

EXPT NO. : 5

AIM: To design and implement multiplexer and de-multiplexer using logic gates.

APPARATUS REQUIRED:

Sl. No.	COMPONENT	SPECIFICATION	QTY.
1.	OR GATE	IC 7432	1
2.	NOT GATE	IC 7404	1
3.	AND GATE (2 I/P)	IC 7408	1
4.	AND GATE (3 I/P)	IC 7411	2
5.	BREAD BOARD	-	1
6.	PATCH CORDS	-	-
7.	POWER SUPPLY WITH LOGIC PROBE	-	1

MULTIPLEXER: Multiplexer means transmitting a large number of information units over a smaller number of channels or lines. A digital multiplexer is a combinational circuit that selects binary information from one of many input lines and directs it to a single output line. The selection of a particular input line is controlled by a set of selection lines. Normally there are 2ⁿ input line and n selection lines whose bit combination determine which input is selected.

BLOCK DIAGRAM FOR 4:1 MULTIPLEXER:

FUNCTION TABLE:

S1	S0	INPUTS Y
0	0	D0 → D0 S1' S0'
0	1	D1 → D1 S1' S0
1	0	D2 → D2 S1 S0'
1	1	D3 → D3 S1 S0

Y = D0 S1' S0' + D1 S1' S0 + D2 S1 S0' + D3 S1 S0

CIRCUIT DIAGRAM FOR MULTIPLEXER:

TRUTH TABLE:

OUTPUT							
S ₀	S ₁	D ₀	D_1	D ₂	D ₃	Υ	
0	0	1	0	0	0	1	
0	1	0	1	0	0	1	
1	0	0	0	1	0	1	

1	1	0	0	0	1	1

DEMULTIPLEXER: The function of de-multiplexer is in contrast to multiplexer function. It takes information from one line and distributes it to a given number of output lines. For this reason, the demultiplexer is also known as a data distributor. Decoder can also be used as de-multiplexer.

In the 1: 4 de-multiplexer circuit, the data input line goes to all of the AND gates. The data select lines enable only one gate at a time and the data on the data input line will pass through the selected gate to the associated data output line.

BLOCK DIAGRAM FOR 1:4 DEMULTIPLEXER:

FUNCTION TABLE:

S1	SO	INPUT
0	0	X → D0 = X S1' S0'
0	1	X → D1 = X S1' S0
1	0	X → D2 = X S1 S0'
1	1	X → D3 = X S1 S0

Y = X S1' S0' + X S1' S0 + X S1 S0' + X S1 S0

LOGIC DIAGRAM FOR DEMULTIPLEXER:

TRUTH TABLE:

	OUTPUT						
S ₁	S ₀	D ₀	D ₁	D ₂	D ₃		
0	0	1	0	0	0		
0	1	0	1	0	0		
1	0	0	0	1	0		
1	1	0	0	0	1		

PROCEDURE:

- (i) Connections are given as per circuit diagram.
- (ii) Logical inputs are given as per circuit diagram.
- (iii) Observe the output and verify the truth table.

OBSERVATION TABLE:

S ₁	S ₀	D ₀	D_1	D ₂	D ₃