

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC146379

1 of 49 Page:

FCC Radio Test Report FCC ID: 2AGZE-NXST22

Original Grant

Report No. TB-FCC146379

Nexersys Corporation Applicant

Equipment Under Test (EUT)

EUT Name Nexersys Console

Model No. NXST22

Series No. Please see the page of 4

Brand Name Nexersys

Receipt Date 2015-12-15

2015-12-16 to 2015-12-30 **Test Date**

Issue Date 2015-12-31

FCC Part 15, Subpart C (15.247:2015) **Standards**

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness

Engineer

Approved&

Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

TOBY

Page:

2 of 49

Contents

CON	ITENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	5
	1.4 Description of Support Units	5
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	
3.	TEST EQUIPMENT	10
4.	CONDUCTED EMISSION TEST	11
	4.1 Test Standard and Limit	11
	4.2 Test Setup	11
	4.3 Test Procedure	11
	4.4 EUT Operating Mode	12
	4.5 Test Data	12
5.	RADIATED EMISSION TEST	17
	5.1 Test Standard and Limit	17
	5.2 Test Setup	18
	5.3 Test Procedure	19
	5.4 EUT Operating Condition	20
	5.5 Test Data	20
6.	RESTRICTED BANDS REQUIREMENT	33
	6.1 Test Standard and Limit	33
	6.2 Test Setup	33
	6.3 Test Procedure	33
	6.4 EUT Operating Condition	34
	6.5 Test Data	34
7.	BANDWIDTH TEST	40
	7.1 Test Standard and Limit	40
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	40
	7.5 Test Data	41
8.	PEAK OUTPUT POWER TEST	43
	8.1 Test Standard and Limit	43
	8.2 Test Setup	

Page: 3 of 49

	8.3 Test Procedure	43
	8.4 EUT Operating Condition	
	8.5 Test Data	44
9.	POWER SPECTRAL DENSITY TEST	46
	9.1 Test Standard and Limit	46
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	46
	8.5 Test Data	47
10.	ANTENNA REQUIREMENT	49
	10.1 Standard Requirement	49
	10.2 Antenna Connected Construction	
	10.3 Result	49

Page: 4 of 49

1. General Information about EUT

1.1 Client Information

Applicant: Nexersys Corporation

Address: 1021 East 7th Street, Suite 100, Austin, TX 78702, United States

Manufacturer : Nexersys Corporation

Address: 1021 East 7th Street, Suite 100, Austin, TX 78702, United States

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Nexersys Console		
Models No.	3	NXST22, NXST19, WF1851T, WF2151T, NXST-XX(The XX is client number from 01 to 50)		
Model Difference	-	They are identical in circuitry design, PCB layout, electrical components used, internal wiring and functions, only different on color.		
	S. S	Operation Frequency: BLE: 2402MHz~2480MHz WIFI 802.11b/g/n(H20): 2412MHz~2462MHz 802.11n(H40): 2422MHz~2452MHz see note(2)		
Product		Number of Channel:	Bluetooth 4.0 (BLE): 40 channels see note(3)	
Description		RF Output Power:	1.008 dBm Conducted Power	
		Antenna Gain:	3.12 dBi FPC Antenna	
		Modulation Type:	GFSK	
		Bit Rate of Transmitter:	1Mbps(GFSK)	
Power Supply	:	DC power supplied by A	C/DC Adapter.	
Power Rating	•	AC/DC Adapter: Input:100~240V, 50/60Hz , 2A Output:12V, 3.0A		
Connecting I/O Port(S)	:	Please refer to the User's Manual		

Note:

- (1) This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v03r03.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual. The EUT has also been tested and complied the FCC 15C for WiFi function, and recorded in the separate test report.
- (3) Antenna information provided by the applicant.
- (4) Channel List:

Page: 5 of 49

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

1.4 Description of Support Units

The EUT has been tested as an independent unit.

