

Comparison between Suitable Priors for Additive Bayesian Networks

Gilles Kratzer¹, Reinhard Furrer^{1,2}, Marta Pittavino³

¹Department of Mathematics, University of Zurich (Switzerland)

²Department of Computational Science, University of Zurich (Switzerland)

³Research Center for Statistics, Geneva School of Economy and Management, University of Geneva (Switzerland)

Contact: gilles.kratzer@math.uzh.ch

Motivation

- ABN methodology¹ extends the classical generalized linear model (GLM) framework to multiple dependent variables
- The key perspective of ABN is to extract the conditional independence information from an observational dataset
- ABN is a suitable methodology to mastermind complex and messy data in an exploratory analysis

Summary

- ABN is a mixture between machine learning techniques and a statistical approach
- ABN is distributed as an R package https://CRAN.R-project.org/package=abn
- Gaussian, Binomial and Poisson distributions are implemented in abn
- Bayesian based scoring function
- Weakly informative priors
- Exact and Heuristic search algorithm

Results

- Perform structure discovery
- ABN modelling empirically identifies associations in complex and high dimensional data as a machine learning technique

Future Work

Results

Implementation of informative priors suitable for ABN:

Diaconis-Ylvisaker conjugate priors

How to fit an Additive Bayesian Network from data with the search-and-score method²?

Why priors matter in ABN¹?

Data separation and data sparsity

- Exclude cases causing separation
- Recast the model:
 - **Remove** predictors
 - Collapse predictor categories
 - Bin predictors values
- Change a few randomly chosen observations
- Fit a hidden logistic regression model
- Use priors to drive the posterior when marginal likelihood is used as a proxy for BN relevance

Lyndley paradox

Bayesian model selection with nearly uninformative parameter priors tends to select simpler models regardless of the data

Simulation study

- Simulate *many* different DAGs controlling for network density
- Generate observations from the simulated DAGs using RNG
- Fit ABN using different informative/weakly informative priors³
- Compute DAGs metrics

Data separation Percentage of arcs retrieved (80% connected BN) 1.00 -0.75 -TPR.WI FPR.WI 🚞 TPR.ST FPR.ST 0.25 expit(5) = 0.990.00 *50 BN, n* = *1000*

Sample size

Lyndley paradox

100

Student-t (ST) \sim Cauchy(0, 2.5) Weakly informative (WI) $\sim \mathcal{N}(0, 1000)$ Strongly informative (SI) $\sim \mathcal{N}(\theta_0, 0.1)$

10000

References

- Lewis, F. I. et al. "Structure discovery in Bayesian networks: An analytical tool for analysing complex animal health data", Preventive Veterinary Medicine 100.2 (2011): 109-115
- 2. Koivisto, M. et al.. "Exact Bayesian structure discovery in Bayesian networks" Journal of Machine Learning Research, (2004) 549-573
- 3. Gelman, A, et al. "A weakly informative default prior distribution for logistic and other regression models." The Annals of Applied Statistics 2.4 (2008): 1360-1383

