用单纯形法求解线性规划

张腾*

2023年12月14日

线性规划是在一组线性等式或不等式的约束下, 求线性目标函数最值的问题, 现实中的许多问题都可化为线性规划问题。

例 1 (分数背包问题). 设背包承重量为 10, 各物品价值如下:

	物品1	物品2	物品3	物品4
重量	4	7	5	3
价值	40	42	25	12

现允许物品按比例取走部分, 求最大装包方案。

对 $i \in [4]$, 设物品 i 取走的比例为 x_i , 可得如下线性规划

max
$$40x_1 + 42x_2 + 25x_3 + 12x_4$$

s.t. $4x_1 + 7x_2 + 5x_3 + 3x_4 \le 10$
 $0 \le x_1, x_2, x_3, x_4 \le 1$

注. 如果不允许物品按比例取走部分,约束 $0 \le x_1, x_2, x_3, x_4 \le 1$ 将变成 $x_1, x_2, x_3, x_4 \in \{0, 1\}$,此时问题就变成了整数线性规划,比线性规划要难得多。

例 2 (最大流). 给定如下的流网络, 求最大流。

^{*}tengzhang@hust.edu.cn

设 9 条边上的流量分别为 x_1, \ldots, x_9 , 可得如下线性规划

max
$$x_1 + x_2$$

s.t. $0 \le x_1 \le 16$
 $0 \le x_2 \le 13$
 $0 \le x_3 \le 4$
 $0 \le x_4 \le 12$
 $0 \le x_5 \le 9$
 $0 \le x_6 \le 14$
 $0 \le x_7 \le 7$
 $0 \le x_8 \le 20$
 $0 \le x_9 \le 4$
 $x_1 + x_3 - x_4 = 0$
 $x_2 + x_5 - x_3 - x_6 = 0$
 $x_4 + x_7 - x_5 - x_8 = 0$
 $x_6 - x_7 - x_9 = 0$

其中前9个不等式约束对应容量限制,后4个等式约束对应流量守恒。

 \mathbb{R}^2 中的线性规划只有 2 个变量,线性等式约束是一条直线,线性不等式约束是一个半平面,可采用图解法。

例 3. 考虑如下线性规划

max
$$3x_1 + 5x_2$$

s.t. $x_1 + 5x_2 \le 40$
 $2x_1 + x_2 \le 20$
 $x_1 + x_2 \le 12$
 $x_1, x_2 \ge 0$

先确定可行域,即满足所有约束的可行解构成的集合。该例中共有 5 个线性不等式约束,每个对应一个半平面,因此可行域为 5 个半平面相交出的凸五边形 (图1中红色部分)。

引入直线簇 $y = 3x_1 + 5x_2$,其中不同的 y 对应不同的直线,这些直线都是平行的。先将 y 取为一个较大的值使直线与凸五边形不相交,然后逐渐减小 y,这相当于从上向下平移直线 $y = 3x_1 + 5x_2$ 使其逐渐靠近凸五边形,当其与凸五边形相切时,切点就是最优解,

图 1: 直线簇与可行域相切于最优解 (5,7) 处, 目标函数最优值为 50。

1 标准型

当变量多于 2 个时,图解法就不再适用了,需要更一般性的方法。对此,要先将问题转化为如下的标准型 (不等式只约束变量非负,其余都是等式约束):

$$\max \quad c^{\top} x$$
s.t.
$$\mathbf{A}x = b$$

$$x \ge 0$$

其中

$$c = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

不失一般性可设 $b \ge 0$, 若某个 $b_i < 0$, 对该约束两边取反即可。对一般形式的线性规划,可按以下步骤将其转化成标准型:

- 对非正变量 $x \le 0$, $\Rightarrow y = -x$ 作为替代;
- 对无约束变量 x, 将其表示成两个非负变量的差 x = u v;
- 对 $a^{T}x \le b$ 型不等式约束,引入松弛变量 $y \ge 0$ 将其转化为等式约束 $a^{T}x + y = b$;
- 对 $a^{T}x \geq b$ 型不等式约束,引入剩余变量 $y \geq 0$ 将其转化为等式约束 $a^{T}x y = b$ 。

