AUTOMATIC BRAKE DEVICE

Publication number: JP2000108866 (A)

2000-04-18

Also published as:

JP3537027 (B2)

Inventor(s): LOEWY GAUDI; SCOTT ANDREWS
Applicant(s): AISIN SEIKI; TOYOTA MOTOR CORP

Classification:

Publication date:

- international: B60R21/00; B60T7/12; B60T8/32; B60W30/00; B60R21/00;

B60T7/12; B60T8/32; B60W30/00; (IPC1-7): B60T8/32;

B60R21/00; B60T7/12

- European:

Application number: JP19980285168 19981007 **Priority number(s):** JP19980285168 19981007

Abstract of JP 2000108866 (A)

PROBLEM TO BE SOLVED: To realize a braking profile suited to a human feeling when braking is applied to place a target distance from an obstacle ahead and set an identical speed. SOLUTION: An automatic brake device is provided with a profile computing means for computing a braking profile shown in the drawing, which has a distribution of a wheel braking level at required for a series of a relative distance x0 between a vehicle and an obstacle ahead, its target value xf, a relative speed V0, a braking start delay time t,3 require for setting a relative distance corresponding to the target value V I and relative acceleration ao equal to the target value Xf or higher and a relative speed equal to the target value vf or lower, a braking level increasing time tr, a fixed level holding time tc and a reducing time tf,; and a means for controlling a wheel brake according to the braking profile. The wheel baking level at is set to one of amax/4. amax/2, 3amax and amax, and the total quantity of braking is adjusted by the holding time to for maintaining at.

Data supplied from the esp@cenet database — Worldwide

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2000-108866

(P2000-108866A)

(43)公開日 平成12年4月18日(2000.4.18)

(51) Int. Cl. ⁷	識別記号	F I	テーマコード (参考)
B60T 8/32		B60T 8/32	3D046
B60R 21/00		7/12	С
B60T 7/12		B60R 21/00 627	

審査請求 未請求 請求項の数6 OL (全21頁)

(21)出願番号	特願平10-285168	(71)出願人 00000011
		アイシン精機株式会社
(22)出願日	平成10年10月7日(1998.10.7)	愛知県刈谷市朝日町2丁目1番地
		(71)出願人 000003207
		トヨタ自動車株式会社
		愛知県豊田市トヨタ町1番地
		(72)発明者 ローイ ガウディ
		愛知県刈谷市朝日町2丁目1番地 アイシ
		ン精機株式会社内
		(74)代理人 100076967
		弁理士 杉信 興
		弁理士 杉信 興

最終頁に続く

(54) 【発明の名称】自動制動装置

(57)【要約】

【課題】 前方障害物に対して目標距離を置きかつ同速 度にするために制動するとき、人間のフィーリングに合った制動プロフィルを実現する。

【解決手段】 車両と前方障害物との、相対距離 x_0 , その目標値 x_1 , 相対速度 v_0 , その目標値 v_1 および相対加速度 a_0 に対応した、相対距離を目標値 x_1 以上としかつ相対速度を目標値 v_1 以下とするに所要の、制動開始遅延時間 t_0 , 制動レベル増強期間 t_1 , 定レベル保持期間 t_0 および低減期間 t_1 の連なりに対する車輪制動レベル a_1 の分布でなる図7の制動プロフィル、を算定するプロフィル演算手段10;および、制動プロイルに従って車輪ブレーキ30, $51\sim54$ を制御する手段10;を備える。車輪制動レベル a_1 は、 a_{101} / 4, a_{101} / 2, $3a_{101}$ / 4, a_{101} / 2, $3a_{101}$ / 4, a_{101} / 2, a_{101} / 4, a_{101} / 3, a_{101} / 4, a_{101} / 2, a_{101} / 4, a_{101} / 3, a_{101} / 4, a_{101} / 5, a_{101} / 6, a_{101} / 6, a_{101} / 7, a_{101} / 6, a_{101} / 7, a_{101} / 7, a_{101} / 8, a_{101} / 9, a_{101} / 9, a

【特許請求の範囲】

【請求項1】車両とその前方の物体との相対距離x。および相対速度v。を含む走行状態から次の走行状態として相対距離が目標値x₁、相対速度が目標値v₁とするに必要な、車輪制動レベル増強時間t₁,定レベル保持時間t₂および低減時間t₁をこの順に含む各時間の連なりに対する車輪制動レベルの分布でなる制動プロフィル、を算定するプロフィル演算手段;および、

1

該制動プロイルに従って前記車両の制動手段を制御する 制動制御手段;を備える自動制動装置。

【請求項2】前記プロフィル演算手段は、定レベル保持時間 t。に定める定レベル a、を、前記車両の自動制動が可能な制動レベル領域を数段階に区分する複数の制動レベルの1つに定め、定めた制動レベルに応じて各時間長を定める、請求項1記載の自動制動装置。

【請求項3】前記プロフィル演算手段は、車輪制動レベルをピーク値まで上げる車輪制動レベル増強時間および該ピーク値から零に戻す低減時間を標準値に定めて、前記走行状態情報に対応した、相対距離が目標値x,となるとき相対速度を目標値v,とするに所要の、上記ピーク値を算出し、前記複数の制動レベルの中の、前記ピーク値に直近かつ低レベル側の制動レベルを、前記定レベル保持時間t,の車輪制動レベルa,に定め、該制動レベルa,に立上げそれから立下げる車輪制動レベル増強時間t,および低減時間t,ならびに定レベル保持時間t,を算出する、請求項2記載の自動制動装置。

【請求項4】制動プロフィルは、それを算定する時点から前記車輪制動レベル増強時間 t,の開始までの、実質上制動を加えない制動遅延期間 t a を含む、請求項1,2又は3記載の自動制動装置。

【請求項5】前記プロフィル演算手段は、前記車輪制動レベル増強時間 t,および低減時間 t,に、前記車両の乗員の快適を損わないために予め定めた値を与えて定レベル保持時間 t。の車輪制動レベルa,を算出し、算出した車輪制動レベルa,で相対距離の目標値 x,、相対速度の目標値 v,が得られないときには、前記車輪制動レベル増強時間 t,および低減時間 t,の少くとも一方を、相対距離の目標値 x,、相対速度の目標値 v,が得られる値とする、請求項1記載の自動制動装置。

【請求項6】前記プロフィル演算手段は、請求項5で求 40 めた有効な車輪制動レベルa, 車輪制動レベル増強時間t, および低減時間t, において、相対距離が目標値x, となるとき相対速度を目標値v, とするに所要の、定レベル保持時間t, を、前記制動プロフィルに設定する、請求項5記載の自動制動装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両前方の静止物体又は走行中の先行車両(以下これらを障害物と称す)への過接近を回避のための自動制動に関し、特に、これ 50

に限定する意図ではないが、車上において前方を自動監視して、自車両の走行レーン上前方の障害物を検出すると、乗員の快適性を極力損なわず過接近を極力回避するように、車輪ブレーキの自動ブレーキングにて自動減速を行なう、コンピュータによる自動制動に関する。

【0002】この自動制動は、障害物が静止物体のときには、該物体に過接近するまでに自車両を自動停止させる自動停止制御であり、障害物が走行中の先行車両であるときは、先行車両への過接近を回避するための自動減10 速制御である。

[0003]

20

【従来の技術】特開平7-32995号公報に開示された自動制動装置は、脈拍センサを用いて運転者が運転不可状態にあるか否かを判定し、かつ、前方監視装置にて前方に障害物があるかを監視して、運転者が運転不可状態となっているとき前方障害物を検出すると、衝突の可能性を判定し、それが高いと大きく、低いと小さく目標減速度を定めて、車両減速度が該目標減速度に合致するように車輪ブレーキ圧を制御し、車両が停止するまでこの自動減速を行なう。

【0004】特開平9-249103号公報に開示された自動制動装置は、前方障害物までの距離および相対速度を検出し、それらに基づいて、前方障害物までの距離を一定に保持して追従するための加速度(具体的には、負値すなわち減速度)を求めて、それに、自動変速装置によるクリープ走行を抑止する補正分(具体的には、負値の減速度)を加えた目標値を算出し、車両加速度(負値の減速度)が該目標値に合致するように車輪ブレーキ圧を制御する。

