

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

POWERING PREDICTIONS FOR THE R/V ATHENA (PG 94) REPRESENTED BY MODEL 4950-1 WITH DESIGN PROPELLERS 4710 AND 4711

L. Bruce Crook

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT DEPARTMENTAL REPORT

JANUARY 1981

DTNSRDC/SPD-0833-05

06 008

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

	REPORT DOCUMENTATION P		READ INSTRUCTIONS BEFORE COMPLETING FORM
DTNSF	RDC/SPD-0833-05	AD-A094	3. RECIPIENT'S CATALOG NUMBER
POWER	RING PREDICTIONS FOR THE R/V ESENTED BY MODEL 4950-1 WITH	ATHENA (PG 94)	Final KONTA
	ELLERS 4710 AND 4711.		6. PERFORMING ORGAREPORT NOMBER
7 AUTHOR	8)		8. CONTRACT OR GRANT NUMBER(s)
L. Br	ruce/Crook		N90167-78-C-0089
David	wing organization wame and address W. Taylor Naval Ship Resear	rch &	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Program Element 63508N
Bethe	opment Center esda, MD 20084		Task Area S0379001 Task 19971 Work Unit #
Haval	LLING OFFICE NAME AND ADDRESS Sea Systems Command (NAVSEA	(1) (1)	JANUARY 1981
l	Ington, DC 20362	form Controlling Office)	28
14 404,10	(19) 22 (16)	01101	UNCLASSIFIED
	Jos JAP	3/7/	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
TE ODISTHIB	UTION STATEMENT (of this Report)	1 137	10011
1000	OVED FOR PUBLIC RELEASE, DIST	PETRICTION IN THE	TED
· APPRO	WED FOR FUBLIC RELEASE, DIS	IRIBUTION UNLEFT	
17 DISTRIB	UTION STATEMENT (of the abatract antered in	Block 20, if different from	n Report)
	• • • • • • • • • • • • • • • • • • •		,
18 SUPPLE	MENTARY NOTES		
	lata analysis and preparation ciates, Inc., Arlington, Virg		were performed by Chi
19 KEY WOF	RDS (Continue on toverse side il necessary and	identify by block number)	
Propu	lsion; Ship-Model Correlation	on; Model experi	Lments
	CT (Continue on reverse side it necessary and it As part of its overall proje		strollable pitch propellers
the r Resea	needs of high speed combatant arch and Development Center (t ships, the Dav (DTNSRDC) conduc	vid W. Taylor Naval Ship eted a series of resistance
were	propulsion experiments on a reconducted to provide estimate	tes of power req	quirements with design
	ellers for blade loading calc itions for setting up the bla		
DD FORM	, 1473 EDITION OF 1 NOV 65 IS OBSOLE	ite i	UNCLASSIFIED
	0.44.0102-0.1-014-46 01		

411 167

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)			
correlation allowance between full-scale propellers was found to be 0.00065.	e data and mod	del data with	design

ii

TABLE OF CONTENTS

	Page
LIST OF FIGURES	iv
LIST OF TABLES	٧
NOTATION	vi
METRIC CONVERSIONS	vii
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	2
EXPERIMENTAL PROCEDURE	2
PRESENTATION AND DISCUSSION OF RESULTS	3
BLADE LOADING EXPERIMENTAL CONDITIONS	3
COMPARISON WITH FULL-SCALE TRIAL DATA	4
SINGLE AND TWIN-SCREW PROPULSION COMPARISON	4
COMPARISON WITH PREVIOUS MODEL DATA	4
CONCLUSIONS	5
REFERENCES	6

NTIS GRAŁI DTIC TAB mnounced Julification By Distribution/ Availability Codes Avail and/or Special	Acce	ssion For	
By	DTIC	TAB nounced	
Avail and/or	ByDist:	ribution/	
	!	Avail and	odes /or

LIST OF FIGURES

			Page
1	-	Profile Lines and Body Plan for the R/V ATHENA Represented by Model 4950-1	7
2	-	Sketch of Model Propellers 4710 and 4711 Details	8
3	-	Open-Water Characteristics Curves for Propellers 4710 and 4711	9
4	-	Predicted Twin-Screw Propulsion Characteristics for the R/V ATHENA from Experiment 31	10
5	-	Predicted Metric Twin-Screw Propulsion Characteristics for the R/V ATHENA from Experiment 31	11
6	-	Predicted Single-Screw Propulsion Characteristics for the R/V ATHENA from Experiment 36	12
7	-	Predicted Metric Single-Screw Propulsion Characteristics for the R/V ATHENA from Experiment 36	13
8	-	Twin-Screw Rise, Sinkage and Trim Predictions for the R/V ATHENA from Experiment 31	14
9	-	Single-Screw Risc, Sinkage and Trim Predictions for the R/V ATHENA from Experiment 36	15

