Vorlesung 7 | 17.11.2020 | 14:15-16:00 via Zoom

In der letzten Vorlesungen haben wir gesehen:

Wichtige S\u00e4tze \u00fcber das Integral: Monotone, Dominierte Konvegenz, Fatou'sche Lemma; Abbildung von Ma\u00dbe, Verteilung von eine Z.V.; Verteilungfunktion.

2.1 Beispiele von Zufallsvariablen

a) Diskrete Verteilungen

Sei $(\Omega, \mathcal{F}, \mathbb{P})$ mit Ω diskret (d.h. abzählbar), $\mathcal{F} = \mathcal{P}(\Omega)$ und μ Zahlmaß, d.h. $\mu(\{\omega\}) = 1$ für alle $\omega \in \Omega$. Fur $f: \Omega \to \mathbb{R}$ integrierbar bzg. μ wir bezeichnen

$$\sum_{\omega \in \Omega} f(\omega) = \int_{\Omega} f(\omega) \, \mu(\mathrm{d}\omega).$$

Sei $\rho: \Omega \to \mathbb{R}_{\geq 0}$ s.d.

$$\sum_{\omega \in \Omega} \rho(\omega) = 1.$$

Dann

$$\mathbb{P}(A) \coloneqq \sum_{\omega \in A} \rho(\omega)$$

ist eine W-maß auf (Ω, \mathcal{F}) , s.d. $\mathbb{P}(\{\omega\}) = \rho(\omega)$. Alle W-maße auf (Ω, \mathcal{F}) haben diese Form. Wir nennen ρ die (diskrete) *dichte* von \mathbb{P} bezuglich μ .

Im folgenden sei $\Omega = \mathbb{R}$ und $\mathscr{F} = \mathscr{B}(\mathbb{R})$. Wir geben einige Beispiele für Zufallsvariablen.

2.1.1 Dirac-Mass: δ_x

Das Dirac-Mass δ_x an $x \in \mathbb{R}$ ist definiert durch

$$\delta_x(A) = \mathbb{1}_{\{x \in A\}} = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

Die Verteilungsfunktion von δ_{x_0} ist

$$F(x) = \delta_x(\{y \in \mathbb{R} : y \leq x\}) = \begin{cases} 1, & x \geq x_0 \\ 0, & x < x_0 \end{cases}$$

2.1.2 Bernoulli Verteilung: Ber(*p*)

Die Bernoulli Verteilung mit Parameter $p \in [0, 1]$, Ber(p) ist gegeben durch

$$Ber(p) = p\delta_1 + (1-p)\delta_0$$

Die Verteilungsfunktion ist (monotone wachsend, rechtsstetige)

Beispiel. Münzwurf mit $\mathbb{P}(Kopf) = p$ und $\mathbb{P}(Zahl) = 1 - p$. $\Omega = \{Kopf, Zahl\}$

Sei X die Z.V. definiert durch

$$\begin{cases} X(\text{Kopf}) = 1 \\ X(\text{Zahl}) = 0 \end{cases} \Rightarrow \mathbb{P}_X = \text{Ber}(p)$$

oder, wir bezeichnen $X \sim \text{Ber}(p)$: "X Verteilt as Ber(p)".

2.1.3 Binomial verteilung: Bin(n, p)

Wir betrachten einen n-maligen Münzwurf. Ergebnisraum $\Omega = \{\text{Kopf}, \text{Zahl}\}^n$. Sei

$$X: \omega \in \Omega \mapsto X(\omega) = \text{,#Kopf in } \omega$$
" $\in \mathbb{N}$.

Dann $X(\omega) \in \{0, \dots, n\}$. Falls die *n* Münzen "unabhängig" gewurfen sind (später besser zu definieren!) \Rightarrow

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \qquad k = 0, \dots, n$$

Hier:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!} \qquad \begin{array}{c} \circ \circ \circ \circ \circ \circ \circ \circ \circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \\ \longleftarrow k \longrightarrow \leftarrow n-k \longrightarrow \bullet \end{array}$$

Und

$$B_{n,p} = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} \delta_k$$

is die Bin(n,p) Verteilung (aus $(\Omega, \mathcal{P}(\Omega))$). Wir schreiben $X \sim Bin(n,p) = \mathbb{P}_X$. Erwartungswert $\mathbb{E}[X]$ von X? Sei $X \sim Bin(n,p)$, dann

$$\mathbb{E}[X] = \int_{\mathbb{R}} x \, \mathbb{P}_X(\mathrm{d}x) = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} k = np.$$