Page: 6 of 49

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
Mode 1	AC Charging With TX Mode			

For Radiated Test				
Final Test Mode	Description			
Mode 2	AC Charging With TX Mode			
Mode 3 TX Mode (Channel 00/20/39)				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

Bluetooth BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 7 of 49

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	Realtek MP Test		
Channel	CH 00	CH 20	CH 39
BLE Mode	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dadiated Emission	Level Accuracy:	. 4 CO dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Emission	30MHz to 1000 MHz	±4.40 db
Radiated Emission	Level Accuracy:	±4.20 dB
Radiated Emission	Above 1000MHz	±4.20 UB

Page: 8 of 49

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 9 of 49

2. Test Summary

Standa	rd Section	Tool How	lu dama and	Damari
FCC	IC	Test Item	Judgment	Remark
15.203	1	Antenna Requirement	PASS	N/A
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS	N/A
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A
15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious Emission	PASS	N/A

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 10 of 49

3. Test Equipment

Conducte	d Emission Te	est			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Aug. 07, 2015	Aug. 06, 2016
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Aug. 07, 2015	Aug. 06, 2016
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Aug. 07, 2015	Aug. 06, 2016
LISN	Rohde & Schwarz	ENV216	101131	Aug. 07, 2015	Aug. 06, 2016
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Date
Radiation	Emission Tes	i.			Cal. Due
Spectrum	Agilent	E4407B	MY45106456	Aug. 29, 2015	Aug. 28, 2016
Analyzer EMI Test Receiver	Rohde & Schwarz	ESCI	100010/007	Aug. 07, 2015	Aug. 06, 2016
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 28, 2015	Mar. 27, 2016
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 28, 2015	Mar. 27, 2016
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 28, 2015	Mar. 27, 2016
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 28, 2015	Mar. 27, 2016
Pre-amplifier	Sonoma	310N	185903	Mar. 28, 2015	Mar. 27, 2016
Pre-amplifier	HP	8447B	3008A00849	Mar. 28, 2015	Mar. 27, 2016
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 28, 2015	Mar. 27, 2016
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

Page: 11 of 49

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Transport (MIN)	Maximum RF Lin	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 12 of 49

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Test data please refer the following pages.

Page: 13 of 49

EUT:	Nexersys Console	Model Name :	NXST22		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz			
Terminal:	Line	Line			
Test Mode:	AC Charging with TX E	AC Charging with TX BLE Mode 2402MHz			
Remark: Only worse case is reported			33		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	O∨er	
		MHz	dBu∀	dB	dBu∨	dBu∀	dB	Detector
1		0.1860	32.80	10.12	42.92	64.21	-21.29	QP
2		0.1860	16.71	10.12	26.83	54.21	-27.38	AVG
3	*	0.4460	31.75	10.04	41.79	56.95	-15.16	QP
4		0.4460	20.13	10.04	30.17	46.95	-16.78	AVG
5		0.5500	28.84	10.02	38.86	56.00	-17.14	QP
6		0.5500	15.55	10.02	25.57	46.00	-20.43	AVG
7		1.0980	29.30	10.15	39.45	56.00	-16.55	QP
8		1.0980	15.66	10.15	25.81	46.00	-20.19	AVG
9		4.5739	27.61	10.06	37.67	56.00	-18.33	QP
10		4.5739	17.35	10.06	27.41	46.00	-18.59	AVG
11		14.4580	32.25	10.07	42.32	60.00	-17.68	QP
12		14.4580	24.17	10.07	34.24	50.00	-15.76	AVG

^{*:}Maximum data x:Over limit !:over margin

Page: 14 of 49

	ean's	3	CHIR	Section 1
NO.	1			T.

