Philip Schulz and Wilker Aziz

https:
//github.com/philschulz/VITutorial

The problem with Standard Distributions

Normalising Flows

Use Case 1: Density Estimation

Use Case 2: Inference (sampling)

Summary

### The problem with Standard Distributions

Normalising Flows

Use Case 1: Density Estimation

Use Case 2: Inference (sampling)

Summary

### The Case of Pictures

Have you modeled pixels as Gaussian variables? Do we really believe that the pixels follow a Gaussian distribution?

# The case of Word Embeddings

### Posterior Approximations

We often use exponential families to approximate posteriors. Thus we assume unimodal posteriors. Is that realistic?

Counter example

Gaussian mixture model

### The problem with Standard Distributions

### Normalising Flows

Use Case 1: Density Estimation

Use Case 2: Inference (sampling)

Summary

### Recap: Reparametrisation

Express the density of a variable Y in terms of the density of a variable X. Assume that a differentiable, invertible mapping  $h: \mathcal{X} \to \mathcal{Y}$  exists.

$$h(x) = y$$

### Recap: Reparametrisation

Express the density of a variable Y in terms of the density of a variable X. Assume that a differentiable, invertible mapping  $h: \mathcal{X} \to \mathcal{Y}$  exists.

$$h(x) = y$$
 $p(y) = p(h^{-1}(y))|\det J_{h^{-1}}(y)| = p(x)|\det J_{h^{-1}}(y)|$ 
 $p(x) = p(h(x))|\det J_{h}(x)| = p(y)|\det J_{h}(x)|$ 

### Recap: Reparametrisation

Express the density of a variable Y in terms of the density of a variable X. Assume that a differentiable, invertible mapping  $h: \mathcal{X} \to \mathcal{Y}$  exists.

$$h(x) = y$$
 $p(y) = p(h^{-1}(y))|\det J_{h^{-1}}(y)| = p(x)|\det J_{h^{-1}}(y)|$ 
 $p(x) = p(h(x))|\det J_{h}(x)| = p(y)|\det J_{h}(x)|$ 

### The Challenge

The mapping h (or its inverse) needs to be defined.

### **Approach**

Let's learn the transformation h (or its inverse).

### Approach

Let's learn the transformation h (or its inverse).

#### **Problem**

If we want p(y), we need to provide  $|\det J_{h^{-1}}(y)|$  in the forward pass. But that's hard!

We are going to devise ways to get  $|\det J_{h^{-1}}(y)|$ .

#### Core Idea

Decompose mapping  $h: \mathcal{X} \to \mathcal{Y}$  into

$$h = h_1 \circ h_2 \circ \ldots \circ h_K$$
.

#### Core Idea

Decompose mapping  $h: \mathcal{X} \to \mathcal{Y}$  into

$$h = h_1 \circ h_2 \circ \ldots \circ h_K$$
.

#### Core Idea

Decompose mapping  $h: \mathcal{X} \to \mathcal{Y}$  into

$$h = h_1 \circ h_2 \circ \ldots \circ h_K$$
.

$$h^{-1} = h_K^{-1} \circ h_{K-1}^{-1} \circ \ldots \circ h_1^{-1}$$

#### Core Idea

Decompose mapping  $h: \mathcal{X} \to \mathcal{Y}$  into

$$h = h_1 \circ h_2 \circ \ldots \circ h_K$$
.

$$h^{-1} = h_{K}^{-1} \circ h_{K-1}^{-1} \circ \dots \circ h_{1}^{-1}$$

$$p(x) = p(y) |\det J_{h_{1}}(y^{(1)})| |\det J_{h_{2}}(y^{(2)})| \dots |\det J_{h_{K}}(x)|$$

#### Core Idea

Decompose mapping  $h: \mathcal{X} \to \mathcal{Y}$  into

$$h = h_1 \circ h_2 \circ \ldots \circ h_K$$
.

$$h^{-1} = h_{K}^{-1} \circ h_{K-1}^{-1} \circ \dots \circ h_{1}^{-1}$$

$$p(x) = p(y) \left| \det J_{h_{1}} \left( y^{(1)} \right) \right| \left| \det J_{h_{2}} \left( y^{(2)} \right) \right| \dots \left| \det J_{h_{K}} \left( x \right) \right|$$

$$p(y) = p(x) \left| \det J_{h_{1}^{-1}} \left( y^{(K-1)} \right) \right| \left| \det J_{h_{2}^{-1}} \left( y^{(K-2)} \right) \right| \dots \left| \det J_{h_{1}^{-1}} \left( y \right) \right|$$

The problem with Standard Distributions

Normalising Flows

Use Case 1: Density Estimation

Use Case 2: Inference (sampling)

Summary

### Setting

Our data x is has unknown continuous density p(x). We can therefore not handcraft a likelihood.

