Who turned out the lights?

Boolean Network Models and Their Shortcomings

Circadian Rhythms

- Daily Oscillations occurring in most organisms
 - Affect metabolism, behavior etc.
- Produced by positive and negative gene regulatory feedback networks
- Sync to the environment using light and temperature

Boolean Models

- Vertices
 - On or Off
- Edge
 - Where edges meet Vertices
 - Each a boolean operator
- Types of Boolean Operators
 - And
 - o Or
 - Not
 - Identity
 - o Plus some more

The Original Research Question

- Draw on a 2013 paper by Junil Kim et. al.
 - Control kernel for boolean networks
 - By controlling a subset of nodes, we can control end behavior of the whole model
- Can we isolate the control kernel for a circadian system?
 - o Is it just the light nodes?
 - Does it include all the light nodes?

No

This didn't work

- Turns out, the models are too small for interesting behavior concerning multiple attractors
 - Uninteresting
- The added complexity
 introduced by light nodes and
 signalling delays made applying
 the concepts from the paper
 difficult
 - Unrealistic given length of project

New Research Question

- As we were working, we modeled turning off all the lights
 - This broke the model almost immediately
 - Surprising to us, expected some altered continuation of behavior at least for some timesteps
- These models, like all models, have limitations in their applications to biology
 - Especially because these models were selected by a computer
- Our new goal for the project
 - Find the limitations of these circadian models
 - Understand how these problems reflect composition of the model
 - Interpret biological implications
 - Attempt to fix

The Model

- We decided to focus our efforts on the 2-loop Arabidopsis model.
 - Large enough to see some interesting behaviors
 - Small enough to implement quickly

2-loop Arabidopsis

$$LHY(t) = X(t - \tau_3) \cdot L_1(t - \tau_7)$$

$$TOC1(t) = \overline{LHY}(t - \tau_1) \cdot Y(t - \tau_6)$$

$$X(t) = TOC1(t - \tau_2)$$

$$Y(t) = (\overline{LHY}(t - \tau_4) \cdot \overline{TOC1}(t - \tau_5)) \cdot (L_2(t - \tau_8) + L_3(t - \tau_9))$$

The Plan

- Every possible 24 hr photoperiod (24 dark -> 24 light)
 - Modeled over unnecessarily long amounts of time
- Every possible 48 hr photoperiod (48 dark -> 48 light)
 - Modeled over unnecessarily long amounts of time
- Starting the model with subsets of lights
- Running lights on asynchronous photoperiods
- Turning off lights midday
 - Turning off subsets of lights midday
- Turning on genes before simulating

github.com/gnorthrup/BooleanControl

The Method

- 3 manually defined classes
 - EvalTree
 - FetchNode
 - LightNode
- Boolean networks are a big recursive mess to implement
 - EvalTree used recursively for every logic gate
 - FetchNode & LightNode used as recursion base to return actual values of the nodes
- Matlab is not typesafe
 - This ended up helping us
 - We can pass multiple node types through EvalTree and it was fine
- With all this setup, we created a big array of zeros and iterated over every entry

24hr photoperiods - Results

- 12 hr day and 12 hr night produces the results seen in the original paper
 - We did something right

24hr photoperiods - Results

- At 17hr day: unusual results, multiple spikings. Behavioral origin clear.
- At 18hr+ day: entirely rapid switchings. Behavioral origin utterly unclear.

24hr photoperiods - Results

The theoretical 'innate attractor' of the model

- o 28 hr period
- Agrees with biological understandings
- Model was designed with this in mind

Also, rather
 unsurprisingly if you
 never turn on the lights
 the model never does its
 thing

48-hr photoperiod - Results

- When the night gets too long (20hrs) the model shuts off behavior at night
 - Similar to just turning off the lights when night is longer than the longest signal delay + time to turn off
- Also 28 hr day is the exact innate period of the model
 - For models with longer days (but not so long they break) we see the same
 28hr pattern then a secondary pattern

48-hr Photoperiod - Results

- Full disclosure we have no clue what is happening here
- The model goes from crazy to less crazy, but is never periodic
 - Even after many many timesteps
- Previous whacky or broken plots still reflected periodic behavior
 - Boolean Chaos?

Photoperiod - Conclusions

- The model does poorly (i.e. does not reflect biological behavior) for photoperiods outside the range of usual photoperiods
 - This model was built to fit data on usual photoperiods, without changing the parameter values we can't improve the behavior
- From a theory standpoint, this is caused by the size of the model
 - Small networks propagate changes exceptionally quickly
 - A network with more nodes is more robust to these perturbations

Subsets of Lights - Results

Subsets of Lights - Results

Turning Lights off Mid-Simulation - Results

Changes propagate within a day or so

Asynchronous Photoperiods - Results

24 hr + 48 hr lights = 48 hr period

24 hr + 36 hr lights = 72 hr period

Asynchronous Photoperiods - Results

- Occam's Razor
- The resulting period of the model is the LCM of the two photoperiods
- Here 24 and 40 hour periods produce 120 hour periodic behavior

Asynchronous Lights - Conclusions

- Clearly the sun doesn't run asynchronously
 - Are there any biological implications here?
- Different colors of lights
 - Different photoreceptors may result in differing signaling cascades
 - Trigger different genes, impact different parts of circadian network
- Genetic knockout
 - For lights off, corresponds to something wrong with the gene/signaling pathway for that 'light'

Asynchronous Lights - Conclusions

- The model was very robust to changes in light behavior, even rather ridiculous changes
 - 'Robust' = The model produces expected AND biologically plausible results
- As opposed to photoperiod changes which produced unwanted and non-biological results even for photoperiods which weren't that dramatic
- We expected the model to crumble quickly under these more aggressive changes, especially after the photoperiod experiments
 - After examining the behavior of the model in many cases, the behavior of gene Y has the most to do with the behavior of the model. As long as Y is turning on and off it can exert control over the network

Wrap-Up Thoughts

- Why did we not fix these issues?
 - In most cases, the problematic behavior of the model was way more entwined with actual intended behaviors of the model than we actually thought when we started
 - Mostly due to the fact that the model size is such that changing an edge or logic gate changes an appreciable amount of the model's total parameters
 - In short, producing a model that could handle both the standard cases where the current model functions, as well as the edge cases where it doesn't, would require a significant investment in understanding and potentially overhauling the model
 - The intended behavior of the model under duress in some cases is unresearched, so we have no frame of reference for what a 'fixed' model would act like

Wrap-Up Thoughts

- Where do we go from here?
 - The paper on circadian rhythms also proposes a 3-loop model for *Arabidopsis*
 - Perhaps this model is more robust to the changes we saw in the 2-loop model
 - More biological research
 - A lot of the scenarios tested here are not found in the literature
 - Without comparison to biological data, it is difficult to decide if our model is producing biologically relevant results
- Isn't the point that you don't need the data?
 - Yes and no. If the goal is to make a model for already researched processes, then having the data is a huge boon for confirming success
 - A certain number of 'confirmed' models are necessary before we begin to trust our unconfirmed models
 - Even if you are using data, we've seen that building boolean models can offer novel insight into regulatory pathways

Papers

Akman, Ozgur E., et al. "Digital Clocks: simple Boolean models can quantitatively describe circadian systems." *Journal of the Royal Society Interface*. No. 9 (2012).

Kim, Junil, et al. "Discovery of a kernel for controlling biomolecular regulatory networks." *Scientific Reports*. No 3. (2013).

Questions?