

William Stallings
Computer Organization
and Architecture
9th Edition

+ Chapter 5 Internal Memory

Memory Cell Operation Control Control Select Select Data in Sense Cell Cell (a) Write (b) Read

Figure 5.1 Memory Cell Operation

Semiconductor Memory Types

Memory Type	Category	Erasure	Write Mechanism	Volatility		
Random-access memory (RAM)	Read-write memory	Electrically, byte-level	Electrically	Volatile		
Read-only memory (ROM)	Read-only	Not possible	Masks	Nonvolatile		
Programmable ROM (PROM)	memory	Troc possione				
Erasable PROM (EPROM)		UV light, chip- level				
Electrically Erasable PROM (EEPROM)	Read-mostly memory	Electrically, byte-level	Electrically			
Flash memory		Electrically, block-level				

Table 5.1 Semiconductor Memory Types

Dynamic RAM (DRAM)

- RAM technology is divided into two technologies:
 - Dynamic RAM (DRAM)
 - Static RAM (SRAM)
- DRAM
 - Made with cells that store data as charge on capacitors
 - Presence or absence of charge in a capacitor is interpreted as a binary 1 or 0
 - Requires periodic charge refreshing to maintain data storage
 - The term *dynamic* refers to tendency of the stored charge to leak away, even with power continuously applied

Dynamic RAM Structure

Figure 5.2a
Typical Memory Cell Structures

(a) Dynamic RAM (DRAM) cell

Static RAM (SRAM)

- Digital device that uses the same logic elements used in the processor
- Binary values are stored using traditional flip-flop logic gate configurations
- Will hold its data as long as power is supplied to it

Static RAM Structure

Figure 5.2b
Typical Memory Cell Structures

(b) Static RAM (SRAM) cell

SRAM versus DRAM

- Both volatile
 - Power must be continuously supplied to the memory to preserve the bit values
- Dynamic cell
 - Simpler to build, smaller
 - More dense (smaller cells = more cells per unit area)
 - Less expensive
 - Requires the supporting refresh circuitry
 - Tend to be favored for large memory requirements
 - Used for main memory
- Static
 - Faster
 - Used for cache memory (both on and off chip)

SRAM

Read Only Memory (ROM)

- Contains a permanent pattern of data that cannot be changed or added to
- No power source is required to maintain the bit values in memory
- Data or program is permanently in main memory and never needs to be loaded from a secondary storage device
- Data is actually wired into the chip as part of the fabrication process
 - Disadvantages of this:
 - No room for error, if one bit is wrong the whole batch of ROMs must be thrown out
 - Data insertion step includes a relatively large fixed cost

Programmable ROM (PROM)

- Less expensive alternative
- Nonvolatile and may be written into only once
- Writing process is performed electrically and may be performed by supplier or customer at a time later than the original chip fabrication
- Special equipment is required for the writing process
- Provides flexibility and convenience
- Attractive for high volume production runs

Read-Mostly Memory

EPROM

Erasable programmable read-only memory

Erasure process can be performed repeatedly

More expensive than PROM but it has the advantage of the multiple update capability

EEPROM

Electrically erasable programmable read-only memory

Can be written into at any time without erasing prior contents

Combines the advantage of non-volatility with the flexibility of being updatable in place

More expensive than EPROM

Flash Memory

Intermediate between EPROM and EEPROM in both cost and functionality

Uses an electrical erasing technology, does not provide byte-level erasure

Microchip is organized so that a section of memory cells are erased in a single action or "flash"

Error Correction

■ Hard Failure

- Permanent physical defect
- Memory cell or cells affected cannot reliably store data but become stuck at 0 or 1 or switch erratically between 0 and 1
- Can be caused by:
 - Harsh environmental abuse
 - Manufacturing defects
 - Wear

■ Soft Error

- Random, non-destructive event that alters the contents of one or more memory cells
- No permanent damage to memory
- Can be caused by:
 - Power supply problems
 - Alpha particles

Error Correcting Code Function

Figure 5.7 Error-Correcting Code Function

+

Hamming Error Correcting Code

Figure 5.8 Hamming Error-Correcting Code

Layout of Data Bits and Check Bits

Bit Position	12	11	10	9	8	7	6	5	4	3	2	1
Position Number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Data Bit	D8	D7	D6	D5		D4	D3	D2		D1		
Check Bit					C8				C4		C2	C1

Figure 5.9 Layout of Data Bits and Check Bits

Check Bit Calculation

Bit position	12	11	10	9	8	7	6	5	4	3	2	1
Position number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Data bit	D8	D7	D6	D5		D4	D3	D2		D1		
Check bit					C8				C4		C2	C1
Word stored as	0	0	1	1	0	1	0	0	1	1	1	1
Word fetched as	0	0	1	1	0	1	1	0	1	1	1	1
Position Number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Check Bit					0				0		0	1

Figure 5.10 Check Bit Calculation