(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

) 1889 AND BURNER (NEW MEDIU DE COME DE LE C

(43) International Publication Date 11 October 2001 (11.10.2001)

PCT

(10) International Publication Number WO 01/75204 A2

(51) International Patent Classification7:

D04H 1/70

(21) International Application Number: PCT/FI01/00331

(22) International Filing Date: 5 April 2001 (05.04.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/543,534

5 April 2000 (05.04.2000) US

(71) Applicant (for all designated States except US): AHLSTROM GLASSFIBRE OY [FI/FI]; Ahlströmintie 19, P.O. Box 18, FIN-48601 Karhula (FI).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RÖKMAN, Kay [FI/FI]; Pylkönmäenkatu 4 as. 15, FIN-48600 Karhula (FI). JANSSON, Juhani [FI/FI]; Norkkokatu 31, FIN-48700 Karhula (FI). KOSTAMO, Harri [FI/FI]; Nummitie 21, FIN-49300 Tavastila (FI). BOHM, Juha [FI/FI]; Lahdenkatu 19, FIN-48910 Kotka (FI).

(74) Agent: AHLSTROM KARHULA SERVICES LTD; Intellectual Property Department, P.O. Box 18, FIN-48601 Karhula (FI).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CHOPPED STRAND NON-WOVEN MAT PRODUCTION

(57) Abstract: A non-woven mat useful for a wide variety of purposes, including forming reinforced resin products, is produced in a manner having different specific uses of, and advantages over, conventional chopped strand mats and conventional glass tissue. The mat is preferably made by the foam process (but may be made by the liquid process), and at speeds well in excess of 60 m./min., and has a substantially uniform construction even when low density (e.g. 100 g/m² or less). At least 20 % (preferably at least 85 %) of the fibers are in fiber bundles with between 5-450 fibers/bundle. The fibers (typically at least 85 %) have a length between 5-100 mm, preferably 7-50 mm, substantially the same as the length of the fiber bundle they are in. The fibers are preferably held in the bundles by substantially non-water soluble sizing, such as epoxy resin or PVOH. The fibers in the bundles typically have diameters of approximately 7-500 microns, preferably about 7-35 microns. The bundles may comprise at least 10 % reinforcing fibers, such as glass, aramid or acrylic.

VO 01/75204 A2

CHOPPED STRAND NON-WOVEN MAT PRODUCTION

BACKGROUND AND SUMMARY OF THE INVENTION

In the manufacture of a wide variety of products, especially molded products, chopped fiber (e.g. glass fiber) mats are used in the molding operation and typically saturated with resin. These mats have conventionally been produced by air laid techniques, at a production rate that is normally between about 20-30 m/min., and must be relatively thick/dense otherwise they have too many holes and discontinuities to be fully effective in molding on other subsequent processing operations. These mats are typically made of fiber bundles having five or more fibers per bundle, typically about 10-450 fibers/bundle.

5

10

15

20

25

30

Glass tissue produced by the wet laid method or by the foam method comprises individual fibers or fiber bundles with very few (typically less than five) fibers in a bundle. Sometimes, some fiber bundles have not dispersed fully into the slurry. These poorly dispersed fiber bundles are elongated bundles, because the individual fibers of the bundle have slid with respect to each other. The length of an elongated fiber bundle is much longer than the length of the individual fibers. The fiber bundles that enter the slurry formation process comprise fibers that have the same length as the fiber bundle, since the yarn (typically about 10-450 fibers) is cut into bundles having a predetermined length in cutters. Elongated fiber bundles are defects in the fiber tissue, causing an uneven surface configuration of the tissue. In a poor quality glass tissue, there may be as much as about 5 - 10 % elongated fiber bundles.

Exemplary prior art techniques for making glass fiber mats by the air laid method and making glass fiber tissue by the wet laid method are described in K.L. Loewenstein: The Manufacturing Technology of Continuous Glass Fibres, 1993 (incorporated by reference herein).

According to the present invention the limitations of the prior art mats described above are substantially overcome or minimized by employing one or more simple yet effective techniques. According to the present invention

10

15

20

25

30

2

preferably the fibers are held in the bundles with a non-water soluble sizing, such as epoxy resin or PVOH, and/or 5-450 (e.g. about 10-450) fibers are provided in each bundle, each fiber having a diameter of about 7-500 microns, preferably about 7-35 microns, and at least about 85% of the fibers have a length of 5-100 mm, preferably about 7-50 mm (and all narrower ranges within these broad ranges).

According to the invention it is possible to produce mats having a substantially uniform density yet can be of much lower density than can be produced using air laid techniques. For example, mats can be produced having a density as low as 50 gm/in², or even less. The mats may be produced much more rapidly than by air laid techniques, and a wider variety is possible. For example, mats having multiple layers of different physical properties and/or compositions may readily be produced. These advantageous results are accomplished by using a water or foam laid process, so that production speeds of well over 60 m/min. (typically over 80 m/min, e.g. about 120 m/min.) are readily achieved, along with highly uniform mats of a wide variety of constructions. Utilization of the foam process is preferred, however, for many reasons, including process efficiency. Using the foam process the slurry can have 0.5-5% (or any smaller range within that broad range) fibers by weight, whereas in the wet laid process the maximum fiber content is about 0.05% by weight. If a larger percentage of fibers is used in the wet laid process then the viscosity of the liquid must be increased (by introducing additives), and that causes several problems, including the formation of air bubbles. This would require still further additives, making the wet laid process much more difficult and expensive compared to the foam process.

