

Optimization and Backpropagation

Lecture 3 Recap

• Linear score function f = Wx

On ImageNet

Credit: Li/Karpathy/Johnson

• Linear score function f = Wx

- Neural network is a <u>nesting of 'functions</u>'
 - 2-layers: $f = W_2 \max(0, W_1 x)$
 - 3-layers: $f = W_3 \max(0, W_2 \max(0, W_1 x))$
 - 4-layers: $f = W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x)))$
 - 5-layers: $f = W_5 \sigma(W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x))))$
 - ... up to hundreds of layers

Credit: Li/Karpathy/Johnson

Activation Functions

Sigmoid:
$$\sigma(x) = \frac{1}{(1+e^{-x})}$$
0.8
0.4

0.5

tanh: tanh(x)

ReLU: max(0, x)

Leaky ReLU: max(0.1x, x)

learnable weights

Parametric ReLU: $max(\alpha x, x)$

Maxout $\max(w_1^T x + b_1, w_2^T x + b_2)$

$$\underline{\mathsf{ELU}}\ \mathsf{f}(\mathsf{x}) = \begin{cases} x & \text{if } x > 0\\ \alpha(\mathsf{e}^x - 1) & \text{if } x \leq 0 \end{cases}$$

Loss Functions

- Measure the goodness of the predictions (or equivalently, the network's performance)
- Regression loss

$$- \underline{\mathsf{L1 loss}} \ L(\boldsymbol{y}, \widehat{\boldsymbol{y}}; \ \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||y_i - \widehat{y}_i||_1$$

- MSE loss
$$L(\mathbf{y}, \widehat{\mathbf{y}}; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||y_i - \widehat{y}_i||_2^2$$

- Classification loss (for multi-class classification)
 - Cross Entropy loss $E(y, \hat{y}; \theta) = -\sum_{i=1}^{n} \sum_{k=1}^{k} (y_{ik} \cdot \log \hat{y}_{ik})$

Computational Graphs

Neural network is a computational graph

It has compute nodes

It has <u>edges</u> that connect nodes

- It is directional

It is organized in 'layers'

Backprop

The Importance of Gradients

Our optimization schemes are based on computing gradients

 One can compute gradients analytically but what if our function is too complex?

• Break down gradient computation

Backpropagation

Backprop: Forward Pass

• $f(x, y, z) = (x + y) \cdot z$

$$f(x,y,z) = (x+y) \cdot z$$

with
$$x = 1, y = -3, z = 4$$

$$d = x + y$$
 $\frac{\partial d}{\partial x} = 1, \frac{\partial d}{\partial y} = 1$

$$f = d \cdot z$$
 $\frac{\partial f}{\partial d} = z, \frac{\partial f}{\partial z} = d$

What is $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$?

$$f(x, y, z) = (x + y) \cdot z$$

with $x = 1, y = -3, z = 4$

$$d = x + y$$
 $\frac{\partial d}{\partial x} = 1, \frac{\partial d}{\partial y} = 1$

$$f = d \cdot z$$
 $\frac{\partial f}{\partial d} = z, \frac{\partial f}{\partial z} = d$

What is $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$?

$$f(x,y,z) = (x+y) \cdot z$$
with $x = 1, y = -3, z = 4$

$$d = x + y$$

$$\frac{\partial d}{\partial x} = 1, \frac{\partial d}{\partial y} = 1$$

$$f = d \cdot z$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} = d$$

$$\frac{\partial f}{\partial z}$$
What is $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$?

$$f(x,y,z) = (x+y) \cdot z$$
with $x = 1, y = -3, z = 4$

$$d = x + y$$

$$\frac{\partial d}{\partial x} = 1, \frac{\partial d}{\partial y} = 1$$

$$f = d \cdot z$$

$$\frac{\partial f}{\partial d} = z$$

$$\frac{\partial f}{\partial z} = d$$
What is $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$?

$$f(x, y, z) = (x + y) \cdot z$$

with $x = 1, y = -3, z = 4$

$$d = x + y$$
 $\frac{\partial d}{\partial x} = 1, \frac{\partial d}{\partial y} = 1$

$$f = d \cdot z$$
 $\frac{\partial f}{\partial d} = z, \frac{\partial f}{\partial z} = d$

What is $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$?

$$f(x, y, z) = (x + y) \cdot z$$

with $x = 1, y = -3, z = 4$

$$d = x + y$$
 $\frac{\partial d}{\partial x} = 1$, $\frac{\partial d}{\partial y} = 1$

$$f = d \cdot z$$
 $\frac{\partial f}{\partial d} = z, \frac{\partial f}{\partial z} = d$

What is $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$?

