5p

5p

5p

- **1.** Se consideră numărul real a > 0 și funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^x ax$.
 - a) Să se determine asimptota oblică la graficul funcției f către $-\infty$.
 - **b**) Să se determine punctele de extrem local ale funcției f.
 - c) Să se determine $a \in (0, \infty)$, știind că $f(x) \ge 1, \ \forall x \in \mathbb{R}$.
- **2.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=\frac{\ln x}{\sqrt{x}}$.
- **5p** a) Să se arate că funcția $F:(0,\infty)\to\mathbb{R},\ F(x)=2\sqrt{x}(\ln x-2),\$ este o primitivă a funcției f.
- **5p b)** Să se arate că orice primitivă G a funcției f este crescătoare pe $[1,\infty)$.
- **5p c)** Să se calculeze aria suprafeței plane cuprinse între graficul funcției f, axa Ox și dreptele de ecuații $x = \frac{1}{e}$ și x = e.

- **1.** Se consideră șirul $(a_n)_{n\in\mathbb{N}^*}$ dat de $a_l\in(0,1)$ și $a_{n+1}=a_n\left(1-\sqrt{a_n}\right),\ \forall n\in\mathbb{N}^*$.
- **5p** a) Să se arate că $\mathbf{a_n} \in (0,1), \forall \mathbf{n} \in \mathbb{N}^*$.
- **5p b)** Să se demonstreze că șirul $(a_n)_{n \in \mathbb{N}^*}$ este strict descrescător.
- 5p c) Să se arate că șirul $(b_n)_{n\in\mathbb{N}^*}$, dat de $b_n = a_1^2 + a_2^2 + ... + a_n^2$, $\forall n\in\mathbb{N}^*$, este mărginit superior de a_1 .
 - **2.** Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x^2 + x + 1}$.
- **5p** a) Să se arate că funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \frac{2\sqrt{3}}{3} \operatorname{arctg} \left(\frac{2x+1}{\sqrt{3}} \right)$, $x \in \mathbb{R}$, este o primitivă a funcției f.
- **5p b)** Să se calculeze aria suprafeței delimitate de dreptele x=0, x=1, Ox și graficul funcției $g: \mathbb{R} \to \mathbb{R}$, g(x)=(2x+1) f(x).
- $5p \qquad c) \text{ Să se calculeze } \lim_{n \to \infty} \int_{-n}^{n} \ f\left(x\right) dx \, , \, \text{unde } n \in \mathbb{N}^{^{*}} \, .$

- **1.** Se consideră funcția $f:(0,\infty) \to \mathbb{R}$, $f(x) = 18x^2 \ln x$.
 - a) Să se determine intervalele de monotonie ale funcției f.
- b) Să se determine $a \in \mathbb{R}$ pentru care $f(x) \ge a$, $\forall x \in (0, \infty)$.
- 5p c) Să se determine numărul de rădăcini reale ale ecuației f(x) = m, unde m este un parametru real.
 - **2.** Se consideră funcțiile $f_a:\mathbb{R}\to\mathbb{R},\ f_a(x)=\frac{1}{|x-a|+3},$ unde $a\in\mathbb{R}$.
- **5p** a) Să se arate că, pentru orice $a \in \mathbb{R}$, funcția f_a are primitive strict crescătoare pe \mathbb{R} .
- **5p b)** Să se calculeze $\int_0^3 f_2(x) dx$.

5p 5p

5p c) Să se calculeze $\lim_{a\to\infty} \int_0^3 f_a(x) dx$.

- **1.** Se consideră funcția $f: \mathbb{R} \setminus \{-1,0\} \to \mathbb{R}, f(x) = \frac{2x+1}{x^2(x+1)^2}$.
- **5p** a) Să se determine asimptotele graficului funcției f.
- **5p b**) Să se demonstreze că funcția **f** nu are puncte de extrem local.
- $5p \left| \begin{array}{c} c) \text{ Să se calculeze } \lim\limits_{n \to \infty} \left(\text{ } f\left(1\right) + \text{ } f\left(2\right) + \text{ } f\left(3\right) + ... + \text{ } f\left(n\right) \right)^{n^2} \text{, unde } n \in \mathbb{N}^* \text{.} \end{array} \right.$
 - $\textbf{2. Se consideră șirul } \left(I_n\right)_{n\in\mathbb{N}^*}, I_n=\int_l^2 \frac{x^n}{x^n+1}dx, \ n\in\mathbb{N}^*\,.$
- **5p** a) Să se calculeze I₁.
- **5p b)** Să se arate că $I_n \le 1$, $\forall n \in \mathbb{N}^*$.
- $\begin{array}{|c|c|c|c|c|c|}\hline \textbf{5p} & \textbf{c}) \text{ Să se calculeze } \lim_{n\to\infty} I_n \,. \end{array}$

- 1. Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=\ln x-\frac{2(x-1)}{x+1}$.
- **5p** a) Să se calculeze derivata funcției f.
- **5p b)** Să se determine punctele graficului funcției f în care tangenta la grafic este paralelă cu dreapta de ecuație 9y = 2x.
- **5p** c) Să se arate că, dacă x > 1, atunci $\ln x \ge \frac{2(x-1)}{x+1}$.
 - 2. Se consideră funcția $f:(0,\infty)\to\mathbb{R},\ f(x)=\frac{1}{x^2}$ și șirul $(a_n)_{n\geq 1},a_n=f(1)+f(2)+...+f(n).$
- **5p** a) Să se arate că $f(k+1) \le \int_{k}^{k+1} f(x) dx \le f(k), \forall k \in (0,\infty)$.
- $\label{eq:bound} 5p \qquad b) \text{ Să se calculeze } \lim_{n \to \infty} \int_{l}^{n} f\left(x\right) dx, n \in \mathbb{N} \,.$
- **5p** c) Să se arate că șirul $(a_n)_{n\geq 1}$ este convergent.

- 1. Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=e^{x\cdot \ln x}$.
- 5p a) Să se arate că $f'(x) = f(x)(1 + \ln x), \forall x > 0$.
- **5p b**) Să se determine valoarea minimă a funcției f.
- **5p** c) Să se arate că funcția f este convexă pe $(0, \infty)$.
 - **2.** Se consideră, pentru fiecare $\mathbf{n} \in \mathbb{N}^*$, funcțiile $f_n: (-1, \infty) \to \mathbb{R}$, $f_n(\mathbf{x}) = \frac{\mathbf{x}^{2n}}{1+\mathbf{x}}$ și $g_n: (-1, \infty) \to \mathbb{R}$,

$$g_n(x) = 1 - x + x^2 - x^3 + ... - x^{2n-1} + f_n(x)$$

- **5p** a) Să se calculeze $\int_0^1 g_2(x) dx$.
- **5p b)** Să se arate că $0 \le \int_0^1 f_n(x) dx \le \frac{1}{2n+1}, \forall n \in \mathbb{N}^*$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} \left(1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + ... + \frac{1}{2n-1} \frac{1}{2n}\right), n \in \mathbb{N}.$

- **1.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=\ln x$ și șirul $(x_n)_{n\in\mathbb{N}^*}$, $x_n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}-\ln n$, $\forall n\in\mathbb{N}^*$.
- a) Să se determine asimptotele graficului funcției f.
- **b)** Să se arate că, pentru orice k > 0, $\frac{1}{k+1} < f(k+1) f(k) < \frac{1}{k}$.
 - c) Să se arate că șirul $\left(x_n\right)_{n\in\mathbb{N}^*}$ este descrescător și are termenii pozitivi.
- 2. Se consideră funcțiile $f:(-1,\infty)\to\mathbb{R}$, $f(x)=\frac{2x}{(x+1)(x^2+1)}$ și $F:(-1,\infty)\to\mathbb{R}$,
 - $F(x) = a \ln(x+1) + b \ln(x^2+1) + c \arctan x$, unde a, b, c sunt parametri reali.
 - a) Să se determine a, b, c astfel încât F să fie o primitivă a funcției f.
- 5p b) Să se calculeze $\int_0^1 f(x)dx$.

5p

5p

5p

5p

 $\mathbf{5p}$ \mathbf{c}) Să se studieze monotonia funcției \mathbf{F} , în cazul în care \mathbf{F} este primitivă a funcției \mathbf{f} .

- $\textbf{1. Se consideră funcția} \quad f:\mathbb{R} \rightarrow \mathbb{R} \;, \quad f\left(\; x \right) = x + \cos x \;\; \text{și șirul} \; \left(\; x_n \; \right)_{n \in \mathbb{N}} \;, \\ x_0 = 0, \quad x_{n+1} = \; f\left(\; x_n \; \right), \; \; \forall \; n \in \mathbb{N}.$
- 5p a) Să se arate că funcția f este crescătoare pe $\mathbb R$.
- **5p b)** Să se arate că $0 \le x_n \le \frac{\pi}{2}, \ \forall n \in \mathbb{N}$.
- **5p** c) Să se arate că șirul $(x_n)_{n\geq 1}$ este convergent la $\frac{\pi}{2}$.
 - **2.** Se consideră șirul de numere reale $\left(\mathbf{I}_{\mathbf{n}}\right)_{\mathbf{n}\in\mathbb{N}}$, definit de $\mathbf{I}_{0}=\frac{\pi}{2}$ și $\mathbf{I}_{\mathbf{n}}=\int_{0}^{\frac{\pi}{2}}\cos^{\mathbf{n}}x\,dx$, $\mathbf{n}\in\mathbb{N}^{*}$.
- **5p** a) Să se calculeze I_1 .
- **5p b)** Să se arate că șirul $(I_n)_{n\in\mathbb{N}}$ este descrescător.
- **5p** c) Să se arate că $nI_nI_{n-1} = \frac{\pi}{2}$, $\forall n \in \mathbb{N}^*$.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \sin x$.
- **5p a**) Să se arate că funcția **f** este crescătoare.
- **5p b)** Admitem că pentru fiecare $n \in \mathbb{N}$ ecuația f(x) = n are o soluție unică x_n . Să se arate că șirul $(x_n)_{n \in \mathbb{N}^*}$ este nemărginit.
- **5p** c) Să se calculeze $\lim_{n\to\infty}\frac{x_n}{n}$, unde şirul $(x_n)_{n\geq 1}$ a fost definit la **b**).
 - $\textbf{2.} \text{ Fie funcțiile } f,g_n: \left[0,1\right) \to \mathbb{R}, \, f\left(x\right) = \frac{1}{1-x}, g_n(x) = \frac{x^n}{1-x} \, \text{, unde } n \in \mathbb{N}^* \, .$
- 5p a) Să se calculeze $\int_{0}^{1} (f(x) g_2(x)) dx.$
- **5p b)** Să se arate că $0 \le \int_0^{\frac{1}{2}} g_n(x) dx \le \frac{1}{2^n}, \forall n \in \mathbb{N}^*$.
- **5p** c) Să se arate că $\lim_{n\to\infty} \left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 2^2} + \frac{1}{3\cdot 2^3} + ... + \frac{1}{n\cdot 2^n} \right) = \ln 2$.

SUBIECTUL III (30p) Varianta 10

- **1.** Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x \arctan x \ln(1 + x^2)$.
 - a) Să se arate că funcția f este convexă pe $\mathbb R$.
- b) Să se arate că funcția f' este mărginită.
- **5p** c) Să se demonstreze că $f(x) \ge 0, \forall x \in \mathbb{R}$.
 - 2. Se consideră șirul $\left(I_{n}\right)_{n\geq1},I_{n}=\int\limits_{0}^{1}\frac{x^{n}}{1+x^{2n}}dx,\,\forall n\in\mathbb{N}^{*}$.
- **5p** a) Să se calculeze I_1 .

5p

5p

- **5p b)** Să se arate că $I_n \le \frac{1}{n+1}, \forall n \in \mathbb{N}^*$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} I_n$.

- 1. Se consideră funcția $f: \mathbb{R} \{-2\} \to \mathbb{R}$, $f(x) = \frac{1}{x+2} e^{|x|}$.
- **5p** a) Să se studieze derivabilitatea funcției f în punctul $\mathbf{x}_0 = 0$.
- **5p b**) Să se determine punctele de extrem local ale funcției f.
- 5p | c) Să se determine numărul de rădăcini reale ale ecuației f(x) = m, unde m este un parametru real.
 - 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}, f(x) = \sin x x + \frac{x^3}{6}$ și $g: (0,1] \to \mathbb{R}, g(x) = \int_{x}^{1} \frac{\sin t}{t} dt$.

Se admite cunoscut faptul că $f(x) \ge 0, \forall x \ge 0$.

- 5p a) Să se calculeze $\int_0^1 f(x)dx$.
- **5p b**) Să se arate că funcția g este strict descrescătoare.
- 5p c) Să se arate că $\lim_{\substack{x \to 0 \\ x > 0}} g(x) > 0.9$.

- **1.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=\frac{\ln(x+1)}{x}$.
- $\mathbf{5p} \qquad \mathbf{a)} \text{ Să se arate că şirul } \left(\mathbf{x_n} \right)_{\mathbf{n} \geq 1} \text{ unde } \mathbf{x_n} = \mathbf{f} \left(1 \right) + \frac{1}{2} \mathbf{f} \left(\frac{1}{2} \right) + \frac{1}{3} \mathbf{f} \left(\frac{1}{3} \right) + \ldots + \frac{1}{\mathbf{n}} \mathbf{f} \left(\frac{1}{\mathbf{n}} \right) \text{ este divergent.}$
- **5p b**) Să se calculeze $\lim_{x\to\infty} f(x)$.
- **5p c**) Să se arate că funcția **f** este descrescătoare.
 - 2. Se consideră funcția $f:(1,\infty)\to\mathbb{R}, \ f(x)=\int_0^1 e^{-t}t^{x-1}dt$.
- **5p** a) Să se calculeze f(2).
- **5p b)** Să se demonstreze relația $f(x) \le \frac{1}{x}$, $\forall x > 1$.
- **5p** c) Să se demonstreze relația $f(x+1) = xf(x) \frac{1}{e}, \forall x > 1$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{x^3 + 3x^2 4}$, $\forall x \in \mathbb{R}$.
 - a) Să se determine asimptota oblică a graficului funcției f spre ∞ .
- **5p b)** Să se arate că $f^{2}(x) f'(x) = x^{2} + 2x$, $\forall x \in \mathbb{R} \{-2, 1\}$.
 - c) Să se determine derivatele laterale ale funcției f în punctul $\mathbf{x}_0 = -2$.
 - 2. Pentru $\mathbf{n} \in \mathbb{N}^*$ se consideră funcția $F_n: \left(0, \infty\right) \to \mathbb{R}, F_n\left(x\right) = \int\limits_0^x t^n e^{-t} dt, \ x > 0$.
- **5p** a) Să se calculeze $F_1(x), x > 0$.

