BI1363 HT 2020 Analys av kategoridata Oktober 2020 Adam Flöhr, BT, SLU

Analys av kategoridata

Motsvarar Biometri, kap 9

I korthet

Vi undersöker en variabel som ger en indelning i kategorier

Observerad data kan sammanfattas i en frekvenstabell

Från någon hypotes kan vi beräkna **förväntade värden** för tabellen

Observerade och förväntade värden kan jämföras med ett χ^2 -test

Testet kan användas för att testa om data följer en viss fördelning (modellanpassning)

Och för att testa för samband mellan två kategorivariabler (homogenitets- och oberoendetest)

Kategoridata

Undersöker en egenskap där de möjliga utfallen ger en kategori-indelning

Typiskt en variabel på nominalskala (t.ex art eller nationalitet) eller ordinalskala (t.ex kundnöjdhet)

Vi har k klasser och en klass relativa storlek i populationen ges av p_i

Drar ett stickprov av storlek *n* och tittar på antalet i stickprovet i respektive klass

Kan skatta p för respektive klass med $\hat{p} = \frac{\text{antal i klassen}}{n}$

Fallet med binär data är ett särfall där k=2

Frekvenstabeller

En enskild kategorivariabel kan beskrivas med en enkel frekvenstabell

Status	Antal
Frisk	102
Sjuk	198

Två variabel kan beskrivas med en korstabell

Status \ Läge	Norr	Syd
Frisk	148	50
Sjuk	52	50

χ^2 -fördelning

Tester av frekvenser baseras på en testfördelning som kallas en χ^2 -fördelning

En χ^2 -fördelning uppstår som summan av kvadrerade standardiserade normalfördelningar

Den defineras av en parameter, antalet *frihetsgrader*, som ges av antalet termer i summan

Biometri, tabell 6

Som tidigare (med normalfördelningen och t-fördelningen) kommer vi vilja uppskatta svanssannolikheten

Eftersom χ^2 -fördelningen bygger på kvadrerade värden är vi bara intresserade av den högra svansen

Tabellvärden för x-axeln betecknas $\chi^2_{(1-\alpha,df)}$ och kan hämtas från en tabell över χ^2 -fördelningen, t.ex tabell 6 i Biometri

För ett tabellvärde motsvarande fem procent i svansen och df=5 tittar vi på $\chi^2_{(0.95,5)}=11.070$

Test av modellanpassning

 χ^2 -testet för modelanpassning används för att testa om observerade frekvenser kommer från en given fördelning Exempel kan vara

- om alla färger är lika vanliga i en M&M-förpackning
- om en art förekommer lika ofta i flera habitat
- om delar av befolkning förekommer proportionellt i företagsstyrelser

Testet genomförs genom att beräkna förväntade värden för varje klass

Förväntade och observerade värden vägs samman med en testfunktion och p-värdet beräknas från en χ^2 -fördelning

Antalet frihetsgrader ges av k-1 där k är antalet klasser

Test av modellanpassning, schema

Hypoteser

 H_0 : data kommer från den antagna fördelning

 H_1 : data kommer inte från den antagna fördelningen

Testfunktion

$$\chi^2 = \sum_{
m alla~klasser} rac{(O_i - E_i)^2}{E_i}$$

där O_i och E_i är observerat respektive förväntat antal i klass i

Testfördelning

Under nollhypotesen följer χ^2 en χ^2 fördelning med k-1 frihetsgrader, där kär antalet klasser

Förväntade värden \boldsymbol{E} ska vara större än $\boldsymbol{5}$

P-värde

P-värdet ges av arean bortom χ^2 i testfördelningen

Vid handräkning uppskattas pvärdet genom att ställa χ^2 mot ett tabellvärde

Svar

P-värdet ställs mot en förbestämd signifikansnivå (ofta 5 procent)

Vid ett lågt p-värde förkastas nollhypotesen

Vid ett högt p-värde förkastas ej nollhypotesen

Test av modelanpassning, exempel

I en studie av dagfjärilar fångas hundra fjärilar och sorteras efter familj

Antalen ges av följande

Familj	Tjockhuvuden	Riddarfjärilar	Vitfjärilar	Juvelvingar
O (observerade)	40	23	27	10

Från tidigare studier tror man att fördelningen i området är 40 procent tjockhuvuden och 20 procent var för övriga

Familj	Tjockhuvuden	Riddarfjärilar	Vitfjärilar	Juvelvingar
O (observerade)	40	23	27	10
p (sannolikheter)	0.4	0.2	0.2	0.2

Vi genomför ett test för att se om våra observationer kommer från den etablerade fördelningen

Hypoteser

 H_0 : observerade antal kommer från den tidigare fördelningen

 H_1 : observerade antal kommer inte från den tidigare fördelning

Testfunktion

Förväntade värden

Vi beräknar förväntade värden genom att multiplicera vårt totala antal med sannolikheterna från fördelningen

Familj	Tjockhuvuden	Riddarfjärilar	Vitfjärilar	Juvelvingar
O (observerade)	40	23	27	10
p (sannolikheter)	0.4	0.2	0.2	0.2
E (förväntade)	40	20	20	20

