

Scilab Textbook Companion for
Heat Transfer: Principles And Applications
by B. K. Dutta¹

Created by
Ankit Garg
B.TECH
Chemical Engineering
DCRUST,MURTHAL
College Teacher
Sunanda
Cross-Checked by
Mukul R. Kulkarni

May 23, 2016

¹Funded by a grant from the National Mission on Education through ICT,
<http://spoken-tutorial.org/NMEICT-Intro>. This Textbook Companion and Scilab
codes written in it can be downloaded from the "Textbook Companion Project"
section at the website <http://scilab.in>

Book Description

Title: Heat Transfer: Principles And Applications

Author: B. K. Dutta

Publisher: PHI Learning Pvt. Ltd., New Delhi

Edition: 1

Year: 2006

ISBN: 8120316258

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes	4
2 Steady State conduction In one dimension	5
3 Heat transfer coefficient	17
4 Forced Convection	36
5 free convection	53
6 Boiling and condensation	62
7 radiation heat transfer	75
8 Heat Exchanger	93
9 Evaporetion and Evaporators	106
10 UNSTEADY STATE AND MULTIDIMENSIONAL HEAT CONDUCTION	121
11 Boundary layer heat transfer	125

List of Scilab Codes

Exa 2.1	STEADY STATE RATE OF HEAT GAIN	5
Exa 2.2	Rate of heat loss	7
Exa 2.3	fraction of resistance	8
Exa 2.4	Calculate Temprature	9
Exa 2.5	calculate refrigeration requirement	10
Exa 2.6	calculate temp gradient	11
Exa 2.7	surface emp and maximun temp	13
Exa 2.8	percentage of total heat	14
Exa 2.9	temprature distribution	15
Exa 3.1	CALCULATE TIME REQUIRED	17
Exa 3.2	TIME FOR HEATING COIL	18
Exa 3.3	Steady State temprature distribution	19
Exa 3.4	THICKNESS OF INSULATION	20
Exa 3.5	8 percent SOLUTION OF ALCOHOL	21
Exa 3.6	Insulated flat headed	23
Exa 3.7	rate of heat transfer	25
Exa 3.8	A 10 gauge electrical copper	26
Exa 3.9	Heat generating slab A	27
Exa 3.10	percentage increase in rate	30
Exa 3.11	Pre stresed multilayered shell	31
Exa 3.12	critical insulation thickness	33
Exa 3.13	critical insulation thickness	33
Exa 3.14	optimum thickness	34
Exa 4.2	Air flow over a flat plate	36
Exa 4.3	temprature of wire	37
Exa 4.4	Calculate Required time	39
Exa 4.5	average time	40
Exa 4.6	Overall heat transfer coefficient	41

Exa 4.7	inlet and outlet temprature	42
Exa 4.8	drop in temprature	43
Exa 4.9	find the temprature	44
Exa 4.10	length of heat exchanger	46
Exa 4.11	rate of heat transfer	48
Exa 4.12	aniline is a tonnage oc	50
Exa 5.1	Rate of heat loss	53
Exa 5.2	steady state temprature	54
Exa 5.3	CALCULATE TIME REQUIRED	55
Exa 5.4	Rate of heat loss	56
Exa 5.5	thickness of insulation	58
Exa 5.6	rate of heat gain	59
Exa 5.7	Rate of heat loss	60
Exa 6.1	Consider nucleate pool	62
Exa 6.2	rate of boiling of water	63
Exa 6.3	formaldehyde is one of	64
Exa 6.4	A mixture of benzene	68
Exa 6.5	Saturated vapour pressure	70
Exa 6.6	Trichloro ethylene	71
Exa 6.7	Saturated vapour	73
Exa 7.3	the sun may be considered	75
Exa 7.4	wavelength	77
Exa 7.5	spectral emissivity	77
Exa 7.6	fraction of radiation	78
Exa 7.8	relevant view factor	79
Exa 7.9	determine the view factors	80
Exa 7.10	view factors	81
Exa 7.12	a carbon steel sphere	82
Exa 7.13	A schedule pipe	82
Exa 7.14	view factors and rate of loss	83
Exa 7.15	Net rate of radient heat	84
Exa 7.16	the base of rectangular	86
Exa 7.17	two parallel disks	87
Exa 7.18	rate of heat gain	89
Exa 7.20	carbon dioxide gas	90
Exa 7.21	hot flue gas	91
Exa 8.1	Benzene from condenser	93
Exa 8.2	design procedure	96

Exa 8.3	The effectiveness	101
Exa 8.4	Thermal design	103
Exa 9.1	single effect evaporator calculation	106
Exa 9.2	SINGLE EFFECT EVAPORATOR CALCULATION	107
Exa 9.3	SINGLE EFFECT EVAPORATION	109
Exa 9.4	MULTIPLE EFFECT EVAPORATION	110
Exa 9.5	MULTIPLE EFFECT EVAPORATION	113
Exa 9.6	MULTIPLE EFFECT EVAPORATION	114
Exa 9.7	MULTIPLE EFFECT EVAPORATION	117
Exa 9.8	Mechanical vapour compression	119
Exa 10.8	MUMERICAL CALCULATION OF UNSTEADY STATE HEAT CONDUCTION	121
Exa 10.9	NUMERIC CALCULATION OF UNSTEADY STATE HEAT CONDUCTION	122
Exa 11.1	water at 25 degree celcius	125
Exa 11.2	air at 30 degree celcius	127
Exa 11.3	A thin metal plate	128
Exa 11.4	calculate the temprature	129
Exa 11.5	Prandtl analogy	130

Chapter 2

Steady State conduction In one dimension

Scilab code Exa 2.1 STEADY STATE RATE OF HEAT GAIN

```
1 //Example 2.1
2 // (a) calculate the steady state rate of heat gain .
3 // (b), th etemp. of interfaces of composite wall.
4 // (c)the percentage of total heat transfer
      resistance .
5 // additional thickness of cork .
6 // Given
7 A=1           //m^2, area
8 //for inner layer (cement)
9 ti=0.06       //m, thickness
10 ki=0.72      //W/m C, thermal conductivity
11 Ti=-15        //C, temprature
12 //for middle layer (cork)
13 tm=0.1        //m, thickness
14 km=0.043      //W/m C, thermal conductivity
15 //for outer layer(brick)
16 to=0.25       //m, thickness
17 ko=0.7        //W/m C, thermal conductivity
18 To=30         //C, temprature
```

```

19
20 // Calculation
21 // Thermal resistance of outer layer //C/W
22 Ro=to/(ko*A)
23 // Thermal resistance of middle layer //C/W
24 Rm=tm/(km*A)
25 // Thermal resistance of inner layer //C/W
26 Ri=ti/(ki*A)
27 Rt=Ro+Rm+Ri
28 tdf=To-Ti //temp driving force
29 // (a)
30 Q=tdf/Rt //rate of heat gain
31 printf("the rate of heat gain is %f W\n",Q)
32
33 // (b)
34 //from fig. 2.4
35 td1=Q*to/(ko*A) //C temp. drop across the brick
layer
36 T1=To-td1 //interface temp. between brick
and cork
37 // similarly
38 td2=Q*tm/(km*A) //C temp. drop across the cork
layer
39 T2=T1-td2 //C, interface temp. between
cement and cork
40 printf("interface temp. between brick and cork is %f
C\n",T1)
41 printf("interface temp. between cement and cork is
%f C\n",T2)
42
43
44 // (c)
45 Rpo=Ro/Rt //thermal resistance offered by
brick layer
46 Rpm=Rm/Rt //thermal resistance offered by
cork layer
47 Rpi=Ri/Rt //thermal resistance offered by
cement layer

```

```

48 printf("thermal resistance offered by brick layer is
        %f percent\n",Rpo*100)
49 printf("thermal resistance offered by cork layer is
        %f percent\n",Rpm*100)
50 printf("thermal resistance offered by cement layer
        is %f percent\n",Rpi*100)
51
52 //second part
53 x=30           //percentage dec in heat transfer
54 Q1=Q*(1-x/100) //W, desired rate of heat flow
55 Rth=tdf/Q1     //C/W, required thermal resistance
56 Rad=Rth-Rt    //additional thermal resistance
57 Tad=Rad*km*A
58 printf("Additional thickness of cork to be provided
        =%f cm",Tad*100)

```

Scilab code Exa 2.2 Rate of heat loss

```

1 //Exm[ ple 2.2
2 //Page no. 15
3 //Given
4 //outer thickness of brickwork (to) & inner
   thickness (ti)
5 to=0.15      //m
6 ti=0.012     //m
7 //thickness of intermediate layer( til )
8 til=0.07     //m
9 //thermal conductivities of brick and wood
10 kb=0.70      //W/m celcius
11 kw=0.18      //W/m celcius
12 //temp. of outside and inside wall
13 To=-15       //celcius
14 Ti=21        //celcius
15 //area
16 A=1          //m^2

```

```

17 // (a) solution
18 //Thermal resistance of brick , wood and insulating
    layer
19 TRb=t0/(kb*A)    //C/W
20 TRw=ti/(kw*A)    //C/W
21 TRi=2*TRb        //C/W
22 //Total thermal resistance
23 TR=TRb+TRw+TRi  //C/W
24 //Temp. driving force
25 T=Ti-To          //C
26 //Rate of heat loss
27 Q=T/TR
28 printf("Rate of heat loss is %f W\n",Q)
29 //(b) thermal conductivities of insulating layer
30 k=til/(A*TRi)
31 printf("thermal conductivities of insulating layer
    is %f W/m C",k)

```

Scilab code Exa 2.3 fraction of resistance

```

1 //Example 2.3
2 //Page no. 19
3 //Given
4 //Length & Inside radius of gas duct
5 L=1           //m
6 ri=0.5        //m
7 //Properties of inner and outer layer
8 ki=1.3        //W/m C, thermal conductivity of inner
    bricks
9 ti=0.27       //m, inner layer thickness
10 ko=0.92       //W/m C, thermal conductivity of special
    bricks
11 to=0.14       //m, outer layer thickness
12 Ti=400         //C, inner layer temp.
13 To=65          //C, outer layer temp.

```

```

14
15 // calculation
16 r_=ri+ti //m, outer radius of fireclay brick
    layer
17 ro=r_+to //m, outer radius of special brick layer
18 //Heat transfer resistance
19 //Heat transfer resistance of fireclay brick
20 R1=(log(r_/ri))/(2*pi*L*ki)
21 //Heat transfer resistance of special brick
22 R2=(log(ro/r_))/(2*pi*L*k0)
23 //Total resistance
24 R=R1+R2
25 //Driving force
26 T=Ti-To
27 //Rate of heat loss
28 Q=T/(R)
29 printf("Rate of heat loss is %f W",Q)
30 //interface temp.
31 Tif=Ti-(Q*R1)
32 printf("interface temp.is %f C",Tif)
33 //Fractional resistance offered by the special
    brick layer
34 FR=R2/(R1+R2)
35 printf("Fractional resistance offered by the
    special brick layer is %f ",FR)

```

Scilab code Exa 2.4 Calculate Temperature

```

1
2 //Example 2.4
3 //Calculate(a) hot end temperature ,
4 // (b) temperature gradient at both the ends
5 // (c) the temperature at 0.15m away from the cold end
6 .
// Given

```

```

7 d1=0.06          //m, one end diameter of steel rod
8 d2=0.12          //m, other end diameter of steel rod
9 l=0.2            //m length of rod
10 T2=30            //C, temp. at end 2
11 Q=50             //W, heat loss
12 k=15              //W/m c, thermal conductivity of rod
13
14 //NUMERIC PART
15 //T=265.8-(7.07/(0.06-0.15*x)) .....( a)
16 // (a)
17 x1=0
18 //from eq. (a)
19 T1=265.8-(7.07/(0.06-0.15*x1))
20 printf("The hot end temp. is %f C\n",T1)
21 // (b) from eq. (i)
22 C=50           // integration constant
23 //from eq. (i)
24 D1=-C/(%pi*d1^2*k) //D=dT/dx, temprature gradient
25 printf("The temprature gradient at hot end is %f C/m
   \n",D1)
26 //similarly
27 D2=-1179        //at x= 0.2m
28 printf("The temprature gradient at cold end is %f C/
   m\n",D2)
29
30 // (c)
31 x2=0.15          //m, given,
32 x3=l-x2          //m, section away from the cold
   end
33 //from eq. (a)
34 T2=265.8-(7.07/(0.06-0.15*x3))
35 printf("the temprature at 0.15m away from the cold
   end is %f C",T2)

```

Scilab code Exa 2.5 calculate refrigeration requirement

```

1 //Exaple2.5
2 //Page no.24
3 //Given
4 //inside and outside diameter and Temp. of
    spherical vessel
5 do=16
6 t=0.1
7 Ri=do/2          //m, inside radius
8 Ro=Ri+t          //m. outside radius
9 To=27            //C,
10 Ti=4             //C
11 k=0.02           //W/m C, thermal conductivity of foam
    layer
12 //from eq. 2.23 the rate of heat transfer
13 Q=(Ti-To)*(4*pi*k*Ro*Ri)/(Ro-Ri)
14 printf("the rate of heat transfer is %f W\n",Q)
15 //Refrigeration capacity(RC)
16 //3516 Watt= 1 ton
17 RC=-Q/3516
18 printf("Refrigeration capacity is %f tons",RC)

```

Scilab code Exa 2.6 calculate temp gradient

```

1 //Example 2.6
2 //Calculate the temprature gradient at each end of
    the rod
3 //and the temprature midway in the rod at steady
    state
4 //Given
5 d=0.05            //m, diameter of rod
6 l=0.5             //m, length of rod
7 T1=30              //CTemp. at one end (1)
8 T2=300             //C, temp at other end (2)
9 T=poly(0, 'T')
10 k=202+0.0545*T      //W/mC thermal conductivity of

```

```

    metal
11
12 //CALCULATION OF HEAT FLUX
13 x1=1/2           //m, at mid plane
14 //temprature distribution ,
15 //comparing with quadratic eq. ax^2+bx+c
16 //and its solution as x=(-b+sqrt(b^2-4*a*c))/2*a
17 a=1.35*10^-4
18 b=1
19 c=-(564*x1+30.1)
20 T=(-b+sqrt(b^2-4*a*c))/(2*a)
21 printf("the temprature midway in the rod at steady
state is %f C\n",T)
22
23 //Temprature gradient at the ends of the rod
24 x2=0           //m, at one end
25 a1=1.35*10^-4
26 b1=1
27 c1=-(564*x2+30.1)
28 T1=(-b1+sqrt(b1^2-4*a1*c1))/(2*a1)
29 k1=202+0.0545*T1
30 C1=113930           //integration constant from eq .
(1)
31 TG1=C1/k1           //C/W, temprature gradient , dT/
dx
32 //similarly
33 x3=0.5
34 a2=1.35*10^-4
35 b2=1
36 c2=-(564*x3+30.1)
37 T2=(-b2+sqrt(b2^2-4*a2*c2))/(2*a2)
38 k2=202+0.0545*T2
39 TG2=C1/k2
40 printf("Temprature gradient at one end of the rod is
%f C/W\n",TG1)
41 printf("Temprature gradient at other end of the rod
is %f C/W",TG2)

```

Scilab code Exa 2.7 surface emp and maximun temp

```
1 //Example 2.7
2 // (a) what are the surface tempratures and average
   temp. of wall.
3 // (b) calculate the maximum temp. in the wall and its
   location
4 // (c) calculate the heat flux at the surface.
5 // (d) if there is heat generation then what is the
6 // average volumetric rate of heat generation?
7 // Given
8 x=poly(0, 'x')
9 //temprature distribution in wall
10 T=600+2500*x-12000*x^2
11 t=0.3           //m, thickness of wall
12 k=23.5          //W/m c thermal conductivity of
   wall
13
14 // Calculation
15 x1=0
16 T1=600+2500*x1-12000*x1^2      //C, at surface
17 x2=0.3
18 T2=600+2500*x2-12000*x2^2      //C, at x=0.3
19 Tav=1/t*integrate('600+2500*x-12000*x^2', 'x', 0, 0.3)
20 printf("At the surface x=0, the temp. is %f C\n", T1)
21 printf("At the surface x=0.3m, the temp. is %f C\n",
   T2)
22 printf("The average temprature of the wall is %f C",
   Tav)
23
24 // (b)
25 D=derivat(T)                  //D=dT/dx
26 // for maximum temprature D=0
27 x3=2500/24000
```

```

28 printf("The maximum temprature occurs at %f m\n",x3)
29 Tmax=600+2500*x3-12000*x3^2
30 printf("The maximum temp. is %f C\n",Tmax)
31
32 // (c)
33 D1=2500-24000*x1           // at x=0, temprature
      gradient
34 Hf1=-k*D1                  //W/m^2, heat flux at left
      surface(x=0)
35 D2=2500-24000*x2           // at x=0.3, temprature
      gradient
36 Hf2=-k*D2                  //W/m^2, heat flux at right
      surface(x=0.3)
37 printf("heat flux at left surface is %f W/m^2\n",Hf1
      )
38 printf("heat flux at right surface is %f W/m^2\n",
      Hf2)
39
40 // (d)
41 Qt=Hf2-Hf1                 //W/m^2, total rate of heat
      loss
42 Vw=0.3                      //m^3/m^2, volume of wall
      per unit surface area
43 Hav=Qt/Vw                   //W/m^3, average volumetric
      rate
44 printf("The average volumetric rate if heat
      genaration is %fW/m^3 ",Hav)

```

Scilab code Exa 2.8 percentage of total heat

```

1 //Example 2.8
2 //Derive equtations for temprature distribution .
3 //calculate the maximum temp. in the assembly
4 //Given
5 ka=24           //W/mC thermal conductivitiy of

```

```

    material A
6 tA=0.1          //m, thickness of A material
7 kB=230          //W/mC thermal conductivity of metl B
8 kC=200          //W/mC thermal conductivity of metal C
9 tB=0.1          //m, thickness of B metal
10 tC=0.1         //m, thickness of C metal
11 TBo=100         //C, outer surface temp. of B wall
12 TCo=100         //C, outer surface temp. of C wall
13 Q=2.5*10^5      //W/m^3, heat generated
14 //NUMERIC PART
15 //Temprature distribution in A, B and C
16 x=poly(0, 'x')
17 TA=-5208*x^2+2175*x-74.5
18 TB=100+96.6*x
19 TC=155.2-14*x
20
21 // position of maximum temprature x,
22 D=derivat(TA)
23 //At D=0
24 x=2175/10416
25 printf("The maximum temp. will occur at a position
           %f m\n",x)
26 x1=x
27 TA=-5208*x1^2+2175*x1-74.5
28 printf("The maximum temprature is %f C",TA)

```

Scilab code Exa 2.9 temprature distribution

```

1 //Example 2.9
2 //(a) derive eq. for temprature distribution
3 //(b) find the maximum temp.
4 //Given
5 di=0.15        //m, inner diameter
6 do=0.3          //m, outer diameter
7 Q1=100*10^3     //W/m^3, inner rate of heat generation

```

```

8 Q2=40*10^3      //W/m^3, outer rate of heat generation
9 Ti=100          //C, temp. at inside surface
10 To=200          //C, temp. at outside surface
11 k1=30           //W/m C, thermal conductivity of
    material for inner layer
12 k2=10           //W/m C, thermal conductivity of
    material for outer layer
13
14 //Calculation
15 //T1=364+100*log(r)-833.3*r^2                      (1)
16 //T2=718+216*log(r)-1000*r^2                        (2)
17 //(b) from eq. 1
18 r=sqrt(100/2*833.3)
19 printf("This radial position does not fall within
    layer 1.\n Therefore no temperature maximum occurs
    in this layer.")
20 //similarly
21 printf(" Similarly no temperature maximum occurs in
    layer 2.\n")
22 ro=di          //m, outer boundary
23 Tmax=To
24 printf("The maximum temperature at the outer boundary
    is %f C",Tmax)

```

Chapter 3

Heat transfer coefficient

Scilab code Exa 3.1 CALCULATE TIME REQUIRED

```
1 //Example 3.1
2 //calculate the time required for reduction .
3 //Given
4 di=0.06          //m, initial diameter of iceball
5 T1=30            //C, room temp.
6 T2=0              //ice ball temp.
7 h=11.4            //W/m^2 C, heat transfer coefficient
8 x=40              //% for reduction
9 rho=929           //kg/m^3, density of ice
10 Lv=3.35*10^5     //j/kg, latent heat of fusion
11 // m=4/3*pi*r^3      //kg, mass of ice ball
12 //rate of melting=-dm/dt
13 //rate of heat adsorption =-4*pi*r^2*rho*dr/dt*
    lamda
14 //at initial time t=0
15 C1=di/2          //constant of integration
16 //if the volume of the ball is reduced by 40% of the
    original volume
17 r=((1-x/100)*(di/2)^3)^(1/3)
18 //time required for melting using eq. 1
19 t=(di/2-r)/(h*(T1-T2)/(rho*Lv))
```

```
20 printf("The time required for melting the ice is %f  
s",t)
```

Scilab code Exa 3.2 TIME FOR HEATING COIL

```
1 //Example 3.2  
2 //calculate the time required for the heating coil.  
3 //Given  
4 P=1*10^3           //W, electrical heating capacity  
5 V=220             //V, applied voltage  
6 d=0.574*10^-3     //m, diameter of wire  
7 R=4.167            //ohm, electrical resistance  
8 Tr=21              //C, room temp.  
9 h=100              //W/m^2 C, heat transfer  
10 rho=8920           //kg/m^3, density of wire  
11 cp=384             //J/kg C, specific heat of wire  
12 percent=63          //%, percent of the steady state  
13 //Calculation  
14 R_=V^2/P           //ohm, total electrical  
    resistance  
15 l=R_/R             //m, length of wire  
16 A=%pi*d*l          //m^2, area of wire  
17 Tf=P/(h*A)+Tr      //final temp.  
18 dtf=Tf-Tr           //C. steady state temp. rise  
19 //temp. of wire after 63% rise  
20 T=Tr+(percent/100)*dtf  
21 //rate of heat accumulation on the wire  
22 //d/dt(m*cp*T)       (1)  
23 //rate of heat loss  
24 //h*A*(T-Tr) .....(2)  
25 //heat balance eq.    (1)=(2)  
26 m=%pi*d^2*l*rho/4   //kg. mass of wire  
27 //integrating heat balance eq.  
28 t=integrate('1/((P/(m*cp)) - ((h*A)/(m*cp))*(T-Tr))',
```

```
T' ,21 ,322)  
29 printf("The time required for the heating coil is %f  
s" ,t)
```

