SOCCER PLAYER'S MARKET VALUE PREDICTION & TRANSFER STRATEGY PRESCRIPTION

(15.095) Machine Learning Under a Modern Optimization Lens

Oscar COURBIT, Andrea ZANON

PROBLEM AND RELEVANCE

Transfer market

- €41 billion spent over last decade
- 26% average annual inflation growth
- FC Barcelona, €700 M shortfall in 2022
- Neymar, €222 M (2017)

Find cheap, underrated, promising players

Improve team **optimally**, avoid useless spending

DATA

Dataset

- FIFA players' data
 - 8 years
 - ~20k observations each,
 110 features
- Transfers data
 - 30 years
 - ~2k rows each

Train-test split

Training set:

- 2019/20 and 2020/21
- ~ 40k observations

Test set:

- 2021/2022
- ~20k observation

Missing data imputation

Goalkeepers have missing data

IAI - Optimal Tree Imputation

PREDICTION MODEL, INTERPRETABILITY

Regression Linear Robust Holistic

Ensemble XGBoost Random Forest

Trees ORT ORT-H ORT-L

XGBoost best performing R² = 0.86

ORT fitted on XGBoost predictions, $R^2 = 0.86$

PRESCRIPTION AND KEY INSIGHTS

Formulation:

 $\begin{array}{lll} \min & \mathbf{net_spend} \ (\Longleftrightarrow \ \max & \mathbf{profit}) \\ \mathrm{s.t.} & \mathbf{improvement} \geq \delta \end{array}$

Linear objective function: Regress and Compare

Objective value v. minimum delta improvement

SUMMARY, FINDINGS AND NEXT STEPS

Comparison reality vs prescription	AC Milan		FC Barcelona		PSG		AVERAGE	
	Δ(Profit)	$\Delta(\delta)$	Δ(Profit)	$\Delta(\delta)$	Δ(Profit)	$\Delta(\mathbf{\delta})$	Δ(Profit)	$\Delta(\delta)$
For equal Profit	0	+2.18	0	+0.18	0	+1.49	0	+1.41
For equal δ	+185 M	0	+85M	0	+354 M	0	+196M	0

Improvement achieved by prescription based on XGBoost predictions.

More teams are considered in the average

- Clubs can purposedly adopt a different strategy (PSG)
- Prescription close to reality for teams that truly adopt a "parsimonious" strategy (Barcelona)
- For a more realistic model:
 - Consider release clause, wages, free transfers, loans, contract duration
 - Robust Optimization model

APPENDIX 1: PREDICTION RESULTS

Model	Time (s)	\mathbb{R}^2	RMSE	MAE	MAPE
Linear Regression	0.5	70.2	4.16	1.91	126.1
LASSO	0.8	66.4	4.54	1.57	89.7
Random Forest	86	87.5	2.75	0.58	21.2
XGBoost	128	88.7	2.60	0.51	19.2
Holistic Regression	4800	71.5	4.14	1.73	114.7
ORT	373	80.4	3.37	0.96	67.1
ORT-H	49380	71.7	3.86	0.85	54.8
ORT-L	3260	73.3	3.99	1.58	91.3

APPENDIX 2: PRESCRIPTION RESULTS

APPENDIX 3: INTERPRETABILITY