Compute Graphs -> Neural Networks

- x_k input variables
- $w_{l,m,n}$ network weights (note 3 indices)
 - l which layer
 - m which neuron in layer
 - n which weight in neuron
- \hat{y}_i computed output (*i* output dim; n_{out})
- y_i ground truth targets
- L loss function

Compute Graphs -> Neural Networks

We want to compute gradients w.r.t. all weights W

We want to compute gradients w.r.t. all weights W

Goal: We want to compute gradients of the loss function L w.r.t. all weights W

$$\sum_{i} L_{i}$$

L: sum over loss per sample, e.g.

L2 loss \rightarrow simply sum up squares:

$$\widehat{L_i} = (\hat{y}_i - y_i)^2$$

→ use chain rule to compute partials

$$\frac{\partial L_i}{\partial w_{i,k}} = \frac{\partial L_i}{\partial \hat{y}_i} \cdot \frac{\partial \hat{y}_i}{\partial w_{i,k}}$$

We want to compute gradients w.r.t. all weights *W* AND all biases *b*

NNs as Computational Graphs

We can express any kind of functions in a computational graph, e.g. $f(\mathbf{w}, \mathbf{x}) = \frac{1}{1+\rho^{-(b+w_0x_0+w_1x_1)}}$

• $f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-(b + w_0 x_0 + w_1 x_1)}}$

25

* The node operation rep the operation in the forward pass. We are interested in its derivative in the backward pass.

in the derivative is the output from the forward pass at each node

•
$$f(w, x) = \frac{1}{1+e^{-(b+w_0x_0+w_1x_1)}}$$
 $g(x) = \frac{1}{x}$ $\Rightarrow \frac{\partial g}{\partial x} = -\frac{1}{x^2}$

$$g_{\alpha}(x) = \alpha + x \Rightarrow \frac{\partial g}{\partial x} = 1$$

$$g(x) = e^x \Rightarrow \frac{\partial g}{\partial x} = e^x$$

$$g_{\alpha}(x) = \alpha x \Rightarrow \frac{\partial g}{\partial x} = \alpha$$

$$g(x) = e^x \Rightarrow \frac{\partial g}{\partial x} = e^x$$

$$g_{\alpha}(x) = \alpha x \Rightarrow \frac{\partial g}{\partial x} = \alpha$$

$$-3w_0$$

$$-2w_0$$

$$-2w_$$

•
$$f(w, x) = \frac{1}{1+e^{-(b+w_0x_0+w_1x_1)}}$$
 $g(x) = \frac{1}{x}$ $\Rightarrow \frac{\partial g}{\partial x} = -\frac{1}{x^2}$ $g_{\alpha}(x) = \alpha + x \Rightarrow \frac{\partial g}{\partial x} = 1$ $g(x) = e^x$ $\Rightarrow \frac{\partial g}{\partial x} = e^x$ $g_{\alpha}(x) = \alpha x$ $\Rightarrow \frac{\partial g}{\partial x} = e^x$ $g_{\alpha}(x) = \alpha x$ $\Rightarrow \frac{\partial g}{\partial x} = \alpha$

•
$$f(w, x) = \frac{1}{1+e^{-(b+w_0x_0+w_1x_1)}}$$
 $g(x) = \frac{1}{x}$ $\Rightarrow \frac{\partial g}{\partial x} = -\frac{1}{x^2}$ $g_{\alpha}(x) = \alpha + x \Rightarrow \frac{\partial g}{\partial x} = 1$ $g(x) = e^x$ $\Rightarrow \frac{\partial g}{\partial x} = e^x$ $g_{\alpha}(x) = \alpha x$ $\Rightarrow \frac{\partial g}{\partial x} = e^x$ $g_{\alpha}(x) = \alpha x$ $\Rightarrow \frac{\partial g}{\partial x} = \alpha$

Gradient Descent

Gradient Descent

$$=$$
 arg min $f(x)$

Gradient Descent

*From derivative to gradient

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} \quad \longrightarrow \quad \nabla_{\!x} f(x)$$

<u>Direction of</u> greatest increase of the function

Gradient steps in direction of negative gradient

Learning rate

Gradient Descent for Neural Networks

Gradient Descent for Neural Networks

For a given training pair $\{x, y\}$, we want to update all weights, i.e., we need to compute the derivatives w.r.t. to all weights:

$$\nabla_{\mathbf{W}} f_{\{x,y\}}(\mathbf{W}) = \begin{bmatrix} \frac{\partial f}{\partial w_{0,0,0}} \\ \dots \\ \frac{\partial f}{\partial w_{l,m,n}} \end{bmatrix}$$

Gradient step:

$$\mathbf{W}' = \mathbf{W} - \alpha \nabla_{\mathbf{W}} f_{\{\mathbf{x}, \mathbf{y}\}}(\mathbf{W})$$

NNs can Become Quite Complex...

