

Net-Zero America - virginia state report

2021-03-05

These data underlie graphs and tables presented in the Princeton Net-Zero America study:

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020. Report available at https://netzeroamerica.princeton.edu.

Notes

- These data are all data from the study available at https://netzeroamerica.prince-ton.edu.
- The Net-Zero America study describes five pathways to reach net-zero emissions and one "no new policies" reference scenario. In this document, state-level results are grouped by scenario. For some scenarios, the study generated national, but not statelevel results.
- Within results for a given scenario, data tables are organized into corresponding sections of the full net-zero study (e.g., Pillar 1, Pillar 2, etc.)
- For Pillar 6 (Land sinks), values shown are maximum carbon storage potentials.

Data by category and subcategory

1	E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	. 1
2	E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	. 1
3	E+ scenario - PILLAR 1: Efficiency/Electrification - Overview	. 1
4	E+ scenario - PILLAR 1: Efficiency/Electrification - Residential	. 1
5	E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	. 2
6	E+ scenario - PILLAR 2: Clean Electricity - Generating capacity	2
7	E+ scenario - PILLAR 2: Clean Electricity - Generation	. 2
8	E+ scenario - PILLAR 3: Clean fuels - Bioenergy	3
9	E+ scenario - PILLAR 4: CCUS - CO2 capture	3
10	E+ scenario - PILLAR 4: CCUS - CO2 pipelines	3
11	E+ scenario - PILLAR 4: CCUS - CO2 storage	4
12	E+ scenario - PILLAR 6: Land sinks - Agriculture	4
13	E+ scenario - PILLAR 6: Land sinks - Forests	5
14	E+ scenario - IMPACTS - Fossil fuel industries	. 7
15	E+ scenario - IMPACTS - Health	. 7
16	E+ scenario - IMPACTS - Jobs	. 7
17	E- scenario - PILLAR 1: Efficiency/Electrification - Commercial	9
18	E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	9
19	E- scenario - PILLAR 1: Efficiency/Electrification - Overview	9
20	E- scenario - PILLAR 1: Efficiency/Electrification - Residential	9
21	E- scenario - PILLAR 1: Efficiency/Electrification - Transportation	10
22	E- scenario - PILLAR 6: Land sinks - Agriculture	10
23	E- scenario - PILLAR 6: Land sinks - Forests	. 11
24	E- scenario - IMPACTS - Health	13
25	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	14
26	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand .	14
27	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview	14
28	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential	14
29	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	15
30	E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity	15
31	E+RE+ scenario - PILLAR 2: Clean Electricity - Generation	15
32	E+RE+ scenario - PILLAR 6: Land sinks - Agriculture	16
33	E+RE+ scenario - PILLAR 6: Land sinks - Forests	16
34	E+RE+ scenario - IMPACTS - Health	. 19
35	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial	. 19
36	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	. 19
37	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview	. 19
38	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential	20
39	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation	20
40	E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity	21
41	E+RE- scenario - PILLAR 2: Clean Electricity - Generation	21
42	E+RE- scenario - PILLAR 6: Land sinks - Agriculture	21
43	E+RE- scenario - PILLAR 6: Land sinks - Forests	22

44	E+RE- scenario - IMPACTS - Health	24
45	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	25
46	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	25
47	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview	25
48	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential	25
49	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	26
50	E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity	26
51	E-B+ scenario - PILLAR 2: Clean Electricity - Generation	26
52	E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy	26
53	E-B+ scenario - PILLAR 4: CCUS - CO2 capture	27
54	E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines	27
55	E-B+ scenario - PILLAR 4: CCUS - CO2 storage	27
56	E-B+ scenario - PILLAR 6: Land sinks - Agriculture	27
57	E-B+ scenario - PILLAR 6: Land sinks - Forests	28
58	E-B+ scenario - IMPACTS - Health	31
59	REF scenario - PILLAR 1: Efficiency/Electrification - Commercial	31
60	REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	32
61	REF scenario - PILLAR 1: Efficiency/Electrification - Overview	32
62	REF scenario - PILLAR 1: Efficiency/Electrification - Residential	32
63	REF scenario - PILLAR 1: Efficiency/Electrification - Transportation	32
64	REF scenario - PILLAR 6: Land sinks - Forests	33
65	REF scenario - PILLAR 6: Land sinks - Forests - REF only	35
66	REF scenario - IMPACTS - Health	35

Table 1: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	31,138	34,700	0	0	0	0
Sales of cooking units - Electric Resistance (%)	32	46	79.9	86.5	86.9	86.9	86.9
Sales of cooking units - Gas (%)	68	54	20.1	13.5	13.1	13.1	13.1
Sales of space heating units - Electric Heat Pump (%)	4.92	28.4	70.7	83.8	85.1	85.1	85.1
Sales of space heating units - Electric Resistance (%)	4.71	8.37	10.5	12.6	13	13	13
Sales of space heating units - Fossil (%)	7.87	4.09	0.778	0.033	0	0	0
Sales of space heating units - Gas Furnace (%)	82.5	59.2	18.1	3.58	1.92	1.89	1.88
Sales of water heating units - Electric Heat Pump (%)	0.167	10.5	54.6	64.4	64.8	64.8	64.8
Sales of water heating units - Electric Resistance (%)	4.19	10.8	28.4	32.3	32.5	32.5	32.5
Sales of water heating units - Gas Furnace (%)	91.5	74.5	14.1	0.593	0	0	0
Sales of water heating units - Other (%)	4.17	4.15	3.01	2.72	2.72	2.72	2.72

Table 2: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		4.76	4.85	8.11	8.58	8.03	8.37
Cumulative 5-yr (billion \$2018)							

Table 3: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	246	247	237	223	212	208	211
Final energy use - Industry (PJ)	381	402	412	418	428	431	439
Final energy use - Residential (PJ)	313	296	274	246	223	210	204
Final energy use - Transportation (PJ)	709	660	582	488	403	349	324

Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	6.43	6.21	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	70.5	76.8	96	99.8	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	29.5	23.2	3.97	0.2	0	0	0
Sales of space heating units - Electric	25.4	42.2	78.8	86.9	87.3	87.3	87.3
Heat Pump (%)							
Sales of space heating units - Electric	18.4	18.4	7.74	5.33	5.23	5.33	5.34
Resistance (%)							
Sales of space heating units - Fossil (%)	12.1	15.8	6.87	4.89	4.78	4.71	4.71
Sales of space heating units - Gas (%)	44.1	23.6	6.62	2.84	2.69	2.7	2.7
Sales of water heating units - Electric	0	8.78	46.5	54.9	55.3	55.3	55.3
Heat Pump (%)							
Sales of water heating units - Electric	50.1	62.2	46.3	42.7	42.5	42.5	42.5
Resistance (%)							
Sales of water heating units - Gas Furnace	45.5	26.1	4.92	0.208	0	0	0
(%)							
Sales of water heating units - Other (%)	4.39	2.95	2.33	2.2	2.21	2.22	2.23

Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	1,456	3,742	6,046	9,166	9,967	9,508
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.39	0	2.58	0	11.2	0	18
_units)							
Public EV charging plugs - L2 (1000 units)	1.37	0	61.9	0	268	0	433
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.42	1.7	1.21	0.385	0.072	0.013	0
Vehicle sales - Light-duty - EV (%)	4.33	16.5	48.4	82.6	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.2	76.6	46.8	15.8	3.19	0.587	0
Vehicle sales - Light-duty - hybrid (%)	4.83	4.83	3.35	1.23	0.302	0.067	0
Vehicle sales - Light-duty - hydrogen FC	0.11	0.333	0.193	0.059	0.012	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.096	0.092	0.059	0.021	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 6: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant (billion \$2018)	0	0.005	0.924	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Offshore Wind - Base (billion \$2018)	0	0.157	0.192	0.399	3.46	0	0
Capital invested - Offshore Wind - Constrained (billion \$2018)	0	0.226	0.192	0.285	3.52	0	0
Capital invested - Solar PV - Base (billion \$2018)	0	21.3	10.4	15.4	11.5	10.4	7.01
Capital invested - Solar PV - Constrained (billion \$2018)	0	25	11.8	20	11	12.1	8.72
Capital invested - Wind - Base (billion \$2018)	0	0	7.75	5.4	10.5	1.63	1.3
Capital invested - Wind - Constrained (billion \$2018)	0	0	20.7	9.24	0.089	0	1.8
Installed (cumulative) - OffshoreWind - Base land use assumptions (MW)	0	55.5	135	331	2,326	2,326	2,326
Installed (cumulative) - Rooftop PV (MW)	130	209	296	422	598	827	1,120
Installed (cumulative) - Solar - Base land use assumptions (MW)	2,556	18,470	27,136	41,133	52,153	62,783	70,345
Installed (cumulative) - Wind - Base land use assumptions (MW)	72	72	5,894	10,245	19,094	20,551	21,780

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	8.72	1,823	1,823	1,823	1,823	1,823
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	0	0

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Biomass w/ccu power plant (GWh)	0	0	0	0	0	0	0
OffshoreWind - Base land use	0	250	362	883	9,146	0	0
assumptions (GWh)							
OffshoreWind - Constrained land use	0	250	362	883	9,146	0	0
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	5,353	30,275	16,362	26,394	20,732	19,927	14,286
Solar - Constrained land use assumptions	5,284	28,753	17,435	31,243	13,750	15,993	9,883
(GWh)							
Wind - Base land use assumptions (GWh)	269	0	20,052	13,676	25,063	3,826	3,223
Wind - Constrained land use assumptions	269	0	48,110	20,678	163	0	2,172
(GWh)							

Table 8: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)	0	135	422	423	423	423	520
Conversion capital investment -	0	5.03	1.031	30.1	0.478	0	2,067
Cumulative 5-yr (million \$2018)			,				,
Number of facilities - Allam power w ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	0	0	0	2
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	1	1	1	1
Number of facilities - Diesel ccu (quantity)	0	0	0	0	0	0	0
Number of facilities - Power (quantity)	0	1	1	1	1	1	1
Number of facilities - Power ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	1	1	1	1
Number of facilities - Pyrolysis ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Sng (quantity)	0	1	1	1	1	1	1
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	0	0

Table 9: E+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0	3.88	3.76	3.76	6.49
Annual - BECCS (MMT)		0	0	0	0	0	2.66
Annual - Cement and lime (MMT)		0	0	3.35	3.32	3.42	3.53
Annual - NGCC (MMT)		0	0	0.53	0.45	0.34	0.3
Cumulative - All (MMT)		0	0	3.88	7.64	11.4	17.9
Cumulative - BECCS (MMT)		0	0	0	0	0	2.66
Cumulative - Cement and lime (MMT)		0	0	3.35	6.67	10.1	13.6
Cumulative - NGCC (MMT)		0	0	0.53	0.98	1.32	1.62

Table 10: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	0	507	507	507	805
Cumulative investment - All (million \$2018)		0	0	2,259	2,258	2,260	2,500
Cumulative investment - Spur (million \$2018)		0	0	155	154	157	396
Cumulative investment - Trunk (million \$2018)		0	0	2,104	2,104	2,104	2,104
Spur (km)		0	0	154	154	154	452
Trunk (km)		0	0	353	353	353	353

Table 11: E+ scenario - PILLAR 4: CCUS - CO2 storage

	•						
Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture

Table 12: E+ scenario - PILLAR 6: Lana sini					0010	00:-	00=5
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-1,871
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-67.3
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-1,938
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-986
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-33.7
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-1,020
deployment - Total (1000 tCO2e/y)							.,
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,127
Aggressive deployment - Cropland							.,
measures (1000 hectares)							
Land impacted for carbon sink -							122
Aggressive deployment - Permanent							122
conservation cover (1000 hectares)							
Land impacted for carbon sink -							1,249
Aggressive deployment - Total (1000							1,249
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							U
grasses (1000 hectares)							EO.
Land impacted for carbon sink - Moderate							594
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							61.2
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							655
deployment - Total (1000 hectares)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-254
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-34,151
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-2,149
deforestation (1000 tC02e/y)							0.007
Carbon sink potential - High - Extend							-9,384
rotation length (1000 tCO2e/y)							0.075
Carbon sink potential - High - Improve							-2,265
plantations (1000 tC02e/y)							0.5/0
Carbon sink potential - High - Increase							-9,560
retention of HWP (1000 tC02e/y)							-702
Carbon sink potential - High - Increase							-702
trees outside forests (1000 tC02e/y) Carbon sink potential - High - Reforest							-300
cropland (1000 tCO2e/y)							-300
Carbon sink potential - High - Reforest							-6,186
pasture (1000 tC02e/y)							-0,100
Carbon sink potential - High - Restore							-3,351
productivity (1000 tC02e/y)							-5,551
Carbon sink potential - Low - Accelerate							-127
regeneration (1000 tCO2e/y)							-121
Carbon sink potential - Low - All (not							-10,423
counting overlap) (1000 tC02e/y)							-10,423
Carbon sink potential - Low - Avoid							-358
deforestation (1000 tC02e/y)							000
Carbon sink potential - Low - Extend							-3,605
rotation length (1000 tC02e/y)							0,000
Carbon sink potential - Low - Improve							-1,153
plantations (1000 tCO2e/y)							,
Carbon sink potential - Low - Increase							-3,187
retention of HWP (1000 tCO2e/y)							-, -
Carbon sink potential - Low - Increase							-246
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-150
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-469
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,130
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-190
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-22,267
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-1,254
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-6,494
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-1,689
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-6,373
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-474
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Mid - Reforest							-225
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-3,327
pasture (1000 tC02e/y)							
Carbon sink potential - Mid - Restore							-2,240
productivity (1000 tCO2e/y)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							41.5
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							291
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							4,785
High - Extend rotation length (1000							,
hectares)							
Land impacted for carbon sink potential -							835
High - Improve plantations (1000							000
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							U
hectares)							
							66.7
Land impacted for carbon sink potential -							00.7
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							19.8
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							176
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,111
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							7,325
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							20.8
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							273
Low - Avoid deforestation (over 30 years)							2.0
(1000 hectares)							
Land impacted for carbon sink potential -							1,833
Low - Extend rotation length (1000							1,000
hectares)							
Land impacted for carbon sink potential -							417
Low - Improve plantations (1000							417
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							35.1
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							9.91
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							30.5
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							672
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,292
Low - Total impacted (over 30 years)							• -
(1000 hectares)							
Land impacted for carbon sink potential -			+	+			31.1
Mid - Accelerate regeneration (1000							01.1

Tahla 12. Fx	econario -	DILLAD 6.	Land sinks -	Enrecte	(continued)
Table 15. Et	SCEIIUI 10 -	PILLAK O.	LUIIU SIIIKS -	. คบา ยอเอา	COHUHUEUT

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							282
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,309
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							628
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							50.9
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							14.9
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							220
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,354
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,890
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 14: E+ scenario - IMPACTS - Fossil fuel industries

Item	2020	2025	2030	2035	2040	2045	2050
Natural gas consumption - Annual (tcf)		491	414	332	250	157	109
Natural gas consumption - Cumulative (tcf)		0	0	0	0	0	9,993
Natural gas production - Annual (tcf)		136	129	112	94.7	75.1	58.4
Oil consumption - Annual (million bbls)		129	111	85.7	61.8	42.9	28
Oil consumption - Cumulative (million bbls)		0	0	0	0	0	2,649
Oil production - Annual (million bbls)		0.006	0.006	0.006	0.005	0.004	0.003

Table 15: E+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		845	0.772	0.76	0.678	0.484	0.043
Monetary damages from air pollution - Natural Gas (million 2019\$)		219	159	96.1	80.9	39.7	15.8
Monetary damages from air pollution - Transportation (million 2019\$)		939	876	665	385	173	65.5
Premature deaths from air pollution - Coal (deaths)		95.4	0.087	0.086	0.077	0.055	0.005
Premature deaths from air pollution - Natural Gas (deaths)		24.7	17.9	10.8	9.14	4.48	1.78
Premature deaths from air pollution - Transportation (deaths)		106	98.5	74.8	43.3	19.5	7.37

