

APPENDIX C: Flow Regime Visual Observations.

Figure Cl shows a typical friction pressure loss curve disected into four main flow regime areas. The variation of this curve is keyed to Govier's flow regime map (Fig. 14) and can be explained as follows:

A.  $0 < F_0 \le a$ : In this region the water predominates the fluid flow and can be characterized as a typical slug flow. Figure C2 shows a typical view of the tube. In region A the fluid is in counter flow around the air slugs while in region B the fluid flows at a rate commensurate with that of the air slugs. The oil is distributed throughout the water in small bubbles. At higher velocities the negative shear around the air slugs is small compared to that in the liquid slugs. As does Singh and Griffith the negative shear can be assumed to be neglected in most cases. When the oil in liquid volume fraction is increased from 0, the size of the liquid slugs decreases and the counterflow area thickens. This causes a decrease in the friction pressure loss. This decrease continues until the regime change at a.

B. a<F<sub>o</sub><b: At the transition a, the liquid flow changes to a froth. The water still predominates the flow (Fig. C3) next to the wall, but the oil bubbles in the water slug area begin to coalesce into oil slugs. The area A is still in counterflow, however in area B the water flow around the oil slugs in cocurrent. Hence the effective length of the water slugs begins to increase and the friction loss increases. As the water in the fluid slug is completely replaced by oil, the layer of

Figure C1. Typical Friction Pressure Loss Curve.



Figure C2 & C3. Flow Regime Diagram.



water on the tube wall becomes thinner and thinner until at the transition b the layer is too thin to contain any oil bubbles, and the bubbles are sheared between the wall and the air slugs. When this occurs the friction loss makes a sharp upward jump until the oil bubbles are forced out of the water layer. The pressure jump is point b on Figure Cl.

- C. b<Fo<c: At b the flow changes from water dominated froth to oil froth and the water is considered to be bubbles of water in oil. The exception is that a thin layer of water still persists on the wall of the tube. However, this layer is too thin to contain any oil bubbles. The laminar nature of the oil flow dampens the turbulence of the water and air and transition to pure slug flow is quickly achieved. At point c, full slug flow is achieved and the water is finally replaced by oil on the wall. When this occurs the counterflow friction loss dominated now by the viscosity of the oil, decreases. This dip can be seen at point c in Figure C1.
- D. c<Fo≤1.0: In this region the flow transitions from pure slug flow to a quasi annular flow. As Fo increases, the counterflow velocity region (A in Fig. C5) reverses to co-current and increases in thickness while that of the slug region (B) decreases in size. After this reversal the combination of the oil viscosity and the increased upward velocity cause a sharp rise in the pressure losses. Again, this is apparent in Figure C1.

# Figure C4 & C5. Flow Regime Diagram.



Fig. C4.

Fig. C5.

APPENDIX D: Derivation of Annular Flow Pressure Drop Method.

Annular flow is characterized by a continuous column of gas and a continuous annulus of fluid AIR in co-current flow (A in Fig. D1) while slug flow is characterized by counter fluid flow over the gas slugs and co-current flow in the fluid slugs (B in Fig. D1). However, in the transition both co-current annulus and slug fluid flows occur simultaneously. Therefore the basis of this method is the assumption that transition flow can be modeled as a basic annular flow with a decreased annular fluid velocity. The decrease FLUID accounts for the remaining fluid slugs. In addition, in calculating the friction pressure loss the FIG. D1 modified annular velocity of the fluid in the annulus is assumed to be the velocity of the fluid flowing alone in the entire

From annular flow the fluid velocity is as follows:

tube.

$$\tilde{\mathbf{v}}_{\mathbf{f}} = \frac{\mathbf{Q}_{\mathbf{f}}}{\mathbf{A}\alpha_{\mathbf{f}}} \tag{D 1}$$

This can then be modified for the Quasi-annular flow by a constant K, which is less than one.

$$\tilde{\mathbf{v}}_{\mathbf{f}} = \frac{\mathbf{KQ}_{\mathbf{f}}}{\mathbf{AQ}_{\mathbf{f}}} \tag{D 2}$$

Based on this the following pressure loss analysis is derived:

$$Re_{f} = \frac{KQ_{f}^{D\rho}f}{A\alpha_{f}^{\mu}f^{g}_{o}}$$
 (D 3)

Due to the high viscosity of the Nujol, the oil flow was laminar throughout the experiment. Hence the laminar friction factor equation is used.

$$f = \frac{16}{Re_f} = \frac{16A\alpha_f \mu_f g_o}{KQ_f D\rho_f}$$
 (D 4)

The shear stress is then:

$$\tau = \frac{f \rho v_f^2}{2g_o} = \frac{8\mu_f KQ_f}{A\alpha_f D}$$
 (D 5)

and the friction pressure loss is:

$$\Delta p_f = \frac{4\tau}{D} = \frac{32K \mu_f Q_f}{AD^2 \alpha_f}$$
 (D 6)

which is a constant (K) times the loss associated with a complete annular flow.

In calculating the total friction pressure loss of the flow, we must recognize the transitional nature of the flow. That is, both annular and slug flows contribute to the loss. Therefore, we can assume that the total loss due to friction will be a portion of a full annular flow superimposed over the slug losses. We may then say that the total friction pressure loss is as follows:

$$\Delta p_{f} = K \Delta p_{fannular} + (1-K)\Delta p_{fslug}$$
 (D 7)

The annular flow portion is calculated as in equation D 6 while the slug flow portion can be assumed to be that at Fo equal to zero where slug flow predominates.

Finally, the weighting factor K must be determined. In the flow investigated the quasi annular flow appeared only above the froth critical oil in liquid volume fraction. In this case approximately .85. Also, the flow was nearly annular at Fo equal to one. If, based on this, we assign a value of .9 to K at Fo equal to one, we may linearly interpolate the values of K as shown in Fig. D 2.

The values for the total friction pressure loss derived from the above analysis are shown in Table 3 of the main text and show very close results.

Figure D 2. Linear Interpolation of the Factor K.



APPENDIX E. Physical Data.

## OIL( NUJOL)

 $\mu$  = .0015 lb sec/ ft<sup>2</sup> at 100°F  $\rho$  = 55.5 lbm/ ft<sup>3</sup>

### WATER

 $\mu$  = .000015 lb sec/ft<sup>2</sup> at 100°F  $\rho$  = 62.4 lbm/ ft<sup>3</sup>

#### AIR

 $\mu = 3.9 \text{x} 10^{-7} \text{ lb sec/ ft}^2 \text{ at } 100^{\circ}\text{F}$   $\rho = .075 \text{ lbm/ ft}^3$ 

APPENDIX F. Sample Calculations.

- A. Example of Slug Flows
- Data: Q<sub>w</sub>= .282 CFM, Q<sub>o</sub>=.094 CFM, Q<sub>a</sub>= 1.82 CFM,
   D= .75 inches,& L=74.25 inches.
- 2. Void Fraction:

$$F_{0} = \frac{Q}{Q_{w} + Q_{0}} = .2\frac{.094}{.282 + .094} = .25$$
Eq. 5.10 
$$x_{0} = \frac{Q_{0}}{1.28 Q_{0}} = \frac{1.82}{1.28(1.82 + .282 + .094)} .65$$
Eq. 5.12 
$$x_{0} = 1.037 x_{0}$$

$$x_{0} = 1.037 x_{0}$$

$$x_{0} = 1.037 (1 - .65)(.25)^{1.536}$$

$$x_{0} = .04$$
Eq. 5.14 
$$x_{0} = 1 - (x_{0} + x_{0}) = 1 - (.65 + .04) = .31$$

3. Pressure Loss:

$$\Delta P_{\rho} = \frac{gL}{g_0} (\rho_w \propto_w + \rho_0 \propto_o + \rho_a \propto_a)$$

$$= \frac{32.2x74.25}{32.2x12x144} (55.5(.04) + 62.4(.31) + .65(.075))$$
=.93 psi/length

From Fig.14 for  $F_0$ =.25 and  $V_w = \frac{Q_w}{x_f A} = 4.38 \text{ ft/sec}$ 

the flow regime is slug. Therefore we use the Singh-Griffith method for the friction loss.

$$Re = \frac{\widetilde{v}_m \rho_f D}{\mu_f} = 58.544.$$

$$\Delta P_f = \frac{2 L f \rho_f \tilde{V}_m \propto_w}{g_o D} = .58 \text{ psi/length}$$

Total Pressure Loss = 1.51 psi/length

B. Example of Froth Flows

1. Data: Qw= .076 CFM, Qo= .30 CFM,& Q = 1.82 CFM.

2. Void Fraction:

Same as method in A-2.

3. Pressure Loss:

Same as method in A-3.

$$\triangle P_{\rho} = .91 \text{ psi/ length}$$

$$F_0 = \frac{Q_0}{Q_0 + Q_W} = .80$$

$$V_{w} = \frac{Q_{w}}{Q_{r}} = 1.11 \text{ ft/sec}$$

From fig. 14 the flow regime is froth. Therefore we use the homogeneous method.

Velocity of the fluid flowing in the tube alone:

$$f_0 = \frac{Q_f}{A} = 2.04 \text{ ft/sec}$$

Quality(X): 
$$X = \frac{\rho_a Q_a}{\rho_a Q_a + \rho_f Q_f} .006$$

$$\Delta P_{f} = \frac{2f \rho_{f} \widetilde{V}_{fo}}{D \varepsilon_{o}} \left[ 1 + X - \frac{\rho_{fa}}{\rho_{a}} \right] \left[ 1 + X - \frac{\mu_{fa}}{\mu_{a}} \right]^{-1/4}$$

 $\triangle P_f$  .41 psi/length

C. Example of Quasi-Annular Flows

1. Data: Qw= .019, Qo= .36 CFM, & Qa= 1.82 CFM.

2. Void: Same Method as A2 except eq. 5.11 was used instead of eq. 5.10.

$$\propto_{\mathbf{a}}^{\mathbf{a}}$$
 .46  $\propto_{\mathbf{w}}^{\mathbf{a}}$  .02  $\propto_{\mathbf{0}}^{\mathbf{a}}$  .52

3. Pressure Loss:

Same method as A-3.

$$\triangle P_{\rho} = 1.30 \text{ psi/length}$$

$$F_{o} = .95$$

$$V_{w} = 5.16 \text{ ft/sec}$$

From fig.14 the flow regime is the water drop in oil regime. Therefore the quasi-annular flow method is used.

From eq. D 6:  $\triangle P_f$  annular  $\frac{32L\mu_e Q_e}{A D^2 \propto_f} = 2.0 \text{ psi/ } L$ 

From the Singh-Griffith Methed APf= .712 psi/L

From fig. D 2 K= .6

From eq. D 7:

 $\triangle P_{f \text{ tot}} = K \triangle P_{f \text{ ann}} + (1-K) \triangle P_{f \text{ slug}}$ 

 $\triangle P_{f \text{ tot}} = .6(2.0) + .4(.712) = 1.48 \text{ psi/length}$ 

The total pressure loss is:

 $\triangle P_t = 1.30 + 1.48 = 2.78 \text{ psi/length}$ 

#### APPENDIX G: Data Listing

The following code was used to designate the various runs:



#### a. Test Disignation.

- A. Three Phase Void Fraction Test
- B. Two Phase Oil-Water Pressure Void Test
- C. Three Phase Pressure and Void Test
- D. Contact Angle Test
  - b. Introduced oil in liquid volume fraction (Fo)
  - c. Percent of maximum input air flow for test
    A and the mixture velocity for test B and C.
  - d. Identification number of individual run.

A. THREE PHASE VOID FRACTION DATA.

|               |        | Flow (CFM) | FM)   |     |                |                |         | Δ          | elocity(ft/sec) | (ft/sec)       |                |
|---------------|--------|------------|-------|-----|----------------|----------------|---------|------------|-----------------|----------------|----------------|
| Run           | ·*     | °°         | o,a   | H   | 8 <sup>3</sup> | g <sup>o</sup> | ය.<br>ප | <b>≥</b> 3 | <b>≥°</b>       | <b>,&gt;</b> @ | <b>*&gt;</b> ■ |
| A80-10-1      | .134   | .519       | .333  | 92  | .23            | .50            | .27     | 3.23       | 5.62            | 95.9           | 5.34           |
| 2             | .134   | .519       | .333  | 94  | .23            | .52            | .25     | 3.16       | 5.41            | 7.22           | 5.34           |
| 3             | .134   | .519       | .333  | 96  | .23            | .51            | .26     | 3.23       | 5.51            | 6.81           | 5.34           |
| 4             | .134   | .519       | .309  | 86  | .22            |                | .26     | 3.3        | 5.41            | 6.44           | 5.21           |
| S             | .134   | .519       | .309  | 86  | .20            |                | .25     | 3,63       | 5.11            | 6.7            | 5.21           |
| 9             | .134   | .519       | .309  | 86  | .21            |                | .26     | 3.54       | 5.31            | 6.32           | 5.21           |
| 7             |        | .389       | .348  | 87  | .21            |                | .34     | 2.7        | 4.7             | 5.45           | 4.54           |
| A80-20-1      | .134   | .519       | .654  | 95  | .18            | .45            | .38     | 4.15       | 6.39            | 9.28           | 7.11           |
| 2             | .134   | .519       | .654  | 96  | .18            | .45            | .37     | 4.03       | 6.25            | 9.65           | 7.11           |
| 3             | .134   | .519       | .654  | 96  | .18            | .45            | .37     | 4.03       | 6.25            | 9.65           | 7.11           |
| 4             | .134   | .519       | .62   | 66  | .16            | 77.            | 07.     | 4.54       | 6.39            | 8.4            | 6.9            |
| 5             | .134   | .519       | .62   | 66  | .18            | .50            | .32     | 4.13       | 5.62            | 10.34          | 6.9            |
| 9             | .134   | .589       | .62   | 66  | .18            | .48            | .34     | 4.03       | 5.86            | 9.88           | 6.9            |
| 7             | 7 .1   | .389       | 669.  | 98  | .14            | .36            | .50     | 3.8        | 5.9             | 7.5            | 6.44           |
| A80-30-1 .134 | .134   | .519       | .983  | 76  | .14            | .45            | .50     | 5.01       | 6.25            | 13.15          | 8.87           |
| 2             | 2 .134 | .519       | .983  | 86  | .13            | .38            | 64.     | 5.59       | 7.40            | 10.87          | 8.87           |
| 3             | .134   | .519       | .983  | 86  | .13            | .32            | .55     | 5.59       | 8.79            | 6.67           | 8.87           |
| 7             | .134   | .519       | .929  | 100 | .12            | 84.            | 84.     | 6.05       | 7.03            | 10.49          | 8.51           |
| 5             | .134   | .519       | .929  | 101 | .12            | .38            | .50     | 6.05       | 7.40            | 10.01          | 8.57           |
| 9             | .134   | .519       | .929  | 101 | .12            | .43            | .45     | 6.05       | 6.54            | 11.19          | 8.57           |
| 7             | .1     | .389       | 1.049 | 98  | .13            | .37            | .50     | 4.3        | 5.7             | 11.3           | 8.33           |

|               |             |      |            | Α.  | A. THREE PHASE VOID FRACTION DATA. | E VOID | FRACTIO               | N DATA. | (Continued) | (pen  |                 |
|---------------|-------------|------|------------|-----|------------------------------------|--------|-----------------------|---------|-------------|-------|-----------------|
| Run           | <b>⊘</b> /³ | °°   | o,<br>g    | Н   | ಶಿ                                 | o°     | ಶ <sup><b>ಇ</b></sup> | *>³     | <b>≥°</b>   | \$>@  | *> <sup>≅</sup> |
| A80-40-1 .134 | .134        | .519 | 1.312      | 66  | 60.                                | .35    | .56                   | 8.07    | 8.04        | 12.7  | 10.65           |
| 2             | 2 .134      | .519 | 1.312      | 66  | .10                                | .34    | .56                   | 7.26    | 8.27        | 12.7  | 10.65           |
| 3             | 3 .134      | .519 | 1.312      | 66  | 60.                                | .37    | .54                   | 8.07    | 7.60        | 13.17 | 10.65           |
| 4             | 4 .1        | .389 | 1.399      | 98  | .10                                | .36    | .54                   | 5.5     | 5.8         | 14.1  | 10.23           |
| A80-50-1 .134 | .134        | .519 | 1.64       | 100 | .10                                | .41    | 64.                   | 6.92    | 6.94        | 18.14 | 12.43           |
| 2             | 2 .134      | .519 | 1.64       | 100 | .07                                | .34    | .59                   | 10,37   | 8.27        | 15.06 | 12.43           |
| 3             | 3 .134      | .519 | 1.64       | 100 | .07                                | .41    | .52                   | 10,37   | 98*9        | 17.09 | 12.43           |
| 4             | 4 .1        | .389 | 1.748      | 85  | .07                                | .20    | .73                   | 8.0     | 10.8        | 12.9  | 12.12           |
| A80-60-1 .1   | .1          | .389 | 2.098      | 84  | .07                                | .25    | .68                   | 8.0     | 8.4         | 16.7  | 14.02           |
| A80-70-1 .1   | .1          | .389 | 2.448      | 84  | .07                                | .33    | 09.                   | 8.0     | 4.9         | 21.9  | 15.92           |
| A80-80-1 .1   | .1          | .389 | 2.797      | 83  | .07                                | .27    | 99.                   | 8.0     | 7.8         | 22.9  | 17.81           |
| A80-90-1 .1   | .1          | .389 | 3.147      | 82  | .05                                | .20    | .75                   | 11.7    | 10.4        | 22.7  | 19.7            |
| A80-100-1 .1  | .1          | .389 | .389 3.497 | 81  | 90.                                | .19    | .75                   | 8.6     | 11.1        | 25.10 | 21.6            |

