Domaći zadatak br. 4

- 1. Dati su vektori $u = \begin{bmatrix} -2 & 1 & 3 & -1 \end{bmatrix}^T$ i $v = \begin{bmatrix} 1 & 4 & 0 & -1 \end{bmatrix}^T$. Odrediti
 - a) ortogonalnu projekciju u na $\mathcal{L}(v)$;
 - b) ortogonalnu projekciju v na $\mathcal{L}(u)$;
 - c) ortogonalnu projekciju u na v^{\perp} ;
 - d) ortogonalnu projekciju v na u^{\perp} .
- 2. Neka je V vektorski potprostor razapet vektorima $v_1 = \begin{bmatrix} 1 & -1 & 1 & 0 \end{bmatrix}^T$ i $v_2 = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}^T$.
 - a) Odrediti bazne vektore potprostora $V^{\perp}.$
 - b) Naći matricu P ortogonalne projekcije na V.
 - c) Naći rastojanje vektora $b=\begin{bmatrix}0&-1&0&1\end{bmatrix}^T$ od prostora Vi $V^\perp.$ Naći vektore ovih potprostora najbliže vektoru b.
- 3. Opisati ulogu projekcija $P=\frac{aa^T}{a^Ta}$ u Hausholderovoj refleksiji $H_a=I-2\frac{aa^T}{a^Ta}.$
- 4. Neka je P ortogonalna projekcija. Pokazati da je ||x|| = ||Px|| akko $x \in \mathcal{R}(P)$.
- 5. Neka je $u \in \mathbb{R}^n$ normiran vektor i matrica $P = I uu^T$, elementarna ortogonalna projekcija. Odrediti $\mathcal{R}(P)$ i rang(P). Dokazati da je P singularna matrica. Dokazati da je rang(P) = n 1.