### Setting

Our data x is has unknown continuous density p(x). We can therefore not handcraft a likelihood.

#### Goal

### Setting

Our data x is has unknown continuous density p(x). We can therefore not handcraft a likelihood.

#### Goal

$$p(x) = p(\epsilon) |\det J_h(x)|$$

### Setting

Our data x is has unknown continuous density p(x). We can therefore not handcraft a likelihood.

#### Goal

$$p(x) = p(\epsilon) |\det J_h(x)|$$

$$= p(\epsilon) |\det J_{h_1}(\epsilon^{(1)})| |\det J_{h_2}(\epsilon^{(2)})| \dots |\det J_{h_K}(x)|$$

### Setting

Our data x is has unknown continuous density p(x). We can therefore not handcraft a likelihood.

#### Goal

$$p(x) = p(\epsilon)|\det J_h(x)|$$

$$= p(\epsilon)|\det J_{h_1}(\epsilon^{(1)})||\det J_{h_2}(\epsilon^{(2)})|\dots|\det J_{h_K}(x)|$$

$$= p(h_1(\epsilon^{(1)}))|\det J_{h_1}(\epsilon^{(1)})|\dots|\det J_{h_K}(x)|$$

# 2-step Flow

$$p(x) = p(\epsilon) \left| \det J_{h_1^{-1}} \left( \epsilon^{(1)} \right) \right| \left| \det J_{h_2^{-1}} \left( x \right) \right|$$

# 2-step Flow

$$p(x) = p(\epsilon) \left| \det J_{h_1^{-1}} \left( \epsilon^{(1)} \right) \right| \left| \det J_{h_2^{-1}} (x) \right|$$

$$= p(h_1^{-1} (h_2^{-1} (x))) \left| \det J_{h_1^{-1}} \left( h_2^{-1} (x) \right) \right| \left| \det J_{h_2^{-1}} (x) \right|$$

# 2-step Flow

$$p(x) = p(\epsilon) \left| \det J_{h_1^{-1}} \left( \epsilon^{(1)} \right) \right| \left| \det J_{h_2^{-1}} (x) \right|$$

$$= p(h_1^{-1}(h_2^{-1}(x))) \left| \det J_{h_1^{-1}} \left( h_2^{-1}(x) \right) \right| \left| \det J_{h_2^{-1}} (x) \right|$$

The transformations  $h_1^{-1}$  and  $h_2^{-1}$  are learned by backprop. The determinants need to be computed analytically.

Assume:  $x_i = (x_{i1}, x_{i2}, \dots x_{iM})$ . Then factorise the density according to the chain rule.

$$\log p(x_i|\theta) = \sum_{j=1}^{M} \log p(x_{ij}|x_{i,< j}\theta)$$

Next assume an invertible mapping  $h(x_{ij}) = \epsilon_{ij}$ . Simple Mapping

$$h(x) = \epsilon$$
$$h^{-1}(\epsilon) = x$$

Assume:  $x_i = (x_{i1}, x_{i2}, \dots x_{iM})$ . Then factorise the density according to the chain rule.

$$\log p(x_i|\theta) = \sum_{j=1}^{M} \log p(x_{ij}|x_{i,< j}\theta)$$

Next assume a mapping  $h(x_{ij}) = \epsilon_{ij}$ . Flow Mapping

$$h_1 \circ h_2 \circ \ldots \circ h_K(x) = \epsilon$$
  
$$h_K^{-1} \circ h_{K-1}^{-1} \circ \ldots \circ h_1^{-1}(\epsilon) = x$$

### MADE (Germain et al., 2015)

An autoregressive network that takes constant time. Its connectivity matrix is lower-triangular.

