Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/JP05/000291

International filing date:

13 January 2005 (13.01.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number: 2004-350753

Filing date: 03 December 2004 (03.12.2004)

Date of receipt at the International Bureau: 17 March 2005 (17.03.2005)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 28.1.2005 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年12月 3日

出 願 番 号 Application Number: 特願2004-350753

[ST. 10/C]:

[JP2004-350753]

出 願 人 Applicant(s):

本田技研工業株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 3月 4日

1) 11

特許願 【書類名】 H104005102 【整理番号】 平成16年12月 3日 【提出日】 特許庁長官殿 【あて先】 F01L 13/00 【国際特許分類】 【発明者】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内 【住所又は居所】 【氏名】 藤井 徳明 【発明者】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内 【住所又は居所】 中村 勝則 【氏名】 【発明者】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内 【住所又は居所】 米川 明之 【氏名】 【特許出願人】 000005326 【識別番号】 本田技研工業株式会社 【氏名又は名称】 【代理人】 100071870 【識別番号】 【弁理士】 【氏名又は名称】 落合 健 【選任した代理人】 【識別番号】 100097618 【弁理士】 仁木 一明 【氏名又は名称】 【先の出願に基づく優先権主張】 特願2004- 9394 【出願番号】 平成16年 1月16日 【出願日】 【手数料の表示】 003001 【予納台帳番号】 16,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 【物件名】 明細書 1 図面 1 【物件名】

要約書 1

9713028

【物件名】

【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

動弁カム (69) に当接するカム当接部 (65) を有するとともに弁ばね (24) で閉弁方向に付勢される機関弁 (19) に開弁方向の力を付与するようにして連動、連結されるロッカアーム (63) と、該ロッカアーム (63) に一端部が回動可能に連結されるとともに他端部がエンジン本体 (10) の固定位置に回動可能に支承される第1リンクアーム (61) と、前記ロッカアーム (63) に一端部が回動可能に連結されるとともに他端部が変位可能な可動軸 (68a) で回動可能に支承される第2リンクアーム (62) と、機関弁 (19) のリフト量を連続的に変化させるべく前記可動軸 (68a) の位置を変位させることを可能として可動軸 (68a) に連結される駆動手段 (72) と、前記弁ばね (24) とは別にして前記カム当接部 (65) を前記動弁カム (69) に当接させる方向に前記ロッカアーム (63) を付勢するロッカアーム付勢ばね (54) とを備えることを特徴とするエンジンの動弁装置。

【請求項2】

前記カム当接部であるローラ(65)が第1リンクアーム(61)の一端部をロッカアーム(63)に連結する連結軸(64)を介して前記ロッカアーム(63)に軸支され、前記動弁カム(69)が設けられたカムシャフト(31)を回転可能に支承して前記エンジン本体(10)に設けられるカムホルダ(46)には、前記可動軸(68a)の軸線に直交する平面への投影図上で第2リンクアーム(62)の可動範囲外に位置する係止ピン(55)が植設され、前記ロッカアーム付勢ばね(54)の一端が前記連結軸(64)に係合され、前記ロッカアーム付勢ばね(54)の他端が前記係止ピン(55)に係合されることを特徴とする請求項1記載のエンジンの動弁装置。

【請求項3】

前記ロッカアーム付勢ばね(54)が、前記第1および第2リンクアーム(61,62)の他端部を回動可能に支承する固定支軸(67)および前記可動軸(68a)の一方を囲繞するコイル状のねじりばねであることを特徴とする請求項1または2記載のエンジンの動弁装置。

【請求項4】

第2リンクアーム(62)の両側に配置される一対のクランクウエブ(68b)と、両クランクウエブ(68b)間を直角に連結する前記可動軸(68a)と、該可動軸(68a)からオフセットした位置で前記クランクウエブ(68b)に直角に連結されるとともにエンジン本体(10)で回動可能に支承される支軸(68c)とを有してクランク状に構成されるコントロール軸(68)に前記駆動手段(72)が連結され、前記第1リンクアーム(61)の他端部の両側で前記固定支軸(67)をそれぞれ囲繞する一対の前記ロッカアーム付勢ばね(54)よりも内方に、一対の前記クランクウエブ(68b)が配置されることを特徴とする請求項3記載のエンジンの動弁装置。

【請求項5】

前記固定支軸 (67) を支持する一対の支持ボス (53) が、第1リンクアーム (61) の他端部を両側から挟むようにしてエンジン本体 (10) に設けられ、前記ロッカアーム付勢ばね (54) が、前記両支持ボス (53) を囲繞してエンジン本体 (10) およびロッカアーム (63) 間に設けられることを特徴とする請求項3または4記載のエンジンの動弁装置。

【請求項6】

前記第1リンクアーム(61)の他端部には、側面視では前記ロッカアーム付勢ばね(54)の外周よりも内方に外周が配置されるようにした円筒状の固定支持部(61 b)が前記固定支軸(67)で回動可能に支承されるようにして設けられ、前記固定支持部(61 b)の軸方向両端部には、前記ロッカアーム付勢ばね(54)が固定支持部(61 b)側に倒れるのを阻止する複数の突部(56,57)が、周方向に間隔をあけてそれぞれ突設されることを特徴とする請求項5記載のエンジンの動弁装置。

【請求項7】

前記突部(56,57)が、第2リンクアーム(61)の作動範囲を避けて配置されることを特徴とする請求項6記載のエンジンの動弁装置。

【曹類名】明細書

【発明の名称】エンジンの動弁装置

【技術分野】

[0001]

本発明は、吸気弁もしくは排気弁である機関弁のリフト量を連続的に変化させるリフト可変機構を備えたエンジンの動弁装置に関する。

【背景技術】

[0002]

機関弁のリフト量を無段階に変化させるために、機関弁に当接する弁当接部を一端側に有するロッカアームの他端部に、プッシュロッドの一端が嵌合され、プッシュロッドの他端および動弁カム間にリンク機構が設けられた動弁装置が、特許文献1で既に知られている。

【特許文献1】特開平8-74534号公報

【発明の開示】

【発明が解決しようとする課題】

[0003]