30 【0005】自動制動には、これら、車輪制動によって 車両速度を減速しようとするものの他に、前後左右車輪 ブレーキの差動ブレーキングによって車体姿勢の乱れあ るいは走行レーンからの逸脱を矯正しようとするものも ある。

【0006】Vehicle System Dynamics Supplement 25 (1996), pp. 383-396 の、A warningand Intervention S ystem to prevent Road-Departure Accidents は、車両前方のシーンをテレビカメラで撮影し、画像処理によって走行レーンを検出し、車両上の他のセンサの検出情報から車両挙動を推定し、走行レーンからの意図しない逸脱を生じたときには、逸脱量を制御量とし操作量を車輪ブレーキ圧配分とするフィードバック制御により、走行レーンに戻る方向に、車両進行方向を自動調整する。

【0007】特開平6-213660号公報には、車両前方の走行レーンの検出とレーン幅、カーブ、前方車両等の検出が開示されている。また、特開平9-96507号公報には、車両前方シーンを撮影するテレビカメラをレーンカーブに倣ってステアリングして前方走行レーンを追跡する技術が開示されている。更に、特開平8-207737号公報には、車輪ブレーキの配分制御により車両の姿勢又は進行

方向を調整するブレーキングステアリングが開示されている。これらの技術を集成することにより、上述の、静止物に対する過接近や先行車両に対する過接近を回避のための自動制動や、車両進行方向および車体姿勢矯正のための自動制動を実現することができる。

[0008]

【発明が解決しようとする課題】前方静止物に対する過接近回避のための制動、ならびに、先行車両への過接近を回避するための制動は、状況により、様々なブレーキカ(強いブレーキカ,弱いブレーキカ)が必要となるが、急制動は乗員に不快や不安感を与え易いので、自動制動においては人間の感性に十分に合ったブレーキが必要となる。乗員の快適感性は、車両の加速度(プラス値、負値は減速度)の微分値(変化速度)に関係する。上昇方向であれ下降方向であれ、加速度(負値すなわち減速度を含む)が大きく変化すると進行方向の力が乗員に加わる。これを回避するために、長距離前方の障害物を検出し、低い減速度の制動を加えるようにすると、制動時間が長くなってしまう。

【0009】したがって、乗員の快適を損わない時間で 20 減速度を所要値に上げ(加速度表現では下げ)、そして減速度を乗員の快適を損わない時間で下げて零(自動制動なし)に戻したとき、車両は前方障害物の手前にあって、前方障害物の速度と同一速度(障害物が静止の場合は車速=0)、となる減速プロフィルとその開始タイミング t a を決定し、その減速プロフィルに従って自動制動するのが好ましい。

【0010】本発明は、車両を目標の位置に止めたり、 目標の速度にするために自動的にブレーキをかける自動 制動を、人間のフィーリングに合ったもの、とすること 30 を目的とする。

[0011]

【課題を解決するための手段】(1)車両とその前方の物体との相対距離 x。および相対速度 v。を含む走行状態から次の走行状態として相対距離が目標値 xr、相対速度が目標値 vrとするに必要な、車輪制動レベル増強時間 tr、定レベル保持時間 t。および低減時間 trをこの順に含む各時間の連なりに対する車輪制動レベルの分布でなる制動プロフィル、を算定するプロフィル演算手段(10);および、該制動プロィルに従って前記車両の制動40手段(30,51~54)を制御する制動制御手段(10);を備える自動制動装置。

【0012】なお、理解を容易にするためにカッコ内には、図面に示し後述する実施例の対応要素の符号又は対応事項を、参考までに付記した。以下も同様である。

【0013】これによれば、走行状態(x₀, v₀, a₀)が許す限り、乗員の快適を損わない車輪制動レベル増強時間 t_r, 該増強時間 t_rの終点の車輪制動レベル a₁ および低減時間 t_rを定め、かつ、車輪制動レベル a₁ を維持する定レベル保持時間 t₀にて、障害物への過接近の

回避に十分な制動時間をとることができる。この制動の緊急性が高いと、車輪制動レベル増強時間 t, は低値、該増強時間 t, の終点でもたらされる車輪制動レベル a, は高値、として制動レベルの上昇速度を速くすればよい。走行状態(x。, v。, a。)に対応した重み付けを、乗員の快適性と過接近回避のそれぞれに行なって、両者の釣り合いをはかることができる。

4

[0014]

【発明の実施の形態】 (2) 前記プロフィル演算手段(1 0)は、定レベル保持時間 t。に定める定レベルa、を、前記車両の自動制動が可能な制動レベル領域 (減速度零以上;加速度表現では、零以下)を数段階に区分する複数の制動レベル(a a a a a x / 2, 3 a a a x / 4, a a a x)の1つに定め、定めた制動レベルに応じて各時間長(t r , t e , t r)を定める。

【0015】これによれば、車両の制動手段(30,51~54)は、前記複数の制動レベル(a_{max}/4, a_{max}/2, 3 a_{max}/4, a_{max})のそれぞれに制御できるものであればよく、制動レベルを目標値に定めるための制動制御アルゴリズムあるいはコントローラを簡略化することができる。

(3) 前記プロフィル演算手段(10)は、車輪制動レベルをピーク値(a_r)まで上げる車輪制動レベル増強時間(t_r)および該ピーク値(a_r)から零に戻す低減時間(t_r)を標準値(デフォルト値; t_r =2 sec, t_r =4 sec) に定めて、前記走行状態情報(x_s , v_s , a_s)に対応した、相対距離が目標値 x_r (障害物が静止物のとき x_r =3 m;先行車両のときはその走行速度対応の車間距離目標値)となるとき相対速度を目標値 v_r (v_r =0)とするに所要の、上記ピーク値(a_r)を算出し、前記複数の制動レベル(a_{***x} /4, a_{****x} /2, $3a_{***x}$ /4, a_{****x})の中の、前記ピーク値(a_r)に直近かつ低レベル側(加速度表現では高側)の制動レベル a_r を、前記定レベル保持時間 t_r の車輪制動レベル a_r に定め、該制動レベル a_r に立上げそれから立下げる車輪制動レベル保持時間 t_r および低減時間 t_r ならびに定レベル保持時間 t_r を算出す

【0016】走行状態情報(x_0 , v_0 , a_0)ならびに増強時間 t_1 の標準値(2 sec)および低減時間 t_1 の標準値(4 sec)に基づいて算出する、車輪制動レベルピーク値(a_1)が、複数の制動レベル($a_{max}/4$, $a_{max}/2$, $3 a_{max}/4$, a_{max})の中の1つに合致し、しかも、このピーク値を算出した時点から、このプロフィル又はパターンに従った制動を開始すると、目標値 x_1 分障害物の手前で相対速度が目標値 v_1 ($v_1 = 0$) 以下となるという計算結果を得た場合、定レベル保持時間 t_0 を零に定めることにより、計算通りの、過接近回避制動を実現することができる。

【0017】相対速度が目標値 v_r (v_r ≒ 0) となると 50 き、相対距離が目標値 x_rより大きい(相対距離に余裕 がある)場合には、それに対応する時間 t。分、制動開始を遅延することができる。このような遅延 t。を行なうと、遅延の間に状況が変化(例えば障害物が不存在となる)し、制動の必要性が無くなることがあり得る。遅延時間 t。を制動プロフィルに含め、この遅延時間 t。が経過するまでに、対象の障害物が不存在になると設定中の自動制動(制動プロフィル)を解除することにより、自動制動は開始せず、必要性が低い自動制動を実行する

確率が低下する。

【0019】ところで、例えば80Km/hで走っており、100m前方に静止障害物があって自動制動で停止しようとすると、障害物の直前で止まるために、9.6秒間(4.8秒間は0.42gまでの立上げ時間、4.8秒間は0.42gから0~の立下げ時間)の、ピーク値が0.42gの制動が必要となる。しかし本実施態様によれば、増強時間 t_r =1秒で0.3gに立上げ、定レベル保持時間 t_r =6.5秒の間0.3gを維持し、そして低減時間 t_r =1秒で0gに戻すことによって、全体の制動時間は8.5秒で、同様に障害物の直前で止めることができる。制動能力が低い制動手段を用いても、制動能力が高い場合と同様な制動を実現できる。

