Tree Transformations for Parsing

2 Case Studies

MIRYAM DE LHONEUX

June 7, 2016

Overview

- Introduction
- Verb Groups in UD parsing
 - Introduction
 - Methodology
 - Experiments
 - Conclusion and Future Work
- MWEs in CCG parsing
 - Motivation
 - Methodology
 - Results
 - Conclusion
- General Conclusion

Outline for section 1

- Introduction
- 2 Verb Groups in UD parsing
 - Introduction
 - Methodology
 - Experiments
 - Conclusion and Future Work
- MWEs in CCG parsing
 - Motivation
 - Methodology
 - Results
 - Conclusion
- 4 General Conclusion

- Common methodology different motivation
- NLP engineering:
 Verb groups in UD parsing (de Lhoneux and Nivre, 2016)
- Linguistics (and NLP engineering):
 MWEs in CCG parsing (de Lhoneux, 2014)

- Common methodology different motivation
- NLP engineering:
 Verb groups in UD parsing (de Lhoneux and Nivre, 2016)
- Linguistics (and NLP engineering):
 MWEs in CCG parsing (de Lhoneux, 2014)

- Common methodology different motivation
- NLP engineering:
 Verb groups in UD parsing (de Lhoneux and Nivre, 2016)
- Linguistics (and NLP engineering):
 MWEs in CCG parsing (de Lhoneux, 2014)

- Common methodology different motivation
- NLP engineering:
 Verb groups in UD parsing (de Lhoneux and Nivre, 2016)
- Linguistics (and NLP engineering):
 MWEs in CCG parsing (de Lhoneux, 2014)

Outline for section 2

- 1 Introduction
- **2** Verb Groups in UD parsing
 - Introduction
 - Methodology
 - Experiments
 - Conclusion and Future Work
- MWEs in CCG parsing
 - Motivation
 - Methodology
 - Results
 - Conclusion
- 4 General Conclusion

Introduction

- problem: UD suboptimal for parsing (de Marneffe et al., 2014
- solution: Create a parsing representation (de Marneffe et al., 2014)
- focus of the study: verb groups

Auxiliary as heads of verb groups (Nilsson et al., 2006, 2007; Schwartz et al., 2012)

have done

Figure: MS

have done

Figure: UD

Introduction

- problem: UD suboptimal for parsing (de Marneffe et al., 2014)
- solution: Create a parsing representation (de Marneffe et al., 2014)
- focus of the study: verb groups

Auxiliary as heads of verb groups

(Nilsson et al., 2006, 2007; Schwartz et al., 2012)

have done

Figure : MS

Figure: UD

Introduction

- problem: UD suboptimal for parsing (de Marneffe et al., 2014)
- solution: Create a parsing representation (de Marneffe et al., 2014)
- focus of the study: verb groups

Auxiliary as heads of verb groups (Nilsson et al., 2006, 2007; Schwartz et al., 2012)

Figure: MS

Figure: UD

Introduction

- problem: UD suboptimal for parsing (de Marneffe et al., 2014)
- solution: Create a parsing representation (de Marneffe et al., 2014)
- focus of the study: verb groups

Auxiliary as heads of verb groups (Nilsson et al., 2006, 2007; Schwartz et al., 2012)

Figure: MS

Figure: UD

Introduction

- problem: UD suboptimal for parsing (de Marneffe et al., 2014)
- solution: Create a parsing representation (de Marneffe et al., 2014)
- focus of the study: verb groups

Auxiliary as heads of verb groups (Nilsson et al., 2006, 2007; Schwartz et al., 2012)

Figure : MS

Figure : UD

Introduction

- problem: UD suboptimal for parsing (de Marneffe et al., 2014)
- solution: Create a parsing representation (de Marneffe et al., 2014)
- focus of the study: verb groups

Auxiliary as heads of verb groups (Nilsson et al., 2006, 2007; Schwartz et al., 2012)

Figure: MS

Figure : UD

Introduction

- problem: UD suboptimal for parsing (de Marneffe et al., 2014)
- solution: Create a parsing representation (de Marneffe et al., 2014)
- focus of the study: verb groups

