CS & IT ENGINEERING

C Programming

Pointers & Arrays

Lecture No.- 04

Recap of Previous Lecture

- Strings: group of characters

-> As character array

-> As character Pointer

- Array Vs Pointer

Topics to be Covered

- String houndling functions in 'c'
- 2-D arrays
 - Initializatio, Declaration
 - access Elements
 - Aderen of an Element

No.	Function	Description	
1)	strlen(string_name)	returns the length of string name.	
2)	strcpy(destination, source)	copies the contents of source string to destination string.	
		concats or joins first string with second string. The result of the string is stored in first string.	
4)	strcmp(first_string, second_string)	compares the first string with second string. If both strings are same, it returns 0.	
5)	strrev(string)	returns reverse string.	
6)	strlwr(string)	returns string characters in lowercase.	
7)	strupr(string)	returns string characters in uppercase.	
8)	strstr(str1, str2)	It returns a pointer to the first occurrence of the given substring str2 within the given string str1	

No.	Function	Description	
9)	strncmp()	It compares two strings only to n characters.	
10)	strncat()	It concatenates n characters of one string to another string.	
11)	strncpy()	It copies the first n characters of one string into another.	
12)	strchr()	It finds out the first occurrence of a given character in a string.	
13)	strrchr()	It finds out the last occurrence of a given character in a string.	
14)	strnstr()	It finds out the first occurrence of a given string in a string where the search is limited to n characters.	
15)	strcasecmp()	It compares two strings without sensitivity to the case.	
16)	strncasecmp()	It compares n characters of one string to another without sensitivity to the case.	

NOTE: Escape sequences are

Not Printed

Examples

- a) GATEWALLAH
- b) GATENALLAV
- c) GATE
- d) GATGWALLAND

Examples

4)
$$Chax \times [10] = "GATE";$$

 $X = [10] = [10$

Printf("/c", x[6]); // No output

Let 32-bit Processor
48768

Let 32-bit Proceyor

6) char
$$\#SI = "ABCD";$$

Char $S2[] = "ABCD";$

Printf(":/d, /.d, /.d", Sizeof(Si), Sizeof(Sz), Sizeof(ABCD));

48465 58465

58465

```
GMEMATEGATE
Chax *SI="GATE", *SZ="DATE", *SZ="MATE";
GATE", *SZ="DATE", *SZ="MATE";
Stropy(S2,SI); S2 <-SI
   Strat (53,52);
    Str Cout (S1, S3);
   Rinty ("1d, 1d, 1d', stolen(s1), stolen(s2), stolen(s3));
    Prints ("hSI= 1/5 /n 52= 1/5/n 53= 1/5" 51,52,53);
      Op: 12,4,8
            GATEMATEGATE
            GATE
             MATE GATE
```

Stocmp(S1,S2) => Compares given 2 stoings

and xeturn

- Positive value (>0) when S1 > S2

- Zero (=0)

I Negative value (<0) when S1 < S2


```
2-Darrays: Also known as Matrix.
- Only Fox representation, row, coloumn are used.
- Bub, in Memory, they get Stored in linear Manner.
-Declaration
Syntax: destartype arraymanne [No.of 80005] [No.of colg];
         Ex: 20+ ar [3] [4];
```


Initialization of 2-D array Elements

datatype array [rows] [cos];

array [80w index] [col index] = value.

int
$$X[3][4] = \{10,20,15,25,18,28,30,40,60,70,1,5\};$$

(OR)
int $X[3][4] = \{\{10,20,15,25\},\{18,28,30,40\},\{60,70,1,5\}\};$

*	حداه	المي	ري ا	cl 3
RON O	10	20	15	25
ROW 1	18	28	30	40
ROW L	60	70	1	5

U

ent	x[3]	[4]	= }	5,10,15,20,25,30,353;	⇒
11/6)		1/	

	C_{2}	[w]	55- 1-	1 - 2 Sza	,25} {30,3	25
int	XLSI	[4]=	2 (2)10)	125, 220,	25052	1777
			/			1

X	0	1	2	3
O	5	10	15	0
1	20	25	0	O
2	30	35	0	0

2 mins Summary

- if All values are Initialized, Then either you dimension (or) all dimension may be Omitted.

2nt
$$x[2][] = \{ 5,10,15,20,25,30\}; (OR)$$

int $x[][3] = \{ 5,10,15,20,25,30\}; (OR)$
2nt $x[2][3] = \{ 5,10,15,20,25,30\}; (OR)$
int $x[][] = \{ 5,10,15,20,25,30\}; || \in 8808$
options: $1 \times 6 = 9 \times 100$

5x3 array

Compiler Gunnot Decide What dimensions to Consider - String Landling in C'

- 2-D arrays
 - Declaration
 - Initialization

To be Contid ... (i)

THANK - YOU