【0020】制動能力が高い場合(例えば0.6g能力)にも本発明を同様に適用することができる。その場合は、制動レベル領域が広いので、該領域を数段階に区分する複数の制動レベル(前述のa man x / 4, a man x / 2, 3 a man x / 4, a man x / 2, 3 a を数として、高制動 40 レベル(例えば0.3gを越えるレベル)の自動制動を、極力運転者の快適感性を損なわないように、定レベル保持時間 t。を可能な限り導入し、ピークレベルa、を下げる。

(4) 制動プロフィルは、それを算定する時点から前記 車輪制動レベル増強時間 t,の開始までの、実質上制動 を加えない制動遅延時間 t,を含む。

【0021】これによれば、例えば80Km/hで走って の操作(ブレーキペダル踏込み)が検出されるまで、新たおり、105m前方に障害物があることを検知した時点か な制動プロフィルの算定は保留する。乗員によるブレーら、遅延時間 $t_a=0.2$ 秒後すなわち障害物までの距離が 50 キペダル操作があると、乗員による制動が期待できるの

100mのときに上述の、全体の制動時間は8.5秒(t_r =1秒) a_t =0.3g、 t_e =6.5秒、 t_r =1秒) の自動制動を開始することにより、同様に障害物の直前で止めることができる。

6

【0022】このような遅延時間 t_a は、前方障害物を検出したときの相対距離 x_a が長いほど、また、相対速度 v_a が低いほど、長い時間に設定することができ、例えば、 $x_a \ge 5$ 3 mおよび $v_a \le 2$ 6 k m/h では数秒に設定することができる(図9)。この数秒の遅延時間 t_a の間に、障害物(先行車両)が、非検出(レーン変更により自車走行レーン上に不存在)となる可能性がある。遅延時間 t_a の間に障害物がなくなれば、制動が開始されないので、無為な自動制動を開始する確率が低減する。

- (5) 前記プロフィル演算手段(10)は、前記車輪制動レベル増強時間 t,および低減時間 t,に、前記車両の乗員の快適を損わないために予め定めた値(デフォルト値; t,=2 sec, t,=4 sec)を与えて定レベル保持時間 t。の車輪制動レベルa,を算出し、算出した車輪制動レベ20 ルa,で相対距離の目標値x,相対速度の目標値v,が得られないときには、前記車輪制動レベル増強時間 t,および低減時間 t,の少くとも一方を、相対距離の目標値x,相対速度の目標値v,が得られる値とする(図3,図5のサブルーチン24)。
 - (6) 前記プロフィル演算手段(10)は、上記(5)で求めた有効な車輪制動レベル a_r , 車輪制動レベル増強時間 t_r および低減時間 t_r において、相対距離が目標値 x_r (障害物が静止物のとき $x_r=3$ m;先行車両のときはその走行速度対応の車間距離目標値)となるとき相対速度を目標値 v_r ($v_r=0$)とするに所要の、定レベル保持時間 t_r を、前記制動プロフィルに設定する(図3,図6のサブルーチン26)。
 - (7) 前記プロフィル演算手段(10)は、制動プロィルに従って前記車両の制動手段(30,51~54)を制御しているとき、相対距離(x。),相対速度(v。)および相対加速度(a。)の少くとも一者に関して、前記車両とその前方の物体との間の実績値が、前記制動プロフィルに従って算出する推定値に実質上一致するかを検定する(図3の59)。これにより、実行中の制動プロィルの適,否を判定しうる。
 - (8) 前記プロフィル演算手段(10)は、実績値が推定値と不一致のときには、そこで前記制動プロフィルを新たに算定する(図3の59,66-21~26)。これにより、制動プロィルが更新される。
 - (9) 前記プロフィル演算手段(10)は、前記制動制御手段(10)が制動プロフィルに従った制動制御によって相対速度(v_s)を実質上目標値 v_r ($\stackrel{1}{=}0$)にした後は、乗員の操作(ブレーキペダル踏込み)が検出されるまで、新たな制動プロフィルの算定は保留する。乗員によるブレーキペダル操作があると、乗員による制動が期待できるの

で過接近回避のための自動制動は不要である。

【0023】本発明の他の目的および特徴は、図面を参 照した以下の実施例の説明より明らかになろう。

[0024]

【実施例】図1に本発明の、1つの車両上に搭載された 一実施例を示す。回転機構170で支持されたテレビカ メラ160は、画像処理ECU140に接続されてい る。回転機構170は、回転駆動用の電気モータおよび 減速機を内蔵するものであり、減速機の出力回転軸にカ メラ160が固着されている。回転機構170は、フレ 10 ームで支持され、車両の車内のフロントウィンドウの中 央上部付近に設置されており、テレビカメラ160は、 車両前方のシーンを撮影して画像信号を出力する。

【0025】道路がカーブしている場合は、カメラが路 面から外れた方向を撮影してしまう可能性が高い。した がってこの実施例では、回転機構170でカメラ160 を支持して、画像処理ECU140により、車両前方の 走行レーン検出, レーンのカーブ半径Rの算出, レーン 幅算出, 自車両のレーン逸脱量(偏位量)算出, 自車走 行レーン上前方障害物の検出,前方障害物までの距離x 。の算出、前方障害物との相対速度v。の算出および相対 加速度 a 。の算出を行ない、これらの算出値 x 。, v 。お よびa。を表わすデータは、画像処理ECU140の内 部のDMA転送用のメモリの、ブレーキ制御ECU10 宛てデータ格納領域に書込む。ブレーキ制御ECU10 (のCPU) は、所要のときにDMA転送を使用して、 該領域のデータを読込むことができる。障害物を検出し ないときには、カメラ160の視野中心をレーン中央に 合すように、カメラ160をステアリングする。カメラ 視野内に障害物 (例えば先行車) が存在するときは、該 30 障害物を視野中心に置くようにカメラ160をステアリ ングする。

【0026】カメラ160と画像処理ECU140の構 成と機能は、前記特開平6-213660号公報に、また、カメ ラ160のステアリングに関する構成と機能は、前記特 開平9-96507号公報に開示されたものと類似である。カ メラの撮影画像を画像処理して走行レーンを区画する 左,右白線を検出し、車幅中央の車両前後軸と、左白線 (検出線) との横方向距離 X L および右白線 (検出線) との横方向距離XRを算出する。この処理技術は、前記 40 圧用電磁弁と減圧用電磁弁、を含み、前記特開平8-2077 特開平6-213660号公報に開示されたものである。この実 施例では画像処理ECU140は更に、走行レーンに対 する車両の左側逸脱量および右側逸脱量を算出する。そ して、左、右逸脱量のうち、大きい値の方を、レーン逸 脱量とする。

【0027】そしてこのレーン逸脱量およびそれが左 側、右側のいずれであるかの情報を、レーン検出データー 有効, レーンカーブ半径R, 障害物検出有無、ならび に、障害物検出有のときは、障害物までの距離(相対距 離)x。、障害物との相対速度v。および相対加速度a。

を表わす情報と共に、画像処理ECU140の内部のD MA転送用のメモリの、クルーズ制御ECU100宛て データ格納領域に書込み、走行レーン検出が不成功のと きには「無効」を該領域に書込む。

【0028】クルーズ制御ECU100 (のCPU) は、所要のときにDMA転送を使用して、該領域のデー タを読込むことができる。クルーズ制御ECU100の 主たる機能は、クルーズ制御(定速走行制御/車間距離 制御)およびレーン逸脱制御である。クルーズ制御EC U100は、これらの制御を実行中か否かにかかわら ず、画像処理ECU140が障害物を検出しているとき には、相対速度 v。と自車速度から障害物の移動速度を 算出し、該移動速度が零(障害物が静止物)のときには 相対距離目標値 x に固定値(3 m)を与えかつ相対速 度目標値v。に零を与える。移動速度が零を越える(障 害物が先行車両)のときには、移動速度に予め対応付け られている車間距離値を相対距離目標値x,に与えか つ、定速走行制御,車間距離制御あるいはレーン逸脱制 御のいずれかを実行中には、その制御を実行するアルゴ リズムで定まる値を相対速度目標値 v。に与え、いずれ の制御も実行していないと相対速度目標値v。に零を与 える。

