

Deep Learning Clinic (DLC)

Lecture 7 - Tricks and Tips

Jin Sun

11/9/2018

Today - Tricks and Tips in DL Training

- Overview
- Data Preprocessing
- Network Design
 - Activation Functions
 - Weight Initialization
 - Normalization
 - Monitoring the Learning Process
 - Hyperparameters
- Optimization
- Transfer Learning

Overview

Training a neural network is an art!

But there are tricks people found useful.

Overview

Network Design

Activation, preprocessing, initialization, regularization

Training Dynamics

Monitor the changing of train/val loss, parameter updates, hyperparameters

Recap: Training A Network

Training Loop:

- 1. Sample a **batch** of data.
- 2. **Forward** pass the data through the network and calculate the loss.
- 3. **Backprop** the loss to calculate gradients of the network.
- 4. **Update** parameters using gradient based optimization method.

Today - Tricks and Tips in DL Training

- Overview
- Data Preprocessing
- Network Design
 - Activation Functions
 - Weight Initialization
 - Normalization
 - Monitoring the Learning Process
 - Hyperparameters
- Optimization
- Transfer Learning

Data Preprocessing

In practice, only do zero-centering for images.

Data Preprocessing - PCA and Whitening

Data Augmentation

Horizontal Flip:

Random Contrast and Brightness

Data Augmentation

Random Crops and Scales (Train)

Fixed Crops and Scales (Test)

Today - Tricks and Tips in DL Training

- Overview
- Data Preprocessing
- Network Design
 - Activation Functions
 - Weight Initialization
 - Normalization
 - Monitoring the Learning Process
 - Hyperparameters
- Optimization
- Transfer Learning

Activation Functions

Activation Functions - the Gallery

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

ELU $\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$

Activation Functions - Summary

Use **ReLU** as the default

Try Leaky ReLU / Maxout / ELU for alternatives

Try tanh

Sigmoid is usually not recommended.

Weight Initialization

Do not use constant weights.

Small Gaussian random numbers not working well for deep networks..

Recommended:

Xavier initialization, and its variants.

Still an active research area.

Batch Normalization

Idea:

Make a batch of activations to have zero-mean and unit-variance.

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Works as a layer in neural networks.

Put it after fully connected or convolutional layers, before nonlinearity.

Batch Normalization

Benefit:

Improve gradient flow in the network.

Allows higher learning rate.

Works also like a regularizer.

During Testing:

Use a single fixed mean/std obtained from training.

Monitoring the Learning Process

Some simple things to try and observe:

You should be able to overfit your model to a small portion of the data. Do this as a sanity check to make sure the pipeline works.

Train loss is not going down: try higher learning rate

Train loss explodes: try lower learning rate

Find a range of learning rate by doing a simple set of experiments.

Learning Rate vs Curves

Sign of Overfitting

Big gap: Overfitting

No gap: Maybe model can be more complex

Early Stopping

Hyperparameters

Definition:

All the setup variables that not changing during the learning process. For example: number of layers.

Strategy:

Cross-validate different models on train/val set.

Grid search on the parameters (e.g., learning rate, regularizer factors).

Try log-space.

Hyperparameters

Today - Tricks and Tips in DL Training

- Overview
- Data Preprocessing
- Network Design
 - Activation Functions
 - Weight Initialization
 - Normalization
 - Monitoring the Learning Process
 - Hyperparameters
- Optimization
- Transfer Learning

Optimization

Stochastic Gradient Descent (SGD)

Usually works with momentum.

Adagrad, RMSProp, Adadelta

Recommended: Adam

Learning Rate Decay Strategy

Step Decay

Exponential Decay

1/t Decay

Today - Tricks and Tips in DL Training

- Overview
- Data Preprocessing
- Network Design
 - Activation Functions
 - Weight Initialization
 - Normalization
 - Monitoring the Learning Process
 - Hyperparameters
- Optimization
- Transfer Learning

Transfer Learning

1. Train on Imagenet 2. Small Dataset (C classes) 3. Bigger dataset FC-C FC-1000 FC-C FC-4096 FC-4096 FC-4096 Train these Reinitialize FC-4096 FC-4096 FC-4096 this and train MaxPool MaxPool MaxPool Conv-512 Conv-512 Conv-512 With bigger Conv-512 Conv-512 Conv-512 dataset, train MaxPool MaxPool MaxPool more layers Conv-512 Conv-512 Conv-512 Conv-512 Conv-512 Conv-512 MaxPool Freeze these MaxPool MaxPool Conv-256 Conv-256 Conv-256 Freeze these Conv-256 Conv-256 Conv-256 MaxPool MaxPool MaxPool Lower learning rate Conv-128 Conv-128 Conv-128 when finetuning; Conv-128 Conv-128 Conv-128 1/10 of original LR MaxPool MaxPool MaxPool Conv-64 Conv-64 is good starting Conv-64 Conv-64 Conv-64 Conv-64 point **Image Image** Image

Transfer Learning Is the Norm

Where to Find Pretrained Models

Caffe:

https://github.com/BVLC/caffe/wiki/Model-Zoo

Tensorflow:

https://github.com/tensorflow/models

Pytorch:

https://pytorch.org/docs/master/torchvision/

Popular Models in Vision

[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]

Andrew Ng

https://medium.com/@RaghavPrabhu/cnn-architectures-lenet-alexnet-vgg-googlenet-and-resnet-7c81c017b848

Today - Tricks and Tips in DL Training

- Overview
- Data Preprocessing
- Network Design
 - Activation Functions
 - Weight Initialization
 - Normalization
 - Monitoring the Learning Process
 - Hyperparameters
- Optimization
- Transfer Learning