问题

判别下面命题公式是否为重言式(永真式)?

$$((p \land \neg q) \rightarrow r) \land p \land (q \rightarrow s) \land \neg s \rightarrow r$$

证明或判断公式为重言式的方法:

- 1) 真值表;
- 2) 等值演算法
 - ——思路或步骤?
 - ——主析取范式

如何判别一个命题公式是否为矛盾式(永假式)?

如何判别一个命题公式是否为非重言式的可满足

式?

思考题

命题公式的构造问题:

现有n个命题变项p₁, p₂, ..., p_n, 那么可以用它们构造多少个命题公式? (等值的只算一个)每个命题公式是什么样子的?如何构造它们?

答案尽在"主范式"中!

第4节命题逻辑等值演算(下)

主要内容:

- 主析取范式和主合取范式
- n元真值函数
- 联结词完备集
- 复合联结词

1. 主析取范式与主合取范式

基本概念:

- (1) 文字——命题变项及其否定的总称
- (2) 简单析取式——仅由有限个文字构成的析取式 $p, \neg q, p \lor \neg q, p \lor q \lor r, ...$
- (3) 简单合取式——仅由有限个文字构成的合取式 $p, \neg q, p \land \neg q, p \land q \land r, ...$
- (4) 析取范式——由有限个简单合取式组成的析取式 p, ¬p∧q, p∨¬q, (p∧¬q)∨(¬p∧q∧¬r)∨(q∧r)
- (5) 合取范式——由有限个简单析取式组成的合取式 $p, p \lor \neg q, \neg p \land q, (p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg r)$
- (6) 范式——析取范式与合取范式的总称

求命题公式范式的步骤

求公式A的范式的步骤:

(1) 消去A中的 \rightarrow , \leftrightarrow (若存在)

$$A \rightarrow B \Leftrightarrow \neg A \lor B$$

$$A \leftrightarrow B \Leftrightarrow (\neg A \lor B) \land (A \lor \neg B)$$

(2) 否定联结词一的内移或消去

$$\neg \neg A \Leftrightarrow A$$

$$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$$

$$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$$

(3) 使用分配律

$$A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$$

$$A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$$

求合取范式 求析取范式

公式范式的不足——不惟一

极小项与极大项

定义1 在含有n个命题变项的简单合取式中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i个文字出现在左起第i位上($1 \le i \le n$),称这样的简单合取式为极小项。

定义2 在含有n个命题变项的简单析取式中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i个文字出现在左起第i位上($1 \le i \le n$),称这样的简单析取式为极大项。

极小项与极大项

几点说明:

- n个命题变项有2ⁿ个极小项和2ⁿ个极大项。
- 2ⁿ个极小项(极大项)均互不等值。
- 用m_i表示第i个极小项,其中i是该极小项成真赋值的十进制表示。
- 用 M_i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示。
- $m_i(M_i)$ 称为极小项(极大项)的名称。

由两个命题变项p,q形成的极小项与极大项。

7	汲小项		极大项			
公式	成真 赋值	名称	公式	成假 赋值	名称	
$\neg p \land \neg q$	0 0	m_0	$p \lor q$	0 0	M_0	
$\neg p \land q$	0 1	$ m_1^{\dagger} $	$p \lor \neg q$	0 1	M_1	
$p \land \neg q$	1 0	m_2	$\neg p \lor q$	1 0	M_2^-	
$p \land q$	1 1	m_3	$\neg p \lor \neg q$	1 1	M_3	

