LA TEORÍA DE CONJUNTOS DIFUSOS COMO UNA OPCIÓN PARA MEDIR LA POBREZA

El caso de México*

Marco Antonio Morales-Ramos y Eduardo Morales-Ramos**

RESUMEN

El principal propósito de este artículo es presentar la teoría de conjuntos difusos como un instrumento confiable y preciso para medir la pobreza, que además ofrece ventajas comparativas respecto a los métodos tradicionalmente empleados para esta tarea. Este artículo también muestra que la metodología de conjuntos difusos es compatible con la información censal (información agrupada) para calcular índices de pobreza. Se presentan los resultados de medir la pobreza para los niveles estatal, municipal y localidad, y se comparan con resultados oficiales. Esta comparación revela que la teoría difusa resuelve algunos de los problemas metodológicos que enfrentan las líneas de pobreza y los índices de marginación, lo que hace de este instrumento una opción útil no sólo para medir, sino también para aplicar y evaluar la política pública encaminada a combatir la pobreza.

ABSTRACT

The main purpose of this paper is to present fuzzy sets theory as a reliable and straightforward methodology to measure poverty, which offers comparative advan-

^{*} Palabras clave: teoría de conjuntos difusos, pobreza, marginación, México. Clasificación JEL: 132. Artículo recibido el 22 de febrero y aceptado el 27 de junio de 2007. Los autores agradecen los comentarios de un dictaminador anónimo de EL TRIMESTRE ECONÓMICO. El contenido de este artículo así como las conclusiones que de este se derivan son responsabilidad exclusiva de los autores y no reflejan necesariamente la opinión del Banco de México o de la Secretaría de Educación Pública.

^{**} M. A. Morales-Ramos, Secretaría de Educación Pública, DGETI. E. Morales-Ramos, Banco de México.

tages with respect to traditional methods. This paper also shows that fuzzy sets methodology is compatible with census data information to compute poverty indices. Results of measuring poverty at state, municipality and locality levels are presented for the case of Mexico and are compared with official results. Comparison reveals that fuzzy sets theory is an alternative that solve some of the methodological problems present in poverty lines and marginalization indices, which makes it a helpful tool to evaluate and implement policies aimed to tackle poverty.

Introducción

Tedir la pobreza es una tarea que la mayoría de los gobiernos realizan Medir la pobleza es una taren que la compara la política pública pública para tener elementos para instrumentar y evaluar la política pública para encaminada a combatir este fenómeno. Los métodos más empleados para realizar esta tarea son las líneas de pobreza y los métodos multivariados. Sin embargo, estas metodologías presentan algunos inconvenientes metodológicos que la teoría difusa corrige. La teoría de conjuntos difusos ofrece la posibilidad de clasificar objetos de acuerdo con sus características de una manera diferente de la teoría de conjuntos tradicional. En este artículo, se clasifica a los individuos de una población de acuerdo con algunas de sus características relevantes para considerarlos como pobres de acuerdo con su pertenencia al conjunto de pobreza difusa. Un problema inicial para aplicar la técnica difusa es que se requieren datos individuales para evaluar el grado de pertenencia de cada individuo al conjunto difuso de pobreza, y estos datos regularmente no se encuentran disponibles (véase Cerioli y Zani, 1990). En este artículo se muestra que los datos censales para México son compatibles con la metodología difusa para medir la pobreza, y se calculan los índices de pobreza para el caso de México. Estos resultados ofrecen una buena opción para identificar municipios y localidades considerados pobres, y se comparan con los resultados ofrecidos por la técnica oficial de marginación.

Este artículo se organiza en tres secciones. La sección I describe brevemente las metodologías de líneas de pobreza y de marginación, y algunas de sus desventajas con respecto a los conjuntos difusos. La sección II desarrolla la teoría de conjuntos difusos para medir la pobreza, establece algunos elementos para compararla con las metodologías de líneas de pobreza y de marginación, y muestra cómo la metodología difusa es compatible con los datos censales para México. En la sección III se muestra los resultados de

medir la pobreza mediante conjuntos difusos, y se comparan con los resultados oficiales de marginación. Al final se ofrece algunas conclusiones que resaltan las ventajas de la teoría difusa para la medición de la pobreza.

I. CONJUNTOS DE POBREZA

Un conjunto de pobreza se puede definir de acuerdo con diferentes indicadores: dos de los más empleados son ingreso¹ y necesidades sociales. La pobreza por ingreso se mide generalmente empleando una línea de pobreza, la cual indica un ingreso crítico que define al conjunto de los pobres. La mayoría de los índices de pobreza se basan en una línea de pobreza (véase Foster *et al*, 1984). La carencia de ciertas necesidades sociales es una medida multivariada, la cual define un conjunto de pobreza de acuerdo con la falta de ciertas necesidades básicas relativas a una sociedad.² En México se emplea la medida de marginación como un indicador de carencias materiales que conducen a carencias sociales.

1. Línea de pobreza

Dada una población de tamaño n, ordenada de acuerdo con el ingreso de cada hogar o individuo, es la línea de pobreza que define al conjunto de pobres. Entonces, dado un vector no negativo de ingresos $y = [y_1, y_2, ..., y_n]^t$, el conjunto de pobres se define como sigue: i) si y_i el individuo i pertenece al conjunto de pobres; ii) si y_i el individuo i no pertenece al conjunto de pobres. Con esta metodología la medida de pobreza presenta los siguientes inconvenientes: i) se producen estimadores sesgados: la información respecto a los ingresos individuales generalmente es sesgada, porque los individuos no están dispuestos a declarar sus ingresos reales. Además, definir ingreso no es una tarea sencilla, por lo común se requieren metodologías complejas (véase Weinberg, 2004); ii) sólo considera una variable: la pobreza es un fenómeno dinámico y multidimensional que no se puede medir propiamente mediante una sola variable, i0 y ii1) no ofrece una frontera realis-

¹ En algunos casos se emplea gasto.

