Introdução à Computação Numérica Diferenciação numérica

Prof. Daniel G. Alfaro Vigo dgalfaro@ic.ufrj.br DCC-IC-UFRJ

4 🗇 ▶

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Diferenciação numérica

1/18

Aproximação linear

Interpretação geométrica da reta tangente:

Aproximação linear:

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$$

∢ 🗗 ▶

Aproximando a derivada $f'(x_0)$ por diferenças finitas

Da aproximação

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x.$$

Daí, quando $\Delta x \approx 0$, obtemos a aproximação:

$$f'(x_0) \approx \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Isso também é consequência do fato que

$$f'(x_0) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

- Se $\Delta x > 0$, dizemos que a aproximação é por diferenças finitas avançadas (fórmula progressiva).
- Se $\Delta x < 0$, dizemos que a aproximação é por diferenças finitas atrasadas (fórmula regressiva).

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Diferenciação numérica

3/18

Aproximando a derivada $f'(x_0)$ por diferenças finitas

Calculando uma média das aproximações avançada e atrasada obtemos uma melhor aproximação:

$$f'(x_0) \approx \frac{\overbrace{f(x_0 + \Delta x) - f(x_0)}^{\textit{D.f. avançada}} + \overbrace{\frac{f(x_0) - f(x_0 - \Delta x)}{\Delta x}^{\textit{D.f. atrasada}}}_{2}$$

Obtemos a aproximação por diferenças finitas centradas:

$$f'(x_0) \approx \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{2\Delta x}.$$

Aproximando a segunda derivada $f''(x_0)$

Pode ser obtida assim

$$f''(x_0)pprox \overbrace{\frac{f'(x_0+\Delta x)-f'(x_0)}{\Delta x}}^{D.f.\ avançada} \ pprox \underbrace{\frac{D.f.\ atrasada}{\Delta x}_{D.f.\ atrasada}}^{D.f.\ atrasada} \underbrace{\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}_{\Delta x}}_{\Delta x}$$

Logo, chegamos na aproximação por diferenças finitas centradas:

$$f''(x_0) \approx \frac{f(x_0 + \Delta x) - 2f(x_0) + f(x_0 - \Delta x)}{(\Delta x)^2}$$

4 🗇 →

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Diferenciação numérica

5/18

Exemplo

Para a função

$$f(x) = e^{\frac{1}{4}x + \sin(2x)}$$

temos

$$f'(x) = e^{\frac{1}{4}x + \sin(2x)} \left(\frac{1}{4} + 2\cos(2x) \right)$$
$$f''(x) = e^{\frac{1}{4}x + \sin(2x)} \left\{ \left(\frac{1}{4} + 2\cos(2x) \right)^2 - 4\sin(2x) \right\}$$

Exemplo: aproximação de f' no intervalo $[0,2\pi]$

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Diferenciação numérica

7/18

Exemplo: erros da aproximação de f' no intervalo $[0,2\pi]$

4 🗗 ▶

Exemplo: aproximação de f'' no intervalo $[0,2\pi]$

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Diferenciação numérica

9 / 18

Exemplo: erros da aproximação de f'' no intervalo $[0,2\pi]$

4 🗗 ▶

Exemplo: erros quando Δx aproxima-se de zero

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Diferenciação numérica

11 / 18

Exemplo: erros quando Δx aproxima-se de zero

Esse exemplo sugere que o erro satisfaz

$$\log(E) \approx m \, \log(\Delta x) + E_0,$$

ou seja que na escala logarítmica o erro e o Δx descrevem aproximadamente uma reta.

Logo, vamos ter que

$$E \approx 10^{E_0} (\Delta x)^m = C (\Delta x)^m.$$

Será que, em geral, os erros dessas aproximações por diferenças finitas vão ter esse comportamento?

Para responder essa questão vamos voltar aos polinômios de Taylor.

