Statistical computing on campus cluster

Xiaohui Chen & Annie Qu

Statistics Brown Bag Series

September 19, 2014

Agenda

- Illinois campus cluster resources
- Run jobs on clusters

Campus cluster

Illinois campus cluster program:

https://campuscluster.illinois.edu/

Campus Cluster Usage Overview

Campus cluster overview

CC user	Head nodes	Compute nodes
Connect to a head node from your local computer using an an an arm.	 Learn basics to and from the campus cluster Use a applications for scheduling on the compute nodes 	 All batch jobs run on the compute nodes. Each investor group has a dedicated primary queue. There is also a shared secondary queue for opportunistic access to idle nodes, and a very short time test queue that provides quick turnaround time.

How to access?

Access method	Hostnames	Head nodes
SSH	 cc-login.campuscluster.illinois.edu taub.campuscluster.illinois.edu golub.campuscluster.illinois.edu 	Taub & Golub Taub (12-core per node) Golub (16-core per node)

SSH: remote access

Windows: Graphical User Interface (GUI)

Linux/unix, Mac OS: Command Line Interface (CLI)

```
Eile Edit View Terminal Tabs Help

[fedora ~]$ ssh -X -l My_NetID cc-login.campuscluster.illinois.edu

□□⊗
```

Campus cluster is Linux based

Useful Unix/Linux Commands

Basic Commands

Working With Files

Command	Description	Command	Description
ls ls -l	List directory contents Detailed listing of directory contents	nano myfile	Create a new (or edit an existing) file named <i>myfile</i> with a simple text editor
pwd	Display the path of the current/working directory	grep string myfile	Display the lines in <i>myfile</i> that contain a matching pattern(<i>string</i>)
man command_name	Display online help (manual page) for command_name	cat myfile	Display the entire contents of the file myfile
quota	Display your home directory disk usage	more myfile	Display the contents of the file <i>myfile</i> , one page at a time
ps -u	Display detailed information about your running processes	cp myfile1 myfile2	Copy the file myfile1 to myfile2
exit or logout	Log out of your current session	mv myfile1 myfile2	Rename the file myfile1 to myfile2
history	Display a list of the commands you've recently run	mv myfile mydir	Move the file <i>myfile</i> into the directory <i>mydir</i>
date	Display the system date and time	rm myfile	Delete the file myfile
		mkdir mydir	Create a directory named mydir
		cd mydir	Change the current directory to mydir
		rmdir mydir	Remove the directory mydir (if empty)

Data transfer

- GUI data transfer; e.g. SSH Secure Shell SFTP client
- Drag and drop interface: recommended

CLI data transfer: scp

Software list

- GCC
- MATLAB
- R
- Python
- Mathematica
- OpenMPI
- Octave
- ...

User environment: modules

 To load a software into your programming environment, use command
 module load P

module load R module load matlab module load gcc

- Then, use command
 R
 matlab
- Use no display option matlab -nodisplay

Where to run your programs?

Primary queues

 Each investor group has unrestricted access to a dedicated primary queue with concurrent access to the number and type of nodes in which they invested.

Secondary queues (default!)

A shared secondary queue will allow users access to any idle nodes in the cluster. Users must have access to a primary queue to be eligible to use the secondary queue.

Test queues

 A test queue is available for providing very short jobs with quick turnaround time. Jobs in the test queue currently only run on Taub nodes.

Comparison of the three queues

Queue	Max Walltime	Max # Nodes
Primary Secondary Test Stat	Unrestricted 4 hours 5 minutes Unrestricted	Unrestricted* 208 2 4

The primary queue for Statistics Department, is called stat queue with 4 nodes.

^{*:} depend on the invested # nodes

Agenda

- Illinois campus cluster resources
- Run jobs on clusters

Run R on a PC

Warning: do NOT run R program this way on clusters!!

Run jobs on clusters: batch commands

- Batch jobs are submitted through a job script using the qsub command.
- But you can<u>not</u> submit a job on the command line.
- What do you need to do?
 - Write a PBS script file.
 - Submit the PBS file using qsub.

PBS file

- PBS is a job resource manager. A job is defined as a computational task such as computational simulation or data analysis. PBS provides job queuing and execution services in a batch cluster environment.
- **Example**: lasso.pbs

```
#!/bin/bash Type of shell

#PBS -l nodes=1:ppn=6 Resources request via

#PBS -l walltime=04:00:00 PBS queuing system: 1
node, 6 cores/node, max
4 hours to kill

cd $PBS_O_WORKDIR Directory to get job run

module load R

R CMD BATCH sim_lasso_p=100_n=100.R Software needed

Execute the program!
```

Job execution: qsub

Submit your job (to the default queue): qsub lasso.pbs

Check status of your jobs:

```
qstat -u xhchen
```

Delete your job:

```
qdel JobID
```

Peek your job:

```
qpeek JobID
```

More options and some caveats

Submit your job to the stat queue qsub -W group_list=stat -q stat lasso.pbs

Revisit: lasso.pbs

```
#!/bin/bash

#PBS -l nodes=1:ppn=6
#PBS -l walltime=04:00:00,nodes=1:ppn=6:m96G

cd $PBS_O_WORKDIR

module load R
R CMD BATCH sim_lasso_p=100_n=100.R
```

Note: Do not use the memory specification unless absolutely required since it could delay scheduling of the job; also, if nodes with the specified memory are unavailable for the specified queue the job will never run.

A toy example to run MATLAB

- Step 1: make a MATLAB script
- Example: generate a 1000*1000 random matrix and then compute its singular value decomposition (svd)
- Name the file: randmat.m

```
% randmat.m
% M = U * S * V'
p = 1000;
M = randn(p);
[U S V] = svd(M);
save('randmat.mat');
```

A toy example to run MATLAB

- Step 2: make a PBS script file
- Name this file: randmat.pbs

```
#!/bin/bash
#PBS -l nodes=1:ppn=6
#PBS -l walltime=04:00:00

cd $PBS_O_WORKDIR

module load matlab
matlab -nodisplay < randmat.m > randmat.mout
```

A toy example to run MATLAB

- Step 3: submit the job via qsub
- Run the following command line:
 - On the secondary queue qsub randmat.pbs
 - On the stat queue

 qsub -W group_list=stat -q stat randmat.pbs

You can put as many programs as you want.

Randomization

```
% randmat.m
% M = U * S * V'

p = 1000;
M = randn(p);
[U S V] = svd(M);

save('randmat.mat');
```

Run twice independently, see what you get:

```
Run 1: norm(M) = 63.0942
Run 2: norm(M) = 63.0942
```

- Need randomization of the seed!
- 1. use the random system noise
- 2. use high-precision system time (mixed with the job ID):

```
as.integer((as.double(Sys.time())*1000+Sys.getpid()) %% 2^31)
```

Summary

- Three key ingredients:
 - Debug your programs on your computer (remember to randomize and add a save line in the end)
 - Write and customize your PBS file, according to the size of your problems
 - 3. Learn various options of qsub (man qsub)

Now, just enjoy [©]

THANK YOU!