Rencana Pembelajaran Semester (RPS)

	UNIVERSITAS PENDIDIKAN GANESHA JURUSAN TEKNIK INFORMATIKA PROGRAM STUDI ILMU KOMPUTER								Kode Dokumen
			RENCANA PEM	BELA	JARAN SEMESTE	ER			
MATA KULIAH (MK	()		KODE	Rumpu	ın MK	вовот ((sks)	SEMESTER	Tgl Penyusunan
Desain dan Analisis A	lgoritma		KOMS120403	Mata kı	ıliah inti keilmuan	T=3	P=0	4	20/012023
OTORISASI			Pengembang RPS		Koordinator RMK			Ketua PRODI	
			Ni Luh Dewi Sintiari, Ph.D.		A.A. Gede Yudhi Paramartha, S.Kom., M.Kom.		A.A. Gede Yudhi Paramartha, S.Kom., M.Kom.		
Capaian	CPL-PRO	DDI yang o	dibebankan pada MK						
Pembelajaran (CP)	S1	Bertakwa	a kepada Tuhan Yang Maha Esa	dan mamp	ou menunjukkan sikap rel	igius;			
	S2		ung tinggi nilai kemanusiaan dala			agama, mo	ral, dan eti	ka;	
	S8		ernalisasi nilai, norma dan etika a						
	S9		ıkkan sikap bertanggung jawab a			ya secara m	nandiri		
	S10		ernalisasi semangat kemandirian,						
	P1	Mampu :	memahami dan menguasai konse	p dasar il	mu komputer secara um	um seperti ı	matematik	a, algoritma, pemro	ograman, dan basis
	P2		memahami dan menguasai konse pangan, dan implementasi perang			mulai dari a	analisis ket	outuhan, perancang	an,
	KU1		menerapkan pemikiran logis, krit ologi yang memperhatikan dan m						ilmu pengetahuan
	KU2		menunjukkan kinerja mandiri, be					•	
	KK1	Terampi	l dalam menganalisis kebutuhan,	merancan	g, dan mengimplementas	ikan rancan	ıgan, dan n	nenguji perangkat l	unak.
	Capaian l	Pembelaja:	ran Mata Kuliah (CPMK)						

	CDMIZ	Mahasia ta manan manundan dassia algaritma untuk manualassikan masalah dalam Ilmu Manantan dan mamiliki katanamilan
	CPMK	Mahasiswa mampu merumuskan desain algoritma untuk menyelesaikan masalah dalam Ilmu Komputer, dan memiliki keterampilan
		untuk mengimplementasikan algoritma tersebut ke dalam dahasa pemrograman, sehingga mampu menjelaskan metode penyelesaian masalah secara sistematis dalam bentuk verbal dan tulisan.
		illasalali secara sistematis udiani bentuk verbai udii tunsan.
	Kemampu	ıan akhir tiap tahapan belajar (Sub-CPMK)
	Sub- CPMK1	Mahasiswa mampu menjelaskan tahapan desain dan analisis algoritma, menuliskan algoritma dan pseudocode dengan baik dan benar
	Sub- CPMK2	Mahasiswa mampu menghitung kompleksitas waktu algoritma (worst-case, best-case, average-case), menggunakan notasi Big-O, Big-Omega, dan Big-Theta, dan mengklasifikasikan algoritma berdasarkan kompleksitas waktunya dengan benar
	Sub- CPMK3	Mahasiswa mampu mengaplikasikan strategi brute-force/exhaustive search dalam pemecahan masalah, menganalisis kebenaran dan kompleksitas waktunya dengan baik dan benar
	Sub- CPMK4	Mahasiswa mampu mengaplikasikan metode rekursif dalam pemecahan masalah, serta memeriksa kebenaran dan kompleksitas waktunya dengan baik dan benar
	Sub- CPMK5	Mahasiswa mampu menerapkan strategi Divide-and-Conquer, Decrease-and-Conquer, dan Transform-and-Conquer dalam pemecahan masalah, menganalisis kebenaran dan kompleksitas waktunya dengan baik dan benar
	Sub- CPMK6	Mahasiswa mampu menerapkan algoritma Greedy dalam pemecahan masalah, membuktikan optimalitas atau menunjukkan ketak- optimalan, menganalisis kebenaran dan kompleksitas waktunya dengan baik dan benar
	Sub- CPMK7	Mahasiswa mampu menjelaskan metode BFS dan DFS dengan baik, menganalisis kompleksitas waktu, dan menerapkannya dalam pemecahan masalah dengan baik dan benar
	Sub- CPMK8	Mahasiswa mampu menjelaskan konsep algoritma Backtracking dan Branch-and-Bound, serta mengaplikasikannya dalam pemecahan masalah algoritmik dengan baik dan benar
	Sub- CPMK9	Mahasiswa mampu menjelaskan konsep pemrograman dinamis dan mengaplikasikan pemrograman dinamis dalam pemecahan masalah algortimik dengan baik dan benar
	Sub- CPMK10	Mahasiswa mampu menjelaskan jenis-jenis permasalahan algoritmik dalam Ilmu Komputer, mengklasifikasikan masalah dalam kelas kompleksitas (P, NP, NP-Complete, dan NP-Hard), serta menentukan strategi algoritma yang tepat dalam pemecahan masalah algoritmik dengan baik dan benar
Deskripsi Singkat MK	pada dunia setiap stra Conquer,	h ini mempelajari tentang perancangan dan analisis algoritma, yang mencakup pembahasan mengenai jenis-jenis permasalahan algoritmik komputer, analisis efisiensi yaitu kompleksitas waktu dan ruang algoritma, strategi-strategi perancangan algoritma, dan keterbatasan tegi algoritma. Strategi-strategi perancangan algoritma yang dibahas mencakup strategi Brute Force, teknik Rekursif, Divide-and-Decrease-and-Conquer, Transform-and-Conquer, Greedy, Backtracking, Branch and Bound, Dynamic Programming, serta kelas tas algoritma (Teori P, NP, dan NP-Complete). Setelah mengikuti mata kuliah ini, mahasiswa diharapkan memahami berbagai macam

