Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums and Matrices

Tran Hoa Phu

Ngày 31 tháng 1 năm 2023

Sets

Definition

- A set is an unordered collection of objects, called elements or members of the set.
- We write $a \in A$: a is an element of the set A.
- The notation $a \notin A$: a is not an element of the set A.

Sets

Definition

- A set is an unordered collection of objects, called elements or members of the set.
- We write $a \in A$: a is an element of the set A.
- The notation $a \notin A:a$ is not an element of the set A.

Example

The set V of all vowels in the English alphabet: $V = \{a, e, i, o, u\}$. Elements of V are a, e, i, o, u.

Sets

Definition

- A set is an unordered collection of objects, called elements or members of the set.
- We write $a \in A$: a is an element of the set A.
- The notation $a \notin A:a$ is not an element of the set A.

Example

The set V of all vowels in the English alphabet: $V = \{a, e, i, o, u\}$.

Elements of V are a, e, i, o, u.

We can write $a \in V, b \notin V, f \notin V$.

The set of positive integers less than 100 can be denoted by

$$A = \{1, 2, 3, ..., 99\}$$

The set of positive integers less than 100 can be denoted by

$$A = \{1, 2, 3, ..., 99\}$$

or $A = \{x | x \text{ is an positive integer less than } 100\}$

The set of positive integers less than 100 can be denoted by

$$A = \{1, 2, 3, ..., 99\}$$

or $A = \{x | x \text{ is an positive integer less than } 100\}$

List the members of these sets

a)
$$A = \{2, a, b, c\}$$

b)
$$B = \{\{2\}, 1, 3\}$$

c)
$$C = \left\{ \{1\}, \{\{1\}\} \right\}$$

- d) $\{x | x \text{ is a real number such that } x^2 = 1\}$
- e) $\{x | x \text{ is a positive integer less than } 12\}$
- f) $\{x | x \text{ is the square of an integer and } x < 100\}$

- 2. For each of the following sets, determine whether 2 is an element of that set.
- a) $\{x \in R \mid x \text{ is an integer greater than } 1\}$

b) $\{x \in R \mid x \text{ is the square of an integer}\}$

c) $\{2,\{2\}\}$

d) {{2},{{2}}}

e) {{2},{2,{2}}}

f) {{{2}}}

Equality of two sets

Definition

Two sets are equal if and only if they have the same element.

Therefore, A and B are equal if and only if $\forall x (x \in A \longleftrightarrow x \in B)$ is T.

Equality of two sets

Definition

Two sets are equal if and only if they have the same element.

Therefore, A and B are equal if and only if $\forall x (x \in A \longleftrightarrow x \in B)$ is T.

We write A = B to denote that A and B are equal.

Example

The sets $\{1,3,5\} = \{5,3,1\}$ are equal.

Equality of two sets

Definition

Two sets are equal if and only if they have the same element.

Therefore, A and B are equal if and only if $\forall x (x \in A \longleftrightarrow x \in B)$ is T.

We write A = B to denote that A and B are equal.

Example

The sets $\{1,3,5\} = \{5,3,1\}$ are equal.

The sets $\{1, 1, 3, 3, 5\} = \{1, 3, 5\}$ are equal.

Empty set (Tập rỗng)

Definition

The empty set \emptyset is a set has no elements.

Be careful: $\emptyset \neq \{\emptyset\}$!!!

Subsets (Tập hợp con

Definition

The set A is a subset of B ($A \subseteq B$) if and only if every element of A is also an element of B.

Therefore, $A \subseteq B$ if and only if $\forall x (x \in A \longrightarrow x \in B)$ is T.

Subsets (Tập hợp con

Definition

The set A is a subset of B ($A \subseteq B$) if and only if every element of A is also an element of B.

Therefore, $A \subseteq B$ if and only if $\forall x (x \in A \longrightarrow x \in B)$ is T.

 $\{1,3,5\}\subseteq\{1,3,5,6,7\}$

Example

C: the set of all odd positive integers less than 10

D: the set of all positive integers less than 10.

Thus $C \subseteq D$.

For every set S,

i)
$$\emptyset \subseteq S$$
 ii) $S \subseteq S$

For every set S,

Proof

i) To show that $\emptyset \subseteq S$, we must show that $\forall x (x \in \emptyset \longrightarrow x \in S)$ is T.

We have " $x \in \emptyset$ " is F because \emptyset has no element. Thus " $x \in \emptyset \longrightarrow x \in S$ " is T.

Therefore $\forall x (x \in \emptyset \longrightarrow x \in S)$ is True.

List all the subsets of $A = \{1, 2\}$

List all the subsets of $A = \{1, 2\}$

Solution

$$\emptyset \subseteq \{1, 2\}$$

$$\{1\} \subseteq \{1, 2\}$$

$$\{2\} \subseteq \{1, 2\}$$

$$\{1, 2\} \subseteq \{1, 2\}$$

List all the subsets of $A = \{1, 2\}$

Solution

```
\emptyset \subseteq \{1, 2\} 
\{1\} \subseteq \{1, 2\} 
\{2\} \subseteq \{1, 2\} 
\{1, 2\} \subseteq \{1, 2\}
```

All subsets of *A* are: \emptyset , $\{1, 2\}$, $\{1\}$, $\{2\}$.

List all the subsets of $B = \left\{\emptyset, \{\emptyset\}\right\}$

List all the subsets of $B = \{\emptyset, \{\emptyset\}\}$

Solution

All subsets of B are: \emptyset , $\{\emptyset, \{\emptyset\}\}$, $\{\emptyset\}$, $\{\{\emptyset\}\}$.

