

绝密★启用前

2021年普通高等学校招生全国统一考试

理科数学

注意事项:

1	 	老生多心烙白己的姓名。	准考证号填写在答题卡上.
1.	100 177 1111 9		1674.7条引任奇彪下上。

- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改 动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上,写在
- 项

本试卷上无效.			
3. 考试结束后,将本	试卷和答题卡一并交回.		
一、选择题: 本题共1	2 小题,每小题 5 分,共	失60分.在每小题给出的	的四个选项中,只有一项
是符合题目要求的.			
1. 设 $2(z+\overline{z})+3(z-\overline{z})$	$=4+6i$, $\emptyset z = ($		
A. $1-2i$	B. $1+2i$	C. 1+i	D. $1-i$
2. 已知集合 $S = \{s \mid s = 2n\}$	$n+1, n \in \mathbf{Z}$, $T = \{t \mid t = 4n\}$	$n+1, n \in \mathbf{Z}$, $\bigcup S ? T$	()
A. Ø	B. S	C. T	D. Z
3. 已知命题 $p:\exists x \in \mathbf{R}$, si	$\ln x < 1$; $\text{chi} q : \forall x \in \mathbf{R}$,	$e^{ x } \ge 1$,则下列命题中为真	[命题的是()
A. <i>P</i> ^ <i>q</i>	B. $\neg p \land q$	c. <i>p</i> ∧¬ <i>q</i>	D. $\neg (p \lor q)$
4. 设函数 $f(x) = \frac{1-x}{1+x}$,	则下列函数中为奇函数的是	<u>1</u> ()	
A. $f(x-1)-1$	B. $f(x-1)+1$	c. $f(x+1)-1$	D. $f(x+1)+1$
5. 在正方体 <i>ABCD</i> – A ₁ B	$B_1C_1D_1$ 中, P 为 B_1D_1 的中点	,则直线 PB 与 AD_1 所成的	1角为()
A. $\frac{\pi}{2}$	B. $\frac{\pi}{3}$	C. $\frac{\pi}{4}$	D. $\frac{\pi}{6}$
6. 将 5 名北京冬奥会志愿	者分配到花样滑冰、短道边	速滑、冰球和冰壶4个项目	进行培训,每名志愿者只分
配到1个项目,每个项目	至少分配1名志愿者,则不	同的分配方案共有 ()	
A. 60 种	B. 120 种	C. 240 种	D. 480 种

7. 把函数 y = f(x) 图像上所有点的横坐标缩短到原来的 $\frac{1}{2}$ 倍,纵坐标不变,再把所得曲线向右平移 $\frac{\pi}{3}$ 个

单位长度,得到函数 $y = \sin\left(x - \frac{\pi}{4}\right)$ 的图像,则 f(x) = 0

A.
$$\sin\left(\frac{x}{2} - \frac{7x}{12}\right)$$

B.
$$\sin\left(\frac{x}{2} + \frac{\pi}{12}\right)$$

$$C. \sin\left(2x - \frac{7\pi}{12}\right)$$

D.
$$\sin\left(2x + \frac{\pi}{12}\right)$$

8. 在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于 $\frac{7}{4}$ 的概率为(

c. $\frac{9}{32}$

9. 魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高. 如图,点E,H,G在水平线 AC上, DE 和 FG 是两个垂直于水平面且等高的测量标杆的高度, 称为"表高", EG 称为"表距", GC 和 EH 都称为"表目距",GC 与 EH 的差称为"表目距的差"则海岛的高 AB =

B. <u>表高×表距</u> - 表高 表日距的差

c. 表高×表距 表目距的差 + 表距

D. 表高×表距 表日版的差 - 表距

10. 设 $a \neq 0$, 若x = a为函数 $f(x) = a(x-a)^2(x-b)$ 的极大值点,则(

- A. a < b

- C. $ab < a^2$ D. $ab > a^2$

11. 设 B 是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的上顶点,若 C 上的任意一点 P 都满足 $|PB| \le 2b$,则 C 的离心

率的取值范围是(

- A. $\left| \frac{\sqrt{2}}{2}, 1 \right|$
- B. $\left[\frac{1}{2},1\right)$
- c. $\left(0, \frac{\sqrt{2}}{2}\right)$
- D. $\left[0,\frac{1}{2}\right]$

12. 设 $a = 2\ln 1.01$, $b = \ln 1.02$, $c = \sqrt{1.04} - 1$. 则(

- A. a < b < c
- B. b < c < a
- C. b < a < c
- D. c < a < b

二、填空题:本题共4小题,每小题5分,共20分.

