Základy molekulární biologie

Bioinformatika

Ivana Burgetová, Tomáš Martínek

burgetova@fit.vutbr.cz, martinto@fit.vutbr.cz

Osnova

- Buňka
- Nukleové kyseliny (DNA, RNA)
- Přenos genetické informace
 - Replikace
 - Transkripce
 - Translace
- Proteiny
- Struktura genomu
- Shrnutí

Buňka

- Buňka nejmenší element života
- Existují i viry, ale ty se mohou rozmnožovat jen díky parazitování na buňkách jiných organizmů
- Organela větší element uvnitř buňky (např. mitochondrie, chloroplasty)
- Velikost buňky: 5 20 μm
- Základní dělení:
 - Prokaryota: neobsahují jádro (bakterie, často jednobuněčné, ale mohou tvořit i komplexy buňek)
 - Eukaryota: obsahují jádro (rostliny, živočichové)

Prokaryota

Bakterie

- pevný obal, uvnitř kterého jsou umístěny všechny potřebné organely + DNA, bez extra vnitřní struktury
- DNA uložena v kruhovém chromozomu
- schopnost množení až jedna generace za 20 minut → 5 mld. Za 11 hodin

Rozdělení

- Eubacteria většina bakterií
- Archea žijí v extrémních podmínkách (roztoky soli, sýry, mořské hlubiny)

Vzorová bakterie E. Coli

 žije ve střevech, rychle se množí, většina principů byla objevena na této bakterii a následně ověřena na ostatních organizmech

Eukaryota – hlavní části

Struktura buňky

- Jádro obsahuje molekulu DNA
 - DNA rozdělena do chromozomů
 - Příklad: Člověk 23 párů chromozomů
- Cytoplazma ostatní organely

Mitochondrie

- slouží pro výrobu energie pro ostatní části buňky (adenisintrifosfát ATP)
- pro výrobu ATP spotřebovává kyslík a uvolňuje oxid uhličitý – buněčné dýchání
- má charakter prokaryotní buňky (s vlastní DNA)

Chloroplasty

 slouží pro výrobu energie ze světla – fotosyntézou (pouze u rostli)

Eukaryota - membrány a další organely

Endoplastické retikulum – nepravidelný labyrint membrán uvnitř buňky.
 Zvětšuje vnitřní povrch buňky – význam pro metabolické procesy

 Golgiho aparát – stoh membrán, podílí se na syntéze a balení molekul pro export, směrováním nově vzniklých proteinů do správných částí buňky

Lyzosomy – vnitrobuněčné trávení, uvolňují živiny z částic potravy

 Peroxisomy – malé váčky, které odbourávají nebezpečný peroxid vodíku

 Cytosol – vnitřní (vodnaté) prostředí buňky

 Cytoskelet – vnitřní lešení uvnitř buněk (složené ze specifických proteinů), slouží pro pohyb buňky nebo změnu jejího tvaru

Eukaryota – vzorové organizmy

Pekařská kvasinka

- jednobuněčná houba
- živí se cukrem a vylučuje alkohol a oxid uhličitý
- jednoduchá, odolná, rychle se množí
- díky této buňce bylo objevena řada základních mechanizmů uvnitř eukaryotních buněk
- Arabidopsis (vzorová rostlina)
- Živočichové
 - Drosophila melanogaster (vinná muška) zástupce hmyzu
 - Caenorhabditis elegans (háďátko)
 - Myš
 - Člověk

Osnova

- Buňka
- Nukleové kyseliny (DNA, RNA)
- Přenos genetické informace
 - Replikace
 - Transkripce
 - Translace
- Proteiny
- Struktura genomu
- Shrnutí

Nukleotidy

DNA

- Pravotočivá dvoušroubovice složená z nukleotidů
- Nukleotid
 - cukr + fosfát + nukleová (dusíkatá) báze
- Nukleové báze
 - Adenin (A)
 - Guanin (G)
 - Cytosin (C)
 - Thymin (T)
- Dělení nukleotidů
 - Purinové: Ademin, Guanin
 - Pyrimidininové: Thymin, Cytozin

