75

TGCCTGCGCTGTACCT

26

1/116

-	11 CysPheThrCysThrCysGlnLysLysThrValIleCysAspProVa 726	
97	76 CCACTGTCCGCCTGCCCCCAGCCTGTGACGGAGCCACAGCAAT 125 : ::: :::	
97	IMetCysProThrLeuserCysThrHisThrValGinProGiuAspGinC 743	
26	GCTGTCCCAAGTGTGTACCTCACACTCCCTCTGGACTCCGGGCC 172	
43	ysCysProlleCysGluGluLysLysGluSerLysGluThrAla	
73	73	
09	GluLysValGluAsnProGluGlyCysTyrPheGluGlyAspGlnLy 776	
08	08 CCAACACGGAGAGATCTTCAGTGCCCATGAGCTGTTCCCCTCCCGCCTGC 257	
91	sMetHisAlaProGlyThrThrTrpHisProPhe	
58	CCAACCAGTGTCCTCTGCAGCTGCACAGAGGGCCAGATCTAC 301	
93	ysLysG	

FIG.

854	4	854
298	9 CCAAGGGAGCAGCACACTGTCAAGATCGTCCTGAAGGAGAACAT	549
854	4	854
548	9 CCCCACTGGCCTCAGCCCCTTGAGCTTCATCCCTCGCCACTTCAGAC	499
r'))		852
Ĺ	GATCCA1611CA616A16A16C1CA6	4 4 9
C C		
851	euGluAspGluGluMetMetGlnAla	843
448	CGGATGAGGGCACAGTGCAGTCGCTCCATGGGGTGAGACATCCTCAG	399
843	gAsnProSerAspCysCysLysGluCysProProGluGluThrProProL	826
398	GCCAGACTCCTGCTGCCAGCCTGCAAAGATGAGGCAAGTGAGCAAT	352
826	CysGluLysValThrCysProProLeuThrCysSerArgProIleArgAr	810
351	TGCGGCCTCACAACCTGCCCGAACCAGGCTGCCCAGCACCCCCTCCCGCT	302

648

99

2

87

64

 \mathcal{L}

 ∞

PCT/IL00/00736

3/116

919 798 902 870 698 887 CCCTGCCGTCACCCCGAGAAGTGGCTGGGAAGTGCTGCAAGATTTGCCC GACTGCCAGCGTGTGACCTGTCCCACGAAGTAC eArgThrGluGlyLysCysCysProGluCysIl ANGAAAGCCTGTGCATGCCGGGAAGACGTACTCCCACGGGGAGGTGTG GCACCCGGCCTTCCGTGCCTTCGGCCCTTGCCTTGCATCCTATGCACCT euValGlyGluMetLysCysIleThrCysTrpC eGlyLysAsnTyrTyrGlnAsnSerGluHisTr LysCysGlnArgLysGlnCysProLeu.. 921 805 AGAGGAC eGluAsp 799 919 SerCysArgAsnProIl GTGAGGATGGCCGCCAG ysAspHisGlyValThr pHisProSerValProL .. ArgLeuCysLysPh __::: 903 749 887 669 0 2 9

863	<pre>3 TCGCTCCATGGGGTGAGACATCCTCAGGATCCATGTTCCAGTGATGCTGG 912</pre>	~
913	CCT	2
19	:::	
963	GCCACTTCAGA	12
34	::: 	
1013	GTCAAGATCGTCCTG	56
44	ValGlnIleValIleAsnAsnLysHisLysHisGlyGlnValCysValSe 60	
1057	TGGCGGGAAGACGTACTCCCACGGG	90
09	:::	
1107	CCTTCGGCCCTTGCCCA	56
77		

FIG.2/

FIG.2A (CONT.¹)

1206

1157 GACTGCCAGCGTGTGACCTGTCCCACGAAGTACCCCTGCCGTCACCCCGA

94	::: ::::::::: :::::: :::::	0]
1207	GAAAGTGGCTGGGAAGTGCTGCAAGATTTGCCCAGAGGACAAAGCAGAC.	1255
110	nLysIleAspGlyLysCysCysLysValCysProGlyLysLysAlaLysG	127
1256		1294
127	<pre>ll ::: luGluLeuProGlyGlnSerPheAspAsnLysGlyTyrPheCysGlyGlu</pre>	143
1295	GCACCGGGCCGGGTCCTCGTCCACACATCGGTA	341
144	GluThrMetProValTyrGluSerValPheMetGluAspGlyGl	158
1342	CAACCTGCGTCGCTTTGCCCTGGAACACGAGGCCTCGGACTTGGTGGAGA	1391
158	:::: ::::::	175
1392	TCTACCTCTGGAAGCTGGTAAANNNNNNNNNNNNNNNNNN	1441
175	alHisValTrpThrIle	180

	FIG.2A (CONT. ²)	
	1692 TAATAAATAAGAAGTTGCATAACCAT 1717 ::::::::::::::::::::::::::::::::::	
246	SerArgValCysArgThrGluLeuGluAspLeuValLysValLeuT	231
1691	AAGACCTAACAGTTGCAGATATGAGCTGTATAATTGTTGTTATATATA	642
230	AlaGlnIleSerGlnMetCysSer	223
1641	CTGGAGCTGAAGGTCACGGCCAGTCCAGACAAAGTGACCAAGACATAACA	592
222	euValThrArgThrThrLeuSerGlnTrpLysIlePheThrGluGlyGlu	206
1591	TGCTCGCTGGCCCCCACGAAGGTCACTGGAACGTCTTCCTAGCCCAGACC	542
206	eGluLysIleSerLysArgMetPheGluGluLeuProHisPheLysL	190
1541	CAAGAAAGTCAGGAAGCAATCCCAGAAAGAGGCCACAGCACTTCCGAC	492
190	::: ArgLysGlyIleLeuGlnHisPheHisIl	181
1491	NNNNNNNNNNNNNNNNNNNNNNNNNNNCAGATTTCCACTTGACTCAGAT	442

498	GlnValHisIleAlaAsnGlnCysG	48
312	300 TTCCCGAGGTGAG	30
481		469
299	GCCTGACCCTGGGGAAAGGATGG	25
468	alLysAspLeuGluProGluLeuLeuArgHisLeu	457
249	TGTGGGTTGATCTGGCCCCTGTGNCTCCGTGTCCTTTTCGTCTCCGT	200
457	::: ArgLeuLysGlyPheTyrGlySerGluAlaGlnGlyValV	443
199	CTTCCTGGCCCTTCTCCGACCCCCCTTCTAGCAGCAGACCTCCTGGGGTCA	150
442	:::::: ThrAlaHisLeuLeuGlyProProGlyThrProGlyProArg	429
149	CCTCCCTTCCTG	10

342	514	342	531	382	547	432	564	482	577
313GGTCCTCTCCTTT	euGluAlaAlaGlyAlaGluGlyValArgAla	342	515 LeuGlyAlaProAspProAlaSerAlaAlaProProValValProGlyLe	CCTGGACTCCCACGCTCGAGCCCGCCCA	ArgAsp	AGAGATACTCCCCGGCGAGAGCTG	${ m sGly}$	ACTTGGAGCCACAAGGCCTGATGTA(
. ,	-	•							

FIG. 2B (CONT.¹)

483	483 GCTCAGAGGGCGCCCATGTGTTGTTACCGCCTCACIGICGCCIGIC 332 ::::::::::::::::::::::::::::::::::	592
533		582
593	:::	609
583		611
609	 :::	625
612	CCCCACCAAAGTCCTGCCAGCACAAGGGGACCATGTACCAACACGGAGAG	661
625	<pre>spProGlyGluGlyCysTyrPheAspGlyAspArgSerTrpArgAlaAla</pre>	641
662	ATCTTCAGTGCCCATGAGCTGTTCCCCTCCCGCCTGCCCAACCAGTGTGT	711
642	GlyThrArgTrpHisProValValProProPheGlyLeuIleLysCysAl	658
712	712 CCTCTGCAGCTGCACAGAGGGCCAGATCTACTGCGGCCTCACAA 755	755
658	:::: ::: aValCysThrCysLysGlyGlyThrGlyGluValHisCysGluLysValG 675	675

WO 01/34796

		r (
675	InCysProArgLeuAlaCysAlaGlnProValArgValAsnProThrAsp	691
803	TGCTGCCAAGCCTGCAAAGATGAGGCAAGTGAGCAATCGGATGAAGAGGA	852
		,
692	CysCysLysGlnCys	969
(L	TADDIAD	968
853) 1
L 69	laHisProGl	710
i		
897	GTTCCAGTGATGCTGGGAGAAAGAGAGGCCCCGGGGCACCCCCAGCCCCACT	946
		L
710	etGlnAlaAsp	7.15
7		966
747)
71.5		715
1	DAAADNATADAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	1046
166	AGCAGGCACACAACIGICAAGAICGICCIGAAGAICGICCIGAAGAICGICAAGAICGICCIGAAGAICGICCIGICCIGAAGAICGICCIGAAGAICGICCIGAAGAICGICCIGAAGAICGICCIGAAGAICGICAAGAICGICCAAGAAGAICGICCAAGAAGAICGICCAAGAAGAICGICCAAGAAAGA	· ·
716		717
	11 CONTENT 3	

1238	
lyserGlyLysGlu	167
7 GTCACCCGAGAAAGTGGCTGGGAAGTGCTGCAAGATTTGC	1197
aGlyValProHisCysGluArgAspAspCysSerLeuProLeuSe	750
7 TGGCCGCCAGGACTGCCAGCGTGTGACCTGTCCCACGAAGTACCCCTGCC 1196	1147
SerValProPheGlyGluMetSerCysIleThrCysArgCysGlyAl 750	734
GCCTTCGGCCCTTGCCCATC	1097
1) 1ycysArgPheAlaGlyGlnTrpPheProGluSerGlnSerTrpHisPro	717
CCTGTGTGCATGGCGGGAAGACGTACTCC	1047

