

Project Olympus Power and Management Distribution Unit Specification

Author:

Shaun Harris, Architect, Microsoft

Revision History

Date	Description
2/15/2017	Version 1.0

© 2017 Microsoft Corporation.

As of February 15, 2017, the following persons or entities have made this Specification available under the Open Web Foundation Final Specification Agreement (OWFa 1.0), which is available at http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0

Microsoft Corporation.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at http://opencompute.org/licensing/, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, non-infringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTORS AND LICENSORS OF THIS SPECIFICATION MAY HAVE MENTIONED CERTAIN TECHNOLOGIES THAT ARE MERELY REFERENCED WITHIN THIS SPECIFICATION AND NOT LICENSED UNDER THE OWF CLA OR OWFa. THE FOLLOWING IS A LIST OF MERELY REFERENCED TECHNOLOGY: INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI), I²C TRADEMARK OF PHILLIPS SEMICONDUCTOR. IMPLEMENTATION OF THESE TECHNOLOGIES MAY BE SUBJECT TO THEIR OWN LEGAL TERMS.

Contents

1	Over	view of the Project Olympus Power and Management Distribution Unit (PMDU) Specification	7
2	PMD	U Electrical	15
	2.1	AC/DC Power Supply Module	15
	2.1.1	AC/DC Module LED Indicator	15
	2.1.2	AC/DC Module Mechanical Specification	15
	2.2	VAC Outlets and Overcurrent Protection	16
	2.3	Power monitoring requirements.	16
	2.3.1	PMDU	16
	2.3.2	PMDU Rack Manager Firmware Update Requirement	16
	2.4	Electrical Interconnect Details	17
	2.5	Universal A/C Power Input	17
	2.5.1	Universal Power Cable	17
	2.5.2	Power Capacity	17
	2.5.3	Universal PMDU Connector detail	17
	2.5.4	Input Cable Assembly Detail	18
	2.6	Sub-assembly Allocated Output Power Current.	18
	2.6.1	Sub-assembly Output Power and Signal	18
	2.7	Grounding and Return	22
	2.8	RJ45 Connectors	22
	2.8.1	RJ45 for UART with HW Flow Control (RJ3)	22
	2.8.2	RJ45 for UART without HW Flow Control (RJ4, RJ5)	23
	2.8.3	RJ45 for Rack Manager Power and Boot Control (input) (RM1)	23
	2.8.4	RJ45 for AC Relay Control (RC-1, RC-2, RC-3, RC-4)	23
	2.9	SLOT ID	24
3	PMD	U Mechanical Housing	26
	3.1	General Construction	26
	3.2	PMDU Structural Brackets	27
	3.3	PMDU Subassembly Power Connector	28
	3.3.1	Connector and Placement	28
	3.4	Rail Attachment	28
	3.4.1	Subassembly Interface	29
	3.5	Weight	30
1	Envi	conmental	21

Figures

-igure 1. PMDU General Layout	8
Figure 2. PMDU General Description	9
Figure 3. PMDU General Description, Rack Manager and RJ45 Network Ports	. 10
Figure 4. PMDU Outlet Breaker Identification and Location (Note that input connectors should NOT ha	ave
atches)	. 11
Figure 5. PMDU Outlet and RJ45 Relay Control Location	. 12
Figure 6. PMDU Power Distribution Functional Block Diagram	. 13
Figure 7. PMDU Rack Manager Functional Basic Block Diagram. See Specification for detail	. 14
Figure 8. AC-DC Module	. 16
Figure 9. Functional Block Diagram of Universal Cord plug pin number assignment orientation (note	
couch-proof male contacts and female ground contact)	. 18
Figure 10. PMDU Subassembly Pinout Assignment Image	. 20
Figure 11. PMDU Housing General Dimensions, Microsoft drawings M1007740 and M1007710	
supersede this image	. 26
Figure 12. PMDU Housing General Location front view, Microsoft drawings M1007740 and M1007710	1
supersede this image	. 28
Figure 13. PMDU Rail Mounting: Inverted cone washers fit into keyhole slots in Project Olympus rails.	. 29
Figure 14. Guide pins interfacing with sleeves on subassemblies	. 30

1 Overview of the Project Olympus Power and Management Distribution Unit (PMDU) Specification

This document describes the Project Olympus Power and Management Distribution Unit (PMDU).