【0029】そしてクルーズ制御ECU100は、画像 処理ECU140から読込んだ情報(障害物検出有無、 ならびに、障害物検出有のときは、相対距離 x。, 相対 速度 v。および相対加速度 a。), 設定した相対距離目標 値x,および相対速度目標値v。、ならびに、定速走行制 御、車間距離制御又は逸脱制御の有無と有のときには車 輪ブレーキ操作情報(指示)を、クルーズ制御ECU1 ○ ○ の内部のDMA転送用のメモリの、ブレーキ制御E CU10宛てデータ格納領域に書込む。

【0030】車輪ブレーキ液回路30は、ブレーキペダ ル、バキュームブースタおよびブレーキマスタシリンダ を含み、運転者のブレーキペダル踏込み(踏力)に対応 するブレーキ圧を発生する第1ブレーキ圧源,モータ駆 動されるポンプにより第2圧力を発生する第2ブレーキ 圧源, 第1圧力と第2圧力の一方を選択的に車輪ブレー キ51~54に供給する車輪ブレーキ圧操作用の電磁 弁、および、各車輪ブレーキに各1対備わった、対の増 37号公報に開示されたものである。

【0031】前右、前左、後右および後左の車輪51~ 54それぞれの回転速度を車輪速度センサ41~44の それぞれが検知し、各車輪速度を表わす電気信号(車輪 速度信号)をブレーキ制御ECU10に与える。ブレー キペダルの踏込み中閉となるブレーキスイッチSW45 が、その開(ペダルの踏込みなし:オフ)/閉(ペダル の踏込みあり:オン)を表わす電気信号をブレーキ制御 ECU10に与える。車体のヨーレートをヨーレートセ 50 ンサYAが検知し、ヨーレート(実ヨーレート) y を表

わす電気信号を発生してブレーキ制御ECU10に与える。ステアリングホイールの回転角度を前輪舵角センサ θ F が検知し前輪舵角 θ f を表わす電気信号をブレーキ 制御ECU10に与える。後輪の舵角は後輪舵角センサ θ R が検知し後輪舵角 θ r を表わす電気信号をブレーキ 制御ECU10に与える。前輪ステアリング機構に加わるステアリングトルクT r をトルクセンサSTが検出してステアリングトルクT r を表わす電気信号をブレーキ 制御ECU10に与える。車体の前後加速度gx(正値が狭義の車両加速度、負値が車両減速度)を加速度セン 10 サ (GXセンサ)が検知し前後加速度を表わす電気信号をブレーキ制御ECU10に与える。車体の横加速度gyを加速度センサ(GYセンサ)が検知し横加速度を表わす電気信号をブレーキ制御ECU10に与える。

【0032】ブレーキ制御ECU10は、これらのセンサ、スイッチ等の情報を読込み、しかも、クルーズ制御ECU100のDMA転送用のメモリの、ブレーキ制御ECU10宛てデータ格納領域の、上述の各種データ(障害物検出有無、相対距離 x。、相対速度 v。、相対加速度 a。、相対距離目標値 x r、相対速度目標値 v r、および、その他)を読込み、「ブレーキ制御処理」

(5), 「車両自動制動」(6) および「方向補正処理」(7) を実行する。

【0033】「ブレーキ制御処理」(5)には、車体ドリフト量及び車体スピン量を推定し、その推定値に基づいて車両旋回が過不足領域にあるかを判定し過不足領域にあると車輪ブレーキ圧を増圧する車輪ブレーキを決定し、決定した車輪ブレーキに、車輪ブレーキ液回路30を介してブレーキ圧力を供給する車輪ブレーキを対象とする「BーSTR制御」と後2輪のブレーキを対象とする「2ーBDC制御」とがあり、全輪ブレーキを対象とする「2ーBDC制御」とがあり、全輪ブレーキを対象とする「BーSTR制御」には更に、オーバステアを抑制するための「BーSTRーOS」制御とアンダーステアを抑制するための「BーSTRーUS」制御の2つがある。「ブレーキ制御処理」(5)には更に、「ABS制御」(アンチスキッド制御)および「TRC制御」(トラクションコントロール)も含まれる。

【 O O 3 4 】「車両自動制動」(6)は、前方障害物に 対する過接近回避のための自動制動を行なうものであ り、図7に示す制動プロフィルを生成してこれに従って 自動制動を行なう。この内容は、後に詳細に説明する。

【0035】「方向補正処理」(7)は、画像処理EC および U140が検出した、自車走行レーンに対する自車の逸 腕量に対応するヨーレート目標値を算出して、実際の車 両ヨーレートが目標値に合致するように車輪ブレーキ圧 配分制御を行なうものである。制動力配分制御によるステアリングが不十分となるきには、4WS制御ECU6 ればのにステアリング指示を与え、また、スロットル制御E キス CU80にサブスロットルの閉指令を与えて、後輪ステ 50 る。

アリング駆動器 7 0 にて補助ステアリングを行ない、スロットル駆動器 9 0 にてエンジンのサブスロットルを閉じてエンジン出力を下げる。これらの制御の内容は、前記特開平8-207737号公報に提示したものである。

10

【0036】図2に、ブレーキ制御ECU10の処理機能の概要を示す。動作電圧が加わるとブレーキ制御ECU10(のCPU)は、内部レジスタ、入出力ポートおよび内部タイマを初期状態に設定し、ECU10内の入、出力インターフェイスを、待機時の入力読取接続および出力信号レベルに設定する(ステップ1)。なお、以下においては、カッコ内には、ステップとかサブルーチンという語を省略してそれらの番号のみを記す。

【0037】そして、制御処理周期を定めるためのタイマTbをスタートして(2)、入力読取り(3)から「DMAメモリのデータ更新」(8)までの処理を実行してタイマTbのタイムオーバを待ち(9)、待っている間、ECU10内の電気回路の状態をチェックして(10)、異常の有無を判定する(11)。異常が無く、タイマTbがタイムオーバすると、またタイマTcをスタートして(2)、入力読取り(3)から「DMAメモリのデータ更新」(8)までの処理を実行する。かくして、ECU10内の電気回路に異常が無いと、ステップ2~9を、実質上Tb周期で繰返し実行する。

【0038】入力読取り(3)にて、操作、表示ボード20の入力ならびにセンサ41~45, YA、 θF, θR, ST, GX, GYの検出信号を読込むと、「ブレーキ制御処理」(5),「車両自動制動」(6)および「方向補正処理」(7)にて参照する状態情報を、DMA転送で、クルーズ制御ECU100から読込む(4) すなわち、FCU100の内部のDMA転送用

(4)。すなわち、ECU100の内部のDMA転送用のメモリ上の、ブレーキ制御ECU10宛てのデータ書込領域の、障害物検出有無、相対距離x, 相対速度v, 相対加速度a, 相対距離目標値x, 相対速度目標値v, および、その他を、DMA転送で読込む。

【0039】次に「ブレーキ制御処理」(5)を実行する。この内容は前記特開平8-207737号公報に開示のものと同様であるが、この実施例では、「2-BDC制御」および「B-STR制御」のいずれかの車輪ブレーキ圧制御を行なうとき、ECU100からの方向補正指令を 受けていると、ECU100からの指令値(レーン逸脱量、カーブ半径R)に基づいてブレーキステア用の目標 ヨーレートyawOを算出し、かつ、「2-BDC制御」および「B-STR制御」用にECU10が生成した車輪ブレーキ圧配分制御の目標ヨーレートを、クルーズ制御ECU100が指示したブレーキステア用の目標ヨーレートyawO分補正(バイアス)して、補正した目標ヨーレートに対応して車輪ブレーキ圧配分を決定する。これにより、クルーズ制御ECU10によって実行され

【0040】次に「車両自動制動」(6)を実行する。 これは、障害物(自車走行レーン上の前方の静止物又は 走行中の先行車)に対する過接近回避のために自動制動 するものであり、そのアルゴリズムの大要をここで説明 する。

【0041】障害物検出有無データが、障害物無しから障害物ありに切換わると、そこで図7に示す制動プロフィルを想定し、現在の障害物との相対距離x。[m],相対速度v。[m/sec] および相対加速度a。[m/sec²] に対応して、相対距離(x。)が相対距離目標値xr[m]以下になるときに、相対速度(v。)を相対速度目標値vr[m/sec]以下とするに必要な、車輪ブレーキ51~54のブレーキ圧による制動レベルa、(負値であり減速度、単位はg),遅延時間ta,増強時間tr,保持時間t。および低減時間tr[いずれもsec]を算出する。

