Lecture 8

Topics covered in this lecture session

- 1. Matrix Introduction
- 2. Algebra of matrices.
- Inverse matrix.
- 4. Solving systems of linear equations using matrix method.
- More definitions.

CELEN036 :: Lecture Slides - P.Gajjar

1

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Matrix - Introduction

Each a_{ij} is called an element (entry) of the matrix.

The order (or size or dimension) of a matrix is defined as

number of rows x number of columns.

e.g. The matrix $B=\left(\begin{array}{ccc} 1 & 2 & 4 \\ 4 & 5 & 6 \end{array}\right)$ is a (rectangular)

matrix of order 2 x 3.

CELEN036 :: Lecture Slides - P.Gajjar

i.e. Matrix B has 2 rows and 3 columns.

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Matrix - Introduction

A matrix is a rectangular array (table) of numbers in rows (horizontal) and columns (vertical).

In general, we denote a matrix by

University of Nottingham

UK | CHINA | MALAYSIA

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Application areas of matrices

- In Physics:
 - in the study of electrical circuits (e.g. in solving problems using Kirchoff's laws).
- In robotics and automation:
 - as base elements for the robot movements.

- In computers: in the projection of 3D image into a 2D screen.
- In Google search engine: to rank the webpages.
- In Online banking: by encrypting message codes/ passwords.

CELEN036 :: Lecture Slides - P.Gajjar

Algebra of matrices

1. Equality of Matrices

Two matrices A and B of the same order are equal if their corresponding elements are equal.

e.g. Matrices
$$A = \begin{pmatrix} 1 & a \\ b & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} c & -2 \\ 0 & -a \end{pmatrix}$

are equal $\Rightarrow a = -2, b = 0, \text{ and } c = 1.$

CELEN036 :: Lecture Slides - P.Gajjar

5

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Algebra of matrices

e.g. If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & -1 \\ -2 & 3 \\ 0 & 9 \end{pmatrix}$, then

$$A + B = \begin{pmatrix} 1+2 & 2+(-1) \\ 3+(-2) & 4+3 \\ 5+0 & 6+9 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & 7 \\ 5 & 15 \end{pmatrix}$$

and
$$A - B = \begin{pmatrix} 1-2 & 2-(-1) \\ 3-(-2) & 4-3 \\ 5-0 & 6-9 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 5 & 1 \\ 5 & -3 \end{pmatrix}$$
.

CELEBOOK - Laster Cities D.C. //

Foundation Algebra for Physical Sciences & Engineering

Algebra of matrices

Note: To add/subtract two matrices, they must be of the same order.

1. Addition of Matrices

The sum of two matrices of the same order is defined as the matrix formed by adding its corresponding elements.

2. Difference of Matrices

The difference of two matrices of the same order is defined as the matrix formed by subtracting its corresponding elements.

CELEN036 :: Lecture Slides - P.Gajjar

6

CELEN036

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Algebra of matrices

3. Multiplication of a Matrix by a scalar

Multiplication of a matrix by a scalar k is defined as multiplying each element of the matrix by that number k.

e.g. If
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -3 \end{pmatrix}$$
, then

$$\mathbf{3}A = \left(\begin{array}{cc} \mathbf{3} \times 1 & \mathbf{3} \times 2 \\ \mathbf{3} \times 0 & \mathbf{3} \times (-3) \end{array}\right) = \left(\begin{array}{cc} 3 & 6 \\ 0 & -9 \end{array}\right).$$

CELEN036 :: Lecture Slides - P.Gajjar

Algebra of matrices

Example 1:

Given matrices $A = \begin{pmatrix} x & 3 \\ 4 & y \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 \\ z & -2 \end{pmatrix}$, find the constants x, y, and z, if 2A = 3B.

Step 1: Find 2A.

Step 2: Find 3B.

Ans: $x = \frac{3}{2}$, y = -3, $z = \frac{8}{3}$

Step 3: Equate 2A with 3B.

CELEN036 :: Lecture Slides - P.Gajjar

9

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Algebra of matrices

Clearly, Matrix multiplication is a complex process in comparison to the addition and subtraction of matrices.

So, we understand the process with a couple of worked examples.

