Solution

Section 3.6 – Solving Trigonometry Equations

Exercise

Solve
$$2\cos\theta + \sqrt{3} = 0$$
 if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$2\cos\theta = -\sqrt{3}$$

$$\cos\theta = -\frac{\sqrt{3}}{2} \implies \hat{\theta} = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

$$\boxed{\theta = 150^{\circ}, \ 210^{\circ}}$$

Exercise

Solve
$$5\cos t + \sqrt{12} = \cos t$$
 if $0 \le t < 2\pi$

Solution

$$5\cos t - \cos t = -\sqrt{12}$$

$$4\cos t = -2\sqrt{3}$$

$$4\cos t = -2\sqrt{3}$$

$$\cos t = -\frac{2\sqrt{3}}{4}$$

$$\cos t = -\frac{\sqrt{3}}{2} \implies t = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

$$\theta = \frac{5\pi}{6}, \frac{7\pi}{6}$$

Exercise

Solve
$$\tan \theta - 2\cos \theta \tan \theta = 0$$
 if $0^{\circ} \le \theta < 360^{\circ}$

$$\tan \theta \left(1 - 2\cos \theta\right) = 0$$

$$\tan \theta = 0$$

$$\theta = 0^{\circ}, 180^{\circ}$$

$$\cos \theta = \frac{1}{2} \implies \theta = \cos^{-1}\left(\frac{1}{2}\right)$$

$$\theta = 60^{\circ}, 300^{\circ}$$

$$\theta = 0^{\circ}, 60^{\circ}, 180^{\circ}, 300^{\circ}$$

Solve
$$2\sin^2\theta - 2\sin\theta - 1 = 0$$
 if $0^\circ \le \theta < 360^\circ$

Solution

$$\sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^2 - 4(2)(-1)}}{2(2)}$$

$$= \frac{2 \pm \sqrt{12}}{4}$$

$$= \frac{2 \pm 2\sqrt{3}}{4}$$

$$= \frac{1 \pm \sqrt{3}}{2}$$

$$\hat{\theta} = \sin^{-1} \left(\frac{1 - \sqrt{3}}{2} \right) = -21.47^{\circ}$$
 $\sin \theta = \frac{1 + \sqrt{3}}{2} = 1.366 > 1$

$$\sin \theta = \frac{1 + \sqrt{3}}{2} = 1.366 > 1$$

$$\theta = 360^{\circ} - 21.47^{\circ} = 338.53^{\circ}$$

$$\theta = 180^{\circ} + 21.47^{\circ} = 201.47^{\circ}$$

Exercise

Solve
$$\cos\left(A - \frac{\pi}{9}\right) = -\frac{1}{2}$$

$$-\frac{1}{2}$$
 is negative \rightarrow cosine is in QII or QIII.

$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{4\pi}{3}$$

$$\cos\left(A - \frac{\pi}{9}\right) = -\frac{1}{2} = \cos\frac{2\pi}{3}$$

$$\cos\left(A - \frac{\pi}{9}\right) = -\frac{1}{2} = \cos\frac{4\pi}{3}$$

$$\cos\left(A - \frac{\pi}{9}\right) = -\frac{1}{2} = \cos\frac{4\pi}{3}$$

$$A - \frac{\pi}{9} = \frac{2\pi}{3} + 2\pi k$$

$$A - \frac{\pi}{9} = \frac{4\pi}{3} + 2\pi k$$

$$A = \frac{2\pi}{3} + \frac{\pi}{9} + 2\pi k$$

$$A = \frac{4\pi}{3} + \frac{\pi}{9} + 2\pi k$$

$$A = \frac{7\pi}{9} + 2\pi k$$

$$A = \frac{13\pi}{9} + 2\pi k$$

Solve: $4\cos\theta - 3\sec\theta = 0$ if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$4\cos\theta - 3\frac{1}{\cos\theta} = 0$$

 $\cos\theta \neq 0$

$$4\cos\theta\cos\theta - 3\frac{1}{\cos\theta}\cos\theta = 0$$

$$4\cos^2\theta - 3 = 0$$

$$4\cos^2\theta = 3$$

$$\cos^2\theta = \frac{3}{4}$$

$$\cos \theta = \pm \frac{\sqrt{3}}{2} \Rightarrow \theta = \cos^{-1} \left(\pm \frac{\sqrt{3}}{2} \right)$$

