Machine Learning in a hurry

Marc Lelarge marc.lelarge@inria.fr

February 6, 2024

1 Predictions with a statistical model

In machine learning, we have a **population** of N instances $(x_i, y_i)_{i=1}^N$ but we first consider the statistical setting (called decision theory) where we know the **distribution** of (X, Y). The question is then: given a sample x from this distribution, what is the best prediction for the associated y?

1.1 Optimal prediction

Modeling knowledge as a probability distribution with a statistical model p(x, y).

Prior for Y: p(y) in our case: $p_0 = \mathbb{P}(Y = 0)$ and $p_1 = 1 - p_0$.

Generative model: p(x|y). So that p(x,y) = p(x|y)p(y).

We restrict ourselves to binary prediction, i.e. the target $Y \in \{0, 1\}$. We denote by $\hat{y}(X)$ the predictor for input X. For classification, we ask for $\hat{y} : \mathbb{R} \to \{0, 1\}$.

The loss function generalizes the natural notion of error: $loss(\hat{y}, y) \in \mathbb{R}$.

Ex: prediction error $loss(\hat{y}, y) = \mathbb{1}(\hat{y} \neq y)$.

Definition 1

The **risk** of a predictor \hat{y} is the expected loss:

$$R(\hat{y}) = \mathbb{E}[loss(\hat{y}(X), Y)] = \sum_{x,y} p(x, y) loss(\hat{y}(x), y).$$

Lemma 1

The predictor minimizing the risk is given by:

$$\hat{y}(x) = \mathbb{1}\left(p(1|x) \ge \frac{loss(1,0) - loss(0,0)}{loss(0,1) - loss(1,1)}p(0|x)\right).$$

Proof. Since

$$R(\hat{y}) = \sum_{x} p(x) \mathbb{E} \left[loss(\hat{y}(x), Y) | X = x \right],$$

we just need to compare the two terms:

$$\mathbb{E}\left[\log(0,Y)|X=x\right] = \log(0,0)p(0|x) + \log(0,1)p(1|x)$$

$$\mathbb{E}\left[\log(1,Y)|X=x\right] = \log(1,0)p(0|x) + \log(1,1)p(1|x),$$

Remark 1. In the case where loss(0,0) = loss(1,1) = 0 and loss(0,1) = loss(1,0) = 1, the optimal predictor is given by $\hat{y}(x) = \arg\max_{y \in \{0,1\}} p(y|x)$, which is the maximum a posteriori (MAP) rule.

Since our generative model is typically described with p(x|y), we can rewrite the optimal predictor with Bayes rule:

$$\hat{y}(x) = \mathbb{1}\left(\frac{p(x|1)}{p(x|0)} \ge \frac{p_0\left(\log(1,0) - \log(0,0)\right)}{p_1\left(\log(0,1) - \log(1,1)\right)}\right).$$

Definition 2

The likelihood ratio is defined as: $\mathcal{L}(x) = \frac{p(x|1)}{p(x|0)}$ and a likelihood ratio test is a test of the form: $\hat{y}(x) = \mathbb{1}(\mathcal{L}(x) \ge \eta)$ for some $\eta > 0$.

Remark 2. In the case where loss(0,0) = loss(1,1) = 0 and loss(0,1) = loss(1,0) = 1, and $p_0 = p_1$, the MAP rule reduces to: $\hat{y}(x) = \mathbb{1}\left(\mathcal{L}(x) \geq 1\right) = \arg\max_{y \in \{0,1\}} p(x|y)$, which is the maximum likelihood (ML) rule.

1.2 Confusion matrix and ROC curve

The confusion matrix is given by:

A few definitions:

- true positive rate (TPR): $\mathbb{P}(\hat{y}=1|Y=1)$ also called sensitivity or recall.
- false negative rate (FNR): $\mathbb{P}(\hat{y} = 0|Y = 1) = 1 \text{TPR}$ also known as type II error.
- false positive rate (FPR): $\mathbb{P}(\hat{y}=1|Y=0)$ also known as type I error.
- true negative rate (TNR): $\mathbb{P}(\hat{y} = 0|Y = 0) = 1 \text{FPR}$.
- precision: $\mathbb{P}(Y=1|\hat{y}=1) = \frac{p_1 \text{TPR}}{p_1 \text{TPR} + p_0 \text{FPR}}$.
- F_1 score is the harmonic mean of precision and recall.

