CHAPTER 7

Applications of the Definite Integral in Geometry, Science, and Engineering

EXERCISE SET 7.1

1.
$$A = \int_{-1}^{2} (x^2 + 1 - x) dx = (x^3/3 + x - x^2/2) \Big]_{-1}^{2} = 9/2$$

2.
$$A = \int_0^4 (\sqrt{x} + x/4) dx = (2x^{3/2}/3 + x^2/8) \Big]_0^4 = 22/3$$

3.
$$A = \int_{1}^{2} (y - 1/y^2) dy = (y^2/2 + 1/y) \Big]_{1}^{2} = 1$$

4.
$$A = \int_0^2 (2 - y^2 + y) dy = (2y - y^3/3 + y^2/2) \Big|_0^2 = 10/3$$

5. (a)
$$A = \int_0^4 (4x - x^2) dx = 32/3$$

(b)
$$A = \int_0^{16} (\sqrt{y} - y/4) dy = 32/3$$

6. Eliminate x to get $y^2 = 4(y+4)/2$, $y^2 - 2y - 8 = 0$, (y-4)(y+2) = 0; y = -2, 4 with corresponding values of x = 1, 4.

7.
$$A = \int_{1/4}^{1} (\sqrt{x} - x^2) dx = 49/192$$

8.
$$A = \int_0^2 [0 - (x^3 - 4x)] dx$$

= $\int_0^2 (4x - x^3) dx = 4$

9. $A = \int_{\pi/4}^{\pi/2} (0 - \cos 2x) dx$ = $-\int_{\pi/4}^{\pi/2} \cos 2x \, dx = 1/2$

10. Equate $\sec^2 x$ and 2 to get $\sec^2 x = 2$,

280

13.
$$A = \int_0^{\ln 2} (e^{2x} - e^x) dx$$

= $\left(\frac{1}{2}e^{2x} - e^x\right) \Big|_0^{\ln 2} = 1/2$

15.
$$A = \int_{-1}^{1} \left(\frac{2}{1+x^2} - |x| \right) dx$$
$$= 2 \int_{0}^{1} \left(\frac{2}{1+x^2} - x \right) dx$$
$$= 4 \tan^{-1} x - x^2 \Big]_{0}^{1} = \pi - 1$$

17.
$$y = 2 + |x - 1| = \begin{cases} 3 - x, & x \le 1 \\ 1 + x, & x \ge 1 \end{cases}$$
,

$$A = \int_{-5}^{1} \left[\left(-\frac{1}{5}x + 7 \right) - (3 - x) \right] dx$$

$$+ \int_{1}^{5} \left[\left(-\frac{1}{5}x + 7 \right) - (1 + x) \right] dx$$

$$= \int_{-5}^{1} \left(\frac{4}{5}x + 4 \right) dx + \int_{1}^{5} \left(6 - \frac{6}{5}x \right) dx$$

$$= 72/5 + 48/5 = 24$$

14.
$$A = \int_{1}^{e} \frac{dy}{y} = \ln y \Big]_{1}^{e} = 1$$

16.
$$\frac{1}{\sqrt{1-x^2}} = 2, x = \pm \frac{\sqrt{3}}{2}, \text{ so}$$
$$A = \int_{-\sqrt{3}/2}^{\sqrt{3}/2} \left(2 - \frac{1}{\sqrt{1-x^2}}\right) dx$$
$$= 2 - \sin^{-1} x \Big|_{-\sqrt{3}/2}^{\sqrt{3}/2} = 2\sqrt{3} - \frac{2}{3}\pi$$

18.
$$A = \int_0^{2/5} (4x - x) dx$$
$$+ \int_{2/5}^1 (-x + 2 - x) dx$$
$$= \int_0^{2/5} 3x \, dx + \int_{2/5}^1 (2 - 2x) dx = 3/5$$

20. Equate $y = x^3 - 2x^2$ and $y = 2x^2 - 3x$ to get $x^3 - 4x^2 + 3x = 0$, x(x-1)(x-3) = 0; x = 0, 1, 3 with corresponding values of y = 0, -1.9.

21. From the symmetry of the region

$$A = 2 \int_{\pi/4}^{5\pi/4} (\sin x - \cos x) dx = 4\sqrt{2}$$

22. The region is symmetric about the origin so

$$A = 2\int_0^2 |x^3 - 4x| dx = 8$$

23.
$$A = \int_{-1}^{0} (y^3 - y) dy + \int_{0}^{1} -(y^3 - y) dy$$
 24. $A = \int_{0}^{1} \left[y^3 - 4y^2 + 3y - (y^2 - y) \right] dy$

24.
$$A = \int_0^1 \left[y^3 - 4y^2 + 3y - (y^2 - y) \right] dy$$

 $+ \int_1^4 \left[y^2 - y - (y^3 - 4y^2 + 3y) \right] dy$

= 7/12 + 45/4 = 71/6

25. The curves meet when $x = \sqrt{\ln 2}$, so

$$A = \int_0^{\sqrt{\ln 2}} (2x - xe^{x^2}) \, dx = \left(x^2 - \frac{1}{2}e^{x^2}\right) \bigg]_0^{\sqrt{\ln 2}} = \ln 2 - \frac{1}{2}$$

26. The curves meet for $x = e^{-2\sqrt{2}/3}$, $e^{2\sqrt{2}/3}$ thus

$$A = \int_{e^{-2\sqrt{2}/3}}^{e^{2\sqrt{2}/3}} \left(\frac{3}{x} - \frac{1}{x\sqrt{1 - (\ln x)^2}} \right) dx$$
$$= \left(3\ln x - \sin^{-1}(\ln x) \right) \Big|_{e^{-2\sqrt{2}/3}}^{e^{2\sqrt{2}/3}} = 4\sqrt{2} - 2\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$$

- **27.** The area is given by $\int_0^k (1/\sqrt{1-x^2}-x)dx = \sin^{-1}k k^2/2 = 1$; solve for k to get k = 0.997301.
- **28.** The curves intersect at x = a = 0 and x = b = 0.838422 so the area is $\int_{0}^{\pi} (\sin 2x - \sin^{-1} x) dx \approx 0.174192.$
- **29.** Solve $3-2x=x^6+2x^5-3x^4+x^2$ to find the real roots x=-3,1; from a plot it is seen that the line is above the polynomial when -3 < x < 1, so $A = \int_{-3}^{1} (3 - 2x - (x^6 + 2x^5 - 3x^4 + x^2)) dx = 9152/105$

- **30.** Solve $x^5 2x^3 3x = x^3$ to find the roots $x = 0, \pm \frac{1}{2}\sqrt{6 + 2\sqrt{21}}$. Thus, by symmetry, $A = 2\int_0^{\sqrt{(6+2\sqrt{21})}/2} (x^3 (x^5 2x^3 3x)) dx = \frac{27}{4} + \frac{7}{4}\sqrt{21}$
- 31. $\int_0^k 2\sqrt{y} dy = \int_k^9 2\sqrt{y} dy$ $\int_0^k y^{1/2} dy = \int_k^9 y^{1/2} dy$ $\frac{2}{3} k^{3/2} = \frac{2}{3} (27 k^{3/2})$ $k^{3/2} = 27/2$ $k = (27/2)^{2/3} = 9/\sqrt[3]{4}$

32. $\int_0^k x^2 dx = \int_k^2 x^2 dx$ $\frac{1}{3}k^3 = \frac{1}{3}(8 - k^3)$ $k^3 = 4$ $k = \sqrt[3]{4}$

- **33.** (a) $A = \int_0^2 (2x x^2) dx = 4/3$
 - (b) y = mx intersects $y = 2x x^2$ where $mx = 2x x^2$, $x^2 + (m-2)x = 0$, x(x+m-2) = 0 so x = 0 or x = 2 m. The area below the curve and above the line is

$$\int_0^{2-m} (2x - x^2 - mx) dx = \int_0^{2-m} [(2-m)x - x^2] dx = \left[\frac{1}{2} (2-m)x^2 - \frac{1}{3}x^3 \right]_0^{2-m} = \frac{1}{6} (2-m)^3$$
so $(2-m)^3/6 = (1/2)(4/3) = 2/3, (2-m)^3 = 4, m = 2 - \sqrt[3]{4}$.

34. The line through (0,0) and $(5\pi/6,1/2)$ is $y = \frac{3}{5\pi}x$;

$$A = \int_0^{5\pi/6} \left(\sin x - \frac{3}{5\pi} x \right) dx = \frac{\sqrt{3}}{2} - \frac{5}{24} \pi + 1$$

- **35.** (a) It gives the area of the region that is between f and g when f(x) > g(x) minus the area of the region between f and g when f(x) < g(x), for $a \le x \le b$.
 - (b) It gives the area of the region that is between f and g for $a \le x \le b$.

36. (b)
$$\lim_{n \to +\infty} \int_0^1 (x^{1/n} - x) dx = \lim_{n \to +\infty} \left[\frac{n}{n+1} x^{(n+1)/n} - \frac{x^2}{2} \right]_0^1 = \lim_{n \to +\infty} \left(\frac{n}{n+1} - \frac{1}{2} \right) = 1/2$$

- **37.** The curves intersect at x = 0 and, by Newton's Method, at $x \approx 2.595739080 = b$, so $A \approx \int_0^b (\sin x 0.2x) dx = -\left[\cos x + 0.1x^2\right]_0^b \approx 1.180898334$
- **38.** By Newton's Method, the points of intersection are at $x \approx \pm 0.824132312$, so with b = 0.824132312 we have $A \approx 2 \int_0^b (\cos x x^2) dx = 2(\sin x x^3/3) \Big]_0^b \approx 1.094753609$
- **39.** By Newton's Method the points of intersection are $x = x_1 \approx 0.4814008713$ and $x = x_2 \approx 2.363938870$, and $A \approx \int_{x_1}^{x_2} \left(\frac{\ln x}{x} (x 2)\right) dx \approx 1.189708441$.
- **40.** By Newton's Method the points of intersection are $x = \pm x_1$ where $x_1 \approx 0.6492556537$, thus $A \approx 2 \int_0^{x_1} \left(\frac{2}{1+x^2} 3 + 2\cos x\right) dx \approx 0.826247888$
- **41.** distance = $\int |v| dt$, so
 - (a) distance = $\int_0^{60} (3t t^2/20) dt = 1800 \text{ ft.}$
 - **(b)** If $T \le 60$ then distance $= \int_0^T (3t t^2/20) dt = \frac{3}{2}T^2 \frac{1}{60}T^3$ ft.
- **42.** Since $a_1(0) = a_2(0) = 0$, $A = \int_0^T (a_2(t) a_1(t)) dt = v_2(T) v_1(T)$ is the difference in the velocities of the two cars at time T
- **43.** Solve $x^{1/2} + y^{1/2} = a^{1/2}$ for y to get $y = (a^{1/2} x^{1/2})^2 = a 2a^{1/2}x^{1/2} + x$ $A = \int_0^a (a 2a^{1/2}x^{1/2} + x)dx = a^2/6$

- **44.** Solve for y to get $y = (b/a)\sqrt{a^2 x^2}$ for the upper half of the ellipse; make use of symmetry to get $A = 4\int_0^a \frac{b}{a}\sqrt{a^2 x^2}dx = \frac{4b}{a}\int_0^a \sqrt{a^2 x^2}dx = \frac{4b}{a}\cdot\frac{1}{4}\pi a^2 = \pi ab$.
- **45.** Let A be the area between the curve and the x-axis and A_R the area of the rectangle, then $A = \int_0^b kx^m dx = \frac{k}{m+1} x^{m+1} \bigg|_0^b = \frac{kb^{m+1}}{m+1}, A_R = b(kb^m) = kb^{m+1}, \text{ so } A/A_R = 1/(m+1).$

EXERCISE SET 7.2

1.
$$V = \pi \int_{-1}^{3} (3-x)dx = 8\pi$$

3.
$$V = \pi \int_0^2 \frac{1}{4} (3-y)^2 dy = 13\pi/6$$

5.
$$V = \pi \int_0^2 x^4 dx = 32\pi/5$$

7.
$$V = \pi \int_{\pi/4}^{\pi/2} \cos x \, dx = (1 - \sqrt{2}/2)\pi$$

9.
$$V = \pi \int_{-4}^{4} [(25 - x^2) - 9] dx$$

= $2\pi \int_{0}^{4} (16 - x^2) dx = 256\pi/3$

2.
$$V = \pi \int_0^1 [(2 - x^2)^2 - x^2] dx$$

= $\pi \int_0^1 (4 - 5x^2 + x^4) dx$
= $38\pi/15$

4.
$$V = \pi \int_{1/2}^{2} (4 - 1/y^2) dy = 9\pi/2$$

6.
$$V = \pi \int_{\pi/4}^{\pi/3} \sec^2 x \, dx = \pi(\sqrt{3} - 1)$$

8.
$$V = \pi \int_0^1 [(x^2)^2 - (x^3)^2] dx$$

= $\pi \int_0^1 (x^4 - x^6) dx = 2\pi/35$

10.
$$V = \pi \int_{-3}^{3} (9 - x^2)^2 dx$$

= $\pi \int_{-3}^{3} (81 - 18x^2 + x^4) dx = 1296\pi/5$

11.
$$V = \pi \int_0^4 [(4x)^2 - (x^2)^2] dx$$

= $\pi \int_0^4 (16x^2 - x^4) dx = 2048\pi/15$

13.
$$V = \pi \int_0^{\ln 3} e^{2x} dx = \frac{\pi}{2} e^{2x} \Big]_0^{\ln 3} = 4\pi$$
 14. $V = \pi \int_0^1 e^{-4x} dx = \frac{\pi}{4} (1 - e^{-4})$

