EPFL - Printemps 2022	Prof. Z. Patakfalvi
Anneaux et Corps	Exercices
Série 9	3ème Mai 2022

Veuillez rendre l'exercice bonus jusqu'au dimanche, 15 mai, 18 h.

Exercices

Exercice 1.

Soit K un corps et L une extension quadratique, i.e. [L:K]=2.

- 1. Montrez que toute extension de K de degré 1 est égale à K.
- 2. Montrez qu'il existe un élément $\alpha \in L$ tel que $L = K(\alpha)$.
- 3. Soit K de caractéristique différente de 2. Montrez qu'il existe un élément $\delta \in L$ avec $\delta^2 = d \in K$ tel que $L = K(\delta) = K(\sqrt{d})$.
- 4. Soit M une extension de K et $\delta \in M \setminus K$ un élément avec $\delta^2 \in K$. Montrez que $K(\delta)$ est une extension quadratique de K.

Exercice 2.

Soient $a, b \in \mathbb{Z}$.

- 1. Quand est-ce que les corps $\mathbb{Q}(\sqrt{a})$ et $\mathbb{Q}(\sqrt{b})$ sont isomorphes en tant que \mathbb{Q} -espaces vectoriels?
- 2. Quand est-ce que les corps $\mathbb{Q}(\sqrt{a})$ et $\mathbb{Q}(\sqrt{b})$ sont isomorphes en tant que corps?

Exercice 3. 1. Soit L une extension de K avec [L:K] impair. Montrer que $K(\alpha) = K(\alpha^2)$ pour tout $\alpha \in L \setminus K$.

- 2. Soient $p, q \in \mathbb{Z}$ deux nombres premiers distincts. Montrez que $\sqrt{p} \notin \mathbb{Q}(\sqrt{q})$ et $\sqrt{q} \notin \mathbb{Q}(\sqrt{p})$. Calculez $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}]$.
- 3. Soit L une extension de K et soient $\alpha, \beta \in L$ des éléments tels que $[K(\alpha) : K] = m$ et $[K(\beta) : K] = n$ sont premiers entre eux. Montrer que $[K(\alpha, \beta) : K] = mn$.

Exercice 4.

Soit $K = \mathbb{Q}(\sqrt{3} + \sqrt{7})$. Montrez que $[K : \mathbb{Q}] = 4$.

Exercice 5.

Dans tous les cas suivants, calculez le degré de l'extension.

- 1. $[\mathbb{R}(e^{2i\pi/p}):\mathbb{R}]$ pour p un nombre premier;
- 2. $[\mathbb{Q}(\alpha):\mathbb{Q}]$ pour α une racine de $t^{42}+t^{41}+\cdots+t^2+t+1$;
- 3. $[\mathbb{Q}(i, \sqrt[5]{13}) : \mathbb{Q}];$
- 4. $[\mathbb{F}_3(\alpha) : \mathbb{F}_3]$ où α est une racine de $t^4 t^3 t^2 t [1]_3 \in \mathbb{F}_3[t]$ (disons que α vit dans le corps de décomposition de ce polynôme sur \mathbb{F}_3 pour fixer les idées);

- 5. $[\mathbb{Q}(\sqrt{14+6\sqrt{5}},\sqrt{3}):\mathbb{Q}]$ (on pourra calculer $(3+\sqrt{5})^2$ pour commencer);
- 6. $[\mathbb{Q}(\sqrt[6]{7}) : \mathbb{Q}((\sqrt[6]{7})^2)];$
- 7. $[\mathbb{F}_2(\alpha):\mathbb{F}_2(\alpha^2)]$ où α est une racine de $t^3+t+[1]_2\in\mathbb{F}_2[t]$.

Exercice 6.

Soit $f = x^7 - y^5 \in \mathbb{C}[x,y]$. Le but de cet exercice est de démontrer que f est irréductible dans $\mathbb{C}[x,y]$. Soit $K = \mathbb{C}(y)$ et L le corps de décomposition de f sur K. Soit α une racine de f dans L, et $\beta = \frac{\alpha^3}{y^2}$.

- 1. Montrez que $[K(\beta):K]=7$. Indication: Trouvez un polynôme sur K dont β est une racine.
- 2. Montrez que $K(\beta) = K(\alpha)$.
- 3. Déduisez que f est irréductible dans $\mathbb{C}[x,y]$.

Bonus exercise

Exercice 7.

Let d be a positive square-free integer such that $d \not\equiv 3 \mod 4$. Here square-free means that for every prime number p, we have $p^2 \nmid d$. Let d' be another such integer. Set $A = \mathbb{Z}[\sqrt{-d}]$, $A' = \mathbb{Z}[\sqrt{-d'}]$, $F = \mathbb{Q}[\sqrt{-d}]$ and $F' = \mathbb{Q}[\sqrt{-d'}]$.

- 1. Show that any ring homomorphism $\phi: F \to F'$ fixes the elements of \mathbb{Q} . That is, for $q \in \mathbb{Q}$, we have $\phi(q) = q$.
- 2. Show that $A = \{s \in F | \exists a, b \in \mathbb{Z} : s^2 + as + b = 0\}$, or in other words A is exactly the set of elements s of F that satisfy an equation of the form $s^2 + as + b = 0$, where $a, b \in \mathbb{Z}$. (Here the important feature is that this equation has coefficients in A and has 1 as the leading coefficient. Elements satisfying such equations are called integral over \mathbb{Z} or they are also called algebraic integers. You can learn more about them in the "Rings and modules" or the "Algebraic number theory" course.)
- 3. Show that $\mathbb{Q}(i)$ is not isomorphic to $\mathbb{Q}(\sqrt{-5})$ (The solution has to use the previous point of this exercise).