

Recommender systems

Goal

- To know the motivation behind recommender systems (RS)
- To understand how RS works and know the principle behind RS methods/algorithms

Motivation

RECOMMENDATIONS FOR CATHERINE WALLACH

Problem: How to recommend items to users to make user, content partner, websites happy!

Recommendations

From Scarcity to Abundance

- Shelf space scarce commodity for traditional retailers
 - Also: TV networks, movie theatres,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller: http://www.wired.com/wired/archive/12.10/tail.html

The Long Tail Phenomenon

Types of Recommendations

- Editorial and hand curated
 - List of favorites
 - Lists of "essential" items
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, Apple Music, Spotify, Facebook Ads...

Formal Model

- X = Set of Customers
- **S** = Set of **Items**
- Utility function u: X x S -> R
 - R = Set of ratings
 - **R** totally ordered set
 - E.g., 0 5 stars. real number in [0, 1]

Utility Matrix

	Avata	LOTR	Matrix	Pirate
	r			S
Alice	1		0,2	
Bob		0,5		0,3
Carol	0,2		1	
David				0,4

Key Problems

1. Gathering "known" ratings for matrix

How to collect the data in the utility matrix

2.Extrapolate unknown ratings from the known ones

- Mainly interested in high unknown ratings
- Not interested in knowing what you don't like but what you like

3. Evaluating extrapolation methods

How to measure success/performance of recommendation methods

(1) Gathering Ratings

Explicit

- Ask people to rate items
 - Doesn't work well in practice people can't be bothered
- Crowdsourcing: Pay people to label items

Implicit

- Learn ratings from user actions
 E.g., purchase implies high rating
- What about low ratings?

(2) Extrapolating Utilities

- Key problem:
 - Sparsity of utility matrix U
 - Most people have not rated most items
 - Cold start:
 - New items no ratings
 - New users no history
- Three approaches to recommender systems:
 - 1) Content-based
 - 2) Collaborative
 - 3) Latent factor based

Content-based Recommendations

Main idea:

Recommend items to customer *X* similar to previous items rated highly by *X*

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action

Item Profiles

- For each item, create an item profile
- Profile: a set (vector) of features
 - Movies: author, title, actor, director,...
 - Text: Set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

Item Features

- Description of items in terms of attributes
 - E.g.: Type, Director, Actors
- Description via keywords
- Possibility to look at content itself, like the text

TF-IDF

 f_{ij} = frequency of term (feature) i in doc (item) j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

Note: we normalize TF to discount for "longer" documents

 n_i = number of docs that mention term i

N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ij} = TF_{ij} \times IDF_i$ Doc profile = set of words with highest **TF-IDF** scores, together with their scores

User Profiles and Prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item
 - •
- Prediction heuristic
 - Given user profile x and item profile i, estimate

$$u(x,i) = \cos(x,i) = \frac{x \cdot i}{||x|| \cdot ||i||}$$

Learning a User Model

Pros: Content-based approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-bases Approach

- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Collaborative Filtering

How can we exploit quality judgments of other users to provide relevant recommendation?

Collaborative Filtering

- Maintain a database of many users' ratings of a variety of items.
- For a given user, find other similar users whose ratings strongly correlate with the current user.
- Recommend items rated highly by these similar users, but not rated by the current user.
- Almost all existing commercial recommenders use this approach (e.g. Amazon).

Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

Find "similar users"

$$r_{x} = [*, _, *, *, ***]$$
 $r_{y} = [*, _, **, **, _]$

- Let r_x be the vector of user x's ratings
- Jaccard similarity measure

- r_x , r_v as sets: $r_x = \{1, 4, 5\}$ $r_v = \{1, 3, 4\}$
- **Problem**: Ignores the value of the rating
- Cosine similarity measure $sim(x, y) = cos(r_x, r_y) = \frac{r_x \cdot r_y}{\|r_x\| \cdot \|r_y\|}$

$$sim(x,y) = cos(r_x,r_y) = \frac{||\mathbf{r}_x|| \cdot ||\mathbf{r}_y||}{||\mathbf{r}_x|| \cdot ||\mathbf{r}_y||}$$

 r_x , r_y as points: $r_x = \{1, 0, 0, 1, 3\}$ $r_v = \{1, 0, 2, 2, 0\}$

- Problem: Treats missing ratings as "negative"
- Pearson correlation coefficient
 - S_{xy} = Set of items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}} \quad \text{rating of } \mathbf{x}, \, \mathbf{y}$$