FIG. 2B (CONT.*)

3 CTTCCCCTTTCTTTGATCGCCTCTCC	41 CCTTCCTTCTCTCTCTCTCTCTTTT 72	73 CCCCGCGTTCTTTCTTTTTTTTTTTTTTTTTTAGACCTCCTTT 122 :::::	123 CCTGCCCTCTTTCCTGCCCACCGCTGCTTCCTGGCCCTTCTCCGACCCC 172	173 GCTCTAGCAGCAGACCTCCTGGGGTCATGTGGGTTGATCTG 213 :::	214 TGGCCCCTGTGNCTCCGT
------------------------------	---------------------------------	--	---	---	------------------------

	FIG. 2C (CONT. ¹)	
723		
470	SAGAGCTGGCACCCTACTTGGAGCCACAAGGCCTGATGTAC	
710	694 ArgProArgAspProAsnThrCysPhePheGluGlyGlnGlnArgProHi	
420	ACATGTTCTGC	
693		
370	ACTGGCGCTGCTCTGGTTCCCCCTGGACT	
119	+++ ::: :::	
329	GGGGAAAGGATGGTTCCCGAGGTGAGGGTCCTCCTCCT	
099	::: 644 laSerGlnCysGluAlaGlyGlyLeuArgLeuAlaSerGluGlyValGln	
279	274GCGGCC	
644	627 eThrThrLysSerSerProArgGlyGluLeuArgGlyGlnValHisIleA	
273	234 CCTTTTCGTCTCCTCCCGACTCCGCTCCGGACCA	

520

TGCGCTGTACCTGCTCAGAGGGCGCCCCATGTGAGTTGTTACCGCCTCCAC

723	:::::::::::::::::::::::::::::::	738
521	TGTCCGCCTGTCCACTGCCCCCAGCCTGTGACGGAGCCACAGCAATGCTG	570
739	CysProProSerCysProHisProValGlnAlaLeuAspGlnCysCy	755
571	TCCCAAGTGTGTGGAA	599
755		772
009	CTGGACTCCGGGCCCCACCAAAGTCCTGCCAGCACAACGGGACCATGTAC	649
772	snLeuGluProGlyGluGlyCysTyrPheAspGlyAspArgSer	786
650	CAACACGGAGAGATCTTCAGTGCCCATGAGCTGTTCCCCTCCCGCCTGCC	669
787	TrpArgAlaAlaGlyThrArgTrpHisProValValProProPheGlyLe	803
700	CAACCAGTGTCCTCTGCAGCTGCACAGAGGGCCAGATCTACT	743
803	803 uIleLysCysAlaValCysThrCysLysGlyAlaThrGlyGluValHisC 820	320

r r		
820	ysGluLysValGlnCysProArgLeuAla	836
794	CCAGACTCCTGCTGCCAAGCC	840
837	AsnProThrAspC	845
841	GGATGAAGAGGACAGTGCAGTCGCTCCATGGGGGTGAGACATCCTCAGG	890
845		845
891	ATCCATGTTCCAGTGATGCTGGGAGAAAGAGAGGGCCCGGGCACCCCAGCC	940
846		847
941	CCCACTGGCCTCAGCGCCC	066
848	GlySerGlyThrAsnAlaLysLeuGlyAspProMetGlnAlaAspGlyPr	864
991	CAAGGGAGCAGCACACACTGTCAAGATCGTCCTGAAGGAGAACATA	1040
864	oArgGly	998

WO 01/34796

PCT/IL00/00736

	1258 TGGCCACAGT 1267 945 aGluHisSer 948	
945	Al	929
1257		1238
928	erCysGlySerGlyLysGluSerArgCysCysSerHi	914
1237	CCTGCCGTCACCCCGAGAAGTGGCTGGGAAGTGCTGCAAGATTTGC	1191
914		897
1190	TGAGGATGGCCGCCAGGACTGCCAGGTGTGTGACCTGTCCCACGAAGTACC	1141
897	::: HisProSerValProProPheGlyGluMetSerCysIleThrCysArgCy	881
1140	CACCCGGCCTTCCGTTCGGCCCTTGCCCATGCATCCTATGCACCTG	1091
880	:::::::::::::::::::::::::::::::::	867
1080	NGAAAGCCTGTGTGCATGGCGGGAAGACGTA	1041

17/116

56	GGGTGAGACATCCTCAGGATCCATGTTCCAGTGA	7
\sim	SerTyrHisTyrAspProProSerArgGlnAlaGlyGl 19	
90	GCCT	5
13	:::	
56	J.G.	
34		
90	GTCAAGATCGTCCTGAAG	6
44	::: ::: ValGlnIleValIleAsnAsnLysHisLysHisGlyGlnValCysValSe 60	
50	Н	6
09	:::	

FIG. 34

18/116

	158	
	1134	ATCGGTA
	143	127 luGluLeuProGlyGlnSerPheAspAsnLysGlyTyrPheCysGlyGlu 143
	1087	1049CCTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCCAAG 1087
-	127	: :::
	1048	1000 GAAAGTGGCTGCTGCAAGATTTGCCCAGAGGACAAAGCAGAC.
	110	94 GluCysLysIleHisCysProAsnArgTyrProCysLysTyrProGl
	666	950 GACTGCCAGCGTGTGACCTGTCCCACGAAGTACCCCTGCCGTCACCCGA 999
	8	lTh
	ע 4. ע	900 CCTTCGGCCCTTGCCATGCATCCTATGCACCTGTGAGGATGGCCGCCAG 949

FIG. 3A (CONT.

1135	ACGAGGCCTCGGACTTGGTGGAGA	1184
158 1185	ArgProProGlnValGluV NNNNNNNNNNNNNNNN	175 1234
ا ا ا ا		180
ト / J C C L Z C C C L Z C C L Z C C C L Z C C C L Z C C C L Z C C C L Z C C C L Z C C C L Z C C C L Z C C C C	NCAGAATTTCCACTTGACTCAGAT	1284
181		190
- C		1334
1285	_	206
190		
1335		1384
206	euValThrArgThrThrLeuSerGln	222
1385	CTGGAGCTGAAGGTCACGGCCAGTCCAGACAAAGTGACCAAGACA	1434
223		230
177		

20/116

1484 246 ||||||| ::: |relluleuGluAspLeuValLysValLeuT 1510 TAATAAATAAGAAGTTGCATAACCAT 1485

231

254

yrLeuGluArgSerGluLysGlyHis

246

FIG. 3A (CONT.³)

368	CCCACTGTGGAACCTCACACTCCTCTGGACTCCGGGCCCCACC 411 ::::::	
412548	AAAGTCCTGCCAGCACGGGACCATGTACCAACAGGGAGAGATCTTCA 461	
462565	GIGCCCATGAGCIGTICCCCTCCCGCCTGCCCAACCAGTGT 502 :: laProAsnTyrAspProLeuCys 572	
503	GTCCTCTGCAGCCAGAGGGCCAGATCTACTGCGGCCTCACAACCTG 552 ::: :::	
553 589	CCCCGAACCAGGCTGCCCCCCCCCCCGCTGCCAGACTCCTGCTGCC 602	
603	AAGCCTGCAAAGTGAGCAATCGGATGAAGAGACAGTGTG 652 ::: ::: roValCys	

WO 01/34796

PCT/IL00/00736

22/116

869	rqValAsnProThrAspCysCysLysGlnCysProV	681
785	AGCGCCCTCTGAGCTTCATCCCTCGCCACTTCAGACCCA 785	746
681	${\tt GlyThrGlyGluValHisCysGluLysValGlnCysProArgLeuAlaCy}$	665
745		745
664	alValProProPheGlyLeuIleLysCysAlaValCysThrCysLysGly	648
745		728
648	::: ::: rPheAspGlyAspArgSerTrpArgAlaAlaGlyThrArgTrpHisProV	631
727	CAGTGATGCTGGGAGAAAGAGAGGCCCGGGCACC	694
631	ArgAspLeuProGlyLeuProArgSerArgAspProGlyGluGlyCysTy	615
0 7	653 CAGTCGCTCCATGGGGTGAGACATCCTCAGGATCCATGTTC 693	653

FIG. 3B (CONT.

WO 01/34796

23/116

748 ysGlyAlaGlyValFionisCysCiuntsCysCiuntsCysCincFol- 983 CCCTGCCGTCACCCCGAGAAAGTGGCTGGGAAGTGCTGCAAGATTTGC 1030
ysGlyAlaGlyvalrioniscysdi
GTGAGGATGGCCGCCAGGACTGCCAGGTGTGACCTGTCCCACGAGIAC
GCACCCGGCCTTCCGTGCCTTCGGC
ProArgGlyCysArgPheAlaGlyG GCACCCGGCCTTCCGTGCCTTCGGC ::: pHisProSerValProProPheGly GTGAGGATGGCCGCCAGGACTGCCA
ANGAAAGCCTGTGTGCATGGCGGGAAACCCGGGAAACCCGGCTTCCGTGCTTCGGCGCCTTCGGCGCTTCGGCGCTTCGGCGCTTCGGCGCCTTCGGCGCTTCGGCAAAACCTGCCAAAACCTGCCAAAAAAAA
alGlySerGlyAlaHisProGlnLet alGlySerGlyAlaHisProGlnLet ::::: ProArgGlyCysArgPheAlaGlyG GCACCCGGCCTTCCGTGCCTTCGGC ::: pHisProSerValProProPheGly GTGAGGATGGCCGCCAGGACTGCCA

SUBSTITUTE SHEET (RULE 26)

24/116

1031 FOGUTOUALGAGACAICOICAGGAIGCAIGTICCAGIGAIGG 1909 :::::: 3 SerTyrHisArgSerHisTyrAspProProProSerArgGlnAlaGlyGl 19
1081 GAGAAAGAGGCCCCGGGCACCCCCCCCCCTCAGCGCCCCTC 1130
уА1
SCCACTTCAGE
34
1181 GTCAAGATCGTCCTGAAGGAGAAACATANGAAAGCCTGTGTGCA 1224
:::
1225 TGGCGGGAAGACGTACTCCCACGGGAGGTGTGGCACCCGGCCTTCCGTG 1274

FIG. 4.

