瞬时速度

- 微积分 (Calculus) 包括微分 (Differential Calculus) 和积分 (Integral Calculus).
- 求物体沿直线运动的瞬时速度. 若物体随时间变化的函数为 s(t), 求 $t=t_0$ 时的瞬时速度. (应用: 测速仪) 设 $\Delta t \neq 0$, 从 t_0 到 $t_0 + \Delta t (\Delta t > 0$ 时) 或 $t_0 + \Delta t$ 到 $t_0 (\Delta t < 0$ 时) 的平均速度为

$$\bar{v}_{\Delta t} = \frac{\Delta s}{\Delta t} = \frac{s(t_0 + \Delta t) - s(t_0)}{\Delta t} = \frac{s(t_0) - s(t_0 + \Delta t)}{-\Delta t}$$

则有 $v(t_0) = \lim_{\Delta t \to 0} v_{\Delta t}$. $t = t_0$ 时的瞬时加速度

$$a(t_0) = \lim_{\Delta t \to 0} \frac{v(t_0 + \Delta t) - v(t_0)}{\Delta t}$$

瞬时速度

- 微积分 (Calculus) 包括微分 (Differential Calculus) 和积分 (Integral Calculus).
- 求物体沿直线运动的瞬时速度. 若物体随时间变化的函数为 s(t), 求 $t=t_0$ 时的瞬时速度. (应用: 测速仪) 设 $\Delta t \neq 0$, 从 t_0 到 $t_0 + \Delta t (\Delta t > 0$ 时) 或 $t_0 + \Delta t$ 到 $t_0 (\Delta t < 0$ 时) 的平均速度为

$$\bar{v}_{\Delta t} = \frac{\Delta s}{\Delta t} = \frac{s(t_0 + \Delta t) - s(t_0)}{\Delta t} = \frac{s(t_0) - s(t_0 + \Delta t)}{-\Delta t}$$

则有 $v(t_0) = \lim_{\Delta t \to 0} v_{\Delta t}$. $t = t_0$ 时的瞬时加速度

$$a(t_0) = \lim_{\Delta t \to 0} \frac{v(t_0 + \Delta t) - v(t_0)}{\Delta t}$$

瞬时速度

- 微积分 (Calculus) 包括微分 (Differential Calculus) 和积分 (Integral Calculus).
- 求物体沿直线运动的瞬时速度. 若物体随时间变化的函数为 s(t), 求 $t=t_0$ 时的瞬时速度. (应用: 测速仪) 设 $\Delta t \neq 0$, 从 t_0 到 $t_0+\Delta t (\Delta t>0$ 时) 或 $t_0+\Delta t$ 到 $t_0(\Delta t<0$ 时) 的平均速度为

$$ar{v}_{\Delta t} = rac{\Delta s}{\Delta t} = rac{s(t_0 + \Delta t) - s(t_0)}{\Delta t} = rac{s(t_0) - s(t_0 + \Delta t)}{-\Delta t}$$

则有 $v(t_0) = \lim_{\Delta t \to 0} v_{\Delta t}$. $t = t_0$ 时的瞬时加速度

$$a(t_0) = \lim_{\Delta t o 0} rac{ extstyle v(t_0 + \Delta t) - extstyle v(t_0)}{\Delta t}.$$

瞬时速度 -例

• \mathfrak{H} : $S(t) = t^n (n \ge 2)$,

$$v(t_0) = \lim_{\Delta t \to 0} \frac{(t_0 + \Delta t)^n - t_0^n}{\Delta t} = \lim_{\Delta t \to 0} \frac{n\Delta t \cdot t_0^{n-1} + o(\Delta t)}{\Delta t} = nt_0^{n-1}$$

• 上例中: $v(t) = nt^{n-1}$, 瞬时加速度

$$a(t) = \lim_{\Delta t \to 0} \frac{n(t + \Delta t)^{n-1} - nt^{n-1}}{\Delta t} = n(n-1)t^{n-2}$$

瞬时速度 -例

• \mathfrak{H} : $S(t) = t^n (n \ge 2)$,

$$v(t_0) = \lim_{\Delta t \to 0} \frac{(t_0 + \Delta t)^n - t_0^n}{\Delta t} = \lim_{\Delta t \to 0} \frac{n\Delta t \cdot t_0^{n-1} + o(\Delta t)}{\Delta t} = nt_0^{n-1}$$

• 上例中: $v(t) = nt^{n-1}$, 瞬时加速度

$$a(t) = \lim_{\Delta t \to 0} \frac{n(t + \Delta t)^{n-1} - nt^{n-1}}{\Delta t} = n(n-1)t^{n-2}.$$

- P和Q是曲线上邻近的两点,P是定点,当Q点沿着曲线无限地接近P点时,割线PQ的极限位置叫做曲线在点P的切线,P点叫做切点.
- 17 世纪,为了设计透镜,需要求切线. 牛顿发明了反射式望远镜.

- P和Q是曲线上邻近的两点,P是定点,当Q点沿着曲线无限地接近P点时,割线PQ的极限位置叫做曲线在点P的切线,P点叫做切点.
- 17世纪,为了设计透镜,需要求切线. 牛顿发明了反射式望远镜.

• 求曲线 y = f(x) 在一点 $(x_0, f(x_0))$ 处的切线, 只要求出该切线的斜率即可. $\Delta x \neq 0$, 过 $(x_0, f(x_0))$ 和 $(x_0 + \Delta x, f(x_0 + \Delta x))$ 两点的割线斜率为

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

若切线与 x 轴不垂直,则切线斜率为 $k = \tan \alpha = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$.

• 曲线 y = f(x) 在一点 $(x_0, f(x_0))$ 处的切线: $y = f(x_0) + k(x - x_0)$.

• 求曲线 y = f(x) 在一点 $(x_0, f(x_0))$ 处的切线, 只要求出该切线的斜率即可. $\Delta x \neq 0$, 过 $(x_0, f(x_0))$ 和 $(x_0 + \Delta x, f(x_0 + \Delta x))$ 两点的割线斜率为

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

若切线与 x 轴不垂直,则切线斜率为 $k = \tan \alpha = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$.

曲线 y = f(x) 在一点 (x₀, f(x₀))
 处的切线: y = f(x₀) + k(x - x₀).

• 设函数 y = f(x) 在 x_0 的附近有定义 (即存在 r > 0, 使得 f(x) 在 $(x_0 - r, x_0 + r)$ 上有定义),若极限

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

存在,则称 f(x) 在 x_0 处可导,称该极限为 f(x) 在 x_0 处的导数 (或 微商). 记着

$$f'(x_0) = \frac{df}{dx}\Big|_{x=x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

• 设函数 y = f(x) 在 x_0 的附近有定义 (即存在 r > 0, 使得 f(x) 在 $(x_0 - r, x_0 + r)$ 上有定义),若极限

$$\lim_{\Delta \mathbf{x} \to \mathbf{0}} \frac{f(\mathbf{x}_0 + \Delta \mathbf{x}) - f(\mathbf{x}_0)}{\Delta \mathbf{x}}$$

存在,则称 f(x) 在 x_0 处可导,称该极限为 f(x) 在 x_0 处的导数 (或 微商). 记着

$$f'(x_0) = \frac{df}{dx}\Big|_{x=x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

• 设函数 y = f(x) 在 x_0 的附近有定义 (即存在 r > 0, 使得 f(x) 在 $(x_0 - r, x_0 + r)$ 上有定义),若极限

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

存在,则称 f(x) 在 x_0 处可导,称该极限为 f(x) 在 x_0 处的导数 (或 微商). 记着

$$f'(x_0) = \frac{df}{dx}\Big|_{x=x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

• 设函数 y = f(x) 在 x_0 的附近有定义 (即存在 r > 0, 使得 f(x) 在 $(x_0 - r, x_0 + r)$ 上有定义),若极限

$$\lim_{\Delta x \to 0} \frac{f(\mathbf{x}_0 + \Delta \mathbf{x}) - f(\mathbf{x}_0)}{\Delta \mathbf{x}}$$

存在,则称 f(x) 在 x_0 处可导,称该极限为 f(x) 在 x_0 处的导数 (或 微商). 记着

$$f'(x_0) = \frac{df}{dx}\Big|_{x=x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

右 (左) 导数的定义

• 若 f(x) 在 x_0 的右边附近有定义 (即存在 r > 0, 使得 f(x) 在 $[x_0, x_0 + r)$ 上有定义), x_0 点的右导数定义为

$$f'(x_0 + 0) = \lim_{\Delta x \to 0+0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x},$$

左导数类似定义.

- $f'(x_0)$ 存在的充分必要条件是左右导数 $f'(x_0 0), f'(x_0 + 0)$ 均存在且相等.
- 注记: 有些书上采用记号 $f(x_0^-)$, $f(x_0^+)$ 表示左右极限, 采用记号 $f'_-(x_0)$, $f'_+(x_0)$ 表示左右导数.

右 (左) 导数的定义

• 若 f(x) 在 x_0 的右边附近有定义 (即存在 r > 0, 使得 f(x) 在 $[x_0, x_0 + r)$ 上有定义), x_0 点的右导数定义为

$$f'(x_0 + 0) = \lim_{\Delta x \to 0+0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x},$$

左导数类似定义.

- $f'(x_0)$ 存在的充分必要条件是左右导数 $f'(x_0 0), f'(x_0 + 0)$ 均存在且相等.
- 注记: 有些书上采用记号 $f(x_0^-)$, $f(x_0^+)$ 表示左右极限, 采用记号 $f'_-(x_0)$, $f'_+(x_0)$ 表示左右导数.

右 (左) 导数的定义

• 若 f(x) 在 x_0 的右边附近有定义 (即存在 r > 0, 使得 f(x) 在 $[x_0, x_0 + r)$ 上有定义), x_0 点的右导数定义为

$$f'(x_0 + 0) = \lim_{\Delta x \to 0+0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x},$$

左导数类似定义.

- $f'(x_0)$ 存在的充分必要条件是左右导数 $f'(x_0 0), f'(x_0 + 0)$ 均存在且相等.
- 注记: 有些书上采用记号 $f(x_0^-)$, $f(x_0^+)$ 表示左右极限, 采用记号 $f'_-(x_0)$, $f'_+(x_0)$ 表示左右导数.

导数定义的注记

- 注: $|f'(x_0)|$ 是 f(x) 在 x_0 处的变化率. 当 $|f'(x_0)|$ 越大, f(x) 在 x_0 变化越快, 它的图像在 $(x_0, f(x_0))$ 处的切线越陡.
- 注: 导函数的右极限 $\lim_{x\to x_0+0} f'(x)$ 和右导数 $f'(x_0+0)$ 是两个不同的概念. 事实上右导数存在时,导函数的右极限不一定存在.

例:
$$f(x) = \begin{cases} x^2 \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{\Delta x^2 \sin\frac{1}{\Delta x} - 0}{\Delta x} = 0$, 因此 $f'(0+0) = 0$. 但 $x \neq 0$ 时, $f'(x) = 2x \sin\frac{1}{x} - \cos\frac{1}{x}$, $\lim_{x \to 0+0} f'(x)$ 不存在.

导数定义的注记

- 注: $|f'(x_0)|$ 是 f(x) 在 x_0 处的变化率. 当 $|f'(x_0)|$ 越大, f(x) 在 x_0 变化越快, 它的图像在 $(x_0, f(x_0))$ 处的切线越陡.
- 注: 导函数的右极限 $\lim_{x\to x_0+0} f'(x)$ 和右导数 $f'(x_0+0)$ 是两个不同的概念. 事实上右导数存在时,导函数的右极限不一定存在.

例:
$$f(x) = \begin{cases} x^2 \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{\Delta x^2 \sin\frac{1}{\Delta x} - 0}{\Delta x} = 0$, 因此 $f'(0+0) = 0$. 但 $x \neq 0$ 时, $f'(x) = 2x \sin\frac{1}{x} - \cos\frac{1}{x}$, $\lim_{x \to 0+0} f'(x)$ 不存在.

导数定义的注记

- 注: $|f'(x_0)|$ 是 f(x) 在 x_0 处的变化率. 当 $|f'(x_0)|$ 越大, f(x) 在 x_0 变化越快,它的图像在 $(x_0, f(x_0))$ 处的切线越陡.
- 注: 导函数的右极限 $\lim_{x\to x_0+0} f'(x)$ 和右导数 $f'(x_0+0)$ 是两个不同的概念. 事实上右导数存在时,导函数的右极限不一定存在.

例:
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{\Delta x^2 \sin \frac{1}{\Delta x} - 0}{\Delta x} = 0$, 因此 $f'(0+0) = 0$. 但 $x \neq 0$ 时, $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$, $\lim_{x \to 0+0} f'(x)$ 不存在.

 $\bullet \ y=|x|,$

$$f'(0+0) = \lim_{\Delta x \to 0+0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{\Delta x - 0}{\Delta x} = 1$$
$$f'(0-0) = \lim_{\Delta x \to 0-0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0-0} \frac{-\Delta x - 0}{\Delta x} = -1$$

•
$$y = |x|^3$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{|0 + \Delta x|^3 - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|^3}{\Delta x} = 0$.

•
$$y = x^{\frac{3}{2}}$$
, $f'(0+0) = \lim_{\Delta x \to 0+0} \frac{(0+\Delta x)^{\frac{3}{2}} - 0}{\Delta x} = 0$.

•
$$y = x^2 D(x)$$
, 其中 $D(x)$ 是 Dirichlet 函数.
$$f'(0) = \lim_{\Delta x \to 0} \frac{(\Delta x)^2 D(\Delta x)}{\Delta x} = 0.$$

• y = |x|,

$$f'(0+0) = \lim_{\Delta x \to 0+0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{\Delta x - 0}{\Delta x} = 1$$
$$f'(0-0) = \lim_{\Delta x \to 0-0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0-0} \frac{-\Delta x - 0}{\Delta x} = -1$$

•
$$y = |x|^3$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{|0 + \Delta x|^3 - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|^3}{\Delta x} = 0$.

•
$$y = x^{\frac{3}{2}}$$
, $f'(0+0) = \lim_{\Delta x \to 0+0} \frac{(0+\Delta x)^{\frac{3}{2}} - 0}{\Delta x} = 0$.

•
$$y = x^2 D(x)$$
, 其中 $D(x)$ 是 Dirichlet 函数.
$$f'(0) = \lim_{\Delta y \to 0} \frac{(\Delta x)^2 D(\Delta x)}{\Delta x} = 0.$$

• y = |x|,

$$f'(0+0) = \lim_{\Delta x \to 0+0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{\Delta x - 0}{\Delta x} = 1$$
$$f'(0-0) = \lim_{\Delta x \to 0-0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0-0} \frac{-\Delta x - 0}{\Delta x} = -1$$

$$\bullet \ \ y=|x|^3, \ \ f'(0)=\lim_{\Delta x\to 0} \frac{|0+\Delta x|^3-0}{\Delta x}=\lim_{\Delta x\to 0} \frac{|\Delta x|^3}{\Delta x}=0.$$

•
$$y = x^{\frac{3}{2}}$$
, $f'(0+0) = \lim_{\Delta x \to 0+0} \frac{(0+\Delta x)^{\frac{3}{2}} - 0}{\Delta x} = 0$.

•
$$y = x^2 D(x)$$
, 其中 $D(x)$ 是 Dirichlet 函数.
$$f'(0) = \lim_{\Delta x \to 0} \frac{(\Delta x)^2 D(\Delta x)}{\Delta x} = 0.$$

• y = |x|,

$$f'(0+0) = \lim_{\Delta x \to 0+0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{\Delta x - 0}{\Delta x} = 1$$
$$f'(0-0) = \lim_{\Delta x \to 0-0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0-0} \frac{-\Delta x - 0}{\Delta x} = -1$$

•
$$y = |x|^3$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{|0 + \Delta x|^3 - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|^3}{\Delta x} = 0$.

•
$$y = x^{\frac{3}{2}}$$
, $f'(0+0) = \lim_{\Delta x \to 0+0} \frac{(0+\Delta x)^{\frac{3}{2}} - 0}{\Delta x} = 0$.

•
$$y = x^2 D(x)$$
, 其中 $D(x)$ 是 Dirichlet 函数.
$$f'(0) = \lim_{\Delta x \to 0} \frac{(\Delta x)^2 D(\Delta x)}{\Delta x} = 0.$$

•
$$y = x^{\frac{1}{3}}$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{(0 + \Delta x)^{\frac{1}{3}} - 0}{\Delta x}$. 极限不存在.

•
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, 考虑 $x = 0$ 处的可导性,

$$\lim_{\Delta x \to 0} \frac{\Delta x \sin \frac{1}{\Delta x} - 0}{\Delta x} = \lim_{\Delta x \to 0} \sin \frac{1}{\Delta x}$$

f(x) 在 0 点不可导.

•
$$y = x^{\frac{1}{3}}$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{(0 + \Delta x)^{\frac{1}{3}} - 0}{\Delta x}$. 极限不存在.

•
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, 考虑 $x = 0$ 处的可导性,

$$\lim_{\Delta x \to 0} \frac{\Delta x \sin \frac{1}{\Delta x} - 0}{\Delta x} = \lim_{\Delta x \to 0} \sin \frac{1}{\Delta x},$$

f(x) 在 0 点不可导.

- $y \equiv C$, f'(x) = 0.
- $(\sin x)' = \cos x$. $(\cos x)' = -\sin x$ 证明:

$$\lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2}\cos(x + \frac{\Delta x}{2})}{\Delta x} = \cos x$$

$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^m - x^m}{\Delta x} = \lim_{\Delta x \to 0} \frac{m x^{m-1} \Delta x + o(\Delta x)}{\Delta x} = m \cdot x^{m-1}$$

- $y \equiv C$, f'(x) = 0.
- $(\sin x)' = \cos x$. $(\cos x)' = -\sin x$ if \Re :

$$\lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2}\cos(x + \frac{\Delta x}{2})}{\Delta x} = \cos x$$

$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^m - x^m}{\Delta x} = \lim_{\Delta x \to 0} \frac{m x^{m-1} \Delta x + o(\Delta x)}{\Delta x} = m \cdot x^{m-1}$$

- $y \equiv C$, f'(x) = 0.
- $(\sin x)' = \cos x$. $(\cos x)' = -\sin x$ 证明:

$$\lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2}\cos(x + \frac{\Delta x}{2})}{\Delta x} = \cos x$$

$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^m - x^m}{\Delta x} = \lim_{\Delta x \to 0} \frac{m x^{m-1} \Delta x + o(\Delta x)}{\Delta x} = m \cdot x^{m-1}$$

- $y \equiv C$, f'(x) = 0.
- (sin x)' = cos x. (cos x)' = -sin x证明:

$$\lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2}\cos(x + \frac{\Delta x}{2})}{\Delta x} = \cos x$$

• m 是自然数, $(x^m) = mx^{m-1}$.

证明:

$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^m - x^m}{\Delta x} = \lim_{\Delta x \to 0} \frac{m x^{m-1} \Delta x + o(\Delta x)}{\Delta x} = m \cdot x^{m-1}$$

- $y \equiv C$, f'(x) = 0.
- $(\sin x)' = \cos x$. $(\cos x)' = -\sin x$ 证明:

$$\lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2}\cos(x + \frac{\Delta x}{2})}{\Delta x} = \cos x$$

$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^m - x^m}{\Delta x} = \lim_{\Delta x \to 0} \frac{m x^{m-1} \Delta x + o(\Delta x)}{\Delta x} = m \cdot x^{m-1}.$$

• $(e^{x})' = e^{x}$. $(a^{x})' = a^{x} \ln a$

证明:

$$\lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^x}{\Delta x} = \lim_{\Delta x \to 0} e^x \frac{e^{\Delta x} - 1}{\Delta x} = e^x$$

$$\lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^x}{\Delta x} = \lim_{\Delta x \to 0} a^x \frac{e^{\Delta x \ln a} - 1}{\Delta x} = a^x \ln a$$

• $(\ln x)' = \frac{1}{x}$, $(\log_a x)' = \frac{1}{x \ln a}$. 证明:

$$\lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\ln(1 + \frac{\Delta x}{x})}{\Delta x} = \frac{1}{x}$$

• $(e^{x})' = e^{x}$. $(a^{x})' = a^{x} \ln a$ 证明:

$$\begin{split} \lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^x}{\Delta x} &= \lim_{\Delta x \to 0} e^x \frac{e^{\Delta x} - 1}{\Delta x} = e^x \\ \lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^x}{\Delta x} &= \lim_{\Delta x \to 0} a^x \frac{e^{\Delta x \ln a} - 1}{\Delta x} = a^x \ln a \end{split}$$

• $(\ln x)' = \frac{1}{x}$, $(\log_a x)' = \frac{1}{x \ln a}$. 证明:

$$\lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\ln(1 + \frac{\Delta x}{x})}{\Delta x} = \frac{1}{x}$$

• $(e^{x})' = e^{x}$. $(a^{x})' = a^{x} \ln a$ 证明:

$$\begin{split} \lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^x}{\Delta x} &= \lim_{\Delta x \to 0} e^x \frac{e^{\Delta x} - 1}{\Delta x} = e^x \\ \lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^x}{\Delta x} &= \lim_{\Delta x \to 0} a^x \frac{e^{\Delta x \ln a} - 1}{\Delta x} = a^x \ln a \end{split}$$

• $(\ln x)' = \frac{1}{x}$, $(\log_a x)' = \frac{1}{x \ln a}$.

证明:

$$\lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\ln(1 + \frac{\Delta x}{x})}{\Delta x} = \frac{1}{x}$$

• $(e^{x})' = e^{x}$. $(a^{x})' = a^{x} \ln a$ 证明:

$$\begin{split} &\lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^x}{\Delta x} = \lim_{\Delta x \to 0} e^x \frac{e^{\Delta x} - 1}{\Delta x} = e^x \\ &\lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^x}{\Delta x} = \lim_{\Delta x \to 0} a^x \frac{e^{\Delta x \ln a} - 1}{\Delta x} = a^x \ln a \end{split}$$

• $(\ln x)' = \frac{1}{x}$, $(\log_a x)' = \frac{1}{x \ln a}$.

$$\lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\ln(1 + \frac{\Delta x}{x})}{\Delta x} = \frac{1}{x}$$

可导与连续之间的关系

● f(x) 在 x₀ 处可导,则 f 在 x₀ 处连续.

证明: 若 f(x) 在 x_0 处可导,则有 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ 存在,极限为 $f'(x_0)$. 则存在 δ ,使得当 $0 < |\Delta x| < \delta$ 时, $\left| \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f'(x_0) \right| \le 1,$

$$|f(x_0 + \Delta x) - f(x_0)| \le (|f'(x_0)| + 1)|\Delta x| \to 0,$$

因此有 $\lim_{x\to x_0} f(x) = \lim_{\Delta x\to 0} f(x_0 + \Delta x) = f(x_0).$

- 若 f(x) 在 x_0 处连续, f 在 x_0 处不一定可导. 例: $y = |x|, x^{\frac{1}{3}}, x \sin \frac{1}{x},$ 取 $x_0 = 0$
- 注:初等函数在定义域内可以有不可导点.如 $y = |x|, x^{\frac{1}{3}}$.

可导与连续之间的关系

• f(x) 在 x_0 处可导,则 f 在 x_0 处连续. 证明: 若 f(x) 在 x_0 处可导,则有 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ 存在,极限为 $f'(x_0)$.则存在 δ ,使得当 $0 < |\Delta x| < \delta$ 时, $\left| \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f'(x_0) \right| \le 1,$

$$|f(x_0 + \Delta x) - f(x_0)| \le (|f'(x_0)| + 1)|\Delta x| \to 0,$$

因此有
$$\lim_{x \to x_0} f(x) = \lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0)$$
.

- 若 f(x) 在 x_0 处连续, f 在 x_0 处不一定可导. 例: $y = |x|, x^{\frac{1}{3}}, x \sin \frac{1}{5},$ 取 $x_0 = 0$
- 注:初等函数在定义域内可以有不可导点.如 $y = |x|, x^{\frac{1}{3}}$.

可导与连续之间的关系

• f(x) 在 x_0 处可导,则 f 在 x_0 处连续. 证明: 若 f(x) 在 x_0 处可导,则有 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ 存在,极限为 $f'(x_0)$.则存在 δ ,使得当 $0 < |\Delta x| < \delta$ 时, $|\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f'(x_0)| \le 1,$

$$|f(x_0 + \Delta x) - f(x_0)| \le (|f'(x_0)| + 1)|\Delta x| \to 0,$$

因此有 $\lim_{x \to x_0} f(x) = \lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0)$.

- 若 f(x) 在 x_0 处连续, f 在 x_0 处不一定可导.
- 注:初等函数在定义域内可以有不可导点. 如 $y = |x|, x^{\frac{1}{3}}$.

可导与连续之间的关系

$$|f(x_0 + \Delta x) - f(x_0)| \le (|f'(x_0)| + 1)|\Delta x| \to 0,$$

因此有
$$\lim_{x \to x_0} f(x) = \lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0).$$

- 若 f(x) 在 x_0 处连续, f 在 x_0 处不一定可导. 例: $y = |x|, x^{\frac{1}{3}}, x \sin \frac{1}{2},$ 取 $x_0 = 0$
- 注:初等函数在定义域内可以有不可导点.如 $y = |x|, x^{\frac{1}{3}}$.

可导与连续之间的关系

• f(x) 在 x_0 处可导,则 f 在 x_0 处连续. 证明: 若 f(x) 在 x_0 处可导,则有 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ 存在,极限为 $f'(x_0)$.则存在 δ ,使得当 $0 < |\Delta x| < \delta$ 时, $\left| \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f'(x_0) \right| \le 1,$

$$|f(x_0 + \Delta x) - f(x_0)| \le (|f'(x_0)| + 1)|\Delta x| \to 0,$$

因此有 $\lim_{x \to x_0} f(x) = \lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0).$

- 若 f(x) 在 x_0 处连续, f 在 x_0 处不一定可导. 例: $y = |x|, x^{\frac{1}{3}}, x \sin \frac{1}{2},$ 取 $x_0 = 0$
- 注:初等函数在定义域内可以有不可导点.如 $y = |x|, x^{\frac{1}{3}}$.

