非刚性医学图像配准介绍 BDSSD 配准模型 BDLCC 配准模型 原始-70模算法 BGDSSD 与 BGDLCC 配准模型 全文总结

基于有界形变函数的非刚性医学图像配准变分 模型和算法

答辩人: 聂梓伟 导师: 杨孝平 教授

> 南京理工大学理学院 niexiaoer@yeah.net

September 20, 2019

Overview

- 1 非刚性医学图像配准介绍
 - 非刚性配准概念已有模型和方法
 - 本文主要研究动机与研究成果
- ② BDSSD 配准模型
 - BD 函数与 BD(Ω) 空间
 - BDSSD 模型
 - 数值实验结果与分析
- BDLCC 配准模型 ● BDLCC 模型
 - 数值实验结果与分析
- 4 原始-对偶算法
 - 算法介绍
 - 算法实验
- 5 BGDSSD 与 BGDLCC 配准模型
 - 广义形变与有界广义形变函数空间
 - BGD 模型的提出
 - 自适应原始-对偶算法
 - 数值实验结果与分析
- 6 全文总结

图像配准 = 两幅图像点点对应 + 校正浮动图像 Registration = Matching/Alignment + Warping 对于两幅待配准图像 $F, M: \Omega(\subset \mathbb{R}^d) \to \mathbb{R}$,首先找到几何变换

$$\varphi: \Omega \to \Omega, \quad \varphi(\mathbf{x}) = \mathbf{x} + \mathbf{u}(\mathbf{x}),$$
 (1)

$$\mathbf{u}:\Omega\to\mathbb{R}^d, \quad \mathbf{u}=(u_1,\cdots,u_d)^T,$$
 (2)

然后通过插值得到配准后的图像 M^* 。 对于医学图像非刚性配准而言,通常

$$\mathbf{u}|_{\partial\Omega}=\mathbf{0}.\tag{3}$$

变分框架下的非刚性配准问题

$$\min_{\mathbf{u} \in \mathcal{K}} E(\mathbf{u}) = Data(M, F, \mathbf{u}) + \alpha \operatorname{Regu}(\mathbf{u})$$
 (4)

已有模型和方法

变分框架, 非参数化位移场, 八类

弹性体模型 (无法处理大形变, 光滑解)

流体模型 (求解 Navier-Stokes 方程, 光滑解)

扩散模型(无法处理图像中的复杂结构,光滑解)

曲率模型(对噪声敏感,光滑解)

全变差模型 (无物理背景, 不连续解)

光流模型 (对特征变化敏感, 光滑解)

微分同胚模型 (求解耗时较长, 光滑解)

最优传输模型 (求解耗时较长, 光滑解)

优化框架,参数化的位移场,两类

基于插值与逼近理论 (基函数选取不易, 光滑解)

深度学习方法 (缺乏有效的训练数据,解的性质未知)

本文主要研究动机与研究成果

研究动机:

- (1). 现有的变分模型大多只能得到光滑的位移场,这不符合医学图像的实际情形和特点。全变差模型没有物理解释。
- (2). 在弹塑性力学中,有界形变函数常常用来刻画物体内部的可能不 连续的位移场。
- (3). 梯度下降求解变分模型对应的 Euler-Lagrange 方程速度较慢。
- (4). 有界形变函数正则化能力可能有限,可作进一步提升。

研究成果:

- (1)+(2) ⇒ 利用 BD 半范数作为正则项,提出 BDSSD 与 BDLCC 模型。
- (3) ⇒ 利用 Primal-Dual 算法求解 BD 配准模型。
- (4) ⇒ 将 BD 函数空间推广为 BGD 函数空间,利用 BGD 半范数作为 正则项,提出 BGDSSD 与 BGDLCC 模型。

有界形变函数空间 $BD(\Omega)$ 的定义

$$BD(\Omega):=\Big\{\mathbf{u}\in C^1(\Omega;\mathbb{R}^d)\;\big|\;\varepsilon_{ij}(\mathbf{u})=\frac{1}{2}(\partial_{x_i}u_j+\partial_{x_j}u_i)\;\text{is a}\\ \text{bounded measure},1\leq i,j\leq d\Big\}(ElastoplasticTheory)\;\; (5)\\ :=\Big\{\mathbf{u}\in L^1(\Omega;\mathbb{R}^d)\;\big|\;|\mathcal{E}(\mathbf{u})|\;(\Omega)=\int_{\Omega}\mathbf{u}\cdot div\phi d\mathbf{x}<+\infty,\\ \forall \phi\in C_0^\infty(\Omega;\mathbb{S}^{d\times d}),\|\phi\|\leq 1\Big\}(GeometricMeasureTheory)\;\; (6)$$

