

Outline

- Why an Activity-Based Model?
- Phase 1: Development Journey
 - Model Estimation
 - Model Calibration
 - Model Validation
 - Sensitivity Testing

Why an Activity-Based Model?

Why Evolve? The Need for a More Detailed Approach

Today's Planning Context:

- Understanding complex households (multi-worker).
- Modeling modern work patterns (work from home).
- Analyzing the full spectrum of travel (interest in non-commuting travel).
- Assessing detailed equity impacts of projects and policies.
- Evaluating the effectiveness of demand management (e.g., pricing).

• For more information, please revisit last year's presentation:

ABM_Update, 2024

Why Evolve? The Need for a More Detailed Approach

- Activity-Based Models (ABM):
 - **Person/Household Focus:** Simulates individuals and their complete daily activity schedules, capturing some of the intra-household interactions.
 - **Tour-Based:** Understands travel as chains of trips (tours) with specific purposes and constraints (time, vehicles), allowing better analysis of trip chaining and non-commuting travel patterns.
 - **Disaggregate Detail:** Provides insights at the level of unique individuals and households, essential for granular equity analysis and understanding varied responses to travel demand management.
- **Result:** A modeling approach better equipped to answer: "who travels, why, when, where, and how throughout their entire day?" in the context of today's complex challenges.

What ABM Means for Planning: Answering Key Questions

- How the ABM's Detail Translates to Planning Benefits:
 - Targeted Equity Analysis:
 - Question: How does a new transit line or road toll affect low-income households vs. high-income, or seniors vs. younger adults?
 - **ABM Advantage:** Simulates individuals, allowing direct analysis of impacts by detailed demographics.
 - Effective Demand Management:
 - Question: Will time-of-day pricing, parking charges, or promoting flexible work hours successfully reduce peak-period demand? By how much?
 - ABM Advantage: Models trip scheduling and time constraints, providing realistic sensitivity to
 policies aimed at shifting travel times.

What ABM Means for Planning: Answering Key Questions

Realistic Transit & Active Transportation Planning:

- Question: How do factors like transit accessibility, fare changes (including pass ownership), or improved bike lanes influence mode choice for the entire journey?
- **ABM Advantage:** Considers the full tour context and detailed person/household factors influencing mode choice.

Understanding New Trends:

- Question: What are the network impacts of increased work-from-home? How might new mobility services be used? How do households coordinate complex trips (e.g., school dropoffs)?
- **ABM Advantage:** Flexible structure allows adding models for these complex, evolving behaviors directly into the decision framework.

Phase 1: Development Journey

Phase 1: Objectives

- **Develop Pre-COVID Baseline Model:** Implement ActivitySim using the 2017 trip diary to establish a prepandemic reference point.
- Confirm RTM-Level Capabilities: Validate that the initial ABM capabilities achieve RTM level analysis and benchmark ABM against the RTM.
- Achieve In-Depth Model Insight: Develop a strong understanding of the ActivitySim platform via:
 - Rigorous sensitivity analysis.
 - Thorough software evaluation.
 - Comparative benchmark analysis with RTM outputs.

Phase 1: Model Estimation

- Building the ABM involves developing a complex ecosystem of interconnected models.
- Illustrative Scale of Phase 1 Effort:
 - The ActivitySim ABM framework consists of ~26 distinct, interdependent modules,
 - 11 core modules were fully estimated for phase I
 - 20 modules calibrated to the weighted 2017 targets for phase I
 - Many modules handle multiple travel purposes (Work, School, Shop, etc.) and numerous choice alternatives (e.g., dozens of modes/submodes, thousands of potential locations).
 - Dependencies are critical: Outputs from one module (like auto ownership) directly feed into others (like tour mode choice), requiring careful, sequential development.

Phase 1: Model Estimation

Prepared 2017 Trip Diary for ABM Estimation:

- Transformed raw survey data into analysis-ready format.
- Key tasks: robust tour formation, coding non-modeled behaviors, variable recoding

Developed ActivitySim Model Structures:

- Estimated core modules (e.g., workplace, school location choice, mode choice).
- Borrowed module structures as placeholders to enable end-to-end testing.

Refined Models Through Iterative Debugging:

- Systematically identified and resolved initial model issues.
- Focused on addressing inconsistencies between observed survey behaviors and modeled outputs.

Phase 1 Methodology: Building a Robust Foundation

1. Guiding Principles for Estimation:

- Unbiased & representative: Models reflect observed 2017 behaviors without overfitting; parameters are behaviorally sound.
- Forecast capability: Focused on underlying relationships, not just replicating base-year totals, to ensure future-year applicability.
- Policy sensitivity: Ensured core models respond logically to key regional levers (e.g., travel time/cost, accessibility) to enable future testing.

2. Systematic Module Development:

- Ensured logical information flow where feasible in the model:
 - Example 1: people not old enough to drive can't "drive alone"
 - **Example 2:** Workplace Location choice considers not just job attributes and income, but also the overall commute accessibility (using mode choice "logsums")

Phase 1 Calibration & Validation

Calibration Process:

- Developed weighted survey targets for travel choices (e.g., mode shares, trip rates by purpose).
- Systematically adjusted model parameters (primarily Alternative Specific Constants) to align model outputs with these targets.
- Developed automated scripts for efficient and repeatable calibration adjustments.

Validation Process (Out-of-Sample):

- Assigned simulated ABM trip outputs to the network.
- Compared resulting traffic volumes against observed Auto and Transit Screenline counts.

Diagnostic Check:

- Separately assigned the weighted 2017 Trip Diary demand to the network.
- Helped understand the sources of variation between simulated demand and observed counts.

Phase 1: Model Estimation & Calibration Summary

Core Modules	Estimation	Calibration
School Location	✓	✓
Workplace Location	✓	✓
Work From Home		✓
Telecommute Frequency	0	✓
Auto Ownership	✓	✓
Transit Pass Ownership	✓	✓
Coordinated Daily Activity	✓	✓
Tour Frequency	0	✓
Tour Destination	O	0
Tour Scheduling	✓	✓
Tour Mode Choice	✓	✓
Stop Frequency	0	✓
Trip Purpose	O	0
Trip Destination	0	✓
Trip Scheduling	✓	✓
Trip Mode Choice	✓	✓

Legend

Completed

Deferred (

Phase 1 Estimation Challenge: Transit Pass Ownership

Challenge:

- Need: Ability to test future policies involving transit pass price changes.
- **Data Limitation:** 2017 survey data showed no variation in pass prices, preventing direct measurement of price sensitivity.
- Our Approach: Leveraging related knowledge
 - We know from the Mode Choice model how sensitive travelers are to daily travel costs.
 - Assumption: A similar sensitivity applies when travelers consider the value of purchasing a
 monthly transit pass relative to its price.
 - **Method:** Introduced price sensitivity by relating the pass price to traveler utility using the cost coefficient transferred from the Mode Choice model.

• Implementation:

Integrated the price sensitivity into the Transit Pass Ownership model structure.

Phase 1 Sensitivity Testing

- Next Step: Rigorous Sensitivity Testing marks the final validation of the Phase 1 model.
- Purpose: Confirm the foundational model responds logically and realistically to changes before initiating Phase 2 estimation with 2023 data.
 - Confirm RTM-Level Capabilities
- Our Approach:
 - Comparative Testing: Execute identical test scenarios on both the ABM and the RTM to benchmark performance and understand differences.
 - 'Before & After' Analysis: Simulate specific known changes (e.g., a past network update or policy introduction) and compare ABM's simulation against observed real-world data changes.
- Outcome: A thoroughly vetted baseline model, providing confidence to proceed with Phase 2 development using the 2023 Trip Diary.

Thank you

