7.1

# Inverse Functions and Their Derivatives

**DEFINITION** A function f(x) is **one-to-one** on a domain D if  $f(x_1) \neq f(x_2)$  whenever  $x_1 \neq x_2$  in D.





(a) One-to-one: Graph meets each horizontal line at most once.





(b) Not one-to-one: Graph meets one or more horizontal lines more than once.

**FIGURE 7.1** (a)  $y = x^3$  and  $y = \sqrt{x}$  are one-to-one on their domains  $(-\infty, \infty)$  and  $[0, \infty)$ . (b)  $y = x^2$  and  $y = \sin x$  are not one-to-one on their domains  $(-\infty, \infty)$ .

#### The Horizontal Line Test for One-to-One Functions

A function y = f(x) is one-to-one if and only if its graph intersects each horizontal line at most once.

#### Definition

Let  $f: D \to Y$  be a function.

- ▶ We say that f is one-to-one (or injective) if  $f(x_1) \neq f(x_2)$  for all distinct  $x_1$  and  $x_2$  in D (that is,  $x_1 \neq x_2$ ).
- ▶ We say that f is onto (or surjective) if, for every  $y \in Y$ , there exists  $x \in D$  such that f(x) = y.
- We say that f is bijective if it is both one-to-one and onto. A bijective function is called a bijection.

**DEFINITION** Suppose that f is a one-to-one function on a domain D with range R. The **inverse function**  $f^{-1}$  is defined by

$$f^{-1}(b) = a$$
 if  $f(a) = b$ .

The domain of  $f^{-1}$  is R and the range of  $f^{-1}$  is D.

If f is continuous and  $f^{-1}$  exists, then  $f^{-1}$  is continuous.



(a) To find the value of f at x, we start at x, go up to the curve, and then over to the y-axis.



(b) The graph of  $f^{-1}$  is the graph of f, but with x and y interchanged. To find the x that gave y, we start at y and go over to the curve and down to the x-axis. The domain of  $f^{-1}$  is the range of f. The range of f is the domain of f.



(c) To draw the graph of  $f^{-1}$  in the more usual way, we reflect the system across the line y = x.



(d) Then we interchange the letters x and y. We now have a normal-looking graph of  $f^{-1}$  as a function of x.

**FIGURE 7.2** The graph of  $y = f^{-1}(x)$  is obtained by reflecting the graph of y = f(x) about the line y = x.



**EXAMPLE 4** Find the inverse of the function  $y = x^2, x \ge 0$ , expressed as a function of x.

**Solution** For  $x \ge 0$ , the graph satisfies the horizontal line test, so the function is one-to-one and has an inverse. To find the inverse, we first solve for x in terms of y:

$$y = x^2$$
  
 $\sqrt{y} = \sqrt{x^2} = |x| = x$   $|x| = x \text{ because } x \ge 0$ 

We then interchange x and y, obtaining

$$y = \sqrt{x}$$
.

The inverse of the function  $y = x^2, x \ge 0$ , is the function  $y = \sqrt{x}$  (Figure 7.4).

Notice that the function  $y = x^2$ ,  $x \ge 0$ , with domain *restricted* to the nonnegative real numbers, *is* one-to-one (Figure 7.4) and has an inverse. On the other hand, the function  $y = x^2$ , with no domain restrictions, *is not* one-to-one (Figure 7.1b) and therefore has no inverse.

**FIGURE 7.4** The functions  $y = \sqrt{x}$  and  $y = x^2, x \ge 0$ , are inverses of one another (Example 4).

#### Derivatives of Inverses of Differentiable Functions

Reflecting any nonhorizontal or nonvertical line across the line y = x always inverts the line's slope. If the original line has slope  $m \neq 0$ , the reflected line has slope 1/m.



The slopes are reciprocal: 
$$(f^{-1})'(b) = \frac{1}{f'(a)} \text{ or } (f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$$

FIGURE 7.5 The graphs of inverse functions have reciprocal slopes at corresponding points.

**THEOREM 1—The Derivative Rule for Inverses** If f has an interval I as domain and f'(x) exists and is never zero on I, then  $f^{-1}$  is differentiable at every point in its domain (the range of f). The value of  $(f^{-1})'$  at a point b in the domain of  $f^{-1}$  is the reciprocal of the value of f' at the point  $a = f^{-1}(b)$ :

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))} \tag{1}$$

or

$$\left. \frac{df^{-1}}{dx} \right|_{x=b} = \frac{1}{\left. \frac{df}{dx} \right|_{x=f^{-1}(b)}}$$

Theorem 1 makes two assertions. The first of these has to do with the conditions under which  $f^{-1}$  is differentiable; the second assertion is a formula for the derivative of  $f^{-1}$  when it exists. While we omit the proof of the first assertion, the second one is proved in the following way:

$$f(f^{-1}(x)) = x \qquad \qquad \text{Inverse function relationship}$$
 
$$\frac{d}{dx}f(f^{-1}(x)) = 1 \qquad \qquad \text{Differentiating both sides}$$
 
$$f'(f^{-1}(x)) \cdot \frac{d}{dx}f^{-1}(x) = 1 \qquad \qquad \text{Chain Rule}$$
 
$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}. \qquad \text{Solving for the derivative}$$

**EXAMPLE 5** The function  $f(x) = x^2, x > 0$  and its inverse  $f^{-1}(x) = \sqrt{x}$  have derivatives f'(x) = 2x and  $(f^{-1})'(x) = 1/(2\sqrt{x})$ .

Let's verify that Theorem 1 gives the same formula for the derivative of  $f^{-1}(x)$ :

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

$$= \frac{1}{2(f^{-1}(x))}$$

$$= \frac{1}{2(\sqrt{x})}.$$

$$f'(x) = 2x \text{ with } x \text{ replaced by } f^{-1}(x)$$

Theorem 1 gives a derivative that agrees with the known derivative of the square root function.

Let's examine Theorem 1 at a specific point. We pick x = 2 (the number a) and f(2) = 4 (the value b). Theorem 1 says that the derivative of f at 2, which is f'(2) = 4, and the derivative of  $f^{-1}$  at f(2), which is  $(f^{-1})'(4)$ , are reciprocals. It states that

$$(f^{-1})'(4) = \frac{1}{f'(f^{-1}(4))} = \frac{1}{f'(2)} = \frac{1}{2x}\Big|_{x=2} = \frac{1}{4}.$$

See Figure 7.6.



**FIGURE 7.6** The derivative of  $f^{-1}(x) = \sqrt{x}$  at the point (4, 2) is the reciprocal of the derivative of  $f(x) = x^2$  at (2, 4) (Example 5).

**EXAMPLE 6** Let  $f(x) = x^3 - 2$ , x > 0. Find the value of  $df^{-1}/dx$  at x = 6 = f(2) without finding a formula for  $f^{-1}(x)$ .

**Solution** We apply Theorem 1 to obtain the value of the derivative of  $f^{-1}$  at x = 6:

$$\left. \frac{df}{dx} \right|_{x=2} = 3x^2 \bigg|_{x=2} = 12$$

$$\frac{df^{-1}}{dx}\Big|_{x=f(2)} = \frac{1}{\frac{df}{dx}\Big|_{x=2}} = \frac{1}{12}.$$
 Eq. (1)

See Figure 7.7.



**FIGURE 7.7** The derivative of  $f(x) = x^3 - 2$  at x = 2 tells us the derivative of  $f^{-1}$  at x = 6 (Example 6).

7.2

Natural Logarithms

**DEFINITION** The **natural logarithm** is the function given by

$$\ln x = \int_1^x \frac{1}{t} dt, \qquad x > 0.$$
(1)

From the Fundamental Theorem of Calculus,  $\ln x$  is a continuous function. Geometrically, if x > 1, then  $\ln x$  is the area under the curve y = 1/t from t = 1 to t = x (Figure 7.8). For 0 < x < 1,  $\ln x$  gives the negative of the area under the curve from x to 1, and the function is not defined for  $x \le 0$ . From the Zero Width Interval Rule for definite integrals, we also have

$$\ln 1 = \int_1^1 \frac{1}{t} dt = 0.$$



**FIGURE 7.8** The graph of  $y = \ln x$  and its relation to the function y = 1/x, x > 0. The graph of the logarithm rises above the x-axis as x moves from 1 to the right, and it falls below the x-axis as x moves from 1 to the left.

| <b>TABLE 7.1</b> | Typical 2-place |
|------------------|-----------------|
| values of l      | n <i>x</i>      |

| x    | ln x      |
|------|-----------|
| 0    | undefined |
| 0.05 | -3.00     |
| 0.5  | -0.69     |
| 1    | 0         |
| 2    | 0.69      |
| 3    | 1.10      |
| 4    | 1.39      |
| 10   | 2.30      |

There is an important number between x = 2 and x = 3 whose natural logarithm equals 1. This number, which we now define, exists because  $\ln x$  is a continuous function and therefore satisfies the Intermediate Value Theorem on [2, 3].