由三个命题变项p,q,r形成的极小项与极大项。

极	小项		极大项				
公式	成真赋值	名称	公式	成假赋值	名称		
$\neg p \land \neg q \land \neg r$	0 0 0	m_0	$p \lor q \lor r$	0 0 0	M_0		
$\neg p \land \neg q \land r$	0 0 1	m_1	$p \lor q \lor \neg r$	0 0 1	$M^{}_1$		
$\neg p \land q \land \neg r$	0 1 0	m_2^-	$p \vee \neg q \vee r$	0 1 0	M_2^-		
$\neg p \land q \land r$	0 1 1	m_3^-	$p \vee \neg q \vee \neg r$	0 1 1	M_3^-		
$p \land \neg q \land \neg r$	1 0 0	m_4	$\neg p \lor q \lor r$	1 0 0	M_4°		
$p \land \neg q \land r$	1 0 1	m_5	$\neg p \lor q \lor \neg r$	1 0 1	M_5		
$p \land q \land \neg r$	1 1 0	m_6	$\neg p \lor \neg q \lor r$	1 1 0	M_6		
$p \land q \land r$	1 1 1	m_7	$\neg p \lor \neg q \lor \neg r$	1 1 1	M_{7}°		

 m_i 与 M_i 的关系: $\neg m_i \Leftrightarrow M_i$, $\neg M_i \Leftrightarrow m_i$

主析取范式与主合取范式

主析取范式——由极小项构成的析取范式 主合取范式——由极大项构成的合取范式

例如,n=3, 命题变项为p,q,r时,

 $(\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \Leftrightarrow m_1 \lor m_3$ ——主析取范式 $(p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r) \Leftrightarrow M_1 \land M_7$ ——主合取范式

定理1 (主范式的存在惟一定理)

任何命题公式都存在与之等值的主析取范式和主合取范式,并且是惟一的。

求命题公式主范式的步骤

求公式主析取范式的步骤:

设公式A含命题变项 $p_1, p_2, ..., p_n$ 。

- (1) 求A的析取范式 $A'=B_1\lor B_2\lor \ldots \lor B_s$,其中 B_j 是简单合取式, $j=1,2,\ldots,s$;
- (2) 若某个 B_j 既不含 p_i ,又不含 $\neg p_i$,则将 B_j 展开成 $B_j \Leftrightarrow B_j \land 1 \Leftrightarrow B_j \land (p_i \lor \neg p_i) \Leftrightarrow (B_j \land p_i) \lor (B_j \land \neg p_i)$ 重复这个过程,直到所有简单合取式都是长度为n的极小项为止;
- (3) 消去重复出现的极小项, 即用 m_i 代替 $m_i \lor m_i$;
- (4) 将极小项按下标从小到大排列。

求公式主范式的步骤

求公式的主合取范式的步骤:

设公式A含命题变项 $p_1, p_2, ..., p_n$.

- (1) 求A的合取范式 $A'=B_1 \land B_2 \land ... \land B_s$,其中 B_j 是简单析取式,j=1,2,...,s;
- (2) 若某个 B_j 既不含 p_i , 又不含 $\neg p_i$, 则将 B_j 展开成 $B_j \Leftrightarrow B_j \lor 0 \Leftrightarrow B_j \lor (p_i \land \neg p_i) \Leftrightarrow (B_j \lor p_i) \land (B_j \lor \neg p_i)$ 重复这个过程, 直到所有简单析取式都是长度 为n的极大项为止;
- (3) 消去重复出现的极大项, 即用 M_i 代替 $M_i \land M_i$;
- (4) 将极大项按下标从小到大排列。

例1 求公式 $A=(p\rightarrow \neg q)\rightarrow r$ 的主析取范式和主合取范式。

解
$$(p \rightarrow \neg q) \rightarrow r \Leftrightarrow (p \land q) \lor r$$

(析取范式)

 \bigcirc

$$(p \land q) \Leftrightarrow (p \land q) \land (\neg r \lor r)$$

$$\Leftrightarrow (p \land q \land \neg r) \lor (p \land q \land r)$$

$$\Leftrightarrow m_6 \lor m_7$$

(2)

$$r \Leftrightarrow (\neg p \lor p) \land (\neg q \lor q) \land r$$

$$\Leftrightarrow (\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land r)$$

$$\Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_7$$

(3)

