ACADEMIA

Accelerating the world's research.

A comparative survey of Symmetric and Asymmetric Key Cryptography

SMITA PAIRA

2014 International Conference on Electronics, Communication and Computational Engineering (ICECCE)

Cite this paper

Downloaded from Academia edu [7]

Get the citation in MLA, APA, or Chicago styles

Related papers

Download a PDF Pack of the best related papers 2

Authentication schemes for wireless sensor networks Ali Chehab

A Binary Grouping Approach for Image Encryption Based on Elliptic Curves over Prime Group Field Ali Soleymani

Proxied IBE-based key establishment for LLNs

Konstantinos Rantos

A comparative survey of symmetric and asymmetric key cryptography

Sourabh Chandra
Assistant Professor
Department of Computer Science
& Engineering,
Calcutta Institute of Technology
Kolkata, India
sourabh.chandra@gmail.com

Sk Safikul Alam
Assistant Professor

Department of Computer Science
& Engineering,

Smtpa

Dr.(Prof
Department
Department

Department

Department

Calcutta Institute of Technology Kolkata, India mail2safikul@gmail.com

Abstract- Network security is an important aspect of information sharing. Attempts have been made to remove various insecurities over internet. For this, many technological implementations and security policies have been developed. The amount of data, transferred, is not a factor. The basic factor is, how much security, the channel provides while transmitting data. Cryptography is one such technique, which allows secure data transmission without losing its confidentiality and integrity. Based on the key distribution, cryptography is further classified into two major types-Symmetric Key Cryptography and Asymmetric Key Cryptography. In this paper, we have surveyed the traditional algorithms, along with the proposed algorithms based on their pros and cons, related to Symmetric and Asymmetric Key Cryptography. We have also compared the importance of both these cryptographic techniques. The proposed algorithms proved to be highly efficient in their respective grounds but there are certain areas that remained open, related to these algorithms, and have not yet been thoroughly discussed. This paper also presents an appropriate future scope related to these open fields.

Keywords- Cryptography, Symmetric Key Cryptography, Asymmetric Key Cryptography, Public Key, Private Key, encryption, decryption, DPA,CPA, FPGA.

I. INTRODUCTION

Cryptography is the technique of writing secrets. This secures data and information from any internal or external attacks. Thus, it provides integrity, confidentiality, non-repudiation and authenticity to the secret data. The concept of cryptography is based on two main terms-plain text

Smita Paira
B.Tech Student
Department of Computer Science
& Engineering,
Calcutta Institute of Technology
Kolkata, India
smtpaira@gmail.com

Dr.(Prof.) Goutam Sanyal
Professor
Department of Computer Science
& Engineering,
National Institute of Technology
Durgapur, India
nitgsanyal@gmail.com

and cipher text. The original message is called the plain text and the encrypted version of the message is called the cipher text. The cipher is finally decrypted to get the original message. Cryptography is broadly classified into two main types. These are symmetric key encryption technique and asymmetric key encryption technique.

A. Symmetric Key Cryptography

Symmetric key cryptography is also called secret-key or shared key cryptography. In this type of mechanism, the sender and receiver shares a common key for both encryption and decryption [42]. The method follows self-certification method i.e. the key is self-certified. The key needs to be shared through secret communication. If it is compromised then the encrypted message can be easily decrypted by the attacker. This type of cryptographic technique is required because it provides faster service without using many resources [43]. Various algorithms have been developed so far to describe symmetric key cryptography. These are AES, DES, 3DES, Blowfish.

Fig.1. Symmetric Key Cryptography

B. Asymmetric Key Cryptography

The asymmetric key cryptography is known as public key cryptography. In this technique, the sender uses a public key of the receiver for encryption and the receiver uses his private key to decrypt the message. The concept of self-certification is absent here instead digital signatures are used to certify the keys. This method is more convenient and provides better authentication as the privacy remains intact [43]. There are various algorithms to implement this encryption mechanism. These are RSA, Diffie-Hellman, ECC and Digital Signature Algorithm.

Fig.2. Asymmetric Key Cryptography

II. COMPARISON STUDY ON GENERAL SYMMETRIC KEY ALGORITHMS

The different algorithms for symmetric key cryptography are classified below.

Fig.3. Classification of Symmetric Key Algorithms

TABLE 1. COMPARISON TABLE FOR DIFFERENT SYMMETRIC KEY ALGORITHMS

36.1	DE?	ADE?	1.50	D1 ~ :
Method	DES	3DES	AES	Blowfish
Develop	IBM	IBM in	National	Bruce
ed By	and	1978	Institute of	Schneier
	US		Standards	in 1993
	gover		and	
	nmen		Technolog	
	t in		y (NIST)	
Ct	1974 Fieste	Fiestel	Substitutio	Fiestel
Structure of	1	Networ		Network
	Netw	k	n and Permutatio	Network
algorith m	ork	K	n Network	
111	OIK		II NELWOIK	
Key	56	Three	128-bit,	Variable
Length	bits	64-bit	192-bit,	key
8		keys,	256-bit	length
		with		with
		overall		maximu
		key		m key
		length		length of
		of 192		448 bits
		bits		
		[47]		
Block	64	64	128	64
size				
No. Of	16	48	9	16
rounds Vulnera	1 4 .	G	G: 1	NT 4
	brute	Some	Side channel	Not
bilities	force	theoreti	attacks	prone to
	attack	cal	attacks	attacks.
	, man	attacks		
	in the			
	middl			
	e attack			
	anack			
Efficienc	Slow	Relativ	Efficient in	Highly
у		ely	both	efficient
		slow in	Software	in
		softwar	and	Software
		e [44]	Hardware	
	l .	* [· · ·]	110101011011	

III. COMPARISON STUDY ON GENERAL ASYMMETRIC KEY ALGORITHMS

The different algorithms for asymmetric key cryptography are classified below.

