			•			
4	-	~	п	п	п	۰
	u	v	ш	ш	ы	ы

- 1. When performing logistic regression on sentiment analysis, you represented each tweet as a vector of ones and zeros. However your model did not work well. Your training cost was reasonable, but your testing cost was just not acceptable. What could be a possible reason?
 - The vector representations are sparse and therefore it is much harder for your model to learn anything that could generalize well to the test set.
 - O You probably need to increase your vocabulary size because it seems like you have very little features.
 - O Logistic regression does not work for sentiment analysis, and therefore you should be looking at other models.
- O Sparse representations require a good amount of training time so you should train your model for longer

- Gradient descent allows us to learn the parameters θ in logistic regression as to minimize the loss function J.
- Gradient descent allows us to learn the parameters heta in logistic regression as to maximize the loss function J.
- Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta = \theta \alpha * grad_theta$
- Gradient descent, $\mathit{grad_theta}$ allows us to update the parameters θ by computing $\theta=\theta+\alpha*\mathit{grad_theta}$

7. When training logistic regression, you have to perform the following operations in the desired order.

1 point

- O Initialize parameters, get gradient, classify/predict, update, get loss, repeat
- O Initialize parameters, classify/predict, get gradient, update, get loss, repeat
- O Initialize parameters, get gradient, update, classify/predict, get loss, repeat
- O Initialize parameters, get gradient, update, get loss, classify/predict, repeat
- 8. Assuming we got the classification correct, where $y^{(i)}=1$ for some specific example i. This means that $h(x^{(i)},\theta)>0.5$. Which of the following has to hold:

1 point

- Our prediction, $h(x^{(i)}, \theta)$ for this specific training example is exactly equal to its corresponding label $y^{(i)}$.
- Our prediction, $h(x^{(i)}, \theta)$ for this specific training example is less than $(1-y^{(i)})$.
- Our prediction, $h(x^{(i)}, \theta)$ for this specific training example is less than $(1 h(x^{(i)}, \theta))$.
- igorupOur prediction, $h(x^{(i)}, heta)$ for this specific training example is greater than $(1 h(x^{(i)}, heta))$.

5. For what value of $heta^T x$ in the sigmoid function does $h(x^{(i)}, heta) = 0.5$.

1 point

0

6. Select all that apply. When performing logistic regression for sentiment analysis using the method taught in this week's lecture, you have to:

1 point

- Performing data processing.
- Create a dictionary that maps the word and the class that word is found in to the number of times that word is found in the class.
- Create a dictionary that maps the word and the class that word is found in to see if that word shows up in the class.
- For each tweet, you have to create a **positive feature** with the sum of positive counts of each word in that tweet. You also have to create a **negative feature** with the sum of negative counts of each word in that tweet.

- **4.** The cost function for logistic regression is defined as $J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h\left(x^{(i)}, \theta\right) + \left(1 y^{(i)}\right) \log \left(1 h\left(x^{(i)}, \theta\right)\right) \right].$ Which of the following is true about the cost function above. Mark all the correct ones.
 - When $y^{(i)}=1$, as $h(x^{(i)},\theta)$ goes close to 0, the cost function approaches ∞ .
 - When $y^{(i)}$ 1, as $h(x^{(i)}, \theta)$ goes close to 0, the cost function approaches 0.
 - When $y^{(i)}=0$, as $h(x^{(i)}, \theta)$ goes close to 0, the cost function approaches 0.
- \square When $y^{(i)}=0$, as $h(x^{(i)}, heta)$ goes close to 0, the cost function approaches ∞ .

- 3. The sigmoid function is defined as $h(x^{(i)}, \theta) = \frac{1}{1 + e^{-\theta T_x(i)}}$. Which of the following is true.
 - O Large positive values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ closer to 1 and large negative values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ close to -1.
 - igorup Large positive values of $heta^T x^{(i)}$ will make $h(x^{(i)}, heta)$ closer to 1 and large negative values of $heta^T x^{(i)}$ will make $h(x^{(i)}, heta)$ close to 0.
- O Small positive values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ closer to 1 and large positive values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ close to 0.
- O Small positive values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ closer to 0 and large negative values of $\theta^T x^{(i)}$ will make $h(x^{(i)}, \theta)$ close to -1.

