

PROJEKT: MSS54

MODUL: EVT-MOMENTENREALISIERUNG

AUTORISATION

Autor (ZS-M-57)	DATUM
GENEHMIGT (ZS-M-57)	DATUM
GENEHMIGT (EA-E-2)	DATUM

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	03.04.04	Frank	1.03

Änderungen:

Version	Datum	Kommentar	
r310	31.08.2004	Erste Version	
r320	27.10.2004	Minihub hinzu	
r320	06.11.2004	Umstellung der Luftmasse auf [mg/l*ASP]	
r320	06.11.2004	Vorlagerungswinkel bezieht sich auf ES	
r330	04.12.2004	Minihub von 4V auf 3V geändert	
r370	27.03.2005	Bremsbetrieb 4Takt hinzu	
r390	25.04.2005	ti_ende und es-Steuerkanten bei Start von K->KF erweitert	
		Einrechnung der Dichtekorrektur im Start geändert	

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	03.04.04	Frank	1.03

Inhaltsverzeichnis

ANDERUNGEN	2
1 FUNKTIONSBESCHREIBUNG	4
1.1 FUNKTIONSSCHALTBILD (ÜBERBLICK)	
1.2 FUNKTIONSSCHAUBILD BASISSTEUERKANTEN	5
1.3 Beschreibung	6
1.4 DO NOT APPLY BIT	7
1.5 ZYLINDERINDIVIDUELLE STEUERKANTENKORREKTUR	8
1.6 EINLASS-SCHLIEßT-KORREKTUREN	9
1.6.1 Dichtekorrektur wurde durch DKR ersetzt!	9
1.6.2 ZW-Wirkungsgrad-Korrektur (noch nicht implementiert!)	9
1.7 AUSLASS-ÖFFNET VERZÖGERUNG	9
1.8 MINIHUB	10
1.9 LUFTMASSENADAPTION (NOCH NICHT IMPLEMENTIERT!)	10
1.10 UMRECHNUNG VON ML_SOLL_KORR_EFF IN EINSPRITZZEIT	
1.11 UMRECHNUNG VON ML SOLL KORR EFF IN DEN LUFTMASSENSTROM	
1.12 UMRECHNUNG DES LUFTMASSENSTROMS IN RELATIVE FÜLLUNG	
1.13 FUNKTIONSSCHALTBILD LUFTMASSENADAPTION	
2 DATEN DER MOMENTENREALISIERUNG	13

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	03.04.04	Frank	1.03

FUNKTIONSBESCHREIBUNG

FUNKTIONSSCHALTBILD (ÜBERBLICK)

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	03.04.04	Frank	1.03

1.2 FUNKTIONSSCHAUBILD BASISSTEUERKANTEN

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	03.04.04	Frank	1.03

1.3 BESCHREIBUNG

Entsprechend der geltenden Betriebsart **bm_evt_state** (siehe Betriebsartenmanager) wählt die Momentenrealisierung die Basiskennfelder dieser Betriebsart aus:

Bei Vollast (**B_VL = 1**) wird ein Basiskennliniensatz ausgewählt. Für den Start (**B_START = 1**) wird ein eigener Datensatz gewählt. Zusätzlich kann über den Parameter **B_MAN_STKN** ein manuell eingebbarer Satz von Steuerparametern angewählt werden.

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	03.04.04	Frank	1.03

Der Basissteuerparametersatz besteht aus:

- eo_bas (Einlass-Öffnet-Steuerkante in °KW nach ZündOT)
- as bas (Auslass-Schließt-Steuerkante in °KW nach ZündOT)
- es_bas (Einlass-Schließt-Steuerkante in °KW nach ZündOT)
- ao_bas (Auslass-Öffnet-Steuerkante in °KW nach ZündOT)
- wdk_soll_evt (Basisdrosselklappenstellung in %)
- tz_bas (Basiszündwinkel in °KW vor ZündOT)
- ti_ende_evt (Einspritzende in °KW vor Einlass Schließt)
- ml_soll_bas (Basisluftmasse in mg/l*ASP)

Die DISA wird in allen Betriebsarten außer Vollast in der Leistungsstellung gehalten. An der Vollast entscheidet eine Drehzahlabfrage NMIN_DISA < n < NMAX_DISA, ob in Momentenstellung umgeschaltet wird (siehe Disa.doc).

