REPRESENTACIÓN GRÁFICA DE FUNCIONES

Para representar gráficamente funciones explícitas (es decir del tipo y = f(x)), deben seguirse los siguientes pasos, representando inmediatamente todos los datos que se vayan conociendo:

1. Estudio de la función:

- a) Dominio de definición: Si hay cocientes, donde sea cero el denominador la función no estará definida; si hay raíces de índice par, no lo estará cuando el radicando sea negativo; si hay logaritmos, tampoco lo estará cuando el argumento de estos sea menor o igual que cero.
- b) Simetrías: Si f(-x)=f(x), la función es par (simétrica respecto al eje OY); si f(-x)=-f(x) la función es impar (simétrica respecto al origen). No tiene porque haber simetrías, pero su existencia nos facilita el trazado de la gráfica.
- c) Intersecciones con los ejes: Con el eje OY, haciendo x=0 (como máximo hay una);
 con el eje OX haciendo y=0 (puede haber muchas y en ocasiones no son fáciles de hallar)
- d) Asíntotas.
 - i) Verticales: Si se tiene que $\lim_{x\to a} f(x) = \infty$, entonces la recta x=a es una asíntota vertical.
 - ii) Horizontales: Si $\lim_{x\to\infty} f(x) = k$, entonces la recta y=k es una asíntota horizontal.
 - iii) Oblicuas: Si $\lim_{x\to\infty} \frac{f(x)}{x} = m$ (m finito y \neq 0), y $\lim_{x\to\infty} (f(x) mx) = b$, entonces la recta y = mx + b es una asíntota oblicua.

Notas:

- No puede haber simultáneamente asíntota horizontal y oblicua cuando x→∞ o cuando x→-∞.
- Si la función es polinómica, no tiene asíntotas.
- Si es racional, las asíntotas horizontales u oblicuas, lo son para $x \to \pm \infty$.
- Si se trata de otro tipo de función (irracional, trascendente, definida a intervalos, ...) las asíntotas para x tendiendo a más infinito y a menos infinito pueden ser distintas.
- Las asíntotas horizontales y oblicuas pueden cortar a la gráfica de la función en uno o más puntos, dato este necesario para representarla correctamente.

- Para hallar los puntos de intersección se resuelve el sistema formado por la ecuación de la función y de la asíntota.
- En el caso de funciones racionales, es más útil hallar las asíntotas dividiendo, para separar la fracción en un polinomio y una fracción propia, con el numerador de grado inferior al denominador. El polinomio es la curva asintótica (la asíntota si es de grado 1 o constante). La parte fraccionaria nos indica fácilmente los puntos de corte con la asíntota y su posición por encima o por debajo de ella, según sea su signo.
- e) Signo de la función: La función solo puede cambiar de signo en los puntos en que vale cero o no es continua. Por tanto, en las regiones delimitadas por estos puntos mantiene siempre el mismo signo. Esto es muy útil a la hora de representarla.

2. Estudio de la derivada 1a:

- a) Obtención, simplificación y factorización al máximo. Podemos transformar la expresión de la función para derivarla más cómodamente. Una vez derivada, debemos simplificarla al máximo y sacar factor común todo lo posible.
- b) Ceros y puntos de discontinuidad. Si se hizo lo indicado en el apartado anterior, serán más fáciles de hallar.
- c) Signo de la derivada primera: como se hizo en el apartado 1.e) con la función.
- d) Máximos, mínimos y regiones de crecimiento y decrecimiento: Donde la derivada primera sea positiva la función es creciente; donde sea negativa, decreciente; y cuando cambie de una cosa a otra (si esta definida) habrá un máximo (primero creciente, luego decreciente) o un mínimo (primero decreciente, luego creciente). Conviene determinar cuanto vale la función en los máximos y mínimos.

3. Estudio de la derivada 2a:

- a) Obtención, simplificación y factorización al máximo.
- b) Ceros y puntos de discontinuidad.
- c) Signo de la derivada segunda.
 Estos tres apartados consisten en lo mismo que los correspondientes a la derivada 1ª.
- d) Puntos de inflexión y regiones de concavidad y convexidad: Donde la derivada segunda sea positiva la función es convexa (∪); donde sea negativa, cóncava (∩); y cuando cambie de una cosa a otra (si esta definida) habrá un punto de inflexión (en el que la tangente en ese punto atraviesa a la gráfica). Conviene determinar cuanto vale la función en los puntos de inflexión, así como la derivada 1ª, para tener una idea de la pendiente de la gráfica en esos puntos.

EJEMPLO

Apliquemos todo lo anterior para representar la función $y = \frac{x^3}{(x-1)^2}$.

