Package 'RiboseQC'

July 26, 2019

Title Ribo-seQC, a comprehensive Ribo-seq analysis tool

version 0.99.0				
Description Ribo-seQC is a powerful analysis tool for the analysis of Riboseq data, which is able to provide read-length specific analysis of both cytoplasmic and organellar ribosome, and provides interactive visualization of results in a dynamic html report				
Depends rmarkdown, rtracklayer, GenomicAlignments, BSgenome, GenomicFiles, devtools, reshape2, ggplot2, knitr, DT, gridExtra, ggpubr, viridis, Biostrings, GenomicFeatures, BiocGenerics				
License GPL-3 or above				
Encoding UTF-8				
LazyData FALSE				
Name RiboseQC				
biocViews RiboSeq, GenomeAnnotation, Transcriptomics, Software				
RoxygenNote 6.1.1				
NeedsCompilation no				
Author Lorenzo Calviello [aut], Dominique Sydow [aut], Dermott Harnett [ctb, cre], Uwe Ohler [rev, fnd]				
Maintainer Dermott Harnett < Dermot. Harnett@mdc-berlin.de>				
R topics documented:				
calc_cutoffs_from_profiles choose_readlengths create_html_report create_pdfs_from_rds_objects generate_rdata_list get_codon_usage_data get_default_rl_selection get_metagene_data				
· · · · · · · · · · · · · · · · · · ·				

34

get_ps_fromsplicemin	11
get_ps_fromspliceplus	11
get_rl_and_cutoffs	12
get_top50_all_genes	12
get_top50_cds_genes	13
get_top50_mapping	14
load_annotation	14
plot_codon_usage_bulk	15
plot_codon_usage_bulk_rmd	16
plot_codon_usage_positional	17
plot_codon_usage_positional_rmd	18
plot_frame_dist_boxplot	19
plot_frame_dist_boxplot_rmd	20
plot_metagene_bar	21
plot_metagene_bar_rmd	22
plot_metagene_hm	22
plot_metagene_hm_rmd	23
plot_read_biotype_dist_1	24
plot_read_biotype_dist_2	25
plot_read_biotype_dist_by_length	26
plot_read_length_dist	
plot_read_length_dist_by_biotype	
prepare_annotation_files	
RiboseQC_analysis	31
•	

calc_cutoffs_from_profiles

Calculate offsets from 5'end profiles

Description

Index

This function calculates cutoffs and frame resolution for Ribo-seq reads, for each read length and compartment.

Usage

```
calc_cutoffs_from_profiles(reads_profile, length_max)
```

Arguments

reads_profile Profile of 5'ends around start and stop codon, as a DataFrame object with tx_ids

as rows and positions as columns

length_max Maximum cutoff to use

choose_readlengths 3

Details

Three methods are used and combined in the final choice: the position of maximum coverage around start codon is calculated for each transcript, and the most frequent one is stored in the "*_tab" objects. Such frequency values are also subjected to k-means clustering (centers=3) and the first value belonging to the highest cluster is selected, output as "*km_tab" objects. Analysis of aggregate plots, instead of frequencies, is performed again using kmeans (centers=3) using the same analysis above and stored in the "*km_meta" objects, and by simply calculating the maximum value in the profile, stored in the "*meta" objects. for each method, all reads ("absolute_") or only in-frame positions ("in_frame_") are considered. The final choice takes the most frequent cutoff chosen in all methods applied to in-frame positions.

Value

a list with a final_cutoff object, the frame analysis containing the displaying the max frame and the average all the calculated cutoffs in cutoffs, data used for the frame analysis in frames, and profiles around start codons in profiles_start.

Author(s)

Lorenzo Calviello, <calviello.1.bio@gmail.com>

See Also

RiboseQC_analysis

choose_readlengths Filter read lengths for P-sites position calculation

Description

This function selects a subset of readlenghts to be used in the P-sites calculation step

Usage

```
choose_readlengths(summary_data, choice = "max_coverage", nt_signals)
```

Arguments

summary_data output data from the calc_cutoffs_from_profiles function choice Method used to select readlengths, defaults to "max_coverage" nt_signals Profiles of 5'ends around start codons

Details

Three different methods are available to choose readlengths: the "max_coverage" method selects all read lengths with more in-frame signal compared to out-of-frame signal, on all codons; the "max_inframe" method starts with the most accurate read length and progressively selects read lengths which add in-frame signals in codons not covered by previous read lengths; the "all" method selects all available read lengths

4 create_html_report

Value

a list object containing different compartments. Each sub-list contains final_choice, the set of chosen read lengths with cutoffs, and data, the complete stats for each selection method

Author(s)

```
Lorenzo Calviello, <calviello.l.bio@gmail.com>
```

See Also

```
calc_cutoffs_from_profiles
```

create_html_report

Create the Ribo-seQC analysis report in html

Description

This function creates the Ribo-seQC html report based on the Ribo-seQC analysis files generated with RiboseQC_analysis.

Usage

```
create_html_report(input_files, input_sample_names, output_file,
  extended = F)
```

Arguments

input_files Character vector with full paths to data files generated with RiboseQC_analysis.

Must be of same length as input_sample_names.

input_sample_names

Character vector containing input names (max. 5 characters per name). Must be

of same length as input_files.

output_file String; full path to html report file.

extended creates a large html report including codon occupancy for each read length. De-

faults to FALSE

Details

This function creates the html report visualizing the RiboseQC analysis data.