Table 16: E+ scenario - IMPACTS - Jobs

Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		419	1,112	1,315	1,087	840	809
By economic sector - Construction (jobs)		22,203	21,077	28,476	31,550	29,524	28,852
By economic sector - Manufacturing		12,648	22,817	23,376	19,372	21,199	17,256
(jobs)							
By economic sector - Mining (jobs)		3,933	2,711	1,871	1,247	811	532

Table 16: E+ scenario - IMPACTS - Jobs (continued)

Table 16: E+ scenario - IMPACTS - Jobs (co	ntinueaj						
Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Other (jobs)		3,445	3,067	4,478	5,132	5,356	5,678
By economic sector - Pipeline (jobs)		638	540	692	330	223	190
By economic sector - Professional (jobs)		9,189	10,304	13,589	16,508	16,062	16,258
By economic sector - Trade (jobs)		6,477	6,358	8,232	9,877	9,878	10,210
By economic sector - Utilities (jobs)		13,578	16,421	22,067	26,170	24,088	23,677
By education level - All sectors -		22,955	26,700	33,265	35,774	34,758	33,328
Associates degree or some college (jobs)							
By education level - All sectors -		14,202	16,704	20,276	21,823	21,269	20,425
Bachelors degree (jobs)							
By education level - All sectors - Doctoral		493	540	680	777	753	747
degree (jobs)							
By education level - All sectors - High		31,486	36,552	45,030	47,515	45,977	43,866
school diploma or less (jobs)							
By education level - All sectors - Masters		3,393	3,912	4,847	5,383	5,222	5,097
or professional degree (jobs)			-		-		
By resource sector - Biomass (jobs)		1,600	3,016	3,684	3,237	3,069	3,471
By resource sector - CO2 (jobs)		0	0	2,189	128	159	444
By resource sector - Coal (jobs)		2,025	1,063	849	742	670	594
By resource sector - Grid (jobs)		19,398	26,618	37,207	48,133	44,956	45,446
By resource sector - Natural Gas (jobs)		8,140	6,617	5,566	5,298	3,940	2,360
By resource sector - Nuclear (jobs)		989	973	564	0	0	0
By resource sector - Oil (jobs)		5,733	4,544	3,230	2,161	1,402	860
By resource sector - Solar (jobs)		34,531	36,719	43,800	37,807	37,496	34,505
By resource sector - Wind (jobs)		114	4,858	7,006	13,766	16,288	15,782
Median wages - Annual - All (\$2019 per		60,633	61,397	62,227	63,665	64,451	65,651
job)							
On-Site or In-Plant Training - Total jobs - 1		11,897	13,673	17,039	18,325	17,712	16,982
to 4 years (jobs)							
On-Site or In-Plant Training - Total jobs - 4		4,923	5,298	6,850	7,603	7,231	7,039
to 10 years (jobs)							
On-Site or In-Plant Training - Total jobs -		11,817	13,818	16,985	18,082	17,614	16,859
None (jobs)							
On-Site or In-Plant Training - Total jobs -		616	710	903	987	951	917
Over 10 years (jobs)							
On-Site or In-Plant Training - Total jobs -		43,277	50,909	62,321	66,275	64,471	61,665
Up to 1 year (jobs)							
On-the-Job Training - All sectors - 1 to 4		15,287	17,510	21,893	23,625	22,808	21,885
years (jobs)		,	,	_,,		,	,
On-the-Job Training - All sectors - 4 to 10		4,873	5,200	6,791	7,578	7,199	7,027
years (jobs)		1,010	0,200	0,171	1,010	.,.,,	1,021
On-the-Job Training - All sectors - None		3,982	4,522	5,567	5,951	5,802	5,593
(jobs)		3,702	4,522	3,301	3,731	3,002	3,373
On-the-Job Training - All sectors - Over 10		749	877	1,057	1,082	1,060	993
years (jobs)		147	011	1,051	1,062	1,000	773
		/7/20	E/ 200	(0.700	72.027	71 110	/70//
On-the-Job Training - All sectors - Up to 1		47,639	56,299	68,789	73,036	71,110	67,966
year (jobs)		05 001	00.055	07.050	00.750	00.500	07.077
Related work experience - All sectors - 1		25,881	30,055	37,052	39,750	38,538	36,974
to 4 years (jobs)			10.01/	00.010			
Related work experience - All sectors - 4		16,682	19,316	23,912	25,749	24,946	23,921
to 10 years (jobs)			45 : - :				
Related work experience - All sectors -		10,462	12,126	15,079	16,158	15,650	15,043
None (jobs)							
Related work experience - All sectors -		4,437	5,307	6,440	6,815	6,652	6,316
Over 10 years (jobs)							
Related work experience - All sectors - Up		15,068	17,604	21,614	22,799	22,194	21,208
to 1 year (jobs)							
Wage income - All (million \$2019)		4,398	5,183	6,478	7,085	6,960	6,793
		•	•	•		•	· · · · · · · · · · · · · · · · · · ·

Table 17: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	31,112	34,614	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	32	36.2	40.9	53.4	71	81.7	85.5
Resistance (%)							
Sales of cooking units - Gas (%)	68	63.8	59.1	46.6	29	18.3	14.5
Sales of space heating units - Electric	4.92	20.4	25.2	39.1	61.2	76.9	82.9
Heat Pump (%)							
Sales of space heating units - Electric	4.71	8.04	8.28	9.07	10.5	11.9	12.7
Resistance (%)							
Sales of space heating units - Fossil (%)	7.87	4.72	4.38	3.33	1.64	0.517	0.135
Sales of space heating units - Gas Furnace	82.5	66.9	62.2	48.4	26.6	10.7	4.34
(%)							
Sales of water heating units - Electric	0.167	2.04	7.05	21.5	43.6	58.1	63.1
Heat Pump (%)							
Sales of water heating units - Electric	4.19	7.46	9.4	15.2	24	29.7	31.8
Resistance (%)							
Sales of water heating units - Gas Furnace	91.5	86.1	79.2	59.5	29.1	9.3	2.42
(%)							
Sales of water heating units - Other (%)	4.17	4.38	4.34	3.87	3.3	2.91	2.76

Table 18: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		4.07	4.08	5.45	5.62	6.97	7.29
Cumulative 5-yr (billion \$2018)							

Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

	,, =						
Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	246	247	244	240	233	227	224
Final energy use - Industry (PJ)	381	403	413	422	433	437	443
Final energy use - Residential (PJ)	313	297	288	278	263	239	221
Final energy use - Transportation (PJ)	710	666	609	562	524	480	428

Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	6.4	6.15	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	70.4	71.2	73.9	81	91	97.1	99.2
Resistance (%)							
Sales of cooking units - Gas (%)	29.6	28.8	26.1	19	9.05	2.92	0.786
Sales of space heating units - Electric	25.4	35.1	39.3	51.3	69.7	81.7	85.8
Heat Pump (%)							
Sales of space heating units - Electric	18.4	20.5	19.2	15.6	10.3	6.88	5.68
Resistance (%)							
Sales of space heating units - Fossil (%)	12.1	17.5	16.6	13.7	9.14	6.15	5.13
Sales of space heating units - Gas (%)	44.1	26.9	24.9	19.4	10.9	5.32	3.37
Sales of water heating units - Electric	0	1.51	5.8	18.2	37.1	49.5	53.8
Heat Pump (%)							
Sales of water heating units - Electric	50.1	65.3	63.5	58.2	50.1	44.9	43.1
Resistance (%)							
Sales of water heating units - Gas Furnace	45.5	30.1	27.7	20.8	10.2	3.27	0.852
(%)							
Sales of water heating units - Other (%)	4.39	3.08	3.01	2.82	2.52	2.32	2.25

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	0	237	495	1,674	5,255	7,661
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.39	0	0.815	0	4.16	0	11.6
units)							
Public EV charging plugs - L2 (1000 units)	1.37	0	19.6	0	99.8	0	277
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.44	1.87	2.03	1.61	1.02	0.522	0.224
Vehicle sales - Light-duty - EV (%)	2.03	5	12.5	26.9	49.5	72.8	87.9
Vehicle sales - Light-duty - gasoline (%)	91.3	86.9	78.6	65.3	44.9	24.1	10.7
Vehicle sales - Light-duty - hybrid (%)	5.01	5.8	6.46	5.82	4.3	2.51	1.2
Vehicle sales - Light-duty - hydrogen FC	0.112	0.377	0.319	0.241	0.169	0.093	0.043
(%)							
Vehicle sales - Light-duty - other (%)	0.098	0.101	0.091	0.079	0.057	0.031	0.014
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-1,871
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-67.3
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-1,938
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-986
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-33.7
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-1,020
deployment - Total (1000 tC02e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,127
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							122
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink -							1,249
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							594
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							61.2
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							655
deployment - Total (1000 hectares)							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests

Item	s - Forests	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate	2020	2025	2030	2035	2040	2045	-254
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-34,151
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-2,149
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-9,384
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-2,265
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-9,560
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-702
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-300
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-6,186
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-3,351
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-127
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-10,423
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-358
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-3,605
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-1,153
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-3,187
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-246
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-150
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-469
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,130
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-190
regeneration (1000 tCO2e/y)							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - All (not							-22,267
counting overlap) (1000 tC02e/y)							
Carbon sink potential - Mid - Avoid							-1,254
deforestation (1000 tC02e/y)							
Carbon sink potential - Mid - Extend							-6,494
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-1,689
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-6,373
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-474
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-225
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-3,327
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-2,240
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							41.5
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							291
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							4,785
High - Extend rotation length (1000							1,100
hectares)							
Land impacted for carbon sink potential -							835
High - Improve plantations (1000							000
hectares)							
Land impacted for carbon sink potential -							0
							U
High - Increase retention of HWP (1000							
hectares)							66.7
Land impacted for carbon sink potential -							66.7
High - Increase trees outside forests							
(1000 hectares)							40.0
Land impacted for carbon sink potential -							19.8
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							176
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,111
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							7,325
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							20.8
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							273
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -		-					1,833
Low - Extend rotation length (1000							.,500
hectares)							
Land impacted for carbon sink potential -		-			-		417
Low - Improve plantations (1000							411
hectares)							
•							0
Land impacted for carbon sink potential -							U
Low - Increase retention of HWP (1000 hectares)							
h 1							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							35.1
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							9.91
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							30.5
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							672
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,292
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							31.1
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							282
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,309
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							628
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							50.9
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							14.9
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							220
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,354
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,890
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 24: E- scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		845	0.772	0.76	0.678	0.484	0.043
Monetary damages from air pollution - Natural Gas (million 2019\$)		187	126	51.6	23	7.67	4.53
Monetary damages from air pollution - Transportation (million 2019\$)		957	969	943	850	676	462
Premature deaths from air pollution - Coal (deaths)		95.4	0.087	0.086	0.077	0.055	0.005
Premature deaths from air pollution - Natural Gas (deaths)		21.1	14.3	5.82	2.59	0.866	0.512
Premature deaths from air pollution - Transportation (deaths)		108	109	106	95.6	76	51.9

Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	31,138	34,700	0	0	0	0
Sales of cooking units - Electric Resistance (%)	32	46	79.9	86.5	86.9	86.9	86.9
Sales of cooking units - Gas (%)	68	54	20.1	13.5	13.1	13.1	13.1
Sales of space heating units - Electric Heat Pump (%)	4.92	28.4	70.7	83.8	85.1	85.1	85.1
Sales of space heating units - Electric Resistance (%)	4.71	8.37	10.5	12.6	13	13	13
Sales of space heating units - Fossil (%)	7.87	4.09	0.778	0.033	0	0	0
Sales of space heating units - Gas Furnace (%)	82.5	59.2	18.1	3.58	1.92	1.89	1.88
Sales of water heating units - Electric Heat Pump (%)	0.167	10.5	54.6	64.4	64.8	64.8	64.8
Sales of water heating units - Electric Resistance (%)	4.19	10.8	28.4	32.3	32.5	32.5	32.5
Sales of water heating units - Gas Furnace (%)	91.5	74.5	14.1	0.593	0	0	0
Sales of water heating units - Other (%)	4.17	4.15	3.01	2.72	2.72	2.72	2.72

Table 26: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		4.76	4.85	8.11	8.58	8.03	8.37
Cumulative 5-yr (billion \$2018)							

Table 27: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

	,,						
Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	246	247	237	223	212	208	211
Final energy use - Industry (PJ)	381	402	412	418	428	431	439
Final energy use - Residential (PJ)	313	296	274	246	223	210	204
Final energy use - Transportation (PJ)	709	660	582	488	403	349	324

Table 28: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	6.43	6.21	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	70.5	76.8	96	99.8	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	29.5	23.2	3.97	0.2	0	0	0
Sales of space heating units - Electric	25.4	42.2	78.8	86.9	87.3	87.3	87.3
Heat Pump (%)							
Sales of space heating units - Electric	18.4	18.4	7.74	5.33	5.23	5.33	5.34
Resistance (%)							
Sales of space heating units - Fossil (%)	12.1	15.8	6.87	4.89	4.78	4.71	4.71
Sales of space heating units - Gas (%)	44.1	23.6	6.62	2.84	2.69	2.7	2.7
Sales of water heating units - Electric	0	8.78	46.5	54.9	55.3	55.3	55.3
Heat Pump (%)							
Sales of water heating units - Electric	50.1	62.2	46.3	42.7	42.5	42.5	42.5
Resistance (%)							
Sales of water heating units - Gas Furnace	45.5	26.1	4.92	0.208	0	0	0
(%)							
Sales of water heating units - Other (%)	4.39	2.95	2.33	2.2	2.21	2.22	2.23

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	1,456	3,742	6,046	9,166	9,967	9,508
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.39	0	2.58	0	11.2	0	18
units)							
Public EV charging plugs - L2 (1000 units)	1.37	0	61.9	0	268	0	433
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.42	1.7	1.21	0.385	0.072	0.013	0
Vehicle sales - Light-duty - EV (%)	4.33	16.5	48.4	82.6	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.2	76.6	46.8	15.8	3.19	0.587	0
Vehicle sales - Light-duty - hybrid (%)	4.83	4.83	3.35	1.23	0.302	0.067	0
Vehicle sales - Light-duty - hydrogen FC	0.11	0.333	0.193	0.059	0.012	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.096	0.092	0.059	0.021	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 30: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Offshore Wind - Base	0	0.157	0.251	4.43	9.84	11.8	0
(billion \$2018)							
Capital invested - Solar PV - Base (billion	0	21.3	15.1	26.2	10.3	10.1	106
\$2018)							
Capital invested - Wind - Base (billion	0	0	10.7	7.72	14.1	1.18	0
\$2018)							
Installed (cumulative) - OffshoreWind -	0	0	0	0	0	0	0
Base land use assumptions (MW)							
Installed (cumulative) - Solar - Base land	2,902	18,799	31,402	31,402	31,402	31,402	31,402
use assumptions (MW)							
Installed (cumulative) - Wind - Base land	72	72	8,141	14,360	26,312	27,364	27,364
use assumptions (MW)							

Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
OffshoreWind - Base land use	0	250	471	9,919	25,419	37,477	0
assumptions (GWh)							
OffshoreWind - Constrained land use	0	359	362	9,919	0	0	62,896
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	6,021	30,212	23,787	44,891	18,622	19,488	217,400
Solar - Constrained land use assumptions	10,039	26,520	20,752	28,091	17,808	16,772	263,440
(GWh)							
Wind - Base land use assumptions (GWh)	269	0	27,231	18,704	31,472	2,501	0
Wind - Constrained land use assumptions	269	0	61,962	6,989	0	0	33,675
(GWh)							

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Aggressive							-1,871
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-67.3
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Aggressive							-1,938
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-986
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-33.7
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-1,020
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,127
Aggressive deployment - Cropland							,
measures (1000 hectares)							
Land impacted for carbon sink -							122
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -						+	1,249
Aggressive deployment - Total (1000							.,
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							Ū
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							594
deployment - Cropland measures (1000							• • • • • • • • • • • • • • • • • • • •
hectares)							
Land impacted for carbon sink - Moderate							61.2
deployment - Permanent conservation							01.2
cover (1000 hectares)							
Land impacted for carbon sink - Moderate	+						655
deployment - Total (1000 hectares)							000
acpicyllicit - total (1000 licutal co)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-254
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-34,151
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-2,149
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-9,384
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-2,265
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-9,560
retention of HWP (1000 tCO2e/y)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Increase							-70
trees outside forests (1000 tC02e/y)							200
Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)							-300
Carbon sink potential - High - Reforest pasture (1000 tCO2e/y)							-6,18
Carbon sink potential - High - Restore productivity (1000 tCO2e/y)							-3,35
Carbon sink potential - Low - Accelerate regeneration (1000 tCO2e/y)							-12
Carbon sink potential - Low - All (not							-10,42
counting overlap) (1000 tCO2e/y) Carbon sink potential - Low - Avoid							-35
deforestation (1000 tCO2e/y) Carbon sink potential - Low - Extend							-3,60
rotation length (1000 tCO2e/y) Carbon sink potential - Low - Improve							-1,15
plantations (1000 tCO2e/y) Carbon sink potential - Low - Increase							-3,18
retention of HWP (1000 tC02e/y) Carbon sink potential - Low - Increase							-24
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest cropland (1000 tCO2e/y)							-15
Carbon sink potential - Low - Reforest pasture (1000 tCO2e/y)							-46
Carbon sink potential - Low - Restore productivity (1000 tCO2e/y)							-1,13
Carbon sink potential - Mid - Accelerate regeneration (1000 tCO2e/y)							-19
Carbon sink potential - Mid - All (not							-22,26
counting overlap) (1000 tCO2e/y) Carbon sink potential - Mid - Avoid							-1,25
deforestation (1000 tCO2e/y) Carbon sink potential - Mid - Extend							-6,49
rotation length (1000 tCO2e/y) Carbon sink potential - Mid - Improve							-1,68
plantations (1000 tCO2e/y) Carbon sink potential - Mid - Increase							-6,37
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase trees outside forests (1000 tCO2e/y)							-47
Carbon sink potential - Mid - Reforest cropland (1000 tCO2e/y)							-22
Carbon sink potential - Mid - Reforest pasture (1000 tCO2e/y)							-3,32
Carbon sink potential - Mid - Restore productivity (1000 tCO2e/y)							-2,24
and impacted for carbon sink potential -							41
High - Accelerate regeneration (1000 nectares)							
and impacted for carbon sink potential - High - Avoid deforestation (over 30 years)							29
1000 hectares)							
Land impacted for carbon sink potential - High - Extend rotation length (1000							4,78
hectares) Land impacted for carbon sink potential -							83
High - Improve plantations (1000 hectares)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential - High - Increase retention of HWP (1000							0
hectares)							
Land impacted for carbon sink potential -							66.7
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							19.8
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							176
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,111
High - Restore productivity (1000							
hectares)							7 205
Land impacted for carbon sink potential -							7,325
High - Total impacted (over 30 years)							
(1000 hectares) Land impacted for carbon sink potential -							20.8
Low - Accelerate regeneration (1000							20.0
hectares)							
Land impacted for carbon sink potential -							273
Low - Avoid deforestation (over 30 years)							213
(1000 hectares)							
Land impacted for carbon sink potential -							1,833
Low - Extend rotation length (1000							1,000
hectares)							
Land impacted for carbon sink potential -							417
Low - Improve plantations (1000							711
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							ŭ
hectares)							
Land impacted for carbon sink potential -							35.1
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							9.91
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							30.5
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							672
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,292
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							31.1
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							282
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,309
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							628
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							50.9
Mid - Increase trees outside forests (1000							
hectares)							

Table 33: <i>E+RE+</i>	scenario -	DTII AR 6.	I and sinks -	Forests	(continued)
I ADIC JJ. LTNLT	acenui iu -	· FILLAN O.	LUHU ƏHINƏ "	ายเกลาเลา	COHILINGER

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							14.9
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							220
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,354
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,890
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 34: E+RE+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		845	0.772	0.76	0.678	0.484	0.043
Coal (million 2019\$)							
Monetary damages from air pollution -		169	128	75.9	48.4	14.7	3.66
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		939	876	665	385	173	65.5
Transportation (million 2019\$)							
Premature deaths from air pollution -		95.4	0.087	0.086	0.077	0.055	0.005
Coal (deaths)							
Premature deaths from air pollution -		19.1	14.5	8.57	5.47	1.66	0.413
Natural Gas (deaths)							
Premature deaths from air pollution -		106	98.5	74.8	43.3	19.5	7.37
Transportation (deaths)							

Table 35: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	31,138	34,700	0	0	0	0
Sales of cooking units - Electric Resistance (%)	32	46	79.9	86.5	86.9	86.9	86.9
Sales of cooking units - Gas (%)	68	54	20.1	13.5	13.1	13.1	13.1
Sales of space heating units - Electric Heat Pump (%)	4.92	28.4	70.7	83.8	85.1	85.1	85.1
Sales of space heating units - Electric Resistance (%)	4.71	8.37	10.5	12.6	13	13	13
Sales of space heating units - Fossil (%)	7.87	4.09	0.778	0.033	0	0	0
Sales of space heating units - Gas Furnace (%)	82.5	59.2	18.1	3.58	1.92	1.89	1.88
Sales of water heating units - Electric Heat Pump (%)	0.167	10.5	54.6	64.4	64.8	64.8	64.8
Sales of water heating units - Electric Resistance (%)	4.19	10.8	28.4	32.3	32.5	32.5	32.5
Sales of water heating units - Gas Furnace (%)	91.5	74.5	14.1	0.593	0	0	0
Sales of water heating units - Other (%)	4.17	4.15	3.01	2.72	2.72	2.72	2.72

Table 36: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		4.76	4.85	8.11	8.58	8.03	8.37
Cumulative 5-yr (billion \$2018)							

Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	246	247	237	223	212	208	211

Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Industry (PJ)	381	402	412	418	428	431	439
Final energy use - Residential (PJ)	313	296	274	246	223	210	204
Final energy use - Transportation (PJ)	709	660	582	488	403	349	324

Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	6.43	6.21	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	70.5	76.8	96	99.8	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	29.5	23.2	3.97	0.2	0	0	0
Sales of space heating units - Electric	25.4	42.2	78.8	86.9	87.3	87.3	87.3
Heat Pump (%)							
Sales of space heating units - Electric	18.4	18.4	7.74	5.33	5.23	5.33	5.34
Resistance (%)							
Sales of space heating units - Fossil (%)	12.1	15.8	6.87	4.89	4.78	4.71	4.71
Sales of space heating units - Gas (%)	44.1	23.6	6.62	2.84	2.69	2.7	2.7
Sales of water heating units - Electric	0	8.78	46.5	54.9	55.3	55.3	55.3
Heat Pump (%)							
Sales of water heating units - Electric	50.1	62.2	46.3	42.7	42.5	42.5	42.5
Resistance (%)							
Sales of water heating units - Gas Furnace	45.5	26.1	4.92	0.208	0	0	0
(%)							
Sales of water heating units - Other (%)	4.39	2.95	2.33	2.2	2.21	2.22	2.23

Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	1,456	3,742	6,046	9,166	9,967	9,508
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.39	0	2.58	0	11.2	0	18
units)							
Public EV charging plugs - L2 (1000 units)	1.37	0	61.9	0	268	0	433
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.42	1.7	1.21	0.385	0.072	0.013	0
Vehicle sales - Light-duty - EV (%)	4.33	16.5	48.4	82.6	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.2	76.6	46.8	15.8	3.19	0.587	0
Vehicle sales - Light-duty - hybrid (%)	4.83	4.83	3.35	1.23	0.302	0.067	0
Vehicle sales - Light-duty - hydrogen FC	0.11	0.333	0.193	0.059	0.012	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.096	0.092	0.059	0.021	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 40: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Offshore Wind - Base (billion \$2018)		0.157	0.192	0	0	0.088	0
Capital invested - Offshore Wind - Constrained (billion \$2018)		0	0	0	0	0	0
Capital invested - Solar PV - Base (billion \$2018)		9.13	8.28	3.3	7.12	6.22	0.463
Capital invested - Solar PV - Constrained (billion \$2018)		5.29	4.41	2.11	5.62	7.88	0.463
Capital invested - Wind - Base (billion \$2018)		0.803	2.45	0	0.453	0.085	0.118
Capital invested - Wind - Constrained (billion \$2018)		1.14	9.89	0	0.816	0.294	0.29

