Construction of an FA from an RE

We can use Thompson's Construction to find out a Finite Automaton from a Regular Expression. We will reduce the regular expression into smallest regular expressions and converting these to NFA and finally to DFA.

Some basic RA expressions are the following -

Case 1 - For a regular expression 'a', we can construct the following FA -

Finite automata for RE = a

Case 2 – For a regular expression 'ab', we can construct the following FA –

Finite automata for RE = ab

Case 3 – For a regular expression (a+b), we can construct the following FA –

Finite automata for RE= (a+b)

Case 4 – For a regular expression $(a+b)^*$, we can construct the following FA –

Finite automata for RE= (a+b)*

Method

- **Step 1** Construct an NFA with Null moves from the given regular expression.
- **Step 2** Remove Null transition from the NFA and convert it into its equivalent DFA.

Problem

Convert the following RA into its equivalent DFA -1 (0 + 1)* 0

Solution

We will concatenate three expressions "1", "(0 + 1)*" and "0"

NDFA with NULL transition for RA: 1(0 + 1)*0

Now we will remove the $\pmb{\varepsilon}$ transitions. After we remove the $\pmb{\varepsilon}$ transitions from the NDFA, we get the following -

NDFA without NULL transition for RA: 1(0 + 1)*0

It is an NDFA corresponding to the RE -1 (0 + 1)* 0. If you want to convert it into a DFA, simply apply the method of converting NDFA to DFA discussed in Chapter 1.

Finite Automata with Null Moves (NFA-ε)

A Finite Automaton with null moves (FA- ε) does transit not only after giving input from the alphabet set but also without any input symbol. This transition without input is called a **null move**.

An NFA- ϵ is represented formally by a 5-tuple (Q, Σ , δ , q₀, F), consisting of

- **Q** a finite set of states
- Σ a finite set of input symbols
- δ a transition function δ : Q × (Σ ∪ {ε}) → 2^Q
- q_0 an initial state $q_0 \in Q$
- **F** a set of final state/states of Q ($F\subseteq Q$).

Finite automata with Null Moves

The above (**FA-\epsilon**) accepts a string set $-\{0, 1, 01\}$

Removal of Null Moves from Finite Automata

If in an NDFA, there is ϵ -move between vertex X to vertex Y, we can remove it using the following steps –

- Find all the outgoing edges from Y.
- Copy all these edges starting from X without changing the edge labels.
- If X is an initial state, make Y also an initial state.
- If Y is a final state, make X also a final state.

Problem

Convert the following NFA- ϵ to NFA without Null move.

Solution

Step 1 -

Here the ϵ transition is between $\textbf{q_1}$ and $\textbf{q_2},$ so let $\textbf{q_1}$ is X and $\textbf{q_f}$ is Y.

Here the outgoing edges from q_f is to q_f for inputs 0 and 1.

Step 2 -

Now we will Copy all these edges from ${\bf q}_1$ without changing the edges from ${\bf q}_f$ and get the following FA -

NDFA after step 2

Step 3 -

Here ${\bf q}_1$ is an initial state, so we make ${\bf q}_f$ also an initial state.

So the FA becomes -

NDFA after Step 3

Step 4 -

Here q_f is a final state, so we make q_1 also a final state.

So the FA becomes -

Final NDFA without NULL moves