Mathematics Review

Exponents:

$$X^{A}X^{B} = X^{A+B}$$

$$X^{A}/X^{B} = X^{A-B}$$

$$(X^{A})^{B} = X^{AB}$$

$$X^{N} + X^{N} = 2X^{N}$$

$$2^{N} + 2^{N} = 2^{N+1}$$

Logarithms

Definition:

$$X^A = B$$
 iff $\log_X B = A$

Useful formulas:

$$\log_A B = (\log_C B) / (\log_C A), A, B, C > 0 \text{ and } A \neq 1$$

 $\log AB = \log A + \log B, A, B > 0$
 $\log A/B = \log A - \log B$
 $\log (A^B) = B \log A$
 $\log 1 = 0$, $\log 2 = 1$
 $\log X < X$ for all $X > 0$

Unless specified otherwise, all log are base 2.

Series

$$\sum_{i=0}^{N} 2^{i} = 2^{N+1} - 1$$

$$\sum_{i=0}^{N} A^{i} = \frac{A^{N+1} - 1}{A - 1}$$
If $0 < A < 1 = > \sum_{i=0}^{N} A^{i} \le \frac{1}{1 - A}$

$$\sum_{i=0}^{\infty} A^{i} = \frac{1}{1 - A}$$

$$\sum_{i=0}^{\infty} \frac{i}{2^{i}} = 2$$

Series

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2} \approx \frac{N^{2}}{2}$$

$$\sum_{i=1}^{N} i^{2} = \frac{N(N+1)(2N+1)}{6} \approx \frac{N^{3}}{3}$$

$$\sum_{i=1}^{N} i^{k} \approx \frac{N^{k+1}}{|k+1|}$$

$$H_{N} = \sum_{i=1}^{N} \frac{1}{i} \approx \log_{e} N \qquad e = 2.71828...$$

Modular Arithmetic

Definition:

 $A \equiv B \pmod{N}$ if N divides A-Bi.e. the remainder is the same when either A or B is divided by N.

Example:

$$81 \equiv 61 \equiv 1 \pmod{10}$$

• If $A \equiv B \pmod{N}$ then $A+C \equiv B+C \pmod{N}$ and $AD \equiv BD \pmod{N}$

Proofs

By Induction

By Counterexample

By Contradiction

Proof by Induction

Historical notes:

- first known proof by induction, Francesco Maurolico in 1575
- Fermat, 17th century called it "the method of infinite descent"
- "mathematical induction" coined by A. de Morgan, early 19th century

Proof by Induction:

1. Proving the Base Case:

Establish that a theorem is true for some small values.

2. Inductive Hypothesis:

Assume an inductive hypothesis, e.g. assume that the theorem is true for all cases up to some value k.

Show that the theorem is true for the next value (typically k+1)

Note: It works as long as k is finite!

It can be viewed as an algorithmic proof procedure!

Proof by Induction: Example

Problem:

Prove that Fibonacci numbers,

$$F_0 = 1$$
, $F_1 = 1$, $F_2 = 2$, $F_3 = 3$, $F_4 = 5$, ...,
 $F_i = F_{i-1} + F_{i-2}$ satisfy $F_i < (5/3)^i$

Base case: verify that

$$F_1 = 1 < 5/3$$
 and $F_2 = 2 < 25/9$

Inductive Hypothesis:

Assume that $F_i < (5/3)^i$ is true for i = 1, 2, ..., k

We need to show that $F_{k+1} < (5/3)^{k+1}$

Historical note: Fibonacci sequence introduced in Fibonacci's book "Liber Abaci", 1202.

Proof by Induction: Example

$$F_{k+1} = F_k + F_{k-1}$$

$$F_{k+1} < (5/3)^k + (5/3)^{k-1}$$

$$= (3/5)(5/3)^{k+1} + (3/5)^2(5/3)^{k+1}$$

$$= (3/5)(5/3)^{k+1} + (9/25)(5/3)^{k+1}$$

$$= (3/5 + 9/25) (5/3)^{k+1}$$

$$= (24/25)(5/3)^{k+1}$$

$$< (5/3)^{k+1} => \text{The theorem is proved}$$

Proof by Counterexample

- The statement $F_k \le k^2$ is false.
- Compute $F_{11} = 144 > 11^2$

Proof by Contradiction

Technique:

assume that the theorem is false and show that this assumption implies that some known property is false.

Example:

There is an infinite number of primes.

(Euclid, ~ 300 BC)

- Assume that the theorem is false i.e. there is some largest prime P_k .
- Consider $N = P_1 P_2 P_3 ... P_k + 1$, P_i ordered primes
- Clearly N is larger than $P_k =>$ by assumption N is not prime!
- None of the P_i divides N exactly (remainder =1)

=> Contradiction: every number is either prime or a product of primes.