

Efficient Probabilistic Group Testing Based on Traitor Tracing

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

Monticello, Illinois, USA (October 4, 2013)

				I	I		I
Amin							
Boris							
Caroline							
David							
Eve							
Fred							
Gábor							
Henry							

TU/e

			l	I	ı	ı	ı	ı	ı	ı	ı	I
Amin	1	0	0	0	0	0	0	0				
Boris	0	1	0	0	0	0	0	0				
Caroline	0	0	1	0	0	0	0	0				
David	0	0	0	1	0	0	0	0				
Eve	0	0	0	0	1	0	0	0				
Fred	0	0	0	0	0	1	0	0				
Gábor	0	0	0	0	0	0	1	0				
Henry	0	0	0	0	0	0	0	1				

TU/e

		I	l	l	l	I	I	I	l	l	l	İ
Amin	1	0	0	0	0	0	0	0				
Boris	0	1	0	0	0	0	0	0				
Caroline	0	0	1	0	0	0	0	0				
David	0	0	0	1	0	0	0	0				
Eve	0	0	0	0	1	0	0	0				
Fred	0	0	0	0	0	1	0	0				
Gábor	0	0	0	0	0	0	1	0				
Henry	0	0	0	0	0	0	0	1				
Results	0	0	1	0	0	0	0	0				

TU/e

			I		I					ı
Amin	1	0	0	0	0	0	0	0		
Boris	0	1	0	0	0	0	0	0		
Caroline	0	0	1	0	0	0	0	0		
David	0	0	0	1	0	0	0	0		
Eve	0	0	0	0	1	0	0	0		
Fred	0	0	0	0	0	1	0	0		
Gábor	0	0	0	0	0	0	1	0		
Henry	0	0	0	0	0	0	0	1		
Results	0	0	1	0	0	0	0	0		

Solution: Using Pools

	ı	I	l	ı	l	I	I	I	I	ı	ı
Amin	0	0	0								
Boris	0	0	1								
Caroline	0	1	0								
David	0	1	1								
Eve	1	0	0								
Fred	1	0	1								
Gábor	1	1	0								
Henry	1	1	1								
Results											

Solution: Using Pools

		I	I	I	I	ı	ı	ı	ı	ı	ı	I
Amin	0	0	0									
Boris	0	0	1									
Caroline	0	1	0									
David	0	1	1									
Eve	1	0	0									
Fred	1	0	1									
Gábor	1	1	0									
Henry	1	1	1									
Results	0	1	0									

Solution: Using Pools

			I			ı		I
Amin	0	0	0					
Boris	0	0	1					
Caroline	0	1	0					
David	0	1	1					
Eve	1	0	0					
Fred	1	0	1					
Gábor	1	1	0					
Henry	1	1	1					
Results	0	1	0					

Problem: Multiple (K) Infected

	I	l	l	I	ı	I	I	ı	ı	ı	I	
Amin	0	0	0									
Boris	0	0	1									
Caroline	0	1	0									
David	0	1	1									
Eve	1	0	0									
Fred	1	0	1									
Gábor	1	1	0									
Henry	1	1	1									
Results												

Problem: Multiple (K) Infected

	_	I	ī	I	ī	_	_	I		ī		
	- 1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı
Amin	0	0	0									
Boris	0	0	1									
Caroline	0	1	0									
David	0	1	1									
Eve	1	0	0									
Fred	1	0	1									
Gábor	1	1	0									
Henry	1	1	1									
Results												

Problem: Multiple (*K***) Infected**

		I	I	I	I	I	I	I	I	I
Amin	0	0	0							
Boris	0	0	1							
Caroline	0	1	0							
David	0	1	1							
Eve	1	0	0							
Fred	1	0	1							
Gábor	1	1	0							
Henry	1	1	1							
Results	1	1	1							

				I	ı	I	I	I		l	I	i
Amin	?	?	?	?	?	?	?	?	?	?	?	?
Boris	?	?	?	?	?	?	?	?	?	?	?	?
Caroline	?	?	?	?	?	?	?	?	?	?	?	?
David	?	?	?	?	?	?	?	?	?	?	?	?
Eve	?	?	?	?	?	?	?	?	?	?	?	?
Fred	?	?	?	?	?	?	?	?	?	?	?	?
Gábor	?	?	?	?	?	?	?	?	?	?	?	?
Henry	?	?	?	?	?	?	?	?	?	?	?	?
Results	?	?	?	?	?	?	?	?	?	?	?	?

