2017/2018 SEMESTER TWO MID-SEMESTER TEST

SAS Code: MST

Diploma in Aerospace Electronics (DASE) 2nd Year FT Diploma in Engineering with Business (DEB) 3rd Year FT Diploma in Electrical & Electronic Engineering (DEEE) 2nd Year FT Diploma in Engineering Systems (DES) 2nd Year FT Diploma in Energy Systems and Management (DESM) 2nd Year FT

CIRCUIT THEORY & ANALYSIS

Time Allowed: 1.5 Hours

<u>Instructions to Candidates</u>

- 1. The Singapore Polytechnic examination rules are to be complied with.
- 2. This paper consists of **TWO** sections:

Section A - 10 Multiple Choice Questions, 3 marks each.

Section B - 4 Short Questions

- 3. ALL questions are COMPULSORY.
- 4. All questions are to be answered in the answer booklet. Start each question in Sections B on a new page.
- 5. This paper consists 8 pages, inclusive of the formulae sheet.

SECTION A: MULTIPLE CHOICE QUESTIONS (3 marks each)

- 1. Please **tick** your answers in the **MCQ box** behind the front cover of the answer booklet.
- 2. No marks will be deducted for incorrect answers.
- 1. For the circuit shown in Figure A1, which one of the following is the correct matrix formed by inspection using Mesh Current Analysis method.

(a)
$$\begin{bmatrix} 5 & 2 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 5 & 2 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 5 & -2 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Figure A1

- 2. Determine the ammeter reading for the circuit shown in Figure A1 if the values of I_1 and I_2 are found to be 0.29 A and 0.226 A respectively,
 - (a) -0.29 A
 - (b) 0.29 A
 - (c) -0.226 A
 - (d) 0.226 A
- 3. Calculate the voltage at node A for the circuit shown in Figure A1 using the current values of $I_1 = 0.29$ A and $I_2 = 0.226$ A.
 - (a) 0.128 V
 - (b) 1.032 V
 - (c) 1.872 V
 - (d) 2.128 V

4. Determine the Thevenin's equivalent voltage source, V_{TH} across terminals A and B for the circuit given in Figure A4.

(d) 10 V

- 5. The value of the Thevenin's equivalent resistance, R_{TH} across terminals A and B for the circuit shown in Figure A4 is
 - (a) 2.5Ω
 - (b) 5Ω
 - (c) 10Ω
 - (d) 10.5Ω
- 6. Which one of the following statements is true, comparing with the value of the Thevenin's equivalent voltage source, V_{TH} obtained in Question 4 if the 5 Ω resistor is removed?
 - (a) The value of the Thevenin's equivalent voltage source, V_{TH} across terminals A and B remains unchanged.
 - (b) The value of the Thevenin's equivalent voltage source, V_{TH} across terminals A and B is increased.
 - (c) The value of the Thevenin's equivalent voltage source, V_{TH} across terminals A and B is decreased.
 - (d) The value of the Thevenin's equivalent voltage source, V_{TH} across terminals A and B is zero.

- 7. A 10 V AC source supplies a series circuit having a 0.03 μ F capacitor and a coil whose resistance and inductance are 200 Ω and 10 mH respectively. Calculate the resonant frequency of the series circuit.
 - (a) 1.83 kHz
 - (b) 9.19 kHz
 - (c) 18.38 kHz
 - (d) 28.87 kHz
- 8. With regards to the Question 7, determine the current flowing through the circuit at half-power frequencies.
 - (a) 0.035 A
 - (b) 0.050 A
 - (c) 0.0707 A
 - (d) 0.0866 A
- 9. Which one of the following is the correct statement regarding series and parallel RLC resonant circuit?
 - (a) The resistor R affects the resonant frequency.
 - (b) At resonance, the circuit current is a maximum.
 - (c) Resonance occurs when the circuit has zero power factor.
 - (d) Resonance occurs when the circuit behaves like a pure resistor.

•

- 10. A parallel RLC circuit has a resonant frequency of 60 kHz and a bandwidth of 20 kHz. If the total supply current is 3 mA at resonance, calculate the current through the inductor.
 - (a) 1 mA
 - (b) 3 mA
 - (c) 4.5 mA
 - (d) 9 mA

SECTION B: 4 QUESTIONS

B1. Using the source conversion method, simplify the circuit shown in Figure B1 to its equivalent current source across terminals AB. (15 marks)

- B2. For the circuit shown in Figure B2,
 - (a) convert the delta-connected resistors as shown in the dotted box into an equivalent star-connection, and hence (9 marks)
 - (b) determine the total circuit resistance across terminals X and Y. (6 marks)