Table 41: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
OffshoreWind - Base land use	0	250	362	0	0	269	0
assumptions (GWh)							
OffshoreWind - Constrained land use	0	359	0	362	0	267	0
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	5,869	13,021	13,112	5,646	12,945	11,994	948
Solar - Constrained land use assumptions	6,759	7,485	6,977	3,630	10,268	15,164	935
(GWh)							
Wind - Base land use assumptions (GWh)	269	2,026	6,490	0	1,292	247	366
Wind - Constrained land use assumptions	269	2,862	24,736	0	2,149	783	821
(GWh)							

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-1,871
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-67.3
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Aggressive							-1,938
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-986
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-33.7
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-1,020
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,127
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							122
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink -							1,249
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							594
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							61.2
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							655
deployment - Total (1000 hectares)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-254
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-34,151
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-2,149
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-9,384
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-2,265
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-9,560
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-702
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-300
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-6,186
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-3,351
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-127
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-10,423
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-358
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-3,605
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-1,153
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-3,187
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-246
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-150
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-469
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,130
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-190
regeneration (1000 tCO2e/y)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item Carbon sink potential - Mid - All (not	2020	2025	2030	2035	2040	2045	2050 -22,26
counting overlap) (1000 tCO2e/y)							-22,26
							1.05
Carbon sink potential - Mid - Avoid							-1,25
deforestation (1000 tC02e/y)							
Carbon sink potential - Mid - Extend							-6,494
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-1,689
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-6,37
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-474
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Mid - Reforest							-22
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-3,32
pasture (1000 tC02e/y)							-5,52
							-2,240
Carbon sink potential - Mid - Restore							-2,241
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							41.
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							29
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							4,78
High - Extend rotation length (1000							, -
hectares)							
Land impacted for carbon sink potential -							83
High - Improve plantations (1000							00
hectares)							
Land impacted for carbon sink potential -							(
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							66.
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							19.
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							17
High - Reforest pasture (1000 hectares)							• •
Land impacted for carbon sink potential -							1,11
High - Restore productivity (1000							1,11
, , ,							
hectares)							7.00
Land impacted for carbon sink potential -							7,32
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							20.
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							27
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							1,83
Low - Extend rotation length (1000							1,03
= •							
hectares)							
Land impacted for carbon sink potential -							41
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							
Low - Increase retention of HWP (1000							
hectares)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							35.
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							9.9
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							30.5
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							67:
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,292
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							31.
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							28:
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,30
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							628
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							(
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							50.9
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							14.9
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							220
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,35
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,89
Mid - Total impacted (over 30 years) (1000							•
hectares)							

Table 44: E+RE- scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		845	0.772	0.76	0.678	0.484	0.043
Monetary damages from air pollution - Natural Gas (million 2019\$)		213	161	173	132	42.3	13.8
Monetary damages from air pollution - Transportation (million 2019\$)		939	876	665	385	173	65.5
Premature deaths from air pollution - Coal (deaths)		95.4	0.087	0.086	0.077	0.055	0.005
Premature deaths from air pollution - Natural Gas (deaths)		24.1	18.2	19.5	14.9	4.78	1.56
Premature deaths from air pollution - Transportation (deaths)		106	98.5	74.8	43.3	19.5	7.37

Table 45: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	31,112	34,614	0	0	0	0
Sales of cooking units - Electric Resistance (%)	32	36.2	40.9	53.4	71	81.7	85.5
Sales of cooking units - Gas (%)	68	63.8	59.1	46.6	29	18.3	14.5
Sales of space heating units - Electric Heat Pump (%)	4.92	20.4	25.2	39.1	61.2	76.9	82.9
Sales of space heating units - Electric Resistance (%)	4.71	8.04	8.28	9.07	10.5	11.9	12.7
Sales of space heating units - Fossil (%)	7.87	4.72	4.38	3.33	1.64	0.517	0.135
Sales of space heating units - Gas Furnace (%)	82.5	66.9	62.2	48.4	26.6	10.7	4.34
Sales of water heating units - Electric Heat Pump (%)	0.167	2.04	7.05	21.5	43.6	58.1	63.1
Sales of water heating units - Electric Resistance (%)	4.19	7.46	9.4	15.2	24	29.7	31.8
Sales of water heating units - Gas Furnace (%)	91.5	86.1	79.2	59.5	29.1	9.3	2.42
Sales of water heating units - Other (%)	4.17	4.38	4.34	3.87	3.3	2.91	2.76

Table 46: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		4.07	4.08	5.45	5.62	6.97	7.29
Cumulative 5-yr (billion \$2018)							

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050			
Final energy use - Commercial (PJ)	246	247	244	240	233	227	224			
Final energy use - Industry (PJ)	381	403	413	422	433	437	443			
Final energy use - Residential (PJ)	313	297	288	278	263	239	221			
Final energy use - Transportation (PJ)	710	666	609	562	524	480	428			

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	6.4	6.15	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	70.4	71.2	73.9	81	91	97.1	99.2
Resistance (%)							
Sales of cooking units - Gas (%)	29.6	28.8	26.1	19	9.05	2.92	0.786
Sales of space heating units - Electric	25.4	35.1	39.3	51.3	69.7	81.7	85.8
Heat Pump (%)							
Sales of space heating units - Electric	18.4	20.5	19.2	15.6	10.3	6.88	5.68
Resistance (%)							
Sales of space heating units - Fossil (%)	12.1	17.5	16.6	13.7	9.14	6.15	5.13
Sales of space heating units - Gas (%)	44.1	26.9	24.9	19.4	10.9	5.32	3.37
Sales of water heating units - Electric	0	1.51	5.8	18.2	37.1	49.5	53.8
Heat Pump (%)							
Sales of water heating units - Electric	50.1	65.3	63.5	58.2	50.1	44.9	43.1
Resistance (%)							
Sales of water heating units - Gas Furnace	45.5	30.1	27.7	20.8	10.2	3.27	0.852
(%)							
Sales of water heating units - Other (%)	4.39	3.08	3.01	2.82	2.52	2.32	2.25

Table 49: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	0	237	495	1,674	5,255	7,661
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.39	0	0.815	0	4.16	0	11.6
units)							
Public EV charging plugs - L2 (1000 units)	1.37	0	19.6	0	99.8	0	277
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.44	1.87	2.03	1.61	1.02	0.522	0.224
Vehicle sales - Light-duty - EV (%)	2.03	5	12.5	26.9	49.5	72.8	87.9
Vehicle sales - Light-duty - gasoline (%)	91.3	86.9	78.6	65.3	44.9	24.1	10.7
Vehicle sales - Light-duty - hybrid (%)	5.01	5.8	6.46	5.82	4.3	2.51	1.2
Vehicle sales - Light-duty - hydrogen FC	0.112	0.377	0.319	0.241	0.169	0.093	0.043
(%)							
Vehicle sales - Light-duty - other (%)	0.098	0.101	0.091	0.079	0.057	0.031	0.014
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 50: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant	0	0	0	0	0	0	0
(billion \$2018) Capital invested - Biomass w/ccu allam	0	0	0	0	0	n	0
power plant (billion \$2018)	O						0
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0	0	0	0	0

Table 51: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu power plant (GWh)	0	0	0	0	0	0	0

Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)	0	0	512	515	515	515	900
Conversion capital investment -	0	0	1,031	30.8	0.343	0	4,523
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	0	0	0	0
Number of facilities - Diesel ccu (quantity)	0	0	0	0	0	0	0
Number of facilities - Power (quantity)	0	0	0	0	0	0	0
Number of facilities - Power ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	0	0	0	5

Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Number of facilities - Pyrolysis ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Sng (quantity)	0	0	0	0	0	0	0
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	0	0

Table 53: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0	3.35	3.32	3.42	3.53
Annual - BECCS (MMT)		0	0	0	0	0	0
Annual - Cement and lime (MMT)		0	0	3.35	3.32	3.42	3.53
Annual - NGCC (MMT)		0	0	0	0	0	0
Cumulative - All (MMT)		0	0	3.35	6.67	10.1	13.6
Cumulative - BECCS (MMT)		0	0	0	0	0	0
Cumulative - Cement and lime (MMT)		0	0	3.35	6.67	10.1	13.6
Cumulative - NGCC (MMT)		0	0	0	0	0	0

Table 54: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	0	506	506	506	543
Cumulative investment - All (million \$2018)		0	0	2,258	2,257	2,260	2,292
Cumulative investment - Spur (million \$2018)		0	0	155	154	157	188
Cumulative investment - Trunk (million \$2018)		0	0	2,104	2,104	2,104	2,104
Spur (km)		0	0	153	153	153	190
Trunk (km)		0	0	353	353	353	353

Table 55: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-204
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-1,727
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							0
deployment - Cropland to woody energy							
crops (1000 tCO2e/y)							
Carbon sink potential - Aggressive							0
deployment - Pasture to energy crops							
(1000 tC02e/y)							
Carbon sink potential - Aggressive							-60.7
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-1,993
deployment - Total (1000 tCO2e/y)							

Table 56: F-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							-20
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-9
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							
deployment - Cropland to woody energy							
crops (1000 tC02e/y)							
Carbon sink potential - Moderate							
deployment - Pasture to energy crops							
(1000 tC02e/y)							
Carbon sink potential - Moderate							-30.
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-1,14
deployment - Total (1000 tCO2e/y)							.,
Land impacted for carbon sink -							11
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							2,51
Aggressive deployment - Cropland							2,01
measures (1000 hectares)							
Land impacted for carbon sink -							23
Aggressive deployment - Cropland to							20.
woody energy crops (1000 hectares)							
Land impacted for carbon sink -							29
Aggressive deployment - Pasture to							27
energy crops (1000 hectares)							
Land impacted for carbon sink -							11
							- ''
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							0.07
Land impacted for carbon sink -							3,06
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							11
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							53
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							23.
deployment - Cropland to woody energy							
crops (1000 hectares)							
Land impacted for carbon sink - Moderate	T	T	Т	T			29
deployment - Pasture to energy crops							
(1000 hectares)							
Land impacted for carbon sink - Moderate							55.
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							1,03
deployment - Total (1000 hectares)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y)							-254
Carbon sink potential - High - All (not							-34,151
counting overlap) (1000 tCO2e/y)							04,101
Carbon sink potential - High - Avoid							-2,149
deforestation (1000 tCO2e/y)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Extend							-9,384
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-2,265
plantations (1000 tC02e/y)							
Carbon sink potential - High - Increase							-9,560
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-702
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-300
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-6,186
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-3,35
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-127
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-10,423
counting overlap) (1000 tCO2e/y)							•
Carbon sink potential - Low - Avoid							-358
deforestation (1000 tC02e/y)							
Carbon sink potential - Low - Extend							-3,605
rotation length (1000 tCO2e/y)							0,000
Carbon sink potential - Low - Improve							-1,153
plantations (1000 tC02e/y)							1,100
Carbon sink potential - Low - Increase							-3,187
retention of HWP (1000 tCO2e/y)							0,101
Carbon sink potential - Low - Increase							-246
trees outside forests (1000 tC02e/y)							-240
Carbon sink potential - Low - Reforest							-150
·							-130
cropland (1000 tCO2e/y) Carbon sink potential - Low - Reforest							-469
pasture (1000 tCO2e/y)							-405
							1100
Carbon sink potential - Low - Restore							-1,130
productivity (1000 tC02e/y)							100
Carbon sink potential - Mid - Accelerate							-190
regeneration (1000 tC02e/y)							00.07
Carbon sink potential - Mid - All (not							-22,26
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-1,254
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-6,494
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-1,689
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-6,373
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-474
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-225
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-3,327
pasture (1000 tCO2e/y)							-,
Carbon sink potential - Mid - Restore							-2,240
productivity (1000 tC02e/y)							2,270
Land impacted for carbon sink potential -				-	+		41.5
High - Accelerate regeneration (1000							41.3
hectares)							
Land impacted for carbon sink potential -							29
High - Avoid deforestation (over 30 years)							29
riigii - Avoid detol estation (UVEL 30 yeal'S)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -	2020	2023	2030	2033	2040	2045	4,785
High - Extend rotation length (1000							4,100
= -							
hectares)							005
Land impacted for carbon sink potential -							835
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							66.7
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							19.8
High - Reforest cropland (1000 hectares)							.,.0
Land impacted for carbon sink potential -							176
·							110
High - Reforest pasture (1000 hectares)							4 444
Land impacted for carbon sink potential -							1,111
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							7,325
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							20.8
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							273
Low - Avoid deforestation (over 30 years)							2.0
(1000 hectares)							
Land impacted for carbon sink potential -							1,833
							1,033
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							417
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							35.1
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							9.91
·							7.71
Low - Reforest cropland (1000 hectares)							00.5
Land impacted for carbon sink potential -							30.5
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							672
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,292
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							31.1
Mid - Accelerate regeneration (1000							01.1
hectares)							000
Land impacted for carbon sink potential -							282
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,309
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							628
Mid - Improve plantations (1000 hectares)							323
a Improvo plantationo (1000 ficotal 65)		1					

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							50.9
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							14.9
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							220
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,354
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,890
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 58: E-B+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		845	0.772	0.76	0.678	0.484	0.043
Coal (million 2019\$)							
Monetary damages from air pollution -		181	117	59	41.4	23.3	8.8
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		957	969	943	850	676	462
Transportation (million 2019\$)							
Premature deaths from air pollution -		95.4	0.087	0.086	0.077	0.055	0.005
Coal (deaths)							
Premature deaths from air pollution -		20.4	13.2	6.66	4.67	2.63	0.993
Natural Gas (deaths)							
Premature deaths from air pollution -		108	109	106	95.6	76	51.9
Transportation (deaths)							

Table 59: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	30,680	31,883	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	32	34.3	34.3	34.3	34.4	34.3	34.3
Resistance (%)							
Sales of cooking units - Gas (%)	68	65.7	65.7	65.7	65.6	65.7	65.7
Sales of space heating units - Electric	4.92	24.3	48.6	68.6	71.8	72.2	72.2
Heat Pump (%)							
Sales of space heating units - Electric	4.71	8.77	12.8	20	25.1	25.8	25.9
Resistance (%)							
Sales of space heating units - Fossil (%)	7.87	4.59	3.39	1.45	0.212	0.017	0
Sales of space heating units - Gas Furnace	82.5	62.3	35.2	9.95	2.88	1.94	1.88
(%)							
Sales of water heating units - Electric	0.167	0.273	0.269	0.271	0.272	0.27	0.272
Heat Pump (%)							
Sales of water heating units - Electric	4.19	6.76	6.69	6.7	6.72	6.7	6.71
Resistance (%)							
Sales of water heating units - Gas Furnace	91.5	88.5	88.5	88.6	88.5	88.5	88.6
(%)							
Sales of water heating units - Other (%)	4.17	4.42	4.53	4.44	4.48	4.5	4.46

Table 60: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

• •			•				
Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		4.39	4.43	6.57	6.87	7.03	7.31
Cumulative 5-yr (billion \$2018)							

Table 61: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	246	251	253	255	257	265	279
Final energy use - Industry (PJ)	381	412	434	451	473	490	511
Final energy use - Residential (PJ)	313	298	294	293	296	303	311
Final energy use - Transportation (PJ)	709	670	623	596	599	617	640

Table 62: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	6.34	5.72	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	70.1	70.1	70.1	70.1	70.1	70.1	70.1
Resistance (%)							
Sales of cooking units - Gas (%)	29.9	29.9	29.9	29.9	29.9	29.9	29.9
Sales of space heating units - Electric	23.5	46.8	47.7	48.9	49.9	51	52.7
Heat Pump (%)							
Sales of space heating units - Electric	18.9	17	16.7	16.1	15.6	14.6	12.7
Resistance (%)							
Sales of space heating units - Fossil (%)	12.4	13.6	8.94	6.9	6.71	6.67	6.75
Sales of space heating units - Gas (%)	45.2	22.7	26.7	28	27.8	27.7	27.8
Sales of water heating units - Electric	0	0	0	0	0	0	0
Heat Pump (%)							
Sales of water heating units - Electric	50.1	65.9	65.9	65.8	65.8	65.7	65.7
Resistance (%)							
Sales of water heating units - Gas Furnace	45.5	31	31	31	31.1	31.1	31.2
(%)							
Sales of water heating units - Other (%)	4.39	3.1	3.11	3.12	3.13	3.14	3.15

Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Heavy-duty - diesel (%)	98.1	98.2	97.9	97	95.6	93.5	91.6
Vehicle sales - Heavy-duty - EV (%)	0	0	0	0	0	0	0
Vehicle sales - Heavy-duty - gasoline (%)	0.229	0.242	0.257	0.274	0.294	0.317	0.343
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.096	0.112	0.13	0.15	0.174	0.202
Vehicle sales - Heavy-duty - hydrogen FC (%)	0.119	0.138	0.16	0.186	0.216	0.25	0.29
Vehicle sales - Heavy-duty - other (%)	1.51	1.31	1.57	2.37	3.69	5.71	7.57
Vehicle sales - Light-duty - diesel (%)	1.43	1.86	2.16	2.02	1.81	1.69	1.6
Vehicle sales - Light-duty - EV (%)	3.97	6.13	6.94	8.56	10.4	11.9	13.1
Vehicle sales - Light-duty - gasoline (%)	89.5	85.9	83.5	81.6	79.4	77.5	76
Vehicle sales - Light-duty - hybrid (%)	4.85	5.67	6.91	7.47	8	8.52	8.89
Vehicle sales - Light-duty - hydrogen FC (%)	0.11	0.372	0.339	0.299	0.295	0.295	0.305
Vehicle sales - Light-duty - other (%)	0.096	0.1	0.097	0.097	0.096	0.095	0.097
Vehicle sales - Medium-duty - diesel (%)	65.2	63.5	61.6	59.6	58	56.5	55.2
Vehicle sales - Medium-duty - EV (%)	0.027	0.105	0.329	0.671	0.895	0.973	0.993
Vehicle sales - Medium-duty - gasoline (%)	34	35.5	37	38.5	39.7	40.8	41.7
Vehicle sales - Medium-duty - hybrid (%)	0.365	0.427	0.496	0.577	0.674	0.793	0.929
Vehicle sales - Medium-duty - hydrogen FC (%)	0.175	0.208	0.242	0.285	0.339	0.409	0.487
Vehicle sales - Medium-duty - other (%)	0.255	0.271	0.298	0.345	0.42	0.528	0.671

Table 64: REF scenario - PILLAR 6: Land sinks - Forests

	2045 2050
Carbon sink potential - High - Accelerate	-254
regeneration (1000 tCO2e/y)	
Carbon sink potential - High - All (not	-34,151
counting overlap) (1000 tCO2e/y)	
Carbon sink potential - High - Avoid	-2,149
deforestation (1000 tCO2e/y)	
Carbon sink potential - High - Extend	-9,384
rotation length (1000 tC02e/y)	7,304
Carbon sink potential - High - Improve	-2,265
	-2,265
plantations (1000 tC02e/y)	0.5(0
Carbon sink potential - High - Increase	-9,560
retention of HWP (1000 tC02e/y)	
Carbon sink potential - High - Increase	-702
trees outside forests (1000 tC02e/y)	
Carbon sink potential - High - Reforest	-300
cropland (1000 tCO2e/y)	
Carbon sink potential - High - Reforest	-6,186
pasture (1000 tC02e/y)	
Carbon sink potential - High - Restore	-3,351
productivity (1000 tC02e/y)	
Carbon sink potential - Low - Accelerate	-127
regeneration (1000 tC02e/y)	121
Carbon sink potential - Low - All (not	-10,423
	-10,423
counting overlap) (1000 tC02e/y)	050
Carbon sink potential - Low - Avoid	-358
deforestation (1000 tC02e/y)	
Carbon sink potential - Low - Extend	-3,605
rotation length (1000 tCO2e/y)	
Carbon sink potential - Low - Improve	-1,153
plantations (1000 tCO2e/y)	
Carbon sink potential - Low - Increase	-3,187
retention of HWP (1000 tCO2e/y)	
Carbon sink potential - Low - Increase	-246
trees outside forests (1000 tCO2e/y)	
Carbon sink potential - Low - Reforest	-150
cropland (1000 tCO2e/y)	-130
	1/0
Carbon sink potential - Low - Reforest	-469
pasture (1000 tCO2e/y)	
Carbon sink potential - Low - Restore	-1,130
productivity (1000 tCO2e/y)	
Carbon sink potential - Mid - Accelerate	-190
regeneration (1000 tCO2e/y)	
Carbon sink potential - Mid - All (not	-22,267
counting overlap) (1000 tCO2e/y)	
Carbon sink potential - Mid - Avoid	-1,254
deforestation (1000 tC02e/y)	
Carbon sink potential - Mid - Extend	-6,494
rotation length (1000 tC02e/y)	9,171
Carbon sink potential - Mid - Improve	-1,689
	-1,009
plantations (1000 tC02e/y)	(070
Carbon sink potential - Mid - Increase	-6,373
retention of HWP (1000 tC02e/y)	
Carbon sink potential - Mid - Increase	-474
trees outside forests (1000 tCO2e/y)	
Carbon sink potential - Mid - Reforest	-225
cropland (1000 tC02e/y)	
Carbon sink potential - Mid - Reforest	-3,327
pasture (1000 tCO2e/y)	
Carbon sink potential - Mid - Restore	-2,240
productivity (1000 tC02e/y)	2,240
ρι σααστίντιγ (1000 του 20/ γ)	

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -	T						41.5
High - Accelerate regeneration (1000							
hectares)							001
Land impacted for carbon sink potential -							291
High - Avoid deforestation (over 30 years) (1000 hectares)							
Land impacted for carbon sink potential -							4,785
High - Extend rotation length (1000							4,100
hectares)							
Land impacted for carbon sink potential -							835
High - Improve plantations (1000							000
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							66.7
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							19.8
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							176
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,111
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							7,325
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							20.8
Low - Accelerate regeneration (1000							
hectares)							070
Land impacted for carbon sink potential -							273
Low - Avoid deforestation (over 30 years) (1000 hectares)							
Land impacted for carbon sink potential -							1,833
Low - Extend rotation length (1000							1,033
hectares)							
Land impacted for carbon sink potential -							417
Low - Improve plantations (1000							411
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							Ū
hectares)							
Land impacted for carbon sink potential -							35.1
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							9.91
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							30.5
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							672
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,292
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							31.1
Mid - Accelerate regeneration (1000							
hectares)							

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							282
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,309
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							628
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							50.9
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							14.9
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							220
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,354
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,890
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 65: REF scenario - PILLAR 6: Land sinks - Forests - REF only

Item	2020	2025	2030	2035	2040	2045	2050
Business-as-usual carbon sink - Natural uptake (Mt CO2e/y)	-41.9		-12.3				-10
Business-as-usual carbon sink - Retained in Hardwood Products (Mt CO2e/y)	-2.6		-4.34				-4.57
Business-as-usual carbon sink - Total (Mt CO2e/y)	-44.5		-16.7				-14.6

Table 66: REF scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		2,362	1,481	1,350	1,296	1,267	1,169
Coal (million 2019\$)							
Monetary damages from air pollution -		156	167	189	210	197	196
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		954	979	1,004	1,032	1,058	1,084
Transportation (million 2019\$)							
Premature deaths from air pollution -		267	167	153	146	143	132
Coal (deaths)							
Premature deaths from air pollution -		17.6	18.8	21.4	23.7	22.2	22.2
Natural Gas (deaths)							
Premature deaths from air pollution -		107	110	113	116	119	122
Transportation (deaths)							