- Device that facilitates the exchange of heat between two fluids that are at different temperatures without mixing each other.
- Heat transfer on a heat exchanger involves

Convection in each fluid

Conduction through the wall separating the two fluids

- Overall heat transfer coefficient accounts for the above conduction and convection effects.
- LMTD-F approach- Temps known, $\Delta T_{1M} \dot{m} U$ cal A_s
- E-NTU approach- Find \dot{Q} , T_{co} & T_{ho} , known- $\dot{m_c}$, $\dot{m_n}$, T_{ci} , T_{hi} , T_{ype} & size of heat exchanger

LMTD-F approach :

• known – Temperatures (ΔT_{lmtd}), mass flow rates, overall heat transfer coefficient, Calculate the size of the heat exchanger (heat transfer area)

• ∈-NTU approach :

• Known: inlet temperatures on cold side and hot side, type and size of the heat exchanger, calculate the outlet temperatures, load of the heat exchanger

- Overall heat transfer coefficient accounts for the above conduction and convection effects.
- LMTD-F approach- Temps known, ΔT_{lM} , \dot{m} , U calculate A_s
- E-NTU approach- Find \dot{Q} , $T_{co} \otimes T_{ho}$, known- $\dot{m_c}$, $\dot{m_n}$, T_{ci} , T_{hi} , $T_{ype} \otimes$ size of HE

Parallel flow, with two fluids flowing in the same direction

TYPES OF HEAT EXCHANGERS

- COUNTER FLOW HE
- PARALLEL FLOW HE
- DOUBLE PIPE HE

counterflow, with two fluids flowing parallel to one another but in opposite directions

Double pipe heat exchanger:

CROSS FLOW HEAT EXCHANGER:

Heat Exchangers

Crossflow, with two fluids crossing each other

SHELL AND TUBE HEAT EXCHANGER (ONE SHELL- ONE TUBE PASS):

Multipass and multipass crossflow arrangements

ONE SHELL-TWO TUBE PASS

TWO SHELL-FOUR TUBE PASS

TYPES OF HEAT EXCHANGERS

DOUBLE PIPE HEAT EXCHANGERS:

PARALLEL

COUNTER

COMPACT HEAT EXCHANGER:

$$Area density = \frac{Heat \ transfer \ surface \ area}{Heat \ exchanger \ volume} = \beta$$

$$\beta > 700 \frac{m^2}{m^3}$$
 - Compact

Car radiator – 1000
$$\frac{m^2}{m^3}$$

Gas turbine H.E –
$$6000 \frac{m^2}{m^3}$$

Human Lung – 20000
$$\frac{m^2}{m^3}$$

Achieve high heat transfer rates between two fluids in a small volume

Compact heat exchanger cores. (a) Fin-tube (flat tubes, continuous plate fins).

(b) Fin-tube (circular tubes, continuous plate fins).

(c) Fin-tube (circular tubes, circular fins). (d) Plate-fin (single pass).

(e) Plate-fin (multipass).

COMPACT HEAT EXCHANGER

- Gas to gas
- Gas to liquid or liquid to gas Low h.t.c in gas flow-Increased $A_s(Fins)$ Ex: Radiator (Water to air H.E)- Fins on air side

OVERALL HEAT TRANSFER COEFFICIENT

 A_i -Inside area of the tube A_o -outside area of the tube h_i -Inside h.t.c h_o -outside h.t.c k-Thermal conductivity of tube

Total thermal resistance=
$$R_{total} = R_i + R_{wall} + R_o$$

$$= \frac{1}{h_i A_i} + \frac{ln\left(\frac{r_a}{r_i}\right)}{2\pi Lk} + \frac{1}{h_o A_o}$$

$$\frac{1}{U_i A_i} = \frac{1}{U_o A_o} = \frac{1}{h_i A_i} + \frac{\ln\left(\frac{r_a}{r_i}\right)}{2\pi L k} + \frac{1}{h_o A_o}$$

