

Performance Analysis

Vikram Padman

Agenda

Introduction

Performance

Dependability

Activity

Performance Analysis

CS6133 - Computer Architecture I

Vikram Padman

Polytechnic Institute of New York University

vikram@poly.edu

Agenda

Performant Analysis

Padmai

Agenda

troductio

Performance

T CITOIIIIanice

Donondahilita

- Introduction
 - Limitations
- Performance Analysis
- Speedup
 - Amdahl's Law
- Dependability
- Activities

Performance

Performan Analysis

> Vikram Padmar

Agenda

Introduction

Performance Speedup

Dependability

Activity

- Performance is a quantitative measure of how well a system works
- Why is performance important?
 - To compare and contrast computing system. Which system has the best performance for the price
 - For trade studies: Evaluate a system for a given application (its usefulness)
 - To understand a system's underlying architecture
 - To forecast future needs and estimate improvement cost

Performance

Performano Analysis

> Vikram Padman

Agenda

Introduction

Performance

Speedu

Dependabilit

Activi

- A Car's Performance metrics:
 - Engine's horse power
 - 0-60Mph and/or 1/4 mile time
 - Miles per gallon
 - Braking distance
 - Seating and cargo capacity
- A computer's performance metrics:
 - Power
 - Clock speed
 - Battery life
 - Execution time / Responsiveness
 - Storage capacity

Performance since 1980's

Performance Analysis

Vikram Padmar

genda

Introduction

Limitations

Performanc

Эрссаар

Dependabilit

Activit

The Power Wall

Performano Analysis

Vikram Padman

Agenda

Introduction Limitations

Performance

Activi⁻

- Power dissipation is an issue in today's technology.
- Smaller transistors could switch faster and more could be packed in a given area
- Smaller transistors ⇒ smaller wires. Smaller wires increase resistance and capacitance.

The Power Wall

Performano Analysis

Vikram Padman

Agenda

Introduction Limitations

Performance

C

Dependability

Activi[.]

- Dynamic Power: Power consumed by a active transistor
- Static Power: Quiescent or leakage power consumed by an idle transistors
- $Power_{dynamic} = 1/2 * C * V^2 * T_r$
- $Power_{static} = I_{leakage} * V$
- \bullet C = Total (gate + wire) capacitance per transistor
- ullet $V=\mathsf{Rail}$ voltage, $T_r=\mathsf{Toggle}$ rate, $I=\mathsf{Current}$
- Total power for a chip: $Power_{total} = (Power_{dynamic} + Power_{static}) * N_t$
- $N_t = \text{Number of transistors}$

The Scaling Wall

Performance Analysis

Vikram Padmar

Agenda

Introduction

.

B 1.100

Activity

The Scaling Wall

Analysis

Vikram Padmai

Agenda

Introduction Limitations

Performanc

Dependability

Activi[.]

- Reduction in transistor's size increases leakage current
- Increase in transistor count increases static power
- Reduction in rail voltage could introduce instability due to process variations
- Increase in frequency increases dynamic power

Performance From A User's Perspective

• Execution Time = Total run time of a program

- Time could simply be "wall-clock time" or "elapsed time"
- **Performance** = 1 / (Execution time)
 - Clock speed, parallelism, I/O speed, and work load determines performance
- **Relative Performance** = Performance of one system compared to another
 - $R_p = Performance_A/Performance_B =$ $Execution_B/Execution_A$
 - System A is R_n time faster than system B
- \bullet R_p accuracy depends on how execution time is measured in each system and its consistency

Cost-Performance Analysis

Performano Analysis

Vikram Padman

Agenda

Introduction

Performance

Dependability

Cost-Performance ratio:

 $C_r = \mathsf{Cost} * \mathsf{Execution} \mathsf{ time} \mathsf{ or } \mathsf{Cost} \mathsf{ / } \mathsf{Performance}$

- \bullet Let's consider system A and B running application App_1 and App_2
 - Execution time of App_1 in A = 8 and cost of A = 10, $C_r = 80$
 - Execution time of App_2 in ${\sf A}=1$ and cost of ${\sf A}=10$, $C_r=10$
 - Execution time of App_1 in B = 2 and cost of A = 15, $C_r = 30$
 - Execution time of App_2 in B = 2 and cost of A = 15, $C_r = 30$

