Propagation of Voltage in a Neuron The Cable Equation

Darice Guittet, Elise Niedringhaus, Sarah Liddle

Fall 2017

Overview

- 1. Motivation
- 2. Neuronal Cable Equation
- 3. Passive Membrane
- 4. Bi-stable Ion Channels

How Do Neurons Communicate?

Within one cell

- Electrochemical signals
- Membrane Potential:

$$\Delta V_m = V_i - V_e$$

- ► lons: charge-carriers
- ▶ Ion Channels in Membrane

Between cells

Neurotransmitters

Figure: Mouse neurons, 40X. Bosch Institute Advanced Microscopy Facility, The University of Sydney

Action Potentials

Figure: Changes in axonal membrane voltage due to an action potential. Image from Khan Academy

Hodgkin-Huxley's Neuronal Cable Model (1952)

Figure: Differential membrane patches as circuit. Image from jh.edu/motn

Cable Equation

$$\frac{\partial v(x,t)}{\partial t} - \frac{\partial^2 v(x,t)}{\partial x^2} - f(v(x,t)) = J_{\text{ext}}(x,t)$$

 $\partial_t v(x,t)$ represents capacitive current across membrane

 $\partial_{xx}v(x,t)$ represents current coming in from the adjacent segments

f(v(x,t)) represents ionic currents across the membrane

 $J_{ext}(x,t)$ represents applied current

Passive Membrane

Linear Cable Equation with Impulse Current Injection:

$$\frac{\partial v(x,t)}{\partial t} - \frac{\partial^2 v(x,t)}{\partial x^2} + v(x,t) = \delta(t-t_0)\delta(x-x_0)$$
$$x \in (-\infty,\infty)$$
$$t \in (0,\infty)$$

Boundary Conditions:

$$\lim_{x \to +\infty} v(x, t) = 0$$

Green's Function for Linear Infinite Cable Equation

Fourier transform ightarrow 2 ODE's ightarrow Inverse Fourier transform

$$G_{\infty}(x-x_0,t-t_0)=\frac{\mathcal{H}(x-x_0,t-t_0)}{\sqrt{4\pi(t-t_0)}}e^{-(t-t_0)-\frac{(x-x_0)^2}{4(t-t_0)}}$$

Fundamental Solution for Arbitrary Forcing Term, $J_{ext}(x,t)$:

$$\hat{v}(x,t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G_{\infty}(x-x_0,t-t_0) J_{\text{ext}}(x_0,t_0) dx_0 dt_0$$

Multiple Current Injections: $(x^*, t^*, A^*) = (1, 0.3, 0.3), (10, 1.1, 1), (30, 0, 0.5)$

Numerical Solutions

- Finite Difference Method
- Plugging approximations for the partial derivatives into the original PDE gives:

$$\frac{v_i^{j+1} - v_i^j}{\Delta t} = \frac{v_{i+1}^j - 2v_i^j + v_{i-1}^j}{(\Delta x)^2} - v_i^j + J_{\text{ext}}(x, t)$$

Solving for the unknown term:

$$v_i^{j+1} = \frac{\Delta t}{(\Delta x)^2} (v_{i+1}^j + v_{i-1}^j) + (1 - \frac{\Delta t (2 + (\Delta x)^2)}{(\Delta x)^2}) v_i^j + \Delta t * J_{ext}(x, t)$$

Stability

Numerical Solutions Results

Bi-stable Ion Channels

Cable Equation:
$$\frac{\partial v(x,t)}{\partial t} = \frac{\partial^2 v(x,t)}{\partial x^2} + f(v(x,t))$$

- ▶ Two stable states of membrane: active and inactive
 - Heaviside step nonlinearity:

$$f(v) = -v + H(v - \theta) = -v +$$

$$\begin{cases}
0, & v < \theta \\
1, & v > \theta
\end{cases}$$

- Goals:
 - ▶ Seek solutions of the form $v(x,t) = V(\xi) = V(x-ct)$
 - Understand how impulse current propagates through neural membrane

Traveling Wave Solutions

- Boundary conditions:
 - $V(\xi)$ approaches a homogeneous solution as $\xi \to \pm \infty$
 - $\frac{dV(\xi)}{d\xi}$ is bounded as $\xi \to \pm \infty$
 - $V(\xi)$ is continuous and smooth at $\xi = 0$

