以下文档在markdown 本地文档中生效,在github 页面不现实渲染效果.

如何在Markdown中书写数学公式

一般一些扩展的 Markdown 语法支持采用 LaTex 语法写数学公式,而在网页中使用 Mathjax 插件来显示数学公式。

插入数学公式

在Markdown中插入数学公式的语法是 \$数学公式\$ 和 \$\$数学公式\$\$。

行内公式是可以让公式在文中与文字或其他东西混编,不独占一行。

• 示例

质能方程\$E = mc^2\$

• 显示

质能方程 $E=mc^2E=mc^2$

独立公式使公式单独占一行,不与文中其他文字等混编。

• 示例

质能方程\$\$E = mc^2\$\$ \$\${\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}\$\$

• 显示

质能方程 $E = mc^2 x^2 + 2x - 1$

普通公式

普通的加减乘除数学公式的输入方法与平常的书写一样。

示例

\$\$x = 100 * y + z - 10 / 33 + 10 % 3\$\$

• 显示

x=100*y+z-10/33+10x=100*y+z-10/33+10

上下标

使用 个来表示上标, 一来表示下标, 同时如果上下标的内容多于一个字符, 可以使用 {} 来将这些内容括起来当做一个整体。与此同时, 上下标是可以嵌套的。

• 示例

$$$x = a_{1}^n + a_{2}^n + a_{3}^n$$

• 显示

$$x = a_1^n + a_2^n + a_3^n$$

如果希望左右两边都能有上下标,可以使用\sideset 语法

• 示例

• 显示

 ${}_{2}^{1}A_{4}^{3}$

括号

() , [] 和 | 都表示它们自己,但是 {} 因为有特殊作用因此当需要显示大括号时一般使用 \lbrace \rbrace 来表示。

• 示例

$$f(x, y) = 100 * \left[(x + y) * 3] - 5\right]$$

• 显示

$$f(x,y) = 100*\{[(x+y)*3]-5\}$$

分数

分数使用\frac{分母}{分子}这样的语法,不过推荐使用\cfrac 来代替\frac ,显示公式不会太挤。

• 示例

• 显示

$$\frac{1}{3}$$
 $=$ $\frac{1}{3}$

开方

开方使用 \sqrt[次数]{被开方数} 这样的语法

• 示例

```
$$\sqrt[3]{X}$$
$$\sqrt{5 - x}$$
```

• 显示

希腊字母

代码	大写	代码	小写
А	AA	\alpha	αα
В	ВВ	\beta	ββ
\Gamma	ГГ	\gamma	YY
\Delta	ΔΔ	\delta	δδ
Е	EE	\epsilon	EE
Z	ZZ	\zeta	ζζ
Н	НН	\eta	ηη
\Theta	99	\theta	00
I	II	\iota	ιι
K	KK	\kappa	КК
\Lambda	^^	\lambda	λλ
M	MM	\mu	μμ
N	NN	\nu	νν
\Xi	ΞΞ	\xi	ξξ
0	00	\omicron	00
\Pi	ПП	\pi	ππ
Р	PP	\rho	ρρ
\Sigma	ΣΣ	\sigma	σσ
Т	ТТ	\tau	ττ
\Upsilon	YY	\upsilon	υυ
\Phi	ФФ	\phi	фф
x	XX	\chi	XX
\Psi	ΨΨ	\psi	ψψ
\Omega	ΩΩ	\omega	ωω

其他字符

关系运算符

符号	代码
±±	\pm
xx	\times
÷÷	\div
П	\mid
łł	\nmid
	\cdot
00	\circ
**	\ast
00	\bigodot
⊗⊗	\bigotimes
⊕⊕	\bigoplus
≤≤	\leq
≥≥	\geq
≠ ≠	\neq
≈≈	\approx
≡≡	\equiv
ΣΣ	\sum
ПП	\prod
ШП	\coprod

集合运算符

符号	代码
ØØ	\emptyset
€€	\in
∉∉	\notin
СС	\subset
ככ	\supset
SC	\subseteq
22	\supseteq
nn	\bigcap
UU	\bigcup
VV	\bigvee
ΛΛ	\bigwedge
# #	\biguplus
Ш	\bigsqcup

对数运算符

符号	代码
loglog	\log
lglg	\lg
InIn	\ln

三角运算符

符号	代码
11	\bot
ZZ	\angle
sinsin	\sin
coscos	\cos
tantan	\tan
cotcot	\cot
secsec	\sec
csccsc	\csc

微积分运算符

符号	代码
п	\prime
	\int
\mathfrak{II}	\iint
MM.	\iiint
NN M	Viiiint
∮∮	\oint
limlim	\lim
∞∞	\infty
$\nabla\nabla$	\nabla
dd	\mathrm{d}

大型运算符

下标、上标、积分

功能	语法	渲染
上标	a^2	a^2
下标	a_2	a_2
分组	a^{2+2}	a^{2+2}
	a_{i,j}	$a_{i,j}$
组合上下标	x_2^3	x_2^3
	{x_2}^3	$x_2^{\ 3}$
	10^{10^{8}}	10^{10^8}
Preceding and/or Additional sub & super	_nP_k	$_{n}P_{k}$
\sideset	\sideset{_1^2}{_3^4}\prod_a^b	$^{2}_{1}\Pi^{4b}_{3a}$
	{}_1^2\!\Omega_3^4	$^{2}_{1}\Omega^{4}_{3}$
堆叠	\overset{\alpha}{\omega}	αω
	\underset{\alpha}{\omega}	ωα
	<pre>\overset{\alpha}{\underset{\gamma} {\omega}}</pre>	$\frac{\alpha}{\omega}$
	\stackrel{\alpha}{\omega}	$\overset{lpha}{\omega}$
导数	x', y'', f', f''	$x^{\prime},y^{\prime\prime},f^{\prime},f^{\prime\prime}$
	<pre>x^\prime, y^{\prime\prime}</pre>	x',y''
Derivative dots	\dot{x}, \ddot{x}	\dot{x}, \ddot{x}
Underlines, overlines, vectors	\hat a \ \bar b \ \vec c	$\hat{a} \; ar{b} \; ec{c}$
向量	<pre>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</pre>	$\overrightarrow{ab} \stackrel{\longleftarrow}{cd} \widehat{def}$
上下划线	\overline{g h i} \ \underline{j k l}	$\overline{ghi} \setminus \underline{jkl}$
删除线	\not 1 \ \cancel{123}	1 123
Arrows箭头	A \xleftarrow{n+\mu-1} B \xrightarrow[T] {n\pm i-1} C	$A \overset{n+\mu-1}{\longleftarrow} B \xrightarrow{n\pm i-1}^{T} C$
Overbraces 上大括号	\overbrace{ 1+2+\cdots+100 }^{\text{sum}=5050}	$\overbrace{1+2+\cdots+100}^{\text{sum}=5050}$

功能	语法	渲染
Underbraces下大括号	<pre>\underbrace{ a+b+\cdots+z }_{26\text{ terms}}</pre>	$\underbrace{a+b+\cdots+z}_{\text{26 terms}}$
总和	\sum_{k=1}^N k^2	$\sum_{k=1}^N k^2$
Sum (force \textstyle)	\textstyle \sum_{k=1}^N k^2	$\sum_{k=1}^N k^2$
求积	\prod_{i=1}^N x_i	$\prod_{i=1}^N x_i$
(force \textstyle)	`\textstyle \prod_{i=1}^N x_i	$\prod_{i=1}^N x_i$
Coproduct	\coprod_{i=1}^N x_i	$\coprod_{i=1}^N x_i$
Coproduct (force \textstyle)	\textstyle \coprod_{i=1}^N x_i	$\coprod_{i=1}^N x_i$
极限	\lim_{n \to \infty}x_n	$\lim_{n o\infty}x_n$
限制 (force \textstyle)	`\textstyle \lim_{n \to \infty}x_n	$\lim_{n o\infty}x_n$
积分	\int\limits_{1}^{3}\frac{e^3/x}{x^2} dx	$\int\limits_{1}^{3}rac{e^{3}/x}{x^{2}}\;dx$
Integral (alternate limits style)	\int_{1}^{3}\frac{e^3/x}{x^2} dx	$\int_1^3 rac{e^3/x}{x^2} dx$
Integral (force \textstyle)	\textstyle \int\limits_{-N}^{N} e^x dx	$\int\limits_{-N}^{N}e^{x}~dx$
Integral (force \textstyle, alternate limits style)	\textstyle \int_{-N}^{N} e^x dx	$\int_{-N}^N e^x \ dx$
Double integral二重积分	\iint\limits_D dxdy	$\iint\limits_{D}dxdy$
Triple integral三重积分	\iiint\limits_E dxdydz	$\iint\limits_E dxdydz$
Quadruple integral 四倍积分	\iiiint\limits_F dxdydzdt	$\iiint\limits_F dx dy dz dt$
Line or path integral 行或路 径积分	\int_C x^3 dx + 4y^2 dy	$\int_C x^3 \ dx + 4y^2 \ dy$
Closed line or path integral 闭合线或路径积分	$\int \int C x^3 dx + 4y^2 dy$	$\oint_C x^3 \ dx + 4y^2 \ dy$
Intersections交集	\bigcap_1^n p	$\bigcap_{1}^{n} p$
Unions并集	\bigcup_1^k p	$\bigcup_1^k p$

分数、矩阵、多线

功能	语法	渲染
Fractions	\frac{1}{2}=0.5	$\frac{1}{2}=0.5$
Small ("text style") fractions	\tfrac{1}{2} = 0.5	$\frac{1}{2}=0.5$
Large ("display style") fractions	$\label{eq:dfrac} $$ \dfrac{k}{k-1} = 0.5$$	$\frac{k}{k-1}=0.5$
Mixture of large and small fractions	\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n	$rac{rac{1}{2}[1-(rac{1}{2})^n]}{1-rac{1}{2}}=s_n$
Continued fractions (note the difference in formatting)	\cfrac{2}{ c + \cfrac{2}{ d + \cfrac{1}{2} } } = a\qquad\dfrac{2} { c + \dfrac{2}{ d + \dfrac{1}{2} } } } = a	$rac{2}{c + rac{2}{d + rac{1}{2}}} = a \qquad rac{2}{c + rac{2}{d + rac{1}{2}}} = a$
Binomial coefficients	\binom{n}{k}	$\binom{n}{k}$
Small ("text style") binomial coefficients	\tbinom{n}{k}	$\binom{n}{k}$
Large ("display style") binomial coefficients	\dbinom{n}{k}	$\binom{n}{k}$
矩阵	<pre>\begin{matrix}x & y \\z & v \end{matrix}</pre>	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	<pre>\begin{vmatrix}x & y \\z & v \end{vmatrix}</pre>	$\begin{vmatrix} x & y \\ z & v \end{vmatrix}$
	<pre>\begin{Vmatrix}x & y \\z & v\end{Vmatrix}</pre>	$\left\ egin{array}{ccc} x & y \ z & v \end{array} \right\ $
	<pre>\begin{bmatrix} 0& \cdots & 0\\ \vdots & \ddots & \vdots \\0& \cdots & 0 \end{bmatrix}</pre>	$\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$
	<pre>\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}</pre>	$\left\{egin{array}{cc} x & y \ z & v \end{array} ight\}$
	<pre>\begin{pmatrix} x & y \\ z & v \end{pmatrix}</pre>	$\begin{pmatrix} x & y \\ z & v \end{pmatrix}$

功能	语法	渲染
	<pre>\bigl(\begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr)</pre>	$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$
数组	\begin{array}{ c c c } a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&1&0 \end{array}	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Cases	<pre>f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}</pre>	$f(n) = egin{cases} n/2, & ext{if n is even} \ 3n+1, & ext{if n is odd} \end{cases}$
System of equations	\begin{cases}3x + 5y + z &= 1 \\7x - 2y + 4z &= 2 \\-6x + 3y + 2z &= 3\end{cases}	$\left\{ egin{array}{lll} 3x+5y+z & = 1 \ 7x-2y+4z & = 2 \ -6x+3y+2z & = 3 \end{array} ight.$
Breaking up a long expression so it wraps when necessary	$f(x) = \sum_{n=0}^\infty a_nx^n$ $= a_0 + a_1x +a_2x^2 + \cdots$	$f(x)=\sum_{n=0}^\infty a_n x^n \ =a_0+a_1x+a_2x^2+\cdots$
Multiline equations	$\label{eq:begin} $$ \left(x \right) & = (a+b)^2 \ \\ = a^2+2ab+b^2\end{align}$	$f(x) = (a+b)^2 \ = a^2 + 2ab + b^2$
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$f(x) = (a-b)^2 \ = a^2 - 2ab + b^2$
Multiline equations with aligment specified (left, center, right)	\begin{array}{lcl}z & = & a \\f(x,y,z) & = & x + y + z \end{array}	$egin{array}{lcl} z & = & a \ f(x,y,z) & = & x+y+z \end{array}$
	\begin{array}{lcr}z & = & a \\f(x,y,z) & = & x + y + z \end{array}	$egin{array}{lcl} z & = & a \ f(x,y,z) & = & x+y+z \end{array}$