Auxiliary as heads of verb groups (Nilsson et al., 2006, 2007; Schwartz et al., 2012)

have done

Figure: MS

have done

Figure: UD

Transformation Algorithm: Modified from Nilsson et al. (2006)

$$V = [V_i: main verb=done; aux = [could]]$$

$$V = [V_i: main verb=done; aux = [could]]$$

$$V = [V_i: main verb=done; aux = [could, have]]$$

left dependents

left dependents

right dependents

middle dependents

middle dependents

Back Transformation Algorithm Modified from Nilsson et al. (2006)

$$V = [V_i: aux=[could]]$$

$$V = [V_i: aux=[could]]$$

$$V = [V_i: aux=[could,have];main verb=done]$$

MS is better than UD for parsing

 $\ensuremath{\mathsf{MS}}$ is easier to learn than $\ensuremath{\mathsf{UD}}$

MS is better than UD for parsing

MS is easier to learn than UD

Symmetry in differences

MS is better than UD for parsing

MS is easier to learn than UD

Symmetry in differences

- Parser: MaltParser (Nivre et al., 2006)
 - settings: default
 - POS tag used: UD coarse POS tag
- Data: 25 UD treebanks (version 1.2) + SDT and PDT

- Parser: MaltParser (Nivre et al., 2006)
 - settings: default
 - POS tag used: UD coarse POS tag
- Data: 25 UD treebanks (version 1.2) + SDT and PDT

- Parser: MaltParser (Nivre et al., 2006)
 - settings: default
 - POS tag used: UD coarse POS tag
- Data: 25 UD treebanks (version 1.2) + SDT and PDT

- Parser: MaltParser (Nivre et al., 2006)
 - settings: default
 - POS tag used: UD coarse POS tag
- Data: 25 UD treebanks (version 1.2) + SDT and PDT

- Parser: MaltParser (Nivre et al., 2006)
 - settings: default
 - POS tag used: UD coarse POS tag
- Data: 25 UD treebanks (version 1.2) + SDT and PDT

Effect of VG transformation on UD

UD lang.	A	В
Basque	64.4	63.8**
Bulgarian	83.4	83.2*
Croatian	75.9	74.6**
Czech	80.0	76.5**
Danish	75.9	75.2**
English	81.7	80.4**
Estonian	77.1	77.8
Finnish	66.9	66.4*
Finnish-FTB	71.3	70.4**
French	82.1	81.6**
German	76.6	76.0**
Greek	75.2	75.3
Hebrew	78.4	77.9**
Hindi	85.4	84.2**
Italian	83.8	83.6
Norwegian	84.5	82.0**
Old_Church_Slavonic	68.8	68.7
Persian	81.1	79.8**
Polish	79.4	79.1
Portuguese	81.3	81.5
Romanian	64.2	62.5*
Slovenian	80.8	79.7**
Spanish	81.5	81.2**
Swedish	76.8	75.7**
Tamil	67.2	67.1

UD language	Α	В
Basque	64.4	63.8
Bulgarian	83.4	83.2
Croatian	75.9	74.6
Czech	80.0	76.5
Danish	75.9	75.2
English	81.7	80.4
Estonian	77.1	77.8
Finnish	66.9	66.4
Finnish-FTB	71.3	70.4
French	82.1	81.6
German	76.6	76.0
Greek	75.2	75.3
Hebrew	78.4	77.9
Hindi	85.4	84.2
Italian	83.8	83.6
Norwegian	84.5	82.0
OC_Slavonic	68.8	68.7
Persian	81.1	79.8
Polish	79.4	79.1
Portuguese	81.3	81.5
Romanian	64.2	62.5
Slovenian	80.8	79.7
Spanish	81.5	81.2
Swedish	76.8	75.7
Tamil	67.2	67.1

UD language	Α	В
Basque	64.4	63.8
Bulgarian	83.4	83.2
Croatian	75.9	74.6
Czech	80.0	76.5
Danish	75.9	75.2
English	81.7	80.4
Estonian	77.1	77.8
Finnish	66.9	66.4
Finnish-FTB	71.3	70.4
French	82.1	81.6
German	76.6	76.0
Greek	75.2	75.3
Hebrew	78.4	77.9
Hindi	85.4	84.2
Italian	83.8	83.6
Norwegian	84.5	82.0
OC_Slavonic	68.8	68.7
Persian	81.1	79.8
Polish	79.4	79.1
Portuguese	81.3	81.5
Romanian	64.2	62.5
Slovenian	80.8	79.7
Spanish	81.5	81.2
Swedish	76.8	75.7
Tamil	67.2	67.1