例 4. 将如下线性规划转化为标准型

$$\max x_2 - x_1$$

s.t.
$$3x_1 = x_2 - 5$$

 $|x_2| \le 2$
 $x_1 \le 0$

 x_1 非正, 令 $y_1 = -x_1 \ge 0$ 作为替代, x_2 无约束, 令 $x_2 = y_2 - y_3$, 其中 $y_2 \ge 0$ 、 $y_3 \ge 0$, 注意

$$|x_2| \le 2 \iff \begin{cases} y_2 - y_3 \le 2 \iff y_2 - y_3 + y_4 = 2, \ y_4 \ge 0 \\ -y_2 + y_3 \le 2 \iff -y_2 + y_3 + y_5 = 2, \ y_5 \ge 0 \end{cases}$$

于是可得标准型

max
$$y_1 + y_2 - y_3$$

s.t. $3y_1 + y_2 - y_3 = 5$
 $y_2 - y_3 + y_4 = 2$
 $-y_2 + y_3 + y_5 = 2$
 $y_1, y_2, y_3, y_4, y_5 \ge 0$

2 基本解

所有可行解都是线性方程组 $\mathbf{A}x = a_1x_1 + \cdots + a_nx_n = \mathbf{b}$ 的解,不失一般性可设 $\mathrm{rank}(\mathbf{A}) = m$,即 \mathbf{A} 是行满秩矩阵,否则存在冗余约束。此外设 m < n,即线性等式约束个数严格小于变量个数,否则可行域为单点集或空集。

从 \mathbf{A} 的列中挑选 m 个线性无关的列作为基向量,不妨就取 \mathbf{A} 的前 m 列,否则做列交换使前 m 列线性无关 (列对应的 x 分量也要跟着交换),这样 \mathbf{A} 可写成分块矩阵

$$\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{D} \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} a_1 & \cdots & a_m \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} a_{m+1} & \cdots & a_n \end{bmatrix} \in \mathbb{R}^{m \times (n-m)}$

其中 B 是 m 阶可逆方阵。求解 $Bx_B = b$ 可得 $x_B = B^{-1}b$, 显然

$$\hat{x} \triangleq egin{bmatrix} x_{\mathrm{B}} \\ 0 \end{bmatrix}, \quad \mathbf{A}\hat{x} = egin{bmatrix} \mathbf{B} & \mathbf{D} \end{bmatrix} egin{bmatrix} x_{\mathrm{B}} \\ 0 \end{bmatrix} = \mathbf{B}x_{\mathrm{B}} = b$$

如此构造的 \hat{x} 称为 $\mathbf{A}x = \mathbf{b}$ 在基 \mathbf{B} 下的基本解, $x_{\mathbf{B}}$ 中的元素称为基变量,即基本解中的非基变量都是 0。如果基本解也是线性规划的可行解 (所有变量非负),则称为基本可行解。

定理 5 (线性规划基本定理). 对于线性规划的标准型, 有如下两个命题:

- 1. 如果存在可行解,则一定存在基本可行解;
- 2. 如果存在最优可行解,则一定存在最优基本可行解。

证明. 1. 设 x 是一个可行解并有 p 个正元素,不失一般性,可设前 p 个元素为正,于是

$$\mathbf{A}\mathbf{x} = \mathbf{a}_1\mathbf{x}_1 + \cdots + \mathbf{a}_p\mathbf{x}_p = \mathbf{b}$$

此时分两种情况:

- a_1, \ldots, a_p 线性无关,则 $p \le m$ 。若 p = m,x 就是基本可行解;若 p < m,从 A 的剩余列中挑选 m p 个列与 a_1, \ldots, a_p 构成基,此时 x 就是对应该基的基本可行解。
- a_1, \ldots, a_p 线性相关,可以去掉一些冗余列使其线性无关,从而转化为前一种情况。设不全为零的 实数 y_1, \ldots, y_p 使得 $a_1y_1 + \cdots + a_py_p = 0$ 且至少某个 $y_i > 0$,否则对所有 y_i 取反即可,于是对任意 ϵ 有

$$\boldsymbol{b} = \boldsymbol{a}_1(x_1 - \epsilon y_1) + \dots + \boldsymbol{a}_p(x_p - \epsilon y_p) = \mathbf{A}(x - \epsilon y), \quad \boldsymbol{y} \triangleq \begin{bmatrix} y_1 \\ \vdots \\ y_p \\ \mathbf{0} \end{bmatrix}$$

让 ϵ 从 0 增大直到 $x - \epsilon y$ 的前 p 个正分量出现 0,即取 $\hat{\epsilon} = \min\{x_i/y_i : y_i > 0, i \in [p]\}$,这样就得到了只有 p-1 个正分量的可行解,重复该操作直到正分量对应的列线性无关。

2. 设 x 是一个最优可行解且前 p 个元素为正,若 a_1,\ldots,a_p 线性无关,证明同命题 1; 若 a_1,\ldots,a_p 线性相关,可继续沿用命题 1 中去冗余列的方式,但还需证明对任意 ϵ , $x-\epsilon y$ 都是最优解,这只需证明 $c^{\top}y=0$ 。注意只要 $|\epsilon|\leq \min\{|x_i/y_i|:y_i\neq 0,i\in[p]\}$, $x-\epsilon y$ 都是可行解,因此若 $c^{\top}y\neq 0$,根据其符号总能取某个充分小的 ϵ 使得 $c^{\top}(x-\epsilon y)=c^{\top}x-\epsilon c^{\top}y>c^{\top}x$,这与 x 是最优解矛盾。

根据该定理,线性规划的求解可转化为对基本可行解的搜索问题,依次对基本可行解的最优性进行检查即可。

3 几何视角下的线性规划

线性规划属于凸优化的范畴,线性目标函数显然是凸函数,可行域 $\Omega=\{x\mid \mathbf{A}x=b,x\geq \mathbf{0}\}$ 是凸集,因为对 $\forall x_1,x_2\in\Omega$ 和 $\forall \alpha\in(0,1)$ 有

$$\mathbf{A}(\alpha x_1 + (1 - \alpha)x_2) = \alpha \mathbf{A}x_1 + (1 - \alpha)\mathbf{A}x_2 = \alpha b + (1 - \alpha)b = b, \quad \alpha x_1 + (1 - \alpha)x_2 \ge 0$$

即连接 Ω 内任意两点的线段依然属于 Ω 。对凸集 Ω 中的点 x,若它无法表示成 Ω 中另外两点的凸组合,则称 x 为 Ω 的极点,即

$$x$$
是极点, $x = \alpha x_1 + (1 - \alpha)x_2$, $\alpha \in (0,1) \Longrightarrow x_1 = x_2 = x$

定理 6. $x \in \Omega = \{x \mid Ax = b, x \geq 0\}$ 的极点当且仅当 $x \in Ax = b, x \geq 0$ 的基本可行解。

例 7. 再看例3中的线性规划:

max
$$3x_1 + 5x_2$$

s.t. $x_1 + 5x_2 \le 40$
 $2x_1 + x_2 \le 20$

$$x_1 + x_2 \le 12$$
$$x_1, x_2 \ge 0$$

先转化为标准型,为 3 个线性不等式约束分别引入松弛变量 x_3 、 x_4 、 x_5 可得线性方程组

$$\begin{bmatrix} 1 & 5 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}}_{a_1} x_1 + \underbrace{\begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}}_{a_2} x_2 + \underbrace{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}}_{a_3} x_3 + \underbrace{\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}}_{a_4} x_4 + \underbrace{\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}}_{a_5} x_5 = \underbrace{\begin{bmatrix} 40 \\ 20 \\ 12 \end{bmatrix}}_{b}$$

