

FIG. 1.A

FIG. 1.2

FIG. 1.3

FIG. 1.4

 $V_{IN} = CONSTANT$

 $V_{OUT} > V_X$

FIG. 2.2

FIG. 2.4

MULTIPLIER ARCHITECTURE Operand2 -412 controller 2B В Cin ÷411 ~413 ENCODER TABLE 4-1 Mux Shift-Register last_row Cout mux gain_word 410 Adder (1 ROW) ~415 -416 load Carry -418 -417 mult Sum counter Product < 29:0 > mult_done

FIG. 3.1

A_{i+1}	A_1	Operation
0	0	$R_i=R_{i-1}/4$
0	1	$R_{j}=(R_{j-1}+B)/4$
1	0	$R_i = (R_{i-1} + 2B) / 4$
1	1	$R_i = (R_{i-2} + 3B) / 4$

FIG. 3.2 (Prior Art)

Cin	A_{i+1}	A_i	Operation	Cout
0	0	0	$R_i=R_{i-1}/4$	0
0	0	1	$R_i = (R_{i-1} + B) / 4$	0
0	1	0	$R_i = (R_{i-1} + 2B) / 4$	0
0	1	1	$R_i = (R_{i-2} - 3B) / 4$	1
1	0		$R_i = (R_{i-1} + B) / 4$	0
1	0	1	$R_i = (R_{i-1} + 2B) / 4$	0
1	1	0	$R_i = (R_{i-1} - B) / 4$	0
1	1	1	$R_i = (R_{i-1}) / 4$	1

FIG. 3.3 (Prior Art)

Example 1

FIG. 3.4

Example 2

FIG. 3.5

D7(MSB)	<i>(B</i>)	90	<i>D</i> 2	D4	<i>D</i> 3	02	D1		<i>D0</i>	
0		ARA	CS1	cs0	R/W	RSB2	RSB1	11	RSB0	
BIT	NAME	TE .		VALUE FUNCTION	CTION					
20	CON	COMMAND Bit, C	0,	0 Must be logic 0 for these commands.1 These commands are invalid if this bit	Must be logic 0 for these commands. These commands are invalid if this bit is logic 1.	hese comr e invalid if	nands. this bit i	s logic	7.	
90	Acce Arraj	Access Registers as Arrays, ARA	ers as	O Ignore the Access to ters. The are access channel to	Ignore this function. Access the respective regis ters. The particular registers are accessed MSB first with channel 1 next and so forth.	re registers egisters acu rst with phy o forth.	, offset, cessed a rsical ch	gain, c ire deti annel (or channel-, ermined by 7 accessed	Ignore this function. Access the respective registers, offset, gain, or channel-setup, as an array is ters. The particular registers accessed are determined by the RS bits. The reaccessed MSB first with physical channel 0 accessed first followed by pchannel 1 next and so forth.
D5-D4	Char CS1-	Channel Select Bits, CS1-CS0)	' Bits,	00 CS1-CS 01 channe 10 with the 11 reading	CS1-CS0 provide the channels. These bits with the respective plreading data register.	he address ts are also physical ir er.	of one c used to iput cha	of the ta access nnel. N	wo (four fo the calibra ote that the	CS1-CS0 provide the address of one of the two (four for CS5533/34) phys channels. These bits are also used to access the calibration registers assowith the respective physical input channel. Note that these bits are ignorecreading data register.
<i>D3</i>	Read	Read/Write, R/W	R	0 Write to1 Read fro	Write to selected register. Read from selected register.	yister. register.				
<i>D2-D0</i>	RSB;	Register Select Bit, RSB3-RSB0	ť Bíť,	000 Reserved 001 Offset Reg 010 Gain Regis 011 Configura 100 Conversio 110 Reserved	Reserved Offset Register Gain Register Configuration Register Conversion Data Register (Read Only) Channel-Setup Registers Reserved	iister Register (R egisters	ead Only	0		FIG. 4.2

00	022		. O.		These bits are used as pointers to the Channel-Setup registers. Either a single conversion or continuous conversions are preformed on the channel setup register pointed to by these bits.	FIG. 4.3
. D1	2 CC1		These commands are invalid if this bit is logic 0. Must be logic 1 for these commands.	conversions. uously.	ointers to the Char inversions are pret	~
D3 D2	CSRP0 CC2	710N	These commands are invalid if this bit Must be logic 1 for these commands.	Perform fully settled single conversions.Perform conversions continuously.	These bits are used as poursion or continuous co pointed to by these bits.	Normal Conversion Self-Offset Calibration Self-Gain Calibrationr Reserved System-Offset Calibration System-Gain Calibration Reserved
D4	CSRP1	VALUE FUNCTION	0 These con 1 Must be Ic	0 Perform fu 1 Perform cc	000 These b version 111 pointed	000 Normal C 001 Self-Offse 010 Self-Gain 011 Reserved 100 Reserved 101 System-O 111 Reserved
D5	CSRP2		D Bit, C	onver-	Channel Setup Reg- ister Pointer Bits, CSRP	n/Calibra- CC2-CC0
90 (gs	MC	NAME	COMMAND Bit, C	Multiple Conversions, MC	Channel S ister Point CSRP	Conversion/Calibra- tion Bits, CC2-CC0
D7(MSB)	1	BIT	20	90	<i>D5-D3</i>	<i>D2-D0</i>

FIG. 4.4

FIG. 4.5

FIG. 5.1

FIG. 6.1

FIG. 6.2