

Various Stock Market Analyses

Active Trading Strategy, Sector Portfolio Analysis, and Improved Stock Clustering

Dylan Alexander

Capstone Project for Springboard Intermediate Data Science in Python 02/10/2019

Introduction

Traditionally, finance professionals divide the S&P 500 into 11 sectors for analysis and traders try their best to earn profits from the market by buying low and selling high. Trading styles range from highly active traders entering and exiting multiple positions everyday to earn quick 1-2% profits to long term investors who want to "set it and forget" with a portfolio they are confident will yield vast returns over the years. With the emergence of Data Science professionals implementing analyses on the vast amount of price data the stock market provides, many fine tunes strategies for both types of investors have been developed. In this project, three areas will be covered in depth. First, for the active trader we discuss and analyze a trading strategy that exploits the data produced from a powerful yet lesser known indicator called the Fisher Transform. Next, we will find portfolio allocations within each traditional sector for both risk averse investors and savvy investors who will take on a bit more risk for a justified, higher return. Finally, we will use machine learning to see whether or not these traditional sectors provide investors with the most efficient clusters in regards to stock price returns and volatility when choosing a portfolio of stocks.

Data Wrangling

I gathered a total of 36 datasets. They are time series datasets with a start date of 04-29-2013 and an end date of 01-09-2019.

- A dataset for each sector containing the *prices* of 8 10 stocks from their respective sectors (11 datasets)
- A dataset containing the *prices* of all chosen stocks in all sectors (1 dataset)
- A dataset for each sector containing the returns of 8 10 stocks from their respective sectors (11 datasets)
- A dataset containing the *returns* of all chosen stocks in all sectors (1 dataset)
- A dataset for each sector containing the daily volume, open price, close price, low price, and high price for 8 -10 stocks from their respective sectors (11 datasets)
- A dataset containing the daily volume, open price, close price, low price, and high price for all chosen stocks in all sectors (1 dataset)

I selected the stocks based off volume on a random day. I filtered each sector from the S&P 500 by volume in descending order. I then chose the top 10 highest volume stocks from each sector for that day. I acquired my data through the api from Tiingo.com using pandas_datareader.data. I used the pivot, concat, and drop functions to name a few. I also used the pct_change() method to calculate returns where necessary and a for loop to quickly identify missing values.

Fisher Strategy for Active Traders

For investors who would like to actively trade, the Fisher Transform is a useful indicator for finding buy and sell signals. Created and introduced by John Ehlers in 2002, the Fisher Transform takes price as an input and "transforms" it into an approximately Gaussian distribution. Overlaying the price chart of an asset with its Fisher Transform output can lead to insights for traders. In this section, a strategy of buying when the selected asset's Fisher Transform value goes below 1.5 standard deviations and selling when the asset's Fisher Transform value goes above 1.5 standard deviations is tested. Schlumberger (SLB) is the selected asset in this study.

First, the histogram of the Fisher Transform values shows the new Gaussian representation of the SLB price:

Next, two lines, the first at 2.8146 and the second at -2.8146, are plotted over the SLB Fisher Transform values to represent the range between 1.5 standard deviations.

The DataFrame of all trades shows the start dates, end dates, and profits for each trade executed by the strategy.