|           | ρ I g |      | 8<br>8° | _ , et | <b>,⊳</b> 3 | ,>°  | <b>&gt;&gt;</b> ® | *>₫   |
|-----------|-------|------|---------|--------|-------------|------|-------------------|-------|
|           | 91 .3 | 38   | .62     | 0      | 1.91        | 3.50 | 0                 | 2.89  |
| 0 91      |       |      | .61     | 0      | 1.86        | 3.55 | 0                 | 2.89  |
| 0 91      |       | . 39 | .61     | 0      | 1.86        | 3.55 | 0                 | 2.89  |
| .353 93   |       |      |         | 31     | 3.03        | 4.82 | .617              | 4.81  |
| .353 94   | .2    | .25  | . 44°   | .31    | 2.90        | 4.93 | .617              | 4.81  |
| .353 96   | .,    | .23  |         |        | 3.16        | 4.71 | .617              | 4.81  |
|           | 7     |      |         | 94.    | 4.27        | 5.86 | 8.33              | 6.72  |
| 707.      | 7.    | .17  |         | .38    | 4.27        | 4.82 | 10.08             | 6.72  |
| .707      | 7     |      | .38     | 94.    | 4°24        | 5.70 | 8.33              | 6.72  |
|           | 7     | .13  |         | 48     | 5.59        | 5.56 | 11.97             | 8.64  |
| 1.060 100 | 7     |      | . 39    | 94.    | 4.84        | 5.56 | 12.49             | 8.64  |
|           | -     |      |         | 55     | 7.26        | 6.19 | 10.34             | 8.64  |
| 1.049 101 | -     |      |         | .59    | 7.26        | 66.9 | 9.63              | 8.64  |
| 1.399 102 | o.    | 60.  |         | .56    | 8.07        | 6.38 | 13.54             | 10.47 |
|           | ٥.    | 80.  |         | .63    | 80.6        | 7.47 | 12.03             | 10.47 |
| 1.399 103 | ٠.    | 60.  |         | .62    | 8.07        | 7.47 | 12.23             | 10.47 |
| 1.749 104 | ٠.    | 80.  |         | 54     | 90°6        | 5.70 | 17.55             | 12.37 |
|           | 9.    | 60.  | . 33    |        | 8.07        | 6.57 | 16.34             | 12.37 |
| 1.749 102 | 9.    | 80.  |         | .54    | 80.6        | 5.70 | 17.55             | 12.37 |

| continued | nued   |     |                |     |      |     |                |           |      |                 |                |
|-----------|--------|-----|----------------|-----|------|-----|----------------|-----------|------|-----------------|----------------|
| Run Qu    | ه.     | °°  | O <sub>a</sub> | н   | ಶ³   | g°  | ಶ <sup>ಇ</sup> | *>3       | *>°  | >> <sup>©</sup> | <b>*&gt;</b> E |
| A75-60-1  |        |     | 2.099          | 103 | .08  | .38 | .54            | 9.08      | 5.70 | 21.06           | 14.27          |
| 2         |        |     | 2.099          | 103 | .07  | .36 | .57            | 10.37     | 6.02 | 19.96           | 14.27          |
| 3         |        |     | 2.099          | 103 | 90.  | .34 | 9.             | 12.10     | 6.38 | 18.96           | 14.27          |
| A75-70-1  |        |     | 2.449          | 104 | • 05 | .29 | 99.            | 14.52     | 7.47 | 20.11           | 16.16          |
| 2         |        |     | 5.449          | 104 | 90.  | .31 | .63            |           | 6.99 | 21.07           | 16.16          |
| 3         |        |     | 2.449          | 104 | • 05 | .31 | .64            | 14.52     | 66.9 | 20.74           | 16.16          |
| A75-80-1  |        |     | 2.798          | 104 | • 05 | ,32 | .63            | 14.52     | 6.77 | 24.07           | 18.06          |
| 2         |        |     | 2.798          | 104 | ° 04 | .25 | 11،            | 18.15     | 8.67 | 21.36           | 18.06          |
| 3         | 3 .134 | .40 | 2.798          | 105 | • 00 | .30 | 99°            | .66 18.15 | 7.23 | 22.97           | 18.06          |

| °> ≅                  | 3.16    | 3.16 | 3.16 | 5.08     | 5.08 | 5.08 | 6.95     | 6.97 | 6.97 | 6.97     | 8.84  | 9.84  | 10.78    | 10.78 | 10.78 | 12.63    | 12.63 | 12.63 | 14.52    | 14.52 | 14.52 | 16.41    | 16.41 | 16.41 | 18.31         | 18.31 | 18.31 |
|-----------------------|---------|------|------|----------|------|------|----------|------|------|----------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|---------------|-------|-------|
| ,>в                   | ,       | ,    |      | 7.65     | 6.83 | 8.32 | 8.41     | 9.77 | 8.47 | 8.47     | 9.79  | 11.14 | 13.85    | 15.87 | 14.28 | 15.77    | 17.20 | 17.20 | 18.92    | 20.27 | 16.70 | 22.07    | 24.08 | 22.45 | 21.94         | 21.63 | 28.57 |
| ×°°                   | 3.85    | 3.85 | 3.85 | 4.77     | 4.99 | 4.77 | 6.45     | 5.63 | 6.65 | 6.65     | 8.13  | 7.32  | 7.32     | 6.45  | 98.9  | 8.13     | 7.08  | 98.9  | 7.57     | 98.9  | 9.54  | 8.13     | 6.27  | 7.08  | 9.54          | 10.45 | 5.78  |
| .×3                   | 2.26    | 2.26 | 2.26 | 3.34     | 3.46 | 3.13 | 4.62     | 4.41 | 4.41 | 4.41     | 6.47  | 5.11  | 90.9     | 5.39  | 6.47  | 7.46     | 6.93  | 7.46  | 8.82     | 80.8  | 10.78 | 7.46     | 8.82  | 9.70  | 12.3          | 12.3  | 10.78 |
| გ <sup><b>დ</b></sup> | 0       | 0    | 0    | .25      | .28  | .23  | .45      | .39  | .45  | .45      | .58   | .51   | .55      | 84.   | .53   | 09.      | .55   | .55   | 09.      | .56   | .68   | 09.      | .55   | .59   | 69.           | .70   | .53   |
| ಶ°                    | .57     | .57  | .57  | 94.      | 77.  | 94.  | .34      | .39  | .33  | .33      | .27   | .30   | .30      | .34   | .32   | .27      | .31   | .32   | .29      | .32   | .23   | .27      | .35   | .31   | .23           | .21   | .38   |
| <b>ಶ</b> ³            | .43     | .43  | .43  | .29      | .28  | .31  | .21      | .22  | .22  | .22      | .15   | .19   | .16      | .18   | .15   | .13      | .14   | .13   | .11      | .12   | .09   | .13      | .11   | .10   | .08           | .08   | 60.   |
| н                     | 06      | 91   | 91   | 91       | 92   | 93   | 96       | 96   | 76   | 95       | 95    | 96    | 96       | 96    | 96    | 96       | 97    | 16    | 46       | 97    | 26    | 86       | 86    | 86    | 86            | 86    | 66    |
| o <sub>a</sub>        | 0       | 0    | 0    | .353     | .353 | .353 | 869.     | .703 | .703 | 1.055    | 1.049 | 1.048 | 1.406    | 1.406 | 1.397 | 1.746    | 1.746 | 1.746 | 2.095    | 2.095 | 2.095 | 2.444    | 2.444 | 7.444 | 2.794         | 2.794 | 2.794 |
| 00                    | .405    |      |      |          |      |      |          |      |      |          |       |       |          |       |       |          |       |       |          |       |       |          |       |       | .405          |       | .405  |
| 0,3                   | .179    |      |      |          |      |      |          |      |      |          |       | _     |          |       |       |          |       |       |          |       | _     |          |       |       | . 179         |       | 1.179 |
| Run 0,w               | A70-0-1 | 2    | 3    | A70-10-1 | .4   |      | A70-20-1 | . 4  |      | A70-30-1 | .,    |       | A70-40-1 | .,    |       | A70-50-1 | . •   |       | A70-60-1 |       | . ,   | A70-70-1 | . 4   | ,     | A70-80-1 .179 | . 4   |       |
|                       |         |      |      |          |      |      |          |      |      |          |       |       |          |       |       |          |       |       |          |       |       |          |       |       |               |       |       |

| Run Qu       | 03   | °°   | O,    | ı.  | <b>3</b> 3 | g°   | ಕ   | ****  | , o  | ×> a  | .> <sup>€</sup> |  |
|--------------|------|------|-------|-----|------------|------|-----|-------|------|-------|-----------------|--|
| A64-0-1 .224 | .224 | .389 | 0     | 95  | .43        | .57  | 1   | 2.82  | 3.70 | 1     | 3.32            |  |
| 2            |      |      | 0     | 95  | .45        | .55  | 1   | 2.70  | 3.83 | 1     | 3.32            |  |
| e            |      |      | 0     | 95  | .47        | .53  | •   | 2.58  | 3.98 | ı     | 3.32            |  |
| A64-10-1     |      |      | .353  | 97  | .32        | .43  | .25 | 3.79  | 4.90 | 7.65  | 5.23            |  |
| 2            |      |      | .353  | 97  | .30        | .43  | .27 | 4.05  | 4.90 | 7.08  | 5.23            |  |
| 3            |      |      | .349  | 97  | .30        | .43  | .27 | 4.05  | 4.90 | 7.00  | 5.21            |  |
| A64-20-1     |      |      | 869.  | 86  | .26        | .38  | .36 | 4.67  | 5.55 | 10.51 | 7.10            |  |
| 2            |      |      | 869.  | 86  | .24        | .36  | 04. | 2.06  | 5.86 | 9.46  | 7.10            |  |
| 3            |      |      | . 703 | 86  | .23        | .37  | .40 | 5.28  | 5.70 | 9.52  | 7.13            |  |
| A64-30-1     |      |      | 1.055 | 86  | .23        | .33  | 77. | 5.28  | 6.39 | 12.99 | 9.04            |  |
| 2            |      |      | 1.048 | 86  | .23        | .31  | 94. | 5.28  | 8.9  | 12.35 | 9.00            |  |
| 3            |      |      | 1.048 | 66  | .23        | .31  | 94. | 5.28  | 8.9  | 12.35 | 9.00            |  |
| A64-40-1     |      |      | 1.397 | 100 | .19        | .27  | .54 | 6.39  | 7.81 | 14.02 | 10.89           |  |
| 2            |      |      | 1.406 | 100 | .18        | .29  | .53 | 6.74  | 7.27 | 14.38 | 10.94           |  |
| 3            |      |      | 1.397 | 100 | .21        | .32  | .47 | 5.78  | 6.59 | 16.11 | 10.89           |  |
| A64-50-1     |      |      | 1.746 | 100 | .17        | .27  | .56 | 7.14  | 7.81 | 16.9  | 12.78           |  |
| 2            |      |      | 1.746 | 100 | .20        | .33  | .47 | 6.07  | 6.39 | 20.13 | 12.78           |  |
| 3            |      |      | 1.746 | 100 | .21        | .32  | .47 | 5.78  | 6.59 | 20.13 | 12.78           |  |
| A64-60-1     |      |      | 2.095 | 100 | .14        | .26  | 09. | 8.67  | 8.11 | 18.92 | 14.67           |  |
| 2            |      |      | 2.084 | 101 | .18        | .36  | 94. | 6.74  | 5.86 | 24.55 | 14.62           |  |
| 3            |      |      | 7.084 | 101 | .14        | .26  | 09. | 8.67  | 8.11 | 18.82 | 14.62           |  |
| A64-70-1     |      |      | 2.432 | 102 | .13        | .26  | .61 | 9.34  | 8.11 | 21.6  | 16.5            |  |
| 2            |      |      | 2.432 | 102 | .14        | .33  | .53 | 8.67  | 6.39 | 24.87 | 16.5            |  |
| 3            |      |      | 2.432 | 102 | .13        | . 24 | .63 | 9.34  | 8.78 | 20.92 | 16.5            |  |
| A64-80-1     |      |      | 2.779 | 103 | .11        | .24  | .65 | 11.04 | 8.78 | 23.17 | 18.38           |  |
| 2            |      |      | 2.779 | 103 | .16        | .32  | .52 | 7.59  | 6.59 | 28.96 | 18.38           |  |
| 3            | .224 | .389 | 2.779 | 103 | .11        | .31  | .58 | 11.04 | 6.80 | 25.96 | 18.38           |  |