³ Sin embargo, medir la pobreza mediante métodos multidimensionales también crea inconvenientes, algunos de los cuales se abordan en Atkinson (1987), Duclos *et al* (2001), y Deutsch y Silber (2005).

² En Sindzingre (2005) se puede encontrar una amplia revisión de la bibliografía de la pobreza multivariada, mientras que en Baharoglu y Kessides (2000) se ofrece una explicación pormenorizada de las dimensiones necesarias para medir la pobreza.

ta para el conjunto de pobres: la definición de una línea de pobreza implica un corte abrupto entre pobres y no pobres; una transición gradual es más recomendable para diferenciar entre pobres y no pobres (véase Cerioli y Zani, 1990).

2. Marginación

La metodología para medir la marginación es una técnica multidimensional que considera un conjunto de variables para medir carencias. Mediante estas variables, la marginación capta una falta de necesidades sociales empleando la técnica de análisis multivariado conocida como componentes principales, y construye una medida basada en la explicación de la varianza del primer componente principal para identificar el conjunto de pobres. Algunos problemas con esta técnica son: *i*) el índice de marginación es solamente una medida resumen de la información contenida en las variables de carencia, es decir, no emplea toda la información disponible en las variables; *ii*) la escala de este índice es solamente de intervalo; *iii*) el índice no puede ser comparado para diferentes mediciones en el tiempo. Estas desventajas de las líneas de pobreza y del índice de marginación son resueltas por la metodología de conjuntos difusos.

II. Teoría de conjuntos difusos

La metodología presentada en esta sección es una opción multidimensional basada en la teoría de conjuntos difusos.

1. Conjunto difuso de pobreza

Dado un conjunto X, tal que x X, podemos definir un conjunto difuso A X como:

$$\{[x, A(x)]\}$$
 X

en que A es un mapeo de X en el intervalo [0, 1] tal que A (X) es el grado de membresía de X en A. Entonces A0 is A1 no pertenece a A3, A4 A7 o; A8 A9 is A9 A9 re-

⁴ Estas características del índice de marginación pueden ser revisadas en la bibliografía de análisis multivariado; véase Krzanowski (2000) y Jolliffe (2002).

tenece a A, $_A(x)$ 1; iii) si x pertenece a A pero solamente de manera parcial, 0 $_A(x)$ 1, y su membresía al conjunto difuso aumenta cuando $_A(x)$ tiende a 1.⁵

Si se supone una función continua decreciente, podemos definir $_A$ f(y), tal que f(y) 0 y el $\lim_{y \in \mathcal{Y}} f(y)$ 1. Una función lineal adecuada para definir esta membresía es la siguiente:

$$A = \frac{y}{y} = \frac{y}{y}$$
 si $y = y$

Una línea de pobreza se puede definir como una función de y y y cuando y y , en otras palabras una línea de pobreza es un caso particular de una función de membresía.

Para comparar la metodología difusa con marginación es necesario considerar el caso difuso multidimensional y generalizar para variables de categorías múltiples. Supongamos k variables categóricas $X_1, X_2, ..., X_k$, las cuales pueden ser medidas para cada individuo de la población en estudio. Entonces, x_{ij} es la medida observada para el i-ésimo individuo $(i \ 1, n)$ en la j-ésima variable $(j \ 1, k)$.

Para el caso particular de variables dicotómicas la función de membresía se puede definir como:

$$A(i) = \frac{1}{k} \sum_{j=1}^{k} z_{ij} (i = 1, 2, ..., n)$$
 (1)

en que z_{ij} 1 si x_{ij} indica carencia para esa variable, y z_{ij} 0 en otro caso. Nótese que A(x) 1 si y solo si cada una de las A(x) variables denotan carencia para el individuo, es decir, este individuo pertenece completamente al con-

⁵ Un análisis más profundo de la teoría de conjuntos difusos se presenta en Dubois y Prade (1980) y en Godoy Escoto y Karp Siordia (1990).

junto difuso de pobreza. Por otro lado, A(x) 0 implica que cada una de las variables se encuentra encima del punto que indica carencia, por lo que el individuo no pertenece al conjunto de pobreza difusa en ningún grado.

Esta definición puede ser interpretada como una proporción que indica cuándo un individuo es pobre de acuerdo con el conjunto de variables. En otras palabras, cada una de las k variables contribuye para determinar si un individuo es pobre. Un posible problema con la función de membresía definida mediante la ecuación (1) es que ésta considera a todas las variables como igualmente importantes, cuando en la realidad para medir la pobreza algunas variables son más importantes que otras. Para diferenciar las variables de acuerdo con su importancia, éstas deben ser ponderadas de acuerdo con algún criterio, el cual redefinirá la función de membresía como sigue:

$$A(i) = \frac{\sum_{j=1}^{k} z_{ij} w_{j}}{\sum_{j=1}^{k} (i = 1, 2, ..., n)}$$
(2)

en que w_j es el ponderador para X_j (j-1,2,...,k). Un ponderador útil para estas variables es la función inversa de la proporción de los individuos con carencia de acuerdo con cada variable (f_j) . Sin embargo, en tanto que este ponderador puede tomar valores bajos, la siguiente transformación debe ser empleada:

$$w_j \quad \log \frac{1}{f_j} \quad \text{para} \quad f_j \quad 0 \quad \text{y} \quad j \quad 1, 2, ..., k$$
 (3)

Sustituyendo (3) en (2) obtenemos:

$$A(i) = \frac{\sum_{\substack{j=1\\ j=1}}^{k} \log \frac{1}{f_j}}{\log \frac{1}{f_j}} (i = 1, 2, ..., k)$$

$$(4)$$

Nótese que la ecuación (4) también es una medida multidimensional que proporciona información respecto al grado de pobreza de los individuos.⁶

⁶ Aunque, la teoría difusa presenta ventajas respecto a los métodos tradicionales, la bibliografía de este tema reconoce que la aplicación de ésta no es solamente un ejercicio mecánico en el que se aplica un

2. Índice de pobreza difusa

La metodología presentada líneas arriba es una manera de medir la pobreza de modo individual. Para calcular una medida de la pobreza para un grupo de individuos de manera paralela a las líneas de pobreza y a la marginación, es necesario calcular un índice de pobreza basado en las ecuaciones (1) y (4), ponderado y no ponderado respectivamente.

Una manera natural de medir la pobreza para un grupo de individuos mediante la función de membresía de los conjuntos difusos es sumando los grados de membresía de cada uno de los miembros de la población. Entonces, para una población de tamaño *n* el monto total de pobreza puede ser medido mediante la cardinalidad del subconjunto difuso:

$$|A| \int_{i=1}^{n} A(i)$$
 (5)

en que la condición para la existencia de esta cardinalidad es que el conjunto en el cual se define A sea finito (véase Dubois y Prade, 1980, p. 20). Entonces el índice de pobreza se define como:

$$P \quad \frac{|A|}{n} \quad \frac{1}{n} \prod_{i=1}^{n} A(i) \tag{6}$$

Este índice mide la pobreza como una proporción de los individuos que pertenecen al conjunto de pobreza difuso, en que P 0 cuando $_A(i)$ 0 i, es decir, cuando la pobreza está ausente para todos los individuos y P 1 cuando $_A(i)$ 1 i, es decir cuando todos los individuos se encuentran en el más alto grado de pobreza.

3. Índice de pobreza difusa y datos agrupados

Como ha sido desarrollada hasta este momento la teoría de conjuntos difusos representa una opción para calcular índices de pobreza empleando información para individuos. En otras palabras, la metodología no es compatible

algoritmo estándar, sino que su aplicación requiere cierto grado de interpretación para establecer un vínculo entre la realidad del fenómeno en estudio y la teoría. En el caso de este ejercicio, es claro que existe la posibilidad de emplear una función de membresía o un ponderador diferentes de los descritos en las ecuaciones (3) y (4); sin embargo, el uso de éstos responde a la idea de pobreza relativa. En realidad, la bibliografía de pobreza difusa continúa desarrollándose en busca de funciones de membresía y de ponderadores más adecuados para captar el fenómeno de la pobreza (véase Lemmi y Gianni, 2006).

con datos agrupados, como son los datos censales. Sin embargo, mediante la manipulación algebraica que se presenta a continuación, es posible calcular los índices difusos por medio de la metodología desarrollada.

Mediante la función de membresía no ponderada representada por la ecuación (1) es posible calcular la cardinalidad del conjunto representada por la ecuación (5) como sigue:

$$|A| = \frac{1}{i} \frac{1}{k} \sum_{j=1}^{k} z_{ij} = \frac{1}{k} \sum_{i=1}^{n} z_{ij} = \frac{1}{k} z_{ij}$$
 (7)

es decir, la suma de todos los individuos clasificados como carentes de alguna de las k variables.

La información censal registra el número total de individuos carentes de cada una de estas variables de la siguiente manera

$$z_{j} = \sum_{i=1}^{n} z_{ij}(j = 1, 2, ..., k)$$
 (8)

Entonces, sumando todos los individuos para cada variable tenemos

Adviértase que esta última ecuación es equivalente a la ecuación (1), por lo que mediante (9) es posible calcular el índice de pobreza difuso no ponderado con datos agrupados.

Para obtener la misma equivalencia para el índice de pobreza difuso ponderado, la ecuación (2) se puede reordenar como sigue

A partir de (10) se puede calcular la suma de los n individuos de la población como sigue

$$\frac{1}{k} \int_{w_{j}}^{n} (z_{i1}w_{1} \quad z_{i2}w_{2} \quad \dots \quad z_{ik}w_{k})$$

$$j \quad 1$$
(11)

en que la parte izquierda de la ecuación se puede rescribir como sigue

$$w_1(z_{11} \quad z_{21} \quad \dots \quad z_{n1}) \quad w_2(z_{12} \quad z_{22} \quad \dots \quad z_{n2}) \quad \dots \quad w_k(z_{1k} \quad z_{2k} \quad \dots \quad z_{nk})$$
 (12)

o de manera equivalente

en que $\binom{n}{i-1}z_{ij}$ es la suma de los individuos con carencia de la variable j. Mediante la ecuación anterior podemos finalmente calcular la función de membresía como sigue

La cual requiere medir la suma de cada una de las carencias para los individuos de la población justamente como se presentan en la información censal.

III. CONJUNTOS DIFUSOS Y POBREZA

En esta sección se aplica la metodología desarrollada líneas arriba para el caso de México. Para hacer compatibles los resultados aquí obtenidos con los resultados de marginación calculados por el Consejo Nacional de Población (Conapo), se siguió un procedimiento similar al aplicado por el Conapo para 2000. Primero se calculó el índice difuso de pobreza, para después proceder a agruparlo en cinco categorías de pobreza mediante la técnica de Dalenius: muy baja, baja, media, alta y muy alta.

En 2000 el Conapo empleo las siguientes nueve variables para calcular el índice de marginación: *i*) población analfabeta de 15 años o más; *ii*) población sin primaria completa de 15 años o más; *iii*) ocupantes en viviendas sin drenaje ni servicio sanitario exclusivo; *iv*) ocupantes en viviendas sin energía eléctrica; *v*) ocupantes en viviendas sin agua entubada; *vi*) viviendas con

CUADRO 1. Índice de marginación e índices de pobreza difusa a nivel estatal (2000)

7	7 7.		Marginación		Pobrez	Pobreza difusa no ponderada	derada	Pobre	Pobreza difusa ponderada	erada
Claroe	Estado	Índice	Estrato	Orden	Índice	Estrato	Orden	Índice	Estrato	Orden
01	Aguascalientes	0.97	Bajo	28	0.116	Muy bajo	28	990.0	Muy bajo	28
07	Baja California	1.27	Muy bajo	30	0.091	Muy bajo	30	0.062	Muy bajo	30
03	Baja California Sur	0.80	Bajo	27	0.133	Bajo	23	0.094	Bajo	20
40	Campeche	0.70	Alto	∞	0.220	Muy alto	6	0.170	Muy alto	7
05	Coaĥuila de Zaragoza	1.20	Muy bajo	29	0.099	Muy bajo	29	0.062	Muy bajo	29
90	Colima	69.0	Bajo	22	0.127	Bajo	26	0.077	Bajo	27
07	Chiapas	2.25	Muy alto	1	0.315	Muy alto	3	0.241	Muy alto	3
80	Chihuahua	0.78	Bajo	26	0.123	Bajo	27	0.092	Bajo	22
60	Distrito Federal	1.53	Muy bajo	32	0.074	Muy bajo	32	0.028	Muy bajo	32
10	Durango	0.11	Medio	17	0.177	Medio	17	0.129	Alto	15
11	Guanajuato	0.08	Alto	13	0.184	Medio	14	0.129	Alto	14
12	Guerrero	2.12	Muy alto	2	0.315	Muy alto	2	0.263	Muy alto	1
13	Hidalgo	0.88	Muy alto	5	0.243	Muy alto	5	0.181	Muy alto	9
14	Jalisco	0.76	Bajo	25	0.128	Bajo	25	0.089	Bajo	23
15	México	09.0	Bajo	21	0.135	Bajo	21	0.088	Bajo	25
16	Michoacán de Ocampo	0.45	Alto	10	0.207	Alto	10	0.151	Alto	10
17	Morelos	0.36	Medio	19	0.153	Medio	20	0.103	Medio	19
18	Nayarit	90.0	Alto	14	0.189	Medio	13	0.133	Alto	12
19	Nuevo León	1.39	Muy bajo	31	0.087	Muy bajo	31	0.052	Muy bajo	31
70	Oaxaca	2.08	Muy alto	3	0.317	Muy alto	1	0.247	Muy alto	7
21	Puebla	0.72	Alto	7	0.224	Muy alto	~	0.164	Alto	∞
22	Querétaro de Arteaga	0.11	Medio	16	0.178	Medio	16	0.130	Alto	13
23	Quintana Roo	0.36	Medio	20	0.156	Medio	19	0.107	Medio	18
24	San Luis Potosí	0.72	Alto	9	0.224	Muy alto	7	0.185	Muy alto	5
25	Sinaloa	0.10	Medio	15	0.182	Medio	15	0.124	Medio	17
26	Sonora	0.76	Bajo	24	0.133	Bajo	22	0.088	Bajo	24
27	Tabasco	99.0	Alto	6	0.234	Muy alto	9	0.154	Alto	6
28	Tamaulipas	69.0	Bajo	23	0.129	Bajo	24	0.087	Bajo	26
29	Tlaxcala	0.18	Medio	18	0.172	Medio	18	0.093	Bajo	21
30	Veracruz – Llave	1.28	Muy alto	4	0.264	Muy alto	4	0.207	Muy alto	4
31	Yucatán	0.38	Alto	11	0.198	Alto	12	0.127	Alto	16
32	Zacatecas	0.30	Alto	12	0.206	Alto	11	0.136	Alto	11

FUENTE: Cálculos propios con datos de Conapo (2001).

algún hacinamiento; *vii*) ocupantes en viviendas con piso de tierra; *viii*) población en localidades con menos de 5 mil habitantes, y *ix*) población ocupada con ingreso de hasta dos salarios mínimos. La fuente para obtener estos datos es INEGI (2001), que es la misma que empleo el Conapo para obtener los índices de marginación.

1. Pobreza difusa a nivel estatal

En el cuadro 1 se presentan los resultados de calcular el índice de pobreza difusa ponderado y sin ponderar, para cada uno de los 32 estados de la república mexicana, así como sus respectivos índices de marginación. Una diferencia entre los índices de pobreza difusa y los de marginación es que los últimos permiten comparar los resultados entre estados en una escala solamente de proporción, mientras que los primeros se miden en una escala de intervalo, lo cual es una ventaja notoria. Por ejemplo para el índice difuso es posible decir que el Distrito Federal es cuatro veces menos pobre que Chiapas, mientras que el índice de marginación solamente nos dice que es menos marginado que Chiapas.

Otro resultado importante que se infiere del cuadro 1, es que el orden de pobreza y el de marginación son muy similares. La correlación entre ambos índices es muy alta (99%). Por otro lado, se encuentran algunas diferencias en la clasificación por estratos, principalmente en los estratos muy alto y alto, las cuales se pueden atribuir a la técnica de estratificación empleada. Sin embargo, cuando analicemos el nivel localidad retomaremos estas diferencias e intentaremos explicar mediante otras razones estas diferencias.

Un instrumento muy útil para analizar la distribución geográfica de la pobreza, y comparar los índices aquí presentados, son los mapas de pobreza. Para el caso estatal, se elaboraron tres mapas de pobreza con el fin de comparar la distribución geográfica de la pobreza difusa y de la marginación. Los mapas de pobreza fortalecen la idea de que los resultados obtenidos mediante ambas metodologías son muy similares, incluso en su distribución geográfica, y que la pobreza y la marginación son fenómenos regionales que conforman grandes extensiones geográficas que en la mayoría de los casos son contiguas. En estos mapas también son notorias las diferencias entre norte no pobre y sur pobre. A continuación se presentan los casos a nivel municipal y de localidad, en los que es posible observar una mejor delimitación

⁷ Estos mapas son presentados en un anexo disponible por petición a los autores.

CUADRO 2. Municipios ordenados de acuerdo con sus índices de marginación y de pobreza difusa (2000)

		Marginación			Difuso no ponderado			Difuso ponderado	
Oraen	Clave	Municipio	Población	Clave	Municipio	Población	Clave	Municipio	Población
16 con 1	16 con menos carencias	rrencias							
1	09014	09014 Benito Juárez	360 478	09014	Benito Juárez	360 478	9014	Benito Juárez	360 478
7	19019	19019 San Pedro Garza García	125 978	19019	San Pedro Garza García	125 978	19019	San Pedro Garza García	125 978
3	19046	19046 San Nicolás de los Garza	496 878	19046	San Nicolás de los Garza	496 878	15020	Coacalco de Berriozábal	252 555
4	09003	09003 Coyoacán	640 423	15020	Coacalco de Berriozábal	252 555	19046	San Nicolás de los Garza	496 878
5	08019	08019 Chihuahua	671 790	09003	Coyoacán	640 423	14039	Guadalajara	1 646 319
9	15020	Coacalco de Berriozábal	252 555	09016	Miguel Hidalgo	352 640	15058	Nezahualcóyotl	1 225 972
7	09016	09016 Miguel Hidalgo	352 640	08019	Chihuahua	671 790	9003	Coyoacán	640 423
∞	09015	Cuauhtémoc	516 255	09015	Cuauhtémoc	516 255	9016	Miguel Hidalgo	352 640
6	15054	Metepec	194 463	15121	Cuautitlán Izcalli	453 298	15104	Tlalnepantla de Baz	721 415
10	26019	26019 Cananea	32 061	14039	Guadalajara	1 646 319	9015	Cuauhtémoc	516 255
11	19039	Monterrey	1 110 997	26019	Cananea	32 061	9017	Venustiano Carranza	462 806
12	19026	19026 Guadalupe	670 162	19039	Monterrey	1 110 997	9010	Álvaro Obregón	687 020
13	14039	14039 Guadalajara	1 646 319	09007	Azcapotzalco	441 008	9006	Iztacalco	411 321
14	28009	Ciudad Madero	182 325	19026	Guadalupe	670 162	19039	Monterrey	1 110 997
15	15121	Cuautitlán Izcalli	453 298	28009	Ciudad Madero	182 325	9002	Azcapotzalco	441 008
16	05030	Saltillo	578 046	15054	Metepec	194 463	15013	Atizapán de Zaragoza	467 886

16 coı	16 con más carencias	ncias							
16	12071	12071 Xochistlahuaca	22 781	20511	Santo Domingo Nuxaa	3 430	8012	Carichí	2 760
15	80080	08008 Batopilas	12 545	30103	Mecatlan	10 345	12016	Coahuayutla de José	
								María Izazaga	15 372
14	20242	20242 San Martin Peras	8 877	12010	Atlixtac	21 407	14061	Mezquitic	14 614
13	21077	Hueytlalpan	5 465	08046	Morelos	9 482	12071	Xochistlahuaca	22 781
12	12010	Atlixtac	21 407	20171	San José Tenango	19 969	10014	Mezquital	27 512
11	07113	Aldama	3 635	21077	Hueytlalpan	5 465	8027	Guachochi	40 615
10	20386	Santa Cruz							
		Zenzontepec	15 054	18009	Del Nayar	26 649	20391	20391 Santa Lucía Miahuatlan	2 808
6	07082	Sitala	2 887	20391	Santa Lucía				:
					Miahuatlan	2 808	12076	12076 Acatepec	25 060
8	07022	Chalchihuitan	12 256	80080	Batopilas	12 545	8008	Batopilas	12 545
7	12076	Acatepec	25 060	12041	Malinaltepec	34 925	20016	Coicoyán de las Flores	5 733
9	30110	Mixtla de Altamirano	8 368	20386	Santa Cruz Zenzontepec	15 054	30159	Tehuipango	17 640
5	20391	Santa Lucía							
		Miahuatlan	2 808	30159	Tehuipango	17 640	7022	Chalchihuitán	12 256
4	20450	Santiago Amoltepec	9 537	07022	Chalchihuitan	12 256	21077	Hueytlalpan	5 465
3	30159	Tehuipango	17 640	12076	12076 Acatepec	25 060	12010	Atlixtac	21 407
7	20016	20016 Coicoyan de las							
		Flores	5 733	20450	20450 Santiago Amoltepec	9 537	18009	18009 Del Nayar	26 649
\vdash	12043	12043 Metlatónoc	30 039	12043	12043 Metlatónoc	30 039	12043	12043 Metlatónoc	30 039
	,								

FUENTE: Cálculos propios con datos de Conapo (2001).

geográfica de las zonas de pobreza y marginación, ya que al interior de cada estado siempre encontraremos municipios y localidades pobres y no pobres.

2. Pobreza difusa a nivel municipal

Los índices difusos se calcularon para 2 243 municipios, pero solamente los resultados más relevantes se describen en esta sección. El cuadro 2 muestra los 16 municipios con más y menos carencias, en el que es notoria una alta coincidencias en el orden que proporciona cada una de las metodologías. La correlación entre el orden de los municipios clasificados por cada una de las técnicas considerando todos los municipios es de 90%, lo cual sugiere que ambos índices presentan magnitudes proporcionales. Para los municipios con menos carencias las metodologías coinciden en el orden asignado a Benito Juárez como el municipio con menos carencias, y a San Pedro Garza García como el segundo. Ambas metodologías presentan una alta coincidencia en señalar a los 16 municipios con menos carencias, aunque el orden asignado para cada municipio cambia. Para los municipios con mayores carencias, las metodologías coinciden en nueve de 16 municipios, aunque el orden es diferente.

Una vez que los índices de pobreza difusa se clasifican de acuerdo con la técnica de Dalenius, las diferencias entre marginación y pobreza difusa es obvia. Marginación concentra a la mayoría de los municipios en el estrato de alta marginación, mientras que la metodología difusa los concentra en el estrato medio. Esta diferencia se aprecia claramente en la gráfica 1, en la que la distribución de los municipios marginados es asimétrica a la derecha, mientras que la distribución de pobreza difusa se concentra en el centro.

