Transporte en nanoestructuras de Bi

Montserrat Navarro Espino

7/31/2023

Table of contents

Prefacio

Este es un sitio creado con Quarto y y publicado a través de GitHub Pages. En él se encuentran conceptos clave para el estudio del transporte electrónico en nanoestructuras de bismuto.

La elaboración de estas notas tiene como propósito brindar acceso a los resultados del trabajo de investigación desempeñado por la autora en el Programa de Maestría en Ciencias Químicas.

1 Introducción

2 Geometría de bismuto

2.1 Estructura cristalina de bismuto

2.1.1 Espacio Real

El bismuto (Bi) es un elemento químico cuyo arreglo cristalino consiste de una celda unitaria romboédrica que contiene dos átomos [?], cada uno de ellos con tres primeros vecinos y tres segundos vecinos [?], como se señala en la Fig. (RomboRealRec?) a).

Figure 2.1: a) Celda romboédrica de bismuto en el espacio real, con los vectores de red \mathbf{a}_n^r (n=1,2,3). b) Primera zona de Brillouin de la estructura romboédrica del Bi, con los vectores \mathbf{b}_n^r y los puntos de alta simetría (naranja).

La estructura romboédrica de bismuto se esquematiza en la Fig. (RomboRealRec-Bi?) (a), donde los vectores de la red en el espacio real son:

$$\mathbf{a}_1^r = \left(-\frac{1}{2}a, -\frac{\sqrt{3}}{6}a, \frac{1}{3}c \right) \qquad \quad \mathbf{a}_2^r = \left(\frac{1}{2}a, -\frac{\sqrt{3}}{6}a, \frac{1}{3}c \right) \qquad \quad \mathbf{a}_3^r = \left(0, -\frac{\sqrt{3}}{3}a, \frac{1}{3}c \right)$$

siendo a=4.5332 Å , c=11.7967 Å y $\alpha=57^{\circ}19'$ [?].

El grupo espacial de la estructura cristalina es $R\bar{3}m$ y su grupo puntual es el D_{3d} . Por lo tanto, las operaciones de simetría espacial que caracterizan este arreglo cristalino son [?]:

- la identidad (\hat{E}) ,
- la inversión (\hat{I}) ,
- las rotaciones de 120° $(\hat{C_3})$ respecto el eje z y 180° $(\hat{C_2})$ respecto el eje y y
- los planos de reflexión \mathcal{M}_a , \mathcal{M}_b y \mathcal{M}_c , perpendiculares al eje de rotación \hat{C}_2 .

2.1.2 Espacio recíproco

La primera zona de Brillouin (1ZB) para la celda romboédrica tiene la forma de una octaedro truncado, el cual se esquematiza en la Fig. @:RomboRealRec b). Los vectores de la red recíproca son:

$$\mathbf{b}_{1}^{r} = \left(-1, -\frac{\sqrt{3}}{3}, b\right) g \qquad \qquad \mathbf{b}_{2}^{r} = \left(1, -\frac{\sqrt{3}}{3}, b\right) g \qquad \qquad \mathbf{b}_{3}^{r} = \left(0, -2\frac{\sqrt{3}}{3}, b\right) g$$

donde b=a/c y g=1.3861 Å $^{-1}$. Las coordenadas relativas de algunos puntos de alta simetría en esta 1ZB son:

$$\begin{split} \Gamma &= (0,0,0) \\ \mathbf{K} &= \left[0, \left(\frac{3}{4} - \frac{1}{2}h\right), \left(\frac{1}{2}h + \frac{1}{4}\right)\right] \\ \mathbf{X} &= \left(0, \frac{1}{2}, \frac{1}{2}\right) \\ \mathbf{W} &= \left(h, 1 - h, \frac{1}{2}\right) \\ \mathbf{T} &= \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \\ \mathbf{L} &= \left(0, \frac{1}{2}, 0\right) \\ \Lambda &= (0,0,0) \end{split}$$

donde h = 0.2303 en el caso de bismuto [?].