```
1 import numpy as np
```

- 2 import pandas as pd
- 3 import matplotlib.pyplot as plt
- 4 %matplotlib inline
- 5 import seaborn as sns
- 6 import math

1 df = pd.read_csv("/content/Churn_Modelling.csv")

1 df.head()

₽		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balan
	0	1	15634602	Hargrave	619	France	Female	42	2	0.0
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.
	2	3	15619304	Onio	502	France	Female	42	8	159660.
	3	4	15701354	Boni	699	France	Female	39	1	0.0
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.
	◀ 📗									>

1 df.drop(["RowNumber","CustomerId","Surname"],axis=1,inplace=True)

```
1 df.info()
2
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	CreditScore	10000 non-null	int64
1	Geography	10000 non-null	object
2	Gender	10000 non-null	object
3	Age	10000 non-null	int64
4	Tenure	10000 non-null	int64
5	Balance	10000 non-null	float64
6	NumOfProducts	10000 non-null	int64
7	HasCrCard	10000 non-null	int64
8	IsActiveMember	10000 non-null	int64
9	EstimatedSalary	10000 non-null	float64
10	Exited	10000 non-null	int64

dtypes: float64(2), int64(7), object(2)

memory usage: 859.5+ KB

```
1 #Perform Univariate Analysis
```

2 plt.figure(figsize=(8,8))

```
3 sns.countplot(x='Tenure',data=df)
4 plt.xlabel('0:Customers with Bank, 1: exited from bank')
5 plt.ylabel('No.of.Customers')
6 plt.title("Bank Customers viz")
7 plt.show()
```



```
1 #Perform Univariate Analysis
2 plt.figure(figsize=(8,8))
3 sns.kdeplot(x=df['Balance'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f3d77d59550>

- 1 #Perform Bivariate Analysis
- 2 plt.scatter(df.Age,df.Balance)

<matplotlib.collections.PathCollection at 0x7f3d77c43b10>

- 1 #Perform Bivariate Analysis
- 2 df.corr()

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	I!
CreditScore	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	
Age	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	

```
1 #Perform Bivariate Analysis
2 import statsmodels.api as sm
3
4 #define response variable
5 y = df['CreditScore']
6
7 #define explanatory variable
8 x = df[['EstimatedSalary']]
9
10 #add constant to predictor variables
11 x = sm.add_constant(x)
12
13 #fit linear regression model
14 model = sm.OLS(y, x).fit()
15
16 #view model summary
17 print(model.summary())
```

OLS Regression Results

Dep. Variable: CreditScore			R-squared:		0.000		
Model: OLS			Adj. R-squa	red:	-0.000		
Method:	Leas	st Squares	F-statistic	•	0.01916		
Date:	Wed, 28	Sep 2022	Prob (F-sta	tistic):		0.890	
Time:		10:09:48	Log-Likelih	ood:	-5	9900.	
No. Observations:		10000	AIC:		1.19	8e+05	
Df Residuals:		9998	BIC:		1.19	8e+05	
Df Model:		1					
Covariance Type:		nonrobust					
=======================================				=======		========	
	coef	std err	t	P> t	[0.025	0.975]	
const	650.7617	1.940	335.407	0.000	646.958	654.565	
EstimatedSalary -2			-0.138	0.890	-3.53e-05		
	=======	122 020		=======		===== 2 014	
Omnibus:		132.939	Durbin-Wats			2.014	
Prob(Omnibus):		0.000	Jarque-Bera	(30):		4.242	
Skew:		-0.072	Prob(JB):			0e-19	
Kurtosis:		2.574	Cond. No.		2.3	2e+05	
============		:=======		========		=====	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specifi
- [2] The condition number is large, 2.32e+05. This might indicate that there are strong multicollinearity or other numerical problems.

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:142: FutureWarning:]
 x = pd.concat(x[::order], 1)

- 1 #Perform Multivariate Analysis
- 2 plt.figure(figsize=(4,4))
- 3 sns.pairplot(data=df[["Balance","CreditScore","EstimatedSalary","NumOfProducts","Tenure","

```
<seaborn.axisgrid.PairGrid at 0x7f3d79a25210>
          <Figure size 288x288 with 0 Axes>
               250000 -
1 #Perform Descriptive Statistics
2 df=pd.DataFrame(df)
3 print(df.sum())
         CreditScore
                                                                                                                                                                     6505288
         Geography
                                                          FranceSpainFranceFranceSpainSpainFranceGermany...
                                                          FemaleFemaleFemaleFemaleMaleMaleFemaleMa...
         Gender
         Age
         Tenure
                                                                                                                                                                          50128
         Balance
                                                                                                                                                        764858892.88
         NumOfProducts
                                                                                                                                                                          15302
         HasCrCard
                                                                                                                                                                            7055
         IsActiveMember
                                                                                                                                                                            5151
         EstimatedSalary
                                                                                                                                                      1000902398.81
         Exited
                                                                                                                                                                            2037
         dtype: object
           五 20000 - 1 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 2 2000 - 
1 #Perform Descriptive Statistics
2 print("----Sum Value----")
3 print(df.sum(1))
4 print("----")
5 print("----Product Value----")
6 print(df.prod())
7 print("-----")
          ----Sum Value----
                              102015.88
         1
                              197002.44
          2
                              274149.37
         3
                               94567.63
                              205492.92
                                  . . .
         9995
                               97088.64
         9996
                             159633.38
         9997
                              42840.58
         9998
                              168784.83
         9999
                              169159.57
         Length: 10000, dtype: float64
          _____
          ----Product Value----
         CreditScore
                                                          0.0
                                                          0.0
         Age
         Tenure
                                                          0.0
         Balance
                                                          0.0
         NumOfProducts
                                                          0.0
         HasCrCard
                                                          0.0
         IsActiveMember
                                                          0.0
         EstimatedSalary
                                                          inf
         Exited
                                                          0.0
         dtype: float64
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: FutureWarning: Dropping This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.7/dist-packages/numpy/core/_methods.py:52: RuntimeWarning: overfl return umr_prod(a, axis, dtype, out, keepdims, initial, where) /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: FutureWarning: Dropping

2 df.isnull()#Checking values are null

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False
9995	False	False	False	False	False	False	False	False
9996	False	False	False	False	False	False	False	False
9997	False	False	False	False	False	False	False	False
9998	False	False	False	False	False	False	False	False
9999	False	False	False	False	False	False	False	False
10000 r	rows × 11 colum	ns						
4								>

^{1 #}Handling with missing Values

^{1 #}Handling with missing Values

² df.notnull()#Checking values are not null

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard]
0	True	True	True	True	True	True	True	True	
1	True	True	True	True	True	True	True	True	
2	True	True	True	True	True	True	True	True	
3	True	True	True	True	True	True	True	True	

- 1 #Find outliers & replace the outliers
- 2 sns.boxplot(df['Balance'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f3d69c562d0>

- 1 #Find outliers & replace the outliers
- 2 print(np.where(df['Balance']>100000))

```
(array([ 2, 4, 5, ..., 9987, 9993, 9999]),)
```

- 1 #Find outliers & replace the outliers
- 2 from scipy import stats
- 3 import numpy as np

4

- 5 z = np.abs(stats.zscore(df["EstimatedSalary"]))
- 6 print(z)
 - 0 0.021886
 - 1 0.216534
 - 2 0.240687
 - 3 0.108918
 - 4 0.365276
 - • •
 - 9995 0.066419
 - 9996 0.027988

9997 1.008643 9998 0.125231 9999 1.076370

Name: EstimatedSalary, Length: 10000, dtype: float64

- 1 #Check for categorical columns & performs encoding
- 2 from sklearn.preprocessing import LabelEncoder
- 3 df['Gender'].unique()

array(['Female', 'Male'], dtype=object)

1 #Check for categorical columns & performs encoding

2 df['Gender'].value_counts()

Male 5457 Female 4543

Name: Gender, dtype: int64

- 1 #Check for categorical columns & performs encoding
- 2 encoding=LabelEncoder()
- 3 df["Gender"]=encoding.fit_transform(df.iloc[:,1].values)
- 4 df

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	619	France	0	42	2	0.00	1	1
1	608	Spain	2	41	1	83807.86	1	0
2	502	France	0	42	8	159660.80	3	1
3	699	France	0	39	1	0.00	2	0
4	850	Spain	2	43	2	125510.82	1	1
9995	771	France	0	39	5	0.00	2	1
9996	516	France	0	35	10	57369.61	1	1
9997	709	France	0	36	7	0.00	1	0
9998	772	Germany	1	42	3	75075.31	2	1
9999	792	France	0	28	4	130142.79	1	1
10000	rows x 11 colum	ne						

10000 rows × 11 columns

1 #Split the data into Dependent & Independent Variables

```
2 print("-----")
3 X=df.iloc[:,1:4]
4 print(X)
5 print("-----")
6 print("-----Independent Variables-----")
7 Y=df.iloc[:,4]
8 print(Y)
9 print("----")
   -----Dependent Variables-----
      Geography Gender Age
  0
        France
                     42
  1
         Spain
                   2 41
  2
         France
                   0 42
   3
        France
                  0 39
  4
                  2 43
         Spain
           . . .
                0 39
  9995 France
  9996 France
                   0 35
  9997
        France
                  0 36
  9998 Germany
                   1 42
  9999
         France
                   0 28
   [10000 rows x 3 columns]
   -----
   -----Independent Variables-----
  0
          2
  1
          1
   2
          8
   3
          1
   4
         2
  9995
         5
  9996
         10
  9997
         7
  9998
  9999
  Name: Tenure, Length: 10000, dtype: int64
1 #Split the data into training & testing
2 from sklearn.model selection import train test split
1 #Split the data into training & testing
2 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=4,random_state=4)
3 x_train
```

	const	EstimatedSalary
2558	1.0	137903.54
7642	1.0	121765.00
8912	1.0	109470.34
3319	1.0	2923.61
6852	1.0	7312.25
•••		
456	1.0	7666.73
6017	1.0	9085.00
709	1 0	147794 63

1 #Split the data into training & testing

² x_test

	const	EstimatedSalary
1603	1.0	23305.85
8713	1.0	41248.80
4561	1.0	143317.42
6600	1.0	174123.16

1 #Split the data into training & testing

```
2558
        727
7642
        811
8912
        623
3319
        430
6852
        600
       . . .
456
       733
6017
        487
709
        686
8366
        637
1146
```

Name: CreditScore, Length: 9996, dtype: int64

² y_train

^{1 #}Split the data into training & testing

² x_test

	const	EstimatedSalary
1603	1.0	23305.85
8713	1.0	41248.80
4504	4.0	44004740

1 #Split the data into training & testing

2 y_test

1603 5768713 7864561 5626600 505

Name: CreditScore, dtype: int64

Colab paid products - Cancel contracts here

• ×