

KR3600-XX KR3600-ST KR3600-STD KR3600-PRO

Keyboard Encoder Read Only Memory

FEATURES

- Data output directly compatible with TTL
- N Key rollover or lockout operation
- Quad mode
- Lockout/rollover selection externally selected as option
- On chip-master/slave oscillator
- All 10 output bits available
- Fully buffered data outputs
- Output enable provided as option
- Data compliment control provided as option
- Pulse or level data ready output signal provided as an option
- Any key down output provided as an option
- Contact bounce circuit provided to eliminate contact bounce
- Static charge protection on all input/outputs
- Pin for Pin replacement for GI AY-5-3600

GENERAL DESCRIPTION

The SMC Microsystems KR3600-XX is a Keyboard Encoder containing a 3600 bit read only memory and all the logic necessary to encode single pole single throw keyboard closures into a 10 bit code.

The KR3600-XX is fabricated with a low voltage p channel technology and contains the equivalent of 5000 transistors on a monolithic chip in a 40 lead dip ceramic package.

PIN CONFIGURATION

NOTE: REFER TO FIG.1 FOR OPTION PIN SELECTION.

#RI (100K.Q.), CI (45pF) PROVIDES APPROX. 50 KHZ CLOCK FREQ.

##C2 (300nS DELAY/CPF) R2 SUPPLIED INTERNALLY.

DESCRIPTION OF OPERATION

The KR3600 contains a 3600 bit ROM, 9-stage and 10-stage ring counters, a 10 bit comparator, timing circuitry, a 90 bit memory to store the location of encoded keys for n key rollover operation, an externally controllable delay network for eliminating the effect of contact bounce, an output data buffer, and TTL/DTL/MOS compatible output drivers.

The ROM portion of the chip is a 360 by 10 bit memory arranged into four 90-word by 10-bit groups. The appropriate levels on the Shift and Control Inputs selects one of the four 90-word groups; the 90-individual word locations are addressed by the two ring counters. Thus, the ROM address is formed by combining the Shift and Control Inputs with the two ring counters.

The external outputs of the 9-stage ring counter and the external inputs to the 10-bit comparator are wired to the keyboard to form an X-Y matrix with the 90-keyboard switches as the crosspoints. In the standby conditions, when no key is depressed, the two ring counters are clocked and sequentially address the ROM, thereby scanning the key switches for key closures.

When a key is depressed, a single path is completed between one output of the 9-stage ring counter (X0 thru X8) and one input of the 10-bit comparator (Y_0-Y_9) . After a number of clock cycles, a condition will occur where a level on the selected path to the comparator matches a level on the corresponding comparator input from the 10-stage ring counter.

N KEY ROLLOVER — When a match occurs, and the key has not been encoded, the switch bounce delay network is enabled. If the key is still depressed at the end of the selected delay time, the code for the depressed key is transferred to the output data buffer, the data ready signal appears, a one is stored in the encoded key memory and the scan sequence is resumed. If a match occurs at another key location, the sequence is repeated thus encoding the next key. If the match occurs for an already encoded key, the match is not recognized. The code of the last key encoded remains in the output data buffer.

N KEY LOCKOUT — When a match occurs, the delay network is enabled. If the key is still depressed at the end of the selected delay time, the code for the depressed key is transferred to the output data buffer, the data ready signal appears and the remaining keys are locked out by halting the scan sequence. The scan sequence is resumed upon key release. The output data buffer stores the code of the last key encoded.

SPECIAL PATTERNS — Since the selected coding of each key and all the options are defined during the manufacture of the chip, the coding and options can be changed to fit any particular application of the keyboard. Up to 360 codes of up to 10 bits can be programmed into the KR3600 ROM covering most popular codes such as ASCII, EBCDIC, Selectric, etc., as well as many specialized codes.

Pin 2 Pin 1 Pin 3 Pin 4 Pin 5 Internal Clock cc LO/RO CUSTOM CODING INFORMATION CE The custom coding information for SMC's AKO 3600 Bit Keyboard Encoder ROM should be transmitted to SMC. The Truth Table 810 should be completed on the format supplied. CE AKO LEGEND **B10** CC = Complement Control **AKO** AKO = Any Key Down Output 810 B10 = B10 (Data) Output AKO - B10 LO/RO = Lockout/Rollover External CE = Chip Enable Clock Internal Clock = Self Contained Oscillator External Clock = External Frequency Source LO/RO CE. AKO - B10 AKO B10 CF . AKO B10 AKO cc CF B10 Pin 1 Pin 2 Pin 3 Pin 4 Pin 5 **OPTION SELECTION/PIN ASSIGNMENT** FIGURE 1