- a) Se trata de una función racional (cociente de dos funciones polinómicas), por lo que únicamente no estará definida donde sea cero el denominador, es decir en x=1 (doble); D(f(x))=R-{1}.
 - b) $f(-x) = \frac{(-x)^3}{((-x)-1)^2} = \frac{-x^3}{(-x-1)^2} = \frac{-x^3}{(x+1)^2}$, $f(-x) \neq f(x)$ y $f(-x) \neq f(x) \Rightarrow$ no hay simetrias.
 - c) Haciendo x=0, se obtiene y=0; haciendo y=0 solo se obtiene nuevamente x=0. En este caso hay un solo punto de corte con ambos ejes: el origen.
 - d) i) En x=1 el denominador vale cero y el numerador no, por lo tanto $\lim_{x\to l} \frac{x^3}{(x-l)^2} = +\infty$ (positivo, pues tanto numerador como denominador son positivos a la izquierda y derecha de 1). Por tanto, la recta x=1 es una A.V.
 - ii) El grado del numerador es mayor que el del denominador, luego $\lim_{x\to\pm\infty}\frac{x^3}{(x-1)^2}=\pm\infty \text{ y no hay asíntotas horizontales.}$
 - iii) El que el grado del numerador sea uno mayor que el del denominador, nos indica que hay una asíntota oblicua, y=mx+b.

$$m = \lim_{x \to \infty} \frac{\frac{x^3}{(x-1)^2}}{x} = \lim_{x \to \infty} \frac{x^2}{x^2 - 2x + 1} = 1$$

$$b = \lim_{x \to \infty} f(x) - mx = \lim_{x \to \infty} \left(\frac{x^3}{x^2 - 2x + 1} - x \right) = \lim_{x \to \infty} \frac{x^3 - x^3 + 2x^2 - x}{x^2 - 2x + 1} = 2$$

Su ecuación es por tanto y=x+2. Resolviendo el sistema de ecuaciones que formado por la de la función y la de la asíntota, obtenemos un único punto de corte (2/3,8/3).

Alternativamente, al tratarse de una función racional, podemos dividir para separarla en un polinomio y una fracción propia:

$$y = \frac{x^3}{x^2 - 2x + 1} = x + 2 + \frac{3x - 2}{x^2 - 2x + 1}$$

La asíntota es entonces y = x + 2, corta a la curva cuando el numerador de la fracción propia es cero, $3x - 2 = 0 \Rightarrow x = 2/3$, y = 2/3 + 2 = 8/3. Como el denominador es siempre positivo, para x > 3/2 la gráfica de la función está por encima de la asíntota y para x < 3/2 por debajo.

- e) El denominador de la fracción es siempre positivo, así que la función tiene siempre el mismo signo que x³, es decir que para x<0 es negativa y para x>0 es positiva.
- 2. a) La derivada primera será:

$$y' = \frac{3 x^2 (x-1)^2 - x^3 2(x-1)}{(x-1)^4} = \frac{3 x^2 (x-1) - 2 x^3}{(x-1)^3} =$$

$$=\frac{x^3-3x^2}{(x-1)^3}=\frac{x^2(x-3)}{(x-1)^3}$$

- b) Es cero en x=0 (raíz doble) y en x=3, y no esta definida en x=1.
- c), d) Estudiemos el signo de la derivada en cada una de las regiones delimitadas por estos puntos:

Х	x<0	x=0	0 <x<1< th=""><th>x=1</th><th>1<x<3< th=""><th>x=3</th><th>3<x< th=""></x<></th></x<3<></th></x<1<>	x=1	1 <x<3< th=""><th>x=3</th><th>3<x< th=""></x<></th></x<3<>	x=3	3 <x< th=""></x<>
y'	+	0	+	N.D.	-	0	+
у	Crec.	P.I. 0	Crec.	N.D.	Decr.	Mín. 27/4	Crec.

$$y'' = \frac{(3 x^2 - 6x)(x - 1)^3 - (x^3 - 3x^2)3(x - 1)^2}{(x - 1)^6} = \frac{3x(x - 2)(x - 1) - 3x^2(x - 3)}{(x - 1)^4} =$$

$$= \frac{3 x^3 - 9 x^2 + 6x - 3 x^3 + 9 x^2}{(x-1)^4} = \frac{6x}{(x-1)^4}$$

- 3. a) Partiendo de la penúltima expresión de la derivada primera, tenemos:
 - b) La derivada segunda se anula en x=0 y no esta definida en x=1.
 - c), d) Estudiemos su signo en las regiones delimitadas por estos puntos:

Х	x<0	x=0	0 <x<1< th=""><th>x=1</th><th>1<x< th=""></x<></th></x<1<>	x=1	1 <x< th=""></x<>
y''	-	0	+	N.D.	+
У	Conc. ∩	P.I. y=0 y'=0	Conv. ∪	N.D.	Conv. ∪

Si se ha ido representando toda la información obtenida, podremos completar ya fácilmente la gráfica de la función:

Gráfica de la función $y = \frac{x^3}{(x-1)^2}$ y de sus asíntotas x = 1 e y = x + 2.

Los puntos están espaciados dos unidades en las direcciones de ambos ejes.