Solution: Group Testing

	I	I	I	I	I	I	I	I	I	I	I	İ
Amin	?	?	?	?	?	?	?	?	?	?	?	?
Boris	?	?	?	?	?	?	?	?	?	?	?	?
Caroline	?	?	?	?	?	?	?	?	?	?	?	?
David	?	?	?	?	?	?	?	?	?	?	?	?
Eve	?	?	?	?	?	?	?	?	?	?	?	?
Fred	?	?	?	?	?	?	?	?	?	?	?	?
Gábor	?	?	?	?	?	?	?	?	?	?	?	?
Henry	?	?	?	?	?	?	?	?	?	?	?	?
Results	?	?	?	?	?	?	?	?	?	?	?	?

1. An algorithm to construct group testing matrices

		ı	ı	I		I	I	I	I	ı	I	I
Amin	?	?	?	?	?	?	?	?	?	?	?	?
Boris	?	?	?	?	?	?	?	?	?	?	?	?
Caroline	?	?	?	?	?	?	?	?	?	?	?	?
David	?	?	?	?	?	?	?	?	?	?	?	?
Eve	?	?	?	?	?	?	?	?	?	?	?	?
Fred	?	?	?	?	?	?	?	?	?	?	?	?
Gábor	?	?	?	?	?	?	?	?	?	?	?	?
Henry	?	?	?	?	?	?	?	?	?	?	?	?
Results	?	?	?	?	?	?	?	?	?	?	?	?

- 1. An algorithm to construct group testing matrices
- 2. An algorithm to link test results to infected people

- 1. An algorithm to construct group testing matrices
- 2. An algorithm to link test results to infected people

	ı	I	I						I
Amin Boris Caroline David Eve Fred	de		∈ nist		. ′		,		()
Gábor Henry									
Results				<i>y</i> ∈	{(), 1	} ^T		

- 1. An algorithm to construct group testing matrices
- 2. An algorithm to link test results to infected people

			ı		ı				ı		
Amin Boris Caroline David	>	X	\in	{	0.	, 1	.}	N>	× 7	-	
Eve Fred Gábor Henry			nist ilist				`				,
Results				y ∈	{(), 1	} ^T				

- 1. An algorithm to construct group testing matrices
- 2. An algorithm to link test results to infected people

	ı			ı		ı				ı		ı
Amin Boris Caroline David		>	(\in	{	0	, 1	.}	N>	× 7	_	
Eve Fred Gábor Henry				nist ilist				`				,
Results					y ∈	{(), 1	} ^T				

- 1. An algorithm to construct group testing matrices
- 2. An algorithm to link test results to infected people

- 1. An algorithm to construct group testing matrices
- 2. An algorithm to link test results to infected people

Solution: Group Testing

1. An algorithm to construct group testing matrices

2. An algorithm to link test results to infected people

A Group Testing Framework

1. An algorithm to construct group testing matrices

2. An algorithm to link test results to infected people

A Group Testing Framework

- 1. An algorithm to construct group testing matrices
 - 1a. For each test i, person j, choose $X_{i,i} = 1$ with prob. p.
 - ▶ Intuitively: $p \approx \frac{1}{K}$.
 - ▶ Precise value of p depends on N, K, ε .
- 2. An algorithm to link test results to infected people

A Group Testing Framework

- 1. An algorithm to construct group testing matrices
 - 1a. For each test i, person j, choose $X_{i,i} = 1$ with prob. p.
 - ▶ Intuitively: $p \approx \frac{1}{K}$.
 - ▶ Precise value of p depends on N, K, ε .
- 2. An algorithm to link test results to infected people
 - 2a. For each test i, person j, compute $S_{j,i} = g(X_{j,i}, y_i)$.
 - ▶ Positive scores $(S_{j,i} > 0)$ for matches $(X_{j,i} = y_i)$.
 - ▶ Negative scores $(S_{j,i} < 0)$ for differences $(X_{j,i} \neq y_i)$.
 - ▶ Large scores $(|S_{j,i}| \gg 0)$ for rare events.

A Group Testing Framework

- 1. An algorithm to construct group testing matrices
 - 1a. For each test i, person j, choose $X_{i,i} = 1$ with prob. p.
 - ▶ Intuitively: $p \approx \frac{1}{\kappa}$.
 - ▶ Precise value of p depends on N, K, ε .
- 2. An algorithm to link test results to infected people
 - 2a. For each test i, person j, compute $S_{j,i} = g(X_{j,i}, y_i)$.
 - ▶ Positive scores $(S_{i,i} > 0)$ for matches $(X_{i,i} = y_i)$.
 - ▶ Negative scores $(S_{j,i} < 0)$ for differences $(X_{j,i} \neq y_i)$.
 - ▶ Large scores $(|S_{i,i}| \gg 0)$ for rare events.
 - 2b. Mark person j infected iff $\sum_{i} S_{i,i} > Z$ (threshold).
 - ▶ Large *Z*: Fewer false positives, more false negatives.
 - Small Z: More false positives, fewer false negatives.

A Group Testing Framework

- 1. An algorithm to construct group testing matrices
 - 1a. For each test i, person j, choose $X_{i,i} = 1$ with prob. p.
 - ▶ Intuitively: $p \approx \frac{1}{\kappa}$.
 - ▶ Precise value of p depends on N, K, ε .
- 2. An algorithm to link test results to infected people
 - 2a. For each test *i*, person *j*, compute $S_{j,i} = g(X_{j,i}, y_i)$.
 - ▶ Positive scores $(S_{j,i} > 0)$ for matches $(X_{j,i} = y_i)$.
 - ▶ Negative scores $(S_{j,i} < 0)$ for differences $(X_{j,i} \neq y_i)$.
 - ▶ Large scores $(|S_{i,i}| \gg 0)$ for rare events.
 - 2b. Mark person j infected iff $\sum_{i} S_{i,i} > Z$ (threshold).
 - ▶ Large *Z*: Fewer false positives, more false negatives.
 - ▶ Small Z: More false positives, fewer false negatives.

Exact choices of p, g, and Z depend on the model/parameters.

Traditional Group Testing

1. An algorithm to construct group testing matrices 1a. For each test i, person j, choose $X_{j,i} = 1$ with prob. p.

2. An algorithm to link test results to infected people 2a. For each test i, person j, compute $S_{j,i} = g(X_{j,i}, y_i)$.

2b. Mark person *j* infected iff $\sum_i S_{j,i} > Z$ (threshold).

Traditional Group Testing

1. An algorithm to construct group testing matrices 1a. For each test i, person j, choose $X_{j,i} = 1$ with prob. p.

2. An algorithm to link test results to infected people 2a. For each test i, person j, compute $S_{j,i} = g(X_{j,i}, y_i)$.

$$g(X_{j,i},y_i) = \begin{cases} +p/(1-p), & \text{if } X_{j,i} = 0, y_i = 0, \\ -p(1-p)^{K-1}/(1-(1-p)^K), & \text{if } X_{j,i} = 0, y_i = 1, \\ -1, & \text{if } X_{j,i} = 1, y_i = 0, \\ +(1-p)^K/(1-(1-p)^K), & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

2b. Mark person j infected iff $\sum_{i} S_{j,i} > Z$ (threshold).

Traditional Group Testing

1. An algorithm to construct group testing matrices 1a. For each test i, person j, choose $X_{i,j} = 1$ with prob. p.

$$p = \operatorname{argmin}_q T(N, K, \varepsilon, q).$$

2. An algorithm to link test results to infected people 2a. For each test i, person j, compute $S_{i,i} = g(X_{i,i}, y_i)$.

$$g(X_{j,i},y_i) = \begin{cases} +p/(1-p), & \text{if } X_{j,i} = 0, y_i = 0, \\ -p(1-p)^{K-1}/(1-(1-p)^K), & \text{if } X_{j,i} = 0, y_i = 1, \\ -1, & \text{if } X_{j,i} = 1, y_i = 0, \\ +(1-p)^K/(1-(1-p)^K), & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

2b. Mark person j infected iff $\sum_{i} S_{j,i} > Z$ (threshold).

Traditional Group Testing

1. An algorithm to construct group testing matrices 1a. For each test i, person j, choose $X_{i,j} = 1$ with prob. p.

$$p = \operatorname{argmin}_q T(N, K, \varepsilon, q).$$

2. An algorithm to link test results to infected people 2a. For each test i, person j, compute $S_{i,i} = g(X_{i,i}, y_i)$.

$$g(X_{j,i}, y_i) = \begin{cases} +p/(1-p), & \text{if } X_{j,i} = 0, y_i = 0, \\ -p(1-p)^{\kappa-1}/(1-(1-p)^{\kappa}), & \text{if } X_{j,i} = 0, y_i = 1, \\ -1, & \text{if } X_{j,i} = 1, y_i = 0, \\ +(1-p)^{\kappa}/(1-(1-p)^{\kappa}), & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

2b. Mark person j infected iff $\sum_{i} S_{i,i} > Z$ (threshold).

$$Z = Z(N, K, \varepsilon, p),$$

 $T = T(N, K, \varepsilon, p).$

Example: N = 8, K = 3, $\varepsilon = 10^{-2}$

1. An algorithm to construct group testing matrices 1a. For each test i, person j, choose $X_{i,i} = 1$ with prob. p.

$$p = \operatorname{argmin}_q T(N, K, \varepsilon, q).$$

2. An algorithm to link test results to infected people 2a. For each test i, person j, compute $S_{i,i} = g(X_{i,i}, y_i)$.

$$g(X_{j,i}, y_i) = \begin{cases} +p/(1-p), & \text{if } X_{j,i} = 0, y_i = 0, \\ -p(1-p)^{K-1}/(1-(1-p)^K), & \text{if } X_{j,i} = 0, y_i = 1, \\ -1, & \text{if } X_{j,i} = 1, y_i = 0, \\ +(1-p)^K/(1-(1-p)^K), & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

2b. Mark person j infected iff $\sum_{i} S_{j,i} > Z$ (threshold).

$$Z = Z(N, K, \varepsilon, p),$$

 $T = T(N, K, \varepsilon, p).$

Example: N = 8, K = 3, $\varepsilon = 10^{-2}$

1. An algorithm to construct group testing matrices 1a. For each test i, person j, choose $X_{i,i} = 1$ with prob. p.

$$p = 0.25 \dots$$

2. An algorithm to link test results to infected people 2a. For each test i, person j, compute $S_{i,i} = g(X_{i,i}, y_i)$.

$$g(X_{j,i}, y_i) = \begin{cases} +p/(1-p), & \text{if } X_{j,i} = 0, y_i = 0, \\ -p(1-p)^{\kappa-1}/(1-(1-p)^{\kappa}), & \text{if } X_{j,i} = 0, y_i = 1, \\ -1, & \text{if } X_{j,i} = 1, y_i = 0, \\ +(1-p)^{\kappa}/(1-(1-p)^{\kappa}), & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

2b. Mark person j infected iff $\sum_{i} S_{i,i} > Z$ (threshold).

