

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 12 Jan 2023 1 of 4

Sample Information

Patient Name: 徐士文 Gender: Male ID No.: G121749965 History No.: 49213458

Age: 33

Ordering Doctor: DOC6258D 林益庭

Ordering REQ.: 0CERHJR Signing in Date: 2023/01/12

Path No.: M112-00004 **MP No.:** MY23002

Assay: Oncomine Myeloid Assay **Sample Type:** Bone Marrow

Bone Marrow Aspirating Date: 2023/01/06

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Acute Myeloid Leukemia

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	2

Report Highlights

- 0 Relevant Biomarkers0 Therapies Available
- 0 Clinical Trials

Relevant Acute Myeloid Leukemia Variants

Gene	Finding	Gene	Finding
ABL1	None detected	MECOM	None detected
ASXL1	None detected	MLLT3	None detected
CEBPA	None detected	MYH11	None detected
CREBBP	None detected	NPM1	None detected
FLT3	None detected	NUP214	None detected
IDH1	None detected	RARA	None detected
IDH2	None detected	RUNX1	None detected
KMT2A	None detected	TP53	None detected

Relevant Biomarkers

No clinically significant biomarkers found in this sample.

Prevalent cancer biomarkers without relevant evidence based on included data sources

PTPN11 p.(D61N) c.181G>A, NRAS p.(A59T) c.175G>A

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA Sequence Variants										
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage		
NRAS	p.(A59T)	c.175G>A	COSM578	chr1:115256536	3.60%	NM_002524.5	missense	1999		
PTPN11	p.(D61N)	c.181G>A	COSM13012	chr12:112888165	42.30%	NM_002834.5	missense	2000		

Biomarker Descriptions

NRAS (NRAS proto-oncogene, GTPase)

<u>Background:</u> The NRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes KRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{1,2,3}.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. NRAS mutations are particularly common in melanomas (up to 25%) and are observed at frequencies of 5-10% in acute myeloid leukemia, colorectal, and thyroid cancers^{4,5}. The majority of NRAS mutations consist of point mutations at G12, G13, and Q61^{4,6}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{7,8}.

Potential relevance: Currently, no therapies are approved for NRAS aberrations. The EGFR antagonists, cetuximab⁹ and panitumumab¹⁰, are contraindicated for treatment of colorectal cancer patients with NRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)⁸. The FDA has granted fast track designation to the pan-RAF inhibitor, KIN-2787¹¹, for the treatment of NRAS mutation positive metastatic or unresectable melanoma. NRAS mutations are associated with poor prognosis in patients with low-risk myelodysplastic syndrome¹² as well as melanoma¹³. In a phase III clinical trial in patients with advanced NRAS-mutant melanoma, binimetinib improved progression free survival (PFS) relative to dacarbazine with median PFS of 2.8 and 1.5 months, respectively¹⁴.

PTPN11 (protein tyrosine phosphatase non-receptor type 11)

<u>Background</u>: The PTPN11 gene encodes a tyrosine phosphatase non-receptor type 11 protein, and is also known as Src homology region 2 domain-containing phosphatase-2 (SHP-2)¹⁵. PTPN11 is a member of the protein tyrosine phosphatase (PTP) family that is ubiquitously expressed and regulates cellular growth, differentiation, mitotic cycle, and oncogenic transformation. PTPN11 contains two tandem N-terminal Src homology-2 domains (N-SH2 and C-SH2), a PTP catalytic domain, and uncharacterized C-terminal domain¹⁶. PTPN11 regulates various signaling processes including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, and JAK/STAT pathways^{17,18}. Germline mutations in PTPN11 are associated with LEOPARD syndrome and Noonan syndrome with a predisposition to juvenile myelomonocytic leukemia (JMML) or myeloproliferative neoplasms (MPN)^{12,19}. Somatic mutations in PTPN11 are associated with JMML^{20,21} and solid tumors such as lung, colon, and thyroid^{16,22}

Alterations and prevalence: Somatic alterations in PTPN11 include mutations and amplification^{19,23}. PTPN11 mutations occur in 6% of uterine carcinoma and 5% of acute myeloid leukemia (AML) cases⁷. Mutations including E76K and D61Y result in PTPN11 activation and are associated with 30% of JMML¹⁸.

<u>Potential relevance</u>: Currently, no therapies are approved for PTPN11 aberrations. Somatic mutations in PTPN11 confer drug resistance to venetoclax and azacitidine in AML^{24,25}.

Date: 12 Jan 2023

3 of 4

Signatures

Testing Personnel:

Laboratory Supervisor:

Pathologist:

References

- 1. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244
- 2. Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/ PP0.0000000000187. PMID: 27341593
- 4. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 5. Janku et al. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers. PLoS ONE. 2011;6(7):e22769. PMID: 21829508
- Ohashi et al. Characteristics of lung cancers harboring NRAS mutations. Clin. Cancer Res. 2013 May 1;19(9):2584-91. PMID: 23515407
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
- 10. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125147s210lbl.pdf
- 11. https://investors.kinnate.com/news-releases/news-release-details/kinnate-biopharma-inc-receives-fast-track-designation-us-food
- 12. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 1.2023]
- 13. Johnson et al. Treatment of NRAS-Mutant Melanoma. Curr Treat Options Oncol. 2015 Apr;16(4):15. doi: 10.1007/s11864-015-0330-z. PMID: 25796376
- 14. Dummer et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017 Apr;18(4):435-445. PMID: 28284557
- 15. Tartaglia et al. Somatic PTPN11 mutations in childhood acute myeloid leukaemia. Br. J. Haematol. 2005 May;129(3):333-9. PMID: 15842656
- 16. Chan et al. The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev. 2008 Jun;27(2):179-92. PMID: 18286234
- 17. Steelman et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY). 2011 Mar;3(3):192-222. PMID: 21422497
- 18. Liu et al. Inhibition of the Gab2/Pl3K/mTOR signaling ameliorates myeloid malignancy caused by Ptpn11 (Shp2) gain-of-function mutations. Leukemia. 2017 Jun;31(6):1415-1422. PMID: 27840422
- 19. Tartaglia et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 2003 Jun;34(2):148-50. PMID: 12717436
- 20. Tartaglia et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet. 2001 Dec;29(4):465-8. PMID: 11704759
- 21. Tartaglia et al. Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am. J. Hum. Genet. 2006 Feb;78(2):279-90. PMID: 16358218
- 22. Jongmans et al. Cancer risk in patients with Noonan syndrome carrying a PTPN11 mutation. Eur. J. Hum. Genet. 2011 Aug;19(8):870-4. PMID: 21407260
- 23. Liu et al. Gain-of-function mutations of Ptpn11 (Shp2) cause aberrant mitosis and increase susceptibility to DNA damage-induced malignancies. Proc. Natl. Acad. Sci. U.S.A. 2016 Jan 26;113(4):984-9. PMID: 26755576
- 24. Chyla et al. Genetic Biomarkers Of Sensitivity and Resistance to Venetoclax Monotherapy in Patients With Relapsed Acute Myeloid Leukemia. Am. J. Hematol. 2018 May 17. PMID: 29770480
- 25. Zhang et al. Biomarkers Predicting Venetoclax Sensitivity and Strategies for Venetoclax Combination Treatment. Blood 2018 132:175; doi: https://doi.org/10.1182/blood-2018-175. 132:175