

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Tarea 1

Variable Compleja - MAT2705 Fecha de Entrega: 2019-09-06

${\bf \acute{I}ndice}$

Problema 1	1
Problema 2	1
Problema 3	2
Problema 4	2
Problema 5	2
Problema 6	3
Problema 7	3

Problema 1:

- (a) Grafique la imagen bajo proyección estereográfica de los siguientes conjuntos
 - I. El hemisferio inferior: $\{(x,y,z)\in\mathbb{S}^2:z<0\}.$
 - II. $\{(x, y, z) \in \mathbb{S}^2 : \frac{3}{4} \le z \le 1\}.$
 - III. Un circulo de la forma $\{(\sqrt{1-z_0^2}\cos\theta,\sqrt{1-z_0^2}\sin\theta,z_0)\in\mathbb{S}^2:\theta\in[0,2\pi)\}$ con z_0 fijo.
 - IV. Un circulo de la forma $\{(\sqrt{1-z^2}\cos\theta_0, \sqrt{1-z^2}\sin\theta_0, z) \in \mathbb{S}^2 : z \in [-1, 1]\}$ con θ_0 fijo.
- (b) Demuestre que la inversión $\frac{1}{x}$ es equivalente a una rotación de la esfera en π radianes alrededor del eje x.

Solución problema 1:

Problema 2:

Encuentre mapeos conformes entre las siguientes regiones:

- (a) $\{z \in \mathbb{C} : |z| < 1\}$ y $\{z \in \mathbb{C} : |z| > 1\}$.
- (b) $\{r \exp(i\theta) \in \mathbb{C} : \theta \in (0, \frac{\pi}{n}), r \in \mathbb{R}\}\ y \ \mathbb{C}, \ \text{con } n \in \mathbb{N} \setminus \{0\}.$
- (c) $\{z \in \mathbb{C} : |z| > 1\}$ y $\{z \in \mathbb{C} : \Im(z) > 0\}$.
- (d) $\{z \in \mathbb{C} : \Re(z) > 0\}$ y $\{z \in \mathbb{C} : \Im(z) \in (-\frac{\pi}{2}, \frac{\pi}{2})\}.$
- (e) $\{z \in \mathbb{C} : |z| > 1\}$ y $\{z \in \mathbb{C} : \Im(z) \in (a, b)\}$

Solución problema 2:

- (a) Se recuerda que la inversión es un mapeo conforme, y que mapea las regiones pedidas.
- (b) Se recuerda que las funciones analíticas son mapeos conformes, se toma $f(x) = x^{n+1}$ se nota que cumple lo pedido.

(c)

Problema 3:

Sea $h:[0,1]\to\mathbb{C}$ continua y se define en $\mathbb{C}\setminus[0,1]$ la función

$$H(z) = \int_0^1 \frac{h(t)}{t - z} \, \mathrm{d}t.$$

Demuestre que H es analítica y calcule por definición su derivada.

Solución problema 3: Se nota que si para cada $z_0 \in \mathbb{C} \setminus [0,1]$, se tiene que

$$\lim_{z \to z_0} \left| \frac{H(z) - H(z_0)}{z - z_0} - \int_0^1 \frac{h(t)}{(t - z_0)^2} dt \right| = 0$$
 (1)

Entonces, H(z) es analítica. Luego, se nota que dado $z_0 \in \mathbb{C} \setminus [0,1]$, se tiene $0 < \inf_{t \in [0,1]} |t - z_0| = \gamma$. Dado esto, se tiene que si $|z - z_0| < \gamma/2$ entonces $|z - t| > \gamma/2$ para $t \in [0,1]$. Ahora desarrollando la siguiente expresión:

$$\left| \frac{H(z) - H(z_0)}{z - z_0} - \int_0^1 \frac{h(t)}{(t - z_0)^2} \, dt \right| = \left| \int_0^1 \frac{h(t)(t - z - t + z_0)}{(z - z_0)(t - z)(t - z_0)} - \int_0^1 \frac{h(t)}{(t - z_0)^2} \, dt \right|$$

$$= \left| \int_0^1 \frac{h(t)}{t - z_0} \cdot \left(\frac{1}{t - z} - \frac{1}{t - z_0} \right) \, dt \right|$$

$$= \left| \int_0^1 \frac{h(t)}{t - z_0} \cdot \left(\frac{z_0 - z}{(t - z)(t - z_0)} \right) \, dt \right|$$

$$\leq \int_0^1 \left| \frac{h(t)}{(t - z_0)^2} \cdot \frac{1}{t - z} \cdot (z - z_0) \right| \, dt$$

$$\leq \int_0^1 \left| \frac{h(t)}{(t - z_0)^2} \cdot \frac{2}{\gamma} \right| \, dt \cdot |z - z_0|$$

Con lo que claramente el límite en (1) es cero.

Problema 4:

Considere un dominio D y $f:D\to\mathbb{C}$ analítica. Se define $D^*=\{\overline{z}:z\in D\}$ y $g(z)=\overline{f(\overline{z})}$ para $z\in D^*$. Demuestre que g analítica y calcule su derivada.

Solución problema 4:

Problema 5:

Considere f = u + iv analítica. Demuestre que

(a)
$$|\nabla u| = |\nabla v| = |f'|$$

(b)
$$\langle \nabla u, \nabla v \rangle = 0$$

Solución problema 5:

Problema 6:

Sea $f: D \to \mathbb{C}$ inyectiva y analítica. Demuestre que

$$Area(f(D)) = \int \int_{D} |f'(z)|^2 dx dy$$

Solución problema 6:

Problema 7:

Decimos que una función $f:D\subset\mathbb{C}\to\mathbb{C}$ es armónica si $\Re(f)$ e $\Im(f)$ son armónicas. Demuestre que si h y zh son armónicas, entonces h es analítica.

Solución problema 7: Se recuerda que si una función f es armónica entonces $\Delta f=0$, o equivalentemente, $\sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}=0$. Sea h=u+iv una función armónica tal que zh también lo sea, entonces $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0$ y $\frac{\partial^2 v}{\partial x^2}+\frac{\partial^2 v}{\partial y^2}=0$, además se tiene lo siguiente:

$$\begin{split} 0 &= \frac{\partial^2 (ux - vy)}{\partial x^2} + \frac{\partial^2 (ux - vy)}{\partial y^2} \\ &= x \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial x} - y \frac{\partial^2 v}{\partial x^2} - y \frac{\partial^2 v}{\partial y^2} - \frac{\partial^2 v}{\partial y^2} - \frac{\partial v}{\partial y} + x \frac{\partial^2 u}{\partial y^2} \\ &= \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 v}{\partial y^2} + \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \end{split}$$

Similarmente:

$$0 = \frac{\partial^2 (uy + vx)}{\partial x^2} + \frac{\partial^2 (uy + vx)}{\partial y^2}$$
$$= y\frac{\partial^2 u}{\partial x^2} + x\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial x^2} + \frac{\partial v}{\partial x} + \frac{\partial^2 (uy)}{\partial y^2} + x\frac{\partial^2 v}{\partial y^2}$$