Scilab code Exa 3.3 Steady State temprature distribution

```
1 //Example 3.3  
2 // (a) calculate the heat transfer coefficient  
3 // (b) what can be said about the same at the other  
surface of wall.  
4 // (c) what is average volumetric rate of heat  
generation  
5 // given  
6 t=0.2           //m, thickness of wall  
7 x=poly(0, 'x') //position in the wall  
8 T=250-2750*x^2 //C, steady state temp. distribution  
9 k=1.163         //W/m C, thermal conductivity of  
material  
10 Ta=30          //C, ambient temp  
11  
12 // calculation  
13 // (a) at x=0.2 let T=T1 at x=x1  
14 x1=0.2  
15 T1=250-2750*x1^2  
16 // let D=dT/dx  
17 D=derivat(T)  
18 D=-5500*0.2    //C/m, at x=0.2  
19 h=-k*D/(T1-Ta)  
20 printf(" the heat transfer coefficient is %f W/m^2 C  
, \n",h)  
21  
22 // (b) at other surface of wall , x=0=x2 (say)  
23 x2=0  
24 a=-5500*0  
25 printf("So there is no heat flow at other surface of
```

```

        the wall \n")
26
27 // (c)
28 A=1           //m^2, area
29 Vw=A*x1      //m^3, volume of wall
30 HL=h*(T1-Ta) //W, heat loss from unit area
31 Vav=HL/x1
32 printf("average volumetric rate of heat generation
           is %f W/m^3",Vav)

```

Scilab code Exa 3.4 THICKNESS OF INSULATION

```

1 clc;
2 clear;
3 //Example 3.4
4 //calculate the thickness of insulation
5 //and the rate of heat loss per meter length of pipe
.
6 //Given
7 id=97*10^-3           //m, internal diameter of steam
                         pipe
8 od=114*10^-3          //m, outer diameter of steam pipe
9 pr=30                  //bar, absolute pressure os
                         saturated steam
10 Ti=234                //C, temp. at 30 bar absolute
                           pressure
11 Ts=55                 //C, skin temp.
12 To=30                 //C, ambient temp.
13 kc=0.1                //W/m C, thermal conductivity of
                           wool
14 kw=43                 //W/m C, thermal conductivity of
                           pipe
15 h=8                   //W/m^2 C, external air film
                           coefficient
16 L=1                   //m, assume length

```

```

17 //Calculation
18 ri=id/2           //m,
19 r1=(114*10^-3)/2      //m, outer radius of steam
   pipe
20
21 //thermal resistance of insulation
22 //Ri=log(ro/r1)/(2*pi*L*k)
23 //Thermal resistance of pipe wall
24 Rp=log(r1/ri)/(2*pi*L*kw)
25 //RT=Ri+Rp
26 DF=Ti-Ts          //C, driving force
27 //At steady state the rate of heat flow through the
   insulation
28 // and the outer air film are equ
29
30 //by trial and error method :
31 def('x]=f(ro)', 'x=(Ti-Ts)/(log(ro/r1)/kc+log(r1/ri)
   /kw)-(h*ro*(Ts-To))')
32 ro=fsolve(0.1,f)
33 th=ro-r1          //m, required thickness of
   insulation
34 Q=2*pi*ro*h*L*(Ts-To)
35 printf("The rate of heat loss is %f W," ,Q)

```

Scilab code Exa 3.5 8 percent SOLUTION OF ALCOHOL

```

1 //Example 3.5
2 //calculate
3 // (a) effective thickness of air and liquid films .
4 // (b) the overall heat transfer coefficient based on
   i.d of pipe .
5 // (c) the overall heat transfer coefficient based on
   o.d of insulation .
6 // (d) the percentage of total resistance offered by
   air film .

```

```

7 // (e) the rate of heat loss per meter length of pipe.
8 // (f) insulation skin temp.
9
10 // given
11 w1=8           //%, solubility of alcohol
12 w2=92          //%, solubility of water
13 k1=0.155       //W/m C, thermal conductivity of
                  alcohol
14 k2=0.67        //W/m C thermal conductivity of
                  water
15 ka=0.0263      //W/m C thermal conductivity of air
16 kw=45          //W/m C thermal conductivity of pipe
                  wall
17 ki=0.068        //W/m C , thermal cond. of glass
18 id=53*10^-3     //m, internal diameter of pipe
19 od=60*10^-3     //m, outer diameter of pipe
20 t=0.04          //m, thickness of insulation
21 hi=800          //W/m^2 C, liquid film coefficient
22 ho=10           //W/m^2 C, air film coefficient
23 L=1             //m, length of pipe
24 T1=75            //C, initial temp.
25 T2=28            //C, ambient air temp.
26 // calculation
27 // (a)
28 km=(w1/100)*k1+(w2/100)*k2-0.72*(w1/100)*(w2/100)
      *(-(k1-k2))
29 deli=km/hi      //m, effective thickness of liquid
                  film
30 delo=ka/ho      //m, effective thickness of air film
31 printf("effective thickness of air is %f mm",deli
      *10^3)
32 printf("effective thickness of liquid films is %f mm
      .",delo*10^3)
33 // (b)
34 Ai=2*pi*id/2*L //m^2, inside area
35 ri=id/2         //m, inside radius of pipe
36 r_=od/2         //m, outside radius of pipe
37 ro=r_+t         //m, outer radius of insulation

```

```

38 Ao=2*pi*ro*L           //m^2, outer area
39 //from eq. 3.11, overall heat transfer coefficient
40 Ui=1/(1/h_i+(A_i*log(r_o/r_i))/(2*pi*L*k_w)+(A_i*log(ro/
    r_o))/(2*pi*L*k_i)+A_i/(A_o*h_o))
41 printf("the overall heat transfer coefficient based
    on i.d of pipe is %f W/m^2 C",Ui)
42
43 //(c)
44 //from eq. 3.14
45 U_o=Ui*A_i/A_o
46 printf("the overall heat transfer coefficient based
    on od of pipe is %f W/m^2 C",U_o)
47
48 //(d)
49 R=1/(Ui*A_i)           //C/W, total heat transfer
    resistance
50 R_air=1/(A_o*h_o)       //C/W, heat transfer resistance
    of air film
51 p=R_air/R
52 printf("the percentage of total resistance offered
    by air film. is %f percent",p*100)
53
54 //(e)
55 Q=Ui*A_i*(T1-T2)
56 printf("Rate of heat loss is %f W",Q)
57
58 //(f)
59 T_s=U_o*A_o*(T1-T2)/(h_o*A_o)+T2
60 printf("insulation skin temp.is %f C",T_s)

```

Scilab code Exa 3.6 Insulated flat headed

```

1 //Example 3.6
2 //calculate the temp. of the liquid entering the
    bank.

```

```

3 // also calculate the insulation skin temp. at the
   flat
4 //top surface and at the cylindrical surface.
5 //Given
6 id=1.5                      //m, internal diameter of tank
7 h=2.5                        //m, height of tank
8 t1=0.006                     //m, thickness of wall
9 t2=0.04                      //m, thickness of insulation
10 Ta=25                        //C, ambient temp.
11 T1=80                        //C, outlet temp. of liquid
12 cp=2000                      //J/kg C, specific heat of
   liquid
13 FR=700/3600                  //KG/s, Liquid flow rate
14
15 //Calculation
16 ri=id/2+t1                  //m, inner radius of
   insulation
17 ro=ri+t2                    //m, outer radius of
   insulation
18 ki=0.05                      //W/m C, thermal conductivity
   of insulation
19 hc=4                         //W/m^2 C, heat transfer
   coefficient at cylindrical surface
20 ht=5.5                       //W/m^2 C, heat transfer
   coefficient at flat surface
21 l=h+t1+t2                   //m, height of the top of
   insulation
22 //fromm eq. 3.10
23 //heat transfer resistance of cylindrical wall
24 Rc=log(ro/ri)/(2*pi*l*ki)+1/(2*pi*ro*l*hc)
25 //heat transfer resistance of flat insulated top
   surface
26 Ri=(1/(%pi*ro^2))*(ro-ri)/ki+1/ht
27 tdf=T1-Ta                    //C, temp. driving force
28 Q=tdf/Rc + tdf/Ri           //W, total rate of heat loss
29 Tt=Q/(FR*cp)+T1             //C, inlet temp. of liquid
30 printf("Inlet liquid temp. should be %f C \n",Tt)
31 Q1=tdf/Ri                   //W, rate of heat loss from flat surface

```

```

32 T1=Q1/(%pi*ro^2*ht)+Ta
33 printf(" the insulation skin temp. at the flat top
           surface is %f C \n",T1)
34 //similarly
35 T2=38
36 printf("similarly the insulation skin temp at
           cylindrical surface is %f C",T2)

```

Scilab code Exa 3.7 rate of heat transfer

```

1 //Example 3.7
2 //what is the heat imput to the boiling .
3 //Given
4 id=2.5*10^-2                                //m, internal diameter of
      glass tube
5 t=0.3*10^-2                                  //m, thickness of wall
6 l=2.5                                         //m, length of nichrome
      wire
7 L=0.12                                       //m, length of steel
      covered with heating coil
8 Re=16.7                                       //ohm, electrical
      resistance
9 ti=2.5*10^-2                                 //m, thickness of layer of
      insulation
10 kg=1.4                                       //W/m C, thermal
      conductivity of glass
11 ki=0.041                                      //W/m C, thermal
      conductivity of insulation
12 T1=91                                         //C, boiling temp. of
      liquid
13 T2=27                                         //C, ambient temp .
14 ho=5.8                                         //W/m ^2 C outside air
      film coefficient
15 V=90                                           //V, voltage
16

```

```

17 // Calculation
18 Rc=Re*l                                //ohm, resistance of
    heating coil
19 Q=V^2/Rc                                 //W, rate of heat
    generation
20 ri=id/2                                  //m, inner radius of glass
    tube
21 r_=ri+t                                  //m, outer radius of glass
    tube
22 ro=r_+ti                                 //m, outer radius of
    insulation
23 //heat transfer resistance of glass wall
24 Rg=log(r_/ri)/(2*pi*L*kg)
25 //combined resistance of insulation and outer air
    film
26 Rt=log(ro/r_)/(2*pi*L*ki)+1/(2*pi*ro*L*ho)
27 //Rate of heat input to the boiling liquid in steel=
    Q1=(Ts-T1)/Rg
28 //Rate of heat loss through insulation ,Q2=(Ts-To) /(
    Rt)
29 //Q1+Q2=Q
30 Ts=(Q+ T1/Rg +T2/Rt)/(1/Rg +1/Rt)
31 Q1=(Ts-T1)/Rg
32 Q2=Q-Q1
33 printf("the heat imput to the boiling .is %f W" ,Q1)

```

Scilab code Exa 3.8 A 10 gauge electrical copper

```

1 //Example 3.8
2 //determine(a) maximum allowable current
3 // (b) the corresponding remp. at the centre of wire
    and
4 //at the outer surface of insulation
5 //Given
6 ri=1.3*10^-3                               //m, radius of 10 gauge wire

```

```

7 t=1.3*10^-3 //m, thickness of rubber
    insulation
8 Ti=90 //C, temp. of insulation
9 To=30 //C, ambient temp.
10 h=15 //W/m^2 C, air film
    coefficient
11 km=380 //W/m C, thermal cond. of
    copper
12 kc=0.14 //W/m C, thermal cond. of
    rubber(insulation)
13 Rc=0.422/100 //ohm/m, electrical
    resistance of copper wire
14
15 //NUMERIC CALCULATIONS
16 Tcmax=90 //X, the maximum temp. in
    insulation
17 ro=ri+t //m, outside radius of 10
    gauge wire
18 Sv=((Tcmax-To)*(2*kc/ri^2))/(log(ro/ri)+kc/(h*ro))
19 //from eq. ( xii ), Sv=I^2*rho/(%pi*ri^2)
20 I=(%pi*ri^2*Sv/Rc)^0.5 //A, Current strength
21 printf("maximum allowable current is %f A\n",I)
22
23 // (b) at r=0
24 Tm=To+(ri^2*Sv/2)*(1/km+(log(ro/ri))/kc+1/(h*ro))
25 printf("temp. at the centre of wire is %f C\n",Tm)
26 // at r=ro
27 Tc=30+(ri^2*Sv/(2*kc))*(kc/(h*ro))
28 printf("The temprature at the outer surface of
    insulation is %f C",Tc)

```

Scilab code Exa 3.9 Heat generating slab A

```

1 //Example 3.9
2 // (a) calculate the temp. at the surface of slab A.

```

```

3 //what is the maximum Temp. in A.
4 // (b) determine the temp. gradient at both the
5 //surfaces of each of the slabs A,B and C.
6 // (c) calculate the value of h1 & h2.
7
8 // Given
9 tA=0.25           //m, thickness of slab A
10 tB=0.1            //m, thickness of slab B
11 tC=0.15           //m, thickness of slab C
12 kA=15             //W/m C, thermal conductivity of
                     slab A
13 kB=10             //W/m C, thermal conductivity of
                     slab B
14 kC=30             //W/m C, thermal conductivity of
                     slab C
15 x=poly(0, 'x')    //m, distance from left surface of
                     B
16 //Temprature distribution in slab A
17 TA=90+4500*x-11000*x^2
18 T1=40              //C, fluid temp.
19 T2=35              //C, medium temp.
20
21 // calculation
22 // (a)
23 x1=tB
24 TA1=90+4500*x1-11000*x1^2
25 // similarly at the right surface
26 x2=tA+tB
27 TA2=90+4500*x2-11000*x2^2
28 // let dTA/dx=D
29 D=derivat(TA)
30 D=0                 // for maximum temp.
31 x3=4500/22000
32 TAm=90+4500*x3-11000*x3^2
33 printf("At x=0.1 the temp. at the surface of slab A
                     is %f C\n",TA1)
34 printf("At x=0.35 the temp. at the surface of slab A
                     is %f C\n",TA2)

```

```

35 printf(" the maximum Temp. in A occurs at %f m\n" ,
36   x3)
36 printf(" the maximum Temp. in A is %f TAmax \n" ,
37   TAmax)
37
38 // (b)
39 //At the interface 2
40 D1=4500-2*11000*x1           //C/W, D1=dTA/dx , at x=0.1
41 //At the interface 3
42 D2=4500-2*11000*x2           //D12=dTA/dx , at x=0.35
43 //Temprature gradient in slab B and C
44 //by using the continuity of heat flux at interface
45 (2)
45 D3=-kA*D1/(-kB)             //D3=dTB/dx , at x=0.1
46 //at interface (1)
47 D4=D3                         //D4=dTB/dx at x=0
48 //similarly
49 D5=-1600                      //C/W, dTB/dx , x=0.35
50 D6=D5                         //at interface 4
51 printf("temp. gradient at interface 2 of the slabs A
      is %f C/W\n",D1)
52 printf("temp. gradient at interface 3 of the slabs A
      is %f C/W\n",D2)
53 printf("temp. gradient at interface 2 of the slabs B
      is %f C/W\n",D3)
54 printf("temp. gradient at interface 1 of the slabs B
      is %f C/W\n",D4)
55 printf("temp. gradient at interface 3 of the slabs
      C is %f C/W\n",D5)
56 printf("temp. gradient at interface 4 of the slabs C
      is %f C/W\n",D6)
57
58 // (c)
59 //from D3=3450 and TB=beeta1*x+beeta2
60 beeta1=3450
61 beeta2=85
62 x=0
63 TB=beeta1*x+beeta2

```

```

64 // similary
65 TC=877.5-1600*x
66 h1=-kB*D4/(T1-TB)
67 // similarly
68 h2=1129
69 printf("The heat transfer coefficient at one
           surface of solid fluid interface is %fW/m^2 C\n",
           h1)
70 printf("The heat transfer coefficient at other
           surface of solid fluid interface is %fW/m^2 C",h2
)

```

Scilab code Exa 3.10 percentage increase in rate

```

1 //Example 3.10
2 //calcuate the percentage increase in the rate of
   heat transfer
3 //for the finned tube over the plain tube.
4 //Given
5 id=78*10^-3          //m, actual internal dia of pipe
6 tw=5.5*10^-3          //m, wall thickness
7 nl=8                  //no. of longitudinal fins
8 tf=1.5*10^-3          //m, thickness of fin
9 w=30*10^-3            //m,breadth of fin
10 kf=45                //W/m C, thermal conductivity of
   fin
11 Tw=150               //C, wall temp.
12 To=28                 //C, ambient temp.
13 h=75                  //W/m^2C, surface heat transfer
   coefficient
14
15 //Calculation
16 //from eq. 3.27
17 e=sqrt(2*h/(kf*tf))
18 n=(1/(e*w))*tanh(e*w) //efficiency of fin

```

```

19 L=1                      //m, length of fin
20 Af=2*L*w                //m^2, area of single fin
21 Atf=nl*Af                //m^2 total area of fin
22 Qmax=h*Atf*(Tw-To)      //W, maximum rate of heat
   transfer
23 Qa=n*Qmax               //W, actual rate of heat
   transfer
24 Afw=L*tf                //m^2, area of contact of fin
   with pipe wall
25 Atfw=Afw*nl              //m^2 , area of contact of all
   fin with pipe wall
26 ro=id/2+tw               //m, outer pipe radius
27 A=2*pi*L*ro              //m^2 area per meter
28 Afree=A-Atfw              //m^2, free outside area of
   finned pipe
29 //Rate of heat transfer from free area of pipe wall
30 Q1=h*Afree*(Tw-To)      //W,
31 //total rate of heat transfer from finned pipe
32 Qtotal=Qa+Q1             //W
33 //Rate of heat transfer from unfinned pipe
34 Q2=h*A*(Tw-To)
35 per=(Qtotal-Q2)/Q2
36 printf("the percentage increase in the rate of heat
   transfer is %f percent ",per*100)

```

Scilab code Exa 3.11 Pre stressed multilayered shell

```

1 //Example 3.11
2 //Calculate
3 //(a) Is there any thermal contact resistance at the
   interface between the layer?
4 //(b) if so calculate the contact resistance and
5 //express it in contact heat transfer coefficient
6 //(c) Calculate the temp. jump.
7

```

```

8 // Given
9 id=90*10^-2           //m, internal diameter of steel
10 od=110*10^-2          //m, outer diameter of steel
11 Ti=180                //C, inside temp. of steel
12 To=170                //C, outside temp. of steel
13 k=37                  //W/m C, thermal conductivity of
                           alloy
14 Q=5.18*10^3            //W, Rate of heat loss
15
16 // calculation
17 ri=id/2                //m, inside radius of shell
18 ro=od/2                //m, outside radius of shell
19 r_=0.5                 //m, boundary between the layers
20 L=1                     //m, length of shell
21 //Rate of heat transfer in the absence of contact
   resistance
22 Q1=2*%pi*L*k*(Ti-To)/(log(ro/ri))
23 printf("Rate of heat transfer in the absence of
   contact resistance is %f KW\n",Q1/1000)
24 printf("The actual rate of heat loss is 5.18kW is
   much less than this value.\n So there is a
   thermal contact resistance at the interface
   between the layers \n")
25
26 // (b)
27 Ri=(log(r_/ri)/(2*%pi*L*k)) //C/W, Resistance of
   inner layer
28 Ro=(log(ro/r_)/(2*%pi*L*k)) //C/W, Resistance of
   outer layer
29 Rc=((Ti-To)/(Q))-(Ri+Ro)    //C/W, contact
   resistance
30 printf("The contact resistance is %f C/W \n",Rc)
31 Ac=2*%pi*L*r_              //m^2, area of contact
   surface of shell
32 hc=1/(Ac*Rc)               //W/m^2 C, contact heat
   transfer coefficient
33 printf("contact heat transfer coefficient is %f W/m
   ^2 C \n",hc)

```

```
34
35 // (c)
36 dt=Q/(hc*Ac)
37 printf("The temprature jump is %f C",dt)
```

Scilab code Exa 3.12 critical insulation thickness

```
1 //Example 3.12
2 // calculate the critical thickness .
3 d=5.2*10^-3           //m, diameter of copper wire
4 ri=d/2                 //inner radius of insulation
5 kc=0.43                //W/m C, thermal conductivity of
                           PVC
6 Tw=60                  //C, temp. of wire
7 h=11.35                //W/m^2 C, film coefficient
8 To=21                  //C, ambient temp .
9 //calculation
10 Ro=kc/h                //m, critical outer radius of
                           insulation
11 t=Ro-ri
12 printf("the critical thickness is %f mm",t*10^3)
```

Scilab code Exa 3.13 critical insulation thickness

```
1 //Example 3.13
2 // calculate the critical insulation thickness .
3 d=15*10^-2              //m, length of steam main
4 t=10*10^-2               //m, thickness of insulation
5 ki=0.035                 //W/m C, thermal conductivity of
                           insulation
6 h=10                     //W/m^2 C, heat transfer
                           coefficient
7 //calculation
```

```

8 //from eq. 3.29
9 ro=ki/h
10 printf("ro= %f cm \n",ro*10^3)
11 printf("Radius of bare pipe is larger than outer
           radius of insulation \n So critical insulation
           thickness does not exist ")

