Scilab Textbook Companion for Algebra by P. Abbott And M. E. Wardle¹

Created by
Damarla Krishna
B.Tech
Computer Engineering
V.R.Siddhartha Engineering college
College Teacher
S.rajesh
Cross-Checked by
Chaitanya

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Algebra

Author: P. Abbott And M. E. Wardle

Publisher: Teach Yourself, Britain

Edition: 3

Year: 1991

ISBN: 0-340-54914-9

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	ist of Scilab Codes	
1	The meaning of algebra	5
2	Elementary Operations	7
3	Brackets and Operations with Them	14
4	Positive and Negative numbers	18
5	Expressions and Equations	19
6	Linear Equations	29
7	Formulae	34
8	Simultaneous Equations	38
9	Linear Inequalities	43
10	Graphical representation of Quantities	52
11	The law of a straight line	55
12	Using inequalities to define regions	60
13	Multiplication of algebraic expressions	65
14	Factors	70

15 Fractions	80
16 Graphs of Quadratic Functions	86
17 Quadratic Equations	95
18 Indices	104
19 Logarithms	106
21 Variation	113
22 The determination of Laws	118
23 Rational and Irrational Numbers	121
24 Arithmetical and Geometrical Series	123

List of Scilab Codes

Exa 1.1	Conversion of pounds to pence	5
Exa 1.2	Distance car traveled	5
Exa 1.3	result in algebraic form	6
Exa 2.1	simplifying	7
Exa 2.2	Minimizing the terms	7
Exa 2.3	value of algebraic expression	8
Exa 2.4	Multiplication of powers of a number	8
Exa 2.5	Division of powers	9
Exa 2.6	Algebraic division	9
Exa 2.7	Sum of terms	9
Exa 2.8	Addition of algebraic terms	10
Exa 2.9	Subtraction of terms	10
Exa 2.10	simplification of algebraic expression	11
Exa 2.11	Algebraic subtraction	11
Exa 2.12	Division of terms	11
Exa 2.13	Algebraic Multiplication	12
Exa 2.14	Division of algebraic terms	12
Exa 3.1	Multiplication of expressions within brackets	14
Exa 3.2	Addition of expressions within brackets	14
Exa 3.3	Subtraction of expressions within brackets	15
Exa 3.4	Algebraic Difference	15
Exa 3.5	Substitution of values in algebraic expression	15
Exa 3.6	Systems of brackets	16
Exa 3.7	Multiple brackets	16
Exa 3.8	Simplifying brackets	16
Exa 4.1		18
Exa 5.1	Nth term of the sequence	19
Eva 5 2 a	Using function machines	19

Exa 5.2.b	Value substitution in function machine	20
Exa 5.3.a	substitution in function machine	20
Exa 5.3.b	Square and add	21
Exa 5.4.a	Terms of the sequence	21
Exa 5.4.b	sequence	21
Exa 5.4.c	First 5 terms of the sequence	22
Exa 5.5.a	Sequence terms	22
Exa 5.5.b	First 5 terms	23
Exa 5.5.c	evaluate the expression	23
Exa 5.6.a	drawing function machine	24
Exa 5.6.b	simplifying by removing brackets	24
Exa 5.7.a	Composite rule fg	24
Exa 5.7.b	Composite rule gf	25
Exa 5.8	Inverse of the rule	25
Exa 5.9	Inverse	26
Exa 5.10	Substitute number in the rule	26
Exa 5.11	Finding x	26
Exa 5.12	Value of x	27
Exa 5.13	Finding n	27
Exa 6.1	Solving an equation	29
Exa 6.2	Finding 3 consecutive odd numbers	29
Exa 6.3	Solving the equation	30
Exa 6.4	Solve equation	31
Exa 6.5	Equating 2 expressions	31
Exa 6.6	equation solution	32
Exa 6.7	Number of men and women at dance party	32
Exa 6.8	Finding the distance	33
Exa 6.9	Finding the weekly increase	33
Exa 7.1	Area of pyramid	34
Exa 7.2	Finding L	34
Exa 7.3	Finding f and d terms	35
Exa 7.4	Transform L	35
Exa 7.5	Finding velocity from equation	35
Exa 7.6	Finding n	36
Exa 7.7	Length of pendulum	36
Exa 7.8	Solving the equation	37
Exa 7.9	Solving x	37
Exa 8.1	Solving the equations	38

Exa 8.2	Finding x and y values from equation
Exa 8.3	Solving the equation
Exa 8.4	Finding R1 and R2 40
Exa 8.5	numbers of simultaneous equations
Exa 8.6	Values of m and b 41
Exa 8.7	total books sold and books sold at 25p 41
Exa 9.1.a	Inequality of n less than 3 on 0 to 10 number line 43
Exa 9.1.b	Inequality of n greater than or equal to 6 on 0 to 10 number line
Exa 9.1.c	Inequality of n between 2 and 5 on 0 to 10 number line 44
Exa 9.2.a	Number line representing inequality of n greater than 7 44
Exa 9.2.b	Number line representing n less than or equal to 3 45
Exa 9.2.c	Representing inequality on number line 45
Exa 9.3	Solving the inequality
Exa 9.4	Solving the greater than inequality 46
Exa 9.5	Solving the greater than or equal to inequality 47
Exa 9.6	Solving the less than inequality 47
Exa 9.7	Satisfying both the inequalities 48
Exa 9.8	Finding positive values in inequalities
Exa 9.9	Value of x satisfying the given inequalities 49
Exa 9.10	Values satisfying the inequalities 50
Exa 10.1	Annual premiums charged at various ages
Exa 10.2	Resistance for given length of wires
Exa 10.3	to show the relation between time and distance 53
Exa 11.1	Connection between net profit and number of customers 55
Exa 11.2	The law represented by a straight line graph 56
Exa 11.3	Graph of the given equation
Exa 11.4	Graph of the equation
Exa 11.5	Graphs of straight lines not passing through origins 58
Exa 11.6	Graphical solution of simultaneous equations
Exa 12.1	Graph the region described by inequalities 60
Exa 12.2	Finding one point in the region described by inequalities 61
Exa 12.3	Greatest and least values in the region 62
Exa 12.4	Finding maximum profit with linear programming 62
Exa 12.5	Minimum cost of feed
Exa 13.1	Product of binomial expressions 65
Exa 13.2	Multiplication of algebraic expressions 65
Exa 13.3	Multiplication of algebraic expressions 66
	7

Exa 13.4	Multiplication of algebraic expressions 66
Exa 13.5	Product of algebraic expressions 67
Exa 13.6	Multiplication of a trinomial 67
Exa 13.7	Product of a trinomial 67
Exa 13.8	Square of a binomial expression
Exa 13.9	Square of a trinomial
Exa 13.10	Cube of a binomial
Exa 13.11	Product of sum and difference 69
Exa 14.1	factors of given expression
Exa 14.2	Factorize given expression
Exa 14.3	Finding factors
Exa 14.4	Factorize if possible
Exa 14.5	Factors of expression
Exa 14.6	Factorize the given expression
Exa 14.7	Factorize the given expression in terms of x
Exa 14.8	Factorize the given expression in terms of y
Exa 14.9	Factorize the expression
Exa 14.10	Factorize
Exa 14.11	Factorize
Exa 14.12	Factors of expression
	Factorize of expression
Exa 14.14	Factorize the given expression
Exa 14.15	Representing square of binomial expression
Exa 14.16	Checking complete square or not
Exa 14.17	Checking complete square or not
Exa 14.18	Factorize
Exa 14.19	Factorize the expression
Exa 14.20	Factorize the given expression
Exa 14.21	Factorize the expression
Exa 14.22	Difference of two squares
Exa 14.23	Area of ring between two concentric circles
Exa 15.1	Algebraic fraction
Exa 15.2	Simplifying the factors
Exa 15.3	Reduction of fractions
Exa 15.4	Division of fractions
Exa 15.5	Multiplication of fractions 81
Exa 15.6	Subtraction of fractions
Exa 15.7	Fraction Subtraction 82

Exa 15.8	Subtraction of fractions
Exa 15.9	Division of fractions
Exa 15.10	Conversion of R in terms of R1 and R2
Exa 15.11	solving simple equations involving algebraic fractions .
Exa 15.12	Solving algebraic fraction for n
Exa 16.1	Circumference of circle
Exa 16.2	Graph of given straight line
Exa 16.3	Straight line equation
Exa 16.4	Graph of a function of second degree
Exa 16.5	Graph of parabola
Exa 16.6	Curves of different parabolas
Exa 16.7	Curves of given expression
Exa 16.8	Change of axis
Exa 16.9	Graph of curves
Exa 16.10	graph of given expression
Exa 16.11	Graph of Y
Exa 16.12	Graph of parabola
Exa 16.13	Using graphs to solve quadratic inequalities
Exa 16.14	Using quadratic inequalities to describe regions
Exa 17.1	Solving quadratic equation
Exa 17.2	Solving quadratic equation
Exa 17.3	Solving equation
Exa 17.4	Solution of quadratic equation
Exa 17.5	quadratic equation Solution
Exa 17.6	quadratic equation Solution
Exa 17.7	Solving the equation
Exa 17.8	Time taken when body is projected vertically upwards
Exa 17.9	Speed and time for journey
Exa 17.10	Solving first degree equations
Exa 17.11	Solving symmetric equations
Exa 17.12	Solving the equations
Exa 17.13	Solving quadratic inequlaities
Exa 17.14	Solving the inequality
Exa 18.1	Graph of exponential function
Exa 18.2	Operations with standard forms
Exa 19.1	Finding values from the graph
Exa 19.2	Notation for logarithms
Exa 19.3	Antilogarithm

Exa 19.4	Logarithm of x
Exa 19.5	Finding the logarithm
Exa 19.6	Finding the Nth root
Exa 19.7	Finding the logarithms of given numbers 109
Exa 19.8	Finding the number whose log value is given 109
Exa 19.9	Sum of logarithms
Exa 19.10	Difference of logarithms
Exa 19.11	Multiplication of logarithm
Exa 19.12	Multiplication of logarithm
Exa 19.13	Division of logarithm
Exa 19.14	Finding the logarithm
Exa 21.1	Graph of spring extension for different weights 113
Exa 21.2	Comparison of voltmeters
Exa 21.3	Inverse variation
Exa 21.4	Time of vibration of simple pendulum
Exa 21.5	Triangle area
Exa 21.6	Volume varies inversely with peressure
Exa 21.7	Relation between R and l
Exa 21.8	Joint variation
Exa 21.9	F varies directly with strength and inversely with dis-
	tance
Exa 22.1	Plotting against power of a number
Exa 22.2	Law connecting the logarithms
Exa 23.1	Operation with surds
Exa 23.2	Rationalise
Exa 23.3	Simplify surds
Exa 24.1	Arithmetic series
Exa 24.2	Nth term in arithmetic series
Exa 24.3	Arithmetic mean
Exa 24.4	Finding common difference in AP
Exa 24.5	Finding n value in arithmetic sum
Exa 24.6	Geometric series
Exa 24.7	Seventh term of given series
Exa 24.8	Eighth term of given series
Exa 24.9	Finding the 5th term
Exa 24.10	Finding the common ratio
Exa 24.11	Sum of seven terms of the series
Exa 24.12	Sum of 7 terms

Exa 24.13	Sum of infinite terms	128
Exa 24.14	Sum to infinity of the series	129

Chapter 1

The meaning of algebra

Scilab code Exa 1.1 Conversion of pounds to pence

```
1
2 //ex1: no.of pence in x pounds added to y pence
3 clear;
4 clc;
5 close;
6 // ' to express pounds in pence, multiply by 100'
7 x=poly(0,'x');
8 x_pounds=100*x; // x_pounds=100*x pence
9 mprintf(' total no. of pence =100x+y ')
```

Scilab code Exa 1.2 Distance car traveled

Scilab code Exa 1.3 result in algebraic form

```
1
2 //ex3
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 y=poly(0,'y');
8 sum1=3*x+5;
9 divisor=4*y;
10 mprintf("result in algebraic form: \n(3*x+5)/(4*y)")
```

Chapter 2

Elementary Operations

Scilab code Exa 2.1 simplifying

```
1
2  //simplify 5a+6b+2a-3b
3  clear;
4  clc;
5  close;
6  //('collecting like terms \n');
7  x=5+2; y=6-3;
8  printf("total=%ia+%ib",x,y);
```

Scilab code Exa 2.2 Minimizing the terms

```
1
2 clear;
3 clc;
4 close;
5 // 'collecting like terms;
6 x=15+7; y=6-3;
7 printf("total=%ix+%iy-5",x,y)
```