Una explicación de esta diferencia en la distribución de los municipios es que el método para calcular marginación emplea una medida resumen, la cual no considera toda la información disponible en las variables. En realidad, el primer componente principal calculado por el Conapo explica solamente 79.5% de la varianza, y pierde el resto de la información. Además, la técnica de componentes principales asigna diferentes pesos a las variables sin considerar algún razonamiento basado en alguna teoría de pobreza. En el cuadro 3 se muestran los coeficientes de los componentes principales empleados por el Conapo para calcular el índice de marginación.

⁸ Los resultados completos para municipios y localidades se presentan en un anexo disponible por petición a los autores.

399

Alto

Muy alto

1 000 ■ Marginación -□- Difusos no ponderados 900 → Difusos ponderados 800 719 700 678 552 600 500

GRÁFICA 1. Distribución de municipios por estrato, de acuerdo con su nivel de marginación y de pobreza difusa (2000)

Bajo FUENTE: Cálculos propios con información de Conapo (2001).

279

Variable	Coeficiente
Población analfabeta de 15 años o más	0.16921
Población sin primaria completa de 15 años o más	0.17258
Ocupantes en viviendas sin drenaje ni servicio sanitario exclusivo	0.11169
Ocupantes en viviendas sin energía eléctrica	0.12898
Ocupantes en viviendas sin agua entubada	0.11743
Viviendas con algún hacinamiento	0.14953
Ocupantes en viviendas con piso de tierra	0.16539
Población en localidades con menos de 5 mil habitantes	0.12271
Población ocupada con ingreso de hasta dos salarios mínimos	0.15988

CUADRO 3. Coeficientes del primer componente principal

Medio

FUENTE: Conapo (2001).

Muy bajo

400

300 200 100

0

Una crítica a estos coeficientes es que los ponderadores asignados a población sin primaria completa de 15 años o más, y a población analfabeta de 15 años o más, son los más altos sin justificación alguna, además de que presentan una alta correlación entre sí. Esto último implica que la población con altos porcentajes de no educación presentará una alta marginación.

Los mapas de pobreza muestran que marginación clasifica a la mayoría

de los municipios como altamente marginados, mientras la técnica difusa los clasifica como medianamente pobres. La distribución geográfica generada por marginación sugiere un país con el sur y el centro altamente marginados, con pocos municipios con muy alta o baja marginación, mientras que el norte es una zona eminentemente no marginada. Por otro lado, la pobreza difusa sugiere que la mayoría del país sufre de pobreza media, mientras que en el sur se concentra la población con muy alta pobreza, y en el norte la población con muy baja pobreza.

3. Pobreza difusa a nivel localidad⁹

El índice de pobreza difusa se calculó para el mismo número de localidades que empleo el Conapo en su análisis de marginación, aun a pesar de que el Conapo incluyó sólo 107 218 del total de 199 391 localidades. La razón para que el Conapo dejara fuera del análisis 92 173 localidades fue que algunas de estas localidades se componían por dos o menos viviendas, y su información es confidencial, o sencillamente porque no existía información para algunas de esas localidades. Otro problema con la información empleada por el Conapo a nivel localidad es que no se incluyó la variable población en localidades con menos de 5 mil habitantes. La consecuencia de eliminar esta variable es que se hace imposible identificar localidades tomando en cuenta su tamaño de población. Dada la naturaleza de la técnica difusa, para calcular el índice difuso de pobreza si fue posible incluir la variable población en localidades con menos de 5 mil habitantes, lo que resultó en una clara diferencia en la distribución de localidades de acuerdo con su estrato de marginación y de pobreza.

La distribución de marginación a nivel localidad es muy similar a la distribución a nivel municipal, que se caracteriza por una alta concentración de localidades en el estrato alto. La distribución de los índices de pobreza se concentra en los estratos bajo y medio, pero no es similar a la de los municipios. La gráfica 2 sugiere que la clasificación de las localidades varía considerablemente de acuerdo con cada técnica: 77.5% de las localidades son de alta o muy alta marginación, mientras que 44.2% son de alta o muy alta pobreza difusa sin ponderar y 33.9% de acuerdo con pobreza difusa ponderada.

Sin embargo, debemos recordar que 46% de las localidades no fueron incluidas en el análisis, lo cual deja en duda su clasificación. Una posible cla-

⁹ Una localidad se define como la región en donde se ubica al menos una vivienda.

60 000 Marginación Difuso no ponderado Difuso ponderado 49 200 50 000 40 000 35 276 34 598 33 896 30 000 30 752 28 945 21 369 21 590 20,000 14 825 18 474 14 942 10 000 7 030 5 5 5 5 7 2 933 Bajo Medio Alto Muy alto Muy bajo

GRÁFICA 2. Distribución de localidades por estrato de acuerdo con su nivel de marginación y de pobreza difusa (2000)

FUENTE: Cálculos propios con información de Conapo (2001).

sificación para estas localidades es dentro del grupo de alta o muy alta pobreza, ya que generalmente se trata de localidades remotas en donde es poco probable que existan servicios. Según este supuesto, el porcentaje de estos estratos debería ser de cerca de 87.9% para marginación y de 70% para pobreza difusa no ponderada y 64.5% para pobreza difusa ponderada. En este sentido, los resultados de marginación parecerían exagerados ya que de acuerdo con las cifras de pobreza calculadas mediante ingreso por Sedesol (2003), 53.7% de la población fue clasificada como pobre en 2000 (véase Cortés *et al*, 2002, y Sedesol, 2003).