3. Determine whether each of these statements is true or false.

a)
$$0 \in \emptyset$$

b)
$$\emptyset \in \{0\}$$

c)
$$\{0\} \subset \emptyset$$

d)
$$\emptyset \subset \{0\}$$

e)
$$\{0\} \in \{0\}$$

$$f) \{0\} \subset \{0\}$$

g)
$$\{\emptyset\} \subseteq \{\emptyset\}$$

4. Determine whether each of these statements is true or false.

a)
$$x \in \{x\}$$

b)
$$\{x\} \subseteq \{x\}$$

c)
$$\{x\} \in \{x\}$$

d)
$$\{x\} \in \{\{x\}\}$$

e)
$$\emptyset \subseteq \{x\}$$

f)
$$\emptyset \in \{x\}$$

The Size of a Set

Definition

Let S be a set.

- The cardinality of S, denoted by |S|, is the number of distinct elements in S.
- If the number of distinct elements is finite then S is called a finite set.

Example

Let
$$A = \{1, 2, 3, 4, 5\}$$
. Then $|A| = 5$.

Example

Let
$$B = \{1, 1, 2, 2, 3\}$$
. Then $|B| = 3$.

5. What is the cardinality of each of these sets?

a) {a}

b) {{a}}}

c) $\{a, \{a\}\}$

d) $\{a, \{a\}, \{a, \{a\}\}\}$

6. What is the cardinality of each of these sets?

a) Ø

b) {Ø}

c) $\{\emptyset, \{\emptyset\}\}$

d) $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$

Definition

A set is said to be infinite (vô hạn) if the number of distinct elements is infinite.

Example The set of positive integers is infinite.

Example The set of rational numbers is infinite.

Power Sets

Definition

Given a set S, the power set of S is the set of all subsets of the set S.

The power set of S is denoted by P(S).

Example

What is the power set of the set $\{1,2\}$?

Solution

$$P(\{1,2\}) = \left\{\emptyset, \{1,2\}, \{1\}, \{2\}\right\}.$$

Find $P(\{1,2,3\})$.

$$|P(A)|=2^{|A|}$$

Số các tập hợp con của tập A bằng 2^{số phần tử của A}

$$|P(A)|=2^{|A|}$$

Example Let $A = \{1, 2\}$

$$|P(A)|=2^{|A|}$$

Example Let
$$A = \{1, 2\}$$

Then
$$|P(A)| = 2^{|A|} = 2^2 = 4$$

$$|P(A)|=2^{|A|}$$

Example Let
$$A = \{1, 2\}$$

Then
$$|P(A)| = 2^{|A|} = 2^2 = 4$$

Example Let
$$B = \{a, b, c\}$$

$$|P(A)|=2^{|A|}$$

Example Let
$$A = \{1, 2\}$$

Then
$$|P(A)| = 2^{|A|} = 2^2 = 4$$

Example Let
$$B = \{a, b, c\}$$

Then
$$|P(B)| = 2^{|B|} = 2^3 = 8$$

$$|P(A)|=2^{|A|}$$

Example Let
$$A = \{1, 2\}$$

Then
$$|P(A)| = 2^{|A|} = 2^2 = 4$$

Example Let
$$B = \{a, b, c\}$$

Then
$$|P(B)| = 2^{|B|} = 2^3 = 8$$

Example Let
$$C = \{1, 2, 2, a, a\}$$

Theorem

Số các tập hợp con của tập A bằng 2^{số phần tử của A}

$$|P(A)|=2^{|A|}$$

Example Let
$$A = \{1, 2\}$$

Then
$$|P(A)| = 2^{|A|} = 2^2 = 4$$

Example Let
$$B = \{a, b, c\}$$

Then
$$|P(B)| = 2^{|B|} = 2^3 = 8$$

Example Let
$$C = \{1, 2, 2, a, a\}$$

Then
$$|P(C)| = 2^{|C|} = 2^3 = 8$$
.

Cartesian Products

Definition

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B = \{(a, b) | a \in A, b \in B\}$

Cartesian Products

Definition

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B = \{(a, b) | a \in A, b \in B\}$

Let
$$A = \{1, 2\}$$
 and $B = \{3, 4\}$.
Then $A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$

Theorem

Số phần tử khác nhau của tập hợp $A \times B = s$ ố phần tử khác nhau của tập $A \times s$ ố phần tử khác nhau của tập B

$$|A \times B| = |A|.|B|$$

$$A = \{1, 2, 3\}$$
, $B = \{a, b, c, d\}$

Theorem

Số phần tử khác nhau của tập hợp $A \times B = s$ ố phần tử khác nhau của tập $A \times s$ ố phần tử khác nhau của tập B

$$|A \times B| = |A|.|B|$$

$$A = \{1,2,3\}$$
 , $B = \{a,b,c,d\}$ $|A \times B| = |A| \times |B| = 3.4 = 12$ $|P(A \times B)| = 2^{|A \times B|} = 2^{|A|.|B|} = 2^{12}$

Cartesian products

Definition

The Cartesian products of the sets $A_1, A_2, ..., A_n$ is the set of ordered n- tuples $(a_1, a_2, ..., a_n)$, where $a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n$.

Example Given $A = \{0, 1\}, B = \{1, 2\}, C = \{2, 3\}$ $A \times B \times C$ consists of all ordered triples (a, b, c) where $a \in A, b \in B, c \in C$ $A \times B \times C = \{(0, 1, 2), (0, 1, 3), (0, 2, 2), (0, 2, 3), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3)\}$

Notation:

$$A^2 = A \times A$$
$$A^3 = A \times A \times A$$

Evample

$$A = \{1, 2\}$$

 $A^2 = \{(1, 1), (1, 2), (2, 2), (2, 1)\}$

Exercise

Let
$$A = \{1, 2, 3, 2, a, 1, a\}$$
 and $B = \{a, b, c\}$
Find $|P(A^3)|$ and $|P(A \times B)|$

Set Operations

Definition

Let A and B be sets. The union of the sets A and B is

$$A \cup B = \{x | x \in A \text{ or } x \in B\}$$

 $A \cup B$ is shaded.

