B Whole-body follower **C** Hierarchical optimization **A Policy training** Highest 1. Teacher policy **Hard constraints Problem formulation** 1. Dynamic consistency Privileged information d_t $rac{1}{2}oldsymbol{\xi}_{p+1}^T\mathbf{H}_{p+1}oldsymbol{\xi}_{p+1}+\mathbf{c}_{p+1}^Toldsymbol{\xi}_{p+1}$ MLP 2. Kinematic limits - mass MLP 3. Torque limits s.t. $\tilde{\mathbf{D}}_{p+1} \boldsymbol{\xi}_{p+1} \leq \tilde{\mathbf{f}}_{p+1}$ π_b - COM encoder ϕ Z_t $[k_p, k_d]$ - strength Multi-Task - terrain height optimize **Priority** 4. Joint space motion tracking Copy Regress 2. Student policy **Optimal decision variables Soft constraints** Proprioceptive Lowest $x = [\ddot{q}_j^T, F_{\text{grf}}^T, \overline{\tau_j^T}]$ 5. Contact motion constraints history MLP TCN 6. F-T interaction constraints π_b 7. Body space stabilization desired joint torque ← encoder σ $[\dot{x}_{com}, \varphi]$ **Deployment architecture** 3. Estimation policy Observations O_t MLP **A2** Student policy **B** Full-constrained **C** Hierarchical - commands π_e $[\varphi,\mu]$ - orientation $[\theta, \omega_b]$ Whole-body follower **Optimization A3** Estimation policy - joint states $[q_i, \dot{q}_i]$ - action history a_t^{last} Simulation feedback e_t q_j, v_j