 $|\mathcal{E}(\mathbf{u})|(\Omega)$ 称为 \mathbf{u} 的形变 (total deformation)。 $|\mathcal{E}(\mathbf{u})|(\Omega)<+\infty$ 即 \mathbf{u} 具有有界形变 (Bounded Deformation)。

$BD(\Omega)$ 空间的性质

- $\mathbf{1}$ $BD(\Omega)$ 是一个 Banach 空间,空间范数 $\|\mathbf{u}\|_{BD(\Omega)} := \|\mathbf{u}\|_{L^1(\Omega:\mathbb{R}^d)} + |\mathcal{E}(\mathbf{u})|(\Omega)$ 。
- 2 $W^{1,2}(\Omega; \mathbb{R}^d) \subseteq BD(\Omega)$, $BV(\Omega; \mathbb{R}^d) \subseteq BD(\Omega)$.
- $3 | \mathcal{E}(\mathbf{u}) | (\Omega)$ 是空间 $BD(\Omega)$ 的一个半范数,将之记为 $|\mathbf{u}|_{BD}$ 。
- 4 $C^{\infty}(\Omega; \mathbb{R}^d)$ 在空间 $BD(\Omega)$ 中稠密。
- $\forall \mathbf{u} \in BD(\Omega)$, $\mathcal{E}(\mathbf{u})$ 是一个 Radon 测度,可以分解为关于 Lebesgue 测度 \mathcal{L}^n 绝对连续与奇异的两部分,即 $\mathcal{E}(\mathbf{u}) = \mathcal{E}^a(\mathbf{u}) + \mathcal{E}^s(\mathbf{u})$,其中 $\mathcal{E}^a(\mathbf{u}) = \nabla \mathbf{u} + \nabla^T \mathbf{u}$ 。
- 6 存在常数 $C = C(\Omega)$ 使得对于所有满足 $\mathbf{u}|_{\partial\Omega} = \mathbf{0}$ 的 $\mathbf{u} \in BD(\Omega)$, $\|\mathbf{u}\|_{BD(\Omega)} \leq C|\mathbf{u}|_{BD}$ 。

BDSSD 模型

- 同模态图像配准 ⇒ SSD(sum of squared difference) 作数据项
- 弹塑性理论 ⇒ 首次采用 BD 半范数作为正则项进行配准

$$\min_{\mathbf{u} \in \mathcal{K}} E(\mathbf{u}) = SSD(M, F, \mathbf{u}) + \alpha |\mathbf{u}|_{BD} = SSD(M, F, \mathbf{u}) + \alpha ||\nabla \mathbf{u} + \nabla^T \mathbf{u}||_1$$
(7)

$$SSD(M, F, \mathbf{u}) = ||M(\mathbf{x} + \mathbf{u}(\mathbf{x})) - F||^2$$
(8)

$$\mathcal{K} = \left\{ \mathbf{u} \in BD(\Omega) \mid \mathbf{u} \big|_{\partial \Omega} = \mathbf{0} \right\} \tag{9}$$

 \mathcal{K} 是可行解空间。 $\alpha > 0$ 是权重参数。 $SSD(M, F, \mathbf{u})$ 关于 \mathbf{u} 非凸。

BDSSD 模型解的存在性

假设 Ω 是 \mathbb{R}^d 中具有 Lipschitz 边界的有界开区域,图像函数 $M, F: \Omega \to \mathbb{R}$ 一致有界且几乎处处可微。BDSSD 非刚性配准模型 (7) 在可行解空间 \mathcal{K} 中至少存在一个解。

证明: 寻找极小化序列 \rightarrow 由 $BD(\Omega)$ 空间的紧性得到一个收敛至 \mathbf{u}^* 的子列并证明 $\mathbf{u}^* \in \mathcal{K} \rightarrow$ 由泛函的下半连续性知 \mathbf{u}^* 为一个极 小子。

BDSSD 模型解的唯一性

小位移情形下,可以对数据项进行一阶泰勒展开作近似,于是能量泛函近似为:

$$E(\mathbf{u}) = \|M(\mathbf{x}) + \nabla M(\mathbf{x}) \cdot \mathbf{u}(\mathbf{x}) - F(\mathbf{x})\|^2 + \alpha |\mathbf{u}|_{BD}$$
 (10)

