N-grams

CS114 Lab 6

Kenneth Lai

February 28, 2020

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

▶ Logistic regression/neural networks: model P(c|d)

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

- ▶ Logistic regression/neural networks: model P(c|d)
- ▶ Naïve Bayes: model P(c, d) = P(d|c)P(c)

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

- ▶ Logistic regression/neural networks: model P(c|d)
- ▶ Naïve Bayes: model P(c, d) = P(d|c)P(c)
- ▶ Language models: model P(d)

Suppose we observe a document (sentence) d = "Chinese Chinese Chinese Tokyo Japan". What is the probability of the sentence?

► Training data:

sentence
Chinese Beijing Chinese
Chinese Chinese Shanghai
Chinese Macao
Tokyo Japan Chinese

► Sentences are sequences of words

- ► Sentences are sequences of words
 - ▶ No bag of words assumption this time: position matters

- ► Sentences are sequences of words
 - ▶ No bag of words assumption this time: position matters
- ▶ d = "Chinese Chinese Tokyo Japan"

- Sentences are sequences of words
 - ▶ No bag of words assumption this time: position matters
- ightharpoonup d = "Chinese Chinese Tokyo Japan"
 - $\mathbf{w}_1 = \text{Chinese}$
 - $\mathbf{w}_2 = \mathsf{Chinese}$
 - $w_3 = \text{Chinese}$
 - ▶ w₄ = Tokyo
 - $w_5 = Japan$

► Chain Rule:
$$P\left(\bigcap_{i=1}^{n} w_i\right) = \prod_{i=1}^{n} P\left(w_i \middle| \bigcap_{j=1}^{i-1} w_j\right)$$

▶ Zeroth-order:
$$P\left(\bigcap_{i=1}^{n} w_i\right) = \prod_{i=1}^{n} P(w_i)$$

Zeroth-order:
$$P\left(\bigcap_{i=1}^{n} w_i\right) = \prod_{i=1}^{n} P(w_i)$$

First-order:
$$P\left(\bigcap_{i=1}^{n} w_i\right) = \prod_{i=1}^{n} P(w_i|w_{i-1})$$

► Zeroth-order:
$$P\left(\bigcap_{i=1}^{n} w_i\right) = \prod_{i=1}^{n} P(w_i)$$

First-order:
$$P\left(\bigcap_{i=1}^{n} w_i\right) = \prod_{i=1}^{n} P(w_i|w_{i-1})$$

Second-order:
$$P\left(\bigcap_{i=1}^{n} w_i\right) = \prod_{i=1}^{n} P(w_i|w_{i-2}, w_{i-1})$$

► Unigram:
$$P\left(\bigcap_{i=1}^{n} w_{i}\right) = \prod_{i=1}^{n} P(w_{i})$$
► Bigram: $P\left(\bigcap_{i=1}^{n} w_{i}\right) = \prod_{i=1}^{n} P(w_{i}|w_{i-1})$
► Trigram: $P\left(\bigcap_{i=1}^{n} w_{i}\right) = \prod_{i=1}^{n} P(w_{i}|w_{i-2}, w_{i-1})$

Everything is counting (again)!

Everything is counting (again)!

$$\hat{P}(w_i) = \frac{\operatorname{count}(w_i)}{\sum_{w \in V} \operatorname{count}(w)}$$

Everything is counting (again)!

$$\hat{P}(w_i) = \frac{\operatorname{count}(w_i)}{\sum_{w \in V} \operatorname{count}(w)}$$

$$\hat{P}(w_i|w_{i-1}) = \frac{\operatorname{count}(w_{i-1}, w_i)}{\operatorname{count}(w_{i-1})}$$

...

sentence
Chinese Beijing Chinese
Chinese Chinese Shanghai
Chinese Macao
Tokyo Japan Chinese

sentence
Chinese Beijing Chinese
Chinese Chinese Shanghai
Chinese Macao
Tokyo Japan Chinese

sentence
Chinese Beijing Chinese
Chinese Chinese Shanghai
Chinese Macao
Tokyo Japan Chinese

Stop symbol

sentence
Chinese Beijing Chinese
Chinese Chinese Shanghai
Chinese Macao
Tokyo Japan Chinese

- Stop symbol
 - ► Why?

sentence
Chinese Beijing Chinese
Chinese Chinese Shanghai
Chinese Macao
Tokyo Japan Chinese

- Stop symbol
 - ► Why?
 - ▶ (see Jurafsky and Martin exercise 3.5)

▶ Words that do not appear in the training data

- Words that do not appear in the training data
- ▶ Suppose we observe a sentence D' = "Japanese Kyoto". What is the probability of the sentence?