EUT:	Nexersys Console	Model Name :	NXST22				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz						
Terminal:	Neutral	Neutral					
Test Mode:	AC Charging with TX BLE Mode 2402MHz						
Remark: Only worse case is reported							

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector
1		0.4460	32.18	10.04	42.22	56.95	-14.73	QP
2		0.4460	21.97	10.04	32.01	46.95	-14.94	AVG
3		0.5660	31.42	10.02	41.44	56.00	-14.56	QP
4		0.5660	18.24	10.02	28.26	46.00	-17.74	AVG
5		0.8020	30.11	10.07	40.18	56.00	-15.82	QP
6		0.8020	17.85	10.07	27.92	46.00	-18.08	AVG
7		1.2820	28.74	10.13	38.87	56.00	-17.13	QP
8		1.2820	15.46	10.13	25.59	46.00	-20.41	AVG
9		5.1540	29.63	10.06	39.69	60.00	-20.31	QP
10		5.1540	19.11	10.06	29.17	50.00	-20.83	AVG
11		12.9540	33.74	10.10	43.84	60.00	-16.16	QP
12	*	12.9540	25.74	10.10	35.84	50.00	-14.16	AVG

^{*:}Maximum data x:Over limit !:over margin

EUT:	Nexersys Console	Model Name :	NXST22
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 240V/60Hz	THU:	13 V
Terminal:	Line		
Test Mode:	AC Charging with TX BLE	Mode 2402MHz	
Remark:	Only worse case is reporte	ed	3 1
80.0 dBuV			
30		Man and and and and and and and and and a	QP: — AVG: — Peak
0.150 No. Mk. Fr	Reading Corrected.		30.000 Over
	Hz dBuV dB	dBuV dBuV	dB Detector
1 0.18	819 38.21 9.98	48.19 64.39	-16.20 QP
2 0.18	819 28.08 9.98	38.06 54.39	-16.33 AVG
3 0.46	660 32.15 10.02	42.17 56.58	-14.41 QP
4 0.46	660 17.32 10.02	27.34 46.58	-19.24 AVG
5 0.5	420 38.34 10.04	48.38 56.00	-7.62 QP
6 * 0.54	420 29.78 10.04	39.82 46.00	-6.18 AVG
7 4.88	859 30.56 9.96	40.52 56.00	-15.48 QP
8 4.88	859 21.96 9.96	31.92 46.00	-14.08 AVG
9 12.9	540 30.22 10.22	40.44 60.00	-19.56 QP
10 12.95	540 24.37 10.22	34.59 50.00	-15.41 AVG
11 17.3	420 29.46 10.21	39.67 60.00	-20.33 QP
12 17.3	420 23.18 10.21	33.39 50.00	-16.61 AVG
10 12.99 11 17.34	540 24.37 10.22 420 29.46 10.21	34.59 50.00 39.67 60.00	-15.41 AV -20.33 QF

EUT:	Nexersys Console	Model Name :	NXST22	
Temperature:	25 ℃	Relative Humidity:	55%	
Test Voltage:	AC 240V/60Hz		10	
Terminal:	Neutral			
Test Mode:	AC Charging with TX BLE N	Mode 2402MHz		
Remark:	Only worse case is reported		a Usua	
80.0 dBuV				
-20 0.150	0.5 (MHz)	Many Many Many Many Many Many Many Many	QP:	
	Reading Correct		Over	
	req. Level Factor MHz dBuV dB		Over dB Detector	
	MHz dBuV dB 1860 37.95 10.12	dBu∨ dBu∨ 48.07 64.21 -	dB Detector -16.14 QP	
	1860 27.80 10.12		16.29 AVG	
	4620 32.73 10.03	42.76 56.66 -		
	4620 16.30 10.03	26.33 46.66 -		
	5460 38.75 10.02	48.77 56.00		
	5460 30.70 10.02	40.72 46.00		
	3420 31.10 10.06	41.16 56.00 -		
	3420 31.10 10.00 3420 22.97 10.06	33.03 46.00 -		
	0980 30.53 10.06	40.59 60.00 -		
	0980 22.18 10.06	32.24 50.00 -		
	0340 32.52 10.10	42.62 60.00 -		
	0340 32.52 10.10 0340 26.54 10.10	36.64 50.00 -		
	26.54 10.10 er limit !:over margin	30.04 50.00 -	-13.30 AVG	

Page: 17 of 49

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Class A (dBuV	/m)(at 3 M)	Class B (dBuV/m)(at 3 M)		
(MHz)	Peak	Average	Peak	Average	
Above 1000	80	60	74	54	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Page: 18 of 49

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 19 of 49

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 20 of 49

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1 kHz with Peak Detector for Average Values.

