Feedback Circuits

P. Aashrith *

A dc amplifier having a single-pole response with pole frequency 10Hz and unity-gain frequency of 1MHz is operated in a loop whose frequency-independent feedback factor is 0.01. Find the low-frequency gain, the 3-dB frequency, and the unity-gain frequency of the closed-loop amplifier. By what factor does the pole shift?

1. Find G(s).

Solution: The open-loop gain of the amplifier can be expressed as

$$G(s) = \frac{G_0}{1 + \frac{s}{\omega_n}} = \frac{G_0}{1 + \frac{s}{2\pi 10}}$$
(1.1)

Let $f_0 = 1$ MHz.

$$\therefore |G(j\omega_0)| = 1, \tag{1.2}$$

$$\implies |G_0| = \left| 1 + j \frac{2\pi \cdot 10^6}{2\pi \cdot 10} \right| \tag{1.3}$$

or,
$$G_0 \approx 10^5$$
 (1.4)

Thus,

$$G(s) = \frac{10^5}{1 + \frac{s}{2\pi 10}} \tag{1.5}$$

2. Given that H = 0.01, find T(s).

Solution: From (1.5),

$$T(s) = \frac{G(s)}{1 + G(s)H(s)}$$
(2.1)

$$=\frac{99.90}{1+\frac{s}{2\pi10010}}\tag{2.2}$$

The block diagram is shown in Fig. 2. Block diagram representation of the amplifier

3. Find the low frequency gain T(0).

Solution: From (2.2)

$$T(0) = 99.900 \tag{3.1}$$

4. Find the 3-dB frequency of the closed loop

amplifier.

Solution: From (2.2)

$$f_{3dB} = 10.01kHz (4.1)$$

1

5. Find the unity gain frequency of the closed loop amplifier

Solution:

$$\left| T\left(\mathsf{J}\omega_{1}\right) \right| = 1\tag{5.1}$$

$$\implies 99.90 = \left| 1 + \frac{J\omega}{2\pi 10010} \right| \tag{5.2}$$

or,
$$f_1 = 999.94kHz$$
 (5.3)

upon substitution from (2.2) and some algebra.

6. By what factor does the pole shift?

Solution: From (1.5) and (2.2), the ratio of the poles is

$$\frac{2\pi \times 10010}{2\pi \times 10} = 1001\tag{6.1}$$

7. Tabulate the DC Gain, Bandwidth and Gain bandwidth product for G(s) and T(s).

Solution: See Table 7

..., by using feedback we can get desired Gain of an amplifier while maintaining constant Gain Bandwidth product(for a first-order opamp).

8. Design the circuit for *H*.

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India. All content in this manual is released under GNU GPL. Free and open source.

	G(s)	T(s)
Gain	10^{5}	99.9
Band- width	20π	$20\pi.1001$
Gain band- width product	$2\pi.10^{6}$	$2\pi.10^{6}$

TABLE 7

Solution: See Fig. 8. For

$$R_1 = 10\Omega \tag{8.1}$$

$$R_f = 990\Omega, \tag{8.2}$$

$$H = \frac{V_f}{V_{out}} = \frac{R_1}{R_1 + R_f}$$
 (8.3)

$$= 0.01$$
 (8.4)

Fig. 8

9. Design the closed loop circuit for T(s). **Solution:** See Fig. 9. Table 9 lists the various parameters.

Circuit	Parameter
Element	Value
Op-amp Gain	10^{5}
Op-amp pole	10 <i>Hz</i>
R_1	10Ω
R_f	990Ω

TABLE 9

Fig. 9

10. Verify the gain of closed loop Circuit using spice

Solution: Follow the Instructions for SPICE simulation:

spice/README.md

Netlist file for simulation:

spice/ee18btech11035 spice2.net

Fig. 10.1: Spice simulation of Closed-loop Transfer Function

The following python code plots the spice output in Fig. 10.1.

codes/ee18btech11035_spice2.py

The following code generates Fig. 10.2.

 $codes/ee18 btech 11035_py thon verify 2.py$

Fig. 10.2: Python verification of closed-loop Transfer Function