Report about Neural Networks

Nikolaev Alexander, group 5130203/20102

1 Perceptron

1.1 Model Architecture

Figure 1: Perceptron Model Architecture

1.2 Vector Representation of Data

Let $\mathbf{x} = [x_1, x_2, \dots, x_n]$ be the input vector and $y \in \{0, 1\}$ be the output label.

1.3 Mathematical Formulation

The linear combination can be expressed as: $[z = \mathbf{w}^T \mathbf{x} + b]$ where \mathbf{w} is the weight vector and b is the bias.

The activation function used in a Perceptron is: $\hat{y} = \begin{cases} 1 & , z > 0 \\ 0 & \text{otherwise} \end{cases}$

1.4 Explanation of gradient descendent algorithm

Gradient descent is an optimization algorithm used to minimize the loss function by iteratively updating the weights and biases

1.5 Gradient Descent Algorithm

The Perceptron updates weights using the following rule: $\mathbf{w} \leftarrow \mathbf{w} + \eta(y - \hat{y})\mathbf{x}$ where η is the learning rate.

The bias update is: $b \leftarrow b + \eta(y - \hat{y})$

2 Logistic Regression

2.1 Model Architecture

Figure 2: Logistic Regression Model Architecture

2.2 Vector Representation of Data

Let $\mathbf{x} = [x_1, x_2, \dots, x_n]$ be the input vector and $y \in \{0, 1\}$ be the output label.

2.3 Mathematical Formulation

The linear combination is given by: $z = \mathbf{w}^T \mathbf{x} + b$

The activation function (sigmoid function) is: $\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$

The loss function (cross-entropy loss) is: $L(y,\hat{y}) = -ylog(\hat{y}) + (1-y)log(1-\hat{y})$

2.4 Explanation of gradient descendent algorithm

As with the perceptron, the gradient descent method is used to minimize the loss function by updating the weights and biases.

2.5 Gradient Descent Algorithm

The weights are updated as follows: $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla L$

The gradient of the loss with respect to weights is: $\nabla L = (\hat{y} - y)\mathbf{x}$

The bias update is: $b \leftarrow b - \eta(\hat{y} - y)$

3 Multilayer Perceptron

3.1 Model Architecture

Figure 3: Multilayer Perceptron Model Architecture

3.2 Vector Representation of Data

Let $\mathbf{x} = [x_1, x_2, \dots, x_n]$ be the input vector and y be the output label.

3.3 Mathematical Formulation

For each layer l, the linear combination is: $z^l = \mathbf{w}^l a^{l-1} + b^l$ where a^{l-1} is the activation from the previous layer.

The activation function (e.g., ReLU or sigmoid) can be represented as: $a^l = f(z^l)$

The loss function can be similar to logistic regression: $L(y,\hat{y}) = -[ylog(\hat{y}) + (1-y)log(1-\hat{y})]$

3.4 Explanation of gradient descendent algorithm

The MLP employs backpropagation to calculate the gradients of the loss function concerning weights and biases, facilitating efficient updates throughout the training process.

3.5 Gradient Descent Algorithm

Weights are updated as follows: $\mathbf{w}^l \leftarrow \mathbf{w}^l - \eta \nabla L^l$

The gradient can be computed using backpropagation: $\nabla L^l = (a^l - y) f'(z^l) a^{l-1}$

Bias update: $b^l \leftarrow b^l - \eta(a^l - y)$