Lineare Algebra 1 Hausaufgabenblatt Nr. 4

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 9, 2023)

Problem 1. Direktes Produkt

(a) Zeigen Sie: Sind $(G, *, e_G)$ und (H, \star, e_H) Gruppen, dann ist auch $G \times H$ mit der Verknüpfung

$$\odot$$
 $(G \times H) \times (G \times H) \rightarrow G \times H$, $(g_1, h_1) \odot (g_2, h_2) := (g_1 * g_2, h_1 \star h_2)$

und dem neutralen Element (e_G , e_H) eine Gruppe. Diese Gruppe nennt man auch das *direktes Produkt* von G und H.

- (b) Zeigen Sie: Sind $(R, +, \cdot)$ und $(S, \star, *)$ Ringe, dann ist auch $R \times S$ mit den Verknüpfung \oplus und \odot , definiert durch $(r_1, s_1) \oplus (r_2, s_2) := (r_1 + r_2, s_1 \star s_2)$ bzw. $(r_1, s_1) \odot (r_2, s_2) := (r_1 \cdot r_2, s_1 \star s_2)$ ein Ring.
- (c) Beweisen oder widerlegen Sie: Ist $(K, +, \cdot)$ ein Körper, dann ist auch $K \times K$ mit den Verknüpfungen wie in (b) ein Körper.

Proof. (a) (i) (Assoziativität)

$$(g_1, h_1) \odot ((g_2, h_2) \odot (g_3, h_3)) = (g_1, h_1) \odot (g_2 * g_3, h_2 * h_3)$$

$$= (g_1 * (g_2 * g_3), h_1 * (h_2 * h_3))$$

$$= ((g_1 * g_2) * g_3, (h_1 * h_2) * h_3)$$

$$= (g_1 * g_2, h_1 * h_2) \odot (g_3, h_3)$$

$$= ((g_1, h_1) \odot (h_1, h_2)) \odot (g_3, h_3)$$

(ii) (Neutrales Element)

$$(g_1, h_1) \odot (e_G, e_H) = (g_1, h_1) = (e_G, e_H) \odot (g_1, h_1).$$

 $^{^{}st}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

(iii) (Existenz des Inverses) Sei $(g_1,h_1) \in G \times H$. Weil G und H gruppe sind, gibt es elemente $g_1^{-1} \in G$, $h_1^{-1} \in H$, sodass $g_1 * g_1^{-1} = e_G = g_1^{-1} * g_1$ und $h_1 \star h_1^{-1} = e_H = h_1^{-1} \star h_1$. Es gilt

$$(g_1, h_1) \odot (g_1^{-1}, h_1^{-1}) = (g_1 * g_1^{-1}, h_1 \star h_1^{-1}) = (e_G, e_H),$$

und ähnlich auch $(g_1^{-1}, h_1^{-1}) \odot (g_1, h_1) = (e_G, e_H)$

Schluss: $(G \times H, \odot, (e_G, e_H))$ ist eine Gruppe.

- (b) (i) $(R \times S, \oplus, (0_R, 0_S))$ ist eine abelsche Gruppe. Folgt aus (a).
 - (ii) \oplus ist assoziativ:

Beweis läuft ähnlich zu (a), die Behauptung folgt aus die Assoziativität von · und *.

(iii) Distributivgesetz:

$$(r_{1}, s_{1}) \odot ((r_{2}, s_{2}) \oplus (r_{3}, s_{3})) = (r_{1}, s_{1}) \odot (r_{2} + r_{3}, s_{2} \star s_{3})$$

$$= (r_{1} \cdot (r_{2} + r_{3}), s_{1} * (s_{2} \star s_{3}))$$

$$= (r_{1} \cdot r_{2} + r_{1} \cdot r_{3}, s_{1} * s_{2} \star s_{1} * s_{3})$$

$$= (r_{1} \cdot r_{2}, s_{1} * s_{2}) \oplus (r_{1} \cdot r_{3}, s_{1} * s_{3})$$

$$= [(r_{1}, s_{1}) \odot (r_{2}, s_{2})] \oplus [(r_{1}, s_{1}) \odot (r_{3}, s_{3})]$$

(c) Falsch. Sei $x, y \in K$ beliebige Elemente von K. Es ist klar, dass (0,0) das Nullelement ist, weil

$$(x,y) \oplus (0,0) = (x+0,y+0) = (x,y).$$

Sei jetzt $x \neq 0 \neq y$. Es gilt

$$(x,0) \odot (0,y) = (x \cdot 0, 0 \cdot y) = (0,0),$$

also es gibt Nullteiler.

