CODE: 20BST101 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, June-2022

LINEAR ALGEBRA AND CALCULUS

(Common to All Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

1. a) Define rank of the matrix? Apply Echelon form to find the 5M

rank of the matrix $\begin{vmatrix}
2 & 1 & 3 & 5 \\
4 & 2 & 1 & 3 \\
8 & 4 & 7 & 3 \\
8 & 4 & -3 & -1
\end{vmatrix}$

b) Reduce the given matrix into Normal form and hence find the 5M

(OR)

2. a) Discuss for what values of λ, μ the simultaneous equations have a Unique solution.

x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$

b) Test for consistency and solve the following simultaneous 5M equations

x + 2y - z = 0, 2x + y + z = 0, x - 4y + 5z = 0.

UNIT-II

Calculate the Eigen values of the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ and 10M

the corresponding Eigen vectors.

(OR)

Calculate Eigen values of the matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ and the corresponding eigen vectors.

UNIT-III

- 5. a) Calculate the area enclosed by the Parabolas $y^2 = x$ and $x^2 = y$. 5M
 - b) Evaluate $\iint_{\mathbb{R}} xy(x+y) dx dy$, over the region R bounded by y = 5M x^2 and y = x

(OR)

6. Find the integral $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy \, dx$ by changing the order of integration

UNIT-IV

7. Show that $\int_{0}^{\pi/2} \sin^{m}\theta \cos^{n}\theta d\theta = (1/2)B(\frac{m+1}{2}, \frac{n+1}{2})$

(OR)

- 8. a) Show that $\int_{-1}^{1} (1+x)^{m-1} (1-x)^{n-1} = 2^{m+n-1} B(m,n)$
 - b) Show that $\Gamma(1/2) = \sqrt{\pi}$

UNIT-V

9. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and z = 10M $x^2 + y^2 - 3$ at the point (2,-1,2)

(OR)

10. Show that the vector field 10M $\bar{A} = 2xyz^2 \bar{i} + (x^2z^2 + z\cos yz) \bar{j} + (2x^2yz + y\cos yz) \bar{k}$ is irrotational. Find the scalar potential function.

UNIT-VI

11. Verify Green's theorem in plane for $\iint (3x^2 - 8y^2)dx + (4y - 6xy)dy$, 10M where C is the region bonded by $y = \sqrt{x}$ and $y = x^2$.

(OR)

12. Verify Gauss Divergence theorem for $\overline{F} = x^2 \overline{i} + y^2 \overline{j} + z^2 \overline{k}$ over the cube formed by the planes x = 0, x = a, y = 0 y = b, z = 0, z = c

CODE: 18BST101

12M

12M

12 M

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, June-2022

LINEAR ALGEBRA AND CALCULUS

(Common to CE, EEE, ME. ECE, CSE, IT Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit

All Questions Carry Equal Marks

All parts of the Question must be answered at one place

- Discuss for what values of λ, μ , the simultaneous equations 1. a) 6M x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ have a Unique solution
 - Solve the equations 3x + y + 2z = 3, 2x 3y z = -3, x + 2y + z = 4, Using Gauss b) 6M elimination method

2. Find the eigen values and eigen vectors of the matrix

 $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$

- If $u = \frac{yz}{x}$, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$ then show that $\frac{\partial(u,v,w)}{\partial(x,y,z)} = 4$ 3. 6M
 - If x = u(1+v), y = v(1+u) then prove that $\frac{\partial(x,y)}{\partial(u,v)} = 1 + u + v$ 6M

(OR)

A rectangular box open at the top is to have volume of 32 cubic ft. Find the 4. 12 M dimensions of the box requiring least material for its construction

UNIT-III

Calculate the surface area of the sphere generated by the circle $x^2 + y^2 = 16$ about 5. 12M its diameter.

(OR)

6. Find the volume of the solid generated by the revolution of the cardioid $r = a(1 + \cos \theta)$ about the initial line $\theta = 0$.

7. Evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$ by changing the order of integration

Evaluate the double integral $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^2 + y^2) dx dy$ 8. 12M

- 9. Find the unit normal vector to the given surface $x^2y + 2zx = 4$ at (2,-2,3) 6M
 - Find the curl \overline{f} where $\overline{f} = grad(x^3 + y^3 + z^3 3xyz)$ 6M

Verify Green's theorem in a plane for $\int (3x^2 - 8y^2)dx + (4y - 6xy)dy$, where C 10. 12M is the region bounded by $y = \sqrt{x}$ and $y = x^2$

AR16

CODE: 16BS1001

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.TECH I SEM SUPPLEMENTARY EXAMINATIONS, JUNE, 2022

ENGINEERING MATHEMATICS – I

(Common to CE, EEE, ME. ECE, CSE & IT Branches)

Time: 3 Hours Max Marks: 70

> Answer ONE Question from each Unit All Questions Carry Equal Marks

All parts of the Question must be answered at one place

- Solve $y(x^2y^2 1)dx + x(x^2y^2 + 1)dy = 0$. 1. a) 7M
 - Show that the family of parabolas $y^2 = 4cx + 4c^2$ is "self-orthogonal". b) 7M (OR)
- Solve $2(y 4x^2)dx + xdy = 0$. 2. a) 7M
 - A body is heated to 110°C and placed in air at10°C. After 1 hour its temperature is 7M 60°. How much additional time is required for it to cool to 30°C?