U is meaningless unless A is specified

If
$$R_{wall} = 0$$
 $A_i = A_0$

$$\frac{1}{U} = \frac{1}{h_i} + \frac{1}{h_o}$$

U is dominated by smaller convection coefficient

One fluid is gas the other fluid is liquid Fins- Gas side- UA_s \uparrow

TUBE IS FINNED

$$\frac{1}{U_i A_i} = \frac{1}{U_o A_o} = \frac{1}{\eta_i h_i A_i} + \frac{\ln\left(\frac{r_a}{r_i}\right)}{2\pi L k} + \frac{1}{\eta_o h_o A_o}$$

 η - Fin efficiency

TYPICAL OVERALL HEAT TRANSFER COEFFICIENTS:

Shell and Tube Heat exchanger	$U\left(\frac{W}{m^2K}\right)$
Gas (1 bar) tube side and gas (1 bar) shell side	5-35
Gas (200-300 bar) tube side and gas (200-300 bar) shell side	150-500
Liquid tube side and gas shell side	15-70
Gas (200-300 bar) tube side and liquid shell side	200-400
Liquid tube side and shell side	150-1200
Superheated vapour tube side and liquid shell side	300-1200
EVAPORATORS	
Steam on tube side- Natural circulation	300-900
Steam on tube side- Forced circulation	600-1700

TYPICAL OVERALL HEAT TRANSFER COEFFICIENTS:

CONDENSERS	$U\left(\frac{W}{m^2K}\right)$
Cooling water tube side & ORGANIC VAPOUR ON SHELL SIDE	300-1200
Steam turbine condenser	1500-4000
GAS HEATER	
Liquid tube side and shell side	150-1200
Superheated vapour tube side and liquid shell side	300-1200
EVAPORATORS	
Steam or hot water tube side & gas on shell side	
a. Free convection	5-12
b. Forced flow	15-20

TYPICAL OVERALL HEAT TRANSFER COEFFICIENTS:

Double pipe heat exchanger	$U\left(\frac{W}{m^2K}\right)$
Gas (1 bar) tube & gas shell	10-35
H.P gas tube & L.P gas shell	20-60
H.P gas tube & H.P gas shell	150-500
H.P gas tube & liquid shell side	200-600
Liquids on tube & shell side	300-1400

FOULING- Phenomenon of deposition of material on the tube surfaces from the fluids on the form of scales, layered sediments or biological agents.

Fouling increase Resistance to heat transfer

CHEMICAL TREATMENT PLANT- P_H PERIODIC CLEANING – DOWN TIME - PENALTIES

$$\frac{1}{U_{i}A_{i}} = \frac{1}{U_{o}A_{o}} = \frac{1}{h_{i}A_{i}} + \frac{R_{f \cdot i}}{A_{i}} + \frac{\ln\left(\frac{r_{2}}{r_{1}}\right)}{2\pi Lk} + \frac{R_{f \cdot 0}}{A_{0}} + \frac{1}{h_{o}A_{o}}$$

$$A_{i} = \pi D_{i}L$$

$$A_{0} = \pi D_{0}L$$

$$\frac{1}{U_{i}A_{i}} = \frac{1}{U_{o}A_{o}} = \frac{1}{h_{i}A_{i}} + \frac{R_{f\cdot i}}{A_{i}} + \frac{\ln\left(\frac{r_{2}}{r_{1}}\right)}{2\pi Lk} + \frac{R_{f\cdot 0}}{A_{0}} + \frac{1}{h_{o}A_{o}}$$

$$A_i = \pi D_i L$$

$$A_0 = \pi D_0 L$$

FLUID

Distilled water, sea water, River water

Above 50° C

Below 50^0 C

0.0001 0.0002

0.0009

FOULING - $10^{-4} m^2$. $\frac{\kappa}{w} \cong$

 $(k = 2.9 W/m^2 K)$

0.2 mm thick limestone

per unit surface area

Fuel oil

Air

Steam (oil free)

Refrigerants (liquid)

Refrigerants (Vapour)

Alcohol vapors

0.0001

0.0002

0.0004

0.0001

0.0004

18

$$R_{steel} = 15.00 \frac{w}{m^0 C}$$

$$D_0 = 1.9 cm$$
 $h_0 = 1200 \frac{w}{m^{20}C}$
 $R_{f,0} = 0.0001 \frac{m^{20}C}{W}$
 $D_i = 1.5 cm$
 $h_i = 800 \frac{w}{m^{20}C}$
 $R_{f,i} = 0.0004 \frac{m^{20}C}{W}$

$$A_i = \pi D_i L = \pi (1.5 \times 10^{-2})(1) = 0.0471 \, m^2$$

 $A_0 = \pi D_0 L = \pi (1.9 \times 10^{-2})(1) = 0.0597 \, m^2$

$$\frac{1}{U_{i}A_{i}} = \frac{1}{U_{o}A_{o}} = \frac{1}{h_{i}A_{i}} + \frac{R_{f \cdot i}}{A_{i}} + \frac{\ln\left(\frac{r_{2}}{r_{1}}\right)}{2\pi Lk} + \frac{R_{f \cdot 0}}{A_{0}} + \frac{1}{h_{o}A_{o}}$$

$$=\frac{1}{800\times0.0471}+\frac{0.0004}{0.0471}+\frac{ln\left(\frac{1.9}{1.5}\right)}{2\pi(1)(15.1)}+\frac{0.0001}{0.0597}+\frac{1}{1200\times0.0597}$$

$$= 26.54 \times 10^{-3} + 8.493 \times 10^{-3} + 2.491 \times 10^{-3} + 1.675 \times 10^{-3} + 13.96 \times 10^{-3}$$

$$= 53.159 \times 10^{-3} \, {}^{0}C/W$$

$$= 53.159 \times 10^{-3} \, {}^{0}C/W$$

$$U_i = 399.4 \frac{W}{m^{20}C} \left(\frac{1}{53.159 \times 10^{-3} \times 0.0471} \right)$$

$$U_o = 315 \frac{W}{m^{20}C} \left(\frac{1}{53.159 \times 10^{-3} \times 0.0597} \right)$$

Copper tube
$$-\frac{ln(\frac{1.9}{1.5})}{2\pi(1)(400)} = 9.4 \times 10^{-5} = 0.094 \times 10^{-3}$$
 (negligibly small)

$$\dot{Q} = m_c C_{pc} (T_{c,o} - T_{c,i}) = m_h C_{ph} (T_{h,i} - T_{h,o})$$

Heat capacity rate $oldsymbol{\mathcal{C}}_h = \dot{m_h} oldsymbol{\mathcal{C}}_{ph}$; $oldsymbol{\mathcal{C}}_c = \dot{m_c} oldsymbol{\mathcal{C}}_{pc}$

FLUID- Large heat capacity Rate – Small ΔT

Doubling
$$\dot{m} \rightarrow \frac{1}{2}\Delta T$$

$$\dot{Q} = C_c (T_{c,o} - T_{c,i}) = C_h (T_{h,i} - T_{h,o})$$

$$(\Delta T)_{cold\ fluid} = (\Delta T)_{hot\ fluid}$$
 when $C_c = C_h$

ANALYSIS OF HEAT EXCHANGERS

LMTD APPROACH- Select a H.E that will achieve specified temp change on a fluid stream of known \dot{m}

E-NTU APPROACH – Predict the outlet temperature of hot and cold stream in a specified H.E

Assumptions

- Steady flow devices
- K.E & P.E changes are negligible
- Thermophysical properties are constant over the entire length
- No heat loss to surroundings
- H.T.C is assumed to be constant over the entire length

PARALLEL FLOW HEAT EXCHANGER

$$\begin{split} \delta \dot{Q} &= \cup \left(T_h - T_c \right) dA_s \\ \Delta T_1 &= \left(T_{h,i} - T_{c,i} \right) \\ \Delta T_2 &= \left(T_{h,o} - T_{c,o} \right) \\ \delta \dot{Q} &= \dot{m}_c C_{pc} dT_c \qquad T \uparrow \uparrow \chi \\ \delta \dot{Q} &= -\dot{m}_h C_{ph} dT_h \qquad T \downarrow \uparrow \chi \\ dT_h &= -\frac{\delta \dot{Q}}{\dot{m}_h C_{ph}} \qquad dT_c = \frac{\delta \dot{Q}}{\dot{m}_c C_{pc}} \\ dT_h - dT_c &= d(T_h - T_c) = -\delta \dot{Q} \left[\frac{1}{\dot{m}_h C_{ph}} + \frac{1}{\dot{m}_c C_{pc}} \right] \\ \delta \dot{Q} &= \cup \left(T_h - T_c \right) dA_s \end{split}$$

