Package 'scCNAutils'

March 15, 2019

Title Functions to analyze copy number aberrations in single-cell data
Version 0.0.0.9000
Description Functions to analyze copy number aberrations in singlecell data. A bunch of scripts and workflows to read and analyze scRNA-seq data and look at CNA-oriented signal.
Depends R (>= $3.4.4$)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports Matrix, dplyr, magrittr, tidyr, rlang, parallel, ggplot2, data.table, Rtsne, FNN, igraph, RcppHMM, GenomicRanges, IRanges, shiny, rbokeh, scales, ggrepel
Suggests testthat
RoxygenNote 6.1.1
R topics documented: annotate_cna

2 annotate_cna

call_cna call_cna_multisamps convert_to_coord define_cycling_cells find_communities gene_info make_metacells merge_samples norm_ge plot_aneuploidy plot_cna plot_communities plot_ccells plot_usne plot_umap qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_tsne run_tsne run_umap smooth_movingw tsne_browser umap_browser umap_browser usinsor zscore	. 4 . 6
convert_to_coord define_cycling_cells find_communities gene_info make_metacells merge_samples norm_ge plot_aneuploidy plot_cna plot_communities plot_qc_cells plot_tsne plot_umap qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	
define_cycling_cells find_communities gene_info make_metacells merge_samples norm_ge plot_aneuploidy plot_cna plot_communities plot_qc_cells plot_tsne plot_umap qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	. 7
find_communities gene_info make_metacells merge_samples norm_ge plot_aneuploidy plot_cna plot_communities plot_qc_cells plot_tsne plot_umap qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	. 8
gene_info make_metacells merge_samples norm_ge plot_aneuploidy plot_cna plot_communities plot_qc_cells plot_tsne . plot_umap qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	. 9
make_metacells merge_samples norm_ge plot_aneuploidy plot_cna plot_communities plot_qc_cells plot_tsne plot_umap qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	. 9
merge_samples norm_ge plot_aneuploidy plot_cna plot_communities plot_qc_cells plot_tsne plot_umap qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser umap_browser winsor	. 10
norm_ge plot_aneuploidy plot_cna plot_communities plot_qc_cells plot_tsne plot_umap qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser umap_browser winsor	
plot_aneuploidy plot_cna plot_communities plot_qc_cells plot_tsne plot_umap qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	. 12
plot_cna plot_communities plot_qc_cells plot_tsne plot_umap qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	
plot_communities plot_qc_cells plot_tsne plot_umap qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	
plot_qc_cells plot_tsne . plot_umap qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	
plot_tsne plot_umap qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	
plot_umap qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	
qc_cells qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	
qc_filter read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	
read_mtx rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	
rebin_cov rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	
rm_cv_outliers run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	
run_louvain run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	
run_pca run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	
run_tsne run_umap smooth_movingw tsne_browser umap_browser winsor	
run_umap	
smooth_movingw	
tsne_browser	
umap_browser winsor	
winsor	
zscore	
	. 27
	28

annotate_cna

Annotate CNAs with gene information

Description

Add columns with the names of the genes in the region, total and expressed genes only.

Usage

```
annotate_cna(cna_df, gene_info)
```

auto_cna_call 3

Arguments

cna_df a data.frame with CNA calls. E.g. data.frames created by call_cna_* func-

tions.

gene_info a data.frame with gene information created by the gene_info function

Details

The subset of "expressed" genes is made out of genes with non-zero expression in at least 10 expression higher than 0.5.

Value

the input data.frame with two new columns with all/expressed genes.

Author(s)

Jean Monlong

auto_cna_call

Automated pipeline to call CNA

Description

Automated pipeline to call CNA using metacells.

Usage

```
auto_cna_call(ge_df, comm_df, nb_metacells = 10, metacell_size = 3,
  multisamps = TRUE, trans_prob = 0.1, baseline_cells = NULL,
  baseline_communities = NULL, prefix = "scCNAutils_out",
  nb_cores = 1, chrs = c(1:22, "X", "Y"), bin_mean_exp = 3,
  z_wins_th = 3, smooth_wsize = 3)
```

Arguments

ge_df normalized gene expression of all cells (e.g. output from norm_ge.

comm_df a data.frame with community information, output from find_communities.