ところが、上記特許文献1で開示されたエンジンの動弁装置では、リンク機構およびプッシュロッドを配置するための比較的大きなスペースを動弁カムおよびロッカアーム間に確保する必要があり、動弁装置が大型化する。しかも動弁カムからの駆動力がリンク機構およびプッシュロッドを介してロッカアームに伝達されるので、動弁カムに対するロッカアームの追従性すなわち機関弁の開閉作動追従性が優れているとは言い難い。

[0004]

そこで本出願人は、ロッカアームに第1および第2リンクアームの一端部が回動可能に連結され、第1リンクアームの他端部がエンジン本体に回動可能に支承され、第2リンクアームの他端部を、駆動手段によって変位させるようにしたエンジンの動弁装置を、特願2002-196872で既に提案しており、この動弁装置によれば、動弁装置のコンパクト化が可能となるとともに、動弁カムからの動力をロッカアームに直接伝達するようにして動弁カムに対する優れた追従性を確保することが可能である。

[0005]

ところで、上記提案の動弁装置において、閉弁方向にばね付勢されている機関弁をロッカアームで開弁方向に駆動しているとときにはロッカアームのカム当接部は、弁ばねの働きによって動弁カムに当接しているのであるが、機関弁の閉弁状態では、弁ばねのばね力はロッカアームに作動することはなく、ロッカアームのカム当接部が動弁カムから離れてしまい、機関弁の微小開弁時における弁リフト量の制御精度が低下してしまう可能性がある。

[0006]

本発明は、かかる事情に鑑みてなされたものであり、機関弁のリフト量を連続的に変化させるようにした上で、関開閉作動の追従性を確保しつつコンパクト化を図り、しかも機関弁の微小開弁時におけるリフト量制御精度の向上を図り得るようにしたエンジンの動弁装置を提供することを目的とする。

【課題を解決するための手段】

[0007]

上記目的を達成するために、請求項1記載の発明は、動弁カムに当接するカム当接部を有するとともに弁ばねで閉弁方向に付勢される機関弁に開弁方向の力を付与するようにして連動、連結されるロッカアームと、該ロッカアームに一端部が回動可能に連結されるとともに他端部がエンジン本体の固定位置に回動可能に支承される第1リンクアームと、前記ロッカアームに一端部が回動可能に連結されるとともに他端部が変位可能な可動軸で回動可能に支承される第2リンクアームと、機関弁のリフト量を連続的に変化させるべく前記可動軸の位置を変位させることを可能として可動軸に連結される駆動手段と、前記弁ばねとは別にして前記カム当接部を前記動弁カムに当接させる方向に前記ロッカアームを付

[0008]

また請求項2記載の発明は、請求項1記載の発明の構成に加えて、前記カム当接部であるローラが第1リンクアームの一端部をロッカアームに連結する連結軸を介して前記ロッカアームに軸支され、前記動弁カムが設けられたカムシャフトを回転可能に支承して前記エンジン本体に設けられるカムホルダには、前記可動軸の軸線に直交する平面への投影図上で第2リンクアームの可動範囲外に位置する係止ピンが植設され、前記ロッカアーム付勢ばねの一端が前記連結軸に係合され、前記ロッカアーム付勢ばねの他端が前記係止ピンに係合されることを特徴とする。

[0009]

請求項3記載の発明は、請求項1または2記載の発明の構成に加えて、前記ロッカアーム付勢ばねが、前記第1および第2リンクアームの他端部を回動可能に支承する固定支軸および前記可動軸の一方を囲繞するコイル状のねじりばねであることを特徴とする。

[0010]

請求項4記載の発明は、請求項3記載の発明の構成に加えて、第2リンクアームの両側に配置される一対のクランクウエブと、両クランクウエブ間を直角に連結する前記可動軸と、該可動軸からオフセットした位置で前記クランクウエブに直角に連結されるとともにエンジン本体で回動可能に支承される支軸とを有してクランク状に構成されるコントロール軸に前記駆動手段が連結され、前記第1リンクアームの他端部の両側で前記固定支軸をそれぞれ囲繞する一対の前記ロッカアーム付勢ばねよりも内方に、一対の前記クランクウエブが配置されることを特徴とする。

[0011]

請求項5記載の発明は、請求項3または4記載の発明の構成に加えて、前記固定支軸を 支持する一対の支持ボスが、第1リンクアームの他端部を両側から挟むようにしてエンジ ン本体に設けられ、前記ロッカアーム付勢ばねが、前記両支持ボスを囲繞してエンジン本 体およびロッカアーム間に設けられることを特徴とする。

[0012]

請求項6記載の発明は、請求項5記載の発明の構成に加えて、前記第1リンクアームの他端部には、側面視では前記ロッカアーム付勢ばねの外周よりも内方に外周が配置されるようにした円筒状の固定支持部が前記固定支軸で回動可能に支承されるようにして設けられ、前記固定支持部の軸方向両端部には、前記ロッカアーム付勢ばねが固定支持部側に倒れるのを阻止する複数の突部が、周方向に間隔をあけてそれぞれ突設されることを特徴とする。

[0013]

さらに請求項7記載の発明は、請求項6記載の発明の構成に加えて、前記突部が、第2 リンクアームの作動範囲を避けて配置されることを特徴とする。

【発明の効果】

[0014]

請求項1記載の本発明によれば、可動軸を無段階に変位させることで機関弁のリフト量を無段階に変化させることが可能であり、また第1および第2リンクアームの一端部がロッカアームに回動可能として直接連結されており、両リンクアームを配置するスペースを少なくして動弁装置のコンパクト化を図ることができ、動弁カムからの動力がロッカアームのカム当接部に直接伝達されるので動弁カムに対する優れた追従性を確保することができる。しかもロッカアームは、弁ばねとは別のロッカアーム付勢ばねによりカム当接部を動弁カムに当接させる方向に付勢されているので、機関弁の閉弁状態でもロッカアームのカム当接部が動弁カムから離れることはなく、機関弁の微小開弁時における弁リフト量の制御精度を高くすることができる。

[0015]

請求項2記載の発明によれば、第2リンクアームとの干渉を確実に回避してロッカアーム付勢ばねを配置することができる。

[0016]

