NYU Computer Science Bridge to Tandon Course

Winter 2021

Homework 1

Name: Zecheng Zhang

1 Problem 1

A.1 Answer: 155

$$10011011_2 = 1 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot 2^3 + 1 \cdot 2^4 + 0 \cdot 2^5 + 0 \cdot 2^6 + 1 \cdot 2^7 = 1 + 2 + 8 + 16 + 128 = 155$$

A.2 Answer: 237

$$456_7 = 6 \cdot 7^0 + 5 \cdot 7^1 + 4 \cdot 7^2 = 6 + 35 + 196 = 237$$

A.3 Answer: 906

$$38A_16 = 1 \cdot 16^0 + 1 \cdot 16^1 + 0 \cdot 16^2 = 10 + 128 + 768 = 906$$

A.4 Answer: 309

$$2214_5 = 4 \cdot 5^0 + 1 \cdot 5^1 + 2 \cdot 5^2 + 2 \cdot 5^3 = 4 + 5 + 50 + 250 = 309$$

B.1 Answer: 1000101₂

$$69_{10} = 64 + 4 + 1 = 2^6 + 2^2 + 2^0 = 1000101_2$$

B.2 Answer: 111100101₂

$$485_{10} = 256 + 128 + 64 + 32 + 4 + 1 = 2^{8} + 2^{7} + 2^{6} + 2^{5} + 2^{2} + 2^{0} = 111100101_{2}$$

B.3 Answer: 110110100011010₂

$$6D1A_{16} = 110110100011010_2, \, \mathrm{since} \,\, 6_{16} = 0110_2, D_{16} = 1101_2, 1_{16} = 0001_2, A_{16} = 1010_2$$

C.1 Answer: $6B_{16}$

$$1101011_2 = 6B$$
, since $0110_2 = 6_{16}$, $1011_2 = B_{16}$

C.2 Answer: $37F_{16}$

$$895_{10} = 15 + 112 + 768 = 15 \cdot 16^{0} + 7 \cdot 16^{1} + 3 \cdot 16^{2} = 37F$$

1 Answer: 14303₈

2 Answer: 11000000_2

3 Answer: $C02B_{16}$

4 Answer: 34₅

A.1 Answer: 011111100_{8 bit 2}

$$124_{10} = 64 + 32 + 16 + 8 + 4 = 2^6 + 2^5 + 2^4 + 2^3 + 2^2 = 01111100_{8 \, hit \, 2}$$

A.2 Answer: $10000100_{8 \, bit \, 2}$

A.3 Answer: 01101101_{8 bit 2}

$$109_{10} = 64 + 32 + 8 + 4 + 1 = 2^6 + 2^5 + 2^3 + 2^2 + 2^0 = 01101101_{8 \, bit \, 2}$$

A.4 Answer: 10110001_{8 bit 2}

$$79_{10} = 64 + 8 + 4 + 2 + 1 = 2^6 + 2^3 + 2^2 + 2^1 + 2^0 = 01001111_{8 \ bit \ 2}$$

B.1 Answer: 30₁₀

$$00011110_2 = 1 \cdot 2^1 + 1 \cdot 2^2 + 1 \cdot 2^3 + 1 \cdot 2^4 = 2 + 4 + 8 + 16 = 30$$

B.2 Answer: -26₁₀

$$00011010_2 = 1 \cdot 2^1 + 1 \cdot 2^3 + 1 \cdot 2^4 = 2 + 8 + 16 = 26$$

B.3 Answer: 45₁₀

$$00101101_2 = 1 \cdot 2^0 + 1 \cdot 2^2 + 1 \cdot 2^3 + 1 \cdot 2^5 = 1 + 4 + 8 + 32 = 45$$

B.4 Answer: -98_{10}

$$1100010_2 = 1 \cdot 2^1 + 1 \cdot 2^5 + 1 \cdot 2^6 = 2 + 32 + 64 = 98$$

1.2.4.b Answer:

p	q	$\neg(p \lor q)$
T	Τ	F
Т	F	F
F	Т	F
F	F	Т

1.2.4.c Answer:

p	q	r	$r \vee (p \wedge \neg q)$
T	Τ	Τ	T
Т	Т	F	F
Т	F	Τ	Τ
Т	F	F	Τ
F	Τ	Τ	T
F	Τ	F	F
F	F	Τ	Τ
F	F	F	F

1.3.4.b Answer:

p	q	$(p \to q) \to (q \to p)$
T	Τ	T
T	F	T
F	Τ	F
F	F	Τ

1.3.4.d Answer:

p	q	$(p \leftrightarrow q) \bigoplus (p \leftrightarrow \neg q)$
T	Τ	T
Т	F	Τ
F	Τ	T
F	F	T

