Práctica FFT 13/11/2019

Objetivo de la práctica

Aprender a usar el osciloscopio y estudiar un circuito RC en el dominio de la frecuencia a través de la medida de los cambios en la tensión de la señal de salida debidos a las variaciones de la frecuencia de la señal de entrada. Realizar el diagrama de Bode de la función de transferencia al tomar como salida el condensador del circuito.

Fundamento teórico

Esta práctica se basa en los fundamentos teóricos de diagramas de bode, corriente alterna y circuitos RC.

Como el condensador y la resistencia están en serie la impedancia equivalente es:

$$Z_{eq} = Zr + Zc = R + rac{1}{j\omega C} = rac{j\omega RC + 1}{j\omega C} = rac{1 + j\omega RC}{j\omega C}$$

De esta forma el fasor que representa a la corriente que circula por el circuito es:

$$i(\omega) = rac{v_i(\omega)}{Z_{eq}} = v_i(\omega) rac{j\omega C}{1+j\omega RC}$$

siendo $v_i(\omega)$ el fasor que representa la tensión de la fuente de entrada. Por tanto, el fasor que representa la caída de tensión en el condensador es:

$$i(\omega)=i(\omega)Z_c=rac{v_i(\omega)}{1+j\omega RC}$$

Y la función de transferencia del circuito es

$$T(\omega) = rac{v_C(\omega)}{v_i(\omega)} = rac{1}{1 + j\omega RC}$$

Material de prácticas

En la práctica usaremos dos instrumentos principales.

- Osciloscopio 54622A de Agilent
- Generador de Señales Agilent 33220A

El osciloscopio es un instrumento análogo al multímetro o polímetro. Es decir, sirve para medir voltajes entre los polos de sus terminales llamados sondas. Podemos realizar operaciones sobre las ondas, mostrar 1 o 2 al mismo tiempo, ajustar la escala además de tomar medidas.

El generador de señales lo usaremos para generar una señal con las características deseadas. En el caso de la práctica, una señal seno de Voltaje Pico-Pico de 10V. La frecuencia la cambiaremos para el experimento.

Desarrollo y resultados

Desarrollo

La práctica consiste en medir los voltajes de entrada y salida del siguiente circuito RC para luego calcular la función de trasferencia.

Para ello utilizaremos el material mencionado previamente.

Seleccionaremos frecuencias de distintos ordenes de magnitud, desde 100Hz hasta $10^6\,\,\mathrm{Hz}.$

Resultados

Frecuencia Teórica	Frecuencia Experimental	ω experimental	V _{opp}	V _{ipp}	$H(\omega) = rac{V_{opp}}{V_{ipp}}$	$20log(H(\omega))$
100	100	628	10.2	10.3	0,990291262	-0,084741059
200	200	1256	10.2	10.3	0,990291262	-0,084741059
300	300	1884	10.2	10.3	0,990291262	-0,084741059
500	500	3140	10.2	10.3	0,990291262	-0,084741059
800	800	5024	10.2	10.3	0,990291262	-0,084741059
1000	1000	6280	10.2	10.3	0,990291262	-0,084741059
2000	2000	12560	10	10.3	0,970873786	-0,256744494
3000	3000	18840	9.4	10.3	0,912621359	-0,794187422
5000	5000	31400	8.3	10.3	0,805825243	-1,875182647
6400	6400	40192	7.25	10.3	0,703883495	-3,049984363
8000	8000	50240	6.7	10.3	0,650485437	-3,73524844
10000	10000	62800	5.8	10.3	0,563106796	-4,988184623
20000	20000	125600	3.4	10.3	0,330097087	-9,627166153
30000	30000	188400	2.5	10.3	0,242718447	-12,29794432
50000	50000	314000	1.7	10.3	0,165048544	-15,64776607
80000	80000	502400	0.88	10.3	0,085436893	-21,36709105
100000	100000	628000	0.72	10.3	0,069902913	-23,11009457
200000	200000	1256000	0.34	10.3	0,033009709	-29,62716615
300000	300000	1884000	0.25	10.3	0,024271845	-32,29794432
500000	500000	3140000	0.16	10.3	0,015533981	-36,17434484
800000	800000	5024000	0.092	10.3	0,008932039	-40,98098795
1000000	1000000	628000	0.075	10.3	0,007281553	-42,75551923

El color rojo indica la frecuencia de corte.

Representación gráfica de los datos.