Die Steuerparameter (Basisparameter + Korrekturen) sind bis auf die DISA-Stellung und die Drosselklappenstellung zyklenkonsistent, d.h. zusammengehörig für ein Arbeitsspiel eines Zylinders (siehe Betriebsartenmanager).

DISA und Drosselklappe werden durch drehzahlabhängige Ansteuerzeitoffsets möglichst gut mit den übrigen zyklussynchronen Stellparametern synchronisiert.

Die Basisparameter gelten stationär bei 960mbar und 20°C.

Die Kennfelder sind über wi und n aufgetragen.

1.4 DO NOT APPLY BIT

Damit die Ventilsteuerung die Steuerkanten in jeder Betriebsart richtig anwendet, wird ein sogenanntes "do not apply bit" (**bm_msk_stkn**) von der MSS54 gesetzt und via CAN übertragen. In diesem Bit ist kodiert welche Steuerkanten zum Einsatz kommen und welche nicht angewendet werden. Das Bit ist folgendermaßen kodiert:

as2	ao2	as1	ao1	es2	eo2	es1	eo1
-----	-----	-----	-----	-----	-----	-----	-----

Bei Zylinderabschaltung beispielsweise dürfen die berechneten Steuerkanten für Zylinder 2 und 3 nicht ausgeführt werden; in diesem Bit steht dann der Wert 00000000 (00h) für diese Zylinder.

Zustand	Zylinder 1	Zylinder 2	Zylinder 3	Zylinder 4
0	FFh	00h	00h	FFh
1	3Fh / CFh (180°)	00h	00h	3Fh / CFh (180°)
2	3Ch / C3h (720°)			
3	3Fh / CFh (720°)			
4, 5, 13	FFh	FFh	FFh	FFh
6	F0h	F0h	F0h	F0h

Zusätzlich können über den Parameter **K_MR_VENTZU_EIN** im Bremsbetrieb 4V die Ventile komplett geschlossen werden (**bm_msk_stkn=0**).

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	03.04.04	Frank	1.03

1.5 ZYLINDERINDIVIDUELLE STEUERKANTENKORREKTUR

Um die Zylinderfüllung und den Restgasgehalt der Zylinder gleichstellen zu können, sind zylinderindividuelle Steuerkantenkorrekturen erforderlich.

Daher können die 4 Steuerkanten (ao_bas, as_bas, eo_bas, es_bas) mit einem Offset verändert werden. Diese Offsets, je ein Array für ao/eo/es kann über das Applikationssystem als manuelle Korrektur eingestellt werden.

Die Bezeichnung der Arrays lautet:

K_MR_AO_KORR[1..8]

K MR AS KORR[1..8]

K_MR_EO_KORR[1..8]

K_MR_ES_KORR[1..8]

Der Index der Arrays bezieht sich auf den physikalischen Zylinder. Also: Index=1 ist für Zylinder 1 Index 8 für Zylinder 8 usw.

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	03.04.04	Frank	1.03

1.6 EINLASS-SCHLIEßT-KORREKTUREN

1.6.1 DICHTEKORREKTUR WURDE DURCH DKR ERSETZT!

Der vom Normzustand abweichende Umgebungsdruck sowie Umgebungstemperatur werden im Faktor **rf_pt_korr** zusammengefasst und in einer Einlass-Schließt-Korrektur ausgeglichen. Dabei wird bei gleichbleibendem **wi** und gleichbleibenden AÖ-, AS- und EÖ-Steuerkanten das Einlass-Schließt über eine Volumenkennlinie **KL_ES_VOLUM** in ein Ist-Volumen umgerechnet. Anschließend führt das Dichteverhältnis Ist-/Solldichte zu einem neuen gewünschtem Luftvolumen. Dieses wird über die inverse Kennlinie **KL_ES_VOLUM_inv** wieder in eine Einlass-Schließt-Steuerkante umgerechnet.