UNIT-II

Solve $(D^2 + 4D + 4)y = 2e^{4x} + Cos 2x$. 3. 14M

(OR)

Solve $(D^2 + 1)y = \log Cosx$ by the method of variation of parameters. 4. 14M

UNIT-III

If $x = \sqrt{wv}$, $y = \sqrt{uw}$, $z = \sqrt{uv}$ and $u = r \sin \theta$. $\cos \phi$, $v = r \sin \theta \sin \phi$, 5. 14M $w = rCos \theta$, Calculate $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$

14M

6. Find the maximum and minimum values of $f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x.$

UNIT-IV

Evaluate $\iiint x^2yz \, dx \, dy \, dz$ taken over the volume bounded by the surface 7. 14M $x^2 + y^2 = 9$, z = 0, z = 2.

(OR)

 $\int_0^a \int_{\underline{y^2}}^{2a-y} xy \ dxdy.$ 8. 14M Change the order of integration and evaluate

- Determine the directional derivative of f = xy + yz + zx in the direction of the 9. 7M vectori + 2j + 2kat the point (1, 2, 0)
 - Prove that $\vec{A} = (6xy + z^3)i + (3x^2 z)j + (3xz^2 y)k$ is irrotational. Find a b) 7M scalar function f(x, y, z) such that $\bar{A} = \nabla f$.

10. Verify Stokes' theorem for $\bar{A} = xzi - yj + x^2yk$ where S is the surface of the 14M regionbounded by x = 0, y = 0, z = 0, 2x + y + 2z = 8which is not included in the *xz*-plane

CODE: 13BS1001

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.TECH I SEM SUPPLEMENTARY EXAMINATIONS, JUNE, 2022

ENGINEERING MATHEMATICS - I (Common to All Branches)

Time: 3 Hours Max Marks: 70 **PART-A** ANSWER ALL QUESTIONS $[1 \times 10 = 10 \text{ M}]$

- Find the orthogonal trajectories of the family $y^2 = 4ax$.
 - Find the integrating factor of the linear differential equation $\frac{dy}{dx} + \frac{y}{x} = \frac{\log x}{x}$.
 - Solve $(D^2 1) y = 0$.
 - d) If $f(D) = D^2 + 4$, then find $\frac{1}{f(D)} \cos 3x$.

 - If $U = x^2+y^2$, $x=t^2$ and y = 2t, find du/dt. Find the stationary points of $f(x, y) = x^2 + y^2 6x + 12$.
 - Evaluate $\int_0^2 \int_0^3 xy dx dy$
 - Transform to Cartesian form $\int_0^{\pi/2} \int_0^a r^3 \sin \theta \cos \theta d\theta dr$. h)
 - i) If $\bar{r} = x\bar{\iota} + y\bar{\jmath} + z\bar{k}$, then find curl \bar{r}
 - State Stoke's theorem. **i**)

PART-B

Answer one question from each unit

[5x12=60M]

UNIT-I

- Form the differential equation of the family of circles having centre on x-axis and 2. a) [6M] passing through the origin.
 - b) Solve $\frac{dy}{dx} + y = x^3 y^6$.

[6M]

3. a) Solve $(1 - x^2) \frac{dy}{dx} + 2xy = x\sqrt{1 - x^2}$. b) Solve $x^2y dx - (x^3 + y^3) dy = 0$ [6M]

[6M]

UNIT-II

Solve $(D^2+1)y = e^{-x} + x^2 + e^x \sin x$. 4. [12M]

(OR) Solve $(D^3-3D^2+3D-1)v = x e^x$ 5.

[12M]

[6M]

UNIT-III

Find the Taylor series of $f(x, y) = e^{xy}$ in powers of x-1 and y-1 6. a) [6M]

If x + y + z = u, y + z = uv and z = uvw find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$.

Find the maximum and minimum values of $f(x,y) = x^3-3xy^2-15x^2-15y^2+72x$ 7. [12M]

AR13

CODE: 13BS1001 SET-2 **UNIT-IV**

Change the order of integration and evaluate $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$ 8. [12M]

(OR) Find the volume common to the cylinders $x^2+y^2=a^2$ and $x^2+z^2=a^2$. 9. [12M]

UNIT-V

Find div \bar{f} where $\bar{f} = (x^2-yz) \bar{\iota} + (y^2-xz) \bar{\jmath} + (z^2-xy)\bar{k}$ at (1,2,1) Find a unit normal to the surface $x^2+y^2+2z^2=26$ at (2,2,6)10. a) [6M] [6M]

(OR) Evaluate $\int \bar{F} \cdot \bar{n} dS$ where $\bar{F} = z\bar{\iota} + x\bar{\jmath} - 3y^2z \; \bar{k}$ and Sis the surface $x^2 + y^2 = 16$ 11. [12M] included in the first octant between z = 0 and z = 5.

2 of 2