For a r.v. X

discrete: PMF

continuous: PDF

$$f(x) = P(x=x)$$

Faef: CDF is
$$F(x) = P(X \le x)$$

$$f(x) = \frac{d}{dx} F(x) \iff F(x) = \int_{-\infty}^{\infty} f(t) dt$$

Some properties for cts RVs

$$P(a < k \leq b) = F(b) - F(a)$$

$$= \int_{a}^{b} f(t) dt - \int_{a}^{c} f(t) dt$$

$$= \int_{a}^{b} f(t) dt - \int_{a}^{c} f(t) dt$$

$$\begin{array}{c}
-\omega \\
a
\end{array}$$

$$\begin{array}{c}
-\omega \\
P(a < k \leq b) = \int f(e)dt \\
a
\end{array}$$

We said:
$$P(X=a) = P(X=b) = 0$$
.

$$P(a < X < b) = P(a < X < b)$$

$$= P(a < X < b)$$

More general rule: For ACR SPMF

For discrete: P(XEA) = If(X)

For continuos: $P(X \in A) = \int_A f(t) dt$

For ex! $P(X \in (-\infty, \pi]) = \int_{(-\infty, x]} f(t) dt = \int_{(-\infty, x]} f(t) dt$ $P(X \leq x) = F(x)$

EX. $P(X \in (2,3)) = f(x)dt$

f(t) P(XEA)

$$\frac{\mathcal{E}_{X,i}}{\mathcal{F}(x)} = \frac{\mathcal{E}_{X,i}}{1 + e^{-X}}$$

$$\frac{\mathcal{E}_{X,i}}{1 + e^{-X}} = \frac{\mathcal{E}_{X,i}}{1 + e^{-X}}$$

Ex. Coentinuos Uniform Distribution (on
$$[0,1]$$
).

dended: $X \sim U(0,1)$

wears

 $1 \quad \text{if } 0 \leq x \leq 1$

 $f(x) = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{else} \end{cases}$ $= 1 \quad \text{for } (0 \le x \le 1)$ What is the OF of X? $\chi \leq O$ $F(\pi) = \int_{1}^{\pi} f(t) dt = \int_{1}^{\pi} x$ x ∈ [0, 1] ? $\chi \approx 1$ (3) Case1: $\int_{-\infty}^{\infty} f(\epsilon) dt = 0$ Cose 2! $\int f(t)dt = \int Ldt = \chi$ Case 3'. $\int_{-\infty}^{\infty} f(t)dt = \int_{-\infty}^{1} dt = 1$

Theorem:
$$P(a < X < b) = F(b) - F(b)$$

 $P(1 < X < 2) = F(2) - F(1)$
 $= (1 = 0^{-2}) - (1 = 0^{-2})$

$$= (1-e^{-2}) - (1-e^{-1})$$

$$= e^{-1} - e^{-2}$$

Alterrative!

$$f(x) = \frac{dF}{dx} = \frac{d}{dx}(1 - e^{-x}) = e^{-x} \text{ for } x > 0$$

$$(ppF)$$

$$\mathbb{P}(1 < \chi < 2) = \int_{1}^{2} f(t)dt = \int_{1}^{2} e^{-\chi}d\chi$$

$$= \begin{bmatrix} -e^{-x} \end{bmatrix}^{2} = (-e^{-2}) - (-e^{-1})$$

$$= \begin{bmatrix} -e^{-x} \end{bmatrix}^{2} = (-e^{-2}) - (-e^{-1})$$

$$= \begin{bmatrix} -e^{-1} & e^{-2} \end{bmatrix}$$

Theorem: PMF/PPF characterization

A function f is a "valid" pmf/pdf

Meull: Kolar (our dinater $\begin{cases}
 \chi = r \cos \theta \\
 y = r \sin \theta
 \end{cases}$ $\chi^2 + \chi^2 = \chi^2$ dxdy = rdrdo , area rdodr dx dy of relo $\frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}(x^{2}+y^{2})) dxdy = \frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}r^{2}) r dr d\theta$ $\frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}(x^{2}+y^{2})) dxdy = \frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}r^{2}) r dr d\theta$ $\frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}(x^{2}+y^{2})) dxdy = \frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}r^{2}) r dr d\theta$ $\frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}(x^{2}+y^{2})) dxdy = \frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}r^{2}) r dr d\theta$ $\frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}(x^{2}+y^{2})) dxdy = \frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}r^{2}) r dr d\theta$ $\frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}(x^{2}+y^{2})) dxdy = \frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}r^{2}) r dr d\theta$ $\frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}(x^{2}+y^{2})) dxdy = \frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}r^{2}) r dr d\theta$ $\frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}(x^{2}+y^{2})) dxdy = \frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}r^{2}) r dr d\theta$ $\frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}(x^{2}+y^{2})) dxdy = \frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}r^{2}) r dr d\theta$ $\frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}(x^{2}+y^{2})) dxdy = \frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}r^{2}) r dr d\theta$ $\frac{1}{2\pi L} \int_{0}^{\infty} \exp(-\frac{1}{2}r^{2}) r dr d\theta$ $=\left(-e^{-\frac{1}{2}r^2}\right)^{\infty} = \left(0 - (-1)\right) = 1$ $\frac{1}{2\pi} \int_{0}^{2\pi} 1 d\theta = \frac{1}{2\pi} 2\pi = 1 = 1^{2}$ hence I = 1...

Expected Value

Expected Value	
if X is a r.v	1. then the mean or
A	
expected value of	$X_{/}$
1- (-0	#=[\/] - //
denoted	E[X] or M
is defined as	PMF
(1) discrete:	
	$E[X] = \sum_{x \in \mathbb{R}} \chi f(x)$
	$ \gamma = \sum_{X \in Support} \chi f(X) $
	/
	(weighted som of
	valves X car attain
	valves of law the
	weighted by the prob. we see them.
	pros. ooc oca ta to
	igwedge
(2) Continuors!	$E[X] = \int x f(x) dx$.
	R
Interpretation: E	= balancing point of distribution of X.
	,
Λ.,	
discrete:	continuo:

• • •

