Тема. Тригонометричні тотожності

<u>Мета:</u> відновити та розширити знання про тригонометричні тотожності та навчитись застосовувати їх до розв'язування задач

Пригадайте

- Дайте означення синуса, косинуса і тангенса гострого кута в прямокутному трикутнику.
- Дайте означення синуса, косинуса і тангенса гострого кута в тригонометричному колі.
- Чому дорівнюють тригонометричні функції кутів 0°, 90°, 180°?
- Які основні тригонометричні тотожності ви знаєте?

Ознайомтеся з інформацією

Пригадаймо, що для будь-якого гострого кута α прямокутного трикутника було доведено основну тригонометричну тотожність:

$$\sin^2\alpha + \cos^2\alpha = 1$$
.

Ця ж тотожність дійсна і для кута α з проміжку $0^{\circ} \le \alpha \le 180^{\circ}$.

З основної тригонометричної тотожності з урахуванням знаків тригонометричних функцій для кутів від 0° до 180° випливає, що:

$$\sin \alpha = \sqrt{1 - \cos^2 \alpha}$$
, $\cos \alpha = \pm \sqrt{1 - \sin^2 \alpha}$.

Знак $\cos \alpha$ обирають залежно від того, чи є кут α гострим (знак «+»), чи тупим (знак «–»). Безпосередньо з означень тригонометричних функцій випливають такі тотожності:

$$\begin{split} tg\,\alpha &= \frac{\sin\alpha}{\cos\alpha} \ (\alpha \neq 90^\circ), \quad ctg\,\alpha = \frac{\cos\alpha}{\sin\alpha} \ (0^\circ < \alpha < 180^\circ), \\ tg\,\alpha \cdot ctg\,\alpha &= 1 \ (\alpha \neq 0^\circ, \ \alpha \neq 90^\circ, \ \alpha \neq 180^\circ). \end{split}$$

У 8-ому класі ви вивчали, що для гострого кута α справджуються формули доповнення, які виражають функції кута (90°– α) через функції кута α:

$$\sin (90^{\circ} - \alpha) = \cos \alpha$$
, $\cos (90^{\circ} - \alpha) = \sin \alpha$,
 $tg (90^{\circ} - \alpha) = ctg\alpha$, $ctg (90^{\circ} - \alpha) = tg\alpha$.

Формули зведення для кута на проміжку $0^{\circ} \le \alpha \le 180^{\circ}$ будуть мати такий вигляд:

$$\sin(180^{\circ} - \alpha) = \sin\alpha$$
, $\cos(180^{\circ} - \alpha) = -\cos\alpha$.
 $tg(180^{\circ} - \alpha) = -tg\alpha \ (0^{\circ} \le \alpha \le 180^{\circ}, \ \alpha \ne 90^{\circ})$,
 $ctg(180^{\circ} - \alpha) = -ctg\alpha \ (0^{\circ} < \alpha < 180^{\circ})$.

Теорема синусів.

Сторони трикутника (рис. 2) пропорційні синусам протилежних кутів:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R,$$

де a, b, c — сторони трикутника, протилежні кутам A, B, C, відповідно; R — радіус описаного кола навколо трикутника.

Рис. 2. До теореми синусів

Теорема косинусів.

Квадрат будь-якої сторони трикутника (рис. 4) дорівнює сумі квадратів двох інших сторін без подвоєного добутку цих сторін на косинус кута між ними:

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \angle V$$

де a, b, c — сторони трикутника, кут в — кут між сторонами a і b.

Рис. 4. До теореми косинусів

Перегляньте навчальне відео за посиланням:

https://youtu.be/-8Gk0dy7giE

Робота в зошиті

Запишіть приклади розв'язування задач:

Задача 1

Обчисліть значення тригонометричних функцій кута 150°.

Розв'язання.

$$\sin 150^\circ = \sin(180^\circ - 30^\circ) = \sin 30^\circ = \frac{1}{2}, \cos 150^\circ = \cos(180^\circ - 30^\circ) = -\cos 30^\circ = -\frac{\sqrt{3}}{2},$$

tg
$$150^{\circ} = \text{tg}(180^{\circ} - 30^{\circ}) = -\text{tg}30^{\circ} = -\frac{\sqrt{3}}{3}$$
, ctg $150^{\circ} = \text{ctg}(180^{\circ} - 30^{\circ}) = -\text{ctg} 30^{\circ} = -\sqrt{3}$.