According to one aspect of the present invention there is provided a non-woven mat of chopped strands, comprising: A plurality of fibers disposed in a non-woven configuration to define a mat. At least 20% of the fibers in fiber bundles having between 5-450 fibers per bundle and the length of the bundles being substantially the same as the lengths of the fibers forming the bundles, and wherein at least 85% of the fibers of the fiber bundles have a diameter of between about 7-500 microns.

Preferably at least 85%, up to substantially 100%, of the fibers in the bundles have a length of between 5-100 mm, preferably 7-50 mm, most preferably between about 20-30 mm, and at least 50%, preferably at least 85% of substantially 100%, of the fibers in the bundles have a diameter of between 7-35 microns. Typically the fibers in the fiber bundle are held together with a substantially water insoluble sizing, such as epoxy resin or PVOH. Preferably substantially all of the fibers in a bundle are substantially straight.

5

10

15

20

25

30

The invention is particularly useful where at least 10% (preferably at least about 50%, up to substantially 100%) of the fibers in fiber bundles comprise reinforcement fibers selected from the group consisting essentially of glass, aramid, carbon, polypropylene, acrylic, and PET fibers, and combinations thereof. The invention is particularly suitable for use with glass fibers.

By practicing the invention it is possible to make mats with an extremely wide density range, e.g. between about $50\text{-}900~\text{g/m}^2$, yet with substantially uniform density. For example, the mat may have a substantially uniform density of less than $75~\text{g/m}^2$ (even below $50~\text{g/m}^2$ depending the fibers utilized). When the mat has a density between about $50\text{-}150~\text{g/m}^2$, 90% of the fibers in the fiber bundles have between 10-200~fibers per bundle. Typically at least 85% of the fibers in the fiber bundles have between 10-450~fibers per bundle and a length substantially the same as the length of the fiber bundle.

According to another aspect of the present invention a method of producing a non-woven chopped strand mat is provided comprising: (a) Forming a slurry of fibers in a liquid or foam (preferably foam) wherein at least 20% of the fibers in the slurry are in fiber bundles in which the fibers are held in the bundles by a substantially non-water soluble sizing. (b) Forming a non-woven web from the slurry on a foraminous element. And (c) withdrawing at least one of liquid and foam from the slurry on the foraminous element so as to form a non-woven mat. Preferably the slurry in (a) has between about 0.5-5% by weight fibers. The liquid process practice may be entirely conventional, and the foam process practice may be such as shown in U.S. patent 5,904,809, issued May 18, 1999 (the disclosure of which is hereby incorporated by

WO 01/75204 PCT/F101/00331

reference herein). The invention also relates to products made from this method.

5

10

15

20

25

30

4

Because the invention uses a liquid or foam process as opposed to air laid process, the speeds of production are much greater. That is, (b) and (c) may be practiced at a speed of at least 60 m/min, typically at least 80 m/min, and may easily achieve speeds of 120 m/min. The foraminous may have any suitable conventional construction such as a conventional wire, or dual or multiple wires, etc. For example (a) - (c) may even be practiced using a moving web of fabric which becomes part of the mat produced as the foraminous element (or one of a plurality of such elements). Also by utilizing the invention (particularly such as by utilizing a segmented head box, such as shown in copending application Serial No. 09/255,755, filed February 23, 1999 (Attorney Docket 30-496), the disclosure of which is incorporated by reference herein, or U.S. Patent 4,445,974.

In the method typically (a) forming a slurry of fibers in a liquid or foam (preferably foam) wherein at least 20% of the fibers in the slurry are in fiber bundles in which the fibers are held in the bundles by a substantially non-water soluble sizing; (b) forming a non-woven web from the slurry on a foraminous element; and (c) withdrawing at least one of liquid and foam from the slurry on the foraminous element so as to form a non-woven mat. For example (a) is practiced using at least 10% (for example at least 50%, and at least 85%, up to substantially 100%) of reinforcing fibers in the fiber bundles, the reinforcing fibers selected from the group consisting essentially of glass, acrylic, aramid, carbon, polypropylene, and PET fibers, and combinations thereof. Also, (a)-(c) may be practiced so as to produce a mat having a substantially uniform density of between about 50-150 gm/m2.

The method may further comprise producing a second mat from at least a second slurry having a different fiber composition or density than the slurry from (a), and laying the at least a second slurry in a substantially non-mixing manner on the slurry from (a) to produce a composite mat having at least two substantially distant layers with different fiber compositions or densities. Alternatively or in addition the method may further comprise (d) providing at

WO 01/75204 PCT/FI01/00331

least one surface layer on the mat and affixing the at least one surface layer to the mat with a binder. The method typically further comprises curing the binder from (d) and drying the web in a drying oven. For example (a) is further practiced using heat activated binder power or fibers in the slurry.

5

10

15

20

25

30

5

According to another aspect of the present invention there is provided a method of producing a non-woven chopped strand mat comprising: (a) Forming a slurry of fibers in a liquid or foam wherein at least 20% of the fibers in the slurry are in fiber bundles having between 10-450 fibers/bundle and a length substantially the same as the length of said fiber bundle, which length is between 5-100 mm for at least 85% of the fibers in bundles, and a diameter of the fibers in bundles of between 7-500 microns. (b) Forming a non-woven web from the slurry on a foraminous element. And (c) withdrawing at least one of liquid and foam from the slurry on the foraminous element so as to form a non-woven mat. The details of this aspect of the invention are preferably substantially as described above.

According to another aspect of the present invention there is provided a composite product comprising outer layers made from resin impregnated and cured mats as described above and an inner layer of at least one of inexpensive fibers, scrap fibers, and material of significantly lower density than said outer layers. A fiber based web may be manufactured from the foam process comprising at least two layers (or parts of layers) with different physical or chemical properties.

