PHY226M, Problem Set 1

Special Theory of Relativity March 2025

- 1. (a) Write Lorentz transformation in matrix form.
 - (b) Use the property $(\gamma^2 \gamma^2 \beta^2) = 1$ to rewrite the Lorentz transformation matrix in terms of $\cosh \phi$ and $\sinh \phi$, where $\tanh \phi = \beta$. We will call the resulting matrix $\Lambda(\phi(\beta))$.
 - (c) Show that $\Lambda(\phi(\beta_1))\Lambda(\phi(\beta_2)) = \Lambda(\phi(\beta_1) + \phi(\beta_2))$
- 2. Muons are often created when cosmic rays interact with the upper atmosphere. Let's say muons are moving with velocity close to the speed of light; $\beta = 0.9999$. Will these muons reach the ground, given an atmospheric thickness of about 10 km? Discuss classical result and the relativistic result.
 - Side note: thanks to time dilation, it may be possible some day to build a muon-collider. https://home.cern/science/accelerators/muon-collider.
- 3. Two lumps of clay, each of rest mass m_0 , collide head on at speed $\frac{3}{5}c$. They stick together and come to rest. The mass of the composite lump is M_0 . Show that $M_0 > 2m_0$.
- 4. Start from the relation $E^2 = c^2 p^2 + m_0^2 c^4$ and show that $\frac{dE}{dp} = u$, where u is the velocity of the object and m_0 is the rest mass of the object.
- 5. Using the velocity addition rule, show that
 - (a) $\beta = \frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2}$, where $\beta_1 = v/c$, $\beta_2 = u_x'/c$ and $\beta = u_x/c$
 - (b) Write the expression of 1β and prove that value of β will be within 0 to 1, if values of β_1 and β_2 are within 0 to 1.
- 6. The passage of light through a medium (eg. water) is characterised by a refractive index n. Velocity of light relative to the medium is c/n. Suppose that such a medium is moving with speed v parallel to the direction of the light. What will be the observation of a stationary observer about the velocity (V) of light? You can assume v << c.
- 7. Frame S' has a speed v=0.6c relative to S. Clocks are adjusted so that t=t'=0 at x=x'=0. Two events occur. Event 1 occurs at $x_1=10$ m, $t_1=2\times 10^{-7}$ sec $(y_1=0,\,z_1=0)$. Event 2 occurs at $x_2=50$ m, $t_2=3\times 10^{-7}$ sec $(y_2=0,\,z_2=0)$.
 - (a) What is the distance between the events as measured in S'?
 - (b) What is the time between the events as measured in S'?

- 8. Write down the expression of relativistic kinetic energy (K) of an object in terms of rest mass (m_0) of the object, velocity (u) of the object and the speed of light (c). Show that if we assume $u \ll c$, then the expression of K becomes similar to what we expect from Newtonian mechanics, i.e., $K = \frac{1}{2}m_0u^2$.
- 9. Write down the relation between kinetic energy (K) and momentum $(|\vec{p}| = p)$ of an object in relativity. From there, show that if the velocity of the object is negligible compared to c, then we get back the Newtonian relation between K and p, i.e., $p = \sqrt{2m_0K}$.