These graphs can be huge!

[Szegedy et al., CVPR'15] Going Deeper with Convolutions

Dropout Fully connected

The Flow of the Gradients

 Many many many of these nodes form a neural network

NEURONS

Each one has its own work to do

FORWARD AND BACKWARD PASS

The Flow of the Gradients

Activation function

Gradient Descent for Neural Networks

hidden layer

$$h_{j} = A(b_{0,j} + \sum_{k} x_{k} w_{0,j,k})$$

$$\hat{y}_{i} = A(b_{1,i} + \sum_{j} h_{j} w_{1,i,j})$$

$$L_{i} = (\hat{y}_{i} - y_{i})^{2}$$

through layer by layer g_0

Backpropagation

$$\frac{\partial L_{i}}{\partial w_{1,i,j}} = \frac{\partial L_{i}}{\partial \hat{y}_{i}} \cdot \frac{\partial \hat{y}_{i}}{\partial w_{1,i,j}}$$

$$\frac{\partial L_{i}}{\partial \hat{y}_{i}} = 2(\hat{y}_{i} - y_{i})$$

$$\frac{\partial \hat{y}_{i}}{\partial w_{1,i,j}} = h_{j} \quad \text{if } > 0, \text{ else } 0$$

$$\frac{\partial L_{i}}{\partial w_{0,j,k}} = \frac{\partial L_{i}}{\partial \hat{y}_{i}} \cdot \frac{\partial \hat{y}_{i}}{\partial h_{j}} \cdot \frac{\partial h_{j}}{\partial w_{0,j,k}}$$

40

hidden layer

$$h_{j} = A(b_{0,j} + \sum_{k} x_{k} w_{0,j,k})$$

$$\hat{y}_{i} = A(b_{1,i} + \sum_{j} h_{j} w_{1,i,j})$$

$$L_{i} = (\hat{y}_{i} - y_{i})^{2}$$

How many unknown weights?

- Output layer: 2 · 4 + 2
- Hidden Layer: $4 \cdot 3 + 4$

#neurons · #input channels + #biases

Note that some activations have also weights

Derivatives of Cross Entropy Loss

hidden layer

Binary Cross Entropy loss

$$\begin{array}{l}
\widehat{L} = -\sum_{i=1}^{n_{out}} (y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)) \\
\widehat{\hat{y}_i} = \frac{1}{1 + e^{-s_i}} \quad \widehat{s_i} = \sum_{j} h_j w_{ji} \\
\text{output} \quad \text{scores}
\end{array}$$

$$\widehat{y_i} = \frac{1 + e^{-s_i}}{1 + e^{-s_i}}$$

$$\sum_{j} h_{j} w_{ji}$$
scores

Gradients of weights of last layer:

$$\frac{\partial L_i}{\partial w_{ji}} = \frac{\partial L_i}{\partial \hat{y}_i} \cdot \frac{\partial \hat{y}_i}{\partial s_i} \cdot \frac{\partial s_i}{\partial w_{ji}}$$

$$\frac{\partial L_i}{\partial \hat{y}_i} = \frac{-y_i}{\hat{y}_i} + \frac{1 - y_i}{1 - \hat{y}_i} = \frac{\hat{y}_i - y_i}{\hat{y}_i (1 - \hat{y}_i)},$$

$$\frac{\partial \hat{y}_i}{\partial s_i} = \hat{y}_i \left(1 - \hat{y}_i \right)$$

$$\frac{\partial s_i}{\partial w_{ii}} = h_i$$

$$\Rightarrow \frac{\partial L_i}{\partial w_{ji}} = (\hat{y}_i - y_i)h_j, \quad \frac{\partial L_i}{\partial s_i} = \hat{y}_i - y_i$$

