

Podstawy Cybernetyki Laboratorium

- 1. Metoda k-średnich przypisać do klastrów punkty z (5 pkt):
 - pliku S1 2 wymiary i 15 klastrów, aby mieć podstawę do dalszych prac, należy wpisać centra klusteringu ręcznie, oznaczyć każdy kluster osobnym kolorem;
 - pliku breast 9 wymiarów, 2 klastry, aby sprawdzić czy cokolwiek działa trzeba rysować scaterry 3d (dla każdych 3 wymiarów) z kolorem oznaczającym przynależność do grupy.
- 2. Podzielić dane wejściowe na trzy części (ucząca, weryfikująca i testowa). Stworzyć sieć neuronową i nauczyć ją danymi uczącymi, zweryfikować (zmieniając ręcznie hyper-parametry) i przetestować. To samo zrobić z algorytmem SOM (sieć samoorganizująca). Dla danych testujących pokazać różnicę w działaniu algorytmu k-średnich, sieci neuronowej oraz SOM (5 pkt).
- 3. Mając dane z powyższych trzech metod, wyznaczyć reguły rozmyte i zaimplementować system rozmyty klasteryzujący dany zbiór i porównać z poprzednimi metodami (5 pkt).
- 4. Dla danych z pliku S1 porównać powyższe metody wraz z zaimplementowanym ANFISem (5 pkt).
- 5. Napisać strategię opartą na metodach sztucznej inteligencji (użycie jednej z powyższych lub innych sieci neuronowych) dla iterowanej gry o funkcji kary w poniższej postaci:

(a, b)	B_0	B_1	B_2	B_3
A_0	(1, 1)	(5, 3)	(2, 4)	(3, 6)
A_1	(3, 5)	(2, 2)	(1, 7)	(5, 5)
$\overline{A_2}$	(4, 2)	(7, 1)	(-6, -6)	(1, 3)
$\overline{A_3}$	(6, 3)	(5, 5)	(3, 1)	(-3, -3)

gdzie funkcja gracza nazwana wiezienINDEX(poprzedniaNagroda)¹ zwraca wybraną strategię w postaci jej numeru (0..3). W przypadku pierwszej iteracji poprzedniaNagroda przyjmuję wartość 0. Należy minimalizować karę gracza. Gra zostanie rozegrana w stylu każdy z każdym. (0-5 pkt w zależności od pozycji na liście).

6. Laboratorium poprawkowe.

¹gdzie rzecz jasna INDEX jest numerem albumu