Voishnavi Vixhwas Paucau Vpawar@iu.edu

ASSIGNMENT NO. 1
ASSIGNMENT NO. 1. Perore ox disprove the following questions on asymptotic notation.
2. Poure on disprove that f(n) & O(g(n)) where f(n)= 64n2 leg(n)=n4
> We have a Big Theta O() Hotalian
0(g(n)= {f(n) 0 \le c2.g(n)\le (n) 2 \le c1.g(n)}, \text{V(n)} = (n)p)0
To prove f(n) ∈ O(g(n)) we need to find explicit values of c, €2 & no
For upper bound, b(n)=64n2 & g(n)=n4
$\frac{1}{12} \left(\frac{1}{2} \right) \leq \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$
64 n² ≤ C1. n4
Divide both the sides by n2
$64 \leq 4.0^2$
Let's consider n=1
$64 \leq n^2$
<u>8 ≤ N</u>
If we consider no=10, then the upper bound condition is satisfied as we get 8 ≤ 10, which is true.
For dower bound, [(n)=64n² le g(n)=n4
$(2.9(n) \leq l(n)$
$\binom{2.9(n)}{5} \le \binom{1}{5} \binom{n}{5}$ $\binom{2.9}{2} \binom{n}{4} \le 64n^2$
Divide both the sides by n^2
$c_2 \cdot n^2 \le 64$
Let's consider n=1 C2=1
$n^2 \leq 64$
0 ≤ 8
If we consider no=10, then the lower bound condition does not
get satisfy, as we get 10 = 8, which is false.

	MAN BELLEVILLE	
As both the conditions are not satisfied, u (n) \(\text{O}(g(n)).	se coin say that	
Hence, we can say f(n) & O(g(n)), we		
Priore are disprove that finite regini and g(n)=n2) where (n) = p2+10n-3	
> We have a Big Ornega Motation Il(
12 (g(n)) = { ((n) 10 \in c.g(n) \in \in (n), \forall n \in no, \forall c > 0, \forall n \in 0 \in 0 \in \forall \fora		
To prove (n) ∈ 52(g(n)) we need to find explicit values of c and no, where (n) is always larger than on equal to c.g(n) for all n > no Here, if we consider		
(.g(n)) = (0) = (0) (.g(n)) = (0) = (0) (.g(n)) = (0)	Here, if we consider $(=3)^2 \le (2)^2 + 10(2) = 3$	
	$\frac{3(1)}{3} = \frac{23710(2)}{3}$ $12 \le \frac{4}{3} + 20 - 2$	
$c \cdot n^2 \leq n^2 + 10n - 2$ 3 1. Lie consider (=1 and $n^2 = 10^2$	3 12 ≤ 19.33	
Let's consider (=1 and $n^2=10^2$ (1)(100) $^2 \le (13)^2 + 10(10^2) - 2$	Here the condition gets satisfied, but if	
$10000 \leq 10000 + 1000 - 2$	number it does n't	
10000 ≤ 4331.33.	get satisfied. But ((n) should always be greater than c.g(n)	
Hence, for $\forall n \geq n_0$ the wondition is not proved $\frac{n^2}{3}$ tion $-2 \notin \Omega(n^2)$		
$\frac{1}{3}$ +10n -2 $\#$ J2(n)		

Hence, we can say that f(n) & sig(n), so it is disproved c. Parove ou disparove that f(n) colg(n) where f(n)=3000003+1 & g(n)=n4. We have a Big-oh Hotation O() 0 (g(n)) = { f(n) 1 0 ≤ f(n) ≤ cg(n), 4n >no, 3c>0, 3no >o} To prove ((n) & Olg(n)), we need to find explicit values of c and no, where f(n) is always less than or equal to c.g(n), for all n>no (n) < c.g(n) Lets consider C= 3 & n=1018 300000 n3+1 ≤ c. (n4) We can drop +1, as it is a small value from the function. : 300000 n3 5 3 n4 Divide by n3 for n= 1018 : 300,000 ≤ 3n 3×105 = 3(1018) : Hence the condition is satisfied in (cn) & olg(n) : f(n) is bounded by O(g(n)), so it is proved Prove or disprove that f(n) = o(g(n)) where f(n)=15n's and g(n)= n15 Here we have a little Oh Notation O() olg(n)) = {{(n) 10 = {(n) < c.g(n), 4n >no, 4c>0, 3no>0}

