Zad.1. Uruchomić aplikację *CX-Programmer*. Z menu *File* należy wyrać *New...* (*File→New...*).

- Device Name nazwa projektu.
- Device Type model PLC wykorzystany w projekcie.
- Network Type interfejs do połączenia PC z PLC.
- Comment miejsce na własny komentarz.

W kolejnym kroku należy wprowadzić następujący program.

Ćwiczenie nr 1: Wprowadzenie do języka LD

Z menu Simulation należy wybrać Work Online Simulator (Simulation→Work Online Simulator). Jeżeli tło zmieni kolor na szarny symulator zostanie uruchomiony.

Po sprawdzeniu działania programu symulator można zamknąć korzystając z sekwencji Simulation→Work Online Simulator.

Kolejnym krokiem jest przesłanie programu do sterownika. Pierwszym krokiem jest wybranie z menu PLC polecenia Work Online: $PLC \rightarrow Work$ Online. Jeżeli tło programu zmieni kolor z białego na szare to oznacza połączenie z PLC. Następnie należy przesłać program do sterownika: $PLC \rightarrow Transfer \rightarrow To\ PLC...$

Zad.2. Uruchomić aplikację *CX-Programmer*. Z menu *File* należy wyrać *New...* (*File→New...*).

W drzewie projektu należy rozwinąc zakładkę *Programs* i wybrać pozycje *Symbols*.

Naciśnij prawy przycisk myszki w oknie *Symbols*, a następnie wybierz *Insert Symbol*.

Wprowadź nazwę (Name) i adres w pamięci PLC (Address or value).

Wprowadź symbole dla stanowiska na którym wykonujesz ćwiczenie:

Stanowisk o	Symbol wejścia	Wejście	Symbol wyjścia	Wyjście
Omron #1	przycisk_1	0.0	wy_1	100.0
	przycisk_2	0.1	wy_2	100.1
	przycisk_3	0.2	wy_3	100.2
Omron #2	przycisk_1	0.0	wy_1	100.0
	przycisk_2	0.2	wy_2	100.1
	przycisk_3	0.3	wy_3	100.2
Omron #3	przycisk_1	0.0	wy_1	100.0
	przycisk_2	0.2	wy_2	100.1
	przycisk_3	0.4	wy_3	100.2

Omron #4	przycisk_1	0.0	wy_1	100.0
	przycisk_2	0.1	wy_2	100.2
	przycisk_3	0.3	wy_3	100.3

Zad.3. Korzystając z wprowadzonych symboli należy stworzyć, w środowisku *CX-Programmer* poniższy program.

Przygotowany program należy przesłać do PLC i sprawdzić jego działanie.

Zad.4. Korzystając z wprowadzonych symboli należy stworzyć, w środowisku *CX-Programmer* poniższy program. Przygotowany program należy przesłać do PLC i sprawdzić jego działanie.

```
przycisk_1 przycisk_2 wy_1
```

Zad.5. Korzystając z wprowadzonych symboli należy stworzyć, w środowisku *CX-Programmer* poniższy program. Przygotowany program należy przesłać do PLC i sprawdzić jego działanie.

```
przycisk_1 wy_2
przycisk_2
```

Zad.6. Korzystając z wprowadzonych symboli należy stworzyć, w środowisku *CX-Programmer* poniższy program. Przygotowany program należy przesłać do PLC i sprawdzić jego działanie.

```
przycisk_1 przycisk_2 wy_3

przycisk_3
```

Zad.7. Korzystając z wprowadzonych symboli należy stworzyć, w środowisku *CX-Programmer* poniższy program. Przygotowany program należy przesłać do PLC i sprawdzić jego działanie.

```
przycisk_1 przycisk_2 wy_3

przycisk_3 wy_2
```

Zad.8. Korzystając z wprowadzonych symboli należy stworzyć, w środowisku *CX-Programmer* poniższy program. Przygotowany program należy przesłać do PLC i sprawdzić jego działanie.

```
przycisk_1 przycisk_2 W0.00

przycisk_3 wy_3
```

Zad.9. Korzystając z wprowadzonych symboli należy stworzyć, w środowisku *CX-Programmer*, poniższe programy. Przygotowane programy należy przesłać do PLC i sprawdzić ich działanie działanie.

```
przycisk_1 wy_3

| przycisk_1 przycisk_2 | W0.01 |
| W0.01 | wy_2 |
```

Zad.10. Korzystając z wprowadzonych symboli należy stworzyć, w środowisku CX-Programmer, program realizujący następujące zadanie sterowania:

- 1. $wy_1 = przycisk_1 | przycisk_2$
- 2. $wy_2 = wy_1 \& przycisk_3$
- 3. *wy_2* powinno być aktywne także w przypadku zaniku któregokolwiek sygnału.