UD language	Α	В
Basque	64.4	63.8
Bulgarian	83.4	83.2
Croatian	75.9	74.6
Czech	80.0	76.5
Danish	75.9	75.2
English	81.7	80.4
Estonian	77.1	77.8
Finnish	66.9	66.4
Finnish-FTB	71.3	70.4
French	82.1	81.6
German	76.6	76.0
Greek	75.2	75.3
Hebrew	78.4	77.9
Hindi	85.4	84.2
Italian	83.8	83.6
Norwegian	84.5	82.0
OC_Slavonic	68.8	68.7
Persian	81.1	79.8
Polish	79.4	79.1
Portuguese	81.3	81.5
Romanian	64.2	62.5
Slovenian	80.8	79.7
Spanish	81.5	81.2
Swedish	76.8	75.7
Tamil	67.2	67.1

UD language	Α	В	С
Basque	64.4	63.8	64.0
Bulgarian	83.4	83.2	82.5
Croatian	75.9	74.6	73.7
Czech	80.0	76.5	76.4
Danish	75.9	75.2	74.8
English	81.7	80.4	80.2
Estonian	77.1	77.8	77.6
Finnish	66.9	66.4	65.9
Finnish-FTB	71.3	70.4	72.1
French	82.1	81.6	81.3
German	76.6	76.0	75.4
Greek	75.2	75.3	75.1
Hebrew	78.4	77.9	77.9
Hindi	85.4	84.2	84.9
Italian	83.8	83.6	83.3
Norwegian	84.5	82.0	81.7
OC_Slavonic	68.8	68.7	68.7
Persian	81.1	79.8	79.8
Polish	79.4	79.1	79.0
Portuguese	81.3	81.5	81.6
Romanian	64.2	62.5	64.0
Slovenian	80.8	79.7	79.8
Spanish	81.5	81.2	81.2
Swedish	76.8	75.7	75.6
Tamil	67.2	67.1	67.4

MS is better than UD for parsing

MS is easier to learn than UD

MS is better than UD for parsing

MS is easier to learn than UD

Results

UD language	Α	В	С	D
Basque	64.4	63.8	64.0	64.4
Bulgarian	83.4	83.2	82.5	82.9
Croatian	75.9	74.6	73.7	75.9
Czech	80.0	76.5	76.4	79.9
Danish	75.9	75.2	74.8	75.8
English	81.7	80.4	80.2	81.5
Estonian	77.1	77.8	77.6	77.0
Finnish	66.9	66.4	65.9	66.4
Finnish-FTB	71.3	70.4	72.1	72.5
French	82.1	81.6	81.3	81.8
German	76.6	76.0	75.4	76.1
Greek	75.2	75.3	75.1	75.2
Hebrew	78.4	77.9	77.9	78.5
Hindi	85.4	84.2	84.9	85.2
Italian	83.8	83.6	83.3	83.6
Norwegian	84.5	82.0	81.7	84.5
OC_Slavonic	68.8	68.7	68.7	68.9
Persian	81.1	79.8	79.8	81.1
Polish	79.4	79.1	79.0	79.3
Portuguese	81.3	81.5	81.6	81.3
Romanian	64.2	62.5	64.0	64.6
Slovenian	80.8	79.7	79.8	80.8
Spanish	81.5	81.2	81.2	81.4
Swedish	76.8	75.7	75.6	76.7
Tamil	67.2	67.1	67.4	67.5

MS is better than UD for parsing

MS is easier to learn than UD

Results

UD language	Α	В	С	D
Basque	64.4	63.8	64.0	64.4
Bulgarian	83.4	83.2	82.5	82.9
Croatian	75.9	74.6	73.7	75.9
Czech	80.0	76.5	76.4	79.9
Danish	75.9	75.2	74.8	75.8
English	81.7	80.4	80.2	81.5
Estonian	77.1	77.8	77.6	77.0
Finnish	66.9	66.4	65.9	66.4
Finnish-FTB	71.3	70.4	72.1	72.5
French	82.1	81.6	81.3	81.8
German	76.6	76.0	75.4	76.1
Greek	75.2	75.3	75.1	75.2
Hebrew	78.4	77.9	77.9	78.5
Hindi	85.4	84.2	84.9	85.2
Italian	83.8	83.6	83.3	83.6
Norwegian	84.5	82.0	81.7	84.5
OC_Slavonic	68.8	68.7	68.7	68.9
Persian	81.1	79.8	79.8	81.1
Polish	79.4	79.1	79.0	79.3
Portuguese	81.3	81.5	81.6	81.3
Romanian	64.2	62.5	64.0	64.6
Slovenian	80.8	79.7	79.8	80.8
Spanish	81.5	81.2	81.2	81.4
Swedish	76.8	75.7	75.6	76.7
Tamil	67.2	67.1	67.4	67.5

