N-grams

Exercises

What is the most probable next word predicted by the model for the following word sequence?

Given Corpus

<s></s>	am	Henry <	/S>
---------	----	---------	-----

<S>I like college

<S> Do Henry like college

<S> Henry I am

<S> Do I like Henry

<S> Do I like college

<S>I do like Henry

Word	Frequency
<s></s>	7
	7
1	6
am	2
Henry	5
like	5
college	3
do	4

<S> I am Henry
<S> I like college
<S> Do Henry like college
<S> Henry I am
<S> Do I like Henry
<S> I do like Henry

Word	Frequency
<\$>	7
	7
1	6
am	2
Henry	5
like	5
college	3
do	4

Next word prediction probability W_{i-1}=do

	$\operatorname{count}(\mathbf{w}_{i-1}, \mathbf{w}_i)$
Next word	Probability Next Word = 1)
P(do)	0/4
P(<i> do)</i>	2/4
P(<am> do)</am>	0/4
P(<henry> do)</henry>	1/4
P(<like do)<="" td="" =""><td>1/4</td></like>	1/4
P(<college do)<="" td="" =""><td>0/4</td></college>	0/4
P(do do)	0/4

I is more probable

2) <S> I like Henry?

<S>I am Henry

<S>1 like college

<S> Do Henry like college

<S> Henry I am

<S> Do I like Henry

<S> Do 1 like college

<S>I do like Henry

Word	Frequency
<\$>	7
\$	7
1	6
am	2
Henry	5
like	5
college	3
do	4

Next word prediction probability W_{i-1}=Henry

Next word	Probability Next Word= $\frac{N}{D} = \frac{\text{count}(w_{i-1}, w_i)}{\text{count}(w_{i-1})}$
P(Henry)	3/5
P(<i> Henry)</i>	1/5
P(<am> Henry)</am>	0
P(<henry> Henry)</henry>	0
P(<like henry)<="" td="" =""><td>1/5</td></like>	1/5
P(<college henry)<="" td="" =""><td>0</td></college>	0
P(do Henry)	0

Use Tri-gram

P<I like>=3

PARK

<S>1 like college

<S> Do Henry like college

<S> Henry I am

<S> Do I like Henry

<S> Do I like college

<S>I do like Henry

Next word prediction probability

W_{i-2}=I and W_{i-1}=like

Next word	Probability Next Word= $\frac{\text{count}(w_{i-2}, w_{i-1}, w_i)}{\text{count}(w_{i-2}, w_{i-1})}$
P(I like)	0/3
P(<i> I like)</i>	0/3
P(<am> I like)</am>	0/3
P(<henry> I like)</henry>	1/3
P(<like i="" like)<="" td="" =""><td>0/3</td></like>	0/3
P(<college i="" like)<="" td="" =""><td>2/3</td></college>	2/3
P(do I like)	0/3

College is probable

Use Four-gram

<s>I am Henry</s>
<\$>1 like college \$
<s> Do Henry like college</s>
<s> Henry I am</s>
<s> Do I like Henry</s>
<s> Do I like college</s>

<S>I do like Henry

Next word prediction probability

W_{i-3}=I, W_{i-2}=like W_{i-1}=college

	$count(w_{i-3}, w_{i-2}, w_{i-1}, w_i)$
Next word	Probability Next Word= $count(w_{i-3}, w_{i-2}, w_{i-1})$
P(I like college)	2/2
P(<i> I like college)</i>	0/2
P(<am> I like college)</am>	0/2
P(<henry> I like college)</henry>	0/2
P(<like college)<="" i="" like="" td="" =""><td>0/2</td></like>	0/2
P(<college college)<="" i="" like="" td="" =""><td>0/2</td></college>	0/2
P(do I like college)	0/2

is more probable

Bi-gram(2-gram): One word history

$$P(w_{1}, w_{2}) = \prod_{i=2} P(w_{2} | w_{1}) \qquad P(w_{i} | w_{i-1}) = \frac{count(w_{i-1}, w_{i})}{count(w_{i-1})}$$

"about five minutes from...."

Assumption: Next word may be college, class

 $P(\text{college} | \text{about five minutes from}) = \frac{\text{count(about five minutes from college)}}{\text{count(about five minutes from)}}$

 $P(class | about five minutes from) = \frac{count(about five minutes from class)}{count(about five minutes from)}$

"about five minutes from...."

Count(about five minutes from) = P(about | <S>) × P(five | about) × P(minutes | five) × P(flom | minutes)

Count(about five minutes from college)= $P(about | <S>) \times P(five | about) \times P(minutes | five)$ $\times P(from | minutes) \times P(college | from)$

Count(about five minutes from class) = $P(about | <S>) \times P(five | about) \times P(minutes | five) \times P(from | minutes) \times P(class | from)$

 $P(\text{college} | \text{about five minutes from}) = \frac{\text{count(about five minutes from college)}}{\text{count(about five minutes from)}}$

=P(college | from)

 $P(class | about five minutes from) = \frac{count(about five minutes from class)}{count(about five minutes from)}$

=P(class | from)

Tri-gram(2-gram): Two words history

 $P(w_1, w_2, w_3) = \prod_{i=3} P(w_3 | w_1, w_2) \qquad P(w_i | w_{i-1}, w_{i-2}) = \frac{count(w_{i-2}, w_{i-1}, w_i)}{count(w_{i-2}, w_{i-1})}$

Count(about five minutes from) = P(five | <S>, about) × P(minutes | about, five) × P(from | five , minutes)

Count(about five minutes from college) = P(five | <S>, about) × P(minutes | about, five) × P(from | five , minutes) × P(college | minutes from)

Count(about five minutes from class) = P(five | <S>, about) × P(minutes | about, five) × P(from | five , minutes) × P(class | minutes from)

P(college | about five minutes from) = $\frac{\text{count(about five minutes from college)}}{\text{count(about five minutes from)}}$

=P(college | minutes from)

 $P(class | about five minutes from) = \frac{count(about five minutes from class)}{count(about five minutes from)}$

=P(class | minutes from)