⑩日本国特許庁(JP)

①特許出願公告

許 公 報(B2)

平5-31868

識別記号

庁内整理番号

\$\$\blue{\Pi}\$\Delta\$\D

H Ú4 N

106 A

発明の数 1 (全5頁)

❷発明の名称

原模読み取り装置

2044 顧 昭58-149677 **房 昭郎-41976**

安出 顧 昭58(1983)8月18日 @昭60(1985)3月5日

砂発 明 者 直 東京都大田区下丸子3丁目30番2号 キャノン株式会社内

旬 出類人 キャノン株式会社 東京都大田区下丸子3丁目30番2号

1980代 理 人 弁理士 谷 義 一

審査官

密参考文献

本 恵

特開 昭58-14662 (JP, A)

特開 昭57-171879 (JP, A)

特閱 昭57-121368 (JP, A)

②特許請求の範囲

1 原稿の画像を読み取るための複数画素からな る競み取り手段と、

原稿台の原稿載置範囲外に配設され。前記読み 内に対応する第1部分と原稿読み取り範囲外に対 応する第2部分との境界を光学的に判別可能にし て配置した基準板と、

前記読み取り手段により前記基準板を読み取 り手段のどの西案で読み取つたかを検出する検出 手段と、

前記後出手段の検出結果に基づいて、前記読み 取り手段により原稿を読み取る時に前記読み取り 手段のどの範囲の画案を使用するかを決定する決 25 (目的) 定手段と、

を有し、

前記採昇の位置を原稿載置基単位置としたこと を特徴とする原稿読み取り装置。

発明の詳細な説明

(技断分野)

本発明は、原稿を読み取りその原稿の画像情報 をデジタル顕像信号に変換する原稿読み取り装置 に関するものである。

(证米技術)

従来、例えばCCDなどの画像センサを用いて

原稿の画像情報を読み取り、その読み取つた画像 情報をA/D変換によりデジタル信号に変換する 原稿読み取り装置があるが、この種従来装置にお いては、CCDなどの画像センサの取り付け位置、 取り手段の主走査方向において原稿読み取り範囲 5 光学系ミラーやレンズの位置を移動させることに より、画像センサ上の所定の位置に原稿像が結像 するように調整する必要があつた。

かかる調整にあたつては、原稿面からルーペを 使用してCCDを見て、装置内部の光学系ミラー、 り、前配第1部分と第2部分の境界を前配読み取 10 レンズ、CCDの取り付け位置等を正確に調整し ており、これがために、作業性が悪く、調整に長 時間を要し、組み立てコストが高くなり、しかも また、市場で再調整が必要になつたときのサービ ス性が悪いという欠点があつた。

そこで、本発明の目的は、主走査方向の原稿談 み取り範囲を基準板を読み取ることにより自動的 に決定可能にすることにより、上述した欠点を解 決するようにした原稿読み取り装置を提供するこ 20 とにある。

本発明の他の目的は、原稿読み取り芸置を使用 中に、振動などに起因して、例えばCCDの取り 付け位置が少々ずれても、原稿読み取り動作的に 遊切かつ簡単に位置の補正を行うことにより自動 25 的に位置ずれの誤差を修正できるようにした原稿 読み取り装置を提供することにある。

(実施例)

以下に図面を参照して本発明を詳細に説明す

第1図は本発明による原稿読み取り装置の機構 部分の一例を示す構成図である。

ここで、1は原稿台であり、この原稿台1の裏 傾において、原稿読み取り範囲外の領域に位置補 正のための基準板2を配置する。原稿台1を螢光 灯3により照明する。この原稿台1は不図示の光

しかして、原稿台1上に截置した原稿画像は、 **螢光灯3と反射ミラー4とで構成される光学ユニ** ツトがマの速度で副走査方向に移動し、反射ミラ ニツトがマ/2の速度で**副走を方向に移動する**こ とにより光路長を一定に保つ慣例の光学メカニズ ムにより走査され、その走査出力光をレンズ7を 介して、CCD8上に結像させることで、原稿画 像の読み取りを行う。

CCD 8 に結像された原稿画像は電気信号に変 換され、各種の処理を施されて、画像信号として、 取り出されるが、その詳細は第3図により後述す

ら見た平面図である。

基準板2は、原稿台1における原稿読み取り範 囲1A内の部分2Aと範囲外の部分2Bとで色分 けされ、図示のように主走査方向に対して原稿銃 鶴読み取り基準点を示し、この点REFから原稿 画像の読み取りが行なわれる。

かかる基準板2は、例えば、いわゆるシェーデ イング補正を行なうための基準板と業用するとき に塗り、範囲外の部分2日を黒色に塗る。なむ、 本発明において、基準板2の部分2Aおよび2B を原稿読み取り範囲に応じて強り分ける場合の色 は、後述する読み取りにより特別可能なものであ 分ける例にのみ限定されるものではない。

かかる原稿読み取り装置において、上述した光 学ニニツトの読み取り位置が副走査方向において 基準版2の範囲B内にあることを確めた上で、基

単板2の読み取りを行う。なお、基単位置2の主 走査方向の読み取り範囲は、実際の主走査方向の 読み取り幅より充分広い範囲Aにあることが必要 である。

本発明原稿読み取り装置の電気回路部分の一例 を第3図に示す。

第3図において、レンズ7でCCD8上に結像 された原稿像はここで電気信号に変換される。そ の電気信号を増幅器 9 で増幅した袋にA/D変換 学系モータにより図示の副赴査方向に走査され 10 器10に供給し、ここでデジタル信号に変換す る。そのA/D変換出力を画像信号読み取り回路 11および画像信号制御回路12にそれぞれ供給

画像信号読み取り回路11は、基準板2を読み ー 5 とそのミラー固定台 6 とで構成される光学ユ 15 取つて得た画像信号を中央処理装置 (CPU) 1 3で処理するための回路である。A/D変換器1 **むからの画像信号は適当なタイミングで画像信号** 読み取り回路11にラッチされ、CPUパス20 を介してCPU13に転送され、ここに読み込ま 20 れて第4図のフローチャートに示す手順の処理を 行う。

画像信号副御回路12は、CPU13で検知し た主走査方向の原稿読み取り範囲からの画像信号 のみを出力し、不要な部分を消去するための制御 第2図は原稿台1を第1図における下方位置か 25 を行う。画像信号制御回路12は、一般の画像編 集の場合のトリミング機能と同様の処理内容であ るので、かかるトリミング用回路で兼用すること もできる。

CPU13は、リードオンリメモリ (ROM) 1 み取り範囲と一致させて取り付ける。REFは原 30 4に書き込まれている制御プログラムを実行し、 ランダムアクセスメモリ (RAM) 15、モータ ドライバ16、各種センサ17、螢光灯ドライバ 18等を管理し、原稿読み取り装置全体の制御を 行なう。モータドライバ18は不図示の光学系モ には、原稿読み取り範囲1Aの部分2A宮を白色 35 一夕の駆動制御を行う。センサ17は、光学系が 基準板 2 の位置や光学系の反転位置にあることを **設知する。 螢光灯ドライバ18は螢光灯3の駆動** と勧御に使用される。

次に、本発明における原稿読み取りの制御を行 ればよく、本実施例のように白色と黒色とに塗り 40 う手順の一例を第4回のフローチャートに示す。 まず、ステップSP1において、読み取り開始に 先立つて、光学系が基準板2の範囲B内に位置し ているか否かの確認を行う。範囲Bにない場合に は、ステップSP2に進んで光学系を移動させ、範

5

囲B内におさまる所で光学系を停止させ、次のス テップSP3に進む。

ステップSP3では、螢光灯 3 を点灯させ、基準 板2を画像信号読み取り回路11によつて読み取 る。読み取つた信号について、ステップSP4にお 5 ばして行なうことによつて、本発明を適用するこ いて、読み取り範囲の計算を行ない、その計算結 果を画像信号制御回路12にセツトし、不要な画 像信号部分が出力されないようにする。

読み取り範囲の計算は、例えば、以下のように すればよい。

主走査の1ライン分の読み取り画像データをい つたんRAM 1 5 に記憶し、そのデータを、例え ば、主走査方向に逐次調べて行く。例えば、 RAM 15 に記憶したデータが "1" か "0" の 号に対応するものとすると、データが"1"から "0"に変化したところが原稿読み取り範囲の問 始位置であり、他方、データが "0" から "1" に変化したところが原稿読み取り範囲の終了位置 号からの画素データ数の形態で、画像信号制御回 路12にセットすればよい。

次に、ステップSP5に進み、光学系モータを駆 動して副走査方向に光学ユニツトを移動させるこ とにより原稿の読み取りを開始する。

ステップSP6では、かかる光学系が副走査方向 において反転位置に到達したか否かを判断し、光 学系反転位置が検知されたならば、次のステップ SP7において、螢光灯3を消灯し、光学系モータ 位置に戻す。

ステップSP8では光学系が基準板2の読み取り 位置に戻つたか否かを確認し、光学系がかかる説 み取り位置に戻つたならば、次のステップSP9に おいて光学系モータを停止させる。

以上により、1回の原稿読み取り動作を終了す

本発明は上述した実施例にのみ限られるもので はなく、例えば、2個のCCDを使用して読み取 も適用できる。この場合には、推ぎを自動的に行 なうために、2つのCCDの難ぎの部分をオーバ

ラツブさせておき、対応した基準板 2 上の位置に 継ぎのための線を引くようにする。その場合に は、第3図に示したステップSP4における読み取 り範囲の計算を、継ぎのパターンがある部分をと とが可能である。

6

(外果)

以上説明したように、本発明によれば、原稿台 に記載された原稿の画像を読み取る際に、原稿載 10 置基準位置を基準として画像読取ができるように すると共に、読取手段の取付精度による読取位置 のずれを自動的に修正可能とする構成としてある ので、読取手段の取付精度によらず、原稿台の原 稿載置基準位置から正確に画像を読み取ることが 2億信号であり、"C"が原南読み取り範囲の信 15 できる。このことにより、原稿載置領域外の部分 を読み取つてしまうのを防止することができる。

また、本発明によれば、原稿読み取り範囲を自 動的に読み取つて設定することができるので、組 立て時の調整のずれの許容範囲が大きくなるの であることになる。この位置を、主走査の同期信 20 で、組立の作業性は向上し、組立時間の短縮と組 立コストの低減化を達成でき、しかもそれに加え て、装置据付後の再調整も容易に行なえる。

> さらにまた、使用中に光学系やCCDがその取 り付け位置から多少ずれても、正常な原稿読み取 25 りが行なえる利点もある。

図面の簡単な設労

第1図は本発明による原稿読み取り装置の機構 部分の一例を示す構成図、第2図はその原稿台1 を第1図の下方から見た平面図、第3図は本発明 を逆転させて、光学系を基準板2の読み取り開始 30 原稿読み取り装置における電気回路部分の構成の 一例を示すプロツク線図、第4図はその中央処理 装置の制御手順の一例を示すフローチャートであ

1 原稿台、2 基準板、3 螢光灯、 35 4, 5……反射ミラー、6……ミラー固定台、7 ······レンズ、8······OCD、9······增幅器、1 0 ……A/D変換器、11……画像信号読み取り回 路、12……画像信号制御回路、12……中央処 理装置 (CPU)、1.4 ······リードオンリメモリ つた画像を載ないで1つの画像信号を得る場合に 40 (ROM)、15 ……ランダムアクセスメモリ (RAM)、16……モータドライバ、17……セ ンサ、18……螢光灯ドライバ。

第1図

第3図

第4図

