Marlo Diagrams: representation and operations

March 29, 2022

Abstract

Some notes to fix the structure of the diagrams and behaviour of the operations prior to the implementation of a visual reasoning assistant.

1 Diagram structure

Definition 1 (Literals) Let P be a set of propositional variables. Given $p \in P$, both p and $\neg p$ are literals. Literals p and $\neg p$ are complementary literals. Given a literal λ (like p or $\neg p$), $\overline{\lambda}$ denotes its complementary literal ($\neg p$ or p, respectively). The set of literals built from P is Lit(P). A set of literals is consistent if it does not contain complementary literals.

Definition 2 (Diagram) A diagram $D = \langle S, A, I, O \rangle$ has the following structure:

- $S \in Lit(P)$, the "subject" of D.
- $A \subset Lit(P) \{S\}$ with $|A| \in \mathbb{N}$, the "all" of D.
- $I \subset \mathcal{P}\left(Lit(P) (A \cup \{S\})\right)$ with $|I| \in \mathbb{N} \{0\}$ and $|\cup I| \in \mathbb{N}$, the "in" of D.
- $O \subset A \cup (\cup I)$ with $|O| \in \mathbb{N}$, the "out" of D.

Definition 3 (Consistent Diagram) A diagram $D = \langle S, A, I, O \rangle$ is consistent iff for all $R \in I$, the set of literals $\{S\} \cup A \cup R$ is consistent.

Definition 4 (Scope) Given a diagram $D = \langle S, A, I, O \rangle$, the scope of D, denoted as Sc(D) is the set of propositions appearing in the diagram, that is,

$$Sc(D) = \{S\} \cup A \cup (\cup I).$$

1.1 Examples

Example 5 (All a **are** b) The diagram for "All a (universal) are b (particular)" is $D = \langle a, \{b\}, \{\varnothing\}, \{b\} \rangle$.

Example 6 (Some a **are** b) The diagram for "Some a (particular) are b (particular)" is $D = \langle a, \emptyset, \{\{b\}, \emptyset\}, \{b\} \rangle$.

1.2 Definición de las conectivas por Marcos

** Revisar, en las partes O se confunde \varnothing con $\{\varnothing\}$. Para hablar de equivalencia (y, sobre todo, justificarlas) es necesaria una semántica. O bien, una vez dadas las operaciones probar que se puede ir de cada variante a las demás mediante transformación y conversión.

Example 7 (a iff b) The diagrams for biconditional " $a \leftrightarrow b$ " are

$$\begin{array}{rcl} D & = & \langle \ a, \{b\}, \{\varnothing\}, \varnothing \rangle & \equiv & \langle \ b, \{a\}, \{\varnothing\}, \varnothing \rangle \\ & \equiv & \langle \neg b, \{\neg a\}, \{\varnothing\}, \varnothing \rangle & \equiv & \langle \neg a, \{\neg b\}, \{\varnothing\}, \varnothing \rangle \,. \end{array}$$

Example 8 $(a \subseteq b)$ The diagrams for exclusive disjunction " $a \subseteq b$ " are

$$\begin{array}{rcl} D & = & \langle \ a, \{ \neg b \}, \{ \varnothing \}, \varnothing \rangle & \equiv & \langle \neg b, \{ a \}, \{ \varnothing \}, \varnothing \rangle \\ & \equiv & \langle \ b, \{ \neg a \}, \{ \varnothing \}, \varnothing \rangle & \equiv & \langle \neg a, \{ \ b \}, \{ \varnothing \}, \varnothing \rangle \,. \end{array}$$

Example 9 ($a \rightarrow b$ (conditional)) The diagram for " $a \rightarrow b$ " (conditional) is

$$\begin{array}{rcl} D & = & \langle \ a, \{b\}, \{\varnothing\}, \{b\} \rangle & \equiv & \langle \ b, \{\varnothing\}, \{a\}, \varnothing \rangle \\ & \equiv & \langle \neg a, \{\neg b\}, \{\varnothing\}, \{\neg b\} \rangle & \equiv & \langle \neg b, \{\varnothing\}, \{a\}, \varnothing \rangle \,. \end{array}$$

Example 10 ($a \lor b$ (inclusive)) The diagram for inclusive disjunction " $a \lor b$ "

$$\begin{array}{rcl} D & = & \langle \neg a, \{b\}, \{\varnothing\}, \{b\} \rangle & \equiv & \langle \ b, \{\varnothing\}, \{\neg a\}, \varnothing \rangle \\ & \equiv & \langle \neg b, \{a\}, \{\varnothing\}, \{a\} \rangle & \equiv & \langle \ a, \{\varnothing\}, \{\neg b\}, \varnothing \rangle \,. \end{array}$$

Example 11 (a Nand b) The diagrams for "a Nand b" are

$$\begin{array}{rcl} D & = & \langle \ a, \{\neg b\}, \{\varnothing\}, \{\neg b\} \rangle & \equiv & \langle \neg b, \{\varnothing\}, \{a\}, \varnothing \rangle \\ & \equiv & \langle \ b, \{\neg a\}, \{\varnothing\}, \{\neg a\} \rangle & \equiv & \langle \neg a, \{\varnothing\}, \{b\}, \varnothing \rangle \,. \end{array}$$

Example 12 (a or b (inclusive)) The diagram for "a or b" (inclusive disjunction) is $D = \langle \neg a, \{b\}, \{\varnothing\}, \{b\} \rangle$.

