Vremenski nizovi Hilbertovi prostori. Predikcija i uvjetna očekivanja

Bojan Basrak, Sveučilište u Zagrebu

zimski semestar - 2020

Pregled

Hilbertovi prostori

Uvjetno očekivanje

Predviditelj

Parcijalna autokorelacijska funkcija

Hilbertov prostor je potpun unitarni prostor, odn. vektorski prostor snabdjeven skalarnim produktom.

Teorem (o projekciji)

Ako je M zatvoren potprostor Hilbertovog prostora H te $x \in H$ tada

i) postoji jedinstveni $\hat{x} \in M$ td.

ii) za proizvoljan
$$\hat{x} \in M$$
 vrijedi

 $||x - \hat{x}|| = \inf_{v \in M} ||x - y||$

 $\|x - \hat{x}\| = \inf_{y \in M} \|x - y\| \iff (x - \hat{x}) \in M^{\perp}$

Preslikavanje $\Pi_M: H \to M$ koje preslika x u \hat{x} ima sljedeća svojstva

- ightharpoonup Π_M je linearni operator
- ▶ $\|\Pi_M\| \le \|x\|$ za sve $x \in H$
- $\blacksquare \Pi_M^2 = \Pi_M$
- ▶ ako je $M_1 < M_2$ zatvoren potprostor, $\Pi_{M_1} \Pi_{M_2} x = \Pi_{M_1} x$
- ▶ ako su M_1 i M_2 ortogonalni zatvoreni potprostori $\Pi_{M_1+M_2}x = \Pi_{M_1}x + \Pi_{M_2}x$

$$L_2(\Omega, \mathcal{F}, \mathbb{P})$$

Podsjetimo se element $X \in L_2(\Omega, \mathcal{F}, \mathbb{P})$ je zapravo klasa ekvivalencije

$$X \sim Y$$
 ako $X = Y g.s.$

i vrijedi $\mathbb{E} X^2 < \infty$. Pripadni skalarni produkt definiran je relacijom

$$\langle X, Y \rangle = \mathbb{E}XY$$

Pripadna norma je $\|X\|=\sqrt{\mathbb{E}X^2}$, pa konvergencija $X_n\to X$ u L_2 znači $\mathbb{E}|X_n-X|^2\to 0$.

U L₂ vrijedi dakako i Cauchy-Schwarzova nejednakost

$$|\mathbb{E}XY| \leq \sqrt{\mathbb{E}X^2\mathbb{E}Y^2}$$

Zadatak 1. Pokažite da $X_n \to X$, $Y_n \to Y$ u L_2 povlači $\langle X_n, Y_n \rangle \to \langle X, Y \rangle$ u \mathbb{R} . A stoga i $Cov(X_n, Y_n) \to Cov(X, Y)$.

Zadatak 2. Iz C.-S. nejednakosti izvedite i $X_n \to X$ u L_2 povlači $X_n \to X$ u L_1 .

Zadatak 3. Pokažite da za $Z, Y \in L_2$ vrijedi s. d. $(X + Y) \le$ s. d.(X) + s. d.(Y).

Pregled

Hilbertovi prostor

Uvjetno očekivanje

Predviditelj

Parcijalna autokorelacijska funkcija

Neka je $\mathcal{F}_0 \subseteq \mathcal{F}$ σ -algebra. Jasno $L_2(\Omega, \mathcal{F}_0, \mathbb{P})$ je zatvoren potprostor od $L_2(\Omega, \mathcal{F}, \mathbb{P})$.

Za sl.var. $X \in L_2(\Omega, \mathcal{F}, \mathbb{P})$ dobro je definirana projekcija na $L_2(\Omega, \mathcal{F}_0, \mathbb{P})$, a nazivamo je **uvjetno očekivanje** od X u odn. na \mathcal{F}_0 , oznaka $\mathbb{E}(X|\mathcal{F}_0)$.

Za sl.var. X koja je nenegativna ili integrabilna ($\in L_1(\Omega, \mathcal{F}, \mathbb{P})$) postoji \mathcal{F}_0 -izmjeriva sl.var. X' td.

$$\int_{A} X' d\mathbb{P} = \int_{A} X d\mathbb{P}$$

za sve $A \in \mathcal{F}_0$, nazivamo je **uvjetno očekivanje** od X u odn. na \mathcal{F}_0 , oznaka $\mathbb{E}(X|\mathcal{F}_0) = X'$.

