Using output from sampleWDMass

Nathan Stein

May 20, 2013

The output from samplewDMass appears in two files, a .massSamples file and a .massSamples.membership file. The first k columns of the .massSamples file are individual draws of the parameter vector $\boldsymbol{\Theta}$, where k is the dimension of $\boldsymbol{\Theta}$ and $\boldsymbol{\Theta}$ includes IFMR parameters, if those are being sampled. The next n_{WD} (n_{WD} = number of white dwarfs in the data set) columns of .massSamples are sampled primary masses for each white dwarf. The mass $M_i^{(j)}$ of the ith star in the jth row is sampled from the distribution

$$p(M_i \mid Z_i = 1, \boldsymbol{\Theta}^{(j)}, \boldsymbol{X})$$

where $\Theta^{(j)}$ is the parameter vector in the jth row, X is the observed data, and Z_i is the indicator for whether star i is a cluster member ($Z_i = 1$ if cluster member, $Z_i = 0$ if field star). Thus, we sample a white dwarf mass conditional on that star being a cluster member.

The .membership file contains $n_{\rm WD}$ columns. The entry at column i and row j is

$$p_i^{(j)} := \Pr(Z_i = 1 \mid \boldsymbol{\Theta}^{(j)}, \boldsymbol{X}).$$

Suppose the .massSamples and .membership files have J rows. We can estimate the conditional posterior expectation of a white dwarf mass, given that it is a cluster member, by weighting the samples $M_i^{(j)}$ by the probabilities $p_i^{(j)}$:

$$\hat{E}(M_i \mid Z_i = 1, \mathbf{X}) = \frac{\sum_{j=1}^{J} p_i^{(j)} M_i^{(j)}}{\sum_{j=1}^{J} p_i^{(j)}}.$$

This can be viewed as an importance sampling estimator of

$$E(M_i | Z_i = 1, \mathbf{X}) = E\{E(M_i | Z_i = 1, \mathbf{\Theta}, \mathbf{X}) | Z_i = 1, \mathbf{X}\},\$$

using the fact that

$$\frac{p(\boldsymbol{\Theta}^{(j)} \mid Z_i = 1, \boldsymbol{X})}{p(\boldsymbol{\Theta}^{(j)} \mid \boldsymbol{X})} = \frac{p_i^{(j)}}{\Pr(Z_i = 1 \mid \boldsymbol{X})} \propto p_i^{(j)}.$$

If we want to estimate quantiles of $p(M_i \mid Z_i = 1, \mathbf{X})$, one simple way would be to use Sampling Importance Resampling (SIR). We resample values

$$M_i^{*(1)}, \dots, M_i^{*(L)}$$

with replacement from $M_i^{(1)}, \ldots, M_i^{(J)}$ with probabilities proportional to $p_i^{(1)}, \ldots, p_i^{(J)}$. We can then use $M_i^{*(1)}, \ldots, M_i^{*(L)}$ directly as approximate draws from $p(M_i \mid Z_i = 1, \boldsymbol{X})$.