【0042】遅延時間 t_{\parallel} は、車輪ブレーキ $51\sim54$ に対して、実質上ブレーキ力は発生しないが制動子の遊び分の駆動は行なう程度のブレーキ圧の印加は行なっても、車輪にブレーキ力は実質上与えない、現時点(制動 20 プロフィル算出時刻;図7の横軸の始点 t=0)から、

12

実効ブレーキ力の印加を開始するまでのブレーキ力印加保留時間である。増強時間 t, は制動レベルを 0 から a, =a。+a。まで立上げる時間、保持時間 t。は a、を維持する時間、低減時間 t,は制動レベルを a、から 0 に立下げる時間である。なお、遅延時間 t 。および保持時間 t 。は零の場合があり得る。

【0043】制動をかけるとき、乗員に与える減速度は、零から緩やかに立上って次第に値が大きくなり、ピーク値近くで緩やかに飽和しそしてそれから緩やかに立下って次第に値が小さくなり、零近くでまた緩やかに立下る、円滑な減速プロフィルとなるべきである。そうであると乗員の快適を損う可能性が低い。高い減速度のみならず、立上り、立下り速度が高い減速度変化(減速度の微分値)は、乗員に不快を与える。そこで本実施例では、次の〔数1〕に示すように、減速度の立上げおよび立下げをcos関数とした。〔数1〕は、図7に示す制動プロフィル上の制動レベル(単位は重力の加速度g)を表わすものである。

[0044]

【数1】

$$a(t_d) = a_0 \qquad \cdots (12)$$

$$\begin{array}{ccc}
 & t & d \\
 & a & (t) = a_0 + \frac{a_b}{2} \left[1 - c \circ s \left(\frac{\pi}{t_r} (t - t_d) \right) \right] & \cdots & (13)
\end{array}$$

$$a(t_1) = a_0 + a_b = a_t$$
 · · · (14)

$$a (t) = a_0 + a_b = a_t$$
 · · · (15)

$$a(t_2) = a_0 + a_b = a_t$$
 · · · (16)

$$a \stackrel{\text{t 2}}{\underset{\text{t 3}}{(\text{t})}} = \frac{(a_0 + a_b)}{2} \left[1 + c \circ s \left(\frac{\pi}{t_f} (t - t_2) \right) \right] \qquad \cdots \qquad (17)$$

$$a(t_3) = 0$$
 · · · (18)

a O:制動プロフィルの計算をした時刻(t=O)の、 前方障害物に対する自車両の相対加速度(計算値)

â b:自動ブレーキングによる制動レベル変化量(計算値)

â t:自動プレーキングによる制動レベルピーク値(計算値)

at=ao+ab

t d:自動プレーキングの、開始遅延時間

t r:自動ブレーキングの、制動レベル増強時間

c:自動ブレーキングの、定レベル保持時間

t f:自動ブレーキングの、制動レベル低減時間

【0045】横軸(時間軸)原点(t=0)から制動レベル(g)を順次積分する一次積分は、速度(制動により順次低下する速度)を表わし、一次積分(速度)の積分すなわち制動レベル(g)の二次積分は距離(制動中の走行距離)を表わす。

【0046】障害物が静止物の場合は、相対速度をv。 から目標値 $v_r = 0$ とするように制動するので、制動中の相対距離変化量($d = x_o - x_r$)は、いわゆる停止距 40 離である。障害物が先行車の場合は、その走行速度に対応付けられた車間距離が相対距離目標値 x_r に設定され、通常の場合は相対速度目標値 $v_r = 0$ とする、制動による車間距離制御となるので、その場合は、制動中の相対距離変化量($d = x_o - x_r$)は、文字通り、自車車速を先行車の車速に合わせるための制動減速中の相対距離変化量である。

【0047】図7に示す制動プロフィルの二次積分式 (制動中の相対距離変化量dを表わす式)に、該制動プロフィルの実行によって、相対距離が相対距離変化量d $= x_o - x_r$ 分変化する間に相対速度を v_o から v_r とするとの条件を与えて、制動プロフィルを規定する制動レベルピーク値 a_r 、増強時間 t_r 、低減時間 t_r および遅延時間 t_a を表わす各数式を導びくと、それぞれ次の〔数2〕~〔数5〕に示すものが得られる。また、図7に示す制動プロフィルの一次積分式(制動中の減速量)を表わす式に、制動開始時の相対速度 v_o および制動終了時の相対速度 v_r を与えて、制動プロフィルを規定する保持時間 t_c を表わす数式を導びくと、〔数6〕に示すものが得られる。

【0048】図7に示す制動プロフィルは、前方障害物との距離がx。、相対速度がv。、相対加速度がa。の時点(制動プロフィル算出時刻)から、遅延時間 t。後に制動力を印加しかつその立上げを開始して、該開始から増強時間t。後に制動レベルをピーク値a、とし、それから保持時間t。の間制動レベルをピーク値a、に維持し、保持時間が経過した時点から制動力の立下げを開始して、この立下げ開始から低減時間t。後に制動力を零に

立下げ、これにより制動力が零に戻ったときには相対距離は x_r 、相対速度は v_r としようとするものであり、制動レベルピーク値 a_t は、与えられる条件(x_o , x_r), (v_o , v_r) および a_o と、制動プロフィルを規定する他のパラメータ t_a , t_r , t_c および t_r 、の影響を受ける。 x_o , v_o および a_o は検出値、 x_r および v_r は目標値(固定値又は指示される値)であり、いずれも与えられる値であるが、遅延時間 t_a , 増強時間 t_r , 保持時間 t_o および低減時間 t_r は、ピーク値 a_r と同様に、算出すべき値である。

【0049】つまり、算出すべき制動レベル a_1 ,遅延 $t_r \neq t_f$ のときは、

時間 t a , 増強時間 t r , 保持時間 t c および低減時間 t r はそれぞれ、相互に影響し合うパラメータであり、各値を一度に一意的に算出することはできず、各パラメータに仮定的に数種の具体値を与えて各値の算出を繰返し、総体的にバランスが取れた各パラメータの値を求める、繰返し計算が必要であり、パラメータ数が多いほど、計算が複雑になり算出に時間がかかる。これらのパラメータの数を低減するために、〔数2〕では、保持時間 t c は省略している。

16

10 [0050]

【数2】

$$a_{t} = \frac{b + \sqrt{b^{2} - 4 a c}}{-2 a} \qquad \cdots (21)$$

$$a = Q (t_{r}^{2} - t_{f}^{2}) \qquad \cdots (22)$$

$$Q = \frac{\pi^{2} - 8}{4 \pi^{2}} \qquad \cdots (23)$$

$$b = a_{0} \left[\frac{(2 t_{d} + t_{r})^{2}}{4} - Q t_{r}^{2} \right] + v_{f} t_{f} + v_{0} (2 t_{d} + t_{r}) - 2 d \cdots (24)$$

$$c = v_{f}^{2} - v_{0}^{2} - a_{0} \left[v_{0} (2 t_{d} + t_{r}) + a_{0} \frac{(2 t_{d} + t_{r})^{2}}{4} \right] \qquad \cdots (25)$$

$$a_{t} = \frac{v_{f}^{2} - v_{0}^{2} - a_{0} \left[v_{0} \left(2t_{d} + t_{r}\right) + a_{0} \frac{\left(2t_{d} + t_{r}\right)^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}{2d - v_{0} \left(2t_{d} + t_{r}\right) - v_{f} t_{r} - a_{0} \left[\frac{\left(2t_{d} + t_{r}\right)^{2} - Qt_{r}^{2}}{4}\right]}$$

V ○:制動プロフィルの計算をした時刻(t=0)の、 前方障害物に対する自車両の相対速度(検出値)

V f : 目標相対速度

d: 自動ブレーキングによって相対速度検出値 ${f V}$ 0を目標相対速度 ${f V}$ fにするまでの走行距離(計算値)

d = X O - X f

X O:制動プロフィルの計算をした時刻の、

前方障害物に対する自車両の相対距離(検出値)