$$A = \{1, 2\}$$
 $B = \{3, 4\}.$
 $A \cup B =$

$$A = \{1, 2\}$$
 $B = \{3, 4\}.$
 $A \cup B = \{1, 2, 3, 4\}.$

$$A = \{1, 2\}$$
 $B = \{3, 4\}.$

$$A \cup B = \{1, 2, 3, 4\}.$$

$$A = \{1, 2, 3\}$$
 and $B = \{2, 3, 4\}$

$$A \cup B =$$

$$A = \{1, 2\}$$
 $B = \{3, 4\}.$

$$A \cup B = \{1, 2, 3, 4\}.$$

$$A = \{1, 2, 3\}$$
 and $B = \{2, 3, 4\}$

$$A \cup B = \{1, 2, 3, 4\}$$

$$A = \{1, 2\}$$
 $B = \{3, 4\}.$
 $A \cup B = \{1, 2, 3, 4\}.$

Example

$$A = \{1, 2, 3\}$$
 and $B = \{2, 3, 4\}$

$$A \cup B = \{1, 2, 3, 4\}$$

Example

Let A be the set of all boy students in this class.

B be the set of all girl students in this class.

 $A \cup B$:

$$A = \{1, 2\}$$
 $B = \{3, 4\}.$
 $A \cup B = \{1, 2, 3, 4\}.$

Example

$$A = \{1, 2, 3\}$$
 and $B = \{2, 3, 4\}$
 $A \cup B = \{1, 2, 3, 4\}$

Example

Let A be the set of all boy students in this class.

B be the set of all girl students in this class.

 $A \cup B$: set of all students in this class

Definition

The intersection of A and B is

$$A \cap B =$$

Definition

The intersection of A and B is

$$A \cap B = \{x | x \in A \text{ and } x \in B\}$$

 $A \cap B$ is shaded.

FIGURE 2 Venn Diagram of the Intersection of A and B.

Let $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$ $A \cap B =$

Let
$$A = \{1, 2, 3\}$$
 and $B = \{2, 3, 4\}$
 $A \cap B = \{2, 3\}$

Let
$$A = \{1, 2, 3\}$$
 and $B = \{2, 3, 4\}$
 $A \cap B = \{2, 3\}$

Let
$$A = \{2, 4, 6\}$$
 and $B = \{1, 3, 5\}$

$$A \cap B =$$

Let
$$A = \{1, 2, 3\}$$
 and $B = \{2, 3, 4\}$
 $A \cap B = \{2, 3\}$

Let
$$A = \{2, 4, 6\}$$
 and $B = \{1, 3, 5\}$
 $A \cap B = \emptyset$

Let A be the set of all computer science majors in in FPTU

Let A be the set of all computer science majors in in FPTU Let B be the set of all graphic design majors in FPTU

Let A be the set of all computer science majors in in FPTU Let B be the set of all graphic design majors in FPTU $A \cap B$

Let A be the set of all computer science majors in in FPTU Let B be the set of all graphic design majors in FPTU

 $A \cap B$

is the set of all student in FPTU who are joint majors in computer science and graphic design.

Disjoint (Rời nhau)

Definition

Two sets are called disjoint if their intersection is the empty set.

Example Let $A = \{2, 4, 6\}$ and $B = \{1, 3, 5\}$ A and B are disjoint?

Example Let $A = \{2, 4, 6\}$ and $B = \{1, 3, 5\}$

A and B are disjoint?

Solution

Yes! $A \cap B = \emptyset$

Let A: "the set of all odd integer"

and B: "the set of all even integer".

A and B are disjoint?

Let A: "the set of all odd integer"

and B: "the set of all even integer".

A and B are disjoint?

Solution

Yes!
$$A \cap B = \emptyset$$

Definition

The difference of A and B is

$$A - B = \{x | x \in A \text{ and } x \notin B\}$$

$$A = \{1, 3, 5\}$$
 and $B = \{1, 2, 3\}$
 $A - B =$

$$A = \{1,3,5\}$$
 and $B = \{1,2,3\}$
 $A - B = \{5\}$

$$A = \{1, 3, 5\}$$
 and $B = \{1, 2, 3\}$
 $A - B = \{5\}$

Example

A: the set of all positive integer less than 100

B: the set of all odd positive integer less than 100

$$A - B$$
:

$$A = \{1,3,5\}$$
 and $B = \{1,2,3\}$
 $A - B = \{5\}$

Example

A: the set of all positive integer less than 100

B: the set of all odd positive integer less than 100

A - B: The set of all even positive integer less than 100.

Symmetric Difference

Definition

The symmetric difference of A and B, denoted $A \oplus B$, is the set containing those elements in either A or B, but not in both A and B.

Example 1: $A = \{1, 3, 5, 6, 7, 8\}$ and $B = \{2, 3, 4, 7, 9, 10\}$ $A \oplus B =$

Example 1: $A = \{1, 3, 5, 6, 7, 8\}$ and $B = \{2, 3, 4, 7, 9, 10\}$ $A \oplus B = \{1, 2, 4, 5, 6, 9, 10\}$

Let *A* be the set of students who live within one mile of school Let *B* be the sets of students who walk to classes.

Describe the students in each of these sets

$$A \cap B$$
, $A \cup B$, $A - B$, $B - A$.

Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$. Find $A \cap B$, $B \cup A$, A - B, B - A, $A \oplus B$.

Definition

Let *U* be the universal set.

• The complement of the set A is the set $\overline{A} = U \setminus A$

Example Let A: the set of all positive integers and U: the set of all integer. What is \overline{A} ?

Definition

Let *U* be the universal set.

• The complement of the set A is the set $\overline{A} = U \setminus A$

Example Let A: the set of all positive integers and U: the set of all integer. What is \overline{A} ?