		strategi per	ancangan algoritma, serta mam	pu mengaplikasikan	teknik perancangan al	goritma untuk menyelesail	kan masalah dalam kehidu	ıpan nyata.			
	Kajian: i Pembelajaran	Bahan Kajian: Pengenalan macam-macam strategi algoritma, metode pembuktian kebenaran algoritma dan analisis kompleksitas waktu algoritma. Materi Pembelajaran: Modul ajar									
Pustaka		Utama:	Introduction to the l	Design & Analysis of	Algorithms, Anany L	Levitin, Pearson Education,	Inc.				
		Pendukun	ndukung: - Slide Kuliah Strategi Algoritma, oleh Rinaldi Munir, Institut Teknologi Bandung - Slide Analysis of Algorithms, Robert Sedgewick								
Dosen	Pengampu	Ni Luh De	wi Sintiari, Ph.D.								
	culiah syarat	Struktur D	ata dan Algoritma								
Mg Ke-	Kemampuan tahapan b	elajar		Metode Per Penugasan		Pembelajaran, Pembelajaran, In Mahasiswa, Ilasi Waktu]	Materi Pembelajaran	Bobot Penilaian			
	(Sub-CP	MK)	Indikator	Kriteria & Bentuk	Luring (offline)	Daring (online)		(%)			
(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)			
1	Mahasiswa man menjelaskan tah desain dan anali algoritma denga	napan isis	 Ketepatan dalam menuliskan algoritma sederhana dengan benar Ketepatan dalam menjelaskan tahapan proses perancangan algoritma 	Bentuk Penilaian: • Non-tes, tanya-jawab lisan	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran:	Media: elearning.undiksha.ac .id	 Kontrak kuliah Pengantar desain dan analisis algoritma Jenis-jenis algoritma Contoh 	5%			

