

Machine Learning with Graphs (MLG)

Structure of Graphs

Cheng-Te Li (李政德)

Institute of Data Science
National Cheng Kung University

TANDILLA 1931

chengte@mail.ncku.edu.tw

Some Tutorials

NetworkX

- https://github.com/ericmjl/Network-Analysis-Made-Simple [Recommended!!]
- https://github.com/CambridgeUniversityPress/FirstCourseNetworkScience

PyTorch Geometric

- A better choice, compared to DGL
- Official site: https://github.com/rusty1s/pytorch_geometric
- https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html
- https://www.pytorchtutorial.com/pytorch-geometric-for-gnn/
- https://towardsdatascience.com/hands-on-graph-neural-networks-with-pytorch-pytorch-geometric-359487e221a8

Undirected Graph

- Graph G=(V,E)
 - V = set of vertices (nodes)
 - E = set of edges

undirected graph

$$V = \{1, 2, 3, 4, 5\}$$

 $E = \{(1,2), (1,3), (2,3), (3,4), (4,5)\}$

Directed Graph

- Graph G=(V,E)
 - V = set of vertices (nodes)
 - E = set of edges

directed graph

$$V = \{1, 2, 3, 4, 5\}$$

 $E = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 1, 3 \rangle, \langle 3, 2 \rangle, \langle 3, 4 \rangle, \langle 4, 5 \rangle\}$

Weighted Graph

- Graph G=(V,E)
 - V = set of vertices (nodes)
 - E = set of edges and their weights

Weights can be either distances or similarities

Weighted graph

$$V = \{1, 2, 3, 4, 5\}$$

$$\mathsf{E} = \{(1,2,w_{12}),(1,3,w_{12}),(2,3,w_{12}),(3,4,w_{12}),(4,5,w_{12})\}$$

Undirected graph

- Neighborhood N(i) of node i
 - For any node i, in an undirected graph, the set of nodes it is connected to via an edge is called its neighborhood and is represented as N(i)

- degree d(i) of node i
 - Size of N(i)
 - number of edges incident on i

Undirected graph

- degree sequence
 - [d(1),d(2),d(3),d(4),d(5)]
 - **•** [2,2,3,2,1]
- degree histogram
 - **•** [(1:1),(2:3),(3,1)]

- degree distribution
 - **[**(1:0.2),(2:0.6),(3,0.2)]

Directed Graph

In directed graphs we have incoming neighbors $N_{in}(v)$ (nodes that connect to v) and outgoing neighbors $N_{out}(v)$

- in-degree $d_{in}(i)$ of node i
 - number of edges incoming to node i
- out-degree d_{out}(i) of node i
 - number of edges leaving node i
- in-degree sequence
 - **•** [1,2,1,1,1]
- - **•** [2,1,2,1,0]

- in-degree histogram
 - **•** [(1:4),(2:1)]
- out-degree sequence out-degree histogram
 - **•** [(0:1),(1:2),(2:2)]

Degree Distribution

 When dealing with very large graphs, how nodes' degrees are distributed is an important concept to analyze and is called Degree Distribution

$$\pi(d) = \{d_1, d_2, \dots, d_n\}$$

$$p_d = \frac{n_d}{n}$$

 n_d is the number of nodes with degree d

$$\sum_{d=0}^{\infty} p_d = 1$$

$$p_1 = \frac{1}{7}, p_2 = \frac{4}{7}, p_3 = \frac{1}{7}, p_4 = \frac{1}{7}$$

Degree Distribution Plot

- The x-axis represents the degree and the y-axis represents the fraction of nodes having that degree
- On social networking sites
 - Many users with few connections
 - A handful of users with very large numbers of friends
- Power-Law Degree Distribution

Facebook Degree Distribution

Connectivity for Undirected graph

- Connected graph: a graph
 where there every pair of nodes
 is connected through a path
- Disconnected graph: a graph that is not connected
- Connected Components: subsets of vertices that are connected

Connectivity for Directed Graph

- Strongly connected graph: there exists a path from every i to every j
- Weakly connected graph: If its underlying undirected graph is connected

Connectivity

- A node v_i is connected to node v_j (or reachable from v_j) if it is adjacent to it or there exists a path from v_i to v_j
- A graph is connected,
 if there exists a path between any pair of nodes in it
 - In a directed graph, a graph is strongly connected
 if there exists a directed path between any pair of nodes
 - In a directed graph, a graph is weakly connected if there exists a path between any pair of nodes, without following the edge directions
- A graph is disconnected, if nodes are not connected

