UNIVERSIDADE DE SÃO PAULO

SEGUNDO SEMESTRE LETIVO DE 2020

PROVA P1

Escola	EACH	TURMA		Nota do aluno na PROVA			
Curso	Sistemas de Informação						
Disciplina	Arquitetura de Computador	Data da Prova	12/11/20				
Professor	Clodoaldo Aparecido de Moraes Lima						
Aluno							
No. USP							

1ª Questão) Assuma que os estágios individuais de um fluxo de dados tem as seguintes latências

IF	ID	EX	MEM	WB
250 ps	350 ps	150 ps	300 ps	200 ps

Assuma que instruções executadas pelo processador são quebradas como segue

formato R	beq	lw	SW	
45%	20%	20%	15%	

- a) Qual é o tempo de ciclo em processador com pipeline e sem pipeline?
- b) Qual a latência da instrução lw em processador com pipeline e sem pipeline?
- c) Se pudermos dividir um estágio do fluxo de dados no pipeline em dois novos estágios, cada com metade do estágio original, qual estágio você dividiria e qual o novo ciclo de clock do processador?
- 2ª Questão) Apresente os valores dos sinais de controle *ALUSrc*, *ALUOp*, *MemRead*, *MemWrite*, *RegWrite*, *MemtoReg* e *RegDst*, na implementação da instrução *addi* no MIPS pipeline, indicando em que estágio cada um desses sinais são usados.

- 3ª Questão) Por que a instrução addi não pode ser considerada uma instrução de formato R, com opcode igual 000000?
- 4ª Questão Usando o sistema de previsão local de desvio de 2 bits, mostrado na Figura1, um certo loop é executado duas vezes:
- a) considerando-se que o estado inicial seja 00, calcular a porcentagem de acertos e erros de previsão, considerando-se que o loop termina com 10 iterações;
- b) comparar com o caso em que não use esse sistema de previsão, e apenas considere que a previsão seja sempre de desvio;
- c) comparar com o sistema de previsão de um bit.

UNIVERSIDADE DE SÃO PAULO

SEGUNDO SEMESTRE LETIVO DE 2020

PROVA P1