Example 13 (or a **or** b **(exclusive))** The diagram for "a or b" (exclusive disjunction) is $D = \langle \neg a, \{b\}, \{\emptyset\}, \emptyset \rangle$.

1.3 Graphical representation

** TODO: Explain the representation of the diagrams.

Figure 1 shows the graphical representation of the diagrams in examples 5 and 6.

1.4 Translation into FOL

** TODO: Explain the general idea of the translation. Idea: Existence for $x \cup S$ when $x \in I$ and $x \cap O \neq \emptyset$.

Figure 1: Diagrams for examples 5 and 6.

The translation of the diagram in example 5 into FOL is:

$$\forall x (Ax \to Bx) \land \exists x Ax$$

The translation of the diagram in example 6 into FOL is:

$$\exists x (Ax \land Bx)$$

The translation of the diagram $D = \langle a, \varnothing, \{\{b\}, \varnothing\}, \varnothing \rangle$ (like the one in the right of Fig.1 but without b? in the outer part) is

$$\exists x (Ax \land Bx) \land \forall x (Bx \to Ax)$$

The translation of the diagram $D = \langle a, \{b\}, \{\emptyset, \{c\}\}, \{b\} \rangle$ is

$$\forall x(Ax \to Bx) \land \exists x(Ax \land Cx) \land \forall x(Cx \to Ax)$$

And the representation:

2 Operations on Marlo Diagrams

2.1 Conversion

 $\ast \ast \ast \ast$ Esto hay que revisar lo con cuidado y poner muchos ejemplos.

Definition 14 (Conversion) Given $D = \langle S, A, I, O \rangle$, the conversion of D for

S' produces $Conv(D, S') = \langle S', A', I', O' \rangle$ iff

$$S' \in A \cup (\cup I)$$

$$A' = \begin{cases} \emptyset & if \quad S' \in O \\ \{S\} \cup (A - \{S'\}) \cup \\ ((\cup I - \{S'\}) \cap (\cap \{x - \{S'\} \mid x \in I \& S' \in x\})) & otherwise \end{cases}$$

$$I' = \begin{cases} \{((x - \{S'\}) \cup \{S\} \cup A) - A' \mid x \in I\} & if \quad S' \in A \\ \{((x - \{S'\}) \cup \{S\} \cup A) - A' \mid x \in I \& S' \in x\} & otherwise \end{cases}$$

$$\cup \begin{cases} \{\emptyset\} & if \quad S' \in O \\ \emptyset & otherwise \end{cases}$$

$$O' = ((O - \{S'\}) \cup (\cup \{x \cup A \cup \{S\} \mid x \in I \& S' \notin (x \cup A)\}))$$

$$\cap (A' \cup (\cup I'))$$

2.2 Transformation

Definition 15 (Transformation) Given a diagram D, the transformation of D produces Tr(D) in two cases:

•
$$D = \langle \gamma, \{\lambda\}, \{\varnothing\}, O \rangle$$
. Then,

$$Tr(D) = \langle \overline{\lambda}, \{\overline{\gamma}\}, \{\varnothing\}, O' \rangle,$$

with

$$O' = \begin{cases} \varnothing & \text{if } O = \varnothing \\ \{\overline{\gamma}\} & \text{otherwise (that is, } O = \{\lambda\}) \end{cases}$$

• $D = \langle \gamma, \varnothing, \{\{\lambda\}, \varnothing\}, \varnothing \rangle$. Then,

$$Tr(D) = \langle \overline{\lambda}, \varnothing, \{\{\overline{\gamma}\}, \varnothing\}, \varnothing \rangle.$$

2.3 Inference

Definition 16 (Inference) Given the diagrams

$$D_1 = \langle s, A_1, I_1, O_1 \rangle$$
 and $D_2 = \langle s, A_2, I_2, O_2 \rangle$,

the inference with D_1 and D_2 produces

$$D_3 = D_1 \oplus D_2 = \langle s, A_1 \cup A_2, I_3, O_3 \rangle$$

with

$$I_3 = \{x - A_2 \mid x \in I_1\} \cup \{x - A_1 \mid x \in I_2\}$$

$$O_3 = (O_1 - (Sc(D_2) - O_2)) \cup (O_2 - (Sc(D_1) - O_1)).$$

Example 17 Consider the following diagrams:

$$D_1 = \langle a, \{b\}, \{\{c\}, \varnothing\}, \{b, c\} \rangle$$

$$D_2 = \langle a, \varnothing, \{\{b, d\}, \varnothing\}, \{d\} \rangle.$$

The inference with D_1 and D_2 (view Figure 2) produces

$$D_1 \oplus D_2 = \langle a, \{b\}, \{\{c\}, \{d\}, \emptyset\}, \{c, d\} \rangle$$
.

Figure 2: Example of inference (example 17).

2.4 Extraction

Definition 18 (Extraction) Given the diagram $D = \langle S, A, I, O \rangle$ and $\lambda \in A \cup (\cup I)$, the extraction of λ in D produces

$$Elim(D,\lambda) = \langle S, A - \{\lambda\}, \{x - \{\lambda\} \mid x \in I\}, O - \{\lambda\} \rangle.$$