- Words that do not appear in the training data
- ▶ Suppose we observe a sentence D' = "Japanese Kyoto". What is the probability of the sentence?
 - count(Japanese) = count(Kyoto) = 0

- Words that do not appear in the training data
- ▶ Suppose we observe a sentence D' = "Japanese Kyoto". What is the probability of the sentence?
 - count(Japanese) = count(Kyoto) = 0
 - P(Kyoto|Japanese) = 0/0

- Words that do not appear in the training data
- ▶ Suppose we observe a sentence D' = "Japanese Kyoto". What is the probability of the sentence?
 - count(Japanese) = count(Kyoto) = 0
 - ightharpoonup P(Kyoto|Japanese) = 0/0
- Solution: unknown word <UNK>

- Words that do not appear in the training data
- ▶ Suppose we observe a sentence D' = "Japanese Kyoto". What is the probability of the sentence?
 - count(Japanese) = count(Kyoto) = 0
 - ▶ P(Kyoto|Japanese) = 0/0
- Solution: unknown word <UNK>
 - ► For HW/PA, you can simply set all the <UNK>-related counts equal to 1

w _i	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>
count(w _i)	6	1	1	1	1	1	4	1

wi	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>
$P(w_i)$	6/16	1/16	1/16	1/16	1/16	1/16	4/16	1/16

$$\sum_{w \in V} \operatorname{count}(w) = 16$$

w _i	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>
$P(w_i)$	3/8	1/16	1/16	1/16	1/16	1/16	1/4	1/16

- $\sum_{w \in V} \operatorname{count}(w) = 16$
- ► $P(\text{Chinese Chinese Chinese Tokyo Japan}) = (3/8)^3 \times 1/16 \times 1/16 \times 1/4 = 27/524288 \approx 0.00005$

wi	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>
$P(w_i)$	3/8	1/16	1/16	1/16	1/16	1/16	1/4	1/16

- $\sum_{w \in V} \operatorname{count}(w) = 16$
- ► $P(\text{Chinese Chinese Chinese Tokyo Japan}) = (3/8)^3 \times 1/16 \times 1/16 \times 1/4 = 27/524288 \approx 0.00005$
- ► $P(\text{Japanese Kyoto}) = 1/16 \times 1/16 \times 1/4 = 1/1024 \approx 0.001$

sentence
Chinese Beijing Chinese
Chinese Chinese Shanghai
Chinese Macao
Tokyo Japan Chinese

sentence
<s> Chinese Beijing Chinese</s>
<s> Chinese Chinese Shanghai</s>
<s> Chinese Macao</s>
<s> Tokyo Japan Chinese</s>

► Start symbol <S>

sentence
<s> Chinese Beijing Chinese</s>
<s> Chinese Chinese Shanghai</s>
<s> Chinese Macao</s>
<s> Tokyo Japan Chinese</s>

- Start symbol <S>
 - ► Why?

sentence							
<s> Chinese Beijing Chinese</s>							
<s> Chinese Chinese Shanghai</s>							
<s> Chinese Macao</s>							
<s> Tokyo Japan Chinese</s>							

- Start symbol <S>
 - ► Why?
 - Beginning of the sentence is a context, too!