Solution

 $\overline{A} = U \setminus A$: the set of all integers but not positive

Definition

Let *U* be the universal set.

• The complement of the set A is the set $\overline{A} = U \setminus A$

Example Let A: the set of all positive integers and U: the set of all integer. What is \overline{A} ?

Solution

 $\overline{A} = U \setminus A$: the set of all integers but not positive or \overline{A} : the set of all nonpositive integers

Set Identites

TABLE 1 Set Identities.	
Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

$$A \cup \overline{A} = U$$

$$A \cap \overline{A} = \emptyset$$

Generalization Unions and Intersections

(a) $A \cup B \cup C$ is shaded.

(b) $A \cap B \cap C$ is shaded.

$$A = \{0, 2, 4, 6, 8\}$$

$$B = \{0, 1, 2, 3, 4\}$$

$$C = \{0, 3, 6, 9\}$$

What are $A \cap B \cap C$ and $A \cup B \cup C$?

Example

Let U be the universal set. $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ $A = \{2, 3, 5, 8\}$

The bit string that represents *A* is 0110100100

Example

Let U be the universal set. $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$A = \{2, 3, 5, 8\}$$

The bit string that represents *A* is 0110100100

$$B = \{1, 2, 3, 4, 5\}$$

Example

Let *U* be the universal set. $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$A = \{2, 3, 5, 8\}$$

The bit string that represents A is 0110100100

$$B = \{1, 2, 3, 4, 5\}$$

The bit string that represents *B* is 1111100000

Given a universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and

$$A = \{1, 3, 5, 7, 9\}$$

Find the bit strings which represent the set A and U - A.

Given a universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. The bit string for $A = \{1, 3, 4, 5, 6, 9\}$ is 101111001 The bit string for $B = \{2, 3, 6, 7, 8\}$ is 011001110 Use bit strings to find the union and intersect of the set?

U2-Q11

Suppose that the universal set is $U = \{a, b, c, d, e\}$.

Given the set represented by strings

$$A = "1 1 1 0 0"$$

$$B = "0 1 0 1 0"$$

List all elements in the set A - B.

A.
$$\{a, b, c\}$$

B.
$$\{a, b, d\}$$

C.
$$\{a, c\}$$

Functions (Hàm số, Ánh xạ)

Definition

• Let A and B be nonempty sets.

A function f from A to B is an assignment such that each element of A is assigned to exactly one element of B.

FIGURE 2 The Function f Maps A to B.

Functions

Not Functions

Domain, Codomain, Range

Definition

If f is a function from A to B, we say that

- A is the domain of f
- B is the codomain of f.
- If f(a) = b, we say that b is the image of a, and a is the preimage of b.
- The range, or image, of f is the set of all images of elements of A.

Function

Function A B 10 -8 -2 9 -1

Let f be the function. The domain of f is

Function

Let f be the function. The domain of f is $\{3, 11, -2, 9, 5\}$ The codomain of f is

Let *f* be the function.

The domain of f is $\{3, 11, -2, 9, 5\}$

The codomain of f is $\{10, -8, 2, -1, 4\}$

The images of f is

Let f be the function.

The domain of f is $\{3, 11, -2, 9, 5\}$

The codomain of f is $\{10, -8, 2, -1, 4\}$

The images of f is $\{10, 2, -1, 4\}$

Using a formula to define a function

Example

Let $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = x + 1. Is f a function?

Using a formula to define a function

Example

Let $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = x + 1. Is f a function?

Solution

$$\forall x (x \in \mathbb{Z} \to f(x) \in \mathbb{Z}) \text{ is } T$$
?

Using a formula to define a function

Example

Let $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = x + 1. Is f a function?

Solution

$$\forall x (x \in \mathbb{Z} \to f(x) \in \mathbb{Z}) \text{ is } T$$
?

$$\forall x (x \in \mathbb{Z} \to x + 1 \in \mathbb{Z}) \text{ is } T$$
?

f is a function.

Solution

 $\forall x (x \in \mathbb{Z} \to f(x) \in \mathbb{Z}) \text{ is } T$?

Solution

$$\forall x (x \in \mathbb{Z} \to f(x) \in \mathbb{Z}) \text{ is } T$$
?

$$\forall x (x \in \mathbb{Z} \to x/2 \in \mathbb{Z}) \text{ is } T$$
?

Solution

 $\forall x(x \in \mathbb{Z} \to f(x) \in \mathbb{Z}) \text{ is } T?$ $\forall x(x \in \mathbb{Z} \to x/2 \in \mathbb{Z}) \text{ is } T?$ f is not a function.

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x-1}$. Is f a function?

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x-1}$. Is f a function?

Solution

• $\forall x (x \in \mathbb{R} \to f(x) \in \mathbb{R})$ is T?

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x-1}$. Is f a function?

Solution

- $\forall x (x \in \mathbb{R} \to f(x) \in \mathbb{R})$ is T? $\forall x \left(x \in \mathbb{R} \to \frac{1}{x-1} \in \mathbb{R} \right)$ is T?

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x-1}$. Is f a function?

Solution

- $\forall x (x \in \mathbb{R} \to f(x) \in \mathbb{R})$ is T? $\forall x \left(x \in \mathbb{R} \to \frac{1}{x-1} \in \mathbb{R} \right)$ is T?

f is not a function

Exercise

What are functions?

Exercise

Determine whether if f is a function from Z to R if

a)
$$f(n) = -n$$

b)
$$f(n) = \sqrt{n^2 + 1}$$

c)
$$f(n) = \frac{1}{n^2 - 4}$$

One-To-One functions (Hàm đơn ánh)

Definition

- Let f be a function from A to B.
- f is said to be one-to-one or an injunction if and only if for every $a, b \in A$ such that $a \neq b$ implies that $\overline{f(a)} \neq \overline{f(b)}$.

