

xQTL Analysis

Bernard Ng

Department of Statistics, UBC

www.cmmt.ubc.ca

Outline

- Recap of GWAS
- xQTL Analysis
- Challenges

- Replication
- xQTL Sharing
- Mediation Analysis
- Cell Specific Analysis
- Weighted GWAS

Overlap

Motivation

xQTL Analysis

xQTL Analysis

Linear Regression Model $y = X\beta + \epsilon$

Spearman's correlation $corr(rank(\mathbf{y}^c), rank(\mathbf{X}_i))$

Challenges: High Dimensionality

Exhaustive Analysis

eQTL: 98,723,308,260

mQTL: 3,029,306,117,310

haQTL: 193,170,851,760

Trillion of tests => no statistical power

Challenges: High Dimensionality

	#SNP-feature pairs	#Features	#SNPs
eQTL (1Mb)	60,456,556	12,979	6,442,864
mQTL (5Kb)	9,939,236	412,152	2,358,873
haQTL (1Mb)	125,100,450	25,720	6,756,597

Challenges: Hidden Confounds

Challenges: Hidden Confounds

Challenges: Multiple Testing

- P(not rejecting 1 hypothesis) = $1-\alpha$
- P(not rejecting all *n* hypotheses) = $(1-\alpha)^n$
- $\alpha_{\text{FWER}} = 1 (1 \alpha)^n$ $-\alpha = 0.05, n = 10: \alpha_{\text{FWER}} = 0.4013$ $-\alpha = 0.05, n = 10^2: \alpha_{\text{FWER}} \approx 1$
- So if e.g. run 100 experiments, then α_{FWER} ·100 of them would have ≥1 hypothesis falsely rejected.
- Intuition is that the more we sample the variable space, the more "likely" we will get some "extreme" samples.

Bonferroni Correction

Procedures

- Recall $\alpha_{\text{FWER}} = 1 (1 \alpha)^n$
- Set $\alpha = 1$ - $(1 \alpha_{\text{FWER}})^{1/n} \approx 1$ - $(1 \alpha_{\text{FWER}}/n) = \alpha_{\text{FWER}}/n$

Examples

- $\alpha_{\text{FWER}} = 0.05$ and n = 10, needs $\alpha = 0.05/10 = 0.005$
- $\alpha_{\text{FWER}} = 0.05$ and $n = 10^6$, needs $\alpha = 0.05/10^6 = 5 \times 10^{-8}$

Properties

• Ctrls FWER = $P(V \ge 1)$ in strong sense.

Can handle correlated hypotheses.

Very stringent

	Predicted				
		True	False		
Ground Truth	True	U	V	n ₀	
	False	Т	S	n-n _o	
		n-R	R	n	

Challenges: Multiple Testing

False Discovery Rate

Idea

- Benjamini & Hochberg, 1995
- Recall FWER = P(V≥1)
- Fdp = V/max(R,1)
- But V unobserved, so: FDR = E(Fdp)

Procedures

- Sort p in ascending order.
- Find $i_0 = \max i \text{ s.t. } p(i) \le i \cdot q/n$

Challenges: Multiple Testing

False Discovery Rate

False Discovery Rate

Properties

- If hypotheses are independent, then FDR < q for all configurations of hypotheses.
- If hypotheses are correlated,

```
FDR < q \cdot (log(n) + 0.577)
=> p(i) < i \cdot q/n / (log(n) + 0.577)
BUT i = 1, p(i) < q/n / (log(n) + 0.577) < q/n
```

	Predicted					
		True	False			
Ground Truth	True	U	V	n ₀		
	False	Т	S	n-n _o		
'		n-R	R	n		

Problems with scientific research

How science goes wrong

Scientific research has changed the world. Now it needs to change itself

Last year researchers at one biotech firm, Amgen, found they could reproduce just six of 53 "landmark" studies in cancer research. Earlier, a group at Bayer, a drug company, managed to repeat just a quarter of 67 similarly important papers. A leading computer scientist frets that three-quarters of papers in his subfield are bunk. In 2000-10 roughly 80,000 patients took part in clinical trials based on research that was later retracted because of mistakes or improprieties.

Replication

Strategies

- Lenient: Significant at a/n in Expt 1 and at a in Expt 2
- Stringent: Significant at a/n in Expt 1 and Expt 2
- In between: π_1 statistics = proportion of non-nulls

π_1 Statistics

Π_1 Statistics

Replication

Replication

xQTL Sharing

xQTL Sharing

Casual Inference Test

- X & Y associated: $Y = X\beta + \varepsilon$ with H_1 : $\beta \neq 0$
- X & M|Y associated: $M = X\beta + Y\gamma + \varepsilon$ with H_1 : $\beta \neq 0$
- M & Y|X associated: $Y = X\beta + M\alpha + \varepsilon$ with H_1 : $\alpha \neq 0$
- $X \perp Y | M: Y = X\beta + M\alpha + \varepsilon \text{ with } H_1: \beta = 0$

Requires equivalence test

Casual Inference Test

- X & Y associated: $Y = X\beta + \varepsilon$ with H_1 : $\beta \neq 0$
- X & M|Y associated: $M = X\beta + Y\gamma + \varepsilon$ with H_1 : $\beta \neq 0$
- M & Y|X associated: $Y = X\beta + M\alpha + \varepsilon$ with H_1 : $\alpha \neq 0$
- $X \perp Y | M: Y = X\beta + M\alpha + \varepsilon \text{ with } H_1: \beta = 0$

Equivalent Test for H_1 : $\beta = 0$ under independence model

- $M = X\beta + \epsilon$
- $M^p = X\beta + \epsilon^p$
- $Y = X\beta^p + M^p\alpha^p + \varepsilon$
- $\qquad \beta p -> Fp$
- Generate m F^p, then p-value = $\#\{F > F^p\}/m$

Casual Inference Test

- X & Y associated: p₁
- X & M|Y associated: p₂
- M & Y|X associated: p₃
- $X \perp Y \mid M: p_4$

Multiple Testing

- $p = max(p_1,p_2,p_3,p_4)$ based on intersection-union test, i.e. weakest link
- Correct for number of mediation tested

Cell Type Specific Analysis

- $E_i = S_j \alpha + C\beta + S \cdot C\gamma + \epsilon$
 - E_i = Expression of gene *i*
 - $-S_i$ = Genotype values of SNP j
 - C = cell type proportion
 - $S \cdot C = element-wise product$

- C estimated based on expression markers
 - ENO2 for Neuron
 - OLIG2 for Oligodendrocyte
 - GFAP for Astrocyte
 - CD68 for Microglia
 - CD34 for Endothelial

Cell Type Specific Analysis

- 46 genes at liberal FDR of 0.2
- This type of analysis falls under the general area of GxE interaction, which is nontrivial to detect

Weighted GWAS

Theory

- Given $\{p_i\}$, i=1,...,n
- If $\{w_i p_i\}$, $w_i \ge 0$ and $\sum_i w_i = 1$, then FWER controlled

Binary Strategy

- $W_1 = s/[1 + (s-1)n_1/n]$
- $\mathbf{w}_0 = 1/[1 + (\mathbf{s} 1)\mathbf{n}_1/\mathbf{n}]$
- $s = w_1/w_0$ ranging from 1 to 100
- $n_1 = \#xQTL SNPs, n = \#SNPs$

s Selection

- Randomly split the SNPs into 2 halves
- $J(s) = (D^{1}(s)/\pi_{1}^{1} + D^{2}(s)/\pi_{1}^{2}) / |D^{1}(s)/\pi_{1}^{1} D^{2}(s)/\pi_{1}^{2}|$

Weighted GWAS

Applied on the largest Schizophrenia data set that found 108 loci, we found 18 additional loci that met genome-wide significance.

Summary

- Recap of GWAS
- xQTL Analysis
- Challenges

- Replication
- xQTL Sharing
- Mediation Analysis
- Cell Specific Analysis
- Weighted GWAS

Overlap

xQTL Serve

RESOURCE

nature neuroscience

An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome

Bernard Ng^{1,2}, Charles C White³, Hans-Ulrich Klein^{3,4}, Solveig K Sieberts⁵, Cristin McCabe³, Ellis Patrick³, Jishu Xu³, Lei Yu⁶, Chris Gaiteri⁶, David A Bennett⁶, Sara Mostafavi^{1,2,7,8}, & Philip L De Jager^{3,4,8}

http://mostafavilab.stat.ubc.ca/xQTLServe/