Przygotowane programy należy przesłać do PLC i zaprezentować jego działanie prowadzącemu zajęcia. Po wykonaniu zadania plik cxp należy przesłać na adres e-mail widoczny w stopce, wraz z podaniem autorów rozwiązania.

- **Zad.11.** Korzystając z wprowadzonych symboli należy stworzyć, w środowisku CX-Programmer, program realizujący następujące zadanie sterowania:
 - 1. załączy i podtrzyma wy_3 jeżeli zostanie naciśnięty przycisk_3 oraz przycisk_2 lub przycisk_1;
 - 2. załączy wy_3 jeżeli zostanie naciśnięty przycisk_2 i przycisk_3.
- **Zad.12.** Funkcja **KEEP**. Korzystając z wprowadzonych symboli należy stworzyć, w środowisku *CX-Programmer*, poniższe programy. Przygotowane programy należy przesłać do PLC i sprawdzić ich działanie działanie.

Stanowisko	Symbol wejścia	Wejście	
Omron #1		0.3	
Omron #2	przycisk_4	0.1	
Omron #3		0.1	
Omron #4		0.2	

Zad.13. Funkcje **SET/RSET**. Korzystając z wprowadzonych symboli należy stworzyć, w środowisku *CX-Programmer*, poniższe programy. Przygotowane programy należy przesłać do PLC i sprawdzić ich działanie działanie.

Zad.14. Flagi P. Korzystając z wprowadzonych symboli należy stworzyć, w środowisku *CX-Programmer*, poniższe programy. Przygotowane programy należy przesłać do PLC i sprawdzić ich działanie działanie.

```
P_First_Cycle Flag

P_On przycisk_1 wy_1

Always ON Flag

W0.04

P_Off W0.04

Wy_2

Always OFF Fl...

P_1s W0.04 W0.05

1.0 second clo...
```

Zad.15. Timer. Korzystając z wprowadzonych symboli należy stworzyć, w środowisku *CX-Programmer*, poniższe programy. Przygotowane programy należy przesłać do PLC i sprawdzić ich działanie działanie.

Składnia do konfiguracji timera: **TIM 1 #100**

```
TIM 0001 #100 wy_1
```

Zad.16. Korzystając z wprowadzonych symboli należy stworzyć, w środowisku *CX-Programmer*, poniższe programy. Przygotowane programy należy przesłać do PLC i sprawdzić ich działanie działanie.

Zad.17. Korzystając z wprowadzonych symboli należy stworzyć, w środowisku *CX-Programmer*, poniższe programy. Przygotowane programy należy przesłać do PLC i sprawdzić ich działanie działanie.

- **Zad.18.** Wygnerować 4s impuls na *wy_2*, wyzwalany naciśnięciem przycisku *przycisk_3*.
- **Zad.19.** Wygenerować 2 5s impulsy na *wy_1* wyzwalane naciśnięciem przysiku *przycisk_1*. Drugi z impulsów powinien zostać wygenerowany 8s po zakończeniu pierwszego impulsu.
- **Zad.20.** Korzystając z wprowadzonych symboli należy stworzyć, w środowisku CX-Programmer, program realizujący następujące zadanie sterowania:
 - 1. wy_1 jest załączne 5s po naciśnięciu przycisk_1 lub przycisk_2;

- 2. wy_2 jest załączne 3s po naciśnięciu przycisk_1 i przycisk_2;
- 3. przycisk 3 resetuje system.
- **Zad.21.** Przygotować program w języku LD, wygeneruje sygnał prostokątny o częstotliwości 2Hz i wypełnieniu 50% na wy_2.
- **Zad.22.** Przygotować program, który wykryje czy użytkownik nacisnał 4 razy przycisk_2 w ciągu 10s po naciśnięciu przycisk_1.

Dla zainteresowanych:

CX-Programmer Introduction Guide:
 www.fa.omron.com.cn/data pdf/mnu/r132-e1-05 cx-programmer.pdf?
 id=1605

amming manual en.pdf

2. CP1L Programming Manual: assets.omron.eu/downloads/manual/en/v1/w451 cp1 cpu unit progr