Généralités sur les groupes.

Exercice 1. Lesquels de ces ensembles sont-ils des groupes pour les lois de composition données?

- 1. (N, +);
- **2.** $(\mathbf{Z}, +)$;
- **3.** $({\bf Z}, \times)$;
- **4.** $(\mathbf{Z} \{0\}, \times)$;
- 5. $(\mathbf{R} \{0\}, \times)$.

Exercice 2. Soit G un groupe. Montrer que l'intersection de deux sous-groupes de G est un sous-groupe de G. Que peut-on dire de la réunion de deux sous-groupes de G?

Exercice 3. Soient G un groupe et H un sous-ensemble fini de G stable pour la loi de composition du groupe G. Montrer que H est un sous-groupe de G.

Exercice 4. Montrer que l'application exponentielle $x \mapsto e^x$ est un isomorphisme du groupe additif R sur le groupe multiplicatif R^* . Quel est l'isomorphisme réciproque?

Exercice 5. Exhiber un isomorphisme de groupes entre $\mathbb{Z}/n\mathbb{Z}$ et l'ensemble des racines complexes n-ièmes de l'unité.

Exercice 6. Ecrire les tables d'addition de $\mathbb{Z}/5\mathbb{Z}$ et $\mathbb{Z}/12\mathbb{Z}$. Déterminer tous les sous-groupes de chacun de ces groupes.

Exercice 7. Les groupes $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ et $\mathbb{Z}/4\mathbb{Z}$ sont-ils isomorphes?

Exercice 8. Soit G un groupe commutatif fini, noté multiplicativement.

- 1. Montrer que l'application $x \mapsto x^{-1}$ est une bijection de G sur lui-même.
- **2.** Soit g le produit de tous les éléments de G. Montrer que $g^2 = 1$.
- 3. Montrer par des exemples que q peut être égal ou non à 1.

Algorithme d'Euclide et relation de Bézout. PGCD et PPCM.

Exercice 9. Soient a = da' et b = db'. Montrer : $d = \operatorname{pgcd}(a, b) \iff 1 = \operatorname{pgcd}(a', b')$.

Exercice 10. Soient p un nombre premier et a un entier. Montrer que si p ne divise pas a alors a et p sont premiers entre eux.

Exercice 11. Soient a, b, c et d des entiers; démontrer les implications :

- **1.** $\operatorname{pgcd}(a, b) = d \implies \operatorname{pgcd}(ac, bc) = dc$;
- **2.** $\operatorname{pgcd}(a,b) = 1$ et $\operatorname{pgcd}(a,c) = 1 \implies \operatorname{pgcd}(a,bc) = 1$;
- $\textbf{3.}\ \operatorname{pgcd}(a,b)=1 \ \Longrightarrow \ \forall m\geq 2,\ \forall n\geq 2,\ \operatorname{pgcd}(a^m,b^n)=1\,;$
- **4.** $\operatorname{pgcd}(a,b) = d \implies \forall m \geq 2, \operatorname{pgcd}(a^m,b^m) = d^m.$

Exercice 12. 1. Ecrire les suites (r_i) , (u_i) et (v_i) pour a = 1234 et b = 832. En déduire u et v tels que $\operatorname{pgcd}(a,b) = a.u + b.v$.

2. Même question pour a = 2431 et b = 1342.

Exercice 13. Montrer que si $d = \operatorname{pgcd}(a, b)$ et si le couple $(u_0, v_0) \in \mathbb{Z}^2$ vérifie $au_0 + bv_0 = d$, les autres couples (u, v) vérifiant au + bv = d sont les (u_k, v_k) définis pour tout $k \in \mathbb{Z} - \{0\}$ par

$$\begin{cases} u_k = u_0 + kb' \\ v_k = v_0 - ka' \end{cases}$$

où a' et b' sont définis par a=da', b=db'.

Exercice 14. Résoudre dans \mathbb{Z}^2 les équations suivantes : 5x - 18y = 4 et 6x + 15y = 28.

Exercice 15. Si a et b sont des entiers positifs, déterminer le pgcd de $2^a - 1$ et $2^b - 1$.

Exercice 16. Par combien de zéros le nombre 283! se termine-t-il?

Exercice 17. Si p est premier, et $1 \le k \le p-1$, montrer que p divise le coefficient binomial \mathcal{C}_p^k .

Exercice 18. 1. Soient a et b deux entiers. Exprimer le pgcd et le ppcm de a et b en fonction des décompositions respectives de a et b en facteurs premiers.

2. Calculer le pqcd et le ppcm de 15288 et 2772.

3. Quels sont (à permutation près) les couples d'entiers naturels (a, b) qui admettent 165 pour pgcd et 4950 pour ppcm?

Exercice 19. Trouver tous les couples d'entiers naturels (x, y) vérifiant

$$pgcd(x, y) + 10ppcm(x, y) = 341.$$

Exercice 20. Soit m le ppcm de deux entiers a et b; montrer qu'il existe un diviseur a' de a, un diviseur b' de b, tels que pgcd(a',b')=1 et m=a'b'.

Groupes finis. Ordres.

Exercice 21. Montrer que si p est premier, tout groupe d'ordre p^n possède un élément d'ordre p, donc un sous-groupe d'ordre p.

Exercice 22. Soit G un groupe fini commutatif, soit $x \in G$ un élément d'ordre p, et $y \in G$ un élément d'ordre q. Montrer que

1. L'ordre du sous-groupe $\langle x, y \rangle$ de G engendré par x et y est majoré par pq.

2. Si p et q sont premiers entre eux, le produit z = xy est d'ordre pq et le sous-groupe de G engendré par z contient x et y.

3. Il existe $t \in G$ dont l'ordre est égal au ppcm de p et q.