One-To-One functions (Hàm đơn ánh)

Definition

- Let f be a function from A to B.
- f is said to be one-to-one or an injunction if and only if for every $a, b \in A$ such that $a \neq b$ implies that $f(a) \neq f(b)$.
- f is said to be one-to-one if and only if for every $a, b \in A$ such that f(a) = f(b) implies that a = b.
- f is one-to-one from A to B if

$$orall a,b\in Aigg(f(a)=f(b) o a=bigg)$$
 is T

Example Is the following function is one-to-one?

Example Is the following function is one-to-one?

Example Is $f(x): \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x + 5 one-to-one?

Example Is $f(x): \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x + 5 one-to-one?

Solution

Solution
$$f$$
 is one-to-one if $\forall a,b \in \mathbb{Z}\Big(f(a)=f(b) \to a=b\Big)$ is T?

Example Is $f(x) : \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x + 5 one-to-one? Solution

$$f$$
 is one-to-one if $\forall a,b \in \mathbb{Z}\Big(f(a)=f(b) \to a=b\Big)$ is T? f is one-to-one if $\forall a,b \in \mathbb{Z}(2a+5=2b+5 \to a=b)$ is T?

Example Is $f(x) : \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x + 5 one-to-one? **Solution**

$$f$$
 is one-to-one if $\forall a,b\in\mathbb{Z}\Big(f(a)=f(b)\to a=b\Big)$ is T? f is one-to-one if $\forall a,b\in\mathbb{Z}(2a+5=2b+5\to a=b)$ is T? f is one-to-one

Example Is $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^2$ is one-to-one?

Example Is $f : \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^2$ is one-to-one? Solution

$$f$$
 is one-to-one if $orall a,b\in \mathbb{Z}igg(f(a)=f(b) o a=bigg)$ is T?

Example Is $f : \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^2$ is one-to-one?

$$f$$
 is one-to-one if $\forall a,b \in \mathbb{Z}\Big(f(a)=f(b) \to a=b\Big)$ is T? f is one-to-one if $\forall a,b \in \mathbb{Z}(a^2=b^2 \to a=b)$ is T?

Example Is $f : \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^2$ is one-to-one? Solution

$$f$$
 is one-to-one if $\forall a,b\in\mathbb{Z}\Big(f(a)=f(b)\to a=b\Big)$ is T? f is one-to-one if $\forall a,b\in\mathbb{Z}(a^2=b^2\to a=b)$ is T? f is not one-to-one.

Onto Functions (Hàm toàn ánh)

Definition

A function f from A to B is called onto, or a surjection if and only if for every element $b \in B$, there is an element $a \in A$ with f(a) = b.

Example Is the following function onto?

Example The function below is onto?

Solution

f is onto

if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that f(a) = b (7?).

Solution

f is onto

if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that f(a) = b (7?).

if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that a + 1 = b (7?).

Example Let $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = x + 1. Is f onto? **Solution** $f(a) = a \cdot 1$ f is onto if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that f(a) = b (T?). if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that a + 1 = b (T?). if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that a = b - 1 (T?).

Solution

f is onto if for every $b\in\mathbb{Z}$, there exists $a\in\mathbb{Z}$ such that f(a)=b (T?). if for every $b\in\mathbb{Z}$, there exists $a\in\mathbb{Z}$ such that a+1=b (T?). if for every $b\in\mathbb{Z}$, there exists $a\in\mathbb{Z}$ such that a=b-1 (T?). f is onto.

Example Let the function $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 3x + 2. Is f onto?

Example Let the function $f : \mathbb{Z} \to \mathbb{Z}$, f(x) = 3x + 2. Is f onto? Solution

f is onto

if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that f(a) = b (T?).

Example Let the function $f : \mathbb{Z} \to \mathbb{Z}$, f(x) = 3x + 2. Is f onto? Solution

f is onto

if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that f(a) = b (T?). if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that 3a + 2 = b (T?).

Example Let the function $f : \mathbb{Z} \to \mathbb{Z}$, f(x) = 3x + 2. Is f onto? Solution

f is onto if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that f(a) = b (T?). if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that 3a + 2 = b (T?). if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that $a = \frac{b-2}{3}$ (T?).

Example Let the function $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 3x + 2. Is f onto? Solution

f is onto if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that f(a) = b (7?). if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that 3a + 2 = b (7?). if for every $b \in \mathbb{Z}$, there exists $a \in \mathbb{Z}$ such that $a = \frac{b-2}{2}$ (T?).

Exercise

Determine whether each of these functions from $\{a, b, c, d\}$ to itself is one-to-one (onto)

a) f(a) = b, f(b) = a, f(c) = c, f(d) = ditself is one-to-one (onto)

a) f(a) = b, f(b) = a, f(c) = c, f(d) = ditself is one-to-one (onto)

a) f(a) = b, f(b) = a, f(c) = c, f(d) = d

a)
$$f(a) = b, f(b) = a, f(c) = c, f(d) = d$$

b)
$$f(a) = b$$
, $f(b) = b$, $f(c) = d$, $f(d) = c$

c)
$$f(a) = d, f(b) = b, f(c) = c, f(d) = d$$

Bijective functions (Hàm song ánh)

Definition

The function f is a bijection if it is both one-to-one and onto. We also say that such a function is bijective.

moi they ban trai of gain day alar ben tohow

Example The following function is bijective?

Example The following function is bijective?

Example Let f be a function from $\{a, b, c, d\}$ to $\{1, 2, 3, 4\}$ with f(a) = 4, f(b) = 2, f(c) = 1 and f(d) = 3. Is f a bijection?

Example Let f be a function from $\{a, b, c, d\}$ to $\{1, 2, 3, 4\}$ with f(a) = 4, f(b) = 2, f(c) = 1 and f(d) = 3. Is f a bijection?

• *f* is one-to-one because no two values in the domain are assigned the same function value.