請求項3記載の発明によれば、第1および第2リンクアームの他端部を回動可能に支承する固定支軸および可動軸の一方を囲繞するようにしてコイル状のねじりばねであるロッカアーム付勢ばねを配置することで、ロッカアーム付勢ばねの設置スペースを小さくし、動弁装置のコンパクト化を図ることができる。

[0017]

請求項4記載の発明によれば、駆動手段により支軸の軸線まわりに回動駆動されるクランク状のコントロール軸の一部を可動支軸で構成することにより、可動軸を容易に変位させることができ、駆動手段で可動軸を変位させる機構の単純化を図ることができるとともに、固定支軸側にコントロール軸を極力近接させて配置することが可能となるので動弁装置のコンパクト化を図ることができる。

[0018]

請求項5記載の発明によれば、一対の支持ボスで第1リンクアームの他端部の移動を規制しつつ、ロッカアーム付勢ばねの収縮による影響がロッカシャフトに及ぶことを回避するようにして、ロッカアーム付勢ばねのコンパクト配置が可能となる。

[0019]

請求項6記載の発明によれば、ロッカアーム付勢ばねが固定支持部側に倒れることを回避する突部により、固定支持部の大型化を回避しつつ固定支持部の支持剛性を高めることができる。

[0020]

さらに請求項7記載の発明によれば、突部が固定支持部に設けられるにもかかわらず、 第2リンクアームの作動範囲を充分に確保することができる。

【発明を実施するための最良の形態】

[0021]

以下、本発明の実施の形態を、添付の図面に示した本発明の一実施例に基づいて説明する。

[0022]

図1~図12は本発明の一実施例を示すものであり、図1はエンジンの部分縦断面図であって図2の1-1線断面図、図2は図1の2-2線断面図、図3は図2の3-3線矢視図、図4はリフト可変機構の側面図、図5はリフト可変機構の分解斜視図、図6は図4の6-6線断面図、図7は図4の7-7線断面図、図8は図3の8矢視図、図9はリフト可変機構の作用説明図、図10は機関弁のリフト曲線を示す図、図11は図3の要部拡大図、図12はコントロールアームの回転角とセンサアームの回転角との関係を示すグラフである。

[0023]

先ず図1において、直列多気筒であるエンジンEのエンジン本体10は、内部にシリンダボア11…が設けられたシリンダブロック12と、シリンダブロック12の頂面に結合されたシリンダヘッド14と、シリンダヘッド14の頂面に結合されるヘッドカバー16とを備え、各シリンダボア11…にはピストン13…が摺動自在に嵌合され、各ピストン13…の頂部を臨ませる燃焼室15…がシリンダブロック12およびシリンダヘッド14間に形成される。

[0024]

シリンダヘッド14には、各燃焼室15…に通じ得る吸気ポート17…および排気ポート18…が設けられており、各吸気ポート17…が一対の機関弁である吸気弁19…でそれぞれ開閉され、各排気ポート18が一対の排気弁20…でそれぞれ開閉される。吸気弁19のステム19aはシリンダヘッド14に設けられたガイド筒21に摺動自在に嵌合され、ステム19aの上端部に設けられるばねシート22ならびにシリンダヘッド14に当接されるばねシート23間に設けられる弁ばね24によって各吸気弁19…は閉弁方向に付勢される。また排気弁20のステム20aはシリンダヘッド14に設けられるガイド筒25に摺動自在に嵌合され、ステム20aの上端部に設けられるばねシート26ならびに

シリンダヘッド14に当接されるばねシート27間に設けられる弁ばね28によって各排気弁20…は閉弁方向に付勢される。

[0025]

図2を併せて参照して、シリンダヘッド14には、各気筒の両側に配置される支持壁44a…を有するホルダ44が一体に設けられており、各支持壁44a…には、吸気カムホルダ46…および排気カムホルダ48…を協働して構成するキャップ45…,47…が結合される。而して吸気カムホルダ46…には吸気カムシャフト31が回転自在に支承され、排気カムホルダ48…には排気カムシャフト32が回転自在に支承され、吸気弁19…は吸気カムシャフト31によってリフト可変機構33を介して駆動され、排気弁20…は排気カムシャフト32によってリフト・タイミング可変機構34を介して駆動される。

[0026]

排気弁20…を駆動するリフト・タイミング可変機構34は周知のものであり、ここではその概略を説明する。排気カムホルダ48…における支持壁44a…で支持された排気ロッカシャフト35には、一対の低速用ロッカアーム36,36の一端部と、単一の高速用ロッカアーム37の一端部とが枢支されており、低速用ロッカアーム36,36の中間部に軸支されたローラ38,38に排気カムシャフト32に設けられた2個の低速用カム39,39が当接し、高速用ロッカアーム37の中間部に軸支されたローラ40に排気カムシャフト32に設けられた高速用カム41が当接する。また低速用ロッカアーム36,36の他端には、排気弁20…のステム20a…の上端に当接するタペットねじ42…が進退位置を調節可能として螺合される。

[0027]

しかも両低速用ロッカアーム36,36および高速用ロッカアーム37は、油圧の制御によって連結および連結解除を切換可能であり、エンジンEの低速運転時に、低速用ロッカアーム36,36および高速用ロッカアーム37の連結を解除すると、低速用ロッカアーム36,36は対応する低速用カム39,39により駆動され、排気弁20…は低リフト・低開角で開閉される。またエンジンEの高速運転時に、低速用ロッカアーム36,36および高速用ロッカアーム37を連結すると、高速用ロッカアーム37は対応する高速用カム41により駆動され、高速用ロッカアーム37に結合された低速用ロッカアーム36,36により、排気弁20…は高リフト・高開角で開閉される。このように、リフト・タイミング可変機構34により、排気弁20…のリフトおよびタイミングが2段階に制御される。

[0028]

次に図3~図8を併せて参照しつつリフト可変機構33の構造を説明すると、該リフト可変機構33は、吸気カムシャフト31に設けられる動弁カム69に当接するカム当接部としてのローラ65を有するロッカアーム63と、該ロッカアーム63に一端部が回動可能に連結されるとともに他端部がエンジン本体10の固定位置に回動可能に支承される第1リンクアーム61と、前記ロッカアーム63に一端部が回動可能に連結されるとともに他端部が変位可能な可動軸68aで回動可能に支承される第2リンクアーム62とを備える。

[0029]

ロッカアーム63の一端部には、一対の吸気弁19…におけるステム19a…の上端に上方から当接するタペットねじ70,70が進退位置を調節可能として螺合される弁連結部63aが設けられる。またロッカアーム63の他端部は吸気弁19…とは反対側に開くようにして略U字状に形成されており、第1リンクアーム61の一端部を回動可能に連結するための第1支持部63bと、第2リンクアーム61の一端部を回動可能に連結する第2支持部63cが配置されるようにしてロッカアーム63の他端部に設けられる。しかも吸気カムシャフト31の動弁カム69に転がり接触するローラ65は略U字状である第1支持部63bに挟まれるように配置されるものであり、第1リンクアーム61の一端連結部と同軸にして第1支持部63bに軸支される。

[0030]

またロッカアーム 63 は、動弁カム 69 の回動軸線に沿う方向での前記弁連結部 63 a の幅を他の部分の幅よりも大きくして形成されるものであり、第1 および第2 支持部 63 b, 63 c の幅は同一に形成される。

[0031]

第1リンクアーム61は、ロッカアーム63を両側から挟む一対の第1連結部61a, 61aと、円筒状の固定支持部61bと、両第1連結部61a, 61aおよび固定支持部 61b間を結ぶ一対の腕部61c, 61cとを有して略U字状に形成される。

[0032]

第1リンクアーム61の一端部の第1連結部61a,61aは、ロッカアーム63の第1支持部63bに設けられた第1連結孔49に挿通、固定された円筒状の第1連結軸64を介して前記ロッカアーム63の他端部の第1支持部63bに回動可能に連結されており、前記ローラ65はニードルベアリング60および第1連結軸64を介して第1支持部63bに軸支される。また第1支持部63bのうち前記吸気カムシャフト31に対向する部分の外側面ならびに第1リンクアーム61における第1連結部61a,61の外側面は、側面視では重なるようにして第1連結軸64の軸線を中心とする円弧状に形成される。

[0033]

第1リンクアーム61の下方に配置される第2リンクアーム62は、その一端部に第1連結部62aを有するとともに他端部に可動支持部62bを有するものであり、第2連結部62aは、略U字状に形成されている第2支持部63bに挟まれるように配置される。第2支持部63cには、第1支持部63bの第1連結孔49とともに前記両吸気弁19…の開閉作動方向すなわち上下方向に並ぶ第2連結孔50が設けられており、第2連結部62aは、第2連結孔50に挿通、固定される第2連結軸66を介して第2支持部63cに回動可能に連結される。

[0034]

すなわち動弁カム69に当接する前記ローラ65を他端側上部に有するロッカアーム63の一端部が一対の吸気弁19…に連動、連結され、上方の第1リンクアーム61がその一端部に有する第1連結部61a,61aと、第1リンクアーム61の下方に配置される第2リンクアーム62がその一端部に有する第2連結部62aとが、ロッカアーム63の他端部に上下に並列して相対回動可能に連結されることになる。

[0035]

ところで前記ロッカアーム 63 には、略 U 字状である第 1 および第 2 支持部 63 b, 63 c 間を結ぶ一対の連結壁 63 d \cdots が一体に設けられる。しかも連結壁 63 d \cdots は、前記 両吸気弁 19 \cdots 側で第 1 および第 2 連結孔 49, 50 の外縁に接する接線上に対して前記 両吸気弁 19 \cdots とは反対側に少なくとも一部が配置されるようにして、第 1 および第 2 支持部 63 b, 63 c 間を連結するように形成される。

[0036]

また連結壁 6 3 d…には、第 2 リンクアーム 6 2 の他端部の可動支持部 6 2 bがロッカアーム 6 3 側に最も近づいた状態で可動軸 6 8 a に対向する位置に配置されるようにして凹部 5 1 …が形成される。さらに前記連結壁 6 3 d…には、たとえば外側面から内方側に凹むようにして、肉抜き部 5 2 …が形成される。

[0037]

第1リンクアーム61の他端部の固定支持部61bは、エンジン本体10に設けられる 吸気カムホルダ46…の下部を構成する支持壁44a…に固定的支持される固定支軸67 で回動可能に支承される。

[0038]

図6に特に注目して、前記支持壁44a…には、第1リンクアーム61の固定支持部61bを軸方向両側から挟むようにして一対の支持ボス53,53が一体に突設される。これらの支持ボス53…には、前記固定支持部61bの両端面に摺接し得る小径軸部53a…と、小径軸部53a…の基端部を囲むようにして固定支持部61bの両端面に間隔をあ

けて対向する段部53b…とが設けられ、固定支軸67は、小径軸部53a…を同軸に貫通するようにして支持ボス53…で固定的に支持される。

[0039]

ところで、両吸気弁19…は弁ばね24…で閉弁方向にばね付勢されるものであり、閉弁方向にばね付勢されている両吸気弁19…をロッカアーム63で開弁方向に駆動しているときにロッカアーム63のローラ65は、弁ばね24…の働きによって動弁カム69に当接しているのであるが、吸気弁19…の閉弁状態では、弁ばね24…のばね力はロッカアーム63に作用することはなく、ローラ65が動弁カム69から離れてしまい、吸気弁19…の微小開弁時における弁リフト量の制御精度が低下してしまう可能性がある。そこで、弁ばね24…とは別のロッカアーム付勢ばね54…により、前記ローラ65を動弁カム69に当接させる方向にロッカアーム63が付勢される。

[0040]