此时, $E(\mathbf{u})$ 关于 \mathbf{u} 是严格凸的。模型在 \mathcal{K} 中存在唯一解。

BDSSD 模型对应的 Euler-Lagrange 方程为

$$(M(\mathbf{u}) - F) \nabla M(\mathbf{u}) - \alpha \operatorname{div}\left(\frac{\nabla \mathbf{u} + \nabla^T \mathbf{u}}{\|\nabla \mathbf{u} + \nabla^T \mathbf{u}\|_1}\right) = \mathbf{0}$$
 (11)

相应的梯度下降流为:

$$-\frac{\partial \mathbf{u}}{\partial t} = (M(\mathbf{u}) - F) \nabla M(\mathbf{u}) - \alpha \operatorname{div}\left(\frac{\nabla \mathbf{u} + \nabla^T \mathbf{u}}{\|\nabla \mathbf{u} + \nabla^T \mathbf{u}\|_1}\right)$$
(12)

fixed

moving

Demons

VTV

DiffeoDemons

BDSSD

BD 函数与 BD(Ω) 空间 BDSSD 模型 **数值实验结果与分析**

Table: 用 (mSSIM, NCC, NMI) T 三个指标评价配准结果

Images	No Reg	Demons	DiffeoDemons	VTV	BDSSD
synthetic	0.9332	0.9783	0.9897	0.9869	0.9975
	0.6949	0.9366	0.9732	0.9896	0.9999
	0.4625	0.8360	0.8716	0.9470	0.9968
hand	0.5392	0.8733	0.8241	0.8118	0.9659
	0.8032	0.9778	0.9735	0.9564	0.9942
	0.2975	0.6757	0.6673	0.6096	0.7315
brain	0.7043	0.9718	0.9843	0.9757	0.9864
	0.9220	0.9968	0.9981	0.9973	0.9995
	0.4791	0.9043	0.9213	0.9364	0.9528
liver	0.6229	0.8651	0.7971	0.7654	0.9295
	0.8959	0.9898	0.9710	0.9520	0.9959
	0.4508	0.8248	0.7291	0.6891	0.9238

Table: 三维数据集简介

Datasets	4D-CT(Case 1-5)	4D-CT(Case 6-10)	COPD(Case 1-10)
AverSize	(256, 256, 103)	(512, 512, 128)	(512, 512, 120)
Resolution	(1.1, 1.1, 2.5)	(0.97, 0.97, 2.5)	(0.6, 0.6, 2.5)
Landmarks	300 pairs	300 pairs	300 pairs

每一对待配准图像,运行 BDSSD 模型 200 步。第 i 对锚点配准后的 TRE(target registration error) 误差按下式计算:

$$TRE(i) = \|\mathbf{res} \cdot \left(\mathbf{x}_m^i + \mathbf{u}_m^i - \mathbf{x}_f^i\right)\|_{L^2}$$
(13)

 $res = (rex_x, res_y, res_z)$ 代表一个体素的空间分辨率。

用这 300 对锚点的 TRE 误差的**均值和方差**来评价非刚性配准模型的性能。

BDSSD 模型配准 4D-CT 数据集后,大大减小了对应锚点之间的距离。

BDSSD 模型求解得到的位移场 (4D-CT Case 3 图像对)。

BDSSD 模型配准 COPDgene 数据集后,大大减小了对应锚点之间的距离。

BDSSD 模型求解得到的位移场 (COPDgene Case 10 图像对)。

Models	4D-CT Case 3	Models	COPDgene Case 10
cTVL1(2013)	0.93 (1.09)	NLR(2013)	1.42 (1.44)
cEPE(2013)	0.92 (1.10)	LMP(2013)	1.39 (1.46)
NLR(2013)	0.93 (1.06)	MILO(2014)	1.23 (1.27)
LMP(2013)	0.91 (1.05)	MRF(2015)	1.18 (1.31)
SGM3D(2014)	0.94 (1.07)	SGM3D(2014)	1.28 (1.29)
NGF(2014)	0.93 (1.05)	meLDDMM(2016)	1.17 (1.28)
pTV(2016)	0.95 (1.09)	DIS-CO(2017)	0.86 (0.88)
isoPTV(2017)	0.90 (1.05)	isoPTV(2017)	0.92 (0.85)
pTVreg(2017)	0.92 (1.07)	pTVreg(2017)	0.85 (0.86)
BDSSD(2018)	0.90 (1.04)	BDSSD(2018)	0.78 (0.82)
No DIR	6.73 (4.21)	No DIR	22.48 (10.64)

BDLCC 配准模型

- 同模态图像, 但是器官运动/成像信号衰减
- ⇒F,M 存在局部灰度偏差,但对应点的灰度值线性相关
- ⇒SSD 不再适用,改用 LCC 数据项 (NMI 适用参数化配准,不适用非参数化的变分模型)
- ⇒LCC 作为数据项, |·|_{BD} 作为正则项
- ⇒BDLCC 非刚性配准模型

$$LCC(M, F) = \int_{\Omega} \frac{\langle M, F \rangle(\mathbf{x})}{\sigma(M)(\mathbf{x}) \cdot \sigma(F)(\mathbf{x})} d\mathbf{x} = \left\| \frac{\langle M, F \rangle(\mathbf{x})}{\sigma(M)(\mathbf{x}) \cdot \sigma(F)(\mathbf{x})} \right\|^{2}$$

$$\mathbf{u}^{*} = \underset{\mathbf{u} \in \mathcal{K}}{\operatorname{arg min}} \left\{ E(\mathbf{u}) = \alpha LCC(M, F, \mathbf{u}) + |\mathbf{u}|_{BD} \right\}$$
(14)

BDLCC 模型解的存在性

假定 $\Omega \subset \mathbb{R}^d$ 是具有 Lipschitz 边界的有界开集,图像函数 $M,F:\Omega \to \mathbb{R}$ 一致有界且几乎处处可微。BDLCC 模型 (15) 在可行解空间 $\mathcal K$ 中至少存在一个解。

$$\alpha \frac{\partial LCC}{\partial \mathbf{u}} - 2 \operatorname{div} \left(\frac{\nabla \mathbf{u} + \nabla^T \mathbf{u}}{\|\nabla \mathbf{u} + \nabla^T \mathbf{u}\|_1} \right) = \mathbf{0}.$$
 (16)

相应的梯度下降流则为:

$$-\frac{\partial \mathbf{u}}{\partial t} = \alpha \frac{\partial LCC}{\partial \mathbf{u}} - 2\operatorname{div}\left(\frac{\nabla \mathbf{u} + \nabla^{T} \mathbf{u}}{\|\nabla \mathbf{u} + \nabla^{T} \mathbf{u}\|_{1}}\right)$$
(17)

$$\frac{\partial LCC(M, F, \mathbf{u})}{\partial \mathbf{u}}(\mathbf{x}) \approx \frac{1}{\sigma(M)(\mathbf{x}) \cdot \sigma(F)(\mathbf{x})} \cdot \left[\left(\sigma(F)(\mathbf{x}) - \overline{F}(\mathbf{x}) \right) - \left(\sigma(M)(\mathbf{x}) - \overline{M}(\mathbf{x}) \right) \cdot \frac{\langle M, F \rangle(\mathbf{x})}{\sigma^2(M)(\mathbf{x})} \right] \nabla M(\mathbf{x}) \tag{18}$$

fixed

moving

IntensityDistributions

BDSSD

BDLCC

BDSSD

BDLCC

COPD Case 2

COPD Case 8

COPD	No DIR	BDSSD	BDLCC
case1	25.90(11.57)	0.78(0.89)	0.73(0.90)
case2	21.77(6.46)	1.50(1.60)	1.45(1.55)
case3	12.29(6.39)	0.76(0.72)	0.74 (0.77)
case4	30.90(13.49)	0.79(0.82)	0.76(0.86)
case5	30.90(14.05)	0.70(0.80)	0.67 (0.82)
case6	28.32(9.20)	0.76(1.10)	0.74(1.13)
case7	21.66(7.66)	0.72(0.97)	0.71 (0.90)
case8	25.57(13.61)	0.82(1.24)	0.76 (1.02)
case9	14.84(10.01)	0.71(0.78)	0.59 (0.71)
case10	22.48(10.64)	0.78(0.82)	0.77 (0.89)

BDSSD 模型与 BDLCC 模型在 COPDgene 数据集上的配准结果的 TRE 均值与标准差。

原始-对偶算法求解 BD 配准模型

原始-对偶混合梯度 (The Primal-Dual Hybrid Gradient, PDHG) 算法, 常用于求解如下形式的鞍点问题:

$$\min_{x \in X} \max_{y \in Y} f(x) + \langle y, Ax \rangle - g(y), \tag{19}$$

这里 f,g 为凸函数, A 为一个线性算子。交替迭代:

$$\begin{split} \hat{x}^{t+1} &= x^t - \tau_t A^T y^t \\ x^{t+1} &= (I + \tau_t \partial f)^{-1} \left(\hat{x}^{t+1} \right) = \underset{x \in X}{\operatorname{argmin}} \, f(x) + \frac{1}{2\tau_t} \|x - \hat{x}^{t+1}\|^2 \\ \hat{y}^{t+1} &= y^{t+1} + \sigma_t A \left(x^{t+1} - \theta_t (x^{t+1} - x^t) \right) \\ y^{t+1} &= (I + \tau_t \partial g)^{-1} \left(\hat{y}^{t+1} \right) = \underset{y \in Y}{\operatorname{argmin}} \, g(y) + \frac{1}{2\sigma_t} \|y - \hat{y}^{t+1}\|^2 \\ \end{split}$$

原问题:

$$\min_{\mathbf{u} \in \mathcal{K}} \left\{ E(\mathbf{u}) = \alpha \, Data(\mathbf{u}) + \|\nabla \mathbf{u} + \nabla^T \mathbf{u}\|_1 \right\}$$
 (20)

对应的鞍点问题:

$$\min_{\mathbf{u} \in \mathcal{K}} \max_{\mathbf{p} \in \mathcal{P}} \alpha \, Data(M, F, \mathbf{u}) + \left\langle \nabla \mathbf{u} + \nabla^T \mathbf{u}, \mathbf{p} \right\rangle - \delta_{\mathcal{P}}(\mathbf{p}) \tag{21}$$

$$\begin{split} \mathcal{P} &= \mathcal{K}^* = \left\{ \mathbf{p} \in L^{\infty}(\Omega; \mathit{Sym}^{d \times d}), \|\mathbf{p}\|_{\infty} \leq 1 \right\} \\ \delta_{\mathcal{P}}(\mathbf{p}) &= 0, \; \textit{if} \; \mathbf{p} \in \mathcal{P}, \; \textit{otherwise} \; + \infty \end{split}$$

Algorithm: BD 配准模型的原始-对偶算法

初始化: $M, F, \ t=0, \ \mathbf{u}^{(0)}=\mathbf{0}, \ \mathbf{p}^{(0)}=\mathbf{0}, \ \overline{\mathbf{u}^{(0)}}=\mathbf{0}, \ M^{(0)}=M, \ \mathbf{u}^*=\mathbf{0};$ 选取: 最大迭代次数 $N, \ \tau, \sigma>0, s.t. \ \tau\sigma\|\nabla+\nabla^T\|_{op}^2<1, \ \theta\in[0,1], \alpha>0;$ 迭代: 按如下步骤迭代计算

$$\begin{split} \widehat{\mathbf{p}(t+1)} &= \mathbf{p}^{(t)} + \sigma(\nabla + \nabla^T) \widehat{\mathbf{u}^{(t)}}; \\ \mathbf{p}^{(t+1)} &= \arg\min_{\mathbf{p} \in \mathcal{P}} \left\{ \frac{1}{2\sigma} \left\| \mathbf{p} - \widehat{\mathbf{p}^{(t+1)}} \right\|^2 + R^*(\mathbf{p}) \right\}; \\ \widehat{\mathbf{u}^{(t+1)}} &= \mathbf{u}^{(t)} + 2\tau div\mathbf{p}^{(t+1)}; \\ \mathbf{u}^{(t+1)} &= \arg\min_{\mathbf{u} \in \mathcal{K}} \left\{ \frac{1}{2\tau} \left\| \mathbf{u} - \widehat{\mathbf{u}^{(t+1)}} \right\|^2 + \alpha \, Data(M^{(t)}, \textit{F}, \mathbf{u}) \right\}; \\ \widehat{\mathbf{g}} \underline{\mathbf{g}} \underline{\mathbf{b}} \mathbf{g} \underline{\mathbf{g}} \mathbf{f} \quad \mathbf{u}^{(t+1)}|_{\partial \Omega} = \mathbf{0}; \\ \widehat{\mathbf{u}^*} &= \mathbf{u}^* + \mathbf{u}^{(t+1)}; \\ \widehat{\mathbf{u}^{(t+1)}} &= \mathbf{u}^{(t+1)} + \theta \left(\mathbf{u}^{(t+1)} - \mathbf{u}^{(t)} \right); \\ \underline{\mathbf{f}} \underline{\mathbf{f}} \underline{\mathbf{t}} \underline{\mathbf{f}} \mathbf{g} \, M^{(t+1)} &= M^{(t)} (\mathbf{x} + \mathbf{u}^{(t+1)}); \\ \underline{\mathbf{f}} \mathbf{c} \mathbf{t} &= t + 1; \end{split}$$

