Reminders

$$\nabla_{y} X = \text{the tangential part of } \frac{dX}{dt}$$

$$= \sum_{k} \left(\frac{dX^{k}}{dt} + \sum_{i,j} \prod_{i,j}^{k} X^{i} \frac{dY^{j}}{dt} \right) \chi_{k} \quad \text{is intrinsic.}$$

$$\frac{J}{dt} \langle X \mid Y \rangle = \langle \nabla_{\dot{Y}} X \mid Y \rangle + \langle X \mid \nabla_{\dot{Y}} Y \rangle$$

X is parallel along X iff $\nabla_{\hat{Y}}X \equiv 0$ iff $\forall k$, $\frac{dX^k}{dt} + \sum_{i,j} T_{i,j} X^i \frac{dY^j}{dt} = 0$.

if X and Y are probled along X, then $t \mapsto (X(t), Y(t))$ is constant.

In particular, if X is parallel along X, then $t \mapsto |X(t)|$ is constant.

Proper Let Y be a C^2 curve in V. Thun Y is a constant speed geodesic iff $\frac{dY}{dt}$ is probled along Y.

Proof (\Leftarrow) Suppose $\frac{18}{3t}$ is parallel along Y. then $\left|\frac{1}{3t}\right|$ is constant, =V, say.

And the tangential component of $\frac{1}{4t^2}$ is O. But $\frac{dT}{dD} = \frac{1}{dD}\left(\frac{1}{2}\frac{1}{2}\frac{1}{dD}\right)$ $= \frac{d}{dD}\left(\frac{1}{V}\frac{dY}{dt}\right) = \frac{1}{V}\frac{d^2Y}{dt^2}\frac{dt}{dD} = \frac{1}{V^2}\frac{d^2Y}{dt^2}$, so $\frac{dT}{dD}$ is also normal to the surface SO(Y) is a geodesic.

(\Rightarrow) Averse the Steps

Theorem 5.7 in Ch4 Let $X \in T_pM$ with |X|=1, and $S_i \in R$. Then $\exists a,b \in R$ with $a < \Delta_0 < b$ and $\exists a$ unit-speed geodesic $Y:(a_1b) \longrightarrow M$ so that $Y(\Delta_0) = r$ and $Y'(S_0) = X$.

A is C. Moreover, if $Y:(a_1b) \longrightarrow M$ and $\widetilde{Y}:(\widetilde{a},\widetilde{b}) \longrightarrow M$ are true such geodesics,

Then $\forall S \in (a_1b) \cap (\widetilde{a},\widetilde{b})$, $Y(S) = \widetilde{Y}(S)$.

If First, let's show that $\exists z.>0$ (depending on M, p, and X) such that $\forall \varepsilon \in (0, \varepsilon_0)$, thre is a unique unit-speed geolesic $X: (D_0-E, D_0+E) \longrightarrow M$ s.t. $Y(D_0)=p$ and $Y'(D_0)=X$.

Jet X: U open $\leq \mathbb{R}^2 \xrightarrow{\text{onlo}} V \text{ open} \leq M$ be a \mathbb{C}^3 coord patch on M with $P \in V$, $(0,0) \in U$, and X(0,0) = P. Since V is open in M, there is an E, >0 s.t. $V_1 \stackrel{\text{def}}{=} \{1 \in M : |q-P| < E_1\} \leq V$.

Mote: take Tik to be

Tik(Y(6), Y²(3))

Now let $Y: (a, b) \longrightarrow M$ and $\tilde{Y}: (\tilde{\alpha}, \tilde{b}) \longrightarrow M$ be two unit-speed geodesics with $\Delta_0 \in (a,b)$, $(\tilde{\alpha},\tilde{b})$, $Y(\Delta_0) = p = \tilde{Y}(\Delta_0)$ and $Y'(\Delta_0) = X = \tilde{Y}'(\Delta_0)$. Let $\alpha = \max\{a,\tilde{a}\} \in A$ $\beta = \min\{b,\tilde{b}\}$. We WTS that $\forall a \in (\alpha,\beta)$ we have $Y(\Delta) = \tilde{Y}(\Delta)$.

reviewthis mountion thing. First, lets show mut $Y(\delta) = \tilde{Y}(\delta) \ \forall \ \delta \in [\delta_0, \beta]$. Suppose not then $\exists \ r \in (\delta_0, \beta)$ St. $Y(r) \neq \tilde{Y}(r)$. Let $D = \{t \in [\delta_0, \beta] : \ Y(\delta) = \tilde{Y}(\delta) \ \forall \ \delta \in [\delta_0, t] \}$. Then Γ is an upper bound for D, and $[\delta_0, \delta_0 + \delta_0] \subseteq D$. Let $\delta_1 = \sup D$. Then $\delta_0 < \delta_0 + \delta_0 < \delta_1 \leq r < \beta$. If $\delta \in [\delta_0, \delta_1]$, then δ_0 is not an upper bound for D so $\delta \leq t$ for some $t \in D$ so $\delta \in [\delta_0, t]$ so $Y(\delta) = \tilde{Y}(\delta)$. Thus $Y = \tilde{Y}$ on $[\delta_0, \delta_1]$ set $Y_1 \tilde{Y}$ are C' and so $C(\delta) = \tilde{Y}(\delta)$.

There is an $\delta > 0$ s.t. $\forall \delta \in (\delta_1 - \delta_1, \delta_1 + \delta_1)$, $Y(\delta) = \tilde{Y}(\delta)$. So $\delta_1 + \frac{\delta}{2} \in D$, so δ_1 is not an upper bound for D. (a similar argument works for (α, δ_0)). \Box