

Sensorização: Perceção e Interpretação

Sistemas Autónomos Perfil Sistemas Inteligentes @ MEI/MiEI 1°/4° - 2° Semestre

Cesar Analide, Bruno Fernandes

Robótica Inteligente

• An intelligent robot is a machine able to extract information from its environment and use knowledge about its world to move safely in a meaningful and purposive manner.

Ronald Arkin

Um robô inteligente é uma máquina com capacidade para extrair informação do ambiente e utilizar
 conhecimento sobre o mundo para se deslocar em segurança de modo significativo e objetivo.

Arquitetura de Controlo

- O controlo de um sistema autónomo envolve um ciclo de três etapas:
 - Perceção;
 - Processamento;
 - o Ação.

Sensores, Processadores, Atuadores

Os sensores recolhem informação do ambiente;

Os processadores tratam a informação recolhida, utilizando-a para construir planos de atuação;

Os atuadores transformam os planos de atuação em ações sobre o ambiente.

Perceção e Interpretação

 A capacidade de um robô para interpretar a informação presente no ambiente é crucial para alcançar os objetivos com sucesso;

Robot Marathon Race

Singapore Robotic Games '09 Singapore, January 2009

WWW.SOCIETY OF ROBOTS.COM

Perceção e Interpretação

- A capacidade de um robô para interpretar a informação presente no ambiente é crucial para alcançar os objetivos com sucesso;
- O "mundo real" é frequentemente dinâmico e hostil:
 - o 0 conhecimento do mundo é parcial;
 - Coisas mudam de lugar;
 - o Informação *a priori* pode ser:
 - Incorreta;
 - Imprecisa;
 - Obsoleta.

Perceção e Ação devem estar fortemente relacionadas:

"Perception without the context of action is meaningless"

"Behavior-Based Robotics", Ronald C. Arkin

- o As necessidades de atuação "dão" contexto para a perceção;
- A perceção é simplificada por restrições de atuação
 (o conhecimento "aconselha" sobre o local do mundo onde podem aparecer "coisas"!);
- Em ambos os casos, ação e perceção são inseparáveis.

Action-Oriented Perception

"Behavior-Based Robotics", Ronald C. Arkin

■ Perceção Baseada nas Ações:

 O processamento de perceções de um robô (sensores) deve ser dirigido a suprir as necessidades dos motores (atuadores).

Expectation-Based Perception

"Behavior-Based Robotics", Ronald C. Arkin

Perceção Baseada na Expectativa:

O conhecimento sobre o mundo (capacidade sensorial) pode condicionar a interpretação sobre a composição do mundo.

"Behavior-Based Robotics", Ronald C. Arkin

■ Perceção Ativa:

O robô pode usar os motores (atuadores) para melhorar o processamento de perceções (informação sensorial),
 posicionando-se (ou aos sensores) do modo mais adequado.

O Problema do Posicionamento

O problema típico de navegação de robôs:

"Mobile robot localization by tracking geometric beacons",

Leonard & Durrant-Whyte

...descreve-se em três questões:

O Where am I?

Onde estou?

o Where am I going?

Para onde vou?

O How should I get there?

Como chegar lá?

 A primeira questão está diretamente relacionada com a capacidade de sensorização para posicionamento no ambiente.

- Métodos de Posicionamento Relativo:
 - o Odometria:
 - Usa encoders para medir a rotação das rodas e/ou a orientação;
 - Tem a vantagem de fornecer sempre uma estimativa da posição;
 - Tem a desvantagem de que os erros crescem sempre e sem limite.
 - Navegação inercial.

- Métodos de Posicionamento Relativo:
 - Usa encoders para medir a rotação das rodas e/ou a orientação;
 - Tem a vantagem de fornecer sempre uma estimativa da posição;
 - Tem a desvantagem de que os erros crescem sempre e sem limite.
 - Navegação inercial:
 - Usa giroscópios e acelerómetros para medir rotação e aceleração;
 - Esta informação é integrada com o tempo;
 - Tem a vantagem de fornecer estimativas sobre o posicionamento;
 - Tem a desvantagem de o erro crescer ao longo do tempo, devido à integração dos dados.

- Métodos de Posicionamento Absoluto:
 - Calcula uma posição absoluta por medição de três ou mais feixes ativos;
 - Os feixes podem ser luminosos, rádio, etc., mas têm de estar colocados em pontos conhecidos do ambiente.
 - Reconhecimento de marcos artificiais;
 - Reconhecimento de marcos naturais;
 - Reconhecimento de modelo.

MicroMouse

- Métodos de Posicionamento Absoluto:
 - Reconhecimento de marcos artificiais:
 - Colocam-se marcos de identificação no ambiente (três ou mais);
 - Tem a vantagem de permitir construir os marcos para serem facilmente identificáveis;
 - Podem ser obtidas outras informações (distância ou velocidade).
 - Reconhecimento de marcos naturais;
 - Reconhecimento de modelo.

