December 17 2024

Predicting Store Sales

Team Texas:

Data Architect: Bethun Bhowmik, Jong Hur Data Engineer: Michael Cavallaro, Edwin Tembo, Data Scientist: Imran Naskani, Davar Jamali,

BI Analyst: Pranab Nepal

CSCI E-103 Data Engineering for Analytics to Solve Business Challenges
Fall 2024

Harvard Extension School Harvard University

Group 5 Information - Team Texas

Name	Role	Tasks
Bethun Bhowmik	Data Architect	ERD / Partitioning
Jong Hur	Data Architect	DR / CI/CD Pipeline
Michael Cavallaro	Data Engineer	Ingest bronze data/ clean silver / merge gold
Edwin Tembo	Data Engineer	Streaming CSV to bronze / Workflows
Imran Naskani	Data Scientist/ Team Leader	Developed Model / ML Flow
Davar Jamali	Data Scientist	Developed Model / ML Flow
Pranab Nepal	BI Analyst	Developed Dashboard

Team Texas met on November 30th, December 7th, 14th-16th. Individual break out groups also met; Data Engineering met on December 4th

Problem Statement

Business Use Case

Assist Corporación Favorita, a large
 Ecuadorian grocery retailer, by leveraging a
 data lakehouse to consolidate multiple data
 sources and provide actionable insights for
 sales forecasting

Problem

Retail grocery sales fluctuate due to promotions, holidays, and macroeconomic factors such as oil prices. Managing these fluctuations is critical to:

- minimizing stockouts
- minimizing shelf life and maximizing revenue
- understanding consumer behavior across stores, clusters, and product categories

The goal is to build a unified data lakehouse that:

- ingest data from multiple sources
- cleanse and transform data into a structured format
- enable sales forecasting and visualization on dashboards

Entity relationship diagram for Store Sales dataset

Data Architecture - Data Flow Diagram

Data Architecture - CI/CD

- Databricks Asset Bundles to deploy resources across environments and regions
- All jobs, pipelines, notebooks and resource definitions will be committed to **Github** for version control
- Separate environments defined for testing and development

Data Architecture - Disaster Recovery

Recovery Point Objective (RPO)

- Utilize S3 Cross Region
 Replication to minimize Recovery
 Point Objective (RPO)
- S3 Cross Region Replication can minimize the RPO to 15 minutes

Recovery Time Objective (RTO)

- Commit code to Github for version control
- Utilize Databricks Asset Bundles to deploy resources anywhere
- Set up AWS Lambda function to monitor availability of Primary Region resources. If resources become unavailable, deploy resources to Secondary Region

Data Architecture - Disaster Recovery Diagram

Data Architecture - Real Time Streaming

- Set up a **Kafka** consumer in Databricks to stream incoming JSON messages containing store sales data.
- Use Spark Structured Streaming to process the data in real time, applying transformations like parsing and flattening JSON fields. Store this data in Silver Zone.
- Store the raw streaming data in Delta Lake's Bronze zone for future reference.
- Output the aggregated results to the Gold zone for advanced analytics or dashboarding.

Streaming Upsert to Bronze & Silver Data: Getting Usable Data

Stream Bronze

CSV data streamed to bronze tables using custom upsert functions.

New data inserted, existing data updated. No duplicated data.

Oil Prices

Goal:

Join to test and train without resulting in any missing oil price values.

Problem:

43 missing oil prices in bronze_oil

Cartesian join to distinct dates in union of train and test results in **528** missing obs (oil does not have weekend data).

Solution: Using LOCF logic to interpolate missing data (LOCB for first value).

Local, Regional, and National Holidays all in the same table.

Holidays Events

Transferred holidays (not holidays) mingled with true holidays "Work days" shown as holidays

Goal:

Join to test/train by date and store_nbr.

Solution:

Problem(s):

Find all transferred holidays corresponding with true holidays. Use true holidays' date Filter out work days

Split data by type. Local joined to stores data by 'city', regional by 'state' and national is applied to all stores

Data Engineering - Workflow

Daily Ingestion and Aggregation

New **csv** files received once a day

readStream from csv folder for each table

writeStream
Triggered Once
Upsert w.
microbatch function

Cleaned Data to Silver Tables

Gold Insights, Gold Inference

ML Orchestration

- Job Parameters used for Conditional Branching (comma separated list of days)
- Daily Inference on new data
- Model Retraining Every 1st and 16th of the month

Data Science / EDA, Model Selection and Feature Engineering

- 34 unique family of products and 54 stores. Resulting in 1836 models.
- Selected 17 store clusters and highest selling family products for modeling. **Total #models 17x6 =102.**
- Prophet Forecasting Model: Automatic seasonality detection, robust to missing data, customizable holiday
 effects, scalable for large datasets, intuitive and provides interpretable results with proven accuracy in handling
 noisy time series.
- Added temporal features like days & months similarity based on sine and cosine.

Family products per cluster (Before)

Family products per cluster (After)

Data Science / Modeling Flow

Sales Forecast Model Training @ Sand tendback Add Description

Dashboard - Walkthrough

Please click on this link to <a>Dashboard

Thank You from Team Texas!

Appendix

Please click on this link to <u>Dashboard</u>

Sample snapshot from Experimentation for logged models with metics and hyperparameters

Sample snapshot from Experimentation

Sample snapshot from parallel coordinates from hyper parameter tuning of a model for one cluster and family combination

_

Sample snapshot from Experimentation

- Sample snapshot of error (RMSE) comparison of models of different families in the same cluster.
- This shows which family models need further improvement within a cluster.

Sample snapshot from Registered Model

Sample snapshot of deployed model for cluster 1 - family 0 from registered model

