Enunciado Prático nº 7

Maria José Borges Pires - A86268

16 de dezembro de 2020

1 Parte 1

1.1 Exercício 1

Para obter todas as cidades portuguesas atualmente disponibilizadas pela Open AQ utilizou-se o nodo GET request.

Figure 1: GET Request

1.2 Exercício 2

Tranformação do JSON obtido no exercício anterior, garantindo a expansão dos arrays JSON para colunas, e o parâmetro *children expansion* até ao nível 2.

Figure 2: $JSON\ to\ Table$

Figure 3: Remoção todas as colunas exceto resultados

Figure 4: Transposta da tabela

Figure 5: JSON to Table

Figure 6: Tabela obtida

Figure 7: Fluxo após a resolução dos dois primeiros exercícios

1.3 Exercício 3

Para obter os dados mais recentes sobre o nível de ozono de cada cidade portuguesa recorreu-se ao nodo $Get\ Request.$

 $Aplicando-se\ o\ url:\ https://api.openaq.org/v1/latest?country=PTparamerter=o3$

Figure 8: Get Request

Figure 9: Fluxo de tratamento do JSON

De seguida foram filtradas as filas cujo parameter não é referente ao nível de ozono através de um Row Filter. Com o intuito de obter apenas um registo para cada cidade aplicou-se o nodo Sorter para organizar os dados em função da feature lastUpdated e de seguida foi aplicado um Column Filter.

Figure 10: Sorter

Figure 11: Column Filter

Figure 12: Filtrar todas as colunas exceto a city, parameter, value e lastUpdated

Figure 13: Cast da coluna value de double para inteiro

Figure 14: Tabela obtida no final do exercício

Figure 15: Fluxo após a resolução do terceiro exercício

1.4 Exercício 4

Apresenta-se na seguinte figura as definições aplicadas ao nodo Sorter com o obejtivo de ordenar os registos de cada cidade por nível de ozono.

Figure 16: Ordenar os registos de cada cidade por nível de ozono

As técnicas de visualização de dados numa vista web aplicadas apresentam-se de seguida:

Figure 17: Barchart da média do value por cidade

Figure 18: Table View

Figure 19: Tile View

Para observar dados referentes a outros parâmetros ambientais, após obter os dados em forma de tabela ordenados através da $feature\ last Updated$, no exercicio 3, aplicou-se o nodo $Duplicate\ Row\ Filter$ de modo a remover registos de cidades repetidos para o mesmo parâmetro.

Figure 20: Duplicate Row Filter

Após a filtragem de algumas colunas cujos valores não são tão interessantes

e aplicação do nodo *Tile View* pode observar-se na figura seguinte os dados de vários parâmetros para as várias cidades portuguesas.

Figure 21: Tile View de todos os parâmetros ambientais existentes

1.5 Exercício 5

Para utilizar a *OpenWeatherMaps* é necessário aplicar a API key ao url a inserir no nodo *GET Request*. O url inserido permite obter o estado meteorologico atual da cidade de Braga.

Figure 22: GET Request

Figure 23: Condições meteorológicas na cidade de Braga

Figure 24: Fluxo do exercício 5

2 Parte 2

2.1 Exercicio 6

O conjunto de dados escolhido contém dados sobre mais de 1700 barras de chocolate diferentes, tal como a sua classificação, a sua região de origem, percentagem de cacao, entre outros valores que podem ser observados na figura 25.

S Company	. S Specific Bean Origin or Bar Name	I REF	I Review Date	S Cocoa Percent	D Rating	S Company Location	S Bean Type	S Broad Bean Origin
A. Morin	Agua Grande	1876	2016	63%	3.75	France		Sao Tome
A. Morin	Kpime	1676	2015	70%	2.75	France		Togo
A. Morin	Panama	1011	2013	70%	2.75	France		Panama
Arete	Kokoa Kamili	1724	2016	70%	3.75	U.S.A.		Tanzania
Madre	Criollo, Hawaii	995	2012	70%	3.25	U.S.A.	Criollo	Hawaii
Madre	Kaua'i	995	2012	70%	3.5	U.S.A.		Hawaii
Madre	Dominican	672	2011	70%	2.5	U.S.A.		Dominican Republic
Madre	Upala	693	2011	70%	2.75	U.S.A.		Costa Rica
Madre	Chiapas, Triple Cacao	607	2010	72%	2.75	U.S.A.		Mexico
Maglio	Africa	300	2008	75%	2	Italy		Tanzania
Maglio	Ecuador	308	2008	70%	3	Italy	Forastero (Na	Ecuador
Maglio	Cuba	308	2008	70%	3.25	Italy	Criollo	Cuba
Maglio	Santo Domingo	308	2008	70%	3.75	Italy	Blend-Foraste	Dominican Republic