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 & 0 \end{bmatrix}$$















We use a MADE  $g_{\theta}^{(2)}$  to predict the parameters of the first transformation:  $\begin{bmatrix} \mu_j & \sigma_j \end{bmatrix} = g_{\theta}^{(2)}(x_{< j})$ . Then we apply the first transformation.

$$\epsilon_j^{(1)} = h_2^{-1}(x)_j = \frac{x - \mu(x_{< j})}{\sigma(x_{< j})}$$

We use a MADE  $g_{\theta}^{(2)}$  to predict the parameters of the first transformation:  $\begin{bmatrix} \mu_j & \sigma_j \end{bmatrix} = g_{\theta}^{(2)}(x_{< j})$ . Then we apply the first transformation.

$$\epsilon_j^{(1)} = h_2^{-1}(x)_j = \frac{x - \mu(x_{< j})}{\sigma(x_{< j})}$$
 $\epsilon_j^{(1)} = h_2^{-1}(x) = \frac{x - \mu}{\sigma}$ 

We use a MADE  $g_{\theta}^{(2)}$  to predict the parameters of the first transformation:  $\begin{bmatrix} \mu_j & \sigma_j \end{bmatrix} = g_{\theta}^{(2)}(x_{< j})$ . Then we apply the first transformation.

$$\epsilon_j^{(1)} = h_2^{-1}(x)_j = \frac{x - \mu(x_{< j})}{\sigma(x_{< j})}$$
 $\epsilon_j^{(1)} = h_2^{-1}(x) = \frac{x - \mu}{\sigma(x_{< j})}$ 

The Jacobian is

$$J_{h_{2}^{-1}}\left( x\right) =$$

We use a MADE  $g_{\theta}^{(2)}$  to predict the parameters of the first transformation:  $\begin{bmatrix} \mu_j & \sigma_j \end{bmatrix} = g_{\theta}^{(2)}(x_{< j})$ . Then we apply the first transformation.

$$\epsilon_j^{(1)} = h_2^{-1}(x)_j = \frac{x - \mu(x_{< j})}{\sigma(x_{< j})}$$
 $\epsilon_j^{(1)} = h_2^{-1}(x) = \frac{x - \mu}{\sigma(x_{< j})}$ 

The Jacobian is

$$J_{h_2^{-1}}(x) = I \sigma^{-1} + J_{\frac{-\mu}{\sigma}}(x)$$

Define 
$$\alpha_{Ij} = \frac{d}{dx_I} \frac{-\mu_j}{\sigma_j}$$
.

$$J_{h_{\mathcal{K}}^{-1}}(x) = \mathsf{I}\,\sigma^{-1} + J_{\frac{-\mu}{\sigma}}(x) =$$

Define 
$$\alpha_{Ij} = \frac{d}{dx_I} \frac{-\mu_j}{\sigma_j}$$
.

$$J_{h_K^{-1}}(x) = I \sigma^{-1} + J_{\frac{-\mu}{\sigma}}(x) = \begin{bmatrix} \sigma_{11}^{-1} & 0 & \cdots & 0 & 0 \\ 0 & \sigma_{22}^{-1} & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \sigma_{mm}^{-1} \end{bmatrix}$$

Define 
$$\alpha_{Ij} = \frac{d}{dx_I} \frac{-\mu_j}{\sigma_j}$$
.

$$J_{h_K^{-1}}(x) = I \sigma^{-1} + J_{\frac{-\mu}{\sigma}}(x) = \begin{bmatrix} \sigma_{11}^{-1} & 0 & \cdots & 0 & 0 \\ 0 & \sigma_{22}^{-1} & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \sigma_{mm}^{-1} \end{bmatrix} + \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ \alpha_{21} & 0 & \cdots & 0 & 0 \\ \alpha_{31} & \alpha_{32} & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{m,m-1} & 0 \end{bmatrix}$$

#### Simple Jacobian Determinant

$$\left|\det J_{h_2^{-1}}(x)\right| = \prod_{j=1}^{M} \sigma_j^{-1}$$

#### Simple Jacobian Determinant

$$\left|\det J_{h_2^{-1}}(x)\right| = \prod_{j=1}^{M} \sigma_j^{-1}$$

In practice we work with the log-likelihood.

