Practice Set for Exam 1, Math 9

1. Let

$$a_n = \frac{((-1)^{n+1} - \cos(n\pi))}{n^2}$$

What is the limit of the sequence $\{a_n\}$? Justify your answer.

- 2. Let $f(x) = (1+x)^{2001}$. What is the coefficient in the Maclaurin Series (i.e. Taylor series at 0) of f(x)
 - (a) that stands in front of x^0 ;
 - (b) that stands in front of x^{2001} ;
 - (c) that stands in front of x^{2002} .

Give a justification for the above answers.

3. Use the fact that the Maclaurin series for e^x is

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

to find the Maclaurin series for $\frac{e^x + e^{-x}}{2}$.

- 4. (a) Consider a 300 gallon tank which is filled with 100 gallons of fresh water. Suppose that a water and salt solution is poured into the tank at a rate of 10 gallons/min and that the concentration of the salt in this solution is 0.5 lbs/gal. Find the amount of salt (in pounds) that is in the tank just before the tank begins to overflow.
 - (b) Assume now that, just before the tank begins to overflow, we stop pouring and we allow the well mixed solution to drain at a rate of 1 gallon/min. Describe now the amount of salt in the tank at any time t before the tank is emptied.
- 5. Solve the following differential equation.

$$y' + \frac{2t}{t^2 + 10}y = t.$$

1

- 6. (a) Solve the differential equation $y' = 3y^2t$ subject to the condition y(0) = 0. (You may want to use the fact that if a solution exists then it is unique.)
 - (b) Solve the same differential equation subject to the condition y(0) = 1.
- 7. Consider the third-order linear differential equation P(x)y''' + Q(x)y'' + R(x)y' + S(x)y = 0, where y = y(x) is the unknown function. Let y_1 and y_2 be solutions of this differential equation. Show that for any constant c the function $y = y_1 + cy_2$ is also a solution.
- 8. A spring-mass system satisfies the initial value problem:

$$x'' + 2x' + 2x = 0$$
, $x(0) = -0.1$, $x'(0) = 0$.

Find the solution x(t). Find also the time when the mass first returns to the equilibrium position.

- 9. Write $(1+i)^{2001}$ in polar form with $0 \le \theta < 2\pi$.
- 10. Solve the following differential equations. If no conditions are specified, find the general solution.
 - (a) $y' = -e^{x+y}$.
 - (b) $xy' + (x+1)y = e^{-x}$, $y(\ln 2) = 0$.
- 11. (a) Compute the Taylor series for f(x) = 1/(1-x) about x = 0 and find its radius of convergence.
 - (b) Compute the Taylor series for $f(x) = 1/(1+x^2)$ about x = 0 and find its radius of convergence.
 - (c) Compute the Taylor series for $f(x) = \arctan x$ about x = 0 and find its radius of convergence.