

MTH 442: Time Series Analysis Problem Set # 6

- [1] Suppose $\{X_t\}$ is a stationary time series, with $\lim_{h\to\infty} \gamma(h) = 0$, prove that $\lim_{n\to\infty} Cov(\bar{X}_n, X_n) = 0$.
- [2] Let $\{X_t\}$ be a stationary time series with mean 0 and autocovariance function $\gamma(.)$. Show that, if $\lim_{h\to\infty} \gamma(h) = 0$ then $\lim_{n\to\infty} Var(\bar{X}_n) = 0$. Give a counter example to show that the converse is not true.
- [3] Suppose that for a sample of size 100 $(x_1, x_2, ..., x_{100})$ from an AR(1) process with unknown mean μ ; we obtain $\overline{x}_{100} = 0.157$, $\hat{\phi} = 0.6$ and $\hat{\sigma}^2 = 2$. Perform an asymptotic test, at 5% level of significance, for the hypothesis $H_0: \mu = 0$ against the alternative $H_1: \mu \neq 0$ and construct an approximate asymptotic 95% confidence interval for μ .
- [4] Let $\{X_t\}$ be a process given by $X_t \theta = \varepsilon_t + 0.5 \varepsilon_{t-1} + 0.5 \varepsilon_{t-2}$, where θ is unknown and $\varepsilon_t \sim WN(0,1)$. Find an asymptotic $100(1-\alpha)\%$ confidence interval for θ based on a random sample of size n.
- [5] Let $\{X_t\}$ be a linear stationary time series with mean μ and ACVF

$$\gamma(h) = (0.6)^{|h|} + 2(0.3)^{|h|} + (0.1)^{|h|}$$

- (a) Find $\lim_{n\to\infty} n Var(\bar{X}_n)$ and hence derive the asymptotic distribution of \bar{X}_n .
- (b) Further using the asymptotic distribution, find the smallest n such that $P(\bar{X}_n 0.49 \le \mu \le \bar{X}_n + 0.49) \ge 0.95$.
- [6] Consider two uncorrelated stationary AR(1) processes $\{X_t\}$ and $\{Y_t\}$; $X_t = \mu + \frac{1}{2}X_{t-1} + \varepsilon_t$, $Y_t = \mu + \frac{1}{3}Y_{t-1} + \delta_t$. $\{\varepsilon_t\}$ and $\{\delta_t\}$ are independent WN(0,1) processes. Let $Z_t = X_t + Y_t$, using asymptotic (large sample) distribution of \overline{Z}_n , find the smallest n such that $P(\left|\overline{Z}_n 7\mu/2\right| \le 0.098) \ge 0.95$. $(\tau_{0.025} = 1.96)$
- [7] Let $X_1, ..., X_n$ be a sample from $\{X_t\}$ and $Y_1, ..., Y_n$ be a sample from $\{Y_t\}$. Where, $\{X_t\}$ is an AR(1), $X_t = \mu + \phi X_{t-1} + \varepsilon_t$, $|\phi| < 1$ and $\{Y_t\}$ is MA(1), $Y_t = \delta + \eta_t + \theta \eta_{t-1}$, $|\theta| < 1$. $\{\varepsilon_t\}$ and $\{\eta_t\}$ are independent $WN(0, \sigma^2)$ sequences. Define a new time series $Z_t = X_t + Y_t$. Verify whether $\overline{Z}_n \xrightarrow{m.s.} E(Z_1)$.
- [8] Suppose $Z, X_1, X_2,, X_n$ be a set of random variables with zero mean, known finite variance and covariances. Let $P_{(X_1,...,X_n)}Z$ denote the BLP of Z based on $X_1, X_2,, X_n$. Prove that

$$Var\left(Z - P_{(X_1,\dots,X_n)}Z\right) = Var\left(Z\right) - Var\left(P_{(X_1,\dots,X_n)}Z\right).$$