Fig.4. Classification of Asymmetric Key Algorithms

TABLE 2. COMPARISON TABLE FOR DIFFERENT ASYMMETRIC KEY ALGORITHMS

Method	Rivest-Shamir-Adleman (RSA)
Features	General form is (d, e) where d
	represents the private key and e
	represents the public key. Both
	encryption and decryption uses the
	same function [44].
Advantages	It is difficult to produce the private
	key from the public key and
	modulus, thus it is highly secure.
	Computing the reverse of e is very
	difficult for the attackers [45].
Downsides	Complexity of generating the key
	[46]. The process is quite slow. It
	has not been proved that it is
	equivalent to the factorization
	method and factorising a large
	number is very difficult.
Security	Key length should be larger than
Solutions	1024 bits [45].
Method	Diffie-Hellman
Features	It is based on sharing the secret
	cryptographic key. This key is used
	for both encryption and decryption
	purposes. It relies on hardness of
	the discrete logarithms [53].
Advantages	As the symmetric key is of very
	short length (256 bits), the
	algorithm is quite fast [48].
Downsides	The longer the symmetric key is
	used the more attacks it will face
	[50]. More vulnerable to Man in the
	Middle attacks [49].

Security Solutions Frequent key changing is essential. Development of Station-to-Station protocol defeats Man in the Middle attacks. The development of digital signature is also a solution to the attacks.
protocol defeats Man in the Middle attacks. The development of digital signature is also a solution to the
attacks. The development of digital signature is also a solution to the
signature is also a solution to the
attacks.
Mathad Elliptical Compa Comptagnants
Method Elliptical Curve Cryptography (ECC)
Features It computes the keys through
elliptic curve equations [51].
Advantages It can yield security using a 164 bit
key and is more advantageous than
RSA and Diffie Hellman algorithms
[51]. It consumes less power and
provides better utilities to batteries.
Downsides It increases the size of encrypted
message and is more complex and
difficult to implement, compared to
RSA [52].
Security Introduction of Elliptic Curve
Solutions Digital Signature Algorithm
(ECDSA) [53].The Authenticated
key agreement protocol, ECMQV
protects against Man-in-the-Middle
attacks.
Method Digital Signature Algorithm (DSA)
Features It consists of a pair of large
numbers, computed based on some
algorithms to authenticate data [54].
The signatures are generated
through private keys and are
verified using public keys.
Advantages It is very fast and provides non-
repudiation and authenticity [55]. It
secures the data against various
attacks like Man-in-the-Middle
attacks and is more advantageous
1
algorithms.
Downsides Digital signatures have short life
span. They are not compatible with
each other and thus complicate
sharing [55].
Security Verification software is necessary.
Solutions Digital certificates should be bought from trusted authorities.

IV. COMPARISON STUDY OF NEWLY PROPOSED SYMMETRIC KEY ALGORITHMS

TABLE 3. COMPARISON TABLE FOR THE NEWLY PROPOSED SYMMETRIC KEY ALGORITHMS

Method	Algorithm against DPA attacks for both chips and
	Logic Circuits [12][13]
Characteristics	The model equations are first
	compared to that of CPA and
	then applied to AES and DES

	algorithms.
Advantages	It increases the robustness
Advantages	against the DPA attacks.
Pitfalls	Increasing the bus width will
1 itialis	increase the number of keys.
	Hence, detection of correct
	key becomes difficult.
Implementations	Crypto chips and static logic
Implementations	circuits.
	circuits.
Method	Instruction Set Extensions for
Wicthou	Symmetric Key algorithms
	[14]
Characteristics	It includes the codesign of
Characteristics	hardware and software
	paradigms to achieve physical
	security, flexibility, portability
	and better performance with
	hardware implementations.
Advantages	It reduces execution time,
1 availages	program code size and
	increases the throughput.
Pitfalls	Embedded systems without
1 1114115	any modified processor
	increases overhead, data
	transfer latency and other
	complexities.
Implementations	Medical databases, e-mails, e-
Implementations	commerce, e-banking, etc.
	commerce, c caming, etc.
Method	Parallel hardware architecture
	for AES-GCM algorithm[15]
Characteristics	It optimizes a number of logic
	gates and then compares the
	performance of S-Boxes with
	ASIC 65 nm CMOS
	technology.
L	
Advantages	It provides both authenticity
Advantages	It provides both authenticity and confidentiality
Advantages	It provides both authenticity and confidentiality simultaneously for sensitive
	It provides both authenticity and confidentiality simultaneously for sensitive data.
Advantages Pitfalls	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the
	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If
	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay
	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of
	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its
Pitfalls	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency.
	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and
Pitfalls	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency.
Pitfalls Implementations	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software
Pitfalls	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for
Pitfalls Implementations Method	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for multimedia (FEA-M) [16][18]
Pitfalls Implementations	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for multimedia (FEA-M) [16][18] It uses resynchronization
Pitfalls Implementations Method	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for multimedia (FEA-M) [16][18] It uses resynchronization process for chosen and known
Pitfalls Implementations Method Characteristics	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for multimedia (FEA-M) [16][18] It uses resynchronization process for chosen and known plain text attacks.
Pitfalls Implementations Method	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for multimedia (FEA-M) [16][18] It uses resynchronization process for chosen and known plain text attacks. It provides an efficient
Pitfalls Implementations Method Characteristics	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for multimedia (FEA-M) [16][18] It uses resynchronization process for chosen and known plain text attacks. It provides an efficient alternative against breakability
Pitfalls Implementations Method Characteristics	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for multimedia (FEA-M) [16][18] It uses resynchronization process for chosen and known plain text attacks. It provides an efficient