		analisis algoritma				Komputer	
		4. Ketepatan dalam		Tugas 1:		•	
		menjelaskan		Pengenalan desain			
		permasalahan-		dan analisis			
		permasalahan algoritmik		algoritma (tertulis			
		penting dalam Ilmu		dan presentasi)			
		Komputer					
		5. Ketepatan dalam					
		menyebutkan macam-					
		macam strategi					
		perancangan algoritma					
		6. Ketepatan dalam					
		menjelaskan definisi					
		kebenaran algoritma					
		beserta teknik untuk membuktikan kebenaran					
		suatu algoritma					
		7. Ketepatan dalam					
		menuliskan algoritma					
		dalam pseudocode					
2	Mahasiswa mampu	Ketepatan dalam	Bentuk	Bentuk	Media:	1. Penghitungan	7%
_	menghitung kompleksitas	menjelaskan konsep dan	Penilaian:	Pembelajaran:	elearning.undiksha.ac.	kompleksitas	1 / 0
	waktu algoritma (worst-	urgensi dari penghitungan	• Tanya-	Kegiatan Proses	id	waktu worst-case,	
	case, best-case, average-	kompleksitas waktu	jawab lisan	Belajar [3x50']		best-case, dan	
	case), menggunakan notasi	algoritma	• Quiz			average-case	
	Big-O, Big-Omega, dan	2. Ketepatan dalam	 Tugas 	<u>Metode</u>		algoritma	
	Big-Theta, dan	menghitung fungsi		<u>Pembelajaran:</u>		2. Notasi asimptotik	
	mengklasifikasikan	kompleksitas waktu		Diskusi, tanya-		(big-O, big-Theta,	
	algoritma berdasarkan	algoritma.		jawab, presentasi,		dan big-Omega)	
	kompleksitas waktunya	3. Ketepatan dalam		penugasan		beserta operasinya	
	dengan benar	menghitung kompleksitas		A1		3. Kelas algoritma	
		waktu worst-case, best-		Aktivitas kelas:		berdasarkan fungsi	
		case, dan average-case		Penghitungan		kompleksitas	

		suatu algoritma 4. Ketepatan dalam menuliskan kompleksitas waktu dengan notasi asimptotik (Big-O, Big- Sigma, Big-Omega) 5. Ketepatan dalam menghitung operasi aritmetik dengan notasi asimptotis 6. Ketepatan dalam mengelompokkan algoritma menjadi kelas algoritma berdasarkan kompleksitas waktunya (linier, polinomial, logaritmik, eksponensial,		kompleksitas waktu algoritma dan pembuktian sifat-sifat dengan notasi asimptotik Tugas 2: Penulisan makalah ilmiah aplikasi strategi algoritma (Waktu pengerjaan 12 minggu)		waktunya	
3	Mahasiswa mampu menjelaskan tentang konsep strategi brute- force/exhaustive search dan teknik heuristik dengan baik, menganalisis kebenaran dan kompleksitas waktu algoritma brute-force, serta mengaplikasikan strategi tersebut dalam pemecahan masalah dengan baik dan benar	dsb.) 1. Ketepatan dalam menjelaskan prinsip dasar dan karakteristik algoritma brute-force 2. Ketepatan dalam merancang algoritma brute-force untuk menyelesaikan permasalahan algoritmik sederhana, seperti: mencari nilai maksimum/ minimum pada array, sequential search, menghitung perpangkatan	Bentuk Penilaian: Tanya- jawab lisan Presentasi materi Tugas	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan Aktivitas kelas: Mendesain algoritma brute- force untuk	Media: elearning.undiksha.ac. id	 Pengenalan strategi brute-force Pembuktian kebenaran dan penghitungan kompleksitas waktu algoritma brute-force Strategi exhaustive search untuk permasalahan kombinatorial 	5%

	4.	bilangan, menghitung nilai faktorial, perkalian matriks persegi, pengecekan bilangan prima, interpolasi polinom, mencari pasangan titik terdekat, dan pattern matching, dll. Ketepatan dalam menghitung kompleksitas waktu algoritma Brute- force Ketepatan dalam memodifikasi algoritma Brute-force untuk meningkatkan efisiensinya Ketepatan dalam merancang algoritma exhaustive search untuk menyelesaikan permasalahan kombinatorial, seperti:		menyelesaikan permasalahan algoritmik sederhana, dan menganalisis kebenaran dan kompleksitas waktunya			
4	1	. Ketepatan dalam menjelaskan tahapan algoritma pengurutan berbasis Brute-Force, seperti Selection sort,	Bentuk Penilaian: Tanya- jawab lisan Presentasi materi	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode	Media: elearning.undiksha.ac. id	Teknik heuristik untuk peningkatan efisiensi algoritma brute-force Algoritma sorting berbasis brute-force	4%

		Bubble sort, dan Insertion sort 2. Ketepatan dalam membuktikan kebenaran algoritma Selection sort, Bubble sort, dan Insertion sort dengan menggunakan loopinvariant 3. Ketepatan dalam mengaplikasikan algoritma Selection Sort, Bubble Sort, dan Insertion sort dalam pemecahan masalah 4. Ketepatan dalam membuat program implementasi algoritma sorting pada pemecahan masalah	• Tugas	Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan		(Selection Sort, Bubble Sort, dan Insertion Sort) 3. Pembuktian dengan metode loop- invariant 4. Program komputer untuk implementasi algoritma brute- force	
5	Mahasiswa mampu menjelaskan konsep algoritma rekursif, menuliskan pseudocode, menganalisis kebenaran, memformulasikan bentuk rekursif dari fungsi kompleksitas waktunya dan menghitung rumus eksplisit fungsi tersebut, serta mengaplikasikan	1. Ketepatan dalam menjelaskan prinsip strategi rekursif, karakteristik algoritma rekursif, serta perbedaannya dengan algoritma brute-force 2. Ketepatan dalam merancang algoritma rekursif untuk	Bentuk Penilaian: Tanya- jawab lisan Presentasi materi Tugas	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan	Media: elearning.undiksha.ac. id	 Pengenalan strategi rekursif Penyelesaian masalah Menara Hanoi Binary search Pembuktian kebenaran algoritma rekursif dengan induksi matematika 	8%

	metode rekursif dalam	manyalasaikan		Alstivitas kalas		5. Analisis efisiensi	
		menyelesaikan		Aktivitas kelas:			
	pemecahan masalah dan	permasalahan algoritmik		Membuat program		waktu algoritma	
	mengimplementasikannya	sederhana, seperti		komputer		rekursif	
	dalam program komputer	menghitung faktorial,		sederhana dengan		6. Implementasi	
	dengan baik dan benar	mencari nilai maksimum		algoritma rekursif,		algoritma rekursif	
		pada array, dan		secara		dalam bentuk	
		menghitung jumlah		berkelompok.		program komputer	
		elemen pada array		Tugas			
		3. Ketepatan dalam		dikumpulkan			
		menjelaskan tahapan		berkelompok, dan			
		algoritma rekursif untuk		presentasi dibuat			
		menyelesaikan masalah		secara mandiri.			
		Menara Hanoi, Binary					
		Search, atau menghitung					
		perpangkatan					
		4. Ketepatan dalam					
		membuktikan kebenaran					
		dari algoritma rekursif					
		dengan menggunakan					
		induksi matematika					
		5. Ketepatan dalam					
		menyatakan fungsi					
		kompleksitas waktu					
		dalam formula rekursif					
		dan menghitung bentuk					
		fungsi ekplisitnya					
		6. Ketepatan dalam					
		menjelaskan redundansi					
		algoritma rekursif pada					
		algoritma konstruksi					
		barisan Fibonacci					
6	Mahasiswa mampu		Bentuk	<u>Bentuk</u>	Media:	1. Pengenalan strategi	7%
	menjelaskan strategi	1. Ketepatan dalam	Penilaian:	<u>Pembelajaran:</u>	elearning.undiksha.ac	divide-and-conquer	

D da C ps ke fu al m st	Divide-and-Conquer, Decrease-and-Conquer, Ian Transform-and- Conquer, menuliskan Iseudocode, menganalisis Isebenaran dan menghitung Ingsi kompleksitas waktu Ilgoritma, serta Inengaplikasikan ketiga Itrategi tersebut dalam Isemecahan masalah Ilengan baik dan benar	menjelaskan prinsip algoritma divide-and- conquer, dan mengaplikasikannya untuk menyelesaikan permasalahan algoritmik 2. Ketepatan dalam menjelaskan algoritma pengurutan data berbasis divide-and-conquer, yaitu: merge sort atau quick sort 3. Ketepatan dalam menggunakan Teorema Master untuk menghitung kompleksitas waktu algoritma divide-and- conquer 4. Ketepatan dalam menjelaskan algoritma Divide-and-Conquer untuk perkalian matriks persegi, serta modifikasi algoritma untuk meningkatkan efisiensi, melalui algoritma perkalian matriks Strassen	 Tanya- jawab lisan Presentasi materi Tugas teori 	- Kegiatan Proses Belajar [3x50'] - Tugas mandiri [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan Aktivitas kelas: Mengerjakan soal latihan perkalian polinom, dengan menerapkan berbagai konsep yang dibahas. Setiap mahasiswa membuat presentasi secara mandiri.	.id	 Analisis kompleksitas waktu algoritma divide- and-conquer Merge Sort dan Quick Sort Teorema Master Metode Strassen untuk perkalian matriks Metode Karatsuba untuk perkalian bilangan besar 	6%
,		Ketepatan dalam menjelaskan prinsip Decrease-and-Conquer,	Penilaian: Tanya- jawab lisan	Pembelajaran: Kegiatan Proses Belajar [3x50']	elearning.undiksha.ac.	decrease-and- conquer serta jenis- jenis	070

