FTML Exercices 2 solutions

Pour le 21 mars 2024

TABLE DES MATIÈRES

1	Ordinary	least squares	1
	1.0.1	Enoncé	1
	1.0.2	Solution	1
2	Expected	value as a minimization	3
	2.0.1	Enoncé	3
	2.0.2	Solution	3

1 ORDINARY LEAST SQUARES

1.0.1 Enoncé

Les question 1 et 2 peuvent être traitées indépendamment. Soit n et $d\in \mathbb{N}^*.$

1) Soit $X \in \mathbb{R}^{n,d}$, et $y \in \mathbb{R}^n$. Calculer le gradient de

$$g = \left\{ \begin{array}{l} \mathbb{R}^d \to \mathbb{R} \\ \theta \mapsto \|X\theta - y\|^2 \end{array} \right.$$

C'est la fonction objectif du problème OLS.

- 2) On veut montrer que la fonction $g:\mathbb{R}^d\to\mathbb{R}$ définie plus haut est convexe. Il y a de nombreuses méthodes pour cela mais utiliser ici les étapes suivantes :
 - a) montrer que si $s:\mathbb{R}^d\to\mathbb{R}^n$ est linéaire et $f:\mathbb{R}^n\to\mathbb{R}$ est convexe, alors $f\circ s:\mathbb{R}^d\to\mathbb{R}$ est convexe.
 - b) montrer que toute norme sur \mathbb{R}^n est convexe.
 - c) montrer que si $w : \mathbb{R} \to \mathbb{R}$ est convexe croissante et $a : \mathbb{R}^n \to \mathbb{R}$ est convexe, alors $f = w \circ a : \mathbb{R}^n \to \mathbb{R}$ est convexe.
 - d) montrer que si $u : \mathbb{R}^n \to \mathbb{R}$ est convexe, alors si $\beta \in \mathbb{R}^n$, l'application $f : x \mapsto u(x+\beta)$ est convexe.
 - e) conclure.

1.0.2 Solution

1) On connaît déjà le gradient de l'application $f: x \mapsto ||x||^2$, qui vaut 2x. Si on considère l'application r:

$$r = \left\{ \begin{array}{l} \mathbb{R}^d \to \mathbb{R}^n \\ \theta \mapsto X\theta - y \end{array} \right.$$

alors $g = f \circ r$. Comme tout est différentiable, on en déduit qu'en notant L les jacobiennes:

$$L_{\theta}g = L_{X\theta - u}fL_{\theta}r \tag{1}$$

ou bien on considérant le gradient (qui est la transposée de la jacobienne quand l'application est à valeurs dans \mathbb{R}):

$$\nabla_{\theta} g(\theta) = (L_{\theta} r)^{\mathsf{T}} \nabla_{\mathbf{x}} f(X\theta - \mathbf{y}) \tag{2}$$

Or $L_{\theta}r = X$. Donc

$$\nabla_{\theta} g(\theta) = 2X^{\mathsf{T}} (X\theta - y) \tag{3}$$

a) Soit $\alpha \in [0, 1]$, et $x, y \in \mathbb{R}^d$.

$$(f \circ s)(\alpha x + (1 - \alpha)y) = f(s(\alpha x + (1 - \alpha)y))$$

$$= f(\alpha s(x) + (1 - \alpha)s(y))$$

$$\leq \alpha f(s(x)) + (1 - \alpha)f(s(y))$$
(4)

b) Soit $\alpha \in [0, 1]$, et $x, y \in \mathbb{R}^n$.

$$\|\alpha x + (1 - \alpha)y\| \le \|\alpha x\| + \|(1 - \alpha)y\|$$

$$= \alpha \|x\| + (1 - \alpha)\|y\|$$
(5)

c) Soit $\alpha \in [0, 1]$, et $x, y \in \mathbb{R}$.

Since a is convex,

$$a(\alpha x + (1 - \alpha)y) \le \alpha a(x) + (1 - \alpha)a(y)$$
(6)

Since w is increasing,

$$w(a(\alpha x + (1 - \alpha)y)) \le w(\alpha a(x) + (1 - \alpha)a(y)) \tag{7}$$

Since w is convex,

$$w(\alpha a(x) + (1 - \alpha)a(y)) \le \alpha(w(a(x)) + (1 - \alpha)w(a(y))$$
(8)

Finally,

$$(w \circ a)(\alpha x + (1 - \alpha)y)) \leqslant \alpha(w \circ a)(x)) + (1 - \alpha)(w \circ a)(y) \tag{9}$$

d) Soit $\alpha \in [0, 1]$, et $x, y \in \mathbb{R}^n$.

$$f(\alpha x + (1 - \alpha)y) = u(\alpha x + (1 - \alpha)y + \beta)$$

$$= u(\alpha x + (1 - \alpha)y + (\alpha + 1 - \alpha)\beta)$$

$$= u(\alpha x + (1 - \alpha)y + \alpha\beta + (1 - \alpha)\beta)$$

$$= u(\alpha (x + \beta) + (1 - \alpha)(y + \beta))$$

$$\leq \alpha u(x + \beta) + (1 - \alpha)u(y + \beta))$$

$$= \alpha f(x) + (1 - \alpha)f(y)$$
(10)

- e) On utilise:
- le point c) avec $w: t \mapsto t^2$ et a l'application norme sur \mathbb{R}^n pour montrer que $u: x \mapsto ||x||^2$ est convexe.
- le point d) avec $\beta=-y$ pour montrer que $f:x\mapsto \|x-y\|^2$ est convexe de \mathbb{R}^n
- le point **a)** appliqué à $g = f \circ s$ avec $s : \theta \mapsto X\theta$ linéaire de \mathbb{R}^d dans \mathbb{R} .

EXPECTED VALUE AS A MINIMIZATION 2

2.0.1 Enoncé

Soit X une variable aléatoire réelle ayant un moment d'ordre 2. Montrer que son espérance E(X) est la quantité minimisant la fonction de variable réelle $t\mapsto$ $E((X-t)^2)$

2.0.2 Solution

All expected values are over X. We remark that

$$\begin{split} & E\Big[(X-t)^2\Big] = E\Big[\big(X-E(X)+E(X)-t\big)^2\Big] \\ & = E\Big[\big(X-E(X)\big)^2+2\big(X-E(X)\big)\big(E(X)-t\big)+\big(E(X)-t\big)^2\Big] \end{split}$$

By linearity, the expected value is separated in 3 terms.

$$- E[(X-E(X))^{2}]$$

$$- E[2(X-E(X))(E(X)-t)]$$

$$- E[(E(X)-t)^{2}]$$

We note that the first term $E[(X - E(X))^2]$ does not depend on t. Also, $(E(X) - t)^2$, is a fixed scalar, and not a random variable, hence :

$$E\left[\left(E(X)-t\right)^{2}\right]=\left(E(X)-t\right)^{2}$$

We also have that

$$E\left[2(X-E(X))(E(X)-t)\right]=2(E(X)-t)E\left[(X-E(X))\right]=0$$

As a consequence, the value that minimizes $E[(X-t)^2]$ is t = E(X).