LISTA 5: CONSTRUÇÃO ABSTRATA DE MEDIDAS, OUTROS TÓPICOS

Exercício 1. Sejam $(\Omega, \mathcal{F}, \mathbf{m})$ um espaço de medida positiva e $f \in L^1(\mathbf{m})$. Defina a função $\mathbf{m}_f \colon \mathcal{F} \to [-\infty, \infty]$ por

$$\mathrm{m}_f(E) := \int_E f \, d\mathrm{m} = \int_\Omega f \, \mathbf{1}_E \, d\mathrm{m} \quad \text{ para todo } E \in \mathcal{F}.$$

- (a) Prove que m_f é uma medida com sinal em (Ω, \mathcal{F}) .
- (b) Prove que para toda função \mathcal{F} -mensurável $g: \Omega \to \mathbb{R}$, temos

$$\int_{\Omega} g \, d\mathbf{m}_f = \int_{\Omega} g \, f \, d\mathbf{m}.$$

(c) Encontre dois conjuntos P e N, representando a decomposição de Hahn da medida com sinal \mathbf{m}_f .

Exercício 2. Sejam (Ω, \mathcal{F}) um espaço mensurável e μ uma medida $com\ sinal\ em\ (\Omega, \mathcal{F})$. Para cada conjunto \mathcal{F} -mensurável E, mostre que:

- (a) $|\mu(E)| \le |\mu|(E)$.
- (b) Se $\Omega = P \sqcup N$ é a decomposição de Hahn de μ , então $|\mu|(E) = \mu(E \cap P) \mu(E \cap N)$. Em particular, $|\mu|(\Omega) = \mu(P) - \mu(N)$.

(c)
$$|\mu|(E) = \max \left\{ \sum_{k=1}^{\infty} |\mu(E_k)| : E_1, E_2, \dots \text{ são disjuntos e } E = \bigcup_{k=1}^{\infty} E_k \right\}.$$

Exercício 3. Sejam (Ω, \mathcal{F}) um espaço mensurável e μ uma medida $com\ sinal\ em\ (\Omega, \mathcal{F})$. Denote por \mathcal{M} o espaço de todas as medidas finitas com sinal em (Ω, \mathcal{F}) . Se $\mu \in \mathcal{M}$, definimos

$$\|\mu\| := |\mu|(\Omega).$$

- (a) Prove que $(\mathcal{M}, \| \|)$ é um espaço normado. Na verdade, este é um espaço de Banach (você pode tentar provar isso também). Dica: a parte mais difícil é verificar a desigualdade triangular $\|\mu_1 + \mu_2\| \le \|\mu_1\| + \|\mu_2\|$. Comece considerando uma decomposição de Hahn $\Omega = P \sqcup N$ da medida com sinal $\mu := \mu_1 + \mu_2$. Use o Exercício 2 parte (b) para μ e depois parte (a) para μ_1 e μ_2 .
- (b) Dada $f \in L^1(\mathbf{m})$, considere a medida com sinal associada \mathbf{m}_f e prove que a sua norma (de variação total) é simplesmente a norma de f em $L^1(\mathbf{m})$, ou seja,

$$\|\mathbf{m}_f\| = \int_{\Omega} |f| d\mathbf{m}.$$