1.2.7.b Answer: $(B \wedge D) \vee (B \wedge M) \vee (D \wedge M)$

1.2.7.c Answer: $B \lor (D \land M)$

1.3.7.b Answer: $(s \lor y) \to p$

1.3.7.c Answer: $p \rightarrow y$

1.3.7.d Answer: $p \leftrightarrow (s \land y)$

1.3.7.e Answer: $p \rightarrow (s \lor y)$

1.3.9.c Answer: $c \rightarrow p$

1.3.9.d Answer: $c \rightarrow p$

- 1.3.6.b Answer: If Joe is eligible for the honors program, then Joe maintains a B average.
- 1.3.6.c Answer: If Rajiv can go on the roller coaster, then he is at least four feet tall.
- 1.3.6.d Answer: If Rajiv is at least four feet tall, then he can go on the roller coaster.

1.3.10.c Answer: False.

The left hand side expression is true and the right hand side expression is false.

1.3.10.d Answer: Unknown.

If r is true, then the expression is false and if r is false, then the expression is true.

1.3.10.e Answer: Unknown.

If r is true, then the expression is true and if r is false, then the expression is false.

1.3.10.f Answer: True.

The hypothesis is false.

1.4.5.b Answer:

Logically equivalent

0-	J	- 1	1 (010110	
j	l	r	$\neg j \to (l \vee \neg r)$	$(\mathbf{r} \land \neg l) \to j$
T	Τ	Τ	T	T
T	Т	F	T	T
T	F	Τ	T	T
Т	F	F	T	T
F	Т	Τ	Τ	Т
F	Т	F	Т	Т
F	F	Τ	F	F
F	F	F	T	Т
11				

1.4.5.c Answer:

$$\begin{array}{l} \mathbf{j} \to \neg l \\ \neg j \to l \end{array}$$

Not logically equivalent

j	1	$\mathbf{j} \to \neg l$	$\neg j \rightarrow l$
T	Τ	F	Τ
T	F	Τ	T
F	Τ	Τ	T
F	F	Τ	F

1.4.5.d Answer:

$$\begin{array}{l} (\mathbf{r} \vee \neg l) \to j \\ j \to (r \wedge \neg l) \end{array}$$

Not logically equivalent

1	. 100	10510	any	cquivaich	
	j	l	r	$(\mathbf{r} \vee \neg l) \to j$	$\mathbf{j} \to (r \land \neg l)$
	Т	Τ	Τ	T	F
ſ	Т	Τ	F	Τ	F
ſ	Т	F	Τ	T	Τ
Ī	Т	F	F	Τ	F
Ī	F	Τ	Т	F	Τ
Ī	F	Т	F	Т	Т
	F	F	Τ	F	Τ
ſ	F	F	F	F	Τ
П					

1.5.2.c Answer:

$(p \to q) \land (p \to r)$	
$(\neg p \lor q) \land (p \to r)$	conditional identity
	conditional identity
$\neg p \lor (q \land r)$	distributive law
$p \to (q \land r)$	conditional identity

1.5.2.f Answer:

$\neg (p \lor (\neg p \land q))$	
$\neg p \land \neg (\neg p \land q)$	De Morgan's Law
$\neg p \land (\neg \neg p \lor \neg q)$	De Morgan's Law
$\neg p \land (p \lor \neg q)$	double negation law
$(\neg p \land p) \lor (\neg p \land \neg q)$	distributive law
$F \vee (\neg p \wedge \neg q)$	complement law
$\neg p \land \neg q$	identity law

1.5.2.i Answer:

$(\mathbf{p} \land q) \to r$	
$\neg (p \land q) \lor r$	conditional identity
$\neg p \lor \neg q \lor r$	De Morgan's Law
$\neg p \lor r \lor \neg q$	commutative law
$(\neg p \lor r) \lor \neg q$	associative law
$(\neg p \vee \neg \neg r) \vee \neg q$	double negation law
$\neg (p \land \neg r) \lor \neg q$	De Morgan's law
$(p \land \neg r) \to \neg q$	conditional identity

1.5.3.c Answer:

$\neg r \lor (\neg \neg r \lor p)$	conditional identity
$\neg r \lor (r \lor p)$	double negation law
$\neg r \lor r \lor p$	associative law
$T \lor p$	complement law
T	domination law

1.5.3.d Answer:

$\neg(p \to q) \to \neg q$	
	conditional identity
$\neg\neg(\neg p\vee q)\vee\neg q$	conditional identity
$(\neg p \lor q) \lor \neg q$	double negation law
$\neg p \lor q \lor \neg q$	associative law
$\neg p \lor (q \lor \neg q)$	associative law
$\neg p \lor T$	complement law
Т	domination law