- Métodos de Posicionamento Absoluto:
 - Reconhecimento de marcos artificiais;
 - Reconhecimento de marcos naturais:
 - Os marcos são pontos identificativos próprios do ambiente;
 - Tem a vantagem de não necessitar de preparação inicial;
 - Tem a desvantagem de ser necessário conhecer (bem) o ambiente a priori.
 - Reconhecimento de modelo.

- Métodos de Posicionamento Absoluto:
 - Avisos ativos;
 - Reconhecimento de marcos artificiais;
 - Reconhecimento de marcos naturais;
 - Reconhecimento de modelo:
 - Compara-se informação recolhida através dos sensores com um mapa do ambiente;
 - Quando características do mapa e do ambiente coincidem (são reconhecidas), o posicionamento é possível;
 - Os mapas podem ser geométricos ou topológicos.

- o Odometr
- Navegação inercial.
- Métodos de Posicionamento Absoluto:
 - Avisos ativos;
 - Reconhecimento de marcos artificiais;
 - o Reconhecimento de marcos naturais
 - Reconhecimento de modelo.

Sensores

Um BOM sensor deve obedecer às seguintes condições:

o Deve ser **sensível** à propriedade a medir;

Synthetic Intelligence Lab

- o Deve ser insensível a qualquer outra propriedade;
- Não deve influenciar a propriedade medida.

- A ação de um sistema autónomo dependerá dos vários tipos de conhecimento de que disponha ou que seja capaz de adquirir:
 - Conhecimento Espacial do Mundo;
 - Conhecimento Objeto;
 - Conhecimento Percetual;
 - Conhecimento Comportamental;
 - o Conhecimento Próprio;
 - Conhecimento Intencional.

- A ação de um sistema autónomo dependerá dos vários tipos de conhecimento de que disponha ou que seja capaz de adquirir:
 - Conhecimento Espacial do Mundo:
 - noção do espaço navegável e da sua estrutura (topologia e/ou obstáculos);
 - Conhecimento Objeto;
 - Conhecimento Percetual;
 - Conhecimento Comportamental;
 - Conhecimento Próprio;
 - Conhecimento Intencional.

- A ação de um sistema autónomo dependerá dos vários tipos de conhecimento de que disponha ou que seja capaz de adquirir:
 - Conhecimento Espacial do Mundo;
 - o Conhecimento Objeto:
 - categorias ou instâncias de "coisas" que povoam o espaço;
 - Conhecimento Percetual;
 - Conhecimento Comportamental;
 - Conhecimento Próprio;
 - Conhecimento Intencional.

- A ação de um sistema autónomo dependerá dos vários tipos de conhecimento de que disponha ou que seja capaz de adquirir:
 - Conhecimento Espacial do Mundo;
 - Conhecimento Objeto;
 - Conhecimento Percetual:
 - informação sobre como o ambiente é sentido em diversas circunstâncias;
 - Conhecimento Comportamental;
 - Conhecimento Próprio;
 - Conhecimento Intencional.

- A ação de um sistema autónomo dependerá dos vários tipos de conhecimento de que disponha ou que seja capaz de adquirir:
 - Conhecimento Espacial do Mundo;
 - Conhecimento Objeto;
 - Conhecimento Percetual;
 - Conhecimento Comportamental:
 - noção sobre o modo de (re)agir em diferentes situações;
 - Conhecimento Próprio;
 - Conhecimento Intencional.

- A ação de um sistema autónomo dependerá dos vários tipos de conhecimento de que disponha ou que seja capaz de adquirir:
 - Conhecimento Espacial do Mundo;
 - Conhecimento Objeto;
 - Conhecimento Percetual;
 - Conhecimento Comportamental;
 - o Conhecimento Próprio:
 - capacidades intrínsecas do dispositivo (velocidade, bateria, sensores, ...);
 - Conhecimento Intencional.

- A ação de um sistema autónomo dependerá dos vários tipos de conhecimento de que disponha ou que seja capaz de adquirir:
 - Conhecimento Espacial do Mundo;
 - Conhecimento Objeto;
 - Conhecimento Percetual;
 - Conhecimento Comportamental;
 - o Conhecimento Próprio;
 - Onhecimento Intencional:
 - informação acerca do objetivo a alcançar (planeamento).

- A Duração é outro modo de caracterizar o conhecimento;
- Identificado pela resposta dada à questão: "Durante quanto tempo o conhecimento terá utilidade?"
 - Conhecimento Transitório;
 - o Conhecimento Persistente.