CPU's Performance Measurement

Performanc Analysis

> Vikram Padmar

Agenda

Introduction

Performance

C----

Dependability

- CPU's performance is measured by the number of clock cycles it consumes to execute a given program
- Clock rate = cycles per second, measured in Hz, Khz or Ghz
- ullet Clock period = time between rising edge of a clock signal

CPU's Performance Measurement

Performano Analysis

Padman

, 18 cm a a

Illitioductioi

Performance

Dependability

Activit

CPU time consumed by a given program =

- $CPU_{time} = I_{tot} * Cycles_i * Clockrate$
- I_{tot} : Total number of Instructions
 - Depends on CPU's architecture, ISA, compiler, coding style and application
- ullet $Cycles_i$: Clock cycles per instruction
 - Depends on CPU's architecture and ISA
- Clockrate:
 - ASIC design, logic design, node size and silicon manufacturing technology

Clock Cycles Per Instruction (CPI)

Performano Analysis

Padman

Agenda

Introduction

Citormane

Speedup

Dependability

Activit

• **CPI**: Average number of clock cycles per instruction: $CPI = C_{el}/I_{tot}$

- I_{tot} = Number of instruction in a program. A program could have many types of instruction(s)
- C_{el} = Number of elapsed clock cycle(s)
- Let consider a program AP_1
 - $N = \text{types of instruction in a program } AP_1$
 - $I_t =$ number of instruction of type t in AP_1 $\Rightarrow I_{tot} = \sum_{t=1}^{N} I_t$
 - $CPI_t = \text{clock cycles(s)}$ to execute 1 instruction of type t $C_{el} = \sum_{t=1}^{N} (I_t * CPI_t)$ $\Rightarrow CPI = C_{el}/I_{tot} = \sum_{t=1}^{N} (I_t/I_{tot} * CPI_t)$

Clock Cycles Per Instruction (CPI) Continuing with AP_1

Performanc Analysis

Padman

Performance

Б 1100

Dependabilit

Activit

• Suppose AP_1 has 100 instructions (I_{tot}) and below is the distribution:

t	Instruction	I_t	CPI_t	$I_t/I_{tot} * CPI_t$
1	load	35	4	35/100 * 4 = 1.4
2	store	10	2	10/100 * 2 = 0.2
3	mul	15	35	15/100 * 35 = 5.25
4	jump	15	10	15/100 * 10 = 1.5
5	add	15	1	20/100 * 1 = 0.2
6	sub	10	1	10/100 * 1 = 0.1
CI	$PI = \sum_{t=1}^{6} (I$	8.65		

•
$$C_{el} = CPU_{time} * ClockRate = I_{tot} * CPI$$

• For example: AP_2 with $10*10^7$ instructions takes a second to complete on a 500Mhz CPU than CPI = $1*500*10^6/(10*10^7) = 5$

MIPS - Million Instructions Per Second and DMIPS

Performanco Analysis

Fauiliali

D 6

Performance

Dependabilit

- MIPS A theoretical peak instruction execution rate
- $MIPS = I_{tot}/(CPU_{time} * 10^6)$
 - $\Rightarrow MIPS = I_{tot}/(C_{el} * CycleTime * 10^6)$
 - $\Rightarrow MIPS = (I_{tot} * ClockRate)/(I_{tot} * CPI * 10^6)$
 - $\Rightarrow MIPS = ClockRate/(CPI * 10^6)$
- Using MIPS rating is tied to a particular program running on specific machine. MIPS rating is not a reliable measure that could be used to compare two different systems.
- DMIPS Dhrystone MIPS, on the other hand, is a useful measure
- Dhrystone is a benchmark program developed by Reinhold P. Weicker to measure a CPU's integer processing performance. Dhrystone could be obtained here http://www.netlib.org/benchmark/dhry-c

MFLOPS - Million Floating Point Operations Per Second

Performano Analysis

Padmar

/ tgcilda

.....