		serta perbedaanya dengan strategi Divide-and-Conquer 2. Ketepatan dalam menjelaskan pendekatan 'decrease by a constant', 'decrease by constant factor', dan 'decrease by variable size', serta mengaplikasikannya dalam pemecahan masalah. 3. Ketepatan dalam menjelaskan prinsip Transform-and-Conquer dan perbedaannya dengan Divide-and Conquer dan Decrease-and-Conquer 4. Ketepatan dalam menjelaskan pendekatan 'instance 'representation change', dan 'problem reduction', serta mengaplikasikannya dalam pemecahan masalah	 Presentasi materi Quiz Tugas 	Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan		pendekatannya 2. Pengenalan strategi transform-and-conquer serta jenis-jenis pendekatannya	
8	Evaluasi Tengah Semester	I .					10%
9	Mahasiswa mampu	1. Ketepatan dalam	Bentuk	<u>Bentuk</u>	Media:	1. Pengenalan strategi	5%
	menjelaskan konsep	menjelaskan prinsip dasar	Penilaian:	Pembelajaran:	elearning.undiksha.ac.	Greedy	
	algoritma Greedy,	algoritma Greedy	• Tanya-	Kegiatan Proses	id	2. Implementasi	
	membuktikan optimalitas	2. Ketepatan dalam	jawab lisan	Belajar [3x50']		strategi Greedy	
	atau menunjukkan ketak- optimalan algoritma	menjelaskan dan mengidentifikasi	Presentasi materi	<u>Metode</u>		dalam pemecahan masalah	

10	Greedy, mengaplikasikan metode Greedy dalam pemecahan masalah dan mengimplementasikannya dalam program komputer dengan baik dan benar	komponen algoritma Greedy melalui contoh 3. Ketepatan dalam mengaplikasikan strategi Greedy untuk menyelesaikan permasalahan optimasi sederhana, seperti: Coin exchange problem, Activity selection problem, Time minimization in the system. 4. Ketepatan dalam membuktikan keoptimalan atau menujukkan ketak- optimalan algoritma Greedy yang dirancang secara formal	• Tugas	Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan Aktivitas kelas: Menyelesaikan berbagai permasalahan algoritmik sederhana dengan menggunakan algoritma Greedy. Contoh permasalahan; penjadwalan, Traveling Salesman Problem, dan Integer Knapsack Problem.	Madia	3. Analisis optimalitas algoritma Greedy	50 /
10		1. Ketepatan dalam menjelaskan strategi Greedy untuk penyelesaian masalah 1/0 Knapsack, dengan pendekatan <i>Greedy by profit</i> , <i>Greedy by weight</i> ,	Bentuk Penilaian: Tanya- jawab lisan Presentasi materi Tugas	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran:	Media: elearning.undiksha.ac. id	 Penyelesaian masalah 1/0 Knapsack dengan strategi Greedy Penyelesaian masalah Fractional Knapsack dengan 	5%