直到收敛或达到最大迭代次数,返回 \mathbf{u}^* 和 $M^{(t)}$ 。

Table: 原始-对偶算法求解 BD 配准模型的时间

BDSSD 模型			BDLCC 模型		
配准图像	梯度下降 (秒)	原始-对偶 (秒)	配准图像	梯度下降 (秒)	原始-对偶 (秒)
Synthetic 1 CT Liver	15.22 21.67	2.46 3.62	Synthetic 2 MR Liver	13.09 21.62	2.51 4.24
4D-CT(former 5) 4D-CT(latter 5) COPDgene	$735.76 3.97 \times 10^3 3.53 \times 10^3$	82.48 461.83 418.76	4D-CT(former 5) 4D-CT(latter 5) COPDgene	780.03 4.38×10^3 3.89×10^3	95.04 517.82 455.75

BD 正则项利用了位移场的一阶广义对称导数信息

- ⇒ 位移场的高阶广义对称导数信息也可以利用
- \Rightarrow **u** $\in L^1(\Omega; \mathbb{R}^d)$ 的 k 阶广义形变为:

$$TGD_{\alpha}^{k}(\mathbf{u}) = \sup \left\{ \int_{\Omega} \mathbf{u} \cdot di v^{k} \mathbf{v} \, dx \, \middle| \, v \in C_{c}^{k}(\Omega; Sym^{k+1}(\mathbb{R}^{d})), \right.$$
$$\left. \| di v^{j} \mathbf{v} \|_{\infty} \leq \alpha_{i}, i = 0, \cdots, k-1 \right\}, \tag{22}$$

有界广义形变函数空间 $BGD^k_{\alpha}(\Omega)$ 定义为:

$$BGD_{\alpha}^{k}(\Omega) = \left\{ u \in L^{1}(\Omega; \mathbb{R}^{d}) \mid TGD_{\alpha}^{k}(u) < \infty \right\}, \tag{23}$$

$$||u||_{BGD_{\alpha}^{k}} = ||u||_{1} + TGD_{\alpha}^{k}(u)$$
 (24)

- 1 对于给定的 k 和 α , $BGD_{\alpha}^{k}(\Omega)$ 是一个 Banach 空间。并且当 $k=1,\alpha=1$ 时, $BGD_{\alpha}^{k}(\Omega)=BD(\Omega)$ 。
- $2 TGD_{\alpha}^{k}$ 是凸的,但不是严格凸的。
- $3\ TGD_{\alpha}^{k}(\mathbf{u})=0$ 当且仅当 \mathbf{u} 为一个次数不高于 1 次的多项式函数,即 \mathbf{u} 为常向量函数或者仿射变换函数, $\mathbf{u}=A\mathbf{x}+b$, $A\in\mathbb{R}^{d\times d},b\in\mathbb{R}^{d}$ 。
- 4 TGD_{α}^{k} 关于空间 $L^{1}(\Omega; \mathbb{R}^{d})$ 具有下半连续性。
- 5 TGD_{α}^{k} 是空间 $BGD_{\alpha}^{k}(\Omega)$ 中的一个连续半范数,并且不同的 α 值得到的范数 $\|u\|_{BGD_{\alpha}}$ 是等价的。
- 6 $TGD_{\alpha}^{2}(\mathbf{u}) = \min_{\omega \in BD(\Omega; Sym^{d \times d})} \qquad \alpha_{1} \|\mathcal{E}\mathbf{u} \omega\|_{1} + \alpha_{0} \|\mathcal{E}\omega\|_{1}$

分别针对同模态 + 灰度同分布, 同模态 + 灰度不同分布:

$$\mathbf{u}^* = \arg\min_{\mathbf{u} \in \mathcal{K}} \left\{ E(\mathbf{u}) = SSD(M, F, \mathbf{u}) + TGD_{\alpha}^2(\mathbf{u}) \right\}$$
(25)

$$\mathbf{u}^* = \arg\min_{\mathbf{u} \in \mathcal{K}} \left\{ E(\mathbf{u}) = LCC(M, F, \mathbf{u}) + TGD_{\alpha}^2(\mathbf{u}) \right\}$$
 (26)

$$\mathcal{K} = \left\{ \mathbf{u} \in BGD_{\alpha}^{2}(\Omega) \middle| \mathbf{u} \middle|_{\partial\Omega} = \mathbf{0} \right\}$$
 (27)