Performance

Speedup

Dependability

Activit

- MFLOPS A theoretical maximum floating point instruction execution rate.
- MFLOPS are measured using benchmark programs such as:
 - Whetstone : A floating point benchmark software
 - LINPACK: A software library for linear algebra written in fortran
 - LAPACK : Latest version of LINPACK

Speedup

Performano Analysis

Padman

Performance

remormance

Amdahl's Law
Dependability

Activit

 Speedup is defined by: Original CPU_{time}/NewCPU_{time}

- Overall improvement of a system's performance could be achieved by improving a subset of the system.
- Most of the performance increase come from improving the common case(s)

Amdahl's Law

- Amdahl's Law is used to calculate the overall performance improvement achieved by improving a subset of a system.
- Amdahl's Law states that performance improvement to be gained by using a faster mode is limited by the fraction of time the faster mode can be used.
- Speedup = Total performance with faster mode / Total performance without faster mode
- Speedup = Execution time without faster mode / Execution time with faster mode

Amdahl's Law

Performano Analysis

Vikram Padman

Agenda

Introduction

Performance

Amdahl's La

Dependabilit

Activit

- $Speedup_{overall} = CPU_{Oldtime}/CPU_{Newtime}$
- $CPU_{Newtime} =$

 $UnenhancedCPU_{time} + EnhancedCPU_{time}$

- $\Rightarrow CPU_{Oldtime} * (1 F_{enh})$
- $+(CPU_{Oldtime} * F_{enh})/Speedup_{enh}$
- $\Rightarrow CPU_{Oldtime} * ((1 F_{enh}) + F_{enh}/Speedup_{enh})$
- $\bullet \Rightarrow Speedup_{overall} = 1/((1 F_{enh}) + F_{enh}/Speedup_{enh})$

Implications of Amdahl's Law

Performance Analysis

Vikram Padmar

Agenda

Introduction

D---f------

Amdahl's Lav

Dependability

Activity

Dependability

- **Dependability** Today, computers are integral part of our society. It is important to understand the reliability and availability of computers.
- Metrics for dependability:
 - **MTTF**: Mean time to failure is a reliability measure
 - MTTR: Mean time to repair is a service interruption measure
 - **MTBF**: Mean time between failure is a commonly used term which is = MTTR + MTTF
 - Module availability = MTTF/(MTTF + MTTR)

Week 11 Activity 1

Performant Analysis

r adman

.

Performance

Speedup

Dependability

Activity

Read Section 1.7-Dependability in the course text book and answer the following questions:

- What is the difference between SLA, SLO, MTTF, MTBF and MTTR? Describe with examples how these metrics are used in real life. (3 pages max)
- You are being asked to build a 15TB storage vault with SAS drives + spares to replace ageing SCSI storage vault in your organization. The storage vault you build/buy should last for at least 8 years, performance is crucial, downtime is very expensive and yearly maintenance cost should be minimum.
 - Which metric(s) would you use to discriminate drives and drive models made by different manufacturers? and how?
 - Pick a SAS drive that would be suitable for the storage vault and support your decision with analysis.
 - 3 Calculate the optimal number of spare drives?
 - Which metric(s) would you use to estimate yearly maintenance cost?

Week 11 Activity 2

Performanc Analysis

> Vikram Padmar

71601100

.....

1 errormance

Dependability

Activity

Describe and explain the purpose of the following benchmark standards and software:

- BAPCo
- SPEC
- TPC
- Coremark
- Ohrystone
- Whetstone

Week 11 Activity 3

Performanc Analysis

Padman

71801100

Performano

Speedup

Dependability

Activity

Consider the following profiles of two application that are running on CPU-ZX:

	APP_1 Profile					
t	Instruction	I_t	CPI_t			
1	load	35	4			
2	store	15	2			
3	mul	2	35			
4	jump	25	10			
5	add	35	5			
6	sub	15	5			

APP_2 Profile							
t	Instruction	I_t	CPI_t				
1	load	10	4				
2	store	20	2				
3	mul	4	35				
4	jump	25	10				
5	add	25	5				
6	sub	10	5				

Answer the following questions:

- Calculate the CPI, performance and relative performance of $APP_1 \& APP_2$?
- ② Select three instruction in CPU ZX's ISA that when improved would provide the most performance increase. Support your answer with thorough analysis.
- 3 Assume that you were able to make CPI_t of the three instruction that you picked to 3. Calculate overall speedup of APP_1 and APP_2 .