The PMDU is a sheet metal enclosure that mounts to the Project Olympus rails without the use of tools, and provides front-facing, blind-mate connectors having both power and signal contacts for each sub assembly U. As Project Olympus sub-assemblies are inserted in the rack, they plug into the PMDU via the hot-plug blind-mate connectors.

The PMDU shall have two universal input bulkheads mount connectors for VAC Feed A and VAC Feed B. The universal power connector is a 7-pin connector comprised of earth ground and 3 phase pairs rated at 250VAC 50A per pair. The universal connectors are both 4 wire and 5 wire facility cord assemblies at the desired voltage and amperage rating. The PMDU accepts both the VAC Feed A and VAC Feed B and distributes the 6 phase pairs to each subassembly.

The PMDU also monitors and reports the voltage, current and power for each of the 6 phase pairs. The PMDU shall be able report values to the management system via the I2C communications port. The management system shall issue a threshold value and the PMDU shall compared measured values to the assigned threshold and changing states of discrete outputs from the PMDU to the management system when thresholds are exceeded on each phase.

The PMDU shall come in two sizes, 42U and 48U. The two A/C power feeds utilize cords compliant with the Universal Power Cord Specification.

Facility Interface

Figure 1. PMDU General Layout

Figure 2. PMDU General Description

Figure 3. PMDU General Description, Rack Manager and RJ45 Network Ports

Figure 4. PMDU Outlet Breaker Identification and Location (Note that input connectors should NOT have latches)

Figure 5. PMDU Outlet and RJ45 Relay Control Location

Figure 6. PMDU Power Distribution Functional Block Diagram

Figure 7. PMDU Rack Manager Functional Basic Block Diagram. See Specification for detail.

2 PMDU Electrical

2.1 AC/DC Power Supply Module

The PDMU shall have a hot swappable AC/DC module to power internal monitoring and Rack Manager. The PDMU shall be dual input from a single from VAC Feed A and B. The PSU shall not cause a secondary failure or outage as result of single fault in the unit.

The AC/DC Module shall not radiate or conduct emissions greater than applicable requirements.

2.1.1 AC/DC Module LED Indicator

This green LED is driven by internal circuitry and will illuminate GREEN whenever in an VAC input good and VDC output is good.

2.1.2 AC/DC Module Mechanical Specification

Figure 8. AC-DC Module

2.2 VAC Outlets and Overcurrent Protection

The PMDU shall provide 8 outlets with 4 outlets from feed A and feed B. The PMDU shall provide six 250VAC 10kAIC 13A breakers. Each breaker shall protect two outlets as identified in Figure 5. PMDU Outlet and RJ45 Relay Control Location Block Diagram

2.3 Power monitoring requirements.

2.3.1 PMDU

The Rack Manager in the PMDU shall be capable to report Voltage, Current, and Volt-Amps values at single and three phase units of measure at the input of the PMDU. The PMDU shall translate the threshold command to the three phases and independently calculate and report phase values as well as three phase sum.

Maximum vTHD for measurement shall be 5% or less.

Nominal vTHD for measurement shall be 1.5% or less.

See the latest revision of the Windows Cloud Server System Specification M2010 Rack Manager software spec for sample rate, measurement period, details and tolerances of voltage and current monitoring.

2.3.2 PMDU Rack Manager Firmware Update Requirement

The PDMU Rack Manager shall be capable of receiving firmware revision updates from the management switch via Ethernet normal operation. The PMDU Rack Manager shall communicate to the management switch via RJ-4.

2.4 Electrical Interconnect Details

2.5 Universal A/C Power Input

2.5.1 Universal Power Cable

The PMDU receives facility power that complies with the Project Olympus Universal Equipment Power Cord specification.

2.5.2 Power Capacity

The PMDU power capacity if limited by the equipment power cord used to connect to the facility. The maximum rated power is 17.2kW with 415VAC 30A 5 Wire/400VAC 32A 5 Wire.

2.5.3 Universal PMDU Connector detail

The PDMU Shall provide bulkhead or panel mount connection to be mated with the universal cord assembly described above. The cord retention clips shall reside on the universal cord assembly not the PMDU bulkhead mount connector.