	dan <i>Greedy by density</i> . 2. Ketepatan dalam menjelaskan strategi Greedy untuk Fractional Knapsack Problem, dengan pendekatan <i>Greedy by profit, Greedy by weight</i> , dan <i>Greedy by density</i> . 3. Ketepatan dalam menjelaskan tahapan konstruksi kode Huffman dengan strategi Greedy	tertulis	Diskusi, tanya- jawab, presentasi, penugasan		strategi Greedy 3. Konstruksi kode Huffman dengan strategi Greedy 4. Analisis optimalitas dari algoritma yang dirancang untuk ketiga permasalahan tersebut	
11	 Ketepatan dalam menjelaskan tahapan penyelesaian masalah Minimum Spanning Tree dengan algoritma Prim Ketepatan dalam menjelaskan tahapan penyelesaian masalah Minimum Spanning Tree dengan algoritma Kruskal Ketepatan dalam menjelaskan tahapan algoritma Dijkstra untuk menyelesaikan masalah Shortest Path Ketepatan dalam menjelaskan mengapa algoritma Dijkstra menberikan hasil optimal untuk masalah Shortest 	Bentuk Penilaian: Tanya- jawab lisan Presentasi materi Tugas membuat video	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan Tugas 2: Penerapan algoritma Kruskal, Prim, dan Dijkstra untuk penyelesaian masalah algoritmik pada graf (MST dan jarak terpendek)	Media: elearning.undiksha.ac. id	 Algoritma Prim untuk Minimum Spanning Tree Algoritma Kruskal untuk Minimum Spanning Tree Algoritma Dijkstra untuk Shortest Path 	5%

		Path 5. Ketepatan dalam					
		mengaplikasikan algoritma Prim, Kruskal,					
		dan Dijkstra untuk					
		menyelesaikan masalah terkait pada graf					
		sederhana					
12	Mahasiswa mampu menjelaskan metode BFS dan DFS dengan baik, menganalisis kompleksitas waktu dan ruang melalui contoh riil, dan mengaplikasikan metode BFS dan DFS dalam pembentukan pohon ruang status pada algoritma graf dinamis dengan baik dan benar	 Ketepatan dalam menjelaskan tahapan algoritma BFS pada struktur <i>tree dan</i> struktur graf yang bukan <i>tree</i> Ketepatan dalam menjelaskan tahapan algoritma DFS pada struktur <i>tree</i> dan struktur graf yang bukan <i>tree</i> Ketepatan dalam menjelaskan definisi dan komponen pohon ruang status pada graf dinamis 	Bentuk Penilaian: Tanya- jawab lisan Presentasi materi Tugas	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan	Media: elearning.undiksha.ac .id	 Strategi BFS dan DFS, serta analisis efisiensinya Pembangunan pohon ruang status pada graf dinamis dengan metode BFS dan DFS Penyelesaian permainan 8-puzzle 	5%
		 4. Ketepatan dalam menjelaskan prosedur pembangunan pohon ruang status dengan strategi BFS dan DFS 5. Ketepatan dalam menyelesaikan masalah 8-puzzle game melalui pembangunan pohon ruang status. 					
		6. Ketepatan dalam					

13	Mahasiswa mampu menjelaskan konsep algoritma Backtracking dan Branch-and-Bound, serta mengaplikasikannya dalam pemecahan masalah algoritmik dengan baik dan benar	menjelaskan perbandingan efisiensi dari strategi BFS dan DFS 1. Ketepatan dalam menjelaskan prinsip dasar strategi backtracking 2. Ketepatan dalam menjelaskan langkah- langkah penyelesaian masalah penempatan <i>n</i> - ratu pada papan catur dengan algoritma backtracking 3. Ketepatan dalam menjelaskan Langkah- langkah penyelesaian	Bentuk Penilaian: Tanya- jawab lisan Presentasi materi Tugas	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan Tugas 3: Implementasi	Media: elearning.undiksha.ac .id	 Pengenalan strategi backtracking Penyelesaian masalah n-ratu dengan strategi backtracking Pencarian sirkuit Hamilton dengan strategi backtracking Pengenalan strategi branch-and-bound Penyelesaian 	6%
		masalah sirkuit Hamilton dengan algoritma backtracking 4. Ketepatan dalam menjelaskan prinsip dasar strategi branch-and-bound dan perbedaannya dengan strategi backtracking 5. Ketepatan dalam menjelaskan tahapan penyelesaian masalah 1/0 Knapsack dengan algoritma branch-and-bound		algoritma Backtracking, BnB, dan Dynamic Programming pada pemecahan masalah algoritmik Aktivitas kelas: Menjelaskan penerapan algoritma Backtracking pada pencarian sirkuit		masalah 1/0 Knapsack dengan strategi branch-and- bound	
				sirkuit Hamilton			