```

Scilab code Exa 3.14 optimum thickness

```

1 //Example 3.14
2 //calculate the optimum thickness .
3 //Given
4 Ti=172          //C, saturation temp .
5 To=20           //C, ambient temp .
6 Cs=700           //per ton , cost of steam
7 Lv=487           //kcal/kg, latent heat of steam
8 ho=10.32         //kcal/h m^2 C, outer heat transfer
                   coefficient
9 kc=0.031          //W/m C, thermal conductivity of
                   insulation
10 n=5              //yr , service life of insulation
11 i=0.18            //Re/(yr)(Re) , interest rate
12 //Calculation
13 di=0.168          //m, inner diameter of insulation
14 //Cost of insulation
15 Ci=17360-(1.91*10^4)*di          //Rs/m^3
16 Ch=Cs/(1000*Lv)                  //Rs/cal , cost of
                   heat energy in steam
17 sm=1/(1+i)+1/(1+i)^2+1/(1+i)^3+1/(1+i)^4+1/(1+i)^n
18 //from eq. 3.33
19 ri=di/2          //m inner radius of insulation
20 L=1              //m, length of pipe
21 //Pt=Ch*sm*2*pi*ri*L*( 1/(((ri/kc)*(log(ro/ri)))+
                   ri/(ho*ro)))*7.2*10^3*(Ti-To)+pi*(ro^2-ri^2)*L*
                   Ci

```

```
22 //On differentiating , dpt/dro = -957.7*((1/ro)
   -(0.003/ro^2))/(log(ro)+(0.003/ro)+2.477)^2
23 def('x']=f(ro)', 'x=-957.7*((1/ro)-(0.003/ro^2))/(
   log(ro)+(0.003/ro)+2.477)^2+98960*ro')
24 ro=fsolve(0.1,f)
25 t=ro-ri
26 printf("The optimum insulation thickness is %f mm",t
   *1000)
```

Chapter 4

Forced Convection

Scilab code Exa 4.2 Air flow over a flat plate

```
1 //Example 4.2
2 //Determine
3 // (a) local heat transfer coefficient .
4 // (b) the average heat transfer coefficient
5 // the rate of heat loss from the surface .
6
7 // Given
8 l=2                                //m, length of flat surface
9 T1=150                               //C, surface temp.
10 p=1                                  //atm, pressure
11 T2=30                                //C, bulk air temp.
12 V=12                                 //m/s, air velocity
13
14 // Calculation
15 Tf=(T1+T2)/2                         //C, mean air film temp.
16 mu=2.131*10^-5                        //m^2/s, viscosity
17 k=0.031                               //W/m C, thermal
   conductivity
18 rho=0.962                             //kg/m^3, density of air
19 cp=1.01                               //kj/kg C, specific heat
   of air
```

```

20 Pr=cp*10^3*mu/k           // Prandtl no.
21 Remax=l*V*rho/mu          // maximum Reynold no.
22 Re=5*10^5                  // Reynold no. during
     transition to turbulent flow
23 L_=(Re*mu)/(V*rho)        // m, distance from the
     leading edge
24 // for laminar flow heat transfer coefficient h,
25 // h=16.707*x^(1/2)
26 // (a)
27 // h=31.4*x^(-1/5)
28 // b
29 hav=22.2
30 // c
31 Q=hav*l*p*(T1-T2)
32 printf("The rate of heat loss is %f W",Q)

```

Scilab code Exa 4.3 temprature of wire

```

1 //Example 4.3
2 //what will be the temp. of the wire at steady state
3 .
3 // Given
4 d=7.24*10^-4           // m, diameter of wire
5 l=1                     // m, length of wire
6 I=8.3                  // A, current in a wire
7 R=2.625                // ohm/m, electrical
     resistance
8 V=10                   // m/s, air velocity
9 Tb=27                  // C, bulk air temp.
10 // the properties at bulk temp.
11 mu=1.983*10^-5         // m^2/s, viscosity
12 k=0.02624              // W/m C, thermal
     conductivity
13 rho=1.1774             // kg/m^3, density of
     air

```

```

14 cp=1.0057 // kj/kg C, specific
    heat of air
15
16 //calculation
17 Pr=cp*10^3*mu/k // Prandtl no.
18 Re=d*V*rho/mu // Reynold no.
19 //from eq. 4.19, nusslet no.
20 Nu=0.3+(0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))
    ^(1/4))*(1+(Re/(2.82*10^5))^(5/8))^(4/5)
21 hav=Nu*k/d //W/m^2 C, average
    heat transfer coefficient
22 Q=I^2*R //W, rate of
    electrical heat generation
23 A=%pi*d*l
24 dt=Q/(hav*A) //C, temp. difference
25 T=dt+Tb //C, steady state temp

.
26 printf("The steady state temprature is %f C\n",T)
27 //REVISED CALCULATION
28 Tm=(T+Tb)/2 //C, mean air film
    temp.
29 //the properties at Tm temp.
30 mu1=2.30*10^-5 //m^2/s, viscosity
31 k1=0.0338 //W/m C, thermal
    conductivity
32 rho1=0.878 //kg/m^3, density of
    air
33 cp1=1.014 // kj/kg C, specific
    heat of air
34 Re1=d*V*rho1/mu1 // Reynold no.
35 Pr1=(1.014*10^3*2.30*10^-5)/k1 // Prandtl
    no.
36 //from eq. 4.19, nusslet no.
37 Nu1=0.3+(0.62*Re1^(1/2)*Pr1^(1/3)/(1+(0.4/Pr1)^(2/3))
    ^(1/4))*(1+(Re1/(2.82*10^5))^(5/8))^(4/5)
38 hav1=Nu1*k1/d //W/m^2 C, average
    heat transfer coefficient
39 dt1=Q/(hav1*A) //C, temp. difference

```

```

40 T1=dt1+Tb           //C, steady state
    temp.
41 printf("The recalculated value is almost equal to
    previous one.")

```

Scilab code Exa 4.4 Calculate Required time

```

1 //Example 4.4
2 //Calculate
3 // (a) what is initial rate of melting of ice.
4 // (b) how much time would be needed to melt away 50 %
    of ice
5 //Given
6 di=0.04           //m, diameter of ice
    ball
7 V=2              //m/s, air velocity
8 T1=25            //C, steam temp.
9 T2=0
10 //the properties of air
11 mu=1.69*10^-5   //kg/ms, viscosity
12 k=0.026         //W/m C, thermal
    conductivity
13 rho=1.248       //kg/m^3, density
14 cp=1.005         //kj/kg C, specific
    heat
15 //propertice of ice
16 lambda=334      //kj/kg, heat of
    fusion
17 rhoice=920      //kg/m^3 density of
    ice
18
19 //calculation
20 Pr=cp*10^3*mu/k //Prandtl no.
21 Re=di*V*rho/mu // Reynold no.
22 //from eq. 4.19, nusslet no.

```

```

23 Nu=2+(0.4*Re^0.5+0.06*Re^(2/3))*Pr^0.4
24 hav=Nu*k/di           //W/m^2 C, average
    heat transfer coefficient
25 Ai=%pi*di^2           //initial area of
    sphere
26 Qi=Ai*hav*(T1-T2)     //W/J/s, initial rate
    of heat transfer
27 Ri=Qi/lamda           //initial rate of
    melting of ice
28 printf("initial rate of melting of ice is %f g/s\n"
    ,Ri)
29
30 // (b)
31 //mass of ice ball 4/3*%pi*r^3
32 //Rate of melting= Rm= -d/dt(m)
33 //Rate of heat input required =-lamda*Rate of
    melting
34 //heat balance equation
35 // -lamda*(Rm)=h*4*%pi*r^2*dt
36 //integrating and solving
37 rf=((di/2)^3/2)^(1/3)
38 //solving eq. 3
39 t1=1.355*10^-4/(8.136*10^-8)
40 printf("The required time is %f s\n",round(t1))

```

Scilab code Exa 4.5 average time

```

1 //Example 4.5
2 //calculate the average time of contact .
3 //Given
4 Vo=0.5           //m/s air velocity
5 T1=800           //C, initial temp.
6 T2=550           //C, final temp.
7 Tam=500          //C, air mean temp.
8 P=1.2            //atm, pressure

```

```

9 //the properties of solid particles.
10 dp=0.65*10^-3 //m, average particle
    diameter
11 cps=0.196 //kcal/kg C, specific
    heat
12 rhos=2550 //kg/m^3, density
13 //Properties of air
14 mu=3.6*10^-5 //kg/ms, viscosity
15 k=0.05 //kcal/hm C, thermal
    conductivity
16 rho=0.545 //kg/m^3, density of
    air
17 cp=0.263 //kcal/kg C, specific
    heat of air
18
19 //calculation
20 Pr=cp*mu*3600/k //Prandtl no.
21 Redp=dp*Vo*rho/mu //Reynold no.
22 //from eq. 4.29(b) heat transfer coefficient
23 h=(k/dp)*(2+0.6*(Redp)^(1/2)*(Pr)^(1/3))
24 Tg=500 //C, gas temp.
25 //from heat balance equation
26 // -(dTs/dt)=6h/(dp*rhos*cps)*(Ts-Tg)
27 t=(dp*rhos*cps/(6*h))*integrate('(1/(Ts-Tg))','Ts',
    ,550,800)
28 printf("the required contact time is %f s",t*3600)

```

Scilab code Exa 4.6 Overall heat transfer coefficient

```

1 //Example 4.6
2 //Calculate the required rate of flow of water.
3 //calculate the overall heat transfer coefficient
4 //Given
5 mo_=1000 //kg/h, cooling rate of oil
6 cpo=2.05 //kj/kg C, specific heat of oil

```

```

7 T1=70          //C, initial temp. of oil
8 T2=40          //C, temp. of oil after cooling
9 cpw=4.17       //kj/kg C, specific heat of water
10 T3=42         //C, initial temp. of water
11 T4=28         //C, temp. of oil after cooling
12 A=3           //m^2, heat exchange area
13 //Calculation , rate of flow of water
14 mw_=mo_*cpo*(T1-T2)/(cpw*(T3-T4))
15 printf("the required rate of flow of water is %f kg/
h \n",mw_)
16 Q=mo_*cpo*(T1-T2)/3600      //kw, heat duty
17 dt1=T1-T3          //C, hot end temp. difference
18 dt2=T2-T4          //C, cold end temp. difference
19 LMTD=(dt1-dt2)/(log(dt1/dt2)) //log mean temp.
difference
20 dtm=LMTD
21 U=Q*10^3/(A*dtm)
22 printf("the overall heat transfer coefficient is %f
W/m^2 C" ,U)

```

Scilab code Exa 4.7 inlet and outlet temprature

```

1 //Example 4.7
2 //calculatemthe inlet and outlet temp.of gas.
3 //Given
4 Q=38700          //kcal/h, heat duty
5 W=2000           //kg/h gas flow rate
6 cp=0.239         //kcal/kg C, specific heat of
nitrogen
7 A=10             //m^2 ,heat exchanger area
8 U=70             //kcal/hm^2 C, overall heat
transfer coefficient
9 n=0.63          //fin efficiency
10
11 //Calculation

```

```

12 dt=Q/(W*cp)           //C, temp. difference
13 //To-Ti=dt .....( i )
14 dtm=Q/(U*A*n)
15 //((To-Ti)/(log((160-Ti)/(160-To)))=87.8.....(2)
16 //solving 1 and 2
17 def('x]=f(To)', 'x=(To-(To-dt))/(log((160-(To-dt))/
18 /(160-To))-87.8')
19 To=fsove(100,f)
20 printf("The inlet temprature is Ti=%f C\n",round(Ti
))
21 printf("The outlet temprature is To=%f C\n",round(To
))

```

Scilab code Exa 4.8 drop in temprature

```

1 //Example 4.8
2 //Calculate the drop in temp. of the water.
3 //Given
4 V=1.8                  //m/s, velocity of hot water
5 T1=110                 //C, initial temp.
6 l=15                   //m, length of pipe
7 t=0.02                 //m, thickness of insulation
8 kc=0.12                //W/mC, thermal conductivity
   of insulating layer
9 ho=10                  //Wm^2 C, outside film
   coefficient
10 T2=20                 //C, ambient temp.
11 //the properties of water at 110 C
12 mu=2.55*10^-4          //m^2/s, viscosity
13 k=0.685                //W/m C, thermal conductivity
14 rho=950                 //kg/m^3, density of air
15 cp=4.23                 //kj/kg C, specific heat of
   air
16 di=0.035               //m, actual internal dia. of

```

```

    pipe
17 ri=di/2                      //m, internal radius
18 t1=0.0036                     //m, actual thickness of
      1-1/4 schedule 40 pipe
19 ro=ri+t1                      //m, outer radius of pipe
20 r_=ro+t                        //m, outer radius of
      insulation
21 kw=43                          //W/mC, thermal conductivity
      of steel
22 //calculation
23 Pr=cp*10^3*mu/k              //Prandtl no.
24 Re=di*V*rho/mu                //Reynold no.
25 //from eq. 4.9, Nusslet no.
26 Nu=0.023*(Re)^0.88*Pr^0.3
27 hi=Nu*k/di                   //W/m^2 C, average heat
      transfer coefficient
28 //the overall coefficient inside area basis Ui
29 Ui=1/(1/hi+(ri*log(ro/ri))/kw+(ri*log(r_/ro))/kc+ri
      /(r_*ho))
30 Ai=%pi*di*l                  //m^2, inside area basis
31 W=%pi*ri^2*V*rho             //kg/s, water flow rate
32 //from the relation b/w LMTD and rate of heat loss
33 //deff(' [x]=f(To)', 'x=W*cp*10^3*(T1-To)-Ui*Ai*((T1-
      To)/log((T1-T2)/(To-T2)))')
34 //To=fsolve(1,f)
35
36 deff(' [x]=f(To)', 'x=(W*cp*10^3)/(Ui*Ai)*(T1-To)-((T1-
      To)/log((T1-T2)/(To-T2)))')
37 To=fsolve(100,f)
38 printf("The outlet eater temp. is %f C",To)

```

Scilab code Exa 4.9 find the temprature

```

1 //Example 4.9
2 //at what temp. does the water leave the pipe.

```

```

3 // Given
4 T1=28 //C, inlet temp.
5 T2=250 //C, bulk temp.
6 V=10 //m/s, gas velocity
7 l=20 //m, length of pipe
8 mw=1*3600 //kg/h, water flow rate
9 di=4.1*10^-2 //m, inlet diameter
10 Tm=(T1+T2)/2 //C, mean temp.
11 ro=0.0484 //m, outside radius
12 // properties of water
13 mu=8.6*10^-4 //kg/ms, viscosity
14 kw=0.528 //kcal/h m C, thermal conductivity
15 kw_=0.528*1.162 //W/ m C, thermal conductivity
16 rho=996 //kg/m^3, density of air
17 cp=1*4.18 //kj/kg C, specific heat of air
18 cp_=1 //kcal/kg C
19 // properties of flue gas
20 mu1=2.33*10^-5 //kg/ms, viscosity
21 ka=0.0292 //kcal/h m C, thermal conductivity
22 rho1=0.891 //kg/m^3, density of air
23 cp1=0.243 //kcal/kg C, specific heat of air
24 Pr=0.69
25
26 // calculation
27 A=%pi/4*di^2 //m^2, cross section of pipe
28 Vw=1/(rho*A) //m/s, velocity of water
29 Re=di*Vw*rho/mu // Reynold no.
30 Pr1=cp*10^3*mu/kw_ //Prandtl no. for water
31 Nu=0.023*Re^0.8*Pr1^0.4 //Nusslet no.
32 //water side heat transfer coefficient hi
33 hi=206*kw/di
34 //gas side heat transfer coefficient ho
35 a=41 //mm, i.d. schedule
36 Tw=3.7 //mm, wall thickness
37 do=a+2*Tw //mm, outer diameter of pipe
38 Re1=do*10^-3*V*rho1/mu1 // Reynold no

```

```

39 //from eq. 4.19, nusslet no.
40 Nu1=0.3+(0.62*Re1^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))
41 ^^(1/4))*(1+(Re1/(2.82*10^5))^(5/8))^(4/5)
42 ho=(Nu1*ka/do)*10^3 //kcal/h m^2 C
43 Uo=1/(ro/(di/2*hi)+1/ho) //kcal/h m^2 C, overall
44 heat transfer coefficient
45 //Heat balance
46 A1=%pi*r0*l //m^2, outside area of pipe
47 //from the formula of LMTD
48 def([x]=f(T2_)',x=mw*c_p_*(T2_-T1)-Uo*A1*((T2_-T1)
49 /log((T2-T1)/(T2-T2_)))')
50 T2_=fsolve(1,f)
51 printf("The exit water temp is %f K",round(T2_))

```

Scilab code Exa 4.10 length of heat exchanger

```

1 //Example 4.10
2 //calculate the length of heat exchanger.
3 //Given
4 dti=0.0212 //m inner tube
5 dto=0.0254 //cm, outer tube
6 dpi=0.035 //cm, outer pipe
7 mo_=500 //kh/h, cooling rate of oil
8 To2=110 //C, initial temo. of oil
9 To1=70 //C, temp. after cooling of oil
10 Tw2=40 //C, inlet temp. of water
11 Tw1=29 //C, outlet temp. of water
12 //properties of oil
13 cpo=0.478 //kcal/kg C
14 ko=0.12 //kcal/h m C, thermal conductivity
15 rho=850 //kg/m^3, density of oil
16 //properties of water
17 kw=0.542 //kcal/h m C, thermal conductivity
18 kw_=(kw*1.162) //kj/kg C

```

```

19 muw=7.1*10^-4           //kg/ms, viscosity of water
20 cpw=1                   //kcal/kg C
21 cpw_=cpw*4.17          //kcal/kg C
22 rhow=1000               //kg/m^3, density
23 //calculation
24 HL=mo_*cpo*(To2-To1)    //kcal/h, heat load of
   exchanger
25 mw_=HL/(cpw*(Tw2-Tw1)) //kg/h water flow rate
26 mw_1=mw_/(3600*10^3)    //m^3/s water flow rate
27 A1=(%pi/4)*(dti)^2      //m^2, flow area of tube
28 Vw=mw_1/A1              //m/s water velocity
29 Rew=dti*Vw*rhow/muw    //Reynold no.
30 Prw=cpw_*10^3*muw/kw_   //Prandtl no.
31 Nuw=0.023*Rew^0.8*Prw^0.4 //nusslet no.
32 //water side heat transfer coefficient hi
33 hi=Nuw*kw/dti
34
35 //oil side heat transfer coefficient
36 A2=%pi/4*(dpi^2-dto^2)  //m^2, flow area of
   annulus
37 Vo=mo_/(3600*rho*A2)   //m/s velocity of oil
38 de=(dpi^2-dto^2)/dto    //m, equivalent dia of
   annulus
39 Tmo=(To2+To1)/2         //C, mean oil temp.
40 muoil=exp((5550/(Tmo+273))-19) //kg/ms, viscosity
   of oil
41 Reo=de*Vo*rho/muoil
42 Pro=cpo*muoil*3600/ko   //prandtl no. for oil
43
44 //assume (1st approximation)
45 Nuo=3.66
46 ho=Nuo*ko/de            //kcal/h m^2 c
47 L=1                      //assume length of tube
48 Ai=%pi*dti*L
49 Ao=%pi*dtot*L
50 //overall heat transfer coefficient 1st
   approximation
51 Uo=1/(1/ho+Ao/(Ai*hi))

```

```

52 LMTD=((To2-Tw2)-(To1-Tw1))/(log((To2-Tw2)/(To1-Tw1))
      )
53 Ao1=HL/(Uo*LMTD)           //m^2, heat transfer area
54 Lt=Ao1/(%pi*dto)          //m, tube length
55 //from eq. 4.8
56 Nu01=1.86*(Reo*Pro/(Lt/de))^(1/3) //Nusslet no.
57 ho1=Nu01*ko/de
58 Twm=(Tw1+Tw2)/2           //C, mean water temp.
59 //balancing heat transfer rate of oil and water
60
61 //average wall temp. Twall
62 Twall=((hi*dti*(-Twm))-(ho1*dt0*Tmo))/(-65.71216)
63 //viscosity of oil at this temp.
64 muwall=exp((5550/(Twall+273))-19) //kg/ms,
   viscosity of oil
65 //Nusslet no.
66 Nu02=1.86*(Reo*Pro/(Lt/de))^(1/3)*(muoil/muwall)
   ^0.14
67 ho2=Nu02*ko/de
68 Uo2=1/((1/h02)+(Ao/(Ai*hi)))
69 Ao2=HL/(Uo2*LMTD)
70 Lt_=Ao2/(%pi*dto)
71 printf("The tube length is %f m", Lt_)

```

Scilab code Exa 4.11 rate of heat transfer

```

1 //Example 4.11
2 //calculate the rate of heat transfer to water.
3 //Given
4 Ti=260                  //C, initial temp.
5 Ts=70                   //C, skin temp.
6 St=0.15                 //m, space between tubes in
   equilateral triangular arrangement
7 Sd=St                  //space between tubes
8 mu=4.43*10^-5           //m^2/s, momentum

```

```

    diffusity
9 k=0.0375           //W/m C, thermal
    conductivity
10 rho=0.73          //kg/m^3, density of
        air
11 cp=0.248          //kj/kg C, specific
        heat of air
12 V=16               //m/s, velocity
13 d=0.06             //m, outside diameter
        of tube
14 Nt=15              //no. of tubes in
        transverse row
15 Nl=14              //no. of tubes in
        longitudinal row
16 N=Nl*Nt            //total no. of tubes
17 L=1                //m, length
18 //Calculation
19 S1=(sqrt(3)/2)*St
20 Pr=cp*mu*3600*rho/k
        air
21 Pr=0.62
22 Prw=0.70           //Prandtl no. of bulk
        wall temp. 70 C
23 //from eq. 4.25
24 Vmax=(St/(St-d))*V
25 //from eq. 4.26
26 Vmax1=(St/(2*(St-d)))*V
27 Redmax=d*Vmax/mu
28 p=St/S1             //pitch ratio
29 p<2
30 //from table 4.3
31 m=0.6
32 C=0.35*(St/S1)^0.2
33 h=(k/d)*C*(36163)^m*(Pr)^(0.36)*(Pr/Prw)^(0.25)
34 //from eq. 4.28
35 dt=190*exp(-%pi*d*N*h/(rho*V*3600*Nt*St*cp))
36 LMTD=((Ti-Ts)-(dt))/log((Ti-Ts)/dt)
37 A=%pi*d*L*N         //m^2, heat transfer area

```

```

38 Q=h*A*LMTD
39 printf(" the rate of heat transfer to water is %f
          kcal/h" ,Q)

