Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

 $\textbf{1.} \quad \text{Suppose your training examples are sentences (sequences of words). Which of the following refers to the } s^{th} \text{word in the } r^{th} \text{training example?}$

1/1 point

- $\bigcirc x^{(s) < r >}$
- x(r)<s>
- () x<r>(s)
- (r)

∠⁷ Expand

⊘ Correct

We index into the r^{th} row first to get to the r^{th} training example (represented by parentheses), then the s^{th} column to get to the s^{th} word (represented by the brackets).

2. Consider this RNN:

1/1 point

True/False: This specific type of architecture is appropriate when Tx=Ty

- True
- False

∠⁷ Expand

⊘ Correct

It is appropriate when the input sequence and the output sequence have the same length or size.

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

1/1 point

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)
 - ✓ Correct!
- Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)
- ✓ Correct!

⊘ Correct

Great, you got all the right answers.

4. Using this as the training model below, answer the following:

1/1 point

True/False: At the t^{th} time step the RNN is estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t-1>})$

- True
- False

∠⁷ Expand

✓ Correct

Yes, in a training model we try to predict the next step based on knowledge of all prior steps.

True/False: In this sample sentence, step t uses the probabilities output by the RNN to pick the highest probability word for that time-step. Then it passes the ground-truth word from the training set to the next time-step.

○ True

False

The probabilities output by the RNN are not used to pick the highest probability word and the ground-truth word from the training set is not the input to the next time-step.

6. You are training an RNN model, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

1/1 point

- Vanishing gradient problem.
- Exploding gradient problem.
- $\begin{tabular}{ll} \hline \end{tabular} The model used the ReLU activation function to compute g(z), where z is too large. \\ \hline \end{tabular}$
- $\begin{tabular}{ll} \hline \end{tabular} The model used the Sigmoid activation function to compute $g(z)$, where z is too large. \end{tabular}$

✓ Correct

7. Suppose you are training an LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time step?

1/1 point

O 1

100

300

10000

8. Here are the update equations for the GRU.

1/1 point

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_{\!u} = \sigma(W_{\!u}[\,c^{< t-1>},x^{< t>}]+b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

$$a^{} = c^{}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 0. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- O Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- igoplus Betty's model (removing Γ_r), because if $\Gamma_u pprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Obserty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

✓ Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependent on $c^{< t-1>}$.

9. True/False: Using the equations for the GRU and LSTM below the Update Gate and Forget Gate in the LSTM play a different role to Γ u and 1- Γ u.

1/1 point

GRU

$$\tilde{c}^{} = \tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{}, x^{}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{}, x^{}] + b_r)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

$$a^{} = c^{}$$

LSTM

$$\tilde{c}^{} = \tanh(W_c[a^{}, x^{}] + b_c)$$

$$\Gamma_u = \sigma(W_u[a^{}, x^{}] + b_u)$$

$$\Gamma_f = \sigma(W_f[a^{}, x^{}] + b_f)$$

$$\Gamma_o = \sigma(W_o[a^{}, x^{}] + b_o)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + \Gamma_f * c^{}$$

$$a^{} = \Gamma_o * c^{}$$

True
○ False
_∠ ^ス Expand
10. Your mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\ldots,x^{<365>}$. You've also collected data on your mood, which you represent as $y^{<1>},\ldots,y^{<365>}$. You'd like to build a model to map from $x \rightarrow y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?
Oundirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.
Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
$igotimes$ Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>}, \ldots, x^{< t>}$, but not on $x^{< 1>}, \ldots, x^{< 365>}$.
Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
∠ [™] Expand

1/1 point