INM431: Machine Learning

Curve fitting and fundamentals

Pranava Madhyastha (pranava.madhyastha@city.ac.uk)

Synthetic data

Data generated from the function: $sin(2\pi x)$

(x is the input value)

Random noise in target values

Input Variable

Input values $\{x_n\}$ generated uniformly in range (0,1). Corresponding target values $\{t_n\}$ obtained by first computing corresponding values $\sin(2\pi x)$ of then adding random noise with a Gaussian distribution with std.deviation of 0.3

Training set

N observations of x

$$x = (x_1, \dots, x_n)$$

$$t=(t_1,\cdots,t_n)$$

Goal is to exploit training set to predict \hat{t} for some new value \hat{x}

Inherently a difficult problem

Polynomial function

Fit the data using a polynomial function

$$y(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

M is the order of the polynomial

Would higher orders of polynomials fit better?

Would that be the right choice?

Coefficients w_0, \dots, w_M are collectively denoted by vector **w**

It is a nonlinear function of x, but a linear function of the unknown parameters w

Input Variable

How do we select the best function?

Error/loss function!

We can obtain a fit by minimising an error function Sum of squares of the errors between the predictions $f(x_n, w)$ for each data point x_n and target value t_n :

$$L(w) = \frac{1}{2} \sum_{n=1}^{N} (f(x_n, w) - t_n)^2$$

Solve by choosing value of w for which the error is as small as possible

Red line is best polynomial fit

Minimising the loss

Loss function is a quadratic w

The derivative with respect to coefficients will be linear in w

The loss function has a unique solution which can be found with a unique minimum

Best fit: model selection

Generalisation

Let us take a separate unseen (during fit) dataset of 100 points

For each value of M evaluate

$$L(w^*) = \frac{1}{2} \sum_{n=1}^{N} (f(x_n, w^*) - t_n)^2$$

Do this for both training data and test data

The RMS error:
$$E_{RMS} = \sqrt{\frac{2 \times L(w^*)}{N}}$$

Best fit: model selection

	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

What happens when we increase data?

Overfitting problem is less severe as size of data set increases

Larger data set allows us to fit more complex functions

Least squares

$$L(w) = \frac{1}{2} \sum_{n=1}^{N} (f(x_n, w) - t_n)^2$$

Model complexity ∝ problem complexity

Maximising the likelihood of the data

Regularisation of Least Squares

We can exploit relatively complex models with data sets of limited size

Use a penalty term with the loss function to discourage coefficients from reaching large values (regularisation/shrinkage/weight decay):

$$\hat{L}(w) = \frac{1}{2} \sum_{n=1}^{N} (f(x_n, w) - t_n)^2 + \frac{\lambda}{2} ||w||^2$$
where, $||w||^2 = w^{\mathsf{T}} w = (w_0^2 + w_1^2 + \dots + w_m^2)$

Effect of regularisation

Effect of regularisation: loss

Regularisation coefficient controls the complexity of the model Hence the degree of overfitting

Using a validation set

Divide the total dataset into three subsets:

- Training data is used for learning the parameters of the model.
- Validation data is not used for learning but is used for deciding what type of model and what amount of regularisation works best.
- Test data is used to get a final, unbiased estimate of how well the learner works. We expect this estimate of the generalisation error to be worse than on the validation data.

We could then re-divide the total dataset to get another estimate of the generalisation error