Prüfungsbogen: 0

EvaE	xam	Prüfung Informationstechnik I+II		Electric Paper EVALUATIONSSYSTEME
		Prof. Drl	ng. Birgit Vogel-Heuser	
Bitte so m Korrektur:			er oder nicht zu starken Filzstift. Dieser Fragebogen wird r timalen Datenerfassung die links gegebenen Hinweise bei	
Vornan Nachna Für die bitte Ihr mit vor vorgese individu	ame: eindeuti e Matril rangeste	ge Zuordung der Prüfung übertragen Sie kelnummer (= Prüfungsteilnehmer-ID) ellter "0" gewissenhaft in die dafür Felder. Alle Seiten sind vollständig und nicht mit anderen Prüfungen tauschbar.	Prüfungsteilnehmer-ID für den Prüfungsb 0 </td <td>ogen Nr.: 0:</td>	ogen Nr.: 0:
	Überfüh Wichtig Hinweis	chnung zwischen Zahlensystemen ren Sie die unten angegebenen Zahlen in die jer c Achten Sie genau auf die jeweils angegebene c Nur Lösungen innerhalb der angegebenen Erge 0 011) ₂ = (???) ₁₆	Basis!	leere Stellen frei.
	Erge	ebnis:	Ergebnis:	
1.3	(6,0312	5) ₁₀ = (???) ₂		
	Erge	ebnis: ,		

F17744U0P1PL0V0 22.08.2016, Seite 1/31

Prüfungsbogen: 0

EvaExam

Prüfung Informationstechnik I+II

Electric Paper	
----------------	--

2. G: IEEE 754 Gleitkommazahlen

Rechnen Sie die gegebene Gleitkommazahl (angelehnt an die IEEE 754 Darstellung) in eine Dezimalzahl um.

Hinweis: Zwischenergebnisse und Nebenrechnungen werden nicht gewertet. Nur Lösungen innerhalb der angegebenen Ergebnisfelder werden gewertet! Lassen Sie etwaige leere Stellen frei.

- 2.1 Vorzeichen (V) □ V = + □ V = Hinweis: Nur Einfachnennung möglich.
- 2.2 Bias (B, Dezimalzahl)

Ergebnis:

2.3 Biased Exponent (e, Dezimalzahl)

Ergebnis:

2.4 Exponent ohne Vorzeichen (E, Dezimalzahl)

Ergebnis (ohne Vorzeichen):

- 2.5 Vorzeichen des Exponenten E \square sign(E) = + \square sign(E) = Hinweis: Nur Einfachnennung möglich.
- 2.6 Mantisse (M₂, Dualzahl und Denormalisiert)

Ergebnis: ,

2.7 Vollständige Dezimalzahl (Z, Dezimalzahl)

Ergebnis: : : ;; : : :

Prüfung Informationstechnik I+II

3. G: Logische Schaltungen und Schaltbilder

Sie sind zuständig für die Überprüfung der Korrektheit von Schaltungen für die sicherheitstechnische Auslegung einer Anlage. Ein Mitarbeiter legt Ihnen Schaltung 1 und eine minimierte Schaltung 2 vor (siehe **Bild G-3.1**). Sie müssen überprüfen, ob beide Schaltungen das selbe Schaltungsverhalten haben.

Schaltung 2

Bild G-3.1: Schaltungen 1 und 2

Entscheiden Sie hierzu für die Eingaben in der Wahrheitstabelle (**Nummern 1 bis 8 in Bild G-3.2**), welche Ausgaben y₁ bzw. y₂ die Schaltungen produzieren und schreiben sie diese (0 oder 1) in die Lösungsfelder.

Hinweis: Nur Lösungen innerhalb der angegebenen Ergebnisfelder werden gewertet!

Nr.	a	b	с	$\mathbf{y_1}$	\mathbf{y}_2
1	0	0	0		
2	0	0	1		
3	0	1	0		
4	0	1	1		
5	1	0	0		
6	1	0	1		
7	1	1	0		
8	1	1	1		

Bild G-3.2: Wahrheitstabelle

3.1 y_1 und y_2 für **Nr. 1 in Bild G-3.2**

3.2 y_1 und y_2 für **Nr. 2 in Bild G-3.2**

3.3 y_1 und y_2 für **Nr. 3 in Bild G-3.2**

3.4 y_1 und y_2 für **Nr. 4 in Bild G-3.2**

3.5 y_1 und y_2 für **Nr. 5 in Bild G-3.2**

3.6 y_1 und y_2 für **Nr. 6 in Bild G-3.2**

3.7 y_1 und y_2 für **Nr. 7 in Bild G-3.2**

3.8 y_1 und y_2 für **Nr. 8 in Bild G-3.2**

3.9 Ist das Schaltungsverhalten von Schaltung 1 und Schaltung 2 identisch?

Hinweis: Nur Einfachnennung möglich.

- ☐ Das Schaltungsverhalten ist identisch.
- ☐ Das Schaltungsverhalten ist NICHT identisch.
- ☐ Es ist keine eindeutige Antwort möglich.

Prüfung Informationstechnik I+II

Electric Paper

4. G: Normalformen und Minimierung

Gegeben ist folgende Wahrheitstabelle (Bild G-4.1) sowie das folgende leere KV-Diagramm (Bild G-4.2).

a	b	c	у
0	0	0	1
0	0	1	X
0	1	0	1
0	1	1	X
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Bild G-4.1: Wahrheitstabelle

Bild G-4.2: KV-Diagramm

Geben Sie für die im **KV-Diagramm (Bild G-4.2) angegebenen Felder 1 bis 8** an, welchen Wert die Ausgangsvariable y aus der Wahrheitstabelle annimmt. Die Ausgänge mit y = "X" sind don't care bits.

Hinweis: Nur Lösungen innerhalb der angegebenen Ergebnisfelder werden gewertet!

4.1 Feld Nr. 1 in Bild G-4.2

y =

4.2 Feld Nr. 2 in Bild G-4.2

y =

4.3 Feld Nr. 3 in Bild G-4.2

y =

4.4 Feld Nr. 4 in Bild G-4.2

y =

4.5 Feld Nr. 5 in Bild G-4.2

y =

4.6 Feld Nr. 6 in Bild G-4.2

y =

4.7 Feld Nr. 7 in Bild G-4.2

y = [

4.8 Feld Nr. 8 in Bild G-4.2

y = :

4.9 Geben Sie die minimierte Form in DNF (Disjunktiver Normalform) Boolescher Algebra an.

Prüfung Informationstechnik I+II

5. G: Flip-Flops

Gegeben ist die folgende Master-Slave Flip-Flop Schaltung (MS-FF) (siehe Bild G-5.1).

Bild G-5.1: Master-Slave Flip-Flop Schaltung (MS-FF)

Bei t = 0 sind die Flip-Flops in folgendem Zustand:

$$Q_1(t=0)=Q_2(t=0)=0$$

Analysieren Sie die Schaltung, indem Sie für die Eingangssignale A, B und T die zeitlichen Verläufe für Q_1 und Q_2 in die vorgegebenen Koordinatensysteme eintragen.

Hinweis: Signallaufzeiten können bei der Analyse vernachlässigt werden. Übertragen Sie anschließend Ihre Ergebnisse in die Ergebnisfelder. Nur Lösungen innerhalb der angegebenen Ergebnisfelder werden gewertet! Tragen Sie bei einem Zustandswechsel immer den neuen Zustand ein.

Bild G-5.2: Signallaufzeiten

5.1 Q_1 und Q_2 bei **t = 1 in Bild G-5.2**

5.2 Q_1 und Q_2 bei t = 2 in Bild G-5.2

5.3 Q_1 und Q_2 bei **t = 3 in Bild G-5.2**

5.4 Q_1 und Q_2 bei **t = 4 in Bild G-5.2**

5.5 Q_1 und Q_2 bei **t = 5 in Bild G-5.2**

5.6 Q_1 und Q_2 bei **t = 6 in Bild G-5.2**

5.7 Q_1 und Q_2 bei **t = 7 in Bild G-5.2**

5.8 Q_1 und Q_2 bei **t = 8 in Bild G-5.2**

6. G: MMIX-Rechner

Im Registerspeicher eines MMIX-Rechners (**Bild G-6.1**) befinden sich die in **Bild G-6.2** gegebenen Werte. Es sollen nacheinander die vier Befehle (**Bild G-6.4**) abgearbeitet und das Ergebnis in dem Registerspeicher (**Bild G-6.2**) bzw. Datenspeicher (**Bild G-6.3**) abgelegt werden.

