учевный центр общей физики фТф

учебный центр общей физики с			
Группа_РЗ110 Студент_Лиши Д.С. Преподаватель_ <u>VoyoSkdb М.П.</u> Дата ч време изикрений: М.10.20 Рабочий пре	Работа I Отчет пр	е допущен	0
Madopard	Manchen	un	
Mourmin	/-Iuccogeo		
1. Цель работы. Изучение диам мандема. Проведа выполнения от менте стистима мандема. Ст. 2. Задачи, решаемые при выполнени Росситый в устремвибит м и уравнить с тесрей ичения Попромъ и мостемуще	noment une	pyur natinus	a Mainheur
3. Объект исследования. Махими Машвемис			
4. Метод экспериментального исслед Причие мистомутатия измере			
5. Рабочие формулы и исходные дан	ные.		
$t_c = (\alpha - 1) m r^2 $ ϵ	noun = Exunt	Enor.	
Ireon = M R ² V = 2 = Exum = \(\frac{\tau}{m_{1}} \tau + 1 \) . \(\)			
Enci = mg M, rge N-L- shi			
6. Измерительные приборы.			
№ п/п Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1 Cretura	quagrabat	0-9999,9 mc.	0,1 110
2			
3	1.7		

7. Схема установки

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Рассчитаем среднее время спуска маятника для каждой высоты (для примера возьмем $h=20\,\mathrm{cm}$):

$$\langle t \rangle = \frac{1}{5} \sum_{i=1}^{5} t_i = \frac{1}{5} (2614.9 + 2611.9 + 2614.3 + 2612.5 + 2612.7) = 2613.26 \,\text{MC}$$

$$\Delta h_i = h_i - h_0 = 20 \text{ cm} - 10 \text{ cm} = 10 \text{ cm}$$

Найдем величину $\frac{1}{2}g\langle t\rangle^2$ (так же, для примера возьмем h=20 см):

$$\frac{1}{2}g\langle t\rangle^2 = \frac{1}{2}9,82 * 2613,26^2 = 33,53 \text{ M}$$

$h_0 = 10 cm$	h_i						
	20 см	30 см	40 см	50 см	60 см	70 см	80 см
t_1 , MC	2614,9	3715,8	4559,9	5268,1	5899,2	6452,4	6982,7
t_2 , MC	2611,9	3717,4	4561,6	5264,2	5888,9	6460,6	6971,3
t_3 , MC	2614,3	3718,9	4562,8	5270,2	5888,9	6463,2	6979,9
t_4 , MC	2612,5	3716,8	4561,9	5271,3	5897,3	6457,3	6978,1
t_5 , MC	2612,7	3714,5	4563,3	5271,2	5896,3	6462,5	6978,5
Δh_i , м	0,1	0,2	0,3	0,4	0,5	0,6	0,7
$\langle t \rangle$, MC	2613,26	3716,68	4561,9	5269	5894,12	6459,2	6978,1
$\frac{1}{2}g\langle t \rangle_i^2$, м	33,53	67,826	102,182	136,313	170,577	204,85	239,087

Таблица 1. Результаты прямых измерений (I) и их обработка

Найдем мгновенную скорость (для примера возьмем t_i):

$$v_{1.1} = \frac{2r}{t_i} = \frac{2*0,0025}{0,0816} = 0,095 \text{ m/c}$$

$h_0 = 10 cm$	h_i							
	20 см	30 см	40 см	50 см	60 см	70 см	80 см	
t_1 , мс	52,6	37,3	30,4	26,5	23,6	21,5	19,9	
t_2 , мс	81,6	44,3	33,7	28,3	25	22,5	20,9	
t_3 , MC	81,4	44,5	33,9	28,7	25,2	22,6	20,8	
ν ₁ , м/с	0,095	0,134	0,164	0,189	0,212	0,233	0,251	
ν ₂ , м/с	0,061	0,113	0,148	0,177	0,2	0,222	0,239	
ν ₃ , м/с	0,061	0,112	0,147	0,174	0,198	0,221	0,240	

Таблица 2. Результаты прямых измерений (II) и их обработка

9. Результаты косвенных измерений (таблицы, примеры расчетов).

Найдем угловой коэффициент α :

$$\alpha = \frac{\sum_{i=1}^{N} Y_i X_i}{\sum_{i=1}^{N} X_i^2} = 341,184$$

Вычислим центральный момент инерции маятника Максвелла:

$$I_c = (\alpha - 1)mr^2 = (341,184 - 1)0,47 * 0,0025^2 = 0,0009 \,\mathrm{kr} * \mathrm{m}^2$$

Рассчитаем теоретический момент инерции маятника:

$$I_{\text{теор}} = mR^2 = 0.47 * 0.065^2 = 0.00199 \text{ кг * м}^2$$

Посчитаем кинетическую, потенциальную и полную энергии маятника (v_1, h_1) :

$$E_{\text{кин,1.1}} = \frac{1}{2}m(\frac{I_c}{mr^2} + 1)v_i^2 = \frac{1}{2}0,47(\frac{0,0009}{0,47\,*\,0,0025^2} + 1)0,095^2 = 0,724$$
 Дж

$$E_{\text{пот}} = mgH = 0.47 * 9.82(1 - 0.1) = 4.153$$
 Дж

$$E_{\text{полн.1.1}} = E_{\text{кин.1.1}} + E_{\text{пот}} = 4{,}153 + 0{,}724 = 4{,}877 \,\text{Дж}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\sigma_{\alpha} = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - \alpha X_i)^2}{(N-1)\sum_{i=1}^{N} X_i^2}} = 0.28$$

$$\Delta \alpha = 2 * \sigma_{\alpha} = 2 * 0.28 = 0.56$$
; $\varepsilon = 0.16\%$

Погрешность I_c посчитаем через частные производные:

$$\Delta z = \sqrt{(\frac{\delta f}{\delta a} \Delta a)^2 + (\frac{\delta f}{\delta b} \Delta b)^2 (\frac{\delta f}{\delta c} \Delta c)^2 + \dots}$$

$$\Delta I_c = 0.000027; \ \varepsilon = 2.72\%$$

11. Графики.

Рисунок I. График зависимости $rac{1}{2} g \langle t
angle^2$ от Δh

Рисунок 2. Графики зависимостей кинетической энергии от высоты ${\cal H}$

 $\mathit{Pucyhok}$ 3. $\mathit{\Gamma}\mathit{paфики}$ зависимостей полной энергии от высоты H

12. Окончательные результаты.

$$I_c = (0.0009 \pm 0.000027), \varepsilon = 2.72\%$$

13. Выводы.

В ходе выполнения лабораторной работы пришел к выводу, что зависимости кинетической и полной энергии от высоты Н являются линейными — это доказывают графики 2 и 3. Однако, по графику 3 видно, что закон сохранения энергии маятника не сохраняется — если бы он сохранялся, тогда графики были бы параллельны оси Н.

Предположительно, это связано с тем, что в самой модели виртуальной установки есть какая-то алгоритмическая ошибка (возможно, неправильно измеряется мгновенное время). Также точки графика t_1 меньше на одно и то же постоянное значение. Это связано с тем, что при проходе нижней точки маятника меняет направление движения и при этом теряется часть кинетической энергии.