2.1.4 Poisson Verteilung: $Poi(\lambda)$

Sei $\lambda > 0$. Betrachten wir viele Münzwürfe $(n \to \infty)$ mit sehr geringer Erfolgswahrscheinlichkeit $p = \lambda / n \to 0$. Nehme die Binomialverteilung Bin $(n, \lambda / n)$ für $n > \lambda$ (klar!)

$$\forall k \in \mathbb{Z}_{\geq 0}, \qquad B_{n,\lambda/n}(k) = \underbrace{\left[\frac{n!}{(n-k)!}\right]}_{\to 1} \underbrace{\frac{\lambda^k}{k!}}_{\to n^k} \underbrace{\left(1 - \frac{\lambda}{n}\right)^{n-k}}_{\to e^{-\lambda}} \to \frac{\lambda^k}{k!} e^{-\lambda} \qquad \text{als } n \to \infty.$$

Die Poisson Verteilung mit parameter λ , Poi (λ) ist gegeben durch

$$\operatorname{Poi}(\lambda) \coloneqq \sum_{k \geqslant 0} \frac{\lambda^k}{k!} e^{-\lambda} \delta_k$$

Übung: Erwartungswert von N? Sei $N \sim Poi(\lambda)$, dann

$$\mathbb{E}[N] = \sum_{k \ge 0} \frac{\lambda^k}{k!} e^{-\lambda} k = \lambda$$

Bemerkung.

- Es kommt vor z.B. beim Nuklearzerfall. In Situationen, in denen wir seltene zufällige Ereignisse zählen, die mit konstanten Raten λ (z.B. Ereignisse pro Sekunde) auftreten.
- Hier haben wir ein Grenzwert einer W-Maß. In welche Sinn ist die Kovergenz? (Antwort: Siehe später...).

2.1.5 Geometrische Verteilung: Geo(q)

Sei $q \in [0,1)$. Dann ist die Geometrische Verteilung mit Parameter q durch

$$\operatorname{Geo}(q) \coloneqq \sum_{n>0} (1-q)q^n \delta_n$$

gegeben.

Beispiel. Kommt vor beim wiederholten Münzwurf: $\Omega = \{Zahl, Kopf\}^{\infty}$ (justify).

$$X: \Omega \to \mathbb{N}$$
, $\omega \mapsto X(\omega) =$, ersten Zahl s.d. Münzwurf ergibt Zahl."

$$\mathbb{P}(X=k)=(1-q)q^{k-1}, \qquad k \geqslant 1.$$

mit q = 1/2 falls dir Münz fair ist.

b) Absolut stetige Verteilungen (bzg. Leb)

Definition 1. Sei $\rho: \mathbb{R} \to \mathbb{R}_+$ eine messbare positive Funktion mit

$$\int_{\mathbb{R}} \rho(x) \mathrm{d}x = 1.$$

Dann, ist ein W-Ma β \mathbb{P} auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ definiert durch

$$\mathbb{P}(A) \coloneqq \int_{A} \rho(x) dx = \int_{\mathbb{P}} \mathbb{1}_{A}(x) \rho(x) dx, \qquad A \in \mathcal{B}(\mathbb{R})$$

Wir nennen $\mathbb P$ W-Ma β mit dichte ρ bzg. Lebesgue. Die Verteilungsfunkion F von $\mathbb P$ ist

$$F(t) = \int_{-\infty}^{t} \rho(x) dx.$$

Falls ρ stetig ist, dann F ist eine stetige differenzierbare Funktion und $F'(t) = \rho(t)$.

Beweis. Wir müssen zeigen, dass \mathbb{P} ein wohldefiniert W-Maß ist. Offenlich $\mathbb{P}(\mathbb{R}) = 1$ und $\mathbb{P}(\emptyset) = 0$. Dann $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$. Für die σ -additivität wir bemerken das fur paarweise disjunk messbaren Mengen $(A_n)_n$:

$$\mathbb{P}(\cup_{n}A_{n}) = \int_{\mathbb{R}} \mathbb{1}_{\cup_{n}A_{n}}(x) \rho(x) dx = \int_{\mathbb{R}} \sum_{n \geq 0} \mathbb{1}_{A_{n}}(x) \rho(x) dx$$

$$= \int_{\mathbb{R}} \lim_{N \to \infty} \left[\sum_{n=0}^{N} \mathbb{1}_{A_{n}}(x) \rho(x) \right] dx$$

$$= \lim_{N \to \infty} \int_{\mathbb{R}} \left[\sum_{n=0}^{N} \mathbb{1}_{A_{n}}(x) \rho(x) \right] dx \qquad \text{(Monotone Konv.)}$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} \int_{\mathbb{R}} \mathbb{1}_{A_{n}}(x) \rho(x) dx \qquad \text{(Linearität)}$$

$$= \sum_{n \geq 1} \int_{\mathbb{R}} \mathbb{1}_{A_{n}}(x) \rho(x) dx = \sum_{n \geq 1} \mathbb{P}(A_{n}).$$

Definition 2.

