Ensimag 2021/2022

1A – RECHERCHE OPÉRATIONNELLE

Feuille 4

Exercice 4.1. — Cinq oeuvres 1, 2, 3, 4, 5 de cinq cinéastes célèbres A, B, C, D, E ont été primées à un célèbre festival. Voici le schéma de la participation des cinéastes à la réalisation de chaque film : $A = \{3, 4, 5\}, B = \{3, 4, 5\}, C = \{3, 4, 5\}, D = \{2\}, E = \{1\}$. Chacun des 5 cinéastes peut remettre une fois le prix à l'équipe d'un film-lauréat à condition qu'il ne soit pas l'un des réalisateurs. Est-il possible de réaliser ainsi la remise de prix ?

Exercice 4.2. — G = (V, E) est dit **biparti** s'il existe une partition de V en deux ensembles A et B telle que chaque arête de G relie un sommet de A à un sommet de B.

Montrer qu'un graphe G est biparti si et seulement si G ne contient pas de cycle impair.

Exercice 4.3. — Décider si les graphes de la figure sont bipartis.

Exercice 4.4. — Un couplage est un ensemble M d'arêtes deux-à-deux non-adjacentes. Un couplage M de G est parfait si chaque sommet de G est incident à une arête de M. Un ensemble T de sommets de G est transversal si G-T contient aucune arête. Le nombre d'arêtes d'un couplage maximum est noté $\nu(G)$ et le nombre de sommets d'un ensemble transversal minimum est noté $\tau(G)$.

- (a) Montrer que $\nu(G) \leq \tau(G)$.
- (b) Vérifier que $\nu(K_3) < \tau(K_3)$.

Exercice 4.5. — Théorème de Kőnig: Si G := (A, B; E) est un graphe biparti alors $\nu(G) = \tau(G)$.

Exercice 4.6. — Théorème de Hall : Soit G := (A, B; E) un graphe biparti. Montrer que G admet un couplage parfait si et seulement si

- (a) |A| = |B|, et
- (b) $|\Gamma(X)| \ge |X|$ pour chaque $X \subseteq A$.

Exercice 4.7. — Soit G un graphe biparti k-régulier (k > 1.)

- (a) Montrer que G admet un couplage parfait.
- (b) Montrer que E(G) se décompose en k couplages parfaits deux-à-deux arête-disjoints.

Exercice 4.8. — Trouver un couplage de cardinal maximum et un transversal de cardinal minimum dans le graphe biparti suivant :

Exercice 4.9. — l'algorithme glouton : Soit G = (V, E) un graphe. Au début $M := \emptyset$. Tant qu'il existe une arête $e \in E \setminus M$ telle que M + e est un couplage faire M := M + e. Montrer que l'algorithme glouton s'arrête avec un couplage M de cardinal au moins $\nu(G)/2$.

Exercice 4.10. — (Nadia Brauner) Une compagnie aérienne dispose de cinq avions $A_1, A_2, ..., A_5$. Chaque avion peut effectuer des vols sur les routes indiquées dans la Table 1.

Avion	Routes
A_1	Londres-Francfort
A_2	Londres-Francfort, Milan-Barcelone
A_3	Londres-Francfort, Paris-Moscou, Athènes-Madrid, Rome-Sofia
A_4	Paris-Moscou, Athènes-Madrid, Rome-Sofia
A_5	Londres-Francfort, Milan-Barcelone

Table 1 – Routes des avions

- 1. Dessiner un graphe biparti G dont les sommets représentent les avions et les routes, et dont les arêtes représentent les routes que l'avion peut prendre.
- 2. L'avion A₃ sert sur la route Londres-Francfort, A₄ sur la route Rome-Sofia, et A₅ sur la route Milan-Barcelone. Cette affectation est-elle un couplage maximum de G?
 L'avion A₃ doit être retiré du service pour passer en maintenance.
- 3. Trouver un couplage maximum du graphe modifié.