TEORÍA DE CIRCUITOS III Examen Final

21 de enero de 2019

Los resultados se publicarán el 22 de enero.

La revisión del examen se realizará los días 23 y 24 de enero de 2019 de 11:30 a 13:30.

Ejercicio 1

El interruptor del circuito de la figura ha permanecido abierto un tiempo elevado, y se cierra en t=0. En estas condiciones debes realizar el siguiente itinerario:

- 1. **(0,5p.)** Determinar las condiciones iniciales de las variables $u_C(0^+)$, $i_L(0^+)$, $i_R(0^+)$.
- 2. (**0,5p.**) Determinar los valores en régimen permanente de las variables $u_C(\infty)$, $i_L(\infty)$, $i_R(\infty)$.
- 3. (4p.) Dibujar el circuito en el dominio de Laplace para t>0, y resolverlo para obtener las expresiones analíticas de $I_L(s)$, $U_C(s)$, $I_R(s)$.
- 4. **(1p.)** Comprobar mediante los teoremas de valor inicial y valor final que las expresiones anteriores se ajustan a los resultados de los apartados 1 y 2.
- 5. (**1p.**) A partir de las expresiones obtenidas en el apartado 3, indica de forma razonada el tipo de transitorio existente en el circuito.
- 6. (3p.) Expresión de la variable $i_R(t)$ en el dominio del tiempo.

Ejercicio 2

En este ejercicio se analizará el comportamiento en frecuencia del circuito de la figura.

1. (4p.) Determina la función de transferencia en el dominio de Laplace

$$H(s) = \frac{V_2(s)}{V_1(s)}$$

- 2. (**1p.**) A partir de la expresión anterior, obtén la expresión normalizada de la función de transferencia en el dominio de la frecuencia, $\mathbf{H}(\omega)$.
- 3. (1p.) Determina la pulsación a la que se encuentran los polos y ceros del sistema.
- 4. **(4p.)** Dibuja el diagrama de Bode de **amplitud y de fase**. ¿Qué tipo de filtro es este circuito?

Ejercicio 3

En este ejercicio se analizará el comportamiento en resonancia del circuito de la figura. Este circuito está alimentado con una fuente de tensión sinusoidal de valor eficaz $V_g=100\,\mathrm{V}$ y frecuencia $f=1\,\mathrm{kHz}$. El condensador de salida tiene una capacidad de $C=50\,\mathrm{nF}$.

- 1. (2,5p.) Determina la inductancia necesaria para que el circuito entre en resonancia a la frecuencia del generador.
- 2. (**2,5p.**) Determina la resistencia necesaria para obtener una tensión en el condensador de $V_c = 12 \, \text{kV}$.
- 3. **(2,5p.)** A partir de los valores de *L* y *R* obtenidos, determina el ancho de banda del circuito y las frecuencias de potencia mitad.
- 4. (2,5p.) La frecuencia del generador tiene una tolerancia de ± 1 %. Manteniendo los valores de L y R obtenidos en los apartados 1 y 2, determina el valor eficaz de la corriente y la tensión en el condensador en los valores extremos de esta tolerancia.

Ejercicio 4

El circuito de la figura representa una fuente de corriente alterna sinusoidal alimentando un cuadripolo Q_1 que, a su vez, está conectado a una impedancia de carga.

- 1. (2,5p.) Determina los parámetros impedancia del cuadripolo.
- 2. **(2,5p.)** A partir del resultado obtenido en el apartado anterior, calcula la impedancia de entrada del cuadripolo. A partir de este resultado, obtén la impedancia que debe tener el generador para se produzca máxima transferencia de potencia.
- 3. (**2,5p.**) Determina los parámetros admitancia de un cuadripolo, Q_T , conformado por una asociación paralelo-paralelo de dos cuadripolos Q_1 idénticos. Dibuja los circuitos necesarios para comprobar si existe interacción entre los cuadripolos (test de Brune), y razona el resultado que se obtendría en este caso.
- 4. (2,5p.) ¿Cuál es la impedancia de entrada del cuadripolo Q_T si en su puerto de salida tiene la misma impedancia \overline{Z}_L ?

Datos:

$$X_C = 2 \Omega$$

$$\overline{Z}_L = -j2\Omega$$