$$\left| \log \left| \det J_{h_2^{-1}}(x) \right| = -\sum_{j=1}^{M} \log \sigma_j \right|$$

$$p(x) = p(\epsilon) \left| \det J_{h_1^{-1}} \left( \epsilon^{(1)} \right) \right| \left| \det J_{h_2^{-1}} \left( x \right) \right|$$
$$= p(h_1^{-1}(h_2^{-1}(x))) \left| \det J_{h_1^{-1}} \left( h_2^{-1}(x) \right) \right| \left| \det J_{h_2^{-1}} \left( x \right) \right|$$

$$\begin{aligned} p(x) &= p(\epsilon) \Big| \det J_{h_1^{-1}} \left( \epsilon^{(1)} \right) \Big| \Big| \det J_{h_2^{-1}} \left( x \right) \Big| \\ &= p(h_1^{-1}(h_2^{-1}(x))) \Big| \det J_{h_1^{-1}} \left( h_2^{-1}(x) \right) \Big| \Big| \det J_{h_2^{-1}} \left( x \right) \Big| \\ \log p(x) &= \log p(h_1^{-1}(h_2^{-1}(x))) \end{aligned}$$

$$p(x) = p(\epsilon) \left| \det J_{h_1^{-1}} \left( \epsilon^{(1)} \right) \right| \left| \det J_{h_2^{-1}} \left( x \right) \right|$$

$$= p(h_1^{-1}(h_2^{-1}(x))) \left| \det J_{h_1^{-1}} \left( h_2^{-1}(x) \right) \right| \left| \det J_{h_2^{-1}} \left( x \right) \right|$$

$$\log p(x) = \log p(h_1^{-1}(h_2^{-1}(x))) - \sum_{j=1}^{M} \log \sigma_j^{(2)} - \sum_{j=1}^{M} \log \sigma_j^{(1)}$$

$$p(x) = p(\epsilon) \left| \det J_{h_1^{-1}} \left( \epsilon^{(1)} \right) \right| \left| \det J_{h_2^{-1}} (x) \right|$$

$$= p(h_1^{-1}(h_2^{-1}(x))) \left| \det J_{h_1^{-1}} \left( h_2^{-1}(x) \right) \right| \left| \det J_{h_2^{-1}} (x) \right|$$

$$\log p(x) = \log p(h_1^{-1}(h_2^{-1}(x))) - \sum_{j=1}^{M} \log \sigma_j^{(2)} - \sum_{j=1}^{M} \log \sigma_j^{(1)}$$

$$\epsilon^{(1)} = h_2^{-1} = \frac{x - \mu^{(2)}}{\sigma^{(2)}} \text{ where } \left[ \mu^{(2)}, \sigma^{(2)} \right] = g^{(2)}(x)$$

$$\begin{aligned} p(x) &= p(\epsilon) \Big| \det J_{h_1^{-1}} \left( \epsilon^{(1)} \right) \Big| \Big| \det J_{h_2^{-1}} (x) \Big| \\ &= p(h_1^{-1}(h_2^{-1}(x))) \Big| \det J_{h_1^{-1}} \left( h_2^{-1}(x) \right) \Big| \Big| \det J_{h_2^{-1}} (x) \Big| \\ \log p(x) &= \log p(h_1^{-1}(h_2^{-1}(x))) - \sum_{j=1}^{M} \log \sigma_j^{(2)} - \sum_{j=1}^{M} \log \sigma_j^{(1)} \\ \epsilon^{(1)} &= h_2^{-1} = \frac{x - \mu^{(2)}}{\sigma^{(2)}} \text{ where } \left[ \mu^{(2)}, \sigma^{(2)} \right] = g^{(2)}(x) \\ \epsilon &= h_1^{-1} = \frac{\epsilon^{(1)} - \mu^{(1)}}{\sigma^{(1)}} \text{ where } \left[ \mu^{(1)}, \sigma^{(1)} \right] = g^{(1)}(\epsilon^{(1)}) \end{aligned}$$

## Intermediate Summary

- NFs map transform complex distributions to simpler ones (or vice versa)
- Use in density estimation for complex distributions
- Jacobian needs to be carefully designed
- Sampling is slow because sequential

The problem with Standard Distributions

Normalising Flows

Use Case 1: Density Estimation

Use Case 2: Inference (sampling)

Summary

### Setting

We have a generative model p(x|z). We want to approximate the posterior p(z|x) using an amortized variational distribution q(z|x) computed by a neural net.

#### Setting

We have a generative model p(x|z). We want to approximate the posterior p(z|x) using an amortized variational distribution q(z|x) computed by a neural net.

#### Goal

We want a complex, multimodal approximate posterior q(z|x).

