## Hong Kong Mathematics Olympiad (1989 – 90) **Heat Event (Individual)**

除非特別聲明,答案須用數字表達,並化至最簡。

時限:40分鐘

Unless otherwise stated, all answers should be expressed in numerals in their simplest form.

每題正確答案得一分。Each correct answer will be awarded 1 mark. Time allowed: 40 minutes

1. 求下式的值: 
$$\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2}$$
   
Find the value of  $\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2}$ .

若 b < 0 及  $2^{2b+4} - 20 \times 2^b + 4 = 0$  , 求 b 的值。 2. If b < 0 and  $2^{2b+4} - 20 \times 2^b + 4 = 0$ , find the value of b.

- 若 f(a) = a 2,且  $F(a, b) = a + b^2$ ,求 F(3, f(4))。 3. If f(a) = a - 2 and  $F(a, b) = a + b^2$ , find F(3, f(4)).
- 對正整數  $a \, \mathcal{B} \, b$ , 定義  $a \, \# \, b = a^b + b^a$ , 若  $2 \, \# \, w = 100$ , 求 w 的值。 4. For positive integers a and b, define  $a \# b = a^b + b^a$ . If 2 # w = 100, find the value of w.
- a 及 b 為常數。直綫 2ax + 3by = 4a + 12b 恆過一定點 P(其座標與 a 和 b 無關)。 5. 求P點的座標。

a and b are constants. The straight line 2ax + 3by = 4a + 12b passes through a fixed point P whose coordinates do not depend on a and b. Find the coordinates of P.

某三角形各內角正弦的比為 3:4:5。若 A 為該三角形的最小內角,且  $\cos A = \frac{x}{5}$ , 6. 求 x 的值。

The sines of the angles of a triangle are in the ratio 3:4:5. If A is the smallest interior angle of the triangle and  $\cos A = \frac{x}{5}$ , find the value of x.

- 若  $x+y=9 \cdot y+z=11$  及 z+x=10 , 求 xyz 的值。 7. If x + y = 9, y + z = 11 and z + x = 10, find the value of xyz.
- 若 α、β 是方程  $2x^2+4x-3=0$  的根,且  $\alpha^2$ 、β<sup>2</sup> 是方程  $x^2+px+q=0$  的根, 求 p 的值。

If  $\alpha$ ,  $\beta$  are the roots of the equation  $2x^2 + 4x - 3 = 0$  and  $\alpha^2$ ,  $\beta^2$  are the roots of the equation  $x^2 + px + q = 0$ , find the value of p.

9. 若 
$$x^{\log_{10} x} = \frac{x^3}{100}$$
 ,且  $x > 10$  ,求  $x$  的值。

If  $x^{\log_{10} x} = \frac{x^3}{100}$  and  $x > 10$ , find the value of  $x$ .

- 已知  $a_0 = 1$  ,  $a_1 = 3$  及  $a_n^2 a_{n-1}a_{n+1} = (-1)^n$  , 其中 n 為正整數 。求  $a_4$  的值。 10. Given that  $a_0 = 1$ ,  $a_1 = 3$  and  $a_n^2 - a_{n-1}a_{n+1} = (-1)^n$  for positive integers n. Find the value of  $a_4$ .
- 求 2137<sup>754</sup> 的個位數。 11. Find the units digit of 2137<sup>754</sup>.

12. 若 
$$\left(r+\frac{1}{r}\right)^2=3$$
,求  $r^3+\frac{1}{r^3}$  的值。
If  $\left(r+\frac{1}{r}\right)^2=3$ , find the value of  $r^3+\frac{1}{r^3}$ .

13. 正整數 N 被 10、9、8、7、6、5、4、3 及 2 除所得的餘數依次是 9、8、7、6、5、4、  $3 \cdot 2 \mathcal{B} 1$ ,求 N 的最小值。

A positive integer N, when divided by 10, 9, 8, 7, 6, 5, 4, 3 and 2, leaves remainders 9, 8, 7, 6, 5, 4, 3, 2 and 1 respectively. Find the least value of N.

- 若  $\frac{1}{A} = \frac{\cos 45^{\circ} \sin 70^{\circ} \cos 60^{\circ} \tan 40^{\circ}}{\cos 340^{\circ} \sin 135^{\circ} \tan 220^{\circ}}$ ,求 A 的值。

  If  $\frac{1}{A} = \frac{\cos 45^{\circ} \sin 70^{\circ} \cos 60^{\circ} \tan 40^{\circ}}{\cos 340^{\circ} \sin 135^{\circ} \tan 220^{\circ}}$ , find the value of A.
- 若10人需要5天製成20張檯,請問15人需要多少天製成60張檯? 15. If 10 men can make 20 tables in 5 days,

how many days are required to make 60 tables by 15 men?

16. 圖一的三角形的三個外角的比是 x': y': z'=4:5:6, 而三個內角的比是 x:y:z=a:b:3, 求 b 的值。 In figure 1, the exterior angles of the triangle are in the ratio x': y': z' = 4:5:6 and the interior angles are in the ratio x:y:z=a:b:3. Find the value of b.



在  $\Delta ABC$  中, $\angle C = 90^{\circ}$  及  $D \setminus E$  分別為 BC 及 CA 的 17. 中點。若AD=7及BE=4,求AB的長度。(參考圖二) In  $\triangle ABC$ ,  $\angle C = 90^{\circ}$  and D, E are the mid-points of BC and CA respectively. If AD = 7 and BE = 4, find the length of AB. (See figure 2.)



