LABORATORIO DI RICERCA OPERATIVA 2020-2021

Laboratorio OPL - LEZIONE 5

Sommario

- 1. Problemi di Copertura
 - a) Set Covering e Set Partitioning
- 2. Problemi di Localizzazione
 - a) Plant Location
 - b) Plant Location capacitato
 - c) P-mediana
 - d) P-centro

LabOR 5 07/01/2021

Coperture e Partizioni

Consideriamo una matrice $A \in \mathbb{R}^{m \times n}$ in cui $a_{ij} \in \{0,1\} \ \forall i = 1,...,m \ j = 1,...n$.

Diremo che la colonna di indice j (A_i) copre la riga di indice i (a_i^{T}) se $a_{ij}=1$

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

 A_4 copre le righe a_1^{T} e a_2^{T} , A_5 copre le righe a_1^{T} e a_3^{T} , etc.

Un sottoinsieme di indici di colonne $N^* \subseteq \{1, ..., n\}$, ovvero un sottoinsieme di colonne, è detto COVER (Copertura) se ogni riga di A è coperta da almeno una colonna A_j , $j \in N^*$.

Esempio di Cover: $N^* = \{4,7\}, N^* = \{1,2,3,4,5,6,7\}, N^* = \{1,2,3,7\}$

Un sottoinsieme di indici di colonne $N^* \subseteq \{1, ..., n\}$ è detto PARTIZIONE se ogni riga di A è coperta da una ed una sola colonna A_i , $j \in N^*$.

Esempi di Partizione: $N^* = \{5,6\}, N^* = \{2,7\}, N^* = \{1,3,6\}$

Più in generale

- Le righe di A rappresentano gli elementi di un insieme M(|M| = m);
- Ogni colonna A_i di A_i è il vettore rappresentativo di un sottoinsieme N_i di M_i
- Il generico elemento a_{ij} $\forall i=1,...,m$ j=1,...n indica se l'elemento $i\in M$ appartiene al sottoinsieme N_i $(a_{ij}=1)$ oppure non appartiene ad esso $(a_{ij}=0)$;
- L'insieme delle colonne rappresenta, quindi, una famiglia $N=\{N_1,N_2,\ldots,N_j,\ldots,N_n\}$ di n sottoinsiemi di M, tali che

$$\bigcup_{j=1}^{n} N_j = M$$

Esempio

$$M = \{a, b, c, d\}$$
 $N = \{N_1, N_2, N_3, N_4, N_5, N_6, N_7\}$

$$N_1 = \{a\}, \qquad N_2 = \{b\}, \qquad N_3 = \{c\}, \qquad N_4 = \{a,b\}, \qquad N_5 = \{a,c\}, \qquad N_6 = \{b,d\}, N_7 = \{a,c,d\}$$

Un sottoinsieme $N^* \subseteq N$ è un Cover se

$$\bigcup_{N_j \in N^*} N_j = M$$

Esempio di Cover: $N^* = \{N_4, N_7\}, N^* = N, N^* = \{N_1, N_2, N_3, N_7\}$

Un sottoinsieme $N^* \subseteq N$ è una Partizione se è un Cover ed, inoltre, $N_i \cap N_k = \emptyset \quad \forall N_i \neq N_k$

Esempi di Partizione: $N^* = \{N_5, N_6\}, N^* = \{N_2, N_7\}, N^* = \{N_1, N_3, N_6\}$

I Problemi di Set Covering e Set Partitioning

Se a ciascun sottoinsieme N_j è associato un costo c_j (costo di copertura) allora è interessante sapere quali sono le coperture e le partizioni di costo minimo. Definite le variabili decisionali

$$x_j = \begin{cases} 1 \text{ se il sottoinsieme } N_j \text{ fa parte di } N^* \\ 0 \text{ altrimenti} \end{cases}$$

si ha

$$\begin{array}{ccc} min & c^{\top}x \\ & Ax & \geq & \mathbf{1} \\ & x & \in & \{0,1\}^n \end{array}$$

A è chiamata matrice di Appartenenza

$$min \quad c^{\top}x$$

$$Ax = \mathbf{1}$$

$$x \in \{0,1\}^n$$

```
min \sum_{j=1}^{n} c_{j}x_{j}
\sum_{j=1}^{n} A_{j}x_{j} \geq 1
x_{j} \in \{0,1\} \quad j = 1, ..., n
min \sum_{j=1}^{n} c_{j}x_{j}
\sum_{j=1}^{n} a_{ij}x_{j} \geq 1 \quad i = 1, ..., m
x_{j} \in \{0,1\} \quad j = 1, ..., n
Set Covering
```