LIST OF TABLES

1	_	Ship and Model Characteristics, R/V ATHENA	Pag
		Represented by Model 4950-1	16
2	-	Faired Open-Water Characteristics for Propellers 4710 and 4711	17
3	-	Experimental Program, Model 4950-1 Representing the R/V ATHENA (PG 94)	18
4	-	Calculation of Twin-Screw Effective and Shaft Power from Faired Coefficients	19
5	-	Calculation of Twin-Screw Efficiencies, Thrust Deduction and Wake Factors from Faired Coefficients	20
6	-	Calculation of Single-Screw Effective and Shaft Power from Faired Coefficients	21
7	-	Calculation of Single-Screw Efficiencies, Thrust Deduction and Wake Factors from Faired Coefficients	22
8	-	Propulsion Conditions for Blade Loading Experiments	23
9	-	Comparison of Twin-Screw Shaft Power and RPM from Full-Scale Measurements and Predictions from Model Experiments	25
10	-	Calculation of Twin-Screw Effective and Shaft Power, Efficiencies, Thrust Deduction and Wake Factors from Faired Coefficients	26
l1	-	Comparison of Resistance and Propulsion Factors for Single and Twin-Screw Propulsion for the R/V ATHENA Represented by Model 4950-1	27
12	-	Comparison of Resistance and Propulsion Factors for Twin-Screw Propulsion for the R/V ATHENA Represented	28

NOTATION

C _A	Correlation allowance
D	Propeller diameter
EHP	Effective power in horsepower
SHP	Shaft power in horsepower
ETAD	Propulsive efficiency, $n_{\overline{D}} = P_{\overline{E}}/P_{\overline{D}}$
ЕТАН	Hull efficiency, n _H
ЕТАО	Propeller open water efficiency, n ₀
ETAR	Relative rotative efficiency, η_{R}
J _T	Advance coefficient based on thrust
LWL	Load waterline
P	Propeller pitch
P _D	Delivered power
PE	Effective power
R_{T}	Hull towed resistance (total)
RPM	Propeller rotation speed, revolutions per minute
т	Propeller thrust
t	Thrust deduction fraction
w _Q	Torque wake fraction
w _T	Thrust wake fraction
S	Wetted surface
Δ	Ship displacement

- η_{D} Propulsive efficiency
- η_H Hull efficiency
- η_{Ω} Propeller open water efficiency
- n_R Relative rotative efficiency

METRIC CONVERSIONS

1 degree (angle) = 0.01745 rad (radians)

1 foot = 0.3048 m (meters)

1 fps foot per second = 0.3048 m/s (meters per second)

1 inch = 25.40 mm (millimeters)

1 knot = 0.5144 m/s (meters per second)

1 1b (force) = 4.448 N (Newtons)

1 lb (force) - inch = 0.1130 Nom (Newton-meter)

1 long ton (2240) = 1.016 metric tons, or 1016 kilograms

1 horsepower = 0.7457 kW (kilowatts)

ABSTRACT

As part of its overall project to adapt controllable pitch propellers to the needs of high speed combatant ships, the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) conducted a series of resistance and propulsion experiments on a model of the R/V ATHENA. These experiments were conducted to provide estimates of power experiments with design propellers for blade loading calculations. This report provides experimental conditions for setting up the blade loading model experiments. The estimated correlation allowance between full-scale data and model data with design propellers was found to be 0.00065.

ADMINISTRATIVE INFORMATION

The work reported herein was initiated and funded by the Naval Sea Systems Command (NAVSEA 05R) under Task Area S0379001. The experimental phase of this task was performed at the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) under work unit number 1524-641. The data analysis and report preparation were performed by Chi Associates, Inc. (CAI) under contract to DTNSRDC, Contract No. (N00167-78-C-0089).

INTRODUCTION

The experiments reported herein were part of the Controllable Pitch Propeller Research Program at the Center. Full-scale and model measurements of alternating loads on the propeller have been made for the R/V ATHENA and its geosim model. In order to provide adequate information on the operating conditions for model experiments using the six-component dynamometer to measure propeller loads, resistance and propulsion experiments were performed. The results of those resistance and model propulsion experiments are reported herein.

In addition to alternating loads on the propeller, model and full-scale propeller disk wakes have been measured for the R/V ATHENA. These wake experiments were performed with the ship propelled by the port propeller while the starboard propeller was replaced by a pitot tube rake. Propulsion information was needed for the operating condition of single delivered propulsion. Such an experiment was performed and the results are reported herein.

Finally, it is possible to perform a ship-model correlation with the existing standardization trial data for PG 87¹ and PG 92² using the twin shaft model propulsion data. The resulting correlation allowance and comparisons of model and full-scale self propulsion data are also presented in this report.

EXPERIMENTAL PROCEDURE

DTNSRDC Model 4950-1, representing the PG 94 (now designated the R/V ATHENA) was constructed to a linear ratio of 8.250 in accordance with Naval Ship Engineering Center (NAVSEC) model plans. The model was fitted with rudders, shafts and struts, a centerline drag keel, skeg and stabilizer fins. Profile, lines and body plan drawings for the R/V ATHENA represented by Model 4950-1 are shown in Figure 1. Ship and model characteristics are listed in Table 1.

Model Propellers 4710 (right hand rotation, starboard side) and 4711 (left hand rotation, port side) representing the design propellers for the PG 84 class, were used for the powering experiments. The details of the propeller model geometry are presented in Figure 2. Open-water characteristics are presented as curves in Figure 3 and tabulated in Table 2.

¹ References are listed on page 6.

