

MCB 135 Lecture 6 Enzyme Kinetics

Recap: moiety conservation restricts how concentrations change together

Follow-up: systematic method for identifying moieties

General principle: if a set of equations are all true, then any linear combination of them is also true

$$ax + by = c$$

$$dx + ey = f$$

$$2(ax + by) + dx + ey = 2c + f$$

Follow-up: systematic method for identifying moieties

[ATP] + [ADP] = constant

You may have employed this technique to solve systems of equations in an algebra course.

$$-5x - 5y = -10$$

 $5x - 7y = 34$
 $-12y = 24 \Longrightarrow y = -2, x = 4$

Follow-up: systematic method for identifying moieties

In matrix form, this technique is called Gauss-Jordan elimination.

Follow-up: systematic method for identifying moieties

$$\begin{array}{ll} \frac{dA}{dt} &= k_{-1}B^2 + k_2D + k_4BE - k_1A - k_{-2}AC \\ \frac{dB}{dt} &= 2k_1A + k_3D - 2k_{-1}B^2 - k_4BE \\ \frac{dC}{dt} &= k_2D + k_4BE - k_{-2}AC \\ \frac{dD}{dt} &= k_{-2}AC - k_3D - k_2D \\ \frac{dE}{dt} &= k_3D - k_4BE \\ \end{array} \qquad \begin{array}{ll} \text{If we could find a linear combination of ODEs that sums to zero, e.g.} \\ \frac{dC}{dt} + \frac{dD}{dt} + \frac{dE}{dt} = 0 \\ \frac{dD}{dt} &= k_3D - k_4BE \\ \end{array}$$

$$\begin{array}{ll} \text{then integration w.r.t. time would give us a conservation rule:} \\ \\ [C] + [D] + [E] = \text{constant} \end{array}$$

Follow-up: systematic method for identifying moieties

Step one: number the reactions

$$r_1: A \rightleftharpoons 2B$$

$$r_2:$$
 D \Longrightarrow A + C

$$r_3:$$
 D \longrightarrow B + E

$$r_4: B+E \longrightarrow A+C$$

Step two: construct a stoichiometry matrix

$$D \xrightarrow{k_2} A + C$$

$$k_3 \xrightarrow{B+E} k_4$$

Follow-up: systematic method for identifying moieties

Step three: express the rates of change for each molecular species using the stoichiometry matrix

Found last time using the law of mass action

Rewritten in matrix form

$$\frac{dA}{dt} = k_{-1}B^2 + k_2D + k_4BE - k_1A - k_{-2}AC$$

$$\frac{dB}{dt} = 2k_1A + k_3D - 2k_{-1}B^2 - k_4BE$$

$$\frac{dI}{dt} = 2k_1A + k_3D - 2k_{-1}B^2 - k_4BI$$

$$\frac{dC}{dt} = k_2D + k_4BE - k_{-2}A$$

$$\frac{dt}{dt} = \kappa_2 D + \kappa_4 B E - \kappa_{-2} A$$

$$\frac{dD}{dt} = k_{-2}AC - k_3D - k_2D$$

$$\frac{dE}{dt} = k_3D - k_4BE$$

$$\frac{d}{dt}\begin{pmatrix} A \\ B \\ C \\ D \\ E \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 2 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}\begin{pmatrix} k_1A - k_{-1}B^2 \\ k_2D - k_{-2}AC \\ k_3D \\ k_4BE \end{pmatrix}$$

Follow-up: systematic method for identifying moieties

Step three: express the rates of change for each molecular species using the stoichiometry matrix

