Práctica 2

Parte 1

• A partir el dataset Batting.csv, obtener el siguiente dataframe para teamID == 'BOS':

	yearID	teamID	R	$^{\mathrm{HR}}$	SO	IBB
8123	1901	BOS	2	0	0.0	NaN
8162	1901	BOS	108	6	18.0	NaN
8171	1901	BOS	26	0	9.0	NaN
8181	1901	BOS	4	0	1.0	NaN
8211	1901	BOS	104	3	22.0	NaN

- Reemplazar los NaN de la variable SO (strikeouts) usando el IQR.
- Reemplazar los ${\tt NaN}$ de la variable ${\tt IBB}$ ($base\ por\ bolas\ intencionales)$ usando su media.
- Dibujar la distribución de densidad antes y después de reemplazar los datos para ambas variables.
- Remover los outliers de la variable HR y comparar la correlación entre las variables R, HR, SO e IBB antes y después removerlos.
- Explicar por qué cambia tanto la correlación entre HR e IBB después de remover los outliers.

Parte 2

• Extraer la siguiente serie de tiempo del dataset Batting.csv:

yearID	avgHR
1871	0.408696
1872	0.235669
1873	0.376000
1874	0.325203
1875	0.183486

- Aplicar el filtro asimétrico de medianas móviles a la serie de tiempo con q=20.
- Aplicar el filtro exponencial a la serie de tiempo con $\theta = 0.1$.
- Graficar la serie original junto con estos filtros.