The invention also relates to a non-woven fibrous composite web manufactured by using a liquid or foam based process using a "multi-layer headbox" and/or "divided headbox", having at least two layers having substantially different properties, including at least one of different density, different material, different reinforcement threads, and different reinforcement webs. The composite web may comprise threads or webs of substantially continuous fibers and with directional properties, e.g. reinforcement threads and webs with directional strength properties that are fed to the web through the headbox. At least a part of the composite web may comprise a heat-activated binder in a powder form or in a fibrous form. At least 20% (e.g. at

10

15

20

25

30

least 40%) of the fibers fed to a headbox may be attached to each other to form fiber bundles by using some appropriate hydrophobic sizing-agent such as epoxy resin or PVOH. Preferably the length of the fibers in a fiber bundle is substantially the same as the length of the fiber bundle, and the number of fibers in a fiber bundle is variable and preferably between about 10–450 fibers, and the length of the fibers in a fiber bundle is about 5-100 mm, preferably about 7-50 mm. At least on one side of the composite non-woven web there may be at least one surface layer of fabric that is attachable to the non-woven composite web by binders on the surface of the fabric or on the web in a drying oven (or the like) positioned after the web-formation apparatus (headboxes).

According to the present invention all narrower ranges within the broad ranges set forth above are specifically provided herein. For example, the diameter of the fibers in the bundles of between 7-500 microns comprises 9-450 microns, 10-30 microns, 9-300 microns, and all other narrower ranges within the broad range specified.

It is the primary object of the present invention to provide a highly advantageous mat, products made from the mat, and a method of production of the mat, that overcome a number of the problems in the prior art chopped glass fiber mat and glass tissue arts. This and other objects of the invention will become clear from a detailed description of the invention and from the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a schematic enlarged perspective view of an exemplary fiber bundle utilized according to the present invention.

FIGURE 2 is a schematic partially side and partially end view of an exemplary fiber utilized according to the present invention and coated with sizing;

FIGURE 3 is a box diagram of an exemplary method according to the invention:

FIGURE 4 is a side schematic view of an exemplary mat according to the invention and showing various modifications thereof in dotted line; and

WO 01/75204 PCT/F101/00331

7

FIGURE 5 is a side schematic cross-sectional view of an exemplary composite product according to the invention.

DETAILED DESCRIPTION OF THE DRAWINGS

FIGURE 1 schematically illustrates at reference numeral 10 a fiber bundle according to the present invention. The fiber bundle 10 is made up of a plurality of individual fibers 11, typically between 5-450 fibers, more preferably between about 10-450 fibers, and any other narrower range within that broad range (such as set forth in Table I below). The fibers 11 in the bundle 10 are preferably held together with a substantially water insoluble sizing (shown schematically at 12 in FIGURE 1), such as PVOH or epoxy resin, although a wide variety of other conventional sizings may be utilized.

5

10

15

20

25

30

As contrasted to the small numbers of fibers held in glass tissue bundles, for the fiber bundles 10 according to the present invention the length 13 of the fiber bundle 10 is substantially the same as the length of the individual fibers 11 forming the bundle 10. The length 13 of the individual fibers (also see the fiber 11 in FIGURE 2 with sizing 12 coating), which again is substantially the same as the length of the fiber bundle, is typically between about 5-100 mm, preferably about 7-50 mm, most preferably about 20-30 mm. Typically at least 85% of the fibers in the bundles have a length of between 5-100 mm, preferably about 7-50 mm, most preferably about 20-30mm. Also, preferably the fibers 11 have a diameter 14 (see FIGURE 2) which is between about 7-500 microns, preferably between 7-35 microns.

Note that substantially all of the fibers 11 in the bundle 10 are substantially straight, regardless of the material of which they are made (e.g. glass, aramid, carbon, etc.). The sizing 12 provides each fiber 11 with a protective coating, and causes the fibers (typically between 5-450 in number, e.g. about 100) 11 to adhere together in the bundle 10.

FIGURE 3 schematically illustrates an exemplary practice of a method according to the present invention. Box 16 schematically illustrates the formation of a slurry of fibers 11 in a liquid or foam wherein at least 20% (preferably at least 50%, more preferably at least 85% up to substantially

100%) of the fibers in the slurry are in fiber bundles 10 in which the fibers are held in the bundles by non-water soluble sizing 12. A binder may, under some circumstances (although it is not necessary under others) be added to the slurry at 16, or at some subsequent procedure during processing, which binder is subsequently cured to increase the integrity of the mat produced. Box 17 schematically illustrates forming a non-woven web from the slurry on a conventional foraminous element, which may be a single wire, dual wires, a fabric which becomes part of the mat produced, or any other suitable conventional foraminous element. The procedure practiced as illustrated by box 17 may be a conventional liquid process procedure utilizing a head box or the like conventional structure (e.g. see U.S. Patent 4,445,974), or may be the foam process, such as shown in U.S. Patent 5,904,809.

5

10

15

20

25

30

The method further proceeds to withdrawing liquid and/or foam from the web on the foraminous element, as illustrated schematically at 18 in FIGURE 3, typically utilizing vacuum boxes or rolls, or the like. The liquid/foam withdrawal, and preferably the subsequent drying and/or curing in an oven as schematically illustrated at 19, results in mat 20 production (see the mats 26 schematically illustrated in FIGURES 4 and 5). The mat from 20 may be further processed as indicated at 21, which typically includes utilizing the mat as a reinforcing structure in a molding process wherein the mat is impregnated with resin to produce a functional article including, but not limited to, water sport boards, electrical component casings, industrial containers, automobile, boat, or other vehicle parts, etc.

As schematically illustrated at 22 in FIGURE 3, other slurries having different fiber composition or physical properties (such as density) may also be formed and -- as illustrated schematically at 23 in FIGURE 3, multiple layers may be provided on the foraminous element, such as shown in copending application Serial No. 09/255,755. Box 24 schematically illustrates an optional alternative or additional location for binder addition, as described above. Wherever the binder (if used) is added, it may be added in liquid, powder, or fiber form.

In the practice of the invention it is particularly desirable that at least 10% (preferably at least 50%, and often at least 85% up to substantially 100%) of the fibers 11 in the fiber bundles 10 comprise reinforcement fibers selected from the group consisting essentially of glass, aramid, carbon, polypropylene, acrylic, and PET fibers, and combinations thereof; for example about 50% of the fibers in the fiber bundles comprise glass fibers in the manufacture of many common articles. The density of the mat 26 (see FIGURES 4 and 5) produced may vary widely, between about 50-900 g/m². For example. Table I below indicates exemplary mat densities that may be produced according to the present invention and shows the minimum and maximum number of fibers 11 in the bundles 10 forming at least about 85% of the mat so produced. The split percentages given in Table I indicate the minimum and maximum percentage of fiber bundles 10 with the number of fibers in the bundles set forth for the corresponding density mat in Table I.

15

20

10

TABLE I			split		split %	
Weight	Fibers in bundles			min	min	max
g/m²	min	max	max	5	60	95
50	10	200	20	5	60	95
100	10	200	20	5	60	95
125	15	200	20		60	95
150	15	200	20	5	60	95
	20	200	15	5	60	95
200	20	200	15	5	60	95
225	30	250	15	5		98
250	30	250	15	5	60	98
300		300	15	5	60	
450	50	400	12	5	60	98
600	50		10	5	60	98
900	50	450 e between 7	10 25 m	sicro meter	rs	

The values set forth in Table I are approximate.

The terms "split" and "split %" used in Table I are best described with respect to the normal production method of glass fiber bundles. The diameter of the fibers used is between 7-35 $\mu m,\,e.g.$ about 11 $\mu m.$

The number of nozzles used to produce fibers (e.g. glass fibers) can vary from 1600-4000, usually divided into at least two bushings. If there are

10

15

20

25

30

1600 nozzles divided into two bushings, 800 + 800 fibers are drawn downwardly from the nozzles. First they are treated by applicators with a spray of sizing agent; according to the invention the sizing agent is substantially water

PCT/F101/00331

The term "split 8" then means that the first 800 fibers and the second insoluble. 800 fibers are both gathered by a gathering shoe or comb so that they form 8 + 8 bundles, each containing 100 fibers. Each of the 8 bundles are then wound to make a fiber cake. The fibers in the bundles are not twisted, they just form a straight parallel bundle of continuous fibers.

The fiber cakes are drawn towards cutters, e.g. the bundles each having 100 fibers are then cut to certain length e.g. 20-30 mm and then fed to an endless chain link belt. According to the invention the 20-30 mm long fibers are fed from the cutters to a foam or liquid process so that a slurry of fibers in a liquid or foam is formed.

Substantially all of the fibers that are used according to the invention are treated by a water insoluble sizing agent so that when they are gathered together by a gathering shoe they stay together in a bundle. Sizing agent is used before the fibers are gathered together to provide sizing over substantially the entire fiber surface and to "glue" the fibers together when they are split or gathered together to form bundles.

The term "split" as used in Table I will be described with respect to a specific example: For a 50 g/m² weight mat, and 1600 nozzles, if one uses the maximum split, 20, that means that 800 + 800 fibers are split into 20 + 20 bundles of fibers, each bundle containing 40 fibers. If one uses the minimum split, 5, that will give 5 + 5 bundles and 160 fibers per bundle. There is a minimum number of bundles that are needed to produce an even surface in a 50 g/m² mat. If there are too very few bundles, the surface of the mat is very rough; and there are only a few thick "logs" and the mat is very coarse. The more bundles there are, and thus the few fibers per bundle, the better and more even is the surface of the mat produced. According to the invention the formation of the mat produced by a foam process is superior compared to a mat of similar fibers having the same g/m² and the same split and produced by WO 01/75204 PCT/FI01/00331

11

the conventional air laid process. This means that by using the foam process the bundles are very, very evenly distributed over the surface of the mat compared to the distribution produced by the air laid process.

The term "split %" as used in Table I describes how well these fibers stick together in the 20-30 mm long bundles that each contain, e.g. 100 fibers. This is very important in illustrating the difference between a chopped strand mat (regardless of the method by which it is produced; an air laid process, or the liquid or foam processes), and a tissue mat, especially a poor quality tissue mat.

5

10

15

20

25

30

In a tissue mat the fibers are, or should be, individual fibers. Sometimes they however tend to form bundles. When you have a poor quality tissue mat there can be as many as 10% of the fibers in bundles. Sometimes a "poor quality" tissue mat is produced intentionally to produce specific products e.g. base material for roof coverings. In this "poor quality" case some individual fibers have formed bundles, but these bundles are just a collection of individual fibers arranged in a random way. The length of this kind of bundle is substantially higher than the lengths of individual fibers.

There is a difference between a chopped strand mat produced by the foam method and a tissue mat produced by the foam method. In a chopped strand mat all the fibers should be in bundles and because of the technique used (formation of the bundles and the use of cutters) the length of the bundles in a chopped strand mat is substantially the same as the length of the fibers that form the bundle. Also at least 20% of the fibers that enter a headbox are in bundles and in practice about 60-98%, e.g. about 80%. The 100% ideal situation is not reality; two bundles can sometimes be glued together; also one bundle can split into individual fibers by mechanical collisions before it enters the wire or during the time it is exposed to water or water based foam, because of poor sizing on some fibers in a fiber bundle.

The "split %" describes how well one has succeeded in making the chopped strand bundles. The split % describes how many of the fibers that enter the chopped strand mat are in individual bundles. According to the invention the chopped strand bundles are collected after the cutters to be used

10

15

20

25

30

in the foam based process. The "min" and "max" columns under "split %" in Table I indicate that between 60-98% (average 80%) of the fibers in a chopped strand mat (after the cutters) are in individual bundles, not loose as individual fibers or joined together as two bundle "logs".

Because the wet laid or foam processes are utilized in the practice of the invention, the speed of formation of the mats 26 may be greatly increased compared to air laid process which is used for conventional chop strand mats, and with little or no trapped air. According to the present invention the procedures set forth in boxes 17 through 19 of FIGURE 3 may be practiced at at least 60 meters per minute, typically at least 80 meters per minute, and speeds of at least 120 meters per minute are easily achievable.

Also by practicing the invention it is possible to produce mats 26 have a substantially uniform density of less than 75 g/m², which is not practical utilizing conventional techniques. In conventional techniques where the mat has a density of about 100 g/m² or less the construction of the mat is non-uniform, there being holes or discontinuities which adversely affect the strength of the product (e.g. a molded industrial container or vehicle part) produced therefrom. However, according to the present invention mats 26 with substantially uniform density may be easily produced with a density of about 50-150 g/m², and possibly even lower densities, typically with at least 60% (e.g. about 60-95%) of the fiber bundle 10 having between 10-200 fibers 11 per bundle, each fiber 11 with a diameter between 7-35 microns.

FIGURE 4 illustrates a composite mat construction 25 that may be produced according to the invention, in which the mat produced from the slurries illustrated in box 16 is formed on a fabric 27 as the foraminous element, the fabric 27 then becoming an integral part of the final product 25. FIGURE 4 also schematically illustrates in dotted line a second mat 28 formed from another slurry 22 which has fiber and/or physical properties differing from that of the mat 26 (typically different by at least 5%, and preferably differing by at least 10% in both fiber composition/mixture and physical properties).

Utilizing the present invention it is possible to produce composite products which have high strength but much less expensively than in

conventional constructions. FIGURE 5 schematically illustrates one such composite product 29 which has mats 26 according to the present invention (which may have substantially the same, or different, fiber compositions and physical properties) which are processed in a further processing 21 schematically illustrated in FIGURE 3 to form a sandwich with an inner layer 30 of at least one of inexpensive or scrap fibers, and material of significantly (e.g. at least 5%, preferably at least 20%) lower density than the outer mat layers 26. For example, the layer 30 may be scrap fiberglass and plastic fibers, or foam (with a density less than 20% that of the mats 26), or scrap fibers in a foam,

5

10

15

20

In the practice of the invention the foam process is preferred, with about 0.5-5% by weight fibers 11 (in bundle 10 form) in the slurry 16 (see FIGURE 3), without the need for any viscosity enhancing or bubble-formation reducing

It will thus be seen that according to the present invention a highly advantageous method and products and composites are provided. The invention has numerous advantages over the related prior art, yet may be practiced in a simple and cost effective manner. While the most practical and preferred embodiment of the invention has been illustrated and described, it is to be understood that many modifications may be made thereof within the scope of the invention, which scope is to be accorded the broadest interpretation of the appended claims so as to encompass all equivalent methods, mats, and composites.

WHAT IS CLAIMED IS:

5

10

1. A non-woven mat of chopped strands, comprising:

a plurality of fibers disposed in a non-woven configuration to define a mat;

at least 20% of said fibers in fiber bundles having between 5-450 fibers per bundle and the length of said bundles being substantially the same as the lengths of the fibers forming said bundles, and wherein at least 85% of said fibers of said fiber bundles have a diameter of between about 7-500 microns; and

wherein said fibers in said fiber bundles are held together with a substantially water insoluble sizing.

- 2. A non-woven mat as recited in claim 1 wherein at least 85% of said fibers in said bundles have a length of between 5-100 mm.
- 3. A non-woven mat as recited in claim 2 wherein at least 85% of said15 fibers in said bundles have a diameter of between 7-35 microns.
 - 4. A non-woven mat as recited in claim 1 wherein at least 10% of the fibers in said fiber bundles comprise reinforcement fibers selected from the group consisting essentially of glass, aramid, carbon, polypropylene, acrylic, and PET fibers, and combinations thereof.
- 5. A non-woven mat as recited in claim 1 wherein at least 50% of the fibers in said fiber bundles comprise glass fibers.
 - 6. A non-woven mat as recited in claim 1 wherein at least 85% of said fibers in said bundles have a length of between 5-100 mm, and wherein at least 85% of said fibers in said bundles have a diameter of between 7-35 microns.
- 7. A woven mat as recited in claim 4 wherein at least 85% of said fibers in said fiber bundles are selected from said group.