1275 CCTTCGGCCCTTGCCATGCATCCTATGCACCTGTGGCCGCCGCCAG 1324
1325 GACTGCCAGCGTGTCCCACGAAGTACCCCTGCCGTCACCCCGA 1374 ::: ::::::: ::::: ::::: ::::
1375 GAAAGTGGCTGCAAGATTTGCCCAGAGACAAAGCAGAC. 1423:1111:::
1424CCTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCCAAG 1462 ::: ::: ::::
1463 GCACCGGGCCCTCGTCCACATCGGTATCCCCAAGCCCAGA 1509 :::

(CONT.¹)

	222	206 enValThrArdThrThrLeuSerGlnTrpLysIlePheThrGluGlyGlu 222	000
	1759	CACGAAGGTCAC	171
	206	::: ::: 	190
	1709	CAAGAAAGTCAGGAAGCAAGACTTCCAGAAAGAGGCACAGCACTTCCGAC	1660
	190	ArgLysGlyIleLeuGlnHisPheHisIl	181
	1659	INCAGAATTTCCACTTGACTCAGAT	161
•	180	175 alHisValTrpThrIle	17
	1609	NNNNNNNNNNNNNNNN	156
	175	:::: :::::	158
	100A	1510 CAACCTGCGTCGCTTTGCCCTGGAACACGCCTCGGACTTGGTGGAGA 1559	TCT

09,	160 CTGGAGCTGAAGGTCACGGCCAGTCCAGACAAAGTGACCAAGACATAACA 1809	1 8 0 <i>v</i>	
	+++		
223	23 AlaGlnIleSerGlnMetCysSer	230	
310	GTATAATTGTTGTTATATAT	1859	
		,	
231	SerArgValCysArgThrGluLeuGluAspLeuValLysValLeuT	246	
	1860 TAATAAATAAGAAGTTGCATAACCAT 1885		
	216 July Ser Glut VsGlvHis 254		

260	560 TGCCTTTTCCATGGGAAGATACICCCCGGCGAGAGCIGGCACCCLIA 609 ::: ::: :::: ::::::::::::	J.
691	CysPhePheGluGlyGluGlnHisThrHisGlySerGlnTrpThrProGl 707	7(
610	610 CTTGGAGCCACAAGGCCTGATGTACTGCCTTGCGCTGTACCTGCTCAGAGG 659	6.0
707	707 nTyrAsnThr	67
099	660 GCGCCCATGTGAGTTGTTACCGCCTCCACTGTCCGCCTGTCCACTGCCCC 709	60
719	719 ysThrVallleCysAspProValMetCysProThrLeuSerCysThr 734	34
710	710 CAGCCTGTGACGGAGCCACAGCAATGCTGTCCCAAGTGTGTGGAACCTCA 759	60
735	735 HisThrValGlnProGluAspGlnCysCysProIleCysGluGluLysLy 75	751
760	CTCTGGACTCCGGGCC	791
751	::: sGluSerLysGluThrAlaAlaValGluLysValGluGl	89

FIG. 4

PCT/IL00/00736

29/116

FIG. 4B (CONT.¹)

WO 01/34796

PCT/IL00/00736

FIG. 4B (CONT.²)

033	033 GCTCCATGGGGTGAGACATCCTCAGGATCCATGTTCCAGTGATGCTGGGA 1002	7001
851	g	851
083	GAAAGAGAGCCCCGGGCACCCCAGCCCCCACTGGCCTCAGCGCCCCTCTG	1132
852	AspGlyThr	854
133	AGCTTCATCCCTCGCCACTTCAGACCCCAAGGGAGCAGGCAG	1182
854		854
183	CAAGATCGTCCTGAAGGAGAAACATANG	1232
855		862
.233	AGACGTACTCCCACGGGGGGGGTGTGGCACCCGGCCTTCCGTGCCTTCGGC	1282
862	snTyrTyrGlnAsnSerGluHisTrpHisProSerValProLeuVal	878

	1383 CTGGGAAGTGCTGCAAGATTTGCCCAGAGGAC 1414
	895 nArgLysGlnCysProLeuLeuSerCysArgAsnProIleArgThrG 911
32	333 GCGTGTGACCTGTCCCACGAAGTACCCCTGCCGTCACCCCGAGAAAGTGG 1382
	:::
32	283 CCTTGCCCATGCATCCTATGCACCTGTGAGGATGGCCGCCAGGACTGCCA 1332

FIG. 4B (CONT. 3

FIG. 4C (CONT.¹)

810	CCATGTACCAACACGGAGAGATCTTCAGTGCC	344
771	::::::::::::::::::::::::::::::::::::::	787
845	GAGCTGTTCCCCTCCCGCCTGCCCAACCAGTGTGTCCTCTGCAGCTGC 8	892
788	_	804
893		938
804	::: ::::::: sGlyserThrGlyGluValHisCysGluLysValThrCysProLysLeuS	821
939	GCTGCCCAGCACCCCTCCCGCTGCCAGACTCCTGCTGCCAAGCCTGC	985
821	:: erCysThrAsnProIleArgAlaAsnProSerAspCysCysLysGlnCys	837
986	SGCAAGTGAGCAATCGGATGAAGAGGACAGTGTGCAGTCGCT	1035
838		853

FIG. 4C (CONT.²)

PCT/IL00/00736

WO 01/34796

					•	7, 1 1					
STTCCAGTGATGCTGGGAGAA 1085	853	SGCCTCAGCGCCCCTCTGAGC 1135	853	AGCAGCACCACTGTCAA 1185	858	1235	865	SGCCTTCCGTGCCTTCGGCCCT 1285	::: oThrValProProPheGlyGlu 881	ATGGC	 uGlyIleThrGlnCysArgAr 898
6 CCATGGGGTGAGATCCTCAGGATCCATGTTCCAGTGATGCTGGGAGAA 108	23	86 AGAGAGGCCCCGGCCCCCCCCCCTGGCCTCAGCGCCCCTCTGAGC	53	36 TTCATCCCTCGCCACTTCAGACCCAAGGGGGGGCAGCAGCACTGTCAA	54	RE GATCGTCCTGAAGGAAACATANGAAAGCCTGTGTGCGTGCGGGAAGA			236 CGIACICCCACCOCCIO	S TOTOTATICATICATION AND SELECTED AND SELECT	282 MetLysCysValThrCysThrCysAlaGluGlyIleThrGlnCysArgAr
036	Ω		85	113	8		→ ∝		771		8

WO 01/34796

PCT/IL00/00736

0)	1421 GACCCTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCC 1459	
924		606
1420	CCGAGAAAGTGGCTGGGAAGTGCTGCAA	1371
908	898 gGlnGluCysThrGlyThrCysGlyThr	8 9
T 3 / 0	CCAGGACTGCCAGCGTGTGACCTGT	1321

36/116

36	CAGACATGTTCTGCCTTTTCCATGGGAAGAGATACTC	585	
543	Рr	559	
989	CCCCGGCGAGAGCTGGCACCCTACTTGGAGCCACAAGGCCTGATGTACT	635	
559		572	
536		685	
572		587	
989	CACTGTCCGCCTGTCCACTGCCCCCCAGCCTGTGACGGAGCCACAGCAATG	735	
588		604	
736	CTGTCCCAAGTGTGTGGAA	764	
604	 sCysProValCysProGluLysGlnAspValArgAspLeuProGlyLeuP	621	

FIG. 41

765	CCTCTGGACTCCGGGCCCCACCAAGTCCTGCCAGCACAAGGGACCATG	814
621		989
815	CATGAGCT(864
637	:::::: 637 SerTrpArgAlaAlaGlyThrArgTrpHisProValValProProPheGl	653
865	865 GCCCAACCAGTGTCTTCTGCAGCTGCACAGAGGGCCAGATCT	806
653	::: :::: 653 yLeuIleLysCysAlaValCysThrCysLysGlyGlyThrGlyGluValH	019
606	909 ACTGCGGCCTCACAACCTGCCCGAACCAGGCTGCCCAGCACCCTCCCG	958
019	:: 670 isCysGluLysValGlnCysProArgLeuAlaCysAlaGlnProValArg	989
959	CTGCCAGACTCCTGCTGCCAAGCTGCAAAGATGAGGCAAGTGAGCA	1005
687	687 ValAsnProThrAspCysCysLysGlnCys696	969

FIG. 4D (CONT.

WO 01/34796

38/116

					30	7110					
1055	705	1099	715	1149	715	1199	715	1249	728	1299	745
AGTCGCTCCATGGGGTGAGACATCCTC	ProValGlySerGlyAlaHisProG	TCCAGTGATGCTGGGAGAAAGAGAGGGCCCGGGC) ACCCCAGCCCCACTGGCCTCAGCGCCCCTCTGAGCTTCATCCCTCGCCA	2	O CTTCAGACCCAAGGGAGCAGCACACAACTGTCAAGATCGTCCTGAAGG	ς	SCCTGTGTGCATGGCGGGAAGACGT	6ArgGlyCysArgPheAlaGlyGlnTrpPheProGluSer	50 GAGGTGTGGCACCCGGCCTTCGGCCTTCGGCCCTTGCCATGCATCCT	29 GlnSerTrpHisProSerValProProPheGlyGluMetSerCysIleTh
100	69	105	70	1100	71	1150	71	120	71	125	72

FIG. 4D (CONT.²)

39/116

300	ATGGCCGCCAGGA	
745	 	
350	CGAAGTACCCCTGCCGTCACCCCGAGAAAGTGGCTGGGAAGTGCTGCAAG 1399	
762	 11	
140	1400 ATTTGC	
77	 777 argCysThrAlaHisArgArgProAlaProGluThrArgThrAspPro 792	

IG. 4D (CONT.³

		40/116	
PTAASWPFSD	100 ERMVPEVRVL	150 YLEPQGLMYC YLEPQGLMYC	200 EPHTPSGLRA EPHTPSGLRA
LDLPSCPPFL	PLPDQRPDPG	RYSPGESWHP RYSPGESWHP	PQQCCPK.CV PQQCCPK.CV SSSSCPSPTV
FSFHLSLLPT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	VSESSPVLPT	PDMFCLFHGK PDMFCLFHGK	VHCPQPVTE. VHCPQPVTE. FSKDSHETSF
VSPSLPPFPA	CGLICGPCXS	FPLDSHARAR TNMALVGLPG	VSCYRLHCPP VSCYRLHCPP QNHQKSGLVN
SPLPSAGPSF	51 PALAADLLGS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	101 SSLLGLALLW DRVFGLEPPG	151 LRCTCSEGAH LRCTCSEGAH ~~~ISSWGQM
chordin_ed7 chordin_ed6TR_2 chordin_ed6TR_1	chordin_ed7 chordin_ed6TR_2 chordin_ed6TR_1	chordin_ed7 chordin_ed6TR_2 chordin_ed6TR_1	chordin_ed6TR_2
	SUBS	TITUTE SHEET (R	ULE 26)

FIG.

FIG. 5 (CONT.¹)

41/116 PQDPCSSDAG PQDPCSSDAG 400 KYPCRHPEKV KYPCRHPEKV 350 KHXKACVHGG KHXKACVHGG KYPCRHPEKV KHXKACVHGG 300 PQDPCSSDAG QIYCGLTTCP Δ Д QIYCGLTTCE QIYCGLTTCE QCVLCSCTEG QCVLCSCTEG QDCQRVTCPT QDCQRVTCPT QDCQRVTCPT STTVKIVLKE STTVKIVLKE STTVKIVLKE QCVLCSCTEG SVQSLHGVRH SVQSLHGVRH SVQSLHGVRH CILCTCEDGR CILCTCEDGR PRHFRPKGAG PRHFRPKGAG PRHFRPKGAG CILCTCEDGR EASEQSDEED EASEQSDEED HELFPSRLPN HELFPSRLPN EASEQSDEED HELFPSRLPN PDSCCQACKD PDSCCQACKD PDSCCQACKD TGLSAPLSFI TGLSAPLSFI FRAFGPCP PAFRAFGPCP FRAFGPCP MYQHGEIFSA MYQHGEIFSA MYQHGEIFSA LSAPLSFI PA] PA TG. PPKSCQHNGT PPKSCQHNGT RKRGPGTPAP KTYSHGEVWH RKRGPGTPAP KTYSHGEVWH KTYSHGEVWH RKRGPGTPAP PPKSCQHNGT EPGCPAPLPL EPGCPAPLPL EPGCPAPLPL 301 351 chordin_ed6TR_2 chordin_ed6TR_2 chordin_ed6TR_2 chordin_ed7 ed7 chordin ed7 chordin_ed7 chordin_ed6TR_ ed6TR chordin chordin_ SUBSTITUTE SHEET (RULE 26)

SPDNLRRFAL SPDNLRRFAL SPDNLRRFAL RVLVHTSVSP RVLVHTSVSP RVLVHTSVSP SSTRCPKAPG SSTRCPKAPG STRCPKAPG DKADPGHSEI DKADPGHSEI DKADPGHSEI AGKCCKICPE AGKCCKICPE AGKCCKICPE 401 chordin_ed6TR_2 chordin_ed7

451

500

42/116 TQIKKVRKQD TQIKKVRKQD TQIKKVRKQD ***** 42 * [-S VTASPDKVTK VTASPDKVTK PRPHSQNFHL PRPHSONFHL VTASPDKVTK PRPHSQNFHL VFLAQTLELK VFLAQTLELK VFLAQTLELK TEAQRGEVPG TEAQRGEVPG TEAQRGEVPG GPHEGHWN LAGPHEGHWN LAGPHEGHWN YLWKLVKDEE YLWKLVKDEE YLWKLVKDEE LA(FOKEAQHFRL FOKEAQHFRL FOKEAQHFRL EHEASDLVEI EHEASDLVEI EHEASDLVEI 501 ed7 ed7 chordin_ed6TR_1 chordin_ed6TR_chordin_ed6TR_ chordin chordin

FIG. 5 (CONT.²)

SUBSTITUTE SHEET (RULE 26)

9

3 SerTyrHisArgSerHisTyrAspProProProSerArgGlnAlaGlyGl 19
CCCACTGGCCT
:::
962 TGAGCTTCATCCCTCGCCACTTCATACCCAAGGGAGCAGGCAG
36
1012 GTCAAGATCGTCCTGAAGGAAACATAAGAAAGCCTGTGTGCA 1055
:::
9
:::

9

44/116

1106	106 CCTTCGGCCCCTTGCATCCTAIGCACCIGIGAGGAIGGCCGCCAG 11.55
1156	
1206	206 GAAAGTGGCTGGAAGTTTTGCCCAGAGGACAAAGCAGAC. 1254 : :::
1255	
1294	

SUBSTITUTE SHEET (RULE 26)

45/116

158	CAACCTGCGTCGCTTTGCCCTGGAACACGAGGCCTCGGACCTGGTGGAGA 1390 ::::	1390 175
	TCTACCTCTGGAAGCTGGTAAANNNNNNNNNNNNNNNNNN	1440
	75 alHisValTrpThrIle	180
1 4 4 1	ONNNNNNNNNNNNNNNNNNNNNNNNN	1490
4 6	::: 	190
1491		1540
'		205
1541		1590
206		222

FIG. 6 (CONT.²)

PCT/1L00/00736

46/116

(CONT.3)

9

```
1690
1640
                                                                                      245
                            230
                                                     AGATATGAGCTGTATAATTGCTGTTATTATA
                                                                                    SerArgValCysArgThrGluLeuGluAspLeuValLysValLeu
CCTGGAGCTGAGGCCAGTCCAGACAAAGTGACCAAGACATAAC
                                                                                                                                                   254
                                                                                                                                                   TyrLeuGluArgSerGluLysGlyHis
                                                                                                                      TTAATAAATAAGAAGTTGCATAACCAT
                                  uAlaGlnIleSerGlnMetCysSer.
                                                                AAAGACCTAACAGTTGC
                                                                                                                                                        246
                                                                                                                            1691
                                       222
                                                                    1641
                                                                                                 231
```

 $(CONT.^{1})$

208	GT(_
459	spLeuGluProGluLeuLeuArgHisLeu468	∞
258	TCCGCTCCCGGACCAGCGGCCTGGGGGAAAGGATGGTTCCCG 304	4
469		4
305		2
484		, - 1
316	CTCTCCTCCTT	1
501	 501 lyLeuArgLeuGluAlaAlaGlyAlaGluGlyValArgAlaLeuGlyAla 517	_
342	GCTCT 346	9
518	. 518 ProAspProAlaSerAlaAlaProProValValProGlyLeuProAlaLe 534	4

(CONT.²)

```
\sim
                                                                                                                                                                                                                                  பி
                                                                                                                                                                                                     \mathbf{C}
                                                                                                                                             580
                                                                                                                 490
                                                                                    67
                            50
                                                                                                                                                                                                                                                               61
90
                                                                                                                                                                                                                                  58
                                                                                                                                                                          54
                                                                                                                                                                                                       Q
                                                                                     2
                            \mathcal{C}
                                                                                                                                                                                                                                                               HisProValGlnAlaProAspGlnCysCysProValCysProGluLysGl
                                                                                                                                                                                                      lCysProProProSerCysPro
                                                                                                                                                                          TACCGCCTCCACTGTCCGCCTGTCCACTGCCCC
                                                                                                                                               LeuCysSerLeuCysThrCysGlnArgA
                                                                                                                 TGATGTACTGCCTGCTGTACCTGCTCAGAGG
                                                                                     nGlnArgProHisGlyAlaArgTrpAlaProAs
                                                        GAGATACTCCCCGGCGAGAGCTGGCACCCCTA
                             .GlyArgProArgAspProAsnThr
 CACGCTCGAGCCCGCCCAGACATGTTC
                                                                                                                                                                                                                                  CAGCCTGTGACGGAGCCACAGCAATGCTGTCCCCAAGTGTGTGGAA
                                                                                                                                                                                                          rgThr...VallleCysAspProValVa
                                                                                                                        CTTGGAGCCACAAGGCC
                                                                                                                                                                                 GCGCCCATGTGAGTTGI
                                                                                           CysPhePheGluGlyGl
                                    uAlaProAlaLysProG
                                                                                                                                                       nTyrAspPro..
                                                                                                                                                                                                                                              541
                                                                                                                                                                                                                                                                          596
                                                                                                                                                                                                                 580
                                                                                                                                                                                     491
                                                                                                                                                         567
                                                                                                                             441
                                                                                                551
                                        534
                                                                    391
```

