MAT 180: Mathematics of Deep Learning

Greg DePaul

September 23, 2022

1 Linear Algebra Review

1.1 Vector Spaces

Definition 1.1. A vector space over \mathbb{R} is a set \mathcal{V} closed under addition and scalar multiplication satisfying the usual properties.

Example 1.2. Given \mathbb{R}^n where n=2 we see

$$(1,2) + (-3,4) = (-2,6)$$

$$10 \cdot (-1, 1) = (-10, 10)$$

Definition 1.3. Suppose we are given a set of vectors $S = \{v_1, \ldots, v_n\} \subset \mathcal{V}$. Then the span of S is the set

$$span(S) := \{a_1v_1 + \ldots + a_kv_k : v_i \in S, a_i \in \mathbb{R} \ \forall i \ \}$$

Figure 1: Linear Spans

Example 1.4. The typical well at a cocktail bar contains at least four ingredients at the bartender's disposal; vodka, tequila, orange juice, and grenadine. Assuming we have this well, we can represent drinks as points in \mathbb{R}^4 , with one element for each ingredient. For instance, a tequila sunrise can be represented using the point

representing amounts of vodka, tequila, orange juice, and grenadine (in ounces). The set of drinks can be represented as the span

$$span(\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\})$$

Further, the bartender might be able to save time by making the observation that many drinks have the same orange juice - to - grenadine ratio, and therefore mix the two. So they might simplify their well by mixing the two:

$$span(\{(1,0,0,0),(0,1,0,0),(0,0,6,0.75)\})$$

Notice, it is now easier to pour drinks but this bartender can no longer make as many drinks, such as a screwdriver which contains orange juice but no grenadine.

Definition 1.5. A set $S \subset \mathcal{V}$ of vectors is <u>linearly dependent</u> if there exists a non-empty linear combination of elements $v_k \in S$ yielding

$$\sum_{k=1}^{m} c_k v_k = 0$$

where $c_k \neq 0$ for all k. A set that is not linearly dependent is called linearly independent.

Definition 1.6. The <u>dimension</u> of V is the maximal size |S| of a linearly independent set $S \subset V$ such that span(S) = V.

Definition 1.7. Any linearly independent set S of maximal size |S| with $span(S) = \mathcal{V}$ is a basis of \mathcal{V}

Example 1.8. The standard basis for \mathbb{R}^n is the set of vectors of the form

$$e_k = (\underbrace{0, \dots, 0}_{k-1 \text{ elements}}, 1, \underbrace{0, \dots, 0}_{n-k \text{ elements}})$$

1.2 Vector Norms

Definition 1.9. A <u>vector norm</u> is a function $\|\cdot\|: \mathbb{R}^n \to [0, \infty)$ satisfying the following conditions:

- 1. ||x|| = 0 if and only if x = 0 (Nondegeneracy)
- 2. ||cx|| = |c| ||x|| for all scalars $c \in \mathbb{R}, x \in \mathbb{R}^n$ (Absolutely scalability)
- 3. $||x+y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^n$ (Triangle Inequality)

Definition 1.10. $||x||_p := (|x_1|^p + |x_2|^p + \ldots + |x_n|^p)^{\frac{1}{p}}$

Definition 1.11. $||x||_1 := \sum_{k=1}^n |x_k|$

Definition 1.12. $||x||_{\infty} := \max(|x_1|, |x_2|, \dots, |x_n|)$

Figure 4.7 The set $\{\vec{x} \in \mathbb{R}^2 : ||\vec{x}|| = 1\}$ for different vector norms $||\cdot||$.

Definition 1.13. Two norms $\|\cdot\|$ and $\|\cdot\|'$ are <u>equivalent</u> if there exists constants c_{low} and c_{high} such that

$$c_{low} \|x\| \le \|x\|' \le c_{high} \|x\|$$

for all $x \in \mathbb{R}^n$.

Theorem 1.14 (Equivalence of norms in finite dimension). All norms on \mathbb{R}^n are equivalent.