Xf:目標相対距離

【0051】すなわち、所要制動レベルa、を算出するための[数2]は、前方障害物との距離がx。その目標値がx、相対速度がv。その目標値がv、相対加速度がa。の時点(制動プロフィル算出時刻)から、遅延時間 t 。後に制動力を印加しかつその立上げを開始して、該開始から増強時間 t 。後に制動レベルをピーク値 a 、とし、この時点からただちに制動力の立下げを開始して、この立下げ開始から低減時間 t 。後に制動力を零に立下げ、これにより制動力が零に戻ったときには相対距離は

目標値 x_r 、相対速度は目標値 v_r (通常の場合 v_r = 0)となる制動レベルピーク値 a_r を算出するものとしている。したがって、遅延時間 t_a ,増強時間 t_r および低減時間 t_r を与えれば、制動レベルピーク値 a_r を得ることができる。そこで本実施例では、制動レベル a_r の初回の算出(図3の24)においては、増強時間 t_r および低減時間 t_r に、乗員の快適を損うことのない比較的に大きい値(t_r =2 s_r e、 t_r =4 s_r e、)を、デフォルト値(標準値)として与えている。遅延時間 t_a には、

制動遅れとなる可能性を低くするために、比較的に小さい値($t_a=0.2sec$)を、デフォルト値(標準値)として与えている。

【0052】過接近回避の緊急性が高い場合、例えば相対距離x。が短く相対速度y。が高い場合には、緊急性に応じてそれが高いほど遅延時間t。、増強時間t,および低減時間t,は短く制動レベルa,は高くし、過接近回避をできるだけ避ける避けるのが好ましい。そこで、本実施例では、デフォルト値に基づいて算出した制動レベルa、をチェックして、それが車両上ブレーキシステム($30+51\sim54$)の実効範囲を外れるもの(無効値)であると、実効範囲内の値(有効値)となるまで遅延時間t。。遅延時間t。増強時間t。および低減時間t。を短くする。遅延時間t。増強時間t。を記をしたで表しても制動レベルa、が有効値とならない場合には、ただちに緊急制動を開始しかつ警報を発生する。

【0053】有効値の制動レベルa,を算出した場合は、制動レベルの保持時間t,を加えて(t,>0にし

$$t_r = \frac{b + \sqrt{b^2 - 4 \text{ a c}}}{-2 \text{ a}}$$

て)、その分制動レベル a 、を下げることができる。例えば、 $d=100\,\mathrm{m}$ 、v 。 $=80\,\mathrm{Km/h}$ 、a 。 $=0\,\mathrm{m/se}$ c^2 、で t 。 $=0\,\mathrm{sec}$ 、 t 、t = $0\,\mathrm{sec}$ 、t 、t = $0\,\mathrm{sec}$ 、t 、t = $0\,\mathrm{sec}$ 、t 。t = $0\,\mathrm{sec}$ 、t = $0\,\mathrm{sec}$ 、t 。t = $0\,\mathrm{sec}$ 、t t = $0\,\mathrm{sec}$ 、t 。t = $0\,\mathrm{sec}$ 、t t = $0\,\mathrm{sec}$ 、t t = $0\,\mathrm{sec}$ 、t t = $0\,\mathrm{sec}$ 、t t = $0\,\mathrm{sec}$ 、t = $0\,\mathrm{sec}$ 、

18

【0054】減速度の立上げ、立下げを \cos 関数とは別の三角関数又は指数関数で近似して同様な制動プロフィルを生成することもできる。その場合、数式は異っても、実質上等しい値の、各値(a_1 , t_a , t_r , t_c および t_r) が算出される。しかしながら、各Q値は、採用する数式によって異なる。

[0055]

【数3】

$$a = (a_t - a_0) \left[\frac{a_0}{4} + Qa_t \right] \qquad \cdots \qquad (32)$$

$$Q = \frac{\pi^2 - 8}{4\pi^2} \qquad (33)$$

$$b = (a_{+} - a_{0}) (v_{0} + a_{0} t_{d})$$
 · · · (34)

$$c = a_{t} \left[a_{0} t_{d}^{2} - Q a_{t} t_{f}^{2} + v_{f} t_{f} - 2 d \right]$$

$$+ 2 \left(a_{t} - a_{0} \right) v_{0} t_{d} - a_{0}^{2} t_{d}^{2} + v_{f}^{2} - v_{0}^{2} \qquad \cdots \qquad (35)$$

【数4】

[0056]

特開2000-108866

$$t_{f} = \frac{b + \sqrt{b^{2} - 4 \text{ a c}}}{-2 \text{ a}} \qquad (4.1)$$

$$a = -Q a_t^2 \qquad \qquad \cdot \cdot \cdot (42)$$

$$Q = \frac{\pi^2 - 8}{4\pi^2} \qquad \qquad \cdots \qquad (43)$$

$$b = a_t v_f$$
 · · · (44)

$$c = a_0 \left[\frac{(a_t - a_0)}{4} T_1^2 - Q a_t t_r^2 - v_0 T_1 \right]$$

$$+ a_t [Q a_t t_r^2 + v_0 T_1 - 2 d] + v_f^2 - v_0^2 \cdots (45)$$

$$T_1 = 2 t_d + t_r$$
 (46)

[0057]

【数5】

$$t_{d} = \frac{b + \sqrt{b^{2} - 4 a c}}{-2 a} \qquad (51)$$

$$a = a_0 (a_t - a_0) \qquad (52)$$

$$b = (a_t - a_0) (a_0 t_r + 2 v_0)$$
 · · · (53)

$$c = a_0 \left[\left(\frac{(a_t - a_0)}{4} - Qa_t \right) t_r^2 - v_0 t_r \right]$$

$$+a_t [Qa_t T_2 + v_f t_f + v_0 t_r - 2d] + V$$
 (54)

$$Q = \frac{\pi^2 - 8}{4 \pi^2} \qquad (55)$$

$$V = v_f^2 - v_0^2 \qquad \qquad \cdots \qquad (56)$$

$$T_2 = t_r^2 - t_f^2 \qquad \cdots \qquad (57)$$

 $a_0 = 0$ のときは、

$$t_{d} = \frac{1}{2v_{0}} \left[2d - v_{0}t_{r} - v_{f}t_{f} - \frac{(v_{f}^{2} - v_{0}^{2})}{a_{t}} - Qa_{t} (t_{r}^{2} - t_{f}^{2}) \right]$$

$$\cdots (58)$$

[数6]
$$t_{c} = \frac{2 (v_{f} - v_{0}) - a_{t} (t_{r} + t_{f}) - a_{0} (2t_{d} + t_{r})}{2 a_{t}} \cdots (61)$$

【0059】制動プロフィルの形状に加えて、増強時間 感に大きな影響を及ぼす。各時間が短いほど制動による 減速度の変化速度(減速度の微分値の絶対値)が大き く、不快感が大きくなる。一方、この変化速度を小さく するために増強時間 t,および低減時間 t,の各値を長く すると、過接近回避には不十分な減速度となる。そこで この実施例では、増強時間 t,および低減時間 t,の各値 を、制動システム (30+51~54) の制動能力内 で、過接近回避と乗員の快適維持とを可及的に両立する ように、走行状態 (x。, v。, a。) に応じて定める。

【0060】図3に、「車両自動制動」(6)の内容を

示す。これに進むとブレーキ制御ECU10 (のCP t,および低減時間t,の各値が、乗員に対する快,不快 40 U)は、障害物があるかをチェックする(21)。すな わち、過接近回避対象となる前方物体があるかをチェッ クする。それがあると、すでにそれに対する過接近回避 のための自動制動を設定している(制動は開始していな いが、制動プロフィルを算定して自動制動に設定してい る状態、すなわち遅延時間 taの経過待ち状態、も含 む) かをチェックする(22)。すなわち、ブレーキ制 御ECU10の内部メモリに割り当てたレジスタCPに 1 (自動制動を設定中) が書込まれているかをチェック する。設定中でない (CPのデータは0) であると、レ 50 ジスタCPに1を書込み(23)、制動レベルa,を設

