Link Class: 4²⁰

Link polynomial: abc + abd + ac

$$\left|\psi_{20}\right\rangle = \left|3^{1}\right\rangle_{abc}\left|0\right\rangle_{d}\left|0\right\rangle_{e} + \left|3^{1}\right\rangle_{abd}\left|0\right\rangle_{c}\left|1\right\rangle_{e} + \left|2^{1}\right\rangle_{ac}\left|10\right\rangle_{bd}\left|2\right\rangle_{e}.$$

$$\hat{\rho}_{abcd} = \frac{\mathsf{Tr}_{e}(\ket{\psi_{20}}\bra{\psi_{20}})}{\sqrt{\braket{\psi_{20}|\psi_{20}}}}.$$

We need to check for Four-partite entanglement. So we have to compute the eigenvalues of the partial transpose with respect to each subsystem.

 $\hat{\rho}_{abcd}^{T_a}: \ \, \text{Eigenvalues:} \ \, -0.270, -0.103, 0.000, 0.103, 0.270, 0.333$

 $\hat{\rho}_{abcd}^{T_b}: \ \, \text{Eigenvalues:} \ \, -0.186, 0.000, 0.167, 0.209, 0.333, 0.477$

 $\hat{\rho}_{abcd}^{T_c}: \ \, \text{Eigenvalues:} \ \, -0.236, 0.000, 0.064, 0.167, 0.236, 0.333, 0.436$

 $\hat{\rho}_{abcd}^{T_d}$: Eigenvalues: -0.167, 0.000, 0.033, 0.167, 0.259, 0.541

$$\hat{\rho}_{abcd} = \frac{\mathrm{Tr_e}(|\psi_{20}\rangle \, \langle \psi_{20}|)}{\sqrt{\langle \psi_{20}|\psi_{20}\rangle}}.$$

We need to check for Four-partite entanglement. So we have to compute the eigenvalues of the partial transpose with respect to each subsystem.

 $\hat{\rho}_{abcd}^{T_a}: \ \, \text{Eigenvalues:} \ \, -0.270, -0.103, 0.000, 0.103, 0.270, 0.333$

 $\hat{\rho}_{abcd}^{T_b}$: Eigenvalues: -0.186, 0.000, 0.167, 0.209, 0.333, 0.477

 $\hat{\rho}_{abcd}^{T_c}: \ \, \text{Eigenvalues:} \ \, -0.236, 0.000, 0.064, 0.167, 0.236, 0.333, 0.436$

 $\hat{\rho}_{abcd}^{T_d}$: Eigenvalues: -0.167, 0.000, 0.033, 0.167, 0.259, 0.541

As the eigenvalues are negative, it has **FOUR PARTITE ENTANGLEMENT**.

All Possible Partial Traces:

Partial Trace with respect to system a:

As this is a diagonal matrix, we can say directly that after measuring a, the rest of the system b,c,d becomes **separable**.

Partial Trace with respect to system b:

Partial Trace with respect to system b:

 $ightharpoonup \hat{
ho}_{acd}^{T_a}$:

Eigenvalues: -0.167, 0.000, 0.167, 0.167, 0.333, 0.500.

Partial Trace with respect to system b:

 $ightharpoonup \hat{
ho}_{acd}^{T_a}$:

Eigenvalues: -0.167, 0.000, 0.167, 0.167, 0.333, 0.500.

 $ightharpoonup \hat{
ho}_{acd}^{T_c}$:

Eigenvalues: -0.167, 0.000, 0.167, 0.167, 0.333, 0.500.

Partial Trace with respect to system b:

 $ightharpoonup \hat{
ho}_{acd}^{T_a}$:

Eigenvalues: -0.167, 0.000, 0.167, 0.167, 0.333, 0.500.

 $ightharpoonup \hat{
ho}_{acd}^{T_c}$:

Eigenvalues: -0.167, 0.000, 0.167, 0.167, 0.333, 0.500.

 $ightharpoonup \hat{
ho}_{acd}^{T_d}$:

Eigenvalues: 0.000, 0.000, 0.000, 0.167, 0.230, 0.603.

Partial Trace with respect to system b:

 $ightharpoonup \hat{
ho}_{acd}^{T_a}$:

Eigenvalues: -0.167, 0.000, 0.167, 0.167, 0.333, 0.500.

 $ightharpoonup \hat{
ho}_{acd}^{T_c}$:

Eigenvalues: -0.167, 0.000, 0.167, 0.167, 0.333, 0.500.

 $\triangleright \hat{\rho}_{acd}^{T_d}$:

Eigenvalues: 0.000, 0.000, 0.000, 0.167, 0.230, 0.603.

Negative eigenvalues suggest, a and cd are entangled, and c and ad are entangled.