1.6.3.c Answer:

$$\exists x(x=x^2)$$

1.6.3.d Answer:

$$\forall x (x <= x^2)$$

1.7.4.b Answer:

$$\forall x \ (\neg S(x) \land W(x))$$

1.7.4.c Answer:

$$\forall x \ (S(x) \to \neg W(x))$$

1.7.4.d Answer:

$$\exists x \ (S(x) \land W(x))$$

- 1.7.9.c Answer:True
- 1.7.9.d Answer:True
- 1.7.9.e Answer:True
- 1.7.9.f Answer:True
- 1.7.9.g Answer:False. Counter-example: c
- 1.7.9.h Answer:True
- 1.7.9.i Answer:True
- 1.9.2.b Answer:True, Q(2, 1), Q(2, 2) and Q(2, 3) are all true .
- 1.9.2.c Answer:True, P(1, 1), P(1, 2) and P(1, 3) are all true.
- 1.9.2.d Answer: False, all S(x,y) are false
- 1.9.2.e Answer:False, There is no y such that any of Q(1, y), Q(2, y) and Q(3, y) is true
- 1.9.2.f Answer:True, for any x, P(x,1) is true
- 1.9.2.g Answer:False, P(3,3) is false.
- 1.9.2.h Answer:True, Q(2,2) is true
- 1.9.2.b Answer:True, $\neg Q(x,y)$ is always true

1.10.4.c Answer:

$$\exists x \exists y \ (x + y = xy)$$

1.10.4.d Answer:

$$\forall x \forall y \ ((x > 0) \land (y > 0) \rightarrow (x/y > 0))$$

1.10.4.e Answer:

$$\forall x \ ((x < 1) \land (x > 0) \to (1/x > 1))$$

1.10.4.f Answer:

$$\forall x \exists y \ (y < x)$$

1.10.4.g Answer:

$$\forall x \exists y \ (\neg(x=0) \to xy = 1)$$

1.10.7.c Answer:

$$\exists x \ (D(x) \land N(x))$$

1.10.7.d Answer:

$$\forall x \ (D(x) \to P(Sam, x))$$

1.10.7.e Answer:

$$\exists x \forall y \ (N(x) \land P(x,y))$$

1.10.7.f Answer:

$$\exists x \forall y \ ((D(x) \land N(x)) \land ((D(y) \land N(y)) \rightarrow (y = x)))$$

1.10.10.c Answer:

$$\forall x \exists y \ (T(x, \mathrm{Math}101) \land T(x, y) \land \neg (y = \mathrm{Math}101))$$

1.10.10.d Answer:

$$\exists x \forall y\ (\neg(y = \mathrm{Math} 101) \to T(x,y))$$

1.10.10.e Answer:

$$\forall x\exists y\exists z\ (\neg(x=\mathrm{Sam})\to (T(x,y)\wedge T(x,z)\wedge \neg(y=z)))$$

1.10.10.f Answer:

$$\exists x\exists y \forall z\ (T(\mathrm{Sam},x) \land T(\mathrm{Sam},y) \land \neg(x=y) \land T(Sam,z) \rightarrow (z=x) \lor (z=y))$$

1.8.2.b Answer:

 $\forall x \ (P(x) \lor D(x))$

Negation: $\neg \forall x \ (P(x) \lor D(x))$

Applying De Morgan's Law: $\exists x \ (\neg P(x) \land \neg D(x))$

English: Some patient was given neither medication nor placebo.

1.8.2.c Answer:

 $\exists x \ (D(x) \land M(x))$

Negation: $\neg \exists x \ (D(x) \land M(x))$

Applying De Morgan's Law: $\forall x \ (\neg D(x) \lor \neg M(x))$

English: For all patients, either they were not given medication or they did not have migraines.

1.8.2.d Answer:

 $\forall x \ (\neg P(x) \lor M(x))$

Negation: $\neg \forall x \ (\neg P(x) \lor M(x))$

Applying De Morgan's Law: $\exists x \ (P(x) \land \neg M(x))$

English: Some patient had placebo but did not have migraines.

1.8.2.e Answer:

 $\exists x \ (P(x) \land M(x))$

Negation: $\neg \exists x \ (P(x) \land M(x))$

Applying De Morgan's Law: $\forall x \ (\neg P(x) \lor \neg M(x))$

English: For all patients, either they were not given placebo or they did not have migraines.

1.9.4.c Answer:

 $\forall x \exists y \ (P(x,y) \land \neg Q(x,y))$

1.9.4.d Answer:

$$\forall x \exists y \ (P(x,y) \land \neg P(y,x)) \lor (P(y,x) \land \neg P(x,y))$$

1.9.4.e Answer:

$$\forall x \forall y \ (\neg P(x,y)) \lor \exists x \exists y \ (\neg Q(x,y))$$