Supplementary material document for: Maximum softly penalized likelihood in factor analysis

Philipp Sterzinger[®] *1, Ioannis Kosmidis[®]2, and Irini Moustaki[®]1

¹London School of Economics and Political Science, Department of Statistics ²University of Warwick, Department of Statistics

October 5, 2025

S1 Additional numerical results

S1.1 Simulation results

Figure S1: Violin plots of estimates of $\log(|\text{Bias}|)$ (top panel), $\log(\text{RMSE})$ (middle panel) and probability of underestimation (bottom panel) for the elements of $\Lambda\Lambda^{\top}$, for each estimator, $n \in \{50, 100, 400\}$, and loading matrix settings A_5 and B_5 . The average over all elements for each setting is noted with a dot.

^{*}Correspondence concerning this article should be addressed to Philipp Sterzinger, Department of Statistics, London School of Economics and Political Science. E-mail: p.sterzinger@lse.ac.uk

Figure S2: Violin plots of estimates of $\log(|\text{Bias}|)$ (top panel), $\log(\text{RMSE})$ (middle panel) and probability of underestimation (bottom panel) for the elements of $\Lambda\Lambda^{\top}$, for each estimator, $n \in \{50, 100, 400\}$, and loading matrix settings A_8 , and B_8 . The average over all elements for each setting is noted with a dot.

S1.2 Data examples

Table S1: Estimates of Λ and Ψ for the Davis data using ML and MSPL with Akaike $[n^{-1/2}]$ and Hirose $[n^{-1/2}]$ penalties. A value 0.00 indicates a positive estimate that is less than 0.01, and -0.00 indicates a negative estimate that is greater than -0.01.

\overline{q}	Item		ML		Aka	$nike[n^{-1/2}]$	[2]	Hir	$\operatorname{Hirose}[n^{-1/2}]$				
		$oldsymbol{\Lambda}_{ullet,1}$	$oldsymbol{\Lambda}_{ullet,2}$	Ψ	$oldsymbol{\Lambda}_{ullet,1}$	$\boldsymbol{\Lambda}_{\bullet,2}$	Ψ	$oldsymbol{\Lambda}_{ullet,1}$	$oldsymbol{\Lambda}_{ullet,2}$	Ψ			
1	1	-0.81		0.34	-0.81		0.34	-0.81		0.34			
	2	-0.81		0.34	-0.81		0.34	-0.81		0.34			
	3	-0.48		0.77	-0.48		0.77	-0.48		0.77			
	4	-0.41		0.83	-0.41		0.83	-0.41		0.83			
	5	-0.67		0.55	-0.67		0.55	-0.67		0.55			
	6	-0.89		0.20	-0.89		0.20	-0.89		0.20			
	7	-0.84		0.29	-0.84		0.29	-0.84		0.30			
	8	-0.66		0.57	-0.66		0.57	-0.66		0.57			
	9	-0.84		0.30	-0.84		0.30	-0.84		0.30			
2	1	-0.00	3.76	-13.14	-0.83	0.43	0.12	-0.83	0.43	0.12			
	2	-0.77	0.19	0.37	-0.81	0.10	0.34	-0.81	0.10	0.34			
	3	-0.46	0.11	0.78	-0.48	0.02	0.77	-0.48	0.02	0.77			
	4	-0.41	0.07	0.82	-0.41	-0.14	0.81	-0.41	-0.13	0.81			
	5	-0.67	0.14	0.54	-0.67	-0.11	0.53	-0.68	-0.11	0.53			
	6	-0.88	0.19	0.19	-0.89	-0.10	0.19	-0.90	-0.09	0.19			
	7	-0.82	0.18	0.30	-0.83	-0.05	0.30	-0.84	-0.04	0.30			
	8	-0.65	0.14	0.56	-0.66	-0.09	0.56	-0.66	-0.09	0.56			
	9	-0.82	0.18	0.30	-0.83	-0.05	0.30	-0.84	-0.04	0.30			

Table S2: Estimates of Λ and Ψ for the Emmett data using ML and MSPL with Akaike $[n^{-1/2}]$ and Hirose $[n^{-1/2}]$ penalties. A value 0.00 indicates a positive estimate that is less than 0.01, and -0.00 indicates a negative estimate that is greater than -0.01.

\overline{q}	Item				Akaike[$n^{-1/2}$]			$Hirose[n^{-1/2}]$										
		$oldsymbol{\Lambda}_{ullet,1}$	$\Lambda_{ullet,2}$	$\Lambda_{ullet,3}$	${f \Lambda}_{ullet,4}$	$\Lambda_{ullet,5}$	Ψ	$\Lambda_{ullet,1}$	$\Lambda_{ullet,2}$	$\Lambda_{ullet,3}$	$\boldsymbol{\Lambda}_{\bullet,4}$	$\Lambda_{ullet,5}$	Ψ	$oldsymbol{\Lambda}_{ullet,1}$	$\Lambda_{ullet,2}$	$\Lambda_{ullet,3}$	$\Lambda_{ullet,4}$	$\Lambda_{ullet,5}$	Ψ
1	1	-0.71					0.49	-0.71					0.49	-0.71					0.49
	2	-0.73					0.46	-0.73					0.46	-0.73					0.46
	3	-0.55					0.70	-0.55					0.70	-0.55					0.70
	4	-0.74					0.45	-0.74					0.45	-0.74					0.45
	5	-0.62					0.61	-0.62					0.61	-0.62					0.61
	6	-0.69					0.52	-0.69					0.52	-0.69					0.52
	7	-0.72					0.48	-0.72					0.48	-0.72					0.48
	8	-0.47					0.78	-0.47					0.78	-0.47					0.78
	9	-0.82					0.33	-0.81					0.34	-0.82					0.34
2	1	-0.73	-0.11				0.46	-0.72	-0.10				0.46	-0.73	-0.10				0.46
	2	-0.73	-0.04				0.46	-0.73	-0.03				0.46	-0.73	-0.03				0.47
	3	-0.56	-0.14				0.67	-0.56	-0.13				0.67	-0.56	-0.13				0.67
	4	-0.72	0.54				0.19	-0.71	0.54				0.19	-0.71	0.55				0.19
	5	-0.58	0.50				0.41	-0.58	0.50				0.41	-0.58	0.51				0.41
	6	-0.67	0.58				0.22	-0.66	0.58				0.22	-0.66	0.59				0.22
	7	-0.75	-0.18				0.40	-0.75	-0.18				0.40	-0.75	-0.18				0.40
	8	-0.49	-0.11				0.74	-0.49	-0.11				0.74	-0.49	-0.11				0.75
	9	-0.86	-0.19				0.22	-0.86	-0.19				0.22	-0.86	-0.18				0.22
3	1	-0.70	-0.24	0.01			0.45	-0.70	-0.23	0.01			0.45	-0.71	-0.21	0.04			0.45
	2	-0.73	-0.06	-0.20			0.43	-0.72	-0.06	-0.21			0.43	-0.73	-0.06	-0.19			0.43
	3	-0.54	-0.12	-0.27			0.62	-0.54	-0.13	-0.27			0.62	-0.55	-0.13	-0.25			0.62
	4	-0.78	0.38	0.18			0.21	-0.77	0.40	0.15			0.21	-0.77	0.43	0.13			0.21
	5	-0.65	0.43	0.06			0.38	-0.64	0.44	0.04			0.38	-0.64	0.46	0.00			0.38
	6	-0.74	0.40	0.33			0.18	-0.74	0.42	0.31			0.18	-0.73	0.46	0.28			0.18
	7	-0.72	-0.24	-0.16			0.40	-0.71	-0.24	-0.16			0.40	-0.73	-0.23	-0.13			0.40
	8	-0.47	-0.41	0.38			0.46	-0.48	-0.39	0.39			0.46	-0.49	-0.34	0.42			0.47
	9	-0.82	-0.29	-0.10			0.23	-0.82	-0.28	-0.10			0.23	-0.83	-0.26	-0.06			0.23
4	1	-0.56	-0.16	-0.10	-0.44		0.46	-0.69	-0.23	0.05	-0.10		0.45	-0.70	-0.20	0.09	-0.05		0.45
	2	-0.47	-0.00	-0.13	-0.57		0.44	-0.70	-0.11	-0.18	-0.14		0.44	-0.72	-0.12	-0.16	-0.04		0.44
	3	-0.01	-0.00	-3.78	0.02		-13.31	-0.56	-0.23	-0.45	0.18		0.40	-0.56	-0.25	-0.34	0.33		0.40
	4	-0.70	0.46	-0.09	-0.30		0.20	-0.79	0.40	0.02	0.05		0.20	-0.78	0.43	0.00	0.07		0.20
	5	-0.53	0.48	-0.07	-0.31		0.39	-0.65	0.43	-0.04	-0.08		0.38	-0.65	0.44	-0.09	-0.05		0.38
	6	-0.73	0.47	-0.07	-0.19		0.20	-0.75	0.45	0.17	0.05		0.19	-0.74	0.49	0.14	0.03		0.19
	7	-0.49	-0.18	-0.12	-0.56		0.40	-0.69	-0.27	-0.07	-0.19		0.40	-0.72	-0.27	-0.05	-0.11		0.40
	8	-0.73	-0.43	-0.05	0.12		0.26	-0.51	-0.35	0.42	0.23		0.38	-0.49	-0.26	0.53	0.17		0.38
	9	-0.60	-0.21	-0.13	-0.59		0.23	-0.80	-0.30	-0.03	-0.17		0.23	-0.83	-0.29	0.00	-0.09		0.23
5	1	-0.67	-0.26	0.08	0.15	0.05	0.45	-0.70	-0.22	0.08	0.04	-0.04	0.45	-0.70	-0.22	0.08	0.05	-0.03	0.45
	2	-0.66	-0.20	-0.16	0.16	0.34	0.35	-0.73	-0.12	-0.19	-0.07	0.22	0.36	-0.73	-0.13	-0.20	-0.06	0.22	0.36
	3	-0.51	-0.20	-0.20	0.11	0.15	0.62	-0.54	-0.21	-0.25	0.07	0.06	0.59	-0.54	-0.22	-0.25	0.07	0.06	0.59
	4	-0.03	0.00	-0.00	2.98	0.00	-7.88	-0.78	0.42	-0.01	0.19	-0.03	0.17	-0.79	0.42	-0.03	0.20	-0.02	0.17
	5	-0.57	0.33	0.08	0.23	0.25	0.45	-0.64	0.46	-0.10	-0.10	-0.11	0.34	-0.65	0.45	-0.11	-0.08	-0.11	0.34
	6	-0.63	0.35	0.46	0.26	0.44	0.00	-0.74	0.49	0.19	0.02	0.08	0.16	-0.74	0.49	0.18	0.03	0.09	0.17
	7	-0.78	-0.17	-0.10	0.14	-0.12	0.32	-0.72	-0.28	-0.08	-0.10	-0.19	0.35	-0.73	-0.28	-0.07	-0.08	-0.19	0.35
	8	-0.43	-0.39	0.42	0.09	-0.08	0.47	-0.48	-0.26	0.43	0.10	-0.04	0.50	-0.48	-0.25	0.43	0.11	-0.03	0.50
	9	-0.79	-0.31	-0.00	0.16	0.10	0.24	-0.82	-0.29	0.01	-0.09	0.02	0.23	-0.82	-0.29	0.02	-0.08	0.03	0.23

Table S3: Estimates of Λ and Ψ for the Maxwell data using ML and MSPL with Akaike $[n^{-1/2}]$ and Hirose $[n^{-1/2}]$ penalties. A value 0.00 indicates a positive estimate that is less than 0.01, and -0.00 indicates a negative estimate that is greater than -0.01.

\overline{q}	Item			ML				Aka	$nike[n^{-1/2}]$	2]	$\text{Hirose}[n^{-1/2}]$					
	,	$oldsymbol{\Lambda}_{ullet,1}$	$\Lambda_{ullet,2}$	$\Lambda_{ullet,3}$	$\Lambda_{ullet,4}$	Ψ	$oldsymbol{\Lambda}_{ullet,1}$	$\Lambda_{ullet,2}$	$\Lambda_{ullet,3}$	${f \Lambda}_{ullet,4}$	Ψ	$oldsymbol{\Lambda}_{ullet,1}$	$\Lambda_{ullet,2}$	$\Lambda_{ullet,3}$	$\boldsymbol{\Lambda}_{\bullet,4}$	Ψ
1	1	-0.76				0.42	-0.76				0.42	-0.76				0.42
	2	-0.48				0.77	-0.48				0.77	-0.48				0.77
	3	-0.75				0.43	-0.75				0.43	-0.75				0.43
	4	-0.55				0.69	-0.55				0.69	-0.55				0.69
	5	-0.61				0.63	-0.61				0.63	-0.61				0.63
	6	-0.40				0.84	-0.40				0.84	-0.40				0.84
	7	-0.60				0.63	-0.60				0.63	-0.60				0.63
	8	-0.38				0.86	-0.38				0.86	-0.38				0.86
	9	-0.45				0.80	-0.45				0.80	-0.45				0.80
	10	-0.34				0.89	-0.34				0.89	-0.34				0.89
2	1	-0.75	0.18			0.41	-0.75	0.18			0.41	-0.77	0.06			0.41
	2	-0.47	0.18			0.75	-0.47	0.18			0.75	-0.49	0.11			0.75
	3	-0.75	0.29			0.35	-0.75	0.29			0.35	-0.79	0.17			0.35
	4	-0.54	0.25			0.65	-0.54	0.25			0.65	-0.57	0.16			0.65
	5	-0.60	0.30			0.56	-0.59	0.30			0.56	-0.63	0.20			0.56
	6	-0.41	-0.23			0.77	-0.41	-0.23			0.77	-0.37	-0.30			0.77
	7	-0.68	-0.43			0.35	-0.68	-0.43			0.35	-0.60	-0.54			0.35
	8	-0.42	-0.43			0.64	-0.42	-0.43			0.64	-0.35	-0.49			0.64
	9	-0.47	-0.31			0.68	-0.47	-0.31			0.68	-0.42	-0.38			0.68
	10	-0.39	-0.48			0.62	-0.39	-0.48			0.62	-0.31	-0.53			0.62
3	1	-0.73	0.26	0.20		0.37	-0.72	0.25	0.22		0.37	-0.72	0.24	0.22		0.37
	2	-0.47	0.23	-0.34		0.62	-0.48	0.23	-0.32		0.62	-0.48	0.23	-0.32		0.62
	3	-0.73	0.37	-0.15		0.31	-0.74	0.37	-0.12		0.31	-0.74	0.36	-0.12		0.31
	4	-0.51	0.29	-0.10		0.64	-0.52	0.29	-0.08		0.64	-0.52	0.29	-0.08		0.64
	5	-0.57	0.39	0.34		0.41	-0.56	0.37	0.36		0.42	-0.56	0.37	0.36		0.42
	6	-0.43	-0.20	-0.03		0.77	-0.43	-0.20	-0.02		0.77	-0.43	-0.20	-0.02		0.77
	7	-0.72	-0.38	0.10		0.34	-0.71	-0.38	0.11		0.34	-0.71	-0.39	0.11		0.34
	8	-0.46	-0.39	-0.04		0.64	-0.46	-0.39	-0.04		0.64	-0.46	-0.39	-0.04		0.64
	9	-0.50	-0.27	-0.04		0.67	-0.50	-0.27	-0.03		0.67	-0.50	-0.27	-0.03		0.68
	10	-0.43	-0.44	0.00		0.62	-0.43	-0.44	0.00		0.62	-0.43	-0.44	0.00		0.62
4	1	-0.74	0.14	0.19	0.03	0.40	-0.72	0.20	0.24	-0.11	0.38	-0.72	0.19	0.22	-0.12	0.38
	2	-0.46	0.32	-0.24	0.02	0.63	-0.50	0.23	-0.28	0.00	0.62	-0.50	0.22	-0.29	0.00	0.62
	3	-0.74	0.39	-0.06	0.04	0.30	-0.76	0.33	-0.07	-0.00	0.30	-0.77	0.32	-0.08	-0.01	0.30
	4	-0.51	0.30	0.00	0.03	0.64	-0.54	0.26	-0.01	0.09	0.64	-0.54	0.25	-0.02	0.09	0.64
	5	-0.61	0.21	0.51	0.03	0.32	-0.57	0.31	0.46	0.02	0.36	-0.58	0.31	0.45	0.02	0.36
	6	-0.40	-0.14	-0.11	0.07	0.80	-0.42	-0.21	-0.01	0.04	0.77	-0.42	-0.22	-0.02	0.03	0.77
	7	-0.72	-0.43	-0.12	0.09	0.28	-0.68	-0.42	0.08	-0.25	0.29	-0.67	-0.43	0.08	-0.26	0.29
	8	-0.00	-0.00	-0.00	5.20	-26.02	-0.50	-0.58	0.02	0.56	0.10	-0.50	-0.59	0.03	0.55	0.10
	9	-0.46	-0.20	-0.14	0.08	0.72	-0.48	-0.29	-0.02	0.03	0.69	-0.48	-0.29	-0.02	0.03	0.69
	10	-0.42	-0.42	-0.20	0.06	0.61	-0.39	-0.44	-0.04	-0.24	0.59	-0.38	-0.44	-0.04	-0.25	0.59

S2 Proofs

S2.1 Existence

We start by stating an existence master theorem, which we use to establish our existence results for MPL in factor analysis.

Theorem A1 (Existence master theorem). Let $\mathcal{X} \subseteq \Re^d$, denote by $\operatorname{cl}(\mathcal{X})$ its closure and let $\partial \mathcal{X} \subseteq \operatorname{cl}(\mathcal{X})$ be a set of sequential limit points of \mathcal{X} and denote $\operatorname{int}(\mathcal{X}) = \operatorname{cl}(\mathcal{X}) \setminus \partial \mathcal{X}$.

Let $h: \mathcal{X} \to \Re$ be a function such that

A1) h(x) is continuous on \mathcal{X}

$$A2) \sup_{x \in \mathcal{X}} h(x) < \infty$$

A3) For any sequence $\{x_n\}_{n\in\mathbb{N}}$, $x_n\in\mathcal{X}$ such that either $\lim_{n\to\infty}x_n\in\partial\mathcal{X}$, $\lim_{n\to\infty}h(x_n)=-\infty$

Then the set of maximisers is nonempty, i.e.

$$\left\{ x^* \in \operatorname{int}(\mathcal{X}) : h(x^*) = \sup_{x \in \mathcal{X}} h(x) \right\} \neq \emptyset.$$

Proof. Towards a contradiction, assume that supremum of h is not attained in $int(\mathcal{X})$, that is, for all $x \in int(\mathcal{X})$, $h(x) < H^*$, where $H^* = \sup_{x \in \mathcal{X}} h(x)$. Note that by assumption A2), $H^* \in \Re$.

Construct a sequence $\{x_n\}_{n\in\mathbb{N}}$, $x_n\in\mathcal{X}$ such that $\lim_{n\to\infty}h(x_n)=H^*$. To do this, note that for any $\varepsilon>0$, one can find a $x\in\mathcal{X}$ for which $H^*-h(x)<\varepsilon$. If this were not the case then, there must exist a $\varepsilon>0$ such that for all $x\in\mathcal{X}$, $H^*-\varepsilon>h(x)$, contradicting the least upper bound property of H^* . Thus, one can construct $\{x_n\}_{n\in\mathbb{N}}$ by choosing any element of the set $\{x\in\mathcal{X}:H^*-h(x)<1/n\}$.

