1. 다음 $\langle \text{보기} \rangle$ 는 $\angle \text{XOY와}$ 크기가 같은 각을 $\overrightarrow{\text{AB}}$ 를 한 변으로 하여 작도한 것이다. 작도 순서를 바 르게 나열한 것은?

- ⑦ 컴퍼스를 이용하여 두 점 P, Q 사이의 거리를 잰다.
- © 점 A와 D를 연결하여 ∠XOY와 ∠DAC의 크기는 서로 같다.
- \bigcirc 점 A를 중심으로 하고 반지름의 길이가 \overline{OP} 인 원을 그려 AB 와의 교점을 C라고 한다.
- \bigcirc 점 \bigcirc 점 \bigcirc 중심으로 하고 반지름의 길이가 \bigcirc 인 원을 그려 앞서 그린 원과의 교점을 D라고 한다.
- □ 각 ∠XOY의 꼭짓점을 0를 중심으로 하고 길이가 적당한 반지름을 갖는 원을 그려 OX, OY의 교점을 각각 P, Q라고 한다.
- 2 C-7-0-2-C
- 3 = -0 0 0 0
- (4) $(0)\rightarrow(0)\rightarrow(0)\rightarrow(0)\rightarrow(0)$
- \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
- **2.** 다음 그림은 점 P를 지나고 직선 l에 평행한 직 선을 작도한 것이다. 다음 중 옳지 않은 것은?

- ① $\overline{AQ} = \overline{CP}$ ② $\overline{AB} = \overline{CD}$ ③ $\overline{QB} / \overline{PD}$

- 3. $\triangle ABC에서 \overline{AB}, \overline{BC}$ 의 길이와 그 끼인 각 $\angle B$ 의 크기를 알 때, △ABC를 작도하는 순서로 옳지 않은 것은?
- ② $\overline{BC} \rightarrow \angle B \rightarrow \overline{AB}$
- $(4) \angle B \rightarrow \overline{BC} \rightarrow \overline{AB}$
- (5) $\angle B \rightarrow \overline{AB} \rightarrow \overline{BC}$
- **4.** 길이가 2cm, 3cm, 4cm, 6cm, 7cm인 막대가 각 각 하나씩 있다. 5개의 막대 중에서 3개를 이용하 여 만들 수 있는 삼각형의 개수는?
 - ① 3개
- ② 5개
- ③ 6개
- ④ 8개
- ⑤ 10개
- **5.** 삼각형의 세 변의 길이가 x, y, 8이고 x+y=16을 만족하는 삼각형의 개수는? (단, x, y는 자연수)
 - 2개
- ② 3개
- ③ 4개

- ④ 5개
- ⑤ 6개
- **6.** 다음 그림과 같은 직사각형 ABCD**에**서 $\overline{AP} = \overline{QP}$, $\angle APQ = 90^{\circ}$ **일** 때, 서로 합동인 삼각 형을 찾아 기호로 바르게 나타낸 것은?

- (1) $\triangle ABP = \triangle PCQ$

- \bigcirc \triangle ABP \equiv \triangle ADQ

2018년 2학기 중간고사 대비 5-2.작도와 합동

7. 다음 그림은 정삼각형 ABC의 변 BC의 연장선 위에 점 D를 잡고, AD를 한 변으로 하는 정삼각형 AED를 그린 것이다. EC의 길이와 이 길이를 구하기 위해 사용된 삼각형의 합동 조건을 바르게 짝지은 것은?

길이 합동조건
① 5cm SSS합동
② 5cm SAS합동
③ 5cm ASA합동
④ 6cm SAS합동
⑤ 6cm ASA합동

8. 다음 그림에서 $\triangle ABC$ 는 $\overline{AB} = \overline{AC}$ 인 이등변 삼각형이다. 두 점 D,E가 각각 두 변 AB,AC의 중점이고 \overline{BE} 와 \overline{CD} 의 교점을 O라 할 때, 다음 설명중 옳지 않은 것은?

- ① $\overline{BC} = \overline{BE}$
- \bigcirc $\overline{OD} = \overline{OE}$
- \bigcirc \angle BEA = \angle CDA
- ⑤ △OBC는 이등변삼각형

9. 다음 그림과 같은 정사각형 ABCD에서 $\overline{BE} = \overline{CF}$ 일 때, $\angle APF$ 의 크기는?

- ① $80\,^{\circ}$
- ② 85°
- ③ 90°

- 4) 95°
- ⑤ 100°

10. 다음 그림에서 삼각형 ABC와 삼각형 CDE는 정 삼각형이고 ∠EBC=35°일 때, ∠ADE의 크기는?

- ① 15°
- ② 20°
- 325°

- ④ 30°
- (5) 35°

11. 다음은 정삼각형 ABC에서 $\overline{AD} = \overline{BE}$ 일 때, $\triangle ACD = \triangle BAE$ 임을 설명하는 과정이다. ①~⑤에 들어갈 말로 옳지 않은 것은?

- △BAE
- \bigcirc \overline{BE}
- ③ ∠CAD

- \overline{AB}
- (5) ASA

12. 다음 그림에서 $\triangle ABC$ 는 정삼각형이고 $\overline{AE} = \overline{CD}$ 일 때, $\triangle BGD$ 의 크기는?

- ① 30°
- ② $45\,^\circ$
- 3 55°

- (4) 60°
- ⑤ 90°

13. AB=BC, ∠B=90°인 직각이등변삼각형에서 점 B를 지나는 직선 l에 점 A, C에서 내린 수선의 발이 각각 D, E이고, AD=8cm, DE=4cm일 때, CE의 길이는?

- ① 12cm
- ② 10cm
- ③ 8cm

- ④ 6cm
- (5) 4cm

14. 다음 그림에서 △ABC와 △BDE는 모두 정삼각 형이다. ∠DEC=15°일 때, ∠ADC의 크기를 구하 면?

- ① $100\,^\circ$
- ② 105°
- 3 110°

- (4) 115°
- ⑤ 120°

15. 정사각형 ABCD에서 $\overline{BE} = \overline{CF}$ 일 때, 옳지 않은 것은?

- ① $\overline{AE} = \overline{BF}$
- ② $\angle AGB = 90^{\circ}$
- \bigcirc $\angle BAE = \angle CBF$
- \bigcirc \angle GAD + \angle GFD = 200 $^{\circ}$

16. 다음은 정삼각형 ABC에서 변 BC 위의 한 점 D 를 잡아 정삼각형 ADE를 그리고 점 C와 점 E를 연결한 것이다. ∠DAC=20°일 때, △ABD와 합동 인 삼각형을 찾고 알맞은 합동조건을 쓰시오.

17. 다음 그림은 $\triangle ABC$ 의 각 변을 한 변으로 하는 정삼각형 DBA, EBC, FAC를 그린 것이다. $\angle BAC = 112^\circ$, $\angle ABC = b^\circ$, $\angle ACB = c^\circ$ 라고 할 때, $\angle DEF$ 의 크기를 구하려고 한다. 다음 물음에 답하시오.

- (1) $\triangle ABC$ 와 합동인 삼각형 2개를 찾아 기호를 사용하여 나타내시오.
- (2) ∠DEF의 크기를 구하는 과정과 답을 쓰시오.

18. 다음 그림의 정사각형 ABCD에서 ∠EAF = 45°, ∠AEF = 70°일 때, ∠AFD의 크기를 구하시오.

19. 다음 그림은 정삼각형 ABC에서 \overline{AB} 의 연장선 위에 점 D를 잡고 \overline{BD} 를 한 변으로 하는 정삼각형 BDE를 그린 것이다.

- (1) 합동인 삼각형을 찾아 기호로 나타내고 그 이유와 합동조건을 쓰시오.
- (2) $\angle FDE = 40$ $^{\circ}$ 일 때, $\angle BEA$ 의 크기를 구하시오.
- **20.** 정사각형 ABCD의 변 BC의 연장선 위에 점 E를 잡고, \overline{AE} 를 한 변으로 하는 정사각형 AGFE를 그 린 것이다. \angle AED = x° , \angle EAB = 50° 일 때, 물음에 답하시오.

- (1) $\triangle ABG = \triangle ADE 임을 보이시오.$
- (2) $\angle GBE$ 를 x를 포함한 식으로 나타내시오.

21. 두 사각형 ABCD와 EFGD는 정사각형이다. ∠BCG = 70°, ∠CDG = 50°일 때, ∠AEF의 크기를 구하면?

- ① 15°
- ② 20°
- 325°

- **4**) 30 °
- ⑤ 35°

22. 한 변의 길이가 8cm인 정사각형 모양의 색종이 가 2장 있다. 그림과 같이 두 대각선 AC와 BD의 교점 O에 다른 한 장의 꼭깃점이 일치하도록 붙였을 때, 사각형 OMCN의 넓이를 구하려고 한다. 다음 물음에 답하시오.