1.3 The Inner Product Space \mathbb{R}^n

Definition 1.15. The dot product of two vectors a and b in \mathbb{R}^n is given by

$$a \cdot b = \sum_{k=1}^{n} a_k b_k$$

Example 1.16. In \mathbb{R}^2 , we see

$$(1,2)\cdot(-2,6)=10$$

Topologically, the dot product \cdot induces a norm:

$$||a||_2 = \sqrt{a_1^2 + \ldots + a_n^2} = \sqrt{a \cdot a}$$

Geometrically, we may remember the following relationship:

$$a \cdot b = ||a||_2 ||b||_2 \cos \theta$$

where θ is the angle between a and b. Now, we $\cos \theta = 0$, we see that the dot product is also zero. This motivates the following definition:

Definition 1.17. Two vectors $a, b \in \mathbb{R}^n$ are orthogonal when $a \cdot b = 0$.

1.4 Linear Functions

Definition 1.18. Suppose V and V' are vector spaces. Then an operator $\mathcal{L}: \mathcal{V} \to \mathcal{V}'$ is <u>linear</u> if it satisfies the following for all $v_1, v_2 \in \mathcal{V}$ and $c \in \mathbb{C}$:

- $\mathcal{L}[v_1 + v_2] = \mathcal{L}[v_1] + \mathcal{L}[v_2]$
- $\mathcal{L}[cv] = c\mathcal{L}[v]$

Example 1.19.

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
$$(x,y) \to (3x, 2x + y, -y)$$

Proposition 1.20. A linear operator \mathcal{L} on \mathbb{R}^n is completely determined by its action on the standard basis vectors e_k .

Proof.

$$\mathcal{L}[a] = \mathcal{L}[\sum_{k} a_k e_k] = \sum_{k} \mathcal{L}[a_k e_k] = \sum_{k} a_k \mathcal{L}[e_k]$$

Example 1.21. Returning the previous example:

$$f(x,y) = xf(e_1) + yf(e_2) = x \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

1.5 Matrices

Definition 1.22. The space of matrices $\mathbb{R}^{m \times n}$ is the set composed of matrices of the form:

$$\begin{pmatrix} \vdots & \vdots & \dots & \vdots \\ v_1 & v_2 & \dots & v_n \\ \vdots & \vdots & \dots & \vdots \end{pmatrix} = \begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{pmatrix}$$

with $v_{i,j} \in \mathbb{R}$.

Definition 1.23. Matrix to vector multiplication is defined by

$$\begin{pmatrix} \vdots & \vdots & \dots & \vdots \\ v_1 & v_2 & \dots & v_n \\ \vdots & \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

Example 1.24. The previous function f can be written

$$f(x,y) = \begin{pmatrix} 3 & 0 \\ 2 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Theorem 1.25 (Riesz Representation). Every linear operator from a vector space V to V', there exists a linear matrix A on a chosen basis such that

$$\mathcal{L}(x_1, \dots, x_n) = A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Definition 1.26. Matrix to matrix multiplication is defined by natural extension of matrix to vector multiplication

$$M\begin{pmatrix} \vdots & \vdots & \dots & \vdots \\ v_1 & v_2 & \dots & v_n \\ \vdots & \vdots & \dots & \vdots \end{pmatrix} = \begin{pmatrix} \vdots & \vdots & \dots & \vdots \\ Mv_1 & Mv_2 & \dots & Mv_n \\ \vdots & \vdots & \dots & \vdots \end{pmatrix}$$

Example 1.27. Returning to the cocktail example, suppose we make two drinks from our 3 defined wells of liquid (vodka, tequila, and the mix of grenadine and orange juise). Then to find the basic ingredients we simply use matrix multiplication:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \\ 0 & 0 & 0.75 \end{pmatrix} \begin{pmatrix} 0 & 0.75 \\ 1.5 & 0.75 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0.75 \\ 1.5 & 0.75 \\ 6 & 12 \\ 0.75 & 1.5 \end{pmatrix}$$

1.6 Matrix Transpositions

Definition 1.28. The transpose of a matrix $A \in \mathbb{R}^{m \times n}$ is the matrix $A^T \in \mathbb{R}^{n \times m}$ with elements defined by

$$[A^T]_{i,j} = [A]_{j,i}$$

4

Definition 1.29. We can redefine the dot product in terms of matrix multiplication $a \cdot b = a^T b$.

