MC458 — Projeto e Análise de Algoritmos I

C.C. de Souza C.N. da Silva O. Lee

Antes de mais nada...

- Uma versão anterior deste conjunto de slides foi preparada por Cid Carvalho de Souza e Cândida Nunes da Silva para uma instância anterior desta disciplina.
- O que vocês tem em mãos é uma versão modificada preparada para atender a meus gostos.
- Nunca é demais enfatizar que o material é apenas um guia e não deve ser usado como única fonte de estudo. Para isso consultem a bibliografia (em especial o CLR ou CLRS).

Orlando I ee

Agradecimentos (Cid e Cândida)

- Várias pessoas contribuíram direta ou indiretamente com a preparação deste material.
- Algumas destas pessoas cederam gentilmente seus arquivos digitais enquanto outras cederam gentilmente o seu tempo fazendo correções e dando sugestões.
- Uma lista destes "colaboradores" (em ordem alfabética) é dada abaixo:
 - Célia Picinin de Mello
 - ▶ José Coelho de Pina
 - Orlando Lee
 - ▶ Paulo Feofiloff
 - ▶ Pedro Rezende
 - Ricardo Dahab
 - Zanoni Dias

O problema da ordenação

Problema:

Rearranjar um vetor A[1..n] de inteiros de modo que fique em ordem crescente.

Ou simplesmente:

O problema da ordenação

Problema:

Rearranjar um vetor A[1..n] de inteiros de modo que fique em ordem crescente.

Ou simplesmente:

Problema:

Ordenar um vetor A[1..n] de inteiros.

O problema da ordenação

Problema:

Rearranjar um vetor A[1..n] de inteiros de modo que fique em ordem crescente.

Ou simplesmente:

Problema:

Ordenar um vetor A[1..n] de inteiros.

Observação: de fato, os algoritmos que veremos são capazes de ordenar qualquer sequência de elementos comparáveis.

Algoritmos de ordenação

Veremos vários algoritmos de ordenação:

- Insertion sort
- Selection sort
- Mergesort
- Heapsort
- Quicksort

chave = 38

chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50

chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1								j		n
10	20	25	35	38	40	44	55	99	10	65	50

chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1								j		n
10	20	25	35	38	40	44	55	99	10	65	50
chave	1								j		n
10	10	20	25	35	38	40	44	55	99	65	50

C.C. de Souza, C.N. da Silva, O. Lee

chave	1									j	n
65	10	20	25	35	38	40	44	55	99	65	50

chave	1									j	n
65	10	20	25	35	38	40	44	55	99	65	50
chave	1									j	n
65	10	20	25	35	38	40	44	55	65	99	50

chave	1									j	n
65	10	20	25	35	38	40	44	55	99	65	50
chave	1									j	n
65	10	20	25	35	38	40	44	55	65	99	50
chave	1										j
50	10	20	25	35	38	40	44	55	65	99	50

chave	1									j	n
65	10	20	25	35	38	40	44	55	99	65	50
chave	1									j	n
65	10	20	25	35	38	40	44	55	65	99	50
chave	1										j
50	10	20	25	35	38	40	44	55	65	99	50
chave	1										j
50	10	20	25	35	38	40	44	50	55	65	99

• Idéia: a cada passo mantemos o subvetor A[1..j-1] ordenado e inserimos o elemento A[j] neste subvetor.

- Idéia: a cada passo mantemos o subvetor A[1..j-1] ordenado e inserimos o elemento A[j] neste subvetor.
- Repetimos o processo para j = 2, ..., n e ordenamos o vetor.

- Idéia: a cada passo mantemos o subvetor A[1..j-1] ordenado e inserimos o elemento A[j] neste subvetor.
- Repetimos o processo para j = 2, ..., n e ordenamos o vetor.

Primeira iteração: j = 2

Insertion sort - pseudo-código

```
INSERTION-SORT(A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 \triangleright Insere A[j] no subvetor ordenado A[1..j-1]

4 i \leftarrow j-1

5 enquanto i \ge 1 e A[i] > chave faça

6 A[i+1] \leftarrow A[i]

7 i \leftarrow i-1

8 A[i+1] \leftarrow chave
```

Insertion sort - pseudo-código

```
INSERTION-SORT(A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 \triangleright Insere A[j] no subvetor ordenado A[1..j-1]

4 i \leftarrow j-1

5 enquanto i \ge 1 e A[i] > chave faça

6 A[i+1] \leftarrow A[i]

7 i \leftarrow i-1

8 A[i+1] \leftarrow chave
```

Veremos como demonstrar a corretude de INSERTION-SORT usando a técnica de prova por invariante de laços.

Insertion sort – pseudo-código

```
INSERTION-SORT(A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 \triangleright Insere A[j] no subvetor ordenado A[1..j-1]

4 i \leftarrow j-1

5 enquanto i \ge 1 e A[i] > chave faça

6 A[i+1] \leftarrow A[i]

7 i \leftarrow i-1

8 A[i+1] \leftarrow chave
```

Veremos como demonstrar a corretude de INSERTION-SORT usando a técnica de prova por invariante de laços.

Depois analisaremos a complexidade de INSERTION-SORT.

Invariante principal: (i1)

no começo de cada iteração do laço **para** das linhas 1–8, o subvetor $A[1\mathinner{.\,.} j-1]$ está ordenado.

Invariante principal: (i1)

no começo de cada iteração do laço **para** das linhas 1–8, o subvetor $A[1\mathinner{.\,.} j-1]$ está ordenado.

1						j				n
20	25	35	40	44	55	38	99	10	65	50

Invariante principal: (i1)

no começo de cada iteração do laço **para** das linhas 1–8, o subvetor $A[1\mathinner{.\,.} j-1]$ está ordenado.

1						j				n
20	25	35	40	44	55	38	99	10	65	50

• Suponha que o invariante vale.

Invariante principal: (i1)

no começo de cada iteração do laço **para** das linhas 1–8, o subvetor $A[1\mathinner{.\,.} j-1]$ está ordenado.

1						j				n
20	25	35	40	44	55	38	99	10	65	50

- Suponha que o invariante vale.
- Então a corretude do algoritmo é "evidente". Por quê?

Corretude da ordenação por inserção

Invariante principal: (i1)

no começo de cada iteração do laço **para** das linhas 1–8, o subvetor $A[1\mathinner{.\,.} j-1]$ está ordenado.

1						j				n
20	25	35	40	44	55	38	99	10	65	50

- Suponha que o invariante vale.
- Então a corretude do algoritmo é "evidente". Por quê?
- No ínicio da última iteração temos j = n + 1. Assim, do invariante segue que o (sub)vetor A[1..n] está ordenado!

Melhorando a argumentação

```
INSERTION-SORT(A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 \triangleright Insere A[j] no subvetor ordenado A[1 \dots j-1]

4 i \leftarrow j-1

5 enquanto i \ge 1 e A[i] > chave faça

6 A[i+1] \leftarrow A[i]

7 i \leftarrow i-1

8 A[i+1] \leftarrow chave
```

Melhorando a argumentação

```
INSERTION-SORT(A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 \triangleright Insere A[j] no subvetor ordenado A[1 \dots j-1]

4 i \leftarrow j-1

5 enquanto i \geq 1 e A[i] > chave faça

6 A[i+1] \leftarrow A[i]

7 i \leftarrow i-1

8 A[i+1] \leftarrow chave
```

Um invariante forte: (i1')

no começo de cada iteração do laço **para** das linhas 1–8, o subvetor $A[1\mathinner{.\,.} j-1]$ é uma permutação ordenada do subvetor original $A[1\mathinner{.\,.} j-1]$.

① Validade na primeira iteração: neste caso, temos j=2 e o invariante simplesmente afirma que A[1..1] está ordenado, o que é evidente.

- **1** Validade na primeira iteração: neste caso, temos j=2 e o invariante simplesmente afirma que A[1..1] está ordenado, o que é evidente.
- Validade de uma iteração para a seguinte: segue da discussão anterior. O algoritmo empurra os elementos maiores que a chave para seus lugares corretos e ela é colocada no espaço vazio.

- **1** Validade na primeira iteração: neste caso, temos j=2 e o invariante simplesmente afirma que A[1..1] está ordenado, o que é evidente.
- Validade de uma iteração para a seguinte: segue da discussão anterior. O algoritmo empurra os elementos maiores que a chave para seus lugares corretos e ela é colocada no espaço vazio.
 - Observação: Uma demonstração mais formal deste fato exigiria outros invariantes auxiliares para o laço principal e para o laço interno. (veja CLRS)

- **①** Validade na primeira iteração: neste caso, temos j=2 e o invariante simplesmente afirma que A[1..1] está ordenado, o que é evidente.
- Validade de uma iteração para a seguinte: segue da discussão anterior. O algoritmo empurra os elementos maiores que a chave para seus lugares corretos e ela é colocada no espaço vazio.
 - Observação: Uma demonstração mais formal deste fato exigiria outros invariantes auxiliares para o laço principal e para o laço interno. (veja CLRS)
- **3** Resposta correta: na última iteração, temos j = n + 1 e logo A[1..n] está ordenado com os *elementos originais* do vetor. Portanto, o algoritmo é correto.

Complexidade de tempo de Insertion sort

Ins	SERTION-SORT (A, n)	Tempo
1 p	para $j \leftarrow 2$ até n faça	?
2	$chave \leftarrow A[j]$?
3	\triangleright Insere $A[j]$ em $A[1j-1]$?
4	$i \leftarrow j-1$?
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	?
6	$A[i+1] \leftarrow A[i]$?
7	$i \leftarrow i - 1$?
8	$A[i+1] \leftarrow chave$?

Consumo de tempo no pior caso: ?

Complexidade de tempo de Insertion sort

Ins	SERTION-SORT (A, n)	Tempo
1 p	para $j \leftarrow 2$ até n faça	$\Theta(n)$
2	$chave \leftarrow A[j]$	$\Theta(n)$
3	\triangleright Insere $A[j]$ em $A[1j-1]$	
4	$i \leftarrow j-1$	$\Theta(n)$
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	$nO(n) = O(n^2)$
6	$A[i+1] \leftarrow A[i]$	$nO(n) = O(n^2)$
7	$i \leftarrow i - 1$	$nO(n) = O(n^2)$
8	$A[i+1] \leftarrow chave$	O(n)

Consumo de tempo: $O(n^2)$

C.C. de Souza, C.N. da Silva, O. Lee

- Complexidade de tempo no pior caso: $\Theta(n^2)$
 - Vetor em ordem decrescente
 - $\Theta(n^2)$ comparações
 - $\Theta(n^2)$ movimentações

- Complexidade de tempo no pior caso: $\Theta(n^2)$ Vetor em ordem decrescente $\Theta(n^2)$ comparações $\Theta(n^2)$ movimentações
- Complexidade de tempo no melhor caso: Θ(n)
 (vetor em ordem crescente)
 Θ(n) comparações
 zero movimentações

- Complexidade de tempo no pior caso: $\Theta(n^2)$ Vetor em ordem decrescente $\Theta(n^2)$ comparações $\Theta(n^2)$ movimentações
- Complexidade de tempo no melhor caso: $\Theta(n)$ (vetor em ordem crescente) $\Theta(n)$ comparações zero movimentações
- Complexidade de espaço/consumo espaço: $\Theta(n)$

• Para vetores com no máximo 10 elementos, o melhor algoritmo de ordenação costuma ser *Insertion sort*.

- Para vetores com no máximo 10 elementos, o melhor algoritmo de ordenação costuma ser *Insertion sort*.
- Para um vetor que está quase ordenado, Insertion sort também é a melhor escolha.

- Para vetores com no máximo 10 elementos, o melhor algoritmo de ordenação costuma ser *Insertion sort*.
- Para um vetor que está quase ordenado, Insertion sort também é a melhor escolha.
- Algoritmos super-eficientes assintoticamente tendem a fazer muitas movimentações, enquanto *Insertion sort* faz poucas movimentações quando o vetor está quase ordenado.

min	1						i	j			n	
7	10	20	25	35	38	40	65	50	44	99	55	

min	1						i	j			n
7	10	20	25	35	38	40	65	50	44	99	55
min	1						i		j		n
8	10	20	25	35	38	40	65	50	44	99	55

min	1						i	j			n
7	10	20	25	35	38	40	65	50	44	99	55
min	1						i		j		n
8	10	20	25	35	38	40	65	50	44	99	55
min	1						i			j	n
9	10	20	25	35	38	40	65	50	44	99	55

min	1						i	j			n
7	10	20	25	35	38	40	65	50	44	99	55
min	1						i		j		n
8	10	20	25	35	38	40	65	50	44	99	55
min	1						i			j	n
min 9	1 10	20	25	35	38	40	<i>i</i> 65	50	44	<i>j</i> 99	n 55
		20	25	35	38	40	<i>i</i> 65	50	44	<i>j</i> 99	
		20	25	35	38	40	<i>i</i> 65 <i>i</i>	50	44	<i>j</i> 99	
9		20	25	35	38	40	<i>i</i>65<i>i</i>65	50	44	<i>j</i> 99	

min	1						i	j			n
7	10	20	25	35	38	40	65	50	44	99	55
min	1						i		j		n
8	10	20	25	35	38	40	65	50	44	99	55
							•				
min	1						i			j	n
9	10	20	25	35	38	40	65	50	44	99	55
min	1						i				j
9	10	20	25	35	38	40	65	50	44	99	55
min	1							i			n
9	10	20	25	35	38	40	44	50	65	99	55

1							i			n
10	20	25	35	38	40	44	50	65	99	55
1							i			n
10	20	25	35	38	40	44	50	65	99	55
1								i		n
10	20	25	35	38	40	44	50	55	99	65

1							i			n
10	20	25	35	38	40	44	50	65	99	55
1							i			n
10	20	25	35	38	40	44	50	65	99	55
1								i		n
10	20	25	35	38	40	44	50	55	99	65
1									i	n

• Mantemos um subvetor A[1..i-1] tal que:

- Mantemos um subvetor A[1..i-1] tal que:
 - **1** A[1..i-1] está **ordenado** e

- Mantemos um subvetor A[1..i-1] tal que:

 - $2 A[1 ... i-1] \leq A[i...n].$

- Mantemos um subvetor A[1..i-1] tal que:

 - $A[1 \dots i-1] \leq A[i \dots n].$

A cada passo encontramos a posição min do menor elemento em A[i ... n] e trocamos A[min] e A[i] de lugar.

- Mantemos um subvetor A[1..i-1] tal que:
 - A[1..i-1] está **ordenado** e
 - $A[1 \dots i-1] \leq A[i \dots n].$

A cada passo encontramos a posição min do menor elemento em A[i ... n] e trocamos A[min] e A[i] de lugar.

• Repetimos o processo para i = 1, ..., n-1 e ordenamos o vetor.

- Mantemos um subvetor A[1..i-1] tal que:

 - $2 A[1 ... i-1] \leq A[i...n].$

A cada passo encontramos a posição min do menor elemento em A[i ... n] e trocamos A[min] e A[i] de lugar.

• Repetimos o processo para i = 1, ..., n-1 e ordenamos o vetor.

Primeira iteração: i = 1

Selection sort – pseudo-código

```
SELECTION-SORT(A, n)

1 para i \leftarrow 1 até n - 1 faça

2 min \leftarrow i

3 para j \leftarrow i + 1 até n faça

4 se A[j] < A[min] então min \leftarrow j

5 A[i] \leftrightarrow A[min]
```

Selection sort – pseudo-código

```
SELECTION-SORT(A, n)

1 para i \leftarrow 1 até n - 1 faça

2 min \leftarrow i

3 para j \leftarrow i + 1 até n faça

4 se A[j] < A[min] então min \leftarrow j

5 A[i] \leftrightarrow A[min]
```

Invariantes:

- \bullet A[1..i-1] está ordenado,
- $P(1) = A[1 ... i 1] \le A[i ... n].$

Complexidade de Selection sort

Selection-Sort (A, n)		Tempo
1	para $i \leftarrow 1$ até $n-1$ faça	?
2	$min \leftarrow i$?
3	para $j \leftarrow i+1$ até n faça	?
4	se $A[j] < A[min]$ então $min \leftarrow j$?
5	$A[i] \leftrightarrow A[min]$?

Consumo de tempo no pior caso: ?

Complexidade de Selection sort

Selection-Sort (A, n)		Tempo
1	para $i \leftarrow 1$ até $n-1$ faça	$\Theta(n)$
2	$min \leftarrow i$	$\Theta(n)$
3	para $j \leftarrow i+1$ até n faça	$\Theta(n^2)$
4	se $A[j] < A[min]$ então $min \leftarrow j$	$\Theta(n^2)$
5	$A[i] \leftrightarrow A[min]$	$\Theta(n)$

Consumo de tempo no pior caso: $O(n^2)$

- Complexidade de tempo no pior caso: $\Theta(n^2)$ $\Theta(n^2)$ comparações
 - $\Theta(n)$ movimentações

- Complexidade de tempo no pior caso: $\Theta(n^2)$ $\Theta(n^2)$ comparações $\Theta(n)$ movimentações
- Complexidade de tempo no melhor caso: $\Theta(n^2)$ Mesmo que o pior caso.

- Complexidade de tempo no pior caso: $\Theta(n^2)$ $\Theta(n^2)$ comparações $\Theta(n)$ movimentações
- Complexidade de tempo no melhor caso: $\Theta(n^2)$ Mesmo que o pior caso.
- Complexidade de espaço/consumo espaço: $\Theta(n)$

O algoritmo *Mergesort* é um exemplo clássico de paradigma de divisão-e-conquista.

O algoritmo *Mergesort* é um exemplo clássico de paradigma de divisão-e-conquista.

• Divisão: divida o vetor de n elementos em subvetores de tamanhos $\lceil n/2 \rceil$ e $\lceil n/2 \rceil$.

O algoritmo *Mergesort* é um exemplo clássico de paradigma de divisão-e-conquista.

- Divisão: divida o vetor de n elementos em subvetores de tamanhos $\lceil n/2 \rceil$ e $\lceil n/2 \rceil$.
- Conquista: recursivamente ordene cada subvetor.

O algoritmo *Mergesort* é um exemplo clássico de paradigma de divisão-e-conquista.

- Divisão: divida o vetor de n elementos em subvetores de tamanhos $\lceil n/2 \rceil$ e $\lceil n/2 \rceil$.
- Conquista: recursivamente ordene cada subvetor.
- Combinação: intercale os subvetores ordenados para obter o vetor ordenado.

Mergesort: pseudo-código

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Mergesort: pseudo-código

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

A complexidade de MERGESORT é dada pela recorrência:

$$T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + O(f(n)),$$

onde f(n) é a complexidade de INTERCALA.

O que significa intercalar dois (sub)vetores ordenados?

O que significa intercalar dois (sub)vetores ordenados?

Problema: Dados A[p..q] e A[q+1..r] crescentes, rearranjar A[p..r] de modo que ele fique em ordem crescente.

Entrada:

Saída:

Pseudo-código

Pseudo-código

```
INTERCALA(A, p, q, r)
       para i \leftarrow p até q faça
           B[i] \leftarrow A[i]
 3
      para j \leftarrow q + 1 até r faça
           B[r+q+1-j] \leftarrow A[j]
 5 \quad i \leftarrow p
 6 i \leftarrow r
      para k \leftarrow p até r faça
 8
           se B[i] \leq B[i]
 9
               então A[k] \leftarrow B[i]
                         i \leftarrow i + 1
10
              senão A[k] \leftarrow B[j]
11
12
                         i \leftarrow i - 1
```

Complexidade de Intercala

Saída:

Tamanho da entrada: n = r - p + 1

Consumo de tempo: $\Theta(n)$

Corretude de Intercala

Corretude de Intercala

Invariante principal de Intercala:

No começo de cada iteração do laço das linhas 7-12, vale que:

- \bullet A[p...k-1] está ordenado,
- ② A[p..k-1] contém todos os elementos de B[p..i-1] e de B[j+1..r],
- **3** $B[i] \ge A[k-1]$ e $B[j] \ge A[k-1]$.

Corretude de Intercala

Invariante principal de Intercala:

No começo de cada iteração do laço das linhas 7-12, vale que:

- ② A[p..k-1] contém todos os elementos de B[p..i-1] e de B[j+1..r],
- **3** $B[i] \ge A[k-1]$ e $B[j] \ge A[k-1]$.

Exercício. Prove que a afirmação acima é de fato um invariante de INTERCALA.

Exercício. (fácil) Mostre usando o invariante acima que INTERCALA é correto.

Corretude do Mergesort

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Corretude do Mergesort

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

O algoritmo está correto?

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q + 1, r)

5 INTERCALA(A, p, q, r)
```

O algoritmo está correto?

A corretude do algoritmo MERGESORT apoia-se na corretude do algoritmo INTERCALA e segue facilmente **por indução** em n := r - p + 1.

Base: MERGESORT ordena vetores de tamanho 0 ou 1.

Base: MERGESORT ordena vetores de tamanho 0 ou 1.

Hipótese de indução: MERGESORT ordena vetores com menos que *n* elementos.

Base: MERGESORT ordena vetores de tamanho 0 ou 1.

Hipótese de indução: MERGESORT ordena vetores com menos que n elementos.

Passo de indução: por hipótese de indução, MERGESORT ordena os dois subvetores (de tamanho $\lceil n/2 \rceil$ e $\lceil n/2 \rceil$).

Base: MERGESORT ordena vetores de tamanho 0 ou 1.

Hipótese de indução: MERGESORT ordena vetores com menos que n elementos.

Passo de indução: por hipótese de indução, MERGESORT ordena os dois subvetores (de tamanho $\lceil n/2 \rceil$ e $\lceil n/2 \rceil$).

Pela corretude de Intercala, segue que o vetor resultante da intercalação é um vetor ordenado de *n* elementos.

Base: MERGESORT ordena vetores de tamanho 0 ou 1.

Hipótese de indução: MERGESORT ordena vetores com menos que n elementos.

Passo de indução: por hipótese de indução, MERGESORT ordena os dois subvetores (de tamanho $\lceil n/2 \rceil$ e $\lceil n/2 \rceil$).

Pela corretude de INTERCALA, segue que o vetor resultante da intercalação é um vetor ordenado de *n* elementos.

Portanto, MERGESORT é correto.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

T(n): complexidade de pior caso de MERGESORT

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

T(n): complexidade de pior caso de MERGESORT

Então

$$T(n) = \begin{cases} \Theta(1), & n = 0, \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n), & n > 0. \end{cases}$$

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

T(n): complexidade de pior caso de MERGESORT

Então

$$T(n) = \begin{cases} \Theta(1), & n = 0, \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n), & n > 0. \end{cases}$$

A solução da recorrência é $T(n) = \Theta(n \lg n)$.

• Complexidade de tempo: $\Theta(n \lg n)$ $\Theta(n \lg n)$ comparações $\Theta(n \lg n)$ movimentações

- Complexidade de tempo: $\Theta(n \lg n)$
 - $\Theta(n \lg n)$ comparações
 - $\Theta(n \lg n)$ movimentações
 - O pior caso e o melhor caso têm a mesma complexidade.

- Complexidade de tempo: $\Theta(n | g n)$ $\Theta(n | g n)$ comparações $\Theta(n | g n)$ movimentações
 - O pior caso e o melhor caso têm a mesma complexidade.
- Complexidade de espaço/consumo espaço: $\Theta(n)$

- Complexidade de tempo: $\Theta(n \lg n)$ $\Theta(n \lg n)$ comparações $\Theta(n \lg n)$ movimentações
 - O pior caso e o melhor caso têm a mesma complexidade.
- Complexidade de espaço/consumo espaço: $\Theta(n)$
 - O *Mergesort* usa um vetor auxiliar de tamanho n para fazer a intercalação, mas o espaço ainda é $\Theta(n)$.

- Complexidade de tempo: $\Theta(n \lg n)$ $\Theta(n \lg n)$ comparações $\Theta(n \lg n)$ movimentações
 - O pior caso e o melhor caso têm a mesma complexidade.
- Complexidade de espaço/consumo espaço: $\Theta(n)$
 - O *Mergesort* usa um vetor auxiliar de tamanho n para fazer a intercalação, mas o espaço ainda é $\Theta(n)$.
- O Mergesort é util para ordenação externa, quando não é possível armazenar todos os elementos na memória primária.

 O Heapsort é um algoritmo de ordenação que usa uma estrutura de dados sofisticada chamada heap.

- O Heapsort é um algoritmo de ordenação que usa uma estrutura de dados sofisticada chamada heap.
- A complexidade de pior caso é $\Theta(n \lg n)$.

- O Heapsort é um algoritmo de ordenação que usa uma estrutura de dados sofisticada chamada heap.
- A complexidade de pior caso é $\Theta(n \lg n)$.
- Heaps podem ser utilizados para implementar filas de prioridade que são extremamente úteis em outros algoritmos.

- O Heapsort é um algoritmo de ordenação que usa uma estrutura de dados sofisticada chamada heap.
- A complexidade de pior caso é $\Theta(n \lg n)$.
- Heaps podem ser utilizados para implementar filas de prioridade que são extremamente úteis em outros algoritmos.
- Um heap é um vetor A que simula uma árvore binária quase completa: todos os níveis estão completamente preenchidos, com a possível exceção do último que é preenchido da esquerda até um certo ponto.
 - Uma árvore binária completa tem todos os seus níveis completamente preenchidos.

Considere um vetor A[1..n] representando um heap.

Considere um vetor A[1...n] representando um heap.

• Cada posição do vetor corresponde a um nó do heap.

Considere um vetor A[1..n] representando um heap.

- Cada posição do vetor corresponde a um nó do heap.
- O pai de um nó i é $\lfloor i/2 \rfloor$.
- O nó 1 não tem pai.

- Um nó *i* tem
 - 2i como filho esquerdo e
 - 2i + 1 como filho direito.

- Um nó i tem
 2i como filho esquerdo e
 2i + 1 como filho direito.
- Naturalmente, o nó i tem filho esquerdo apenas se 2i ≤ n e tem filho direito apenas se 2i + 1 ≤ n.

- Um nó i tem
 2i como filho esquerdo e
 2i + 1 como filho direito.
- Naturalmente, o nó i tem filho esquerdo apenas se 2i ≤ n e tem filho direito apenas se 2i + 1 ≤ n.
- Um nó i é uma folha se não tem filhos, ou seja, se 2i > n.

- Um nó i tem
 2i como filho esquerdo e
 2i + 1 como filho direito.
- Naturalmente, o nó item filho esquerdo apenas se $2i \le n$ e tem filho direito apenas se $2i + 1 \le n$.
- Um nó i é uma folha se não tem filhos, ou seja, se 2i > n.
- As folhas são $\lfloor n/2 \rfloor + 1, \ldots, n-1, n$.

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó *i* pertence ao nível ???.

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó i pertence ao nível $\lfloor \lg i \rfloor$.

Prova: Se p é o nível do nó i, então

Logo, $p = \lfloor \lg i \rfloor$.

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó i pertence ao nível $\lfloor \lg i \rfloor$.

Prova: Se p é o nível do nó i, então

Logo, $p = \lfloor \lg i \rfloor$.

Portanto o número total de níveis é ???.

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó i pertence ao nível $|\lg i|$.

Prova: Se p é o nível do nó i, então

Logo, $p = \lfloor \lg i \rfloor$.

Portanto, o número total de níveis é $1 + |\lg n|$.

A altura de um nó i é o maior comprimento de um caminho de i a uma folha.

Os nós que têm altura zero são as folhas.

A altura de um nó i é o maior comprimento de um caminho de i a uma folha.

Os nós que têm altura zero são as folhas.

Qual é a altura de um nó *i*?

A altura de um nó i é o comprimento da seqüência

$$2i, 2^2i, 2^3i, \dots, 2^hi$$

onde $2^h i \le n < 2^{(h+1)} i$.

A altura de um nó *i* é o comprimento da seqüência

$$2i, 2^2i, 2^3i, \dots, 2^hi$$

onde $2^h i \le n < 2^{(h+1)} i$.

Assim,

Portanto, a altura de $i \in \lfloor \lg(n/i) \rfloor$.

• Um nó i satisfaz a propriedade de (max-)heap se $A[\lfloor i/2 \rfloor] \ge A[i]$ (ou seja, pai \ge filho).

- Um nó i satisfaz a propriedade de (max-)heap se $A[\lfloor i/2 \rfloor] \ge A[i]$ (ou seja, pai \ge filho).
- Uma árvore binária quase completa é um max-heap se todo nó distinto da raiz satisfaz a propriedade de heap.

- Um nó i satisfaz a propriedade de (max-)heap se $A[\lfloor i/2 \rfloor] \geq A[i]$ (ou seja, pai \geq filho).
- Uma árvore binária quase completa é um *max-heap* se todo nó distinto da raiz satisfaz a propriedade de heap.
- O máximo ou maior elemento de um max-heap está na raiz.

• Um nó i satisfaz a propriedade de (min-)heap se $A[\lfloor i/2 \rfloor] \leq A[i]$ (ou seja, pai \leq filho).

- Um nó *i* satisfaz a propriedade de (min-)heap se $A[|i/2|] \le A[i]$ (ou seja, pai \le filho).
- Uma árvore binária completa é um *min-heap* se todo nó distinto da raiz satisfaz a propriedade de min-heap.

- Um nó *i* satisfaz a propriedade de (min-)heap se $A[|i/2|] \le A[i]$ (ou seja, pai \le filho).
- Uma árvore binária completa é um *min-heap* se todo nó distinto da raiz satisfaz a propriedade de min-heap.
- Vamos nos concentrar apenas em max-heaps.

- Um nó *i* satisfaz a propriedade de (min-)heap se $A[|i/2|] \le A[i]$ (ou seja, pai \le filho).
- Uma árvore binária completa é um *min-heap* se todo nó distinto da raiz satisfaz a propriedade de min-heap.
- Vamos nos concentrar apenas em max-heaps.
- Os algoritmos que veremos podem ser facilmente modificados para trabalhar com min-heaps.

Recebe $A[1\dots n]$ e $i\geq 1$ tais que as subárvores com raízes 2i e 2i+1 são max-heaps e rearranja A de modo que a subárvore com raiz i seja um max-heap.

