Prediction of the Effect of Single Amino Acid Protein Variants Using Deep Mutational Scanning Data

University of Bologna — Master Thesis in Bioinformatics

Pierotti Saul

Internal Advisor: Prof. Pietro Di Lena

External Advisor: Prof. Arne Elofsson (Stockholm University)

Deep Mutational Scanning

High-throughput technique for obtaining fitness information on a large number of mutations

Some Notable Variant Effect Predictors

Among these predictors only Envision was trained on deep mutational scanning data

Structure of the Project

I Considered Only Single Amino Acid Variants

I Used the Training Dataset of Envision (Gray et al., 2018)

Agreement among Experimental Results

Two independent deep mutational scanning experiments on Ubiquitin are present in the training dataset. Their correlation is low.

Interesting Patterns in Mutation Sensitivity

- Polar residues seem more tolerant to mutations than hydrophobic residues
- Proline (P) is the most disruptive residue
- ► Tryptophan (W) is hard to replace

Mutation from

Exposure Explains the Mutability of Polar Residues

When filtering by Relative Solvent Accessibility (RSA) apolar residues are **not** more sensitive to mutations than polar residues

-0.25

0.00 0.25 0.50

-0.50

-0.25

-0.50

0.25

0.50

0.00

Buried Residues Are More Conserved

Features Used for the Predictions

All the features are derived from the sequences: I did **not** use structural information

EVmutation predictions (Hopf et al., 2017) Epistatic model NetsurfP-2 predictions Mutation identity (Klausen et al., 2019) Independent model Wild-type residue Secondary structure Conservation Mutated residue Solvent accessibility Mutation frequency Disorder Torsion angles HMMER emission probabilities trRosetta predicted contacts (Eddy, 2011) (Yang et al., 2020) Centrality metrics

Single Protein Models with Naive Testing

- A different model trained for each protein
- ► Half of the mutations set aside for testing
- Hyperparameters optimized in the remaining half with cross-validation
- Good results but likely overfitting of the testing set

Single Protein Models with Testing by Position

- Same as before but mutations in the same position segregated in the training or testing sets
- Performances are lower (and more realistic)

Leave-One-Protein-Out (LOPO) Models

- Models trained on the whole dataset while leaving one protein out
- For the left-out protein, half of the mutations used for testing and half for validation
- Spearman correlation coefficient used for evaluation

Discussion

- ▶ How validation and testing are performed is crucial
- Performances on par with other predictors can be reached without structural features
- ▶ There is strong variability between datasets
- ► Complex models do not improve much on linear regression
- ▶ Unsupervised models perform similarly to supervised models

Future Directions

- ▶ Using residue contacts in a graph convolutional neural network
- ▶ Training on more deep mutational scanning studies
- ► Finding a better normalization strategy for the scores from different experiments
- ► Tuning the set of features

Future Directions

- ▶ Using residue contacts in a graph convolutional neural network
- ▶ Training on more deep mutational scanning studies
- ► Finding a better normalization strategy for the scores from different experiments
- ► Tuning the set of features

Questions?

Bibliography I

- Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S. & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. *Nature Methods*, 7(4), 248–249. https://doi.org/10.1038/nmeth0410-248
- Eddy, S. R. (2011). Accelerated profile HMM searches (W. R. Pearson, Ed.). *PLoS Computational Biology*, 7(10), e1002195. https://doi.org/10.1371/journal.pcbi.1002195
- Gray, V. E., Hause, R. J., Luebeck, J., Shendure, J. & Fowler, D. M. (2018).

 Quantitative missense variant effect prediction using large-scale mutagenesis data. *Cell Systems*, 6(1), 116–124.e3. https://doi.org/10.1016/j.cels.2017.11.003
- Hecht, M., Bromberg, Y. & Rost, B. (2015). Better prediction of functional effects for sequence variants. *BMC Genomics*, 16(S8). https://doi.org/10.1186/1471-2164-16-s8-s1
- Hopf, T., Ingraham, J., Poelwijk, F., Schärfe, C., Springer, M., Sander, C. & Marks, D. (2017). Mutation effects predicted from sequence co-variation. *Nature Biotechnology*, 35(2), 128–135. https://doi.org/10.1038/nbt.3769

