CodeNotebook

Scott McCoy - U80152879 2/27/2021

Mobile Price Classification

Models

- · Linear Models
 - Nnet Multiclass Linear Model (Baseline)
 - Binary Logistic Regression
 - Multiple Binary Logistic Regressions
 - Layered Binary Logistic Regressions
- · Tree-based Models
 - Decision Tree
 - Random Forest
 - Multiple Binary Random Forests
 - Multiclass Random Forest

Linear Models

Neural Net Multiclass Linear Model

There are a number of methods that can be applied to a multiclass classification problem.

Of the various models we applied to our problem, the best performing was a log-linear neural network model.

We used this as a baseline to inform our strategy and compare results to the methods discusses in the course.

```
defaultW <- getOption("warn")
  options(warn = -1)
  options(warn = defaultW)

set.seed(430)
library(data.table)
library(nnet)
  mo <- fread('~/R/mobile/train.csv')
  mo_obs <- nrow(mo)
  mo_idx <- sample(mo_obs, size = trunc(0.70 * mo_obs))
  mo_trn <- mo[mo_idx, ]
  mo_test <- mo[-mo_idx, ]

Y_train <- mo_trn[,price_range]
  Y_test <- mo_test[,price_range]
  model_multi <- multinom(price_range ~ ., data = mo_trn) # instantiating model</pre>
```

```
## # weights: 88 (63 variable)
## initial value 1940.812106
## iter 10 value 1539.449569
## iter 20 value 1372.517934
## iter 30 value 1328.431365
## iter 40 value 1203.483614
## iter 50 value 826.577171
## iter 60 value 446.763231
## iter 70 value 59.572210
## iter 80 value 31.622093
## iter 90 value 21.277743
## iter 100 value 15.526852
## final value 15.526852
## stopped after 100 iterations
```

```
# train predictions
Y_train_hat_df <- predict(model_multi, newdata = mo_trn, type = "prob")
Y_train_hat <- data.table(colnames(Y_train_hat_df)[max.col(Y_train_hat_df,ties.method="first")])
Y_train_hat <- transform(Y_train_hat, V1 = as.numeric(V1))</pre>
train accuracy <- mean(Y train == Y train hat)</pre>
#test predictions
Y test hat df <- predict(model multi, newdata = mo test, type = "prob")
Y_test_hat <- data.table(colnames(Y_test_hat_df)[max.col(Y_test_hat_df,ties.method="first")])
Y_test_hat <- transform(Y_test_hat, V1 = as.numeric(V1))[,V1]</pre>
test_accuracy <- mean(Y_test == Y_test_hat)</pre>
# Evaluation:
cm <- table(observed=Y test, predicted=Y test hat) # confusion matrix</pre>
diag = diag(cm) # number of correctly classified instances per class
rowsums = apply(cm, 1, sum) # number of instances per class
colsums = apply(cm, 2, sum) # number of predictions per class
precision = diag / colsums
recall = diag / rowsums
f1 = 2 * precision * recall / (precision + recall)
scores <- data.frame(precision, recall, f1)</pre>
train accuracy
```

```
## [1] 0.9971429
```

```
test_accuracy
```

```
## [1] 0.9716667
```

```
cm
```

```
##
            predicted
## observed
               0
                    1
                        2
                            3
           0 147
                    1
                        0
                            0
##
           1
##
               2 147
                        2
                            0
##
           2
                    5 147
                            6
##
                    0
                        1 142
```

```
scores
```

```
## precision recall f1
## 0 0.9865772 0.9932432 0.9898990
## 1 0.9607843 0.9735099 0.9671053
## 2 0.9800000 0.9303797 0.9545455
## 3 0.9594595 0.9930070 0.9759450
```

We have a test accuracy of 97% for this model. This high accuracy of this linear model indicates that there is likely a strong linear relationship between the predictors and price_range.

Binary Logistic Regression

Because we have more than 2 classes of predictors, we cannot simply predict between all 4 with a simple logistic regression.