Input are two lists of the same length:

- a) input_files: list of full paths to one or multiple input files (Ribo-seQC analysis files generated with $RiboseQC_analysis$) and
- b) input_sample_names: list of corresponding names describing the file content in max. 5 characters (these are used as names in the report).

For the report, a RMarkdown file is rendered as html document, saved as output_file.

Additionally, all figures in the report are saved as PDF figures in an extra folder in the same directory as the report html file.

Example:

output_file <- "\mydir\myreport.html" will generate the html report \mydir\myreport.html and the folder \mydir\myreport_plots\ for the RDS object files to be stored in.

Value

The function saves the html report file with the file path output_file and a folder containing all figures shown in the html report as RDS object files (located in the same directory as the html report).

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

```
plot_read_biotype_dist_1, plot_read_biotype_dist_2, plot_read_length_dist, plot_read_length_dist_by_biot_read_biotype_dist_by_length, get_metagene_data, plot_metagene_hm_rmd, plot_metagene_hm, plot_metagene_bar_rmd, plot_metagene_bar, plot_frame_dist_boxplot_rmd, plot_frame_dist_boxplot, get_rl_and_cutoffs, get_default_rl_selection, get_top50_mapping, get_top50_cds_genes, get_top50_all_genes, get_codon_usage_data, plot_codon_usage_positional_rmd, plot_codon_usage_positional_plot_codon_usage_bulk
```

```
create_pdfs_from_rds_objects
```

Generate PDF files from RDS object files

Description

This function generates figures as PDF files from RDS object files.

Usage

```
create_pdfs_from_rds_objects(output_rds_path)
```

Arguments

```
output_rds_path
```

String; full path to output folder for RDS object files. Example: /my_path_to/rds/

Value

This function creates PDF files from RDS object files.

6 generate_rdata_list

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

```
create_html_report
```

generate_rdata_list Generate a list of R data objects

Description

This function generates a list of loaded RData files to be used during Ribo-seQC report generation.

Usage

```
generate_rdata_list(input_files)
```

Arguments

Example:

input_files <- c(sample1="//path//to//sample1", sample2="//path//to//sample2")</pre>

Value

This function returns a list of loaded RData objects that were generated by RiboseQC_analysis.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

```
create_html_report
```

get_codon_usage_data 7

get_codon_usage_data Get codon usage data (positional and bulk)

Description

This function processes codon usage data generated by RiboseQC_analysis, i.e. codon usage

- per nucleotide position (i.e. positional codon usage) as well as
- summed up over all positions* (i.e. bulk codon usage)

for a specific data type, originating compartment, and read length, as well as based on a user-defined genetic code.

This data is used as input in plot_codon_usage_bulk to generate a bar plot, and in plot_codon_usage_bulk_rmd to iterativly generate plots for the Ribo-seQC report in section 7.2.

Please check plot_codon_usage for positional codon usage (instead of bulk codon usage).

* Information on positions included in analysis:

Based on P-site corrected reads, the codon usage within CDS regions for protein coding genes is examplatory calculated

- for the first 11 codons of the CDS (referred to as *start*),
- for 11 codons from the middle of the CDS (referred to as middle), and
- for the last 11 codons of the CDS (referred to as stop).

Usage

```
get_codon_usage_data(data, data_type, comp, rl)
```

Arguments

data Object (list of lists) generated by RiboseQC_analysis: res_all.

data_type String; select one of the following:

- Codon_counts: codon count in defined positions*,
- P_sites_percodon: P-sites count in defined positions*, or
- P_sites_percodon_ratio: ratio of P-sites counts to codon counts in defined positions*.
- E_sites_percodon: E-sites count in defined positions*, or
- E_sites_percodon_ratio: ratio of E-sites counts to codon counts in defined positions*.

• A_sites_percodon: A-sites count in defined positions*, or

• A_sites_percodon_ratio: ratio of A-sites counts to codon counts in defined positions*.

comp String for originating compartment.

Check for available originating compartments in the data set using:

names(res_all\$profiles_P_sites\$Codon_count)

rl String for read length.

Check for available read lengths in the data set using:

names(res_all\$profiles_P_sites[[data_type]][[comp]])

Value

This function returns a list (e.g. called codon_usage_bulk_data) with information on bulk codon usage:

- codon_usage_bulk_data\$data contains the data on bulk codon usage,
- codon_usage_bulk_data\$data_type saves the data type used (see parameter data_type)
- codon_usage_bulk_data\$comp saves the originating compartment used (see parameter comp),
 and
- codon_usage_bulk_data\$rl saves the read length used (see parameter rl).

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

```
create_html_report
```

```
get_default_rl_selection
```

Get default choice of read lengths

Description

This function returns selected read lengths per originating compartment. These read lengths build the basis for all P-site based calculations such as metagene and codon usage analyses (e.g. plot_metagene_hm and plot_codon_usage)

This data is used in the Ribo-seQC report in section 4.2.3 (displayed as table).

Usage

```
get_default_rl_selection(rdata_list)
```

get_metagene_data 9

Arguments

rdata_list List of RiboseQC analysis RData objects generated by generate_rdata_list.

Value

This function returns data.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

```
create_html_report
```

get_metagene_data

Get 5'/P-site profile data for metagene analysis

Description

This function processes profile data generated by RiboseQC_analysis.

This data is used as input in plot_metagene_hm to generate plot for the Ribo-seQC report in section 4.1/4.3.

Usage

```
get_metagene_data(data, profile_type, res, comp)
```

Arguments

res Resolution (subcodon or bins)

Subcodon resolution:

five_prime_subcodon

(in order to call res_all $profiles_fivepr\\five_prime_subcodon$) or

P_sites_subcodon

(in order to call res_all\$profiles_P_sites\$P_sites_subcodon)

Read coverage for the first 25nt after the transcription start site (TSS), 25nt before and 33nt after the start codon, 33nt from the middle of the CDS, 33nt before and 25nt after the stop codon, and the last 25nt before the transcription end site (TES).

Bins:

```
five_prime_bins
```

(in order to call res_all\$profiles_fivepr\$five_prime_bins) or

10 get_metagene_data

P_sites_bins

(in order to call res_all\$profiles_P_sites\$P_sites_bins)

Read coverage for 50 bins between TSS and start codon, 100 bins for the CDS,

and 50 after stop codon to TES.

comp String for originating compartment

Check for available originating compartments in the data set using: names(res_all\$profiles_fivepr\$)

profiles

5' or P-site profile data generated by RiboseQC_analysis:

res_all\$profiles_fivepr or
res_all\$profiles_P_sites

Consists of DataFrames each containing counts of 5' or P-site profiles, calculated for different resolution types (see parameter res), originating compartments (see parameter comp), and read lengths per input sample.

Example to access DataFrame:

res_all\$profiles_fivepr[[res]][[comp]][[read_length]] or res_all\$profiles_P_sites[[res]][[comp]][[read_length]]

Value

This function returns data profile_data as list(data_single, data_all, res) with profile data

- for all read lengths individually (profile_data[1]] is data_single) and
- for all read lenghts summarized (profile_data[[2]] is data_all).

with different scaling: no scaling (none), log2 scaling (log2), and z scoring (zscore), accessable via e.g. profile_data[[1]]\$none or profile_data[[2]]\$zscore.

profile_data[[3]] saves the resolution type res for later use during plotting.

profile_data[[4]] stores information on whether data represents 5' or P site profiles (profile_type) for later use during plotting.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

create_html_report

get_ps_fromsplicemin 11

get_ps_fromsplicemin Offset spliced reads on minus strand

Description

This function calculates P-sites positions for spliced reads on the minus strand

Usage

```
get_ps_fromsplicemin(x, cutoff)
```

Arguments

x a GAlignments object with a cigar string cutoff number representing the offset value

Value

a GRanges object with offset reads

Author(s)

Lorenzo Calviello, <calviello.l.bio@gmail.com>

get_ps_fromspliceplus Offset spliced reads on plus strand

Description

This function calculates P-sites positions for spliced reads on the plus strand

Usage

```
get_ps_fromspliceplus(x, cutoff)
```

Arguments

x a GAlignments object with a cigar string cutoff number representing the offset value

Value

a GRanges object with offset reads

Author(s)

Lorenzo Calviello, <calviello.l.bio@gmail.com>

get_top50_all_genes

get_rl_and_cutoffs Get selected read lengths and cutoffs

Description

This function retrieves data on selected read lengths (per originating compartment), e.g. their cutoff values, frame preference and codon gain.

This data is used in the Ribo-seQC report in section 4.2.2 (displayed as table).

Usage

```
get_rl_and_cutoffs(rdata_list)
```

Arguments

rdata_list List of RiboseQC analysis RData objects generated by generate_rdata_list.

Value

This function returns data.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

```
create_html_report
```

get_top50_all_genes Get top 50 abundant genes (all genes)

Description

This function retrieves data on the top 50 abundant genes.

This data is used in the Ribo-seQC report in section 6 (displayed as table).

Usage

```
get_top50_all_genes(rdata_list)
```

Arguments

rdata_list List of RiboseQC analysis RData objects generated by generate_rdata_list.

get_top50_cds_genes 13

Value

This function returns data to be displayed as table in the html report.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

```
create_html_report
```

get_top50_cds_genes

Get top 50 abundant genes (CDS regions for protein coding genes)

Description

This function retrieves data on the top 50 abundant CDS regions for protein coding genes.

This data is used in the Ribo-seQC report in section 6 (displayed as table).

Usage

```
get_top50_cds_genes(rdata_list)
```

Arguments

rdata_list

List of RiboseQC analysis RData objects generated by generate_rdata_list.

Value

This function returns data to be displayed as table in the html report.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

```
create_html_report
```

14 load_annotation

get_top50_mapping

Get top 50 mapping positions

Description

This function retrieves data on the top 50 positions (nucleotide resolution) are listed where most reads (their 5' end) map to, revealing possibly contaminating sequences.

This data is used in the Ribo-seQC report in section 5 (displayed as table).

Usage

```
get_top50_mapping(rdata_list)
```

Arguments

rdata_list List of RiboseQC analysis RData objects generated by generate_rdata_list.

Value

This function returns data to be displayed as table in the html report.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

```
create_html_report
```

load_annotation

Load genomic features and genome sequence

Description

This function loads the annotation created by the prepare_annotation_files function

Usage

```
load_annotation(path)
```

Arguments

path

Full path to the *Rannot R file in the annotation directory used in the prepare_annotation_files funct

plot_codon_usage_bulk

Value

introduces a GTF_annotation object and a genome_seq object in the parent environment

15

Author(s)

```
Lorenzo Calviello, <calviello.1.bio@gmail.com>
```

See Also

```
prepare_annotation_files
```

```
plot_codon_usage_bulk Plot bulk codon usage bar plots
```

Description

This function plots the codon usage summed up over all positions* (bulk codon usage) as bar plot for a specific data type, originating compartment, and read length, as well as based on a user-defined genetic code.

* Information on positions included in analysis:

Based on P-site corrected reads, the codon usage within CDS regions for protein coding genes is examplatory calculated

- for the first 11 codons of the CDS (referred to as *start*),
- for 11 codons from the middle of the CDS (referred to as middle), and
- for the last 11 codons of the CDS (referred to as *stop*).

Usage

```
plot_codon_usage_bulk(codon_usage_data, sample = "",
  output_rds_path = "")
```

Arguments

```
sample String; sample name (selected from the input names given in the input_sample_names parameter of create_html_report).
```

```
output_rds_path
```

String; full path to output folder for RDS object files created by this function. Defaults to NOT save RDS; to save RDS, provide path to destination folder.

```
codon_usage_bulk_data
```

List containing codon usage bulk data and meta data, generated by get_codon_usage_data.

Value

This function returns a plot that can be integrated in the html report and that can be saved as RDS object file.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

```
create_html_report
```

```
plot_codon_usage_bulk_rmd
```

Plot bulk codon usage bar plots within the RMarkdown document

Description

This function generates iteratively all bulk codon usage bar plots; iteration over originating compartments, read length, and data type (codon count, read count, codon-read count ratio).

These plots are displayed in the Ribo-seQC report in section 8.

Usage

```
plot_codon_usage_bulk_rmd(data, sample = "", output_rds_path = "")
```

Arguments

data Object (list of lists) generated by RiboseQC_analysis: res_all.

sample String; sample name (selected from the input names given in the input_sample_names

parameter of create_html_report).

output_rds_path

String; full path to output folder for RDS object files created by this function. Defaults to NOT save RDS; to save RDS, provide path to destination folder.

Value

This function returns iteratively all bulk codon usage plots for the html report and saves the same plots as RDS object file.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

```
create_html_report, get_metagene_data, plot_metagene_hm
```

```
plot_codon_usage_positional
```

Plot positional codon usage heatmap

Description

This function plots the codon usage per nucleotide position* (positional codon usage) as heatmap for a specific data type, originating compartment, read length, and scaling method, as well as based on a user-defined genetic code.

* Information on positions included in analysis:

Based on P-site corrected reads, the codon usage within CDS regions for protein coding genes is examplatory calculated

- for the first 11 codons of the CDS (referred to as *start*),
- for 11 codons from the middle of the CDS (referred to as middle), and
- for the last 11 codons of the CDS (referred to as *stop*).

Usage

```
plot_codon_usage_positional(codon_usage_data, scal, sample = "",
  output_rds_path = "")
```

Arguments

sample

String; sample name (selected from the input names given in the input_sample_names parameter of create_html_report).

output_rds_path

String; full path to output folder for RDS object files created by this function. Defaults to NOT save RDS; to save RDS, provide path to destination folder.

codon_usage_bulk_data

List containing codon usage bulk data and meta data, generated by get_codon_usage_data.

Value

This function returns a plot that can be integrated in the html report and that can be saved as RDS object file.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

```
create_html_report
```

```
plot_codon_usage_positional_rmd
```

Plot positional codon usage heatmaps within the RMarkdown document

Description

This function generates iteratively all positional codon usage heatmaps; iteration over originating compartments, read length, data type (codon count, read count, codon-read count ratio), and scaling method (none, log2, zscale).

These plots are displayed in the Ribo-seQC report in section 7.

Usage

```
plot_codon_usage_positional_rmd(data, sample = "",
  output_rds_path = "")
```

Arguments

data Object (list of lists) generated by RiboseQC_analysis: res_all.

sample String; sample name (selected from the input names given in the input_sample_names

parameter of create_html_report).

output_rds_path

String; full path to output folder for RDS object files created by this function. Defaults to NOT save RDS; to save RDS, provide path to destination folder.

Value

This function returns iteratively all positional codon usage plots for the html report and saves the same plots as RDS object file.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

```
create_html_report
```

```
plot_frame_dist_boxplot
```

Plot frame coverage of 5'-site profiles

Description

This function plots the frame coverage of 5'-site profiles, i.e. the fraction of reads (their 5' end) in frame 0, 1, and 2 (defined by start codon), as boxplots (per-frame distributions over all transcripts) for individual read lengths as well as for all read lengths summarized.

Usage

```
plot_frame_dist_boxplot(analysis_frame_cutoff, comp, sample = "",
  output_rds_path = "")
```

Arguments

analysis_frame_cutoff

Object containing statistics on frame coverage (per originating compartment and read length) generated by RiboseQC_analysis.

Example:

res_all\$selection_cutoffs\$analysis_frame_cutoff

comp String for originating compartment

 $Check for available \ originating \ compartments \ in \ the \ data \ set using: \ names (res_all\$profiles_fivepr\$ five \ for \ available \ originating \ compartments \ in \ the \ data \ set \ using: \ names \ (res_all\$profiles_five \ for \ available \ originating \ compartments \ in \ the \ data \ set \ using: \ names \ (res_all\$profiles_five \ for \ available \ originating \ compartments \ in \ the \ data \ set \ using: \ names \ (res_all\$profiles_five \ for \ available \ originating \ compartments \ in \ the \ data \ set \ using: \ names \ (res_all\$profiles_five \ for \ available \ originating \ compartments \ originating \ originatin$

sample String; sample name (selected from the input names given in the input_sample_names

parameter of create_html_report).

output_rds_path

String; full path to output folder for RDS object files created by this function. Defaults to NOT save RDS; to save RDS, provide path to destination folder.

Details

This plot is used in the Ribo-seQC report in section 4.2.1.

Value

This function returns a plot that can be integrated in the html report and that can be saved as RDS object file.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

```
create_html_report
```

```
plot_frame_dist_boxplot_rmd
```

Plot frame coverage of 5'-site profiles within the RMarkdown document

Description

This function generates iteratively all frame coverage boxplots (iteration over originating compartments).

These plots are displayed in the Ribo-seQC report in section 4.2.1.

Usage

```
plot_frame_dist_boxplot_rmd(analysis_frame_cutoff, sample = "",
  output_rds_path = "")
```

Arguments

analysis_frame_cutoff

Object containing statistics on frame coverage (per originating compartment and read length) generated by RiboseQC_analysis.

Example:

res_all\$selection_cutoffs\$analysis_frame_cutoff

sample

String; sample name (selected from the input names given in the input_sample_names parameter of create_html_report).

output_rds_path

String; full path to output folder for RDS object files created by this function. Defaults to NOT save RDS; to save RDS, provide path to destination folder.

Value

This function integrates plots in the html report.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

```
create_html_report
```

plot_metagene_bar 21

plot_metagene_bar

Plot 5'/P-site profile per read length as barplot

Description

This function plots a 5' or P-site profile as barplot (for a specific originating compartment, resolution type, and read length).

This plot is used in the Ribo-seQC report in section 4.1/4.3.

Usage

```
plot_metagene_bar(metagene_data, rl, sample = "", output_rds_path = "")
```

Arguments

sample

String; sample name (selected from the input names iven in the input_sample_names

parameter of create_html_report).

output_rds_path

String; full path to output folder for RDS object files created by this function. Defaults to NOT save RDS; to save RDS, provide path to destination folder.

data

Profile data for a resolution type, specific originating compartment, and read length.

Example:

res_all\$profiles_fivepr\$five_prime_subcodon\$nucl\$'30'

or

res_all\$profiles_P_sites\$five_prime_subcodon\$nucl\$'30'

Shown in bold are fixed list names, remaining list names should be adapted to the resolution type, specific originating compartment, and read length of interest.

Value

This function returns a plot that can be integrated in the html report and that can be saved as RDS object file.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

```
create_html_report
```

22 plot_metagene_hm

Description

This function plots a 5' or P-site profile as barplot (for a specific originating compartment, resolution type, and read length).

This plot is used in the Ribo-seQC report in section 4.1/4.3.

Usage

```
plot_metagene_bar_rmd(metagene_data, sample = "", output_rds_path = "")
```

Arguments

```
metagene_data
```

sample

String; sample name (selected from the input names given in the input_sample_names parameter of create_html_report).

output_rds_path

String; full path to output folder for RDS object files created by this function. Defaults to NOT save RDS; to save RDS, provide path to destination folder.

Value

...

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

```
create_html_report
```

plot_metagene_hm

Plot 5'/P-site profiles (for all read lengths) as heatmap

Description

This function plots a 5' or P-site profiles for all read lengths as heatmap (for a specific originating compartment, resolution type, and scaling method).

This plot is used in the Ribo-seQC report in section 4.1/4.3.

Usage

```
plot_metagene_hm(metagene_data, scal, sample = "",
 output_rds_path = "")
```

Arguments

Scaling method: no scaling (none), log2 scaling (log2), or z scoring (zscore). scal

sample String; sample name (selected from the input names iven in the input_sample_names

parameter of create_html_report).

output_rds_path

String; full path to output folder for RDS object files created by this function.

Defaults to NOT save RDS; to save RDS, provide path to destination folder.

data_profile Profile data for a specific originating compartment and resolution type, gener-

ated using get_metagene_data.

Value

This function returns a plot that can be integrated in the html report and #' that can be saved as RDS object file.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

```
create_html_report
```

plot_metagene_hm_rmd Plot 5'/P-site profiles as heatmaps within the RMarkdown document

Description

This function generates iteratively all heatmap plots (iteration over originating compartments, resolution types, and scaling methods).

These plots are displayed in the Ribo-seQC report in section 4.1/4.3.

Usage

```
plot_metagene_hm_rmd(data, profile_type, sample = "",
 output_rds_path = "")
```

Arguments

sample

String; sample name (selected from the input names given in the input_sample_names

parameter of create_html_report).

output_rds_path

String; full path to output folder for RDS object files created by this function. Defaults to NOT save RDS; to save RDS, provide path to destination folder.

profiles

5' or P-site profile data generated by RiboseQC_analysis:

```
res_all$profiles_fivepr or
res_all$profiles_P_sites
```

Consists of DataFrames each containing counts of 5' or P-site profiles, calculated for different resolution types (see parameter res), originating compartments (see parameter comp), and read lengths per input sample.

Example to access DataFrame:

```
res_all$profiles_fivepr[[res]][[comp]][[read_length]] or
res_all$profiles_P_sites[[res]][[comp]][[read_length]]
```

Value

This function returns iteratively all 5' or P-site profile plots for the html report and saves the same plots as RDS object file.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

```
create_html_report, get_metagene_data, plot_metagene_hm
```

```
plot_read_biotype_dist_1
```

Plot read location distribution by biotype (and originating compartment)

Description

This function plots the read location distribution by biotype (and originating compartment) for one input sample.

This plot is used in the Ribo-seQC report in section 1.1.

Usage

```
plot_read_biotype_dist_1(pos, sample, output_rds_path = "")
```

Arguments

pos res_all\$read_stats\$positions generated by RiboseQC_analysis.

data.frame containing the number of reads per biotype (rows) and originat-

ing compartment (columns).

sample String; sample name (selected from the input names given in the input_sample_names

parameter of create_html_report).

output_rds_path

String; full path to output folder for RDS object files created by this function. Defaults to NOT save RDS; to save RDS, provide path to destination folder.

Value

This function returns a plot that can be integrated in the html report and that can be saved as RDS object file.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

```
create_html_report
```

```
plot_read_biotype_dist_2
```

Plot read location distribution by originating compartment (and biotype)

Description

This function plots the read location distribution by originating compartment (and biotype) for all input samples.

This plot is used in the Ribo-seQC report in section 1.2.

Usage

```
plot_read_biotype_dist_2(rdata_list, output_rds_path = "")
```

Arguments

String; full path to output folder for RDS object files created by this function. Defaults to NOT save RDS; to save RDS, provide path to destination folder.

Value

This function returns a plot that can be integrated in the html report and that can be saved as RDS object file.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

```
create_html_report
```

```
plot_read_biotype_dist_by_length
```

Plot read length and location distribution (distribution per read length)

Description

This funtion plots the biotype distribution for each originating compartment as distribution per read length for one input sample (displayed as read count and as read count fraction).

This plot is used in the Ribo-seQC report in section 3.2.

Usage

```
plot_read_biotype_dist_by_length(reads_summary, sample,
  output_rds_path = "")
```

Arguments

 ${\tt reads_summary} \quad {\tt res_all\$read_stats\$reads_summary} \ \ {\tt generated} \ \ {\tt by} \ {\tt RiboseQC_analysis}$

List of DataFrames: one DataFrame for each originating compartment, each DataFrame contains read counts per biotype (rows) and read lengths (columns).

sample String; sample name (selected from the input names given in the input_sample_names

parameter of create_html_report).

output_rds_path

String; full path to output folder for RDS object files created by this function. Defaults to NOT save RDS; to save RDS, provide path to destination folder.

Value

This function returns a plot that can be integrated in the html report and that can be saved as RDS object file.

plot_read_length_dist 27

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

See Also

```
create_html_report
```

```
plot_read_length_dist Plot read length distribution
```

Description

This function plots the read length distribution per originating compartment for one input sample.

This plot is used in the Ribo-seQC report in section 2.

Usage

```
plot_read_length_dist(rld, sample, output_rds_path = "")
```

Arguments

rld res_all\$read_stats\$rld generated by RiboseQC_analysis

data. frame containing the number of reads per originating compartment (rows)

and read lengths (columns).

sample String; sample name (selected from the input names given in the input_sample_names

parameter of create_html_report).

output_rds_path

String; full path to output folder for RDS object files created by this function. Defaults to NOT save RDS; to save RDS, provide path to destination folder.

Value

This function returns a plot that can be integrated in the html report and that can be saved as RDS object file.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

```
create_html_report
```

```
plot_read_length_dist_by_biotype
```

Plot read length and location distribution (distribution per biotype)

Description

This funtion plots the read length distribution for each originating compartment as distribution per biotype for one input sample (displayed as read count and as read count fraction).

This plot is used in the Ribo-seQC report in section 3.1.

Usage

```
plot_read_length_dist_by_biotype(reads_summary, sample,
  output_rds_path = "")
```

Arguments

reads_summary res_all\$read_stats\$reads_summary generated by RiboseQC_analysis

List of DataFrames: one DataFrame for each originating compartment, each DataFrame contains read counts per biotype (rows) and read lengths (columns).

sample String; sample name (selected from the input names given in the input_sample_names

parameter of create_html_report).

output_rds_path

String; full path to output folder for RDS object files created by this function. Defaults to NOT save RDS; to save RDS, provide path to destination folder.

Value

This function returns a plot that can be integrated in the html report and that can be saved as RDS object file.

Author(s)

Dominique Sydow, <dominique.sydow@posteo.de>

```
create_html_report
```

```
prepare_annotation_files
```

Prepare comprehensive sets of annotated genomic features

Description

This function processes a gtf file and a twobit file (created using faToTwoBit from ucsc tools: http://hgdownload.soe.ucsc.edu/admin/exe/) to create a comprehensive set of genomic regions of interest in genomic and transcriptomic space (e.g. introns, UTRs, start/stop codons). In addition, by linking genome sequence and annotation, it extracts additional info, such as gene and transcript biotypes, genetic codes for different organelles, or chromosomes and transcripts lengths.

Usage

```
prepare_annotation_files(annotation_directory, twobit_file, gtf_file,
    scientific_name = "Homo.sapiens", annotation_name = "genc25",
    export_bed_tables_TxDb = T, forge_BSgenome = T, create_TxDb = T)
```

Arguments

annotation_directory

The target directory which will contain the output files

twobit_file Full path to the genome file in twobit format gtf_file Full path to the annotation file in GTF format

scientific_name

A name to give to the organism studied; must be two words separated by a ".",

defaults to Homo.sapiens

annotation_name

A name to give to annotation used; defaults to genc25

export_bed_tables_TxDb

Export coordinates and info about different genomic regions in the annotation_directory?

It defaults to TRUE

forge_BSgenome Forge and install a BSgenome package? It defaults to TRUE

create_TxDb Create a TxDb object and a *Rannot object? It defaults to TRUE

Details

This function uses the makeTxDbFromGFF function to create a TxDb object and extract genomic regions and other info to a *Rannot R file; the mapToTranscripts and mapFromTranscripts functions are used to map features to genomic or transcript-level coordinates. GTF file mist contain "exon" and "CDS" lines, where each line contains "transcript_id" and "gene_id" values. Additional values such as "gene_biotype" or "gene_name" are also extracted. Regarding sequences, the twobit file, together with input scientific and annotation names, is used to forge and install a BSgenome package using the forgeBSgenomeDataPkg function.

The resulting GTF_annotation object (obtained after running load_annotation) contains:

txs: annotated transcript boundaries.

txs_gene: GRangesList including transcript grouped by gene.

seqinfo: indicating chromosomes and chromosome lengths.

start_stop_codons: the set of annotated start and stop codon, with respective transcript and gene_ids. reprentative_mostcommon,reprentative_boundaries and reprentative_5len represent the most common start/stop codon, the most upstream/downstream start/stop codons and the start/stop codons residing on transcripts with the longest 5'UTRs

cds_txs: GRangesList including CDS grouped by transcript.

introns_txs: GRangesList including introns grouped by transcript.

cds_genes: GRangesList including CDS grouped by gene.

exons_txs: GRangesList including exons grouped by transcript.

exons_bins: the list of exonic bins with associated transcripts and genes.

junctions: the list of annotated splice junctions, with associated transcripts and genes.

genes: annotated genes coordinates.

threeutrs: collapsed set of 3'UTR regions, with correspinding gene_ids. This set does not overlap CDS region.

fiveutrs: collapsed set of 5'UTR regions, with correspinding gene_ids. This set does not overlap CDS region.

ncIsof: collapsed set of exonic regions of protein_coding genes, with correspinding gene_ids. This set does not overlap CDS region.

ncRNAs: collapsed set of exonic regions of non_coding genes, with correspinding gene_ids. This set does not overlap CDS region.

introns: collapsed set of intronic regions, with correspinding gene_ids. This set does not overlap exonic region.

intergenicRegions: set of intergenic regions, defined as regions with no annotated genes on either strand.

trann: DataFrame object including (when available) the mapping between gene_id, gene_name, gene_biotypes, transcript_id and transcript_biotypes.

cds_txs_coords: transcript-level coordinates of ORF boundaries, for each annotated coding transcript. Additional columns are the same as as for the start_stop_codons object.

genetic_codes: an object containing the list of genetic code ids used for each chromosome/organelle. see GENETIC_CODE_TABLE for more info.

genome_package: the name of the forged BSgenome package. Loaded with load_annotation function.

stop_in_gtf: stop codon, as defined in the annotation.

Value

a TxDb file and a *Rannot files are created in the specified annotation_directory. In addition, a BSgenome object is forged, installed, and linked to the *Rannot object

Author(s)

Lorenzo Calviello, <calviello.1.bio@gmail.com>

RiboseQC_analysis 31

See Also

load_annotation, forgeBSgenomeDataPkg, makeTxDbFromGFF.

RiboseQC_analysis Perform a Ribo-seQC analysis

Description

This function loads annotation created by the prepare annotation files function, and analyzes a BAM file.

Usage

```
RiboseQC_analysis(annotation_file, bam_files, read_subset = T,
 readlength_choice_method = "max_coverage", chunk_size = 5000000L,
 write_tmp_files = T, dest_names = NA, rescue_all_rls = FALSE,
 fast_mode = T, create_report = T, sample_names = NA,
 report_file = NA, extended_report = F, pdf_plots = T,
 stranded = T, normalize_cov = T)
```

Arguments

annotation_file

Full path to the annotation file (*Rannot). Or, a vector with paths to one annotation file per bam file.

bam_files character vector containing the full path to the bam files

read_subset Select readlengths up to 99 percent of the reads, defaults to TRUE. Must be of

length 1 or same length as bam_files.

readlength_choice_method

Method used to subset relevant read lengths (see choose_readlengths function); defaults to "max_coverage". Must be of length 1 or same length as

bam_files.

chunk_size the number of alignments to read at each iteration, defaults to 5000000, increase

when more RAM is available. Must be between 10000 and 100000000

write_tmp_files

Should output all the results (in *results_RiboseQC_all)? Defaults to TRUE. Must be of length 1 or same length as bam_files.

character vector containing the prefixes to use for the result output files. Defaults dest_names

to same as bam_files

rescue_all_rls Set cutoff of 12 for read lengths ignored because of insufficient coverage. De-

faults to FALSE. Must be of length 1 or same length as bam_files.

fast_mode Use only top 500 genes to build profiles? Defaults to TRUE. Must be of length 1

or same length as bam_files.