14.
$$V = \pi \int_{0}^{1} e^{-4x} dx = \frac{\pi}{4} (1 - e^{-4})^{-4}$$

15.
$$V = \int_{-2}^{2} \pi \frac{1}{4+x^2} dx = \frac{\pi}{2} \tan^{-1}(x/2) \bigg|_{-2}^{2} = \pi^2/4$$

16.
$$V = \int_0^1 \pi \frac{e^{6x}}{1 + e^{6x}} dx = \frac{\pi}{6} \ln(1 + e^{6x}) \Big|_0^1 = \frac{\pi}{6} (\ln(1 + e^6) - \ln 2)$$

17.
$$V = \pi \int_0^1 y^{2/3} dy = 3\pi/5$$

18.
$$V = \pi \int_{-1}^{1} (1 - y^2)^2 dy$$

= $\pi \int_{-1}^{1} (1 - 2y^2 + y^4) dy = 16\pi/15$

19.
$$V = \pi \int_{-1}^{3} (1+y)dy = 8\pi$$

21.
$$V = \pi \int_{\pi/4}^{3\pi/4} \csc^2 y \, dy = 2\pi$$

23.
$$V = \pi \int_{-1}^{2} [(y+2)^2 - y^4] dy = 72\pi/5$$

25.
$$V = \int_0^1 \pi e^{2y} dy = \frac{\pi}{2} (e^2 - 1)$$

27.
$$V = \pi \int_{-a}^{a} \frac{b^2}{a^2} (a^2 - x^2) dx = 4\pi a b^2 / 3$$

20.
$$V = \pi \int_0^3 [2^2 - (y+1)] dy$$

= $\pi \int_0^3 (3-y) dy = 9\pi/2$

22.
$$V = \pi \int_{0}^{1} (y - y^{4}) dy = 3\pi/10$$

24.
$$V = \pi \int_{-1}^{1} \left[(2 + y^2)^2 - (1 - y^2)^2 \right] dy$$

= $\pi \int_{-1}^{1} (3 + 6y^2) dy = 10\pi$

26.
$$V = \int_0^2 \frac{\pi}{1+y^2} dy = \pi \tan^{-1} 2$$

28.
$$V = \pi \int_{b}^{2} \frac{1}{x^{2}} dx = \pi (1/b - 1/2);$$

 $\pi (1/b - 1/2) = 3, b = 2\pi/(\pi + 6)$

29.
$$V = \pi \int_{-1}^{0} (x+1)dx$$

 $+ \pi \int_{0}^{1} [(x+1) - 2x]dx$
 $= \pi/2 + \pi/2 = \pi$

31.
$$V = \pi \int_0^3 (9 - y^2)^2 dy$$

= $\pi \int_0^3 (81 - 18y^2 + y^4) dy$
= $648\pi/5$

33.
$$V = \pi \int_0^1 [(\sqrt{x} + 1)^2 - (x + 1)^2] dx$$

= $\pi \int_0^1 (2\sqrt{x} - x - x^2) dx = \pi/2$

34.
$$V = \pi \int_0^1 [(y+1)^2 - (y^2+1)^2] dy$$

= $\pi \int_0^1 (2y - y^2 - y^4) dy = 7\pi/15$

30.
$$V = \pi \int_0^4 x \, dx + \pi \int_4^6 (6 - x)^2 dx$$

= $8\pi + 8\pi/3 = 32\pi/3$

32.
$$V = \pi \int_0^9 [3^2 - (3 - \sqrt{x})^2] dx$$

= $\pi \int_0^9 (6\sqrt{x} - x) dx$
= $135\pi/2$

Exercise Set 7.2

35.
$$A(x) = \pi (x^2/4)^2 = \pi x^4/16,$$

 $V = \int_0^{20} (\pi x^4/16) dx = 40,000\pi \text{ ft}^3$

36.
$$V = \pi \int_0^1 (x - x^4) dx = 3\pi/10$$

37.
$$V = \int_0^1 (x - x^2)^2 dx$$
$$= \int_0^1 (x^2 - 2x^3 + x^4) dx = 1/30$$
Square
$$y = x(1, 1)$$
$$y = x^2$$

38.
$$A(x) = \frac{1}{2}\pi \left(\frac{1}{2}\sqrt{x}\right)^2 = \frac{1}{8}\pi x,$$

$$V = \int_0^4 \frac{1}{8}\pi x \, dx = \pi$$

- **39.** On the upper half of the circle, $y = \sqrt{1 x^2}$, so:
 - (a) A(x) is the area of a semicircle of radius y, so

$$A(x) = \pi y^2/2 = \pi (1 - x^2)/2; \ V = \frac{\pi}{2} \int_{-1}^{1} (1 - x^2) \, dx = \pi \int_{0}^{1} (1 - x^2) \, dx = 2\pi/3$$

(b) A(x) is the area of a square of side 2y, so

$$A(x) = 4y^2 = 4(1-x^2); V = 4\int_{-1}^{1} (1-x^2) dx = 8\int_{0}^{1} (1-x^2) dx = 16/3$$

(c) A(x) is the area of an equilateral triangle with sides 2y, so

$$A(x) = \frac{\sqrt{3}}{4}(2y)^2 = \sqrt{3}y^2 = \sqrt{3}(1 - x^2);$$

$$V = \int_{-1}^{1} \sqrt{3}(1 - x^2) dx = 2\sqrt{3} \int_{0}^{1} (1 - x^2) dx = 4\sqrt{3}/3$$

40. By similar triangles, R/r = y/h so

$$R = ry/h \text{ and } A(y) = \pi r^2 y^2/h^2.$$

$$V = (\pi r^2/h^2) \int_0^h y^2 dy = \pi r^2 h/3$$

41. The two curves cross at $x = b \approx 1.403288534$, so

$$V = \pi \int_0^b ((2x/\pi)^2 - \sin^{16} x) \, dx + \pi \int_b^{\pi/2} (\sin^{16} x - (2x/\pi)^2) \, dx \approx 0.710172176.$$

42. Note that $\pi^2 \sin x \cos^3 x = 4x^2$ for $x = \pi/4$. From the graph it is apparent that this is the first positive solution, thus the curves don't cross on $(0, \pi/4)$ and

$$V = \pi \int_0^{\pi/4} \left[(\pi^2 \sin x \cos^3 x)^2 - (4x^2)^2 \right] dx = \frac{1}{48} \pi^5 + \frac{17}{2560} \pi^6$$

43.
$$V = \pi \int_{1}^{e} (1 - (\ln y)^{2}) dy = \pi$$

44.
$$V = \int_0^{\tan 1} \pi [x^2 - x^2 \tan^{-1} x] dx = \frac{\pi}{6} [\tan^2 1 - \ln(1 + \tan^2 1)]$$

45. (a)
$$V = \pi \int_{r-h}^{r} (r^2 - y^2) dy = \pi (rh^2 - h^3/3) = \frac{1}{3}\pi h^2 (3r - h)$$

(b) By the Pythagorean Theorem,

$$r^2 = (r - h)^2 + \rho^2$$
, $2hr = h^2 + \rho^2$; from Part (a),

$$V = \frac{\pi h}{3}(3hr - h^2) = \frac{\pi h}{3} \left(\frac{3}{2}(h^2 + \rho^2) - h^2) \right)$$
$$= \frac{1}{6}\pi h(h^2 + 3\rho^2)$$

46. Find the volume generated by revolving the shaded region about the *y*-axis.

$$V = \pi \int_{-10}^{-10+h} (100 - y^2) dy = \frac{\pi}{3} h^2 (30 - h)$$

Find dh/dt when h = 5 given that dV/dt = 1/2.

$$V = \frac{\pi}{3}(30h^2 - h^3), \frac{dV}{dt} = \frac{\pi}{3}(60h - 3h^2)\frac{dh}{dt},$$

$$\frac{1}{2} = \frac{\pi}{3}(300 - 75)\frac{dh}{dt}, \frac{dh}{dt} = 1/(150\pi) \text{ ft/min}$$

Exercise Set 7.2 291

47. (b)
$$\Delta x = \frac{5}{10} = 0.5$$
; $\{y_0, y_1, \dots, y_{10}\} = \{0, 2.00, 2.45, 2.45, 2.00, 1.46, 1.26, 1.25, 1.25, 1.25, 1.25\}$; left $= \pi \sum_{i=0}^{9} \left(\frac{y_i}{2}\right)^2 \Delta x \approx 11.157$; right $= \pi \sum_{i=1}^{10} \left(\frac{y_i}{2}\right)^2 \Delta x \approx 11.771$; $V \approx \text{average} = 11.464 \text{ cm}^3$

If the cherry is partially submerged then $0 \le h < 2$ as shown in Figure (a); if it is totally submerged then $2 \le h \le 4$ as shown in Figure (b). The radius of the glass is 4 cm and that of the cherry is 1 cm so points on the sections shown in the figures satisfy the equations $x^2 + y^2 = 16$ and $x^2 + (y+3)^2 = 1$. We will find the volumes of the solids that are generated when the shaded regions are revolved about the y-axis.

For $0 \le h < 2$,

$$V = \pi \int_{-4}^{h-4} [(16 - y^2) - (1 - (y+3)^2)] dy = 6\pi \int_{-4}^{h-4} (y+4) dy = 3\pi h^2;$$

for $2 \le h \le 4$,

$$\begin{split} V &= \pi \int_{-4}^{-2} [(16 - y^2) - (1 - (y+3)^2)] dy + \pi \int_{-2}^{h-4} (16 - y^2) dy \\ &= 6\pi \int_{-4}^{-2} (y+4) dy + \pi \int_{-2}^{h-4} (16 - y^2) dy = 12\pi + \frac{1}{3}\pi (12h^2 - h^3 - 40) \\ &= \frac{1}{3}\pi (12h^2 - h^3 - 4) \end{split}$$

so

$$V = \begin{cases} 3\pi h^2 & \text{if } 0 \le h < 2\\ \frac{1}{3}\pi (12h^2 - h^3 - 4) & \text{if } 2 \le h \le 4 \end{cases}$$

50.
$$x = h \pm \sqrt{r^2 - y^2},$$

$$V = \pi \int_{-r}^{r} \left[(h + \sqrt{r^2 - y^2})^2 - (h - \sqrt{r^2 - y^2})^2 \right] dy$$
$$= 4\pi h \int_{-r}^{r} \sqrt{r^2 - y^2} dy$$

$$= 4\pi h \left(\frac{1}{2}\pi r^2\right) = 2\pi^2 r^2 h$$
51. $\tan \theta = h/x$ so $h = x \tan \theta$,

$$A(y) = \frac{1}{2}hx = \frac{1}{2}x^2 \tan \theta = \frac{1}{2}(r^2 - y^2) \tan \theta$$

because $x^2 = r^2 - y^2$,

$$\begin{split} V &= \frac{1}{2} \tan \theta \int_{-r}^{r} (r^2 - y^2) dy \\ &= \tan \theta \int_{0}^{r} (r^2 - y^2) dy = \frac{2}{3} r^3 \tan \theta \end{split}$$

52.
$$A(x) = (x \tan \theta)(2\sqrt{r^2 - x^2})$$
$$= 2(\tan \theta)x\sqrt{r^2 - x^2},$$
$$V = 2\tan \theta \int_0^r x\sqrt{r^2 - x^2} dx$$
$$= \frac{2}{3}r^3 \tan \theta$$

53. Each cross section perpendicular to the y-axis is a square so

$$A(y) = x^2 = r^2 - y^2,$$

$$\frac{1}{8}V = \int_0^r (r^2 - y^2) dy$$

$$V = 8(2r^3/3) = 16r^3/3$$

54. The regular cylinder of radius r and height h has the same circular cross sections as do those of the oblique clinder, so by Cavalieri's Principle, they have the same volume: $\pi r^2 h$.

EXERCISE SET 7.3

1.
$$V = \int_{1}^{2} 2\pi x(x^{2})dx = 2\pi \int_{1}^{2} x^{3}dx = 15\pi/2$$

2.
$$V = \int_0^{\sqrt{2}} 2\pi x (\sqrt{4-x^2} - x) dx = 2\pi \int_0^{\sqrt{2}} (x\sqrt{4-x^2} - x^2) dx = \frac{8\pi}{3} (2 - \sqrt{2})$$

3.
$$V = \int_0^1 2\pi y (2y - 2y^2) dy = 4\pi \int_0^1 (y^2 - y^3) dy = \pi/3$$

4.
$$V = \int_0^2 2\pi y [y - (y^2 - 2)] dy = 2\pi \int_0^2 (y^2 - y^3 + 2y) dy = 16\pi/3$$

5.
$$V = \int_0^1 2\pi(x)(x^3)dx$$

= $2\pi \int_0^1 x^4 dx = 2\pi/5$

6.
$$V = \int_{4}^{9} 2\pi x (\sqrt{x}) dx$$

= $2\pi \int_{4}^{9} x^{3/2} dx = 844\pi/5$

7.
$$V = \int_{1}^{3} 2\pi x (1/x) dx = 2\pi \int_{1}^{3} dx = 4\pi$$
 8. $V = \int_{0}^{\sqrt{\pi}/2} 2\pi x \cos(x^{2}) dx = \pi/\sqrt{2}$

8.
$$V = \int_{0}^{\sqrt{\pi}/2} 2\pi x \cos(x^2) dx = \pi/\sqrt{2}$$

9.
$$V = \int_{1}^{2} 2\pi x [(2x-1) - (-2x+3)] dx$$

= $8\pi \int_{1}^{2} (x^2 - x) dx = 20\pi/3$

10.
$$V = \int_0^2 2\pi x (2x - x^2) dx$$

= $2\pi \int_0^2 (2x^2 - x^3) dx = \frac{8}{3}\pi$

11.
$$V = 2\pi \int_0^1 \frac{x}{x^2 + 1} dx$$

= $\pi \ln(x^2 + 1) \Big]_0^1 = \pi \ln 2$

12.
$$V = \int_{1}^{\sqrt{3}} 2\pi x e^{x^2} dx = \pi e^{x^2} \Big]_{1}^{\sqrt{3}} = \pi (e^3 - e)$$

13.
$$V = \int_0^1 2\pi y^3 dy = \pi/2$$

14.
$$V = \int_{2}^{3} 2\pi y(2y) dy = 4\pi \int_{2}^{3} y^{2} dy = 76\pi/3$$

15.
$$V = \int_0^1 2\pi y (1 - \sqrt{y}) dy$$

= $2\pi \int_0^1 (y - y^{3/2}) dy = \pi/5$

16.
$$V = \int_{1}^{4} 2\pi y (5 - y - 4/y) dy$$

= $2\pi \int_{1}^{4} (5y - y^{2} - 4) dy = 9\pi$

17.
$$V = 2\pi \int_0^{\pi} x \sin x dx = 2\pi^2$$

18.
$$V = 2\pi \int_0^{\pi/2} x \cos x dx = \pi^2 - 2\pi$$

19. (a)
$$V = \int_0^1 2\pi x (x^3 - 3x^2 + 2x) dx = 7\pi/30$$

(b) much easier; the method of slicing would require that x be expressed in terms of y.

20.
$$V = \int_{1}^{2} 2\pi (x+1)(1/x^{3})dx$$

= $2\pi \int_{1}^{2} (x^{-2} + x^{-3})dx = 7\pi/4$

21.
$$V = \int_0^1 2\pi (1-y)y^{1/3}dy$$

= $2\pi \int_0^1 (y^{1/3} - y^{4/3})dy = 9\pi/14$

22. (a)
$$\int_{a}^{b} 2\pi x [f(x) - g(x)] dx$$

(b)
$$\int_{c}^{d} 2\pi y [f(y) - g(y)] dy$$

23.
$$x = \frac{h}{r}(r - y)$$
 is an equation of the line through $(0, r)$ and $(h, 0)$ so

$$V = \int_0^r 2\pi y \left[\frac{h}{r} (r - y) \right] dy$$
$$= \frac{2\pi h}{r} \int_0^r (ry - y^2) dy = \pi r^2 h/3$$

24.
$$V = \int_0^{k/4} 2\pi (k/2 - x) 2\sqrt{kx} dx$$

= $2\pi \sqrt{k} \int_0^{k/4} (kx^{1/2} - 2x^{3/2}) dx = 7\pi k^3/60$

25.
$$V = \int_0^a 2\pi x (2\sqrt{r^2 - x^2}) dx = 4\pi \int_0^a x (r^2 - x^2)^{1/2} dx$$

= $-\frac{4\pi}{3} (r^2 - x^2)^{3/2} \Big]_0^a = \frac{4\pi}{3} \left[r^3 - (r^2 - a^2)^{3/2} \right]$

26.
$$V = \int_{-a}^{a} 2\pi (b - x)(2\sqrt{a^2 - x^2})dx$$

 $= 4\pi b \int_{-a}^{a} \sqrt{a^2 - x^2} dx - 4\pi \int_{-a}^{a} x\sqrt{a^2 - x^2} dx$
 $= 4\pi b \cdot \text{(area of a semicircle of radius } a) - 4\pi(0)$
 $= 2\pi^2 a^2 b$

27.
$$V_x = \pi \int_{1/2}^b \frac{1}{x^2} dx = \pi (2 - 1/b), V_y = 2\pi \int_{1/2}^b dx = \pi (2b - 1);$$

$$V_x = V_y \text{ if } 2 - 1/b = 2b - 1, 2b^2 - 3b + 1 = 0, \text{ solve to get } b = 1/2 \text{ (reject) or } b = 1.$$

28. (a)
$$V = 2\pi \int_1^b \frac{x}{1+x^4} dx = \pi \tan^{-1}(x^2) \Big]_1^b = \pi \left[\tan^{-1}(b^2) - \frac{\pi}{4} \right]$$

(b)
$$\lim_{b \to +\infty} V = \pi \left(\frac{\pi}{2} - \frac{\pi}{4} \right) = \frac{1}{4} \pi^2$$

EXERCISE SET 7.4

1. (a)
$$\frac{dy}{dx} = 2$$
, $L = \int_{1}^{2} \sqrt{1+4} dx = \sqrt{5}$

(b)
$$\frac{dx}{dy} = \frac{1}{2}, L = \int_2^4 \sqrt{1 + 1/4} \, dy = 2\sqrt{5}/2 = \sqrt{5}$$

2.
$$\frac{dx}{dt} = 1$$
, $\frac{dy}{dt} = 5$, $L = \int_0^1 \sqrt{1^2 + 5^2} dt = \sqrt{26}$

3.
$$f'(x) = \frac{9}{2}x^{1/2}$$
, $1 + [f'(x)]^2 = 1 + \frac{81}{4}x$,

$$L = \int_0^1 \sqrt{1 + 81x/4} \, dx = \frac{8}{243} \left(1 + \frac{81}{4} x \right)^{3/2} \bigg|_0^1 = (85\sqrt{85} - 8)/243$$

4.
$$g'(y) = y(y^2 + 2)^{1/2}$$
, $1 + [g'(y)]^2 = 1 + y^2(y^2 + 2) = y^4 + 2y^2 + 1 = (y^2 + 1)^2$,

$$L = \int_0^1 \sqrt{(y^2 + 1)^2} dy = \int_0^1 (y^2 + 1) dy = 4/3$$

5.
$$\frac{dy}{dx} = \frac{2}{3}x^{-1/3}, \ 1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{4}{9}x^{-2/3} = \frac{9x^{2/3} + 4}{9x^{2/3}},$$

$$L = \int_{1}^{8} \frac{\sqrt{9x^{2/3} + 4}}{3x^{1/3}} dx = \frac{1}{18} \int_{13}^{40} u^{1/2} du, \ u = 9x^{2/3} + 4$$

$$= \frac{1}{27}u^{3/2}\bigg]_{13}^{40} = \frac{1}{27}(40\sqrt{40} - 13\sqrt{13}) = \frac{1}{27}(80\sqrt{10} - 13\sqrt{13})$$

Exercise Set 7.4 297

or (alternate solution)

$$x = y^{3/2}, \frac{dx}{dy} = \frac{3}{2}y^{1/2}, 1 + \left(\frac{dx}{dy}\right)^2 = 1 + \frac{9}{4}y = \frac{4+9y}{4},$$
$$L = \frac{1}{2} \int_1^4 \sqrt{4+9y} \, dy = \frac{1}{18} \int_{13}^{40} u^{1/2} du = \frac{1}{27} (80\sqrt{10} - 13\sqrt{13})$$

6.
$$f'(x) = \frac{1}{4}x^3 - x^{-3}, \ 1 + [f'(x)]^2 = 1 + \left(\frac{1}{16}x^6 - \frac{1}{2} + x^{-6}\right) = \frac{1}{16}x^6 + \frac{1}{2} + x^{-6} = \left(\frac{1}{4}x^3 + x^{-3}\right)^2,$$

$$L = \int_2^3 \sqrt{\left(\frac{1}{4}x^3 + x^{-3}\right)^2} dx = \int_2^3 \left(\frac{1}{4}x^3 + x^{-3}\right) dx = \frac{1}{16}x^6 + \frac{1}{2} + x^{-6} = \left(\frac{1}{4}x^3 + x^{-3}\right)^2,$$

7.
$$x = g(y) = \frac{1}{24}y^3 + 2y^{-1}, \ g'(y) = \frac{1}{8}y^2 - 2y^{-2},$$

 $1 + [g'(y)]^2 = 1 + \left(\frac{1}{64}y^4 - \frac{1}{2} + 4y^{-4}\right) = \frac{1}{64}y^4 + \frac{1}{2} + 4y^{-4} = \left(\frac{1}{8}y^2 + 2y^{-2}\right)^2,$
 $L = \int_2^4 \left(\frac{1}{8}y^2 + 2y^{-2}\right) dy = 17/6$

8.
$$g'(y) = \frac{1}{2}y^3 - \frac{1}{2}y^{-3}, \ 1 + [g'(y)]^2 = 1 + \left(\frac{1}{4}y^6 - \frac{1}{2} + \frac{1}{4}y^{-6}\right) = \left(\frac{1}{2}y^3 + \frac{1}{2}y^{-3}\right)^2,$$

$$L = \int_1^4 \left(\frac{1}{2}y^3 + \frac{1}{2}y^{-3}\right) dy = 2055/64$$

9.
$$(dx/dt)^2 + (dy/dt)^2 = (t^2)^2 + (t)^2 = t^2(t^2+1), L = \int_0^1 t(t^2+1)^{1/2} dt = (2\sqrt{2}-1)/3$$

10.
$$(dx/dt)^2 + (dy/dt)^2 = [2(1+t)]^2 + [3(1+t)^2]^2 = (1+t)^2[4+9(1+t)^2],$$

$$L = \int_0^1 (1+t)[4+9(1+t)^2]^{1/2}dt = (80\sqrt{10} - 13\sqrt{13})/27$$

11.
$$(dx/dt)^2 + (dy/dt)^2 = (-2\sin 2t)^2 + (2\cos 2t)^2 = 4$$
, $L = \int_0^{\pi/2} 2 dt = \pi$

12.
$$(dx/dt)^2 + (dy/dt)^2 = (-\sin t + \sin t + t\cos t)^2 + (\cos t - \cos t + t\sin t)^2 = t^2,$$

$$L = \int_0^\pi t \, dt = \pi^2/2$$

13.
$$(dx/dt)^2 + (dy/dt)^2 = [e^t(\cos t - \sin t)]^2 + [e^t(\cos t + \sin t)]^2 = 2e^{2t},$$

$$L = \int_0^{\pi/2} \sqrt{2}e^t dt = \sqrt{2}(e^{\pi/2} - 1)$$

14.
$$(dx/dt)^2 + (dy/dt)^2 = (2e^t \cos t)^2 + (-2e^t \sin t)^2 = 4e^{2t}, L = \int_1^4 2e^t dt = 2(e^4 - e)$$

15.
$$dy/dx = \frac{\sec x \tan x}{\sec x} = \tan x$$
, $\sqrt{1 + (y')^2} = \sqrt{1 + \tan^2 x} = \sec x$ when $0 < x < \pi/4$, so $L = \int_0^{\pi/4} \sec x \, dx = \ln(1 + \sqrt{2})$

16.
$$dy/dx = \frac{\cos x}{\sin x} = \cot x$$
, $\sqrt{1 + (y')^2} = \sqrt{1 + \cot^2 x} = \csc x$ when $\pi/4 < x < \pi/2$, so $L = \int_{\pi/4}^{\pi/2} \csc x \, dx = -\ln(\sqrt{2} - 1) = -\ln\left(\frac{\sqrt{2} - 1}{\sqrt{2} + 1}(\sqrt{2} + 1)\right) = \ln(1 + \sqrt{2})$

17. (a)
$$(dx/d\theta)^2 + (dy/d\theta)^2 = (a(1-\cos\theta))^2 + (a\sin\theta)^2 = a^2(2-2\cos\theta)$$
, so
$$L = \int_0^{2\pi} \sqrt{(dx/d\theta)^2 + (dy/d\theta)^2} \, d\theta = a \int_0^{2\pi} \sqrt{2(1-\cos\theta)} \, d\theta$$

18. (a) Use the interval $0 \le \phi < 2\pi$.

(b)
$$(dx/d\phi)^2 + (dy/d\phi)^2 = (-3a\cos^2\phi\sin\phi)^2 + (3a\sin^2\phi\cos\phi)^2$$

 $= 9a^2\cos^2\phi\sin^2\phi(\cos^2\phi + \sin^2\phi) = (9a^2/4)\sin^22\phi$, so $L = (3a/2)\int_0^{2\pi} |\sin 2\phi| d\phi = 6a\int_0^{\pi/2} \sin 2\phi d\phi = -3a\cos 2\phi\Big|_0^{\pi/2} = 6a$

19. (a) (8,4) (-1,1)

(b) dy/dx does not exist at x = 0.

