

Family Name
Given Name
Student No.
Signature

THE UNIVERSITY OF NEW SOUTH WALES

School of Electrical Engineering & Telecommunications

FINAL EXAMINATION

Semester 2, 2017

ELEC1111 Electrical and Telecommunications Engineering

TIME ALLOWED: 2 hours
TOTAL MARKS: 100
TOTAL NUMBER OF QUESTIONS: 5

THIS EXAM CONTRIBUTES 50% TO THE TOTAL COURSE ASSESSMENT

Reading Time: 10 minutes.

This paper contains 6 pages.

Candidates must **ATTEMPT ALL** questions.

Answer each question in a separate answer booklet.

Marks for each question are indicated beside the question.

This paper **MAY NOT** be retained by the candidate.

Students must achieve a minimum of 40 marks to pass the course.

Print your name, student ID and question number on the front page of each answer book.

Authorised examination materials:

Candidates should use their own UNSW-approved electronic calculators.

This is a closed book examination.

Assumptions made in answering the questions should be stated explicitly.

All answers must be written in ink. Except where they are expressly required, pencils **may only be used** for drawing, sketching or graphical work.

For the **numerical solutions**, you can use either **fraction** form or floating-point form (maximum **2 digits** after decimal point is enough)

QUESTION 1 [20 marks]

- (i) [10 marks] For the circuit shown in Figure 1,
 - a. **(8 marks)** Apply mesh analysis and show that the mesh equation are given as below,

$$\begin{cases} i_1 + 3i_2 - 2i_3 = 8 \\ i_1 + i_2 - 4i_3 = -1 \\ i_1 - i_2 = -4 \end{cases}$$

b. (2 marks) Given the values of mesh currents as $i_1 = -0.5 \text{ A}$, $i_2 = 3.5 \text{ A}$, and $i_3 = 1 \text{ A}$, find the voltage v across 4-A current source.

Figure 1

- (ii) [10 marks] For the circuit shown in Figure 2,
 - a. **(8 marks)** Apply nodal analysis and show that the nodal equations are given as below,

$$\begin{cases} 11v_1 - 6v_2 = 108 \\ 4v_1 - 3v_2 = -54 \end{cases}$$

b. (2 marks) Given the values of node voltages as $v_1 = 72 \text{ V}$ and $v_2 = 114 \text{ V}$, Calculate the power of the dependent current source.

Figure 2

QUESTION 2 [20 marks]

- (i) [10 marks] For the circuit shown in Figure 3,
 - a. **(4 marks)** Calculate the open-circuit voltage v_{oc} and short-circuit current i_{sc} at the terminals a-b.
 - b. **(4 marks)** Obtain the Norton equivalent circuit with respect to the terminals *a-b* and draw the equivalent circuit.
 - c. (2 marks) Determine the value of the load resistance R_L for maximum power transfer, and then calculate the maximum power that can be delivered to R_L .

Figure 3

- (ii) [10 marks] In circuit shown in Figure 4, the switch has been in position A for a long time. At t = 0, the switch moves to position B.
 - a. **(4 marks)** Find the voltage v(t) across the capacitor immediately after the switch changes to position B, $v(0^+)$, and its final voltage when $t \to \infty$, $v(\infty)$.
 - b. **(4 marks)** Derive an expression for the capacitor voltage v(t) for all time (i.e., for both t < 0 and t > 0).
 - c. (2 marks) Find the current i(t) through $3-k\Omega$ resistor for t>0.

Figure 4

QUESTION 3 [20 marks]

(i) [8 marks] For the Op Amp circuit shown in Figure 5 show that the output v_0 can be given by the following equation,

$$v_o = a_1 v_1 - a_2 v_2$$

and determine the parameters a_1 and a_2 in terms of resistors R_1 to R_5 .

Figure 5

- (ii) [12 marks] In the circuit of Figure 6, the switch has been in position A for a long time before changing its position to B at t=0.
 - a. **(10 marks)** Derive an expression for the inductor current $i_L(t)$ for all time (i.e., for both t < 0 and t > 0) and sketch $i_L(t)$ as a function of time showing all critical points in the sketch.
 - b. (2 marks) Find the voltage v(t) across the 2- Ω resistor for t > 0.

Figure 6

QUESTION 4 [20 marks]

- (i) [10 marks] For the circuit shown in Figure 7,
 - a. (4 marks) Find the equivalent impedance Z_{eq} seen from terminals a-b
 - b. **(6 marks)** Apply phasor analysis and source transformation to calculate the voltage v_x across the 80- Ω resistor.

Figure 7

- (ii) [10 marks] For the circuit shown in Figure 8,
 - **a. (6 marks)** Find the Thevenin equivalent circuit as seen from the terminals *a-b*, and draw the equivalent circuit.
 - **b.** (2 marks) Determine the value of the load impedance Z_L for maximum average power transfer.
 - **c.** (2 marks) Calculate the maximum average power that can be delivered to the load Z_L from this circuit.

Figure 8

QUESTION 5 [20 marks]

- (i) [10 marks] For the circuit shown in Figure 9,
 - a. **(6 marks)** Find the output voltage v_x using phasor analysis and superposition principle.
 - b. **(4 marks)** Sketch the phasors of voltage source V and current source I along with phasor of voltage V_x on a phasor diagram.

Figure 9

IGNORE THIS QUESTION

- (ii) [10 marks] Consider the following logical diagram shown in Figure 10.
 - a. (4 marks) Derive and simplify the logical expression for Z.
 - b. (4 marks) Construct the truth table relating Z to inputs A, B, and C.
 - c. (2 marks) Using part a. and/or part b., show that Z can be realised using exactly one 3-input AND gate and one 1-input NOT gate showing all working.

Figure 10

END OF PAPER