 $\label{lem:nb_metacells} \mbox{ the number of metacells per comunity.}$

metacell_size the number of cells in a metacell.

multisamps use the multi-sample version of the HMM segmentation? Default is TRUE. See

details

trans_prob the transition probability for the HMM.

baseline_cells cells to use as baseline.

baseline_communities

communities to use as baseline. Used if baseline.cells is NULL.

4 auto_cna_signal

prefix the prefix to use for the files created by this function (e.g. graphs).

nb_cores the number of processors to use.

chrs the chromosome names to keep. NULL to include all the chromosomes.

bin_mean_exp the desired minimum mean expression in the bin.

z_wins_th the threshold to winsorize Z-score. Default is 3

smooth_wsize the window size for smoothing. Default is 3.

Details

Once the metacells are created there are two ways to call CNA. First, if multisamps=FALSE, to call CNA on each metacell and merge the result per community, keeping the information about how many metacell support the CNA. Second, if multisamps=TRUE (default), to run the HMM on all the metacells for a community. The multi-sample approach should be more robust.

The transition probability (trans_prob) is going to affect the HMM segmentation. Smaller values will create longer segments. One approach, often advocated by HMM aficionados, is to try different values and use the ones that gives the best results, for example based on the QC graphs (TODO). Another approach is to use a loose transition probability and then filter short segments ('length' column or 'pass.filter' column).

Value

a data.frame with CNAs

Author(s)

Jean Monlong

auto_cna_signal

Automated pipeline to compute CNA signal from scRNA expression

Description

Goes from reading raw gene counts to CNA-level signal, tSNE and community detection.

Usage

```
auto_cna_signal(data, genes_coord, prefix = "scCNAutils_out",
   nb_cores = 1, pause_after_qc = FALSE, use_cache = TRUE,
   sample_names = NULL, info_df = NULL, max_mito_prop = 0.2,
   min_total_exp = 0, cells_sel = NULL, chrs = c(1:22, "X", "Y"),
   cell_cycle = NULL, bin_mean_exp = 3, rm_cv_quant = NULL,
   z_wins_th = 3, smooth_wsize = 3, cc_sd_th = 3, nb_pcs = 10,
   comm_k = 100, viz = c("tsne", "umap", "both"))
```

auto_cna_signal 5

Arguments

data a data.frame with gene expression or the path to the folder with the 'matrix.mtx',

'genes.tsv' and 'barcodes.tsv' files. A list if multiple samples.

genes_coord either a file name or a data.frame with coordinates and gene names.

prefix the prefix to use for the files created by this function (e.g. graphs).

nb_cores the number of processors to use.

pause_after_qc pause after the QC to pick custom QC thresholds.

use_cache should intermediate files used and avoid redoing steps?

sample_names the names of each sample. If NULL, tries to use data's names.

info_df a data.frame with information about cells.

max_mito_prop the maximum proportion of mitochondrial RNA.

min_total_exp the minimum total cell expression

cells_sel consider only these cells. Other cells filtered no matter what.

chrs the chromosome names to keep. NULL to include all the chromosomes.

cell_cycle if non-null, either a file or data.frame to compute cell cycle scores. See details.

bin_mean_exp the desired minimum mean expression in the bin.

rm_cv_quant the quantile threshold to remove CV outlier. Default NULL (i.e. not used).

z_wins_th the threshold to winsorize Z-score. Default is 3

smooth_wsize the window size for smoothing. Default is 3.

cc_sd_th the number of SD used for the thresholds when defining cycling cells.

nb_pcs the number of PCs used in the community detection or tSNE.

comm_k the number of nearest neighbor for the KNN graph. Default 100.

viz which method to use for visualization ('tsne', 'umap' or 'both'). Default is

'tsne'.

Value

a data.frame with QC, community and tSNE for each cell.

Author(s)

6 call_cna

bi				_
nı	n	$\sigma \rho$	ne	

Merge consecutive genes into expressed bins

Description

Merge consecutive genes into expressed bins

Usage

```
bin_genes(ge_df, mean_exp = 3, nb_cores = 1)
```

Arguments

ge_df the input gene expression with coordinate columns (chr, start, end) and then one

column per cell.

mean_exp the desired minimum mean expression in the bin.

nb_cores the number of processors to use.

Value

a data.frame with bin expression.

Author(s)

Jean Monlong

_	_	
cal	1	cna

Call CNA

Description

Calls CNA using a HMM approach.