Figure: Traveling front solutions

Solutions:

$$egin{aligned} V_1(\xi) &= rac{-c + \sqrt{c^2 + 4}}{2\sqrt{c^2 + 4}} e^{-rac{1}{2}(c + \sqrt{c^2 + 4})\xi}, \quad \xi \in (0, \infty) \ V_2(\xi) &= rac{-c - \sqrt{c^2 + 4}}{2\sqrt{c^2 + 4}} e^{rac{1}{2}(-c + \sqrt{c^2 + 4})\xi} + 1, \quad \xi \in (-\infty, 0) \end{aligned}$$

Animation of Traveling Front Solution

- Boundary conditions:
 - $V(\xi)$ approaches a homogeneous solution as $\xi \to \pm \infty$
 - $\frac{dV(\xi)}{d\xi}$ is bounded as $\xi \to \pm \infty$
 - $V(\hat{\xi})$ is continuous and smooth at $\xi = 0$
- Solutions:

$$V_1(\xi) = \frac{-c + \sqrt{c^2 + 4}}{2\sqrt{c^2 + 4}} e^{-\frac{1}{2}(c + \sqrt{c^2 + 4})\xi}, \quad \xi \in (0, \infty)$$

$$V_2(\xi) = \frac{-c - \sqrt{c^2 + 4}}{2\sqrt{c^2 + 4}} e^{\frac{1}{2}(-c + \sqrt{c^2 + 4})\xi} + 1, \quad \xi \in (-\infty, 0)$$

Speed of Traveling Wave

► Threshold condition:

$$V(0) = \theta \Rightarrow$$
 $c = \sqrt{\frac{-(2\theta - 1)^2}{\theta^2 - \theta}}$

- c represents speed of traveling wave front
- 0 < θ < 1</p>
- ▶ High cell activity for $\theta \to 0$ and $\theta \to 1$

Figure: Threshold Value versus Speed

Stability of Traveling Wave

- Perturbation: $v(x,t) = V(\xi) + \epsilon \psi(\xi,t)$
 - v(x,t) still must satisfy the cable equation: $\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2} - v + H(v - \theta)$
- ▶ What happens to $\psi(\xi, t)$ as $t \to \infty$?
- ▶ Plug $v = V + \epsilon \psi$ into cable equation \Rightarrow Linearize \Rightarrow extract PDE governing $\psi(\xi, t)$:

$$\frac{\partial \psi}{\partial t} = c \frac{\partial^2 \psi}{\partial \xi^2} + \frac{\partial \psi}{\partial \xi} - (1 - \delta(V - \theta))\psi$$

- Separation of variables:
 - $\lambda < 0$ case: $\lambda = \psi(\xi, t) = S(\xi)e^{\lambda t}$
 - $\lambda=0$ case: no time dependence \Rightarrow perturbation propagates as traveling front solution

Animation of Perturbed Wave Solution

Numerical Solutions for Traveling Wave

- ► Finite Difference Method–Similar to Previous Numerical Solution
- Resultant Equation (solved for the unknown term):

$$v_i^{j+1} = \frac{\Delta t}{(\Delta x)^2} (v_{i+1}^j + v_{i-1}^j) + (1 - \frac{\Delta t (2 + (\Delta x)^2)}{(\Delta x)^2}) v_i^j + \Delta t * H(v_i^j - \theta)$$

Results

Figure: $\theta = 0.5$

Figure: $\theta = 0.1$

- Numerically Solving for Speeds of the Waves
- ► Comparison with Analytic Results

Periodically Varying Threshold, Numerical Methods

- What is a periodically varying threshold?
- Governing Equation:

$$\frac{\partial v(x,t)}{\partial t} = \frac{\partial^2 v(x,t)}{\partial x^2} - v + H(v - \theta(1 + 0.5\cos(x))) + J_{ext}(x,t)$$

Numerical Solution:

$$v_i^{j+1} = \frac{\Delta t}{(\Delta x)^2} (v_{i+1}^j + v_{i-1}^j) + (1 - \frac{\Delta t (2 + (\Delta x)^2)}{(\Delta x)^2}) v_i^j + \Delta t * H(v_i^j - \theta (1 + C \cos(x)))$$

Results

Figure: Varying C, $\theta = 0.1$

Conclusion: Comparison to full Hodgkin-Huxley Model

Three gating variables x = m, n, h, each satisfying ODE's:

$$C\frac{\partial v}{\partial t} = g_{\text{Na}} m^3 h(v - E_{\text{Na}}) + g_{\text{K}} n^4 (v - E_{\text{K}}) + g_{\text{L}} (v - E_{\text{L}}) + J_{\text{ext}}$$
$$\frac{dx}{dt} = -\frac{1}{\tau_x(v)} [x - x_0(v)]$$

Figure: from Ermentrout & Terman, Math. Foundations of Neuroscience

