Question 1.

(a) (25 marks) Let

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ x^2 & \text{if } 0 \le x < 1 \\ 2 & \text{if } x \ge 1. \end{cases}$$

Evaluate $\mu_F((-1,2])$, $\mu_F((-\infty,\frac{1}{2}])$, and $\mu_F(\{1\})$, where μ_F is the Lebesgue-Stieltjes measure associated to F.

(b) (10 marks) Let A and B be measurable sets. Show that $\chi_A = \chi_B$ a.e. if and only if $\mu(A\Delta B) = 0$.

Question 2. Let $f_n, g, n = 1, 2, ...$, be measurable functions on X. Suppose that $f_n \geq g$ for all n and $\int_X g d\mu > -\infty$.

(a) (15 marks) Show that $\int_X f_n d\mu$ exists for all n. (*Hint*: Note that $f_n^- \leq g^-$.)

(b) (20 marks) Show that if $f_n \nearrow f$, then $\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu$. (Hint: Observe that $0 \le g^+ \le f_n + g^- \nearrow f + g^-$.) Question 3. Let (X, \mathcal{M}, μ) be a measure space. Let $f: X \to \mathbb{R}$ \mathbb{R} be a non-negative integer-valued measurable function. Show that

(a) (15 marks) $f = \sum_{n=1}^{\infty} f_n \text{ where } f_n = \chi_{\{f > n\}};$

(b) (15 marks) $\int_{X} f d\mu = \sum_{n=1}^{\infty} \mu(\{f \ge n\}).$