5p

5p

5p

- **b**) Să se determine punctele de inflexiune ale graficului funcției F_n .
- $\begin{array}{c|c} \textbf{5p} & \textbf{c}) \text{ Să se calculeze } \lim_{x \to \infty} F_2(x) \, . \end{array}$

- **1.** Pentru $\mathbf{n} \in \mathbb{N}^*$, $\mathbf{n} \ge 3$ se consideră funcția $\mathbf{f_n} : \mathbb{R} \to \mathbb{R}$, $\mathbf{f_n}(\mathbf{x}) = \sin^n \mathbf{x}$ și se notează cu $\mathbf{x_n}$ abscisa punctului de inflexiune din intervalul $\left(0, \frac{\pi}{2}\right)$, al graficului funcției $\mathbf{f_n}$.
- $\mathbf{5p} \qquad \mathbf{a)} \text{ Să se arate că } \mathbf{f}_{\mathbf{n}}^{"}(\mathbf{x}) = \mathbf{n}(\mathbf{n}-1)\sin^{\mathbf{n}-2}\mathbf{x} \mathbf{n}^{2}\sin^{\mathbf{n}}\mathbf{x}, \ \forall \mathbf{n} \in \mathbb{N}^{*}, \mathbf{n} \geq 3 \text{ și } \mathbf{x} \in \mathbb{R}.$
- **5p b)** Să se arate că $\sin x_n = \sqrt{\frac{n-1}{n}}, n \ge 3$.
- 5p c) Să se calculeze $\lim_{n\to\infty} f_n(x_n)$.
 - $\textbf{2. Se consideră } \textbf{a} \in \mathbb{R} \text{ și funcțiile } \textbf{f}, \textbf{F} : \mathbb{R} \rightarrow \mathbb{R} \text{, } \textbf{f} \left(\textbf{x} \right) = \frac{\textbf{x}^3 3\textbf{x} + \textbf{a}}{(\textbf{x}^2 + 1)\sqrt{\textbf{x}^2 + 1}}, \textbf{F} \left(\textbf{x} \right) = \frac{\textbf{x}^2 + \textbf{a}\textbf{x} + 5}{\sqrt{\textbf{x}^2 + 1}}.$
- **5p** a) Să se arate că funcția F este o primitivă a funcției f.
- **5p b)** Pentru $\mathbf{a} = 2$, să se determine aria suprafeței plane cuprinsă între graficul functiei \mathbf{f} , axa $\mathbf{O}\mathbf{x}$ și dreptele $\mathbf{x} = 1$ și $\mathbf{x} = 2$.
- 5p c) Să se determine a astfel încât $\int_0^2 F(x)dx \int_{-2}^0 F(x)dx = 2$.

- 1. Pentru fiecare $n \in \mathbb{N}$, $n \ge 3$, se consideră funcția $f_n: [0, \infty) \to \mathbb{R}$, $f_n(x) = x^n nx + 1$.
- a) Să se arate că f_n este strict descrescătoare pe [0;1] și strict crescătoare pe $[1;\infty)$.
- **5p b**) Să se arate că ecuația $f_n(x) = 0$, x > 0 are exact două rădăcini $a_n \in (0,1)$ și $b_n \in (1,\infty)$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} a_n$, unde a_n s-a definit la punctul b).
 - $\textbf{2. Se consideră şirul } \left(I_n\right)_{n\in\mathbb{N}}, \text{ unde } I_0 = \int\limits_0^1 \frac{1}{x^2+1} dx \text{ şi } I_n = \int\limits_0^1 \frac{x^n}{x^2+1} dx, \text{ } n\in\mathbb{N}^*.$
- **5p** a) Să se arate că $I_0 = \frac{\pi}{4}$.

5p

- **5p b)** Să se arate că $I_{2n} = \frac{1}{2n-1} I_{2n-2}, \forall n \in \mathbb{N}, n \ge 2$.
- **5p** c) Să se arate că $\lim_{n\to\infty} \left(1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots + (-1)^{n-1} \frac{1}{2n-1}\right) = \mathbf{I}_0$.

- 1. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \in \mathbb{R} \setminus \{0\} \\ 0, & x = 0 \end{cases}$.
- **5p** a) Să se arate că funcția f este derivabilă pe \mathbb{R} .
- **5p b)** Să se calculeze $\lim_{x\to\infty} f'(x)$.
- 5p c) Să se demonstreze că funcția f este mărginită pe $\mathbb R$.
 - 2. Pentru fiecare $n \in \mathbb{N}^*$ se consideră funcția $f_n:[0,1] \to \mathbb{R}, \, f_n(x)=(1-x)^n$.
- **5p** a) Să se calculeze $\int_0^1 f_2(x) dx$.
- **5p b)** Să se arate că $\int_0^1 x f_n(x) dx = \frac{1}{(n+1)(n+2)}$, oricare ar fi $n \in \mathbb{N}^*$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} \int_0^1 f_n\left(\frac{x}{n}\right) dx$.

1. Se consideră șirul $(\mathbf{x}_n)_{\mathbf{n} \in \mathbb{N}^*}$, unde $\mathbf{x}_l \in (0,1)$ și $\mathbf{x}_{n+1} = \frac{\mathbf{x}_n^5 + 3\mathbf{x}_n}{4}$, $\forall \mathbf{n} \in \mathbb{N}^*$.

5p a) Să se arate că $\mathbf{x}_{\mathbf{n}} \in (0,1), \forall \mathbf{n} \in \mathbb{N}^*$.

5p b) Să se arate că șirul $(x_n)_{n \in \mathbb{N}^*}$ este convergent.

5p c) Să se arate că $\lim_{n\to\infty} \frac{x_{n+2}}{x_n} = \frac{9}{16}$.

2. Se consideră o funcție $f: \mathbb{R} \to \mathbb{R}$, cu proprietatea că $xf(x) = \sin x, \forall x \in \mathbb{R}$.

5p a) Să se calculeze $\int_0^{\pi} x^2 f(x) dx$.

5p b) Să se arate că funcția **f** este integrabilă pe intervalul $\left[0, \frac{\pi}{2}\right]$.

5p c) Să se arate că $\int_{1}^{\pi} f(x) dx \le \cos 1$.

SUBIECTUL III (30p) Varianta 18

1. Se consideră funcția $f:[0,\infty)\to[0,\infty)$, $f(\mathbf{x})=\frac{2\mathbf{x}+1}{\mathbf{x}+2}$ și șirul $(\mathbf{x}_n)_{n\in\mathbb{N}}$ dat de $\mathbf{x}_0=2$, $\mathbf{x}_{n+1}=f(\mathbf{x}_n)$, $\forall n\in\mathbb{N}$.

5p a) Să se determine asimptotele graficului funcției f.

5p b) Să se arate că șirul $(x_n)_{n\in\mathbb{N}}$, are limita 1.

5p c) Să se arate că șirul $(y_n)_{n\in\mathbb{N}}$ dat de $y_n = x_0 + x_1 + x_2 + ... + x_n - n$, este convergent.

2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}, \ f(x) = 1 + \cos x \ \text{și} \ F: \mathbb{R} \to \mathbb{R}, \ F(x) = x \int_0^x f(t) dt$.

5p a) Să se calculeze $\int_0^{\frac{\pi}{2}} f(x) dx$.

5p b) Să se arate că F este funcție pară.

5p c) Să se determine intervalele de monotonie ale funcției F.

- 1. Se consideră funcția $f:(-2,2) \to \mathbb{R}$, $f(x) = \ln \frac{2+x}{2-x}$
 - a) Să se determine asimptotele graficului funcției f.
 - b) Să se determine punctele de inflexiune ale graficului funcției f.
 - c) Să se calculeze $\lim_{x\to\infty} x^a f\left(\frac{1}{x}\right)$, unde a este un număr real.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{-x^3 + 2x^2 5x + 8}{x^2 + 4}$, $\forall x \in \mathbb{R}$.
- **5p** a) Să se calculeze $\int_0^1 f(x) dx$.

5p

5p

5p

5p

5p

- **5p b)** Să se calculeze $\int_{1}^{4} (x + f(x) 2)^2 dx$.
- **5p** c) Știind că funcția f este bijectivă, să se calculeze $\int_{\frac{4}{5}}^{2} f^{-1}(x) dx$.

- 1. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 2e^x + 3x^2 2x + 5$.
- **5p** a) Să se demonstreze că funcția f este strict crescătoare pe $[0,\infty)$.
 - b) Să se arate că funcția f nu este surjectivă.
 - c) Să se calculeze $\lim_{x\to\infty} \frac{f'(x)}{f(x)}$.
 - 2. Se consideră funcția $f:[0,\infty) \to \mathbb{R}$, $f(t) = \frac{1}{(1+t^2)(1+t^3)}$.
- **5p** a) Să se calculeze $\int_0^1 (t^3 + 1) f(t) dt$.
- **5p b)** Să se arate că $\int_{\frac{1}{x}}^{1} f(t) dt = \int_{1}^{x} t^{3} f(t) dt$, $\forall x > 0$.
- $\begin{array}{c|c} \textbf{5p} & \textbf{c) Să se calculeze} & \lim_{x \to \infty} \int_{\frac{1}{x}}^{x} f\left(t\right) dt \,. \end{array}$

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = (x-1)(x-3)(x-5)(x-7).
- 5p a) Să se calculeze $\lim_{x\to\infty} \frac{f(x)}{x^4}$.
- **5p b)** Să se calculeze $\lim_{x\to\infty} f(x)^{\frac{1}{x}}$.
- **5p** c) Să se arate că ecuația f'(x) = 0 are exact trei rădăcini reale.
 - 2. Se consideră funcțiile $f_n: \mathbb{R} \to \mathbb{R}, \ f_n(x) = \frac{1}{n^2 + x^2}, \ n \in \mathbb{N}^*.$
- **5p** a) Să se calculeze aria suprafeței cuprinse între graficul funcției f_1 , axele de coordonate și dreapta x = 1.
- **5p b**) Să se calculeze $\int_0^1 x (f_1(x))^2 dx$.
- **5p** c) Să se arate că $\lim_{n\to\infty} n(f_n(1) + f_n(2) + f_n(3) + ... + f_n(n)) = \frac{\pi}{4}$.

SUBIECTUL III (30p) Varianta 22

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{x}{x^4 + 3}$.
- 5p a) Să se calculeze $f'(x), x \in \mathbb{R}$.

5p

- b) Să se determine mulțimea valorilor funcției f.
- 5p c) Să se arate că $|f(x) f(y)| \le |x y|, \forall x, y \in \mathbb{R}$.
 - **2.** Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 3x + 2$.
- 5p a) Să se calculeze $\int_2^3 \frac{f(x)}{x-1} dx$.
- **5p b)** Să se calculeze $\int_{-1}^{0} \frac{x^2 13}{f(x)} dx$.
- 5p c) Să se determine punctele de extrem ale funcției $g: \mathbb{R} \to \mathbb{R}, \ g(x) = \int_0^{x^2} f(t)e^t dt$.

- **1.** Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + x + 1$.
- **5p** a) Să se arate că, pentru orice $n \in \mathbb{N}$, ecuația $f(x) = 3 + \frac{1}{n+1}$ are o unică soluție $x_n \in \mathbb{R}$.
- **5p b)** Să se arate că $\lim_{n\to\infty} x_n = 1$, unde x_n este soluția reală a ecuației $f(x) = 3 + \frac{1}{n+1}$, $n \in \mathbb{N}$.
- 5p c) Să se determine $\lim_{n\to\infty} n(x_n-1)$, unde x_n este soluția reală a ecuației $f(x)=3+\frac{1}{n+1}$, $n\in\mathbb{N}$.
 - 2. Se consideră funcția $f:[0,\infty)\to\mathbb{R},\ f(x)=\int_0^x\frac{\sin t}{1+t}dt.$
- 5p a) Să se arate că $\int_0^a \frac{1}{1+t} dt = \ln(1+a), \forall a > -1$.
- **5p b)** Să se arate că $f(x) < \ln(1+x), \forall x > 0$.
- **5p** c) Să se arate că $f(\pi) > f(2\pi)$.

SUBIECTUL III (30p) Varianta 24

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x \sin x$.
 - a) Să se arate că funcția f este strict crescătoare.
- **5p b)** Să se arate că graficul funcției nu are asimptote.
- **5p** c) Să se arate că funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \sqrt[3]{f(x)}$ este derivabilă pe \mathbb{R} .
 - 2. Se consideră funcția $\mathbf{f}:[0,\infty) \to \mathbb{R}, \ \mathbf{f}(\mathbf{x}) = \begin{cases} \frac{\mathbf{e}^{-\mathbf{x}} \mathbf{e}^{-2\mathbf{x}}}{\mathbf{x}}, \ \mathbf{x} > 0. \\ 1, & \mathbf{x} = 0. \end{cases}$
- **5p** a) Să se arate că funcția f are primitive pe $[0,\infty)$.
- 5p b) Să se calculeze $\int_0^1 xf(x) dx$.