Jasno dvije definicije se bitno razlikuju - kako?

No ako je $X \in L_2$ i sl. var. identificiramo s njihovim klasama ekvivalencije može se pokazati da su ekvivalentne.

Za sl.var. X koja je nenegativna ili integrabilna i proizvoljnu sl. var. Y na istom vjer. prostoru definiramo i

$$\mathbb{E}(X|Y) = \mathbb{E}(X|\sigma(Y)).$$

Primjer

- i) $\mathcal{F}_0 = \{\emptyset, \Omega\}$, tada je $\mathbb{E}(X|\mathcal{F}_0) = \mathbb{E}X$.
- ii) ako je X \mathcal{F}_0 –izmjeriva, tada $\mathbb{E}(X|\mathcal{F}_0)=X$.

Teorem (svojstva uvj. očekivanja)

Ao su X, Y integrabilne, a $\mathcal{F}_0 \subseteq \mathcal{F}$ σ -algebra

$$\mathbb{E}(\alpha X + \beta Y | \mathcal{F}_0) = \alpha \mathbb{E}(X | \mathcal{F}_0) + \beta \mathbb{E}(Y | \mathcal{F}_0) \quad g.s.$$

ii) ako je $Z \mathcal{F}_0$ izmjeriva, $X, Z \in L_2$

$$\mathbb{E}(ZX|\mathcal{F}_0) = Z\mathbb{E}(X|\mathcal{F}_0) \quad g.s.$$

$$iii$$
) X ≥ 0

$$\mathbb{E}(X|\mathcal{F}_0) \geq 0$$
 g.s.

iv)
$$\mathcal{F}_0 \subseteq \mathcal{G} \subseteq \mathcal{F}$$

$$\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{F}_0) = \mathbb{E}(X|\mathcal{F}_0)$$
 g.s.

v) ako je X nezavisna od \mathcal{G} , tada $\mathbb{E}(X|\mathcal{G}) = \mathbb{E}(X)$.

Posebno iz iv) slijedi $\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$ g.s.

Lema

Ako su $(Y_{\alpha} : \alpha \in A)$ sl.var. na istom vj. prostor, a $X \in \sigma(Y_{\alpha} : \alpha \in A)$ tada

i) za
$$|A| = k < \infty$$
 postoji izmjeriva $g : \mathbb{R}^k \to \mathbb{R}$ td.

$$X = g(Y_1, \ldots, Y_k)$$

ii) za $|A| = \infty$ postoji prebrojiv $A' = \{\alpha_1, \alpha_2, \ldots\} \subset A$ i izmjeriva $g : \mathbb{R}^{\infty} \to \mathbb{R}$ td.

$$X = g(Y_{\alpha_1}, Y_{\alpha_2}, \ldots)$$

S obzirom da je $\mathbb{E}(X|Y)$ izmjeriva u odn. na $\sigma(Y)$, tada postoji g td.

$$\mathbb{E}(X|Y)=g(Y)\,,$$

pišemo $g(y)=\mathbb{E}(X|Y=y)$, iako g nije jedinstvena i potencijalno $\mathbb{P}(Y=y)=0.$

Pregled

Hilbertovi prostori

Uvjetno očekivanje

Predviditelji

Parcijalna autokorelacijska funkcija

Linearni predviditelji

Neka je (X_n) u nastavku slabo stacionaran s očekivanjem 0. Pretpostavite da na osnovu opaženih X_1, \ldots, X_n želimo predvidjeti X_{n+1} Uvedimo $M_n = \operatorname{span}(X_1, \ldots, X_n)$

Najbolji linearni predviditelj za X_{n+1} u odn. na X_1, \ldots, X_n je linearna kombinacija $Z = \varphi_1 X_n + \cdots + \varphi_n X_1$ td.

$$\mathbb{E}(X_{n+1} - Z)^{2} = \inf_{Y \in M_{n}} \mathbb{E}(X_{n+1} - Y)^{2}$$

gornja vrijednost se zove kvadratna greška procjenitelja.

Kako je M_n zatvoren potprostor (je li?) od L_2 , postojanje i jedinstvenost od Z je garantirana. Označimo projekciju na M_n sa Π_n , dakle

$$\Pi_n X_{n+1} = \varphi_1 X_n + \cdots + \varphi_n X_1.$$

A slično možemo napravite i za druge X_{n+k} , $k \geq 2$. Bolje bi bilo pisati $\varphi_{n,1},\ldots,\varphi_{n,n}$.

Uočimo $Z \in M_n$ je po tm o projekciji najbolji lin. predviditelj ako i samo ako $X_{n+1} - Z \in M_n^{\perp}$ odn. ako i samo ako

$$\langle X_{n+1} - Z, X_i \rangle = 0, \quad i = 1, \dots n \Leftrightarrow$$

$$\langle X_{n+1}, X_i \rangle = \langle \varphi_1 X_n + \dots + \varphi_n X_1, X_i \rangle, \quad i = 1, \dots n \Leftrightarrow$$

$$\gamma(n+1-i) = \varphi_1 \gamma(n-i) + \dots + \varphi_n \gamma(1-i), \quad i = 1, \dots n$$

Gornje jednadžbe zovu se predikcijske jednadžbe, i mogu se matrično zapisati kao

$$\Gamma_n \left(\begin{array}{c} \varphi_1 \\ \vdots \\ \varphi_n \end{array} \right) = \left(\begin{array}{c} \gamma(1) \\ \vdots \\ \gamma(n) \end{array} \right)$$

A egzistencija i jedinstvenost rješenja?

Rješenje je jedinstveno ako i samo ako je Γ_n regularna tj. pozitivno definitna matrica.

 $||X_{n+1}||^2 = \langle X_{n+1} - \Pi_n X_{n+1} + \Pi_n X_{n+1}, X_{n+1} - \Pi_n X_{n+1} + \Pi_n X_{n+1} \rangle,$

$$= \|X_{n+1} - \Pi_n X_{n+1}\|^2 + \|\Pi_n X_{n+1}\|^2$$

Ovaj drugi termin iznosi

$$\langle \varphi_1 X_n + \cdots + \varphi_n X_1, \varphi_1 X_n + \cdots + \varphi_n X_1 \rangle = \sum_{i,j} \varphi_i \varphi_j \gamma(i-j)$$

Stoga je

Uočimo

$$\mathbb{E}(X_{n+1} - \Pi_n X_{n+1})^2 = \mathbb{E}X_{n+1}^2 - \mathbb{E}(\Pi_n X_{n+1})^2$$
$$= \gamma(0) - (\varphi_1, \dots, \varphi_n)^{\tau}(\gamma(1), \dots, \gamma(n))$$

Zadatak 4. Pokažite da najbolji linearni predviditelj za X_{n+h} u obliku $a_1X_n + \cdots + a_nX_1$ možemo naći iz

$$\Gamma_n \left(\begin{array}{c} a_1 \\ \vdots \\ a_n \end{array} \right) = \left(\begin{array}{c} \gamma(h) \\ \vdots \\ \gamma(n+h-1) \end{array} \right)$$

Primjer (AR (1) proces)

Neka je $(Z_t) \sim WN(0, \sigma^2)$ i $|\varphi| < 1$, te neka je (X_t) slabo stac. rješenje jdžbi $X_t = \varphi X_{t-1} + Z_t, \ t \in \mathbb{Z}$. Kako je

$$X_t = \sum_{i=0}^{\infty} \varphi^i Z_{t-i}$$

 X_j , $j \le n$ i Z_{n+1} su nekorelirane dakle (zašto?)

$$\Pi_n X_{n+1} = \Pi_n (\varphi X_n) + \Pi_n Z_{n+1} = \varphi X_n.$$

Srednjekvadratna greška je očito $\mathbb{E}Z_{n+1}^2 = \sigma^2$.

Zadatak 5. Pokažite $\Pi_n X_{n+h} = \varphi^h X_n$, $h \ge 1$.

Primjer (periodičan proces)

Neka je $X_t = A_1 \cos \nu t + A_2 \sin \nu t$ i neka su A_1 , A_2 nekorelirane $\mathbb{E}A_1 = \mathbb{E}A_2 = 0$, $\operatorname{Var} A_1 = \operatorname{Var} A_2 = \sigma^2$, tada je

$$X_n 2 \cos \nu - X_{n-1}$$

najbolji linearni predviditelj za X_{n+1} , a srednjekvadratna greška mu je jednaka nuli.

Zadatak 6. Da li su koeficijenti najboljeg linearnog predviditelja ovdje jedinstveni?

