Les développements limités.

Dans toute la suite, I désigne un intervalle de \mathbf{R} non vide et non réduit à un singleton, x_0 un point de I et $f: I \longrightarrow \mathbf{R}$ une fonction définie sur I.

1. La formule de Taylor.

Définition. f possède au point $x_0 \in I$ un maximum (respectivement un minimum) local s'il existe $\alpha > 0$ tel que $|x_0 - \alpha, x_0 + \alpha| \subset I$ et

$$\forall x \in]x_0 - \alpha, x_0 + \alpha[, f(x) \le f(x_0)]$$
 (respectivement $f(x) \ge f(x_0)$).

f possède un extremum local en x_0 si f a un maximum ou un minimum local en x_0 .

Proposition 1. Si f possède un extremum local au point $x_0 \in I$ et si f est dérivable en x_0 alors $f'(x_0) = 0$.

Théorème 2 (Rolle). Soient a < b et $f : [a,b] \longrightarrow \mathbf{R}$ une fonction continue, dérivable sur [a,b[. Si f(a) = f(b), il existe $c \in]a,b[$ tel que f'(c) = 0.

Théorème 3 (Égalité des accroissements finis). Soient a < b et $f : [a, b] \longrightarrow \mathbf{R}$ une fonction continue, dérivable sur [a, b[. Il existe $c \in]a, b[$ tel que f(b) - f(a) = (b - a) f'(c).

L'énoncé précédent est encore vrai lorsque b < a.

Remarque. En particulier, lorsque $f'(x) \ge 0$ pour tout $x \in]a,b[$, f est croissante sur l'intervalle [a,b]. D'autre part, s'il existe un réel $K \ge 0$ tel que $|f'(x)| \le K$ pour tout $x \in]a,b[$, on obtient l'inégalité des accroissements finis : $|f(b) - f(a)| \le K |b - a|$.

Théorème 4 (Formule de Taylor-Young). Soient $n \in \mathbb{N}^*$ et f une fonction n-fois dérivable sur I. Alors, pour tout $x \in I$,

$$f(x) = f(x_0) + (x - x_0) f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + (x - x_0)^n \varepsilon(x - x_0),$$

$$avec \lim_{h \to 0} \varepsilon(h) = 0.$$

La formule précédente s'appelle la formule de Taylor-Young à l'ordre n au point x_0 . Exemple. Écrivons la formule de Taylor-Young à l'ordre 3 au point 0 de $f(x) = \sin(2x)$. On a, pour tout réel x, $f'(x) = 2\cos(2x)$, $f''(x) = -4\sin(2x)$, $f^{(3)}(x) = -8\cos(2x)$ et f(0) = 0,

f'(0) = 2, f''(0) = 0, $f^{(3)}(0) = -8$. On obtient, pour tout réel x,

$$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \frac{x^3}{3!} f^{(3)}(0) + x^3 \varepsilon(x), \quad \text{avec } \lim_{x \to 0} \varepsilon(x) = 0$$

c'est à dire $\sin(2x) = 2x - \frac{4}{3}x^3 + x^3 \varepsilon(x)$.

La formule de Taylor-Young à l'ordre 2 au point 0 de e^x s'écrit $e^x = 1 + x + x^2/2 + x^2 \varepsilon_1(x)$ où $\lim_{x\to 0} \varepsilon_1(x) = 0$.

2. Développements limités.

Définition. Soient $n \in \mathbb{N}$ et $f: I \longrightarrow \mathbb{R}$ une fonction continue en $x_0 \in I$.

f possède un développement limité à l'ordre n en x_0 s'il existe un polynôme à coefficients réels $P = a_0 + a_1 X + \ldots + a_n X^n$ de degré inférieur ou égal à n tel que

$$\lim_{h \to 0} \frac{f(x_0 + h) - P(h)}{h^n} = 0.$$

En posant, pour $h \neq 0$, $\varepsilon(h) = [f(x_0 + h) - P(h)]/h^n$ et $\varepsilon(0) = 0$, on a, pour tout h tel que $x_0 + h \in I$,

$$f(x_0 + h) = P(h) + h^n \varepsilon(h) = a_0 + a_1 h + a_2 h^2 + \dots + a_n h^n + h^n \varepsilon(h), \text{ avec } \lim_{h \to 0} \varepsilon(h) = 0.$$

soit encore, posant $x = x_0 + h$, pour tout $x \in I$,

$$f(x) = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \ldots + a_n (x - x_0)^n + (x - x_0)^n \varepsilon (x - x_0).$$

Cette égalité s'appelle un développement limité de f à l'ordre n en x_0 ; le polynôme P est la partie principale du développement limité, le terme $h^n \varepsilon(h) = (x - x_0)^n \varepsilon(x - x_0)$ le reste.

Proposition 5. Si f possède un un développement limité à l'ordre n en x_0 , il est unique.

En particulier, si $f(x) = P(x) + x^n \varepsilon(x)$ est le développement limité à l'ordre n en 0 d'une fonction paire (respectivement impaire), P est pair (respectivement impair).

Remarque. La formule de Taylor-Young montre qu'une fonction n-fois dérivable possède un développement limité à l'ordre n et fournit ce développement limité. Toutefois, cette formule n'est pas très utile en pratique.

Si $f: I \longrightarrow \mathbf{R}$ est une fonction continue au point x_0 , alors f est dérivable en x_0 si et seulement si f possède un developpement limité à l'ordre 1 en x_0 et dans ce cas

$$f(x) = f(x_0) + (x - x_0) f'(x_0) + (x - x_0) \varepsilon(x - x_0), \text{ avec } \lim_{h \to 0} \varepsilon(h) = 0.$$

Mais attention, une fonction peut posséder un développement limité à l'ordre $n \geq 2$ en un point x_0 sans être n-fois dérivable.

Si P est un polynôme et k un entier, $T_k(P)$ désigne le « tronqué » de P au degré k c'est à dire le polynôme obtenu à partir de P en ne conservant que les monômes de degré inférieur ou égal à k. Par exemple, $T_3(1 + 2x + 3x^2 + 6x^6) = 1 + 2x + 3x^2$.

Proposition 6. Si $f(x) = P(x - x_0) + (x - x_0)^n \varepsilon(x - x_0)$ est le développement limité à l'ordre n de f au point x_0 alors, pour tout $k \le n$, le développement limité à l'ordre k de f au point x_0 est $f(x) = T_k(P)(x - x_0) + (x - x_0) \varepsilon_1(x - x_0)$.

2.1. Les développements limités à connaître. Tous les développements limités sont au point 0 et $\lim_{x\to 0} \varepsilon(x) = 0$.

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + x^n \varepsilon(x)$$

Exemple. À l'ordre 3, $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + x^3 \varepsilon(x)$.

Exemple. $\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + x^5 \varepsilon(x)$ à l'ordre 5.

Exemple. $\sin x = x - \frac{x^3}{6} + x^4 \varepsilon(x)$ à l'ordre 4.

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + x^n \,\varepsilon(x)$$

Exemple. À l'ordre 3, $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + x^3 \varepsilon(x)$.

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + x^n \varepsilon(x)$$

Exemple. $\frac{1}{1-x}=1+x+x^2+x^2\,\varepsilon(x)$ à l'ordre 2.

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n + x^n \varepsilon(x)$$

Exemple. Pour $\alpha = \frac{1}{2}$, on obtient, à l'ordre 3, $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + x^3 \varepsilon(x)$.

2.2. Opérations sur les développements limités. Dans tout ce paragraphe, nous ne considérons que des développements limités au point 0 et au **même ordre** n. Toutes les fonctions ε , ε_1 , ... vérifient $\lim_{x\to 0} \varepsilon_i(x) = 0$.

Soient f et g deux fonctions ayant pour développement limité à l'ordre n en 0

$$f(x) = P(x) + x^n \varepsilon_1(x), \qquad g(x) = Q(x) + x^n \varepsilon_2(x).$$

où
$$P = a_0 + a_1 X + \ldots + a_n X^n$$
 et $Q = b_0 + b_1 X + \ldots + b_n X^n$.

Somme. le développement limité à l'ordre n en 0 de $f + \lambda g$ est

$$(f + \lambda g)(x) = (P + \lambda Q)(x) + x^n \varepsilon_3(x).$$

Exemple. $e^x = 1 + x + x^2/2 + x^3/6 + x^3 \varepsilon_1(x)$, $\ln(1+x) = x - x^2/2 + x^3/3 + x^3 \varepsilon_2(x)$ et $e^x - \ln(1+x) = 1 + x^2 - x^3/6 + x^3 \varepsilon_3(x)$.

Produit. fg possède le développement limité à l'ordre n en 0 suivant

$$(fg)(x) = T_n(PQ)(x) + x^n \varepsilon_4(x).$$

Exemple. Cherchons le développement limité à l'ordre 3 en 0 de $e^x \ln(1+x)$. Notant $P(x) = 1 + x + x^2/2 + x^3/6$ et $Q(x) = x - x^2/2 + x^3/3$, on doit calculer $T_3(PQ)$. Pour cela, on calule PQ en ne conservant que les termes de degré inférieur ou égal à 3.

$$T_3(PQ)(x) = x - x^2/2 + x^3/3 + x^2 - x^3/2 + x^3/2 = x + x^2/2 + x^3/3$$

et $e^x \ln(1+x) = x + x^2/2 + x^3/3 + x^3 \varepsilon_4(x)$;

Substitution. Si g(0) = 0 i.e. $b_0 = 0$, le développement limité à l'ordre n en 0 de $f \circ g - (f \circ g)(x) = f(g(x))$ – est

$$f(g(x)) = T_n(P \circ Q)(x) + x^n \varepsilon_5(x).$$

Exemple. Cherchons le développement limité à l'ordre 3 de $h(x) = 1/(1 - \sin x)$. Posons f(u) = 1/(1 - u) et $g(x) = \sin(x)$ de sorte que h(x) = f(g(x)). On a $\sin 0 = 0$. De plus, $f(u) = 1 + u + u^2 + u^3 + u^3 \varepsilon_1(u)$, $g(x) = x - x^3/6 + x^3 \varepsilon_2(x)$ et $P(u) = 1 + u + u^2 + u^3$, $Q(x) = x - x^3/6$. Pour calculer $T_3(P \circ Q)$ on remplace u par Q(x) dans P(u) et on ne garde que les termes de degré inférieur ou égal à 3.

$$T_3(P \circ Q)(x) = 1 + x - x^3/6 + x^2 + x^3, \qquad \frac{1}{1 - \sin x} = 1 + x + x^2 + 5x^3/6 + x^3 \varepsilon_5(x).$$

Quotient. Si $g(0) \neq 0$ i.e. $b_0 \neq 0$, f/g possède un développement limité à l'ordre n en 0; la partie principale de ce développement limité est le quotient à l'ordre n de la division de P par Q suivant les puissances croissantes.

Exemple. Calulons le développement limité à l'ordre 3 en 0 de $\tan x = \sin x/\cos x$. On a $\cos 0 = 1 \neq 0$, $\sin x = x - x^3/6 + x^3 \varepsilon_1(x)$, $\cos x = 1 - x^2/2 + x^3 \varepsilon(x)$. Effectuons la division suivant les puissances croissantes à l'ordre 3 de $P(x) = x - x^3/6$ par $Q(x) = 1 - x^2/2$.

$$P = X - X^{3}/6$$
 $Q = 1 - X^{2}/2$ $R_{1} = P - QX = X^{3}/3$ $Q = 1 - X^{2}/2$ $X + X^{3}/3$ $R_{2} = R_{1} - QX^{3}/3 = X^{5}/6$

$$P = Q(X + X^3/3) + X^5/6$$
 et $\tan x = x + x^3/3 + x^3 \varepsilon_5(x)$.

Exercice. Calculer un développement limité à l'ordre 5 en 0 de $\tan x$.