$$Z = Z(N, K, \varepsilon, p),$$

 $T = T(N, K, \varepsilon, p).$

Example: N = 8, K = 3, $\varepsilon = 10^{-2}$

1. An algorithm to construct group testing matrices 1a. For each test i, person j, choose $X_{j,i} = 1$ with prob. p.

$$p = 0.25 \dots$$

2. An algorithm to link test results to infected people 2a. For each test i, person j, compute $S_{i,i} = g(X_{i,i}, y_i)$.

$$g(X_{j,i}, y_i) = \begin{cases} +0.34 \dots, & \text{if } X_{j,i} = 0, y_i = 0, \\ -0.24 \dots, & \text{if } X_{j,i} = 0, y_i = 1, \\ -1, & \text{if } X_{j,i} = 1, y_i = 0, \\ +0.69 \dots, & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

2b. Mark person j infected iff $\sum_{i} S_{j,i} > Z$ (threshold).

$$Z = Z(N, K, \varepsilon, p),$$

 $T = T(N, K, \varepsilon, p).$

Example: N = 8, K = 3, $\varepsilon = 10^{-2}$

1. An algorithm to construct group testing matrices 1a. For each test i, person j, choose $X_{j,i} = 1$ with prob. p.

$$p = 0.25 \dots$$

2. An algorithm to link test results to infected people 2a. For each test i, person j, compute $S_{j,i} = g(X_{i,i}, y_i)$.

$$g(X_{j,i}, y_i) = \begin{cases} +0.34 \dots, & \text{if } X_{j,i} = 0, y_i = 0, \\ -0.24 \dots, & \text{if } X_{j,i} = 0, y_i = 1, \\ -1, & \text{if } X_{j,i} = 1, y_i = 0, \\ +0.69 \dots, & \text{if } X_{j,i} = 1, y_i = 1. \end{cases}$$

2b. Mark person j infected iff $\sum_{i} S_{j,i} > Z$ (threshold).

$$Z = 22.62 \dots,$$
$$T = 160.$$

Example: Group testing matrix

	l	ı	I		i	 ı
Amin	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	X _{1,5}	 X _{1,160}
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$	 $X_{2,160}$
Caroline	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	 $X_{3,160}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$	 $X_{4,160}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$	 $X_{5,160}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$	 $X_{6,160}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$	 $X_{7,160}$
Henry	$X_{8,1}$	$X_{8,2}$	$X_{8,3}$	$X_{8,4}$	$X_{8,5}$	 $X_{8,160}$
Сору	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	 <i>У</i> 160

Example: Group testing matrix

1a. For each test i, person j, set $X_{j,i} = 1$ with prob. p.

				•		
			ı		i	
Amin	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	X _{1,5}	 X _{1,160}
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$	 $X_{2,160}$
Caroline	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	 $X_{3,160}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$	 $X_{4,160}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$	 $X_{5,160}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$	 $X_{6,160}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$	 $X_{7,160}$
Henry	$X_{8,1}$	X _{8,2}	X _{8,3}	X _{8,4}	$X_{8,5}$	 X _{8,160}
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	 <i>y</i> 160

Example: Group testing matrix

1a. For each test i, person j, set $X_{j,i} = 1$ with prob. p.

	I					
Amin	0	0	0	0	0	 0
Boris	1	0	1	1	1	 1
Caroline	0	0	0	1	0	 0
David	0	0	1	1	1	 0
Eve	0	0	0	0	0	 0
Fred	1	0	1	0	0	 0
Gábor	0	0	1	0	0	 0
Henry	0	0	0	0	1	 0
Сору	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	 <i>У</i> 160

Example: Running the tests

Infected samples determine the test results.

	i				i	
Amin						
Boris						
Caroline	0	0	0	1	0	 0
David					•	
Eve	0	0	0	0	0	 0
Fred					•	
Gábor					•	
Henry	0	0	0	0	1	 0
Results	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	 <i>y</i> 160

Example: Running the tests

Infected samples determine the test results.