All model experiments were conducted on DTNSRDC Towing Carriage 2, using a block gauge to measure the towing force after an initial check was made with girder balance system. Four different experiments are reported here, numbers 30, 31, 35 and 36, as detailed in Table 3. Experiments 30 and 31 were (respectively) conventional resistance and propulsion evaluations using twin-screw propulsion. Experiment 35 was an additional resistance evaluation conducted because the rudder angles, displacement and trim were different from those in the previous evaluation. Experiment 36 was a propulsion experiment with the port propeller operating and the starboard propeller removed.

The full-scale resistance and propulsion predictions were calculated using the 1957 ITTC Ship-Model Correlation line, with a correlation allowance of 0.0005.

PRESENTATION AND DISCUSSION OF RESULTS

Resistance and propulsion data from Experiments 30 and 31 are presented in Figures 4 and 5 and in Tables 4 and 5, and for Experiments 35 and 36 in Figures 6 and 7 and Tables 6 and 7. Effective power, delivered power and RPM are shown in the figures together with the propulsive efficiency (P_E/P_D), thrust deduction fraction (t) and thrust wake fraction (w_T). Figure 8 shows the rise, sinkage and trim for Experiment 31, and Figure 9 shows the same data for Experiment 36. Note that, over the same speed range, slightly more bow rise and more stern trim are predicted for single-screw than for twin-screw propulsion, although the differences between the trim for the two conditions are small.

Blade Loading Experimental Conditions

The propulsion conditions for the blade loading experiments, sumarized from the resistance and propulsion predictions listed above, are presented in Table 8. Note that the twin-screw propulsion prediction is at 20 knots (10.3 m/s), whereas the single-screw propulsion condition is at 15 knots (7.7 m/s). Also, the displacement and trim for the two conditions are different. These differences come about since Experiment 31 was run to obtain 20-knot conditions for blade loading experiments and Experiment 36 was run to obtain correlation with full-scale wake survey conditions. Table 8 also makes a comparison of single and twin-screw propulsion experiments at the same speed.

Comparison with Full-Scale Trial Data

The propulsion predictions from Model 4950-1, at two correlation allowances can be compared with previous full-scale trial data on the twin-screw PG 87¹ and PG 92². Table 9 shows this comparison for four different speeds. In spite of the differences in displacement and propeller pitch ratio, the delivered power and RPM compare to within two and a half percent, except at 35 knots (18.0 m/s) where the differences are more than five percent. These differences may be due in part to the inacurracy of the full-scale measurement of the propeller pitch ratio. The correlation allowance should be 0.00065 for both hulls based upon the top three trial speeds. The data for a correlation allowance of 0.00065 is presented in Table 10, Also correlating on RPM from the model side to full-scale the RPM ratio of model to trial for the top three trial speeds varies from 0 to 5 percent for a C_A of 0.00065.

Single and Twin-Screw Propulsion Comparison

In addition to providing the propulsion conditions for the blade loading experiments and a correlation with full-scale data, the results of the resistance and propulsion experiments can be compared with each other. As shown in Table II, the twin-screw propulsive efficiency and advance coefficient were always higher than for the single-screw case, and the EHP/Ton, the thrust deduction and the wake fraction were consistently lower for the twin-screw case. At 16 knots (8.2 m/s), the EHP/Ton of single-screw propulsion was more than five percent greater than for twin-screw, and the propulsive coefficient was almost four percent less due to single-screw's propulsion experiment having a heavier displacement and greater trim. The increase in effective power results from the added drag due to the rudder angle necessary to compensate for the turning moment of the single driving propeller offset from the ship centerline, along with the increase in drag due to heavier displacement and greater trim. Comparison with Previous Model Data

The experimental resistance and propulsion results can also be compared with previous data obtained from a twin-screw model. Hoekzema³ has reported on the powering charcteristics of Model 4950, which is similar to the ATHENA model. Model 4950 has a lighter displacement by 18%, a wedge

on the transom line, larger V-struts, rudders farther outboard with trailing edges aft of the transom, and less rudder clearance. Model 4950-1 does not have a true wedge but reverse buttock lines which essentially act as a faired wedge, and is fitted with design propellers instead of stock propellers.

The propulsion charcteristics of the two hulls are compared in Table 12. The propulsive coefficient, thrust deduction, wake fraction and advance coefficient are consistently lower for the ATHENA and the effective power per ton of displacement is higher for the ATHENA. For example, at 15 knots (7.7 m/s), the EHP/Ton predicted for the ATHENA was more than 10 percent greater than that for Model 4950, although the ATHENA propulsive coefficient was only about two percent less. These differences are due in part to the different drafts and correspondingly different transom immersion of the two hulls, and to the different propeller designs. In addition, propulsion predictions for Model 4950 were made using the ATTC friction line and a correlation allowance of 0.0004.

CONCLUSIONS

- 1. R/V ATHENA model predictions resemble full-scale measurements on two similar twin-screw hulls (PG 87 and PG 92) at the correlation allowance of 0.0005. However, a correlation allowance (C_A) of 0.00065 for these two type hulls represents a better model-ship full-scale powering scaling.
- 2. For the speed range of 14 to 19 knots (7.2 to 9.8 m/s), twin-screw propulsion is predicted to be more efficient than single-screw propulsion with the starboard propeller removed.
- 3. Based on effective power per ton of displacement, the ATHENA propulsion characteristics vary from those in a similar earlier twin-screw design (Model 4950). These differences are attributed in part to variations in drafts, transom immersion, stock or design propellers used and prediction parameters (friction coefficient and correlation allowance).
- 4. The propeller RPM correlation at a C_A of 0.00065 shows from zero to 5 percent difference between model and full-scale RPM with the model RPM under predicting the full-scale value.

REFERENCES

- 1. Hundley, L. L. Jr., "USS READY (PG 87) STANDARDIZATION TRIAL RESULTS (U),"NSRDC Department of Hydromechanics Evaluation Report C-352-H-01, September 1969. Declassified on 8/2/77.
- 2. Hundley, L. L. Jr., "ISS TACOMA (PG 92) STANDARDIZATION TRIAL RESULTS (U)," NSRDC Ship Performance Department Research and Development Report C-3539, March 1971. Declassified on 8/2/77.
- 3. Hoekzema, D.R., "POWERING CHARACTERISTICS FOR A 154-FOOT HIGH SPEED PGM FROM TESTS OF MODELS 4932, 4942 and 4950 (U)," Hydromechanics Laboratory Research and Development Report C-1652, April 1964. Declassified on 8/2/77.

Figure 1 - Profile Lines and Body Plan for the R/V ATHENA Represented by Model 4950-1

7

if	3	\$	
1	:	•	¥ ±
17:	8	90.00	
:	900	9.D.B	
#	6.00	0.670	- W 5528
İi	20 - 00 20 - 0	10.106	
:	9.43	0.413	
#	. 7A	M1.0	# - # - # - # - # - # - # - # - # - # -
ıi.	25 X 25 C	25 35 E	
1-1	•	•	
11:	<u>-</u>	1.111	
<u> </u>	88 8.7 8.2	98 97 98 98	
!1:	3.0	100.00	10 mm
:1	98	2.000 92.00	A L
ij		11.18	
ļi	32.0	9.226	
1	ë.	1160	
	S Ju ye	IN IN	
	_		

Figure 2 - Sketch of Model Propellers 4710 and 4711 Details

, ¥.

Figure 3 - Open-water Characteristics Curves for Propellers 4710 and 4711

Figure 4 - Predicted Twin-Screw Propulsion Characteristics for the R/V ATHENA from Experiment 31

Figure 5 - Predicted Metric Twin-Screw Propulsion Characteristics for the R/V ATHENA from Experiment 31

Figure $_6$ - Predicted Single-Screw Propulsion Characteristics for the R/V ATHENA from Experiment 36

Figure 7 - Predicted Metric Single-Screw Propulsion Characteristics for the R/V ATHENA from Experiment 36

Figure 8 - Twin-Screw Rise, Sinkage and Trim Predictions for the $\ensuremath{\text{R/V}}$ ATHENA from Experiment 31

Figure 9 - Single-Screw Rise, Sinkage and Trim Predictions for the R/V ATHENA from Experiment 36

TABLE 1

Ship and Model Characteristics

R/V ATHEN/ Represented by Model 4950-1

		Ship	Mode 1
Length Betwee Perpendict		154.0 ft (46.94 m)	18,67 ft (5,69 m)
Length Overal		164.5 ft (50.14 m)	19.94 ft (6.08 m)
Maximum Beam	(twin-screw) (single-screw)	22.6 ft (6.87 m) 22.8 ft (6.96 m)	2.73 ft (0.83 m) 2.77 ft (0.84 m)
Displacement	(twin-screw) 20 (single-screw) 20	60 tons (264 metric tons 63 tons (267 metric tons)1009 lbs (458 kg))1020 lbs (463 kg)
Wetted Surfac	ce (twin-screw) (single-screw)	$3400 \text{ ft}^{2} (315.9 \text{ m}^{2})$ $3413 \text{ ft}^{2} (317.1 \text{ m}^{2})$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	-screw)	5.58 ft (1.70 m) 5.63 ft (1.72 m) s due to drag keel)	0.676 ft (0.206 m) 0.682 ft (0.208 m)
•	(twin-screw) single-screw)	even keel 0.59 ft (0.18 m)	even keel 0.072 ft (0.022 m)
Propeller Dia	meter	6.0 ft (1.83 m)	8.73 in (222 mm)
Linear Scale	Ratio	8,25	1.0
Propellers:		trollable pitch, 4 blades ting for single screw exp	
Appendages:	lwip stabilizers centerline skeg	s, main shafts and V-stru	uts, twin rudders,

TABLE 2

FAIRED OPEN-WATER CHARACTERISTICS FOR PROPELLERS 4710 and 4711

J	$\kappa_{\mathbf{T}}$	10 K _Q	E
.050	.585	1.002	.046
.100	.563	.962	.093
.150	.538	.921	.139
.200	.514	.881	.186
.250	.489	.840·	.232
.300	.464	.799	.277
.350	.438	.757	.322
.400	.411	.716	.365
.450	.385	.673	.410
.500	.358	.631	.451
.550	.330	.588	.491
.600	.302	.546	.528
.650	.274	.503	.563
.700	.246	.460	.596
.750	.218	.417	.624
.800	.189	.374	.643
.850	.161	.330	.660
.900	.133	.287	.664
.950	.105	.243	.653
1.000	.077	.199	.616
1.050	.050	.156	.536
1.100	.022	.112	.344
1.125	.009	.089	.181

4710 Test 2 June 1978

4711 Test 1 January 1978

TABLE 3

Experimental Program

	v x10 ⁵ Rudder	ft ² /sec innoard (port and (1.7% stirh and (1.7% stirh and (1.7% stirh and	fr/scc nrows a port and (1006 7 starward) cm ² /scc)	ft ² /sec outhord (1034.5 2 ⁰ t c ind cr ² /sec)	9365 1 1133 17 the out 2/sec ft2/sec board (port) 179. (1034,3 20 t c cm2/sec) cm2/sec); no trd
	hater Viscosity x10 ⁵ <u>Saip</u> <u>V del</u>	-	1.1960 1 ft ² /sec ft (1111.1 (1 cn ² /sec) c	0 9365 1 ft ² /sec ft (870, (3	0.9305 1 ft2/sec ft (8 ⁷ 9; (3
	hater Density hip Model	1.9%6 1.9367 11960 slugs/ft ³ slugs/ft ³ ft ² /sec (1024.9 (998.1 (1111.1 kg/π ³) kg/m ³) cm ² /sec	1.9886 1 9507 \$10gs/ft ³ \$10gs/ft ³ (1024.9 (998.1 kg/m ³)	1.9667 1 9371 \$1ugs/ft3 \$1ugs/ft3 (1.23.9 (998.3) AR/~3 \R/~3	1.9867 1.9371 slugs/ft3 slugs/ft3 (1023.9 (998.3) kg/m³) kg/m³)
	hater Ship	1.95%6 slugs/ft ⁵ (1024.9 kg/π ³	1.5886 slugs/ft ³ (1024.9 kg/m ³	1.9467 slugs/ft ³ (1.23.9	1.9867 slugs/ft3 s (1023.9 kg/m ³)
THENA (PG 94)	Correlation	;	9000 0	e (m:	n v 0005 cmj
enrecenting the R/V A	Trin by Stern	even keel	ev en keel	0.59 ft 0 86 in (0.15 m) (2 18 ci	6.59 ft 0.86 :n v 0005
Application to the NV ATHENA (PG 94)	Me'ted Surface	ft 8.12 in 3400 ft2 49.95 ft2 im) (20 6 cm) (315 9m²) (4.64 m²)	ft 8.12 in 3400 ft ² 49.95 ft ² 3 m) (20.6 cm, (315.9m ²) (4.64 m ²)	ft 8 19 11, 1413 SO 15 0.59 ft 0 86 in 2 o) (20.8 cm) ft 1 (4.66 m²) (0.15 m) (2 18 cm)	3413
	Draft Shi2 Wadel	8.58 ft 8.12 in (1 70 m) (20 6 cm)	5,58 ft 8,12 tn (1,76 m) (20.6 cm)	5 63 (t 8 19 11, 13 (11.72 a) (20.8 cm)	5.63 ft 8.19 in 5
	a۱	1000 lbs (459 kg)		1020 1bs (463 kg)	1020 lbs (463 kg)
	91splace Ship	260 tons (2bd metric tons)	260 tons 1939 lbs (264 metric (458 kg) tons)	265 tons (267 metric tons)	263 tons (267 metric tons
	Type of	r m	P _D 2 (26)	ي	P _D
dmuk	_	80	×	× ×	85

TABLE 4

Calculation of Twin-Screw Effective and Delivered Power

From Faired Coefficients

Model 4950-1 Representing the PC 94

Data from Experiments 30 and 31

Propellers: Twin-screw, design propellers represented by

models 4710 and 4711, outboard rotation

Twin stabilizers, main shafts and V-struts, twin rudders $2^{\rm O}$ trailing edge inboard

ITTC friction, no turbulence stimulation, C_{Λ} = 0.0005 Displacement 260 tons (264 metric tons)

Draft 5.58 ft (1.70 m) (Drag Keel) Trim (even keel)

Wetted Surface 3400 ft² (315.9 m^2)

EXPERIMENT 31 ATHENA MODEL 4950-1

SHIP	SPEED	FFFECTIVE	POWER (PE)	DELIVERED	POWER (PD)	REVOLUTIONS
		(HORSE-	(KILO-	(HORSE-	(KILO-	PFP
CKNOTS	(M/SEC)	DUMES!	WATTS)	POWERI	HATTSI	HTNUTF
14.0	7.20	550.	410.	980.	730.	266.1
15.0	7.72	675.	585.	1210.	900.	285. R
16.0	8.23	84G.	630.	1500.	1120.	306.2
18.0	9.26	1290.	960.	2290.	1710.	749. F
19.0	9.77	1550.	1150.	2750.	2050.	379.7
19.5	10.03	1690.	1260.	2990.	2230.	380.9
20.0	10.29	1820.	1360.	3220.	2400.	390.7
20.5	10.55	1960.	1460.	3460.	2580.	400.0
21.0	10.80	2130.	1570.	378C.	2760.	408.8
22.0	11.32	2350.	1760.	4140.	3080.	426.3
24.0	12.35	2880.	2150.	5010.	3740.	459.3
26.0	13.38	3430.	2550.	5900.	4400.	489. R
28.0	14.40	4060.	3030.	6890.	5140.	520.5
30.0	15.43	4790.	3570.	A050.	6000.	551.0
32.0	16.46	5550.	4140.	9300.	6930.	582.6
34.0	17.49	6360.	4750.	10550.	7870.	613.R
35.0	18.01	6780.	5060.	11210.	8360.	629.1

TABLE 5

Calculation of Twin-Screw Efficiencies, Thrust Deduction and Wake Factors from Faired Coefficients

Model 4950-1 Representing the PG 94

Data from Experiments 30 and 31

Twin-screw, design propellers represented by models 4710 and 4711, outboard rotation Propellers:

Twin stabilizers, main shafts and V-struts, twin rudders $2^{\rm O}$ trailing edge inboard Appendages:

ITTC friction, no turbulence stimulation, $C_A = 0.0005$ Displacement 260 tons (264 metric tons) Draft 5.58 ft (3.70 m) (Drag Keel) Trim (even keel) Wetted surface 3400 ft 2 (315.9 m 2)

SHIP	EI	FFICIEN	CIESTET	4)	THRU	ST DEDU	CTION	ANVANCE
SPEED					ANO	HAKE FA	CTORS	COEF.
(KNOTS)	FTAN	ETAO	ETAH	FTAP	1 - T	1-WT	1-WQ	JT
14.0	.560	.655	. 840	1.020	.820	.980	.985	.870
15.0	.560	•655	. 845	1.010	.835	.985	.990	.875
16.0	.560	.655	. 855	1.005	. 845	.998	990	.875
18.0	.565	.655	. 465	. 990	.865	1.000	. 995	870
19.0	.565	.655	. 875	. 990	.875	1.000	.995	.865
19.5	. 565	.655	. 875	.985	.880	1.005	.995	.865
20.0	. 565	.655	. 860	. 985	. 685	1.005	.995	.870
20.5	. 565	.655	. 885	986	. 445	1.005	.995	.870
21.0	. 565	.655	. 400	.975	. 896	1.005	. 995	.870
22.0	.570	.655	, Aag	. 975	.895	1.005	.995	.875
24.0	.575	.655	900	.970	.905	1.005	.995	. 890
26.0	.580	.655	. 915	. 970	.915	1.005	.990	.900
28.0	.590	.655	. 925	.970	.925	1.000	.990	.910
30.0	. 595	.655	. 940	. 965	.935	.995	.985	.915
32.0	.595	.655	945	965	.940	. 995	. 985	.925
34.0	.605	.655	. 950	. 970	.945	.995	.985	.938
35.0	.605	.655	. 455	.970	.950	4995	.985	.935

TABLE 6

Calculation of Single-Screw Effective and Delivered Power

from Faired Coefficients

Model 4950-1 Representing the PG 94

Data from Experiments 35 and 36

Propellers: No starboard propeller, design port propeller

represented by model 4711, outboard rotation

Appendages:

Twin stabilizers, main shafts and V-struts, port rudder 3° to port (= 1° trailing edge outboard) starboard rudder 2° trailing edge inboard

ITTC friction, no turbulence stimulation, $C_A = 0.0005$ Displacement 263 tons (267 metric tons)

Draft 5.63 ft (1.72 m) (Drag Keel) Trim by stern 0.59 ft (0.18 m) Wetted surface 3415 ft² (317.1 m²)

SHIP	SPEEN	EFFECTIVE (HORSE-	POWER (PE)	DELIVERED (HORSE-	POWER (PD) (KILO-	PEVOLUTIONS PER
(KNOTS)	(M/SEC)		HATTS)	POHER	HATTS	MINUTE
12.0	6.17	369.	265.	680.	5:5.	270.4
13.0	6.69	470.	355 •	880.	655.	291.4
14.C	7.20	585.	440.	1160.	826.	313.4
15.0	7.72	725.	546.	1340.	1006.	737.1
16.0	8.23	895.	676.	1660.	1240.	161.5
17.t	8.75	1136.	846.	2089.	1556.	3 96 . 7
18.0	9.26	1380.	1632.	2540.	1990.	412.5
19.0	9.77	1643.	1225.	3030.	2260.	439.9

TABLE 7

Calculation of Single-Screw Efficiencies, Thrust Deduction and Wake Factors from Faired Coefficients

Model 4950-1 Representing the PG 94

Data from Experiments 35 and 36

Propellers: No starboard propeller, design port propeller

represented by model 4711, outboard rotation

Appendages:

Twin stabilizers, main shafts and V-struts, port rudder 3° to port (= 1° trailing edge outboard) starboard rudder 2° trailing edge inboard

ITTC friction, no turbulence stimulation, $C_A = 0.0005$ Displacement 263 tons (267 metric tons) Draft 5.63 ft (1.72 m) (Drag Keel) Trim by stern 0.59 ft $_2$ (0.18 m) Wetted surface 3413 ft $_2$ (317.1 m)

SHIP	E	FFICIFN	CIESTET	4)	THRU	ST DEDU	CTION	A DVANCE
SPEFD					AND	HAKE FA	CTOPS	COEF.
(KNOTS)	ETAD	STAO	ETAH	ETAR	1-T	1-WT	1-WQ	JT
12.0	•530	.650	.905	.895	.985	1.085	1.020	.515
17.5	•530	• E40	.910	-910	.955	1.052	.990	.790
14.0	•535	.635	. 905	.930	.940	1.043	.990	.780
15.0	.540	.635	.895	. 945	.935	1.040	1.005	.750
16.0	.540	.635	.895	• 950	.930	1.040	1.010	.780
17.0	.540	.630	. 935	•950	.935	1.030	.995	.765
18.0	.540	.630	. 905	. 950	.940	1.635	1.000	•765
10.9	.545	.630	. 900	. 955	.945	1.055	1.025	.770