Gradients of weights of first layer:

$$\begin{split} \frac{\partial L}{\partial h_j} &= \sum_{i=1}^{n_{out}} \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s_j} \frac{\partial s_j}{\partial h_j} = \sum_{i=1}^{n_{out}} \frac{\partial L}{\partial \hat{y}_i} \hat{y}_i (1 - \hat{y}_i) w_{ji} \\ \frac{\partial L}{\partial s_j^1} &= \sum_{i=1}^{n_{out}} \frac{\partial L}{\partial s_i} \frac{\partial s_i}{\partial h_j} \frac{\partial h_j}{\partial s_j^1} = \sum_{i=1}^{n_{out}} (\hat{y}_i - y_i) w_{ji} (h_j (1 - h_j)) \end{split} \quad \text{of bidden layer} \\ \frac{\partial L}{\partial w_{kj}^1} &= \sum_{i=1}^{n_{out}} \frac{\partial L}{\partial s_j^1} \frac{\partial s_j^1}{\partial w_{kj}^1} = \sum_{i=1}^{n_{out}} (\hat{y}_i - y_i) w_{ji} (h_j (1 - h_j)) x_k \end{split}$$

Back to Compute Graphs & NNs

- Inputs x and targets y
- Two-layer NN for regression with ReLU activation w₁
- Function we want to optimize:

$$\sum_{i=1}^{n} \|w_2 \max(0, w_1 x_i) - y_i\|_2^2$$

Gradient Descent for Neural Networks

Initialize
$$x = 1$$
, $y = 0$, $w_1 = \frac{1}{3}$, $w_2 = 2$

$$L(\mathbf{y}, \widehat{\mathbf{y}}; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||\widehat{y}_{i} - y_{i}||_{2}^{2}$$

$$L = (\hat{y} - y)^2 \Rightarrow \frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y)$$

$$\hat{y} = w_2 \cdot \sigma \Rightarrow \frac{\partial \hat{y}}{\partial w_2} = \sigma$$

Backpropagation
$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial w_2}$$

Initialize
$$x = 1$$
, $y = 0$, $w_1 = \frac{1}{3}$, $w_2 = 2$

$$L(\mathbf{y}, \widehat{\mathbf{y}}; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||\widehat{y}_i - y_i||_2^2$$

$$L = (\hat{y} - y)^2 \Rightarrow \frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y)$$

$$\hat{y} = w_2 \cdot \sigma \Rightarrow \frac{\partial \hat{y}}{\partial w_2} = \sigma$$

Backpropagation
$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial w_2}$$

$$\frac{2 \cdot \frac{2}{3}}{\frac{2}{3}}$$

Initialize
$$x = 1$$
, $y = 0$, $w_1 = \frac{1}{3}$, $w_2 = 2$

$$L(\mathbf{y}, \widehat{\mathbf{y}}; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||\widehat{y}_i - y_i||_2^2$$

$$L = (\hat{y} - y)^2 \Rightarrow \frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y)$$
$$\hat{y} = w_2 \cdot \sigma \Rightarrow \frac{\partial \hat{y}}{\partial w_2} = \sigma$$

Backpropagation
$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial w_2}$$

$$2 \cdot \frac{2}{3} \cdot \frac{1}{3}$$

Initialize x = 1, y = 0, $w_1 = \frac{1}{3}$, $w_2 = 2$

$$L = (\hat{y} - y)^2 \Rightarrow \frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y)$$

$$\hat{y} = w_2 \cdot \sigma \qquad \Rightarrow \frac{\partial \hat{y}}{\partial \sigma} = w_2$$

$$\sigma = \max(0, z) \Rightarrow \frac{\partial \sigma}{\partial z} = \begin{cases} 1 \text{ if } x > 0 \\ 0 \text{ else} \end{cases}$$

$$z = x \cdot w_1 \qquad \Rightarrow \frac{\partial z}{\partial w_1} = x$$

Backpropagation
$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial z} \cdot \frac{\partial z}{\partial w_1}$$

Initialize
$$x = 1$$
, $y = 0$, $w_1 = \frac{1}{3}$, $w_2 = 2$

$$L = (\hat{y} - y)^2 \implies \frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y)$$

$$\hat{y} = w_2 \cdot \sigma \implies \frac{\partial y}{\partial \sigma} = w_2$$

$$\sigma = \max(0, z) \implies \frac{\partial \sigma}{\partial z} = \begin{cases} 1 \text{ if } x > 0 \\ 0 \text{ else} \end{cases}$$

$$z = x \cdot w_1 \implies \frac{\partial z}{\partial w_1} = x$$

Backpropagation
$$\frac{\partial L}{\partial w_1} = \underbrace{\frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial z} \cdot \frac{\partial z}{\partial w_1}}_{2 \cdot \frac{2}{3}}$$