Test data please refer the following pages.

UT:	Nexersys Conso	ole	Model:		NXST	22
emperature:	25 ℃	30	Relative Hu	ımidity:	55%	A STATE
est Voltage:	AC 120V/60Hz			(TITE)	133	
Ant. Pol.	Horizontal	L. Lilinia		6.3		
est Mode:	BLE TX 2402 M	ode	MILDS		* A.	
Remark:	Only worse case	is reported		TITL'S	3	
80.0 dBuV/m						
30	Joseph Japan	The stands are also as a second and a second are a second		(RF)FCC 150	Margin - 6	dB Lipshily.
30.000 40 50	Reading	(MHz)	300 Measure-	400 500	600 700	1000.00
No. Mk.	Freq. Level	Factor	ment	Limit	Over	
	MHz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1 * 148	3.4410 61.21	-21.30	39.91	43.50	-3.59	peal
2 ! 199	9.2855 59.80	-20.43	39.37	43.50	-4.13	peal
3 ! 222	2.9501 60.06	-19.40	40.66	46.00	-5.34	peal
4 ! 249	9.4250 58.74	-18.15	40.59	46.00	-5.41	peal
5 ! 301	1.4223 58.14	-17.03	41.11	46.00	-4.89	peal
	0.4892 46.45	-7.77	38.68	46.00	-7.32	peal
	::Over limit	_				, -

EUT:	Nexersys Console	Model:	NXST22					
Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120V/60Hz	01 - 0						
Ant. Pol.	Vertical	Vertical						
Test Mode:	BLE TX 2402 Mode		NI VIII					
Remark: Only worse case is reported								
80.0 dBuV/m								

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	45.2165	59.35	-22.37	36.98	40.00	-3.02	peak
2	ļ	64.6594	60.09	-24.10	35.99	40.00	-4.01	peak
3		96.7749	59.47	-22.10	37.37	43.50	-6.13	peak
4	!	148.4410	59.38	-21.30	38.08	43.50	-5.42	peak
5	ļ	200.6880	60.34	-20.36	39.98	43.50	-3.52	peak
6	ļ	449.5557	53.53	-12.47	41.06	46.00	-4.94	peak

^{*:}Maximum data x:Over limit !:over margin

Page: 23 of 49

EUT:	Nexersys Console	Model:	NXST22
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	TIES THE	133
Ant. Pol.	Horizontal		
Test Mode:	BLE TX 2442 Mode	WILD THE STATE OF	Alle
Remark:	Only worse case is reported	(in)	3 _ (1)

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	O∨er	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	148.4410	61.24	-21.30	39.94	43.50	-3.56	peak
2	ļ	199.2855	59.48	-20.43	39.05	43.50	-4.45	peak
3	ļ	222.9500	59.70	-19.40	40.30	46.00	-5.70	peak
4	į	251.1802	59.36	-18.10	41.26	46.00	-4.74	peak
5	ļ	297.2241	59.21	-17.14	42.07	46.00	-3.93	peak
6	!	836.2441	47.83	-6.47	41.36	46.00	-4.64	peak

^{*:}Maximum data x:Over limit !:over margin

			THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW
EUT:	Nexersys Console	Model:	NXST22
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		THE STATE OF THE S
Ant. Pol.	Vertical		
Test Mode:	BLE TX 2442 Mode		The same of the sa
Remark:	Only worse case is rep	oorted	(:33
80.0 dBuV/m			

No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	ļ	43.8119	58.44	-21.77	36.67	40.00	-3.33	peak
2	*	73.8756	60.35	-23.49	36.86	40.00	-3.14	peak
3	ļ	199.2855	59.47	-20.43	39.04	43.50	-4.46	peak
4		249.4250	56.42	-18.15	38.27	46.00	-7.73	peak
5		447.9821	52.44	-12.49	39.95	46.00	-6.05	peak
6	ļ	818.8341	48.76	-6.34	42.42	46.00	-3.58	peak

^{*:}Maximum data x:Over limit !:over margin

EUT:		3	Nex	ersy	ys (Consc	лe	100	٨	lode	el:				NX	ST	22	
Tempe	rature:		25 °	C	E				F	Relat	ive H	umi	idit	y:	55°	%		
est Vo	oltage:		AC	120	V/6	0Hz		A.					6			•		
Ant. Po	ol.		Hori	zon	ıtal		\						No.				Ñ	
est M	ode:		BLE	TX	24	80 M	ode		1									
Remar	k:		Only	/ WC	orse	case	e is re	eporte	k						5			
80.0 dE	BuV/m																	_
30							† *	2	3 4 * *	5 X	G X	(R	F)FC(C 15C	3M Ra	diatio		
20 30.000	40	50 E	V	0 80		1/4/1/4/44	W Later of the second	(MHz)	pl hyd	<u> </u>	300	(N) (N) (N)	00	500	600	700	///VY	000.0
30.000	40 Mk.	50 E	SO 7	o 80	Rea	iding		(MHz) orrect		eası men	ıre-		mit		600		1	000.c
30.000			g.	o 80	Rea	_	F	orrect			ıre- it	Liı				⁄er		000.c
30.000	Mk.	Fre	q.	0 80 F	Rea Le	vel	F	orrect actor	,	m en	ure- it	Li i dE	mit	m	Ov	'er B		
30.000 No.	Mk.	Fre-	q. 2	0 80	Rea Le	vel 3u∀	-2	orrect actor		men dBuV	ure- it /m	Lii dE	mit BuV/	m 0	0v	'er B	D	ete
No.	Mk.	Fre- MHz 25.00	q	0 80 R	Rea Le dB 55	vel 3u V .61 .22	-2 -2	orrect actor dB/m 22.34 21.30	- 1	men dBu∨ 33.2 37.9	ure- t /m 27	Lii dE 43	mit 3.5 3.5	m 0	Ov di -10	⁄er B 0.23	3	etec pea
No. 1 2 3	Mk. 12 ! 14 ! 19	Fred MHz 25.00 18.44	q	0 80	dE 55 59	vel 3u√ .61 .22 .22	-2 -2 -2	orrect actor 22.34 21.30		men 33.2 37.9 38.7	ire- it /m 27 22	Lii dE 4:	mit 3.5 3.5	m 0 0	Ov dl -10 -5.	ver B 0.23 .58	3	etec pea pea
No. 1 2 3 4	Mk. 12 ! 14 ! 19 ! 22	Fred MHz 25.00 48.44 99.28 22.95	qq	0 80	Read Le 55 59 59	vel 3u / .61 .22 .22 .71	-2 -2 -2 -1	orrect actor 22.34 21.30 20.43 9.40		men 33.2 37.9 38.7 40.3	ire- it /m 27 22 79	Lii dE 4: 4: 4:	mit 3.5 3.5 3.5	m 0 0	Ov -10 -5. -4.	/er B 0.23 .58 .71	3	pea pea pea
No. 1 2 3	Mk. 12 ! 14 ! 19 ! 22 * 24	Fred MHz 25.00 18.44	qq	0 80 R	Sea Le 55 59 59 60	vel 3u√ .61 .22 .22	-2 -2 -2 -1	orrect actor 22.34 21.30	1	men 33.2 37.9 38.7	ire- it /m 27 92 79	Liu dE 43 44 44 44	mit 3.5 3.5	m 0 0 0	Ov -10 -5. -4. -5.	ver B 0.23 .58	3	etec pea pea

Page: 26 of 49

EUT: Temperature:			, , , , , , , , , , , , , , , , , , , ,			M	lodel:	:				1	NXS	T22	2	W.			
Temp	erature):	25	$^{\circ}\!\mathbb{C}$	é			3	R	elativ	∕e H	lumi	idit	y:	į	55%	,		
Test \	/oltage	:	AC	120)/VC	60Hz								Á		3)		
Ant. F	ol.		Ver	tica	ıl		4	A.H.						W.			A	ĸ	
Test N	/lode:		BLE TX 2480 Mode																
Rema	rk:		Onl	Only worse case is reported															
80.0	1BuV/m			2 X				3 /*\\	4				(R	F)FC(C 15C	3M Ra	adiatio		
-20 30.00	0 40	50	60 :	70 8	30		^_/ 	(MHz)			3	00	40)O	500	600	700	M/1	1000.0
-20		50	60			ading		(MHz)	t t	Mea					500			J.(4.)	1000.0
-20	0 40 o. Mk.	50 Fre			Rea	ading				Mea: me	sure		40 Lir		500	600			1000.0
-20			eq.		Rea Le			Corre		me	sure	-	Lir				er		1000.0
-20	. Mk.	Fre	e q .		Rea Le	evel		Correc Facto	r	m e	sure ent	-	Lir	nit	m	Ov	er		
-20 30.000	. Mk.	Fre	eq.		Rea Le	evel BuV		Correct Factor	r i	dBu	sure ent	-	Lir dB	nit u∀/ı	m D	O∨ dt -3.	er)etect
-20 30.000	. Mk. *	Fre M⊢ 42.60	eq. z 000 350	F	Rea Le dl 57	Bu V 7.67	9	Correc Facto dB/m -21.26	r i	те dВu 36 35	sure ent iV/m	-	Lir dB 40	nit u∀/r D. O (m O	Ov dl -3.	er ∃ 59)etect pea
No.000	* !	Fre MH 42.60 74.10	eq. 1z 2000 350 410	F	Rea Le 57 59	Bu V 7.67 9.16	9	Correct Factor dB/m -21.26	i i	36 35 38	sure ent IV/m I.41	-	Lin dB 40 40	nit u∀/r 0.00	m D D	Ov -3. -4.	er ∃ 59		etect pea pea
No.000	* ! !	Fre MH 42.60 74.10	eq. 000 350 410	I	57 59 60	7.67 9.16		Correct Factor dB/m -21.26 -23.48 -21.30	ir	36 35 38 39	sure ent :.41 :.68	-	Lir dB 40 40 43	nit uV/r 0.00	m D D	Ov -3. -4. -4.	er 59 32 80		Petect pea pea pea

		(7:33	
EUT:	Nexersys Console	Model:	NXST22
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	31 6	
Ant. Pol.	Horizontal		
Test Mode:	BLE Mode TX 2402 MHz	WILD S	A VIII
Remark:	No report for the emission	which more than 10 dB	below the

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.087	45.23	13.44	58.67	74.00	-15.33	peak
2	*	4804.087	33.92	13.44	47.36	54.00	-6.64	AVG

Nexersys Console	Model:	NXST22
25 ℃	Relative Humidity:	55%
AC 120V/60Hz		Tibe of
Vertical		
BLE Mode TX 2402 MHz	WILLIAM STATE	A VIII
No report for the emission of prescribed limit.	which more than 10 dB	below the
	25 °C AC 120V/60Hz Vertical BLE Mode TX 2402 MHz No report for the emission	25 °C Relative Humidity: AC 120V/60Hz Vertical BLE Mode TX 2402 MHz No report for the emission which more than 10 dB

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.501	47.04	13.44	60.48	74.00	-13.52	peak
2	*	4804.501	35.24	13.44	48.68	54.00	-5.32	AVG

EUT:	Nexersys Console	Model:	NXST22		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	AC 120V/60Hz		33		
Ant. Pol.	Horizontal	1			
Test Mode:	BLE Mode TX 2442 MHz	William -	HALL		
Remark:					
	prescribed limit.				

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4884.027	45.45	13.92	59.37	74.00	-14.63	peak
2	*	4884.027	33.73	13.92	47.65	54.00	-6.35	AVG

Page: 30 of 49

EUT:	Nexersys Console	Model:	NXST22
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	11	1133
Ant. Pol.	Vertical	O	
Test Mode:	BLE Mode TX 2442 MHz	WIID S	2
Remark:	No report for the emission v	which more than 10 dB	below the

No	. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4883.829	46.43	13.92	60.35	74.00	-13.65	peak
2	*	4883.829	34.40	13.92	48.32	54.00	-5.68	AVG

EUT:	Nexersys Console	Model:	NXST22
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	an an	الالان
Ant. Pol.	Horizontal		
Test Mode:	BLE Mode TX 2480 MHz		A HILL

Remark: No report for the emission which more than 10 dB below the

prescribed limit.

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.928	46.08	14.36	60.44	74.00	-13.56	peak
2	*	4959.928	34.08	14.36	48.44	54.00	-5.56	AVG

Page: 32 of 49

EUT:	Nexersys Console	Model:	NXST22			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical					
Test Mode:	BLE Mode TX 2480 MHz		D HILL			
Remark: No report for the emission which more than 10 dB below the prescribed limit.						

N	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.258	45.05	14.36	59.41	74.00	-14.59	peak
2	*	4960.258	33.90	14.36	48.26	54.00	-5.74	AVG

Page: 33 of 49

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Class B (dB	uV/m)(at 3 M)
Band (MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked

Page: 34 of 49

and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 KHz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1kHz with Peak Detector for Average Values.

Test data please refer the following pages.

Page: 35 of 49

(1) Radiation Test

EUT:	Nexersys Console	Model:	NXST22		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage: AC 120V/60Hz					
Ant. Pol.	Horizontal		MILL		
Test Mode:	BLE Mode TX 2402 MHz				
Remark:	N/A				

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	O∨er	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	29.95	0.77	30.72	74.00	-43.28	peak
2		2390.000	19.61	0.77	20.38	54.00	-33.62	AVG
3	*	2402.100	77.05	0.82	77.87	Fundamental F	requency	AVG
4	Χ	2402.300	83.95	0.82	84.77	Fundamental I	requency	peak

Page: 36 of 49

2420.00 MHz

2320.000 2330.00

2340.00

2350.00

2360.00

EUT:	Nexersys Console	Model:	NXST22				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	115	الالالا				
Ant. Pol.	Vertical	Vertical					
Test Mode:	BLE Mode TX 2402 MHz	WIIDS -	J. HILL				
Remark:	N/A						
100.0 dBuV/m							
			5				
			RT 15C (PEAK)				
		(BE) FCC	PART 15C (AVG)				
40		1 1					
		2					

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	30.78	0.77	31.55	74.00	-42.45	peak
2		2390.000	19.30	0.77	20.07	54.00	-33.93	AVG
3	*	2402.000	80.85	0.82	81.67	Fundamental	Frequency	AVG
4	Х	2402.200	87.22	0.82	88.04	Fundamental	Frequency	peak

2370.00

2380.00

2390.00

2400.00

Page: 37 of 49

EUT:	Nexersys Console	Model:	NXST22
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		13
Ant. Pol.	Horizontal		
Test Mode:	BLE Mode TX 2480 MHz		ABO
Remark:	N/A		

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	O∨er	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2479.900	76.71	1.15	77.86	Fundamental F	requency	AVG
2	Х	2480.200	83.52	1.15	84.67	Fundamental F	requency	peak
3		2483.500	48.76	1.17	49.93	74.00	-24.07	peak
4		2483.500	43.11	1.17	44.28	54.00	-9.72	AVG

