Algebra Lineal

Nicholas Mc-Donnell

 $2 {\rm do~semestre}~2017$

Índice general

1.	\mathbf{Esp}	Espacios Vectoriales		
	1.1.	Subesp	pacios generados	5
			Combinaciones lineales	
	1.2. Transformaciones lineales		ormaciones lineales	7
		1.2.1.	Algebra de Transformaciones Lineales	10
		1.2.2.	Matriz representante	12
		1.2.3.	Composición y Productos	13
		1.2.4.	Invertibilidad	14
	1.3.	Isomor	fismos	16
		1.3.1.	Matrices representantes	18
		1.3.2.	Cambios de Base:	18
	1.4.	Produc	etos de Espacios Vectoriales	19
		1.4.1.	Productos y Sumas directas	20
2.	. Parte II			23
	2.1.	Polino	mios	23
		2.1.1.	Algoritmo de la división	23
			Raíces de Polinomios	
	2.2.		pacios invariantes, y valores y vectores propios	
	2.3.	_	es triangulares superiores	

 $\acute{\text{INDICE GENERAL}}$

Capítulo 1

Espacios Vectoriales

1.1. Subespacios generados

1.1.1. Combinaciones lineales

Terorema 1.1.1 (*). Sea V espacio vectorial generado por un conjunto finito m de vectores. Entonces cualquier

Demostración. Sean $u_1, u_2, ..., u_n \in V$ con n > m. Por contradicción, suponiendo que son linealmente independientes.

Sean $\langle v_1, ..., v_m \rangle = V$ (por hipótesis)

$$\implies u_1 = \sum_{i=1}^m \lambda_i^{(1)} v_i$$

Claramente $(\lambda_1^{(1)},...,\lambda_m^{(1)}) \neq 0$ (de lo contrario $u_1=0$) Sin perder generalidad, $\lambda_1^{(1)} \neq 0$ y por el Lema:

$$< u_1, v_2, ..., v_m > = V$$

Ahora, existan $(\lambda_1^{(2)},...,\lambda_m^{(2)}\neq(0,...,0)$ tales que:

$$u_2 = \lambda_1^{(2)} u_1 + \sum_{i=2}^m \lambda_i^{(2)} v_i$$

Más. aun, $(\lambda_2^{(2)},...,\lambda_m^{(2)}\neq(0,...,0)$

De lo contrario:

$$u_2 = \lambda_1^{(2)} u_1 0 = \lambda_1^{(2)} u_1 - u_2 \rightarrow \leftarrow (u_1, ..., u_n \text{ son linealmente independientes})$$

En conclusión, sin perdida de generalidad $\lambda_2^{(2)} \neq 0$

Por el Lema:

$$< u_1, u_2, v_3..., v_m > = V$$

Iterando el argumento, se tiene que:

$$< u_1, ..., u_m > = V$$

Notemos que $u_{m+1} \in \langle u_1, ..., u_m \rangle$

$$0 \neq u_{m+1} = \sum_{i=1}^{m} \mu_i u_i \to \leftarrow$$

Definición 1.1.1 (Base, Dimensión finita). Una base B de un espacio vectorial es un conjunto $B \subseteq V$ tal que:

1. B es linealmente independiente

2. < B > = V

Un espacio vectorial V se dice finito-dimensional si existe un conjunto $S \subseteq V, ||S|| < \infty$ tal que $\langle S \rangle = V$.

Corolario. Si V es finito-dimensional, todas las bases de V son finitas y tienen la misma cardinalidad.

Demostración. Sean B_1 y B_2 bases de V.

Por Teo (*), $||B_1||, ||B_2|| \le m$, donde m es el tamaño de S tal que $\langle S \rangle = V$ y $||S|| < \infty$.

Como B_1 es base, $\langle B_1 \rangle = V$, y como B_2 es linealmente independiente:

$$Teo(*) \implies ||B_2|| \le ||B_1||$$

Como B_2 es base.

Definición 1.1.2 (Dimensión). Si V es un espacio vectorial finito-dimensional definimos su dimensión, dim V, como el cardinal de una base cualquiera de V. Si V no es finito-dimensional $dim V = +\infty$

Ejemplos:

1.
$$V = Sim^2(\mathbb{R}) = \{ A \in \mathbb{R}^{2 \times 2} : A = A^T \}$$

abc

2.
$$\dim(\mathbb{R}^{n\times n}) = n^2$$

3.
$$\dim(Antisim^m(\mathbb{R})) = \frac{n \cdot (n-1)}{2} \text{ y } \dim(Sim^m(\mathbb{R})) = \frac{n \cdot (n+1)}{2}$$

4.
$$P_n(\mathbb{C})$$

 $\{1, x, x^2, ..., x^n\}$ es base

a)
$$< \{1, x, x^2, ..., x^n\} >= P_n(\mathbb{C})$$

 $p \in P_n(\mathbb{C})$
 $\implies p(x) = a_0 \cdot 1 + a_1 \cdot x + ... + a_n x^n \in < \{1, x, x^2, ..., x^n\} >$

b) $\{1, x, ..., x^n\}$ es linealmente independiente. Por contradicción supongamos $(a_0, a_1, ..., a_n) \neq (0, 0, ..., 0)$

$$0 = a_0 \cdot 1 + a_1 \cdot x + \dots + a_n \cdot x^n$$
 Con igualdad de funciones.

$$\iff (\forall x \in \mathbb{C})0 = a_0 \cdot 1 + a_1 \cdot x + \dots + a_n \cdot x^n$$

Recuerdo (TFA): Todo polinomio complejo de grado ≥ 1 posee una ra $\tilde{A}z$ compleja.

$$\implies p(x) = a_0 \cdot 1 + a_1 \cdot x + \dots + a_n \cdot x^n = (x - z_1) \cdot a_0' \cdot 1 + a_1' \cdot x + \dots + a_{n-1}' \cdot x^{n-1}$$

$$\implies p(x) = (x - z_1) \cdot (x - z_2) \cdot ... (x - z_k) \cdot A \text{ donde } k = gr(p), y A \neq 0.$$

Tomando $z' \neq z_1, z_2, ..., z_k$, tenemos: $0 = (z' - z_1) \cdot (z' - z_2) \cdot ... (z' - z_k) \cdot A$ Pero multiplicar cosas distintas de 0 no da 0.