- (1) 사각형 OMCN의 넓이를 구하기 위해 합동인 두 삼 각형을 찾아 합동기호를 사용하여 나타내시오.
- (2) (1)에서 찾은 두 삼각형이 합동임을 설명하는 과정을 서술하고, 이 때 이용한 삼각형의 합동 조건을 쓰시오.
- (3) (1)과 (2)의 결과를 이용하여 사각형 OMCN의 넓이를 구하는 과정을 서술하고 답을 쓰시오.

2018년 2학기 중간고사 대비 5-2.작도와 합동

4

정답 및 해설

1) [정답] ④

[해설] 작도 순서는 ◎ - ◎ - ◎ - ② - ② 이다.

2) [정답] ④

[해설] $\overline{QA} = \overline{QB} = \overline{PC} = \overline{PD}$ 이고 $\overline{AB} = \overline{CD}$ 이다. 동위각의 크기가 같도록 작도하여 평행선을 작도 하는 과정이므로 $\angle AQB = \angle CPD$, \overline{QB} // \overline{PD}

3) [정답] ③

[해설] ③ 끼인각의 크기 없이 두 변을 연달아 작도 하여 삼각형을 작도할 수 없다.

4) [정답] ②

[해설] 삼각형의 가장 긴 변은 나머지 두 변 길이의 합 보다 작아야 한다. 따라서 세 변이 될 수 있는 경우는 (7, 6, 4), (7, 6, 3), (7, 6, 2), (6, 4, 3), (4, 3, 2)으로 5 가지이다.

5) [정답] ③

[해설] 삼각형이 되려면 가장 긴 변이 다른 두 변 길이의 합 보다 작아야 한다.

(1) x=8, y=8 일 때 8<8+8

(2) x=9, y=7 일 때 9<7+8

(3) x = 10, y = 6 일 때 10 < 6 + 9

(4) x = 11, y = 5 일 때 11 < 5 + 8

6) [정답] ③

[해설] \triangle ABP에서 \angle BAP=a, \angle BPA=b 라고 하면 a+b=90°이다.

이때 \angle BPA + \angle QPC = 90 ° 이므로 $b+\angle$ QPC = 90 ° 에서 \angle QPC = a, \angle CQP = b 그러므로 \triangle ABP, \angle PCQ는 한 변의 길이가 같고 양 끝 각의 크기가 같아서 ASA 합동이다.

7) [정답] ②

[해설] \triangle ABD, \triangle ACE에서 $\overline{AB} = \overline{AC}$, $\overline{AD} = \overline{AE}$ 이

 \angle BAD = \angle CAE = $60^{\circ} + \angle$ CAD 이므로

 $\triangle ABD \equiv \triangle ACE$ (SAS 합동)

이때 합동인 두 삼각형의 대응변의 길이가 같으 므로

 $\overline{BD} = \overline{CE} = 2 + 3 = 5 \text{ (cm)}$

8) [정답] ①

[해설] \triangle ABE \equiv \triangle ACD(SAS 합동)이므로 대응각의 크기가 같아서

③ ∠BEA=∠CDA 또한 ∠ABE=∠ACD 이때 △ODB, △OEC에서

∠DOB = ∠EOC이고 ∠OBD = ∠OCE이므로

 \angle ODB = \angle OEC 이다.

또한 $\overline{BD} = \overline{CE}$ 이므로 ④ $\triangle ODB = \triangle OEC(ASA)$

합동)이므로 대응변의 길이가 같아서

② $\overline{OD} = \overline{OE}$ 이고 $\overline{OB} = \overline{OC}$ 이므로

⑤ △OBC는 이등변삼각형이다.

9) [정답] ③

[해설] $\overline{BE} = \overline{CF}$, $\overline{AB} = \overline{BC}$, $\angle ABE = \angle BCF = 90^{\circ}$

 $\triangle ABE \equiv \triangle BCF$ (SAS 합동)이다.

 $\angle BAE = \angle CBF$, $\angle AEB = \angle BFC \circ \mathbb{I}$.

∠BAE + ∠AEB = 90 ° 이므로

 $\angle CBF + \angle AEB = 90^{\circ}$

따라서 \triangle BEP에서 \angle BPE = 180 $^{\circ}$ - 90 $^{\circ}$ = 90 $^{\circ}$ 이다.

맞꼭지각의 크기가 같으므로 $\angle x = 90^{\circ}$ 이다.

10) [정답] ③

[해설] \triangle BCE = \triangle ACD(SAS 합동)이므로 \angle CBE = \angle CAD = 35°, \angle ACD = \angle CDE = 60° 이므로 \triangle ACD에서 $35°+60°+(\angle$ ADE+60°)=180°

11) [정답] ⑤

 $\therefore \angle ADE = 25^{\circ}$

[해설] ⑤ 두 변의 길이와 끼인 각의 크기가 같으므로 SAS 합동이다.

12) [정답] ④

[해설] $\triangle ABE$, $\triangle CAD에서 \overline{AE} = \overline{DC}$, $\overline{BA} = \overline{AC}$

∠BAE = ∠ACD = 60°이므로

 \triangle ABE = \triangle CAD(SAS 합동)

대응각의 크기가 같으므로 $\angle ABE = \angle CAD = a$,

 \angle AEB = \angle CDA = b 라고 하면

 $a+b+60^{\circ} = 180^{\circ}$: $a+b=120^{\circ}$

 Δ AGE의 두 내각의 합이 $a+b=120\,^{\circ}$ 이므로

 $\angle AGE = \angle BGD = 180\degree - 120\degree = 60\degree$

13) [정답] ①

[해설] \triangle ABD에서 \angle DBA=a, \angle DAB=b라고 하면 $a+b=90\,^{\circ}$

이때 \angle ABC = 90 ° 이므로 \angle EBC=b 이고, \triangle BCE에서 \angle EBC + \angle ECB = 90 ° 이므로 \angle ECB = a

따라서 $\triangle ABD$, $\triangle BCE에서 \overline{AB} = \overline{BC}$ 이고.

 \angle DBA = \angle ECB, \angle DAB = \angle EBC 이므로 한 변의 길이가 같고, 양 끝 각의 크기가 같으므로 ASA합동이다.

 $\overline{AD} = \overline{BE} = 8 \text{ (cm)}, \overline{DE} = 4 \text{ (cm)}$ 이므로 $\overline{BE} = \overline{CE} = 8 + 4 = 12 \text{ (cm)}$

14) [정답] ②

[해설] \triangle BEC, \triangle BDA에서 $\overline{BE} = \overline{BD}$, $\overline{BC} = \overline{BA}$ 이 고,

∠EBC = ∠DBA = 60°이므로

2018년 2학기 중간고사 대비 5-2.작도와 합동

 \triangle BEC $\equiv \triangle$ BDA(SAS 합동)

이때 대응각의 크기가 같으므로

 $\angle BDA = \angle BEC = 60^{\circ} + 15^{\circ} = 75^{\circ}$

 \therefore \angle ADC = 180 $^{\circ}$ - \angle BDA = 180 $^{\circ}$ - 75 $^{\circ}$ = 105 $^{\circ}$

15) [정답] ⑤

[해설] \triangle ABE, \triangle BCF에서 $\overline{AB} = \overline{BC}$, $\overline{BE} = \overline{CF}$ \angle ABE = \angle BCF = 90°이므로

⑤ $\triangle ABE = \triangle BCF$ (SAS 합동)

대응변의 길이가 같으므로 ① $\overline{AE} = \overline{BF}$

대응각의 크기가 같으므로

③ \angle BAE = \angle CBF = a, \angle AEB = \angle BFC = b 라 고 하면 $a+b=90^{\circ}$

 \triangle BEG의 두 내각의 합이 a+b=90 이므로

② $\angle BGE = \angle AGF = 90^{\circ}$

⑤ 사각형 AGFD 에서

 $\angle GAD + \angle GFD = 360^{\circ} - (\angle AGF + \angle ADF)$ = $360^{\circ} - (90^{\circ} + 90^{\circ}) = 180^{\circ}$

16) [정답] $\triangle ABD = \triangle ACE(SAS 합동)$

[해설] $\triangle ABD$, $\triangle CAE$ 에서 $\overline{AB} = \overline{AC}$, $\overline{AD} = \overline{AE}$, $\angle BAD = \angle CAE = 60\degree - 20\degree = 40\degree$ 이므로 두 변의 길이가 같고 끼인각의 크기가 같다. 따라서 $\triangle ABD = \triangle ACE$ (SAS 합동)이다.

17) [정답] (1) \triangle ABC \equiv \triangle DBE \equiv \triangle FEC (2) 128° [해설] (1) \triangle DBE, \triangle ABC에서

 $\overline{\rm DB} = \overline{\rm AB}, \ \overline{\rm EB} = \overline{\rm CB}$

고

∠DBE = ∠ABC = 60° - ∠EBA 이므로

 $\Delta DBE \equiv \Delta ABC(SAS 합동)$

 \triangle ABC, \triangle FEC에서 $\overline{CB} = \overline{CE}$, $\overline{CA} = \overline{CF}$ 이고

∠BCA = ∠ECF = 60° - ∠ACE 이므로

 \triangle ABC \equiv \triangle FEC(SAS 합동)

(2) 합동인 삼각형의 대응각의 크기가 같으므로

 $\angle BAC = \angle BDE = \angle EFC = 112^{\circ}$,

 $\angle DBE = \angle FEC = \angle ABC = a$.

