Rank-73737 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(8) is 1227133589

General information

Number of lines	3
Number of points	73
Number of singular points	2
Number of Eckardt points	0
Number of double points	2
Number of single points	23
Number of points off lines	48
Number of Hesse planes	0
Number of axes	0
Type of points on lines	93
Type of lines on points	$2^2, 1^{23}, 0^{48}$

Singular Points

The surface has 2 singular points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0) 1: P_4 = \mathbf{P}(1,1,1,1) = \mathbf{P}(1,1,1,1)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_9 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_9 = \mathbf{Pl}(1, 0, 1, 0, 1, 0)_{97}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4689} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4689} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_{25}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{658} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{658} = \mathbf{Pl}(1, 1, 1, 1, 0, 1)_{874}$$

Rank of lines: (9, 4689, 658)

Rank of points on Klein quadric: (97, 25, 874)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 2 Double points: The double points on the surface are:

$$P_{146} = (0, 1, 1, 1) = \ell_0 \cap \ell_1$$

$$P_{19} = (0, 1, 1, 0) = \ell_1 \cap \ell_2$$

Single Points

The surface has 23 single points: The single points on the surface are:

$0: P_0 = (1,0,0,0)$ lies on line ℓ_0	12 : $P_{226} = (1, 3, 2, 1)$ lies on line ℓ_2
$1: P_3 = (0,0,0,1)$ lies on line ℓ_1	13: $P_{282} = (1, 2, 3, 1)$ lies on line ℓ_2
$2: P_4 = (1, 1, 1, 1)$ lies on line ℓ_0	14: $P_{289} = (0, 3, 3, 1)$ lies on line ℓ_1
$3: P_{83} = (1, 1, 0, 1)$ lies on line ℓ_2	15: $P_{361} = (0, 4, 4, 1)$ lies on line ℓ_1
4: $P_{139} = (1, 0, 1, 1)$ lies on line ℓ_2	16: $P_{370} = (1, 5, 4, 1)$ lies on line ℓ_2
$5: P_{147} = (2, 1, 1, 1)$ lies on line ℓ_0	17: $P_{426} = (1, 4, 5, 1)$ lies on line ℓ_2
6: $P_{148} = (3, 1, 1, 1)$ lies on line ℓ_0	18: $P_{433} = (0, 5, 5, 1)$ lies on line ℓ_1
7: $P_{149} = (4, 1, 1, 1)$ lies on line ℓ_0	19: $P_{505} = (0, 6, 6, 1)$ lies on line ℓ_1
8: $P_{150} = (5, 1, 1, 1)$ lies on line ℓ_0	$20: P_{514} = (1,7,6,1)$ lies on line ℓ_2
9: $P_{151} = (6, 1, 1, 1)$ lies on line ℓ_0	21: $P_{570} = (1, 6, 7, 1)$ lies on line ℓ_2
10: $P_{152} = (7, 1, 1, 1)$ lies on line ℓ_0	22: $P_{577} = (0,7,7,1)$ lies on line ℓ_1
11: $P_{217} = (0, 2, 2, 1)$ lies on line ℓ_1	

The single points on the surface are:

Points on surface but on no line

The surface has 48 points not on any line: The points on the surface but not on lines are:

$$\begin{array}{lll} 0: \ P_{29} = (2,2,1,0) & 4: \ P_{60} = (1,6,1,0) \\ 1: \ P_{36} = (1,3,1,0) & 5: \ P_{74} = (7,7,1,0) \\ 2: \ P_{47} = (4,4,1,0) & 6: \ P_{95} = (5,2,0,1) \\ 3: \ P_{52} = (1,5,1,0) & 7: \ P_{100} = (2,3,0,1) \end{array}$$

```
8: P_{112} = (6, 4, 0, 1)
                                                                  29: P_{339} = (2, 1, 4, 1)
9: P_{118} = (4, 5, 0, 1)
                                                                  30: P_{350} = (5, 2, 4, 1)
10: P_{129} = (7, 6, 0, 1)
                                                                  31: P_{381} = (4,6,4,1)
11: P_{133} = (3,7,0,1)
                                                                  32: P_{391} = (6,7,4,1)
12: P_{160} = (7, 2, 1, 1)
                                                                  33: P_{397} = (4,0,5,1)
13: P_{168} = (7, 3, 1, 1)
                                                                  34: P_{403} = (2, 1, 5, 1)
14: P_{171} = (2, 4, 1, 1)
                                                                  35: P_{411} = (2, 2, 5, 1)
15: P_{179} = (2, 5, 1, 1)
                                                                  36: P_{419} = (2, 3, 5, 1)
16: P_{189} = (4, 6, 1, 1)
                                                                  37: P_{445} = (4, 6, 5, 1)
17: P_{197} = (4, 7, 1, 1)
                                                                  38: P_{464} = (7, 0, 6, 1)
18: P_{206} = (5, 0, 2, 1)
                                                                  39: P_{469} = (4, 1, 6, 1)
19: P_{216} = (7, 1, 2, 1)
                                                                  40: P_{488} = (7, 3, 6, 1)
20: P_{238} = (5, 4, 2, 1)
                                                                  41: P_{493} = (4, 4, 6, 1)
21: P_{243} = (2, 5, 2, 1)
                                                                  42: P_{501} = (4, 5, 6, 1)
22: P_{260} = (3,7,2,1)
                                                                  43 : P_{524} = (3, 0, 7, 1)
23: P_{267} = (2, 0, 3, 1)
                                                                  44: P_{533} = (4, 1, 7, 1)
24: P_{280} = (7, 1, 3, 1)
                                                                  45: P_{540} = (3, 2, 7, 1)
25: P_{307} = (2, 5, 3, 1)
                                                                  46: P_{552} = (7, 3, 7, 1)
                                                                  47: P_{559} = (6, 4, 7, 1)
26: P_{320} = (7, 6, 3, 1)
27: P_{328} = (7,7,3,1)
28: P_{335} = (6,0,4,1)
```

Line Intersection Graph

	012
$\overline{0}$	010
1	101
2	010

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1
in point	P_{146}

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_{146}	P_{19}

Line 2 intersects

Line	ℓ_1
in point	P_{19}

The surface has 73 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$11: P_{95} = (5, 2, 0, 1)$	$22: P_{150} = (5, 1, 1, 1)$
$1: P_3 = (0,0,0,1)$	$12: P_{100} = (2, 3, 0, 1)$	$23: P_{151} = (6, 1, 1, 1)$
$2: P_4 = (1, 1, 1, 1)$	13: $P_{112} = (6, 4, 0, 1)$	$24: P_{152} = (7, 1, 1, 1)$
$3: P_{19} = (0, 1, 1, 0)$	$14: P_{118} = (4, 5, 0, 1)$	$25: P_{160} = (7, 2, 1, 1)$
$4: P_{29} = (2, 2, 1, 0)$	15: $P_{129} = (7, 6, 0, 1)$	$26: P_{168} = (7, 3, 1, 1)$
$5: P_{36} = (1, 3, 1, 0)$	16: $P_{133} = (3, 7, 0, 1)$	$27: P_{171} = (2,4,1,1)$
$6: P_{47} = (4, 4, 1, 0)$	17: $P_{139} = (1, 0, 1, 1)$	$28: P_{179} = (2, 5, 1, 1)$
$7: P_{52} = (1, 5, 1, 0)$	$18: P_{146} = (0, 1, 1, 1)$	$29: P_{189} = (4, 6, 1, 1)$
$8: P_{60} = (1, 6, 1, 0)$	$19: P_{147} = (2, 1, 1, 1)$	$30: P_{197} = (4,7,1,1)$
$9: P_{74} = (7,7,1,0)$	$20: P_{148} = (3, 1, 1, 1)$	$31: P_{206} = (5, 0, 2, 1)$
$10: P_{83} = (1, 1, 0, 1)$	$21: P_{149} = (4, 1, 1, 1)$	$32: P_{216} = (7, 1, 2, 1)$

$33: P_{217} = (0, 2, 2, 1)$	$47: P_{350} = (5, 2, 4, 1)$	$61: P_{488} = (7, 3, 6, 1)$
$34: P_{226} = (1,3,2,1)$	$48: P_{361} = (0, 4, 4, 1)$	$62: P_{493} = (4, 4, 6, 1)$
$35: P_{238} = (5, 4, 2, 1)$	$49: P_{370} = (1, 5, 4, 1)$	$63: P_{501} = (4, 5, 6, 1)$
$36: P_{243} = (2, 5, 2, 1)$	$50: P_{381} = (4, 6, 4, 1)$	$64: P_{505} = (0, 6, 6, 1)$
$37: P_{260} = (3,7,2,1)$	$51: P_{391} = (6,7,4,1)$	$65: P_{514} = (1, 7, 6, 1)$
$38: P_{267} = (2,0,3,1)$	$52: P_{397} = (4, 0, 5, 1)$	$66: P_{524} = (3, 0, 7, 1)$
$39: P_{280} = (7, 1, 3, 1)$	$53: P_{403} = (2, 1, 5, 1)$	$67: P_{533} = (4, 1, 7, 1)$
$40: P_{282} = (1, 2, 3, 1)$	$54: P_{411} = (2, 2, 5, 1)$	$68: P_{540} = (3, 2, 7, 1)$
$41: P_{289} = (0, 3, 3, 1)$	$55: P_{419} = (2, 3, 5, 1)$	$69: P_{552} = (7, 3, 7, 1)$
$42: P_{307} = (2, 5, 3, 1)$	$56: P_{426} = (1, 4, 5, 1)$	$70: P_{559} = (6, 4, 7, 1)$
$43: P_{320} = (7, 6, 3, 1)$	$57: P_{433} = (0, 5, 5, 1)$	71: $P_{570} = (1, 6, 7, 1)$
$44: P_{328} = (7,7,3,1)$	$58: P_{445} = (4, 6, 5, 1)$	$72: P_{577} = (0,7,7,1)$
$45: P_{335} = (6, 0, 4, 1)$	$59: P_{464} = (7, 0, 6, 1)$	
$46: P_{339} = (2, 1, 4, 1)$	$60: P_{469} = (4, 1, 6, 1)$	