Usage

```
call_cna(z_df, trans_prob = 1e-04, nb_cores = 1, mc_info = NULL)
```

Arguments

z_df the Z-scores, from zscore.

trans_prob the transition probability for the HMM.

nb_cores the number of processor to use.

mc_info the information about the metacells, if relevant. Default is NULL.

call_cna_multisamps 7

Value

a data.frame with the CNA calls.

Author(s)

Jean Monlong

call_cna_multisamps Call CNA

Description

Calls CNA using a HMM approach considering multiple samples at the same time.

Usage

```
call_cna_multisamps(z_df, mc_info, trans_prob = 1e-04, nb_cores = 1)
```

Arguments

z_df the Z-scores, from zscore.

mc_info the information about the metacells, if relevant. Default is NULL.

trans_prob the transition probability for the HMM.

nb_cores the number of processor to use.

Value

a data.frame with the CNA calls.

Author(s)

8 convert_to_coord

convert_to_coord	Convert gene symbols to coordinates	

Description

Convert the 'symbol' column (gene names) into three columns with gene coordinates 'chr', 'start' and 'end'.

Usage

```
convert_to_coord(ge_df, genes_coord, chrs = c(1:22, "X", "Y"),
    rm_dup = TRUE)
```

Arguments

ge_df the data.frame with gene expression and one column 'symbol' with gene names.

genes_coord either a file name or a data.frame with coordinates and gene names.

chrs the chromosome names to keep. NULL to include all the chromosomes.

rm_dup remove duplicated coordinates? Default is TRUE.

Details

If *genes_coord* is a filename, the file is expected to be a tab-delimited file with four columns: 'chr', 'start', 'end', 'symbol'. The order of the columns is not important.

The gene names in column 'symbol' should match the gene names in the input ge_df .

Value

a data.frame with columns 'chr', 'start', 'end' columns with genes coordinates (and still one column per barcode).

Author(s)

define_cycling_cells 9

Description

Using cell cycle scores, identify cells that are cycling.

Usage

```
define_cycling_cells(qc_df, sd_th = 3)
```

Arguments

qc_df the output data.frame from qc_cells (ran with a non-null *cell_cycle* parameter) sd th the number of SD used for the thresholds.

Value

a list with

cells.noc a vector with the names of non-cycling cells

graphs a list of ggplot2 graphs

Author(s)

Jean Monlong

find_communities Community detection

Description

Build a KNN graph and run Louvain algorithm for community detection.

Usage

```
find_communities(pca_o, nb_pcs = 10, k = 100, gamma = 1, nreps = 1,
   nb_cores = 1)
```

Arguments

pca_o	the output of run_pca
-------	-----------------------

nb_pcs the number of PCs to use. Default 10.

k the number of nearest neighbor for the KNN graph. Default 100.

gamma a vector of gamma. Default 1.

nreps the number of repetition for each gamma, Default 1.

nb_cores the number of processors to use. Default is 1.

10 gene_info

Value

a list with:

comm a data.frame with two columns: 'cell' and 'community'.

comm. all a matrix with communities for each gamma

gamma the list of input gamma corresponding to each comm.all column.

best.gamma the gamma resulting on the highest ARI mean ari.df data.frame with ARI stats for each gamma

Author(s)

Jean Monlong

gene_info Gene information

Description

Computes information at the gene level that can be used to annotate the results later (e.g. CNA calls).

Usage

```
gene_info(ge_df, genes_coord)
```

Arguments

ge_df a data.frame or path to a file with gene expression information across cells. E.g.

after norm.ge.

genes_coord either a file name or a data.frame with coordinates and gene names.

Details

If the input data.frame has a symbol column, 'genes_coord' is used to add the coordinates, later used to overlap with region/CNA calls. If the input data.frame has coordinates, 'genes_coord' is used to retrieve the gene name. In both cases a row in the input data.frame must be a gene, not a bin

It's better to run this function after normalization (norm_ge but before binning (bin_genes).

Value

a data.frame with summary stats for each gene.

Author(s)

make_metacells 11

_metacells

Description

Randomly select cells in each community and merge them to create metacells with higher resolution.