②,③代入①并排序,得

$$(p \rightarrow \neg q) \rightarrow r \Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_6 \lor m_7$$
 (主析取范式)

$$(p \to \neg q) \to r \Leftrightarrow (p \lor r) \land (q \lor r)$$
 (合取范式) ④
$$p \lor r \Leftrightarrow p \lor (q \land \neg q) \lor r$$

$$\Leftrightarrow (p \lor q \lor r) \land (p \lor \neg q \lor r)$$
 ⑤
$$\Leftrightarrow M_0 \land M_2$$
 ⑤
$$q \lor r \Leftrightarrow (p \land \neg p) \lor q \lor r$$

$$\Leftrightarrow (p \lor q \lor r) \land (\neg p \lor q \lor r)$$

 $\Leftrightarrow M_0 \land M_4$

$$(p \rightarrow \neg q) \rightarrow r \Leftrightarrow M_0 \land M_2 \land M_4$$

(主合取范式)

(6)

$$(p \rightarrow \neg q) \rightarrow r$$

$$\Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_6 \lor m_7$$
 (主析取范式)

$$\Leftrightarrow M_0 \land M_2 \land M_4 \qquad (主合取范式)$$

注: (1) 由主析取范式求主合取范式;

(2) 由主合取范式求主析取范式。

数理由主析(合)取范式确定主合(析)取范式

由主析取范式确定主合取范式

例2 设A有3个命题变项,且已知 $A = m_1 \lor m_3 \lor m_7$,求A的主合取范式。

解: A的成真赋值是1,3,7的二进制表示,成假赋值是在主析取范式中没有出现的极小项的下角标0,2,4,5,6的二进制表示,它们恰好是A的主合取范式的极大项的下角标,故

 $A \Leftrightarrow M_0 \land M_2 \land M_4 \land M_5 \land M_6$

说明:由主合取范式确定主析取范式。

用成真和成假赋值确定主范式

问题: 用成真和成假赋值如何确定主析(合)取范式?

或者 用真值表如何求解主析(合)取范式?

例3设A有3个命题变项,且已知001,011,111为A的成真赋值,求A的主合取范式和主析取范式。

解: A的主析取范式

 $A \Leftrightarrow m_1 \lor m_3 \lor m_7$

A的主合取范式

 $A \Leftrightarrow M_0 \land M_2 \land M_4 \land M_5 \land M_6$

说明: 求解主析取范式和主合取范式的方法。

1.求公式的成真成假赋值

设公式A含n个命题变项,A的主析取范式有s个极小项,则A有s个成真赋值,它们是极小项下标的二进制表示,其余2n-s个赋值都是成假赋值

例如 $(p \rightarrow \neg q) \rightarrow r \Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_6 \lor m_7$ 成真赋值为 001, 011, 101, 110, 111, 成假赋值为 000, 010, 100.

类似地,由主合取范式也立即求出成假赋值和成真赋值。 赋值。

2. 判断公式的类型 设A含n个命题变项.

A为重言式

- ⇔A的主析取范式含全部2n个极小项
- $\Leftrightarrow A$ 的主合取范式不含任何极大项,记为1.

A为矛盾式

- ⇔A的主合析取范式含全部2ⁿ个极大项
- $\Leftrightarrow A$ 的主析取范式不含任何极小项,记为0.

A为非重言式的可满足式

- $\Leftrightarrow A$ 的主析取范式中至少含一个、但不是全部极小项.
- $\Leftrightarrow A$ 的主合取范式中至少含一个、但不是全部极大项.

