Битонная сортировка.

Битонная сортировка (англ. Bitonic sorter) — параллельный алгоритм сортировки данных, метод для создания сортировочной сети. Разработан американским информатиком Кеннетом Батчером в 1968 году.

Определение:

битонная последовательность - последовательность элементов

$$\{a_n\} = (a_1; a_2; a_3; ...; a_n),$$

в которой либо элементы до *k-го* образуют неубывающую последовательность, а после него — невозрастающую последовательность, либо приводится к такому виду с помощью циклического сдвига:

$$a_1 \le a_2 \le a_3 \le \cdots \le a_k \ge a_{k+1} \ge \cdots \ge a_n$$

Примеры битонных последовательностей:

$$\{a_n\} = (1; 2; 3; 4; 3; 2; 1),$$

 $\{a_n\} = (1; 2; 3; 4; 5; 6; 7),$
 $\{a_n\} = (1; 10; 9; 8; 0; -3; -10).$

- <u>1. Алгоритм сортировки битонной последовательности длины</u> $n = 2^{k-1}, k \in \mathbb{N}.$
- 1. Если n=1, то алгоритм завершается.
- 2. Разобьем данную последовательность на две:

$$\{\,b_n\,\}=(min(a_1,\,a_{m+1})\,;min(a_2,\,a_{m+2})\,;...\,;min(a_m,\,a_n))\,;$$
 $\{\,c_n\,\}=(max(a_1,\,a_{m+1})\,;max(a_2,\,a_{m+2});...\,;max(a_m,\,a_n))\,;$ где $m=n/2.$

Заметим несколько фактов:

- $b_n \le c_n$, так как $min(a,b) \le max(a,b)$;
- b_n битонная последовательность.
- c_n битонная последовательность. Доказательство аналогично предыдущему.
- 3. Таким образом, если отсортировать последовательности b_n и c_n , ответом будет являться последовательность $\{a_n\} = (b_1; b_2; ...; b_m; c_1; c_2; ...; c_m)$. Отсортировать последовательности можно рекурсивно этим же алгоритмом.

Асимптотика алгоритма 1:

Будем считать, что алгоритм состоит из $k = log_2 n$ фаз, на каждой из которых сортируются части массива длины $\frac{n}{2^{k-1}}$. Таким образом, на первой фазе выполняется $\frac{n}{2}$ сравнений. Далее массив делится на 2 равные части, в каждой из которых выполняется $\frac{n}{4}$ сравнений. И так далее, нетрудно видеть, что на каждой фазе, кроме последней, массивов вдвое больше, чем на предыдущей, а сравнений в каждом из них выполняется в 2 раза меньше. Значит всего выполняется $\frac{n}{2}k$ операций. Значит асимптотика данного алгоритма равна O(nk) = O(nlogn).

- <u>2. Алгоритм преобразования последовательности длины $n=2^{k-1}, k \in \mathbb{N}$ </u> В битонную.
- 1. Если $n \leq 2$, то алгоритм завершается, так как любая последовательность длины такой длины является битонной.
- 2. Разделим последовательность на две:

$$\{b_n\}=(a_1; a_2; ...; a_m);$$
 $\{c_n\}=(a_{m+1}; a_{m+2}; ...; a_n);$ где $m=n/2.$

Запустим этот алгоритм для построения битонных последовательностей из b_n и c_n .

- 3. Отсортируем алгоритмом 1 последовательность b_n по возрастанию и последовательность c_n по убыванию.
- 4. Возвращаем объединение двух последовательностей:

$$\{a_n\} = (b_1; b_2; \dots; b_m; c_1; c_2; \dots; c_m).$$

 $b_1 \le b_2 \le \dots \le b_m; c_1 \ge c_2 \ge \dots \ge c_m;$

Очевидно, что при любом результате сравнения \mathbf{b}_{m} и c_1 последовательность $\{a_n\}$ является битонной.

Асимптотика алгоритма 2:

Алгоритм рекурсивный, глубина рекурсии, очевидно, равна log_2 n. На каждом уровне выполняется log_2 n операций (см. асимптотику алгоритма 1). Итоговая асимптотика: $O(nlog^2n)$.

- 3. Алгоритм битонной сортировки.
- 1. Дополним массив минимальным количеством элементов, равных бесконечности, так, чтобы количество элементов в нем стало равно $n=\ 2^{k-1},\ k\in\mathbb{N}.$

- 2. Преобразуем нашу последовательность алгоритмом 2 в битонную.
- 3. Отсортируем весь массив алгоритмом 1.
- 4. Выбросим элементы, равные бесконечности, из конца массива.

Асимптотика алгоритма битонной сортировки:

Очевидно, первая и четвертая части выполняются за O(n). Для остальных асимптотика доказана: третья часть - O(nlogn), вторая - $O(nlog^2n)$.

Асимптотика всего алгоритма: $O(nlog^2n + n + n + nlogn) = O(nlog^2n)$.

Пример:

```
\{a_n\} = (1; 5; 7; 2; 5; 6; 3; 4) \rightarrow (1; 5; 7; 2; 5; 6; 4; 3) \rightarrow (1; 2; 7; 5; 5; 6; 4; 3) \rightarrow (1; 2; 5; 7; 6; 5; 4; 3) \rightarrow (1; 2; 4; 3; 6; 5; 5; 7) \rightarrow (1; 2; 4; 3; 5; 5; 6; 7) \rightarrow (1; 2; 3; 4; 5; 5; 6; 7).
```