Expansão de Taylor

Expansão de Taylor de f(x) centrada em x_0 :

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0) \, \Delta x + \frac{f''(x_0)}{2} \, (\Delta x)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!} \, (\Delta x)^n + R_n(\Delta x)$$

Observação:

Se a derivada $f^{(n+1)}$ é contínua no intervalo [a,b] contendo x_0 e $x_0+\Delta x$, o resto satisfaz

$$|R_n(\Delta x)| \le M|\Delta x|^{n+1},$$

onde M não depende de Δx , podemos escolher

$$M = \max_{x \in [a,b]} \left\{ \frac{f^{(n+1)}(x)}{(n+1)!} \right\}.$$

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ Diferenciação numérica

13 / 18

Expansão de Taylor

Dizemos, então, que o resto $R_n(\Delta x)$ é de ordem n+1 quando $\Delta x \to 0$, e usamos a notação

$$R_n(\Delta x) = \mathcal{O}(\Delta x)^{n+1}.$$

Podemos re-escrever a expansão de Taylor na forma:

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0) \, \Delta x + \frac{f''(x_0)}{2} \, (\Delta x)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!} \, (\Delta x)^n + \mathcal{O}(\Delta x)^{n+1}$$

O polinômio de Taylor de ordem n fornece uma aproximação com erro de ordem n+1 quando $\Delta x \to 0$.

Erro nas aproximações por diferenças finitas

Na aproximação da primeira derivada por diferenças finitas avançadas temos

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{f(x_0) + f'(x_0) \Delta x + \mathcal{O}(\Delta x)^2 - f(x_0)}{\Delta x}$$
$$= f'(x_0) + \frac{\mathcal{O}(\Delta x)^2}{\Delta x} = f'(x_0) + \mathcal{O}(\Delta x)$$

As diferenças finitas avançadas/atrasadas dão aproximações da primeira derivada com erros de primeira ordem quando $\Delta x \rightarrow 0$.

$$f'(x_0) = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} + \mathcal{O}(\Delta x)$$
 (D. f. avançada)

$$f'(x_0) = \frac{f(x_0) - f(x_0 - \Delta x)}{\Delta x} + \mathcal{O}(\Delta x)$$
 (D. f. atrasada)

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Diferenciação numérica

15 / 18

Erro nas aproximações por diferenças finitas (cont.)

Aproximando a primeira derivada por diferenças finitas centradas temos

$$\frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{\Delta x} =$$

$$= \frac{1}{2\Delta x} \left\{ f(x_0) + f'(x_0) \Delta x + \frac{f''(x_0)}{2} (\Delta x)^2 + \mathcal{O}(\Delta x)^3 - \left(f(x_0) + f'(x_0) (-\Delta x) + \frac{f''(x_0)}{2} (-\Delta x)^2 + \mathcal{O}(\Delta x)^3 \right) \right\}$$

$$= \frac{2f'(x_0) \Delta x + \mathcal{O}(\Delta x)^3}{2\Delta x} = f'(x_0) + \mathcal{O}(\Delta x)^2$$

As diferenças finitas centradas dão aproximações da primeira derivada com erros de segunda ordem quando $\Delta x \to 0$.

$$f'(x_0) = \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{2\Delta x} + \mathcal{O}(\Delta x)^2$$
 (D. f. centrada)

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ Diferenciação numérica

16 / 18

Erro nas aproximações por diferenças finitas (cont.)

Exercícios:

• Mostrar que a aproximação de f'' por diferenças finitas centradas satisfaz:

$$f''(x_0) = \frac{f(x_0 + \Delta x) - 2f(x_0) + f(x_0 - \Delta x)}{(\Delta x)^2} + \mathcal{O}(\Delta x)^2$$

• Mostrar que a seguinte aproximação de f^\prime por diferenças finitas avançadas satisfaz:

$$f'(x_0) = \frac{-f(x_0 + 2\Delta x) + 4f(x_0 + \Delta x) - 3f(x_0)}{2\Delta x} + \mathcal{O}(\Delta x)^2$$

ullet Escreva uma aproximação de f' por diferenças finitas atrasadas análoga à do item anterior.

4 🗗 ▶

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Diferenciação numérica

17 / 18

Exemplo: erros quando Δx aproxima-se de zero

Infelizmente, a propagação dos erros de arredondamento podem atrapalhar a acurácia das aproximações!

