מתמטיקה בדידה - תרגיל בית 14 - שחר פרץ

מידע כללי

ניתן בתאריך: 21.2.2024 תאריך הגשה: 27.2.2024

מאת: שחר פרץ ת.ז.: תחפשו בקומיטים הקודמים

תרגיל בית 14 – עוצמות

שאלה 1

 $A_A\colon A\to A', h_B\colon B\to B'$ יהיו $A_A\colon A\to A', h_B\colon B\to B'$ יהיו $A_A\colon A\to A', h_B\colon B\to B'$ יהיו

(א) סעיף

נוכיח שהוא זיווג: $h\colon \mathcal{P}(A)\to \mathcal{P}(A'), h=\lambda\mathcal{A}\in \mathcal{P}(A).\{h_A(a)\mid a\in\mathcal{A}\}$. נוכיח שהוא זיווג. $(\mathcal{P}(A))=|\mathcal{P}(A')|=|\mathcal{P}(A')|$ נוכיח שהוא זיווג. נחשב: $\mathcal{A}\in \mathcal{P}(A)$. נבחר $\mathcal{A}\in \mathcal{P}(A)$ נוכיח שהוא זיווג.

$$h(\mathcal{A}') = \{h_A(a) \mid a \in \{h_A^{-1} \mid a \in \mathcal{A}\}\} = \{h_A(h_A^{-1}) \mid a \in \mathcal{A}\} = \{a \mid a \in \mathcal{A}\} = \mathcal{A}$$
 : חח"ע: נניח $\{h_A(a) \mid a \in \mathcal{A}\} = \{h_A(b) \mid b \in \mathcal{B}\}$ לכן $\{h_A(a) \mid a \in \mathcal{A}\} = \{h_A(b) \mid b \in \mathcal{B}\}$ וסה"כ משוויון קבוצות:

$$b \in \mathcal{B} \land c = h_A(b) \longleftrightarrow a \in \mathcal{A} \land c = h_A(a)$$

 $\mathcal{A}=\mathcal{B}$ כלומר $\forall a\in\mathcal{A}\land b\in\mathcal{B}.a=b$ זיווג חח"ע אז זיווג חח"ע אז $\forall a\in\mathcal{A},b\in\mathcal{B}.h_A(a)=h_A(b)$ כדרוש

(ב) סעיף

. |
 $A \uplus B| = |A' \uplus B'|$ נניח נוכיח לוע, A', B' זרות ונניח
 A, B נניח נניח לוע

$$\mathbf{h}=\lambda x\in A$$
 ש $B.$ $\begin{cases} h_A(x) & \text{if }x\in A\\ h_B(x) & \text{if }x\in B \end{cases}, h\colon A\uplus B\to A'\uplus B$ בתבונן בזיווג:

נוכיח שהוא זיווג.

על: תהי
$$A \in A \uplus B$$
 נבחר $A' = \{ \begin{cases} h_A^{-1}(x) & \text{if } x \in A' \\ h_B^{-1}(x) & \text{if } x \in B' \end{cases} \mid x \in A \}$ נבחר $A \in A \uplus B$ נמצא $A \in A' \land x \not\in B'$

. מתקיים באופן מידי מתוך שוויון פונקציות. h(A') = h(B') מתקיים באופן

שאלה 2

יהיו A,A' קבוצות. נניח $|A'| \leq |A'|$, כלומר קיימת A,A',B יהיו

(א) סעיף

 $.h=\lambda f\in B o A.h_A\circ f$ נוכיח h:(B o A) o (B o A'). נמצא פונקציה (B o A'). נמצא פונקציה h:(B o A) o (B o A') חח"ע. נבחר h:(B o A'). נמצא פונקציה $h_A\circ f=h_A\circ g$ נוכיח ש־h:(g) o (B o A'). ונניח h:(g) o (B o A'). ונניח h:(g) o (B o A') ומכיוון ש־h:(g) o (B o A') ומכיוון פונקציות h:(g) o (B o A') ומכיוון שh:(g) o (B o A') ומכיוון פונקציות h:(g) o (B o A')

(ב) סעיף

 $A = \lambda f \in B \to A. f \circ h_A$ נוכיח $A : (A \to B) \to (A' \to B)$. נמצא פונקציה ($A \to B = A. f \circ h_A$ חח"ע. נבחר $A \to B = A. f \circ h_A$ נוכיח ש־ $A \to B = A. f \circ h_A$ נוכיח ש־ $A \to B = A. f \circ h_A$ ונניח ש־ $A \to B = A. f \circ h_A$ ומשוויון פונקציות $A \to B = A. f \circ h_A$ ומשוויון פונקציות $A \to B = A. f \circ h_A$ ומשוויון פונקציות $A \to B = A. f \circ h_A$ ומשוויון פונקציות $A \to B = A. f \circ h_A$ נכיח ש

שאלה 3

(א) סעיף

נוכיח $h:\mathbb{N} o (\mathbb{N} o \mathbb{N}), h=\lambda n \in \mathbb{N}. (\lambda m \in \mathbb{N}.n)$ נוכיח $h:\mathbb{N} o (\mathbb{N} o \mathbb{N}), h=\lambda n \in \mathbb{N}. (\lambda m \in \mathbb{N}.n)$ נוכיח $h:\mathbb{N} o (\mathbb{N} o \mathbb{N}), h=\lambda n \in \mathbb{N}.$ נוכיח $h:\mathbb{N} o (\mathbb{N} o \mathbb{N}), h=\lambda n \in \mathbb{N}.$ נוכיח $h:\mathbb{N} o (\mathbb{N} o \mathbb{N}), h=\lambda n \in \mathbb{N}.$ נוכיח $h:\mathbb{N} o (\mathbb{N} o \mathbb{N}), h=\lambda n \in \mathbb{N}.$ נוכיח $h:\mathbb{N} o (\mathbb{N} o \mathbb{N}), h=\lambda n \in \mathbb{N}.$

(ב) סעיף

נוכיח $|\mathbb{R}| \leq |\mathbb{R} \to \{0,1\}|$. נבחר פונקציה:

$$h: \mathbb{R} \to (\mathbb{R} \to \{0, 1\}), h = \lambda r \in \mathbb{R}. \left(\lambda x \in \mathbb{R}. \begin{cases} 1 & \text{if } x = r \\ 0 & \text{else} \end{cases}\right)$$

נוכיח h חח"ע. נניח $f_1=h(r_1), f_2=h(r_2)$ נסמן $f_1, r_2\in\mathbb{R}$ נסמן $h(r_1)=h(r_2)$ מכלל h, יהי $h(r_1)=h(r_2)$ נניח h חח"ע. נניח בשלילה $f_1(x)\neq f_2(x)$ ונתבונן ב־ $f_1(x)=f_2(x)=1$ נקבל $f_1(x)=f_2(x)=1$ ולכן $f_1(x)=f_2(x)=1$ מכלל $f_1(x)=f_2(x)=1$

(ג) סעיף

נוכיח $|\mathbb{Z}|=|\{-1,1\}, imes \mathbb{N}|$ משום ש־ $|\{-1,1\}|=|\{-1,1\}|$ נוכל להוכיח באופן שקול $|\mathbb{Z}|=|\{0,1\}\times \mathbb{N}|$. נבחר פונקציה $h:\mathbb{Z} \to (\{0,1\}\times \mathbb{N}), h=\lambda z\in \mathbb{Z}. \langle \frac{z}{|z|}, |z| \rangle$

חח"ע: יהיו $\langle \frac{z_1}{|z_1|},|z_1| \rangle = \langle \frac{z_2}{|z_2|},|z_2| \rangle$ מההנחה $z_1=z_2$ מההנחה $z_1=z_2$ ומהתכונה המרכזית של $z_1=z_2$ נניח $z_1=z_2$, נניח $z_1=z_2$ מההנחה $z_1=z_2$ מההנחה $z_1=z_2$ ומהתכונה המרכזית של $z_1=z_2$ כדרוש.