Weierstrass 函数

- Weierstrass 函数: b 为奇数, 0 < a < 1, $ab > 1 + \frac{3\pi}{2}$. 则函数 $f(x) = \sum_{n=0}^{\infty} a^n \cos(\pi b^n x)$ 处处连续但处处不可导.
- 一般人会直觉上认为连续的函数必然是近乎可导的。即使不可导,不可导的点也必然只占整体的一小部分。早期的许多数学家,包括高斯都曾经假定连续函数不可导的部分是有限或可数的。这可能是因为直观上想象一个连续但在不可数个点上不可导的函数是很困难的事。

区间 [-2, 2]上的魏尔斯特拉斯函数。这个函数 具有分形特性:某些部分会和整体自相似。

Weierstrass 函数

- Weierstrass 函数: b 为奇数, 0 < a < 1, $ab > 1 + \frac{3\pi}{2}$. 则函数 $f(x) = \sum_{n=0}^{\infty} a^n \cos(\pi b^n x)$ 处处连续但处处不可导.
- 一般人会直觉上认为连续的函数必 然是近乎可导的。即使不可导,不 可导的点也必然只占整体的一小部 分。早期的许多数学家,包括高斯, 都曾经假定连续函数不可导的部分 是有限或可数的。这可能是因为直 观上想象一个连续但在不可数个点 上不可导的函数是很困难的事。

具有分形特性:某些部分会和整体自相似。

设 f(x), g(x) 在 (a,b) 上可导, 则有

• $(f(x) \pm g(x))' = f'(x) \pm g'(x)$, (cf(x))' = cf'(x).

$$\frac{\Delta(f+g)}{\Delta x} = \frac{f(x+\Delta x) - f(x)}{\Delta x} + \frac{g(x+\Delta x) - g(x)}{\Delta x}.$$

• $(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$. 证明:

$$\frac{\Delta(fg)}{\Delta x} = \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x)}{\Delta x}$$

$$= \frac{f(x + \Delta x) - f(x)}{\Delta x}g(x + \Delta x) + f(x)\frac{g(x + \Delta x) - g(x)}{\Delta x}$$

$$\to f'(x)g(x) + f(x)g'(x)$$

设 f(x), g(x) 在 (a,b) 上可导,则有

• $(f(x) \pm g(x))' = f'(x) \pm g'(x)$, (cf(x))' = cf'(x). 证明:

$$\frac{\Delta(f+g)}{\Delta x} = \frac{f(x+\Delta x) - f(x)}{\Delta x} + \frac{g(x+\Delta x) - g(x)}{\Delta x}.$$

• $(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$. 证明:

$$\frac{\Delta(fg)}{\Delta x} = \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x)}{\Delta x}$$

$$= \frac{f(x + \Delta x) - f(x)}{\Delta x}g(x + \Delta x) + f(x)\frac{g(x + \Delta x) - g(x)}{\Delta x}$$

$$\to f'(x)g(x) + f(x)g'(x)$$

设 f(x), g(x) 在 (a,b) 上可导,则有

• $(f(x) \pm g(x))' = f'(x) \pm g'(x)$, (cf(x))' = cf'(x). 证明:

$$\frac{\Delta(f+g)}{\Delta x} = \frac{f(x+\Delta x) - f(x)}{\Delta x} + \frac{g(x+\Delta x) - g(x)}{\Delta x}.$$

• $(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$.

$$\frac{\Delta(fg)}{\Delta x} = \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x)}{\Delta x}$$

$$= \frac{f(x + \Delta x) - f(x)}{\Delta x}g(x + \Delta x) + f(x)\frac{g(x + \Delta x) - g(x)}{\Delta x}$$

$$\to f'(x)g(x) + f(x)g'(x)$$

设 f(x), g(x) 在 (a,b) 上可导,则有

• $(f(x) \pm g(x))' = f'(x) \pm g'(x)$, (cf(x))' = cf'(x). 证明:

$$\frac{\Delta(f+g)}{\Delta x} = \frac{f(x+\Delta x) - f(x)}{\Delta x} + \frac{g(x+\Delta x) - g(x)}{\Delta x}.$$

• $(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$. 证明:

$$\frac{\Delta(fg)}{\Delta x} = \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x)}{\Delta x}$$

$$= \frac{f(x + \Delta x) - f(x)}{\Delta x}g(x + \Delta x) + f(x)\frac{g(x + \Delta x) - g(x)}{\Delta x}$$

$$\rightarrow f'(x)g(x) + f(x)g'(x)$$

•
$$g(x) \neq 0$$
, $(\frac{f(x)}{g(x)})' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$.

$$\begin{split} &\frac{\Delta(\frac{f}{g})}{\Delta x} = \frac{\frac{f(x + \Delta x)}{g(x + \Delta x)} - \frac{f(x)}{g(x)}}{\Delta x} \\ &= \frac{\frac{f(x + \Delta x) - f(x)}{\Delta x}g(x) - f(x)\frac{g(x + \Delta x) - g(x)}{\Delta x}}{g(x + \Delta x)g(x)} \\ &\rightarrow \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} \end{split}$$

• $g(x) \neq 0$, $(\frac{f(x)}{g(x)})' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$. 证明:

$$\begin{split} &\frac{\Delta(\frac{f}{g})}{\Delta x} = \frac{\frac{f(x+\Delta x)}{g(x+\Delta x)} - \frac{f(x)}{g(x)}}{\Delta x} \\ &= \frac{\frac{f(x+\Delta x) - f(x)}{\Delta x} g(x) - f(x) \frac{g(x+\Delta x) - g(x)}{\Delta x}}{g(x+\Delta x) g(x)} \\ &\to \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} \end{split}$$

•

 $(\tan x)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x.$

$$(\cot x)' = \frac{-\cos^2 x - \sin^2 x}{\sin^2 x} = \frac{-1}{\sin^2 x} = -\csc^2 x.$$

•
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, 则有

$$f'(x) = \begin{cases} 2x\sin\frac{1}{x} - \cos\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

•

$$(\tan x)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x.$$

$$(\cot x)' = \frac{-\cos^2 x - \sin^2 x}{\sin^2 x} = \frac{-1}{\sin^2 x} = -\csc^2 x.$$

•
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, $y \neq 0$

$$f'(x) = \begin{cases} 2x\sin\frac{1}{x} - \cos\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases},$$

•

$$(\tan x)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x.$$

$$(\cot x)' = \frac{-\cos^2 x - \sin^2 x}{\sin^2 x} = \frac{-1}{\sin^2 x} = -\csc^2 x.$$

•
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
,则有

$$f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases},$$

• 双曲函数

$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2},$$
$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

• 则有 $\cosh^2 x - \sinh^2 x = 1$,

$$(\sinh x)' = \cosh x, \quad (\cosh x)' = \sinh x,$$
$$(\tanh x)' = \frac{1}{\cosh^2 x}, \quad (\coth x)' = -\frac{1}{\sinh^2 x}$$

复合函数的微商

• 定理: $y = f(x): (a, b) \to (A, B), z = g(y): (A, B) \to \mathbb{R}.$ f(x) 在 $x_0 \in (a, b)$ 处可导,g(y) 在 $y_0 = f(x_0)$ 处可导,则复合函数 $g \circ f$ 在 x_0 处可导,且

$$\frac{dg\circ f}{dx}\Big|_{x_0}=g'(y_0)f'(x_0) \, \mathring{\mathfrak{Z}} \, \, \mathring{\mathfrak{Z}} \, \, \mathring{\underline{d}} \frac{dz}{dx}\Big|_{x_0}=\frac{dz}{dy}\Big|_{y=f(x_0)}\frac{dy}{dx}\Big|_{x=x_0}.$$

若 y = f(x) 和 z = g(y) 在各自定义域内可导,则

$$\frac{dg \circ f}{dx} = g'(f(x))f'(x).$$

定理的证明1

• 令 $\Delta y = f(x_0 + \Delta x) - f(x_0)$, $y_0 = f(x_0)$, 则有 $f(x_0 + \Delta x) = y_0 + \Delta y$. 由于 f(x) 在 x_0 处连续, $\Delta x \to 0$ 时, $\Delta y \to 0$. 考虑

$$\frac{\Delta z}{\Delta x} = \frac{g(f(x_0 + \Delta x)) - g(f(x_0))}{\Delta x} = \frac{g(y_0 + \Delta y) - g(y_0)}{\Delta y} \frac{\Delta y}{\Delta x}$$

• 当 $\Delta y = 0$ 时上式没意义. 定义 Δy 的函数 (存在 $\delta > 0$, 下面函数在 $|\Delta y| < \delta$ 上有定义)

$$h(\Delta y) = \begin{cases} \frac{g(y_0 + \Delta y) - g(y_0)}{\Delta y}, & \Delta y \neq 0 \\ g'(y_0), & \Delta y = 0 \end{cases}$$

定理的证明1

• 令 $\Delta y = f(x_0 + \Delta x) - f(x_0)$, $y_0 = f(x_0)$, 则有 $f(x_0 + \Delta x) = y_0 + \Delta y$. 由于 f(x) 在 x_0 处连续, $\Delta x \to 0$ 时, $\Delta y \to 0$. 考虑

$$\frac{\Delta z}{\Delta x} = \frac{g(f(x_0 + \Delta x)) - g(f(x_0))}{\Delta x} = \frac{g(y_0 + \Delta y) - g(y_0)}{\Delta y} \frac{\Delta y}{\Delta x}$$

• 当 $\Delta y = 0$ 时上式没意义. 定义 Δy 的函数 (存在 $\delta > 0$, 下面函数在 $|\Delta y| < \delta$ 上有定义)

$$\mathit{h}(\Delta \mathit{y}) = \begin{cases} \frac{\mathit{g}(\mathit{y}_0 + \Delta \mathit{y}) - \mathit{g}(\mathit{y}_0)}{\Delta \mathit{y}}, & \Delta \mathit{y} \neq 0 \\ \mathit{g}'(\mathit{y}_0), & \Delta \mathit{y} = 0 \end{cases},$$

定理的证明 2

定义 Δy 的函数 (存在 $\delta > 0$, 下面函数在 $|\Delta y| < \delta$ 上有定义)

$$h(\Delta y) = \begin{cases} \frac{g(y_0 + \Delta y) - g(y_0)}{\Delta y}, & \Delta y \neq 0 \\ g'(y_0), & \Delta y = 0 \end{cases},$$

则由 g 在 $y_0 = f(x_0)$ 处可导,有 $\lim_{\Delta y \to 0} h(\Delta y) = g'(y_0)$. 即 $h(\Delta y)$ 在 $\Delta y = 0$ 处连续,且有 $g(y_0 + \Delta y) - g(y_0) = h(\Delta y)\Delta y$.

$$\frac{\Delta z}{\Delta x} = \frac{g(f(x_0 + \Delta x)) - g(f(x_0))}{\Delta x} = h(\Delta y) \frac{\Delta y}{\Delta x},$$

求极限即得.

- 例: $(e^{x^2})' = e^y 2x = e^{x^2} 2x$, 这里 $y = x^2$.
- \mathfrak{P} : $(e^{\sin(x^2)})' = e^{\sin(x^2)}(\sin(x^2))' = e^{\sin(x^2)}\cos(x^2)2x$
- 例: 设 f(x), g(x) 可导, f(x) > 0,

$$\begin{split} (f(x)^{g(x)})' = & (e^{g(x)\ln f(x)})' = f(x)^{g(x)} (g(x)\ln f(x))' \\ = & f(x)^{g(x)} (g'(x)\ln f(x) + g(x)\frac{f'(x)}{f(x)}) \\ = & f(x)^{g(x)} g'(x)\ln f(x) + f(x)^{g(x)-1} g(x)f'(x) \end{split}$$

• \mathfrak{P} : $(a^{g(x)})' = a^{g(x)}g'(x) \ln a$, $(f(x)^a)' = af(x)^{a-1}f'(x)$.

- 例: $(e^{x^2})' = e^y 2x = e^{x^2} 2x$, 这里 $y = x^2$.
- \mathfrak{P} : $(e^{\sin(x^2)})' = e^{\sin(x^2)}(\sin(x^2))' = e^{\sin(x^2)}\cos(x^2)2x$
- 例: 设 f(x), g(x) 可导, f(x) > 0,

$$\begin{split} (f(x)^{g(x)})' &= (e^{g(x)\ln f(x)})' = f(x)^{g(x)} (g(x)\ln f(x))' \\ &= f(x)^{g(x)} (g'(x)\ln f(x) + g(x)\frac{f'(x)}{f(x)}) \\ &= f(x)^{g(x)} g'(x)\ln f(x) + f(x)^{g(x)-1} g(x)f'(x) \end{split}$$

• \mathfrak{P} : $(a^{g(x)})' = a^{g(x)}g'(x) \ln a$, $(f(x)^a)' = af(x)^{a-1}f'(x)$.

- 例: $(e^{x^2})' = e^y 2x = e^{x^2} 2x$, 这里 $y = x^2$.
- \mathfrak{P} : $(e^{\sin(x^2)})' = e^{\sin(x^2)}(\sin(x^2))' = e^{\sin(x^2)}\cos(x^2)2x$
- 例: 设 f(x), g(x) 可导, f(x) > 0,

$$(f(x)^{g(x)})' = (e^{g(x)\ln f(x)})' = f(x)^{g(x)} (g(x)\ln f(x))'$$

$$= f(x)^{g(x)} (g'(x)\ln f(x) + g(x)\frac{f'(x)}{f(x)})$$

$$= f(x)^{g(x)}g'(x)\ln f(x) + f(x)^{g(x)-1}g(x)f'(x)$$

• 例: $(a^{g(x)})' = a^{g(x)}g'(x) \ln a$, $(f(x)^a)' = af(x)^{a-1}f'(x)$.

- 例: $(e^{x^2})' = e^y 2x = e^{x^2} 2x$, 这里 $y = x^2$.
- \mathfrak{P} : $(e^{\sin(x^2)})' = e^{\sin(x^2)}(\sin(x^2))' = e^{\sin(x^2)}\cos(x^2)2x$
- 例: 设 f(x), g(x) 可导, f(x) > 0,

$$(f(x)^{g(x)})' = (e^{g(x) \ln f(x)})' = f(x)^{g(x)} (g(x) \ln f(x))'$$

$$= f(x)^{g(x)} (g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)})$$

$$= f(x)^{g(x)} g'(x) \ln f(x) + f(x)^{g(x)-1} g(x) f'(x)$$

• \mathfrak{P} : $(a^{g(x)})' = a^{g(x)}g'(x) \ln a$, $(f(x)^a)' = af(x)^{a-1}f'(x)$.

•
$$\mathfrak{H}$$
: $(x^x)' = x^x(\ln x + 1)$. $(x^a)' = ax^{a-1}$

•
$$\emptyset$$
: $f(x) = (1+x)^{\frac{1}{x}}$
 $\text{#}: f'(x) = (1+x)^{\frac{1}{x}} (\frac{1}{x(1+x)} - \frac{\ln(1+x)}{x^2}).$

•
$$\mathfrak{H}$$
: $(x^x)' = x^x(\ln x + 1)$. $(x^a)' = ax^{a-1}$

•
$$f(x) = (1+x)^{\frac{1}{x}}$$

$$\mathbf{H}: \ f'(x) = (1+x)^{\frac{1}{x}} \left(\frac{1}{x(1+x)} - \frac{\ln(1+x)}{x^2} \right).$$

•
$$\mathfrak{H}$$
: $(x^x)' = x^x(\ln x + 1)$. $(x^a)' = ax^{a-1}$

• 例:
$$f(x) = (1+x)^{\frac{1}{x}}$$

解: $f'(x) = (1+x)^{\frac{1}{x}} (\frac{1}{x(1+x)} - \frac{\ln(1+x)}{x^2}).$

反函数的微商

• 定理: $y = f(x): (a, b) \to (A, B)$ 连续,严格单调,双射. 若反函数 x = g(y) 在 $y_0 \in (A, B)$ 处可导,且 $g'(y_0) \neq 0$,则 y = f(x) 在 $x_0 = g(y_0)$ 处可导,且

$$f'(x_0) = \frac{1}{g'(y_0)} = \frac{1}{g'(f(x_0))}, \ \ \Re \frac{dy}{dx}\Big|_{x=x_0} = \frac{1}{\frac{dx}{dy}\Big|_{y=y_0}}$$

• 证明: 当 $\Delta x \neq 0$ 时, $\Delta y = f(x_0 + \Delta x) - f(x_0) \neq 0$, 且 $\Delta x \to 0$ 时, $\Delta y \to 0$, $\Delta x = g(y_0 + \Delta y) - g(y_0)$,

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta x}{\Delta y}} = \frac{1}{g'(y_0)}.$$

反函数的微商

• 定理: $y = f(x): (a, b) \to (A, B)$ 连续,严格单调,双射. 若反函数 x = g(y) 在 $y_0 \in (A, B)$ 处可导,且 $g'(y_0) \neq 0$,则 y = f(x) 在 $x_0 = g(y_0)$ 处可导,且

$$f'(x_0) = \frac{1}{g'(y_0)} = \frac{1}{g'(f(x_0))}, \ \ \operatorname{Ep} \frac{dy}{dx}\Big|_{x=x_0} = \frac{1}{\frac{dx}{dy}\Big|_{y=y_0}}$$

• 证明: 当 $\Delta x \neq 0$ 时, $\Delta y = f(x_0 + \Delta x) - f(x_0) \neq 0$, 且 $\Delta x \to 0$ 时, $\Delta y \to 0$, $\Delta x = g(y_0 + \Delta y) - g(y_0)$,

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta x}{\Delta y}} = \frac{1}{g'(y_0)}.$$

关于反函数微商的注记

- 设图中 反函数和原函数图像对应点 处切线和 x 轴的夹角分别记 为 α, β , 则有 $\alpha - \frac{\pi}{4} = \frac{\pi}{4} - \beta$. 因此 $\alpha + \beta = \frac{\pi}{9}$, $\tan \alpha \tan \beta = 1$.
- 定理的如下证法是否正确:
 由于 g = f⁻¹, x = g(f(x)),
 两边对 x 求导, 得
 1 = g'(f(x))f'(x).

• $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$, $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$,

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\cos y} = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - x^2}}$$

第二个等式由 $\arcsin x + \arccos x = \frac{\pi}{2}$ 得到.

• $(\arctan x)' = \frac{1}{1+x^2}$, $(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$, 证明: 设 $y = \arctan x$, 则有 $x = \tan y$,

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2(\arctan x)} = \frac{1}{1 + x^2}$$

第二个等式由 $\arctan x + \operatorname{arccot} x = \frac{\pi}{2}$ 得到

• $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$, $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$, 证明: 设 $y = \arcsin x$, 则有 $x = \sin y$,

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\cos y} = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - x^2}}$$

第二个等式由 $\arcsin x + \arccos x = \frac{\pi}{2}$ 得到.

• $(\arctan x)' = \frac{1}{1+x^2}$, $(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$, 证明: 设 $y = \arctan x$, 则有 $x = \tan y$,

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2(\arctan x)} = \frac{1}{1 + x^2}$$

第二个等式由 $\arctan x + \operatorname{arccot} x = \frac{\pi}{2}$ 得到

• $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$, $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$, 证明: 设 $y = \arcsin x$, 则有 $x = \sin y$,

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\cos y} = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - x^2}}$$

第二个等式由 $\arcsin x + \arccos x = \frac{\pi}{2}$ 得到.

• $(\arctan x)' = \frac{1}{1+x^2}$, $(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$, 证明: 设 $y = \arctan x$, 则有 $x = \tan y$,

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2(\arctan x)} = \frac{1}{1 + x^2}$$

第二个等式由 $\arctan x + \operatorname{arccot} x = \frac{\pi}{2}$ 得到.

• $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$, $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$, 证明: 设 $y = \arcsin x$, 则有 $x = \sin y$,

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\cos y} = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - x^2}}$$

第二个等式由 $\arcsin x + \arccos x = \frac{\pi}{2}$ 得到.

• $(\arctan x)' = \frac{1}{1+x^2}$, $(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$, 证明: 设 $y = \arctan x$, 则有 $x = \tan y$,

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2(\arctan x)} = \frac{1}{1 + x^2}$$

第二个等式由 $\arctan x + \operatorname{arccot} x = \frac{\pi}{2}$ 得到.

- $(\ln x)' = \frac{1}{x}$, $(\ln(-x))' = \frac{1}{-x}(-1) = \frac{1}{x}$, 从而 $(\ln |x|)' = \frac{1}{x}$. 证明: 设 $y = \ln x$, 则有 $x = e^y$, $\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x}$
- $y = \sqrt[3]{\frac{(x+1)^2(2-x)}{(3-x)^2(x-4)}} = (x+1)^{\frac{2}{3}}(2-x)^{\frac{1}{3}}(3-x)^{-\frac{2}{3}}(x-4)^{-\frac{1}{3}}.$ $\Re: x \neq 2, -1 \text{ ft},$

$$\begin{split} \ln|y| &= \frac{1}{3}(2\ln|x+1| + \ln|2-x| - 2\ln|3-x| - \ln|x-4|) \\ \Longrightarrow y' &= y \cdot \frac{1}{3}(\frac{2}{x+1} - \frac{1}{2-x} + \frac{2}{3-x} - \frac{1}{x-4}) \end{split}$$

x=2,-1 处,函数不可导

• 注: 若 $f(x) = (x - x_0)^{\frac{2}{3}} g(x)$, g(x) 在 $x = x_0$ 处连续且 $g(x_0) \neq 0$, 则 f(x) 在 $x = x_0$ 处不可导.

证明:
$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{(\Delta x)^{\frac{2}{3}} g(x_0 + \Delta x)}{\Delta x}$$

- $(\ln x)' = \frac{1}{x}$, $(\ln(-x))' = \frac{1}{-x}(-1) = \frac{1}{x}$, 从而 $(\ln|x|)' = \frac{1}{x}$. 证明: 设 $y = \ln x$, 则有 $x = e^y$, $\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x}$.
- $y = \sqrt[3]{\frac{(x+1)^2(2-x)}{(3-x)^2(x-4)}} = (x+1)^{\frac{2}{3}}(2-x)^{\frac{1}{3}}(3-x)^{-\frac{2}{3}}(x-4)^{-\frac{1}{3}}.$ #: $x \neq 2, -1$ #,

$$\ln|y| = \frac{1}{3}(2\ln|x+1| + \ln|2-x| - 2\ln|3-x| - \ln|x-4|)$$

$$\implies y' = y \cdot \frac{1}{3}(\frac{2}{x+1} - \frac{1}{2-x} + \frac{2}{3-x} - \frac{1}{x-4})$$

x=2,-1 处,函数不可导.

证明: $\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{(\Delta x)^{\frac{2}{3}} g(x_0 + \Delta x)}{\Delta x}$

- $(\ln x)' = \frac{1}{x}$, $(\ln(-x))' = \frac{1}{-x}(-1) = \frac{1}{x}$, 从而 $(\ln|x|)' = \frac{1}{x}$. 证明: 设 $y = \ln x$, 则有 $x = e^y$, $\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x}$.
- $y = \sqrt[3]{\frac{(x+1)^2(2-x)}{(3-x)^2(x-4)}} = (x+1)^{\frac{2}{3}}(2-x)^{\frac{1}{3}}(3-x)^{-\frac{2}{3}}(x-4)^{-\frac{1}{3}}.$ $\Re: x \neq 2, -1$ \$\dagger\$,

$$\ln|y| = \frac{1}{3}(2\ln|x+1| + \ln|2-x| - 2\ln|3-x| - \ln|x-4|)$$

$$\implies y' = y \cdot \frac{1}{3}(\frac{2}{x+1} - \frac{1}{2-x} + \frac{2}{3-x} - \frac{1}{x-4})$$

x=2,-1 处,函数不可导.

• 注: 若 $f(x) = (x - x_0)^{\frac{2}{3}} g(x)$, g(x) 在 $x = x_0$ 处连续且 $g(x_0) \neq 0$, 则 f(x) 在 $x = x_0$ 处不可导.

证明:
$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{(\Delta x)^{\frac{2}{3}} g(x_0 + \Delta x)}{\Delta x}$$

利用反函数的微商求导数 2

- $(\ln x)' = \frac{1}{x}$, $(\ln(-x))' = \frac{1}{-x}(-1) = \frac{1}{x}$, 从而 $(\ln|x|)' = \frac{1}{x}$. 证明: 设 $y = \ln x$, 则有 $x = e^y$, $\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x}$.
- $y = \sqrt[3]{\frac{(x+1)^2(2-x)}{(3-x)^2(x-4)}} = (x+1)^{\frac{2}{3}}(2-x)^{\frac{1}{3}}(3-x)^{-\frac{2}{3}}(x-4)^{-\frac{1}{3}}.$ #: $x \neq 2, -1$ #,

$$\ln|y| = \frac{1}{3}(2\ln|x+1| + \ln|2-x| - 2\ln|3-x| - \ln|x-4|)$$

$$\implies y' = y \cdot \frac{1}{3}(\frac{2}{x+1} - \frac{1}{2-x} + \frac{2}{3-x} - \frac{1}{x-4})$$

x=2,-1 处,函数不可导.

• 注: 若 $f(x) = (x - x_0)^{\frac{2}{3}} g(x)$, g(x) 在 $x = x_0$ 处连续且 $g(x_0) \neq 0$, 则 f(x) 在 $x = x_0$ 处不可导.

证明:
$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{(\Delta x)^{\frac{2}{3}} g(x_0 + \Delta x)}{\Delta x}.$$

无穷小量的定义

- 牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门 学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支 名称的来源.
- 复习无穷大量: 若 $\lim_{\substack{x \to x_0 \\ n \to \infty}} f(x) = \infty$, 则称 $x \to x_0$ 时, f(x) 为无穷大量; 若 $\lim_{\substack{n \to \infty \\ n \to \infty}} a_n = \infty$, 则称 $(n \to \infty$ 时,) a_n 为无穷大量.
- 无穷小量是以 0 为极限的变量. 若 $\lim_{\substack{x \to x_0 \\ n \to \infty}} f(x) = 0$, 则称 $x \to x_0$ 时, f(x) 为无穷小量; 若 $\lim_{\substack{n \to \infty \\ n \to \infty}} a_n = 0$, 则称 $(n \to \infty)$ 时,) a_n 为无穷小量.

无穷小量的定义

- 牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门 学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支 名称的来源.
- 复习无穷大量: 若 $\lim_{\substack{x \to x_0 \\ n \to \infty}} f(x) = \infty$, 则称 $x \to x_0$ 时, f(x) 为无穷大量; 若 $\lim_{\substack{n \to \infty \\ n \to \infty}} a_n = \infty$, 则称 $(n \to \infty$ 时,) a_n 为无穷大量.
- 无穷小量是以 0 为极限的变量. 若 $\lim_{\substack{x \to x_0 \\ n \to \infty}} f(x) = 0$, 则称 $x \to x_0$ 时, f(x) 为无穷小量; 若 $\lim_{\substack{n \to \infty \\ n \to \infty}} a_n = 0$, 则称 $(n \to \infty)$ 时, $(n \to \infty)$ 可, $(n \to \infty)$

无穷小量的定义

- 牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门 学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支 名称的来源。
- 复习无穷大量: 若 $\lim_{\substack{x \to x_0 \\ n \to \infty}} f(x) = \infty$, 则称 $x \to x_0$ 时, f(x) 为无穷大量; 若 $\lim_{\substack{n \to \infty \\ n \to \infty}} a_n = \infty$, 则称 $(n \to \infty$ 时,) a_n 为无穷大量.
- 无穷小量是以 0 为极限的变量. 若 $\lim_{\substack{x \to x_0 \\ n \to \infty}} f(x) = 0$, 则称 $x \to x_0$ 时, f(x) 为无穷小量; 若 $\lim_{\substack{n \to \infty \\ n \to \infty}} a_n = 0$, 则称 $(n \to \infty)$ 时,) a_n 为无穷小量.

无穷小量的性质

- 注: 无穷小量和无穷大量都是变量, 不是数.
- 例: $\frac{1}{n}$, $q^n(|q| < 1)$ 是无穷小量. 设 f(x) = x, 则 $x \to 0$ 时, f(x) 为无穷小量, $x \to \infty$ 时, f(x) 为无穷大量.
- $x \to x_0$ 时,f(x) 是无穷大量,则 $\frac{1}{f(x)}$ 是无穷小量;f(x) 是无穷小量,且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 是无穷大量.
- 四则运算: $x \to x_0$ 时,f(x), g(x) 是无穷小量,则 $f(x) \pm g(x)$, f(x)g(x) 是无穷小量; $x \to x_0$ 时,f(x) 是无穷小量,g(x) 有界,则 f(x)g(x) 是无穷小量,序列无穷小量也有类似结论.

