Laboratorio Avanzado: Tarea 8

Daniel González Velázquez

Identification	Particle	Identification	Particle
1	γ	51	$ ho^0$
2	e^+	52	$ ho^+$
3	e-	53	o ⁻
		54	Δ^{++}
5	μ^+	55	Δ++ Δ+
6	$\mu^ \pi^0$	56	Δ^{0}
7		57	Δ^-
8	π^+	58	$\overline{\Delta}$
9	π^-	59	$\overline{\Delta}^-$
10	K_L^0	60	$\overline{\Delta}^{-}$ $\overline{\Delta}^{0}$ $\overline{\Delta}^{+}$ K^{*0} K^{*+} K^{*-} \overline{K}^{*0}
11	K^+	61	$\overline{\Delta}^+$
12	K^-	62	K^{*0}
13	n	63	K^{*+}
14	p	64	K^{*-}
15	\overline{p}	65	\overline{K}^{*0}
16	K_S^0	66	ν_e
		67	$\overline{\nu}_e$
18	Λ	68	$ u_{\mu}$
19	Σ^+	69	$\overline{ u}_{\mu}$
20	Σ^0		
21	Σ^-	71	$\eta ightarrow \gamma \gamma$
		72	$\eta o 3\pi^0$
25	\overline{n}	73	$\eta \rightarrow \pi^+\pi^-\pi^0$
26	Λ	74	$\eta \to \pi^+\pi^-\gamma$
27	$rac{\overline{n}}{\overline{\Lambda}}$ $\overline{\Sigma}^+$ $\overline{\Sigma}^0$		
28			
29	$\overline{\Sigma}^-$		
$A \times 100 + Z$	nucleus of Z protons and $A-Z$ neutrons		
	$(A \le 59)$		

Problema 1

particle_type.C
particle_type_energy.C

Los intervalos se definieron para contener aproximadamente el mismo número de eventos:

- El rango de energía baja (de 0 GeV a 2247 GeV) contiene 765 eventos.
- \blacksquare El rango de energía media (de 2247 GeV a 10.5×10^3 GeV) contiene 770 eventos.
- \blacksquare El rango de energía alta (de 10.5×10^3 GeV a 2×10^6 GeV) contiene 768 eventos.

2 Laboratorio Avanzado

Figura 1: Porcentaje de cada tipo de partícula llega a los detectores de HAWC (a) en todos los rangos de energía, y para energías (b) bajas, (c) medias y (d) altas.

Ya que en general los eventos más energéticos producen más partículas secundarias, esta elección explica las diferentes estadísticas de cada histograma. Notamos que las partículas más abundantes siempre son fotones, electrones y positrones. Las energías altas producen un porcentaje ligeramente mayor de muones.

Tarea 8 3

Problema 2

distribucion_lateral.C
distribucion_abundantes.C

Figura 2: (a,b,c) Distribución lateral con datos simulados para tres eventos. El eje x indica la distancia entre la posición de impacto en los WCDs y el núcleo de la cascada. El eje y corresponde al logaritmo de la energía de cada hit. Los eventos mostrados son los únicos con al menos 220 hits con energía mayor a 3 GeV. (d) Para el evento 16333 se observa la distribución lateral de las tres partículas más abundantes que alcanzan a los detectores de HAWC (fotones, electrones y positrones) —comparar con (b)—.

4 Laboratorio Avanzado

Problema 3

distribucion_angular.C

Figura 3: Distribución (a) cenital y (b) azimutal para las cascadas atmosféricas simuladas.

En la tarea 6 se graficó un histograma del ángulo cenital de las cascadas atmosféricas usando el archivo reco_run009776_00639.root. En ese caso encontramos una distribución que es nula en 0, alcanza un máximo en un valor cercano a 20 y luego decrece nuevamente a cero. La distribución que resulta de las simulaciones tiene un comportamiento similar, pero el máximo se encuentra desplazado a la derecha, posiblemente debido a que la estadística no es muy grande.

En el caso del ángulo azimutal, al graficar el histograma usando el archivo reco_run009776_00639.root, hallamos una anisotropía debida al campo magnético terrestre, que modifica las trayectorias de las partículas cargadas. La distribución con datos simulados muestra un comportamiento más errático, pero a primera vista no contradice lo obtenido con datos reales. Cabe mencionar que los datos simulados toman en cuenta la presencia del campo magnético.

Tarea 8 5

Problema 4

rayo_primario.C

Figura 4: Histograma bidimensional en donde el eje x es el número total de PEs detectados y el eje y la energía el rayo cósmicos primario. Hay muchos eventos con bajas energías y pocas detecciones; sin embargo, hay algunos eventos con energías altas y pocas detecciones, o a la inversa, con energías bajas y muchas detecciones. Es probable que un evento de baja energía involucre pocas detecciones, pero no siempre podemos asegurar que el número de PEs detectados es buen estimador de la energía.