KenFish 图形化编程平台 使用指导说明书

深圳乐智机器人有限公司

2017年11月16日

版本号: V1.0

版本修改记录

1、修订历史

日期	版本	说明	作者

目录

1,	安装平台	2
2、	平台简介	6
	2.1 启动平台	
	2. 2 连接 WiFi	7
	2.3 平台界面介绍	8
3、	模块选择区	11
	3.1 执行	11
	3.2 传感	15
	3.3逻辑	16
	3.4循环	18
	3.5 数学	19
	3.6 文本	23
	3.7列表	23
	3.8 颜色	24
	3.9 变量	25
	3. 10 函数	25
4、	示例程序讲解	26
	4.1程序1	26
	4.2程序2	28

1、安装平台

依次打开用户开发资料 2017-11-10\用户开发资料-git\图形化编程平台。

1.1 双击 setup. exe

图 1-1 双击 setup. exe

1.2点击下一步

图 1-2 点击下一步

1.3 修改安装地址,点击下一步

图 1-3 修改安装地址,点击下一步

1.4点击下一步,等待安装完成

图 1-4 点击下一步

图 1-5 等待安装

1.5 安装完成,点击关闭

图 1-6 安装完成, 关闭窗口

1.6 电脑桌面出现 KenFish 图形化编程平台快捷方式

图 1-7 查看桌面快捷方式

2、平台简介

2.1 启动平台

双击 KenFish 图形化编程平台快捷方式,打开 KenFish 图形化编程平台。

图 2-1 打开平台

2.2 连接 WiFi

查看电脑可连接 WiFi,等待 KenFish_xxxxWiFi 开启,点击连接 WiFi,输入 密码 12345678,点击下一步,如下图 4显示则连接成功。平台左上角 logo 变为 黄色,说明平台与水中机器人连接成功。

图 2-2 等待 WiFi 开启成功,输入密码连接

图 2-3 连接 WiFi 成功, logo 点亮

2.3 平台界面介绍

2.3.1点击最大化,方便进行图形化编程和程序查看

图 2-4 窗口最大化

2.3.2 功能模块栏

图 2-5 功能模块栏

图 2-6 图形块程序窗口

2.3.4 程序窗口

```
#!/usr/bin/python3
import ctypes
import time
import lzai
11 = ctypes.cdll.LoadLibrary
Lmst = 11("./libpycall.so")
```

图 2-7 程序窗口

2.3.5 菜单栏功能介绍

当点击执行后弹出执行失败的窗体时,说明此时水中机器人与平台没有建立

连接,关闭窗体,重新检查连接即可。 2.3.6 查看按钮

图 2-9 查看按钮

将视图对准到程序;

对图形块窗口界面进行放大:

对图形块窗口界面进行缩小;

下拉条,查看视图外图形块程序。

3、模块选择区

3.1 执行

包含"时间延迟、停止、头灯开关、螺旋桨舵机控制、螺旋桨电机控制、尾 鳍舵机控制、扩展舱舵机控制"等模块。

执行模块主要是对程序结构进行的相应控制。

积木编程 帮助 帮助

执行 🔐 延时 🛈 毫秒 传感 逻辑 循环 数学 ▶ 头灯 开 🔻 文本 列表 颜色 🥁 螺旋桨左舵机 转向 [顺时 🔻 角度 0° 🔻 变量 函数 螺旋桨右舵机 转向 顺时 v 角度 0° v ・螺旋桨左电机转向【顺时 ▼ 挡位 0 ▼ 螺旋桨右电机转向 顺时 🔻 挡位 0 🔻 戻 尾鳍的机摆动速度 0 ▼ 挡

图 3-1 执行功能模块

3.1.1 执行-时间延迟

用于在程序中进行延时,时间可在设定方位内自由设定; 3.1.2 执行-停止

🙀 尾鳍舵机 方向 左摆 🔻 角度 0° 🔻

₩ 拓展舱1号舵机 转向 MpH ▼ 角度 0° ▼

停止按钮用于停止水中机器人所有动作,保持上电静止状态; 3.1.3 执行-头灯开关

用于控制头舱 LED 灯的亮灭;

3.1.4 执行-螺旋桨舵机控制

用于控制螺旋桨左舵机进行顺时针或逆时针旋转设定角度;