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range	0°C to +70°C
Storage Temperature Range	-55°C to +150°C
Lead Temperature (soldering, 10 sec.)	+ 325°C
Positive Voltage on any Pin, V _{CC}	+0.3 V
Negative Voltage on any Pin, V _{CC}	−25 V

^{*}Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS

 $(T_A = 0$ °C to 70°C, $V_{CC} = +5V \pm 5\%$, $V_{GG} = -12V \pm 1.0V$, $V_{DD} = GND$, unless otherwise noted)

Characteristics	Min	Typ**	Max	Units	Conditions
Clock Frequency	10	50	100	KHz	See Block diagram footnote* for typical R-C values
External Clock Width	7		_	μs	
Data & Clock Input (Shift, Control, Compliment Control, Lockout/Rollover, Chip Enable & External Clock) Logic "0" Level Logic "1" Level Shift & Control Input Current	V ₆₆ V _{cc} —1.5	 _ _ 150	+0.8 V _{cc} +0.3 220	V V μΑ	$V_{\text{IN}} = +5V$
X Output (X ₀ -X ₈) Logic "1" Output Current	40 600 900 1500 3000	250 1300 2000 2000 10,000	500 4000 6500 14,000 23,000	μΑ μΑ μΑ μΑ μΑ	V _{OUT} = V _{CC} (See Note 2) V _{OUT} = V _{CC} −1.3V V _{OUT} = V _{CC} −2.0V V _{OUT} = V _{CC} −5V V _{OUT} = V _{CC} −10V
Logic "0" Output Current	8 6 5 2	30 25 20 10 0.5	60 50 45 30 5	μΑ μΑ μΑ μΑ μΑ	Voir = V _{cc} Voir = V _{cc} -1.3V Voir = V _{cc} -2.0V Voir = V _{cc} -5V Voir = V _{cc} -10V
Y Input (Y ₀ -Y ₉) Trip Level Hysteresis Selected Y Input Current	V _{cc} —5 0.5 18 14 13	V _{cc} -3 0.9 100 80 50	V _{cc} —2 1.4 170 150 130	V V μΑ μΑ	Y Input Going Positive (See Note 2 (See Note 1) V _{IN} = V _{CC} V _{IN} = V _{CC} - 1.3V V _{IN} = V _{CC} - 2.0V
Unselected Y Input Current	5 9 7 6 3	40 40 30 25 15 0.5	110 80 70 60 40 20	μΑ μΑ μΑ μΑ μΑ	V _{IN} = V _{CC} -4.0V V _{IN} = V _{CC} V _{IN} = V _{CC} -1.3V V _{IN} = V _{CC} -2.0V V _{IN} = V _{CC} -5V V _{IN} = V _{CC} -10V
Input Capacitance	-	3	10	pF	at 0V (All Inputs)
Switch Characteristics Minimum Switch Closure Contact Closure	_	_	_	_	See Timing Diagram
Resistance	1 x 10 ⁷	_	300	Ω	Z _{CC} Z _{CO}
Strobe Delay Trip Level (Pin 31) Hysteresis Quiescent Voltage (Pin 31)	V _{cc} -4 0.5 -3	V _{cc} 3 0.9 5	V _{cc} -2 1.4 -9	V	(See Note 1) With Internal Switched Resistor
Data Output (B1-B10), Any Key Down Output, Data Ready					
Logic "0້" Logic "1"	V _{cc} -1 V _{cc} -2	_ 	0.4 — —	V V	I _{OL} = 1.6m A I _{OH} = 1.0m A I _{OH} = 2.2m A
Power Icc Ice	_	12 12	22 22	mA mA	V _{cc} = +5V V _{cs} = -12V

^{**}Typical values are at +25°C and nominal voltages.

Hysteresis is defined as the amount of return required to unlatch an input.
 Precharge of X outputs and Y inputs occurs during each scanned clock cycle.

KR3600-STD

	•			•	
XY	Normal B -12345678910	Shift B-12345678910	Control B-12345678910	Shift Control B-12345678910	
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 25 26 27 28 29 30 31 32 23 33 44 45 46 47 48 48 49 50 51 55 56 57 57 58 58 59 60 61 62 63 66 66 66 66 66 66 66 66 66 66 66 66	B-12345678910 1 1000111001 q 1000110101 a 1000010101 z 0101110101 HT 1001000001 HT 1001000001 H 110011001 SO 0111001001 p 0000110101 1 1000111001 x 1100111001 x 110011001 x 110011001 y 110011001 m 1011010101 SI 111000001 m 1011010101 c 1100011001 c 1100011001 c 1100010101 c 110000000000	B-12345678910 < 0011111001 Q 1000100101 A 1000000101 Z 0101100101 H 1001000001 H 0001000101 + 1101011001 - 111111001 @ 000000101 Q 1110010101 S 1100100101 S 1100100101 S 1100100101 S 100011001 S 1100100101 S 1011100101 S 1011100101 S 1011100101 G 1000011001 G 100000101 C 1100000101 C 110000000000	B-12345678910 1 1000111011 q 100011111 q 1000111111 q 1000111111	B-12345678910 SUB 0101100001 DLE 0000100010 @ 0000000101 P 0000100101 H 0001000101 H 0001000101 H 1001000101 H 000100011 SO 011100001 SOH 100000001 A 100000001 A 100000001 FS 0011100001 FS 0011100001 FS 0011100001 SOH 100000001 STX 010000001 SOH 10000001 SOH 100000001 SOH 10000001 FS 0011100001 SOH 10000001 SOH 100000001 B 010000001 H 01000001 B 010000001 C 110000001 SOH 111100001 SOH 1111000001 SOH 11110000001 SOH 111000000001 C 110000000000000000000000	
61 62 63 64 65 66	u 1010110101 j 0101010101 n 0111010101 = 1011111000 < 0011111001 p 0000110101	& 0110011001 U 1010100101 J 0101000101 N 0111000101 = 1011111000 < 0011111001 P 0000100101	u 1010111111 j 0101011111 n 0111011111 = 1011111010 < 0011111011 p 0000111111	ETX 1100000001 BEL 1110000001 F 011000101 U 1010100101 ~ 0111111100 W 1110100101 J 0101000101	

