► Flow past Joukowski airfoil:

Air data: free stream velocity " V_{∞} " and angle of attack " α "

<u>Airfoil geometric characteristics</u>: chord "c", maximum thickness "t_{max}", maximum camber C_{max}

<u>Circle parameters</u>: b = c/4, $e = (t_{max}/c)/1.3$, $\beta = 2*(C_{max}/c)$, $a = b(1+e)/cos\beta$,

 $x_0 = -be$, $y_0 = a\beta$

Airfoil coordinates: $x_1=2 b \cos \theta$, $y_1=2 b e (1-\cos \theta) \sin \theta + 2 b \beta \sin^2 \theta$

with $r = b \left[1 + e \left(1 - \cos \theta \right) + \beta \sin \theta \right]$

In the Z' plane(where the center of the circle of radius "a" is at the origin)

$$Z' = x' + iy' = r' e^{i\theta'} = r' \cos\theta' + i r' \sin\theta'$$

 $Z = x + iy = r e^{i\theta} = r \cos\theta + i r \sin\theta$ *In the Z plane:*

<u>Relation between Z, Z' and Z₁</u>: $Z = z_0 + Z'$ where $z_0 = x_0 + i y_0 \& Z_1 = Z + b^2 / Z$ where $x_0 = -be$, $y_0 = a \beta$

The velocity components in Z' plan are:

$$v'_{r} = V_{\infty} \left(1 - \frac{a^{2}}{r'^{2}}\right) \cos(\theta' - \alpha)$$
 & $v'_{\theta} = -V_{\infty} \left[\sin(\theta' - \alpha)\left(1 + \frac{a^{2}}{r'^{2}}\right) + 2(a/r')\sin(\alpha + \beta)\right]$

The velocity components in Z_1 plan are :-

$$\frac{dW}{dZ_1} = \frac{(A+iB)}{(C+iD)} = u_1 + iv_1$$

where

$$A = (v'_r \cos \theta' - v'_\theta \sin \theta') \qquad \& \qquad B = -(v'_r \sin \theta' + v'_\theta \cos \theta')$$

$$C = 1 - \frac{b^2}{r^2} \cos(2\theta) \qquad \& \qquad D = \frac{b^2}{r^2} \sin(2\theta)$$

$$V_1^2 = u_1^2 + v_1^2 = \frac{A^2 + B^2}{C^2 + D^2}$$

The velocity "V₁" at any point in the Z₁ plan:-

$$V_1^2 = u_1^2 + v_1^2 = \frac{A^2 + B^2}{C^2 + D^2}$$

The velocity "V₁" on the surface of the airfoil:-

$$V_1^2 = u_1^2 + v_1^2 = \frac{A^2 + B^2}{C^2 + D^2}$$

$$V_1^2 = \frac{v_0^2}{C^2 + D^2}$$

The velocity "V₁" on the surface of the airfoil:-

$$V_1^2 = \frac{v_0^2}{C^2 + D^2}$$

$$V_1^2 = \frac{V_0^2}{C^2 + D^2}$$

The pressure
$$V_1^2 = \frac{v_0^2}{C^2 + D^2}$$

and
$$V_1^2 = \frac{v_0^2}{C^2 + D^2}$$

$$V_1^2 = \frac{v_0^2}{C^2 + D^2}$$

$$V_1^2 = \frac{v_0^2}{C^2 + D^2}$$

The pressure
$$V_1^2 = \frac{v_0^2}{C^2 + D^2}$$

and
$$V_1^2 = \frac{v_0^2}{C^2 + D^2}$$

The pressure
$$V_1^2 = \frac{v_0^2}{C^2 + D^2}$$

The pressure
$$V_1^2 = \frac{v_0^2}{C^2 + D^2}$$

and
$$V_1^2 = \frac{v_0^2}{C^2 + D^2}$$

$$V_1^2 = \frac{v_0^2}{C^2 + D^2}$$

The pressure
$$V_1^2 = \frac{v_0^2}{C^2 + D^2}$$

The pressure
$$V_1^2 = \frac{v_0^2}{C^2 + D^2}$$

$$p + \frac{1}{2} \rho V^2 = p_{\infty} + \frac{1}{2} \rho V_{\infty}^2$$
 and

$$c_{p} = 1 - \left(\frac{V}{V_{\infty}}\right)^{2}$$

The lift "L" and the lift coefficient "
$$C_L$$
"
$$L = \rho V_{\infty} \Gamma = 4\pi \rho V_{\infty}^2 a \sin(\alpha + \beta) \qquad \& \qquad C_L = 2\pi (1 + e) \sin(\alpha + \beta)$$