On groups of units of special and one-relator inverse monoids

Robert D. Gray¹ (joint work with Nik Ruškuc)

AMS Special Session on Recent Trends in Semigroup Theory Spring Western Sectional Meeting, May 2022

¹Research supported by the EPSRC grant EP/N033353/1 "Special inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem".

Adjan's Theorem

Theorem (Adjan (1966))

The group of units G of a one-relator monoid $M = \text{Mon}\langle A \mid r = 1 \rangle$ is a one-relator group.

Example

Let $M = \text{Mon}\langle A \mid r = 1 \rangle = \text{Mon}\langle a, b, c, d \mid abcdcdab = 1 \rangle$. Decompose the relator

$$abcdcdab = (ab)(cd)(cd)(ab)$$

into minimal invertible pieces = subwords of r that are invertible in M and have no proper non-empty invertible prefix. Then

 \blacktriangleright X = ab and Y = cd together generate the group of units G and satisfy

$$(\underbrace{ab}_{X})(\underbrace{cd})(\underbrace{cd}_{Y})(\underbrace{ab}_{X}) = 1$$

• $G = \operatorname{Gp}(X, Y \mid XYYX = 1)$.

Makanin's Theorem for special monoids

Theorem (Makanin (1966))

The group of units G of $M = \text{Mon}\langle A \mid r_1 = 1, \dots, r_k = 1 \rangle$ admits a k-relator presentation.

Example

Let $M = \text{Mon}(a, b, c, d \mid abab = 1, abcdabcdabcd = 1)$. Decompose the relators into minimal invertible pieces

$$abab = (ab)(ab), \quad abcdabcdabcd = (ab)(cd)(ab)(cd)(ab)(cd).$$

Then

• X = ab and Y = cd together generate the group of units G and satisfy

$$(\underbrace{ab}_{X})(\underbrace{ab}_{X}) = 1, \quad (\underbrace{ab}_{X})(\underbrace{cd}_{Y})(\underbrace{ab}_{X})(\underbrace{cd}_{Y})(\underbrace{ab}_{X})(\underbrace{cd}_{Y}) = 1.$$

•
$$G = Gp(X, Y | X^2 = 1, (XY)^3 = 1).$$

Special inverse monoids

An inverse monoid is a monoid M such that for every $m \in M$ there is a unique $m^{-1} \in M$ such that $mm^{-1}m = m$ and $m^{-1}mm^{-1} = m^{-1}$.

Definition (Special inverse monoid)

Inv
$$\langle A \mid r_i = 1 \ (i \in I) \rangle = \text{Mon} \langle A \cup A^{-1} \mid r_i = 1 \ (i \in I),$$

$$x = xx^{-1}x, \quad xx^{-1}yy^{-1} = yy^{-1}xx^{-1} \rangle$$

where x, y range over all words from $(A \cup A^{-1})^*$.

Example

The bicyclic monoid is defined by $Inv\langle a \mid aa^{-1} = 1 \rangle$.

- Adjan/Makanin results have been applied to prove interesting results about special monoids e.g. word problem for $Mon(A \mid r = 1)$.
- Adjan/Makanin-type theorems for special inverse monoids might via work of Ivanov, Margolis, Meakin (2001) have important applications e.g. word problem for arbitrary one relation monoids Mon $\langle A | u = v \rangle$.

Theorem (Ivanov, Margolis, Meakin (2001))

The group of units G of $M = \text{Inv}\langle A \mid r_1 = 1, \dots, r_k = 1 \rangle$ is finitely generated by the minimal invertible pieces of the relators r_1, \dots, r_k .

Example

$$M = \text{Inv}\langle a, b, c \mid a(bc^2b^{-1})a(bc^3b^{-1})a(bc^7b^{-1})a(bc^3b^{-1})a(bc^2b^{-1})a = 1 \rangle.$$

Then the minimal invertible pieces

► X = a, $Y = bc^2b^{-1}$, $Z = bc^3b^{-1}$, $T = bc^7b^{-1}$ together generate the group of units G and satisfy

$$\underbrace{a}_{X} \underbrace{(bc^{2}b^{-1})}_{Y} \underbrace{a}_{X} \underbrace{(bc^{3}b^{-1})}_{Z} \underbrace{a}_{X} \underbrace{(bc^{7}b^{-1})}_{X} \underbrace{a}_{X} \underbrace{(bc^{3}b^{-1})}_{Z} \underbrace{a}_{X} \underbrace{(bc^{2}b^{-1})}_{Y} \underbrace{a}_{X} = 1$$

Question: Is this relation enough to define G? i.e. do we have

$$G = \operatorname{Gp}(X, Y, Z, T \mid XYXZXTXZXYX = 1)$$
?