Problem 2. Zeigen Sie: In einem Ring $(R, +, \cdot)$ gilt genau dann die Kürzungsregel

Falls $a \in R \setminus \{0\}$ und $x, y \in R$ beliebig sind, dann gilt $a \cdot x = a \cdot y \implies x = y$

wenn R nullteilerfrei ist.

Proof. 1. R hat Nullteiler \implies die Kürzungsregel gilt nicht.

Per Ausnahme gibt es $x \in R \setminus \{0\}$ mit Nullteiler $a \in R \setminus \{0\}$, also $a \cdot x = 0$. Es gilt auch, dass $a \cdot 0 = 0$, daher

$$a \cdot x = a \cdot 0 = 0$$
.

Aber $x \neq 0$, und die Kürzungsregel gilt nicht.

2. R nullteilerfrei \implies Kürzungsregel gilt.

Seien $a \in R \setminus \{0\}$ und $x, y \in R$ beliebig und

$$a \cdot x = a \cdot y$$

$$a \cdot x + [-(a \cdot y)] = a \cdot y + [-(a \cdot y)]$$

$$0 = a \cdot x - a \cdot y$$

$$= a \cdot (x - y)$$

Daraus folgt, dass entweder a=0 oder x-y=0. Weil wir schon ausgenommen haben, dass $a\neq 0$, gilt x-y=0, oder x=y.

Problem 3. (Verknüpfungsverträglich) Es seien $(G, \cdot, e_G), (H, *, e_H)$ Gruppen und α : $G \to H$ ein Gruppenhomomorphismus. Zeigen Sie

- (a) $U = \{u \in G | \alpha(u) = e_H\}$ ist eine Untergruppe von G.
- (b) $\alpha(G)$ ist eine Untergruppe von H.
- (c) Durch $a \sim b \iff ab^{-1}$ wird eine eine verknüpfungsverträgliche Äquivalenzrelation auf G definiert.

Proof. (a) (i) Neutrales Element.

 $\alpha(e_G) = e_H$, weil, für alle $x \in G$ gilt

$$\alpha(x) = \alpha(x \cdot e_G) = \alpha(x) * \alpha(e_G).$$

(ii) *U* ist abgeschlossen.

Sei $x, y \in U$, also $\alpha(x) = e_H = \alpha(y)$. Es gilt

$$\alpha(x \cdot y) = \alpha(x) * \alpha(y) = e_H * e_H = e_H$$

also $x \cdot y \in U$.

(iii) Existenz des Inverses

Sei
$$x \in U$$
, und $x \cdot x^{-1} = e_G$. Es gilt
$$e_H = \alpha(e_G) = \alpha(x \cdot x^{-1}) = \alpha(x) * \alpha\left(x^{-1}\right) = e_H * \alpha\left(x^{-1}\right) = \alpha\left(x^{-1}\right),$$
 also $x^{-1} \in U$.

- (b) (a) Neutrales Element $\alpha(e_G)=e_H \text{, der Beweis ist schon in (a) geschrieben.}$
 - (b) $\alpha(G)$ ist abgeschlossen.

Sei
$$\alpha(G)\ni y_1=\alpha(x_1)$$
 bzw. $\alpha(G)\ni y_2=\alpha(x_2)$, für $x_1,x_2\in G$. Es gilt
$$y_1*y_2=\alpha(x_1)*\alpha(x_2)=\alpha(x_1\cdot x_2)\in\alpha(G).$$

(c) Existenz des Inverses

Sei
$$\alpha(G)\ni y=\alpha(x)$$
. Sei auch $x^{-1}\in G$, sodass $x\cdot x^{-1}=e_G=x^{-1}\cdot x$. Es gilt $y*\alpha(x^{-1})=\alpha(x)*\alpha(x^{-1})=\alpha(x\cdot x^{-1})=\alpha(e_G)=e_H$, also $\exists \alpha(x^{-1})\in \alpha(G)$, für die gilt $y*\alpha(x^{-1})=e_H=\alpha(x^{-1})*y$.

