Building a SUSY model II: using superfields

Seminar on Supersymmetry and its breaking

Matteo Zortea

Heidelberg Universität, Department of Physics

Main points of the talk

 Apply the superspace formalism and show why it is useful to build SUSY theories

• Principles to construct SUSY lagrangians

SUSY gauge theories: QED and QCD

• SUSY predictions: particles, interaction, masses, ...

D and F terms of the superfields

Chiral superfields

$$\Phi(x,\theta,\bar{\theta}) = \phi(x) + i\bar{\theta}\bar{\sigma}^{\mu}\theta\partial_{\mu}\phi(x) + \frac{1}{4}\theta\theta\theta\dagger\bar{\theta}\partial_{\mu}\partial^{\mu}\phi(x) + \sqrt{2}\theta\psi(x)$$
$$-\frac{i}{\sqrt{2}}\theta\theta\bar{\theta}\bar{\sigma}^{\mu}\partial_{\mu}\psi(x) + \theta\theta F(x)$$
$$\Phi^* = blablabla$$

A priori Φ and Φ^* (hence the components) are independent. Vector superfields

$$V(x, \theta, \bar{\theta}) = longstuff$$

Note that

$$\delta_{\epsilon}F = \delta_{\epsilon}F' = \delta_{\epsilon}D = 0$$

 \Rightarrow Use F terms of chiral superfields and D terms of vector superfields to build SUSY invariant lagrangians!

Chiral and vector superfields from chiral superfields

Two ways to combine chiral superfields

- 1. $\Phi^*\Phi \longrightarrow \text{Forms a new vector field because } (\Phi^*\Phi)^* = \Phi\Phi^* = \Phi^*\Phi$
- 2. $\Phi\Phi \longrightarrow$ Forms a new chiral field because $\bar{D}_{\dot{\alpha}}\Phi\Phi=(\bar{D}_{\dot{\alpha}}\Phi)\Phi+\Phi(\bar{D}_{\dot{\alpha}}\Phi)=0.$ In general any analytic function of θ (or $\bar{\theta}$) would still be a chiral superfield.

3

Naive combination of the fields

Let us try, very naively, to take a product of the first type

$$\Phi(x,\theta,\bar{\theta}) = \phi(x) + i\bar{\theta}\bar{\sigma}^{\mu}\theta\partial_{\mu}\phi(x) + \frac{1}{4}\theta\theta\bar{\theta}\bar{\theta}\partial_{\mu}\partial^{\mu}\phi(x) + \sqrt{2}\theta\psi(x) - \frac{i}{\sqrt{2}}\theta\theta\bar{\theta}\bar{\sigma}^{\mu}\partial_{\mu}\psi(x) + \theta\theta F(x)$$

$$\Phi^*\Phi = \dots$$

and "select" the SUSY invariant component

$$\begin{split} [\Phi^*\Phi]_D &= \int d^2\theta d^2\bar{\theta} \,\, \Phi^*(x,\theta,\bar{\theta}) \Phi(x,\theta,\bar{\theta}) \\ &= -\partial^\mu \phi^* \partial_\mu \phi + i \psi^\dagger \bar{\sigma}^\mu \partial_\mu \psi + F^* F + \text{total derivative} \end{split}$$

Note how mentally easy it was to derive this lagrangian, and how the Grassman formalism allows us to choose the SUSY invariant component via simple integration.

Full Wess-Zumino model

How can we introduce produts of the second type? Remeber that analytic functions of a chiral superfield is in turn a chiral superfield \Rightarrow define a function via power series

$$W(\{\phi_i\}) \equiv a_i \phi_i + \frac{1}{2} m_{ij} \phi_i \phi_j + \frac{1}{3!} y_{ijk} \phi_i \phi_j \phi_k$$

Higher order terms lead to non-renormalisable theories! \rightarrow "select" F term \Rightarrow

Frame Title

Qua ci va tutta la parte normale di derivazione di roba

Another point of view on what we have done

 Ω has 8+8 particles content Φ,Φ^+ have 2 particles content each: a boson and a left (right) chiral fermion each, F is unphysical