	the algebraic structures used.
Implementations	Has various multimedia
impromonono	applications
	AFF
Method	Key transfer protocol for
	secret sharing applications
	[17]
Characteristics	It uses various threshold and
	secret sharing schemes for key
	exchange. It highlights both
	message authentication and
A 1	conditional access.
Advantages	It allows the generation of different keys for the different
	set of receivers. It employs
	minimum computational
	requirements and does not
	depend on any mathematical
	assumptions.
Pitfalls	The process consumes much
	time.
Implementations	Satellite, internet, cable
	networks, etc.
Method	Rekeying architecture based
	on Tree Parity Machine [19]
Characteristics	It uses TDMA with a single
	TPM unit. It implements both
	FPGA and ASIC realization
Advantages	using VHDL. It is cost effective, consumes
Advantages	less time with a limited
	bandwidth and overhead.
Pitfalls	Key lifetime is short. It
	reduces the storage area by
	increasing the cycles for
	generating the output bit.
Implementations	Embedded system
	environments.
25.1.1	
Method	Instruction Level distributed
Clarate it	Processor (COBRA) [20]
Characteristics	It provides flexibility through
	reconfiguration. It maps and implements the algorithms
	using COBRA assembly
	language. Data is gathered
	using cycle counts.
Advantages	It provides both high speed
	processing and security. It
	provides an efficient
	implementation of a variety of
	block ciphers and can achieve
-1.04	a through of 622 Mbps.
Pitfalls	The block ciphers to be tested
	should be of varying
Insulance and the	efficiency and performance.
Implementations	Various network encryption
	implementations like ATM.

N (1 1	0 ' 15
Method	Compression and Encryption
	scheme based on arithmetic
	coding and coupled chaotic
CI.	systems [21][24]
Characteristics	It depends on zero-order
	arithmetic coding using bit
	streams generated by CCS
	PRBG. Algorithms are tested
	using text files.
Advantages	It is highly secure and is not
	vulnerable to attacks against
	arithmetic coding and plain
D'+C 11	texts.
Pitfalls	The zeroth order suffers about
T 1 4 4	6% over other techniques.
Implementations	Various ad hoc networks.
Method	Operation Control approach of
Method	Operation Centred approach of fault detection [22]
Characteristics	. ,
Characteristics	It enumerates the arithmetic
	and logical operations and
	then analyses the efficiency and hardware complexity
	using 11 symmetric ciphers.
Advantages	
Advantages	It can perform the analysis even if the error propagation is
	non-linear. Detection coverage
	is 100%
Pitfalls	Analysis of multiple bit error
1 itialis	is complicated.
Implementations	Ad Hoc networks, etc.
Implementations	7 tu 1100 networks, etc.
Method	Sharing Session Key
	component algorithm [25]
Characteristics	Messages are protected
	through radio links and are
	clear for network operator.
	The algorithm operates so long
	the communication is disputed
	to endanger public safely.
Advantages	It improves symmetric key
	encryption technique by
	providing non-repudiation and
	end-to-end security to each
	individual in communication.
Pitfalls	Key Escrow Trust
	Organization cannot recover
	the session key. It has finite
	computing capacity and less
	power.
Implementations	Digital Mobile
	communications, E-commerce
36.1.1	
Method	Symmetric key encryption
	algorithm based on 2-d
CI.	geometry [26]
Characteristics	It includes both the properties
	of circle and circle centred
1	angles. It provides high

	confidentiality with less
	computational complexity.
Advantages	In every steps of encryption, it
1 ia vantages	produces fixed size messages.
Pitfalls	Floating point operations limit
	the size of block to encode.
	Hardware implementation is
	tricky.
Implementations	E-commerce, banking, stock
	trading, etc.
Method	Method of Digital Signature
	based on combined symmetric
	key algorithm [27]
Characteristics	It depends on both symmetric
	and hardware technology. It
	uses timestamps as a factor of
	such symmetric key
	algorithms.
Advantages	The key is time variant and
	maintenance free. It deciphers
	faster and has a simple key
	management compared to
	asymmetric digital signature
	algorithms.
Pitfalls	The process is slight lengthy.
Implementations	Various transactions like e-
	commerce, etc
Method	Hill-Shift-XOR encryption
	technique for image
	encryption[28]
Characteristics	Encryption is performed using
	block wise XOR operations. It
	can operate in color, gray scale
	and binary images.
Advantages	It is reliable where
	cryptanalysis is quite difficult.
	It is robust.
Pitfalls	The technique is relatively
	slow.
Implementations	Digital data protection, copy
	protection, etc.
N. d. 1	DIGAG
Method	DJSA Symmetric key
Characteristic	algorithm [29]
Characteristics	Unlike the MSA method [30]
	it uses a key matrix of size
	65536 and each cell stores 2
Adventages	character patterns.
Advantages	It provides high protection against Brute force attack and
	can encrypt a file of less than
	or equal to 2 MB.
Pitfalls	If the file size is very big, the
1 1111113	process becomes slow.
Implementations	If the file size is very big, the
Implementations	process becomes slow.
	process occomes slow.
	l