KR 3600-ST

XY	Normal B-123456789	Shift B-123456789	Control B -123456789	Shift/Control B-123456789	
00 01	\ 000001101 = 101111010	~ 011111101 + 110101001	NUL 000000001	RS 011110001 VT 110100010	
02	DC3 110010010	DC3 110010010	GS 101110001 DC3 110010010	DC3 110010010	
03 04	- 101101001 BS 000100010	— 111110101 BS 000100010	CR 101100010 BS 000100010	US 111110010 BS 000100010	
05	0 000011001	0 000011001	0 000011001	0 000011001	
06 07	00000000	• 011101001 000000000	• 011101001 000000000	• 011101001 000000000	
08 09	00000000	00000000 00000000	00000000	00000000 00000000	
10	/ 111101010	? 111111001	ST 111100001	US 111110010	
11 12	• 011101001 ? 001101010	> 011111010 < 001111001	SO 011100010 FF 001100001	RS 011110001 FS 001110010	
13 14	m 101101110 n 011101110	M 101100101 N 011100101	CR 101100010 SO 011100010	CR 101100010 SO 011100010	
15	b 010001110	B 010000101	STX 010000010	STX 010000010	
16 17	v 011011110 c 110001101	V 011010101 C 110000110	SYN 011010010 ETX 110000001	SYN 011010010 ETX 110000001	
18 19	x 000111101 z 010111110	X 000110110 Z 010110101	CAN 000110001 SUB 010110010	CAN 000110001 SUB 010110010	
	LF 010100001	LF 010100001	LF 010100001	LF 010100001	
20 21 22 23	\ 001110101 DEL 111111110	: 001111110 DEL 111111110	FS 001110010 DEL 111111110	FS 001110010 DEL 111111110	
23	[110110110] 101110110	ESC 110110001	GS 101110001	
24 25 26 27	8 000111010	7 111011010 8 000111010	8 000111010	7 111011010 8 000111010	
26 27	9 100111001 000000000	9 100111001 00000000	9 100111001 000000000	9 100111001 000000000	
28	00000000	00000000	00000000	00000000	
28 29 30 31 32	000000000 ; 110111010	000000000 : 010111001	000000000 ESC 110110001	000000000 SUB 010110010	
31	I 001101101 k 110101110	L 001100110 K 110100101	FF 001100001 VT 110100010	FF 001100001 VT 110100010	
33	j 010101101	J 010100110	LF 010100001	LF 010100001	
34	h 000101110 g 111001110	H 000100101 G 111000101	BS 000100010 BEL 111000010	BS 000100010 BEL 111000010	
34 35 36 37	f 011001101 d 001001110	F 011000110 D 001000101	ACK 011000001 EOT 001000010	ACK 011000001 EOT 001000010	
38	s 110011110	S 110010101	DC3 110010010	DC3 110010010	
39 40	a 100001110 000000000	A 100000101 000000000	SOH 100000010 000000000	SOH 100000010 000000000	
41 42	{ 110111101 GR 101100010	} 101111101 GR 101100010	ESC 110110001 GR 101100010	GS 101110001	
43	111001001	" 010001001	BEL 111000010	GR 101100010 STX 010000010	
44 45	4 001011010 5 101011001	4 001011010 5 101011001	4 001011010 5 101011001	4 001011010 5 101011001	
46 47	6 011011001 00000000	6 011011001 000000000	6 011011001 00000000	6 011011001	
48	00000000	00000000	00000000	00000000	
49 50	000000000 p 000011110	000000000 P 000010101	000000000 DEL 000010010	000000000 DEL 000010010	
51 52	o 111101101	O 111100110	SI 111100001	SI 111100001	
53	i 100101101 u 101011110	U 101010101	HT 100100001 NAK 101010010	HT 100100001 NAK 101010010	
54 55	y 100111110 t 001011101	Y 100110101 T 001010110	EM 100110010 DC4 001010001	EM 100110010 DC4 001010001	
56	r 010011101	R 010010110	DC2 010010001	DC2 010010001	
57 58	e 101001101 w 111011101	E 101000110 W 111010110	ENQ 101000001 ETB 111010001	ENQ 101000001 ETB 111010001	
59 60	q 100011101 000000000	Q 100010110 000000000	DC1 100010001 000000000	DC1 100010001 000000000	
61	00000000	00000000	00000000	00000000	
62 63	DC2 010010001 000000000	DC2 010010001 000000000	DC2 010010001 000000000	DC2 010010001 000000000	
64 65	1 100011010 2 010011010	1 100011010 2 010011010	1 100011010 2 010011010	1 100011010 2 010011010	
66	3 110011001	3 110011001	3 110011001	3 110011001	
67 68	00000000	00000000	00000000 00000000	00000000	
69 70	00000000	00000000	00000000	00000000	
71	0 000011001 9 100111001) 100101010 (000101001	DLE 000010010 EM 100110010	HT 100100001 BS 000100010	
72 73	8 000111010 7 111011010	* 010101010 & 011001010	CAN 000110001 ETB 111010001	LF 010100001 ACK 011000001	· .
74 75	6 011011001	A 011110110	SYN 011010010	RS 011110001 ENQ 101000001	
76	4 001011010	% 101001010 \$ 001001001	NAK 101010010 DC4 001010001	EOT 001000010	
77 78	3 110011001 2 010011010	# 110001010 @ 00000110	DC3 110010010 DC2 010010001	ETX 110000001 NUL 000000001	
79	1 100011010	! 100001001	DC1 100010001	SOH 100000010	
80 81	00000000	00000000 00000000	00000000	00000000 00000000	
82 83	00000000	00000000	00000000	00000000	
84	00000000	00000000	00000000	00000000	
85 86	SP 000001010 00000000	SP 000001010 000000000	NUL 000000001 000000000	NUL 000000001 000000000	
87 88	DC1 100010001 HT 100100001	DC1 100010001 HT 100100001	DC1 100010001 HT 100100001	DC1 100010001	
89	ESC 110110001	ESC 110110001	ESC 110110001	HT 100100001 ESC 110110001	