WO 01/34796

					J0/ 1	10				
AA 619	/G 628	699 LE	rg 644	AG 719	Th 661	CG 763	I: oa 678	AG 810	:: VS 694	· · · · · · · · · · · · · · · · · · ·
CCTCACACTCCCTCTGGACTCCGGGCCCCACCA	naspvalargaspleuProGlyLeuProArgSerArgaspProGlyG 628	0 AGTCCTGCCAGCACAACGGGACCATGTACCAACACGGGAGAGATCTTCAG	### ##################################	670 GCCCATGAGCTGTTCCCCTCCCGCCTGCCCAACCAGTGTGTCTCTGCAG	::: S TrpHisProValValProProPheGlyLeuIleLysCysAlaValCys'	O CTGCACAGAGGGCCAGATCTACTGCGGGCTCACAACCTGCCC	: : rCysLysGlyGlyThrGlyGluValHisCysGluLysValGlnCysProA	64 PACTAGGCTGCCCTCCCGCTGCCAGACTCCTGCTAG 810		78 rgLeuAlaCysAlaGlnProValArgValAsnProintAspCySCySt
Z Z	61	79	9	9	ý	7	9		~	9

51/116

GIGIGCA AOU	969	TCCAGTG 904	GlnAlaA 713	CCTCAGC 954	715	CAGGCAG 1004	715	TGTGTGC 1054	CysArgP 720	
811 GCCIGCAAAGAIGAGGCAAGIGAGCAAIGGAGGACCGIGIGCA 860	GlnCys	GTCGCTCCATGGGGTGAGACATCCTCAGGATCCATGTTCCAGTG	ProValGlySerGlyAlaHisProGlnLeuGlyAspProMetGlnAlaA	AGGCCCGGGCACCC	spGlyPro	GCCCCTCTGAGCTTCCCTCGCCACTTCATACCCCAAGGGAGCAGGCAG		CACAACTGTCAAGATCGTCCTGAAGGAGAAACATAAGAAAGCCTGTGTGC		
7 7 2	695	861	697	908	713	955	715	1005	716	

דיוני ל

52/116

```
9
04
                                                                                                                                                   \sim
                                                                                                                                                                             4
                                                 5
                        9
                                                                          \mathcal{C}
                                                                                                                                                                             78
                                                                                                                                                    \sim
                                                                          \Box
                                                                                                                                                                             sArgArgPro
                                                                                                   CCTGTCCCACCGAGTACCCCTGCCGTCACCCCG
                                                                                                                            spCysSerLeuProLeuSerCysGlySerGlyL
                                                 CTGCATCCTATGCACCTGTGAGGATGGCCGCCA
                                                                          leThrCysArgCysGlyAlaGlyVal
                         servall
ATGGCGGGAAGACGTACTCCCACGGGGGGGGGTGTGGCACCCGGC
                                                                                                                                                                                                                               92
                                                                                                                                                                              aH
                                                                                                                                                                                                                                 AlaProGluThrArgThrAspPro
                         pH
                           er_
                          nS
                                                                                                                                                                               CysCysSerArg
                                                                           ProPheGlyGluMetSerCysI
                            ProG
                                                                                                      GGACTGCCAGCGTGTGA
                                                                                                                               OHisCysGluArgAspA
                                                                                                                                                       AGAAAGTGGCTGGGAAG
                                                                                                                                                                                 .. SerArg
                           720 heAlaGlyGlnTrpPhe
                                                    GCCTTCGGCCCCTTGCC
                                                                                                                                                                                                                                  785
                                                                                                                     ----
                                                                   ____
                                                                                                                                                                                 ysGlu.
                                                                                                                                                         1205
                                                      1105
                                                                                                         1155
                                                                                                                                                                                  770
    1055
                                                                                737
                                                                                                                                 53
```

FIG. 7 (CONT. 5

WO 01/34796

		337		
40 556	72 573	122 579	172591	198
3 CTTCCCCTTTCTTTGATCGCCTCTCC	41 CCTTCCTTCTCTCTCTCTCTCTTTT	73 CCCCGCGTTCTTTCTTTTCTTTCTTTCCCACCTTAGACCTCCTT :::::	123 CCTGCCCTCCTTCCTGCCCACCGCTGCTTCCTGGCCCTTCTCCGACCCC	ACCTCGGGGTC ::: :
Σ	Ŋ	— ·		

(CONT.¹)

 $\boldsymbol{\omega}$

WO 01/34796

		0
681	::::::::::::::::::::::::::::::::::::::	
337	291 AAGGATGGTTCCCGAGGTGGGGTCCTCTCCTTGCTGGGACTCG	29
664		648
290	TGACCCTGGGGA	279
648	rserProArgGlyGluLeuArgGlyGlnValHisIleAlaSerGlnCýsG	631
278		278
631		619
278	CCTCCCGACTCCGGACCAGCGGCC	249
618	alValLysAspLeuGluProValLeuLeuArgHisLeu	909
7 0	199 TGTGGGTTGATCTGTGGCCCCTGTGCCTCGTGTCTTTTTTTT	199

WO 01/34796

55/116

GAGATACI			ProAsnThrCysPhePheGluGlyGlnGlnArgProHisGlyAlaArgTr 714	CTT		531	::::::::::::::::::::::::::::::::::::	CACTGCCCCAGCCTGTGACGGAGCCACAGCAATGCTGTCCCAAGTGTGT 581	:::	
	oGluAlaPr	GACATGTTC	ProAsnThr	GCACCCCTA	 palaProAs	GCTCAGAGG	:::: ysGlnArgA	CACTGCCCC	 	ント・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー
,	183	882 (869	132	714	482	27	532		-

FIG. 8 (CONT.

(CONT. 3)

WO 01/34796

				5771			\leftarrow		
845	901	849	951	861	v 1	864	1051	898	
TGCTGCCAGGCCTGCAAAGATGAGGCAAGTGAGCAATCGGATGAGGCC	CysCysLysGinCys	CCGTGTGCAGTCGCTCATGGGGTGAGACATCCTCCTCTCTCT		nAla	2 AGCGCCCTCTGAGCTTCATCCTCGCCACTTCATACCCAAGGGAGCAGG	62 AspGlyPro	CAGCACAACTGTCAAGATCGT	65ArgGlyCysA	FTG 8 (CONT. ⁴)
802	4	852 846	905	84	952	8	1002	8	

WO 01/34796

1052	TGCATGGCGGAAGACGTACTCCCACGGGAGGTGTGGCACCCGGCCTTC 1101	
868	rgPheAlaGlyGlnTrpPheProGluAsnGlnSerTrpHisProSerVal 884	
1102	CGTGCCTTCGGCCCTTGCCTGCATCCTATGCACCTGTGAGGATGGCCG 1151	
885		
1152	CCAGGACTGCCAGCGTGTCCCTGCCCACCGAGTACCCCTGCCGTCACC 1201	
901	::: ProHisCysGluArgAspAspCysSerProProLeuSerCysGlySerG 918	
1202	CCGAGAAAGTGGGAAGTGCTGCAAGATTTGC	
918	918 lyLysGluSerArgCysCysSerHisCysThrAlaGlnArgSer	
123	7	
93	::: :: 933 SerGluThrArgThrLeuProGluLeuGluLysGluAlaGluHisSer	

59/116

862	$ t TCGCTCCATGGGGTGAGACATCCTCAGGATCCATGTTCCAGTG{m I}$	911
m	sargserHisTyrAspProProSerArgGlnAlaGlyGl SerTyrHisArgSerHisTyrAspProProProSerArgGlnAlaGlyGl	19
912	GAGAAAGAGGCCCGGGCACCCCCACCCCCACTGGCCT	961
19	:::	33
962	962 TGAGCTTCATCCTCGCCACTTCAGACCCCAAGGGAGCAGGCAG	.011
34		43
1012		1055
44	::: ::::::::	09
1056		1105
(:::	77

FIG. 9

FIG. 9 (CONT. 1)

WO 01/34796

61/116

1341	CAACCTGCGTCGCTTTGCCCTGGAACACGAGGCCTCGGACTTGGTGGAGA	1390
158	:::: :::::	175
1391	TCTACCTCTGGAAGCTGGTAAANNNNN	1440
175	alHisValTrpThrIle	180
1441	NNNNNNNNNNN	1490
181	::: ArgLysGlyIleLeuGlnHis.PheHisI	190
1491		1540
190	::: ::: ::: :::	205
1541	CTGCTGGCCCCCCACGAAGGTCAC	1590
206	206 LenValThrardThrThrLeuSerGlnTrpLvsIlePheThrGluGlyGl	222

FIG. 9 (CONT. 2)

WO 01/34796

FIG. 1

347	GGTTCCCCCTGGACTCCCACGCTCGAGCCCCGCCCAGACATGTTC	390
534	::: uAlaProAlaLysProGlyGlyPro.GlyArgProArgAspProAsnThr	550
391	TGCCTTTTCCATGGGAAGAGATACTCCCCGGCGAGAGATGCCCTA	440
551		267
441	CTTGGAGCCACAGGCCTGATGTACTGCCTGC	490
567	::: nTyrAspProLeuCysSerLeuCysThrCysGlnArgA	280
491		540
580	::: :::	595
541	CAGCCTGTGACGGAGCCACAGCAATGCTGTCCCAAGTGTGTGGAA	585
596	::: 596 HisProValGlnAlaProAspGlnCysCysProValCysProGluLysGl	612

WO 01/34796

586		619
612	::: :: nAspValArgAspLeuProGlyLeuProArgSerArgAspProGlyG	628
620	620 AGTCCTGCCACACAGGGCCATGTACCAACACGGAGAGATCTTCAGT	699
628	::::::::::::::::::::::::::::::::::::::	644
019	GCCCATGAGCTGTTCCCCTCCCGCCTGCCCAACCAGTGTGTCTTTGCAG	719
645	645 TrpHisProValValProProPheGlyLeuIleLysCysAlaValCysTh	661
720	CTGCACAG	763
661		678
764	AACCAGGCTGCCCAGCACCCCTCCCGCTGCCAGACTCCTGCTGCCAG	810
678	:: :: rgLeuAlaCysAlaGlnProValArgValAsnProThrAspCysCysLys	694

	FIG. 10 (CONT. 4)	
'SA 719	16ArgGlyCysA	71
TG 1051	02 CAGCACAACTGTCAAGATCGTCCTGAAGGAGAAACATAAGAAAGCTGTGTG	00
715	15	71
3G 1001	52 AGCGCCCTCTGAGCTTCCCTCGCCACTTCAGACCCCAAGGGAGCAGG	952
 715	12 laAspGlyProGlyPro	71
TC 951	02 GTGATGCTGGGAGAAAGAGGCCCCGGGCACCCCCAGCCCCCACTGGCCTC	90
nA 712	3	703
CA 901	GCAGTCGCTCCATGGGGTGAGACATCCT	858
702	 5 GlnCysProValGlySerGlyAla	695
GT 857	11 GCCTGCAAAGGTGAGGCAAGTGAGCAATCGGATGAAGAGGACAGTGT	81.

