MATEMATIK - 2

Konya Jeknik Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Mühendislik Jemel Bilimleri Bölümü

Prof. Dr. Abdullah Selçuk KURBANLI

2021

KUVVET SERİLERİ (DEĞİŞKEN TERİMLİ SERİLER)

4.3. Kuvvet Serileri (Değişken Terimli Seriler)

Tanım 4.3.1. $a, a_0, a_1, a_2, ..., a_n, ...$ ler sabit ve x bir değişken olmak üzere

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

serisine x in kuvvet serisi,

$$\sum_{n=0}^{\infty} a_n (x-a)^n = a_0 + a_1 (x-a) + a_2 (x-a)^2 + \dots + a_n (x-a)^n + \dots$$
serisine $(x-a)$ nin kuvvet serisi,

serisine (x-a) nın kuvvet serisi,

$$\sum_{n=0}^{\infty} a_n [u(x)]^n = a_0 + a_1 u(x) + a_2 [u(x)]^2 + \dots + a_n [u(x)]^n + \dots$$

serisine de u(x) in kuvvet serisi denir.

Bir kuvvet serisinde x değişken olduğuna göre x in alacağı her değer için farklı bir seri elde edilir. Bu serilerden bazıları yakınsak bazıları ise ıraksak olabilir. Bu durumda kuvvet serilerinin karakterlerinin x in aldığı değerlere bağlı olduğu sonucuna varılabilir.

 $\sum_{n=0}^{\infty} a_n x^n$ kuvvet serisi x = 0 için aşikar olarak yakınsaktır. Bu serilerin

x in sıfırdan farklı hangi değerleri için yakınsak olacağı D'Alembert

Kriterine göre belirlenebilir. Bu kriter $\sum_{n=0}^{\infty} a_n x^n$ serisine uygulanırsa

$$\lim_{n \to \infty} \frac{a_{n+1} x^{n+1}}{a_n x^{n+1}} = |x| \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

elde edilir.
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{R}$$
 ise $|x| \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{R} |x|$ dir. Serinin yakınsak olabilmesi için $\frac{1}{R} |x| < 1$ yanı $|x| < R$

olması gerekir. $x = \mp R$ değerleri için D'Alembert Kriterine göre serinin karakteri hakkında bir şey söylenemeyeceğinden x in bu değerleri için serinin karakteri ayrıca belirlenmelidir. Bu şekilde elde edilen (-R,+R) aralığına verilen kuvvet serisinin yakınsaklık aralığı, R sayısına da yakınsaklık yarıçapı denir.

Örnek 4.3.1.
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 serisinin yakınsaklık aralığını belirleyiniz.

Çözüm.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{n+1}}{\frac{x^n}{n}} \right| = |x| \lim_{n \to \infty} \left| \frac{n}{n+1} \right| = |x|$$
 olduğundan verilen seri $|x| < 1$ için yakınsaktır.

seri |x| < 1 için yakınsaktır.

Ayrıca verilen seri
$$x = -1$$
 için $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ şeklinde olup şartlı

yakınsaktır. x = 1 için ise $\sum_{n=1}^{\infty} \frac{1}{n}$ şeklinde olup ıraksaktır. Bu durumda

serinin yakınsaklık aralığı [-1,1) ve yakınsaklık yarıçapı R=1 dir.

Örneğin
$$x = \frac{1}{2}$$
 için $\sum_{n=1}^{\infty} \frac{x^n}{n} = \sum_{n=1}^{\infty} \frac{\left(\frac{1}{2}\right)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}$ dir. Bu seriye

Oran Kriterini uygulayalım:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{\frac{1}{(n+1)2^{\frac{n+1}{2}}}}{\frac{1}{n \cdot 2^n}} \right) = \frac{1}{2} \lim_{n \to \infty} \left(\frac{n}{n+1} \right) = \frac{1}{2} < 1 \text{ dir.}$$

Bu durumda Oran Kriteri gereği $\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}$ serisi yakınsaktır. (Burada

 $x = \frac{1}{2} \in [-1,1)$ olup karakter belirlemeye gerek duyulmadan $\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}$

serisinin yakınsak olduğu açıktır. Benzer şekilde x=2 için $2 \notin [-1,1)$ olduğundan karakter belirlemeye gerek duyulmadan serinin ıraksak olduğu söylenebilir.)

Örnek 4.3.2. $\sum_{n=1}^{\infty} \frac{x^{2n}}{n!}$ serisinin yakınsaklık aralığını belirleyiniz.

$$|x^{2n+2}|$$

Çözüm.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\left| \frac{x^{2n+2}}{(n+1)!} \right|}{\left| \frac{x^{2n+2}}{n+1} \right|} = \left| x^2 \right| \lim_{n \to \infty} \left| \frac{1}{n+1} \right| = 0 < 1$$
 olduğundan verilen seri her $x \in \mathbb{R}$ için yakınsaktır. Yani serinin yakınsaklık aralığı $(-\infty, +\infty)$ dur.

 $(-\infty,+\infty)$ dur.

Örnek 4.3.3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+2)^n}{3^n n}$$
 serisinin yakınsaklık aralığını

belirleyiniz.

Çözüm.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\left| \frac{(-1)^{n+1} (x+2)^{n+1}}{3^{n+1} (n+1)} \right|}{(-1)^n (x+2)^n} = |x+2| \lim_{n \to \infty} \left| \frac{f(n)}{3^n + 3} \right| = \frac{1}{3} |x+2| < \frac{1}{3}$$

olduğundan verilen seri $\frac{1}{3}|x+2|<1$ ve |x+2|<3 yani -5 < x < 1 için

yakınsaktır.

$$X = -5$$

Ayrıca verilen seri x = -5 için $\sum_{n=1}^{\infty} \frac{1}{n}$ şeklinde olup ıraksaktır.

x=1 için ise $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ şeklinde olup şartlı yakınsaktır. Bu durumda

serinin yakınsaklık aralığı (-5,1] ve yakınsaklık yarıçapı R=3 tür.

Örnek 4.3.4. $\sum_{n}^{\infty} nx^n$ serisinin yakınsaklık aralığını belirleyiniz.

Çözüm.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)x^{n+1}}{nx^n} \right| = |x| \lim_{n \to \infty} \left| \frac{n+1}{n} \right| = |x|$$
verilen seri $|x| < 1$ için yakınsaktır.

olduğundan verilen seri |x| < 1 için yakınsaktır.

Ayrıca verilen seri x = -1 için $\sum (-1)^n n$ şeklinde olup

ıraksaktır. x = 1 için ise $\sum_{n=1}^{\infty} n$ şeklinde olup yine ıraksaktır. Bu durumda serinin yakınsaklık aralığı (-1,1) ve yakınsaklık yarıçapı R=1 dir.

Bir

47

Örnek 4.3.5. $\sum_{n=1}^{\infty} \frac{x^n}{(2n)!}$ serisinin yakınsaklık aralığını belirleyiniz.

Çözüm.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\frac{x^{n+1}}{(2n+2)!}}{\frac{x^n}{(2n+2)!}} = |x| \lim_{n \to \infty} \left| \frac{1}{(2n+1)(2n+2)} \right| = 0$$

olduğundan verilen seri her $x \in \mathbb{R}$ için yakınsaktır. Yani serinin yakınsaklık aralığı $(-\infty, +\infty)$ dur.

Örnek 4.3.6. $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ serisinin yakınsaklık aralığını belirleyiniz.

Çözüm.

R=1 dir.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1)^2}}{\frac{x^n}{n^2}} \right| = \left| x \right| \lim_{n \to \infty} \left| \left(\frac{n}{n+1} \right)^2 \right| = \left| x \right|$$
an verilen seri $|x| < 1$ için yakınsaktır.

olduğundan verilen seri |x| < 1 için yakınsaktır.

Ayrıca verilen seri x = -1 için $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ şeklinde olup alterne bir seridir ve Leibnitz Kriterine göre yakınsaktır. x = 1 için ise $\sum_{n=1}^{\infty} \frac{1}{n^2}$ şeklinde olup p = 2 serisidir ve p > 1 olduğundan yakınsaktır. Bu

durumda serinin yakınsaklık aralığı [-1,1] ve yakınsaklık yarıçapı

Örnek 4.3.7.
$$\sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$$
 serisinin yakınsaklık aralığını belirleyiniz.

M. N

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\frac{x^{n+1}}{(n+1)(n+2)}}{\frac{x^n}{n(n+1)}} = |x| \lim_{n \to \infty} \left| \frac{n}{n+2} \right| = |x| \cdot \Re = |X| \cdot A$$

olduğundan verilen seri |x| < 1 için yakınsaktır ve yakınsaklık aralığı

[-1,1] olup yakınsaklık yarıçapı R=1 dir. $x=\mp 1$ için karakter

belirleme okuyucuya birakildi.

$$\sum_{N=1}^{n} \frac{(1)^{N}}{N \cdot (n+1)} = 0$$

$$Q_{N} = \frac{1}{N(n+1)} = 0$$

Teorem 4.3.1. $\sum_{n=0}^{\infty} a_n (x-a)^n$ serisi $x \neq a$ için yakınsak ise yakınsaklık

yarıçapı
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| dir.$$

Teorem 4.3.1.
$$\sum_{n=0}^{\infty} a_n (x-a)^n \text{ serisi } x \neq a \text{ için yakınsak ise yakınsaklık}$$

$$yarıçapı R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| dir.$$

$$n \neq 0$$

$$\alpha_n \left(\frac{1}{2} \right)^{\infty}$$

Uyarı 4.3.1.
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
 olmak üzere $\sum_{n=0}^{\infty} a_n (x-a)^n$ serisinin

yakınsaklık aralığı (a-R,a+R) şeklindedir.

Uyarı 4.3.2. Cauchy Kök Kriterine göre serinin yakınsaklık yarıçapı

$$R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$$
 olarak bulunur. (Cauchy-Hadamard Teoremi)

KAYNAKLAR:

- **1. Prof. Dr. İbrahim YALÇINKAYA**, Analiz III Diziler ve Seriler, Dizgi Ofset, 2017.
- **2. G. B. Thomas ve Ark.,** Thomas Calculus I, Çeviri: R. Korkmaz, Beta Yayıncılık, İstanbul, 2009.