Diese Vorgehensweise hält bei abweichenden Umgebungsbedingungen den Lastpunkt konstant und verändert insbesondere nicht die thermodynamisch relevanten Einflussgrößen (Restgas, etc).

An der Vollast und in der obersten Teillast wird die Einlass-Schließt-Korrektur begrenzt.

1.6.2 ZW-WIRKUNGSGRAD-KORREKTUR (NOCH NICHT IMPLEMENTIERT!)

Analog wird bei ZW-Spätstellungen, welche durch Klopfregelung und andere Funktionen hervorgerufen werden, die Luftmasse über die Einlass-Schließt-Kante vergrößert, um den Momentenabfall auszugleichen.

Diese Korrektur wird nur bei ZW-Spätstellung angewandt, welche unerwünscht das Motormoment verkleinern.

Die Korrektur erfolgt über die gleichen Kennlinien. Dabei wird das als Zündwinkelwirkungsgrad definierte Momentenverhältnis Ist-Moment/Max-Moment ermittelt. Der Momentenabfall wird durch eine Luftmassenerhöhung (Kehrwert des Momentenverhältnisses Ist-Moment/Max-Moment) kompensiert.

Die resultierenden Steuerparametersätze halten das Moment wi konstant. Die Einlass-Schließt-Korrektur verringert durch die konstant gehaltenen restlichen Steuerkanten den Restgasgehalt bei Zündwinkelspätstellungen (Klopfneigung wird verringert).

Die Einlass-Schließt-Korrektur infolge Spätzündwinkel führt zu einer höheren Luftmasse. Diese wird im Luftmassenpfad über **md_eva_ve** aufgeschlagen.

1.7 Auslass-Öffnet Verzögerung

Das verbrannte Kraftstoff-Luft-Gemisch, das sich im Zylinder befindet, muß auch mit der AÖ-Steuerkante wieder ausgeschoben werden, die zu den Steuerkanten paßt mit der die Frischluft angesaugt wurde. Die Steuerkante Auslass Öffnet gehört also thermodynamisch zum vorherigen Arbeitsspiel.

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	03.04.04	Frank	1.03

MSS54-EVT-Momentenrealisierung

Seite 10 von 14

Da die Berechnung der Steuerkanten aber immer im selben Segment erfolgt, muß AÖ um genau ein Arbeitsspiel (720 grdKW) verzögert werden um anschließend über CAN an das Ventilsteuergerät übertragen zu werden.

1.8 MINIHUB

Der Betriebszustand Minihub wird im unteren Lastbereich bei niedrigen Drehzahlen eingesetzt und ermöglicht einen leisen Betrieb des Motors.

Die Amplitude der Steuerventile wird von der MSS54 vorgegeben, über CAN an die dSpace Systeme übergeben und dort eingeregelt. Der Minihub ist im Moment nur für die Einlass Ventile vorgesehen, die Auslass Ventile werden mit vollem Hub im alternierenden Modus (3V) betrieben (mr_minilift_ex = 0). Mit Hilfe der Applikationskonstanten K_MR_MINILIFT_INT kann die Amplitude eingestellt werden. In der Variablen mr_minilift_int wird der Wert der eingestellten Ventilhubhöhe angezeigt, der an den CAN übergeben wird. Wegen programmtechnischen Gründen der dSpace-Systeme muß mr_minilift_int um ein Segment (180grdKW) verzögert an den CAN gesendet werden.

1.9 LUFTMASSENADAPTION (NOCH NICHT IMPLEMENTIERT!)

Die Luftmassenadaption hat zum Ziel, Luftmassenfehler in der vorgesteuerten Luftmassenberechnung auszugleichen. Dabei wird ein Vergleich von der gemessenen Luftmasse **ml_ist_aw** zur vorgesteuerten Luftmasse **ml_soll_bas** durchgeführt. Die Differenz wird über einen PT1-Filter einem Adaptionskennfeld zugeführt.