Found last time using

the law of mass action $= k_{-1}B^2 + k_2D + k_4BE - k_1A - k_{-2}AC$

 $= 2k_1A + k_3D - 2k_{-1}B^2 - k_4BE$

 $\frac{dt}{dD}$

 $= k_{12}AC - k_{1}D - k_{2}D$

Notice that these are the "Ret fortward reaction rates" (we'll call them v_i)

$$\frac{d}{dt} \begin{pmatrix} A \\ B \\ C \\ D \\ E \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 2 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} k_1A - k_{-1}B^2 \\ k_2D - k_{-2}AC \\ k_3D \\ k_4BE \end{pmatrix}$$

Follow-up: systematic method for identifying moieties

$$\frac{d}{dt}\begin{pmatrix}A\\B\\C\\D\\E\end{pmatrix} = \begin{pmatrix}-1 & 1 & 0 & 1\\2 & 0 & 1 & -1\\0 & 1 & 0 & 1\\0 & -1 & -1 & 0\\0 & 0 & 1 & -1\\0 & 0 & 1 & -1\end{pmatrix}\begin{pmatrix}k_1A - k_{-1}B^2\\k_2D - k_{-2}AC\\k_3D\\k_4BE\end{pmatrix}$$

Rewrite in an equivalent form:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \frac{d}{dt} \begin{pmatrix} A \\ B \\ C \\ D \\ E \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 2 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{pmatrix}$$

Follow-up: systematic method for identifying moieties

Our goal: apply row reduction (aka Gaussian elimination) so that some rows of the stoichiometry matrix become all zeros.

Then, the left-hand side will tell us that some combination of the derivatives sums to zero.

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \frac{d}{dt} \begin{pmatrix} A \\ B \\ C \\ D \\ F \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 2 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{pmatrix}$$

Follow-up: systematic method for identifying moieties

Input the stoichiometry matrix (augmented by the identity matrix) into MATLAB

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \frac{d}{dt} \begin{pmatrix} A \\ B \\ C \\ D \\ E \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 2 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$$

Follow-up: systematic method for identifying moieties $2\frac{dA}{dt} + 2\frac{dD}{dt} + \frac{dB}{dt} + \frac{dE}{dt} = 0$ $\frac{dC}{dt} + \frac{dD}{dt} + \frac{dE}{dt} = 0$ $\begin{bmatrix} 2[A] + 2[D] + [B] + [E] = \text{constant} \\ [C] + [D] + [E] = \text{constant} \end{bmatrix}$ These are our two conserved moieties $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \hline 2 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \frac{d}{dt} \begin{pmatrix} A \\ B \\ C \\ D \\ E \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 2 & 0 & 2 & -2 \\ 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$

Today's Outline

- Rate of product formation in enzyme catalysis
 - Recap of simplifying assumptions and enzyme catalysis
 - Michaelis-Menten kinetics
- · Simple binding curves
 - Hyperbolic form
 - The switch-like behavior problem
 - Hemoglobin as a natural example of a sigmoidal form

Enzyme catalysis is a composite reaction

Fructose-6-phosphate + ATP $\xrightarrow{k_3}$ Fructose-1,6-bisphosphate + ADP

When catalyzed by the enzyme phosphofructokinase, this reaction has several steps:

Enzyme catalysis is a composite reaction free enzyme + substrate free enzyme + product enzyme-substrate complex enzyme-product complex \$\frac{\Substrate}{\Substrate} + \frac{E}{\text{Pree enzyme}} \equiv \frac{\C_1}{\Enzyme-substrate} \equiv \frac{\C_2}{\Enzyme-product complex} \equiv \frac{P}{\text{Product}} + \frac{E}{\text{Free enzyme}}

Recap: common simplifying assumptions

- A chemical's concentration has a particular constant value
- A chemical's concentration is at steady-state
 - The "quasi-steady-state" assumption
 - Can find an expression for the steady-state concentration from the chemical's ODE
- A particular reversible reaction has reached equilibrium
 - The "rapid equilibrium" assumption

