References

Time-Series versus Cross-Sectional Momentum Seminar Financial Markets

Jonathan Christopher Cabral-Igler, Sahra Ghalebikesabi, Anna Martens

18th June 2018

Contents

- 1 Motivation
- 2 Literature Overview
- 3 Data and Methodology
- 4 Empirical Discussion
 - Basic Strategies
 - Time-varying Net-Long Positions
 - Volatility Scaling
 - Restrictions to the Empirical Analysis
- 5 Conclusion

Contents

- 1 Motivation
- 2 Literature Overview
- 3 Data and Methodology
- 4 Empirical Discussion
 - Basic Strategies
 - Time-varying Net-Long Positions
 - Volatility Scaling
 - Restrictions to the Empirical Analysis
- 5 Conclusion

What Motivates Research on the Topic?

Cross-sectional momentum (CS)

A stock outperforming its peers in the past is likely to continue to outperform them in the future

Time-series momentum (TS)

Strategy focuses on the stock's individual performance and not on the peers' performance

Time-series momentum

Random walk hypothesis

Cross-sectional momentum

Contents

- 1 Motivation
- 2 Literature Overview
- 3 Data and Methodology
- 4 Empirical Discussion
 - Basic Strategies
 - Time-varying Net-Long Positions
 - Volatility Scaling
 - Restrictions to the Empirical Analysis
- 5 Conclusion

Exemplary Overview of Literature on Momentum

- Effects of market conditions on momentum.
 - Cooper et al. (2004): A momentum portfolio after 6 months is only successful after good market conditions; also: reversal haves other reasons beside momentum
 - Daniel and Moskowitz (2016): In times of bad market conditions, momentum works inversely
- Profitability after inclusion of market frictions
 - Korajczyk and Sadka (2004): Even after trading costs, the majority of the studied strategies is still profitable

Jegadeesh and Titman (1993): Evidence for CS Momentum in the United States

- Data: New York and American Stock Exchange
- Sample period: 1965- 1989
- Average returns of up to 12.01%
- Methodology:

Motivation

- Rank sample stocks by returns in ranking period
- Go long in the top decile portfolio in the holding period
- Short the bottom decile portfolio in the holding period

- Data: 12 cross-currency pairs, futures prices for 24 commodities, 9 developed equity indices, 13 developed government bond futures
- Sample period: January 1965 to December 2009
- Methodology:

Application of threshold strategy

The classification as a "winner" depends on whether they achieve returns above 0.

Portfolio achieves significant alphas of up to 6.61%

- Dataset of Moskowitz et al. (2012)
- Volatility scaling and not TS momentum accounts for the abnormal returns!

Volatility Scaling

Motivation

Scale the returns of each asset in the portfolio inversely to its volatility.

- Better performance of TS strategies than CS strategies found by Menkhoff et al. (2012) can be explained by the lack of volatility scaling
- Also: During financial crisis, TS momentum does not offer an explanation for returns

Further Results regarding Volatility Scaling

- Barroso and Santa-Clara (2015): Strategy with constant volatility manages risk of momentum
- Asness et al. (2012): Success of Risk Parity investing due to overproportional share of safer assets in portfolios
 - RP investing means to balance the portfolios in terms of risk
 - Compare total cumulative returns of different strategies and find out that RP investing is superior to the market portfolio

Goyal and Jegadeesh (2017): Net-Long Positions of TS Strategies as the True Success Factor?

 Data: American stock prices for a period of 1946-2013 and like Moskowitz et al. (2012) daily settlement prices for 55 futures markets

Net-long position

Motivation

Difference of the risky long and short side of a portfolio

- \Rightarrow Construction of a cross-sectional momentum strategy with a time-varying investment into the market (CS^{TVM})
 - \bullet Adjusted difference between TS and CS momentum strategies is only 0.51% for the 60 \times 60 constellation

Contents

- 1 Motivation
- 2 Literature Overview
- 3 Data and Methodology
- 4 Empirical Discussion
 - Basic Strategies
 - Time-varying Net-Long Positions
 - Volatility Scaling
 - Restrictions to the Empirical Analysis
- 5 Conclusion

Data and Methodology

- Daily adjusted prices of stocks listed on the Prime All Share Index for the period from the 31st December 1996 to the 30th April 2018
- Risk-free rate estimated by the three-months benchmark government bond yields
- Ranking and holding period of 1, 6 and 12 months
- CS, TS and buy-and-hold portfolios
 - Long stocks in the holding period that have a return above the threshold in the ranking period, short the other stocks

Long portfolios of studied strategies

Average return during ranking period Average CS over all stocks TS **Stocks**

Buy-and-hold

Contents

- 1 Motivation
- 2 Literature Overview
- 3 Data and Methodology
- 4 Empirical Discussion
 - Basic Strategies
 - Time-varying Net-Long Positions
 - Volatility Scaling
 - Restrictions to the Empirical Analysis
- 5 Conclusion

Accumulated Returns of CS and TS Portfolio

Figure: Accumulated returns of the CS and TS strategies with a ranking and holding period of 6 months

$$R_t^{strat} = rac{1}{\mathit{N}^+} \sum_{R_{it-1} \geq th_{strat}} R_{it} - rac{1}{\mathit{N}^-} \sum_{R_{it-1} < th_{strat}} R_{it},$$

Table: Descriptive statistics for 50/50 CS and TS strategies

const	1×1	6 × 6	12 × 12
Cs Mean	0.0021 (0.922)	0.0198 (3.844)	0.0266 (2.884)
α_{CAPM}	0.0016 (0.707)	0.0199 (3.871)	0.0258 (2.763)
TS Mean	-0.0023 (-1.626)	0.012 (3.109)	0.0181 (2.231)
α_{CAPM}	-0.0017 (-1.152)	0.012 (3.115)	0.017 (2.079)

Numbers in parentheses are the corresponding t-statistics

Time-Varying Net-Long Positions

$$R_t^{strat} = \frac{1}{N} (\sum_{R_{it-1} \geq th_{strat}} R_{it} - \sum_{R_{it-1} < th_{strat}} R_{it})$$

Table: Statistics for time-varying (TV) CS, TS and buy-and-hold strategies

const	1×1	6 × 6	12 × 12
Mean	-0.0014 (-0.485)	-0.0549 (-0.052)	0.0103 (1.065)
lphaCAPM	0.0042 (1.960)	-0.0018 (-0.377)	-0.0366 (-0.028)
€Long	0.1517	0.355	0.3919
Mean	0.1099 (0.287)	0.0038 (0.648)	0.0099 (1.042)
lphaCAPM	0.0022 (1.101)	0.0029 (0.556)	0.0033 (0.364)
€Long	0.5133	0.5213	0.51
Mean	0.0663 (0.062)	-0.04 (-0.09)	-0.0043 (-0.063)
lphaCAPM	-0.0041 (-1.71)	0.0195 (3.794)	0.0541 (8.108)
	$\begin{array}{c} \text{Mean} \\ \alpha_{\textit{CAPM}} \\ \in \text{Long} \\ \text{Mean} \\ \alpha_{\textit{CAPM}} \\ \in \text{Long} \\ \text{Mean} \end{array}$	$\begin{array}{c c} \text{Mean} & -0.0014 & (-0.485) \\ \alpha_{\textit{CAPM}} & 0.0042 & (1.960) \\ \hline \\ \hline \\ \text{Long} & 0.1517 \\ \hline \\ \text{Mean} & 0.1099 & (0.287) \\ \alpha_{\textit{CAPM}} & 0.0022 & (1.101) \\ \hline \\ \hline \\ \\ \text{Long} & 0.5133 \\ \hline \\ \\ \text{Mean} & 0.0663 & (0.062) \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Adjustment of Time-Varying Net-Long Positions

Adjusted Time-Varying Net-Long Positions

Table: Statistics for time-varying CS with a long position equal in size to the long position of TV TS $\,$

const	1×1	6 × 6	12 × 12
Mean	0.0023 (0.997)	0.0107 (1.754)	0.016 (1.640)
α CAPM	0.0037 (1.590)	0.0099 (1.763)	0.0096 (1.025)

 Positive changes in returns may be due to (1) higher returns in long positions than short positions or (2) market timing ability of the TS strategy

Table: Regression coefficients measuring market timing ability

const	1×1	6 × 6	12 × 12
β_{const}	0.0133 (1.952)	-0.0071 (-0.430)	-0.0188 (-0.830)

Adjustment of Time-Varying Net-Long Positions according to Goyal and Jegadeesh (2017)

Adjusted returns according to Goyal and Jegadeesh (2017)

$$R_t^{CS_{TVM}} = R_t^{50/50 \ CS} + NetLong_t^{TS} \cdot \bar{R}_t$$
 $R_t^{TS_{TVM}} = R_t^{50/50 \ TS} + NetLong_t^{TS} \cdot \bar{R}_t$

Table: Statistics for 50/50 CS and TS strategies with time-varying investment into the market

const		6 × 6	12 × 12
— Mean	0.0050 (1.742)	0.0178 (2.630)	0.0224 (1.695)
$lpha_{\it CAPM}$	0.0050 (1.742) 0.0057 (1.987)	0.0172 (2.626)	0.0154 (1.191)
Te TVM Mean	0.0916 (0.293) 0.1099 (0.364)		0.0192 (2.670)
α_{CAPM}	0.1099 (0.364)	0.0103 (2.631)	0.0227 (3.214)

Standardized adjusted returns according to Goyal and Jegadeesh (2017)

$$R_t^{CS_{TVM}} = R_t^{50/50 \ CS} + NetLong_t^{TS} \cdot \bar{R}_t \quad (1)$$

$$R_t^{CS_{TVM}} = (1 - NetLong_t^{TS}) \cdot R_t^{50/50 \ CS} + NetLong_t^{TS} \cdot \bar{R}_t \quad (2)$$

Table: Statistics for (1) original and (2) standardized 50/50 CS strategies with time-varying investment into the market

const		6 × 6	12×12
(1) Mean	0.0050 (1.742)	0.0178 (2.630)	0.0224 (1.695)
α_{CAPM}	0.0050 (1.742) 0.0057 (1.987)	0.0172 (2.626)	0.0154 (1.191)
(2) Mean	0.0067 (1.688)	0.0225 (2.381) 0.0221 (2.352)	0.0185 (0.966)
α_{CAPM}	0.0074 (1.847)	0.0221 (2.352)	0.0104 (0.548)

Volatility Scaling

$$R_t^{scaled\ TS} = rac{1}{N} \cdot (\sum_{R_{it-1} \geq 0} R_{it} \cdot rac{40\%}{\sigma_{it-1}} - \sum_{R_{it-1} < 0} R_{it} \cdot rac{40\%}{\sigma_{it-1}})$$
 with $\sigma_{it-1}^2 = 261 \sum_{s=0}^{\infty} (1 - \delta) \cdot \delta^s (R_{it-1-s} - \bar{R}_{it-1})^2$

Table: Alphas for (levered) volatility scaled strategies

Strat	1 × 1	6 × 6	12×12
50/50 CS	-0.0078 (-2.321)	0.0268 (3.520)	0.0662 (7.655)
TV CS ^{TS}	0.2235 (1.670)	0.8325 (2.691)	1.3418 (2.960)
CS^{TVM}	0.0160 (1.561)	0.0606 (5.284)	0.0952 (8.662)
50/50 TS	-0.0030 (-1.768)	0.0154 (3.676)	0.0322 (3.914)
TV TS	0.0033 (1.280)	0.0088 (1.28)	0.0251 (2.227)
BAH	-0.0041 (-1.710)	0.0195 (3.794)	0.0541 (8.108)

Turnover

Sum of absolute changes in portfolio weights

Table: Average monthly turnover of portfolio strategies

const	1×1	6×6	12×12
50/50 CS	1.0338	0.6118	0.4452
scaled 50/50 CS	1.1604	1.1157	0.8714
CS ^{TVM}	1.2991	0.7278	0.5256
scaled CS ^{TVM}	1.5604	1.3075	1.016
time-varying TS	0.9922	0.3549	0.2449
scaled time-varying TS	1.6818	0.8226	0.668
scaled BAH	0.3374	0.3365	0.3311

Scaled strategies refer to the levered scaled strategy as introduced by Moskowitz et al. (2012)

- Parameters for ranking and holding periods differ from the commonly used parameters
- Variation in the sample size
- Sample is not representative for the market
- Time periods differ from the commonly used times frames
- Low cross-sectional variation of volatility

Contents

- 1 Motivation
- 2 Literature Overview
- 3 Data and Methodology
- 4 Empirical Discussion
 - Basic Strategies
 - Time-varying Net-Long Positions
 - Volatility Scaling
 - Restrictions to the Empirical Analysis
- 5 Conclusion

Conclusion

- First comparison confirms superiority of the TS strategy
- With equally-sized long and short sides, CS beats TS strategy
- Volatility scaling increases returns for all strategies
- Turnover increases with volatility scaling
- Buy-and-hold strategy outperforms nearly every other strategy
- ⇒ Momentum does not challenge the random walk hypothesis in our sample

Result

We observe no significant differences between the strategies' returns, when adjusted.

References I

Motivation

- Clifford S Asness, Andrea Frazzini, and Lasse H Pedersen. Leverage aversion and risk parity. Financial Analysts Journal, 68 (1):47-59, 2012.
- Pedro Barroso and Pedro Santa-Clara. Momentum has its moments. Journal of Financial Economics, 116(1):111–120, 2015.
- Michael J Cooper, Roberto C Gutierrez, and Allaudeen Hameed. Market states and momentum. The Journal of Finance, 59(3): 1345–1365, 2004.
- Kent Daniel and Tobias J Moskowitz. Momentum crashes. Journal of Financial Economics, 2016.
- Amit Goyal and Narasimhan Jegadeesh. Cross-sectional and time-series tests of return predictability: What is the difference? The Review of Financial Studies, page hhx131, 2017.

References II

- Narasimhan Jegadeesh and Sheridan Titman. Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of Finance, 48(1):65–91, 1993.
- Abby Y Kim, Yiuman Tse, and John K Wald. Time series momentum and volatility scaling. Journal of Financial Markets, 30:103-124, 2016.
- Robert A Korajczyk and Ronnie Sadka. Are momentum profits robust to trading costs? The Journal of Finance, 59(3): 1039-1082, 2004.
- Lukas Menkhoff, Lucio Sarno, Maik Schmeling, and Andreas Schrimpf. Currency momentum strategies. Journal of Financial Economics, 106(3):660-684, 2012.
- Tobias J Moskowitz, Yao Hua Ooi, and Lasse Heje Pedersen. Time series momentum. Journal of Financial Economics, 104(2): 228-250, 2012.

We thank you for your attention!