Problem 1

tro	blem 1			
		Actua	class	
		Positive Ly	=1)	Negative (y=0)
Predicted class	Positive (ŷ=1)	TP		FP
	Negative (ÿ=0)	FN		TW
From				know that
	Y(t=1)	1) = 90%		
	P(t=c) = 10%		
Because we alway predict t=1				
P(TP)+P(FN) = 0.9			F	(FN)=(TN)=0
P(FP)+P(TW) = 0.1				P(TBAFP) = 1
S	P(FN)= P(FN)= P(FP)= P(TN)=	0.9		
	P(TN)=	0		

Precision (P) =
$$\frac{|\{\hat{t} = 1\} \cap \{t = 1\}|}{|\{\hat{t} = 1\}|}$$

$$= \frac{P(TP)}{P(TP) + P(FP)}$$

$$= \frac{0.9}{0.9 + 0.1}$$

$$= \frac{P(TP)}{P(TP) + P(FN)}$$

$$= \frac{P(TP)}{P(TP) + P(FN)}$$

$$= \frac{0.9}{0.9 + 0} = |= 100\%$$

$$F_{\beta} - Score = \frac{(1 + \beta^{2}) \cdot P \cdot R}{\beta^{2} \cdot P + R}$$

$$= \frac{(1 + 1) \cdot 0.9 \cdot 1}{1 \cdot 0.9 \cdot 1} = \frac{1.8}{1.9} \approx 0.9474$$

$$= \frac{2 \cdot 0.9 \cdot 1}{1 \cdot 0.9 \cdot 1} = \frac{1.8}{1.9} \approx 0.9474$$

$$= 94.74\%$$

Problem 2.

$$\delta(z) = \frac{1}{1 + \exp(-z)}$$

$$\delta(z) = \frac{1}{1 + \exp(-z)}$$

$$- \delta(z) = \frac{1}{1 + \exp(-z)}$$

$$= \frac{\exp(-z)}{1 + \exp(-z)}$$

$$= \frac{\exp(-z)}{1 + \exp(-z)}$$

$$= \frac{1}{\exp\{z\}+1} = 6(-z)$$

Problem 3. $J = -t \log y - (1-t) \log (1-y)$ = - t, logy - t2 log y2 = t, log y, + t2 log y2 = \(\frac{\sum_{\kappa_{\lambda}}}{\text{tr}}\log\frac{1}{\text{yr}} KL(PIIQ) = EPRLOG 1/2, PRG (0,1), binary classification. Thus, minimizing the loss J = - tlogy - U-t) log U-y) is equivalent to minimi e the kullback-leibler

divergence between t and y.