Similarity Metric

$$sim(x,y) = \frac{\sum_{i} r_{xi} \cdot r_{yi}}{\sqrt{\sum_{i} r_{xi}^{2}} \cdot \sqrt{\sum_{i} r_{yi}^{2}}}$$

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4
- Cosine similarity: 0.380 > 0.322
 - Considers missing ratings as "negative"
 - Solution: subtract the (row) mean

sim A,B vs. A,C:

is centered at 0

Rating Predictions

- From similarity metric to recommendations:
 - Let r_x: vector of user x's ratings
 - Let N : set of k users most similar to x who have rated item i
- Prediction for item s of user x:

•
$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$
 Shorthand: $s_{xy} = sim(x, y)$
• $r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$

- Other options?
- Many other tricks possible...

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item i, find other similar items
 - Estimate rating for item i based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

 s_{ij} ... similarity of items i and j r_{xj} ...rating of user u on item j N(i;x)... set items rated by x similar to i

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3			5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- unknown rating

- rating between 1 to 5

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		?	5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- estimate rating of movie 1 by user 5

users

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
movies	2			5	4			4			2	1	3	-0.18
	3	2	4		1	2		3		4	3	5		<u>0.41</u>
	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	6	1		3		3			2			4		<u>0.59</u>

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

- 1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

users

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	3	2	4		1	2		3		4	3	5		<u>0.41</u>
m .	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	6	1		3		3			2			4		<u>0.59</u>
		1			3		2		2				5	

Compute similarity weights:

$$s_{1,3}$$
=0.41, $s_{1,6}$ =0.59

users

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
10	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ξ	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3		?	2			4	

Predict by taking weighted average:

$$r_{1.5} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

CF: Common Practice

Before:

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

- Define similarity s_{ij} of items i and j
- Select k nearest neighbors N(i; x)
 - Items most similar to i, that were rated by x
- Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for rxi

$$b_{xi} = \mu + b_x + b_i$$

 μ = overall mean movie rating b_x = rating deviation of user x = (avg. rating of user x) – μ b_i = rating deviation of movie i

Item-Item vs. User-User

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.8	
Bob		0.5		0.3
Carol	0.9		1	0.8
David			1	0.4

- In practice: item-item often works better than user-user
- Why? Items are simpler, users have multiple tastes

Pros/Cons of Collaborative Filtering

- + Works for any kind of item
 - No feature selection needed
- Cold Start:
 - Need enough users in the system to find a match
- Sparsity:
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items

Pros/Cons of Collaborative Filtering (2)

- First rater:

- Cannot recommend an item that has not been previously rated
- New items, Esoteric items

- Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

Cold Start

New item problem:

 small number of users that rated an item, accurate prediction for this item cannot be generated.

New user problem:

 small number of items rated by a user, it is unlikely that there could be an overlap of items rated by this user and active users. User- to-user similarity cannot be reliably computed.

New community problem:

- Without sufficient ratings, it's hard to differentiate value by personalized CF recommendations.
- Clear reward systems necessary to convince users to vote or rate items.

Possible solution to cold start

As the solution for new user problem:

- Displaying non-personalized recommendation until the user has rated enough
- Asking the user to describe their taste in aggregate
- Asking the user for demographic information and using ratings of other users with similar demographics as recommendations

As the solution for new item problem:

- Recommending items through non-CF techniques content analysis or metadata
- Randomly selecting items with few or no ratings and asking user to rate those items.

As the solution for new community problem:

 Provide ratings incentives to a small "bootstrap" subset of the community, before inviting the entire community.

Data Sparsity & Ratings scarcity

- The ratings matrix is sparse and only a small fraction of all possible user item entries is known.
- Many CF algorithms designed specifically for data sets with many more users than items (e.g., the MovieLens data set has 65,000 users and 5,000 movies).
- CF may be inappropriate in a domain where there are many more items than users.
- Implicit vs. explicit ratings

Evaluation of Collaborative Filtering

- To determine the quality of the predictions and recommendations
 - Accuracy
 - Rating accuracy: error between the predicted ratings and the true ratings. Mean Absolute Error (MAE) = average absolute difference between the predicted ratings and the actual rating given by a user
 - Precision
 - Rank accuracy: half-life utility.
 - Novelty / Serendipity (Karypis, 2001)
 - Coverage (Sarwar, et. al., 2000)
 - Learning Rate (Schein, et. al., 2001)
 - Confidence (Herlocker,2000)
 - User Satisfaction (Swearingen & Sinha, 2001; Dahlen, B. J., 1998)
 - Site Performance

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem