实验目录

1. 基于逻辑回归的鸢尾花分类预测

实验内容

1. 基于逻辑回归的鸢尾花分类预测

知识点

- 1) 逻辑回归可以解决二分类问题
- 2) 混淆矩阵可以用于初步分析预测准确性
- 3) 精确率、召回率、准确率、f1-score 可以量化衡量模型
- 4) 交叉验证得出的结果往往更加客观

实验目的

- 1) 学习建立逻辑回归模型预测鸢尾花分类
- 2) 学习解读混淆矩阵和相关得分

实验步骤

2) 读取数据

- 1. Jupyter 输入代码后,使用 shift+enter 执行,下同。
- 2. 鸢尾花数据集是一个非常著名的数据集,数据包括三种鸢尾花花萼、花瓣的长宽(厘米计量),每种鸢尾花包括50个样本,共150个样本。本实验抽取其中两种鸢尾花的花瓣长宽数据,共100个样本进行试验。保留字段如下:

petal_l: 花瓣长度,厘米计量 petal_w: 花瓣宽度,厘米计量 classes: 鸢尾花种类,标记为 0-1

3. 使用 pandas 读取 csv 文件

[Code 001]:

import pandas as pd

data_iris = pd.read_csv('/root/experiment/datas/iris_partial.csv',index_col=0) # 查看数据的维度

data_iris.shape

```
import pandas as pd
data_iris = pd.read_csv('/root/experiment/datas/iris_partial.csv',index_col=0)
data_iris.shape
(100, 3)
```

3) 描述性分析与可视化分析

1. 查看数据的随机五项

[Code 002]:

data_iris.sample(5)

dat	a_iris	.sample	(5)	
	petal_l	petal_w	classes	
18	1.7	0.3	0	
76	4.8	1.4	1	
11	1.6	0.2	0	
25	1.6	0.2	0	
93	3.3	1.0	1	

2. 查看数据的统计描述

[Code 003]:

data_iris.describe()

data_:	iris.descr	ibe()	()		
	petal_l	petal_w	classes		
count	100.000000	100.000000	100.000000		
mean	2.862000	0.785000	0.500000		
std	1.448565	0.566288	0.502519		
min	1.000000	0.100000	0.000000		
25%	1.500000	0.200000	0.000000		
50%	2.450000	0.800000	0.500000		
75%	4.325000	1.300000	1.000000		
max	5.100000	1.800000	1.000000		

3. 查看数据的缺失值

[Code 004]:

data_iris.isnull().sum()

```
data_iris.isnull().sum()

petal_l     0
     petal_w     0
     classes     0
     dtype: int64
```

4. 查看数据分布(绘图时,由于 jupyter 的问题,执行时可能需重复执行才能显示绘图结果,下同)

[Code 005]:

import matplotlib.pyplot as plt
data_iris.hist(figsize=(8,6))
plt.show()

import matplotlib.pyplot as plt data_iris.hist(figsize=(8,6)) plt.show()

5. 数据可视化

[Code 006]:

```
plt.figure(figsize=(8,6))
plt.scatter(x=data_iris['petal_l'],
y=data_iris['petal_w'],c=data_iris['classes'])
plt.show()
```

```
plt.figure(figsize=(8,6))
plt.scatter(x=data_iris['petal_l'], y=data_iris['petal_w'],c=data_iris['classes'])
plt.show()
```


4) 数据预处理

1. 划分自变量和因变量,训练集和测试集

[Code 007]:

#定义自变量和因变量

 $X = data_iris.iloc[:,:-1]$

 $y = data_iris.iloc[:,-1]$

#划分训练集和测试集

from sklearn.model_selection import train_test_split

 $X_{tr}, X_{ts}, y_{tr}, y_{ts} = train_{test_split}(X, y, test_{size} = 0.2)$

5) 建立模型

1. 建立并训练模型

[Code 008]:

from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_tr,y_tr)

6) 模型预测与评估

1. 模型预测

[Code 009]:

```
y_pred = model.predict(X_ts)
y_pred
```

```
y_pred = model.predict(X_ts)
y_pred
array([1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1])
```

2. 查看混淆矩阵

[Code 0010]:

from sklearn.metrics import confusion_matrix confusion_matrix(y_ts,y_pred)

3. 查看相关得分

[Code 011]:

from sklearn.metrics import classification_report print(classification_report(y_ts,y_pred))

4. 交叉验证计算准确率

[Code 012]:

from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X, y, cv=10, scoring='accuracy')
scores.mean()

```
from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X, y, cv=10, scoring='accuracy')
scores.mean()
```

7) 实验结论

- 1. 逻辑回归可以解决二分类问题。
- 2. 混淆矩阵对角线上的元素表示"预测正确"。
- 3. 逻辑回归模型 f1-score 得分为 1
- 4. 交叉验证模型准确率得分为1