Tamano's Theorem.(1960) Let X be a Tychonoff space. Then $X \times \beta X$ is normal iff X is paracompact.

(one direction was known)

- 1. The product of a paracompact space with a compact Hausdorff space is paracompact.
- 2. Every paracompact space is normal.

Tamano proved that if $X \times \beta X$ is normal, then X is paracompact.

Buzjakova's Theorem.(1997) A pseudocompact space X condenses onto a compact space if and only if the space $X \times T(|\beta X|^+ + 1)$ condenses onto a normal space.

Notice these two theorems are similar because Buzjakova's Theorem can be interpreted as a condensation version of the Tamano's Theorem for the pseudocompact case.

In the proof of Buzjakova's Theorem, we use a corollary of Glicksberg's Theorem in many places.

Glicksberg's Theorem.(1959) Let $X \times Y$ be Tychonoff spaces. If $X \times Y$ is pseudocompact, then $\beta(X \times Y) = \beta X \times \beta Y$.

- 1. Let X,Y be Tychonoff spaces. If $X\times Y$ is pseudocompact, then the projection map $\pi_X:X\times Y\to X$, is z-closed.
- 2. Let X,Y be Tychonoff spaces. If π_X is z-closed, then $X\times Y$ is C^* -embedded in $X\times\beta Y$.
- 3. Let Y be an extension of the space X. If X is pseudocompact, so is Y Corollary of Glicksberg's Theorem.
- $\beta(X \times T(|\beta X|^+ + 1)) = \beta X \times T(|\beta X|^+ + 1)$
- $\beta(X \times T(|\beta X|^+)) = \beta X \times T(|\beta X|^+ + 1)$

Some important facts in the proof of Buzjakova's Theorem:

1. Let τ be an uncountable regular cardinal. Let $T(\tau)$ be the space of all ordinal numbers less than τ . Let A_{α} be a closed, unbounded subset of $T(\tau)$. Let $\gamma \in T(\tau)$. Then, $\bigcap \{A_{\alpha} : \alpha < \gamma\}$ is closed, unbounded and $|\bigcap \{A_{\alpha} : \alpha < \gamma\}| = \tau$.

- 2. Let $g: T(\tau) \to \mathbb{R}$ be continuous. Then g is constant on $[\kappa, \tau)$ for some $\kappa \in T(\tau)$.
- 3. Let X be a pseudocompact Tychonoff space. Let $\tau = |\beta X|^+$ and denote by $T(\tau)$ the space of all ordinal numbers less than τ . Then, $X \times T(\tau)$ is pseudocompact. (PICTURE WILL BE DRAWN)
- 4. Let X be a Tychonoff space. If B_1 , B_2 are subsets of X such that $\overline{B_1}^{\beta X} \cap \overline{B_2}^{\beta X} \neq \emptyset$, then B_1 and B_2 are not completely separated in X.

In the proof, we have two cases. In the harder case, we have that the set $f[X \times {\lambda}] \subseteq Z$ is not compact.

So there exists decreasing chain of non-empty closed sets $\{D_{\alpha} : \alpha < l\}$ of $f[X \times \{\lambda\}]$ such that $\bigcap \{D_{\alpha} : \alpha < l\} = \emptyset$

Since f is one-to-one, there exists $A_{\alpha} \subseteq X$ such that $f[A_{\alpha} \times \{\alpha\}] = D_{\alpha}$.

Now Define B_1, B_2 .

$$B_1 = \bigcup \{A_{\alpha} \times \{\gamma_{\alpha}\}\}\$$

$$B_2 = A_1 \times \{\gamma_{\gamma}\}\$$

(PICTURE WILL BE DRAWN)

Let
$$x \in \bigcap \left\{ \overline{A_{\alpha}}^{\beta X} \right\}$$
.

$$(x, \gamma_{\gamma}) \in \overline{A_{1}}^{\beta X} \times \left\{ \gamma_{\gamma} \right\} = \overline{A_{1} \times \left\{ \gamma_{\gamma} \right\}}^{\beta X \times T(|\beta X|^{+} + 1)} = \overline{B_{2}}^{\beta (X \times T(|\beta X|^{+}))}.$$

$$(x,\gamma_{\gamma}) \in U \times (\gamma,\gamma_{\gamma}] \in \tau(\beta(X \times T(|\beta X|^{+} + 1)) = \tau\left(\beta(X \times T(|\beta X|^{+}))\right).$$
 Let $\gamma_{\beta} \in (\gamma,\gamma_{\gamma}]$. Thus, $U \times (\gamma,\gamma_{\gamma}] \cap A_{\beta} \times \{\gamma_{\gamma}\} \neq \emptyset$. So $U \times (\gamma,\gamma_{\gamma}] \cap B_{1} \neq \emptyset$. So, $(x,\gamma_{\gamma}) \in \overline{B_{1}}^{\beta(X \times T(|\beta X|^{+}))}$.

By fact 4 above, B_1 and B_2 are not completely separated in $X \times T(|\beta X|^+)$. A contradiction, because the sets $f[B_1]$ and $f[B_2]$ and closed and disjoint in Z. Since Z is normal, by Urysohn's Lemma, there exists a continuous function $g: Z \to [0,1]$ such that $g[f[B_1]] \subseteq \{0\}$ and $g[f[B_2]] \subseteq \{1\}$. Let $h=g \circ f$, and this functions separates B_1 and B_2 .