	0x 0	0x_1		0x 4	0x_5	
	0x 8	0x 9		0x_C	0x_D	
	_	_				
0x0_	TRAP	FCMP		FADD	FIX	
0.0_	FLOT	FLOT I		SFLOT	SFLOT I	
0x1	FMUL	FCMPE		FDIV	FSQRT	
0.1_	MUL	MUL I		DIV	DIV I	
0x2_	ADD	ADD I		SUB	SUB I	
0,12_	2ADDU	2ADDU I		8ADDU	8ADDU I	
0x8	LDB	LDB I		LDW	LDW I	
OXO_	LDT	LDT I		LDO	LDO I	
0x9	LDSF	LDSF I		CSWAP	CSWAP I	
0x9_	LDVTS	LDVTSI		PREGO	PREGO I	
0xA	STB	STBI		STW	STWI	
UXA_	STT	STTI		STO	STOI	
OvE	SETH	SETMH		INCH	INCMH	
0xE_	ORH	ORMH	ļ	ANDNH	ANDNMH	
0xF_	JMP	JMP B		GETA	GETA B	
OXF_	POP	RESUME		SYNC	SWYM	

Registerspeicher				
Adresse	Wert <u>vor</u> Befehlsausführung			
\$0x9D	0x00 00 00 00 00 00 00 03			
\$0x9E	0x00 00 00 00 00 00 01 01			
\$0x9F	0x00 00 00 00 0B 12 11 05			
\$0xA0	0x00 00 00 00 00 00 61 00			

Bild G-6.2: Registerspeicher

Datenspeicher				
Adresse				
0x00 61 FE				
0x00 61 FF				
0x00 62 00				
0x00 62 01				
0x00 62 02				
0x00 62 03				
0x00 62 04				

Bild G-6.1: MMIX-Code-Tabelle

Bild G-6.3: Datenspeicher

	Maschinensprache	Assemblersprache	Befehlsbeschreibung
1	0x18 9D 9D 9E	1	
2		STW \$0x9F, \$0x9E, \$0xA0	2
3	3		\$0x9E=\$0x9F -0x07
4		4	

Bild G-6.4: Maschinensprache - Assemblersprache - Befehlsbeschreibung

Bearbeiten Sie nun folgende Fragen zu den Befehlen und zu Änderungen, die sich durch die Befehle ergeben.

Hinweis: Kreuzen Sie die richtigen Antworten an oder schreiben Sie diese in die Lösungsfelder.

	Pruiu	ngsbogen: u
vam	Prüfung Informationstechnik I+II	Electric Paper

6. G	6: MMIX-Rechner [Fortsetzung]				
6.1	Geben Sie für den in Nr. 1 in Bild G-6 Hinweis : Nur Einfachnennung möglich	.4 angegebenen Befehl an, wie dieser ir າ.	, wie dieser in Assemblersprache formuliert ist.		
	☐ MUL \$0x9D 0x9D 0x9E☐ MULI \$0x9D \$0x9D 0x9E	☐ MUL \$0x9D \$0x9D \$0x9E	☐ MUL \$0x9D \$0x9D 0x9E		
6.2	In welcher Zelle des Registerspeichers Hinweis : Nur Einfachnennung möglich.	ergeben sich durch den in Nr. 1 in Bild G	- 6.4 angegebenen Befehl Änderungen?		
	□ 0x9D □ 0xA0	□ 0x9E	□ 0x9F		
3.3	Geben Sie die <u>letzten vier Stellen</u> der durc nach der Befehlsausführung an. Nur Lösu	ch den in Nr. 1 in Bild G-6.4 angegebenen E ngen innerhalb der angegebenen Ergebnisfe	Befehl geänderten Registerspeicherzelle Belder werden gewertet!		
	Ergebnis:				
6.4	Wie lautet die Befehlsbeschreibung de Hinweis: Nur Einfachnennung möglich	es in Nr. 2 in Bild G-6.4 angegebenen B	efehls?		
	\square M ₂ [\$0x9E + \$0xA0] = \$0x9F \square \$0x9F = M ₄ [\$0x9E + \$0xA0]	\square M ₄ [\$0x9E + \$0xA0] = \$0x9F	\square \$0x9F = M ₂ [\$0x9E + \$0xA0]		
6.5	Welche Zelle des Speicherbereichs änd Hinweis: Nur Einfachnennung möglich	dert sich durch die Ausführung des in Nr.	2 in Bild G-6.4 angegebenen Befehls?		
	☐ Registerspeicherzelle \$0x9D☐ Datenspeicherzelle 0x00 61 FF	☐ Registerspeicherzelle \$0x9E ☐ Datenspeicherzelle 0x00 62 00	☐ Registerspeicherzelle \$0x9F☐ Datenspeicherzelle 0x00 62 01		
6.6	Wie lautet die Schreibweise des in Nr. Hinweis : Nur Einfachnennung möglich	3 in Bild G-6.4 angegebenen Befehls ir	n Maschinensprache?		
	☐ 0x24 9E 9F 07 ☐ 0x25 9E 9F 07	□ 0x24 9F 9E 07	□ 0x25 9F 9E 07		
6.7	der Befehlsausführung erreicht werder 0x00 00 12 34 00 00 00 00		•		
	Welcher Befehl eignet sich dafür? Ver innerhalb der angegebenen Ergebnisfo	vollständigen Sie den Befehlscode in Ma elder werden gewertet!	schinensprache. Nur Lösungen		
	Ergebnis: 0x				
8.8	Wie lauten die passenden Parameter i genannte Ziel zu erreichen? Hinweis : Nur Einfachnennung möglich	für den in Nr. 4 in Bild G-6.4 angegeber	ien Befehl, um das in Frage 6.7		
	\$0xA0 \$0x12 \$x34 0x12 0x34 \$0xA0	□ \$0xA0 0x12 0x34	☐ \$0x12 \$0x34 0xA0		

F17744U0P7PL0V0 22.08.2016, Seite 7/31

Prüfung Informationstechnik I+II

7. BS: Asynchrone Programmierung

Die zwei periodischen Prozesse PR2 und PR3 sowie der asynchrone Prozess PR1 sollen mit dem Verfahren der asynchronen Programmierung **präemptiv** auf einem Einkernprozessor eingeplant werden. Der Prozess PR1 besitzt die höchste, der Prozess PR3 die niedrigste Priorität. Die Ausführung wird durch einen Interrupt unterbrochen. Tragen Sie in das unter der Abbildung (siehe **Bild BS-7.1**) angegebene leere Diagramm (siehe **Bild BS-7.2**) den Verlauf der Abarbeitung von Programmen und Interrupts ein. Kreuzen Sie in den darauffolgenden Fragen die aktiven Prozesse zu den in **Bild BS-7.2** angegebenen **Zeitpunkten mit den Nummern 1 bis 6** an.

Hinweis: Es werden ausschließlich Ihre Antworten in den folgenden Fragen bewertet. Jeweils nur Einfachnennung möglich.

Bild BS-7.1: Asynchrone Programmierung

Bild BS-7.2: Verlauf der Abarbeitung von Programmen und Interrupts

7.1	Prozess zum Zeitpunkt Nr. 1 in Bild BS-7.2	☐ Interrupt ☐ PR3	☐ PR1 ☐ ruhend	☐ PR2
7.2	Prozess zum Zeitpunkt Nr. 2 in Bild BS-7.2	☐ Interrupt ☐ PR3	☐ PR1 ☐ ruhend	☐ PR2
7.3	Prozess zum Zeitpunkt Nr. 3 in Bild BS-7.2	☐ Interrupt ☐ PR3	☐ PR1 ☐ ruhend	☐ PR2
7.4	Prozess zum Zeitpunkt Nr. 4 in Bild BS-7.2	☐ Interrupt ☐ PR3	☐ PR1 ☐ ruhend	☐ PR2
7.5	Prozess zum Zeitpunkt Nr. 5 in Bild BS-7.2	☐ Interrupt ☐ PR3	☐ PR1 ☐ ruhend	☐ PR2
7.6	Prozess zum Zeitpunkt Nr. 6 in Bild BS-7.2	☐ Interrupt ☐ PR3	☐ PR1 ☐ ruhend	☐ PR2

Prüfungsbogen: 0

EvaExam

Prüfung Informationstechnik I+II

8. BS: Semaphoren

Gegeben ist die Anordnung von Semaphor-Operationen am Anfang und am Ende der Tasks A, B und C in **Bild BS-8.1**. Ermitteln Sie für die Fälle I und II in **Bild BS-8.2**, ob und in welcher Reihenfolge diese Tasks bei der angegebenen Initialisierung der Semaphor-Variablen ablaufen.

