Existence et unicité des mesures de Gibbs.

Dorian

28 décembre 2024

1.

Introduction

Définition 1 (Mesure de Gibbs). Soit μ une mesure de probabilité σ -invariante sur Σ_n . On dit μ est une mesure de Gibbs pour un potentiel $\phi \colon \Sigma_n \longrightarrow \mathbf{R}$ s'il existe $P \in \mathbf{R}$ et $c_1, c_2 > 0$ tels que pour tout $x \in \Sigma_n$ et $m \in \mathbf{N}$ on ait

$$c_1 \le \frac{\mu\{y \in \Sigma_n \mid \forall i \in [0, m-1], x_i = y_i\}}{\exp(-Pm + \sum_{k=0}^{m-1} \phi(\sigma^k x))} \le c_2.$$

Dans une première partie on se concentre sur la construction d'une mesure de Gibbs ergodique μ sur l'espace métrique Σ_n , afin de montrer le théorème principal.

Théoreme 2. Soit ϕ une fonction de potentiel hölderienne. Alors il existe une unique mesure de Gibbs pour cette fonction ϕ .

Pour ce faire, on se ramène au cas où la fonction de potentiel ϕ ne dépend plus des coordonnées négatives. Ensuite, on considère l'opérateur de transfert \mathcal{L} défini par

$$\forall f \in \mathcal{C}(\Sigma_n^+), \forall x \in \Sigma_n^+, \ \mathcal{L}f(x) = \sum_{y \in \sigma^{-1}x} f(y) e^{\phi(y)},$$

où Σ_n^+ est l'ensemble des suites à valeurs dans $[\![1,n]\!]$ et indéxées sur $\mathbf N$.

Le théorème suivant établit que cet opérateur admet une mesure propre et une fonction propre.

Théoreme 3 (Ruelle-Perron-Frobenius). Soit ϕ un potentiel et \mathcal{L} l'opérateur de transfert. Alors il existe $\lambda > 0, \nu \in \mathcal{M}(\Sigma_n^+)$ et $h \in \mathcal{C}(\Sigma_n^+), h > 0$ tels que :

- 1. ν vérifie $\mathcal{L}^*\nu = \lambda\nu$,
- 2. h vérifie $\mathcal{L}h = \lambda h$ et $\nu(h) = 1$,
- 3. et pour toute fonction $g \in \mathcal{C}(\Sigma_n^+)$, $\lim_{m \to \infty} \left\| \frac{1}{\lambda^m} \mathcal{L}^m g \nu(g) h \right\| = 0$.

Pour prouver ce théorème, on utilisera le théorème de Schauder-Tychonoff afin de construire la mesure propre μ et la fonction propre h comme des points fixes de certains opérateurs, pour

cela nous devrons d'abord établir la compacité de Σ_n et d'un certain ensemble de fonctions notamment grâce au théorème d'Ascoli. Puis pour établir la limite nous aurons besoin de la densité des fonctions en escaliers dans $\mathcal{C}(\Sigma_n^+)$ et des propriétés de l'opérateur de transfert.

Grâce à cette mesure propre ν et cette fonction propre h, on peut construire $\mu = h \cdot \nu$. Cette dernière mesure sur Σ_n^+ est alors σ -invariante, ce qui se montre grâce aux propriétés algébriques de l'opérateur de transfert et permettra de construire une forme linéaire G sur Σ_n qui s'identifiera grâce au théorème de Riesz en une mesure $\tilde{\mu}$ sur Σ_n , qui sera la mesure de Gibbs pour le potentiel höldérien ϕ . Une fois $\tilde{\mu}$ construite, on montrera qu'elle est ergodique (et même mélangeante), ce qui permettra d'établir l'unicité.