Očekivanje različito od 0

Ako sl. stac. vr. niz (X_t) ima očekivanje različito od 0, predviditelj za X_{n+1} tražimo u prostoru

$$M'_n = \operatorname{span}\{1, X_1, \dots, X_n\}$$

Prepostavimo ipak prvo da je $\mathbb{E}X_t=0$ tada je $X_t\perp 1$, pa je i $1\perp \text{span}\{X_1,\ldots,X_n\}$. Stoga je za ovakve nizove span $\{1,X_1,\ldots,X_n\}$ ortogonalna suma span $\{1\}\oplus \text{span}\{X_1,\ldots,X_n\}$ pa vrijedi

$$\Pi_{M'_n}X_t=\Pi_nX_t$$

U slučaju $\mathbb{E} X_t = \mu \in \mathbb{R}$, jasno

$$span\{1, X_1 - \mu, \dots, X_n - \mu\} = span\{1, X_1, \dots, X_n\}$$

Tako da

$$\begin{split} \Pi_{M'_n} X_{n+1} &= \Pi_{\text{span}\{1\}} X_{n+1} + \Pi_{\text{span}\{X_1 - \mu, \dots, X_{n-\mu}\}} X_{n+1} \\ &= \Pi_{\text{span}\{1\}} \mu + \Pi_{\text{span}\{X_1 - \mu, \dots, X_{n-\mu}\}} X_{n+1} \\ &= \mu + \Pi_{\text{span}\{X_1 - \mu, \dots, X_{n-\mu}\}} (X_{n+1} - \mu) \end{split}$$

Nelinearni predviditelji

Najbolji predviditelj za X_{n+1} u terminima X_1, \ldots, X_n je sl. varijabla oblika $f(X_1, \ldots, X_n)$ koja minimizira

$$\mathbb{E}(X_{n+1}-g(X_1,\ldots,X_n))^2$$

po svim izmjerivim funkcijama $g: \mathbb{R}^n \to \mathbb{R}$.

Jasno iz definicije uvj.očekivanja, najbolji predviditelj je upravo

$$\mathbb{E}(X_{n+1}|X_1,\ldots,X_n)$$

Primjer (ARCH(1) proces)

Prisjetimo se

$$X_t = \sigma_t Z_t, \qquad (Z_t) \sim IID(0,1)$$

gdje je $\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$. Ako je $\alpha_1 < 1$ pokazali smo jako stac. rješ. je

$$\sigma_t^2 = \alpha_0 + \alpha_0 \sum_{i=1}^{\infty} \alpha_1 Z_{t-1}^2 \cdots \alpha_1 Z_{t-j}^2$$

Sad se vidi

$$\mathbb{E}(X_{n+1}|X_t, 1 \le t \le n) = \sigma_{n+1}\mathbb{E}(Z_{n+1}|X_t, 1 \le t \le n) = 0$$

Primjer (AR(1) proces)

Prisjetimo se $X_t = \sum_{i \geq 0} \varphi^i Z_{t-i}$ za $|\varphi| < 1$ predstavlja jako stacionarno rješenje AR(1) jdžbi

$$X_t = \varphi X_{t-1} + Z_t,$$

ako je $(Z_t) \sim IID(0, \sigma^2)$, no tada

$$\mathbb{E}(X_{n+1}|X_t, \ 1 \leq t \leq n) = \mathbb{E}(\varphi X_n|X_t, \ 1 \leq t \leq n) + \mathbb{E}(Z_{n+1}|X_t, \ 1 \leq t \leq n)$$

Dakle φX_n je i najbolji predviditelj ovdje.

Pregled

Hilbertovi prostori

Uvjetno očekivanje

Predviditelj

Parcijalna autokorelacijska funkcija

Neka je (X_t) ponovo slabo stac. vr. niz s očekivanjem 0. Označimo, za $n \ge 2$

$$\Pi_{2,n} = \Pi_{\mathsf{span}(X_2,\ldots,X_n)}$$

pa uvedimo

$$\alpha(1) = \operatorname{Corr}(X_2, X_1) = \varrho_X(1)$$

 $\alpha(n) = \operatorname{Corr}(X_{n+1} - \Pi_{2,n}X_{n+1}, X_1 - \Pi_{2,n}X_1), \qquad n \ge 2,$

Ovako zadana fja $\alpha : \mathbb{N} \to [-1, 1]$ naziva se **parcijalna autoko-**relacijska funkcija (pacf) niza (X_t) , ako je $\mathbb{E}X_t = \mu \neq 0$ pacf se definira kao pacf niza $(X_t - \mu)$.