Method	NJJSAA Symmetric key algorithm [31]
Characteristics	The process performs key exchange and XOR operations for both encryption and decryption.
Advantages	It is better than other general cryptographic algorithms. It can encrypt both large and small files.
Pitfalls	The process is slight lengthy.
Implementations	Government sectors, banks, database encryption, etc.
Method	DJMNA Symmetric key algorithm [32]
Characteristics	It combines both MGVC and DJSA methods. The order of these algorithms depends on the random matrices developed during the process.
Advantages	The encrypted message is very hard to decrypt using any Brute Force attack.
Pitfalls	The process is complex and lengthy.
Implementations	Password encryption, mobile network, ATM network, etc.
Method	Symmetric key based RFID authentication protocol [33]
Characteristics	It implements three protocols that use same block cipher by implementing same RF based hardware.
Advantages	This protocol improves the RFID system by providing security against various attacks at low computational cost.
Pitfalls	The process is lengthy.
Implementations	Communication networks, business houses, etc.
Method	Wireless Secret key generation algorithm in multiuser networks [34]
Characteristics	It works in multiuser networks and checks how such diversity affects secret key randomness.
Advantages	It increases the randomness performance and reduces the execution time.
Pitfalls	Update of secret key is necessary for proper security.
Implementations	Various wireless communication networks.

Method	Symmetric key encryption
	algorithm based on linear
	geometry[36]
Characteristics	Both substitution and
Characteristics	
	transposition techniques are
	applied to secure a secret
	image over any unreliable
	communication. It generates a
	random matrix and shuffles
	the ciphered bytes among N
	bytes of secret files.
Advantages	Robust and potential to the
	security needs of digital
	images. Correlation value for
	_
	both secret and encrypted
	image is one.
Pitfalls	
Implementations	Medical, commercial and
Implementations	
	military systems.
Method	Symmetric key encryption
1.1001104	algorithm based on cyclic
	elliptic curve and chaotic
	system [37]
Characteristics	It provides authentication
	using neural networks. It
	performs the encryption for
	256-bit plain image to 256-bit
	cipher image using eight 32-
	bit registers. Based on
	piecewise non-linear chaotic
	map, the method generates
	pseudorandom bit sequences
	for round keys.
Advantages	Large key space, faster, good
	encryption effect and sensitive
	to small changes.
Di+falla	č
Pitfalls	If the change in media data is
	quite smaller than the
	adjustable parameter ranging,
	then the algorithm fails.
Implementations	Various business
implementations	
	requirements.
Method	Secure protocol using the
	property of Quantum Wave
	Function [38]
	TullCuoii [36]
C1	A
Characteristics	At a given time, the state of a
Characteristics	At a given time, the state of a particle is managed by
Characteristics	particle is managed by
Characteristics	particle is managed by position and momentum. The
Characteristics	particle is managed by position and momentum. The physical significance of a
Characteristics	particle is managed by position and momentum. The physical significance of a particular wave function
Characteristics	particle is managed by position and momentum. The physical significance of a
Characteristics	particle is managed by position and momentum. The physical significance of a particular wave function
	particle is managed by position and momentum. The physical significance of a particular wave function depends on a linear vector space.
Characteristics	particle is managed by position and momentum. The physical significance of a particular wave function depends on a linear vector space. It prevents attack on user's
	particle is managed by position and momentum. The physical significance of a particular wave function depends on a linear vector space.

	prevents compromising passwords and can replace the bounded key length classical encryption algorithms.
Pitfalls	
Implementations	Various hardware implementations.

V. COMPARISON STUDY OF NEWLY PROPOSED ASYMMETRIC KEY ALGORITHMS

TABLE 4. COMPARISON TABLE FOR THE NEWLY PROPOSED ASYMMETRIC KEY ALGORITHMS

Method	Prime Number Generation[1]
Characteristics	Prime numbers are generated
	randomly from a large series
	using the divisibility tests.
Advantages	Scrambled messages using
	two prime factors become
	difficult to break. So, data
	remains highly secured.
Pitfalls	The bit length of the prime
	numbers should be pre
	determined. Generating big
	prime numbers is quite
	difficult.
Implementations	Money transfer, business
	transactions, diplomatic
	communications, books,
	audio, video, etc.
Method	Image security through
	asymmetric watermarking
	algorithm [2][3][4][5]
Characteristics	Embedding and detection are
	done separately using private
	and public key respectively. It
	is based on linear algebra.
Advantages	This algorithm is highly
	efficient as it provides a
	double layer security level for
	protecting digital data. It is
	simple and saves the
	computational cost.
Pitfalls	If a particular integer is big
	then the watermark is not
	detected to the original
	encrypted images.
Implementations	Copy protection frameworks
	[12]
Method	Cryptanalysis using
	COPACOBANA[6]
Characteristics	It consists of 120 field
	programmable gate arrays. It
	can solve various
	computations without any
	mathematical breakthrough.

Advantages It helps in faster RSA factorization and can secure ECC. It provides a cost effective service. Pitfalls To make the overall machine design cost effective, many small FPGA modules are designed. This requires extra space. Implementations Useful tool for parallel computational problems [13] Method Generation of a multimode multiplier [7] Characteristics The multimode multiplier consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off between protection and		T
ECC. It provides a cost effective service. Pitfalls To make the overall machine design cost effective, many small FPGA modules are designed. This requires extra space. Implementations Weeful tool for parallel computational problems [13] Method Generation of a multimode multiplier [7] Characteristics The multimode multiplier consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Broadcasting streams are quite expensive. There is a trade off	Advantages	It helps in faster RSA
effective service. Pitfalls To make the overall machine design cost effective, many small FPGA modules are designed. This requires extra space. Implementations Useful tool for parallel computational problems [13] Method Generation of a multimode multiplier [7] Characteristics The multimode multiplier consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		
Pitfalls To make the overall machine design cost effective, many small FPGA modules are designed. This requires extra space. Implementations Useful tool for parallel computational problems [13] Method Generation of a multimode multiplier [7] Characteristics The multimode multiplier consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		ECC. It provides a cost
design cost effective, many small FPGA modules are designed. This requires extra space. Implementations Useful tool for parallel computational problems [13] Method Generation of a multimode multiplier [7] Characteristics The multimode multiplier consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Broadcasting streams are quite expensive. There is a trade off		effective service.
small FPGA modules are designed. This requires extra space. Implementations Method Generation of a multimode multiplier [7] Characteristics The multimode multiplier consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Pitfalls	To make the overall machine
small FPGA modules are designed. This requires extra space. Implementations Method Generation of a multimode multiplier [7] Characteristics The multimode multiplier consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		
designed. This requires extra space.		, ,
Implementations Useful tool for parallel computational problems [13] Method Generation of a multimode multiplier [7] Characteristics The multimode multiplier consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		
Implementations Useful tool for parallel computational problems [13] Method Generation of a multimode multiplier [7] Characteristics The multimode multiplier consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfa		
Method Generation of a multimode multiplier [7] Characteristics The multimode multiplier consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	T 1	1
Method Generation of a multimode multiplier [7] Characteristics The multimode multiplier consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Implementations	-
Characteristics The multimode multiplier consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		computational problems [13]
Characteristics The multimode multiplier consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		
Characteristics The multimode multiplier consists of four phases and uses a series of right shifting and additions. The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Method	Generation of a multimode
consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		multiplier [7]
consists of four phases and uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics	The multimode multiplier
uses a series of right shifting and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		
and additions. Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		
Advantages The multimode multiplier consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		
consists of four phases and uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Advantages	
uses a series of right shifting and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Auvantages	
and additions. Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		
Pitfalls The multimode multiplier wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		
wastes power if operated in AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	D': 0.11	
AES mode. The power consumption is high. Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Pitfalls	
Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		
Implementations It can be applied to various polynomial fields and helps in matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		AES mode. The power
matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		consumption is high.
matrix-vector multiplications. Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Implementations	
Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	1	
Method Master-key-encryption-based multiple group key management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		
multiple group key management scheme (MKE- MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		matrix vector matriplications.
multiple group key management scheme (MKE- MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		
management scheme (MKE-MGKM) [8] Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Mathad	Master key energytion based
Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Method	
Characteristics The MKE-MGKM is used to tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Method	multiple group key
tackle various multicast groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Method	multiple group key management scheme (MKE-
groups existing in a single network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		multiple group key management scheme (MKE- MGKM) [8]
network. Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to
Advantages The MKE-MGKM is simple and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast
and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast
and requires less memory storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off		multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single
Storage for the keys. Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network.
Pitfalls Communication overhead is greater than storage overhead. Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple
Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory
Implementations Various broadcasting like TV and wireless mobile networks. Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys.
Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is
Method Asymmetric Public Key Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages Pitfalls	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead.
Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages Pitfalls	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV
Traitor Tracing Schemes [9] Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages Pitfalls	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV
Characteristics It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages Pitfalls Implementations	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks.
group of very big prime order and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages Pitfalls Implementations	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key
and then it evaluates an oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages Pitfalls Implementations Method	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9]
oblivious polynomial. Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages Pitfalls Implementations Method	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic
Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages Pitfalls Implementations Method	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order
Advantages It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages Pitfalls Implementations Method	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an
content, responsible for the construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages Pitfalls Implementations Method	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an
construction of pirate keys, ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages Pitfalls Implementations Method Characteristics	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial.
ensuring non-repudiation. Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages Pitfalls Implementations Method Characteristics	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital
Pitfalls Broadcasting streams are quite expensive. There is a trade off	Characteristics Advantages Pitfalls Implementations Method Characteristics	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital content, responsible for the
expensive. There is a trade off	Characteristics Advantages Pitfalls Implementations Method Characteristics	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital content, responsible for the construction of pirate keys,
	Characteristics Advantages Pitfalls Implementations Method Characteristics Advantages	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation.
between protection and	Characteristics Advantages Pitfalls Implementations Method Characteristics Advantages	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Broadcasting streams are quite
	Characteristics Advantages Pitfalls Implementations Method Characteristics Advantages	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation. Broadcasting streams are quite expensive. There is a trade off

