

# Probabilités - Espaces vectoriels Le Mardi 29 mars 2016



**Pour les Biwanes :** Vous pouvez vous contenter de reporter sur votre copie la référence  $[q_i]$  de la question que vous traitez.

## **Exercice 1**

Dans l'espace vectoriel  $\mathbb{R}^4$ , on considère les vecteurs : u = (1, 0, 1, 0) et v = (2, 0, 1, 1).

- **1.** On pose E = Vect(u, v) et  $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y z t = 0\}.$
- $[q_1]$  **a)** Déterminer une base ainsi que la dimension de E.
- **b)** Montrer que F est un sous-espace vectoriel de  $\mathbb{R}^4$ . En déterminer une base ainsi que la dimension.
  - **2.** On pose  $G = \{(a-b, 2a+2b+2c, -2b-c, a+b+c) \ (a,b,c) \in \mathbb{R}^3\}$
- [ $q_3$ ] **a)** Montrer que G est un sous-espace vectoriel de  $\mathbb{R}^4$ . En déterminer une base ainsi que la dimension.
- $[q_4]$  **b)** Donner un système d'équations de G.
- [ $q_5$ ] **c)** Montrer que  $F \cap G$  est un sous-espace vectoriel de  $\mathbb{R}^4$  dont on calculera la dimension.
- [q<sub>6</sub>] **d)** Montrer que  $F \cap G \subset E \subset F$ .
- **e)** Certaines de ces inclusions sont elles des égalités ? Justifier

### **Exercice 2**

Soit n un entier naturel supérieur ou égal à 3, et p,q deux réels dans l'intervalle ]0; 1[. Lors d'un examen, Alice et Bob répondent à un Q.C.M. de n questions pour lequel à chaque question il n'y a que deux choix possibles : vrai ou faux. On ne peut laisser une question sans réponse. Alice et Bob adoptent deux stratégies de réponse que l'on étudie.

### Partie I : étude de la stratégie d'Alice.

Alice coche une case au hasard à chaque question, et les réponses données sont supposées mutuellement indépendantes.

- [q<sub>8</sub>] **1.** Calculer la probabilité de l'événement *V* : « Alice a coché la case vrai à toutes les questions ».
- [q<sub>9</sub>] **2.** Calculer la probabilité de l'événement  $V_+$ : « Alice a coché la case vrai au moins à une question ».
- **3. a)** Calculer la probabilité de l'événement E: « Alice coche la case vrai à la question 1, coche la case vrai à la question 2, et coche la case faux à la question 3 ».
- **b)** Calculer la probabilité de l'évènement *A* : « à l'issue des trois premières questions, Alice coche la case vrai exactement 2 fois ».
- **4.** Calculer la probabilité de l'événement T: « Alice a coché la case vrai à exactement trois questions ». (on pourra au choix, préciser l'univers associé à l'expérience et calculer le cardinal de T, ou utiliser un résultat du cours).

## Partie II : étude de la stratégie de Bob.



 $\left[q_{14}\right]$ 

 $[q_{21}]$ 

# Probabilités - Espaces vectoriels Le Mardi 29 mars 2016

- Bob coche une case choisie au hasard à la première question, et pour chaque question :
- si Bob coche la case vrai à une question, il coche encore vrai à la question suivante avec probabilité p. Sinon il coche la case faux.
- si Bob coche la case faux à une question, il coche encore la case faux à la question suivante avec probabilité 1-q. Sinon il coche la case vrai.

Pour tout entier naturel non nul k on notera  $V_k$  l'événement « Bob coche la case vrai à la question numéro k », et on note  $v_k$  la probabilité de l'événement  $V_k$ 

- [ $q_{13}$ ] **1. a)** Calculer  $v_1, v_2, v_3$ .
  - **b)** Montrer que les événements  $V_2$  et  $V_3$  sont indépendants si et seulement si p=q.
- **2. a)** Calculer la probabilité de l'événement *F* : « Bob coche la case vrai à la question 1, coche la case vrai à la question 2, et coche la case faux à la question 3 ».
- [q<sub>16</sub>] **b)** Calculer la probabilité de l'événement *B* : « à l'issue des trois premières questions, Bob coche la case vrai exactement deux fois ».
- [q<sub>17</sub>] **c)** Dans cette question seulement on suppose que p = q. À quelle condition sur p a-t-on  $P(B) \ge P(A)$ , l'événement A étant défini en **13.b)**? Ce résultat était-il prévisible?
- **3.** On sait que Bob a coché vrai à la question numéro 2. Quelle est la probabilité qu'il ait coché vrai à la question numéro 1?
- [q<sub>19</sub>] **4. a)** Trouver une relation de récurrence entre  $v_{k+1}$  et  $v_k$  valable pour tout entier k dans  $\{1 \dots n-1\}$ .
- [ $q_{20}$ ] **b)** En déduire  $v_n$  en fonction de n.
  - **c)** Étudier la nature de la suite  $(v_n)$  et préciser sa limite le cas échéant.

#### **Exercice 3**

Soit  $p \in ]0; 1[$ . Un joueur joue à un jeu dont les règles sont les suivantes :

- Le joueur effectue des lancers successifs d'une pièce dont la probabilité de faire pile est p et celle de faire face est q = 1 p. Les lancers sont supposés mutuellement indépendants.
- Il lance la pièce jusqu'à ce qu'il gagne ou qu'il perde.
- Le joueur gagne si à un moment donné il a deux pile de plus que de face.
- Le joueur perd si à un moment donné il a deux face de plus que de pile.

Pour tout entier naturel n non nul on note  $G_n$  l'événement : «le joueur gagne au n-ème lancer.», et  $E_n$  «au n-ème lancer, la partie n'est pas terminée.». On note pour tout entier naturel  $n \ge 1$ ,  $g_n = P(G_n)$  et  $e_n = P(E_n)$ .

- [q<sub>22</sub>] **1.** Justifier par un calcul que  $g_{2n+1} = 0$  pour tout entier naturel n.
- **2.** Calculer  $g_2$ ,  $g_4$  (on introduira les évènements  $F_k$ : «au k-ème lancer, le joueur obtient face.» et exprimer les évènements  $G_2$  et  $G_4$  en termes de  $F_k$ ).
- [ $q_{24}$ ] **3.** Calculer  $e_{2n}$  pour tout entier naturel  $n \ge 1$ .
- $[q_{25}]$  **4.** En déduire la valeur de  $g_{2n}$  en fonction de n.
- 5. On suppose que l'on dispose en Python de la fonction lancer(r) qui prend en entrée un flottant r et retourne en sortie un entier aléatoire valant 1 avec probabilité r et 0 sinon. Écrire une fonction tiebreak(p) qui prend en entrée un flottant p et retourne en sortie la liste [n,x] dans laquelle n est le rang au bout duquel la partie s'arrête, et x vaut 1 si le joueur gagne et 0 sinon.