CELEN036
Foundation Algebra for Physical Sciences & Engineering

Algebra of matrices

4. Multiplication of Matrices

The product of two matrices $A=(a_{ik})_{m\times p}$ and $B=(b_{kj})_{p\times n}$ is a matrix $C=(c_{ij})_{m\times n}$ where the elements c_{ij} of the product matrix C are defined by:

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$
 where $1 \le i \le m \ 1 \le j \le n$; $i, j, k \in \mathbb{N}$

CELEN036 :: Lecture Slides - P.Gajjar

10

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Algebra of matrices

1. Given matrices $A=\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$ and $B=\left(\begin{array}{cc} 7 \\ 8 \end{array}\right)$, find AB

Solution:

$$C = \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} \\ b_{21} \end{pmatrix} = \begin{pmatrix} a_{11} \times b_{11} + a_{12} \times b_{21} \\ a_{21} \times b_{11} + a_{22} \times b_{21} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 8 \end{pmatrix} = \begin{pmatrix} 1 \times 7 + 2 \times 8 \\ 3 \times 7 + 4 \times 8 \end{pmatrix} = \begin{pmatrix} 23 \\ 53 \end{pmatrix}.$$

CELEN036 :: Lecture Slides - P.Gajjar

13

CELEN036 :: Lecture Slides - P.Gajja

Algebra of matrices

2. Given matrices $A=\left(\begin{array}{cc}1&2\\3&4\end{array}\right)$ and $B=\left(\begin{array}{cc}5&6\\7&8\end{array}\right)$, find AB.

Solution: $C = AB = \begin{pmatrix} \boxed{1 & 2} \\ \boxed{3 & 4} \end{pmatrix} \begin{pmatrix} \boxed{5} & 6 \\ 7 & 8 \end{pmatrix}$

$$= \begin{pmatrix} \boxed{1 \times 5 + 2 \times 7} & \boxed{1 \times 6 + 2 \times 8} \\ \boxed{3 \times 5 + 4 \times 7} & \boxed{3 \times 6 + 4 \times 8} \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}.$$

CELEN036 :: Lecture Slides - P.Gajjar

10

CELEN03

Foundation Algebra for Physical Sciences & Engineering

Transpose matrix

Example 2:

Given matrices $A = \begin{pmatrix} 3 & 2 \\ -4 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 6 \\ 2 & -1 \end{pmatrix}$, find A^T, B^T , and $(A+B)^T$. Hence, show that $(A+B)^T = A^T + B^T$.

Step 1: Find A^T .

Step 2: Find B^T .

Step 3: Find $A^T + B^T$. -----

Step 4: Find A + B.

must be equal

Step 5: Find $(A + B)^T$.

CELEN036 :: Lecture Slides - P.Gajjar

University of Nottingham

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Transpose matrix

The transpose of matrix A is the matrix formed by interchanging the rows and corresponding columns of A . It is denoted by $A^T\!.$

e.g. If $A=\left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right)$, then its transpose matrix is:

$$A^T = \left(\begin{array}{cc} 1 & 4\\ 2 & 5\\ 3 & 6 \end{array}\right).$$

CELEN036 :: Lecture Slides - P.Gajjar

14

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Some definitions

1. Row Matrix

A matrix that consists of only one row is called a row matrix. e.g. $\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$ is a row matrix (of order 1×4).

2. Column Matrix

A matrix that consists of only one column is called a column matrix. e.g. $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ is a column matrix (of order 3×1).

CELEN036 :: Lecture Slides - P.Gajjar

Some definitions

3. Square Matrix

A square matrix is a matrix with the same number of row as columns.

e.g.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 is a 3×3 square matrix.

It is also called an order 3 matrix.

CELEN036 :: Lecture Slides - P.Gajjar

17

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Some definitions

5. Lower triangular matrix

A square matrix is called lower triangular if all the entries above the main diagonal are zero.

e.g. The matrix
$$L=\left(\begin{array}{ccc}1&\mathbf{0}&\mathbf{0}\\5&-3&\mathbf{0}\\9&-7&-2\end{array}\right)$$
 is lower triangular.

Some definitions

4. Upper triangular matrix

A square matrix is called upper triangular if all the entries below the main diagonal are zero.

e.g. The matrix
$$U = \begin{pmatrix} 1 & 2 & 3 \\ \mathbf{0} & -3 & 9 \\ \mathbf{0} & \mathbf{0} & -2 \end{pmatrix}$$
 is upper triangular.

CELEN036 :: Lecture Slides - P.Gajjar

18

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Some definitions

6. Diagonal matrix

A matrix that is both upper and lower triangular is called a diagonal matrix.

e.g.
$$D = \operatorname{diag}(-1, 4, 8) = \begin{pmatrix} -1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 4 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 8 \end{pmatrix}$$
 is a diagonal matrix.

19 CELEN036 :: Lecture Slides - P.Gajj

7. Identity matrix

A diagonal matrix with all its main diagonal entries as 1 is called a Unit or Identity matrix. It is denoted by I or I_n .

e.g.
$$I = I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 is a unit matrix of order 3.

