Питання на іспит з математичного аналізу для студентів 2 курсу ФІОТ

- 1. Числові ряди. Загальні поняття: означення числового ряду, частинної суми; збіжні числові ряди та їх властивості, необхідна ознака збіжності, наслідок. Геометричний ряд. Критерій Коші збіжності числових рядів. Гармонічний ряд.
- 2. Додатні числові ряди. Ознаки порівняння та Даламбера збіжності числових рядів. Наслідки. Обчислення границі $\lim_{n\to\infty} \frac{a^n}{n!}$.
- 3. Радикальна ознака Коші. Інтегральна ознака збіжності додатного числового ряду. Збіжність узагальненого гармонічного ряду.
 - 4. Знакозмінні числові ряди. Теорема Лейбніца, наслідок.
 - 5. Абсолютно та умовно збіжні числові ряди та їх властивості. Теорема Рімана.
- 6. Функціональні послідовності. Область збіжності. Гранична функція послідовності. Рівномірна збіжність функціональної послідовності. Функціональні ряди. Область здібності, сума ряду. Рівномірна збіжність функціонального ряду. Необхідна і достатня умови.
- 7. Рівномірно збіжні функціональні ряди. Означення рівномінорної збіжності. Критерій Коші. Теорема Вейєрштрасса.
 - 8. Рівномірно збіжні функціональні ряди. Теорема про неперервність суми.
- 9. Рівномірно збіжні функціональні ряди. Теореми про диференціювання та інтегрування рівномірно збіжних функціональних рядів.
 - 10. Степеневі ряди. Теорема Абеля. Радіус та інтервал збіжності. Властивості степеневих рядів.
- 11. Ряд Тейлора. Розклад функції в степеневий ряд. Єдиність розкладу. Необхідна та достатня умови розкладу функції в ряд Тейлора.
- 12. Ряди Маклорена для основних елементарних функцій e^x , $\sin x$, $\cos x$, $\sin x$, \sin
- 13. Ряд Маклорена для логарифмічної функції $\ln(1+x)$, її застосування до наближених обчислень. Обчислення $\ln 2$ з точністю $\varepsilon=10^{-5}$.
- 14. Ряди Маклорена для $(1+x)^{\alpha}$, $\arcsin x$, $\arcsin x$, $\arctan tgx$ та їх застосування до наближених обчислень значень функції. Обчислення числа π з точністю $\varepsilon=10^{-3}$.
- 15. Тригонометричний ряд Фур'є для 2π періодичних функцій. Частинні випадки: парні та непарні функції. Теорема Діріхле. Амплітудний та частотний спектр.
- 16. Ряд Фур'є для 2l періодичних функцій. Частинні випадки: парні та непарні функції. Ряд Фур'є для неперіодичних функцій та функцій заданих на проміжку $[0;\pi]$ та [0;l].
 - 17. Комплексна форма ряду Фур'є.
- 18. Інтеграл Фур'є (різні форми). Перетворення Фур'є (поняття). Синус та косинус перетворення Фур'є.
- 19. Поняття функції оригіналу та основні поняття про перетворення Лапласа. Приклади ($\eta(t)$ функція Хевісайда, $e^{\alpha t}$) Теорема про існування зображення по Лапласу. Теорема Мелліна.
- 20. Перетворення Лапласа. Властивості зображення по Лапласу (лінійність та подібність). Диференціювання оригіналу та зображення. Приклади: $\sin \omega t$, $\cos \omega t$, $sh\omega t$, $ch\omega t$ та t^n , $n \in N$.
- 21. Перетворення Лапласа. Інтегрування оригіналу та зображення. Теореми про запізнення та зміщення. Зображення ступеневої (східчастої) функції.
- 22. Згортка функцій, її властивості. Теорема Бореля. Інтеграл Дюамеля. Розв'язування ЛОДР зі сталими коефіцієнтами та системи таких рівнянь за допомогою операційного числення.
 - 23. Теорема розкладу (I та II).
- 24. Інтегро-диференціальні рівняння Вольтера I та II розу. Розв'язування їх за допомогою перетворення Лапласа.