Polynukleotidový řetězec

- Polynukleotidový řetězec (nukleová kyselina)
 - Spojení nukleotidů do řetězce
 - Hlavní vazbu tvoří cukr a fosfát cukr fosfátová kostra
 - Nukleová báze tvoří postranní část řetězce
- Zakončení řetězce
 - Fosfát: označujeme jako 5' konec
 - OH skupinou: označujeme jako 3' konec
- Konvence
 - Řetězec bází čteme vždy ve směrů od 5' konce k 3' konci

Princip komplementarity bází

- Jednotlivé báze mohou vytvářet mezi sebou slabé (vodíkové) vazby splňující pravidla:
 - Kombinace: purin pyrimidin
 - Shodný počet vazeb
- Energeticky nejvýhodnější kombinace
 - Thymin a Ademin (2 vazby)
 - Cytozin a Guanin (3 vazby)
- Ostatní kombinace nejsou nevýhodné a málo pravděpodobné
- Označováno také jako Wanson-Crickovo párování bází

Struktura DNA

- Molekula DNA vzniká spojením dvou komplementárních polynukleotidových řetězců
- Spojení je provedeno tak, že hlavní vlákno má orientaci ve směru od 5' ke 3' konci a druhé komplementární vlákno ve směru od 3' ke 5' konci
- Zaujetím nejlepší energetické pozice vazeb vzniká tvar pravotočivé dvoušroubovice DNA

Důsledky komplementarity

- Úspora při uložení DNA řetězce do databáze
 - Pro DNA stačí uložit pouze jeden z řetězců ve směru od 5'
 ke 3' => ten druhý lze dopočítat na základě komplementarity
- Důkladnější analýza
 - Při analýze DNA je však nezbytné uvažovat obě vlákna
 - Pokud např. hledáme určitý element DNA nevíme, zda se nachází na přímém nebo reverzním vlákně

Důsledky komplementarity

Příklad:

- V sekvenci DNA CCTTCACCAATTAAGGGG nalezněte všechny výskytu genu AAGG
- Postup:
 - 1. Hledání genu AAGG v přímé sekvenci

přímé: CCTTCACCAATTAAGGGG

2. Vytvoření reverzního a komplementárního řetězce

přímé: CCTTCACCAATT<u>AAGG</u>GG revezní: GGAAGTGGTTAA<u>TTCC</u>CC revezní kompl.: CCCCTTAATTGGTGAAGG

3. Hledání genu AAGG v reverzní komplementární sekvenci

revezní kompl.: CC<u>CCTT</u>AATTGGTG<u>AAGG</u> přímé: CCTTCACCAATTAAGGGG

Důsledky komplementarity

Příklad:

- V sekvenci DNA CCTTCACCAATTAAGGGG nalezněte všechny výskytu genu AAGG
- Lepší postup:
 - Sestavení reverzní a komplementární sekvence ke hledanému genu:

```
přímé: <u>AAGG</u>
revezní: TTCC
revezní kompl.: CCTT
```

Vyhledání výskytů obou variant v původní sekvenci

přímé: CCTTCACCAATTAAGGGG

Struktura RNA

- Podobná struktura nukleotidu jako u DNA
 - cukr + fosfát + nukleová báze
 - liší se v typu použitého cukru (ribosa namísto deoxyrybosy)
- Nukleové báze
 - Adenin (A)
 - Guanin (G)
 - Cytosin (C)
 - Uracil (U) namísto Thyminu (T)
- Molekuly RNA jsou zpravidla jedno vláknové
- V rámci vlákna se mohou se mohou tvořit kompl. vazby

Typy RNA

Mediátorová mRNA

 Reprezentuje přepis genu z DNA, který bude přeložen na Protein (viz transkripce)

Transférová tRNA

 Dopravuje aminokyseliny k ribozomům (viz translace)

Ribozomální rRNA

 Tvoří hlavní část ribozomů (viz translace)

Další typy

- miRNA regulace exprese
- siRNA RNA interference
- snRNA sestřih (splicing)

Osnova

- Buňka
- Nukleové kyseliny (DNA, RNA)
- Přenos genetické informace
 - Replikace
 - Transkripce
 - Translace
- Proteiny
- Struktura genomu
- Shrnutí

