RFID MODULE

Mifare Reader / Writer

SL025M User Manual

Version 1.5 **Sept. 2013 StrongLink**

CONTENT

1. MAIN FEATURES	. 3
2. PINNING INFORMATION	. 4
3. BAUD RATE SETTING	. 5
4. COMMUNICATION PROTOCOL	. 5
4-1. Communication Setting	. 5
4-2. Communication Format	. 5
4-3. Command Overview	. 6
4-4. Command List	. 7
4-4-1. Select Mifare card	. 7
4-4-2. Login to a sector	
4-4-3. Download Key into SL025	. 7
4-4-4. Login sector via stored key	. 8
4-4-5. Read a data block	. 8
4-4-6. Write a data block	. 8
4-4-7. Read a value block	. 8
4-4-8. Initialize a value block	. 9
4-4-9. Write master key (key A)	. 9
4-4-10. Increment value	. 9
4-4-11. Decrement value	10
4-4-12. Copy value	
4-4-13. Read a data page (UltraLight)	10
4-4-14. Write a data Page (UltraLight)	
4-4-15. Manage Red Led	11
4-4-16. Get firmware version	11

1. MAIN FEATURES

- Tags supported: Mifare 1k, Mifare 4k, Mifare UltraLight and NFC NTAG203
- Auto-detecting tag, Built-in antenna
- UART interface on COMS level, baud rate 9,600 ~ 115,200 bps
- 4.4 ~ 12.0VDC power supply
- Work current less than 80mA
- Operating distance: Up to 70mm, depending on tag
- Storage temperature: $-40 \, ^{\circ}\text{C} \sim +85 \, ^{\circ}\text{C}$
- Operating temperature: -25 °C ~ +70 °C
- Dimension: 80×55 mm
- Two LEDs, green led is auto light when tag in detection range, red led is controlled by host
- The OUT pin at low level indicates tag in detective range, and high level indicating tag out

4 . PINNING INFORMATION

HOLE Dia. = 3.0mm , \times 2

PIN	SYMBOL	TYPE	DESCRIPTION
			Tag detect signal
1	TagSta	Output	low level indicating tag in detection range
			high level indicating tag out
2	TXD	Output	Serial output port
3	RXD	Input	Serial input port
4	VCC	PWR	Power Supply
5	GND	PWR	Ground

4-□. BAUD RATE SETTING

Two 820 ohm resistances R6 & R7 are used for setting baud rate as follows sheet

	R6	R7	Baud rate bps
Assembled	no	no	9,600
	yes	no	19,200
	no	yes	57,600
	NO.C	NO.	115,200
	yes	yes	(default)

4. COMMUNICATION PROTOCOL

4-1. Communication Setting

The communication protocol is byte oriented. Both sending and receiving bytes are in hexadecimal format. The communication parameters are as follows

Baud rate: 9,600 ~ 115,200 bps

Data: 8 bits Stop: 1 bit Parity: None Flow control: None

4-2. Communication Format

Host to SL025:

TIOSE TO SE	-c.				
Preamble	Len	Command	Data	Checksum	
Preamble:	1 byte	e equal to <mark>0xE</mark>	8 <mark>A</mark>		_
Len:	1 byte	e indicating th	e numb	er of bytes f <mark>r</mark>	om Co
Command:	1 byte	e Command c	ode, see	e Table 3	
Data:	Varial	ble length dep	ends or	n the comman	ıd type
Checksum:	1 byte	e XOR of all t	he byte	s from Pream	ıble to

SL025 to Host:							
Preamble	Len	Command	Status	Data	Checksum		
Preamble:	1 byte	1 byte equal to 0xBD					
Len:	1 byte	1 byte indicating the number of bytes from Command to Checksum					
Command:	1 byte	1 byte Command code, see Table 3					
Status:	1 byte	1 byte Command status, see Table 4					
Data:	Variable length depends on the command type.						
Checksum:	1 byte	e XOR of all t	the bytes	from P	reamble to Dat	t <mark>a</mark>	

4-3. Command Overview

Table 3

Command	Description
0x01	Select Mifare card
0x02	Login to a sector
0x03	Read a data block
0x04	Write a data block
0x05	Read a value block
0x06	Initialize a value block
0x07	Write master key (key A)
0x08	Increment value
0x09	Decrement value
0x0A	Copy value
0x10	Read a data page (UltraLight & NTAG203)
0x11	Write a data page (UltraLight & NTAG203)
0x12	Download Key
0x13	Login sector via stored Key
0x40	Manage Red Led
0xF0	Get firmware version