**DEFINITION** The **number** *e* is that number in the domain of the natural logarithm satisfying

$$\ln(e) = \int_{1}^{e} \frac{1}{t} dt = 1.$$

From FTC1, we have

$$\frac{d}{dx}\ln x = \frac{d}{dx} \int_{1}^{x} \frac{1}{t} dt = \frac{1}{x}.$$

Note that  $y = \ln x$  is a solution to the initial value problem dy/dx = 1/x, x > 0, with y(1) = 0.

From the Chain Rule, we have

$$\frac{d}{dx}\ln u = \frac{1}{u}\frac{du}{dx}, \qquad u > 0.$$
 (2)

**EXAMPLE 1** We use Equation (2) to find derivatives.

(a) 
$$\frac{d}{dx} \ln 2x = \frac{1}{2x} \frac{d}{dx} (2x) = \frac{1}{2x} (2) = \frac{1}{x}, \quad x > 0$$

(b) Equation (2) with  $u = x^2 + 3$  gives

$$\frac{d}{dx}\ln(x^2+3) = \frac{1}{x^2+3} \cdot \frac{d}{dx}(x^2+3) = \frac{1}{x^2+3} \cdot 2x = \frac{2x}{x^2+3}.$$

(c) Equation (2) with u = |x| gives an important derivative:

$$\frac{d}{dx} \ln|x| = \frac{d}{du} \ln u \cdot \frac{du}{dx} \qquad u = |x|, x \neq 0$$

$$= \frac{1}{u} \cdot \frac{x}{|x|} \qquad \frac{d}{dx} (|x|) = \frac{x}{|x|}$$

$$= \frac{1}{|x|} \cdot \frac{x}{|x|} \qquad \text{Substitute for } u.$$

$$= \frac{x}{x^2}$$

$$= \frac{1}{x}.$$

So 1/x is the derivative of  $\ln x$  on the domain x > 0, and the derivative of  $\ln (-x)$  on the domain x < 0.

$$\frac{d}{dx}\ln|x| = \frac{1}{x}, \qquad x \neq 0 \tag{4}$$

**THEOREM 2—Algebraic Properties of the Natural Logarithm** For any numbers b > 0 and x > 0, the natural logarithm satisfies the following rules:

$$\ln bx = \ln b + \ln x$$

$$\ln \frac{b}{x} = \ln b - \ln x$$

$$\ln\frac{1}{x} = -\ln x$$

Rule 2 with 
$$b = 1$$

$$\ln x^r = r \ln x$$

**Proof that In**  $bx = \ln b + \ln x$  The argument starts by observing that  $\ln bx$  and  $\ln x$  have the same derivative:

$$\frac{d}{dx}\ln(bx) = \frac{b}{bx} = \frac{1}{x} = \frac{d}{dx}\ln x.$$

According to Corollary 2 of the Mean Value Theorem, the functions must differ by a constant, which means that

$$\ln bx = \ln x + C$$

for some constant C.

Since this last equation holds for all positive values of x, it must hold for x = 1. Hence,

$$\ln (b \cdot 1) = \ln 1 + C$$

$$\ln b = 0 + C$$

$$\ln 1 = 0$$

$$C = \ln b.$$

By substituting we conclude that

$$\ln bx = \ln b + \ln x.$$

#### Proof that $\ln x^r = r \ln x$

$$\frac{d}{dx}\ln x^r = \frac{1}{x^r}\frac{d}{dx}(x^r)$$

$$= \frac{1}{x^r}rx^{r-1}$$

$$= r \cdot \frac{1}{x} = \frac{d}{dx}(r\ln x).$$

Since  $\ln x^r$  and  $r \ln x$  have the same derivative,

$$\ln x^r = r \ln x + C$$

for some constant C. Taking x to be 1 identifies C as zero

#### The Graph and Range of In x

The derivative  $d(\ln x)/dx = 1/x$  is positive for x > 0, so  $\ln x$  is an increasing function of x. The second derivative,  $-1/x^2$ , is negative, so the graph of  $\ln x$  is concave down. (See Figure 7.9a.)