```

Scilab code Exa 4.12 aniline is a tonnage oc

```

1 //Example 4.12
2 //Calculate the rise in temp. of water .
3 //Given
4 W=0.057                                //m^3/min/tube , flow
      rate of water
5 W_=W*16.66                               //kg/s. water flow rate
6 di=0.0212                                 //m, inside diameter
7 Ti=32                                     //C, inlet water temp.
8 Tw=80                                      //C, wall temp.
9 L=3                                       //m, length of pip
10 //Calculation
11 V=(W/60)*(1/((%pi/4)*di^2))           //m/s, water velocity
12 //the properties of water at mean liquid temp..
13 mu=7.65*10^-4                            //m^2/s, viscosity
14 k=0.623                                   //W/m C, thermal
      conductivity
15 rho=995                                    //kg/m^3, density of
      air
16 cp=4.17                                    //kj/kg C, specific
      heat of air
17
18 //calculation
19 Pr=cp*10^3*mu/k                          //Prandtl no.
20 Re=di*V*rho/mu                           // Reynold no.
21 //from eq. 4.19, nusslet no.
22 //from dittus boelter eq.
23 Nu=0.023*Re^0.8*Pr^0.4                  // Prandtl no.
24 f=0.0014+0.125*Re^-0.32                 // friction factor
25 //Reynold analogy

```

```

26 St=f/2 // Stanton no.
27 Nu1=Re*Pr*St
28 // Prandtl analogy
29 St1=(f/2)/(1+5*(Pr-1)*sqrt(f/2))
30 Nu2=St1*Re*Pr
31 // colburn analogy
32 Nu3=Re*Pr^(1/3)*(f/2)
33 h=Nu3*k/(di) // W/m^2 C av heat
    transfer coefficient
34 // Q=W_*cp*10^3*(To-Ti)=h*A*LMTD
35 A=%pi*di*L // m^2
36 def('x]=f(To)', 'x=W_*cp*10^3*(To-Ti)-h*A*((To-Ti)/
    log((Tw-Ti)/(Tw-To)))')
37 To=fsolve(1,f)
38 // Revised calculation
39 Tm=(Ti+To)/2 // C, mean liquid temp.
40 // the properties of water at new mean liquid temp..
41 mu1=6.2*10^-4 // m^2/s, viscosity
42 k1=0.623 // W/m C, thermal
    conductivity
43 rho1=991 // kg/m^3, density of
    air
44 cp1=4.17 // kj/kg C, specific
    heat of air
45 // calculation
46 Pr1=cp1*10^3*mu1/k1 // Prandtl no.
47 Re1=di*V*rho1/mu1 // Reynold no.
48 // from dittus boelter eq.
49 f1=0.0014+0.125*Re1^(-0.32) // friction factor
50 // colburn analogy
51 Nu4=Re1*Pr1^(1/3)*(f1/2)
52 h1=Nu4*k1/(di) // W/m^2 C av heat
    transfer coefficient
53 def('x]=f(To_)', 'x=W_*cp*10^3*(To_-Ti)-h1*A*((To_-
    Ti)/log((Tw-Ti)/(Tw-To_)))')
54 To_=fsolve(1,f)
55 printf("Outlet temp. of water for one pass through
    the tubes is %f C",To_)

```


Chapter 5

free convection

Scilab code Exa 5.1 Rate of heat loss

```
1 //Example 5.1
2 //Calculate the rate of heat loss .
3 //Given
4 T1=65                                //C, furnace temp.
5 T2=25                                //C, ambient temp.
6 h=1.5                                 //m, height of door
7 w=1                                   //m, width of door
8 Tf=(T1+T2)/2                          //c, average air film temp.
9 //Properties of air at Tf
10 Pr=0.695                             //Prandtl no.
11 mu=1.85*10^-5                        //m^2/s, viscosity
12 beeta=1/(Tf+273)                      //K^-1. coefficient of
                                         volumetric expension
13 k=0.028                              //W/m C, thermal
                                         conductivity
14 g=9.8                                //m/s ^2, gravitational
                                         constant
15 Grl=g*beeta*(T1-T2)*h^3/(mu^2)      //Grashof no.
16 Ral=Gr1*Pr                            //Rayleigh no.
17 //Nusslet no.
18 Nul=(0.825+(0.387*(Ral)^(1/6))/(1+(0.492/Pr)^(9/16))
```

```


$$\hat{h} = \frac{k}{\ln(2) \cdot \left(\frac{1}{T_1} + \frac{1}{T_2}\right)}$$

19 hav=Nul*k/h // average heat transfer coefficient
20 Ad=h*w //m^2, door area
21 dt=T1-T2 //temp. driving force
22 q=hav*Ad*dt //W, rate of heat loss
23 printf("The rate of heat loss is %f W",q)

```

Scilab code Exa 5.2 steady state temprature

```

1 //Example 5.2
2 //Calculate the steady state temp. of the plate.
3 //Given
4 T1=60 //C, plate temp.
5 T2=25 //C, ambient temp.
6 h=1
7 w=1 //m, width of door
8 q=170 //W, rate of heat transfer
9 Tf=(T1+T2)/2 //C, average air film temp.
10 //Properties of air at Tf
11 Pr=0.7 //Prandtl no.
12 mu=1.85*10^-5 //m^2/s, viscosity
13 beeta=1/(Tf+273) //K^-1. coefficient of volumetric expension
14 k=0.028 //W/m C, thermal conductivity
15 g=9.8 //m/s^2, gravitational constant
16
17 //Calculation
18 A=h*w //m^2, plate area
19 P=2*(h+w) //m, perimeter of plate
20 L=A/P //m characteristic length
21 Grl=g*beeta*(T1-T2)*L^3/(mu^2) //Grashof no.
22 Ra=Grl*Pr //Rayleigh no.

```

```

23 // Nusslet no.
24 Nul=0.54*(Ral)^(1/4)                                // Nusslet no.
25 hav=Nul*k/L                                         // average heat
   transfer coefficient
26 Ts=q/(hav*A)+T2
27 printf("the steady state temp. of the plate is %f C"
   ,Ts)

```

Scilab code Exa 5.3 CALCULATE TIME REQUIRED

```

1 //Example 5.3
2 //Calculate the time required for cooling of the rod
3 .
3 // Given
4 d=0.0254                                              //m, diameter of steel rod
5 l=0.4                                                 //m, length of rod
6 T1=80                                                 //C, initial temp.
7 T2=30                                                 //C, ambient temp.
8 T3=35                                                 //C, temp. after cooling
9 rho=7800                                              //kg/m^3 , density of steel
   rod
10 cp=0.473                                              //kj/kg C. specific heat
11
12 // Calculation
13 m=%pi/4*d^2*l*rho                                  //kg. mass of cylinder
14 A=%pi*d*l                                           //m^2, area of cylinder
15 dt=T1-T2                                            //C, instantaneous temp.
   difference
16 h=1.32*(dt/d)^0.25                                 //W/m^2 C, heat transfer
   coefficient
17 i=integrate('1/(T^(5/4))','T',5,50)
18 t=i/(3.306*A/(m*cp*10^3))
19 printf("The required time for cooling is %f hr",t
   /3600)

```

Scilab code Exa 5.4 Rate of heat loss

```
1 //Example 5.4
2 //Calculate the rate of heat loss by free convection
   per meter length of pipe.
3 //given
4 id=78*10^-3                                //m, internal
   diameter
5 od=89*10^-3                                 //m, outer diameter
6 Pg=15                                         //kg/cm^2, gauge
   pressure
7 t=2*10^-2                                    //m, thickness of
   preformed mineral fibre
8 k=0.05                                        //W/m C. thermal
   conductivity
9 Ta=25                                         //C, ambient air temp
.
10 Pr=0.705                                     //Prandtl no.
11 //assume
12 Ts=50                                         //C, skin temp.
13 l=1                                           //m, length
14 Ti=200.5                                      //C, initial temp.
15 rs=od/2+t                                     //m, outer radius of
   insulation
16 ri=od/2                                       //m, inner radius of
   insulation
17 //Rate of heat transfer through insulation per meter
   length of pipe
18 Q=2*%pi*l*k*(Ti-Ts)/(log(rs/ri))           //W
19 //properties of air at taken at the mean film temp.
20 Tf=(Ta+Ts)/2                                  //C
21 mu=1.76*10^-5                                 //m^2/s. viscosity
22 beeta=(1/(Tf+273))                            //K^-1, coefficient of
   volumetric expansion
```

```

23 k1=0.027          //W/m C, thermal
    conductivity
24 ds=2*rs           //m, outer dia. of
    insulated pipe
25 g=9.8             //m/s^2, gravitational
    constant
26 Grd=g*beeta*(Ts-Ta)*ds^3/(mu^2)      //Grashof no.
27 Rad=Grd*Pr        //Rayleigh no
.
28 //from eq. 5.9
29 //Nusslet no.
30 Nu=(0.60+(0.387*(Rad)^(1/6))/(1+(0.559/Pr)^(9/16))
      ^ (8/27))^2
31 hav=Nu*k1/ds      //W/ m^2 C, average
    heat transfer coefficient
32 Ts=(Q/(%pi*ds*l*hav))+Ta      //C, skin temp.
33 //revised calculation by assuming
34 Ts1=70                //C, skin temp.
35 //Rate of heat transfer through insulation
36 Q1=2*%pi*l*k*(Ti-Ts1)/(log(rs/ri))
37 Tf1=(Ta+Ts1)/2         //C, average aie mean
    film temp.
38 mu1=1.8*10^-5          //m^2/s. viscosity
39 beeta1=(1/(Tf1+273))   //K^-1, coefficient
    of volumetric expansion
40 k1=0.0275              //W/m C, thermal
    conductivity
41 Pr1=0.703              //Prandtl no.
42 Grd1=g*beeta1*(Ts1-Ta)*ds^3/(mu1^2)      //Grashof
    no.
43 Rad=Grd1*Pr1           //
    Rayleigh no.
44 //from eq. 5.9
45 // average heat transfer coefficient , in //W/ m^2 C,
46 hav1=(0.60+(0.387*(Rad)^(1/6))/(1+(0.559/Pr)^(9/16))
      ^ (8/27))^2*(k1/ds)
47 Ts2=(Q1/(%pi*ds*l*hav1))+Ta
48 //again assume skin temp.=74

```

```

49 Ts2=74                                //C, assumed skin temp.
50 Q3=2*pi*l*k*(Ti-Ts2)/(log(rs/ri))
51 printf("the rate of heat loss by free convection per
meter length of pipe. is %f W",Q3)

```

Scilab code Exa 5.5 thickness of insulation

```

1 //Example 5.5
2 //Calculate , what thickness of insulation should be
   used
3 //so that the insulation skin temp. does not exceed
   65 C
4 //Given
5 Ts=65                                     //C, skin temp.
6 To=30                                      //C, ambient temp.
7 Tw=460                                       //C, wall temp.
8 Tf=(Ts+To)/2                               //C, mean air film temp
.
9 beeta=(1/(Tf+273))                         //K^-1,
   coefficient of volumetric expansion
10 g=9.8                                      //m/s^2, gravitational
   constant
11 mu=1.84*10^-5                             //m^2/s, viscosity
12 L=10.5                                     //m, height of converter
13 di=4                                       //m, diameter of
   converter
14 Pr=0.705                                    //Prandtl no.
15 k=0.0241                                    //kcal/h m C, thermal
   conductivity
16
17 //Calculation
18 Gr1=g*beeta*(Ts-To)*L^3/(mu^2)           //Grashof no.
19 x=di/L                                     //assume di/l=x
20 y=35/(Gr1)^(1/4)                           //assume 35/(Gr1)^(3/4)=
   y

```

```

21 // printf "x>y"
22 //for a verticla flat plate , from eq. 5.3
23 RaI=Grl*Pr // Rayleigh no.
24 // nusslet no.
25 Nu=(0.825+(0.387*(RaI)^(1/6))/(1+(0.496/Pr)^(9/16))
      ^ (8/27))^2
26 hav=Nu*k/L // kcal/h m^2 C, average
               heat transfer coefficient
27 //w=poly(0,"w")
28 //Dav=(4+(4+2*w))/2 // average
               diameter
29 //Aav=%pi*Dav*L // average heat
               transfer area
30 //Qi=%pi*Dav*L*0.0602*(Tw-Ts)/w //Rate of heat
               transfer through insulation
31 //rate of heat transfer from the outer surface of
               the insulation by free convection
32 //Qc=hav*%pi*Dav*L*(Ts-To)
33 //Qi=Qc
34 deff(' [x]=f(w)', 'x=%pi*(4+w)*L*0.0602*(Tw-Ts)/w-hav*
               %pi*(4+2*w)*L*(Ts-To)')
35 w=fsolve(0.1,f)
36 printf("The required insulation thickness is %f m",w)

```

Scilab code Exa 5.6 rate of heat gain

```

1 //Example 5.6
2 //Calculate the rate of heat gain by the cooler
   surface .
3 //Given
4 L=1.6 //m, height of enclosure
5 w=0.04 //m, width of enclosure
6 b=0.8 //m, breath
7 T1=22 //C, surface temp.

```

```

8 T2=30                      //C, wall temp.
9 Tm=(T1+T2)/2                //C, Mean air temp.
10 Pr=0.7                     //Prandtl no.
11 //fpr air at 26 C
12 beeta=1/(Tm+273)           //K^-1. coefficient of
                             volumetric expansion
13 mu=1.684*10^-5             //m^2/s, viscosity
14 k=0.026                     //W/m C, thermal conductivity
15 alpha=2.21*10^-5            //m^2/s, thermal diffusity
16 g=9.8                       //m/s^2, gravitational
                             constant
17 Raw=g*beeta*(T2-T1)*w^3/(mu*alpha)      // Rayleigh
                                             no.
18 Nuw=0.42*(Raw)^0.25*Pr^0.012*(L/w)^-0.3 // Nusslet
                                             no.
19 h=Nuw*k/w                   // kcal/h m
                             ^2 C, heat transfer coefficient
20 q=h*(T2-T1)*(L*b)          //W, the
                             rate of heat transfer
21 printf("the rate of heat transfer is %f W",q)

```

Scilab code Exa 5.7 Rate of heat loss

```

1 //example 5.7
2 //Calculate the rate of heat loss by the combined
   free and forced convection .
3 //Given
4 Ts=60                      //C, surface temp
5 To=30                       //C, bulk temp.
6 d=0.06                      //m, diameter of pipe
7 l=1                          //m, length
8 Tm=(Ts+To)/2
9 //for air at Tm
10 rho=1.105                  //kg/m^3, density
11 cp=0.24                     //kcal/kg C. specific

```

```

    heat
12 mu=1.95*10^-5 //kg/m s. viscosity
13 P=0.7 //Prandtl no.
14 kv=1.85*10^-5 //m^2/s, kinetic
    viscosity
15 k=0.0241 // kcal/f m C, thermal
    conductivity
16 beeta=(1/(Tm+273)) //K^-1.
    coefficient of volumetric expension
17 V=0.3 //m/s, velocity
18 g=9.8 //m/s^2, gravitational
    constant
19 // Calculation of nusslet no.
20 Rad=g*beeta*(Ts-To)*d^3*P/(kv^2) // Rayleigh no.
21 //from eq. 5.9
22 Nufree=(0.60+(0.387*Rad^(1/6))/(1+(0.559/P)^(9/16))
    ^^(8/27))^2
23 //calculation of forced convection nusslet no.
24 //from eq. 4.19
25 Re=d*V/(kv)
26 Nuforced=0.3+(0.62*Re^(1/2)*P^(1/3)/(1+(0.4/P)^(2/3)
    )^(1/4))*(1+(Re/(2.82*10^5))^(5/8))^(4/5)
27 Nu=(Nuforced^3+Nufree^3)^(1/3) // nusslet no.
    for mixed convection
28 //Nu=h*d/k
29 h=Nu*k/d // kcal/h m^2 C, heat
    transfer corfficient
30 q=h*pi*d*l*(Ts-To)
31 printf("the rate of heat loss per meter length is %f
    kcal/h",q)

```

Chapter 6

Boiling and condensation

Scilab code Exa 6.1 Consider nucleate pool

```
1 //Example 6.1
2 //calculate (a) the diameter of cavity on the
   boiling surface
3 //which produce a bubble nucleus that does not
   collapse .
4 // (b) what degree of superheat is necessary so that
   a bubble nucleus grow
5 //in size after detachment from the cavity.
6 // (a)
7 Tsat=350           //K, saturated temp.
8 Tl=Tsat+5          //K, liquid temp.
9 //By antoine eqn.
10 T=Tl-273          //C,
11 pl=exp(4.22658-(1244.95/(T+217.88)))
12 ST=26.29-0.1161*T //dyne/cm, Surface tension of
   liquid
13 ST_=ST*10^-3        //N/m Surface tension of liquid
14 Lv=33605            //kj/kgmol, molar heat of
   vaporization
15 R=0.08314           //m^3 bar/kgmol K, gas costant
16 r=(2*ST_*R*Tsat^2)/((Tl-Tsat)*pl*(Lv*10^3))
```

```

17 printf("So a bubble nucleus that has been detached
      from a cavity will not collapse in the liquid if
      it is larger than %f micrometer \n",r*10^6)
18
19 // (b)
20 r1=10^-6           //m
21 // p11=exp(4.22658-(1244.95/(Tl_-273+217.88)))    //
      vapour pressure
22 //ST1=0.02629-1.161*10^-4(Tl_-273)                  //
      surface tension
23
24 def( [x]=f(Tl) , x=(Tl-Tsat)
      -2*(0.02629-1.161*10^-4*(Tl-273))*R*Tsat^2/(r1*Lv
      *10^3) )
25 Tl=fsovere(0.1,f)
26 T_=(Tl-273.5)-(Tsat-273)
27 printf("The superheat of the liquid is %f C",round(
      T_))

```

Scilab code Exa 6.2 rate of boiling of water

```

1 //Example 6.2
2 //Calculate the rate of boiling of water .
3 //Given
4 d=0.35           //m, diameter of pan
5 p=1.013          //bar, pressure
6 T1=115           //C, bottom temp.
7 T2=100           //C, boiling temp.
8 Te=T1-T2         //C, excess temp.
9 //For Water
10 mu1=2.70*10^-4   //Ns/m^2, viscosity
11 cp1=4.22          //kj/kg C, specific heat
12 rho1=958          //kg/m^3, density
13 Lv1=2257          //kj/kg, enthalpy of
      vaporization

```

```

14 s1=0.059 //N/m , surface tension
15 Pr1=1.76 //Prandtl no.
16 //For saturated steam
17 rho2=0.5955
18 //For the pan
19 Csf=0.013 //constant
20 n=1 //exponent
21 g=9.8 //m/s^2, gravitational
    constant
22 //from eq. 6.6 //heat flux
23 Qs1=mu1*Lv1*(g*(rho1-rho2)/s1)^(1/2)*(cp1*Te/(Csf*
    Lv1*(Pr1)^n))^3
24 Rate=Qs1/Lv1 //kg/m^2 s. rate of boiling
25 Ap=%pi/4*d^2 //m^2, pan area
26 Trate=Rate*Ap //kg/s, Total rate of
    boiling
27 Trate_=Trate*3600.5 //kg/h. Total rate of
    boiling
28 printf("total rate of boiling of water is %f kg/h \n
    ",Trate_)
29
30 //using Lienhard's eq., //critical heat flux
31 Qmax=0.149*Lv1*rho2*(s1*g*(rho1-rho2)/(rho2)^2)
    ^(1/4)
32 //by Mostinski eq.
33 Pc=221.2 //critical pressure
34 Pr=p/Pc //reduced pressure
35 hb=0.00341*(Pc)^(2.3)*Te^(2.33)*Pr^(0.566) ////
    boiling heat transfer coefficient
36 hb_=hb/1000 //kW/m^2 C boiling heat
    transfer coefficient
37 Qs2=hb_*(Te)
38 printf("Qs2 compares reasonably well with the Qs1")

```

Scilab code Exa 6.3 formaldehyde is one of

```

1 //Example 6.3
2 //Calculate the rate of boiling .
3 //Given
4 A=12.5673
5 B=4234.6
6 pv=1.813
7 T1=200           //C, tube wall temp .
8 //For methanol
9 Tc=512.6         //K, critical temp .
10 w=0.556          //acentric factor
11 Zra=0.29056-0.08775*w
12 R=0.08314        //m^3 bar/gmol K, universal gas
                     constant
13 Pc=80.9          //bar , critical temp .
14 Mw=32             //g, molecular wt
15
16 //Calculation
17 //Estimation of liquid and vapour properties
18 //from antoine eq .
19 T=B/(A-log(pv))    //K, boiling point
20 Te=(T1+273)-T      //K, excess temp .
21 Tm=((T1+273)+T)/2 //K, mean temp .
22
23 //Liquid properties
24 //(a)
25 Tr=T/Tc            //K, reduced temp .
26 //from Rackett technique
27 Vm=R*Tc*(Zra)^(1+(1-Tr)^(2/7))/Pc      //m^3/kg mol ,
                     molar volume
28 rhol=Mw/Vm         //kg/m^3 ,
                     density of satorated liquid density
29 //(b)
30 //from Missenard technique
31 T2=348              //K, given data temp .
32 T3=373              //K, given data temp .
33 Cp2=107.5           //j/g mol K specific heat at T2
34 Cp3=119.4           //j/g mol K specific heat at T3
35 //By linear interpolation at T=353.7 K

```

```

36 Cp=Cp2+(Cp3-Cp2)*((T-T2)/(T3-T2)) // kj/kg mol C,
    specific heat at T=353.7 K
37 Cp_=Cp*0.03125 // kj/kg C
38 // (c) Surface tension at given temp.(K)
39 T4=313
40 St4=20.96
41 T5=333
42 St5=19.4
43 //By linear interpolation at T=353.7 K
44 S=17.8 //dyne/cm,
    surface temp.
45 // (d) liquid viscosity
46 T6=298
47 MUt6=0.55 //cP, liquid
    viscosity at temp=298
48 MU=((MUt6)^-0.2661+((T-T6)/233))^-1/0.2661
    //cP
49 // (e) Prandtl no. a,b,c are constant
50 a=0.3225
51 b=-4.785*10^-4
52 c=1.168*10^-7
53 kl=a+b*T+c*T^2 //W/m C, thermal
    conductivity
54 Prl=Cp_*1000*MU*10^-3/kl // Prandtl no.
55 // (f) heat of vaporization at 337.5 K
56 Lv=1100 // kj/kg, enthalpy
    of vaporization
57
58 // Properties of methanol vapour at Tm
59 // (a)
60 Vm1=R*Tm/pv //m^3/kg mol, molar
    volume
61 rhoV=Mw/Vm1 //kg/m^3, density
    of vapour
62 // (b) a1,b1,c1,d1 are costants
63 a1=-7.797*10^-3
64 b1=4.167*10^-5
65 c1=1.214*10^-7

```

```

66 d1=-5.184*10^-11
67 //thermal conductivity of vapour
68 kv=a1+b1*Tm+c1*Tm^2+d1*Tm^3      //W/m C
69 //(c) heat capacity of vapour ,   a2 ,b2 ,c2 ,d2 are
   costants
70 a2=21.15
71 b2=7.092*10^-2
72 c2=2.589*10^-5
73 d2=-2.852*10^-8
74 //heat capacity of vapour ,      in kj/kh mol K
75 CpV=a2+b2*Tm+c2*Tm^2+d2*Tm^3
76
77 //(d) viscosity of vapour
78 T7=67
79 MUT7=112
80 T8=127
81 MUT8=132
82 //from linear interpolation at Tm
83 MUv=1.364*10^-5                  //kg/m s
84
85 //from Rohsenow's eq.
86 Csf=0.027                         //constant
87 n=1.7                               //exponent value
88 //from eq. 6.6
89 g=9.8                               //m/s^2 , gravitational
   constant
90 //heat flux //kW/m^2
91 Q=MU*10^-3*Lv*(g*(rhol-rhov)/S*10^-3)^(1/2)*(Cp_*Te
   /(Csf*Lv*(Pr1)^n))^3
92 //from eq. 6.11
93 //from eq 6.11, critical heat flux
94 Qmax=0.131*Lv*(rhov)^(1/2)*(S*10^-3*g*(rhol-rhov))
   ^^(1/4)
95 //dimensionless radius r_
96 r=0.016
97 r_=r*(g*(rhol-rhov)/(S*10^-3))^(1/2)
98 //peak heat flux
99 Qmax1=Qmax*(0.89+2.27*exp(-3.44*sqrt(r_)))

```

```

100 //from eq. 6.12
101 //heat transfer coefficient hb
102 d=0.032 //m, tube diameter
103 hb=0.62*((kv^3)*rhov*(rhol-rhov)*g*(Lv*10^3+0.4*Cpv*
    Te)/(d*MUv*Te))^(1/4)
104 Qb=hb*Te //kw/m^2, heat flux
105 BR=Qb*10^-3/Lv //kg/m^2s, boilng rate
106 printf("The boilins rate is %f kg/m^2 h",BR*3600)

```

Scilab code Exa 6.4 A mixture of benzene

```

1 //Example 6.4
2 //Calculate the physical properties of the liquid .
3
4 //Given
5 W1=200 //kg/h, rate of entering toluene
6 muv=10^-5 //kg/m s, viscosity of toluene
    vapour
7 mul=2.31*10^-4 //kg/m s, viscosity of benzene
8 rhol=753 //kg/m^3, density of benzene
9 rhov=3.7 //kg/m^3, density of toluene
    vapour
10 Cpl=1968 //j/kg C, specific heat of
    benzene
11 k1=0.112 //W/m C, thermal conductivity of
    benzene
12 T1=160 //C tube wall temp.
13 T2=120 //C , saturated temp.
14 Te=T1-T2 //C, excess temp.
15 Lv=3.63*10^5 //j/kg, enthalpy of vaporization
16 s=1.66*10^-2 //N/m, surface tension
17 //Calculation of hc & hb
18 w=0.125 //m, mean step size
19 d=0.0211 //, internal diameter of tube
20 G=W1/(3600*pi/4*(d^2)) //kg/m^2 s, mass

```

```

        flow rate
21 Re1=G*(1-w)*d/mul                         //Reynold no.
22 Prl=Cpl*mul/kl                            //Prandtl no.
23 //from eq. 6.23
24 x=(w/(1-w))^(0.9)*(rhол/rhov)^(0.5)*(muв/mul)^0.1
    //let x=1/succepsibility
25 //from eq. 6.22
26 F=2.35*(x+0.231)^0.736           //factor signifies ,
    liquid only reynold no.' to a two phase reynold
    no.
27 //from eq. 7.21
28 Re2=10^-4*Re1*F^1.25                     //Reynold no.
29 //from eq. 6.18
30 S=(1+0.12*Re2^1.14)^-1                  //boiling supression
    factor
31 //from eq. 6.15
32 hc=0.023*Re1^(0.8)*Prl^(0.4)*(kl/d)*F   //W/m^2 C,
    forced convection boiling part
33 //from eq. 6.16
34 mulv=(1/rhov)-(1/rhol)                   //m^3/kg ,
    kinetic viscosity of liquid vapour
35 dpsat=Te*Lv/((T2+273)*mulv)            //N/m^2 , change
    in saturated presssure
36 //nucleate boiling part hb
37 hb=1.218*10^-3*(kl^0.79*Cpl^0.45*rhol^0.49*Te^0.24*
    dpsat^0.75*S/(s^0.5*mul^0.29*Lv^0.24*rhov^0.24))
38 h=hc+hb                                //W/m^2 C, total
    heat transfer coefficient
39
40 //calculation of required heat transfer area
41 a=5                                     //%, persentage
    change in rate of vaporization
42 W2=W1*a/100                            //kg/h, rate of
    vaporization
43 W2_=W2/3600                            //kg/s
44 Q=W2_*Lv                               //W, heat load
45 A=Q/(h*Te)                            //m^2, area of heat
    transfer

```

```

46 l=A/(%pi*d)                                //m, required
      length of tube
47 //from table 6.2
48 T1=0.393
49 printf("The total tube length is %f m",T1)

```

Scilab code Exa 6.5 Saturated vapour pressure

```

1 //Example 6.5
2 //Calculate the rate of condensation of propane.
3 //GIVEN
4 rho_l=483                               //kg/m^3, density
      of liquid propane
5 mu_l=9.1*10^-5                          //P, viscosity of
      liquid propane
6 k_l=0.09                                 //W/m K, thermal
      conductivity of liquid propane
7 L_v=326                                  //kj/kg. enthalpy
      of vaporization
8 C_p_l=2.61                               //kj/kg K, specific
      heat of liquid propane
9 T_1=32
10 T_2=25                                    //C, surface temp.
11 p_1=11.2
12 rho_v=24.7                               //kg/m^3, density of
      vapour
13 g=9.8
14 h=0.3
15 //Calculation
16 L_v1=L_v+0.68*C_p_l*(T_1-T_2)
17 //h=0.943*(g*L_v1*10^3*rho_l*(rho_l-rho_v)*k_l^3/(mu_l*L*(T_1-T_2)))^(1/4)
18 //Q=h*(L*1)*(T_1-T_2)
19 //m=Q/(L_v1*10^3)=1.867*10^-2*L^(3/4)
20 Ref=30

```

```

21 // from the relation 4*m/mu=Re
22 L=(Ref*mul/(4*1.867*10^-2))^(4/3)
23 m=1.867*10^-2*L^(3/4)           // rate of condensation
24 for laminar flow
25 //from eq. 6.32
26 //Nu1=h_-/kl*(mul^2/(rhol*(rhol-rhov)*g))^(1/3)=Ref
27 //Lp=h-L           //length of plate over which flow is
28 wavy
29 A=Lp*1           //m^2 area of condensation
30
31 h_=poly(0,"h_")
32 //Rate of condensation over total length=m(laminar)+m(wavy)
33
34 m2=m+h_*A*(T1-T2)/(Lv1*10^3)
35 Ref1=4*m2/mul
36
37 def f(x)=h1/kl*(mul^2/(rhol*(rhol-rhov)*g))
38 )^(1/3)-(29.76+0.262*h1)/(1.08*(29.76+0.262*h1)
39 ^^(1.22)-5.2)
40 h1=fsover(1000,f) //W/m^2C
41 m2=m+h1*A*(T1-T2)/(Lv1*10^3)
42 Ref1=4*m2/mul
43
44 m2=m+h1*A*(T1-T2)/(Lv1*10^3)
45 printf("Total rate of condensation is %f kg/h",m2
46 *3600)

```

Scilab code Exa 6.6 Trichloro ethylene

```

1 //Example 6.6
2 //Calculate the rate of condensation of TCE
3 // (a) on a single horizontal tube
4 // (b) in a condenser
5 // Given
6 // data fot TCE

```

```

7 T1=87.4                                //C, normal boiling
    point
8 T2=25                                    //C, surface temp.
9 Lv=320.8                                 //kj/kg, heat of
    vaporization
10 cp=1.105                                //kj/kg C, specific
    heat
11 mu=0.45*10^-3                           //P. liquid
    viscosity
12 k=0.1064                                //W/m C, thermal
    conductivity
13 rhol=1375                                //kg/m^3, liquid
    density
14 rhov=4.44                                 //kg/m^3, density of
    vapour
15 Tm=(T1+T2)/2                            //C, mean film temp.
16 d=0.0254                                 //m, outside
    diameter of tube
17 l=0.7                                     //m, length
18 g=9.8                                    //m/s^2,
    gravitational constant
19 //Calculation
20 // (a) from eq. 6.34
21 Lv1=Lv+0.68*cp*(T1-T2)
22 h=0.728*(g*Lv1*10^3*rhol*(rhol-rhov)*k^3/(mu*d*(T1-
    T2)))^(1/4)
23 A=%pi*d*l                                //m^2, area of tube
24 Q=h*A*(T1-T2)                            //W, rate of heat
    transfer
25 m=(Q/Lv1)/1000                           //kg/s rate of
    condensation
26 printf("Rate of condensation is %f kg/h \n",m*3600)
27
28 // (b)   from eq. 6.35
29 N=6                                       //No. of tubes in
    vertical tire
30 h1=0.728*(g*Lv1*10^3*rhol*(rhol-rhov)*k^3/(N*mu*d*(
    T1-T2)))^(1/4)

```

```

31 TN=36                                //total no. of tubes
32 TA=TN*%pi*d*l                         //m^2, total area
33 Q1=h1*TA*(T1-T2)                      //W, rate of heat
   transfer
34 m1=(Q1/Lv1)/1000                     //kg/s rate of
   condensation
35 printf("Rate of condensation is %f kg/h \n \n",m1
   *3600)
36 //from chail's corelation
37 h2=(1+0.2*cp*(T1-T2)*(N-1)/(Lv1))
38 printf("thus there will be increase in the
   calculated rate of heat transfer and in rate of
   condensation as %f percent",18.7)

```

Scilab code Exa 6.7 Saturated vapour

```

1 //Example 6.7
2 //What fraction of vapour will condense .
3
4 //Given
5 Gv=20                                    //kg/m^2 s, mass flow rate of
   benzene
6 di=0.016                                 //m, tube diameter
7 muv=8.9*(10^-6)                          //P, viscosity
8 Lv=391                                    //kj/kg., enthalpy of
   vaporization
9 cp1=1.94                                 //kj/kg C, specific heat
10 Tv=80                                     //C, normal boiling point of
   benzene
11 Tw=55                                     //C, wall temp.
12 g=9.8                                     //m/s^2, gravitational
   constant
13 rhol=815                                  //kg/m^3, density of benzene
14 rhoV=2.7                                   //kg/m^3, density of benzene
   vapour

```

```

15 k1=0.13           //W/m C, thermal conductivity
16 mu=3.81*10^-4    //P, viscosity of benzene
17 l=0.5            //m, length of tube
18
19 // calculation
20 Re=di*Gv/muv      //Reynold no. of vapour
21 //from eq. 6.38
22 Lv1=Lv+(3/8)*cpl*(Tv-Tw)
23 //heat transfer corfficient , h
24 h=0.555*(g*rhol*(rhol-rhov)*k1^3*Lv1*10^3/(di*mu*(Tv
   -Tw)))^(1/4)
25 Aavl=%pi*di*l      //m^2, available area
26 Q=Aavl*h*(Tv-Tw)    //W, rate of heat transfer
27 m=Q/(Lv1*10^3)       //kg/s, rate of condensation
   of benzene
28 Ratei=Gv*(%pi/4)*di^2 //kg/s rate of input of
   benzene vapour
29 n=m/Ratei
30 printf("fraction of input vapour condensed is %f",n
   *100)

```

Chapter 7

radiation heat transfer

Scilab code Exa 7.3 the sun may be considered

```
1 //Example 7.3
2 //calculate (a)the fraction of solar radiation falls
   in visible range
3 // (b) the fraction occurs on the left of visible
   range
4 // (c) the fraction ooccurs on right on visible range
5 // (d)wavelength and frequency of maximum spectral
   emissive power
6 // (e)the maximum spectral emissive power
7 // (f)the hemispherical total emissive power
8 //Given
9 Ts=5780           //K, surface temp.
10 //CALculation
11 // (a)
12 lamda1=0.4       //micrometer , starting visible
   spectrum range
13 lamda2=0.7       //micrometer , ending visible
   spectrum range
14 E1=lamda1*Ts    //micrometer K,
15 E2=lamda2*Ts    //micrometer K,
16 //from table 7.2
```

```

17 // fraction of radiation lying between 0 and lamda1
18 F1=0.1229
19 // fraction of radiation lying between 0 and lamda2
20 F2=0.4889
21 // the fraction of radiation falls between lamda1 &
    lamda 2
22 F3=F2-F1
23 printf("the fraction of radiation falls in visible
        range is %f \n",F3)
24 //(b)
25 F4=F1
26 printf("the fraction of radiation on the left of
        visible range is %f \n",F4)
27 //(c)
28 F5=1-F2
29 printf("the fraction in right of visible range is %f
        \n",F5)
30 //(d)
31 //from wein 's displacement law
32 lmax=2898/Ts
33 printf("The maximum wavelength is %f micrometer is",
        lmax)
34 c=2.998*10^8          //m/s , speed of light
35 mu=c/lmax
36 printf("The frequency is %f s^-1\n",mu)
37 //(e)
38 //from eq. 7.4
39 h=6.6256*10^-34          //Js planck 's constant
40 k=1.3805*10^-23          //J/K, boltzman constant
41 Eblmax=(2*pi*h*c^2*(lmax*10^-6)^-5)/((exp(h*c/(lmax
        *10^-6*k*Tb))-1)
42 printf("the maximum spectral emissive power is %f W/
        m^2\n",Eblmax)
43 //(f)
44 s=5.668*10^-8           //stephen costant
45 Eb=s*Ts^4
46 printf("the hemispherical total emissive power is %f
        W/m^2",Eb)

```

Scilab code Exa 7.4 wavelength

```
1 //Example 7.4
2 //Determine the surface temp of blackbody and
3 //wavelength of maximum emmission .
4 //Find the range of the spectrum in which the
    wavelength falls
5
6 //Variables declaration
7 Eb=4000           //W/m sq , Total emmisive power
8 s=5.669*10^-8   //Stephen boltzman constant
9
10 //Calculation
11 T=(Eb/s)^0.25  //k, surface temp. of black body
12 ym=2898/T       //micro meter ,
13 //By weins law : Max. wavelength of emmision is
    inversaly proportional
14 //to temprature. and constant is 2898 micrometer .
15
16 //Result
17 printf("Surface temp. is %f C" ,T)
18 printf("wavelength is %f micrometer " ,ym)
19 printf(" from fig 7.1 it falls in the infrared
    region of spectrum .")
```

Scilab code Exa 7.5 spectral emissivity

```
1 //Example 7.5
2 //calculate (a) total (hemispherical) emissive power
3 // (b) total (hemispherical) emissivity
4 //Given
```

```

5 T=1500           //K, surface temprature
6 //from fig 7.7
7 e1=0.2           //emissivity ,when wavelength(11) is 0<11
<2 micrometer
8 e2=0.6           //emissivity ,when wavelength(12) is 2<12
<6 micrometer
9 e3=0.1           //emissivity ,when wavelength(13) is 6<13
<10 micrometer
10 e4=0            //emissivity ,when wavelength(14) is 14
>10 micrometer
11 //from table 7.2
12 F1=0.2733       //fraction of energy in wavelength
(11)
13 F2=0.89-F1      //fraction of energy in wavelength
(12)
14 F3=0.9689-0.89 //fraction of energy in wavelength
(13)
15 //Calculation
16 s=5.669*10^-8   //stephen's constant
17 Eb=s*T^4         //emissive power
18 E=(e1*F1+e2*F2+e3*F3)*Eb
19 printf("total (hemispherical) emissive power is %f W
/m^2\n",E)
20 //(b)
21 e=E/(s*T^4)
22 printf("total (hemispherical) emissivity of the
surface is %f",e)

```

Scilab code Exa 7.6 fraction of radiation

```

1 //Example 7.6
2 //Calculate the fraction of radiation emitted by the
surface .
3 ri=5             //cm ,inside radius of ring
4 w=3              //cm, width

```

```

5 ro=ri+w           //cm, outside radius
6 L=20              //cm, surface distance
7
8 //view factor along surface dA1-A2
9 F1=2*integrate('20^2*r/(20^2+r^2)^2','r',0,ri)
10 //view factor along surface dA1-A2"
11 F2=2*integrate('20^2*r/(20^2+r^2)^2','r',ri,ro)
12 printf("fraction of radiation passes through hole
    %f \n",F1)
13 printf("fraction of radiation intercepted by the
    ring %f ",F2)

```

Scilab code Exa 7.8 relevant view factor

```

1 //Example 7.8
2 //Consider an enclosure consisting of a hemisphere
3 //of diameter d and a flat surface
4 //of the same diameter.
5 //Find the relevant view factor
6
7 //Variables declaration
8 F11=0            //view factor
9 d=1              //let it be
10 printf("view factor F11 = %f" ,F11)
11
12 //Calculation
13 F12=1-F11      //view factor
14 printf( "view factor F22 =%f" ,F12)
15
16 A1=((%pi)*d^2)/4 //sq m, area
17 A2=((%pi)*d^2)/2 //sq m, area
18 F21=A1/A2        //from eq . 7.26
19 printf("view factor F21 =%f" , F21)
20 F22=1-F21
21 //Results

```

```
22 printf("view factor=%f",F22)
```

Scilab code Exa 7.9 determine the view factors

```
1 // Example7.9
2 //Consider an enclosure formed by closing one end
3 //of a cylinder( diameter= D, height=H) by a flat
4 //surface
5 //and the other end by hemispherical dome.
6 //Determine the view factor of all the surfaces of
7 //the enclosure
8 //if height is twice the diameter.
9 //1,2,3,4 are given surface of enclosure in fig .
10 // 7.21
11
12 //Variable declaration
13 s=3           //no. of surface
14 tvf=s^2      //total view factor
15 //using the result of example 7.8
16 F11=0
17 F33= 0.5
18 printf("view factor F11 =%f",F11)
19 printf("view factor F33 =%f",F33)
20
21 //Calculation & Results
22 R1=0.25      //R=d/2*h &h=2d
23 R2=0.25
24 X=1+((1+R2^2)/(R1^2))
25 F14=(0.5)*(X-sqrt((X^2)-4*(R2/R1)^2))
26 printf("view factor F14 =%f",F14)
27 F13=F14
28 printf("view factor F13 =%f",F13)
29 F12=1-F11-F13 // from eq. 7.31 for surface 1
30 printf("view factor F12 =%f",F12)
```

```

29 d=1 //say
30 A1=(%pi*(d^2))/4
31 A3=(%pi*(d^2))/2
32 F31=A1*F13/(A3)
33 printf("view factor F31 =%f",F31)
34
35 // from eq. 7.31 for surface 3
36 F33=0.5
37 F32=1-F31-F33
38 printf("view factor F32 =%f",F32)
39
40 //for surface 2
41 A2=2*%pi*d^2
42 F21=A1*F12/A2
43 printf("view factor F21 =%f",F21)
44 F23=A3*F32/A2
45 printf("view factor F23 =%f",F23)
46 F22=1-F21-F23
47 printf("view factor F22 =%f",F22)

```

Scilab code Exa 7.10 view factors

```

1 //Example 7.10
2 //Calculate the view factors of the surfaces.
3 //Given
4 ds=0.3           //m, diameter of shell
5 r1=0.1           //m, distance from the centre
6 //Calculation
7 //by the defination of view factor
8 F12=1
9 printf("The view factor from surface 1 to 2 is %f\n"
       ,F12)
10 //F21
11 R=ds/2           //m, radius of sphere
12 r2=sqrt(R^2-r1^2)

```

```

13 A1=%pi*r2^2      //m^2 area
14 A2=2*%pi*R^2+2*%pi*R*sqrt(R^2-r2^2)
15 //from reciprocity relation
16 F21=(A1/A2)*F12
17 printf("The view factor from surface 2 to 1 is %f\n"
, F21)

```

Scilab code Exa 7.12 a carbon steel sphere

```

1 //Example 7.12
2 //calculate the time required for ball to cool down.
3 //Given
4 d=0.3      //m, diameter of steel sphere
5 Ti=800     //K, initial temp. of sphere
6 T2=303     //C, ambient temp.
7 T1=343     //C, final tempreature
8 rho=7801   //kg/m^3, density of steel
9 cp=0.473   //kj/kg C, specific heat of steel
10 //calculation
11 R=d/2     //m, radius of sphere
12 A1=4*%pi*R^2    //m^2, area of sphere
13 m=4/3*%pi*R^3*rho //m^3, mass of sphere
14 F12=1        //view factor
15 s=5.669*10^-8 //stephen Boltzman's constant
16 //dT1/dt=A1*F12*s*(T^4-T2^4)/(m*cp)
17 I=integrate( '(1/(T1^4-T2^4))' , 'T1' , 343 , 800)
18 t=I/(A1*F12*s/(m*cp*10^3))
19 printf("The time required for the ball to cool is %f
h" , t/3600)

```

Scilab code Exa 7.13 A schedule pipe

```
1 //Example 7.13
```

```

2 //Calculate the net rate of heat loss
3 //from unit length of pipe by radiation if
4 // (a) the pipe surface is considered black
5 // (b) the pipe surface has an emissivity of 0.74
6
7 //Variables declaration
8 d=0.114           //m, dia. of pipe
9 l=1                //m, length of pipe
10 A=(%pi)*d*l    //m sq, area
11 e1=1              //emmissivity of black body
12 F12= 1            //view factor , 1:pipe surface , 2:
                     room walls
13 s=5.67*10^-8     //stephen boltzman constant
14 T1= 440           //K, steam temp.
15 T2=300             //K, wall temp.
16 //Caluclation
17 Q12=A*e1*F12*s*(T1^4-T2^4)   //net rate of radiative
                                  heat loss
18
19 //Results
20 printf("(a) Net rate of radiative heat loss Q12 =%f
          W \n",Q12)
21 //Part-b
22 e2=0.74
23 Q12=A*e2*F12*s*(T1^4-T2^4)   //net rate of radiative
                                  heat loss
24 printf("(b) Net rate of radiative heat loss Q12 =%f
          W",Q12)

```

Scilab code Exa 7.14 view factors and rate of loss

```

1 //Example 7.14
2 // a. Calculate i-View factors F12 and //F21, ii-
      Calculate net rate of radiant energy gain by
      inner surface .

```

```

3 // (b) Hence calculate the rate of loss
4 // of saturated liquid nitrogen at 1 atm pressure
5 // stored in a double walled spherical Dewar flask .
6
7 // Variable declaration
8 F12=1           // view factor
9 r1=0.15          //m inner radius of phere
10 r2=0.155         //m , outer radius
11
12 // Calculation
13 A1=4*(%pi)*r1^2 //sq m inner area
14 A2=4*(%pi)*r2^2 //sq m, outer area
15 F21=A1/A2
16 h=200           //J/g, heat of vaporization of
                  nitrogen
17 s=5.669*10^-8    // boltzman constant
18 T2=298           //K, temp. of outer wall
19 T1=77             //K, Temp. of inner wall
20 e1=0.06           // emmisivity
21 e2=0.06           // emmisivity
22 x=((1-e1)/(e1*A1))+(1/(A1*F12))+((1-e2)/(e2*A2))
23 Q1net=(s*(T2^4-T1^4))/(x)
24
25 // Result -a-i
26 printf("a-i) View factor F12 = %f",F12)
27 printf("view factor F21 = %f",F21)
28 // Result - b
29 printf("( ii) The net rate of heat gain Q1net =%f J/s
      ",Q1net)
30 nl=Q1net/h
31 nl=nl*3600        //g/h
32 printf("(b) Rate of nitrogen loss = %f g/h",nl)

```

Scilab code Exa 7.15 Net rate of radient heat

```

1 //Example 7.15
2 //Calculate the net rate of radiant heat transfer to
   the wall.
3
4 //Given
5 x=0.15           //m, length of opening on a
   furnace
6 y=0.12           //m, width of opening on a
   furnace
7 x1=6             //m, width of wall
8 y1=5             //m, height of wall
9 e2=0.8            //emissivity of wall
10 T1=1400          //C, furnace temp.
11 T2=35            //C, wall temp.
12 T3=273           //C, standard temp.
13 s=5.669*10^-8    //stephen boltzman's constant
14 //in fig. 7.29
15 l1=2             //m, l1=AF
16 l2=1.5           //m, l2=AH
17 h=3              //m, E=dA1
18 //for the dA1-A2 pair the equation is
19 F1=(1/(2*pi))*(l2/(sqrt(l2^2+h^2)))*tanh(l1/(sqrt(
   l2^2+h^2)))+(l1/(sqrt(l1^2+h^2)))*tanh(l2/(sqrt(
   l1^2+h^2)))
20 //Similarly
21 //for the dA1-A3 pair the equation is
22 F2=0.1175
23 //for the dA1-A4 pair the equation is
24 F3=0.1641
25 //for the dA1-A5 pair the equation is
26 F4=0.0992
27 //view factor b/w the opening (dA1) and the wall (W)
   is
28 F5=F1+F2+F3+F4
29 //Calculation of radient heat exchange
30 dA1=x*y
31 Aw=x1*y1
32 Eb1=s*(T1+T3)^4

```

```

33 Ebw=s*(T2+T3)^4
34 F6=dA1*F5/Aw
35 Q=dA1*F5*e2*(Eb1*(1-(1-e2)*F6)-Ebw)
36 printf("the net rate of radiant heat transfer to the
           wall is %f W",Q)

```

Scilab code Exa 7.16 the base of rectangular

```

1 //Example 7.16
2 //Part-a-If the side walls are perfectly insulated
3 //and the surfaces are diffuse gray
4 //with an emissivity 0.7
5 //,Calculate the required net rate of heat supplied
       to base.
6 //b- If the skin temp. of the outside of the top
       wall is 60 degree celcius
7 //and heat loss from this surface occurs
8 //to a big factory shade at 30 degree celcius
9 //calculate the convective heat transfer coefficient
10
11 //Variable declaration
12 l=3           //m, length of wall
13 w=2           //m, width of , wall
14 d=3           //m
15 R1=l/d
16 A1=l*w      //sq m, area  1: front part
17 A2=A1        //sq m , area , 2" back part
18 e1=0.7       //emmisivity
19 e2=0.7       //emmisivity
20 T1=673       //k
21 T2=523       //k
22 s=5.669*10^-8 //stephen boltzman constant
23 //Calculation
24 F12= 0.148   //view factor ,from fig . 7.12
25 x=(A1+A2-2*A1*F12)/(A2-(A1*(F12^2)))+((1/e1)-1)+(A1/

```

```

A2)*(1/e2)-1)
26
27 // Results
28 Q1net=-1*A1*(s*(T2^4-T1^4))/(x)
29 printf("the net rate of radiant heat loss =%f kW \n"
    ,Q1net/1000)
30 // (b)
31 F24=1           //from fig 7.12
32 T20=333         //K, outer surface temp. of surface 2
33 T4=303          //K, ambient temp
34 Q2rad=A2*e2*F24*s*(T20^4-T4^4)
35 q=Q1net-Q2rad
36 q1=q/1000      // Kw
37 h=q/(A2*(T20-T4))
38 printf("convective heat transfer coeff. =%f W/sq m C
    ",h)

```

Scilab code Exa 7.17 two parallel disks

```

1 //Example 7.17
2 //calculate the net rate of exchange of radiation
   between the disks .
3 //given
4 r1i=0.1           //m, inner radius of disk 1
5 r1o=0.2           //m, outer radius of disk 1
6 r2i=0.12          //m, inner radius of disk 2
7 r2o=0.25          //m, outer radius of disk 2
8 h=0.08            //m, distance between the disks
9 R2=r2o/h
10 R1=r1o/h
11 X=1+(1+R1^2)/R2^2
12 F23_14=1/2*(X-sqrt(X^2-4*(R1/R2)^2))
13 //calculation of F23_4
14 R2_=r2o/h
15 R1_=r1i/h

```

```

16 X_=1+(1+R1_ ^2)/R2_ ^2
17 F23_4=1/2*(X_-sqrt(X_ ^2-4*(R1_ /R2_ ) ^2)) // view
   factor
18 // similarly
19 F3_14=0.815           // view factor
20 F34=0.4               // view factor
21 A23=%pi*r2o^2         // area
22 A3=%pi*r2i^2
23 A1=%pi*(r1o^2-r1i^2)
24 //from eq. 1
25 F12=A23*(F23_14-F23_4)/A1-(A3*(F3_14-F34))/A1
26 //calculation of the rate of radiative heat exchange
27 //given
28 T1=1000                //K, temprature of disk 1
29 T2=300                  //K, temprature of disk 2
30 s=5.669*10^-8          //stephen's Boltzman constant
31 e1=0.8                 //emissivity
32 e2=0.7
33 A2=%pi*(r2o^2-r2i^2)
34 F1s=1-F12
35 F2s=1-(A1*F12/A2)
36 //calculation
37 //let some quantities equal to
38 a=(1-e1)/(e1*A1)
39 b=1/(A1*F12)
40 c=(1-e2)/(e2*A2)
41 d=1/(A1*F1s)
42 e=1/(A2*F2s)
43 f=s*T1^4
44 g=s*T2^4
45 //from eq. 7.42(a)
46 //(f-J1)/a=(J1-J2)/b+J1/d
47 //(g-J2)/c=(J2-J1)/b+J1/e
48 //solving two eqns by matrix
49 A=[-0.0564,0.5036;0.4712,-0.0564]
50 B=[161.847;21376.31]
51 X=inv(A)*B
52

```

```

53 J1=X([1])
54 J2=X([2])
55 //net rate of radiation exchange
56 Q12net=(J1-J2)/b
57 printf("net rate of radiation exchange b/w disk 1
      and 2 is %f W/m^2",Q12net)

```

Scilab code Exa 7.18 rate of heat gain

```

1 //Example 7.18
2 //calculate the rate of heat gain by the liquid .
3 //Given
4 di=0.0254           //m, inner diameter of tube
5 Ti=77                //K, liquid temprature
6 do=52.5*10^-3        //m, pipe internal diameter
7 To=270               //K, wall temprature
8 l=1                  //m, length of tube
9 e1=0.05              //emissivity of tube wall
10 e2=0.1               //emissivity of pipe wall
11 e3=0.02              //emissivity for inner surface of
      radiation field
12 e4=0.03              //emissivity for outer surface of
      radiation field
13 s=5.669*10^-8        //stephen boltzman costantl
14 //Calculation
15 ds=(do+di)/2         //m, diameter of radiation shield
16 Ao=%pi*do*l          //m^2, outer pipe area
17 As=%pi*ds*l          //m^2, shield area
18 Ai=%pi*di*l          //m^2, inner pipe area
19 //View factors
20 //for the long cylindrical enclosure made up of the
      outer pipe and the shield
21 Fso=1                //because outer surface of shield cant see
      itself
22 Fos=As/Ao

```

```

23 Fsi=Ai/As
24 //now assume
25 //(1-e2)/e2+ 1/Fos +Ao*(1-e4)/(As*e4)=x
26 //(1-e3)/e3 +1/Fsi +(1/Fsi)*(1-e1)/e1=y
27 x=(1-e2)/e2+ 1/Fos +Ao*(1-e4)/(As*e4)
28 y=(1-e3)/e3 +1/Fsi +(1/Fsi)*(1-e1)/e1
29 //solving the equations for heat transfer from the
   outer pipe and inner pipe
30 def('x]=f(Ts)', 'x=(Ao*(To^4-Ts^4)/x)-(Ai*(Ts^4-Ti
   ^4)/x)')
31 Ts=fsolve(1,f)
32 Qos=(Ao*s*(To^4-Ts^4))/x
33 printf("The net rate of heat gain of tube is %f W",
   Qos)

```

Scilab code Exa 7.20 carbon dioxide gas

```

1 //Example 7.20
2 //Calculate the spectral extinction coefficient .
3 //Given
4 T=300           //K, temprature
5 per=91          //percent , adsorbed radiation
6 lam=4.2         //micrometer , wavelength radiation
7 L=0.1           //m, path length
8 //calculation
9 // I2/I1=f
10 f=1-per/100    //fraction of incident radiation
   transmitted
11 //from eq. 7.69
12 a=-log(f)/L
13 printf("the spectral extinction coefficient is %f m
   ^-1",a)

```

Scilab code Exa 7.21 hot flue gas

```
1 //Example 7.21
2 //Calculate the rate of heat transfer .
3 //Given
4 Ts=800           //C, wall temp.
5 Tg=1100          //C. burner temprature
6 CO2=8            //percent , composition of CO2 in flue
                  gas
7 M=15.2           //percent , composition of moisture in
                  flue gas
8 a=0.4            //m, length of duct
9 b=0.4            //width of duct
10 h=15             //W/m^2 C, heat transfer coefficient
11 P=1              //atm pressure
12 //CALCULATION of Eg(Tg)
13 pc=CO2/100*P    //atm, partial pressure of CO2
14 pw=M/100*P      //atm, partial pressure of
                  moisture
15 l=1              //m, length of duct
16 V=a*b*l         //m^3, volume of duct
17 A=1.6*l          //m^2 area of duct
18 Le=3.6*(V/A)    //m, mean beam length
19
20 pc*Le
21 pw*Le
22 Tg_=Tg+273
23 Ts_=Ts+273
24 //from fig 7.38
25 Ec=0.06
26 Eg=0.048         //from fig 7.39
27 //a correction dE need to be calculated
28 pw/(pc+pw)
29 pc*Le+pw*Le
30 //from fig. 7.39
31 dE=0.003
32 Eg_Tg=Ec+Eg-dE // emissivity at temp. Tg
33
```

```

34 //Calculation of alpha
35 pc*Le*Ts/Tg
36 //from fig. 7.37
37 Ec1=0.068
38 //from fig. 7.38
39 Ew1=0.069
40 Cc=1           //correction factor
41 Cw=1           //correction factor
42 d_alpha=dE    //AT 1 ATM TOTAL PRESSURE
43 alpha=Cc*Ec1*(Tg_/Ts_)^0.65+Cw*Ew1*(Tg_/Ts_)^0.45-dE
44 //radiant heat ransfer rate
45 s=5.669*10^-8 //stephen 's boltzman
                  constant
46 Qrad=A*s*(Eg_Tg*Tg_ ^4-alpha*Ts_ ^4)      //kW
47 Qconv=h*A*(Tg-Ts)   //kW, convective heat transfer
                  rate
48 Q=Qrad+Qconv
49 printf("The total rate of heat transfer from the gas
          to the wall is %f kW",Q/1000)

```

Chapter 8

Heat Exchanger

Scilab code Exa 8.1 Benzene from condenser

```
1
2 //Example 8.1
3 //page no. 303
4 //Given
5 //for Benzene
6 Mb=1000           //Kg, mass of benzene
7 T1=75             //C initial temp. of benzene
8 T2=50             //C final temp. of benzene
9 Cp1=1.88          //Kj/Kg C. specific heat of
                    benzene
10 mu1=0.37         //cP. viscosity of benzene
11 rho1=860          //kg/m^3, density
12 k1=0.154          //W/m K. thermal conductivity
13
14 //for water
15 Tav=35            //C av, temp.
16 Cp2=4.187          //specific heat
17 mu2=0.8            //cP. viscosity
18 k2=0.623          //W/m K. thermal conductivity
19 T3=30              //C. initial temp.
20 T4=40              //C final temp.
```

```

21 // Calculation
22 // (a)
23 HD=Mb*Cp1*(T1-T2) //Kj/h, heat duty
24 WR=HD/(Cp2*(T4-T3)) //kg/h Water rate
25 printf("the heat duty of the exchanger is %f kj/h" ,
    HD)
26 printf("the water flow rate is %f kg/h" ,WR)
27
28 // (b)
29 //tube side (water) calculations
30 //given
31 di1=21 //mm, inner diameter of inner tube
32 do1=25.4 //mm, outer dia. of inner tube
33 t=2.2 //mm/ wall thickness
34 kw=74.5 //W/m K. thermal conductivity of
    the wall
35 di2=41 //mm, inner diameter of outer pipe
36 do2=48 //mm, outer diameter of outer pipe
37
38 FA1=(%pi/4)*(di1*10^-3)^2 //m^2 , flow area
39 FR1=WR/1000
40 v1=FR1/(FA1*3600) //m/s ,
    velocity
41 Re1=(di1*10^-3)*v1*1000/(mu2*10^-3) //Reynold no.
42 Pr1=Cp2*1000*(mu2*10^-3)/k2 //Prandtl no.
43 //using dittus boelter eq.
44 Nu1=0.023*(Re1)^(0.8)*(Pr1)^(0.3) //nusslet no.
45 h1=Nu1*k2/(di1*10^-3) //W/m^2 C, heat
    transfer coefficient
46
47 //Outer side (benzene) calculation
48 FA2=(%pi/4)*(di2*10^-3)^2-(%pi/4)*(do1*10^-3)^2 ////
    flow area
49 wp=%pi*(di2*10^-3+do1*10^-3) ////
    wettwd perimeter
50 dh=4*FA2/wp ////
    hydrolic diameter
51 bfr=Mb/rho1 ////

```

```

        m^3/h benzene flow rate
52 v2=bfr/(FA2*3600) //  

        m/s, velocity
53 Re2=dh*v2*rho1/(mu1*10^-3) //  

        Reynold no
54 Pr2=Cp1*10^3*(mu1*10^-3)/k1 //  

        Prandtl no.
55 Nu2=0.023*(Re2)^(0.8)*(Pr2)^(0.4) //  

        nusslet no.
56 h2=Nu2*k1/(dh) //W/m^2  

        C, heat transfer coefficient
57 printf("heat transfer coefficient based on inside  

        area is %f W/m^2 C \n",h1)
58 printf("heat transfer coefficient based on outside  

        area is %f W/m^2 C \n",h2)
59
60 // Calculation of clean overall heat transfer  

        coefficient, outside area basis
61 //from eq. 8.28
62 //given
63 l=1 //assume , length
64 Ao=%pi*do1*10^-3*l
65 Ai=%pi*di1*10^-3*l
66 Am=(do1*10^-3-di1*10^-3)*%pi*l/(log(do1*10^-3/(di1  

        *10^-3)))
67
68 // overall heat transfer coefficient
69 Uo=1/((1/h2)+(Ao/Am)*((do1*10^-3-di1*10^-3)/(2*kw))  

        +(Ao/Ai)*(1/h1))
70 Ui=Uo*Ao/Ai
71
72 // Calculation of LMTD
73 dt1=T1-T4
74 dt2=T2-T3
75 LMTD=(dt1-dt2)/log(dt1/dt2) //log mean temp.  

        difference correction factor
76 Q=HD*1000/3600 //W, heat required
77 Ao_=Q/(Uo*LMTD) //m^@, required area

```

```

78 len=Ao_/(%pi*d01*10^(-3))           //m, tube length
    necessary
79
80 // (c)
81 la=15                                //m , actual length
82 Aht=(%pi*d01*10^(-3)*la)
83 Udo=Q/(Aht*LMTD)                     //W/m^2 C, overall
    heat transfer coefficient with dirt factor
84 //from eq. 8.2
85 Rdo=(1/Udo)-(1/Uo)                  //m^2 C/W
86 printf("overall heat transfer coefficient outside
    area basis is %f W/m^2 C \n",Uo)
87 printf("overall heat transfer coefficient inside
    area basis is %f W/m^2 C \n",Ui)
88 printf("The fouling factor is %f m^2 C/W",Rdo)

```

Scilab code Exa 8.2 design procedure

```

1 //Example 8.2
2 //Page no. 309
3
4 // Given
5 Cp=50          //tpd, plant capacity
6 T1=135         //C, Temp.
7 T2=40          //C temp.
8 T3=30          //C temp.
9 dt1=(T1-T2)    //C hot end temp.
10 dt2=(T2-T3)   //C cold end temp.
11 //Properties of ethylbenzene
12 rho1=840       //kg/m^3, density
13 cp1=2.093      //kj/kg K , specific heat
14 T=87.5         //C
15 mu1=exp (-6.106+1353/(T+273)+5.112*10^-3*(T+273)
            -4.552*10^-6*((T+273)^2))
16 k1=0.2142-(3.44*10^-4)*(T+273)+(1.947*10^-7)*(T+273)

```

```

^2
17 k1_=k1*0.86           // kcal/h m K
18 // properties of water
19 rho2=993               // kg/m^3, density
20 mu2=8*10^-4            // kg/m s , viscosity
21 cp2=4.175              // kj/kg K , specific heat
22 k2=0.623               // W/m K, thermal conductivity
23 k2_=k2*0.8603          // kcal/h m^2 K
24 // Calculation
25 // (i) Energy balance
26 Cp=Cp*1000/24          // kg/h, plant capacity
27 Cp=2083                // approx.
28 HD=Cp*cp1*dt1           // kj/h, Heat duty
29 HD_=HD*0.238837         // kcal/h
30 wfr=HD/(cp2*dt2)
31
32 // (ii)
33 mu1=mu1                // cP, viscosity of ethylbenzene
34 k1=k1                  // W/m K, thermal conductivity of
                           ethylbenzene
35
36 // (iii)
37 //LMTD calculation
38 LMTD=(dt1-dt2)/log(dt1/dt2)
39 // assume
40 Udo=350                // kcal/h m^2 C, overall
                           coefficient
41 A=HD_/(Udo*LMTD)        // m^2, area required
42
43 // (iv)
44 id=15.7                 // mm, internal diameter of tube
45 od=19                   // mm, outer diameter of tube
46 l=3000                  // mm, length
47 OSA=%pi*(od*10^-3)*(l*10^-3) // m^2. outer surface
                           area
48 n=A/OSA                 // no. of tubes
                           required
49 fa=n*(%pi/4)*(id*10^-3)^2 // m^2, flow area

```

```

50 lv=(wfr/1000)/(3600*fa)           //m/s , linear velocity
51
52 // (v)
53 n1=44                         //total no. of tubes that can be
      accomodated in a 10 inch shell
54 np=11                          //no. of tubes in each pass
55 // (vi)
56 bf=0.15                        //m, baffel spacing
57 // (vii)
58 //estimation of heat transfer coefficient
59 //Tube side (water)
60 fa1=(%pi/4)*(id*10^-3)^2*np    //m^2, flow area
61 v1=(wfr/1000)/(3600*fa1)        //m/s, velocity
62 Re=(id*10^-3)*v1*rho2/mu2     //Reynold no.
63 //from fig . 8.11(a)
64 jh=85                           //colburn factor
65 //jh=(hi*di)/k*(cp*mu/k)^-1/3
66 //assume , (cp*mu/k)=x
67 hi=jh*(k2_/(id*10^-3))*(cp2*1000*mu2/k2)^(1/3)  //
      kcal/h m^2 C
68
69 // shell side(organic)
70 c=(25.4-od)*10^-3              //m, clearance b/w 2
      adjacent tubes
71 B=bf                            //m, baffel spacing
72 p=0.0254                         //m, radius of 1 tube
73 Ds=0.254                         //m, inside diameter of
      shell
74 //from eq. 8.32
75 As=c*B*Ds/p                     //m^2, flow area
76 Gs=Cp/As                         //kg/m^2 h, mass flow
      rate of shell fluid
77 do=od/10                          //cm, outside diameter of
      shell
78 //from eq. 8.31
79 Dh=4*((0.5*p*100)*(0.86*p*100)-(%pi*(do)^2)/8))/(
      %pi*do)/2
80 Dh_=Dh*10^-2                      //m, hydrolic diameter