```
MAX-HEAPIFY (A, n, i)
 1 e \leftarrow 2i
 2 d \leftarrow 2i + 1
    se e < n e A[e] > A[i]
         então major \leftarrow e
 5
         senão major \leftarrow i
     se d \le n e A[d] > A[maior]
 6
         então maior \leftarrow d
 8
     se maior \neq i
 9
         então A[i] \leftrightarrow A[\text{maior}]
10
                  Max-Heapify(A, n, maior)
```

A corretude de MAX-HEAPIFY segue por indução na altura h do nó i.

A corretude de Max-Heapify segue por indução na altura h do nó i.

Base: para h = 0 (a raiz é folha), o algoritmo funciona.

A corretude de Max-Heapify segue por indução na altura h do nó i.

Base: para h = 0 (a raiz é folha), o algoritmo funciona.

Hipótese de indução: MAX-HEAPIFY funciona para heaps de altura < h.

A corretude de Max-Heapify segue por indução na altura h do nó i.

Base: para h = 0 (a raiz é folha), o algoritmo funciona.

Hipótese de indução: MAX-HEAPIFY funciona para heaps de altura < h.

Passo de indução:

• A variável maior na linha 8 guarda o índice do maior elemento entre A[i], A[2i] e A[2i+1].

A corretude de Max-Heapify segue por indução na altura h do nó i.

Base: para h = 0 (a raiz é folha), o algoritmo funciona.

Hipótese de indução: MAX-HEAPIFY funciona para heaps de altura < h.

Passo de indução:

- A variável maior na linha 8 guarda o índice do maior elemento entre A[i], A[2i] e A[2i+1].
- Se maior = i na linha 8, então claramente a subárvore com raiz i é um max-hep.

A corretude de Max-Heapify segue por indução na altura h do nó i.

Base: para h = 0 (a raiz é folha), o algoritmo funciona.

Hipótese de indução: MAX-HEAPIFY funciona para heaps de altura < h.

Passo de indução:

- A variável maior na linha 8 guarda o índice do maior elemento entre A[i], A[2i] e A[2i+1].
- Se maior = i na linha 8, então claramente a subárvore com raiz i é um max-hep.
- Se maior $\neq i$, então após a troca na linha 9, temos que A[i] é maior ou igual a qualquer elemento das árvores com raízes A[2i] e A[2i+1], respectivamente.

Passo de indução:

- A variável maior na linha 8 guarda o índice do maior elemento entre A[i], A[2i] e A[2i+1].
- Se $\text{maior} \neq i$, então após a troca na linha 9, temos que A[i] é maior ou igual a qualquer elemento das árvores com raízes A[2i] e A[2i+1], respectivamente.

Passo de indução:

- A variável maior na linha 8 guarda o índice do maior elemento entre A[i], A[2i] e A[2i+1].
- Se $\text{maior} \neq i$, então após a troca na linha 9, temos que A[i] é maior ou igual a qualquer elemento das árvores com raízes A[2i] e A[2i+1], respectivamente.

Além disso, as subárvores com raízes 2 maior = 2 maior + 1 são max-heaps. Por HI, o algoritmo MAX-HEAPIFY transforma a subárvore com raiz maior em um max-heap.

Passo de indução:

- A variável maior na linha 8 guarda o índice do maior elemento entre A[i], A[2i] e A[2i+1].
- Se $\text{maior} \neq i$, então após a troca na linha 9, temos que A[i] é maior ou igual a qualquer elemento das árvores com raízes A[2i] e A[2i+1], respectivamente.

Além disso, as subárvores com raízes 2 maior = 2 maior + 1 são max-heaps. Por HI, o algoritmo $\frac{\text{MAX-HeapIFY}}{\text{maior}}$ transforma a subárvore com raiz maior em um max-heap.

A subárvore cuja raiz é o irmão de maior continua sendo um max-heap.

Passo de indução:

- A variável maior na linha 8 guarda o índice do maior elemento entre A[i], A[2i] e A[2i+1].
- Se $\text{maior} \neq i$, então após a troca na linha 9, temos que A[i] é maior ou igual a qualquer elemento das árvores com raízes A[2i] e A[2i+1], respectivamente.

Além disso, as subárvores com raízes 2 maior = 2 maior + 1 são max-heaps. Por HI, o algoritmo $\frac{\text{MAX-HeapIFY}}{\text{maior}}$ transforma a subárvore com raiz maior em um max-heap.

A subárvore cuja raiz é o irmão de maior continua sendo um max-heap.

Logo, a subárvore com raiz i torna-se um max-heap e portanto, o algoritmo Max-Heapify está correto.

```
MAX-HEAPIFY (A, n, i)
                                                        Tempo
 1 e \leftarrow 2i
 2 d \leftarrow 2i + 1
 3 se e < n e A[e] > A[i]
         então major \leftarrow e
         senão major \leftarrow i
     se d \le n e A[d] > A[maior]
         então major \leftarrow d
     se maior \neq i
         então A[i] \leftrightarrow A[\text{maior}]
                  Max-Heapify(A, n, maior)
10
```

$$h := \operatorname{altura} \operatorname{de} i = |\lg \frac{n}{i}|$$

T(h) := complexidade de tempo no pior caso

```
MAX-HEAPIFY (A, n, i)
                                                          Tempo
 1 e \leftarrow 2i
                                                          \Theta(1)
 2 d \leftarrow 2i + 1
                                                          \Theta(1)
    se e \le n e A[e] > A[i]
                                                          \Theta(1)
         então major \leftarrow e
                                                          O(1)
 5
         senão major \leftarrow i
                                                          O(1)
     se d < n e A[d] > A[maior]
                                                          \Theta(1)
         então major \leftarrow d
                                                          O(1)
                                                          \Theta(1)
     se maior \neq i
         então A[i] \leftrightarrow A[\text{maior}]
 9
                                                          O(1)
10
                   MAX-HEAPIFY (A, n, \text{maior}) T(h-1)
```

$$h := \mathsf{altura} \ \mathsf{de} \ i = \lfloor \lg \frac{n}{i} \rfloor$$
 $T(h) \le T(h-1) + \Theta(5) + O(4).$

$$h:=$$
 altura de $i=\lfloor\lg\frac{n}{i}
floor$ $T(h):=$ complexidade de tempo no pior caso $T(h)\leq T(h-1)+\Theta(1)$

$$h := \text{altura de } i = |\lg \frac{n}{i}|$$

T(h) := complexidade de tempo no pior caso

$$T(h) \leq T(h-1) + \Theta(1)$$

Solução assintótica: T(n) é ???.

$$h := \operatorname{altura} \operatorname{de} i = \lfloor \operatorname{lg} \frac{n}{i} \rfloor$$

T(h) := complexidade de tempo no pior caso

$$T(h) \leq T(h-1) + \Theta(1)$$

Solução assintótica: T(n) é O(h).

 $h := \operatorname{altura} \operatorname{de} i = \lfloor \operatorname{lg} \frac{n}{i} \rfloor$

T(h) := complexidade de tempo no pior caso

 $T(h) \leq T(h-1) + \Theta(1)$

Solução assintótica: T(n) é O(h).

Como $h \leq \lg n$, podemos dizer que:

O consumo de tempo do algoritmo MAX-HEAPIFY é $O(\lg n)$ (ou melhor ainda, $O(\lg \frac{n}{i})$).

Recebe um vetor A[1...n] e rearranja A para que seja max-heap.

```
Build-Max-Heap(A, n)

1 para i \leftarrow \lfloor n/2 \rfloor decrescendo até 1 faça

2 Max-Heapify(A, n, i)
```

Recebe um vetor A[1..n] e rearranja A para que seja max-heap.

```
Build-Max-Heap(A, n)

1 para i \leftarrow \lfloor n/2 \rfloor decrescendo até 1 faça

2 Max-Heapify(A, n, i)
```

Invariante:

No início de cada iteração, $i+1,\ldots,n$ são raízes de max-heaps.

Recebe um vetor A[1 ... n] e rearranja A para que seja max-heap.

```
BUILD-MAX-HEAP(A, n)

1 para i \leftarrow \lfloor n/2 \rfloor decrescendo até 1 faça

2 MAX-HEAPIFY(A, n, i)
```

Invariante:

No início de cada iteração, i + 1, ..., n são raízes de max-heaps.

T(n) = complexidade de tempo no pior caso

Recebe um vetor A[1..n] e rearranja A para que seja max-heap.

```
Build-Max-Heap(A, n)
```

- 1 para $i \leftarrow \lfloor n/2 \rfloor$ decrescendo até 1 faça
- 2 MAX-HEAPIFY (A, n, i)

Invariante:

No início de cada iteração, $i+1,\ldots,n$ são raízes de max-heaps.

T(n) = complexidade de tempo no pior caso

Análise grosseira: T(n) é $\frac{n}{2}$ $O(\lg n) = O(n \lg n)$.

Análise mais cuidadosa: T(n) é O(n).

Análise mais cuidadosa: T(n) é O(n).

• Na iteração i são feitas $O(h_i)$ comparações e trocas no pior caso, onde h_i é a altura da subárvore de raiz i.

Análise mais cuidadosa: T(n) é O(n).

• Na iteração i são feitas $O(h_i)$ comparações e trocas no pior caso, onde h_i é a altura da subárvore de raiz i. Assim, a complexidade é $\sum_{i=1}^{n} O(h_i) = O(\sum_{i=1}^{n} h_i)$.

Análise mais cuidadosa: T(n) é O(n).

- Na iteração i são feitas $O(h_i)$ comparações e trocas no pior caso, onde h_i é a altura da subárvore de raiz i. Assim, a complexidade é $\sum_{i=1}^{n} O(h_i) = O(\sum_{i=1}^{n} h_i)$.
- Seja S(h) a soma das alturas de todos os nós de uma árvore binária completa de altura h.

Análise mais cuidadosa: T(n) é O(n).

- Na iteração i são feitas $O(h_i)$ comparações e trocas no pior caso, onde h_i é a altura da subárvore de raiz i. Assim, a complexidade é $\sum_{i=1}^{n} O(h_i) = O(\sum_{i=1}^{n} h_i)$.
- Seja S(h) a soma das alturas de todos os nós de uma **árvore binária** completa de altura h.
- A altura de um heap com n elementos é $\lfloor \lg n \rfloor + 1$. Logo, $\sum_{i=1}^{n} h_i \leq S(\lfloor \lg n \rfloor + 1)$.

A complexidade de Build-Max-Heap é $T(n) = O(S(\lg n))$.

• Pode-se provar por indução que $S(h) = 2^{h+1} - h - 2$. (Exercício!)

- Pode-se provar por indução que $S(h) = 2^{h+1} h 2$. (Exercício!)
- Logo, a complexidade de BUILD-MAX-HEAP é $T(n) = O(S(\lg n)) = O(n)$.

- Pode-se provar por indução que $S(h) = 2^{h+1} h 2$. (Exercício!)
- Logo, a complexidade de BUILD-MAX-HEAP é $T(n) = O(S(\lg n)) = O(n)$.
- Veja no CLRS uma prova diferente deste fato.

Algoritmo rearranja $A[1 \dots n]$ em ordem crescente.

```
HEAPSORT(A, n)
1 BUILD-MAX-HEAP(A, n)
2 para i \leftarrow n decrescendo até 2 faça
3 A[1] \leftrightarrow A[i]
4 MAX-HEAPIFY(A, i - 1, 1)
```

Algoritmo rearranja A[1..n] em ordem crescente.