无穷小量的性质

- 注: 无穷小量和无穷大量都是变量, 不是数.
- 例: $\frac{1}{n}$, $q^n(|q| < 1)$ 是无穷小量. 设 f(x) = x, 则 $x \to 0$ 时, f(x) 为无穷小量, $x \to \infty$ 时, f(x) 为无穷大量.
- $x \to x_0$ 时,f(x) 是无穷大量,则 $\frac{1}{f(x)}$ 是无穷小量;f(x) 是无穷小量,且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 是无穷大量.
- 四则运算: $x \to x_0$ 时,f(x), g(x) 是无穷小量,则 $f(x) \pm g(x)$, f(x)g(x) 是无穷小量; $x \to x_0$ 时,f(x) 是无穷小量,g(x) 有界,则 f(x)g(x) 是无穷小量,序列无穷小量也有类似结论.

无穷小量的性质

- 注: 无穷小量和无穷大量都是变量, 不是数.
- 例: $\frac{1}{n}$, $q^n(|q| < 1)$ 是无穷小量. 设 f(x) = x, 则 $x \to 0$ 时, f(x) 为无穷小量, $x \to \infty$ 时, f(x) 为无穷大量.
- $x \to x_0$ 时,f(x) 是无穷大量,则 $\frac{1}{f(x)}$ 是无穷小量;f(x) 是无穷小量,且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 是无穷大量.
- 四则运算: $x \to x_0$ 时,f(x), g(x) 是无穷小量,则 $f(x) \pm g(x)$, f(x)g(x) 是无穷小量; $x \to x_0$ 时,f(x) 是无穷小量,g(x) 有界,则 f(x)g(x) 是无穷小量,序列无穷小量也有类似结论.

若 $x \to x_0$ 时,f(x), g(x) 是无穷小量,且 g(x) 在 x_0 某个空心邻域上不等于 0.

- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$, 则称 $x \to x_0$ 时 f(x) 和 g(x) 是等价无穷小量. 记为 $f(x) \sim g(x)$, $x \to x_0$.
- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = I \neq 0$, 则称 $x \to x_0$ 时 f(x) 和 g(x) 是等阶无穷小量.
- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$, 则称 $x \to x_0$ 时 f(x) 是 g(x) 的高阶无穷小量. 记为 f(x) = o(g(x)), $x \to x_0$.

若 $x \to x_0$ 时, f(x), g(x) 是无穷小量, 且 g(x) 在 x_0 某个空心邻域上不等于 0.

- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$, 则称 $x \to x_0$ 时 f(x) 和 g(x) 是等价无穷小量. 记为 $f(x) \sim g(x)$, $x \to x_0$.
- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = I \neq 0$, 则称 $x \to x_0$ 时 f(x) 和 g(x) 是等阶无穷小量.
- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$,则称 $x \to x_0$ 时 f(x) 是 g(x) 的高阶无穷小量. 记为 f(x) = o(g(x)), $x \to x_0$.

若 $x \to x_0$ 时,f(x), g(x) 是无穷小量,且 g(x) 在 x_0 某个空心邻域上不等于 0.

- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$, 则称 $x \to x_0$ 时 f(x) 和 g(x) 是等价无穷小量. 记为 $f(x) \sim g(x)$, $x \to x_0$.
- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = I \neq 0$, 则称 $x \to x_0$ 时 f(x) 和 g(x) 是等阶无穷小量.
- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$,则称 $x \to x_0$ 时 f(x) 是 g(x) 的高阶无穷小量. 记为 f(x) = o(g(x)), $x \to x_0$.

若 $x \to x_0$ 时, f(x), g(x) 是无穷小量, 且 g(x) 在 x_0 某个空心邻域上不等于 0.

- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$, 则称 $x \to x_0$ 时 f(x) 和 g(x) 是等价无穷小量. 记为 $f(x) \sim g(x)$, $x \to x_0$.
- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = I \neq 0$, 则称 $x \to x_0$ 时 f(x) 和 g(x) 是等阶无穷小量.
- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$, 则称 $x \to x_0$ 时 f(x) 是 g(x) 的高阶无穷小量. 记为 f(x) = o(g(x)), $x \to x_0$.

- 注: 严格地说,记号 o(g(x)) 表示一类函数 (g(x)) 的高阶无穷小量构成的集合),上面的记号 f(x)=o(g(x)) 应该写成 $f(x)\in o(g(x))$.因此由 $f_1(x)=o(g(x))$, $f_2(x)=o(g(x))$ 不能得出 $f_1=f_2$.
- 若 $x \to x_0$ 时,f(x), g(x) 是无穷小量,且 g(x) 在 x_0 的某个空心邻域上不等于 0,存在 M,使得 $\left| \frac{f(x)}{g(x)} \right| \le M$ 在 x_0 的某个空心邻域上成立,则记为 $x \to x_0$ 时 f(x) = O(g(x)).
- 若 $x \to x_0$ 时,f(x) 是无穷小量,则 $\lim_{x \to x_0} \frac{f(x)}{1} = 0$,我们也可以记为 f(x) = O(1).

- 注: 严格地说,记号 o(g(x)) 表示一类函数 (g(x)) 的高阶无穷小量构成的集合),上面的记号 f(x)=o(g(x)) 应该写成 $f(x)\in o(g(x))$.因此由 $f_1(x)=o(g(x))$, $f_2(x)=o(g(x))$ 不能得出 $f_1=f_2$.
- 若 $x \to x_0$ 时,f(x), g(x) 是无穷小量,且 g(x) 在 x_0 的某个空心邻域上不等于 0,存在 M,使得 $\left| \frac{f(x)}{g(x)} \right| \le M$ 在 x_0 的某个空心邻域上成立,则记为 $x \to x_0$ 时 f(x) = O(g(x)).
- 若 $x \to x_0$ 时,f(x) 是无穷小量,则 $\lim_{x \to x_0} \frac{f(x)}{1} = 0$,我们也可以记为 f(x) = O(1).

- 注: 严格地说,记号 o(g(x)) 表示一类函数 (g(x)) 的高阶无穷小量构成的集合),上面的记号 f(x)=o(g(x)) 应该写成 $f(x)\in o(g(x))$.因此由 $f_1(x)=o(g(x))$, $f_2(x)=o(g(x))$ 不能得出 $f_1=f_2$.
- 若 $x \to x_0$ 时,f(x), g(x) 是无穷小量,且 g(x) 在 x_0 的某个空心邻域上不等于 0,存在 M,使得 $\left| \frac{f(x)}{g(x)} \right| \le M$ 在 x_0 的某个空心邻域上成立,则记为 $x \to x_0$ 时 f(x) = O(g(x)).
- 若 $x \to x_0$ 时,f(x) 是无穷小量,则 $\lim_{x \to x_0} \frac{f(x)}{1} = 0$,我们也可以记为 f(x) = O(1).

- 若 h(x) 在 x_0 附近有界, 若 f(x) = o(g(x)), 则有 f(x)h(x) = o(g(x)), 记着 h(x)o(g(x)) = o(g(x)).
- f(x) = o(g(x)),

$$\lim_{x \to x_0} \frac{h(x) + f(x)}{g(x)} = \lim_{x \to x_0} \frac{h(x)}{g(x)}$$

• $x \to 0$ 时, 若 $f(x) = o(x^n)$, $g(x) = O(x^m)$, 则 $f(x)g(x) = o(x^{m+n})$. 即 $O(x^m)o(x^n) = o(x^{m+n})$; 若 $x \to 0$ 时, $f(x) = o(x^m)$, $g(x) = o(x^n)$, $m \le n$, 则有 $f(x) + g(x) = o(x^m)$, 记着 $o(x^m) + o(x^n) = o(x^m)$.

- 若 h(x) 在 x_0 附近有界, 若 f(x) = o(g(x)), 则有 f(x)h(x) = o(g(x)), 记着 h(x)o(g(x)) = o(g(x)).
- 若 f(x) = o(g(x)),

$$\lim_{x \to x_0} \frac{h(x) + f(x)}{g(x)} = \lim_{x \to x_0} \frac{h(x)}{g(x)}$$

• $x \to 0$ 时, 若 $f(x) = o(x^n)$, $g(x) = O(x^m)$, 则 $f(x)g(x) = o(x^{m+n})$. 即 $O(x^m)o(x^n) = o(x^{m+n})$; 若 $x \to 0$ 时, $f(x) = o(x^m)$, $g(x) = o(x^n)$, $m \le n$, 则有 $f(x) + g(x) = o(x^m)$, 记着 $o(x^m) + o(x^n) = o(x^m)$.

- 若 h(x) 在 x_0 附近有界, 若 f(x) = o(g(x)), 则有 f(x)h(x) = o(g(x)), 记着 h(x)o(g(x)) = o(g(x)).
- 若 f(x) = o(g(x)),

$$\lim_{x \to x_0} \frac{h(x) + f(x)}{g(x)} = \lim_{x \to x_0} \frac{h(x)}{g(x)}$$

• $x \to 0$ 时, 若 $f(x) = o(x^n)$, $g(x) = O(x^m)$, 则 $f(x)g(x) = o(x^{m+n})$. 即 $O(x^m)o(x^n) = o(x^{m+n})$; 若 $x \to 0$ 时, $f(x) = o(x^m)$, $g(x) = o(x^n)$, $m \le n$, 则有 $f(x) + g(x) = o(x^m)$, 记着 $o(x^m) + o(x^n) = o(x^m)$.

注: 若 g(x) 可以取 0, 可如下定义: 若存在 η(x), 使得 x ≠ x₀ 时,

$$f(x) = \eta(x)g(x).$$

当 h(x) 满足 $\lim_{\substack{x \to x_0 \\ x \to x_0}} \eta(x) = 1$, 则称 f(x) 和 g(x) 是等价无穷小量; 当 h(x) 满足 $\lim_{\substack{x \to x_0 \\ x \to x_0}} \eta(x) = I \neq 0$, 则称 f(x) 和 g(x) 是等阶无穷小量; 当 h(x) 满足 $\lim_{\substack{x \to x_0 \\ x \to x_0}} \eta(x) = 0$, 则称 f(x) 是 g(x) 的高阶无穷小量,记为 f(x) = o(g(x)), $x \to x_0$.

• 例: 若 $\lim_{x \to x_0} f(x) = 0$, 则有 $\ln(1 + f(x)) \sim f(x)$. 事实上, $\ln(1 + f(x)) = \eta(x)f(x)$, 其中

$$\eta(x) = \begin{cases} 1, f(x) = 0, \\ \frac{\ln(1 + f(x))}{f(x)}, f(x) \neq 0 \end{cases}.$$

• 注: 若 g(x) 可以取 0, 可如下定义: 若存在 $\eta(x)$, 使得 $x \neq x_0$ 时,

$$f(x) = \eta(x)g(x).$$

当 h(x) 满足 $\lim_{\substack{x \to x_0 \\ x \to x_0}} \eta(x) = 1$, 则称 f(x) 和 g(x) 是等价无穷小量; 当 h(x) 满足 $\lim_{\substack{x \to x_0 \\ x \to x_0}} \eta(x) = I \neq 0$, 则称 f(x) 和 g(x) 是等阶无穷小量; 当 h(x) 满足 $\lim_{\substack{x \to x_0 \\ x \to x_0}} \eta(x) = 0$, 则称 f(x) 是 g(x) 的高阶无穷小量,记为 f(x) = o(g(x)), $x \to x_0$.

• 例: 若 $\lim_{x \to x_0} f(x) = 0$, 则有 $\ln(1 + f(x)) \sim f(x)$. 事实上, $\ln(1 + f(x)) = \eta(x)f(x)$, 其中

$$\eta(x) = \begin{cases} 1, f(x) = 0, \\ \frac{\ln(1 + f(x))}{f(x)}, f(x) \neq 0 \end{cases}.$$

- 我们用记号 $f(x) = f_0(x) + o(g(x))$ 表示 $f(x) f_0(x)$ 是 g(x) 的高阶 无穷小.
- 例: $\sqrt{1-x} = 1 \frac{1}{2}x + o(x), x \to 0.$ 证明:

$$\frac{\sqrt{1-x}-1+\frac{1}{2}x}{x} = \frac{\sqrt{1-x}-1}{x} + \frac{1}{2} = \frac{-1}{\sqrt{1-x}+1} + \frac{1}{2} \to 0.$$

• $x \to 0$ 时, $\sin x = x + o(x)$, $\ln(1+x) = x + o(x)$. 证明:

$$\frac{\sin x - x}{x} \to 0, \quad \frac{\ln(1+x) - x}{x} \to 0$$

- 我们用记号 $f(x) = f_0(x) + o(g(x))$ 表示 $f(x) f_0(x)$ 是 g(x) 的高阶 无穷小.
- 例: $\sqrt{1-x} = 1 \frac{1}{2}x + o(x), x \to 0.$ 证明:

$$\frac{\sqrt{1-x}-1+\frac{1}{2}x}{x} = \frac{\sqrt{1-x}-1}{x} + \frac{1}{2} = \frac{-1}{\sqrt{1-x}+1} + \frac{1}{2} \to 0.$$

• $x \to 0$ 时, $\sin x = x + o(x)$, $\ln(1+x) = x + o(x)$. 证明:

$$\frac{\sin x - x}{x} \to 0, \quad \frac{\ln(1+x) - x}{x} \to 0$$

- 我们用记号 $f(x) = f_0(x) + o(g(x))$ 表示 $f(x) f_0(x)$ 是 g(x) 的高阶 无穷小.
- 例: $\sqrt{1-x} = 1 \frac{1}{2}x + o(x), x \to 0.$ 证明:

$$\frac{\sqrt{1-x}-1+\frac{1}{2}x}{x} = \frac{\sqrt{1-x}-1}{x} + \frac{1}{2} = \frac{-1}{\sqrt{1-x}+1} + \frac{1}{2} \to 0.$$

• $x \to 0$ 时, $\sin x = x + o(x)$, $\ln(1+x) = x + o(x)$.

证明:

$$\frac{\sin x - x}{x} \to 0, \quad \frac{\ln(1+x) - x}{x} \to 0$$

- 我们用记号 $f(x) = f_0(x) + o(g(x))$ 表示 $f(x) f_0(x)$ 是 g(x) 的高阶 无穷小.
- 例: $\sqrt{1-x} = 1 \frac{1}{2}x + o(x), x \to 0.$ 证明:

$$\frac{\sqrt{1-x}-1+\frac{1}{2}x}{x} = \frac{\sqrt{1-x}-1}{x} + \frac{1}{2} = \frac{-1}{\sqrt{1-x}+1} + \frac{1}{2} \to 0.$$

• $x \to 0$ 时, $\sin x = x + o(x)$, $\ln(1+x) = x + o(x)$. 证明:

$$\frac{\sin x - x}{x} \to 0, \quad \frac{\ln(1+x) - x}{x} \to 0.$$

- 例: $x \to 0$ 时, $x \sim \sin x \sim \ln(1+x) \sim e^x 1 \sim \arctan x \sim \arcsin x$, $1 \cos x \sim \frac{1}{2}x^2$.
- \emptyset : $x \to +\infty$ $\not \leq n \to \infty$ $t \mapsto n \to \infty$

$$\frac{1}{e^x} = o(\frac{1}{x^n}), \ \frac{1}{x} = o(\frac{1}{\ln x}), \ \frac{1}{n!} = o(\frac{1}{e^n}), \ \frac{1}{e^n} = o(\frac{1}{n}), \ \frac{1}{n} = o(\frac{1}{\ln n})$$

- 例: $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1 \cos x}{x^2 \cos x} = \frac{1}{2}$.
- 注: $\sin x \sim x$, 但是 $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} \neq \lim_{x \to 0} \frac{\tan x x}{x^3} = \frac{1}{3}$.

- 例: $x \to 0$ 时, $x \sim \sin x \sim \ln(1+x) \sim e^x 1 \sim \arctan x \sim \arcsin x$, $1 \cos x \sim \frac{1}{2}x^2$.
- \emptyset : $x \to +\infty$ $\not a$ $n \to \infty$ $\not b$,

$$\frac{1}{e^x} = o(\frac{1}{x^n}), \ \frac{1}{x} = o(\frac{1}{\ln x}), \ \frac{1}{n!} = o(\frac{1}{e^n}), \ \frac{1}{e^n} = o(\frac{1}{n}), \ \frac{1}{n} = o(\frac{1}{\ln n}).$$

- 例: $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1 \cos x}{x^2 \cos x} = \frac{1}{2}.$
- 注: $\sin x \sim x$, 但是 $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} \neq \lim_{x \to 0} \frac{\tan x x}{x^3} = \frac{1}{3}$.

- 例: $x \to 0$ 时, $x \sim \sin x \sim \ln(1+x) \sim e^x 1 \sim \arctan x \sim \arcsin x$, $1 \cos x \sim \frac{1}{2}x^2$.
- \emptyset : $x \to +\infty$ $\not a$ $n \to \infty$ $\not b$,

$$\frac{1}{e^x} = o(\frac{1}{x^n}), \ \frac{1}{x} = o(\frac{1}{\ln x}), \ \frac{1}{n!} = o(\frac{1}{e^n}), \ \frac{1}{e^n} = o(\frac{1}{n}), \ \frac{1}{n} = o(\frac{1}{\ln n}).$$

- \mathfrak{P} : $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1 \cos x}{x^2 \cos x} = \frac{1}{2}$.
- 注: $\sin x \sim x$, 但是 $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} \neq \lim_{x \to 0} \frac{\tan x x}{x^3} = \frac{1}{3}$.

- 例: $x \to 0$ 时, $x \sim \sin x \sim \ln(1+x) \sim e^x 1 \sim \arctan x \sim \arcsin x$, $1 \cos x \sim \frac{1}{2}x^2$.
- \emptyset : $x \to +\infty$ $\not a$ $n \to \infty$ $\not b$,

$$\frac{1}{e^x} = o(\frac{1}{x^n}), \ \frac{1}{x} = o(\frac{1}{\ln x}), \ \frac{1}{n!} = o(\frac{1}{e^n}), \ \frac{1}{e^n} = o(\frac{1}{n}), \ \frac{1}{n} = o(\frac{1}{\ln n}).$$

- 例: $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1 \cos x}{x^2 \cos x} = \frac{1}{2}$.
- 注: $\sin x \sim x$, 但是 $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} \neq \lim_{x \to 0} \frac{\tan x x}{x^3} = \frac{1}{3}$.

• 若 $x \to x_0$ 时 f(x) 和 g(x) 是等价无穷小量,则有

$$\lim_{x \to x_0} f(x)h(x) = \lim_{x \to x_0} \eta(x)g(x)h(x) = \lim_{x \to x_0} g(x)h(x)$$
$$\lim_{x \to x_0} \frac{h(x)}{f(x)} = \lim_{x \to x_0} \frac{1}{\eta(x)} \frac{h(x)}{g(x)} = \lim_{x \to x_0} \frac{h(x)}{g(x)}$$

• $x \to 0$ 时, $x \sim x + x^2 \sim x + 2x^2$, 但是

$$\lim_{x \to 0} \frac{(x+x^2) - (x+2x^2)}{x^2} \neq \lim_{x \to 0} \frac{(x) - (x+2x^2)}{x^2} \neq \lim_{x \to 0} \frac{(x+x^2) - (x)}{x^2}$$

• 若 $x \to x_0$ 时 f(x) 和 g(x) 是等价无穷小量,则有

$$\lim_{x \to x_0} f(x)h(x) = \lim_{x \to x_0} \eta(x)g(x)h(x) = \lim_{x \to x_0} g(x)h(x)$$

$$\lim_{x \to x_0} \frac{h(x)}{f(x)} = \lim_{x \to x_0} \frac{1}{\eta(x)} \frac{h(x)}{g(x)} = \lim_{x \to x_0} \frac{h(x)}{g(x)}$$

• $x \to 0$ 时, $x \sim x + x^2 \sim x + 2x^2$, 但是

$$\lim_{x \to 0} \frac{(x+x^2) - (x+2x^2)}{x^2} \neq \lim_{x \to 0} \frac{(x) - (x+2x^2)}{x^2} \neq \lim_{x \to 0} \frac{(x+x^2) - (x)}{x^2}$$

$$\lim_{x \to 0} \frac{\ln(1 + \frac{f(x)}{\sin x})}{a^x - 1} = \lim_{x \to 0} \frac{\frac{f(x)}{\sin x}}{e^{x \ln a} - 1} = \lim_{x \to 0} \frac{\frac{f(x)}{x}}{x \ln a} = \lim_{x \to 0} \frac{f(x)}{x^2 \ln a} = A$$

因此
$$\lim_{x\to 0} \frac{f(x)}{x^2} = A \ln a$$
.

• 求极限 $\lim_{x\to 1-0} \ln x \ln(1-x)$.

$$\lim_{x \to 1-0} \ln x \ln(1-x) = \lim_{t \to 0+0} \ln(1-t) \ln t = \lim_{t \to 0+0} (-t) \ln t = 0$$

• $i \xi \ a > 0, a \neq 1, \lim_{x \to 0} \frac{\ln(1 + \frac{f(x)}{\sin x})}{a^x - 1} = A, \ \ \sharp \lim_{x \to 0} \frac{f(x)}{x^2}.$

$$\lim_{x \to 0} \frac{\ln(1 + \frac{f(x)}{\sin x})}{a^x - 1} = \lim_{x \to 0} \frac{\frac{f(x)}{\sin x}}{e^{x \ln a} - 1} = \lim_{x \to 0} \frac{\frac{f(x)}{x}}{x \ln a} = \lim_{x \to 0} \frac{f(x)}{x^2 \ln a} = A$$

因此 $\lim_{x\to 0} \frac{f(x)}{x^2} = A \ln a$.

• 求极限 $\lim_{x\to 1-0} \ln x \ln(1-x)$.

$$\lim_{x \to 1-0} \ln x \ln(1-x) = \lim_{t \to 0+0} \ln(1-t) \ln t = \lim_{t \to 0+0} (-t) \ln t = 0.$$

微分的定义

• y = f(x) 在 x_0 附近有定义, 若存在常数 A, 使得

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x),$$

则称 y = f(x) 在 x_0 处可微, $A\Delta x$ 称为 y = f(x) 在 x_0 处的微分,记为 $dy|_{x=x_0} = df|_{x=x_0} = A\Delta x = Adx$. 若 f(x) 在 (a,b) 上处处可微,则称 f(x) 在 (a,b) 上可微,此时常数 A 与 x 有关,

• 对自变量 x, 规定 $dx = \Delta x$.

df = A(x)dx.

微分的性质

• f(x) 在 x₀ 处可微的几何意义: 若 f(x) 在 x₀ 处可微,

$$f(x) - f(x_0) = A(x - x_0) + o(x - x_0), x \to x_0$$

 $\implies f(x) - (f(x_0) + A(x - x_0)) = o(x - x_0).$

即 y = f(x) 与直线 $y = f(x_0) + A(x - x_0)$ 在 $x = x_0$ 处相切.

• y = f(x) 在 x_0 处可微 (设 $df|_{x=x_0} = Adx$) $\iff y = f(x)$ 在 x_0 处可导,且 $f'(x_0) = A$.

$$y = f(x)$$
在 x_0 处可微
⇔ 存在 A , 使得 $\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x)$
⇔ $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0) - A\Delta x}{\Delta x} = 0 \Leftrightarrow \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A$.

微分的性质

• f(x) 在 x₀ 处可微的几何意义: 若 f(x) 在 x₀ 处可微,

$$f(x) - f(x_0) = A(x - x_0) + o(x - x_0), x \to x_0$$

 $\implies f(x) - (f(x_0) + A(x - x_0)) = o(x - x_0).$

即 y = f(x) 与直线 $y = f(x_0) + A(x - x_0)$ 在 $x = x_0$ 处相切.

• y = f(x) 在 x_0 处可微 (设 $df|_{x=x_0} = Adx$) $\iff y = f(x)$ 在 x_0 处可导,且 $f'(x_0) = A$.

证明:

$$y = f(x)$$
在 x_0 处可微
⇔ 存在 A , 使得 $\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x)$
⇔ $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0) - A\Delta x}{\Delta x} = 0 \Leftrightarrow \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A$

微分的性质

• f(x) 在 x₀ 处可微的几何意义: 若 f(x) 在 x₀ 处可微,

$$f(x) - f(x_0) = A(x - x_0) + o(x - x_0), x \to x_0$$

 $\implies f(x) - (f(x_0) + A(x - x_0)) = o(x - x_0).$

即 y = f(x) 与直线 $y = f(x_0) + A(x - x_0)$ 在 $x = x_0$ 处相切.

y = f(x) 在 x₀ 处可微 (设 df|_{x=x₀} = Adx) ⇔ y = f(x) 在 x₀ 处可导, 且 f'(x₀) = A.
 证明:

$$y = f(x)$$
在 x_0 处可微
 ⇔ 存在 A , 使得 $\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x)$
 ⇔ $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0) - A\Delta x}{\Delta x} = 0 \Leftrightarrow \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A$.

微分的计算

- df = f'(x)dx, $df|_{x=x_0} = f'(x_0)dx$ (回忆记号: $f'(x) = \frac{df}{dx}$).
- 例: $de^x = e^x dx$, $d\sin x = \cos x dx$. e^x 在 x = 0 处的微分为 $de^x|_{x=0} = dx$, $\sin x$ 在 $x = \frac{\pi}{2}$ 处的微分为 $d\sin x|_{x=\frac{\pi}{3}} = 0 dx = 0$
- 微分的四则运算:
 - $d(u(x) \pm v(x)) = du(x) \pm dv(x)$,
 - d(u(x)v(x)) = u(x)dv(x) + v(x)du(x),
 - $d(\frac{u(x)}{v(x)}) = \frac{v(x)du(x) u(x)dv(x)}{v(x)^2}$

证明: 利用导数的四则运算公式, 如

$$d(u(x)v(x)) = (u(x)v'(x) + u'(x)v(x))dx$$

= $u(x)dv(x) + v(x)du(x)$.

微分的计算

- df = f'(x)dx, $df|_{x=x_0} = f'(x_0)dx$ (回忆记号: $f'(x) = \frac{df}{dx}$).
- 例: $de^x = e^x dx$, $d\sin x = \cos x dx$. e^x 在 x = 0 处的微分为 $de^x|_{x=0} = dx$, $\sin x$ 在 $x = \frac{\pi}{2}$ 处的微分为 $d\sin x|_{x=\frac{\pi}{2}} = 0 dx = 0$.
- 微分的四则运算:
 - $d(u(x) \pm v(x)) = du(x) \pm dv(x)$,
 - d(u(x)v(x)) = u(x)dv(x) + v(x)du(x),
 - $d(\frac{u(x)}{v(x)}) = \frac{v(x)du(x) u(x)dv(x)}{v(x)^2}$

证明: 利用导数的四则运算公式, 如

$$d(u(x)v(x)) = (u(x)v'(x) + u'(x)v(x))dx$$

= $u(x)dv(x) + v(x)du(x)$.

微分的计算

- df = f'(x)dx, $df|_{x=x_0} = f'(x_0)dx$ (回忆记号: $f'(x) = \frac{df}{dx}$).
- 例: $de^x = e^x dx$, $d\sin x = \cos x dx$. e^x 在 x = 0 处的微分为 $de^x|_{x=0} = dx$, $\sin x$ 在 $x = \frac{\pi}{2}$ 处的微分为 $d\sin x|_{x=\frac{\pi}{2}} = 0 dx = 0$.
- 微分的四则运算:
 - $d(u(x) \pm v(x)) = du(x) \pm dv(x)$,
 - d(u(x)v(x)) = u(x)dv(x) + v(x)du(x),
 - $d(\frac{u(x)}{v(x)}) = \frac{v(x)du(x) u(x)dv(x)}{v(x)^2}$

证明: 利用导数的四则运算公式, 如

$$d(u(x)v(x)) = (u(x)v'(x) + u'(x)v(x))dx$$

= $u(x)dv(x) + v(x)du(x)$.

微分的计算

- df = f'(x)dx, $df|_{x=x_0} = f'(x_0)dx$ (回忆记号: $f'(x) = \frac{df}{dx}$).
- 例: $de^x = e^x dx$, $d\sin x = \cos x dx$. e^x 在 x = 0 处的微分为 $de^x|_{x=0} = dx$, $\sin x$ 在 $x = \frac{\pi}{2}$ 处的微分为 $d\sin x|_{x=\frac{\pi}{2}} = 0 dx = 0$.
- 微分的四则运算:
 - $d(u(x) \pm v(x)) = du(x) \pm dv(x)$,
 - d(u(x)v(x)) = u(x)dv(x) + v(x)du(x),
 - $d(\frac{u(x)}{v(x)}) = \frac{v(x)du(x) u(x)dv(x)}{v(x)^2}$

证明: 利用导数的四则运算公式, 如

$$d(u(x)v(x)) = (u(x)v'(x) + u'(x)v(x))dx$$
$$= u(x)dv(x) + v(x)du(x).$$

微分与近似计算

● 若 f(x) 在 x₀ 处可微,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0) \approx f(x_0) + f'(x_0)(x - x_0).$$

- 例: 当 x 靠近 0 时, $\sin x \approx x$, $(1+x)^{\alpha} \approx 1 + \alpha x$.

微分与近似计算

● 若 f(x) 在 x₀ 处可微,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0) \approx f(x_0) + f'(x_0)(x - x_0).$$

- $\{\emptyset\}$: $\tan(\frac{\pi}{4} + 0.01) \approx \tan\frac{\pi}{4} + \sec^2\frac{\pi}{4} \cdot 0.01 = 1.02.$ $(\tan(\frac{\pi}{4} + 0.01) = 1.0202\cdots.)$
- 例: 当 x 靠近 0 时, $\sin x \approx x$, $(1+x)^{\alpha} \approx 1+\alpha x$.

微分与近似计算

● 若 f(x) 在 x₀ 处可微,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0) \approx f(x_0) + f'(x_0)(x - x_0).$$

- 例: 当 x 靠近 0 时, $\sin x \approx x$, $(1+x)^{\alpha} \approx 1 + \alpha x$.

 命题:设 z = g(y) 是可微函数,则有不论 y 是自变量还是可微函数, 均有 dz = g'(y)dy.

证明: 若 y = f(x) 是可微函数,则有 $\frac{dz}{dx} = g'(f(x))f'(x)$,故有 dz = g'(f(x))f'(x)dx = g'(y)dy.

例:求微分 d(e^{sin x²}).
 解法 1. (e^{sin x²})' = e^{sin x²} cos x²(2x), 因此

$$d(e^{\sin x^2}) = e^{\sin x^2} \cos x^2 \cdot 2x dx.$$

$$d(e^{\sin x^2}) = e^{\sin x^2} d(\sin x^2) = e^{\sin x^2} \cos x^2 d(x^2)$$

= $e^{\sin x^2} \cos x^2 \cdot 2x dx$.

 命题:设 z = g(y) 是可微函数,则有不论 y 是自变量还是可微函数, 均有 dz = g'(y)dy.

证明: 若 y = f(x) 是可微函数,则有 $\frac{dz}{dx} = g'(f(x))f'(x)$,故有 dz = g'(f(x))f'(x)dx = g'(y)dy.

例:求微分 d(e^{sin x²}).

解法 1. $(e^{\sin x^2})' = e^{\sin x^2} \cos x^2(2x)$, 因此

$$d(e^{\sin x^2}) = e^{\sin x^2} \cos x^2 \cdot 2x dx.$$

$$d(e^{\sin x^2}) = e^{\sin x^2} d(\sin x^2) = e^{\sin x^2} \cos x^2 d(x^2)$$

= $e^{\sin x^2} \cos x^2 \cdot 2x dx$.

 命题:设 z = g(y) 是可微函数,则有不论 y 是自变量还是可微函数, 均有 dz = g'(y)dy.

证明: 若 y=f(x) 是可微函数,则有 $\frac{dz}{dx}=g'(f(x))f'(x)$,故有 dz=g'(f(x))f'(x)dx=g'(y)dy.

例:求微分 d(e^{sin x²}).
 解法 1. (e^{sin x²})' = e^{sin x²} cos x²(2x), 因此

$$d(e^{\sin x^2}) = e^{\sin x^2} \cos x^2 \cdot 2x dx.$$

$$d(e^{\sin x^2}) = e^{\sin x^2} d(\sin x^2) = e^{\sin x^2} \cos x^2 d(x^2)$$

= $e^{\sin x^2} \cos x^2 \cdot 2x dx$.

命题:设 z = g(y) 是可微函数,则有不论 y 是自变量还是可微函数,均有 dz = g'(y)dy.

证明: 若 y = f(x) 是可微函数,则有 $\frac{dz}{dx} = g'(f(x))f'(x)$,故有 dz = g'(f(x))f'(x)dx = g'(y)dy.

例: 求微分 d(e^{sin x²}).
 解法 1. (e^{sin x²})' = e^{sin x²} cos x²(2x), 因此

$$d(e^{\sin x^2}) = e^{\sin x^2} \cos x^2 \cdot 2x dx.$$

$$d(e^{\sin x^2}) = e^{\sin x^2} d(\sin x^2) = e^{\sin x^2} \cos x^2 d(x^2)$$

= $e^{\sin x^2} \cos x^2 \cdot 2x dx$.

- 若 $y = f(x), x \in X$ 代入方程 F(x, y) = 0 恒成立,即 $F(x, f(x)) \equiv 0, x \in X$,则称 $y = f(x), x \in X$ 是由方程 F(x, y) = 0 确定的隐函数.
- 例: $y = \pm \sqrt{R^2 x^2}$, $x \in (-R, +R)$ 是由 $x^2 + y^2 R^2 = 0$ 确定的隐函数.
- 例: 若 f 是双射,则 $y = f^{-1}(x)$ 是由方程 x f(y) = 0 确定的隐函数.
- 注: F(x,y) = 0 确定的隐函数的存在性和唯一性以后在多元函数部分讨论.

- 若 $y = f(x), x \in X$ 代入方程 F(x, y) = 0 恒成立,即 $F(x, f(x)) \equiv 0, x \in X$,则称 $y = f(x), x \in X$ 是由方程 F(x, y) = 0 确定的隐函数.
- 例: $y = \pm \sqrt{R^2 x^2}$, $x \in (-R, +R)$ 是由 $x^2 + y^2 R^2 = 0$ 确定的隐函数.
- 例: 若 f 是双射,则 $y = f^{-1}(x)$ 是由方程 x f(y) = 0 确定的隐函数.
- 注: F(x,y) = 0 确定的隐函数的存在性和唯一性以后在多元函数部分讨论.

- 若 $y = f(x), x \in X$ 代入方程 F(x, y) = 0 恒成立,即 $F(x, f(x)) \equiv 0, x \in X$,则称 $y = f(x), x \in X$ 是由方程 F(x, y) = 0 确定的隐函数.
- 例: $y = \pm \sqrt{R^2 x^2}$, $x \in (-R, +R)$ 是由 $x^2 + y^2 R^2 = 0$ 确定的隐函数.
- 例: 若 f 是双射,则 $y = f^{-1}(x)$ 是由方程 x f(y) = 0 确定的隐函数.
- 注: F(x,y) = 0 确定的隐函数的存在性和唯一性以后在多元函数部分讨论.

- 若 $y = f(x), x \in X$ 代入方程 F(x, y) = 0 恒成立,即 $F(x, f(x)) \equiv 0, x \in X$,则称 $y = f(x), x \in X$ 是由方程 F(x, y) = 0 确定的隐函数.
- 例: $y = \pm \sqrt{R^2 x^2}$, $x \in (-R, +R)$ 是由 $x^2 + y^2 R^2 = 0$ 确定的隐函数.
- 例: 若 f 是双射,则 $y = f^{-1}(x)$ 是由方程 x f(y) = 0 确定的隐函数.
- 注: F(x,y) = 0 确定的隐函数的存在性和唯一性以后在多元函数部分讨论.

- 隐函数的求导方法 1: 把 y 看成 x 的函数,方程 F(x,y) = 0 两边对 x 求导,再解出 y'(x).
- 隐函数的求导方法 2: 方程 F(x,y) = 0 两边求微分,再除以 dx,解出 $\frac{9}{4}$.
- 求 $x^2 + y^2 = R^2$ 确定的隐函数的导数. 解法 1: $x^2 + y^2 = R^2$ 两边对 x 求导, 得 2x + 2yy' = 0, 因此 $y' = -\frac{x}{y}$. 解法 2: 方程两边求微分。得 2xdx + 2ydy = 0 两边除以 dx
 - 解法 2: 方程两边求微分,得 2xdx + 2ydy = 0,两边除以 dx,得 $dx = -\frac{x}{y}$.
- 注:上面计算中不需要解出 y(x).

- 隐函数的求导方法 1: 把 y 看成 x 的函数,方程 F(x,y) = 0 两边对 x 求导,再解出 y'(x).
- 隐函数的求导方法 2: 方程 F(x,y)=0 两边求微分,再除以 dx,解 出 $\frac{dy}{dx}$.
- 求 $x^2 + y^2 = R^2$ 确定的隐函数的导数. 解法 1: $x^2 + y^2 = R^2$ 两边对 x 求导, 得 2x + 2yy' = 0, 因此 $y' = -\frac{x}{y}$.
 - 解法 2: 方程两边求微分,得 2xdx + 2ydy = 0,两边除以 dx,得 $dx = -\frac{x}{y}$.
- 注:上面计算中不需要解出 y(x).

- 隐函数的求导方法 1: 把 y 看成 x 的函数,方程 F(x,y) = 0 两边对 x 求导,再解出 y'(x).
- 隐函数的求导方法 2: 方程 F(x,y)=0 两边求微分,再除以 dx,解 出 $\frac{dy}{dx}$.
- 求 $x^2 + y^2 = R^2$ 确定的隐函数的导数. 解法 1: $x^2 + y^2 = R^2$ 两边对 x 求导, 得 2x + 2yy' = 0, 因此 $y' = -\frac{x}{y}$.
 - 解法 2: 方程两边求微分,得 2xdx + 2ydy = 0,两边除以 dx,得 $\frac{dy}{dx} = -\frac{x}{y}$.
- 注: 上面计算中不需要解出 y(x).

- 隐函数的求导方法 1: 把 y 看成 x 的函数,方程 F(x,y) = 0 两边对 x 求导,再解出 y'(x).
- 隐函数的求导方法 2: 方程 F(x,y) = 0 两边求微分,再除以 dx,解 出 $\frac{\alpha}{2}$.
- 求 $x^2 + y^2 = R^2$ 确定的隐函数的导数. 解法 1: $x^2 + y^2 = R^2$ 两边对 x 求导, 得 2x + 2yy' = 0, 因此 $y' = -\frac{x}{y}$.

解法 2: 方程两边求微分,得 2xdx + 2ydy = 0,两边除以 dx,得 $dx = -\frac{x}{y}$.

• 注: 上面计算中不需要解出 y(x).

- 隐函数的求导方法 1: 把 y 看成 x 的函数,方程 F(x,y) = 0 两边对 x 求导,再解出 y'(x).
- 隐函数的求导方法 2: 方程 F(x,y)=0 两边求微分,再除以 dx,解出 $\frac{dy}{dx}$.
- 求 $x^2 + y^2 = R^2$ 确定的隐函数的导数. 解法 1: $x^2 + y^2 = R^2$ 两边对 x 求导, 得 2x + 2yy' = 0, 因此 $y' = -\frac{x}{y}$. 解法 2: 方程两边求微分,得 2xdx + 2ydy = 0, 两边除以 dx, 得 $\frac{dy}{dx} = -\frac{x}{y}$.
- 注: 上面计算中不需要解出 y(x).

- 隐函数的求导方法 1: 把 y 看成 x 的函数,方程 F(x,y) = 0 两边对 x 求导,再解出 y'(x).
- 隐函数的求导方法 2: 方程 F(x,y)=0 两边求微分,再除以 dx,解出 $\frac{dy}{dx}$.
- 求 $x^2 + y^2 = R^2$ 确定的隐函数的导数. 解法 1: $x^2 + y^2 = R^2$ 两边对 x 求导, 得 2x + 2yy' = 0, 因此 $y' = -\frac{x}{y}$. 解法 2: 方程两边求微分,得 2xdx + 2ydy = 0, 两边除以 dx, 得 $\frac{dy}{dx} = -\frac{x}{y}$.
- 注: 上面计算中不需要解出 y(x).

• 上例中的导数公式 $y' = -\frac{x}{y}$ 对 $y = \pm \sqrt{R^2 - x^2}$ 都适用. 事实上

$$y' = \mp \frac{x}{\sqrt{R^2 - x^2}} = -\frac{x}{y}.$$

由上述公式可知 $(\frac{\sqrt{2}}{2}R, \frac{\sqrt{2}}{2}R)$ 处的切线斜率为 -1,此时并不需要解出 y 的表达式.

- 例: 求 f 的反函数的导数. 解: f 的反函数时是由方程 x f(y) = 0 确定的隐函数. 方程两边对 x 求导, 得 1 f'(y)y' = 0, 即得 $y'(x)|_{x=f(y)} = \frac{1}{f'(y)}$.
- 例: 求方程 $y-x-\epsilon\sin y=0$ $(0<\epsilon<1)$ 确定的隐函数的导数. 解: 方程 $y-x-\epsilon\sin y=0$ 两边求微分得 $dy-dx-\epsilon\cos ydy=0$, 再除以 dx 得 $\frac{dy}{dx}=\frac{1}{1-\epsilon\cos y}$.

• 上例中的导数公式 $y' = -\frac{x}{y}$ 对 $y = \pm \sqrt{R^2 - x^2}$ 都适用. 事实上

$$y' = \mp \frac{x}{\sqrt{R^2 - x^2}} = -\frac{x}{y}.$$

由上述公式可知 $(\frac{\sqrt{2}}{2}R, \frac{\sqrt{2}}{2}R)$ 处的切线斜率为 -1,此时并不需要解出 y 的表达式.

- 例: 求 f 的反函数的导数. 解: f 的反函数时是由方程 x - f(y) = 0 确定的隐函数. 方程两边对 x 求导, 得 1 - f'(y)y' = 0, 即得 $y'(x)|_{x=f(y)} = \frac{1}{f'(y)}$.
- 例: 求方程 $y-x-\epsilon\sin y=0$ ($0<\epsilon<1$) 确定的隐函数的导数. 解: 方程 $y-x-\epsilon\sin y=0$ 两边求微分得 $dy-dx-\epsilon\cos ydy=0$, 再除以 dx 得 $\frac{dy}{dx}=\frac{1}{1-\epsilon\cos y}$.

• 上例中的导数公式 $y' = -\frac{x}{y}$ 对 $y = \pm \sqrt{R^2 - x^2}$ 都适用. 事实上

$$y' = \mp \frac{x}{\sqrt{R^2 - x^2}} = -\frac{x}{y}.$$

由上述公式可知 $(\frac{\sqrt{2}}{2}R, \frac{\sqrt{2}}{2}R)$ 处的切线斜率为 -1,此时并不需要解出 y 的表达式.

- 例:求 f 的反函数的导数.
 解:f 的反函数时是由方程 x f(y) = 0 确定的隐函数.方程两边对x 求导,得 1 f'(y)y' = 0,即得 y'(x)|_{x=f(y)} = 1/f'(y).
- 例: 求方程 $y-x-\epsilon\sin y=0$ $(0<\epsilon<1)$ 确定的隐函数的导数. 解: 方程 $y-x-\epsilon\sin y=0$ 两边求微分得 $dy-dx-\epsilon\cos ydy=0$, 再除以 dx 得 $\frac{dy}{dx}=\frac{1}{1-\epsilon\cos y}$.

• 上例中的导数公式 $y' = -\frac{x}{y}$ 对 $y = \pm \sqrt{R^2 - x^2}$ 都适用. 事实上

$$y' = \mp \frac{x}{\sqrt{R^2 - x^2}} = -\frac{x}{y}.$$

由上述公式可知 $(\frac{\sqrt{2}}{2}R,\frac{\sqrt{2}}{2}R)$ 处的切线斜率为 -1,此时并不需要解出 y 的表达式.

- 例: 求 f 的反函数的导数. 解: f 的反函数时是由方程 x f(y) = 0 确定的隐函数. 方程两边对 x 求导, 得 1 f'(y)y' = 0, 即得 $y'(x)|_{x=f(y)} = \frac{1}{f'(y)}$.
- 例: 求方程 $y-x-\epsilon\sin y=0$ ($0<\epsilon<1$) 确定的隐函数的导数. 解: 方程 $y-x-\epsilon\sin y=0$ 两边求微分得 $dy-dx-\epsilon\cos ydy=0$, 再除以 dx 得 $\frac{dy}{dx}=\frac{1}{1-\epsilon\cos y}$.

• 上例中的导数公式 $y' = -\frac{x}{y}$ 对 $y = \pm \sqrt{R^2 - x^2}$ 都适用. 事实上

$$y' = \mp \frac{x}{\sqrt{R^2 - x^2}} = -\frac{x}{y}.$$

由上述公式可知 $(\frac{\sqrt{2}}{2}R,\frac{\sqrt{2}}{2}R)$ 处的切线斜率为 -1,此时并不需要解出 y 的表达式.

- 例:求 f 的反函数的导数.
 解:f 的反函数时是由方程 x f(y) = 0 确定的隐函数.方程两边对 x 求导,得 1 f'(y)y' = 0,即得 y'(x)|_{x=f(y)} = 1/f'(y).
- 例: 求方程 $y-x-\epsilon\sin y=0$ $(0<\epsilon<1)$ 确定的隐函数的导数. 解: 方程 $y-x-\epsilon\sin y=0$ 两边求微分得 $dy-dx-\epsilon\cos ydy=0$, 再除以 dx 得 $\frac{dy}{dx}=\frac{1}{1-\epsilon\cos y}$.

- 若参数方程 $\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}, \ \alpha < t < \beta \ \text{代入} \ y = f(x) \ \text{是恒等,即}$ $\psi(t) \equiv f(\phi(t)). \ \text{设} \ \phi, \psi \ \text{均可微,} \ \phi'(t) \ \text{连续且} \ \phi'(t) \neq 0, \ \text{则有}$ $y = f(x) \ \text{在} \ x = \phi(t) \ \text{处可导,} \ \text{且} \left. \frac{dy}{dx} \right|_{x = \phi(t)} = \frac{\psi'(t)}{\phi'(t)}.$
- 证明:由于 $\phi'(t) \neq 0$,任意固定 t_0 ,则 $x = \phi(t)$ 在 t_0 附近可逆,设 $x_0 = \phi(t_0)$, $y = f(x) = \psi(t) = \psi(\phi^{-1}(x))$,因此有 $\frac{dy}{dx}\Big|_{x=\phi(t_0)} = \psi'(t_0) \frac{1}{\phi'(t_0)}$.

- 若参数方程 $\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}$, $\alpha < t < \beta$ 代入 y = f(x) 是恒等,即 $\psi(t) \equiv f(\phi(t)).$ 设 ϕ, ψ 均可微, $\phi'(t)$ 连续且 $\phi'(t) \neq 0$,则有 y = f(x) 在 $x = \phi(t)$ 处可导,且 $\frac{dy}{dx}\Big|_{x = \phi(t)} = \frac{\psi'(t)}{\phi'(t)}$.
- 证明:由于 $\phi'(t) \neq 0$,任意固定 t_0 ,则 $x = \phi(t)$ 在 t_0 附近可逆,设 $x_0 = \phi(t_0)$, $y = f(x) = \psi(t) = \psi(\phi^{-1}(x))$,因此有 $\frac{dy}{dx}\Big|_{x=\phi(t_0)} = \psi'(t_0) \frac{1}{\phi'(t_0)}$.

•
$$\{\emptyset\}:$$

$$\begin{cases} x = R\cos t \\ y = R\sin t \end{cases}, \frac{dy}{dx}\Big|_{x=R\cos t} = \frac{-\cos t}{\sin t} = -\frac{x}{y}.$$
• $\{\emptyset\}:$

$$\begin{cases} x = f(t) \\ y = t \end{cases}, \frac{dy}{dx}\Big|_{x=f(t)} = \frac{1}{f'(t)} = \frac{1}{f'(y)}.$$
• $\{\emptyset\}:$

$$\begin{cases} x = R(t)\cos t \\ y = R(t)\sin t \end{cases}, \frac{dy}{dx}\Big|_{x=R(t)\cos t} = \frac{R'(t)\sin t + R(t)\cos t}{R'(t)\cos t - R(t)\sin t}.$$

•
$$\{\emptyset\}:$$

$$\begin{cases} x = R\cos t \\ y = R\sin t \end{cases}, \frac{dy}{dx}\Big|_{x=R\cos t} = \frac{-\cos t}{\sin t} = -\frac{x}{y}.$$
• $\{\emptyset\}:$
$$\begin{cases} x = f(t) \\ y = t \end{cases}, \frac{dy}{dx}\Big|_{x=f(t)} = \frac{1}{f'(t)} = \frac{1}{f'(y)}.$$
• $\{\emptyset\}:$
$$\begin{cases} x = R(t)\cos t \\ y = R(t)\sin t \end{cases}, \frac{dy}{dx}\Big|_{x=R(t)\cos t} = \frac{R'(t)\sin t + R(t)\cos t}{R'(t)\cos t - R(t)\sin t}.$$

•
$$\{\vec{y}: \begin{cases} x = R\cos t \\ y = R\sin t \end{cases}, \frac{dy}{dx}\Big|_{x=R\cos t} = \frac{-\cos t}{\sin t} = -\frac{x}{y}.$$

•
$$\{ y : \begin{cases} x = f(t) \\ y = t \end{cases}, \frac{dy}{dx} \Big|_{x = f(t)} = \frac{1}{f'(t)} = \frac{1}{f'(y)}.$$

•
$$\{\vec{y}\}:$$

$$\begin{cases} x = R(t)\cos t \\ y = R(t)\sin t \end{cases}, \frac{dy}{dx}\Big|_{x=R(t)\cos t} = \frac{R'(t)\sin t + R(t)\cos t}{R'(t)\cos t - R(t)\sin t}.$$

高阶导数的定义

• 若 f(x) 在 (a,b) 上可导,导函数 f'(x) 在 x_0 处可导,则称 f(x) 在 x_0 处二阶可导,f(x) 在 x_0 处二阶导数定义为

$$f''(x_0) = \frac{d^2f}{dx^2}\Big|_{x_0} = (f'(x))'(x_0) = \lim_{\Delta x \to 0} \frac{f'(x_0 + \Delta x) - f'(x_0)}{\Delta x}.$$

• 若 f(x) 在 (a,b) 上 (n-1) 阶可导,且 n-1 阶导函数 $f^{(n-1)}(x)$ 在 x_0 处可导,则称 f(x) 在 x_0 处 n 阶可导,f(x) 在 x_0 处 n 阶导数定义为

$$f^{(n)}(x_0) = \frac{d^n f}{dx^n}\Big|_{x_0} = (f^{(n-1)}(x))'(x_0).$$

• 例: 直线运动物体位置随时间变化函数为 S = S(t), 则 v(t) = S'(t), a(t) = S''(t).

高阶导数的定义

• 若 f(x) 在 (a,b) 上可导,导函数 f'(x) 在 x_0 处可导,则称 f(x) 在 x_0 处二阶可导,f(x) 在 x_0 处二阶导数定义为

$$f''(x_0) = \frac{d^2f}{dx^2}\Big|_{x_0} = (f'(x))'(x_0) = \lim_{\Delta x \to 0} \frac{f'(x_0 + \Delta x) - f'(x_0)}{\Delta x}.$$

• 若 f(x) 在 (a,b) 上 (n-1) 阶可导,且 n-1 阶导函数 $f^{(n-1)}(x)$ 在 x_0 处可导,则称 f(x) 在 x_0 处 n 阶可导,f(x) 在 x_0 处 n 阶导数定义为

$$f^{(n)}(x_0) = \frac{d^n f}{dx^n}\Big|_{x_0} = (f^{(n-1)}(x))'(x_0).$$

• 例: 直线运动物体位置随时间变化函数为 S = S(t), 则 v(t) = S'(t), a(t) = S''(t).

高阶导数的定义

• 若 f(x) 在 (a,b) 上可导,导函数 f'(x) 在 x_0 处可导,则称 f(x) 在 x_0 处二阶可导,f(x) 在 x_0 处二阶导数定义为

$$f''(x_0) = \frac{d^2f}{dx^2}\Big|_{x_0} = (f'(x))'(x_0) = \lim_{\Delta x \to 0} \frac{f'(x_0 + \Delta x) - f'(x_0)}{\Delta x}.$$

• 若 f(x) 在 (a,b) 上 (n-1) 阶可导,且 n-1 阶导函数 $f^{(n-1)}(x)$ 在 x_0 处可导,则称 f(x) 在 x_0 处 n 阶可导,f(x) 在 x_0 处 n 阶导数定义为

$$f^{(n)}(x_0) = \frac{d^n f}{dx^n}\Big|_{x_0} = (f^{(n-1)}(x))'(x_0).$$

• 例: 直线运动物体位置随时间变化函数为 S = S(t),则 v(t) = S'(t), a(t) = S''(t).