Bibliography II

- Klausen, M. S., Jespersen, M. C., Nielsen, H., Jensen, K. K., Jurtz, V. I., Sønderby, C. K., Sommer, M. O. A., Winther, O., Nielsen, M., Petersen, B. & Marcatili, P. (2019). NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins: Structure, Function, and Bioinformatics, 87(6), 520–527. https://doi.org/10.1002/prot.25674
- Riesselman, A. J., Ingraham, J. B. & Marks, D. S. (2018). Deep generative models of genetic variation capture the effects of mutations. *Nature Methods*, 15(10), 816–822. https://doi.org/10.1038/s41592-018-0138-4
- Sim, N.-I., Kumar, P., Hu, J., Henikoff, S., Schneider, G. & Ng, P. C. (2012). SIFT web server: Predicting effects of amino acid substitutions on proteins. *Nucleic Acids Research*, 40(W1), W452–W457. https://doi.org/10.1093/nar/gks539
- Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S. & Baker, D. (2020). Improved protein structure prediction using predicted interresidue orientations. *Proceedings of the National Academy of Sciences*, 117(3), 1496–1503. https://doi.org/10.1073/pnas.1914677117

Secondary structure is of limited importance in the discrimination of damaging mutations

Secondary structure (DSSP)

The correlation among features follows predictable patterns

Precision of trRosetta (Yang et al., 2020) in predicting residue contacts

Dataset	Medium-range (s ≥ 12)		Long-range ($s \ge$	≥ 24)	
	Top $L/5$	Top $L/2$	Top L	Top $L/5$	Top $L/2$	Top L
beta-lactamase	1.00	0.92	0.86	0.96	0.93	0.76
WW domain	0.95	0.90	0.83	0.90	0.87	0.75
PSD95pdz3	0.96	0.92	0.80	0.92	0.81	0.70
kka2 1:2	1.00	1.00	0.96	1.00	1.00	0.89
hsp90	1.00	1.00	0.96	1.00	1.00	0.89
Ubiquitin	0.98	0.92	0.82	1.00	0.90	0.70
Pab i	0.80	0.72	0.67	0.87	0.74	0.60
E1 Ubiquitin	0.82	0.86	0.77	0.91	0.75	0.54
gb1	1.00	0.85	0.46	0.63	0.40	0.22

Quality of the predicted structural features from NetsurfP-2 (Klausen et al., 2019)

Feature	Evaluation metric	Score
Relative solvent accessibility	Pearson r	0.79
Accessible surface area	Pearson r	0.80
Q3 secondary structure	Q_3 accuracy	0.85
Q ₈ secondary structure	Q ₈ accuracy	0.72
φ torsion angle	Circular correlation	0.73
ψ torsion angle	Circular correlation	0.87

Relationship between the features used in the models and the fitness scores

Feature	Pearson r	Spearman $ ho$	Kendall τ
PSSM mutation score	-0.29	-0.28	-0.19
Netsurf predicted RSA	0.34	0.37	0.25
Netsurf predicted ASA	0.32	0.35	0.24
Netsurf predicted disorder	0.06	0.18	0.12
EVcouplings epistatic model	0.46	0.50	0.34
EVcouplings independent model	0.44	0.44	0.30
EVcouplings frequency	0.19	0.35	0.24
EVcouplings conservation	-0.32	-0.33	-0.23
Closeness centrality (trRosetta predicted contacts)	-0.16	-0.17	-0.11
Betweenness centrality (trRosetta predicted contacts)	-0.20	-0.29	-0.19
Degree centrality (trRosetta predicted contacts)	-0.12	-0.13	-0.09
Load centrality (trRosetta predicted contacts)	-0.20	-0.29	-0.19
Harmonic centrality (trRosetta predicted contacts)	-0.19	-0.20	-0.14
Clustering coefficient (trRosetta predicted contacts)	0.23	0.25	0.17
			Linear-circular correlation
Netsurf predicted ϕ torsion angle			0.01
Netsurf predicted ψ torsion angle			0.02
	Kruskal-Wallis χ^2		p-value
Wild-type residue	1482.40		< 2.20 · 10 ⁻¹⁶
Mutated residue	708.53		< 2.20 · 10 - 16
Netsurf predicted Q_3 secondary structure	215.33		< 2.20 · 10 - 16
Netsurf predicted Q_8 secondary structure	351.97		< 2.20 · 10 ⁻¹⁶