Our first approach was to predict between the lowest price range (0,1) and the highest price (2,3) with a binomial model.

```
defaultW <- getOption("warn")
options(warn = -1)

library(caTools)
library(caret)
mo_p <- fread('~/R/mobile/processed_train.csv')
m_binary <- mo_p[, !c("price_range", "p0", "p1", "p2", "p3")]
sampleSplit <- sample.split(Y=m_binary$price_binary, SplitRatio=0.7)
trainSet <- subset(x=m_binary, sampleSplit==TRUE)
testSet <- subset(x=m_binary, sampleSplit==FALSE)

log_model_binary <- glm(price_binary ~ ., family=binomial(link='logit'), data=trainSet)
probabs <- predict(log_model_binary, testSet[,!c("price_binary")],type='response')
preds <- ifelse(probabs > 0.5, 1, 0)

test_accuracy <- mean(testSet$price_binary == preds)

cm <- table(observed=testSet$price_binary, predicted=preds)

test_accuracy</pre>
```

```
## [1] 0.995
```

```
cm
```

```
## predicted
## observed 0 1
## 0 300 0
## 1 3 297
```

This model does an excellent job differentiating between low prices and high prices.

Multiple Binary Logistic Regression

Our next step was to run multiple binomial models, one for each class of price range.

We can select between all 4 classes by ultimately predicting the class with the highest probability between all 4 models.

```
mo_obs <- nrow(mo_p)</pre>
mo idx <- sample(mo obs, size = trunc(0.70 * mo obs))</pre>
mo_trn <- mo_p[mo_idx, ]</pre>
mo_test <- mo_p[-mo_idx, ]</pre>
# 4 separate train and test sets
X_train <- mo_trn[,1:20]</pre>
Y_train <- mo_trn[,price_range]</pre>
Y_train0 <- mo_trn[,p0]
Y_train1 <- mo_trn[,p1]</pre>
Y_train2 <- mo_trn[,p2]</pre>
Y_train3 <- mo_trn[,p3]
X_train0 <- data.table(X_train)</pre>
X_train0[,p0 := Y_train0]
X_train1 <- data.table(X_train)</pre>
X_train1[,p1 := Y_train1]
X train2 <- data.table(X train)</pre>
X_train2[,p2 := Y_train2]
X train3 <- data.table(X train)</pre>
X train3[,p3 := Y train3]
X test <- mo test[,1:20]</pre>
Y_test <- mo_test[,price_range]</pre>
Y_test0 <- mo_test[,p0]</pre>
Y_test1 <- mo_test[,p1]</pre>
Y test2 <- mo test[,p2]
Y_test3 <- mo_test[,p3]</pre>
X test0 <- data.table(X test)</pre>
X \text{ test0}[,p0 := Y \text{ test0}]
X test1 <- data.table(X test)</pre>
X_{test1}[,p1 := Y_{test1}]
X_test2 <- data.table(X_test)</pre>
X_{\text{test2}}[,p2 := Y_{\text{test2}}]
X_test3 <- data.table(X_test)</pre>
X_{\text{test3}}[,p3 := Y_{\text{test3}}]
# fitting models
glm.fit0 <- glm(p0 ~ ., data = X_train0, family = binomial)</pre>
glm.fit1 <- glm(p1 ~ ., data = X train1, family = binomial)</pre>
glm.fit2 <- glm(p2 ~ ., data = X_train2, family = binomial)</pre>
glm.fit3 <- glm(p3 ~ ., data = X train3, family = binomial) # binomial for Logistic regression
# train predictions
Y train hat0 <- predict(glm.fit0, newdata = X train0, type = "response")
Y_train_hat1 <- predict(glm.fit1, newdata = X_train1, type = "response")</pre>
Y train hat2 <- predict(glm.fit2, newdata = X train2, type = "response")
Y train hat3 <- predict(glm.fit3, newdata = X train3, type = "response")
Y_train_hat_df <- data.table("0" = Y_train_hat0, "1" = Y_train_hat1, '2' = Y_train_hat2, "3" = Y
train hat3)
Y train hat <- data.table(colnames(Y train hat df)[max.col(Y train hat df,ties.method="first")])
Y_train_hat <- lapply(Y_train_hat[,], as.numeric)</pre>
```

```
train_accuracy <- mean(Y_train == Y_train_hat$V1)</pre>
#test predictions
Y test hat0 <- predict(glm.fit0, newdata = X test0, type = "response")
Y_test_hat1 <- predict(glm.fit1, newdata = X_test1, type = "response")
Y_test_hat2 <- predict(glm.fit2, newdata = X_test2, type = "response")
Y_test_hat3 <- predict(glm.fit3, newdata = X_test3, type = "response")
Y_test_hat_df <- data.table("0" = Y_test_hat0, "1" = Y_test_hat1, '2' = Y_test_hat2, "3" 
t_hat3)
Y_test_hat <- data.table(colnames(Y_test_hat_df)[max.col(Y_test_hat_df,ties.method="first")])
Y_test_hat <- lapply(Y_test_hat[,], as.numeric)</pre>
test accuracy <- mean(Y test == Y test hat$V1)</pre>
# Evaluation
cm <- table(observed=Y_test, predicted=Y_test_hat$V1)</pre>
diag = diag(cm) # number of correctly classified instances per class
rowsums = apply(cm, 1, sum) # number of instances per class
colsums = apply(cm, 2, sum) # number of predictions per class
precision = diag / colsums
recall = diag / rowsums
f1 = 2 * precision * recall / (precision + recall)
scores <- data.frame(precision, recall, f1)</pre>
train accuracy
## [1] 0.8857143
test_accuracy
## [1] 0.8516667
cm
##
                            predicted
## observed
                                 0
                                              1
                                                         2
                                                                   3
                          0 170
                                              2
##
                                                         1
##
                          1
                                    2 100 45
##
                                    0 31 107
##
                                              0
                                                         5 134
scores # has trouble distinguishing between 1 and 2
```

```
## precision recall f1
## 0 0.9883721 0.9826590 0.9855072
## 1 0.7518797 0.6802721 0.7142857
## 2 0.6772152 0.7588652 0.7157191
## 3 0.9781022 0.9640288 0.9710145
```