5p

5p c) Folosind eventual inegalitatea $e^x \ge x + 1$, $\forall x \in \mathbb{R}$, să se arate că $0 \le \int_0^x f(t) dt < 1$, $\forall x > 0$.

5p

5p

5p

- **1.** Se consideră funcția $f:(0,\infty) \to \mathbb{R}$, $f(x) = \frac{1}{2} \ln^2 x$.
 - a) Să se arate că funcția este convexă pe intervalul (0,e].
- **5p b**) Să se determine asimptotele graficului funcției.
 - c) Să se arate că șirul $(a_n)_{n\geq 3}$, dat de $a_n = \frac{\ln 3}{3} + \frac{\ln 4}{4} + \frac{\ln 5}{5} + \dots + \frac{\ln n}{n} f(n)$, este descrescător.
 - 2. Se consideră funcția $f:\left[0,\frac{\pi}{2}\right]\to\mathbb{R},\,f\left(x\right)=\cos x$.
- **5p** a) Să se calculeze aria suprafeței cuprinse între graficul funcției f și axele de coordonate.
 - b) Să se calculeze volumul corpului obținut prin rotirea graficului funcției f în jurul axei Ox.
- $\mathbf{5p} \qquad \mathbf{c)} \text{ Să se calculeze } \lim_{n \to \infty} \left(1 \mathbf{f}\left(\frac{1}{\sqrt{\mathbf{n}}}\right)\right) \left(\mathbf{f}\left(\frac{1}{\mathbf{n}}\right) + \mathbf{f}\left(\frac{2}{\mathbf{n}}\right) + \mathbf{f}\left(\frac{3}{\mathbf{n}}\right) + \ldots + \mathbf{f}\left(\frac{\mathbf{n}}{\mathbf{n}}\right)\right).$

- **1.** Fie funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \operatorname{arctg} x \operatorname{arcctg} x$.
- **5p** a) Să se determine asimptota la graficul funcției f spre $+\infty$.
- **5p b**) Să se arate că funcția f este strict crescătoare pe \mathbb{R} .
- **5p** c) Să se arate că șirul $(x_n)_{n\geq 1}$, dat de $x_{n+1} = f(x_n)$, $\forall n \in \mathbb{N}^*$ și $x_1 = 0$, este convergent.
 - **2.** Fie funcția $f:[-1,1] \to \mathbb{R}$, $f(x) = \arcsin x$.
- **5p** a) Să se arate că funcția $g:[-1,1] \to \mathbb{R}$, g(x) = xf(x) are primitive, iar acestea sunt crescătoare.
- 5p b) Să se calculeze $\int_0^{\frac{1}{2}} f(x) dx$.
- 5p c) Să se arate că $\int_0^1 x f(x) dx \le \frac{\pi}{4}$.

- 1. Fie funcția $f:[-1,1] \to \mathbb{R}, f(x)=(x-1)\arcsin x$.
- **5p** a) Să se calculeze $\lim_{x\to 0} \frac{f(x)}{x^2 x}$.
- **5p b**) Să se determine punctele în care funcția **f** nu este derivabilă.
- **5p** c) Să se arate că funcția f este convexă.
 - $\textbf{2. Se consideră funcțiile} \quad f:\mathbb{R} \to \mathbb{R}, \quad f\left(x\right) = 1 + x + x^2 + x^3 + x^4 \text{ și } F:\mathbb{R} \to \mathbb{R} \text{ , } F\left(x\right) = \int_0^x f\left(t\right) dt.$
- **5p** a) Să se arate că funcția F este strict crescătoare pe \mathbb{R} .
- **5p b**) Să se arate că funcția F este bijectivă.
- **5p** c) Să se calculeze $\int_0^a F^{-1}(x) dx$, unde F^{-1} este inversa funcției F și $a = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$.

- $\textbf{1.} \ \text{Fie funcția} \ f:[0,3] \to \mathbb{R}, \ f\left(x\right) = \left\{x\right\} \left(1 \left\{x\right\}\right), \\ \text{unde } \left\{x\right\} \ \text{ este partea fracționară a numărului } x.$
- **5p** a) Să se calculeze $\lim_{\substack{x \to 1 \\ y < 1}} f(x)$.
- **5p b**) Să se determine domeniul de continuitate al funcției f.
- **5p c**) Să se determine punctele în care funcția **f** nu este derivabilă .
 - $\textbf{2. Se consideră funcțiile } f:\mathbb{R} \rightarrow \mathbb{R}, \ f\left(x\right) = \frac{1}{2-\sin x} \ \text{și } F:\left[0,+\infty\right) \rightarrow \mathbb{R}, \ F\left(x\right) = \int_{0}^{x} f\left(t\right) dt \ .$
- **5p** a) Să se calculeze $\int_0^{\frac{\pi}{2}} f(x) \cos x dx.$
- **5p b**) Să se demonstreze că funcția F este strict crescătoare.
- 5p c) Să se determine $\lim_{x\to\infty} F(x)$.

- $\textbf{1.} \text{ Se consideră } \textbf{n} \in \mathbb{N}^* \text{ și funcțiile } \textbf{f}_n, \textbf{g}_n : \mathbb{R} \rightarrow \mathbb{R}, \textbf{f}_n(\textbf{x}) = 1 \textbf{x} + \textbf{x}^2 \textbf{x}^3 + ... \textbf{x}^{2n-l} + \textbf{x}^{2n}, \textbf{g}_n(\textbf{x}) = \textbf{x}^{2n+l} + 1.$
- 5p a) Să se verifice că $f'_n(x) = \frac{g'_n(x)}{x+1} \frac{g_n(x)}{(x+1)^2}, \forall x \in \mathbb{R} \setminus \{-1\}.$
- **5p b**) Să se calculeze $\lim_{n\to\infty} f_n'\left(\frac{1}{2}\right)$.
- $[\mathbf{5p} \ | \ \mathbf{c})$ Să se demonstreze că $[\mathbf{f_n}]$ are exact un punct de extrem local.
 - 2. Se consideră șirul $\left(I_n\right)_{n\in\mathbb{N}^*}$ definit prin $I_n=\int_0^l \frac{x^n}{1+x^3}dx, \, \forall n\in\mathbb{N}^*.$
- **5p** a) Să se calculeze I_2 .
- **5p b**) Să se demonstreze că șirul $(I_n)_{n \in \mathbb{N}^*}$ este strict descrescător.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x \frac{x^3}{6} \sin x$.
- **5p** a) Să se determine $\lim_{x \to -\infty} f(x)$.
- **5p b**) Să se calculeze derivata a doua a funcției f.
- **5p** c) Să se demonstreze că $f(x) \le 0, \forall x \ge 0$.
 - 2. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1+x}{1+x^2}$.
- **5p** a) Să se arate că funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \operatorname{arctg} x + \frac{1}{2} \ln(x^2 + 1)$ este o primitivă a funcției f.
- **5p b**) Să se calculeze $\int_0^1 f(x)dx$.
- $\mathbf{5p} \qquad \mathbf{c}) \text{ Să se arate că șirul } \left(a_n\right)_{n\in\mathbb{N}^*}, \text{ definit de } a_n = \sum_{k=1}^n \frac{n+k}{n^2+k^2}, \ \forall n\in\mathbb{N}^*, \text{ este convergent}.$

- 1. Se consideră funcția $f:\mathbb{R} \to \mathbb{R}, \ f\left(x\right) = \sqrt{\mid x^2 x\mid}$.
- a) Să se arate că graficul funcției f admite asimptotă spre $-\infty$.
- **5p b**) Să se determine domeniul de derivabilitate al funcției **f**.
- **5p c**) Să se determine punctele de extrem local ale funcției f.
 - 2. Se consideră șirul $(I_n)_{n \in \mathbb{N}^*}$ dat de $I_n = \int_0^1 \frac{x^n}{x^2 + 1} dx$, $\forall n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze I_2 .

5p

- **5p b**) Să se verifice că $I_{n+2} + I_n = \frac{1}{n+1}, \forall n \in \mathbb{N}^*.$
- **5p c**) Să se calculeze $\lim_{n\to\infty} nI_n$.

$SUBIECTUL~III~(30p) \frac{Varianta~32}{}$

- **1.** Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \operatorname{arctg}(x+2) \operatorname{arctg} x$.
- 5p a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- **5p b**) Să se demonstreze că $0 < f(x) \le \frac{\pi}{2}, \forall x \in \mathbb{R}$.
- **5p** c) Să se demonstreze că funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = f(x) + \arctan \frac{(x+1)^2}{2}$ este constantă.
 - 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^3}{3} x + \operatorname{arctg} x$ și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \operatorname{arctg} x$.
- **5p** a) Să se calculeze $\int_1^2 \frac{f'(x)}{x} dx$.
- **5p** b) Să se determine $\lim_{x\to\infty}\frac{1}{x^3}\int_0^x f(t)dt$.
- **5p c**) Să se calculeze aria suprafeței cuprinse între graficele celor două funcții și dreptele $\mathbf{x} = 0$ și $\mathbf{x} = 1$.

SUBIECTUL III (30p)

Varianta 33

 $\textbf{1.} \ \text{Fie funcția} \ \ f: \left(0,+\infty\right) \to \mathbb{R}, \ f\left(x\right) = \frac{1}{\sqrt{x}} \ \ \text{și șirul} \ \left(a_n\right)_{n \geq 1}, \ a_n = \frac{1}{\sqrt{1}} + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \ldots + \frac{1}{n\sqrt{n}}, \forall n \in \mathbb{N}^*.$

- a) Să se arate că funcția $\ f'$ este strict crescătoare pe intervalul $(0,+\infty)$. 5p
- **b**) Să se demonstreze că $\frac{1}{2(\mathbf{k}+1)\sqrt{\mathbf{k}+1}} < \frac{1}{\sqrt{\mathbf{k}}} \frac{1}{\sqrt{\mathbf{k}+1}} < \frac{1}{2\mathbf{k}\sqrt{\mathbf{k}}}, \forall \mathbf{k} \in \mathbb{N}^*.$ **5**p
- c) Să se demonstreze că șirul $(a_n)_{n\geq 1}$ este convergent. **5**p
 - 2. Se consideră funcțiile $f_n:[0,+\infty)\to\mathbb{R},\ f_n\left(x\right)=\int_0^xt^n\ \mathrm{arctg}\,t\,dt,\ \forall n\in\mathbb{N}^*.$
- a) Să se arate că $f_1(x) = \frac{x^2 + 1}{2} \operatorname{arctg} x \frac{x}{2}, \ \forall x \ge 0.$ **5**p
- b) Să arate că $f_n(1) \le \frac{\pi}{4} \cdot \frac{1}{n+1}, \forall n \ge 1$. c) Să se calculeze $\lim_{n \to \infty} nf_n(1)$.

- SUBIECTUL III (30p) $\frac{\text{Varianta }34}{\text{1. Se consideră funcția }f:\left(0,+\infty\right)\to\mathbb{R}, \quad f\left(x\right)=\frac{1}{x+1}-\ln\left(x+\frac{3}{2}\right)+\ln\left(x+\frac{1}{2}\right)$ și șirul $\left(a_{n}\right)_{n\in\mathbb{N}^{*}}$, $\mathbf{a_n} = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln\left(n + \frac{1}{2}\right), \ \forall n \in \mathbb{N}^*.$
- a) Să se demonstreze că funcția f este strict crescătoare pe intervalul $(0, +\infty)$.
- **b**) Să se arate că f(x) < 0, $\forall x \in (0, +\infty)$ 5p
- c) Să se demonstreze că șirul $\left(a_{n}\right)_{n\in\mathbb{N}^{*}}$ este strict descrescător. 5p
 - **2.** Se consideră funcțiile $f_n:[0,1] \to \mathbb{R}$, $f_n(x) = \int_0^x t^n \arcsin t \, dt$, $\forall n \in \mathbb{N}^*$.
- a) Să se calculeze derivata funcției f_3 .
- **b**) Să se calculeze $f_1\left(\frac{1}{2}\right)$.
- c) Să se determine $\lim_{\substack{x \to 1 \\ x \neq 1}} f_2(x)$

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \ln(e^x + 1)$.
- a) Să se arate că funcția f' este strict descrescătoare pe \mathbb{R} .
- **5p b)** Să se arate că $\lim_{x\to\infty} x^a f(x) = 0, \forall a \in \mathbb{R}$.
- **5p c**) Să se determine asimptotele graficului funcției f.
 - **2.** Fie şirul $(I_n)_{n \in \mathbb{N}^*}$ dat de $I_n = \int_0^2 (2x x^2)^n dx$, $\forall n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze I_1 .

5p

- **5p b)** Să se demonstreze că $(2n+1)I_n = 2nI_{n-1}$, $\forall n \in \mathbb{N}^*$, $n \ge 2$.
- **5p** c) Să se arate că șirul $(I_n)_{n \in \mathbb{N}^*}$ tinde descrescător către 0.

- **1.** Fie funcția $f: \mathbb{R} \setminus \{\sqrt{3}\} \to \mathbb{R}$, $f(x) = \frac{x\sqrt{3}+1}{\sqrt{3}-x}$ și șirul $(a_n)_{n\geq 1}$ definit prin $a_1 = 2$, $a_{n+1} = f(a_n)$, $\forall n \in \mathbb{N}^*$.
- **5p** a) Să se demonstreze că funcția f este strict crescătoare pe $(-\infty, \sqrt{3})$ și pe $(\sqrt{3}, \infty)$.
- **5p b**) Să se determine asimptotele graficului funcției f.
- **5p c**) Să se demonstreze că șirul $(a_n)_{n \in \mathbb{N}^*}$ nu este convergent.
 - $\textbf{2. Se consideră funcțiile} \quad f:\mathbb{R}\to\mathbb{R}, \ f\left(x\right)=e^{-x^2} \ \text{și} \ F:\mathbb{R}\to\mathbb{R}, \ F\left(x\right)=\int_1^x f\left(t\right)dt.$
- **5p** a) Să se determine punctele de inflexiune ale funcției F.
- **5p b)** Să se calculeze $\int_0^1 xf(x) dx$.
- **5p** c) Să se calculeze $\int_0^1 F(x) dx$.