1	
T 1	content distribution.
Implementations	Various entertainment devices
	like TV.
Method	Egiganhaum angruption
Method	Feigenbaum encryption method of messages [10]
Characteristics	It uses two pairs of
Characteristics	asymmetric private keys. It
	makes use of a logistic
	difference equation.
Advantages	It, specially the double F-
7 ia vantages	sequence coding, makes a
	better use of the encryption
	technique in the messages and
	can confuse the attacker who
	employs nearly the correct
	keys.
Pitfalls	The requirements are time
	consuming which cannot be
	satisfied by an efficient
	computer program.
Implementations	Various online communication
	mediums.
2.5.1.1	
Method	Asymmetric DNA algorithm
Cl	[11]
Characteristics	It encrypts the plain text using
	the existing biological
	information from the DNA
	public databases. It is implemented in BioJava and
	Matlab
Advantages	It does not require several
7 id vantages	iterations for derivation of
	keys and the keys can be
	retrieved. It is more reliable
	and powerful than OTP DNA
	algorithm.
Pitfalls	The process is lengthy and
	kills the execution time.
Implementations	Researches in DNA
_	computations.
Method	Key assessment scheme for
	secure broadcasting [23]
Characteristics	The scheme employs ECC
	cryptographic algorithm. The
	number of encryption keys
	depends on the access control
A 1	policies.
Advantages	It is highly efficient. Storage
	of decryption keys in tamper
Ditfolla	resistance device is easier.
Pitfalls	Security solutions especially
	in case of smart cards are not
Implementations	cleared.
Implementations	TV systems, electronic subscription, etc.
	subscription, etc.

Method	Method for increasing security in RSA [35]
Characteristics	It eliminates the distribution of n large numbers whose factors become difficult to design using RSA algorithm.
Advantages	It protects the messages from the mathematical factorization attacks which the general RSA algorithm suffers from.
Pitfalls	It increases the time complexity.
Implementations	Various hardware and software
Method	Model based on Pretty Good Privacy (PGP) to secure E- Commerce through Asymmetric Key encryption technique [39]
Characteristics	It implements the RSA algorithm for encryption or decryption purposes. It is based on PGP and dual signature method.
Advantages	It provides security issues at various levels like transaction level, reply attacks, mutual authentication, Network and transport level, etc.
Pitfalls	
Implementations	Biometric system, Internet banking, ATM machine, Key exchange and Digital signature, etc.
Method	Technique based on Elliptical Curve Cryptography (ECC) through the implementation of hidden generator point in WSNs [40]
Characteristics	Digits are extended beyond two bits for representing k, where k is any integer in prime field as the ECC is represented as T=k*G where G are the points on elliptic curve. The 192-bit values are stored in a 24*8 array.
Advantages	It provides better security against the physical node capture and man in the middle attacks.
Pitfalls	The communication cost is high as it requires multiple computations.
Implementations	Various Wireless Sensor Networks

	1
Method	Hardware/software codesign
	of ECC for Resource
	constrained applications [41]
Characteristics	It helps in binary field
	multiplication in software. It
	also offers instruction set
	extensions and presented a
	coprocessor for binary
	multiplication.
Advantages	It is highly efficient in terms
	of performance and area.
Pitfalls	Nothing has been mentioned
	about power consumption.
Implementations	Brand protections, etc.

VI. FUTURE SCOPE

For efficient data transmission, cryptography is an ultimate solution. Many algorithms have developed so far, based on both Symmetric and Asymmetric key Cryptography. The algorithms are effective in ensuring data privacy, integrity, authenticity and non-repudiation. However, there are certain areas that still remain open. Ouantum cryptography is considered to be an excellent replacement for Diffie-Hellman algorithm as the data transferred through it highly secured. But it cannot provide protection against the classical bucket brigade attacks. Methods could be developed to overcome this problem. Scrambled messages using two prime factors provide high security to data. Methods could be generated to remove the difficulty of generating large prime numbers.

VII. CONCLUSION

Both Symmetric and Asymmetric Key algorithms are highly efficient in securing the transferred data over any communication medium. In this paper, we have highlighted the basic as well proposed algorithms related cryptographic techniques. In Symmetric Key Cryptography, a single key is for both encryption and decryption purposes. The sharing of this key becomes sometimes insecure. On the other hand, Asymmetric Key Cryptography uses two separate keys to prevent any unethical access to the data. The public key remains public and the private key is not shared. This technique ensures better security than the former. Moreover, the use of Digital Signatures in case of Asymmetric Cryptography provides high data confidentiality and non-repudiation. Yet, Symmetric Cryptography has many well known applications because of its simplicity.

REFERENCES

- [1] Arun Kejariwal, "Cryptic primes", *IEEE Potentials*, pp. 43-45, Feb./Mar. 2004, IEEE
- [2] Minoru Kuribayashi and Hatsukazu Tanaka, "Fingerprinting Protocol for Images Based on Additive Homomorphic Property", *IEEE Transactions on Image Processing*, vol. 14, no. 12, pp. 2129-2139, Dec. 2005, IEEE
- [3] Subramania Sudharsanan, "Shared Key Encryption of JPEG Color Images", *IEEE Transactions on Consumer Electronics*, vol. 51, no. 4, pp. 1204-1211, Nov. 2005, IEEE
- [4] G. Boato, N. Conci, and V. Conotter, F.G.B. De Natale, and C. Fontanari, "Multimedia asymmetric watermarking and encryption", Electronics Letters, vol. 44 no. 9, April 2008, IEEE
- [5] Boato, G., De Natale, F.G.B., and Fontanari, C.: 'An improved asymmetric watermarking scheme suitable for copy protection', *IEEE Trans. Signal Process.*, 54 (7), pp. 2833–2834, 2006, IEEE
- [6] Tim Gu"neysu, Timo Kasper, Martin Novotn_y, Christof Paar, and Andy Rupp, "Cryptanalysis with COPACOBANA", *IEEE Transactions on Computers*, vol. 57, no. 11, pp. 1498-1513, Nov. 2008, IEEE
- [7] Chen-Hsing Wang, Chieh-Lin Chuang, and Cheng-Wen Wu, "An Efficient Multimode Multiplier Supporting AES and Fundamental Operations of Public-Key Cryptosystems", *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 18, no. 4, pp. 553-563, April 2010, IEEE
- [8] Min-Ho Park, Young-Hoon Park, Han-You Jeong, and Seung-Woo Seo, "Key Management for Multiple Multicast Groups in Wireless Networks", *IEEE Transactions on Mobile Computing*, vol. 12, no. 9, pp. 1712-1723, Sept. 2013, IEEE
- [9] Aggelos Kiayias and Moti Yung, "Breaking and Repairing Asymmetric Public-Key Traitor Tracing", pp.1-16, IEEE
- [10] Robert M. Bevensee, "Feigenbaum encryption of messages", *IEEE Potentials*, pp. 39-41, Feb. /Mar. 2001, IEEE
- [11] Radu Terec, Mircea-Florin Vaida, Lenuta Alboaie, and Ligia Chiorean, "DNA Security using Symmetric and Asymmetric Cryptography", *The Society of Digital Information and Wireless Communications*, vol-1, no-1, pp. 34-51, 2011, IEEE

- [12] Massimo Alioto, Massimo Poli, and Santina Rocchi, "Differential Power Analysis Attacks to Precharged Buses: A General Analysis for Symmetric-Key Cryptographic Algorithms", *IEEE Transactions on Dependable and Secure Computing*, vol. 7, no. 3, pp. 226-239, July-Sept. 2010, IEEE
- [13] Massimo Alioto, Massimo Poli, and Santina Rocchi, "A General Power Model of Differential Power Analysis Attacks to Static Logic Circuits", *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 18, no. 5, pp. 711-724, May 2010, IEEE
- [14] Sean O'Melia and Adam J. Elbirt, "Enhancing the Performance of Symmetric-Key Cryptography via Instruction Set Extensions", *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 18, no. 11, pp. 1505-1518, Nov. 2010, IEEE
- [15] Mehran Mozaffari-Kermani and Arash Reyhani-Masoleh, "Efficient and High-Performance Parallel Hardware Architectures for the AES-GCM", *IEEE Transactions on Computers*, vol. 61, no. 8, pp. 1165-1178, Aug. 2012, IEEE
- [16] Miodrag J. Mihaljevic', Ryuji Kohno, "Cryptanalysis of Fast Encryption Algorithm for Multimedia FEA-M", *IEEE Communications Letters*, vol. 6, no. 9, pp. 382-384, Sept. 2002, IEEE
- [17] Ahmet M. Eskicioglu and Edward J. Delp, "A KEY TRANSPORT PROTOCOL BASED ON SECRET SHARING APPLICATIONS TO INFORMATION SECURITY", *IEEE Transactions on Consumer Electronics*, vol. 48, no. 4, pp. 816-824, Nov. 2002, IEEE
- [18] Miodrag J. Mihaljevic, "On Vulnerabilities and Improvements of Fast Encryption Algorithm for Multimedia FEA-M", *IEEE Transactions on Consumer Electronics*, vol. 49, no. 4, pp. 1199-1207, Nov. 2003, IEEE
- [19] Markus Volkmer and Sebastian Wallner, "Tree Parity Machine Rekeying Architectures", *IEEE Transactions on Computers*, vol. 54, no. 4, pp.421-427, April 2005, IEEE
- [20] Adam J. Elbirt and Christof Paar, "An Instruction-Level Distributed Processor for Symmetric-Key Cryptography", *IEEE Transactions on Parallel and Distributed Systems*, vol. 16, no. 5, pp. 468-480, May 2005, IEEE
- [21] Ranjan Bose and Saumitr Pathak, "A Novel Compression and Encryption Scheme Using Variable Model Arithmetic Coding and Coupled

- Chaotic System", *IEEE Transactions on Circuits and Systems—I: Regular Papers*, vol. 53, no. 4, pp. 848-857, April 2006, IEEE
- [22] Luca Breveglieri, Israel Koren, and Paolo Maistri, "An Operation-Centered Approach to Fault Detection in Symmetric Cryptography Ciphers", *IEEE Transactions on Computers*, vol. 56, no. 5, pp. 635-649, May 2007, IEEE
- [23] Elisa Bertino, Ning Shang, and Samuel S. Wagstaff Jr., "An Efficient Time-Bound Hierarchical Key Management Scheme for Secure Broadcasting", *IEEE Transactions on Dependable and Secure Computing*, vol. 5, no. 2, pp. 65-70, April-June 2008, IEEE
- [24] Chung-Ming Ou," Design of Block Ciphers by Simple Chaotic Functions", *IEEE Computational Intelligence Magazine*, pp.54-59, May 2008, IEEE
- [25] Hsiao-Kuang Wu, Shu-ching Yang, and Yung-Tai Lin, "The Sharing Session Key Component (SSKC) Algorithm for End-to-End Secure Wireless Communication", pp. 242-250, IEEE
- [26] Mohammad Jabed Morshed Chowdhury and Tapas Pal, "A New Symmetric Key Encryption Algorithm based on 2-d Geometry", 2009 International Conference on Electronic Computer Technology, pp. 541-544, IEEE
- [27] Wu Suyan, Li Wenbo, and Hu Xiangyi, "Study of Digital Signature with Encryption Based on Combined Symmetric Key", IEEE
- [28] Bibhudendra Acharya, Sambit Kumar Shukla, Saroj Kumar Panigrahy, Sarat Kumar Patra, and Ganapati Panda, "H-S-X Cryptosystem and Its Application to Image Encryption", 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies, pp.720-724, IEEE
- [29] Dripto Chatterjee, Joyshree Nath, Suvadeep Dasgupta, and Asoke Nath, "A new Symmetric key Cryptography Algorithm using extended MSA method: DJSA symmetric key algorithm", 2011 International Conference on Communication Systems and Network Technologies, pp. 89-94, IEEE
- [30] A.Nath, S.Ghosh, and M.A.Mallik, "Symmetric key cryptography using random key generator", *Proceedings of International conference on SAM-2010 held at Las Vegas(USA) 12-15 July, 2010*, vol-2,pp. 239- 244
- [31] Neeraj Khanna, Joyshree Nath, Joel James, Amlan Chakrabarti, Sayantan Chakraborty, and

