Naïve Bayes Classifier

Data Set: iris

Naïve Bayes Explanation

Data Set: weather & play

Source: https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained last accessed on 21 September 2019

Basics

Likelihood which is the probability of predictor given class

Prior probability of class

Posterior
probability of class
(c, target) given
predictor (x,
attribute)

$$P(c|x) = \frac{P(x|c)P(c)}{P(x)}$$

Prior probability of predictor

Step 1: Make Frequency Table Step 2: Make Likelihood Table

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No

Frequency Table			
Weather	No	Yes	
Overcast		4	
Rainy	3	2	
Sunny	2	3	
Grand Total	5	9	

Kainy	NO
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Overcast appeared 4 times and all the times and three times Play NOT happened whereas two times play happened; Sunny appeared 5 times and two times Play NOT happened whereas three times play happened. All in all 5 times play NOT happened and 9 times play happened.

time Play happened; Rainy appeared 5

Like	lihood tab	le		
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14		
	0.36	0.64		

Priory probabilities

14 Data Points

Step 3: Calculate Posterior Probability

$$P(c|x) = \frac{P(x|c)P(c)}{P(x)}$$

Players will play if weather is sunny. Is this correct?

$$P(Yes|Sunny) = \frac{P(Sunny|Yes)P(Yes)}{P(Sunny)}$$

Like	elihood tab	le	<u>l</u>	
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14		
	0.36	0.64		

$$P(Yes|Sunny) = \frac{P(\frac{3}{9})P(9/14)}{P(5/14)}$$

$$P(Sunny|Yes)$$

$$P(\frac{3}{9})$$

How many times weather
was sunny when Play
happened? = 3
Total Yes = 9, so,
denominator.

$$P(Yes|Sunny) = \frac{0.33 \times 0.64}{0.36} = 0.60$$
; High Probability

```
# Jesus is my Saviour!
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix
from sklearn import metrics
from sklearn.metrics import classification_report
```


- In [1]: # Jesus is my Saviour!
- In [2]: import pandas as pd
- In [3]: import numpy as np
- In [4]: import matplotlib.pyplot as plt
- In [5]: from sklearn.datasets import load_iris
- In [6]: from sklearn.model_selection import train_test_split
- In [7]: from sklearn.naive_bayes import GaussianNB
- In [8]: from sklearn.metrics import confusion_matrix
- In [9]: from sklearn import metrics
- In [10]: from sklearn.metrics import classification_report

Load the iris dataset
from sklearn.datasets import load_iris
iris = load_iris()

In [11]: # load the iris dataset

In [12]: from sklearn.datasets import load_iris

In [13]: iris = load_iris()

iris - Dictionary (6 elements)

Key	Туре	Size		Value
DESCR	str	1	iris_dataset:	
data	float64	(150, 4)	[[5.1 3.5 1.4 0.2] [4 9 3 1 4 9 2]	
feature_names	list	4	['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal	
filename	str	1	<pre>C:\Anaconda3\lib\site-packages\sklearn\datasets\data\iris.csv</pre>	
target	int32	(150,)	[0 0 0 2 2 2]	
target_names	str320	(3,)	ndarray object of numpy module	

```
# store the feature matrix (X) and response vector (y)
X = iris.data
y = iris.target

# splitting X and y into training and testing sets
from sklearn.model_selection import train_test_split
X_train, X_test,y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=1)
```



```
In [14]: # store the feature matrix (X) and response vector (y)
In [15]: X = iris.data
In [16]: y = iris.target
In [17]: # splitting X and y into training and testing sets
In [18]: from sklearn.model_selection import train_test_split
In [19]: X_train, X_test,y_train, y_test = train_test_split(X, y, test size=0.4, random state=1)
```



```
# training the model on training set
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(X_train, y_train)
```



```
In [20]: # training the model on training set
In [21]: from sklearn.naive_bayes import GaussianNB
In [22]: gnb = GaussianNB()
In [23]: gnb.fit(X_train, y_train)
Out[23]: GaussianNB(priors=None, var_smoothing=1e-09)
```

sklearn.naive_bayes.GaussianNB

class sklearn.naive_bayes. GaussianNB (priors=None, var_smoothing=1e-09)

[source]

Gaussian Naive Bayes (GaussianNB)

Can perform online updates to model parameters via **partial_fit** method. For details on algorithm used to update feature means and variance online, see Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque:

http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf

Read more in the User Guide.

Parameters: priors: array-like, shape (n_classes,)

Prior probabilities of the classes. If specified the priors are not adjusted according to the data.

var_smoothing: float, optional (default=1e-9)

Portion of the largest variance of all features that is added to variances for calculation stability.


```
# making predictions on the testing set
y_pred = gnb.predict(X_test)
y_pred
```

```
# comparing actual response values (y_test) with predicted response values (y_pred)
# by manual cross tabulation
pd.crosstab(y_test, y_pred, margins = True)
```



```
In [26]: # comparing actual response values (y_test) with predicted
response values (y_pred)
In [27]: # by manual cross tabulation
In [28]: pd.crosstab(y_test, y_pred, margins = True)
Out[28]:
col_0 0
               2 All
row_0
       19
                    19
          19
                   21
               19
                   20
A11
       19
           20
```

60

```
# by Making the confusion Matrix through sklearn
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm
```


calculating accuracy manually (19+19+19)/(19+19+19+1+2) # 0.95

```
In [28]: pd.crosstab(y_test, y_pred, margins = True)
Out[28]:
col 0
                2 All
row_0
0
      19
                    19
          19
                    21
               19
                    20
A11
               21
      19
          20
                    60
```



```
In [33]: # calculating accuracy manually
```

In [34]: (19+19+19)/(19+19+19+1+2) # 0.95

Out[34]: 0.95

```
# accuracy from sklearn
from sklearn import metrics
print("Gaussian Naive Bayes model accuracy(in %):", metrics.accuracy_score(y_test, y_pred)*100)
```



```
In [35]: # accuracy from sklearn
In [36]: from sklearn import metrics
In [37]: print("Gaussian Naive Bayes model accuracy(in %):",
metrics.accuracy_score(y_test, y_pred)*100)
Gaussian Naive Bayes model accuracy(in %): 95.0
```

```
# classification report
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
```

```
In [28]: pd.crosstab(y_test, y_pred, margins = True)
Out[28]:
col 0
        0
                2 All
row_0
       19
            0
                    19
           19
                    21
               19
                    20
A11
       19
           20
                    60
```

```
In [39]: from sklearn.metrics import classification_report
In [40]: print(classification_report(y_test, y_pred))
              precision
                           recall f1-score support
                   1.00
                             1.00
                                       1.00
                                                    19
                   0.95
                             0.90
                                       0.93
           1
                                                    21
                   0.90
                             0.95
                                       0.93
                                                    20
                                       0.95
    accuracy
                                                    60
                             0.95
                                       0.95
                                                    60
   macro avg
                   0.95
weighted avg
                   0.95
                             0.95
                                       0.95
                                                    60
```

In [38]: # classification report

+2teach is +2touch lives 4 ever