- (c) $x = g(y) = y^{3/2}$, $g'(y) = \frac{3}{2} y^{1/2}$, $L = \int_0^1 \sqrt{1 + 9y/4} \, dy$ (portion for $-1 \le x \le 0$) $+ \int_0^4 \sqrt{1 + 9y/4} \, dy$ (portion for $0 \le x \le 8$) $= \frac{8}{27} \left(\frac{13}{8} \sqrt{13} - 1 \right) + \frac{8}{27} (10\sqrt{10} - 1) = (13\sqrt{13} + 80\sqrt{10} - 16)/27$
- **20.** For (4), express the curve y = f(x) in the parametric form x = t, y = f(t) so dx/dt = 1 and dy/dt = f'(t) = f'(x) = dy/dx. For (5), express x = g(y) as x = g(t), y = t so dx/dt = g'(t) = g'(y) = dx/dy and dy/dt = 1.

21.
$$L = \int_0^2 \sqrt{1 + 4x^2} \, dx \approx 4.645975301$$
 22. $L = \int_0^\pi \sqrt{1 + \cos^2 y} \, dy \approx 3.820197789$

- 23. Numerical integration yields: in Exercise 21, $L \approx 4.646783762$; in Exercise 22, $L \approx 3.820197788$.
- **24.** $0 \le m \le f'(x) \le M$, so $m^2 \le [f'(x)]^2 \le M^2$, and $1 + m^2 \le 1 + [f'(x)]^2 \le 1 + M^2$; thus $\sqrt{1 + m^2} \le \sqrt{1 + [f'(x)]^2} \le \sqrt{1 + M^2}$, $\int_a^b \sqrt{1 + m^2} dx \le \int_a^b \sqrt{1 + [f'(x)]^2} dx \le \int_a^b \sqrt{1 + M^2} dx$, and $(b a)\sqrt{1 + m^2} \le L \le (b a)\sqrt{1 + M^2}$
- **25.** $f'(x) = \cos x$, $\sqrt{2}/2 \le \cos x \le 1$ for $0 \le x \le \pi/4$ so $(\pi/4)\sqrt{1+1/2} \le L \le (\pi/4)\sqrt{1+1}$, $\frac{\pi}{4}\sqrt{3/2} \le L \le \frac{\pi}{4}\sqrt{2}$.

Exercise Set 7.5 299

26.
$$(dx/dt)^2 + (dy/dt)^2 = (-a\sin t)^2 + (b\cos t)^2 = a^2\sin^2 t + b^2\cos^2 t$$

 $= a^2(1-\cos^2 t) + b^2\cos^2 t = a^2 - (a^2 - b^2)\cos^2 t$
 $= a^2\left[1 - \frac{a^2 - b^2}{a^2}\cos^2 t\right] = a^2[1 - k^2\cos^2 t],$
 $L = \int_0^{2\pi} a\sqrt{1 - k^2\cos^2 t} \, dt = 4a\int_0^{\pi/2} \sqrt{1 - k^2\cos^2 t} \, dt$

27. (a)
$$(dx/dt)^2 + (dy/dt)^2 = 4\sin^2 t + \cos^2 t = 4\sin^2 t + (1-\sin^2 t) = 1+3\sin^2 t,$$

$$L = \int_0^{2\pi} \sqrt{1+3\sin^2 t} \, dt = 4 \int_0^{\pi/2} \sqrt{1+3\sin^2 t} \, dt$$

- **(b)** 9.69
- (c) distance traveled = $\int_{1.5}^{4.8} \sqrt{1 + 3\sin^2 t} \, dt \approx 5.16 \text{ cm}$
- **28.** The distance is $\int_0^{4.6} \sqrt{1 + (2.09 0.82x)^2} dx \approx 6.65 \text{ m}$

29.
$$L = \int_0^\pi \sqrt{1 + (k \cos x)^2} \, dx$$

k	1	2	1.84	1.83	1.832	
L	3.8202	5.2704	5.0135	4.9977	5.0008	

Experimentation yields the values in the table, which by the Intermediate-Value Theorem show that the true solution k to L=5 lies between k=1.83 and k=1.832, so k=1.83 to two decimal places.

EXERCISE SET 7.5

1.
$$S = \int_0^1 2\pi (7x)\sqrt{1+49} dx = 70\pi\sqrt{2} \int_0^1 x \ dx = 35\pi\sqrt{2}$$

2.
$$f'(x) = \frac{1}{2\sqrt{x}}$$
, $1 + [f'(x)]^2 = 1 + \frac{1}{4x}$

$$S = \int_{1}^{4} 2\pi \sqrt{x} \sqrt{1 + \frac{1}{4x}} dx = 2\pi \int_{1}^{4} \sqrt{x + 1/4} dx = \pi (17\sqrt{17} - 5\sqrt{5})/6$$

3.
$$f'(x) = -x/\sqrt{4-x^2}$$
, $1 + [f'(x)]^2 = 1 + \frac{x^2}{4-x^2} = \frac{4}{4-x^2}$, $S = \int_{-1}^{1} 2\pi\sqrt{4-x^2}(2/\sqrt{4-x^2})dx = 4\pi \int_{-1}^{1} dx = 8\pi$

4.
$$y = f(x) = x^3$$
 for $1 \le x \le 2$, $f'(x) = 3x^2$,
$$S = \int_1^2 2\pi x^3 \sqrt{1 + 9x^4} dx = \frac{\pi}{27} (1 + 9x^4)^{3/2} \Big]_1^2 = 5\pi (29\sqrt{145} - 2\sqrt{10})/27$$

5.
$$S = \int_0^2 2\pi (9y+1)\sqrt{82} dy = 2\pi \sqrt{82} \int_0^2 (9y+1) dy = 40\pi \sqrt{82}$$

6.
$$g'(y) = 3y^2$$
, $S = \int_0^1 2\pi y^3 \sqrt{1 + 9y^4} dy = \pi (10\sqrt{10} - 1)/27$

7.
$$g'(y) = -y/\sqrt{9-y^2}$$
, $1 + [g'(y)]^2 = \frac{9}{9-y^2}$, $S = \int_{-2}^2 2\pi \sqrt{9-y^2} \cdot \frac{3}{\sqrt{9-y^2}} dy = 6\pi \int_{-2}^2 dy = 24\pi$

8.
$$g'(y) = -(1-y)^{-1/2}, \ 1 + [g'(y)]^2 = \frac{2-y}{1-y},$$

$$S = \int_{-1}^{0} 2\pi (2\sqrt{1-y}) \frac{\sqrt{2-y}}{\sqrt{1-y}} dy = 4\pi \int_{-1}^{0} \sqrt{2-y} \, dy = 8\pi (3\sqrt{3} - 2\sqrt{2})/3$$

9.
$$f'(x) = \frac{1}{2}x^{-1/2} - \frac{1}{2}x^{1/2}, \ 1 + [f'(x)]^2 = 1 + \frac{1}{4}x^{-1} - \frac{1}{2} + \frac{1}{4}x = \left(\frac{1}{2}x^{-1/2} + \frac{1}{2}x^{1/2}\right)^2,$$

$$S = \int_1^3 2\pi \left(x^{1/2} - \frac{1}{3}x^{3/2}\right) \left(\frac{1}{2}x^{-1/2} + \frac{1}{2}x^{1/2}\right) dx = \frac{\pi}{3} \int_1^3 (3 + 2x - x^2) dx = 16\pi/9$$

10.
$$f'(x) = x^2 - \frac{1}{4}x^{-2}$$
, $1 + [f'(x)]^2 = 1 + \left(x^4 - \frac{1}{2} + \frac{1}{16}x^{-4}\right) = \left(x^2 + \frac{1}{4}x^{-2}\right)^2$,
 $S = \int_1^2 2\pi \left(\frac{1}{3}x^3 + \frac{1}{4}x^{-1}\right) \left(x^2 + \frac{1}{4}x^{-2}\right) dx = 2\pi \int_1^2 \left(\frac{1}{3}x^5 + \frac{1}{3}x + \frac{1}{16}x^{-3}\right) dx = 515\pi/64$

11.
$$x = g(y) = \frac{1}{4}y^4 + \frac{1}{8}y^{-2}, g'(y) = y^3 - \frac{1}{4}y^{-3},$$

$$1 + [g'(y)]^2 = 1 + \left(y^6 - \frac{1}{2} + \frac{1}{16}y^{-6}\right) = \left(y^3 + \frac{1}{4}y^{-3}\right)^2,$$

$$S = \int_1^2 2\pi \left(\frac{1}{4}y^4 + \frac{1}{8}y^{-2}\right) \left(y^3 + \frac{1}{4}y^{-3}\right) dy = \frac{\pi}{16} \int_1^2 (8y^7 + 6y + y^{-5}) dy = 16,911\pi/1024$$

12.
$$x = g(y) = \sqrt{16 - y}$$
; $g'(y) = -\frac{1}{2\sqrt{16 - y}}$, $1 + [g'(y)]^2 = \frac{65 - 4y}{4(16 - y)}$, $S = \int_0^{15} 2\pi \sqrt{16 - y} \sqrt{\frac{65 - 4y}{4(16 - y)}} \, dy = \pi \int_0^{15} \sqrt{65 - 4y} \, dy = (65\sqrt{65} - 5\sqrt{5}) \frac{\pi}{6}$

13.
$$f'(x) = \cos x$$
, $1 + [f'(x)]^2 = 1 + \cos^2 x$, $S = \int_0^\pi 2\pi \sin x \sqrt{1 + \cos^2 x} \, dx = 2\pi (\sqrt{2} + \ln(\sqrt{2} + 1))$

14.
$$x = g(y) = \tan y$$
, $g'(y) = \sec^2 y$, $1 + [g'(y)]^2 = 1 + \sec^4 y$; $S = \int_0^{\pi/4} 2\pi \tan y \sqrt{1 + \sec^4 y} \, dy \approx 3.84$

15.
$$f'(x) = e^x$$
, $1 + [f'(x)]^2 = 1 + e^{2x}$, $S = \int_0^1 2\pi e^x \sqrt{1 + e^{2x}} dx \approx 22.94$

16.
$$x = g(y) = \ln y$$
, $g'(y) = 1/y$, $1 + [g'(y)]^2 = 1 + 1/y^2$; $S = \int_1^e 2\pi \sqrt{1 + 1/y^2} \ln y \, dy \approx 7.05$

17. Revolve the line segment joining the points (0,0) and (h,r) about the x-axis. An equation of the line segment is y=(r/h)x for $0 \le x \le h$ so

$$S = \int_0^h 2\pi (r/h)x\sqrt{1 + r^2/h^2} dx = \frac{2\pi r}{h^2} \sqrt{r^2 + h^2} \int_0^h x \, dx = \pi r \sqrt{r^2 + h^2}$$

Exercise Set 7.5 301

18.
$$f(x) = \sqrt{r^2 - x^2}$$
, $f'(x) = -x/\sqrt{r^2 - x^2}$, $1 + [f'(x)]^2 = r^2/(r^2 - x^2)$, $S = \int_{-r}^{r} 2\pi \sqrt{r^2 - x^2} (r/\sqrt{r^2 - x^2}) dx = 2\pi r \int_{-r}^{r} dx = 4\pi r^2$

19.
$$g(y) = \sqrt{r^2 - y^2}$$
, $g'(y) = -y/\sqrt{r^2 - y^2}$, $1 + [g'(y)]^2 = r^2/(r^2 - y^2)$,

(a)
$$S = \int_{r-h}^{r} 2\pi \sqrt{r^2 - y^2} \sqrt{r^2/(r^2 - y^2)} \, dy = 2\pi r \int_{r-h}^{r} dy = 2\pi r h$$

- (b) From Part (a), the surface area common to two polar caps of height $h_1 > h_2$ is $2\pi r h_1 2\pi r h_2 = 2\pi r (h_1 h_2)$.
- **20.** For (4), express the curve y = f(x) in the parametric form x = t, y = f(t) so dx/dt = 1 and dy/dt = f'(t) = f'(x) = dy/dx. For (5), express x = g(y) as x = g(t), y = t so dx/dt = g'(t) = g'(y) = dx/dy and dy/dt = 1.

