IP协议

IP: Internet Protocol, 因特网协议

前言

网络层位于数据链路层与传输层之间。网络层中包含了许多协议,其中最为重要的协议就是IP协议。网络层提供了IP路由功能。理解IP路由除了要熟悉IP协议的工作机制之外,还必须理解IP编址以及如何合理地使用IP地址来设计网络。

IP的包头结构:


```
F IP - 因特网协议[IP - Internet Protocol]:
 . 版本[Version]:
                                                                      [14/1] 0xF0
                                                       4
(20 字节) [14/1] 0x0F
□ □ 区分服务字段 [Differentiated Services Field]:
                                                       0000 0000
                                                                      [15/1] 0xFF
  0000 00..
                                                                      [15/1] 0xFC
  ● 传输协议忽略CE位[Transport Protocol will ignore the CE bit]: ......0.
                                                                      (忽略) [15/1] 0x02
                                                                      (不拥塞) [15/1] 0x01
   ..... 拥塞[Congestion]:
                                                       .... ...0
 …ョ 总长度 [Total Length]:
                                                       386
                                                                      (386 字节) [16/2]
 0x04D8
                                                                      (1240) [18/<mark>2</mark>]
                                                                      (不要分段) [20/1] 0xE0
→ 分段标志 [Fragment Flags]:
                                                       010. ....
  --- 保留 [Reserved]:
                                                                      [20/1] 0x80
                                                       0....
                                                                      (不要分段) [20/1] 0x40
   ● 分段[Fragment]:
                                                       .1.. ....
  ---○ 更多分段[More Fragment]:
                                                                      (最后一个段) [20/1] 0x20
 ● 分段偏移量 [Fragment Offset]:
                                                       0
                                                                      [20/2] 0x1FFF
 -- 生存时间 [Time To Live]:
                                                       64
 - ⑤ 上层协议[Protocol]:
                                                                      (TCP) [23/1]
 ● 校验和 [Checksum]:
                                                                      (正确) [24/2]
                                                       0x3C1A
  🧣 源 IP地址 [Source IP]:
                                                       192.168.108.240
                                                                      [26/4]
  🥊 目标IP地址[Destination IP]:
                                                                      [30/4]
                                                       219.232.239.2
```

分片: 当数据包比链路MTU大时,就可以被分解为很多的足够小片段,该过程叫做分片。

TTL: Time to Live, 生存时间

- 防止IP数据包在网络内无休止地传输
- 每经过一次路由TTL值就会减1
- 当TTL=0的时候, 丟弃数据包

- 利用TTL特性,可以实现路由跟踪技术,排错的重要方法之一!
- Ping -i 或 Tracert:

```
C:\Users\Administrator>tracert www.baidu.com
通过最多 30 个跃点跟踪
到 www.a.shifen.com [115.239.211.110] 的路由:
                17 ms
                          5 ms
  1
        9 ms
                                192.168.108.254
                20 ms
       43 ms
 2
                         92 ms
                                192.168.100.253
 3
      166 ms
               189 ms
                         11 ms
                                223.240.224.1
  4
        9
                 5
                          7 ms
                                61.190.245.253
         ms
                  ms
                                请求超时。
 5
                                202.97.59.213
 6
                23 ms
       20 ms
                         16 ms
  7
                                61.164.13.158
       35
         ms
                33
                  ms
                         26 ms
 8
       11 ms
                12 ms
                         14 ms
                                115.233.23.230
 9
       29
                19 ms
                         16 ms
                                115.239.209.10
                                请求超时。
请求超时。
10
       ×
                 ×
                          *
 11
                15 ms
                                115.239.211.110
12
       11 ms
                         13 ms
跟踪完成。
```

协议号:

• 用于标识上层协议

IP地址: IP Address

• 在IP网络中,通信节点需要有一个IP地址

- 以点分十进制表示,由32位二进制组成
- 分为网络位和主机位两部分:
 - 网络位,代表IP地址所属的网段
 - 主机位,代表网段上的某个节点
 - 由子网掩码决定分界点

IP地址分类:根据第一组八位二进制

	8Bits	8Bits	8Bits	8Bits	
A类	0NNNNNNN	Host	Host	Host	1-126
B类	10NNNNNN	Network	Host	Host	128-191
C类	110NNNNN	Network	Network	Host	192-223
D类	1110 MMMM	Multicast Group	Multicast Group	Multicast Group	224-239
E类	Research				
	B类 C类 D类	A类	A类 ONNNNNN Host B类 10NNNNNN Network C类 110NNNNN Network D类 1110MMMM Multicast Group	A类 ONNNNNN Host B类 10NNNNN Network Host C类 110NNNNN Network Network D类 1110MMMM Multicast Group Multicast Group	A类 ONNNNNN Host Host B类 10NNNNN Network Host C类 110NNNNN Network Network Host D类 1110MMMM Multicast Group Multicast Group Multicast Group

	私有IP地址空间	地址范围
	10.0.0.0/8	10.0.0.0 到 10.255.255.255
•	172.16.0.0/12	172.16.0.0 到 172.31.255.255
	192.168.0.0/16	192.168.0.0 到 192.168.255.255

	公网地址	用于Internet,向ISP付费申请
•	私网地址	用于企业内部网络,不能用于Internet ,免费使用
•	地址转换	使用私网地址如果要访问Internet,必须转换为公网地址,该技术称为

子网掩码: Subnet Mask

- 用于区分网络部分和主机部分
- 1表示网络位, 0表示主机位(连续的1和0)

Α	Decimal Binary	11111111	0	. 0	. 0	
	Concept	Network (8)		Host (24)		
В	Decimal Binary		255 11111111	. 0	. 0	
	Concept	Netwo	rk (16)	Host	(16)	
С	Decimal Binary	255 11111111	255 11111111	255 11111111	. 0	
	Concept		Network (24))	Host (8)	

Address	Class	Network	Host
10.2.1.1	Α	10.0.0.0	1.1
128.63.2.100	В	128.63.0.0	2.100
201.222.5.64			
192.6.141.2			
256.241.201.1			

网络地址、主机地址、广播地址:

• 每个网段上都有两个特殊地址(最小和最大)不能分配给节点

有类IP地址规划的缺陷:为什么要子网划分

- IP地址空间只能按照默认的类别使用,例如一个B类地址,默认掩码为
 255.255.0.0,意味着这个地址空间里有2的16次方个IP,并且该网络号只能用于一个广播域;
- IP地址空间的极大浪费;
- 一个广播域中PC数量过于庞大,网络可能被广播报文消耗大量的资源。

子网划分概述:

- 满足不同网络对IP地址的需求
- 实现网络的层次性
- 节省IP地址
- 默认子网掩码可以进一步划分,成为变长子网掩码(VLSM)
- 即网络位向主机位"借位"

计算一下 172.16.1.0/27 这个子网的网络号、广播号,及可用 IP 地址。

子网划分实例:

❖ 实际网络中的需求

某公司共有生产部、销售部、财务部、客服部四个部门,每个部门的主机数最多不超过50台。若该公司获得了一个C类地址192.168.100.0/24,应该如何划分子网呢?

部门	网段	掩码	有效主机地址
生产部	192.168.100.0/26	255.255.255.192	62
销售部	192.168.100.64/26	255.255.255.192	62
财务部	192.168.100.128/26	255.255.255.192	62
客服部	192.168.100.192/26	255.255.255.192	62

❖ 请思考

❖ 请思考

如果该公司有五个部门,每个部门的主机数最多不超过30台,应该如何划分子网呢?

❖ 一个网络划分为不同的子网

如果生产部有主机100台,销售部有50台,财务部有25台,客服部有12台,应该如何划分子网呢?

部门	网段	掩码	有效主机地址
生产部	192.168.100.0/25	255.255.255.128	126
销售部	192.168.100.128/26	255.255.255.192	62
财务部	192.168.100.192/27	255.255.255.224	30
客服部	192.168.100.224/27	255.255.255.224	30

CIDR: Classless Inter Domain Routing, 无类域间路由

• 突破了传统IP地址的分类边界,将路由表中的若干条路由汇聚为一条路由,减少了路由表的规模,提高了路由器的可扩展性。