We can estimate the value of  $\ln 2$  by considering the area under the graph of y = 1/x and above the interval [1, 2]. In Figure 7.9(b) a rectangle of height 1/2 over the interval [1, 2] fits under the graph. Therefore the area under the graph, which is  $\ln 2$ , is greater than the area, 1/2, of the rectangle. So  $\ln 2 > 1/2$ . Knowing this we have

$$\ln 2^n = n \ln 2 > n \left(\frac{1}{2}\right) = \frac{n}{2}.$$

This result shows that  $\ln{(2^n)} \to \infty$  as  $n \to \infty$ . Since  $\ln{x}$  is an increasing function, we get that

$$\lim_{x\to\infty}\ln x=\infty.$$

We also have

$$\lim_{x \to 0^+} \ln x = \lim_{t \to \infty} \ln t^{-1} = \lim_{t \to \infty} (-\ln t) = -\infty. \qquad x = 1/t = t^{-1}$$





**FIGURE 7.9** (a) The graph of the natural logarithm. (b) The rectangle of height y = 1/2 fits beneath the graph of y = 1/x for the interval  $1 \le x \le 2$ .

From Example 1, we have the following.

If u is a differentiable function that is never zero,

$$\int \frac{1}{u} du = \ln|u| + C. \tag{3}$$

Equation (3) applies anywhere on the domain of 1/u, the points where  $u \neq 0$ . It says that integrals of a certain *form* lead to logarithms. If u = f(x), then du = f'(x) dx and

$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$$

whenever f(x) is a differentiable function that is never zero.

**EXAMPLE 3** Here we recognize an integral of the form  $\int \frac{du}{u}$ .

$$\int_{-\pi/2}^{\pi/2} \frac{4\cos\theta}{3 + 2\sin\theta} d\theta = \int_{1}^{5} \frac{2}{u} du \qquad u = 3 + 2\sin\theta, \quad du = 2\cos\theta \, d\theta,$$
$$u(-\pi/2) = 1, \quad u(\pi/2) = 5$$
$$= 2\ln|u| \int_{1}^{5}$$
$$= 2\ln|5| - 2\ln|1| = 2\ln5$$

Note that  $u = 3 + 2 \sin \theta$  is always positive on  $[-\pi/2, \pi/2]$ , so Equation (3) applies.

#### The Integrals of tan x, cot x, sec x, and csc x

Equation (3) tells us how to integrate these trigonometric functions.

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} dx = \int \frac{-du}{u}$$

$$= -\ln|u| + C = -\ln|\cos x| + C$$

$$= \ln \frac{1}{|\cos x|} + C = \ln|\sec x| + C.$$
Reciprocal Rule

For the cotangent,

$$\int \cot x \, dx = \int \frac{\cos x \, dx}{\sin x} = \int \frac{du}{u} \qquad \qquad u = \sin x,$$

$$du = \cos x \, dx$$

$$= \ln|u| + C = \ln|\sin x| + C = -\ln|\csc x| + C.$$

To integrate sec x, we multiply and divide by (sec  $x + \tan x$ ) as an algebraic form of 1.

$$\int \sec x \, dx = \int \sec x \, \frac{(\sec x + \tan x)}{(\sec x + \tan x)} dx = \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} \, dx$$

$$= \int \frac{du}{u} = \ln|u| + C = \ln|\sec x + \tan x| + C \qquad u = \sec x + \tan x, du = (\sec x \tan x + \sec^2 x) dx$$

For csc x, we multiply and divide by  $(\csc x + \cot x)$  as an algebraic form of 1.

$$\int \csc x \, dx = \int \csc x \, \frac{(\csc x + \cot x)}{(\csc x + \cot x)} dx = \int \frac{\csc^2 x + \csc x \cot x}{\csc x + \cot x} dx$$

$$= \int \frac{-du}{u} = -\ln|u| + C = -\ln|\csc x + \cot x| + C \qquad u = \csc x + \cot x, du = (-\csc x \cot x - \csc^2 x) dx$$

#### Integrals of the tangent, cotangent, secant, and cosecant functions

$$\int \tan u \, du = \ln|\sec u| + C \qquad \int \sec u \, du = \ln|\sec u + \tan u| + C$$

$$\int \cot u \, du = \ln|\sin u| + C \qquad \int \csc u \, du = -\ln|\csc u + \cot u| + C$$

The calculation of derivatives of complicated functions involving products, quotients, or powers can often be simplified by taking logarithms. The method used in the following example is called **logarithmic differentiation**.