- Conhecimento Transitório:
 - o o robô adquire conhecimento transitório dinamicamente, no decurso do desenvolvimento da tarefa;
 - o desenvolve modelos do meio envolvente, construídos através da informação recolhida por sensores;
 - o conhecimento transitório é "esquecido" ou "retratado" à medida que o robô vai ultrapassando os locais de onde esse conhecimento foi recolhido;
 - Short-Term Memory (STM).

Conhecimento Persistente.

- Conhecimento Transitório (Short-Term Memory STM):
 - o Reduz a necessidade de obtenção/atualização frequente de dados dos sensores;
 - o Proporciona informação "recente" para guiar o robô em tempo-real;
 - Particularmente útil:
 - em situações de desvio de obstáculos;
 - para evitar a retenção, em memória, de conhecimento que já não tem utilidade;
 - quando a representação permite "alimentar" diretamente os atuadores.

Conhecimento Persistente.

Conhecimento Transitório (Short-Term Memory - STM);

- Conhecimento Persistente:
 - o caracterizado por conhecimento *a priori* sobre o meio envolvente;
 - o considerado (relativamente) estático durante o desenvolvimento da tarefa;
 - o descreve os objetos, os obstáculos e o próprio meio envolvente (espaço livre de navegação);
 - o adota a representação do conhecimento próprio (modelo do próprio robô);
 - Long-Term Memory (LTM).

Conhecimento Transitório (Short-Term Memory - STM);

- Conhecimento Persistente (Long-Term Memory LTM):
 - Permite a construção de mapas do ambiente;
 - o A origem dos dados utilizados permite classificar em dois tipos:
 - tendo origem nos sensores do próprio robô, à medida que navega no ambiente;
 - tendo origem em fonte externa, por conveniência de programação ou por necessidade de alcançar maiores amplitudes (p. ex., criação de modelos).

onhecimento Transitório Conhecimento Persistente

Puramente	Perceção do	Mapeamento
Reativo	Ambiente	a Priori
Instantâneo	Short-Term	Long-Term
	Memory	Memory

Horizonte Temporal

Classificação de Robôs

Os Robôs (autómatos, sistemas autónomos) podem classificar-se a partir de diversos critérios:

Classificação de Robôs Funcionalidade

- A Funcionalidade caracteriza o tipo de aplicações em que se emprega o dispositivo:
 - o Autómatos (eletromecânicos, movimentos pré-definidos, fixo);
 - Manipuladores:
 - Braços de base fixa (robôs industriais);
 - Braços de base móvel (gruas robotizadas);
 - o Robôs móveis:
 - Terrestres:

indoor;

outdoor;

Aquáticos:

superfície;

submarinos;

Aéreos.

Classificação de Robôs Mobilidade

A Mobilidade é caracterizada pelos mecanismos utilizados para realizar o deslocamento do dispositivo:

- Deslocamento com rodas;
- Deslocamento com lagartas;
- o Deslocamento por propulsão (aéreos, aquáticos);
- Deslocamento com pernas (bípedes, animats);
- Outros!

Classificação de Robôs Mobilidade

A Mobilidade é caracterizada pelos mecanismos utilizados para realizar o deslocamento do dispositivo:

Deslocamento com rodas;

Deslocamento com lagartas;

Deslocamento por propulsão (aéreos, aquáticos);

Deslocamento com pernas (bípedes, animats);

Outros!

Classificação de Robôs Autonomia

- A Autonomia caracteriza a liberdade que o dispositivo incorpora de decidir com independência, sem operador:
 - toda a ação é controlada remotamente;

- dependem de informações externas;
- Semiautónomos:
 - · operados remotamente, com alguma autonomia;
- Autónomos:
 - operam de modo independente, sem intervenção humana.

Classificação de Robôs Outras!

- Perceção:
 - o capacidade para perceber o ambiente (sensores de contacto, visão, ...);
- Controlo:
 - o transformação de perceções em ações a desempenhar;
- Comunicação:
 - o capacidade de comunicação do dispositivo com operador humano ou com outros sistemas autónomos;
- Robustez/Adaptação:
 - o capacidade para lidar com situações diversificadas;
 - o capacidade para responder em cenários "novos";
- Inteligência:
 - o capacidade de execução de tarefas complexas;
 - o capacidade de adaptação de ações à execução de tarefas "novas".

Perceção

 Embora também presente noutros tipos de robôs, é nos robôs móveis que a capacidade de perceção ganha maior importância;

 Principalmente em entidades móveis, porque mais sensíveis a maior quantidade de variáveis, a execução de uma ação não garante o seu correto desempenho;

- A utilização de sensores é essencial para:
 - o perceber o meio envolvente;
 - o **controlar** o correto desempenho das ações.