$$\int_{i}^{o} \frac{d(T_h - T_c)}{(T_h - T_c)} = \int_{i}^{o} -\cup dA_s \left[\frac{1}{\dot{m}_h C_{ph}} + \frac{1}{\dot{m}_c C_{pc}} \right]$$

$$\ln \frac{\left(T_{h,o} - T_{c,o}\right)}{\left(T_{h,i} - T_{c,i}\right)} = -\cup A_s \left[\frac{1}{\dot{m}_h C_{ph}} + \frac{1}{\dot{m}_c C_{pc}}\right]$$

$$\dot{Q} = \dot{m_c} C_{pc} (T_{c,o} - T_{c,i})$$

$$\dot{Q} = \dot{m}_c C_{pc} (T_{c,o} - T_{c,i}) \qquad \dot{Q} = \dot{m}_h C_{ph} (T_{h,i} - T_{h,o})$$

$$\ln \frac{\left(T_{h,o} - T_{c,o}\right)}{\left(T_{h,i} - T_{c,i}\right)} = -\cup A_s \left[\frac{\left(T_{h,i} - T_{h,o}\right)}{\dot{Q}} + \frac{\left(T_{c,o} - T_{c,i}\right)}{\dot{Q}}\right]$$

$$\dot{Q} = - \cup A_{s} \left[\frac{\left(T_{h,i} - T_{c,i} \right) - \left(T_{h,o} - T_{c,o} \right)}{\ln \frac{\left(T_{h,o} - T_{c,o} \right)}{\left(T_{h,i} - T_{c,i} \right)}} \right] \qquad \dot{Q} = \cup A_{s} \left[\frac{\left(T_{h,o} - T_{c,o} \right) - \left(T_{h,i} - T_{c,i} \right)}{\ln \frac{\left(T_{h,o} - T_{c,o} \right)}{\left(T_{h,i} - T_{c,i} \right)}} \right]$$

$$\dot{Q} = \cup A_{s} \left| \frac{(T_{h,o} - T_{c,o}) - (T_{h,i} - T_{c,i})}{\ln \frac{(T_{h,o} - T_{c,o})}{(T_{h,i} - T_{c,i})}} \right|$$

$$\Delta T_{lm} = \frac{\Delta T_1 - \Delta T_2}{\ln\left(\frac{\Delta T_1}{\Delta T_2}\right)}$$

$$\dot{Q} = \cup A_s \Delta T_{lm}$$

$$\Delta T_{lm} = \frac{\Delta T_1 - \Delta T_2}{\ln\left(\frac{\Delta T_1}{\Delta T_2}\right)}$$

$$\Delta T_1 = T_{h,i} - T_{c,i}$$
 $\Delta T_2 = T_{h,o} - T_{c,o}$

$$\Delta T_1 = T_{h,i} - T_{c,o} \qquad \Delta T_2 = T_{h,o} - T_{c,i}$$

$$\dot{Q} = \dot{m}_h C_{ph} (T_{h,i} - T_{h,o})$$
 $\dot{Q} = \dot{m}_c C_{pc} (T_{c,o} - T_{c,i})$
 $\delta \dot{Q} = -\dot{m}_c C_{pc} dT_c \quad T \downarrow \uparrow x$
 $\delta \dot{Q} = -\dot{m}_h C_{ph} dT_h \quad T \uparrow \downarrow x$
 $dT_h = -\frac{\delta \dot{Q}}{\dot{m}_h C_{ph}} \qquad dT_c = -\frac{\delta \dot{Q}}{\dot{m}_c C_{pc}}$

$$dT_h - dT_c = d(T_h - T_c) = -\frac{\delta \dot{Q}}{\dot{m}_h C_{ph}} + \frac{\delta \dot{Q}}{\dot{m}_c C_{pc}} = -\delta \dot{Q} \left[\frac{1}{\dot{m}_h C_{ph}} - \frac{\delta \dot{Q}}{\dot{m}_c C_{pc}} \right]$$

$$dT_h - dT_c = d(T_h - T_c) = -\frac{\delta \dot{Q}}{\dot{m}_h C_{ph}} + \frac{\delta \dot{Q}}{\dot{m}_c C_{pc}} = -\delta \dot{Q} \left[\frac{1}{\dot{m}_h C_{ph}} - \frac{1}{\dot{m}_c C_{pc}} \right]$$

$$\int_{T_{h,i}-T_{c,o}}^{T_{h,o}-T_{c,i}} \frac{d(T_h-T_c)}{T_h-T_c} = -\cup dA_s \left[\frac{1}{\dot{m_h}C_{ph}} - \frac{1}{\dot{m_c}C_{pc}} \right] \qquad \delta \dot{Q} = \cup (T_h-T_c)dA_s$$

$$\delta \dot{Q} = \cup (T_h - T_c) dA_s$$

$$\ln \frac{T_{h,o} - T_{c,i}}{T_{h,i} - T_{c,o}} = - \cup A_s \left[\frac{T_{h,i} - T_{h,o}}{\dot{Q}} - \frac{T_{c,o} - T_{c,i}}{\dot{Q}} \right]$$

$$\dot{Q} = \cup A_{s} \left[\frac{\left(T_{h,o} - T_{c,i} \right) - \left(T_{h,i} - T_{c,o} \right)}{\left[\ln \frac{T_{h,o} - T_{c,i}}{T_{h,i} - T_{c,o}} \right]} \right]$$

Heat exchanger with same specific heats and mass flow rates

$$\dot{Q} = \dot{m}_h C_{ph} (T_{h,i} - T_{h,o}) = C_h (T_{h,i} - T_{h,o})$$

$$\dot{Q} = \dot{m}_c C_{pc} (T_{c,o} - T_{c,i}) = C_c (T_{c,o} - T_{c,i})$$

$$C_h = C_c$$

$$\Delta T_1 = \Delta T_2 = \Delta T = constant$$

$$\Delta T_1 = T_{h,i} - T_{c,o}$$

$$\Delta T_2 = T_{h,o} - T_{c,i}$$

$$\dot{Q} = \cup A_s \Delta T_{lm}$$

$$\Delta T_{lm} = \frac{\Delta T_1 - \Delta T_2}{\ln\left(\frac{\Delta T_1}{\Delta T_2}\right)}$$

$$\dot{Q} = UA_s \frac{\left[\left(T_{h,o} - T_{c,i} \right) - \left(T_{h,i} - T_{c,o} \right) \right]}{\ln \left[\frac{T_{h,o} - T_{c,i}}{T_{h,i} - T_{c,o}} \right]}$$

$$\Delta T_1 = T_{h,i} - T_{c,o}$$
$$\Delta T_2 = T_{h,o} - T_{c,i}$$

LIMITING CASE:

- Cold fluid is heated to inlet temperature of the hot fluid.
- $T_{c,o}$ can never exceed $T_{h,i}$ Violation of II law

SPECIFIED INLET TEMPERATURES:

$$(LMTD)_{counter\ flow} > (LMTD)_{parallel\ flow}$$

COUNTER FLOW HEAT EXCHANGER A_s — smaller

: Counter Flow Heat Exchanger are Popular

LMTD OF COUNTER FLOW HE IS HIGHER THAN PARALLEL FLOW HE

$$T_{h,i} = 110^{\circ} \text{C}$$
 $T_{c,i} = 30^{\circ} \text{C}$ $T_{h,o} = 60^{\circ} \text{C}$ $T_{c,o} = 55^{\circ} \text{C}$

Counter flow heat exchanger

$$\Delta T_{LM}]_{counter} = \frac{\left[\left(T_{h,i} - T_{c,o}\right) - \left(T_{h,o} - T_{c,i}\right)\right]}{\ln\left[\frac{T_{h,i} - T_{c,o}}{T_{h,o} - T_{c,i}}\right]} = \frac{\left[\left(110 - 55\right) - \left(60 - 30\right)\right]}{\ln\left[\frac{110 - 55}{60 - 30}\right]} = 41.24^{\circ}\text{C}$$

Parallel flow heat exchanger

$$\Delta T_{LM}]_{parallel} = \frac{\left[\left(T_{h,i} - T_{c,i} \right) - \left(T_{h,o} - T_{c,o} \right) \right]}{\ln \left[\frac{T_{h,i} - T_{c,i}}{T_{h,o} - T_{c,o}} \right]} = \frac{\left[(110 - 30) - (60 - 55) \right]}{\ln \left[\frac{110 - 30}{60 - 55} \right]} = 27.05^{\circ} \text{C}$$

$$D_i = 25mm$$
 $D_o = 45mm$
 $\Delta T_1 = 100 - 40.2 = 59.8$
 $\Delta T_2 = 60 - 30 = 30$

WATER $C_p = 4178 \ J/kg.K$ $\mu = 725 \times 10^{-6} \ Pa.s$ $k = 0.625 \ W/m.K$ Pr = 4.85

OIL
$$C_p = 2131 J/kg.K$$
 $\mu = 3.25 \times 10^{-2} Pa.s$
 $k = 0.138 W/m.K$
 $Pr = 501.87$

- Counter flow HE
- Water flows through the inner tube
- Oil Flows through annulus
 Find Surface area

$$\Delta T_1 = 100 - 40.2 = 59.8$$

 $\Delta T_2 = 60 - 30 = 30$

$$\dot{Q} = (0.1)(2131)(100 - 60) = 8524 W --- OIL$$

$$8524 = (0.2)(4178)(T_{c,o} - 30), -Water \qquad T_{c,o} = 40.2$$
°C

$$T_{c,o} = 40.2$$
°C

$$\Delta T_{LM} = \frac{\Delta T_1 - \Delta T_2}{\ln \frac{\Delta T_1}{\Delta T_2}} = \frac{59.8 - 30}{\ln \frac{59.8}{30}} = 43.2^{\circ}\text{C}$$

Water Side:

$$Re_D = \frac{4\dot{m}}{\pi D_i \mu} = \frac{4(0.2)}{\pi (25 \times 10^{-3})(725 \times 10^{-6})} = 14050$$

$$D_i = 25mm$$

$$D_o = 45mm$$

WATER

 $C_p = 4178 J/kg.K$

 $\mu = 725 \times 10^{-6} Pa.s$

 $k=0.625\,w/m.K$

Pr = 4.85

$$Nu_D = 0.023Re_D^{4/5}Pr^{0.4} = 90$$
 $Nu_D = \frac{hD_i}{k_f} = 90 = \frac{h(25 \times 10^{-3})}{0.625}$ $h_i = 2250 \frac{W}{m^2 K}$

$$h_i = 2250 \frac{W}{m^2 K}$$

OIL
$$C_p = 2131 J/kg.K$$
 $\mu = 3.25 \times 10^{-2} pa.s$
 $k = 0.138 w/m.K$
 $Pr = 501.87$

$$D_i = 25mm$$
$$D_o = 45mm$$

OIL Side:

$$D_h = D_o - D_i = 45 - 25 = 20mm$$

$$Re_D = \frac{\rho u_m D_h}{\mu} = \frac{\rho D_h}{\mu} \times \frac{\dot{m_h}}{\rho \frac{\pi}{4} \left(D_o^2 - D_i^2\right)} = \frac{20 \times 10^{-3}}{3.25 \times 10^{-2}} \cdot \frac{0.1}{\frac{\pi}{4} \left[(45 \times 10^{-2})^2 - (25 \times 10^{-3})^2\right]}$$

$$Re_D = 56$$
 for $\frac{D_i}{D_o} = 0.56$ $Nu_i = \frac{h_o D_h}{k} = 5.56 = \frac{h_o (20 \times 10^{-3})}{0.138}$

$$h_o = 38.4 \frac{W}{m^2 K}$$

$$\frac{1}{U} = \frac{1}{h_i} + \frac{1}{h_o} = \frac{1}{2250} + \frac{1}{38.4}$$

$$U=37.76\frac{W}{m^2K}$$

$$Q = U\pi D_i L \Delta T_{lm}$$

$$8524 = (37.26)\pi(25 \times 10^{-3})L(43.2)$$

$$L = 66.54 m$$

COMMENTS

- h_o Controls the overall heat transfer coefficients
- $h_i >> h_o$ wall temperature will follow that of the coolant water. Accordingly, assumption of UNIFORM WALL TEMPERATURE.

