Quinn Roemer

CISP - 440

Assignment 10

12/6/2018

Part 0 - State Machines.

Description:

The goal for this assignment is to demonstrate my knowledge on state machines. To do this, I am to perform a multitude of problems based on state machines. This includes, determining transition diagrams, initial states, output, input, and state sets.

Problem 2:

Draw the transition diagram of the finite-state machine.

Input =
$$\{a, b\}$$
;
Output = $\{0, 1\}$;
State = $\{o^0, o^1\}$;

		f	g	
SI	а	b	а	b
σ_0	σ_1	σ_0	0	0
σ_1	σ_0	σ_0	1	1

Transition Diagram:

Note: o^0 is the initial state.

Problem 5:

Draw the transition diagram of the finite-state machine.

Input = {a, b, c};
Output = {0, 1, 2};
State = {
$$o^0$$
, o^1 , o^2 , o^3 };

	f			g		
SI	а	b	с	а	b	с
σ_0	σ_1	σ_0	σ_2	1	1	2
σ_1	σ_0	σ_2	σ_2	2	0	0
σ_2	σ_3	σ_3	σ_0	1	0	1
σ_3	σ_1	σ_1	σ_0	2	0	2

Transition Diagram:

Note: o^0 is the initial state.

Problem 7:

Find the input set, output set, state set, and initial state. Write a table defining the next-state and output functions for each finite-state machine.

Input = {a, b}; Output = {0, 1}; State = {A, B, C};

Initial State = A

Table:

	F	=	G		
	а	b	а	b	
А	А	В	0	1	
В	А	С	0	1	
С	С	А	1	0	

Problem 10:

Find the input set, output set, state set, and initial state. Write a table defining the next-state and output functions for each finite-state machine.

Input = {a, b, c};

Initial State = B

Table:

	F			G		
	а	b	С	а	b	С
Α	В	А	С	1	0	2
В	А	D	D	2	0	0
С	А	С	D	0	1	2
D	D	С	А	2	2	0

Problem 12:

Find the output string for the given input string and finite-state machine.

Input = abba

Finite-State Machine:

Output String = 0100

Problem 16:

Find the output string for the given input string and finite-state machine.

Input = aaa

Finite-State Machine:

6. b/1 a/1 a/1 b/1 b/1

Output String = 011

Problem 17:

Find the output string for the given input string and finite-state machine.

Input = aabbabaab

Finite-State Machine:

Output String = 001110001

Problem 19:

Find the output string for the given input string and finite-state machine.

Input = bbababbabaaa

Finite-State Machine:

Output String = 010000000001

Problem 22:

Design a finite-state machine having the given properties. The input is always a bit string.

Properties:

Outputs 1 if k 1's have been input, where k is a multiple of 3; otherwise outputs 0.

Finite-State Machine:

Problem 25:

Design a finite-state machine having the given properties. The input is always a bit string.

Properties:

Outputs 1 when it sees 101 and thereafter; otherwise, outputs 0.

Finite-State Machine:

Part 1 - Finite-State Automata.

Description:

The goal for this section of the assignment is to demonstrate my knowledge on state machines with regards to finite-state automata. In this type of state machine there can only be 2 possible outputs, those being 0 or 1. When an accepting state is reached a 1 is output. When a state that is not accepted is reached a 0 is output.

Problem 2:

Show that each finite-state machine is a finite-state automaton. Redraw the transition diagram as the diagram of a finite-state automaton.

Transition Diagram:

This is a finite-state automaton since an accept state always receives 1, and a non-accept state always receives 0.

Automaton Diagram:

Problem 15:

Determine whether the given string is accepted by the given finite-state automaton.

String = aabaabb

Automaton:

The string is accepted

Problem 26:

Draw the transition diagram of a finite-state automaton that accepts the given set of strings over {a, b}.

Property:

Contains m a's, Where m is a multiple of 3

Automaton:

Problem 29:

Draw the transition diagram of a finite-state automaton that accepts the given set of strings over {a, b}.

Property:

Every b is followed by a.

Automaton:

Problem 37:

Note: I had difficulty understanding the concept of this problem. I failed to find a solution.

Conclusion

This assignment was straight forward. I actually originally learned about state machines when I took ENGR 303. Much of this was review for me. However, on problem 37 I encountered great difficulty. I found it hard to understand what they were asking for and had no idea of how to proceed. Still, I do believe that I understand the concept of state machines/automaton reasonably well. Looking forward to what comes next!