MS is better than UD for parsing MS is easier to learn than UD Symmetry in differences

Results

UD language	Α	В	С	D
Basque	64.4	63.8	64.0	64.4
Bulgarian	83.4	83.2	82.5	82.9
Croatian	75.9	74.6	73.7	75.9
Czech	80.0	76.5	76.4	79.9
Danish	75.9	75.2	74.8	75.8
English	81.7	80.4	80.2	81.5
Estonian	77.1	77.8	77.6	77.0
Finnish	66.9	66.4	65.9	66.4
Finnish-FTB	71.3	70.4	72.1	72.5
French	82.1	81.6	81.3	81.8
German	76.6	76.0	75.4	76.1
Greek	75.2	75.3	75.1	75.2
Hebrew	78.4	77.9	77.9	78.5
Hindi	85.4	84.2	84.9	85.2
Italian	83.8	83.6	83.3	83.6
Norwegian	84.5	82.0	81.7	84.5
OC_Slavonic	68.8	68.7	68.7	68.9
Persian	81.1	79.8	79.8	81.1
Polish	79.4	79.1	79.0	79.3
Portuguese	81.3	81.5	81.6	81.3
Romanian	64.2	62.5	64.0	64.6
Slovenian	80.8	79.7	79.8	80.8
Spanish	81.5	81.2	81.2	81.4
Swedish	76.8	75.7	75.6	76.7
Tamil	67.2	67.1	67.4	67.5

MS is better than UD for parsing MS is easier to learn than UD Symmetry in differences

Comparison with SDT and PDT

	Orig	Transf
UD_Czech	80.0	76.5**
PDT	68.5	68.8**
UD_Slovenian	80.5	79.1**
SDT	65.7	66.2

Table: LAS with the original and transformed treebanks.

Ambiguity of POS tags in SDT

POS	main verb	aux
Verb-main		0.22
Verb-copula	22.30	95.95

Create different versions of the treebanks:

- Ambiguous: all verbal POS tags are the same (VERB)
- Disambiguated: main verb POS tag is Verb-main and auxiliary is AUX

- ullet au_o : original treebank
- ullet au_d : disambiguated treebank
- \bullet τ_a : ambiguous treebank

Create different versions of the treebanks:

- Ambiguous: all verbal POS tags are the same (VERB)
- Disambiguated: main verb POS tag is Verb-main and auxiliary is AUX

- τ_o : original treebank
- ullet au_d : disambiguated treebank
- \bullet τ_a : ambiguous treebank

Create different versions of the treebanks:

- Ambiguous: all verbal POS tags are the same (VERB)
- Disambiguated: main verb POS tag is Verb-main and auxiliary is AUX

- \bullet τ_o : original treebank
- \bullet τ_d : disambiguated treebank
- \bullet τ_a : ambiguous treebank

Create different versions of the treebanks:

- Ambiguous: all verbal POS tags are the same (VERB)
- Disambiguated: main verb POS tag is Verb-main and auxiliary is AUX

- \bullet τ_o : original treebank
- ullet au_d : disambiguated treebank
- \bullet τ_a : ambiguous treebank

Create different versions of the treebanks:

- Ambiguous: all verbal POS tags are the same (VERB)
- Disambiguated: main verb POS tag is Verb-main and auxiliary is AUX

- \bullet τ_o : original treebank
 - \bullet τ_d : disambiguated treebank
 - τ_a : ambiguous treebank

Create different versions of the treebanks:

- Ambiguous: all verbal POS tags are the same (VERB)
- Disambiguated: main verb POS tag is Verb-main and auxiliary is AUX

- τ_o : original treebank
- \bullet τ_d : disambiguated treebank
- τ_a : ambiguous treebank

Results of the ambiguous experiment

	Α	В	Δ
SDT $ au_d$	67.8	67.4	-0.4
SDT $ au_o$	65.7	66.2	0.5
SDT $ au_a$	64.2	65.4*	1.2
PDT $ au_d$	69.2	69.2	0.0
PDT $ au_o$	68.5	68.8**	0.3
PDT $ au_a$	68.2	68.4*	0.2

Table: LAS on A and B with different levels of POS tag ambiguity.

 $\Delta = B$ - (

Predicted vs gold POS tags

Can UD benefit from the transformation when using predicted POS tags?

X It seems not.

POS tag	Α	В	Δ
gold	76.8	75.7**	-1.1
predicted	76.4	75.6**	-0.8

Table : LAS on UD_Swedish. $\Delta = B$

Conclusions

- Keep verb groups as is in UD
- Benefits of error analysis
- Previous results were obtained through POS tag disambiguation

- More in-depth error analysis
- Other representations (e.g. PPs)
- Other parsing models

Conclusions

- Keep verb groups as is in UD
- Benefits of error analysis
- Previous results were obtained through POS tag disambiguation

- More in-depth error analysis
- Other representations (e.g. PPs)
- Other parsing models

Conclusions

- Keep verb groups as is in UD
- Benefits of error analysis
- Previous results were obtained through POS tag disambiguation

- More in-depth error analysis
- Other representations (e.g. PPs)
- Other parsing models

Conclusions

- Keep verb groups as is in UD
- Benefits of error analysis
- Previous results were obtained through POS tag disambiguation

- More in-depth error analysis
- Other representations (e.g. PPs)
- Other parsing models

Conclusions

- Keep verb groups as is in UD
- Benefits of error analysis
- Previous results were obtained through POS tag disambiguation

- More in-depth error analysis
- Other representations (e.g. PPs)
- Other parsing models

Conclusions

- Keep verb groups as is in UD
- Benefits of error analysis
- Previous results were obtained through POS tag disambiguation

- More in-depth error analysis
- Other representations (e.g. PPs)
- Other parsing models

Conclusions

- Keep verb groups as is in UD
- Benefits of error analysis
- Previous results were obtained through POS tag disambiguation

- More in-depth error analysis
- Other representations (e.g. PPs)
- Other parsing models

Conclusions

- Keep verb groups as is in UD
- Benefits of error analysis
- Previous results were obtained through POS tag disambiguation

- More in-depth error analysis
- Other representations (e.g. PPs)
- Other parsing models

Outline for section 3

- Introduction
- 2 Verb Groups in UD parsing
 - Introduction
 - Methodology
 - Experiments
 - Conclusion and Future Work
- MWEs in CCG parsing
 - Motivation
 - Methodology
 - Results
 - Conclusion
- General Conclusion

MWE: A group of multiple lexemes which have some level of idiomaticity or irregularity.

Motivation

- Linguistics research: Construction Grammar (Hoffmann and Trousdale, 2013)
- MWE identification and syntactic parsing benefit from one another (Nivre and Nilsson, 2004; Korkontzelos and Manandhar, 2010)

MWE: A group of multiple lexemes which have some level of idiomaticity or irregularity.

Motivation

- Linguistics research: Construction Grammar (Hoffmann and Trousdale, 2013)
- MWE identification and syntactic parsing benefit from one another

(Nivre and Nilsson, 2004; Korkontzelos and Manandhar, 2010)

MWE: A group of multiple lexemes which have some level of idiomaticity or irregularity.

Motivation

- Linguistics research: Construction Grammar (Hoffmann and Trousdale, 2013)
- MWE identification and syntactic parsing benefit from one another

(Nivre and Nilsson, 2004; Korkontzelos and Manandhar, 2010

MWE: A group of multiple lexemes which have some level of idiomaticity or irregularity.

Motivation

- Linguistics research: Construction Grammar (Hoffmann and Trousdale, 2013)
- MWE identification and syntactic parsing benefit from one another

(Nivre and Nilsson, 2004; Korkontzelos and Manandhar, 2010

MWE: A group of multiple lexemes which have some level of idiomaticity or irregularity.