Create an html report showing the RiboseQC analysis results. Defaults to TRUE create_report

32 RiboseQC_analysis

sample_names character vector containing the names for each sample analyzed (for the html

report). Defaults to "sample1", "sample2" ...

report_file desired filename for for the html report file. Defaults to the first entry of bam_files

followed by ".html"

extended_report

creates a large html report including codon occupancy for each read length. De-

faults to FALSE

pdf_plots creates a pdf file for each produced plot. Defaults to TRUE

stranded are the analyzed libraries strand-specific? TRUE, FALSE or "inverse". Defaults

to TRUE

normalize_cov export normalized (sum to 1 million) bedgraph files for coverage tracks? De-

faults to TRUE

Details

This function loads different genomic regions created in the prepare_annotation_files step, separating features on different recognized organelles. The bam files is then analyzed in chunks to minimize RAM usage.

The complete list of analysis and output is as follows:

read_stats: contains:

read length distribution (rld) per organelle, positions containes mapping statistics on different genomic regions, reads_pos1 contains 5' end mapping positions for each read, separated by read length. counts_cds_genes: contains read mapping statistics on CDS regions of protein coding genes, including gene symbols, counts, RPKM and TPM values counts_all_genes: is a similar object, but contains statistics on all annotated genes. reads_summary: reports mapping statistics on different genomic regions and divided by read length and organelle.

profiles_fivepr contains:

five_prime_bins: a DataFrame object (one for each read length and compartment) with signal values over 50 5'UTR bins, 100 CDS bins and 50 3'UTR bins; one representative transcript (reprentative_mostcommon) is selected for each gene. five_prime_subcodon containes a similar structure, but for 25nt downstream the Transcription Start Site (TSS), 25nt upstream start codons, 33nt donwstream the start codon, 33nt in the middle of the ORF, 33nt upstream the stop codon, 25nt downstream the stop codon, and 25nt upstream the Transcription End Site (TES).

selection_cutoffs contains:

results_choice: containing the calculated cutoffs and selected readlengths, together with data about the different methods. results_cutoffs has statistics about calculated cutoffs, while analysis_frame_cutoff has extensive statistics concerning cutoff calculations and read length selection, see calc_cutoffs_from_profiles for more details.

P_sites_stats: contains the list of calculated P_sites, from all reads (P_sites_all), uniquely mapping reads (P_sites_all_uniq), or uniquely mapping reads with mismatches (P_sites_uniq_mm). junctions contains statics on read mapping on annotated splice junctions. coverage for entire reads (no 5'ends or P_sites-transformed) on different strands and for all and uniquely mapping reads are also calculated.

RiboseQC_analysis 33

profiles_P_sites contains:

P_sites_bins: profiles for each organelle and read length around binned transcript locations.

P_sites_subcodon: profiles for each organelle and read length around transcript start/ends and ORF start/ends.

Codon_counts: codon occurrences in the first 11 codons, middle 11 codons, and last 11 codons for each ORF.

P_sites_percodon: P_sites counts on each codon, separated by ORF positions as described above. Values are separated by organelle and read length.

P_sites_percodon_ratio: ratio of P_sites_percodon/Codon_counts, as a measure of P_site occupancy on each codon, divided again by organelle and read length, for different ORF positions.

sequence_analysis: contains a DataFrame object with the 50top mapping location in the genome, with the corresponding DNA sequence, number of reads mapping (also in percentage of total n of reads), and genomic feature annotation.

summary_P_sites: contains a DataFrame object summarizing the P_sites calculation and read length selection, including statistics on percentage of total reads used.

Value

the function saves a "results_RiboseQC_all" R file appended to the bam_files path including the complete list of outputs described here. In addition, bedgraph files for coverage value and P_sites position is appended to the bam_files path, including also a summary of P_sites selection statistics, a smaller "results_RiboseQC" R file used for creating a dynamic html report, and a "for_SaTAnn" R object that can be used in the SaTAnn pipeline.

Author(s)

Lorenzo Calviello, <calviello.1.bio@gmail.com>

See Also

prepare_annotation_files, calc_cutoffs_from_profiles, choose_readlengths, create_html_report.

Index

*Topic Ribo-seQC calc_cutoffs_from_profiles, 2 choose_readlengths, 3 create_html_report, 4 create_pdfs_from_rds_objects, 5 generate_rdata_list, 6 get_codon_usage_data, 7 get_default_rl_selection, 8 get_metagene_data, 9 get_ps_fromsplicemin, 11 get_ps_fromspliceplus, 11 get_rl_and_cutoffs, 12 get_top50_all_genes, 12 get_top50_dall_genes, 12 get_top50_mapping, 14 load_annotation, 14 plot_codon_usage_bulk_rmd, 16 plot_codon_usage_positional_rmd,	calc_cutoffs_from_profiles, 2, 4, 33 choose_readlengths, 3, 33 create_html_report, 4, 6, 8–10, 12–14,
prepare_annotation_files, 29	RiboseQC_analysis, 3, 31