21.
$$x' = 2t, y' = 2, (x')^2 + (y')^2 = 4t^2 + 4$$

$$S = 2\pi \int_0^4 (2t)\sqrt{4t^2 + 4}dt = 8\pi \int_0^4 t\sqrt{t^2 + 1}dt = \frac{8\pi}{3}(17\sqrt{17} - 1)$$

22.
$$x' = -2\cos t \sin t, y' = 5\cos t, (x')^2 + (y')^2 = 4\cos^2 t \sin^2 t + 25\cos^2 t,$$

 $S = 2\pi \int_0^{\pi/2} 5\sin t \sqrt{4\cos^2 t \sin^2 t + 25\cos^2 t} dt = \frac{\pi}{6} (145\sqrt{29} - 625)$

23.
$$x' = 1, y' = 4t, (x')^2 + (y')^2 = 1 + 16t^2, S = 2\pi \int_0^1 t\sqrt{1 + 16t^2} dt = \frac{\pi}{24}(17\sqrt{17} - 1)$$

24.
$$x' = -2\sin t \cos t, y' = 2\sin t \cos t, (x')^2 + (y')^2 = 8\sin^2 t \cos^2 t$$

$$S = 2\pi \int_0^{\pi/2} \cos^2 t \sqrt{8\sin^2 t \cos^2 t} dt = 4\sqrt{2}\pi \int_0^{\pi/2} \cos^3 t \sin t dt = \sqrt{2}\pi$$

25.
$$x' = -r \sin t, \ y' = r \cos t, \ (x')^2 + (y')^2 = r^2,$$

 $S = 2\pi \int_0^{\pi} r \sin t \sqrt{r^2} \ dt = 2\pi r^2 \int_0^{\pi} \sin t \ dt = 4\pi r^2$

26.
$$\frac{dx}{d\phi} = a(1 - \cos\phi), \ \frac{dy}{d\phi} = a\sin\phi, \ \left(\frac{dx}{d\phi}\right)^2 + \left(\frac{dy}{d\phi}\right)^2 = 2a^2(1 - \cos\phi)$$

$$S = 2\pi \int_0^{2\pi} a(1 - \cos\phi) \sqrt{2a^2(1 - \cos\phi)} \ d\phi = 2\sqrt{2}\pi a^2 \int_0^{2\pi} (1 - \cos\phi)^{3/2} d\phi,$$
but $1 - \cos\phi = 2\sin^2\frac{\phi}{2}$ so $(1 - \cos\phi)^{3/2} = 2\sqrt{2}\sin^3\frac{\phi}{2}$ for $0 \le \phi \le \pi$ and, taking advantage of the symmetry of the cycloid, $S = 16\pi a^2 \int_0^{\pi} \sin^3\frac{\phi}{2} d\phi = 64\pi a^2/3.$

27. (a) length of arc of sector = circumference of base of cone, $\ell\theta=2\pi r, \theta=2\pi r/\ell; \, S= \text{ area of sector } =\frac{1}{2}\ell^2(2\pi r/\ell)=\pi r\ell$

(b) $S = \pi r_2 \ell_2 - \pi r_1 \ell_1 = \pi r_2 (\ell_1 + \ell) - \pi r_1 \ell_1 = \pi [(r_2 - r_1)\ell_1 + r_2 \ell];$ Using similar triangles $\ell_2 / r_2 = \ell_1 / r_1, r_1 \ell_2 = r_2 \ell_1, r_1 (\ell_1 + \ell) = r_2 \ell_1, (r_2 - r_1)\ell_1 = r_1 \ell$ so $S = \pi (r_1 \ell + r_2 \ell) = \pi (r_1 + r_2) \ell.$

28.
$$S = \int_a^b 2\pi [f(x) + k] \sqrt{1 + [f'(x)]^2} dx$$

29.
$$2\pi k \sqrt{1 + [f'(x)]^2} \le 2\pi f(x) \sqrt{1 + [f'(x)]^2} \le 2\pi K \sqrt{1 + [f'(x)]^2}$$
, so
$$\int_a^b 2\pi k \sqrt{1 + [f'(x)]^2} dx \le \int_a^b 2\pi f(x) \sqrt{1 + [f'(x)]^2} dx \le \int_a^b 2\pi K \sqrt{1 + [f'(x)]^2} dx,$$
 $2\pi k \int_a^b \sqrt{1 + [f'(x)]^2} dx \le S \le 2\pi K \int_a^b \sqrt{1 + [f'(x)]^2} dx, 2\pi k L \le S \le 2\pi K L$

30. (a)
$$1 \le \sqrt{1 + [f'(x)]^2}$$
 so $2\pi f(x) \le 2\pi f(x)\sqrt{1 + [f'(x)]^2}$,
$$\int_a^b 2\pi f(x)dx \le \int_a^b 2\pi f(x)\sqrt{1 + [f'(x)]^2}dx, \ 2\pi \int_a^b f(x)dx \le S, 2\pi A \le S$$

(b) $2\pi A = S$ if f'(x) = 0 for all x in [a, b] so f(x) is constant on [a, b].

EXERCISE SET 7.6

1. (a)
$$W = F \cdot d = 30(7) = 210 \text{ ft} \cdot \text{lb}$$

(b)
$$W = \int_{1}^{6} F(x) dx = \int_{1}^{6} x^{-2} dx = -\frac{1}{x} \Big|_{1}^{6} = 5/6 \text{ ft} \cdot \text{lb}$$

2.
$$W = \int_0^5 F(x) dx = \int_0^2 40 dx - \int_2^5 \frac{40}{3} (x - 5) dx = 80 + 60 = 140 \text{ J}$$

- 3. distance traveled $=\int_0^5 v(t) dt = \int_0^5 \frac{4t}{5} dt = \frac{2}{5}t^2\Big]_0^5 = 10$ ft. The force is a constant 10 lb, so the work done is $10 \cdot 10 = 100$ ft·lb.
- **4.** (a) F(x) = kx, F(0.05) = 0.05k = 45, k = 900 N/m

(b)
$$W = \int_0^{0.03} 900x \, dx = 0.405 \,\text{J}$$
 (c) $W = \int_{0.05}^{0.10} 900x \, dx = 3.375 \,\text{J}$

5.
$$F(x) = kx$$
, $F(0.2) = 0.2k = 100$, $k = 500$ N/m, $W = \int_0^{0.8} 500x dx = 160$ J

6.
$$F(x) = kx$$
, $F(1/2) = k/2 = 6$, $k = 12 \text{ N/m}$, $W = \int_0^2 12x \, dx = 24 \text{ J}$

Exercise Set 7.6

303

7.
$$W = \int_0^1 kx \, dx = k/2 = 10, \ k = 20 \, \text{lb/ft}$$

8.
$$W = \int_0^6 (9-x)62.4(25\pi)dx$$

= $1560\pi \int_0^6 (9-x)dx = 56,160\pi$ ft·lb

9.
$$W = \int_0^6 (9-x)\rho(25\pi)dx = 900\pi\rho$$
 ft·lb

10.
$$r/10 = x/15, r = 2x/3,$$

$$W = \int_0^{10} (15 - x)62.4(4\pi x^2/9) dx$$

$$= \frac{83.2}{3} \pi \int_0^{10} (15x^2 - x^3) dx$$

$$= 208,000\pi/3 \text{ ft·lb}$$

11.
$$w/4 = x/3, w = 4x/3,$$

$$W = \int_0^2 (3-x)(9810)(4x/3)(6)dx$$

$$= 78480 \int_0^2 (3x-x^2)dx$$

$$= 261,600 \text{ J}$$

13. (a)
$$W = \int_0^9 (10 - x)62.4(300) dx$$

= $18,720 \int_0^9 (10 - x) dx$
= $926,640$ ft·lb

(b) to empty the pool in one hour would require 926,640/3600 = 257.4 ft·lb of work per second so hp of motor = 257.4/550 = 0.468

14.
$$W = \int_0^9 x(62.4)(300) dx = 18{,}720 \int_0^9 x dx = (81/2)18{,}720 = 758{,}160 \text{ ft} \cdot \text{lb}$$

15.
$$W = \int_0^{100} 15(100 - x) dx$$

= 75,000 ft·lb

16. The total time of winding the rope is (20 ft)/(2 ft/s) = 10 s. During the time interval from time t to time $t + \Delta t$ the work done is $\Delta W = F(t) \cdot \Delta x$.

The distance $\Delta x = 2\Delta t$, and the force F(t) is given by the weight w(t) of the bucket, rope and water at time t. The bucket and its remaining water together weigh (3+20)-t/2 lb, and the rope is 20-2t ft long and weighs 4(20-2t) oz or 5-t/2 lb. Thus at time t the bucket, water and rope together weigh w(t) = 23 - t/2 + 5 - t/2 = 28 - t lb.

The amount of work done in the time interval from time t to time $t + \Delta t$ is thus $\Delta W = (28 - t)2\Delta t$, and the total work done is

$$W = \lim_{n \to +\infty} \sum_{t=0}^{\infty} \left[(28 - t) 2\Delta t \right]_{0}^{10} = 460 \text{ ft} \cdot \text{lb.}$$

17. When the rocket is x ft above the ground

total weight = weight of rocket + weight of fuel

$$= 3 + [40 - 2(x/1000)]$$

= 43 - x/500 tons,

$$W = \int_0^{3000} (43 - x/500) dx = 120,000 \text{ ft} \cdot \text{tons}$$

18. Let F(x) be the force needed to hold charge A at position x, then

$$F(x) = \frac{c}{(a-x)^2}, \ F(-a) = \frac{c}{4a^2} = k,$$

so
$$c = 4a^2k$$
.

$$W = \int_{-a}^{0} 4a^{2}k(a-x)^{-2}dx = 2ak J$$

- **19.** (a) $150 = k/(4000)^2$, $k = 2.4 \times 10^9$, $w(x) = k/x^2 = 2,400,000,000/x^2$ lb
 - **(b)** $6000 = k/(4000)^2$, $k = 9.6 \times 10^{10}$, $w(x) = (9.6 \times 10^{10})/(x + 4000)^2$ lb
 - (c) $W = \int_{4000}^{5000} 9.6(10^{10})x^{-2}dx = 4,800,000 \text{ mi} \cdot \text{lb} = 2.5344 \times 10^{10} \text{ ft} \cdot \text{lb}$
- **20.** (a) $20 = k/(1080)^2$, $k = 2.3328 \times 10^7$, weight $= w(x + 1080) = 2.3328 \cdot 10^7/(x + 1080)^2$ lb
 - **(b)** $W = \int_0^{10.8} [2.3328 \cdot 10^7 / (x + 1080)^2] dx = 213.86 \text{ mi} \cdot \text{lb} = 1,129,188 \text{ ft} \cdot \text{lb}$

- **21.** $W = F \cdot d = (6.40 \times 10^5)(3.00 \times 10^3) = 1.92 \times 10^9 \text{ J}$; from the Work-Energy Relationship (5), $v_f^2 = 2W/m + v_i^2 = 2(1.92 \cdot 10^9)/(4 \cdot 10^5) + 20^2 = 10{,}000, v_f = 100 \text{ m/s}$
- **22.** $W = F \cdot d = (2.00 \times 10^5)(2.00 \times 10^5) = 4 \times 10^{10} \text{ J}$; from the Work-Energy Relationship (5), $v_f^2 = 2W/m + v_i^2 = 8 \cdot 10^{10}/(2 \cdot 10^3) + 10^8 \approx 11.832 \text{ m/s}$.
- **23.** (a) The kinetic energy would have decreased by $\frac{1}{2}mv^2 = \frac{1}{2}4 \cdot 10^6 (15000)^2 = 4.5 \times 10^{14} \text{ J}$
 - **(b)** $(4.5 \times 10^{14})/(4.2 \times 10^{15}) \approx 0.107$
- (c) $\frac{1000}{13}(0.107) \approx 8.24$ bombs

EXERCISE SET 7.7

- 1. (a) $F = \rho hA = 62.4(5)(100) = 31,200 \text{ lb}$ $P = \rho h = 62.4(5) = 312 \text{ lb/ft}^2$
- **2.** (a) $F = PA = 6 \cdot 10^5 (160) = 9.6 \times 10^7 \text{ N}$
- **(b)** F = PA = 100(60) = 6000 lb

(b) $F = \rho hA = 9810(10)(25) = 2,452,500 \text{ N}$

 $P = \rho h = 9810(10) = 98.1 \text{ kPa}$

- 3. $F = \int_0^2 62.4x(4)dx$ $= 249.6 \int_0^2 x \, dx = 499.2 \, \text{lb}$ $\frac{0}{x} = \frac{4}{2}$
- 4. $F = \int_{1}^{3} 9810x(4)dx$ = $39{,}240 \int_{1}^{3} x dx$

 $= 156,960 \,\mathrm{N}$

5. $F = \int_0^5 9810x(2\sqrt{25 - x^2})dx$ $= 19,620 \int_0^5 x(25 - x^2)^{1/2}dx$ $= 8.175 \times 10^5 \,\mathrm{N}$

6. By similar triangles

$$\frac{w(x)}{4} = \frac{2\sqrt{3} - x}{2\sqrt{3}}, \ w(x) = \frac{2}{\sqrt{3}}(2\sqrt{3} - x),$$

$$F = \int_0^{2\sqrt{3}} 62.4x \left[\frac{2}{\sqrt{3}}(2\sqrt{3} - x) \right] dx$$

$$= \frac{124.8}{\sqrt{3}} \int_0^{2\sqrt{3}} (2\sqrt{3}x - x^2) dx = 499.2 \, \text{lb}$$

306

7. By similar triangles

$$\frac{w(x)}{6} = \frac{10 - x}{8}$$
$$w(x) = \frac{3}{4}(10 - x),$$

$$F = \int_{2}^{10} 9810x \left[\frac{3}{4} (10 - x) \right] dx$$
$$= 7357.5 \int_{2}^{10} (10x - x^{2}) dx = 1,098,720 \text{ N}$$

8.
$$w(x) = 16 + 2u(x)$$
, but

$$\frac{u(x)}{4} = \frac{12 - x}{8}$$
 so $u(x) = \frac{1}{2}(12 - x)$,

$$w(x) = 16 + (12 - x) = 28 - x,$$

$$F = \int_{1}^{12} 62.4x(28 - x)dx$$

$$= 62.4 \int_{4}^{12} (28x - x^2) dx = 77,209.6 \text{ lb.}$$

- **9.** Yes: if $\rho_2 = 2\rho_1$ then $F_2 = \int_a^b \rho_2 h(x) w(x) dx = \int_a^b 2\rho_1 h(x) w(x) dx = 2 \int_a^b \rho_1 h(x) w(x) dx = 2F_1$.
- 10. $F = \int_0^2 50x(2\sqrt{4-x^2})dx$ $= 100 \int_0^2 x(4-x^2)^{1/2}dx$ = 800/3 lb

11. Find the forces on the upper and lower halves and add them:

$$\frac{w_1(x)}{\sqrt{2}a} = \frac{x}{\sqrt{2}a/2}, \ w_1(x) = 2x$$

$$F_1 = \int_0^{\sqrt{2}a/2} \rho x(2x) dx = 2\rho \int_0^{\sqrt{2}a/2} x^2 dx = \sqrt{2}\rho a^3/6,$$

$$\frac{w_2(x)}{\sqrt{2}a} = \frac{\sqrt{2}a - x}{\sqrt{2}a/2}, w_2(x) = 2(\sqrt{2}a - x)$$

$$\frac{0}{x} - \frac{a}{a} w_1(x)$$

$$\sqrt{2a/2} - \frac{a}{\sqrt{2a}} \sqrt{2a}$$

$$\sqrt{2a} - \frac{a}{\sqrt{2a}} w_2(x)$$

$$F_2 = \int_{\sqrt{2}a/2}^{\sqrt{2}a} \rho x [2(\sqrt{2}a - x)] dx = 2\rho \int_{\sqrt{2}a/2}^{\sqrt{2}a} (\sqrt{2}ax - x^2) dx = \sqrt{2}\rho a^3/3,$$

$$F = F_1 + F_2 = \sqrt{2}\rho a^3/6 + \sqrt{2}\rho a^3/3 = \rho a^3/\sqrt{2}$$
 lb

12. If a constant vertical force is applied to a flat plate which is horizontal and the magnitude of the force is F, then, if the plate is tilted so as to form an angle θ with the vertical, the magnitude of the force on the plate decreases to $F \cos \theta$.

Suppose that a flat surface is immersed, at an angle θ with the vertical, in a fluid of weight density ρ , and that the submerged portion of the surface extends from x=a to x=b along an x-axis whose positive direction is not necessarily down, but is slanted.

Following the derivation of equation (8), we divide the interval [a, b] into n subintervals

 $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$. Then the magnitude F_k of the force on the plate satisfies the inequalities $\rho h(x_{k-1})A_k\cos\theta \le F_k \le \rho h(x_k)A_k\cos\theta$, or equivalently that

 $h(x_{k-1}) \leq \frac{F_k \sec \theta}{\rho A_k} \leq h(x_k)$. Following the argument in the text we arrive at the desired equation

$$F = \int_{a}^{b} \rho h(x)w(x) \sec \theta \, dx.$$

13.
$$\sqrt{16^2 + 4^2} = \sqrt{272} = 4\sqrt{17}$$
 is the other dimension of the bottom.

$$(h(x) - 4)/4 = x/(4\sqrt{17})$$

$$h(x) = x/\sqrt{17} + 4,$$

$$\sec \theta = 4\sqrt{17}/16 = \sqrt{17}/4$$

$$F = \int_0^{4\sqrt{17}} 62.4(x/\sqrt{17} + 4)10(\sqrt{17}/4) dx$$

$$=156\sqrt{17}\int_{0}^{4\sqrt{17}}(x/\sqrt{17}+4)dx$$

$$= 63,648 \, lb$$

14. If we lower the water level by y ft then the force F_1 is computed as in Exercise 13, but with h(x) replaced by $h_1(x) = x/\sqrt{17} + 4 - y$, and we obtain

$$F_1 = F - y \int_0^{4\sqrt{17}} 62.4(10)\sqrt{17}/4 \, dx = F - 624(17)y = 63,648 - 10,608y.$$

If
$$F_1 = F/2$$
 then $63,648/2 = 63,648 - 10,608y$, $y = 63,648/(2 \cdot 10,608) = 3$,

so the water level should be reduced by 3 ft.

15.
$$h(x) = x \sin 60^{\circ} = \sqrt{3}x/2,$$

 $\theta = 30^{\circ}, \sec \theta = 2/\sqrt{3},$
 $F = \int_0^{100} 9810(\sqrt{3}x/2)(200)(2/\sqrt{3}) dx$
 $= 200 \cdot 9810 \int_0^{100} x dx$
 $= 9810 \cdot 100^3 = 9.81 \times 10^9 \text{ N}$

16.
$$F = \int_{h}^{h+2} \rho_0 x(2) dx$$

= $2\rho_0 \int_{h}^{h+2} x dx$
= $4\rho_0 (h+1)$

17. (a) From Exercise 16, $F = 4\rho_0(h+1)$ so (assuming that ρ_0 is constant) $dF/dt = 4\rho_0(dh/dt)$ which is a positive constant if dh/dt is a positive constant.

- **(b)** If dh/dt = 20 then $dF/dt = 80\rho_0$ lb/min from Part (a).
- 18. (a) Let h_1 and h_2 be the maximum and minimum depths of the disk D_r . The pressure P(r) on one side of the disk satisfies inequality (5):

$$\rho h_1 \leq P(r) \leq \rho h_2$$
. But

$$\lim_{r\to 0^+} h_1 = \lim_{r\to 0^+} h_2 = h, \text{ and hence}$$

$$\rho h = \lim_{r \to 0^+} \rho h_1 \le \lim_{r \to 0^+} P(r) \le \lim_{r \to 0^+} \rho h_2 = \rho h$$
, so $\lim_{r \to 0^+} P(r) = \rho h$.

(b) The disks D_r in Part (a) have no particular direction (the axes of the disks have arbitrary direction). Thus P, the limiting value of P(r), is independent of direction.

EXERCISE SET 7.8

1. (a)
$$\sinh 3 \approx 10.0179$$

(b)
$$\cosh(-2) \approx 3.7622$$

(c)
$$\tanh(\ln 4) = 15/17 \approx 0.8824$$

(d)
$$\sinh^{-1}(-2) \approx -1.4436$$

(e)
$$\cosh^{-1} 3 \approx 1.7627$$

(f)
$$\tanh^{-1} \frac{3}{4} \approx 0.9730$$

2. (a)
$$\operatorname{csch}(-1) \approx -0.8509$$

(b)
$$\operatorname{sech}(\ln 2) = 0.8$$

(c)
$$\coth 1 \approx 1.3130$$

(d)
$$\operatorname{sech}^{-1} \frac{1}{2} \approx 1.3170$$

(e)
$$\coth^{-1} 3 \approx 0.3466$$

(f)
$$\operatorname{csch}^{-1}(-\sqrt{3}) \approx -0.5493$$

3. (a)
$$\sinh(\ln 3) = \frac{1}{2}(e^{\ln 3} - e^{-\ln 3}) = \frac{1}{2}\left(3 - \frac{1}{3}\right) = \frac{4}{3}$$

(b)
$$\cosh(-\ln 2) = \frac{1}{2}(e^{-\ln 2} + e^{\ln 2}) = \frac{1}{2}(\frac{1}{2} + 2) = \frac{5}{4}$$

(c)
$$\tanh(2\ln 5) = \frac{e^{2\ln 5} - e^{-2\ln 5}}{e^{2\ln 5} + e^{-2\ln 5}} = \frac{25 - 1/25}{25 + 1/25} = \frac{312}{313}$$

(d)
$$\sinh(-3\ln 2) = \frac{1}{2}(e^{-3\ln 2} - e^{3\ln 2}) = \frac{1}{2}(\frac{1}{8} - 8) = -\frac{63}{16}$$

4. (a)
$$\frac{1}{2}(e^{\ln x} + e^{-\ln x}) = \frac{1}{2}\left(x + \frac{1}{x}\right) = \frac{x^2 + 1}{2x}, \ x > 0$$

(b)
$$\frac{1}{2}(e^{\ln x} - e^{-\ln x}) = \frac{1}{2}\left(x - \frac{1}{x}\right) = \frac{x^2 - 1}{2x}, \ x > 0$$

(c)
$$\frac{e^{2\ln x} - e^{-2\ln x}}{e^{2\ln x} + e^{-2\ln x}} = \frac{x^2 - 1/x^2}{x^2 + 1/x^2} = \frac{x^4 - 1}{x^4 + 1}, x > 0$$

(d)
$$\frac{1}{2}(e^{-\ln x} + e^{\ln x}) = \frac{1}{2}\left(\frac{1}{x} + x\right) = \frac{1+x^2}{2x}, x > 0$$

5 .		sinh x ₀	$\cosh x_0$	tanh x ₀	$\coth x_0$	sech x_0	csch x ₀
	(a)	2	$\sqrt{5}$	2/√5	$\sqrt{5/2}$	1/√5	1/2
	(b)	3/4	5/4	3/5	5/3	4/5	4/3
	(c)	4/3	5/3	4/5	5/4	3/5	3/4

Exercise Set 7.8 309

(a)
$$\cosh^2 x_0 = 1 + \sinh^2 x_0 = 1 + (2)^2 = 5$$
, $\cosh x_0 = \sqrt{5}$

(b)
$$\sinh^2 x_0 = \cosh^2 x_0 - 1 = \frac{25}{16} - 1 = \frac{9}{16}, \sinh x_0 = \frac{3}{4} \text{ (because } x_0 > 0\text{)}$$

(c)
$$\operatorname{sech}^2 x_0 = 1 - \tanh^2 x_0 = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25}$$
, $\operatorname{sech} x_0 = \frac{3}{5}$, $\cosh x_0 = \frac{1}{\operatorname{sech} x_0} = \frac{5}{3}$, from $\frac{\sinh x_0}{\cosh x_0} = \tanh x_0$ we get $\sinh x_0 = \left(\frac{5}{3}\right) \left(\frac{4}{5}\right) = \frac{4}{3}$

6.
$$\frac{d}{dx}\operatorname{csch} x = \frac{d}{dx}\frac{1}{\sinh x} = -\frac{\cosh x}{\sinh^2 x} = -\coth x \operatorname{csch} x \text{ for } x \neq 0$$

$$\frac{d}{dx}\operatorname{sech} x = \frac{d}{dx}\frac{1}{\cosh x} = -\frac{\sinh x}{\cosh^2 x} = -\tanh x \operatorname{sech} x \text{ for all } x$$

$$\frac{d}{dx}\coth x = \frac{d}{dx}\frac{\cosh x}{\sinh x} = \frac{\sinh^2 x - \cosh^2 x}{\sinh^2 x} = -\operatorname{csch}^2 x \text{ for } x \neq 0$$

7. (a)
$$y = \sinh^{-1} x$$
 if and only if $x = \sinh y$; $1 = \frac{dy}{dx} \frac{dx}{dy} = \frac{dy}{dx} \cosh y$; so $\frac{d}{dx} [\sinh^{-1} x] = \frac{dy}{dx} = \frac{1}{\cosh y} = \frac{1}{\sqrt{1 + \sinh^2 y}} = \frac{1}{\sqrt{1 + x^2}}$ for all x .

(b) Let
$$x \ge 1$$
. Then $y = \cosh^{-1} x$ if and only if $x = \cosh y$; $1 = \frac{dy}{dx} \frac{dx}{dy} = \frac{dy}{dx} \sinh y$, so $\frac{d}{dx} [\cosh^{-1} x] = \frac{dy}{dx} = \frac{1}{\sinh y} = \frac{1}{\sqrt{\cosh^2 y - 1}} = \frac{1}{x^2 - 1}$ for $x \ge 1$.

(c) Let
$$-1 < x < 1$$
. Then $y = \tanh^{-1} x$ if and only if $x = \tanh y$; thus $1 = \frac{dy}{dx} \frac{dx}{dy} = \frac{dy}{dx} \operatorname{sech}^2 y = \frac{dy}{dx} (1 - \tanh^2 y) = 1 - x^2$, so $\frac{d}{dx} [\tanh^{-1} x] = \frac{dy}{dx} = \frac{1}{1 - x^2}$.