- 1. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 3x + 3 \operatorname{arctg} x$.
- **5p** a) Să se arate că funcția f este strict crescătoare pe \mathbb{R} .
- **5p b**) Să se arate că funcția f este bijectivă.
- $\mathbf{5p} \qquad \mathbf{c}) \text{ Să se determine } \mathbf{a} \in \mathbb{R} \text{ pentru care } \lim_{x \to \infty} \frac{\mathbf{f}(x)}{x^a} \text{ există, este finită și nenulă.}$
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$ dat de $I_n=\int_0^1 x^n e^x dx, \forall n\in\mathbb{N}^*.$
- **5p** a) Să se calculeze I_1 .
- **5p b**) Să se demonstreze că șirul $(I_n)_{n\geq 1}$ este convergent.
- $\begin{array}{c|c} 5p & c) \text{ Să se calculeze } \lim_{n \to \infty} nI_n. \end{array}$

$SUBIECTUL~III~(30p) \frac{Varianta~38}{}$

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x + \ln(x^2 + x + 1)$.
- **5p** a) Să se demonstreze că funcția f este strict crescătoare.
- **5p b**) Să se demonstreze că funcția **f** este bijectivă.
- **5p** c) Să se arate că graficul funcției f nu are asimptotă oblică spre $+\infty$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \{x\} (1 \{x\})$, unde $\{x\}$ este partea fracționară a numărului real x.
- **5p** a) Să se calculeze $\int_0^1 f(x) dx$.
- **5p b**) Să se demonstreze că funcția f admite primitive pe \mathbb{R} .
- 5p c) Să se arate că valoarea integralei $\int_a^{a+1} f(x) dx$ nu depinde de numărul real a.

- 1. Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=x\ln x$.
- **5p** a) Să se studieze monotonia funcției f.
- **5p b**) Să se determine asimptotele graficului funcției f.
- **5p** c) Să se demonstreze că orice şir $(\mathbf{x}_n)_{n \in \mathbb{N}}$ cu proprietatea $\mathbf{x}_0 \in (0,1), \mathbf{x}_{n+1} = \mathbf{e}^{\mathbf{f}(\mathbf{x}_n)}$ este convergent.
 - 2. Se consideră șirul $\left(I_n\right)_{n\in\mathbb{N}^*}$ definit prin $I_n=\int_0^l \frac{x^n}{4x+5}dx,\,\forall n\in\mathbb{N}^*$.
- $\mathbf{5p}$ a) Să se calculeze \mathbf{I}_2 .
- **5p b**) Să se arate că șirul $(I_n)_{n \in \mathbb{N}^*}$ verifică relația $4I_{n+1} + 5I_n = \frac{1}{n+1}, \forall n \in \mathbb{N}^*$.
- **5p** c) Să se determine $\lim_{n\to\infty} nI_n$.

$SUBIECTUL~III~(30p) \frac{Varianta~40}{}$

- 1. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x^2 + 2} \sqrt{x^2 + 1}$.
- **5p** a) Să se demonstreze că funcția f este strict crescătoare pe intervalul (-∞,0].
- **5p b)** Să se arate că graficul funcției f are exact două puncte de inflexiune.
 - p c) Să se determine ecuația asimptotei la graficul funcției f spre -∞.
 - 2. Se consideră funcțiile $F_n:\mathbb{R}\to\mathbb{R}\,,\ F_n(x)=\int_0^x\!t\sin^nt\,dt,\ \forall n\!\in\mathbb{N}^*.$
- **5p** a) Să se calculeze $F_1(\pi)$.
- $\mathbf{5p} \hspace{0.2cm} \boxed{\hspace{0.2cm} b) \text{ Să se demonstreze că } F_{n+1} \big(1 \big) \! < \! F_n \big(1 \big), \hspace{0.2cm} \forall n \! \in \! \mathbb{N}^*.}$
- **5p** c) Să se calculeze $\lim_{n\to\infty} F_n(1)$.

$SUBIECTUL~III~(30p) \frac{Varianta~41}{}$

- 1. Se consideră funcția $f:(0,+\infty) \to (-\infty,0)$, $f(x) = \ln(1+x) x$.
- **5p** a) Să se demonstreze că funcția f este strict descrescătoare pe intervalul $(0, +\infty)$.
- **5p b**) Să se arate că funcția **f** este surjectivă.
- **5p c**) Să se arate că graficul funcției **f** nu admite asimptote.
 - 2. Fie funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \operatorname{arctg} x$.
- **5p** a) Să se calculeze $\int_0^1 f(x) dx$.
- **5p b**) Să se arate că $\lim_{x \to \infty} \frac{1}{x} \int_{1}^{x} f(\ln t) dt = \frac{\pi}{2}$.
- **5p** c) Să se calculeze $\lim_{n\to\infty} \frac{1}{n} \left(f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + f\left(\frac{3}{n}\right) + ... + f\left(\frac{n}{n}\right) \right)$.

- **1.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \operatorname{arctg} x$ și șirul $(x_n)_{n \in \mathbb{N}^*}$ definit de $x_1 = 1$, $x_{n+1} = f(x_n)$, $\forall n \in \mathbb{N}^*$.
- **5p** a) Să se demonstreze că funcția f' este strict crescătoare pe \mathbb{R} .
- **5p b**) Să se determine ecuația asimptotei la graficul funcției f spre $-\infty$.
- **5p** c) Să se arate că șirul $(x_n)_{n \in \mathbb{N}^*}$ este convergent.
 - **2.** Fie şirul $(I_n)_{n \in \mathbb{N}^*}$, definit prin $I_n = \int_0^1 (x x^2)^n dx$, $\forall n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze I_2 .
- **5p b**) Să se demonstreze că $I_n = \frac{n}{4n+2} I_{n-1}$, $\forall n \in \mathbb{N}, n \ge 2$.
- $\begin{array}{c|c} 5p & c) \text{ Să se calculeze } \lim_{n \to \infty} I_n. \end{array}$

- **1.** Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x + e^{-x}$.
- a) Să se demonstreze că funcția f este strict crescătoare pe intervalul $[0, +\infty)$.
- **5p b**) Să se arate că funcția **f** admite exact un punct de extrem local.
- 5p c) Să se determine numărul de soluții reale ale ecuației f(x) = m, unde m este un număr real oarecare.
 - $\textbf{2.} \text{ Fie funcțiile } f: \left(0, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad f\left(x\right) = \int_{1}^{tg\,x} \frac{t}{1+t^2} dt \quad \text{si } g: \left(0, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad g\left(x\right) = \int_{1}^{ctg\,x} \frac{1}{t(1+t^2)} dt.$
- **5p** a) Să se calculeze $f\left(\frac{\pi}{3}\right)$.

5p

- **5p b**) Să se calculeze f'(x), $x \in \left(0, \frac{\pi}{2}\right)$.
- **5p** c) Să se arate că $f(x) + g(x) = 0, \forall x \in \left(0, \frac{\pi}{2}\right)$.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{ax+b}{\sqrt{x^2+x+1}}, a,b \in \mathbb{R}.$
- 5p a) Să se calculeze f'(x), $\forall x \in \mathbb{R}$.
- **5p b**) Să se arate că funcția f este strict crescătoare pe \mathbb{R} dacă și numai dacă a = 2b > 0.
- **5p** c) Pentru a = 2 și b = 1, să se determine mulțimea valorilor funcției f.
 - 2. Fie funcția $f:[-1,1] \to \mathbb{R}$, $f(x) = \int_0^x e^{\arcsin t} dt$.
- **5p** a) Să se arate că funcția f este strict monotonă.
- **5p b)** Să se arate că $f(x) = \int_0^{\arcsin x} e^t \cos t \, dt, \forall x \in [-1,1]$.
- **5p c**) Să se determine **f** (1).

$SUBIECTUL~III~(30p) \frac{Varianta~45}{}$

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{x^2 + ax + 5}{\sqrt{x^2 + 1}}, a \in \mathbb{R}.$
- **5p** a) Să se calculeze f'(x), $\forall x \in \mathbb{R}$.
- **5p b**) Știind că $\mathbf{a} = 0$, să se determine ecuația asimptotei spre $+\infty$ la graficul funcției \mathbf{f} .
- **5p** c) Să se determine toate numerele reale a astfel încât funcția f să aibă trei puncte de extrem local.
 - **2.** Fie funcția $f:[-1,1] \to \mathbb{R}$, $f(x) = \sqrt{1-x^2}$.
- **5p** a) Să se calculeze $\int_{-1}^{1} x \sqrt{1-x^2} dx$.
- **5p b)** Să se determine volumul corpului obținut prin rotirea graficului funcției **f** în jurul axei **Ox**.
- **5p** c) Să se calculeze $\lim_{n\to\infty} \int_0^1 x^n f(x) dx$.

$SUBIECTUL~III~(30p) \frac{Varianta~46}{}$

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{|x-1|}{e^x}$.
- **5p** a) Să se arate că f nu este derivabilă în punctul $\mathbf{x}_0 = 1$.
- **5p b**) Să se determine numărul soluțiilor reale ale ecuației f(x) = m, unde m este un parametru real.
- **5p** c) Să se calculeze $\lim_{n\to\infty} (f(1)+f(2)+f(3)+...+f(n))$.
 - **2.** Se consideră funcția $\mathbf{f}: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, \mathbf{f}(\mathbf{x}) = \mathbf{x}^2 \sin \mathbf{x}$.
- $\textbf{5p} \qquad \textbf{a) Să se arate că există numerele reale } \textbf{a, b, c} \text{ astfel încât funcția } F: \left[0, \frac{\pi}{2}\right] \to \mathbb{R} \ ,$
 - $\mathbf{F}(\mathbf{x}) = (\mathbf{a}\mathbf{x}^2 + \mathbf{b})\cos\mathbf{x} + \mathbf{c}\mathbf{x}\sin\mathbf{x} \text{ să fie o primitivă a funcției } \mathbf{f}.$
- 5p **b**) Să se calculeze $\int_{\frac{1}{\pi}}^{\frac{2}{\pi}} f\left(\frac{1}{2x}\right) dx$.
- **5p c**) Să se calculeze aria suprafeței plane cuprinse între graficul funcției f și graficul funcției $g: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$, $g(x) = \pi x x^2$.

- **1.** Se consideră funcția $f : \mathbb{R} \setminus \{1, -1\} \to \mathbb{R}$, $f(x) = \arctan \frac{1}{x^2 1}$.
- **5p** a) Să se calculeze $\lim_{\substack{x \to 1 \\ x > 1}} f(x)$.
- **5p b**) Să se arate că graficul funcției f admite asimptotă spre +∞.
- **5p c**) Să se demonstreze că funcția **f** admite un singur punct de extrem local.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x 1 + \frac{1}{2}x^2$.
- 5p a) Să se calculeze $\int_0^{\frac{\pi}{2}} f(x) dx$.
- **5p b)** Să se determine $\lim_{x\to\infty} \frac{1}{x^2} \int_0^x f(t)dt$.
- **5p** c) Să se demonstreze că $\int_0^1 \cos(x^2) dx \ge \frac{9}{10}$.

$SUBIECTUL~III~(30p) \frac{Varianta~48}{}$

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \arcsin\left(\frac{2x}{1+x^2}\right)$.
- **5p** a) Să se calculeze $\lim_{x\to +\infty} f(x)$.
- **5p b**) Să se determine domeniul de derivabilitate al funcției f.
- **5p c**) Să se demonstreze că funcția **f** are două puncte de extrem.
 - $\textbf{2.} \text{ Fie funcția } f: \left[0,1\right] \rightarrow \mathbb{R}, \quad f\left(x\right) = \sqrt{1-x^2} \quad \text{și șirul } \left(a_n\right)_{n \in \mathbb{N}^*}, \quad a_n = \frac{1}{n^2} \sum_{k=1}^n \sqrt{n^2-k^2} \;, \quad \forall n \in \mathbb{N}^*.$
- **5p** a) Să se calculeze $\int_0^1 x f(x) dx$.
- **5p b**) Să se determine volumul corpului obținut prin rotirea graficului funcției **f** în jurul axei **Ox**.
- **5p c**) Să se demonstreze că șirul $(a_n)_{n\in\mathbb{N}^*}$ este convergent.

$SUBIECTUL~III~(30p) \frac{Varianta~49}{}$

- 1. Se consideră funcția $f:[1,+\infty) \to \mathbb{R}$, $f(x) = \frac{4-3x^2}{x^3}$.
- **5p** a) Să se demonstreze că graficul funcției f admite asimptotă spre +∞.
- **5p b**) Să se determine mulțimea valorilor funcției f.
- **5p** c) Să se determine domeniul de derivabilitate al funcției $g:[2,\infty) \to \mathbb{R}$, $g(x) = \arccos f(x)$.
 - 2. Se consideră funcțiile $f:[1,2] \to \mathbb{R}, \ f(x) = \frac{1}{x\sqrt{x^2+1}}$ și $F:[1,2] \to \mathbb{R}, \ F(x) = \ln \frac{\sqrt{x^2+1}-1}{x}$.
- **5p** a) Să se arate că funcția F este o primitivă a funcției f.
- **5p b**) Să se calculeze volumul corpului obținut prin rotirea graficului funcției **f** în jurul axei **Ox**.
- **5p c**) Să se calculeze aria mulțimii cuprinse între dreptele de ecuații x = 1 și x = 2, graficul funcției F și axa Ox.

