Computationele logica

Kamans, Jim 10302905

Roosingh, Sander 11983957 Schenk, Stefan 11881798

November 2017

1 Exercise 1: Singapore problem

```
\phi = date of Cheryl's birthday a = Albert, b = Bernard, c = Cheryl
```

With arrows we are representing the children's knowledge relations, so we'll get an epistemic model: all relations R1, R2, R3 are equivalence relations. So in particular they are reflexive, but for simplicity of drawing we skipped the loops.

(a) Model M of the situation immediately after Cheryl gives the boys their pieces of information:

- (b) Epistemic sentence encoding Albert's first announcement: $!_a(\neg K_a\phi \wedge K_a \neg K_b\phi)$
- (c) Updated model M' after Albert's first announcement:

(d) Epistemic sentence and updated model M" after Bernard's announcement: $!_b(K_b\phi)$

(e) Epistemic sentence and updated model M"' after Albert's second announcement:

$$!_a(K_a\phi)$$

2 Exercise 2

Prove formally that, for every sentence φ , the sentence

$$\neg K_a \varphi \Rightarrow K_a \neg K_a \varphi$$

(expressing "Negative Introspection of Knowledge") is *valid* on (the family of all) **epistemic** models.

Let $M = \{W, R_a, R_b, \dots, \nu\}$ be any epistemic model and let $w \in W$ be any world in it.

To prove the claim, suppose that $\neg K_a \varphi$ is true at w, i.e.

$$(1) w \models_M \neg K_a \varphi.$$

We need to prove that

$$(?) w \models_M K_a \neg K_a \varphi.$$

Let v be an arbitrary world such that wR_av . By the semantics of K_a , (1) implies

3 Exercise 3

Using the semantics of knowledge K_a and common knowledge Ck, show that the following is NOT valid on *epistemic models with (only) 2 agents a and b:*

$$(K_a K_b \phi \wedge K_b K_a \psi) \Rightarrow Ck(\phi \wedge \psi)$$

* = The representation of the world P = ϕ Q = ψ

The epistemic model holds the beliefs that both a and b know P and Q, but they are not sure whether they know the fact that both a and b know P and Q.

