КАРБОНОВЫЕ КИСЛОТЫ СТРОЕНИЕ

ОБЩАЯ ФОРМУЛА - $C_nH_{2n}O_2$

Функциональная группа:

Гомологический ряд метановой кислоты:

КЛАССИФИКАЦИЯ КАРБОНОВЫХ КИСЛОТ по числу карбокси-групп

КЛАССИФИКАЦИЯ КАРБОНОВЫХ КИСЛОТ по насыщенности

бензойная кислота

ароматические карбоновые кислоты [обладают свойствами соответствующих ароматических соединений]

НОМЕНКЛАТУРА

$$H_2C$$
 CH C' OH

$$\begin{array}{c} \operatorname{CH_3} & \operatorname{O} \\ \operatorname{H_3C-----} \operatorname{CH_2----} \operatorname{CH_2----} \operatorname{CH_2----} \operatorname{CH_3} \\ \operatorname{CH_3} & \operatorname{OH} \end{array}$$

- 1) Выбираем самую длинную цепь (в ней <u>обязательно</u> должна быть функциональная группа!)
- 2) Нумеруем атомы углерода, начиная с того конца, где ближе карбоксильная группа
- 3) Составляем название вещества по схеме: "местоположение заместителя + название заместителя + число атомов углерода в главной цепи + АН/ЕН/и др.+ ОВАЯ КИСЛОТА". Пример:

ИЗОМЕРИЯ

углеродного скелета	
положения кратной связи (при её наличии)	
межклассовая (со сложными эфирами)	
оптическая изомерия (4 разных заместителей)	

ФИЗИЧЕСКИЕ СВОЙСТВА

Низшие предельные монокарбоновые кислоты - жидкости с резким запахом (вспоминаем уксусную кислоту), хорошо растворимые в воде. Первые

представители смешиваются с водой в любых соотношениях. Чем длиннее углеводородный радикал, тем хуже растворимость карбоновой кислоты в воде! Высшие кислоты, начиная с нонановой, - твёрдые вещества, без запаха, НЕрастворимые в воде.

НЕнасыщенные карбоновые кислоты зачастую - жидкие по агрегатному состоянию вещества, а дикарбоновые и ароматические кислоты - твёрдые кристаллические вещества.

химические свойства				J
ОБЩИЕ СВ-ВА	ЗАМЕЩЕНИЕ ОН-	РЕАКЦИИ	ОСОБЫЕ	DΗ
кислот	ГРУППЫ	ЗАМЕЩЕНИЯ	РЕАКЦИИ	
			И ГОРЕНИЕ	
-> + акт Ме	-> этерификация	-> галогенирование		
-> + осн/амф оксид	-> межмолекулярная		***	
-> + основание/амф	дегидратация			
гидроксид	-> + PCl _s			
-> РИО с солями	-> + NH			

ОБЩИЕ СВОЙСТВА КИСЛОТ

- -> взаимодействие с активными металлами до водорода в ряду активности
- -> взаимодействие с основными и амфотерными оксидами
- -> взаимодействие с основаниями и амфотерными гидроксидами
- -> взаимодействие с солями (реакции ионного обмена)

РЕАКЦИИ ОТЩЕПЛЕНИЯ ОН-ГРУППЫ

- -> реакция этерификации [условия H_2SO_4 (конц), t]
- -> взаимодействие с PCl₂ [катализаторов и условий HET]

- -> взаимодействие с NH₃ [условие t]
 - -> межмолекулярная дегидратация [условия P_2O_5 , t]

РЕАКЦИИ ЗАМЕЩЕНИЯ ВОДОРОДА В АЛЬФА-ПОЛОЖЕНИИ

-> галогенирование в альфа-положении [условие - свет/t/P_{красный}]

ОСОБЫЕ ХИМИЧЕСКИЕ СВОЙСТВА МУРАВЬИНОЙ КИСЛОТЫ

ПОЛУЧЕНИЕ

РИО солей карбоновых кислот с др. кислотами	
жёсткое ок-е различ- ных орг. соединений	

гидролиз тригалоген- произоводных	+
гидролиз сложных эфи- ров, ангидридов к-т, галогенангидридов, амидов, нитрилов к-т	
kat oк-e CH ₄ и C ₄ H ₁₀	
получение НСООН	

ПРИМЕНЕНИЕ

Уксусная кислота: в пищевой промышленности, при производстве красителей, лекарств, сложных эфиров, полимеров.

Щавелевая кислота: в кожевенной и текстильной промышленности.

Ненасыщенные кислоты: могут входить в состав жиров, служат часто для синтеза полимеров.

Ароматические кислоты: в качестве консерванта (бензойная кислота) и для получения полимеров (терефталевая кислота).

ДЛЯ ЗАМЕТОК