Feature importances for the gradient boosted tree general models

Feature group

Feature importances for the linear regression general models

Feature group

Comparison of the performances of single protein models and general models

Confidence intervals in prediction performances

Dataset name	Model	95 % C.I. (Pearson)	95 % C.I. (Spearman)
beta-lactamase	Naive	0.89 to 0.91	0.86 to 0.88
beta-lactamase	By position	0.79 to 0.83	0.75 to 0.78
beta-lactamase	LOPO	_	0.68 to 0.72
WW domain	Naive	0.67 to 0.82	0.70 to 0.84
WW domain	By position	0.57 to 0.73	0.52 to 0.72
WW domain	LOPO	_	0.56 to 0.73
PSD95pdz3	Naive	0.74 to 0.83	0.73 to 0.80
PSD95pdz3	By position	0.55 to 0.67	0.54 to 0.65
PSD95pdz3	LÓPO	_	0.53 to 0.63
kka2 1:2	Naive	0.74 to 0.78	0.72 to 0.76
kka2 1:2	By position	0.65 to 0.69	0.64 to 0.68
kka2 1:2	LOPO	_	0.60 to 0.64
hsp90	Naive	0.82 to 0.87	0.65 to 0.71
hsp90	By position	0.69 to 0.76	0.50 to 0.57
hsp90	LOPO	_	0.38 to 0.45
Ubiquitin	Naive	0.75 to 0.83	0.78 to 0.83
Ubiquitin	By position	0.49 to 0.60	0.46 to 0.57
Ubiquitin	LOPO	_	0.30 to 0.43
Pab i	Naive	0.80 to 0.87	0.75 to 0.82
Pab1	By position	0.65 to 0.76	0.64 to 0.73
Pab1	LÓPO	_	0.60 to 0.70
E1 Ubiquitin	Naive	0.75 to 0.85	0.65 to 0.75
E1 Ubiquitin	By position	0.59 to 0.72	0.36 to 0.51
E1 Ubiquitin	LÓPO	_	0.50 to 0.63
gb1	Naive	0.90 to 0.93	0.88 to 0.92
gb1	By position	0.31 to 0.46	0.29 to 0.45
gb1	LÓPO	_	0.32 to 0.47

Statistical significance of performance differences. Starred values are significant with Bonferroni correction.

$$\alpha = \frac{0.05}{27} = 0.00185185$$

Dataset name	Model 1	Model 2	p-value
beta-lactamase	Linear regression	Gradient boosted trees	1 · 10-4 *
beta-lactamase	Linear regression	EVmutation	1 · 10 - 4 *
beta-lactamase	EVmutation	Gradient boosted trees	1 · 10 - 4 *
WW domain	Linear regression	Gradient boosted trees	1 · 10 - 4 *
WW domain	Linear regression	EVmutation	1 · 10-4 *
WW domain	EVmutation	Gradient boosted trees	1 · 10-4 *
PSD95pdz3	Linear regression	Gradient boosted trees	1 · 10 - 4 *
PSD95pdz3	Linear regression	EVmutation	1 · 10-4 *
PSD95pdz3	EVmutation	Gradient boosted trees	0.51
kka2 1:2	Linear regression	Gradient boosted trees	0.00
kka2 1:2	Linear regression	EVmutation	0.01
kka2 1:2	EVmutation	Gradient boosted trees	1 · 10-4 *
hsp90	Linear regression	Gradient boosted trees	1 · 10 - 4 *
hsp90	Linear regression	EVmutation	1 · 10 - 4 *
hsp90	EVmutation	Gradient boosted trees	0.24

The table continues on the next slide

Statistical significance of performance differences. Starred values are significant with Bonferroni correction.

$$\alpha = \frac{0.05}{27} = 0.00185185$$

The table continues from the previous slide

Dataset name	Model 1	Model 2	p-value
Ubiquitin	Linear regression	Gradient boosted trees	1 · 10-4 *
Ubiquitin	Linear regression	EVmutation	1 · 10 - 4 *
Ubiquitin	EVmutation	Gradient boosted trees	1 · 10 - 4 *
Pab1	Linear regression	Gradient boosted trees	1 · 10 - 4 *
Pab1	Linear regression	EVmutation	1 · 10-4 *
Pab1	EVmutation	Gradient boosted trees	1 · 10 - 4 *
E1 Ubiquitin	Linear regression	Gradient boosted trees	1 · 10 - 4 *
E1_Ubiquitin	Linear regression	EVmutation	1 · 10 - 4 *
E1 Ubiquitin	EVmutation	Gradient boosted trees	1 · 10-4 *
gb1	Linear regression	Gradient boosted trees	1 · 10 - 4 *
gb1	Linear regression	EVmutation	1 · 10 - 4 *
gb1	EVmutation	Gradient boosted trees	1 · 10-4 *