Let $M = \text{Inv}(A \mid r_1 = 1, ..., r_k = 1)$.

Fact: $w_1 a a^{-1} w_2 \in (A \cup A^{-1})^*$ invertible in $M \Longrightarrow w_1 a a^{-1} w_2 = w_1 w_2$ in M.

Example

$$M = \operatorname{Inv}\langle a, b, c \mid \underbrace{a}_{X} \underbrace{bc^{2}b^{-1}}_{Y} \underbrace{a}_{X} \underbrace{bc^{3}b^{-1}}_{Z} \underbrace{a}_{X} \underbrace{bc^{7}b^{-1}}_{T} \underbrace{a}_{X} \underbrace{bc^{3}b^{-1}}_{Z} \underbrace{a}_{X} \underbrace{bc^{2}b^{-1}}_{X} \underbrace{a}_{X} = 1 \rangle.$$

Is the group of units G equal to

$$Gp\langle X, Y, Z, T \mid XYXZXTXZXYX = 1 \rangle = Gp\langle X, Y, Z \mid \rangle = F_{X,Y,Z}$$
?

Applying the Fact above in M gives

$$Y^{3} = (bc^{2}b^{-1})^{3} = bc^{2}b^{-1}bc^{2}b^{-1}bc^{2}b^{-1} = bc^{6}b^{-1} = (bc^{3}b^{-1})^{2} = Z^{2}$$

But $Y^3 \neq X^2$ in $F_{X,Y,Z}$, hence $G \neq \text{Gp}(X,Y,Z,T \mid XYXZXTXZXYX = 1)$.

Let $M = \text{Inv}\langle A \mid r_1 = 1, \dots, r_k = 1 \rangle$.

Fact: $w_1aa^{-1}w_2 \in (A \cup A^{-1})^*$ invertible in $M \Longrightarrow w_1aa^{-1}w_2 = w_1w_2$ in M.

Example

$$M = \operatorname{Inv}\langle a, b, c \mid \underbrace{a}_{X} \underbrace{bc^{2}b^{-1}}_{Y} \underbrace{a}_{X} \underbrace{bc^{3}b^{-1}}_{Z} \underbrace{a}_{X} \underbrace{bc^{7}b^{-1}}_{T} \underbrace{a}_{X} \underbrace{bc^{3}b^{-1}}_{Z} \underbrace{a}_{X} \underbrace{bc^{2}b^{-1}}_{X} \underbrace{a}_{X} = 1 \rangle.$$

Is the group of units G equal to

$$\operatorname{Gp}\langle X,Y,Z,T\mid XYXZXTXZXYX=1\rangle=\operatorname{Gp}\langle X,Y,Z\mid \rangle=F_{X,Y,Z}?$$

Applying the Fact above in M gives

$$Y^3 = (bc^2b^{-1})^3 = bc^2b^{-1}bc^2b^{-1}bc^2b^{-1} = bc^6b^{-1} = (bc^3b^{-1})^2 = Z^2$$

But $Y^3 \neq X^2$ in $F_{X,Y,Z}$, hence $G \neq \text{Gp}(X,Y,Z,T \mid XYXZXTXZXYX = 1)$.

Resolution: Observe $\operatorname{Gp}\langle a, bc^2b^{-1}, bc^3b^{-1}, bc^7b^{-1}\rangle = \operatorname{Gp}\langle a, bcb^{-1}\rangle \leq F_{a.b.c.}$

- $M \cong \text{Inv}\langle a, b, c | a(bcb^{-1})^2 a(bcb^{-1})^3 a(bcb^{-1})^7 a(bcb^{-1})^3 a(bcb^{-1})^2 a = 1 \rangle$
- Group of units of M is $G = \operatorname{Gp}(X, Y \mid XY^2XY^3XY^7XY^3XY^2X = 1)$.

Theorem (RDG & Ruškuc (2021))

Let $G = \text{Gp}(A \mid r_1 = 1, ..., r_k = 1)$ be a finitely presented k-relator group and let $H \le G$ be a finitely generated subgroup of G.

Then there is a finitely presented *k*-relator special inverse monoid

$$M = \operatorname{Inv}\langle B \mid s_1 = 1, \dots, s_k = 1 \rangle$$

such that the group of units of M is isomorphic to the free product G * H.

Strategy: Find pairs $H \leq G$ where

- G has some property \mathcal{P} but
- G * H does not have property \mathcal{P} .
- ▶ Hence the group of units of M will not have property \mathcal{P} .

Non finitely presented group of units

Fact (e.g. Higman (1961))

Finite presentability is not inherited by finitely generated subgroups.

Choose $H \le G$ such that G is finitely presented and H is finitely generated but not finitely presented. Then G * H is not finitely presented since H is not.

Theorem (RDG & Ruškuc (2021))

There is a finitely presented special inverse monoid $\text{Inv}\langle B \mid s_1 = 1, \dots, s_k = 1 \rangle$ whose group of units is not finitely presented.

Example

The finitely presented special inverse monoid

$$\begin{split} &\operatorname{Inv} \big\langle c_1, c_2, d_1, d_2, t, C_1, C_2, D_1, D_2, T \mid c_i C_i = 1, \ C_i c_i = 1, \ (i \in \{1, 2\}), \\ &d_i D_i = 1, \ D_i d_i = 1 \ (i \in \{1, 2\}), \ tT = 1, \\ &c_i d_j C_i D_j = 1, (i, j \in \{1, 2\}), \quad tc_2 T t C_2 T = 1, \ tC_2 T t c_2 T = 1, \\ &t d_2 T t D_2 T = 1, \ tD_2 T t d_2 T = 1, \quad tc_1 d_1 T t D_1 C_1 T = 1, \ tD_1 C_1 T t c_1 d_1 T = 1 \big\rangle \end{split}$$

has a group of units that is not finitely presented.

Units of one-relator inverse monoids

Fact

Being one-relator is not preserved by taking free products.

Example. If $K = \text{Gp}(a, b, c, d \mid aba^{-1}b^{-1}cdc^{-1}d^{-1} = 1)$ then K * K is not one-relator with respect to any finite generating set.

- Proved using Lyndon's Identity Theorem.
- ► Taking G = H = K in the above theorem then gives $M = \text{Inv}\langle B \mid s = 1 \rangle$ with group of units G * H = K * K not one-relator.

Theorem (RDG & Ruškuc (2021))

There exists a one-relator special inverse monoid $M = \text{Inv}\langle B \mid s = 1 \rangle$ whose group of units G is not a one-relator group.

Coherence and a question of Baumslag

Question: Is the group of units of $Inv(A \mid r = 1)$ always finitely presented?

Coherence and a question of Baumslag

Question: Is the group of units of $Inv\langle A \mid r = 1 \rangle$ always finitely presented? **Definition.** A finitely presented group G is said to be coherent if every finitely generated subgroup of G is finitely presented.

Open problem (Baumslag (1973))

Is every one-relator group coherent?

Theorem (RDG & Ruškuc (2021))

If all one-relator special inverse monoids $\text{Inv}\langle A \mid r=1 \rangle$ have finitely presented groups of units then all one-relator groups are coherent.

Coherence and a question of Baumslag

Question: Is the group of units of $\text{Inv}\langle A \mid r = 1 \rangle$ always finitely presented? **Definition.** A finitely presented group G is said to be coherent if every finitely generated subgroup of G is finitely presented.

Open problem (Baumslag (1973))

Is every one-relator group coherent?

Theorem (RDG & Ruškuc (2021))

If all one-relator special inverse monoids $\text{Inv}\langle A \mid r=1 \rangle$ have finitely presented groups of units then all one-relator groups are coherent.

Theorem (RDG & Ruškuc (2021))

Let $M = \text{Inv}\langle A \mid r^m = 1 \rangle$ where m > 1 and r is cyclically reduced. Then the group of units of M is finitely presented.

- Louder and Wilton (2020) & independently Wise (2020) proved that one-relator groups with torsion are coherent.
- ▶ Ivanov, Margolis, Meakin (2001) \Rightarrow *M* is E-unitary in this case.

Open problems

- 1. Is the group of units of a one-relator inverse monoid $Inv\langle A \mid r = 1 \rangle$ finitely presented?
- 2. If *r* is cyclically reduced then is the group of units of $Inv\langle A \mid r = 1 \rangle$ one-relator / finitely presented?
- 3. Is there an algorithm that given $\text{Inv}\langle A \mid r=1 \rangle$ computes the decomposition $r \equiv r_1 r_2 \dots r_k$ into minimal invertible pieces?
- 4. Is the group of units of a one-relator inverse monoid $Inv\langle A \mid r = 1 \rangle$ embeddable into a one-relator group?
- 5. Does the group of units of a one-relator inverse monoid $Inv\langle A \mid r = 1 \rangle$ have decidable word problem?