المستوى: 3 تر المدة: ساعة ونصف

الفرض المحروس رقم 02 للثلاثي الثانسي

نظام آلي لفرز صناديق

الهدف: الهدف من هذا النظام هو فرز صناديق من البساط1 وتحويلهما إلى البساطين 2 و 3 كل على حسب الوزن.

التشغيل: يصل الصندوق عبر البساط1 ،يتم الكشف عن الوزن ، فيوجه نحو البساط2 إذا كان صغيرا ونحو البساط 3 إذا كان كبيرا .

ملاحظة: عند عودة كل من الرافعتين B و C يدور المحرك M_2 مدة M_2 ثانية لندوير البساطين M_2 و M_2 عمل يديره M_2 عامل بواسطة ثلاث ضاغطات M_2 ، M_2 ، M_2 ، M_2 ، M_2 عامل بواسطة ثلاث ضاغطات M_2 ، $M_$

الوظيفة الشاملة:

E : طاقــة

EX : تعليمات الاستغلال .

N : عد الصناديق

المناولة الهيكلية:

الاختيارات التكنولوجية<u>:</u>

المنفذات: M_1 و M_2 محركان غير متزامنان ثلاثي الطور .

. و B و C رافعات ثنائيات المفعول A

المنفذات المتصدرة: (A^+, A^-) موزع 2/5 ثنائي الاستقرار كهرو هوائي مغذى ب (A^+, A^-)

 $24 {
m V}$ موزع 2/5 ثنائي الاستقرار كهرو هوائي مغذى بـ (B+, B-)

 $24V\sim -$ موزع 2/5 ثنائي الاستقرار كهرو هوائي مغذى ب (C^+,C^-)

و KM_2 ملامسین کهربائیین بتغذیه KM_1

الملتقطات: a2 و a1 ، a6 المنقطات نهاية الشوط للرافعة A

 \mathbf{c}_{1} و \mathbf{b}_{1} ملتقطى نهاية الشوط للرافعة \mathbf{b}_{1} و \mathbf{c}_{0} ملتقطى نهاية الشوط للرافعة \mathbf{b}_{0}

h و g ماتقطين للكشف عن حجم الصندوق. Cp1 ماتقط للكشف عن الصندوق أمام البساط2

Cp2 ملتقط للكشف عن الصندوق أمام البساط3 تركيب بالدارة المندمجـة NE555 $R=10M\Omega$ R R' $R'=1K\Omega$ **NE555** $C=5\mu F$ $V_{CC}=5V$ 6 10nF 10 Dcy1.a₀ المناولة الزمنية: يحتوي النظام على ثلاث أشغولات: KM₁ الأشغولة الأولى: الإتيان والفرز – hg - h<u>g</u> الأشغولة الثانية: تحويل الصناديق الصغيرة. A^{\dagger} 13 A^{\dagger} الأشغولة الثالثة: تحويل الصناديق الكبيرة. - a₁ متمن أشغولة الإتيان والفرز (المركز الأول) 14 A

محرك البساط 1:

• أردنا التحكم في المحرك M1 باستعمال الميكرومراقب PIC16F84A ومن أجل ذلك حققنا التركيب الموضح في الشكل الآتى:

• ولتغذية وشيعة الملامس KM_1 استعملنا محول أحادي الطور

الذي أجريت عليه التجارب التالية:

محول أحادي الطور أجريت عليه التجارب التالية:

 $U_1 \!\!=\!\! U_{1N} \!\!=\!\! 220 V$, $U_{20} \!\!=\!\! 44 V$, $P_{10} \!\!=\!\! 80 W$, $I_{10} \!\!=\!\! 1A$: في الفراغ

 $U_1 = 5V \; ; \; I_1 = 10A \; :$ في التيار المستمر

 $m U_{1CC}$ =40m V , $m P_{1CC}$ =250m W , $m I_{1CC}$ = 20m A : في حالة قصر دارة

الأسئلة:

س1: ارسم متمن أشغولة تحويل الصناديق الكبيرة (المركز الثالث) من وجهة نظر جزء التحكم.

 X_{14} و X_{11} و نخمیل المراحلتین: X_{14} و معادلات تنشیط و تخمیل المراحلتین:

س3: ماهي وظيفة التركيب الموضح بالدارة المندمجة NE555؟

س4: : أكتب العلاقة الحرفية لزمن التأجيل ثم احسب زمن التأجيل اللازم.

سن $V_{\rm C}$: ارسم المخطط الزمني للتوترين $V_{\rm C}$ و $V_{\rm C}$ في المعلم الثاني بلونين مختلفين على ورقة الإجابة (صفحة 4 من 4)

6 الموجود في وثيقة الإجابة (صفحة 4 من 4) الموجود في وثيقة الإجابة التحكم في الملامس

س7: دراسة محول تغذية وشيعة الملامس KM1:

1- عين نسبة التحويل في الفراغ وعدد لفات الثانوي إذا كان عدد لفات الأولى 520 لفة .

2- بين أنه يمكن إهمال الضياعات بمفعول جول في حالة تجربة الفراغ . علما أن الضياعات في الحديد تتناسب مع مربع توتر الأولي ، ثم بين أن هذه الأخيرة مهملة في حالة تجربة الدارة القصيرة .

3- عين عناصر التصميم المكافيء المرجعة لثانوي المحول.

• يغذى المحول بتوتره الإسمي في الابتدائي ليصب تيارا شدته 100A في حمولة تحريضية عامل استطاعتها 0,9 في الثانوي .

4- أوجد توتر الثانوي ، ثم استنتج الاستطاعة الفعالة المقدمة للحمولة .

5- عين الاستطاعة الممتصة في الأولى وكذلك عامل الاستطاعة .

ورقة إجابــة ترد مع الورقة المزدوجــة

اللقب والاسم:

ج6: إكمال البرنامج

LIST P= 16F84A #include "p16f84A.inc" CONFIG H'3FF9' **ORG 0X000** goto init init ORG 5

الانتقال إلى الصفحة 1 ; الانتقال إلى الصفحة 1

MOVLW

MOVWF TRISA جميع منافذ PORTA كمداخل جميع منافذ PORTB كمخارج **CLRF TRISB**

BCF الانتقال إلى الصفحة 0:

Start

وشيعة الملامس غير مغذاة:

Test

BTFSC PORTA,....

GOTO Allum GOTO Start

Allum

وشيعة الملامس مغذاة: BSF

GOTO Test END

 v_s و v_c ع و v_c

السنة الدراسية: 2016 / 2017

المستوى : 3 ت ر

الحل النموذجي للفرض المحروس رقم 02 للثلاثي الثاني

ج1: رسم متمن أشغولة تحويل الصناديق الكبيرة (المركز الثالث) من وجهة نظر جزء التحكم. (02 ن)

التخميل	التنشيط	المراحل
$X_{12} + X_{13}$	X_{10} . $Dcy_1.a_0$	X_{11}
X_{10}	$X_{12}.a_2 + X_{13}.a_1$	X_{14}

ج2: جدول معادلات التنشيط و التخميل (التعطيل).

ج3: وظيفة التركيب الموضح بالدارة المندمجة NE555 هو التأجيل .(0.5 ن)

ج4: العلاقة الحرفية لزمن التأجيل ثم حساب زمن التأجيل اللازم. (0.5 ن)

t = R.C.Ln3

زمن التأجيل اللازم. (01 ن)

 $t = 10 \times 10^6 \times 5 \times 10^{-6} \times 1, 1 = 55s$: ξ ت

ج $V_{\rm C}$: ارسم المخطط الزمني للتوترين : $V_{\rm C}$ و $V_{\rm C}$ في المعلم الثاني بلونين مختلفين. (02 ن)

ج6: إكمال برنامج التحكم في الملامس ${
m KM}_1$ الموجود في وثيقة الإجابة

LIST P= 16F84A #include "p16f84A.inc" _CONFIG H'3FF9' **ORG 0X000** goto init init ORG 5 الانتقال إلى الصفحة 1 : BSF STATUS, RPO MOVLW .0xFF **MOVWF TRISA** جميع منافذ PORTA كمداخل **CLRF TRISB** جميع منافذ PORTB كمخارج BCF STATUS,RP0 الانتقال إلى الصفحة 0 ; Start وشيعة الملامس غير مغذاة : BCF PORTB,0 **Test** BTFSC PORTA, ... **GOTO Allum**