| Run      | 0,3  | 000  | Q<br>a | T  | <b>∂</b> 3 | g°  | න <b>්</b> | <b>*&gt;3</b> | `>°  | `> a  | *> <sup>€</sup> |
|----------|------|------|--------|----|------------|-----|------------|---------------|------|-------|-----------------|
| A50-10-1 | 2    | .194 | .349   | 79 | 84.        | .16 | .36        | 2.24          | 67.9 | 5.32  | 4.03            |
| 7        | .2   | .194 | .349   | 79 | 94.        | .19 | .35        | 2.38          | 2.48 | 5.37  | 4.03            |
| 3        | .2   | .194 | .349   | 81 | .47        | .17 | .36        | 2.29          | 6.26 | 5.28  | 4.03            |
| 4        | .267 | .259 | .35    | 83 | 44.        | .23 | .33        | .33           | 6.1  | 5.8   | 4.75            |
| 5        | .267 | .259 | .35    | 98 | .42        | .26 | .32        | 3.4           | 5.4  | 5.9   | 4.75            |
| A50-15-1 | .267 | .259 | .52    | 98 | .37        | .24 | .39        | 3.9           | 6.9  | 7.2   | 2.67            |
| A50-20-1 | .2   | .194 | 669.   | 82 | .34        | .13 | .53        | 3.16          | 8.21 | 7.15  | 5.92            |
| 2        | .2   | .194 | 669.   | 83 | .36        | .15 | 67.        | 3.03          | 7.20 | 7.65  | 5.92            |
| 3        | .2   | .194 | 669.   | 83 | .33        | .13 | .54        | 3.31          | 7.85 | 7.03  | 5.92            |
| 4        | .267 | .259 | .70    | 83 | .33        | .18 | 64.        | 4.3           | 7.6  | 7.8   | 9.94            |
| 5        | .267 | .259 | .70    | 98 | .31        | .20 | 64.        | 4.7           | 6.9  | 7.7   | 6.64            |
| A50-30-1 | .2   | .194 | 1.049  | 84 | .31        | .14 | .55        | 3.52          | 7.51 | 10.34 | 7.82            |
| 2        | .2   | .194 | 1.044  | 85 | .30        | .13 | .57        | 3.61          | 8.21 | 9.87  | 7.82            |
| 3        | .2   | .194 | 1.044  | 85 | .29        | .13 | .58        | 3.78          | 8.41 | 9.65  | 7.82            |
| 7        | .267 | .259 | 1.05   | 82 | .33        | .18 | 67.        | 4.4           | 7.9  | 11.6  | 8.54            |
| 5        | .267 | .258 | 1.05   | 98 | .27        | .17 | .56        | 5.3           | 8.2  | 10.3  | 8.54            |
| A50-40-1 | .2   | .194 | 1.392  | 98 | .27        | .13 | 09.        | 4.01          | 7.85 | 12.68 | 89.6            |
| 2        | .2   | .194 | 1.392  | 87 | .22        | 11: | .67        | 4.83          | 9.39 | 11.36 | 89.6            |
| 3        | .2   | .194 | 1.392  | 88 | .26        | .13 | .61        | 4.14          | 8.41 | 12.29 | 89.6            |
| 7        | .267 | .259 | 1.40   | 82 | .27        | .14 | .59        | 5.4           | 10.2 | 12.8  | 10.44           |
| 5        | .267 | .259 | 1.40   | 98 | .29        | .18 | .52        | 5.0           | 7.8  | 14.2  | 10.44           |
| A50-50-1 | .2   | .194 | 1.74   | 88 | .26        | .14 | 09.        | 4.18          | 7.51 | 15.69 | 11.56           |
| 2        | .2   | .194 | 1.74   | 89 | .29        | .16 | .55        | 3.78          | 6.49 | 17.17 | 11.56           |
| 3        | .2   | .194 | 1.74   | 06 | .26        | .14 | 09.        | 4.25          | 7.51 | 15.61 | 11.56           |
| 7        | .267 | .259 | 1.75   | 81 | .22        | .12 | 99.        | 6.7           | 11.9 | 14.2  | 12.33           |
| 5        | .267 | .259 | 1.75   | 85 | .28        | .18 | .54        | 5.5           | 7.8  | 17.6  | 12.33           |
| A50-60-1 | .2   | .194 | 2.077  | 91 | .22        | .12 | 99.        | 5.04          | 9.14 | 16.80 | 13.39           |
| 2        | .2   | .194 | 2.077  | 92 | .27        | .15 | .58        | 4.09          | 7.20 | 19.11 | 13.39           |
| 3        | .2   | .194 | 2.077  | 92 | .21        | .13 | 99.        | 5.26          | 8.03 | 16.95 | 13.39           |

| Run       | o,3  | o°   | O, B       | H              | <b>8</b> | g°  | ಶ <sup>®</sup> | ×>3  | »°°   | <b>\$</b> > ® | ,> <b>a</b> |
|-----------|------|------|------------|----------------|----------|-----|----------------|------|-------|---------------|-------------|
| A50-60-4  | .267 | .259 | 2.11       | 80             | .24      | .14 | .62            | 5.95 | 10.0  | 18.5          | 14.3        |
| A50-20-1  |      | .194 | 2.423      | 42             | .19      | .10 | .71            | 5.62 | 10.51 | 18.57         | 15.27       |
| W 4 L     |      | .194 | 2.423 2.46 | 93<br>79<br>85 | .23      | .09 | . 72           | 4.71 | 7.85  | 20.65         | 15.27       |
| A50-80-1  | .267 | .259 | 2.81       | 13<br>84       | .24      | .12 | .64            | 6.1  | 11.6  | 23.7          | 18.1        |
| A50-90-1  |      | .259 | 3.16       | 78<br>84       | .19      | 90. | .72            | 7.5  | 5.1   | 24.0          | 20.0        |
| A50-100-1 |      | .259 | 3.51       | 75<br>84       | .21      | .13 | .61            | 5.5  | 10.7  | 31.3          | 21.9        |