例4 用主析取范式判断公式的类型:

$$(1) A \Leftrightarrow \neg (p \to q) \land q \quad (2) B \Leftrightarrow p \to (p \lor q) \quad (3) C \Leftrightarrow (p \lor q) \to r$$

$$(1)$$
 $A \Leftrightarrow \neg(\neg p \lor q) \land q \Leftrightarrow (p \land \neg q) \land q \Leftrightarrow 0$ 矛盾式

$$(2)$$
 $B \Leftrightarrow \neg p \lor (p \lor q) \Leftrightarrow 1 \Leftrightarrow m_0 \lor m_1 \lor m_2 \lor m_3$ 重言式

$$(3) C \Leftrightarrow \neg (p \lor q) \lor r \Leftrightarrow (\neg p \land \neg q) \lor r$$

$$\Leftrightarrow (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r)$$

$$\lor (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land r)$$

$$\Leftrightarrow m_0 \lor m_1 \lor m_3 \lor m_5 \lor m_7$$
 非重言式的可满定式

3. 判断两个公式是否等值

例5 用主析取范式判以下每一组公式是否等值

$$(1) p \rightarrow (q \rightarrow r) = (p \land q) \rightarrow r$$

$$(2) p \rightarrow (q \rightarrow r) = (p \rightarrow q) \rightarrow r$$

解 $p \rightarrow (q \rightarrow r) \Leftrightarrow m_0 \lor m_1 \lor m_2 \lor m_3 \lor m_4 \lor m_5 \lor m_7$ $(p \land q) \rightarrow r \Leftrightarrow m_0 \lor m_1 \lor m_2 \lor m_3 \lor m_4 \lor m_5 \lor m_7$ $(p \rightarrow q) \rightarrow r \Leftrightarrow m_1 \lor m_3 \lor m_4 \lor m_5 \lor m_7$ 显见, (1)中的两公式等值,而(2)的不等值.

4. 解实际问题

例6 某单位要从A,B,C三人中选派若干人出国考察, 需满足下述条件:

- (1) 若A去,则C必须去;
- (2) 若B去,则C不能去;
- (3) A和B必须去一人且只能去一人.

问有几种可能的选派方案?

解 记p:派A去, q:派B去, r:派C去

(1) $p \rightarrow r$, (2) $q \rightarrow \neg r$, (3) $(p \land \neg q) \lor (\neg p \land q)$

求下式的成真赋值

$$A = (p \rightarrow r) \land (q \rightarrow \neg r) \land ((p \land \neg q) \lor (\neg p \land q))$$

求A的主析取范式

$$A = (p \rightarrow r) \land (q \rightarrow \neg r) \land ((p \land \neg q) \lor (\neg p \land q))$$

$$\Leftrightarrow (\neg p \lor r) \land (\neg q \lor \neg r) \land ((p \land \neg q) \lor (\neg p \land q))$$

$$\Leftrightarrow ((\neg p \land \neg q) \lor (\neg p \land \neg r) \lor (r \land \neg q) \lor (r \land \neg r))$$

$$\land ((p \land \neg q) \lor (\neg p \land q))$$

$$\Leftrightarrow ((\neg p \land \neg q) \land (p \land \neg q)) \lor ((\neg p \land \neg r) \land (p \land \neg q))$$

$$\lor ((r \land \neg q) \land (p \land \neg q)) \lor ((\neg p \land \neg q) \land (\neg p \land q))$$

$$\lor ((\neg p \land \neg r) \land (\neg p \land q)) \lor ((r \land \neg q) \land (\neg p \land q))$$

$$\Leftrightarrow (p \land \neg q \land r) \lor (\neg p \land q \land \neg r)$$

成真赋值:101,010

结论: 方案1 派A与C去, 方案2 派B去

小结

解此类问题的步骤:

- 1.设简单命题并符号化;
- 2. 用复合命题描述各条件;
- 3. 写出由复合命题组成的合取式;
- 4. 将合取式化成析取式(最好是主析取范式);
- 5. 求成真赋值, 并做出解释和结论。

回忆前面的思考题

命题公式的构造问题:

现有n个命题变项p₁, p₂, ..., p_n,那么可以用它们构造多少个命题公式? (等值的只算一个)每个命题公式是什么样子的?如何构造它们?