Next, note that $\{x_n\}_{n\in\mathbb{N}}$ must be bounded. For this, assume that on the contrary $||x_n|| \to \infty$ as $n \to \infty$. Then by A3), $h(x_n) \to -\infty$ as $n \to \infty$. But then for every $r \in \Re$ there exists a $N \in \mathbb{N}$ such that for all n > N, $h(x_n) < r$. But this stands in contradiction to the construction of $\{x_n\}_{n\in\mathbb{N}}$, for which $\{h(x_n)\}_{n\in\mathbb{N}}$ ought to converge to $H^* \in \Re$.

Then, by the Bolzano-Weierstrass theorem (see for example Rudin 1976, Theorem 3.6 (b)), $\{x_n\}_{n\in\mathbb{N}}$ must contain a convergent subsequence, say $\{x_{n_k}\}_{k\in\mathbb{N}}$, with limit $x^*\in \operatorname{cl}(\mathcal{X})$ and where $\{n_k\}_{k\in\mathbb{N}}\in\mathbb{N}: n_s< n_t$ for s< t. Now, by construction of $\operatorname{int}(\mathcal{X})=\operatorname{cl}(\mathcal{X})\setminus\partial\mathcal{X}$, one of the two cases below must hold.

(i) $x^* \in \text{int}(\mathcal{X})$: Then, using that the subsequential limit of a convergent sequence must equal the limit of that sequence (e.g. Rudin 1976, Definition 3.5), it follows that

$$H^* = \lim_{k \to \infty} h(x_{n_k}) = h\left(\lim_{k \to \infty} x_{n_k}\right) = h(x^*),$$

where the second equality follows from continuity of h(x), which holds by A1). But then there exists a $x^* \in \text{int}(\mathcal{X})$ such that $h(x^*) = H^* = \sup_{x \in \mathcal{X}} h(x)$ which was assumed not to be case.

(ii) $x^* \in \partial \mathcal{X}$: Then

$$H^* = h(x^*) = h\left(\lim_{k \to \infty} x_{n_k}\right) = \lim_{k \to \infty} h(x_{n_k}) = -\infty,$$

where the third equality follows since h(x) is continuous on \mathcal{X} (see for example Rudin 1976, Theorems 4.6-4.7) which holds by A1) and the last from the decay condition A3). This stands in contradiction to $H^* \in \Re$.

Since either case leads to a contradiction, the initial assumption must be false. Thus, there must exists a $x^* \in \text{int}(\mathcal{X}) : h(x^*) = H^*$.

Next, we state a general existence theorem for factor analysis. This result is more general than the existence Theorem 1 stated in the main text. In particular, it allows optimisation to be conducted in a general parameter space $\Theta \subseteq \Re^d$, to allow for any potential constraints that one wishes to impose on the optimisation problem. Each vector $\boldsymbol{\theta} \in \Theta$ is mapped to a symmetric, positive definite, $p \times p$ matrix through the map $\boldsymbol{\theta} \mapsto s(\boldsymbol{\theta})$.

Theorem A2. Let $\Theta \subseteq \mathbb{R}^d$, denote by $\operatorname{cl}(\Theta)$ its closure, $\partial \Theta \subseteq \operatorname{cl}(\Theta)$ a set of sequential limit points of Θ , and denote $\operatorname{int}(\Theta) = \operatorname{cl}(\Theta) \setminus \partial(\Theta)$.

Let $s: \boldsymbol{\theta} \mapsto s(\boldsymbol{\theta})$ be a mapping from $\boldsymbol{\Theta}$ to the space of $p \times p$ positive definite and symmetric matrices and define $\ell^*(\boldsymbol{\theta}; \boldsymbol{S}) = \ell(s(\boldsymbol{\theta}); \boldsymbol{S}) + P^*(\boldsymbol{\theta})$, where $\ell(\boldsymbol{\Sigma}; \boldsymbol{S})$ is the profile log-likelihood of the EFA model in Section 2 and \boldsymbol{S} is full rank.

Assume that:

6

Formally: $\lim_{n \to \infty} \inf_{x \in \partial \mathcal{X}} ||x_n - x|| = 0.$

- A4) s and P^* are continuous on Θ
- A5) For any sequence $\{\boldsymbol{\theta}_n\}_{n\in\mathbb{N}}$, $\boldsymbol{\theta}_n\in\boldsymbol{\Theta}$, such that $\|\boldsymbol{\theta}_n\|\to\infty$ as $n\to\infty$, either $P^*(\boldsymbol{\theta})\to-\infty$ or $\|s(\boldsymbol{\theta}_n)\|\to\infty$
- A6) For any sequence $\{\boldsymbol{\theta}_n\}_{n\in\mathbb{N}}$, $\boldsymbol{\theta}_n\in\boldsymbol{\Theta}$, such that (i) $\boldsymbol{\theta}_n\in\partial\boldsymbol{\Theta}$ as $n\to\infty$, and (ii) $\lambda_{\min}(s(\boldsymbol{\theta}_n))\neq 0$, $P^*(\boldsymbol{\theta}_n)\to-\infty$
- $A7) \sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} P^*(\boldsymbol{\theta}) < \infty$

then the set of maximisers is nonempty, i.e.

$$\left\{oldsymbol{ heta}^* \in \operatorname{int}(oldsymbol{\Theta}): \, \ell^*(oldsymbol{ heta}^*; oldsymbol{S}) = \sup_{oldsymbol{ heta} \in oldsymbol{\Theta}} \ell^*(oldsymbol{ heta}; oldsymbol{S})
ight\}
eq \emptyset \, .$$

Proof. We verify that the conditions of Theorem A1 are met for $\ell^*(\theta; S)$.

- A1) It is evident that $\ell(\Sigma; S)$ is continuous on the space of $p \times p$ positive definite, symmetric matrices. By assumption A4), the map $\theta \mapsto s(\theta)$ is continuous so that $\ell(s(\theta); S)$ is continuous. Additionally, by A4), $P^*(\theta)$ is continuous in θ , so that $\ell^*(\theta; S)$ is continuous in θ on Θ .
- A2) Next, let S be the space of $p \times p$ symmetric nonnegative definite matrices. Burg et al. (1982, Section IV) show that if S is full rank, then S is the unique maximiser of $\ell(\Sigma; S)$ over S. Now note that $S_{\theta} = \{\Sigma : \Sigma = s(\theta), \theta \in \Theta\} \subseteq S$. Hence,

$$\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \ell^*(\boldsymbol{\theta}; \boldsymbol{S}) = \sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\{ \ell(s(\boldsymbol{\theta}); \boldsymbol{S}) + P^*(\boldsymbol{\theta}) \right\}$$

$$\leq \sup_{\boldsymbol{\Sigma} \in \mathcal{S}_{\boldsymbol{\theta}}} \ell(\boldsymbol{\Sigma}; \boldsymbol{S}) + \sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} P^*(\boldsymbol{\theta})$$

$$\leq \sup_{\boldsymbol{\Sigma} \in \mathcal{S}} \ell(\boldsymbol{\Sigma}; \boldsymbol{S}) + \sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} P^*(\boldsymbol{\theta})$$

$$= \ell(\boldsymbol{S}; \boldsymbol{S}) + \sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} P^*(\boldsymbol{\theta})$$

$$\leq \ell(\boldsymbol{S}; \boldsymbol{S}) + C_p$$

$$< \infty,$$

where the boundedness of $P^*(\theta)$ from above comes from assumption A7).

A3) Consider a sequence $\{\boldsymbol{\theta}_n\}_{n\in\mathbb{N}}$. (i) Assume that $\boldsymbol{\theta}_n\in\boldsymbol{\Theta}$ and $\lambda_{\min}(s(\boldsymbol{\theta}_n))\neq 0$, as $n\to\infty$. Then

$$\ell^{*}(\boldsymbol{\theta}_{n}; \boldsymbol{S}) = \ell(s(\boldsymbol{\theta}_{n}); \boldsymbol{S}) + P^{*}(\boldsymbol{\theta}_{n})$$

$$\leq \sup_{\boldsymbol{\Sigma} \in \mathcal{S}} \{\ell(\boldsymbol{\Sigma}; \boldsymbol{S})\} + P^{*}(\boldsymbol{\theta}_{n})$$

$$= \ell(\boldsymbol{S}; \boldsymbol{S}) + P^{*}(\boldsymbol{\theta}_{n})$$

$$\to -\infty \quad \text{as } n \to \infty,$$
(S1)

where the last line follows from A5). (ii) Assume that $\theta_n \in \Theta$ and $\lambda_{\min}(s(\theta_n)) \to 0$, as $n \to \infty$. Then Burg et al. (1982, Section II) show that $\ell(s(\theta_n); \mathbf{S}) \to -\infty$ as $n \to \infty$. By A7), $\ell^*(s(\theta_n); \mathbf{S}) \to -\infty$ as $n \to \infty$. (iii) Assume that $\|\theta_n\| \to \infty$ as $n \to \infty$. If $P^*(\theta_n) \to \infty$, then the bound from (S1) establishes that $\ell^*(\theta_n; \mathbf{S}) \to -\infty$. If on the other hand $\|s(\theta_n)\| \to \infty$, Burg et al. (1982, Section II) show that $\ell(s(\theta_n); \mathbf{S}) \to -\infty$ as $n \to \infty$. Therefore

$$\ell^*(\boldsymbol{\theta}_n; \boldsymbol{S}) = \ell(s(\boldsymbol{\theta}_n); \boldsymbol{S}) + P^*(\boldsymbol{\theta}_n)$$

$$\leq \ell(s(\boldsymbol{\theta}_n); \boldsymbol{S})\} + \sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \{P^*(\boldsymbol{\theta}_n)\}$$

$$\leq \ell(s(\boldsymbol{\theta}_n); \boldsymbol{S})\} + C_p$$

$$\to -\infty \quad \text{as } n \to \infty.$$

From this result follows the existence of MPL estimates as stated in Theorem 1 in the main text.

Theorem A3 (Existence of MPL estimates in factor analysis). Let $\partial \Theta = \{ \theta \in \Re^{p(q+1)} : \exists m > pq, \theta_m = 0 \}$ and $\Sigma(\theta) = \Lambda(\theta)\Lambda(\theta)^\top + \Psi(\theta)$. Assume that the penalty function $P^*(\theta) : \Theta \to \Re$

- E1) is continuous on Θ ,
- E2) is bounded from above on Θ , i.e. $\sup_{\theta \in \Theta} P^*(\theta) < \infty$, and
- E3) diverges to $-\infty$ for any sequence $\{\boldsymbol{\theta}(r)\}_{r\in\mathbb{N}}$ such that $\lim_{r\to\infty}\boldsymbol{\theta}(r)\in\partial\boldsymbol{\Theta}$ and $\lim_{r\to\infty}\lambda_{\min}(\boldsymbol{\Sigma}(\boldsymbol{\theta}(r)))>0$.

Then, the set of maximum penalized likelihood estimates $\tilde{\boldsymbol{\theta}} \in \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \{\ell^*(\boldsymbol{\theta}; S)\}$ is non-empty, when \boldsymbol{S} has full rank.

Proof. We verify that the conditions of Theorem A2 are met for $\mathbf{\Theta} = \{ \boldsymbol{\theta} \in \mathbb{R}^{p(q+1)} : \forall i > pq, \theta_i > 0 \}$ and $\partial \mathbf{\Theta} = \{ \boldsymbol{\theta} \in \mathbb{R}^{p(q+1)} : \exists m > pq, \theta_m = 0 \}$ under E1)-E3).

First note that $\partial \mathbf{\Theta}$ is the boundary of $\mathbf{\Theta}$ and $\operatorname{int}(\mathbf{\Theta}) = \mathbf{\Theta}$. Further recall, that $\boldsymbol{\theta} \mapsto \boldsymbol{\Sigma}(\boldsymbol{\theta})$ for $\boldsymbol{\Sigma} = \boldsymbol{\Lambda} \boldsymbol{\Lambda}^\top + \boldsymbol{\Psi}$ for $\boldsymbol{\theta} = (\theta_1, \dots, \theta_{p(q+1)})^\top = (\lambda_{11}, \dots, \lambda_{pq}, \psi_{11}, \dots, \psi_{pp})^\top$, where λ_{jk} and ψ_{jj} are the (j, k)th and (j, j)th elements of $\boldsymbol{\Lambda}$ and $\boldsymbol{\Psi}$, respectively $(j = 1, \dots, p; k = 1, \dots, q)$. Thus, for each $\boldsymbol{\theta} \in \boldsymbol{\Theta}$, $\boldsymbol{\Sigma}$ is positive definite. It remains to verify assumptions A4)-A7).

- A4) It is readily seen that $\theta \mapsto \Sigma(\theta)$ is continuous on Θ . Further, P^* is continuous by assumption E1).
- A5) Let $\theta(r)$ be a diverging sequence in Θ as $r \to \infty$ and $\Sigma(r)$ the associated sequence of variance-covariance matrices. The *i*th element of $\Sigma(r)$ is given by

$$\Sigma(r)_{ii} = \sum_{i=1} \lambda_{ij}(r)^2 + \psi_{ii}(r).$$

Hence if either $|\lambda_{ij}(r)| \to \infty$ or $\psi_{ii}(r) \to \infty$ as $r \to \infty$, also $\Sigma_{ii}(r) \to \infty$ and consequently $|||\Sigma(r)||| \to \infty$ as required.

- A6) Holds by E3).
- A7) Holds by E2).

This concludes the proof.

S2.2 Consistency

As we did for existence, and for the same reasons, we first provide a consistency result for general parameter spaces Θ . From this, the existence result of Theorem 2 follows as a corollary. These more general parameterisations are for example required for the \sqrt{n} -consistency results of Section 5.2 and they might be desirable if one wishes to impose further restrictions on the structure of Σ .

Theorem A4. Let $\Theta \subseteq \mathbb{R}^d$, denote by $cl(\Theta)$ its closure, $\partial \Theta$ a set of sequential limit points of Θ and denote by $int(\Theta) = cl(\Theta) \setminus \partial \Theta$. Let $\Sigma(\theta) = \Lambda(\theta)\Lambda(\theta)^{\top} + \Psi(\theta)$ for some maps $\theta \mapsto \Lambda(\theta)$, $\theta \mapsto \Psi(\theta)$. Finally, denote by $\ell^*(\theta; S) = \ell(\Sigma(\theta); S) + P^*(\theta)$ the profile log-likelihood of the EFA model in Section 2.

Assume that

- A8) the factor model is strongly identifiable
- A9) There exists a $\theta_0 \in int(\Theta)$ such that $\Sigma(\theta_0) = \Sigma_0$

A10)

$$\left\{oldsymbol{ heta}^* \in \operatorname{int}(oldsymbol{\Theta}): \, \ell^*(oldsymbol{ heta}^*; oldsymbol{S}) = \sup_{oldsymbol{ heta} \in oldsymbol{\Theta}} \ell^*(oldsymbol{ heta}; oldsymbol{S})
ight\}
eq \emptyset \, .$$

A11) $P^*(\boldsymbol{\theta}) \leq 0$ for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}$

Then for any $\epsilon > 0$ there exists a $\delta > 0$ such that

$$\|S - \Sigma_0\|_{\max} < \delta$$
, and $|n^{-1}P^*(\theta_0)| < \delta \implies \|\Lambda_0 - \Lambda(\tilde{\theta})Q\|_{\max} < \epsilon$, $\|\Psi_0 - \Psi(\tilde{\theta})\|_{\max} < \epsilon$.

for some orthogonal $q \times q$ matrix Q.

Proof. The proof follows the ideas of Kano (1983) whilst accommodating the penalty function $P^*(\theta)$. First, note that the MPL estimator of (4) can equivalently be defined as the minimiser

$$\tilde{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\{ F(\boldsymbol{S}, \boldsymbol{\Sigma}(\boldsymbol{\theta})) - n^{-1} P^*(\boldsymbol{\theta}) \right\},$$
 (S2)

where

$$F(\mathbf{\Sigma}_1, \mathbf{\Sigma}_2) = \frac{1}{2} \left\{ \operatorname{tr} \left(\mathbf{\Sigma}_2^{-1} \mathbf{\Sigma}_1 \right) - p + \log \det \left(\mathbf{\Sigma}_2 \right) - \log \det \left(\mathbf{\Sigma}_1 \right) \right\}$$

is a criterion function that introduced in Kano (1983).

For notational convenience, let $\tilde{\Sigma} = \Sigma(\tilde{\theta}) = \Lambda(\tilde{\theta})\Lambda(\tilde{\theta})^{\top} + \Psi(\tilde{\theta})$. Now by (S2), and since $P^*(\theta) \leq 0$, $|n^{-1}P^*(\theta_0)| < \delta$, it must hold that

$$F(\mathbf{S}, \tilde{\mathbf{\Sigma}}) \le F(\mathbf{S}, \tilde{\mathbf{\Sigma}}) - n^{-1} P^*(\tilde{\boldsymbol{\theta}}) \le F(\mathbf{S}, \mathbf{\Sigma}_0) - n^{-1} P^*(\boldsymbol{\theta}_0) \le F(\mathbf{S}, \mathbf{\Sigma}_0) + \delta.$$
 (S3)

Now for $\|S - \Sigma_0\|_F \leq \delta$ and δ small enough, where $\|A\|_F = \operatorname{tr}(A^\top A)^{1/2}$ is the Frobenius norm, it is shown in Kano (1983, equations A.2, A.4), that

$$F(S, \Sigma_0) \le M \| \Sigma_0^{-1/2} \|_F^4 \| \Sigma_0 - S \|_F^2 < M \| \Sigma_0^{-1/2} \|_F^4 \delta^2,$$

and also

$$F(\boldsymbol{S}, \tilde{\boldsymbol{\Sigma}}) \ge m \left\| \left\| \tilde{\boldsymbol{\Sigma}}^{-1/2} \boldsymbol{S} \tilde{\boldsymbol{\Sigma}}^{-1/2} - \boldsymbol{I}_{p} \right\|_{F}^{2} \ge m \left\| \boldsymbol{S} - \tilde{\boldsymbol{\Sigma}} \right\|_{F}^{2} \left\| \tilde{\boldsymbol{\Sigma}}^{1/2} \right\|_{F}^{-4}.$$
 (S4)

Hence, (S3)-(S4) yield

$$m \| \boldsymbol{S} - \tilde{\boldsymbol{\Sigma}} \|_F^2 \| \tilde{\boldsymbol{\Sigma}}^{1/2} \|_F^{-4} \le m \| \tilde{\boldsymbol{\Sigma}}^{-1/2} \boldsymbol{S} \tilde{\boldsymbol{\Sigma}}^{-1/2} - \boldsymbol{I}_p \|_F^2 \le \delta \left(1 + \delta M \| \boldsymbol{\Sigma}_0^{-1/2} \|_F^4 \right). \tag{S5}$$

It further holds by (S5) and for $\|S - \Sigma_0\|_{\max} \le \delta$, δ sufficiently small, that $\|\tilde{\Sigma}^{1/2}\|_F \le C$ for some constant C > 0. Thus we conclude that

$$\left\| \left\| \boldsymbol{S} - \tilde{\boldsymbol{\Sigma}} \right\| \right\|_F^2 \le \delta \left(1 + \delta M \left\| \left\| \boldsymbol{\Sigma}_0^{-1/2} \right\| \right\|_F^4 \right) m^{-1} C^4,$$

which can be made arbitrarily small by choosing a small enough δ . Hence,

$$\left\| \tilde{\Sigma} - \Sigma_{0} \right\|_{\text{max}} = \left\| \tilde{\Sigma} - S + (S - \Sigma_{0}) \right\|_{\text{max}}$$

$$\leq \left\| \tilde{\Sigma} - S \right\|_{\text{max}} + \left\| S - \Sigma_{0} \right\|_{\text{max}}$$

$$\leq C' \delta + \delta,$$
(S6)

where C' > 0 stems from (S5) and $|||\mathbf{A}|||_F = \sqrt{\sum_{i,j} |\mathbf{A}_{i,j}|^2} \ge \max_{i,j} \{|\mathbf{A}_{i,j}|\} = |||\mathbf{A}|||_{\max}$. Since the RHS in the last line of (S6) can be made arbitrarily small, the claim follows from $\tilde{\mathbf{\Sigma}} = \mathbf{\Sigma}(\tilde{\boldsymbol{\theta}}) = \mathbf{\Lambda}(\tilde{\boldsymbol{\theta}})\mathbf{\Lambda}(\tilde{\boldsymbol{\theta}})^{\top} + \mathbf{\Psi}(\tilde{\boldsymbol{\theta}})$, strong identifiability.

Theorem A5. Assume that

- C1) the factor model is strongly identifiable
- C2) the set of maximum penalized likelihood estimates $\tilde{\boldsymbol{\theta}} \in \arg\max_{\boldsymbol{\theta} \in \Theta} \{\ell^*(\boldsymbol{\theta}; S)\}$ is non-empty; and
- C3) $P^*(\boldsymbol{\theta}) \leq 0$ for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}$

Then, for any $\epsilon > 0$, there exists a $\delta > 0$ such that

$$\|S - \Sigma_0\|_{\max} < \delta$$
, and $|n^{-1}P^*(\theta_0)| < \delta \implies \|\Lambda_0 - \Lambda(\tilde{\theta})Q\|_{\max} < \epsilon$, $\|\Psi_0 - \Psi(\tilde{\theta})\|_{\max} < \epsilon$,

for some orthogonal $q \times q$ matrix Q.

Proof. Let $\Theta = \{ \boldsymbol{\theta} \in \Re^{p(q+1)} : \forall m > pq, \theta_m > 0 \}$ and $\partial \Theta = \{ \boldsymbol{\theta} \in \Re^{p(q+1)} : \exists m > pq, \theta_m = 0 \}$ be its boundary. The claim of the theorem immediately follows from Theorem A4.

S2.3 \sqrt{n} -consistency

We first state a blanket theorem for \sqrt{n} -consistency of MPL estimators, from which Theorem 3 follows.

Theorem A6. Let

$$\tilde{\boldsymbol{\theta}} \in \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\{ \ell(\boldsymbol{\theta}) + P^*(\boldsymbol{\theta}) \right\}, \quad \hat{\boldsymbol{\theta}} \in \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\{ \ell(\boldsymbol{\theta}) \right\} \,.$$

Assume that conditions the conditions

- A12) $\hat{\theta}, \tilde{\theta}$ exist and converge to θ_0 , an interior point of Θ , with probability approaching one as $n \to \infty$
- A13) In a convex neighbourhood \mathcal{N}_0 around $\boldsymbol{\theta}_0$, $\ell(\boldsymbol{\theta})$ is twice differentiable with gradient that is continuous on an open set containing the interior of \mathcal{N}_0
- A14) $\sup_{\boldsymbol{\theta} \in \mathcal{N}_0} \left\| \left| \mathbf{R}_n^{-1/2} \nabla \nabla^{\top} \ell(\boldsymbol{\theta}) \mathbf{R}_n^{-1/2} \boldsymbol{J}(\boldsymbol{\theta}) \right\| \right\| = o_p(1)$, where $\boldsymbol{J}(\boldsymbol{\theta})$ is deterministic, continuous and invertible at $\boldsymbol{\theta}_0$ and \boldsymbol{R}_n is a sequence of diagonal, positive definite matrices indexed by n
- A15) $P^*(\boldsymbol{\theta})$ is differentiable on \mathcal{N}_0 around $\boldsymbol{\theta}_0$, and $\sup_{\boldsymbol{\theta} \in \mathcal{N}_0} \|\boldsymbol{R}_n^{-1/2} \nabla P^*(\boldsymbol{\theta})\| = o_p(1)$

hold. Then

$$\left\| \boldsymbol{R}_n^{1/2} (\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}) \right\| = o_p(1).$$

Proof. By the equivalence of norms on finite dimensional Euclidean spaces, without loss of generality, for the remainder of this proof, let $\|\boldsymbol{v}\| = \|\boldsymbol{v}\|_{\infty} = \sup_{1 \le i \le d} |\boldsymbol{v}_i|$ and $\|\boldsymbol{M}\| = \|\boldsymbol{M}\|_{\infty}$ be the corresponding operator norm.

Fix constants ϵ, δ . Define the events

 $\mathcal{A}_n : \hat{\boldsymbol{\theta}}, \tilde{\boldsymbol{\theta}} \in \operatorname{int}(\boldsymbol{\Theta}) \cap \mathcal{N}_0 \cap B_{\varepsilon}(\boldsymbol{\theta}_0), \text{ where } \varepsilon \text{ is the constant for which by continuity of } \boldsymbol{J}(\boldsymbol{\theta}_0), \text{ it holds that } \|\boldsymbol{\theta} - \boldsymbol{\theta}_0\| < \varepsilon \text{ implies } \|\boldsymbol{J}(\boldsymbol{\theta}) - \boldsymbol{J}(\boldsymbol{\theta}_0)\| < \{4\|\boldsymbol{J}(\boldsymbol{\theta}_0)^{-1}\|\}^{-1} \text{ and } B_{\varepsilon}(\boldsymbol{\theta}_0) = \{\boldsymbol{\theta} \in \boldsymbol{\Theta} : \|\boldsymbol{\theta} - \boldsymbol{\theta}_0\| < \varepsilon\}.$

$$\mathcal{B}_n : \sup_{\boldsymbol{\theta} \in \mathcal{N}_0} \| \boldsymbol{H}_n(\boldsymbol{\theta}) - \boldsymbol{J}(\boldsymbol{\theta}) \| \le \{4 \| \boldsymbol{J}(\boldsymbol{\theta}_0)^{-1} \| \}^{-1}, \text{ where } \boldsymbol{H}_n = \boldsymbol{R}_n^{-1/2} \nabla \nabla^{\top} \ell(\boldsymbol{\theta}) \boldsymbol{R}_n^{-1/2}$$

 $C_n: P^*(\boldsymbol{\theta}) \text{ is differentiable in } \mathcal{N}_0 \text{ and } \sup_{\boldsymbol{\theta} \in \mathcal{N}_0} \|\boldsymbol{R}_n^{-1/2} \nabla P^*(\boldsymbol{\theta})\| \le \epsilon/2 \|\boldsymbol{J}(\boldsymbol{\theta}_0)^{-1}\|\|.$

Assume that $A_n \cap B_n \cap C_n$ holds. Then by A_n , and assumptions A13) and A15),

$$\begin{aligned} \mathbf{0} &= \nabla \ell(\hat{\boldsymbol{\theta}}) \\ \mathbf{0} &= \nabla \ell(\tilde{\boldsymbol{\theta}}) + \nabla P^*(\tilde{\boldsymbol{\theta}}) \,, \end{aligned}$$

where $\nabla \ell(\boldsymbol{\theta})$ denotes the gradient of $\ell(\boldsymbol{\theta})$ with respect to $\boldsymbol{\theta}$. Thus,

$$\nabla \ell(\hat{\boldsymbol{\theta}}) - \nabla \ell(\tilde{\boldsymbol{\theta}}) = \nabla P^*(\tilde{\boldsymbol{\theta}}).$$

By the Mean Value Theorem (see, for example, Rudin, 1976, Theorem 5.10), the *i*th component of the equation above can be written as

$$\left\{ \nabla \nabla^\top \ell(\boldsymbol{\theta}_i^*) \right\}_{i,\bullet}^\top (\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}) = \left\{ \nabla P^*(\tilde{\boldsymbol{\theta}}) \right\}_i,$$

where $\{A\}_{i,\bullet}$ denotes the *i*th row of matrix A and θ_i^* is a vector on the line segment joining $\hat{\theta}$ and $\tilde{\theta}$, i.e. $\theta_i^* = c_i \hat{\theta} + (1 - c_i) \tilde{\theta}$, $c_i \in [0, 1]$. Abusing notation, let $\nabla \nabla^\top \ell(\theta^*)$ be the matrix with rows $\{\nabla \nabla^\top \ell(\theta_i^*)\}_{i,\bullet}$ and let $H_n = R_n^{-1/2} \nabla \nabla^\top \ell(\theta^*) R_n^{-1/2}$. Then

$$\boldsymbol{J}(\boldsymbol{\theta}_0)^{-1}\boldsymbol{H}_n\boldsymbol{R}_n^{1/2}(\hat{\boldsymbol{\theta}}-\tilde{\boldsymbol{\theta}}) = \boldsymbol{J}(\boldsymbol{\theta}_0)^{-1}\boldsymbol{R}_n^{-1/2}\nabla P^*(\tilde{\boldsymbol{\theta}}),$$

or equivalently

$$J(\theta_0)^{-1} \{H_n - J(\theta_0)\} R_n^{1/2} (\hat{\theta} - \tilde{\theta}) + R_n^{1/2} (\hat{\theta} - \tilde{\theta}) = J(\theta_0)^{-1} R_n^{-1/2} \nabla P^*(\tilde{\theta}),$$

and rearranging yields

$$R_n^{1/2}(\hat{\theta} - \tilde{\theta}) = J(\theta_0)^{-1}R_n^{-1/2}\nabla P^*(\tilde{\theta}) + J(\theta_0)^{-1}\left\{J(\theta_0) - H_n\right\}R_n^{1/2}(\hat{\theta} - \tilde{\theta}).$$

Then

$$\begin{aligned} \left\| \boldsymbol{R}_{n}^{1/2}(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}) \right\| &= \left\| \boldsymbol{J}(\boldsymbol{\theta}_{0})^{-1} \boldsymbol{R}_{n}^{-1/2} \nabla P^{*}(\tilde{\boldsymbol{\theta}}) + \boldsymbol{J}(\boldsymbol{\theta}_{0})^{-1} \left\{ \boldsymbol{J}(\boldsymbol{\theta}_{0}) - \boldsymbol{H}_{n} \right\} \boldsymbol{R}_{n}^{1/2}(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}) \right\| \\ &\leq \left\| \left\| \boldsymbol{J}(\boldsymbol{\theta}_{0})^{-1} \right\| \left\| \left\| \boldsymbol{R}_{n}^{-1/2} \nabla P^{*}(\tilde{\boldsymbol{\theta}}) \right\| + \left\| \left\| \boldsymbol{J}(\boldsymbol{\theta}_{0})^{-1} \right\| \left\| \left\| \boldsymbol{J}(\boldsymbol{\theta}_{0}) - \boldsymbol{H}_{n} \right\| \left\| \boldsymbol{R}_{n}^{1/2}(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}) \right\| \right\|. \end{aligned}$$
(S7)

Now let i be the row for which the row sum of $J(\theta_0) - H_n$ is maximal, then by A_n , B_n ,

$$|||J(\boldsymbol{\theta}_{0}) - \boldsymbol{H}_{n}||| = \sum_{j=1}^{p} |J(\boldsymbol{\theta}_{0})_{ij} - \boldsymbol{H}_{n}(\boldsymbol{\theta}_{i}^{*})_{ij}|$$

$$= \sum_{j=1}^{p} |J(\boldsymbol{\theta}_{0})_{ij} - J(\boldsymbol{\theta}_{i}^{*})_{ij} + J(\boldsymbol{\theta}_{i}^{*})_{ij} - \boldsymbol{H}_{n}(\boldsymbol{\theta}_{i}^{*})_{ij}|$$

$$\leq \sum_{j=1}^{p} |J(\boldsymbol{\theta}_{0})_{ij} - J(\boldsymbol{\theta}_{i}^{*})_{ij}| + \sum_{j=1}^{p} |J(\boldsymbol{\theta}_{i}^{*})_{ij} - \boldsymbol{H}_{n}(\boldsymbol{\theta}_{i}^{*})_{ij}|$$

$$\leq \sup_{1 \leq k \leq p} \sum_{j=1}^{p} |J(\boldsymbol{\theta}_{0})_{kj} - J(\boldsymbol{\theta}_{i}^{*})_{kj}| + \sup_{1 \leq k \leq p} \sum_{j=1}^{p} |J(\boldsymbol{\theta}_{i}^{*})_{kj} - \boldsymbol{H}_{n}(\boldsymbol{\theta}_{i}^{*})_{kj}|$$

$$= ||J(\boldsymbol{\theta}_{0}) - J(\boldsymbol{\theta}_{i}^{*})||| + ||J(\boldsymbol{\theta}_{i}^{*}) - \boldsymbol{H}_{n}(\boldsymbol{\theta}_{i}^{*})|||$$

$$\leq ||J(\boldsymbol{\theta}_{0}) - J(\boldsymbol{\theta}_{i}^{*})||| + \sup_{\boldsymbol{\theta} \in \mathcal{N}_{0}} ||J(\boldsymbol{\theta}) - \boldsymbol{H}_{n}(\boldsymbol{\theta})|||$$

$$\leq \frac{1}{4||J(\boldsymbol{\theta}_{0})^{-1}||} + \frac{1}{4||J(\boldsymbol{\theta}_{0})^{-1}||}$$

$$= \frac{1}{2||J(\boldsymbol{\theta}_{0})^{-1}||},$$
(S8)

where we used that \mathcal{A}_n and that $\boldsymbol{\theta}_i = c_i \hat{\boldsymbol{\theta}} + (1 - c_i) \tilde{\boldsymbol{\theta}}$ so $\|\boldsymbol{\theta}_i^* - \boldsymbol{\theta}_0\| \le c_i \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0\| + (1 - c_i) \|\tilde{\boldsymbol{\theta}} - \boldsymbol{\theta}_0\| < \varepsilon$. Hence, substituting (S8) into (S7), upon rearranging, yields

$$\left\| \boldsymbol{R}_n^{1/2} (\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}) \right\| \le 2 \left\| \boldsymbol{J}(\boldsymbol{\theta}_0)^{-1} \right\| \left\| \boldsymbol{R}_n^{-1/2} \nabla P^*(\tilde{\boldsymbol{\theta}}) \right\| ,$$

and by C_n , we conclude that

$$\begin{aligned} \left\| \boldsymbol{R}_{n}^{1/2} (\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}) \right\| &\leq 2 \left\| \boldsymbol{J} (\boldsymbol{\theta}_{0})^{-1} \right\| \left\| \boldsymbol{R}_{n}^{-1/2} \nabla P^{*} (\tilde{\boldsymbol{\theta}}) \right\| \\ &\leq 2 \left\| \boldsymbol{J} (\boldsymbol{\theta}_{0})^{-1} \right\| \sup_{\boldsymbol{\theta} \in \mathcal{N}_{0}} \left\| \boldsymbol{R}_{n}^{-1/2} \nabla P^{*} (\boldsymbol{\theta}) \right\| \\ &\leq 2 \left\| \boldsymbol{J} (\boldsymbol{\theta}_{0})^{-1} \right\| \frac{\epsilon}{2 \left\| \boldsymbol{J} (\boldsymbol{\theta}_{0})^{-1} \right\|} \end{aligned}$$

Hence, we have shown that $\mathcal{A}_n \cap \mathcal{B}_n \cap \mathcal{C}_n$ implies $\|\mathbf{R}_n^{1/2}(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}})\| \leq \epsilon$. Therefore,

$$\Pr\left(\left\|\mathbf{R}_n^{1/2}(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}})\right\| > \epsilon\right) \le 1 - \Pr(\mathcal{A}_n \cap \mathcal{B}_n \cap \mathcal{C}_n).$$

By assumptions A12)-A15), there exists a N such that for all n > N,

$$\Pr(\neg \mathcal{A}_n) \le \frac{\delta}{3}$$

$$\Pr(\neg \mathcal{B}_n) \le \frac{\delta}{3}$$

$$\Pr(\neg \mathcal{C}_n) \le \frac{\delta}{3},$$

And thus by a union bound,

$$\Pr(\mathcal{A}_n \cap \mathcal{B}_n \cap \mathcal{C}_n) = 1 - \Pr(\neg \mathcal{A}_n \cup \neg \mathcal{B}_n \cup \neg \mathcal{C}_n) > 1 - \delta$$

so that we conclude that for any δ , ϵ , there is a N such that for all n > N

$$\Pr\left(\left\|\mathbf{R}_n^{1/2}(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}})\right\| > \epsilon\right) \leq \delta.$$

Theorem A7. Suppose that

N1) there exists an interior point $\theta_0 \in \Theta$ such that $S \stackrel{p}{\longrightarrow} \Sigma(\theta_0)$ as $n \to \infty$;

N2) the factor model is strongly identifiable and the Jacobian of $vec(\Sigma(\theta))$ with respect to θ is nonsingular at θ_0 ;

N3) the criterion function

$$F(\Sigma_1, \Sigma_2) = \log \det(\Sigma_2) + tr(\Sigma_2^{-1}\Sigma_1) - p - \log \det(\Sigma_1)$$

satisfies that for any $\epsilon > 0$, there exists a $\delta > 0$ such that if $|||S - \Sigma_0||| < \delta$ and $F(S, \Sigma(\theta)) < \delta$, then $|||\Sigma(\theta) - \Sigma_0||| < \epsilon$.

- N4) the set of maximum penalized likelihood estimates $\tilde{\boldsymbol{\theta}} \in \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \{\ell^*(\boldsymbol{\theta}; S)\}$ is not empty; and
- N5) $P^*(\theta) \leq 0$, and $P^*(\theta) = o_p(\sqrt{n})$ where $P(\theta)$ is continuously differentiable on Θ and invariant under orthogonal rotations of Λ

Then, there exist sequences of orthogonal rotation matrices Q_1, Q_2 such that:

$$\| \mathbf{\Lambda}(\tilde{\boldsymbol{\theta}}) \mathbf{Q}_1 - \mathbf{\Lambda}_0 \| \stackrel{p}{\longrightarrow} 0, \quad \| \mathbf{\Psi}(\tilde{\boldsymbol{\theta}}) - \mathbf{\Psi}_0 \| \stackrel{p}{\longrightarrow} 0.$$

and

$$\sqrt{n} \left\| \mathbf{\Lambda}(\tilde{\boldsymbol{\theta}}) \mathbf{Q}_1 - \mathbf{\Lambda}(\hat{\boldsymbol{\theta}}) \mathbf{Q}_2 \right\| \stackrel{p}{\longrightarrow} 0, \quad \sqrt{n} \left\| \mathbf{\Psi}(\tilde{\boldsymbol{\theta}}) - \mathbf{\Psi}(\hat{\boldsymbol{\theta}}) \right\| \stackrel{p}{\longrightarrow} 0.$$

Proof. We shall prove that the conditions of Theorem A6 are met.

- A12) Let $\hat{\mathbf{\Lambda}}, \hat{\mathbf{\Psi}}$ be $\mathbf{\Lambda}(\hat{\boldsymbol{\theta}}), \mathbf{\Psi}(\hat{\boldsymbol{\theta}})$, be the loading matrix and the variances of the ML estimator $\hat{\boldsymbol{\theta}}$, respectively. Lemma 1 shows that there exists a sequence of orthogonal rotation matrices \mathbf{Q}_1 , such that $\{\operatorname{vec}(\hat{\mathbf{\Lambda}}\mathbf{Q}_1), \operatorname{diag}(\hat{\mathbf{\Psi}})\} \stackrel{p}{\to} \boldsymbol{\theta}_0 = (\operatorname{vec}(\mathbf{\Lambda}_0)^\top, \operatorname{diag}(\mathbf{\Psi}_0)^\top)^\top$. Since this vector is also a maximiser of the log-likelihood, we henceforth assume that $\hat{\boldsymbol{\theta}}$ is chosen with the adequate rotation \mathbf{Q}_1 such that $\hat{\boldsymbol{\theta}} \stackrel{p}{\to} \boldsymbol{\theta}_0$. Similarly, for the MPL estimator $\tilde{\boldsymbol{\theta}}$, note that assumptions N1)-N5) satisfy the conditions for consistency in Theorem A4. Hence, there exists a sequence of orthogonal rotation matrices \mathbf{Q}_2 , such that $\{\operatorname{vec}(\tilde{\mathbf{\Lambda}}\mathbf{Q}_2), \operatorname{diag}(\tilde{\mathbf{\Psi}})\} \stackrel{p}{\to} \boldsymbol{\theta}_0$. By assumption N5), $P(\boldsymbol{\theta})$ is invariant under such orthogonal rotations, so that $\{\operatorname{vec}(\tilde{\mathbf{\Lambda}}\mathbf{Q}_2), \operatorname{diag}(\tilde{\mathbf{\Psi}})\}$ is also a maximiser of the penalised log-likelihood. Thus, henceforth assume that $\tilde{\boldsymbol{\theta}}$ chooses the adequate rotation \mathbf{Q}_2 such that $\hat{\boldsymbol{\theta}} \stackrel{p}{\to} \boldsymbol{\theta}_0$.
- A13) Twice-Differentiability follows by twice-differentiability of $\ell(\Sigma; S)$ with respect to Σ and the construction of Σ . Note that the partial derivatives are given by

$$\frac{\partial \ell(\boldsymbol{\Sigma}(\boldsymbol{\theta}); \boldsymbol{S})}{\partial \boldsymbol{\theta}_j} = -\frac{n}{2} \left[\operatorname{tr} \left\{ \boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1} \frac{\partial \boldsymbol{\Sigma}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_j} \right\} - \operatorname{tr} \left\{ \boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1} \frac{\partial \boldsymbol{\Sigma}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_j} \boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1} \boldsymbol{S} \right\} \right]$$

which are continuous in Σ and $\Sigma(\theta)$ is continuous in θ on Θ by N2).

A14) Note that

$$\frac{\partial^{2}\ell(\Sigma(\theta); S)}{\partial \theta_{j} \partial \theta_{k}} = -\frac{n}{2} \left[-\operatorname{tr} \left\{ \Sigma(\theta)^{-1} \frac{\partial \Sigma(\theta)}{\partial \theta_{j}} \Sigma(\theta)^{-1} \frac{\partial \Sigma(\theta)}{\partial \theta_{i}} \right\} \right. \\
\left. + \operatorname{tr} \left\{ \Sigma(\theta)^{-1} \frac{\partial^{2} \Sigma(\theta)}{\partial \theta_{i} \partial \theta_{j}} \right\} \right. \\
\left. + 2\operatorname{tr} \left\{ \Sigma(\theta)^{-1} \frac{\partial \Sigma(\theta)}{\partial \theta_{i}} \Sigma(\theta)^{-1} \frac{\partial \Sigma(\theta)}{\partial \theta_{j}} \Sigma(\theta)^{-1} S \right\} \right. \\
\left. - \operatorname{tr} \left\{ \Sigma(\theta)^{-1} \frac{\partial^{2} \Sigma(\theta)}{\partial \theta_{i} \partial \theta_{j}} \Sigma(\theta)^{-1} S \right\} \right]$$

and let the j,kth entry of $J(\theta)$ be given by $n^{-1}\partial^2\ell(\Sigma(\theta);\Sigma_0)/\partial\theta_j\partial\theta_j$, which is clearly continuous in θ . Let \mathcal{N}_0 be an Euclidean ball that lies fully in the interior of Θ and which is centred around θ_0 . Finally let $\mathbf{R}_n = n\mathbf{I}_p$. Then

$$\sup_{\boldsymbol{\theta} \in \mathcal{N}_{0}} \left| n^{-1} \frac{\partial^{2} \ell(\boldsymbol{\Sigma}(\boldsymbol{\theta}); \boldsymbol{S})}{\partial \boldsymbol{\theta}_{j} \partial \boldsymbol{\theta}_{k}} - \boldsymbol{J}(\boldsymbol{\theta})_{ij} \right| = \sup_{\boldsymbol{\theta} \in \mathcal{N}_{0}} \left| \operatorname{tr} \left\{ \boldsymbol{B}(\boldsymbol{\theta}) \left[\boldsymbol{S} - \boldsymbol{\Sigma}_{0} \right] \right\} \right|$$

$$\leq \sup_{\boldsymbol{\theta} \in \mathcal{N}_{0}} \left\| \boldsymbol{B}(\boldsymbol{\theta}) \right\|_{*} \left\| \boldsymbol{S} - \boldsymbol{\Sigma}_{0} \right\|_{2}$$

$$\leq C \left\| \boldsymbol{S} - \boldsymbol{\Sigma}_{0} \right\|_{2}$$

$$= o_{n}(1),$$

where the second line follows by Hoelder's inequality for Schatten-norms and where $||A||_*$ is the sum of all singular values of A and $||A||_2$ is the spectral norm. The third line follows by the Extreme Value Theorem (see, for example, Rudin, 1976, Theorem 4.16) since $||B(\theta)||_*$, which is

$$\boldsymbol{B}(\boldsymbol{\theta}) = \operatorname{tr} \left\{ \boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1} \frac{\partial \boldsymbol{\Sigma}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_i} \boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1} \frac{\partial \boldsymbol{\Sigma}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_j} \boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1} - \frac{1}{2} \boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1} \frac{\partial^2 \boldsymbol{\Sigma}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_i \partial \boldsymbol{\theta}_j} \boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1} \right\} ,$$

is continuous in $\boldsymbol{\theta}$ and \mathcal{N}_0 is compact. The last line follows since \boldsymbol{S} converges to Σ_0 in probability as $n \to \infty$ (N1)). Finally, to see that $\boldsymbol{J}(\boldsymbol{\theta}_0)$ is invertible, note that

$$\boldsymbol{J}(\boldsymbol{\theta}_0)_{ij} = \frac{1}{2} \operatorname{tr} \left\{ \boldsymbol{\Sigma}_0^{-1} \frac{\partial \boldsymbol{\Sigma}(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}_i} \boldsymbol{\Sigma}_0^{-1} \frac{\partial \boldsymbol{\Sigma}(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}_i} \right\} .$$

Hence, we can write $J(\theta_0)$ as

$$\boldsymbol{J}(\boldsymbol{\theta}_0) = -rac{1}{2} \boldsymbol{\mathcal{J}}^{\top} \left(\boldsymbol{\Sigma}_0^{-1} \otimes \boldsymbol{\Sigma}_0^{-1}
ight) \boldsymbol{\mathcal{J}} \,,$$

where

$$\mathcal{J} = \left[\operatorname{vec} \left(\frac{\partial \Sigma(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}_1} \right), \quad \operatorname{vec} \left(\frac{\partial \Sigma(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}_2} \right), \quad \cdots, \quad \operatorname{vec} \left(\frac{\partial \Sigma(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}_d} \right) . \right]$$

Hence $J(\theta_0)$ is invertible if \mathcal{J} has full column rank. This holds by our identification condition N2).

A15) Let \mathcal{N}_0 be as defined above. By assumption N5), $\nabla P^*(\boldsymbol{\theta})$ is continuous and hence, by the Extreme Value Theorem,

$$\sup_{\boldsymbol{\theta} \in \mathcal{N}} \left\| n^{-1/2} \nabla P^*(\boldsymbol{\theta}) \right\| = \frac{c_n}{\sqrt{n}} \sup_{\boldsymbol{\theta} \in \mathcal{N}} \left\| \nabla P(\boldsymbol{\theta}) \right\|$$
$$\leq C \frac{c_n}{\sqrt{n}}$$
$$= o_p(1),$$

as required.

Lemma 1. In the setting of Theorem 3 with assumptions N1)-N3), with probability going to one, the ML estimator exists, and there exists a sequence of orthogonal rotation matrices Q such that

$$\left\| \left| \mathbf{\Lambda}(\hat{\boldsymbol{\theta}}) \boldsymbol{Q} - \mathbf{\Lambda}_0 \right| \right\| \stackrel{p}{\to} 0, \quad \left\| \left| \mathbf{\Psi}(\hat{\boldsymbol{\theta}}) - \mathbf{\Psi}_0 \right| \right\| \stackrel{p}{\to} 0.$$

Proof. Consider the parameter space $\Theta^* = \text{vec}(\text{vec}(\Theta_1) \otimes \Re_{>0}^p)$, where Θ_1 is the space of all symmetric, positive semidefinite $p \times p$ matrices with rank q. For $\theta \in \Theta^*$ construct the variance-covariance matrix $s(\theta)$ by stacking the first p^2 elements of θ into the symmetric, positive semidefinite matrix M and the remaining p entries of θ into the diagonal matrix U and let $s(\theta) = M(\theta) + U(\theta)$.

Kano (1986, Theorems 3, 4) shows that if Σ_0 is strongly identifiable in Θ^* and the criterion function, which we take to be the criterion function of N3) $\theta \in \Theta^*$, i.e.

$$F(\Sigma, s(\theta)) = \log \det(s(\theta)) + \operatorname{tr}((s(\theta))^{-1}\Sigma) - p - \log \det(\Sigma),$$

satisfies the condition (A2) (Kano, 1986, Section 3):

(A2) For any ϵ , there is a scalar $\delta > 0$ such that $\|\mathbf{S} - \mathbf{\Sigma}_0\| < \delta$ and $F(\mathbf{S}, \mathbf{s}(\boldsymbol{\theta})) < \delta$ imply that $\|\mathbf{s}(\boldsymbol{\theta}) - \mathbf{\Sigma}_0\| < \epsilon$,

then with probability approaching to one, the minimiser of $F(S, s(\theta))$ over Θ^* , exists and is consistent for $\Lambda_0 \Lambda_0^{\top}, \Psi_0$, i.e.

$$\| \boldsymbol{M}(\hat{\boldsymbol{\theta}}) - \boldsymbol{\Lambda}_0 \boldsymbol{\Lambda}_0^{\top} \| \stackrel{p}{\to} 0, \quad \| \boldsymbol{U}(\hat{\boldsymbol{\theta}}) - \boldsymbol{\Psi}_0 \| \stackrel{p}{\to} 0.$$
 (S9)

П

Hence, we need to show that

- i) Any maximiser in Θ^* is equivalent to a maximiser in Θ in that $M(\hat{\theta}) = \Lambda(\hat{\theta})\Lambda(\hat{\theta})$ for some $p \times q$ matrix $\Lambda(\hat{\theta})$ of rank q, that, in conjunction with $U(\hat{\theta})$ is a maximiser of the log-likelihood in Θ
- ii) Strong identifiability in Θ implies strong identifiability in Θ^* ,
- iii) condition (A2) holds, and

iv) (S9) implies that there exists a sequence of orthogonal rotation matrices Q such that $\Lambda(\hat{\theta})Q \to \Lambda_0$ in probability.

We shall prove each property in turn.

- i) Note that the parameter spaces Θ and Θ^* have the same images under the maps $\theta \mapsto \Sigma(\theta), (\theta \in \Theta), \theta \mapsto s(\theta), (\theta \in \Theta^*)$ respectively, as any $\Lambda\Lambda^{\top}$ is a symmetric, positive semi-definite $p \times p$ matrix, and conversely any such matrix M admits a representation $M = \Lambda\Lambda^{\top}$, where Λ is $p \times q$ with rank q. The property follows by noting that minimising the criterion function F is equivalent to maximising the log-likelihood function.
- ii) If $\Sigma_0 = \Lambda_0 \Lambda_0^{\top} + \Psi_0$ is strongly identifiable in Θ , then it is also strongly identifiable in Θ^* in that for any $\epsilon > 0$, there is a $\delta > 0$ such that for $\mathbf{s} = \mathbf{M} + \mathbf{U}$, \mathbf{M} symmetric positive definite $p \times p$ of rank q and \mathbf{U} $p \times p$ diagonal positive definite,

$$\| s - \Sigma_0 \| < \delta \implies \| M - \Lambda_0 \Lambda_0^\top \| < \epsilon, \quad \| U - \Psi_0 \| < \epsilon.$$

To see this write s = M + U as $s = \Lambda \Lambda^{\top} + U$. By strong identifiability of Σ_0 in Θ , we have that

$$\| \mathbf{\Lambda} \mathbf{Q} - \mathbf{\Lambda}_0 \| < \epsilon, \quad \| \mathbf{U} - \mathbf{\Psi}_0 \| < \epsilon.$$

Now let $\Delta = \Lambda Q - \Lambda_0$. Then

$$\begin{aligned} \||\mathbf{\Lambda}\mathbf{\Lambda}^{\top} - \mathbf{\Lambda}_{0}\mathbf{\Lambda}_{0}^{\top}|| &= \||(\mathbf{\Lambda}_{0} - \mathbf{\Delta})(\mathbf{\Lambda}_{0} - \mathbf{\Delta})^{\top} - \mathbf{\Lambda}_{0}\mathbf{\Lambda}_{0}^{\top}|| \\ &= \||\mathbf{\Lambda}_{0}\mathbf{\Delta}^{\top} + \mathbf{\Delta}\mathbf{\Lambda}_{0}^{\top} + \mathbf{\Delta}\mathbf{\Delta}^{\top}|| \\ &\leq 2|\|\mathbf{\Lambda}_{0}\mathbf{\Delta}^{\top}|| + |\|\mathbf{\Delta}\mathbf{\Delta}^{\top}|| \\ &\leq 2|\|\mathbf{\Lambda}_{0}||\epsilon + \epsilon^{2} \end{aligned}$$

Since ϵ can be chosen arbitrarily small, this establishes strong identifiability of Σ_0 in Θ^* .

- iii) Condition (A2) is exactly assumption N3).
- iv) We can always find a $p \times q$ matrix $\Lambda(\hat{\boldsymbol{\theta}})$ of rank q, such that $M(\hat{\boldsymbol{\theta}}) = \Lambda(\hat{\boldsymbol{\theta}})\Lambda(\hat{\boldsymbol{\theta}})^{\top}$. What remains to be shown is that for any such sequence of $\Lambda(\hat{\boldsymbol{\theta}})$, we can find a sequence of orthogonal rotation matrices \boldsymbol{Q} such that $\|\boldsymbol{\Lambda}(\hat{\boldsymbol{\theta}})\boldsymbol{Q} \boldsymbol{\Lambda}_0\| \stackrel{p}{\to} 0$.

From the Orthogonal Procrustes Theorem (see, for example, Golub and Van Loan 2013, Section 6.4.1) we have that for every $\Lambda(\hat{\theta})$, there exists an orthogonal rotation Q such that

$$\left\| \mathbf{\Lambda}(\hat{\boldsymbol{\theta}}) \mathbf{Q} - \mathbf{\Lambda}_0 \right\|_F^2 = \left\| \mathbf{\Lambda}(\hat{\boldsymbol{\theta}}) \right\|_F^2 + \left\| \mathbf{\Lambda}_0 \right\|_F^2 - 2 \operatorname{tr}(\mathbf{R}),$$
 (S10)

where $\mathbf{R} = \operatorname{diag}(\sigma_1(\mathbf{\Lambda}_0^{\top} \mathbf{\Lambda}(\hat{\boldsymbol{\theta}})), \dots, \sigma_q(\mathbf{\Lambda}_0^{\top} \mathbf{\Lambda}(\hat{\boldsymbol{\theta}})))$ is the diagonal matrix of singular values of $\mathbf{\Lambda}_0^{\top} \mathbf{\Lambda}(\hat{\boldsymbol{\theta}})$.

Now by (S10), $\| \mathbf{\Lambda}(\hat{\boldsymbol{\theta}}) \|_F^2$ converges to $\| \mathbf{\Lambda}_0 \|_F^2$ in probability. To show that the singular values $\sigma_i(\mathbf{\Lambda}_0^{\top} \mathbf{\Lambda}(\hat{\boldsymbol{\theta}}))$ converge to $\sigma_i(\mathbf{\Lambda}_0^{\top} \mathbf{\Lambda}_0)$, note that these singular values are the square roots of the eigenvalues of $T_n = \mathbf{\Lambda}_0^{\top} \mathbf{\Lambda}(\hat{\boldsymbol{\theta}}) \mathbf{\Lambda}(\hat{\boldsymbol{\theta}})^{\top} \mathbf{\Lambda}_0$. Let $T = \mathbf{\Lambda}_0^{\top} \mathbf{\Lambda}_0 \mathbf{\Lambda}_0^{\top} \mathbf{\Lambda}_0$. Then

$$\begin{aligned} \|\boldsymbol{T}_{n} - \boldsymbol{T}\|_{2} &= \left\| \boldsymbol{\Lambda}_{0} (\boldsymbol{\Lambda}(\hat{\boldsymbol{\theta}}) \boldsymbol{\Lambda}(\hat{\boldsymbol{\theta}})^{\top} - \boldsymbol{\Lambda}_{0} \boldsymbol{\Lambda}_{0}^{\top}) \boldsymbol{\Lambda}_{0}^{\top} \right\|_{2} \\ &\leq \left\| \boldsymbol{\Lambda}_{0} \right\|_{2} \left\| \boldsymbol{\Lambda}(\hat{\boldsymbol{\theta}}) \boldsymbol{\Lambda}(\hat{\boldsymbol{\theta}})^{\top} - \boldsymbol{\Lambda}_{0} \boldsymbol{\Lambda}_{0}^{\top} \right\|_{2} \\ &\stackrel{p}{\to} 0 \end{aligned}$$

By Weyl's inequality (see, for example, Golub and Van Loan 2013, Corollary 8.16),

$$\left|\lambda_i(T_n) - \lambda_i(T)\right| \le \|T_n - T\|_2 \stackrel{p}{\to} 0, \quad (i = 1, \dots, q).$$

Thus the singular values $\sigma_i(\mathbf{\Lambda}_0^{\top}\mathbf{\Lambda}(\hat{\boldsymbol{\theta}}))$, which are the square roots of $\lambda_i(\mathbf{T}_n)$, converge to $\sigma_i(\mathbf{\Lambda}_0^{\top}\mathbf{\Lambda}_0)$, the square roots of $\lambda_i(\mathbf{T})$. Therefore

$$\operatorname{tr}\left(oldsymbol{R}
ight) \stackrel{p}{ o} \sum_{i=1}^{q} \sigma_{i}(oldsymbol{\Lambda}_{0}^{ op}oldsymbol{\Lambda}_{0}) = \left\|oldsymbol{\Lambda}_{0}
ight\|_{F}^{2},$$

and thus by (S10) indeed

$$\left\| \mathbf{\Lambda}(\hat{\boldsymbol{\theta}}) \mathbf{Q} - \mathbf{\Lambda}_0 \right\|_F^2 \stackrel{p}{\to} 0.$$

References

Burg, J. P., D. G. Luenberger, and D. L. Wenger (1982). Estimation of structured covariance matrices. *Proceedings of the IEEE 70*(9), 963–974.

Golub, G. H. and C. F. Van Loan (2013). Matrix computations. Johns Hopkins University Press.

Kano, Y. (1983). Consistency of estimators in factor analysis. *Journal of the Japan Statistical Society, Japanese Issue* 13(2), 137–144.

Kano, Y. (1986). Conditions on consistency of estimators in covariance structure model. *Journal of the Japan Statistical Society, Japanese Issue* 16(1), 75–80.

Rudin, W. (1976). Principles of mathematical analysis (3rd ed.). McGraw-Hill.