一些函数的高阶导数

•
$$(\sin x)^{(n)} = \sin(x + \frac{n\pi}{2}), \ (\cos x)^{(n)} = \cos(x + \frac{n\pi}{2}).$$
 Pf
$$(\sin x)^{(4n)} = \sin x, \qquad (\sin x)^{(4n+1)} = \cos x,$$

$$(\sin x)^{(4n+2)} = -\sin x, \qquad (\sin x)^{(4n+3)} = -\cos x,$$

$$(\cos x)^{(4n)} = \cos x, \qquad (\cos x)^{(4n+1)} = -\sin x,$$

$$(\cos x)^{(4n+2)} = -\cos x, \qquad (\cos x)^{(4n+3)} = \sin x.$$

- $(e^x)^{(n)} = e^x$, $(a^x)^{(n)} = (\ln a)^n a^x$.
- 当 a 不是自然数时, $(x^a)^{(n)} = a(a-1)\cdots(a-n+1)x^{a-n}$,
- $(\ln(1+x))^{(n)} = ((1+x)^{-1})^{(n-1)} = (-1)^{n-1} \frac{(n-1)!}{(x+1)^n}$

一些函数的高阶导数

•
$$(\sin x)^{(n)} = \sin(x + \frac{n\pi}{2}), \ (\cos x)^{(n)} = \cos(x + \frac{n\pi}{2}).$$
 Pf
$$(\sin x)^{(4n)} = \sin x, \qquad (\sin x)^{(4n+1)} = \cos x,$$

$$(\sin x)^{(4n+2)} = -\sin x, \qquad (\sin x)^{(4n+3)} = -\cos x,$$

$$(\cos x)^{(4n)} = \cos x, \qquad (\cos x)^{(4n+1)} = -\sin x,$$

$$(\cos x)^{(4n+2)} = -\cos x, \qquad (\cos x)^{(4n+3)} = \sin x.$$

- $(e^x)^{(n)} = e^x$, $(a^x)^{(n)} = (\ln a)^n a^x$.
- 当 a 不是自然数时, $(x^a)^{(n)} = a(a-1)\cdots(a-n+1)x^{a-n}$,
- $(\ln(1+x))^{(n)} = ((1+x)^{-1})^{(n-1)} = (-1)^{n-1} \frac{(n-1)!}{(x+1)^n}$

一些函数的高阶导数

•
$$(\sin x)^{(n)} = \sin(x + \frac{n\pi}{2}), \ (\cos x)^{(n)} = \cos(x + \frac{n\pi}{2}).$$
 Pf
$$(\sin x)^{(4n)} = \sin x, \qquad (\sin x)^{(4n+1)} = \cos x,$$

$$(\sin x)^{(4n+2)} = -\sin x, \qquad (\sin x)^{(4n+3)} = -\cos x,$$

$$(\cos x)^{(4n)} = \cos x, \qquad (\cos x)^{(4n+1)} = -\sin x,$$

$$(\cos x)^{(4n+2)} = -\cos x, \qquad (\cos x)^{(4n+3)} = \sin x.$$

- $(e^x)^{(n)} = e^x$, $(a^x)^{(n)} = (\ln a)^n a^x$.
- 当 a 不是自然数时, $(x^a)^{(n)} = a(a-1)\cdots(a-n+1)x^{a-n}$,
- $(\ln(1+x))^{(n)} = ((1+x)^{-1})^{(n-1)} = (-1)^{n-1} \frac{(n-1)!}{(x+1)^n}$

一些函数的高阶导数

•
$$(\sin x)^{(n)} = \sin(x + \frac{n\pi}{2}), \ (\cos x)^{(n)} = \cos(x + \frac{n\pi}{2}).$$
 Pf
$$(\sin x)^{(4n)} = \sin x, \qquad (\sin x)^{(4n+1)} = \cos x,$$

$$(\sin x)^{(4n+2)} = -\sin x, \qquad (\sin x)^{(4n+3)} = -\cos x,$$

$$(\cos x)^{(4n)} = \cos x, \qquad (\cos x)^{(4n+1)} = -\sin x,$$

$$(\cos x)^{(4n+2)} = -\cos x, \qquad (\cos x)^{(4n+3)} = \sin x.$$

- $(e^x)^{(n)} = e^x$, $(a^x)^{(n)} = (\ln a)^n a^x$.
- 当 a 不是自然数时, $(x^a)^{(n)} = a(a-1)\cdots(a-n+1)x^{a-n}$,
- $(\ln(1+x))^{(n)} = ((1+x)^{-1})^{(n-1)} = (-1)^{n-1} \frac{(n-1)!}{(x+1)^n}$.

函数乘积的高阶导数 1

• 复合函数的二阶导数:设 g, f 二阶可导, h(x) = g(f(x)),

$$h''(x) = (g'(f(x))f'(x))'$$

$$= (g'(f(x)))'f'(x) + g'(f(x))f''(x)$$

$$= g''(f(x))(f'(x))^{2} + g'(f(x))f''(x)$$

• Leibniz 公式: 设 y = f(x) 和 y = g(x) 在 (a, b) 上有 n 阶导数,则有

$$(f(x)g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x)g^{(n-k)}(x).$$

这里规定 $f^{(0)} = f, g^{(0)} = g$

函数乘积的高阶导数 1

• 复合函数的二阶导数: 设 g, f 二阶可导, h(x) = g(f(x)),

$$h''(x) = (g'(f(x))f'(x))'$$

$$= (g'(f(x)))'f'(x) + g'(f(x))f''(x)$$

$$= g''(f(x))(f'(x))^{2} + g'(f(x))f''(x)$$

Leibniz 公式: 设 y = f(x) 和 y = g(x) 在 (a, b) 上有 n 阶导数,则有

$$(f(x)g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x)g^{(n-k)}(x).$$

这里规定 $f^{(0)} = f, g^{(0)} = g$.

函数乘积的高阶导数 2

• 证明: n=1 时显然成立. 设 n=m 时成立, n=m+1 时,

$$\begin{split} &(f(x)g(x))^{(m+1)} = \big(\sum_{k=0}^{m} C_m^k f^{(k)}(x) g^{(m-k)}(x)\big)' \\ &= \sum_{k=0}^{m} C_m^k f^{(k+1)}(x) g^{(m-k)}(x) + \sum_{k=0}^{m} C_m^k f^{(k)}(x) g^{(m-k+1)}(x) \\ &= f^{(m+1)}(x) g(x) + \sum_{k=1}^{m} C_m^{k-1} f^{(k)} g^{(m+1-k)} + f(x) g^{(m+1)} + \sum_{k=1}^{m} \\ &= f^{(m+1)}(x) g(x) + f(x) g^{(m+1)} + \sum_{k=1}^{m} (C_m^{k-1} + C_m^k) f^{(k)} g^{(m+1-k)} \\ &= \sum_{k=0}^{m+1} C_{m+1}^k f^{(k)}(x) g^{(m+1-k)}(x) \end{split}$$

高阶导数 —例

- 例: $y = x^2 \sin x$, 求 $y^{(5)}$.
- 解:

$$(x^{2} \sin x)^{(5)} = x^{2} (\sin x)^{(5)} + 5 \cdot 2x \cdot (\sin x)^{(4)} + \frac{5 \cdot 4}{2} 2(\sin x)^{(3)}$$
$$= x^{2} \cos x + 5 \cdot 2x \cdot \sin x + \frac{5 \cdot 4}{2} 2(-\cos x)$$
$$= (x^{2} - 20) \cos x + 10x \cdot \sin x.$$

高阶导数 —例

- 例: $y = x^2 \sin x$, 求 $y^{(5)}$.
- 解:

$$(x^{2} \sin x)^{(5)} = x^{2} (\sin x)^{(5)} + 5 \cdot 2x \cdot (\sin x)^{(4)} + \frac{5 \cdot 4}{2} 2(\sin x)^{(3)}$$
$$= x^{2} \cos x + 5 \cdot 2x \cdot \sin x + \frac{5 \cdot 4}{2} 2(-\cos x)$$
$$= (x^{2} - 20) \cos x + 10x \cdot \sin x.$$

高阶微分

• df(x) = f'(x)dx 看成 x 的函数 (自变量的微分 dx 看成常数),继续求微分,得到二阶微分:

$$d^2f(x) = d(df(x)) = d(f'(x))dx = f''(x)dx^2.$$

依次类推, n 阶微分 $d^n f(x) = f^{(n)}(x) dx^n$. 这里 $dx^n = (dx)^n$.

• 复合函数的二阶微分:设 z = g(y), y = f(x), 则有

$$d^{2}z = (g(f(x)))'' dx^{2} = (g'(f(x))f'(x))' dx^{2}$$

$$= (g''(f(x))(f'(x))^{2} + g'(f(x))f''(x)) dx^{2}$$

$$= g''(y)dy^{2} + g'(y)d^{2}y.$$

由此可知二阶微分形式没有不变性。

高阶微分

• df(x) = f'(x)dx 看成 x 的函数 (自变量的微分 dx 看成常数),继续求微分,得到二阶微分:

$$d^2f(x) = d(df(x)) = d(f'(x))dx = f''(x)dx^2.$$

依次类推, n 阶微分 $d^n f(x) = f^{(n)}(x) dx^n$. 这里 $dx^n = (dx)^n$.

• 复合函数的二阶微分: 设 z = g(y), y = f(x), 则有

$$d^{2}z = (g(f(x)))'' dx^{2} = (g'(f(x))f'(x))' dx^{2}$$

$$= (g''(f(x))(f'(x))^{2} + g'(f(x))f''(x)) dx^{2}$$

$$= g''(y)dy^{2} + g'(y)d^{2}y.$$

由此可知二阶微分形式没有不变性。

高阶微分

• df(x) = f'(x)dx 看成 x 的函数 (自变量的微分 dx 看成常数),继续求微分,得到二阶微分:

$$d^2f(x) = d(df(x)) = d(f'(x))dx = f''(x)dx^2.$$

依次类推, n 阶微分 $d^n f(x) = f^{(n)}(x) dx^n$. 这里 $dx^n = (dx)^n$.

• 复合函数的二阶微分: 设 z = g(y), y = f(x), 则有

$$\begin{split} d^2z = &(g(f(x)))''dx^2 = (g'(f(x))f'(x))'dx^2 \\ = &(g''(f(x))(f'(x))^2 + g'(f(x))f''(x))dx^2 \\ = &g''(y)dy^2 + g'(y)d^2y. \end{split}$$

由此可知二阶微分形式没有不变性.

隐函数的高阶导数

- 例: 求方程 $y-x-\epsilon\sin y=0$ $(0<\epsilon<1)$ 确定的隐函数的二阶导数.
- 方法 1: 方程 $y-x-\epsilon\sin y=0$ 两边求一阶导数和二阶导数

$$y' - 1 - \epsilon \cos y \cdot y' = 0, \quad y'' - \epsilon [-\sin y \cdot (y')^2 + \cos y \cdot y''] = 0$$

得
$$y = \frac{1}{1 - \epsilon \cos y}$$
, 代入第二个等式得 $y'' = \frac{-\epsilon \sin y}{(1 - \epsilon \cos y)^3}$

• 方法 2: 对 $y = \frac{1}{1 - \epsilon \cos y}$ 求导:

$$y'' = -\frac{\epsilon \sin y}{(1 - \epsilon \cos y)^2} y' = \frac{-\epsilon \sin y}{(1 - \epsilon \cos y)^3}$$

隐函数的高阶导数

- 例: 求方程 $y-x-\epsilon\sin y=0$ $(0<\epsilon<1)$ 确定的隐函数的二阶导数.
- 方法 1: 方程 $y-x-\epsilon\sin y=0$ 两边求一阶导数和二阶导数

$$y' - 1 - \epsilon \cos y \cdot y' = 0, \quad y'' - \epsilon [-\sin y \cdot (y')^2 + \cos y \cdot y''] = 0$$

得
$$y' = \frac{1}{1 - \epsilon \cos y}$$
, 代入第二个等式得 $y'' = \frac{-\epsilon \sin y}{(1 - \epsilon \cos y)^3}$.

• 方法 2: 对 $y = \frac{1}{1 - \epsilon \cos y}$ 求导:

$$y'' = -\frac{\epsilon \sin y}{(1 - \epsilon \cos y)^2} y' = \frac{-\epsilon \sin y}{(1 - \epsilon \cos y)^3}$$

隐函数的高阶导数

- 例: 求方程 $y-x-\epsilon\sin y=0$ $(0<\epsilon<1)$ 确定的隐函数的二阶导数.
- 方法 1: 方程 $y-x-\epsilon\sin y=0$ 两边求一阶导数和二阶导数

$$y' - 1 - \epsilon \cos y \cdot y' = 0, \quad y'' - \epsilon [-\sin y \cdot (y')^2 + \cos y \cdot y''] = 0$$

得
$$y' = \frac{1}{1 - \epsilon \cos y}$$
, 代入第二个等式得 $y'' = \frac{-\epsilon \sin y}{(1 - \epsilon \cos y)^3}$.

• 方法 2: 对 $y = \frac{1}{1 - \epsilon \cos y}$ 求导:

$$y'' = -\frac{\epsilon \sin y}{(1 - \epsilon \cos y)^2} y' = \frac{-\epsilon \sin y}{(1 - \epsilon \cos y)^3}$$

• 若参数方程
$$\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}, \frac{dy}{dx}\Big|_{x = \phi(t)} = \frac{\psi'(t)}{\phi'(t)}.$$

- 对参数方程 $\begin{cases} x = \phi(t) \\ y' = \frac{\psi'(t)}{\phi'(t)} \end{cases}$ 求导, $y''|_{x=\phi(t)} = \frac{\psi''(t)\phi'(t) \psi'(t)\phi''(t)}{(\phi'(t))^3}.$
- 例:设 f(x) 的逆函数存在,导数不为零且二阶可导,求 $y=f^{-1}(x)$ 的二阶导数

$$dx = f'(y)dy \Rightarrow 0 = f''(y)(dy)^{2} + f'(y)d^{2}y \Rightarrow d^{2}y = -\frac{f''(y)}{(f'(y))^{3}}dx^{2}$$

- 若参数方程 $\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}, \frac{dy}{dx}\Big|_{x = \phi(t)} = \frac{\psi'(t)}{\phi'(t)}.$
- 对参数方程 $\begin{cases} x = \phi(t) \\ y' = \frac{\psi'(t)}{\phi'(t)} \end{cases}$ 求导, $y''|_{x=\phi(t)} = \frac{\psi''(t)\phi'(t) \psi'(t)\phi''(t)}{(\phi'(t))^3}.$
- 例:设 f(x) 的逆函数存在, 导数不为零且二阶可导, 求 $y = f^{-1}(x)$ 的二阶导数

$$dx = f'(y)dy \Rightarrow 0 = f''(y)(dy)^{2} + f'(y)d^{2}y \Rightarrow d^{2}y = -\frac{f''(y)}{(f'(y))^{3}}dx^{2}$$

- 若参数方程 $\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}, \frac{dy}{dx}\Big|_{x = \phi(t)} = \frac{\psi'(t)}{\phi'(t)}.$
- 例:设 f(x) 的逆函数存在,导数不为零且二阶可导,求 $y = f^{-1}(x)$ 的二阶导数

$$dx = f'(y)dy \Rightarrow 0 = f''(y)(dy)^{2} + f'(y)d^{2}y \Rightarrow d^{2}y = -\frac{f''(y)}{(f'(y))^{3}}dx^{2}$$

- 若参数方程 $\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}, \frac{dy}{dx}\Big|_{x = \phi(t)} = \frac{\psi'(t)}{\phi'(t)}.$
- 对参数方程 $\begin{cases} x = \phi(t) \\ y' = \frac{\psi'(t)}{\phi'(t)} \end{cases}$ 求导, $y''\big|_{x=\phi(t)} = \frac{\psi''(t)\phi'(t) \psi'(t)\phi''(t)}{(\phi'(t))^3}.$
- 例:设 f(x) 的逆函数存在,导数不为零且二阶可导,求 $y = f^{-1}(x)$ 的二阶导数

$$dx = f'(y)dy \Rightarrow 0 = f''(y)(dy)^2 + f'(y)d^2y \Rightarrow d^2y = -\frac{f''(y)}{(f'(y))^3}dx^2$$

- 定义: 设 f(x) 在区间 (a,b) 上的有定义,若区间 (a,b) 上的函数 F(x) 满足 F'(x) = f(x), $x \in (a,b)$, 则称 F(x) 是 f(x) 在区间 (a,b) 上的原函数.
- 注: F(x) 是处处可导,f(x) 可以不连续,也不一定有界.
- 注: (a,b) 可以是无穷区间.
- 例: $F(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 是下面函数的原函数.

$$f(x) = \begin{cases} 2x\sin\frac{1}{x} - \cos\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

- 定义: 设 f(x) 在区间 (a,b) 上的有定义,若区间 (a,b) 上的函数 F(x) 满足 F'(x) = f(x), $x \in (a,b)$, 则称 F(x) 是 f(x) 在区间 (a,b) 上的原函数.
- 注: F(x) 是处处可导, f(x) 可以不连续, 也不一定有界.
- 注: (a, b) 可以是无穷区间.
- 例: $F(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 是下面函数的原函数.

$$f(x) = \begin{cases} 2x\sin\frac{1}{x} - \cos\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

- 定义: 设 f(x) 在区间 (a,b) 上的有定义,若区间 (a,b) 上的函数 F(x) 满足 F'(x) = f(x), $x \in (a,b)$, 则称 F(x) 是 f(x) 在区间 (a,b) 上的原函数.
- 注: F(x) 是处处可导, f(x) 可以不连续, 也不一定有界.
- 注: (a, b) 可以是无穷区间.

• 例:
$$F(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 是下面函数的原函数.

$$f(x) = \begin{cases} 2x\sin\frac{1}{x} - \cos\frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

- 定义: 设 f(x) 在区间 (a,b) 上的有定义,若区间 (a,b) 上的函数 F(x) 满足 F'(x) = f(x), $x \in (a,b)$, 则称 F(x) 是 f(x) 在区间 (a,b) 上的原函数.
- 注: F(x) 是处处可导, f(x) 可以不连续, 也不一定有界.
- 注: (a, b) 可以是无穷区间.
- 例: $F(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 是下面函数的原函数.

$$f(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

- 引理: 若 $\phi'(x) \equiv 0$, $x \in (a, b)$, 则 $\phi(x) \equiv C$. 证明: 则对任意的 $x_1, x_2 \in (a, b)$, 有 $\phi(x_1) \phi(x_2) = \phi'(\xi)(x_1 x_2) = 0$.
- 命题:设 F(x) 是 f(x) 在区间 (a,b) 上的原函数,则对任意常数 C, F(x) + C 也是 f(x) 的原函数;反之,若 G(x) 是 f(x) 的原函数,则 存在 C,使得 G(x) = F(x) + C.即 {F(x) + C} 是 f(x) 在 (a,b) 上原函数的全体.

证明:
$$(F(x) + C)' = F'(x) = f(x)$$
; $(G(x) - F(x))' = 0$, 从而 $G(x) - F(x) \equiv C$

• 例: $F(x) = \ln |x|$, $F'(x) = \frac{1}{x}$, $\{\ln |x| + C\}$ 是 $\frac{1}{x}$ 在 $(0, +\infty)$ 上原函数的全体,也是 $\frac{1}{x}$ 在 $(-\infty, 0)$ 上原函数的全体.

- 引理: 若 $\phi'(x) \equiv 0$, $x \in (a, b)$, 则 $\phi(x) \equiv C$. 证明: 则对任意的 $x_1, x_2 \in (a, b)$, 有 $\phi(x_1) - \phi(x_2) = \phi'(\xi)(x_1 - x_2) = 0$.
- 命题:设 F(x) 是 f(x) 在区间 (a,b) 上的原函数,则对任意常数 C, F(x) + C 也是 f(x) 的原函数;反之,若 G(x) 是 f(x) 的原函数,则 存在 C,使得 G(x) = F(x) + C.即 {F(x) + C} 是 f(x) 在 (a,b) 上原函数的全体.

证明: (F(x) + C)' = F'(x) = f(x); (G(x) - F(x))' = 0, 从而 $G(x) - F(x) \equiv C$

• 例: $F(x) = \ln |x|$, $F'(x) = \frac{1}{x}$, $\{\ln |x| + C\}$ 是 $\frac{1}{x}$ 在 $(0, +\infty)$ 上原函数的全体, 也是 $\frac{1}{x}$ 在 $(-\infty, 0)$ 上原函数的全体.

- 引理: 若 $\phi'(x) \equiv 0$, $x \in (a, b)$, 则 $\phi(x) \equiv C$. 证明: 则对任意的 x_1 , $x_2 \in (a, b)$, 有 $\phi(x_1) - \phi(x_2) = \phi'(\xi)(x_1 - x_2) = 0$.
- 命题:设 F(x) 是 f(x) 在区间 (a,b) 上的原函数,则对任意常数 C, F(x) + C 也是 f(x) 的原函数;反之,若 G(x) 是 f(x) 的原函数,则 存在 C,使得 G(x) = F(x) + C.即 {F(x) + C} 是 f(x) 在 (a,b) 上原函数的全体.

证明:
$$(F(x) + C)' = F'(x) = f(x)$$
; $(G(x) - F(x))' = 0$, 从而 $G(x) - F(x) \equiv C$

• 例: $F(x) = \ln |x|$, $F'(x) = \frac{1}{x}$, $\{\ln |x| + C\}$ 是 $\frac{1}{x}$ 在 $(0, +\infty)$ 上原函数的全体, 也是 $\frac{1}{x}$ 在 $(-\infty, 0)$ 上原函数的全体.

- 引理: 若 $\phi'(x) \equiv 0$, $x \in (a, b)$, 则 $\phi(x) \equiv C$. 证明: 则对任意的 $x_1, x_2 \in (a, b)$, 有 $\phi(x_1) - \phi(x_2) = \phi'(\xi)(x_1 - x_2) = 0$.
- 命题:设 F(x) 是 f(x) 在区间 (a,b) 上的原函数,则对任意常数 C, F(x) + C 也是 f(x) 的原函数;反之,若 G(x) 是 f(x) 的原函数,则 存在 C,使得 G(x) = F(x) + C.即 {F(x) + C} 是 f(x) 在 (a,b) 上原函数的全体.

证明: (F(x) + C)' = F'(x) = f(x); (G(x) - F(x))' = 0, 从而 $G(x) - F(x) \equiv C$

• 例: $F(x) = \ln |x|$, $F'(x) = \frac{1}{x}$, $\{\ln |x| + C\}$ 是 $\frac{1}{x}$ 在 $(0, +\infty)$ 上原函数的全体,也是 $\frac{1}{x}$ 在 $(-\infty, 0)$ 上原函数的全体.

- 定义:设 f(x) 是 (a,b) 上定义的函数,(a,b) 上 f(x) 的原函数构成的函数族称为 f(x) 的不定积分,记为 $\int f(x)dx$. 若 F(x) 是 f(x) 在 (a,b) 上的一个原函数,则有 $\int f(x)dx = F(x) + C$. 这里 f(x) 叫做被积函数,x 叫做积分变量,C 叫做积分常数.
- 注:不定积分是函数族,不是单个函数.
- 注: (a,b) 可以是无穷区间. 如: $\frac{1}{x}$ 在 $(0,+\infty)$ 或 $(-\infty,0)$ 上的不定 积分为 $\ln |x| + C$.
- 注:任意开区间上的连续函数都有原函数,但初等函数的原函数不一定是初等函数,如 $\sin x^2$, e^{-x^2} , $\frac{e^x}{x}$, $\frac{\sin x}{x}$.

- 定义:设 f(x) 是 (a,b) 上定义的函数,(a,b) 上 f(x) 的原函数构成的函数族称为 f(x) 的不定积分,记为 $\int f(x)dx$. 若 F(x) 是 f(x) 在 (a,b) 上的一个原函数,则有 $\int f(x)dx = F(x) + C$. 这里 f(x) 叫做被积函数,x 叫做积分变量,C 叫做积分常数.
- 注:不定积分是函数族,不是单个函数.
- 注: (a,b) 可以是无穷区间. 如: $\frac{1}{x}$ 在 $(0,+\infty)$ 或 $(-\infty,0)$ 上的不定 积分为 $\ln |x| + C$.
- 注:任意开区间上的连续函数都有原函数,但初等函数的原函数不一定是初等函数,如 $\sin x^2$, e^{-x^2} , $\frac{e^x}{x}$, $\frac{\sin x}{x}$.

- 定义:设 f(x) 是 (a,b) 上定义的函数,(a,b) 上 f(x) 的原函数构成的函数族称为 f(x) 的不定积分,记为 $\int f(x)dx$. 若 F(x) 是 f(x) 在 (a,b) 上的一个原函数,则有 $\int f(x)dx = F(x) + C$. 这里 f(x) 叫做被积函数,x 叫做积分变量,C 叫做积分常数.
- 注:不定积分是函数族,不是单个函数.
- 注: (a,b) 可以是无穷区间. 如: $\frac{1}{x}$ 在 $(0,+\infty)$ 或 $(-\infty,0)$ 上的不定 积分为 $\ln |x| + C$.
- 注:任意开区间上的连续函数都有原函数,但初等函数的原函数不一定是初等函数,如 $\sin x^2$, e^{-x^2} , $\frac{e^x}{x}$, $\frac{\sin x}{x}$.

- 定义:设 f(x) 是 (a,b) 上定义的函数,(a,b) 上 f(x) 的原函数构成的函数族称为 f(x) 的不定积分,记为 $\int f(x)dx$. 若 F(x) 是 f(x) 在 (a,b) 上的一个原函数,则有 $\int f(x)dx = F(x) + C$. 这里 f(x) 叫做被积函数,x 叫做积分变量,C 叫做积分常数.
- 注:不定积分是函数族,不是单个函数.
- 注: (a,b) 可以是无穷区间. 如: $\frac{1}{x}$ 在 $(0,+\infty)$ 或 $(-\infty,0)$ 上的不定 积分为 $\ln |x| + C$.
- 注:任意开区间上的连续函数都有原函数,但初等函数的原函数不一定是初等函数,如 $\sin x^2$, e^{-x^2} , $\frac{e^x}{x}$, $\frac{\sin x}{x}$.

• $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$.

证明: 若
$$F(x)$$
, $G(x)$ 分别是 $f(x)$, $g(x)$ 的原函数,则 $\int f(x)dx = F(x) + C_1$, $\int g(x)dx = F(x) + C_1$, $\int f(x)dx + \int g(x)dx = F(x) + G(x) + C_2$.

- $a \neq 0$ 时, $\int af(x)dx = a \int f(x)dx$. 证明: $a \int f(x)dx = aF(x) + aC$.
- 若 $\int f(x)dx = F(x) + C$, 则有

$$\int f(x+a)dx = F(x+a) + C, \int f(kx)dx = \frac{1}{k}F(kx) + C$$

证明:
$$F(x+a)' = f(x+a), (\frac{1}{k}F(kx))' = \frac{1}{k}F'(kx)k = f(kx).$$

- $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$. 证明: 若 F(x), G(x) 分别是 f(x), g(x) 的原函数,则 $\int f(x) dx = F(x) + C_1$, $\int g(x) dx = F(x) + C_1$, $\int f(x) dx + \int g(x) dx = F(x) + G(x) + C_1 + C_2$.
- $a \neq 0$ 时, $\int af(x)dx = a \int f(x)dx$. 证明: $a \int f(x)dx = aF(x) + aC$.
- 若 $\int f(x)dx = F(x) + C$, 则有

$$\int f(x+a)dx = F(x+a) + C, \int f(kx)dx = \frac{1}{k}F(kx) + C$$

证明:
$$F(x+a)' = f(x+a)$$
, $(\frac{1}{k}F(kx))' = \frac{1}{k}F'(kx)k = f(kx)$.

- $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$. 证明: 若 F(x), G(x) 分别是 f(x), g(x) 的原函数,则 $\int f(x) dx = F(x) + C_1$, $\int g(x) dx = F(x) + C_1$, $\int f(x) dx + \int g(x) dx = F(x) + G(x) + C_1$.
- $a \neq 0$ 时, $\int af(x)dx = a \int f(x)dx$. 证明: $a \int f(x)dx = aF(x) + aC$.
- 若 $\int f(x)dx = F(x) + C$, 则有

$$\int f(x+a)dx = F(x+a) + C, \int f(kx)dx = \frac{1}{k}F(kx) + C$$

证明: $F(x+a)' = f(x+a), (\frac{1}{k}F(kx))' = \frac{1}{k}F'(kx)k = f(kx)$

- $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$. 证明: 若 F(x), G(x) 分别是 f(x), g(x) 的原函数,则 $\int f(x) dx = F(x) + C_1$, $\int g(x) dx = F(x) + C_1$, $\int f(x) dx + \int g(x) dx = F(x) + G(x) + C_1$.
- $a \neq 0$ 时, $\int af(x)dx = a \int f(x)dx$. 证明: $a \int f(x)dx = aF(x) + aC$.
- 若 $\int f(x)dx = F(x) + C$, 则有

$$\int f(x+a)dx = F(x+a) + C, \int f(kx)dx = \frac{1}{k}F(kx) + C$$

.