Other Alternative definition is (f(n) 1 lim f(n) = 0}
n→∞ g(n) Yn>no f(n) < c.g(n) 15. n'5 < 0c. p15 Here for olgin) the condition for $\forall c$ is that $\forall c > 0$ $c = 2 \text{ and } n = n_0 = 3$ $15(3)^{15} < 2(3)^{15}$ Here the f(n) function is greater than c.g(n) Hence (cn) & olgan) is not satisfied, fin) & olg(n), so it is disproved Prove on disprove that finit wigin) where fini= n20-17 and gini=n'6 We have a Little smega Hotation w(g(n)) w(g(n)) = { ((n) 1 0 ≤ c.g(n) < f(n), ∀n≥no, ∀c>0, ∃no>0} :. c.g(n) < ((n) Here we have to prove ((n) is always greater than c.g(n)

C. n'6 < n20-17 · Lets consider. C=1 other alternative is, n16 < n20-17 c= 3, n= 7. 3(7)16<(7)20-17 17 < no-n16. 17 < n4 Either way, the wordson is satisfied If we consider n=5 17< \$ (5)4 Hence, condition is substiced, : f(n) & w(g(n))

As the i	ondition is satisfied (cr	n) & w(g(n)), it is proved.
12. Find the	time complexities.	
a. del bu	nchion ((n):	
ed	(i in range (0, n): for i in range (0, i+ pount ("*")	
0	for i in range lo, i+	1):
	("*") towed	
	break	
C 10	hern.	dealer of the section that the second
Soln: For th	re above code,	1 2 2
The ou	ter for loop gives a fin	re complexity of Uln)
as there doop w	er for loop also gives is a break statement is a break statement is ill terminate after printing of the order for doop.	O(n) time complexity, but inside the loop, the inner ng just one "#" on each
: del	function(n)	
0	la Managar di vi sel	. runs n times
	prin rangelo,i	himes but as ther
	point ("x")	a times but as ther
	break.	is break statement
•	return.	(1)0 sitis oc
.^. Time	Complexity of the above	e code is O(n)
b. def	unchon2(n):	
		trend but growth and have
w	vile 1 x # 2 <= n:	CALLED TO THE PARTY OF THE PART
~ 0 1	1=1+1 urn	
10	411	

The above code uses the while loop, it iterate till i2 <= n. In each iteration i is incremented by 1 of frugas(v) while ixx2 <=n: is incremented)=141 return. the loop works hoor (squtn) xiteration where xiteration of i will satisfy the while .. The loop runs 'so ther 'x' times, where x is the integer past of the square root of 'n'
... The time complexity = O(sqrt(n)) : Time complexity = O(Vn) def ffinction 3 (m, n): while (m!=n): if (m>n): m=m-n else: n=n-m return Lets consider the values here As its If m=2 and n=2, the while loop won't work giving the best case as O(1) But aid m, n and value are different, it gives the worst time complexity.

m = m - n if cord 1: 3 1. m=1 condition 2: 2 Either way, and for any other number, there is a constant difference in each case. The time complexity depends on mand n values Time complexity = max(m, n) def function 4(n): i krated and depend while icn · · · Hill ; reaches zero j= j112 return 801n: Here the outer while doop runs till i<n. The i value gets doubted in each iteration The outer while loop iterates and depends upon 'i', as it is doubled in each iteration, it is expressed in log(n) The inner while doop run as long as j'is greater than 0 , it divided by 2 at each iteration It will run as wong as the j value reaches zero. . It can also be expressed in login .. The Total Time complexity = O(logn)

e. def functions(n):

for i in range (0, n/12):

for i in range (1, n-(n/12)+1):

m=1

while m<=n:

m *=2

return

Joln: The outer for loop iterates from range ob n/12 ... It completely on the value of n Hence outer for loop complexity is O(n)

The inner for loop iterates from range 1 to n-(n/12)+1
The loop runs n/2 +1 times, and is completely depended
on the n value. Hence the inner for loop complexity
is also O(n)

the while stoop has a condition where $m \le n$. It will run as long as it satisfies the above condition.

The iteration depends on how many times m is doubted until it exceeds n. Which give the time complexity of the while loop as log n

Total Time complexity = Outer for Loop* Inner for Loop * while

= nxnxlogn

 $= n^2 \log n$

:. Time Complexity = O(n2. log n)