- (c) In (i) (iii) beweisen wir, dass es eine Äquivalenzrelation ist. Dann beweisen wir, dass sie verknüpfungsverträglich ist. Sei im Beweis $x, y, z, w \in G$ beliebige Elemente.
 - (i) (Reflexivität) $x \sim x$, weil $x \cdot x^{-1} = e_G \in U$.
 - (ii) (Symmetrie) Sei $x \sim y$, also $xy^{-1} \in U$. Es gilt dann, $(xy^{-1})^{-1} = yx^{-1}$. Weil U eine Gruppe ist, gilt $(xy^{-1})^{-1} \in U$, also $yx^{-1} \in U$. Daraus folgt $y \sim x$.
 - (iii) (Transitivität) Sei $x \sim y$ und $y \sim z$, also $x \cdot y^{-1} \in U$ und $y \cdot z^{-1} \in U$. Es folgt

$$x \cdot z^{-1} = \underbrace{x \cdot y^{-1}}_{\in \mathcal{U}} \cdot \underbrace{y \cdot z^{-1}}_{\in \mathcal{U}} \in \mathcal{U},$$

also $x \sim z$.

(iv) Sei $x \sim y$ und $z \sim w$, also $x \cdot y^{-1} \in U$ und $z \cdot w^{-1} \in U$. Wir möchten zeigen, dass $x \cdot z \sim y \cdot w$, also

$$x \cdot z \cdot (y \cdot w)^{-1} = x \cdot z \cdot w^{-1} \cdot y^{-1} \in U.$$

Es gilt

$$\alpha(x \cdot z \cdot w^{-1} \cdot y^{-1}) = \alpha(x) * \alpha(z \cdot w^{-1}) * \alpha(y^{-1})$$

$$= \alpha(x) * e_H * \alpha(y^{-1})$$

$$= \alpha(x \cdot y^{-1})$$

$$= e_H$$

also $x \cdot z \sim y \cdot w$.

Problem 4. (Rechnen in verschiedenen Ringen)

- (a) Bestimmen Sie das inverse Element von $\overline{6}$ in $\mathbb{Z}/4\mathbb{Z},\mathbb{Z}/5\mathbb{Z},\mathbb{Z}/7\mathbb{Z}$ bzw. $\mathbb{Z}/35\mathbb{Z}$ oder weisen Sie nach, dass es nicht existiert.
- (b) Bestimmen Sie die Charakteristik von $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ bzw. $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$, wobei die beiden Teile des Produktes als Ringe interpretiert werden und die Verknüpfung wie in 1(b) definiert wird.
- (c) Bestimmen Sie alle $z\in\mathbb{C}$, die die Gleichung z^2+2 erfüllen.
- (d) Berechnen Sie $(7+i)(6-i)^{-1}$ und geben Sie das Ergebnis ale komplexe Zahl gemäß Definition 2.4.14 an.
- (e) Bestimmen Sie die Einerstelle von 27¹⁰¹.

Proof. (a) (i) $(\mathbb{Z}/4\mathbb{Z})\overline{6} = \overline{2}$, und es gibt kein inverse Element.

$$\overline{2} \cdot \overline{0} = \overline{0}$$

$$\overline{2} \cdot \overline{1} = \overline{2}$$

$$\overline{2} \cdot \overline{2} = \overline{4} = \overline{0}$$

$$\overline{2} \cdot \overline{3} = \overline{6} = \overline{2}$$

- (ii) $(\mathbb{Z}/5\mathbb{Z}) \overline{6} = \overline{1}$. Daher ist $\overline{6} = \overline{6}^{-1}$.
- (iii) $(\mathbb{Z}/7\mathbb{Z}) \ \overline{6} \cdot \overline{6} = \overline{36} = \overline{1}.$
- (iv) $(\mathbb{Z}/35\mathbb{Z}) \ \overline{6} \cdot \overline{6} = \overline{36} = \overline{1}.$