2. n元真值函数

定义3 称 $F:\{0,1\}^n \to \{0,1\}$ 为n元真值函数。

 $\{0,1\}^n=\{00...0,00...1,...,11...1\}$,包含 2^n 个长为n的 0,1符号串。

共有 2^{2^n} 个n元真值函数。

1元真值函数: $F:\{0,1\} \rightarrow \{0,1\}$

1元真值函数

p	$F_0^{(1)}$	$F_1^{(1)}$	$F_2^{(1)}$	$F_3^{(1)}$
0	0	0	1	1
1	0	1	0	1

由1个命题变项p形成的极小项与极大项。

7	及小项		极大项			
公式	成真 赋值	名称	公式	成假 赋值	名称	
$\neg p$ p	0 1	$m_0 \\ m_1$	<i>p</i> ¬ <i>p</i>	0 1	$egin{array}{c} M_0 \ M_1 \end{array}$	

1元真值函数: $F:\{0,1\} \rightarrow \{0,1\}$

1元真值函数

p	$F_0^{(1)}$	$F_1^{(1)}$	$F_2^{(1)}$	$F_3^{(1)}$	
0	0	0	1	1	
1	0	1	0	1	$m_0 m_1$
一 八 一	0 0	0 1	1 0	1 1	

对应的命题公式: $0 m_1$

 m_1 m_0 $m_0 \lor m_1$

真值表

p	0	m_1	m_0	$m_0 \vee m_1$		
0	0	0	1	1	m_0	
1	0	1	0	1	m_1	28/49

2元真值函数

p	\boldsymbol{q}	$F_0^{(2)}$	$F_1^{(2)}$	$F_2^{(2)}$	$F_3^{(2)}$	$F_4^{(2)}$	$F_5^{(2)}$	$F_6^{(2)}$	$F_7^{(2)}$
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1
p	\boldsymbol{q}	$oxed{F_8^{(2)}}$	$F_9^{(2)}$	$F_{10}^{(2)}$	$F_{11}^{(2)}$	$F_{12}^{(2)}$	$F_{13}^{(2)}$	$F_{14}^{(2)}$	$F_{15}^{(2)}$
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

由2个命题变项p,q形成的极小项与极大项。

7	及小项			极大项	
公式	成真 赋值	名称	公式	成假 赋值	名称
$\neg p \land \neg q$	0 0	m_0	$p \lor q$	0 0	M_0
$\neg p \land q$	0 1	m_1	$p \lor \neg q$	0 1	M_1
$p \land \neg q$	1 0	m_2	$\neg p \lor q$	1 0	M_2
$p \land q$	1 1	m_3	$\neg p \lor \neg q$	1 1	M_3

$egin{array}{ c c c c c c c c c c c c c c c c c c c$			0	m_3	m_2		m_1			
$egin{array}{cccccccccccccccccccccccccccccccccccc$	p	\boldsymbol{q}	$F_0^{(2)}$	$F_1^{(2)}$	$F_2^{(2)}$	$F_3^{(2)}$	$F_4^{(2)}$	$F_5^{(2)}$	$F_6^{(2)}$	$F_7^{(2)}$
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0	1	0	0	0	0	1	1	1	1
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	1	0	0	0	1	1	0	0	1	1
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1	0	1	0	1	0	1	0	1
$\left egin{array}{c ccccccccccccccccccccccccccccccccccc$	p	\overline{q}	$F_8^{(2)}$	$F_9^{(2)}$	$F_{10}^{(2)}$	$F_{11}^{(2)}$	$F_{12}^{(2)}$	$F_{13}^{(2)}$	$F_{14}^{(2)}$	$F_{15}^{(2)}$
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0	0	1	1	1	1	1	1	1	1
	0	1	0	0	0	0	1	1	1	1
	1	0	0	0	1	1	0	0	1	1
	1	1	0	1	0	1	0	1	0	1