How are these species' concentrations changing with time? $S + E \xrightarrow{k_1} C \xrightarrow{k_2} P + E$ $\frac{dS}{dt} = k_{-1}C - k_1SE$ $\frac{dE}{dt} = k_{-1}C + k_2C - k_1SE$ $\frac{dC}{dt} = k_1SE - k_{-1}C - k_2C$ $\frac{dP}{dt} = k_2C$

Why does the fast timescale exist?

$$S + E \xrightarrow[k_{-1}]{k_1} C \xrightarrow{k_2} P + E$$

Simplifying the model using moiety conservation

Rewrite using a stoichiometry matrix:

Rewrite using a stoichiometry matrix:
$$S+E \xrightarrow[k_{-1}]{k_{-1}} C \xrightarrow{k_{2}} P+E$$

$$\frac{dS}{dt} = k_{-1}C - k_{1}SE$$

$$\frac{dE}{dt} = k_{-1}C + k_{2}C - k_{1}SE$$

$$\frac{dC}{dt} = k_{1}SE - k_{-1}C - k_{2}C$$

$$\frac{dP}{dt} = k_{2}C$$
Rewrite using a stoichiometry matrix:
$$\begin{bmatrix} S \\ E \\ C \\ P \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} k_{1}SE - k_{-1}C \\ k_{2}C \end{pmatrix}$$
Perform row reduction, and find:
$$\begin{bmatrix} S \\ F \\ C \\ P \end{bmatrix} = \begin{bmatrix} S \\ F \\ C \end{bmatrix} + \begin{bmatrix} C \\ F \end{bmatrix} = Constant$$

$$\begin{bmatrix} C \\ F \end{bmatrix} + \begin{bmatrix} C \\ F \end{bmatrix} = Constant$$

Simplifying the model using moiety conservation

$$[C] + [E] = \text{constant} \longrightarrow [E] = [E]_{\text{tot}} - [C]$$

$$\frac{dS}{dt} = k_{-1}C - k_{1}S[E_{tot} - C] = -k_{1}SE_{tot} + C[k_{-1} + k_{1}S]
\frac{dC}{dt} = k_{1}S[E_{tot} - C] - k_{-1}C - k_{2}C = k_{1}SE_{tot} - C[k_{-1} + k_{2} + k_{1}S]
\frac{dP}{dt} = k_{2}C = k_{2}C$$

Exploiting the rapid approach of [C] to quasi-steady-state

$$\frac{dC}{dt} = k_1 S E_{\text{tot}} - C [k_{-1} + k_2 + k_1 S] = 0$$

$$C = \frac{k_1 S E_{\text{tot}}}{k_{-1} + k_2 + k_1 S} = \frac{S E_{\text{tot}}}{K_m + S}, \qquad K_m = \frac{k_{-1} + k_2}{k_1}$$

How fast is the product forming?

$$C = \frac{SE_{\text{tot}}}{K_m + S}, \qquad K_m = \frac{k_{-1} + k_2}{k_1}$$

$$\frac{dP}{dt} = k_2 C = \frac{V_{\text{max}}S}{K_m + S}, \qquad V_{\text{max}} = k_2 E_{\text{tot}}$$

The Michaelis-Menten equation

- Organisms follow algorithms to determine responses to "inputs" from their environments
 - Are these computations are inherently limited?
- A system can compute anything if it can implement Boolean logic and memory (Church-Turing thesis)
- Boolean logic requires all-or-none responses to binary inputs
- → Want to show that all living systems can implement Boolean variables

How can organisms make switch-like responses with binding/enzyme kinetics?

Oxygen transport

A few cells thick: diffusion suffices

Much larger: circulatory and respiratory systems needed

Oxygen loading in the lungs can limit oxygen transport

By forming complexes, oxygenbinding proteins can "hide" oxygen inside the red blood cell

Ideal properties for an oxygen-binding protein

In the lungs, where ppO₂ is high, binds as much oxygen as possible

In other tissues, where ppO₂ is low, releases as much oxygen as possible

Next time: Cooperativity and inhibition