Table 1. Male Universal Connector Part Number

Connector Name/ Assembly	QTY	Input Connector Part Number	Input Connector Description	Comment
7 pin male pin with plastic locking housing	2	73 42 200 0029:	Harting Han-Eco bulkhead housing with plug modules	70A 1000V pin and safety ground pin

Table 2. PMDU Universal Connector Pin Assignments

Facility Ca	ble Options	PMDU Pin Assignment			
4 Wire	5 Wire	Pin Assignment	ent Phase Description		
Х	L1	A1	Phas	se A	
Υ	L2	B1	Phas	se B	
Z	L3	C1	Phas	se C	
Х	N	A2	Phase A	N	
Υ	N	B2	Phase B	Ν	
Z	N	C2	Phase C	N	
PE	PE	D1 Safety Pro		ective Earth	

Figure 9. Functional Block Diagram of Universal Cord plug pin number assignment orientation (note touch-proof male contacts and female ground contact)

2.5.4 Input Cable Assembly Detail

2.6 Sub-assembly Allocated Output Power Current.

1035VA is the maximum allocated output power per sub-assembly output power connector. This assumes all six U positions are attached within a single distribution group. The maximum current per VAC pin is 2.5A in a non-faulted condition and 3.7A in single fault within a single distribution group. The net current of single distribution group shall not exceed 16A per pin in any condition.

The sub-assembly output power is limited by the rack elevation and loading under single fault condition and sub assembly attached across the 6U single distribution group. Single distribution groups are defined at U1 thru U6, U7-U12, U13-U18, U19-U24, U24-U30, U31-U36, U37-U42, and U43-U48. Within each distribution group, each VAC pin position shares a 16A per pin limitation with U positions. If all six U position pins are attached the 16A allocated evenly at 2.5A per pin.

The sub-assembly output current pins are limited to a maximum of 16A per pin if only one output connector is attached in the 6U distribution group used.

2.6.1 Sub-assembly Output Power and Signal

The sub-assembly power and signal connector shall have the following ratings (per EIA-364-20 unless indicated):

Open Compute Project • Project Olympus Power and Management Distribution Unit Specification

High power contacts working voltage: 585Vrms, 32A

- High power contacts proof voltage: 2500Vrms

- High power contacts initial contact resistance: 10 milliohms (per IEC-364-23)

- Low power contacts working voltage: 585Vrms, 20A

Low power contacts proof voltage: 1000Vrms

- Low power contacts initial contact resistance: 15 milliohms (per IEC-364-23)

- Signal contacts working voltage: 333Vrms

- Signal contacts proof voltage: 1000Vrms (per IEC-364-23)

The connector is configured with sequentially mating contacts, ground being the longest, power the second longest, and signal contacts the shortest. Wiping distances are as follows, with mating level 1 being safety ground, level 2 being power, and level 3 being signal. MFBL means 'make first, break last', and MLBF means 'make last, break first'. See Contact Wiping Distances table.

CONTACT	MATING LENGTH	MATING LEVEL	WIPE LENGTH (mm)
High Power	MFBL	1	5.30
Low Power	Standard	2	3.60
Signal	MLBF	3	2.00

Table 3. Contact Wiping Distances

The connector is blind-mate and will tolerate up to 1.91mm of misalignment in the X and Y direction (viewing mating face). It is a vertical-mount PCB connector and will be mounted on vertical boards inside the PMDU.

Wiring from the Universal connectors to the sub-assembly power and signal connector shall be different.

For the 42U PMDU, U positions 1 thru 24 the sub-assembly power and signal connector shall be in accordance with the Sub Assembly A-B Pin Assignment as show below. U positions 24 thru 42 the sub-

assembly power and signal connector shall be in accordance with the Sub Assembly B-A Pin Assignment as show below.

Figure 10. PMDU Subassembly Pinout Assignment Image

For the 48U PMDU, U positions 1 thru 24 the sub-assembly power and signal connector shall be in accordance with the Sub Assembly A-B Pin Assignment as show below. U positions 25 thru 42 or 48 the sub-assembly power and signal connector shall be in accordance with the Sub Assembly B-A Pin Assignment as show below.

