ON TEMPERATURE & POWER MANAGEMENT FOR MPSOC

JIAQI YAN

Dynamic power and temperature management

- Dynamic power and temperature management
- Thermal analysis methods for multi-core processor

- Dynamic power and temperature management
- Thermal analysis methods for multi-core processor

PART 1

PART 1

- Temperature analysis model
- Power analysis model
- Existing management algorithm
- Innovative VP-TALk
- A DPTM prototype system
- Expriment validation

PART 1

TEMP ANALYSIS MODEL

Equivalent RC circuit

TEMP ANALYSIS MODEL

Equivalent RC circuit

$$\frac{dT}{dt} = \frac{P}{C_{th}} - \frac{T - T_{amb}}{R_{th}C_{th}} = \alpha P - \beta (T - T_{amb})$$

POWER ANALYSIS MODEL

Power

Leakage current

Switch overhead

POWER ANALYSIS MODEL

Power

$$P_{active} = CV_{dd}^2 f + N_{gate}I_{leakage}V_{dd}$$

Leakage current

Switch overhead

POWER ANALYSIS MODEL

Power

$$P_{active} = CV_{dd}^2 f + N_{gate}I_{leakage}V_{dd}$$

Leakage current

$$I_{leakage} = I(V_0, T_0)(AT^2 \exp(\frac{\alpha V_{dd} + \beta}{T}) + B \exp(\gamma V_{dd} + \delta))$$

Switch overhead

- Pattern-based
- M-oscillating
- * TALk

Take advantage of DVS or DVFS

Take advantage of DVS or DVFS

PATTERN-BASED

M-OSCILLATING

TALK

 ∞

TALK

TALK

VP-TALK

A DPTM PROTOTYPE SYSTEM

- A motivative example
- Workload prediction with time series analysis
- DPTM system with online assessment

MOTIVATION

 ∞

DECOMPOSING INTO
PREDICTABLE COMPONENTS AND
COMPOSING PREDICTION
TOGETHER

DECOMPOSING INTO
PREDICTABLE COMPONENTS AND
COMPOSING PREDICTION
TOGETHER

DECOMPOSING INTO
PREDICTABLE COMPONENTS AND
COMPOSING PREDICTION
TOGETHER

Trend

DECOMPOSING INTO
PREDICTABLE COMPONENTS AND
COMPOSING PREDICTION
TOGETHER

Trend

Period

DECOMPOSING INTO
PREDICTABLE COMPONENTS AND
COMPOSING PREDICTION
TOGETHER

Trend

Period

DECOMPOSING INTO
PREDICTABLE COMPONENTS AND
COMPOSING PREDICTION
TOGETHER

Trend

Period

DECOMPOSING INTO
PREDICTABLE COMPONENTS AND
COMPOSING PREDICTION
TOGETHER

Trend

Period

DECOMPOSING INTO
PREDICTABLE COMPONENTS AND
COMPOSING PREDICTION
TOGETHER

Trend

Period

ONLINE ASSESSMENT

Score for a DPTM strategy

Pick up the historic best

ONLINE ASSESSMENT

Score for a DPTM strategy

$$w_{kt} = 1 - \sum_{j=t_0}^{t-1} \frac{E_{k,j} \lambda_j}{\sum_{i=1}^{N} E_{i,j}}$$

Pick up the historic best

ONLINE ASSESSMENT

Score for a DPTM strategy

$$w_{kt} = 1 - \sum_{j=t_0}^{t-1} \frac{E_{k,j} \lambda_j}{\sum_{i=1}^{N} E_{i,j}}$$

Pick up the historic best

$$DPTM_t = \arg(\max_{1 \le k \le N} (w_{k,t}))$$

- Prototype system V.S. Avg. effect
- Prototype system V.S. Ideal effect

ENERGY CONSUMPTION

 ∞

PEAK TEMPERATURE

 ∞

CONTENTS

- Dynamic power and temperature management
- Thermal analysis methods for multi-core processor

CONTENTS

- Dynamic power and temperature management
- Thermal analysis methods for multi-core processor

PART 2

PART 2

- Thermal analysis model
- HotSpot
- Temperature dependence on leakage power/current
- Architecture-level thermal analysis methods
- Expriment validation