|         |      |      |    | В. 1            | TWO PHASE  | FLOW DATA | ATA    |       |                |                 |  |
|---------|------|------|----|-----------------|------------|-----------|--------|-------|----------------|-----------------|--|
|         |      |      |    |                 |            |           | ft/sec | sec   | Ps1            |                 |  |
| Run     | O M  | °°   | ı  | ×> <sup>≝</sup> | <b>5</b> 3 | g°        | >3     | >°    | $\Delta P_{T}$ | ΔP <sub>f</sub> |  |
| B0-3-1  | .556 | 0    | 80 | 3               | 1.0        | 0         | 3.0    |       | 2.84           | .16             |  |
| 2       | .556 | 0    | 80 | 3               | 1.0        | 0         | 3.0    | 1     | 2.85           | .17             |  |
| 3       | .556 | 0    | 80 | 9               | 1.0        | 0         | 3.0    | •     | 2.84           | .16             |  |
| B0-2-1  | .368 | 0    | 80 | 7               | 1.0        | 0         | 2.0    | •     | 2.77           | 60.             |  |
| 2       | .368 | 0    | 80 | 2               | 1.0        | 0         | 2.0    | •     | 2.77           | 60.             |  |
| 3       | .368 | 0    | 80 | 2               | 1.0        | 0         | 2.0    |       | 2.77           | 60.             |  |
| B25-3-1 | .412 | .130 | 84 | 3               | .91        | 60.       | 2.46   | 7.85  | 2.78           | .12             |  |
| 2       | .412 | .130 | 82 | 3               | .93        | .07       | 2.41   | 10.09 | 2.75           | 60.             |  |
| 3       | .412 | .130 | 84 | 3               | .93        | .07       | 2.3    | 10.09 | 2.77           | .10             |  |
| B25-2-1 | .278 | .092 | 88 | 2               | .90        | .10       | 1.68   | 5.0   | 5.69           | .04             |  |
| 2       | .278 | .092 | 80 | 7               | .92        | .07       | 1.62   | 7.14  | 2.70           | •00             |  |
| 3       | .278 | .092 | 80 | 7               | .93        | .07       | 1.62   | 7.14  | 2.70           | .04             |  |
| B50-3-1 | .278 | .276 | 85 | 6               | 99.        | .34       | 2.29   | 4.41  | 5.69           | Π.              |  |
| 2       | .278 | .276 | 85 | 3               | 99.        | .34       | 2.29   | 4.41  | 2.69           | 11.             |  |
| 3       | .278 | .276 | 85 | 2               | .65        | .35       | 2.32   | 4.28  | 2.69           | 11.             |  |
| B50-2-1 | .184 | .184 | 87 | 2               | .71        | .29       | 1.41   | 3.45  | 2.62           | .03             |  |
| 7       | .184 | .184 | 83 | 2               | .72        | .28       | 1.39   | 2.57  | 2.62           | .03             |  |
| 3       | .184 | .184 | 88 | 7               | .72        | .28       | 1.39   | 3.57  | 2.64           | .03             |  |
| B75-2-1 | .134 | .415 | 85 | 3               | .38        | .62       | 1.92   | 3.68  | 2.61           | 11.             |  |
| 7       | .134 | .415 | 82 | 3               | .37        | .62       | 1.97   | 2.58  | 2.60           | .10             |  |
| 3       | .134 | .415 | 98 | 3               | .37        | .63       | 1.97   | 2.58  | 2.62           | .12             |  |
| B75-2-1 | .092 | .276 | 87 | 2               | .45        | .55       | 1.11   | 2.73  | 2.53           | .01             |  |
| 2       | .092 | .276 | 84 | 7               | .48        | .52       | 1.04   | 2.88  | 2.53           | .001            |  |
| 3       | .092 | .276 | 98 | 7               | .43        | .57       | 1.16   | 2.63  | 2.53           | .02             |  |
| B80-3-1 | .11  | 74.  | 80 | 3               | .32        | 89.       | 1.87   | 3.53  | 2.55           | 90.             |  |
| 2       | .11  | 77.  | 80 | 3               | .31        | 69.       | 1.93   | 3.48  | 2.63           | .15             |  |

|              |     |      |      | В.       |     | HASE FLO | W DATA | TWO PHASE FLOW DATA (Continued) | (pa    |      |      |
|--------------|-----|------|------|----------|-----|----------|--------|---------------------------------|--------|------|------|
|              |     | 70.0 |      | E        |     | 7        | 5      |                                 | ft/sec | Psi  | ۵V   |
| Run          | 5/3 | E    | 50   | 1        | >E  | 53       | 30     | 3                               | »°     | L    | J. F |
| B80-2-1      | .07 |      | .29  | 84       | 7 . | .35      | .65    | 1.14                            | 2.46   | 2.48 | 07   |
|              | 6   |      | 670  | 6        | 7   |          |        | 1111                            | 7.70   | 64.7 |      |
| B80-1-1      | .04 |      | .15  | 82       | ٦.  | .34      | 99.    | .59                             | 1.22   | 2.52 | .03  |
|              | .04 |      | .15  | 82       | 1   | .47      | .53    | .43                             | 1.52   | 2.50 | 02   |
| B85-3-1      | .08 |      | .47  | 91       | e c | 90.      | .94    | 7.05                            | 2.71   | 4.07 | 1.67 |
|              | 80. |      | 14.  | 2        | ^   | 60.      |        | 0.6                             | 7.00   | 4.13 | 7/17 |
| B85-2-1      | 90. |      | .31  | 88       | 7 0 | .20      | .80    | 1.51                            | 2.12   | 2.50 | .06  |
|              | 90. |      | 16.  | 26       | 7   | 17:      |        | 77.7                            | 6.73   | 11.7 | 100. |
| B85-1-1<br>2 | .03 |      | .16  | 90       | н н | .32      | .57    | .35                             | 1.25   | 2.59 | .03  |
| B90-3-1      | 90. |      | .50  | 93       | m m | .05      | .95    | 6.0                             | 2.84   | 3.91 | 1.51 |
|              | 3   |      | 3    | 7,       | ,   |          | 2      | :                               | 10:1   |      | 2    |
| B90-2-1      | .04 |      | .33  | 20 8     | 77  | .05      | .95    | 3.31                            | 1.91   | 3.30 | 96.  |
| B90-1-1<br>2 | .02 |      | 11.  | 92       |     | 1.9.     | .89    | 96.                             | 1.01   | 2.56 | .34  |
| B95-3-1      | .03 |      | .52  | 83<br>93 | m m | .03      | .97    | 5.03                            | 2.93   | 4.18 | 1.79 |
|              | .02 |      | .35  | 83<br>93 | 77  | .06      | .96    | 2.55                            | 1.98   | 3.50 | 1.1  |
| B95-1-1<br>2 | 20. |      | .18  | 82<br>93 | п п | .09      | .91    | .57                             | 1.04   | 2.77 | .36  |
| B100-3-1     | 00  |      | .552 | 80       | m m | 00       | 1.0    | 00                              | 3.0    | 4.34 | 1.95 |

|            |     |     |      |    | D. 1V  | VO FHASE | INO PHASE FLOW DAIR |     | COULTINGS) |                   |                   |
|------------|-----|-----|------|----|--------|----------|---------------------|-----|------------|-------------------|-------------------|
|            |     |     |      |    |        |          |                     | ft  | ft/sec     | Psi               |                   |
| Run        | 0,3 | CFM | o°   | T  | ام الم | ಶ³       | g°                  | *>* | >°         | $^{ m AP}_{ m T}$ | $^{ m DP}_{ m f}$ |
|            |     |     |      |    |        |          |                     |     |            |                   |                   |
| B100-3-3 0 | 0   |     | .552 | 80 | 3      | 0        | 1.0                 | 0   | 3.0        | 4.34              | 1.96              |
| B100-2-1   | 0   |     | 368  | 80 | 2      | 0        | 1.0                 | 0   | 2.0        | 3.55              | 1.16              |
| 2 0019     |     |     | 368  | 80 | 5      | 0        | 1.0                 | 0   | 2.0        | 3.55              | 1.16              |
| 1 60       | 0   |     | .368 | 80 | 2      | 0        | 1.0                 | 0   | 2.0        | 3.57              | 1.18              |

|                | ,> <sub>a</sub> | 5.92<br>5.24<br>5.24<br>5.08                    | 5.57<br>4.92<br>4.99<br>4.71  | 4.96<br>4.85<br>5.16<br>4.70  | 5.29<br>5.33<br>5.71<br>5.16 | 4.49<br>4.57<br>4.78<br>4.32 | 4.50<br>3.92<br>5.12<br>4.57 | 4.29<br>4.13<br>5.29                    |
|----------------|-----------------|-------------------------------------------------|-------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------------|
|                | `>°             |                                                 | 6.81<br>4.96<br>4.82<br>10.86 | 6.19<br>4.56<br>4.36<br>5.87  | 4.43<br>3.75<br>3.56<br>4.03 | 4.22<br>3.96<br>3.74<br>4.29 | 3.99<br>4.47<br>3.46<br>3.99 | 4.09<br>4.09<br>3.35<br>4.18            |
|                | ۶×              | 3.07<br>3.28<br>3.28<br>3.34                    | 2.69<br>3.09<br>3.08<br>2.87  | 2.34<br>2.78<br>2.67<br>2.52  | 1.82<br>2.31<br>2.28<br>2.15 | 2.37<br>2.65<br>2.75<br>2.55 | 2.43<br>2.87<br>2.72<br>2.32 | 2.37 2.99 2.75 2.75                     |
| TEST           | ಶ <b>್</b>      | 38 38                                           | .36                           | .39<br>.41<br>.38             | .37<br>.35<br>.38            | .44<br>.43<br>.41            | .43                          | .37                                     |
| VOID           | g°              | 0000                                            | .08                           | .17                           | .35<br>.41<br>.38            | .39<br>.41<br>.38            | .44<br>.39<br>.50            | .45                                     |
| LOSS AND       | <b>3</b>        | .66<br>.62<br>.62                               | .51<br>.50<br>.50             | .44<br>.37<br>.38<br>.41      | .28<br>.22<br>.22            | .17<br>.16<br>.15            | ääää                         | .09<br>80.<br>80.                       |
|                | H               | 70 11 12 14 14 14 14 14 14 14 14 14 14 14 14 14 | 69<br>86<br>93<br>64          | 70<br>84<br>91<br>66          | 72<br>80<br>88<br>66         | 74<br>78<br>87<br>67         | 76<br>76<br>86<br>68         | 78<br>75<br>86<br>70                    |
| PHASE PRESSURE | ∆Pf             | 04<br>.008<br>.008                              | 14                            | 05<br>.08<br>18               | -1.04<br>18<br>118           | 94<br>.13<br>.11<br>.025     | 86<br>.09<br>14<br>04        | 92                                      |
| THREE PH       | $\Delta P_{T}$  | 1.825<br>1.678<br>1.678<br>1.678                | 1.57<br>1.57<br>1.40<br>1.609 | 1.51<br>1.60<br>1.40<br>1.516 | .54<br>1.51<br>1.45<br>1.424 | .45<br>1.53<br>1.55<br>1.365 | .52<br>1.36<br>1.36<br>1.35  | .39<br>1.16<br>1.213<br>1.213           |
| ပ              | O <sub>B</sub>  | .364                                            |                               |                               |                              |                              |                              |                                         |
|                | 000             | 0000                                            | .094                          | .188<br>.188<br>.188          | .282<br>.282<br>.282<br>.282 | 300 000                      | 32 32 32 32 32               | 34. 34. 34. 34. 34. 34. 34. 34. 34. 34. |
|                | o,3             | .376<br>.376<br>.376                            | .282<br>.282<br>.282          | .188<br>.188<br>.188          | .094                         | .076<br>.076<br>.076         | .056<br>.056<br>.056         | .038                                    |
|                | Run             | CO-4-1<br>2<br>3<br>4                           | C25-4-1<br>2<br>3<br>4        | C50-4-1 2 3 4                 | C75-4-1<br>2<br>3<br>4       | C80-4-1<br>2<br>3<br>4       | C85-4-1<br>2<br>3<br>4       | C90-4-1<br>2<br>3<br>3                  |

|             | v v v                   | 2.73    | 3.11 | 2.92 | 3.72  |          |     |       | 2.73 7.85<br>2.73 7.85 |
|-------------|-------------------------|---------|------|------|-------|----------|-----|-------|------------------------|
| (panu       | × 4                     | 4.13    | 2,35 | 4.13 | 2.79  | 1        |     | 1     | 1 1                    |
| (Continued) | 8<br>8                  | .25     | .33  | .30  | .43   | .25      |     | .25   | .25                    |
| TEST        | g°                      | .72     | .63  | .67  | .53   | .75      |     | .75   | 27.                    |
| AND VOID    | <b>8</b>                | .03     | .04  | .03  | .04   | 0        |     | 0     | 00                     |
| LOSS        | 1                       | 66      | 75   | 98   | 17    | 70       |     | 2     | 2 7                    |
| PRESSURE    | $\Delta P_{\mathbf{f}}$ | 35      | .31  | .45  | .175  | .48      |     | 69.   | 69.                    |
| E PHASE     | $\Delta P_{\mathbf{T}}$ | 1.43    | 1.93 | 2.11 | 1.529 | 2.622    | 1   | 2.475 | 2.475                  |
| C. THREE    | o <sub>a</sub>          |         |      |      |       |          |     |       |                        |
|             | °°                      | .36     | .36  | .36  | .36   | .376     | 220 | 9/5.  | .376                   |
|             | <b>⊳</b> ³              | .019    | 610. | .019 | .019  | 0        | •   | >     | 00                     |
|             | Run                     | C95-4-1 | 2    | 3    | 7     | 1100-4-1 | ,   | 7     | 4 W                    |

| <sup>,&gt;</sup> a | 10.17<br>10.88<br>9.80  |                        |                        |                        |                        |                       |                       |                         |          |
|--------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|-----------------------|-------------------------|----------|
| <b>*</b> >°        | 111                     | 13.8<br>8.24<br>9.63   | 10.98<br>16.99<br>5.97 | 7.70<br>5.47<br>4.77   | 5.22<br>5.40<br>5.43   | 5.27<br>6.21<br>4.61  | 5.60<br>3.87<br>4.36  | 4.10<br>3.87<br>3.61    | 3.35     |
| *>3                | 4.90<br>4.49<br>5.17    | 3.78<br>4.10<br>5.02   | 4.60<br>3.52<br>3.52   | 3.04 2.82 2.93         | 2.55<br>3.23<br>4.75   | 3.04 4.91 5.74        | 3.69 4.69 4.69        | 8.60<br>8.60<br>8.60    | 11       |
| ಶ <sup>ಇ</sup>     | .58                     | .55                    | .66<br>.56             | .63<br>.54<br>.51      | .53                    | .57<br>.66<br>.57     | .61<br>.48<br>.53     | .51                     | .36      |
| g°                 | 000                     | 90.                    | .09<br>.15             | .20                    | .31                    | .33                   | .33                   | .48<br>.51              | .64      |
| و <b>3</b>         | .42                     | .37                    | .25                    | .17                    | .16<br>.13             | .10                   | 9.9.9.                |                         | 000      |
| H                  | 64<br>73<br>80          | 64<br>73<br>80         | 66<br>74<br>80         | 68<br>75<br>80         | 77 82                  | 70<br>78<br>83        | 71<br>78<br>83        | 72 79 83                | 72       |
| ΔP <sub>f</sub>    | .389                    | 32<br>.026<br>.254     | 665<br>.114<br>.173    | 813<br>.111<br>.196    | -1.086<br>.197<br>.413 | -1.24<br>.085<br>.068 | -1.135<br>145<br>.144 | 049<br>1.423<br>1.215   | .502     |
| $\Delta P_{T}$     | 1.509<br>1.455<br>1.476 | .785<br>1.176<br>1.194 | .025<br>1.244<br>1.353 | .107<br>1.261<br>1.426 | .094<br>1.257<br>1.273 | 18<br>.915<br>1.108   | 195<br>1.115<br>1.274 | 1.121<br>2.663<br>2.535 | 3.187    |
| o<br>B             | 1.092                   |                        |                        |                        |                        |                       |                       |                         | 1        |
| 0,0                | 000                     | .094<br>.094<br>.094   | .188<br>.188<br>.188   | .282<br>.282<br>.282   | 300                    | .32                   | 34. 34.               | 36.                     | .376     |
| <b>∞</b> ³         | .376<br>.376<br>.376    | .282<br>.282<br>.282   | .188                   | .094                   | .076<br>.076<br>.076   | .056                  | .038                  | .019                    | 000      |
| Run                | C0-8-1<br>2<br>3        | C25-8-1<br>2<br>3      | C50-8-1<br>2<br>3      | C75-8-1<br>2<br>3      | C80-8-1<br>2<br>3      | C85-8-1<br>2<br>3     | C90-8-1<br>2<br>3     | C95-8-1<br>2<br>3       | C100-8-1 |

|             | `>a                     | 17.63   | 18 50 | 18.28 | 17.84 | 20.21    | 19.74 | 19.14 | 22.92    | 19.94 | 19.94 | 19.74    | 22.11 | 19.94 | 22.58    | 19.38 | 20.09 | 23.50    | 23.78 | 20.12 | 24.80    | 28.66 | 34.43 | 30.62     | 26.46 | 21 52 |
|-------------|-------------------------|---------|-------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|-----------|-------|-------|
|             | ,>°                     | 000     | 76 81 | 11.60 | 20.4  | 8.37     | 8.65  | 6.63  | 5.18     | 7.44  | 7.44  | 7.48     | 2.08  | 96.9  | 5.07     | 7.07  | 6.34  | 4.78     | 4.70  | 6.44  | 4.54     | 3.87  | 3.34  | 3.73      | 4.28  | 3 64  |
|             | *>3                     | 9.50    | 16.1  | 7.70  | 7.70  | 5.29     | 2.64  | 2.97  | 5.11     | 4.08  | 5.11  | 5.10     | 7.79  | 5.73  | 6.91     | 7.60  | 8.22  | 8.26     | 8.26  | 8.26  | 8.60     | 8.60  | 8.60  | •         | •     | 1     |
|             | <b>2</b> 8              | .78     | 7.    | .76   | 11.   | 69.      | .70   | .72   | 09.      | .58   | 69.   | .70      | .63   | .70   | .62      | .71   | 69.   | .59      | .58   | .68   | .56      | 84.   | 04.   | .45       | .52   | 77    |
|             | g°                      | 000     | 5 6   | 9.    | .03   | .12      | .12   | 1.    | .30      | .29   | .21   | .22      | .32   | .23   | .34      | .25   | .27   | .39      | .39   | .29   | .43      | .51   | .59   | .55       | 84.   | . 56  |
|             | <b>8</b>                | .22     | 97.   | .20   | .20   | .19      | .18   | .17   | .10      | .13   | .10   | .08      | .05   | .07   | .04      | .04   | .04   | .03      | .03   | .03   | .01      | .01   | .01   | •         | •     | 1     |
|             | T                       | 88      | 0/.   | 88    | 9/    | 85       | 88    | 9/    | 85       | 88    | 11    | 87       | 96    | 78    | 88       | 96    | 80    | 88       | 80    | 80    | 88       | 90    | 80    | 88        | 96    | 80    |
|             | $\Delta P_{\mathbf{f}}$ | .850    | 728   | .802  | .825  | .597     | .727  | .709  | 477.     | .775  | .892  | 1544     | .482  | 1.01  | .421     | .824  | .71   | .658     | 1.274 | 1.12  | 1.769    | 1.809 | 1.636 | 1,223     | 2.062 | 2.231 |
| (Continued) | $\Delta P_{T}$          | 1.544   | 1 405 | 1.440 | 1.313 | 1.404    | 1.494 | 1.28  | 1.747    | 1.794 | 1.5   | 1.281    | 1.391 | 1.61  | 1.356    | 1.518 | 1,316 | 1.647    | 2.035 | 1.72  | 2.828    | 3.047 | 2.783 | 3.031     | 3.201 | 3.306 |
| (Conti      | 0 <b>a</b>              | 2.548   |       |       |       |          |       |       |          |       |       |          |       |       |          |       |       |          |       |       |          |       |       |           |       | 2.548 |
|             | 00                      | 000     | , 8   | .094  | .094  | .188     | .188  | .188  | .282     | .282  | .282  | .30      | .30   | .30   | .32      | .32   | .32   | .34      | .34   | .34   | .36      | .36   | .36   | .376      | .376  | .376  |
|             | 03                      | .376    | 280   | .282  | .882  | .188     | .188  | .188  | .094     | 760.  | .094  | 920.     | 920.  | 920.  | .056     | .056  | .056  | .038     | .038  | .038  | .019     | .019  | .019  | 0         | 0     | 0     |
|             | Run                     | C0-16-1 |       | 2     | 3     | C50-16-1 | 2     |       | C75-16-1 | 2     | 3     | C80-16-1 | 2     | 3     | C85-16-1 | 2     | 3     | C90-16-1 | 2     | 9     | C95-16-1 | 2     | 3     | C100-16-1 | 2     | 3     |

|             | ,> <b>a</b>             | 13.4<br>13.4<br>15.79 | 15.47<br>15.33<br>14.35  | 16.02<br>16.62<br>16.78 | 16.99<br>17.72<br>17.72 | 14.37<br>18.38<br>15.95 | 13.38<br>14.35<br>17.13 | 13.62<br>14.67<br>17.28 | 22.17<br>23.15<br>21.26 | 20.22 21.59 21.30       |
|-------------|-------------------------|-----------------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|             | ,2°                     | 111                   | 13.8<br>16.47<br>8.24    | 9.37 7.80 6.55          | 6.63<br>6.01<br>5.87    | 7.05<br>4.39<br>6.22    | 7.76 6.34 4.50          | 8.25<br>6.67<br>4.86    | 3.61<br>3.49<br>3.74    | 4.00<br>3.77<br>3.81    |
|             | *>3                     | 7.8 7.8 5.46          | 4.73 4.73 6.15           | 3.73                    | 2.73<br>2.73<br>3.65    | 5.10<br>5.10<br>3.50    | 8.22<br>8.22<br>8.22    | 8.26<br>8.26<br>8.26    | 8.60<br>8.60<br>8.60    | 111                     |
|             | a <sup>rd</sup>         | .74                   | .65<br>.69               | .62<br>.60<br>.58       | .58<br>.56              | .69                     | .69                     | .75<br>.69<br>.59       | .43                     | 97.                     |
|             | g°                      | 000                   | .0.<br>.0.<br>.0.<br>.0. | 113                     | .23                     | .23                     | .22                     | .22<br>.28<br>.38       | .54<br>.56<br>.52       | .51<br>.54<br>.54       |
|             | 8 <sup>3</sup>          | .26<br>.26<br>.37     | .32                      | .27<br>.27<br>.26       | .19                     | .08                     | 9999                    | 0000                    | 999                     | 000                     |
|             | H                       | 73                    | 74<br>75<br>84           | 75<br>76<br>84          | 78<br>76<br>85          | 80<br>78<br>85          | 81<br>80<br>86          | 82<br>80<br>86          | 82<br>81<br>86          | 82<br>81<br>86          |
|             | ΔP <sub>f</sub>         | .768                  | .395<br>.543<br>.588     | .455                    | .471<br>.598<br>.522    | .718<br>.609<br>.335    | .502                    | .539                    | 1.238 1.254 1.466       | 1.820<br>1.869<br>1.810 |
| (P)         | $\Delta P_{\mathbf{T}}$ | 1.470 1.379 1.430     | 1.352<br>1.411<br>1.403  | 1.449                   | 1.522<br>1.208<br>1.618 | 1.484<br>1.630<br>1.276 | 1.137<br>1.200<br>1.302 | 1.392<br>1.332<br>1.639 | 2.572<br>2.645<br>2.745 | 3.040<br>3.161<br>3.089 |
| (Continued) | o_ <b>,</b>             | 1.82                  |                          |                         |                         |                         |                         |                         |                         | 1.82                    |
| S           | 00                      | 000                   | .094                     | .188                    | .282<br>.282<br>.282    | 888                     | .32                     | .34<br>.34              | .36<br>.36<br>.36       | .376<br>.376<br>.376    |
|             | هن                      | .376<br>.376<br>.376  | .282<br>.282<br>.282     | .188<br>.188<br>.188    | .094<br>.094<br>.094    | .076<br>.076<br>.076    | .056<br>.056<br>.056    | .038                    | .019<br>.019            | 000                     |
|             | Run                     | C0-12-1               | C25-12-1<br>2<br>3       | C50-12-1<br>2<br>3      | C75-12-1<br>2<br>3      | C80-12-1<br>2<br>3      | C85-12-1<br>2<br>3      | C90-12-1<br>2<br>3      | C95-12-1<br>2<br>3      | C100-12-1<br>2<br>3     |

| 1.000         74         23         0         77         8.73         -         23.67           1.149         78         .22         0         .78         9.50         -         22.67           1.149         78         .20         0         .78         9.50         -         22.67           1.149         78         .20         0         .88         5.23         16.47         26.32           1.577         74         .29         .03         .78         5.23         16.47         22.25.22           1.531         73         .26         .03         .71         6.30         16.47         26.32           1.623         .24         .03         .73         6.30         16.47         26.32           1.633         .24         .03         .73         6.30         16.47         26.32           1.638         .74         .29         .03         .73         6.30         16.47         26.32           1.638         .74         .73         .74         .84         13.99         26.21           1.050         .74         .74         .74         .78         .78         26.36           1. | Q APT             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 78         .20         .80         10.26         -           74         .29         .03         .88         5.23         16.47           78         .26         .03         .71         5.85         15.02           78         .24         .03         .71         5.85         15.02           75         .20         .10         .70         5.13         10.53           74         .21         .12         .67         4.82         8.65           78         .12         .07         .81         8.44         13.99           76         .09         .17         .74         4.82         10.53           76         .09         .17         .74         4.82         10.21           80         .09         .26         .65         4.75         6.29           77         .08         .27         .68         5.50         6.71           80         .09         .26         .65         5.10         5.95           80         .08         .24         .68         5.50         6.71           7         .08         .24         .68         5.50         6.71                                                  | 3.276 1.654 1.000 |
| 74       .29       .03       .71       5.85       15.02         73       .26       .03       .71       5.85       15.02         78       .24       .03       .71       5.85       15.02         75       .20       .10       .70       5.13       10.53         74       .21       .12       .67       4.82       8.65         78       .12       .07       .81       8.44       13.99         76       .09       .17       .74       4.82       10.21         80       .09       .17       .74       4.82       10.21         80       .09       .26       .65       4.75       6.29         77       .08       .27       .65       5.10       5.95         80       .08       .24       .75       6.29         77       .08       .27       .65       5.10       5.95         80       .08       .24       .76       5.10       5.95         80       .08       .24       .76       5.74       7.33         82       .04       .23       .73       6.91       7.52         78                                                                                                                                          |                   |
| 73       .26       .03       .71       5.85       15.02         78       .24       .03       .71       5.85       15.02         75       .20       .10       .70       5.13       10.53         74       .21       .12       .67       4.82       8.65         78       .12       .07       .81       8.44       13.99         76       .09       .17       .74       4.82       10.21         80       .09       .26       .65       4.75       6.29         77       .08       .27       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         76       .09       .26       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         76       .09       .26       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         78       .04       .18       .78       7.60       9.45         78       .04       .23       .71       5.74       7.33                                                                                                                                            | 1.437             |
| 78       .24       .03       .73       6.30       16.47         75       .20       .10       .70       5.13       10.53         74       .21       .12       .67       4.82       8.65         78       .12       .07       .81       8.44       13.99         76       .09       .17       .74       4.82       10.21         80       .09       .26       .65       4.75       6.29         77       .08       .27       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         76       .09       .26       .65       4.75       6.29         77       .08       .24       .68       5.50       6.71         78       .08       .24       .68       5.50       6.71         78       .06       .24       .68       5.50       6.71         78       .06       .24       .68       5.50       6.71         78       .06       .24       .78       7.60       9.45         78       .04       .23       .71       5.74       7.33         8                                                                                                                                   | .094 1.514 .731   |
| 75       .20       .10       .70       5.13       10.53         74       .21       .12       .67       4.82       8.65         78       .12       .07       .81       8.44       13.99         76       .09       .17       .74       4.82       10.21         80       .09       .20       .71       5.87       7.82         77       .08       .27       .65       4.75       6.29         77       .08       .24       .68       5.50       6.71         76       .09       .26       .65       4.75       6.29         77       .08       .24       .68       5.50       6.71         78       .08       .24       .68       5.50       6.71         78       .04       .18       .78       7.60       9.45         78       .04       .23       .71       5.74       7.33         82       .04       .23       .71       5.74       7.33         82       .04       .23       .73       6.91       7.55         78       .04       .33       .64       8.26       5.60         82                                                                                                                                   | 1.408             |
| 74       .21       .12       .67       4.82       8.65         78       .12       .07       .81       8.44       13.99         76       .09       .17       .74       4.82       10.21         80       .09       .20       .71       5.87       7.82         76       .09       .26       .65       4.75       6.29         77       .08       .24       .68       5.50       6.71         76       .09       .26       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         76       .09       .26       .65       5.10       5.95         80       .04       .18       .78       7.60       9.45         78       .04       .18       .78       7.60       9.45         78       .04       .23       .71       5.74       7.33         82       .04       .23       .73       6.91       7.52         78       .04       .23       .73       6.91       7.75         78       .04       .33       .64       8.26       5.60         78<                                                                                                                                   | 1.365             |
| 78       .12       .07       .81       8.44       13.99         76       .09       .17       .74       4.82       10.21         80       .09       .20       .71       5.87       7.82         76       .09       .26       .65       4.75       6.29         77       .08       .27       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         76       .09       .26       .65       4.75       6.29         77       .08       .27       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         78       .04       .18       .78       7.60       9.45         78       .04       .18       .78       7.60       9.45         78       .04       .23       .71       5.74       7.33         82       .04       .23       .73       6.91       7.52         78       .04       .23       .73       6.91       7.75         78       .04       .33       .64       8.26       4.75         78<                                                                                                                                   | .188 1.488 .638   |
| 76       .09       .17       .74       5.49       9.12         76       .11       .15       .74       4.82       10.21         80       .09       .20       .71       5.87       7.82         76       .09       .26       .65       4.75       6.29         77       .08       .27       .68       5.50       6.71         76       .09       .26       .65       4.75       6.29         77       .08       .27       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         78       .06       .24       .68       5.50       6.71         78       .04       .18       .78       7.60       9.45         78       .04       .23       .71       5.74       7.33         82       .04       .23       .73       6.91       7.52         78       .04       .33       .64       8.26       4.75         79       .01       .41       .58       8.60       4.76         79       .01       .49       .50       8.60       4.02         82 </td <td>1.546 1</td>                                                                                                               | 1.546 1           |
| 76       .11       .15       .74       4.82       10.21         80       .09       .20       .71       5.87       7.82         76       .09       .26       .65       4.75       6.29         77       .08       .27       .68       5.50       6.71         76       .09       .26       .65       4.75       6.29         77       .08       .24       .68       5.50       6.71         78       .08       .24       .68       5.50       6.71         78       .04       .18       .78       7.60       9.45         78       .04       .23       .71       5.74       7.33         82       .04       .23       .71       5.74       7.33         82       .04       .23       .73       6.91       7.52         78       .04       .23       .73       6.91       7.52         78       .04       .33       .64       8.26       5.60         82       .03       .33       .64       8.26       5.60         78       .01       .41       .58       8.60       4.75         78 </td <td>1.494</td>                                                                                                                 | 1.494             |
| 80       .09       .20       .71       5.87       7.82         76       .09       .26       .65       4.75       6.29         77       .08       .27       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         76       .09       .26       .65       4.75       6.29         77       .08       .24       .68       5.50       6.71         78       .04       .18       .78       7.60       9.45         78       .04       .18       .78       7.60       9.45         78       .04       .23       .71       5.74       7.33         82       .04       .23       .73       6.91       7.52         78       .04       .23       .73       6.91       7.52         78       .04       .33       .64       8.26       5.60         82       .03       .33       .64       8.26       5.60         78       .01       .41       .58       8.60       4.75         78       .01       .49       .50       8.60       4.02         82 <td>1.663</td>                                                                                                                       | 1.663             |
| 76       .09       .26       .65       4.75       6.29         77       .08       .27       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         76       .09       .26       .65       4.75       6.29         77       .08       .27       .65       5.10       5.95         80       .08       .27       .65       5.10       5.95         78       .04       .18       .78       7.60       9.45         78       .05       .24       .71       5.74       7.33         82       .04       .23       .73       6.91       7.52         78       .03       .39       .58       8.26       4.75         78       .04       .33       .64       8.26       5.60         82       .03       .33       .64       8.26       5.60         79       .01       .41       .58       8.60       4.75         78       .01       .49       .50       8.60       4.02         82       .01       .51       .42       8.60       4.02         82 <td></td>                                                                                                                            |                   |
| 77       .08       .27       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         76       .09       .26       .65       4.75       6.29         77       .08       .27       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         78       .04       .18       .78       7.60       9.45         78       .05       .24       .71       5.74       7.33         82       .04       .23       .71       5.74       7.33         78       .03       .39       .58       8.26       4.75         78       .04       .33       .64       8.26       5.60         82       .03       .33       .64       8.26       5.60         79       .01       .41       .58       8.60       4.76         78       .01       .49       .50       8.60       4.02         82       .01       .51       .42       8.60       3.41                                                                                                                                                                                                                | 1.437             |
| 80       .08       .24       .68       5.50       6.71         76       .09       .26       .65       4.75       6.29         77       .08       .27       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         78       .04       .18       .78       7.60       9.45         78       .05       .24       .71       5.74       7.33         82       .04       .23       .73       6.91       7.52         78       .03       .39       .58       8.26       4.75         78       .04       .33       .64       8.26       5.60         82       .03       .33       .64       8.26       5.60         79       .01       .41       .58       8.60       4.75         78       .01       .49       .50       8.60       4.02         82       .01       .51       .42       8.60       3.41                                                                                                                                                                                                                                                                               |                   |
| 76       .09       .26       .65       4.75       6.29         77       .08       .27       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         78       .04       .18       .78       7.60       9.45         78       .05       .24       .71       5.74       7.33         82       .04       .23       .73       6.91       7.52         78       .03       .39       .58       8.26       4.75         78       .04       .33       .63       5.58       5.60         82       .03       .33       .64       8.26       5.60         79       .01       .41       .58       8.60       4.76         78       .01       .49       .50       8.60       4.02         82       .01       .51       .42       8.60       4.02                                                                                                                                                                                                                                                                                                                                              | 1.543             |
| 77       .08       .27       .65       5.10       5.95         80       .08       .24       .68       5.50       6.71         78       .04       .18       .78       7.60       9.45         78       .05       .24       .71       5.74       7.33         82       .04       .23       .73       6.91       7.52         78       .03       .39       .58       8.26       4.75         78       .04       .33       .63       5.58       5.60         82       .03       .33       .64       8.26       5.60         79       .01       .41       .58       8.60       4.76         78       .01       .49       .50       8.60       4.02         82       .01       .51       .42       8.60       3.41                                                                                                                                                                                                                                                                                                                                                                                                             | 1.437             |
| 80       .08       .24       .68       5.50       6.71         78       .04       .18       .78       7.60       9.45         78       .05       .24       .71       5.74       7.33         82       .04       .23       .73       6.91       7.52         78       .03       .39       .58       8.26       4.75         78       .04       .33       .63       5.58       5.60         82       .03       .33       .64       8.26       5.60         79       .01       .41       .58       8.60       4.76         78       .01       .49       .50       8.60       4.02         82       .01       .51       .42       8.60       3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| 78       .04       .18       .78       7.60       9.45         78       .05       .24       .71       5.74       7.33         82       .04       .23       .73       6.91       7.52         78       .03       .39       .58       8.26       4.75         78       .04       .33       .63       5.58       5.60         82       .03       .33       .64       8.26       5.60         79       .01       .41       .58       8.60       4.76         78       .01       .49       .50       8.60       4.02         82       .01       .51       .42       8.60       3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.543             |
| 78       .05       .24       .71       5.74       7.33         82       .04       .23       .73       6.91       7.52         78       .03       .39       .58       8.26       4.75         78       .04       .33       .63       5.58       5.60         82       .03       .33       .64       8.26       5.60         79       .01       .41       .58       8.60       4.76         78       .01       .49       .50       8.60       4.02         82       .01       .51       .42       8.60       3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| 82 .04 .23 .73 6.91 7.52<br>78 .03 .39 .58 8.26 4.75<br>78 .04 .33 .63 5.58 5.60<br>82 .03 .33 .64 8.26 5.60<br>79 .01 .41 .58 8.60 4.76<br>78 .01 .49 .50 8.60 4.02<br>82 .01 .51 .42 8.60 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.412             |
| 78       .03       .39       .58       8.26       4.75         78       .04       .33       .63       5.58       5.60         82       .03       .33       .64       8.26       5.60         79       .01       .41       .58       8.60       4.76         78       .01       .49       .50       8.60       4.02         82       .01       .51       .42       8.60       3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.510             |
| 78 .04 .33 .63 5.58 5.60<br>82 .03 .33 .64 8.26 5.60<br>79 .01 .41 .58 8.60 4.76<br>78 .01 .49 .50 8.60 4.02<br>82 .01 .51 .42 8.60 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.691             |
| 82 .03 .33 .64 8.26 5.60<br>79 .01 .41 .58 8.60 4.76<br>78 .01 .49 .50 8.60 4.02<br>82 .01 .51 .42 8.60 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.058             |
| 79 .01 .41 .58 8.60 4.76<br>78 .01 .49 .50 8.60 4.02<br>82 .01 .51 .42 8.60 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| 78 .01 .49 .50 8.60 4.02<br>82 .01 .51 .42 8.60 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.108             |
| 82 .01 .51 .42 8.60 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.430             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |

| 7   | 3 |
|-----|---|
| 0   | Ú |
|     | 3 |
|     | 4 |
| 7   |   |
| i   | ă |
| 500 | 5 |
| C   | ٥ |
| •   | _ |

| >>a                     | 35.73<br>37.31<br>35.45 |
|-------------------------|-------------------------|
| *>°                     | 4.07<br>3.91<br>4.10    |
| 123                     | 000                     |
| 3 <sup>80</sup>         | .50                     |
| g°                      | .50                     |
| <b>∂</b> 3              | 000                     |
| н                       | 79<br>79<br>82          |
| ΔP <sub>f</sub>         | 2.126 2.281 2.408       |
| $\Delta P_{\mathbf{T}}$ | 3.324                   |
| o e                     | 3.276                   |
| °°                      | .376                    |
| ه.                      | 000                     |
| 1 Run                   | C100-20-1               |