18. 如圖三,三個半圓的直徑分別為 a、2a 及 3a。求陰影 部分的面積與沒有陰影部分的面積的比值。 Figure 3 shows 3 semi-circles of diameters a, 2a and 3a respectively. Find the ratio of the area of the shaded part to that of the unshaded part.



- 19.  $\bar{x} = \frac{1}{2\times3} + \frac{1}{3\times4} + \frac{1}{4\times5} + \dots + \frac{1}{19\times20}$  的值 Find the value of  $\frac{1}{2\times 3} + \frac{1}{3\times 4} + \frac{1}{4\times 5} + \dots + \frac{1}{19\times 20}$ .
- 20. 在圖四中,  $\angle C = 90^{\circ} \cdot AD = DB$  及 DE 垂直於  $AB \circ H$  AB = 20 及 AC = 12, 求四邊形 ADEC 的 面積。

In figure 4,  $\angle C = 90^{\circ}$ , AD = DB and DE is perpendicular to AB. If AB = 20 and AC = 12, find the area of the quadrilateral ADEC.



(Figure 4)(圖四)

## Hong Kong Mathematics Olympiad (1989 – 90) Heat Event (Group)

除非特別聲明,答案須用數字表達,並化至最簡。

時限:20分鐘

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 每題正確答案得一分。Each correct answer will be awarded 1 mark. Time allowed: 20 minutes

If 
$$\frac{1}{a} + \frac{1}{b} = 5$$
 and  $\frac{1}{a^2} + \frac{1}{b^2} = 13$ , find the value of  $\frac{1}{a^5} + \frac{1}{b^5}$ .

2. 某班有學生 N 人。

若將學生分為每 4 人一組,有 1 人餘下,

若將學生分為每 5 人一組,有 3 人餘下,

若將學生分為每7人一組,有3人餘下。

求 N 的最小值。

There are *N* pupils in a class.

When they are divided into groups of 4, 1 pupil is left behind.

When they are divided into groups of 5, 3 pupils are left behind.

When they are divided into groups of 7, 3 pupils are left behind.

Find the least value of N.

3.  $A \cdot B \cdot C \not B D$  的座標依次是 $(10, 1) \cdot (1, 7) \cdot (-2, 1) \not B (1, 3) \circ AB 與 CD 相交於 <math>P \circ B = CD$  相交於  $P \circ B = CD$ 

求 
$$\frac{AP}{PB}$$
 的值。

The coordinates of A, B, C and D are (10, 1), (1, 7), (-2, 1) and (1, 3) respectively. AB and CD

meet at P. Find the value of  $\frac{AP}{PB}$ .

4. 求 2<sup>1989</sup> + 1 被 3 除所得的餘數。

Find the remainder when  $2^{1989} + 1$  is divided by 3.

5. 歐拉在 1700 A.D.和 1800 A.D.之間出生和去世。在  $n^3$  A.D.時,他剛好 n+9 歲,而他在 76 歲時去世。求歐拉去世的年份。

Euler was born and died between 1700 A.D. and 1800 A.D. He was n + 9 years old in  $n^3$  A.D. and died at the age of 76. Find the year in which Euler died.

6. 設 N! 為首 N 個自然數的乘積,即  $N! = 1 \times 2 \times 3 \times \cdots \times N$ 。

若 
$$k$$
 是正整數使得  $30! = 2^k \times -$  奇數, 求  $k$  的值。

Let N! denote the product of the first N natural numbers, i.e.  $N! = 1 \times 2 \times 3 \times \cdots \times N$ .

If k is a positive integer such that  $30! = 2^k \times$  an odd integer, find the value of k.

7. 拋物綫  $y = x^2 - 4x - \frac{9}{4}$  的圖像交 x-軸於 A 及 B(圖一)。 若 C 是拋物綫的頂點,求 $\Delta ABC$  的面積。 The graph of the parabola  $y = x^2 - 4x - \frac{9}{4}$  cuts the x-axis at A and B (figure 1). If C is the vertex of the parabola, find the area of  $\Delta ABC$ .



(Figure 1)(圖一)

8. 在圖二中,FE // BC 及 ED // AB。若 AF: FB = 1:4, 求  $\Delta EDC$  的面積: $\Delta DEF$  的面積。 In figure 2, FE // BC and ED // AB. If AF: FB = 1:4, find the ratio of area of  $\Delta EDC$ : area of  $\Delta DEF$ .



(Figure 2)(圖二)

- 9. 在所附乘法算式中(圖三),字母  $O \cdot L \cdot Y \cdot M \cdot P \cdot I \cdot A$  及 D 代表 OLYMPIAD 由 1 至 9 的不同整數,求 A 所代表的整數。 X  $Y \cdot X$   $Y \cdot X$
- 10. 以  $A \cdot B$  及 C 為圓心的三個圓雨雨相切如圖四。若  $A \cdot B$  及 C 共綫,且 PQ 是雨個較小圓的公切綫,其中 PQ=4,試以  $\pi$  表陰影面積。

  Three circles, with centres A, B and C respectively, touch one another as shown in figure 4. If A, B and C are collinear and PQ is a common tangent to the two smaller circles, where PQ=4,

find the area of the shaded part in terms of  $\pi$ .



(Figure 4)(圖四)