证明:
$$F(x+a)' = f(x+a), (\frac{1}{k}F(kx))' = \frac{1}{k}F'(kx)k = f(kx).$$

不定积分 -例

- 求 f(x) = |x|(在 \mathbb{R} 上)的不定积分.
- 解: 考虑函数 $F(x) = \begin{cases} \frac{1}{2}x^2, & x \ge 0 \\ -\frac{1}{2}x^2, & x < 0 \end{cases} = \frac{1}{2}|x|x$, 显然当 $x \ne 0$ 时, F'(x) = |x|, 当 x = 0 时,

$$\lim_{\Delta x \to 0+0} \frac{F(\Delta x) - F(0)}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{\frac{1}{2}\Delta x^2}{\Delta x} = 0,$$

$$\lim_{\Delta x \to 0-0} \frac{F(\Delta x) - F(0)}{\Delta x} = \lim_{\Delta x \to 0-0} \frac{-\frac{1}{2}\Delta x^2}{\Delta x} = 0,$$

因此 F(x) 在 x = 0 处可导,且 F'(0) = 0 = |0|. F(x) 是 f(x) 的原函数, $\int |x| dx = F(x) + C$.

不定积分 -例

- $x f(x) = |x|(A \mathbb{R} L)$ 的不定积分.
- 解: 考虑函数 $F(x) = \begin{cases} \frac{1}{2}x^2, & x \ge 0 \\ -\frac{1}{2}x^2, & x < 0 \end{cases} = \frac{1}{2}|x|x$, 显然当 $x \ne 0$ 时, F'(x) = |x|, 当 x = 0 时,

$$\lim_{\Delta x \to 0+0} \frac{F(\Delta x) - F(0)}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{\frac{1}{2}\Delta x^2}{\Delta x} = 0,$$

$$\lim_{\Delta x \to 0-0} \frac{F(\Delta x) - F(0)}{\Delta x} = \lim_{\Delta x \to 0-0} \frac{-\frac{1}{2}\Delta x^2}{\Delta x} = 0,$$

因此 F(x) 在 x = 0 处可导,且 F'(0) = 0 = |0|. F(x) 是 f(x) 的原函数, $\int |x| dx = F(x) + C$.

基本不定积分公式

- $\int \cos x dx = \sin x + C$, $\int \sin x dx = -\cos x + C$
- $\int \sec^2 x dx = \tan x + C$, $\left(\left(k\pi \frac{\pi}{2}, k\pi + \frac{\pi}{2}\right)\right)$, $\int \csc^2 x dx = -\cot x + C$, $\left(\left(k\pi, k\pi + \pi\right)\right)$.
- $\int 1 dx = x + C$, $\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C$, $\alpha \neq -1$
- $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C = -\arccos x + C, \ (-1,1).$
- $\int \frac{1}{1+x^2} dx = \arctan x + C = -\operatorname{arccot} x + C$, $(-\infty, \infty)$.
- $\int a^x dx = \frac{1}{\ln a} a^x + C$, a > 0, $a \neq 1$.
- $\int \frac{1}{x} dx = \ln|x| + C$, $(-\infty, 0)$ $\not \le (0 + \infty)$.

基本不定积分公式

- $\int \cos x dx = \sin x + C$, $\int \sin x dx = -\cos x + C$
- $\int \sec^2 x dx = \tan x + C$, $\left(\left(k\pi \frac{\pi}{2}, k\pi + \frac{\pi}{2} \right) \right)$, $\int \csc^2 x dx = -\cot x + C$, $\left(\left(k\pi, k\pi + \pi \right) \right)$.
- $\int 1 dx = x + C$, $\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C$, $\alpha \neq -1$
- $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C = -\arccos x + C$, (-1,1).
- $\int \frac{1}{1+x^2} dx = \arctan x + C = -\operatorname{arccot} x + C$, $(-\infty, \infty)$.
- $\int a^x dx = \frac{1}{\ln a} a^x + C$, a > 0, $a \ne 1$.
- $\int \frac{1}{x} dx = \ln|x| + C$, $(-\infty, 0)$ $\not \le (0 + \infty)$.

- $\int \cos x dx = \sin x + C$, $\int \sin x dx = -\cos x + C$
- $\int \sec^2 x dx = \tan x + C$, $\left(\left(k\pi \frac{\pi}{2}, k\pi + \frac{\pi}{2}\right)\right)$, $\int \csc^2 x dx = -\cot x + C$, $\left(\left(k\pi, k\pi + \pi\right)\right)$.
- $\int 1 dx = x + C$, $\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C$, $\alpha \neq -1$
- $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C = -\arccos x + C$, (-1,1).
- $\int \frac{1}{1+x^2} dx = \arctan x + C = -\operatorname{arccot} x + C$, $(-\infty, \infty)$.
- $\int a^x dx = \frac{1}{\ln a} a^x + C$, a > 0, $a \neq 1$.
- $\int \frac{1}{x} dx = \ln|x| + C$, $(-\infty, 0)$ $\not \le (0 + \infty)$.

- $\int \cos x dx = \sin x + C$, $\int \sin x dx = -\cos x + C$
- $\int \sec^2 x dx = \tan x + C$, $\left(\left(k\pi \frac{\pi}{2}, k\pi + \frac{\pi}{2} \right) \right)$, $\int \csc^2 x dx = -\cot x + C$, $\left(\left(k\pi, k\pi + \pi \right) \right)$.
- $\int 1 dx = x + C$, $\int x^{\alpha} dx = \frac{1}{\alpha+1} x^{\alpha+1} + C$, $\alpha \neq -1$
- $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C = -\arccos x + C$, (-1,1).
- $\int \frac{1}{1+x^2} dx = \arctan x + C = -\operatorname{arccot} x + C$, $(-\infty, \infty)$.
- $\int a^{x} dx = \frac{1}{\ln a} a^{x} + C$, a > 0, $a \neq 1$.
- $\int \frac{1}{x} dx = \ln|x| + C$, $(-\infty, 0)$ $\not \le (0 + \infty)$.

- $\int \cos x dx = \sin x + C$, $\int \sin x dx = -\cos x + C$
- $\int \sec^2 x dx = \tan x + C$, $\left(\left(k\pi \frac{\pi}{2}, k\pi + \frac{\pi}{2} \right) \right)$, $\int \csc^2 x dx = -\cot x + C$, $\left(\left(k\pi, k\pi + \pi \right) \right)$.
- $\int 1 dx = x + C$, $\int x^{\alpha} dx = \frac{1}{\alpha+1} x^{\alpha+1} + C$, $\alpha \neq -1$
- $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C = -\arccos x + C$, (-1,1).
- $\int \frac{1}{1+x^2} dx = \arctan x + C = -\operatorname{arccot} x + C$, $(-\infty, \infty)$.
- $\int a^{x} dx = \frac{1}{\ln a} a^{x} + C$, a > 0, $a \neq 1$.
- $\int \frac{1}{x} dx = \ln |x| + C$, $(-\infty, 0)$ $\not \le (0 + \infty)$.

- $\int \cos x dx = \sin x + C$, $\int \sin x dx = -\cos x + C$
- $\int \sec^2 x dx = \tan x + C$, $\left(\left(k\pi \frac{\pi}{2}, k\pi + \frac{\pi}{2} \right) \right)$, $\int \csc^2 x dx = -\cot x + C$, $\left(\left(k\pi, k\pi + \pi \right) \right)$.
- $\int 1 dx = x + C$, $\int x^{\alpha} dx = \frac{1}{\alpha+1} x^{\alpha+1} + C$, $\alpha \neq -1$
- $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C = -\arccos x + C$, (-1,1).
- $\int \frac{1}{1+x^2} dx = \arctan x + C = -\operatorname{arccot} x + C$, $(-\infty, \infty)$.
- $\int a^x dx = \frac{1}{\ln a} a^x + C$, a > 0, $a \ne 1$.
- $\int \frac{1}{x} dx = \ln|x| + C$, $(-\infty, 0)$ $\not \equiv (0 + \infty)$.

- $\int \cos x dx = \sin x + C$, $\int \sin x dx = -\cos x + C$
- $\int \sec^2 x dx = \tan x + C$, $\left(\left(k\pi \frac{\pi}{2}, k\pi + \frac{\pi}{2} \right) \right)$, $\int \csc^2 x dx = -\cot x + C$, $\left(\left(k\pi, k\pi + \pi \right) \right)$.
- $\int 1 dx = x + C$, $\int x^{\alpha} dx = \frac{1}{\alpha+1} x^{\alpha+1} + C$, $\alpha \neq -1$
- $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C = -\arccos x + C$, (-1,1).
- $\int \frac{1}{1+x^2} dx = \arctan x + C = -\operatorname{arccot} x + C$, $(-\infty, \infty)$.
- $\int a^x dx = \frac{1}{\ln a} a^x + C$, a > 0, $a \ne 1$.
- $\int \frac{1}{x} dx = \ln|x| + C$, $(-\infty, 0)$ ø $(0 + \infty)$.

•
$$\int \frac{(x+1)^2}{\sqrt{x}} dx = \int (x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + x^{-\frac{1}{2}}) dx = \frac{2}{5}x^{\frac{5}{2}} + \frac{4}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C.$$

•
$$\int (e^{x} + \frac{3x^{2}}{1+x^{2}})dx = e^{x} + 3\int (1 - \frac{1}{1+x^{2}})dx = e^{x} + 3x - 3 \arctan x + C$$
.

• 求
$$S(t)$$
 满足
$$\begin{cases} \frac{d^2S}{dt^2} = -g \\ S(0) = h_0, S'(0) = v_0 \end{cases}$$
解: $S'(t) = -gt + C_1$, $S(t) = -\frac{1}{2}gt^2 + C_1t + C_2$, 从而 $S(t) = -\frac{1}{2}gt^2 + v_0t + h_0$.

•
$$\int (e^x + \frac{3x^2}{1+x^2}) dx = e^x + 3 \int (1 - \frac{1}{1+x^2}) dx = e^x + 3x - 3 \arctan x + C$$
.

・ 求
$$S(t)$$
 满足
$$\begin{cases} \frac{d^2S}{dt^2} = -g \\ S(0) = h_0, S'(0) = v_0 \end{cases}$$
解: $S'(t) = -gt + C_1$, $S(t) = -\frac{1}{2}gt^2 + C_1t + C_2$, 从而 $S(t) = -\frac{1}{2}gt^2 + v_0t + h_0$.

•
$$\int \frac{(x+1)^2}{\sqrt{x}} dx = \int (x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + x^{-\frac{1}{2}}) dx = \frac{2}{5} x^{\frac{5}{2}} + \frac{4}{3} x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C.$$

•
$$\int (e^x + \frac{3x^2}{1+x^2}) dx = e^x + 3 \int (1 - \frac{1}{1+x^2}) dx = e^x + 3x - 3 \arctan x + C$$
.

• 求
$$S(t)$$
 满足
$$\begin{cases} \frac{d^2S}{dt^2} = -g\\ S(0) = h_0, S'(0) = v_0 \end{cases}$$
解: $S'(t) = -gt + C_1$, $S(t) = -\frac{1}{2}gt^2 + C_1t + C_2$, 从而 $S(t) = -\frac{1}{2}gt^2 + v_0t + h_0$.

•
$$\int \frac{(x+1)^2}{\sqrt{x}} dx = \int (x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + x^{-\frac{1}{2}}) dx = \frac{2}{5}x^{\frac{5}{2}} + \frac{4}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C.$$

•
$$\int (e^x + \frac{3x^2}{1+x^2}) dx = e^x + 3 \int (1 - \frac{1}{1+x^2}) dx = e^x + 3x - 3 \arctan x + C$$
.

・ 求
$$S(t)$$
 满足
$$\begin{cases} \frac{d^2S}{dt^2} = -g \\ S(0) = h_0, S'(0) = v_0 \end{cases}$$
解: $S'(t) = -gt + C_1$, $S(t) = -\frac{1}{2}gt^2 + C_1t + C_2$, 从而 $S(t) = -\frac{1}{2}gt^2 + v_0t + h_0$.

定积分思想的历史

- 阿基米德 (公元前 287 年 -前 212 年) 用内接正多边形的周长来逼近 圆周长,而求得圆周率愈来愈好的近似值,也用一连串的三角形来 填充抛物线的图形,以求得其面积.这是穷尽法的古典例子之一, 可以说是积分思想的起源.
- 3 世纪,中国数学家刘徽创立的割圆术用圆内接正九十六边形的面积近似代替圆面积,求出圆周率 的近似值.并指出:"割之弥细,所失弥少,割之又割,以至不可割,则与圆合体而无所失矣".

定积分思想的历史

- 阿基米德 (公元前 287 年 -前 212 年) 用内接正多边形的周长来逼近 圆周长,而求得圆周率愈来愈好的近似值,也用一连串的三角形来 填充抛物线的图形,以求得其面积.这是穷尽法的古典例子之一, 可以说是积分思想的起源.
- 3世纪,中国数学家刘徽创立的割圆术用圆内接正九十六边形的面积近似代替圆面积,求出圆周率的近似值.并指出:"割之弥细,所失弥少,割之又割,以至不可割,则与圆合体而无所失矣".

求曲边梯形 x = a, x = b, y = 0, y = f(x) 围成的的面积.

- 第一步: 把区间 [a,b] 进行分割 $a = x_0 < x_1 < x_2 < \cdots < x_n = b$,区间 $[x_{i-1},x_i]$ 对应的小曲边梯形设为 S_i . 则原来的曲边梯形分解成 $S = \bigcup_{i=1}^n S_i$.
- 第二步: 任取 $\xi_i \in [x_{i-1}, x_i]$, S_i 的面积 (任记为 S_i) 近似为

$$S_i \approx f(\xi_i)(x_i - x_{i-1}),$$

从而原曲边梯形的面积

$$S \approx \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}).$$

• 第三步: $\lambda = \max\{\Delta x_i = x_i - x_{i-1}\},$

$$S = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i.$$

求曲边梯形 x = a, x = b, y = 0, y = f(x) 围成的的面积.

- 第一步: 把区间 [a,b] 进行分割 $a=x_0 < x_1 < x_2 < \cdots < x_n = b$, 区间 $[x_{i-1},x_i]$ 对应的小曲边梯形设为 S_i . 则原来的曲边梯形分解成 $S=\cup_{i=1}^n S_i$.
- 第二步: 任取 $\xi_i \in [x_{i-1}, x_i]$, S_i 的面积(任记为 S_i)近似为

$$S_i \approx f(\xi_i)(x_i - x_{i-1}),$$

从而原曲边梯形的面积

$$S \approx \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}).$$

• 第三步: $\lambda = \max\{\Delta x_i = x_i - x_{i-1}\},$

$$S = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i.$$

求曲边梯形 x = a, x = b, y = 0, y = f(x) 围成的的面积.

- 第一步: 把区间 [a,b] 进行分割 $a = x_0 < x_1 < x_2 < \cdots < x_n = b$,区间 $[x_{i-1},x_i]$ 对应的小曲边梯形设为 S_i . 则原来的曲边梯形分解成 $S = \bigcup_{i=1}^n S_i$.
- 第二步: 任取 $\xi_i \in [x_{i-1}, x_i]$, S_i 的面积(任记为 S_i)近似为

$$S_i \approx f(\xi_i)(x_i - x_{i-1}),$$

从而原曲边梯形的面积

$$S \approx \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}).$$

• 第三步: $\lambda = \max\{\Delta x_i = x_i - x_{i-1}\}$,

$$S = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i.$$

求曲边梯形 $x = 0, x = 1, y = 0, y = x^2$ 围成的的面积.

• 把区间 [0,1] 进行分割 $a=0<\frac{1}{n}<\frac{2}{n}<\cdots<1$,区间 $[\frac{i-1}{n},\frac{i}{n}]$ 对应的小曲边梯形设为 S_i . 则原来的曲边梯形面积(任然记为 S_i)近似为

$$S_i \approx \left(\frac{i-1}{n}\right)^2 \frac{1}{n} = \frac{(i-1)^2}{n^3},$$

从而原曲边梯形的面积 $S \approx \sum_{i=1}^{n} \frac{(i-1)^2}{n^3} = \frac{1}{n^3} \frac{(2n-1)(n-1)n}{6}$.

• $\lambda = \frac{1}{n} \to 0$,

$$S = \lim_{n \to \infty} \frac{1}{n^3} \frac{(2n-1)(n-1)n}{6} = \frac{1}{3}.$$

求曲边梯形 $x = 0, x = 1, y = 0, y = x^2$ 围成的的面积.

• 把区间 [0,1] 进行分割 $a=0<\frac{1}{n}<\frac{2}{n}<\cdots<1$,区间 $[\frac{i-1}{n},\frac{i}{n}]$ 对应的小曲边梯形设为 S_i . 则原来的曲边梯形面积(任然记为 S_i)近似为

$$S_i \approx \left(\frac{i-1}{n}\right)^2 \frac{1}{n} = \frac{(i-1)^2}{n^3},$$

从而原曲边梯形的面积 $S \approx \sum_{i=1}^{n} \frac{(i-1)^2}{n^3} = \frac{1}{n^3} \frac{(2n-1)(n-1)n}{6}$.

$$S = \lim_{n \to \infty} \frac{1}{n^3} \frac{(2n-1)(n-1)n}{6} = \frac{1}{3}.$$

变力做功

质量为 1 的质点沿直线运动,求变力 f(s) 从 s=a 到 s=b 所作的功(s 为物体到初始位置的距离).

- 作分割 $a = s_0 < s_1 < s_2 < \cdots < s_n = b$.
- 取 $\xi_i \in [s_{i-1}, s_i]$, 变力 f(s) 从 s_{i-1} 到 s_i 所作的功近似为

$$W_i \approx f(\xi_i)(s_i - s_{i-1}),$$

从 s=a 到 s=b 所作的功近似为 $W\approx \sum\limits_{i=1}^{n}f(\xi_{i})(s_{i}-s_{i-1}).$

• $\lambda = \max\{\Delta s_i\} \to 0$, 从 s = a 到 s = b 所作的功

$$W = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) (s_i - s_{i-1}).$$

变力做功

质量为 1 的质点沿直线运动,求变力 f(s) 从 s=a 到 s=b 所作的功(s 为物体到初始位置的距离).

- 作分割 $a = s_0 < s_1 < s_2 < \cdots < s_n = b$.
- 取 $\xi_i \in [s_{i-1}, s_i]$, 变力 f(s) 从 s_{i-1} 到 s_i 所作的功近似为

$$W_i \approx f(\xi_i)(s_i - s_{i-1}),$$

从 s = a 到 s = b 所作的功近似为 $W \approx \sum_{i=1}^{n} f(\xi_i)(s_i - s_{i-1})$.

• $\lambda = \max\{\Delta s_i\} \to 0$, 从 s = a 到 s = b 所作的功

$$W = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) (s_i - s_{i-1}).$$

变力做功

质量为 1 的质点沿直线运动,求变力 f(s) 从 s=a 到 s=b 所作的功(s 为物体到初始位置的距离).

- 作分割 $a = s_0 < s_1 < s_2 < \cdots < s_n = b$.
- 取 $\xi_i \in [s_{i-1}, s_i]$, 变力 f(s) 从 s_{i-1} 到 s_i 所作的功近似为

$$W_i \approx f(\xi_i)(s_i - s_{i-1}),$$

从 s = a 到 s = b 所作的功近似为 $W \approx \sum_{i=1}^{n} f(\xi_i)(s_i - s_{i-1})$.

• $\lambda = \max\{\Delta s_i\} \to 0$, 从 s = a 到 s = b 所作的功

$$W = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i)(s_i - s_{i-1}).$$

- 其它类似问题: 沿直线变速运动, 求路程; 变密度长杆的质量.
- 定义: 设 f(x) 是定义在区间 [a,b] 上的函数,对 [a,b] 作分割 $T: a = x_0 < x_1 < x_2 < \cdots < x_n = b$,记 $\Delta x_i = x_i x_{i-1}$, $i = 1, 2, \cdots, n$,记 $\lambda(T) = \max\{\Delta x_i | i = 1, 2, \cdots, n\}$.

$$\lim_{\lambda(T)\to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$$

存在,且与分割和 ξ_i 的选取无关,则称 f(x) 在 [a,b] 上可积.

- 其它类似问题: 沿直线变速运动, 求路程; 变密度长杆的质量.
- 定义: 设 f(x) 是定义在区间 [a,b] 上的函数,对 [a,b] 作分割 $T:a=x_0 < x_1 < x_2 < \cdots < x_n = b$,记 $\Delta x_i = x_i x_{i-1}$, $i=1,2,\cdots,n$,记 $\lambda(T)=\max\{\Delta x_i|i=1,2,\cdots,n\}$. 任意选取中间值 $\xi_i \in [x_{i-1},x_i]$. 若极限

$$\lim_{\lambda(T)\to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$$

存在,且与分割和 ξ_i 的选取无关,则称 f(x) 在 [a,b] 上可积.

• 定义 (续): f(x) 在 [a,b] 上的定积分定义为

$$\int_{a}^{b} f(x)dx = \lim_{\lambda(T) \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$

这里称 f(x) 为被积函数, x 为积分变量, b 为积分上限, a 为积分下限, [a,b] 为积分区间, $\sum_{i=1}^{n} f(\xi_i) \Delta x_i$ 为黎曼和.

• 几何意义:

 $\int_a^b f(x) dx$ 是 x = a, x = b, y = 0, y = f(x) 所围面积的代数和(x 轴上方的图形面积为正、下方的图形面积为负).

• 定义 (续): f(x) 在 [a,b] 上的定积分定义为

$$\int_{a}^{b} f(x)dx = \lim_{\lambda(T) \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$

这里称 f(x) 为被积函数, x 为积分变量, b 为积分上限, a 为积分下限, [a,b] 为积分区间, $\sum_{i=1}^{n} f(\xi_i) \Delta x_i$ 为黎曼和.

• 几何意义: $\int_{a}^{b} f(x) dx \, \mathcal{L} \, x = a, \, x = b, \, y = 0, \, y = f(x)$ 所围面积的代数和(x 轴上方的图形面积为正. 下方的图形面积为负).

• $\lim_{\lambda(T)\to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i = A$ 的定义:对任给 $\epsilon > 0$,存在 $\delta > 0$,对任意满足 $\lambda(T) < \delta$ 的分割 T,任取 $\xi_i \in [x_{i-1}, x_i]$,都有

$$\left|\sum_{i=1}^n f(\xi_i) \Delta x_i - A\right| < \epsilon.$$

• 例:设 $f \neq [a, b]$ 上的有界函数, 若除有限点外 f(x) 处处为 0, 则 f(x) 可积, 且定积分为 0. 证明:设 f(x) 满足 $|f(x)| \leq M$, 在 k 个点处不为 0, 则

$$\left|\sum_{i=1}^{n} f(\xi_i) \Delta x_i\right| \le 2kM\lambda \to 0$$

• $\lim_{\lambda(T)\to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i = A$ 的定义: 对任给 $\epsilon > 0$, 存在 $\delta > 0$, 对任意满足 $\lambda(T) < \delta$ 的分割 T, 任取 $\xi_i \in [x_{i-1}, x_i]$, 都有

$$\left|\sum_{i=1}^n f(\xi_i) \Delta x_i - A\right| < \epsilon.$$

• 例:设 $f \neq [a, b]$ 上的有界函数, 若除有限点外 f(x) 处处为 0,则 f(x) 可积, 且定积分为 0.

证明:设 f(x) 满足 $|f(x)| \le M$,在 k 个点处不为 0,则 $|f(\xi_i)\Delta x_i| \le M\lambda$,且黎曼和中最多只有 2k 项不为 0,因此

$$\left|\sum_{i=1}^n f(\xi_i) \Delta x_i\right| \leq 2kM\lambda \to 0.$$

- 例如: 变力 f(s) 所作的功为 $\int_a^b f(s)ds$. 常数函数的积分 $\int_a^b Cdx = C(b-a)$.
- 约定: $\int_a^a f(x) dx = 0$, b < a 时, $\int_a^b f(x) dx = -\int_b^a f(x) dx$ (物理中从 x = a 到 x = b 所作的功与从 x = b 到 x = a 所作的功差一个负号).
- 记 [a,b] 上 Riemann 可积函数构成的集合为 R([a,b]).

- 例如: 变力 f(s) 所作的功为 $\int_a^b f(s)ds$. 常数数函数的积分 $\int_a^b Cdx = C(b-a)$.
- 约定: $\int_a^a f(x) dx = 0$, b < a 时, $\int_a^b f(x) dx = -\int_b^a f(x) dx$ (物理中从 x = a 到 x = b 所作的功与从 x = b 到 x = a 所作的功差一个负号).
- 记 [a,b] 上 Riemann 可积函数构成的集合为 R([a,b]).

- 例如: 变力 f(s) 所作的功为 $\int_a^b f(s)ds$. 常数数函数的积分 $\int_a^b Cdx = C(b-a)$.
- 约定: $\int_a^a f(x)dx = 0$, b < a 时, $\int_a^b f(x)dx = -\int_b^a f(x)dx$ (物理中从 x = a 到 x = b 所作的功与从 x = b 到 x = a 所作的功差一个负号).
- 记 [a, b] 上 Riemann 可积函数构成的集合为 R([a, b]).

• 命题: 若 f(x) 在 [a,b] 上可积, f 必然有界.

证明:反设 f(x) 无界,若 f(x) 在 [a,b] 上的定积分为 I,则存在分割,使得

$$\left|\sum_{i=1}^{n} f(\xi_i) \Delta x_i - I\right| < 1 \tag{1}$$

对任意的 $\xi_i \in [x_{i-1}, x_i]$ 成立. 由于 f 无界,则 f 在某个区间 $[x_{k-1}, x_k]$ 上无界.则存在 ξ_k', ξ_k'' ,使得 $|f(\xi_k') \Delta x_k - f(\xi_k'') \Delta x_k| > 2$. 对于中间点的两种取法 $\xi_1, \xi_2, \cdots \xi_k' \cdots \xi_n$ 和 $\xi_1, \xi_2, \cdots \xi_k'' \cdots \xi_n$, (1) 式不可能都成立.

命题:若 f(x) 在 [a,b] 上可积, f必然有界.
 证明:反设 f(x) 无界,若 f(x) 在 [a,b] 上的定积分为 I,则存在分割,使得

$$\left|\sum_{i=1}^{n} f(\xi_i) \Delta x_i - I\right| < 1 \tag{1}$$

对任意的 $\xi_i \in [x_{i-1}, x_i]$ 成立. 由于 f 无界,则 f 在某个区间 $[x_{k-1}, x_k]$ 上无界.则存在 ξ_k', ξ_k'' ,使得 $|f(\xi_k') \Delta x_k - f(\xi_k'') \Delta x_k| > 2$. 对于中间点的两种取法 $\xi_1, \xi_2, \cdots \xi_k' \cdots \xi_n$ 和 $\xi_1, \xi_2, \cdots \xi_k'' \cdots \xi_n$,(1) 式不可能都成立.

