

Revisión del reglamento oficial

Competencia mecatrónica

Nombre	Matrícula
David Cano Rangel	A00574372
Luis Fernando Saucedo Serrano	A00574410
Jorge Martínez Vazquez	A00572724

Fecha de entrega:

27 de octubre de 2025

Tres restricciones que se pueden convertir en ventajas

Restricción del reglamento	Cómo puede volverse una ventaja
Expansión permitida después del inicio, siempre que las partes sigan unidas al robot.	Se pueden usar mecanismos desplegables (como rampas o brazos) que aumenten el área de empuje sin violar la regla.
Altura sin límite (solo se restringe la base a 10×10 cm).	Permite un centro de masa bajo pero sensores altos, o estructuras verticales para ubicar sensores y componentes estratégicamente.
No se prohíben mecanismos de inclinación o cambio de forma, mientras no dañen ni se separen.	Se puede diseñar un robot adaptable, que cambie de forma según la posición o contacto con el rival (por ejemplo, cuña que se baja al detectar empuje).

Análisis: cómo cada regla afecta el diseño y la estrategia

Regla clave del reglamento	Efecto en diseño / estrategia	Posible respuesta en diseño
Huella máxima 10×10 cm; altura libre.	Limitación de espacio obliga a compactar electrónica y mecánica.	Chasis de 95×95 mm, PCB apilada, componentes SMD, optimización de espacio.
Masa máxima 500 g.	Se restringe el uso de materiales pesados o baterías grandes.	Usar aluminio o fibra de carbono, baterías LiPo ligeras, motores con alto torque/peso.
Expansión permitida (sin separarse).	Oportunidad para ampliar el área de empuje.	Diseñar cuñas o rampas desplegables unidas al chasis.
Solo control autónomo.	El sistema debe ser totalmente independiente.	Firmware robusto, pruebas locales, registro de datos (logging).
Prohibido dañar el Dohyo o el oponente.	Se limita la agresividad mecánica.	Bordes redondeados y superficie de empuje lisa.
No se permiten adhesivos fuertes, imanes ni vacío.	Se prohíbe aumentar tracción con métodos no mecánicos.	Optimizar ruedas y fricción natural; usar caucho de alto agarre.
Dohyo de 77 cm con línea blanca de 2.5 cm.	Necesidad de detectar bordes con precisión.	Calibrar sensores de línea y usar algoritmos de evasión.

Gana quien empuje al rival fuera del Dohyo.	Estrategia de empuje directo y control posicional.	Motores potentes, centro de masa bajo, chasis tipo cuña.
Inmovilidad por más de 5 s = reinicio.	Evitar bloqueos o estancamientos.	Programar rutina de escape o retroceso.
Penalizaciones por violaciones o daños.	Se castigan errores mecánicos o de software.	Revisar fijaciones, cableado y sensores antes de cada combate.

Síntesis visual

Reglamento	Implicación	Decisión de diseño
Tamaños menores o iguales a 10x10 cm	Espacio limitado obliga a diseño compacto.	Miniaturizar componentes.
Masa menor a 500g.	Menor peso = mayor aceleración pero menos tracción.	Materiales ligeros con un centro de masa bajo.
Expansión permitida.	Posible ventaja mecánica con piezas móviles.	Agregar rampa o mecanismo desplegable.
Solo control autónomo.	Sin mando manual.	Firmware con pruebas y fail-safes.
No interferir con los sensores.	Evitar usar tácticas tramposas.	Usar sensores modulados.
Prohibido dañar dohyo o rivales.	Se prioriza un buen control y un contacto limpio.	Diseño sin filos (que no sean la navaja) ni partes punzantes.
Sin pegamento ni imanes.	Tracción física.	Optimizar las ruedas usadas y distribuir el peso.
Dohyo de 77 cm con borde blanco.	Se necesita evitar salidas accidentales.	Sensores de líneas.
Empujar al rival fuera del dohyo.	Empuje y control posicional.	Motores potentes y una tracción firme.