

Università degli studi Milano-Bicocca Dipartimento di Fisica - Laboratorio II Esperienza Ottica - Interferometro

F. Ballo, S. Franceschina, S. Dolci - Gruppo T1 39 June 21, 2024

Abstract

Nella seguente relazione vengono presentati i risultati ottenuti dalla sesta esperienza del corso di Laboratorio II riguardante l'analisi di fenomeni ottici. L'obiettivo di questa esperienza è quello di riprodurre due esperimenti di interferometria: Fabri-Perot e Michelson. Per ciascuno di questi setup riprodotti in laboratorio lo scopo è quello di verificare certe relazioni, che occorrono nel momento in cui raggi luminosi interferiscono tra loro, dalle quali è possibile ricavare informazioni utili come la lunghezza d'onda della sorgente.

Contents

1	Configurazione setup esperienza	2
2	Fabry-Perot 2.1 Verifica della legge di interferenza	4
3	Michelson 3.1 Specchio 3.2 Frange 3.3 Conclusioni Michelson	5
4	Considerazioni sugli errori 4.1 Commenti finali	5
5	Tabelle	6

1 Configurazione setup esperienza

Per le misure di questa esperienza abbiamo utilizzato:

- Un interferometro di precisione PASCO scientific Modello OS-9255A/OS-9258A, link.
- Sorgente: laser monocromatico He-Ne con lunghezza d'onda $\lambda = 632.8\,\mathrm{nm}$.
- Lente divergente: lente da 18mm.
- Specchi compresi nella dotazione PASCO

2 Fabry-Perot

La prima parte dell'esperienza consiste nella verifica della legge che descrive i massimi di interferenza, visibili quando due sorgenti si sommano in fase. Per farlo abbiamo montanto l'interferometro in configurazione Fabry-Perot:

Figure 1: Configurazione Fabry-Perot.

L luce del fascio laser incide contro una lente divergente e entra nella cavità di Fabry-Perot, ovvero due specchi semiriflettenti distanziati d. Le riflessioni successive tra i due specchi formano la figura di interferenza sullo schermo, posto a circa un metro di distanza. È interessante notare come, per ricavare le relazioni che verranno utilizzate per descrivere il fenomeno, si introduca l'ipotesi che i raggi luminosi siano paralleli tra di loro nell'ingresso della cavità, nonostante la presenza di una lente divergente. Abbiamo motivato questa ipotesi osservando che la lente divergente è posta molto vicina alla cavità, e quindi la divergenza dei raggi luminosi è trascurabile. Non si può dire lo stesso per quanto riguarda i raggi che incidono sullo schermo, essi infatti sono considerati divergenti perchè la distanza tra schermo e specchio è significativa.

Figure 2: Configurazione Fabry-Perot.

Un'altra osservazione importante riguarda gli angoli delle frange di interferenza. Per l'angolo θ , quello riportato in figura 2,

abbiamo posto il vertice nel fuoco della lente divergente (18mm avanti) e misurato la distanza tra tale fuoco e lo schermo. In questo modo, misurando in seguito la distanza tra il centro della figura di interferenza e la frangia, è possibile calcolare l'angolo θ come l'arcotangente del rapporto tra le due distanze. In ogni caso, tali considerazioni sono state rilevanti solo per questa prima parte dell'esperienza, in cui era richiesto di verificare la legge 1 confrontando i valori di angoli attesi con quelli misurati. Per tutte le altre esperienze abbiamo potuto considerare $\theta \approx 0$ e quindi $\cos(\theta) \approx 1$ poichè lo schermo si trova a una grande distanza dalla sorgente puntiforme.

2.1 Verifica della legge di interferenza

In questa prima parte dell'esperienza abbiamo cercato di verificare la seguente legge di interferenza, che descrive quando i due raggi luminosi interferiscono in fase:

$$\delta_r \frac{\lambda}{2\pi} + 2d\cos(\theta) = N\lambda \tag{1}$$

d è la distanza tra i due specchi, δ_r rappresenta lo sfasamento , θ è l'angolo di incidenza della luce, N è l'ordine di interferenza e λ è la lunghezza d'onda del laser sorgente.

Per verificarla abbiamo deciso di invertire la relazione in modo da evidenzare la dipendenza di $\cos(\theta)$ dalle altre variabili, ricavando la relazione 2:

$$\cos(\theta) = \frac{N\lambda}{2d} - \frac{\delta_r \lambda}{4d\pi} \tag{2}$$

Dopo aver verificato le opportune calibrazioni del laser, delle lenti e dello specchio, abbiamo misurato il diametro dei cerchi di interferenza con un calibro e calcolato così il coseno dell'angolo θ .

La distanza dello schermo dalla sorgente è pari a D=1.375m, assumendo come punto sorgente il fuoco della lente (18mm). Successivamente abbiamo eseguito un'interpolazione tramite la legge 2, mantenendo come parametri liberi δ_r e d.

Abbiamo ripetuto tale misura per quattro volte, variando d, al fine di poter verificare in più configurazioni la legge 1.

Riportiamo i grafici ottenuti per ciascuna misurazione in figura 3:

Riportiamo nella tabella 1 i valori ottenuti per i parametri δ_r e d e i relativi errori, insiema ai valori di $\tilde{\chi}^2$ e p-value ottenuti dalle interpolazioni.

Figure 3: Interpolazioni della legge 2.

I	nterpolazi	one 1	Interpolazione 2			
Parametro	Valore	Errore	Parametro	Valore	re Errore	
d1	0.00252	4.82e-07	d2	0.00254	4.83e-07	
delta1	5.01e+04	9.56	delta2	5.04e+04	9.58	
$\tilde{\chi}_1^2$	0.107	P value 1: 1	$\tilde{\chi}_2^2$	0.0398	P value 2 : 1	
I	nterpolazi	one 3	Interpolazione 4			
Parametro	Valore	Errore	Parametro	Valore	Errore	
d3	d3 0.00219 4.22e-07		d4	0.00255	4.84e-07	
delta3	4.34e+04	8.36	delta4	5.06e + 04	9.60	
$\tilde{\chi}_3^2$ 0.75		Pvalue 3: 0.678	$\tilde{\chi}_4^2$	0.0756	P value 4 : 1	

Table 1: Dati, deviazioni e test $\tilde{\chi}^2$ con p-value, suddivisi per interpolazione.

2.2 Calibrazione micrometro - Frange

L'interferometro in configurazione Fabry-Perot è dotato di un micrometro che permette di variare la distanza tra i due specchi Δd . Quando questa Δd varia, varia anche il cammino ottico dei raggi luminosi e quindi la posizione delle frange di interferenza. La legge che lega questo spostamento è la seguente:

$$\Delta d = \frac{\Delta N \cdot \lambda}{2 \cdot \cos(\theta)} \tag{3}$$

Misurando quante frange scorrono sullo schermo è possibile risalire a una misura di alta precisione del Δd e quindi calibrare il micrometro.

Come passo del nomio abbiamo scelto $\Delta d_{\rm nomio} = 20 \mu m$, il coseno dell'angolo θ approssimato a 1 e infine abbiamo ripetuto la misura 5 volte ottenendo come risultato:

2.3 Conclusioni Fabry-Perot

- 3 Michelson
- 3.1 Specchio
- 3.2 Frange
- 3.3 Conclusioni Michelson
- 4 Considerazioni sugli errori
- 4.1 Commenti finali

5 Tabelle

Gia	Giallo		Ciano		Blu		Viola	
gradi	primi	gradi	primi	gradi	primi	gradi	primi	
48	5	49	33	50	5	51	1	
48	3	49	36	50	8	51	2	
48	1	49	35	50	8	51	0	
48	0	49	33	50	10	51	1	
48	4	49	34	50	4	51	0	
48	2	49	34	50	5	51	0	
48	2	49	31	50	6	51	1	
48	3	49	34	50	7	51	2	
48	6	49	31	50	5	51	1	
48	2	49	32	50	6	51	0	

Table 2: Angoli di minima deviazione per mercurio