Proposition 1.30. $(A^T)^T = A$

Proposition 1.31. $(A + B)^T = A^T + B^T$

Proposition 1.32. $(AB)^T = B^T A^T$

1.7 Trace of a Matrix

Definition 1.33. The <u>trace</u> of a given matrix $Tr(A) = \sum_{i} A_{ii}$.

Proposition 1.34. $Tr(A) = Tr(A^T)$

Proposition 1.35. Tr(AB) = Tr(BA)

1.8 Special Matrices

Definition 1.36. A matrix is symmetric if $A = A^T$.

Definition 1.37. A matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if for every $x \in \mathbb{R}^n$, $x \neq 0 \implies x^T Ax > 0$.

1.9 Matrix Norms

Definition 1.38. The matrix norm on $\mathbb{R}^{m \times n}$ induced by a vector norm $\|\cdot\|$ is given by

$$||A|| = \max_{||x||=1} ||Ax||$$

Definition 1.39. $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{i,j}|$

Definition 1.40. $||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{i,j}|$

Definition 1.41. $||A||_2 = \sqrt{\lambda : \exists x \in \mathbb{R}^n \text{ with } A^T A x = \lambda x}$

Definition 1.42. $\|A\|_{Fro} := \sqrt{\sum_{i,j} a_{i,j}^2}$ is the Frobenius norm.

Note 1.43. The Frobenius norm cannot be induced from a vector norm.

Proposition 1.44. $||A||_{Fro} = \sqrt{Tr(AA^T)}$

Definition 1.45. Given a positive definite matrix A, we can define a vector norm $\|\cdot\|_A$ by

$$||x|| = \sqrt{x^T A x}$$

1.10 Determinants and Invertibility

Definition 1.46. Given a matrix $A \in \mathbb{R}^{n \times n}$, we define

$$det(A) = \sum_{\pi \in S_n} (-1)^{sign(\pi)} \prod_i A_{i,\pi(i)}$$

Example 1.47.

$$\det\left(\begin{pmatrix}1&2\\0&1\end{pmatrix}\right)=1$$

5

If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\det A|$. If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\det A|$.

Proposition 1.48. det(AB) = det(A)det(B)

Proposition 1.49. A matrix has nonzero determinant if and only if that matrix is invertible.

1.11 Orthogonality

Definition 1.50. A set of vectors v_1, \ldots, v_k is <u>orthonormal</u> if $||v_i||_2 = 1$ for all i and $v_i \cdot v_k = 0$.

Definition 1.51. A square matrix whose columns are orthonormal is called an orthogonal matrix.

Proposition 1.52. A matrix Q is orthogonal if and only if Q is invertible and $Q^{-1} = Q^T$.

Proposition 1.53. If matrix Q is orthogonal, then $Q^TQ = QQ^T = I$

Definition 1.54. An isometry on \mathbb{R}^n is a distancen preserving bijection $f: \mathbb{R}^n \to \mathbb{R}^n$. That is,

$$||f(\vec{x}) - f(\vec{y})|| = ||x - y||$$

Proposition 1.55. If Q is orthogonal, then the function $x \to Qx$ is an isometry on \mathbb{R}^n .

Proposition 1.56. Every isometry on \mathbb{R}^n can be written as the function $x \to A + Qx$ for some $A, Q \in \mathbb{R}^{n \times n}$ with Q orthogonal.

2 Eigenvalue and Singular Value Decompositions

2.1 Eigenvalues and Eigenvectors

Definition 2.1. Suppose T is a linear operator from a vector space V to V. A subspace $U \subset V$ is called <u>invariant</u> under T is $u \in U$ implies $Tu \in U$.

Definition 2.2. An <u>eigenvector</u> of a matrix $A \in \mathbb{R}^{n \times n}$ is a nonzero vector v such that $Av = \lambda v$ for some scalar λ . A scalar λ is called an eigenvalue of A if there is a nontrivial solution v such that $Av = \lambda v$.

Theorem 2.3. Every matrix $A \in \mathbb{R}^{n \times n}$ has at least one (potentially complex) eigenvector.

Proof. Take any vector $x \in \mathbb{R}^n \setminus \{0\}$ and assume $A \neq 0$ since this matrix trivially has eigenvalue 0. The set

$$\{x, Ax, A^2x, \dots, A^nx\}$$

must be linearly dependent because it contains n+1 vectors in n dimensions. So there exists constants $c_0, \ldots, c_n \in \mathbb{R}$ not all zero such that

$$0 = c_0 x + c_1 A x + c_2 A^2 x + \ldots + c_n A^n x$$

We define the polynomial

$$f(z) = c_0 + c_1 z + \ldots + c_n z^n$$

By the fundamental theorem of Algebra, there exist $m \geq 1$ roots $z_i \in \mathbb{C}$ and $c \neq 0$ such that

$$f(z) = c(z - z_1)(z - z_2) \dots (z - z_m)$$

Applying this factorization, we see that

$$0 = c_0 x + c_1 A x + c_2 A^2 x + \dots + c_n A^n x$$

= $(c_0 I + c_1 A + \dots + c_n A^n) x$
= $f(A) x$
= $c(A - z_1 I) \dots (A - z_m I) x$

In this form, at least one $A - z_i I$ has a null space, since otherwise each term would be invertible, forcing x = 0, which we already assumed against. So if we take v to be a nonzero vector in the null space of $A - z_i I$, then by construction

$$Av = z_i v$$

Theorem 2.4. Suppose V is a complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ denote the distinct eigenvalues of T, with multiplicities d_1, \ldots, d_m . Then the polynomial

$$(z-\lambda_1)^{d_1}\ldots,(z-\lambda_m)^{d_m}$$

is called the characteristic polynomial of T.

Proof. 3 key steps to proof, each of which should be proven carefully as well:

- 1. Suppose $T \in \mathcal{L}(V)$. Then there is a unique monic polynomial p of smallest degree such that p(T) = 0. This is called the minimal polynomial.
- 2. Suppose $T \in \mathcal{L}(V)$. Then the zeros of the minimal polynomial are exactly the eigenvalues of T.
- 3. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in (V)$. Then the characteristic polynomial of T is a polynomial multiple of the minimal polynomial.

Theorem 2.5. A scalar λ is an eigenvalue of and $n \times n$ matrix A if and only if λ satisfies the characteristic equation

$$det(A - \lambda I) = 0$$

Theorem 2.6. The eigenvectors corresponding to distinct eigenvalues of a given matrix are linearly independent.

Proof. Suppose otherwise. Then there exists eigenvectors v_1, \ldots, v_k with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$ that are linearly dependent. This implies that there are coefficients c_1, \ldots, c_k not all zero such that

$$0 = c_1 v_1 + \ldots + c_k v_k$$

Notice, for any $i \neq j$, we see that

$$(A - \lambda_i I)x_j = Ax_j - \lambda_i x_j = (\lambda_j - \lambda_i)x_j$$

We can then isolate one of the coefficients

$$0 = (A - \lambda_2 I) \dots (A - \lambda_k I) c_1 v_1 + \dots + c_k v_k = c_1 (\lambda_1 - \lambda_2) \dots (\lambda_1 - \lambda_k)$$

Since λ_1 does not equal any of the other distinct eigenvalues, then

$$c_1 = 0$$

We can repeat this for all the either eigenvalues.

2.2 Hermitian and Positive Semi-definite Matrices

Definition 2.7. The conjugate transpose of $A \in \mathbb{C}^{m \times n}$ is $A^H = \overline{A}^T$.

Definition 2.8. A matrix $A \in \mathbb{R}^{n \times n}$ is hermitian if $A = A^H$.

Theorem 2.9. All eigenvalues of Hermitian matrices are real.

Proof. Suppose $A \in \mathbb{C}^{n \times n}$ is Hermitian with $Av = \lambda v$. By scaling, we assume $||v||_2^2 = v^T \overline{v} = 1$. Then

$$\lambda = \lambda v^T \overline{v}$$

$$= (\lambda v)^T \overline{v}$$

$$= (Av)^T \overline{v}$$

$$= v^T \overline{A^T v}$$

$$= v^T A \overline{v}$$

$$= \overline{\lambda} v^T \overline{v}$$

$$= \overline{\lambda}$$

Theorem 2.10. Eigenvectors corresponding to distinct eigenvalues of Hermitian matrices must be orthogonal.

Proof. Suppose $A \in \mathbb{C}^{n \times n}$ is Hermitian and suppose $\lambda \neq \mu$ with $Ax = \lambda x$ and $Ay = \mu y$. By the previous theorem, we know that $\lambda, \mu \in \mathbb{R}$. Then $x^T A^T y = \lambda x^T y$. But since A is Hermitian, we can also write

$$x^T A^T y = x^T A^H y = x^T A y = \mu x^T y$$

Therefore, $\lambda x^T y = \mu x^T y$. Since $\lambda \neq \mu$, then $x^T y = 0$.

Definition 2.11. A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if for every $x \in \mathbb{R}^n \implies x^T A x \ge 0$.

Theorem 2.12. If A is positive-semidefinite, then A has nonnegative real eigenvalues.

Proof. Take $A \in \mathbb{R}^{n \times n}$ to be positive definite, and suppose $Ax = \lambda x$ with $||x||_2 = 1$. By positive definiteness, we know that $x^T Ax \ge 0$. But notice,

$$0 \le x^T A x = x^T (\lambda x) = \lambda \|x\|_2^2 = \lambda$$

Corollary 2.12.1. If A is positive-definite, then A has positive eigenvalues.

Proposition 2.13. For any $A \in \mathbb{R}^{m \times n}$, the matrix $A^T A$ is positive semidefinite.

Proof. Take any $x \in \mathbb{R}^n$. Then

$$x^{T}(A^{T}A)x = (Ax)^{T}(Ax) = ||Ax||_{2}^{2} \ge 0$$

Corollary 2.13.1. For any $A \in \mathbb{R}^{m \times n}$, the matrix $A^T A$ is positive definite provided the columns of A are linear independent.

Proof. Suppose the columns of A are linearly independent. If A were only semi-definite, then there $\exists x \neq 0$ such that

$$x^{T}A^{T}Ax = 0$$

$$\implies ||Ax||_{2} = 0$$

$$\implies Ax = 0$$

 \implies columns of A are not linearly independent.

Contradiction!

2.3 Eigenvalue Diagonalization and Spectral Theorem

Definition 2.14. A matrix $A \in \mathbb{R}^{n \times n}$ is <u>diagonalizable</u> if $A = PDP^{-1}$ for some invertible matrix $P \in \mathbb{R}^{n \times n}$ and some diagonal matrix $D \in \mathbb{R}^{n \times n}$.

Theorem 2.15. An $n \times n$ matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if A has n linearly independent. Further,

$$A = PDP^{-1}$$

where the columns of P are exactly the eigenvectors of A and the diagonal entries of D are the eigenvalues of A.

Theorem 2.16 (Spectral Theorem). Suppose $A \in \mathbb{C}^{n \times n}$ is Hermitian. Then A has exactly n orthonormal eigenvectors v_1, \ldots, v_n with (possibly repeated) eigenvalues $\lambda_1, \ldots, \lambda_n$. In other words, there exists an orthogonal matrix Q of eigenvectors and a diagonal matrix D such that

$$A = QDQ^T$$

2.4 Singular Value Decomposition

Theorem 2.17. $A \in \mathbb{R}^{m \times n}$, then there exist orthogonal $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$UAV^T = \Sigma := diag(\sigma_1, \sigma_2, \dots, \sigma_p) \in \mathbb{R}^{m \times n}$$

where $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \ldots \geq \sigma_p \geq 0$.