TABLE 8
Propulsion Conditions for Blade Loading Experiments

	Twin-Screw Processing (Experiments		Single-Scre (Experiment	w Propulsion s 35, 36)
Displacement, tons (metric tons)	260	(264)	263	(267)
Draft, ft (m)(Drag Keel) 5.58	(1.70)	5.63	(1.72)
Trim by stern, ft (m)	Even K	eel	0.59	(0.18)
Speed, knots (m/s)	20.0	(10.3)	15.0	(7.72)
RPM	390.	7	337.	1
Delivered power, hp (KW	3220	(2401)	1340	(999)
1 - t	0.885		0.93	5
1 - w _r	1.005		1.04	0
1 - w _Q	0.995		1.00	95
$J_{\mathbf{T}}$	0.870		0.78	30
T ₁ D	0.565		0.54	10
^{†I} O	0.655		0.63	35
Ч	0.880		0.89	05
$^{\eta}$ R	0.985		0.94	15

TABLE 8 (continued)

Propulsion Conditions for Blade Loading Experiments

	Twin-Screw (Experimen	Propulsion ts 30, 31)	Single-Screw (Experiments	
Displacement, tons (metric tons)	260	(264)	263	(267)
Draft, ft (m) (Drag Keel) 5.58	(1.70)	5.63	(1.72)
Trim by stern, ft (m)	Eve	en Keel	0.59	(0.18)
Speed, knots (m/s)	19.0	(9.77)	19.0	(9.77)
Effective power, hp (kW)	1550	(1156)	1640	(1223)
RPM	370.7		439.9	
Delivered power, hp (KW)	2750	(2051)	3030	(2259)
1-t	0.875		0.945	
1-w _T	1.000		1.055	
${f J}_{f T}$	0.865		0.770	
no	0.655		0.630	
$K_{\mathrm{T}}/J_{\mathrm{T}}^{2}$	0.104		0.182	
η _D	0.565		0.545	

TABLE 9

Comparison of Twin-Screw Shaft Power and RPM from Full-Scale Measurements and

Predictions from Model Experiments

31 1 tons	(264 metric tons) C _A = 0.00065	Delivered Power hp (kW)	3290 (2450)	5570 (4150)	8250 (6150)	11530 (8600)	
Experiment 31 P/D = 1.11 \triangleright = 260 to	(264 met C _A = 0.00065	APM Del	391 32	475 55	551 82	629 115	
1	<pre>Δ = 250 tons (254 metric tons)</pre>	Delivered Power hp (kW)	3300 (2461)	(4101)	(6152)		
PG 92** $P/D = 1.14$	250 tor (254 me	Delive hp	3300	5500	8250	11950 (8911)	
PG = 0/4	" ⊲	RPM	393	472	260	662	
15	Δ = 260 tons Δ ons) (264 metric tons)	Dellered Power hp (KW)	3250 .(2424)	5450 (4064)	8100 (6040)	11850 (8836)	
$\frac{PG 87}{P/D = 1}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	RPM	385 3	470 5	8 095	663 11	
Experiment 31 P/D = 1.11	ons metric t 5	Delivered Power hp (kW)	3220 (2401)	5460 (4073)	8050 (6003)	35 (18.0) 629 11210 (8359)	
xperi P/D	.⊲	RPM De			•	29 11	
WI.			3) 39	9) 48	4) 5!	9 (0	
		Speed knots (m/s)	20 (10.3) 391	25 (12.9) 481	30 (15.4) 551	(18.	
		knot	20	25	30	35	
			25	:			

* Figure 2 of Reference 1 ** Figure 3 of Reference 2

TABLE 10

CALCULATION OF TWIN-SCREW EFFECTIVE AND DELIVERED POWER, EFFICIENCIES, THRUST DEDUCTION, AND WAKE FACTORS FROM FAIRED COEFFICIENTS

Model 4950-1 Representing PG 87.

Data from Experiments 30 and 31

Twin-screw, design propellers represented by models

models 4710 and 4711, outboard rotation

Twin stabilizers main shafts and V-struts, twin rudders 2° trailing edge inboard Appendages:

ITTC friction, no turbulence stimulation, $C_A = 0.00065$ Displacement 260 tons (264 metric tons) Draft 5.58 ft (1.70 m) (Drag Keel) Trim (even keel) Wetted surface 3400 ft² (315.9m²)

