Uncertainty quantification for waves: introduction and forward UQ

Laura Scarabosio (1.scarabosio@math.ru.nl)
Summer school "Waves: Modeling, Analysis, and Numerics"
Nijmegen, 25–29 August 2025

Introduction

Uncertainty quantification in a nutshell

Uncertainty quantification (UQ) takes into account uncertainties in the description of a physical system and quantifies their effect on the outcome.

Uncertain quantities: random variables or random fields.

Quantifying: computing probabilities or statistics of quantities of interest.

Types of uncertainties

Uncertainties can be aleatoric or epistemic.

Examples:

- measurement error
- material properties
- geometry
- forcing terms

- initial conditions
- boundary conditions
- mathematical model
- numerics

Sannomiya, Diss. ETHZ 18747

Walsh, Proc. US Naval Institute (2020)

The predictive and interpretable estimation process

The forward problem

Given a **probability distribution** of the input, compute:

- statistics (→ quadrature, sampling)
- an approximant (→ interpolation, regression)

for some quantity of interest. Usually "easy" distributions are used.

The inverse problem

Given educated **prior knowledge** on the input, compute

- the posterior distribution of the input given the data
- statistics of quantity of interest w.r.t. posterior distribution.

Why uncertainty quantification?

"It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so." – Mark Twain

- Predict system responses under input variability
- Quantify reliability of predictions
- Reduce development time and prototyping costs
- Analyze risk of undesirable events
- Find robust optimized solutions

A one-dimensional example

$$-\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{D}}{\mathrm{d}x} \right) = f \text{ in } (0,1)$$
+ boundary conditions

with $D \sim U(a, b)$.

Q = Q(D) quantity of interest.

- $\mathbb{E}[Q]$, $D \mapsto Q(D)$ (robust predictions)
- Var[Q], $\frac{dQ}{dv}$ (quantify reliability)
- $\mathbb{P}(Q \geq q_{\mathsf{thresh}})$ (risk assessment)
- $\operatorname{argmin}_{f \in X} \mathbb{E}[\mathcal{J}(u)]$ (robust optimization)

The high-dimensionality challenge

$$-\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathsf{D}}{\mathrm{d}x} \right) = f \text{ in } (0,1)$$

$$u(0) = u_0, \quad u(1) = u_1$$

with $D \sim U(a, b)$, $u_0 \sim U(a_0, b_0)$, $u_1 \sim U(a_1, b_1)$, ...

Tensorization of 1d rules is not feasible!

Plan for forward UQ

Refresher of elementary probability

The Monte Carlo estimator

The Multilevel Monte Carlo estimator

- application to time-harmonic scattering

More advanced topics

The (vanilla) Monte Carlo estimator

Monte Carlo sampling

 ϑ uncertain parameter with pdf f, Q quantitity of interest.

$$\mathbb{E}[Q(artheta)] = \int_{\mathbb{D}^d} Q(heta) f(heta) \, \mathrm{d} heta$$

$$pprox E_M(Q(\vartheta)) = rac{1}{M} \sum_{i=1}^M Q(\vartheta^{(i)})$$
 with i.i.d. samples

Convergence of the vanilla Monte Carlo estimator

Note: $E_M(Q(\vartheta))$ is a random variable, $\mathbb{E}[Q(\vartheta)]$ is a number (or function).

Unbiasedness

$$\mathbb{E}[E_{M}(Q(\vartheta))] = \mathbb{E}[Q(\vartheta)]$$

Convergence

$$E_M(Q(\vartheta)) \xrightarrow{a.s.} \mathbb{E}[Q(\vartheta)]$$

by strong law of large numbers.

Convergence rate

If $Q(\vartheta)$ has finite **variance**, i.e. $Q \in L^2(\Omega, \mathcal{H})$,

$$\mathsf{Var}(E_M(Q(\vartheta))) = \underbrace{\mathbb{E}\left[\|E_M(Q(\vartheta)) - \mathbb{E}\left[Q(\vartheta)\right]\|_{\mathcal{H}}^2\right]}_{\mathsf{Mean Square Error}} = \frac{\mathsf{Var}(Q(\vartheta))}{M}$$

Remark: the rate is *independent* of the dimension d.

The bias-variance decomposition

Often the **exact** $Q(\vartheta)$ **is not accessible** or too expensive to compute, and is replaced by an **approximation** $Q_L(\vartheta)$.

Example: $Q_L(\vartheta)$ comes from a numerical discretization with mesh size h_L .

Approximating Q introduces a bias in the Monte Carlo estimator:

$$\underbrace{\mathbb{E}\left[\|E_{M}(Q_{L}(\vartheta)) - \mathbb{E}\left[Q(\vartheta)\right]\|_{\mathcal{H}}^{2}\right]}_{\text{Mean Square Error}} = \underbrace{\|\mathbb{E}\left[Q_{L}(\vartheta) - Q(\vartheta)\right]\|_{\mathcal{H}}^{2}}_{\text{bias error}} + \underbrace{\frac{1}{M}\mathsf{Var}\left[Q(\vartheta)\right]}_{\text{statistical error}}$$

⇒ approximation error and number of samples need to be **balanced**.

Multilevel Monte Carlo

Multilevel Monte Carlo estimator

Consider $(Q_l)_{l=0}^L$ and set $Q_{-1} := 0$, with increasing accuracy and cost.

Example: obtained from nested PDE discretizations with mesh sizes $(h_l)_{l=0}^{L}$.

$$\mathbb{E}\left[Q_{L}\right] = \sum_{l=0}^{L} \mathbb{E}\left[Q_{l} - Q_{l-1}\right] \quad \rightsquigarrow$$

$$\mathbb{E}\left[Q_{L}\right] = \sum_{l=0}^{L} \mathbb{E}\left[Q_{l} - Q_{l-1}\right] \quad \rightsquigarrow \quad E^{L}\left[Q\right] := \sum_{l=0}^{L} E_{M_{l}}\left[Q_{l} - Q_{l-1}\right]$$

$$\underbrace{\mathbb{E}\left[\|E^L[Q] - \mathbb{E}\left[Q\right]\|_{\mathcal{H}}^2\right]}_{\text{Mean Square Error}} \leq \underbrace{\|\mathbb{E}\left[Q_L - Q\right]\|_{\mathcal{H}}^2}_{\text{bias error}} + \underbrace{\sum_{l=0}^L \frac{1}{M_l} \mathsf{Var}\left[Q_l - Q_{l-1}\right]}_{\text{statistical error}}$$

Multilevel Monte Carlo algorithm

Given a tolerance ε^2 and a sequence of models (e.g., discretizations) $(\mathcal{M}_l)_{l\geq 0}$:

- 2 Select level L such that $\|\mathbb{E}[Q_L Q]\| < \varepsilon_{bias}$
- 3 Choose $(M_l)_{l=0}^L$ s.t. stat error $< \varepsilon_{stat}^2$ at minimum cost

Constrained minimization problem

Find $(M_l)_{l=0}^L$: $W_{tot} = \sum_{l=0}^L M_l W_l \downarrow$ and $Var(E^L(Q)) = \sum_{l=0}^L \frac{V_l}{M_l} = \varepsilon_{stat}^2$

$$\Rightarrow M_I = \mu \sqrt{\frac{V_I}{W_I}}, \quad \mu = \varepsilon_{stat}^{-2} \sum_{l=0}^{L} \sqrt{V_l W_l}$$

.

Cost of MLMC estimator: considerations

$$W_{tot} = arepsilon_{stat}^{-2} \left(\sum_{l=0}^{L} \sqrt{V_l W_l} \right)^2$$

Observations:

Efficiency relies on delicate balance between variances and costs

$$V_l = Var(Q_l - Q_{l-1}) = Var(Q_l) + Var(Q_{l-1}) - 2Cov(Q_l, Q_{l-1})$$
 (variance reduction)

Cost of vanilla Monte Carlo: $W_{tot}^{MC} = \varepsilon_{stat}^{-2} V_0 C_L$

Multilevel Monte Carlo: complexity theorem

Theorem (Cliffe et al. 2011, Giles 2015)

Suppose there exist $\alpha, \beta, \gamma > 0$, $\alpha \ge \frac{1}{2} \min \{\beta, \gamma\}$ and $C_1, C_2, C_3 > 0$ s.t.

- (i) $\|\mathbb{E}[Q_l Q]\|_{\mathcal{H}} \le C_1 2^{-\alpha l}$ (bias bound)
- (ii) $Var[Q_l Q_{l-1}] \le C_2 2^{-\beta l}$ (variance bound)
- (iii) $W_l \leq C_3 2^{\gamma l}$ (cost bound).

Then, for every $\varepsilon < e^{-1}$, there exist $L \in \mathbb{N}$ and $(M_l)_{l=0}^L$ s.t.

$$\|E^{L}[Q] - \mathbb{E}[Q]\|_{L^{2}(\Omega,\mathcal{H})} < \varepsilon \quad W_{tot}(E^{L}) \le \begin{cases} C_{4}\varepsilon^{-2} & \text{if } \beta > \gamma, \\ C_{4}\varepsilon^{-2}(\log \varepsilon)^{2} & \text{if } \beta = \gamma, \\ C_{4}\varepsilon^{-2-\frac{\gamma-\beta}{\alpha}} & \text{if } \beta < \gamma. \end{cases}$$

Multilevel Monte Carlo for elliptic PDEs

Levels associated to nested meshes with mesh sizes $(h_l)_{l\geq 0}$.

Theorem (Cliffe et al. 2011, Giles 2015)

Suppose there exist $\alpha, \beta, \gamma > 0$ and positive constants $C_1, C_2, C_3 > 0$ s.t.

- (i) $\|\mathbb{E}[Q_l Q]\|_{\mathcal{Y}} \le C_1 h_l^{\alpha}$ (bias bound)
- (ii) $Var[Q_l Q_{l-1}] \le C_2 h_l^{\beta}$ (variance bound)
- (iii) $W_l \leq C_3 h_l^{-\gamma}$ (cost bound).

Then, for every $\varepsilon < e^{-1}$, there exist $L \in \mathbb{N}$ and $(M_l)_{l=0}^L$ s.t.

$$\|E^{L}[Q] - \mathbb{E}[Q]\|_{L^{2}(\Omega,\mathcal{H})} < \varepsilon \quad W_{tot}(E^{L}) \le \begin{cases} C_{4}\varepsilon^{-2} & \text{if } \beta > \gamma, \\ C_{4}\varepsilon^{-2}(\log \varepsilon)^{2} & \text{if } \beta = \gamma, \\ C_{4}\varepsilon^{-2-\frac{\gamma-\beta}{\alpha}} & \text{if } \beta < \gamma. \end{cases}$$

Multilevel Monte Carlo for elliptic PDEs: convergence rates

If there exist C > 0 and s > 0 s.t.

$$||Q_l(u_l) - Q(u)||_{L^2(\Omega,\mathcal{H})} \le Ch_l^s ||u||_{L^2(\Omega,\mathcal{W})},$$

we have $\alpha = s$, $\beta = 2s$.

Note: \mathcal{W} is usually a stronger space than what we need for well-posedness.

Notable example

[Barth, Schwab, Zollinger 2011], [Charrier, Scheichl, Teckentrup 2013]

$$-\nabla \cdot (a\nabla u) = f \quad \text{on } D,$$

$$u = 0 \quad \text{on } \partial D.$$

where $a \sim \mathcal{U}([a_-, a_+])$.

Multilevel Monte Carlo for elliptic PDEs: convergence rates

Multilevel Monte Carlo for waves: setting

Helmholtz model scattering problem (sound-soft):

$$\begin{aligned} &-\nabla\cdot(A\nabla u)-\kappa^2 nu=0 &&\text{in } \mathbb{R}^d\setminus D\\ &u=0 &&\text{on } \partial D\\ &+\text{Sommerfeld r.c. for } u-u_i \end{aligned}$$

Assumptions

$$A \sim \mathcal{U}([A_{-}, A_{+}]), \ n \sim \mathcal{U}([n_{-}, n_{+}]), \ \text{with} \ A_{-}, n_{-} > 0$$

Non-trapping regime

Discretization with *h*-finite elements

Domain truncation with exact DtN map

Multilevel Monte Carlo for waves: convergence

Low frequency: essentially same treatment as elliptic case [Scarabosio 2019].

In general: constraint on first level, $h_0 = C\kappa^{-a}$ [Pembery, 2020].

Q(u)	а	Monte-Carlo	Multi-Level Monte-Carlo
$ u _{H^1_k(D)}$	$\frac{2p+1}{2p}$	$k^{d\frac{2p+1}{2p}}\varepsilon^{-2-\frac{d}{2p}}$	$k^{d^{rac{2p+1}{2p}}} arepsilon^{-2}$
$ u _{L^2(D)}$	$\frac{2p+1}{2p}$	$k^{d\frac{2p+1}{2p}}\varepsilon^{-2-\frac{d}{2p}}$	$k^d \varepsilon^{-2}$ if $k \varepsilon$ small, otherwise $k^{d \frac{2p+1}{2p}} \varepsilon^{-2 - \frac{d}{2p}}$
$ u _{H^1_k(D)}$	1	$k^{d^{\frac{2p+1}{2p}}}\varepsilon^{-2-\frac{d}{2p}}$	$k^{d+2} \varepsilon^{-2}$
$ u _{L^2(D)}$	1	$k^d \varepsilon^{-2-rac{d}{2p}}$	$k^d \varepsilon^{-2}$

Source: PhD thesis of O. Pembery, 2020, University of Bath.

More advanced topics

Surrogate models: what are they and why we need them?

Computational bottleneck: Often each evaluation of $Q(\vartheta)$ is expensive (e.g., one PDE solve).

A **surrogate model** is a model that, for every value of ϑ , is an approximation to $Q(\vartheta)$ and is cheap to evaluate.

Offline/online paradigm: Surrogate is built in offline training phase (expensive), and used online (cheap), e.g. in Monte Carlo or optimization.

Types of surrogate models

Goal: Build $\tilde{Q}(\vartheta)$ s.t. $\tilde{Q}(\vartheta) \approx Q(\vartheta)$.

Intrusive methods: the original model is subject to modification. **Non-intrusive methods**: original (high-fidelity) model as black box. Built from training pairs $\{(\vartheta_i, Q(\vartheta_i))\}_{i=1}^N$.

(At least) three possible routes:

- $oxed{1}$ Acting on artheta variable, **reduce dimensionality in parameter space**
- 2 Acting on (x, t) variables, reduce dimensionality in spatio-temporal space
- (3) Simplifying the physics, possibly reduce dimensionality in both spaces

Multilevel Monte Carlo with surrogate models

It falls within multifidelity approaches.

Note: *multifidelity estimator* as from [Peherstorfer, Willcox, Gunzburger, 2016] is slightly different but based on the same principles.

Reminder: Efficiency relies on delicate balance between variances and costs

- (2) Select \mathcal{M}_L such that $\|\mathbb{E}\left[Q_L-Q
 ight]\|<arepsilon_{ extit{bias}}$
- 3 Select ordered subset $(\mathcal{M}_0,\ldots,\mathcal{M}_{L-1})$ minimizing estimated total cost
- 4 Choose $(M_l)_{l=0}^L$ s.t. stat error $< \varepsilon_{stat}^2$ at minimum cost

[Scarabosio et al. 2019], [Schaden Ullmann 2020].

See also important review paper [Peherstorfer, Willcox, Gunzburger 2018].

About things that we did not address

Random fields

Beyond scalar-valued random variables, we can use "random functions" to model distributed uncertainties.

Higher order methods

Under stricter smoothness (and dimension-anisotropy) assumptions, higher order methods can be used instead of Monte Carlo.

Catch for Helmholtz: as the frequency increases, their performance deteriorates unless the variance decreases accordingly.

[Ganesh et al. 2021]. [Spence, Wunsch 2023]. [Hiptmair et al. 2024]

MLMC in time domain: see e.g. [Mishra, Schwab, Sukys 2012].