Відповідь:
$$\sin 150^\circ = \frac{1}{2}$$
, $\cos 150^\circ = -\frac{\sqrt{3}}{2}$, $\operatorname{tg} 150^\circ = -\frac{\sqrt{3}}{3}$, $\operatorname{ctg} 150^\circ = -\sqrt{3}$.

Задача 2

Обчисліть:

1) $\sin 150^{\circ} + \tan 135^{\circ}$

Розв'язання

1)
$$\sin 150^{\circ} + tg 135^{\circ} = \sin(180^{\circ} - 30^{\circ}) + tg(180^{\circ} - 45^{\circ}) = \sin 30^{\circ} - tg 45^{\circ} = \frac{1}{2} - 1 = -0.5;$$

Задача З

Кут
$$\beta$$
 – гострий. Знайдіть: $\cos \beta$, якщо $\sin \beta = \frac{4}{5}$

Розв'язання

$$\sin^2\beta + \cos^2\beta = 1.$$

1)
$$\sin \beta = \frac{4}{5}$$
; $\cos^2 \beta = 1 - \sin^2 \beta$; $\cos \beta = \sqrt{1 - \sin^2 \beta}$;

$$\cos \beta = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5};$$

Задача 4

За трикутником ABC (рис. 3) знайдіть кут B, якщо AB = $\sqrt{3}$, AC = $\sqrt{2}$, \angle C = 60° .

Рис. 3.

Розв'язання.

За теоремою синусів маємо:

$$sin \angle B = \frac{\sqrt{2}}{2};$$

$$\frac{AB}{\sin \angle C} = \frac{AC}{\sin \angle B};$$

$$\angle B = 45^{\circ}$$
.

$$\frac{\sqrt{3}}{\sin 60^{\circ}} = \frac{\sqrt{2}}{\sin \angle B};$$

Відповідь: $\angle B = 45^{\circ}$.

$$\sqrt{3}:\frac{\sqrt{3}}{2}=\frac{\sqrt{2}}{\sin \sqrt{8}};$$

$$\frac{\sqrt{3} \cdot 2}{\sqrt{3}} = \frac{\sqrt{2}}{\sin \angle B};$$

Задача 5 (додаткова)

Знайдіть сторони паралелограма, якщо його діагоналі завдовжки 10 см і 16 см перетинаються під кутом 60°.

Розв'язання.

Нехай діагоналі паралелограма ABCD перетинаються в точці O, AC = 16 см, BD = 10 см, $\angle AOB = 60^{\circ}$ (рис. 5).

Рис. 5.

Оскільки діагоналі паралелограма точкою перетину діляться навпіл, то AO = OC = 8 см, BO = OD = 5 см. За теоремою косинусів із трикутника AOB маємо: AB² = OA²+OB²-2 · AO · OB · cos∠AOB.

$$AB^2 = 8^2 + 5^2 - 2 \cdot 8 \cdot 5 \cdot \cos \angle 60^\circ = 7cM.$$

Оскільки ∠AOD = 120° як суміжний з кутом AOB, то з трикутника AOD за теоремою косинусів маємо:

$$AD^2 = AO^2 + OD^2 - 2 \cdot AO \cdot OD \cdot \cos \angle AOD$$
,

$$AD^2 = 8^2 + 5^2 - 2 \cdot 8 \cdot 5 \cdot \cos \angle 120^\circ$$
.

Оскільки
$$\cos 120^\circ$$
 = - $\cos 60^\circ$ = - $\frac{1}{2}$, то AD^2 =129, AD = $\sqrt{129}$ см.

Відповідь: 7 см і $\sqrt{129}$ см.

Домашне завдання

- Опрацювати конспект
- Розв'язати задачі (письмово):
- 1. Обчисліть $\cos 150^{\circ} \cdot \sin 120^{\circ}$.
- 2. Кут β гострий. Знайдіть $\sin \beta$, якщо $\cos \beta = \frac{5}{13}$
- 3. Спростіть вираз

$$\frac{(1-\cos\alpha)(1+\cos\alpha);}{\frac{\cos(90^\circ-\alpha)}{\sin(180^\circ-\alpha)}}.$$

Фото виконаних робіт надсилайте у HUMAN або на електронну пошту nataliartemiuk.55@gmail.com

Джерело

Всеукраїнська школа онлайн