- (b) Im Allgemein ist die Charakteristik von $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ das kleinste gemeinsame Vielfaches von a und b. Es gilt $n \cdot 1_{\mathbb{Z}/a\mathbb{Z}} = 1_{\mathbb{Z}/a\mathbb{Z}}$, und auch $n \cdot 1_{\mathbb{Z}/b\mathbb{Z}} = 1_{\mathbb{Z}/b\mathbb{Z}}$. Für $\mathbb{N} \ni n < kgV(a,b)$ kann die beides nicht per Definition nicht gelten. Die Antworten folgen:
 - (i) $(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z})$) 15
 - (ii) $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z})$ 6
- (c) $z^2 + 2 = 0$, $z^2 = -2$. Wir haben $|z|^2 = |2|$, und $|z| = \sqrt{2}$. Daraus folgt:

$$z = \pm \sqrt{2}i$$
.

(d)

$$\frac{7+i}{6-i} = \frac{(7+i)(6+i)}{(6-i)(6+i)}$$
$$= \frac{42+13i-1}{36+1}$$
$$= \frac{41+13i}{37}$$
$$= \left(\frac{41}{37}, \frac{13}{37}\right)$$

(e) $27^{101} = (3^3)^{101} = 3^{303}$. Sei *a* die Einerstells von 3^{303} . Es gilt

$$3^{303} \equiv a \pmod{10}$$
.

Wir berechnen

$$3^{1} = 3 \equiv 3 \pmod{10}$$

 $3^{2} = 9 \equiv 9 \pmod{10}$
 $3^{3} = 27 \equiv 7 \pmod{10}$
 $3^{4} \equiv 1 \pmod{10}$
 $3^{5} \equiv 3 \pmod{10}$

Daraus folgt

$$3^{303} = 3^{4 \times 75 + 3}$$

$$\equiv 3^3 \pmod{10}$$
$$\equiv 7 \pmod{10}$$

also die Einerstelle von 27¹⁰¹ ist 7.

Problem 5. Wir können analog zur Konstruktion komplexer Zahlen vorgehen, um aus $\mathbb{Z}/n\mathbb{Z}$ größere Ringe zu konstruieren, d.h. für festes $n \in N$ definieren wir auf $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ die Addition \oplus bzw. Multiplikation \odot durch

$$(a_1,b_2) \oplus (a_2,b_2) := (a_1 + a_2,b_1 + b_2)$$

bzw.

$$(a_1,b_1)\odot(a_2,b_2):=(a_1a_2-b_1b_2,a_1b_2+a_2b_1)$$

für alle $(a_1, b_2), (a_2, b_2) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

Entscheiden Sie, für welche $n \in \{2,3,4\}$ mit dieser Konstruktion ein Körper entsteht.

Proof. (n = 2) Es ist kein Körper, weil es nicht nullteilerfrei ist.

$$(\overline{1},\overline{1})\odot(\overline{1},\overline{1})=(\overline{0},\overline{2})=(\overline{0},\overline{0}).$$

(n = 3) Es ist ein Körper. Wir wissen, weil 3 ein Primzahl ist, dass $\mathbb{Z}/3\mathbb{Z}$ ein Körper ist. Wir vermuten, dass das inverse Element

$$(a,b)^{-1} = \left(a\left(a^2 + b^2\right)^{-1}, -b\left(a^2 + b^2\right)^{-1}\right),$$

was wohldefiniert ist, weil $\mathbb{Z}/3\mathbb{Z}$ ein Körper ist. Wir wissen (und werde benutzen), dass multiplikation in der ganzen Zahlen kommutativ ist. Es folgt

$$(a,b) \odot (a,b)^{-1} = \left(a^2 \left(a^2 + b^2\right)^{-1} - b^2 \left(a^2 + b^2\right)^{-1}, 0\right)$$
$$= \left(\left(a^2 + b^2\right) \left(a^2 + b^2\right)^{-1}, 1\right)$$
$$= (1,0),$$

was das neutrale Element ist (beweis gleich wie der Beweis bzgl. C).

(n = 4) Es ist noch einmal kein Körper, weil es nicht nullteilerfrei ist.

$$(\overline{2},\overline{2})\odot(\overline{2},\overline{2})=(\overline{0},\overline{4}+\overline{4})=(\overline{0},\overline{0}).$$