Signaler och System Del 2

ELA405, Signaler och Signalbehandling 20190124, Västerås elaine.astrand@mdh.se

Enhetsstegfunktion

- tidsdiskret

$$u[n] = \begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}$$

u[n]

1 • • • • • •

•••

Enhetsimpuls

- tidsdiskret

$$\delta[n] = \begin{cases} 0, & n \neq 0 \\ 1, & n = 0 \end{cases}$$

 $\delta[n]$

1

•••

- tidsdiskret

Relation:

$$\delta[n] = u[n] - u[n-1]$$

Första skillnad /first difference

- tidsdiskret

Relation:

$$u[n] = \sum_{m=-\infty}^{n} \delta[m]$$

- tidsdiskret

u[n] kan också ses som en följd av enhetsimpulser

$$u[n] = \sum_{k=0}^{\infty} \delta[n-k]$$

$$\delta[n] + \delta[n-1] + \delta[n-2]+...$$

Enhetsstegfunktion

- tidskontinuerlig

$$\mathbf{u}(\mathbf{t}) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

Vad händer när t=0?

u(t)

Jo, då är u(t) diskontinuerlig!

Vi uppskattar u(t) till en kontinuerlig funktion

...
$$u(t) = u_{\Delta}(t) \, \text{när } \Delta \rightarrow 0$$

Enhetsimpuls

- tidskontinuerlig

$$\delta(t) = \begin{cases} 0, & t \neq 0 \\ 1, & t = 0 \end{cases}$$

- tidskontinuerlig

$$\delta(t) = \frac{du(t)}{dt}$$

$$\delta_{\Delta}(t) = \frac{du_{\Delta}(t)}{dt}$$

Oberoende av värdet på Δ så är arean alltid 1

Höjden 1 representerar arean=1
$$\delta(t) = \delta_{\Lambda}(t) \ n \ddot{a}r \ \Delta \rightarrow 0$$

- tidskontinuerlig

$$\delta(t) = \frac{du(t)}{dt}$$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

Vi kommer i denna kurs att fokusera på **tidsinvarianta och linjära** system (LTI).

För att utnyttja dessa egenskaper så är strategin är att bryta ner signaler till enkla bassignaler. Vilken typ av bassignal är bäst då?

Representation

- 1. Tidsförskjutna enhetsimpulser
- 2. Komplexa exponentialer

Faltning
Fourier Analys

Nästa föreläsning

- tidsdiskret

Hur kan en godtycklig signal representeras av tidsförskjutna enhetsimpulser?

$$x[n]$$

= $x[0]\delta[n] + x[1]\delta[n-1]$
+ $x[-1]\delta[n+1] + \cdots$

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k]$$

- tidsdiskret

Varför är nu denna nedbrutna signal värdefull?

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k]$$

Jo, vår signal är nu representerad som en linjär kombination av enkla bassignaler (viktade och tidsförskjutna enhetsimpulser) vilket innebär att **om vårt system är linjärt** så är utsignalen en linjär kombination av varje enskild utsignal för varje komponent

Om
$$\delta[n-k] \to h_k[n]$$

Då är utsignalen till insignalen x[n]:

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h_k[n]$$

- tidsdiskret

Om systemet också är tidsinvariant då är utsignalen till dessa tidsförskjutna enhetsimpulser, tidsförskjutna varianter av varandra

 $\delta[n-k]$ är en tidsförskjuten variant av $\delta[n]$, $h_k[n]$ är en tidsförskjuten variant av $h_0[n]$

Dvs.
$$h_k[n] = h_0[n-k]$$

Vi kommer härefter skriva $h\left[n\right] = h_0[n]$ som definieras som **enhetsimpulssvar** (dvs systemets utsignal när insignalen är enhetsimpuls)

För ett LTI system:

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k] = x[n] * h[n]$$
 Faltningssumma

- tidsdiskret

Viktade och tidsförskjutna varianter av impulssvaret

- tidsdiskret

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

$$INSIGNAL$$

$$x_{[-1]} x_{[1]} x_{[1]} x_{[2]}$$

$$x_{[2]} x_{[2]}$$

$$x_$$

Vad innebär detta?

Jo vi behöver endast känna till ett systems svar på en enhetsimpuls i tiden noll för att beräkna systemets utsignal till en godtycklig insignal.

- tidskontinuerlig

$$\delta_{\Delta}(t) = \begin{cases} 1/\Delta, 0 \le t < \Delta \\ 0, annars \end{cases}$$

Samma strategi för tidskontinuerliga signaler → Bryta ner en signal till en följd av rektanglar med en

viss längd. Ju kortare längden på rektanglarna blir desto närmare den tidskontinuerliga signaler kommer vi.

- tidskontinuerlig

$$x(t) \approx \hat{x}(t) = \sum_{k=-\infty}^{+\infty} x(k\Delta)\delta(t-k\Delta)\Delta$$

$$x(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{+\infty} x(k\Delta)\delta(t-k\Delta)\Delta$$

Definition av integral:

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau) d\tau$$

Vi har nu en representation av x(t) som en linjär kombination av enhetsimpulser → vi kan nu utnyttja linjäritet för att bestämma systemets utsignal

- tidskontinuerlig

För ett linjärt system:

$$x(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{+\infty} x(k\Delta) \delta(t - k\Delta) \Delta$$

$$y(t) = \lim_{\Delta \to 0} \sum_{k = -\infty}^{+\infty} x(k\Delta) h_{k\Delta}(t) \Delta$$
$$y(t) = \int_{-\infty}^{\infty} x(\tau) h_{\tau}(t) d\tau$$

$$y(t) = \int_{-\infty}^{\infty} x(\tau) h_{\tau}(t) d\tau$$

Om systemet också är tidsinvariant:

$$h_{k\Delta}(t) = h_0(t - k\Delta)$$
, skrivs som $h(t - k\Delta)$

Definieras som:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau = x(t) * h(t)$$

Faltningsintegral

- tidskontinuerlig

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau) d\tau$$

$$x(-2\Delta)\delta_{\Delta}(t+2\Delta)\Delta$$

$$x(-\Delta)\delta_{\Lambda}(t+\Delta)\Delta$$

Viktade och tidsförskjutna varianter av impulssvaret

Faltningsintegral

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau) d\tau$$

Faltningsintegral

Vad innebär detta?

