COS210 - Theoretical Computer Science Pushdown Automata (Part 2)

Deterministic vs Non-Deterministic Pushdown Automata

state control

stack

tape

Deterministic PDA:

- for each configuration there is a **unique** transition instruction, e.g. $qaS \rightarrow qRSS$
- for each input string there is a **unique** run over the string

Non-deterministic PDA:

- for each configuration there may exist multiple transition instructions, e.g. $qaS \rightarrow qRSS$ $qaS \rightarrow rR\epsilon$
- for each input string there may exist **multiple** runs over the string

Non-deterministic PDAs can describe more languages than deterministic PDAs

Construct a NPDA M that accepts the language

$$L = \{v\mathbf{b}w : v, w \in \Sigma^* \text{ and } |v| = |w|\} \text{ where } \Sigma = \{a, b\}$$

Strings where the symbol in the **middle** is equal to **b**

Examples: **b**, a**b**a, ba**b**aa, bbb**b**bab

A PDA can only scan the input string once, from left to right

- the automaton will **not know** when the symbol in the middle is reached
- but a non-deterministic PDA can guess when the symbol in the middle is reached
- guessing via non-deterministic branches: either middle reached, or not reached
 a b b b a a b □
- each branch creates another run over the input string, if at least one run over the string is accepting then PDA will accept the string

Construction idea:

- use two states q and q' that shall represent scanning the first and the second half of the input string, respectively
- switching from q to q' corresponds to guess that middle symbol has been scanned

We still need to validate in the end that the middle was correctly guessed

Construction idea (continued):

- for each symbol that is guessed to belong to the first half, push an S onto stack
- for each symbol that is guessed to belong to the second half, pop a symbol from the stack

If the guess was correct, then the stack only contain \$ when \square is read

 $M = (\Sigma, \Gamma, Q, \delta, q)$ where $\Sigma = \{a, b\}, \Gamma = \{\$, S\}, Q = \{q, q'\}, q$ is the initial state, and δ is defined by the following instructions:

1)
$$qa\$ \rightarrow qR\$S$$
 guess first half, push S
2) $qaS \rightarrow qRSS$ guess first half, push S

3)
$$qb\$ \rightarrow q'R\$$$
 guess middle, switch to q'
4) $qb\$ \rightarrow qR\S guess first half, push S

4)
$$qb\$ \rightarrow qR\$S$$
 guess first half, push S
5) $qbS \rightarrow q'RS$ guess middle, switch to q'

6)
$$qbS \rightarrow qRS$$
 guess middle, switch to q
6) $qbS \rightarrow qRSS$ guess first half, push S

6)
$$qbS \rightarrow qRSS$$
 guess first half, push S
7) $q \square \$ \rightarrow qN\$$ empty input string, loop forever
8) $q \square S \rightarrow qNS$ string ends while first half is guessed, loop forever
9) $a'a\$ \rightarrow a'N\epsilon$ middle was guessed incorrectly, terminate reject

9) $g'a\$ \rightarrow g'N\epsilon$ middle was guessed incorrectly, terminate reject $g'aS \rightarrow g'R\epsilon$ 10) guess second half, pop $g'b\$ \rightarrow g'N\epsilon$ 11) middle was guessed incorrectly, terminate reject $g'bS \rightarrow g'R\epsilon$ 12) guess second half, pop

13) $g' \square \$ \rightarrow g' N \epsilon$ middle was guessed correctly, terminate accept 14) $a' \square S \rightarrow a' NS$ middle was guessed incorrectly, loop forever

Construct a NPDA M that accepts the language

$$L = \{v\mathbf{b}v^R : v \in \Sigma^*\}$$
 where $\Sigma = \{a, b\}$

(if
$$v = v_1 \dots v_n$$
, then $v^R = v_n \dots v_1$)

Strings where the symbol in the **middle** is equal to **b** and the **second half** of the string is the **reverse of** the **first half**.

Examples: **b**, a**b**a, ab**b**ba, bba**b**abb

Construction idea:

• use the stack alphabet $\Gamma = \{\$, A, B\}$

 $M = (\Sigma, \Gamma, Q, \delta, q)$ where $\Sigma = \{a, b\}, \Gamma = \{\$, A, B\}, Q = \{q, q'\}, \delta$:

1) qa\$ o qR\$Aguess first half, read a, push A

2) $gaA \rightarrow gRAA$ guess first half, read a, push A

3) $gaB \rightarrow gRBA$ guess first half, read a, push A

4) $qb\$ \rightarrow qR\B guess first half, read b, push B 5) $qbA \rightarrow qRAB$ guess first half, read b, push B 6) $abB \rightarrow qRBB$ guess first half, read b, push B

7) $q \square \$ \rightarrow q N \$$ empty input string, loop forever 8) $q \square A \rightarrow qNA$ string ends while first half is guessed, loop forever 9) $q \square B \rightarrow q N B$ string ends while first half is guessed, loop forever

10) $ab\$ \rightarrow a'R\$$ guess middle, switch to q'11) $qbA \rightarrow q'RA$ guess middle, switch to a' $abB \rightarrow a'RB$

guess middle, switch to a'

12)

$$M = (\Sigma, \Gamma, Q, \delta, q)$$
 where $\Sigma = \{a, b\}$, $\Gamma = \{\$, A, B\}$, $Q = \{q, q'\}$, δ :

- 13) $q'a\$ \rightarrow q'N\epsilon$ middle was guessed incorrectly, terminate reject 14) $q'aA \rightarrow q'R\epsilon$ read a, pop A
- 15) $q'aB \rightarrow q'NB$ second half is not reverse of first half, loop forever
- 16) $q'b\$ \rightarrow q'N\epsilon$ middle was guessed incorrectly, terminate reject 17) $q'bA \rightarrow q'NA$ second half is not reverse of first half, loop forever 18) $q'bB \rightarrow q'R\epsilon$ read b, pop B
- 19) $q' \Box \$ \rightarrow q' N \epsilon$ correct string, terminate accept
- 20) $q' \square A \rightarrow q' NA$ middle was guessed incorrectly, loop forever
- 21) $q' \square B \rightarrow q' NB$ middle was guessed incorrectly, loop forever