- 1. Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}$, $f(x) = x \cdot \sin \frac{1}{x}$.
- **5p** a) Să se calculeze $\lim_{x\to 0} f(x)$.
- **5p b**) Să se calculeze f'(x), $x \in \mathbb{R}^*$.
- **5p** c) Să se determine ecuația asimptotei la graficul funcției f către $+\infty$.
 - **2.** Fie şirul $(I_n)_{n\in\mathbb{N}^*}$, $I_n = \int_{-1}^{1} (1-x^2)^n dx$, $\forall n \in \mathbb{N}^*$.
- **5p a**) Să se calculeze I_2 .
- **5p b)** Să se demonstreze că $I_{n+1} = \frac{2n+2}{2n+3}I_n$, $\forall n \in \mathbb{N}^*$.
- $\mathbf{5p} \quad \mathbf{c}) \text{ Să se demonstreze că şirul } \left(a_n\right)_{n\in\mathbb{N}^*}, \text{ definit prin } a_n = \sum_{k=0}^n \frac{\left(-1\right)^k C_n^k}{2k+1}, \forall n\in\mathbb{N}^*, \text{ are limita } 0.$

- 1. Se consideră funcția $f:[1,\infty) \to [1,\infty)$, $f(x) = \frac{x^2 x + 1}{x}$.
- **5p** a) Să se calculeze $\lim_{x\to\infty} (x f(x))^x$.
- **5p** | **b**) Să se arate că funcția f este strict crescătoare.
- **5p** c) Să se arate că funcția f este bijectivă.
 - 2. Fie $a,b \in \mathbb{R}$ și funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \begin{cases} ax+b, & x < 1 \\ \ln^2 x + 1, & x \ge 1 \end{cases}$.
- 5p a) Să se determine numerele reale a și b astfel încât funcția F să fie primitiva unei funcții f.
- **5p b)** Să se calculeze $\int_{1}^{e} \frac{1}{x F(x)} dx$.
- $\textbf{5p} \quad \textbf{c) Să se arate că, pentru funcția } \ \ h:[1,\pi] \rightarrow \mathbb{R}, \ \ h(x) = (F(x)-1)\sin x \ , \ \text{are loc relația } \int_1^\pi h(x)h''(x) \, dx \leq 0.$

SUBIECTUL III (30p)

Varianta 52

- 1. Se consideră funcția $f:[0,1] \to \mathbb{R}$, $f(x) = \begin{cases} x \sin \frac{\pi}{x}, & x \in (0,1] \\ 0, & x = 0 \end{cases}$.
- **5p** a) Să se arate că funcția f este continuă pe [0,1].
- **5p b**) Să se determine domeniul de derivabilitate al funcției **f**.
 - c) Să se arate că, dacă $n \in \mathbb{N}^*$, atunci ecuația $f(x) = \cos \frac{\pi}{x}$ are cel puțin o soluție în intervalul $\left(\frac{1}{n+1}, \frac{1}{n}\right)$.
 - **2.** Fie funcțiile $f:[0,1] \to \mathbb{R}$, $f(x) = \ln(1+x^2)$ și $g:[0,1] \to \mathbb{R}$, $g(x) = x \arctan x$.
- **5p** a) Să se calculeze $\int_0^1 f(\sqrt{x}) dx$.

5p

- **5p b)** Să se calculeze $\int_0^1 g(x)dx$.
- **5p c)** Să se calculeze aria suprafeței plane mărginită de graficele funcțiilor f și g și de dreptele de ecuații x = 0 și x = 1.

1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 - 3x$ și un număr real **m** din intervalul $(-2, \infty)$.

5p a) Să se determine punctele de extrem ale funcției f.

b) Să se demonstreze că ecuația $\mathbf{x}^3 - 3\mathbf{x} = \mathbf{m}$ are soluție unică în mulțimea $(1, \infty)$.

5p c) Să se determine numărul punctelor de inflexiune ale graficului funcției $g: \mathbb{R} \to \mathbb{R}, \ g(x) = f^2(x)$.

2. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} xe^x, & x \le 0 \\ \sin x, & x > 0 \end{cases}$

5p a) Să se arate că funcția f admite primitive pe \mathbb{R} .

5p b) Să se determine primitiva F a funcției f care are proprietatea F(0) = -1.

 $\mathbf{5p} \qquad \mathbf{c)} \quad \text{Să se calculeze } \lim_{\substack{x \to 0 \\ x > 0}} \frac{\int_0^x f(t)dt}{x^2} \, .$

5p

SUBIECTUL III (30p) Varianta 5

1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x - x$.

a) Să se determine punctul în care tangenta la graficul funcției f este paralelă cu prima bisectoare.

5p a) Să se determine punctul în care tangenta la graficul
5p b) Să se arate că valoarea minimă a funcției f este 1.

5p c) Să se arate că funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \sqrt{f(x) - 1}$ nu este derivabilă în $x_0 = 0$.

 $\textbf{2. Se consideră funcțiile } f: \left(1, \infty\right) \rightarrow \mathbb{R}, \ f\left(x\right) = \int_{2}^{x} \frac{t^{2}}{t^{2}-1} dt \ \ \text{\vec{y} i $} \ g: \left(1, \infty\right) \rightarrow \mathbb{R}, \\ g\left(x\right) = \int_{0}^{\ln \frac{x^{2}-1}{3}} \sqrt{3e^{t}+1} \, dt \ .$

5p a) Să se calculeze f (3).

5p b) Să se arate că $g'(x) = \frac{2x^2}{x^2 - 1}, \forall x \in (1, \infty)$.

5p c) Să se arate că g(x) = 2 f(x), $\forall x \in (1, \infty)$.

1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{x^3 - 3x + 2}$.

5p a) Să se calculeze
$$\lim_{\substack{x \to 1 \ x \to 1}} \frac{f(x)}{x-1}$$
.

5p

5p b) Să se determine punctele de extrem ale funcției f.

c) Să se determine domeniul de derivabilitate al funcției f.

2. Fie funcția
$$f:[1,\infty) \to \mathbb{R}$$
, $f(x) = \frac{1}{x(x+1)(x+2)}$.

5p a) Să se determine o primitivă a funcției f.

5p b) Să se demonstreze că $\int_{1}^{x} f(t)dt \le \frac{x-1}{6}, \forall x \in [1, \infty)$.

5p c) Să se calculeze $\int_0^1 \frac{x^2}{1+x^6} dx$.

$SUBIECTUL~III~(30p)~\frac{Varianta~56}{}$

- 1. Se consideră funcția $f: \mathbb{R} \setminus \left\{ -\frac{4}{3} \right\} \to \mathbb{R}$, $f(x) = \frac{2x+5}{3x+4}$.
- **5p** a) Să se determine asimptota la graficul funcției f spre $+\infty$.
- **5p b**) Să determine limita șirului $(a_n)_{n\geq 1}$, $a_n = f(1) f(2)... f(n)$.
- **5p** c) Să se determine punctele de inflexiune ale graficului funcției $g: \mathbb{R} \to \mathbb{R}, g(x) = f(e^x)$.
 - **2.** Fie funcția $f:[1,e] \to \mathbb{R}$, $f(x) = \sqrt{\ln x}$.
- **5p** a) Să se calculeze $\int_0^1 f(e^x) dx$.
- **5p b**) Să se calculeze volumul corpului obținut prin rotirea graficului funcției **f** în jurul axei **Ox** .
- **5p** c) Să se arate că $\int_0^1 e^{x^2} dx + \int_1^e f(x) dx = e$.

1. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 1$.

5p a) Să se arate că șirul $(\mathbf{x}_n)_{n\geq 1}$ definit prin $\mathbf{x}_1 = \frac{1}{2}$ și $\mathbf{x}_{n+1} = \mathbf{f}(\mathbf{x}_n), \forall n \geq 1$ are limită.

 $\mathbf{5p} \qquad \mathbf{b)} \text{ Să se arate că funcția } \mathbf{g}: \mathbb{R} \to \mathbb{R} \text{ , } \mathbf{g}(\mathbf{x}) = \begin{cases} \mathbf{xf}(\mathbf{x}) \text{ , } \mathbf{x} \leq 0 \\ \mathrm{arctg}\,\mathbf{x}, \mathbf{x} > 0 \end{cases} \text{ este derivabilă pe } \mathbb{R} \text{ .}$

5p c) Să se determine cel mai mare număr real a care are proprietatea $f(x) \ge a + 2 \ln x, \forall x \in (0, \infty)$.

2. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-x^2}$ și F o primitivă a sa.

5p a) Să se calculeze $\int_0^1 xf(x)dx$.

5p b) Să se calculeze $\lim_{x\to 0} \frac{F(\cos x) - F(1)}{x^2}$.

5p c) Să se arate că funcția $g: \mathbb{R} \to \mathbb{R}, g(x) = F(x) + f(x)$ are exact un punct de extrem local.

- 1. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{1+x^2}$ și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \operatorname{arctg} x$.
- 5p a) Să se calculeze $\lim_{x\to\infty} (f(x)g(x))$.
- **5p b)** Să se determine punctele de extrem local ale funcției f.
- **5p** c) Să se arate că f(x) < g(x), pentru orice $x \in (0, \infty)$.
 - 2. Fie $\mathbf{m} \in \mathbb{R}$ şi funcţia $\mathbf{f} : [0,2] \to \mathbb{R}$, $\mathbf{f}(\mathbf{x}) = \begin{cases} \mathbf{x} \mathbf{m}, \mathbf{x} \in [0,1] \\ \mathbf{x} \ln \mathbf{x}, \mathbf{x} \in (1,2] \end{cases}$.
- **5p** a) Să se arate că, pentru orice $m \in \mathbb{R}$, funcția f este integrabilă.
- $\begin{array}{c|c} \textbf{5p} & \textbf{b) Să se calculeze } \lim_{\substack{x \to 1 \\ x > 1}} \frac{\int_{1}^{x} t \ln t \, dt}{x 1} \, . \end{array}$
- 5p c) Pentru m = 1, să se demonstreze că, pentru orice $t \in (0,2)$ există $a,b \in [0,2]$, $a \ne b$, astfel încât $\int_a^b f(x) dx = (b-a) f(t) .$

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + x$.
- **5p** a) Să se calculeze $\lim_{x\to\infty} \frac{f(x)}{f(x+1)}$.
- **5p b)** Să se demonstreze că funcția **f** este inversabilă.
- **5p** c) Să se calculeze $\lim_{x\to\infty} \frac{f^{-1}(x)}{\sqrt[3]{x}}$.
 - 2. Se consideră funcțiile $f:\mathbb{R}\to\mathbb{R}$, $f(x)=x^2\sin x$ și F o primitivă a lui f .
- **5p** a) Să se calculeze $\int_{-\pi}^{\pi} f(x) dx$.
- **5p b)** Să se determine $c \in (1,3)$ astfel încât $\int_1^3 \frac{f(x)}{\sin x} dx = 2c^2$.
- **5p** c) Să se arate că funcția F nu are limită la $+\infty$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + \sqrt{1 + x^2}$.
- **5p** a) Să se arate că multimea valorilor funcției f este $(0, \infty)$.
- **5p b**) Să se arate că, dacă $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \ln f(x)$, atunci $(f(x) x) \cdot g'(x) = 1$, $\forall x \in \mathbb{R}$.
- 5p c) Să se demonstreze că g(x) < x, pentru orice x > 0, unde g este funcția definită la punctul b).
 - $\textbf{2.} \text{ Fie mulţimea } M = \left\{ f: \mathbb{R} \rightarrow \mathbb{R} \;\middle|\; f \text{ este derivabilă şi } \int_{0}^{1} f\left(x\right) dx = f\left(0\right) = f\left(1\right) \right. \right\}.$
- **5p** a) Să se arate că funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^3 3x^2 + x$ aparține mulțimii M.
- **5p b)** Să se arate că, dacă f este o funcție polinomială de grad trei care aparține lui M, atunci $f\left(\frac{1}{2}\right) = f(0)$.
- **5p** c) Să se arate că, pentru orice $f \in M$, ecuația f'(x) = 0 are cel puțin două soluții în intervalul (0,1).

1. Fie funcția
$$f:(0,\infty) \to \mathbb{R}$$
, $f(x) = \begin{cases} \frac{\ln x}{x-1}, & x \neq 1\\ 1, & x = 1 \end{cases}$.

5p a) Să se demonstreze că funcția f este continuă.

5p b) Să se calculeze $\lim_{x\to 1} \frac{f(x)-1}{x-1}$.

5p

c) Să se arate că funcția f este strict descrescătoare.

2. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \ln(1 + \sin^2 x)$.

5p a) Să se arate că orice primitivă a funcției f este crescătoare pe $\mathbb R$.

5p b) Să se calculeze $\int_0^{\pi} f(x) \cos x dx$.

 $\textbf{5p} \qquad \textbf{c) Să se calculeze derivata funcției} \quad \textbf{g}: \left(-1,1\right) \rightarrow \mathbb{R} \;, \, \textbf{g}\left(\textbf{x}\right) = \int_{\frac{\pi}{4}}^{\arcsin \textbf{x}} f\left(t\right) dt.$

- 1. Pentru fiecare număr natural nenul $\,n\,$ se consideră funcția $\,f_n:(0,\infty)\to\mathbb{R}\,$, $\,f_n\left(\,x\,\right)=x^n+\ln x$
- **5p** a) Să se arate că funcția f_2 este strict crescătoare pe intervalul $(0, \infty)$.
- **b)** Să se arate că, pentru orice $\mathbf{n} \in \mathbb{N}^*$, ecuația $\mathbf{f_n}(\mathbf{x}) = 0$ are exact o rădăcină reală, situată în intervalul $\left(\frac{1}{6},1\right)$.
- 5p c) Să se calculeze $\lim_{x \to 1} \left(\frac{3}{f_2(x) 1} \frac{1}{x 1} \right)$.
 - 2. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^3, & x \in (-\infty, 0] \\ 1 + \sin x, & x \in (0, \infty) \end{cases}$.
- **5p** a) Să se arate că funcția f este integrabilă pe intervalul $[-2\pi, 2\pi]$.
- 5p b) Să se calculeze $\int_{-1}^{\pi} f(x) dx$.
- **5p** c) Să se arate că , pentru orice $n \in \mathbb{N}^*$, $\int_0^{2\pi} f^n(x) dx \le 2^n \pi$.

Varianta 63

SUBIECTUL III (30p)

5p

- $\text{1. Se consideră funcția } f: \mathbb{R} \to \mathbb{R} \,, \ f\left(x\right) = \begin{cases} x, & x \in \mathbb{Q} \\ x^3, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$
- **5p** a) Să arate că $|f(x)| \le |x|$, $\forall x \in [-1,1]$.
- **5p b**) Să arate că funcția f este continuă în origine.
 - c) Să se arate că funcția f nu este derivabilă în origine.
 - $\textbf{2. Se consideră } a,b \in \mathbb{R} \text{ și funcția } f: \mathbb{R} \to \mathbb{R} \text{ , } f\left(x\right) = \begin{cases} axe^{x} x \text{ , } x \leq 0 \\ x\cos x + b, \text{ } x > 0 \end{cases}.$
- **5p** a) Să se determine \mathbf{a} și \mathbf{b} știind că funcția \mathbf{f} este primitivă pe \mathbb{R} a unei funcții.
- **5p b)** Știind că $\mathbf{a} = 0$ și $\mathbf{b} = 0$, să se calculeze $\int_{-1}^{\pi} \mathbf{f}(\mathbf{x}) d\mathbf{x}$.
- **5p** c) Să se arate că, dacă b = 0, atunci $\lim_{n \to \infty} \int_0^{\pi} x^n f(x) dx = -\infty$.

- **1.** Se consideră funcția $f:(-\infty,-2)\cup(0,\infty)\to\mathbb{R},\ f(x)=\ln\left(1+\frac{2}{x}\right).$
- **5p** a) Să se arate că funcția f este concavă pe intervalul $(-\infty, -2)$.
- **5p b)** Să calculeze limita șirului $(a_n)_{n\geq 1}$, $a_n = f(1) + f(2) + ... + f(n) \ln \frac{n(n+1)}{2}$.
- **5p** c) Să se arate că există un punct $c \in (1,2)$ astfel încât (c-1) f'(c) + f(c) = f(2).
 - 2. Fie funcția $f:[0,1] \to \mathbb{R}$, $f(x) = \frac{1}{1+x^4}$.
- **5p** a) Să se calculeze $\int_0^1 xf(x)dx$.
- **5p b)** Să se arate că $\frac{\pi}{4} \le \int_0^1 f(x) dx \le 1$.
- 5p c) Să se calculeze $\int_0^1 \frac{f(x) f''(x) (f'(x))^2}{(f(x))^2} dx.$

Varianta 65

SUBIECTUL III (30p)

5p

5p

5p

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + e^x$.
 - a) Să se arate că funcția f este bijectivă.
- **b)** Să se arate că $f(x) \ge 2x + 1, \forall x \in \mathbb{R}$.
- **5p** c) Să se demonstreze că, dacă $f(x) \ge mx + 1, \forall x \in \mathbb{R}$, atunci m = 2.
 - **2.** Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin^3 x \cos x$ și F o primitivă a funcției f pe \mathbb{R} .
- **5p** a) Să arate că există $c \in \mathbb{R}$ astfel încât $4F(x) = \sin^4 x + c$.
- **5p b)** Să se calculeze aria subgraficului restricției funcției f la intervalul $\left[0, \frac{\pi}{2}\right]$.
- **5p** c) Să se arate că $\int_0^{\pi} f^{2n+1}(x) dx = 0$, pentru orice $n \in \mathbb{N}$.

- 1. Se consideră funcția $\,f:\mathbb{R}\to\mathbb{R},\;f\left(x\right)\!=\!l\!-\!\sqrt{\left|l\!-\!x^2\right|}\,.$
- **5p** a) Să se calculeze derivata funcției f pe intervalul (-1,1).
 - b) Să se determine ecuația asimptotei spre +∞ la graficul funcției f.
- **5p** c) Să se arate că funcția $g:(0,\infty)\to\mathbb{R}, g(x)=x^{-2}f(x)$ este mărginită.
 - 2. Fie funcția $f:[0,1] \rightarrow [1,3], \ f(x) = x^4 + x^2 + 1$. Se admite că funcția f are inversa g.
- **5p** a) Să se calculeze $\int_{0}^{\frac{3}{4}} \frac{2t+1}{f(\sqrt{t})} dt$.
- 5p b) Să se arate că $\int_{0}^{1} f(x) dx + \int_{1}^{3} g(x) dx = 3.$
- **5p** c) Să se demonstreze că, dacă $\alpha \in [1,3]$, atunci are loc inegalitatea $\int_{0}^{1} f(x) dx + \int_{1}^{\alpha} g(x) dx \ge \alpha$.

Varianta 67

SUBIECTUL III (30p)

1. Se consideră mulțimea de funcții

$$\mathbf{M} = \left\{ \left. \mathbf{f} : \left[-1, 1 \right] \to \mathbb{R} \right| \ \ \mathbf{f} \ \text{este de două ori derivabilă și } \mathbf{f} \left(0 \right) = 0, \ \mathbf{f} ' \! \left(0 \right) = 1 \right\}.$$

- **5p** a) Să se arate că funcția $\mathbf{u}:[-1,1] \to \mathbb{R}$, $\mathbf{u}(\mathbf{x}) = \mathbf{e}^{\mathbf{x}} \sin \mathbf{x}$ aparține mulțimii M.
- $\mathbf{5p} \qquad \mathbf{b}) \text{ Să se arate că , dacă } \mathbf{f} \in \mathbf{M} \text{ si } \mathbf{f} \left(\mathbf{x} \right) \neq \mathbf{0}, \ \forall \mathbf{x} \in \left[-1, 1 \right] \setminus \left\{ \mathbf{0} \right\}, \text{ atunci } \lim_{\mathbf{x} \to \mathbf{0}} \left(1 + \mathbf{f} \left(\mathbf{x} \right) \right)^{\frac{1}{\mathbf{x}}} = \mathbf{e} \ .$
- $\mathbf{5p} \qquad \mathbf{c}) \text{ Să demonstreze că, dacă } \mathbf{f} \in \mathbf{M} \text{ } \text{ } \mathbf{\hat{s}i } \mathbf{n} \in \mathbb{N}^* \text{ , atunci } \lim_{x \to 0} \frac{\mathbf{f}^{\,n}(x) x^n}{x^{n+1}} = \frac{\mathbf{nf}^{\,\prime\prime}(0)}{2} \, .$
 - 2. Fie funcțiile $f:[0,1] \to \mathbb{R}, \ f(x) = \frac{1}{1+x}$ și $g:[0,\infty) \to \mathbb{R}, g(x) = \int_0^x f(t)dt$.
- **5p** a) Să se arate că $g(x) = \ln(1+x)$.
- **5p b)** Să se calculeze $\int_0^1 f^2(x)g(x)dx$.
- $\mathbf{5p} \qquad \mathbf{c)} \text{ Să se demonstreze că } \mathbf{f}\left(\frac{1}{n}\right) + \mathbf{f}\left(\frac{2}{n}\right) + \mathbf{f}\left(\frac{3}{n}\right) + \dots \mathbf{f}\left(\frac{n}{n}\right) \leq n \ln 2, \forall n \in \mathbb{N}^*.$

- **1.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=\frac{1}{x+1}+\ln\frac{2x+1}{2x+3}$.
- **5p** a) Să se calculeze $f'(x), x \in (0, \infty)$.
- **5p b)** Să arate că $f(x) < 0, \forall x \in (0, \infty)$.
- **5p** c) Să demonstreze că șirul $(x_n)_{n\geq 1}$, $x_n = 1 + \frac{1}{2} + ... + \frac{1}{n} \ln\left(n + \frac{1}{2}\right)$ este strict descrescător.
 - 2. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \int_0^x e^{t^2} dt$.
- **5p a**) Să se arate că funcția **f** este impară.
- 5p b) Să se arate că $\lim_{x\to\infty} f(x) = \infty$.
- 5p c) Să se arate că $\int_0^1 f(x)dx \le e 2$.

1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{3}{2} \sqrt[3]{x^2}$.

a) Să se studieze derivabilitatea funcției f în origine.

b) Să arate că, pentru orice $\mathbf{k} \in (0, \infty)$, există $\mathbf{c} \in (\mathbf{k}, \mathbf{k} + 1)$ astfel încât $\mathbf{f} (\mathbf{k} + 1) - \mathbf{f} (\mathbf{k}) = \frac{1}{\sqrt[3]{\mathbf{c}}}$.

c) Să se demonstreze că șirul $(a_n)_{n\geq 1}$, $a_n = \frac{1}{\sqrt[3]{1}} + \frac{1}{\sqrt[3]{2}} + \dots + \frac{1}{\sqrt[3]{n}} - f(n)$, este strict descrescător.

2. Fie funcția $f:(-1,\infty)\to\mathbb{R}$, $f(x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\ln(1+x)$.

5p a) Să se calculeze $\int_0^1 f(x)dx$.

5p

5p

5p

5p

b) Să se calculeze $\lim_{x\to 0} \frac{F(x)}{x^5}$, unde funcția $F:[0,\infty)\to\mathbb{R}$, $F(x)=\int_0^x f(t)dt$, $x\in[0,+\infty)$.

c) Să se arate, folosind eventual funcția f, că $\int_0^1 \ln(1+x) dx \le \frac{5}{12}$.

$SUBIECTUL~III~(30p)~\frac{Varianta~70}{}$

- 1. Se definește funcția $f_0: \mathbb{R} \to \mathbb{R}$, $f_0(x) = e^{2x}$ și, pentru fiecare $n \in \mathbb{N}^*$, se definește funcția $f_n: \mathbb{R} \to \mathbb{R}$ prin $f_n(x) = f_{n-1}'(x)$.
- **5p** a) Să se arate că $f_3(x) = 8e^{2x}$, $\forall x \in \mathbb{R}$.
- **5p b**) Să determine asimptotele graficului funcției f_n .
- $5p \qquad c) \text{ Să se calculeze } \lim_{n \to \infty} \frac{f_1\left(a\right) + f_2\left(a\right) + \ldots + f_{n-1}\left(a\right)}{f_n\left(a\right)}, \text{ unde } a \text{ este un număr real.}$
 - 2. Fie funcția $\mathbf{f}:[0,\infty) \to \mathbb{R}$, $\mathbf{f}(\mathbf{x}) = \begin{cases} \mathbf{x} \ln^2 \mathbf{x} & \mathbf{x} \neq 0 \\ 0 & \mathbf{x} = 0 \end{cases}$
- **5p** a) Să se arate că funcția f este integrabilă pe intervalul [0,1].
- **5p b**) Să se calculeze $\int_0^1 f(x)dx$.
- **5p** c) Să se calculeze $\int_1^e f\left(\frac{1}{x}\right) dx$.

$SUBIECTUL~III~(30p)~\frac{Varianta~71}{}$

5p

5p

- 1. Se consideră funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=x-\ln(1+x)$.
- a) Să se calculeze $f'(x), x \in (0, \infty)$.
 - **b**) Să arate că $f(x) > 0, \forall x \in (0, \infty)$.
- c) Să se calculeze $\lim_{x\to\infty} f(x)$. **5p**
 - 2. Se consideră funcția $F: \mathbb{R} \to \mathbb{R}, \ F(x) = \int_1^2 t^x dt$.
- a) Să se verifice că $1+(x+1)F(x)=2^{x+1}, \forall x \in \mathbb{R}$. **5**p
- b) Să se calculeze $\lim_{x\to -1} F(x)$. **5p**
- c) Să se arate că există o funcție continuă $f:(-1,\infty)\to\mathbb{R}$, astfel încât $F\left(x\right)=1+\int_0^x f\left(y\right)dy, \forall x\in(-1,\infty)$. **5**p

SUBIECTUL III (30p)

- 1. Se consideră funcția $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$, $f(x) = \frac{x^2 + x + 1}{x + 1}$.
- a) Să se determine ecuația asimptotei spre +∞ la graficul funcției f. 5p
- **b**) Să se calculeze $f'(x), x \in \mathbb{R} \setminus \{-1\}$. **5p**
- c) Să se demonstreze că funcția f este concavă pe intervalul $(-\infty, -1)$. **5p**
 - **2.** Pentru orice $\mathbf{n} \in \mathbb{N}^*$ se consideră funcția $\mathbf{f}_\mathbf{n} : \mathbb{R} \to \mathbb{R}$, $\mathbf{f}_\mathbf{n}(\mathbf{x}) = |\sin \mathbf{n}\mathbf{x}|$ și numărul $\mathbf{I}_\mathbf{n} = \int_{-\pi}^{2\pi} \frac{\mathbf{f}_\mathbf{n}(\mathbf{x})}{\mathbf{x}} d\mathbf{x}$.
- a) Să se calculeze $\int_0^{\pi} f_2(x) dx$. **5**p
- b) Să se arate că $I_n \le \ln 2$. **5p**
- c) Să se arate că $I_n \ge \frac{2}{\pi} \left(\frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{2n} \right)$. **5**p

- 1. Fie $a \in \mathbb{R}$ și funcția $f: \{-1,1\} \to \mathbb{R}$, $f(x) = \frac{x^2 + x + a}{x^2 1}$.
- 5p a) Să se calculeze $\lim_{x\to\infty} f(x)^x$.
- b) Să se determine valoarea numărului a știind că 3 este punct de extrem local al funcției f. **5p**
- c) Să se determine valoarea numărului a știind că graficul funcției f are exact o asimptotă verticală. 5p
 - **2.** Se consideră funcția $\mathbf{f}_0: \mathbb{R} \to \mathbb{R}, \ \mathbf{f}_0(\mathbf{x}) = 1$ și, pentru orice $\mathbf{n} \in \mathbb{N}^*$, se definește funcția $\mathbf{f}_n: \mathbb{R} \to \mathbb{R}$, $f_n(x) = \int_0^x f_{n-1}(t) dt$.
- **a)** Să se arate că $\mathbf{f_1}^2(\mathbf{x}) = 2 \mathbf{f_2}(\mathbf{x}), \forall \mathbf{x} \in \mathbb{R}$. **5**p
- b) Să se calculeze $\lim_{x\to\infty} \frac{xf_n(x)+1}{f_{n+1}(x)+2}$
- c) Să se calculeze volumul corpului obținut prin rotirea graficului funcției $g:[0,\pi] \to [0,\pi]$, $g(x) = f_1(x) \sin x$ în jurul axei Ox.

SUBIECTUL III (30p)

- 1. Se consideră funcția $f:(-2,2) \to \mathbb{R}$, $f(x) = \ln \frac{2+x}{2-x}$.
 - a) Să se determine ecuațiile asimptotelor la graficul funcției f.
- 5p b) Să se studieze monotonia funcției f.
- c) Să se calculeze $\lim_{\mathbf{x}\to\infty} \mathbf{x} \mathbf{f} \left(\frac{1}{\mathbf{x}}\right)$. **5p**
 - 2. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(t) = \int_1^2 \left(\frac{t}{x} e^x\right)^2 dx$ și numerele $A = \int_1^2 \frac{1}{v^2} dx$, $B = \int_1^2 \frac{e^x}{x} dx$.
- a) Să se arate că $f(t) = At^2 2Bt + \frac{e^4 e^2}{2}$, $\forall t \in \mathbb{R}$. 5p
- b) Să se arate că $f(2B-t) = f(2B+t), \forall t \in \mathbb{R}$. **5**p
- c) Să se demonstreze că $\left(\int_{1}^{2} \frac{e^{x}}{x} dx\right)^{2} \le \left(\int_{1}^{2} e^{2x} dx\right) \left(\int_{1}^{2} \frac{1}{x^{2}} dx\right)$.

Varianta 75

SUBIECTUL III (30p)

- **1.** Se consideră $\alpha \in \mathbb{R}, \alpha > 1$ și funcția $f: (-1, \infty) \to \mathbb{R}$, $f(x) = (1+x)^{\alpha} \alpha x$.
- **5p** a) Să se studieze monotonia funcției f.
- **5p b)** Să se demonstreze că $(1+\mathbf{x})^{\alpha} > 1 + \alpha \mathbf{x}, \forall \mathbf{x} \in (-1, \infty) \setminus \{0\}, \forall \alpha \in (1, \infty)$.
- **5p** c) Să se demonstreze că $2 f(x+y) \le f(2x) + f(2y), \forall x, y \in [0, \infty)$.
 - 2. Fie funcția $f:(-1,\infty) \to \mathbb{R}$, $f(x) = \frac{x}{1+x}$.
- **5p** a) Să se calculeze $\int_0^1 f(x)dx$.
- **5p b)** Să se calculeze $\int_1^3 f^2(x)[x]dx$, unde [x] reprezintă partea întreagă a numărului real x.
- 5p c) Să se arate că șirul $(a_n)_{n\geq 1}$, dat de $a_n = f(1) + f(2) + f(3) + ... + f(n) \int_0^n f(x) dx$, este convergent.

SUBIECTUL III (30p) Varianta 76

- 1. Se consideră funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=x+\ln x$.
 - a) Să se arate că graficul funcției f nu admite asimptotă spre $+\infty$.
- **5p b**) Să se arate că ecuația f(x) = 0 are o soluție unică $x_0 \in \left(\frac{1}{e}, 1\right)$.
- 5p c) Să se demonstreze că $\lim_{x \to x_0} \frac{xe^x 1}{x x_0} = f'(x_0)$, unde x_0 este numărul definit la punctul **b**).
 - **2.** Se consideră șirul $\left(I_n\right)_{n\geq 1}$, definit prin $I_n=\int_0^l \frac{\ln\left(x^n+1\right)}{x+1}dx$, oricare ar fi $n\in\mathbb{N}^*$.
- **5p** | a) Să se determine I_1 .

- **5p b)** Să se arate că șirul I_n este strict descrescător.
- **5p** c) Să se arate că $\lim_{n\to\infty} I_n = 0$ (se consideră cunoscut faptul că $\ln(1+t) \le t$, $\forall t \in (-1,\infty)$.

- 1. Se consideră o funcție $f: \mathbb{R} \to \mathbb{R}$, astfel încât $xf(x) = e^x 1, \ \forall x \in \mathbb{R}$.
- **5p** a) Să se determine ecuația tangentei la graficul funcției f în punctul de abscisă x = 1, situat pe graficul funcției f.
- **5p b)** Să se arate că funcția f este continuă în x = 0 dacă și numai dacă f(0) = 1.
- **5p** c) Să se arate că dacă funcția f este continuă în x = 0, atunci ea este derivabilă pe \mathbb{R} .
 - 2. Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_1^2 ((x-1)(2-x))^n dx$.
- **5p** a) Să se calculeze I_1 .
- **5p b)** Să se arate că $2(2n+1)I_n = nI_{n-1}$, oricare ar fi $n \in \mathbb{N}$, $n \ge 2$.
- $\begin{array}{|c|c|c|c|c|}\hline \textbf{5p} & \textbf{c}) \text{ Să se calculeze } \lim_{n\to\infty} I_n \,. \end{array}$

SUBIECTUL III (30p) Varianta 78

- **1.** Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{x^3 3x + 2}$.
- a) Să se arate că graficul funcției f admite asimptotă spre $+\infty$
- b) Să se determine punctele de extrem local ale funcției f.
- c) Să se calculeze $\lim_{x\to\infty} x(2 \arctan f(x) \pi)$.
- 2. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{3 + \cos x}$.
- 5p a) Să se calculeze $\int_0^{\frac{\pi}{3}} f(x) dx$.

5p 5p

- **5p b)** Să se demonstreze că orice primitivă a funcției **f** este strict crescătoare.
- **5p** c) Să se calculeze $\lim_{x\to\infty} \frac{1}{x^2} \int_0^x f(t) dt$.

SUBIECTUL III (30p) $\frac{\text{Varianta 79}}{\text{Varianta 79}}$

- **1.** Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^{3x} + 2x + 1$.
- **5p** a) Să se scrie ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p b)** Să se arate că funcția **f** este inversabilă.
 - c) Să se calculeze $\lim_{n\to\infty} (f(-1) + f(-2) + f(-3) + ... + f(-n) + n^2)$.
 - 2. Se consideră șirul $(a_n)_{n\geq 0}$ definit prin $a_0=1$ și $a_{n+1}=\int_0^{a_n}\sin\pi x\,dx$.
- **5p** a) Să se calculeze a_1 .

5p

- **5p b)** Să se arate că șirul $(a_n)_{n\geq 0}$ este convergent.
- $\begin{array}{c|c} 5p & c) \text{ Să se calculeze } \lim_{n \to \infty} a_n \,. \end{array}$

SUBIECTUL III (30p) $\frac{\text{Varianta 80}}{\text{Varianta 80}}$

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x^2 + 1}$.
- **5p** a) Să se studieze monotonia funcției f.
- **5p b)** Să se arate că $(\mathbf{x}^2 + 1)$ $\mathbf{f}''(\mathbf{x}) + \mathbf{x}\mathbf{f}'(\mathbf{x}) = \sqrt{\mathbf{x}^2 + 1}$, pentru orice $\mathbf{x} \in \mathbb{R}$.
- **5p** c) Să se arate că graficul funcției f admite asimptotă spre $-\infty$.
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^1 \frac{nx^n}{x^n+1} dx$.
- **5p** a) Să se calculeze I_1 .
- **5p b)** Să se arate că $I_n = \ln 2 \int_0^1 \ln(1 + x^n) dx$, $\forall n \in \mathbb{N}^*$.
- $\begin{array}{c|c} 5p & c) \text{ Să se calculeze } \lim_{n \to \infty} I_n \,. \end{array}$

SUBIECTUL III (30p) $\frac{\text{Varianta 81}}{\text{Varianta 81}}$

- 1. Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}, f(x) = (x-1)e^{-\frac{1}{x}}$.
- **5p** a) Să se scrie ecuația tangentei la graficul funcției f în punctul de abscisă x = 1, situat pe graficul funcției f.
- **5p b**) Să se arate că funcția admite două puncte de extrem.
- **5p** | c) Să se determine ecuația asimptotei la graficul funcției f spre $+\infty$.
 - **2.** Se consideră funcția $f:[0;\infty)\to\mathbb{R},\ f\left(x\right)=\int_0^x t^3\sqrt{t^2+1}\,dt$.
- **5p** a) Să se arate că funcția f este strict crescătoare.
- **5p b**) Să se calculeze f(1).
- **5p** c) Să se calculeze $\lim_{x \to \infty} \frac{f(x)}{x^5}$.

- **1.** Se consideră șirul $(a_n)_{n\geq 0}$, definit prin $a_0 = \sqrt{3}$, $a_{n+1} = \sqrt{2+a_n}$, $\forall n \in \mathbb{N}$.
- **5p** a) Să se arate că $(a_n)_{n\geq 0}$ este strict crescător.
- **5p b)** Să se arate că șirul $(a_n)_{n\geq 0}$ este convergent.
- $\textbf{5p} \qquad \textbf{c) Să se calculeze} \ \lim_{n \to \infty} \frac{a_{n+2} a_{n+1}}{a_{n+1} a_n} \, .$
 - 2. Fie funcția $f: \left[0, \frac{\pi}{2}\right] \rightarrow \left(0, \infty\right), \ f(x) = \int_0^x \frac{(\sin t + \cos t) \sin t}{\cos^2 t} dt$.
- **5p** a) Să se calculeze $f\left(\frac{\pi}{4}\right)$.
- **5p b)** Să se arate că funcția f este strict crescătoare.
- 5p c) Să se calculze $\lim_{\substack{x \to 0 \ x > 0}} \frac{f(x)}{x^2}$.

- **1.** Se consideră funcția $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}, \ f(x) = x \sqrt{\left|\frac{x+1}{x-1}\right|}$.
- a) Să se arate că dreapta de ecuație x = 1 este asimptotă verticală la graficul funcției f.
- **5p b)** Să se arate că graficul funcției f admite asimptotă spre $+\infty$.
 - c) Să se studieze derivabilitatea funcției f.
 - **2.** Se consideră funcțiile $f_n : \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, \ f_n(x) = \frac{1}{\cos^n x + \sin^n x}, \ n \in \mathbb{N}^*.$
- $\mathbf{5p} \qquad \mathbf{a)} \text{ Să se calculeze } \int_0^{\frac{\pi}{2}} \frac{1}{f_1(\mathbf{x})} d\mathbf{x} \,.$

5p

5p

5p

- **b)** Să se arate că, dacă F este o primitivă a funcției f_4 , atunci $F''(x) = (f_4(x))^2 \sin 4x$, $\forall x \in \left[0, \frac{\pi}{2}\right]$.
- **5p** c) Să se arate că $\int_0^{\frac{\pi}{2}} \sin^3 x \, f_1(x) dx = \int_0^{\frac{\pi}{2}} \cos^3 x \, f_1(x) dx = \frac{\pi 1}{4}$.

- 1. Se consideră funcția $f:\mathbb{R}^* \to \mathbb{R}, \ f(x) = \frac{e^x}{x}$.
- **5p** a) Să se studieze monotonia funcției f.
- $\mathbf{5p}$ \mathbf{b}) Să se determine asimptotele graficului funcției \mathbf{f} .
 - c) Să se calculeze $\lim_{n\to\infty} n^2 (f(n) f(n+1))$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \int_0^x e^{-t} (t^2 3t + 2) dt$.
- **5p** a) Să se arate că f(1) > 0.
- **5p b**) Să se arate că funcția **f** admite două puncte de extrem.
- $5p \qquad c) \text{ Să se calculeze } \lim_{x \to 0} \frac{f(x) + f(-x)}{x^2}.$

- 1. Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}, f(x) = e^{\frac{1}{x}}$.
 - a) Să se determine asimptotele la graficul funcției f.
- **5p b**) Să se determine punctele de inflexiune ale graficului funcției f.
- 5p c) Să se calculeze $\lim_{x\to\infty} x^2 (f(x+1) f(x))$.
 - 2. Fie şirul $\left(I_{n}\right)_{n\geq 1}$ definit prin $I_{n}=\int_{0}^{\pi}tg^{2n}tdt,\,n\in\mathbb{N}^{*}$.
- **5p** a) Să se calculeze I_1 .

5p

- **b**) Să se arate că $I_{n+1} + I_n = \frac{1}{2n+1}$, pentru orice $n \in \mathbb{N}^*$.
- **5p** c) Să se arate că șirul $(I_n)_{n\geq 1}$ este convergent la 0.

