华东理工大学

概率论与数理统计

作业簿 (第八册)

学	院	专	业	班 级
学	号	姓	名	任课教师

第15次作业

- 填空题:
- 1. 已知二维随机变量 (ξ,η) 的联合概率分布为

η	0	1	
0	0.1	0.15	
1	0.25	0.2	
2	0.15	0.15	

则

$$E\xi = \underline{\hspace{1cm}}, E\eta = \underline{\hspace{1cm}}, E\left(\sin\frac{\pi}{2}(\xi + \eta)\right) = \underline{\hspace{1cm}}, E\left(\max(\xi, \eta)\right) = \underline{\hspace{1cm}},$$

 $D(\max(\xi,\eta)) = \underline{\hspace{1cm}}_{\circ}$

2. 设随机变量 ξ_1, ξ_2, ξ_3 相互独立, $\xi_1 \sim U(0,6)$, $\xi_2 \sim N(0,4)$, $\xi_3 \sim E(3)$,则:

- 3. 己知 $X \sim N(-2,0.4^2)$,则 $E(X+3)^2 =$
- 二. 选择题:
- 1) 设 $\xi \sim N(0,1)$, $\eta \sim N(0,4)$, $\zeta = \xi + \eta$, 下列说法正确的是 ()。

A.
$$\zeta \sim N(0,5)$$

B.
$$E c = 0$$

C.
$$Dc = 5$$

A.
$$\zeta \sim N(0,5)$$
 B. $E\zeta = 0$ C. $D\zeta = 5$ D. $\sqrt{D\zeta} = 3$

- 2) 设 X_1, X_2, X_3 相互独立同服从参数 $\lambda = 3$ 的泊松分布,令 $Y = \frac{1}{3}(X_1 + X_2 + X_3)$, 则 $E(Y^2) = ($
- A. 1. B. 9. C. 10. 3)设 $X \sim P(\lambda)$,且 E[(X-1)(X-2)]=1,则 $\lambda = (X-1)(X-2)$ D. 6.
 - - A. 1,
- B. 2,
- C. 3,
- D. 0

- 二. 计算题:
- 1. 设二维随机变量 (ξ,η) 的联合概率密度函数为

$$p(x,y) = \begin{cases} \frac{1}{8}(x+y) & 0 < x < 2, 0 < y < 2 \\ 0 & \text{ 其他} \end{cases}$$

求 $E\xi$, $E\eta$, $E(\xi\eta)$ 。

- 2. 二维随机变量(ξ,η) 服从以点(0, 1),(1, 0),(1, 1)为顶点的三角形区域上的均 匀分布, 试求 $E(\xi+\eta)$ 和 $D(\xi+\eta)$ 。
- 3. 有 10 个人同乘一辆长途汽车,沿途有 20 个车站,每到一个车站时,如果没 有人下车,则不停车。设每位乘客在各站下车是等可能的,且各乘客是否下车是 相互独立的,求停车次数的数学期望。
- 4. 某厂生产一种化工产品,这种产品每月的市场需求量 ξ (单位: 吨)服从 [0.5] 上的均匀分布。这种产品生产出来后,在市场上每售出1吨可获利6万元。如果 产量大于需求量,则每多生产1吨要亏损4万元。如果产量小于需求量,则不亏 损,但只有生产出来的那一部分产品能获利。问:为了使每月的平均利润达到最 大,这种产品的月产量 a 应该定为多少吨?这时,平均每月利润是多少元?
- 5. 设随机变量 X, Y 独立同分布,且 $X \sim N(0,1/2)$,求 D|X-Y|

第16次作业

 选择题:
7 L 1 + LX

- 1. 随机变量 X 与 Y 独立同分布, U = X + Y , V = X Y , 则 U 与 V ()
 - A. 独立
- B. 不独立 C. 相关 D.不相关

- 2. 设随机变量 ξ 与 η 的方差存在且不等于 0,则 $D(\xi+\eta)=D\xi+D\eta$ 是 ξ 与 η 的 什么条件(

 - A. 独立的充要条件 B. 独立的充分条件, 但不是必要条件

 - C. 不相关的充要条件 D. 不相关的充分条件, 但不是必要条件
- 3. 对于任意两个随机变量X和Y,若 $E(XY) = E(X) \cdot E(Y)$,则 ()
 - $\Delta D(XY) = D(X) \cdot D(Y)$

 $B \cap D(X+Y) = D(X) + D(Y)$

C) X和Y独立

D) *X* 和 *Y* 不独立

二. 填空题:

- 1. 已知 $D\xi = 4$, $D\eta = 9$,则当 $D(\xi \eta) = 12$ 时, $\rho_{\xi\eta} =$ _____;当 $\rho_{\xi\eta} = 0.4$ 时, $D(\xi + \eta) = \underline{\hspace{1cm}}_{\circ}$
- 2. 设 D(X) = 25, D(Y) = 36, $\rho_{xy} = 0.4$,则 $D(X + Y) = \underline{\hspace{1cm}}$ 。
- 3. 设二维随机变量(ξ,η) ~ N(1, 4; 1, 4; 0.5), $\zeta = \xi \eta$,则 $cov(\xi,\zeta) =$ _____ .

三. 计算题

1. 已知随机变量 ξ 、 η 的概率分布分别为

$$\begin{array}{c|cccc} \eta & 0 & 1 \\ \hline \\ P\{\eta = y_j\} & \frac{1}{2} & \frac{1}{2} \end{array}$$

而且 $P\{\xi \eta = 0\} = 1$ 。

(1)求 ξ 、 η 的联合概率分布; (2)问 ξ 、 η 是否独立? (3)求 $\zeta = \max(\xi,\eta)$ 概率分布

2. 已知二维随机变量 (ξ,η) 的联合概率分布为

η	0	1	2	3	
1	0	$\frac{3}{8}$	$\frac{3}{8}$	0	
3	$\frac{1}{8}$	0	0	$\frac{1}{8}$	

(1)求 $ho_{\mathfrak{H}}$; (2) ξ 与 η 是否独立?说明理由。

3. 设二维随机变量 (ξ,η) 的联合概率密度函数为

$$p(x,y) = \begin{cases} 3x & 0 < y < x < 1 \\ 0 & 其他 \end{cases}$$

求 ξ 与 η 的相关系数。

4. 设两个随机变量 ξ,η , $E\xi=-2,E\eta=4,D\xi=4,D\eta=9,\rho_{\xi\eta}=-0.5$,求 $E(3\xi^2-2\xi\eta+\eta^2-3)\, \circ$

5. 设二维随机变量(X,Y)的相关系数为 ρ_{XY} ,而 $\xi=aX+b,\eta=cY+d$,其中 a,b,c,d为常量,并且已知ac>0,试证 $\rho_{\xi\eta}=\rho_{XY}$ 。