigt målbillede for digitalisering af den offentlige sektor i 2020. Digitaliseringsstyrelsen, 2015.
- [6] Kommunernes strategi for telesundhed. Kommunernes landsforening, 2013.
- [7] Telemedicin og telesundhed. Sundhedsdatastyrelsen. 2016. URL: http://sundhedsdatastyrelsen.dk/da/rammer-og-retningslinjer/om-digitaliseringsstrategi/telemedicin-og-telesundhed (sidst set 28. apr. 2016).
- [8] Virtuel hjemme- og sygepleje. Viborg Kommune. 2015. URL: http://kommune.viborg.dk/Borger/Seniorer-og-pensionister/Hjaelp-i-hjemmet/Velfaerdsteknologi/Teknologier-og-projekter/Telesundhed/Virtuel-hjemme-og-sygepleje (sidst set 28. apr. 2016).
- [9] Virtuel Hjemmepleje. Halsnæs Kommune, 2015.
- [10] Projektplan Skærmopklad til borger. Farvskov Kommune, 2015.
- [11] Mødereferat med Appinux.
- [12] Appinux Website. URL: https://appinux.com/da/appinux-platform/ (sidst set 11. maj 2016).
- [13] WebRTC Website. URL: https://webrtc.org/ (sidst set 4. maj 2016).
- [14] Wijas-Jensen J. It-anvendelse i befolkningen 2014. Rapport. Danmarks Statistik, 28. okt. 2014, s. 9-11. URL: http://www.dst.dk/Site/Dst/Udgivelser/GetPubFile.aspx?id=18686&sid=itbef.
- [15] DIS122: Bredbåndsabonnementer efter bredbåndstype. Danmarks Statistik. URL: http://www.statistikbanken.dk/DIS122 (sidst set 17. maj 2016).
- [16] TDC Bredbånd. TDC. URL: http://privat.tdc.dk/internet/ (sidst set 21. maj 2016).
- [17] Telenor Bredbånd. URL: https://www.telenor.dk/shop/bredbaand/ (sidst set 22. maj 2016).

- [18] TDC. Dækningskort. 2016. URL: http://daekning.tdc.dk/tdcnetmap_ext_tile/Default/mobile (sidst set 27. apr. 2016).
- [19] Smed K. Favrskov: Her er der ringe mobildækning. TV2 OJ. 7. nov. 2015. URL: http://www.tv2oj.dk/artikel/280010:Favrskov--Favrskov--Her-er-der-ringe-mobildaekning (sidst set 17. maj 2016).
- [20] Digital Velværd En lettere hverdag. Regeringen, KL, Danske Regioner. 2013. URL: http://www.digst.dk/~/media/Files/Velfaerdsteknologi/Strategi-for-digital-velfaerd/digital_velfaerd.pdf.
- [21] Johansen K. Favrskovs mobilhuller: Hvor er dine? FavrskovPosten. 2015. : .
- [22] Vejledning om informationssikkerhed i sundhedsvæsenet. Sundhedsdatastyrelsen, 2015. URL: http://prodstoragehoeringspo.blob.core.windows.net/0e3d3dd1-703a-470a-a948-2e5cdbd29681/Vejledning%20om%20informationssikkerhed%20i%20sundhedsv%C3%A6senet%20H%C3%98RINGSVERSION.docx.
- [23] Bekendtgørelse om sikkerhedsforanstaltninger til beskyttelse af personoplysninger, som behandles for den offentlige forvaltning. URL: https://www.retsinformation.dk/forms/r0710.aspx?id=842 (sidst set 17. maj 2016).
- [24] Lozano A. A. Performance analysis of topologies for Web-based Real-Time Communication (WebRTC). Tek. rap. Aalto University, 2013. URL: https://aaltodoc.aalto.fi/bitstream/handle/123456789/11093/master_Abell%C3%B3_Lozano_Albert_2013.pdf?sequence=1.
- [25] Bandwidth Requirement for WebRTC Video Conference Call. 4. aug. 2015. URL: http://blog.videolink2.me/post/115839200021/bandwidth-requirement-for-webrtc-video-conference-call (sidst set 17. maj 2016).
- [26] Betalingsservice. Google Play. URL: https://play.google.com/store/apps/details?id=com.nets.betalingsservice&hl=da (sidst set 19. maj 2016).
- [27] Anne Marie Lunde Husebø M. S. Virtual Visits in Home Health Care for Older Adults. The Scientific World Journal. 2014. 2014: s. 1–14.
- [28] Victoria Wade J. H. (Jo Izzo). Videophone delivery of medication management in community nursing. Electronic Journal of Health Informatics. 2009. 4(1): s. 1–5.
- [29] R Currell P. W. R. L. (C Urquhart). Telemedicine versus face to face patient care: Effects on professional practice and heath care outcomes. Cochrane Database of Systematic Reviews. 2000. 2: s. 1–34.
- [30] Ida Munk Petersen T. S. C. Evaluering og dokumentation af telesundhed i kommunal hjemmepleje/-sygepleje. Kandidatspeciale. Aalborg Universitet, 2015.
- [31] Antonia Arnaert L. D. Telenursing for the elderly. The case for care via videoptelephony. Journal of Telemedicine and Telecare. 7(6): .