KR 3600-PRO

XY	Normal	Shift	Control	Shift/Control
00	000000000	001000000	010000000	011000000
01	00000001	001000001	010000001	011000001
02 03	000000010 000000011	001000010 001000011	010000010 010000011	011000010 011000011
- 04	00000011	00100011	010000011	011000111
05	00000101	001000101	010000101	011000101
06 07	000000110 000000111	001000110 001000111	010000110 010000111	011000110 011000111
08	000001000	001001000	010001000	011001000
09	000001001	001001001	010001001	011001001
10 11	000001010 000001011	001001010 001001011	010001010 010001011	011001010 011001011
12	000001100	001001100	010001100	011001100
13 14	000001101	001001101 001001110	010001101 010001110	011001101 011001110
15	000001110 000001111	001001111	010001111	011001111
16	000010000	001010000	010010000	011010000
17 18	000010001 000010010	001010001 001010010	010010001 010010010	011010001 011010010
19	000010011	001010011	010010011	011010011
20 21	000010100	001010100 001010101	010010100 010010101	011010100
22	000010101 000010110	001010101	010010101	011010101 011010110
23	000010111	001010111	010010111	011010111
24 25	000011000 000011001	001011000 001011001	010011000 010011001	011011000 011011001
26	000011010	001011010	010011010	011011010
27	000011011	001011011	010011011	011011011
28 29	000011100 000011101	001011100 001011101	010011100 010011101	011011100 011011101
30	000011110	001011110	010011110	011011110
31 32	000011111	001011111	010011111	011011111
33	000100000 000100001	001100000 001100001	010100000 010100001	011100000 011100001
34	000100010	001100010	010100010	011100010
35 36	000100011 000100100	001100011 001100100	010100011	011100011 011100100
37	000100101	001100101	010100101	011100101
38 39	000100110	001100110 001100111	010100110 010100111	011100110
40	000100111 000101000	001101111	010101011	011100111 011101000
41	000101001	001101001	010101001	011101001
42 43	000101010 000101011	001101010 001101011	010101010 010101011	011101010 011101011
44	000101100	001101100	010101100	011101100
45 46	000101101 000101110	001101101 001101110	010101101 010101110	011101101 011101110
47	000101111	001101111	010101111	011101111
48	000110000	001110000	010110000	011110000
49 50	000110001 000110010	001110001 001110010	010110001 010110010	011110001 011110010
51	000110011	001110011	010110011	011110011
52 53	000110100 000110101	001110100	010110100 010110101	011110100 011110101
54	000110110	001110110	010110110	011110110
55	000110111	001110111	010110111	011110111
56 57	000111000 000111001	001111000 001111001	010111000 010111001	011111000 011111001
58	000111010	001111010	010111010	011111010
59 60	000111011 000111100	001111011 001111100	010111011 010111100	011111011 011111100
61	000111101	001111101	010111101	011111101
62	000111110	001111110	010111110	011111110
63 64	000111111 100000000	001111111 101000000	010111111 110000000	011111111 111000000
65	10000001	101000001	110000001	111000001
66 67	100000010 100000011	101000010 101000011	110000010 110000011	111000010 111000011
68	100000100	101000100	110000100	111000100
69	100000101 100000110	101000101	110000101	111000101 111000110
70 71	100000110	101000111	110000110 110000111	111000110
72	100001000	101001000	110001000	111001000
73 74	100001001 100001010	101001001 101001010	110001001 110001010	111001001 111001010
75	100001011	101001011	110001011	111001011
76	100001100	101001100	110001100	111001100
77 78	100001101	101001101 101001110	110001101 110001110	111001101 111001110
79	100001111	101001111	110001111	111001111
80 81	100010000 100010001	101010000 101010001	110010000 110010001	111010000 111010001
82	100010010	101010010	110010010	111010010
83	100010011	101010011	110010011	111010011
84 85	100010100 100010101	101010100 101010 1 01	110010100 110010101	111010100 111010101
86	100010110	101010110	110010110	111010110
87 88	100010111 100011000	101010111 101011000	110010111 110011000	111010111 111011000
89	100011000	101011001	110011001	111011001

DESCRIPTION

The KR 3600 PRO is a MOS/LSI device intended to simplify the interface of a microprocessor to a keyboard matrix. Like the other KR 3600 parts, the KR 3600 PRO contains all of the logic to de-bounce and encode keyswitch closures, while providing either a 2-key or N-key rollover.

The output of the KR 3600 PRO is a simple binary code which may be converted to a standard information code by a PROM or directly by a microprocessor. This permits a user maximum flexibility of key layout with simple field programming.

The code in the KR 3600 is shown in Table I. The format is simple: output bits 9, 8, 7, 6, 5, 4 and 1 are a binary sequence. The count starts at X0, Y0 and increments through X0Y1, X0Y2...X8Y9. Bit 9 is the LSB; bit 1 is the MSB.

Bits 2 and 3 indicate the mode as follows:

Bit 2	Bit 3	
0	0	Normal
0	1	Shift
1	0	Control
1	1	Shift Control

For maximum ease of use and flexibility, an internal scanning oscillator is used, with pin selection of N-key lockout (also known as 2-key rollover) and N-key rollover. An "any-key-down" output is provided for such uses as repeat oscillator keying.

Figure 1 shows a PROM-encoded 64 key, 4 mode application, using a 256x8 PROM, and Figure 2 a full 90 key, 4 mode application, utilizing a 512x8 PROM.

If N-key rollover operation is desired, it is recommended that a diode be inserted in series with each switch as shown. This prevents "phantom" key closures from resulting if three or more keys are depressed simultaneously.