Allum

وشيعة الملامس مغذاة ; BSF ... <u>PORB.0</u>

GOTO Test END

GOTO Start

ج7 : دراسة محول تغذية وشيعة الملامس KM_1 : (09 ن)

$$m_0=rac{U_{20}}{U_1}=rac{44}{220}=0.2$$
 : حساب نسبة التحويل في الفراغ و عدد لفات الثانوي -1 $N_2=m_0.N_1=0.2 imes520=104 spires$

2- تبيان أنه يمكن إهمال الضياعات بمفعول جول في حالة تجربة الفراغ ، وإهمال الضياعات في الحديد في حالة تجربة الدارة القصيرة .

$$P_{J0}=R_{1}.(I_{10})^{2}$$
 : حيث $P_{10}=P_{F}+P_{J0}$: الاستطاعة في الأولي الممتصة في الفراغ هي

$$P_{J0}=0.5 imes1^2=0.5W$$
 ومن تجربة القياس في المستمر : $R_1=\frac{U_1}{I_1}=\frac{5}{10}=0.5\Omega$ ومن تجربة القياس في المستمر

$$P_{F}=P_{10}=80w$$
 : هذه القيمة صغيرة جدا أمام $P_{10}=80W$ و عليه يمكن إهمالها وبالتالي

لكن حسب المعطيات
$$P_F = K.(U_1)^2 \Rightarrow K = \frac{P_F}{(U_1)^2} = \frac{80}{(220)^2} = 1,65.10^{-3}$$
 وذلك من أجل تجربة الفراغ

$$P_F = K.(U_{1CC})^2 = 1,65.10^{-3} \times (40)^2 = 2,64W$$
 ومن أجل تجربة الدارة القصيرة يكون U_1 بدل U_{1CC} بدل بدل المرابة الدارة القصيرة يكون عليه تكون المرابة الدارة القصيرة يكون المرابة الدارة القصيرة يكون المرابة الدارة القصيرة يكون المرابة المراب

$$P_{ICC} = P_{ICC} = 250W$$
 : وحيث أن $P_{ICC} = P_{ICC} = P_{ICC} = P_{ICC} = P_{ICC} = P_{ICC}$ وحيث أن

3- تعيين عناصر التصميم المكافىء المرجعة للثانوي:

$$m_0 = rac{I_{1CC}}{I_{2CC}} \Rightarrow I_{2CC} = rac{I_{1CC}}{m_0}$$
: لدينا $P_{1CC} = R_S.(I_{2CC})^2$: لدينا

$$R_S = m_0^2 \cdot \frac{P_{1CC}}{(I_{1CC})^2} = (0.2)^2 \times \frac{250}{(20)^2} = 0.025\Omega$$
 : وعليه

$$Z_{S}=m_{0}^{-2}.rac{U_{1CC}}{I_{1CC}}=0{,}080\Omega$$
 : أي أن $Z_{S}=rac{m_{0}.U_{1CC}}{I_{2CC}}$: الممانعة المرجعة للثانوي

$$X_{S}=0.076\Omega$$
 : نجد تطبیق عددي نجد $X_{S}=\sqrt{{Z_{S}}^{2}-{R_{S}}^{2}}$

4- إيجاد توتر الثانوي ثم استنتاج الاستطاعة الفعالة المقدمة للحمولة:

$$\Delta U_2 = (R_s . \cos \varphi_2 + X_s . \sin \varphi_2)I_2 = 5,50V$$
 : $U_2 = U_{20} - \Delta U_2$

$$U_2 = 38,5V$$
 : ومنه

$$P_2 = U_2 J_2 .\cos \varphi_2 = 38.5 \times 100 \times 0.9 = 3465W$$
 : الاستطاعة الفعالة المقدمة للحمولة

$$P_1 = P_2 + P_F + P_J = 3465 + 80 + 250 = 3795W$$
 : الاستطاعة الممتصة في الأولى

$$\cos \varphi_1 = 0.86$$
 $P_1 = U_1.I_1.\cos \varphi_1 \Rightarrow \cos \varphi_1 = \frac{P_1}{U_1.I_1} = \frac{3795}{220 \times 20} = 0.86$: عامل الاستطاعة