		I	ı	i	i	
Amin						
Boris						
Caroline	0	0	0	1	0	 0
David						
Eve	0	0	0	0	0	 0
Fred						
Gábor						
Henry	0	0	0	0	1	 0
Results	0	0	0	1	1	 0

Example: Scores

We perform the tests and the results come back.

		ı	I	i	i	 ı
Amin	0	0	0	0	0	 0
Boris	1	0	1	1	1	 1
Caroline	0	0	0	1	0	 0
David	0	0	1	1	1	 0
Eve	0	0	0	0	0	 0
Fred	1	0	1	0	0	 0
Gábor	0	0	1	0	0	 0
Henry	0	0	0	0	1	 0
Results	0	0	0	1	1	 0

Example: Scores

2a. For each test i, person j, compute $S_{j,i} = g(X_{j,i}, y_i)$.

		I	I		l	 I	
Amin	0	0	0	0	0	 0	
Boris	1	0	1	1	1	 1	
Caroline	0	0	0	1	0	 0	
David	0	0	1	1	1	 0	
Eve	0	0	0	0	0	 0	
Fred	1	0	1	0	0	 0	
Gábor	0	0	1	0	0	 0	
Henry	0	0	0	0	1	 0	
Results	0	0	0	1	1	 0	

Example: Scores

2a. For each test *i*, person *j*, compute $S_{j,i} = g(X_{j,i}, y_i)$.

						 I
Amin	+0.3	+0.3	+0.3	-0.2	-0.2	 +0.3
Boris	-1.0	+0.3	-1.0	+0.7	+0.7	 -1.0
Caroline	+0.3	+0.3	+0.3	+0.7	-0.2	 +0.3
David	+0.3	+0.3	-1.0	+0.7	+0.7	 +0.3
Eve	+0.3	+0.3	+0.3	-0.2	-0.2	 +0.3
Fred	-1.0	+0.3	-1.0	-0.2	-0.2	 +0.3
Gábor	+0.3	+0.3	-1.0	-0.2	-0.2	 +0.3
Henry	+0.3	+0.3	+0.3	-0.2	+0.7	 +0.3
Results	0	0	0	1	1	 0

Example: Scores

2b. Mark person j infected iff $\sum_{i} S_{j,i} > Z$ (threshold).

		I			ı		$\sum_{i} S_{j,i}$
Amin	+0.3	+0.3	+0.3	-0.2	-0.2	 +0.3	0
Boris	-1.0	+0.3	-1.0	+0.7	+0.7	 -1.0	0
Caroline	+0.3	+0.3	+0.3	+0.7	-0.2	 +0.3	0
David	+0.3	+0.3	-1.0	+0.7	+0.7	 +0.3	0
Eve	+0.3	+0.3	+0.3	-0.2	-0.2	 +0.3	0
Fred	-1.0	+0.3	-1.0	-0.2	-0.2	 +0.3	0
Gábor	+0.3	+0.3	-1.0	-0.2	-0.2	 +0.3	0
Henry	+0.3	+0.3	+0.3	-0.2	+0.7	 +0.3	0
Results	0	0	0	1	1	 0	

Example: Scores

2b. Mark person j infected iff $\sum_{i} S_{j,i} > Z$ (threshold).

							$\sum_{i} S_{j,i}$
Amin	+0.3	+0.3	+0.3	-0.2	-0.2	 +0.3	-5
Boris	-1.0	+0.3	-1.0	+0.7	+0.7	 -1.0	-12
Caroline	+0.3	+0.3	+0.3	+0.7	-0.2	 +0.3	+41
David	+0.3	+0.3	-1.0	+0.7	+0.7	 +0.3	-3
Eve	+0.3	+0.3	+0.3	-0.2	-0.2	 +0.3	+38
Fred	-1.0	+0.3	-1.0	-0.2	-0.2	 +0.3	+10
Gábor	+0.3	+0.3	-1.0	-0.2	-0.2	 +0.3	-1
Henry	+0.3	+0.3	+0.3	-0.2	+0.7	 +0.3	+40
Results	0	0	0	1	1	 0	

Example: Scores

2b. Mark person j infected iff $\sum_{i} S_{j,i} > Z$ (threshold).