Replikace

- Tvorba kopií molekuly DNA
- Provádí se zejména při buněčném dělení
- Postup:
 - Ústředním prvkem je enzym DNA polymeráza (komplex proteinů)
 - Dvoušroubovice DNA je rozpletena na dvě oddělaná vlákna
 - Ke každému vláknu (mateřské DNA se postupně tvoří nové komplementární vlákna (dceřiných DNA)
- Kopie musí být bez chyby korekční aktivita polymerázy

Transkripce

- Proces, kdy jsou specifické části DNA tzv. geny kopírovány do molekuly RNA
- Hlavní roli při transkripci hraje enzym RNA Polymeráza (RNAP) – (komplex proteinů), která nasedá na oblast tzv. promotoru – specifická oblast před začátkem genu cca 30 bází
- Kopie úseku RNA se vytváří na základě pravidla komplementarity, Thymin se nahradí Uracilem
- Výsledná molekula RNA se označuje jako mRNA (matriční)

Transkripce - promotor

Struktura promotoru

- Obsahuje specifické sekvence, které pomáhaní RNAP správně rozpoznat začátek genu
- U jednotlivých sekvencí je uvedena procentuální pravděpodobnost výskytu
- Někdy se uvádí také logo nebo konsensus sekvence (podobná regulárnímu výrazu)
- Příklad: Prokaryota
 - Transkripce začíná na ofsetu 0
 - Pribnow Box začíná na ofsetu -10
 - Gilbertův Box na ofsetu -30

Promoter structure in prokaryotes

BIF – Bioinformatika FIT VUT Brno 21

Transkripce - terminátor

- Naprostá většina genů (>90%) obsahuje také ukončovací sekvence pro transkripci terminátory
- Pro tyto sekvence je charakteristické, že obsahují palindromatickou strukturu délky 7-20 nukleotidů následovanou cca 6-ti uracily
- Palindromatická struktura RNA vytvoří pevnější vazby mezi GC a AU (viz příklad) a vytvoří tzv. sekundární strukturu RNA
- Experimentálně bylo zjištěno, že pokud RNA polymeráza narazí na tuto strukturu, tak se pozastaví na cca 1 minutu (velké zpoždění vzhledem k běžné rychlosti 100 nukl./sekundu)
- Toto zpomalení způsobí, že vazby sekvence uracilu a potenciálního ademinu už nejsou tak silné a transkripce se ukončí

Translace

- Proces, kdy se na základě (matrice)
 mRNA vytvoří řetězec aminokyselin
- Hlavní roli při translaci hrají ribozomy, které postupně čtou trojice nukleotidů mRNA – tzv. kodony a překládají je na amikyseliny
- Výsledný řetězec aminokyselin se nazývá protein
- Jednotlivé aminokyseliny získává ribozom skrze tRNA
- Na jednu matrici nasedá více ribozomů a vytváří tak více proteinů

Genetický kód

- Kodon tři po sobě následující báze (triplet, kodon)
- 4 organické báze → 4³ = 64 kodonů
- Kodon je přeložen na jednu z 20 aminokyselin+SeCys
- Jedna aminokyselina může být kódována několika kodony – kód je redundantní
- Některé kodony mají speciální význam
 - start kodony (AUG) signál pro začátek transkripce
 - stop kodony (UAA, UAG, UGA) signál pro ukončení translace
- Čtecí rámec (open reading frame ORF) sekvence kodonů mezi start kodonem a stop kodonem, které se přeloží na řetěz aminokyselin

Genetický kód

	U		С		Α		G	
U	UUU	fenylalanin	UCU	serin	UAU	tyrosin	UGU	cystein
	UUC	fenylalanin	UCC	serin	UAC	tyrosin	UGC	cystein
	UUA	leucin	UCA	serin	UAA	stop	UGA	stop
	UUG	leucin	UCG	serin	UAG	stop	UGG	tryptofan
С	CUU	leucin	CCU	prolin	CAU	histidin	CGU	arginin
	CUC	leucin	CCC	prolin	CAC	histidin	CGC	arginin
	CUA	leucin	CCA	prolin	CAA	glutamin	CGA	arginin
	CUG	leucin	CCG	prolin	CAG	glutamin	CGG	arginin
Α	AUU	izoleucin	ACU	treonin	AAU	asparagin	AGU	serin
	AUC	izoleucin	ACC	treonin	AAC	asparagin	AGC	serin
	AUA	izoleucin	ACA	treonin	AAA	lysin	AGA	arginin
	AUG	metionin	ACG	treonin	AAG	lysin	AGG	arginin
G	GUU	valin	GCU	alanin	GAU	kys.	GGU	glycin
	GUC	valin	GCC	alanin	GAC	asparagová	GGC	glycin
	GUA	valin	GCA	alanin	GAA	kys.	GGA	glycin
	GUG	valin	GCG	alanin	GAG	glutamová	GGG	glycin

Aminokyseliny

- Celkem 20 aminokyselin (+SeCys)
- Každá tvořena z:
 - uhlíkové kostry C
 - aminoskupiny H₂N
 - karboxylové skupiny COOH
 - postranního řetězce R
- Spojování aminokyselin do polypeptidového řetězce (proteinu)
 - základem je uhlíková kostra
 - aminoskupina jedné aminokyseliny se vždy napojí na karboxylovou skupinu další
 - vzniká řetězec, který má na jedné straně aminoskupinu H₂N – N-konec - a na druhé karboxylové skupiny – COOH – C-konec
 - konvence: čte se ve směru od N-konce k Ckonci

Aminokyseliny

Polární

- Kladně nabité (zásadité)
 - · Arginin, Lysin, Histidin
- Záporně nabité (kyselé)
 - Asparagová kys., Glutamová kys.
- Bez náboje
 - Asparagin, Glutamin, Serin, Theronin, Tyrosin

Nepolární

Alanin, Glycin, Valin, Leucin,
 Isoleucin, Prolin, Fenilalanin,
 Methionin, Tryptofan, Cystein,
 Selenocystein

Transférová RNA - tRNA

- Přivádí jednotlivé aminokyseliny k ribozomům
- tRNA molekula má tvar trojlístku – má tři ramena
- O tom, která aminokyselina se váže na tRNA rozhoduje tzv. antikodon, který tvoří komplementární sekvenci ke kodonu na mRNA
- Aminokyselina je připojena na 3' konci řetězce tRNA
- 20 aminokyselin nejméně 20 různých tRNA

Ribozomy - rRNA

- Ribozomy tvoří převážně rRNA doplněná o proteiny (5S a 23S)
- rRNA složitý komplex tvořený několika doménami

Centrální dogma molekulární biologie

- Popisuje způsob přenosu genetické informace v živých organismech
- Základní schéma
 - DNA → DNA (replikace)
 - DNA → RNA (transkripce)
 - RNA → Protein (translace)
- Speciální případy
 - RNA → DNA (reverzní transkripce): viry dokáží zapsat svou RNA do DNA
 - RNA → RNA: některé viry se dokáží přepisovat svou RNA do jiné RNA
 - DNA → protein: pouze v laboratorních podmínkách

Flow

Transkripce - Objevení intronů

- V roce 1977, Phillip Sharp a Richard Roberts experimentovali s mRNA hexonu (virový protein):
 - porovnali mRNA viru s jeho ekvivalentní formou v DNA
 - objevili, že mRNA-DNA hybrid tvoří tři kuriózní smyčky namísto spojitého segmentu
- V roce 1978 Walter
 Gilbert tyto mezery
 nazval introny (časopis
 Nature paper "Why
 Genes in Pieces?")

- Geny jsou složeny z kódujících segmentů (exonů), které jsou přerušovány nekódujícími segmenty (introny)
- K tomuto dochází pouze u eukaryot

Centrální dogma a sestřih

intron = nekódující

BIF - Bioinformatika **FIT VUT Brno** 32

Alternativní sestřih

- Bylo vypozorováno, že ze stejných transkriptů genů se tvoří různé varianty mRNA – alternativní sestřih
- Odhaduje se, že až 20% lidských genů má tuto vlastnost.
 Některé z nich mají až 64 různých mRNA variant
- Objev alternativního sestřihu vyvrátil původní hypotézu, že z
 jednoho genu se tvoří vždy jeden protein

Alternativní sestřih

- Způsob spojování genů může být ovlivněn typem buněk nebo jinými okolnostmi
- Příklad:
 - T gen myši obsahuje exon 2 a 3, které se vzájemně vylučují, v závislosti na typu buněk. Exon 2 je použit v buňkách hladkého svalstva, zatímco exon 3 je použit ve všech ostatních tkáních
- Alternativní sestřih umožňuje kombinovat funkční/strukturní části genu a vytvářet rozmanité spektrum proteinů
- Není potřeba kódovat každou variantu proteinu odděleně – efektivní způsob komprese genetické informace

Obr.: Různé modely spojování exonů

Geny

- Geny kódující protein
 - Označovány jako strukturní
 - Úsek DNA, který je transkribován a následně přeložen na protein
- Geny nekódující protein
 - Označovány jako funkční
 - Úsek DNA je transkribován, ale už neprobíhá translace – gen projevuje svou funkci ve formě RNA
 - Příklad:
 - tRNA, rRNA, siRNA, snRNA, ...

Transkripce - Prokaryota vs. Eukaryota

Prokaryota

Eukaryota

- Probíhá v cytoplazmě
- V průběhu transkripce začíná i proces translace

- Probíhá v jádře buňky
- Výsledná mRNA vycestuje z jádra buňky do cytoplazmy, kde proběhne translace

Geny - Prokaryota vs. Eukaryota

Prokaryota

- Vysoká hustota genů (85-88% genomu jsou kódující sekvence)
- Jeden promotor sdílí více genů současně operon
- Neobsahují introny

Eukaryota

- Nízká hustota genů (např. u člověka pouze 1,5% tvoří kódující sekvence)
- Každý gen má svůj vlastní promotor
- Obsahují introny
- Alternativní sestřih

Osnova

- Buňka
- Nukleové kyseliny (DNA, RNA)
- Přenos genetické informace
 - Replikace
 - Transkripce
 - Translace
- Proteiny
- Struktura genomu
- Shrnutí

Proteiny

- Po ukončení procesu translace zaujme polypeptidový řetězec (protein) energeticky nejvýhodnější prostorovou strukturu (konformace)
- Modely:
 - Atomární, zjednodušená kostra, povrchový model s vyznačením aminokyselin
- Trojrozměrná struktura proteinu závisí pouze na pořadí aminokyselin po rozpletení proteinu se opět složí do stejné konformace

Proteiny - struktura

- Primární struktura sekvence aminokyselin čtená od N-konce k C-konci
- Sekundární struktura nejčastější elementy, ze kterých je protein složen
 - Alfa helix
 - Beta skládaný list
- Ternární struktura celková 3D struktura proteinu
- Kvartérní struktura komplex tvořený více proteiny

Protein - struktura

- Proteinová doména je část proteinu, která se složí samostatně. Obvykle má funkci modulu proteinu.
- Některé proteiny mohou obsahovat i několik proteinových domén
- Některé proteiny lze spojovat do větších komplexů. Jednotlivé proteiny komplexu se označují jako podjednotky.
- Pokud se proteinový komplex skládá ze dvou stejných proteinů potom se označuje jako dimer, ze čtyř – tetramer, atd.

Proteiny – struktura/funkce

- Na povrchu proteinů vznikají místa nebo dutiny, kde se napojují další proteiny nebo jiné molekuly (DNA, RNA) - tzv. vazební místa
- Vazební místo musí odpovídat tvarově i chemickým složením
- Vazební místa nemusí být vždy na povrchu, ale mohou se ukrývat i uvnitř proteinu (enzymy)
- Propojení a interakce proteinu s ostatními molekulami určuje jeho funkci
- Struktura proteinu proto úzce souvisí s jeho funkci

Proteiny - funkce

Funkce proteinů:

- stavební (kolagen)
- katalyzátory chemických reakcí (enzymy)
- transport látek v organismu (hemoglobin)
- pohybová (myosin)
- zásobní (ferritin)
- signální (insulin)
- receptory (rhodopsin)
- regulace genové exprese

Kolagen – základní stavební prvek svalů, cév, apod.