Motivation

- Linguistics research: Construction Grammar (Hoffmann and Trousdale, 2013)
- MWE identification and syntactic parsing benefit from one another (Nivre and Nilsson, 2004; Korkontzelos and Manandhar, 2010)

MWE: A group of multiple lexemes which have some level of idiomaticity or irregularity.

Motivation

- Linguistics research: Construction Grammar (Hoffmann and Trousdale, 2013)
- MWE identification and syntactic parsing benefit from one another (Nivre and Nilsson, 2004; Korkontzelos and Manandhar, 2010)

CCG: a strongly lexicalized formalism

CCG: a strongly lexicalized formalism

• Can CCG parsing benefit from MWE information?

- Can CCG parsing benefit from MWE information?
- Can automatic MWE recognition improve parsing?

- Can CCG parsing benefit from MWE information?
- Can automatic MWE recognition improve parsing?
- Can we obtain improvements on different types of MWEs?

- Can CCG parsing benefit from MWE information?
- Can automatic MWE recognition improve parsing?
- Can we obtain improvements on different types of MWEs?

1 and 2

- Can we obtain a training effect?
- Can we obtain a parsing effect?

- Can CCG parsing benefit from MWE information?
- Can automatic MWE recognition improve parsing?
- Can we obtain improvements on different types of MWEs?

1 and 2

- Can we obtain a training effect?
- Can we obtain a parsing effect?

An example

It gives part of speech and lemma information.

It gives part+of+speech and lemma information.

MWE Recognition

Library jMWE (Finlayson and Kulkarni, 2011)

- Input: sentence.
 e.g: Mr. Spoon said the plan is not an attempt to shore up a decline in ad pages in the first nine months of 1989;
 Newsweek 's ad pages totaled 1,620, a drop of 3.2 % from last year, according to Publishers Information Bureau.
- Output: list of multiword expressions from left to right.
 mr._spoon, shore_up, according_to, publishers_information_bureau

MWE Recognition (2)

3 components: detector, filter, resolver

MWE Recognition (2)

3 components: detector, filter, resolver

detector	filter	resolver
Exhaustive	${\sf MoreFrequentAsMWE}$	Longest
Exhaustive	${\sf MoreFrequentAsMWE}$	Leftmost
Proper Nouns	no filter	Longest
Exhaustive	ConstrainLength	Leftmost
Stop words	no filter	Longest

Transformation

MWEs with units that are siblings.

MWEs with units that are not sibling: less straightforward

MWEs with units that are not sibling: less straightforward

MWEs with units that are not sibling: less straightforward

detector	filter	resolver	MWE count	Sibling %	
				0 -	
Exhaustive	${\sf MoreFrequentAsMWE}$	Longest	53,208	79.51	
Exhaustive	MoreFrequentAsMWE	Leftmost	51,543	41.85	
Proper Nouns	no filter	Longest	32,583	86.14	
Exhaustive	ConstrainLength	Leftmost	49,587	40.30	
Stop words	no filter	Longest	13,623	2.09	

Transformation (2)

Transformation (2)

Pipeline

Pipeline

Is there a training effect?

Is there a training effect?

Is there a training effect?

Is there a parsing effect?

Is there a training effect?

Is there a parsing effect?

Is there a training effect?

Is there a parsing effect?

Can we improve results on the original gold standard?

Can we obtain improvements on different types of MWEs?

Is there a training effect?

Is there a parsing effect?

Can we improve results on the original gold standard?

Can we obtain improvements on different types of MWEs?

repeat and compare B

external

external

internal

external B internal A mediating A

only sibling MWEs all MWEs 72.77

84.64 84.88

72.92

only sibling MWEs all MWEs 72.77 72.92

84.64 **84.88**

only sibling MWEs 84.64 84.88 all MWEs 72.77 72.92

only sibling MWEs 79.17 84.06 all MWEs 79.49 79.69

only sibling MWEs all MWEs 79.49

84.06 79.17 79.69

Is there a training effect?

only sibling MWEs 79.17 84.06 all MWEs 79.49

79.69

Is there a training effect?

85.28

Is there a training effect?

85.28

Is there a training effect?

Is there a parsing effect?

Is there a training effect?

Is there a parsing effect?

model	detector type	resolver type	\mathbf{F}_1
A			85.15
B_1	exhaustive	longest	85.18
B_2	exhaustive	leftmost	85.02
B_3	Proper Nouns	longest	85.28
B_4	Length 2	leftmost	85.07
B_5	Stop words	longest	85.19

Is there a training effect?