Usage

```
make_metacells(ge_df, comm_df, nb_metacells = 10, metacell_size = 3,
  baseline_cells = NULL, nb_cores = 1)
```

Arguments

ge_df	normalized gene expression of all cells (e.g. output from norm_ge.
comm_df	a data.frame with community information, output from $\label{find_communities} \textbf{find_communities}.$
nb_metacells	the number of metacells per comunity.
metacell_size	the number of cells in a metacell.
baseline_cells	the cells to use for baseline communities.
nb_cores	the number of processor to use.

Value

a list with

ge a data.frame with coordinates and gene expression for each metacell.

info information about which metacell correspond to which community.

mc_cells information about which cells were used for each metacell.

Author(s)

norm_ge

merge_	samp.	Les

Merge expression of multiple samples

Description

The expression of multiple samples are merged. New cell names are produced as SAMPLE_CELL.

Usage

```
merge_samples(ge_list, sample_names = NULL)
```

Arguments

```
ge_list a list of ge_df (e.g. read from read_mtx).
```

sample_names the names of each sample. If NULL, tries to use ge_list's names.

Value

a list with

ge the merged gene expression data.frame

info a data.frame with new and original cell names, and corresponding sample name

Author(s)

Jean Monlong

norm_	ge
-------	----

Normalize gene expression

Description

The expression of each cell is normalized to account for depth differences.

Usage

```
norm_ge(ge_df, method = c("tmm", "total"), nb_cores = 1)
```

Arguments

ge_df the input gene expression method the normalization method

nb_cores the number of processors to use.

plot_aneuploidy 13

Value

a data.frame with the normalized expression.

Author(s)

Jean Monlong

plot_aneuploidy

Aneuploidy graph

Description

Graphs showing the median expression in each chromosome for each community.

Usage

```
plot_aneuploidy(ge_df, comm_df = NULL, baseline_cells = NULL,
  baseline_communities = NULL, max_cells = 100, chrs_order = c(1:22,
  "X", "Y"))
```

Arguments

ge_df a data.frame with gene expression (better if binned and normalized).

comm_df a data.frame with community information for each cell.

baseline_cells cells to use as baseline.

baseline_communities

the communities to use as baseline.

max_cells the maximum number of cells to consider in the boxplot of each community.

Default: 100.

chrs_order order of the chromosomes in the graph.

Value

a list of ggplot2 object, one for each chromosome.

Author(s)

plot_communities

plot_cna

Heatmap of CNA

Description

Heatmap of CNA

Usage

```
plot_cna(cna, chrs_order = c(1:22, "X", "Y"))
```

Arguments

cna CNAs from call_cna.

chrs_order order of the chromosomes in the graph.

Value

a ggplot2 graph

Author(s)

Jean Monlong

plot_communities

Community graphs

Description

Graphs about the communities found by find_communities. For example the size of the communities or the distribution of QC metrics in each community.

Usage

```
plot_communities(comm_df, qc_df = NULL, info_df = NULL)
```

Arguments

comm df	the output	data frama	from find	communities
comm at	ine outbut	data.irame	irom tina	communities

qc_df a data.frame with QC metrics (output from qc_cells). Default is NULL (i.e.

not used)

info_df a data.frame with sample merge info (output from merge_samples). Default is

NULL (i.e. not used)

plot_qc_cells 15

Details

If the QC data.frame is provided, the distribution of QC metrics is shown to investigate if some communities are batch effects.

If multiple samples were merged (merge_samples), the proportion of cells from each sample of origin can be shown if the info_df data.frame is provided.

If qc_df and/or info_df are null but their columns present in comm_df, their corresponding graphs will be generated. Hence a merged version of comm_df, qc_df and info_df works (e.g. output of auto_cna_signal.

Value

```
a list of ggplot2 graphs.
```

Author(s)

Jean Monlong

Examples

```
## Not run:
ggp.l = plot_communities(comm_df, qc_df)

## Print first graph
ggpl.l[[1]]

## Customize ggplot
ggpl.l[[1]] + ggtitle('First graph about communities')

## End(Not run)
```

plot_qc_cells

QC graphs

Description

```
QC graphs
```

Usage

```
plot_qc_cells(qc_df, info_df = NULL)
```

Arguments

qc_df the output data.frame from qc_cells

info_df a data.frame with sample merge info (output from merge_samples). Default is

NULL (i.e. not used)

plot_tsne

Value

```
a list of ggplots
```

Author(s)

Jean Monlong

Examples

```
## Not run:
ggp.l = plot_qc_cells(qc_df)

## Print first graph
ggpl.l[[1]]

## Customize ggplot
ggpl.l[[1]] + ggtitle('First QC graph')

## End(Not run)
```

plot_tsne

tSNE graphs

Description

tSNE graphs colored according to QC metrics or sample labels.