Figure B2

- B3. (a) By inspection, **write** the nodal voltage equations for V_1 and V_2 in matrix form for the network shown in Figure B3. (14 marks)
 - (b) If the values of V_1 and V_2 are found to be -6.96 V and -5.76 V respectively, determine:
 - (i) the voltage across the 6 Ω resistor, and (2 marks)
 - (ii) the power in the 3 Ω resistor. (4 marks)

- B4. (a) Apply Norton's Theorem to find the Norton equivalent circuit parameters I_N and Z_N between terminals A and B for the circuit shown in Figure B4. (Include circuit diagrams for finding I_N and Z_N) (16 marks)
 - (b) Draw the Norton's equivalent circuit obtained above and hence calculate the current in the load Z_L . $40 \angle 0^0 \, V$ (4 marks)

Figure B4

- End of Paper -

<u>Formulae</u>

Resistors in series	$R_{T} = R_{1} + R_{2} + R_{3} + \dots$
Resistors in parallel	$\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \dots$
Resistors in parallel (for 2 resistors)	$R_T = \frac{R_1 R_2}{R_1 + R_2}$
Voltage Divider Rule	$V_{X} = \frac{R_{X}}{R_{T}} V_{S}$
Current Divider Rule	$I_1 = \frac{R_2}{R_1 + R_2} I_T$
Source Conversion	$E = I_S R_S I_S = \frac{E}{R_S}$
Mesh Current Analysis	[Z] [I] = [V]
Nodal Voltage Analysis	[Y] [V] = [I]
Delta to Star Conversion	$Z_1 = \frac{Z_A Z_C}{Z_A + Z_B + Z_C}$
	$Z_2 = \frac{Z_A Z_B}{Z_A + Z_B + Z_C}$
	$Z_3 = \frac{Z_B Z_C}{Z_A + Z_B + Z_C}$
Star to Delta Conversion	$Z_{A} = Z_{1} + Z_{2} + \frac{Z_{1}Z_{2}}{Z_{3}}$
	$Z_{\rm B} = Z_2 + Z_3 + \frac{Z_2 Z_3}{Z_1}$
	$Z_{\rm C} = Z_1 + Z_3 + \frac{Z_1 Z_3}{Z_2}$
Inductive Reactance	$X_L = 2\pi f L$
Capacitive Reactance	$X_{C} = \frac{1}{2 \pi f C}$

$Z = R I = V/R$ $f_o = \frac{1}{2\pi\sqrt{LC}}$
$Q_0 = \frac{X_L}{R} = \frac{X_C}{R}$ $= \frac{V_L}{V} = \frac{V_C}{V}$
Bandwidth (BW) = $\frac{f_o}{Q_o} = f_2 - f_1$
$f_1 = f_o - \frac{BW}{2} \qquad f_2 = f_o + \frac{BW}{2}$
Z = R $I = V/R$
$f_o = \frac{1}{2\pi\sqrt{LC}}$
$Q_0 = \frac{R}{X_L} = \frac{R}{X_C}$
$=\frac{I_L}{I}=\frac{I_C}{I}$
Bandwidth (BW) = $\frac{f_o}{Q_o} = f_2 - f_1$
$f_1 = f_o - \frac{BW}{2} \qquad f_2 = f_o + \frac{BW}{2}$

ANSWERS:

A	
1	D
2	A
3	A C C A B
4	С
5	A
6	
7	В
1 2 3 4 5 6 7 8	A D
	D
10	D

B1
$$I_S = 1.37 \text{ V}, R = 5.45 \Omega$$

B2
$$R_1 = 7.5\Omega, R_2 = 5\Omega, R_3 = 15\Omega$$

$$R_T = 31\Omega$$

$$\mathbf{B3} \quad \begin{bmatrix} \frac{1}{2} + \frac{1}{3} + \frac{1}{6} & \left(-\frac{1}{6} \right) \\ \left(-\frac{1}{6} \right) & \frac{1}{4} + \frac{1}{5} + \frac{1}{6} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} -8 + \frac{6}{3} \\ -\frac{12}{5} \end{bmatrix}$$

$$V_{6\Omega} = -1.2 \text{ V}$$

$$P_{3\Omega} = 55.99 \, \text{W}$$

$$1 \text{ Model of } V$$

$$25 \angle 0^0 \, \text{V}$$

$$3 \, \Omega \implies I_N$$

$$B$$

$$I_N = 11.13 \angle -57.99^0 \text{ A}$$

$$Z_N = 2.5 + j4 = 4.72 \angle 57.99^0 \, \Omega$$

$$I_L = 5.57 \angle -57.99^0 \text{ A}$$