- 设 D(x) 是 Dirichlet 函数. 则 D(x) 在任意区间 [a,b] 上不可积. 这是 因为若取所有 $\xi_i \in \mathbb{Q}$, $\sum_{i=1}^n f(\xi_i) \Delta x_i = b a$, 而若取所有 $\xi_i \notin \mathbb{Q}$, $\sum_{i=1}^n f(\xi_i) \Delta x_i = 0$.
- 命题:在有限区间上,连续函数可积;具有有限个间断点的有界函数可积;单调函数可积。
- 注:定积分的定义由 Riemann 在 1854 年给出,并证明了可积函数必有界,且间断点有限的有界函数可积; Darboux 于 1875 年证明了 f可积的充分必要条件是 f有界且间断点构成的集合测度为 0.

- 设 D(x) 是 Dirichlet 函数. 则 D(x) 在任意区间 [a,b] 上不可积. 这是因为若取所有 $\xi_i \in \mathbb{Q}$, $\sum_{i=1}^n f(\xi_i) \Delta x_i = b a$, 而若取所有 $\xi_i \notin \mathbb{Q}$, $\sum_{i=1}^n f(\xi_i) \Delta x_i = 0$.
- 命题:在有限区间上,连续函数可积;具有有限个间断点的有界函数可积;单调函数可积.
- 注:定积分的定义由 Riemann 在 1854 年给出,并证明了可积函数必有界,且间断点有限的有界函数可积; Darboux 于 1875 年证明了 f可积的充分必要条件是 f有界且间断点构成的集合测度为 0.

- 设 D(x) 是 Dirichlet 函数. 则 D(x) 在任意区间 [a,b] 上不可积. 这是 因为若取所有 $\xi_i \in \mathbb{Q}$, $\sum_{i=1}^n f(\xi_i) \Delta x_i = b a$, 而若取所有 $\xi_i \notin \mathbb{Q}$, $\sum_{i=1}^n f(\xi_i) \Delta x_i = 0$.
- 命题:在有限区间上,连续函数可积;具有有限个间断点的有界函数可积;单调函数可积.
- 注:定积分的定义由 Riemann 在 1854 年给出,并证明了可积函数 必有界,且间断点有限的有界函数可积; Darboux 于 1875 年证明 了 f可积的充分必要条件是 f有界且间断点构成的集合测度为 0.

- $f,g \in R([a,b]) \Rightarrow fg, c_1f + c_2g \in R([a,b])$. 这里 c_1, c_2 为常数.
- $f \in R([a,b]) \Rightarrow f \in R([c,d]), [c,d] \subset [a,b].$
- $f \in R([a,b]) \Rightarrow |f| \in R([a,b])$.
- f,g 仅在有限个点处取值不同,则可积性相同.

- $f,g \in R([a,b]) \Rightarrow fg, c_1f + c_2g \in R([a,b])$. 这里 c_1, c_2 为常数.
- $f \in R([a,b]) \Rightarrow f \in R([c,d]), [c,d] \subset [a,b].$
- $f \in R([a,b]) \Rightarrow |f| \in R([a,b])$.
- f,g 仅在有限个点处取值不同,则可积性相同.

- $f,g \in R([a,b]) \Rightarrow fg, c_1f + c_2g \in R([a,b])$. 这里 c_1, c_2 为常数.
- $f \in R([a,b]) \Rightarrow f \in R([c,d]), [c,d] \subset [a,b].$
- $f \in R([a,b]) \Rightarrow |f| \in R([a,b])$.
- f,g 仅在有限个点处取值不同,则可积性相同.

可积函数3

- $f,g \in R([a,b]) \Rightarrow fg, c_1f + c_2g \in R([a,b])$. 这里 c_1, c_2 为常数.
- $f \in R([a,b]) \Rightarrow f \in R([c,d]), [c,d] \subset [a,b].$
- $f \in R([a,b]) \Rightarrow |f| \in R([a,b])$.
- f,g 仅在有限个点处取值不同,则可积性相同.

应用极限四则运算求极限 2

• $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$, 则极限 $\lim_{n \to \infty} a_n$ 存在且大于 0.

证明: 由:
$$a_n - a_{n-1} = \frac{1}{2n-1} + \frac{1}{2n} - \frac{1}{n}$$
,有 a_n 单调递增,且 $a_n < \frac{n}{n+1} < 1$, $\lim_{n \to \infty} a_n$ 存在,但是

$$\lim_{n\to\infty} a_n \neq \lim_{n\to\infty} \frac{1}{n+1} + \lim_{n\to\infty} \frac{1}{n+2} + \dots + \lim_{n\to\infty} \frac{1}{n+n} = 0$$

• 注:由于 $a_n = \frac{1}{n} \left(\frac{1}{1 + \frac{1}{n}} + \frac{1}{1 + \frac{2}{n}} + \dots + \frac{1}{1 + \frac{n}{n}} \right)$,利用定积分的定义,可知 $a_n \to \int_0^1 \frac{1}{1 + x} dx = \ln 2$.

应用极限四则运算求极限 2

• $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots \frac{1}{n+n}$, 则极限 $\lim_{n \to \infty} a_n$ 存在且大于 0. 证明: 由: $a_n - a_{n-1} = \frac{1}{2n-1} + \frac{1}{2n} - \frac{1}{n}$, 有 a_n 单调递增,且 $a_n < \frac{n}{n+1} < 1$, $\lim_{n \to \infty} a_n$ 存在,但是

$$\lim_{n\to\infty} a_n \neq \lim_{n\to\infty} \frac{1}{n+1} + \lim_{n\to\infty} \frac{1}{n+2} + \dots + \lim_{n\to\infty} \frac{1}{n+n} = 0.$$

• 注:由于 $a_n = \frac{1}{n} \left(\frac{1}{1 + \frac{1}{n}} + \frac{1}{1 + \frac{2}{n}} + \dots + \frac{1}{1 + \frac{n}{n}} \right)$, 利用定积分的定义,可知 $a_n \to \int_0^1 \frac{1}{1 + x} dx = \ln 2$.

应用极限四则运算求极限 2

• $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$, 则极限 $\lim_{n \to \infty} a_n$ 存在且大于 0. 证明: 由: $a_n - a_{n-1} = \frac{1}{2n-1} + \frac{1}{2n} - \frac{1}{n}$, 有 a_n 单调递增,且 $a_n < \frac{n}{n+1} < 1$, $\lim_{n \to \infty} a_n$ 存在,但是

$$\lim_{n\to\infty} a_n \neq \lim_{n\to\infty} \frac{1}{n+1} + \lim_{n\to\infty} \frac{1}{n+2} + \dots + \lim_{n\to\infty} \frac{1}{n+n} = 0.$$

• 注:由于 $a_n = \frac{1}{n} \left(\frac{1}{1 + \frac{1}{n}} + \frac{1}{1 + \frac{2}{n}} + \dots + \frac{1}{1 + \frac{n}{n}} \right)$,利用定积分的定义,可知 $a_n \to \int_0^1 \frac{1}{1 + x} dx = \ln 2$.

- $f, g \in R([a, b]) \Rightarrow \int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$.
- $f(x) \ge 0$. $\int_a^b f(x) dx \ge 0$.
- $f(x) \ge g(x), \forall x \in [a, b] \Rightarrow \int_a^b f(x) dx \ge \int_a^b g(x) dx$. if $g(x) = \int_a^b f(x) dx = \int_a^b g(x) dx + \int_a^b (f(x) - g(x)) dx$.
- 若 $f \in C([a,b]), f(x) \ge 0$, 且 f 不恒为零,则有 $\int_a^b f(x) dx > 0$.
- $\int_a^b cf(x)dx = c \int_a^b f(x)dx$.
- $f,g \in R([a,b])$, 且仅在有限个点处取值不同,则积分相同. 证明: f(x) - g(x) 除有限个点外处处为 0, 因此积分为 0.

- $f, g \in R([a, b]) \Rightarrow \int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$.
- $f(x) \geq 0.$ $\int_a^b f(x) dx \geq 0.$
- $f(x) \ge g(x), \forall x \in [a, b] \Rightarrow \int_a^b f(x) dx \ge \int_a^b g(x) dx$. if $\mathfrak{H}: \int_a^b f(x) dx = \int_a^b g(x) dx + \int_a^b (f(x) - g(x)) dx$
- 若 $f \in C([a,b]), f(x) \ge 0$, 且 f 不恒为零,则有 $\int_a^b f(x) dx > 0$.
- $\int_a^b cf(x)dx = c \int_a^b f(x)dx$.
- $f,g \in R([a,b])$, 且仅在有限个点处取值不同,则积分相同. 证明: f(x) - g(x) 除有限个点外处处为 0, 因此积分为 0.

- $f, g \in R([a, b]) \Rightarrow \int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$.
- $f(x) \ge g(x), \forall x \in [a, b] \Rightarrow \int_a^b f(x) dx \ge \int_a^b g(x) dx$. $\pounds \mathfrak{H}: \int_a^b f(x) dx = \int_a^b g(x) dx + \int_a^b (f(x) - g(x)) dx$
- 若 $f \in C([a,b]), f(x) \ge 0$, 且 f 不恒为零,则有 $\int_a^b f(x) dx > 0$.
- $\int_a^b cf(x)dx = c \int_a^b f(x)dx$.
- $f,g \in R([a,b])$, 且仅在有限个点处取值不同,则积分相同. 证明: f(x) - g(x) 除有限个点外处处为 0, 因此积分为 0.

- $f, g \in R([a, b]) \Rightarrow \int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$.
- $f(x) \geq 0.$ $\int_a^b f(x) dx \geq 0.$
- $f(x) \ge g(x), \forall x \in [a, b] \Rightarrow \int_a^b f(x) dx \ge \int_a^b g(x) dx.$ 证明: $\int_a^b f(x) dx = \int_a^b g(x) dx + \int_a^b (f(x) - g(x)) dx.$
- 若 $f \in C([a,b]), f(x) \ge 0$, 且 f 不恒为零,则有 $\int_a^b f(x) dx > 0$.
- $\int_a^b cf(x)dx = c \int_a^b f(x)dx$.
- $f,g \in R([a,b])$, 且仅在有限个点处取值不同,则积分相同. 证明: f(x) - g(x) 除有限个点外处处为 0, 因此积分为 0.

- $f, g \in R([a, b]) \Rightarrow \int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$.
- $f(x) \geq 0.$ $\int_a^b f(x) dx \geq 0.$
- $f(x) \ge g(x), \forall x \in [a, b] \Rightarrow \int_a^b f(x) dx \ge \int_a^b g(x) dx.$ 证明: $\int_a^b f(x) dx = \int_a^b g(x) dx + \int_a^b (f(x) - g(x)) dx.$
- 若 $f \in C([a,b]), f(x) \ge 0$, 且 f 不恒为零,则有 $\int_a^b f(x) dx > 0$.
- $\int_a^b cf(x)dx = c \int_a^b f(x)dx$.
- $f,g \in R([a,b])$, 且仅在有限个点处取值不同,则积分相同. 证明: f(x) - g(x) 除有限个点外处处为 0, 因此积分为 0.

- $f, g \in R([a, b]) \Rightarrow \int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$.
- $f(x) \geq 0. \int_a^b f(x) dx \geq 0.$
- $f(x) \ge g(x), \forall x \in [a, b] \Rightarrow \int_a^b f(x) dx \ge \int_a^b g(x) dx.$ 证明: $\int_a^b f(x) dx = \int_a^b g(x) dx + \int_a^b (f(x) - g(x)) dx.$
- 若 $f \in C([a,b]), f(x) \ge 0$, 且 f 不恒为零,则有 $\int_a^b f(x) dx > 0$.
- $\int_a^b cf(x)dx = c \int_a^b f(x)dx$.
- $f,g \in R([a,b])$, 且仅在有限个点处取值不同,则积分相同. 证明: f(x) g(x) 除有限个点外处处为 0, 因此积分为 0.

- $f, g \in R([a, b]) \Rightarrow \int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$.
- $f(x) \ge g(x), \forall x \in [a, b] \Rightarrow \int_a^b f(x) dx \ge \int_a^b g(x) dx.$ 证明: $\int_a^b f(x) dx = \int_a^b g(x) dx + \int_a^b (f(x) - g(x)) dx.$
- 若 $f \in C([a,b]), f(x) \ge 0$, 且 f 不恒为零,则有 $\int_a^b f(x) dx > 0$.
- $\int_a^b cf(x)dx = c \int_a^b f(x)dx$.
- $f,g \in R([a,b])$, 且仅在有限个点处取值不同,则积分相同.证明: f(x) g(x) 除有限个点外处处为 0, 因此积分为 0.

- $f, g \in R([a, b]) \Rightarrow \int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$.
- $f(x) \ge g(x), \forall x \in [a, b] \Rightarrow \int_a^b f(x) dx \ge \int_a^b g(x) dx$. 证明: $\int_a^b f(x) dx = \int_a^b g(x) dx + \int_a^b (f(x) - g(x)) dx$.
- 若 $f \in C([a,b]), f(x) \ge 0$, 且 f 不恒为零,则有 $\int_a^b f(x) dx > 0$.
- $\int_a^b cf(x)dx = c \int_a^b f(x)dx$.
- $f,g \in R([a,b])$, 且仅在有限个点处取值不同,则积分相同. 证明: f(x) - g(x) 除有限个点外处处为 0, 因此积分为 0.

• $f \in R([a,b]), c \in [a,b]$. 则有 $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$. 若 $f \in R([c,b]), c < a < b$, 上式也成立. 事实上

$$\int_a^b f(x)dx = \int_c^b f(x)dx - \int_c^a f(x)dx = \int_c^b f(x)dx + \int_a^c f(x)dx.$$

f∈ R([a,b]), 则有 |∫_a^b f(x)dx| ≤ ∫_a^b |f(x)|dx.
 证明: 由于 ±f(x) ≤ |f(x)|, 因此

$$\pm \int_{a}^{b} f(x) dx = \int_{a}^{b} \pm f(x) dx \le \int_{a}^{b} |f(x)| dx$$

• $f \in R([a,b]), c \in [a,b]$. 则有 $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$. 若 $f \in R([c,b]), c < a < b$, 上式也成立. 事实上

$$\int_a^b f(x)dx = \int_c^b f(x)dx - \int_c^a f(x)dx = \int_c^b f(x)dx + \int_a^c f(x)dx.$$

f∈ R([a,b]), 则有 | ∫_a^b f(x)dx| ≤ ∫_a^b | f(x)|dx.
 证明: 由于 ±f(x) ≤ |f(x)|, 因此

$$\pm \int_a^b f(x)dx = \int_a^b \pm f(x)dx \le \int_a^b |f(x)|dx$$

设 f,g∈ C([a,b]), 证明

$$\left(\int_a^b f(x)g(x)dx\right)^2 \le \int_a^b f^2(x)dx \int_a^b g^2(x)dx.$$

证明: 若
$$\int_a^b f^2(x)dx > 0$$
, 对任意 λ ,
$$\int_a^b (\lambda f(x) + g(x))^2 dx$$
$$= \lambda^2 \int_a^b f^2(x)dx + 2\lambda \int_a^b f(x)g(x)dx + \int_a^b f^2(x)dx \ge 0$$

因此
$$\left(2\int_a^b f(x)g(x)dx\right)^2 - 4\int_a^b f^2(x)dx \int_a^b g^2(x)dx \le 0.$$
 若 $\int_a^b f^2(x)dx = \int_a^b g^2(x)dx = 0$,利用 $|f(x)g(x)| \le \frac{1}{2}(f^2(x) + g^2(x))$, $\int_a^b f(x)g(x)dx = 0$.

设 f,g∈ C([a,b]), 证明

$$\left(\int_a^b f(x)g(x)dx\right)^2 \le \int_a^b f^2(x)dx \int_a^b g^2(x)dx.$$

证明: 若
$$\int_a^b f^2(x)dx > 0$$
, 对任意 λ ,
$$\int_a^b (\lambda f(x) + g(x))^2 dx$$
$$= \lambda^2 \int_a^b f^2(x)dx + 2\lambda \int_a^b f(x)g(x)dx + \int_a^b f^2(x)dx \ge 0$$

国此
$$\left(2\int_{a}^{b}f(x)g(x)dx\right)^{2}-4\int_{a}^{b}f^{2}(x)dx\int_{a}^{b}g^{2}(x)dx\leq0.$$
 若 $\int_{a}^{b}f^{2}(x)dx=\int_{a}^{b}g^{2}(x)dx=0$,利用 $|f(x)g(x)|\leq\frac{1}{2}(f^{2}(x)+g^{2}(x))$, $\int_{a}^{b}f(x)g(x)dx=0$.

- 复习介值定理: 设 f(x) 是闭区间 [a,b] 上的连续函数,则对于 f(a) 与 f(b) 之间的任意值 η (η 不等于 f(a), f(b)),则存在 $\xi \in (a,b)$,使 得 $f(\xi) = \eta$.
- 推论: 设 f(x) 是闭区间 [a, b] 上的连续函数, m, M 分别为 f(x) 在 [a, b] 上的最小值和最大值. 则对于任意值 η ∈ [m, M], 存在 ξ ∈ [a, b], 使得 f(ξ) = η.
- 定理: 设 $f \in C([a,b])$, 则存在 $c \in [a,b]$, 使得 $\int_{-b}^{b} f(x)dx = f(c)(b-a)$

- 复习介值定理: 设 f(x) 是闭区间 [a,b] 上的连续函数,则对于 f(a) 与 f(b) 之间的任意值 η (η 不等于 f(a), f(b)),则存在 $\xi \in (a,b)$,使 得 $f(\xi) = \eta$.
- 推论:设 f(x) 是闭区间 [a, b] 上的连续函数, m, M 分别为 f(x) 在 [a, b] 上的最小值和最大值.则对于任意值 η ∈ [m, M], 存在 ξ ∈ [a, b], 使得 f(ξ) = η.
- ・ 定理: 设 $f \in C([a,b])$, 则存在 $c \in [a,b]$, 使得 $\int_{-b}^{b} f(x)dx = f(c)(b-a)$

- 复习介值定理: 设 f(x) 是闭区间 [a,b] 上的连续函数,则对于 f(a) 与 f(b) 之间的任意值 η (η 不等于 f(a), f(b)),则存在 $\xi \in (a,b)$,使 得 $f(\xi) = \eta$.
- 推论:设 f(x) 是闭区间 [a, b] 上的连续函数, m, M 分别为 f(x) 在 [a, b] 上的最小值和最大值.则对于任意值 η ∈ [m, M], 存在 ξ ∈ [a, b], 使得 f(ξ) = η.
- 定理: 设 $f \in C([a,b])$, 则存在 $c \in [a,b]$, 使得 $\int_{-b}^{b} f(x)dx = f(c)(b-a)$

• 定理证明: 设 M, m 是 f(x) 在 [a, b] 上的最大值与最小值,则有

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

从而 $\frac{1}{b-a} \int_a^b f(x) dx \in [m, M]$, 由介值定理,存在 $c \in [a, b]$,使得 $\frac{1}{b-a} \int_a^b f(x) dx = f(c)$.

- 注: 事实上, $c \in [a, b]$ 改成 $c \in (a, b)$ 也成立. 因为 f 不是常数时, $m(b-a) < \int_a^b f(x) dx < M(b-a)$.
- •注: 当 b < a 时, 存在 c 介于 a, b 之间, 使得结论也成立.
- 注: c 与积分区间相关. 如 $\int_0^a x^2 dx = \frac{1}{3}a^3 = c^2 \cdot a$, 其中 $c = \sqrt{\frac{1}{3}a^2}$.

• 定理证明: 设 M, m 是 f(x) 在 [a, b] 上的最大值与最小值,则有

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

从而 $\frac{1}{b-a} \int_a^b f(x) dx \in [m, M]$, 由介值定理,存在 $c \in [a, b]$,使得 $\frac{1}{b-a} \int_a^b f(x) dx = f(c)$.

- 注: 事实上, $c \in [a, b]$ 改成 $c \in (a, b)$ 也成立. 因为 f 不是常数时, $m(b-a) < \int_a^b f(x) dx < M(b-a)$.
- ●注: 当 b < a 时, 存在 c 介于 a, b 之间, 使得结论也成立.
- 注: c 与积分区间相关. 如 $\int_0^a x^2 dx = \frac{1}{3}a^3 = c^2 \cdot a$, 其中 $c = \sqrt{\frac{1}{3}a^2}$.

• 定理证明: 设 M, m 是 f(x) 在 [a, b] 上的最大值与最小值,则有

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

从而 $\frac{1}{b-a} \int_a^b f(x) dx \in [m, M]$, 由介值定理,存在 $c \in [a, b]$,使得 $\frac{1}{b-a} \int_a^b f(x) dx = f(c)$.

- 注: 事实上, $c \in [a, b]$ 改成 $c \in (a, b)$ 也成立. 因为 f 不是常数时, $m(b-a) < \int_a^b f(x) dx < M(b-a)$.
- •注: 当 b < a 时, 存在 c 介于 a, b 之间, 使得结论也成立.
- 注: c 与积分区间相关. 如 $\int_0^a x^2 dx = \frac{1}{3}a^3 = c^2 \cdot a$, 其中 $c = \sqrt{\frac{1}{3}a^2}$.

• 定理证明: 设 M, m 是 f(x) 在 [a, b] 上的最大值与最小值,则有

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

从而 $\frac{1}{b-a} \int_{a}^{b} f(x) dx \in [m, M]$, 由介值定理,存在 $c \in [a, b]$,使得 $\frac{1}{b-a} \int_{a}^{b} f(x) dx = f(c)$.

- 注: 事实上, $c \in [a, b]$ 改成 $c \in (a, b)$ 也成立. 因为 f 不是常数时, $m(b-a) < \int_a^b f(x) dx < M(b-a)$.
- •注: 当 b < a 时, 存在 c 介于 a, b 之间, 使得结论也成立.
- 注: c 与积分区间相关. 如 $\int_0^a x^2 dx = \frac{1}{3}a^3 = c^2 \cdot a$, 其中 $c = \sqrt{\frac{1}{3}a^2}$.

• 例:设 $f \in C([a,b])$,非负函数 $g \in C([a,b])$,则存在 $c \in [a,b]$,使得

$$\int_{a}^{b} f(x)g(x)dx = f(c) \int_{a}^{b} g(x)dx.$$

• 设 $f(x) \in C([0,1])$, 且 f(x) 单调增. 证明

$$\int_0^1 f(x) dx \le 2 \int_0^1 x f(x) dx.$$

证明:

$$\int_{0}^{1} f(x)dx - 2 \int_{0}^{1} x f(x)dx = \int_{0}^{1} f(x)(1 - 2x)dx$$

$$= \int_{0}^{\frac{1}{2}} f(x)(1 - 2x)dx - \int_{\frac{1}{2}}^{1} f(x)(2x - 1)dx$$

$$= f(c_{1}) \int_{0}^{\frac{1}{2}} (1 - 2x)dx - f(c_{2}) \int_{\frac{1}{2}}^{1} (2x - 1)dx \le 0$$

• 例:设 $f \in C([a,b])$,非负函数 $g \in C([a,b])$,则存在 $c \in [a,b]$,使得

$$\int_{a}^{b} f(x)g(x)dx = f(c) \int_{a}^{b} g(x)dx.$$

• 设 $f(x) \in C([0,1])$, 且 f(x) 单调增. 证明

$$\int_0^1 f(x)dx \le 2 \int_0^1 x f(x)dx.$$

$$\int_{0}^{1} f(x)dx - 2 \int_{0}^{1} x f(x)dx = \int_{0}^{1} f(x)(1 - 2x)dx$$

$$= \int_{0}^{\frac{1}{2}} f(x)(1 - 2x)dx - \int_{\frac{1}{2}}^{1} f(x)(2x - 1)dx$$

$$= f(c_{1}) \int_{0}^{\frac{1}{2}} (1 - 2x)dx - f(c_{2}) \int_{\frac{1}{2}}^{1} (2x - 1)dx \le 0$$

• 例:设 $f \in C([a,b])$,非负函数 $g \in C([a,b])$,则存在 $c \in [a,b]$,使得

$$\int_{a}^{b} f(x)g(x)dx = f(c) \int_{a}^{b} g(x)dx.$$

• 设 $f(x) \in C([0,1])$, 且 f(x) 单调增. 证明

$$\int_0^1 f(x) dx \le 2 \int_0^1 x f(x) dx.$$

$$\begin{split} &\int_0^1 f(x)dx - 2\int_0^1 x f(x)dx = \int_0^1 f(x)(1 - 2x)dx \\ &= \int_0^{\frac{1}{2}} f(x)(1 - 2x)dx - \int_{\frac{1}{2}}^1 f(x)(2x - 1)dx \\ &= f(c_1)\int_0^{\frac{1}{2}} (1 - 2x)dx - f(c_2)\int_{\frac{1}{2}}^1 (2x - 1)dx \le 0 \end{split}$$

- 定理: 设 f∈ C([a,b]), F(x) = ∫_a^x f(t)dt. 则 F(x) 在 [a,b] 上连续,
 且在 (a,b) 上可导, F'(x) = f(x), x∈ (a,b).
- 几何意义: 若 $f(x) \ge 0$, $S(x) = \int_a^x f(t) dt \ \mathcal{E} [a,x]$ 对应 曲边梯形的面积. $\Delta S = S(x + \Delta x) S(x)$ 是图中阴影部分的面积, 由图可知

$$S'(x) = \lim_{\Delta x \to 0} \frac{\Delta S}{\Delta x} = f(x)$$

- 定理: 设 $f \in C([a,b])$, $F(x) = \int_a^x f(t)dt$. 则 F(x) 在 [a,b] 上连续, 且在 (a,b) 上可导, F'(x) = f(x), $x \in (a,b)$.
- 几何意义: 若 $f(x) \geq 0$, $S(x) = \int_a^x f(t) dt$ 是 [a, x] 对应 曲边梯形的面积. $\Delta S = S(x + \Delta x) S(x)$ 是图中阴影部分的面积, 由图可知

$$S'(x) = \lim_{\Delta x \to 0} \frac{\Delta S}{\Delta x} = f(x).$$

定理证明: 取 x₀ ∈ (a, b), 对任意 x ∈ (a, b), x ≠ x₀,

$$\frac{F(x) - F(x_0)}{x - x_0} = \frac{1}{x - x_0} \int_{x_0}^{x} f(t) dt = f(c_x)$$

其中 c_x 介于 x_0,x 之间. 当 $x\to x_0$ 时, $c_x\to x_0$,由 f 的连续性, $f(c_x)\to f(x_0)$. 从而有

$$F'(x_0) = \lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0).$$

- 设 $f \in C([a,b])$, $G(x) = \int_x^b f(t)dt$. 则 G(x) 在 [a,b] 上连续,且在 (a,b) 上可导, G'(x) = -f(x), $x \in (a,b)$. 因此 $F(x) = \int_b^x f(t)dt$ 在 (a,b) 上可导, F'(x) = f(x), $x \in (a,b)$.
- 注:设 $f \in C([a,b])$,则 $F(x) = \int_a^x f(t)dt$ 在 a 点有右导数 f(a),在 b 点有左导数 f(b).

证明: 对 x > a, 当 $x \rightarrow a + 0$ 时,

$$\frac{F(x) - F(a)}{x - a} = \frac{1}{x - a} \int_{a}^{x} f(t)dt = f(c_x) \to f(a)$$

- 设 $f \in C([a,b])$, $G(x) = \int_x^b f(t)dt$. 则 G(x) 在 [a,b] 上连续,且在 (a,b) 上可导, G'(x) = -f(x), $x \in (a,b)$. 因此 $F(x) = \int_b^x f(t)dt$ 在 (a,b) 上可导, F'(x) = f(x), $x \in (a,b)$.
- 注: 设 f∈ C([a, b]), 则 F(x) = ∫_a^x f(t)dt 在 a 点有右导数 f(a), 在 b 点有左导数 f(b).

