```
In [19]:
```

```
#package seaborn has used for data visualization, pandas, numpy for data processing and manuipulat
ions.
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
sns.set()
```

In [20]:

```
nobel = pd.read_csv("F:/DATA SCIENCE/DATA/archive.csv",parse_dates=True)
```

In [21]:

```
nobel.head(n=2)
```

Out[21]:

	Yea	r Category	Prize	Motivation	Prize Share	Laureate ID	Laureate Type	Full Name	Birth Date	Birth City	Birth Country	Sex	Organization Name
•	190	1 Chemistry	The Nobel Prize in Chemistry 1901	"in recognition of the extraordinary services	1/1	160	Individual	Jacobus Henricus van 't Hoff	1852- 08-30	Rotterdam	Netherlands	Male	Berlin University
	I 190	1 Literature	The Nobel Prize in Literature 1901	"in special recognition of his poetic composit	1/1	569	Individual	Sully Prudhomme	1839- 03-16	Paris	France	Male	NaN
4													Þ

In [22]:

```
nobel.info()
```

```
RangeIndex: 969 entries, 0 to 968
Data columns (total 18 columns):
                       969 non-null int64
Year
Category
                       969 non-null object
                      969 non-null object
Prize
Motivation
                      881 non-null object
Prize Share
                      969 non-null object
                      969 non-null int64
969 non-null object
Laureate ID
Laureate Type
                      969 non-null object
Full Name
Birth Date
                      940 non-null object
Birth City
                      941 non-null object
Birth Country
                      943 non-null object
Sex
                       943 non-null object
Organization Name
                       722 non-null object
                   716 non-null object
Organization City
Organization Country 716 non-null object
Death Date
                      617 non-null object
Death City
                       599 non-null object
Death Country
                       605 non-null object
dtypes: int64(2), object(16)
memory usage: 75.7+ KB
```

<class 'pandas.core.frame.DataFrame'>

In [23]:

```
#Nobel Prizes by Category from 1901 to 2016
year_cat=nobel.groupby(['Year','Category'])['Laureate ID'].count().reset_index()
year_cat
g = sns.FacetGrid(year_cat, col='Category', hue='Category')
g = g.map(plt.plot, 'Year', 'Laureate ID')
```


In [24]:

```
# In this section plotting the nobel prize by sex, country and category
sex=nobel['Sex'].value_counts()
sns.barplot(x=sex.index,y=sex.values)
plt.xticks(rotation=90)
plt.title('Nobel Prizes by Sex')
plt.show()
```


In [25]:

```
#Trend in Nobel Prize
year=nobel['Year'].value_counts()
sns.lineplot(x=year.index,y=year.values,color='red')
plt.xticks(rotation=90)
plt.title('Nobel Prizes by Year')
plt.show()
```


In [26]:

```
#Categorywise - Number of Nobel Prizes
cat= nobel['Category'].value_counts()
sns.barplot(x=cat.index,y=cat.values)
plt.xticks(rotation=45)
plt.title('Nobel Prizes by Category')
plt.show()
```


In [27]:

```
#Countrywise - Which Country got the most
ctry=nobel['Birth Country'].value_counts().head(10)
sns.barplot(x=ctry.index,y=ctry.values)
plt.xticks(rotation=90)
plt.title('Top 10 Countries, which got the nobel prizes the most')
plt.show()
```


In [28]:


```
20 Chemistry Literature Medicine Peace Physics Economics Category
```

In [29]:

```
#Oldest Nobel Prize Winner
old=nobel.nlargest(5,'Age')
display(old[['Category','Full Name','Birth Country','Sex','Age']])
```

	Category	Full Name	Birth Country	Sex	Age
825	Economics	Leonid Hurwicz	Russia	Male	90.0
904	Economics	Lloyd S. Shapley	United States of America	Male	89.0
770	Physics	Raymond Davis Jr.	United States of America	Male	88.0
828	Literature	Doris Lessing	Persia (Iran)	Female	88.0
390	Medicine	Peyton Rous	United States of America	Male	87.0

In [30]:

```
#Youngest Nobel Prize Winner
young=nobel.nsmallest(5,'Age')
display(young[['Category','Full Name','Birth Country','Sex','Age']])
```

	Category	Full Name	Birth Country	Sex	Age
940	Peace	Malala Yousafzai	Pakistan	Female	17.0
86	Physics	William Lawrence Bragg	Australia	Male	25.0
169	Physics	Werner Karl Heisenberg	Germany	Male	31.0
174	Physics	Paul Adrien Maurice Dirac	United Kingdom	Male	31.0
194	Physics	Carl David Anderson	United States of America	Male	31.0

In [31]:

```
# life span calculation
nobel['D Year'] = nobel['Death Date'].str[0:4]
nobel['D Year'] = nobel['D Year'].replace(to_replace="nan", value=0)
nobel['D Year'] = nobel['D Year'].apply(pd.to_numeric)
nobel['lifespan']=nobel['D Year']- nobel['Birth Year']
```

In [32]:

```
#Laureate Types
sns.countplot(nobel['Laureate Type'])
plt.show()
```



```
Laureate Type
```

In [33]:

```
#Organization Toppers
#Plotting the top organization , which won the nobel prize the most.

org = nobel['Organization Name'].value_counts().reset_index().head(20)

sns.barplot(x='Organization Name', y='index', data=org)
plt.xticks(rotation=90)
plt.ylabel('Organization Name')
plt.xlabel('Count')
plt.show()
```


In []: