

Questionnaire examen final

LOG2810

Sigle du cours

Identification de l'étudiant(e)									
Nom:				Prénom :					
Signature :			Matricule :		le:	Groupe :			
Sigle et titre du cours			Groupe		Groupe	Trimestre			
LOG 2810 : Structures discrètes			Tous		Tous	20201			
Professeur			Local		Local	Téléphone			
John Mullins						3278			
	Jour	Da	ate		Durée	Heures			
Vendredi 24 avı		ril 2020		2h30	9h30 à 12h00				
Documentation				Calculatrice					
Aucune			Aucune			Les cellulaires, agendas électroniques ou téléavertisseurs sont interdits.			
⊠ Toute									
☐ Voir directives particulières			☐ Non programmable (AEP)						
Directives particulières									
Important	La pondération de cet examen est de 50 %								
lm	Vous devez remettre le questionnaire : Remise sur Moodle								

L'étudiant doit honorer l'engagement pris lors de la signature du code de conduite.

LOG 2810 : Structures discrètes Examen final

Prof. John Mullins, poste 3278

24 avril 2020 Durée: 2h30

Nom:		
Matricule :		
Signature:		

Directives

- Veuillez indiquer votre nom, votre matricule et votre signature.
- Toute documentation est permise.
- La durée de l'épreuve est de 2 heures 30 minutes.
- Vous devez scanner vos réponses ainsi que cette page et déposer en un seul fichier PDF sur le site Moodle.
- Prévoyez au moins 30 minutes pour compléter la procédure de dépôt.
- Le site de dépôt ferme à 12h30
- Assurez-vous de la lisibilité de votre copie numérisée .
- Ce contrôle est calculé sur 40 points.

Engagement sur l'honneur à remettre

Sur mon honneur, je déclare avoir complété cet examen par moi-même, sans communication avec personne, et en conformité avec les directives identifiées sur la première page de l'énoncé.

Signature:

Question 1

- a. (3 points) Soit R, une relation d'équivalence sur E et S, une relation d'équivalence sur F telles que $E \cap F = \emptyset$. La relation $R \cup S$ est-elle aussi une relation d'équivalence sur $E \cup F$? Dans l'affirmative, prouvez-le. Dans la négative, donnez un contre-exemple.
- b. (4 points) Soit R, une relation sur E. La fermeture symétrique de la fermeture réflexive de la fermeture transitive de R est-elle une relation d'équivalence sur E? Dans l'affirmative, prouvez-le. Dans la négative, donnez un contre-exemple.

Question 2

a. (3 points) Prouvez la validité ou l'invalidité de l'argument suivant :

1.
$$u \rightarrow r$$

2. $(r \land s) \rightarrow (p \lor t)$
3. $q \rightarrow (u \land s)$
4. $\neg t$
5. q
 $\therefore p$

- b. (4 points) Montrez par induction que pour tout entier positif, $4^{n+1} + 5^{2n-1}$ est divisible par 21
- c. (3 points) Un palindrome est une chaîne qui peut être lue de gauche à droite ou de droite à gauche en donnant le même résultat. Autrement dit, c'est une chaîne w où $w = w^R$, où w^R est l'inverse de la chaîne w. Donnez une définition récursive de l'ensemble des chaînes binaires qui sont des palindromes.

Question 3

- a. (3 points) Combien de chaînes binaires de longueur 10 contiennent soit cinq 0 consécutifs, soit cinq 1 consécutifs?
- b. (4 points) Soit une fonction f sur un ensemble A. Un élément $a \in A$ est appelé un point fixe de f si f(a) = a. Pour |A| = 7, combien y-a-il de fonctions $f: A \to A$ injectives et sans point fixe?

Question 4

- a. (3 points) Énumérez tous les graphes simples non isomorphes ayant 4 sommets et 4 arcs.
- b. (4 points) Pour chacun des deux graphes déterminez s'il contient un cycle Hamilonien. Dans l'affirmative, décrivez-en un et dans la négative, prouvez-le.

Question 5

Considérez l'automate \mathcal{A} de la figure 1

FIGURE 1 – L'automate \mathcal{A} de la question 5.

- a. (3 points) Construisez un automate fini déterministe équivalent à l'automate A.
- b. (3 points) Trouvez le langage reconnu par l'automate \mathcal{A} en résolvant le système d'équations linéaires associé.
- c. (3 points) Soit L, le langage reconnu par l'automate A de la figure 1, construisez deux automates non-déterministes qui reconnaissent $L \cdot L$ et L^* respectivement..