00:43

QUESTION

The distance between two stations M and N is L kilometres. All frames are K bits long. The propagation time per kilometer is t seconds. Let R bits/second be the channel capacity. Assuming the processing delay is negligible, the minimum number of bits for the sequence number field in a frame for maximum utilization, when the sliding window protocol is used, is:

[GATE CS 2007]

A. $\log_2 \left(\frac{2LtR+2K}{K} \right)$ C. $\log_2 \left(\frac{2LtR+K}{K} \right)$

B. $\log_2 \left(\frac{2LtR}{K} \right)$ D. $\log_2 \left(\frac{2LtR+K}{2K} \right)$

02:14

SOLUTION

Let Propagation Delay = Lt sec

Round Trip Time = 2 x Propagation Delay

Round Trip Time = $2 \times Lt$ sec

Round Trip Time = 2 Lt sec

SOLUTION

No. of frames =
$$\left(\frac{2LtR}{K}\right)$$

NESO ACADEMY

03:25

QUESTION

The distance between two stations M and N is L kilometres. All frames are K bits long. The propagation time per kilometer is t seconds. Let R bits/second be the channel capacity. Assuming the processing delay is negligible, the minimum number of bits for the sequence number field in a frame for maximum utilization, when the sliding window protocol is used, is:

[GATE CS 2007]

A.
$$\log_2 \left(\frac{2LtR+2K}{K} \right)$$

C.
$$\log_2\left(\frac{2LtR+K}{K}\right)$$

B.
$$\log_2 \left(\frac{2LtR}{K}\right)$$

D.
$$\log_2 \left(\frac{2LtR+K}{2K} \right)$$

ESO ACADEMY