 $\rightarrow \leftarrow$

$$\dim(P_n(\mathbb{C})) = n+1$$

Observación 1.1.1. $\{0\}, \dim\{0\} = 0$, notando que base es \emptyset , tenemos que $\emptyset > = \{0\}$

Lema 1.1.2. Sea $S \subseteq S = \{v_1, ..., v_n\}$ conjunto linealmente independiente. $v \notin \{v_1, ..., v_n\} \implies \{v, v_1, ..., v_n\}$ es linealmente independiente.

Demostración. Ejercicio

Terorema 1.1.3. Sea V espacio vectorial finito dimensional, entonces:

- 1. Todo conjunto linealmente extiende a una base
- 2. Todo conjunto generado contiene una base

Todo espacio vectorial $V \neq \{0\}$ finito dimensional posee una base.

Demostración. a) Sea $v \in V \setminus \{0\}$. Entonces $\{V\}$ es linealmente independiente.

Por Teo, estamos listos.

Dem(Teo):

V es finito dimensional $\implies \exists \{v_1,...,v_n\}$ que genera V.

Sea $S = \{v_1, ..., v_n\}$ conjunto linealmente independente.

Dos casos:

- a) Si $\langle S \rangle = V$, entonces S es base
- b) Si $< S > \subset V$, entonces existe $v \notin < S >$, y opr el Lema, $S \cup \{V\}$ es linealmente independiente.

Inductivamente, o bien eventualmente 1, o iteramos 2.

Sin embargo, 2 no puede ocurrir infinitas veces.

 $\text{Teo}(*) \Longrightarrow \text{todo conjunto linealmente independiente posee cardinalidad} \leq n.$

b) Sea S, tal que $\langle S \rangle = V$.

Consideremos, $d = \max\{|S'| : S' \subseteq S, S' \text{ es linealmente independiente}\}$

Notemos que $d \le n < +\infty$, por el Teo(*).

Como el máximo se alcanza, existe S' tal que |S'| = d y S' es linealmente independiente.

Por contradicción, supongamos que S' no es base.

$$\langle S' \rangle \subset V = \langle S \rangle$$

Luego, $S \setminus \langle S' \rangle \neq \emptyset$. De lo contrario $\langle S \rangle \setminus \langle S' \rangle \neq \emptyset$

$$\implies S \subseteq < S' > \implies < S > \subset < S' > \implies < S' > = V$$

Finalmente, existe $v \in S \setminus S' >$, y por el Lema, $S' \cup \{v\}$ es linealmente independiente y $|S' \cup \{v\}| = d + 1$

$$\rightarrow \leftarrow$$

Corolario. Sea $W \subset V$ subespacio propio $(W \neq V)$ con V finito dimensional. Entonces, dim $W < \dim V$

Demostración. • Si $\dim W = 0 \implies \dim W = 0 < \dim V$.

• Si dim $W \ge 1$ entonces, por el corolario, W tiene una base.

$$B_W = \{w_1, ..., w_m\}$$
 es base de W

Como W es subsepacio propio, existe $v \in V \setminus \langle B_W \rangle$

 $\implies B_W \cup \{v\}$ es linealmente independiente y $\subset V$.

Por Teo. a), $B_W \cup \{v\}$ se extiende cin una base $B_V, |B_V| \ge |B_W| + 1$.

$$\dim W = |B_W| < |B_W| + 1 < |B_V| = \dim V$$

Proposición 1.1.4. Sean U, W subespacios vectoriales de un espacio vectorial finito dimensional V. Entonces:

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

Demostración. Si $U \cap W = \{0\}$, trivial Si $U \cap W \neq \{0\}$, entonces sea $B_{U \cap W}$ base de $U \cap W$.

$$B_{U\cap W} = \{v_1, ... v_m\}$$

Base de U: Sea $B_U = \{v_1, ..., v_m, u_1, ..., u_p\}$

Base de W: Sea $B_W = \{v_1, ... v_m, w_1, ..., w_r\}$

Ambos existen por Teo.a).

Afirmación: $B_U \cap B_W = \{v_1, ..., v_m, u_1, ..., u_p, w_1, ..., w_r\}$ es base de U + W.

1.
$$\langle B_U \cap B_W \rangle = U + W$$

 $v \in u + w, u \in U, w \in W$

$$\implies v = \sum_{i=1}^{p} \lambda_i u_i + \sum_{j=1}^{m} \alpha_j v_j + \sum_{k=1}^{r} \delta_k w_k + \sum_{j=1}^{m} \beta_j v_j \in \langle B_U \cup B_W \rangle$$

2. $B_U \cup B_W$ es linealmente independiente:

$$0 = \sum_{i=1}^{m} \lambda_i v_i + \sum_{j=1}^{r} \mu_j w_j + \sum_{k=1}^{p} \nu_k u_k$$

$$-\sum_{k=1}^{p} \nu_k u_k = \sum_{i=1}^{m} \lambda_i v_i + \sum_{j=1}^{r} \mu_j w_j \in U \cap W$$

$$\implies 0 = \sum_{i=1}^{m} \lambda_i v_i + \sum_{j=1}^{r} \mu_j w_j \implies \nu_k, \lambda_i = 0 \,\forall k, i$$

$$\dim(U + W) = \dim U + \dim W - \dim(U \cap W)$$

$$\dim(U \cap W) = |b_{U \cap W}|$$

$$\dim(U \cap W) = |B_U|$$

$$\dim W = |B_W|$$

$$\dim(U + W) = |B_U \cup B_W|$$

1.2. Transformaciones lineales

Definición 1.2.1 (Transformación lineal). Sean V y W espacios vectoriales sobre un cuerpo común \mathbb{F} . Una función $T:V\to W$ es transformación lineal si

$$T(\lambda u + v) = \lambda T(u) + T(v) \quad \forall u, v \in V \forall \lambda \in \mathbb{F}$$

Ejemplos:

1. $V=\mathbb{F}^n, W=\mathbb{F}^m, T:\mathbb{F}^n\to\mathbb{F}^m$ y $A\in\mathbb{F}^{m\times n}$ $v\mapsto Av$ T es una transformación lineal

2.
$$V=W=C^{\infty}(\mathbb{R}=\{f:\mathbb{R}\to\mathbb{R}:f\text{ es infinitamente diferenciable}\}$$

$$V=C^{1}(\mathbb{R}),W=C^{0}(\mathbb{R})$$

$$T:V\to W$$

$$f\mapsto \frac{\mathrm{d}f}{\mathrm{d}x}$$

Por álgebra de funciones diferenciables si $f, g \in V$ y $\lambda \in \mathbb{R}$

$$\frac{\mathrm{d}(\lambda f + g)}{\mathrm{d}x} = \lambda \frac{\mathrm{d}f}{\mathrm{d}x} + \frac{\mathrm{d}g}{\mathrm{d}x}$$

$$T(\lambda u + v) = \lambda T(u) + T(v)$$

3. $\mathbb{R}[x]$ Es un espacio vectorial

$$T: \mathbb{R}[x] \to \mathbb{R}[x]$$
$$p \mapsto \frac{\mathrm{d}p}{\mathrm{d}x}$$

4.
$$V = C^0([0,1]), W = \mathbb{R}$$

 $T: V \to W$
 $f \to \mapsto \int_0^1 f(x) dx$

Terorema 1.2.1. Sea V un espacio finito dimensional y $\{v_1, ..., v_n\}$ es base de V. Sea W un espacio vectorial y consideramos vectores $w_1, ... w_n \in W$ $Entonces \exists !T : V \to W : T(v_i) = w_i \forall i = 1, ..., n$

Demostración. • Existencia: Si $v \in V$ entonces:

$$(*) v = \sum_{i=1}^{n} \lambda_i v_i \quad \exists \lambda_i$$

Definimos:

$$T(v) = \sum_{i=1}^{n} \lambda_i T(v_i)$$

 $T:V\to W$ es una función porque $\forall v\in V$ la descomposición (*) es única. Además, es lineal. Si $v,u\in V$ y $\lambda\in\mathbb{F}$

$$v = \sum_{i} \lambda_{i} v_{i}$$

$$u = \sum_{i} \mu_{i} v_{i}$$

$$T(\lambda v + u) = T(\sum_{i} (\lambda \lambda_{i} + \mu_{i}) v_{i})$$

$$T(\lambda v + u) = \sum_{i} (\lambda \lambda_i + \mu_i) T(v_i)$$
$$T(\lambda v + u) = \lambda \sum_{i} \lambda_i T(v_i) + \sum_{i} \mu_i T(v_i)$$
$$T(\lambda v + u) = \lambda T(v) + T(u)$$

• Unicidad: Sean T, T' transformaciones lineales tales que:

$$T(v_i) = T'(v_i) = w_i$$

Sea $v \in V$, entonces:

$$v = \sum_{i=1}^{n} \lambda_i v_i \quad \exists \lambda_i$$

$$T(v) = \sum_{i=1}^{n} \lambda_i T(v_i) = \sum_{i=1}^{n} \lambda T'(v_i)$$

$$T(v) = T'(v) \implies T = T'$$

Propiedades:

Si $T:V\to W$ transformaciones lineales, entonces:

- 1. T(0) = 0
- 2. $T(\sum_{i=1}^{n} \lambda_i T(v_i))$

Demostraci'on.

La importancia de este teorema se relaciona con el hecho de poder definir transformaciones lineales sólo a través de como actuan sobre una base. Esto se relaciona con la nocion de matriz representante.

Definición 1.2.2. Si $T: V \to W$ transformación lineal, definimos:

- Núcleo(Kernel): $\ker(T) = \{v \in V : T(v) = 0\}$, subespacio vectorial de V
- Imagen(Rango): $T(V) = \{w \in W : \exists v \in V \ T(v) = w\}$, subespacio vectorial de W

Terorema 1.2.2 (Núcleo-Imagen). Sean V, W espacios vectoriales sobre \mathbb{F} y $T: V \to W$ transformación lineal. Entonces, si V es finito dimensional:

$$\dim(V) = \dim(\ker(T)) + \dim(T(V))$$

Demostraci'on. Como ker T es subespacio vectorial de V entonces es finito dimensional y por ende posee una base:

$$\{v_1, ..., v_k\}$$
 es base de ker T

Por un teorema podemos extender a una base de V

 $\{v_1, ..., v_k, v_{k+1}, ..., v_u\}$ es base de V

Sea ahora $w \in \Im(T) \implies w = T(v)$

Entonces,

$$w = T(v) = T(\sum_{i=1}^{n} \exists \lambda_i \in \mathbb{F}$$

$$w = \sum_{i=1}^{n} +i = k + 1\lambda_i T(v_i)$$

$$\in <\{T(v_{k+1}),...,T(v_n)\}>$$

Queremos probar ahora que $(T(v_i))_{i=k+1}^n$ son linealmente independiente. Supongamos $\exists \lambda_{k+1}, ..., \lambda_n$ tal que:

$$\sum_{i=k+1}^{n} \lambda_i T(v_I) = 0$$

$$T(\sum_{i=k+1}^{n} \lambda_i v_i) = 0$$

$$\Longrightarrow \in Ker(T)$$

 $\exists \lambda_1, ..., \lambda_k \text{ tal que}$

$$\sum_{i=k+1}^{n} (-\lambda_i)v_i + \sum_{j=1}^{k} \lambda_j v_j = 0$$

Como $\{v_1, ..., v_n\}$ son linealmente independientes tenemos que:

$$\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$$

Finalmente:

$$\dim V = n, \dim \ker T = k$$

$$\dim \Im T = n - k$$

1.2.1. Algebra de Transformaciones Lineales

Def[Espacio de transformaciones lineales]:

Sean V y W espacios vectoriales sobre \mathbb{F} . Definimos

$$\mathcal{L}(V, W) = \{T : V \to W : T \text{ es transformación lineal}\}$$

Dadas $T_1, T_2 \in \mathcal{L}(V, W)$ y $\lambda \in \mathbb{F}$, definimos

$$T_1 + T_2 : V \to W$$

 $v \mapsto T_1 v + T_2 v$
 $\lambda T_1 : V \to W$
 $v \mapsto \lambda T_1 v$

Teorema

 $\mathcal{L}(V,W)$ dotado de + y · es un espacio vectorial sobre \mathbb{F}

Dem: Primero probar que $T_1 + T_2 \in \mathcal{L}(V, W)$ y $\lambda T_1 \in \mathcal{L}(V, W)$

 $T_1 + T_2$ es transformación lineal.

$$(T_1 + T_2)(\lambda v + w) = \lambda (T_1 + T_2)(v) + (T_1 + T_2)(w) (T_1 + T_2)(\lambda v + w) = T_1(\lambda v + w) + T_2(\lambda v + w)$$

 $(T_1 + T_2)(\lambda v + w) = \lambda (T_1 + T_2)(v) + (T_1 + T_2)(w)$ Similarmente:

$$(\lambda T_1)(\mu v + w) = \mu(\lambda T_1)(v) + (\lambda T_1)(w)$$

Y el resto de las propiedades se dejan propuestas como ejercicio.

Teorema

Sean V, W espacios vectoriales sobre \mathbb{F} , dim V = n y dim W = m. Luego, $\mathcal{L}(V, W)$ es un espacio finito dimensional y dim $\mathcal{L}(V, W) = m \cdot n$

Dem: Sean $V = \langle \{v_1,...,0_i,...,v_n\} \rangle$, $W = \langle \{w_1,...,0_j,...,w_n\} \rangle$, bases respectivamente.

Dados $1 \leq p \leq m, 1 \leq q \leq n$, definimos $E^{p,q} \in \mathcal{L}(V,W)$ como unica transformación lineal que satisface:

$$E^{p,q}(v_j) = \begin{cases} w_p & \text{si } j = q \\ 0 & \text{si } j \neq q \end{cases}$$
$$E^{p,q} \in \mathcal{L}(V, W)$$

 $E^{p,q}$ esta bien definida por el primer teorema de la sección

$$\mathcal{B}_L = \{ E^{p,q} : 1 \le p \le n, 1 \le q \le m \}$$

Afirmación: \mathcal{B}_L es base de $\mathcal{L}(V, W)$

$$\langle \mathcal{B}_L \rangle = \mathcal{L} : \text{Sea } T \in \mathcal{L}(V, W)$$

Dado $1 \leq j \leq n$, existen $\lambda_1, ..., \lambda_m \in \mathbb{F}$

$$T(v_j) = \sum_{i=1}^{m} \lambda_{i,j} w_i$$

Dado $v \in V$, existen $\mu_1, ... \mu_n \in \mathbb{F}$

$$v = \sum_{j=1}^{n} \mu_j v_j$$

$$T(v) = \sum_{j=1}^{n} \mu_j T(v_j) = \sum_{j=1}^{n} \mu_j \left(\sum_{i=1}^{m} \lambda_i w_i\right)$$

$$T(v) = \sum_{j=1}^{n} \sum_{i=1}^{m} \mu_j \lambda_{i,j} E^{i,j}(v_j)$$

$$T(v) = \sum_{i} \sum_{j} \lambda_{i,j} \mu_j E^{i,j}(v_j)$$

$$T(v) = \sum_{i} \left(\sum_{j} \lambda_{i,j} E^{i,j} \left(\sum_{k} \mu_k v_k\right)\right)$$

$$T(v) = \sum_{i} \sum_{j} \lambda_{i,j} E^{i,j}(v_j)$$

 \mathcal{B}_L es linealmente independiente: Supongamos que:

$$\sum_{i} \sum_{j} \lambda_{i,j} E^{i,j} = 0$$

Dado $1 \le k \le n$

$$\sum_{i} \sum_{j} \lambda_{i,j} E^{i,j}(v_k) = \mathbf{0}$$

$$\iff \sum_{i} \lambda_{i,k} w_i = \mathbf{0}$$

$$\iff \lambda_{1,k} = \lambda_{2,k} = \dots = \lambda_{m,k} = 0 \quad \forall k = 1, \dots, n$$

$$\dim \mathcal{L}(V, W) = |\mathcal{B}| = m \cdot n$$

1.2.2. Matriz representante

El Teo anterior permite identificar transformaciones lineales entre espacios finito-dimensionales y matrices $m \times n$ (donde $m = \dim W$, $n = \dim V$).

Sea $T \in \mathcal{L}(V, W), \mathcal{B}_V = \{v_1, ..., v_n\}$ base de $V, \mathcal{B}_W = \{w_1, ..., w_m\}$ base de W.

Definimos la matriz representante de T con respecto a las bases \mathcal{B}_V y \mathcal{B}_W como $\mathcal{M}(T)$

 $(a_{ij})_{i=1...m,j=1...n}$, tal que

$$T(v_j) = \sum_{i=1}^{m} a_{ij} w_i$$

Si las bases no están claras por contexto usamos la notación $\mathcal{M}(T, \mathcal{B}_V, \mathcal{B}_W)$ Es facil ver que

$$\mathcal{M}(T_1 + \lambda T_2) = \mathcal{M}(T_1) + \lambda \mathcal{M}(T_2)$$

(Ejercicio)

De esta forma, \mathcal{M} respeta" la estructura lineal de $\mathcal{L}(V, W)$

Ejemplos:

$$\mathbb{F}^{\infty} = V = W$$

1. $L: \mathbb{F}^{\infty} \to \mathbb{F}^{\infty}$

$$x = (x_1, x_2, ...)$$

$$Lx = (x_2, x_3, ...)$$

2. $R: \mathbb{F}^{\infty} \to \mathbb{F}^{\infty}$

$$x = (x_1, x_2, ...)$$

$$Rx = (0, x_1, x_2, ...)$$

Pregunta: $\mathcal{M}(L)$, $\mathcal{M}(R)$?

1.2.3. Composición y Productos

Teo

Sean V, W, Z espacios vectoriales sobre \mathbb{F} . Sea $T \in \mathcal{L}(V, W)$ y $S \in \mathcal{W}, \mathcal{Z}$. Entonces por composición: $S \circ T : V \to Z$ dada por $(S \circ T)(v) = S(T(v))$ es una transformación lineal.

Dem: Tenemos que probar que:

$$(S \circ T)(\lambda u + v) = \lambda(S \circ T)(u) + (S \circ T)(v)$$

En efecto:

$$(S \circ T)(\lambda u + v) = S(T(\lambda u + v)) = S(\lambda T(u) + T(v))$$

$$S \circ T)(\lambda u + v) = \lambda S(T(u)) + S(T(v)) = lambda(S \circ T)(u) + (S \circ T)(v)$$

Definición 1.2.3. Endomorfismo

Una transformación lineal $T \in \mathcal{L}(V, V)$ de dice endomorfismo u operador lineal. Denotamos $End(V) = \mathcal{L}(V, V)$. La composición funciona como producto sobre End(V)

Propiedades:

a) $I \circ S = S \circ I = S$ (I es neutro para \circ)

b)
$$S \circ (T_1 + T_2) = S \circ T_1 + S \circ T_2$$

$$(T_1 + T_2) \circ S = T_1 \circ S + T_2 \circ S$$

c)
$$\lambda(S \circ T) = (\lambda S) \circ T = S \circ (\lambda S)$$

Demostración. Ejercicio

Importante notar que o no es conmutativo.

También es importante observar que <u>NO</u> todo operador posee elemento inverso para \circ . Dado $T \in End(V) \setminus \{0\}$, decimos que $S \in End(V) \setminus \{0\}$ es su inversa si:

$$S \circ T = T \circ S = I$$

Corolario

Sea V espacio vectorial finito-dimensional y $\mathbb{B}_V = \{v_1, ..., v_n\}$ base de V. Entonces $\{E^{p,1}: p, q = 1, ..., n\}$ es base de End(v).

Demostración. Directo por Teo (+).

Lema: Sean $S, T \in End(V)$ con V finito dimensional. Entonces:

$$\mathcal{M}(S \circ T) = \mathcal{M}(S) \cdot \mathcal{M}(T)$$

Demostración. Recordar que

$${E^{p,q}: p, q = 1, ..., n}$$

son base de End(V).

$$\mathcal{M}(S) = (b_{p,q})_{p=1,\dots,nq=1,\dots n}$$

1.2.4. Invertibilidad

Definición 1.2.4. $T \in \mathcal{L}(V, W)$ se dice invertible si existe $S: W \to V$ tal que

$$S \circ T = I_V, T \circ S = I_W \tag{1.1}$$

Cuando T es invertible, denotamos T^{-1} com su inversa

T invertible \iff T es invectiva y es sobreyectiva

Observación 1.2.1.

- 1. No todo $T \in End(V) \setminus \{0\}$ es invertible
- 2. En el caso V = W, I_V es neutro para \circ
- 3. Puede ser que $S \circ T = I$ y $T \circ S \neq I$

Terorema 1.2.3. Sean V, W espacios vectoriales sobre \mathbb{F} $y T \in \mathcal{L}(V, W)$. Si T es invertible entonces $T^{-1} \in \mathcal{L}(W, V)$

Demostración. Queremos probar $T^{-1}(w_1 + \lambda w_2) = T^{-1}(w_1) + \lambda T^{-1}(w_2)$ Sean $v_1 = T^{-1}(w_1), v_2 = T^{-1}(w_2)$

$$T(v_1 + \lambda v_2) = T(v_1) + \lambda T(v_2) / T^{-1}()$$

$$v_1 + \lambda v_2 = T^{-1}(T(v_1) + \lambda T(v_2))$$

$$T^{-1}(w_1) + \lambda T^{-1}(w_2) = T^{-1}(w_1 + \lambda w_2)$$

$$\Box \quad (1.2)$$

Proposición 1.2.4. Sean $T: V \to W, S: W \to Z$ lineales e invertibles. Entonces $S \circ T$ es lineal e invertible; mas aun

$$(S \circ T)^{-1} = T^{-1} \circ S^{-1} \tag{1.3}$$

Demostración. $S \circ T$ es lineal (visto lunes).

Invertible: basta probar:

$$(S \circ T) \circ (T^{-1} \circ S^{-1}) = S \circ (T \circ T^{-1}) \circ S^{-1} = S \circ S^{-1} = I_Z$$
$$(T^{-1} \circ S^{-1}) \circ (S \circ T) = T^{-1} \circ (S^{-1} \circ S) \circ T = T^{-1} \circ T = I_V$$

Definición 1.2.5. Decimos que $T \in \mathcal{L}(V, W)$ es no singular si ker T = [0]. Notar ademas que T no singular si solo si inyectiva

$$Tv_1 = Tv_2 \iff T(v_1 - v_2) = 0$$
 (1.4)

Terorema 1.2.5. Sea $T \in \mathcal{L}(V, W)$. Entonces:

T no-singular \iff T transforma conjuntos linealmente independientes en conjuntos linealmente independientes, es decir, $\{v_1,...,v_k\} \subseteq V$ $l.i. \implies \{Tv_1,...,Tv_k\} \subseteq W$ l.i.

Terorema 1.2.6. \square Sean V, W finito-dimensionales tal que $\dim V = \dim W$. Si $T \in \mathcal{L}(V, W)$ entonces las siguientes son equivalentes:

- I) T es invertible
- II) T es no-singular

- III) T es sobreyectiva
- IV) Para toda base $\{v_1,...,v_n\}$ de V, $\{Tv_1,...,Tv_n\}$ es base de W.
- V) Existe $\{v_1,...,v_n\}$ base de V tal que $\{Tv_1,...,Tv_n\}$ es base de W

Observación 1.2.2.

- 1. Si dim $V \neq \dim W$ $T: \mathbb{R}^n \to \mathbb{R}^m n < m$ $(x_1, ..., x_n) \mapsto (x_1, ..., x_n, 0, ..., 0)$ es inyectiva, pero no sobreyectiva
- 2. $V = W, \dim V = +\infty$ $R : \mathbb{F}^{\infty} \to \mathbb{F}^{\infty}$ $(x_1, ...) \mapsto (0, x_1, ...)$ es inyectiva, pero no sobreyectiva

Demostración. $(i) \implies (ii)$

$$(ii) \ker T = \{0\} \iff T(V) = W$$

- $(ii) \implies (iii)$
- (iii)T es sobre. Por TNI

$$\dim T = n \implies \dim \ker T = 0 \implies T$$
 no singular

Si $\{v_1,...,v_n\}$ es base de V, por el Teo. anterior $\{Tv_1,...,Tv_n\}$ se base de W

1.3. Isomorfismos

Definición 1.3.1. Isomorfismos Sean V, W espacio vectorial sobre \mathbb{F} . Decimos que $T \in \mathcal{L}(V, W)$ es un isomorfismo si es invertible. En tal caso, diremos que V y W son isomorfos

Ejemplos:

1. \mathbb{F}^{n+1} y $\mathcal{P}_n(\mathbb{F})$ son isomorfos

$$T: \mathbb{F}^{n+1} \to \mathcal{P}_n(\mathbb{F})$$

$$(a_0, a_1, ..., a_n) \mapsto p(x) = \sum_{i=1}^n a_i x^i + a_o$$

2. (Coordenadas baricéntricas): Si $B = \{v_1, ..., v_n\}$ es base de V

$$(\forall v \in V)v = \sum_{I=1}^{n} \lambda_i v_i$$

1.3. ISOMORFISMOS

$$[\cdot]_B: V \to \mathbb{F}^n$$

$$v \mapsto (\lambda_1, ..., \lambda_n) = [v]_B$$

3. V, W finito dimensional sobre \mathbb{F} , con

$$B_V = \{v_1, ..., v_n\}$$

$$B_W = \{w_1, ..., w_m\}$$

$$\mathcal{M}(\cdot, B_V, B_W) : \mathcal{L}(V, W) \to \mathbb{F}^{n \times m}$$

$$T \mapsto \mathcal{M}(T, B_V, B_W)$$

es un isomorfismo (ejercicio)

Terorema 1.3.1. Dos espacios finito dimensionales V, W (sobre \mathbb{F} son isomorfos si solo si dim $V = \dim W$

Demostración. Sean $B_V = \{v_1, ..., v_n\}$ base de V, $B_W = \{w_1, ..., w_m\}$ base de W. \Longrightarrow Sea $T \in \mathcal{L}(V, W)$ isomorfismo

$$\{Tv_1, ..., Tv_n\} \subseteq W$$

Es un conjunto linealmente independiente (un Teorema)

$$\implies n \le \dim W = m$$

Tomando T^{-1} , (que también es isomorfismo) tomemos

$$\{T^{-1}w_1, ..., T^{-1}w_m\} \subseteq V$$

Es linealmente independiente

$$\implies m \le \dim V = n$$

$$\implies m = n$$

 \iff Suponemos n=m, sea T la unica transformación lineal tal que

$$Tv_i = w_i \quad \forall I = 1, ..., n$$

Por el teorema \square , parte $(v) \implies (i)$ tenemos que T es isomorfismo.

1.3.1. Matrices representantes

Sean V,W espacios vectoriales sobre \mathbb{F} , y sean $T\in\mathcal{L}(V,W), B_V=\{v_1,...,v_n\}$ base de V, $B_W=\{w_1,...,w_m\}$ base de W.

$$[Tv_j]_{B_W} = (a_{1j}, ..., a_{mj}) \iff T(v_j) = \sum_{I=1}^m a_{ij} w_i \quad (\forall v \in V \exists a_{ij})$$

Luego, par todo $v \in V$

$$v = \sum_{j} \lambda_{j} v_{j} \quad (\exists \lambda_{j}) \iff [Tv]_{B_{V}} = (\lambda_{1}, ..., \lambda_{m})$$

$$T(v) = T\left(\sum_{j=1}^{n} \lambda_j v_j\right) = \sum_{j=1}^{n} \lambda_j T(v_j)$$

De esta forma,

$$[T(v)]_{B_W} = A \cdot [v]_{B_V}$$

Notemos que A coincide con la matriz representante de T con respecto a las bases B_V y B_W .

$$\mathcal{M}(T, B_V, B_W) = M$$

Evaluar (*) para $v = v_i$

$$[T(v_j)]_{B_W} = A \cdot [v_j]_{B_V} = A \cdot e_j$$

$$\implies T(v_j) = \sum_{I=1}^m a_{i,j} \cdot w_i$$

$$\therefore T(v) = \sum_{j=1}^n \lambda_j T(v_j) = \sum_j \sum_i \lambda_j a_{i,j} w_i$$

$$T(v) = \sum_j \sum_i a_{i,j} E^{i,j} (\sum_q \lambda_q v_q) = \sum_j \sum_i a_{i,j} E^{i,j} (v)$$

$$\therefore T = \sum_i \sum_j a_{i,j} E^{I,j}$$

1.3.2. Cambios de Base:

Sean $B = (v_1, ..., v_n)$ y $B' = (v'_1, ..., v'_n)$ 2 bases (ordenadas). Como se relacionan $[\cdot]_{'}B$ y $[\cdot]_{B}$?

$$T: V \to \mathbb{F}^n, U: V \to \mathbb{F}^n$$

 $v \mapsto [v]_B, v \mapsto [v]_{B'}$

Notemos que $T \circ U^{-1} : \mathbb{F}^n \to \mathbb{F}^n$, $[v]_B \mapsto [v]_{B'}$ es un isomorfismo. Sea P la matriz representante de $T \circ U^{-1}$ con respecto a la base canónica en \mathbb{F}^n Usando (*):

$$[v]_B = P \cdot [v]_{B'} \quad \forall v$$

Sea ahora $T \in \mathcal{L}(V, V)$. Tomemos:

$$[T(v)]_B = \mathcal{M}_{B,B}(T) \cdot [v]_B$$

$$P \cdot [T(v)]_{B'} = \mathcal{M}_{B,B}(T) \cdot P \cdot [v]_{B'}$$

$$[T(v)]_{B'} = (P^{-1} \cdot \mathcal{M}_{B,B}(T) \cdot P) \cdot [v]_{B'}$$

$$\implies \mathcal{M}_{B',B}(T) = (P^{-1} \cdot \mathcal{M}_{B,B}(T) \cdot P)$$

Pregunta: Como calcular P?

$$[v'_j]_B = P \cdot [v'_j]_{B'} = P \cdot j$$
$$P = [[v'_1]_B | [v'_2]_B | \dots | [v'_n]_B] \oplus$$

Terorema 1.3.2. Sea V espacio vectorial finito-dimensional con bases ordenadas $B = (v_1, ..., v_n)$ $y B' = (v'_1, ..., v'_n)$. Sea $T \in End(V)$. Luego

$$\mathcal{M}_{B',B}(T) = P^{-1}\mathcal{M}_{B,B}(T)P$$

Definición 1.3.2. $A, B \in \mathbb{F}^{n \times n}$ son similares si $\exists P$ invertible tal que:

$$A = P^{-1}BP$$

1.4. Productos de Espacios Vectoriales

Definición 1.4.1. Sean $V_1, ..., V_m$ espacios vectoriales sobre \mathbb{F} . Definimos el espacio producto como

$$V = V_1 \times ... \times V_m = \{(v_1, ..., v_m) : v_i \in V_i (\forall i = 1, ..., m)\}$$

- 1. Suma: $(v_1, ..., v_m) + (v'_1, ..., v'_m) = (v_1 + v'_1, ..., v_m + v'_m)$
- 2. Producto por escalar: $\lambda \cdot (v_1,...,v_m) = (\lambda v_1,...,\lambda v_m)$

Proposición 1.4.1. $V \times ... \times V_m$ con suma y producto escalar es un espacio vectorial.

Demostración. Ejercicio: similar a \mathbb{F}^n

Proposición 1.4.2. Sean $V_1, ..., V_m$ espacios vectoriales sobre \mathbb{F} . Entonces $V_1 \times ... \times V_m$ es finito-dimensional y

$$\dim(V_1 \times ... \times V_m) = \sum_{i=1}^m \dim V_i$$

Demostración. Dado I = 1, ..., m sea

$$B_{V_i} = \{V_{1,1}, ..., V_{i,n_i}\}$$

Base de V_i . Ahora sea

$$B = \bigcup_{i=1}^{m} \{(0, ..., 0, v_{ij}, ..., 0) : j = 1, ..., n_i\}$$

Probaremos que Bes base de $V_1\times \ldots \times V_m.$ Notemos que esto basta:

$$\dim V_1 \times ... \times V_m = |B| = \sum_{i=1}^m n_i = \sum_{i=1}^m \dim V_i$$

■ B genera: Sea $v \in V \times ... \times V_m$, entonces

$$v = (v_1, ..., v_m)$$
 donde $v_i \in V_i$

Como B_{V_i} es base de V_i :

$$v_{i} = \sum_{j=1}^{n_{i}} \lambda_{i,j} \cdot v_{i,j}$$

$$v = \left(\sum_{j=1}^{n_{1}} \lambda_{1,j} v_{1,j}, ..., \sum_{j=1}^{n_{m}} \lambda_{m,j} v_{m,j}\right)$$

$$v = \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} \lambda_{i,j} (0, ..., 0, v_{i,j}, 0, ..., 0) \in \langle B \rangle$$

■ B es linealmente independiente (ejercicio)

1.4.1. Productos y Sumas directas

Terorema 1.4.3. Sean $U_1,...U_m$ subespacios vectoriales de V. Definimos la transformación lineal

$$\Gamma: U_1 \times \ldots \times U_m \to U_1 + \ldots + U_m$$

$$\Gamma(u_1, ..., u_m) = u_1 + ... + u_m$$

Entonces, $U_1 + ... + U_m$ es suma directa si solo si Γ inyectiva

Observación 1.4.1. Notar que Γ siempre es sobreyectiva

Demostración.

$$\Gamma$$
 inyectiva \iff ker $\Gamma = \{0\}$

$$\iff [u_1 + ... + u_m = 0 \iff (u_1, ..., u_m) = (0, ..., 0)]$$

$$\iff U_1 + ... + U_m \text{ es directa}$$

Capítulo 2

Parte II

2.1. Polinomios

Definición 2.1.1 (Grado). Si $p(z) = a_0 + + a_n z^n$ con $a_n \neq 0$, entonces gr(p) = n. Si p(z) = 0 entonces $gr(p) = -\infty$

Proposición 2.1.1.

2.1.1. Algoritmo de la división

Recordemos que si p, s son enteros, no negativos, con $s \neq 0$, existen únicos q, r enteros no negativos tal que:

$$p = s \cdot q + r$$

Donde r < s.

De ahora en adelante, $\mathbb{F} = \mathbb{R} \vee \mathbb{C}$ a menos que se diga lo contrario.

Terorema 2.1.2 (División de polinomios). Sean $p, s \in \mathbb{F}[z]$ con $s \neq 0$. Entonces existen únicos polinomios $q, r \in \mathbb{F}[z]$ tales que:

$$p = q \cdots + r \implies n = gr(q) + m$$

Con gr(r) < gr(s).

Demostración. Sean n = gr(p), m = gr(s). Definamos

$$T: \mathcal{P}_{n-m}(\mathbb{F}) \times \mathcal{P}_{m-1}(\mathbb{F}) \to \mathcal{P}_n(\mathbb{F})$$

$$(q,r) \mapsto q \cdot s + r$$

Probaremos que T es una transformación lineal biyectiva. Notar que esto es suficiente para concluir el Teorema.

■ T es lineal

$$T((q_1, r_1) + \lambda(q_2, r_1)) = T(q_1, r_1) + \lambda T(q_2, r_2)$$

■ T inyectivo: Basta probar que ker $T = \{0\}$. En efecto, si (q, r) son tales que:

$$q \cdot s + r = 0$$

$$q \cdot s = -r$$

Comparando grados:

$$gr(LI) = gr(q) \cdot m, gr(LD) = \le m - 1$$

 $\implies q = 0 \implies r = 0$

• T sobreyectiva: Por el TNI, y como $\ker T = \{0\}$

$$\dim(\mathcal{P}_{n-m} \times \mathcal{P}_{m-1}) = \dim T(\mathcal{P}_{n-m} \times \mathcal{P}_{m-1})$$

$$\dim(\mathcal{P}_{n-m}) + \dim(\mathcal{P}_{m-1}) = n+1$$

$$\therefore \dim T(\mathcal{P}_{n-m} \times \mathcal{P}_{m-1}) = n+1 = \dim \mathcal{P}_{n-1}$$

Lo que implica que T es sobreyectiva.

Observación 2.1.1. La demostración del Teo. Anterior entrega un .ªlgoritmo" para dividir polinomios. Resolver la ecuación lineal no-homogénea

$$T(q,r)=p$$

Asignando bases a la partida y la llegada, se obtendrá un sistema lineal

$$Ax = b$$

2.1.2. Raíces de Polinomios

El estudio de la ecuación p(z) = 0 es sumamente útil para analizar un polinomio $p \in \mathbb{F}$

Definición 2.1.2 (Raíz). $\lambda \in \mathbb{F}$ se dice raiz de un polinomio si

$$p(\lambda) = 0$$

Definición 2.1.3 (Factor). $s \in \mathbb{F}[z]$ se dice factor de $p \in \mathbb{F}[z]$ si existe un polinomio $q \in \mathbb{F}[z]$ tal que:

$$p = q \cdot s$$

Terorema 2.1.3 (Raíces definen factores de grado 1). Sea $p \in \mathbb{F}[z]$ $y \lambda \in \mathbb{F}$. Entonces $p(\lambda) = 0 \iff (z - \lambda)$ es factor de p

 $Demostración. \iff (z-\lambda)$ factor de p, entonces $\exists q \in \mathbb{F}[z]$ tal que

$$p(z) = (z - \lambda) \cdot q(z) \forall z \in \mathbb{F}$$

$$\implies p(\lambda) = 0 \cdot q(\lambda) = 0$$

implies. Por el algoritmo de la división para p y $s(z) = z - \lambda$, tenenemos que $\exists! r \in \mathbb{F}[z]$ con $gr(r) \leq 0 \implies r \in \mathbb{F}$ tal que

$$p(z) = q(z) \cdot (z - \lambda) + r$$

$$\implies 0 = p(\lambda) = q(\lambda) \cdot 0 + r$$

$$\therefore r = 0$$

Corolario (Un polinomio tiene tantas raíces como su grado). Sea $p \in \mathbb{F}[z]$ un polinomio de grado $m \geq 0$. Entonces p tiene a lo más m raíces distintas sobre \mathbb{F}

Demostración. Por inducción en m.

m=0: $p(z)=a_0\neq 0$. Entonces p tiene 0 raíces.

$$m-1 \implies m$$
: Sea $p(z) = a_0 + a_1 z + ... + a_m z^m$ con $a_m \neq 0$

Caso 1: p no posee raíces

Caso 2: p sí posee raíces. Sea $\lambda \in \mathbb{F}$ raíz de p

$$\exists q \in \mathbb{F}[z] : p(z) = (z - \lambda) \cdot q(z)$$

Claramente gr(q) = m - 1. Por inducción, q posee a lo más m - 1 raíces en \mathbb{F} . Por lo tanto:

raíces de $p \le \#$ raíces de $(z - \lambda) + \#$ raíces de q = m

2.2. Subespacios invariantes, y valores y vectores propios

Propiedad: Sea $p, q \in \mathbb{F}[z]$ y $T \in \mathcal{L}(V)$. Entonces:

1.
$$(p \cdot q)(T) = p(T) \cdot q(T)$$

2.
$$p(T) \cdot q(T) = q(T) \cdot p(T)$$

Demostración. Se
a $p(z) = \sum_{j=0}^n a_j z^j$ y $q(z) = \sum_{k=0}^m b_k z^k$

$$(p \cdot q)(z) = \left(\sum_{j=0}^{n} a_j z^j\right) \left(\sum_{k=0}^{m} b_k z^k\right)$$

$$p \cdot q)(z) = \sum_{j=0}^{n} \sum_{k=0}^{m} a_j b_k z^{j+k}$$

$$\implies (p \cdot q)(T) = \sum_{j=0}^{n} \sum_{k=0}^{m} a_j b_k T^{j+k}$$

$$(p \cdot q)(T) = (\sum_{j} a_j T^j)(\sum_{k}^m b_k T^k)$$

Terorema 2.2.1 (Existencia de vps). Todo operador en un espacio vectorial complejo de dimensión finita y > 0, posee un valor propio.

Demostración. Sea $n = \dim V > 0$ y sea $T \in \mathcal{L}(V)$. Sea ahora $v \neq \mathbf{0}$. Entonces

$$\{v,Tv,T^2v,...,T^nv\}$$

es linealmente dependiente. Luego existen $a_0,...,a_n$ tal que $a_0v+a_1Tv+...+a_nT^nv=0$

$$\therefore p(T)v = 0 \quad \text{con } gr(p) = n$$

Por el teorema fundamental del algebra, p puede ser factorizado

$$p(z) = C(z - \lambda_1) \cdot \dots \cdot (z - \lambda_n)$$

Por ende:

$$p(T)v = 0 = C(T - \lambda_1 I) \cdot \dots \cdot (T - \lambda_n I)v$$

 \implies Existe j=1,...,n tal que $\operatorname{Im}(T-\lambda I)\neq V$: λ_j es valor propio de T

2.3. Matrices triangulares superiores

Recordemos que da $T \in \mathcal{L}(V)$ y una base B la matriz representante de T con respecto a B es

$$\mathcal{M}_B(T) = (a_{i,j})_{i,j \in [n]}$$

tal que

$$Tv_j = \sum_{i=1}^n a_{i,k} v_k$$

Notemos, por ejemplo, que en el caso complejo siempre existe una base B tal que la matriz representante posee la siguiente estructura

$$\mathcal{M}_B(T) = \begin{bmatrix} \lambda & 0 & \dots \\ 0 & \ddots & \\ \vdots & & \end{bmatrix}$$

En efecto, sea $\lambda \in \mathbb{F}$ valor propio de T con vector propio asociado $\mathbf{v} \neq \mathbf{0}$. Sea B una base que contiene a v. Si hacemos esto

$$Tv = \lambda v$$

$$\begin{pmatrix} a_{1,1} \\ \vdots \\ \vdots \\ a_{n,1} \end{pmatrix} = \begin{pmatrix} \lambda \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Definición 2.3.1 (Matriz triangular superior). Una matriz $A \in \mathbb{F}^{n \times m}$ se dice triangular superior si

$$a_{i,i} = 0 \forall i > j$$

$$\begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Proposición 2.3.1. Sea $T \in \mathcal{L}(V)$ y $v_1, ..., v_n$ base (ordenada) de V. Las siguientes propiedades son equivalentes:

- a) La matriz representante $\mathcal{M}_B(T)$ es \triangle superior
- b) $Tv_j \in \langle v_1, ..., v_j \rangle \forall j = 1, ..., n$
- c) $\langle v_1, ..., v_j \rangle$ es invariante bajo $T, \forall j = 1, ..., n$

Demostraci'on.