公式与真值函数

任何一个含n个命题变项的命题公式A都对应惟一的一个n元真值函数 F, F 恰好为A的真值表。

等值的公式对应的真值函数相同。

例如: $p \rightarrow q$, $\neg p \lor q$ 都对应 $F_{13}^{(2)}$

$$F_{13}^{(2)} \Leftrightarrow m_0 \vee m_1 \vee m_3$$

$$p \rightarrow q \Leftrightarrow \neg p \lor q \Leftrightarrow m_0 \lor m_1 \lor m_3$$

说明: 真值函数、命题公式、主析取范式(主合取范式)

3. 联结词完备集

定义4 设S是一个联结词集合,如果任何 $n(n \ge 1)$ 元真值函数都可以由仅含S中的联结词构成的公式表示,则称S是联结词完备集。

若S是联结词完备集,则任何命题公式都可由S中的联结词表示。

定理2 $S = \{\neg, \land, \lor\}$ 是联结词完备集。 证明 由范式存在定理可证。

联结词完备集

推论以下都是联结词完备集

$$(1) S_1 = \{\neg, \land, \lor, \rightarrow\}$$

$$(2) S_2 = \{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$$

$$(3) S_3 = {\neg, \land}$$

(4)
$$S_4 = \{ \neg, \vee \}$$

$$(5) S_5 = \{\neg, \rightarrow\}$$

证明 (1),(2) 显然。

(3)
$$A \lor B \Leftrightarrow \neg (\neg A \land \neg B)$$

$$(4) \ A \land B \Leftrightarrow \neg (\neg A \lor \neg B)$$

$$(5) A \rightarrow B \Leftrightarrow \neg A \lor B$$

 $\{\land,\lor,\to,\leftrightarrow\}$ 不是联结词完备集, 0不能用它表示; 它的子集 $\{\land\},\{\lor\},\{\to\},\{\leftrightarrow\},\{\land,\lor\},\{\land,\lor,\to\}$ 等都不是。

4. 复合联结词

定义5 设p,q为两个命题,¬ $(p \land q)$ 称作p与q的与非式,记作 $p \land q$,即 $p \land q \Leftrightarrow \neg(p \land q)$,个称为与非联结词。¬ $(p \lor q)$ 称作p与q的或非式,记作 $p \lor q$,即 $p \lor q \Leftrightarrow \neg(p \lor q)$, \downarrow 称为或非联结词。

定理3 {↑}与{↓}为联结词完备集。

证明 {¬, ^, ∨}为完备集

$$\neg p \Leftrightarrow \neg p \land \neg p \Leftrightarrow \neg (p \lor p) \Leftrightarrow p \downarrow p$$

$$p \land q \Leftrightarrow \neg (\neg p \lor \neg q) \Leftrightarrow \neg p \downarrow \neg q \Leftrightarrow (p \downarrow p) \downarrow (q \downarrow q)$$

$$p \lor q \Leftrightarrow \neg \neg (p \lor q) \Leftrightarrow \neg (p \downarrow q) \Leftrightarrow (p \downarrow q) \downarrow (p \downarrow q)$$
得证{\psi}为联结词完备集。对{\psi}类似可证。

练习1:概念

1. 设A与B为含n个命题变项的公式,判断下列命题是否为真?

(1) A⇔B 当且仅当A与B有相同的主析取范式 真

(2) 若A为重言式,则A的主合取范式为0 假

(3) 若A为矛盾式,则A的主析取范式为1 假

(4) 任何公式都能等值地化成{^, ∨}中的公式 假

(5) 任何公式都能等值地化成 $\{\neg, \rightarrow, \land\}$ 中的公式 真

练习1:概念

说明:

- (2) 重言式的主合取范式不含任何极大项,为1。
- (3) 矛盾式的主合析范式不含任何极小项,为0。
- (4) {ʌ, ∨}不是完备集,如矛盾式不能写成{ʌ, ∨}中的公式。
- (5) {¬,→}是完备集。

练习2: 判断公式类型

2. 判断下列公式的类型:

$$(1) (p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$$

解 用等值演算法求主范式

$$(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$$

$$\Leftrightarrow \neg(\neg p \lor q) \lor (q \lor \neg p)$$

$$\Leftrightarrow (p \land \neg q) \lor (q \lor \neg p)$$

$$\Leftrightarrow (p \land \neg q) \lor (\neg p \land q) \lor (p \land q) \lor (\neg p \land \neg q)$$

$$\Leftrightarrow m_2 \vee m_1 \vee m_3 \vee m_0$$

$$\Leftrightarrow m_0 \lor m_1 \lor m_2 \lor m_3$$

主合取范式

 $\Leftrightarrow 1$ **た**言重

主析取范式

练习题2(续)

$$(2) \neg (p \rightarrow q) \land q$$

解 用等值演算法求公式的主范式

$$\neg (p \rightarrow q) \land q$$

$$\Leftrightarrow \neg(\neg p \lor q) \land q$$

$$\Leftrightarrow p \land \neg q \land q$$

$$\Leftrightarrow 0$$

$$\Leftrightarrow M_0 \land M_1 \land M_2 \land M_3$$

矛盾式

主析取范式主合取范式

练习2(续)

$$(3) (p \rightarrow q) \land \neg p$$

解 用等值演算法求公式的主范式

$$(p \rightarrow q) \land \neg p$$

$$\Leftrightarrow (\neg p \lor q) \land \neg p$$

$$\Leftrightarrow \neg p$$

$$\Leftrightarrow (\neg p \land \neg q) \lor (\neg p \land q)$$

$$\Leftrightarrow m_0 \vee m_1$$

$$\Leftrightarrow M_2 \wedge M_3$$

主析取范式主合取范式

非重言式的可满足式

练习3: 求公式的主范式

3. 已知命题公式A中含3个命题变项p,q,r,并知道它的成真赋值为001,010,111,求A的主析取范式和主合取范式,及A对应的真值函数。

A的主析取范式为 $m_1 \lor m_2 \lor m_7$ A的主合取范式为 $M_0 \land M_3 \land M_4 \land M_5 \land M_6$

pqr	F	p q r	F
000	0	100	0
$0\ 0\ 1$	1	101	0
$0\ 1\ 0$	1	110	0
011	0	111	1

练习4: 联结词完备集

4. 将 $A = (p \rightarrow \neg q) \land r$ 改写成下述各联结词集中的公式:

- $(1) \{\neg, \land, \lor\}$
- $(2) \{\neg, \land\}$

 $(3) \{ \neg, \lor \}$

 $(4) \{\neg, \rightarrow\}$

(5) {**↑**}

(6) {↓}

解

- $(1) (p \rightarrow \neg q) \land r \Leftrightarrow (\neg p \lor \neg q) \land r$
- $(2) (p \rightarrow \neg q) \land r \Leftrightarrow \neg (p \land q) \land r$
- $(3) \quad (p \rightarrow \neg q) \land r \iff (\neg p \lor \neg q) \land r$ $\Leftrightarrow \neg (\neg (\neg p \lor \neg q) \lor \neg r)$

练习4解答

$$(4) \quad (p \rightarrow \neg q) \land r \Leftrightarrow \neg (\neg (p \rightarrow \neg q) \lor \neg r)$$

$$\Leftrightarrow \neg ((p \rightarrow \neg q) \rightarrow \neg r)$$

$$(5) \quad (p \rightarrow \neg q) \land r \Leftrightarrow \neg (p \land q) \land r$$

$$\Leftrightarrow (p \uparrow q) \land r$$

$$\Leftrightarrow \neg \neg ((p \uparrow q) \land r)$$

$$\Leftrightarrow ((p \uparrow q) \uparrow r) \uparrow ((p \uparrow q) \uparrow r)$$

$$(6) \quad (p \rightarrow \neg q) \land r \Leftrightarrow (\neg p \lor \neg q) \land r$$

$$\Leftrightarrow \neg(\neg(\neg p \lor \neg q) \lor \neg r)$$

$$\Leftrightarrow (\neg p \downarrow \neg q) \downarrow \neg r$$

$$\Leftrightarrow ((p \downarrow p) \downarrow (q \downarrow q) \downarrow (r \downarrow r)$$

说明:答案不惟一

练习5: 应用题

- 5. 某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:
- (1) 若赵去,钱也去.
- (2) 李、周两人中至少有一人去
- (3) 钱、孙两人中去且仅去一人.
- (4) 孙、李两人同去或同不去.
- (5) 若周去,则赵、钱也去.