Partial Trace with respect to system b:

 $\triangleright \hat{\rho}_{acd}^{T_a}$:

Eigenvalues: -0.167, 0.000, 0.167, 0.167, 0.333, 0.500.

 $ightharpoonup \hat{
ho}_{acd}^{T_c}$:

Eigenvalues: -0.167, 0.000, 0.167, 0.167, 0.333, 0.500.

 $\triangleright \hat{\rho}_{acd}^{T_d}$:

Eigenvalues: 0.000, 0.000, 0.000, 0.167, 0.230, 0.603.

Negative eigenvalues suggest, a and cd are entangled, and c and ad are entangled. We can not say anything about the subsystem d and ac.

Partial Trace with respect to system b:

 \mathcal{Q} . How to conclude anything about the separability of the subsystem d and ac?

Partial Trace with respect to system b:

 \mathcal{Q} . How to conclude anything about the separability of the subsystem d and ac?

Computing eigenstates of ρ_{acd} :

「 O T		Γ0 -		Γ0 -	1	Γ07		Γ07		Γ07		0.525		[0.850]	
0		0		0		-1.0		0		0		0		0	
1.0		0		0		0		0		0		0		0	
0		1.0		0		0		0		0		0		0	
0	,	0	,	1.0	,	0	,	0	,	0	,	0	,	0	
0		0		0		0		0		1.0		0		0	
0		0		0		0		0		0		-0.850		0.525	
0]		Lo_		L o _		[0]		$\lfloor 1.0 \rfloor$		[o]		L 0 _		[o]	

Partial Trace with respect to system b:

 \mathcal{Q} . How to conclude anything about the separability of the subsystem d and ac?

Computing eigenstates of ρ_{acd} :

[0 7		Γ0 -		Γ0 -		[0]		07		Γ07		0.525		[0.850]
	0		0		0		-1.0		0		0		0		0
l	1.0		0		0		0		0		0		0		0
	0		1.0		0		0		0		0		0		0
İ	0	,	0	,	1.0	,	0	,	0	,	0	,	0	,	0
	0		0		0		0		0		1.0		0		0
	0		0		0		0		0		0		-0.850		0.525
	_ 0 _		L o _		L o _		[0]		1.0		[0 <u></u>		L 0]		[0]

If we can show that these vectors are separable as $|v_{ac}\rangle \otimes |v_{d}\rangle$, then that will show that the ac and d are separable.

Partial Trace with respect to system b:

Consider,

So this vector is separable in this form $|v_{ac}\rangle\otimes|v_{d}\rangle$. Similarly, we can say all the vectors of this form are separable.

Partial Trace with respect to system b:

Consider,

$$\begin{bmatrix} 0.525 \\ 0 \\ 0 \\ 0 \\ 0 \\ -0.850 \\ 0 \end{bmatrix} = 0.525 |0\rangle_{a} \otimes |0\rangle_{c} \otimes |0\rangle_{d} - 0.850 |1\rangle_{a} \otimes |1\rangle_{c} \otimes |0\rangle_{d}$$

This can be written as,

$$\begin{split} & \left(0.525 \left| 0 \right\rangle_a \otimes \left| 0 \right\rangle_c - 0.850 \left| 1 \right\rangle_a \otimes \left| 1 \right\rangle_c \right) \otimes \left| 0 \right\rangle_d. \\ & = \left| v_{ac} \right\rangle \otimes \left| v \right\rangle_d \end{split}$$

So, ac and d are separable.

Partial Trace with respect to system c:

Partial Trace with respect to system c:

 $\triangleright \hat{\rho}_{abd}^{T_a}$:

Eigenvalues: -0.167, 0.000, 0.167, 0.167, 0.167, 0.333.

Partial Trace with respect to system c:

 $\triangleright \hat{\rho}_{abd}^{T_a}$:

Eigenvalues: -0.167, 0.000, 0.167, 0.167, 0.167, 0.333.

 $ightharpoonup \hat{
ho}_{abd}^{T_b}$:

Eigenvalues: -0.103, 0.000, 0.167, 0.270, 0.333, 0.333.

Partial Trace with respect to system c:

 $\triangleright \hat{\rho}_{abd}^{T_a}$:

Eigenvalues: -0.167, 0.000, 0.167, 0.167, 0.167, 0.333.

 $ightharpoonup \hat{
ho}_{abd}^{T_b}$:

Eigenvalues: -0.103, 0.000, 0.167, 0.270, 0.333, 0.333.

 $ightharpoonup \hat{
ho}_{abd}^{T_d}$:

Eigenvalues: -0.069, 0.000, 0.167, 0.167, 0.333, 0.402.

