MAT 258 - CODING ASSIGNMENT #3 due Monday, December 4, 2017 at 11:50 PM.

OBJECTIVE: Students will implement algorithms from graph theory.

GRADING: The assignment is worth 5% of your course grade.

INSTRUCTIONS:

- Students may work individually or in pairs. Each team must submit their own code, but they may ask questions and clarification from classmates and the instructor.
- Students must submit their projects on Moodle.

SUBMIT THE FOLLOWING:

- An executable. This should be able to run on a clean machine, please compile it accordingly.
- A copy of your code.
- A read-me file explaining how to run your code.
- Answer Sheet with answers to the specific problems.

PROJECT:

- I. Code the following problems:
 - 1. Connectivity
 - User will input n, the number of vertices in the graph G.
 - User will input the (weighted) adjacency matrix for the graph.
 - Print the (weighted) adjacency matrix.
 - Check if G is connected: if connected, print "G is connected"; if not connected, print the connected components (as disjoint sets of vertices).
 - 2. Dijkstra's Algorithm
 - User will input n, the number of vertices in the graph G.
 - User will input the (weighted) adjacency matrix for the graph.
 - Print the (weighted) adjacency matrix.
 - User will chose two vertices a and z, with $1 \le a, z \le n$.
 - Use Dijkstra's Algorithm to find the **shortest path** from vertex a to vertex z.
 - Print the length of the shortest path
 - Print the shortest path, with vertices in the order traveled.

3. Prim's Algorithm

- User will input n, the number of vertices in the graph G.
- User will input the (weighted) adjacency matrix for the graph.
- Print the (weighted) adjacency matrix.
- Use Prim's Algorithm to find a **minimum spanning tree** for G.
- Print the (weighted) adjacency matrix for the resulting tree.
- Print the total weight of the tree.

4. Kruskal's Algorithm

- User will input n, the number of vertices in the graph G.
- User will input the (weighted) adjacency matrix for the graph.
- Print the (weighted) adjacency matrix.
- Use Kruskal's Algorithm to find a **minimum spanning tree** for G.
- Print the (weighted) adjacency matrix for the resulting tree.
- Print the total weight of the tree.

II. Test your program on the following graphs and include the output in the Answer Sheet.

1. Connectivity

(a)
$$\begin{bmatrix} 0 & 3 & 1 & 0 \\ 3 & 0 & 7 & 1 \\ 1 & 7 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

- (b) $\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$
- 2. Dijkstra's Algorithm: Use a = 1, and z = 4 for each example.

(a)
$$\begin{bmatrix} 0 & 3 & 1 & 0 \\ 3 & 0 & 7 & 1 \\ 1 & 7 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$(d) \begin{bmatrix} 0 & 4 & 0 & 0 & 4 & 0 \\ 4 & 0 & 8 & 0 & 1 & 0 \\ 0 & 8 & 0 & 6 & 1 & 2 \\ 0 & 0 & 6 & 0 & 0 & 2 \\ 4 & 1 & 1 & 0 & 0 & 5 \\ 0 & 0 & 2 & 2 & 5 & 0 \end{bmatrix}$$

3. Prim's Algorithm

(a)
$$\begin{bmatrix} 0 & 3 & 1 & 0 \\ 3 & 0 & 7 & 1 \\ 1 & 7 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & 4 & 0 & 0 & 2 & 0 \\ 4 & 0 & 3 & 0 & 0 & 3 \\ 0 & 3 & 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 & 0 & 3 \\ 0 & 3 & 0 & 1 & 3 & 0 \end{bmatrix}$$

4. Kruskal's Algorithm

(a)
$$\begin{bmatrix} 0 & 3 & 1 & 0 \\ 3 & 0 & 7 & 1 \\ 1 & 7 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & 4 & 0 & 0 & 2 & 0 \\ 4 & 0 & 3 & 0 & 0 & 3 \\ 0 & 3 & 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 & 0 & 3 \\ 0 & 3 & 0 & 1 & 3 & 0 \end{bmatrix}$$