Introduction to Machine Learning (67577) Exercise VI – PCA, kernels, SGD and DL Hadar Sharvit – 208287599

Theoretical Questions

PCA

1. Let us first calculate $Var[\langle v, X \rangle] = E[(\langle v, X \rangle - E[\langle v, X \rangle])^2]$. Firstly, lets write $X = (x_1, \dots, x_d)^T$, where x_i are sampled from some distribution over \mathbb{R}^d . If so, we can write $E[\langle v, X \rangle] = E[v_1x_1 + \dots + v_dx_d] = \sum_{i=1}^d E[v_ix_i] = \sum_{i=1}^d v_i E[x_i] = E[X] \sum_{i=1}^d v_i = 0 \cdot \sum v_i = 0$ we are left with $E[\langle v, X \rangle^2] = E[\langle v, X \rangle \langle X, v \rangle] = v^T E[X \cdot X^T] v = v^T \Sigma v$. From here we can satisfy the expression of the express

we are left with $E[\langle v,X\rangle^2]=E[\langle v,X\rangle\langle X,v\rangle]=v^TE[X\cdot X^T]v=v^T\Sigma v$. From here we can say that given a leading eigenvector of Σ , v' $v^T\Sigma v\leq v'^T\Sigma v'$. In other words, the variance of $\langle v,X\rangle$ is \leq the variance of the PCA embedding of X into $1-\dim$

Kernels

2. Given valid kernel k(x,x'), provide a normalized kernel \tilde{k} such that for all x, $\tilde{k}(x,x)=1$: We define

$$\tilde{k}(x,x') = \frac{k(x,x')}{\sqrt{k(x,x) \cdot k(x',x')}}$$

Firstly, \tilde{k} is a valid kernel, as it represents an inner product of the feature map $\psi/||\psi||$:

$$\begin{split} \tilde{k}(x,x') &= \frac{\langle \psi(x), \psi(x') \rangle}{\sqrt{\langle \psi(x), \psi(x) \rangle \langle \psi(x'), \psi(x') \rangle}} = \frac{\langle \psi(x), \psi(x') \rangle}{\sqrt{\left||\psi(x)||^2 \left||\psi(x')|\right|^2}} = \frac{\langle \psi(x), \psi(x') \rangle}{\left||\psi(x)|\right| \cdot \left||\psi(x')|\right|} \\ &= \left\langle \frac{\psi(x)}{\left||\psi(x)|\right|}, \frac{\psi(x')}{\left||\psi(x')|\right|} \right\rangle \end{split}$$

Furthermore, $\tilde{k}(x,x) = 1$ for every x, as

$$\tilde{k}(x,x) = \frac{\langle \psi(x), \psi(x) \rangle}{||\psi(x)|| \cdot ||\psi(x)||} = \frac{||\psi(x)||^2}{||\psi(x)||^2} = 1$$

3. Example of a data set S and a feature map $\psi \colon \mathbb{R}^d \to \mathcal{F}$ where S is not linearly separable in $\mathbb{R}^{d \geq 2}$ but the transformed data $\psi(s) \ \forall s \in S$ is linearly separable in \mathcal{F} : Consider d=2, $S=S_1 \cup S_2$ where $S_i=\left\{(x,y)\colon r_i \leq \sqrt{x^2+y^2} \leq r_{i+1}\right\}$ represents a set of points within some ring with inner radius r_i and outer radius r_{i+1} , where $r_1 < r_2 < r_3$. We define the mapping as followed: given some point $(x,y) \in S$, $\psi(x,y) = \left(x,y,\sqrt{x^2+y^2}\right)$. Simply put, ψ maps the point (x,y) to the same (x,y) coordinate, with some elevation $z=\sqrt{x^2+y^2}$ to it. Since $r_1 < r_2 < r_3$, such mapping provides a set of linearly separable data points in \mathbb{R}^3

Convex optimization

4.

a. Show that if $f_i: V \to \mathbb{R}$ are convex $(\forall i \in [m])$, then $g(u) = \sum_{i=1}^m \gamma_i f_i(u)$, $(\gamma_i \ge 0)$ is convex:

Since f_i is convex, we know that $\forall v_1, v_2 \in V, \ \forall \alpha \in [0,1] \ \alpha f_i(v_1) + (1-\alpha)f(v_2) \geq f_i(\alpha v_1 + (1-\alpha)v_2)$. If so, $\alpha \gamma_i f_i(v_1) + (1-\alpha)\gamma_i f(v_2) \geq \gamma_i f_i(\alpha v_1 + (1-\alpha)v_2)$. In other words, $\gamma_i f_i$ is also convex $\forall i \in [m]$ by definition. If so, we have

$$\begin{split} \alpha g(v_1) + (1 - \alpha) g(v_2) &= \alpha \sum_{i=1}^m \gamma_i f_i(v_1) + (1 - \alpha) \sum_{i=1}^m \gamma_i f_i(v_2) \\ &= \sum_{i=1}^m \alpha \gamma_i f_i(v_1) + (1 - \alpha) \gamma_i f_i(v_2) \geq \sum_{i=1}^m \gamma_i f_i(\alpha v_1 + (1 - \alpha) v_2) \\ &= g(\alpha v_1 + (1 - \alpha) v_2) \end{split}$$

- b. Composition of convex function is not necessarily convex: Take f(x) = -x, $g(x) = e^x \rightarrow h(x) = f(g(x)) = -e^x$. Both f and g are convex, yet h is not.
- c. Given convex set C, a function $f:C\to\mathbb{R}$ is convex \Leftrightarrow epigraph $(f)=\{(u,t):f(u)\leq t\}$ is a convex set:

In the first direction, assume f is convex. If so, $\forall c_1,c_2\in C,\, \forall \alpha\in [0,1]$ we have $\alpha f(c_1)+(1-\alpha)f(c_2)\geq f(\alpha c_1+(1-\alpha)c_2).$ Assume towards contradiction that $\operatorname{epi}(f)$ is not convex, therefore $\exists (x,y),(z,t)\in \operatorname{epi}(f)\, \exists \alpha\in [0,1]$ such that $\alpha(x,y)+(1-\alpha)(z,t)=(\alpha x,\alpha y)+(1-\alpha)z, (1-\alpha)t)=(\alpha x+(1-\alpha)z,\alpha y+(1-\alpha)t)\notin \operatorname{epi}(f).$ In other words, $f(x)\leq y$ and $f(z)\leq t$, yet $f(\alpha x+(1-\alpha)z)>\alpha y+(1-\alpha)t.$ On the other hand, since f is convex, then by definition $f(\alpha x+(1-\alpha)z)\leq \alpha f(x)+(1-\alpha)f(z)\leq \alpha y+(1-\alpha)t$. we have reached a contradiction, therefore $\operatorname{epi}(f)$ must be convex.

In the other direction, assume $\operatorname{epi}(f)$ is convex, therefore $\forall (x,y), (z,t) \in \operatorname{epi}(f) \ \forall \alpha \in [0,1]$ we have $\alpha(x,y)+(1-\alpha)(z,t)=(\alpha x+(1-\alpha)z, \alpha y+(1-\alpha)t) \in \operatorname{epi}(f)$, i.e., $f(\alpha x+(1-\alpha)z) \leq \alpha y+(1-\alpha)t$. The claim holds for every (x,y), (z,t), therefore we can choose y=f(x) and t=f(z), and in that case $f(\alpha x+(1-\alpha)z) \leq \alpha f(x)+(1-\alpha)f(z) \to f$ is convex by definition.

d. Let $f_i\colon V\to\mathbb{R},\,i\in I,\,f\colon V\to\mathbb{R},\,f(u)=\sup_{i\in I}f_i(u)$. Show that if $\forall i\in I$ f_i is convex, then so is f From $(4.\,c)$ it is sufficient to show that $\operatorname{epi}(f)=\operatorname{epi}\left(\sup_{i\in I}f_i(u)\right)$ is a convex set. Consider some pair (x,y). By definition of $\operatorname{epi},\,(x,y)\in\operatorname{epi}(f)\Leftrightarrow f(x)\leq y$. Furthermore, since f bounds f_i for every $i\in I$, that is, $f>f_i$ for every $i\in I$, we also have $f_i(x)\leq y$. In other words, $(x,y)\in\operatorname{epi}(f)\Leftrightarrow (x,y)\in\operatorname{epi}(f_i)$ for every $i\in I$, which can only happen if $\operatorname{epi}(f)$ is the intersection of all $\operatorname{epi}(f_i)$. Mathematically speaking, $\operatorname{epi}(f)=\bigcap_{i\in I}\operatorname{epi}(f_i)$. From $(4.\,c)$ we know that f_i is $\operatorname{convex}\to\operatorname{epi}(f_i)$ is a convex set. Since an intersection of convex set is convex we conclude that $\operatorname{epi}(f)$ is convex .

5.

a. Given $x \in \mathbb{R}^d$ and $y \in \{\pm 1\}$, show that the hinge loss function defined by $\ell_{x,y}^{hinge}(w,b) = \max \left(0,1-y(w^Tx+b)\right)$ is convex (in w,b): we have shown in class that a pointwise max function is convex. This is not enough as we

we have shown in class that a pointwise max function is convex. This is not enough as we have to show that both 0 and $1 - y(w^Tx + b)$ are convex. This is true because they are both

linear functions, where one of them is a composition with an affine function – all of those were shown to be convex in class

b. Deduce some $g \in \partial \ell_{x,y}^{hinge}(w,b)$:

We need to find a sub-gradient of $\ell_{x,y}^{hin}$ (w,b), that is, some g for which for all (x,y), we have $\max\left(0,1-y(w^Tx+b)\right) \geq \max\left(0,1-y_0(w^Tx_0+b)\right) + \underbrace{\langle g,(x,y)-(x_0,y_0)\rangle}_{=\langle g,(x-x_0,y-y_0)\rangle}$. we can see

$$\text{that } g = \begin{cases} 0, & \ell_{x_0,y_0}^{hing}\left(w,b\right) = 0 \\ (-yx,-y), & \ell_{x_0,y_0}^{hinge}(w,b) \neq 0 \end{cases} \text{ satisfies the claim.}$$

- c. Given $f_1,\ldots,f_m\colon\mathbb{R}^d\to\mathbb{R}$ convex functions, and $\xi_k\in\partial f_k(x)$ for all k. define $f\colon\mathbb{R}^d\to\mathbb{R}$ by $f(x)=\sum_{i=1}^m f_i(x).$ Show that $\sum_k \xi_k\in\partial\sum_k f_k(x):$ Since ξ_k is a sub-gradient of f_k , we know that $\forall x'\in\mathbb{R}^d\ f_k(x')\geq f_k(x)+\langle \xi_k,x'-x\rangle,$ therefore the sum also satisfies $\sum_{k=1}^m f_k(x')\geq\sum_{k=1}^m (f_k(x)+\langle \xi_k,x'-x\rangle).$ Therefore, by the same logic we have by definition that $\sum_k \xi_k\in\partial\sum_k f_k(x)$
- d. Given $S=\{(x_i,y_i)\}_{i=1}^m\subset\mathbb{R}^d\times\{\pm 1\}$, define $f(w,b)=\frac{1}{m}\sum_{i=1}^m\ell_{x_i,y_i}^{hing}(w,b)+\frac{\lambda}{2}\big||w|\big|^2$. Find a member of ∂f for each w:

Same as in (4. b), we can define g_i for every $i \in [m]$ very similar:

$$g_i = \begin{cases} 0, & \ell_{x_i,y_i}^{hinge}(w,b) = 0 \\ (-y_ix_i, -y_i), & \ell_{x_i,y_i}^{hinge}(w,b) \neq 0 \end{cases}$$

And using (4. c) we know that

$$\frac{1}{m}\sum_{i=1}^m g_i + \lambda(w,0) \in \partial f$$

Practical Questions