Algorithms

Dynamic Programming

- The Knapsack Problem
- Dynamic Programming Formulation
- Implementation
- Fractional Knapsack and Subset Sum Problem

IMDAD ULLAH KHAN

Knapsack Problem

Logistic problem involving transportation of freights

- A container/truck has a fixed maximum capacity
- Bunch of items each has a certain volume and a profit (return)
- Transporter would like to select items to maximize profit
 ▷ Called the knapsack problem (named after the burglar's knapsack)

A classic optimization problem with many application in allocating space to items with certain volumes and values

Knapsack Problem

Input:

- Items: $U = \{a_1, \ldots, a_n\}$
- Weights: $w: U \to \mathbb{Z}^+$
- Values: $v: U \to \mathbb{R}^+$
- **Capacity**: $C \in \mathbb{R}^+$

Output:

- A subset $S \subset U$
- Capacity constraint:

$$\sum_{a_i \in S} w_i \le C$$

Objective: Maximize

$$\sum_{a_i \in S} v_i$$

⊳ Fixed order

$$\triangleright (w_1,\ldots,w_n)$$

$$\triangleright (v_1,\ldots,v_n)$$

Knapsack Problem

Input:

- Items: $U = \{a_1, ..., a_n\}$ (fixed order)
- Weights: $w: U \to \mathbb{Z}^+$: w_1, \ldots, w_n
- Values: $v: U \to \mathbb{R}^+$: v_1, \ldots, v_n
- Capacity: $C \in \mathbb{R}^+$

Output:

- lacksquare A subset $S\subset U$
- Capacity constraint: $\sum_{a_i \in S} w_i \leq C$
- Objective: Maximize $\sum_{a_i \in S} v_i$

ID	weight	value	
1	1	1	
2	2	6	
3	5	18	
4	6	22	
5	7	28	
6	98	99	

$$C = 11$$

- \blacksquare $\{1,2\}$ weight 3, value 7
- {3,4} weight 11, value 40
- {4,5} weight 13, value 50

Knapsack Problem: Greedy Algorithms

Input:

- Items: $U = \{a_1, ..., a_n\}$ (fixed order)
- Weights: $w: U \to \mathbb{Z}^+: w_1, \ldots, w_n$
- Values: $v: U \to \mathbb{R}^+$: v_1, \ldots, v_n
- Capacity: $C \in \mathbb{R}^+$

Output:

- A subset $S \subset U$
- Capacity constraint: $\sum_{a_i \in S} w_i \leq C$
- Objective: Maximize $\sum_{a_i \in S} v_i$

Greedy Approach

- Select the most profitable item
- Add if it fits remaining capacity
- Repeat

ID	weight	value
1	51	51
2	50	50
3	50	50

$$C = 100$$

 $\{1\}$ weight 51, value 51

Optimal $\{2,3\}$ weight 100, value 100

Knapsack Problem: Greedy Algorithms

Input:

- Items: $U = \{a_1, \ldots, a_n\}$ (fixed order)
- Weights: $w: U \to \mathbb{Z}^+$: w_1, \ldots, w_n
- Values: $v: U \to \mathbb{R}^+$: v_1, \ldots, v_n
- Capacity: $C \in \mathbb{R}^+$

Output:

- A subset $S \subset U$
- Capacity constraint: $\sum_{a_i \in S} w_i \leq C$
- Objective: Maximize $\sum_{a_i \in S} v_i$

Greedy Approach

- Select the least weighted item
- Add if it fits remaining capacity
- Repeat

ID	weight	value
1	1	1
2	50	50
3	50	50

$$C = 100$$

 $\{1,2\}$ weight 51, value 51

Optimal $\{2,3\}$ weight 100, value 100

Knapsack Problem: Greedy Algorithms

Input:

■ Items: $U = \{a_1, \ldots, a_n\}$ (fixed order)

■ Weights: $w: U \to \mathbb{Z}^+$: w_1, \ldots, w_n

■ Values: $v: U \to \mathbb{R}^+$: v_1, \ldots, v_n

■ Capacity: $C \in \mathbb{R}^+$

Output:

■ A subset $S \subset U$

■ Capacity constraint: $\sum_{a_i \in S} w_i \leq C$

• Objective: Maximize $\sum_{a_i \in S} v_i$

Greedy Approach

- Select item with highest v_i/w_i
- Add if it fits capacity
- Repeat

ID	weight	value	v_i/w_i
1	1	1	1
2	2	6	3
3	5	18	3.6
4	6	22	3.67
5	7	28	4
6	98	99	1.01

$$C = 11$$

 $\{5, 2, 1\}$ weight 10, value 35

Optimal $\{3,4\}$ weight 11, value 40