$P\check{r}iklad$ (1.7)

Nalezněte všechny shodnosti v \mathbb{R}^2 , které zobrazují přímku 3x+4y-5=0 na osu "x" a bod [2, 1] na některý bod osy "y".

Řešení

Z přednášky víme, že všechny shodnosti v \mathbb{R}^2 lze napsat jako ($\mathbf{z} \in \mathbb{R}^2$):

$$\mathbf{z} \mapsto A\mathbf{z} + \mathbf{b} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mathbf{z} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}.$$

Z první podmínky (zobrazení bodů $\left[x,-\frac{3}{4}x+\frac{5}{4}\right]$ na osu "x", tj. na body $[\ldots,\ 0]$):

$$a_{21}x + a_{22}\left(-\frac{3}{4}x + \frac{5}{4}\right) + b_2 = 0.$$

Tedy (protože rovnice musí platit pro všechna $x \in \mathbb{R}$, tedy toto víme např. z rovnosti polynomů).

$$a_{21} = \frac{3}{4}a_{22}, \qquad b_2 = -\frac{5}{4}a_{22}.$$

Z druhé podmínky (zobrazení bodu [2,1] na osu "y", tj. na bod $[0,\ldots]$):

$$2a_{11} + 1a_{12} + b_1 = 0.$$

Tudíž lze pro libovolné a_{11} a a_{12} vybrat b_1 (konkrétně $b_1 = -2a_{11} - a_{12}$), aby byla druhá podmínka splněna.

Zbývá ještě jedna podmínka, která nám vznikla během řešení – matice musí být ortonormální (aby to bylo shodné zobrazení), tj.

$$A^{2} = I \Leftrightarrow a_{11}^{2} + a_{12} \cdot a_{21} = 1 \wedge a_{12} (a_{11} + a_{22}) = 0 = a_{21} (a_{11} + a_{22}) \wedge a_{22}^{2} + a_{12} \cdot a_{21} = 1.$$

Nyní máme 2 možnosti:

- $a_{12} = 0 = a_{21}$, pak ale $0 = a_{22} = \pm 1$ z rovnic $a_{22}^2 + a_{12} \cdot a_{21} = 1$ a $a_{21} = \frac{3}{4}a_{22}$. To však není možné, tedy tato možnost nedává žádné řešení.
- $a_{11}+a_{22}=0$, což odpovídá řešení (pro $a_{11}=c\in\mathbb{R}\setminus\{0\}$ libovolné, pro $a_{11}=0$ nemá řešení)

$$\mathbf{z} \mapsto \begin{pmatrix} c & \frac{4}{3}c - \frac{4}{3c} \\ -\frac{3}{4}c & -c \end{pmatrix} \mathbf{z} + \begin{pmatrix} -\frac{10}{3}c + \frac{4}{3c} \\ \frac{5}{4}c \end{pmatrix}.$$