 Eine Funtkion F: ℝ → ℝ heißt absolut stetig, falls ∃ρ: ℝ → ℝ Borel messbar und integrierbar bzg. Lebesgue, so dass

$$F(t) - F(s) = \int_{a}^{t} \rho(x) dx, \quad s < t.$$

• Eine Verteilung \mathbb{P} (W-Maß auf \mathbb{R}) mit absolut stetig Verteilungfunkion F heißt auch ein absolut stetig Verteilung und ρ heißt die W-diche der W-Maß (oder Verteilung) \mathbb{P} (Wichtig: ρ ist nich endeutig definiert)

$$\mathbb{P}((s,t]) = \int_{s}^{t} \rho(x) dx, \quad s < t.$$

• Eine Z.V. X heißt absolut stetig falls seine Verteilungs \mathbb{P}_X absolut stetig ist

$$\mathbb{P}(X \in (s,t]) = \mathbb{P}_X((s,t]) = \int_s^t \rho(x) dx, \quad s < t.$$

und dann

$$\mathbb{E}[f(X)] = \int_{\mathbb{R}} f(x) \, \rho(x) \, \mathrm{d}x$$

für alle $f: \mathbb{R} \to \mathbb{R}$ messbare und integrierbare blg. \mathbb{P}_X .

Bemerkung. Literatur findet man "Dirac Delta-Funktion" δ so dass

$$\int_{\mathbb{R}} f(x) \, \delta(x - z) \, \mathrm{d}x = f(z), \qquad z \in \mathbb{R}, f \in C(\mathbb{R}; \mathbb{R}).$$

Das ist nicht möglich. δ ist keine Funktion! Wir können f im Punkt z ändern und das Integral sollte sich nicht ändern!

Also sollten wir wirklich stattdessen schreiben

$$\delta_x(\mathrm{d}y),=$$
" $\delta(x-y)\mathrm{d}y.$

2.1.6 Gleichverteilung

Sei $I = [a, b] \subset \mathbb{R}$. Dann ist die Gleichverteilung auf I gegeben durch

$$d\mathbb{P}(x) = \frac{1}{b-a} \mathbb{1}_{x \in [a,b]} dx$$

Bemerkung. Die Ableitung F' existiert in die Menge $\mathbb{R}\setminus\{a,b\}$, d.h. *fast-überall* weil Leb $(\{a,b\})=0$. *F* is absolut stetig mit dichte $\rho(x)=\frac{1}{b-a}\mathbb{1}_{x\in[a,b]}$.

2.1.7 Exponential Verteilung: $Exp(\lambda)$

Die Exponential Verteilung mit Parameter $\lambda > 0$ hat W-dichte

$$\rho(x) = \lambda e^{-\lambda x} \mathbb{1}_{x>0}$$

Wichtig in Markov Ketten in stetiger Zeit (Vorlesung: Markov processes).

2.1.8 Gaussverteilung $\mathcal{N}(m, \sigma^2)$

Sei $m \in \mathbb{R}$, $\sigma^2 > 0$. Die Gaussverteilung $\mathcal{N}(m, \sigma^2)$ hat W-dichte

$$\rho(x) = \phi_{m,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$$

Zentrales Object in dieser Vorlesung, als universelle Limes von Summe unabhängige Z.V. ist. Übung: Rechnen $\mathbb{E}[X]$ mit $X \sim \mathcal{N}(m, \sigma^2)$.

$$\mathbb{E}[X] = \int_{\mathbb{R}} x \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}} dx = ?$$

(Antwort: $\mathbb{E}[X] = m$.)

2.1.9 Cauchy-Verteilung, Cauchy(a)

Die Cauchy-Verteilung mit parameter a hat Dichtefunktion

$$\rho(x) = \frac{a}{\pi} \frac{1}{a^2 + x^2}$$

Es ist ein Beispiel von Verteilungen, die kein Mittelwert besitzen. D.h. $\mathbb{E}[X]$ mit $X \sim \text{Cauchy}(a)$ ist nich wohldefiniert weil $\mathbb{E}[|X|] = +\infty$, so $X: \Omega \to \mathbb{R}$ is nicht integrierbar.

$$\mathbb{E}[|X|] = \frac{1}{\pi} \int_{\mathbb{R}} \frac{|x|}{1+x^2} dx = +\infty$$

Z.b. weil für |x| > 1 es gibt

$$\frac{|x|}{1+x^2} \geqslant \frac{1}{2} \frac{|x|}{x^2} = \frac{1}{2|x|}$$

Und wir haben

$$\int_{1}^{\infty} \frac{1}{|x|} dx = \sum_{n \ge 1} \int_{n}^{n+1} \frac{1}{|x|} dx \ge \sum_{n \ge 1} \int_{n}^{n+1} \frac{1}{n} dx \ge \sum_{n \ge 1} \frac{1}{n} = +\infty.$$

5

Bemerkung.

- Sei $(\Omega, \mathcal{F}, \mathbb{P})$ W-Raum, Z.V. $X: \Omega \to \mathbb{R}$, dann \mathbb{P}_X ist die Verteilung von X gegen \mathbb{P} . \mathbb{P}_X is ein W-maß auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
- Alle W-maße μ auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ sind Verteilungenvon Z.V.: tatsächlich wir nehmen $(\Omega, \mathcal{F}, \mathbb{P}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ und $X(\omega) = \omega, X: \Omega \to \mathbb{R}$. Dann

$$\mathbb{P}_X = \mu, \qquad \mu = \mathbb{P}$$

- Die Verterilungsfunktion von eine diskrete W-Maß ist stückweise konstant.
- Die Verterilungsfunktion von eine absolute stetig W-Maß ist stetig mit Abteilung fast-überall.
- Sie können convexe Kombination nehemen zu neue W-Maß construiren.

Beispiel. Nehemen μ auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ gegeben durch

$$\mu(A) = \frac{1}{2}\delta_2(A) + \frac{1}{2}\int_A \mathbb{1}_{[0,1]}(x)dx$$

 μ ist eine convexe Kombination von die Dirac maß auf 3 und die Gleichverteilung von die Intervall [0, 1]. μ sind nich diskret oder absolut stetig. Verteilungfunkion F von μ :

3 Bedingte W-keiten, Unabhängigkeit und Produktmaße

(Siehe Kapitel 3 in Bovier Skript)

Zentrales Thema der Stochastik ist die Abhängigkeit von Ereignissen oder von Teilexperimenten. Wir wollen die Abhängigkeit quantifizieren.

3.0.1 Bedingte W-keiten

Für $A, B \in \mathcal{F}$ zwei Ereignisse,

$$\mathbb{P}(A \cap B) \leq \min(\mathbb{P}(A), \mathbb{P}(B))$$

Frage: Welche Einfluss hat die Information "A eintritt" über des Ereignis *B*?

Wir suchen nach einem W-Maß \mathbb{P}_A , das die Wahrscheinlichkeit des Ereignisses B unter bestimmten Umständen beschreibt, die von einem anderen sogar Ereignis A beschrieben werden. (Beide die frequentisch oder die subjectiv Deutung sind möglich).

Solche W-Maß müss die folgende Eigenschaften haben:

- a) $\mathbb{P}_A(A) = 1$, d.h. die Eregnis *A* ist bei \mathbb{P}_A sicher.
- b) Die neue Bewertung der Teileregnisse von A ist proportional zu iherer ursprünglichen Bewertung, d.h. es existiert eine Konstante $c_A > 0$ mit $\mathbb{P}_A(B) = c_A \mathbb{P}(B)$ für alle $B \in \mathscr{F}$ mit $B \subset A$.

Durch diese Eigenschaften ist \mathbb{P}_A bereits eindeutig festgelegt, weil wir haben für alle $B \in \mathcal{F}$

$$\mathbb{P}_{A}(B) = \mathbb{P}_{A}(B \cap A) + \underbrace{\mathbb{P}_{A}(B \cap A^{c})}_{=0 \text{ wegen (a)}} = c_{A}\mathbb{P}(B \cap A)$$

Denn, wenn B = A wir haben $1 = P_A(A) = c_A \mathbb{P}(A)$ d.h. $c_A = \mathbb{P}(A)^{-1}$. Wir schließen daraus

$$\mathbb{P}_A(B) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}.$$

Definition 3. Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein W-raum, $A, B \in \mathcal{F}$ zwei Ereignisse. Für B s.d. $\mathbb{P}(B) > 0$, definieren wir

$$\mathbb{P}(A \mid B) = \mathbb{P}_B(A) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)},$$

die bedingte W-keit von A gegeben B.

