

CEC

振幅调制与解调 II Amplitude Modulation & Demodulation II

2024年5月24日

Chapter 7 振幅调制与解调

- ☞ §7.1 概述
- **☞ §7.2 调幅波的性质**
- **☞ §7.3 平方律调幅**
- **☞ §7.4 斩波调幅**
- ☞ §7.5 模拟乘法器调幅
- ☞ §7.6 单边带信号的产生
- ☞ §7.7 残留边带调幅
- **§7.8 高电平调幅**
- ☞ §7.9 包络检波
- ☞ §7.10 同步检波
- ☞ §7.11 单边带信号的接收

回顾

➢ 振幅调制 Amplitude Modulation

定义:

用调制信号去控制载波信号振幅,使载波信号瞬时幅度随调制信号作线性变化的过程

调制方程:

$$v_{AM} = V_0 (1 + m_a \cos \Omega t) \cos \omega_0 t$$

▶1. 工作原理

调幅波的共同之处都是在调幅前后产生了新的频率分量,也就是说都 需要**用非线性器件来完成频率变换**。

这里将调制信号 v_{Ω} 与载波信号 v_{ω} 相加后,同时加入非线性器件,然后通过中心频率为 ω_0 的带通滤波器取出输出电压 v_0 中的调幅波成分。

图 7.3.1 非线性调幅方框图

▶1. 工作原理

输入信号: $v_i = v_0$ (载波)+ v_0 (调制信号)

 $= V_0 \cos \omega_0 t + V_\Omega \cos \Omega t$

非线性器件为二极管,特性为: $v_0 = a_0 + a_1 v_i + a_2 v_i^2$ 则:

 $v_{O} = a_{0} + a_{1}(V_{0}\cos\omega_{0}t + V_{\Omega}\cos\Omega t) + a_{2}(V_{0}\cos\omega_{0}t + V_{\Omega}\cos\Omega t)^{2}$

▶1. 工作原理

$a_0 + \frac{1}{2}a_2(V_0^2 + V_0^2)$
$+a_1V_0\cos\omega_0t$ ······ 载波频率
$+a_1V_{\Omega}^2\cos\Omega t$ ···································
$+a_2V_\Omega V_0\left[\cos(\omega_0+\Omega)t+\cos(\omega_0-\Omega)t\right]$ 上、下边频
$+\frac{1}{2}a_2V_0^2\cos 2\omega_0t$ ····· 载频二次谐波
$+a_1V_a\cos\Omega t$ ···································
$+\frac{1}{2}a_2V_{\Omega}^2\cos 2\Omega t$ ···································

▶1. 工作原理

···产生调幅作用的是 a₂v_i² 项,故称平方律调幅。

滤波后输出普通调幅波电压表达式为:

$$v(t) = a_1 V_0 \cos \omega_0 t + a_2 V_\Omega V_0 \left[\cos(\omega_0 + \Omega)t + \cos(\omega_0 - \Omega)t\right]$$

$$= a_1 V_0 \cos \omega_0 t + 2a_2 V_\Omega V_0 \cos \Omega t \cos \omega_0 t$$

$$= a_1 V_0 \left(1 + \frac{2a_2}{a_1} V_\Omega \cos \Omega t\right) \cos \omega_0 t$$

$$2a_2$$

可知: 调幅度 $m_a = \frac{2a_2}{a_1}V_{\Omega}$

- · 调幅度 m_a 的大小由调制信号电压振幅 V_{Ω} 和调制特性曲线决定,即由 a_1 , a_2 决定,通常 a_2 << a_1 ,因此该方法调幅度不大
- 电子管或晶体管应工作在甲类非线线状态,效率低,因此该方法用于低电平调制。

▶2. 调幅信号产生方法

调幅信号产生电路的核心器件: 相乘器 (非线性器件)

▶2. 调幅信号产生方法

单二极管调制电路

将二极管视为开关

$$i_D = g_D(V_0 \cos \omega_0 t + V_\Omega \cos \Omega t) S(\omega_0 t)$$

其中开关函数表示为:

$$S(\omega_0 t) = \frac{1}{2} + \frac{2}{\pi} \cos(\omega_0 t) - \frac{2}{3\pi} \cos(3\omega_0 t) + \dots$$

▶2. 调幅信号产生方法

单二极管调制电路

1. 将二极管视为非线性器件

$$i_D = a_0 + a_1 v + a_2 v^2 + a_3 v^3 + \cdots$$

取:
$$i_D = a_0 + a_1 v + a_2 v^2$$

$$v = K(v_{\Omega} + v_{0})$$

二极管等效为:

$$S(\omega_0 t) = \frac{1}{2} + \frac{2}{\pi} \cos(\omega_0 t) - \frac{2}{3\pi} \cos(3\omega_0 t) + \dots$$

▶2. 调幅信号产生方法

单二极管调制电路

单二极管调制条件

$$v_0 >> v_{\Omega}$$
 $\omega_0 >> \Omega$

此时,开关的开与关取决于 ν_0 的正负。

▶3. 平衡调幅器

- ·利用两个平方律调幅 器的电路对称连接可以 构成二极管平衡电路
- ·可以实现抑制载波的 双边带调制 (DSB-SC)

图 7.3.2 串联双二极管平衡调幅器简化电路

▶3. 平衡调幅器

总的输出电压
$$v_o = (i_1 - i_2)R$$

总的输出电流
$$i=i_1-i_2$$

平衡的含义:

- 1. 两路调制信号完全相同
- 2. 两个二极管特性完全相同
- 3. 抑制载波

图 7.3.2 串联双二极管平衡调幅器简化电路

如果要获得抑制载波的双边带信号,观察输出电流表示式

$$i_1 = a_0 + a_1(V_0 \cos \omega_0 t + V_\Omega \cos \Omega t) + a_2(V_0 \cos \omega_0 t + V_\Omega \cos \Omega t)^2$$

$$i_2 = a_0 + a_1(V_0 \cos \omega_0 t - V_0 \cos \Omega t) + a_2(V_0 \cos \omega_0 t - V_0 \cos \Omega t)^2$$

Chapter 7 振幅调制与解调

- ☞ §7.1 概述
- **☞ §7.2 调幅波的性质**
- **☞ §7.3 平方律调幅**
- ☞ §7.4 斩波调幅
- ☞ §7.5 模拟乘法器调幅
- ☞ §7.6 单边带信号的产生
- ☞ §7.7 残留边带调幅
- **§7.8 高电平调幅**
- ☞ §7.9 包络检波
- ☞ §7.10 同步检波
- ☞ §7.11 单边带信号的接收

▶1. 工作原理

图 7.4.1 斩波调幅器方框图

• 斩波调幅是将调制信号通过一个受载波频率控制的的开关电路(斩波电路),使调制信号输出波形被"斩"成周期为 $2\pi/\omega_0$ (载波周期)的脉冲,输出波形就包含 $\omega_0 \pm \Omega$ 频率成分及谐波。

▶1. 工作原理

▶1. 工作原理

斩波后电压为: $v(t) = V_{\Omega}(t) S_2(t)$

开关函数 S₂(t) 傅立叶级数展开式为:

$$S_2(t) = \frac{4}{\pi} \cos \omega_0 t - \frac{4}{3\pi} \cos 3\omega_0 t + \frac{4}{5\pi} \cos 5\omega_0 t - \cdots$$

调制信号为: $V_{\Omega}(t) = V_{\Omega} \cos \Omega t$

将 $V_{\Omega}(t)$ 和 $S_2(t)$ 代入 v(t) 后,得斩波后电压为:

$$v(t) = \frac{4}{\pi} V_{\Omega} \cos \Omega t \cos \omega_0 t - \frac{4}{3\pi} V_{\Omega} \cos \Omega t \cos 3\omega_0 t + \cdots$$

- 通过中心频率为 ω_0 的带通滤波器,即可获得 $\omega_0 \pm \Omega$ 项,可见输出电压为载波被抑制的双边带调幅波 DSB-SC
- •对比可知:平衡斩波调幅没有低频分量,且振幅提高一倍,1/29

▶2. 典型斩波调幅电路

$$v(t)=V_{\Omega}(t) S_2(t)$$

载波 $v_1(t)$ 左+右 $\longrightarrow v_a > v_b \longrightarrow D1$ D3导通 \longrightarrow 输出 $v(t) = V_{\Omega}(t)$ 载波 $v_1(t)$ 左-右+ $\longrightarrow v_a < v_b \longrightarrow D2$ D4导通 \longrightarrow 输出 $v(t) = -V_{\Omega}(t)$

▶2. 典型斩波调幅电路

•载波 V₁(t) 左+右-时,

- ✓ 绕行回路 $v_1 \rightarrow a \rightarrow D1 \rightarrow b$ 列 KVL: $v_1(t) + v_{\Omega}(t)/2 v' = 0$
- ✓ 绕行回路 $v_1 \rightarrow a \rightarrow D3 \rightarrow b$ 列 KVL: $v_1(t) v_{\Omega}(t)/2 + v'' = 0$
- \checkmark 解得: $v'+v''=V_{\Omega}(t)=v(t)$

▶2. 典型斩波调幅电路

- •载波 v₁(t) 左-右+时,表示为: v₁(t)
 - ✓ 绕行回路 $v_1 \rightarrow b \rightarrow D2 \rightarrow a$ 列 $KVL:-v_1(t)+v_0(t)/2+v'=0$
 - ✓ 绕行回路 $v_1 \rightarrow b \rightarrow D4 \rightarrow a$ 列 $KVL:-v_1(t)-v_{\Omega}(t)/2$ v''=0
 - ✓ 解得: $v'+v''=-V_{\Omega}(t)=v(t)$

7.5 模拟乘法器调幅

▶模拟乘法器

输出电压 v_0 输入信号电压 $v_1 v_2$ 输入,输出关系为

 $\mathbf{v_0} = \mathbf{K_1} \mathbf{v_1} \mathbf{v_2}$ ($\mathbf{K_1}$ 为常数)

设: 载波 $v_1 = V_{1m} \cos \omega_0 t$

设: 调制信号 $V_2 = V_{2m} cos \Omega t$

则,输出信号为:

$$\mathbf{v}_0 = \mathbf{K}_1 \mathbf{v}_1 \mathbf{v}_2 = \mathbf{K}_1 \mathbf{V}_{1m} \mathbf{V}_{2m} \mathbf{cos} \omega_0 \mathbf{t} \mathbf{cos} \Omega \mathbf{t}$$

$$= \frac{1}{2} K_1 V_{1m} V_{2m} \left[\cos(\omega_0 + \Omega)t + \cos(\omega_0 - \Omega)t \right]$$

Chapter 7 振幅调制与解调

- ☞ §7.1 概述
- **☞ §7.2 调幅波的性质**
- **☞ §7.3 平方律调幅**
- ☞ §7.4 斩波调幅
- ☞ §7.5 模拟乘法器调幅
- ☞ §7.6 单边带信号的产生
- ☞ §7.7 残留边带调幅
- **§7.8 高电平调幅**
- ☞ §7.9 包络检波
- ☞ §7.10 同步检波
- ☞ §7.11 单边带信号的接收

▶单边带通信

$$\begin{split} & \boldsymbol{v}_{_{\mathrm{AM}}}(t) = \boldsymbol{V}_{0}(1 + \boldsymbol{m}_{\mathrm{a}}\cos\Omega t)\cos\omega_{0}t \\ & = \boldsymbol{V}_{0}\Big[\cos\omega_{0}t + \frac{1}{2}\boldsymbol{m}_{\mathrm{a}}\cos(\omega_{0} + \Omega)t + \frac{1}{2}\boldsymbol{m}_{\mathrm{a}}\cos(\omega_{0} - \Omega)t \Big] \end{split}$$

优点:

- ◆ 使所容纳的频道数目增加一倍,大 大提高短波波段利用率。
- ◆ 单边带制能获得更好的通信效果。
- ◆ 单边带制的选择性衰落现象要轻得多。

缺点:

◆ 要求收、发设备的频率稳定度高, 设备复杂,技术要求高。

▶1. 滤波器法

- 这种方法对滤波器要求很高,而且载波频率不能太高,需要通过多级滤波逐步将载波频率提高到所要求的工作频率。
- 该方法性能稳定是目前干线通信采用的标准形式。

▶1. 滤波器法

图 9.6.2 滤波器法单边带发射机方框图

必须强调指出,**提高单边带的载波频率决不能用倍频的方法**。因为倍频后,音频频率 *F* 也跟着成倍增加,使原来的调制信号变了样,产生严重的失真。这是绝对不允许的。

▶1. 滤波器法

图 7.6.3 单边带发射机方框图举例

▶2. 相移法

最突出问题:调制信号90°相移非常困难

图 9.6.4 相移法单边带调制器方框图

>3. 修正的移相滤波法

90°移相网络工作于固定频率

图 9.6.5 产生单边带信号的第三种方法

本章小结

- 1. 掌握**调制解调的含义**: 常见调制方式AM FM PM。
- 2. 掌握**调幅波的性质**:调制过程数学描述、信号频谱、功率关系。 理解各种调幅波特性,调制系数、表达式、波形、给定信号会画 频谱,求解功率。
- 3. 掌握幅度调制常见方式:

平方律: 单二极管、双二极管平衡调制(优点); 斩波调幅; **乘 法器调幅**原理; 高电平调幅(次要); 单边带信号产生方法。

Thank You!

