

Sam Robson

Bioinformatics Lead at Centre for Enzyme Innovation

Portsmouth, United Kingdom

(+44) 07863 328347

linkedin.com/in/samrobson/

irunfasterthanmycode.github.io

scb.robson@gmail.com

About me ——

Computational biologist with a strong mathematics and statistics background. Extensive experience of maintaining, processing, and analysing Big Data from next generation DNA sequencing. Expertise in a wide variety of data mining, data visualisation, deep learning, and machine learning methods to identify statistically significant trends in high-dimensional data. Bioinformatics Lead at the Centre for Enzyme Innovation and Faculty Bioinformatics Lead at the University of Portsmouth.

RStudio*5 Git*4 LaTeX*4

(*)[The skill scale is from 0 (Fundamental Awareness) to 6 (Expert).]

Education

	University of Warwick	
2003-2004	MSc in Mathematical Biology and Biophysical Chemistry	Class: 1^{st}
	University of Warwick	

2004-2008 PhD in Mathematical Biology and Biophysical Chemistry

1861-1863 BSc in Mathematics (Hons) Class: 2:1 University of Warwick

Experience

Since 2017 Centre for Enzyme Innovation, University of Portsmouth Bioinformatics

Responsible for a small team of bioinformatics researchers to use machine learning algorithms to identify potential novel plasticdegrading enzymes from microbiological genome data

Sam Robson Consulting (Self-Employed) 2014-2017 Identified key factors influencing doctor burnout through the use of multivariate mixed-effects regression analysis in the largest study of doctor burnout yet conducted

2010-2017 The Gurdon Institute, University of Cambridge Bioinformatician Developed and maintained pipeline and database for in-depth processing, mining and analysis of high-dimensional genome wide DNA sequencing data

2008-2010 Wellcome Trust Sanger Institute Statistical/Mathematical Biologist Responsible for maintaining, processing and normalizing genomescale Big Data, including sample QC, concordance analysis with previously published SNP data, data optimization and case-control association testing

Analysis Skills

Big Data wrangling, maintenance and analysis of extremely large data sets, pipeline development for high-throughput DNA sequencing data, normalization of complex data sets, data visualisation, machine learning, regression analysis (linear and generalised linear models), classification models (unsupervised: K-means, hierarchical clustering, mixture models; supervised: random forest, K-nearest neighbour, SVM), PCA dimensional reduction

Leadership Skills

Bioinformatics Lead and Board Member at the Centre for Enzyme Innovation in charge of a small group of bioinformatics researchers, supervisor for a number of PhD students, Faculty Bioinformatics Lead working with and advising researchers throughout the University on a number of distinct projects, explaining complex technical outputs to non-experts and management

Communication Skills

Excellent communication skills at the interface between Life Sciences, able to effectively explain complex analysis concepts to non-specialists, able to maintain extremely high standards when working across a large number of disparate projects, ability to work effectively across disciplines, experience collaborating with industry, excellent ability to identify and solve problems, ability to work on own initiative or as a keen team player, highly motivated

Awards

2019	Award of £6 million from Research England £3 Fund
2019	Award of £5,000 Google Cloud Platform research credits
2017	Awarded CStat and CSci Membership of the Royal Statistical Society

Sam Robson

Bioinformatics Lead at Centre for Enzyme Innovation

Portsmouth, United Kingdom

(+44) 07863 328347

linkedin.com/in/samrobson/

irunfasterthanmycode.github.io

scb.robson@gmail.com

About me -

Computational biologist with a strong mathematics and statistics background. Extensive experience of maintaining, processing, and analysing Big Data from next generation DNA sequencing. Expertise in a wide variety of data mining, data visualisation, deep learning, and machine learning methods to identify statistically significant trends in high-dimensional data. Bioinformatics Lead at the Centre for Enzyme Innovation and Faculty Bioinformatics Lead at the University of Portsmouth.

