ENGG 202 March 13 Week 9

Problems

Problem 4/80 Determine the magnitude of the pin force at B.

Problem 4/112 (modified)

The top of the folding workbench has a mass of 50 kg with mass center at G. Calculate the x- and y- components of the force supported by the pin at E. Note that the link FH must be considered one inextensible member.

5/2 Centre of Mass

Determining the centre of gravity. Centre of mass vs. centre of gravity.

5/3 Centroids of Lines, Areas and Volumes

5/4 Composites bodies

$$\overline{X} = \frac{\sum m\overline{x}}{\sum m}$$
 $\overline{Y} = \frac{\sum m\overline{y}}{\sum m}$ $\overline{Z} = \frac{\sum m\overline{z}}{\sum m}$ (5/7)

Problem 5/8

Determine the x- $\,$ and y- $\,$ coordinates of the centroid of the trapezoidal area. $\,^{\mathcal{Y}}$

Problem 5/51

