Math. – ES 2 - S2 – Géométrie

jeudi 24 mai 2018 - Durée 2 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Exercice I

On se place dans l'espace euclidien \mathbb{R}^3 rapporté au repère orthonormé direct $\left(O;\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$.

- **1. a.** Pour tout $\theta \in \mathbb{R}$, on note $\mathbb{R}_{\theta} : (x, y, z) \mapsto (\cos(\theta)x + \sin(\theta)z, y, -\sin(\theta)x + \cos(\theta)z)$. Justifier que R_{θ} est une rotation de \mathbb{R}^3 , et préciser les éléments caractéristiques.
 - **b.** Soient $x_0 \in \mathbb{R}$, et $M_{x_0} = \left(x_0, \frac{x_0^2}{2}, 0\right)$. Déterminer la nature de $\Gamma_{x_0} = \{R_{\theta}(M_{x_0}), \theta \in \mathbb{R}\}$, ainsi que des équations de Γ_{x_0} .
 - c. Déterminer une équation cartésienne de la surface $\mathscr{S} = \bigcup_{x_0 \in \mathbb{R}} \Gamma_{x_0}$. Que peut-on dire de cette surface?
 - **d.** Soient $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par $f(x,z) = \left(x, \frac{x^2 + z^2}{2}, z\right)$, et la surface $\Sigma = f(\mathbb{R}^2)$. Soient $\varphi: \mathbb{R}^2 \to \mathbb{R}^3$ définie par $\varphi(r,\theta) = \left(r\sin(\theta), \frac{r^2}{2}, r\cos(\theta)\right)$, et la surface $\Phi = \varphi(\mathbb{R}^2)$. Justifier que les surfaces \mathscr{S}, Σ , et Φ sont confondues.
 - e. Soient $(x_0, z_0) \in \mathbb{R}^2$ fixé, et $A_0 = f(x_0, z_0)$. Déterminer une équation du plan tangent à Σ en A_0 .
- 2. On note Δ l'axe (0y) et on considère les deux courbes paramétrées :

$$\mathscr{C}_1: \left\{ \begin{array}{l} x=t \\ y=\frac{t^2}{2} \\ z=0 \end{array} \right., \ t\in \mathbb{R} \quad \text{et} \quad \mathscr{C}_2: \left\{ \begin{array}{l} x=0 \\ y=t \\ z=\frac{t^2}{2} \end{array} \right., \ t\in \mathbb{R}.$$

- a. Soit $P = \left(x_0, \frac{x_0^2}{2}, 0\right)$ appartenant à \mathcal{C}_1 , avec $x_0 \neq 0$. Déterminer le point A_1 , intersection entre Δ et la tangente à \mathcal{C}_1 en P.
- **b.** Soit $Q = \left(0, y_0, \frac{y_0^2}{2}\right)$ appartenant à \mathcal{C}_2 , avec $y_0 \neq 0$. Déterminer le point A_2 , intersection entre Δ et la tangente à \mathcal{C}_2 en Q.
- **c.** A quelle condition a-t-on $A_1 = A_2$?
- d. Soit Ψ la surface réglée engendrée par les droites (PQ) telles que $P \in \mathscr{C}_1, Q \in \mathscr{C}_2$, avec $P \neq Q$ et tels que la tangente à \mathscr{C}_1 en P et la tangente à \mathscr{C}_2 en Q se coupent sur Δ .

 Montrer qu'une représentation paramétrique de Ψ est donnée par : $\psi(x_0, t) = \left(tx_0, \frac{3t-2}{2}x_0^2, \frac{1-t}{2}x_0^4\right)$.
- e. Montrer que les plans tangents à Ψ en tous les points réguliers de Ψ qui appartiennent à une même génératrice (PQ) sont parallèles.

Exercice II

Dans le plan euclidien \mathbb{R}^2 rapporté au repère orthonormé direct $(O; \overrightarrow{i}, \overrightarrow{j})$, on considère la courbe Γ de représentation paramétrique :

$$\begin{cases} x(t) = t^2 + \frac{2}{t} \\ y(t) = \frac{1}{t^2} + 2t \end{cases}, t \in \mathbb{R}_{-}^*.$$

Pour t < 0, on note M_t le point de Γ de paramètre t.

1. a. Pour $t \in \mathbb{R}^*_-$, justifier que la normale au point M_t a pour équation :

$$tx + y - \left(2 + 2t + t^3 + \frac{1}{t^2}\right) = 0$$

- **b.** En déduire une représentation paramétrique de la développée de Γ .
- c. Utiliser le résultat précédent pour donner le centre et le rayon de courbure de Γ au point M_{-1} .
- **2.** Soit \mathscr{C} le cercle de centre Ω de coordonnées $(a,b) \in \mathbb{R}^2$, et de rayon r > 0.

On dit que Γ et $\mathscr C$ sont tangents en un point A si :

- $-A \in \mathscr{C} \cap \Gamma$
- la tangente à $\mathscr C$ en A et la tangente à Γ en A sont confondues.
- a. Exprimer b et r en fonction de a pour que \mathscr{C} et Γ soient tangentes en M_{-1} .
- **b.** Dans ces conditions, donner une équation de $\mathscr C$ sous la forme $f_a(x,y)=0$ ne dépendant que du paramètre a.
- **c.** Montrer que pour a = 7, $f_7(x(t), y(t)) = o_{t \to -1}((t+1)^3)$.
- **d.** Que remarque-t-on alors pour Ω et r?

Fin de l'énoncé de géométrie