Analysis I

Thomas Fleming

November 4, 2021

Contents

Lecture 20: Derivatives (2)

Tue 02 Nov 2021 12:58

Recall. A monotone function on an interval has well defined limits at both its endpoints.

Definition 0.1 (Upper/Lower Derivatives). Let $S \subseteq \mathbb{R}$, $f: S \to \mathbb{R}$

- We define $\overline{D}f(x)=\lim_{\tau\to 0}\sup\{\frac{f(x+h)-f(x)}{h}:0<|h|<\tau\}$ to be the upper derivative.
- We define $\underline{D}f(x)=\lim_{\tau\to 0}\inf\{\frac{f(x+h)-f(x)}{h}:0<|h|<\tau\}$ to be the lower derivative.
- If, for some $x \in S$, we find $\overline{D}f(x)$, $\underline{D}f(x) \in \mathbb{R}$, with the upper and lower derivatives being equal, we say f is **differentiable** at x. We denote $f'(x) = \overline{D}f(x) = \underline{D}f(x)$.

We know, the limits of the upper and lower derivatives to be well defined as the supremum and infimum are monotone functions with respect to τ .

Proposition 0.1. Let $f: S \to \mathbb{R}$ and let $x \in S$. Then, f is differentiable at x if and only if

$$\lim_{y \to x} \frac{f(y) - f(x)}{y - x} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \in \mathbb{R}.$$

That is, the classical derivative is equivalent to the lebesque derivative, so we will use the new definition for most proofs, but the old for most computations.

Theorem 0.1 (Mean-Value Theorem). Let $f:[a,b]\to\mathbb{R}$ be continuous and differentiable at every $x\in(a,b)$. Then, there exists $\xi\in(a,b)$ so that $f(b)-f(a)=f'(\xi)(b-a)$.

Lemma 0.1. Let $f:[a,b] \to \mathbb{R}$ be increasing and suppose $\overline{D}f(x) = \underline{D}f(x)$ for almost every $x \in [a,b]$. Then, $\overline{D}f(x)$ and $\underline{D}f(x)$ are finite almost everywhere. Moreover, f is differentiable almost everywhere (on [a,b]). Furthermore, f' is an integrable function and

$$\int_{[a,b]} f' \le f(b) - f(a).$$

Proof. Extend f to $[a, \infty)$ by letting f(c) = f(b) for all $c \ge b$. Define a sequence $(g_n), g_n : [a, b] \to \overline{\mathbb{R}}$ with

$$x \mapsto n\left(f\left(x + \frac{1}{n}\right) - f\left(x\right)\right).$$

Then, b assumption, we know $(g_n(x))$ to be convergent in $\overline{\mathbb{R}}$ with limit f'(x) for almost every $x \in (a,b)$. Each g_n is measurable, hence $\lim_{n \to \infty} g_n$ is increasing,

we see $g(n) \ge 0$, hence $\overline{D}f \ge 0$.

Applying Fatou's lemma yields

$$\int_{[a,b]} \overline{D}f = \int_{[a,b]} \liminf_{n \to \infty} f_n$$

$$\leq \liminf_{n \to \infty} \int_{[a,b]} g_n$$

$$= \liminf_{n \to \infty} n \left(\int_{\left[a + \frac{1}{n}, b + \frac{1}{n}\right]} f - \int_{\left[a,b\right]} f \right)$$

$$= \liminf_{n \to \infty} \left(\underbrace{n \int_{\left[b, b + \frac{1}{n}\right]} f - \underbrace{n \int_{\left[a, a + \frac{1}{n}\right]} f}_{\leq f(a)} \right)$$

$$\leq f(b) - f(a).$$

We know the final inequality holds because f is constant on $\left[b, b + \frac{1}{n}\right]$ and though f is not constant, it is increasing on $\left[a, a + \frac{1}{n}\right]$ hence the upper bound of their difference is attained by f(a).

Consequently, $\overline{D}f$ is integrable (so finite almost everywhere). And, since $\overline{D}f = \underline{D}f$, we find f'(x) exists and equals $\overline{D}f(x)$ for almost every $x \in [a,b]$.

Later, we will prove equality holds precisely in the case of absolute continuity.

Definition 0.2 (Vitali Covering). Let $S \subseteq \mathbb{R}$. We call a collection of closed, bounded intervals (denoted \mathscr{C}) of positive length a **Vitali covering** of $S \subseteq \mathbb{R}$ if for every $x \in S$ and $\varepsilon > 0$ we find an $I \in \mathscr{C}$ such that $x \in I$ and $l(I) < \varepsilon$.

Example. A vitali covering of S = [0,1] goes as follows. Let $H = \mathbb{Q} \cap [0,1]$, then $\mathscr{C} = \{[x,x+h]: h \in H, x \in [0,1]\}.$

Theorem 0.2 (Vitali Covering Lemma). Let $\mathscr C$ be a Vitali covering of the set $S\subseteq \mathbb R$ with $m^*(S)<\infty$. Then, for every $\varepsilon>0$ there is a finite, disjoint collection of intervals $\{I_k\in\mathscr C:1\le k\le n\}$ such that

$$m^*\left(S\setminus\bigcup_{k=1}^nI_k\right)<\varepsilon.$$

Theorem 0.3 (Lebesque's Theorem). Let $f: I \to \mathbb{R}$ be a monotone function on an interval $I \subseteq \mathbb{R}$. Then, f is differentiable at almost every $x \in I$ and f' is integrable on every interval $[a, b] \subseteq I$. In particular, if f is increasing, then

$$\int_{[a,b]} f' \le f(b) - f(a).$$

Proof. It suffices to show I is open and bounded, else we could replace I by $\stackrel{\circ}{I}\cap (-n,n)$ for $n\in N$ and we find $\stackrel{\circ}{I}=\bigcup_{n\in \mathbb{N}}\stackrel{\circ}{I}\cap (-n,n)$. Similarly, we can assume f to be increasing. Hence, for all $x\in I$, we have $0\leq \underline{D}f(x)\leq \overline{D}f(x)\leq \infty$. So, we need only show $\overline{D}f(x)=\underline{D}f(x)$ with this quantity being finite for almost every $x\in I$.

For $p, q \in \mathbb{Q}$ and p > q > 0, define $E_{p,q} = \{x \in I : \underline{D}f(x) < q < p < \overline{D}f(x) < \infty\}$. Then,

$$\{x \in I : \underline{D}f(x) < \overline{D}f(x) < \infty\} = \bigcup_{p,q \in Q^{+}} E_{p,q}.$$

If f fails to be differentiable at $x \in I$, then either $x \in E_{p,q}$ for some $p, q \in \mathbb{Q}$ or $\overline{D}f(x) = \infty$. We know $\overline{D}f$ to be finite almost everywhere, so by subadditivity, we need only show the other component, $E_{p,q}$, has measure 0.

Fix $p,q \in \mathbb{Q}$ and suppose $m^*(E_{p,q} = m_0)$. Then, $m_0 \in [0,\infty)$ by the boundedness assumption. Given $\varepsilon > 0$ there is a nonempty open U such that $E_{p,q} \subseteq U$ and $m(U) < m_0 + \varepsilon$. Suppose $x \in E_{p,q}$. Since $\underline{D}f(x) < q$ by definition of $E_{p,q}$; for every $\delta > 0$ we find a $0 < h < \delta$ such that $[x, x + h] \subseteq U$ and f(x + h) - f(x) < qh or $[x - h, x] \subseteq U$ and $f(x) - f(x - h) \le qh$.

The collection \mathscr{L} of all such intervals [x,x+h] or [x-h,x] for a fixed $\delta>0$ and $x\in E_{p,q}$ forms a Vitali covering of $E_{p,q}$. We find all intervals $[a,b]\in\mathscr{L}$ have the property f(b)-f(a)< q(b-a) by the earlier observation. Then, by the Vitali covering lemma, there is a finite, disjoint collection of intervals $\{I_n\in\mathscr{L}:1\leq n\leq N\}$ such that for $V=\bigcup_{n=1}^N I_n$, we have $m^*\left(E_{p,q}\setminus V\right)<\varepsilon$. Note that $m(V)< m_0+\varepsilon$ since $V\subseteq U$. Since $m^*\left(E_{p,q}\setminus V\right)+m^*\left(E_{p,q}\cap V\right)\geq m_0$ since the two sets together contain $E_{p,q}$, we have $m^*\left(E_{p,q}\cap V\right)\geq m_0-\varepsilon$. Now, we follow a similair construction. If $x\in E_{p,q}\cap V$, then $p<\overline{D}f(x)$