15

20

25

- 8. A woven mat as recited in claim 1 wherein at least 85% of said fibers in said fiber bundles have a length of between about 7-50 mm.
- 9. A woven mat as recited in claim 1 wherein said mat has a density of between about 50-900 g/m².
- 10. A woven mat as recited in claim 1 wherein at least 85% of said fibers in said fiber bundles have between 10-450 fibers/bundle and a length substantially the same as the length of said fiber bundle, and a diameter between about 7-35 microns; and wherein the sizing is epoxy resin or PVOH.
 - 11. A non-woven mat of chopped strands, comprising:
- a plurality of fibers disposed in a non-woven configuration to define a 10 mat:

at least 20% of said fibers in fiber bundles having between 5-450 fibers per bundle and the length of said bundles being substantially the same as the lengths of the fibers forming said bundles, and wherein at least 85% of said fibers of said fiber bundles have a diameter of between about 7-500 microns; and

wherein said mat has a substantially uniform density of less than 75 g/m².

12. A non-woven mat of chopped strands, comprising:

a plurality of fibers disposed in a non-woven configuration to define a mat;

at least 20% of said fibers in fiber bundles having between 5-450 fibers per bundle and the length of said bundles being substantially the same as the lengths of the fibers forming said bundles, and wherein at least 85% of said fibers of said fiber bundles have a diameter of between about 7-500 microns; and

wherein said mat has a substantially uniform density of between about 50-150 g/m².

13. A non-woven mat as recited in claim 12 wherein at least 60% of said fiber bundles have between 10-200 fibers per bundle, and wherein substantially all the fibers in the bundles are substantially straight.

- 14. A method of producing a non-woven chopped strand mat 5 comprising:
 - (a) forming a slurry of fibers in a liquid or foam wherein at least 20% of the fibers in the slurry are in fiber bundles in which the fibers are held in the bundles by a substantially non-water soluble sizing;
- (b) forming a non-woven web from the slurry on a foraminous element; 10 and
 - (c) withdrawing at least one of liquid and foam from the slurry on the foraminous element so as to form a non-woven mat.
 - 15. A method as recited in claim 14 wherein (b) is practiced at a speed of at least 60 m/mi.
- 15. A method as recited in claim 14 wherein (a) is practiced to produce a slurry wherein at least 50% of the fibers are in fiber bundles of between 5-450 fibers with the length of the bundles substantially the same as the length of the fibers making up the bundles, and at least 85% of the fibers in the bundles have a diameter of between about 7-500 microns.
- 17. A method as recited in claim 16 wherein (a) is practiced using at least 10% of reinforcing fibers in the fiber bundles, the reinforcing fibers selected from the group consisting essentially of glass, acrylic, aramid, carbon, polypropylene, and PET fibers, and combinations thereof.
- 18. A method as recited in claim 16 wherein (a)-(c) are practiced so as
 25 to produce a mat having a substantially uniform density of between about 50-150 gm/m².
 - 19. A method as recited in claim 16 wherein (b) and (c) are practiced at a speed of at least 80 m/min.

- 20. A method as recited in claim 14 further comprising producing a second mat from at least a second slurry having a different fiber composition or density than the slurry from (a), and laying the at least a second slurry in a substantially non-mixing manner on the slurry from (a) to produce a composite mat having at least two substantially distinct layers with at least one of different fiber compositions or densities.
- 21. A method as recited in claim 14 further comprising (d) providing at least one surface layer on the mat and affixing the at least one surface layer to the mat with a binder.
- 10 22. A method as recited in claim 21 further comprising curing the binder from (d) and drying the web in a drying oven.
 - 23. A method as recited in claim 14 wherein (a)-(c) are practiced using a moving web of fabric which becomes part of the mat produced as a foraminous element.
- 15 24. A method as recited in claim 14 wherein (a) is further practiced using heat activated binder powder or fibers in the slurry.
 - 25. A method as recited in claim 15 wherein (a)-(c) are practiced using foam as the slurrying fluid.
- 26. A method as recited in claim 25 wherein (a) is practiced to produce a slurry having between about 0.5-5% by weight fibers.
 - 27. A method as recited in claim 26 wherein (a) is practiced to produce a slurry wherein at least 50% of the fibers are in fiber bundles of between 5-450 fibers with the length of the bundles substantially the same as the length of the fibers making up the bundles, and at least 85% of the fibers in the bundles have a diameter of between about 7-500 microns; and wherein (a) is practiced using at least 10% of reinforcing fibers in the fiber bundles, the reinforcing fibers

selected from the group consisting essentially of glass, acrylic, aramid, carbon, polypropylene, and PET fibers, and combinations thereof.

- 28. A non-woven mat produced according to the method of claim 14.
- 5 29. A non-woven mat produced according to the method of claim 26.
 - 30. A non-woven mat produced according to the method of claim 18, and having a substantially uniform density of about 75 gm/m² or less.

10

- 31. A method of producing a non-woven chopped strand mat
- comprising:

 (a) forming a slurry of fibers in a liquid or foam wherein at least 20% of the fibers in the slurry are in fiber bundles having between 10-450 fibers/bundle and a length substantially the same as the length of said fiber bundle, which length is between 5-100 mm for at least 85% of the fibers in bundles, and a diameter of the fibers in bundles of between 7-500 microns;
 - (b) forming a non-woven web from the slurry on a foraminous element;
- 20 (c) withdrawing at least one of liquid and foam from the slurry on the foraminous element so as to form a non-woven mat.
 - 32. A method as recited in claim 31 wherein at least 10% of the fibers in the fiber bundles comprise reinforcement fibers selected from the group consisting essentially of glass, aramid, carbon, polypropylene, acrylic, and PET fibers, and combinations thereof.
 - 33. A method as recited in claim 31 wherein (b) and (c) are practiced at a speed of at least 80 m/min, and wherein (a)-(c) are practiced using the foam process, and wherein (a) is practiced to produce a slurry having between about 0.5-5% by weight fibers and without viscosity-enhancing additives.