$count(w_{i-1}, w_i)$			w _i								
		Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>		
	<s></s>	3	0	0	0	1	0	0	1		
	Chinese	1	1	1	1	0	0	2	1		
	Beijing	1	0	0	0	0	0	0	1		
	Shanghai	0	0	0	0	0	0	1	1		
w_{i-1}	Macao	0	0	0	0	0	0	1	1		
	Tokyo	0	0	0	0	0	1	0	1		
	Japan	1	0	0	0	0	0	0	1		
	<unk></unk>	1	1	1	1	1	1	1	1		

Plu	(.lw()		w _i								
$P(w_i w_{i-1})$		Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>		
	<s></s>	3/5	0	0	0	1/5	0	0	1/5		
	Chinese	1/7	1/7	1/7	1/7	0	0	2/7	1/7		
	Beijing	1/2	0	0	0	0	0	0	1/2		
14/	Shanghai	0	0	0	0	0	0	1/2	1/2		
w_{i-1}	Macao	0	0	0	0	0	0	1/2	1/2		
	Tokyo	0	0	0	0	0	1/2	0	1/2		
	Japan	1/2	0	0	0	0	0	0	1/2		
	<unk></unk>	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8		

P(w	$P(w_i w_{i-1})$		w _i								
/ (W _i W _i = 1)		Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>		
	<\$>	3/5	0	0	0	1/5	0	0	1/5		
	Chinese	1/7	1/7	1/7	1/7	0	0	2/7	1/7		
	Beijing	1/2	0	0	0	0	0	0	1/2		
14/	Shanghai	0	0	0	0	0	0	1/2	1/2		
w_{i-1}	Macao	0	0	0	0	0	0	1/2	1/2		
	Tokyo	0	0	0	0	0	1/2	0	1/2		
	Japan	1/2	0	0	0	0	0	0	1/2		
	<unk></unk>	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8		

► $P(\text{Chinese Chinese Chinese Tokyo Japan}) = \frac{3}{5} \times (\frac{1}{7})^2 \times 0 \times \frac{1}{2} \times 0 = 0$

Plu	$P(w_i w_{i-1})$		w _i								
((((((((((((((((((((Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>		
	<s></s>	3/5	0	0	0	1/5	0	0	1/5		
	Chinese	1/7	1/7	1/7	1/7	0	0	2/7	1/7		
	Beijing	1/2	0	0	0	0	0	0	1/2		
14/	Shanghai	0	0	0	0	0	0	1/2	1/2		
w_{i-1}	Macao	0	0	0	0	0	0	1/2	1/2		
	Tokyo	0	0	0	0	0	1/2	0	1/2		
	Japan	1/2	0	0	0	0	0	0	1/2		
	<unk></unk>	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8		

► $P(\text{Japanese Kyoto}) = \frac{1/5 \times 1/8 \times 1/8}{1/320} \approx 0.003$

 Words that appear in the training data, but not in a given context

- Words that appear in the training data, but not in a given context
- ▶ Laplace (add-1) smoothing: add 1 to all word counts

- Words that appear in the training data, but not in a given context
- ▶ Laplace (add-1) smoothing: add 1 to all word counts

•
$$\hat{P}(w_i|w_{i-1}) = \frac{\text{count}(w_{i-1}, w_i) + 1}{\text{count}(w_i) + |V|}$$

- Words that appear in the training data, but not in a given context
- ▶ Laplace (add-1) smoothing: add 1 to all word counts

$$\hat{P}(w_i|w_{i-1}) = \frac{\operatorname{count}(w_{i-1}, w_i) + 1}{\operatorname{count}(w_i) + |V|}$$

▶ Add-*k* smoothing: add *k* to all word counts

- Words that appear in the training data, but not in a given context
- ▶ Laplace (add-1) smoothing: add 1 to all word counts

$$\hat{P}(w_i|w_{i-1}) = \frac{\operatorname{count}(w_{i-1},w_i) + 1}{\operatorname{count}(w_i) + |V|}$$

► Add-*k* smoothing: add *k* to all word counts

$$\hat{P}(w_i|w_{i-1}) = \frac{\operatorname{count}(w_{i-1}, w_i) + k}{\operatorname{count}(w_i) + k|V|}$$

count/	$count(w_{i-1}, w_i)$		w _i								
count(11/=1, 11/)		Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>		
	<s></s>	3	0	0	0	1	0	0	1		
	Chinese	1	1	1	1	0	0	2	1		
	Beijing	1	0	0	0	0	0	0	1		
	Shanghai	0	0	0	0	0	0	1	1		
w_{i-1}	Macao	0	0	0	0	0	0	1	1		
	Tokyo	0	0	0	0	0	1	0	1		
	Japan	1	0	0	0	0	0	0	1		
	<unk></unk>	1	1	1	1	1	1	1	1		

