

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba

Engenharia Mecatrônica – Departamento d	le Eletrônica (DAELN)
Disciplina: Eletricidade Prof. José Jair Alv	es Mendes Júnior

Aluno:	Data
Alulio:	Data

Experiência 5 – Máxima Transferência de Potência e Leis de Kirchhoff

Antes da aula de laboratório, cada aluno deve fazer os cálculos e preencher as tabelas com os valores teóricos e, quando for o caso, montar e soldar previamente cada circuito que será testado. Deve-se preparar os cabos para as medidas de corrente em cada circuito que será testado.

- 1. Objetivos de Aprendizagem
- Verificar, experimentalmente, o teorema da máxima transferência de potência;
- Levantar, experimentalmente, a curva da potência em função da corrente;
- Levantar, experimentalmente, as Leis de Kirchhoff.
- 2. Componentes utilizados
- Resistores de 1/4W: 100Ω , 270Ω , 470Ω , 680Ω , $1k\Omega$ e 2,2k Ω ;
- Pilhas de 1,5V com suporte;
- Fonte de tensão variável 0V-12V;
- Protoboard;
- Multímetro digital.
- 3. Experiência 5

3.1 Máxima Transferência de Potência

Um gerador real apresenta perdas internas, representada por uma resistência em série com o gerador real, como mostra a Figura 1. Isto significa que a potência disponível para a carga (Pu) é a potência gerada pelo gerador ideal menos a potência perdida na sua resistência interna.

Assim, a potência útil na carga ($P_U = V_L \times I$) é a potência gerada pelo gerador ideal ($P_G = E \times I$) menos a potência dissipada na resistência interna ($P_p = r \times I^2$) como apresenta a equação (1)

$$P_U = V_L \times I = P_G - P_P = E \times I - r \times I^2$$
 (1)

A potência na carga representa uma função de 2° grau, em que "E" e "r" são parâmetros constantes. Na Figura 2, pode-se observar o comportamento quadrático da potência útil na carga em função da corrente. A potência útil na carga é zero quando a corrente é zero ou quando $E = r \times I$, situação na qual a carga está em curto-circuito. A corrente de curto-circuito é $I_{CC} = E/r$.

Figura 1 – Circuito com o gerador real.

Figura 2 – Potência na carga em função da corrente.

Como a parábola é uma figura simétrica, observa-se que a potência útil na carga será máxima quando a corrente for igual a I_o, que é igual a I_{cc}/2. Substituindo na equação (1) I por I_o, obtém-se a máxima potência útil na carga, como apresenta a equação (2).

$$P_{U M \acute{a} x} = E \times \frac{E}{2r} - r \times \left(\frac{E}{2r}\right)^2 = \frac{E^2}{4r}$$
 (2)

A tensão disponível para a carga no ponto de máxima potência é dada pela equação (3)

$$V_L = E - rI_o = E - r \times \left(\frac{E}{2r}\right) = \frac{E}{2}$$
(3)

A partir dessa fundamentação:

- Monte o circuito da Figura 3, ajuste a fonte E em 10V.
- Para cada valor de resistência de carga (R_L), anote na Tabela 1 os valores da tensão na carga (V_L) e corrente (I) calculados e medidos;
- Com os valores medidos, calcule a potência útil na carga $(P_U = V_L \times I)$ e construa o gráfico $P_U = f(I)$;
 - Para qual valor de R_L se obtém a máxima potência? Justifique.

Figura 3 – Circuito para verificação da máxima transferência de potência.

Tabela 1

RL	0	100	270	470	680	2,2k	∞
VL calculado [V]							
V _L medido [V]							
I calculado [mA]							
I medido [mA]							
Pu [mW]							

3.2 Leis de Kirchhoff

Para o circuito da Figura 4:

- Calcule as duas correntes de malha (I_A e I_B), as correntes nos ramos (I_1 , I_2 e I_3) e as tensões nos resistores (V_{R1} , V_{R2} e V_{R3}) e anote na Tabela 2;
 - Monte o circuito (utilizar as pilhas para as fontes E₂ e E₃);
 - Faça a medição das grandezas calculadas e anote na Tabela 2.
 - A partir do nó 1, comprovar a 1ª Lei de Kirchhoff;
 - A partir de uma das malhas do circuito, comprovar a 2ª Lei de Kirchhoff.

Figura 4 – Circuito para verificação das Leis de Kirchhoff

Tabela 2:

Parâmetro	Calculado	Medido
IA		
I_{B}		
V_{R1}		
V_{R2}		
V_{R3}		
I_1		
I ₂		
I ₃		

Comprovação da 1ª Lei de Kirchhoff:
Comprovação da 2ª Lei de Kirchhoff: