

01

Idea Schematic and initial design Working Model

Quadruped legs the concept

Quadruped robots can use different mechanisms for their legs, including:

- 1. four-bar linkages
- 2. pulley systems

offering good force transmission and simplicity in design.

Four-Bar Linkage

Agenda

Theoretical plan

Key Idea

- Using four-bar Linkage mechanism
- 2 DOF
- Jumping feature

Optimization

PSO Algorithm

Using PSO to Optimize the functionality of our leg

Visualize

We developed a code which shows our four-bar leg in a close loop

Our Output is:

Four length Value for each of the links in our four-bar linkage
We visualize it in
Python and
WorkingModel

Visualization of the very first Idea

PSO Net

Optimization with PSO

Visualization in Python


```
from pyswarm import pso
from joblib import Parallel, delayed
# Def
```

Study objectives

```
self.r2 = r2 # Input link length
   self.r3 = r3 # Coupler link length
   self.r4 = r4 # Output link length
   self.theta1 = theta1 # Input angle
def get position(self, theta):
   # Define the kinematic equations for the four-bar mechanism
      r2 r2 thota1 - solf r1 solf r2 solf r4 solf thota
                                    Getting Our
  Developing Our
                                    Output from
  PSO Net
                                     PSO
```

delta = 4 * B ** 2 - 4 * (C - A) * (C + A)

if np.any(delta < 0):</pre>

return np.inf, np.inf

Visualize it in Python

```
10
        theta4 = 2 * np.arctan2(-B + np.sqrt(delta), A + C)
        theta3 = np.arctan2(r1 * np.sin(Theta2) - r4 * np.sin(theta4), r1 * np.cos(Theta2) - r4 * np.cos(theta4))
```

class

Import libraries

import numpy as np
from pyswarm import pso
from joblib import Parallel, delayed

2. FourBarClass

```
def init (self, r1, r2, r3, r4, theta1):
    self.r1 = r1 # Ground link length
    self.r2 = r2 # Input link length
   self.r3 = r3 # Coupler link length
   self.r4 = r4 # Output link length
    self.theta1 = theta1 # Input angle
def get velocity(self, theta):
   r1, r2, r3, r4, theta1 = self.r1, self.r2, self.r3, self.r4, self.theta1
   t = np.arange(0, np.pi, 0.001)
   W = theta \# (rad/s)
   Theta2 = W * t
   A = 2 * r1 * r4 * np.cos(theta1) - 2 * r2 * r4 * np.cos(Theta2)
   B = 2 * r1 * r4 * np.sin(theta1) - 2 * r2 * r4 * np.sin(Theta2)
   C = r1 ** 2 + r2 ** 2 + r4 ** 2 - r3 ** 2 - 2 * r1 * r2 * (
        np.cos(theta1) * np.cos(Theta2) + np.sin(theta1) * np.sin(Theta2))
   delta = 4 * B ** 2 - 4 * (C - A) * (C + A)
   if np.any(delta < 0):
       return np.inf, np.inf
   theta4 = 2 * np.arctan2(-B + np.sqrt(delta), A + C)
   x coupler = r2 * np.cos(Theta2) + r3 * np.cos(theta3)
   y coupler = r2 * np.sin(Theta2) + r3 * np.sin(theta3)
   # Derivatives to get velocity
   dx 4 dt = np.gradient(x coupler, t)
   dy 4 dt = np.gradient(y coupler, t)
   x 4= r1 * np.sin(theta1) + r4 * np.sin(theta4)
   y 4= r1 * np.cos(theta1) + r4 * np.cos(theta4)
   dx + dt = np.gradient(x + 4, t)
   dy 4 dt = np.gradient(y 4, t)
   velocity = np.sqrt(dx 4 dt**2 + dy 4 dt**2)
   return velocity[0]
```

class FourBarMechanism:

3.
Objective function

```
def objective_function(params):
    r1, r2, r3, r4 = params
    mechanism = FourBarMechanism(r1, r2, r3, r4, theta1=0)

max_deviation = 0
    for i in np.linspace(0, 2 * np.pi, 100):
        velocity = mechanism.get_velocity(i)
        if np.isinf(velocity).any():
            return np.inf
        deviation = np.abs(velocity - target_velocity(i))
        max_deviation = max(max_deviation, deviation)

return max_deviation
```

4. Target function

```
def target_velocity(theta):
    # Assume a simple target velocity function for demonstration
    return 12500 # constant target velocity
```

5. PSO Net

```
bounds = [(5, 10), (2, 4), (8, 10.5), (2, 4.5)]
# Perform PSO optimization
best_params, best_score = pso(objective_function, lb=[b[0] for b in bounds], ub=[b[1] for b in bounds], swarmsize=100)
```

Define bounds for the parameters (adjust as needed for your specific mechanism)

```
return velocity[0]
# Define the objective function to optimize
def objective function(params):
                                                                                                 After we reached to
   r1, r2, r3, r4 = params
                                                                                                      the maximum
   mechanism = FourBarMechanism(r1, r2, r3, r4, theta1=0)
                                                                                                iterations out output
   max deviation = 0
   for i in np.linspace(0, 2 * np.pi, 100):
                                                                                                      will be shown
       velocity = mechanism.get velocity(i)
       if np.isinf(velocity).any():
          return np.inf
       deviation = np.abs(velocity - target velocity(i))
       max deviation = max(max deviation, deviation)
   return max deviation
def target velocity(theta):
   # Assume a simple target velocity function for demonstration
   return 12500 # constant target velocity
# Define bounds for the parameters (adjust as needed for your specific mechanism)
bounds = [(
# Perform P
                                                  PSO Output
best params
```

velocity = np.sqrt(dx 4 dt**2 + dy 4 dt**2)

print(f'Best Parameters: {best_params}')
print(f'Best Score: {best_score:0.3} ')

Ру

Optimized length

Simply Our output is four value for L1, L2, L3, L4 respectively.

10 cm

3.2 cm

9.5 cm

4.5 cm

••• Stopping search: maximum iterations reached --> 100
Best Parameters: [9.91902416 3.24943772 9.558697 4.48924005]
Best Score: 1.25e+04

Visualize
Optimized
Linkage
in
Python

SolidWorks

3D printing

Manufacturing

Designing in **SolidWorks**

The design process in SolidWorks will be explained in the following steps.

NO.	PART NUMBER	DESCRIPTION	QTY.
1	Knee		1
2	HIP		1
3	Crank		1
4	Coupler		2
5	Mg995		1
6	attachmentStraight		1
7	servoMotorMG996R		1
8	attachmentCircular		1
9	Spring	Corrosion-Resistant Extension Springs with Hook Ends	1
10	B18.6.7M - M4 x 0.7 x 35 Type I Cross Recessed PHMS 35C		3
11	B18.6.7M - M3 x 0.5 x 16 Type I Cross Recessed PHMS 16C		4

Step 1.
The simplified schematic of the mechanism in sketch

As the first step we drew an sketch in order to understand the mechanism and its movements

Step 2:

Designing the mechanism components with

optimized dimensions

Including parts of our four-bar linkage and their components

Link 1
the HIP

Link 2 the Crank

Link 3 the Coupler

Step 4: **Assembling** all component and checking for alignments and connections

23

Current situation & problems statement

Impedance and admittance

80% density

Adding lines at the points of intersection.

Spring

Position

Stiffness factor

Length of spring

Final
performance
review and error
correction upon
observing the
printed version

Final Design

Assemble

Electronics (Arduino)

Implementation in Reality

04

Printed parts

Ready to Assemble

Assembled leg

How can we test it?

Stand

The leg will be placed on this

Electronics (Arduino)

Joysticks And Arduino 1. Library

#include <Servo.h>

2. Objects of the Servo class and define Joysticks

```
Servo servo1;
Servo servo2;
int joy1Pin = A0; // analog pin used to connect the joystick 1
int joy2Pin = A1; // analog pin used to connect the joystick 2
```

3. Setup function

4. Loop function

```
void setup()
{
   servo1.attach(3); // attaches the servo on pin 9
   servo2.attach(5); // attaches the servo on pin 10
}
```

```
void loop()
 int joy1Val = analogRead(joy1Pin);
 int joy2Val = analogRead(joy2Pin);
 int servo1Val = map(joy1Val, 0, 1023, 0, 100);
 int servo2Val = map(joy2Val, 0, 1023, 0, 100);
 // move the servos
 servo1.write(servo1Val);
 servo2.write(servo2Val);
 delay(15);
```

All in one glance

05

Final Result

Sources

••••

Literature

- TAHA FAGHANI. (2024). Publisher
 - Designer
- NEGAR ASADI. (2024). Publisher
 - Designer
- ARTIN MOKHTARIHA. (2024). Publisher
 - Designer

