Data Science SS20

Machine Learning I

Introduction and Overview

Machine Learning I

Machine Learning I

Outline

- Introduction to ML
 - Basic Definitions an Terminology
 - Supervised Learning
 - Generalization and Overfitting
 - Unsupervised Learning

Research and Application Fields

Research and Application Fields

The ML Hype

Google Trends Worldwide

Basic Types of Machine Learning Algorithms

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Basic Types of Machine Learning Algorithms

Supervised Learning

Unsupervised Learning

Reinforcement Learning

- Labeled data
- Direct and quantitative evaluation
- Learn model from "ground truth" examples
- Predict unseen examples

Supervised Learning

Basic Notation:

Data is given as tuples

$$(X,Y) := \{(x_1,y_1), (x_2,y_2), \dots, (x_n,y_n)\}$$

Where X is the actual data (sample) and y the associated label.

For most ML algorithms (many Deep Learning algorithms are an exception)

$$x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$$

The data has to be represented as vectors and the labels are scalars.

Supervised Learning as a Black Box

ML algorithms "learns" *mapping* from input to output by example tuples

Supervised Learning: Example: Classification

ML algorithms "learns" *mapping* from input to output by example tuples

Supervised Learning: Example: Classification

LEARNING: approximate "best" *f* for the given data

Supervised Learning: Example: Classification

LEARNING: optimization problem:

Supervised Learning: Example: Regression

Challenges of Supervised Learning

- Not only need data also need to have $Y \rightarrow$ human annotation
 - Getting "enough" labeled data is expensive
 - Sometimes impossible

UNDERFITTING

$$min(\|f(X,Y),Y'\|)$$

Training model
On little data

Challenges of Supervised Learning

- Not only need data also need to have $Y \rightarrow$ human annotation
 - Getting "enough" labeled data is expensive
 - Sometimes impossible

UNDERFITTING

$$min(\|f(X,Y),Y'\|)$$

→ bad sampling Of the data distribution

Challenges of Supervised Learning

- Not only need data also need to have Y → human annotation
 - Getting "enough" labeled data is expensive
 - Sometimes impossible

ImageNet Challenge

Example:

- 1,000 object classes (categories).
- Images:
 - o 1.2 M train
 - o 100k test.

Challenges of Supervised Learning

- Not only need data also need to have $Y \rightarrow$ human annotation
 - Getting "enough" labeled data is expensive
 - Sometimes impossible

Example:

Challenges of Supervised Learning

- Not only need data also need to have $Y \rightarrow$ human annotation
 - Getting "enough" labeled data is expensive
 - Sometimes impossible
- Training data is only a sample: prediction must work on all data → generalization

Challenges of Supervised Learning

• Training data is **only a sample:** prediction must work on **all data** → **generalization**

Which model is better?

$$min(\|f(X,Y),Y'\|)$$

Challenges of Supervised Learning

• Training data is **only a sample:** prediction must work on **all data** → **generalization**

Which model is better?

$$min(\|f(X,Y),Y'\|)$$

Test sample

Challenges of Supervised Learning

Training data is only a sample: prediction must work on all data → generalization

OVERFITTING

Model "to close" to train data

Very likely to happen in practice.

→ we need to work against this...

Data Preparation: Split into Train, Test, and Validate

A basic technique (we will learn more later) to at least detect overfitting is to split the available data into two or three subsets:

- Use unbiased test set for final evaluation of a model
- Use train set for model training
- Validation set (part of train set) can be used to optimize hyper parameters of the model

Caution: sets must be unbiased! (→ random sampling)
In practice it can be hard to guarantee clean train/test sets:
e.g. how to treat possible variance different data sources?
→ statistical analysis needed!

Basic evaluation (more techniques to come)

Train error: measure of how well the model predicts the given labels

$$Err_{train} := \frac{1}{|X_{train}|} \sum_{x_i \in X_{train}} |f(x_i) - y_i|$$

low train error is the necessary condition for a "good" model

Test error: same as train error: low test error is the sufficient condition

$$Err_{test} := \frac{1}{|X_{test}|} \sum_{x_i \in X_{test}} |f(x_i) - y_i|$$

Basic Types of Machine Learning Algorithms

Supervised Learning

Unsupervised Learning

Reinforcement Learning

- NO Labeled data
- NO Direct and quantitative evaluation
- Explore structure of data

Unsupervised Learning

Data without "labels" (x_1, x_2, \dots, x_n)

- Clustering
- Outlier Detection (e.g. Defect or Intrusion detection)

Basic Types of Machine Learning Algorithms

Supervised Learning

Unsupervised Learning

Reinforcement Learning

- Learning decisions in an interactive environment
- Game playing and robotics
- Hardly use in Data Science

ML in Python

Libraries used in this lecture:

Introduction in this week's lab

... introduction in Block 8