Die Ist-Luftmassenbestimmung erfolgt über HFM (ml) und über die Lambdasondenadaption (f_ti_a*ml_soll_bas). Die Ist-Luftmassenbestimmung kann zwischen HFM und Lambdasondenadaption über die Kennlinie KF_FAK_ML_HFM_LAM gewichtet werden.

Adaptionsbedingungen:

- Lambdaregelung läuft
- wi unter Schwelle
- B TL
- Motor betriebswarm

ml_korr_diff_bas < Schwelle; sonst Fehlererkennung

ml korr diff bas = 0!!!

Die Luftmassenadaption ist im Moment noch nicht implementiert!!! Muß noch genauer spezifiziert werden. Für jede Betriebsart müßte ein eigenes Adaptionskennfeld abgelegt werden.

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	03.04.04	Frank	1.03

1.10 UMRECHNUNG VON ML_SOLL_KORR_EFF IN EINSPRITZZEIT

Die Lastgröße tI und daraus auch die Einspritzzeit ti wird zyklenkonsistent aus mI_soll_korr_eff berechnet.

Die Einspritzzeit ti wird für jeden Zylinder und jedes Arbeitsspiel zykluskonsistent berechnet werden.

1.11 UMRECHNUNG VON ML_SOLL_KORR_EFF IN DEN LUFTMASSENSTROM

Der Soll-Luftmassenstrom wird für die Basis-Applikation nicht benötigt. Für Abgastemperaturmodelle oder Adaption mit dem HFM kann der Soll-Luftmassenstrom über den gleitenden Mittelwert über ein Arbeitsspiel (4 Segmente bei 4 Zylinder) berechnet werden:

$$\mathit{ml[kg/h]} = \sum_{i = Segmentnr-(Zylzahl-1)}^{Segmentnr} (\mathit{ml_soll_kor_eff}_i[\mathit{mg/l*ASP}] * \mathit{n[U/min]} * \frac{\mathit{K_RF_HUBVOLUMEN[dm^3]}}{\mathit{cfg_zylinderan_ahl}} * 0.5 * 60/10^6)$$

Der Luftmassenstrom ergibt sich aus der gleitenden Mittelwertbildung aller Zylinder. Bei einem abgeschalteten Zylinder wird für **ml_soll_korr_eff**_i der Wert 0 eingesetzt. Der Luftmassenstrom **ml** wird in [kg/h] ausgegeben.

1.12 UMRECHNUNG DES LUFTMASSENSTROMS IN RELATIVE FÜLLUNG

Für die Umrechung in rf wird nach folgender Formel berechnet:

$$rf = \frac{ml}{K_RF_HUBVOLUMEN*K_RF_LUFTDICHTE*0.5*n}$$

Die relative Füllung rf hat die Einheit [%].

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	03.04.04	Frank	1.03

1.13 FUNKTIONSSCHALTBILD LUFTMASSENADAPTION

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	03.04.04	Frank	1.03

2 DATEN DER MOMENTENREALISIERUNG

Die Berechnung der Funktion erfolgt in der winkelsynchronen Task.

Beschreibung der berechneten Variablen:

ao_aw	Auslass Öffnet, aktueller Wert, um 720 grdKW verzögert		
as_aw	Auslass Schließt, aktueller Wert		
eo_aw	Einlass Öffnet, aktueller Wert		
es_bas	Einlass, Schließt, basis		
es_aw	Einlass Schließt, aktueller Wert (dichtekorrigiert)	uw	
ml_soll_bas	Soll Luftmasse, basis [mg/l*ASP]	uw	
ml_soll_korr	Soll-Luftmasse, mit Adaption korrigiert	uw	
ml_soll_korr_eff	Soll-Luftmasse, mit Adaption und ZW korrigiert	uw	
ml_hfm	Luftmasse von HFM [kg/h]		
ml	Luftmasse [kg/h] berechnet auf Basisluftmassenkennferldern	uw	
ml_korr_diff_bas	Adaptierte Delta-Soll-Luftmasse = 0!!!		
ml_diff_hfm_lam			
wdk_soll_evt	Soll-Drosselklappenwinkel in %	uw	
tz_bas	Basis Zündwinkel	sw	
ti_ende_evt	Vorlagerungswinkel evt bezogen auf ZündOT	uw	
bm_msk_stkn	do not apply bit	ub	
mr_minilift_int	Amplitude Minihub Einlass	ub	
mr_minilift_ex	Amplitude Minihub Auslass = 0	ub	
	-	•	

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	03.04.04	Frank	1.03

Beschreibung der Applikationsdaten:

K_TI_ENDE_x	Vorlagerungswinkel bei bm_evt_state=x	uw
K_TI_ENDE_VL	Vorlagerungswinkel für Vollastbetrieb	uw
KF_TI_ENDE_START	Vorlagerungswinkel für Start	uw/uw/uw
K_TI_ENDE_MAN	Vorlagerungswinkel für manuellen Modus	uw
B_MAN_STKN	Umschaltung auf manuellen Modus	ub
K_MR_VENTZU_EIN	manuelles Zuhalten der Ventile nur bei Bremsen	ub
K_STKN_AO_MAN	Auslass Öffnet für manuellen Modus	uw
K_STKN_AS_MAN	Auslass Schließt für manuellen Modus	uw
K_STKN_EO_MAN	Einlass Öffnet für manuellen Modus	uw
K_STKN_ES_MAN	Einlass Schließt für manuellen Modus	uw
K_ML_SOLL_MAN	Soll Luftmasse für manuellen Modus	uw
K_WDK_MAN	Drosselklappenwinkel für manuellen Modus	uw
K_TZ_MAN	Zündwinkel für manuellen Modus	sw
K_STKN_AO_START	Auslass Öffnet für Start	uw
K_STKN_AS_START	Auslass Schließt für Start	uw
K_STKN_EO_START	Einlass Öffnet für Start	uw
KF_STKN_ES_START	Einlass Schließt für Start	uw/uw/uw
K_MR_MINILIFT_INT	Amplitude Minihub für Einlass	ub
K_ML_SOLL_START	Soll Luftmasse für Start	uw
K_WDK_START	Drosselklappenwinkel für Start	uw
KL_TZ_START_N_EVT	Zündwinkel bei Start f(n)	uw/sw
KL_TZ_START_TMOT_EVT	Zündwinkel bei Start f(tmot)	ub/sw
KL_STKN_AO_VL	Auslass Öffnet für Vollastbetrieb	uw/uw
KL_STKN_AS_VL	Auslass Schließt für Vollastbetrieb	uw/uw
KL_STKN_EO_VL	Einlass Öffnet für Vollastbetrieb	uw/uw
KL_STKN_ES_VL	Einlass Schließt für Vollastbetrieb	uw/uw
KL_ML_SOLL_VL	Soll Luftmasse für Vollastbetrieb	uw/uw
KL_WDK_VL	Drosselklappenwinkel für Vollastbetrieb	uw/uw
KL_TZ_VL	Zündwinkel für Vollastbetrieb	uw/sw
KL_ES_VOLUM	Umrechnung Einlass Schließt -> Volumen	uw/uw
KL_ES_VOLUM_inv	inverse Kennlinie von KL_ES_VOLUM nicht applbar!	uw/uw
KF_STKN_AO_BAS_x	Auslass Öffnet bei bm_evt_state=x	uw/uw/uw
KF_STKN_AS_BAS_x	Auslass Schließt bei bm_evt_state=x	uw/uw/uw
KF_STKN_EO_BAS_x	Einlass Öffnet bei bm_evt_state=x	uw/uw/uw
KF_STKN_ES_BAS_x	Einlass Schließt bei bm_evt_state=x	uw/uw/uw
KF_ML_SOLL_BAS_x	Soll Luftmasse bei bm_evt_state=x	uw/uw/uw
KF_WDK_BAS_x	Drosselklappenwinkel bei bm_evt_state=x	uw/uw/uw
KL_WDK_BAS_6	Drosselklappenwinkel bei bm_evt_state=6 (Bremsen 4T)	uw/uw
KF_TZ_BAS_x	Basis Zündwinkel bei bm_evt_state=x	uw/uw/sw
	, – –	

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	03.04.04	Frank	1.03