ASSIGNMENT 2

MATH3975 Financial Derivatives (Advanced)

Due by 10 p.m. on Friday, 13 November 2020

- 1. [10 marks] Path-dependent American claim. Let $\mathcal{M}=(B,S)$ be the CRR model with r=0 and the stock price S satisfying $S_0=8$, $S_1^u=11$, $S_1^d=7$. Consider a path-dependent American claim with maturity T=2 and the reward process g defined as follows: $g_0=11$, $g_1=12$ and the random variable g_2 is given by $g_2(S_1^u,S_2^{uu})=16$, $g_2(S_1^u,S_2^{ud})=8$, $g_2(S_1^d,S_2^{du})=10$ and $g_2(S_1^d,S_2^{dd})=18$.
 - (a) Let $\widetilde{\mathbb{P}}$ be the probability measure under which the process S/B is a martingale. Compute the arbitrage price process $(\pi_t(X^a), t = 0, 1)$ for the American claim using the recursive relationship

$$\pi_t(X^a) = \max \left\{ g_t, B_t \, \mathbb{E}_{\widetilde{\mathbb{P}}} \left(\frac{\pi_{t+1}(X^a)}{B_{t+1}} \, \middle| \, \mathcal{F}_t \right) \right\}$$

with the terminal condition $\pi_2(X^a) = g_2$. Find the rational exercise time τ_0^* of this claim by its holder.

- (b) Find the replicating strategy φ for the claim up to the random time τ_0^* and check that the equality $V_t(\varphi) = \pi_t(X^a)$ is valid for all $t \leq \tau_0^*$.
- (c) Determine whether the arbitrage price process $(\pi_t(X^a); t = 0, 1, 2)$ is either a martingale or a supermartingale under $\widetilde{\mathbb{P}}$ with respect to the filtration \mathbb{F} .
- (d) Find a probability measure \mathbb{Q} on the space (Ω, \mathcal{F}_2) such that the arbitrage price process $(\pi_t(X^a); t = 0, 1, 2)$ is a martingale under \mathbb{Q} with respect to the filtration \mathbb{F} and compute the Radon-Nikodym density of \mathbb{Q} with respect to $\widetilde{\mathbb{P}}$ on (Ω, \mathcal{F}_2) .
- (e) Let $\widehat{\mathbb{P}}$ be a probability measure under which the process B/S is a martingale. Define the process $(\widetilde{\pi}_t(X^a), t = 0, 1)$ through the recursive relationship

$$\widetilde{\pi}_t(X^a) = \max \left\{ g_t, \, S_t \, \mathbb{E}_{\widehat{\mathbb{P}}} \bigg(\frac{\widetilde{\pi}_{t+1}(X^a)}{S_{t+1}} \, \Big| \, \mathcal{F}_t \bigg) \right\}$$

with $\widetilde{\pi}_2(X^a) = g_2$. Is it true that the equality $\widetilde{\pi}_t(X^a) = \pi_t(X^a)$ holds for all t = 0, 1, 2? Justify your answer but do not perform any computations with numbers.

2. **[10 marks] Gap option.** We place ourselves with the setup of the Black-Scholes market model $\mathcal{M}=(B,S)$ with a unique martingale measure $\widetilde{\mathbb{P}}$. Let the real numbers H and K satisfy H>K>0. Consider the $gap\ option$ with the payoff at maturity date T given by the following expression

$$X = g(S_T) = (S_T - K)^+ \mathbb{1}_{\{S_T \ge H\}}.$$

- (a) Sketch the graph of the function $g(S_T)$ and show that the inequality $\pi_t(X) < C_t(K)$ is valid for every $0 \le t < T$ where $C_t(K)$ is the Black-Scholes price of the standard call option with strike K.
- (b) Show that the payoff of the gap option can be decomposed into the sum of the payoff $C_T(H)$ of the standard call option with the strike price H and H-K units of the binary option with the payoff $\widetilde{C}_T(H) = \mathbb{1}_{\{S_T > H\}}$.
- (c) Compute the arbitrage price $\pi_t(X)$ at time t for the gap option. Take for granted the Black-Scholes formula for the standard call option.
- (d) Assume that $S_0 \neq H$. Find the limit $\lim_{T\to 0} \pi_0(X)$. Explain your result.
- (e) Find the limit $\lim_{\sigma \to \infty} \pi_t(X)$ for a fixed $0 \le t < T$ and compare with the limits $\lim_{\sigma \to \infty} C_t(K)$ and $\lim_{\sigma \to \infty} C_t(H)$. Explain your findings.