显然取 a_3 、 a_4 、 a_5 作为基向量,即令 x_3 、 x_4 、 x_5 作为基变量,可得基本可行解

$$40a_3 + 20a_4 + 12a_5 = b$$
, $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & 0 & 40 & 20 & 12 \end{bmatrix}$

对应 \mathbb{R}^2 中可行域的极点 [0,0],目标函数值 0 < 50,因此还不是最优解。

根据迭代改进的思路,需要从当前极点移动到邻近的可使目标函数值增大的极点。现选择 a_1 作为新的基向量 (入基) 并移除原来的某个基向量 (出基),注意 $a_1 = a_3 + 2a_4 + a_5$,于是

$$\epsilon a_1 + (40 - \epsilon)a_3 + (20 - 2\epsilon)a_4 + (12 - \epsilon)a_5 = b,$$

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ \epsilon & 0 & 40 - \epsilon & 20 - 2\epsilon & 12 - \epsilon \end{bmatrix}$$

让 ϵ 从 0 增大, x_1 变成正数, x_3 、 x_4 、 x_5 逐渐变小, 当 ϵ 增大到 10 时, x_4 减小到 0, 即 a_4 出基, 得到一个新的基本可行解

$$10a_1 + 30a_3 + 2a_5 = b$$
, $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 10 & 0 & 30 & 0 & 2 \end{bmatrix}$

对应 \mathbb{R}^2 中可行域的极点 [10,0], 目标函数值 30 < 50, 依然不是最优解。

重复前面的操作, 现选择 a_2 作为新的基向量, 注意 $a_2 = \frac{1}{2}a_1 + \frac{9}{2}a_3 + \frac{1}{2}a_5$, 于是

$$\left(10 - \frac{1}{2}\epsilon\right)a_1 + \epsilon a_2 + \left(30 - \frac{9}{2}\epsilon\right)a_3 + \left(2 - \frac{1}{2}\epsilon\right)a_5 = b, \quad \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 10 - \frac{1}{2}\epsilon & \epsilon & 30 - \frac{9}{2}\epsilon & 0 & 2 - \frac{1}{2}\epsilon \end{bmatrix}$$

让 ϵ 从 0 增大, x_2 变成正数, x_1 、 x_3 、 x_5 逐渐变小, 当 ϵ 增大到 4 时, x_5 减小到 0, 即 a_5 出基, 得到一个新的基本可行解

$$10a_1 + 30a_3 + 2a_5 = b, \quad \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 8 & 4 & 12 & 0 & 0 \end{bmatrix}$$

对应 \mathbb{R}^2 中可行域的极点 [8,4],目标函数值 44 < 50,依然不是最优解。

重复前面的操作,现选择 a_4 作为新的基向量,注意 $a_4=a_1-a_2+4a_3$,于是

$$(8-\epsilon)a_1+(4+\epsilon)a_2+(12-4\epsilon)a_3+\epsilon a_4=b, \quad \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 8-\epsilon & 4+\epsilon & 12-4\epsilon & \epsilon & 0 \end{bmatrix}$$

让 ϵ 从 0 增大, x_4 变成正数, x_1 、 x_3 逐渐变小 (x_2 变大不用管, 不会破坏非负约束), 当 ϵ 增大到 x_3 减小到 x_4 0, 即 x_4 0, 即 x_5 0, 即 x_5 0, 即 x_6 0

$$5a_1 + 7a_2 + 3a_4 = b$$
, $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 5 & 7 & 0 & 3 & 0 \end{bmatrix}$

对应 \mathbb{R}^2 中可行域的极点 [5,7],目标函数值 50,这就是最优解。

这种从一个极点转移到另一个极点、迭代改进的操作方式就是单纯形法求线性规划的基本思路。

4 单纯形法

设当前基向量为 a_1, \ldots, a_m , 待入基向量为 a_q , 例 7 中每轮迭代都要将 b 和 a_q 用当前基线性表出

$$b = y_{10}a_1 + \dots + y_{m0}a_m \tag{1}$$

$$a_q = y_{1q}a_1 + \dots + y_{mq}a_m \tag{2}$$

$$(y_{10} - \epsilon y_{1q})a_1 + \cdots + (y_{m0} - \epsilon y_{mq})a_m + \epsilon a_q = b$$