Primjer (AR(1) proces)

Prisjetimo se $X_t = \sum_{i \geq 0} \varphi^i Z_{t-i}$ za $|\varphi| < 1$ i $(Z_t) \sim WN(0, \sigma^2)$, predstavlja slabo stacionarno rješenje AR(1) jdžbi

$$X_t = \varphi X_{t-1} + Z_t,$$

Očito

$$\alpha(1) = \operatorname{Corr}(X_2, X_1) = \operatorname{Corr}(\varphi X_1 + Z_2, X_1) = \varphi X_n.$$

Također

$$\Pi_{2,n}X_{n+1}=\varphi X_n, \quad n\geq 2$$

stoga za $n \ge 2$

$$\alpha(n) = \text{Corr}\left(X_{n+1} - \Pi_{2,n}X_{n+1}, X_1 - \Pi_{2,n}X_1\right) = 0.$$

O jedinstvenosti rješenja predikcijskih jednadžbi

Podsjetimo se koeficijenti najb. lin. predv. su jedinstveno određeni ako je Γ_n regularna.

Propozicija

Ako je $\gamma(0) > 0$ i $\gamma(n) \to 0$ za $n \to \infty$, tada su kovarijacijske matrice Γ_n regularne za svaki $n \ge 1$.

Lema

Neka vrijede uvjeti prethodne prop. i neka je (X_t) slabo stac. vr. niz s očekivanjem 0 i neka je

$$\Pi_n X_{n+1} = \varphi_{n,1} X_n + \cdots + \varphi_{n,n} X_1.$$

najbolji linearni predviditelj za X_{n+1} , tada je

$$\alpha_X(n) = \varphi_{n,n}$$

Dokaz. Kako je Γ_n uvijek regularna

$$\Pi_n X_{n+1} = \varphi_{n,1} X_n + \dots + \varphi_{n,n} X_1$$

ima jedinstvenu reprezntaciju. Neka je $n \ge 2$ i neka su E_2, \ldots, E_n o.n.b. za span (X_2, \ldots, X_n) (oni su lin.nez. jer im je Gramova matrica Γ_{n-1} regularna), tako je

$$\Pi_{2,n}X_{n+1} = \sum_{i=2}^{n} \langle X_{n+1}, E_i \rangle E_i$$

Da bismo dobili E₁ postavimo

$$Y = X_1 - \Pi_{2,n}X_1, \quad E_1 = \frac{Y}{\|Y\|}$$

$$\Pi_{n}X_{n+1} = \sum_{i=2}^{n} \langle X_{n+1}, E_{i} \rangle E_{i} + \langle X_{n+1}, E_{1} \rangle E_{1}
= W + \frac{\langle X_{n+1}, X_{1} - \Pi_{2,n}X_{1} \rangle}{\|X_{1} - \Pi_{2,n}X_{1}\|^{2}} (X_{1} - \Pi_{2,n}X_{1})
= W + \frac{\langle X_{n+1} - \Pi_{2,n}X_{n+1}, X_{1} - \Pi_{2,n}X_{1} \rangle}{\|X_{1} - \Pi_{2,n}X_{1}\|^{2}} (X_{1} - \Pi_{2,n}X_{1})
= W' + \varphi_{n,n}X_{1}$$

Zadatak 7. Dokažite

$$\|X_1 - \Pi_{2,n}X_1\| = \|X_{n+1} - \Pi_{2,n}X_{n+1}\|.$$

Uputa: niz

$$\dots, X_0, X_1, \dots, X_n, X_{n+1}, \dots$$

je slabo stacionaran u oba poretka, s istom funkcijom γ , kako predikcijske jdžbe i greška ovise samo o njoj, jasno je da gore vrijedi jednakost.

Primjer (AR(1) proces)

Prisjetimo se $X_t = \sum_{i \geq \varphi} \varphi^i Z_{t-i}$ za $|\varphi| < 1$ predstavlja stacionarno rješenje AR(1) jdžbi

$$X_t = \varphi X_{t-1} Z_t.$$

Tada je

$$\alpha(1) = \operatorname{Corr}(X_2, X_1) = \operatorname{Corr}(\varphi X_1 + Z_2, X_1) = \varphi$$

Vidjeli smo $\Pi_h X_{h+1} = \varphi X_h$, tako da je za $h \ge 2$,

$$\alpha_X(h)=0$$