# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательнский университет ИТМО"

# ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

# Лабораторная работа №6

по дисциплине "ОСНОВЫ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ"

Вариант №1235

Выполнил Студент группы Р3118 Шульга Артём Игоревич

Преподаватель Перминов Илья Валентинович



- 1. Основная программа должна уменьшать на 3 содержимое X (ячейки памяти с адресом 03В16) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)=-5X+3 на данное ВУ, а по нажатию кнопки готовности ВУ-2 выполнить операцию побитового маскирования, оставив 4-х младших разряда содержимого РД данного ВУ и Х, результат записать в Х
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать максимальное по ОДЗ число.

# Исходный код программы

| Адрес | Метка   | Мнемоника      | Комментарий                           |
|-------|---------|----------------|---------------------------------------|
| 0x0   | V0      | WORD \$DEFAULT | Инициализация 0 вектора прерывания    |
| 0x1   |         | WORD 0x180     | (будет выполнен стандартный выход из  |
|       |         |                | прерывания)                           |
| 0x2   | V1      | WORD \$INT1    | Инициализация 1 вектора прерывания    |
| 0x3   |         | WORD 0x180     | (будет выполнено прерывание по адресу |
|       |         |                | int1)                                 |
| 0x4   | V2      | WORD \$INT2    | Инициализация 2 вектора прерывания    |
| 0x5   |         | WORD 0x180     | (будет выполнено прерывание по адресу |
|       |         |                | int2)                                 |
| 0x6   | V3      | WORD \$DEFAULT | Инициализация векторов прерывания 3-7 |
| 0x7   |         | WORD 0x180     | (будет выполнен стандартный выход из  |
| 0x8   | V4      | WORD \$DEFAULT | прерывания)                           |
| 0x9   |         | WORD 0x180     |                                       |
| 0xA   | V5      | WORD \$DEFAULT |                                       |
| 0xB   |         | WORD 0x180     |                                       |
| 0xC   | V6      | WORD \$DEFAULT |                                       |
| 0xD   |         | WORD 0x180     |                                       |
| 0xE   | V7      | WORD \$DEFAULT |                                       |
| 0xF   |         | WORD 0x180     |                                       |
|       |         |                |                                       |
| 0x10  | DEFAULT | PUSH           | Сохранение значения аккумулятора      |
| 0x11  |         | CLA            | Сброс всех кнопок готовности у ВУ     |
| 0x12  |         | OUT 0x2        |                                       |
| 0x13  |         | IN 0x4         |                                       |
| 0x14  |         | IN 0x6         |                                       |
| 0x15  |         | IN 0x8         |                                       |
| 0x16  |         | POP            | Загрузка значения аккумулятора        |
| 0x17  |         | IRET           | Выход из прерывания                   |
|       | •       |                |                                       |
| 0x40  | START   | DI             | Запрет прерываний для назначения      |
|       |         |                | векторов прерывания на нужные ВУ      |
| 0x41  |         | LD #9          | Загрузка в ВУ-3 вектора 1             |
| 0x42  |         | OUT 0x7        |                                       |
| 0x43  |         | LD #0xA        | Загрузка в ВУ-2 вектора 2             |
| 0x44  |         | OUT 0x5        |                                       |
| 0x45  |         | El             | Разрешение прерываний, начало работы  |
|       |         |                | основной программы (цикла)            |
| 0x46  | L       | LD 0x03B       | Загрузка ячейки Х                     |
| 0x47  |         | SUB #3         | Вычитание из Х числа 3                |
| 0x48  |         | CMP MIN        | Если X-3 меньше чем минимально        |
| 0x49  |         | BGE SV         | возможное значение по одз, то X =     |
| 0x4A  | LM      | LD MAX         | максимальное значение по одз          |

