ELETRÔNICA BÁSICA I – ELE08497 - LABORATÓRIO 4 TRANSISTOR BIPOLAR DE JUNÇÃO – CURVAS CARACTERÍSTICAS

1- OBJETIVO

Levantar as curvas características de entrada e saída e de chaveamento de um transistor bipolar de junção (BJT).

2- INTRODUÇÃO TEÓRICA

2.1- IDENTIFICAÇÃO DOS TERMINAIS DE UM TRANSISTOR BIPOLAR DE JUNÇÃO - BJT

As junções de um transistor Bipolar de Junção (BJT) recebem um encapsulamento adequado, conforme o tipo de aplicação e a ligação dos três terminais para conexões. Quando não existe nenhum detalhe que identifique os terminais de um BJT, o coletor é frequentemente marcado com uma "pinta" ou com algum outro detalhe identificador. Quando o BJT tem invólucro metálico, o terminal do coletor pode ser ligado a esse invólucro.

Recomenda-se a consulta ao manual técnico do transistor para a identificação dos terminais, e tomada de conhecimento dos principais parâmetros e características do BJT. A identificação dos terminais do BJT é importante para que a sua polarização e utilização sejam feitas corretamente.

O BJT pode ser entendido como constituído por dois diodos, embora não seja possível ter-se o efeito transistor com a associação simples de dois diodos. Com ohmímetro pode-se determinar o tipo transístor (NPN ou PNP), e o terminal de base. O procedimento consiste em supor que um terminal qualquer é a base e verificar se as supostas junções BE e BC comportam-se como diodos. Aquele terminal que apresentar valores de medida de resistência mensurável, na polarização direta, e infinita, na polarização reversa, é o terminal de base.

Na polarização direta, o terminal positivo do ohmímetro é ligado ao lado P e o negativo ao lado N do diodo. Portanto em função do sentido da polarização identifica-se o tipo de transístor: NPN ou PNP. A dúvida que ainda persiste é qual dos dois terminais é o emissor ou o coletor.

2.2- CURVA CARACTERÍSTICA DE ENTRADA

A curva característica de entrada representa a relação entre a tensão base e emissor (V_{BE}) e a corrente de base (I_B) . Esta curva é a mesma de um diodo diretamente polarizado, modificada ligeiramente pela tensão entre coletor e emissor (V_{CE}) . A configuração emissor comum é a usada na definição desta curva.

2.3- CURVA CARACTERÍSTICA DE SAÍDA

A curva característica de saída representa a relação entre a tensão coletor e emissor (V_{BE}) e a corrente de coletor (I_C), tendo a corrente de base (I_B) como parâmetro. A configuração emissor comum é a usada na definição desta curva.

2.4- TEMPOS DE COMUTAÇÃO DE TRANSISTOR

O funcionamento do transistor como chave se refere à comutação do estado de saturação, em que a tensão V_{CE} fica limitada a um valor próximo a zero, para o estado de corte, em que não existe corrente de coletor e a tensão V_{CE} fica limitada à tensão de alimentação V_{CC} e vice-versa.

No estado de saturação a corrente de coletor do transistor é limitada pela resistência de coletor: I_{CSAT}=V_{CC}/R_L.

A figura abaixo exibe uma tensão de onda quadrada aplicada entre base e emissor do transistor e sua resposta entre coletor e emissor. No intervalo em que a tensão de entrada é positiva, o transistor satura, e no intervalo em que é negativa o transistor corta.

Os tempos de comutação são:

- t_d carga da capacitância da junção base emissor (tempo necessário para os portadores minoritários atravessarem a junção em direção à base).
- t_r e t_f a corrente de coletor passa pela região ativa.
- t_S remoção da carga de saturação, a dos portadores minoritários, na base.
- TEMPO DE COMUTAÇÃO (t_t) : $t_t = t_d + t_r + t_f + t_S$

3- PARTE EXPERIMENTAL

3.1- IDENTIFICAÇÃO DOS TERMINAIS

3.1.1- Com o transistor em mãos (BC237), posicione-o de forma a identificar seus terminais, conforme mostra a figura abaixo.

3.2- VERIFICAÇÃO DA INTEGRIDADE DO TRANSISTOR

3.2.1- Com um multímetro selecionado para teste de diodos, verifique a integridade do transistor BC237, medindo as tensões nos diodos base-emissor e base-coletor nos sentidos direto e reverso. Anote as leituras do multímetro nas situações abaixo.

3.3- CARACTERÍSTICA DE ENTRADA

3.3.1- Monte o circuito da figura abaixo.

3.3.2- Para a tabela abaixo ajuste o trimpot de 1 MΩ tal forma que a tensão V_{BE} seja a indicada nas linhas da tabela.

Vcc = 10 Vcc.				
Vbe (V)	Ib (μ A)			
0,2				
0,4				
0,5				
0,6				
0,65				
0,7				
0,75				
0,8				

3.3.3- Com as informações coletadas da tabela do item 3.3.2 trace a curva $I_B \times V_{BE}$. Se o Excel estiver disponível use esta ferramenta para traçar as curvas ajustadas.

3.4- CARACTERÍSTICA DE SAÍDA

3.4.1- Monte o circuito da figura abaixo.

OBS.:

- 1- O resistor de 1 K Ω tem por finalidade limitar a corrente de base no caso de a resistência do resistor de 1 M Ω for zerada e assim proteger o transistor por excesso de corrente de base.
- 2- A tensão no resistor de 100 Ω pode ser usada para se extrair a corrente de coletor. Neste caso a tensão é multiplicada por 10 para resultar na corrente em mA. Desta forma evitam-se repetidas interrupções no circuito para medir as correntes, bem como a troca de escalas no multímetro disponível.
- 3.4.2- Para a tabela abaixo, ajuste o trimpot de 1 M Ω de tal forma que a corrente de base (I_B = 10 μA) seja a indicada. Altere a tensão V_{CC} , a partir de 0 V de tal forma que a tensão V_{CE} seja a indicada nas linhas da tabela e para cada linha meça a corrente I_C em miliamperes.

Ib = 10μA					
Vce (V)	Ic (mA)				
0					
0,1					
0,2					
0,3					
0,4					
0,5					
0,6					
0,7					
0,8					
1					
2					
3					
4					
5					
6					

3.4.3- Repita o item 3.4.2 considerando as tabelas abaixo.

Ib = 1	00μΑ	Ib = 200μA		
Vce (V)	Ic (mA)	Vce (V)	Ic (mA)	
0		0		
0,1		0,1		
0,2		0,2		
0,3		0,3		
0,4		0,4		
0,5		0,5		
0,6		0,6		
0,7		0,7		
0,8		0,8		
2		2		
4		4		
6		6		

3.4.4- Com as informações coletadas das tabelas dos itens 3.4.2 e 3.4.3 trace as curvas I_C x V_{CE} tendo I_B como parâmetro. Se o Excel estiver disponível use esta ferramenta para traçar as curvas ajustadas.

3.5- TRANSISTOR COMO CHAVE

3.5.1- Monte o circuito da figura abaixo.

- 3.5.2- Configure o osciloscópio conforme abaixo.
 - Tela em Y T.
 - Acoplamento DC.
 - Linha de zero volts do canal 1 deslocado para a parte superior da tela e a do canal 2 para a parte inferior.

3.5.3- Esboce as formas de onda dos canais do osciloscópio.

 ****	 	 	 	 	Escala de tensão
					Canal X: V/cm
					Canal Y: V/cm

3.5.4- Determine: t_d : _____, t_r : _____, t_f : _____ e t_S : _____