用等值演算法分析该公司如何选派他们出国?

解此类问题的步骤:

- 1.设简单命题并符号化;
- 2. 用复合命题描述各条件;
- 3. 写出由复合命题组成的合取式;
- 4. 将合取式成析取式(最好是主析取范式);
- 5. 求成真赋值,并做出解释和结论。

解

1. 设简单命题并符号化

设 p: 派赵去, q: 派钱去, r: 派孙去, s: 派李去, u: 派周去

- 2. 写出复合命题
- (1) 若赵去,钱也去
- (2) 李、周两人中至少有一人去
- (3) 钱、孙两人中去且仅去一人
- (4) 孙、李两人同去或同不去
- (5) 若周去,则赵、钱也去

$$p \rightarrow q$$

$$S \vee u$$

$$(q \land \neg r) \lor (\neg q \land r)$$

$$(r \land s) \lor (\neg r \land \neg s)$$

$$u \rightarrow (p \land q)_{46/49}$$

3. 设(1)—(5)构成的合取式为A

$$A = (p \rightarrow q) \land (s \lor u) \land ((q \land \neg r) \lor (\neg q \land r)) \land$$
$$((r \land s) \lor (\neg r \land \neg s)) \land (u \rightarrow (p \land q))$$

4. 化成析取式

$$A \Leftrightarrow (\neg p \land \neg q \land r \land s \land \neg u) \lor (p \land q \land \neg r \land \neg s \land u)$$

结论:由上述析取式可知,A的成真赋值为00110与11001。

派孙、李去(赵、钱、周不去) 派赵、钱、周去(孙、李不去)

$$A \Leftrightarrow (\neg p \lor q) \land ((q \land \neg r) \lor (\neg q \land r)) \land$$
 $(s \lor u) \land (\neg u \lor (p \land q)) \land$
 $((r \land s) \lor (\neg r \land \neg s))$
 $B_1 = (\neg p \lor q) \land ((q \land \neg r) \lor (\neg q \land r))$
 $\Leftrightarrow ((\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (q \land \neg r))$ (分配律)
 $B_2 = (s \lor u) \land (\neg u \lor (p \land q))$
 $\Leftrightarrow ((s \land \neg u) \lor (p \land q \land s) \lor (p \land q \land u))$ (分配律)
 $B_1 \land B_2 \Leftrightarrow (\neg p \land q \land \neg r \land s \land \neg u) \lor (\neg p \land \neg q \land r \land s \land \neg u)$
 $\lor (q \land \neg r \land s \land \neg u) \lor (p \land q \land \neg r \land s) \lor (p \land q \land \neg r \land u)$
 $\Rightarrow ((r \land s) \lor (\neg r \land \neg s)) = B_3, \quad \emptyset$
 $\Rightarrow ((r \land s) \lor (\neg r \land \neg s)) = B_3, \quad \emptyset$

总结

主要内容

- ●主析取范式与主合取范式
- ●n元真值函数
- ●联结词完备集
- ●复合联结词

基本要求

- 深刻理解极小项、极大项的概念、名称及下角标与成真、成假赋值的关系,并理解简单析取式与极小项的关系
- ●熟练掌握求主范式的方法(等值演算、真值表等)
- 会用主范式求公式的成真赋值、成假赋值、判断公式的 类型、判断两个公式是否等值
- 会将公式等值地化成指定联结词完备集中的公式
- 会用命题逻辑的概念及运算解决简单的应用问题