Initialize
$$x = 1$$
, $y = 0$, $w_1 = \frac{1}{3}$, $w_2 = 2$

$$L = (\hat{y} - y)^2 \implies \frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y)$$

$$\hat{y} = w_2 \cdot \sigma \implies \frac{\partial \hat{y}}{\partial \sigma} = w_2$$

$$\sigma = \max(0, z) \implies \frac{\partial \sigma}{\partial z} = \begin{cases} 1 \text{ if } x > 0 \\ 0 \text{ else} \end{cases}$$

$$z = x \cdot w_1 \implies \frac{\partial z}{\partial w_1} = x$$

Backpropagation
$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial z} \cdot \frac{\partial z}{\partial w_1}$$

$$2 \cdot \frac{2}{3} \cdot 2$$

Initialize
$$x = 1$$
, $y = 0$, $w_1 = \frac{1}{3}$, $w_2 = 2$

$$L = (\hat{y} - y)^2 \implies \frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y)$$

$$\hat{y} = w_2 \cdot \sigma \implies \frac{\partial \hat{y}}{\partial \sigma} = w_2$$

$$\sigma = \max(0, z) \implies \frac{\partial \sigma}{\partial z} = \begin{cases} 1 \text{ if } x > 0 \\ 0 \text{ else} \end{cases}$$

$$z = x \cdot w_1 \implies \frac{\partial z}{\partial w_1} = x$$

Backpropagation
$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial z} \cdot \frac{\partial z}{\partial w_1}$$

$$2 \cdot \frac{2}{3} \cdot 2 \cdot 1$$

Initialize
$$x = 1$$
, $y = 0$, $w_1 = \frac{1}{3}$, $w_2 = 2$

$$L = (\hat{y} - y)^{2} \implies \frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y)$$

$$\hat{y} = w_{2} \cdot \sigma \implies \frac{\partial \hat{y}}{\partial \sigma} = w_{2}$$

$$\sigma = \max(0, z) \implies \frac{\partial \sigma}{\partial z} = \begin{cases} 1 \text{ if } x > 0 \\ 0 \text{ else} \end{cases}$$

$$z = x \cdot w_{1} \implies \frac{\partial z}{\partial w_{1}} = x$$

Backpropagation
$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial z} \cdot \frac{\partial z}{\partial w_1}$$

$$2 \cdot \frac{2}{3} \cdot 2 \cdot 1 \cdot 1$$

52

Function we want to optimize:

$$f(x, \mathbf{w}) = \sum_{i=1}^{n} \|w_2 \max(0, w_1 x_i) - y_i\|_2^2 \frac{\frac{1}{3}}{\frac{8}{3}}$$

• Computed gradients wrt to weights w_1 and w_2

Now: update the weights

$$\mathbf{w}' = \mathbf{w} - \alpha \cdot \nabla_{\mathbf{w}} f = {w_1 \choose w_2} - \alpha \cdot {\nabla_{w_1} f \choose \nabla_{w_2} f}$$
$$= {\frac{1}{3} \choose 2} - \alpha \cdot {\frac{8}{3} \choose \frac{4}{2}}$$

But: how to choose a good learning rate α ?

Gradient Descent

How to pick good learning rate?

How to compute gradient for single training pair?

How to compute gradient for large training set?

 How to speed things up? More to see in next lectures...

averaging grad over multiple training samples

Regularization

Recap: Basic Recipe for ML

Split your data

Find your hyperparameters

Other splits are also possible (e.g., 80%/10%/10%)

Over- and Underfitting

Source: Deep Learning by Adam Gibson, Josh Patterson, O'Reily Media Inc., 2017

Training a Neural Network

 Training/ Validation curve How can we prevent our model Train Underfitting zone Overfitting zone from overfitting? Gene Regularization Training error Generalization too high gap is too big Generalization gap Optimal Capacity Credits: Deep Learning. Goodfellow et al. Capacity

Regularization

• Loss function
$$L(\mathbf{y}, \widehat{\mathbf{y}}, \boldsymbol{\theta}) = \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2$$

- Regularization techniques
 - L2 regularization
 - L1 regularization

Add regularization term to loss function

- Max norm regularization
- Dropout
- Early stopping
- **–** ...

More details later

* We aim to make training harder; so that the net Can learn better features

Regularization: Example Important

• Input: 3 features x = [1, 2, 1]

- Two linear classifiers that give the same result:
- $\theta_1 = [0, 0.75, 0]$ Ignores 2 features
- Takes information better Potential from all features & generalize • $\theta_2 = [0.25, 0.5, 0.25]$

- L2 tends to shrink coeff evenly.