前記ロッカアーム付勢ばね 54 …は、第 1 および第 2 リンクアーム 61, 62 の他端部である固定支持部 61 b および可動支持部 62 b を回動可能に支承する固定支軸 67 および可動軸 68 a の一方を囲繞するコイル状のねじりばねであり、この実施例では、前記ロッカアーム付勢ばね 54 …が、吸気カムホルダ 46 の支持壁部 44 a に突設された前記支持ボス 53 …における小径軸部 53 a …を介して前記固定支軸 67 を囲繞するように配置され、エンジン本体 10 およびロッカアーム 63 間に設けられる。すなわち前記小径軸部 53 a …を囲繞するロッカアーム付勢ばね 54 …の一端は、吸気カムホルダ 46 における前記支持ボス 53 …の段部 53 b …に植設された係止ピン 55 …に係合され、ロッカアーム付勢ばね 54 …の他端は、ロッカアーム 63 と一体に作動する中空の第 1 連結軸 64 内に挿入、係合される。しかも前記係止ピン 55 …は、前記可動軸 68 a の軸線に直交する平面(図 40 の紙面に平行な平面)への投影図上で第 21 リンクアーム 62 の可動範囲外に位置するようにして前記支持ボス 53 …の段部 53 b …に植設される。

[0041]

・ところで、第1リンクアーム 61の他端部の固定支持部 61 bは、コイル状に巻かれている前記ロッカアーム付勢ばね 54…の外周よりも側面視では内方に外周が配置されるようにして円筒状に形成されるものであり、固定支持部 61 bの軸方向両端部には、ロッカアーム付勢ばね 54…が固定支持部 61 b側に倒れるのを阻止する複数たとえば一対の突部 56, 57が、周方向に間隔をあけてそれぞれ突設され、それらの突部 56, 57は、第2リンクアーム 62 の作動範囲を避けて配置される。

[0042]

エンジン本体10には、ロッカアーム63の他端部に第1および第2リンクアーム61, 62の一端部の第1連結部61a…および第2連結部62aを連結するようにして上下に並ぶ位置に配置される第1および第2連結軸64, 66のうち上方の連結軸に向けてオイルを供給するオイル供給手段としてのオイルジェット58…が固定配置されるものであり、この実施例では、第1および第2連結軸64, 66のうち上方の連結軸である第1連結軸64に向けてオイルを供給するオイルジェット58…が、エンジン本体10に設けられた吸気カムホルダ46…におけるキャップ45…に固定的に取付けられる。

[0043]

しかもロッカアーム63の他端側上部には、ローラ65を両側から挟むようにして略U字状に形成される第1支持部63bが設けられ、第1リンクアーム61の一端部の第1連結部61a…が、前記ローラ65を軸支する第1連結軸64を介して第1支持部63bに回動可能に連結されており、前記オイルジェット58…は、第1リンクアーム61の第1連結部61a…および第1支持部63bの合わせ面に向けてオイルを供給するようにして前記キャップ45…に配設される。

[0044]

図7を併せて参照して、第2リンクアーム62がその他端部に有する可動支持部62bを回動可能に支承する可動軸68aは、コントロール軸68に設けられる。このコントロール軸68は、第2リンクアーム62の両側に配置される一対のクランクウエブ68b,

68bと、両クランクウエブ68b, 68b間を直角に連結する前記可動軸68aと、該 可動軸68aからオフセットした位置で前記クランクウエブ68b…に直角に連結される とともにエンジン本体10で回動可能に支承される支軸68c…とを有してクランク状に 構成される。

[0045]

吸気側カムホルダ44…を協働して構成すべく相互に結合された前記支持壁44a…お よびキャップ45…には、吸気カムシャフト31を貫通せしめるカムシャフト用支持ボス 部45a…がロッカアーム63…に向けて突出するようにして形成される。

[0046]

前記コントロール軸68の両クランクウエブ68b,68bは、第1リンクアーム61 の他端部の両側で固定支軸67をそれぞれ囲繞する一対の前記ロッカアーム付勢54,5 4 ばねよりも内方に配置されており、気筒配列方向に沿う一端側の前記支軸 6 8 c は、図 5で示すように、エンジン本体10におけるヘッドカバー16に設けられる支持孔16 a に回転自在に支持される。

[0047]

而してロッカアーム63が図4に示す上昇位置にあるとき、すなわち吸気弁19…が閉 弁状態にあるときに、ロッカアーム63の下部を枢支する第2連結軸66の軸線C上にコ ントロール軸68の支軸68cが同軸に配置される(図5参照)ものであり、したがって コントロール軸68が支軸68cの軸線まわりに揺動すると、可動軸68aは支軸68c を中心とする円弧A (図4参照)上を移動することになる。

[0048]

前記コントロール軸68の支軸68cは、ヘッドカバー16の支持孔16aから突出す るものであり、この支軸68cの先端にコントロールアーム71が固定され、該コントロ ールアーム71がシリンダヘッド14の外壁に取付けられた駆動手段としてのアクチュエ ータモータ72によって駆動される。すなわちアクチュエータモータ72により回転する ねじ軸73にナット部材74が噛み合っており、ナット部材74にピン75で一端を枢支 された連結リンク76の他端が、ピン77、77を介してコントロールアーム71に連結 される。したがってアクチュエータモータ72を作動せしめると、回転するねじ軸73に 沿ってナット部材74が移動し、ナット部材74に連結リンク76を介して連結されたコ ントロールアーム71によって支軸68cまわりにコントロール軸68が揺動することで 、可動軸 6 8 a が図 9 (A) の位置と図 9 (B) の位置との間を移動する。

[0049]

ヘッドカバー16の外壁面に、例えばロータリエンコーダのような回転角センサ80が 設けられており、そのセンサ軸80aの先端にセンサアーム81の一端が固定される。コ ントロールアーム71には、その長手方向に沿って直線状に延びるガイド溝82が形成さ れており、そのガイド溝82にセンサアーム81の他端に設けた連結軸83が摺動自在に 嵌合する。

[0050]

ねじ軸73、ナット部材74、ピン75、連結リンク76、ピン77,77、コントロ ールアーム71、回転角センサ80、センサアーム81および連結軸83は、シリンダブ ロック14およびヘッドカバー16の側面から突出する壁部14a,16bの内側に収納 され、壁部14a,16bの端面を覆うカバー78がボルト79…で壁部14a,16b に固定される。

[0051]