$$\frac{1}{U} = \frac{1}{h_i} + \frac{1}{h_o} = \frac{1}{2250} + \frac{1}{38.4}$$

$$U=37.76\frac{W}{m^2K}$$

$$Q = U\pi D_i L \Delta T_{lm}$$

$$8524 = (37.26)\pi(25 \times 10^{-3})L(43.2)$$

$$L = 66.54 m$$

$$\frac{1}{UA} = \frac{1}{h_i A_i} + \frac{1}{h_o A_o} = \frac{1}{h_i (\pi D_i L)} + \frac{1}{h_o (\pi D_o L)}$$

$$\frac{1}{UA} = \frac{1}{2250(\pi)(25 \times 10^{-3})L} + \frac{1}{38.4(\pi)(45 \times 10^{-3})L}$$

$$\frac{1}{UA} = \frac{1}{176.71L} + \frac{1}{5.429L} = \frac{1}{L} \left(\frac{1}{176.71} + \frac{1}{5.429} \right)$$

$$\frac{1}{UA} = \frac{0.1899}{L} \Rightarrow UA = 5.267L \frac{W}{m^2 K}$$

$$Q = UA\Delta T_{lm}$$

$$8524 = (5.267L)(43.2)$$

$$L = 37.46 m$$

CONDENSER and EVAPORATOR

$$C_h = \dot{m_h} C_{ph} o \infty \qquad \Delta T o 0$$
 $\dot{Q} = \dot{m_h} C_{ph} \Delta T - Finite$
 $C_c = \dot{m_c} C_{pc} o \infty \qquad \Delta T o 0$

Rate of heat transfer in Heat Exchanger $\dot{Q} = UA_s \Delta T_{lm}$ U — Overall heat transfer coefficients A_s — Heat transfer area ΔT_{lm} — Approximate temperature difference

LMTD-F approach

LMTD-F approach:

Select HE that will achieve specified temperature range in a fluid stream of known mass flow rate

- 1. Select the type of heat exchanger suitable for the application
- 2. Determine any unknown inlet or outlet temperature and the heat transfer rate using an energy balance
- 3. Calculate the log mean temperature difference and the correction factor F, if necessary
- 4. Obtain (select or calculate) the value of the overall heat transfer coefficient
- 5. Calculate the heat transfer area

MULTI-PASS AND CROSS FLOW HEAT EXCHANGERS

Heat Transfer rate

$$\dot{Q} = \cup A_s F \Delta T_{lm}$$

$$\Delta T_{lm,CF} = \frac{\Delta T_1 - \Delta T_2}{\ln\left(\frac{\Delta T_1}{\Delta T_2}\right)}$$

$$\Delta T_1 = T_{h,i} - T_{c,o} \qquad \Delta T_2 = T_{h,o} - T_{c,i}$$

F is the correction factor which takes into account of the deviation of the given heat exchanger away from the counter flow heat exchanger

F = 1 implies perfect counter flow heat exchanger
Generally, F < 1

F is obtained by charts

One shell pass and 2,4,6 etc (any multiples of 2), tube passes

Two-shell passes and 4, 8, 12, etc, (any multiple of 4), tube passes

Single pass cross-flow with both fluids unmixed

Single pass cross-flow with one fluid mixed and other unmixed $P = \frac{t_2 - t_1}{T_2 - t_1}$

OIL COOLER

COOLING WATER (shell side) OIL (tube side)

$$T_{c,i} = 20^{\circ}$$
C
 $T_{c,o} = 30^{\circ}$ C
 $C_{pc} = 4200 \frac{J}{kg.K}$
 $\dot{m}_c = ?$

$$T_{h,i} = 70^{\circ}$$
C
 $T_{h,o} = 30^{\circ}$ C
 $C_{ph} = 2000 \frac{J}{kg.K}$
 $m_h = 4 \frac{Kg}{s}$