Now, we follow a similair construction. If $x \in E_{p,q} \cap V$, then $p < \overline{D}f(x)$ implies for all $\delta > 0$ there is an $0 < h < \delta$ such that $[x, x+h] \subseteq V$ and $f(x+h) - f(x) \ge ph$ or $[x-h,x] \subseteq V$ and $f(x) - f(x-h) \ge ph$. The collection $\mathscr U$ of all such intervals [x,x+h] or [x-h,x] for a fixed $\delta > 0$ and $x \in E_{p,q} \cap V$ is a vitali covering of $E_{p,q} \cap V$. Moreover, if $[c,d] \in \mathscr U$, then $f(d) - f(c) \ge p(d-c)$. Applying Vitali Covering lemma yields a finite disjoint collection of intervals $\{I_k \in \mathscr U: 1 \le k \le K\}$ such that for $W = \bigcup_{k=1}^K J_k$, we have $m^*(E_{p,q} \cap V) \setminus W > \varepsilon$. Since

$$m^*\left(\left(E_{p,q}\cap V\right)\setminus W\right)+m\left(W\right)\geq m^*\left(E_{p,q}\cap V\right)$$

we have that $m(W) \geq m_0 - 2\varepsilon$.

We know each interval $J_k = [c_k, d_k]$ from W must be contained in V, furthermore it is contained in an interval $I_n = [a_n, b_n]$ of V. As each interval is disjoint and monotonic, we must have that

$$\sum_{k=1}^{K} (f(d_k) - f(c_k)) \le \sum_{n=1}^{N} (f(b_n) - f(a_n)).$$

Now, since $I_n \in \mathcal{L}$ and $J_k \in \mathcal{U}$, we have

$$p \sum_{k=1}^{K} (d_k - c_k) = pm(w)$$

$$\leq qm(V)$$

$$= q \sum_{n=1}^{N} (b_n - a_n)$$

Hence, $p(m_0 - 2\varepsilon) \leq q(m_0 + \varepsilon)$ for each $\varepsilon > 0$, so $pm_0 \leq qm_0$ and as p > q, we must have $m_0 = 0$, so f is differentiable on all but sets of measure 0, so it is differentiable almost everywhere.

Corollary 1. If the function $f:[a,b]\to\mathbb{R}$ is of bounded variation on the interval $[a,b]\subseteq\mathbb{R}$, then it is differentiable at almost every $x\in[a,b]$. Consequently, if f is absolutely continuous on [a,b], then it is differentiable at almost every $x\in[a,b]$.

Proof. Bounded variation implies f = g - h for increasing functions g, h. Applying lebesque's theorem yields g, h are differentiable almost everywhere, hence f is differentiable almost everywhere.

Lecture 21: Fundamental Theorem of Calculus

Thu 04 Nov 2021 13:03

For the duration of this lecture, [a,b] will denote a compact interval in \mathbb{R} , principally, it is not in $\overline{\mathbb{R}}$.

Lemma 0.2. Suppose $f:[a,b]\to \overline{\mathbb{R}}$ is integrable. Then, f=0 almost everywhere if and only if $\int_{[a,x]} f=0$ for all $x\in [a,b]$.

Proof. If f = 0 almost everywhere, then the integral must be 0 for all $x \in [a, b]$ so the forward implication holds.

Conversely, assume $\int_{[a,x]} f = 0$ for all $x \in [a,b]$. Then, let $E = \{x \in [a,b]: f(x) > 0\}$ and assume m(E) > 0. Then, there is a closed set $C \subset E$ so that m(C) > 0. Letting $O = (a,b) \setminus C$ (an open set) we see $\int_{[a,b]} f = \int_C f + \int_O f$ and as $\int_C f > 0$ as $C \subseteq E$ with m(C) > 0. Hence, we find $\int_O f \neq 0$. Hence, m(O) > 0, and there is an interval $(c,d) \subseteq O$ so that $\int_{[c,d]} \neq 0$. Since $\int_{[a,d]=0}$ by assumption, then we find $\int_{[a,d]} f = \int_{[a,c]} f + \int_{[c,d]} f$, hence $\int_{[a,c]} f \neq 0 \not \downarrow$.

Proposition 0.2. Syppose $g:[a,b] \to \mathbb{R}$ is continuous. For every $x \in [a,b)$ and $\varepsilon > 0$ there is a δ with $0 < \delta < b - x$ such that

$$\left| \frac{1}{h} \int_{x,x+h} (g - g(x)) \right| < \varepsilon \text{ for } 0 < h < \delta.$$

Proof. Write $g(x) = g(x) \chi_{[x,x+h]}$. Then the claim immediately follows. \Box

Theorem 0.4 (Fundamental Theorem of Calculus I). Suppose $f:[a,b] \to \mathbb{R}$ is integrable. Then the function

$$F:[a,b] \longrightarrow \mathbb{R}$$

$$x \longmapsto F(x) = \int_{[a,x]} f$$

is absolutely continuous and differentiable almost everywhere with F'=f almost everywhere.

Proof. It is clear that F is absolutely continuous and differentiable almost everywhere by a result from last lecture and the fact that absolute continuity \Rightarrow bounded variation \Rightarrow differentiable a.e.

Moreover, we can assume $f \geq 0$, otherwise replacing f by f^+ or f^- . We can temporarily assume f is bounded (though we will later remove this requirement). Let $f(x) \leq M$ for all $x \in [a,b]$. Then, extend f,F to functions on $[a,\infty)$ by letting f(x) = f(b) for all $x \geq b$. Define the following sequence of continuous functions (g_n)

$$g_n : [a, b] \longrightarrow \overline{\mathbb{R}}$$

$$x \longmapsto g_n(x) = n \left(F\left(x + \frac{1}{n}\right) - F\left(x\right) \right) = n \left(\int_{a, x + \frac{1}{n}} f - \int_{a, x} f \right)$$

$$= n \int_{\left[x, x + \frac{1}{n}\right]} f.$$

Then, we find the sequence is pointwise convergent with limit F'(x) for almost every $x \in [a,b]$. Furthermore, F' is measurable and $0 \le g_m \le M$ for all $x \in [a,b]$. So, applying dominated convergence and the previous proposition yields g_m is dominated by M with pointwise limit F', so $F' \le M$ almost everywhere. So, F' is integrable and for all $x \in [a,b]$ we find

$$\int_{[a,x]} F' = \lim_{n \to \infty} \int_{[a,x]} g_n$$

$$= \lim_{n \to \infty} n \left(\int_{\left[a + \frac{1}{n}, x + \frac{1}{n}\right]} F - \int_{\left[a,x\right]} F \right)$$

$$= \lim_{n \to \infty} n \left(\int_{\left[x, x + \frac{1}{n}\right]} F - \int_{\left[a, a + \frac{1}{n}\right]} F \right)$$

$$= F(x) - F(a)$$

$$= F(x).$$

Now, if f was unbounded, then define the sequences (f_n) and (F_n) with

$$f_n : [a, b] \longrightarrow \overline{\mathbb{R}}$$

$$x \longmapsto f_n(x) = \inf\{f(x), n\}$$

$$F_n : [a, b] \longrightarrow \overline{\mathbb{R}}$$

$$x \longmapsto F_n(x) = \int_{[a, x]} f_n.$$

Since $f-f_n\geq 0$, we see $F-F_n$ is increasing for each n. Hence, $F-F_n$ is differentiable almost everywhere with $(F-F_n)'\geq 0$ almost everywhere. Consequently for $x\in [a,b]$ we see

$$\int_{[a,x]} F' \ge \int_{[a,x]} F'_n$$

for all $x \in [a,b]$. Since F_n is bounded for all n, we see $\int_{[a,x]} F'_n = F_n(x)$ by the bounded case. Thus, $\int_{[a,x]} F' \geq F_n(x)$ for all $x \in [a,b]$.

Now, applying MCT, we see (f_n) is a pointwise convergent sequence of functions which are increasing the F_n s also converge pointwise to F on [a,b]. Hence, $\int_{[a,x]} F' \geq F(x)$ for ever $x \in [a,b]$ by passing the earlier inequality to the limit. Since f is nonnegative, we see F is increasing, so we also have $\int_{[a,x]} F' \leq F(x) - F(x) = F(x)$. Hence $\int_{[a,x]} F' = F(x)$ since

$$\int_{[a,x]} \left(F' - f \right) = \int_{[a,x]} F' - \int_{[a,x]} f = \int_{[a,x]} F' - F \left(x \right) = 0 \text{ for a.e. } x \in [a,b] \,.$$

In order to prove the other part of the fundamental theorem of calculus, we will need the following lemma:

Lemma 0.3. If the function $f:[a,b]\to\mathbb{R}$ is absolutely continuous with f'=0 almost everywhere then f is a constant function.

Proof. We will show f(c) = f(a) for all $c \in (a, b]$. Fix $c \in (a, b]$ and let $E = \{x \in (a, c) : f' \text{ exists at } x, f'(x) = 0\}.$

By assumption, m(E)=c-a>0, hence for $\varepsilon>0$ choose $\delta>0$ such that absolute continuity holds. For each $x\in E$ and k>0, we see there is an $h\in (0,k)$ with either $[x,x+h]\subseteq [a,c]$ and $|f(x+h)-f(x)|<\varepsilon h$ or $[x-h,x]\subseteq [a,c]$ and $|f(x-h)-f(x)|<\varepsilon h$ (or both). Then, the collection $\mathscr C$ of these intervals for all k>0 and $x\in E$ is a vitali covering of E. By the Vitali covering lemma, we find a finite disjoint collection $\{[x_k,y_k]\in\mathscr C:1\le k\le n\}$ so that $V=\bigcup_{k=1}^N [x_k,y_k]$ has $m(E\setminus V)<\delta$. Reindex these intervals such that $x_k< x_{k+1}$ for all k and let $y_0=a$, $x_{n+1}=c$. Then, we see

$$a = y_0 \le x_1 < y_1 < x_2 < y_2 < \dots < x_n < y_n \le x_{n+1} = c.$$

Hence, the set $P = \{x_i : 1 \le i \le n+1\} \cup \{y_i : 1 \le i \le n+1\}$ is a partition of [a,c]. Since

$$\sum_{k=1}^{n} (y_k - x_k) = m(V) > m(E) = c - a - \delta$$

we see the leftover pieces

$$\sum_{k=0}^{n} (x_{k+1} - y_k) \le m (E \setminus V) < \delta.$$

Since f is absolutely continuous, we see $\sum_{k=0}^{n} |f(x_{k+1}) - f(y_k)| < \varepsilon$. Consequently,

$$|f(c) - f(a)| \le \sum_{k=1}^{n} |f(y_k) - f(x_k)| + \sum_{k=0}^{n} |f(x_{k+1} - f(y_k))|$$

$$< \sum_{k=1}^{n} \varepsilon (y_k - x_k) + \varepsilon$$

$$\le \varepsilon (c - a) + \varepsilon$$

for all $\varepsilon > 0$, so we see f(c) - f(a) = 0 for all $c \in (a, b]$ and the claim follows. \square

Theorem 0.5 (Fundamental Theorem of Calculus II). Suppose the function $F:[a,b]\to\mathbb{R}$ is absolutely continuous. Then, F is differentiable almost everywhere and its derivative, F', is integrable with

$$\int_{[a,x]} F' = F(x) - F(a)$$

for all $x \in [a, b]$.

Proof. Since F is absolutely continuous, it is of bounded variation, so there are two increasing functions, $T, S : [a, b] \to \mathbb{R}$ with F = T - S. Moreover, the derivatives T', S' exist almost everywhere and are integrable.

Hence, F' exists almost everywhere and F' = T' - S' almost everywhere, so it is integrable as well.

Then, letting $G(x) = \int_{[a,x]} F'$. We see G is absolutely continuous, so F - G must be absolutely continuous. Then, by the FTC part 1, we see (F - G)' exists almost everywhere and (F - G)'(x) = 0 for almost every $x \in [a,b]$. Hence F - G is a constant function. So, we see $F(x) - G(x) = F(x) - \int_{[a,x]} F' = F(a)$ by letting x = a.