Кафедра дискретной математики МФТИ

Курс математической статистики

Игашов Илья, 593 групппа

Задание №9

Nº2. ¶

Пусть $X_i=\beta_1+i\beta_2+\epsilon_0+\cdots+\epsilon_i,\ i=0,1,\ldots,n$ — расстояния, которое проехал трамвай за i секунд по показанию датчика. Здесь β_1 — начальное расстояние, β_2 — скорость трамвая, ϵ_0 — ошибка начального показания датчика. Трамвай едет с постоянной скоростью, и через каждую секунду датчик фиксирует расстояние, которое проехал трамвай. Отсчет времени идет от предыдущего замера, причем отсчет происходит с ошибкой. Для $i=1,\ldots,n$ величина ϵ_i есть ошибка приращения расстояния, то есть то есть $\epsilon_i=\epsilon_i^t\beta_2$, где ϵ_i^t — ошибка отсчета времени. Все ошибки ϵ_i независимы и распределены по закону $N(0,\sigma^2)$. Сведите задачу к линейной модели и найдите оценки наименьших квадратов для начального расстояния β_1 и скорости β_2 , а также несмещенную оценку для σ^2 , из которой выразите оценку дисперсии отсчета времени. Данные взять из файла на диске. Сделайте выводы.

In [1]:

```
import numpy as np
from numpy import linalg
```

In [2]:

```
# Открываем и читаем файл.

f = open('Regression.csv', 'r')

text = f.read()

data = np.array(text.split('\n')[:-1]).astype(float)

N = len(data)
```

Вместо измерений $X=(X_0,\ldots,X_n)^T$ рассмотрим измерения $\hat{X}=(X_0,X_1-X_0,X_2-X_1,\ldots,X_n-X_{n-1})^T.$

Тогда
$$\hat{X} = (\beta_1 + \epsilon_0, \beta_2 + \epsilon_1, \dots, \beta_2 + \epsilon_n)^T = l + \epsilon$$
, где
$$\epsilon = (\epsilon_0, \dots, \epsilon_n)^T, \quad l = Z\theta, \quad \theta = (\beta_1, \beta_2)^T, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ \dots & \dots \\ 0 & 1 \end{pmatrix}.$$

Посчитаем оценку по методу наименьших квадратов для $\theta = (\beta_1, \beta_2)^T$:

$$\theta^* = (Z^T Z)^{-1} Z^T \hat{X}.$$

Посчитаем несмещенную оценку для σ^2 :

$$\sigma^{2*} = \frac{1}{m-k} \|\hat{X} - Z\theta^*\|^2$$
, где $m = n+1 = 1000$, $k = 2$.

Initial distance: 63.57 Velocity: 9.97 Error variance: 4.22

Поскольку для $i=1,\ldots,n$ величина ϵ_i есть ошибка приращения расстояния, то есть $\epsilon_i=\epsilon_i^t\beta_2$, где ϵ_i^t — ошибка отсчета времени, и $\epsilon_i\sim N(0,\sigma^2)$, то

$$\epsilon_i^t \sim N(0, \frac{\sigma^2}{\beta_2^2}),$$

и оценка дисперсии отсчета времени выражается как

$$\sigma_t^{2^*} = \frac{\sigma^{2^*}}{\beta_2^{*2}}.$$

In [4]:

```
# Оценка дисперсии отсчета времени:
sigma_t = sigma / (theta[1] ** 2)
print('Variance of time marking: %.2f' % sigma_t)
```

Variance of time marking: 0.04

Вывод

Для решения поставленной задачи мы свели ее к регрессионной модели. Мы нашли оценки начального расстояния β_1 и скорости трамвая β_2 по методу наименьших квадратов:

$$\beta_1^* = 63.57,$$

 $\beta_2^* = 9.97.$

Кроме того, мы оценили (несмещенные оценки) дисперсию ошибки приращения расстояния:

$$\sigma^{2^*} = 4.22$$

и дисперсию отсчета времени:

$$\sigma_t^{2*} = 0.04$$

в предположении, что все ошибки ϵ_i независимы и распределены по закону $N(0,\sigma^2)$.

Tn	Г 1	١.
T 11	L	