CELEN036 :: Lecture Slides - P.Gajjar

21

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Inverse Matrix

Method to find the inverse of a 2×2 matrix $A = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right)$

To find inverse of a matrix, we need a number called determinant.

Determinant $(\det(A))$ of a 2×2 matrix is a number given by:

$$\det(A) = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc$$

Note: For inverse matrix to exists, det(A) must be non-zero.

Inverse Matrix

Given a square matrix A, if there exists a matrix B such that AB=BA=I, then the matrix B is said to be the inverse of matrix A, and is denoted by A^{-1} .

Here, the Identity matrix I is of the same order as matrices A and B.

Thus.
$$AA^{-1} = A^{-1}A = I$$
.

CELEN036 :: Lecture Slides - P.Gajjar

22

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Inverse Matrix

The Method:

Step 1: Find
$$det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Step 2: Interchange elements of the principal diagonal. i.e. a and d.

Step 3: Change the signs of elements on the secondary diagonal. i.e. change signs of elements b and c.

Step 4: Divide the matrix so obtained by det(A).

ELEN036 :: Lecture Slides - P.Gajjar 24

Thus,
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

e.g. For
$$A = \begin{pmatrix} 3 & -2 \\ 6 & 5 \end{pmatrix}$$
,

$$\det(A) = \begin{vmatrix} 3 & -2 \\ 6 & 5 \end{vmatrix} = 15 + 12 = 27 \neq 0$$

$$\therefore A^{-1} = \frac{1}{27} \begin{pmatrix} 5 & 2 \\ -6 & 3 \end{pmatrix}.$$

CELEN036 :: Lecture Slides - P.Gajjar

25

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Systems of linear equations

There are various methods to solve the linear systems, such as:

- a) Method of Substitution
- b) Method of Elimination
- c) Cramer's Rule
- d) Iteration Methods.

Here, we study the Matrix method for solving a 2 x 2 linear system.

CELEN036
Foundation Algebra for Physical Sciences & Engineering

Systems of linear equations

A system of linear equations (or linear system) is a collection of linear equations involving the same set of variables.

e.g.
$$x + 2y = 13$$
 is a system of linear equations $2x - 5y = 8$ in 2 variables (x and y).

$$x+2y+4z=9 \ 2x-5y-z=14 \ 3x-y+2z=7 \ \}$$
 is a system of linear equations

CELEN036 :: Lecture Slides - P.Gajjar

26

CELENUSO

Foundation Algebra for Physical Sciences & Engineering

Systems of linear equations in Matrix form

To study the method, first we need to put the linear system of equations in Matrix form, AX = B.

where, $A \equiv$ (Square) matrix of the coefficients

 $X \equiv$ (Column) matrix of the unknowns (variables)

 $B \equiv \text{(Column)}$ matrix of the constants on the Right-hand side

CELEN036 :: Lecture Slides - P.Gajjar

Form AX = B

e.g.

$$\begin{array}{ccc} x + 2y & = & 13 \\ 2x - 5y & = & 8 \end{array} \right\} \quad \Longrightarrow \quad \left(\begin{array}{cc} 1 & 2 \\ 2 & -5 \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} 13 \\ 8 \end{array} \right)$$

$$\begin{array}{rcl}
 x + 2y + 4z & = & 9 \\
 2x - 5y - z & = & 14 \\
 3x - y + 2z & = & 7
 \end{array}
 \right\} \Longrightarrow
 \left(\begin{array}{ccc}
 1 & 2 & 4 \\
 2 & -5 & -1 \\
 3 & -1 & 2
 \end{array}\right)
 \left(\begin{array}{c}
 x \\
 y \\
 z
 \end{array}\right)
 =
 \left(\begin{array}{c}
 9 \\
 14 \\
 7
 \end{array}\right)$$

CELEN036 :: Lecture Slides - P.Gaijai

Foundation Algebra for Physical Sciences & Engineering

Matrix method for solving a 2x2 linear system

The Method

Here,
$$A = \begin{pmatrix} 1 & 2 \\ 2 & -5 \end{pmatrix} \Rightarrow \begin{cases} \det A = -5 - 4 = -9 \neq 0 \\ \therefore A^{-1} \text{ (and hence unique solution) exist.} \end{cases}$$

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} -5 & -2 \\ -2 & 1 \end{pmatrix} = \frac{-1}{9} \begin{pmatrix} -5 & -2 \\ -2 & 1 \end{pmatrix}$$