Status Overview

Table 4

Status	Description
0x00	Operation succeed
0x01	No tag
0x02	Login succeed
0x03	Login fail
0x04	Read fail
0x05	Write fail
0x06	Unable to read after write
0x08	Address overflow
0x09	Download Key fail
0x0D	Not authenticate
0x0E	Not a value block
0x0F	Invalid len of command format
0xF0	Checksum error
0xF1	Command code error

4-4. Command List

4-4-1. Select Mifare card

0xBA Len	0x01	Checksum
----------	------	----------

Response:

0xBD Len 0x01 Status UID Type Checksum

Status: 0x00: Operation succeed

0x01: No tag

0xF0: Checksum error

UID: The uniquely serial number of Mifare card

Type: 0x01: Mifare 1k, 4 byte UID

0x02: Mifare 1k, 7 byte UID [1]

0x03: Mifare UltraLight or NATG203^[2], 7 byte UID

0x04: Mifare 4k, 4 byte UID 0x05: Mifare 4k, 7 byte UID [1] 0x06: Mifare DesFire, 7 byte UID

0x0A: Other

4-4-2. Login to a sector

- 4							
	0xBA	Len	0x02	Sector	Type	Key	Checksum

Sector: Sector need to login, 0x00 - 0x27

Type: Key type (0xAA: authenticate with KeyA, 0xBB: authenticate with KeyB)

Key: Authenticate key, 6 bytes

Response:

0xBD Len 0x02 Status Checksum

Status: 0x02: Login succeed

0x01: No tag 0x03: Login fail

0x08: Address overflow 0xF0: Checksum error

4-4-3. Download Key into SL025

0xBA Len 0x12 Sector Type Key Checksum

Sector: $0x00 - \overline{0x27}$

Type: Key type (0xAA: KeyA, 0xBB: KeyB)

Key: 6 bytes, stored into SL025

Response:

0xBD Len 0x12 Status Checksum

Status: 0x00: Operation succeed

0x08: Address overflow 0x09: Download fail 0xF0: Checksum error

4-4-4. Login sector via stored key

 0xBA
 Len
 0x13
 Sector
 Type
 Checksum

Sector: Sector need to login, 0x00 - 0x27Type: Key type (0xAA: KeyA, 0xBB: KeyB)

Response:

0xBD Len 0x13 Status Checksum

Status: 0x02: Login succeed 0x03: Login fail

0x08: Address overflow 0xF0: Checksum error

4-4-5. Read a data block

0xBA Ler	0x03	Block	Checksum
----------	------	-------	----------

Block: The absolute address of block to be read, 1 byte

Response:

0xBD Len 0x03 Status Data Checksum

Status: 0x00: Operation succeed

0x01: No tag 0x04: Read fail

0x0D: Not authenticate 0xF0: Checksum error

Data: Block data returned if operation succeeds, 16 bytes.

4-4-6. Write a data block

0xBA	Len	0x04	Block	Data	Checksum

Block: The absolute address of block to be written, 1 byte.

Data: The data to write, 16 bytes.

Response:

0xBD Len 0x04 Status Data Checksum

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate 0xF0: Checksum error

Data: Block data written if operation succeeds, 16 bytes.

4-4-7. Read a value block

0xBA Len 0x05	Block Checksum
---------------	----------------

Block: The absolute address of block to be read, 1 byte.

Response:

0xBD	Len	0x05	Status	Value	Checksum

Status: 0x00: Operation succeed

0x01: No tag 0x04: Read fail

0x0D: Not authenticate 0x0E: Not a value block 0xF0: Checksum error

Value: Value returned if the operation succeeds, 4 bytes.

4-4-8. Initialize a value block

OvDΛ	Lan	0206	Dlook	Value	Checksum
UXDA	Len	UXUU	DIOCK	value	Checksum

Block: The absolute address of block to be initialized, 1 byte.

Value: The value to be written, 4 bytes.

Response:

respon	isc.						
0xBD	Len	0x06	Status	Value	Checksum		
Status:	0x00:	Operat	tion succe	ed			
	0x01:	No tag	5				
	0x05:	Write	Write fail				
	0x06:	Unable	e to read a	after write	2		
	0x0D:	Not au	thenticate	2			
	0xF0:	Check	sum error				

Value: Value written if the operation succeeds, 4 bytes.