9.
$$4 \cosh(4x - 8)$$

10.
$$4x^3 \sinh(x^4)$$

$$\mathbf{11.} \quad -\frac{1}{x}\operatorname{csch}^2(\ln x)$$

$$12. \quad 2\frac{\mathrm{sech}^2 2x}{\tanh 2x}$$

13.
$$\frac{1}{x^2} \operatorname{csch}(1/x) \operatorname{coth}(1/x)$$
 14. $-2e^{2x} \operatorname{sech}(e^{2x}) \tanh(e^{2x})$

14.
$$-2e^{2x}\operatorname{sech}(e^{2x})\tanh(e^{2x})$$

15.
$$\frac{2 + 5\cosh(5x)\sinh(5x)}{\sqrt{4x + \cosh^2(5x)}}$$

16.
$$6 \sinh^2(2x) \cosh(2x)$$

17.
$$x^{5/2} \tanh(\sqrt{x}) \operatorname{sech}^2(\sqrt{x}) + 3x^2 \tanh^2(\sqrt{x})$$

$$18. \quad -3\cosh(\cos 3x)\sin 3x$$

19.
$$\frac{1}{\sqrt{1+x^2/9}} \left(\frac{1}{3}\right) = 1/\sqrt{9+x^2}$$

20.
$$\frac{1}{\sqrt{1+1/x^2}}(-1/x^2) = -\frac{1}{|x|\sqrt{x^2+1}}$$

21.
$$1/\left[(\cosh^{-1}x)\sqrt{x^2-1}\right]$$

22.
$$1/\left[\sqrt{(\sinh^{-1}x)^2-1}\sqrt{1+x^2}\right]$$

23.
$$-(\tanh^{-1}x)^{-2}/(1-x^2)$$

24.
$$2(\coth^{-1}x)/(1-x^2)$$

25.
$$\frac{\sinh x}{\sqrt{\cosh^2 x - 1}} = \frac{\sinh x}{|\sinh x|} = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$

26.
$$(\operatorname{sech}^2 x)/\sqrt{1+\tanh^2 x}$$

27.
$$-\frac{e^x}{2x\sqrt{1-x}} + e^x \operatorname{sech}^{-1} x$$

28.
$$10(1+x\operatorname{csch}^{-1}x)^9\left(-\frac{x}{|x|\sqrt{1+x^2}}+\operatorname{csch}^{-1}x\right)$$

31.
$$\frac{1}{7} \sinh^7 x + C$$

32.
$$\frac{1}{2}\sinh(2x-3)+C$$

32.
$$\frac{1}{2}\sinh(2x-3)+C$$
 33. $\frac{2}{3}(\tanh x)^{3/2}+C$

34.
$$-\frac{1}{3}\coth(3x) + C$$
 35. $\ln(\cosh x) + C$ **36.** $-\frac{1}{3}\coth^3 x + C$

35.
$$\ln(\cosh x) + C$$

36.
$$-\frac{1}{3} \coth^3 x + C$$

37.
$$-\frac{1}{3}\operatorname{sech}^3 x \bigg]_{\ln 2}^{\ln 3} = 37/375$$

38.
$$\ln(\cosh x)\Big]_0^{\ln 3} = \ln 5 - \ln 3$$

39.
$$u = 3x$$
, $\frac{1}{3} \int \frac{1}{\sqrt{1+u^2}} du = \frac{1}{3} \sinh^{-1} 3x + C$

40.
$$x = \sqrt{2}u$$
, $\int \frac{\sqrt{2}}{\sqrt{2u^2 - 2}} du = \int \frac{1}{\sqrt{u^2 - 1}} du = \cosh^{-1}(x/\sqrt{2}) + C$

41.
$$u = e^x$$
, $\int \frac{1}{u\sqrt{1-u^2}} du = -\operatorname{sech}^{-1}(e^x) + C$

42.
$$u = \cos \theta, -\int \frac{1}{\sqrt{1+u^2}} du = -\sinh^{-1}(\cos \theta) + C$$

43.
$$u = 2x$$
, $\int \frac{du}{u\sqrt{1+u^2}} = -\operatorname{csch}^{-1}|u| + C = -\operatorname{csch}^{-1}|2x| + C$

44.
$$x = 5u/3$$
, $\int \frac{5/3}{\sqrt{25u^2 - 25}} du = \frac{1}{3} \int \frac{1}{\sqrt{u^2 - 1}} du = \frac{1}{3} \cosh^{-1}(3x/5) + C$

45.
$$\tanh^{-1} x \Big]_0^{1/2} = \tanh^{-1} (1/2) - \tanh^{-1} (0) = \frac{1}{2} \ln \frac{1 + 1/2}{1 - 1/2} = \frac{1}{2} \ln 3$$

46.
$$\sinh^{-1} t \Big]_0^{\sqrt{3}} = \sinh^{-1} \sqrt{3} - \sinh^{-1} 0 = \ln(\sqrt{3} + 2)$$

49.
$$A = \int_0^{\ln 3} \sinh 2x \, dx = \frac{1}{2} \cosh 2x \Big]_0^{\ln 3} = \frac{1}{2} [\cosh(2\ln 3) - 1],$$

but $\cosh(2\ln 3) = \cosh(\ln 9) = \frac{1}{2} (e^{\ln 9} + e^{-\ln 9}) = \frac{1}{2} (9 + 1/9) = 41/9 \text{ so } A = \frac{1}{2} [41/9 - 1] = 16/9.$

50.
$$V = \pi \int_0^{\ln 2} \operatorname{sech}^2 x \, dx = \pi \tanh x \bigg]_0^{\ln 2} = \pi \tanh(\ln 2) = 3\pi/5$$

51.
$$V = \pi \int_0^5 (\cosh^2 2x - \sinh^2 2x) dx = \pi \int_0^5 dx = 5\pi$$

52.
$$\int_0^1 \cosh ax \, dx = 2, \frac{1}{a} \sinh ax \Big]_0^1 = 2, \frac{1}{a} \sinh a = 2, \sinh a = 2a;$$
let $f(a) = \sinh a - 2a$, then $a_{n+1} = a_n - \frac{\sinh a_n - 2a_n}{\cosh a_n - 2}, a_1 = 2.2, \dots, a_4 = a_5 = 2.177318985.$

Exercise Set 7.8 311

53.
$$y' = \sinh x$$
, $1 + (y')^2 = 1 + \sinh^2 x = \cosh^2 x$

$$L = \int_0^{\ln 2} \cosh x \, dx = \sinh x \Big|_0^{\ln 2} = \sinh(\ln 2) = \frac{1}{2} (e^{\ln 2} - e^{-\ln 2}) = \frac{1}{2} \left(2 - \frac{1}{2} \right) = \frac{3}{4}$$

54.
$$y' = \sinh(x/a), 1 + (y')^2 = 1 + \sinh^2(x/a) = \cosh^2(x/a)$$

$$L = \int_0^{x_1} \cosh(x/a) dx = a \sinh(x/a) \Big|_0^{x_1} = a \sinh(x_1/a)$$

55.
$$\sinh(-x) = \frac{1}{2}(e^{-x} - e^x) = -\frac{1}{2}(e^x - e^{-x}) = -\sinh x$$

$$\cosh(-x) = \frac{1}{2}(e^{-x} + e^x) = \frac{1}{2}(e^x + e^{-x}) = \cosh x$$

56. (a)
$$\cosh x + \sinh x = \frac{1}{2}(e^x + e^{-x}) + \frac{1}{2}(e^x - e^{-x}) = e^x$$

(b)
$$\cosh x - \sinh x = \frac{1}{2}(e^x + e^{-x}) - \frac{1}{2}(e^x - e^{-x}) = e^{-x}$$

(c)
$$\sinh x \cosh y + \cosh x \sinh y = \frac{1}{4} (e^x - e^{-x})(e^y + e^{-y}) + \frac{1}{4} (e^x + e^{-x})(e^y - e^{-y})$$

$$= \frac{1}{4} [(e^{x+y} - e^{-x+y} + e^{x-y} - e^{-x-y}) + (e^{x+y} + e^{-x+y} - e^{x-y} - e^{-x-y})]$$

$$= \frac{1}{2} [e^{(x+y)} - e^{-(x+y)}] = \sinh(x+y)$$

- (d) Let y = x in Part (c).
- (e) The proof is similar to Part (c), or: treat x as variable and y as constant, and differentiate the result in Part (c) with respect to x.
- (f) Let y = x in Part (e).
- (g) Use $\cosh^2 x = 1 + \sinh^2 x$ together with Part (f).
- (h) Use $\sinh^2 x = \cosh^2 x 1$ together with Part (f).
- **57.** (a) Divide $\cosh^2 x \sinh^2 x = 1$ by $\cosh^2 x$.

(b)
$$\tanh(x+y) = \frac{\sinh x \cosh y + \cosh x \sinh y}{\cosh x \cosh y + \sinh x \sinh y} = \frac{\frac{\sinh x}{\cosh x} + \frac{\sinh y}{\cosh x}}{1 + \frac{\sinh x \sinh y}{\cosh x \cosh y}} = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$$

- (c) Let y = x in Part (b).
- **58.** (a) Let $y = \cosh^{-1} x$; then $x = \cosh y = \frac{1}{2} (e^y + e^{-y})$, $e^y 2x + e^{-y} = 0$, $e^{2y} 2xe^y + 1 = 0$, $e^y = \frac{2x \pm \sqrt{4x^2 4}}{2} = x \pm \sqrt{x^2 1}$. To determine which sign to take, note that $y \ge 0$ so $e^{-y} \le e^y$, $x = (e^y + e^{-y})/2 \le (e^y + e^y)/2 = e^y$, hence $e^y \ge x$ thus $e^y = x + \sqrt{x^2 1}$, $y = \cosh^{-1} x = \ln(x + \sqrt{x^2 1})$.

(b) Let
$$y = \tanh^{-1} x$$
; then $x = \tanh y = \frac{e^y - e^{-y}}{e^y + e^{-y}} = \frac{e^{2y} - 1}{e^{2y} + 1}$, $xe^{2y} + x = e^{2y} - 1$, $1 + x = e^{2y}(1 - x)$, $e^{2y} = (1 + x)/(1 - x)$, $2y = \ln \frac{1 + x}{1 - x}$, $y = \frac{1}{2} \ln \frac{1 + x}{1 - x}$.

59. (a)
$$\frac{d}{dx}(\cosh^{-1}x) = \frac{1+x/\sqrt{x^2-1}}{x+\sqrt{x^2-1}} = 1/\sqrt{x^2-1}$$

(b)
$$\frac{d}{dx}(\tanh^{-1}x) = \frac{d}{dx}\left[\frac{1}{2}(\ln(1+x) - \ln(1-x))\right] = \frac{1}{2}\left(\frac{1}{1+x} + \frac{1}{1-x}\right) = 1/(1-x^2)$$

- **60.** Let $y = \operatorname{sech}^{-1} x$ then $x = \operatorname{sech} y = 1/\cosh y$, $\cosh y = 1/x$, $y = \cosh^{-1}(1/x)$; the proofs for the remaining two are similar.
- **61.** If |u| < 1 then, by Theorem 7.8.6, $\int \frac{du}{1 u^2} = \tanh^{-1} u + C$. For |u| > 1, $\int \frac{du}{1 - u^2} = \coth^{-1} u + C = \tanh^{-1} (1/u) + C$.
- **62.** (a) $\frac{d}{dx}(\operatorname{sech}^{-1}|x|) = \frac{d}{dx}(\operatorname{sech}^{-1}\sqrt{x^2}) = -\frac{1}{\sqrt{x^2}\sqrt{1-x^2}}\frac{x}{\sqrt{x^2}} = -\frac{1}{x\sqrt{1-x^2}}$
 - (b) Similar to solution of Part (a)
- **63.** (a) $\lim_{x \to +\infty} \sinh x = \lim_{x \to +\infty} \frac{1}{2} (e^x e^{-x}) = +\infty 0 = +\infty$
 - **(b)** $\lim_{x \to -\infty} \sinh x = \lim_{x \to -\infty} \frac{1}{2} (e^x e^{-x}) = 0 \infty = -\infty$
 - (c) $\lim_{x \to +\infty} \tanh x = \lim_{x \to +\infty} \frac{e^x e^{-x}}{e^x + e^{-x}} = 1$
 - (d) $\lim_{x \to -\infty} \tanh x = \lim_{x \to -\infty} \frac{e^x e^{-x}}{e^x + e^{-x}} = -1$
 - (e) $\lim_{x \to +\infty} \sinh^{-1} x = \lim_{x \to +\infty} \ln(x + \sqrt{x^2 + 1}) = +\infty$
 - (f) $\lim_{x \to 1^{-}} \tanh^{-1} x = \lim_{x \to 1^{-}} \frac{1}{2} [\ln(1+x) \ln(1-x)] = +\infty$
- **64.** (a) $\lim_{x \to +\infty} (\cosh^{-1} x \ln x) = \lim_{x \to +\infty} [\ln(x + \sqrt{x^2 1}) \ln x]$ $= \lim_{x \to +\infty} \ln \frac{x + \sqrt{x^2 1}}{x} = \lim_{x \to +\infty} \ln(1 + \sqrt{1 1/x^2}) = \ln 2$ (b) $\lim_{x \to +\infty} \frac{\cosh x}{e^x} = \lim_{x \to +\infty} \frac{e^x + e^{-x}}{2e^x} = \lim_{x \to +\infty} \frac{1}{2} (1 + e^{-2x}) = 1/2$
- **65.** For |x| < 1, $y = \tanh^{-1} x$ is defined and $dy/dx = 1/(1-x^2) > 0$; $y'' = 2x/(1-x^2)^2$ changes sign at x = 0, so there is a point of inflection there.
- **66.** Let x = -u/a, $\int \frac{1}{\sqrt{u^2 a^2}} du = -\int \frac{a}{a\sqrt{x^2 1}} dx = -\cosh^{-1} x + C = -\cosh^{-1}(-u/a) + C$. $-\cosh^{-1}(-u/a) = -\ln(-u/a + \sqrt{u^2/a^2 - 1}) = \ln\left[\frac{a}{-u + \sqrt{u^2 - a^2}} \frac{u + \sqrt{u^2 - a^2}}{u + \sqrt{u^2 - a^2}}\right]$ $= \ln\left|u + \sqrt{u^2 - a^2}\right| - \ln a = \ln\left|u + \sqrt{u^2 - a^2}\right| + C_1$ so $\int \frac{1}{\sqrt{u^2 - a^2}} du = \ln\left|u + \sqrt{u^2 - a^2}\right| + C_2$.
- **67.** Using $\sinh x + \cosh x = e^x$ (Exercise 56a), $(\sinh x + \cosh x)^n = (e^x)^n = e^{nx} = \sinh nx + \cosh nx$.