让 ϵ 从 0 增大直到某个 a_p 出基,其中 $p = \operatorname{argmin}_i\{y_{i0}/y_{iq}: y_{iq} > 0\}$ 。

式(1)和式(2)中的系数如何得到呢?根据线性方程组理论,对 $\mathbf{A}x = \mathbf{b}$ 的增广矩阵做初等行变换

$$\begin{bmatrix} \mathbf{B} & a_{m+1} & \cdots & a_n & \mathbf{b} \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{I}_m & \mathbf{B}^{-1} a_{m+1} & \cdots & \mathbf{B}^{-1} a_n & \mathbf{B}^{-1} \mathbf{b} \end{bmatrix}$$

当基 \mathbf{B} 变成单位阵时,第 q 列和最后一列就是 \mathbf{a}_a 和 \mathbf{b} 的线性表出系数。至此还剩两个问题:

- 1. 如何确定入基向量 a_a ;
- 2. 如何确定当前解是否为最优解。

下面考察基本可行解变化时目标函数值的变化,将标准型根据对 A 的分块重写为

max
$$c_{\mathrm{B}}^{\top}x_{\mathrm{B}} + c_{\mathrm{D}}^{\top}x_{\mathrm{D}}$$

s.t. $\mathbf{B}x_{\mathrm{B}} + \mathbf{D}x_{\mathrm{D}} = b$
 $x_{\mathrm{B}}, x_{\mathrm{D}} \geq 0$

$$\hat{z} = c_{\mathbf{B}}^{\top} x_{\mathbf{B}} = c_{\mathbf{B}}^{\top} \mathbf{B}^{-1} b$$

• 若 $x_{\mathrm{D}} \neq 0$,则 $x_{\mathrm{B}} = \mathrm{B}^{-1}b - \mathrm{B}^{-1}\mathrm{D}x_{\mathrm{D}}$,对应的目标函数值为

$$z = c_{\mathrm{B}}^{\top} x_{\mathrm{B}} + c_{\mathrm{D}}^{\top} x_{\mathrm{D}} = c_{\mathrm{B}}^{\top} (\mathbf{B}^{-1} b - \mathbf{B}^{-1} \mathbf{D} x_{\mathrm{D}}) + c_{\mathrm{D}}^{\top} x_{\mathrm{D}} = c_{\mathrm{B}}^{\top} \mathbf{B}^{-1} b - (c_{\mathrm{B}}^{\top} \mathbf{B}^{-1} \mathbf{D} - c_{\mathrm{D}}^{\top}) x_{\mathrm{D}} = \hat{z} - r_{\mathrm{D}}^{\top} x_{\mathrm{D}}$$

其中 $r_{\mathbf{D}}^{\top} = c_{\mathbf{B}}^{\top} \mathbf{B}^{-1} \mathbf{D} - c_{\mathbf{D}}^{\top}$ 称为检验数。

注意 $x_D \ge 0$,若 $r_D \ge 0$,则 $z \ge \hat{z}$,即关于基 B 的基本可行解就是最优解,这就回答了前面的问题 2。若 r_D 中某个分量为负,则将 x_D 中对应的非基变量从 0 变为正数可使目标函数值变大,也即该非基变量对应的列入基,这就回答了前面的问题 1。

基于此,构造单纯形表

$$egin{bmatrix} \mathbf{A} & oldsymbol{b} \ -oldsymbol{c}^ op & 0 \end{bmatrix} = egin{bmatrix} \mathbf{B} & \mathbf{D} & oldsymbol{b} \ -oldsymbol{c}_{\mathbf{B}}^ op & -oldsymbol{c}_{\mathbf{D}}^ op & 0 \end{bmatrix}$$