i surta	ce 3400	tt (3	13.9m /	,	DET THE			
					DELIV		5.51	
SHIP	SPEED	EFFECT!			POWER			OLUTIONS
		(HORS	6E- (K	ILO-	(HORSE-	(KILO-		PER
(KNOTS)	(M/SEC)			TTS	POWER)	WATTS)		MINUTE 266.1
14.0	7.20			420.	1000. 1230.	750. 920.		285.8
15.0	7.72			515.	1540.	1140.		306.2
16.0	8.23			540. 980.	2340.	1740.		349.6
18.0	9.26	131 158		180.	2810.	2090		370.7
19.0 19.5	9.77 10.03	172	יטיפי. יוס איני	280.	3050.	2270		380.9
	10.03	186		200. 380.	3290.	2450		390.7
20.0 20.5	10.55	200		490.	3530.	2630		400.0
21.0	10.80	214		600.	3770.	2810		408.8
22.0	11.32	240		790.	4220.	3150		426.3
24.0	12.35	29		190.	5120.	3820		459.3
26.0	13.38	350		610.	6030.	4500		489.8
28.0	14.40			100.	7060.	5260		520.5
30.0	15.43			660.	8250.	6150		551.0
32.0	16.46	570		250.	9540.	7110		582.6
34.0	17.49			880.	10840.	8090		613.8
35.0	18.01	69	70. 5	200.	11530.	8600	•	629.1
SHIP	EF	FICIEN	CIES(FT	A)		T DEDUC		ADVANCE
SPEED						JAKE FAI		COEF.
(KNOTS)	ETAD	ETAO	ETAH	ETAR	1-T	1-WT	1-WQ	JT
14.0	0.560	0.655	0.845	1.010	0.820	0.970	0.975	0.865
15.0	Ø.560	0.655	0.850	1.005	0.835	0.980	0.980	0.870
16.0	0.560	0.655	0.860	0.995	0.845	0.985	0.980	0.865
18.0	0.560	0.655	0.875	0.985	0.865	0.990	0.985	0.860
19.0	0.565	0.650	0.880	0.985	0.875	0.995	0.990	0.860
19.5	0.565	0.650	0.880	0.980	0.880	0.995	0.990	0.860
20.0	0.565	0.655	0.885	0.980	0.885	1.000	0.990	0.865 0.865
20.5	0.565	0.655	0.890 0.895	0.975 0.970	0.885 0.890	1.000	0.990 0.985	0.865
21.0 22.0	0.565 0.570	0.655 0.655	0.895	0.970	0.895	1.000	0.985	0.870
24.0	0.575	0.655 0.655	0.905	0.965	0.905	1.000	0.985	0.880
26.0	0.590	0.655	0.920	0.965	0.915	0.995	0.985	0.895
28.0	0.590	0.655	0.930	0.965	0.925	0.995	0.980	
30.0	0.595	0.655	0.945	0.960	0.935	0.990	0.975	
32.0	0.595	0.655	0.950	0.960	0.940	0.990	0.975	
34.0	0.605	0.655	0.955	0.965	0.945	0.990	0.975	0.925
35.0	0.605	0.655	0.960	0.965	0.950	0.990	0.975	

TABLE 11

" " " Section of the
Comparison of Resistance and Propulsion Factors for Single and Twin-Screw Propulsion for the R/A ATHENA Represented by Model 4950-1

_ [TWIN	0.870	0.875	0.870	0.865
$^{ m J}_{ m T}$	SINGLE TWIN	0.780 0.870	0.780	0.765	0.770 0.865
1-w _T .	TWIN	1.040 0.980	1.040 0.990	1.035 1.000	1.055 1.000
l	SINGLE	1.040	1.040	1.035	1.055
1-t	SINGLE TWIN SINGLE TWIN	0.820	0.845	0.865	6.875
1		0.940 0.820	0.930	0.940	0.945
$^{P}_{E}/^{P}_{D}$	SINGLE TWIN	0.535 0.560	0.540 0.560	0.565	0.540 0.565
PE	SINGLE	0.535	0.540	0.540 0.565	0.540
EHP/TON	TWIN	2.12	5.23	4.96	5.96
EHIP	KNOTS M/S SINGLE TV	2.22	5.40	5.25	6.24
ED	M/S	14.0 7.20	8.23	18.0 9.26	19.0 8.77
SPEED	KNOTS	14.0	16.0 8.23	18.0	19.0

TABLE 12

÷ Ĭ.

Comparison of Resistance and Propulsion Factors for Twin-Screw Propulsion for the R/V AFHLNA Represented by Models
4950-1* and 4950**

SP	SPEED	EHP/	EHP/TON	Ή d	$^{\rm P_E/P_D}$	-	1-t	1-	1-w _T	J.	
KNOTS	M/S	KNOTS M/S ATHENA 1950	1950	ATHENA 1950	1950	ATHENA 4950	4950	ATHENA 4950	4950	ATHENA	4950
15.0	15.0 7.72	2.60	2,34	0.560	0.570	0.835	0.915	0.985	1.030	0.875	1.060
23.0	20.0 10.29	7.00	6.18	0.565	0.590	0.885	0.930	1.005	1.040	0.870	1.045
25.0	25.0 12.87	12.15	11.24	0.580	0.600	0.910	0.930	1.005	1.035	0.895	1.060
30.0	30.0 15.43 18.42	18.42	17.10	0.595	0.610	0.935	0.925	0.995	1.020	0.915	1.080
35.0	18.01	35.0 18.01 26.08	25.18	0.605	0.620	0.950	0.930	0.995	1.015	0.935	1.100

** Model 4950 Experiment 8
213.5 Ton Displacement (217 metric tons)
Michigan Wheel Propellers
Schoenherr Friction $C_{A} = 0.0004$

tons)

Experiment 31 260 Ton Displacement (264, metric

* Model 4950-1

Design Propellers ITTC Friction C_A = 0.0005

28

DTNSRDC ISSUES THREE TYPES OF REFORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
- 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.