

Speichermanagement 1: *Geschwindigkeit*Caches und Hierarchien

Technische Grundlagen der Informatik

Automation Systems Group E183-1

Institute of Computer Aided Automation Vienna University of Technology

email: tgi@auto.tuwien.ac.at

Recap

Micro16 Upgrades bisher

- Befehlssatz zu eingeschränkt / im ROM
 - Mehr Befehle in Hardware verbauen (CISC)
 - Interpreter in Mikrocode Befehle im RAM (RISC)
- Gerhard H. Schildt
 Daniela Kahn
 Christopher Kruegel
 Christian Moerz
 Einführung in die
 Technische Informatik
 Zweite, überarbeitete
 und erweiterte Auflage

- Hardware nicht optimal genutzt
 - Pipelining
- Heute: Speicher
- David A. Patterson, John L. Hennessy,
 Computer Organization and Design:
 The Hardware/Software Interface,
 2nd ed., Morgan Kaufmann, 2001

Pipeline – Pentium II (1997)

	Market Committee	PROPERTY AND PERSONS AND PERSO	NAME AND ADDRESS OF	THE PERSON NAMED IN	Name and Part of the Part of t		SECURIOR STATES	No. of Concession, Name of Street, or other party of the last of t	SERVICE DESCRIPTION	NAME OF TAXABLE PARTY.
IFU1	IFU2	IFU3	ID1	ID2	RAT	ROB	DIS	EX	RET1	RET2
			Charles and the second of	No. of Concession, Name of Street, or other Persons, Name of Street, or ot		THE RESIDENCE OF THE PARTY OF T	Company of the latest			The second second second

IFU = Instruction Fetch Unit

ID = Instruction Decode

RAT = Register Allocator

ROB = Reorder Buffer

DIS = Dispatcher

EX = Execute Stage

RET = Retire Unit

Rückblick - Speicherbausteine

- Statisches RAM
 - Information wird in Latches gespeichert
- Sehr kurze Zugriffszeiten
- Hoher Preis, kaum hoch integrierbar
- Dynamisches RAM
 - Information wird in Kondensatoren gespeichert
 - Refresh Cycle
 - Burst Refresh
 - Cycle Stealing
 - Transparent Refresh

Von Neumann vs Harvard Architektur

- Von-Neumann Architektur
- Speicher enthält sowohl
 Programme als auch Daten
- Preisfrage: Welche Architektur hat die Micro16?

- Harvard Architektur
- Getrennter Programm- und Datenspeicher
- Befehle und Daten können gleichzeitig geladen bzw. geschrieben werden

Das Problem - €

große & schnelle Speicher sind unbezahlbar

Speichertyp	Kapazität	Zugriffszeit	Kosten / Einheit
Synchronous SRAM chip	18 Mbit	3.4ns	11 €/MB
DDR3-1600 Modul	8GiB	10-40ns / ~200ns mit Speichercontroller	7 €/GiB
Flash SSD	1TB	100 ns	0,33 €/GB
Festplatte	4TB	10ms	30 €/TB
Blue Ray 4x	25GB	180ms	19,5 €/TB

Lichtblick: "Locality"

Wurde auf einen Speicherinhalt erst kürzlich zugegriffen, so ist die Wahrscheinlichkeit eines baldigen neuerlichen Zugriffs relativ hoch.

Wird auf einen Speicherinhalt gerade zugegriffen, so ist es relativ wahrscheinlich, dass der nächste Zugriff in dessen Nachbarschaft erfolgen wird.

Die Lösung: Speicherhierarchie

- Speicherinhalte werden "gepuffert"
- Staffelung in verschiedene Ebenen
- Je näher an der CPU umso
 - kleiner und
 - schneller der Speicher

CPU

Ziel: Zugriffszeit von Ebene 1 für alle Daten von Ebene n

Terminologie

- Block
- Hit
- Hit-rate (Hit-ratio)
- Hit-time
- Miss
- Miss-rate
- Miss-penalty

Typische Speicherstruktur

Cache: Prinzip

- SRAM ermöglicht extrem schnellen Zugriff der CPU auf Daten/Befehle
- Bei "miss" werden Daten aus dem Hauptspeicher (DRAM) nachgeladen
- Probleme:
 - Wie weiß ich, ob die benötigten Daten im Cache sind ?
 - Falls ja, wie finde ich sie ?