Partial Trace with respect to system c:

- $\triangleright \hat{\rho}_{abd}^{T_a}$:
 - Eigenvalues: -0.167, 0.000, 0.167, 0.167, 0.167, 0.333.
- $\triangleright \hat{\rho}_{abd}^{T_b}$:
 - Eigenvalues: -0.103, 0.000, 0.167, 0.270, 0.333, 0.333.
- $\triangleright \hat{\rho}_{abd}^{T_d}$:
 - Eigenvalues: -0.069, 0.000, 0.167, 0.167, 0.333, 0.402.

Negative eigenvalues suggest, a and bd are entangled, b and ad are entangled. and d and ab are entangled.

Partial Trace with respect to system d:

Partial Trace with respect to system d:

 $ightharpoonup \hat{
ho}_{abc}^{T_a}$:

 ${\sf Eigenvalues:}\ \ -0.208, 0.000, 0.074, 0.167, 0.300, 0.333,$

Partial Trace with respect to system d:

 \triangleright $\hat{\rho}_{abc}^{T_a}$:

Eigenvalues: -0.208, 0.000, 0.074, 0.167, 0.300, 0.333,

 $ightharpoonup \hat{
ho}_{abc}^{T_b}$:

Eigenvalues: -0.122, 0.000, 0.167, 0.167, 0.333, 0.455.

Partial Trace with respect to system d:

 $\triangleright \hat{\rho}_{abc}^{T_a}$:

Eigenvalues:
$$-0.208, 0.000, 0.074, 0.167, 0.300, 0.333,$$

 $ightharpoonup \hat{
ho}_{abc}^{T_b}$:

Eigenvalues:
$$-0.122, 0.000, 0.167, 0.167, 0.333, 0.455$$
.

 $ightharpoonup \hat{
ho}_{abc}^{T_c}$:

$$\mbox{Eigenvalues: } -0.167, 0.000, 0.167, 0.333, 0.333, 0.333.$$

4□ > 4個 > 4 ≥ > 4 ≥ > ≥ 900

Partial Trace with respect to system d:

 $ightharpoonup \hat{\rho}_{abc}^{T_a}$:

Eigenvalues: -0.208, 0.000, 0.074, 0.167, 0.300, 0.333,

 $\hat{\rho}_{abc}^{T_b}$:

Eigenvalues: -0.122, 0.000, 0.167, 0.167, 0.333, 0.455.

 $ightharpoonup \hat{
ho}_{abc}^{T_c}$:

Eigenvalues: -0.167, 0.000, 0.167, 0.333, 0.333, 0.333.

Negative eigenvalues suggest, a and bc are entangled, b and ac are entangled. and c and ab are entangled.

Partial Trace with respect to system ab:

$$\hat{\rho}_{cd} = \begin{bmatrix} 0.5 & 0 & 0 & 0 \\ 0 & 0.166 & 0 & 0 \\ 0 & 0 & 0.333 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

So, c and d are separated.

Partial Trace with respect to system bc:

So, a and d are separated.

Partial Trace with respect to system cd:

So, a and b are separated.

Partial Trace with respect to system ad:

So, b and c are separated.

Partial Trace with respect to system bd:

$$\hat{\rho}_{ac} = \begin{bmatrix} 0.5 & 0 & 0 & 0.166 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0.166 & 0 \\ 0.166 & 0 & 0 & 0.333 \end{bmatrix}.$$

Partial Transpose with respect to a:

$$\hat{\rho}_{ac}^{T_a} = \begin{bmatrix} 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0.166 & 0 \\ 0 & 0.166 & 0.166 & 0 \\ 0 & 0 & 0 & 0.333 \end{bmatrix}.$$

Eigenvalues are : -0.103, 0.270, 0.333, 0.500. So, *a* and *c* are entangled.

Partial Trace with respect to system ac:

So, b and d are separated.

Result:

- ▶ After tracing out *a*, rest of the system *b*, *c*, *d* becomes separable.
- ▶ After tracing out *b*, *a* and *cd* remain entangled, *c* and *ad* remain entangled, and *ac* and *d* are separable.
- ► After tracing out *c*, *a* and *bd*, *b* and *ad*, and *d* and *ab* remain entangled.
- After tracing out d, a and bc, b and ac, and c and ab remain entangled.
- \blacktriangleright After tracing out ab, c and d are separable.
- ightharpoonup After tracing out bc, a and d are separable.
- ▶ After tracing out *cd*, *a* and *d* are separable.
- ightharpoonup After tracing out ad, b and c are separable.
- ▶ After tracing out *bd*, *a* and *c* are entangled.
- ▶ After tracing out *ac*, *b* and *d* are separable.

So, the polynomial is abc + abd + ac.