|      |      |           | 000001                                  |
|------|------|-----------|-----------------------------------------|
| 0x4B | SV   | ST 0x03B  | Загрузка значения Х в ячейку, переход в |
| 0x4C |      | JUMP L    | начало итерации (вычитание 3)           |
|      |      |           |                                         |
| 0x4D | INT1 | PUSH      | Сохранение значения аккумулятора и      |
| 0x4E |      | NOP       | загрузка X в аккумулятор                |
| 0x4F |      | LD 0x03B  |                                         |
| 0x50 |      | ASL       | 2*2*X+X = 5X,                           |
| 0x51 |      | ASL       | Затем смена знака у 5X и сложение с 3.  |
| 0x52 |      | ADD 0x03B | Итого f(x) = -5x+3                      |
| 0x53 |      | NEG       |                                         |
| 0x54 |      | ADD #3    |                                         |
| 0x55 |      | OUT 0x6   | Вывод на ВУ-3                           |
| 0x56 |      | POP       | Возвращение значения аккумулятора и     |
|      |      |           | выход из прерывания                     |

| 0x57 |      | IRET        | Выход из прерывания                   |  |  |  |  |
|------|------|-------------|---------------------------------------|--|--|--|--|
|      |      |             |                                       |  |  |  |  |
| 0x58 | INT2 | IN 0x4      | Загрузка значения регистра ВУ         |  |  |  |  |
| 0x59 |      | NOP         | Точка для отладки                     |  |  |  |  |
| 0x5A |      | AND #0x000F | Применение маски на регистр ВУ и на Х |  |  |  |  |
| 0x5B |      | AND 0x03B   |                                       |  |  |  |  |
| 0x5C |      | ST 0x03B    | Загрузка значения Х в память          |  |  |  |  |
| 0x5D |      | NOP         | Точка для отладки                     |  |  |  |  |
| 0x5E |      | IRET        | Выход из прерывания                   |  |  |  |  |
|      |      |             |                                       |  |  |  |  |
| 0x5F | MIN  | WORD 0xFFE8 | Минимальное значение Х по ОДЗ         |  |  |  |  |
| 0x60 | MAX  | WORD 0x0019 | Максимальное значение Х по ОДЗ        |  |  |  |  |

### Описание программы

Основная программа уменьшает значение X (по адресу 0х03В) на 3 в цикле.

По нажатию кнопки у ВУ-3 на него выведется значение функции F(x) = -5x + 3.

По нажатию кнопки у ВУ-2 применяется маска, которая оставляет 4 младших разряда Х.

# Область представления

Х - знаковое число

#### Область допустимых значений

Ниже представлены ОДЗ для каждой операции в отдельности, а затем общее ОДЗ для всей программы.

Для основной программы, операции X-3:  $x \in [-2^7 + 3; 2^7 - 1]$ 

Для функции F(x) = -5x+3:  $x \in [-24; 25]$ 

Для операции маскирования:  $x \in [-2^7 + 3; 2^7 - 1]$ 

Итого для программы:  $x \in [-24; 25]$ 

#### Методика тестирования

- 1. Запустить программу в автоматическом режиме с адреса 0х40
- 2. Активировать кнопки у всех ВУ, кроме ВУ-2 и ВУ-3
- 3. Прервать исполнение программы и внести значение 0xFF00 (-256, либо любое другое, которое меньше  $-2^7$ ) по адресу 0x03B (ячейка для хранения X)
- 4. Запустить программу в автоматическом режиме
- 5. Прервать исполнение программы и внести значение 0xFFE8 (-24) по адресу 0x03B (ячейка для хранения X)
- 6. Запустить программу в автоматическом режиме
- 7. Прервать исполнение программы и по адресу 0х4Е поменять NOP на HLT
- 8. Запустить программу в автоматическом режиме, активировать кнопку ВУ-3
- 9. После окончания прерывания записать значение с ВУ-3

- 10. Запустить программу в автоматическом режиме
- 11. По остановке программы записать значение аккумулятора
- 12. По адресам 0х59 и 0х5D заменить NOP на HLT
- 13. Продолжить исполнение программы в автоматическом режиме, активировать кнопку ВУ-2
- 14. Внести значение 0x000F в ячейку 0x03B (ячейка для хранения X), запустить программу в автоматическом режиме
- 15. Продолжить исполнение программы в автоматическом режиме
- 16. По остановке программы записать значение аккумулятора

# Вывод по лабораторной работе

В ходе выполнения данной лабораторной работы я научился работать с прерываниями, обрабатывать их, понял механизм их работы. Прерывания являются важной частью для обмена данными с ВУ. Полученные навыки пригодятся мне в дальнейшем.