Set Covering

Set Partitioning

I Problemi di Set Covering e Set Partitioning - Applicazioni

M l'insieme di quartieri di una citta; N l'insieme di punti della città in cui installare delle stazioni di servizio (caserme dei vigili del fuoco; postazioni di guardia medica; farmacie; etc); N_j l'insieme dei quartieri che possono essere serviti dalla stazione installata in j. L'obiettivo è quello di servire tutti i quartieri a costo minimo, posto che nel Covering ogni quartiere è servito da almeno un centro di servizio; nel Partitioning ogni quartiere è servito da un centro di servizio ed uno solo.

$$M = \{a, b, c, d\}$$
 $N = \{N_1, N_2, N_3, N_4, N_5, N_6, N_7\}$
 $N_1 = \{a\},$ $N_2 = \{b\},$ $N_3 = \{c\},$ $N_4 = \{a, b\},$ $N_5 = \{a, c\},$ $N_6 = \{b, d\}, N_7 = \{a, c, d\}$

 N_4 , N_7 Cover

 N_5, N_6 Partizione

Esempio

Implementare in OPL i problemi di Set Covering e Set Partitioning con $N=\{1,2,\dots,9\}$, $M=\{1,2,\dots,8\}.$

Gli insiemi N_i sono rappresentati dalle colonne della seguente matrice A

1	0	0	0	1	1	0	1	0
1	0	0	1	0	1	1	1	0
0	1	1	1	1	0	1	0	0
0	0	0	0	0	0	0	0	1
0	0	0	0	1	1	0	1	0
1	1	0	0	0	0	0	1	0
0	1	0	0	1	0	1	0	1
1	0	1	0	1	1	0	0	0

Il vettore dei costi C è

47	27	45	20	40	45	60	60	22
----	----	----	----	----	----	----	----	----

Soluzione

1	0	0	0	1	1	0	1	0
1	0	0	1	0	1	1	1	0
0	1	1	1	1	0	1	0	0
0	0	0	0	0	0	0	0	1
0	0	0	0	1	1	0	1	0
1	1	0	0	0	0	0	1	0
0	1	0	0	1	0	1	0	1
1	0	1	0	1	1	0	0	0

Cover
$$N^* = \{N_2, N_6, N_9\}$$

 $z^* = c_2 + c_6 + c_9 = 27 + 45 + 22 = 94$

1	0	0	0	1	1	0	1	0
1	0	0	1	0	1	1	1	0
0	1	1	1	1	0	1	0	0
0	0	0	0	0	0	0	0	1
0	0	0	0	1	1	0	1	0
1	1	0	0	0	0	0	1	0
0	1	0	0	1	0	1	0	1
1	0	1	0	1	1	0	0	0

Partizione
$$N^* = \{N_3, N_8, N_9\}$$

 $z^* = c_3 + c_8 + c_9 = 45 + 60 + 22 = 127$

Il Problema di Plant Location non capacitato

 $y_j \in \{0,1\}$ j = 1, ..., n

Sono dati un insieme insieme di utenti $M=\{1,2,...,m\}$ e un insieme $N=\{1,2,...,n\}$ di locazioni in cui è possibile installare dei centri di servizio. E' noto che costruire un centro di servizio nella locazione $j\in N$ costa f_j e che servire l'utente $i\in M$ a partire dal centro di servizio costruito nella locazione $j\in N$ costa c_{ij} . Si vuole decidere dove costruire i centri di servizio e come servire tutti gli utenti a costo complessivo minimo, posto che un utente debba essere servito da un centro di servizio ed uno solo .

$$y_j = \begin{cases} 1 \text{ se la stazione } j \text{ è costruita} \\ 0 \text{ altrimenti} \end{cases} \qquad x_{ij} = \begin{cases} 1 \text{ se il cliente } i \text{ è servito dalla stazione } j \\ 0 \text{ altrimenti} \end{cases}$$

Analogie/differenze tra problemi di localizzazione e problemi di copertura

Copertura

- 1. Nessun utente deve essere lasciato scoperto.
- 2. Gli insiemi di utenti che sono serviti da un centro di servizio sono noti a priori.
- 3. Lo stesso utente può essere servito da più centri di servizio.
- 4. I costi della copertura tengono conto solo dei costi di costruzione dei centri di servizio.

Localizzazione

- 1. Ogni utente deve essere servito.
- 2. Gli insiemi di utenti che verranno serviti da un centro di servizio sono il risultato del processo decisionale.
- 3. Un utente deve essere servito da un solo centro di servizio (partitioning).
- 4. I costi della localizzazione tengono conto dei costi di costruzione e dei costi di afferenza.
- 5. Potenzialmente, un utente può essere servito da un qualunque centro di servizio.

Esempio con 6 utenti e 5 impianti

Costi di afferenza C_{ij}

12	8	2	3	8
8	4	6	5	7
2	6	5	6	5
3	5	6	9	10
8	4	5	10	8
7	3	3	4	4

Costi di attivazione f_j

Soluzione

12	8	2	3	8
8	4	6	5	7
2	6	5	6	5
3	5	6	9	10
8	4	5	10	8
7	3	3	4	4

Costi di afferenza C_{ij}

4	3	5	4	7

Costi di attivazione f_i

costo totale di afferenza = $c_{13} + c_{22} + c_{31} + c_{41} + c_{52} + c_{63} = 18$

$$z^* = 18 + 12 = 30$$

costo totale di attivazione = $f_1 + f_2 + f_3 = 12$

 χ^*

Il Problema di Plant Location capacitato

Nel caso più generale ogni utente $i \in N$ presenta "domanda di servizio" non unitaria D_i ; a sua volta ogni centro di servizio j ha una "capacità" limitata, K_j , di erogazione del servizio

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} + \sum_{j=1}^{n} f_{j} y_{j}$$

f.o. = costo afferenza + costo di attivazione

$$\sum_{i=1} x_{ij} = 1 \qquad i = 1, \dots, m$$

vincoli di scelta multipla

$$\sum_{i=1} D_i x_{ij} \le K_j y_j \quad j = 1, ..., n$$

vincoli di upper bound variabile generalizzati

$$x_{ij} \in \{0,1\}$$
 $i = 1,...,m \ j = 1,...,n$

$$y_i \in \{0,1\}$$
 $i = 1,...,m$

Varianti del Plant Location

- 1) Numero di centri di servizio da attivare noto a priori e pari a p
- 2) Costi di attivazione uguali per ogni centro di servizio

Minimizzazione dei costi totale di afferenza

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = 1 \qquad i = 1, ..., m$$

$$x_{ij} \le y_{j} \quad i = 1, ..., m \quad j = 1, ..., n$$

$$\sum_{j=1}^{n} y_{j} = p$$

$$x_{ij} \in \{0,1\} \qquad i = 1, ..., m \quad j = 1, ..., n$$

$$y_{i} \in \{0,1\} \qquad i = 1, ..., m$$

Modello di p-mediana

Minimizzazione del massimo costo di afferenza

Modello di p-centro

Esercizio

6 utenti, 5 impianti

12	8	2	3	8
8	4	6	5	7
2	6	5	6	5
3	5	6	9	10
8	4	5	10	8
7	3	3	4	4

costi di afferenza

Implementare in OPL il modello di p-mediana ed il modello di p-centro con p=2. Confrontare le soluzioni ottenute nei due casi

Soluzione

costi di afferenza

12	8	2	3	8			
8	4	6	5	7			
2	6	5	6	5			
3	5	6	9	10			
8	4	5	10	8			
7	3	3	4	4			

	p-me	edia	na

	1			
0	0	1	0	0
0	0	1	0	0
1	0	0	0	0
1	0	0	0	0
0	0	1	0	0
0	0	1	0	0
1	0	1	0	0

*x**

0	0	1	0	0
0	1	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	0	0	0
0	0	1	0	0
0	1	1	0	0

p-centro

costo totale di afferenza =

$$z^* = c_{13} + c_{23} + c_{31} + c_{41} + c_{53} + c_{63} = 21$$

costo di afferenza max =
$$z^* = c_{33} = c_{42} = 5$$

Esercizio per casa: Le soluzioni ottime del problema della p-mediana e del p-centro, sono ammissibili per il problema di localizzazione non capacitato. Verificare che in corrispondenza di tali soluzioni, il valore di f.o. del problema di localizzazione non capacito è non inferiore alla soluzione ottima riportata nella slide 13.