Intégration. Soit F une primitive de f. Le développement limité à l'ordre n+1 en 0 de F est

$$F(x) = F(0) + a_0 x + \frac{a_1}{2} x^2 + \ldots + \frac{a_n}{n+1} x^{n+1} + x^{n+1} \varepsilon_6(x).$$

Exemple. Cherchons un développement limité de $F(x) = \arctan x$ à l'ordre 5 en 0. On a $F'(x) = f(x) = 1/(1+x^2)$: F est une primitive de f. De plus, $u(x) = 1/(1-x) = 1+x+x^2+x^2\varepsilon(x)$ et posant $\varepsilon_1(x) = \varepsilon(x^2)$, on obtient le développement limité à l'ordre 4 en 0 de f

$$f(x) = u(x^2) = 1 - x^2 + x^4 + x^4 \varepsilon(x^2) = 1 - x^2 + x^4 + x^4 \varepsilon_1(x),$$

d'où l'on déduit celui de F à l'ordre 5

$$F(x) = \arctan x = x - x^3/3 + x^5/5 + x^5 \varepsilon_2(x).$$

2.3. Quelques applications.

Calculs de limites. C'est l'application par excellence des développements limités. Cherchons par exemple la limite de $u(x) = \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$ lorsque x tend vers 0. On a

$$u(x) = \exp\left(\frac{1}{x^2} \ln\left(\frac{\sin x}{x}\right)\right), \quad \ln u(x) = \frac{1}{x^2} \ln\left(\frac{\sin x}{x}\right).$$

De plus, $\sin x = x - x^3/6 + x^3 \varepsilon_1(x)$, $\sin x/x - 1 = -x^2/6 + x^2 \varepsilon_1(x)$ et $\ln(1-u) = u - u^2/2 + u^2 \varepsilon_2(u)$. D'après la règle de substitution,

$$x^{2} \ln u(x) = \ln \left(1 + \left(\frac{\sin x}{x} - 1 \right) \right) = -x^{2}/6 + x^{2} \varepsilon_{3}(x).$$

Puisque $\lim_{x\to 0} \varepsilon_3(x) = 0$, $\lim_{x\to 0} \ln u(x) = -1/6$. Finalement, comme $x \mapsto e^x$ est continue au point -1/6, $\lim_{x\to 0} u(x) = e^{-\frac{1}{6}}$.

Développement limité en $x_0 \neq 0$. On pose $x = x_0 + h$ et on fait un développement limité de $h \mapsto f(x_0 + h)$ en h = 0. Par exemple, pour calculer le développement limité de $\ln x$ au point 2, on pose x = 2 + h puis

$$\ln(2+h) = \ln(2(1+h/2)) = \ln 2 + \ln(1+h/2) = \ln 2 + h/2 - h^2/8 + h^3/24 + h^3 \varepsilon(h).$$

Développement limité au voisinage de l'infini. On pose u=1/x pour se ramener au voisinage de 0. Considérons par exemple la fonction $f(x)=x\exp\left(\frac{2x+1}{x^2}\right)$ et cherchons le conportement de f lorsque $x\to +\infty$. Posons u=1/x de sorte que $(2x+1)/x^2=2u+u^2$ et

$$\exp\left(\frac{2x+1}{x^2}\right) = e^{2u+u^2} = 1 + 2u + 3u^2 + u^2 \varepsilon(u), \quad f(x) = x + 2 + 3/x + \varepsilon(1/x)/x.$$

Puisque $\lim_{u\to 0} \varepsilon(u) = 0$, on voit immédiatement que la droite d'équation y = x + 2 est asymptote. On peut même préciser la position relative de la courbe et de l'asymptote. En effet, $f(x) - (x+2) = 3/x + \varepsilon(1/x)/x$. Comme $\varepsilon(1/x) \to 0$ si $x \to +\infty$, pour x assez grand, $\varepsilon(1/x) \ge -1$ et $f(x) - (x+2) \ge 2/x \ge 0$: la courbe est au dessus de l'asymptote.