Departamento de Matemática da Universidade de Aveiro

CÁLCULO II - Agrupamento 3

13 de abril de 2018

1.º Teste de Avaliação Discreta

Duração: 2h

Nota: O formulário encontra-se no verso. Nas alíneas 2(a) e 3(a) poderá ser útil usar uma das representações em série de MacLaurin indicadas no formulário.

- 1. [35] Determine o raio e o domínio de convergência da série $\sum_{n=0}^{\infty} \frac{(x-2)^n}{4^n(3n+1)}$, indicando os pontos onde a convergência é absoluta e os pontos onde a convergência é simples.
- 2. [20] Diga, justificando, se são verdadeiras ou falsas as seguintes proposições:
 - (a) A soma da série $\sum_{n=0}^{\infty} \frac{(-\pi^2)^n}{2^{4n}(2n)!}$ é $\frac{\sqrt{2}}{2}$.
 - (b) Se a série de potências $\sum_{n=0}^{\infty}a_n(x+1)^n$ (com $a_n\in\mathbb{R}$) tem raio de convergência igual a 3, então a série numérica $\sum_{n=0}^{\infty}(-1)^na_n$ é absolutamente convergente.
- 3. **[50**]
 - (a) Desenvolva em série de MacLaurin a função $\frac{2}{1+4x^2}$, indicando o maior intervalo onde esse desenvolvimento é válido.
 - (b) Considere a série de potências $f(x)=\sum_{n=0}^{\infty}\frac{(-1)^n\,2^{2n+1}}{2n+1}\,x^{2n+1}.$
 - i. Mostre que $f(x) = \operatorname{arctg}(2x)$ para qualquer $x \in]-\frac{1}{2},\frac{1}{2}[$.
 - ii. Calcule o valor da derivada $f^{(31)}(0)$.
- 4. **[35**]
 - (a) Escreva a fórmula de Taylor de segunda ordem no ponto 1 da função $\ln x$.
 - (b) Calcule um valor aproximado de $\ln(1,2)$ usando o polinómio obtido na alínea anterior e mostre que o erro cometido nessa aproximação é inferior a 0,003.
- 5. [20] Determine a série de Fourier de cossenos da função f, definida em $[0,\pi]$ por f(x)=x.
- $6. \ \ [\mathbf{40}] \ \ \mathsf{Considere} \ \ \mathsf{a} \ \ \mathsf{funç\~ao} \ \ f:D \subset \mathbb{R}^2 \to \mathbb{R} \ \ \mathsf{dada} \ \ \mathsf{por} \quad f(x,y) = \frac{1}{\ln(x^2 + y^2)}.$
 - (a) Determine e represente geometricamente o domínio D da função f.

1

- (b) Identifique as curvas de nível $k \neq 0$ da função f.
- (c) Determine as derivadas parciais f'_x e f'_y .

Algumas fórmulas de derivação

$(kf)' = kf' \qquad (k \in \mathbb{R})$	$(f^{\alpha})' = \alpha f^{\alpha - 1} f' \qquad (\alpha \in \mathbb{R})$
$(a^f)' = f' a^f \ln a \qquad (a \in \mathbb{R}^+)$	$(\log_a f)' = \frac{f'}{f \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$
$(\operatorname{sen} f)' = f' \cos f$	$(\cos f)' = -f' \operatorname{sen} f$
$(\operatorname{tg} f)' = f' \sec^2 f = \frac{f'}{\cos^2 f}$	$(\cot g f)' = -f' \csc^2 f = -\frac{f'}{\sin^2 f}$
$(\operatorname{arcsen} f)' = \frac{f'}{\sqrt{1 - f^2}}$	$(\arccos f)' = -\frac{f'}{\sqrt{1-f^2}}$
$\left(\operatorname{arctg} f\right)' = \frac{f'}{1+f^2}$	$(\operatorname{arccotg} f)' = -\frac{f'}{1+f^2}$

Alguns desenvolvimentos em série de MacLaurin

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots, \quad x \in]-1,1[$$

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots, \quad x \in \mathbb{R}$$

•
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots, \quad x \in \mathbb{R}$$

•
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots, \quad x \in \mathbb{R}.$$