The solutions are: $\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$

Exercise

$$2\sin^2 x - \cos x - 1 = 0$$
 if $0 \le x < 2\pi$

Solution

$$2\left(1-\cos^2 x\right)-\cos x-1=0$$

$$2-2\cos^2 x - \cos x - 1 = 0$$

$$-2\cos^2 x - \cos x + 1 = 0$$

$$\cos x = -1$$

$$\cos x = \frac{1}{2}$$

$$x = \pi$$

$$x = \frac{\pi}{3}, \ \frac{5\pi}{3}$$

The solutions are: $x = \frac{\pi}{3}, \pi, \frac{5\pi}{3}$

$$x = \frac{\pi}{3}, \ \pi, \ \frac{5\pi}{3}$$

Solve:
$$\sin \theta - \sqrt{3} \cos \theta = 1$$
 if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$\sin \theta - 1 = -\sqrt{3}\cos \theta$$

$$(\sin \theta - 1)^2 = (-\sqrt{3}\cos \theta)^2$$

$$\sin^2 \theta - 2\sin \theta + 1 = 3\cos^2 \theta$$

$$\sin^2\theta - 2\sin\theta + 1 = 3\cos^2\theta$$

$$\sin^2\theta - 2\sin\theta + 1 = 3\left(1 - \sin^2\theta\right)$$

$$\sin^2\theta - 2\sin\theta + 1 = 3 - 3\sin^2\theta$$

$$\sin^2\theta - 2\sin\theta + 1 - 3 + 3\sin^2\theta = 0$$

$$4\sin^2\theta - 2\sin\theta - 2 = 0$$

$$\sin \theta = 1$$

$$\sin\theta = -\frac{1}{2}$$

$$\theta = 90^{\circ}$$

$$\theta = 210^{\circ}, 330^{\circ}$$

Check

$$\theta = 90^{\circ}$$

$$\sin 90^{\circ} - \sqrt{3}\cos 90^{\circ} = 1$$

$$1 - \sqrt{3}(0) = 1$$

$$1 = 1$$

$$\theta = 330^{\circ}$$

$$\sin 210^{\circ} - \sqrt{3}\cos 210^{\circ} = 1$$

$$-\frac{1}{2} - \sqrt{3}\left(-\frac{\sqrt{3}}{2}\right) = 1$$

$$-\frac{1}{2} + \frac{3}{2} = 1$$

$$1 = 1$$

$$\theta = 330^{\circ}$$

$$\sin 330^{\circ} - \sqrt{3}\cos 330^{\circ} = 1$$

$$-\frac{1}{2} - \sqrt{3}\left(\frac{\sqrt{3}}{2}\right) = 1$$

$$-\frac{1}{2} - \frac{3}{2} = 1$$

$$-2 \neq 1$$

 $\cos^2 \theta = 1 - \sin^2 \theta$

(False statement)

The solutions are: 90°, 210°

Solve:
$$7\sin^2\theta - 9\cos 2\theta = 0$$
 if $0^\circ \le \theta < 360^\circ$

Solution

$$7\sin^2\theta - 9\left(1 - 2\sin^2\theta\right) = 0$$

$$\cos^2\theta = 1 - 2\sin^2\theta$$

$$7\sin^2\theta - 9 + 18\sin^2\theta = 0$$

$$25\sin^2\theta - 9 = 0$$

$$25\sin^2\theta = 9$$

$$\sin^2 \theta = \frac{9}{25} \implies \sin \theta = \pm \frac{3}{5}$$

$$\hat{\theta} = \sin^{-1}\left(\frac{3}{5}\right) \approx 36.87^{\circ}$$

$$\theta \approx 36.87^{\circ}$$
 $\theta \approx 180^{\circ} - 36.87^{\circ} \approx 143.13^{\circ}$ $\theta \approx 180^{\circ} + 36.87^{\circ} \approx 216.87^{\circ}$ $\theta \approx 360^{\circ} - 36.87^{\circ} \approx 323.13^{\circ}$

The solutions are: 36.87°, 143.13°, 216.87°, 323.13°

Exercise

Solve:
$$2\cos^2 t - 9\cos t = 5$$
 if $0 \le t < 2\pi$

Solution

$$2\cos^2 t - 9\cos t - 5 = 0$$

$$(2\cos t + 1)(\cos t - 5) = 0$$

$$2\cos t + 1 = 0 \qquad \qquad \cos t - 5 = 0$$

$$\cos t = -\frac{1}{2} \qquad \qquad \cos t = 5$$

$$\cos t = -\frac{1}{2} \qquad \qquad \cos t = 5$$

$$\hat{t} = \cos^{-1}\left(-\frac{1}{2}\right)$$
 No solution

$$\hat{t} = \frac{\pi}{3}$$

Negative sign \rightarrow cosine is in QII or QIII

$$t = \pi - \frac{\pi}{3} \qquad t = \pi + \frac{\pi}{3}$$

$$t = \frac{2\pi}{3} \qquad \qquad t = \frac{4\pi}{3}$$

The solutions are: $\frac{2\pi}{3}$, $\frac{4\pi}{3}$

Solve
$$\sin \theta \tan \theta = \sin \theta$$
 if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$\sin \theta \tan \theta - \sin \theta = 0$$

