Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3115	Работа выполнена <u>05.05.2021</u>
Студент <u>Девяткин Арсений</u>	Отчет сдан
Преподаватель Боярский К.К.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.06

«Изучение электрических свойств сегнетоэлектриков »

Цель работы

- 1. Определение значений электрического смещения насыщения Ds, остаточной поляризации Pr, коэрцитивной силы Ec для предельной петли гистерезиса сегнетоэлектрика.
- 2. Расчет диэлектрических потерь за цикл переполяризации сегнетоэлектрика.
- 3. Получение зависимостей смещения D и диэлектрической проницаемости ε от напряженности электрического поля E.
- 4. Определение значений начальной и максимальной диэлектрической проницаемости.

Схема установки

Измерительные приборы

No	Наименование	Используемый диапазон	Погрешность
п/п			прибора
1	Осциллограф	Настраиваемый	Настраиваемый

Исходные данные

Электрическая постоянная (физическая константа):

$$\varepsilon_0 = 8.854 \cdot 10^{-12} \, \Phi \cdot \text{M}^{-1}$$

Параметры установки:

Номиналы резисторов:

 $R_1 = 47 \ \kappa O M = 47000 \ O M$

 $R_2 = 470 \ \kappa O M = 470000 \ O M$

Ёмкость эталонного конденсатора:

$$C_1 = 1 \text{ мк}\Phi = 10^{-6} \Phi$$

$$C_2 = 0.01$$
 мк $\Phi = 10^{-8}$ Φ

Площадь обкладок конденсатора:

$$S = 500 \text{ mm}^2 = 0.0005 \text{ m}^2$$

Расстояние между пластинами конденсатора:

$$d = 0.5 \text{ MM} = 0.0005 \text{ M}$$

Электрическая постоянная:

$$\varepsilon_0 = 8.85 * 10^{-12}$$

Результаты прямых измерений

Для 1 эксперимента был получен набор координат крайней точки предельной петли гистерезиса (D_s по оси ординат и E_s по оси абсцисс) и точек пересечения петли с осями координат (D_r и E_c) в делениях.

$$D_s = 2.5$$
 дел (у)

$$E_s = 2.6$$
 дел (x)

$$D_r = 0.5$$
 дел (у)

$$E_c = 0.7$$
 дел (x)

Так как 1 дел = 5В согласно размерности, то для получения напряжения U_{C_1} и U_{R_1} , напряжений на вертикальной и горизонтальной развёртках осциллографа соответственно, домножим значения на 5:

$$U_{C_1} = 2.5 * 5 = 12.5B$$

$$U_{R_1} = 2.6 * 5 = 13B$$

Рис. 1. Петля гистерезиса сегнетоэлектрика

Рассчитаем значения коэрцитивного поля E_c , электрической индукции в состоянии насыщения D_s и остаточной поляризации по следующим формулам:

(1)
$$D_s = \frac{c_1}{s} * U_{c_1}$$
, где C_1 – ёмкость эталонного конденсатора, S – площадь обкладок сегнетоэлектрического конденсатора.

(2)
$$E_c = \frac{R_1 + R_2}{R_1} * \frac{U_{R_1}}{d}$$
, где d – расстояние между обкладками конденсатора, а U_{R_1} - напряжение на горизонтальной развёртке осциллографа.

(3)
$$P_r = \frac{C_2 * K_y}{S} * D_r$$

$$\begin{split} & D_{s} = \frac{10^{-6}}{5*10^{-4}} * 13.5 = 0.027 \text{ K}\pi/\text{m}^{2} \\ & E_{c} = \frac{47*10^{3} + 47*10^{4}}{47*10^{5}} * \frac{5}{5*10^{-4}} = 110000 \text{ B/m} \\ & P_{r} = \frac{10^{-8}*5}{5*10^{-4}} * 0.7 = 7*10^{-5} \frac{\text{K}\pi}{\text{m}^{2}} \end{split}$$

Во втором эксперименте были получены координаты X и Y правой вершины предельной петли гистерезиса (измеренные в делениях шкалы экрана) при различных значениях напряжения (от 17В до 0,4В).

Значения коэрцитивного поля E_c , электрической индукции в состоянии насыщения D_s а также диэлектрической проницаемости ε были получены по формулам:

$$D=rac{C_1*K_y*Y}{S}$$
 где $S=5*10^{-4}~{
m M}^2~C_1=10^{-6}~{
m \Phi}$ $E_c=rac{R_1+R_2}{R_1}*rac{K_x*X}{d}$ где $R_1=47*10^3~{
m Om};~R_2=47*10^4~{
m Om};~d=5*10^{-4}~{
m M}$ $arepsilon=rac{D}{arepsilon_0 E_c}$

Пример расчета для U = 9:

$$D = \frac{10^{-6} *5*1,6}{5*10^{-4}} = 0,016 \text{ B/m}^2$$

$$E = \frac{47*10^3 + 47*10^4}{47*10^3} * \frac{5*1,4}{5*10^{-4}} = 154000 \text{ B/m}$$

$$\varepsilon = \frac{0,016}{8,85*10^{-12}*154000} = 11739$$

Таблица 1.

