Warmup last time we proved:

suppose T has upper-triangular matrix M

Thm if F = C and V is fin. dim.

then any linear op on V has an upper-triangular matrix

Q

can we remove the hypothesis F = C?

no:

upper-triangular matrix implies existence of eigenvector

we saw that rotations in R^2 have no eigenvector

Q

can we remove the hypothesis V f.d.?

no:

same issue of eigenvectors [recall F[x]]

T = T' + T'' T' diagonalizable T" nilpotent

corresponds to

M = D + ND diagonal,

N upper-triangular with zero diag.

let λ 1, ..., λ k be the diagonal entries of D, in order, without including repeated entries

they are eigenvals of T'

[are they eigenvals of T? need ker(T - λ) nonzero]

know λ 1 is an eigenval of T; the others, unclear

M1 =

$$\lambda$$
 x y M2 = λ x y

$$ker(M1 - \mu), ker(M2 - \mu) \neq \{0\}$$
?

$$\lambda - \mu \ x \ y \ * = 0 e.g. x$$
 $0 z \ * 0 - (\lambda - \mu)$
 $0 \ * 0$

μ

$$\lambda - \mu \ x \ y \ * = 0 e.g. -xz/() + y$$
 $\lambda - \mu \ z \ * 0 z$
 $0 \ * 0 -(\lambda - \mu)$

we will prove:

and dim ker $(T - \lambda) \le \#$ of times λ occurs a.k.a. multiplicity of λ

Ex multiplicity of μ is 2 in both cases below:

eigenspace: $\{(0, y, z)\}\$ $\{(0, y, 0)\}$

to "fix" discrepancy, weaken notion of eigenspace

(Axler §8A–8B) let T : V to V be arbitrary

<u>Df</u>

the generalized λ -eigenspace for T is

{v in V | $(T - \lambda)^n$ v = **0** for some n} bigcup $\{n > 0\} \ker((T - \lambda)^n)$

its elts are called generalized λ-eigenvectors for T

Lem the gen'lized eigenspace is indeed a linear subspace of V

Pf $ker(T - \lambda)$ sub $ker((T - \lambda)^2)$ sub ... so bigcup $\{n > 0\}$ () = sum $\{n > 0\}$ ()

the generalized λ -eigenspace for T is Lem the largest T-stable lin. sub. W sub V s.t. $(T - \lambda)$ W is nilpotent

 $ker((T - \lambda)^n)$ is T-stable for all n <u>Pf</u> by stability lem so bigcup_{n > 0} ker($(T - \lambda)^n$) is stable and nilpotence condition holds for it

conversely: easy to show that if W is T-stable and $(T - \lambda)$ W is nilpotent, then W sub ker($(T - \lambda)^n$)

[i.e., if W is the gen'lized λ -eigenspace, then T|_W has an upper-triangular matrix with only λ 's on the diagonal]

even when V is not a sum of eigenspaces for T, we still have:

Thm if F = C and V is fin. dim.
then V is a direct sum of
gen'lized eigenspaces for T:

there exist a finite list of (pairwise distinct) λ_i s.t.

where W_i is the generalized λ_i -eigenspace for T and this sum is a direct sum

[slightly stronger than triangularity of T]

Pf again, want to induct on dim V

[recall proof of triangularity:] pick an eigenval λ then dim ker(T - λ) > 0 so dim im(T - λ) < dim V want: to replace ker with gen'lized eigensp. direct-sum structure

solution: since dim V finite, can pick k s.t. $ker((T - \lambda)^k) = bigcup_{n > 0} ker((T - \lambda)^n)$ i.e. $ker((T - \lambda)^k) = ker((T - \lambda)^n(k + 1)) = ...$

Lem for such k,
1)
$$\ker((T - \lambda)^k) \operatorname{cap} \operatorname{im}((T - \lambda)^k) = \{0\}$$

2) $\ker((T - \lambda)^k)$, $\operatorname{im}((T - \lambda)^k)$ are T-stable

by dim formula (PS3)

remains to check λ is not an eigenval of T|_W:

1) pick w in ker($(T - \lambda)^k$) cap im($(T - \lambda)^k$) then w = $(T - \lambda)^k$ v for some v in V but $(T - \lambda)^k$ w = **0**

follows from lem about maximality

altogether $\mathbf{0} = (T - \lambda)^k w$ = $(T - \lambda)^k (2k) v$ = $(T - \lambda)^k v$ by maximality of k= w

2) $im((T - \lambda)^k)$ is T-stable by stability lem

suppose v in ker($(T - \lambda)^k$) then $(T - \lambda)^k(T v) = T((T - \lambda)^k) v = \mathbf{0}$ so Tv in ker($(T - \lambda)^k$)

that is: the stability lem has an analogue for ker's

next time:

analyze structure of T on each gen'lized eigensp.