This set of models identifies the lowest and highest price ranges well, but has trouble distinguishing between price range 1 and 2.

Layered Binary Regressions

Our binary first model predicts well between low and high prices (0,1) vs (2,3), and our multiple binary models do a good job predicting the lowest (0) and highest (3) price ranges.

We decided to combine the strengths of both sets of models by initially predicting high vs low, then predicting 0 vs 1 for low predictions, or 2 vs 3 for high predictions.

```
Y_train <- mo_trn[,price_binary]</pre>
X train <- mo trn[, 1:20]
X_train[,price_binary := Y_train]
                                                    # training set - first binary (low-high) mode
X_train01 <- mo_trn[price_range < 2, c(1:20,24) ] # training set - second Layer binary model
 (0,1)
X_train23 <- mo_trn[price_range > 1, c(1:20,26) ] # training set - second layer binary model
 (2,3)
Y test <- mo test[,price binary]
X_test <- mo_test[, 1:20]</pre>
X_test[, price_binary := Y_test]
# fitting models
glm.fit <- glm(price_binary ~ ., data = X_train, family = binomial) # binomial for logistic regr
ession
glm.fit01 <- glm(p1 ~ ., data = X train01, family = binomial)
glm.fit23 <- glm(p3 ~ ., data = X train23, family = binomial)
#######################
# 1st Prediction Layer
#test predictions
Y test hat <- predict(glm.fit, newdata = X test, type = "response")
Y_test_hat <- data.table(Y_test_hat > 0.5)
Y test hat <- transform(Y test hat, V1 = as.numeric(V1))[,V1]
binary1 accuracy <- mean(Y test == Y test hat)</pre>
x2 <- data.table(mo_test)</pre>
x2[, hi_lo_prediction := Y_test_hat]
low table \langle -x2[hi lo prediction == 0, c(1:20, 24, 21)]
high_table <- x2[hi_lo_prediction == 1, c(1:20, 26, 21)] # split based on prediction from first
Layer
#########################
# 2nd Prediction Layer
# if first layer predicted low, second layer predicts 0 or 1
# if first layer predicted high, second layer predicts 2 or 3
#test predictions
Y test hat low <- predict(glm.fit01, newdata = low table[, 1:21], type = "response")
Y_test_hat_low <- data.table(Y_test_hat_low > 0.5)
Y test hat low <- transform(Y test hat low, V1 = as.numeric(V1))[,V1]
test_accuracy_low <- mean(low_table$price_range == Y_test_hat_low) # price_range column - not us
ed as input, just for checking results
Y_test_hat_high <- predict(glm.fit23, newdata = high_table[, 1:21], type = "response")
```

```
Y_test_hat_high <- data.table(Y_test_hat_high > 0.5)
Y_test_hat_high <- Y_test_hat_high + 2
Y test hat high <- transform(Y test hat high, V1 = as.numeric(V1))[,V1]
test_accuracy_high <- mean(high_table$price_range == Y_test_hat_high) # price_range column - no
t used as input, just for checking results
# Combining Results
matrix1 <- data.table(low_table)</pre>
matrix1[, prediction := Y_test_hat_low]
matrix1[, p1 := NULL]
matrix2 <- data.table(high table)</pre>
matrix2[, prediction := Y_test_hat_high]
matrix2[, p3 := NULL]
results <- rbind(matrix1, matrix2)</pre>
# Evaluation
test_accuracy <- mean(results$price_range == results$prediction)</pre>
cm <- table(observed=results$price_range, predicted=results$prediction)</pre>
diag = diag(cm) # number of correctly classified instances per class
rowsums = apply(cm, 1, sum) # number of instances per class
colsums = apply(cm, 2, sum) # number of predictions per class
precision = diag / colsums
recall = diag / rowsums
f1 = 2 * precision * recall / (precision + recall)
scores <- data.frame(precision, recall, f1)</pre>
binary1_accuracy
## [1] 0.9766667
test_accuracy_low
## [1] 0.9713376
test accuracy high
## [1] 0.9370629
test accuracy #overall accuracy for final output through both layers
## [1] 0.955
```

cm

```
##
            predicted
                             3
## observed
                        2
##
           0 170
                    3
                        0
                             0
               2 135
##
                       10
##
                    4 134
                             3
##
                        5 134
```

scores

```
## precision recall f1
## 0 0.9883721 0.9826590 0.9855072
## 1 0.9507042 0.9183673 0.9342561
## 2 0.8993289 0.9503546 0.9241379
## 3 0.9781022 0.9640288 0.9710145
```

This approach yields accuracy almost as high as our baseline neural net model.

Logistic Models Summary: * Having more than 2 predictors complicated problem, and we had to be creative with models we applied to this dataset. * These models overall had high accuracy, indicating a linear relationship between predictors and price range.

Tree-based Models

Tree Models have the advantage of being easily adaptable to a multiclass classification problem, and are easily interpretable.

We apply several multiclass and multiple binary tree models below.

Simple Decision Tree

```
library(rpart)
library(rpart.plot)

split = sample.split(mo$price_range, SplitRatio = 0.7)
data_train = subset(mo, split == TRUE)
data_test = subset(mo, split == FALSE)

tree = rpart(price_range ~ .,method = "class", data = data_train)

tree.pred = predict(tree, newdata = data_test, type = 'class')
tree.accuracy = mean(tree.pred == data_test$price_range)
tree.accuracy
```

```
## [1] 0.8
```

```
# Pruning Tree
tree2 <- prune(tree, cp = 0.01000000)
rpart.plot(tree2, type = 4, branch = 0, extra = 2)</pre>
```

```
2
                                                               350 / 1400
                                         ram < 2236
                                                                                                  >= 2236
                                                                                                             350 / 676
                  350 / 724
               ram < 1124
                                                                                                     ram < 3105
                                                                                                                >= 3105
                                >= 1124
                                    271 / 412
                                                                                              235 / 335
                      battery_power < 1115
                                                                                     battery_power < 1657
                                                >= 1115
                    108 / 182
                                                    163 / 230
                                                                                                   px_width < 1199
                  ram < 1508
                                                 ram < 1618
                       >= 1508
                                                            >= 1618
                                                        px_width < 1103
              0
56 / 70
0
277 / 312
                                                                                   2
189 / 251
                                         106 / 123
                                                         44 / 50
                                                                                                                33 / 44
                                                                                                                             294 / 341
```

```
CFit1 <- predict(tree2, data_test, type = "class")
#ConfM1 <- table(data_train$price_range, CFit1)
#(E1 <- (sum(ConfM1) - sum(diag(ConfM1)))/sum(ConfM1))
tree.accuracy = mean(CFit1 == data_test$price_range)
tree.accuracy</pre>
```

[1] 0.8

```
# Cross Validation
tr.control = trainControl(method = "cv", number = 10)
cp.grid = expand.grid(.cp = (0:10)*0.001)
tr = train(price_range ~., data = data_train, method = "rpart", trControl = tr.control, tuneGrid = cp.grid)
tr
```

```
## CART
##
## 1400 samples
    20 predictor
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1260, 1260, 1260, 1260, 1260, 1260, ...
## Resampling results across tuning parameters:
##
##
    ср
           RMSE
                      Rsquared
                                 MAE
##
    0.000 0.3555902 0.8992706 0.1818983
##
    0.001 0.3752021
                      0.8874764 0.1981023
##
    0.002 0.3806766 0.8836119 0.2117234
##
    0.003 0.3851284 0.8810468 0.2218490
##
    0.004 0.3973982 0.8739792 0.2412526
##
    0.005 0.4220260 0.8576575 0.2890290
##
    0.006 0.4292327 0.8526930 0.3074388
    0.007 0.4325203 0.8501444 0.3164713
##
##
    0.008 0.4356231 0.8479527 0.3232046
##
    0.009 0.4382216 0.8460195 0.3305465
##
    0.010 0.4428475 0.8425110 0.3235908
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was cp = 0.
```

```
# Predictions with best tree from CV
best.tree = tr$finalModel
prp(best.tree)
```



```
best.tree.pred = predict(best.tree, newdata = data_test)
tree.accuracy = mean(best.tree.pred == data_test$price_range)
tree.accuracy
```

[1] 0.6216667

Random Forests

Multiple Binary Random Forest Classifiers

```
library(mltools)
library(randomForest)
library(tidyr)
library(tidyselect)
library(ggplot2)
library(dplyr)
mobile data <- fread('~/R/mobile/train.csv', stringsAsFactors = T)</pre>
#set price_range as factor for one hot encoding
mobile data$price range <- as.factor(mobile data$price range)</pre>
#one hot encode the data for price range
mobile_data_one = one_hot(mobile_data,cols='price_range')
#split the data into training and test
mobile data one[, test:=0]
mobile data one[sample(nrow(mobile data one), 300), test:=1] # take 300 random rows and stick th
em in the test set
# now split
mobile data one test <- mobile data one[test==1]</pre>
mobile data one train <- mobile data one[test==0]</pre>
### Train data for each price level randomForest model, setting target variable as a factor
mobile_train_0 <- mobile_data_one_train %>% select(-(price_range_1:test))
mobile train 0$price range 0 <- as.factor(mobile train 0$price range 0)
mobile train 1 <- mobile data one train %>% select(-c(price range 0,(price range 2:test)))
mobile_train_1$price_range_1 <- as.factor(mobile_train_1$price_range_1)</pre>
mobile train 2 <- mobile data one train %>% select(-c((price range 0:price range 1),(price range
3:test)))
mobile train 2$price range 2 <- as.factor(mobile train 2$price range 2)</pre>
mobile train 3 <- mobile data one train %>% select(-c((price range 0:price range 2),test))
mobile_train_3$price_range_3 <- as.factor(mobile_train_3$price_range_3)</pre>
###Test data
mobile predictors test <- mobile data one test %>% select(-(price range 0:test))
#instantiate test Ys
price 0 test <- mobile data one test %>% select(price range 0)
price_0_test_f <- as.factor(price_0_test*price_range_0)</pre>
price 1 test <- mobile data one test %>% select(price range 1)
price_1_test_f <- as.factor(price_1_test$price_range_1)</pre>
price 2 test <- mobile data one test %>% select(price range 2)
price 2 test f <- as.factor(price 2 test$price range 2)</pre>
price 3 test <- mobile data one test %>% select(price range 3)
price_3_test_f <- as.factor(price_3_test$price_range_3)</pre>
```

```
####Code below did not work for the random Forest model but
###could be used for other applications
#cross validation (?)
#separate X (predictors)
mobile predictors train <- mobile data one train %>% select(-(price range 0:test))
#instantiate each individual train Ys and obtain the vector of the values
price 0 train <- mobile data one train %>% select(price range 0)
y_0_train <- price_0_train$price_range_0</pre>
price 1 train <- mobile data one train %>% select(price range 1)
y_1_train <- price_1_train$price_range_1</pre>
price 2 train <- mobile data one train %>% select(price range 2)
y_2_train <- price_2_train$price_range_2</pre>
price 3 train <- mobile data one train %>% select(price range 3)
y_3_train <- price_3_train$price_range_3</pre>
#fit the models for each price level
#Random Forest Classifier for price range 0
fit.rndfor_0 <- randomForest(price_range_0 ~.,</pre>
                           data = mobile train 0,
                           importance = TRUE,
                           xtest = mobile predictors test,
                           ytest = price 0 test f)
#Random Forest Classifier for price range 1
fit.rndfor 1 <- randomForest(price range 1 ~.,</pre>
                             data = mobile train 1,
                             importance=TRUE,
                             xtest = mobile_predictors_test,
                             ytest = price 1 test f)
#Random Forest Classifier for price range 2
fit.rndfor 2 <- randomForest(price range 2 ~.,</pre>
                             data = mobile train 2,
                             importance=TRUE,
                             xtest = mobile predictors test,
                             ytest = price_2_test_f)
#Random Forest Classifier for price range 3
fit.rndfor_3 <- randomForest(price_range_3 ~.,</pre>
                             data = mobile train 3,
                             importance=TRUE,
                             xtest = mobile predictors test,
                             ytest = price_3_test_f)
#Analyze the results
# Price Range 0 train
y_hat_0 <- fit.rndfor_0$predicted</pre>
price_0_acc <- mean(y_hat_0 == y_0_train)</pre>
# Price Range 0 test
```

```
y test hat 0 <- fit.rndfor 0$test$predicted</pre>
price_0_acc_test <- mean(y_test_hat_0 == price_0_test$price_range_0)</pre>
#Price Range 1 train
y hat 1 <- fit.rndfor 1$predicted
price_1_acc <- mean(y_hat_1 == y_1_train)</pre>
# Price Range 1 test
y_test_hat_1 <- fit.rndfor_1$test$predicted</pre>
price_1_acc_test <- mean(y_test_hat_1 == price_1_test$price_range_1)</pre>
#Price Range 2 train
y hat 2 <- fit.rndfor 2$predicted
price_2_acc <- mean(y_hat_2 == y_2_train)</pre>
# Price Range 2 test
y_test_hat_2 <- fit.rndfor_2$test$predicted</pre>
price_2_acc_test <- mean(y_test_hat_2 == price_2_test$price_range_2)</pre>
#Price Range 3 train
y_hat_3 <- fit.rndfor_3$predicted</pre>
price_3_acc <- mean(y_hat_3 == y_3_train)</pre>
# Price Range 3 test
y_test_hat_3 <- fit.rndfor_3$test$predicted</pre>
price_3_acc_test <- mean(y_test_hat_3 == price_3_test$price_range_3)</pre>
#Code below has the purpose of combining all 4 previous models
#Building a model for a prediction with all models
#set up y test as a 4 level factor
price levels <- mobile data one test %>% select((price range 0:price range 3))
colnames(price levels) <- c("0","1","2","3")</pre>
w <- which(price levels==1,arr.ind = T)</pre>
mobile_data_one_test$price_level <- toupper(names(price_levels)[w[order(w[,1]),2]])</pre>
#Add these values into a data table
prediction_dt <- data.table("0" = fit.rndfor_0$test$votes[,2],</pre>
                             "1" = fit.rndfor 1$test$votes[,2],
                             "2" = fit.rndfor 2$test$votes[,2],
                             "3" = fit.rndfor 3$test$votes[,2])
label rf <- apply(prediction dt,1,which.max)-1
decision_dt <- data.table("predicted values"= label_rf)</pre>
decision_dt$actualvalues <- mobile_data_one_test$price_level</pre>
#Evaluate decisions
y test <- as.numeric(decision dt$actualvalues)</pre>
predictions <- as.numeric(decision dt$`predicted values`)</pre>
analysis_table <- table(y_test,predictions)</pre>
diag = diag(analysis_table) # number of correctly classified instances per class
rowsums = apply(analysis_table, 1, sum) # number of instances per class
colsums = apply(analysis_table, 2, sum) # number of predictions per class
```

```
precision = diag / colsums
recall = diag / rowsums
f1 = 2 * precision * recall / (precision + recall)

scores <- data.frame(precision, recall, f1)
test_accuracy <- mean(y_test == predictions)

scores</pre>
```

```
## precision recall f1
## 0 0.8961039 0.9324324 0.9139073
## 1 0.7662338 0.7468354 0.7564103
## 2 0.7625000 0.7530864 0.7577640
## 3 0.8939394 0.8939394 0.8939394
```

analysis_table

```
## predictions
## y_test 0 1 2 3
## 0 69 5 0 0
## 1 8 59 12 0
## 2 0 13 61 7
## 3 0 0 7 59
```

test_accuracy

```
## [1] 0.8266667
```

```
#graphing the results
df_rf <- data.table(rowsums)
df_rf$pred <- colsums
df_rf$price_range <- c("0",'1','2','3')
colnames(df_rf) <- c('actual','predicted','price_range')
ggplot(NULL,aes(x=price_range,y=actual))+
   geom_bar(aes(fill="actual"), data= df_rf, stat = 'identity',position = "dodge",alpha=0.3)+
   geom_bar(aes(y=predicted,fill="predicted"),data=df_rf,stat = 'identity',position = "dodge",alp
ha = 0.3)+
   ylab("Count of Occurrence")</pre>
```


Multiclass Random Forest Classifier

Here we use cross validation to find optimal values of 2 Random Forest hyperparameters * m - the number of predictors randomly selected for each split * number of trees

```
mo <- fread('~/R/mobile/train.csv')
mo$price_range <- as.factor(mo$price_range)
mo_obs <- nrow(mo)
mo_idx <- sample(mo_obs, size = trunc(0.70 * mo_obs))
mo_trn <- mo[mo_idx, ]
mo_test <- mo[-mo_idx, ]

Y_test <- mo_test[,price_range]

#https://www.blopig.com/blog/2017/04/a-very-basic-introduction-to-random-forests-using-r/

dd <- data.table()
dd</pre>
```

```
## Null data.table (0 rows and 0 cols)
```

```
p <- length(colnames(mo_trn)) -1</pre>
p ov2 <- p / 2
p_sqrt <- sqrt(length(colnames(mo_trn)) -1)</pre>
trees \leftarrow seq(from = 10, to = 210, by = 10)
for (num_pred in c(p, p_ov2, p_sqrt)) {
  CV accuracies = c()
  for (num_trees in trees){
    #Perform K-fold cross validation
    k = 5
    #Randomly shuffle the data
    mo_trn_cross <- mo_trn[sample(nrow(mo_trn)),]</pre>
    #Create K equally size folds
    folds <- cut(seq(1,nrow(mo_trn_cross)),breaks=k,labels=FALSE)</pre>
    accuracies <- c()
    #Perform K-fold cross validation
    for(i in 1:k){
      #Segement data by fold with which() function
      testIndexes <- which(folds==i,arr.ind=TRUE)</pre>
      testData <- mo_trn_cross[testIndexes, ]</pre>
      trainData <- mo trn cross[-testIndexes, ]</pre>
      Y_CV <- testData$price_range
      #num_features <- sqrt(length(colnames(mo_trn)) -1)</pre>
      rf_classifier <- randomForest(price_range ~ ., data = trainData, ntree = num_trees, mtry =</pre>
num_pred, importance = TRUE )
      Y test hat <- predict(rf classifier, newdata = testData, type = "class")
      accuracy <- mean(Y test hat == Y CV)
      accuracies <- c(accuracies, accuracy)</pre>
    }
    CV_accuracy <- mean(accuracies)</pre>
    CV_accuracies <- c(CV_accuracies, CV_accuracy)</pre>
  dd <- cbind(dd, CV accuracies)</pre>
dd[, num_tree := trees]
dd
```

```
##
       CV_accuracies CV_accuracies CV_accuracies num_tree
##
    1:
           0.8750000
                          0.8550000
                                         0.7871429
                                                          10
##
    2:
           0.8785714
                          0.8750000
                                         0.8271429
                                                          20
    3:
##
           0.8828571
                          0.8792857
                                         0.8278571
                                                          30
##
    4:
           0.8785714
                          0.8857143
                                         0.8571429
                                                          40
    5:
                          0.8928571
                                                          50
##
           0.8857143
                                         0.8364286
##
   6:
           0.8907143
                          0.8928571
                                         0.8600000
                                                          60
##
    7:
           0.8871429
                          0.8900000
                                         0.8642857
                                                          70
    8:
##
           0.8892857
                          0.8914286
                                         0.8542857
                                                          80
   9:
           0.8900000
                          0.8914286
                                                          90
##
                                         0.8571429
## 10:
           0.8871429
                          0.8907143
                                         0.8600000
                                                         100
## 11:
           0.8900000
                          0.8914286
                                         0.8685714
                                                         110
## 12:
           0.8921429
                          0.8892857
                                         0.8607143
                                                         120
## 13:
           0.8821429
                          0.8942857
                                         0.8650000
                                                         130
## 14:
                          0.8978571
                                                         140
           0.8821429
                                         0.8657143
## 15:
           0.8871429
                          0.8928571
                                         0.8692857
                                                         150
## 16:
           0.8785714
                          0.8971429
                                         0.8621429
                                                         160
## 17:
           0.8828571
                          0.8935714
                                         0.8685714
                                                         170
## 18:
           0.8850000
                          0.8928571
                                         0.8700000
                                                         180
## 19:
           0.8935714
                          0.8914286
                                                         190
                                         0.8735714
## 20:
           0.8950000
                          0.8942857
                                         0.8742857
                                                         200
## 21:
           0.8857143
                          0.8871429
                                         0.8657143
                                                         210
       CV_accuracies CV_accuracies CV_accuracies num_tree
##
```


which.max(dd $^m=p/2$) # 140 trees with m=p/2 is max cv accuracy

[1] 14

```
rf_classifier <- randomForest(price_range ~ ., data = mo_trn, ntree = 140, mtry = p_ov2, importa
nce = TRUE )

Y_test_hat <- predict(rf_classifier, newdata = mo_test, type = "class")

test_accuracy <- mean(Y_test_hat == Y_test)

cm <- table(observed=Y_test, predicted=Y_test_hat)

diag = diag(cm) # number of correctly classified instances per class
rowsums = apply(cm, 1, sum) # number of instances per class
colsums = apply(cm, 2, sum) # number of predictions per class

precision = diag / colsums
recall = diag / rowsums
f1 = 2 * precision * recall / (precision + recall)

scores <- data.frame(precision, recall, f1)

test_accuracy</pre>
```

```
## [1] 0.8866667
```

cm

```
##
           predicted
## observed
             0
                 1
                     2
##
          0 149 10
                     0
##
          1 12 113
                     8
                          0
##
          2
             0 11 117 13
##
                 0 14 153
             a
```

scores

```
## precision recall f1
## 0 0.9254658 0.9371069 0.9312500
## 1 0.8432836 0.8496241 0.8464419
## 2 0.8417266 0.8297872 0.8357143
## 3 0.9216867 0.9161677 0.9189189
```

```
options(warn = defaultW)
```

Typically the recommended value for m in a random forest is the square root of the number of predictors, but that approach consistently under preformed compared to m = p (same as bagging), and m = p / 2.

The best cv accuracy came from a model with 140 trees and m = p / 2.