Functional Analysis

Labix

May 6, 2025

Abstract

Contents

1	Vector Spaces with a Topological Structure	2
	1 Topological Vector Spaces	2
	.2 Normed Spaces	2
	.3 Isomorphisms that Preserve Distance	3
2	Banach Spaces	4
	Banach Spaces	4
	2.2 Separability of Banach Spaces	4
	2.3 The Completion of a Normed Space	
3	The Space of Bounded Linear Maps	5
	Basic Definitions	5
	3.2 Invertibility	5
	3.3 The Hahn Banach Theorem	
4	Hilbert Spaces	7
	1.1 Hilbert Spaces	7
	2.2 Orthogonality in Hilbert Spaces	7
	8.3 Separability of Hilbert Spaces	8
	1.4 The Adjoint of Maps of Hilbert Spaces	
5	Spectral Theory	9
	5.1 Spectrum	9

1 Vector Spaces with a Topological Structure

1.1 Topological Vector Spaces

Definition 1.1.1: Topological Field

Let k be a field equipped with a topology. We say that k is a topological field if the following are true.

- The addition map $+: k \times k \to k$ is continuous.
- The multiplication map $\cdot : k \times k \to k$ is continuous.
- The inverse map $(\cdot)^{-1}$: $k \to k$ is continuous.

Definition 1.1.2: Topological Vector Space

Let k be a topological field. Let V be a vector space over a field k that is also a topological space. We say that V is a topological vector space if the following are true.

- The addition map $+: V \times V \to V$ is continuous.
- The scalar multiplication map $\cdot : k \times V \to V$ is continuous.

1.2 Normed Spaces

Let \mathbb{F} be a field. Let V be a vector space over \mathbb{F} . Recall that a norm on V is a function $\|\cdot\|:V\to\mathbb{F}$ satisfying the following rules:

- $||x|| \ge 0$ with equality if and only if x = 0.
- $\|\lambda x\| = |\lambda| \|x\|$ for any $\lambda \in \mathbb{F}$ and $x \in V$.
- $||x + y|| \le ||x|| + ||y||$ for all $x, y \in V$.

Lemma 1.2.1

Let $(V, \|\cdot\|)$ be a normed space. Then the induced topology given by the induced metric space from the norm gives V the structure of a topological space.

Proposition 1.2.2

Let V be a finite dimensional normed space. Let $U \subseteq X$ be a subset of V. Then U is compact if and only if V is closed and bounded.

Lemma 1.2.3: Riesz's Lemma

Let $(X, \|\cdot\|)$ be a normed space and Y a non-empty closed subspace of X not equal to X. Then there exists $x \in X$ with $\|x\| = 1$ such that $\|x - y\| \ge \frac{1}{2}$ for every $y \in Y$.

Proposition 1.2.4

Let V be a normed space. Let $U \subseteq V$ be a finite dimensional vector subspace of V. Then U is closed.

Proposition 1.2.5

Let V be a normed space. Then V is finite dimensional if and only if $B_1(0)$ is compact.

1.3 Isomorphisms that Preserve Distance

Definition 1.3.1: Isometrically Isomorphic Normed Spaces

Two normed spaces V and W are isometrically isomorphic if there is a surjective linear isometry $L:V\to W$. In this case, we write $V\cong W$.

Proposition 1.3.2

Let $(X, \|\cdot\|_X)$ be a normed space. Let V be a vector space over the same field and $L: V \to X$ a linear isomorphism. Then the pullback norm

$$||v||_V = ||L(v)||_X$$

defines a norm on V. In particular, $L:(V,\|\cdot\|_V)\to (X,\|\cdot\|_X)$ is a linear isometry.

Theorem 1 3 3

If V is a finite dimensional vector space then all norms on V are equivalent.

Recall that every normed space is a vector space by defining d(x,y) = ||x-y|| for x,y in a normed space X. We thus have the notion of convergence in normed spaces.

2 Banach Spaces

2.1 Banach Spaces

Definition 2.1.1: Banach Spaces

Let $(V, \|\cdot\|)$ be a normed space. We say that V is a Banach space if V is complete as a metric space.

Proposition 2.1.2

Let V be a finite dimensional normed space. Then V is a Banach space.