 \angle DEB = \angle FCE = \angle ACB = b 라 하면

 \triangle ABC에서 $a+b+112°=180° \rightarrow a+b=68°$

 \therefore $\angle DEF = a + b + 60^{\circ} = 68^{\circ} + 60^{\circ} = 128^{\circ}$

18) [정답] 65°

 $\overline{\text{BE}}$ 와 길이가 같도록 $\overline{\text{CD}}$ 의 연장선 위에 점 G 를 잡으면 $\triangle \text{ABE} = \triangle \text{ADG}$ (SAS 합동) 대응변의 길이가 같으므로 $\overline{\text{AE}} = \overline{\text{AG}}$ 이고 대응각

의 크기가 같으므로

 $\angle BAE = \angle DAG = a$, $\angle FAD = b$ 라고 하면

∠BAD에서 a+b+45°=90° 이므로

 $\angle GAF = a + b = 45^{\circ}$

이제 $\triangle AEF$, $\triangle AGF에서 <math>\overline{AF}$ 는 공통이므로

 $\triangle AEF \equiv \triangle AGF$ (SAS 합동)

 $\therefore \angle AFD = \angle AFE = 180^{\circ} - 45^{\circ} - 70^{\circ} = 65^{\circ}$

19) [정답] (1) $\triangle BDC = \triangle BEA(SAS$ 합동)

(2) 20°

[해설] (1)

△BDC, △BEA에서

 $\overline{BD} = \overline{BE}, \ \overline{BC} = \overline{BA}$

 \angle DBC = $60^{\circ} + \angle$ EBC = \angle EBA이므로

 $\Delta BDC = \Delta BEA(SAS 합동)$

(2) $\angle BDC = \angle BDE - \angle FDE = 60^{\circ} - 40^{\circ} = 20^{\circ}$

이때 대응각의

크기가

같아서

 $\angle\,\text{BEA} = \angle\,\text{BDC} = 20\,^\circ$

20) [정답] (1) \triangle ABG \equiv \triangle ADE(SAS 합동)

(2) $(x+50)^{\circ}$

[해설] (1) 사각형 AGFE가 정사각형이므로

 $\overline{AG} = \overline{AE}$

사각형 ABCD가 정사각형이므로 $\overline{AB} = \overline{AD}$

 $\angle GAB = 90° + 50° = 140° = \angle EAD$ 이므로

 $\triangle ABG \equiv \triangle ADE (SAS 합동)$

(2) 대응각의 크기가 같아서

 $\angle AED = \angle AGB = x^{\circ}$

△AGB에서

 $\angle ABG = 180^{\circ} - (x^{\circ} + 140^{\circ}) = 40^{\circ} - x^{\circ}$

 $\angle GBE = 90^{\circ} - \angle ABG$

 $=90^{\circ} - (40^{\circ} - x^{\circ}) = (x+50)^{\circ}$

21) [정답] ②

[해설] \triangle DEA, \triangle DGC에서 $\overline{DE} = \overline{DG}$, $\overline{DA} = \overline{DC}$ 이

ᅶ,

 $\angle EDA = \angle GDC = 90^{\circ} - \angle ADG$ 이므로

 Δ DEA = Δ DGC(SAS 합동)

이제 △DGC에서

 $\angle DGC + 50^{\circ} + 20^{\circ} = 180^{\circ}$ \therefore $\angle DGC = 110^{\circ}$

합동인 삼각형의 대응각의 크기가 같아서

∠DGC = ∠DEA = 110°이므로

 $\angle AEF = 110^{\circ} - 90^{\circ} = 20^{\circ}$

22) [정답] (1) △OBM ≡ △OCN

(2) ASA (3) 16cm²

[해설] (2) \triangle OBM, \triangle OCN에서 $\overline{OB} = \overline{OC}$ 이고

 $\angle OBM = \angle OCN = 45^{\circ}$,

∠BOM = ∠CON = 90° - ∠MOC 이므로

 \triangle OBM \equiv \triangle OCN (ASA 합동)

(3) \square OMCN = \triangle OMC + \triangle OCN

 $= \Delta OMC + \Delta OBM$

 $= \triangle OBC = \frac{1}{4} \times \Box ABCD = \frac{1}{4} \times 64 = 16(cm^2)$

5-2.작도와 합동 2018년 2학기 중간고사 대비