2. Number Theory

Divisibility

An integer a is divisible by the integer b, written $b \mid a$, if there exists some integer c, such that a = bc. Another way to say this is that b divides a. Divisibility is a binary relation. (See Chapter 4)

Basic properties

Every number divides itself, since $a = a \cdot 1$ for all a. This also means that $1 \mid a$ for all a. Every number is also a divisor of zero, since $0 = a \cdot 0$.

Transitivity of divisibility relation

If a divides b, and b divides c, then there are integers d and e, such that b = ad and c = be. We then have c = be = (ad)e = a(de), which means that a divides c. In other words;

$$a \mid b \text{ and } b \mid c \implies a \mid c.$$

This is the transitivity property of binary relations, described in Chapter 4.

Common Divisors and the GCD function

If a number a divides both b and c, then a is a common divisor of b and c.

A number d is the *greatest common divisor*, or gcd, of b and c, if

- d is a common divisor of b and c, and
- if e is a common divisor of b and c, then e divides d.

For example, the divisors of 42 are $\{1, 2, 3, 6, 7, 14, 21, 42\}$ and the divisors of 24 are $\{1, 2, 3, 4, 6, 8, 12, 24\}$. The common divisors of 42 and 24 are the elements in the intersection of these two sets, viz., $\{1, 2, 3, 6\}$. Every element of this set is a divisor of 6. So the gcd of 42 and 24 is 6.

Common Multiples and the LCM function

Euclidean Division

Basis Representation Theorem

Congruence and Modular Arithmetic

Euler's Totient Function

Euler's totient function, usually written as $\varphi(n)$, counts the number of positive integers up to n that are coprime (relatively prime) to n.

$$\varphi(n) = |\{k \in \mathbb{N} : \gcd(k, n) = 1\}|$$

n	$\{k:\gcd(k,n1)=1\}$	$\varphi(n)$
1	{1}	1
2	{1}	1
3	$\{1,2\}$	2
4	$\{1,3\}$	2
5	$\{1,2,3,4\}$	4
6	$\{1,5\}$	2
7	$\{1,2,3,4,5,6\}$	6
8	$\{1,3,5,7\}$	4
9	$\{1,2,4,5,7,8\}$	6
10	$\{1,3,7,9\}$	4
11	$\{1,2,3,4,5,6,7,8,9,10\}$	10
12	$\{1,5,7,11\}$	4

Fermat's Little Theorem

$$a^p \equiv a \pmod{p}$$

for every prime number p and integer a.

Chinese Remainder Theorem