Table 4. PMDU Sub-assembly connector pinout assignment positions C1 through C24 and C25 through 42 or 48

Universal 7 Wire Power Cable Connector to Sub Assembly Definition

			•	
				Feed A-B
Universal Pow	er Cable Connecto	r		Sub Assembly C 1-
In	terface		PDMU Pin Definition	24 Interface
	250.1/4.6.0-1-	A1	Feed A -5 Wire and 4 Wire Phase A	P14
Feed A	250 VAC Pair	В2	Feed A -5 Wire Neutral or 4 Wire Phase B	P13
Universal	250 VAC Deir	B1	Feed A -5 Wire and 4 Wire Phase B	P10
Power Cable	250 VAC Pair	C2	Feed A -5 Wire Neutral or 4 Wire Phase C	P9
Connector	250 VAC Pair	C1	Feed A -5 Wire and 4 Wire Phase C	P6
Interface		A2	Feed A -5 Wire Neutral or 4 Wire Phase A	P5
	Safety Ground		Safety Ground	P1
	ersal 250 VAC Pair	AC Pair A1 Feed B -5 Wire and 4 Wire Phase A		P12
Feed B		B2	Feed B -5 Wire Neutral or 4 Wire Phase B	P11
Universal		B1	Feed B -5 Wire and 4 Wire Phase B	P8
Power Cable		C2	Feed B -5 Wire Neutral or 4 Wire Phase C	P7
Connector	250 VAC Pair	C1	Feed B -5 Wire and 4 Wire Phase C	P4
Interface	230 VAC Pall	A2	Feed B -5 Wire Neutral or 4 Wire Phase A	P3
	Safety Ground D1		Safety Ground	P1
See the Rack mar	nager specification	for	LR_SELECT	A1
pin out destination			NODE_IDO	A2

Open Compute Project • Project Olympus Power and Management Distribution Unit Specification

Analog Ground	A3
NODE_ID1	B1
NODE_ID2	B2
NODE_ID3	B3
BLADE_THROTTLE#	C1
BLADE_ENDABLE#	C2
BLADE_PRESENT#	C3
PSKILL (SHORT PIN)	D1
NODE_ID4	D2
NODE_ID5	D3

	er Cable Connecto	r		Feed A-B Sub Assembly C 25-C42/48
Interface			PDMU Pin Definition	Interface
	250 VAC Pair	A1	Feed A -5 Wire and 4 Wire Phase A	P12
Feed A		B2	Feed A -5 Wire Neutral or 4 Wire Phase B	P11
Universal	250 VAC Pair	B1	Feed A -5 Wire and 4 Wire Phase B	P8
Power Cable	250 1710 1 411	C2	Feed A -5 Wire Neutral or 4 Wire Phase C	P7
Connector	250 VAC Pair	C1	Feed A -5 Wire and 4 Wire Phase C	P4
Interface	250 VACTAII	A2	Feed A -5 Wire Neutral or 4 Wire Phase A	P3
	Safety Ground	D1	Safety Ground	P1
	250 VAC Dair	A1	Feed B -5 Wire and 4 Wire Phase A	P14
Feed B	250 VAC Pair	B2	Feed B -5 Wire Neutral or 4 Wire Phase B	P13
Universal	250 VAC Pair	B1	Feed B -5 Wire and 4 Wire Phase B	P10
Power Cable		C2	Feed B -5 Wire Neutral or 4 Wire Phase C	P9
Connector	250 VAC Pair	C1	Feed B -5 Wire and 4 Wire Phase C	P6
Interface		A2	Feed B -5 Wire Neutral or 4 Wire Phase A	P5
	Safety Ground	D1	Safety Ground	P1
	-		LR_SELECT	A1
			NODE_IDO	A2
			Analog Ground	A3
			NODE_ID1	B1
			NODE_ID2	B2
See the Rack mai	nager specification	for	NODE_ID3	В3
pin out	destination		BLADE_THROTTLE#	C1
			BLADE_ENDABLE#	C2
			BLADE_PRESENT#	C3
			PSKILL (SHORT PIN)	D1
			NODE_ID4	D2
			NODE_ID5	D3

2.7 Grounding and Return

The PMDU grounding shall be via power cord safety ground. The enclosure sheet metal shall not be used for signal or voltage return. Safety Ground/Safety Earth shall be attached in accordance with safety certification requirements.

2.8 RJ45 Connectors

The PMDU contains 8 RJ45 connectors for cabling to external devices with 2 additional RJ45 connectors located on the Rack Manager. Below is a summary of the RJ45 connectors and the use.