Notera särskilt att χ^2 -testet alltid beräknas på *antalen*

Kontrollera så att kravet att E>5 är uppfyllt för samtliga klasser

Testfunktionen beräknas med

$$\chi^2 = \sum_{ ext{alla klasser}} rac{(O_i - E_i)^2}{E_i} = rac{(40 - 40)^2}{40} + rac{(23 - 20)^2}{20} + rac{(27 - 20)^2}{20} + rac{(10 - 20)^2}{20} = 0 + rac{9}{20} + rac{49}{20} + rac{100}{20} = 7.9$$

Testfördelning

Under nollhypotesen följer χ^2 en χ^2 -fördelning

Antalet frihetsgrader ges av k-1=4-1=3

P-värde

P-värdet ges av ytan till höger om vårt observerade χ^2

Vi kan uppskatta p-värdet från *Biometri* tabell 6

	$F(\chi^2)$								
 d.f.	0.75	0.9	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995
1 2 3	1.323 2.773 4.108	2.706 4.605 6.251	3.841 5.991 7.815	5.024 7.378 9.348	6.635 9.210 11.345	7.879 10.597 12.838	9.141 11.983 14.320	10.828 13.816 16.266	

Vårt observerade värde ligger precis över $\chi^2_{(0.95,3)}=7.815$. P-värdet måste alltså vara strax under fem procent

En datorberäkning ger det exakta värdet 0.04812

Slutsats

Det finns en statistiskt signifikant skillnad mellan våra observerade värden och den tidigare fördelningen

Test av samband i en korstabell

 χ^2 -test kan också användas för att testa om det finns något samband mellan två kategorivariabler

Observerade värden presenteras i en korstabell

Marginalsummor hålls konstanta och förväntade värden beräknas som om variablerna vore oberoende

Testfunktionen är densamma som tidigare

Antalet frihetsgrader ges av (r-1)(k-1) där r är antalet rader och k antalet kolumner i korstabellen

Test av korstabell, exempel

I en fortsättning på vår fjärilstudie besöker vi tre olika områden och samlar in populationsdata

Vi vill undersöka om andelen vitfjärilar är densamma oberoende av område

Art \ Område	Område A	Område B	Område C	Summa
Vitfjäril	9	18	19	46
Annan art	41	32	81	154
Summa	50	50	100	200

Hypoteser

 H_0 : andelen vitfjärilar är densamma

 H_1 : andelen vitfjärilar skiljer sig mellan områden

Testfunktion

Förväntade antal

Förväntade värden beräknas genom att hålla marginalsummor konstanta och beräkna inre celler enligt formeln

$$E_{ij} = rac{ ext{Radsumma i} \cdot ext{Kolumnsumma j}}{ ext{Totalsumma}}$$

Det första förväntade värdet ges av

$$E_{11} = rac{50 \cdot 46}{200} = rac{2300}{200} = 11.5$$

Observerade värden och förväntade värden

Om vi gör beräkningen för förväntade värden för varje cell får vi följande tabeller

Observerade värden (O)

Art \ Område	Område A	Område B	Område C	Summa
Vitfjäril	9	18	19	46
Annan art	41	32	81	154
Summa	50	50	100	200

Förväntade värden (E)

Art \ Område	Område A	Område B	Område C	Summa
Vitfjäril	11.5	11.5	23	46
Annan art	38.5	38.5	77	154
Summa	50	50	100	200

Marginalsummorna ska vara desamma

Förväntade värden *E* behöver inte vara heltal

Som tidigare gäller tumregeln E>5 för att χ^2 -testet ska vara lämpligt

Testfunktion, beräkning

Testfunktionen är densamma som tidigare. Summan går nu över samtliga celler i korstabellen

$$\chi^2 = \sum_{ ext{alla celler}} rac{(O_{ij} - E_{ij})^2}{E_{ij}} = rac{(9 - 11.5)^2}{11.5} + \dots + rac{(77 - 81)^2}{77} = 6.381$$

Testfördelning

Under nollhypotesen följer χ^2 en χ^2 -fördelning med (r-1)(k-1) frihetsgrader, där r är antalet rader och k antalet kolumner i korstabellen

I vårt exempel har vidf = (3-1)(2-1) = 2

P-värde

p-värdet ges av ytan till höger om vårt observerade χ^2

Vi kan uppskatta p-värdet från *Biometri* tabell 6

	$F(\chi^2)$								
d.f.	0.75	0.9	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995
1 2	1.323 2.773	2.706 4.605	3.841 5.991	5.024 7.378	6.635 9.210				

Vårt observerade värde ligger över $\chi^2_{(0.95,2)}=5.991$. P-värdet måste alltså vara strax under fem procent

En datorberäkning ger det exakta värdet 0.04116

Slutsats

Vi förkastar nollhypotesen

Det finns en signifikant skillnad i andelen vitfjärilar mellan områden

Homogenitetstest eller oberoendetest

Boken Biometri delar upp tester på korstabeller i två typer

Indelningen har ingen påverkan på hur testet genomförs

Homogenitetstest

Vid ett *homogenitetstest* är antalen i en av variablerna fixerad och man är intresserad av skillnader inom den andra variabeln

- Exemplet med fjärilar i tre områden är ett homogenitetstest, eftersom vi valt att samla in femtio, femtio och hundra fjärilar per område
- Man kan redan innan man samlar in sin data säga vad kolumnsummorna blev

Oberoendetest

Vid ett oberoendetest är bägge variablerna slumpmässiga

Vi testar om det finns något samband mellan variablerna

- Till exempel att man samlar in 500 ekorrar och noterar kön och ålder
- Marginalsummor kan ej uppskattas innan data samlats in