שאלה 4

(א) סעיף

צ.ל. $[0,1] \sim [2,7]$. נבחר זיווג $h = \lambda x \in [2,7]$. נבחר זיווג (נבחר זיווג $[0,1] \sim [2,7]$

. בדרוש. x=y כדרוש. נניח h(x)=h(y), כלומר x=y. נכפיל את האגפים ב־6 ונוסיף x=y. כלומר x=y. כדרוש.

lacktriangleעל: יהי $h(y)=rac{6x+1-1}{6}=x$.y=6x+1 נבחר גבחר $x\in[0,1]$ יהי

(ב) סעיף

צ.ל. [2,7] $\sim [2,7] \sim [2,7] \times [2,7]$. בהתאם לטענה נתונה, תנאי מספיק לכך הוא ש־ $[0,1] \sim [0,1] \times [0,1]$, שהוכחנו בסעיף צ.ל. ($(0,1) \sim [2,7] \times [2,7]$, שהוכחנו בסעיף זה \blacksquare

(ג) סעיף

צ.ל. $\{5,6\} o \mathbb{N} \sim \mathbb{N} imes \mathbb{N}_{\mathrm{even}}$. נבחר זיווג

$$h \colon (\{5,6\} \to \mathbb{N}) \to (\mathbb{N} \times \mathbb{N}_{\text{even}}), h = \lambda f \in \{5,6\} \to \mathbb{N}.\langle f(5), 2f(6) \rangle$$

.נוכיח ש־h זיווג

חח"ע: יהי $\langle f(5),2f(6)\rangle=\langle g(5),2g(6)\rangle$ לכן, לכן, h(f)=h(g) ובאופן שקול $f,g\in\{5,6\}\to\mathbb{N}$ ובאופן שקול $f(5)=g(5)\land f(6)=g(6)$ נחסר $f(5)=g(5)\land f(6)=g(6)$ נחסר $f(5)=g(5)\land f(6)=g(6)$ נחסר $f(5)=g(5)\land f(6)=g(6)$ כלומר $f(5)=g(5)\land f(6)=g(6)$ ומשוויון פונקציות $f(5)=g(5)\land f(6)=g(6)$

uעל: יהי $u = 2k^-$ נעביר אגפים ונקבל . $u \in \mathbb{N} \land b \in \mathbb{N}_{\mathrm{even}}$, כלומר $u \in \mathbb{N} \land b \in \mathbb{N}_{\mathrm{even}}$, כלומר $u \in \mathbb{N} \land b \in \mathbb{N}_{\mathrm{even}}$, כלומר $u \in \mathbb{N} \land b \in \mathbb{N}_{\mathrm{even}}$, ונוכיח $u \in \mathbb{N} \land b \in \mathbb{N}$, נבחר $u \in \mathbb{N} \land b \in \mathbb{N}$, ונוכיח $u \in \mathbb{N} \land b \in \mathbb{N}$, נבחר $u \in \mathbb{N} \land b \in \mathbb{N}$, נבחר $u \in \mathbb{N} \land b \in \mathbb{N}$, ונוכיח $u \in \mathbb{N} \land b \in \mathbb{N}$

(ד) סעיף

צ.ל. $\mathbb{Z} \times [0,7) \to \mathbb{R}, h = \lambda \langle z,r \rangle \in \mathbb{Z} \times [0,7).z + rac{r}{7}$ נוכיח $\mathbb{Z} \times [0,7) \sim \mathbb{R}$. צ.ל.

חח"ע: יהי $z_1+\frac{r_1}{7}=z_2+\frac{r_2}{7}$, יהי $h(x_1)=h(x_2)$, נניח $h(x_1)=h(x_2)$, נניח נניח z_1+z_2 יהי $z_1\neq z_2$ יהי $z_1\neq z_2$ יהי $z_1\neq z_2$ ונקבל $z_1\neq z_2$ נניח בשלילה בשלילה $z_1\neq z_2$ ונקבל $z_1+z_2=z_1$ ונקבל $z_1+z_2=z_2=z_1$ ונח $z_1+z_2=z_2=z_1=z_1$ ובאופן דומה $z_1+z_2=z_2=z_1=z_1=z_1$

נכפיל אגפים $z_1+\frac{r_1}{7}=z_1+\frac{r_2}{7}$ וסה"כ $z_1=z_2$ נכפיל אגפים לומר $z_1=z_2$ וזו סתירה. לכן, $z_1=z_2$ נציב $z_1+\frac{r_1}{7}=z_1+\frac{r_2}{7}$ נכפיל אגפים ונחסיר וסה"כ $z_1=z_2$

 $h(x') = \lfloor x \rfloor + rac{7(x-\lfloor x \rfloor)}{7} = \lfloor x \rfloor + x - \lfloor x \rfloor = x$ לכן $x' = \langle \lfloor x \rfloor, 7(x-\lfloor x \rfloor) \in \rangle \mathbb{Z} \times [0,7)$ נבחר $x \in \mathbb{R}$ יהי $x \in \mathbb{R}$ יהי בחר נדרוש.

(ה) סעיף

צ.ל. $(\{1,4,9,16\} \times \mathbb{N}) \rightarrow \mathbb{N}.h = \langle a,b \rangle \in \{1,4,9,16\} \times \mathbb{N}.\sqrt{a} + 4b$. נבחר זיווג . $\{1,4,9,16\} \times \mathbb{N} \sim \mathbb{N}_+$ זיווג.

על: יהי $n \in \mathbb{N}_+$ נוכיח $h(\langle a,b \rangle) = \sqrt{(n-4b)^2} + 4b = n-4b+4b=n$ נוכיח $b = \left\lceil \frac{n}{4} \right\rceil, a = (n-4b)^2$. נוכיח $n \in \mathbb{N}_+$ יהי $n \in \mathbb{N}_+$ יהי $n \in \mathbb{N}_+$ יהי $n \in \mathbb{N}_+$ את תחום ההגדרה המתאים כדרוש. $n \in \mathbb{N}_+$

(טעיף (ו

צ.ל. $(5,7] \sim \mathbb{R}$. נבחר זיווג:

f:
$$(3,4) \cup (5,7] \to \mathbb{R}.f = \lambda r \in (3,4) \cup (5,7].\begin{cases} \frac{1}{r-4} + 1 & \text{if } r \in (3,4) \\ \frac{2}{r-5} - 1 & \text{if } r \in (5,7] \end{cases}$$

fנוכיח ש f זיווג.

(נפצל למקרים: f(r)=x בתחום כך ש־ $x\in\mathbb{R}$ יהי $x\in\mathbb{R}$ יהי

: נמצא x < 0 מתאים, כלומר: x < 0 אם x < 0

$$\frac{1}{r-4} + 1 = x$$

$$1 = (r-4)(x-1)$$

$$1 = r(x-1) - 4x + 4$$

$$4x - 3 = r(x-1)$$

$$\frac{4x-3}{x-1} = r$$

כאשר $\frac{4x-3}{x-1}$ מוגדר לכל $x \neq 1$ ו $x \neq 1$, כששניהם פסוקי אמת תחת ההנחות. נוכיח שx בתחום המתאים. נניח בשלילה שהוא אינו, ונגיע לסתירה בכל אחד מהמקרים:

$$\begin{cases} \frac{4x-3}{x-1} < 4 \\ \frac{4x-3}{x-1} > 3 \end{cases} \iff \begin{cases} 4x-3 > 4x-4 \\ 4x-3 < 3x-3 \end{cases} \iff \begin{cases} -3 > -4 \\ x < 0 \end{cases}$$

. הערה: הסימן הוחלף כי לכל x בתחום ההגדרה [x-1<0]. סה"כ הגענו לשקילות לפסוקי אמת כדרוש.

 $x=rac{5x+7}{x+1}$ באופן דומה (רק על מספרים אחרים), אם $x\geq 0$ אז נבחר -

: נפלג למקרים: $x_1,x_2\in\mathbb{R}$ ונניח $x_1,x_2\in\mathbb{R}$ ומלג למקרים:

 $x_1 \in (3,4) \land x_2 \in (5,7]$ אם •

$$\frac{1}{x_1 - 4} + 1 = \frac{2}{x_2 - 5} - 1$$
$$1 + x_2 - 5 = 2 - x_1 + 4$$
$$-5 = x_2 - x_1$$

 $x_2 - x_1 \le 3 - 7 = -2$ זאת בסתירה לכך ש

- . באופן דומה, אם לסתירה $x_1 \in (5,7] \land x_2 \in (3,4)$ באופן דומה, אם כן.
- . אם $x_1=x_2$ ולכן $\frac{1}{x_1-4}=\frac{1}{x_2-4}$ אז $x_1\in (3,4)\land x_2\in (3,4)$
- . אם $x_1=x_2$ ולכן $rac{1}{x_1-5}=rac{1}{x_2-5}$ אז $x_1\in(5,7]\wedge x_2\in(5,7]$ אם •

סה"כ כיסינו את כל המקרים ■

(ז) סעיף

נוכיח נבחר את הזיווג מתאים. נמצא נוכיח (0,1] (1) נמצא נוכיח נכחר את הזיווג להלן:

f:
$$[0,1] \cup \{2\} \to [0,1], f = \lambda x \in \mathbb{R}.$$

$$\begin{cases} 1 & \text{if } x = 2\\ \frac{1}{n+1} & \exists n \in \mathbb{N}. \frac{1}{n} = x\\ x & \text{else} \end{cases}$$

(מצמצום לכל x שונה) באופן חח"ע באופן מתאים x בוכיח ש־x דיווג. הפונקציה מוגדרת היטב כי

. (לא אציין מקרים שנכונים באופן ריק). בה"כ, נפלג $h(x_1) = h(x_2)$. נניח $x_1 \in \mathbb{R} \land x_2 \in \mathbb{R}$ יהי $x_2 \in \mathbb{R}$. נניח

- לאחר $.h(x_1):=1=rac{1}{n+1}:=h(x_2)$ אם $.h(x_1):=1=rac{1}{n+1}:=h(x_2)$ אם געיל, נציב בהגדרת הפונקציה לעיל, נסיק $.h(x_1):=1=\frac{1}{n+1}:=h(x_2)$ אם $.h(x_1):=1=\frac{1}{n+1}:=h(x_1)$ אם $.h(x_1):=1=\frac{1}{n+1}:=h(x_1):=h(x_1)$ אם $.h(x_1):=h(x_1$
 - . אם $x_2=x_1$ אם $h(x_1):=2=x_2=h(x_2)$ אז אז אז או $\forall n\in\mathbb{N}.rac{1}{n}
 eq x\wedge x_1=2$ אם $extstyle ag{7}$
- $n'=n+1\in\mathbb{N}$ כך אם אם $h(x_1):=rac{1}{n+1}=x_2:=h(x_2)$ ידוע ($\exists n\in\mathbb{N}.rac{1}{n}=x\wedge orall n\in\mathbb{N}.rac{1}{n}\neq x$ כך ש־ $x=rac{1}{n'}$ וזו סתירה.

על: יהי $x \in [0,1]$. נכיק, שכל המקרים אינם תקפים ובפרט $r \in [0,1] \cup \{2\}$ על: יהי $x \in [0,1]$. נכיק, שכל המקרים אינם תקפים ובפרט $x \in [0,1] \cup \{2\}$ המקרה אחרון, כלומר $x \neq x$, בסתירה לכך שזה עובד בעבור x = x (ההנחה בשלילה כאן מאפשרת להתעלם משאר המקרים), כדרוש

(ח) סעיף

. נוכיח $f\colon [0,1]\cup\mathbb{N} \to \mathbb{R}$ נמצא $[0,1]\cup\mathbb{N} \sim \mathbb{R}$ נוכיח

$$f = \lambda x \in [0, 1] \cup \mathbb{N}.\begin{cases} \frac{1}{2x} & \text{if } x \in \mathbb{N} \\ \frac{1}{2n+1} & \text{if } \exists n \in \mathbb{N}.a = \frac{1}{n} \\ x & \text{else} \end{cases}$$

נוכיח ש־f זיווג. [הערה: הפונקציה מוגדרת היטב כי $\frac{1}{2n+1}=x$ מתאים n באופן חח"ע (מצמצום) לכל

חח"ע: יהי \mathbb{N} (אתעלם ממקרים הנכונים $h(x_1)=h(x_2)$ נוכיח נוכיח $h(x_1)=h(x_2)$ נוכיח (אתעלם ממקרים הנכונים $x_1,x_2\in[0,1]\cup\mathbb{N}$ מקיימים את אותו התנאי כך שניתן להוכיח בעזרת פישוט אלגברי פשוט):

- עביר $h(x_1):=\frac{1}{2n+1}=x_2:=h(x_2)$ אז $\exists n\in\mathbb{N}.\frac{1}{n}=x_1\wedge\forall n'\in\mathbb{N}.\frac{1}{2n'+1}\neq x_2\wedge x_2, x_1\not\in\mathbb{N}$ שם $h(x_1):=\frac{1}{2n+1}=x_2:=h(x_2)$ אגפים, נקבל $x_1=x_2$ ומכאן $x_2=x_2$ ומכאן $x_2=x_2$, מההנחות לעיל $x_2\neq0$ ולכן נוכל לחלק ב־ $x_2=x_2$ ומכאן $x_2=x_2$ ומכאן $x_2=x_2$ ומכאן $x_1=x_2$ ומכאן $x_2=x_2$ ומכאן $x_1=x_2$ ומרוש. [וזו $x_1=x_2$ ומרוב ביינו (אורע מההוכחה) ולכן $x_1=x_2$ ואורע מההוכחה]
- אם ש־ $h(x_1):=rac{1}{2x_1}=x_2:=h(x_2)$ אז י $\forall n'\in\mathbb{N}.rac{1}{2n'+1}
 eq x_2\wedge x_2
 ot\in\mathbb{N}\wedge x_1\in\mathbb{N}$ אם $n'\in\mathbb{N}$ מתאים וזו סתירה.

סה"כ כיסינו את כל המקרים הלא־טרוויאלים, והגענו לסתירה/פסוק אמת, כדרוש

 \blacksquare (ז) על: באופן דומה לסעיף

שאלה 5

(א) סעיף

נגדיר:

$$R = \{ \langle \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \rangle \in \mathbb{R}^2 \times \mathbb{R}^2 \mid x_1 + y_1 = x_2 + y + 2 \}$$

: נבחר $h\colon \mathbb{R}^2/R o \mathbb{R}, h=\lambda[\langle x,y
angle]_R \in \mathbb{R}^2 imes \mathbb{R}^2/R.x+y$ נבחר

מוגדרת היטב: יהי $x_1+y_1 \neq x_2+y_2$ מוגדרת היטב: יהי $x_1+y_1 \neq x_2+y_2$ ונניח $\langle x_1,y_2 \rangle$ ונניח $\langle x_1,y_2 \rangle$ ונניח $\langle x_1,y_2 \rangle$ בדרוש. $h(\langle x_1,y_1 \rangle) = x_1+y_1 \neq x_2+y_2 = h(\langle x_2,y_2 \rangle)$

נטיק $.x_1+y_1 \neq x_2+y_2$ יהי $.[\langle x_1,y_1 \rangle]_R, [\langle x_2,y_2 \rangle]_R \in \mathbb{R}^2 \times \mathbb{R}^2/R$ נטיק $.[\langle x_1,y_1 \rangle]_R, [\langle x_2,y_2 \rangle]_R \in \mathbb{R}^2 \times \mathbb{R}^2/R$ נטיק $.[\langle x_1,y_1 \rangle]_R = x_1+y_1 \neq x_2+y_2 = h([\langle x_2,y_2 \rangle]_R)$

lacktriangleעל: יהי R=r נסיק , $[\langle 0,r
angle]$, נסיק R=r נסיק גבחר $L([\langle 0,r
angle])$

(ב) סעיף

 $f: \mathcal{P}(\mathbb{Z})$. נגדיר: $f: \mathcal{P}(\mathbb{Z}) \to \mathcal{P}(\mathbb{N})$. נגדיר:

$$S = \{ \langle A, B \rangle \in \mathcal{P}(\mathbb{Z}) \times \mathcal{P}(\mathbb{Z}) \mid \min(f(A)) = \min(f(B)) \}$$

 $\operatorname{range}(f)=\mathbb{N}$ וכי $h\colon \mathcal{P}(\mathbb{Z})/S \to \mathbb{N}, h=\lambda[A]_S \in \mathcal{P}(\mathbb{Z}) \times \mathcal{P}(\mathbb{Z}). \min(f(A))$ וכי $\operatorname{range}(\min(f(A))=\mathbb{N}$ ולכן $\operatorname{range}(\min(f(A))=\mathbb{N})$ וווג מוגדר היטב. נוכיח זאת:

מוגדר היטב: יהי $\min(f(A)) \neq \min(f(B))$ כלומר $\neg ASB$ נניח $A,B \in \mathcal{P}(\mathbb{Z})$ יהי מוגדר $h(A) = \min(f(A)) \neq \min(f(B)) = h(B)$

ASB , כלומר $h([A]_S) = h([B]_S)$ נניח ($[A]_S, [B]_S \in \mathcal{P}(\mathbb{Z}) \times \mathcal{P}(\mathbb{Z})/S$ יהי $[A]_S, [B]_S \in \mathcal{P}(\mathbb{Z}) \times \mathcal{P}(\mathbb{Z})/S$ נניח ($[A]_S = [B]_S$ כדרוש.

 $h(A)=h([\{n\}]_S)=\min(f(\{n\}))=\min(\{n\}\cap\mathbb{N})=\min(\{n\})=n$, נבחר $A=[\{n\}]_S$, נבחר $A=[\{n\}]_S$, נבחר כדרוש \blacksquare

(ג) סעיף

. נגדיר היטב $\mathbb{R}/T \to [0,1), h = \lambda[x]_T \in \mathbb{R}^2/T.\sin(x)$ נגדיר נוכיח . $T = \{\langle x,y \rangle \in \mathbb{R}^2 \mid \sin(x) = \sin(y)\}$ נגדיר:

. בדרוש. $h(x)=\sin(x)\neq\sin(y)=h(y)$ בדרוש. $[x]_T\neq[y]_T$ בניח גניח $[x]_T\neq[y]_T$, בניח מוגדר היטב: יהי

 $\sin(x)=\sin(y)$ מההנחה $\sin(x)=\sin(y)$ ונוכיח $h([x]_T)=h([y]_T)$ ונוכיח ובאופן שקול $\sin(x)=\sin(y)$ ובאופן שקול $\sin(x)=\sin(y)$ יהי $\sin(x)=\sin(y)$ נניח $\sin(x)=\sin(y)$ נניח ובאופן שקול $\sin(x)=\sin(y)$ כלומר $\sin(x)=\sin(y)$ כלומר $\sin(x)=\sin(y)$ כלומר $\sin(x)=\sin(y)$ כלומר $\sin(x)=\sin(y)$ נניח ובאופן שקול $\sin(x)=\sin(y)$ ונוכיח $\sin(x)=\sin(y)$ ונוכיח $\sin(x)=\sin(y)$ מהנחה ובאופן שקול $\sin(x)=\sin(y)$ ובאופן שקול $\sin(x)=\sin(y)$ ובאופן שקול $\sin(x)=\sin(y)$ ובאופן שקול $\sin(x)=\sin(y)$ ובאופן שקול $\sin(x)=\sin(x)$

תחת ההנחה A משפט מקורס מתמטיקה $h(y)=\sin(\arcsin(x))=x$, נקבל $y=\arcsin(x)$... נבחר $x\in[0,1)$ משפט מקורס מתמטיקה (דרוש ($x\in[0,1)$

(ד) סעיף

: נבחר זיווג $R=\{\langle f,g
angle \in (\mathbb{N} o \mathbb{N})^2 \mid \mathrm{Im}(f)=\mathrm{Im}(g)\}$ נגדיר:

$$h: (\mathbb{N} \to \mathbb{N})/R \to (\mathcal{P}(\mathbb{N}) \setminus \emptyset), h = \lambda[f]_R \in (\mathbb{N} \to \mathbb{N})/R.\mathrm{Im}(f)$$

.h(f)
eq h(g) נוכיח -fRg כלומר -fRg נוכיח ($f]_R
eq [g]_R$ נניח -fRg נניח -fRg נניח -fRg נניח -fRg נטיק: -fRg נטיק: -fRg נעיח -fRg (-fRg -fRg -f

 $\mathrm{Im}(f)
eq \mathrm{Im}(g)$ נניח $h([f]_R) \neq h([g]_R)$ ונוכיח $h([f]_R) \neq h([g]_R)$ נניח $h([f]_R) \neq h([g]_R)$ נניח $h([f]_R) \neq h([g]_R)$ נניח $h([f]_R) \neq h([g]_R)$ נניח $h([f]_R) \neq h([g]_R)$ נביח $h([f]_R) \neq h([g]_R)$ (בביח $h([f]_R) \neq h([g]_R)$

על: יהי $\emptyset\setminus N$ משום ש־N לא ריקה, קיים בה לפחות איבר יחיד, נסמנו N. נבחר את הפונקציה:

$$f = \lambda n \in \mathbb{N}. \begin{cases} n & \text{if } n \in \mathbb{N} \\ c & \text{else} \end{cases}$$

ונוכיח דו כיוונית. באמצעות הכלה דו כיוונית. $h([f]_R)=N$

- . כדרוש. $n\in h([f]_R)$ נציב ונקבל ($n\in\mathbb{N}$ כדרוש. $n\in h([f]_R)$ יהוי $n\in h([f]_R)$ יהוי $n\in h([f]_R)$
- n
 otin M. נניח בשלילה $n \in M$. נניח בשלילה $n \in M$. נניח בשלילה $n \in M([f]_R)$. נניח בשלילה $n \in M([f]_R)$. נניח בשלילה $n \in M$ אז $n \in M$ אז $n \in M$ אז $n \in M$ בפצל למקרים: אם $n \in M$ אז $n \in M$ כלומר $n \in M$ וזו סתירה. סה"כ $n \in M$ כדרוש $n \in M$

יהיו A,B קבוצות ונניח $A\sim B$, ולכן קיימת זיווג $A \to B$ נוכיח נניח $A \to B$. נבחר את הזיווג $A \to B$, ולכן קיימת $G \to A$, ולכן שהוא זיווג ע"י כך שנוכיח שהוא הופכיי $G \to A$, וווג ע"י כך שנוכיח שהוא הופכית.

 $: \varphi \circ \psi = id_{B \to B}$ הופכי מימין: נוכיח •

$$\forall f \in B \to B. (\varphi \circ \psi)(f) = \varphi(\psi(f)) = \varphi(h^{-1} \circ f \circ h) = \underbrace{h \circ h^{-1}}_{id_B} \circ f \circ \underbrace{h \circ h^{-1}}_{id_B} = f$$

 $: \varphi \circ \psi = id_{A \to A}$ הופכי משמאל: נוכיח •

$$\forall f \in A \to A. (\psi \circ \varphi)(f) = \psi(\varphi(f)) = \psi(h \circ f \circ h^{-1}) = \underbrace{h^{-1} \circ h}_{id_A} \circ f \circ \underbrace{h^{-1} \circ h}_{id_A} = f$$

 \blacksquare סה"כ φ הופכית, ולכן זיווג

שאלה ז

תהי קבוצה A. נסמן S(A) כקבוצת כל יחסי הסדר החזקים על A וב־W(A) את כל יחסי הסדר החלשים. נוכיח תהי קבוצה A נסמן S(A) כקבוצת כל יחסי הסדר החזקים על $F:S(A) \to W(A)$ נבחר זיווג. $S(A) \sim W(A)$

בטענות עזר: $s_1=s_2$ נשתמש בטענות $F(s_1)=F(s_2)$, נניח $s_1,s_2\in S(A)$ ונוכיח.

- A
 eq A אם $A \in A$ קיים $A \in A$ קיים סדר $A \in A$ אזי $A \in A$ אזי $A \in A$ כדרוש) כך ש־ $A \in A$, ולכן $A \in A$ משום ש־ $A \in A$ יוס סדר $A \in A$ אזי $A \in A$ אזי $A \in A$ וזו $A \in A$ אזי $A \in A$ אזי $A \in A$ אזי $A \in A$ אזי $A \in A$ וועברט עבור $A \in A$ כלומר נגרר $A \in A$ כלומר נגרר $A \in A$ כדרוש.
- . נניח A=C נוכיח A=C ונניח A,C ונניח A,C ונניח A,C וונניח A,C וונניח

ידוע $s_1\cap id_A=\emptyset \wedge s_2\cap id_A=\emptyset$ משום ש־ $s_1,s_2\in S$ אז מ־(1) נקבל (1) נקבל $s_1,s_2\in S$ משום ש־ $s_1,s_2\in S$ משום ש־ $s_1,s_2\in S$ מחשר משום ש- $s_2,s_2\in S$

$$x \in (A \setminus B) \cup B \tag{1}$$

$$\iff (x \in A \land x \notin B) \lor x \in B \tag{2}$$

$$\iff (x \in A \lor x \in B) \land (x \in B \lor x \notin B) \tag{3}$$

$$\iff \neg((x \notin A \land x \notin B) \lor (x \in B \land x \notin B)) \tag{4}$$

$$\iff \neg(x \notin A \land x \notin B)) \tag{5}$$

$$\iff x \in A \lor x \in B \tag{6}$$

$$\iff x \in A \cup B \tag{7}$$

וסה"כ $w\in W(A)$ נסיק $w\in W(A)$ מההנחה הנחה הרא נסיק $w\in W(A)$ מההנחה הרא ובפרט רפלקסיבי, ולכן $w\in W(A)$ מטרנזיטיביות $w\cup id_A=w\cup id_A=w$ באופן שקול באופן שקול מטרנזיטיביות מטרנזיטיבייות מטרנייות מטרנזיטיבייות מטרנייות מטרנייו