Example Let f be a function from $\{a, b, c, d\}$ to $\{1, 2, 3, 4\}$ with f(a) = 4, f(b) = 2, f(c) = 1 and f(d) = 3. Is f a bijection?

- f is one-to-one because no two values in the domain are assigned the same function value.
- *f* is onto because all four elements of the codomain are images of elements in the domain.

Hence f is bijective.

Inverse functions (Hàm số ngược)

Definition Let f be a bijective function from the set A to the set B. The inverse function of $f(f^{-1})$ is the function that assigns to an element $y \in B$ to the unique element $x \in A$ such that f(x) = y.

$$f: R \rightarrow R$$

$$f(\lambda) = 2x^{\alpha} + \frac{1}{2}$$

chi ci hain sony and mei cé ham nquec

Method to find
$$f^{-1}$$
: $f(x) = y \Leftrightarrow f^{-1}(y) = x$.

phieng phap giai e thooy,

$$g(x) = y$$

-> $y = x + 1$

-> $x - y - 1$
 $f'(y) = x = y - 1$
 $f'(x) = x + x$

Example Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that f(a) = 2, f(b) = 3 and f(c) = 1. Is f invertible and if it is, what is its inverse?

$$f: R^{2} \rightarrow R$$

$$f(x) = R^{2}$$
1) Check song a.h.?
$$d) f^{-1}(g) = ? fg.$$

$$f^{-1}(g) = \sqrt{2}$$

Example Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that f(a) = 2, f(b) = 3 and f(c) = 1. Is f invertible and if it is, what is its inverse?

Solution

f is invertible because f is bijective.

Example Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that f(a) = 2, f(b) = 3 and f(c) = 1. Is f invertible and if it is, what is its inverse?

Solution

f is invertible because f is bijective.

$$f^{-1}(1) = c, f^{-1}(2) = a \text{ and } f^{-1}(3) = b.$$

Solution

f is invertible because f is bijective (both one-to-one and onto).

Solution

f is invertible because f is bijective (both one-to-one and onto).

$$f(x) = y \Leftrightarrow f^{-1}(y) = x$$

Solution

f is invertible because f is bijective (both one-to-one and onto).

$$f(x) = y \Leftrightarrow f^{-1}(y) = x$$

Solve
$$x$$
: $f(x) = y$

Solution

f is invertible because f is bijective (both one-to-one and onto).

$$f(x) = y \Leftrightarrow f^{-1}(y) = x$$

Solve x : $f(x) = y$
 $\Leftrightarrow x + 1 = y$

Solution

f is invertible because f is bijective (both one-to-one and onto).

$$f(x) = y \Leftrightarrow f^{-1}(y) = x$$
Solve x : $f(x) = y$

$$\Leftrightarrow x + 1 = y$$

$$\Leftrightarrow x = y - 1.$$

Solution

f is invertible because f is bijective (both one-to-one and onto).

$$f(x) = y \Leftrightarrow f^{-1}(y) = x$$

Solve x : $f(x) = y$

$$\Leftrightarrow x + 1 = v$$

$$\Leftrightarrow x = y - 1$$
.

Thus
$$f^{-1}(y) = y - 1$$
.

Exercise

Find the inverse functions (if they exist) of the following functions?

- 1) Let $f: \mathbb{Z} \to \mathbb{Z}$ such that f(x) = 2x + 3.
- 2) Let $g: \mathbb{R} \to \mathbb{R}$ such that g(x) = 2x + 3

Example Let f be a function from $\mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$. Is f invertible?

Example Let f be a function from $\mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$. Is f invertible?

Solution

f is not one-to-one because f(-2) = f(2). Hence f is not bijective. Thus f is not invertible.

Composition

Definition

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted for all $x \in A$ by $f \circ g$, is denoted by

$$(f\circ g)(x)=f(g(x))$$

Example find $f \circ g$?

Let $f, g : \mathbb{Z} \to \mathbb{Z}$ be functions defined by

$$f(x) = 2x + 3$$
, $g(x) = 3x + 2$

What are $f \circ g, g \circ f, f \circ f, g \circ g$?

Let $f, g : \mathbb{Z} \to \mathbb{Z}$ be functions defined by

$$f(x) = 2x + 3$$
, $g(x) = 3x + 2$

What are $f \circ g, g \circ f, f \circ f, g \circ g$?

$$(f \circ g)(x) = f(g(x)) = f(3x+2) = 2(3x+2) + 3 = 6x + 7.$$

Let $f, g : \mathbb{Z} \to \mathbb{Z}$ be functions defined by

$$f(x) = 2x + 3$$
, $g(x) = 3x + 2$

What are $f \circ g, g \circ f, f \circ f, g \circ g$?

$$(f \circ g)(x) = f(g(x)) = f(3x+2) = 2(3x+2) + 3 = 6x + 7.$$

 $(g \circ f)(x) = g(f(x)) = g(2x+3) = 3.(2x+3) + 2 = 6x + 11$

Let $f, g : \mathbb{Z} \to \mathbb{Z}$ be functions defined by

$$f(x) = 2x + 3$$
, $g(x) = 3x + 2$

What are $f \circ g, g \circ f, f \circ f, g \circ g$?

$$(f \circ g)(x) = f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7.$$

 $(g \circ f)(x) = g(f(x)) = g(2x + 3) = 3.(2x + 3) + 2 = 6x + 11$
 $(f \circ f)(x) = f(f(x)) = f(2x + 3) = 2.(2x + 3) + 3 = 4x + 9$

Let $f, g : \mathbb{Z} \to \mathbb{Z}$ be functions defined by

$$f(x) = 2x + 3$$
, $g(x) = 3x + 2$

What are $f \circ g, g \circ f, f \circ f, g \circ g$?

$$(f \circ g)(x) = f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7.$$

 $(g \circ f)(x) = g(f(x)) = g(2x + 3) = 3.(2x + 3) + 2 = 6x + 11$
 $(f \circ f)(x) = f(f(x)) = f(2x + 3) = 2.(2x + 3) + 3 = 4x + 9$
 $(g \circ g)(x) = g(g(x)) = g(3x + 2) = 3.(3x + 2) + 2 = 9x + 8$

Exercise

Let $f,g:\mathbb{R} \to \mathbb{R}$ be functions defined by

$$f(x) = \sin x \quad g(x) = 2x + 1$$

Find $f \circ g, g \circ f$.