#### **EXAMPLE 5** Find dy/dx if

$$y = \frac{(x^2 + 1)(x + 3)^{1/2}}{x - 1}, \quad x > 1.$$

**Solution** We take the natural logarithm of both sides and simplify the result with the properties of logarithms:

$$\ln y = \ln \frac{(x^2 + 1)(x + 3)^{1/2}}{x - 1}$$

$$= \ln ((x^2 + 1)(x + 3)^{1/2}) - \ln (x - 1) \qquad \text{Quotient Rule}$$

$$= \ln (x^2 + 1) + \ln (x + 3)^{1/2} - \ln (x - 1) \qquad \text{Product Rule}$$

$$= \ln (x^2 + 1) + \frac{1}{2} \ln (x + 3) - \ln (x - 1). \qquad \text{Power Rule}$$

We then take derivatives of both sides with respect to x, using Equation (2) on the left:

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{x^2 + 1} \cdot 2x + \frac{1}{2} \cdot \frac{1}{x + 3} - \frac{1}{x - 1}.$$

Next we solve for dy/dx:

$$\frac{dy}{dx} = y \left( \frac{2x}{x^2 + 1} + \frac{1}{2x + 6} - \frac{1}{x - 1} \right).$$

Finally, we substitute for y from the original equation:

$$\frac{dy}{dx} = \frac{(x^2+1)(x+3)^{1/2}}{x-1} \left( \frac{2x}{x^2+1} + \frac{1}{2x+6} - \frac{1}{x-1} \right).$$

7.6

Inverse Trigonometric Functions

#### **Defining the Inverses**

The six basic trigonometric functions are not one-to-one (their values repeat periodically). However, we can restrict their domains to intervals on which they are one-to-one. The sine function increases from -1 at  $x = -\pi/2$  to +1 at  $x = \pi/2$ . By restricting its domain to the interval  $[-\pi/2, \pi/2]$  we make it one-to-one, so that it has an inverse  $\sin^{-1} x$  (Figure 7.21).





**FIGURE 7.22** The graphs of (a)  $y = \sin x$ ,  $-\pi/2 \le x \le \pi/2$ , and (b) its inverse,  $y = \sin^{-1} x$ . The graph of  $\sin^{-1} x$ , obtained by reflection across the line y = x, is a portion of the curve  $x = \sin y$ .



**FIGURE 7.21** The graph of  $y = \sin^{-1} x$ .

#### **Domain Restrictions**



$$y = \sin x$$

Domain: 
$$[-\pi/2, \pi/2]$$

Range: [-1, 1]



$$y = \cot x$$

Domain:  $(0, \pi)$ 

Range:  $(-\infty, \infty)$ 



$$y = \cos x$$

Domain:  $[0, \pi]$ 

Range: [-1, 1]



$$y = \sec x$$

Domain:  $[0, \pi/2) \cup (\pi/2, \pi]$ 

Range:  $(-\infty, -1] \cup [1, \infty)$ 



$$y = \tan x$$

Domain:  $(-\pi/2, \pi/2)$ 

Range:  $(-\infty, \infty)$ 



$$y = \csc x$$

Domain:  $[-\pi/2, 0) \cup (0, \pi/2]$ 

Range:  $(-\infty, -1] \cup [1, \infty)$ 

Domain: 
$$-1 \le x \le 1$$
  
Range:  $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ 



Domain: 
$$-1 \le x \le 1$$
  
Range:  $0 \le y \le \pi$ 



Domain: 
$$-\infty < x < \infty$$
  
Range:  $-\frac{\pi}{2} < y < \frac{\pi}{2}$ 



Domain: 
$$x \le -1$$
 or  $x \ge 1$   
Range:  $0 \le y \le \pi, y \ne \frac{\pi}{2}$ 



Domain: 
$$x \le -1$$
 or  $x \ge 1$   
Range:  $-\frac{\pi}{2} \le y \le \frac{\pi}{2}, y \ne 0$ 



Domain:  $-\infty < x < \infty$ Range:  $0 < y < \pi$ 



FIGURE 7.23 Graphs of the six basic inverse trigonometric functions.