定する(24)。

【0061】図5に、この「a,を設定」(24)の内 容を示す。ここではまず、緊急制動要情報(「1」)を 書込むためのレジスタn v a tをクリアして(71)、 前記〔数2〕に従って、目標減速度すなわち目標制動レ ベルa、(図7上のab+abに相当する値)を算出する (72)。ここでは、算出開始点であるので、t,およ びtrには大きな値のデフォルト値(tr=2soc, tr= 4soc) を与え、taには最小値tamin (=0.2sec) を与 える。

【0062】ブレーキ制御ECU10は次に、算出した 所要制動レベル a、が有効値(設定値以下の減速度。正 値を加速度、負値を減速度とする広義の加速度値表現で は、設定値以上の加速度)であるかをチェックする(7 3)。仮に無効値(設定値を越える大きな減速度値)で あると、有効値とするために、 t』、 t よおよび t を 1 ステップ小さい値に更新して、前記〔数2〕に従って、 目標制動レベルa、を再度算出し、それが有効値となっ たかをチェックする (74~82)。 有効値の目標制動 レベル a, が得られるまでこれを繰返すが、その間に、 増強時間 t, 又は低減時間 t, が下限値 t, , , , , 又は t, , , , 未満になると、乗員に対して快適かつ過接近回避可の自 動制動は不可能と見て、緊急制動要を示す1をレジスタ nvatに書込んで(83)、図3に示す「緊急制動」 (57) に進む。遅延時間 t a が最低値 t umin (=0.2se c) 未満になると、最低値 t に強制設定する (7 9.80)が、「緊急制動」(57)には進まない。 【0063】増強時間trおよび低減時間trのいずれも 下限値 train, train以上、かつ、目標制動レベル a. は有効値、になると、保持時間 t。を定めるための、図 3の「t。を設定」(26)に進む。

【0064】図6に、この「t,を設定」(26)の内 容を示す。ここではまず、緊急制動要情報(「1」)を 書込むためのレジスタnvtcをクリアして(91)、

第1領域(低低減速度領域): a " " / 4以上,

: a a x / 4 未満かつ a a x / 2 以上, 第2領域(低減速度領域)

第3領域(中減速度領域) : a " " x / 2 未満かつ 3 a " " x / 4 以上,

第4領域(高減速度領域) :3a_{n,x}/4未満かつa_{n,x}以上,

第5領域(高高減速度領域): a ", 未満。

は、渦接近回避のための自動制動の必要性および緊急性 を意味する。第1領域にある場合には、必要性および緊 急性が低く、第2~5領域と順次高い減速度領域になる につれて順次に自動制動の必要性および緊急性が高くな る。

1. 目標制動レベル a , が第 1 領域にあるとき:ブレー キ制御ECU10は、保持時間t。=0を設定し(3 2) 、その時に保持する各値 t₄, t_r, t_rに対応する 目標制動レベル a, を、〔数 2〕に従って算出し(3) 3)、算出した目標制動レベルa,とその時に保持する 前記〔数6〕に従って、保持時間 t.を算出する(9 2)。ここでは、目標制動レベルa,, 遅延時間 t 』, 増 強時間t,および低減時間t,は、ここまでの処理で設定 している値を用いる。相対距離x。, 相対速度v。および 相対加速度 a。は、ステップ 4 でクルーズ制御ECU1 00から読込んだ値である。

【0065】ブレーキ制御ECU10は次に、算出した 保持時間t。が有効値すなわちO以上の値であるかをチ エックする (93)。仮に無効値(負値)であると、有 10 効値とするために、 t a, t r および t r を 1 ステップ小 さい値に更新して、前記〔数2〕に従って、目標制動レ ベルa、を再度算出し、それが有効値となったかをチェ ックする(94~102)。有効値の目標制動レベル a 、が得られるまでこれを繰返すが、その間に、増強時間 t,又は低減時間t,が下限値t,。。,又はt,。。,未満にな ると、乗員に対して快適かつ過接近回避可の自動制動は 不可能と見て、緊急制動要を示す1をレジスタnvtc に書込んで(105)、図3に示す「緊急制動」(5 7) に進む。遅延時間 t ₄が t _{4 m 1} 未満になると、 t 20 แแน 強制設定する (79,80)が、「緊急制動」 (5 7) には進まない。

【0066】算出した目標制動レベルa、が有効値であ ると再度、前記〔数6〕に従って、保持時間 t, を算出 する(103)。そして算出した保持時間 t. が有効値 であるかをチェックして(104)、無効値であると、 また、増強時間 t,および低減時間 t,の低減(94,9 5)以下の処理を行なう。

【0067】算出した保持時間t。が有効値であると、 図4に示すステップ28に進み、目標制動レベルa 30 , が、粗い量子化レベル a max / 4, a max / 2, 3 a max /4およびa ",、で区画される次の5領域のいずれにあ るかをチェックする(28~31)。なお、この実施例 では、 $a_{n,n} = -0$. 3 g である。

[0068]

【0069】目標制動レベルa,が、どの領域にあるか 40 各値 t, t,に対応する遅延時間 t,を〔数5〕に従っ て算出し(34)、ここで目標制動レベルa、が第2領 域に移ったかをチェックして(35)、移ると、目標制 動レベルa、を、第1レベルa ax / 4に更新設定する (39)。そして、目標制動レベルa、=a、x/4に対 応する遅延時間 t₄を再計算する(40)。そして、 「tcを設定」(41;内容は図6に同じ)を実行し て、これらの目標制動レベルa,および遅延時間t。に対 応する保持時間 t。を算出する。算出した保持時間 t。が 0以上しかも tr, tr共に下限値以上であると、ステッ

50 プ42を経て、ここまでに算出、設定あるいは変更した

値 ta, tr, ar, tcおよび trを、制動プロフィルと 定め(36)、増強時間 t,の間にa₁=a,-a。まで減 速度を立上げるための車輪ブレーキの増圧デューティ値 および低減時間 t_rの間に減速度を零に立下げるための 車輪ブレーキの減圧デューティ値を時間の関数として算 出して、ブレーキ操作量プロフィルとして設定し、時限 値が t a のタイマをスタートし車輪ブレーキの、ブレー キカは実質上車輪に作用しないが、制動子をブレーキ作 用方向に遊び分駆動する初期増圧を開始する(37)。 【0070】ステップ35のチェックで、目標制動レベ 10 ルatがa_{***}/4以上であったときには、サブルーチ ン33で算出した目標制動レベルa、を変更することな く、サブルーチ36に進み、ここまでに設定あるいは算 出した値 t_a , t_r , a_t , $t_e = 0$ および t_r を、制動プ ロフィルと定め(36)、増強時間 trの間にas=a: - a。まで減速度を立上げるための車輪ブレーキの増圧 デューティ値および低減時間 t,の間に減速度を零に立 下げるための車輪ブレーキの減圧デューティ値を時間の 関数として算出して、ブレーキ操作量プロフィルとして 設定し、時限値がtaのタイマをスタートし初期増圧を 開始する(37)。

【0071】以上の処理により、制動により調整すべき相対距離変化量 $d=x_n-x_r=100$ mであった場合、制動レベル a_r は、相対速度 v_s (正しくは v_s-v_r)に対応して、図8上の、 $a_r \ge a_{max}/4$ の領域に示す太い実線のように定められる。

時間 t 』を再計算し(40)、保持時間 t 。を算出し(4 1) 、算出した保持時間 t。が 0 以上しかも t, t, 共 に下限値以上であると、制動プロフィルを定め(3 6)、ブレーキ操作量プロフィルを設定し時限値が t a のタイマをスタートして初期増圧を開始する(37)。 5. 目標制動レベル a, が第 5 領域にあるとき:この第 5 領域では、過接近回避を効果的に行なうためには、大 きな制動力を必要とし、自動制動の緊急性が高い。しか し、車輪ブレーキシステム(30+51~54)の自動 制動に設定された制動能力、略 a " , ≒ - 0.3 g以 下、を最大限に利用し、かつ比較的に長い保持時間 t。 を設定することによって過接近回避に有効な制動を実現 しなければならず、制動時間が長くなる可能性が高い。 そこで、まず遅延時間 t』に最低値 t』。。。を与え(4 6) 、目標制動レベルa、に最高レベルa , , 、 を与えて (47)、他のパラメータはここまでの過程で得ている 値を与えて、〔数3〕に従って増強時間 t,を算出する (48)。次に、ここまでに定めた各値を用いて「a, を設定」(54)を実行して、目標制動レベルa、を再 20 度算出し、必要に応じて t,, t,を調整する。「a,を 設定」(54)の内容は、図5に示すものと同じであ る。