Lemma 2.1.3

Suppose that $(X, \|\cdot\|_X) \cong (Y, \|\cdot\|_Y)$ are isometrically isomorphic. Then X is a Banach space if and only if Y is a Banach space.

Lemma 2.1.4

If $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent norms on a vector space X then $(X, \|\cdot\|_1)$ is complete if and only if $(X, \|\cdot\|_2)$ is complete.

Proposition 2.1.5

Both \mathbb{R}^n and \mathbb{C}^n are complete.

2.2 Separability of Banach Spaces

Recall the notion of separability: A space is separable if it has a countably dense subset.

Lemma 2.2.1

Let *X* be a normed space. Then the following are equivalent.

- *X* is separable
- The set $\{x \in X | ||x|| = 1\}$ is separable
- X contains a sequence $(x_n)_{n\in\mathbb{N}}$ whose linear span is dense.

2.3 The Completion of a Normed Space

3 The Space of Bounded Linear Maps

3.1 Basic Definitions

Definition 3.1.1: Bounded Linear Maps

Let V,W be normed space over a field k. Let $T:V\to W$ be a linear map. We say that T is bounded if there exists M>0 such that

$$||T(x)||_W \le M||x||_V$$

for all $x \in V$.

Lemma 3.1.2

Let V,W be normed spaces over a field k. Let $T:V\to W$ be a linear map. Then T is bounded if and only if T is continuous.

Definition 3.1.3: The Space of Bounded Linear Maps

Let V,W be normed spaces over a field k. Define the space of bounded linear maps to be the vector subspace

$$B(V, W) = \{T \in \operatorname{Hom}_k(V, W) \mid T \text{ is bounded } \}$$

together with the operator norm $\|\cdot\|_{op}: B(V,W) \to k$ defined by

$$||T||_{\text{op}} = \sup\{||T(v)||_W \mid v \in V \text{ such that } ||v||_V = 1\}$$

Lemma 3.1.4

Let V, W be normed spaces. If V is finite dimensional, then we have

$$B(V, W) = \operatorname{Hom}_k(V, W)$$

Lemma 3.1.5

Let V, W be normed spaces over a field k. Then B(V, W) is a Banach space.

3.2 Invertibility

Corollary 3.2.1

Let $T \in B(X,Y)$ for X,Y vector spaces. Then $\ker(T)$ is a closed linear subspace of X.

Definition 3.2.2: Bounded Invertible

A linear map $T \in B(X,Y)$ is bounded invertible if there exists $S \in B(X,Y)$ such that $S \circ T$ and $T \circ S$ are the identity.

Lemma 3.2.3

Suppose that X and Y are normed spaces. Then for any $T \in B(X,Y)$ the following are equivalent.

- \bullet T is bounded invertible
- T is a bijection and $T^{-1} \in B(X,Y)$

• *T* is surjective and for some c > 0, $||T(x)||_Y \ge c||x||_X$ for every $x \in X$.

Corollary 3.2.4

If X is finite dimensional then a linear operator $T:X\to X$ is invertible if and only if $\ker(T)=\{0\}.$

3.3 The Hahn Banach Theorem

Definition 3.3.1: Continuous Dual Space

Let X be a normed space. Denote the continuous dual space of X to be the subspace

$$X' = B(X, K)$$

of the dual space X^* .

Notice that since continuity is the same as boundedness, this notation of B(X,K) coincides with the set of all bounded linear operators.

Lemma 3.3.2

Let X be a Banach space. Then X' is also a Banach space.

Proof. Since we know that B(X,Y) is a Banach space for any normed space X and Banach space Y, choose $Y=\mathbb{R}$ and we are done.

Theorem 3.3.3: The Real Hahn-Banach Theorem

Let X be a real vector space. Let p be a convex function on X. Let X_0 be a linear subspace of X and let f be a linear functional on Y satisfying

$$f(x) \le p(x)$$

for all $x \in Y$. Then f can be extended to a linear functional F on all of X satisfying the condition

$$F(x) \le p(x)$$

for all $x \in X$ and $F|_Y = f$.

4 Hilbert Spaces

4.1 Hilbert Spaces

Definition 4.1.1: Hilbert Spaces

Let V be an inner product space. We say that V is a Hilbert space if V is a Banach space.