Bemerkung. Falls \mathbb{P} sei die empirische Häufigkeit eines Ereignisses in einem Experiment n-mal wiederholt, s.d.

$$\mathbb{P}(A) = \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{x_k \in A} = \frac{\#\{k \in \{1, \dots, n\} : x_k \in A\}}{n}$$

wo $x_1, \ldots, x_n \in \Omega$ sind die Ergebnisse jedes Widerholung. Dann ist

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{x_k \in A \cap B}}{\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{x_k \in B}} = \frac{\sum_{k=1}^{n} \mathbb{1}_{x_k \in A \cap B}}{\sum_{k=1}^{n} \mathbb{1}_{x_k \in B}} = \frac{\#\{k \in \{1, \dots, n\} : x_k \in A \cap B\}}{\#\{k \in \{1, \dots, n\} : x_k \in A\}}$$

die Häufigkeit des Ereignisses B unter allen Experimenten, in denen A eintrat.

Einige Eigenschaften.

Satz 4. Sei $B \in \mathcal{F}$ mit $\mathbb{P}(B) > 0$. Dann

a) Die bedingte W-keit $\mathbb{P}_B(\cdot) = \mathbb{P}(\cdot|B)$ definiert ein W-maß auf (B, \mathcal{F}_B) , wobei

$$\mathscr{F}_B = \mathscr{F} \cap B := \{A \cap B \mid A \in \mathscr{F}\} \subseteq \mathscr{F}.$$

- b) Sei $(B_n)_{n\in\mathbb{N}}$ eine Folge von paarweise disjunkt Mengen in \mathscr{F} , s.d.
 - 1. $\bigcup_{n\in\mathbb{N}}B_n=\Omega$
 - 2. $\mathbb{P}(B_n) > 0$ für alle $n \in \mathbb{N}$.

Dann, $\forall A \in \mathcal{F}$,

$$\mathbb{P}(A) = \sum_{n \in \mathbb{N}} \mathbb{P}(A|B_n) \mathbb{P}(B_n).$$

Beweis. *Teil a)* Z.z. \mathscr{F}_B ist eine σ -Algebra $\underline{\text{von } B}$: $B, \emptyset \in \mathscr{F}_B$,

$$A \in \mathscr{F}_B \Rightarrow A = A' \cap B, A' \in \mathscr{F} \Rightarrow B \setminus A = B \cap A^c = B \cap ((A')^c \cup B^c) = B \cap (A')^c \in \mathscr{F}_B.$$

$$(A_n)_n \subseteq \mathscr{F}_B \Rightarrow \bigcup_n A_n = \bigcup_n \left(\underbrace{A'_n \cap B}_{\in \mathscr{F}} \right) = \left(\underbrace{\bigcup_n A'_n}_{\in \mathscr{F}} \right) \cap B \in \mathscr{F}_B.$$

Is \mathbb{P}_B ein W-Maß auf (B, \mathcal{F}_B) ? $\mathbb{P}_B(B) = 1$, $\mathbb{P}_B(\emptyset) = 0$,

$$\mathbb{P}_B(B \setminus A) = \frac{\mathbb{P}((B \setminus A) \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B \setminus A)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B) - \mathbb{P}(A \cap B)}{\mathbb{P}(B)} = 1 - \mathbb{P}_B(A).$$

Sei $(A_n)_{n\in\mathbb{N}}\subseteq\mathscr{F}$ eine Folge paarwise disjunkte Teilmengen von B, dann $(A_n\cap B)_{n\in\mathbb{N}}\subseteq\mathscr{F}_{\mathbb{B}}$ auch paarwise disjunkte sind und

$$\mathbb{P}_{B}(\cup_{n}A_{n}) = \frac{\mathbb{P}((\cup_{n}A_{n}) \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(\cup_{n}(A_{n} \cap B))}{\mathbb{P}(B)}$$

$$\underset{\sigma-\mathrm{Add.von}\mathbb{P}_{n\in\mathbb{N}}}{\underbrace{\mathbb{P}\left(A_{n}\cap B\right)}} = \sum_{n\in\mathbb{N}} \mathbb{P}_{B}(A_{n}).$$

Gut, wir haben alle Eigenschaften gezeigt. Es sei W-Maß.

Teil b)

$$\sum_{n\in\mathbb{N}} \mathbb{P}(A|B_n)\mathbb{P}(B_n) = \sum_{n\in\mathbb{N}} \mathbb{P}(A\cap B_n) \underset{\sigma-\text{add}}{=} \mathbb{P}(\cup_n (A\cap B_n)) = \mathbb{P}(A\cap (\cup_n B_n)) = \mathbb{P}(A).$$