THERMAL ANALYSIS MODEL

Model Dissipation System

THERMAL ANALYSIS MODEL

m

Model Dissipation System

HOTSPOT

HOTSPOT

HOTSPOT

Equivalent RC model

 $G \times T = P$

TACKLE TEMP DEP ON LEAK

-000

T-P ITERATION

BlockTAM

- BlockTAM
- CoreTAM

- BlockTAM
- CoreTAM
- BlockInsideCoreTAM

BLOCK-TAM

BLOCK-TAM

	1 1				1 1		1
I.2_Left_4	Core_4	I.2_Left_8	Core_8	I.2_Left_12	Core_12	1.2_Left_16	Core_16
L2_4	L2_Right_4	L2_8	L2_Right_8	L2_12	L2_Right_12	L2_16	L2_Right_l
I.2_Left_3	Core_3	L2_Left_7	Core_7	L2_Left_11	Core_11	L2_Left_15	Core_15
L2_3	L2_Right_3	L2_7	L2_Right_7	L2_11	L2_Right_11	L2_15	L2_Right_l
I.2_Left_2	Core_2	1.2_Left_6	Core_6	I.2_Left_10	Core_10	I.2_Left_14	Core_14
L2_2	L2_Right 2	L2_6	L2 Right 6	L2_10	L2 Right 10	L2_14	L2_Right_
I.2_Left_1	Core_1	I.2_Left_5	Core_5	I.2_Leê_9	Core_9	I.2_Left_13	Core_13
L2_1	L2_Right_1	L2_5	L2_Right_5	L2_9	L2_Right_9	L2_13	L2_Right_

CORE-TAM

Core_4	L2_Left_8	Core_8	I.2_Left_12	Core_12	1.2_Left_16	Core_16
L2_Right_4	L2_8	L2_Right_8	L2_12	L2_Right_12	L2_16	L2_Right_16
Core_3	L2_Left_7	Core_7	L2_Left_11	Core_11	I.2_Left_15	Core_15
L2_Right_3	L2_7	L2_Right_7	L2_11	L2_Right_11	L2_15	L2_Right_15
Core_2	L2_Left_6	Core_6	L2_Left_10	Core_10	I.2_Left_14	Core_14
L2_Right_2	L2_6	L2 Right 6	L2_10	L2_Right_10	L2_14	L2_Right_14
Core_1	L2_Left_5	Core_5	L2_Left_9	Core_9	I.2_l.eft_13	Core_13
L2_Right_I	L2_5	L2_Right_5	L2_9	L2_Right_9	L2_13	L2_Right_13
	L2_Right_4 Core_3 L2_Right_3 Core_2 L2_Right_2	L2_Right_4	L2_Right_4	L2_Right_4 L2_8 L2_Right_8 L2_12 Core_3 L2_Left_7 Core_7 L2_Left_11 L2_Right_3 L2_7 L2_Right_7 L2_11 Core_2 L2_Left_6 Core_6 L2_Left_10 L2_Right_2 L2_Right_6 L2_Left_10 Core_1 L2_Left_5 Core_5 L2_Left_9	L2_Right_4	L2_Right_4

BLOCKINSIDECORE-TAM

L2_Left_4	Core_4	L2_Left_8	Core_8	I.2_Left_12	Core_12	1.2_Left_16	Core_16
L2_4	L2_Right_4	L2_8	L2 Right 8	L2_12	L2_Right_12	L2_16	L2_Right_16
L2_Left_3	Core_3	L2_Left_7	Core_7	L2_Left_11	Core_11	L2_Left_15	Core_15
L2_3	L2_Right_3	L2_7	L2_Right_7	L2_11	L2_Right_11	L2_15	L2_Right_15
L2_Left_2	Core_2	L2_Left_6	Core_6	I.2_Left_10	Core_10	1.2_Left_14	Core_14
L2_2	L2_Right_2	L2_6	L2_Right_6	L2_10	L2_Right_10	L2_14	L2_Right_14
L2_Left_1	Core_1	L2_Left_5	Core_5	L2_Left_9	Core_9	L2_Left_13	Core_13
L2_1	L2_Right_1	L2_5	L2_Right_5	L2_9	L2_Right_9	L2_13	L2_Right_13

- Analysis accuracy
- Analysis speedup

m

ACCURACY VALIDATION

SPEEDUP VALIDATION

表 5.4 1000组热分析各算法计算耗时及加速倍数X对比

分析算法	HotSpot	BlockTAM	CoreTAM	BlockInsideCoreTAM
T_{Anls}/s	61.301	1.216	0.414	0.927
T_{Totl}/s	61.301	4.663	4.374	4.374
X_{Anls}	BASE	50.416	147.962	66.100
X_{Totl}	BASE	13.147	15.876	14.014

SUMMARY

- An innovative management algorithm
- A DPTM prototype system
- Architecture-level thermal analysis methods

