

OPEN MPI WITH RDMA SUPPORT AND CUDA

OVERVIEW

- What is CUDA-aware
- History of CUDA-aware support in Open MPI
- GPU Direct RDMA support
- Tuning parameters
- Application example
- Future work

CUDA-AWARE DEFINITION

Regular MPI

CUDA-aware MPI

```
//MPI rank 0
cudaMemcpy(s_buf_h,s_buf_d,size,...);
MPI_Send(s_buf_h,size,...);
//MPI rank n-1
MPI_Recv(r_buf_h,size,...);
cudaMemcpy(r_buf_d,r_buf_h,size,...);
//MPI rank n-1
MPI_Recv(r_buf_d,r_buf_h,size,...);
//MPI rank n-1
MPI_Recv(r_buf_d,size,...);
```

CUDA-aware MPI makes MPI+CUDA easier.

CUDA-AWARE MPI IMPLEMENTATIONS

Open MPI 1.7.4 http://www.open-mpi.org

MVAPICH2 2.0

http://mvapich.cse.ohio-state.edu/overview/mvapich2

■ IBM Platform MPI 9.1.2

http://www.ibm.com/systems/technicalcomputing/platformcomputing/products/mpi

CRAY MPT

HISTORY OF CUDA-AWARE OPEN MPI

- Open MPI 1.7.0 released in April, 2013
- Pipelining with host memory staging for large messages (utilizing asynchronous copies) over verbs layer
- Dynamic CUDA IPC support added
- GPU Direct RDMA support
- Use Open MPI 1.7.4 to get all the latest features

MPI API SUPPORT

- Yes
 - All send and receive types
 - All non-arithmetic collectives
- No
 - Reduction type operations MPI_Reduce, MPI_Allreduce, MPI_Scan
 - Non-blocking collectives
 - MPI-2 and MPI-3 (one sided) RMA
- FAQ will be updated as support changes

CUDA IPC SUPPORT IN OPEN MPI

CUDA IPC SUPPORT IN OPEN MPI

- Open MPI dynamically detects if CUDA IPC is supported between GPUs within the same node.
- Enabled by default
 - --mca btl_smcuda_use_cuda_ipc 0
- To see if it is being used between two processes
 - --mca btl_smcuda_cuda_ipc_verbose 100
- CUDA 6.0 has performance fixes

CUDA IPC SUPPORT IN OPEN MPI

GPU DIRECT RDMA SUPPORT

- Kepler class GPUs (K10, K20, K40)
- Mellanox ConnectX-3, ConnectX-3 Pro, Connect-IB
- CUDA 6.0 (EA, RC, Final), Open MPI 1.7.4 and Mellanox OFED 2.1 drivers.
- GPU Direct RDMA enabling software http://www.mellanox.com/downloads/ofed/nvidia_peer_memory-1.0-0.tar.gz

GPU DIRECT RDMA SUPPORT

- Implement with RDMA type protocol
- Register send and receive buffers and have NIC transfer data
- Memory registration is not cheap need to have registration cache

GPU DIRECT RDMA SUPPORT

- Chipset implementations limit bandwidth at larger message sizes
- Still use pipelining with host memory staging for large messages (utilizing asynchronous copies)
- Final implementation is hybrid of both protocols

GPU DIRECT RDMA SUPPORT - PERFORMANCE

GPU DIRECT RDMA SUPPORT - PERFORMANCE

GPU DIRECT RDMA SUPPORT - CONFIGURE

- Nothing different needs to be done at configure time
- > configure --with-cuda

The support is configured in if CUDA 6.0 cuda.h header file is detected.