1101

TGCATGGCGGAAGACGTACTCCCACGGGGGGGGTGTGGCACCCGGCCTTC

1052

PCT/IL00/00736

(CONT

	1237CCAGAGGACAAAGCAGACCT 1257 ::::: 784 ProAlaProGluThrArgThrAspPro 792
rg 783	769 lyLysGluSerArgCysCysSerArgCysThrAlaHisArgArg
1236	202 CCGAGAAGTGGCTGGGAAGTGCTGCAAGATTTGC
rG 769	pAspCysSerLeuProLeuSe
3C 1201	152 CCAGGACTGCCAGCGTGTCCCACCGAGTACCCCTGCGTCACC
Ja 752	eThrCysArgCysGly
G 1151	102 CGTGCCTTCGCCCCTTGCATCCTATGCACCTGTGAGGATGGCCG
11 735	::: ::: ::::::::::::::::::::::::::::

704	754	804	43	848	09	868	77
655 TCGCTCCATGGGGTGAGACATCCTCAGGATCCATGTTCCAGTGATGCTGG 704 3 SerTyrHisArgSerHisTyrAspProProProSerArgGlnAlaGlyGl 19	705 GAGAAAGAGGCCCCGGGCACCCCACCCCCACTGGCCTCAGCGCCCCTC 754 ::: ::: :::		34	805 GTCAAGATCGTCCTGAAGGAGAACATAAGAAAGCCTGTGTGCA 848	44 ValGlnIleValIleAsnAsnLysHisLysHisGlyGlnValCysValSe	۲n ٔ	:::
9	7	7		∞		ω	

<pre>ccrrcGcccccTGccTCCTATGCACCTGTGAGGATGGCCGCCAG 948 apheGly1leValGluCysValLeuCysThrCysAsnValThrLysGln 93</pre>
GACTGCCAGCGTGTGCCTGTCCCACCGAGTACCCCTGCCGTCACCCCGA 998 ::: :::::::: :::: ::::
399 GAAAGTGGCTGGAAGTTTTGCCCAGAGGACAAAGCAGAC. 1047 : :::
048ccTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCCAAG 1086
087 GCACCGGGCCCTCGTCCACATCGGTATCCCCAAGCCCAGA 1133 ::: 144 GluThrMetProValTyrGluSerValPheMetGluAspGlyGl 158

84 84 81 84 90	1134 158	34 CAACCTGCGTCGCTTTTGCCCTGGAACACGGGCCTCGGACTTGGGAGACTTGGGAGACTTGGGAGACTTGGGAGACTTGGGAGACTTGGGAGACTTGGGAGACTTGGGAGACTTGGGAGACTTGGGAGACTTGGGGAGACTTGGGGGGGG	175
:::::: ::: 234 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	1184	TCTACCTCTGGAAGCTGGTAAANNNNNNNNNNNNNNNNNN	1233
234 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	175		180
181	2		1283
284 CAAGAAAGTCAGGAAGCAAGACTTCCAGAAAGAGGCACAGCACTTCCGAC ::: :::			190
::: ::: ::: :::	1284	_	1333
			206

FIG. 11 (CONT. *)

72/116

	SerArgvalCysArgInfelubeuGlubeuvalysvallysGlyHis 254 1484 TAATAATAAGAAGTTGCATAACCAT 1509 246 vrLeuGluArgSerGluLysGlyHis 254
, 246	::: ::: :: :: :: :: :: :: :
1483	34 AAGACCTAACAGTTGCAGATATGAGCTGTATAATTGTTGTTATATATA
230	23 AlaGlnIleSerGlnMetCysSer
1433	GTCA
222	:::::: 6 euValThrArgThrThrLeuSerGlnTrpLysIlePheThrGluGlyGlu
1383	34 TGCTCGCTGGCCCCCACGAAGGTCACTGGAACGTCTTCCTAGCCCAGACC 1383

FIG. 11 (CONT. 3)

73/116

08	CTTGCTCTG	24
394	LysSerGlnAlaAlaGlyHisAlaTrpLeuSerLeuAspTh 407	107
125		155
407		124
156	GTAGAGGTCATGGGAGGGGACTCAGTCAGATGTAGGTATCAGAGGGA	205
424	lii luGlnGlyThrValThrAlaHisLeuLeuGlyProProGlyThrProGly	440
206	206 CCTCTTAGTTAGCGGGAATGGCTGGCAAGGCCCAGGCCAGAGC 255	255
441	ProArgArgLeuLeuLvsGlvPheTvrGlvSerGluAlaGlnGl	155

T . DTA

GTGG 305 ::: LeuA 469	325 Gly 485	334 .yle 502	A 335 ProA 519	.GAA 378 1Ala 535	
TTGGTTTAAATATCAAGCTGGGTCAAATGCAAAATCATCAGAAAGTGG : :::::::::::::::::::::::::::::::::	CCTTGTTAATTTCAGCAAAG	GluLeuArgGlyGlnValHisIleAlaAsnGlnCysGluValGlyGlyLe		AACCTCATTTCTTCTTCCTCCTCCCTCCCCCACTGCA.GAA	(CONT. ¹)
AGCTGGGGTCAAATG	TTGTTAATTTCAG	.ATTCACATG	laGlyAlaGluGlyVa	CTTCCTCCTCCCTCC	FIG. 12 (CO)
256 TTGGTTTAAATATC?: 455 yValValLys	306 CC	326	335	336 AACCTCATTTTTTTCTTCCTCCTGC	

379	CCTCACACTCCCTCTGGACTCCGGGCCCCACCAAAGTCCTGCCA	422	
536	 	552	
123	GGAGAGATCTTCAGTGCCCATGAGC	472	
552	ePheGluGlyGlnGlnArgProHisGlyAlaArgTr	565	
473	473 TGTTCCCTCCGCCTGCCCAACCAGTGTGTCCTCTGCAGC	513	
566	 	576	
514		563	
577		593	
564		613	
593		809	

76/116

\sim	∞	4	2	9	2	14	8	755	3.5
99	61	704	635	736	652	744	899	-	89
,			::: ::: :::		::: ::: 5 pargSerTrpArgAlaAlaGlyThrArgTrpHisProValValProProP		heGlyLeuIleLysCysAlaValCysThrC		::: ValHisCysGluLysValGlnCysPr
614	609	664	619	705	635	737	652	745	99

FIG. 12 (CONT.³)

77/116

796	843	893	735	943	752	993	768
GAGCTTCATCCCTCGCCACTTCAGACCCAAGGGAGCAGGCA 	GCACAACTGTCAAGATCGTCCTGAAGGAGAAACATAAGAAAGCCTGT	4 GTGCATGGGGGAAGACGTACTCCCACGGGGGGGGTGTGGCACCCGGCCTT		4 CCGTGCCTTCGGCCCCTTGCATCCTATGCACCTGTGAGGATGGCC	:::	944 GCCAGGACTGCCAGCGTGTGCCTGTCCCACCGAGTACCCCTGCCGTCAC	::: 752 alProHisCysGluArgAspAspCysSerLeuProLeuSerCysGlySer
756	797	707 844	7]	894	7	9	7

FIG. 12 (CONT. ')

78/116

1029 783 SerArgCysCysSerArgCysThrAlaHisArgAr 1050 792 . CCAGAGGACAAAGCAGACCCT aProGluThrArgThrAspPro CCCGAGAAAGTGGCTGGGAAGTGCTGCAAGATTTGC gProAl 783 1030 769 GlyLysGlu

994

86 TGCCTTTTCCATGGGAAGATACTCCCCGGCGAGAGCTGGCACCCCTA 535 ::: ::: :::::::::::::::::::::		586 GCGCCCATGTGAGTTGCCGCCTCCACTGTCCGCCTGCCCCC 635 :::	636 CAGCCTGTGACGGAGCCACAGCATGCTGTCCCAAGTGTGTGGAACCTCA 685 :::	686 CACTCCCTCTGGACTCCGGGCC
486 TC	536 C	586 G	636 C 735 F	686 (751

(CONT

13

WO 01/34796

```
58
                                                                                                                                                                   806
                                                                                                                                        \infty
                                                                                                             861
                                                                                                                                                                                                                                                      2
                                                                                                                                                                                               \sim
                                                                                                                                         81
                                                                                 80
                                                      87
                           78
                                                                                                                                                                                                                                                      \infty
                                                                                                                                                                                               \infty
                                                                                                                                                                                                                           TGAGCAATCGGATGAAGAGGACAGTGTGCAGTC
                                                                                                                                                                    CCAGACTCCTGCTGCCAAGCC
                                                                                                                                         1ThrCysProProL
                                                                                                            ... ACAGAGGCCAGATCTACTGCGGCCTCACAACCTGCCCGGAAC
                                                     CATGAGCTGTTCCCCTCCGCCTGCCCAACCAGTGTGTCCTCTGCAGCTG
                                                                                  eLysCysAlaValCysThrCy
                                                                                                                                                                                                                                                       rProProLeuGluAspGluGluMetMetGlnA
                         lycysTyrPheGluGlyAspGlnLysMetHisAlaProGlyThrTrp
CCATGTACCAACACGGAGAGATCTTCAGTGCC
                                                                                                                                                                                               IleargargasnProSerAspCysCysLysG
                                                                                                                                            sCysGluLysVa
                                                                                      HisProPheValProProPheGlyTyrIl
                                                                                                                                             sLysGlySerThrGlyGluVal
                                                                                                                                                                                                                                                           CysProProGluGluTh
      CCTGCCAGCACAACGGGA
                                                                                                                                                                           CAGGCTGCCCAGCACCC
                                                                                                                                                                                                       euThrCysSerArgPro
                                                                                                                                                                                                                                 TGCAAAGATGAGGCAAG
                                                                                                                                                                               862
                                                                                                                                                                                                                                      606
                                                                                                                                                                                                          818
                                                                                                                                                                                                                                                                  835
                                                                                                                                                    801
          718
                                                                 168
                                                                                                                        818
                                                                                             785
                                      768
```

959 (GCTCCATGGGGTGAGACATCCTCAGGATCCATGTTCCAGTGATGCTGGGA 1008	
851	a	
1009	GAAAGAGGCCCGGGCACCCCCCCCACTGGCCTCAGCGCCCCTCTG 1058	\sim
852	 854	
1059	AGCTTCATCCCTCGCCACTTCAGACCCAAGGGAGCAGCCAGC	∞
854	854	
1109	CAAGATCGTCCTGAAGGAAACATAAGAAAGCCTGTGTGCATGGCGGGA 1158	∞
855		
1159	AGACGTACTCCCACGGGGGGGGTGTG	∞
862	:: ::::::::: ::: snTyrTyrGlnAsnSerGluHisTrpHisProSerValProLeuValGly 878	

FIG. 13 (CONT.

308 58 \mathcal{C} 91 \mathcal{O} ∞ LeuSerCysArgAsnProlleArgThrG CCGAGTACCCCTGCCGTCACCCCGAGAAGTGG CCCTTGCCCTGCATGCACCTGTGAGGATGGCCGCCAGGACTGCCA rcysTrpCysAspHisGlyValThrLysCysGl 340 921 eGluAsp CTGCAAGATTTGCCCAGAGGAC CysCysProGluCys nArgLysGlnCysProLeu. luGlyLys GCGTGTGACCTGTCCCA GluMetLysCysIleTh 1309 911 1209 1259 895 879

FIG. 13 (CONT.³)

	TGATGTACT 561	TACCGCCTC 611 ::: SASPEROVAL 587	661	ccrcacacrc 690 roglyLeuP 621
 3 GlyArgProArgAspProAsnThrCysPhePheGluGlyGlnGlnArgPr 559	2 CCCCGGCGAGAGCTGGCACCCCTACTTGGAGCCCACAGGCCTGATGTACT	GCCTGCGCTGTCAGAGGGCGCCCCATGTGAGTTGTTACCGCCTC	2 CACTGTCCGCCTGTCCACTGCCCCCAGCCTGTGACGGAGCCACAGCAATG	CTGTCCCAAGTGTGGAA
543	512	. 9 /	612 588	662

"IG. 14

(CONT.1)

WO 01/34796

691		
621	roArgSerArgAspProGlyGluGlyCysTyrPheAspGlyAspArg	636 636
741	TACCAACACGAGAGATCTTCAGTGCCCATGAGCTGTTCCCCTCCGCCT	190
637	:::::: SerTrpArgAlaAlaGlyThrArgTrpHisProValValProProPheGl	653
791		834
, , , , , , , , , , , , , , , , , , ,		0.19
	A TOTAL TOTAL ACCTGCCCGAACCAGGCTGCCCAGCACCTCCCG	884
620	833 ACIGCGGCCICITION	989
ο ω ο α	RAS CTG CCAGACTCCTGCTGCCAGCCTGCAAAGATGAGGCAAGTGAGCA 931	931
)		\(\frac{1}{2}\)
687	687 ValAsnProThrAspCysCysLysGlnCys)

WO 01/34796

932 ATCGGATGAAGGACAGTGCAGTCGCTCCATGGGGTGAGACATCCTC
--

62 euProLeuSerCysGlySerGlyLySGluSernigCyScyScyScyScyScyScyScyScyScyScyScyScyScy
76 CCGAGTACCCCTGCCGTCACCCCGAGAAGTGGCTGGGAAGTGCTGCAAG 1325 62 euProLeuSerCysGlySerGlyLysGluSerArgCysCysSer 776
26 ATGCACCTGTGAGGACGGCCTGCCAGCGTGTGACCTGTCCCA 1275
:::
STGGCACCCGGCCTTCCGTGCCTTCGGCCCTTGCCCTGCA1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

FIG. 14 (CONT. ")

292	342	392	442	492	536		
43 GAGACAGTGCCCAGTGTTGCACAGTAAGTGTGTGGTAAAGCCGAG ::: ::: 24 AspProValMetCysProThrLeuSerCysThrHisThrValGlnProGl	93 ATTCAAACTCAGACCTTCTGGCCCCTTGCCTAGGAGCATGCCCAGTTG :::: ::: 40 u	43 TCTAGCAGATTCTCTTTTGCCTGAGTGGCCCAGATGACATCTCTTTTAGA +++ 47	93 GCTAGAAAGAAATGAGACAGGGTCTTTGGGCTGGAGCCTCCTGG :::	43 GACTAACATGGCACTGGTTTGCCAGGCCCCAGACATGTTCTGCCTTT	93 TCCATGGGAAGAGATACTCCCCGGCGAGAGCTGGCACCCCTAC		
24	29	34	3	7	7		

WO 01/34796

583	633	680	700	750	800	
537 TTGGAGCCACAAGGCCTGATGTACTGCCTGCGCTGTACCTGCTCAGA :::	584 GGGCGCCCATGTGAGTTGTTACCGCCTCCACTGTCCGCCTGTCCACTGCC : :::::	634 CCCAGCCTGTGACGGAGCCACAGCAATGCTGTCCCAAGTGTGTGGAA ::: ::: 821 erArgProlleArgArgAsnProSerAspCysCysLysGluCysProPro	681 CCTCACACTCCC	701 CCGGGCCCCACCAAGTCCTGCCAGCACAACGGGACCATGTACCAACACGG	751 GAGAGATCTTCAGTGCCCATGAGCTGTTCCCCTCCCGCCTGCCCAACCAG :: :::	FIG. 15 (CONT. ¹)

```
931
                                                                                                                            950
                                8 98
 850
                                                                                                                                                         ysProGluCysIleGluAspPheMetGluLysGluGluMetAlaLysMet
                                                                                                                           SAGGCAAGTGAGCAATCGGATGAAGAGGACAGT
                                                                                            ysargasnProlleargThrGluGlyLysCysC
                                                             SCCCAGCACCCCTCCCGCTGCCAGACTCCTGCT
TGTGTCCTCTGCAGCTGCAGAGGGCCAGATCTACTGCGGCCTCACAAC
                               CysIleThrCysTrpCysAspHisGlyValThrLysCysGlnArgLysGl
                                                                                                                                                                                                                      940
                                                                                                                                                                                       977
                                                                                                                                                                                                                       aGluLysLysLysSerTrpArgHis
                                                                                                                                                                                        GTGCAGTCGCTCCATGGGGTGAGACAT
                                                                                                     nCysProLeuLeuSerCy
                                                                                                                                  GCCAAGCCTGCAAAGAT
                                                                       CTGCCCCGAACCAGGCT
                                                                                                                                                                                                                             932
                                                                                                                                                                                               951
                                                                                                                                                                     915
                                                                                                                                       901
                                                                                                         868
                                          882
                                                                           51
            801
                                                                           \infty
```

FIG. 15 (CONT.

