

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: CS-302

DATA STRUCTURE AND ALGORITHM

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Multiple Choice Type Questions)

1.	Choos	se the correct alternative for the following:	1×10=10		
	(i)	Maximum possible height of an AVL Tree with 7	node is		
		(a) 12	(b) 4		
		(c) 5	(d) 3		
	(ii)	(ii) In a circularly linked list organization, insertion of a node involves the modification of			
		(a) no pointer	(b) 1 pointer		
		(c) 2 pointers	(d) 3 pointers		
	(iii)	A B-tree is			
		(a) always balanced	(b) an ordered tree		
		(c) a directed tree	(d) All of these		
	(iv)	Number of nodes in a complete binary tree of dept	h k is		
		(a) 2^k	(b) 2k		
		(c) $2^k - 1$	(d) None of these		
			•		

Turn Over

(v)	To make a queue empty, elements can be deleted ti	11							
	(a) front=rear+1	(b)	front=rear-1						
	(c) front=rear	(d)	None of these						
(vi)	BFS constructs								
	(a) a minimal cost spanning tree of a graph.	(b)	a depth first spanning tree of a graph.						
	(c) a breadth first spanning tree of a graph.	(d)	None of these						
(vii) A vertex of in-degree zero in a directed graph is called									
	(a) Articulation point	(b)	Sink						
	(c) Isolated matrix	(d)	Root vertex						
(viii)	iii) In a height balanced tree the heights of two sub-trees of every node never differ by more than								
	(a) 2	(b)	0						
	(c) 1	(d)	-1						
(ix) Inserting a new node after a specific node in a doubly linked list requires									
	(a) four pointer exchanges.	(b)	two pointer exchanges.						
	(c) one pointer exchanges.	(d)	no pointer exchanges.						
(x)	(x) A non-planar graph with minimum number of vertices has								
	(a) 9 edges, 6 vertices	(b)	6 edges, 4 vertices						
	(c) 10 edges, 5 vertices	(d)	9 edges, 5 vertices						
Group – B (Short Answer Type Questions) Answer any three of the following.									
						Write	an algorithm for inorder traversal of a threaded bin-	ary t	ree.

- 2.
- Compare and contrast linked list with static and dynamic array. 3.
- Write an algorithm to insert a data X immediately before a specific data item Y in a single linked list.
- What is Load Factor? Why do we need hashing? How does a hash table allow O(1) searching? Why is a 1+1+2+1=5 prime number chosen for computing a hash function?

6. Insert the following keys into a B-Tree of given order mentioned below:

a, f, b, k, h, m, e, s, r, c. (Order 3)

2+3=5

Group - C

(Long Answer Type Questions)

Answer any three of the following.

 $15 \times 3 = 45$

7. What are sparse matrices? How such a matrix is represented in memory? What are the types of sparse matrices?

Show that the function f(n) defined by

f(1) = 1

f(n) = f(n-1) + 1/n for n>1, has the complexity O (log n)

Let the size of the elements stored in an 8×3 matrix be 4 bytes each. If the base address of the matrix is 3500, then find the address of A [5, 2] for both row major and column major cases. 2+2+2+4+5=15

- 8. (a) What do you mean by external sorting? How does it differ from internal sorting?
 - (b) Write an algorithm for sorting a list numbers in ascending order using selection sort technique.
 - (c) Describe Kruskal's minimal spanning tree algorithm.

3+7+5=15

9. What is expression tree? Draw the expression tree and write the In, Pre & Post-Order traversals for the given expression tree: $E = (2x + y) (5a - b)^3$. Prove that the number of odd degree vertices in a graph is always even. Apply BFS/DFS Algorithms and find out the path of the given graph:

2+2+1+1+1+3+5=15

CS/B.Tech/CSE/IT/Odd/SEM-3/CS-302/2018-19

- 10. (a) Define circular queue.
 - (b) Write an algorithm to insert an item in circular queue.
 - (c) What is input restricted dequeue?
 - (d) Write an algorithm to convert an infix expression to postfix using stack.

2+5+2+6=15

11. Write short notes on any three of the following:

 $5 \times 3 = 15$

- (i) AVL Tree
- (ii) Heap Sort
- (iii) DFS
- (iv) Tail recursion
- (v) Binary Search Tree