- To check:
 - ompi_info --all | grep btl_openib_have_cuda_gdr
 MCA btl: informational "btl_openib_have_cuda_gdr" (current value: "true", data source: default, level: 4 tuner/basic, type: bool)
 - > ompi_info -all | grep btl_openib_have_driver_gdr MCA btl: informational "btl_openib_have_driver_gdr" (current value: "true", data source: default, level: 4 tuner/basic, type: bool)

GPU DIRECT RDMA SUPPORT - TUNING PARAMETERS

- Runtime parameters
 - Enable GPU Direct RDMA usage (off by default)
 - --mca btl_openib_want_cuda_gdr 1
 - Adjust when we switch to pipeline transfers through host memory.
 Current default is 30,000 bytes
 - --mca btl_openib_cuda_rdma_limit 60000

GPU DIRECT RDMA SUPPORT - NUMA ISSUES

Configure system so GPU and NIC are close

BETTER

GPU DIRECT RDMA SUPPORT - NUMA ISSUES

Multi NIC - multi GPU: use hwloc to select GPU near NIC

LATENCY COMPARISON - CLOSE VS FAR GPU AND NIC

CUDA-AWARE OPEN MPI AND UNIFIED MEMORY

- CUDA 6 Unified Memory
 cudaMallocManaged(buf, BUFSIZE, cudaMemAttachGlobal)
- Unified Memory may not work correctly with CUDA-aware Open MPI
- Will fix in future release of Open MPI

HOOMD BLUE PERFORMANCE

- <u>Highly Optimized Object-oriented Many-particle Dynamics Blue Edition</u>
 - Performs general purpose particle dynamics simulations
 - Takes advantage of NVIDIA GPU
 - Simulations are configured and run using simple python scripts
 - The development effort is led by Glotzer group at University of Michigan

HOOMD - CLUSTER 1

- Dell[™] PowerEdge[™] R720xd/R720 cluster
 - Dual-Socket Octa-core Intel E5-2680 V2 @ 2.80 GHz CPUs (Static max Perf in BIOS), Memory: 64GB
 DDR3 1600 MHz Dual Rank Memory Module, OS: RHEL 6.2, MLNX_OFED 2.1-1.0.0 InfiniBand SW stack
- Mellanox Connect-IB FDR InfiniBand, Mellanox SwitchX SX6036 InfiniBand VPI switch, NVIDIA®
 Tesla K40 GPUs (1 GPU per node), NVIDIA® CUDA® 5.5 Development Tools and Display Driver
 331.20, Open MPI 1.7.4 rc1, GPUDirect RDMA (nvidia_peer_memory-1.0-0.tar.gz)
- Application: HOOMD-blue (git master 28Jan14), Benchmark datasets: Lennard-Jones Liquid
 Benchmarks (16K, 64K Particles)

GPU DIRECT RDMA SUPPORT - APPLICATION PERFORMANCE

Higher is better

HOOMD - CLUSTER 2

- Dell[™] PowerEdge[™] T620 128-node (1536-core) Wilkes cluster at Univ of Cambridge
 - Dual-Socket Hexa-Core Intel E5-2630 v2 @ 2.60 GHz CPUs, Memory: 64GB memory, DDR3 1600 MHz,
 OS: Scientific Linux release 6.4 (Carbon), MLNX_OFED 2.1-1.0.0 InfiniBand SW stack
- Mellanox Connect-IB FDR InfiniBand adapters, Mellanox SwitchX SX6036 InfiniBand VPI switch, NVIDIA® Tesla K20 GPUs (2 GPUs per node), NVIDIA® CUDA® 5.5 Development Tools and Display Driver 331.20, Open MPI 1.7.4rc1, GPUDirect RDMA (nvidia_peer_memory-1.0-0.tar.gz)
- Application: HOOMD-blue (git master 28Jan14)
- Benchmark datasets: Lennard-Jones Liquid Benchmarks (512K Particles)

GPU DIRECT RDMA SUPPORT - APPLICATION PERFORMANCE

Higher is better

OPEN MPI CUDA-AWARE

- Work continues to improve performance
 - Better interactions with streams
 - Better small message performance eager protocol
 - CUDA-aware support for new RMA
 - Support for reduction operations
 - Support for non-blocking collectives
- Try it!
- Lots of information in FAQ at the Open MPI web site
- Questions?