STANISLAS Thème

Développement asymptotique de la série harmonique

PSI 2020-2021

- - -

Pour tout entier naturel n non nul, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

Partie I: Constante d'EULER

1. Montrer que les suites $u = (H_n - \ln(n))$ et $v = (H_{n-1} - \ln(n))$ sont adjacentes. En déduire qu'il existe une constante γ strictement positive telle que

$$H_n = \ln(n) + \gamma + o(1).$$

2. En déduire la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n(2n-1)}$.

Partie II: Intermède

Soient $\sum a_n$ et $\sum b_n$ des séries à termes positifs convergentes. On suppose qu'il existe un réel ℓ non nul tel que $a_n \sim \ell b_n$. On note r_n (resp. r'_n) le reste d'ordre n de la série de terme général a_n (resp. b_n).

- **3.** Soit $\varepsilon > 0$.
 - a) Montrer qu'il existe un entier naturel n_1 tel que

$$\forall n \geqslant n_1, (\ell - \varepsilon)b_k \leqslant a_k \leqslant (\ell + \varepsilon)b_k.$$

b) En déduire que, pour tout $n \ge n_1$,

$$(\ell - \varepsilon)r'_n \leqslant r_n \leqslant (\ell + \varepsilon)r'_n.$$

4. Montrer que

$$\sum_{k=n+1}^{+\infty} a_k \sim \ell \sum_{k=n+1}^{+\infty} b_n.$$

Partie III: Ordres supérieurs

- **5.** On pose $t_n = H_n \ln(n) \gamma$.
 - a) Montrer que la série de terme général $t_n t_{n-1}$ est convergente.
 - **b)** Déterminer un équivalent de la suite $\sum_{k=n+1}^{+\infty} \frac{1}{k^2}$.
 - c) En déduire que

$$H_n = \ln(n) + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right).$$

- **6.** On pose $w_n = H_n \ln(n) \gamma \frac{1}{2n}$.
 - a) Montrer que la série de terme général $w_n w_{n-1}$ est convergente.
 - **b)** Déterminer un équivalent de la suite $\sum_{k=n+1}^{+\infty} \frac{1}{k^3}$.
 - c) En déduire que

$$H_n = \ln(n) + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right).$$

Mathématiciens

EULER Leonhard (15 avr. 1707 à Basel-18 sept. 1783 à St Pétersbourg).