

programming with

PYTHON

Abhay Mane

Project Engineer
Big Data Analytics & Machine Learning Team
C-DAC Bengaluru

abhaym@cdac.in

abhaymane93

OUTLINE

0	
Basics	

3 Loops

6 Object Oriented Programming

1
Data Types

4 Functions

Exception
Handling

2 Conditional Statements

5 File I/O

8Exploratory
Data Analysis

MODULE EVALUATION

Introduction

INTRODUCTION

Python is **general purpose**, **high level**, **interpreted language** with **easy** syntax and **dynamic** semantics.

Created by **Guido Van Rossum** in **1989**

WHY THE NAME?

Python gets its name from the 1970s British TV comedy series, *Monty Python's Flying Circus*.

According to Python folklore, Guido van Rossum was watching reruns of the show at about the same time he needed a name for a new language he was developing.

FEATURES OF PYTHON

Popularity

000000000

Install Python

	Maintenance status	First released	End of support
3.10	bugfix	2021-0ct-04	2026-Oct
✓ 3.9	security	2020-0ct-05	2025-Oct
3.8	security	2019-0ct-14	2024-0ct
3.7	security	2018-June-27	2023-Jun-27
2.7	end-of-life	2010-July-03	2020-Jan-01

Windows

Download installer from:

https://www.python.org/downloads/release/python-390/

Select the checkbox to add Python to PATH

Linux

Ubuntu

\$ sudo apt-get update

\$ sudo apt-get install python3.9

^{*} root permissions required

Linux

Open SUSE

install open-ssl

install python

^{*} root permissions required

Anaconda

Quickly get started with a easy-to-use Python package and environment manager for educational and research use.

Miniconda

Miniconda is a free minimal installer for conda. It is a small, bootstrap version of Anaconda that includes only conda, Python, the packages they depend on, and a small number of other useful packages

Miniconda

Installing Miniconda on Linux

Download miniconda distribution

https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86 64.sh

Miniconda

- # After downloading
- # Install using following command on terminal
- \$ bash Miniconda3-latest-Linux-x86_64.sh -b
- \$ echo 'export PATH=\$HOME/miniconda3/bin:\$PATH' >> ~/.bashrc
- \$ source ~/.bashrc

Miniconda

- # Check after installing
- \$ which python
- # should show \$HOME/miniconda3/bin/python
- \$ python -V
- # should show python 3.9.x

Your First Python Program

HELLO WORLD!


```
#include <stdio.h>
int main()
{
   printf("Hello World!");
   return 0;
}
```



```
class HelloWorld
{
   public static void main(String[] args)
   {
     System.out.println("Hello World!");
   }
}
```


print("Hello World!")

YOUR FIRST PYTHON PROGRAM

Hello World

- Q. Write a python script to display Hello World on the screen.
- # Use vi editor for creating python script named hello.py
- \$ vi hello.py
- # Run it using following command
- \$ python hello.py

Virtual Environment

At its core, the main purpose of Python virtual environments is to create an isolated environment for Python projects.

This means that each project can have its own dependencies, regardless of what dependencies every other project has.

Recommended to create virtual environment and install required packages in it, whenever starting a new project.

Always create a virtual environment in your project directory using following command:

\$ python -m venv <name_for_venv>

A directory with name of the environment will be created.

To start virtual environment, run following command:

\$ source <name_for_venv>/bin/activate

The name of virtual environment will appear at the beginning of the terminal prompt.

Check python using which command; it should show python from your virtual environment directory

Deactivate virtual environment:

\$ deactivate

Always create a virtual environment in your project directory using following command:

\$ python -m venv <name_for_venv>

A directory with name of the environment will be created.

To start virtual environment, run following command:

\$ <name_for_venv>\Scripts\activate

The name of virtual environment will appear at the beginning of the cmd prompt.

Deactivate virtual environment:

\$ deactivate

After activating virtual environment install individual packages using:

\$ pip install <package_name>

Install multiple packages using requirements file:

\$ pip install -r requirements.txt

IDE

PyCharm

Spyder

Visual Sudio Code

Eclipse

Atom

Jupyter Lab

https://jupyter.org/

JupyterLab is a web-based interactive development environment for Jupyter notebooks, code, and data.

JupyterLab is flexible: configure and arrange the user interface to support a wide range of workflows in data science, scientific computing, and machine learning.

Install Jupyter Lab

Activate the virtual environment

Then install jupyter lab:

\$ pip install jupyterlab

Jupyter Notebook Keyboard Shortcuts

Кеу	Description
Enter	Enter edit mode
Esc	Leave edit mode and enter command mode
Shift + Enter	Run Cell and move control to next cell
Ctrl + Enter	Run cell
Ctrl + S	Save Notebook
А	Create new cell above current cell
В	Create new cell below current cell
DD	Delete Cell
Shift + M	Merge Cells
Shift + Ctrl + -	Split Cell
M	Change cell to markdown
Υ	Change cell to code

LAB

Steps to follow in lab session every day

\$ source <venv_name>/bin/activate

Start Jupyter Lab

\$ jupyter-lab

→ Code in Jupyter Lab in browser

Earth is where we live on

• Shutdown Jupyter Lab

Using shutdown option in the File menu

Deactivate Virtual Environment \$ deactivate