Note that, we have

$$R(\hat{y}) = p_{0} \left(\mathbb{P}(\hat{y} = 1 | Y = 0) \operatorname{loss}(1,0) + \mathbb{P}(\hat{y} = 0 | Y = 0) \operatorname{loss}(0,0) \right) \\ + p_{1} \left(\mathbb{P}(\hat{y} = 0 | Y = 1) \operatorname{loss}(0,1) + \mathbb{P}(\hat{y} = 1 | Y = 1) \operatorname{loss}(1,1) \right) \\ = p_{0} \left((\operatorname{FPR}) \operatorname{loss}(1,0) + (1 - \operatorname{FPR}) \operatorname{loss}(0,0) \right) \\ + p_{1} \left((1 - \operatorname{TPR}) \operatorname{loss}(0,1) + (\operatorname{TPR}) \operatorname{loss}(1,1) \right) \\ = \underbrace{p_{0} \left(\operatorname{loss}(1,0) - \operatorname{loss}(0,0) \right)}_{\alpha} \operatorname{FPR} - \underbrace{p_{1} \left(\operatorname{loss}(0,1) - \operatorname{loss}(1,1) \right)}_{\beta} \operatorname{TPR} \\ + \underbrace{p_{0} \operatorname{loss}(0,0) + p_{1} \operatorname{loss}(1,1)}_{\gamma} \right).$$

Since $\alpha, \beta \geq 0$ and γ is a constant, there is a trade-off between TPR \uparrow and FPR \downarrow . This trade-off is captured by the receiver operating characteristic (ROC) curve corresponding to max TPR as a function of FPR and can be captured by varying the loss function.

Indeed, note that we have $R(\hat{y}) = \alpha \text{FPR} - \beta \text{TPR} + \gamma$ so that maximizing the TPR at a given FPR is the same as minimizing the risk $R(\hat{y})$. But we have shown that the optimal predictor minimizing $R(\hat{y})$ is given by: $\hat{y}(x) = \mathbb{1}\left(\mathcal{L}(x) \geq \frac{\alpha}{\beta}\right)$, hence the maximum TPR at a given FPR is still given by a likelihood ratio test. In other words, the ROC curve is obtained by varying the threshold η in the likelihood ratio test.

Setting $\eta = 0$ or $\eta = \infty$ corresponds to the two extreme points of the ROC curve: (0,0) and (1,1). Also, for a given $\pi \in [0,1]$, the random predictor $\hat{y}(x) = 1$ with probability π and 0 with probability $1 - \pi$ corresponds to the point (FPR, TPR) = (π, π) . Hence the ROC curve is always above the diagonal. Finally, given two points on the ROC curve (FPR (η_1) , TPR (η_1)) and (FPR (η_2) , TPR (η_2)), the point $(tFPR(\eta_1) + (1-t)FPR(\eta_2), tTPR(\eta_1) + (1-t)FPR(\eta_2))$ is obtained by the random (suboptimal) predictor equal to $\mathbb{1}(\mathcal{L}(x) \geq \eta_1)$ with probability t and to $\mathbb{1}(\mathcal{L}(x) \geq \eta_2)$ with probability t = t. Hence the ROC curve is concave.

Proposition 1

The points (0,0) and (1,1) are always on the ROC curve. The ROC curve is always above the diagonal and is concave.

1.3 Example

Figure 1: Statistical model: Gaussian mixture with class 0 in blue and class 1 in orange

 $\textbf{Figure 2:} \ \, \textbf{ROC} \ \, \textbf{curve associated to the Gaussian Mixture above} \\$