# **Week 2 Tutorial Notes**

#### ▼ Agenda

- Q1 ... ice-breaker
- Q7 ... relatively straightforward ER data modelling exercise
- Q9 ... different relationships in ER
- Q15 ... a substantial ER data modelling exercise (if you have time)
- Q16 .. to ensure they understand these core relational concepts

### Pre-tute

- Introductions
- Discourse!!
- Quiz due Friday 11:59pm

### **Course Outline**

#### Content

- Topic Videos
- Lectures
- Textbooks (OPTIONAL)

### Activities

- Tutorials
- Prac exercises
- Quizzes
- Assignments
- Exam

### **▼** Mark Distribution

| Item         | Topics      | Due                | Marks | Contributes to  |
|--------------|-------------|--------------------|-------|-----------------|
| Quizzes      | All topics  | Weeks 2,3,4,7,8,10 | 12%   | 1,2,3,4,5,6,7,8 |
| Assignment 1 | SQL/PLpgSQL | Week 5             | 13%   | 3,4             |
| Assignment 2 | Python/SQL  | Week 9             | 15%   | 5               |
| Final Exam   | All topics  | Exam period        | 60%   | 1,2,3,4,5,6,7,8 |

### Contact

- Administrative
  - o cs3311@cse.unsw.edu.au
- Technical / Coursework
  - Discourse!!
  - o z5419507@ad.unsw.edu.au

# Setup

- 1. Access the vxdb02 server
  - from Vlab:

\$ ssh vxdb02

• from Home:

 $\$ ssh \ Your User Name @vxdb 02.cse.unsw.edu.au$ 

2. (If first time running)

\$ 3311 pginit

3. Tell vxdb02 the source of the psql server and start the server

```
$ source /localstorage/$USER/env
$ p1
```

4. Work with a specific database

```
$ psql SomeDatabase
```

5. Stop PSQL server

\$ p0

After this, look into 'help' command

## **Data Modelling**

Aims to:

- describe what information is contained in the database
- describe relationships between data items
- describes constraints on data

Exercise: Let's try brainstorming some of these scenarios. Some examples are:

- Instagram
- Gmail
- UNSW Handbook

# **Entity-Relationship (ER) Data Modelling**

ER has three major modelling constructs:

▼ attribute data item describing a property of interest

▼ entity

### collection of attributes describing object of interest

### ▼ relationship

association between entities (objects)

Example: Bank Account



### ▼ ER design elements



# **ER Relationships**



Thick line = total participation; thin line = partial participation

## **ER Class Hierarchies**



**Example: Medical Information** 



### **Relational Data Model**

A collection of inter-connected **relations** (that look awfully close to tables)

#### Each

relation (denoted R,S,T,...) has:

- a <u>name</u> (unique within a given database)
- a set of attributes (which can be viewed as column headings)

Each **attribute** (denoted A,B,... or  $a_1, a_2,...$ ) has:

- a <u>name</u> (unique within a given relation)
- an associated <u>domain</u> (set of allowed values)

Relation schema of R: R( $a_1:D_1,a_2:D_2,\;\ldots,a_n:D_n$ )

**Tuple** of R: an element of  $D_1 imes D_2 imes ... imes D_n$  (i.e. list of values)

**Instance** of R: subset of  $D_1 imes D_2 imes ... imes D_n$  (i.e. set of tuples)

**Example: Bank Account** 

A relation: **Account(branchName, <u>accountNo</u>, balance)**. An *instance* of this relation:

```
(Sydney, A-101, 500),
(Coogee, A-215, 700),
(Parramatta, A-102, 400),
(Rouse Hill, A-305, 350),
(Brighton, A-201, 900),
(Kingsford, A-222, 700)
(Brighton, A-217, 750)
```

### **ER** → Relational



**▼** Relational. Identify the Primary and Foreign Keys



### **SQL DDL**

SQL data definition language (DDL) is the formal way of describing the above relational schemas. The primary SQL DDL construct is table creation

```
create table TableName (
   attr1Name type [constraints],
   attr2Name type [constraints],
   attr3Name type [constraints],
   ...
   primary key (attrxName),
   foreign key (attryName)
      references OtherTable (attrzName)
);
```