Connectivity

- (a) Connected
- (b) Disconnected
- (c) Strongly connected
- (d) Weakly connected

Components

- A component in an undirected graph is a connected subgraph, i.e., there is a path between every pair of nodes inside the component
- In directed graphs, we have a strongly connected component when there is a path from u to v and one from v to u for every pair of nodes u and v
- The component is weakly connected if replacing directed edges with undirected edges results in a connected component

Components

3 components

3 Strongly-connected components

Articulation and Bridge

- Bridge edge: If we erase the edge, the graph becomes disconnected
- Articulation node: If we erase the node, the graph becomes disconnected

Fully Connected Graph

- Clique K_n
- A graph that contains all possible n(n-1)/2 edges

Subgraph

- Graph G can be represented as a pair G(V, E)
 - lacktriangle where V is the node set and E is the edge set
- G'(V', E') is a subgraph of G(V, E)

$$V'\subseteq V$$
 $E'\subseteq E$

Subgraphs

 Subgraph: Given V' ⊆ V, and E' ⊆ E, the graph G'=(V',E') is a subgraph of G

Induced subgraph:
 Given V' ⊆ V, let E' ⊆ E is the set

of all edges between the nodes in V'. The graph G'=(V',E'), is an induced subgraph of G

Paths

- Path from node i to node j: a sequence of edges (directed or undirected from node i to node j)
 - Path length: number of edges on the path
 - lacktriangle nodes i and j are connected if there exists a path from i to j
 - Cycle: a path that starts and ends at the same node

Diameter

The largest shortest path in the graph

Trees

Connected Undirected graphs without cycles

Bipartite Graphs

 Graphs where the set of nodes V can be partitioned into two sets L and R, such that there are edges only between nodes in L and R, and there is no edge within L or R

- Adjacency Matrix
 - symmetric matrix for undirected graphs

- Adjacency Matrix
- However, social networks have very **sparse** Adjacency matrices
- unsymmetric matrix for directed graphs

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Adjacency List
 - For each node in an undirected graph, keep a list with neighboring nodes

1: [2, 3]

2: [1, 3]

3: [1, 2, 4]

4: [3, 5]

5: [4]

- Adjacency List
 - For each node in a directed graph,
 keep a list of the nodes it points to

1: [2, 3]

2: [1]

3: [2, 4]

4: [5]

5: [null]

- List of edges
 - Keep a list of all the edges in the undirected graph

(1,2)

(2,3)

(1,3)

(3,4)

(4,5)

- List of edges
 - Keep a list of all the directed edges in the directed graph

(1,2)

(2,1)

(1,3)

(3,2)

(3,4)

(4,5)

Simple Graphs and Multigraphs

- Simple graphs are graphs where only a single edge can be between any pair of nodes
- Multigraphs are graphs where you can have multiple edges between two nodes and loops

Weighted Graph

• A weighted graph G(V, E, W) is one where edges are associated with weights

$$A_{ij} = \begin{cases} w_{ij} \text{ or } w(i,j), w \in R \\ 0, \text{ there is no edge between } v_i \text{ and } v_j \end{cases}$$

An example on US flight network:

Edge Attributes

Possible options

- Weight (e.g. frequency of communication)
- Ranking (best friend, second best friend...)
- Type (friend, relative, co-worker)
- Sign: Friend vs. Foe, Trust vs. Distrust
- Properties depending on the structure of the rest of the graph: number of common friends

Signed Graph

When weights are binary (0/1, -1/1, +/-),
 we have a signed graph

- It is used to represent friends or foes
 - Trust/Distrust (Epinions), Support/Oppose (Wikipedia)
 Like/Dislike (YouTube),
- It is also used to represent social status
 - $\blacksquare A \xrightarrow{+} B : B \text{ has higher status than A}$

More Types of Graphs

Self-edges (self-loops)

Multigraph

Example Graphs

Email network >> directed multigraph with self-edges
Facebook friendships >> undirected, unweighted
Citation networks >> unweighted, directed, acyclic
Collaboration networks >> undirected multigraph or weighted graph
Mobile phone calls >> directed, (weighted?) multigraph
Protein Interactions >> undirected, unweighted with self-interactions