La correlación entre marginación y pobreza difusa no es tan alta para el caso de localidades como es para los casos de estados y municipios, ya que sólo alcanza 82% para difusos no ponderados y 47% para ponderados. El cuadro 4 muestra las 16 localidades con más y menos carencias de acuerdo con los índices de marginación y de pobreza difusa. Marginación clasifica a Barona en Baja California como la localidad con menos carencias en el país, aun cuando se trata de una localidad con solamente nueve habitantes. Por otro lado la técnica difusa no ponderada clasifica a Benito Juárez en el Distrito federal como la localidad con menos carencias en el país, la cual es una

CUADRO 4. Índices de marginación y de pobreza difusa para localidades (2000)

		Marginación			Difusos no ponderados	
Orden	Clave	Localidad	Población	Clave	Localidad	Población
16 localida	16 localidades con menos carencias	carencias				
1	020041279	Barona	6	090140001	Benito Juárez	360 478
2	020010364	Rancho Barreda	8	190190001	San Pedro Garza García	125 945
3	240560109	Rancho la Aurora	7	150200001	San Francisco Coacalco	252 291
4	260250050	Chiltepines, Los (San Juan)	5	190460001	Ciudad San Nicolás de los Garza	496 878
5	020013283	Baja Beach and Tennis Club	26	220060080	Candiles	5 157
9	150090054	Tenexcaltitla (Manuel Arias Aguirre)	8	150540001	Metepec	158 695
7	020011048	Campo Playa México	6	203500002	Fraccionamiento El Rosario	11 642
8	020011334	Campo Delicias	6	260190001	Cananea	30 515
6	140970415	Villa Santa Anita	16	090030001	Coyoacán	640 423
10	030080673	Marbella	8	080190001	Chihuahua	928 299
11	120060041	Yetla Dos	11	150390003	San BuenaVentura	8 977
12	110110153	Productora Nacional de Semillas (Pronase)	5	150440020	Alborada Jaltenco	16 790
13	020011578	Campo la Perlita	10	090160001	Miguel Hidalgo	352 640
14	020011050	Olas, Las	10	151210001	Cuautitlán Izcalli	433 830
15	020013344	Campo Turístico la Misión	12	240280001	San Luis Potosí	629 208
16	020050126	Rancho la Burrita	6	020020001	Mexicali	549 873
16 localida	16 localidades con más carencias	rencias				
16	120430199	Santa Cruz El Nuevo	27	100110022	Paso del Águila (La Cuchilla)	4
15	180090202	Tenamaxtles, Los (Arroyo los Tenamaxtes)	18	250160751	Ayoltita	3
14	250170925	Rancho quemado	18	120710075	Loma Nanche del Zorro	10
13	070300003	Vista Alegre	43	070570423	Rincón Antonio	11
12	120430190	Dii Yoo	37	120320308	Río, El	16
11	070200070	Mazatlán	28	180090173	Camaleones	15
10	120040028	San Miguelito	51	203540006	Buena Vista	5
6	120430204	Yuu Mini Saa	20	160840003	Bolsa, La (Rancho de Lourdes)	9
~	071071857	Fracción las Luces	26	302020043	Mesoncillo	8
7	200580050	Piedra Boluda	20	280030371	Árbol, El	16
9	070820119	San Juan Veracruz	107	202790012	Taballe	9
5	070830057	Santa Rita Agua Escondida (El Molino)	21	201410053	Carolina	3
4	071100019	Montaña, La	21	260030097	Dolisa	4
3	250070052	Poblado Nuevo	22	301580304	Ejido La Perla	9
7 -	120550168	Barrio Santiago Dos	24	080080367	Higuera, La	Λ,
ī	120/10122	Arroyo Platanar Veron	74	1205/0190	Berraco, El	s

Orden		Difusos ponderados			Difusos promedio	
	Clave	Localidad	Población	Clave	Localidad	Población
16 localida	16 localidades con menos care	s carencias				
1	070310080	Guayaza	422	090140001	Benito Juárez	360 478
2	070760073	Nuevo Poblado San Rafael	106	220060080	Candiles	5 157
3	070520138	San Juan Bautista	310	150200001	San Francisco Coacalco	252 291
4	210690004	Champusco (Escuela Secundaria Técnica 4)	433	150390003	San Buenaventura	8 977
5	130280206	Corral Blanco (Instalaciones de Sagar)	511	190190001	San Pedro Garza García	125 945
9	141200134	Mojonera, La	1 186	190460001	Ciudad San Nicolás de los Garza	496 878
7	070720034	Colegio Lindavista	401	203500002	Fraccionamiento El Rosario	11 642
8	290340040	Mazaquiahuac	795	150440020	Alborada Jaltenco	16 790
6	020011602	Campo Violeta (Playa Corrales)	6	150540001	Metepec	158 695
10	020011334	Campo Delicias	6	260190001	Cananea	30 515
11	020011048	Campo Playa México	6	090030001	Coyoacán	640 423
12	120660089	Unidad Habitacional	618	151090025	San Pablo de las Salinas	146 560
13	100010045	Iosé Guadalupe Aguilera (La Grania)	509	080190001	Chihuahua	657 876
14	150390003	San Buenaventura	8 977	090160001	Miguel Hidalgo	352 640
15	020013172	Arnaiz	6	290240001	Panotla	9 811
16	170070125	Fraccionamiento Lomas de Ahuatlan	3 527	151210001	Cuautitlán Izcalli	433 830
16 localida	16 localidades con más carencias	arencias				
16	070390132	Santa Rita Pabuchil	18	120430166	Piedra Negra (Tierra Blanquita)	99
15	120620052	Colonia Luna	24	120620070	Cerro Colorado	33
14	120620061	Malvabisco (Tierra Colorada)	39	120620061	Malvabisco (Tierra Colorada)	39
13	120620070	Cerro Colorado	33	071100019	Montaða, La	21
12	120620074	Trapiche	15	120620052	Colonia Luna	24
11	070770099	Unión, La	10	180090173	Camaleones	15
10	070770434	Cause, El	8	120430118	Yozo Chun Chiquito	89
6	120430118	Yozo Chun Chiquito	89	301700048	Plan, El	32
∞	301700048	Plan, El	32	120430199	Santa Cruz El Nuevo	27
7	120430159	Kavananu	26	120430190	Dii Yoo	37
9	120430164	Pie de Mango	33	120620074	Trapiche	15
5	120430184	Yoso Cano	26	120430159	Kavananu	26
4	120430188	Cerro Perico	49	120430164	Pie de Mango	33
3	120430190	Dii Yoo	37	120430188	Cerro Perico	49
2	120430199	Santa Cruz El Nuevo	27	120430184	Yoso Cano	26
1	204660033	Yutacua	10	070770099	Unión, La	10

FUENTE: Cálculos propios con datos de Conapo (2002) y de INEGI (2002).

localidad de 360 478 habitantes. Claramente los resultados de la técnica difusa son más congruentes para aplicar política social, ya que no es congruente pensar que una localidad con nueve habitantes puede tener las mismas oportunidades de desarrollo social y económico que una localidad considerablemente más grande. Esta última característica de la técnica difusa es una ventaja más de los conjuntos difusos, ya que clasifica a las regiones de acuerdo con su tamaño de población.

