

MATHEMATICS EXTENSION 2

4 UNIT MATHEMATICS

TOPIC 7: POLYNOMIALS

7.2 LONG DIVISION OF POLYNOMIALS

Let P(x), D(x), Q(x) and R(x) be polynomial functions in x. Then we can divide the P(x) by D(x) such that

$$P(x) = D(x) Q(x) + R(x)$$

where D(x) is the **divisor**

Q(x) is the **quotient** R(x) is the **remainder**

The degree of R(x) must be less than that of D(x). The functions Q(x) and R(x) are unique when this condition is satisfied.

DIVISION ALGORITHM

If P(x) and $D(x) \neq 0$ are polynomials, and the degree of D(x) is less than or equal to the degree of P(x), then there exist unique polynomials Q(x) and R(x), so that

$$\frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$$

and so that the degree of R(x) is less than the degree of D(x). In the special case where R(x) = 0, we say that D(x) divides evenly into P(x).

Example $P(x) = 6x^3 - 7x^2 + 4x - 3$ A(x) = 3x + 1 find Q(x) and R(x).

Solution Make a table as shown below to do the **long division** to find Q(x) and R(x)

				x ³	x ²	x ¹	x ⁰
(1)	D(x)	Q(x)	P(x)	$6x^3$	-7x ²	4x	-3
(2)	3x+1	2x ²		6x ³	2x ²	0	0
(3)			(1)-(2)	0	-9x ²	4x	-3
(4)	3x+1	-3x		0	-9x ²	-3x	0
(5)			(3)-(4)	0	0	7x	-3
(6)	3x+1	7/3		0	0	7x	7/3
(7)			(5)-(6)> R(x)	0	0	0	-16/3

$$Q(x) = 2x^2 - 3x + 7/3$$
 $R(x) = -16/3$

Example $P(x) = 6x^3 - 7x^2 + 4x - 3$ A(x) = 3x + 1 find Q(x) and R(x).

Solution Make a table as shown below to do the **long division** to find Q(x) and $R(x) \setminus$

				x ³	x ²	x ¹	x ⁰
(1)	D(x)	Q(x)	P(x)	$2x^3$	-9x ²	0	15
(2)	x ² -x+1	2x		$2x^3$	-2x ²	2x	0
(3)			(1)-(2)	0	-7x ²	-2x	15
(4)	x ² -x+1	-7		0	-7x ²	7x	-7
(5)			(3)-(4)> R(x)	0	0	-9x	22

$$Q(x) = 2x - 7$$
 $R(x) = -9x + 22$

Exercise

Show that $\frac{3x^3 - 3x^2 + 4x - 3}{x^2 + 3x + 4} = (3x - 12) + \frac{28x + 45}{x^2 + 3x + 4}$

How to check your answer!

Evaluate RHS = $(3x-12)(x^2+3x+4)+28x+45$ and compare with LHS = $3x^3-3x^2+4x-3$

$$RHS = 3x^3 + 9x^2 + 12x - 12x^2 - 36x - 48 + 28x + 45$$

$$RHS = 3x^3 - 3x^2 + 4x - 3 = LHS$$
 QED

Exercise

Show that
$$\frac{x^3 - 5x^2 + 3x - 15}{x^2 + 3} = (x - 5) + \frac{0}{x^2 + 3}$$

Check answer!

Evaluate RHS = $(x-5)(x^2+3)$ and compare with LHS = $x^3-5x^2+3x-15$

RHS =
$$(x-5)(x^2+3) = x^3+3x-5x^2-15$$

$$RHS = x^3 - 5x^2 + 3x - 15 = LHS$$
 QED

In this example, the remainder is zero R(x) = 0 so $(x^2 + 3)$ divides evenly into $x^3 - 5x^2 + 3x - 15$

$$x^3 - 5x^2 + 3x - 15 = (x - 5)(x^2 + 3)$$

In this case, we have **factored** the polynomial $x^3 - 5x^2 + 3x - 15$, i.e., we have written it as a product of two lower degree) polynomials. (x-5) and (x^2+3) are called the **factors** of the polynomial P(x).