Scilab code Exa 2.3 value of algebraic expression

```
1
2  // find value of 6x+2y-3x+4y-3 when x=3 & y=2
3  clear;
4  clc;
5  close;
6  x_coeff=6-3; y_coeff=2+4;
7  // "substitue given values"
8  x=3; y=2;
9  val=x_coeff*x + y_coeff*y -3
```

Scilab code Exa 2.4 Multiplication of powers of a number

```
1
2 clc;
3 clear;
4 close;
5 x = poly(0, 'x');
6 p1=x^4;
7 p2=p1;
8 \text{ ex1\_ans=p1*p2}
9 a=poly(0, 'a');
10 p1=2*a^7;
11 p2=a<sup>3</sup>;
12 \text{ ex2\_ans=p1*p2}
13 b=poly(0, 'b');
14 p1=5*b^2;
15 p2=3*b^5;
16 \text{ ex3\_ans=p1*p2}
17 / a^2 * ab^2
18 ex4_ans=string('a^3b^3')
```

Scilab code Exa 2.5 Division of powers

```
1
2 //84a^6/12a^2
3 clear;
4 clc;
5 close;
6 a=poly(0, 'a');
7 p1=84*a^6;
8 p2=12*a^2;
9 p=p1/p2;
10 horner(p,a)
```

Scilab code Exa 2.6 Algebraic division

```
1
2 //3x^4/6x^6
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 p1=3*x^4;
8 p2=6*x^6;
9 p=p1/p2
```

Scilab code Exa 2.7 Sum of terms

```
3 clear;
4 clc;
5 close;
6 x=poly(0, 'x');
7 p1=x/3;
8 p2=x/5;
9 p=p1+p2;
10 q=8*x/15;
11 if(p==q)
12 mprintf("val=8*x/15 \n")
13 end
```

Scilab code Exa 2.8 Addition of algebraic terms

```
1
2 //sum of 3/a + 4/b
3 clear;
4 clc;
5 close;
6 val=string("(3b + 4a)/(ab)")
```

Scilab code Exa 2.9 Subtraction of terms

```
1
2 //x/y - a/b
3 clear;
4 clc;
5 close;
6 val=string('(bx-ay)/(by)')
```

Scilab code Exa 2.10 simplification of algebraic expression

```
1
2 //2a/15 + 5b/12
3 clear;
4 clc;
5 close;
6 d=int32([15,12]);//"L.C.M of denominators"
7 k=lcm(d);
8 a_coeff=60/15*2;
9 b_coeff=60/12*5;
10 disp('ans=')
11 mprintf("(%ia+%ib)/%i",a_coeff,b_coeff,k)
```

Scilab code Exa 2.11 Algebraic subtraction

```
1
2 //x/12a^2b - y/18ab^2
3 clear;
4 clc;
5 close;
6 d=int32([18,12]);//L.C.M of denominators
7 k=lcm(d);
8 //"L.C.M of a^2*b and a*b^2 is a^2*b^2"
9 x_coeff=36/12;
10 y_coeff=36/18;
11 disp('ans=')
12 mprintf("(%ibx-%iay)/%ia^2b^2",x_coeff,y_coeff,k)
```

Scilab code Exa 2.12 Division of terms

```
1 2 //4*x^3*y/(6*x*y^3)
```

```
3 clear;
4 clc;
5 close;
6 d=int32([4,6]);
7 m=4/gcd(d);
8 n=6/gcd(d);
9 x=poly(0,'x');y=poly(0,'y');
10 p1=x^3;p2=x;p=p1/p2;
11 q1=y;q2=y^3;q=q1/q2;
12 //val=m/n*p*q
13 disp('val=')
14 mprintf("%i/%i*x^2/y^2",m,n)
```

Scilab code Exa 2.13 Algebraic Multiplication

```
1
2 //6*a*x^4*2*y^3/(14*x^2*y^2*3*a^4)
3 clear;
4 clc;
5 close;
6 x=poly(0, 'x');y=poly(0, 'y');a=poly(0, 'a');
7 num=6*2/(14*3);
8 p1=x^4;p2=x^2;p=p1/p2;
9 q1=y^3;q2=y^2;q=q1/q2;
10 r1=a;r2=a^4;r=r1/r2;
11 //val=num*p*q*r
12 disp('val=')
13 mprintf("%f*x^2*y/a^3",num)
```

Scilab code Exa 2.14 Division of algebraic terms

```
1 2 //(8x^3)/(5a^2y) *(3a)/(4x^2)
```

```
3 clear;
4 clc;
5 close;
6 x=poly(0, 'x');y=poly(0, 'y');a=poly(0, 'a');
7 p1=x^3;p2=x^2;p=p1/p2;
8 q=1/y;
9 r1=a;r2=a^2;r=r1/r2;
10 num=8*3/(5*4);
11 //val=num*p*q*r
12 disp('val=')
13 mprintf("%f*x/(a*y)",num)
```

Chapter 3

Brackets and Operations with Them

Scilab code Exa 3.1 Multiplication of expressions within brackets

```
1
2
3 //simplify a(a^2+ab+b^2)
4 clear;
5 clc;
6 close;
7 val=string('a^3+(a^2)b+a(b^2)')
```

Scilab code Exa 3.2 Addition of expressions within brackets

```
1
2
3
4 //simplify 2(4a+3b)+6(2a-b)
5 clear;
6 clc;
```

```
7 close;
8 //b gets cancelled
9 val=string('20a')
```

Scilab code Exa 3.3 Subtraction of expressions within brackets

```
1
2 //simplify 5x-(5y+2x)
3 clear;
4 clc;
5 close;
6 //on adding like terms
7 val=string('3x-5y')
```

Scilab code Exa 3.4 Algebraic Difference

```
1
2  // simplify 3(4a-b)-2(3a-2b)
3  clear;
4  clc;
5  close;
6  // by removing braces
7  a_coeff=3*4-2*3; b_coeff=-3-2*-2;
8  mprintf("total=%ia+%ib\n",a_coeff,b_coeff);
```

Scilab code Exa 3.5 Substitution of values in algebraic expression

```
\begin{array}{ll} 1 & \\ 2 & //x(2x-y)-x(x-y)-y(x+2y) \\ 3 & \texttt{clear;} \end{array}
```

```
4 clc;
5 close;
6 disp("1) after simplifying")
7 val=string('x^2-x*y-2*y^2')
8 disp("2) after substituting given values")
9 x=2;y=1;
10 val=evstr(val)
```

Scilab code Exa 3.6 Systems of brackets

```
1
2 //simplify 2(3a+5(b+c))
3 clear;
4 clc;
5 close;
6 //by removing braces,
7 val=string('6a+10b+10c')
```

Scilab code Exa 3.7 Multiple brackets

```
1
2 //simplify 3(3a-2(a-b))
3 clear;
4 clc;
5 close;
6 //by removing braces,
7 a_coeff=3*3-3*2; b_coeff=3*2;
8 mprintf("total=%ia+%ib\n",a_coeff,b_coeff);
```

Scilab code Exa 3.8 Simplifying brackets

```
1
2 //simplify 12a-2[3a-(4-2(a-3))]
3 clear;
4 clc;
5 close;
6 a=poly(0, 'a');
7 p=12*a-2*[3*a-{4-2*(a-3)}]
```

Chapter 4

Positive and Negative numbers

Scilab code Exa 4.1 Subtraction

```
1
2 clear;
3 clc;
4 close;
5 disp("subtraction")
6 x=poly(0,'x');
7 b=poly(0,'b');
8 val1=5*x-(-3*x)
9 val2=-2*b-(-4*b)
```

Chapter 5

Expressions and Equations

Scilab code Exa 5.1 Nth term of the sequence

```
1
2 clc;
3 clear;
4 close;
5 //46ex
6 //nth term in the sequence 2,4,6,8,10...is 2n. 5th
        term is?
7 term5=2*5
8 //nth term in the sequence 1,4,9,16,25 is n^2. 5th
        term is?
9 ex2_term5=5^2
```

Scilab code Exa 5.2.a Using function machines

```
1
2 // 5,8,11,14,17.....
3 clear;
4 clc;
```

Scilab code Exa 5.2.b Value substitution in function machine

```
1
2 // 9,12,15,18,21.....
3 clear;
4 clc;
5 close;
6 a=9;//a is starting number of the series
7 n=5;//given n=5
8 d=3;//difference between the numbers
9 td=a+(n-1)*d;//formula to be used for arithmetic series
10 mprintf("ans= %i",td)
```

Scilab code Exa 5.3.a substitution in function machine

```
1
2 // 5,12,19,26,33....
3 clear;
4 clc;
5 close;
6 a=5;//a is starting number of the series
7 n=5;//given n=5
8 d=7;//difference between the numbers
```

Scilab code Exa 5.3.b Square and add

```
1
2  // 3,6,11,18,27....
3  clear;
4  clc;
5  close;
6  n=5;
7  td=n^2+2;
8  mprintf("result= %i",td)
```

Scilab code Exa 5.4.a Terms of the sequence

Scilab code Exa 5.4.b sequence

Scilab code Exa 5.4.c First 5 terms of the sequence

Scilab code Exa 5.5.a Sequence terms

```
7 for n=1:5
8 disp(4*(5*n-2))
9 end
```

Scilab code Exa 5.5.b First 5 terms

Scilab code Exa 5.5.c evaluate the expression

Scilab code Exa 5.6.a drawing function machine

```
1
2 //evaluate 2*(3*n^2+5)-4
3 clear;
4 clc;
5 close;
6 n=7; //given
7 disp('ans=')
8 disp(2*(3*n^2+5)-4)
```

Scilab code Exa 5.6.b simplifying by removing brackets

```
1
2 //evaluate 2*(3*n^2+5)-4 by removing brackets
3 clear;
4 clc;
5 close;
6 n=poly(0, 'n');
7 p1=2*(3*n^2+5)-4;//removing braces
8 n=7;//given
9 val=2*(3*n^2+5)-4
```

Scilab code Exa 5.7.a Composite rule fg

```
1
2  //f(x):x->3x;g(x):x->x-2;fg(5)
3  clear;
4  clc;
5  close;
6  x=poly(0,'x');
7  f=3*x;
8  g=x-2;
```

```
9 // fg= f(g(x))=f(x-2)=3*(x-2)
10 x=5;
11 fg=3*(x-2)
```

Scilab code Exa 5.7.b Composite rule gf

```
1
2 //f(x):x->x+3;g(x):x->x^2;gf(5)
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 f=x+3;
8 g=x^2;
9 // gf= g(f(x))=g(x+3)=(x+3)^2
10 x=5;
11 gf=(x+3)^2
```

Scilab code Exa 5.8 Inverse of the rule

```
1
2 //inverse of x->3x+4
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 p1=3*x+4;
8 disp(p1,"x->")
9 mprintf("inverse of the rule is:\n (x-4)/3")
```

Scilab code Exa 5.9 Inverse

```
1
2 //inverse of x->3(x+4)-2
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 mprintf("1)inverse of the rule is:\n (x+2)/3-4 \n ");
8 x=6;//given
9 x=3*(x+4)-2;
10 mprintf("2)");
11 inv_val=(x+2)/3-4
```

Scilab code Exa 5.10 Substitute number in the rule

```
1
2 clear;
3 clc;
4 close;
5 for x=1:20
6   if(3*x+4==19)
7    mprintf("the number which gives 19 as result is %i",x)
8   end
9   end
```

Scilab code Exa 5.11 Finding x

```
1
2 clear;
3 clc;
```

```
4 close;
5 for x=1:10
6   if(5*x-7==8)
7   mprintf("the value of x is %i\n",x)
8   break
9   end
10 end
```

Scilab code Exa 5.12 Value of x

```
1
2 clear;
3 clc;
4 close;
5 for x=1:20
6   if(5*(x-3)==20)
7    mprintf("the value of x is %i \n",x)
8   break
9   end
10 end
```

Scilab code Exa 5.13 Finding n

```
1
2 clear;
3 clc;
4 close;
5 for n=1:60
6   if(3*(2*n-5)+4==55)
7   mprintf("the value of n is %i \n",n)
8   break
9   end
10 end
```

Linear Equations

Scilab code Exa 6.1 Solving an equation

```
2 //8 times a number is decreased by 5 the result is
      123
3 clear;
4 clc;
5 close;
6 x = poly(0, 'x');
7 //let x be the number
8 \text{ expr} = 8 * x - 5;
9 \text{ for } x=1:100
     if((8*x-5)==123)
10
        mprintf("the number is %i",x)
11
12
     end
13
     end
```

Scilab code Exa 6.2 Finding 3 consecutive odd numbers

1

```
2 //sum of 3 consecutive odd no.'s is 81
3 clear;
4 clc;
5 close;
6 //let the 3 consecutive odd numbers be 2n+1,2n+3,2n
7 n=poly(0, 'n');
8 \exp r = (2*n+1) + (2*n+3) + (2*n+5);
9 for n=1:100
     if((2*n+1)+(2*n+3)+(2*n+5)==81)
        // mprintf("n=\%i \ \ n",n);
11
12
        break
13
     end
14 end
15 \quad n1 = 2 * n + 1;
16 \quad n2 = 2 * n + 3;
17 \quad n3 = 2 * n + 5;
18 mprintf("\n the numbers are \%i, \%i, \%i\n",n1,n2,n3)
```

Scilab code Exa 6.3 Solving the equation

```
1
2 clear;
3 clc;
4 close;
5 x=poly(0,'x');
6 p1=(6*x-5);
7 p2=(2*x+9);
8 p3=p1-p2;
9 x=roots(p3)
10 left=6*x-5; //check by substituion
11 right=2*x+9;
12 if(left==right)
13 mprintf("satisfies the equation \n")
14 end
```

Scilab code Exa 6.4 Solve equation

```
1
2 clear;
3 clc;
4 close;
5 x = poly(0, 'x');
6 p1=10*(x-4);
7 p2=4*(2*x-1)+5;
8 p3=p1-p2;
9 x=roots(p3);
10 left=10*(x-4); //substitution
11 right = 4*(2*x-1)+5;
12 if(left==right)
     format(5)
13
14 x
15 end
```

Scilab code Exa 6.5 Equating 2 expressions

```
1
2 clear;
3 clc;
4 close;
5 x=poly(0,'x');
6 p1=3*x/5+x/2;
7 p2=5*x/4-3;
8 p3=p1-p2;
9 x=roots(p3) //by the law of signs
```

Scilab code Exa 6.6 equation solution

```
1
2 clear;
3 clc;
4 close;
5 x=poly(0, 'x');
6 p1=4*x-(x-2)/3;
7 p2=5+(2*x+1)/4;
8 p3=p1-p2;
9 x=roots(p3)
10 left=4*x-(x-2)/3;//substitution
11 right=5+(2*x+1)/4;
12 if(left==right)
13 mprintf("satisfies the equation \n")
14 end
```

Scilab code Exa 6.7 Number of men and women at dance party

```
1 clear;
      2 clc;
     3 close;
     4 x = poly(0, 'x');
      \frac{5}{100} = \frac{1}{100} = \frac{1}
                                                 women as per given data
      6 money_paid_by_men=20*x;
      7 money_paid_by_women=15*x + 10;
     8 total=1620
     9 \text{ expr} = 8 * x - 5;
10 for x=1:100
                                           if((20*x + 15*(x + 10)) == 1620)
11
                                                              mprintf("the number of men is \%i \n",x)
12
                                                             mprintf("the number of women is %i",x+10)
13
14
                                            end
15 end
```

Scilab code Exa 6.8 Finding the distance

```
1 clear;
2 clc;
3 close;
4 x = poly(0, 'x');
5 //let x be distance in kilometers
6 time_1st_journey=x/64
7 time_2nd_journey=x/80
8 total_time=9;
9 for x=1:500
     if((x/64 + x/80) == 9)
10
       mprintf("the value of x is \%iKm \n",x)
11
12
      end
13 end
```

Scilab code Exa 6.9 Finding the weekly increase

```
1 clear;
2 clc;
3 close;
4 x=poly(0, 'x');
5 //let x be amount of increase in pence
6 mans_new_wage=480+x;
7 womens_new_wage=370+x;
8 for x=1:500
9 if((480+x) == (6*(370+x)/5))//by given data
10 mprintf("the weekly increase is %ip \n",x)
11 end
12 end
```

Formulae

Scilab code Exa 7.1 Area of pyramid

```
1
2 //total area(A) of the surface of a square pyramid
3 clear;
4 clc;
5 close;
6 //AB=a , OQ=d
7 //OQ is perpendicular to AB. Represents height of trianlge AOB
8 tot_area=string('base_area + triangles_area')
9 //base_area=a^2.triangles_area=4*(a*d)/2
10 A=string('a(a+2d)')
```

Scilab code Exa 7.2 Finding L

```
1
2 //L=W(T-t)/w - t
3 clear;
4 clc;
```

```
5  close;
6  W=380;T=28.5;t=8.5;w=115;//given
7  L=string('(W*(T-t)/w)-t');
8  disp("substituting given values")
9  L=evstr(L)
```

Scilab code Exa 7.3 Finding f and d terms

```
1
2  //T=%pi*f*d^3/16
3  clear;
4  clc;
5  close;
6  disp(" (1) f in terms of other quantities is")
7  f=string('16*T/(%pi*d^3)')
8  disp("(2) d in terms of other quantities is ")
9  d=string('(16*T/(%pi*f))^(1/3)')
```

Scilab code Exa 7.4 Transform L

```
1
2 //transform L=l+(8*d^2)/(3*1)
3 clear;
4 clc;
5 close;
6 disp(" d in terms of other quantities is")
7 //3*1*L=3*1^2+8*d^2
8 d=string('sqrt((3*1*L-3*L^2)/8)')
```

Scilab code Exa 7.5 Finding velocity from equation

Scilab code Exa 7.6 Finding n

```
1
2  //a-b=x*(c-n*d)
3  clear;
4  clc;
5  close;
6  disp('n in terms of other quantities is')
7  //n*d=c-(a-b)/x
8  n=string('{c-(a-b)/x}/d')
```

Scilab code Exa 7.7 Length of pendulum

Scilab code Exa 7.8 Solving the equation

```
1
2  //solve 5*x-a=2*x-b
3  clear;
4  clc;
5  close;
6  //collecting like terms to one side
7  x=poly(0,'x');
8  p=5*x-2*x;//Also, p=a-b
9  x=string('(a-b)/3')
```

Scilab code Exa 7.9 Solving x

```
1
2 //solve for x, a*(x-2)=5*x-(a+b)
3 clear;
4 clc;
5 close;
6 //removing brackets. "a*x-5*x=a-b"
7 x=string('(a-b)/(a-5)')
```

Simultaneous Equations

Scilab code Exa 8.1 Solving the equations

```
2 / 2x+y=21, 3x+4y=44
3 clear;
4 clc;
5 close;
6 x = poly(0, 'x');
7 y=21-2*x; //equation 1
8 y=(44-3*x)/4; //equation 2
9 \text{ for } x=1:20
10 if (21-2*x==(44-3*x)/4)
       mprintf(" the solution is :\n x=\%i \n ",x)
11
12
       break
     end
13
14 end
15 //" substitute the x value in any one of the above
      equations"
16 y=21-2*x; mprintf(" y=\%i \n",y)
```

Scilab code Exa 8.2 Finding x and y values from equation

Scilab code Exa 8.3 Solving the equation

```
1
2 / 2x + 3y = 42, 5x - y = 20
3 clear;
4 clc;
5 close;
6 x = poly(0, 'x');
7 y=(42-2*x)/3; //equation 1
                   //equation 2
8 y=5*x-20;
9 for x=1:20
     if((42-2*x)/3==5*x-20)
10
       mprintf("x=\%i",x)
11
12
       break
13
     end
14 end
15 //substitute the x value in any one of the above
      equations
16 y=5*x-20; mprintf("y=\%i",y)
17 printf("\n the solution is : \n");
18 [x y]
```

Scilab code Exa 8.4 Finding R1 and R2

```
1
2 //0.5R1+1.2R2=1.486,4.5R1-2R2=4.67
3 clear;
4 clc;
5 close;
6 R2=poly(0, 'R2');
7 R1=(1.486-1.2*R2)/0.5;
8 R=(4.67+2*R2)/4.5;
9 P=R1-R;
10 printf("THE SOLUTION IS: \n");
11 R2=roots(P)
12 //SUBSTITUTE IN THE EQUATION
13 R1=(1.486-1.2*R2)/0.5
```

Scilab code Exa 8.5 numbers of simultaneous equations

```
12 for x=1:100
13    if ((53-x)/3==(4*x-2)/2)
14        mprintf("x=%i",x)
15        break
16    end
17 end
18 //"substitute the x value in any one of the above equations"
19 y=(53-x)/3; mprintf("y=%i",y)
```

Scilab code Exa 8.6 Values of m and b

```
1
2 //y = mx + b
\frac{3}{\sqrt{given}} = \frac{x=4}{y=6} and x=2.4, y=4.5
4 clear;
5 clc;
6 close;
7 m=poly(0, 'm');
8 b=6-4*m; //(equation 1) when x=4,y=6
9 B=4.5-2.4*m; // (equation 2) when x=2.4, y=4.5
10 P=b-B;
11 disp("the solution is :");
12 \text{ m=roots}(P)
13 //substitute this value
14 b = 6 - 4 * m
15 //" substitute these values in the equation y=mx+b"
16 x = poly(0, 'x');
17 y = m * x + b
```

Scilab code Exa 8.7 total books sold and books sold at 25p

1

```
2 / ex3
3 clear;
4 clc;
5 close;
6 //let x=number originally sold at 25p
7 //let y=number originally sold at 20p
8 //amounts received for these were 25x pence and 20y
      pence & their total value was 1100 \,\mathrm{pence} = >25 \,\mathrm{x} + 20 \,\mathrm{y}
      =1100
9 x = poly(0, 'x');
10 y = (1100 - 25 * x) / 20;
11 //when the no.s are reversed he receives 20x and 25
      ypence ans their total value is 1150 pence =>20x
      +25y=1150
12 y = (1150 - 20 * x) / 25;
13 for x=1:100
     if((1100-25*x)/20==(1150-20*x)/25)
14
15
            break
16
     end
17 \text{ end}
18 //"substitute the x value in any one of the above
      equations"
19 y = (1100 - 25 * x) / 20;
20 mprintf("the total no. of books sold was %i \n ",x+y
21 mprintf("the number originally sold at 25p was %i",x
      );
```

Linear Inequalities

Scilab code Exa 9.1.a Inequality of n less than 3 on 0 to 10 number line

Scilab code Exa 9.1.b Inequality of n greater than or equal to 6 on 0 to 10 number line

```
\begin{array}{ccc}
1 \\
2 & //n > = 6
\end{array}
```

Scilab code Exa 9.1.c Inequality of n between 2 and 5 on 0 to 10 number line

Scilab code Exa 9.2.a Number line representing inequality of n greater than 7

Scilab code Exa 9.2.b Number line representing n less than or equal to 3

Scilab code Exa 9.2.c Representing inequality on number line

Scilab code Exa 9.3 Solving the inequality

```
1
2 //3x-5<2x+8
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 p1=(3*x-5);
8 p2=(2*x+8);
9 //p1-p2<0
10 disp("<0",p1-p2)
11 mprintf("i.e., x<13 is the solution for those values of x which are < 13")</pre>
```

Scilab code Exa 9.4 Solving the greater than inequality

1

```
2 //3x+5>5x-9
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 p1=(3*x+5);
8 p2=(5*x-9);
9 //p1-p2>0
10 disp(">0",(p1-p2)/2)
11 mprintf("i.e., x<7 is the solution for those values of x which are < 7")</pre>
```

Scilab code Exa 9.5 Solving the greater than or equal to inequality

```
1
2 //2(3x+5)+1>=(4x-9)
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 p1=2*(3*x+5)+1;
8 p2=(4*x-9);
9 //p1-p2>=0
10 disp(">=0",(p1-p2)/2)
11 mprintf("\n i.e., x>=-10 is the solution for those values of x which are >= 10")
```

Scilab code Exa 9.6 Solving the less than inequality

```
1
2 //8/x<2
3 clear;
4 clc;</pre>
```

```
5 close;
6 // x is any no. greater than 4 and x can also be a
    negative no.
7 mprintf("8<2*x or x>4 is the solution if x is
    positive no.")
8
9 disp("if x were neagative, then the inequality would
    become 8>2*x ")
```

Scilab code Exa 9.7 Satisfying both the inequalities

```
2 //find x which satisfies 3*x+2>8 \& 5*x-3<27
3 clear;
4 clc;
5 close;
6 x = poly(0, 'x');
7 \text{ for } x=1:100
     if(3*x+2>8)
          mprintf("x>\%i\n\nand",x)//solving the first we
              get
10
           break
11
     end
12 end
13 x = 1;
14 while (5*x-3<27) //on solving the second we get
15
     x = x + 1;
16
     continue
17 \text{ end}
18 mprintf("x < \%i \ n",x);
19 x = string(0:10);
20 n=string('<'+strcat(x,'---')+'>');//0 to 10 no. line
21 n1=strsubst(n, '---4---5---', '-----');
22 mprintf ('the solid line in the number line n %s
      represents 3 < x < 6 ", n1)
```