#### **DEFINITION**

 $y = \sin^{-1} x$  is the number in  $[-\pi/2, \pi/2]$  for which  $\sin y = x$ .

 $y = \cos^{-1} x$  is the number in  $[0, \pi]$  for which  $\cos y = x$ .

#### The "Arc" in Arcsine and Arccosine

For a unit circle and radian angles, the arc length equation  $s = r\theta$  becomes  $s = \theta$ , so central angles and the arcs they subtend have the same measure. If  $x = \sin y$ , then, in addition to being the angle whose sine is x, y is also the length of arc on the unit circle that subtends an angle whose sine is x. So we call y "the arc whose sine is x."



## Some Identities

$$\sin^{-1} x + \cos^{-1} x = \pi/2$$

$$\tan^{-1} x + \cot^{-1} x = \pi/2$$

$$\sec^{-1} x + \csc^{-1} x = \pi/2$$



**FIGURE 7.28**  $\sin^{-1} x$  and  $\cos^{-1} x$  are complementary angles (so their sum is  $\pi/2$ ).

#### The Derivative of $y = \sin^{-1} u$

We know that the function  $x = \sin y$  is differentiable in the interval  $-\pi/2 < y < \pi/2$  and that its derivative, the cosine, is positive there. Theorem 1 in Section 7.1 therefore assures us that the inverse function  $y = \sin^{-1} x$  is differentiable throughout the interval -1 < x < 1. We cannot expect it to be differentiable at x = 1 or x = -1 because the tangents to the graph are vertical at these points (see Figure 7.30).

We find the derivative of  $y = \sin^{-1} x$  by applying Theorem 1 with  $f(x) = \sin x$  and  $f^{-1}(x) = \sin^{-1} x$ :

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
 Theorem 1
$$= \frac{1}{\cos(\sin^{-1}x)} \qquad f'(u) = \cos u$$

$$= \frac{1}{\sqrt{1 - \sin^2(\sin^{-1}x)}} \qquad \cos u = \sqrt{1 - \sin^2 u}$$

$$= \frac{1}{\sqrt{1 - x^2}}. \qquad \sin(\sin^{-1}x) = x$$

If u is a differentiable function of x with |u| < 1, we apply the Chain Rule to get the general formula

$$\frac{d}{dx}(\sin^{-1}u) = \frac{1}{\sqrt{1-u^2}}\frac{du}{dx}, \quad |u| < 1.$$



**FIGURE 7.30** The graph of  $y = \sin^{-1} x$  has vertical tangents at x = -1 and x = 1.

#### **EXAMPLE 4** Using the Chain Rule, we calculate the derivative

$$\frac{d}{dx}(\sin^{-1}x^2) = \frac{1}{\sqrt{1 - (x^2)^2}} \cdot \frac{d}{dx}(x^2) = \frac{2x}{\sqrt{1 - x^4}}.$$

#### The Derivative of $y = \tan^{-1} u$

We find the derivative of  $y = \tan^{-1} x$  by applying Theorem 1 with  $f(x) = \tan x$  and  $f^{-1}(x) = \tan^{-1} x$ . Theorem 1 can be applied because the derivative of  $\tan x$  is positive for  $-\pi/2 < x < \pi/2$ :

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
 Theorem 1  

$$= \frac{1}{\sec^2(\tan^{-1}x)}$$
  $f'(u) = \sec^2 u$   

$$= \frac{1}{1 + \tan^2(\tan^{-1}x)}$$
  $\sec^2 u = 1 + \tan^2 u$   

$$= \frac{1}{1 + x^2}.$$
  $\tan(\tan^{-1}x) = x$ 

The derivative is defined for all real numbers. If u is a differentiable function of x, we get the Chain Rule form:

$$\frac{d}{dx} \left( \tan^{-1} u \right) = \frac{1}{1 + u^2} \frac{du}{dx}.$$

#### The Derivative of $y = \sec^{-1} u$

Since the derivative of sec x is positive for  $0 < x < \pi/2$  and  $\pi/2 < x < \pi$ , Theorem 1 says that the inverse function  $y = \sec^{-1} x$  is differentiable. Instead of applying the formula in Theorem 1 directly, we find the derivative of  $y = \sec^{-1} x$ , |x| > 1, using implicit differentiation and the Chain Rule as follows:

$$y = \sec^{-1} x$$

$$\sec y = x$$
Inverse function relationship
$$\frac{d}{dx}(\sec y) = \frac{d}{dx}x$$
Differentiate both sides.
$$\sec y \tan y \frac{dy}{dx} = 1$$
Chain Rule
$$\frac{dy}{dx} = \frac{1}{\sec y \tan y}.$$
Since  $|x| > 1$ ,  $y$  lies in  $(0, \pi/2) \cup (\pi/2, \pi)$  and  $\sec y \tan y \neq 0$ .

To express the result in terms of x, we use the relationships

$$\sec y = x$$
 and  $\tan y = \pm \sqrt{\sec^2 y - 1} = \pm \sqrt{x^2 - 1}$ 

to get

$$\frac{dy}{dx} = \pm \frac{1}{x\sqrt{x^2 - 1}}.$$

Can we do anything about the  $\pm$  sign? A glance at Figure 7.31 shows that the slope of the graph  $y = \sec^{-1} x$  is always positive. Thus,

$$\frac{d}{dx}\sec^{-1}x = \begin{cases} +\frac{1}{x\sqrt{x^2 - 1}} & \text{if } x > 1\\ -\frac{1}{x\sqrt{x^2 - 1}} & \text{if } x < -1. \end{cases}$$

With the absolute value symbol, we can write a single expression that eliminates the " $\pm$ " ambiguity:

$$\frac{d}{dx}\sec^{-1}x = \frac{1}{|x|\sqrt{x^2 - 1}}.$$

If u is a differentiable function of x with |u| > 1, we have the formula

$$\frac{d}{dx}(\sec^{-1}u) = \frac{1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx}, \qquad |u| > 1.$$



**FIGURE 7.31** The slope of the curve  $y = \sec^{-1} x$  is positive for both x < -1 and x > 1.

**EXAMPLE 5** Using the Chain Rule and derivative of the arcsecant function, we find

$$\frac{d}{dx}\sec^{-1}(5x^4) = \frac{1}{|5x^4|\sqrt{(5x^4)^2 - 1}} \frac{d}{dx}(5x^4)$$

$$= \frac{1}{5x^4\sqrt{25x^8 - 1}} (20x^3) \qquad 5x^4 > 1 > 0$$

$$= \frac{4}{x\sqrt{25x^8 - 1}}.$$

#### **Inverse Function–Inverse Cofunction Identities**

$$\cos^{-1} x = \pi/2 - \sin^{-1} x$$
$$\cot^{-1} x = \pi/2 - \tan^{-1} x$$
$$\csc^{-1} x = \pi/2 - \sec^{-1} x$$

These identities were seen earlier and they can be exploited to find other derivatives. For example

$$\frac{d}{dx}(\cos^{-1}x) = \frac{d}{dx}\left(\frac{\pi}{2} - \sin^{-1}x\right) \qquad \text{Identity}$$

$$= -\frac{d}{dx}(\sin^{-1}x)$$

$$= -\frac{1}{\sqrt{1 - x^2}}. \qquad \text{Derivative of arcsine}$$

### **TABLE 7.3** Derivatives of the inverse trigonometric functions

1. 
$$\frac{d(\sin^{-1}u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$
,  $|u| < 1$ 

2. 
$$\frac{d(\cos^{-1}u)}{dx} = -\frac{1}{\sqrt{1-u^2}}\frac{du}{dx}, \quad |u| < 1$$

3. 
$$\frac{d(\tan^{-1}u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx}$$

4. 
$$\frac{d(\cot^{-1}u)}{dx} = -\frac{1}{1+u^2}\frac{du}{dx}$$

5. 
$$\frac{d(\sec^{-1}u)}{dx} = \frac{1}{|u|\sqrt{u^2 - 1}} \frac{du}{dx}, \quad |u| > 1$$

**6.** 
$$\frac{d(\csc^{-1}u)}{dx} = -\frac{1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx}, \quad |u| > 1$$

#### Integration Formulas

The derivative formulas in Table 7.3 yield three useful integration formulas in Table 7.4. The formulas are readily verified by differentiating the functions on the right-hand sides.

#### **TABLE 7.4** Integrals evaluated with inverse trigonometric functions

The following formulas hold for any constant  $a \neq 0$ .

1. 
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1}\left(\frac{u}{a}\right) + C \qquad \text{(Valid for } u^2 < a^2\text{)}$$

2. 
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \left( \frac{u}{a} \right) + C$$
 (Valid for all  $u$ )

3. 
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{u}{a} \right| + C \quad \text{(Valid for } |u| > a > 0\text{)}$$

**EXAMPLE 6** These examples illustrate how we use Table 7.4.

(a) 
$$\int_{\sqrt{2}/2}^{\sqrt{3}/2} \frac{dx}{\sqrt{1 - x^2}} = \sin^{-1}x \Big]_{\sqrt{2}/2}^{\sqrt{3}/2} \qquad a = 1, u = x \text{ in Table 7.4, Formula 1}$$
$$= \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) - \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12}$$
(b) 
$$\int \frac{dx}{\sqrt{3 - 4x^2}} = \frac{1}{2} \int \frac{du}{\sqrt{a^2 - u^2}} \qquad a = \sqrt{3}, u = 2x, \text{ and } du/2 = dx$$
$$= \frac{1}{2} \sin^{-1}\left(\frac{u}{a}\right) + C \qquad \text{Table 7.4, Formula 1}$$
$$= \frac{1}{2} \sin^{-1}\left(\frac{2x}{\sqrt{3}}\right) + C$$

**EXAMPLE 7** Evaluate

(a) 
$$\int \frac{dx}{\sqrt{4x-x^2}}$$
 (b)  $\int \frac{dx}{4x^2+4x+2}$ 

#### Solution

(a) The expression  $\sqrt{4x - x^2}$  does not match any of the formulas in Table 7.4, so we first rewrite  $4x - x^2$  by completing the square:

$$4x - x^2 = -(x^2 - 4x) = -(x^2 - 4x + 4) + 4 = 4 - (x - 2)^2$$
.

Then we substitute a = 2, u = x - 2, and du = dx to get

$$\int \frac{dx}{\sqrt{4x - x^2}} = \int \frac{dx}{\sqrt{4 - (x - 2)^2}}$$

$$= \int \frac{du}{\sqrt{a^2 - u^2}} \qquad a = 2, u = x - 2, \text{ and } du = dx$$

$$= \sin^{-1}\left(\frac{u}{a}\right) + C \qquad \text{Table 7.4, Formula 1}$$

$$= \sin^{-1}\left(\frac{x - 2}{2}\right) + C$$

(b) We complete the square on the binomial  $4x^2 + 4x$ :

$$4x^{2} + 4x + 2 = 4(x^{2} + x) + 2 = 4\left(x^{2} + x + \frac{1}{4}\right) + 2 - \frac{4}{4}$$
$$= 4\left(x + \frac{1}{2}\right)^{2} + 1 = (2x + 1)^{2} + 1.$$

Then,

$$\int \frac{dx}{4x^2 + 4x + 2} = \int \frac{dx}{(2x+1)^2 + 1} = \frac{1}{2} \int \frac{du}{u^2 + a^2} \qquad \text{a = 1, } u = 2x + 1, \\ = \frac{1}{2} \cdot \frac{1}{a} \tan^{-1} \left(\frac{u}{a}\right) + C \qquad \text{Table 7.4, Formula 2}$$
$$= \frac{1}{2} \tan^{-1} (2x + 1) + C \qquad a = 1, u = 2x + 1$$

# Week 9

# **Assignment 9**

7.1: #9,10,32,34,41,42,44,56,57,58

7.6: #14,32,47,52,65,69,73,80,83,88,89,107,114

7.2: #2,24,36,46,53,54,55,65,68,77,82

These questions will need to be submitted.

Deadline: 10 PM, Friday, Nov 17

# **Required Reading (Textbook)**

• Sections 7.1, 7.2, 7.6

# Quiz 3 next week (Week 10, Nov 13 - 17)

Scope = 5.4, 5.5, 5.6, 6.1, 6.3; 30 minutes.