462 GGTTTGCCAGGCCCAGACATGTTCTGCTTTCCATGGGAAGAGATACIC 511				
GGTTTGCCAGGCCCAGACATGTTCTGCCTTTTCCATGGGAAGAGATACTC	511 559	561	611587	690
	GGTTTGCCAGGCCCAGACATGTTCTGCCTTTTCCATGGGAAGAGATACTC	CCCCGGCGAGCTGGCACCCCTACTTGGAGCCACAAGGCCTGATGTACT	562 GCCTGCGCTGCTCAGAGGGCGCCCATGTGAGTTGTTACCGCCTC	_

FIG. 16

WO 01/34796

										•
740	636	790	653	834	019	884	989	931	909	
	roArgSerArgAspProGlyGluGlyCysTyrPheAspGlyAspArg	TACCAACACGGAGAGATCTTCAGTGCCCATGAGCTGTTCCCCTCCGCCT			653 yLeuIleLysCysAlaValCysThrCysLysGlyGlyThrGlyGluValH		835 ACTGCGGCCICACAACCIGCCCCGAACCIGCCGGCCICACAACCIGCCGGCCICACAACCIGCCGGCGGCGGCGGGGGGGG	C LSCYSCHER STREET STREET STANDERS CANGERGE CANGERG CAN		7 ValAsnProThrAspCysCysLysGlnCys
69	621	741	63	7	9		, w	0 0	∞	9

92/116

705 98 ||||||| |ProValGlySerGlyAlaHisProG GTGTGCAGTCGCTCCATGGGGTGAGACATCCTC 716 TCCATGTTCCAGTGATGCTGGGAGA ATCGGATGAAGAGGACA 705 982

932

L69

'IG. 16 (CONT.²)

292	342	392	442	492	
GAGACAGTGCCCCAGTGTTGCACAGTAAGTGTGTGTAAAGCCGAG ::: ::: AspProValMetCysProThrLeuSerCysThrHisThrValGlnProGl	ATTCAAACTCAGACCTTCTGGCCCCTTGCCTAGGAGGAGCATGCCCAGTTG : : uAspGlnCysCysProIle.	TCTAGCAGATTCTCTTTTGCCTGAGTGGCCCCAGATGACATCTCTTTTAGA +++	3 GCTAGAAAGGAGAAATGAGACAGGGTCTTTGGGCTGGAGCCTCCTGG	3 GACTAACATGGCACTGGTTTGCCAGGCCCCAGACATGTTCTGCCTTT	
243	293	343	393	443	

F. 19.1.4

WO 01/34796

94/116

FIG. 17 (CONT. 1)

795	\CAGACA161101010.	
543	 	
512	512 CCCCGGCGAGAGCTGGCACCCTACTTGGAGCCACAAGGCCTGATGTACT 561	
559	OHisGlyAlaArgTrpAlaProAsnTyrAspProLeuC 572	
562	GCCTGCGCTGTACCTGCTCAGAGGGCGCCCCATGTGAGTTGTTACCGCCTC 611	
572		
612	CACTGTCCGCCTGTCCACTGCCCCAGCTGACGGAGCCACAGCAATG 661	
588		
662	CTGTCCCAAGTGTGTGGAA	
604	 sCysProValCysProGluLysGlnAs	

691 CCTCTGGACTCCGGGCCCCACCAAGTCCTGCCAGCACAACGGGACCATG
ırgAspPr
TACCAACAGGAGAGATCTTCAGTGCCCATGAGCTGTTCCCCTCCGCCT
SerTrpArgAlaAlaGlyThrArgTrpHisProValValProProPheGl
GCCCAACCAGTGTGTCTCTGCAGCTGCACAGAGGGCCAGATCT
yLeuIleLysCysAlaValCysThrCysLysGlyGlyThrGlyGluValH
ACTGCGGCCTCACAACCTGCCCGAACCAGGCTGCCCAGCACCCTCCCG
670 isCysGluLysValGlnCysProArgLeuAlaCysAlaGlnProValArg
885 CTGCCAGACTCCTGCTGCCAGGCAAAGATGAGGCAAGTGAGCA
Cysc

98/116

18

98 1	705			
GGATGAAGAGGACAGTGCAGTCGCTCCATGGGGTGAGACATCCTC 981	ProValGlySerGlyAlaHisProG 705	982 AGGATCCATGTTCCAGTGATGCTGGGAGA 1010	705 InLeuGlyAspProMetGinAlaAspGiyFroAfg 719	

932

L69

FIG. 1

FIG. 19 (CONT. 1)

SUBSTITUTE SHEET (RULE 26)

IG. 19 (CONT.³)

103/116

125	AGACATTCC	
460	TCTGGGCTTCATCC	509
17	Σ	34
510	TAGGAATG	559
34	:::' etAspSerGlnGlnAlaSerGlyThrIleValGlnIleVal	47
560	TTGAAGGAGAACATAAAAAAGCTTGCACACACAATGGGAAGAC	603
48	:::::::::!	64
604		653
9		81

FIG. 2

654	<pre>TGCCCTGCATCTGATGATGGCTACCAGGACTGCCACCGT 703 :: </pre>
704	GTGACCTGCCCCACCCAATATCCCTGCAGTCAACCCCAAGAAAGTGGCTGG 753 ::: ::::
754	GAAGTGCTGCAAGATCTGCCCAGAGGACGAGGCGGAAGATGACCACAGTG 803
804	AGGTCATTTCCACCGGTGTCCCAAGGTACCAGGCCAG841 :::
842	TTCCAGGTGTACACGTTGGC LysGlyTyrPheCysGlyGluGluThrMetProValTyrGluSerValPh

91

GCCTACACCGCTTTGTCCTGGAGCATGAAGCCT

PCT/IL00/00736

(CONT

20

FIG

```
02
                                                                                                                                        1061
                                                                                                                                                                                                                  37
                                                                                                                                                                 \boldsymbol{\varphi}
                                                                                                                 202
                                                                  9
                                          61
                                                                                          101
                  \circ
                                                                  \infty
                 17
                                                                                                                                                                                                                  \sim
                                          Ō
                                                                                                                                                                                                                  CysSerSer
                                                                                                                                                                                         GATTCCAGAGCTGAAGTTACAGCCAGCCCAGAC
                                                                                                                                                                   ePheT
                                                                                                                  GluLeuPr
                                                                   lTrpThrIleArgLysGlyIleLeuGln
                                          CATTTGGAAGCTGGTGAAAGGAATTTACCAC
                   hrThrArgLysIleAlaLeuGluThrGluArgP
                                                                                         AGTCAGGAAGCAAGATTTCCAGAAAGAGGTTCA
                                                                                                                                         1012 GAACTTCCGGCTCTCACCGGCACCCATGAAGGTTACTGGACCGTT
                                                                                                                                                                   ThrargThrThrLeuSerGlnTrpLys
                                                                                                                   eSerLysArgMetPheGlu
                                                                                                                                                                                                                       nIleSerGlnMet
                                                                         HisVa
                                                                                                                     HisPheHisIleGluLysIl
                                                                                                                                                                      OHisPheLysLeuVal
ATCTCCAAGCCCAGACA
                       eMetGluAspGlyGluT
                                                CTGACCAGGTAGAGATG
                                                                        roProGlnValGluVal
                                                                                                TTGGTTCAGATCAAGAG
                                                                                                                                                                                                                          hrGluGlyGluAlaGl
                                                                                                                                                            219
                                                                                                                           187
                                                                                                                                                                                                     1062
                                                                                                                                                                            202
                                                                            170
                                                                                                     962
                                                    912
    862
                            153
```

#ТС 20 (СОМТ ³)
TTTATTGTTATTATATAAA 1183 ::: :::::::LeuValLysValLeuFyrLeuGluArg 249
::: ::: +++ alCysArgThr
AAAGITTGCAGATTACAAGCAACCTAAAGAGTTGCAGATACGAGT 152

232

107/116

18	CCCACACTGCTCTGCCTACCCACACCAGCCCCAAGGTCTNAGAAAGC 6	54
673		689
65	CCTGGAGGCTGGCTTGCCAAATCCTTGTCAGTGTNTTTATTGATTAG 11	[
689	689 sGlySerProGlyArgProArgAspProAsnThrCysPhePhe 703	703
112	TCTGAGAATATCTTAGACCTCACCACAAGGTTCTGTGTGGAGC1	. 55
704	704GluGlyGlnGlnArgProHisGlyAlaArgTrpAlaProAsn 717	17
156	CTGTCTCTGTCTGTCTGTCTGTCTGTCTG	187
718		34
188	TCTGTCTGTCTGCCTGCCTCTCTGTCTGTCTCCGTCTGTCTCTG 237	37
734	SASpProValValCysProProSerCysProHisPro7	47

FIG. Z

	812	LysCysAlaVal
	420	, •
	795	79
. 10	406	CTATCCCACA
100/	779	62
	368	37 CTCTAGCAGGCGTCTC
	762	759ProGluLysGl
	336	287 CTCTGTCTCTGTCTCTCTCTCTCTCTCAGAAGTCCTCTAGCCTT
	758	748ValGlnAlaLeuAspGlnCysCysProValCys
	586	CTCTCT

$FIG. 21 (CONT.^{1})$

(CONT.²)

421 GCF	GCAGAGACATTCCCAGGATCCATGCTCGGAGAGGGGGCCCC	463
sG]	: ::::	829
•		493
1a(### ##################################	845
494 CC	TCTGGGCTTCATCCNTCGCCACTTCCAGTCAGTAGGAATGGGCAGCAC	543
 	::: standarder:::	851
544 AA	AACCATCAAGATTATCTTGAAGGAGAAAAAAAAAAA	587
: 851 rA	::: ::: rAsnAlaLysLeuGlyAspProMetGlnAlaAspGlyProArgGlyCysA	898
588 CA	CACAATGGGAAGACATACTCCCATGGGGAGGTGTGGCCACCCCACTGTG	637
868 rg	::: :::::::::::::::::::::::::::::::	884

110/116

948	
802	773CCAGAGGACGAGGCGGAAGATGACCACAGT
r 932	::: :::
. 772	738 CCAAGAAAGTGGCTGGAAGTGCTGCAAGATCTGC
G 918	::: 901 ProHisCysGluArgAspAspCysSerProProLeuSerCysGlySerG 918
2 737	688 CCAGGACTGCCACCGTGTGACCTGCCCCACCCAATATCCCTGCAGTCAAC 737
a 901	885 ProProPheGlyGluMetSerCysIleThrCysArgCysGlyAlaGlyVa 901
	638 CTCTCCTTTGGCCCCATGCCCTGCATGTGCACATGTATTGCCTTGCACATGTATTGCCCATGCCTTGCACATGTATTGCCCATGCCACATGTATTGCCATGCACATGTATTGCCATGCCATGCACATGTATTGCCATGCACATGTATTGCCATGCCACATGTATTGCCATGCCACATGTATTGCCCACAGGTATGTAT

FIG. 21 (CONT.³)

Fig. 22

Fig. 23

SUBSTITUTE SHEET (RULE 26)

Fig. 25