Perceção **Classes de Sensores**

- Sensores de Reconhecimento de Rotas:
 - Eletromagnéticos (reconhecimento de campos magnéticos);
 - Laser (identificação de zonas refletoras de luz);
 - Visão computacional (verificação de traçados);
- Sensores de Reconhecimento de Objetos;
- Sensores de Navegação.

Perceção Classes de Sensores

Perceção Classes de Sensores

Encoder:

- mede a rotação das rodas; (odometria – medição de deslocamento)
- o permite calcular uma **estimativa** do deslocamento percorrido;
- o a acumulação de erros degrada a qualidade da informação;
- o a sensorização deve ser complementada por outros sensores;
- o com esforço computacional reduzido, permite alta taxa de amostragem;
- sujeito a dois tipos de erros:

Synthetic Intelligence Lab

erros sistemáticos:

imprecisões no modelo (raio nominal diferente do real); na mecânica (rodas desalinhadas); na amostragem (resolução finita);

erros não-sistemáticos:

irregularidades no piso (lixo, pó); deslizamento das rodas (curvas, atrito).

- o mede a distância a objetos, através do retorno da reflexão da luz;
- o dispositivos passivos (não emitem energia, apenas captam a energia emita pelos corpos);
- o campo de "visão" relativamente curto;
- o todos os objetos emitem *black-body radiation*;
- o corpo humano emite radiação num comprimento de onda cerca de 10 μm (micrometros).

ISLab Synthetic Intelligence Lab

- o mede a distância a objetos, através do retorno da reflexão da luz;
- o alta precisão (mas com erros a longas distâncias);
- o dispendiosos;
- o dispositivo ativo (emite radiação eletromagnética);
- o a emissão de diversos feixes permite a identificação de formas;
- o as características da reflexão permitem caracterizar a superfície refletora.

- Ultrassom (SONAR SOund Navigation And Ranging):
 - o mede a distância a objetos, através da reflexão do som;
 - o dispositivo ativo (emite ondas sonoras de alta-frequência);
 - o a distância é calculada com base no tempo que demora a reflexão do som;
 - o capta informação do meio envolvente a 3 dimensões;
 - o grande sensibilidade a perturbações e a ruído ambiente;
 - o não apresenta capacidade para identificar tipos de objetos;

o identifica a ocorrência de uma colisão, através de um ponto de pressão;

- o capta pouca informação;
- o dispositivo de medida da resistência ao toque:
 - é ativado pelo contacto entre dois pontos (elétrodos);
- o dispositivo de medida da capacitância do toque;
 - é ativado pelo toque sobre um *capacitor* (condensador);
 - a capacitância é uma característica do corpo humano.

o identifica a orientação do dispositivo, relativamente ao campo magnético da Terra (medição de posição relativa);

 suscetível a influências de outros campos magnéticos (ímanes, fontes magnéticas, ferros);

- Posicionamento (GPS Global Positioning System):
 - o medida de posicionamento geográfico absoluto;
 - o identifica a posição do dispositivo no globo terrestre, de forma absoluta, recorrendo à rede de satélites GPS;
 - o fraca adequação para utilização *indoor*;
 - nível de precisão variável;
 - Galileo é o sistema de navegação por satélite da UE; (GNSS – Global Navigation Satellite System)
 - o Glonass é o sistema de posicionamento desenvolvido pela Rússia.

- - o o mais abrangente, quer em termos de funcionalidades, quer em termos de dispositivos, quer, mesmo, em termos de aplicações;
 - o visão monocular, estéreo ou omnidirecional;
 - o permitem a aplicação de diversas técnicas de cálculo de posicionamento, deteção de obstáculos, estimativa de deslocamento, etc.;
 - o geram grande quantidade de informação.

Visão:

- o mais abrangente, quer em termos de funcionalidades, quer em termos de dispositivos, quer, mesmo, em termos de aplicações;
- o visão monocular, estéreo ou omnidirecional;
- permitem a aplicação de diversas técnicas de cálculo de posicionament deslocamento, etc.;
- o geram grande quantidade de informação.

- Sensores de inclinação;
- Giroscópios;

Bibliografia

- Ronald Arkin, "Behavior Based Robotics", The MIT Press, 1998.
- Farlei Heinen, "Sistema de Controle Híbrido para Robôs Móveis Autónomos", UNISINOS, 2002.
- J. Borenstein, H.R. Everett, L. Feng, "'Where am I?' Sensors and Methods for Mobile Robot Positioning", University of Michigan, 1996.
- Leonard, Durrant-Whyte, "Robot localization using vision and odometry", University of Oxford, 1991.

Sistemas Autónomos Perfil Sistemas Inteligentes @ MEI/MiEl 1°/4° - 2° Semestre

Cesar Analide, Bruno Fernandes