Is there a parsing effect?

model	detector type	resolver type	\mathbf{F}_1
A			85.15
B_1	exhaustive	longest	85.18
B_2	exhaustive	leftmost	85.02
B_3	Proper Nouns	longest	85.28
B_4	Length 2	leftmost	85.07
B_5	Stop words	longest	85.19

Is there a training effect?

Is there a parsing effect?

Can we improve results on the original gold standard?

Can we obtain improvements on different types of MWEs?

Tepeat and compare B

model	detector type	resolver type	\mathbf{F}_1
A			85.15
B_1	exhaustive	longest	85.18
B_2	exhaustive	leftmost	85.02
B_3	Proper Nouns	longest	85.28
B_4	Length 2	leftmost	85.07
B_5	Stop words	longest	85.19

Is there a training effect?

Is there a parsing effect?

Can we improve results on the original gold standard?

Can we obtain improvements on different types of MWEs?

Tepeat and compare B

Conclusion

Contributions

- Improvements on CCG parsing with automatic MWE recognition
- Significant results despite limited settings
- Techniques for distinguishing training from parsing effects
- Empirical support that there is both training and parsing effects
- Differences in results when using different recognizers

Conclusion

Future Work

- Extending the transformation algorithm to the non-sibling case
- Testing more MWE recognition methods
- Conducting error analysis

Outline for section 4

- Introduction
- 2 Verb Groups in UD parsing
 - Introduction
 - Methodology
 - Experiments
 - Conclusion and Future Work
- MWEs in CCG parsing
 - Motivation
 - Methodology
 - Results
 - Conclusion
- 4 General Conclusion

General Conclusion

Principled methods for studying the interaction between syntactic representations and parsing accuracy.

Thanks!

References

- Miryam de Lhoneux. 2014. CCG Parsing and Multiword Expressions. Master's thesis, The University of Edinburgh.
- Miryam de Lhoneux and Joakim Nivre. 2016. Should have, would have, could have investigating verb group representations for parsing with universal dependencies. In *Proceedings of the Workshop on Multilingual and Cross-lingual Methods in NLP*. Association for Computational Linguistics, San Diego, California, pages 10–19.
- Marie-Catherine de Marneffe, Timothy Dozat, Natalia Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre, and Christopher D. Manning. 2014. Universal stanford dependencies: A cross-linguistic typology. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014), Reykjavik, Iceland, May 26-31, 2014. pages 4585–4592.
- Mark Alan Finlayson and Nidhi Kulkarni. 2011. Detecting Multi-word Expressions Improves Word Sense Disambiguation. In Proceedings of the Workshop on Multiword Expressions: From Parsing and Generation to the Real World. Association for Computational Linguistics, Stroudsburg, PA, USA, MWE '11, pages 20–24.
- Thomas Hoffmann and Graeme Trousdale. 2013. The Handbook of Construction Grammar. In Thomas Hoffmann and Graeme Trousdale, editors, *The Oxford Handbook of Construction Grammar*, Oxford University Press, Oxford Handbooks in Linguistics, chapter Constructi, pages 1–14.
- Ioannis Korkontzelos and Suresh Manandhar. 2010. Can recognising multiword expressions improve shallow parsing? In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, pages 636–644.
- Jens Nilsson, Joakim Nivre, and Johan Hall. 2006. Graph transformations in data-driven dependency parsing. In Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Stroudsburg, PA, USA, ACL-44, pages 257–264.
- Jens Nilsson, Joakim Nivre, and Johan Hall. 2007. Generalizing tree transformations for inductive dependency parsing. In ACL 2007, Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, June 23-30, 2007, Prague, Czech Republic.
- Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. MaltParser: A data-driven parser-generator for dependency parsing. In Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC). pages 2216–2219.
- Joakim Nivre and Jens Nilsson. 2004. Multiword units in syntactic parsing. In MEMURA 2004 Methodologies and Evaluation of Multiword Units in Real-World Applications (LREC Workshop). pages 39–46.
- Roy Schwartz, Omri Abend, and Ari Rappoport. 2012. Learnability-based syntactic annotation design. In *COLING*. volume 24. pages 2405–2422.