Grandezas, unidades e dimensões

- **1.** O Sistema Internacional de Unidades (SI) tem como unidades fundamentais o metro, quilograma e segundo. O sistema CGS tem como Unidades fundamentais o centímetro, o grama e o segundo. Utilizando as equações Físicas que conhece do seu curso Secundário, converta a velocidade v = 20 m/s no correspondente valor em unidades do sistema CGS.
- **2.** Sabendo que uma milha tem 5 280 pés, que um pé tem 12 polegadas e que uma polegada é igual a 2.54 cm, calcule o número de quilómetros de uma milha.
- **3.** A força de atrito do ar sobre um avião a jacto varia de acordo com $F_a = -C v^2$. De que factor deve ser alterada a velocidade do avião para que a força de atrito duplique ?
- **4.** Seja h=6.63×10⁻³⁴J.s (constante de Planck), m=9.11×10⁻³¹kg (massa do electrão) e c=3.00×10⁸m.s⁻¹ (velocidade da luz). Estime h/(mc) sob a forma de potências de base 10 e indique as unidades no Sistema Internacional (SI).
- **5.** A constante de força de uma mola, k, pode ser determinada aplicando na extremidade uma força F conhecida e medindo a elongação produzida, x, sendo k = F/x.
- a) Determine as dimensões de k.
- **b**) Relacione a unidade SI de *k* com a unidade CGS.
- **6.** Nas seguintes equações, a distância x está expressa em metros, o tempo t em segundos e a velocidade v, em metros por segundo. Quais serão as unidades das constantes C_1 e C_2 no SI?

a)
$$x = C_1 + C_2$$

b)
$$x = \frac{1}{2} C_1 t^2$$

c)
$$v^2 = 2 C_1 x$$

- 7. Determine as dimensões e as unidades SI das constantes:
 - a) de gravitação universal, G, sabendo que a grandeza da força gravítica entre duas massas, m₁ e m₂, à distância *r* é:

$$F = G \frac{m_1 m_2}{r^2}$$

b) de estrutura fina, α, definida por:

$$\alpha = \frac{e^2}{2\varepsilon_0 h c}$$

sabendo que a grandeza da força elétrica entre dois eletrões (carga e) à distância r é:

$$F = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2}$$

- **8.** Indique as dimensões da quantidade mc^2 (m massa, c velocidade da luz no vácuo).
- **9.** a) O erg é a unidade de trabalho do sistema CGS. Qual o valor, expresso em erg, correspondente ao trabalho de 1 J (Joule = N.s, unidade SI).
 - **b**) O quilogrâmetro (kgm) é a unidade de trabalho correspondente à adopção do kgf como unidade de força e ao metro como unidade de comprimento. Calcule, em Joule, o valor de 100 kgm.
 - c) A potência de uma máquina é 50 W (J/s). Converta-a em unidades CGS.
 - d) Numa habitação consumiram-se 200 kWh de energia eléctrica. Converta em joule.
- **10.a**) Um disco efectuou 30 revoluções. Qual o ângulo descrito por cada um dos seus pontos expressos em graus e radianos ?

Problemas-1 Mecânica Newtoniana

b) Um gira-discos pode trabalhar a 45 rpm ou a 33 rpm. Converta estes valores em radianos por segundo.

Cálculo vectorial

- **11.** Um avião voa a 7 km acima do chão e encontra-se a 24 km de uma estação de radar (distância medida horizontalmente). A que distância da estação de radar se encontra o avião ?
- 12. O vector \vec{A} tem 2 cm de comprimento e faz um ângulo de 60° com o eixo Ox (primeiro quadrante). O vector \vec{B} tem 2 cm de comprimento e faz um ângulo de 60° com o eixo Ox (quarto quadrante). Achar graficamente e pelo método das componentes:
 - a) o vector soma $(\vec{A} + \vec{B})$
- **b**) os vectores diferença $(\vec{A} \vec{B}) e (\vec{B} \vec{A})$
- 13. Achar o módulo e a direcção dos vectores que cada um dos pares de componentes representa:

a)
$$A_x = 3 \text{ cm}$$
; $A_v = -4 \text{ cm}$

b)
$$A_x = -5 \text{ m}$$
; $A_v = -12 \text{ m}$.

- **14.** Um vector tem módulo igual a 5 e faz com o semi-eixo positivo dos *xx* um ângulo de 60°. Determine:
 - a) as componentes do vector
 - **b**) as componentes e o módulo do vector $\vec{a} \vec{b}$, sabendo que $\vec{b} = 2\hat{i} 5\hat{j}$.
- **15.** Considere os dois vectores: $\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k} \in \vec{B} = \hat{i} 2\hat{j} + 3\hat{k}$.
 - a) Calcular o módulo de cada vector.
 - b) Escrever uma expressão para a soma vectorial, usando vectores unitários.
 - c) Determinar o módulo do vector soma.
 - **d)** Escrever uma expressão para o vector diferença ($\vec{A} \vec{B}$).
 - e) Determinar o módulo do vector diferença (\vec{A} \vec{B}). Este módulo é o mesmo que (\vec{B} \vec{A})? Porquê?
- 16. Usando os dois vectores dados no problema anterior, calcule:
 - a) o seu produto interno
 - b) o seu produto vectorial. Qual o valor do módulo deste vector?
- 17. Dados os vectores $\vec{A} = 3\hat{i} 2\hat{j} \hat{k}$ e $\vec{B} = \hat{i} + 2\hat{j} 3\hat{k}$, calcular:
 - a) os vectores $-\vec{B}$ e $2\vec{B}$ e os seus módulos
 - **b**) os vectores $\vec{A} \vec{B}$, $\vec{A} + \vec{B}$, e os seus módulos. Comparar esses valores com $|\vec{A}| |\vec{B}|$ e $|\vec{A}| + |\vec{B}|$. Comentar os resultados.
 - c) os versores \hat{A} e $\,\hat{B}$, bem como o versor da direcção do vector $\vec{A}\,$ $\,\vec{B}\,$
 - **d**) os produtos escalares $\vec{A} \cdot \vec{B} = \vec{A} \cdot (2\vec{B})$. O ângulo entre os vectores $\vec{A} = \vec{B}$
 - e) o vector projecção do vector \vec{B} sobre a direcção de \vec{A} e o vector projecção do vector \vec{A} sobre a direcção de \vec{B}
 - f) o produto vectorial de \vec{A} por \vec{B} , e o produto vectorial de \vec{B} por \vec{A} . Compare e comente os dois resultados.
- **18.** Calcule a distância entre os dois pontos de coordenadas (6, 8, 10) e (-4, 4, 10).

Problemas-1 Mecânica Newtoniana

19. Uma criança atira uma bola com uma velocidade de 4.0 m/s, numa direcção que faz um ângulo de 30° com a horizontal. Determine as componentes horizontal e vertical do vector velocidade da bola no momento do lançamento.

20. Determinar as componentes de um vector cujo módulo é 13 unidades e cujo ângulo, θ , com o eixo dos zz é de 22.6°. A projecção desse vector no plano xy faz um ângulo, ϕ , de 37° com o eixo +Ox. Calcule também os ângulos com os eixos x e y.

Considere ainda os problemas 1.1 a 1.18 do livro de David Morin, "Introduction to Classical Mechanics with Problems and Solutions", Cambridge UP (2007)

Divirta-se!