كريم احمد	20200389
احمد علي علي محمود	20200031
عبدالرحمن احمد سمير	20200278
علي ماهر	20200332
ابراهيم هشام احمد	20200005
عمر صلاح الدين احمد	20200347

Dataset:

We used Heart Attack analysis & Prediction Dataset (Heart Attack Analysis & Prediction Dataset (kaggle.com).

It's a dataset for heart attack classification, it contains data about Age, Sex, Exercise induced angina (Yes, No), Number of major vessels (0-3), Chest Pain Type (4 options), Resting blood pressure, Cholestral in mg/dl, Fasting blood sugar (True, False), Resting electrocardiographic results (3 options), Maximum heart rate achieved and Target (Yes, No).

Methodology:

1- Data Preprocessing:

First we started by checking the features' data type:

```
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
                 303 non-null
303 non-null
303
 0 age
                                             int64
      cp 303 non-null
trtbps 303 non-null
      chol 303 non-null
      restecg 303 non-null
thalachh 303 non-null
                                             int64
 8 exng 303 non-null
9 oldpeak 303 non-null
                                             int64
                                             float64
 10 slp 303 non-null
11 caa 303 non-null
                                             int64
 11 caa
12 thall
                                             int64
                   303 non-null
303 non-null
                                             int64
                                             int64
 13 output
dtypes: float64(1), int64(13) memory usage: 33.3 KB
```

After that we checked if there are any null values in our data:

```
age
            0
sex
            0
            0
trtbps
            0
chol
            0
fbs
restecg
            0
thalachh
            0
            0
oldpeak
            0
slp
            0
caa
thall
            0
output
            0
dtype: int64
```

We checked if there are any duplicated values in the data to be cleared:

```
1
Cleared
```

We checked the Range (Min, Max) for each column:

```
Range of col age: Max: 77, Min: 29
Range of col sex: Max: 1, Min: 0
Range of col cp: Max: 3, Min: 0
Range of col trtbps: Max: 200, Min: 94
Range of col chol: Max: 564, Min: 126
Range of col fbs: Max: 1, Min: 0
Range of col restecg: Max: 2, Min: 0
Range of col thalachh: Max: 202, Min: 71
Range of col exng: Max: 1, Min: 0
Range of col oldpeak: Max: 6.2, Min: 0.0
Range of col slp: Max: 2, Min: 0
Range of col caa: Max: 4, Min: 0
Range of col thall: Max: 3, Min: 0
Range of col output: Max: 1, Min: 0
```

We also checked columns which have continuous values:

['age', 'trtbps', 'chol', 'thalachh', 'oldpeak']

We checked the outliers of each column:

Outlier count in age: 0 Variance: 0.9358319948956019
Outlier count in sex: 0 Variance: 0.2175529691315923
Outlier count in cp: 0 Variance: 1.0651140788981541
Outlier count in trtbps: 14 Variance: 1.0647620514400122
Outlier count in chol: 5 Variance: 0.4748960418912675
Outlier count in fbs: 45 Variance: 0.12722492354403644
Outlier count in restecg: 0 Variance: 0.2767045829574707
Outlier count in thalachh: 7 Variance: 0.8421816901718332
Outlier count in exng: 0 Variance: 0.22108424457107653
Outlier count in oldpeak: 5 Variance: 1.3489714197707423
Outlier count in slp: 0 Variance: 0.37979362390266447
Outlier count in caa: 24 Variance: 1.0135420562803898
Outlier count in thall: 2 Variance: 0.3758003124243691
Outlier count in output: 0 Variance: 0.24897141977074214

2- Data Visualization:

In this step we wanted to know more about data in an understandable way like visualization for each feature and check it's **distribution (continuous columns)**:

After that we checked the relation between each feature and heart attack and how it affects the output result :

3- Data Splitting:

We split the data into 2 sets (training, testing), with testing size = 0.33

4- Feature Selection:

For this process we used the Genetic Algorithm to pick the best set of features to use in training our model.

We used RandomForest Classifier in G.A just for testing our data in each iteration in the algorithm to check the best-fit features.

We made the population size = 10

Number of generations = 15

Mutation rate = 0.01

Here are the results after applying Genetic Algorithm:

```
Generation 1: Fitness: 0.83
Generation 2: Fitness: 0.81
Generation 3: Fitness: 0.83
Generation 4: Fitness: 0.82
Generation 5: Fitness: 0.81
Generation 6: Fitness: 0.81
Generation 7: Fitness: 0.82
Generation 8: Fitness: 0.82
Generation 9: Fitness: 0.82
Generation 10: Fitness: 0.8
Generation 11: Fitness: 0.8
Generation 12: Fitness: 0.84
Generation 13: Fitness: 0.84
Generation 14: Fitness: 0.84
Generation 15: Fitness: 0.81
Best Features: [0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1]
```

Best set of features selected:

```
['sex', 'fbs', 'restecg', 'thalachh', 'exng', 'caa', 'thall']
```

5- Feature Reduction:

For reducing the dimensionality of our features, we used PCA:

We set the number of components = 6

The shape of (X) after applying PCA is: (302, 6)

6- Modeling:

We used KNN to be our Classifier Model:

We set the Neighbors(K) = 5

Then we trained the model using the training set we got from the split we have done earlier.

After that we used the test set for prediction to check the performance of our model.

Classification Report:

	precision	recall	f1-score	support	
_					
0	0.72	0.85	0.78	27	
1	0.89	0.78	0.83	40	
accuracy			0.81	67	
macro avg	0.80	0.81	0.80	67	
weighted avg	0.82	0.81	0.81	67	