

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ: ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА: КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ

ОТЧЕТ

по пабораторной работе №

по лаобраторной работе ж								
Тема: Мультивибратор на основе операционного усилителя с								
<u>_ И</u>	интегрирующей RC-цепью (Вариант 13)							
Дисципл	Дисциплина: Электроника							
Студент		ИУ6-42Б	₩.	13.05.24	А. П. Плютто			
		(Группа)	(Подпі	ись, дата)	(И. О. Фамилия)			
Препода	ватель	•		13.05.24	Н. В. Аксенов			
* '			(Подп	ись, дата)	(И. О. Фамилия)			

Содержание

1. Задание	3
1.1. Цель работы	
1.2. Параметры схемы	3
2. Часть 1	
3. Часть 2	
4. Часть 3	
5. Вывод	

1. Задание

1.1. Цель работы

Экспериментальное исследование генератора прямоугольных импульсов, работающего в автоколебательном режиме.

1.2. Параметры схемы

Ва- ри- ант	Хрониру- ющая RC цепь		ный	Нагрузоч- Делител ный кон- напряже денсатор ния		-эжк	Хрониру- ющая RC цепь		Делитель напряже- ния	
	C_1 , н Φ	C_2 , н Φ	C_3 , п Φ	C_4 , п Φ	R ₁ , кОм	R_2 , к O м	R_3 , к O м	R_4 , к O м	R_5 , к O м	R ₆ , кОм
13	35	70	0.02	0.15	30	60	30	30	60	30

2. Часть 1

Схема с мультивибратором, данная по условию показана на рисунке 1:

Рисунок 1 — Схема с мультивибратором

Исследование влияния постоянной времени хронирующей RC-цепи на период генерируемых колебаний:

1) Графически показано на рисунке 2:

Рисунок 2 — Анализ переходных процессов для С₁

Красное – область прямоугольных импульсов – на выходе, синее – хронирующая RC-цепь, зеленое – цепь делителя

$$T=1,4905*10^{\text{-}3}$$
для C_1

$$T=2,9441*10^{-3}$$
 для C_2

2) Аналитически:

$$T=2*C_1*R_3*\ln\left(1+2\frac{R_1}{R_5}\right)=1,455*10^{\text{-3}}\text{c},\text{погрешность }3\%$$

$$\tau=R_3*C_1=10^{\text{-3}}\text{c}$$

$$T=2*C_2*R_4*\ln\left(1+2\frac{R_5}{R_6}\right)=2,911*10^{\text{-3}}\text{c},\text{погрешность }2\%$$

$$\tau=R_4*C_2=21*10^{\text{-4}}\text{c}$$

3. Часть 2

Исследование влияния коэффициента передачи β цепи положительной обратной связи на период генерируемых колебаний:

Используем нижеперечисленные формулы для заполнения таблицы:

$$\beta = \frac{R_1}{R_1 + R_5}$$

$$\mathbf{T} = 2\mathbf{C}_1 R_3 \ln \left(1 + 2\frac{R_1}{R_5}\right)$$

R_1	R_5	β	$T_{\scriptscriptstyle exttt{BЫЧ CeK}}$	$T_{ m rpa \phi \ cek}$	6%
30	60	0,333	0,001455609	0,00149	2
30	30	0,5	0,002307086	0,00233	1
60	30	0,667	0,00337982	0,0034	1
90	30	0,75	0,004086411	0,0041	0

4. Часть 3

Исследование влияния ёмкости нагрузочного конденсатора на длительность фронта и среза выходных:

Рисунок 3 — Анализ переходных процессов для C_2

Пример графика для C_3 с значением $0{,}02$ п Φ показан на рисунке 4:

Рисунок 4 — Анализ переходных процессов для $C_3=0,25$ пФ $\left(au_{\Phi}\right)$

Рисунок 5 — Анализ переходных процессов для $C_3=0,15~\pi\Phi~\left(au_{\rm cp}\right)$ Вычисления, сделанные по 4-ем графикам показаны в таблице:

С3, пФ	$ au_{ ext{конд}},$ с	$ au_{ m \varphi}$, c	$ au_{ m cp},$ c
0,02	0,0000002	0,0000192	0,0000192
0,15	0,0000015	0,000116	0,000116
0,25	0,0000025	0,000193	0,0001931
0,35	0,0000035	0,000271	0,000271

Из таблицы видно, что значение нагруженной ёмкости влияет на значение переднего и заднего фронта.

5. Вывод

Экспериментально исследовал генератор прямоугольных импульсов, работающего в автоколебательном режиме.