Definition

• The floor function assigns to the real numbers x the largest integer that is less than or equal to x. ($(a_n + b_n) + b_n +$

Definition

- The floor function assigns to the real numbers x the largest integer that is less than or equal to x.
- The value of the floor function at x is denoted by |x|

Definition

- The floor function assigns to the real numbers x the largest integer that is less than or equal to x.
- The value of the floor function at x is denoted by $\lfloor x \rfloor$

Example
$$|1/2| = 0$$
, $|-1/2| = -1$, $|2.5| = 2$.

Definition

- The floor function assigns to the real numbers x the largest integer that is less than or equal to x.
- The value of the floor function at x is denoted by $\lfloor x \rfloor$

Example $\lfloor 1/2 \rfloor = 0$, $\lfloor -1/2 \rfloor = -1$, $\lfloor 2.5 \rfloor = 2$. **Example** How many positive integers less than 20 and divisible by 3 ?

Definition

- The floor function assigns to the real numbers x the largest integer that is less than or equal to x.
- The value of the floor function at x is denoted by $\lfloor x \rfloor$

Example $\lfloor 1/2 \rfloor = 0$, $\lfloor -1/2 \rfloor = -1$, $\lfloor 2.5 \rfloor = 2$. **Example** How many positive integers less than 20 and divisible by 3 ?

Definition

The ceiling function assigns to the real number x the smallest integer that is greater than or equal to x.

Definition

The ceiling function assigns to the real number x the smallest integer that is greater than or equal to x.

The value of the ceiling function at x is denoted by $\lceil x \rceil$

Definition

The ceiling function assigns to the real number x the smallest integer that is greater than or equal to x.

The value of the ceiling function at x is denoted by $\lceil x \rceil$

Example

$$\lceil 1/2 \rceil = 1$$
, $\lceil -1/2 \rceil = 0$, $\lceil 3.5 \rceil = 4$

Definition

The ceiling function assigns to the real number x the smallest integer that is greater than or equal to x.

The value of the ceiling function at x is denoted by $\lceil x \rceil$

Example

$$\lceil 1/2 \rceil = 1$$
, $\lceil -1/2 \rceil = 0$, $\lceil 3.5 \rceil = 4$

Example A worker earns 700.000VND/day. How many days he need to work to earn 5.000.000VND?

Definition

The ceiling function assigns to the real number x the smallest integer that is greater than or equal to x.

The value of the ceiling function at x is denoted by $\lceil x \rceil$

Example

$$\lceil 1/2 \rceil = 1$$
, $\lceil -1/2 \rceil = 0$, $\lceil 3.5 \rceil = 4$

Example A worker earns 700.000VND/day. How many days he need to work to earn 5.000.000VND?

Exercise

Find these values

a)
$$\lceil 1.1 \rceil$$
 b) $\lceil -0.1 \rceil$

c)
$$\begin{bmatrix} 4 \end{bmatrix}$$
 d) $\begin{bmatrix} 3.2 \end{bmatrix}$
e) $\begin{bmatrix} -5.2 \end{bmatrix}$ f) $\begin{bmatrix} \frac{1}{2} + \begin{bmatrix} \frac{23}{3} \end{bmatrix}$

Sequences (Dãy số)

Định nghĩa Dãy số thực là một ánh xạ

$$L_n = \left(\frac{1}{p_0}\right)_n \geq L$$

$$x: N \to R$$

$$n \to x(n) \equiv x_n$$

Ta dùng các kí hiệu sau để chỉ dãy số thực $x: \{x_n\}_{n\geq 0}, \{x_n\}_{n\geq 1}$

Ví dụ $\{x_n\}$ với $x_n = \frac{1}{n}, n \in N$ là 1 dãy số thực. Dãy này có 3 số hạng đầu là x_1, x_2, x_3 , nghĩa là 1, 1/2, 1/3

Ví dụ $\left\{\frac{1}{n}\right\}_{n>1}$ là 1 dãy số thực. Dãy này có 3 số hạng đầu $1,\frac{1}{2},\frac{1}{3}$.

Ví dụ $1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}, ...$ là 1 dãy số thực.

Example Consider the sequence $\{a_n\}$, where

$$a_n = (n+1)^2, n \in \mathbb{N}$$

 $a_1 = (1+1)^2 = 4$
 $a_2 = (2+1)^2 = 9$
 $a_{10} = (10+1)^2 = 121$
 $a_{1000} = 1001^2$

Exercise

Liệt kê 5 số hạng đầu tiên của dãy $\{x_n\}$ với $x_n=2n+1, n\in \mathbb{N}$

Recurrence Relations

Example

Let $\{a_n\}$ be a sequence such that

$$a_n = a_{n-1} + 1 \quad \forall n \ge 1, a_0 = 1$$

Recurrence Relations

Example

Let $\{a_n\}$ be a sequence such that

$$a_n = a_{n-1} + 1 \quad \forall n \ge 1, a_0 = 1$$
 (1)

$$a_1 = a_0 + 1 = 1 + 1 = 2$$

 $a_2 = a_1 + 1 = 2 + 1 = 3$
 $a_3 = a_2 + 1 = 3 + 1 = 4$

Example Let $\{a_n\}$ be a sequence such that

$$a_n = a_{n-1} + a_{n-2} \quad \forall n \ge 2, \quad a_0 = 1, a_1 = 1.$$
 (2)
 $a_2 = a_1 + a_0 = 1 + 1 = 2$
 $a_3 = a_2 + a_1 = 2 + 1 = 3$
 $a_4 = a_3 + a_2 = 3 + 2 = 5$

Exercise

Find the first five terms of the sequence defined by each of these recurrence relations and initial condition. 6) 3 = = a = 4

a)
$$a_n = 6a_{n-1} \ \forall n \ge 1, \quad a_0 = 2$$

b) $a_n = a_{n-1}^2 \ \forall n \ge 1, a_0 = 2$

b)
$$a_n = a_{n-1}^2 \ \forall n \ge 1, a_0 = 2$$

c)
$$a_n = a_{n-1}^2 + 2a_{n-2} \ \forall n \ge 2, \quad a_0 = 1, a_1 = 2$$

Exercise

Given a sequence $\{a_n\}$ satisfying the recurrence relation

$$a_0 = -1$$
, $a_n = a_{n-1} + 2^n$ for $n = 1, 2, ...$

Find a_6 .

Arithmetic progression

vd.

- a: initial term.
- r: common ratio, a real number
- d: common difference, real number

Do vourself

$$b_n = (-1)^n$$
, $n > = 0$

$$c_n = 2(5)^n$$
, $n > = 0$

$$t_n = 7-3n, n > = 0$$

$$a_n = -1 + 4n, n > = 0$$

Notation

$$\sum_{j=m}^{n} a_{j} = a_{m} + a_{m+1} + ... + a_{n}$$

Notation

$$\sum_{j=m}^{n} a_{j} = a_{m} + a_{m+1} + \dots + a_{n}$$

$$\int_{j=1}^{n} a_{j} = a_{m} + a_{m+1} + \dots + a_{n}$$

$$\sum_{i=1}^{100} \frac{1}{j} =$$

Notation

$$\sum_{j=m}^{n} a_{j} = a_{m} + a_{m+1} + ... + a_{n}$$

$$\sum_{j=1}^{100} \frac{1}{j} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{100},$$

Notation

$$\sum_{j=m}^{n} a_{j} = a_{m} + a_{m+1} + ... + a_{n}$$

$$\sum_{j=1}^{100} \frac{1}{j} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{100},$$

$$\sum_{i=1}^{5} i^2 =$$

Notation

$$\sum_{j=m}^{n} a_{j} = a_{m} + a_{m+1} + \dots + a_{n}$$

$$\sum_{j=1}^{100} \frac{1}{j} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{100},$$

$$\sum_{i=1}^{5} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2$$

Notation

$$\sum_{j=m}^{n} a_{j} = a_{m} + a_{m+1} + \dots + a_{n}$$

$$\sum_{j=1}^{100} \frac{1}{j} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{100},$$

$$\sum_{i=1}^{5} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2$$

Exercise

What are the values of these sums?

$$A = \sum_{k=1}^{5} (k+1) = 2 + 3 + 4 + 5 + 6 =$$

$$B = \sum_{j=0}^{4} (-2)^{j} = (-2)^{0} + (-2)^{j} + (-$$

Given
$$S = \{1, 3, 5, 7\}$$

$$\sum_{j \in S} 2j =$$

Given
$$S = \{1, 3, 5, 7\}$$

$$\sum_{j \in S} 2j = 2.1 + 2.3 + 2.5 + 2.7$$

Given
$$S = \{1, 3, 5, 7\}$$

$$\sum_{j \in S} 2j = 2.1 + 2.3 + 2.5 + 2.7$$

$$\sum_{j\in\mathcal{S}}j^2=$$

Given $S = \{1, 3, 5, 7\}$

$$\sum_{j \in S} 2j = 2.1 + 2.3 + 2.5 + 2.7$$

$$\sum_{j \in S} j^2 = 1^2 + 3^2 + 5^2 + 7^2$$

Given $S = \{1, 3, 5, 7\}$

$$\sum_{j \in S} 2j = 2.1 + 2.3 + 2.5 + 2.7$$

$$\sum_{j \in S} j^2 = 1^2 + 3^2 + 5^2 + 7^2$$

$$\sum_{j\in S} (j+\frac{1}{j}) = ?$$

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij =$$

$$\sum_{i=1}^{4} \sum_{i=1}^{3} ij = \sum_{i=1}^{4} (i + 2i + 3i) =$$

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} (i + 2i + 3i) = \sum_{i=1}^{4} 6i =$$

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} (i+2i+3i) = \sum_{i=1}^{4} 6i = 6+12+18+24 = 60$$

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} (i+2i+3i) = \sum_{i=1}^{4} 6i = 6+12+18+24 = 60$$

Exercise Find the values of the following sums

$$\sum_{i=1}^{3} \sum_{j=0}^{2} (2i - 3j)$$
$$\sum_{i=0}^{2} \sum_{j=0}^{3} i^{2} j^{3}$$

$\mathsf{Theorem}$

If a and r are real numbers and $r \neq 0, 1$. Then

$$\sum_{j=0}^{n} ar^j = \frac{ar^{n+1} - a}{r-1}$$

$$\sum_{j=0}^{n} ar^{j} = \frac{ar^{n+1} - a}{r - 1}$$

$$\sum_{j=0}^{8} 3.2^{j} = \frac{3.2^{9} - 3}{2 - 1} = 3.2^{9} - 3$$

Theorem

$$= \sum_{k=1}^{n} k = \underbrace{\frac{n(n+1)}{2}}_{n} n \in \mathbb{N}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \quad n \in \mathbb{N}$$

$$\sum_{k=1}^{50} k = \frac{50(50+1)}{2} = 1275$$

$$\sum_{k=1}^{30} k^2 = \frac{30.31.61}{6} = 9455$$