 1 L2 is useful when dealing with collinear/dependent features.
 - Loss $L(\mathbf{y}, \widehat{\mathbf{y}}, \boldsymbol{\theta}) = \sum_{i=1}^{n} (x_i \theta_{ji} y_i)^2 + \lambda R(\boldsymbol{\theta})$
 - L2 regularization $R(\theta) = \sum_{i=1}^{\infty} \theta_i^2$

$$\begin{array}{l} \theta_1 \longrightarrow 0 + 0.75^2 + 0 = 0.5625 \\ \theta_2 \longrightarrow 0.25^2 + 0.5^2 + 0.25^2 = \boxed{0.375} \quad \text{Minimization} \end{array}$$

$$x = [1, 2, 1], \theta_1 = [0, 0.75, 0], \theta_2 = [0.25, 0.5, 0.25]$$

NB L2 favors O2, which is more sparse

• L1 regularization
$$R(\theta) = \sum_{i=1}^{\infty} |\theta_i|$$

$$\theta_1 \longrightarrow 0 + 0.75 + 0 = 0.75$$

 $\theta_2 \longrightarrow 0.25 + 0.5 + 0.25 = 1$ Minimization

$$x = [1, 2, 1], \theta_1 = [0, 0.75, 0], \theta_2 = [0.25, 0.5, 0.25]$$

NB L1 favors O1

• Input: 3 features x = [1, 2, 1]

• Two linear classifiers that give the same result:

$$\theta_1 = [0, 0.75, 0]$$
 —— Ignores 2 features

$$\theta_2 = [0.25, 0.5, 0.25]$$
 Takes information from all features

• Input: 3 features x = [1, 2, 1]

• Two linear classifiers that give the same result:

$$\theta_1 = [0, 0.75, 0]$$
 — L1 regularization enforces **sparsity**

$$\theta_2 = [0.25, 0.5, 0.25]$$
 Takes information from all features

• Input: 3 features x = [1, 2, 1]

• Two linear classifiers that give the same result:

$$\theta_1 = [0, 0.75, 0]$$
 — L1 regularization enforces sparsity

$$\theta_2 = [0.25, 0.5, 0.25]$$
 — L2 regularization enforces that the weights have similar values

Regularization: Effect

Dog classifier takes different inputs

Dog classifier takes different inputs

Regularization for Neural Networks

Combining nodes: Network output + L2-loss + regularization

$$\sum_{i=1}^{n} \|w_2 \max(0, w_1 x_i) - y_i\|_2^2 + \underbrace{\lambda R(w_1, w_2)}_{}$$

Combining nodes: Network output + L2-loss + regularization

$$\sum_{i=1}^{n} \|w_2 \max(0, w_1 x_i) - y_i\|_2^2 + \lambda \left\| {w_1 \choose w_2} \right\|_2^2$$

Combining nodes: Network output + L2-loss + regularization

$$\sum_{i=1}^{n} \|w_2 \max(0, w_1 x_i) - y_i\|_2^2 + \lambda (w_1^2 + w_2^2)$$

Regularization

as Smoothing

Regularization $\lambda=0$ $\lambda=000001$ $\lambda=0.001$ $\lambda=1$ $\lambda=10$ Decision Boundary overthing

What is the goal of regularization?

What happens to the training error?

Oversmoothing Cause Weights to be similar i.e nothing learnt * A sign of big reg. -> train & val Curves roughly the same, yet they do not go all the way till end

· Any strategy that aims to

Lower validation error

I<u>ncreasing</u> t<u>raining erro</u>r

* A sign of small reg -> train Couvre goes down quickly, while val does not [overfitting]

Next Lecture

- This week:
 - Check exercises
 - Check office hours ©

- Next lecture
 - Optimization of Neural Networks
 - In particular, introduction to SGD (our main method!)

See you next week ©

Further Reading

- Backpropagation
 - Chapter 6.5 (6.5.1 6.5.3) in
 http://www.deeplearningbook.org/contents/mlp.html
 - Chapter 5.3 in Bishop, Pattern Recognition and Machine Learning
 - http://cs231n.github.io/optimization-2/
- Regularization
 - Chapter 7.1 (esp. 7.1.1 & 7.1.2)
 http://www.deeplearningbook.org/contents/regularization.html
 - Chapter 5.5 in Bishop, Pattern Recognition and Machine Learning