- 1. Se consideră funcția $f: \mathbb{R} \{-1\} \to \mathbb{R}, f(\mathbf{x}) = \frac{\mathbf{x}^3 1}{\mathbf{x}^3 + 1}$.
- **5p** a) Să se scrie ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- $\mathbf{5p}$ \mathbf{b}) Să se determine asimptotele graficului funcției \mathbf{f} .
- 5p c) Să se calculeze $\lim_{n\to\infty} \left(\frac{3}{2} f(2) f(3)... f(n)\right)^{n^2}$.
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$.
- **5p** a) Să se calculeze I_2 .
- 5p | b) Să se arate că $nI_n = (n-1)I_{n-2}, \forall n \ge 3$.
- 5p c) Să se calculeze $\lim_{n\to\infty} \int_0^{\pi} \sin^n x dx$.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \ln\left(x + \sqrt{1 + x^2}\right)$.
- **5p** a) Să se arate că funcția f este strict crescătoare.
- **5p b**) Să se studieze convergența șirului $(\mathbf{x}_n)_{n\geq 1}$ definit prin $\mathbf{x}_1 = 1$ și $\mathbf{x}_{n+1} = \mathbf{f}(\mathbf{x}_n), \forall n \in \mathbb{N}^*$.
- 5p c) Să se demonstreze că $f(x+1) f(x) \le 1, \forall x \in \mathbb{R}$.
 - 2. Se consideră funcțiile $f,g:(0,3)\to\mathbb{R}, f(x)=\frac{\ln x}{3-x}$ și $g(x)=\frac{\ln (3-x)}{x}, \forall x\in(0,3)$.
- **5p** a) Să se calculeze $\int_{0}^{e} (3-x) f(x) dx$.
- **b)** Să se arate că $\int_{1}^{2} f(x) dx = \int_{1}^{2} g(x) dx$.
- 5p c) Să se arate că $\lim_{t \to 0} \int_t^t g(x) dx = +\infty$.

- **1.** Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \operatorname{arctg} x$.
- **5p** a) Să se scrie ecuația tangentei la graficul funcției f în punctul de abscisă x = 1, situat pe graficul funcției f.
- **5p b)** Să se calculeze $\lim_{x\to 0} \frac{x-f(x)}{x^3}$.
- **5p** c) Să se arate că funcția $g: \mathbb{R} \to \mathbb{R}$, g(x) = (x-1) f(x) admite exact un punct de extrem.
 - 2. Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^1 x^n \sin x \, dx$.
- **5p a**) Să se calculeze I_1 .
- **5p b**) Să se arate că șirul $(I_n)_{n>1}$ este convergent.
- **5p** c) Să se demonstreze că $I_{2n} + 2n(2n-1)I_{2n-2} = 2n\sin 1 \cos 1$, $\forall n \ge 2$.

- 1. Pentru fiecare a > 0 se consideră funcția $f_a:(0,\infty) \to \mathbb{R}$, $f_a(x) = (x+a)\ln\left(1+\frac{1}{x}\right)$.
- 5p a) Să se calculeze $f'_a(x)$, x > 0.
- **5p b)** Să se determine \mathbf{a} astfel încât funcția $\mathbf{f}_{\mathbf{a}}$ să fie convexă.
- **5p** c) Să se arate că graficul funcției f_a admite asimptotă spre $+\infty$.
 - 2. Se consideră șirul $(I_n)_{n\geq 1},\ I_n=\int_0^{\pi}\cos^n x\ dx$.
- **5p** a) Să se calculeze I_2 .
- **5p b)** Să se arate că $\mathbf{nI_n} = (\mathbf{n} 1)\mathbf{I_{n-2}}, \ \forall \mathbf{n} \ge 3$.
- **5p** c) Să se demonstreze că șirul $(I_n)_{n>1}$ este convergent.

$SUBIECTUL~III~(30p)~\frac{Varianta~90}{}$

- 1. Se consideră funcțiile $f_n:(0,\infty)\to\mathbb{R},\ f_n(x)=x^n+\ln x, n\in\mathbb{N}^*$.
- **5p** a) Să se determine asimptotele graficului funcției f_1 .
- **5p b)** Să se demonstreze că funcțiile $g_n:(0,\infty)\to\mathbb{R},\ g_n(x)=f_n(x)+f_n\left(\frac{1}{x}\right)$ sunt convexe.
- $\textbf{5p} \qquad \textbf{c}) \text{ Admitem că ecuația } f_n(\textbf{x}) = 2^n \text{ are soluția unică } \textbf{x}_n \text{. Să se arate că șirul } (\textbf{x}_n)_{n \geq 1} \text{ converge la 2.}$
 - **2.** Fie $a \in [0,1]$ și $I_n = \int_0^a \frac{t^n}{t+1} dt$, $n \in \mathbb{N}^*$.
- **5p** a) Să se calculeze I_2 .
- 5p b) Să se demonstreze că $I_n + I_{n-1} = \frac{a^n}{n}, \forall n \ge 2$.
- **5p** c) Să se arate că $\lim_{n\to\infty} I_n = 0$.

SUBIECTUL III (30p) $\frac{\text{Varianta 91}}{\text{Varianta 91}}$

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{2x^3}{x^2 + 1}$.
 - a) Să se arate că graficul funcției f admite asimptotă spre $+\infty$.
- **5p b)** Să se arate că funcția **f** este inversabilă.
- 5p c) Să se calculeze $\lim_{x\to\infty} (f(e^x))^{\frac{1}{x}}$.
 - **2.** Fie funcțiile $F, f: \mathbb{R} \to \mathbb{R}, f(x) = e^{\sin^2 x}, F(x) = \int_0^x f(t)dt$.
- **5p** a) Să se demonstreze că funcția F este strict crescătoare.
- 5p b) Să se calculeze $\int_0^{\pi} \cos 2x F(x) dx$.
- $5p \qquad c) \text{ Să se calculeze } \lim_{x \to 0} \frac{F(x)}{x}.$

5p

SUBIECTUL III (30p) $\frac{\text{Varianta 92}}{\text{Varianta 92}}$

- **1.** Se consideră funcția $f:(1,\infty)\to\mathbb{R}, f(x)=\ln(\ln x)$.
- 5p a) Să se determine ecuația tangentei la graficul funcției f în punctul de abscisă x = e, situat pe graficul funcției f.
- **5p b)** Să se demonstreze că funcția f este concavă.
- 5p c) Să se calculeze $\lim_{x\to\infty} \frac{f(x+1)-f(x)}{f'(x)}$.
 - 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{\cos x}{1 + \sin^2 x}$.
- 5p a) Să se calculeze $\int_0^{\frac{\pi}{2}} f(x) dx$.
- **5p b)** Să se arate că orice primitivă a funcției f este strict crescătoare pe intervalul $\left[0; \frac{\pi}{2}\right]$.
- **5p** c) Să se calculeze $\int_0^{2\pi} xf(x)dx$.

- **1.** Pentru fiecare $t \in \mathbb{R}$, se consideră funcția $f_t : \mathbb{R} \to \mathbb{R}$, $f_t(x) = x^3 + t^2x$.
- 5p a) Să se calculeze $f'_t(x)$, $x \in \mathbb{R}$.
- **5p b)** Să se arate că fiecare funcție f_t este inversabilă.
- - 2. Fie funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \int_0^x (t^2 + 1) \sqrt{|t|} \, dt$.
- **5p** a) Să se calculeze f(1).
- **5p b)** Să se arate că **f** este funcție impară.
- 5p c) Să se calculeze $\lim_{x\to\infty} \frac{f(x+1) f(x)}{x^2 \sqrt{x}}$.

SUBIECTUL III (30p) $\frac{\text{Varianta 94}}{\text{Varianta 94}}$

- **1.** Se consideră funcțiile $f_n:[0,\infty)\to\mathbb{R}, f_n(x)=x^{n+1}-(n+2)x+n, n\in\mathbb{N}^*$.
- a) Să se arate că graficele funcțiilor $\ f_n$ nu admit asimptotă spre $+\infty$.
- **b)** Să se arate că, pentru oricare $n \in \mathbb{N}^*$, f_n are exact un punct de extrem x_n .
 - c) Să se calculeze $\lim_{n\to\infty}x_n^{n^2}$, unde x_n este definit la punctul b).
 - 2. Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^1 \frac{x^{2n}}{1+x^2} dx$.
- **5p a**) Să se calculeze I_1 .

5p

- **5p b)** Să se arate că $I_{n+1} + I_n = \frac{1}{2n+1}, \forall n \ge 1$.
- $5p \hspace{0.2cm} \rule[-0.2cm]{0cm}{0cm} \hspace{0.2cm} S \mbox{\'{a} se calculeze } \lim_{n \to \infty} I_n.$

- **1.** Fie funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \operatorname{arctg} x$ și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = f(x+1) f(x) f\left(\frac{1}{1+x+x^2}\right)$.
 - a) Să se arate că graficul funcției f admite asimptotă spre $+\infty$.
- **5p b)** Să se arate că $g(x) = 0, \forall x \in \mathbb{R}$.
- $\mathbf{5p} \qquad \mathbf{c)} \text{ Să se calculeze } \lim_{\mathbf{n} \to \infty} \left(\arctan \frac{1}{1+1+1^2} + \arctan \frac{1}{1+2+2^2} + \arctan \frac{1}{1+3+3^2} + \ldots + \arctan \frac{1}{1+\mathbf{n}+\mathbf{n}^2} \right).$
 - 2. Se consideră șirul $(I_n)_{n\geq 1}$, $I_n=\int_0^1 e^{-x}x^n\,dx$.
- **5p** a) Să se calculeze I_1 .

5p

- **5p b**) Să se arate că $I_n = nI_{n-1} \frac{1}{e}$, pentru orice $n \ge 2$.

SUBIECTUL III (30p) $\frac{\text{Varianta 96}}{\text{Varianta 96}}$

- **1.** Fie mulţimea $A = \mathbb{R} \setminus \{1, 2, 3, ..., 2009\}$ şi funcţia $f: A \to \mathbb{R}$, $f(x) = \frac{1}{x-1} + \frac{1}{x-2} + \frac{1}{x-3} + ... + \frac{1}{x-2009}$.
- 5p a) Să se determine asimptotele graficului funcției f.
- **5p b)** Stiind că $a \in \mathbb{R}^*$, să se determine numărul soluțiilor reale ale ecuației f(x) = a.
- $\mathbf{5p}$ \mathbf{c}) Să se determine numărul punctelor de inflexiune ale graficului funcției \mathbf{f} .
 - 2. Fie funcția $f: \mathbb{R} \to \mathbb{R}, \, f(x) = \int_0^x e^{-t^2} dt$.
- **5p** a) Să se arate că funcția f este strict crescătoare.
- **5p b**) Să se arate că funcția f este concavă pe intervalul $[0, \infty)$.
- **5p** c) Să se arate că șirul $(f(n))_{n\geq 1}$ este convergent.

5p

5p

5p

- 1. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \operatorname{arctg} x$.
 - a) Să se arate că funcția f este concavă pe intervalul $[0, \infty)$.
- 5p b) Să se calculeze $\lim_{x\to\infty} x^2 (f(x+1) f(x))$.
- 5p c) Să se rezolve inecuația $f(x) < x \frac{x^3}{3}, x \in \mathbb{R}$.
 - 2. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{(1+x^2)^2}$.
- **5p** a) Să se calculeze $\int_0^1 x(1+x^2) f(x) dx$.
- **5p b)** Să se arate că funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \int_0^x t^4 f(t) dt$ este strict crescătoare.
- $5p \qquad c) \text{ Să se arate că, pentru orice } a \in \mathbb{R} \text{ , are loc relația } \int_{l}^{a} f(x) dx < \frac{1}{4} \text{ .}$

SUBIECTUL III (30p) $\frac{\text{Varianta 98}}{\text{Varianta 98}}$

- **1.** Pentru fiecare $n \in \mathbb{N}$, $n \ge 2$ se definește funcția $f_n : [0, \infty) \to \mathbb{R}$, $f_n(x) = x^n nx 1$.
 - a) Să se arate că, pentru orice $n \in \mathbb{N}, n \ge 2$, funcția f_n este convexă.
- b) Să se arate că, pentru orice $n \in \mathbb{N}, n \ge 2$, ecuația $f_n(x) = 0$ are soluție unică.
- 5p c) Să se calculeze $\lim_{n\to\infty} x_n$, unde x_n este unica soluție a ecuației $f_n(x) = 0$.
 - 2. Fie funcțiile $f,g:\mathbb{R}\to\mathbb{R},\ f(x)=\frac{e^x}{1+e^x},\ g(x)=\int_{-x}^x f(t)\cos tdt$.
- **5p** a) Să se calculeze $\int_0^1 f(x)dx$.
- **5p b**) Să se studieze monotonia funcției g pe intervalul $[0, \pi]$.
- **5p** c) Să se calculeze $g\left(\frac{\pi}{2}\right)$.

SUBIECTUL III (30p) $\frac{\text{Varianta 99}}{\text{Varianta 99}}$

- **1.** Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{x^3 + 3x^2 + 2x + 1} \sqrt[3]{x^3 x + 1}$.
- a) Să se scrie ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- b) Să se arate că graficul funcției admite asimptotă spre $+\infty$.
- $5p \qquad c) \text{ Să se calculeze } \lim_{n \to \infty} \left(\frac{f(1) + f(2) + ... + f(n)}{n} \right)^{n}.$
 - 2. Se consideră funcțiile $f_n:(0,\infty)\to\mathbb{R},\, f_n(x)=\int_{\frac{1}{e}}^x t^n\ln t\,dt,\,\,n\in\mathbb{N}^*.$
- **5p** a) Să se calculeze $f_1(e)$.

5p

5p

5p

- **5p b**) Să se arate că funcțiile f_n sunt descrescătoare pe intervalul (0,1).
- $\begin{array}{c|c} \textbf{5p} & \textbf{c}) \text{ Să se calculeze } \lim_{n \to \infty} f_n(1) \, . \end{array}$

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^x + x^3 x^2 + x$.
 - a) Să se arate că funcția f este strict crescătoare.
- **5p b)** Să se arate că funcția **f** este inversabilă.
- $5p \qquad c) \text{ S\'{a} se calculeze } \lim_{x \to \infty} \frac{f^{-l}(x)}{\ln x}.$
 - 2. Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^1 \frac{x^n}{x^2 + 3x + 2} dx$.
- **5p** a) Să se calculeze I_1 .
- **5p b)** Să se arate că $I_{n+2} + 3I_{n+1} + 2I_n = \frac{1}{n+1}, \forall n \in \mathbb{N}^*$.
- 5p c) Să se calculeze $\lim_{n\to\infty} nI_n$.