```

```

81 Re1=(Dh_*Gs)/(3600*(mu1*10^-3)) //Reynold no.
82 //from fig 8.11(b)
83 jh1=32 //colburn factor
84 ho=jh1*(k1_/Dh_)*((6)^(1/3))
85 //from eq. 8.28
86 ratio=od/id //ratio=Ao/Ai
87 Rdo=0.21*10^-3 //outside dirt
88 factor
89 Rdi=0.35*10^-3 //inside dirt
90 factor
91 Udo=1/((1/ho)+Rdo+(ratio)*Rdi+(ratio)*(1/hi))
92
93 //SECOND TRIAL
94 //estimation of heat transfer coefficient
95 //Tube side (water)
96 np1=12 //
97 fa2=(%pi/4)*(id*10^-3)^2*np1 //m^2, flow area
98 v2=(wfr/1000)/(3600*fa2) //m/s, velocity
99 Re2=(id*10^-3)*v2*rho2/mu2 //Reynold no.
100 //from fig . 8.11(a)
101 jht=83 //colburn factor
102 //jh=(hi*di)/k*(cp*mu/k)^-1/3
103 //assume , (cp*mu/k)=x
104 hit=jht*(k2_/(id*10^-3))*(cp2*1000*mu2/k2)^(1/3) //kcal/h m^2 C
105
106 // shell side
107 c2=(25.4-od)*10^-3 //m, clearance b/w 2
108 adjacent tubes
109 B2=0.1 //m, baffel spacing
110 p2=0.0254 //m, radius of 1 tube
111 Ds2=0.254 //m, inside diameter
112 of shell
113 //from eq. 8.32
114 As2=c2*B2*Ds2/p2 //m^2, flow area
115 Gs2=Cp/As2 //kg/m^2 h, mass flow
116 rate of shell fluid
117 do2=od/10 //cm, outside diameter

```

```

        of shell
113 //from eq. 8.30
114 Dh2=4*((p2*100)^2-((%pi*(do2)^2)/4))/((%pi*do2))
115 Dh2_=Dh2*10^-2                                //m, hydrolic diameter
116 Re2=(Dh2_*Gs2)/(3600*(mu1*10^-3))
117 //from fig 8.11(b)
118 jh2=48                                         //colburn factor
119 ho2=jh2*(k1_/Dh2_)*((6)^(1/3))
120 //from eq. 8.28
121 ratio=od/id                                    //ratio=Ao/Ai
122 Rdo2=0.21*10^-3                               //outside dirt factor
123 Rdi2=0.35*10^-3                               //inside dirt factor
124 Udo2=1/((1/ho2)+Rdo+(ratio)*Rdi+(ratio)*(1/hit))
125
126 //from eq. 8.10(a)
127 tauc=(T2-T3)/(T1-T3)                         //Temprature ratio
128 R=(T1-T2)/(T2-T3)                           //Temprature ratio
129 Ft=0.8                                         //LMTD correction ftor
130 Areq=HD_/(Udo2*Ft*LMTD)                     //area required
131 tubes=48                                       //no. of tubes
132 lnt=4.5                                         //length of 1 tube
133 Aavl=(%pi*od*10^-3)*tubes*lnt             //available area
134 excA=((Aavl-Areq)/Areq)*100                 //% excess area
135
136 //Pressure drop calculation
137 //Tube side
138 //from eq. 8.33
139 Gt=wfr/(3600*fa2)                            //kg/m^2 s , mass flow
           rate of tube fluid
140 n2=4                                           //tube passes
141 fit=1                                         //dimensionless viscosity
           ratio
142 g=9.8                                         //gravitational constant
143 f=0.0037                                      //friction factor
144 dpt=f*Gt^2*lnt*n2/(2*g*rho2*id*10^-3*fit) //kg/
           m^2, tube side pressure drop
145
146 //eq.8.35

```

```

147 dpr=4*n2*v2^2*rho2/(2*g) //kg/m^2, return
    tube pressure loss
148 dpr_=dpr*9.801 //N/m^2
149 tpr=dpt+dpr //kg/m^2, total
    pressure drop
150 //shell side
151 fs=0.052 //friction
    factor for shell
152 bf1=0.1 //m, baffel
    spacing
153 Nb=lnt/bf1-1 //no. of baffles
154 dps=fs*(Gs2/3600)^2*Ds*(Nb+1)/(2*g*rho1*Dh2_*fit)
    //kg/m^2, shell side pressure drop
155 dps_=dps*9.81 //N/m^2, shell
    side pressure drop
156 printf("Tube side Pressure drop is %f N/m^2 \n",dpr_)
157 printf("Shell side Pressure drop is %f N/m^2 ",dps_)
```

Scilab code Exa 8.3 The effectiveness

```

1 //Example 8.3
2 //How will the heat transfer rate and the exit oil
   temp.
3 //be affected if the water flow rate is increased by
   20 %
4
5 //Given
6 //for hot stream
7 Wh=10000 //kg/h, Rate of leaving a
   hydrolic system by the oil
8 Cph=0.454 //Kcal/Kg C, specific heat
   of oil
9 Th1=85 //C initial temp. of oil
10 Th2=50 //C final temp. of oil
```

```

11
12 //For cold stream
13 Cpc=1 //Kcal/Kg C, specific heat
      of water
14 Tc2=30 //C final temp. of water
15 Tc1=38 //C initial temp. of water
16 //from heat balance eq.
17 //kg/h, Rate of leaving a hydrolic system by the
      water
18 Wc=Wh*Cph*(Th1-Th2)/(Cpc*(Tc1-Tc2))
19 //For the hot stream
20 Cmin=Wh*Cph //Kcal/h C. Taking hot stream
      as min. stream
21 //For cold stream
22 Cmax=Wc*Cpc //Kcal/h C. Taking cold
      stream as max. stream
23 Cr=Cmin/Cmax //Capacity ratio
24 n=(Th1-Th2)/(Th1-Tc2) //effectiveness factor
25 //From eq. 8.57
26 //No. of transfer units
27 NTU=-(1+(Cr)^2)^-(1/2)*log(((2/n)-(1+Cr)-(1+(Cr)^2)
      ^-(1/2))/((2/n)-(1+Cr)+(1+(Cr)^2)^-(1/2)))
28 Ud=400 //kcal/h m^2C , overall
      dirty heat transfer coefficient
29 //from eq. 8.53
30 A=(NTU*Cmin)/Ud //Area required
31 //if the water rate is increased by 20 %,
32 a=20
33 Wc_=Wc+(Wc*(a/100))
34 Cmax_=Wc_*Cpc
35 Cr_=Cmin/Cmax_
36 //From eq. 8.56
37 n_=2*((1+Cr_)+(1+(Cr_)^2)^-(1/2)*(1+exp(-(1+(Cr_)^2)
      ^-(1/2)*NTU))/(1-exp(-(1+(Cr_)^2)^-(1/2)*NTU)))
      ^(-1)
38 Th2_=Th1-(n_*(Th1-Tc2))
39 q1=Wh*Cph*(Th1-Th2) //kcal/h previous rate of heat
      transfer

```

```

40 q2=Wh*Cph*(Th1-Th2_) //kcal/h new rate of heat
   transfer
41 //increase in rate of heat transfer
42 dq=(q2-q1)/q1
43 printf('the heat transfer rate will be affected by
   %f percent ',dq*100 )

```

Scilab code Exa 8.4 Thermal design

```

1 //Example 8.4
2 //calculate the time required to heat the charge.
3
4 //given
5 p=0.0795           //m, pitch of the coil
6 d1=0.0525          //m, coil diameter
7 h=1.464            //m, height of the impinged
                     section
8 d2=1.5              //m, diameter of batch
                     polymerization reactor
9 d3=0.5              //m, diameter of agitator
10 rpm=150             //speed of agitator
11 rho=850              //kg/m3, density of monomer
12 rho1=900             //kg/m3, density of fluid
13 mu=0.7*10^-3        //poise, viscosity of monomer
14 mu1=4*10^-3          //poise, viscosity of fluid
15 cp=0.45              //kcal/kg C, specific heat of
                     monomer
16 cp1=0.5              //kcal/kg C, specific heat of
                     fluid
17 k=0.15                //kcal/h mC, thermal
                     conductivity of monomer
18 k1=0.28                //kcal/h mC, thermal
                     conductivity of fluid
19 Rdi=0.0002            //h m2 C/kcal, fouling factor for
                     vessel

```

```

20 Rdc=0.0002           //h m2 C/kcal , fouling factor for
   coil
21 Tci=120              //C, initial temp. of coil
   liquid
22 Tvi=25                //C, initial temp. of vessel
   liquid
23 Tvf=80                //C, final temp. of vessel
   liquid
24
25 //calculation
26 a=%pi*d2*h           //outside area of the vessel
27 x=60                  //%. added of the unwetted
   area to the wetted area
28 ao=((d1+(x/100)*(p-d1))/p)*a //m2, effective
   outside heat transfer area of vessel
29 ai=6.9                //m2, inside heat
   transfer area of vessel
30                         //same as outside
                           area , if
                           thickness is very
                           small
31 //vessel side heat transfer coefficient
32 Re=(d3^2*(rpm/60)*rho)/mu      //reynold no.
33 Pr=((cp*3600)*(mu))/k
34 //from eq. 8.66
35 y=1                      //x=mu/muw=1
36 Nu=0.74*(Re^(0.67))*(Pr^(0.33))*(y^(0.14))    //
   Nusslet no
37 hi=Nu*(k/d2)             ///
   heat transfer coefficient
38
39 //coil side heat transfer coefficient
40 v=1.5                   //m/s, linear velocity of fluid
41 fa=(({%pi/4)*d1^2})     //m2, flow area of coil
42 fr=v*fa*3600            //m3/h , flow rate of the
   fluid
43 Wc=fr*rho               //kg/h , flow rate
44 dh=(4*({%pi/8)*d1^2})/(d1+({%pi/2)*d1}) //m, hydrolic

```

```

        diameter of limpet coil
45 Re1=v*rho1*dh/mu1                                // coil
        reynold no.
46 Pr1=cp1*mu1*3600/k1                               // prandtl
        no. of the coil fluid
47 //from eq. 8.68
48 d4=0.0321                                         //m, inside
        diameter of the tube
49 Nu1=0.021*(Re1^(0.85)*Pr1^(0.4)*(d4/d2)^(0.1)*y
        ^0.14)
50 hc=Nu1*(k1/dh)                                    // coil side
        coefficient
51
52 U=1/((1/hi)+(ai/(hc*ao))+Rdi+Rdc)           // overall heat
        transfer corfficient
53 //from eq. 8.63
54 beeta=exp(U*ai/(Wc*cp1))
55 Wv=2200                                           //kg, mass of
        fluid vessel
56 t=(beeta/(beeta-1))*((Wv*cp)/(Wc*cp1))*log((Tci-Tvi)
        /(Tci-Tvf))
57 printf("the time required to heat the charge %f min"
        ,t*60)

```

Chapter 9

Evaporetion and Evaporators

Scilab code Exa 9.1 single effect evaporator calculation

```
1 //Example 9.1
2 // page no.391
3 //calculate the rate at which heat must
4 //be supplied if evaporation occurs at
5 // (i) 1 atm pressure
6 //a vaccum of 650 mm Hg
7 //given data
8 ro=1020          // kg/m^3, density of feed
9 sf=4.1           //kj/kg C, specific heat of the feed
10 sp=3.9          //kj/kg C, specific heat of the product
11 ci=5            //initial concentration
12 cw=100-ci       //conc. of water
13 cf=40           //final conc.
14 rate=100         //m^3/day, rate of conc. of aq.
                     solution
15 ft=25           // C, feed temp.
16 //calculation
17 //materiel balance
18 Wf=rate*ro      //Kg. feed entering
19 Ms=ro*ci         //Kg mass of solute
20 Mw=ro*cw         //kg ,mass of water
```

```

21 fc=cw/ci           //kg ,feed concentration
22 pc=(100-cf)/cf   // kg ,product concentration
23 wlwp=Ms*pc    //Kg, water leaving with the product
24 Ws=Mw-wlwp  //kg ,water evaporated
25 Wp=wlwp+Ms   // kg , product
26 //energy balance
27 rt=0               //C reference temp.
28 ef=sf*(ft-rt)     //kj/kg ,enthlpv of the feed
29 //case i
30 Tp=100          //temp. of the product (because the
                      solute has a 'high molecular wt' the boiling pt
                      elevation is neglected)
31 ip=sp*(Tp-rt)   //kj/kg , enthalpy of the product
32 iv=2680            //kj/kg , enthalpy of the vapour
                      generated at 100 C and 1 atm pr. from the steam
                      table
33 //refer to fig. 9.23
34 //from energy balance eq. (Wf*if+qs=Wv*iv+Wp*ip)
35 qs=Ws*iv+Wp*ip-Wf-ef  //Wv=Ws
36 printf("The rate at which heat must be supplied at 1
          atm pressure is %f kj / day\n",qs)
37
38 //case ii
39 //650 mm Hg vaccum=110 mmHg pressure
40 bp=53.5             //C, boiling point of water
41 ip2=sp*(bp-rt)     //kj/kg , enthalpy of the product
42 es=2604              //kj/kg , enthalpy of the saturated
                      steam (from steam table)
43 //from energy balnce eq.
44 qs2=Wp*ip+Ws*es-Wf-ef
45 printf("The rate at which heat must be supplied at a
          pressure of 600 mm Hg is %f kj/day ",qs2)

```

Scilab code Exa 9.2 SINGLE EFFECT EVAPORATOR CALCULATION

```

1 //Example 9.2
2 //Page no. 393
3 //calculae the steam requirement and the no. of
   tubes
4 //if the height of the calandria is 1.5 m.
5
6 //given
7 ci=10           //%, initial concentration
8 cf=40           //%, final conc
9 Wf=2000          //kg/h, feed rate
10 ft=30           //C feed temp.
11 rp=0.33          //kg/cm^2, reduced pressure
12 bt1=75           //C, boiling point temp.
13 sst=115           //C, saturated steam temp.
14 l=1.5            // m, height of calandria
15 sh=0.946          //kcal/kg C, specific heat of liquor
16 lh=556.5          //kcal/kg latent heat of steam
17 bt2=345           //K, boiling point of water
18 h=2150            //kcal/h m^2 C, overall heat
   transfer coefficient
19 si=2000*(ci/100) //kg/h, solids in
20 wi=1800           //kg/h, water in
21 Wp=si/(cf/100)    //kg/h, product out
22 Wv=Wf-Wp          //evaporation rate
23 ef=sh*(ft-bt1)
24 ip=0
25 lamda_s=529.5    //kcal/kg, lamda_s=is-il
26 bpe=(273+bt1)-345 //boiling point elevation .
27 //from energy balance eq.
28 Ws=(Wp*ip+Wv*lh-Wf*ef)/lamda_s
29 q=Ws*lamda_s      //kcal/h, rate of heat transfer
30 A=q/(h*(sst-bt1)) // m^2
31 di=0.0221          //m, inside diameter
32 At=%pi*l*di        //m^2, area of a single tube
33 N=A/At              //no. of tubes
34 printf("The steam required is %f kg/h\n",Ws)
35 printf("No. of tube are %f",N)

```

Scilab code Exa 9.3 SINGLE EFFECT EVAPORATION

```
1 //Example9.3
2 //calculate
3 //i)the steam lr. to be used in the calandria
4 //ii)heat transfer rate required
5 //iii) the steam requirement .
6 //given data
7 Wf=2000           //kg/h, feed rate
8 ci=8              //% initial conc.
9 cf=40             //% final conc.
10 ft=30            //C, feed temp.
11 vp=660            //mm Hg, vaccum pressure
12 ssp=8             // bar absolute , saturated steam pr.
13 //calculation
14 sr=Wf*(ci/100)    //kg/h, solid rate
15 Wp=sr/(cf/100)    //kg/h,concentrated product rate
16 ap=760-vp          //mm Hg, absolute pressure in the
                     evaporator
17 bt=325            //K,boiling temp. of water
18 l_s=2380           //kj/kg, latent heat
19 R=8.303            //gas constant
20 w=40               //g, mass of solute
21 M=18                //g,molecular wt of solvent
22 W=60               //g, mass of the solvent
23 m=2000              //g,molecular wt of solute
24 dtb=(R*bt^2*w*M)/(l_s*W*m)    //C, boiling point
                     elevation
25 bp=bt+dtb          //k,boiling point of 40% solution
26 dt=70               //C, from given data flux becomes
                     maximum at a temp. drop =70 C
27 st=bp+dt            //K,saturation temp. of steam in the
                     steam chest
28 Sp=2.15             // bar , from steam table , saturation lr
```

```

        . of steam at this temp.

29
30 sh=4.2          //kj/kg C, specific heat of product
31 rt=0            //C reference teml.
32 ef=sh*(ft-rt)  // kj/kg, enthalpy of the feed
33 ip=sh*(54-rt)  // kj/kg, enthalpy of the product
34 iv=2607         //kj/kg, enthalpy of vapour produced
35 //from eq 9.6
36 Wv=1600         //enthalpy of evaporation
37 q=Wp*ip+Wv*iv-Wf*ef //kj/h, heat transfe rate
                     required
38 hvp=2188        //kj/kg, heat of vaporization of
                     saturated steam at 397 K
39 rs=q/hvp        //kg/h, rate of steam supply
40 printf("The steam pressure to be used in the
           calandria is %f bar(abs)\n",Sp);
41 printf("The heat transfer rate required is %f Kj/h\n
           ",q);
42 printf("Rate of steam supply is %f kg/h",rs);

```

Scilab code Exa 9.4 MULTIPLE EFFECT EVAPORATION

```

1 //Example 9.4
2 //calculate the evaporator areas and the steam
   economy.
3 //given
4 Wf=6000          //kg/h, feed rate
5 ci=2             //%, initial concentration
6 cf=35            //%, final conc.
7 ft=50            //C, feed temp.
8 ssp=2            //bar abs, saturated steaam pr.
9 sep=0.0139       //bar abs, maintained temp. in second
                     effect
10 h1=2000          //W/m^2 K, overall heat transfer
                     coefficient in 1st effect

```

```

11 h2=1500      //W/m^2 K, overall heat transfer
   coefficient in 2nd effect
12 cp=4.1       //kj/kg k, specific heat
13
14 //calculation
15 si=Wf*(ci/100) //kg/h, solid in
16 wi=5880       //kg/h, water in
17 Wp=si/(cf/100) //kg/h product out
18 wo=Wp*(1-cf/100) //kg/h, water out with the product
19 ter=wi-wo     //kg/h, total evaporation rate
20
21 //boiling temp. in the first effect
22 T1=120         //C, Temprature
23 l_s1=2200      //kj/kg, latent heat
24 T2=12          //C, boiling point in second effect
25 l_s2=2470      // kj/kg in second effect
26 tatd=T1-T2    // C, tatd=dt1+dt2 =T1-T2 , total
   available temp. drop
27 //from eq. 9.20
28 //h1*dt1=h2*dt2
29 //solving above two equations by matrix
30 A=[1,1;2000,-1500]
31 C=[108;0]
32
33 X=inv(A)*C
34
35 dt1=X([1])
36 dt2=X([2])
37 t1=T1-dt1    //temp. of steam leaving the first
   effect
38 t2=T2-dt2    //temp. of steam leaving second
   effect
39 //energy balance over the 1st effect , from eq.9.14
40 rt1=t1
41 ef=cp*(ft-t1) //kj/kg, enthalpy of feed
42 i1=0
43 lam_s1=2330    //kj/kg
44 is1=lam_s1

```

```

45 //Wf* ef+Ws* l_s=(Wf-Ws1)*i1+Ws1*i s1
46 //substituting we get ,
47 //Ws1=0.9442*Ws-253.4.....(1)
48 //energy balance over second effect
49 //from eq 9.15
50 //((Wf-Ws1)*i1+Ws1*lam_s1=(Wf-Ws1-Ws2)*i2+Ws2*i s2
51 rt2=t2
52 lam_s2=2470
53 i s2=lam_s2
54 i2=0
55 // substituting we get
56 //Ws2=0.8404*Ws1+617.5.....(2)
57 //ter ,Ws1+Ws2=5657.....(3)
58 //solving by matrix method
59 A=[0.9442,-1,0;0,0.8404,-1;0,1,1]
60 B=[253.4;-617.5;5657]
61 X=inv(A)*B
62 Ws=X([1])
63 Ws1=X([2])
64 Ws2=X([3])
65
66 //evaporator area
67 A1=Ws*1_s1/(h1*dt1) //for 1st effect
68 A2=Ws1*lam_s1/(h2*dt2) //for second effect
69
70 //revised calculation
71 //taking
72 dt1_=48
73 dt2_=60
74 T1_=T1-dt1_
75 T2_=T2-dt2_
76 ls1_=2335
77 ls2_=2470
78 // energy balance over first effect gives
79 //Ws1=0.9422Ws-231.8.....(4)
80 //energy balance over second effect gives
81 //Ws2=0.8457Ws1+579.5.....(5)
82 //solving eq 3,4,5

```

```

83 P=[0.9422,-1,0;0,0.8457,-1;0,1,1]
84 Q=[231.8;-579.5;5657]
85 Y=inv(P)*Q
86 Ws_=Y([1])
87 Ws1_=Y([2])
88 Ws2_=Y([3])
89
90 //evaporator area for 1st & 2nd effect in m^2
91 A1_=Ws_*l_s1/(h1*dt1_)
92 A2_=Ws1_*l_s1_/(h2*dt2_)
93 EA=(A1_+A2_)/2
94 SE=(Ws1_+Ws2_)/Ws_
95 printf("The evaporator area is %f square metre \n"
         ,EA);
96 printf("Steam economy is %f",SE);

```

Scilab code Exa 9.5 MULTIPLE EFFECT EVAPORATION

```

1 //Example 9.5
2 //Determine the maximum no. of effects to be used.
3 //given
4 ssp=3.32      //bar abs, saturated steam pr.
5 rp=0.195       // bar abs, residual pr. in the
                 condenser
6 tl=41          //K, sun of temp. losses because of BPE
7 mt=8           //k, minimum available temp. driving
                 force
8 //calculation
9 sst=410         //K, saturated steam temp.
10 st=333          //K, corresponding saturation temp.
                 when pressure in the last effect is 0.195 bar
11 ttd=sst-st     //K, total temp. difference
12 atd=ttd-tl     // K, available temp. drop across the
                 unit
13 n=atd/mt       //maximum no. of effect

```

```
14 printf("Maximum no. of effects are %f",n);
```

Scilab code Exa 9.6 MULTIPLE EFFECT EVAPORATION

```
1 //Example 9.6
2 //Calculate the heat transfer area required
3 //(assuming equal area for the three effects)
4 //Rate of steam consumption , Steam economy
5
6 // given
7 fc=9.5      //%, feed concentration
8 pc=50       //%, product conc.
9 ft=40        // C, feed temp.
10 er=2000     //kg NaOH/h, evaporation rate
11 vp=714      //mm Hg, vaccum pr. in last effect
12 //heat transfer coefficients , W/m^2 C
13 h1=6000     //for first effect
14 h2=3500     //for second effect
15 h3=2500     //for third effect
16
17 // calculatiin
18 Wf=er/(fc/100) //kg/h, 2 tons NaOH per hour , feed
                  rate
19 Wp=er/(pc/100) //kg/h, product rate
20 ter=Wf-Wp    //kg/h, total evaporation rate
21 //steam
22 p=3.3        //bar , assumed saturated
23 //from steam table
24 Ts=137       //C, temp.
25 l_s=2153     //kj/kg, latent heat
26 pl=760-vp   //mm Hg, pressure in the last effect
27 bp=37        //C, boiling point of water
28 //refer to fig. 9.24
29 attd=Ts-bp  //C, apparent total temp. drop
30 //let assume the following evaporation rate for
```

```

            three effects in kg/h
31    ev1=5600
32    ev2=5680
33    ev3=5773
34    //conc. in three effects
35    c1=er/(Wf-ev1)
36    c2=er/(Wf-ev1-ev2)
37    c3=0.5      //given
38    //boiling point elevations in three effects in C
39    bpe1=3.5
40    bpe2=8
41    bpe3=39
42    attda=attd-(bpe1+bpe2+bpe3) //actual total temp.
        drop available
43    //temp. drop in three effects
44    //from eq. 9.23
45    dt1=attda*((1/h1)/((1/h1)+(1/h2)+(1/h3)))
46    dt2=attda*((1/h2)/((1/h1)+(1/h2)+(1/h3)))
47    dt3=attda*((1/h3)/((1/h1)+(1/h2)+(1/h3)))
48
49    //from table 9.4
50    //enthalpy of solution in three effects in kj/kg
51    i1=486
52    i2=385
53    i3=460
54    //enthalpy of vapour generated for three effects
        in kj/kg
55    is1=2729
56    is2=2691
57    is3=2646
58    //Enthalpy of condensate over effect 1,2,3 in kj/
        kg
59    il1=0
60    il2=519
61    il3=418
62    //Enthalpy balance over effect 1
63    ef=145      //kj/kg, enthalpy of feed
64    //from energy balance eq.

```

```

65 //Ws1=0.96Ws - 3200.....(1)
66 //enthalpy balanc over effect 2
67 //Ws2=0.9146Ws1 + 922.....(2)
68 //enthalpy balanc over effet 3
69 //Ws3=1.073Ws2+0.0343Ws1 - 722.....(3)
70 //ter=Ws1+Ws2+Ws3 = 17053.....(4)
71
72 //Solving above four eqns by matrix
73 A
    =[0.96,-1,0,0;0,0.9146,-1,0;0,0.0343,1.073,-1;0,1,1,1]
74 B=[3200;-922;722;17053]
75 X=inv(A)*B
76 Ws=X([1])
77 Ws1=X([2])
78 Ws2=X([3])
79 Ws3=X([4])
80
81 //calculation of heat transfer areas iver effect
     1, 2 ,3
82 A1=Ws*1_s*10^3/(h1*dt1*3600)
83 A2=Ws1*(is1-il2)*10^3/(h2*dt2*3600)
84 A3=Ws2*(is2-il3)*10^3/(h3*dt3*3600)
85
86 //Revised dt
87 avar=(A1+A2+A3)/3
88 dt1_=(A1/avar)*dt1
89 dt2_=(A2/avar)*dt2
90 dt3_=attda-dt1_-dt2_
91
92 //from table 9.5
93 //enthalpy of vapour generated over effect 1,2,3
     in kj/kg
94 is1_=2720
95 is2_=2685
96 is3_=2646
97 //enthalpy of soln on 1,2,3 in kj/kg
98 i1_=470

```

```

99     i2_=380
100    i3_=460
101    //enthalpy of condensate over effect 1 ,2,3 in kJ/
102      kg
102    i11_=0
103    i12_=513
104    i13_=412
105    //enthalpy balance ove effect 1,2,3 gives
106    Ws_=8854
107    Ws1_=5432
108    Ws2_=5812
109    Ws3_=5809
110    //revised heat transfer areas for effect 1 ,2,3 in
111      m^2
111    A1_=Ws_*l_s*1000/(h1*dt1_*3600)
112    A2_=Ws1_*(is1_-il2_)*10^3/(h2*dt2_*3600)
113    A3_=Ws2_*(is2_-il3_)*10^3/(h3*22.5*3600)
114    avar_=(A1_+A2_+A3_)/3
115    SE=ter/Ws_
116
117    printf("The areas are now reasonably close \n")
118    printf("Steam Rate is % f Kg/h \n",Ws_)
119    printf("Steam economy is %f",SE)

```

Scilab code Exa 9.7 MULTIPLE EFFECT EVAPORATION

```

1 //Exalple 9.7
2 //Calculate the increase in evaporation capacity
3 //attainable
4 //also the % change in cost of concentrating a ton
5 //of feed .
6 //Given
7 Wf=3000           //kg/h ,feed
8   fc=8             //%, feed concentration
9   pc=40            //% product concentration

```

```

8     si=Wf*(fc/100)      //kg, solid in
9     pr=si/(40/100)      //g/h, product rate
10    ft=60                //C, feed temp.
11    er=Wf-pr             //kg/h, evaporation rate
12    cost=120000          //total cost per year
13    p1=4.5               //bar, low pressure steam
14    scpt=700              //per ton. cost of steam
15    cp=0.764              // kcal/kg, specific heat
16
17 //from table 9.6
18    eep=1                //atm existing evaporator pressure
19    oop=400000            // peryear ,other operatingcost
20    oop_=600000           //per yr, for proposed condition
21    wd=300                //days per year.working days
22    wh=wd*24              //working hr
23
24 //EXISTING OPERATING CONDITION
25    rt=0                  //C, reference temp.
26    ef=eep*(ft-rt)        //kcal/kg, enthalpy of feed
27    pt=100                //C, product temp.
28    i1=cp*(pt-rt)         //kcal/kg, enthalpy of soln
29    is1=639                //kcal/kg,enthalpy of vapour
     generated at 1 atm (from steam table)
30    l_s=496                //kcal/kg,latent heat of steam at 4.5
     bar
31    T=425                 //K
32 //heat balance
33    Ws=(er*is1+pr*i1-Wf*ef)/l_s           //kg/h, steam
     required
34    q=Ws*l_s              //ton/ hr ,heat supplied
35    x=q/(T-(pt+273))     //x=Ud*A
36 //hourly cost
37    sc=Ws/1000*(scpt)     // /perh, steam cost
38    lc=100                 //per h,labour cost
39    oc=oop/(wh)            // per h,othe cost
40    tc=sc+lc+oc           //total cost
41    C=tc/(Wf/1000)         // per ton, cost per ton of feed
42

```

```

43 //PROPOSED OPERATING CONDITION
44 bpl=320           //K, boiling point of liquid
45 dt=T-bpl
46 q_=x*dt          //kcal/h, rate of heat supply
47 sr=q_/l_s        //steam rate ton per hr
48 pt_=47           //C, product temp .
49 ep=cp*(pt_-rt)  //kcal/kg. enthalpy of product
50 ev=618           //kcal/kg, enthalpy of vapour
                     generated
51 //heat balance
52 //24Wf_-582Ws1_=2825000 .....( 1 )
53 //material balance
54 // 4Wf_-5Ws1_=0 .....( 2 )
55 //solving by matrix method
56 a=[24,-582;4,-5]
57 b=[-2825000;0]
58 x_=inv(a)*b
59 Wf_=x_([1])
60 Ws1_=x_([2])
61 ic=(Wf_-Wf)/Wf
62 printf("The increase in evaporation capacity ic %f
           percentage \n",ic*100)
63 sr_=Ws1_/1000    //ton per hr ,steam rate
64 //hourly cost
65 sc_=Ws1_*scpt   //steam cost
66 lc_=200          //labour cost rs.200/ h
67 oc_=oop_/wh     // other cost
68 tc_=sc_/1000+lc_+oc_
69 C_=tc_/(Wf_/1000) //cost per ton of feed
70 ps=(C-C_)/C
71 printf(" The percentage change in the cost of
           concentrating a ton of feed is %f percentage",
           ps*100)

```

Scilab code Exa 9.8 Mechanical vapour compression

```

1
2 //Example 9.8
3 //make a mechanical vapour recompression calculation
4 .
5 q=2200           //kj/kg heat of condensation of steam
6 //from example 9.1
7 Qr=2.337*10^8    //kj/day rate of heat supply
8 //calculation
9 Rate=Qr/q         //kg/day steam supply rate
10 Rate_=1.062*10^5 //approximate value
11 E=2800           //kj/kg enthalpy of compressed
                    vapour
12 T=175.7          //C, temprature
13 Ts=121            //C Saturation temprature
14 E1=2700           //enthalpy at saturation
                    temprature
15 q1=T-Ts           //Superheat of vapour
16 T1=100             //C hot water temprature
17 E2=419             //Enthalpy at hot water temp.
18 x=(E-E1)/(E1-E2) //water supplied per kg of
                    superheated steam
19 S=1.044            //steam obtained after
                    desuperheating
20 R1=8.925*10^4      //kg/day rate of vapour
                    generation
21 R2=S*R1            //Rate of recompressed sat.
                    steam
22 R2_=9.318*10^4     //approximate value
23 SR=Rate_-R2_
24 printf("Make up steam required is %f kg/day",round(
                    SR))

```

Chapter 10

UNSTEADY STATE AND MULTIDIMENSIONAL HEAT CONDUCTION

Scilab code Exa 10.8 MUMERICAL CALCULATION OF UNSTEADY STATE HEAT CONDUCTION

```
1 //Example no. 10.8
2 //Page no. 444
3 //Calculate the bottom surface , mid plane ,top
   surface temperatures
4 //of the slab after 4 hours
5 //given
6 l=0.05           //m, thickness of
   margarine slab
7 ro=990          //Kg/m^3, density of
   margarine slab
8 cp=0.55         //Kcal/kg C, specific
   heat of slab
9 k=0.143         //kcal/h mC, thermal
   conductivity of slab
10 Ti=4            //C, initial temp
11 To=25           //C, ambient temp.
```

```

12 t=4                                //hours , time
13 h=8                                //kcal/h m^2 C
14 //calculation
15 Fo=k*t/(ro*cp*l^2)                  //, fourier no.
16 Bi=h*l/k                            //Biot no.
17 //from fig . 10.6 a
18 Tcbar=0.7                            //Tcbar=(Tc-To)/(Ti-To)
19 Tc=To+Tcbar*(Ti-To)                 //C, centre temp.
20 //from fig 10.6 b
21 //(T-To)/(Tc-To)=0.382
22 T=0.382*(Tc-To)+To                 //c,top surface temp.
23 //again from fig . 10.6 b
24 Tm=0.842*(Tc-To)+To                //, mid plane temp.
25 printf("The bottom surface temperature of given slab
         is %f C",Tc);
26 printf("The top surface temperature of given slab is
         %f C",T);
27 printf("The mid plane temperature of given slab is
         %f C",Tm);

```

Scilab code Exa 10.9 NUMERIC CALCULATION OF UNSTEADY STATE HEAT CONDUCTION

```

1 //Example10.9
2 //Page no. 449
3 //calculate : (i) time required for the centre-
line temp.
4 //to drop down to 200 C
5 // (ii)the temp. at half radius at that moment
6 // (iii)the amount of heat that has been transferred
   to the liquid
7 // by that time per metre length of the shaft
8 //given data
9 Ti=870                                //C, initial temp
.
```

```

10 To=30 //C, ambient
      temp.
11 Tc=200 //C, centre line
      temp.
12 h=2000 //W/m^2 C,
      surface heat transfer coefficient
13 a=0.05 //m, radius of
      cylinder
14 k=20 //W/m C, thermal
      conductivity
15 ro=7800 //kg/m^3, density
16 cp=0.46*10^3 //j/kg C,
      specific heat
17
18 //calculation
19 //i
20 Bi=h*a/k //Biot no.
21 alpha=k/(ro*cp) //m^2/C, thermal
      diffusivity
22 Tcbar=(Tc-To)/(Ti-To) // dimensionless
      centre line temp.
23 //from fig 10.7 a
24 fo=0.51 //fourier no. fo=
      alpha*t/a^2
25 t=fo*a^2/alpha //s, time
26
27 //ii
28 //at the half radius, r/a=0.5 & Bi=5
29 T=To+0.77*(Tc-To) //from fig. 10.7 b
30
31 //iii
32 x=Bi^2*fo
33 //for x =12.75 & Bi=5.0. fig.10.9 b gives
34 //q/qi=0.83
35 qi= %pi*a^2*(1)*ro*cp*(Ti-To) //kj, initial amount
      of heat energy
36 //present in 1 m
      length of shaft

```

```
37 q=0.83*qi //j , amount of heat  
transferred  
38 printf("(i) time required for the centre-line temp.  
to drop down to 200 C is %f s",t);  
39 printf("(ii)the temp. at half radius at that moment  
is %f C ",T);  
40 printf("(iii)the amount of heat that has been  
transferred to the liquid is %f Kj",q*10^(-3));
```

Chapter 11

Boundary layer heat transfer

Scilab code Exa 11.1 water at 25 degree celcius

```
1 //Example 11.1
2 //page no. 478
3 //a-Calculate Boundary layer thickness at x=0.5 m
4 //b-Calculate local drag coeff at x=0.5 m
5 //c-Force req to hold the plate in position
6 //d-shear stress at a plane ,distant t/2 from the
    surface at x = 0.5 m
7 //Variable declaration
8
9 v =1 //m/s
10 //temprature
11 T=25           // degree celcius
12 //length of plate ,l=1m
13 l=1           //m
14 //width of plate ,w=0.5m
15 w=0.5 //m
16 //angle of incidence ,theta=0 degree
17 theta=0        //degree
18
19 //Calculation
20 //for water at 25 degree celcius ,momentum
```

```

        diffusivity ,
21 MD=8.63*(10^-7) // m^2/s
22 //local Reynold no.
23 x=0.5 //m
24 Re=x*v/MD
25 //from Eq. 11.39 ,the boundary layer thickness is
26 t=5*x/(Re^0.5)
27
28
29 //Results
30 printf ("i) Boundary layer thickness is %f m\n",t)
31
32 //local drag coefficient
33 //CD=local drag force per unit area (F)/kinetic
            energy per unit volume(KE)
34 //F=0.332*rho*v^2*Re^0.5 and KE= 0.5*rho*v^2
35 CD=0.332*v^2*(Re^-0.5)/(0.5)*v^2
36
37 printf("Local drag coefficient is %f \n",CD)
38
39 //From eq 11.44 , the drag force acting on one side
            of the plate is
40 //kinetic viscocity
41 mu=8.6*(10^-4)
42 fd=0.664*mu*v*(l*v/MD)^0.5*w
43 //the total force acting on both sides of the plate
44
45 tfd=2*fd
46 printf("total drag force is %f N \n",tfd)
47
48 //shear stress at any point in the boundary layer
49 //at a point in the boundary layer ,
50 x=0.5 //m
51 y=t/2
52 // n=blasius dimensionless variable
53 n=y/(MD*x/v)^0.5
54 //From table 11.1 , at n=2.5 , f''(n)=0.218
55 //shear stress= tau

```

```
56 fn=0.218 // f "(n)=fn  
57 tau=(mu*v*(v/(MD*x))^0.5)*fn  
58 printf("Shear stress is %f N/m^2",tau)
```

Scilab code Exa 11.2 air at 30 degree celcius

```
1 //Example 11.2  
2 //Page no. 488  
3 //Calculate the thermal boundary layer thickness &  
4 //local heat transfer coefficient 0.75 m from the  
leading edge.  
5  
6 //Variable declaration  
7 Ts=200 // C,temp. of air  
8 Ta=30 //C, temp .of surface  
9 Va=8 //m/s, velocity of air  
10 d=0.75 //m, distant from leading edge  
11  
12 //Calculation  
13 Tm=(Ts+Ta)/2 //C, Mean temp. of boundary layer  
14 mu=2.5*10^-5 //m^2/s, viscosity  
15 P=0.69 //prndat1 no.  
16 k=0.036 //W/m c, thermal conductivity  
17 Re=d*Va/mu //reynold no.  
18 t=5*d/(Re^0.5*P^(1/3)) //m, thermal  
boundary layer thickness  
19 printf("Thermal boundary layer thickness is %f mm \n  
",t*10^3)  
20  
21 N=(0.332*Re^(0.5)*P^(1/3)) //Nusslet no.  
22 h=k*N/d //heat  
transfer coefficent  
23 printf("heat transfer coeff is %f W/m^2 C",h)
```

Scilab code Exa 11.3 A thin metal plate

```
1 //Example 11.3
2 //Page No. 489
3 //given
4 //Free stream velocity (v1) and temp.(t1) on side 1
5 v1=6 //m/s
6 t1=150 //degree celcius
7 //same on side 2
8 v2=3 //m/s
9 t2=50 //degree celcius
10 //distant
11 x=0.7 //m
12 //The plate temp. is assumed to be equal to the mean
   of the bulk air temp on the two sides of the
   plates
13 T=100 //degree celcius
14 //Side 1
15 //mean air temp.
16 tm1=(T+t1)/2
17 //From thermophysical properties:kinetic viscosity (
   kv), Prandtl no.(P), thermal conductivity (k)
18 kv1=2.6*10^-5 //m^2/s
19 P1=0.69
20 k1=0.0336 //W/m degree celcius
21 //Reynold no.
22 Re1=x*v1/kv1
23 //Nusslet no(N1)
24 a=1/3
25 N1=0.332*(Re1)^0.5*P1^a
26 h1=k1*N1/x
27 //Side 2 of the plate
28 tm2=(T+t2)/2
29 //Similarly
```

```

30 kv2=2.076*(10)^-5 //m^2/s
31 P2=0.70
32 k2=0.03 //W/m degree celcius
33 Re2=x*v2/kv2
34 N2=0.332*(Re2)^0.5*P2^a
35 h2=k2*N2/x
36 //overall heat transfer coeff.
37 U=h1*h2/(h1+h2)
38 //The local rate of heat exchange
39 RH=U*(t1-t2)
40 printf("Local rate of heat exchange is %f W/m^2\n\n",RH)
41 //the plate temp is given by
42 TP=t2+(t1-t2)*U/h2
43 printf("Plate temperature is :%f Celsius \n",TP)

```

Scilab code Exa 11.4 calculate the temprature

```

1 //Example 11.4
2 //Calculate the temprature of the plate after 1 hour
3 //if its initial temp, is 120 C
4
5 //Given
6 T1=120 //C, initial temp
.
7 T2=25 //C, Final temp.
8 Tm=(T1+T2)/2 //C, mean temp.
9 rho=8880 //kg/m^3, density
    of plate
10 //Properties of air at mean temp.
11 mu=2.07*10^-5 //m^2/s,
    viscosity
12 Pr=0.7 //Prandtl no.
13 k=0.03 //W/m C, thermal
    conductivity

```

```

14 l=0.4 //m, length of
          plate
15 w=0.3 //m, width of
          plate
16 d=0.0254 //m, thickness of
          plate
17 Vinf=1 //m/s, air
          velocity
18 Re=l*Vinf/mu //REynold no.
19
20 //from eq. 11.90 (b)
21 Nu=0.664*(Re)^(1/2)*(Pr)^(1/3) //average Nusslet
          no.
22 //Nu=l*h/k
23 h=Nu*k/l //W/m^2 C, heat
          transfer coefficient
24 //Rate of change of temp. is given by
25 A=2*l*w //m^2. area of
          plate
26 t=1*3600 //s, time
27 cp=0.385*10^3 //j/kg K,
          specific heat
28 m=l*w*d*rho //kg, mass of
          plate
29
30 // -d/dt (m*cp8dt)=A*hv*(T1-T2)
31 // applying the boundary condition
32 T=(T1-T2)*exp(-A*h*t/(m*cp))+T2
33 printf("The temprature of plate after 1 hour is %f
          C", round(T))

```

Scilab code Exa 11.5 Prandtl analogy

```

1 //Example 11.5
2 //Page no. 508

```

```
3 // given
4 //Reynold no (Re) , friction factor (f) , Prandlt no. (P)
5 Re=7.44*(10^4)
6 f=0.00485
7 P=5.12
8 x=P-1           // assume
9 // according to Von Karmen analogy
10 N=((f/2)*Re*P)/(1+(5*sqrt(f/2))*(x+log(1+(5/6)*x)))
11 printf("Nusslet no is: %f \n",N)
12 // printf("The prandtl analogy predicts Nu=458.7")
```