	Price	Profit	End Date	low
date				
2013-06-06	63.936309	0.549521	2013-06-07	62.627927
2013-12-04	76.697001	0.764510	2013-12-06	76.011579
2013-12-16	76.450952	0.237262	2013-12-20	74.614372
2014-07-31	96.036831	0.726545	2014-08-11	94.185028
2014-09-12	90.900451	2.436580	2014-09-16	90.571424
2014-10-13	80.860673	2.703359	2014-10-17	76.476607
2014-12-16	71.646199	2.403395	2014-12-17	70.109456
2015-03-12	72.737616	0.062906	2015-03-19	71.344692
2015-07-01	76.174972	-0.307230	2015-07-10	74.295447
2015-09-30	62.725269	2.837507	2015-10-05	60.542572
2016-01-15	57.676290	2.004620	2016-01-22	54.554942
2016-09-15	71.711209	0.196085	2016-09-22	70.375961
2016-11-02	72.607599	0.653618	2016-11-03	71.823257
2017-02-06	76.728914	0.441457	2017-02-10	74.690700
2017-04-27	68.834471	-0.585906	2017-05-08	66.363272
2017-06-27	62.215074	1.532532	2017-07-03	61.967584
2017-08-16	60.644467	0.161820	2017-08-25	59.549801
2017-10-20	60.585851	0.211067	2017-10-26	58.906908
2018-02-09	63.479536	0.408980	2018-02-20	61.707289
2018-08-16	61.294802	2.226583	2018-08-21	60.873026
2018-10-24	52.415984	-0.682268	2018-11-07	50.151645
2018-11-15	47.541228	0.227423	2018-11-19	46.542546
2018-11-28	45.889942	-0.504285	2018-11-29	44.752828
2018-11-30	44.594621	1.186553	2018-12-03	44.179328
2018-12-14	39.100000	-3.020000	2018-12-31	34.990000

Next, the results of the backtesting of the strategy are shown. The backtest assumes a 1 million dollar portfolio size. It also assumes trade position sizes of 100 shares, that no more than 30% of the portfolio is put into one trade, and the execution of a stop loss if 20% of the portfolio will be lost.

	Start Port. Value	End Port. Value	End Date	Shares	Share Price	Trade Value	Profit per Share	Total Profit
2013-06-06	1.000000e+06	1.002528e+06	2013-06-07	4600.0	63.936309	294107.023182	0.549521	2527.795697
2013-12-04	1.002528e+06	1.005509e+06	2013-12-06	3900.0	76.697001	299118.304396	0.764510	2981.587132
2013-12-16	1.005509e+06	1.006435e+06	2013-12-20	3900.0	76.450952	298158.713135	0.237262	925.320144
2014-07-31	1.006435e+06	1.008687e+06	2014-08-11	3100.0	96.036831	297714.177547	0.726545	2252.289192
2014-09-12	1.008687e+06	1.016728e+06	2014-09-16	3300.0	90.900451	299971.488441	2.436580	8040.714912
2014-10-13	1.016728e+06	1.026730e+06	2014-10-17	3700.0	80.860673	299184.490797	2.703359	10002.428814
2014-12-16	1.026730e+06	1.036824e+06	2014-12-17	4200.0	71.646199	300914.036651	2.403395	10094.260613
2015-03-12	1.036824e+06	1.037089e+06	2015-03-19	4200.0	72.737616	305497.988241	0.062906	264.206316
2015-07-01	1.037089e+06	1.035860e+06	2015-07-10	4000.0	76.174972	304699.888107	-0.307230	-1228.920071
2015-09-30	1.035860e+06	1.049763e+06	2015-10-05	4900.0	62.725269	307353.818194	2.837507	13903.782989
2016-01-15	1.049763e+06	1.060588e+06	2016-01-22	5400.0	57.676290	311451.965342	2.004620	10824.945312
2016-09-15	1.060588e+06	1.061451e+06	2016-09-22	4400.0	71.711209	315529.318228	0.196085	862.775479
2016-11-02	1.061451e+06	1.064262e+06	2016-11-03	4300.0	72.607599	312212.674826	0.653618	2810.556486
2017-02-06	1.064262e+06	1.066072e+06	2017-02-10	4100.0	76.728914	314588.548885	0.441457	1809.972065
2017-04-27	1.066072e+06	1.063377e+06	2017-05-08	4600.0	68.834471	316638.567986	-0.585906	-2695.166284
2017-06-27	1.063377e+06	1.071192e+06	2017-07-03	5100.0	62.215074	317296.875098	1.532532	7815.911397
2017-08-16	1.071192e+06	1.072034e+06	2017-08-25	5200.0	60.644467	315351.226225	0.161820	841.464581
2017-10-20	1.072034e+06	1.073153e+06	2017-10-26	5300.0	60.585851	321105.010424	0.211067	1118.655618
2018-02-09	1.073153e+06	1.075197e+06	2018-02-20	5000.0	63.479536	317397.680400	0.408980	2044.899920
2018-08-16	1.075197e+06	1.086776e+06	2018-08-21	5200.0	61.294802	318732.969922	2.226583	11578.233985
2018-10-24	1.086776e+06	1.082546e+06	2018-11-07	6200.0	52.415984	324979.099955	-0.682268	-4230.061855
2018-11-15	1.082546e+06	1.084092e+06	2018-11-19	6800.0	47.541228	323280.351412	0.227423	1546.474227
2018-11-28	1.084092e+06	1.080562e+06	2018-11-29	7000.0	45.889942	321229.592111	-0.504285	-3529.995518
2018-11-30	1.080562e+06	1.089105e+06	2018-12-03	7200.0	44.594621	321081.272972	1.186553	8543.182429
2018-12-14	1.089105e+06	1.064039e+06	2018-12-31	8300.0	39.100000	324530.000000	-3.020000	-25066.000000

A visual of portfolio this portfolio growth:

As seen in the image above, the strategy yields roughly an 9% portfolio return over the time of interest. These aren't phenomenal returns, but still beat inflation significantly. The dip at the end of the graph is due to lack of data. If the strategy were extended to present day, the dip would turn positive and the strategy would yield even greater returns.

Sector Portfolio Analysis

When choosing a stock portfolio for the long term, where should an investor begin his analysis? The stock market has traditionally been divided into 11 sectors: Financial, Industrials, Communications, Technology, Consumer Staples, Consumer Discretionaries, Real Estate, Energy, Utilities, Health, and Materials. Deciding which sectors an investor would like to invest in would be a good first step. But how do they differentiate between these sectors if they would like to minimize risk, maximize return, or find a balance between risk and return they are comfortable with? Once they decide which sector or sectors they would like to invest in, how should they allocate their funds into portfolios with minimal risks or a an optimal balance of risk and return? Moving forward, we will use the Communications sector in our approach to find two portfolio allocations of interest:

- 1. A portfolio made up of Communications sector stocks for minimum risk
- 2. A portfolio made up of Communications sector stocks with a maximum Sharpe Ratio

In statistical terms, risk (volatility) is calculated as the standard deviation of returns of a portfolio. Risk should always be considered when investing. One approach that finds a maximum return while still carefully factoring in risk is the calculating the Sharpe Ratio of a portfolio. The Sharpe ratio is defined by this equation:

Sharpe Ratio(x) = (Rx - Rf) / StdDev(x)

Where:

X is the investment

Rx is the average rate of return of X

Rf is the best available rate of return of a risk-free security (calculated as zero for simplicity of demonstration)

StdDev(x) is the standard deviation of Rx

For a savvy investor, finding a portfolio with the highest Sharpe Ratio is a great way to maximize returns while factoring in risk. However, some investors may want to just find a portfolio with minimal risk. Below, the process of finding both such portfolios is demonstrated for the Communications sector. Please see the Appendix for the calculations of each portfolio for all sectors.

The first step in finding our portfolios of interest is to simulate 25,000 randomly weighted portfolios consisting of the Communications sector stocks in consideration. Next, we display the portfolios in a scatter plot with volatility on the x-axis and returns on the y-axis:

This simulation provides many portfolio variations for an investor to choose from. However, we have also highlighted our portfolios of interest. The portfolio marked with the green star is the portfolio with minimum volatility (risk) for the highly risk-averse investor and the portfolio marked with the red star is the portfolio with the highest Sharpe Ratio for the savvy investor who wants to maximize return while also factoring in risk. The specific portfolio weightings for each portfolio are represented in this bar chart:

For more specific allocations, please see the data frames below.

Minimum Volatility Portfolio:

Maximum Sharpe Ratio Portfolio:

	% Allocation		% Allocation
Portfolio Characteristics		Portfolio Characteristics	
ret	11.157127	ret	28.361015
stdev	13.590495	stdev	20.227419
sharpe	0.820951	sharpe	1.402107
ATVI	3.290000	ATVI	16.800000
CMCSA	8.880000	CMCSA	9.930000
CTL	2.440000	CTL	0.980000
DIS	18.200000	DIS	11.900000
FB	8.740000	FB	20.200000
FOXA	3.700000	FOXA	7.430000
NFLX	0.260000	NFLX	24.000000
Т	24.600000	Т	0.050000
TWTR	1.880000	TWTR	1.490000
VZ	27.800000	VZ	6.940000

Stocks K-Means Clustering

The traditional stock market division of sectors is based on the similarities companies share in their resources, products, services and operations. They can also be thought of as companies that compete for the same consumers. For instance, companies within the technology sector, such as Microsoft and Apple, provide consumers with the latest computer hardware and computer software. They have similar day to day operations, purchase similar raw materials, build similar products, and provide similar services. They compete for consumers who value technology. While this division between companies is a great way to analyze a type of business operation as a whole, do these traditional sectors provide the best clustering when it comes to stock price returns and volatility?

Using the K-Means clustering algorithm, I will find a better set of clusters of stocks in order to provide an investor with the information to build portfolios with better diversification in

regards to return and volatility.

The K-Means clustering algorithm is an unsupervised learning algorithm that groups a "cluster" of data points together based off similarities in their features. In this case, the features of interest are stock price returns and stock price volatility.

First, we need to find the best number of clusters (k). To do this, I will use the Elbow Method. The Elbow Method provides a plot of k on the x-axis and the Sum of Squared Errors on the y-axis:

The best k based off the Elbow curve above is k=6. The best k is determined by where the Sum of Squared Errors is lowest and the rate of decrease of the Sum of Squared Errors slows down significantly. This happens at the "elbow" of the curve. The best k based off the Elbow curve above is k=6.

Next, we visualize the new clusters when k=6:

Based off the scatter plot above, we can see exactly how K-Means has divided the stocks of interest into a new set of clusters based off the similarity of their returns and volatility. Below are the new stock sectors:

					Cluster		
				Ticker			
				AIV	2		
				С	2		
				CNP	2		
				CVS	2		
				CVX	2		
				D	2		
				EMR	2		
				EXC	2		
				F	2		
	Cluster			FE	2		
	Cluster			GIS	2		
Ticker				HST	2		
AAL	0			IP	2		
AAPL	0			JCI	2		
AMAT	0			JNJ	2		
ATVI	0			KIM	2		
				ко	2		
BA	0			МО	2	USB	2
BSX	0		Cluster	PFE	2	VZ	2
CSX	0	Ticker		PG	2	WELL	2
DAL	0	AMD	1	PM	2	WFC	2
FB	0	MU	1	PMM	2	WMT	2
				PPL	2	WY	2
MSFT	0	NFLX	1	so	2	XEL	2
٧	0	NVDA	1	Т	2	XOM	2

	Cluster						
Ticker							
ABT	3						
AES	3						
AMT	3						
BAC	3						
BK	3						
BLL	3						
BMY	3						
CAT	3				Cluster		
CELG	3			Ticker			
CMCSA	3			APA	4		
CSCO	3			CBRE	4		
DHI	3			соту	4		
DIS	3	LLY	3	CTL	4		
EBAY	3	LYB	3	DVN	4		
FDX	3	MPC	3	DWDP	4		
FOXA	3	MRK	3	GE	4		Cluster
GILD	3	MS	3	GPS	4	Ticker	
GM	3	NKE	3	HAL	4	ARNC	5
HBAN	3	NUE	3	HCP	4	CF	5
HBI	3	ORCL	3	KHC	4	FCX	5
INTL	3	PLD	3	KMI	4	MRO	5
IRM	3	RF	3	MOS	4	NEM	5
JPM	3	SBUX	3	PCG	4	NRG	5
KEY	3	TJX	3	SLB	4	TWTR	5
KR	3	WBA	3	WRK	4	WMB	5

Also, a data frame displaying the count of stocks per cluster:

Cluster	0	1	2	3	4	5
Ticker	8	38	11	16	4	33

With these new clusters, an investor can now build more diversified portfolios by choosing stocks from "sectors" more tailored to returns and volatility. Moving forward, running the same analysis as seen in the *Sector Portfolio Analysis* section of this paper will yield different results. These results will presumably lead to better allocations for both the risk averse and savvy investors.

Conclusion

The stock market provides a vast amount of data for analysis. In this paper, we tested a trading strategy using the Fisher Transform indicator an active trader can use to earn a great return on his or her trades. For the more common long term investor, traditional portfolio analysis was conducted to find portfolios with minimal risks and maximum Sharpe Ratios for each sector. If using historical data can provide insights to future performance, the reader now has the information to build a stock portfolio they can be confident will yield great returns. For those who want to take it a step further, machine learning has defined new clusters of stocks and even more information to make even better decisions when they approach the hyper-competitive world of the stock market.

Appendix

Maximum Sharpe Portfolio:

	% Allocation	Portfolio Characteristics	% Allocation
Portfolio Characteristics			2.555.55
ret	13.074932	ret	8.650165
stdev	13.114822	stdev	10.543849
sharpe	0.996958	sharpe	0.820399
DHI	6.720000	DHI	0.240000
EBAY	12.500000	EBAY	1.320000
F	0.890000	F	7.900000
GM	3.390000	GM	8.210000
GPS	0.310000	GPS	2.510000
HBI	2.310000	НВІ	4.870000
NKE	19.900000	NKE	1.630000
PMM	16.600000	РММ	40.300000
SBUX	23.000000	SBUX	14.400000
TJX	14.100000	TJX	18.400000

	% Allocation		% Allocation
Portfolio Characteristics	76 7 Allocation	Portfolio Characteristics	***
ret	8.975357	ret	6.188075
stdev	12.963962	stdev	11.959970
sharpe	0.692331	sharpe	0.517399
соту	1.700000	COTY	4.530000
GIS	6.820000	GIS	8.370000
кнс	0.200000	кнс	0.710000
ко	15.500000	ко	23.200000
KR	13.100000	KR	4.530000
МО	19.700000	MO	14.700000
PG	10.300000	PG	14.100000
РМ	0.080000	PM	8.110000
WBA	20.900000	WBA	3.270000
WMT	11.200000	WMT	18.200000

	% Allocation		% Allocation
Portfolio Characteristics		Portfolio Characteristics	
ret	6.040179	ret	2.716692
stdev	23.905404	stdev	20.103910
sharpe	0.252670	sharpe	0.135133
APA	0.040000	APA	3.080000
CVX	17.700000	CVX	15.400000
DVN	7.060000	DVN	2.680000
HAL	5.160000	HAL	2.120000
KMI	1.700000	KMI	9.790000
MPC	22.700000	MPC	22.200000
MRO	5.980000	MRO	0.670000
SLB	0.250000	SLB	22.000000
WMB	21.300000	WMB	1.910000
хом	17.800000	XOM	19.900000

	% Allocation		% Allocation
Portfolio Characteristics		Portfolio Characteristics	
ret	14.883989	ret	11.649349
stdev	19.842820	stdev	18.510094
sharpe	0.750094	sharpe	0.629351
BAC	15.000000	BAC	1.190000
ВК	4.560000	ВК	22.400000
С	0.090000	С	12.600000
HBAN	19.000000	HBAN	3.660000
JPM	25.600000	JPM	14.000000
KEY	1.950000	KEY	1.920000
MS	5.110000	MS	1.570000
RF	5.520000	RF	0.130000
USB	21.700000	USB	19.400000
WFC	1.320000	WFC	22.800000

	% Allocation		% Allocation	
Portfolio Characteristics		Portfolio Characteristics		
ret	19.308040	ret	12.138708	
stdev	16.584123	stdev	13.914654	
sharpe	1.164248	sharpe	0.872369	
ABT	30.100000	ABT	4.300000	
ВМҮ	3.460000	BMY	1.560000	
BSX	31.800000	BSX	4.630000	
CELG	3.030000	CELG	1.020000	
cvs	1.270000	cvs	18.400000	
GILD	0.940000	GILD	3.570000	
JNJ	11.900000	JNJ	26.400000	
LLY	8.350000	LLY	7.580000	
MRK	7.380000	MRK	10.100000	
PFE	1.520000	PFE	22.300000	

	% Allocation		% Allocation
Portfolio Characteristics		Portfolio Characteristics	
ret	20.778224	ret	11.031110
stdev	19.072882	stdev	16.630362
sharpe	1.089412	sharpe	0.663311
AAL	5.960000	AAL	0.020000
ARNC	0.860000	ARNC	2.880000
ВА	23.100000	ВА	19.700000
CAT	8.480000	CAT	1.130000
CSX	23.000000	CSX	8.440000
DAL	20.500000	DAL	5.250000
EMR	8.090000	EMR	14.100000
FDX	8.080000	FDX	13.600000
GE	0.900000	GE	17.600000
JCI	0.880000	JCI	16.900000

	% Allocation		% Allocation
Portfolio Characteristics		Portfolio Characteristics	
ret	10.911068	ret	9.901559
stdev	17.825969	stdev	17.666680
sharpe	0.612088	sharpe	0.560465
BLL	34.500000	BLL	26.200000
CF	2.200000	CF	1.920000
DWDP	3.490000	DWDP	3.290000
FCX	1.030000	FCX	0.180000
IP	4.710000	IP	9.900000
LYB	21.700000	LYB	14.800000
MOS	6.370000	MOS	7.130000
NEM	19.600000	NEM	10.100000
NUE	5.500000	NUE	24.000000
WRK	0.680000	WRK	2.300000

	% Allocation		% Allocation
Portfolio Characteristics		Portfolio Characteristics	
ret	10.484709	ret	7.092836
stdev	15.990393	stdev	15.415026
sharpe	0.655688	sharpe	0.460125
AIV	26.900000	AIV	14.500000
AMT	17.300000	AMT	23.600000
CBRE	0.870000	CBRE	2.790000
НСР	1.780000	НСР	4.890000
нѕт	10.100000	HST	8.870000
IRM	14.300000	IRM	7.680000
KIM	1.900000	KIM	7.680000
PLD	22.500000	PLD	0.890000
WELL	2.140000	WELL	8.850000
WY	1.940000	WY	20.100000

	% Allocation		% Allocation
Portfolio Characteristics		Portfolio Characteristics	
ret	32.331541	ret	20.362403
stdev	21.460882	stdev	16.660163
sharpe	1.506534	sharpe	1.222221
AAPL	5.830000	AAPL	14.200000
AMAT	1.590000	AMAT	4.230000
AMD	10.000000	AMD	0.780000
csco	6.890000	csco	19.500000
INTL	8.080000	INTL	15.100000
MSFT	16.000000	MSFT	17.500000
MU	2.170000	MU	0.280000
NVDA	23.100000	NVDA	0.320000
ORCL	0.170000	ORCL	12.700000
V	25.900000	V	15.000000

	% Allocation		% Allocation
Portfolio Characteristics		Portfolio Characteristics	
ret	9.331324	ret	7.237942
stdev	15.223198	stdev	14.476308
sharpe	0.612967	sharpe	0.499985
AES	3.200000	AES	5.920000
CNP	21.600000	CNP	3.590000
D	17.800000	D	18.200000
EXC	6.900000	EXC	2.110000
FE	8.010000	FE	9.480000
NRG	8.770000	NRG	1.800000
PCG	0.020000	PCG	2.480000
PPL	3.770000	PPL	9.650000
so	5.530000	so	25.600000
XEL	24.200000	XEL	21.000000

Works Cited

- Finta library https://github.com/peerchemist/finta
- Backtesting https://ntquardian.wordpress.com/2018/07/17/stock-data-analysis-python-v2/
- data https://api.tiingo.com/
- Clustering -

https://www.pythonforfinance.net/2018/02/08/stock-clusters-using-k-means-algorithm-in-python/

- Sector Portfolio Analysis
 - https://www.pythonforfinance.net/2017/01/21/investment-portfolio-optimisation-with-python/
- Cover Image -

http://www.asianage.com/business/in-other-news/290418/earnings-oil-macro-data-to-set-market-tone-in-holiday-shortened-week.html