Adamczyk Dominik

Równania różniczkowe i różnicowe - projekt 1

Numeryczne rozwiązywanie równań różniczkowych zwyczajnych

Rozwiązać równanie x'=2x+e^t-t na przedziale [0, 1] dla x(0) = 1

```
In [1]: %matplotlib inline
          import numpy as np
          import matplotlib.pyplot as plt
          {\color{red}\textbf{import}} \ {\color{blue}\textbf{pandas}} \ {\color{blue}\textbf{as}} \ {\color{blue}\textbf{pd}}
          import math
         from scipy.integrate import odeint
In [2]: # Warunek początkowy, przedział [a, b] na którym należy rozwiązać równanie i równanie
         b = 1
         def equation(x, t):
              return 2*x+math.e**t-t
In [3]: t1 = list(np.linspace(a, b, 11))
In [4]: # Równanie jest rozwiązywane dla różnych wartości h, więc otrzymywane jest więcej wyników, niż to konieczne.
          # Ta funkcja filtruje niepotrzebne wyniki i zostawia tylko 11, o których mowa w treści zadania.
          def mapToOutputSet(t, solution):
              out = []
              j = 0
              for i in range(len(solution[0])):
    if abs(solution[0][i] - t[j]) < 1e-9:</pre>
                       j += 1
                       out.append(solution[1][i])
              return out
In [5]: exactSolution = list(odeint(equation, x0, t1)[:, 0]) # rozwiqzanie dokładne
```

Algorytm rozwiązania równania metodą Eulera

```
In [6]: def eulerMethod(f, x0, a, b, h = 0.1):
    t = list(np.linspace(a, b, int((b - a) / h)+1))
    x = [x0 for _ in range(int((b - a)/h)+1)]
    for i in range (len(x) - 1):
        x[i+1] = x[i] + (t[i+1] - t[i]) * f(x[i], t[i])
    return t, x
```

Algorytm rozwiązania równania metodą Eulera z punktem środkowym

```
In [7]:
def eulerMidPointMethod(f, x0, a, b, h = 0.1):
    t = list(np.linspace(a, b, int((b - a) / h)+1))
    x = [x0 for _ in range(int((b - a)/h)+1)]
    for i in range(len(t) - 1):
        h = t[i+1] - t[i]
        k1 = f(x[i], t[i])
        k2 = f(x[i] + k1 * h / 2, t[i] + h / 2)
        x[i+1] = x[i] + k2*h
    return t, x
```

Funkcje potrzebne do metody Taylora rzędu trzeciego

```
In [8]: from sympy import *
        x = Symbol('x')
        t = Symbol('t')
        def f(t, x):
            return equation(x, t)
        def ft(t, x):
           return diff(f(t, x), t)
        def fx(t, x):
            return diff(f(t, x), x)
        def ftx(t, x):
            return diff(f(t,x), t, 1, x, 1)
        def ftt(t, x):
            return diff(f(t, x), t, 2)
        def fxx(t, x):
            return diff(f(t, x), x, 2)
        def F1(t, x):
            return ft(t,x) + f(t,x) * fx(t, x)
        def F2(t, x):
            return ftt(t, x) + 2 * f(t,x) * ftx(t, x) + ft(t,x) * fx(t,x) \
               + f(t, x) * (fx(t,x))**2 + (f(t, x))**2 * fxx(t, x)
```

```
In [9]: F1(t, x)

Out[9]: 3.0 \cdot 2.71828182845905^t - 2t + 4x - 1

In [10]: F2(t, x)

Out[10]: 7.0 \cdot 2.71828182845905^t - 4t + 8x - 2
```

Algorytm rozwiązywania równania metodą Taylora rzędu trzeciego

```
In [11]: def F1(x, t):
    return 3*(math.e)**t - 2 * t + 4 * x - 1

def F2(x, t):
    return 7 * (math.e)**t - 4 * t + 8 * x - 2

def taylorMethod(f, f1, f2, x0, a, b, h=0.1):
    t = list(np.linspace(a, b, int((b - a) / h)+1))
    x = [x0 for _ in range(int((b - a)/h)+1)]
    for i in range(len(t) - 1):
        h = t[i+1] - t[i]
        k = f(x[i], t[i])
        k1 = f1(x[i], t[i])
        k2 = f2(x[i], t[i])
        x[i+1] = x[i] + k * h + 1/2 * k1 * h ** 2 + 1/6 * k2 * h **3
    return t, x
```