HEAT BALANCE

$$\dot{m}_c \cdot C_{pc} (T_{c,o} - T_{c,i}) = \dot{m}_h \cdot C_{ph} (\dot{T}_{h,i} - T_{h,o})$$
 $\dot{m}_c \cdot (4200)(30 - 20) = 4(2000)(70 - 30)$
 $m_c = 7.62 \ Kg/s$

$$R = \frac{\dot{m_c}C_{pc}}{\dot{m_h}C_{ph}} = \frac{T_{h,i} - T_{h,o}}{T_{c,o} - T_{c,i}} = \frac{7.62 \times 4200}{4 \times 2000}$$

$$R = 4.0$$

$$P = \frac{T_{c,o} - T_{c,i}}{T_{h,i} - T_{c,i}} = \frac{30 - 20}{70 - 20} = 0.2$$

F factor F = 0.8 (Two pass shell and tube) F = 0.92 (Unmixed cross flow)

$$R = \frac{\dot{m}_{c}C_{pc}}{\dot{m}_{h}C_{ph}} = \frac{T_{h,i} - T_{h,o}}{T_{c,o} - T_{c,i}} = \frac{7.62 \times 4200}{4 \times 2000}$$

$$R = 4.0$$

$$P = \frac{T_{c,o} - T_{c,i}}{T_{h,i} - T_{c,i}} = \frac{30 - 20}{70 - 20} = 0.2$$

$$F = 0.8 \text{ (Two pass shell and tube)}$$

$$R = \frac{T_{1} - T_{2}}{T_{b,in}} = \frac{1000}{4 \times 2000}$$

$$T_{b,in}$$

$$T_{c,out}$$

$$T_{c,ou$$

$$\Delta T_{LM} = \frac{\left(T_{h,i} - T_{c,o}\right) - \left(T_{h,o} - T_{c,i}\right)}{\ln \frac{T_{h,o} - T_{c,o}}{T_{h,o} - T_{c,i}}} = \frac{(70 - 30) - (30 - 20)}{\ln \frac{70 - 30}{30 - 20}} = 21.64^{\circ}\text{C}$$

$$\Delta T_{M} = F\Delta T_{LM} = 0.8 \times 21.64 = 17.3$$
°C (Shell & tube)
=0.92× 21.64 = 19.9°C (Unmixed cross flow)

$$T_{h,in} = 400$$
 °C; $T_{h,out} = 400$ °C; $T_{c,in} = 25$ °C; $T_{c,out} = 193.75$ °C

$$R = \frac{T_{h,in} - T_{h,out}}{T_{c,out} - T_{c,in}} = \frac{400 - 62.5}{193.75 - 25} = 2 = \frac{\dot{m_c}C_{pc}}{\dot{m_h}C_{ph}}$$

$$P = \frac{T_{c,out} - T_{c,in}}{T_{h,in} - T_{c,in}} = \frac{193.75 - 62.5}{400 - 25} = 0.45$$

- > F < 0.3 single shell and tube heat exchanger
- > F = 0.85 Two shell and tube heat exchanger
- > F = 0.87 Three shell and tube heat exchanger
- > F = 0.95 Four shell and tube heat exchanger
- > F = 0.98 Six shell and tube heat exchanger
- > F = 0.65 Cross flow heat exchanger (unmixed)
- > F = 0.75 Cross flow heat exchanger (one stream mixed)

Few salient design features to be taken care of in the design of heat exchangers

- > F as a function of P for a given R tends to fall very steeply indicating a considerable sensitivity to the temperatures used in definition of P.
- > Local reversal of the transfer process due to the multi-pass operation; F> 0.8.
- > For achieving F > 0.8, multiple shells in series are used.

Approaching counter flow operation by increasing the number of shells

Occurrence of "temperature cross" in a two pass heat exchanger

- Cold fluid reaches a higher temperature than the hot fluid, ie., "temperature cross".
- Zone of reverse heat transfer represents inefficient use of the heat transfer surface.

MULTIPLE SHELL AND TUBE HEAT EXCHANGER

• THUMB RULE - F > 0.8

 Number of Shell (in Series) are increased results in closer to counter current flow – F↑

LMTD-F METHOD

- Select type of Heat Exchanger suitable for application
- Find unknown inlet or outlet temperature and heat transfer rate by energy balance
- Find ΔT_{lm} , F
- Find U
- Calculate A_S