- RJ1 Located on the Rack Manager. Supports 1GbE. Expected to connect to the Rack Manager Switch.
- RJ2 Located on the Rack Manager. Supports 1GbE. Expected to connect to a Management Switch in the Middle of Row (MOR) rack.
- RJ3 Located on the PMDU. Supports HW flow control UART. Expected to connect to the UART DIGI in the MOR rack.
- RJ4 Located on the PMDU. Supports SW flow control UART. Expected to be used as a debug or spare UART port.
- RJ5 Located on the PMDU. Supports SW flow control UART. Expected to connect to the Rack Management Switch.
- RC1 to RC4 Located on the PMDU. Expected to connect to the AC relay cables.
- RM1 Located on the PMDU. Expected to connect to a Stand-Alone Rack Manager Module located in the MOR rack.

2.8.1 RJ45 for UART with HW Flow Control (RJ3)

The PMDU shall support one RJ45 connectors for interfacing with UARTs with hardware flow control. The connector pinout is shown in Table 5.

Table 5. RJ45 Pinout - UART with HW Flow Control

Pin#	Signal	1/0	Voltage	Description
1	RTS	0	RS232	Ready to Send
2	DTR	0	RS232	DSR
3	TXD	0	RS232	Transmit Data
4	GND	ı	0V	GND
5	NC			No Connect
6	RXD	ı	RS232	Receive Data
7	DSR	I	RS232	DTR
8	CTS	I	RS232	Clear to Send

2.8.2 RJ45 for UART without HW Flow Control (RJ4, RJ5)

The PMDU shall support two RJ45 connectors for interfacing with UARTs without hardware flow control. The connector pinout is shown in Table 6. Hardware flow control signals are connected tied together at the connector. This enables a SW flow control port on the RM to communicate with select HW flow control end points.

Pin#	Signal	1/0	Voltage	Description
1	NC	- 1	RS232	Ready to Send. Connect to CTS (0 ohm resistor)
2	NC	1	RS232	Data Terminal Ready. Connect to DSR (0 ohm resistor)
3	RXD	1	RS232	Transmit Data
4	GND	1	0V	GND
5	NC			No Connect
6	TXD	0	RS232	Receive Data
7	NC	0	RS232	Data Set Ready. Connect to DTR (0 ohm resistor)
8	NC.	0	RS232	Clear to Send. Connect to RTS (0 ohm resistor)

Table 6. RJ45 Pinout - UART without HW Flow Control

2.8.3 RJ45 for Rack Manager Power and Boot Control (input) (RM1)

The PMDU shall support one RJ45 connectors for enabling external control of the Rack Manager power and boot state. The connector pinout is shown in Table 7.

Pin #	Signal	1/0	Voltage	Description
1	RM_THROTTLE+	1	RS485	Set rack to throttle mode
2	RM_THROTTLE-	ı	RS485	Set rack to throttle mode
3	RM_BOOTSTRAP+	ı	RS485	Sets receiving RM to boot from network
4	RM_PRESENT#	1	3.3V	Indicates Rack Manager is present
5	NC			No Connect
6	RM_BOOTSTRAP-	ı	RS485	Sets receiving RM to boot from network
7	GND	ı	0V	No Connect
8	RM_OFF	1	5V	Disables Rack Manager 12V HSC

Table 7. RJ45 Pinout – Rack Manager Power/Boot Control

2.8.4 RJ45 for AC Relay Control (RC-1, RC-2, RC-3, RC-4)

The PMDU shall support four RJ45 connectors for controlling cabled AC power to rack devices through an AC relay device. The RJ45 connectors used as a AC relay control output. The connector pinout is shown in Table 8.

Table 8. RJ45 Pinout – Rack Manager Power/Boot Control

Pin #	Signal	1/0	Voltage	Description
-------	--------	-----	---------	-------------

1	NC			No Connect
2	NC			No Connect
3	NC			No Connect
4	RELAY_CNTL	-	0V	Disables AC Power through relay
5	NC			No Connect
6	NC			No Connect
7	GND	I	0V	No Connect
8	P5V	ı	5V	5V source

2.9 SLOT ID

The PMDU shall provide grounding of signal pins on the FCI connector to assign a separate slot identification code to each blade. The coding shall be as shown in Table 9.

