

भारतीय विज्ञान संस्थान

Artificial Intelligence

ASSIGNMENT-1

IMAGE FEATURES

SHUBHANKAR MONDAL | AIP | SR-22456

PCA-SIFT

Computation Steps

- Scale Space Extrema Detection
- Key-point Localization
- Orientation Assignment
- Key-point Descriptor

IMPLEMENTATION DETAILS

- Number of octaves: 2, 2nd octave created by downsampling image by a factor of 2.
- DOGs per octave: 4, Five scale space per octave leading to 4 DOGs
- Scales per octave : 3, Only 3 DOGs available with lower and higher scale neighbors required for scale space extrema detection.
- SIGMA = 0.7, of the base scale of the first octave. Gradually increases by a factor of K after each scale. ($K = 2^1/s$, where s is no. of

Key-points: Image 1(original)

Octave 1, Scale 1 Octave 1, Scale 2 Octave 1, Scale 3 Octave 1, Scale 4 Octave 1, Scale 5 Octave 2, Scale 1 Octave 2, Scale 2 Octave 2, Scale 3 Octave 2, Scale 4 Octave 2, Scale 5 Octave 3, Scale 1 Octave 3, Scale 2 Octave 3, Scale 3 Octave 3, Scale 4 Octave 3, Scale 5

Octave 1, DoG Scale 1 Octave 1, DoG Scale 2 Octave 1, DoG Scale 3 Octave 1, DoG Scale 4 Octave 2, DoG Scale 1 Octave 2, DoG Scale 2 Octave 2, DoG Scale 3 Octave 2, DoG Scale 4 Octave 3, DoG Scale 1 Octave 3, DoG Scale 2 Octave 3, DoG Scale 3 Octave 3, DoG Scale 4

Keypoints:36758

Key points: Image2(Original)

Octave 1, Scale 1 Octave 1, Scale 2 Octave 1, Scale 3 Octave 1, Scale 4 Octave 1, Scale 5

Octave 2, Scale 1 Octave 2, Scale 2 Octave 2, Scale 3 Octave 2, Scale 4 Octave 2, Scale 5

Octave 3, Scale 1 Octave 3, Scale 2 Octave 3, Scale 3 Octave 3, Scale 4 Octave 3, Scale 5

Octave 1, DoG Scale 1
Octave 1, DoG Scale 2
Octave 2, DoG Scale 1
Octave 2, DoG Scale 2
Octave 2, DoG Scale 3
Octave 2, DoG Scale 4
Octave 3, DoG Scale 1
Octave 3, DoG Scale 1
Octave 3, DoG Scale 1
Octave 3, DoG Scale 2
Octave 3, DoG Scale 3
Octave 3, DoG Scale 4

keypoints:7527

Observations:

	ORIGINAL	SCALED(*o.5	ROTATED(45 deg)	BLURRED	
IMAGE1	36758	27651	3663 4	32971	
IMAGE 2	7527	5132	7495	5047	

Takeaways:

- -The number of key points do not change significantly upon rotation however a slight decrease is observed as the rotation angle is increased.
- -The number of key points as expected decreases as the image is downscaled.
- -In the case of Gaussian blur the key points drop initially but then stay relatively the same upon higher levels of blur.

Image Classification

Model Architecture:

Dataset: CIFAR10

Training Data : 3 batches of 10000 images each with assigned labels

Test Data: 1 batch of 10000 images with assigned labels

Additional Test Data: 1 batch of 10000 images with assigned labels

- . Each batch of train and test dataset contains RGB [32X32] images belonging to one of the 10 specified categories
- . Number of images belonging to each category are equal in both train and test datasets

Hyperparameters:

-Number of classes: 10

- Batch Size: 100

- Number of Epochs : 10/15/25

- Learning Rate: 0.01/0.001/0.0001

- Loss function: Categorical cross-entropy

- Optimiser : ADAM

Training Accuracy:

Confusion Matrix

Accuracy Observations:

Activation	Learning	Eapocs	Accuracy	Accuracy	Accuracy
Function	Rate		on Train	on Test	on the
			Set	Set	hidden
					test
					dataset
Sigmoid	0.001	25	79 %	66%	59%
ReLU	0.0001	17	92%	73%	62%

Takeaways:

- 0.1 Learning rate is too high; model is essentially guessing while 0.0005 learning rate is too slow.
- 0.001 seems appropriate learning rate for Sigmoid activation function and 0.0001 for ReLU activation function
- For Test accuracy, 17-25 epochs of training is best; however train accuracy is greatest for 17 and 25 epochs (possibly due to overfitting).
- ReLU activation works better than Sigmoid Activation for the specified task