3.1.5 执行-螺旋桨电机控制

用于控制螺旋桨左电机按照设定速度档位进行顺时针或逆时针转动; 3.1.6 执行-尾鳍舵机控制

用于控制尾鳍舵机摆动速度档位。

用于设置尾鳍舵机摆动方向及角度; 当设置角度为 0°时, 尾鳍摆动方向居中。

3.1.7 执行-扩展舱舵机控制

用于设定扩展舱1号舵机转动方向和转动角度。

3.2 传感

包含"红外传感器检测、温度、湿度、压力、电源电压、位姿"等模块。传感模块主要用于对传感器检测数值和状态进行读取。

图 3-2 传感功能模块

3.2.1 传感-红外传感器检测

H	carrie	红外 1	▼ 号检测到	障碍物
		✓ 1		
+		2		
+	٠	3		
٠	+	4		
+	+	5		
	+	6		
		7		
		8		

用于 1-6 号红外传感器的检测。

3.2.2 传感-温度

用于获取舱体的温度值。

3.2.3 传感-湿度

用于获取舱体的温度值。

3.2.4 传感-压力

用于获取舱体的压力值。

3.2.5 传感-电源电压

用于获取舱体的电源电压值。

3.2.6 传感-位姿

用于获取传感器舱的位资角度。

3.3 逻辑

包含"判断执行、比较运算、与或运算、取反运算、逻辑真假、逻辑空、测试执行"等模块。

逻辑模块主要是用于对程序进行逻辑运算。

图 3-3 逻辑功能模块

3.3.1 逻辑-判断执行

判断语句,如果条件成立则执行相应动作。 3.3.2逻辑-比较运算

比较运算语句,用于比较两边的语句之间的逻辑关系。 3.3.3 逻辑-与或运算

与或运算语句。

3.3.4 逻辑-取反运算

非语句,对逻辑进行取反运算。

3.3.5 逻辑-逻辑真假

逻辑真与逻辑假语句。

3.3.6 逻辑-逻辑空

3.3.7 逻辑-测试执行

用于测试条件的逻辑真假,并对应执行相应动作。

3.4 循环

包含"重复当/直到执行、计数执行、变量计数执行、变量条件执行、循环中断/继续"等模块。

循环模块主要是用于在程序中控制程序的是否进行和进行次数。

图 3-4 循环功能模块

3.4.1 循环-计数执行

可以修改图块中的数字, 改变重复次数。

3.4.2 循环-重复直到/当循环

重复直到: 先执行一次再判断是否符合条件;

重复当: 当条件成立时执行指令。

3.4.3 循环-变量计数执行

对变量在设定范围内每隔设定数执行一次指令。

3.4.4 循环-变量条件执行

每个项目变量在列表中根据条件执行指令。

3.4.5 循环-循环中断/继续

对程序循环进行中断或继续。

3.5 数学

包含"设定数值、加减乘除、对数平方、三角函数值、特殊字符、数值判断、 舍入运算、列表取值、取余运算、限制范围取数、随机数运算"等模块。 数学模块主要是用于对程序中数字的数学处理。

图 3-5 数学功能模块

3.5.1 数学-设定数值

用于输入一个数值。 3.5.2 数学-加减乘除

用于两个数值之间的加减乘除运算。

3.5.3 数学-对数平方

对数值进行取平方根、绝对值、对数、指数运算处理。 3.5.4 数学-三角函数

用于对角度值进行三角函数运算。

3.5.5 数学-特殊字符

用于设置特殊字符。 3.5.6 数学-数值判断

用于对数值进行判断。 3.5.7 数学-舍入运算

用于对舍入进行设置。 3.5.8 数学-列表取值

对列表中的数值进行取值运算。

3.5.9 数学-取余运算

设定数值进行取余运算。

3.5.10 限制范围取数

在限制范围内选择数值。

3.5.11 数学-随机数运算

用于生成随机数值。

3.6 文本

用于对文本进行操作处理。

图 3-6 文本功能模块

3.7 列表

用于创建列表和对列表内容进行操作处理。

图 3-7 列表功能模块

3.8 颜色

用于设定 RGB LED 灯显示颜色。

图 3-8 颜色功能模块

3.9 变量

用于建立新变量。

图 3-9 变量功能模块

3.10 函数

用于编写自定义函数。

图 3-10 函数功能模块

4、示例程序讲解

4.1程序1

图 4-1 示例程序 1

4.1.1 功能讲解

程序 1 的功能是控制头灯开启和尾鳍舵机中位 15 档速度摆动,延迟 30 毫秒后,关闭头灯,延时 100 毫秒,重复执行。

4.1.2 程序分析

重复语句:

图 4-2 示例程序图块与对应程序

重复当执行: 当条件逻辑为真时执行指令,对应的程序为 while ___:,即当 while 后的条件逻辑为真时,循环执行指令。所以当希望程序循环运行时,可以

使用 while True: 即

实现效果。

打开头灯;

Lmst. SetSteerSpeed(1, 15)

设置尾鳍舵机摆动速度;

Lmst. SetSteerDirection (1, 7)

设置尾鳍舵机摆动方向;

时间延迟30毫秒;

头灯开与头灯关之间需要一定的时间我们才能看到灯亮的效果,所以我们在这里加了一个30毫秒的延时。例如舵机转动时也需要一定时间才能够到达设定的位置。

程序中大循环的最后需要加一个大于 30 毫秒的延时,因为水中机器人的图形化程序运行时需要对数据包进行解析,数据包解析需要一定时间,所以如果在大循环最后没有加一个大于 30 毫秒的延时,将会造成程序无法正常运行。在编写图形化程序时,可在大循环最后加一个延时,然后逐渐减小延时时长,在保证程序能够正常运行的情况下提高程序的实时性。

4.2 程序 2

图 4-3 示例程序 2 图块与对应程序

```
重复当・(真・
         非 ( 🔐 红外 🛘 🕶 号检测到障碍物 和 🕶 非 📗 🔐 红外 🗗 🗸 号检测到障碍物
       ₩ 尾鳍舵机 方向 左摆 V 角度 0° v
         尾鳍舵机摆动速度 15 * 挡
         红外 4 7 号检测到障碍物 成 7
                                 🦛 红外 8 🔻 号检测到障碍物
        头灯 开了
       延时 10 毫秒
       🔐 头灯 美 🔻
       执行 拓展舱1号舵机 转向 顺时 · 角度 45° ·
           ₩ 拓展舱2号舵机 转向 顺时 v 角度 45° v
           ₩ 拓展舱1号舵机 转向 逆时 ▼ 角度 45° ▼
           ₩ 拓展舱1号舵机 转向 逆时 ▼ 角度 0° ▼
         拓展舱2号舵机 转向 逆时 v 角度 0° v

☆ 红外 1 ▼ 号检测到障碍物 和 ▼ 非
          尾鳍舵机 方向 左摆 · 角度 60°
          尾鳍舵机摆动速度 15 🔻 挡
           紅外 5 ▼ 号检测到障碍物 和 ▼ 非 単 紅外 1 ▼ 号检测到障碍物
          尾鳍舵机方向 右摆 * 角度 60° *
         尾鳍舵机摆动速度 15 🔻 挡
    🚁 延时 (30) 毫秒
```

图 4-4 示例程序 2

4.2.1 功能讲解

程序2是一个管道巡检并检测漏油点项目的图形块程序,其功能是利用两个红外传感器进行巡管,两个红外传感器进行检测漏油点并执行动作,循环执行。循环:

是一个大循环体,用于对程序进行循环执行。

巡管直游:

图 4-5 巡管直游程序

功能: 红外传感器 1 号和 5 号没有检测到障碍物, 水中机器人直游。

是一个判断条件是否成立并决定是否执行指令的图形块

对红外传感器检测到障碍物状态进行

取反运算,变成红外传感器没有检测到障碍物。

检测漏油点:

图 4-6 检测漏油点程序

当红外传感器 4 号或 8 号检测到障碍物时,停止尾鳍舵机摆动,开头灯,延时 10 毫秒后关头灯,重复 10 次执行扩展舱舵机转动后回到中位,尾鳍舵机重新开始摆动。

巡管左转:

图 4-7 巡管左转程序

当红外传感器 1 号检测到障碍物且红外传感器 5 号没有检测到障碍物,尾鳍舵机左摆。

巡管右转:

图 4-8 巡管右转程序

当红外传感器 5 号检测到障碍物且红外传感器 1 号没有检测到障碍物,尾鳍舵机右摆。

大循环体延时:

大循环体内最后加大于 30 毫秒的延时,确保程序正常运行,避免因数据包解析造成程序异常。在编写图形化程序时,可在大循环最后加一个延时,然后逐渐减小延时时长,在保证程序能够正常运行的情况下提高程序的实时性。