Föreläsning 4, Kösystem 2015

Ytterligare något om poissonprocessen

Vi har ju antagit att tiderna mellan ankomster till ett kösystem är exponentialfördelade. Om man hela tiden har samma ankomstintensitet så kallas en sådan ankomstprocess för *poissonprocess*. Man kan visa att följande tre sätt att definitioner är ekvivalenta:

- Om tiden mellan ankomster är exponentialfördelade med samma medelvärde så bildar ankomsterna en poissonprocess.
- 2. Om antalet ankomster i ett tidsintervall är poissonfördelade så bildar ankomsterna en poissonprocess. Att antalet ankomster är poissonfördelat innebär att om tidsintervallet har längden t och N är antalet ankomster under intervallet så är

$$P(N = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

3. Låt $I = [t, t + \Delta t]$ vara ett intervall och låt N vara antalet ankomster i detta intervall. Om det då gäller att

$$P(N = 0) = 1 - \Delta t + o(\Delta t)$$

$$P(N = 1) = \Delta t + o(\Delta t)$$

$$P(N > 1) = o(\Delta t)$$

så bildar ankomsterna en poissonprocess. $o(\Delta t)$ är en godtycklig funktion som har egenskapen att

$$\frac{o(\Delta t)}{\Delta t} \rightarrow 0 \text{ då } \Delta t \rightarrow 0$$

Poissonprocessen är minneslös vilket innebär att tiden till nästa ankomst efter en tidpunkt alltid är exponentialfördelad med samma medelvärde oavsett när den förra ankomsten ägde rum.

Upptagetsystem

Ett upptagetsystem har inga köplatser, det finns bara betjänare. Det innebär att tiden i systemet enbart är betjäningstid, inte någon väntetid i buffertar.

Erlangsystemet

Om det finns m betjänare och inga köplatser, ankomsterna är en Poissonprocess med ankomstintensitet λ oavsett hur många som finns i systemet och om betjäningstiderna är exponentialfördelade med medelvärdet $1/\mu$ så kalas kösystemet för ett Erlangsystem. Det är ofta en bra approximation om vi har många kunder i förhållande till antalet betjänare. Systemets markovkedja ser ut så här:

Om vi använder snittmetoden som vanligt så får vi

$$\lambda p_0 = \mu p_1 \Longrightarrow p_1 = \frac{\lambda}{\mu} p_0 = \rho p_0$$

$$\lambda p_1 = 2\mu p_2 \Longrightarrow p_2 = \frac{\lambda}{2\mu} p_1 = \frac{\rho^2}{2} p_0$$

$$\lambda p_2 = 3\mu p_2 \Longrightarrow p_3 = \frac{\lambda}{3\mu} p_1 = \frac{\rho^3}{3!} p_0$$

Man inser att i det generella fallet gäller

$$p_k = \frac{\rho^k /_{k!}}{\sum_{i=0}^m \frac{\rho^i}{i!}}$$

Denna fördelning kallas Erlangfördelning efter den danske matematikern A. K. Erlang som i början av 1900-talet var den förste som undersökte kapaciteten hos telefonnät och telefonväxlar med matematiska metoder.

Eftersom ankomstintensiteten är samma i alla tillstånd så är sannolikheten för spärr p_m . För denna sannolikhet finns en särskild beteckning: $E_m(\rho)$. Det finns tabeller över $E_m(\rho)$, se i slutet av läroboken.

Man kan även visa att antalet upptagna betjänare i ett upptagetsystem är Erlangfördelade även om betjäningstiderna inte är exponentialfördelade så länge som ankomsterna är en poissonproess. Att visa detta kräver matematiska verktyg som ligger långt utanför denna kurs.

Några andra fördelningar

Det finns ett par kontinuerliga fördelningar som är sammansättningar av exponentialfördelningar:

Erlang-r-fördelning: Denna ska inte förväxlas med Erlangfördelningen, som är en diskret fördelning. En variabel som är Erlang-r-fördelad är summan av r stycken exponentialfördelningar med samma medelvärde. Om man har en Erlang-r-fördelning och en exponentialfördelning med samma medelvärde så har Erlang-r-fördelningen mindre varians än exponentialfördelningen.

Hyperexponentialfördelning: Denna fördelning har en frekvensfunktion som ser ut så här:

$$f_X(t) = \sum_{i=1}^M \alpha_i \mu_i e^{-\mu_i t}$$

där

$$\sum_{i=1}^{M} \alpha_i = 1$$

Denna fördelning har större varians än en exponentialfördelning med samma medelvärde.