Roll No	21BCP359	Practical No:	6
Division	6	Date:	13/03/2024

Part 1

Understand the project available on following link

Project Link: https://github.com/aharley/nn_vis

Project by: https://adamharley.com/

Reference in case needed: https://www.youtube.com/watch?v=pj9-rr1wDhM

Part 2

Populate the table below to summarize your understanding of the project mentioned in part 1

Layer	Task	Rationale
Input layer	It receives user input and converts raw pixels from a sketchpad into data that the system can process.	To take raw input from the user and preprocess it.
Convolutional layer	It identifies patterns in the input data, like edges and corners, by applying mathematical operations and activation functions.	Extracts features, like edges and corners.
Pooling layer	It reduces the size of the data while keeping important information intact, making computations more efficient. It does this by condensing features and focusing on the most significant values.	To reduce space of the matrix (reduce spatial dimensions of feature maps) while conserving the original image. Consider the pixel having the highest value (illumination) using a stride of 2*2 pixels (2*2 max pooling) and taking that value to just one pixel in the new matrix.
Classifying layer	It utilizes the extracted features to accurately categorize the input data. It consists of interconnected neurons that analyze the features for classification.	The classifying layer takes the high-level abstracted features from previous layers and uses them to classify input data into different categories. There are 120 neurons in the first layer and 100 neurons in the second
Output layer	It generates the final prediction based on the classification results, with each neuron representing the probability of a specific outcome, such as recognizing different digits	Produces the final output or prediction of the network, representing the class probabilities

	hyper-parameters affect the network perform	
Hyper-Parameter	One Line Definition	Effect on the CNN
Stride	Determines how much the filter moves across the input image.	Changing the stride impacts the size of the output feature maps. A larger
		stride means fewer calculations and smaller output maps, speeding up
		processing.
Dilation Rate	Controls how the elements of the convolutional filter are spread out.	Increasing dilation rate expands the filter's view, allowing it to capture broader features but at the cost of reduced detail in the output.
Type of pooling layer	Dictates how feature maps are condensed in pooling layers.	Various types like max pooling or average pooling determine how features are combined, impacting the network's capacity to maintain crucial details while decreasing size.
Kernel size	Determines the dimensions of the convolutional filters.	Bigger sizes gather more nearby details, enabling the network to learn complex patterns and demanding more computations. Smalle sizes concentrate on finer details but might miss broader patterns.
padding	Adding extra pixels around the input image.	It influences the size of the output feature maps. Zeropadding keeps the size unchanged, valid padding reduces it, and same padding maintains the input size.

References:

<u>An Intuitive Explanation of Convolutional Neural Networks – the data science blog (ujjwalkarn.me)</u>

<u>Gentle Dive into Math Behind Convolutional Neural Networks | by Piotr Skalski | Towards Data Science</u>

<u>Intuitively Understanding Convolutions for Deep Learning | by Irhum Shafkat | Towards Data Science</u>

<u>An Introduction to different Types of Convolutions in Deep Learning | by Paul-Louis Pröve | Towards Data Science</u>