Algorytm rozwiązania równania metodą Runge-Knutty'ego rzędu czwartego

```
In [12]: def rungeKuttaMethod(f, x0, a, b, h = 0.1):
    t = list(np.linspace(a, b, int((b - a) / h)+1))
    x = [x0 for _ in range(int((b - a)/h)+1)]
    for i in range(len(t)-1):
        h = t[i+1] - t[i]
        k1 = f(x[i], t[i])
        k2 = f(x[i] + k1 * h / 2, t[i] + h/2)
        k3 = f(x[i] + k2 * h / 2, t[i] + h/2)
        k4 = f(x[i] + k3 * h, t[i] + h)
        x[i+1] = x[i] + (h/6) * (k1 + 2 * k2 + 2 * k3 + k4)
    return t, x
```

```
In [13]:
    eulerH01 = mapToOutputSet(t1, eulerMethod(equation, x0, a, b, 0.1))
    eulerH005 = mapToOutputSet(t1, eulerMethod(equation, x0, a, b, 0.05))
    eulerH001 = mapToOutputSet(t1, eulerMidPointMethod(equation, x0, a, b, 0.01))

midPointH01 = mapToOutputSet(t1, eulerMidPointMethod(equation, x0, a, b, 0.05))
    midPointH005 = mapToOutputSet(t1, eulerMidPointMethod(equation, x0, a, b, 0.05))
    midPointH001 = mapToOutputSet(t1, eulerMidPointMethod(equation, x0, a, b, 0.01))

taylorH01 = mapToOutputSet(t1, taylorMethod(equation, F1, F2, x0, a, b, 0.05))
    taylorH005 = mapToOutputSet(t1, taylorMethod(equation, F1, F2, x0, a, b, 0.05))
    taylorH001 = mapToOutputSet(t1, taylorMethod(equation, F1, F2, x0, a, b, 0.01))

rungeH01 = mapToOutputSet(t1, rungeKuttaMethod(equation, x0, a, b, 0.05))
    rungeH001 = mapToOutputSet(t1, rungeKuttaMethod(equation, x0, a, b, 0.05))
    rungeH001 = mapToOutputSet(t1, rungeKuttaMethod(equation, x0, a, b, 0.05))
```

```
In [14]: plt.plot(t1, exactSolution, 'blue', label=r'$Dokładne$')
plt.plot(t1, eulerH01, 'red', label=r'$Euler$')
plt.plot(t1, midPointH01, 'green', label=r'$MidPoint$')
plt.plot(t1, taylorH01, 'magenta', label=r'$Taylor$')
plt.plot(t1, rungeH01, 'yellow', label=r'$RungeKutta$')
plt.legend(loc='best')
plt.xlabel('t')
plt.xlabel('t')
plt.grid()
plt.show()
```

Porównanie rozwiązań dla h = 0.1


```
In [15]: plt.plot(t1, exactSolution, 'blue', label=r'$Dokładne$')
    plt.plot(t1, eulerH005, 'red', label=r'$Euler$')
    plt.plot(t1, midPointH005, 'green', label=r'$MidPoint$')
    plt.plot(t1, taylorH005, 'magenta', label=r'$Taylor$')
    plt.plot(t1, rungeH005, 'yellow', label=r'$RungeKutta$')
    plt.legend(loc='best')
    plt.xlabel('t')
    plt.xlabel('t')
    plt.grid()
    plt.show()
```

Porównanie rozwiązań dla h = 0.05


```
In [16]: plt.plot(t1, exactSolution, 'blue', label=r'$Dokładne$')
plt.plot(t1, eulerH001, 'red', label=r'$Euler$')
plt.plot(t1, midPointH001, 'green', label=r'$MidPoint$')
plt.plot(t1, taylorH001, 'magenta', label=r'$Taylor$')
plt.plot(t1, rungeH001, 'yellow', label=r'$RungeKutta$')
plt.legend(loc='best')
plt.xlabel('t')
plt.xlabel('t')
plt.title('Porównanie rozwiązań dla h = 0.01')
plt.grid()
plt.show()
```