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Matrix method for solving a 2x2 linear system

We assume that the inverse of matrix A exist and use it to find the solution matrix X.

$$AX = B \Rightarrow A^{-1}(AX) = A^{-1}B$$

$$\Rightarrow (A^{-1}A) X = A^{-1}B$$

$$\Rightarrow (I) X = A^{-1}B$$

$$\Rightarrow X = A^{-1}B$$

Thus, $AX = B \Rightarrow X = A^{-1}B$

CELEN036 :: Lecture Slides - P.Gaiia

30

Foundation Algebra for Physical Sciences & Engineering

Matrix method for solving a 2x2 linear system

$$X = \begin{pmatrix} x \\ y \end{pmatrix} = A^{-1} B = \frac{-1}{9} \begin{pmatrix} -5 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 13 \\ 8 \end{pmatrix}$$
$$= \frac{-1}{9} \begin{pmatrix} (-5) \times 13 + (-2) \times 8 \\ (-2) \times 13 + (1) \times 8 \end{pmatrix}$$
$$= \frac{-1}{9} \begin{pmatrix} -81 \\ -18 \end{pmatrix}$$

Matrix method for solving a 2x2 linear system

Example 1:

Express the system of linear equations $\begin{cases} 3x + y = 4 \\ 5x - 4y = 1 \end{cases}$

in matrix form AX = B, and use the matrix method to solve it.

Step 1: Matrix form is: $\begin{pmatrix} 3 & 1 \\ 5 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$.

Show steps of matrix multiplication

Step 2: $det(A) = -12 - 5 = -17 \neq 0$.

Step 3: Solution matrix $X = A^{-1}B = \frac{1}{-17}\begin{pmatrix} -4 & -1 \\ -5 & 3 \end{pmatrix}\begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

CELEN036 :: Lecture Slides - P.Gajjar

33

CELEN036

Foundation Algebra for Physical Sciences & Engineering

More definitions

2. Zero matrix

A zero (or null) matrix is a matrix with all its entries as zero. It is denoted by O.

$$\text{e.g. } O_2 = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \quad O_{1 \times 2} = \left(\begin{array}{cc} 0 & 0 \end{array} \right), \quad O_{2 \times 1} = \left(\begin{array}{cc} 0 \\ 0 \end{array} \right) \right|$$

are all zero matrices.

Note that a zero matrix can also be rectangular.

More definitions

1. Trace of a square matrix

The trace of a square matrix A is defined as the sum of the elements on the main (leading or principal) diagonal of A.

i.e. trace
$$(A) = a_{11} + a_{22} + a_{33} + \dots + a_{nn} = \sum_{k=1}^{n} a_{kk}$$

e.g. Given
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
, $\operatorname{trace}(A) = 1 + (-5) + 9$

CELEN036 :: Lecture Slides - P.Gajjar

34

CELEN036

CELEN036

Foundation Algebra for Physical Sciences & Engineering

More definitions

3. Symmetric matrix

A symmetric matrix is a square matrix that is equal to its transpose.

i.e. A is symmetric if $A^T = A$.

e.g.
$$A=\left(\begin{array}{ccc}1&2&-7\\2&8&3\\-7&3&6\end{array}\right)$$
 is a symmetric matrix.

CELEN036 :: Lecture Slides - P.Gajjar

More definitions

4. Skew-symmetric (anti-symmetric) matrix

An skew-symmetric matrix is a square matrix whose transpose is its negative. i.e. A is symmetric if $A^T = -A$.

e.g.
$$A=\left(\begin{array}{ccc} 0 & -2 & 7 \\ 2 & 0 & -3 \\ -7 & 3 & 0 \end{array}\right)$$
 is a skew-symmetric matrix.

Note that for an antisymmetric matrix, the entries on its main diagonal are all zero.

CELEN036 :: Lecture Slides - P.Gajjar

37

CELEN036

Foundation Algebra for Physical Sciences & Engineering

More definitions

5.Non-singular matrix

A square matrix A is called non-singular if its inverse exists.

i.e. A is non-singular,

if $det(A) \neq 0$.

e.g.
$$A = \begin{pmatrix} 5 & 4 \\ 2 & 3 \end{pmatrix}$$
 is

non-singular.

CELEN036 :: Lecture Slides - P.Gajjar

6.Singular matrix

A square matrix A is called singular if its inverse does not exists.

i.e. A is singular,

if
$$det(A) = 0$$
.

e.g.
$$A = \left(\begin{array}{cc} 8 & 4 \\ 6 & 3 \end{array} \right)$$
 is

singular.