NUMEROS BINARIOS

1°.- Siguiendo este esquema, convertir de binario a octal:

a) Conversión de binario a decimal

Potencias de 2	25	24	23		2 ²		21	2°		
Valor de posición	32	16	8		4		2	1		
Binario	1	0	1		1		1	0		Punto binario
Decimal	32	+	8	+	4	+	2		=	46
		b) (Conversió	on de b	inario	a de	cimal			
		10011,	= 19 ₁₀		1011	10, =	= 46 10			

Convertir los siguientes binarios a sus decimales equivalentes:

- a) 001100
- b) 000011
- c) 011100
- d) 111100
- e) 101010
- f) 111111

Soluciones: los numeros decimales correspondientes son los siguientes:

- a) 12
- b) 3
- c) 28
- d) 60
- e) 42
- f) 63

2º.- Siguiendo el siguiente ejemplo:

Considérese el número decimal 5.625. Para convertir este número a binario se necesitan dos procesos diferentes: la parte entera del número (5) se procesa por división repetida como se ilustra en la parte superior de la figura 1-6. De esta forma el 5 decimal se convierte en el 101 binario. La parte fraccionaria del número decimal (.625) se convierte al .101 binario como se indica en la parte inferior de la figura 1-6. Esta parte se convierte al binario .101 mediante un proceso de multiplicación repetida. En seguida se combinan las dos secciones entera y fraccionaria, resultando que el 5.625 decimal es igual al 101.101 binario.

Pasa 25,25 de base 10 a base 2 siguiendo el ejemplo.

Solución:11001,01(2

NUMEROS OCTALES

La utilidad del sistema octal esta en la facilidad de conversion a binario.

El sistema Octal tambien utiliza el valor de posición.

Ejemplos de como pasar de base 8 a base 10.

Potencias de 8	8 ³	8 ²	81	8º · +	Punto octal
Valor de posición (en decimales)	512	64	8	Ī	

a) Valores de posición en el sistema octal

c) Conversión de octal a decimal

Ejemplos: pasar el número 1327 de decimal a base 8:

Convertir de octal a decimal los siguientes numeros:

- A) 42(8
- B) 376

soluciones:

- A) 42 en base 8 es 34 en base 10
- B) 376 en base 8 es 254 en base 10

Cambios de base 2 a base 8

octal	binario			
0	000			
1	001			
2	010			
3	011			
4	100			
5	101			
6	110			
7	111			

Ejemplos de conversion binario-octal y octal binario:

d) Conversión de binario fraccionario a octal

Convierte los siguientes números a su equivalente binario:

- A) 7,5
- B) 16,3
- C) 20,1

soluciones:

- A) 7,5 ---- 111,101 B) 16,3 ---- 1110,011 C) 20,1 ---- 10000,001

Convertir de binario a octal:

- A) 101,110
- b) 111,001
- C) 010,101

Soluciones:

- A) 5,6
- B) 7,1
- C) 2,5