证明: 对 x > a, 当 $x \rightarrow a + 0$ 时,

$$\frac{F(x) - F(a)}{x - a} = \frac{1}{x - a} \int_{a}^{x} f(t)dt = f(c_x) \to f(a)$$

- 设 $f \in C([a,b])$, $G(x) = \int_x^b f(t)dt$. 则 G(x) 在 [a,b] 上连续,且在 (a,b) 上可导, G'(x) = -f(x), $x \in (a,b)$. 因此 $F(x) = \int_b^x f(t)dt$ 在 (a,b) 上可导, F'(x) = f(x), $x \in (a,b)$.
- 注:设 $f \in C([a,b])$,则 $F(x) = \int_a^x f(t)dt$ 在 a 点有右导数 f(a),在 b 点有左导数 f(b).

证明: 对 x > a, 当 $x \rightarrow a + 0$ 时,

$$\frac{F(x) - F(a)}{x - a} = \frac{1}{x - a} \int_{a}^{x} f(t)dt = f(c_x) \to f(a)$$

- 设 $f \in C([a,b])$, $G(x) = \int_x^b f(t)dt$. 则 G(x) 在 [a,b] 上连续,且在 (a,b) 上可导, G'(x) = -f(x), $x \in (a,b)$. 因此 $F(x) = \int_b^x f(t)dt$ 在 (a,b) 上可导, F'(x) = f(x), $x \in (a,b)$.
- 注:设 $f \in C([a,b])$,则 $F(x) = \int_a^x f(t)dt$ 在 a 点有右导数 f(a),在 b 点有左导数 f(b).

证明: 对 x > a, 当 $x \rightarrow a + 0$ 时,

$$\frac{F(x) - F(a)}{x - a} = \frac{1}{x - a} \int_{a}^{x} f(t)dt = f(c_x) \to f(a)$$

• 设 $f(x) \in C((a,b))$, $x_0 \in (a,b)$. 定义 $F(x) = \int_{x_0}^x f(t)dt$, $x \in (a,b)$. 则 有 F'(x) = f(x), $x \in (a,b)$.

证明: 只要证明
$$F'(x_0) = f(x_0)$$
. 由 $F'(x_0 + 0) = F'(x_0 - 0) = f(x_0)$ (或者取 $a < x_1 < x_0$) $F(x) = \int_{x_1}^{x} f(t) dt - \int_{x_1}^{x_0} f(t) dt$) 即得.

- 注:上面结论中 a 可以取 $-\infty$, b 可以取 $+\infty$.上面结论说明任意开区间上的连续函数都有原函数.
- 例: f(x) = |x| 的原函数 $F(x) = \int_0^x f(t)dt = \frac{1}{2}(\operatorname{sgn} x)x^2$. $|\sin x|$ 在 \mathbb{R} 上的原函数 $F(x) = \int_0^x |\sin t|dt$ 是奇函数,

$$F(x) = \begin{cases} -\cos x + 4k + 1, & 2k\pi < x \le 2k\pi + \pi \\ \cos x + 4k + 3, & 2k\pi + \pi < x \le 2k\pi + 2\pi \end{cases}.$$

• 设 $f(x) \in C((a,b))$, $x_0 \in (a,b)$. 定义 $F(x) = \int_{x_0}^{x} f(t)dt$, $x \in (a,b)$. 则 有 F'(x) = f(x), $x \in (a,b)$. 证明: 只要证明 $F'(x_0) = f(x_0)$. 由

$$F'(x_0 + 0) = F'(x_0 - 0) = f(x_0)$$
(或者取 $a < x_1 < x_0$, $F(x) = \int_{x_1}^{x_1} f(t)dt - \int_{x_1}^{x_0} f(t)dt$) 即得.

- 注:上面结论中 a 可以取 $-\infty$, b 可以取 $+\infty$.上面结论说明任意开区间上的连续函数都有原函数.
- 例: f(x) = |x| 的原函数 $F(x) = \int_0^x f(t)dt = \frac{1}{2}(\operatorname{sgn} x)x^2$. $|\sin x|$ 在 \mathbb{R} 上的原函数 $F(x) = \int_0^x |\sin t|dt$ 是奇函数,

$$F(x) = \begin{cases} -\cos x + 4k + 1, & 2k\pi < x \le 2k\pi + \pi \\ \cos x + 4k + 3, & 2k\pi + \pi < x \le 2k\pi + 2\pi \end{cases}.$$

设 f(x) ∈ C((a,b)), x₀ ∈ (a,b). 定义 F(x) = ∫_{x0}^x f(t)dt, x ∈ (a,b). 则有 F'(x) = f(x), x ∈ (a,b).
 证明: 只要证明 F'(x₀) = f(x₀). 由

$$F'(x_0 + 0) = F'(x_0 - 0) = f(x_0)$$
(或者取 $a < x_1 < x_0$, $F(x) = \int_{x_1}^{x} f(t)dt - \int_{x_1}^{x_0} f(t)dt$) 即得.

- 注:上面结论中 a 可以取 $-\infty$, b 可以取 $+\infty$.上面结论说明任意开区间上的连续函数都有原函数.
- 例: f(x) = |x| 的原函数 $F(x) = \int_0^x f(t)dt = \frac{1}{2}(\operatorname{sgn} x)x^2$. $|\sin x|$ 在 \mathbb{R} 上的原函数 $F(x) = \int_0^x |\sin t|dt$ 是奇函数,

$$F(x) = \begin{cases} -\cos x + 4k + 1, & 2k\pi < x \le 2k\pi + \pi \\ \cos x + 4k + 3, & 2k\pi + \pi < x \le 2k\pi + 2\pi \end{cases}$$

设 f(x) ∈ C((a,b)), x₀ ∈ (a,b). 定义 F(x) = ∫_{x0}^x f(t)dt, x ∈ (a,b). 则有 F'(x) = f(x), x ∈ (a,b).
 证明: 只要证明 F'(x₀) = f(x₀). 由

$$F'(x_0 + 0) = F'(x_0 - 0) = f(x_0)$$
(或者取 $a < x_1 < x_0$, $F(x) = \int_{x_1}^{x} f(t)dt - \int_{x_1}^{x_0} f(t)dt$) 即得.

- 注:上面结论中 a 可以取 $-\infty$, b 可以取 $+\infty$.上面结论说明任意开区间上的连续函数都有原函数.
- 例: f(x) = |x| 的原函数 $F(x) = \int_0^x f(t)dt = \frac{1}{2}(\operatorname{sgn} x)x^2$. $|\sin x|$ 在 \mathbb{R} 上的原函数 $F(x) = \int_0^x |\sin t|dt$ 是奇函数,

$$F(x) = \begin{cases} -\cos x + 4k + 1, & 2k\pi < x \le 2k\pi + \pi \\ \cos x + 4k + 3, & 2k\pi + \pi < x \le 2k\pi + 2\pi \end{cases}$$

• 设 $f(x) \in C((a,b))$, $x_0 \in (a,b)$. 定义 $F(x) = \int_{x_0}^{x} f(t)dt$, $x \in (a,b)$. 则 有 F'(x) = f(x), $x \in (a,b)$. 证明: 只要证明 $F'(x_0) = f(x_0)$. 由

$$F'(x_0 + 0) = F'(x_0 - 0) = f(x_0)$$
(或者取 $a < x_1 < x_0$, $F(x) = \int_{x_0}^{x} f(t)dt - \int_{x_0}^{x_0} f(t)dt$) 即得.

- 注:上面结论中 a 可以取 $-\infty$, b 可以取 $+\infty$.上面结论说明任意开区间上的连续函数都有原函数.
- 例: f(x) = |x| 的原函数 $F(x) = \int_0^x f(t)dt = \frac{1}{2}(\operatorname{sgn} x)x^2$. $|\sin x|$ 在 \mathbb{R} 上的原函数 $F(x) = \int_0^x |\sin t|dt$ 是奇函数,

$$F(x) = \begin{cases} -\cos x + 4k + 1, & 2k\pi < x \le 2k\pi + \pi \\ \cos x + 4k + 3, & 2k\pi + \pi < x \le 2k\pi + 2\pi \end{cases}$$

- 设 f(x) ∈ C((a,b)), x₀ ∈ (a,b). 定义 F(x) = ∫_{x0}^x f(t)dt, x ∈ (a,b). 则 有 F'(x) = f(x), x ∈ (a,b).
 证明: 只要证明 F'(x₀) = f(x₀). 由
- $F(x) = \int_{x_1}^{x} f(t)dt \int_{x_1}^{x_0} f(t)dt$ 即得.

 注: 上面结论中 a 可以取 $-\infty$. b 可以取 $+\infty$. 上面结论说明任意开
- 区间上的连续函数都有原函数.
- 例: f(x) = |x| 的原函数 $F(x) = \int_0^x f(t)dt = \frac{1}{2}(\operatorname{sgn} x)x^2$. $|\sin x|$ 在 \mathbb{R} 上的原函数 $F(x) = \int_0^x |\sin t|dt$ 是奇函数,

 $F'(x_0 + 0) = F'(x_0 - 0) = f(x_0)$ (或者取 $a < x_1 < x_0$,

$$F(x) = \begin{cases} -\cos x + 4k + 1, & 2k\pi < x \le 2k\pi + \pi \\ \cos x + 4k + 3, & 2k\pi + \pi < x \le 2k\pi + 2\pi \end{cases}$$

- 设 f(x) ∈ C((a,b)), x₀ ∈ (a,b). 定义 F(x) = ∫_{x0}^x f(t)dt, x ∈ (a,b). 则 有 F'(x) = f(x), x ∈ (a,b).
 证明: 只要证明 F'(x₀) = f(x₀). 由 F'(x₀ + 0) = F'(x₀ 0) = f(x₀)(或者取 a < x₁ < x₀,
 - $F(x) = \int_{x_1}^{x} f(t)dt \int_{x_1}^{x_0} f(t)dt$ 即得.
- 注:上面结论中 a 可以取 $-\infty$, b 可以取 $+\infty$. 上面结论说明任意开区间上的连续函数都有原函数.
- 例: f(x) = |x| 的原函数 $F(x) = \int_0^x f(t)dt = \frac{1}{2}(\operatorname{sgn} x)x^2$. $|\sin x|$ 在 \mathbb{R} 上的原函数 $F(x) = \int_0^x |\sin t|dt$ 是奇函数,

$$F(x) = \begin{cases} -\cos x + 4k + 1, & 2k\pi < x \le 2k\pi + \pi \\ \cos x + 4k + 3, & 2k\pi + \pi < x \le 2k\pi + 2\pi \end{cases}.$$

• 当 $f \in R([a,b])$ 时,定义 $F(x) = \int_a^x f(t) dt$. 则 $F(x) \in C([a,b])$, 但此时 F(x) 不一定可导,且可导时导数也不一定是 f(x).

证明:由于 f∈ R([a, b]),存在 M, 使得 |f(x)| ≤ M, 从而

$$|F(x) - F(x_0)| = \Big| \int_{x_0}^x f(t) dt \Big| \le M|x - x_0|.$$

因此 $\lim_{x \to x_0} |F(x) - F(x_0)| = 0$, 即得 $\lim_{x \to x_0} F(x) = F(x_0)$.

• $f(x) = \operatorname{sgn} x$, $\int_{-1}^{x} f(t) dt = |x| - 1$

• 当 $f \in R([a,b])$ 时,定义 $F(x) = \int_a^x f(t)dt$. 则 $F(x) \in C([a,b])$,但此时 F(x) 不一定可导,且可导时导数也不一定是 f(x). 证明:由于 $f \in R([a,b])$,存在 M,使得 $|f(x)| \leq M$,从而

$$|F(x) - F(x_0)| = \Big| \int_{x_0}^x f(t) dt \Big| \le M|x - x_0|.$$

因此
$$\lim_{x \to x_0} |F(x) - F(x_0)| = 0$$
, 即得 $\lim_{x \to x_0} F(x) = F(x_0)$.

• $f(x) = \operatorname{sgn} x$, $\int_{-1}^{x} f(t) dt = |x| - 1$

• 当 $f \in R([a,b])$ 时,定义 $F(x) = \int_a^x f(t)dt$. 则 $F(x) \in C([a,b])$,但此时 F(x) 不一定可导,且可导时导数也不一定是 f(x). 证明:由于 $f \in R([a,b])$,存在 M,使得 $|f(x)| \leq M$,从而

$$|F(x) - F(x_0)| = \Big| \int_{x_0}^x f(t) dt \Big| \le M|x - x_0|.$$

因此
$$\lim_{x \to x_0} |F(x) - F(x_0)| = 0$$
, 即得 $\lim_{x \to x_0} F(x) = F(x_0)$.

• $f(x) = \operatorname{sgn} x$, $\int_{-1}^{x} f(t) dt = |x| - 1$

• 若 $f \in C([a,b])$, g(x) 可导, 且在 [a,b] 中取值, 定义

$$F(x) = \int_{a}^{g(x)} f(t)dt,$$

则有 F'(x) = f(g(x))g'(x).

- 若 $f \in C([a,b])$, g(x), h(x) 可导,且都在 [a,b] 中取值,定义 $F(x) = \int_{h(x)}^{g(x)} f(t)dt$, 则有 F'(x) = f(g(x))g'(x) f(h(x))h'(x). 证明: $F(x) = \int_{a}^{g(x)} f(t)dt \int_{a}^{h(x)} f(t)dt$.
- \emptyset : $(\int_{x^2}^x \sin t^2 dt)' = \sin x^2 2x \sin x^4$.

若 f∈ C([a,b]), g(x) 可导,且在 [a,b] 中取值,定义

$$F(x) = \int_{a}^{g(x)} f(t)dt,$$

则有 F'(x) = f(g(x))g'(x).

- 若 $f \in C([a,b])$, g(x), h(x) 可导,且都在 [a,b] 中取值,定义 $F(x) = \int_{h(x)}^{g(x)} f(t) dt$, 则有 F'(x) = f(g(x))g'(x) f(h(x))h'(x). 证明: $F(x) = \int_{a}^{g(x)} f(t) dt \int_{a}^{h(x)} f(t) dt$.
- \emptyset : $(\int_{x^2}^x \sin t^2 dt)' = \sin x^2 2x \sin x^4$.

若 f∈ C([a,b]), g(x) 可导,且在 [a,b] 中取值,定义

$$F(x) = \int_{a}^{g(x)} f(t)dt,$$

则有 F'(x) = f(g(x))g'(x).

- 若 $f \in C([a,b])$, g(x), h(x) 可导,且都在 [a,b] 中取值,定义 $F(x) = \int_{h(x)}^{g(x)} f(t) dt$, 则有 F'(x) = f(g(x))g'(x) f(h(x))h'(x). 证明: $F(x) = \int_{a}^{g(x)} f(t) dt \int_{a}^{h(x)} f(t) dt$.
- \mathfrak{P} : $(\int_{x^2}^x \sin t^2 dt)' = \sin x^2 2x \sin x^4$.

若 f∈ C([a,b]), g(x) 可导,且在 [a,b] 中取值,定义

$$F(x) = \int_{a}^{g(x)} f(t)dt,$$

则有 F'(x) = f(g(x))g'(x).

- 若 $f \in C([a,b])$, g(x), h(x) 可导,且都在 [a,b] 中取值,定义 $F(x) = \int_{h(x)}^{g(x)} f(t) dt$, 则有 F'(x) = f(g(x))g'(x) f(h(x))h'(x). 证明: $F(x) = \int_{a}^{g(x)} f(t) dt \int_{a}^{h(x)} f(t) dt$.
- \mathfrak{H} : $(\int_{x^2}^x \sin t^2 dt)' = \sin x^2 2x \sin x^4$.

• 若 $f \in C([a,b])$, g(x) 可导, 且在 [a,b] 中取值, 定义

$$F(x) = \int_{a}^{g(x)} f(t)dt,$$

则有 F'(x) = f(g(x))g'(x).

- 若 $f \in C([a,b])$, g(x), h(x) 可导,且都在 [a,b] 中取值,定义 $F(x) = \int_{h(x)}^{g(x)} f(t) dt$, 则有 F'(x) = f(g(x))g'(x) f(h(x))h'(x). 证明: $F(x) = \int_{a}^{g(x)} f(t) dt \int_{a}^{h(x)} f(t) dt$.
- \Re : $(\int_{x^2}^x \sin t^2 dt)' = \sin x^2 2x \sin x^4$.

• 若 $f \in C([a, b])$, $F_0(x) = \int_a^x f(t) dt \in C([a, b])$ 是 f(x) 在 (a, b) 上的原函数, 且

$$\int_{a}^{b} f(x) dx = F_{0}(b) - F_{0}(a).$$

• 定理: 若 $f, F \in C([a, b]), F(x)$ 是 f(x) 在 (a, b) 上的原函数,则有

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x)|_{a}^{b}.$$

证明: F_0 , F 都是 f(x) 在 (a,b) 上的原函数,则存在常数 C, 使得对任意 $x \in (a,b)$, 有 $F(x) = F_0(x) + C$. 又 F, F_0 在 [a,b] 上都连续,从 而 $F(a) = \lim_{x \to a+0} F(x) = \lim_{x \to a+0} (F_0(x) + C) = F_0(a) + C$. 同样有 $F(b) = F_0(b) + C$. 因此 $F(b) = F_0(b) - F_0(a) = \int_0^b f(x) dx$

• 若 $f \in C([a, b])$, $F_0(x) = \int_a^x f(t) dt \in C([a, b])$ 是 f(x) 在 (a, b) 上的原函数, 且

$$\int_{a}^{b} f(x) dx = F_{0}(b) - F_{0}(a).$$

• 定理: 若 $f, F \in C([a, b]), F(x)$ 是 f(x) 在 (a, b) 上的原函数,则有

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)|_{a}^{b}.$$

证明: F_0 , F 都是 f(x) 在 (a,b) 上的原函数,则存在常数 C, 使得对任意 $x \in (a,b)$, 有 $F(x) = F_0(x) + C$. 又 F, F_0 在 [a,b] 上都连续,从 而 $F(a) = \lim_{\substack{x \to a+0}} F(x) = \lim_{\substack{x \to a+0}} (F_0(x) + C) = F_0(a) + C$. 同样有

• 若 $f \in C([a, b])$, $F_0(x) = \int_a^x f(t) dt \in C([a, b])$ 是 f(x) 在 (a, b) 上的原函数, 且

$$\int_{a}^{b} f(x) dx = F_{0}(b) - F_{0}(a).$$

• 定理: 若 $f, F \in C([a, b]), F(x)$ 是 f(x) 在 (a, b) 上的原函数,则有

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x)|_{a}^{b}.$$

证明: F_0 , F 都是 f(x) 在 (a,b) 上的原函数,则存在常数 C, 使得对任意 $x \in (a,b)$,有 $F(x) = F_0(x) + C$. 又 F, F_0 在 [a,b] 上都连续,从 而 $F(a) = \lim_{x \to a+0} F(x) = \lim_{x \to a+0} (F_0(x) + C) = F_0(a) + C$. 同样有 $F(b) = F_0(b) + C$. 因此 $F(b) - F(a) = F_0(b) - F_0(a) = \int_a^b f(x) dx$.

- 注: 若 $f \in R([a,b]), f \in C((a,b))$, 微积分基本定理成立; 进一步, 若 $f \in R([a,b])$, 且 f(x) 只有有限个间断点, $F \in C([a,b])$, 对 f 的连续点, F'(x) = f(x), 则微积分基本定理成立.
- 例: $f(x) = \operatorname{sgn} x$, $F_0(x) = \int_{-1}^x f(t)dt = |x| 1$, 仍然有 $\int_a^b f(x)dx = F_0(b) F_0(a)$. 但此时 $F_0(x)$ 不是 f(x) 的原函数.
- 例: $F(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 是下面函数的原函数.

$$f(x) = \begin{cases} 2x\sin\frac{1}{x} - \cos\frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

这里 $\int_0^b f(x)dx = F(b) - F(0)$ 依然成立.

- 注: 若 $f \in R([a,b]), f \in C((a,b))$, 微积分基本定理成立; 进一步, 若 $f \in R([a,b])$, 且 f(x) 只有有限个间断点, $F \in C([a,b])$, 对 f 的连续点, F'(x) = f(x), 则微积分基本定理成立.
- 例: $f(x) = \operatorname{sgn} x$, $F_0(x) = \int_{-1}^x f(t) dt = |x| 1$, 仍然有 $\int_a^b f(x) dx = F_0(b) F_0(a)$. 但此时 $F_0(x)$ 不是 f(x) 的原函数.
- 例: $F(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 是下面函数的原函数.

$$f(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

这里 $\int_0^b f(x) dx = F(b) - F(0)$ 依然成立.

- 注: 若 $f \in R([a,b]), f \in C((a,b))$, 微积分基本定理成立; 进一步, 若 $f \in R([a,b])$, 且 f(x) 只有有限个间断点, $F \in C([a,b])$, 对 f 的连续点, F'(x) = f(x), 则微积分基本定理成立.
- 例: $f(x) = \operatorname{sgn} x$, $F_0(x) = \int_{-1}^x f(t) dt = |x| 1$, 仍然有 $\int_a^b f(x) dx = F_0(b) F_0(a)$. 但此时 $F_0(x)$ 不是 f(x) 的原函数.
- 例: $F(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 是下面函数的原函数.

$$f(x) = \begin{cases} 2x\sin\frac{1}{x} - \cos\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

这里 $\int_0^b f(x) dx = F(b) - F(0)$ 依然成立.

- $\mathfrak{P}: \int_0^{2\pi} |\sin x| dx = \int_0^{\pi} \sin x dx \int_{\pi}^{2\pi} \sin x dx$ = $(-\cos x)|_0^{\pi} - (-\cos x)|_{\pi}^{2\pi} = 4$.
- 但下面的计算不成立: $\int_{-1}^{1} \frac{1}{x} dx = \ln |x| \Big|_{-1}^{1} = 0$.

- $\mathfrak{P}: \int_0^{2\pi} |\sin x| dx = \int_0^{\pi} \sin x dx \int_{\pi}^{2\pi} \sin x dx$ = $(-\cos x)|_0^{\pi} - (-\cos x)|_{\pi}^{2\pi} = 4$.
- 但下面的计算不成立: $\int_{-1}^{1} \frac{1}{x} dx = \ln|x| \Big|_{-1}^{1} = 0.$
- $\bullet \ \ln x = \int_1^x \frac{1}{t} dt.$

- $\mathfrak{P}: \int_0^{2\pi} |\sin x| dx = \int_0^{\pi} \sin x dx \int_{\pi}^{2\pi} \sin x dx$ = $(-\cos x)|_0^{\pi} - (-\cos x)|_{\pi}^{2\pi} = 4$.
- 但下面的计算不成立: $\int_{-1}^{1} \frac{1}{x} dx = \ln|x|\Big|_{-1}^{1} = 0.$
- $\arcsin x = \int_0^x \frac{dt}{\sqrt{1-t^2}}$, |x| < 1, $\arctan x = \int_0^x \frac{dt}{1+t^2}$. $rackspan = \int_0^1 \frac{dt}{1+t^2}$.
- $\bullet \ \ln x = \int_1^x \frac{1}{t} dt.$

- $\mathfrak{P}: \int_0^{2\pi} |\sin x| dx = \int_0^{\pi} \sin x dx \int_{\pi}^{2\pi} \sin x dx$ = $(-\cos x)|_0^{\pi} - (-\cos x)|_{\pi}^{2\pi} = 4$.
- 但下面的计算不成立: $\int_{-1}^{1} \frac{1}{x} dx = \ln|x||_{-1}^{1} = 0.$
- $\arcsin x = \int_0^x \frac{dt}{\sqrt{1-t^2}}$, |x| < 1, $\arctan x = \int_0^x \frac{dt}{1+t^2}$. $rackspan = \int_0^1 \frac{dt}{1+t^2}$.
- $\bullet \ \ln x = \int_1^x \frac{1}{t} dt.$

π是无理数

- 反设 $\pi = \frac{a}{b}$, $a, b \in \mathbb{N}$. 令 $f(x) = \frac{b^n x^n (\pi x)^n}{n!} = \frac{x^n (a bx)^n}{n!}$, 则有
 - $f(x) = f(\pi x)$

 - 当 $k \ge n$ 时, $f^{(k)}(0)$ 和 $f^{(k)}(\pi)$ 为整数.
- \diamondsuit $F(x) = f(x) f^{(2)}(x) + f^{(4)}(x) \dots + (-1)^n f^{(2n)}(x)$, 则有
 - F(0), F(π) 是整数.
 - F''(x) + F(x) = f(x).
 - $\frac{d}{dx}(F'(x)\sin x F(x)\cos x) = (F''(x) + F(x))\sin x = f(x)\sin x.$
 - $\int_0^{\pi} f(x) \sin x dx = F(\pi) + F(0)$ 是整数.
- 当 $0 < x < \pi$ 时, $0 < f(x) \sin x < \frac{\pi^n a^n}{n!} \to 0$. 取 n 足够大,使得 $\frac{\pi^n a^n}{n!} < \frac{1}{\pi}$,则有 $0 < \int_0^\pi f(x) \sin x dx < 1$ 不是整数. 矛盾.

π是无理数

- 反设 $\pi = \frac{a}{b}$, $a, b \in \mathbb{N}$. 令 $f(x) = \frac{b^n x^n (\pi x)^n}{n!} = \frac{x^n (a bx)^n}{n!}$, 则有
 - $f(x) = f(\pi x)$

 - 当 $k \ge n$ 时, $f^{(k)}(0)$ 和 $f^{(k)}(\pi)$ 为整数.
- - F(0), F(π) 是整数.
 - F''(x) + F(x) = f(x).
 - $\frac{d}{dx}(F'(x)\sin x F(x)\cos x) = (F''(x) + F(x))\sin x = f(x)\sin x.$
 - $\int_0^{\pi} f(x) \sin x dx = F(\pi) + F(0)$ 是整数.
- 当 $0 < x < \pi$ 时, $0 < f(x) \sin x < \frac{\pi^n a^n}{n!} \to 0$. 取 n 足够大,使得 $\frac{\pi^n a^n}{n!} < \frac{1}{\pi}$,则有 $0 < \int_0^\pi f(x) \sin x dx < 1$ 不是整数. 矛盾.

π是无理数

- 反设 $\pi = \frac{a}{b}$, $a, b \in \mathbb{N}$. 令 $f(x) = \frac{b^n x^n (\pi x)^n}{n!} = \frac{x^n (a bx)^n}{n!}$, 则有
 - $f(x) = f(\pi x)$

 - 当 $k \ge n$ 时, $f^{(k)}(0)$ 和 $f^{(k)}(\pi)$ 为整数.
- - F(0), F(π) 是整数.
 - F''(x) + F(x) = f(x).

 - $\int_0^{\pi} f(x) \sin x dx = F(\pi) + F(0)$ 是整数.
- 当 $0 < x < \pi$ 时, $0 < f(x) \sin x < \frac{\pi^n a^n}{n!} \to 0$. 取 n 足够大,使得 $\frac{\pi^n a^n}{n!} < \frac{1}{\pi}$,则有 $0 < \int_0^\pi f(x) \sin x dx < 1$ 不是整数. 矛盾.