Skills -R perl MySQL python

TensorFlow

C++

RStudio*5 Git*4 LaTeX*4

(*)[The skill scale is from 0 (Fundamental Awareness) to 6 (Expert).]

Publica	ations
2019	Interaction of Sox2 with RNA binding proteins in mouse embryonic
2019	stem cells, Experimental Cell Research. 381, 1, 129-138 METTL1 Promotes let-7 MicroRNA Processing via m7G Methylation,
	Molecular Cell. 74, 6, 1278-1290
2019	Dystrophic mdx mouse myoblasts exhibit elevated ATP/UTP-evoked
	metabotropic purinergic responses and alterations in calcium signalling, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Dis-
2018	ease SRPK1 maintains acute myeloid leukemia through effects on isoform
	usage of epigenetic regulators including BRD4, Nature Communica-
2018	tions. 9, 1, 5378 Phosphorylation of histone H4T80 triggers DNA damage checkpoint
	recovery, Molecular Cell. 72, 4, 625-635
2018	Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by rebalancing the Transportin-1 nuclear import pathway,
	Science Signaling, 11, 537, eaar5401
2017	Promoter-bound METTL3 maintains myeloid leukaemia by m6A-
2017	dependent translation control, Nature. 552, 126-131 A IncRNA fine tunes the dynamics of a cell state transition involving
2017	Lin28, let-7 and de novo DNA methylation, eLife. 6, e23468
2017	RNA binding by the histone methyltransferases Set1 and Set2, Molecular and Cellular Biology. 37, 14, e00165-17
2016	A chemical probe for the ATAD2 bromodomain, Angewandte Chemie
2016	International Edition. 55, 38, 11382-11386 Discovery of I-BRD9, a selective cell active chemical probe for bromod-
2010	omain containing protein 9 inhibition, Journal of Medicinal Chemistry.
2015	59, 4, 1425-1439 Generation of a selective small molecule inhibitor of the CBP/p300
2015	bromodomain for leukemia therapy, Cancer Research. 75, 23, 5106-
2014	5119 The broad cancer encodence EMSV Penroscop transcription of an
2014	The breast cancer oncogene EMSY Represses transcription of antimetastatic microRNA miR-31, Molecular Cell. 53, 5, 806-818
2014	Recurrent mutations, including NPM1c, activate a BRD4-dependent
	core transcriptional program in acute myeloid leukemia, Leukaemia. 28, 2, 311-320
2014	Glutamine methylation in histone H2A is an RNA-polymerase-I-
2014	dedicated modification, Nature. 505, 7484, 564-568 BET protein inhibition shows efficacy against JAK2V617F-driven neo-
-	<i>plasms</i> , Leukaemia. 28, 1, 88-97
2013	The non-coding snRNA 7SK controls transcriptional termination, pois-

- ine non-coaing snkNA 75K controls transcriptional termination, polsing, and bidirectionality in embryonic stem cells, Genome Biology. 14, 9, R98
- 2012 Human RNA Methyltransferase BCDIN3D Regulates MicroRNA Processing, Cell, 151 (2), 278-288
- 2012 Three distinct patterns of histone H3Y41 phosphorylation mark active genes, Cell Reports. 2, 3, p. 470-477
- 2011 Deciphering c-MYC-regulated genes in two distinct tissues, BMC Genomics. 12, 1, 476
- 2011 Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia, Nature, 478 (7370), 529-533
- 2010 Origins and functional impact of copy number variation in the human genome, Nature, 464 (7289), 704-712
- 2010 Genome-wide association study of copy number variation in 16,000 cases of eight common diseases and 3,000 shared controls, Nature, 464 (7289), 713-720
- 2010 Nucleosome-interacting proteins regulated by DNA and histone methylation, Cell, 143 (3), 470-484
- 2006 c-Myc and downstream targets in the pathogenesis and treatment of cancer, Recent Patents on Anti-Cancer Drug Discovery. 1, 3, 305-326