Figure 25: Excerto do conjunto de dados a tratar

Verificou-se, através do nodo Statistics que as colunas $Bean\ Type$ e $Broad\ Bean\ Origin$ apresentam alguns valores em falta, posto isto, aplicou-se o nodo $Missing\ Values$ com o objetivo de preencher como desconhecido (Unknown) as células com valores em falta.

2.2 Exercício 7

Figure 26: Análise de Componentes Principais (PCA)

Figure 27: Definições aplicadas ao nodo Scatter plot

Através do $Scatter\ plot$ conseguimos identificar (figura 28), 12 clusters presentes no dataset.

Figure 28: Scatter plot

Figure 29: $Scatter\ Matrix$

Figure 30: $Scatter\ Matrix$

2.3 Exercício 8

Figure 31: Definições aplicadas à matriz de distancia

Figure 32: Definições aplicadas ao nodo K-medoids

Figure 33: Medoids and size

Figure 34: Metanodo MAE

Figure 35: Mean Average Error (MAE)

Row ID	D MAE	k	Iteration
Row0#0	0.376	1	0
Row0#1	0.376	2	1
Row0#2	0.391	3	2
Row0#3	0.392	4	3
Row0#4	0.379	5	4
Row0#5	0.388	6	5
Row0#6	0.388	7	6
Row0#7	0.376	8	7
Row0#8	0.401	9	8
Row0#9	0.457	10	9

Figure 36: MAE de cada cluster

Figure 37: $Scatter\ Plot$

Figure 38: Java Snippet para o calculo do MAE de cada cluster

Figure 39

Figure 40: MAE

Após esta análise podemos concluir que o número óptimo de clusters é 3.

Figure 41: Fluxo final do exercício 8

2.4 Exercício 9

Para que um utilizador consiga analisar os gráficos gerados pelo método do cotovelo aplicou-se um $Scatter\ plot.$

Figure 42: Scatter Plot

Figure 43: Widget para definir o número de clusters a utilizar

2.5 Exercício 10

Row ID	D REF	Review Date	D Rating
cluster_0	1,735.114	2,015.671	3.154
cluster_1	1,428.822	2,014.454	3.224
cluster_2	1,063.978	2,012.801	3.218
cluster_3	138.144	2,006.906	3.084
cluster_4	1,584	2,015	3.283
cluster_5	389.569	2,009.005	3.105
cluster_6	862.408	2,011.827	3.175
cluster_7	1,250.326	2,013.807	3.157
cluster_8	1,881.51	2,016.168	3.306
cluster_9	645.817	2,010.653	3.205

Figure 44: Clusters obtidos após a aplicação do nodo K-means

Figure 45: Mean Average Error (MAE)

Row ID	D MAE	k	Iteration
Row0#0	0.384	1	0
Row0#1	0.38	2	1
Row0#2	0.377	3	2
Row0#3	0.376	4	3
Row0#4	0.376	5	4
Row0#5	0.375	6	5
Row0#6	0.376	7	6
Row0#7	0.374	8	7
Row0#8	0.376	9	8
Row0#9	0.375	10	9

Figure 46: MAE para cada cluster no final do ciclo

Figure 47: Scatter Plot

Figure 48: Fluxo final do exercício 10

Após a análise dos dois métodos conclui-se que ambos têm um número de clusters otimo igual a 3, contudo a métrica utilizada como medida de qualidade, MAE, apresenta um valor ligeiramente mais baixo utilizando k-means.