BGD 配准模型解的存在性

假定 $\Omega \subset \mathbb{R}^d$ 是具有 Lipschitz 边界的有界开集,图像函数 $M, F: \Omega \to \mathbb{R}$ 一致有界且几乎处处可微。则基于 $BGD^2(\Omega)$ 空间的非刚性配准模型 (25) 和 (26) 在可行解空间 \mathcal{K} 中有解。

 TGD_{α}^{2} 非刚性配准模型对应的鞍点问题:

$$\min_{\mathbf{u}, \mathbf{p}} \max_{\mathbf{q}, \mathbf{r}} \alpha_1 \langle \mathcal{E} \mathbf{u} - \mathbf{p}, \mathbf{q} \rangle + \alpha_0 \langle \mathcal{E} \mathbf{p}, \mathbf{r} \rangle + Data(M, F, \mathbf{u})$$
(28)

$$\mathbf{u} \in \mathcal{K}, \mathbf{p} \in \mathit{BD}(\Omega; \mathit{Sym}^{d \times d}), \mathbf{q} \in \mathit{Sym}^{d \times d}, \mathbf{r} \in \mathit{Sym}^{d \times d \times d}, \|\mathbf{q}\|_{\infty} \leq 1, \|\mathbf{r}\|_{\infty} \leq 1.$$

Algorithm: BGD 模型的原始-对偶算法主要步骤

若固定步长参数,很难调参。

定义原始残差 (primal residual) 与对偶残差 (dual residual) 分别为:

$$\begin{split} \mathbf{P}_{t+1}^1 &= \frac{1}{\tau_t} \left(\mathbf{u}^{(t)} - \mathbf{u}^{(t+1)} \right) + div \left(\mathbf{q}^{(t)} - \mathbf{q}^{(t+1)} \right), \\ \mathbf{P}_{t+1}^2 &= \frac{1}{\tau_t} \left(\mathbf{p}^{(t)} - \mathbf{p}^{(t+1)} \right) + div \left(\mathbf{r}^{(t)} - \mathbf{r}^{(t+1)} \right) + \mathbf{q}^{(t)} - \mathbf{q}^{(t+1)}. \end{split}$$

$$\begin{split} \mathbf{D}_{t+1}^1 &= \frac{1}{\sigma_t} \left(\mathbf{q}^{(t)} - \mathbf{q}^{(t+1)} \right) - \mathcal{E} \left(\mathbf{u}^{(t)} - \mathbf{u}^{(t+1)} \right) + \mathbf{p}^{(t)} - \mathbf{p}^{(t+1)}, \\ \mathbf{D}_{t+1}^2 &= \frac{1}{\sigma_t} \left(\mathbf{r}^{(t)} - \mathbf{r}^{(t+1)} \right) - \mathcal{E} \left(\mathbf{p}^{(t)} - \mathbf{p}^{(t+1)} \right). \end{split}$$

当 $\lim_{t\to\infty}\|\mathbf{P}_t^1\|^2+\|\mathbf{P}_t^2\|^2+\|\mathbf{D}_t^1\|^2+\|\mathbf{D}_t^2\|^2=0$ 时,由原始-对偶算法得到的序列是收敛的。

Algorithm: BGD 配准模型的自适应原始-对偶算法

```
初始化: 輸入 M, F. 最大迭代次数 N. 令 t=0, \mathbf{u}^{(0)}=\mathbf{0}, \mathbf{p}^{(0)}=\mathbf{0}, \mathbf{q}^{(0)}=\mathbf{0}, \mathbf{r}^{(0)}=\mathbf{0}, \mathbf{m}^{(0)}=\mathbf{0}, \mathbf{m}^{(0)}
```

根据原始残差与对偶残差的相对大小,自适应确定步长参数。

fixed

moving

BDSSD

BGDSSD

BDLCC

BGDLCC

Index	No Registration	BDSSD	BDLCC	BGDSSD	BGDLCC
mSSIM	0.6229	0.9295	0.8182	0.9433	0.8268
NCC	0.8959	0.9959	0.9800	0.9994	0.9804
NMI	0.4508	0.9238	0.8227	0.9257	0.8321

(a) fixed

(b) moving

(c) BDSSD

Index	mSSIM	NMI
No DIR	0.72	0.49
BDSSD	0.82	0.66
BDLCC	0.89	0.77
BGDSSD	0.85	0.77
BGDLCC	0.90	0.84

(d) BDLCC

(e) BGDSSD

答辩人: 聂梓伟 导师: 杨孝平

Table: 用 meanTRE(stdTRE) 评价各个模型在 4D-CT 数据集上的配准结果.