$count(w_{i-1},w_i)+1$			w _i								
		Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>		
	<s></s>	4	1	1	1	2	1	1	2		
	Chinese	2	2	2	2	1	1	3	2		
	Beijing	2	1	1	1	1	1	1	2		
147	Shanghai	1	1	1	1	1	1	2	2		
w_{i-1}	Macao	1	1	1	1	1	1	2	2		
	Tokyo	1	1	1	1	1	2	1	2		
	Japan	2	1	1	1	1	1	1	2		
	<unk></unk>	2	2	2	2	2	2	2	2		

ĝ(,,	$\hat{P}(w_i w_{i-1})$		w _i							
, (w _i w _i =1)		Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>	
	<s></s>	4/13	1/13	1/13	1/13	2/13	1/13	1/13	2/13	
	Chinese	2/15	2/15	2/15	2/15	1/15	1/15	3/15	2/15	
	Beijing	2/10	1/10	1/10	1/10	1/10	1/10	1/10	2/10	
146	Shanghai	1/10	1/10	1/10	1/10	1/10	1/10	2/10	2/10	
w_{i-1}	Macao	1/10	1/10	1/10	1/10	1/10	1/10	2/10	2/10	
	Tokyo	1/10	1/10	1/10	1/10	1/10	2/10	1/10	2/10	
	Japan	2/10	1/10	1/10	1/10	1/10	1/10	1/10	2/10	
	<unk></unk>	2/16	2/16	2/16	2/16	2/16	2/16	2/16	2/16	

Â($\hat{P}(w_i w_{i-1})$		w _i								
/ (W _i W _i = 1)		Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>		
	<s></s>	4/13	1/13	1/13	1/13	2/13	1/13	1/13	2/13		
	Chinese	2/15	2/15	2/15	2/15	1/15	1/15	1/5	2/15		
	Beijing	1/5	1/10	1/10	1/10	1/10	1/10	1/10	1/5		
14/	Shanghai	1/10	1/10	1/10	1/10	1/10	1/10	1/5	1/5		
w_{i-1}	Macao	1/10	1/10	1/10	1/10	1/10	1/10	1/5	1/5		
	Tokyo	1/10	1/10	1/10	1/10	1/10	1/5	1/10	1/5		
	Japan	1/5	1/10	1/10	1/10	1/10	1/10	1/10	1/5		
	<unk></unk>	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8		

► $P(\text{Chinese Chinese Chinese Tokyo Japan}) = \frac{4/13 \times (2/15)^2 \times 1/15 \times 1/5 \times 1/10}{8/1096875} \approx 0.000007$

▶ Another solution to zeros: use less context

- Another solution to zeros: use less context
- ▶ Backoff: if the n-gram is not available, back off to the (n-1)-gram

- Another solution to zeros: use less context
- ▶ Backoff: if the n-gram is not available, back off to the (n-1)-gram
- ▶ Interpolation: weighted average of n-gram, (n-1)-gram, etc.

- Another solution to zeros: use less context
- ▶ Backoff: if the n-gram is not available, back off to the (n-1)-gram
- ▶ Interpolation: weighted average of n-gram, (n-1)-gram, etc.
 - $\hat{P}(w_i|w_{i-1}) = \lambda_1 P(w_i|w_{i-1}) + \lambda_2 P(w_i)$ $\sum_i \lambda_i = 1$

w _i	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>
$P(w_i)$	3/8	1/16	1/16	1/16	1/16	1/16	1/4	1/16

Plu	$P(w_i w_{i-1})$		w _i									
, ("	1 101 -1)	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>			
	<s></s>	3/5	0	0	0	1/5	0	0	1/5			
	Chinese	1/7	1/7	1/7	1/7	0	0	2/7	1/7			
	Beijing	1/2	0	0	0	0	0	0	1/2			
	Shanghai	0	0	0	0	0	0	1/2	1/2			
w_{i-1}	Macao	0	0	0	0	0	0	1/2	1/2			
	Tokyo	0	0	0	0	0	1/2	0	1/2			
	Japan	1/2	0	0	0	0	0	0	1/2			
	<unk></unk>	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8			

wi	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>
$P(w_i)$	3/8	1/16	1/16	1/16	1/16	1/16	1/4	1/16