先做初等行变换将基 B 变成单位阵

$$\begin{bmatrix} \mathbf{B}^{-1} & \mathbf{0} \\ \mathbf{0}^\top & 1 \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{D} & \boldsymbol{b} \\ -\boldsymbol{c}_{\mathbf{B}}^\top & -\boldsymbol{c}_{\mathbf{D}}^\top & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_m & \mathbf{B}^{-1}\mathbf{D} & \mathbf{B}^{-1}\boldsymbol{b} \\ -\boldsymbol{c}_{\mathbf{B}}^\top & -\boldsymbol{c}_{\mathbf{D}}^\top & 0 \end{bmatrix}$$

再做初等行变换将最后一行基变量对应的 $-c_{\mathrm{B}}^{\mathsf{T}}$ 变成 $\mathbf{0}^{\mathsf{T}}$

$$\begin{bmatrix} \mathbf{I}_m & \mathbf{0} \\ c_{\mathrm{B}}^{\mathrm{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_m & \mathbf{B}^{-1}\mathbf{D} & \mathbf{B}^{-1}\boldsymbol{b} \\ -c_{\mathrm{B}}^{\mathrm{T}} & -c_{\mathrm{D}}^{\mathrm{T}} & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_m & \mathbf{B}^{-1}\mathbf{D} & \mathbf{B}^{-1}\boldsymbol{b} \\ \mathbf{0}^{\mathrm{T}} & c_{\mathrm{B}}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{D} - c_{\mathrm{D}}^{\mathrm{T}} & c_{\mathrm{B}}^{\mathrm{T}}\mathbf{B}^{-1}\boldsymbol{b} \end{bmatrix}$$

这张表里包含了一切我们需要的信息

- $B^{-1}D$ 里的每列就是该列向量在当前基下的线性表示系数:
- $B^{-1}b$ 是当前基对应的基本可行解中的基变量值;
- $c_{\mathbf{B}}^{\mathsf{T}}\mathbf{B}^{-1}\mathbf{D} c_{\mathbf{D}}^{\mathsf{T}}$ 就是检验数,可以指示下一个入基向量和是否已达最优解;
- $c_{\mathbf{n}}^{\mathsf{T}} \mathbf{B}^{-1} b$ 就是当前基本可行解对应的目标函数值

例 8. 用单纯形法再求例3中的线性规划, 先转化为标准型:

max
$$3x_1 + 5x_2$$

s.t. $\begin{bmatrix} 1 & 5 & 1 & & \\ 2 & 1 & & 1 & \\ 1 & 1 & & & 1 \end{bmatrix} x = \begin{bmatrix} 40 \\ 20 \\ 12 \end{bmatrix}$
 $x > 0$

初始单纯形表为

此时 x_3 、 x_4 、 x_5 是基变量,基本可行解为

对应 \mathbb{R}^2 中可行域的极点 [0,0], 由于检验数还有负值,因此还不是最优解。 取检验数绝对值最大的负数对应的列入基,即 a_2 入基。注意

$$b = 40a_3 + 20a_4 + 12a_5$$
, $a_2 = 5a_3 + 1a_4 + 1a_5$

计算 $argmin\{40/5, 20/1, 12/1\}$ 可知 a_3 出基。做初等行变换

此时 x_2 、 x_4 、 x_5 是基变量,基本可行解为

对应 \mathbb{R}^2 中可行域的极点 [0,8], 由于检验数还有负值, 因此还不是最优解。

根据检验数 a_1 入基, 计算 $argmin\{8/0.2, 12/1.8, 4/0.8\}$ 可知 a_5 出基。做初等行变换

此时 x_1 、 x_2 、 x_4 是基变量,基本可行解为

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & o \\ 5 & 7 & 0 & 3 & 0 & 50 \end{bmatrix}$$

对应 \mathbb{R}^2 中可行域的极点 [5,7],由于检验数均非负,已达最优解。

例 9. 用单纯形法求例1中的分数背包问题, 先转化为标准型:

初始单纯形表为

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	ı
x_5	4	7	5	3	1					10
x_6	1					1				1
x_7		1					1			1
x_8			1					1		1
<i>x</i> ₉				1					1	1
	-40	-42	-25	-12						0

此时 x_5 、 x_6 、 x_7 、 x_8 、 x_9 是基变量,基本可行解为

根据检验数 a_2 入基, 计算 $argmin\{10/7,1/1\}$ 可知 a_7 出基。做初等行变换

此时 x_2 、 x_5 、 x_6 、 x_8 、 x_9 是基变量,基本可行解为

根据检验数 a_1 入基,计算 $argmin\{3/4,1/1\}$ 可知 a_5 出基。做初等行变换

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	1 			x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	
x_1	1		5/4	3/4	1/4		-7/4			3/4		$\overline{x_1}$	1		5/4	3/4	1/4		-7/4			3/4
x_6	1					1				1		x_6			-5/4	$-3/_{4}$	-1/4	1	$^{7}/_{4}$			$^{1}/_{4}$
x_2		1					1			1	\Longrightarrow	x_2		1					1			1
x_8			1					1		1		x_8			1					1		1
<i>x</i> ₉				1					1	1		<i>x</i> ₉				1					1	1
	-40		-25	-12			42			42					25	18	10	40	-28			72

此时 x_1 、 x_2 、 x_6 、 x_8 、 x_9 是基变量,基本可行解为

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 & 0 \\ 3/4 & 1 & 0 & 0 & 0 & 1/4 & 0 & 1 & 1 & 72 \end{bmatrix}$$

根据检验数 a_7 入基, 计算 $argmin\{1/7,1/1\}$ 可知 a_6 出基。做初等行变换

此时 x_1 、 x_2 、 x_7 、 x_8 、 x_9 是基变量,基本可行解为

由于检验数均非负,已达最优解。

注. 分数背包问题也可采用贪心法来做。

例 10. 用单纯形法求例2中的最大流问题, 先转化为标准型:

max
$$x_1 + x_2$$

s.t. $x_1 + y_1 = 16$
 $x_2 + y_2 = 13$
 $x_3 + y_3 = 4$
 $x_4 + y_4 = 12$
 $x_5 + y_5 = 9$
 $x_6 + y_6 = 14$
 $x_7 + y_7 = 7$
 $x_8 + y_8 = 20$
 $x_9 + y_9 = 4$
 $x_1 + x_3 - x_4 = 0$
 $x_2 + x_5 - x_3 - x_6 = 0$
 $x_4 + x_7 - x_5 - x_8 = 0$
 $x_6 - x_7 - x_9 = 0$
 $x_7 + x_8 + x_8 = 0$

共有 18 个变量、13 个等式约束,因此基变量有 13 个,非基变量有 5 个。初始不妨取 x_1 、 x_2 、 x_4 、 x_5 、

 x_7 为非基变量,将基变量由 x_1 、 x_2 、 x_4 、 x_5 、 x_7 表出:

$$x_{3} = -x_{1} + x_{4} \implies x_{1} + x_{3} - x_{4} = 0 \implies -x_{1} + x_{4} + y_{3} = 4$$

$$x_{8} = x_{4} - x_{5} + x_{7} \implies -x_{4} + x_{5} - x_{7} + x_{8} = 0 \implies x_{4} - x_{5} + x_{7} + y_{8} = 20$$

$$x_{6} = x_{2} + x_{5} - x_{3} \implies -x_{1} - x_{2} + x_{4} - x_{5} + x_{6} = 0 \implies x_{1} + x_{2} - x_{4} + x_{5} + y_{6} = 14$$

$$x_{9} = x_{6} - x_{7} \implies -x_{1} - x_{2} + x_{4} - x_{5} + x_{7} + x_{9} = 0 \implies x_{1} + x_{2} - x_{4} + x_{5} - x_{7} + y_{9} = 4$$