Porównanie rozwiązań dla h = 0.01

Porównanie rozwiązań równania tymi samymi metodami, dla różnych wartości h

```
In [17]: plt.plot(t1, exactSolution, 'blue', label=r'$Dokładne$')
plt.plot(t1, eulerH01, 'red', label=r'$h=0.1$')
plt.plot(t1, eulerH005, 'green', label=r'$h=0.05$')
plt.plot(t1, eulerH001, 'yellow', label=r'$h=0.01$')
plt.legend(loc='best')
plt.xlabel('t')
plt.xlabel('t')
plt.title('Porównanie rozwiązań metodą Eulera dla różnych wartości h')
plt.grid()
plt.show()
```



```
In [18]: plt.plot(t1, exactSolution, 'blue', label=r'$Dokładne$')
    plt.plot(t1, midPointH01, 'red', label=r'$h=0.1$')
    plt.plot(t1, midPointH005, 'green', label=r'$h=0.05$')
    plt.plot(t1, midPointH001, 'yellow', label=r'$h=0.01$')
    plt.legend(loc='best')
    plt.xlabel('t')
    plt.title('Porównanie rozwiązań metodą Eulera z punktem środkowym dla różnych wartości h')
    plt.grid()
    plt.show()
```

Porównanie rozwiązań metodą Eulera z punktem środkowym dla różnych wartości h


```
In [19]: plt.plot(t1, exactSolution, 'blue', label=r'$Dokładne$')
plt.plot(t1, taylorH01, 'red', label=r'$h=0.1$')
plt.plot(t1, taylorH005, 'green', label=r'$h=0.05$')
plt.plot(t1, taylorH001, 'yellow', label=r'$h=0.01$')
plt.legend(loc='best')
plt.xlabel('t')
plt.xlabel('t')
plt.grid()
plt.grid()
plt.show()
```

Porównanie rozwiązań metodą Taylora dla różnych wartości h


```
In [20]: plt.plot(t1, exactSolution, 'blue', label=r'$Dok\adnes')
    plt.plot(t1, rungeH01, 'red', label=r'$h=0.1$')
    plt.plot(t1, rungeH005, 'green', label=r'$h=0.05$')
    plt.plot(t1, rungeH001, 'yellow', label=r'$h=0.01$')
    plt.legend(loc='best')
    plt.xlabel('t')
    plt.xlabel('t')
    plt.grid()
    plt.grid()
    plt.show()
```

Porównanie rozwiązań metodą Runge-Kutty'ego dla różnych wartości h

Tabela podsumowująca rozwiązania równania dla różnych metod przy h = 0.1

Out[22]:

:		t	Dokładny wynik	Metoda Eulera	Metoda Eulera - punkt środkowy	Metoda Taylora	Metoda Runge- Kutty'ego	Błąd metody Eulera	Błąd metody Eulera - punkt środkowy	Błąd metody Taylora	Błąd metody Runge-Kutty'ego
	0	0.0	1.000000	1.000000	1.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000
	1	0.1	1.332284	1.300000	1.330127	1.332167	1.332280	0.032284	0.002157	0.000117	0.000004
	2	0.2	1.739290	1.660517	1.733990	1.739004	1.739280	0.078773	0.005300	0.000287	0.000010
	3	0.3	2.238849	2.094761	2.229085	2.238323	2.238830	0.144088	0.009764	0.000526	0.000019
	4	0.4	2.852872	2.618699	2.836889	2.852013	2.852841	0.234173	0.015983	0.000859	0.000031
	5	0.5	3.608272	3.251621	3.583754	3.606959	3.608225	0.356651	0.024518	0.001313	0.000047
	6	0.6	4.538086	4.016817	4.501992	4.536159	4.538017	0.521269	0.036094	0.001927	0.000069
	7	0.7	5.682847	4.942393	5.631205	5.680099	5.682748	0.740455	0.051642	0.002749	0.000099
	8	8.0	7.092266	6.062247	7.019908	7.088425	7.092127	1.030019	0.072358	0.003841	0.000140
	9	0.9	8.827280	7.417250	8.727508	8.821997	8.827088	1.410030	0.099772	0.005284	0.000193
	10	1.0	10.962567	9.056660	10.826727	10.955389	10.962304	1.905906	0.135840	0.007178	0.000263

Tabela podsumowująca rozwiązania równania dla różnych metod przy h = 0.05

Out[23]:

	t	Dokładny wynik	Metoda Eulera	Metoda Eulera - punkt środkowy	Metoda Taylora	Metoda Runge- Kutty'ego	Błąd metody Eulera	Błąd metody Eulera - punkt środkowy	Błąd metody Taylora	Błąd metody Runge- Kutty'ego
0	0.0	1.000000	1.000000	1.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000e+00
1	0.1	1.332284	1.315064	1.331702	1.332268	1.332284	0.017220	0.000582	0.000016	2.642394e-07
2	0.2	1.739290	1.697103	1.737861	1.739252	1.739290	0.042187	0.001430	0.000039	6.762005e-07
3	0.3	2.238849	2.161373	2.236214	2.238778	2.238848	0.077476	0.002635	0.000071	1.268345e-06
4	0.4	2.852872	2.726457	2.848557	2.852756	2.852870	0.126415	0.004315	0.000116	2.123879e-06
5	0.5	3.608272	3.414979	3.601651	3.608094	3.608269	0.193293	0.006621	0.000178	3.268538e-06
6	0.6	4.538086	4.254467	4.528335	4.537825	4.538081	0.283619	0.009750	0.000261	4.812954e-06
7	0.7	5.682847	5.278398	5.668892	5.682475	5.682840	0.404449	0.013956	0.000372	6.891317e-06
8	8.0	7.092266	6.527469	7.072705	7.091746	7.092256	0.564797	0.019561	0.000520	9.695465e-06
9	0.9	8.827280	8.051124	8.800298	8.826564	8.827267	0.776156	0.026982	0.000716	1.332512e-05
10	1.0	10.962567	9.909424	10.925817	10.961594	10.962548	1.053143	0.036749	0.000972	1.815352e-05

Tabela podsumowująca rozwiązania równania dla różnych metod przy h = 0.01

Out[24]:

```
Dokładny
                          Metoda
                                       Metoda Eulera -
                                                            Metoda
                                                                      Metoda Runge-
                                                                                        Błąd metody
                                                                                                      Błąd metody Eulera -
                                                                                                                                Błąd metody Błąd metody Runge-
                                                                                                                                     Taylora
               wynik
                                                             Taylora
                                                                                                           punkt środkowy
                           Eulera
                                      punkt środkowy
                                                                            Kutty'ego
                                                                                             Eulera
                                                                                                                                                        Kutty'ego
0.0
            1.000000
                         1.000000
                                              1.000000
                                                           1.000000
                                                                             1.000000
                                                                                           0.000000
                                                                                                                  0.000000
                                                                                                                               0.000000e+00
                                                                                                                                                    0.000000e+00
            1.332284
                         1.328643
                                              1.332259
                                                           1.332284
                                                                             1.332284
                                                                                           0.003641
                                                                                                                 0.000025
                                                                                                                               1.212015e-07
                                                                                                                                                     1.377666e-08
1 0.1
2 0.2
            1.739290
                         1.730339
                                              1.739230
                                                           1.739290
                                                                             1.739290
                                                                                           0.008951
                                                                                                                 0.000061
                                                                                                                               3.216122e-07
                                                                                                                                                     8.659103e-09
3 0.3
            2.238849
                         2.222351
                                             2.238737
                                                           2.238848
                                                                            2.238849
                                                                                           0.016498
                                                                                                                  0.000112
                                                                                                                               6.098238e-07
                                                                                                                                                     3.795521e-09
                                                           2.852871
 4 0.4
            2.852872
                         2.825856
                                             2.852688
                                                                            2.852872
                                                                                           0.027016
                                                                                                                 0.000184
                                                                                                                                1.037903e-06
                                                                                                                                                     4.953412e-08
 5 0.5
            3.608272
                         3.566816
                                              3.607990
                                                           3.608270
                                                                            3.608272
                                                                                           0.041456
                                                                                                                 0.000282
                                                                                                                                1.591125e-06
                                                                                                                                                     8.008268e-08
6 0.6
            4.538086
                         4 477041
                                             4.537671
                                                           4 538084
                                                                            4 538086
                                                                                           0.061045
                                                                                                                 0.000415
                                                                                                                               2.327725e-06
                                                                                                                                                     1.102015e-07
   0.7
            5.682847
                         5.595487
                                              5.682254
                                                           5.682844
                                                                            5.682847
                                                                                           0.087361
                                                                                                                  0.000594
                                                                                                                               3.314262e-06
                                                                                                                                                     1.505931e-07
 8 0.8
            7.092266
                         6.969838
                                              7.091434
                                                           7.092261
                                                                            7.092266
                                                                                           0.122428
                                                                                                                 0.000832
                                                                                                                               4.655514e-06
                                                                                                                                                     2.344477e-07
   0.9
            8.827280
                         8.658444
                                              8.826132
                                                           8.827274
                                                                             8.827280
                                                                                           0.168836
                                                                                                                  0.001148
                                                                                                                               6.339416e-06
                                                                                                                                                     2.581509e-07
10 1.0
           10.962567
                        10.732671
                                             10.961002
                                                          10.962558
                                                                           10.962566
                                                                                           0.229896
                                                                                                                 0.001564
                                                                                                                               8.596014e-06
                                                                                                                                                     3.349068e-07
```

```
In [25]: epsEulerH01 = max([abs(exactSolution[i] - eulerH01[i]) for i in range(len(exactSolution))])
    epsEulerH005 = max([abs(exactSolution[i] - eulerH005[i]) for i in range(len(exactSolution))])
    epsEulerH001 = max([abs(exactSolution[i] - eulerH001[i]) for i in range(len(exactSolution))])
    eulerErr = [epsEulerH01, epsEulerH005, epsEulerH001]

    epsMidPointH01 = max([abs(exactSolution[i] - midPointH01[i]) for i in range(len(exactSolution))])
    epsMidPointH001 = max([abs(exactSolution[i] - midPointH001[i]) for i in range(len(exactSolution))])
    epsMidPointH001 = max([abs(exactSolution[i] - midPointH001[i]) for i in range(len(exactSolution))])
    midPointErr = [epsMidPointH01, epsMidPointH005, epsMidPointH001]

    epsTaylorH01 = max([abs(exactSolution[i] - taylorH001[i]) for i in range(len(exactSolution))])
    epsTaylorH005 = max([abs(exactSolution[i] - taylorH005[i]) for i in range(len(exactSolution))])
    epsTaylorH001 = max([abs(exactSolution[i] - taylorH001[i]) for i in range(len(exactSolution))])
    epsrungeH01 = max([abs(exactSolution[i] - rungeH001[i]) for i in range(len(exactSolution))])
    epsrungeH001 = max([abs(exactSolution[i] - rungeH001[i]) for i in range(len(exactSolution))])
    epsrungeH001 = max([abs(exactSolution[i] - rungeH001[i]) for i in range(len(exactSolution))])
    rungeErr = [epsrungeH01, epsrungeH005, epsrungeH001]
```

Out[26]:

_	Przyjęte h	Metoda Eulera	Metoda Eulera - punkt środkowy	Metoda Taylora	Metoda Runge-Kutty'ego
(0.10	1.905906	0.135840	0.007178	2.626694e-04
•	0.05	1.053143	0.036749	0.000972	1.815352e-05
2	0.01	0.229896	0.001564	0.000009	3.349068e-07

Wnioski

Każdy z zaimplementowanych algorytmów wyznacza w sposób poprawny przybliżone numeryczne rozwiązanie zadanego równania różniczkowego. Pomiędzy algorytmami dostrzegalne są jednak znaczące różnice w precyzji wyznaczanych rozwiązań. Błąd globalny zależy od rzędu użytej metody, a także wybranego h. Metoda Eulera (pierwszego rzędu) prezentuje najgorsze wyniki i nawet dla h=0.01 osiąga gorszą wartość błędu globalnego niż pozostałe metody dla większych h. Najlepszą precyzję gwarantuje metoda Runge-Kutty'ego, która już dla h=0.1 daje dokładności lepsze od metod pierwszego i rzędu drugiego - niezależnie od przyjętego h, jak i metody rzędu trzeciego dla h=0.1 i 0.05. Chcąc wyznaczyć numeryczne rozwiązania równań różniczkowych warto korzystać z metod wyższych rzędów - pozwalają one na uzyskanie wyników z dobrą dokładnością już przy niewielkiej liczbie iteracji, a ich złożoność obliczeniowa jest taka sama jak w przypadku metod niższych rzędów.