- Asoke Nath, "New Symmetric key Cryptographic algorithm using combined bit manipulation and MSA encryption algorithm: NJJSAA symmetric key algorithm", 2011 International Conference on Communication Systems and Network Technologies, pp. 125-130, IEEE
- [32] Debanjan Das, Megholova Mukherjee, Neha Choudhary, Asoke Nath, and Joyshree Nath, "An Integrated Symmetric key Cryptography Algorithm using Generalised modified Vernam Cipher method and DJSA method: DJMNA symmetric key algorithm", 2011 World Congress on Information and Communication Technologies, pp. 1199-1204, IEEE
- [33] Guangyu Zhu and Gul N. Khan, "SYMMETRIC KEY BASED RFID AUTHENTICATION PROTOCOL WITH A SECURE KEY-UPDATING SCHEME", 2013 26th IEEE Canadian Conference of Electrical And Computer Engineering (CCECE), IEEE
- [34] Seon Yeob Baek and Jongwook Park, "A Study on Wireless Secret Key Randomness in Multiuser Networks", *ICTC 2013*, pp. 1048-1052, IEEE
- [35] Rohit Minni, Kaushal Sultania, Saurabh Mishra, and Prof Durai Raj Vincent, "An Algorithm to Enhance Security in RSA", 4th ICCCNT 2013, pp. 1-4, IEEE
- [36] Prabir Kr. Naskar, Ayan Chaudhuri, and Atal Chaudhuri, "A Secure Symmetric Image Encryption Based on Linear Geometry", 2014

 Applications and Innovations in Mobile Computing (AIMoC), pp. 67-74, IEEE
- [37] Ankita Baheti, Lokesh Singh, and Asif Ullah Khan, "Proposed Method for Multimedia Data Security Using Cyclic Elliptic Curve, Chaotic System and Authentication using Neural Network", 2014 Fourth International Conference on Communication Systems and Network Technologies", pp. 664-668, IEEE
- [38] Wafa Elmannai, Khaled Elleithy, Varun Pande, and Elham Geddeda, "Quantum Security using Property of a Quantum Wave Function", IEEE
- [39] Ankur Chaudhary, Khaleel Ahmad, and M.A. Rizvi, "E-commerce Security Through Asymmetric Key Algorithm", 2014 Fourth International

- Conference on Communication Systems and Network Technologies, pp.776-781, IEEE
- [40] Ravi Kishore Kodali, "ECC with Hidden Generator Point in WSNs", 2014 IEEE Region 10 Symposium, pp. 131-136, IEEE
- [41] Andrea Höller, Norbert Druml, Christian Kreiner, Christian Steger, and Tomaz Felicijan, "Hardware/Software Co-Design of Elliptic-Curve Cryptography for Resource-Constrained Applications", *DAC '14 June 01 05 2014*, IEEE
- [42]www.webopedia.com/TERM/S/symmetric_key _cryptography.html
- [43]voices.yahoo.com/comparing-symmetric-asymmetric-key-encryption-6329400.html
- $[44] www.cs.usfca.edu/{\sim}brooks/S04classes/cs480/le~ctures/algs.pdf$
- [45]www.encryptionanddecryption.com/algorithms/asymmetric algorithms.html
- [46]scialert.net/fulltext/?doi=itj.2013.1818.1824
- [47] www.vocal.com/cryptography/tdes/
- [48]home.cyber.ee/ahtbu/CDS2011/SandraNetsajev aSlides.doc
- [49]searchsecurity.techtarget.com/definition/Diffie-Hellman-key-exchange
- [50]learningnetwork.cisco.com/servlet/.../WP_Pal mgren_DH.pdf
- [51]searchsecurity.techtarget.com/definition/elliptic al-curve-cryptography
- [52]www.ehow.com/info_12226350_advantages-disadvantages-elliptic-curve-cryptography-wireless-security.html
- [53]vanilla47.com/PDFs/Cryptography/Miscellene a/Eliptic%20Curve%20Cryptography/A_tutorial_of _elliptic_curve_cryptography.pdf
- [54]searchsecurity.techtarget.com/definition/Digital -Signature-Standard
- [55] lerablog.org/technology/datasecurity/advantages-and-disadvantages-of-digitalsignatures/