Visually,

Proof. Since A^TA is a symmetric matrix, we can apply spectral theorem to get

$$A^T A = V D V^T$$

Further, since $A^T A$ is positive semidefinite, we know all of the entries of D are nonnegative. We now define the set $\{v_i\}_{i=1}^n$ to be the set of eigenvectors of that make up the columns of Q. Define

$$u_i = \frac{Av_i}{\sqrt{D_{ii}}}$$

Observe,

$$||u_{i}|| = \left| \frac{1}{\sqrt{D_{ii}}} \right| ||Av_{i}|| = \left| \frac{1}{\sqrt{D_{ii}}} \right| \sqrt{v_{i}^{T} A^{T} A v_{i}} = \left| \frac{1}{\sqrt{D_{ii}}} \right| \sqrt{D_{ii} v_{i}^{T} v_{i}} = 1$$

$$u_{i}^{T} u_{j} = \frac{v_{i}^{T} A^{T} A v_{j}}{\sqrt{D_{ii} D_{jj}}} = \frac{v_{i}^{T} D_{jj} v_{j}}{\sqrt{D_{ii} D_{jj}}} = \frac{D_{jj}}{\sqrt{D_{ii} D_{jj}}} v_{i}^{T} v_{j} j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

So we see that $\{u_i\}_{i=1^m}$ is a set of orthonormal vectors. Lastly, define

$$\Sigma_{i,j} = \sqrt{D_{ii}}$$

Then we see that

$$U\Sigma = \begin{pmatrix} \vdots & \vdots & \dots & \vdots \\ \frac{Av_1}{\sqrt{D_{11}}} & \frac{Av_2}{\sqrt{D_{22}}} & \dots & \frac{Av_n}{\sqrt{D_{nn}}} \end{pmatrix} \begin{pmatrix} \sqrt{D_{11}} & 0 & \dots & 0 \\ 0 & \sqrt{D_{22}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{D_{nn}} \end{pmatrix} = \begin{pmatrix} \vdots & \vdots & \dots & \vdots \\ Av_1 & Av_2 & \dots & Av_n \\ \vdots & \vdots & \dots & \vdots \end{pmatrix} = AV$$

Corollary 2.17.1. If $U^TAV = \Sigma$ for $A \in \mathbb{R}^{m \times n}$, then for $1 \le i \le n$, $Av_i = \sigma_i u_i$ and $A^Tu_i = \sigma_i v_i$.

Corollary 2.17.2. If
$$A \in \mathbb{R}^{m \times n}$$
, then $||A||_2 = \sigma_1$ and $||A||_{Fro} = \sqrt{\sigma_1^2 + \ldots + \sigma_p^2}$

Proof.

$$\|A\|_{Fro} = \sqrt{\sum_{i,j} a_{ij}^2} = \sqrt{tr(A^TA)} = \sqrt{tr(V\Sigma U^TT\Sigma V^T)} = \sqrt{tr(V\Sigma^2 V^T)} = \sqrt{tr(VV^T\Sigma^2)} = \sqrt{tr(\Sigma^2)} = \sqrt{\sigma_1^2 + \ldots + \sigma_p^2}$$

Note 2.18. $\|\Sigma\| = \|UAV^T\| = \|A\|$.

Corollary 2.18.1. If A has r positive singular values, then rank(A) = r and

$$null(A) = span\{v_{r+1}, \dots, v_n\}$$

$$col(A) = span\{u_1, \dots, u_r\}$$

Proof. $rank(A) = rank(\Sigma) = r$.

Corollary 2.18.2. If $A \in \mathbb{R}^{m \times n}$, with rank(A) = r, then $A = \sum_{k=1}^{r} \sigma_i u_i v_i^T$.

Proof.

$$(U\Sigma)V^{T} = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots \\ \sigma_{1}u_{i} & \dots & \sigma_{r}u_{r} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix} \begin{pmatrix} \dots & v_{1}^{T} & \dots \\ & \vdots & \\ \dots & v_{n}^{T} & \dots \end{pmatrix} = \sum_{k=1}^{r} \sigma_{i}u_{i}v_{i}^{T}$$

3 Principal Component Analysis