4-4-9. Write master key (key A)

0xBA	Len	0x07	Sector	Key	Checksum
~	7771			•	0 00 0 07

Sector: The sector number to be written, 0x00 - 0x27

Key: Authentication key, 6 bytes

Response:

0xBD	Len	0x07	Status	Key	Checksum		
Status:	0x00:	Operation succeed					
	0x01:	No tag	5				
	0x05:	Write	Write fail				
	0x08:	Addres	Address overflow				
	0x0D:	Not au	thenticate	2			
	0xF0:	Check	sum error	•			

Key: Authentication key written if the operation succeeds, 6 bytes.

4-4-10. Increment value

0xBA	Len	0x08	Block	Value	Checksum
D1 1	7731 1	1 .	1.1 (.1	1 1 . 1	. 1.1

Block: The absolute address of block to be increased, 1 byte.

Value: The value to be increased by, 4 bytes.

Response:

0xBD	Len	0x08	Status	Value	Checksum

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate 0x0E: Not a value block 0xF0: Checksum error

Value: The value after increment if the operation succeeds, 4 bytes

4-4-11. Decrement value

0xBA	Len	0x09	Block	Value	Checksum
------	-----	------	-------	-------	----------

Block: The absolute address of block to be decreased, 1 byte

Value: The value to be decreased by, 4 bytes

Response:

0xBD	Len	0x09	Status	Value	Checksum

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate 0x0E: Not a value block 0xF0: Checksum error

Value: The value after decrement if the operation succeeds, 4 bytes

4-4-12. Copy value

0xBA Len 0x0A	Source	Destination	Checksum
---------------	--------	-------------	----------

Source: The source block copy from, 1 byte Destination: The destination copy to, 1 byte

Attention: The source and destination must in the same sector

Response:

0xBD	Len	0x0A	Status	Value	Checksum		
Status:	0x00:	Operat	tion succe	ed			
	0x01:	No tag	<u>, </u>				
	0x05:	Write	Write fail				
	0x06:	Unable	Unable to read after write				
	0x0D:	Not au	Not authenticate				
	0x0E:	Not a	value bloc	k (Source	e)		
	0xF0:	Check	sum error				

Value: The value after copy if the operation succeeds, 4 bytes

4-4-13. Read a data page (UltraLight & NTAG203)

0xBA	Len	0x10	Page	Che	ecksum	
Page:	The na	ge numh	er to be r	ead	$0 \times 00 = 0$	x0F

Response:

0xBD	Len	0x10	Status	Data	Checksum
Status: 0x00: Operation succeed					

Status: Ux00: Operation succeed

0x01: No tag 0x04: Read fail

0x08: Address overflow 0xF0: Checksum error

Data: Block data returned if operation succeeds, 4 bytes.

4-4-14. Write a data Page (UltraLight & NTAG203)

0xBA	Len	0x11	Page	Data	Checksum		
Page.	Page: The page number to be written $0x00 = 0x0F$						

Page: The page number to be written, 0x00 - 0x0FData: The data to write, 4 bytes.

Response:

0xBD Len 0x11 Status Data Checksum

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x08: Address overflow 0xF0: Checksum error

Data: Page data written if operation succeeds, 4 bytes.

4-4-15. Manage Red Led

0xBA Len 0x40 Code Checksum

Code: 0 command red led turn off, other red led turn on, 1 byte

Return:

0xBD Len 0x40 Status Checksum

Status: 0x00: Operation succeed 0xF0: Checksum error

4-4-16. Get firmware version

0xBA Len 0xF0 Checksum

Response: [3]

0xBD Len 0xF0 Status Data Checksum

Status: 0x00: Operation success

0xF0: Checksum error

Data: firmware version.

Remark

^[1] In order to support 7 byte UID Mifare class, the firmware of SL025 has been updated to Ver1.2 in Mar 2011.

And older firmware version (such as Ver1.0, 1.1) only supports 4 byte UID. Please refer to NXP <u>Customer Letter UID</u> for detailed information of 4 byte & 7 byte UID of Mifare products.

^[2] To support NATG203, the firmware of SL025 has been updated to Ver1.6 in May 2012. The older firmware version only supports reading/writing data page address less than 16.

[3] One sample of SL025 response

		<u> </u>				
	Preamble	Len	Command	Status	Data	Checksum
					(Firmware version)	
HEX	BD	0C	F0	00	53 4C 30 32 35 2D	69
					312E 32	
ASCII					"SL025-1.2"	