Metodi Matematici per l'Informatica (secondo canale) - 12 Febbraio 2019 \Box prima parte: esercizi 1 – 5, \Box induzione: esercizio 6; \Box seconda parte: esercizi 7 – 10 Indicare qui sopra le parti del compito che sono state svolte			
Nome e Cognome:			
Es 1. Per ogni tripla di insiemi $A, B \in C$ tali che $A - B = C$ si ha:			
$\Box_V \Box_F \ \mathbf{A.} \ C \neq \emptyset;$ $\Box_V \Box_F \ \mathbf{B.} \ C \cup A = B;$ $\Box_V \Box_F \ \mathbf{C.} \ C \subseteq A.$			
Es 2. Per ogni coppia di insiemi $A \in B$ si ha che $\Box_V \Box_F \mathbf{A}$. se A è numerabile allora $A - B$ è numerabile; $\Box_V \Box_F \mathbf{B}$. se $A \in B$ non sono numerabili allora $A \cap B$ non è numerabile; $\Box_V \Box_F \mathbf{C}$. se $A \in B$ sono numerabili allora $A \times B$ è numerabile;			
Es 3. Si consideri la relazione $D = \{(a, b) \mid a, b \in \mathbb{N} \text{ e } a \text{ divide } b\}.$			
$\Box_V \Box_F$ A. D è una relazione d'ordine stretto; $\Box_V \Box_F$ B. D è una relazione d'ordine largo;			
$\Box_V \Box_F$ C. esiste $x \in \mathbf{N}$ tale che per ogni $y \in \mathbf{N}$ se $x \neq y$ allora $(y, x) \in D$.			
Es 4. Scrivere una relazione di ordine stretto sull'insieme $A = \{P,L,M,G\}$.			
Rispondere qui Es 5. Scrivere la definizione di chiusura simmetrica di una relazione. Rispondere qui			
Es 6. Sia x un numero reale. Dimostrare che per ogni $n \ge 2$ si ha $(1-x)\sum_{k=0}^{n-1} x^k = 1-x^n.$			
Rispondere qui			

Es 7.	Definire il concetto di modello nella logica predicativa.		
	Risp	ondere qui	
		o Falso? (N.B. Le lettere A, B, C, p_1, p_2, p_3 variano su proposizioni arbitrarie nel linguaggio della ra proposizionale, non necessariamente distinte).	
$\square_V\square_F$	Α.	$((p_1 \wedge \neg p_2) \vee (\neg p_3 \wedge p_2) \vee (\neg p_1 \vee p_3))$ è una tautologia;	
$\Box_V\Box_F$	В.	Se $A \models B \lor C$ e $B \models \neg C$ allora $(A \to C) \models \neg B$;	
$\Box_V\Box_F$	C.	Se $A \wedge \neg B$ è soddisfacibile allora $A \to B$ è insoddisfacibile;	
$\Box_V\Box_F$	D.	Se esiste B tale che il tableau di $(B \wedge \neg A)$ ha tutti i rami chiusi allora A è una tautologia;	
Es 9.	I seg	guenti i enunciati sono verità logiche: Vero o Falso?	
$\Box_V\Box_F$	Α.	$\exists x \forall y (A(y) \to \neg B(x));$	
$\Box_V\Box_F$	в.	$\exists y (\neg \exists x \neg A(x) \lor \neg A(y)).$	
Es 10.	Formalizzare le proposizioni A, B, C seguenti con enunciati nel linguaggio predicativo \mathcal{L} composto da ur simbolo $<$ di relazione a due argomenti.		
	A.	La relazione < ha un elemento minimo. Rispondere qui	
	В.	La relazione < non ha un elemento massimo;	
		Rispondere qui	
	C.	La relazione < è densa, vale a dire che ogni coppia di elementi nella relazione < possiede un elemento intermedio.	
		Rispondere qui	