U, B	Х, дел	К _х , В/дел	H, A/m	Ү, дел	К _у , В/дел	В, Тл	μ
20	2,4	0,1	75,36	2	0,05	0,355	3750,57474
19	2,1	0,1	65,94	1,9	0,05	0,33725	4072,05257
18	2	0,1	62,8	1,8	0,05	0,3195	4050,62071
17	1,9	0,1	59,66	1,8	0,05	0,3195	4263,81128
16	1,8	0,1	56,52	1,7	0,05	0,30175	4250,65137
15	1,7	0,1	53,38	1,6	0,05	0,284	4235,94323
14	1,5	0,1	47,1	1,5	0,05	0,26625	4500,68968
13	1,4	0,1	43,96	1,2	0,05	0,213	3857,73401
12	2,8	0,05	43,96	3	0,02	0,213	3857,73401
11	2,5	0,05	39,25	2,7	0,02	0,1917	3888,59589
10	2,4	0,05	37,68	2,5	0,02	0,1775	3750,57474
9	2,2	0,05	34,54	2,3	0,02	0,1633	3764,21319
8	2,1	0,05	32,97	2,1	0,02	0,1491	3600,55175
7	2	0,05	31,4	1,9	0,02	0,1349	3420,52416
6	1,8	0,05	28,26	1,7	0,02	0,1207	3400,52109
5	1,6	0,05	25,12	1,5	0,02	0,1065	3375,51726

Расчет результатов косвенных измерений

Найдем площадь петли в делениях шкалы экрана S $_p\approx5.2$

По формуле $tg~\delta=\frac{1}{\pi}*\frac{\oint DdE}{D_sE_s}$ рассчитает тангенс угла диэлектрических потерь: $tg~\delta=\frac{1}{3,14}*\frac{6*~110000}{28,6*~10^4*28*10^{-3}}=26,24$

$$tg \ \delta = \frac{1}{3,14} * \frac{6 * 110000}{28,6 * 10^4 * 28 * 10^{-3}} = 26,24$$
$$\delta \approx 2.18^{\circ}$$

Построим график зависимости D = D(E), отражающий ход основной кривой поляризации. (график №1)

И график зависимости $\varepsilon = \varepsilon(E)$ (график №2)

С помощью экстраполяции полученной зависимости к нулевому значению E, находим $\varepsilon_{\text{\tiny HaY}} \approx 1000$

По графику $\varepsilon(E)$ найдём максимальное значение проницаемости $\varepsilon_{\text{макс}}=13300$ и соответветствующего ей значение напряженности Е = 185000 В/м

Расчет погрешностей

Так как зависимость $\varepsilon(E)$ задается формулой $\varepsilon = \frac{D}{E\varepsilon_0}$, а константу ε_0 можно

опустить, и D зависит от E, то получается соотношение вида $\frac{f(E)}{E}$,

То есть ε = тангенс угла, таким образом, где угол максимальный, там и находится максимальное значение диэлектрической проницаемости Данный график демонстрирует, что индукция зависит от напряженности нелинейно

По графику можно найти максимальное значение проницаемости $\varepsilon_{\mathrm{макс}}$, а также, путем экстраполяции найти её начальное значение $\varepsilon_{\mathrm{нач}}$

Окончательные результаты

В ходе выполнения лабораторной работы были получены следующие значения:

 $D_s = 0,027 \pm 0,005 \text{ Кл/m}^2 - Электрическая индукция в состоянии насыщения$

 $E_c = 110000 \pm 4000 \text{ B/м}$ – Коэрцитивное поле.

 $P_r = (7 \pm 0.6) * 10^{-5} \text{ Кл/м}^2 - \text{Остаточная поляризация.}$

 $tg \ \delta = 26,24$ — Тангенс угла диэлектрических потерь.

 $S \approx 5,2 \text{ cm}^2 - Примерная площадь петли гистерезиса.}$

Для 2-го эксперимента:

 ϵ_{max} = 13300 — Максимальная диэлектрическая проницаемость.

 $\epsilon(0) \approx 1000$ – Минимум диэлектрической проницаемости.

Выводы

В ходе выполнения работы была изучена петля гистерезиса, изучены свойства сегнетоэлектриков, такие как поляризация под действием электрического поля и влияние потенциала поля на этот процесс: чем сильнее поле, тем сильнее смещение D, но при этом зависимость не является линейной.