Model	Case1	Case2	Case3	Case4	Case5
BDSSD	0.78(0.86)	0.78(0.90)	0.90(1.04)	1.23(1.28)	1.16(1.34)
BDLCC	0.80(0.90)	0.78(0.91)	0.92(1.05)	1.25(1.30)	1.19(1.38)
BGDSSD	0.72(0.86)	0.72(0.85)	0.89(1.00)	1.19(1.18)	1.12(1.34)
BGDLCC	0.75(0.90)	0.76(0.89)	0.90(1.03)	1.20(1.30)	1.13(1.36)
No DIR	4.01(2.91)	4.65(4.09)	6.73(4.21)	9.42(4.81)	7.10(5.15)
Model	Case6	Case7	Case8	Case9	Case10
BDSSD	0.88(0.95)	0.76(0.81)	1.02(1.22)	0.96(0.90)	0.85(0.95)
BDLCC	0.89(0.95)	0.77(0.89)	1.17(1.25)	0.95(0.92)	0.84(0.99)
BGDSSD	0.80(0.88)	0.73(0.81)	1.01(1.13)	0.90(0.89)	0.80(0.92)
BGDLCC	0.81(0.92)	0.76(0.86)	1.13(1.16)	0.92(0.90)	0.81(0.98)
No DIR	11.10(6.98)	11.59(7.87)	15.16(9.11)	7.82(3.99)	7.63(6.54)

Table: 用 meanTRE(stdTRE) 评价各个模型在 COPDgene 数据集上的配准结果

Models	Case1	Case2	Case3	Case4	Case5
BDSSD	0.78(0.89)	1.50(1.60)	0.76(0.72)	0.79(0.82)	0.70(0.80)
BDLCC	0.73(0.90)	1.45 (1.55)	0.74(0.77)	0.76(0.86)	0.67 (0.82)
BGDSSD	0.75(0.88)	1.49(1.58)	0.76(0.71)	0.76(0.81)	0.70(0.80)
BGDLCC	0.70(0.73)	1.45(1.52)	0.72(0.71)	0.67 (0.75)	0.67 (0.78)
No DIR	25.90 (11.57)	21.77(6.46)	12.29(6.39)	30.90(13.49)	30.90(14.05)
Models	Case6	Case7	Case8	Case9	Case10
BDSSD	0.76(1.10)	0.72(0.97)	0.82(1.24)	0.71(0.78)	0.78(0.82)
BDLCC	0.74(1.13)	0.71(0.90)	0.76(1.02)	0.59 (0.71)	0.77(0.89)
BGDSSD	0.73(1.04)	0.70(0.92)	0.80(1.07)	0.62(0.70)	0.76(0.82)
BGDLCC	0.65(0.77)	0.69(0.84)	0.75 (0.93)	0.59 (0.65)	0.72(0.85)
No DIR	28.32(9.20)	21.66(7.66)	25.57(13.61)	14.84(10.01)	22.48(10.64)

4DCT Case 6

COPD Case 10

Table: BGDSSD 模型和 BGDLCC 模型的求解时间比较 (单位: 秒)

配准图像	BDSSD	BDLCC	BGDSSD	BGDLCC
CT Liver	3.63	4.18	6.56	7.35
MR Liver	3.98	4.24	6.81	8.07
4D-CT(former 5 cases)	82.48	95.04	157.67	203.76
4D-CT(latter 5 cases)	461.83	517.82	908.79	957.5370
COPDgene(10 cases)	418.76	455.75	808.15	867.44

本文工作:

- 1 BD 配准模型 ← 医学图像之间的位移场可能是不连续的
 BDSSD 模型 ⇒ |·|_{BD} 优于其它正则项
 BDLCC 模型 ⇒ 灰度分布一致用 SSD, 不一致则用 LCC
- 2 原始-对偶算法 ⇒ 加速求解配准模型
- 3 BGD 配准模型 ⇒ 利用位移场的高阶 (广义) 导数信息 BGDSSD, BGDLCC 模型 自适应原始-对偶算法

未来考虑:

- 1 插值方法: 不同插值方法的效果比较, 插值误差的累计。
- 2 变分模型 + 深度学习 ⇒ 将变分模型按迭代算法展开为一个参数 很少的深度网络,利用已有的(少量)数据训练这些参数。

非刚性医学图像配准介绍 BDSSD 配准模型 BDLCC 配准模型 原始-对偏算法 BGDSSD 与 BGDLCC 配准模型 全文总结

再次感谢各位专家、老师参加我的博士论文答辩!