



# **Transimpedence Amplifiers for Sensors**

### **Purpose**

**TAME** 

I have taken a great liking to optoelectronics and optical sensors. A very important part to sensor use and integration is the transition from sensor current output to DMM-friendly voltage outputs. This is done by means of a transimpedance amplifier, or a shunt-shunt amplifier.

## Part One: Transimpedance Amplifier

Transimpedance amplifier converts the source current to a voltage. Below is presented the typical configuration of a TIA, where the operational amplifier and current source are taken to be ideal.



Transimpedance Amplifier basic circuit

The circuit presented above does not compensate for any parasitic capacitance of the current source. This is most important for use in photodiode amplifier circuits, where the junction capacitance of the diode cannot be neglected.

The output voltage of the op amp circuit will always be negative, this means that we must employ a dual rail approach with negative and positive voltage rails. The method I found the easiest to use is from this TI technical page, whihe uses the following circuit schematic:



Negative and Positive Voltage Rails for Op Amp Biasing

The voltage sources used were two 9V batteries, the capacitor were each 100 nF ceramic capacitors.

The final part of the puzzle is the current source, which for our humble circuit is a generic PNP current source repurposed from other projects.

Combining the current source, the op amp bias network and the TIA itself we obtain this final breadboard-friendly circuit:



TIA complete circuit

The breadboarded version of this circuit used a feedback resistor  $R_F$  = 67  $K\Omega$  and has a narrow range of approximatively 10 to 110 microamperes source currents.

# **Experimental Results**

The circuit was tested with different current ranges and the output voltage was noted. Only the output voltage's numerical values is given, without the negative sign. The numerical results and curves are presented below:

• first experiment, with 10K pot as a current set resistor for PNP current source:

#### Numerical Results:

| Current [uA] | Output Voltage [V] |
|--------------|--------------------|
| 96.7         | 6.543              |
| 78.9         | 5.338              |
| 64.2         | 4.347              |
| 62.8         | 4.247              |

Graphical Representation:



#### 10K pot curve

• second experiment, with 50K pot as a current set resistor for PNP current source:

#### Numerical Results:

| Current [uA] | Output Voltage [V] |
|--------------|--------------------|
| 13.8         | 0.9404             |
| 14.6         | 0.9941             |
| 16.2         | 1.1001             |
| 18.5         | 1.2552             |
| 19.7         | 1.3395             |
| 22.1         | 1.5                |
| 25.1         | 1.7034             |
| 28.9         | 1.9616             |
| 31           | 2.1                |
| 34.6         | 2.344              |
| 38.4         | 2.595              |
| 42.2         | 2.857              |
| 47.8         | 3.238              |
| 48.4         | 3.276              |
| 54.6         | 3.698              |
| 57.8         | 3.915              |
| 61.4         | 4.152              |
| 67.2         | 4.55               |
| 73.7         | 4.986              |
| 78.4         | 5.304              |
| 86.4         | 5.844              |

| Current [uA] | Output Voltage [V] |
|--------------|--------------------|
| 89.2         | 6.032              |
| 94.1         | 6.365              |
| 100.6        | 6.806              |
| 109.6        | 7.41               |
| 115.7        | 7.656              |

### Graphical Representation:



50K pot curve

#### Releases

No releases published Create a new release

#### **Packages**

No packages published Publish your first package