68.
$$\int_{-a}^{a} e^{tx} dx = \frac{1}{t} e^{tx} \bigg|_{-a}^{a} = \frac{1}{t} (e^{at} - e^{-at}) = \frac{2 \sinh at}{t} \text{ for } t \neq 0.$$

69. (a)
$$y' = \sinh(x/a), 1 + (y')^2 = 1 + \sinh^2(x/a) = \cosh^2(x/a)$$

 $L = 2 \int_0^b \cosh(x/a) dx = 2a \sinh(x/a) \Big]_0^b = 2a \sinh(b/a)$

- (b) The highest point is at x = b, the lowest at x = 0, so $S = a \cosh(b/a) a \cosh(0) = a \cosh(b/a) a$.
- 70. From Part (a) of Exercise 69, $L=2a\sinh(b/a)$ so $120=2a\sinh(50/a), a\sinh(50/a)=60$. Let u=50/a, then a=50/u so $(50/u)\sinh u=60$, $\sinh u=1.2u$. If $f(u)=\sinh u-1.2u$, then $u_{n+1}=u_n-\frac{\sinh u_n-1.2u_n}{\cosh u_n-1.2}; u_1=1,\ldots,u_5=u_6=1.064868548\approx 50/a$ so $a\approx 46.95415231$. From Part (b), $S=a\cosh(b/a)-a\approx 46.95415231[\cosh(1.064868548)-1]\approx 29.2$ ft.
- 71. From Part (b) of Exercise 69, $S = a \cosh(b/a) a$ so $30 = a \cosh(200/a) a$. Let u = 200/a, then a = 200/u so $30 = (200/u)[\cosh u 1], \cosh u 1 = 0.15u$. If $f(u) = \cosh u 0.15u 1$, then $u_{n+1} = u_n \frac{\cosh u_n 0.15u_n 1}{\sinh u_n 0.15}$; $u_1 = 0.3, \dots, u_4 = u_5 = 0.297792782 \approx 200/a$ so $a \approx 671.6079505$. From Part (a), $L = 2a \sinh(b/a) \approx 2(671.6079505) \sinh(0.297792782) \approx 405.9 \, \text{ft}$.
- **72.** (a) When the bow of the boat is at the point (x, y) and the person has walked a distance D, then the person is located at the point (0, D), the line segment connecting (0, D) and (x, y) has length a; thus $a^2 = x^2 + (D y)^2$, $D = y + \sqrt{a^2 x^2} = a \operatorname{sech}^{-1}(x/a)$.

(b) Find
$$D$$
 when $a = 15$, $x = 10$: $D = 15 \operatorname{sech}^{-1}(10/15) = 15 \ln\left(\frac{1 + \sqrt{5/9}}{2/3}\right) \approx 14.44 \text{ m}.$

(c)
$$dy/dx = -\frac{a^2}{x\sqrt{a^2 - x^2}} + \frac{x}{\sqrt{a^2 - x^2}} = \frac{1}{\sqrt{a^2 - x^2}} \left[-\frac{a^2}{x} + x \right] = -\frac{1}{x}\sqrt{a^2 - x^2},$$

 $1 + [y']^2 = 1 + \frac{a^2 - x^2}{x^2} = \frac{a^2}{x^2}; \text{ with } a = 15 \text{ and } x = 5, L = \int_5^{15} \frac{225}{x^2} dx = -\frac{225}{x} \Big]_5^{15} = 30 \text{ m}.$

CHAPTER 7 SUPPLEMENTARY EXERCISES

6. (a)
$$A = \int_0^2 (2 + x - x^2) dx$$
 (b) $A = \int_0^2 \sqrt{y} dy + \int_2^4 [(\sqrt{y} - (y - 2)] dy$ (c) $V = \pi \int_0^2 [(2 + x)^2 - x^4] dx$

(d)
$$V = 2\pi \int_0^2 y\sqrt{y} \, dy + 2\pi \int_2^4 y[\sqrt{y} - (y - 2)] \, dy$$

(e)
$$V = 2\pi \int_0^2 x(2+x-x^2) dx$$
 (f) $V = \pi \int_0^2 y dy + \int_2^4 \pi (y-(y-2)^2) dy$

7. (a)
$$A = \int_a^b (f(x) - g(x)) dx + \int_b^c (g(x) - f(x)) dx + \int_c^d (f(x) - g(x)) dx$$

(b)
$$A = \int_{-1}^{0} (x^3 - x) dx + \int_{0}^{1} (x - x^3) dx + \int_{1}^{2} (x^3 - x) dx = \frac{1}{4} + \frac{1}{4} + \frac{9}{4} = \frac{11}{4}$$

8. (a)
$$S = \int_0^{8/27} 2\pi x \sqrt{1 + x^{-4/3}} dx$$
 (b) $S = \int_0^2 2\pi \frac{y^3}{27} \sqrt{1 + y^4/81} dy$ (c) $S = \int_0^2 2\pi (y+2) \sqrt{1 + y^4/81} dy$

9. By implicit differentiation
$$\frac{dy}{dx} = -\left(\frac{y}{x}\right)^{1/3}$$
, so $1 + \left(\frac{dy}{dx}\right)^2 = 1 + \left(\frac{y}{x}\right)^{2/3} = \frac{x^{2/3} + y^{2/3}}{x^{2/3}} = \frac{a^{2/3}}{x^{2/3}}$
$$L = \int_{-a}^{-a/8} \frac{a^{1/3}}{(-x^{1/3})} dx = -a^{1/3} \int_{-a}^{-a/8} x^{-1/3} dx = 9a/8.$$

10. The base of the dome is a hexagon of side r. An equation of the circle of radius r that lies in a vertical x-y plane and passes through two opposite vertices of the base hexagon is $x^2 + y^2 = r^2$. A horizontal, hexagonal cross section at height y above the base has area

$$A(y) = \frac{3\sqrt{3}}{2}x^2 = \frac{3\sqrt{3}}{2}(r^2 - y^2), \text{ hence the volume is } V = \int_0^r \frac{3\sqrt{3}}{2}(r^2 - y^2) \, dy = \sqrt{3}r^3.$$

11. Let the sphere have radius R, the hole radius r. By the Pythagorean Theorem, $r^2 + (L/2)^2 = R^2$. Use cylindrical shells to calculate the volume of the solid obtained by rotating about the y-axis the region r < x < R, $-\sqrt{R^2 - x^2} < y < \sqrt{R^2 - x^2}$:

$$V = \int_{r}^{R} (2\pi x) 2\sqrt{R^2 - x^2} \, dx = -\frac{4}{3}\pi (R^2 - x^2)^{3/2} \bigg]_{r}^{R} = \frac{4}{3}\pi (L/2)^3,$$

so the volume is independent of R.

12.
$$V = 2 \int_0^{L/2} \pi \frac{16R^2}{L^4} (x^2 - L^2/4)^2 = \frac{4\pi}{15} LR^2$$

- (b) The maximum deflection occurs at x = 96 inches (the midpoint of the beam) and is about 1.42 in.
- (c) The length of the centerline is $\int_0^{192} \sqrt{1+(dy/dx)^2} \ dx = 192.026 \text{ in.}$

14.
$$y = 0$$
 at $x = b = 30.585$; distance $= \int_0^b \sqrt{1 + (12.54 - 0.82x)^2} dx = 196.306$ yd

15.
$$x' = e^t(\cos t - \sin t), y' = e^t(\cos t + \sin t), (x')^2 + (y')^2 = 2e^{2t}$$

$$S = 2\pi \int_0^{\pi/2} (e^t \sin t) \sqrt{2e^{2t}} dt = 2\sqrt{2}\pi \int_0^{\pi/2} e^{2t} \sin t \, dt$$

$$= 2\sqrt{2}\pi \left[\frac{1}{5} e^{2t} (2\sin t - \cos t) \right]_0^{\pi/2} = \frac{2\sqrt{2}}{5}\pi (2e^{\pi} + 1)$$

16. (a)
$$\pi \int_0^1 (\sin^{-1} x)^2 dx = 1.468384.$$
 (b) $2\pi \int_0^{\pi/2} y(1 - \sin y) dy = 1.468384.$

17. (a)
$$F = kx$$
, $\frac{1}{2} = k\frac{1}{4}$, $k = 2$, $W = \int_0^{1/4} kx \, dx = 1/16 \text{ J}$

(b)
$$25 = \int_0^L kx \, dx = kL^2/2, L = 5 \text{ m}$$

18.
$$F = 30x + 2000, W = \int_0^{150} (30x + 2000) dx = 15 \cdot 150^2 + 2000 \cdot 150 = 637,500 \text{ lb-ft}$$

19. (a)
$$F = \int_0^1 \rho x 3 \, dx \, N$$

(b) By similar triangles
$$\frac{w(x)}{4} = \frac{x}{2}$$
, $w(x) = 2x$, so $F = \int_{1}^{4} \rho(1+x)2x \, dx$ lb/ft².

(c) A formula for the parabola is
$$y = \frac{8}{125}x^2 - 10$$
, so $F = \int_{-10}^{0} 9810|y|2\sqrt{\frac{125}{8}(y+10)} \,dy$ N.

20.
$$y' = a \cosh ax, y'' = a^2 \sinh ax = a^2 y$$

21. (a)
$$\cosh 3x = \cosh(2x + x) = \cosh 2x \cosh x + \sinh 2x \sinh x$$

 $= (2\cosh^2 x - 1)\cosh x + (2\sinh x \cosh x)\sinh x$
 $= 2\cosh^3 x - \cosh x + 2\sinh^2 x \cosh x$
 $= 2\cosh^3 x - \cosh x + 2(\cosh^2 x - 1)\cosh x = 4\cosh^3 x - 3\cosh x$

- (b) from Theorem 7.8.2 with x replaced by $\frac{x}{2}$: $\cosh x = 2 \cosh^2 \frac{x}{2} 1$, $2 \cosh^2 \frac{x}{2} = \cosh x + 1$, $\cosh^2 \frac{x}{2} = \frac{1}{2} (\cosh x + 1)$, $\cosh \frac{x}{2} = \sqrt{\frac{1}{2} (\cosh x + 1)}$ (because $\cosh \frac{x}{2} > 0$)
- (c) from Theorem 7.8.2 with x replaced by $\frac{x}{2}$: $\cosh x = 2 \sinh^2 \frac{x}{2} + 1$, $2 \sinh^2 \frac{x}{2} = \cosh x 1$, $\sinh^2 \frac{x}{2} = \frac{1}{2} (\cosh x 1)$, $\sinh \frac{x}{2} = \pm \sqrt{\frac{1}{2} (\cosh x 1)}$

- **(b)** r = 1 when $t \approx 0.673080$ s.
- (c) dr/dt = 4.48 m/s.

23. Set a = 68.7672, b = 0.0100333, c = 693.8597, d = 299.2239.

(b) $L = 2 \int_0^d \sqrt{1 + a^2 b^2 \sinh^2 bx} \, dx$ = 1480.2798 ft

(c)
$$x = 283.6249$$
 ft

- **24.** The x-coordinates of the points of intersection are $a \approx -0.423028$ and $b \approx 1.725171$; the area is $\int_a^b (2\sin x x^2 + 1) dx \approx 2.542696.$
- **25.** Let (a, k), where $\pi/2 < a < \pi$, be the coordinates of the point of intersection of y = k with $y = \sin x$. Thus $k = \sin a$ and if the shaded areas are equal,

$$\int_0^a (k - \sin x) dx = \int_0^a (\sin a - \sin x) \, dx = a \sin a + \cos a - 1 = 0$$

Solve for a to get $a \approx 2.331122$, so $k = \sin a \approx 0.724611$.

26. The volume is given by $2\pi \int_0^k x \sin x \, dx = 2\pi (\sin k - k \cos k) = 8$; solve for k to get k = 1.736796.