Each subsection counts for 10 points

Introduction

Throughout assume a linear model

$$\mathbf{y} = X\beta + \mathbf{e}$$

where **y** is an vector of length n and X is a full rank, $n \times p$ matrix. \mathbf{e}_i are independent $N(0, \sigma^2 I)$.

- 1. (a) Following the notation and results in Section 3.8.1 of Seber and Lee let $\hat{\beta}_H$ be the OLS estimate under the constraint $A\beta = \mathbf{c}$ for some known A and \mathbf{c} (here A is $q \times p$ and of course q < p.) Refer to the formula (3.38) for $\hat{\beta}_H$ and define the matrix P_H as satisfying $P_H \mathbf{y} = X \hat{\beta}_H$ (Yes, P_H is pretty complicated!). Show explicitly that P_H is a projection matrix.
 - (b) Seber and Lee also give a different derivation of the constrained OLS estimate in section 3.8.2. In their development what is the role of β_0 ? How could this idea be used in section 3.8.1 to simplify the derivation?
- 2. Following the linear model displayed above let X = QR be the "QR" decomposition for X Where the columns of Q are orthogonal and R is upper triangular. This decomposition always exists for X full rank. Now reparametrize the model as $\gamma = R\beta$ and so

$$\mathbf{y} = Q\gamma + \mathbf{e}$$

and set $\hat{\gamma}$ as the OLS estimate for γ .

- (a) Show that $\{\hat{\gamma}_i\}$ are independent, and normal with variance σ^2
- (b) Let $\hat{\sigma}^2$ be the usual unbiased estimate of σ^2 based on the residuals and let $\gamma_{T,j}$ be the true value of the parameter.

Show that

$$\frac{(\hat{\gamma}_j - \gamma_{T,j})^2}{\hat{\sigma}^2}$$

is distributed as an F distribution, F(1, n-p).

- (c) Show that $R^{-1}\hat{\gamma}$ are the usual OLS estimates for β
- 3. Consider the AudiA4 data in the R binary file AudiA4.rda.
 - > load("AudiA4.rda")
 - > head(AudiA4)

	year	price	mileage	distance
1	2018	28999	21991	3
2	2017	29389	40138	3
3	2014	NA	43500	3
4	2017	25863	35064	3
5	2017	25749	50934	3
6	2017	25999	44139	3

Just to make the numbers easier to work with divide both the mileage and the price by 1000.

```
mileage<- AudiA4$mileage/1000
price<- AudiA4$price/1000</pre>
```

Here is some R code to fit a piecewise linear function to price as a function of mileage where the break in the lines is at 30 (i.e 30,000 miles). Also a simple plot to see the fit.

- (a) Note that in the full OLS fit the broken line is not continuous at 30. What is the A matrix in this case to enforce the constraint that the fit is continuous? Note in this case you can write the constraint with $\mathbf{c} = 0$.
- (b) Code up the constrained estimate of $\hat{\beta_H}$ using (3.38) from Seber and Lee and add the predicted values for this fit onto a scatterplot of the data and the unconstrained OLS fit.
- (c) Here is a trick to fit a broken line that is continuous without using a constraint. (This is a simple case of the the more useful B-spline models for curve fitting.)

Explain why this will give the same predicted values as your constrained fit above.