. .

PCT/F101/00331

19

34. A composite product comprising outer layers made from resin impregnated and cured mats according to claim 3, and an inner layer of at least one of inexpensive fibers, scrap fibers, and material of significantly lower density than said outer layers.

5

35. A fiber-based web manufactured by the foam process and comprising at least two layers, or parts of layers, with different physical or chemical properties.

10

15

36. A non-woven fibrous composite web manufactured by using a liquid or foam based process, and by using a multi-layer headbox or divided headbox, the composite web comprising at least two layers, or parts of layers, having substantially different properties, including at least one of different density, different material, different reinforcement threads, and different reinforcement webs.

2/2

Fig. 5

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 11 October 2001 (11.10.2001)

PCT

(10) International Publication Number WO 01/75204 A3

(51) International Patent Classification⁷: D21H 13/40, D04H 1/70

D04H 1/58,

(21) International Application Number: PCT/FI01/00331

(22) International Filing Date: 5 April 2001 (05.04.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/543,534

5 April 2000 (05.04.2000) US

- (71) Applicant (for all designated States except US): AHLSTROM GLASSFIBRE OY [FI/FI]; Ahlströmintie 19, P.O. Box 18, FIN-48601 Karhula (FI).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): RÖKMAN, Kay [FI/FI]; Pylkönmäenkatu 4 as. 15, FIN-48600 Karhula (FI). JANSSON, Juhani [FI/FI]: Norkkokatu 31, FIN-48700 Karhula (FI). KOSTAMO, Harri [FI/FI]; Nummitie 21, FIN-49300 Tavastila (FI). BOHM, Juha [FI/FI]; Lahdenkatu 19, FIN-48910 Kotka (FI).

- (74) Agent: AHLSTROM KARHULA SERVICES LTD: Intellectual Property Department, P.O. Box 18, FIN-48601 Karhula (F1).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

- with international search report

(88) Date of publication of the international search report: 20 June 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CHOPPED STRAND NON-WOVEN MAT AND A METHOD FOR ITS PRODUCTION

(57) Abstract: A non-woven mat useful for a wide variety of purposes, including forming reinforced resin products, is produced in a manner having different specific uses of, and advantages over, conventional chopped strand mats and conventional glass tissue. The mat is preferably made by the foam process (but may be made by the liquid process), and at speeds well in excess of 60 m./min., and has a substantially uniform construction even when low density (e.g. 100 g/m² or less). At least 20 % (preferably at least 85 %) of the fibers are in fiber bundles with between 5-450 fibers/bundle. The fibers (typically at least 85 %) have a length between 5-100 mm, preferably 7-50 mm, substantially the same as the length of the fiber bundle they are in. The fibers are preferably held in the bundles by substantially non-water soluble sizing, such as epoxy resin or PVOH. The fibers in the bundles typically have diameters of approximately 7-500 microns, preferably about 7-35 microns. The bundles may comprise at least 10 % reinforcing fibers, such as glass, aramid or acrylic.

O 01/75204 A3

nal Application No

PCT/FI 01/00331

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 D04H1/58 D21H13/40 D04H1/70 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) DO4H D21H D21P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) WPI Data, EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1-13,34 US 6 054 022 A (HELWIG G S ETAL) X.P 25 April 2000 (2000-04-25) column 1, line 11 - line 14 column 2, line 61 -column 3, line 11 column 6, line 3 - line 8 14-33 claims 1-31 Υ US 4 284 470 A (BONDOC ALFREDO A) 18 August 1981 (1981-08-18) column 2, line 45 -column 3, line 4 1-13,34 Х US 3 684 645 A (MATTHEWS JACK R ET AL) 15 August 1972 (1972-08-15) 1-8,10, X column 2, line 48 - line 68 9,11-13Α -/--X Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention _cannot be considered novel or carnot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be particular relevance, are claimed unrelined cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled _in.the art. "O" document referring to an oral disclosure, use, exhibition or "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 2 5. 01. 02 21 December 2001 Authorized officer

1

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Anna Ahlander

Interr nal Application No PCT/FI 01/00331

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to daim No.
Category °	Citation of document, with indication, where appropriate, of the felevant passages	
Х	US 4 129 674 A (HANNES GEORGE J ET AL) 12 December 1978 (1978-12-12) column 4, line 31 - line 55	1-8,10, 34
A	Column 4, Tine 31 - Tine 33	9,11-13
X	US 4 200 487 A (BONDOC ALFREDO A ET AL) 29 April 1980 (1980-04-29) column 2, line 26 - line 34 column 3, line 6 - line 15	1-8,10, 34
Α .	column 3, line 59 - line 62	9,11-13
X	US 4 886 701 A (EHNERT GERD ET AL) 12 December 1989 (1989-12-12)	1-8,10, 34
Α	column 5, line 20 - line 28	9,11-13
X	US 5 872 067 A (MENG JIAN ET AL) 16 February 1999 (1999-02-16) column 3, line 29 - line 37	1-8,10, 34
A	column 3, line 47 - line 54	9-13
X	US 5 883 023 A (MARTINE E A ET AL) 16 March 1999 (1999-03-16) column 1, line 59 -column 2, line 59	1-10
Α	column 4, line 8 - line 15	11-13,34
Y	US 5 904 809 A (ROEKMAN KAY ET AL) 18 May 1999 (1999-05-18) column 2, line 32 - line 65 abstract; claims 9-20; figures 2,4	14-33
A	US 6 019 871 A (ROEKMAN KAY ET AL) 1 February 2000 (2000-02-01) column 2, line 24 - line 40 claim 1; figure 3	14-33
E	US 6 238 518 B1 (ROKMAN KAY ET AL) 29 May 2001 (2001-05-29) claims 1-24	14-33
Ε	US 2001/004926 A1 (ROKMAN KAY ET AL) 28 June 2001 (2001-06-28) claims 23-30	14-33

In. ational application No. PCT/FI 01/00331

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 35, 36 because they relate to subject matter not required to be searched by this Authority, namely: See FURTHER INFORMATION sheet PCT/ISA/210
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. X As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-34

claims 1-34 relate to a non-woven mat and a method comprising fiber bundles.

