Linear Algebra

Binary Operations:

A *binary operation* on a set is a calculation involving two elements of the set to produce another element of the same set.

(or)

A binary operation on a set S is a mapping of the elements of the Cartesian product $S \times S$ to S.

$$*: S \times S \rightarrow S$$

(or)

An operation * on a non-empty set A is said to be a binary operation if

 $a \in A \& b \in A$, then $a * b \in A$ (Closure Property)

Group:

A non empty set S with the binary operation * is said to be *group* if it satisfies the following conditions;

- 1. Closure property: $a \in S \& b \in S$, then $a * b \in S$
- 2. Associative property: $\mathbf{u} * (\mathbf{v} * \mathbf{w}) = (\mathbf{u} * \mathbf{v}) * \mathbf{w}$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{S}$; (Semi group)
- **4. Inverse property:** For every $u \in S$, there exists an element $v \in S$ such that $\mathbf{u} * \mathbf{v} = \mathbf{v} * \mathbf{u} = \mathbf{e}$. Then \mathbf{v} is said to an inverse of \mathbf{u} and denote by u^{-1} (**Group**)
- 5. Commutative property: $\mathbf{u} * \mathbf{v} = \mathbf{v} * \mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in \mathbf{S}$. (Abelian Group)

Vector Space:

A *vector space* over a field F (in this entire course it is \mathbb{R}) is a non empty set V together with two operations vector addition '+' (just for name it is no need to usual addition) and scalar multiplication that satisfy the ten axioms listed below.

I. Abelian group under addition;

- **1. Closure property**: $u \& v \in V$, then $u + v \in V$;
- **2.** Associative property: $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$ for all $\mathbf{u},\mathbf{v},\mathbf{w}\in\mathbf{V}$;
- 3. Identity property: there exists an element $e \in V$ such that u + e = e + u = u for all $u \in V$;
- **4. Inverse property:** For every $u \in V$, there exists an element $-u \in V$ such that $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + \mathbf{u} = \mathbf{e}$. Then $-\mathbf{u}$ is said to an additive inverse of \mathbf{u} ;
- **5.** Commutative property: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$.

II. Scalar multiplication;

- **6.** Closure property: $u \in V \& \alpha \in F$, then $\alpha u \in V$;
- 7. Distributive property of scalar multiplication over vector addition : $\alpha(u+v) = \alpha u + \alpha v \quad \forall u, v \in V \& \alpha \in F$
- 8. Distributive property of vector addition over scalar multiplication: $(\alpha + \beta)u = \alpha u + \beta u \quad \forall u \in V \& \alpha, \beta \in F$
- 9. Associative property:

$$(\alpha\beta)u = \alpha(\beta u) = \alpha\beta u \quad \forall u \in V \& \alpha, \beta \in F$$

10. **1.u** = **u** for all $u \in V$.