### Normalising Flows: Inference

$$\begin{aligned} \mathsf{ELBO} &= - \, \mathsf{KL} \left( p(z|x) \mid\mid \, q(z|x) \right) \\ &= \mathbb{E}_{q(z|\lambda)} \left[ \log p(x|z) \right] - \mathsf{KL} \left( q(z|\lambda) \right) \mid\mid \, p(z) \right) \\ &= \underbrace{\mathbb{E}_{q(\epsilon)} \left[ \log p(x|h^{-1}(\epsilon)) \right]}_{\mathsf{sample} \; z} - \underbrace{\mathsf{KL} \left( q(z|\lambda) \mid\mid \, p(z) \right)}_{\mathsf{assess \; density}} \end{aligned}$$

#### Simple Mapping

$$h(z) = \epsilon \text{ s.t. } \epsilon \perp \lambda$$
  
 $h^{-1}(\epsilon) = z$ 

### Normalising Flows: Inference

$$\begin{split} &- \mathsf{KL}\left(q(z|x) \mid\mid p(z|x)\right) \propto \mathsf{ELBO} = \\ &= \mathbb{E}_{q(z|\lambda)}\left[\log p(x|z)\right] - \mathsf{KL}\left(q(z|\lambda)\right) \mid\mid p(z)\right) \\ &= \underbrace{\mathbb{E}_{q(\epsilon)}\left[\log p(x|h^{-1}(\epsilon))\right]}_{\mathsf{sample}\ z} - \underbrace{\mathsf{KL}\left(q(z|\lambda)\mid\mid p(z)\right)}_{\mathsf{assess\ density}} \end{split}$$

#### Flow Mapping

$$h_1(h_2(\ldots h_K(z))) = \epsilon \text{ s.t. } \epsilon \perp \lambda$$
  
 $h_K^{-1}(h_{K-1}^{-1}(\ldots h_1^{-1}(\epsilon))) = z$ 

$$q(z^{(2)}) = q(\epsilon) \left| \det J_{h_1}\left(\mathbf{z^{(1)}}\right) \right| \left| \det J_{h_2}\left(z^{(2)}\right) \right|$$

$$\begin{aligned} q(z^{(2)}) &= q(\epsilon) \big| \text{det } J_{h_1}\left(z^{(1)}\right) \big| \big| \text{det } J_{h_2}\left(z^{(2)}\right) \big| \\ &= q(h_1(h_2(z^{(2)}))) \big| \text{det } J_{h_1}\left(h_2(z^{(2)})\right) \big| \big| \text{det } J_{h_2}\left(z^{(2)}\right) \big| \end{aligned}$$

$$q(z^{(2)}) = q(\epsilon) |\det J_{h_1}(z^{(1)})| |\det J_{h_2}(z^{(2)})|$$

$$= q(h_1(h_2(z^{(2)}))) |\det J_{h_1}(h_2(z^{(2)}))| |\det J_{h_2}(z^{(2)})|$$

The transformations  $h_1^{-1}$  and  $h_2^{-1}$  are learned by backprop. The determinants need to be computed analytically.

We are again going to use a MADE to predict parameters. However, this time we will use it in the other direction.

 $\mathcal{N}\left(0,\mathsf{I}\right)$   $\epsilon_1$   $\epsilon_2$   $\epsilon_3$   $\epsilon_4$ 





We use a MADE  $f_{\lambda}$  to predict the parameters of the first transformation:  $\begin{bmatrix} \mu_j & \sigma_j \end{bmatrix} = f_{\lambda}(\epsilon_{< j})$ . Then we apply the first transformation.

$$z_j^{(1)} = h_1(\epsilon)_j = \mu(\epsilon_{< j}) + \sigma(\epsilon_{< j})\epsilon_j$$

We use a MADE  $f_{\lambda}$  to predict the parameters of the first transformation:  $\begin{bmatrix} \mu_j & \sigma_j \end{bmatrix} = f_{\lambda}(\epsilon_{< j})$ . Then we apply the first transformation.

$$z_j^{(1)} = h_1(\epsilon)_j = \mu(\epsilon_{< j}) + \sigma(\epsilon_{< j})\epsilon_j$$
  
$$z^{(1)} = h_1(\epsilon) = \mu + \sigma\epsilon$$

We use a MADE  $f_{\lambda}$  to predict the parameters of the first transformation:  $\begin{bmatrix} \mu_j & \sigma_j \end{bmatrix} = f_{\lambda}(\epsilon_{< j})$ . Then we apply the first transformation.