	I						$\sum_{i} S_{j,i}$
Amin	+0.3	+0.3	+0.3	-0.2	-0.2	 +0.3	-5
Boris	-1.0	+0.3	-1.0	+0.7	+0.7	 -1.0	-12
Caroline	+0.3	+0.3	+0.3	+0.7	-0.2	 +0.3	+41
David	+0.3	+0.3	-1.0	+0.7	+0.7	 +0.3	-3
Eve	+0.3	+0.3	+0.3	-0.2	-0.2	 +0.3	+38
Fred	-1.0	+0.3	-1.0	-0.2	-0.2	 +0.3	+10
Gábor	+0.3	+0.3	-1.0	-0.2	-0.2	 +0.3	-1
Henry	+0.3	+0.3	+0.3	-0.2	+0.7	 +0.3	+40
Results	0	0	0	1	1	 0	

Infected = {Caroline, Eve, Henry} Marked = {Caroline, Eve, Henry}

Example: Scores

Larger Example: Non-Adaptive

TU/e

Larger Example: Adaptive

Framework: Other Models

Traditional group testing

Positive test result iff at least one infected is tested

Framework: Other Models

Traditional group testing

Positive test result iff at least one infected is tested

Noisy group testing

- Dilution: Clean sample might test positive
- Additive: Infected sample might test negative
- Combined: Any sample might have a wrong test result

• ...

Framework: Other Models

Traditional group testing

Positive test result iff at least one infected is tested

Noisy group testing

- Dilution: Clean sample might test positive
- Additive: Infected sample might test negative
- Combined: Any sample might have a wrong test result
- ...

Threshold group testing

- ullet Majority: Positive result iff more than ℓ infected
- Bernoulli: Few infected tested leads to random result
- Linear: More infected tested leads to more positive results
- •

Framework: Other Models

Traditional group testing

Tests required: T ~ 2K In N

Noisy group testing

- Dilution: $T \sim 2K \ln N/(1-r)$
- Additive: $T \sim 2K \ln N/(1-\sqrt{2r})$
- Combined: $T \sim 2K \ln N/(1-\sqrt{2r})$
- ...

Threshold group testing

- Majority: $T \sim \pi K \ln N$
- Bernoulli: $T \sim 4K \ln N$
- Linear: $T \sim 2K^2 \ln N$
- •

Framework: Versatility

Performance

- Small number of tests (asymptotically)
- Low complexity decoding step (simple decoder)

Framework: Versatility

Performance

- Small number of tests (asymptotically)
- Low complexity decoding step (simple decoder)

Different models

- Can be applied to arbitrary models
- Wrong model does not increase false positives

Framework: Versatility

Performance

- Small number of tests (asymptotically)
- Low complexity decoding step (simple decoder)

Different models

- Can be applied to arbitrary models
- Wrong model does not increase false positives

Adaptive construction

- Number of tests significantly decreases adaptively
- Adaptive: X can still be generated in advance*
- Adaptive: Can deal with unknown K efficiently
- Semi-adaptive: $O(\log N)$ rounds, O(K) tests/round

Conclusion

Framework for probabilistic group testing

- Score-based construction
- Explicit procedure for obtaining optimal parameters
- Versatile construction

Results when applied to common models:

- Traditional model: T ~ 2K ln N
- Dilution noise: $T \sim 2K \ln N/(1-r)$
- Additive noise: $T \sim 2K \ln N/(1-\sqrt{2r})$
- Threshold models: $T = \Theta(K \ln N)$
- · Can be applied to arbitrary models

Questions?