Usage

```
plot_tsne(tsne_df, qc_df = NULL, comm_df = NULL, info_df = NULL)
```

Arguments

tsne_df	the output data.frame from run_tsne (columns: cell, tsne1, tsne2)
qc_df	a data.frame with QC metrics (output from qc_cells). Default is NULL (i.e. not used)
comm_df	a data.frame with communities (output from find_communities). Default is NULL (i.e. not used)
info_df	a data.frame with sample merge info (output from merge_samples).

Details

If the QC data.frame is provided, the distribution of QC metrics is shown to investigate if some communities are batch effects.

If multiple samples were merged (merge_samples), the points can be colored by sample of origin by providing the info_df data.frame.

If any qc_df/comm_df/info_df are null but their columns present in tsne_df, their corresponding graphs will be generated. Hence a merged version of tsne_df, comm_df, qc_df and info_df works (e.g. output of auto_cna_signal.

plot_umap 17

Value

```
a list of ggplot objects
```

Author(s)

Jean Monlong

Examples

```
## Not run:
ggp.l = plot_tsne(tsne_df, qc_df, comm_df)

## Print first graph
ggpl.l[[1]]

## Customize ggplot
ggpl.l[[1]] + ggtitle('First tSNE graph')

## End(Not run)
```

plot_umap

UMAP graphs

Description

UMAP graphs colored according to QC metrics or sample labels.

Usage

```
plot_umap(umap_df, qc_df = NULL, comm_df = NULL, info_df = NULL)
```

Arguments

umap_df	the output data.frame from run_umap (columns: cell, umap1, umap2)
qc_df	a data.frame with QC metrics (output from qc_cells). Default is NULL (i.e. not used)
comm_df	a data.frame with communities (output from find_communities). Default is NULL (i.e. not used)
info_df	a data.frame with sample merge info (output from merge_samples).

Details

If the QC data.frame is provided, the distribution of QC metrics is shown to investigate if some communities are batch effects.

If multiple samples were merged (merge_samples), the points can be colored by sample of origin by providing the info_df data.frame.

If any qc_df/comm_df/info_df are null but their columns present in umap_df, their corresponding graphs will be generated. Hence a merged version of umap_df, comm_df, qc_df and info_df works (e.g. output of auto_cna_signal.

18 qc_cells

Value

a list of ggplot objects

Author(s)

Jean Monlong

Examples

```
## Not run:
ggp.l = plot_umap(umap_df, qc_df, comm_df)
## Print first graph
ggpl.l[[1]]
## Customize ggplot
ggpl.l[[1]] + ggtitle('First umap graph')
## End(Not run)
```

qc_cells

Compute quality control metrics for each cell

Description

From raw gene expression, a few QC metrics are computed.

Usage

```
qc_cells(ge_df, cell_cycle = NULL)
```

Arguments

ge_df the input gene expression with a 'symbol' column and then one column per cell. cell_cycle if non-null, either a file or data.frame to compute cell cycle scores. See details.

Details

If cell_cycle is provided it should be a data.frame (or a tsv file) with two columns: 'symbol' with gene names, and 'phase' with the cell cycle phase (e.g. either 'G1.S' or 'G2.M').

Value

a data.frame with qc metrics per cell.

Author(s)

qc_filter 19

	· · ·	
ac	+ 1	lter
uc_	_ 1 _ 4 .	

Filter cells based on QC results

Description

Filter cells based on QC results

Usage

```
qc_filter(ge_df, qc_df, max_mito_prop = 0.2, min_total_exp = 0,
    cells_sel = NULL)
```

Arguments

ge_df the input gene expression with a 'symbol' column and then one column per cell.

qc_df the output data.frame from qc_cells

max_mito_prop the maximum proportion of mitochondrial RNA.

min_total_exp the minimum total cell expression

cells_sel consider only these cells. Other cells filtered no matter what.

Value

ge_df with only the cells that passed the filters

Author(s)

Jean Monlong

read_mtx

Read a trio of genes, barcodes and mtx files.

Description

Read a trio of genes, barcodes and mtx files.