Cache Memory

Cache-Verwaltungsstrategien

- Direct-mapped Cache
 - Zu jeder Speicheradresse gibt es eine genau festgelegte Position im Cache

- Fully associative Cache
 - Jede beliebige Position im Cache darf verwendet werden

Direct-mapped Cache

Ein Teil der Adresse bestimmt die Position im Cache
(z.B. niederwertige Bits): "Cache-Index"
 Für jede Speicherzelle im DRAM ist daher die Position im Cache fix vorgegeben => "direct mapped"

Restliche Adressbits werden zusätzlich zu den Daten abgespeichert: "Cache-Tag"

"Valid-Bit" zur Erkennung bisher unbenutzter Positionen

Direct-mapped Cache: Prinzip

Index	Valid	Tag	Data
(000)	NI NI	_	
(000) ₂	N		
(001) ₂	N		
(010) ₂	N		
(011) ₂	N		
(100) ₂	N		
(101) ₂	N		
(110) ₂	N		
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110) ₂	12	

Index	Valid	Tag	Data
(000) ₂	N		
(001) ₂	N		
(010) ₂	N		
(011) ₂	N		
(100) ₂	N		
(101) ₂	N		
(110) ₂	N		
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110) ₂	12	M

	Index	Valid	Tag	Data
	(000) ₂	N		
	(001) ₂	N		
	(010) ₂	N		
	(011) ₂	N		
	(100) ₂	N		
	(101) ₂	N		
•	(110) ₂	N		
	(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110) ₂	12	M

Index	Valid	Tag	Data
(000) ₂	N		
(001) ₂	N		
(010) ₂	N		
(011) ₂	N		
(100) ₂	N		
(101) ₂	N		
(110) ₂	Y	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110) ₂	12	M
(26) ₁₀	(11010)2	AB	

Index	Valid	Tag	Data
(000) ₂	N		
(001) ₂	N		
(010) ₂	N		
(011) ₂	N		
(100) ₂	N		
(101) ₂	N		
(110) ₂	Υ	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110)2	12	М
(26) ₁₀	(11010) ₂	AB	М

	Index	Valid	Tag	Data
	(000) ₂	N		
	(001) ₂	N		
•	(010) ₂	N		
	(011) ₂	N		
	(100) ₂	N		
	(101) ₂	N		
	(110) ₂	Y	(10)2	12
	(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110) ₂	12	М
(26) ₁₀	(11010)2	AB	M

Index	Valid	Tag	Data
(000) ₂	N		
(001) ₂	N		
(010) ₂	Y	(11)2	AB
(011) ₂	N		
(100) ₂	N		
(101) ₂	N		
(110) ₂	Υ	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110)2	12	M
(26) ₁₀	(11010)2	AB	M
(22) ₁₀	(10110)2	12	

Index	Valid	Tag	Data
(000) ₂	Z		
(001) ₂	Ν		
(010) ₂	Υ	(11) ₂	AB
(011) ₂	N		
(100) ₂	N		
(101) ₂	N		
(110) ₂	Υ	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110) ₂	12	M
(26) ₁₀	(11010)2	AB	M
(22) ₁₀	(10110)2	12	Н

Index	Valid	Tag	Data
(000) ₂	N		
(001) ₂	N		
(010) ₂	Y	(11)2	AB
(011) ₂	N		
(100) ₂	N		
(101) ₂	N		
(110) ₂	Y	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110) ₂	12	M
(26) ₁₀	(11010)2	AB	M
(22) ₁₀	(10110)2	12	Н
(16) ₁₀	(10000)2	FE	

Index	Valid	Tag	Data
(000) ₂	N		
(001) ₂	N		
(010) ₂	Y	(11) ₂	AB
(011) ₂	N		
(100) ₂	N		
(101) ₂	N		
(110) ₂	Y	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110)2	12	М
(26) ₁₀	(11010)2	AB	М
(22) ₁₀	(10110)2	12	Н
(16) ₁₀	(10000)2	FE	М

Index	Valid	Tag	Data
(000) ₂	N		
(001) ₂	N		
(010) ₂	Y	(11)2	AB
(011) ₂	N		
(100) ₂	N		
(101) ₂	N		
(110) ₂	Y	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110) ₂	12	M
(26) ₁₀	(11010)2	AB	M
(22) ₁₀	(10110)2	12	Н
(16) ₁₀	(10000)2	FE	M

Index	Valid	Tag	Data
(000) ₂	Y	(10)2	FE
(001) ₂	N		
(010) ₂	Υ	(11) ₂	AB
(011) ₂	N		
(100) ₂	N		
(101) ₂	N		
(110) ₂	Y	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110)2	12	М
(26) ₁₀	(11010)2	AB	М
(22) ₁₀	(10110)2	12	Н
(16) ₁₀	(10000)2	FE	М
(3) ₁₀	(00011)2	AB	

Index	Valid	Tag	Data
(000) ₂	Y	(10)2	FE
(001) ₂	N		
(010) ₂	Υ	(11) ₂	AB
(011) ₂	N		
(100) ₂	N		
(101) ₂	N		
(110) ₂	Y	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110) ₂	12	M
(26) ₁₀	(11010)2	AB	М
(22) ₁₀	(10110)2	12	Н
(16) ₁₀	(10000)2	FE	M
(3) ₁₀	(00011)2	AB	M

Index	Valid	Tag	Data
(000) ₂	Y	(10)2	FE
(001) ₂	N		
(010) ₂	Y	(11) ₂	AB
(011) ₂	N		
(100) ₂	N		
(101) ₂	N		
(110) ₂	Y	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110) ₂	12	M
(26) ₁₀	(11010)2	AB	M
(22) ₁₀	(10110)2	12	Н
(16) ₁₀	(10000)2	FE	М
(3) ₁₀	(00011)2	AB	M

Index	Valid	Tag	Data
(000) ₂	Υ	(10)2	FE
(001) ₂	N		
(010) ₂	Y	(11)2	AB
(011) ₂	Y	(00)2	AB
(100) ₂	N		
(101) ₂	N		
(110) ₂	Y	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110) ₂	12	М
(26) ₁₀	(11010)2	AB	M
(22) ₁₀	(10110)2	12	Н
(16) ₁₀	(10000)2	FE	M
(3) ₁₀	(00011)2	AB	M
(16) ₁₀	(10000)2	FE	

Index	Valid	Tag	Data
(000) ₂	Υ	(10)2	FE
(001) ₂	N		
(010) ₂	Y	(11) ₂	AB
(011) ₂	Y	(00)2	AB
(100) ₂	N		
(101) ₂	N		
(110) ₂	Y	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110) ₂	12	M
(26) ₁₀	(11010)2	AB	M
(22) ₁₀	(10110)2	12	Н
(16) ₁₀	(10000)2	FE	M
(3) ₁₀	(00011)2	AB	M
(16) ₁₀	(10000)2	FE	Н

Index	Valid	Tag	Data
(000) ₂	Υ	(10)2	FE
(001) ₂	N		
(010) ₂	Y	(11)2	AB
(011) ₂	Y	(00)2	AB
(100) ₂	N		
(101) ₂	N		
(110) ₂	Y	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110)2	12	M
(26) ₁₀	(11010)2	AB	M
(22) ₁₀	(10110)2	12	Н
(16) ₁₀	(10000)2	FE	M
(3) ₁₀	(00011)2	AB	M
(16) ₁₀	(10000)2	FE	Н
(6)10	(00110)2	00	

