Overflow

Based on slides by Jared Moore

System	Range
Unsigned	$[0, 2^N - 1]$
Sign/Magnitude	$[-2^{N-1} + 1, 2^{N-1} - 1]$
Two's Complement	$[-2^{N-1}, 2^{N-1} - 1]$

Overflow in unsigned addition

Digital systems have a fixed number of bits.

Carry bit exceeds the number of bits.

Leads to incorrect results!

$$1100_2 + 1001_2$$

Overflow in unsigned addition

Overflow: When the result of an operation cannot be represented in the given system.

4-bit system can represent [0, 15]. Any operands that lead to a sum greater than 15 will cause overflow in this system.

How to detect overflow in unsigned addition in a circuit?

Check for a carry on the most significant column.

When can two's complement addition overflow?

How can we detect overflow in two's complement?

Overflow means the same thing for unsigned and two's complement – that the result is outside the representable range

However, we use different methods to detect overflow in unsigned and two's complement arithmetic

Two's Complement Overflow

Overflow occurs when adding two N-bit positive numbers or negative numbers if result is greater than $2^{N-1} - 1$ or less than -2^{N-1}

Adding a positive and negative will **never** cause an overflow.

Remember: Overflow detection is not the same as unsigned numbers.

What if I really want to use unsigned overflow detection for two's complement?

Don't.

$$0100_{2} + 1110_{2} \\ \hline 1\ 0010_{2}$$

Signed (no overflow)
$$4 + -2$$

$$7$$

How can we detect overflow in two's complement?

How can we detect overflow in two's complement?

Two numbers being added have the same sign

Not possible for positive and negative to overflow!

Result has the opposite sign.

System	Range
Unsigned	$[0, 2^N - 1]$
Sign/Magnitude	$[-2^{N-1} + 1, 2^{N-1} - 1]$
Two's Complement	$[-2^{N-1}, 2^{N-1} - 1]$

Important to remember the distinction between what overflow *is* vs how we *detect it*

Remember – detecting overflow in *signed* arithmetic follows different rules from detecting overflow in *unsigned* arithmetic