$$\sin\theta(\tan\theta-1)=0$$

$$\sin \theta = 0$$

$$\tan \theta - 1 = 0$$

$$\theta = 0^{\circ}, 180^{\circ}$$

$$\tan \theta = 1$$

$$\theta = 45^{\circ}, 225^{\circ}$$

The solutions are: 0°, 45°, 180°, 225°

Exercise

Solve
$$\tan^2 x + \tan x - 2 = 0$$
 if $0 \le x < 2\pi$

$$\tan^2 x + \tan x - 2 = 0$$

$$\tan x = 1$$

$$\tan x = -2$$

$$x = \frac{\pi}{4}, \frac{5\pi}{4}$$

$$x = \frac{\pi}{4}, \frac{5\pi}{4}$$
 $\hat{x} = \tan^{-1}(2) \approx 1.107$ $x \in QII, QIV$

$$x \in QH, QH$$

$$x = 2.034, 5.176$$

The solutions are:
$$\frac{\pi}{4}$$
, $\frac{5\pi}{4}$, 2.034, 5.176

Solve
$$\tan x + \sqrt{3} = \sec x$$

if
$$0 \le x < 2\pi$$

Solution

$$\left(\tan x + \sqrt{3}\right)^2 = \left(\sec x\right)^2$$

$$\tan^2 x + 2\sqrt{3} \tan x + 3 = \sec^2 x$$

$$\tan^2 x + 2\sqrt{3} \tan x + 3 = 1 + \tan^2 x$$

$$\tan^2 x + 2\sqrt{3}\tan x + 3 - 1 - \tan^2 x = 0$$

$$2\sqrt{3}\tan x + 2 = 0$$

$$2\sqrt{3}\tan x = -2$$

$$\tan x = -\frac{2}{2\sqrt{3}} = -\frac{1}{\sqrt{3}}$$

$$x = \frac{5\pi}{6} \quad or \quad x = \frac{11\pi}{6}$$

$$\tan \frac{5\pi}{6} + \sqrt{3} = \sec \frac{5\pi}{6}$$
$$-\frac{\sqrt{3}}{3} + \sqrt{3} = -\frac{2\sqrt{3}}{3}$$
$$\frac{2\sqrt{3}}{3} \neq -\frac{2\sqrt{3}}{3}$$

$$\tan \frac{11\pi}{6} + \sqrt{3} = \sec \frac{11\pi}{6}$$

$$-\frac{\sqrt{3}}{3} + \sqrt{3} = \frac{?}{3}$$

$$\frac{2\sqrt{3}}{3} = \frac{2\sqrt{3}}{3}$$

The solutions are: $\left| \frac{11\pi}{6} \right|$

If a projectile (such as a bullet) is fired into the air with an initial velocity v at an angle of elevation θ , then the height h of the projectile at time t is given by:

$$h(t) = -16t^2 + vt\sin\theta$$

- a) Give the equation for the height, if v is 600 ft./sec and $\theta = 45^{\circ}$.
- b) Use the equation in part (a) to find the height of the object after $\sqrt{3}$ seconds.
- c) Find the angle of elevation of θ of a rifle barrel, if a bullet fired at 1,500 ft./sec takes 3 seconds to reach a height of 750 feet. Give your answer in the nearest of a degree.

a)
$$h(t) = -16t^2 + 600t \sin 45^\circ$$

= $-16t^2 + 600t \frac{\sqrt{2}}{2}$
= $-16t^2 + 300\sqrt{2} t$

b)
$$h(t = \sqrt{3}) = -16(\sqrt{3})^2 + 300\sqrt{2} \sqrt{3}$$

 $\approx 686.8 \text{ ft}$

c)
$$h(t) = -16t^2 + vt \sin \theta$$

 $750 = -16(3)^2 + 1500(3) \sin \theta$
 $750 = -144 + 4500 \sin \theta$
 $750 + 144 = 4500 \sin \theta$
 $\frac{894}{4500} = \sin \theta$
 $|\underline{\theta}| = \sin^{-1}(\frac{894}{4500}) \approx 11.5^{\circ}|$