4.2 Orthogonality in Hilbert Spaces

Definition 4.2.1: Orthonormal Set

A subset E of a Hilbert space is orthonormal if $||e|| = \text{for all } e \in E$ and $\langle e_1, e_2 \rangle = 0$ for all $e_1, e_2 \in E$ with $e_1 \neq e_2$.

Lemma 4.2.2: Bessel's Inequality

Let V be an inner product space and $(e_n)_{n\in\mathbb{N}}$ be an orthonormal sequence. Then for any $x\in V$ we have

$$\sum_{k=1}^{\infty} \left| \langle x, e_n \rangle \right|^2 \le \|x\|^2$$

Lemma 4.2.3

Let H be a Hilbert space and $(e_n)_{n\in\mathbb{N}}$ an orthonormal sequence in H. Then the series $\sum_{k=1}^{\infty}a_ne_n$ converges if and only if

$$\sum_{k=1}^{\infty} \left| a_n \right|^2 < \infty$$

and

$$\left\| \sum_{k=1}^{\infty} a_n e_n \right\|^2 = \sum_{k=1}^{\infty} \left| a_n \right|^2$$

Corollary 4.2.4

Let H be a Hilbert space and $(e_n)_{n\in\mathbb{N}}$ an orthonormal sequence in H. Then for any x the sequence

$$\sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$$

converges.

Proposition 4.2.5

Let $E=(e_n)_{n\in\mathbb{N}}$ be an orthonormal sequence in a Hilbert space H. Then the following are equivalent.

- \bullet E is a basis for H
- For any $x \in H$ we have $x = \sum_{k=1}^{\infty} \langle x, e_n \rangle e_n$
- $||x||^2 = \sum_{k=1}^{\infty} |\langle x, e_n \rangle|^2$ for all $x \in H$
- $\langle x, e_n \rangle = 0$ for all n implies x = 0
- $\overline{\operatorname{span}(E)} = H$

4.3 Separability of Hilbert Spaces

Proposition 4.3.1

An infinite-dimensional Hilbert space is separable if and only if it has a countable orthonormal basis.

Theorem 4.3.2

Any infinite dimensional separable Hilbert space H is isometric to $l^2(K)$ for some field K.

4.4 The Adjoint of Maps of Hilbert Spaces

Theorem 4.4.1: Riesz Representation Theorem

Theorem 4.4.2

Let H,K be Hilbert spaces. Let $A:H\to K$ be a bounded linear map. Then there exists a unique bounded linear map $A^*:K\to H$ such that

$$\langle A(x), y \rangle = \langle x, A^*(y) \rangle$$

for all $x \in H$ and $y \in K$.

5 Spectral Theory

5.1 Spectrum

Definition 5.1.1: Resolvent and Spectrum

Let X be a complex Banach space and $T \in B(X)$. Define the resolvent set of T to be

$$\rho(T) = \{ \lambda \in \mathbb{C} | T - \lambda I \text{ is invertible } \}$$

Define the spectrum of T to be

$$\sigma(T) = \mathbb{C} \setminus \rho(T) = \{ \lambda \in \mathbb{C} | T - \lambda I \text{ is not invertible } \}$$

Notice that in the case that X is finite dimensional, the resolvent set of any linear operator is just its set of eigenvalues.

Lemma 5.1.2

Suppose that $T \in B(X)$ and that $(\lambda_n)_{n \in \mathbb{N}}$ are distinct eigenvalues of T. Then any set $(e_n)_{n \in \mathbb{N}}$ of corresponding eigenvectors is linearly independent.

Theorem 5.1.3

Let X be a Banach space and $T \in B(X)$ such that $T^{-1} \in B(X)$. Then for any $U \in B(X)$, with $||U|| < ||T^{-1}||^{-1}$, we have

$$\|(T+U)^{-1}\| \le \frac{\|T^{-1}\|}{1-\|U\|\|T^{-1}\|}$$

Lemma 5.1.4

Let *X* be a Banach space. Let $T \in B(X)$. Then $\sigma(T)$ is a closed subset of $\{\lambda \in \mathbb{C} | |\lambda| \leq ||T|| \}$.