$$z_j^{(1)} = h_1(\epsilon)_j = \mu(\epsilon_{< j}) + \sigma(\epsilon_{< j})\epsilon_j$$
  
 $z^{(1)} = h_1(\epsilon) = \mu + \sigma\epsilon$   
 $J_{h_1}(\epsilon) = I \sigma + J_{\mu}(\epsilon) + J_{\sigma\epsilon}(\epsilon)$ 

#### Simple Jacobian Determinant

$$\left|\det J_{h_1}\left(\epsilon
ight)
ight|=\prod_{j=1}^{M}\sigma_{j}$$

In practice we work with the log-likelihood.

$$\left| \log \left| \det J_{h_1}\left(\epsilon
ight) 
ight| = \sum_{j=1}^{M} \log \sigma_{j}$$

$$q(z^{(2)}) = q(\epsilon) |\det J_{h_1}(z^{(1)})| |\det J_{h_2}(z^{(2)})|$$
  
=  $q(h_1(h_2(z^{(2)}))) |\det J_{h_1}(h_2(z^{(2)}))| |\det J_{h_2}(z^{(2)})|$ 

$$egin{aligned} q(z^{(2)}) &= q(\epsilon) ig| \det J_{h_1}\left(z^{(1)}
ight) ig| ig| \det J_{h_2}\left(z^{(2)}
ight) ig| \\ &= q(h_1(h_2(z^{(2)}))) ig| \det J_{h_1}\left(h_2(z^{(2)})\right) ig| ig| \det J_{h_2}\left(z^{(2)}\right) ig| \\ \log q(z^{(2)}) &= \log q(h_1(h_2(z^{(2)}))) + \sum_{j=1}^M \log \sigma_j^{(1)} + \sum_{j=1}^M \log \sigma_j^{(2)} \end{aligned}$$

$$\begin{split} q(z^{(2)}) &= q(\epsilon) \big| \text{det } J_{h_1}\left(\mathbf{z^{(1)}}\right) \big| \big| \text{det } J_{h_2}\left(z^{(2)}\right) \big| \\ &= q(h_1(h_2(\mathbf{z^{(2)}}))) \big| \text{det } J_{h_1}\left(h_2(\mathbf{z^{(2)}})\right) \big| \big| \text{det } J_{h_2}\left(z^{(2)}\right) \big| \big| \\ \log q(z^{(2)}) &= \log q(h_1(h_2(\mathbf{z^{(2)}}))) + \sum_{j=1}^{M} \log \sigma_j^{(1)} + \sum_{j=1}^{M} \log \sigma_j^{(2)} \\ z^{(1)} &= \mu^{(1)} + \sigma^{(1)} \epsilon \text{ where } \left[\mu^{(1)}, \sigma^{(1)}\right] = f_{\lambda}^{(1)}(\epsilon) \end{split}$$

$$\begin{split} q(z^{(2)}) &= q(\epsilon) \big| \text{det } J_{h_1}\left(\mathbf{z}^{(1)}\right) \big| \big| \text{det } J_{h_2}\left(z^{(2)}\right) \big| \\ &= q(h_1(h_2(\mathbf{z}^{(2)}))) \big| \text{det } J_{h_1}\left(h_2(\mathbf{z}^{(2)})\right) \big| \big| \text{det } J_{h_2}\left(z^{(2)}\right) \big| \\ \log q(z^{(2)}) &= \log q(h_1(h_2(\mathbf{z}^{(2)}))) + \sum_{j=1}^{M} \log \sigma_j^{(1)} + \sum_{j=1}^{M} \log \sigma_j^{(2)} \\ z^{(1)} &= \mu^{(1)} + \sigma^{(1)} \epsilon \text{ where } \left[\mu^{(1)}, \sigma^{(1)}\right] = f_{\lambda}^{(1)}(\epsilon) \\ z^{(2)} &= \mu^{(2)} + \sigma^{(2)} z^{(1)} \text{ where } \left[\mu^{(2)}, \sigma^{(2)}\right] = f_{\lambda}^{(2)}(z^{(1)}) \end{split}$$

$$\mathsf{ELBO} = \mathbb{E}_{q(z|\lambda)} \left[ \log p(x|z) \right] - \mathsf{KL} \left( q(z^{(2)}|\lambda) \right) \mid\mid p(z^{(2)}) \right) =$$

$$\mathsf{ELBO} = \mathbb{E}_{q(z|\lambda)} \left[ \log p(x|z) \right] - \mathsf{KL} \left( q(z^{(2)}|\lambda) \right) \mid\mid p(z^{(2)}) \right) = \\ \mathbb{E}_{q(z|\lambda)} \left[ \log p(x|z) \right] - \mathsf{KL} \left( q(\epsilon) \middle| \det J_h \left( z^{(2)} \right) \middle| \mid\mid p(z) \right)$$

#### KL-term

$$\mathsf{KL}\left(q(\epsilon)\middle|\mathsf{det}\,J_h\left(z^{(2)}\right)\middle|\,||\,p(z)\right) =$$

#### KI-term

$$\mathsf{KL}\left(q(\epsilon)\middle|\det J_h\left(z^{(2)}\right)\middle|\mid\mid p(z)\right) = \ \mathbb{E}_{q(z^{(2)}|\lambda))}\left[rac{q(\epsilon)\middle|\det J_h\left(z^{(2)}\right)\middle|}{p(z^{(2)})}
ight]$$

#### KI-term

$$\begin{aligned} & \mathsf{KL}\left(q(\epsilon)\middle|\mathsf{det}\,J_h\left(z^{(2)}\right)\middle|\,||\,\,p(z)\right) = \\ & \mathbb{E}_{q(z^{(2)}|\lambda))}\left[\frac{q(\epsilon)\middle|\mathsf{det}\,J_h\left(z^{(2)}\right)\middle|}{p(z^{(2)})}\right] & \overset{\mathsf{MC}}{\approx} \frac{1}{S}\sum_{s=1}^{S}\frac{q(\epsilon)\middle|\mathsf{det}\,J_h\left(z^{(2,s)}\right)\middle|}{p(z^{(2,s)})} \end{aligned}$$

#### KI-term

$$\begin{aligned} & \mathsf{KL}\left(q(\epsilon)\middle|\mathsf{det}\,J_h\left(z^{(2)}\right)\middle|\,||\,\,p(z)\right) = \\ & \mathbb{E}_{q(z^{(2)}|\lambda))}\left[\frac{q(\epsilon)\middle|\mathsf{det}\,J_h\left(z^{(2)}\right)\middle|}{p(z^{(2)})}\right] \overset{\mathsf{MC}}{\approx} \frac{1}{S}\sum_{s=1}^{S}\frac{q(\epsilon)\middle|\mathsf{det}\,J_h\left(z^{(2,s)}\right)\middle|}{p(z^{(2,s)})} \end{aligned}$$

#### Jacobian

#### KI-term

$$\begin{split} & \mathsf{KL}\left(q(\epsilon)\middle|\mathsf{det}\,J_h\left(z^{(2)}\right)\middle|\,||\,\,p(z)\right) = \\ & \mathbb{E}_{q(z^{(2)}|\lambda))}\left[\frac{q(\epsilon)\middle|\mathsf{det}\,J_h\left(z^{(2)}\right)\middle|}{p(z^{(2)})}\right] \overset{\mathsf{MC}}{\approx} \frac{1}{S}\sum_{s=1}^S \frac{q(\epsilon)\middle|\mathsf{det}\,J_h\left(z^{(2,s)}\right)\middle|}{p(z^{(2,s)})} \end{split}$$

#### Jacobian

$$\left| \det J_h \left( z^{(2,s)} \right) \right| = \sum_{j=1}^M \log \sigma_j^{(1)} + \sum_{j=1}^M \log \sigma_j^{(2)}$$

# Other Appliations of Normalizing Flows

- ► As a prior
- Modeling of dynamic systems

#### Summary

- NFs model arbitrary continuous distributions
- They allow for density computation
- Need to have simple Jacobian
- Depending on direction, they are good at either sampling or density computation (not both)

#### References I

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for distribution estimation. In Francis Bach and David Blei, editors, *Proceedings of the 32nd International Conference on Machine Learning*, pages 881–889, 2015.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron C. Courville. Neural autoregressive flows. *CoRR*, 2018. URL http://arxiv.org/abs/1804.00779.

#### References II

Diederik P. Kingma, Tim Salimans, and Max Welling. Improving variational inference with inverse autoregressive flow. 2016. URL <a href="http://arxiv.org/abs/1606.04934">http://arxiv.org/abs/1606.04934</a>.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *ICML*, pages 1530–1538, 2015. URL http://proceedings.mlr.press/v37/rezende15.pdf.