Emission Level= Read Level+ Correct Factor

Page: 38 of 49

EUT:	Nexersys Console	Model:	NXST22
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	31 - 6	TUBE
Ant. Pol.	Vertical		
Test Mode:	BLE Mode TX 2480 MHz	MIDE	
Remark:	N/A		33 _ 6

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	78.91	1.15	80.06	Fundamental	Frequency	AVG
2	Х	2480.200	85.37	1.15	86.52	Fundamental	Frequency	peak
3		2483.500	48.92	1.17	50.09	74.00	-23.91	peak
4		2483.500	43.42	1.17	44.59	54.00	-9.41	AVG

Emission Level= Read Level+ Correct Factor

Page: 39 of 49

(2) Conducted Test

EUT:	Nexersys Console	Model:	NXST22
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	10	
Test Mode:	BLE Mode TX 2402MHz / B	LE Mode TX 2480MHz	MILL
Remark:	The EUT is programed in co	ntinuously transmitting	mode

Page: 40 of 49

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC	Part 15 Subpart C(15.247)	/RSS-247
Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

Page: 41 of 49

7.5 Test Data

EUT:	Nexersys Console		Model:	NXST22	
Temperature:	25 ℃		Relative Humidity:	55%	
Test Voltage:	AC	AC 120V/60Hz			
Test Mode:	BLE	TX Mode		3 0	
Channel frequer	су	6dB Bandwidth	99% Bandwidth	Limit	
(MHz)		(kHz)	(kHz)	(kHz)	
2402		750.334	1084.30		
2442		748.951	1083.50	>=500	
2480		755.876	1083.80		
		BLE Mod	<u> </u>	1	

BLE Mode

2402 MHz

Page: 42 of 49

2480 MHz Agilent Ref 10 dBm Atten 20 dB #Peak Log 10 dB/ Center Offst 1 dB 2.480000000 GHz Center 2.48 GHz Span 3 MHz #Res BW 100 kHz Sweep 5 ms (401 pts) **#VBW 300 kHz** Occupied Bandwidth Occ BW % Pwr 99.00 % -6.00 dB x dB 1.0838 MHz Transmit Freq Error -32.038 kHz x dB Bandwidth 755.876 kHz

Page: 43 of 49

8. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247			
Test Item	Limit	Frequency Range(MHz)	
Peak Output Power	1 Watt or 30 dBm	2400~2483.5	

8.2 Test Setup

8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v03r03.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

Page: 44 of 49

8.5 Test Data

EUT:	Nexersys	Console	Model:	NXST22
Temperature:	25 ℃		Relative Humidity:	55%
Test Voltage:	AC 120V/	60Hz	THUE	A MILLER
Test Mode:	BLE TX M	lode		
Channel frequen	cy (MHz)	Test Result (c	IBm) Li	mit (dBm)
2402		0.060		
2442		-0.380		30
2480		1.008		
		BLE Mode	9	
		2402 MHz	·	

Page: 45 of 49

Page: 46 of 49

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)		
Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v03r03.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequenyc.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Midle and high channel for the test.

Page: 47 of 49

8.5 Test Data

EUT:	Nexersys	Console	Model:	NXST22
Temperature:	25 ℃		Relative Humidity:	55%
Test Voltage:	AC 120V/	60Hz		
Test Mode:	BLE TX M	/lode	O LUCA	1 100
Channel Freq	uency	Power Dens	sity	Limit
(MHz)		(3 kHz/dBı	m)	(dBm)
2402		-14.22		
2442		-15.23		8
2480		-13.18		
		BI F Mod	e	

2402 MHz

Page: 48 of 49

Page: 49 of 49

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 3.12 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.3 Result

The EUT antenna is an Embedded Antenna. It complies with the standard requirement.

Antenna Type	
▼ Permanent attached antenna	The same
□ Unique connector antenna	TEM.
☐ Professional installation antenna	