Rhodopsin – membránový proteiń uvnitř tyčinek na oční sítnici

Proteiny - funkce

Enzymy

- Proteiny, který katalyzuje chemické reakce přeměňuje substrát na produkt.
- Do proteinu vejde substrát a protein jej ve svém aktivním místě přemění na produkt.
- Produkt jednoho enzymu
 může být substrátem
 jiného vznikají tak složité
 sítě metabolických drah

Osnova

- Buňka
- Nukleové kyseliny (DNA, RNA)
- Přenos genetické informace
 - Replikace
 - Transkripce
 - Translace
- Proteiny
- Struktura genomu
- Shrnutí

Struktura prokaryontního genomu

 Obvykle jedna kružnicová molekula DNA (Nukleoid)

Nukleoid:

- svinutý do 30-100
 smyček okolo středu;
- RNA drží smyčky u sebe,
- proteiny drží nadšroubovicové závity,

Příklad:

 Struktura chromozomu bakterie E. coli

Struktura eukaryotního genomu

 DNA rozdělena na menší úseky – chromozomy

Příklad:

- Jádro typické lidské buňky má v průměru 5-8µm a obsahuje DNA o délce cca 2 metry
- Přirovnání: tenisový míček, který obsahuje cca 20 km tenké nitě
- Aby se dlouhé řetězce DNA nezamotaly uvnitř jádra je DNA sbalena (kondenzována) pomocí proteinů do klubíček
- I sbalená DNA je schopna replikace, transkripce a apod.

Struktura eukaryotního genomu

Karyotyp

- Soubor všech chromozomů
- Seřazen podle průměrné velikosti
- Chromozomy zobrazeny v kondenzovaném stavu
- Tmavé pruhy označují úseky s vysokým obsahem párů A-T
- Zúžený úsek tzv. centromera vzniká při buněčném dělení
- Příklad: genom člověka
 - 23 párů chromozomů
 - 22 párových + 1 nepárový (ženy XX, muži XY)

Struktura eukaryotního genomu

- Stav chromosomů (stupeň kondenzace) mění se podle stadia buněčného cyklu
 - Interfáze
 - chromozomy rozvolněné, nukleohistonové vlákno protažené
 - transkripce genů, syntéza proteinů
 - replikace DNA a duplikace chromosomů

Mitóza

- vysoce kondenzované replikované chromosomy (mitotické chromozomy – 1 setina původní délky)
- kondenzovaný stav důležitý pro snadné oddělení duplikovaných chromosomů
- transkripce zastavena

Kondenzovaná struktura chromozomu

 Základní jednotkou kondenzace je nukleosom

Nukleosom

- úsek DNA + proteinový komplex 8 histonů, kolem kterého je DNA téměř dvakrát obtočena
- cca 200 nukleotidů, 146 obmotáno kolem proteinu + 50 spojovací vlákno

History

- Proteiny složené z kladně nabitých aminokyselin, které se dobře váží na zápornou cukr-fosfátovou kostru DNA
 - nezávislé na sekvenci nukleotidů
- evolučně nejvíce konzervované proteiny u eukaryot

Osnova

- Buňka
- Nukleové kyseliny (DNA, RNA)
- Přenos genetické informace
 - Replikace
 - Transkripce
 - Translace
- Proteiny
- Struktura genomu
- Shrnutí

Shrnutí

- Genetická informace je uložena ve formě řetězce nukleových kyselin – DNA, složeného z dvojice komplementární vláken
- Princip komplementarity je využíván v řadě biologických procesů (Replikace, Transkripce, ...)
- Specifické úseky DNA geny jsou transkribovány na molekuly RNA a dále překládány na sekvence aminokyselin – proteiny
- Jedno-řetězcové molekuly RNA a proteinů zaujímají energeticky nejvýhodnější struktury, které se účastní řady biologických procesů
 - RNA: ribozomy (rRNA), tránsférová (tRNA), viry, ...
 - Proteiny: enzymy, stavební prvky, přenos signálů, ...
- Při uložení a expresi genetické informaci využívá příroda různé úrovně komprese (alternativní sestřih, proteinové domény, ...)

Literatura

- Alberts a kol.: Základy buněčné biologie
- Doškař J., Přednášky kurzu Molekulární genetika
- Eduard Kočárek: Genetika
- Dan K. Krane, Michael L. Raymer: Fundamental Concepts of Bioinformatics

Konec

Děkuji za pozornost