TP 2: Optimisation avec contrainte

Exercice 1 (mise en oeuvre d'une méthode de gradient projeté et de pénalisation). On considère la fonction J définie sur \mathbb{R}^2 par : $J(x,y) = 2x^2 + 3xy + 2y^2$. On appelle Q le cadran défini par :

$$Q = \{x \leqslant -\frac{1}{2}, y \leqslant -\frac{1}{2}\}.$$

- 1. Analyse théorique du problème.
 - a) Quelle est la solution du problème de minimisation de J sans contrainte?
 - b) On appelle \bar{X} , le minimum de J sous la contrainte $\bar{X} \in Q$. Démontrer que, nécessairement, $\nabla J(\bar{X}) = 0$ ou $\bar{X} \in \partial Q$. En déduire la solution du problème sans utiliser le théorème de Kuhn-Tucker.
- 2. Méthode du gradient projeté. Mettre en oeuvre la méthode du gradient projeté pour résoudre le problème de minimisation

$$\inf_{(x,y)\in Q} J(x,y)$$

Représenter les itérés obtenus à l'aide de cette méhode.

- 3. Méthode de pénalisation. Nous allons reprendre le même problème que précédemment, et évaluer une méthode de pénalisation. On propose les étapes suivantes :
 - a) Mettre en place une fonction de pénalisation $x \mapsto \phi(x)$, en réfléchissant à l'expression qu'elle aura sur le cadran Q (attention la fonction pénalisée doit être différentiable). Déterminer alors le gradient de la fonction pénalisée.
 - b) Tracer les courbes de niveau de la nouvelle fonction coût et son gradient, pour plusieurs valeurs de ε . Que constatez-vous ?
 - c) Pour une valeur petite de ε , par exemple $\varepsilon = 10^{-4}$ (pénalisation forte), et un point de départ $x_0 = (-0.3, 0.5)^T$, tester la méthode de pénalisation pour la méthode de gradient à pas fixe. En visualisant les itérés, commenter la vitesse de convergence. Répéter le test pour $\varepsilon = 0.5$ (pénalisation faible). Que peut-on dire de la convergence? Quid de la solution trouvée?
 - d) Pour aller plus loin (optionnel). Implémenter la méthode du gradient à pas optimal pour le problème pénalisé.

Exercice 2 (méthodes de type gradient pour des fonctions quadratiques). On considère le problème de l'optimisation d'un portefeuille. Supposons que l'on possède n actions, que l'on représente par des variable aléatoires R_1, \ldots, R_n . Chaque action rapporte en moyenne à l'actionnaire $e_i = \mathbb{E}(R_i)$ (espérance de R_i) au bout d'un an. On suppose que l'on investit une somme S donnée et on note $x_i \in \mathbb{R}$, la proportion de la somme investie dans l'action i. Ainsi, on a $\sum_{i=1}^n x_i = 1$ que l'on réécrira $\langle x, u \rangle = 1$ avec $u = [1, \ldots, 1]^T$. Le portefeuille total est représenté par la variable aléatoire $R = \sum_{i=1}^n x_i R_i$ et rapporte donc en moyenne

$$\mathbb{E}(R) = \sum_{i=1}^{n} x_i e_i = \langle x, e \rangle.$$

On désire imposer un rendement donné $r_0 > 0$, ce qui se traduit par $r_0 = \langle x, e \rangle$. On modélise le risque du portefeuille par $\sigma^2(x) = \mathbb{E}[(R - \mathbb{E}(R))^2]$. On note $A = (a_{ij})_{1 \leq i,j \leq n}$ la matrice de covariance définie par la relation

$$\forall (i,j) \in [1,n]^2, \quad a_{ij} = E[(R_i - \mathbb{E}(R_i))(R_j - \mathbb{E}(R_j))].$$

On peut alors écrire que $\sigma^2(x) = \langle x, Ax \rangle$. On appelle J, la fonction définie sur \mathbb{R}^n par

$$J(x) = \frac{1}{2} \langle x, Ax \rangle.$$

On désigne par K, l'ensemble des contraintes, soit

$$K = \{x \in \mathbb{R}^n \mid \langle h, u \rangle = 1 \text{ et } \langle x, e \rangle = r_0\}.$$

L'objectif de cet exercice est de résoudre numériquement le problème

$$\inf_{x \in K} J(x).$$

- 1. Mettre l'ensemble des contraintes sous la forme $K = \{x \in \mathbb{R}^n : Cx = f\}$, où C et f désignent respectivement une matrice et un vecteur à préciser. Rappeler comment se traduisent les conditions d'optimalité de ce problème et formuler l'équation en x à résoudre à chaque itération.
- 2. Supposons que $r_0 = 2.5$ et $e_i = i$ pour tout $i \in [1, n]$. Pour les tests numériques, on se placera par exemple dans le cas où n = 5. Voici un programme permettant de générer une matrice A:

A = np.diag(e)

R = np.random.rand(n,n)

A = A + 0.05 * (np.transpose(R) @ R)

Expliquer la dernière ligne du programme.

- 3. Pour différentes matrices A, programmer l'algorithme d'Uzawa. On n'oubliera pas d'imposer un nombre maximal d'itérations. Quel inconvénient majeur constatez-vous ici?
- 4. Adapter l'algorithme pour palier ce problème.