2. Claims: 35, 36

claims 35, 36 relate to a fiber-based web comprising at least two layers with different properties.

The invention is defined in seven independent claims forming two groups of invention:
Since no common or corresponding feature exist which can be considered as a special technical feature within the meaning of PCT Rule 13.2 no technical relationship, within the meaning of PCT Rule 13, can be identified between the different inventions.
Therefore, å posteriori, the application comprises two inventions not fulfilling the requirements for unity of invention.

International Application No. PCT/FI 01/00331

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Claims Nos.: 35, 36

The claims 35 and 36 do not comply with article 6 (PCT) in particular with the requirement: claims shall be clear and concise. The wording "different physical or chemical properties "in claim 35 and "different properties, including at least one different density, different material, different reinforcement threads, and different reinforcement webs "in claim 36 are too broadly formulated to permit a meaningful search. The search on claims 35 and 36 has therefor been incomplete.

mormation on patent family members

Internal al Application No
PCT/FI 01/00331

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
US 6054022 , A	25-04-2000	AU WO BR EP WO	3301699 A 9945198 A1 9711748 A 0929715 A1 9811299 A1	20-09-1999 10-09-1999 18-01-2000 21-07-1999 19-03-1998
US 4284470 A	18-08-1981	US AT CA DE EP AR CA DE EP FI NO US	4183782 A 4653 T 1147541 A1 3064822 D1 0025115 A2 220553 A1 1120205 A1 2964002 D1 0006963 A1 791328 A ,B, 791108 A ,B, 4269886 A	15-01-1980 15-09-1983 07-06-1983 20-10-1983 18-03-1981 14-11-1980 23-03-1982 16-12-1982 23-01-1980 12-01-1980 14-01-1980 26-05-1981
US 3684645 A	15-08-1972	GB BE NL	1367960 A 778404 A1 7200449 A ,C	25-09-1974 24-07-1972 16-07-1973
US 4129674 A	12-12-1978	AR AT AU AU BE CD DE FR GT JP NL SE	200287 A1 335696 B 908873 A 473048 B 6174773 A 806512 A1 1045910 A1 108927 A5 2354553 A1 419976 A1 2204582 A1 1429949 A 1003154 B 848161 C 49093666 A 51022114 B 7314675 A 8006095 A 410309 B 7510179 A	31-10-1974 25-03-1977 15-07-1976 10-06-1976 24-04-1975 25-04-1974 09-01-1979 12-10-1974 16-05-1974 16-05-1974 31-03-1976 24-05-1974 31-03-1976 09-03-1977 05-09-1974 07-07-1976 01-05-1974 31-03-1981 08-10-1979 12-09-1975
US 4200487 A	29-04-1980	AU AU CA DE DK EP FI NO	535254 B2 5736880 A 1137731 A1 3064805 D1 185780 A 0019465 A1 801495 A 801362 A ,B,	08-03-1984 20-11-1980 21-12-1982 20-10-1983 17-11-1980 -26-11-1980 17-11-1980 17-11-1980
US 4886701 A	12-12-1989	DE AR AT AU AU	3704035 A1 241164 A1 69072 T 600514 B2 7770987 A	03-03-1988 30-12-1991 15-11-1991 16-08-1990 03-03-1988

alormation on patent family members

Intern all Application No PCT/FI 01/00331

Patent document cited in search report	'	Publication date		Patent family member(s)	-	Publication date
US 4886701	A		BR CA	8704484 1330637		26-04-1988 12-07-1994
			DE	3774214	D1	05-12-1991
			EP		A2	09-03-1988
			ES.		T3	16-06-1992
			IN	168986		03-08-1991
			ĴΡ		C	02-10-1996
			ĴΡ		B	14-02-1996
			ĴΡ		Α	07-06-1988
			MX		Α	17-10-1989
			PT		A ,B	14-10-1988
			TR	28650		27-12-1996
	,		ZA	8706489	Α	29-02-1988
US 5872067	Α	16-02-1999	EP	0966560	A1	29-12-1999
03 30/200/		20 02 2000	WO	9842904	A1	01-10-1998
US 5883023	Α	16-03-1999	US	2001012831		09-08-2001
03 3003023	• •		US	5883021	Α	16-03-1999
US 5904809	Α	18-05-1999	CN	1277646		20-12-2000
03 330 1003			EΡ	1021619		26-07-2000
			WO	9911860		11-03-1999
			JP	2001515149	T 	18-09-2001
US 6019871	Α	01-02-2000	BR	9909997		26-12-2000
03 00132.1	•		CN	1298465	T	06-06-2001
			EP	1105567		13-06-2001
			WO	9957368	A1	11-11-1999
US 6238518	B1	29-05-2001	NONE			
US 2001004926	A1	28-06-2001	AU	2918500	A	14-09-2000
03 2001004720			WO	0050694		31-08-2000
•			NO	20014122	Α	24-10-2001