Table 9. Slot ID

Blade	SLOT_ID[5:0]	Blade	SLOD_ID[5:0]
Blade 1	000000	Blade 25	100000
Blade 2	000001	Blade 26	100001
Blade 3	000010	Blade 27	100010
Blade 4	000011	Blade 28	100011
Blade 5	000100	Blade 29	100100
Blade 6	000101	Blade 30	100101
Blade 7	001000	Blade 31	101000
Blade 8	001001	Blade 32	101001
Blade 9	001010	Blade 33	101010
Blade 10	001011	Blade 34	101011
Blade 11	001100	Blade 35	101100
Blade 12	001101	Blade 36	101101
Blade 13	010000	Blade 37	110000
Blade 14	010001	Blade 38	110001
Blade 15	010010	Blade 39	110010
Blade 16	010011	Blade 40	110011
Blade 17	010100	Blade 41	110100
Blade 18	010101	Blade 42	110101
Blade 19	011000	Blade 43	111000
Blade 20	011001	Blade 44	111001
Blade 21	011010	Blade 45	111010
Blade 22	011011	Blade 46	111011
Blade 23	011100	Blade 47	111100

Open Compute Project • Project Olympus Power and Management Distribution Unit Specification

Blade 24	011101	Blade 48	111101

3 PMDU Mechanical Housing

3.1 General Construction

The PMDU housing shall be constructed of 1.2mm thick steel, having the dimensions shown in the figure below. Detailed dimensions on Microsoft drawing M1007740-001 (42U SKU) and M1007710-001 (48U SKU). The housing shall be coated to prevent rust and corrosion.

The PMDU shall be support 42U and 48U rack assemblies.

Figure 11. PMDU Housing General Dimensions, Microsoft drawings M1007740 and M1007710 supersede this image

3.2 PMDU Structural Brackets

The PMDU shall include brackets top and bottom for structural strength. Representative image is below. See Microsoft drawing M1007740-001 (42U SKU) and M1007710-001 (48U SKU) for details.

3.3 PMDU Subassembly Power Connector

3.3.1 Connector and Placement

The sub-assembly power and signal connector shall be placed at every U (44.45mm) of the PMDU, oriented as shown in PMDU Housing General Location front view.

Figure 12. PMDU Housing General Location front view, Microsoft drawings M1007740 and M1007710 supersede this image

3.4 Rail Attachment

There are threaded cone washers on the left side of the PMDU, held in place by M5 socket head screws, that allow the PMDU to mount to keyhole slots in the Project Olympus system rails. The

Open Compute Project • Project Olympus Power and Management Distribution Unit Specification

inverted surfaces of the washers pull the PMDU tightly against the sides of the rails. Details of cone washer design shown in Microsoft drawing M1007740-001 (42U SKU) and M1007710-001 (48U SKU).

Figure 13. PMDU Rail Mounting: Inverted cone washers fit into keyhole slots in Project Olympus rails.

3.4.1 Subassembly Interface

The PMDU interfaces with an Project Olympus subassembly in two ways. As a Sub assembly is inserted into the rack, a hole at the rear of the subassembly slides onto a front-facing pin that is mounted in the PMDU sheet metal housing. As the subassembly is further inserted, the blind-mate connector on the rear of the subassembly engages with a corresponding blind-mate connector on the PMDU. Subassembly travel is stopped by a guide pin sleeve on the rear of the subassembly.

Figure 14. Guide pins interfacing with sleeves on subassemblies

3.5 Weight

The weight of the PMDU shall not exceed 35 lbs.

4 Environmental

The specifications listed in the following table must be supported.

Table 10. Environmental Requirements

Specification		Requirement
temperature	Operating	 50°F to 140°F (10°C to 60°C) Maximum rate of change: 18°F (10°C)/hour Allowable derating guideline of 1.6°F/1000ft (0.9°C/304m) above 3000 ft.
	Non-operating	 -40°F to 140°F (-40°C to 60°C) Rate of change less than 36°F (20°C)/hour
Humidity	Operating	 Equivalent to 10% to 80% Relative Humidity (RH) non-condensing at 35C Maximum rate of change 20% RH in an hour
	Non-operating	 5% to 95% non-condensing 100.4°F (38°C) maximum wet bulb temperature
Altitude	Operating	10000ft (3050m) maximumRate of change less than 1500 ft./min (457m/min)
	Non-operating	30000ft (9144m) maximumRate of change less than 1500 ft./min (457m/min)

See the latest version of the IT Equipment and Data Center Power/Physical/Environmental Specification Document M1001852.