Index	Valid	Tag	Data
(000) ₂	Y	(10)2	FE
(001) ₂	N		
(010) ₂	Y	(11)2	AB
(011) ₂	Y	(00)2	AB
(100) ₂	N		
(101) ₂	N		
(110) ₂	Y	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110)2	12	М
(26) ₁₀	(11010)2	AB	М
(22) ₁₀	(10110)2	12	Н
(16) ₁₀	(10000)2	FE	M
(3) ₁₀	(00011)2	AB	M
(16) ₁₀	(10000)2	FE	Н
(6)10	(00110)2	00	M

Index	Valid	Tag	Data
(000) ₂	Υ	(10)2	FE
(001) ₂	N		
(010) ₂	Y	(11) ₂	AB
(011) ₂	Y	(00)2	AB
(100) ₂	N		
(101) ₂	N		
(110) ₂	Y	(10)2	12
(111) ₂	N		

Address	Address	Data	Hit/Miss
(22) ₁₀	(10110) ₂	12	M
(26) ₁₀	(11010) ₂	AB	M
(22) ₁₀	(10110)2	12	Н
(16) ₁₀	(10000)2	FE	M
(3) ₁₀	(00011)2	AB	M
(16) ₁₀	(10000)2	FE	Н
(6)10	(00110)2	00	М

Index	Valid	Tag	Data
(000) ₂	Y	(10)2	FE
(001) ₂	N		
(010) ₂	Y	(11) ₂	AB
(011) ₂	Y	(00)2	AB
(100) ₂	N		
(101) ₂	N		
(110) ₂	Y	(00)2	00
(111) ₂	N		

Direct-mapped Cache

- Ein einzelnes Wort (Byte) zu cachen ist viel Aufwand
 - Besser gleich einen ganzen Block (z.b. 2, 4 oder 8 Worte) auf einmal cachen

- Komponenten einer Speicheradresse
 - Index: Gibt an, an welcher Position der Cache beschrieben wird.
 - Tag: Gibt an, welcher Block des Hauptspeichers im Cache steht.
 - Blockgröße: Gibt an, wie viel Worte auf einmal abgespeichert werden.

Direct-mapped Cache: Zugriff

Speicherzugriffszeit / Cache-Performance

$$T_{ex} = (CY_{CPU} + CY_{mem}) \cdot T_{cy}$$

 $T_{\rm ex}$... Ausführungszeit eines Programmes

CY_{CPU}... Verarbeitungszeit in der CPU

CY_{mem} ... Wartezeit (stall) auf Speicher

$$CY_{mem} = Acc_{mem} \cdot R_{miss} \cdot P_{miss}$$

Acc_{mem} ... Speicherzugriffe im Programm

R_{miss} ... Miss-Rate

P_{miss} ... Miss-Penalty

Gilt für Systeme mit Hit Penalty = 0

Speicher und Performance

- Die Cache-Performance ist ein wesentlicher Faktor für die Gesamt-Performance
- Entscheidend für die Cache-Performance sind:
 - Hit-Time
 - Hit-Rate und
 - Miss-Penalty
- Je höher die Performance der CPU desto größer der Einfluss der Cache-Performance

Hit & Miss beim Lesezugriff

- Hit: unser Plan ist aufgegangen ...
- Miss: Daten vom DRAM in den Cache laden
 - Stall der Pipeline
 - Adresse an das Speichermanagement
 - Daten vom DRAM in den Cache
 - Verarbeitung fortsetzen

Hit & Miss beim Schreibzugriff

WR-Hit: "Write-Through (WT)"

- aktualisiere den Cache UND
- aktualisiere sofort auch den Hauptspeicher
 - Datenkonsistenz mit Hauptspeicher garantiert (I/O, Multiprozessor)
 - einfach, häufigster Fall (RD) optimiert
 - häufige Zugriffe auf den Hauptspeicher
 - Performance-Verlust

WR-Hit: "Copy-Back (CB)"

- aktualisiere den Cache UND markiere den Block "dirty"
- aktualisiere Hauptspeicher erst später, wenn der Block aus dem Cache entfernt wird
 - keine Datenkonsistenz mit dem Hauptspeicher
 - Write-Hit erfolgt wesentlich schneller
 - Read-Miss wird langsamer (wegen copy-back)
 - seltener Zugriffe auf den Hauptspeicher
 - oft auch als "Write-Back" bezeichnet

WR-Hit: "Write-Buffer"

- für Datenkonsistenz und schnelle Schreiboperation (Vorteile von WT+CB)
- Buffered Write-Through
 - neuer Wert wird in den Cache und zweiten schnellen Zwischenspeicher eingetragen
 - Prozessor kann mit weiterer Abarbeitung fortfahren
 - falls Puffer voll, muss Prozessor warten

WR-Miss: "Write-Around"

Ignoriere den Cache UND schreibe direkt in den Speicher

meist in Kombination mit WT

WR-Miss: "Fetch-on-Write"

- Ersetze den aktuellen Inhalt des Caches und aktualisiere Tag
- Falls Blockgröße > 1 Wort, lade die restlichen zum Block gehörigen
 Daten aus dem Hauptspeicher nach
 - Lesezugriff auf den Speicher und anschließend Write-Hit
 - Write-Hit je nach WR-Hit Strategie

Am häufigsten verwendete Methode

Assoziativität in Caches

Direct mapped

Fully associative

Direct-mapped Cache

- Für jeden Block gibt es eindeutig nur eine mögliche Position im Cache
- einfache Cache-Verwaltung
- kein Multiplexer im Datenpfad
- mäßige Hit-Rate

Fully Associative Cache

- Jeder Block darf auf jede beliebige Position im Cache gelegt werden
- optimale Hit-Rate
- komplizierte Verwaltung des Caches:
 - Welcher Eintrag wird ersetzt? (globales Optimum)
 - Wo ist ein Block zu finden? (Suche im gesamten Cache)

N-way Set-associative Cache

 Für jeden Block gibt es N verschiedene Möglichkeiten der Platzierung im Cache

- Cache-Verwaltung bleibt handhabbar:
 - Suche in beschränktem Bereich (set)
 - Einfachere Ersetzungsregeln (LRU)
- Vernünftige Hit-Rate

Set-associative Cache: Aufbau

One-way set associative (direct mapped)

Block	Tag	Data
0		
1		
2		
3		
4		
5		
6		
7		

One-way set associative (direct mapped)

Block	Tag	Data
0		
1		
2		
3		
4		
5		
6		
7		

Two-way set associative

Set	Tag	Data	Tag	Data
0				
1				
2				
3				

One-way set associative (direct mapped)

Block	Tag	Data
0		
1		
2		
3		
4		
5		
6		
7		

Two-way set associative

Set	Tag	Data	Tag	Data
0				
1				
2				
3				

Four-way set associative

Set	Tag	Data	Tag	Data	Tag	Data	Tag	Data
0								
1								

Two-way set associative

Set	Tag	Data	Tag	Data
0				
1				
2				
3				

Four-way set associative

Set	Tag	Data	Tag	Data	Tag	Data	Tag	Data
0								
1								

Eight-way set associative (fully associative)

	Tag	Data														
ſ																

Assoziativität und Conflict Misses

Cache Replacement Strategy

- Direct Mapped Cache: eindeutig über Index
- Set-Associative Cache: Auswahl innerhalb des Sets
- Fully Associative Cache: beliebige Auswahl
- Replacement-Strategien:
 - Least Recently Used (LRU)
 - Least Frequently Used (LFU)
 - "reference bit"
 - Random
 - FIFO (first-in first-out)

Mehrprozessorsystem mit Caches

"Harvard" Architektur

Via Nano 1,8 GHz (z.B. in eeePCs)

Speicherverwaltung

Interleaved Memory

- Meist wird sequenziell auf Speicher zugegriffen
- Aufteilung des Speichers in gleich große Bereiche (Bänke)
- Aufeinanderfolgende Adressen liegen in anderer Bank

4-fach Interleaved Memory

Data Bus

Control Bus

Direct Memory Access

- Direkter Datenaustausch zwischen peripheren Geräten und Speicher
- Direct Memory Access Controller
- Burst mode vs Cycle stealing