Usage

```
read_mtx(mtx_file = "matrix.mtx", genes_file = "genes.tsv",
  barcodes_file = "barcodes.tsv", path = ".", rm_dup = TRUE,
  genes_col = 2)
```

20 rebin_cov

Arguments

mtx_file the path to the mtx file genes_file the path to the genes file. barcodes_file the path to the barcodes file

path the path to the folder containing the files

rm_dup remove duplicated gene names? Default is TRUE. genes_col the column to use in genes_file. Default is 2.

Value

a data.frame with a 'symbol' column with gene names and one column per barcode.

Author(s)

Jean Monlong

rebin_cov

Re-bin coverage data

Description

The new bins are overlapped with the regions in cov_df to compute a weight. The coverage in the new bin is the weighted sum of the coverage in overlapping regions of cov_df.

Usage

```
rebin_cov(cov_df, bins)
```

Arguments

cov_df a data.frame with coverage information.

bins a data.frame or GRanges object with the new bins.

Details

Coordinates in data.frame are expected to be defined by columns names 'chr', 'start' and 'end'.

Value

a data.frame with new bins

Author(s)

rm_cv_outliers 21

rm_cv_outliers	Remove outliers based on the coefficient of variation
----------------	---

Description

Compute the coefficient of variation for each gene/bin and remove the ones with the highest values, either based on a quantile or SD-based threshold. The genes/bins that satisfy both quantile and SD-based thresholds are removed.

Usage

```
rm_cv_outliers(ge_df, ol_quant_th = 0.99, ol_sd_th = 5)
```

Arguments

ge_df the expression data.frame.

ol_quant_th the quantile threshold. Default is 0.99 (removes the top 1% with highest values).

ol_sd_th the SD-based treshold. Default is 5.

Value

a subset of the ge_df data.frame

Author(s)

Jean Monlong

run_louvain Python wrapper to run Louvain	
---	--

Description

Louvain on an igraph object.

Usage

```
run_louvain(graph, gamma = 1, nreps = 1, nb_cores = 1)
```

Arguments

graph a igraph object

gamma a vector of gamma. Default 1.

nreps the number of repetition for each gamma, Default 1.

nb_cores the number of processors to use. Default is 1.

zu_pca

Details

This functions depends on Python and louvain being installed. Make sure igraph, louvain and numpy are installed. For example with something like: 'pip install python-igraph louvain numpy'.

Value

a list with

comm a data.frame with the community for each gamma

gamma the input gammas corresponding to the columns of comm

Author(s)

Jean Monlong

|--|

Description

PCA analysis, eventually using a subset of core cells for the PC construction.

Usage

```
run_pca(z_df, core_cells = NULL, out_pcs = 100)
```

Arguments

z_df a data.frame with z-scores for each cell

core_cells if non-NULL, a vector with the names of the cells to use as core cells. See

details. Default is NULL.

out_pcs the number of top PCs to report. Default is 100.

Details

Cells in core_cells are used to build the principal components to which all cells are then projected to. Usually used to reduce the effect of cell cycle in the PCA, by using only cells that don't cycle (see qc_cells) as *core_cells*.

The graph (*sdev.graph*) shows the standard deviation for the top 50 PCs. To show more/less PCs, add xlim(1,N) to the *sdev.graph*. See examples.

Value

a list with

x the PC matrix

sdev the standard deviations of the PCs

sdev.graph a ggplot graph of the sdev

run_tsne 23

Author(s)

Jean Monlong

Examples

```
## Not run:
pca.o = run_pca(z)
## Zoom in to the top 20 PCs
pca.o$sdev.graph + xlim(1,20)
## End(Not run)
```

run_tsne

Run tSNE

Description

tSNE from PCA results.

Usage

```
run_tsne(pca_o, nb_pcs = 10, nb_it = 1000, tsne_init = NULL)
```

Arguments

pca_o the output of run_pca
nb_pcs the number of PCs to use. Default 10.

nb_it the number of iterations. Default 1000.

tsne_init previous tSNE results to use as starting point. Not used is NULL (default).

Value

```
a data.frame with columns: cell, tsne1, tsne2
```

Author(s)

24 smooth_movingw

run_umap	Run UMAF

Description

UMAP on the PCA results.

Usage

```
run_umap(pca_o, nb_pcs = 10, nb_neighbors = 5)
```

Arguments

pca_o the output of run_pca

nb_pcs the number of PCs to use. Default 10.
nb_neighbors the number of neighbors. Default 5.