为大表达式加括号、线条等

功能	语法	渲染
不良	(\frac{1}{2})	$\left(\frac{1}{2}\right)$
良好	\left (\frac{1}{2} \right)	$\left(\frac{1}{2}\right)$

功能	语法	渲染
圆括号	<pre>\left (\frac{a}{b} \right)</pre>	$\left(\frac{a}{b}\right)$
方括号	<pre>\left [\frac{a}{b} \right] \left \lbrack \frac{a}{b} \right \rbrack</pre>	$\left[\frac{a}{b}\right]$ $\left[\frac{a}{b}\right]$
花括号 (note the backslash before the braces in the code)	<pre>\left \{ \frac{a}{b} \right \} \left \lbrace \frac{a}{b} \right \rbrace</pre>	$\left\{\frac{a}{b}\right\} \left\{\frac{a}{b}\right\}$
Angle brackets	<pre>\left \langle \frac{a}{b} \right \rangle</pre>	$\left\langle \frac{a}{b} \right\rangle$
Bars and double bars (note: "bars" provide the absolute value function)	<pre>\left \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \ </pre>	$\left \frac{a}{b}\right \left\ \frac{c}{d}\right\ $
Floor and ceiling functions:	<pre>\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil</pre>	$\left\lfloor rac{a}{b} ight floor \left\lceil rac{c}{d} ight ceil$
Slashes and backslashes	<pre>\left / \frac{a}{b} \right \backslash</pre>	$/\frac{a}{b}$
Up, down and up- down arrows	<pre>\left \uparrow \frac{a}{b} \right \downarrow \left \Uparrow \frac{a}{b} \right \Downarrow \left \updownarrow \frac{a}{b} \right \Updownarrow</pre>	$\uparrow \frac{a}{b} \downarrow \qquad \uparrow \frac{a}{b} \downarrow \qquad \uparrow \frac{a}{b} \updownarrow \uparrow$
Delimiters can be mixed, as long as \left and \right are both used	<pre>\left [0,1 \right)``\left \langle \psi \right </pre>	□ 3□
Use \left. or \right. if you don't want a delimiter to appear:	\left . \frac{A}{B} \right \} \to X	$\left\{rac{A}{B} ight\} ightarrow X$
Size of the delimiters	<pre>\big(\Big(\bigg(\dots \Bigg] \bigg] \Big] \big]</pre>	((((]]]]
大括号	<pre>\big\{ \Big\{ \bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle</pre>	$\{\{\{\{\dots\rangle\}\}\}\}$
	<pre>\big \Big \bigg \Bigg \dots \Bigg\ \big\ \Big\ \big\ </pre>	

功能	语法	渲染
	<pre>\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil</pre>	[[[]]]]
	\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \Big\Downa	$\uparrow\uparrow\uparrow\uparrow\cdots$
	\big\updownarrow \Big\updownarrow \bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow	↑ ↑↑↑↑
	<pre>\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</pre>	////\\\\

颜色

公式可以有颜色:

 $\{\color{Blue}\x^2\} + \{\color{YellowOrange}\xspace 2x\} - \{\color{OliveGreen}\xspace 1\}$

$$x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}$$

自从<u>r59550</u>版本后,公式的背景颜色也可以修改了。显示如下

$$x^2 + rac{2x - 1}{x_{1,2}} = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

背景色	源代码	效果
白色	e^{i \pi} + 1 = 0	$e^{i\pi}+1=0$
	<pre>**\definecolor{orange}{RGB} {255,165,0}\pagecolor{orange}**e^{i \pi} + 1 = 0</pre>	$** \parbox{pagecolor}{orange} **e^{i\pi} + 1 = 0$
桔黄色	e^{i \pi} + 1 = 0	$e^{i\pi}+1=0$
	<pre>**\definecolor{orange}{RGB} {255,165,0}\pagecolor{orange}**e^{i \pi} + 1 = 0</pre>	$** \parbox{pagecolor}{orange} **e^{i\pi} + 1 = 0$

貌似,背景色没有生效.......

所有的已命名颜色可以在这里找到。

Latex语法 github显示数学公式插件 参考网址:在markdown中输入数学公式