D((due -)		w _i									
F (W	$P(w_i w_{i-1})$		Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>			
	<s></s>	3/5	0	0	0	1/5	0	0	1/5			
	Chinese	1/7	1/7	1/7	1/7	0	0	2/7	1/7			
	Beijing	1/2	0	0	0	0	0	0	1/2			
147: 4	Shanghai	0	0	0	0	0	0	1/2	1/2			
w_{i-1}	Macao	0	0	0	0	0	0	1/2	1/2			
	Tokyo	0	0	0	0	0	1/2	0	1/2			
	Japan	1/2	0	0	0	0	0	0	1/2			
	<unk></unk>	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8			

▶ Let $\lambda_1 = \lambda_2 = 1/2$

wi	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>
$P(w_i)$	3/8	1/16	1/16	1/16	1/16	1/16	1/4	1/16

D($P(w_i w_{i-1})$		Wi									
r (w	i Wi — 1)	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>			
	<s></s>	3/5	0	0	0	1/5	0	0	1/5			
	Chinese	1/7	1/7	1/7	1/7	0	0	2/7	1/7			
	Beijing	1/2	0	0	0	0	0	0	1/2			
147: 4	Shanghai	0	0	0	0	0	0	1/2	1/2			
w_{i-1}	Macao	0	0	0	0	0	0	1/2	1/2			
	Tokyo	0	0	0	0	0	1/2	0	1/2			
	Japan	1/2	0	0	0	0	0	0	1/2			
	<unk></unk>	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8			

▶ Let
$$\lambda_1 = \lambda_2 = 1/2$$

$$\hat{P}(\text{Chinese}|~~) = \frac{1}{2}P(\text{Chinese}|~~) + \frac{1}{2}P(\text{Chinese})~~~~$$
$$= \frac{1}{2} \times \frac{3}{5} + \frac{1}{2} \times \frac{3}{8}$$
$$= \frac{39}{80} = 0.4875$$

Â($\hat{P}(w_i w_{i-1})$		w;									
F (W	i wi — 1)	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>			
	<s></s>	.4875	.03125	.03125	.03125	.03125	.13125	.125	.13125			
	Chinese	.25893	.10268	.10268	.10268	.03125	.03125	.26786	.10268			
	Beijing	.4375	.03125	.03125	.03125	.03125	.03125	.125	.28125			
14/	Shanghai	.1875	.03125	.03125	.03125	.03125	.03125	.375	.28125			
w_{i-1}	Macao	.1875	.03125	.03125	.03125	.03125	.03125	.375	.28125			
	Tokyo	.1875	.03125	.03125	.03125	.03125	.28125	.125	.28125			
	Japan	.4375	.03125	.03125	.03125	.03125	.03125	.125	.28125			
	<unk></unk>	.25	.09375	.09375	.09375	.09375	.09375	.1875	.09375			

Â($\hat{P}(w_i w_{i-1})$		w _i									
F (W	i wi - 1)	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan		<unk></unk>			
	<s></s>	.4875	.03125	.03125	.03125	.03125	.13125	.125	.13125			
	Chinese	.25893	.10268	.10268	.10268	.03125	.03125	.26786	.10268			
	Beijing	.4375	.03125	.03125	.03125	.03125	.03125	.125	.28125			
147	Shanghai	.1875	.03125	.03125	.03125	.03125	.03125	.375	.28125			
w_{i-1}	Macao	.1875	.03125	.03125	.03125	.03125	.03125	.375	.28125			
	Tokyo	.1875	.03125	.03125	.03125	.03125	.28125	.125	.28125			
	Japan	.4375	.03125	.03125	.03125	.03125	.03125	.125	.28125			
	<unk></unk>	.25	.09375	.09375	.09375	.09375	.09375	.1875	.09375			

► $P(\text{Chinese Chinese Tokyo Japan}) = 0.4875 \times (0.25893)^2 \times 0.03125 \times 0.28125 \times 0.125 = \approx 0.000036$