Imperial College London

Relativity – Lecture 10

Dr Caroline Clewley

Key concepts of lecture 9

Energy and momentum are conserved separately in any one frame.

However, when transforming frames, the energy and momentum change.

In other words, a Lorentz transformation changes energy into momentum, and vice versa.

However, the norm of the four-vector is invariant, so $E^2 = p^2c^2 + \left(mc^2\right)^2$ is always true.

Result of the frame transformation example

Frame in which target particle is at rest:

Particle	$P_i = (E_i/c, p_i)$	eta_{i}	$m_{\rm i}$
1	(17/c, 15/c)	15/17	8/c ²
2	(8/c, 0)	0	8/c ²
3	(25/c, 15/c)	3/5	20/c ²

Centre-of-momentum frame:

Particle	$P'_{i} = (E'_{i}/c, p'_{i})$	$oldsymbol{eta'_{i}}$	m' _i
1	(10/c, 6/c)	3/5	8/c ²
2	(10/c, -6/c)	-3/5	8/c ²
3	(20/c, 0)	0	20/c ²

Reminder: get the terminology right.

- Conserved: a quantity which is not changed by a physical process. This refers to one frame at a time, and a conserved quantity will typically have different numerical values in different frames.
- **Invariant**: a quantity which is not changed by a coordinate transformation. The term refers to more than one reference frame; an invariant quantity will not necessarily be conserved in a particular process.
- Constant: refers to a quantity which does not change in time, such as the mass of the Universe.
- The speed of light is conserved, invariant, and constant!

Tip: solving energy-momentum problems

Try to solve problems first by using energy conservation alone. Some problems require you to use both energy and momentum conservation.

You can eliminate one variable using

$$E^2 = p^2 c^2 + (mc^2)^2$$

for example
$$p = \sqrt{(E/c)^2 - (mc)^2}$$

For a massless particle, E = pc.

You can also leave out all of the c's and put them in at the end using dimensional analysis.

Total energy as *u* approaches *c*

Page 6 U²

Total energy as *u* approaches *c*

Tachyons in a spacetime diagram

Tachyons and causality

E_{tachyon} in Carol & Dave's frame