Jo vi behöver endast känna till ett systems svar på en enhetsimpuls i tiden noll för att beräkna systemets utsignal till en godtycklig insignal.

- tidsdiskret

Vad innebär faltning då?

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

Låt oss ta ett exempel med:

$$x[n] = u[n]$$

 $h[n] = a^n u[n], 0 < a < 1$

Hur faltar vi dessa två signaler?

- tidsdiskret

1. Bestäm x[k] och h[n-k]

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

$$x[n] = u[n]$$

$$h[n] = a^n u[n], a < 0$$

2. För varje n, multiplicera signalen h[n-k] med signalen x[k] och summera produkterna från $k = -\infty \ till \ \infty$

- tidsdiskret

2. För varje n, multiplicera signalen h[n-k] med signalen x[k] och summera produkterna från $k = -\infty \ till \ \infty$

- tidsdiskret

2. För varje n, multiplicera signalen h[n-k] med signalen x[k] och summera produkterna från $k = -\infty \ till \ \infty$

n

- tidsdiskret

2. För varje n, multiplicera signalen h[n-k] med signalen x[k] och summera produkterna från $k = -\infty \ till \ \infty$

- tidsdiskret

2. För varje n, multiplicera signalen h[n-k] med signalen x[k] och summera produkterna från $k = -\infty \ till \ \infty$

- tidsdiskret

2. För varje n, multiplicera signalen h[n-k] med signalen x[k] och summera produkterna från $k = -\infty \ till \ \infty$

n

- tidsdiskret

2. För varje n, multiplicera signalen h[n-k] med signalen x[k] och summera produkterna från $k = -\infty \ till \ \infty$

- tidsdiskret

2. För varje n, multiplicera signalen h[n-k] med signalen x[k] och summera produkterna från $k = -\infty \ till \ \infty$

- tidskontinuerlig

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau) d\tau$$

$$x(t) = u(t)$$

$$h(t) = e^{at}u(t), a < 0$$

- egenskaper

Kommutativitet

$$x(t) * h(t) = h(t) * x(t)$$
$$x[n] * h[n] = h[n] * x[n]$$

Ordningen spelar ingen roll!

Exempel tidigare: $u(t) * e^{at}u(t) \rightarrow I \ boken \ (ex. 2.6): e^{at}u(t) * u(t)$

Associativitet

$$x * \{h_1 * h_2\} = \{x * h_1\} * h_2$$

Distribuitet

$$x * \{h_1 + h_2\} = x * h_1 + x * h_2$$

Gruppering spelar ingen roll!

- egenskaper

Utan minne – ett system där utsignalen i en specifik tidpunkt beror enbart på insignalen i samma tidpunkt

$$x(t)@\ t = t_o \rightarrow y(t)@\ t = t_0$$

 $x[n]@\ n = n_o \rightarrow y[n]@\ n = n_0$

Vad krävs av h för att LTI-systemet inte ska ha minne?

- $\rightarrow h(t-\tau)$ måste vara skilt från noll enbart när $\tau = t$
- $\rightarrow h(t) = k\delta(t)$
 - $\rightarrow h[n] = k\delta[n]$

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau) d\tau = kx(t)$$
$$y[n] = kx[n]$$

- egenskaper
- Inverterbar Med en känd utsignal finns endast en unik insignal

Ett LTI-system är inverterbart ifall:

$$y = x * (h * h_i) = x$$

Detta innebär att $h * h_i = \delta$

- egenskaper
- Stabilitet –för alla begränsade insignaler produceras en begränsad utsignal

Ett LTI-system är stabilt ifall:

$$\sum_{k=-\infty}^{\infty} |h[k]| < \infty$$

Absolut summerbar

$$\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty$$

Absolut integrerbar

- egenskaper
- Kausalitet utsignalen för en godtycklig tid beror enbart på insignalen innan eller lika med den tiden

$$x_1(t) \rightarrow y_1(t)$$

 $x_2(t) \rightarrow y_2(t)$
Om $x_1(t) = x_2(t), t < t_0$
Då är: $y_1(t) = y_2(t), t < t_0$

Ett linjärt system är kausalt om:

Initial vila: vid avsaknad av insignal så är utsignalen noll:

$$Om x(t) = 0, t < t_0$$

 $Då y(t) = 0, t < t_0$

(samma för tidsdiskret)
Följer av att:

Ett LTI system är kausalt om:

$$h(t) = 0, t < 0$$

 $h[n] = 0, n < 0$

$$\delta(t) = 0, t < 0$$

$$\delta[n] = 0, n < 0$$

Kan ses visuellt:

Läsning:

Oppenheim A. Signals and Systems. 2nd Ed. (2014):

Kap 1: 1.4

Kap 2: 2.1-2.3

Gör tillhörande uppgifter