- [9] Let $\{X_t\}$ be a stationary time series defined by $X_t = \begin{cases} Z_1 & \text{if } t \text{ is even} \\ Z_2 & \text{if } t \text{ is odd} \end{cases}$ where, Z_1 and Z_2 are independent r.v.s with $E(Z_i) = 0$; $V(Z_i) = \sigma^2$; i = 1, 2. Obtain the BLP of X_{h+1} based on $(X_h, X_{h-1}, ..., X_2)$ for h even.
- [10] For a zero mean causal AR(p) process $Y_t \phi_1 Y_{t-1} \phi_2 Y_{t-2} \dots \phi_p Y_{t-p} = \varepsilon_t$; $\varepsilon_t \sim WN(0, \sigma^2)$. Find the BLP of Y_{n+1} based on (Y_n, \dots, Y_1) .
- [11] Consider the causal AR(1) model $X_t \phi X_{t-1} = \varepsilon_t$; $\varepsilon_t \sim WN(0, \sigma^2)$. Suppose that only every second value is possible to observe, i.e. we have $Y_t = X_{2t}$. Find the BLP of Y_{t+1} based on $Y_t, Y_{t-1}, ..., Y_1$. Also find the minimum mean square prediction error.
- [12] Let $\{X_t\}$ and $\{Y_t\}$ be two AR(1) processes given by

$$\begin{split} X_{t} &= \phi_{X} X_{t-1} + Z_{t} \\ Y_{t} &= \phi_{Y} Y_{t-1} + Z_{t} + U_{t} \end{split}.$$

Where, $\{Z_t\} \sim WN(0, \sigma_Z^2), \{U_t\} \sim WN(0, \sigma_U^2);$ $\{Z_t\}$ and $\{U_t\}$ are independent; $|\phi_X| < 1$ and $|\phi_Y| < 1$. Derive the BLP of X_{t+1} based on Y_t only.

- [13] $\{X_t\}$ is a stationary AR(1) process; $X_t = 0.5 X_{t-1} + \varepsilon_t$; $\varepsilon_t \sim WN(0,1)$ and $Y_t = X_t + \eta_t$; $\eta_t \sim WN(0,\sigma^2)$, where ε_t and η_t are independently distributed. Show that the BLP of Y_3 based on Y_2 and Y_1 is given by $\frac{6(1+\sigma^2)Y_2 + 3\sigma^2Y_1}{\left(4+3\sigma^2\right)^2 4}.$
- [14] Let $\{X_t\}$ be a MA(1) process $X_t = \varepsilon_t + \theta \varepsilon_{t-1}$, $\varepsilon_t \sim WN(0, \sigma^2)$. Find the BLP of a missing value X_2 based on X_1, X_3 and X_4 .
- [15] Let $X_1, ..., X_n$ be a sample from $\{X_t\}$ and $Y_1, ..., Y_n$ be a sample from $\{Y_t\}$. Where, $\{X_t\}$ is an AR(1), $X_t = \mu + \phi X_{t-1} + \varepsilon_t$, $|\phi| < 1$ and $\{Y_t\}$ is MA(1), $Y_t = \delta + \eta_t + \theta \eta_{t-1}$, $|\theta| < 1$. $\{\varepsilon_t\}$ and $\{\eta_t\}$ are independent $WN(0, \sigma^2)$ sequences. Derive the best linear predictor of X_{n+1} based on $Y_1, ..., Y_n$ and the corresponding mean square prediction error.
- [16] $\{X_t\}$ is a covariance stationary AR(1) process; $X_t = 0.5 X_{t-1} + \varepsilon_t$; $\varepsilon_t \sim WN\left(0, \sigma_\varepsilon^2\right)$ and $Y_t = X_t + \eta_t$; $\eta_t \sim WN\left(0, \sigma_w^2\right)$, ε_t and η_t are independently distributed.
 - (a) Find the BLP of X_{t+2} based on Y_t and Y_{t-1} .
 - **(b)** Find the PACF at lag 2 of $\{Y_t\}$.
- [17] Let $\{X_t\}$ be an MA(1) process $X_t = \varepsilon_t + 2\varepsilon_{t-1} \varepsilon_{t-2}$, $\varepsilon_t \sim WN(0,1)$.
 - (a) Find the BLP of X_5 based on X_4 and X_3 .
 - (b) Find the mean square prediction error corresponding to the BLP obtained in (a).

- (c) Find the PACF of $\{X_t\}$ at lag 2.
- (d) Find the relationship between the PACF at lag 2, obtained in (c) and the coefficient of X_3 in the BLP obtained in (a).