Scilab code Exa 9.8 Finding positive values in inequalities

```
1
\frac{2}{\sqrt{\text{find x which satisfies }}} 3*(x+5)>8*x \& 5*(x-3)<27-x
3 clear;
4 clc;
5 close;
6 x = poly(0, 'x');
7 x = 1;
8 \text{ while}(3*(x+5)>8*x)
     x = x + 1;
10
     continue
11 end
12 mprintf("\n x < \%i \n \nand",x)
13 while (5*(x-3)+x<27) //on solving the second we get
14
     x = x + 1;
15
      continue
16 \text{ end}
17 mprintf("x < \%i \ n",x)
18 x = string(0:10);
19 n = string('<' + strcat(x, '---') + '>'); //-2 to 8 no.
20 n1=strsubst(n, '0---1---2---', '-----');
21 mprintf('the SOLID LINE specifies final region 0<=x
      <3 \ n \%s', n1)
```

Scilab code Exa 9.9 Value of x satisfying the given inequalities

```
1 2 //2<x<7 & 4<x<9 3 clear;
```

Scilab code Exa 9.10 Values satisfying the inequalities

```
1
2 //-2 < x < = 3 \& -1 < x < = 5
3 clear;
4 clc;
5 close;
6 x = string(-2:6);
         n = string('<' + strcat(x, '~~~') + '>'); //0 to 10
            no. line
8
         n1 = strsubst(n, \frac{1}{2} - 1^{2} - 1^{2} - 1^{2} - 2^{2} - 3^{2}),
         n2= strsubst(n, '~~0~~1~~2~~3~~4~~5', , '
10
             11
12
       n3= strsubst(n, ^{,\sim\sim}0^{\sim\sim}1^{\sim\sim}2^{\sim\sim}3,,
13
           ----<sup>'</sup>);
14
15
```

mprintf ('the inequality which satisfies both inequalities $\n-2< x<=3 \t \% s \n-1< x<=5 \t \% s \n is \n-1< x<=3 \t \% s', n1, n2, n3)$

Graphical representation of Quantities

Scilab code Exa 10.1 Annual premiums charged at various ages

```
1
2 clear;
3 clc;
4 close;
5 clf;
6 \text{ AGE} = [25]
            30 35
                    40 45 50];
7 premium_in_$=[2.33 2.59 2.91 3.31 3.81 4.53];
8 plot(AGE, premium_in_$,3);
9 xtitle ("Annual Premiums charged by an insurance
     company","AGE(in years)","premium_in_$");
10 xgrid;
11 AGE=43; premium_in_$=3.6; plot(AGE, premium_in_$, 'r.
      diam');
12 AGE=36; premium_in_$=3; plot(AGE, premium_in_$, 'r.diam'
13 plot(25,2.0, 'o')
```

Scilab code Exa 10.2 Resistance for given length of wires

```
1
2 clear;
3 clc;
4 close;
5 clf;
6 length1=[100 120 170 220];
7 resistance=[2.5 3 4.25 5.5];
8 plot(length1, resistance, 'b--.diam')
9 xtitle ("Relation between Resistances and Length","
      length_in_meters", "resistance_in_ohms");
10 xgrid;
11 length1=200;
12 resistance=5;
13 plot('length', 'resistance', 'b.diam')
14 plot (250,6.21, 'b.diam') // this point is called
      extrapolation
```

Scilab code Exa 10.3 to show the relation between time and distance

```
1
2 clear;
3 clc;
4 close;
5 clf;
6 time=[0 1 2 3 4 5];
7 distance=[0 2 8 18 32 50];
8 plot(time, distance, "o-")
9 xtitle("Relation between Time and Distance", "time t in sec", "distance in meters");
10 xgrid;
11 //ex1: distance passed over in 3.6s
12 mprintf("EX1: \nfrom curve, it is 26m. the actual distance from formula is 25.92m")
```

```
13 // ex2: time to travel 42m
```

14 mprintf("EX2: \nline from 42m on distance axis that touches the curve at $4.6\,\mathrm{s}$.the mechanics formula gives $4.58\,\mathrm{s}$ ")

The law of a straight line

Scilab code Exa 11.1 Connection between net profit and number of customers

```
1
2 clear;
3 clc;
4 close;
5 //x-no. of customers. b-the expenses
7 cust=[230 240 270 300 350 380];
8 profit=[0 0.5 2.0 3.5 6.0 7.5];
9 plot(cust, profit, 6);
10 plot(230,0,'r->.diam');
11 //profit(y) depends on varying no. of customers(x).
12 xtitle ("the straight line graph", "no. of customers",
     "profit");
13 xgrid();
14 // ex(1)
15 mprintf("(1) From graph, if x=230, then y=0");
16 // \exp(2)
17 mprintf("(2)) if no. of customers is <230 then there
      will be a loss")
```

Scilab code Exa 11.2 The law represented by a straight line graph

```
1
2 clear;
3 \text{ clc};
4 close;
5 //let a-the avg. amount paid. x-no. of customers. b
      -the expenses
6 //net profit is y=ax-b
7 x=320; y=4.50;
8 x = 250; y = 1.00;
9 //substitute in above equation
10 //4.5 = 320 * a - b - equ.1; 1 = 250 * a - b - equ.2. subbstract equ.2
       from 1.
11 a=0.05; //we get
12 b=250*a-1;
13 x = poly(0, 'x');
14 y=a*x-b; //equation to straight line
15 //if there is no profit i.e., y=0
16 for x=1:500
17 if(0.05*x-11.5==0)
18 mprintf("x=\%i \ n",x)
19 break
20 end
21 end
22 clf;
23 cust=[230 240 270 300 350 380];
24 profit=[0 0.5 2.0 3.5 6.0 7.5];
25 plot(cust, profit, 6);
26 \text{ plot}(230,0,r->.diam');
27 //profit(y) depends on varying no. of customers(x).
      the no.'s 0.05 & 11.5 remained constant
28 xtitle ("the straight line graph", "no. of customers",
      "profit");
```

```
29 legend("y=0.05*x-11.5"); 30 xgrid();
```

Scilab code Exa 11.3 Graph of the given equation

```
1
2 / 2 \cdot y - 4 \cdot x = 3
3
4 clear;
5 clc;
6 close;
7 x=poly(0,'x');
8 x = [-2 -1 0 1 1.8 2];
9 y=(3+4*x)/2;
10 x_vs_y = [x; y];
11 plot(x,y,3)
12 plot (0, 1.5, 'r.->') //when x=0. 1.5 is intercept on y-
13 plot (-0.75, 0, r.->)/\text{when } y=0. -0.75 \text{ is intercept}
      on x-axis
14 xtitle("graph of equation 2y-4x-3", "x axis", "y axis"
15 xgrid;
```

Scilab code Exa 11.4 Graph of the equation

```
1
2 //2*x+y=1
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 x=[-2 -1 0 1 2 3];
```

```
8 y=1-2*x;
9 x_vs_y=[x;y];
10 plot(x,y,3)
11 plot(0,1,'r.->')// intercept on y-axis
12 plot(0.5,0,'r.->')// intercept on x-axis
13 xtitle("graph of the equation 2x+y=1","x axis","y axis");
14 xgrid;
```

Scilab code Exa 11.5 Graphs of straight lines not passing through origins

```
1
2 //y = mx + b
3 clear;
4 clc;
5 close;
6 clf;
7 x=linspace(0,3,4);
8 y=x;
9 plot2d(x,y,1);
10 y = x + 2;
11 plot2d(x,y,4);
12 y = x - 3;
13 \text{ plot2d}(x,y,5);
14 xtitle ("Equations of the form y=mx+b", "x axis", "y
      axis");
15 legend("y=x","y=x+2","y=x-3",2);
16 //m is constant, b is fixed distance. (x,y) vary for
       different points on the line
17 xgrid()
18 // ex(1)
19 mprintf("ex(1) In y=4x-7, gradient is 4. Intercept on
       y-axis is -7")
20 / \exp(2)
21 mprintf("ex(2) In y=0.05x-11.5, gradient is 0.05 and
```

Scilab code Exa 11.6 Graphical solution of simultaneous equations

```
2 / x+2*y=5, \quad 3*x-2*y=7
3 clear;
4 clc;
5 close;
6 x = poly(0, 'x');
7 // \text{graph of } x+2*y=5
8 x = [0 -1 2 5];
9 y=(5-x)/2;
10 x_vs_y=[x;y];
11 plot(x,y,'b--.x')
12 / \text{graph of } 3*x-2*y=7
13 x = [0 -1 7/8 4];
14 y = (3 * x - 7) / 2;
15 plot(x,y,'b--.o')
16 \text{ for } x=1:100
17
     if((5-x)/2==(3*x-7)/2)
18
        break
19
     end
20 \text{ end}
21 mprintf("the solution of the equation is")
22 y = (5-x)/2;
23 mprintf("x=\%i \ ny=\%i",x,y)
24 \text{ plot}(x, y, 'r.->')
25 xtitle("graph of simultaneous equations", "x axis", "y
        axis");
26 xgrid;
27 legend("x+2*y=5","3*x-2*y=7",4);
```

Using inequalities to define regions

Scilab code Exa 12.1 Graph the region described by inequalities

```
1
2 //Given : inequalities y>x and y<2*x-3
3 clc;
4 clear;
5 clf();
6 x=linspace(0,8,8);
7 y=2*x-3; //" points in the region y<2*x-3 lie below
     the line y=2*x-3"
8 plot(x,y,"o-");
9 y=x;//"points in the region y>x lie above the line y
     =x"
10 plot(x,y,"+-");
11 x=5; y=6; plot(x,y, r.diam')/point that lies in the
12 xtitle ("region described by inequalities", "x axis", "
     y axis");
13 legend("2*x-3","x");
14 xgrid;
```

Scilab code Exa 12.2 Finding one point in the region described by inequalities

```
2 //Given : Inequalities y>x-2, y<2*x+1 and x+y<6
3 clc;
4 clear;
5 clf();
6 x=linspace(0,9,10);
7 y = x - 2;
8 plot2d(x,y,3); //" points in the region y>x-2 lie
      above the line y=x-2"
9 y = 2 * x + 1;
10 plot2d(x,y,5); //" points in the region y<2*x+1 lie
      below the line y=2*x+1"
11 y = 6 - x;
12 plot2d(x,y,2); //" points in the region x+y<6 lie
      below the line x+y=6"
13 xtitle("region dscribed by inequalities", "x axis", "y
       axis");
14 legend("x-2","2*x+1","6-x",2);
15 xgrid;
16 //(3,2) is one point from the graph enclosed by
      these inequalities
17 x=3; y=2; plot(x,y,'b.diam')
18 if ((y>x-2)&(y<2*x+1)&(x+y<6)) // this condition does
       not satisfies the point that lies out of the
      region ex:(7,7)
    mprintf('\n point that lies in the region is (%i, %i
19
       ) \ n', x, y)
20 end
```

Scilab code Exa 12.3 Greatest and least values in the region

```
1
2 //Given : Inequalities x+3*y \le 24, 3*x+y \le 21.
3 clc;
4 clear;
5 clf();
6 x=linspace(0,9,10);
7 y=21-3*x;
8 plot2d(x,y,3); //"points in the region y<21-3*x lie
      below the line y=21-3*x"
9 y=(24-x)/3;
10 plot2d(x,y,5); //" points in the region y \le (24-x)/3
      lie below or on the line y=(24-x)/3"
11 xtitle ("greatest values in a region", "x axis", "y
      axis");
12 xgrid;
13 printf (" \n from graph, (3,7), (4,6), (5,5) are points
       where x+y is largest n")
14 y=10-x; //3+7=10,4+6=10,5+5=10 so, all the points lie
       on the line x+y=10
15 x=3;y=7;plot(x,y,'b.diam')
16 x=4; y=6; plot(x,y, 'b.diam')
17 x=5; y=5; plot(x,y,'b.diam')
18 //" points on the line 3*x+y<21 are not included
      since we want 3*x+y<21 and not 3*x+y<=21"
19 legend("3*x+y<21", "x+3*y<=24", "10-x");
```

Scilab code Exa 12.4 Finding maximum profit with linear programming

```
4 clear;
5 clf();
6 //let a is number of model A and b for model B to be
      made
7 //constraints on m & l as pair of inequalities 4a+3b
      \leq 240.5a+9b \leq 450.maximize the profit 5a+6b
8 a=linspace(1,100,10);
9 b=(240-4*a)/3;
10 plot2d(a,b,3);
11 b=(450-5*a)/9;
12 plot2d(a,b,5);
13 //find the point in this region where 5a+6b is
      greatest with the parallel lines concept
14 //consider the parallel lines 5a+6b=100 , 5a+6b=150
      , 5a+6b=300 ... the 2nd two are shown on graph \n
15 b=(150-6*a)/5;
16 plot(a,b, b--x');
17 b=(300-6*a)/5;
18 plot(a,b, 'b--.o');
19 // as profit gets larger, profit line moves up to
      the right
20 a=39; b=28;
21 \text{ m=} 5*a+6*b;
22 mprintf('\n the maximimum profit %i occurs at (%i, %i
      n',m,a,b;
23 xtitle("Model A vs. Model B ", "Model A", "Model B");
25 legend ("4a+3b <= 240", "5a+9b <= 450", "5a+6b=150", "5a+6b
     =300");
```

Scilab code Exa 12.5 Minimum cost of feed

```
1 2 //Given : vitamin A-8units ,B-6units , C- 3units and
```

```
the cost of making composite feed is 120*x+90*y (
      costs of each feed per kg.are 120p &90p)
3 clc;
4 clear;
5 clf();
6 v=[1 3 1;4 1 1];//rows-feed 1, feed 2
                                           and columns-
      vitamins A,B,C. vitamin content of each feed per
      kilogram
7 / A: x+4*y>=8; B: 3*x+y>=6; C: x+y>=3. min_cost = 120*
     x+90*y
8 x=linspace(0,10,10);
9 y=6-3*x; plot2d(x,y,3);
10 y=(8-x)/4; plot2d(x,y,6);
11 y=3-x; plot2d(x,y,5);
12 //the 2 cost lines for 360p and 720p are shown in
      the graph as dotted lines
13 // assume 2 parallel lines 120*x+90*y=360 , 120*x
     +90*y=720
14 y=(360-120*x)/90; plot(x,y,'b--.x');
15 y=(720-120*x)/90; plot(x,y,'b--.o');
16 //lines move down to left as cost decreases.min cost
       occurs at last line that contains atleast 1
      point in the required region
17 x=1; y=3;
18 \min_{\text{cost}} = 120 * x + 90 * y;
19 mprintf("\n minimum cost %i occurs at (%i, %i)",
     min_cost,x,y);
20 xtitle("Feed1 vs. Feed 2", "Feed 1", "Feed 2");
21 legend("3*x+y>=6", "x+4*y>=8", "x+y>=3", "120*x+90*y
      =360", "120*x+90*y=720");
22 xgrid;
```

Chapter 13

Multiplication of algebraic expressions

Scilab code Exa 13.1 Product of binomial expressions

```
1
2 clc;
3 clear;
4 close;
5 x=poly(0, 'x');
6 p=(x+6)*(x+5)
7 a=poly(0, 'a');
8 p1=(a+9)*(a+4)
9 p2=(x+2)*(x-7)
10 p3=(a-8)*(a-3)
11 p4=(x-8)*(x-2)
12 p5=(x-8)*(x+2)
13 p6=(x+8)*(x-2)
```

Scilab code Exa 13.2 Multiplication of algebraic expressions

```
1
2 clear;
3 clc;
4 close;
5 x=poly(0,'x');
6 p1=(2*x+5);
7 p2=(3*x+4);
8 ans=p1*p2
```

Scilab code Exa 13.3 Multiplication of algebraic expressions

```
1
2 clear;
3 clc;
4 close;
5 x=poly(0,'x');
6 p1=(3*x+7);
7 p2=(2*x+1);
8 p3=p1*p2;
9 disp(p3,"product=")
```

Scilab code Exa 13.4 Multiplication of algebraic expressions

```
1
2 clear;
3 clc;
4 close;
5 x=poly(0,'x');
6 p1=(7*x-5);
7 p2=(2*x+3);
8 p3=p1*p2;
9 disp(p3,"product=")
```

Scilab code Exa 13.5 Product of algebraic expressions

```
1
2 clear;
3 clc;
4 close;
5 x=poly(0, 'x');
6 p1=(3*x-2);
7 p2=(4*x-7);
8 p3=p1*p2;
9 disp(p3, "product=")
```

Scilab code Exa 13.6 Multiplication of a trinomial

```
1
2 clear;
3 clc;
4 close;
5 x=poly(0, 'x');
6 p1=(x+2);
7 p2=(x^2-x+1);
8 p3=p1*p2;//on collecting like terms
9 disp(p3, "product=")
```

Scilab code Exa 13.7 Product of a trinomial

```
4 clc;
5 close;
6 //on collecting like terms
7 val=string('a^3+b^3')
```

Scilab code Exa 13.8 Square of a binomial expression

```
1
2 clc;
3 close;
4 clear;
5 x=poly(0,'x');
6 p=(x+1)^2
7 p1=(x-1)^2
8 a=poly(0,'a');
9 p2=(a+9)^2
10 p3=string('(1-5xy)^2=1-10xy+25x^2y^2')
11 p4=string('(2x+7y)^2=4x^2 +28xy +49y^2')
12 p5=string('(3a-10b)^2=9a^2-60ab+100b^2')
```

Scilab code Exa 13.9 Square of a trinomial

```
1
2 clc;
3 close;
4 clear;
5 p1=string('(a+b+1)^2=a^2+b^2+1+2ab+2a+2b')
6 p2=string('(x-y+z)^2=x^2+y^2+z^2-2xy+2xz-2yz')
7 p3=string('(a-b-c)^2=a^2+b^2+c^2-2ab-2ac+2bc')
8 p4=string('(x+y-5)^2=x^2+y^2+25-10x-10y+2xy')
```

Scilab code Exa 13.10 Cube of a binomial

```
1
2 clc;
3 close;
4 clear;
5 x=poly(0,'x');
6 p=(x+1)^3
7 p1=(x-1)^3
8 a=poly(0,'a');
9 p2=(a+1)^3
10 p3=(1-a)^3
11 p4=string('(2x+3y)^3=8x^3+36x^2y+54xy^2+27y^3')
12 p5=string('(x-3y)^3=x^3-9x^2y+27xy^2-27y^3')
```

Scilab code Exa 13.11 Product of sum and difference

```
1
2 clc;
3 close;
4 clear;
5 x=poly(0, 'x');
6 p=(x+9)*(x-9)
7 p1=string('(ab+10)(ab-10)=a^2*b^2-100')
8 p2=(4*x+5)*(4*x-5)
9 p3=(1+x)*(1-x)
10 a=poly(0, 'a');
11 p4=(a-1/2)*(a+1/2)
12 p5=string('(a/3 + b/4)*(a/3 - b/4)=a^2/9 - b^2/16')
13 p6=string('{(a+b)+c}*{(a+b)-c}=(a+b)^2-c^2')
14 p7=string('{a+(b+c)}*{a-(b+c)}=a^2-(b+c)^2')
```

Chapter 14

Factors

Scilab code Exa 14.1 factors of given expression

```
1
2 //factors of 6a^2 + 3ac
3 clear;
4 clc;
5 close;
6 p=string('6*a^2+3*a*c')
7 disp('=> 3a(2a+c)')
```

Scilab code Exa 14.2 Factorize given expression

```
1
2    //5*x^2*y^2-10*x^2*y+20*y^2
3    clear;
4    clc;
5    close;
6    mprintf("\n the highest common factor to each term
        is 5 and other factor is y \n")
7    disp('5y(x^2y-2x^2+4y)')
```

Scilab code Exa 14.3 Finding factors

```
1
2  // factors of a^2+cd+ad+ac
3  clear;
4  clc;
5  close;
6  mprintf(" \n (a^2+ac)+(ad+cd) => a(a+c)+d(a+d) \n")
7  mprintf("the factors are:")
8  val=string('(a+c)(a+d)')
```

Scilab code Exa 14.4 Factorize if possible

```
1
2 //factorize, if possible,ab+ac+bc+bd
3 clear;
4 clc;
5 close;
6 mprintf("\n there are no factors of this expression")
```

Scilab code Exa 14.5 Factors of expression

```
1
2 //factors of ab-5a-3b+15
3 clear;
4 clc;
5 close;
6 //by arrangement into suitable pairs,
```

```
7 mprintf("(ab-5a)-(3b-15) => a(b-5)-3(b-5)")
8 mprintf("\n the factors are: \n")
9 val=string('(b-5)(a-3)')
```

Scilab code Exa 14.6 Factorize the given expression

```
1
2 //x^2+13*x+36
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 p=x^2+13*x+36;
8 factors(p)
```

Scilab code Exa 14.7 Factorize the given expression in terms of x

```
1
2 //x^2-13*x+36
3 clear;
4 clc;
5 close;
6 x=poly(0, 'x');
7 p=x^2-13*x+36;
8 factors(p)
```

Scilab code Exa 14.8 Factorize the given expression in terms of y

```
\frac{1}{2} //y^2 - 13 * y + 30
```

```
3 clear;
4 clc;
5 close;
6 y=poly(0,'y');
7 p=y^2-13*y+30;
8 factors(p)
```

Scilab code Exa 14.9 Factorize the expression

```
1
2 //x^2-5*x-36
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 p=x^2-5*x-36;
8 factors(p)
```

Scilab code Exa 14.10 Factorize

```
1
2 //x^2+12*x-28
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 p=x^2+12*x-28;
8 factors(p)
```

Scilab code Exa 14.11 Factorize

```
1
2 //a^2-8*a*b-48*b^2
3 clear;
4 clc;
5 close;
6 a=poly(0, 'a');
7 p=a^2-8*a-48;
8 factors(p)
9 mprintf("the second letter b will appear in 1st term of each factor")
10 ans(1)="(4b+a)";
11 ans(2)="(-12b+a)"
```

Scilab code Exa 14.12 Factors of expression

```
1
2 //2*x^2+7*x+3
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 p=2*x^2+7*x+3;
8 factors(p);
9 ans(2)=ans(2)*2;
10 disp(ans(1),ans(2),"the factors of 2*x^2+7*x+3 are")
```

Scilab code Exa 14.13 Factorize of expression

```
1
2 //6*x^2+17*x-3
3 clear;
4 clc;
5 close;
```

```
6 x=poly(0, 'x');
7 p=6*x^2+17*x-3;
8 factors(p);
9 ans(2)=ans(2)*6;//multiply by 6 the p1 factors to
      get the original factors of p
10 disp(ans(1),ans(2),"the factors of 6*x^2+17*x-3 are"
    )
```

Scilab code Exa 14.14 Factorize the given expression

```
1
2 //4*x^2-17*x-15
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 p=4*x^2-17*x-15;
8 factors(p);
9 ans(2)=ans(2)*4;
10 disp(ans(1),ans(2),"the factors of 4*x^2-17*x-15 are
")
```

Scilab code Exa 14.15 Representing square of binomial expression

```
1
2  //x^2+6*x+9
3  clear;
4  clc;
5  close;
6  x=poly(0,'x');
7  p=x^2+6*x+9;
8  factors(p);
```

```
9 disp(ans(1),"x^2+6*x+9 is square of binomial expression")
```

Scilab code Exa 14.16 Checking complete square or not

```
1
2 //4*x^2+6*x+9
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 p=4*x^2+6*x+9
8 mprintf("is not a complete square")
9 //the 1st and 3rd terms are squares of 3and 2x
10 //for complete square the middle term must be +(2* sqrt(4x^2)*sqrt(9))=+12x
```

Scilab code Exa 14.17 Checking complete square or not

```
1
2 //4*x^2-20*x+25
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 p=4*x^2-20*x+25
8 factors(p);
9 disp(ans(1)*2,"is the complete square of binomial")
10 //disp("the 1st and 3rd terms are squares of 5 and 2 x")
11 //disp("for complete square the middle term must be (2*sqrt(4*x^2)*sqrt(25)=20x")
```

Scilab code Exa 14.18 Factorize

```
1
2 //100*x^2-1
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 p=100*x^2-1;
8 factors(p);
9 ans(1)=10*ans(1);
10 ans(2)=10*ans(2);
11 disp(ans(1),ans(2),"the factors of 100*x^2-1 are")
```

Scilab code Exa 14.19 Factorize the expression

```
1
2 //36*a^2*b^2-25
3 clear;
4 clc;
5 close;
6 //the numbers squared are 6ab and 5")
7 disp("36*a^2*b^2-25=(6ab+5)(6ab-5)")
```

Scilab code Exa 14.20 Factorize the given expression

```
1
2 //factorize (a+b)^2 - c^2
3 clear;
```

```
4 clc;
5 close;
6 //using the formula, a^2-b^2=(a+b)(a-b)
7 val=string('(a+b+c)(a+b-c)')
```

Scilab code Exa 14.21 Factorize the expression

```
1
2 //factorize (a+b)^2 - (c-a)^2
3 clear;
4 clc;
5 close;
6 //using the formula, a^2-b^2=(a+b)(a-b)
7 val=string('(b+c)(2a+b-c)')
```

Scilab code Exa 14.22 Difference of two squares

```
1
2 clear;
3 clc;
4 close;
5 function[val]=formulae(a,b)
6  val=(a+b)*(a-b)
7 endfunction
8
9 val=formulae(47.5,22.5)
```

