CSC 461: Machine Learning Fall 2024

Supervised learning

Prof. Marco Alvarez, Computer Science University of Rhode Island

Dataset

 Observations are <u>independently drawn</u> from a **joint** distribution of inputs and outputs

$$\mathcal{D} = \{(x_1, y_1), ..., (x_n, y_n)\}\$$

ightharpoonup Input space ${\mathcal X}$

$$(x_i, y_i) \sim P$$

- numerical continuous (age, income, ...)
- categorical (gender, product type, ...)
- text (customer reviews, documents, ...)
- images (photos, medical images, ...)
- audio (speech, music, ...)

Definition

- Paradigm in ML where a model learns from labeled data
 - mapping inputs to corresponding outputs by minimizing a predefined "loss function"
- ▶ Key components
 - data instance: $(x, y), x \in \mathcal{X}, y \in \mathcal{Y}$
 - input space ${\mathscr X}$
 - output space y
 - training data: $\{(x_1, y_1), ..., (x_n, y_n)\} \subseteq \mathcal{X} \times \mathcal{Y}$
 - model (hypothesis): $h: \mathcal{X} \mapsto \mathcal{Y}, h \in \mathcal{H}$
 - hypothesis space \mathcal{H}

Example: MNIST dataset

0	0	0	0	0	O	O	0	0	٥	0	0	0	0	0	0
1	l	1	1	1	/	/	(/	1	1	1	1	1	/	1
2	J	2	2	2	J	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	#	4	4	4	4	4	4	4
5	5	5	5	5	\$	5	5	5	5	5	5	5	5	5	5
6	G	6	6	6	6	6	6	P	6	6	6	6	6	6	6
F	7	7	7	7	7	7	7	7	77	7	7	7	7	7	7
8	E	8	8	8	8	8	8	8	8	8	8	8	8	8	8
7	૧	9	9	9	9	9	9	9	Ŋ	9	9	9	9	9	9

Example: MNIST dataset


```
[[ 0. 1. 5. 11. 15. 4. 0. 0.]
 [ 0. 8. 16. 13. 6. 2. 0. 0.]
 [ 0. 11. 7. 0. 0. 0. 0. 0. 0.]
 [ 0. 11. 16. 16. 11. 2. 0. 0.]
 [ 0. 0. 4. 4. 5. 12. 3. 0.]
 [ 0. 0. 0. 0. 0. 5. 11. 0.]
 [ 0. 0. 1. 6. 0. 10. 11. 0.]
 [ 0. 0. 2. 12. 16. 15. 2. 0.]
```

Matrix representation

$$\mathcal{X} =$$

Types of supervised learning

→ Regression

- continuous output: $\mathcal{Y} \subseteq \mathbb{R}$
- examples: predicting house prices, forecasting stock prices

Classification

- discrete output: $\mathcal{Y} = \{1,...,K\}$
 - binary classification: K = 2
 - multi-class classification: K > 2
- examples, spam vs not spam (binary), disease present (binary), handwritten digits recognition (multi-class)

Major tasks

Regression

$$\mathcal{X} =$$

$$\mathcal{Y} =$$

Binary classification

```
array([[0],
array([[ 0.24277092,
                      0.89098144],
       [-0.57961074, 0.50618765],
                                               [1],
       [ 0.24259841,
                      0.12209649],
                                               [1],
       [1.68348295, -0.10059047],
                                               [1],
       [2.00696736, -0.79306007],
                                               [1],
       [ 1.56891881, 0.30515286],
                                               [0],
       [ 0.1314049 , -0.35704446],
                                               [1],
       [ 2.14017386, 0.33933491],
                                               [1],
       [-1.03087047, 1.52609949],
                                               [0],
                                               [0],
       [-0.38504321, 1.24209655],
       [-1.20252537, 0.56167652],
                                               [0],
       [ 0.08590311,
                                               [1],
                      0.68265315],
       [0.88074085, -0.11759523],
                                               [1],
       [ 0.32558238,
                      0.4181143 ],
                                               [1],
       [-0.74202798, 0.68847344]]
                                               [0]])
```


Multi-class classification

Loss functions and evaluation

Loss functions

- Purpose
 - guide the learning process during training/learning
- Characteristics
 - differentiable (in most cases neural networks)
 - optimized during training/learning
 - reflect model performance on individual examples or batches of examples

0/1 loss

$$l_{0/1}(h, x_i, y_i) = I(h(x_i) \neq y_i)$$
indicator function

Prediction	Target
5	5
1	9
2	2
7	7
8	0
0	0
0	8
3	3
6	6
4	4

Squared loss (L2 loss)

$$l_{sq}(h, x_i, y_i) = \left(h(x_i) - y_i\right)^2$$

Prediction	Target
1.2	1.4
2.3	2.3
1.1	1.2
3.4	4.1
2.3	2.5
1.1	1.1
2.5	2.6
3.1	3.2
1.7	1.8
2.3	2.3

positive loss, penalizes big mistakes

Absolute loss

$$l_{abs}(h, x_i, y_i) = \left| h(x_i) - y_i \right|$$

Prediction	Target
1.2	1.4
2.3	2.3
1.1	1.2
3.4	4.1
2.3	2.5
1.1	1.1
2.5	2.6
3.1	3.2
1.7	1.8
2.3	2.3

Evaluation metrics

Purpose

- assess model performance after training

Characteristics

- may not be differentiable
- used to compare different models/hypotheses or report final performance
- often more interpretable
- reflect performance on an entire dataset

Examples

- accuracy, f1-score, precision, recall, mean absolute error, R-squared

More formally ...

Learning formulation

- Given:
 - training set: $\{(x_1, y_1), \dots, (x_n, y_n)\}, x_i \in \mathcal{X}, y_i \in \mathcal{Y},$
- Objective:
 - find a function $h: \mathcal{X} \to \mathcal{Y}, h \in \mathcal{H}$ that minimizes the empirical loss L

$$L = \frac{1}{n} \sum_{i=1}^{n} l(h, x_i, y_i)$$

As the size of our training dataset increases, the **empirical loss** tends to approach the **expected loss**

From statistical learning theory

- Expected Loss
 - theoretical average loss over all possible data points
 - including those not in our training set

$$\mathbb{E}\left[l\left(h, x_i, y_i\right)\right]_{(x_i, y_i) \sim P}$$

We cannot calculate this term, but we can approximate it

- Empirical Loss
 - the average loss calculated on the training data
 - what we can actually measure during training/learning

$$\frac{1}{n}\sum_{i=1}^{n}l\left(h,x_{i},y_{i}\right)$$

Challenges

- Overfitting
 - model performs well on training data but poorly on unseen data
 - solutions include: regularization, data augmentation
- Underfitting
 - model is too simple to capture underlying patterns
 - solutions include: increase model complexity
- Imbalanced Datasets
 - one class may be overrepresented.
 - solutions include: resampling, class weighting
- → Curse of Dimensionality
 - too many features can cause models to perform poorly
 - solutions include: dimensionality reduction, using more data