				 Menjelaskan penerapan algoritma BnB pada 			
				permasalahan			
				Integer			
				Knapsack dan			
1.4	Mahasiar ta maman	1 Veterator delem	Bentuk	Assignment	Media:	1 Danganalan kansan	70/
14	Mahasiswa mampu menjelaskan konsep	1. Ketepatan dalam menjelaskan prinsip dasar	Penilaian:	<u>Bentuk</u> Pembelajaran:	elearning.undiksha.ac	Pengenalan konsep dan tahapan	7%
	pemrograman dinamis,	strategi pemrograman	• Tanya-	Kegiatan Proses	id.id	pemrograman	
	melakukan analisis	dinamis (dynamic	jawab lisan	Belajar [3x50']	.10	dinamis	
	kompleksitas waktu, dan	programming)	Presentasi	Delajai [DASO]		2. Penggunaan	
	mengaplikasikan	2. Ketepatan dalam	materi	Metode		program dinamis	
	pemrograman dinamis	menjelaskan menjelaskan	• Tugas	Pembelajaran:		untuk pemecahan	
	dalam pemecahan masalah	"Prinsip Optimalitas"		Diskusi, tanya-		masalah algoritmik	
	algortimik dengan baik dan	pada pemrograman		jawab, presentasi,		sederhana.	
	benar	dinamis		penugasan		3. Penyelesaian 1/0	
		3. Ketepatan dalam				Knapsack dengan	
		menjelaskan tahapan				pemrograman	
		pemrograman dinamis				dinamis, dan	
		untuk menyelesaikan				konsep "Memory	
		beberapa masalah				functions" untuk	
		sederhana, seperti: "Coin- row problem, Change-				peningkatan efisiensi	
		making problem, dan				ensiensi	
		Coin collecting problem"					
		4. Ketepatan dalam					
		menjelaskan tahapan					
		pemrograman dinamis					
		untuk menyelesaikan					
		masalah Knapsack					
		5. Ketepatan dalam					

15	Mahasiswa mampu	menjelaskan konsep "Memory functions" untuk meningkatkan efisiensi pemrograman dinamis pada Knapsack problem, dan masalah algoritmik lainnya secara umum	Bentuk	Bentuk	Media:	1. Jenis-jenis	5%
	menjelaskan jenis-jenis permasalahan algoritmik dalam Ilmu Komputer, mengklasifikasikan masalah dalam kelas kompleksitas (P, NP, NP- Complete, dan NP-Hard), serta menentukan strategi algoritma yang tepat dalam pemecahan masalah algoritmik dengan baik dan benar	 Ketepatan dalam menjelaskan perbedaan algoritma deterministik dan non-deterministik Ketepatan dalam menjelaskan perbedaan decision problem dan searching problems, decidable dan undecidable problems Ketepatan dalam menjelaskan perbedaan kelas P, NP, NP-complete, dan NP-Hard Ketepatan dalam memberikan sebuah contoh permasalahan yang diklasifikasan sebagai P, NP, NP-complete, atau NP-Hard dan menjelaskan mengapa masalah tersebut diklasifikan ke 	Penilaian: Tanya- jawab lisan Presentasi materi	Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan Tugas 14:	elearning.undiksha.ac .id	permasalahan algoritmik dalam Ilmu Komputer Kelas P, NP, NP- complete, dan NP- Hard Analisis kebutuhan dan batasan antara kecepatan dan efisiensi pemakaian ruang memori untuk menentukan strategi algoritma	370

	dalam kelas terkait 5. Ketepatan dalam menjelaskan bagaimana menentukan pilihan algoritma untuk penyelesaian masalah berdasarkan urgensi kebutuhan dan batasan, antara kecepatan dan efisiensi pemakaian ruang memori	10%		
16 Evaluasi Akhir Semester / Ujian Akhir Semester				

Rujukan:

- 1. Introduction to The Design & Analysis of Algorithms, Anany Levitin, Pearson Education, Inc.
- 2. Slide Kuliah Strategi Algoritma, oleh Rinaldi Munir, Institut Teknologi Bandung.
- 3. Slide Analysis of Algorithms, Robert Sedgewick.
- 4. Modul Kuliah DAA, Made Windu Antara Kesiman, Universitas Pendidikan Ganesha.