Einführung in die Modellierung

Till Francke und Maik Heistermann Universität Potsdam

Seminar Einführung in die Modellierung im Modul Versuchsplanung und Geoökologische Modellierung

Einführung in die Modellierung

In diesem Semester

R als Werkzeug in der Modellierung Ökologische Modelle

Hydrologische Modelle

(Ökohydrologische Modelle)

Einführung in die Modellierung

Heute

Rekapitulation: Modelldiagnose Kalibrierung und Validierung The Last Codefight

Rekapitulation: Das abcd-Modell

Eigenschaften des abcd-Modells

- ☑ Massenerhaltung als Grundprinzip
- ☑ Einfluss der Gebietsfeuchte auf Abflussbildung
- Abbildung physikalischer Prozesse (hier: Verdunstung)

Parameter des abcd-Modells

- a. Neigung zur Direktabflussbildung
- b. Effektive Speicherkapazität des Bodens
- c. Aufteilung zwischen GW-Neubildung und Direktabfluss
- d. Rezessionskonstante für Basisabfluss

Modelldiagnose

Was ist ein "gutes" Modell?

abc

abcd

Das Modell erfüllt einen bestimmten Zweck.

- z.B. Simulation des Jahresgangs der Gebietswasserbilanz (zur Ressourcenallokation, Klimafolgenabschätzung, ...)
- z.B. Hochwasservorhersage

Das Modell hat eine sinnvolle Struktur.

- Massenerhaltung
- Einfluss der Gebietsfeuchte auf Abflussbildung
- Abbildung physikalischer Prozesse (Verdunstung)

Das Modell ist im Zielgebiet einsetzbar.

- Die Daten für den Antrieb des Modells sind vorhanden.
- Die dominanten Prozesse im Zielgebiet werden durch das Modell abgebildet.

Modelldiagnose

Was ist ein "gutes" Modell?

Das Modell erfüllt einen bestimmten Zweck.

- z.B. Simulation des Jahresgangs der Gebietswasserbilanz (zur Ressourcenallokation, Klimafolgenabschätzung, ...)
- z.B. Hochwasservorhersage

Das Modell hat eine sinnvolle Struktur.

- Massenerhaltung
- Einfluss der Gebietsfeuchte auf Abflussbildung
- Abbildung physikalischer Prozesse (Verdunstung)

Das Modell ist im Zielgebiet einsetzbar.

- Die Daten für den Antrieb des Modells sind vorhanden.
- Die dominanten Prozesse im Zielgebiet werden durch das Modell abgebildet.

Rekapitulation: Modelldiagnose

Was ist ein "gutes" Modell?

Abfluss

Zeit

Rekapitulation: Modelldiagnose

Was ist ein "besseres" Modell?

Abfluss

Zeit

Parameter des abcd-Modells

- a. Neigung zur Direktabflussbildung
- b. Effektive Speicherkapazität des Bodens
- c. Aufteilung zwischen GW-Neubildung und Direktabfluss
- d. Rezessionskonstante für Basisabfluss

Kann man die Parameter im Feld messen?

Modellkalibrierung

Parameter des abcd-Modells sind alle "konzeptionell"

- Physikalisch interpretierbar, aber nicht direkt messbar
- Wie kann ich dann aber die Parameterwerte wählen?

Suche eine Kombination von Parametern (param), so dass Beobachtung und Simulation möglichst gut übereinstimmen.

Beobachtung : gemessener Abfluss obs am Gebietsauslass

Simulation : simulierter Abfluss sim (param) am Gebietsauslass

Übereinstimmung : ein quantitatives Fehlermaß/Gütemaß x (obs, sim (param))

Suchalgorithmus, der x (param) maximiert /minimiert

Modellkalibrierung

Maße für Übereinstimmung / Fehler / Güte

- unendliche Vielfalt
- objektives Maß für Deine Anforderung an das Modell

Beispiele (in R-Schreibweise)

- obs sei ein Vektor mit Beobachtungen
- sim sei ein Vektor mit Simulationsergebnissen

Modellkalibrierung

Suchverfahren und -algorithmen

- Ausprobieren
- Rohe Gewalt (Brute Force)
- "Intelligente" Suchalgorithmen

Beispielhafte Oberfläche einer Zielfunktion mit zwei Modellparametern a und b

Modellvalidierung

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

John von Neumann, Mathematiker

Mit anderen Worten

Wie kann ich beurteilen, dass mein kalibriertes Modell auch außerhalb der verwendeten Beobachtungen funktioniert?

Mayer et al. (2010), Amer. J. Phys.

Modellvalidierung

Split Sampling

- Kalibriere das Modell an einer Teilmenge der Beobachtungen;
- überprüfe anhand der verbleibenden Teilmenge die Güte des Modells.

MOPEX

MOPEX: MOdel Parameter Estimation Experiment

- homogener Datensatz für 431 Einzugsgebiete in den USA
- Abflusszeitreihen
- Gebietsmittelwerte für Niederschlag, PET, T_{min}, T_{max}
- tägliche Auflösung (für diesen Kurs: Monatsmittelwerte)

Download der Daten und Metadaten:

ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data

MOPEX

MOPEX: MOdel Parameter Estimation Experiment

- homogener Datensatz für 431 Einzugsgebiete in den USA
- Abflusszeitreihen
- Gebietsmittelwerte für Niederschlag, PET, T_{min}, T_{max}
- tägliche Auflösung (für diesen Kurs: Monatsmittelwerte)

Download der Daten und Metadaten:

ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data

Legend

Bearbeite die Aufgaben in diagnose.R und calval.R.