Hinweis: Die für die Ausführung eines Tasks notwendigen Semaphoren sollen nur im Block verwendet werden (z.B. Task A startet nur, wenn alle Semaphoren S2, S2, S3, S3 frei sind). Sind mehrere Tasks ablauffähig, gelten folgende Prioritäten: A: hoch, B: mittel, C: niedrig. P(Si) senkt Si um 1, V(Si) erhöht Si um 1.

			Tasks	
		Α	В	С
		P(S2)		
<u>ng</u>		P(S2)	P(S1)	D(C2)
eitu		P(S3)	P(S3)	P(S3)
Taskabarbeitung		P(S3)		
skak				
l ä		V(S3)	V(S2)	V(S1)
\		V(S3)	V(S3)	V(S3)

Bild BS-8.1: Taskabarbeitung

	•	1.
⊢a	ш	1.

		Semaphoren			
Task	S 1	S2	S3		
Start	1	1	2		

Fall II:

		Semaphoren	1
Task	S 1	S2	S3
Start	2	0	1

Bild BS-8.2: Initialisierung der Semaphor-Variablen für Fälle I und II

Schreiben Sie nun die Reihenfolge der Tasks (in Großbuchstaben A, B und C) in die angegebenen Lösungsfelder, und machen Sie im Falle von Wiederholungen von Sequenzen keinen Strich über die Buchstaben.

Hinweis: Nur Lösungen innerhalb der angegebenen Ergebnisfelder werden gewertet!

8.1	Reihenfolge in Fall I in Bild BS-8.2	8.2	Reihenfolge in Fall II in Bild BS-8.2
	Ergebnis:		Ergebnis:

☐ In Fall I wiederholt sich die gesamte Abfolge, in Fall II entsteht ein Deadlock.
 ☐ In Fall I sind nach einiger Zeit nur noch ein Teil der Tasks ablauffähig, in Fall II wiederholt sich die gesamte Folge.

」 In Fall I wiederholt sich die gesamte Abfolge, in Fall II sind nach einiger Zeit nur noch ein Teil der Tasks ablauffähig.

☐ In Fall I wiederholt sich die gesamte Abfolge, in Fall II ebenfalls.

In Fall I entsteht ein Deadlock, in Fall II ebenfalls.

Hinweis: Nur Einfachnennung möglich.

Welche der folgenden Aussagen für Fälle I bzw. II in Bild BS-8.2 trifft zu?

Prüfung Informationstechnik I+II

9. BS: Scheduling

Sechs Prozesse (P1 bis P6) sollen mit einem Einkernprozessor abgearbeitet werden. Das **Bild BS-9.1** zeigt die Zeiten, zu denen die Prozesse am Einkernprozessor eintreffen und die Ausführungszeiten der einzelnen Prozesse. Die Prozesse sollen zur Laufzeit mit unterschiedlichen Schedulingverfahren eingeplant werden. Alle Schedulingverfahren beginnen zum Zeitpunkt t = 0T. Für die Schedulingverfahren, bei denen Prioritäten berücksichtigt werden müssen, ist in **Bild BS-9.2** die entsprechende Prioritätenverteilung (Prioritäten 1 bis 4) gegeben.

Bild BS-9.1: Sollzeitverlauf der Prozesse P1 bis P6

Prozess	P1	P2	P3	P4	P5	P6
Priorität	1 (hoch)	2	2	3	3	4 (niedrig)

Bild BS-9.2: Prioritätenverteilung

Im ersten Teil dieser Aufgabengruppe sollen die Prozesse nicht-präemptiv nach ihren Prioritäten eingeplant werden. Wenn keine andere Regel greift, gilt das Prinzip FIFO.
Tragen Sie den Verlauf der Prozessabarbeitung im nachfolgenden Schema ein. Kreuzen Sie in den darauffolgenden

Fragen die aktiven Prozesse zu den in Bild BS-9.3 angegebenen Zeitpunkten mit den Nummern 1 bis 4 an.

Hinweis: Es werden ausschließlich Ihre Antworten in den folgenden Fragen bewertet. Jeweils nur Einfachnennung möglich.

Bild BS-9.3: Aufgabenteil 1: nicht-präemptiv und FIFO

Prüfungsbogen: 0

EvaExam Prüfung Informationstechnik I+II

9. E	9. BS: Scheduling [Fortsetzung]						
9.1	Prozess zum Zeitpunkt Nr. 1 in Bild BS-9.3	□P1 □P3 □P5 □ruhend	□P2 □P4 □P6	9.3	Prozess zum Zeitpunkt Nr. 3 in Bild BS-9.3	□P1 □P3 □P5 □ruhend	□P2 □P4 □P6
9.2	Prozess zum Zeitpunkt Nr. 2 in Bild BS-9.3	□ P1 □ P3 □ P5 □ ruhend	□ P2 □ P4 □ P6	9.4	Prozess zum Zeitpunkt Nr. 4 in Bild BS-9.3	□P1 □P3 □P5 □ruhend	□ P2 □ P4 □ P6

Im zweiten Teil dieser Aufgabengruppe soll die Einplanung der Prozesse **präemptiv** mit festen Prioritäten erfolgen. Für jedes Prioritätslevel soll dabei ein eigenes Round-Robin-Verfahren angewendet werden. Für die Zeitscheiben soll angenommen werden, dass diese unendlich viele Schlitze besitzen und so zu jedem Zeitpunkt ausreichend freie Schlitze vorhanden sind. Die Zeitschlitze besitzen eine Länge von 3T. Restzeiten können nicht übersprungen werden. Tragen Sie den Verlauf der Prozessabarbeitung im nachfolgenden Schema ein. Kreuzen Sie in den darauffolgenden Fragen die aktiven Prozesse zu den in **Bild BS-9.4 angegebenen Zeitpunkten mit den Nummern 1 bis 10** an.

Hinweis: Es werden ausschließlich Ihre Antworten in den folgenden Fragen bewertet. Jeweils nur Einfachnennung möglich.

Bild BS-9.4: Aufgabenteil 2: nicht-präemptiv und FIFO

9.5	Prozess zum Zeitpunkt Nr. 1 in Bild BS-9.4	□P1 □P3 □P5 □ruhend	□ P2 □ P4 □ P6	9.10 Prozess zum Zeitpunkt Nr. 6 in Bild BS-9.4	□ P1 □ P3 □ P5 □ ruhend	□ P2 □ P4 □ P6
9.6	Prozess zum Zeitpunkt Nr. 2 in Bild BS-9.4	□P1 □P3 □P5 □ruhend	□ P2 □ P4 □ P6	9.11 Prozess zum Zeitpunkt Nr. 7 in Bild BS-9.4	□ P1 □ P3 □ P5 □ ruhend	□ P2 □ P4 □ P6
9.7	Prozess zum Zeitpunkt Nr. 3 in Bild BS-9.4	□P1 □P3 □P5 □ruhend	□ P2 □ P4 □ P6	9.12 Prozess zum Zeitpunkt Nr. 8 in Bild BS-9.4	□ P1 □ P3 □ P5 □ ruhend	□ P2 □ P4 □ P6
9.8	Prozess zum Zeitpunkt Nr. 4 in Bild BS-9.4	□P1 □P3 □P5 □ruhend	□ P2 □ P4 □ P6	9.13 Prozess zum Zeitpunkt Nr. 9 in Bild BS-9.4	□ P1 □ P3 □ P5 □ ruhend	□ P2 □ P4 □ P6
9.9	Prozess zum Zeitpunkt Nr. 5 in Bild BS-9.4	□P1 □P3 □P5 □ruhend	□P2 □P4 □P6	9.14 Prozess zum Zeitpunkt Nr. 10 in Bild BS-9.4	□P1 □P3 □P5 □ruhend	□ P2 □ P4 □ P6

F17744U0P11PL0V0 22.08.2016, Seite 11/31

Prüfungsbogen: 0

EvaExam

10. BS: IEC 61131-3

Eine Zugübergang mit Vollschranken (VS) soll automatisch gesteuert werden, siehe **Bild BS-10.1**. Das Schließen der Schranken VS kommt nur dann in Frage, wenn die Weiche X1 Richtung "A" zeigt. Darüber hinaus muss sowohl die Ampel Y1 grün leuchten als auch der von links anfahrende Zug durch die Lichtschranke L1 detektiert werden. Unmittelbar nach dem Bahnübergang dient Lichtschranke L2 zum automatischen Öffnen der Schranken VS. Darüber Hinaus soll basierend auf dem Signal der Ampel und der ersten Lichtschranke L1 ein Alarm ausgelöst werden, wenn der Zug rotes Licht missachtet. Eine Tabelle der Sensoren und Aktoren des Zugübergangs ist in **Bild BS-10.2** aufgezeigt.

Bild BS-10.1: Skizze der Steuerungselemente des Zugübergangs

Name	Тур	Datentyp	Beschreibung
X1	Aktor	String	Weiche Richtung "A" → X1 = A, Richtung "B" → X1 = "B"
Y1	Sensor	Bool	Ampel grün (true) oder rot (false)
L1, L2	Sensor	Bool	Zug auf Höhe Li detektiert (true) oder nicht (false)
VS	Aktor	Bool	Schranken öffnen (true) oder schließen (false)
Alarm	Sensor	Bool	Fehlerfall (true) oder nicht (false)

Bild BS-10.2: Sensoren und Aktoren des Zugübergangs

Folgendes, unvollständiges, in **Funktionsbausteinsprache** implementiertes Programm (siehe **Bild BS-10.3**) ist als Basis für die folgenden Aufgaben gegeben. Beantworten Sie die nachfolgenden Fragen zu den **Lücken mit den Nummern 1 bis 12 in Bild BS-10.3** und kreuzen Sie die jeweils korrekte Antwort an.

Bild BS-10.3: Steuerungsprogramm realisiert in Funktionsbausteinsprache

Hinweis: Nutzen Sie die Steuerungselemente (**Bild BS-10.1**) sowie die vorgegebenen Sensoren und Aktoren (**Bild BS-10.2**) zum Lösen der folgenden Aufgaben. Jeweils nur Einfachnennung möglich.

Prüfung Informationstechnik I+II

Electric Paper

10. **BS: IEC 61131-3** [Fortsetzung]

10.1	10.1 Lücke Nr. 1 in Bild BS-10.3			10.7 Lücke Nr. 7 in Bild BS-10.3		
	□AND	□OR		☐ Negation (o)	☐ keine Negation ()	
	□XOR	□EQ				
			10.8	Lücke Nr. 8 in Bild BS-10	0.3	
10.2	Lücke Nr. 2 in Bild BS-1	0.3		☐ Negation (o)	☐ keine Negation ()	
	□AND	□OR				
	□XOR	□EQ	10.9	Lücke Nr. 9 in Bild BS-10	0.3	
				□X1	□Y1	
10.3	Lücke Nr. 3 in Bild BS-1	0.3		□L1	□L2	
	☐ Negation (o)	☐ keine Negation ()		□VS	□Alarm	
	Lücke Nr. 4 in Bild BS-10		10.10	DLücke Nr. 10 in Bild BS -	10.3	
	☐ Negation (o)	☐ keine Negation ()		□X1	□Y1	
				□L1	□L2	
10.5	Lücke Nr. 5 in Bild BS-1	0.3		□VS	□Alarm	
	□AND	□OR				
	□XOR	□EQ	10.11	l Lücke Nr. 11 in Bild BS- 1	10.3	
				□AND	□OR	
10.6	Lücke Nr. 6 in Bild BS-1	0.3		□XOR	□EQ	
	□X1	□Y1				
	□L1	□L2	10.12	2Lücke Nr. 12 in Bild BS-	10.3	
	□VS	□Alarm		□X1	□Y1	
				□L1	□L2	
				□VS	□Alarm	

11. BS: Pearl

Im Folgenden sehen Sie das Zustandsdiagramm eines Rechenprozesses mit fünf Grundzuständen. Dieses weist allerdings hinsichtlich der Bezeichnung der Zustände und ihrer Übergänge die Lücken mit den Nummern 1 bis 5 (siehe Bild BS-11.1) auf.

Bild BS-11.1: Zustandsdiagramm des Rechenprozesses

11.1 Ordnen Sie die in **Bild BS-11.1 angegebenen Nummern 1 bis 5** den unten stehenden Bezeichnungen zu. **Hinweis**: Jeweils nur Einfachnennung möglich.

11.2 Welche Beschreibung der Anweisung "SUSPEND" trifft zu? Bitte kreuzen Sie an.

Hinweis: Nur Einfachnennung möglich.

Beendigungsanweisung
DI 11

☐ Blockierungsanweisung

☐ Task kann durch diese Anweisung wieder in "bereit" versetzt werden

☐ Eingeplante Task wird wieder ausgeplant

☐ Vereinbarungsanweisung

Prüfungsbogen: 0

EvaExam

Prüfung Informationstechnik I+II

12. MSE: Automaten

12.1 Welche Eigenschaft muss für einen deterministischen Automaten erfüllt sein? Bitte kreuzen Sie die richtige Antwort an. **Hinweis**: Nur Einfachnennung möglich.

☐ Unendliche Anzahl von Zuständen ☐ Ge

☐ Genau ein Endzustand

☐ Eindeutige Übertragungsfunktion

Betrachten Sie nun im Folgenden die in **Bild MSE-12.1 angegebenen Automaten mit den Nummern 1 bis 3** und beantworten Sie die dazugehörigen Fragen.

Bild MSE-12.1: Automaten 1, 2 und 3

12.2	Bei welchem der Automaten in Bild MSE-12.1 handelt es sich um einen Moore-Automaten?
	Hinweis: Nur Einfachnennung möglich.

- ☐ Automat 1
- ☐ Automat 2
- Automat 3

12.3	Welchen der in Bild MSE-12.1 angegebenen Automaten müssen Sie wählen, damit der Automat bei der Eingabe b
	unabhängig vom aktuellen Zustand immer in den Zustand s2 wechselt?
	Hinweis: Nur Finfachnennung möglich

- Automat 1
- ☐ Automat 2
- ☐ Automat 3

12.4	Automat Nr. 2 in Bild MSE-12.1 soll sich aktuell in Zustand s1 befinden. Welche Eingabe müssen Sie tätigen, damit Sie die
	Ausgabesequenz y1 y2 y2 erhalten? Bitte tragen Sie Ihre Antwort in Großbuchstaben in die gestrichelten Lösungsfelder ein.
	Hinweis: Nur Lösungen innerhalb der angegebenen Ergebnisfelder werden gewertet!

		-	-	-		-	-	-		-	-	-		-	-	-		-	-	-
	:				:				:				:				:			
Lrachnic.	•				:				Ċ				:				:			
Ergebnis:	•				:				÷				:				:			
					•								•							
																				_

12.5 In welchem Zustand befindet sich der **Automat Nr. 2 in Bild MSE-12.1** nach der in Frage 12.4 angegebenen Ausgabesequenz *y1 y2 y2*? Bitte tragen Sie Ihre Antwort in die Lösungsfelder ein. **Hinweis**: Nur Lösungen innerhalb der angegebenen Ergebnisfelder werden gewertet!

		-	-	-		-	-	-		-	-	-		-	-	-		-	-	-	
Trackaia.					٠				٠				•				٠				
Ergebnis:	•				٠				٠				٠				٠				٠
Ligosino.	•				•				•				•				٠				•
•	•	-	-	-		-	-	-	•	_	-	-	•	-	-	-	•	-	_	-	•

Prüfung Informationstechnik I+II

12. MSE: Automaten [Fortsetzung]

12.6 **Automat Nr. 2 in Bild MSE-12.1** soll um die Zustände *s3* und *s4* sowie um das Eingabezeichen *c* erweitert werden. Unabhängig vom aktuellen Zustand soll der erweiterte Automat bei einer Eingabe *c* immer *y3* ausgeben und in den Zustand *s3* wechseln. Aus Zustand *s3* soll der Automat durch Eingabe von *a* oder *b* in den Zustand *s4* wechseln und *y1* ausgeben. Aus Zustand *s4* soll der Automat bei jeder Eingabe in den Zustand *s3* wechseln und *y3* ausgeben. Vervollständigen Sie den angegebenen Automaten gemäß den Angaben.

Hinweis: Ein Entfernen von Bestandteilen des Automaten ist nicht erlaubt.

Training information etcomine

13. MSE: Strukturierte Analyse/Real-Time (SA/RT)

Gegeben ist folgendes (Teil-)System eines industriellen Brotbackofens (siehe **Bild MSE-13.1**). Sobald ein neuer Brotlaib von der Lichtschranke *LS1* erkannt wird, befördert das Band *E1* den Brotlaib zum Backofen. Nachdem das Brot gebacken wurde, wird es durch Lichtschranke *LS2* erkannt. Sobald *LS2* das Brot erkannt hat, wird es durch Band *A1* abtransportiert. Das System soll in den folgenden Aufgaben mittels Strukturierter Analyse/ Real-Time (SA/RT) modelliert werden.

Bild MSE-13.1: Skizze des industriellen Brotbackofens

13.1 Es soll das **Datenflussdiagramm** des Prozesses *Brot produzieren* (siehe **Bild MSE-13.1**) modelliert werden. Der Prozess besteht aus den Subprozessen *Brot hinfahren*, *Brot backen* und *Brot wegfahren*. Folgende Flüsse sollen dabei betrachtet werden:

Materialfluss: Am Anfang des Prozesses befindet sich das Brot auf *E1*. Sobald das Brot am Ofen ist wird es gebacken. Das gebackene Brot wird daraufhin abtransportiert und somit befindet sich das Brot auf *A1*. Das fertige Brot kann dann in den Verkauf gegeben werden.

Sensordaten: Von dem übergeordneten Prozess fließen die Sensordaten der Lichtschranke *LS1* (notwendig um Band *E1* zu bewegen) und der Lichtschranke *LS2* (notwendig um Band *A1* zu bewegen) zu den entsprechenden Subprozessen.

Aktordaten: Die Aktordaten setzen sich aus den Aktordaten der Bänder und den Aktordaten des Ofens zusammen.

Vervollständigen Sie folgendes Datenflussdiagramm entsprechend der Beschreibung.

Prüfung Informationstechnik I+II

13. MSE: Strukturierte Analyse/Real-Time (SA/RT) [Fortsetzung]

13.2 Zur Verfeinerung des Prozesses *Brot produzieren* (siehe **Bild MSE-13.1**) soll eine Antwortzeitspezifikation in Form eines **Timing-Diagramms** durchgeführt werden, um sicherzustellen, dass der Prozess korrekt durchgeführt wird. Die Werte der Sensoren bzw. Aktoren können jeweils TRUE (z. B. Brot erkannt) oder FALSE (z. B. Brot nicht erkannt) sein. Ergänzen Sie das Timing-Diagramm gemäß folgender Angaben (Werteverläufe und Zeitangaben):

Sobald ein neues Brot erkannt wird, liefert die Lichtschranke LS1 für 150 +/- 10 ms den Wert TRUE.

10 +/- 5 ms nach Beginn der Broterkennung durch *LS1* bewegt sich Band *E1* für 300 +/- 10 ms und schaltet dann wieder ab.

Nach Abschalten von E1 wird das Brot für 100 \pm 5 ms gebacken und wird dann direkt von Lichtschranke \pm 2 erkannt. \pm 10 ms den Wert TRUE.

Ebenfalls 10 + -5 ms nach Beginn der Broterkennung durch LS2 bewegt sich Band A1 300 +-10 ms und schaltet dann wieder ab.

Vervollständigen Sie folgendes Timing-Diagramm entsprechend der Beschreibung.

Prüfung Informationstechnik I+II

14. MSE: Zustandsdiagramm

EvaExam

Für ein Quizspiel soll ein Buzzersystem aufgebaut werden. Dieses besteht aus den 2 Buzzern (Tastern) B1 und B2 für die beiden Kandidaten und einem "Moderatortaster" M1 zum Zurücksetzen des Systems. Die jeweilige Variable ist TRUE, wenn der Buzzer bzw. der Moderatortaster gedrückt wird, ansonsten ist die Variable FALSE (z.B. ist B1 TRUE wenn Buzzer 1 gedrückt wird). Jeder Buzzer hat eine LED, um aufzuzeigen, welcher Kandidat als Erstes gedrückt hat. Die LEDs leuchten, solange die Aktionen *LED1_an* bzw. *LED2_an* ausgeführt werden.

Beim Starten geht das System zunächst in den Zustand Funktionstest über. In dem Zustand sollen die LEDs beider Buzzer leuchten. Dieser Zustand soll verlassen werden, wenn der Moderatortaster *M1* gedrückt wird. Das System geht dann in den Zustand *Bereit* über. Wird nun Buzzer *B1* gedrückt und *B2* nicht, wird in den Zustand *Kandidat1* gewechselt. Wird stattdessen B2 gedrückt und B1 nicht, wird in Zustand Kandidat2 gewechselt. Im Zustand Kandidat1 soll LED1 bzw. im Zustand Kandidat2 soll LED2 solange leuchten, bis der jeweilige Zustand wieder verlassen wird. Ein Verlassen der Zustände Kandidat1 und Kandidat2 ist nur durch Drücken des Moderatortasters M1 möglich. Hierdurch wird wieder in den Zustand Bereit gewechselt.

14.1 Vervollständigen Sie folgendes Zustandsdiagramm gemäß der Angaben.

F17744U0P18PL0V0 22.08.2016, Seite 18/31

Prüfungsbogen: 0

EvaExam

Prüfung Informationstechnik I+II

Electric Paper
EVALUATIONSSYSTEME

Sie sollen folgende Variablen für die Beschreibung eines Fahrzeugs definieren, sodass so wenig Speicher wie möglich genutzt wird:

Variable baujahr: Baujahr des Fahrzeugs Variable masse: Masse des Fahrzeugs in Kilogramm, auf zwei Nachkommastellen genau

Variable effklasse: Effizienzklasse des Fahrzeugs (A bis G)
Variable seriennr: 10-stellige, herstellerseitige Seriennummer des Fahrzeugs, die nur Ziffern enthält Kreuzen Sie an, welchen Datentyp Sie jeweils verwenden würden. Jeweils nur Einfachnennung möglich.

15.1 Datentyp für Variable baujahr	□ char □ long int □ double	□int □float	15.3	Datentyp für Variable effklasse	□ char □ long int □ double	□int □float
15.2 Datentyp für Variable masse	e	□int □float	15.4	Datentyp für Variable seriennr	□ char □ long int □ double	□int □float

16. C: Ein-/Ausgabe

Ergänzen Sie die in Bild C-16.1 angegebenen Lücken mit den Nummern 1 bis 4 in der formatierten Ausgabe, sodass das Baujahr sowie die Masse in Gramm ohne Nachkommastellen ausgegeben werden. Kreuzen Sie an, welche Codebestandteile Sie einfügen. Jeweils nur Einfachnennung möglich.

(1)	("Baujahr:	(2)	Masse:	<u>(3)</u> ",	(4)
$\overline{}$		<u> </u>			

Bild C-16.1: Formatierte Ausgabe

16.1 Lücke Nr. 1 in Bild C-16.1	□ print □ println □ scanf	□ printf □ scan □ scanIn	16.3 Lücke Nr. 3 in Bild C-16.1
16.2 Lücke Nr. 2 in Bild C-16.1	□ baujahr □ %i □ %.0f	□ masse □ %f □ %0.f	16.4 Lücke Nr. 4 in Bild C-16.1 baujahr, masse &baujahr, &masse baujahr, masse*1000 &baujahr, &masse*1000 &baujahr, &masse/1000 &baujahr, &masse/1000

17. C: Boolesche Algebra

Bestimmen Sie das Ergebnis der nachfolgend angegebenen Ausdrücke im Dezimalsystem. Gegeben seien dafür folgende Variablen:

int-Variablen: A = 4, B = 22; float-Variable: C = 0.923f; char-Variable: D = 0x2B; int-Zeiger: pi = &A;

Hinweis: Nur Lösungen innerhalb der angegebenen Ergebnisfelder werden gewertet!

17.1 Ausdruck Nr. 1: A && ((int) D)	17.3 Ausdruck Nr. 3: B - (A & ((int) C)) != B
17.2 Ausdruck Nr. 2 : (A B) - 2 * (*pi)	17.4 Ausdruck Nr. 4: (A / B) == ((int) C)

22.08.2016, Seite 19/31 F17744U0P19PL0V0

Prüfungsbogen: 0

EvaExam Prüfung Informationstechnik I+II

Electric Paper

18. C: Kontrollstrukturen

Ihre Aufgabe ist es, die Qualitätskontrolle einer Fertigungsanlage für Schokoladenkugeln zu programmieren. Hierzu soll mittels einer einfachen Berechnung sichergestellt werden, dass die Schokoladenkugeln ein minimales Volumen (Variable *minVolumen*) nicht unterschreiten. Dazu wird anhand von *NUM* Schokoladenkugeln das Volumen jeder Kugel (Variable *aktuelles Volumen*) ermittelt und mit dem minimalen Volumen (Variable *minVolumen*) verglichen. Ist das Volumen der Kugel akzeptabel (d.h. ist ihr Volumen mindestens so groß wie das minimale Volumen), so wird an die entsprechende Stelle im Array *bewertung* eine *1* geschrieben. Ist das Volumen der Kugel nicht akzeptabel (d.h. unterschreitet ihr Volumen das minimale Volumen), so wird an die entsprechende Stelle im Array *bewertung* eine *0* geschrieben. Gleichzeitig soll das Durchschnittsvolumen aller Schokoladenkugeln (Variable *durchschnittVolumen*) sowie die Anzahl der akzeptablen Schokoladenkugeln ermittelt und durch die Ausgabefunktion *ausgabe(float durchschnittVolumen, int anzahlGut)* ausgegeben werden.

Hinweis: Verwenden Sie für Ihr C-Programm die angegebene Vorlage (Bild C-18.1). Kreuzen Sie für die jeweiligen in Bild C-18.1 angegebenen Lücken mit den Nummern 1 bis 10 an, welchen C-Code Sie einfügen. Jeweils nur Einfachnennung möglich.

```
#include <stdio.h>
#include <math.h>
#define NUM 5
int main() {
  float radius[NUM] = \{2, 1.8, 2.3, 1.8, 1.7\};
  float bewertung[NUM] = \{-1, -1, -1, -1, -1\};
  float durchschnittVolumen = 0.0f, summeVolumen = 0.0f;
  float aktuellesVolumen = 0.0f, minVolumen = 20.0f, pi = 3.14159f;
  int i = 0, j = 0;
       aktuellesVolumen =
          bewertung[i] = 1 ;
       summeVolumen += aktuellesVolumen;
  durchschnittVolumen =
  ausgabe (durchschnittVolumen,
  return 0;
}
```

Bild C-18.1: Qualitätskontrolle für die Fertigung von Schokoladenkugeln

Hinweis: Das Volumen einer Kugel wird durch die angegebene Formel ermittelt. Verwenden Sie hierzu die Funktion *double pow(double x, double y)*, welche die Potenz x^y zurückgibt.

$$V=rac{4}{3}\cdot\pi\cdot r^3$$

Prüfungsbogen: 0	
------------------	--

		33-
EvaExam	Prüfung Informationstechnik I+II	Electric Paper

18. C: Kontrollstrukturen [Fortsetz	zungj	
18.1 Lücke Nr. 1 in Bild C-18.1 ☐ if ☐ do	☐ else ☐ for	☐ while ☐ case
18.2 Lücke Nr. 2 in Bild C-18.1 ☐ i > NUM ☐ j > NUM	☐ i < NUM ☐ j < NUM	☐ i <= NUM ☐ j <= NUM
18.3 Lücke Nr. 3 in Bild C-18.1 4.0 / 3.0 * pi * pow (3, radius[i]) 4.0 / 3.0 * pi * pow (radius[i], 3) 4.0 / 3.0 * pi * pow (3, radius+i) 4.0 / 3.0 * pi * pow (radius+i, 3)		
18.4 Lücke Nr. 4 in Bild C-18.1 ☐ if ☐ do	☐ else ☐ for	☐ while ☐ case
18.5 Lücke Nr. 5 in Bild C-18.1 aktuellesVolumen > minVolumen aktuellesVolumen != minVolumen aktuellesVolumen != minVolumen aktuellesVolumen <= minVolumen aktuellesVolumen < minVolumen		
18.6 Lücke Nr. 6 in Bild C-18.1 ☐ if ☐ do	☐ else ☐ for	☐ while ☐ case
18.7 Lücke Nr. 7 in Bild C-18.1 ☐ i ☐ j++	□ i++	□ j
18.8 Lücke Nr. 8 in Bild C-18.1 ☐ i ☐ j++	□ i++	□ j
18.9 Lücke Nr. 9 in Bild C-18.1 i j summeVolumen durchschnittVolumen minVolumen aktuellesVolumen		
18.10Lücke Nr. 10 in Bild C-18.1 i j summeVolumen durchschnittVolumen minVolumen aktuellesVolumen		

Electric Paper

19. C: Zyklische Programmierung einer Krananlage

EvaExam

Die Firma ISA GmbH stellt die Krananlage "flexCrane" (siehe **Bild C-19.1**, **links**) her, welche ein eigenes Kommandosystem mit insgesamt 4 Befehlstypen ($iCmd = \{1, 2, 3, 4\}$) besitzt. Die Anlage kann vertikal in zwei Positionen (Akt.iY = 0: oben; Akt.iY = 1: unten), sowie kontinuierlich entlang der X-Achse horizontal nach rechts (Akt.iX = +1) oder links (Akt.iX = -1) verfahren. Weiterhin kann der Greifer des Krans die Zustände offen (Akt.iG = 0) und geschlossen (Akt.iG = 1) einnehmen. Die Kommandoschritte sind dazu im Struct-Array crane gespeichert (siehe **Bild C-19.1**, **rechts**), welches extern eingelesen wird. Diese werden vom Steuerungsprogramm schrittweise abgearbeitet. Zum Beginn muss hierfür ein Datentyp COMMAND definiert werden. Legen Sie in diesem die Datentypen iCmd (int) und iParam (int) an.

Eine Liste der Aktoren, Sensoren und Merkvariablen, die im Folgenden verwendet werden, finden Sie in Bild C-19.2.

Skizze der Krananlage

Kommandoschritte

	Array crane	
i	iCmd iParam	
0	1	0
1	2	+150
2	1	1
3	4	0

Bild C-19.1: Skizze der Krananlage und Kommandoschritte

l i	Akt.iY	Verfährt den Kran vertikal an die Position oben (0) oder unten (1)	
Aktoren	Akt.iX	Verfährt den Kran horizontal nach rechts (+1) oder nach links (-1)	
 	Akt.iG	Öffnet (0) und schließt (1) den Greifarm	
en	Sen.iY	Diskrete vertikale Position des Kran: oben (0) / unten (1)	
Sensoren	Sen.iX	Kontinuierliche horizontale Position des Kran in mm zum Nullpunkt (int)	
Se	Sen.iG	Zustand des Greifers: offen (0) / geschlossen (1)	
	crane[i].iCmd	Variable, welche das Kommando enthält {1,2,3,4}	
len	crane[i].iParam	Variable, welche abhängig vom Kommando die Parameter enthält	
Merkvariablen	i	Aktueller Rezeptschritt	
ırkva	S	Speichert einen Weg (in mm) für die Verwendung als Streckenmessung	
¥	active	Steuert die Ausführung des Programms (Start / Stopp)	
	state Speichert den aktuellen Zustand / Subzustand		

Bild C-19.2: Aktoren, Sensoren und Merkvariablen

Prüfung Informationstechnik I+II

Prüfungsbogen: 0

19. C: Zyklische Programmierung einer Krananlage [Fortsetzung]

EvaExam

Im Folgenden sind die einzelnen Zustände der Krananlage (siehe Bild C-19.3) beschrieben:

Zustand 0: Zu Anfang steht der Kran am Referenzpunkt (*Sen.iX* = 0, *Sen.iG* = 0, *Sen.iY* = 0). Der Befehlszähler *i* wird um eins erhöht und geprüft, welcher Befehl vorliegt. Je nachdem wird von 0 zum Zustand 1 (Vertikal), 2 (Greifer), 3 (Horizontal) oder 4 (Ende) gewechselt.

Zustand 1/2 (Vertikal/Greifer): Zum Übergang vom Istzustand (*Sen.iY/Sen.iG*) zum Sollzustand (*iParam*), wird der Linear-Aktuator *Akt.iY* bzw. der Greifer *Akt.iG* entsprechend geschaltet. Nachdem der Istzustand den Wert von *iParam* eingenommen hat, wird in den Zustand 0 zurückgewechselt.

Zustand 3 (Links/Rechts): Zum Übergang vom Istzustand (*Sen.iX*) zum Sollzustand, wird der Linear-Aktuator *Akt.iX* nun entsprechend mit +1 (nach rechts) oder mit -1 (nach links) geschaltet, bis die in *iParam* angegebene Wegstrecke in mm gefahren wurde. Die zugehörige IF-Abfrage kann dabei mithilfe der Betragsfunktion *int abs(int x)* in einer Abfrage für beide Richtungen (positiver/negativer Verfahrweg) realisiert werden. Daraufhin wird der Aktor wieder auf 0 gesetzt und in den Zustand 0 gewechselt. Verwenden Sie zur Realisierung in Analogie zum Timer die Merkvariable *s*, um sich beim Start des Verfahrvorgangs die Ausgangsposition entlang der X-Achse zu merken.

Zustand 4: Nach Abarbeitung aller Befehle, soll der Kran in eine sichere Position gefahren werden, welche sich im Referenzpunkt befindet. Der Greifarm soll also bei Sen.iY = 0, Sen.iX = 0 und der Greifer offen (Sen.iG = 0) sein. Sobald dieser Zustand erreicht wurde, soll das Programm durch Setzen der Variable active auf 0 beendet werden.

Bild C-19.3: Zustandsautomat der Krananlage

Übertragen Sie das Zustandsdiagramm in **Bild C-19.3** und die oben beschriebene Funktionalität in den C-Code in den folgenden Aufgaben. Benutzen Sie als Basis die Skizze (**Bild C-19.1**) und die angegebenen Variablen (**Bild C-19.2**). Der Kopf des Programms mit Deklaration und Initialisierung der notwendigen Variablen ist bereits gegeben.

EvaExam Prüfung Informationstechnik I+II

Prüfungsbogen: 0

Electric Paper

19. C: Zyklische Programmierung einer Krananlage [Fortsetzung]

19.1 Krananlage (Teil 1): Bitte füllen Sie die Lücken aus.

// Typdefinition
}
<pre>int main() { //Structarray crane</pre>
Rezept einlesen(&crane, iSteps);
while (active) { //Zyklische Ausführung
LeseSensoren(&Sen); //Sensorwerte einlesen
switch() {
: // Zustand 0 weiterschalten i++;
//0->iCmd
: // Zustand 1 vertikal fahren
// Aktor setzen
//1->0
: // Zustand 2 Greifer setzen
// Aktor setzen
//2->0
//(Fortsetzung naechste Seite)

EvaExam Prüfung Informationstechnik I+II

Prüfungsbogen: 0

Electric Paper

19. C: Zyklische Programmierung einer Krananlage [Fortsetzung]

19.2 Krananlage (Teil 2): Bitte füllen Sie die Lücken aus.

	. // 7
	: // Zustand 3 horizontal fahren
	// Messung und Aktor starten
{	// Startposition merken
/,	/ Je nach Vorzeichen rechts/links fahren
e	lse }
//	IF-Abfrage ob absoluter Weg bereits gefahren
	{
	} } // 3->0
	: // Zustand 4 Ende und Reset
// IF-A	ofrage ob Reset-Zustand noch nicht erreicht
{ _	// Aktoren setzen
-	
_	}
	// Programm beenden
	}
Cahro	ibeAktoren(&Akt); //Aktorwerte schreiben
return	0;}

Prüfung Informationstechnik I+II

Prüfungsbogen: 0

20. C: Sortieren von Zahlen mittels Swap Sort

Mittels des in einem Nassi-Shneidermann-Diagramm (siehe Bild C-20.1) angegebenen Sortieralgorithmus Swap Sort sollen integer-Zahlenfolgen aufsteigend (also kleinste Zahl zuerst) sortiert werden, welche ausschließlich aus ungleichen Zahlen bestehen; d.h. es befindet sich keine Zahl mehr als einmal im betreffenden Array mit der Größe n. Hierbei wird der Vorteil ausgenutzt, dass für jede Zahl im Array nach Zählung der restlichen Zahlen, welche kleiner als diese Zahl sind, die endgültige Stelle im Array bestimmt werden kann. Die Variable k dient hierbei als Zähler für die Anzahl der restlichen, kleineren Zahlen im Array.

Bild C-20.1: Nassi-Shneidermann-Diagramm zum Sortieralgorithmus Swap Sort

Zum weiteren Verständnis der Wirkungsweise des Swap-Sort-Algorithmus, ist im Folgenden ein Beispiel für eine Zahlenreihe aufgeführt. Die unterstrichenen Plätze sind endgültig und die Zahlen verbleiben an der Stelle.

Ausgangszustand:

9 7 2 4 1 (i=0) Inhalt: 9, Zählen aller Array-Inhalt welche kleiner als 9 sind: k=4 also ungleich i => Tausche Stelle 0 und 4 (endgültiger Platz für 9 gefunden)

Sortiervorgänge:

- (i=0) Inhalt: 1, Zählen führt zu k=0 \rightarrow k gleich i \rightarrow kein Tausch \rightarrow i um 1 erhöhen (i=1) Inhalt: 7, Zählen führt zu k=3 \rightarrow k ungleich i \rightarrow Tausch mit Stelle 3 (i=1) Inhalt: 4, Zählen führt zu k=2 \rightarrow k ungleich i \rightarrow Tausch mit Stelle 2 (i=1) Inhalt: 2, Zählen führt zu k=1 \rightarrow k gleich i \rightarrow kein Tausch \rightarrow i um 1 erhöhen 1724<u>9</u> 1724<u>9</u> 142<u>79</u> 12479

→ Erhöhen von i bis n, kein weiteres Tauschen, da alle Endpositionen erreicht.

Prüfung Informationstechnik I+II

20. C: Sortieren von Zahlen mittels Swap Sort [Fortsetzung]

Vervollständigen Sie nun unten die Funktion "swapsort" entsprechend der zuvor im Nassi-Shneidermann-Diagramm (siehe **Bild C-20.1**) beschriebenen Funktionsweise. Der Funktion wird mittels *call-by-reference* ein Zeiger auf das Ziel-Array übergeben. Sie sortiert also direkt im Array vom Typ Integer und gibt keinen Rückgabewert zurück.

Die Sortierfunktion soll für ein Array mit einer Anzahl n Einträgen ausgelegt sein. Die dazugehörige integer Zahl soll mittels *call-by-value* an die Funktion übergeben werden.

Die Arrayelemente sollen aufsteigend sortiert werden.

EvaExam

Es sei des Weiteren bereits eine Funktion "swap" implementiert, die nicht dargestellt ist. Die Funktion kann zwei Arrayelemente vom Typ Integer vertauschen. Verwenden Sie diese durch einen korrekten Funktionsaufruf mittels call-by-reference, indem Sie ihr die beiden Arrayelemente als Adresse übergeben.

20.1 Vervollständigen Sie, wie oben angegeben, die Lücken im Programm.

Sw	apsort ()
	//Variablen init.
	//Aeussere Schleife
{	
_	// Innere Schleife
{	
	//Zaehler k zuruecksetzer
	//Zaehlen
	{
	}
	// Tauschen falls ungleich
}	
_	//Index erhoehen
}	

Prüfung Informationstechnik I+II

21. C: Zeiger

Gegeben Sei das in **Bild C-21.1** aufgezeigte, kurze C-Programm, welches ein Array mit vier Elementen *iAFeld* und die Zeigervariable *piZeiger* initialisiert. Die im C-Programm angegebenen Befehle führen jeweils zu einer Manipulation des Zeigers, sowie der Werte im Array. Geben Sie die veränderten Werte des Arrays nach Ausführen des C-Programms in den nachfolgenden Aufgaben an.

Hinweis: Nur Lösungen innerhalb der angegebenen Ergebnisfelder werden gewertet! Lassen Sie etwaige Stellen frei.

```
#include <stdio.h>
int main ()
{
   int *piZeiger = NULL;
   int iAFeld[4] = {7,4,9,2};

   iAFeld[3] = 0;
   piZeiger = &iAFeld[1];
   *(piZeiger++) = 8;
   *(piZeiger--) += *(piZeiger-1) * 3;
   *(--piZeiger) = iAFeld[0] | 12;

   return 0;
}
```

Bild C-21.1: C-Programm zur Zeigermanipulation

21.1	iAFeld[0] nach Ausführung des C-Programms in	2
	Bild C-21.1	

iAFeld[0]:

21.2 **iAFeld[1]** nach Ausführung des C-Programms in **Bild C-21.1**

iAFeld[1]:

21.3 iAFeld[2] nach Ausführung des C-Programms in Bild C-21 1

iAFeld[2]:

21.4 iAFeld[3] nach Ausführung des C-Programms in Bild C-21.1

iAFeld[3]:

22. MATLAB: Simulink 2D-Lookup-Table

Gegeben ist das in **Bild MATLAB-22.1** angegebene Motorkennfeld als Matrixvariable *X* mit der Dimension 8x6, welches in den MATLAB Workspace geladen wurde und den Verbrauch eines Dieselmotors in Gramm pro Sekunde (g/s) ausgibt. Der *Verbrauch* wird dabei entlang der zwei Eingangsparameter *Gaspedalstellung* (in %), sowie der aktuell eingestellten *Drehzahl* (in Umdrehungen pro Minute U/Min) bestimmt.

Hinweis: Nur Lösungen innerhalb der angegebenen Ergebnisfelder werden gewertet!

Bild MATLAB-22.1: Motorkennfeld als Matrixvariable X

Drehzahl [U/Min]

Verbrauch [g/s]

Prüfung Informationstechnik I+II

22. MATLAB: Simulink 2D-Lookup-Table [Fortsetzung]

Dazu wurde das in Bild MATLAB-22.2 aufgezeigte Modell mittels einer 2D-Lookup-Table in Simulink erstellt.

Brea	akpoints 2:	Table -	2-D Lookup Verbrauchskennfeld
		Bild MATLAB-22.2: 2D-Lookup-Table	
22.1	Berechnen Sie den Momentanverbrau einer Gaspedalstellung von 0.4 und ei	ch mittels linearer Interpolation, welcher ner Drehzahl von 1500 U/Min ergibt.	sich wie in Bild MATLAB-22.1 aus
	Verbrauch:	g/s	
22.2	Welche mathematische Operation mus Gesamtverbrauch zu erhalten? Hinweis: Nur Einfachnennung möglich	ss durchgeführt werden um den nach Ab n.	lauf der Simulation entstanden
	☐ Addieren	☐ Integrieren	☐ Differenzieren
	Weisen Sie in den folgenden Aufg Parametrierung der 2D-Lookup-Table	aben anhand der in Bild MATLAB-2 den Lücken A bis C in Bild MATLAB-2	22.1 angegebenen Informationen zur 2.2 den jeweils korrekten Ausdruck zu.
	Hinweis: Jeweils nur Einfachnennung	möglich.	
22.3	Lücke A in Bild MATLAB-22.2 ☐ X(1:end,1:end) ☐ X(2:end,1) ☐ X(1,2:end)	☐ X(2:end,2:end) ☐ X(1:end) ☐ X(1:6,1)	☐ X ☐ X(1:8,1:6)
22.4	Lücke B in Bild MATLAB-22.2 ☐ X(1:end,1:end) ☐ X(2:end,1) ☐ X(1,2:end)	☐ X(2:end,2:end) ☐ X(1:end) ☐ X(1:6,1)	☐ X ☐ X(1:8,1:6)
22.5	Lücke C in Bild MATLAB-22.2 ☐ X(1:end,1:end) ☐ X(2:end,1) ☐ X(1,2:end)	☐ X(2:end,2:end) ☐ X(1:end) ☐ X(1:6,1)	☐ X ☐ X(1:8,1:6)

F17744U0P29PL0V0 22.08.2016, Seite 29/31

Prüfung Informationstechnik I+II

23. MATLAB: Steuerung einer Anlage zum Werkstücktrennen mit Stateflow

Eine Anlage zum Trennen von Werkstücken (WS) (siehe **Bild MATLAB-23.1**) soll von einem Zustandsautomaten in Stateflow gesteuert werden. Sie besitzt dazu vier Sensoren, sowie zwei Gatter-Aktoren (siehe **Bild MATLAB-23.2**, **rechts**). Weiterhin soll die in **Bild MATLAB-23.2**, **links** dargestellte Wahrheitstabelle umgesetzt werden, um die Werkstücke dem entsprechenden Kunden A, B oder in eine Schachtel für Ausschuss zuzuteilen. Die Sensoren sind int-Variablen welche die Werte 0 oder 1 einnehmen können und wie in **Bild MATLAB-23.2**, **rechts** angegeben belegt werden.

Bild MATLAB-23.1: Skizze der Anlage zum Trennen von Werkstücken (WS)

Wahrheitstabelle

iGross	iKlein	ilnd	Ausgang
0	1	0	Kunde B
0	1	1	Ausschuss
1	Х	0	Ausschuss
1	Х	1	Kunde A

X: Don't-care-Bit

Sensoren und Aktoren

u-	iGatterA	Schaltet das Gatter A auf "Ausleiten".
Aktoren	iGatterB	Schaltet das Gatter B auf "Ausleiten".
A	iBand	Fährt das Laufband.
	iKlein	Die Lichtschranke erkennt ein kleines WS.
en	iGross	Die Lichtschranke erkennt ein hohes WS.
Sensoren	ilnd	Der Induktionssensor erkennt ein metallisches WS.
37	iWK_sortiert	Eine der Lichtschranken erkennt ein WS an den Endlagen.

Bild MATLAB-23.2: Wahrheitstabelle sowie Sensoren und Aktoren der Werkstücktrennung

Füllen Sie in den folgenden Aufgaben die **Lücken A bis D in Bild MATLAB-23.3** unter Zuhilfenahme der **Lösungsmöglichkeiten 1 bis 8 in Bild MATLAB-23.4**. Ordnen Sie hierzu die Nummer der jeweiligen Lösungsmöglichkeit zu.

Hinweis: Nur Lösungen innerhalb der angegebenen Ergebnisfelder werden gewertet!

23. MATLAB: Steuerung einer Anlage zum Werkstücktrennen mit Stateflow [Fortsetzung]

Bild MATLAB-23.3: Stateflow-Statechart

23.1 Lücke A in Bild MATLAB-23.3

Lücke A:

23.2 Lücke B in Bild MATLAB-23.3

Lücke B:

23.3 Lücke C in Bild MATLAB-23.3

Lücke C:

23.4 Lücke D in Bild MATLAB-23.3

Lücke D: ||

1	iBand = 0;
2	iWK_sortiert
3	iGross && iInd
4	~iGross && iKlein && ~iInd
5	~iGross && iKlein && iInd
6	iGross !iKlein && !iInd
7	!iWK_sortiert
8	iGross && ~iInd

Bild MATLAB-23.4: Lösungsmöglichkeiten