Scilab code Exa 14.23 Area of ring between two concentric circles

1

```
2 //area of ring between 2 concentric circles.
3 //given,r1=97mm,r2=83mm
4 clear;
5 clc;
6 close;
7 r1=97;r2=83;
8 //the area of ring is difference between the areas of 2 circles
9 diff_in_area=(r1^2-r2^2);
10 mprintf("difference in area=%ipi mm^2",diff_in_area)
```

Chapter 15

Fractions

Scilab code Exa 15.1 Algebraic fraction

```
1
2 //simplify (a+b)/(a^2-b^2)
3 clear;
4 clc;
5 close;
6 //as, by formula,(a^2-b^2)=(a+b)(a-b)
7 mprintf("\n (a+b)/((a+b)(a-b)) => 1/(a-b) \n")
```

Scilab code Exa 15.2 Simplifying the factors

```
1
2 clear;
3 clc;
4 close;
5 x=poly(0,'x');
6 p1=x^2+4*x-12;
7 p2=x^2+x-6;
8 p=p1/p2
```

Scilab code Exa 15.3 Reduction of fractions

```
1
2   //simplify 3a(a^2-4ab+4b^2)/6a(a^2+3ab-10b^2)
3   clear;
4   clc;
5   close;
6   //the factors 3a(a-2b) are common to numerator & denominator.
7   mprintf("\n the fraction is :\n")
8   string('(a-2b)/(2a(a+5b))')
```

Scilab code Exa 15.4 Division of fractions

```
1
2 clear;
3 clc;
4 close;
5 x=poly(0,'x');
6 p1=x;
7 p2=x+1;
8 p=p1/p2;
9 q1=x^2;
10 q2=x^2-1;
11 q=q1/q2;
12 p/q
```

Scilab code Exa 15.5 Multiplication of fractions

```
1
2 clear;
3 clc;
4 close;
5 x=poly(0,'x');
6 p1=x^4-27*x;
7 p2=x^2-9;
8 p=p1/p2;
9 q1=x^2+3*x+9;
10 q2=x+3;
11 q=q1/q2;
12 p/q
```

Scilab code Exa 15.6 Subtraction of fractions

```
1
2 //simplify a/(a-b) - a^2/(a^2-b^2)
3 clear;
4 clc;
5 close;
6 //as, (a^2-b^2)=(a+b)(a-b), substitute it.
7 mprintf("\n the fraction is :\n")
8 ans=string('ab/((a+b)(a-b))')
```

Scilab code Exa 15.7 Fraction Subtraction

```
1
2  //3/(a-b)-(2a+b)/(a^2-b^2)
3  clear;
4  clc;
5  close;
6  mprintf("\n on factorizing, the expression becomes \n");
```

```
7 //3/(a-b)-(2a+b)/(a+b)(a-b) \Rightarrow (3a+3b-2a-b)/(a+b)(a-b)
8 string('(a+2b)/((a+b)(a-b))')
```

Scilab code Exa 15.8 Subtraction of fractions

```
1
2
3 clear;
4 clc;
5 close;
6 x = poly(0, 'x');
7 p1=x-1;
8 p2=x^2-x-2;
9 p=p1/p2;
10 q1=x+2;
11 q2=x^2+4*x+3;
12 q = q1/q2;
13 \text{ t=p-q};
14 y=numer(t) //numerator of t
15 z=factors(denom(t))//factors of denominator of t (
      more simplified form)
16 \operatorname{disp}("val=(1+2x)/(1+x)(-2+x)(3+x)")
```

Scilab code Exa 15.9 Division of fractions

```
1
2 //x/(x-(1/x))
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 p1=x;
```

```
8 p2=1/x;
9 p3=p1-p2;
10 p=p1/p3
```

Scilab code Exa 15.10 Conversion of R in terms of R1 and R2

```
1
2 //1/R=1/R1-1/R2. get R
3 clear;
4 clc;
5 close;
6 disp("R=R1R2/(R2-R1)")
```

Scilab code Exa 15.11 solving simple equations involving algebraic fractions

```
1
2 clear;
3 clc;
4 close;
5 x = poly(0, 'x');
6 p1=3/(x-2);
7 p2=5/(x-1);
8 // given, 3/(x-2)=5/(x-1)
9 for x=0.0:0.1:10.0
10 if (3*(x-1) == 5*(x-2))
     format(7)
11
12 x
13
     break
14 end
15 end
```

Scilab code Exa 15.12 Solving algebraic fraction for n

```
1
2 clear;
3 clc;
4 close;
5 n=poly(0, 'n');
6 p1=1/(n-2);
7 p2=1/(n-3);
8 p=p1+p2;
9 q=2/n;
10 //given p=q
     z1=numer(p)*denom(q);
11
     z2=numer(q)*denom(p);
12
13 //As, z1=z2. cancel the terms common on both sides
14
     a=z1-z2;
15
   n=roots(a)
```

Chapter 16

Graphs of Quadratic Functions

Scilab code Exa 16.1 Circumference of circle

```
1
2 //circumference of circle
3 clear;
4 clc;
5 close;
6 disp('C=2*pi*r')
7 //C-length of circumference.r-the length of radius
8 //2 (2,pi) of these 4 symbols represent constants.
9 disp("the variation of C depends on changes in r")
```

Scilab code Exa 16.2 Graph of given straight line

```
1
2 clear;
3 clc;
4 close;
5 //let a-the avg. amount paid. x-no. of customers. b
    -the expenses
```

```
6 //net profit is y=ax-b
7 x=320; y=4.50;
8 x = 250; y = 1.00;
9 //substitute in above equation
10 //4.5 = 320 * a - b - equ.1; 1 = 250 * a - b - equ.2. subbstract equ.2
       from 1.
11 a=0.05; //we get
12 b=250*a-1;
13 x = poly(0, 'x');
14 y=a*x-b; //equation to straight line
15 //if there is no profit i.e., y=0
16 \text{ for } x=1:500
17 if (0.05*x-11.5==0)
18 mprintf("x=\%i \ n",x)
19 break
20 end
21 end
22 clf;
23 cust=[230 240 270 300 350 380];
24 profit=[0 0.5 2.0 3.5 6.0 7.5];
25 plot(cust, profit, 6);
26 plot(230,0, r->.diam');
27 //profit(y) depends on varying no. of customers(x).
      the no.'s 0.05 & 11.5 remained constant
28 xtitle("the straight line graph", "no. of customers",
     "profit");
29 legend("y=0.05*x-11.5");
30 xgrid();
```

Scilab code Exa 16.3 Straight line equation

```
1
2 //y=mx+b
3 clear;
4 clc;
```

```
5 close;
6 clf;
7 x=linspace(0,3,4);
8 \text{ y=x};
9 plot2d(x,y,1);
10 y=x+2;
11 plot2d(x,y,4);
12 y=x-3;
13 plot2d(x,y,5);
14 xtitle ("Equations of the form y=mx+b", "x axis", "y
      axis");
15 legend("y=x","y=x+2","y=x-3",2);
16 disp('y=mx+b');
17 //m is constant, b is fixed distance. (x,y) vary for
       different points on the line
18 xgrid()
```

Scilab code Exa 16.4 Graph of a function of second degree

```
1
2 clear;
3 clc;
4 close;
5 clf;
6 x=linspace(-3,3,11);
7 y=x^2;
8 plot2d(x,y,3);
9 xtitle("Parabola curve","x axis","y axis")
10 legend("y=x^2");
11 xgrid();
```

Scilab code Exa 16.5 Graph of parabola

```
1
2 clear;
3 clc;
4 close;
5 clf;
6 x=linspace(-3,3,11);
7 y=-x^2;
8 plot2d(x,y,3);
9 xtitle("curve of y=-x^2","x axis","y axis");
10 disp("this curve is parabola");
11 legend("y=-x^2");
12 xgrid();
```

Scilab code Exa 16.6 Curves of different parabolas

```
1
2 //y=ax^2
3 clear;
4 clc;
5 close;
6 clf;
7 x=linspace(-3,3,11);
8 y = 2 * x^2;
9 plot2d(x,y,3);
10 y=x^2;
11 plot2d(x,y,4);
12 y=x^2/2;
13 plot2d(x,y,5);
14 legend("y=2*x^2","y=x^2","y=x^2/2");
15 xtitle("The curves of y=ax^2", "x axis", "y axis");
16 //if a is negative, we get corresponding curves
      similar to y=-x^2
17 xgrid();
```

Scilab code Exa 16.7 Curves of given expression

```
1
2 //y=x^2+a or y=x^2-a
3 clear;
4 clc;
5 close;
6 clf;
7 x=linspace(-3,3,11);
8 y=x^2+2;
9 plot2d(x,y,3);
10 y=x^2;
11 plot2d(x,y,4);
12 y=x^2-3;
13 plot2d(x,y,5);
14 legend("y=x^2+2","y=x^2","y=x^2-3");
15 xtitle("Curves of y=x^2 +/- a","x axis","y axis");
16 xgrid();
```

Scilab code Exa 16.8 Change of axis

```
1
2 //y=x^2+a or y=x^2-a
3 clear;
4 clc;
5 close;
6 clf;
7 x=linspace(-3,3,11);
8 y=x^2;
9 plot2d(x,y,3);
10 plot(y=1)
11 legend("y=x^2");
```

Scilab code Exa 16.9 Graph of curves

```
1
2 clear;
3 clc;
4 close;
5 clf;
6 x=linspace(-3,4,8);
7 y=(x-1)^2;
8 plot2d(x,y,3);
9 xtitle("Curve of y=(x-1)^2","x axis","y axis");
10 legend("y=(x-1)^2");
xgrid();
```

Scilab code Exa 16.10 graph of given expression

```
1
2 //129,130,131 examples
3 clear;
4 clc;
5 close;
6 clf;
7 x=linspace(-3,4,8);
8 y=(x-1)^2-4;
9 plot2d(x,y,5);
10 xtitle("Graph of y=(x-1)^2-4","x axis","y axis");
11 legend("y=(x-1)^2-4");
12 x=poly(0,'x');
```

```
13 y=(x-1)^2-4;
14 //131 concept
15 disp('At these points curve cuts the axis of x')
16 x=roots(y)
17 xgrid();
```

Scilab code Exa 16.11 Graph of Y

```
1
2 clear;
3 clc;
4 close;
5 clf;
6 \text{ x=linspace}(-3,5,9);
7 y=2*x^2-3*x-5;
8 \text{ plot2d}(x,y,5);
9 xtitle ("Graph of y=2*x^2-3*x-5", "x axis", "y axis");
10 x = poly(0, 'x');
11 y=2*x^2-3*x-5;
12 // at these points curve cuts the axis of x"
13 x = roots(y)
14 x = 3/4;
15 y=2*x^2-3*x-5; //highest point
16 y = [0 -2 -4 y];
17 plot(x,y,'b--.+');
18 legend("y=2*x^2-3*x-5", "axis of symmetry");
19 disp("NOTE: line from lowest point to the x axis is
      the axis of symmetry");
20 xgrid();
```

Scilab code Exa 16.12 Graph of parabola

1

```
2 clear;
3 clc;
4 close;
5 clf;
6 x = linspace(-5, 4, 10);
7 y=12-x-x^2;
8 plot2d(x,y,5);
9 xtitle("Graph of y=12-x-x^2", "x axis", "y axis");
10 x = poly(0, 'x');
11 y=12-x-x^2;
12 // at these points curve cuts the axis of x"
13 x = roots(y)
14 x = -1/2;
15 y=12-x-x^2; // highest point
16 y = [0 2 4 6 8 10 y];
17 plot(x,y,'b--.pentagram');
18 legend("y=12-x-x^2", "axis of symmetry");
19 //line from highest point to the x axis is the axis
      of symmetry
20 xgrid();
```

Scilab code Exa 16.13 Using graphs to solve quadratic inequalities

```
1
2 //y=x^2-4*x+3.values of x where y>0
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 y=x^2-4*x+3;
8 x=roots(y)
9 //for y>0, the values of x where y is above x axis are x<1 or x>3
10 x=linspace(-2,6,9);
11 y=x^2-4*x+3;
```

```
12 plot2d(x,y,3);
13 xtitle("Using graphs to solve quadratic inequalities
        ","x axis","y axis");
14 legend("y=x^2-4*x+3");
15 xgrid();
```

Scilab code Exa 16.14 Using quadratic inequalities to describe regions

```
1
2 //y = x^2 - 5 * x + 5
3 clear;
4 clc;
5 clf;
6 close;
7 x = linspace(-2,7,10);
8 y=x^2-5*x+5;
9 plot2d(x,y,3);
10 plot2d3(x,y,7);
11 x = poly(0, 'x');
12 y=x^2-5*x+5;
13 x = roots(y)
14 \text{ for } x=0:5
     for y = 5:20
15
       plot(x,y,'r.pentagram');  //y>0 region
16
17
    end
18 end
19 xtitle ("Using quadratic inequalities to describe
      regions", "x axis", "y axis");
20 xgrid();
21 legend("y=x^2-5*x+5", "y<x^2-5*x+5 region", "y>x^2-5*x
      +5 region",4);
```

Chapter 17

Quadratic Equations

Scilab code Exa 17.1 Solving quadratic equation

```
1
2 //x^2-x-1=0
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 y=x^2-x-1;// y=0
8 mprintf("the solution is \n")
9 format(7)
10 x=roots(y)
```

Scilab code Exa 17.2 Solving quadratic equation

```
1
2 //3*x^2-5*x+1=0
3 clear;
4 clc;
5 close;
```

```
6  x=poly(0, 'x');
7  y=3*x^2-5*x+1; // y=0
8  mprintf("the solution is \n")
9  format(6)
10  x=roots(y)
```

Scilab code Exa 17.3 Solving equation

```
1
2 clear;
3 clc;
4 close;
5 x=poly(0, 'x');
6 p1=1/(x-1);
7 p2=1/(x+2);
8 y=p1-p2;
9 y1=1/16;
10 a=numer(y)*denom(y1);
11 b=numer(y1)*denom(y);
12 r=a-b;
13 mprintf("the solution is \n");
14 format(6)
15 x=roots(r)
```

Scilab code Exa 17.4 Solution of quadratic equation

```
1
2 //x^2-2*x-15=0
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 y=x^2-2*x-15;// y=0
```

```
8 mprintf("the solution is \n")
9 mprintf("x=\%i, \t", roots(y))
```

Scilab code Exa 17.5 quadratic equation Solution

```
1
2 //9*x*(x+1)=4
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 y=9*x*(x+1)-4; //y=0
8 mprintf("the solution is \n")
9 mprintf("x=%f, \n",roots(y))
```

Scilab code Exa 17.6 quadratic equation Solution

Scilab code Exa 17.7 Solving the equation

```
1
2 clear;
3 \text{ clc};
4 close;
5 x = poly(0, 'x');
6 p1=1/(x-1);
7 p2=2/3;
8 p3=2/(x-3);
9 p = (p1+p2-p3);
10 p=3*numer(p); //As p=0 and to remove fractions,
      multiply by 3
11 a=2;b=-11;c=3;//from equation we get these values
12 //using the formula - solution of quadratic equation
       ax^2+bx+c=0
13 mprintf("the solution is")
14 format(6)
15 x=(-b+sqrt(b^2-4*a*c))/(2*a)
16 mprintf("or \n")
17 x=(-b-sqrt(b^2-4*a*c))/(2*a)
```

Scilab code Exa 17.8 Time taken when body is projected vertically upwards

Scilab code Exa 17.9 Speed and time for journey

```
1
2 clear;
3 clc;
4 close;
5 //let x km/hr is avg. speed for 1st journey
6 //as velocity=distance/time, time for 1st journey is
      84/x hrs
7 //speed for return journey is 84/(x+4). from given
     data, this is <1/2 hr than the 1st time
8 x = poly(0, 'x');
9 //In algebraic form, (84/x) - (84/(x+4)) = 1/2
10 y = (84/x) - (84/(x+4)) - 1/2; //y = 0. so, numerator=0
11 x=roots(numer(y));
12 //velocity can't be in negatives.take +ve root
13 disp("avg. speed for 1st journey is x=24km/h")
14 distance=84; //given
15 velocity=24; //found
16 time=distance/velocity; //time for 1st journey
17 time1=distance/(velocity+4);//time for 2nd journey
18 mprintf ("total_time=\%fhours", time+time1)
```

Scilab code Exa 17.10 Solving first degree equations

```
1 //x+y=1, 38x^2-x*y+y^2=37
2
3 clear;
4 clc;
5 close;
6 x=poly(0, 'x');
7 y=1-x;
8 //substitute y=1-x in equ. 38x^2-x*y+y^2=37
9 Y=3*x^2-x*(1-x)+(1-x)^2-37;
10 x=roots(Y);
11 y=1-x;
12 mprintf('the solutions are: \n')
13 mprintf(" (%f, %f) \n",x,y)
```

Scilab code Exa 17.11 Solving symmetric equations

```
1
2
3  //x+y=19, xy=84
4  clear;
5  clc;
6  close;
7  x=poly(0,'x');
8  //substitute y=19-x in xy=84
9  Y=x*(19-x)-84;
10  x=roots(Y);
11  y=19-x;
12  mprintf('the solutions are: \n')
13  mprintf("(x,y)=(%i,%i) \n",x,y)
```

Scilab code Exa 17.12 Solving the equations

```
1
2 //x^2+y^2=89, xy=40
3 clear;
4 clc;
5 close;
6 x=poly(0,'x');
7 //substitute y=40/x in x^2+y^2=89
8 Y=x^2+(40/x)^2-89;
9 x=roots(numer(Y));//Y=0, numerator=0
10 y=sqrt(89-x^2);
11 mprintf('the solutions of (x,y) are: \n')
12 xy=[x,y]
```

Scilab code Exa 17.13 Solving quadratic inequlaities

```
1
2 //x^2 - 6*x + 8 < 0
3 clear;
4 clc;
5 close;
6 x = poly(0, 'x');
7 y=x^2-6*x+8;
8 //the product is negative only if either one of the
      factors is negative
9 f=factors(y);//these factors are <0
10 //f(1)>0 and f(2)<0 \setminus n \setminus t or \setminus t \setminus n f(1)<0 and f(2)>0
     x=string(-2:7);//by number line method,
12 n = string('<' + strcat(x, '^- ') + '>') //-2 to 7 no. line
13 n1='<'; n2='';
14
       for x = -2:2
```

```
15
       n1=n1+'----';
16
      end
17
        for x=2:8
       n2=n2+'+++';
18
19
      20
21 n1='<'; n2='';
22
       for y = -2:4
23
      n1=n1+'----';
24
      end
25
        for y=4:8
26
       n2=n2+'+++';
27
      28
29
  // from diagram, (x-2) is +ve when x>2 \& -ve when x
30
    <2 by using + ans - signs. same in the case of (x
      mprintf("\n solution of x^2-6*x+8<0 is \n 2< x<4"
31
```

Scilab code Exa 17.14 Solving the inequality

```
12
          for x=0.5:5
         n2=n2+'++++';
13
14
       end
       mprintf(n1+n2+'>'+' '+'(2x-1)')
15
16 n1='<';n2='';
17
         for y = -4:-2
18
        n1=n1+'---';
19
       end
20
          for y = -2:5
21
         n2=n2+'++++';
22
       end
       mprintf(n1+n2+'>'+' '(x+2)')
23
24 n1= '< '; n2= ' ';
        for y = -4:3
25
26
        n1=n1+'++++';
27
       end
28
          for y=3:5
29
         n2=n2+'----';
30
       end
       mprintf (n1+n2+'>'+' '+'(3-x)'+'\n')
31
       mprintf ("the solution is 0.5 < x < 3 \ n or \ n \ x
32
          <-2")
```

Indices

Scilab code Exa 18.1 Graph of exponential function

```
1
2 clear;
3 clc;
4 close;
5 clf;
6 x=[0 1 2 3 4];
7 y=2^x;
8 xtitle("Graph of 2^x","x-axis","y-axis");
9 plot(x,y,"o-");
10 legend("y=2^x");
11 xgrid();
```

Scilab code Exa 18.2 Operations with standard forms

```
1
2 clear;
3 clc;
4 close;
```

```
5 //EX(1):
6 function [val]=answer(u,v,x,y)
7  val=u*v*10^(x+y)
8 endfunction
9 val=answer(1.2,2.3,4,3)
10
11 //EX(2):
12 function[val1]=answer1(u,v,x,y)
13  val1=(u/v)*10^(x-y)
14 endfunction
15 val1=answer1(4.8,1.6,8,3)
```

Logarithms

Scilab code Exa 19.1 Finding values from the graph

```
2 clear;
3 clc;
4 close;
5 clf;
6 x=linspace(0,1,7);
7 y=10^x;
8 plot2d(x,y,2);
9 xtitle(" graph of y=10^x", "x axis", "y axis");
10 legend("y=10^x");
11 xgrid()
12
13 // ex1:1.8*2.6=?, from graph
14 / 1.8 = 10^{\circ}0.26 \ n \ 2.6 = 10^{\circ}0.42
15 x=10^0.26; y=10^0.42;
16 format (4)
17 ex1_ans=x*y//from the graph
18
19 // \exp 2:9^{(1/3)}
20 / 9 = 10^{\circ}0.96
21 x = 10^0.96;
```

```
22 format(4)
23 ex2_ans=x^(1/3)//third law of indices
```

Scilab code Exa 19.2 Notation for logarithms

```
1
2 clear;
3 clc;
4 close;
5 ans1=log10(56.2)
6 ans2=log2(1024)
7 ans3=log10(1000)
8 ans4=log10(81)/log10(3)
```

Scilab code Exa 19.3 Antilogarithm

```
1
2 //no. whose logarithm is 2.3714
3 clear;
4 clc;
5 close;
6 mantissa=0.3714;
7 disp("from anti-logarithm table, corresponding no. is 2352")
8 // As, characteristic is 2, no. must lie between 100 & 1000.\n \n hence 3 significant figures in the intergral part
9 235.2
```

Scilab code Exa 19.4 Logarithm of x

```
1
2 //value of (57.86*4.385)
3 clear;
4 clc;
5 close;
6 //log(p*q)=log(p)+log(q)
7 p=57.86; q=4.385;
8 logx=log10(p)+log10(q);
9 format(6)
10 x=10^logx
```

Scilab code Exa 19.5 Finding the logarithm

```
1
2 //value of (5.672*18.94)/1.758
3 clear;
4 clc;
5 close;
6 //log(p*q)=log(p)+log(q) , log(p/q)=log(p)-log(q)
7 p=5.672; q=18.94; r=1.758;
8 logx=log10(p)+log10(q)-log10(r);
9 format(6)
10 x=10^logx
```

Scilab code Exa 19.6 Finding the Nth root

```
1
2 //5th root of 721.8
3 clear;
4 clc;
5 close;
6 //log(a)^n=n*log(a)
7 p=721.8; n=1/5;
```

```
8 logx=n*log10(p);
9 format(6)
10 x=10^logx
```

Scilab code Exa 19.7 Finding the logarithms of given numbers

```
1
2 //logs of 0.3185,0.03185,0.003185
3 clear;
4 clc;
5 close;
6 x=0.3185;y=0.03185;z=0.003185;
7 logx=log10(0.3185)
8 logy=log10(0.03185)
9 logz=log10(0.003185)
```

Scilab code Exa 19.8 Finding the number whose log value is given

```
1
2 //no. with logarithm -3.5416
3 clear;
4 clc;
5 close;
6 mantissa=0.5416;
7 disp("from anti-logarithm table, corresponding no.is 3840")
8 //characteristic is -3.\n \n hence there will be 2 zeros after the decimal point
9 val=0.003480
```

Scilab code Exa 19.9 Sum of logarithms

```
//sum of logarithms -1.6173, -2.3415, -1.6493, -0.7374
clear;
clc;
close;
x=.6173;y=.3415;z=.6493;a=0.7374; //mantissa's of all
        4 logarithms
mantissa=x+y+z+a;
//2 which is carried forward from the addition of mantissa is +ve.
characteristic=-1-2-1-0+2; // characteristic part of all 4 logarithms
mprintf("sum=-%f", mantissa)
```

Scilab code Exa 19.10 Difference of logarithms

Scilab code Exa 19.11 Multiplication of logarithm

```
\frac{1}{2} //logarithm : multiply -2.8763 by 3
```

Scilab code Exa 19.12 Multiplication of logarithm

```
1
2 //logarithm: -1.8738*1.3
3 clear;
4 clc;
5 close;
6 //multiply mantissa & characteristic seperately and add results
7 x=0.8738*1.3;
8 y=-1*1.3;
9 //as y=-1.3 is -ve, change it to -2.7 to make mantissa +ve
10 y=-2.7;
11 mantissa_sum=0.13594+0.7; //of x & y
12 characteristic_sum=1-2;
13 characteristic_sum-mantissa_sum
```

Scilab code Exa 19.13 Division of logarithm

```
1 2 // \text{divide} -5.3716 \text{ by } 3 3 \text{ clear};
```

```
4 clc;
5 close;
6 //characteristic=-5=-6+1 or the log as -6+1.3716
7 characteristic=-6/3;
8 mantissa=1.3716/3;
9 characteristic-mantissa
```

Scilab code Exa 19.14 Finding the logarithm

```
1
2 //log50 to the base e
3 clear;
4 clc;
5 close;
6 log(50)//natural logarithm
7 // or, log50_base_e=log10(50)*2.3026
```