Details

This functions depends on Python and UMAP being installed. Make sure umap-mearn, sklearn, numpy, scipy and pandas are installed. For example with something like: 'pip install sklearn numpy scipy pandas umap-learn'.

Value

```
a data.frame with columns: cell, umap1, umap2
```

Author(s)

Jean Monlong

|--|

Description

The expression/score of a gene/bin is replaced by a summary of bins around. For example the median across 3 bins.

Usage

```
smooth_movingw(df, wsize = 3, nb_cores = 1, FUN = stats::median)
```

tsne_browser 25

Arguments

df the input data frame with coordinate columns (chr, start, end) and then one col-

umn per cell

wsize the window size. Default is 3. nb_cores the number of processors to use.

FUN the function to apply to each window. Default is median.

Value

a data.frame with smoothed signal.

Author(s)

Jean Monlong

tsne_browser Shiny application to visualize tSNE results

Description

Interactive application to visualize the tSNE results: zoom, hover information, different colors.

Usage

```
tsne_browser(cells_df, nb_points = 5000, plot_dim = 800)
```

Arguments

cells_df the data.frame with tSNE and other information for each cell

nb_points the default number of points to show. See details.

plot_dim the dimension of the plot in pixels.

Details

Drawing thousands of points in a web-browser can be demanding. To reduce the number of points (cells) to draw, close-by cells are merged into bigger points. The merging is done separately for different samples/communities to be able to color them if necessary. The user can decide how many points to draw with the 'nb_points' parameter or directly within the application. In practice, increase the number of points until the app gets too slow.

Value

opens a Shiny app in a web-browser.

Author(s)

26 winsor

umap_browser	Shiny application to visualize UMAP results	

Description

Interactive application to visualize the UMAP results: zoom, hover information, different colors.

Usage

```
umap_browser(cells_df, nb_points = 5000, plot_dim = 800)
```

Arguments

cells_df the data.frame with UMAP and other information for each cell

nb_points the default number of points to show. See details.

plot_dim the dimension of the plot in pixels.

Details

Drawing thousands of points in a web-browser can be demanding. To reduce the number of points (cells) to draw, close-by cells are merged into bigger points. The merging is done separately for different samples/communities to be able to color them if necessary. The user can decide how many points to draw with the 'nb_points' parameter or directly within the application. In practice, increase the number of points until the app gets too slow.

Value

opens a Shiny app in a web-browser.

Author(s)

Jean Monlong

winsor	Winsorize

Description

Convenience function to winsorize a vector.

Usage

```
winsor(x, u = NULL, l = NULL, uq = NULL)
```

zscore 27

Arguments

X	input vector
u	upper limit
1	lower limit

uq the quantile for the upper limit. Used is u is NULL.

Value

winsorized vector

Author(s)

Jean Monlong

Description

Transform gene expression into a scaled score, either using all cells or a subset of cells as baseline.

Usage

```
zscore(ge_df, wins_th = 3, method = c("z", "norm"), normals = NULL)
```

Arguments

ge_at	the input expression data.frame
wins_th	the threshold to winsorize Z-score. Default is 3
method	the normalization method. Either 'z' or norm'.

normals the cells to use as normals. If NULL (default) all cells are used as normals

Value

a data.frame with Z-scores.

Author(s)

Index

```
umap_browser, 26
annotate_cna, 2
auto_cna_call, 3
                                                 winsor, 26
auto_cna_signal, 4, 15-17
                                                 zscore, 6, 7, 27
bin_genes, 6
call_cna, 6, 14
call_cna_multisamps, 7
convert_to_coord, 8
define_cycling_cells, 9
find_communities, 3, 9, 11, 14, 16, 17
gene_info, 10
make_metacells, 11
merge_samples, 12, 14–17
norm_ge, 3, 11, 12
plot_aneuploidy, 13
plot_cna, 14
plot_communities, 14
plot_qc_cells, 15
plot_tsne, 16
plot_umap, 17
qc_cells, 9, 14-17, 18, 22
qc_filter, 19
read_mtx, 12, 19
rebin_cov, 20
rm_cv_outliers, 21
run_louvain, 21
run_pca, 9, 22, 23, 24
run_tsne, 16, 23
run_umap, 17, 24
smooth_movingw, 24
tsne_browser, 25
```