2.6 1) Calculons les premiers termes de la suite :

$$u_1 = 1$$

$$u_2 = u_1 + 1 + 1 = 1 + 1 + 1 = 3$$

$$u_3 = u_2 + 2 + 1 = 3 + 2 + 1 = 6$$

$$u_4 = u_3 + 3 + 1 = 6 + 3 + 1 = 10$$

$$u_5 = u_4 + 4 + 1 = 10 + 4 + 1 = 15$$

$$u_6 = u_5 + 5 + 1 = 15 + 5 + 1 = 21$$

L'examen de ces premiers termes invite à penser ceci :

$$u_n = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

Prouvons maintenant cette hypothèse par récurrence.

Initialisation: la formule est vraie pour n = 1: $u_1 = 1 = \frac{1 \cdot (1+1)}{2}$.

Hérédité : supposons la formule $u_n = \frac{n(n+1)}{2}$ vraie pour $n \in \mathbb{N}$.

$$u_{n+1} = u_n + n + 1 = \frac{n(n+1)}{2} + (n+1) = (n+1)\left(\frac{n}{2} + 1\right)$$
$$= (n+1) \cdot \frac{n+2}{2} = \frac{(n+1)\left((n+1) + 1\right)}{2}$$

2) Calculons les premiers termes de la suite :

$$u_1 = 1$$

$$u_2 = 2$$

$$u_3 = 2u_2 - u_1 = 2 \cdot 2 - 1 = 3$$

$$u_4 = 2u_3 - u_2 = 2 \cdot 3 - 2 = 4$$

$$u_5 = 2u_4 - u_3 = 2 \cdot 4 - 3 = 5$$

$$u_6 = 2u_5 - u_4 = 2 \cdot 5 - 4 = 6$$

Le calcul de ces premiers termes mène à postuler que $u_n = n$.

Démontrons à présent la formule $u_n = n$ par récurrence.

Initialisation : les précédents calculs établissent clairement que la formule est vraie si $n \in \{1, 2, 3, 4, 5, 6\}$.

Hérédité: supposons les formules $u_n = n$ et $u_{n-1} = n - 1$ vraies pour un certain $n \in \mathbb{N}$.

$$u_{n+1} = 2u_n - u_{n-1} = 2n - (n-1) = n+1.$$