CONCLUSIONES

La metodología de conjuntos difusos ha sido presentada como otra técnica para medir pobreza de una manera directa y confiable, la cual además ofrece algunas ventajas respecto a las técnicas de líneas de pobreza y de marginación. Entre las ventajas de la técnica difusa encontramos que se trata de una técnica multivariada que capta la pobreza como un fenómeno multidimensional, que no se fundamenta en un solo indicador como lo hacen las líneas de pobreza. Una ventaja más de la técnica difusa es que los índices se pueden calcular mediante datos censales y de encuesta, mientras que para construir líneas de pobreza es necesario contar con información muestral muy precisa. Por otro lado, la técnica difusa establece una frontera no abrupta entre pobres y no pobres, que es más congruente con la realidad que una separación mediante una línea.

Respecto a marginación, la teoría de conjuntos difusos es una metodología menos compleja, que puede ser aplicada de manera directa mediante los mismos datos que marginación. Por otro lado, la teoría difusa emplea toda la información disponible en las variables utilizadas en el análisis, mientras que la técnica de marginación solamente emplea la parte de información explicada por la varianza contenida en el primer componente principal. También, en marginación se emplean ponderadores para las variables de carencia, que no se sustentan en alguna teoría de pobreza, mientras que la teoría difusa se puede fundamentar en diferentes teorías de pobreza para determinar los ponderadores.

Los resultados para el caso de México muestran que la metodología difusa es una buena opción para medir pobreza para diferentes niveles regionales, y para establecer comparaciones dentro de cada nivel, con lo cual es posible identificar a los municipios y localidades que requieren recursos públicos para focalizar y combatir la pobreza.

REFERENCIAS BIBLIOGRÁFICAS

- Atkinson, A. B. (1987), "On the Measurement of Poverty", *Econometrica* 55, páginas 749-764.
- Baharoglu, D., y K. Kessides (2000), "Urban Poverty", *Poverty Reduction Strategy Sourcebook*, Washington, Banco Mundial.
- Cerioli, A., y S. Zani (1990), "A Fuzzy Approach to the Measurement of Poverty", *Studies in Contemporary Economics*.
- Comité Técnico para la Medición de la Pobreza (2002), "Medición de la pobreza en México: Variantes metodológicas y estimación preliminar", Serie Documentos de Investigación, México, Sedesol.
- Conapo (2001), "Índices de marginación", Colección de Índices Sociodemográficos, México, Conapo.
- ____ (2002), "Índices de marginación a nivel localidad", Colección Índices Sociodemográficos, México.
- Cortés, F., D. Hernández, E. Hernández, M. Székely y H. Vera (2002), "Evolución y características de la pobreza en México en la última década del siglo XX", Documentos de Investigación, México, Sedesol.
- Deutsch, J., y J. Silber (2005), "Measuring Multidimensional Poverty: An Empirical Comparison of Various Approaches", *Review of Income and Wealth* 51, páginas 145-174.
- Duclos, J-Y, D. Sahn y S. Younger (2001), "Robust Multi-Dimensional Poverty Comparisons", Cornell University, mimeografiado.
- Dubois, D., y H. Prade (1980), Fuzzy Sets and Systems, Boston, Academic Press.
- Foster, J., G. Greer y E. Thorbecke (1984), "A Class of Decomposable Poverty Measures", *Econometrica*, 52(3), pp. 761-766.
- Godoy Escoto, J. E., y L. Karp Siordia (1990), "Notas sobre la teoría de los conjuntos difusos (*Fuzzy Sets*)", *Cuadernos de Investigación* 13, ENEP Acatlán.
- Hernández Laos, E. (2000), "Prospectiva demográfica y económica de México y sus efectos sobre la pobreza", México, Conapo.
- INEGI (2001), XII Censo General de Población y Vivienda 2000, Aguascalientes, INEGI.
- Jolliffe, I. T. (2002), Principal Component Analysis, Nueva York, Springer.
- Krzanowski, K. R. (2000), *Principles of Multivariate Analysis: A User's Perspective*, Oxford, Oxford University Press.
- Lemmi, A., y B. Gianni (2006), Fuzzy Set Approach to Multidimensional Poverty Measurement, Springer.
- Sedesol (2003), *Medición del desarrollo*, *México* 2000-2002, México, Sedesol (consultado en: http://www.sedesol.gob.mx), abril 2004.

- Sen, A. (1984), "Poor, Relatively Speaking", Resources, values and development, Cambridge, Harvard University Press.
- Sindzingre, A. (2005), "The Multidimensionality of Poverty: An Institutionalist Perspective", International Conference the Many Dimensions of Poverty, mimeografiado.
- Towsend, P. (1979), Poverty in the United Kingdom, Londres, Penguin.
- Weinberg, D. H. (2004), "Income Data Quality Issues in the Annual Social and Economic Supplement to the Current Population Survey", prepared for American Enterprise Institute-University of Maryland Seminar on Poverty Measurement, mimeografiado.
- Zadeh, L. A. (1965), "Fuzzy Sets, Information and Control, 8, pp. 338-353.