- \bullet n number of cells
- J number of genes

Current model:

$$\log(M) = X_M * \alpha_M + U * V$$
$$logit(\Pi) = X_\Pi * \alpha_\Pi + U * W$$

- M is $n \times J$ matrix. M_{ij} is the mean parameter for the NB distribution describing the expression of gene j in cell i
- Π is $n \times J$ matrix of dropout probabilities
- X_M is the known $n \times kx_M$ design matrix for the negative binomial part regression.
- X_{Π} is the known $n \times kx_{\Pi}$ design matrix for the logistic regression.
- U is the unknown $n \times p$ matrix of latent factors affecting both M and Π but with different coefficients (resp. V and W)

Parameters to estimate are α_M , α_{Π} , U, W and θ_j (gene-specific (at least for the moment) dispersion parameters for j = 1, ..., J).

The supposed method to estimate parameters:

- 1. Initialize all unknown parameters (with PCA or RUV?)
- 2. Alternate between two steps:
 - All left hand sides are fixed, estimate right hand sides by maximum likelihood
 - All right hand sides are fixed, estimate U by maximum likelihood

Where we are:

There are codes for each of the steps separately and the one which puts two steps together.

When tested, two steps together did not work

Code was put in a form of R package (by JP) where I cleaned up the file functions_svetlana.R which currently contains likelihood functions and gradient functions for each of the two steps. I also added the descriptions of parameters.

To debug code, I compared the output of my code for the first step (optimization wrt "right parts") with the output of pscl, U being fixed equal to its true value which was used to simulate data.

The outputs are the same (as expected because the first step with known U is basically the same thing that the pscl implementation)

I did some numerical experiences with this first step optimization in order to see how stable is it and how it depends on the sample size n (optimization is done gene by gene, so the sample size is the number of cells n).

Some points to discuss:

- I tested one alternation on a real data set with 96 cells and 8000 genes. Time was around 20 minutes (for one round of optimization). We should probably find a way to accelerate.
- Question of normalization: if we want to make an advantage of using NB applied to counts instead of normalized data (which is not integer any more), we should fix the problem of size factors.
- PCA versus our method: some first comparison.
 Data generated with two groups, matrix U has two columns, 37% of zero values in count matrix.

Representation of cells with their estimated values of U and in PC1-PC2 projection.

Histograms of errors of matrix reconstruction:

U*V-its zinb estimation

Laddency 1.5 -0.5 0.5 1.5 U %*% V - U.0 %*% V.0

PCA recon. of stand. U*V - st.

Likelihoods at 5 successful iterations:

$$-49742.67 - 44183.39 - 44591.79 - 44606.31 - 44554.55$$

March 1, 2016:

- Genes without zeros: initially were estimated by ordinary negative binomial regression (glm.nb) which has a problem with stability of optimization (errors). At present all gene parameters (V and W matrices) are estimated via zero inflated likelihood maximization with penalization taking care of genes without zeros.
- Initialization is at present done by PCA
- Added a stop criterion of optimization: when the change in likelihood function is less than 0.5%, optimization stops. In practice, when 2 factors are to be estimated, about 4 iterations were required on simulated data.

Comparison with PCA:

- Three values of zero proportions are taken: 10%, 20%, 30%
- For each fraction of zeros, 50 data sets with "two groups" of cells were simulated.
- PCA and ZINB were performed on each data set
- ZINB reconstructs directly the matrix of log expressions (log M = UV). Its error is quantified as L_2 distance between the ZINB reconstructed matrix and the "true" underlying matrix.

- PCA is done on logs of counts plus 1 with centering and scaling. I take the reconstruction based on first two principal components, then I multiply by sd and add mean to put both reconstructions on the same scale and I compute again the L_2 distance between PCA reconstructed matrix and the true matrix.
- As expected, ZINB is smarter than PCA even at 10% of zeros and the ratio of the PCA error over the ZINB error increase with the fraction of zeros.

L2 errors, 10% of zeros

L2 errors, 20% of zeros

Ratio of L2 errors: PCA over ZINB

at least 10 counts in 5 cells

at least 10 counts in 30 cells

at least 10 counts in 50 cells it least 10 counts/60 cells (161g

