0880803 - 馮清海

Thanh – Hai, Phung

HOMEWORK 5

MACHINE LEARNING

1. Gaussian Process

Reading input

<code>

```
x = []
y = []
with open('input.data') as file:
    for line in file:
        x.append(float(line.split()[0]))
        y.append(float(line.split()[1]))
train_x = np.array(x).reshape(-1, 1)
train_y = np.array(y).reshape(-1, 1)

beta = 5
noise = 1 / beta
test_x = np.arange(-60, 60, 1).reshape(-1, 1)
```

Define quadratic kernel

<code>

Define Posterior Gaussian Process

<code>

```
Gaussian Process Predict

Analysian

Gaussian Process Predict

Analysian

Analysian
```

Define Plot function

<code>

Before de-noise

```
Before de-noise

""""

GPdefault = True

if GPdefault == True:

mean, covar = GP_predict(test_x, train_x, train_y, noise=noise)

GP_plot(mean, covar, test_x, train_x=train_x, train_y=train_y,

fig_name='Poster and prior distribution before de-noise')
```

Poster and prior distribution before de-noise

After de-noise

<code>

II. Support Vector Machine (SVM)

Reading input

```
Read input
      with open('X_train.csv') as file:
          csv_reader = csv.reader(file, delimiter=',')
          x_{train} = list(csv_{reader})
          x_train = [[float(y) for y in x] for x in x_train]
      with open('Y_train.csv') as file:
          csv_reader = csv.reader(file, delimiter=',')
          y_train_2nd = list(csv_reader)
          y_train = [y for x in y_train_2nd for y in x]
          y_train = [int(x) for x in y_train]
      with open('X_test.csv') as file:
          csv_reader = csv.reader(file, delimiter=',')
          x_test = list(csv_reader)
          x_test = [[float(y) for y in x] for x in x_test]
      with open('Y_test.csv') as file:
          csv_reader = csv.reader(file, delimiter=',')
          y_test_2nd = list(csv_reader)
          y_test = [y for x in y_test_2nd for y in x]
          y_test = [int(x) for x in y_test]
<code>
```

1. Use difference kernel function (by build-in kernels) (No Cross – Validation)

<code>

```
Compare the different between three kernel function
"""

Comparemode = False

if Comparemode == True:
    kernel = ['Linear Kernel', 'Polynomial Kernel', 'RBF Kernel']

for i in range(len(kernel)):
    print('Kernel Function: {}'.format(kernel[i]))
    prob = svm_problem(y_train, x_train)
    param = svm_parameter('-t {} -q'.format(i))
    model = svm_train(prob, param)
    model_predict = svm_predict(y_test, x_test, model)
```

The setting default built in run thru three kernel functions and run in test set.

Table 1: Comparison of 3 different default kernels

Kernel	Setting	Accuracy
Linear	c = 1	95.08% (2377/2500)
Polynomial	c = 1, d = 3, gamma = 0, r = 0	34.68% (867/2500)
Radial Basis Function	gamma = 0	95.32% (2382/2500)

- 2. C-SVC, Grid Search, Cross Validation
- a. Linear, 3 folds cross validation, searching for variable c

<code>

```
Linearmode = True
if Linearmode == True:
   cost = -1
   gamma = -1
   degree = -1
   logset = []
   gridsearch = -1
    for log2c in range(-8, 1, 1):
        param = svm_parameter('-q -t 0 -v 3 -c {}'.format(2 ** log2c))
        prob = svm_problem(y_train, x_train)
        model = svm_train(prob, param)
        logset.append([2 ** log2c, model])
        if model > gridsearch:
            gridsearch = model
            cost = 2 ** log2c
    for log in logset:
        print(log)
   param = svm_parameter('-q -t 0 -c {}'.format(cost))
   prob = svm_problem(y_train, x_train)
   model = svm_train(prob, param)
   model_predict = svm_predict(y_test, x_test, model)
```

Result of finding parameter c, performance on cross – validation

0.00390625	0.0078125	0.015625	0.03125	0.0625	0.125	0.25	0.5	1
96.3	96.82	96.899	97.1	97.08	96.76	96.32	96.06	96.24

- c = 0.03125 gave the best performance on cross validation
- Accuracy = 96% (2400/2500) (classification)
- The accuracy is slightly higher than default setting
- The range of c is based on the suggestion of **libsvm** library. We firstly do the spare search to find a range of c, then make a fine-turn to get the better result
- b. Polynomial, 3 folds cross validation, searching for variable c, gamma and degree

```
Polynomialmode = True
if Polynomialmode == True:
   cost = - 1
gamma = -1
   degree = -1
    logset = []
    gridsearch = −1
       for log2g in range(-2, 2, 1):
                param = svm_parameter('-q -t 1 -v 3 -c {} -g {} -d {}'.format(2 ** log2c, 2 ** log2g, d))
                prob = svm_problem(y_train, x_train)
model = svm_train(prob, param)
                 logset.append([2 ** log2c, 2 ** log2g, model])
                 if model > gridsearch:
                     gridsearch = model
                     cost = 2 ** log2c
                     gamma = 2 ** log2g
    for log in logset:
       print(log)
    # Test accuracy
param = svm_parameter('-q -t 1 -c {} -g {} -d {}'.format(cost, gamma, degree))
    model = svm_train(prob, param)
    model_predict = svm_predict(y_test, x_test, model)
```

Result of finding parameter c, gamma and degree performance on cross – validation

c g	0.25	0.5	1	2
0.00390625	97.74	97.78	97.88	97.84
0.0078125	97.72	97.8	97.86	98.08
0.015625	98.04	97.98	97.88	97.88
0.03125	97.82	97.82	97.94	97.78
0.0625	98.06	97.619	97.96	97.619
0.125	97.82	97.92	97.89	98.0
0.25	97.92	97.94	97.88	97.98
0.5	97.76	97.84	98.02	97.8
1	97.86	97.72	97.89	97.94

- c = 0.0125 and g = 0.25 gave the best performance on cross validation
- Accuracy = **97.68%** (2442/2500) (classification)
- The accuracy is slightly higher than linear kernel
- The polynomial kernel required more time and memory for training compare to the linear kernel.
- c. RBF kernel with 3 folds cross validation, searching for variable c and gamma

<code>

```
RBFmodel = True
if RBFmodel == True:
    degree = -1
    param_label = []
    gridsearch = −1
    for log2g in range(-5, 2, 1):
        for log2c in range(-3, 9, 1):
            param = svm_parameter('-q -t 2 -v 3 -c {} -g {}'.format(2 ** log2c, 2 ** log2g))
            prob = svm_problem(y_train, x_train)
           model = svm_train(prob, param)
            param_label.append([2 ** log2c, 2 ** log2g, model])
            if model > gridsearch:
               gridsearch = model
               cost = 2 ** log2c
               gamma = 2 ** log2g
    for label in param_label:
       print(label)
    param = svm_parameter('-q -t 2 -c {} -g {}'.format(cost, gamma))
    model = svm_train(prob, param)
```

Result of finding parameter c and gamma, performance on cross – validation

c g	0.03125	0.0625	0.125	0.25	0.5	1	2
0.125	97.04	84.6	48.19	27.6	21.64	20.56	20.28
0.25	97.58	92.9	48.96	35.74	21.68	20.84	20.26
0.5	97.94	96.8	55.059	39.04	25.28	20.76	20.38
1	98.36	97.84	84.119	62.539	44.879	30.38	24.14

2	98.48	97.98	84.96	65.539	45.879	32.58	25.28
4	98.5	97.84	85.119	65.48	45.18	32.36	25.2
8	98.52	97.86	85.02	65.38	45.6	31.319	25.18
16	98.42	97.8	85.42	65.259	45.94	31.9	25.58
32	98.52	97.86	85.36	65.039	44.94	31.879	25.7
64	98.56	97.78	85.04	65.96	45.1	32.42	25.52
128	98.34	97.78	85.26	65.8	44.26	31.259	25.6
256	98.44	97.84	85.3	65.94	44.48	32.1	24.98

- c = 64 and g = 0.03125 gave the best performance on cross validation
- Accuracy = **98.52%** (2463/2500) (classification)
- The accuracy is slightly higher than linear kernel and polynomial kernel
- The polynomial kernel required more time and memory for training compare to the linear kernel and polynomial kernel.
- Since we may do pre-compute kernel, training time may be reduced.

3. Combine linear and RBF kernel

- Accuracy = **95.08%** (2377/2500) (classification)
- Compare with the previous kernel method

Method	Linear	Polynomial	RBF	Linear + RBF
Accuracy	96%	97.68%	98.52%	95.08%

- Using pre-compute kernel give the result faster than using build in kernel functions when we do the grid search
- The RBF kernel has better accuracy than other method but slower in compute than other method, problem is also going with Polynomial compare to Linear Kernel. This can be trade off for computation efficiency and accuracy.

If you have any concern about my code or other question don't hesitate to contact me!

My email is: haiphung106@gmail.com