Variation

Scilab code Exa 21.1 Graph of spring extension for different weights

```
2 //spiral spring example
3 clc;
4 clear;
5 close;
6 clf();
7 weight=linspace(0,0.5,6);
8 extension=[0 0.15 0.3 0.44 0.6 0.75];
9 plot2d(weight, extension, 13);
10 xtitle ("spiral spring example", "vaues of L", "values
      of E");
11 xgrid();
12 //Extension varies directly as the attached load
13 //let E=Extension, L=Load
14 //to find 'k', a pair of values is taken at point p
15 L=0.5; E=0.75;
16 plot(L,E,'r..');
17 legend("E=KL", 'POINT P',2);
18 //substitute 'p' in E=K*L
19 K=E/L;
20 \texttt{mprintf}("\, the \ law \ is : \ \ E= \%fL \ \ \ ",K)
```

Scilab code Exa 21.2 Comparison of voltmeters

```
1
2 //voltmeters example
3 clc;
4 clear;
5 close;
6 clf();
7 C = [1.9 2.75 3.8 4.8 5.8];
8 K=[5.75 8.3 11.2 14 16.8];
9 //C and K are connected by the law of the form K=mC+
     b
10 plot2d4(C,K,3);
11 plot(3.4,10, 'r.pentagram');
12 plot(5.3,15.5, 'r.pentagram');
13 xtitle("voltmeters graph", "C", "K");
14 xgrid();
15 legend("K=mC+b", "POINTS A,B",2);
16 //substituting A,B points in K=mC+b, we get
17 //10=3.4 \text{m+b} ----->equ(1); 15.5=5.3 \text{m+b} ---->equ
      (2)
18 //substracting
19 m = (10-15.5)/(3.4-5.3);
20 b=10-(3.4*m);
21 mprintf("the law is: \n K=\%fC+\%f",m,b)
```

Scilab code Exa 21.3 Inverse variation

```
1
2  //y varies as cube root of x
3 clear;
```

```
4 clc;
5 close;
6 //y=k*x^(1/3)
7 y=3;x=64;//given
8 k=y/(x^(1/3));
9 mprintf("(1) y=0.75*x^(1/3)");
10 //when y=15/4,x=?
11 x=(15/4)^3/(0.75)^3;
12 mprintf("(2) x=%i",x)
```

Scilab code Exa 21.4 Time of vibration of simple pendulum

Scilab code Exa 21.5 Triangle area

```
1 \\ 2 //A = b*h/2 \\ 3 clear;
```

Scilab code Exa 21.6 Volume varies inversely with peressure

```
1
2 //volume of mass os gas at const. temp. varies
     inversly as pressure on it
3 clear
4 clc
5 close
6 //v=volume
7 //T=absolute temperature
8 //P=pressure
9 mprintf("\n v=k*T/P \n")
```

Scilab code Exa 21.7 Relation between R and l

```
1
2 //resistance of a current wire varies as length
    varies also, varies inversly as the cross section
    of wire
3 clear
4 clc
5 close
6 //R=the resistance
7 //l=the length
8 //the cross section
```

```
9 mprintf("\n R=k*l/A \n")
```

Scilab code Exa 21.8 Joint variation

```
1
2 clear;
3 clc;
4 close;
5 // y varies directly as x and inversly as z^3
6 mprintf("\n y=k*x/z^3 \n")
7 x=15;z=12;y=1/36;//given
8 //substituting given values
9 format(5)
10 k=y*z^3/x
```

Scilab code Exa 21.9 F varies directly with strength and inversely with distance

```
1
2 clear;
3 clc;
4 close;
5 // force of 2 magnetic poles varies as product of their strength & inversly as square of distance between them
6 //F=the force. m1,m2=the pole strengths. d=the distance apart
7 mprintf("\n F=k*m1*m2/d^2 \n")
8 F=3;m1=8;m2=6;d=4;//given
9 k=F*d^2/(m1*m2);
10 m1=5;m2=9;d=2;
11 Force_in_newtons=k*m1*m2/d^2
```

The determination of Laws

Scilab code Exa 22.1 Plotting against power of a number

```
2 //y = a *x^2 + b
3 clear;
4 clc;
5 close;
6 clf;
7 x = [0 0.5 1 1.5 2 2.5];
8 y = [-10 -9.25 -7 -3.25 2 8.75];
9 \text{ plot2d}(x^2, y, 3);
10 xtitle("Graph of y=ax^2+b", "x axis", "y axis");
11 xgrid;
12 //the values of a & b can be found by substituting
      two suitable points (x,y) in a*x^2+b-y=0
13 x=1; y=-7; //p1=-a+b+7
14 x=4; y=2; //p2=4*a+b-2
15 a=poly(0, 'a');
16 p=-a+7-(4*a-2);
17 a = roots(p);
18 x=1; y=-7;
19 b=y-a*x^2;
20 x = poly(0, 'x');
```

```
//(or) by inspection of graph, intercept on y-axis
    is (i.e., b) is -10 and a, the gradient of the
    line, is 3

mprintf("\n Hence, the law is\n")

x=poly(0, 'x');

y=3*x^2-10

mprintf("or by solving by the method of Section 185"
)

y=a*x^2+b
```

Scilab code Exa 22.2 Law connecting the logarithms

```
1
2 //y = a * x ^n
3 clear;
4 clc;
5 close;
6 clf;
7 x = [18 20 22 24 25];
8 \text{ y} = [623 863 1160 1519 1724];
9 //taking log on both sides for y=a*x^n \Rightarrow \log(y)=n*
      \log(x) + \log(a) ... equ(1)
10 logx = log10(x);
11 \log y = \log 10(y);
12 plot2d(logx, logy, 13);
13 //select points A & B on straight line.
14 plot(1.398,3.236, 'r.diam');
15 plot (1.255, 2.795, 'r.diam');
16 n=poly(0, 'n');
17 //3.236=1.398*n+log(a).substitute point A in equ
      ...(1),GIVES equ(3)
18 / (2.795 = 1.255 * n + \log(a). substitute point B in equ
      ...(1), GIVES equ(4)
19 // equ(3) - equ(4)
20 p=(3.236-1.398*n)-(2.795-1.255*n);
```

Rational and Irrational Numbers

Scilab code Exa 23.1 Operation with surds

```
1
2 //ex(1) (sqrt(5)+sqrt(20))
3 clear;
4 clc;
5 close;
6 val=string('(sqrt(5)+sqrt(20))');
7 if((sqrt(5)+sqrt(20))==3*sqrt(5))
8  val_1=evstr(val)
9 end
10 //ex(2) sqrt(27)-sqrt(75)+sqrt(48)
11 val=string('sqrt(27)-sqrt(75)+sqrt(48)');
12 val_2=evstr(val)
```

Scilab code Exa 23.2 Rationalise

1

```
2 //1/(sqrt(5)-sqrt(2))
3 clear;
4 clc;
5 close;
6 //rationalising the denominator
7 function[denom1]=inputs(a,b)
8          denom1=(sqrt(a)+sqrt(b))*(sqrt(a)-sqrt(b))
9 endfunction
10 [denom1]=inputs(5,2);
11 denom1=string(denom1);
12 numer1=string('(sqrt(5)+sqrt(2))');
13 val=string(numer1+'/'+denom1)
14 mprintf("i.e.,")
15 val=evstr(val)
```

Scilab code Exa 23.3 Simplify surds

```
1
2 //(sqrt(5)-1)/(sqrt(5)+1)
3 clear;
4 close;
5 clc;
6 //rationalising the denominator
7 function[denom1]=inputs(a,b)
8          denom1=(sqrt(a)+sqrt(b))*(sqrt(a)-sqrt(b));
9 endfunction
10 [denom1]=inputs(5,1);
11 denom1=string(denom1);
12 numer1=string('(6-2*sqrt(5))');
13 val=string(numer1+'/'+denom1)
14 mprintf("i.e.,")
15 val=evstr(val)
```

Arithmetical and Geometrical Series

Scilab code Exa 24.1 Arithmetic series

```
1
2 clc;
3 clear;
4 close;
5 //ex(1) 7,13,19,25....
6 common_diff=19-13
7 //ex(2) 6,4,2,0,-2
8 common_diff=2-4
```

Scilab code Exa 24.2 Nth term in arithmetic series

```
1
2 clc;
3 clear;
4 close;
5 //ex(1) in the series 7,10,13,.... the common difference is 3. 10th trerm is ?
```

```
6 nth_term=string('7+(n-1)*3')
7 term10=7+(10-1)*3
8 //ex(2) i the series 6,2,-2,-6,....and d=-4
9 nth_term=string('6-(n-1)*4')
10 term8=6+(8-1)*-4
```

Scilab code Exa 24.3 Arithmetic mean

```
1
2 //insert 3 A.M's between 4 and 20
3 clc;
4 clear;
5 close;
6 //let 4,a,b,c,20 are in A.P. using, l=a+(n-1)*d
7 d=(20-4)/(5-1);
8 a=4+d;
9 b=a+d;
10 c=b+d;
11 mprintf("the five terms are 4,%i,%i,%i,20",a,b,c)
```

Scilab code Exa 24.4 Finding common difference in AP

```
1
2 //sum of A.P of 8 terms is 90.1st term is 6.
3 clear;
4 clc;
5 close;
6 // using s=n*{2*a+(n-1)*d}/2
7 //substituting given values
8 for d=0:0.001:100
9 if (90==8/2*{2*6 + (8-1)*d})
10 format(5)
11 d
```

```
    12 break
    13 end
    14 end
```

Scilab code Exa 24.5 Finding n value in arithmetic sum

```
1
2 clear;
3 clc;
4 close;
5 // using s=n*{2*a+(n-1)*d}/2
6 a=3;d=3;s=135;
7 //substituting given values
8 n=poly(0,'n');
9 p=n/2*{6 + (n-1)*3}-135;
10 n=roots(p)
11 mprintf("\n As root -10 is inadmissible, the solution is n=9")
```

Scilab code Exa 24.6 Geometric series

```
1
2 clc;
3 clear;
4 close;
5 //ex(1).1,2,4,8,...
6 commom_ratio=4/2
7 //ex(2). 1,1/2,1/4,1/8,....
8 common_ratio=(1/4)/(1/2)
9 //ex(3). 2,-6,18,-54
10 common_ratio=-6/2
11 //ex(4). R,R^2,R^3,R^4....
12 R=poly(0,'R');
```

Scilab code Exa 24.7 Seventh term of given series

```
1
2 //7th term of the series 3,6,12,....
3 clear;
4 clc;
5 close;
6 //in the series r=2, so using the formula
7 // nth term=a*r^(n-1)
8 a=3;n=7;//given data
9 term7=3*(2)^(7-1);
10 mprintf("\n the seventh term of the series is %i", term7)
```

Scilab code Exa 24.8 Eighth term of given series

Scilab code Exa 24.9 Finding the 5th term

Scilab code Exa 24.10 Finding the common ratio

```
1
2  //3rd term of G.P is 4.5 and 9th is 16.2
3  clear;
4  clc;
5  close;
6  // nth term=a*r^(n-1)
7  term3=4.5; //given data
8  //'a*r^(3-1)=4.5 ---equ(1)'
9  term9=16.2; //given
10  //'a*r^(9-1)=16.2 ---equ(2)'
11  mprintf("\n the common ratio is :\n");
12  format(7)
13  r=(16.2/4.5)^(1/6) //equ(2)/equ(1)
```

Scilab code Exa 24.11 Sum of seven terms of the series

```
1
2  //sum of 7 terms of the series 2,3,4,5,....
3  clear;
4  clc;
5  close;
6  r=3/2; a=2; n=7; //given
7  //using the formula
8  S=string('a*(r^(n)-1)/(r-1)')
9  disp("substituting the given values")
10 format(6)
11 Sum=evstr(S)
```

Scilab code Exa 24.12 Sum of 7 terms

```
1
2 //sum of 7 terms of the series 4,-8,16,....
3 clear;
4 clc;
5 close;
6 r=-8/4; a=4; n=7; // given
7 // using the formula
8 S=string('a*(r^(n)-1)/(r-1)');
9 // substituting the values
10 Sum=evstr(S)
```

Scilab code Exa 24.13 Sum of infinite terms

```
1
2 //sum to infinity series 2 + 1/2 + 1/8 + .....
3 clear;
4 clc;
5 close;
6 a=2;r=1/4;//given
```

```
7 //using the formula
8 S_infinity=string('a/(1-r)');
9 Sum=evstr(S_infinity)
```

Scilab code Exa 24.14 Sum to infinity of the series

```
1
2 //sum to infinity series 5 - 1 + 1/5 - .....
3 clear;
4 clc;
5 close;
6 a=5;r=-1/5;//given
7 //using the formula
8 S_infinity=string('a/(1-r)');
9 Sum=evstr(S_infinity)
```