```
HEAPSORT(A, n)
1 BUILD-MAX-HEAP(A, n)
2 para i \leftarrow n decrescendo até 2 faça
3 A[1] \leftrightarrow A[i]
4 MAX-HEAPIFY(A, i - 1, 1)
```

Invariantes:

No início de cada iteração na linha 2 vale que:

- \bullet A[1..i] é um max-heap;
- ② $A[1..i] \leq A[i+1..n];$

Algoritmo rearranja A[1..n] em ordem crescente.

Hı	HEAPSORT(A, n)			
1	BUILD-MAX-HEAP (A, n)	?		
2	para $i \leftarrow n$ decrescendo até 2 faça	?		
3	$A[1] \leftrightarrow A[i]$?		
4	MAX-HEAPIFY $(A, i-1, 1)$?		

T(n) =complexidade de tempo no pior caso

Algoritmo rearranja A[1 ... n] em ordem crescente.

Hı	EAPSORT(A, n)	Tempo
1	Build-Max-Heap (A, n)	$\Theta(n)$
2	para $i \leftarrow n$ decrescendo até 2 faça	$\Theta(n)$
3	$A[1] \leftrightarrow A[i]$	$\Theta(n)$
4	Max-Heapify $(A, i-1, 1)$	$nO(\lg n)$

$$T(n) = ??$$

Algoritmo rearranja A[1 ... n] em ordem crescente.

H	EAPSORT(A, n)	Tempo		
1	Build-Max-Heap (A, n)	$\Theta(n)$		
2	para $i \leftarrow n$ decrescendo até 2 faça	$\Theta(n)$		
3	$A[1] \leftrightarrow A[i]$	$\Theta(n)$		
4	Max-Heapify $(A, i-1, 1)$	$nO(\lg n)$		

$$T(n) = nO(\lg n) + 3\Theta(n) = O(n \lg n)$$

Algoritmo rearranja A[1 ... n] em ordem crescente.

Hı	EAPSORT(A, n)	Tempo
1	BUILD-MAX-HEAP (A, n)	$\Theta(n)$
2	para $i \leftarrow n$ decrescendo até 2 faça	$\Theta(n)$
3	$A[1] \leftrightarrow A[i]$	$\Theta(n)$
4	Max-Heapify $(A, i-1, 1)$	$nO(\lg n)$

$$T(n) = nO(\lg n) + 3\Theta(n) = O(n \lg n)$$

A complexidade de HEAPSORT no pior caso é $O(n \lg n)$.

Algoritmo rearranja A[1...n] em ordem crescente.

Hı	EAPSORT(A, n)	Tempo
1	BUILD-MAX-HEAP (A, n)	$\Theta(n)$
2	para $i \leftarrow n$ decrescendo até 2 faça	$\Theta(n)$
3	$A[1] \leftrightarrow A[i]$	$\Theta(n)$
4	Max-Heapify $(A, i-1, 1)$	$nO(\lg n)$

$$T(n) = nO(\lg n) + 3\Theta(n) = O(n \lg n)$$

A complexidade de HEAPSORT no pior caso é $O(n \lg n)$.

Como seria a complexidade de tempo no melhor caso?

Algoritmo rearranja A[1...n] em ordem crescente.

Hı	EAPSORT(A, n)	Tempo		
1	Build-Max-Heap (A, n)	$\Theta(n)$		
2	para $i \leftarrow n$ decrescendo até 2 faça	$\Theta(n)$		
3	$A[1] \leftrightarrow A[i]$	$\Theta(n)$		
4	Max-Heapify $(A, i-1, 1)$	$nO(\lg n)$		

$$T(n) = nO(\lg n) + 3\Theta(n) = O(n \lg n)$$

A complexidade de HEAPSORT no pior caso é $O(n \lg n)$.

Como seria a complexidade de tempo no melhor caso?

Pode-se mostrar que no melhor caso, a complexidade é $\Theta(n \lg n)$, supondo que os elementos são distintos.

Filas com prioridades

Uma fila de prioridades é um tipo abstrato de dados que consiste de uma coleção S de itens, cada um com um valor ou prioridade associada.

Algumas operações típicas em uma fila com prioridades são:

MAXIMUM(S): devolve o elemento de S com a maior prioridade;

EXTRACT-MAX(S): remove e devolve o elemento em S com a maior prioridade;

INCREASE-Key(S, x, p): aumenta o valor da prioridade do elemento x para p; e

INSERT(S, x, p): insere o elemento x em S com prioridade p.

Implementação com max-heap

```
HEAP-MAX(A, n)
   devolva A[1]
Complexidade de tempo: \Theta(1).
HEAP-EXTRACT-MAX(A, n) \triangleright n \ge 1
   \max \leftarrow A[1]
2 A[1] \leftarrow A[n]
3 n \leftarrow n-1
4 MAX-HEAPIFY (A, n, 1)
   devolva max
Complexidade de tempo: O(\lg n).
```

Implementação com max-heap

```
HEAP-INCREASE-KEY(A, i, prior)
  \triangleright Supõe que prior > A[i]
  A[i] \leftarrow prior
   enquanto i > 1 e A[pai(i)] < A[i] faça
      A[i] \leftrightarrow A[pai(i)]
5
   i \leftarrow \text{pai}(i)
Complexidade de tempo: O(\lg n).
MAX-HEAP-INSERT(A, n, prior)
1 n \leftarrow n + 1
2 A[n] \leftarrow -\infty
3 HEAP-INCREASE-KEY(A, n, prior)
Complexidade de tempo: O(\lg n).
```

O algoritmo QUICKSORT segue o paradigma de divisão-e-conquista.

O algoritmo QUICKSORT segue o paradigma de divisão-e-conquista.

Divisão: divida o vetor em dois subvetores A[p ... q - 1] e A[q + 1... r] tais que

$$A \quad \boxed{ \begin{array}{c|ccc} p & q & r \\ \leq x & x & > x \end{array}}$$

$$A[p \dots q-1] \le A[q] < A[q+1 \dots r]$$

O algoritmo QUICKSORT segue o paradigma de divisão-e-conquista.

Divisão: divida o vetor em dois subvetores A[p ... q - 1] e A[q + 1... r] tais que

$$A \quad \boxed{ \begin{array}{c|cc} p & q & r \\ \leq x & x > x \end{array}}$$

$$A[p \dots q-1] \le A[q] < A[q+1 \dots r]$$

Conquista: ordene os dois subvetores recursivamente usando o QUICKSORT;

O algoritmo QUICKSORT segue o paradigma de divisão-e-conquista.

Divisão: divida o vetor em dois subvetores A[p ... q - 1] e A[q + 1... r] tais que

$$A[p \dots q-1] \le A[q] < A[q+1 \dots r]$$

Conquista: ordene os dois subvetores recursivamente usando o

QUICKSORT;

Combinação: nada a fazer, o vetor está ordenado.

Partição

Problema: Rearranjar um dado vetor A[p..r] e devolver um índice q, $p \le q \le r$, tais que

$$A[p \dots q-1] \le A[q] < A[q+1 \dots r]$$

Entrada:

Partição

Problema: Rearranjar um dado vetor A[p..r] e devolver um índice q, $p \le q \le r$, tais que

$$A[p \dots q-1] \leq A[q] < A[q+1 \dots r]$$

Entrada:

Saída:

	p									r
Α	99	33	55	77	11	22	88	66	33	44
i	j									X
Α	99	33	55	77	11	22	88	66	33	44
i		j								X
Α	99	33	55	77	11	22	88	66	33	44

	р									r
Α	99	33	55	77	11	22	88	66	33	44
i	Ĵ									X
Α	99	33	55	77	11	22	88	66	33	44
i		j								X
Α	99	33	55	77	11	22	88	66	33	44
	i		j							X
Α	33	99	55	77	11	22	88	66	33	44

	p									r
Α	99	33	55	77	11	22	88	66	33	44
i	j									X
Α	99	33	55	77	11	22	88	66	33	44
i		j								X
Α	99	33	55	77	11	22	88	66	33	44
	i		j							X
Α	33	99	55	77	11	22	88	66	33	44
	i			j						X
Α	33	99	55	77	11	22	88	66	33	44

	i				j				X		
Α	33	11	55	77	99	22	88	66	33	44	

		I				J				X
Α	33	11	55	77	99	22	88	66	33	44
			i				j			X
Α	33	11	22	77	99	55	88	66	33	44

		i				j				X
Α	33	11	55	77	99	22	88	66	33	44
			i				j			X
Α	33	11	22	77	99	55	88	66	33	44
			i					j		X
Α	33	11	22	77	99	55	88	66	33	44

		i				j				X
Α	33	11	55	77	99	22	88	66	33	44
			İ				j			X
Α	33	11	22	77	99	55	88	66	33	44
			i					j		X
Α	33	11	22	77	99	55	88	66	33	44
			i						j	X
Α	33	11	22	77	99	55	88	66	33	44

		i				j				X
Α	33	11	55	77	99	22	88	66	33	44
			i				j			X
Α	33	11	22	77	99	55	88	66	33	44
			i					j		X
Α	33	11	22	77	99	55	88	66	33	44
			i						j	X
Α	33	11	22	77	99	55	88	66	33	44
				i						j
Α	33	11	22	33	99	55	88	66	77	44

```
Rearranja A[p ... r] de modo que p \le q < r e
A[p ... q-1] < A[q] < A[q+1...r]
Particione(A, p, r)
1 x \leftarrow A[r] > x \text{ \'e o "piv\^o"}
2 \quad i \leftarrow p-1
   para j \leftarrow p até r-1 faça
        se A[i] < x
5
           então i \leftarrow i + 1
                    A[i] \leftrightarrow A[i]
   A[i+1] \leftrightarrow A[r]
```

devolva i+1