初始单纯形表为

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y 9	i I
x_3	1		1	-1															0
x_6	-1	-1		1	-1	1													0
x_8				-1	1		-1	1											0
χ_9	-1	-1		1	-1		1		1										0
y_1	1									1									16
y_2		1									1								13
y_3	-1			1								1							4
y_4				1									1						12
y_5					1									1					9
y_6	1	1		-1	1										1				14
y_7							1									1			7
y_8				1	-1		1										1		20
<u>y</u> 9_	1	_ 1 _		1	1		1											_ 1	4
	-1	-1																	0

基本可行解为

 a_1 、 a_2 的检验数均为 -1,不妨让 a_2 入基,计算 $\mathrm{argmin}\{^{13}/_1,^{14}/_1,^{4}/_1\}$ 可知 a_{18} 出基。做初等行变换

	x_1	x_2	x_3	χ_4	x_5	x_6	x_7	x_8	x_9	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	<i>y</i> ₉	i I
x_3	1		1	-1															0
x_6						1	-1											-1	4
x_8				-1	1		-1	1											0
<i>x</i> ₉									1									1	4
y_1	1									1									16
y_2	-1			1	-1		1				1							-1	9
y_3	-1			1								1							4
y_4				1									1						12
y_5					1									1					9
y_6							1								1			-1	10
y_7							1									1			7
y_8				1	-1		1										1		20
x_2	1	1		-1	_ 1		-1											1	4
				-1	1		-1											1	4

 a_4 、 a_7 的检验数均为 -1,不妨让 a_7 入基,计算 $\mathrm{argmin}\{9/1,10/1,7/1,20/1\}$ 可知 a_{16} 出基。做初等行变换

	x_1	x_2	x_3	χ_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y 9	i I
x_3	1		1	-1															0
x_6						1										1		-1	11
x_8				-1	1			1								1			7
χ_9									1									1	4
y_1	1									1									16
y_2	-1			1	-1						1					-1		-1	2
y_3	-1			1								1							4
y_4				1									1						12
y_5					1									1					9
y_6															1	-1		-1	3
x_7							1									1			7
y_8				1	-1											-1	1		13
x_2	1	_1		-1	_ 1											1		_ 1	11
				-1	1											1		1	11

根据检验数 a_4 入基,计算 $argmin\{2/1,4/1,12/1,13/1\}$ 可知 a_{11} 出基。做初等行变换

	x_1	x_2	x_3	χ_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	y_1	y_2	<i>y</i> ₃	y_4	y_5	y_6	y_7	y_8	y 9	ı
x_3			1		-1						1					-1		-1	2
x_6						1										1		-1	11
x_8	-1							1			1							-1	9
χ_9									1									1	4
y_1	1									1									16
x_4	-1			1	-1						1					-1		-1	2
y_3					1						-1	1				1		1	2
y_4	1				1						-1		1			1		1	10
y_5					1									1					9
y_6															1	-1		-1	3
x_7							1									1			7
y_8	1										-1						1	1	11
x_2		_1									1								13
	-1										1								13

根据检验数 a_1 入基, 计算 $argmin\{^{16/1},^{10/1},^{11/1}\}$ 可知 a_{13} 出基。做初等行变换

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y 9	1
x_3			1		-1						1					-1		-1	2
x_6						1										1		-1	11
x_8					1			1					1			1			19
<i>X</i> ₉									1									1	4
y_1					-1					1	1		-1			-1		-1	6
x_4				1									1						12
y_3					1						-1	1				1		1	2
x_1	1				1						-1		1			1		1	10
y_5					1									1					9
y_6															1	-1		-1	3
x_7							1									1			7
y_8					-1								-1			-1	1		1
x_2		1_									_ 1 _								13
					1								1			1		1	23

对应的流网络为

由于检验数均非负,已达最优解。

注. 在最大流的例子中,初始单纯形表中不存在单位阵,需先做一步初等行变换,也可采用两阶段单纯形法。