26

【0072】この再計算により得た目標制動レベルa、が有効値であると、それが最高レベルa。、以上(車輪ブレーキシステムの制動能力以内)であるかをチェックする(55,56)。a、、。、、以上であると、保持時間 t を算出し(41)、算出した保持時間 t が0以上しかも t r, t 。共に下限値以上であると、ここまでに算出又は設定した各値に基づいた制動プロフィルを定め(36)、ブレーキ操作量プロフィルを設定し時限値が t 。のタイマをスタートして初期増圧を開始する(37)。目標制動レベルa、が無効値、もしくは、増強期間 t ,又は低減期間 t ,がその下限値未満、となったときには、緊急制動(57:図3)に進む。

【0073】以上の処理により、目標制動レベルa,が有効値、かつ、増強期間t,および低減期間t,共にその下限値以上、となったときには、目標制動レベルa,は、図8上の太い実線のように設定される。

【0074】目標制動レベルa、が無効値、もしくは、 40 増強期間t、又は低減期間t、がその下限値未満、となって緊急制動(57)に進むと、この状態は、自動制動による過接近回避は無理と推察されるので、緊急制動(57)にて即座に、増強期間t、=下限値t、1、1、目標制動レベルa、=a、1、1、の自動制動を開始し(57)、乗員に対する警報を発生する(58)。

【0075】上述の、ブレーキ操作量プロフィルを設定し時限値がtaのタイマをスタートして初期増圧を開始(37)した自動制動を、以下では定常自動制動ということにすると、定常自動制動、又は、緊急制動(57)を開始した後、Tb周期で「車両自動制動」(6)に進

む。再度図3を参照されたい。

【0076】「車両自動制動」(6)に進入すると、ブレーキ制御ECU10はまず、前方物体が継続して存在するかをチェックし(21)、存在すると、自動制動(定常自動制動又は緊急制動)の実行中(レジスタCPのデータが1)かをチェックし(22)、実行中であると、緊急制動中であるかをチェックする(59)。

【0077】緊急制動中でないと定常自動制動中であるので、サブルーチン36で設定した制動プロフィルの、現時刻宛ての目標制動レベルa,に、現在の相対加速度a。が実質上合致するかをチェックする(60)。実質上合致すると、サブルーチン36で設定した制動プロフィルをその通り実行している場合に現時刻にもたらされるはずの相対速度v,および相対距離x,を算出し(61)、それら(推定値)が、画像処理ECU140が検出した現在値v。およびx。と実質上合致するかをチェックする(62,63)。すなわち、ステップ60~63にて、実質上制動プロフィルの通りに、自動制動が進行しかつ車両の減速が実現しているかを検証する。

【0078】その通り実現していると、現行の相対速度 v。(画像処理ECU140の検出値)が、目標相対速度 v;に実質上合致したか(制動プロフィルの終点となった)かをチェックする(64)。合致していると、ブレーキペダルの踏込みがあったかを、ペダルスイッチ45の信号から判定し、ペダル踏込みがあると自動制動を解除し警報を解除し、レジスタCPをクリアする(67, 68)。

【0079】現行の相対速度 v, が目標相対速度 v, に低下していないと、「プロフィル出力」(65)にて、車輪ブレーキ液回路 30のブレーキ操作量を、サブルーチ 30 ン37で設定した、現時刻宛ての操作量に更新する。車輪ブレーキ液回路 30の中の車輪ブレーキ圧操作用の電磁弁には、車輪ブレーキ増圧用と減圧用のものがあり、両電磁弁共に閉弁であると車輪ブレーキ圧はホールド(定値保持)である。

【0080】増圧用電磁弁が開弁であると昇圧であって開弁と閉弁を1サイクルとしてそれを繰返す開閉のデューティ(開弁時間/1サイクル時間)すなわち増圧デューティによって、昇圧速度が定まる。増強期間 t,では、ブレーキ操作量は、t,, a, と期間内時刻(t)に 40対応する増圧デューティであり、これに従って増圧用電磁弁が開閉駆動され、これにより、図7上のt,期間に示すcos状の減速度上昇が車両に現われる。

【0081】保持期間 t。は車輪ブレーキ圧をホールドする期間であり、その間、増圧用電磁弁および減圧用電磁弁が共に閉弁に維持される。

【0082】減圧用電磁弁が開弁であると降圧であって 開弁と閉弁を1サイクルとしてそれを繰返す開閉のデューティ(開弁時間/1サイクル時間)すなわち減圧デューティによって、減圧速度が定まる。低減期間 t_r で は、ブレーキ操作量は、 a_t , t_r と期間内時刻(t)に対応する減圧デューティであり、これに従って減圧用電磁弁が開閉駆動され、これにより、図7上の t_r 期間に示す c_0 s状の減速度低下が車両に現われる。

28

【0083】「プロフィル出力」(65)は、制動プロフィル対応のブレーキ操作量プロフィル(時間をパラメータとするブレーキ操作量)の中の、現時刻対応の操作量を摘出して、それを車輪ブレーキ液回路30の増、減圧電磁弁を操作する出力とする処理を行なうものである。

【0084】「緊急制動」(57)は、 $t_a=0$, $t_r=t_{rmin}$, $a_t=a_{max}$ の自動制動を開始するものであり、これを開始していると、その後「車両自動制動」(6)に進入し、ステップ59から70℃に進んでブレーキペダルの踏込みがあったかをチェックし、踏込みが検知されないと、相対速度 v_s が実質上 v_r にならない限り、「プロフィル出力」(65)で、 $t_r=t_{rmin}$ の間は、 t_{rmin} の間に減速度を a_{max} に立上げる車輪ブレーキ圧の増圧を行ない、 $t_r=t_{rmin}$ の経過後は車輪ブレーキ圧をホールドとする。相対速度 v_s が実質上 v_r になるか、あるいはブレーキペダルの踏込みがあると、この自動制動(緊急制動)を解除し、警報も解除する(70℃/64-67-68)。

【0085】自動制動(定常自動制動又は緊急制動)中に、前方物体なしになると、ステップ21,69を経て、自動制動を解除し警報を解除して(70A)、レジスタCPをクリアする(70B)。

【0086】以上に説明した自動制動アルゴリズムに、 $x_0=53m$, $x_f=3m$, $d=x_0-x_f=50m$, v_0 各値, $a_0=0$ および $v_1=0$ 、を与えて、 v_0 各値の制動プロフィルを算出した結果を、図9に示す。図9上に矢印線で示す t_0 , t_0

ら読み出す。

【図面の簡単な説明】

【図1】 本発明の一実施例を示すブロック図である。

【図2】 図1に示すブレーキ制御ECU10の処理機能の概要を示すフローチャートである。

【図3】 図2に示す「車両自動制動」(6)の内容の一部を示すフローチャートである。

【図4】 図2に示す「車両自動制動」(6)の内容の 残部を示すフローチャートである。

【図5】 図3に示す「a,を設定」(24)の内容を示すフローチャートである。

【図6】 図3に示す「t.を設定」(26)の内容を示すフローチャートである。

【図7】 図3および図4に示す「車両自動制動」

(6) にて定められる制動プロフィルの概要を示すグラフである。

【図8】 図3および図4に示す「車両自動制動」

(6) にて、相対距離が100mの場合に、相対速度に対応して定められる目標制動レベルa, を示すグラフである。

【図9】 図3および図4に示す自動制動アルゴリズムに、 x_0 =53m, x_1 =3m, d= x_0 - x_1 =50m, v_0 各値, a_0 =0および v_1 =0、を与えて、 v_0 各値の制動プロフィルを算出した結果を示すグラフである。

【符号の説明】

41~44:車輪速度センサ

10 45:ブレーキSW

YA: ヨーレートセンサ

θ F:前輪舵角センサ

θR:後輪舵角センサ

ST:前輪ステアリングトルクセンサ

GX:前後加速度センサ

GY: 横加速度センサ

51~54:車輪ブレーキ

【図1】

【図3】

【図4】

[図6]

フロントページの続き