```
Rearranja A[p ... r] de modo que p \le q < r e
A[p ... q-1] < A[q] < A[q+1...r]
Particione(A, p, r)
1 x \leftarrow A[r] > x \text{ \'e o "piv\^o"}
2 \quad i \leftarrow p-1
3 para j \leftarrow p até r-1 faça
4 se A[i] < x
5
           então i \leftarrow i + 1
                  A[i] \leftrightarrow A[i]
7 A[i+1] \leftrightarrow A[r]
```

Invariantes:

No começo de cada iteração da linha 3 vale que:

(1)
$$A[p ... i] \le x$$
 (2) $A[i+1... j-1] > x$ (3) $A[r] = x$

devolva i+1

Complexidade de Particione

\mathbf{P}^{A}	ARTICIONE (A, p, r)	Tempo
1	$x \leftarrow A[r] > x \text{ \'e o "piv\'o"}$?
2	$i \leftarrow p-1$?
3	para $j \leftarrow p$ até $r-1$ faça	?
4	se $A[j] \leq x$?
5	então $\emph{i} \leftarrow \emph{i} + 1$?
6	$A[i] \leftrightarrow A[j]$?
7	$A[i+1] \leftrightarrow A[r]$?
8	devolva $i+1$?

$$T(n) = \text{complexidade de tempo no pior caso sendo}$$

 $n := r - p + 1$

Complexidade de Particione

\mathbf{P}	ARTICIONE (A, p, r)	Tempo
1	$x \leftarrow A[r] > x \text{ \'e o "piv\'o"}$	$\Theta(1)$
2	$i \leftarrow p-1$	$\Theta(1)$
3	para $j \leftarrow p$ até $r-1$ faça	$\Theta(n)$
4	se $A[j] \leq x$	$\Theta(n)$
5	então $\emph{i} \leftarrow \emph{i} + 1$	O(n)
6	$A[i] \leftrightarrow A[j]$	O(n)
7	$A[i+1] \leftrightarrow A[r]$	$\Theta(1)$
8	devolva $i+1$	$\Theta(1)$

$$T(n) = \Theta(2n) + \Theta(4) + O(2n) = \Theta(n)$$

Conclusão:

A complexidade de PARTICIONE é $\Theta(n)$.

Rearranja um vetor A[p..r] em ordem crescente.

```
QuickSort(A, p, r)

1 se p < r

2 então q \leftarrow \text{Particione}(A, p, r)

3 QuickSort(A, p, q - 1)

4 QuickSort(A, q + 1, r)

p

r

A 99 33 55 77 11 22 88 66 33 44
```

Rearranja um vetor A[p..r] em ordem crescente.

QUICKSORT
$$(A, p, r)$$

1 se $p < r$

2 então $q \leftarrow \text{PARTICIONE}(A, p, r)$

3 QUICKSORT $(A, p, q - 1)$

4 QUICKSORT $(A, q + 1, r)$

No começo da linha 3,

$$A[p \dots q-1] \le A[q] < A[q+1 \dots r]$$

Rearranja um vetor A[p ... r] em ordem crescente.

```
QUICKSORT(A, p, r)

1 se p < r

2 então q \leftarrow \text{PARTICIONE}(A, p, r)

3 QUICKSORT(A, p, q - 1)

QUICKSORT(A, q + 1, r)
```

Rearranja um vetor A[p...r] em ordem crescente.

```
QUICKSORT(A, p, r)

1 se p < r

2 então q \leftarrow \text{PARTICIONE}(A, p, r)

3 QUICKSORT(A, p, q - 1)

4 QUICKSORT(A, q + 1, r)
```

Complexidade de QUICKSORT

\mathbf{Q}^{\dagger}	QuickSort (A, p, r)					
1	se <i>p</i> < <i>r</i>	?				
2	então $q \leftarrow \text{PARTICIONE}(A, p, r)$?				
3	QuickSort $(A, p, q - 1)$?				
4	QuickSort $(A, q + 1, r)$?				

$$T(n) :=$$
complexidade de tempo no pior caso sendo $n := r - p + 1$

Complexidade de QUICKSORT

\mathbf{Q}^{\dagger}	UICKSORT(A, p, r)	Tempo
1	se <i>p</i> < <i>r</i>	$\Theta(1)$
2	então $q \leftarrow \text{PARTICIONE}(A, p, r)$	$\Theta(n)$
3	QuickSort $(A, p, q - 1)$	T(k)
4	QuickSort $(A, q + 1, r)$	T(n-k-1)

$$T(n) = T(k) + T(n-k-1) + \Theta(n+1)$$

$$0 \le \mathbf{k} := \mathbf{q} - \mathbf{p} \le \mathbf{n} - 1$$

Recorrência

T(n) :=consumo de tempo no pior caso

$$T(0) = \Theta(1)$$

$$T(1) = \Theta(1)$$

$$T(n) = T(k) + T(n - k - 1) + \Theta(n) \text{ para } n = 2, 3, 4, \dots$$

Recorrência

T(n) :=consumo de tempo no pior caso

$$\begin{split} &\mathcal{T}(0) = \Theta(1) \\ &\mathcal{T}(1) = \Theta(1) \\ &\mathcal{T}(n) = \mathcal{T}(\mathbf{k}) + \mathcal{T}(n-\mathbf{k}-1) + \Theta(n) \quad \text{para } n=2,3,4,\dots \end{split}$$

Recorrência grosseira:

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

 $T(n) \in \Theta(???)$.

Recorrência

T(n) :=consumo de tempo no pior caso

$$\begin{split} & T(0) = \Theta(1) \\ & T(1) = \Theta(1) \\ & T(n) = T(\mathbf{k}) + T(n - \mathbf{k} - 1) + \Theta(n) \quad \text{para } n = 2, 3, 4, \dots \end{split}$$

Recorrência grosseira:

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$T(n) \in \Theta(n^2)$$
.

Recorrência cuidadosa

T(n) :=complexidade de tempo no pior caso

$$T(0) = \Theta(1)$$

$$T(1) = \Theta(1)$$

$$T(n) = \max_{0 < k < n-1} \{ T(k) + T(n-k-1) \} + \Theta(n) \text{ para } n = 2, 3, 4, \dots$$

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n-k-1) \} + bn.$$

Quero mostrar que $T(n) = \Theta(n^2)$.

Demonstração – $T(n) = O(n^2)$

Vou provar que $T(n) < cn^2$ para n grande.

$$T(n) = \max_{0 \le k \le n-1} \left\{ T(k) + T(n-k-1) \right\} + bn$$

$$\le \max_{0 \le k \le n-1} \left\{ ck^2 + c(n-k-1)^2 \right\} + bn$$

$$= c \max_{0 \le k \le n-1} \left\{ k^2 + (n-k-1)^2 \right\} + bn$$

$$= c(n-1)^2 + bn \qquad \triangleright \text{ exercício}$$

$$= cn^2 - 2cn + c + bn$$

$$\le cn^2,$$

se c > b/2 e n > c/(2c - b).

Continuação – $T(n) = \Omega(n^2)$

Agora vou provar que $T(n) > dn^2$ para n grande.

$$T(n) = \max_{0 \le k \le n-1} \left\{ \frac{T(k) + T(n-k-1)}{r^2} \right\} + bn$$

$$\geq \max_{0 \le k \le n-1} \left\{ \frac{dk^2 + d(n-k-1)^2}{r^2} \right\} + bn$$

$$= d \max_{0 \le k \le n-1} \left\{ \frac{k^2 + (n-k-1)^2}{r^2} \right\} + bn$$

$$= d(n-1)^2 + bn$$

$$= dn^2 - 2dn + d + bn$$

$$\geq dn^2,$$

se d < b/2 e n > d/(2d - b).

Conclusão

$$T(n) \in \Theta(n^2)$$
.

A complexidade de tempo do QUICKSORT no pior caso é $\Theta(n^2)$.

A complexidade de tempo do QUICKSORT é $O(n^2)$.

QuickSort no melhor caso

M(n) :=complexidade de tempo no melhor caso

$$M(0) = \Theta(1)$$
 $M(1) = \Theta(1)$
 $M(n) = \min_{0 < k < n-1} \{M(k) + M(n-k-1)\} + \Theta(n)$ para $n = 2, 3, 4, ...$

QuickSort no melhor caso

M(n) :=complexidade de tempo no melhor caso

$$\begin{split} &M(0) = \Theta(1) \\ &M(1) = \Theta(1) \\ &M(n) = \min_{0 \le k \le n-1} \{M(k) + M(n-k-1)\} + \Theta(n) \ \ \text{para} \ n = 2, 3, 4, \dots \end{split}$$

Mostre que, para $n \geq 1$,

$$M(n) \geq \frac{(n-1)}{2} \lg \frac{n-1}{2}$$
.

Isto implica que no melhor caso o QUICKSORT é $\Omega(n \lg n)$.

Que é o mesmo que dizer que o QUICKSORT é $\Omega(n \lg n)$.

QuickSort no melhor caso

No melhor caso k é aproximadamente (n-1)/2.

$$R(n) = R(\lfloor \frac{n-1}{2} \rfloor) + R(\lceil \frac{n-1}{2} \rceil) + \Theta(n)$$

Solução: $R(n) \in \Theta(n \lg n)$.

Humm, lembra a recorrência do MERGESORT...

Mais algumas conclusões

 $M(n) \in \Theta(n \lg n)$.

O consumo de tempo do QUICKSORT no melhor caso é $\Omega(n \log n)$.

Mais precisamente, a complexidade de tempo do QUICKSORT no melhor caso é $\Theta(n \log n)$.

Apesar da complexidade de tempo do QUICKSORT no pior caso ser $\Theta(n^2)$, na prática ele é o algoritmo de ordenação mais eficiente.

Apesar da complexidade de tempo do QUICKSORT no pior caso ser $\Theta(n^2)$, na prática ele é o algoritmo de ordenação mais eficiente.

Mais precisamente, a complexidade de tempo do QUICKSORT no caso médio é mais próximo do melhor caso do que do pior caso.

Apesar da complexidade de tempo do QUICKSORT no pior caso ser $\Theta(n^2)$, na prática ele é o algoritmo de ordenação mais eficiente.

Mais precisamente, a complexidade de tempo do QUICKSORT no caso médio é mais próximo do melhor caso do que do pior caso.

Por quê??

Apesar da complexidade de tempo do QUICKSORT no pior caso ser $\Theta(n^2)$, na prática ele é o algoritmo de ordenação mais eficiente.

Mais precisamente, a complexidade de tempo do QUICKSORT no caso médio é mais próximo do melhor caso do que do pior caso.

Por quê??

Suponha que (por sorte) o algoritmo PARTICIONE sempre divide o vetor na proporção $\frac{1}{10}$ para $\frac{9}{10}$. Então

Apesar da complexidade de tempo do QUICKSORT no pior caso ser $\Theta(n^2)$, na prática ele é o algoritmo de ordenação mais eficiente.

Mais precisamente, a complexidade de tempo do QUICKSORT no caso médio é mais próximo do melhor caso do que do pior caso.

Por quê??

Suponha que (por sorte) o algoritmo PARTICIONE sempre divide o vetor na proporção $\frac{1}{10}$ para $\frac{9}{10}$. Então

$$T(n) = T\left(\left|\frac{n-1}{10}\right|\right) + T\left(\left[\frac{9(n-1)}{10}\right]\right) + \Theta(n)$$

Apesar da complexidade de tempo do QUICKSORT no pior caso ser $\Theta(n^2)$, na prática ele é o algoritmo de ordenação mais eficiente.

Mais precisamente, a complexidade de tempo do QUICKSORT no caso médio é mais próximo do melhor caso do que do pior caso.

Por quê??

Suponha que (por sorte) o algoritmo PARTICIONE sempre divide o vetor na proporção $\frac{1}{10}$ para $\frac{9}{10}$. Então

$$T(n) = T\left(\left|\frac{n-1}{10}\right|\right) + T\left(\left[\frac{9(n-1)}{10}\right]\right) + \Theta(n)$$

Solução: $T(n) \in \Theta(n \lg n)$.

Árvore de recorrência

Árvore de recorrência

Número de níveis $\leq \log_{10/9} n$.

Árvore de recorrência

Número de níveis $\leq \log_{10/9} n$.

Em cada nível o custo é < n.

Árvore de recorrência

Número de níveis $\leq \log_{10/9} n$.

Em cada nível o custo é < n.

Custo total é $O(n \log n)$.

O pior caso do QUICKSORT ocorre devido a uma escolha infeliz do pivô.

O pior caso do QUICKSORT ocorre devido a uma escolha infeliz do pivô. Um modo de minimizar este problema é usar aleatoriedade.

```
Particione-Aleatório(A, p, r)

1 i \leftarrow \text{Random}(p, r)

2 A[i] \leftrightarrow A[r]

3 devolva Particione(A, p, r)
```

O pior caso do QUICKSORT ocorre devido a uma escolha infeliz do pivô. Um modo de minimizar este problema é usar aleatoriedade.

```
Particione-Aleatório(A, p, r)

1 i \leftarrow \text{Random}(p, r)

2 A[i] \leftrightarrow A[r]

3 devolva Particione(A, p, r)

QuickSort-Aleatório(A, p, r)

1 se p < r

2 então q \leftarrow \text{Particione-Aleatório}(A, p, r)

3 QuickSort-Aleatório(A, p, q - 1)

4 QuickSort-Aleatório(A, q + 1, r)
```

Recorrência para o caso médio do algoritmo QUICKSORT-ALEATÓRIO.

T(n) = consumo de tempo médio do algoritmo QUICKSORT-ALEATÓRIO.

Recorrência para o caso médio do algoritmo QUICKSORT-ALEATÓRIO.

T(n) =consumo de tempo médio do algoritmo QUICKSORT-ALEATÓRIO.

PARTICIONE-ALEATÓRIO rearranja o vetor A e devolve um índice q tal que $A[p \dots q-1] \leq A[q] < A[q+1 \dots r]$.

Recorrência para o caso médio do algoritmo QUICKSORT-ALEATÓRIO.

T(n) =consumo de tempo médio do algoritmo QUICKSORT-ALEATÓRIO.

Particione-Aleatório rearranja o vetor A e devolve um índice q tal que $A[p \dots q-1] \leq A[q] < A[q+1 \dots r]$.

$$T(0) = \Theta(1)$$

$$T(1) = \Theta(1)$$

$$T(n) = \frac{1}{n} \left(\sum_{k=0}^{n-1} \left(T(k) + T(n-1-k) \right) \right) + \Theta(n).$$

 $T(n) \in \Theta(???)$.

$$T(n) = \frac{1}{n} \left(\sum_{k=0}^{n-1} (T(k) + T(n-1-k)) \right) + an$$
$$= \frac{2}{n} \sum_{k=0}^{n-1} T(k) + an.$$

$$T(n) = \frac{1}{n} \left(\sum_{k=0}^{n-1} (T(k) + T(n-1-k)) \right) + an$$
$$= \frac{2}{n} \sum_{k=0}^{n-1} T(k) + an.$$

Vou mostrar que T(n) é $O(n \lg n)$.

$$T(n) = \frac{1}{n} \left(\sum_{k=0}^{n-1} (T(k) + T(n-1-k)) \right) + an$$
$$= \frac{2}{n} \sum_{k=0}^{n-1} T(k) + an.$$

Vou mostrar que T(n) é $O(n \lg n)$.

Vou mostrar que $T(n) \le cn \lg n$ para $n \ge 1$ onde c > 0 é uma constante.

Demonstração

$$T(n) \leq \frac{2}{n} \sum_{k=0}^{n-1} T(k) + an$$

$$\leq \frac{2}{n} \sum_{k=0}^{n-1} (ck \lg k) + an$$

$$= \frac{2c}{n} \sum_{k=1}^{n-1} k \lg k + an$$

Demonstração

$$T(n) \leq \frac{2}{n} \sum_{k=0}^{n-1} T(k) + an$$

$$\leq \frac{2}{n} \sum_{k=0}^{n-1} (ck \lg k) + an$$

$$= \frac{2c}{n} \sum_{k=1}^{n-1} k \lg k + an$$

Lema.

$$\sum_{k=1}^{n-1} k \lg k \le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2.$$

Demonstração

$$T(n) = \frac{2c}{n} \sum_{k=1}^{n-1} k \lg k + an$$

$$\leq \frac{2c}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + an$$

$$= cn \lg n - \frac{cn}{4} + an$$

$$= cn \lg n + \left(an - \frac{cn}{4} \right)$$

$$< cn \lg n,$$

escolhendo c de modo que $an - \frac{cn}{4} \le 0$, i.e., $c \ge 4a$.

Prova do Lema

$$\sum_{k=1}^{n-1} k \lg k = \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg k + \sum_{k=\lceil n/2 \rceil}^{n-1} k \lg k$$

$$\leq (\lg n - 1) \sum_{k=1}^{\lceil n/2 \rceil - 1} k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$= \lg n \sum_{k=1}^{n-1} k - \sum_{k=1}^{\lceil n/2 \rceil - 1} k$$

$$\leq \frac{1}{2} n (n-1) \lg n - \frac{1}{2} \left(\frac{n}{2} - 1 \right) \frac{n}{2}$$

$$\leq \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2$$

Conclusão

O consumo de tempo de QUICKSORT-ALEATÓRIO no caso médio é $O(n \lg n)$.

Exercício Mostre que $T(n) = \Omega(n \lg n)$.

Conclusão:

O consumo de tempo de QUICKSORT-ALEATÓRIO no caso médio é $\Theta(n | g | n)$.