前記リフト可変機構33において、アクチュエータモータ72でコントロールアーム7 1が図3の実線位置から反時計方向に回動すると、コントロールアーム71に連結された コントロール軸 6 8 (図 5 参照) が反時計方向に回動し、図 9 (A) に示すようにコント ロール軸68の可動軸68aが上昇する。この状態で吸気カムシャフト31の動弁カム6 9でローラ65が押圧されると、固定支軸67、第1連結軸64、第2連結軸68および 可動軸68aを結ぶ四節リンクが変形してロッカアーム63が鎖線位置から実線位置へと 下方に揺動し、タペットねじ70,70が吸気弁19のステム19a…を押圧し、吸気弁19…を高リフトで開弁する。

[0052]

アクチュエータモータ72でコントロールアーム71が図3の実線位置に回動すると、コントロールアーム71に連結されたコントロール軸68が時計方向に回動し、図9(B)に示すようにコントロール軸68の可動軸68aが下降する。この状態で吸気カムシャフト31の動弁カム69でローラ65が押圧されると、前記四節リンクが変形してロッカアーム63が鎖線位置から実線位置へと下方に揺動し、タペットねじ70,70が吸気弁19…のステム19aを押圧し、吸気弁19…が低リフトで開弁する。

[0053]

図10は吸気19のリフト曲線を示しており、図9(A)に対応する高リフト時の開角と、図9(B)に対応する低リフト時の開角とは同一であり、リフト量だけが変化している。このように、リフト可変機構33を設けたことにより、吸気弁19…の開角を変更せずに、リフト量だけを任意に変更することができる。

[0054]

ところで、アクチュエータモータ72でコントロール軸68を揺動させて吸気弁19…のリフトを変更する際に、リフトの大きさ、つまりコントロール軸68の支軸68cの回動角を検出してアクチュエータモータ72の制御にフィードバックする必要がある。そのために、コントロール軸68の支軸68cの回動角を回転角センサ80で検出するようになっている。コントロール軸68の支軸68cの回動角を単に検出するだけなら、前記支軸68cに回転角センサを直結すれば良いが、低リフトの領域ではリフト量が僅かに変化しただけで吸気効率が大きく変化するため、コントロール軸68の支軸68cの回動角を精度良く検出してアクチュエータモータ72の制御にフィードバックする必要がある。それに対して、高リフトの領域ではリフト量が多少変化しても吸気効率が大きく変化しないため、前記回転角の検出にそれほど高い精度は要求されない。

[0055]

図11に実線で示すコントロールアーム71の位置は低リフトの領域に対応し、そこから反時計方向に揺動した鎖線で示すコントロールアーム71の位置は高リフトの領域に対応している。低リフトの領域では、回転角センサ80のセンサ軸80aに固定したセンサアーム81の連結軸83がコントロールアーム71のガイド溝82の先端側(軸線Cから遠い側)に係合しているため、コントロールアーム71が僅かに揺動しただけでセンサアーム81は大きく揺動する。すなわちコントロール軸68の回動角に対するセンサ軸80aの回動角の比率が大きくなり、回転角センサ80の分解能が高まってコントロール軸68の回動角を高精度で検出することができる。

[0056]

一方、コントロールアーム 7 1 が鎖線で示す位置に揺動した高リフトの領域では、回転角センサ80のセンサ軸80 a に固定したセンサアーム81の連結軸83がコントロールアーム 7 1 のガイド溝82 の基端側(軸線Cに近い側)に係合しているため、コントロールアーム 7 1 が大きく揺動してもセンサアーム81は僅かしか揺動しない。すなわちコントロール軸68の回動角に対するセンサ軸80aの回動角の比率が小さくなり、コントロール軸68の回動角の検出精度は低リフト時に比べて低くなる。

[0057]

図12のグラフから明らかなように、コントロールアーム71の回転角が低リフト状態から高リフト状態に向かって増加してゆくと、最初はセンサアーム81の角度の増加率が高いために検出精度が高くなるが、次第に前記増加率が低くなって検出精度が低くなることが分かる。

[0058]

このように、高価で検出精度の高い回転角センサを用いずとも、回転角センサ80のセンサアーム81をコントロールアーム71のガイド溝82に係合させることで、高い検出 精度を必要とする低リフト状態における検出精度を確保し、コストダウンに寄与すること ができる。

[0059]

このとき、コントロールアーム71の一端側(支軸68cに近い側)とセンサアーム8 1の一端側(回転角センサ80に近い側)とを接近させて配置し、コントロールアーム7 1の一端側にガイド溝82を形成したので、センサアーム81の長さを短くしてコンパク ト化することができる。またコントロールアーム71の一端側にガイド溝82を形成する と、軸線Cからの距離が小さくなってガイド溝82の円周方向の移動量も小さくなるが、 センサアーム81の長さも短くなるため、センサアーム81の回動角を充分に確保して回 転センサ80の検出精度を確保することができる。

[0060]

次にこの実施例の作用について説明すると、吸気弁19…の開弁リフト量を連続的に変 化させるためのリフト可変機構33において、第1および第2リンクアーム61,62が その一端部に有する第1および第2連結部61a,61a;62aは、一対の吸気弁19 …に連動、連結される弁連結部63aを一端部に有するロッカアーム63の他端部に並列 して相対回動可能に連結され、第1リンクアーム61の他端部の固定支持部61bはエン ジン本体10に支持される固定支軸67に回動可能に支承され、第2リンクアーム62の 他端部の可動支持部62bは変位可能な可動軸68aで回動可能に支承されている。

[0061]

したがって可動軸68aを無段階に変位させることで吸気弁19…のリフト量を無段階 に変化させることが可能であり、しかも第1および第2リンクアーム61,62の一端部 がロッカアーム63に回動可能として直接連結されており、両リンクアーム61,62を 配置するスペースを少なくして動弁装置のコンパクト化を図ることができ、動弁カム69 からの動力がロッカアーム63のローラ65に直接伝達されるので動弁カム69に対する 優れた追従性を確保することができる。また吸気カムシャフト31の軸線に沿う方向での ロッカアーム63、第1および第2リンクアーム61,62の位置をほぼ同一位置に配置 することができ、吸気カムシャフト31の軸線に沿う方向での動弁装置のコンパクト化を 図ることができる。

[0062]

しかも一対の吸気弁19…にそれぞれ当接するタペットねじ70…がその進退位置を調 節可能として螺合される弁連結部73aと、第1および第2リンクアーム61,62の一 端部を回動可能に連結する第1および第2支持部63b,63cとを有するロッカアーム 6 3 が、動弁カム 6 9 の回動軸線に沿う方向での弁連結部 6 3 a の幅を他の部分の幅より も大きくして形成されているので、動弁カム69の回動軸線に沿う方向でのロッカアーム 63の幅を極力小さくすることを可能とし、これによっても動弁装置のコンパクト化を図 ることができる。それに加えて、ロッカアーム63は、第1および第2支持部63b,6 3 c の幅を同一として形成されるので、ロッカアーム 6 3 を、その形状の単純化を図りつ つコンパクト化することができる。

[0063]

またロッカアーム63に設けられる第1支持部63bは、ローラ65を両側から挟むよ うにして略U字状に形成されており、ローラ65が第1支持部63bで回転可能に支承さ れるので、ローラ65を含むロッカアーム63全体をコンパクトに構成することができる 。しかも第1リンクアーム61の一端部には、第1支持部63bを両側から挟む一対の第 1連結部61a…が設けられ、両第1連結部61a…が第1連結軸64を介して第1支持 部63bに回動可能に連結され、ローラ65が第1連結軸64を介して第1支持部63b に軸支されるので、第1リンクアーム61の一端部の第1支持部63bへの回動可能な連 結、ならびに前記ローラ65の第1支持部63bへの軸支を共通の第1連結軸64で達成 するようにして、部品点数の低減化を図るとともに動弁装置をよりコンパクト化すること ができる。

[0064]

ロッカアーム63の第1および第2支持部63b,63cには、第1および第2リンク 出証特2005-3018309 アーム 61, 62の一端部をそれぞれ回動可能に連結するための第1および第2連結軸 64, 66を挿通せしめる第1および第2連結孔 49, 50が、両吸気弁 19 …の開閉作動方向に並ぶようにして設けられており、両吸気弁 19 …側で第1および第2連結孔 49, 50の外縁に接する接線上に対して両吸気弁 19 …とは反対側に少なくとも一部が配置される連結壁 63 d …で、第1および第2支持部 63 b, 63 c 間が連結されるので、第1および第2支持部 63 b, 63 c の剛性を高めることができる。。

[0065]

また第2リンクアーム62の他端部の第2連結部62aがロッカアーム63側に最も近づいた状態で前記第2連結部62aに対向するようにして連結壁63d…に凹部51…が形成されており、第2リンクアーム62の第2連結部62aをロッカアーム63側に極力近接した位置まで変位させることが可能であり、それにより動弁装置のコンパクト化を可能としつつ吸気弁19…の最大リフト量を極力大きく設定することが可能となる。

[0066]

さらに連結壁63d…に肉抜き部52…が形成されるので、連結壁63d…による剛性 増大を可能としつつロッカアーム63の重量増大を抑えることができる。

[0067]

第1および第2リンクアーム61,62の一端部をロッカアーム63に連結する第1および第2連結軸64,66のうち上方の第1連結軸64側に向けてオイルを供給するオイルジェット58…がエンジン本体10に固定配置されており、第1および第2リンクアーム61,62のうち上方の第1リンクアーム61およびロッカアーム63間を潤滑したオイルが下方に流下して下方の第2リンクアーム62およびロッカアーム63間を潤滑することになる。したがって簡単かつ部品点数を少なくした潤滑構造で、ロッカアーム63と、第1および第2リンクアーム61,62との連結部をともに潤滑して円滑な動弁作動を保証することができる。

[0068]

しかもローラ65を両側から挟むようにして略U字状に形成される第1支持部63bが前記ロッカアーム63に設けられ、第1リンクアーム61の一端部の第1連結部61a…が、ローラ65を軸支する第1連結軸64を介して第1支持部63bに回動可能に連結され、前記オイルジェット58…が、第1リンクアーム61および第1支持部63bの合わせ面に向けてオイルを供給するようにしてエンジン本体10に配設されるので、ローラ65の軸支部をも潤滑することができる。

[0069]

さらに動弁カム69が設けられる吸気カムシャフト31を回転自在に支承するようにしてエンジン本体10に設けられる吸気カムホルダ46…のキャップ45…に、オイルジェット58…が配設されるので、吸気カムシャフト31および吸気カムホルダ46…間を潤滑するための油路を利用して、充分に高圧かつ充分な量のオイルをオイルジェット58…から供給することができる。

[0070]

またリフト可変機構33は、第2リンクアーム62の両側に配置される一対のクランクウエブ68b,68bと、両クランクウエブ68b…間を直角に連結する可動軸68aと、該可動軸68aからオフセットした位置でクランクウエブ68b…に直角に連結されるとともにエンジン本体10で回動可能に支承される支軸68c…とを有してクランク状に構成されるコントロール軸68を備えており、支軸68cがエンジン本体10のヘッドカバー16に回動可能に支承されるので、コントロール軸68を支軸68cの軸線まわりに回動せしめることで可動軸68aを容易に変位させることができ、アクチュエータモータ72によって可動軸68aを変位させる機構の単純化を図ることができる。

[0071]

ところで吸気弁19…は弁ばね24…で閉弁方向に付勢されるのであるが、ロッカアーム63は、弁ばね24…とは別のロッカアーム付勢ばね54…により、ローラ65を動弁カム69に当接させる方向に付勢されており、吸気弁19…の閉弁状態でもロッカアーム

63のローラ65が動弁カム69から離れることはなく、吸気弁19…の微小開弁時における弁リフト量の制御精度を高くすることができる。

[0072]

またロッカアーム付勢ばね54…が、第1および第2リンクアーム61,62の他端部を回動可能に支承する固定支軸67および可動軸68aの一方、この実施例では固定支軸67を囲繞するコイル状のねじりばねであり、ロッカアーム付勢ばね54…の設置スペースを小さくし、動弁装置のコンパクト化を図ることができる。

[0073]

またロッカアーム63には、ローラ65が第1リンクアーム61の一端部をロッカアーム63に連結する第1連結軸64を介して軸支され、動弁カム69が設けられたカムシャフト31を回転可能に支承してエンジン本体10に設けられる吸気カムホルダ46の支持壁44a…には、可動軸68aの軸線に直交する平面への投影図上で第2リンクアーム62の可動範囲外に位置する係止ピン55…が植設され、ロッカアーム付勢ばね54…の一端が第1連結軸64に係合され、ロッカアーム付勢ばね54…の他端が係止ピン55…に係合されるので、第2リンクアーム62との干渉を確実に回避してロッカアーム付勢ばね54…を配置することができる。

[0074]

また第1リンクアーム61の他端部の両側で固定支軸67をそれぞれ囲繞する一対の前記ロッカアーム付勢ばね54…よりも内方に、一対の前記クランクウエブ68b…が配置されるので、固定支軸67側にコントロール軸68を極力近接させて配置することが可能となるので動弁装置のコンパクト化を図ることができる。

[0075]

しかも固定支軸67を支持する一対の支持ボス53,53が、第1リンクアーム61の他端部を両側から挟むようにしてエンジン本体10の吸気カムホルダ46…における支持壁44a…に設けられ、ロッカアーム付勢ばね54…が、両支持ボス53,53を囲繞してエンジン本体10およびロッカアーム63間に設けられているので、一対の支持ボス53,53で第1リンクアーム61の他端部における固定支持部61bの移動を規制しつつ、ロッカアーム付勢ばね54…の収縮による影響が固定支軸67に及ぶことを回避するようにして、ロッカアーム付勢ばね54…のコンパクトな配置が可能となる。

[0076]

第1リンクアーム61の他端部には、側面視ではロッカアーム付勢ばね54…の外周よりも内方に外周が配置されるようにした円筒状の固定支持部61bが設けられ、その固定支持部61bが固定支軸67で回動可能に支承されるのであるが、固定支持部61bの軸方向両端部には、前記ロッカアーム付勢ばね54…が固定支持部61b側に倒れるのを阻止する複数の突部56,57…が、周方向に間隔をあけてそれぞれ突設されている。したがって固定支持部61bの大型化を抑制しつつロッカアーム付勢ばね54…の前記倒れを防止し、固定支持部61bの支持剛性を高めることができる。

[0077]

しかも前記突部56,57…が第2リンクアーム62の作動範囲を避けて配置されるので、突部56,57…が固定支持部61bに設けられるにもかかわらず、第2リンクアーム62の作動範囲を充分に確保することができる。

[0078]

以上、本発明の実施例を説明したが、本発明は上記実施例に限定されるものではなく、 特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行うことが可能 である。

【図面の簡単な説明】

[0079]

- 【図1】エンジンの部分縦断面図であって図2の1-1線断面図である。
- 【図2】図1の2-2線断面図である。
- 【図3】図2の3-3線矢視図である。

- 【図4】リフト可変機構の側面図である。
- 【図5】リフト可変機構の分解斜視図である。
- 【図6】図4の6-6線拡大断面図である。
- 【図7】図4の7-7線断面図である。
- 【図8】図3の8矢視図である。
- 【図9】リフト可変機構の作用説明図である。
- 【図10】機関弁のリフト曲線を示す図である。
- 【図11】図3の要部拡大図である。
- 【図12】 コントロールアームの回転角とセンサアームの回転角との関係を示すグラフである。

【符号の説明】

[0080]

- 10・・・エンジン本体
- 19・・・機関弁である吸気弁
- 24・・・弁ばね
- 46・・・カムホルダ
- 53・・・支持ボス
- 54・・・ロッカアーム付勢ばね
- 55・・・係止ピン
- 56,57 · · · 突部
- 61・・・第1リンクアーム
- 6 1 b · · · 固定支持部
- 62・・・第2リンクアーム
- 63・・・ロッカアーム
- 64・・・連結軸
- 65・・・カム当接部としてのローラ
- 67・・・固定支軸
- 68a · · · 可動軸
- 686・・・クランクウエブ
- 6 8 c · · · 支軸
- 68・・・コントロール軸
- 69・・・動弁カム
- 72・・・駆動手段としてのアクチュエータモータ
- E・・・エンジン

【書類名】図面 【図1】

【図4】

【図6】

【図8】

【図9】

【図10】

【図11】

出証特2005-3018309

[図12]

【書類名】要約書

【要約】

【課題】機関弁のリフト量を連続的に変化させるようにした上で、関開閉作動の追従性を確保しつつコンパクト化を図り、しかも機関弁の微小開弁時におけるリフト量制御精度の向上を図る。

【解決手段】動弁カム69に当接するカム当接部65を有するとともに弁ばね24で閉弁方向に付勢される機関弁19に開弁方向の力を付与するようにして連動、連結されるロッカアーム63に、エンジン本体の固定位置に回動可能に支承される第1リンクアーム61の一端部と、変位可能な可動軸68aで回動可能に支承される第2リンクアーム62の他端部とが回動可能に連結され、弁ばね24とは別のロッカアーム付勢ばね54で、前記ロッカアーム63がカム当接部65を動弁カム69に当接させる方向に付勢される。

【選択図】 図4

特願2004-350753

ページ: 1/E

認定・付加情報

特許出願の番号

特願2004-350753

受付番号

5 0 4 0 2 0 6 8 0 6 4

書類名

特許願

担当官

第三担当上席 0092

作成日

平成16年12月 8日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000005326

【住所又は居所】

東京都港区南青山二丁目1番1号

【氏名又は名称】

本田技研工業株式会社

【代理人】

申請人

【識別番号】

100071870

【住所又は居所】

東京都台東区台東2丁目6番3号 TOビル 落

合特許事務所

【氏名又は名称】

落合 健

【選任した代理人】

【識別番号】

100097618

【住所又は居所】

東京都台東区台東2丁目6番3号 TOビル 落

合特許事務所

【氏名又は名称】

仁木 一明

ページ: 1/E

特願2004-350753

出願人履歴情報

識別番号

[000005326]

1. 変更年月日

1990年 9月 6日

[変更理由]

新規登録

住所

東京都港区南青山二丁目1番1号

氏 名

本田技研工業株式会社