1) y = c y' =	= 0	17) $y = \arcsin x$ $y' = \frac{1}{\sqrt{1-x^2}}$	$y' = \frac{u'}{u}$
2) y = x y' =	= 1	18) $y = \arccos x$ $y' = \frac{-1}{\sqrt{1-x^2}}$	34) $y = \log_a U$ $y' = \frac{U'}{U} \cdot \log_a e$
3) y = c.x y' =	= <i>C</i>	19) $y = arc \tan x$ $y' = \frac{1}{1+x^2}$	35) $y = a^U$ $y' = a^U \cdot \ln a \cdot U'$
$4) y = x^n y' = n$	x^{n-1}	20) $y = arc \csc x$ $y' = \frac{-1}{x\sqrt{x^2 - 1}}$	$\mathbf{36)} \ \mathbf{y} = \ \mathbf{e}^{U} \qquad \qquad \mathbf{y'} = \ \mathbf{e}^{U} . \mathbf{U'}$
$5) y = \sqrt{x} y' =$	$\frac{1}{2\sqrt{x}}$	21) $y = arc \sec x$ $y' = \frac{1}{x\sqrt{x^2-1}}$	$37) y = \sin U \qquad y' = \cos U \cdot U'$
$6) y = \sqrt[n]{x} y' = \frac{1}{n^2}$	$\frac{1}{\sqrt[n]{x^{n-1}}}$	22) $y = arc \cot x$ $y' = \frac{-1}{1+x^2}$	38) $y = \cos U$ $y' = -\sin U \cdot U'$
$y = \ln x \qquad \qquad y' = 1$	1 x	23) $y = U$ $y' = U'$	39) $y = \tan U$ $y' = \frac{1}{\cos^2 U} \cdot U' = (1 + \tan^2 U) \cdot U' = \sec^2 U \cdot U'$
8) $y = \log_a x$ $y' = \frac{1}{x} \cdot 1$	og _a e	24) $y = U + V + W$ y' = U' + V' + W'	40) $y = \csc U$ $y' = -\csc U \cdot \cot U \cdot U'$
$9) y = a^x y' = a^x.$	ln a	25) $y = c. u$ y' = c. u'	41) $y = \sec U$ $y' = \sec U \cdot \tan U \cdot U'$
$10) y = e^x y' = \epsilon$	252	26) $y = U.V$ y' = U'.V + U.V'	42) $y = \cot U$ $y' = \frac{-1}{\sin^2 U}. U' = -(1 + \cot^2 U). U' = -\csc^2 U. U'$
$11) y = \sin x \qquad y = 0$	cos x vimie	27) $y = \frac{c}{u}$ $y' = \frac{-c}{u^2}$ U'	43) $y = arcosen U$ $y' = \frac{1}{\sqrt{1 - U^2}} \cdot U'$
12) $y = \cos x$ $y' = -$	sin x	28) $y = \frac{U}{V}$ $y' = \frac{U'.V-U.V'}{V^2}$	44) $y = \arccos U$ $y' = \frac{-1}{\sqrt{1-U^2}}.U'$
13) $y = \tan x$ $y' = \frac{1}{\cos^2 x} = 1 + \tan^2 x = se$	c^2x	29) $y = U^n$ $y' = n. U^{n-1}. U'$	45) $y = arctg U y' = \frac{1}{1+U^2} . U'$
14) $y = \csc x$ $y' = -\csc x \cdot \cot x$		30) $y = U^V$ $y' = U^V \cdot (V' \cdot \ln U + V \cdot \frac{U'}{U})$	46) $y = arccosec \ U \qquad y' = \frac{-1}{u.\sqrt{u^2-1}}.U'$
15) $y = \sec x$ $y' = \sec x \cdot \tan x$		31) $y = \sqrt{U}$ $y' = \frac{1}{2\sqrt{U}} \cdot U'$	47) $y = \operatorname{arcsec} U$ $y' = \frac{1}{U \cdot \sqrt{U^2 - 1}} \cdot U'$
16) $y = \cot x$ $y' = \frac{-1}{sen^2 x} = -(1 + cot^2 x) = -(1 + cot^2 x)$	$= -csc^2x$	32) $y = \sqrt[n]{U}$ $y' = \frac{1}{n \cdot \sqrt[n]{U^{n-1}}} \cdot U'$	48) $y = arccotg U$ $y' = \frac{-1}{1+U^2} . U'$
X= Variable Independiente		U, v, w =Funciones Continuas y	y Derivables de "y" C, e, m, n = Constantes

DERIVADAS

$1) \int a dx = a. x$	27) $\int \frac{du}{a-u^2} = \frac{1}{2a} \ln \left(\frac{a+u}{a-u} \right) + c$ 28) $\int \frac{du}{u^n} = \frac{-1}{(n-1)u^{n-1}} + c \qquad \mathbf{n} \neq 1$
2) $\int (u \pm v \pm w \pm \cdots) dx = \int u \cdot dx \pm \int v \cdot dx \pm \int w \cdot dx \pm \cdots$	28) $\int \frac{du}{u^n} = \frac{-1}{(n-1).u^{n-1}} + c$ $\mathbf{n} \neq 1$
3) $\int u^n du = \frac{u^{n+1}}{n+1} + c n \neq 1$ 4) $\int e^u du = e^u + c$	$29) \int \frac{du}{\sqrt{u}} = 2\sqrt{u} + c$
$4) \int e^u du = e^u + c$	30) $\int (u.\sin u) du = \sin u - u.\cos u + c$
5) $\int a^u du = e^{u \cdot \ln a} du = \frac{e^{u \cdot \ln a}}{\ln a} = \frac{a^u}{\ln a} + c$ $a > 0, \ a \ne 1$	31) $\int (u.\cos u) du = \cos u + u.\sin u + c$
6) $\int \ln u \cdot du = u \cdot \ln u - u + c$	$32) \int \frac{du}{\cos^2 u} = -\tan u + c$
7) $\int \log u \cdot du = \log e \left(u \cdot \ln u - u \right) + c$	$33) \int \frac{du}{\sin^2 u} = -\cot u + c$
8) $\int \sin u \cdot du = -\cos u + c$	$34) \int \frac{du}{\sqrt{1-u^2}} = arcsen \ u + c$
9) $\int \cos u \cdot du = \sin u + c$	$35) \int \frac{du}{\sqrt{a^2 - u^2}} = arcsen \frac{u}{a} + c$
10) $\int \tan u \cdot du = \ln \sec u = -\ln \cos u$	$36) \int \frac{-du}{\sqrt{1-u^2}} = \arccos u + c$
11) $\int \cot u \cdot du = \ln \sin u + c$	$37) \int \frac{du}{1+u^2} = \arctan u + c$
$\int \sec u du = \ln(\sec u + \tan u) + c = \ln \tan \left(\frac{u}{2} + \frac{\pi}{4}\right) + c$	$38) \int \frac{-du}{1+u^2} = arc \cot u + c$
13) $\int \csc u \cdot du = \ln(\csc u - \cot u) + c = \ln \tan \frac{u}{2} + c$	39) $\int \frac{du}{\sqrt{u^2 + a^2}} = \ln\left(u + \sqrt{u^2 + a^2}\right) + c$
14) $\int \sin^2 u du = \frac{u}{2} - \frac{\sin 2u}{4} + c = \frac{1}{2}(u - \sin u \cdot \cos u) + c$	40) $\int \frac{du}{\sqrt{u^2-a^2}} = \ln(u+\sqrt{u^2-a^2}) + c$
15) $\int \cos^2 u du = \frac{u}{2} + \frac{\sin 2u}{4} = \frac{1}{2}(u + \sin u \cdot \cos u) + c$	$41)\int \frac{1}{1+\cos u}.du=\tan\frac{u}{2}+c$
16) $\int \tan^2 u du = \tan u - u + c$ Movimiento Universit	$\int e^{2X} dx = \frac{e^{2X}}{2} + c$ Fig. Ciercias Exactas
17) $\int \cot^2 u du = -\cot u - u + c$	
$18) \int sec^2 u. du = \tan u + c$	QUIMICA - BIOQUIMIC
19) $\int cosec^2 u. du = -\cot u + c$	CA
20) $\int \sec u \cdot \tan u \cdot du = \sec u + c$	Movimiento Universitario Ciencias Exactas 7 odo el año 7 rabajando por vos!
21) $\int \csc u \cdot \cot u \cdot du = -\csc u + c$	O to al año
22) $\int \sqrt{u} \cdot du = \frac{u^{3/2}}{3/2} + c$	7rabajando por vos!
23) $\int \sqrt{a^2 - u^2} \cdot du = \frac{a^2}{2} \cdot \arctan \frac{u}{a} + \frac{u}{2} \cdot \sqrt{a^2 - u^2} + c$	La NUEVA FUERZA de los ESTUDIANTES
24) $\int \sqrt{a^2 + u^2} \cdot du = \frac{a^2}{2} \ln \left(u + \sqrt{u^2 + a^2} \right) + \frac{u}{2} \sqrt{a^2 + u^2} + c$	POLY PMATEM - SAMUTERS
25) $\int \frac{du}{du} = \frac{1}{2} \arctan \frac{u}{2} + c$	

25) $\int \frac{du}{u^2 + a^2} = \frac{1}{a} \arctan \frac{u}{a} + c$ 26) $\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left(\frac{u - a}{u + a} \right) + c$

TABLA DE INTEGRALES