- 13. 已知双曲线 $C: \frac{x^2}{m} y^2 = 1 (m > 0)$ 的一条渐近线为 $\sqrt{3}x + my = 0$,则 C 的焦距为_____.
- 14. 已知向量 $\vec{a} = (1,3), \vec{b} = (3,4), \ \vec{a}(\vec{a} \lambda \vec{b}) \perp \vec{b}, \ \ \emptyset \ \lambda = \underline{\hspace{1cm}}.$
- 15. 记 $\Box ABC$ 内角 A, B, C 的对边分别为 a, b, c, 面积为 $\sqrt{3}$, $B = 60^{\circ}$, $a^2 + c^2 = 3ac$, 则 b =_____.
- **16**. 以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).

- 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
- (一) 必考题: 共60分.
- **17**. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了 10 件产品,得到各件产品该项指标数据如下:

旧设备	9.8	10.3	10.0	10.2	9.9	9.8	10.0	10.1	10 2	9.7
新设备	10.1	10.4	10.1	10.0	10.1	10.3	10.6	10.5	10.4	10.5

旧设备和新设备生产产品的该项指标的样本平均数分别记为 $_x^-$ 和 $_y^-$,样本方差分别记为 $_1^2$ 和 $_2^2$.

- (1) \bar{x}_{x} , \bar{y}_{y} , s_{1}^{2} , s_{2}^{2} ;
- (2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果 $\overline{y} \overline{x} \ge 2\sqrt{\frac{s_1^2 + s_2^2}{10}}$,则认为

新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).

18. 如图,四棱锥 P-ABCD 的底面是矩形,PD 上底面 ABCD, PD=DC=1, M 为 BC 的中点,且 $PB \perp AM$.

(1) 求BC;

(2) 求二面角 A-PM-B 的正弦值.

19. 记 S_n 为数列 $\{a_n\}$ 的前n 项和, b_n 为数列 $\{S_n\}$ 的前n 项积,已知 $\frac{2}{S_n} + \frac{1}{b_n} = 2$.

(1) 证明:数列 $\{b_n\}$ 是等差数列;

(2) 求 $\{a_n\}$ 通项公式.

20. 设函数 $f(x) = \ln(a-x)$, 已知 x = 0 是函数 y = xf(x) 的极值点.

(1) 求a;

(2) 设函数 $g(x) = \frac{x + f(x)}{xf(x)}$. 证明: g(x) < 1.

21. 已知抛物线 $C: x^2 = 2py(p > 0)$ 焦点为 F ,且 F 与圆 $M: x^2 + (y + 4)^2 = 1$ 上点的距离的最小值为 4 .

(1) 求p;

- (2) 若点 P 在 M 上, PA, PB 是 C 的两条切线, A, B 是切点,求 $\triangle PAB$ 面积的最大值.
- (二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.

[选修 4-4: 坐标系与参数方程](10分)

- 22. 在直角坐标系 xOy 中, ΘC 的圆心为 C(2,1), 半径为 1.
- (1) 写出□ C 的一个参数方程;
- (2) 过点 F(4,1)作 \Box C 的两条切线. 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.

[选修 4-5: 不等式选讲] (10 分)

- 23. 已知函数 f(x) = |x-a| + |x+3|.
- (1) 当a=1时,求不等式 $f(x) \ge 6$ 的解集;
- (2) 若f(x) > -a, 求a 取值范围.

