

Machine Learning

- Machine learning is a big topic
- We'll focus on neural networks
 - We want to use known data (inputs with corresponding outputs) to predict the output for any input
 - We'll follow the notation of Franklin, Computational Methods for Physics, Ch. 14 with ideas from Rashid, Make Your Own Neural Network

Neural Network Overview

- Neural networks attempt to mimic the action of neurons in a brain
- Applications generally involve predicting the output from some input or classification (separate populations in some parameter space)
- Some uses:
 - Character / image recognition
 - Al for games (the "Go" program that beat a human)
 - Classification of data (e.g., galaxy typing)
 - Finance (stock market trends)

Neural Network Overview

- Computers are good at arithmetic but not great at pattern recognition
 - Neural nets attempt to model how neurons transmit information

Chihuahua or Muffin?

(original source unknown)

PHY 604: Computational Methods in Physics and Astrophysics II

Neural Networks

- Basic idea
 - Create a nonlinear fitting routine with free parameters
 - Train the network on data with known input and output to set the parameters
 - Trained network can be used on new inputs to predict outcome
- A linear example:
 - Inputs: $\mathbf{x} \in \mathbb{R}^n$
 - Outputs: \mathbf{z} ∈ \mathbb{R}^m
 - Neutral network is a map, $\mathbb{R}^n \to \mathbb{R}^m$ that can be expressed as a matrix, **A**
 - z = Ax
 - A is an m × n matrix
 - Given enough input, we could know all the matrix elements in A

Need for Nonlinear

A linear map cannot capture all of these input/output pairs

$$\mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \mathbf{z}^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\mathbf{x}^{(2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \mathbf{z}^{(2)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\mathbf{x}^{(3)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \mathbf{z}^{(3)} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

We need to find A such that

$$\mathbf{z}^{(1)} = \mathbf{A}\mathbf{x}^{(1)}$$
 $\mathbf{z}^{(2)} = \mathbf{A}\mathbf{x}^{(2)}$
 $\mathbf{z}^{(3)} = \mathbf{A}\mathbf{x}^{(3)}$

We cannot satisfy all 3 constraints with a linear model

Neural Network Overview

Some nomenclature:

- Neural networks are divided into layers
 - There is always an input layer—it doesn't do any processing—just accepts the input
 - There is always an output layer
- Within a layer, there are neurons or nodes
 - For input, there will be one node for each input variable
- Every node in the first layer connects to every node in the next layer
 - The weight associated with the connection can vary—these are the matrix elements
- In this example, the processing is done in layer 2 (output)

Neural Network Overview

- When you train a neural network, you are adjusting the weights connecting the nodes
- Some connections may have zero weight
- This mimics nature—a single neuron can connect to several (or lots) of other neurons

Nonlinear Model

• We'll use a nonlinear function, g(p), that acts on a vector:

$$g(\mathbf{x}) = \begin{pmatrix} g(x_0) \\ g(x_1) \\ \vdots \\ g(x_{n-1}) \end{pmatrix}$$

- then z = g(A x)
- For previous example, $g(p) = p^2$ would fit all data
- New procedure: set the entries of A via training, using a simple, nonlinear, g(p) that fits our training data
- From the graphical representation, the nonlinear function is applied on the output layer

Nonlinear Model

- Again, this mirrors biology
 - Neurons don't act linearly
 - There is a threshold that needs to be reached before a neuron "fires"
- A step function would work, but we want something differentiable
- There are a lot of different choices in the literature

Sigmoid Function

• Common choice: sigmoid function

$$g(p) = \frac{1}{1 + e^{-\alpha p}}$$

• Note, all outputs are scaled to be $z_i \in (0, 1)$

Sigmoid Function

- There seem to be differing opinions on α
 - Using $\alpha = 1$ seems to work well—this is what we'll do
 - Perhaps scale inputs to be in (0, 1]
 - Note, we don't want inputs to be 0, because they cancel out weights
 - Franklin: there is a narrow range of nonlinearity—pick α so that our inputs fall in that range
 - Elements of A are O(1)
 - p = A x is O(n max{|x|})
 - Choose:

$$\alpha = \frac{10}{n \max\{|x_i|\}}$$

Scaling Output

- Note that since the sigmoid maps all output to (0, 1), we need to make sure that the output in our training set is likewise mapped to (0, 1)
 - If the data doesn't already fall in (0, 1), we can just use a linear transformation:

$$\tilde{x} = 0.9 \, \frac{x - \min x_i}{\Delta x} + 0.05$$

• here, Δx is the largest possible range of x_i in the inputs

Actually, (0, 1] works fine—we just need to avoid a 0, since that cancels out weights in the matrices

Implementation

- Basic operation
 - Train the model with known input/output to get all A_{ij}
 - Use z = g(A x) to get output for a new input x
- Training:
 - We have T pairs $(\mathbf{x}^k, \mathbf{y}^k)$ for k = 1, ..., T
 - Important: remember that our y's have to be scaled to be in (0, 1), so they are in the same range that our function g(p) maps to
 - We require that $g(\mathbf{A} \mathbf{x}^k) = \mathbf{y}^k$ for all k
 - Recall, that g(p) is a scalar function that works element-by-element:

$$z_i = g([\mathbf{A}\mathbf{x}]_i) = g\left(\left[\sum_j A_{ij}x_j\right]\right)$$

Implementation

- Training (cont.)
 - We find the elements of A
 - This can be expressed as a minimization problem, where we alter the matrix elements to achieve this agreement
 - There may not be a unique set of A_{ij} , so we will loop randomly over all training data multiple times to optimize **A**

$$f(A_{ij}) = \|g(\mathbf{A}\mathbf{x}^k) - \mathbf{y}^k\|^2$$

- This looks like a least-squares minimization
- The function we minimize is called the cost function
 - There are other choices than the square of the error

Implementation

Minimization

- A common technique for minimization is gradient descent (sometimes called steepest descent)
 - This looks at the local derivative of the function f with respect to the parameters A_{ij} and moves a small distance downhill, and iterates...
- We'll also compare to an external library for minimization

Caveats

- When you minimize with one set of training data, there is no guarantee that you are still minimized with respect to the previous sets
- In practice, you feed the training data multiple times, in random order, to the minimizer—each pass is called an epoch

- Steepest descent minimization
 - Start at a point x₀ and evaluate the gradient
 - Move downhill by following the gradient by some amount η
 - Correct our initial guess and iterate

$$\mathbf{x} \leftarrow \mathbf{x} - \eta \frac{\partial u}{\partial \mathbf{x}}$$

- Need to choose the amount to move each iteration
 - Sometimes we instead define a unit vector in the direction of the local gradient, and then η represents the distance to travel in that direction
- You can think about this as what happens if you put a marble on a surface—it rolls to a minimum
 - May not be the global minimum—we can get stuck in a local minimum

Example: Rosenbrock (banana) function

$$f(x,y) = (a-x)^2 + b(y-x^2)^2$$

- This is a hard problem for optimization
- Global minimum is at (a, a²)

Note: this is the log of the function plotted

code: steepest_descent.py

PHY 604: Computational Methods in Physics and Astrophysics II

- Minimization with gradient descent is very sensitive to choice of η
 - Too large and you may shoot off far from the minimum
 - Too small and you do a lot of extra work

PHY 604: Computational Methods in Physics and Astrophysics II

• We'll also use the minimization function built into scipy.optimize

PHY 604: Computational Methods in Physics and Astrophysics II

code: scipy_optimize.py

Neural Net Minimization

For our function,

$$f(A_{ij}) = \|g(\mathbf{A}\mathbf{x}^k) - \mathbf{y}^k\|^2$$

Note, this definition is for a single training pair, (xk, yk)

$$(\mathbf{x}^k, \mathbf{y}^k) = (\{x_1^k, x_2^k, \dots, x_n^k\}, \{y_1^k, y_2^k, \dots, y_m^k\})$$

Our update would be

$$A_{pq} = A_{pq} - \eta \frac{\partial f}{\partial A_{pq}}$$

where

$$f(A_{ij}) = \sum_{i=1}^{m} \left[g\left(\sum_{j=1}^{n} A_{ij} x_j\right) - y_i \right]^2$$

Neural Net Minimization

Working out the derivative:

$$\frac{\partial f}{\partial A_{pq}} = 2(z_p - y_p)\alpha z_p (1 - z_p)x_q$$

- We could then use steepest descent, looping over the matrix elements and doing the minimization on them one by one, iterating until we converge
 - Instead, we just do one push "downhill" following the gradient for a single training set and then move to the next.
 - η is often called the *learning rate*
- Gradient descent is often used for neural nets because it only requires the first derivative
 - Newton's method would require the second derivatives (Hessian matrix)

Neural Net Minimization

- Recall,
 - A is m × n matrix
 - x is n \times 1 vector
 - y (and hence z) is m × 1 vector
- We can write our derivative as:

$$\frac{\partial f}{\partial \mathbf{A}} = \underbrace{2(\mathbf{z} - \mathbf{y}) \circ \alpha \mathbf{z} \circ (1 - \mathbf{z})}_{m \times 1} \cdot \underbrace{\mathbf{x}^{\mathsf{T}}}_{1 \times n}$$

Then the correction to our matrix is:

$$\Delta \mathbf{A} = -2\eta \left(\mathbf{z} - \mathbf{y} \right) \circ \alpha \mathbf{z} \circ (1 - \mathbf{z}) \cdot \mathbf{x}^{\mathsf{T}}$$
$$\mathbf{A} \leftarrow \mathbf{A} + \Delta \mathbf{A}$$

Here, **a** • **b** is an element-wise product

Initialization

- A common choice for initializing A is to set the elements to random numbers in [-1, 1]
 - It is suggested (see, e.g., Rashid) that a better choice is initializing the elements to Gaussian normal random numbers with width

$$\mu = \frac{1}{\sqrt{n}}$$

- This should be coupled with $\alpha = 1$
- The initialization sets the starting point in the minimization, so different realizations can converge to different (local) minima

- Here's a simple example
 - Given an input vector of 10 numbers drawn from a sample, set the output to the last element of the input
 - Draw from: [0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95]
 - Example input and output:
 - Input: [0.15, 0.35, 0.65, 0.45, 0.05, 0.15, 0.75, 0.35, 0.25, 0.85]
 - Output: [0.85]
 - We want to train a neural net on a bunch of input/output pairs and then see if it can predict the correct output given some new input vectors
 - This type of example seems to be a very common intro example
 - We'll restrict the output of the network to be the closest member of the set

After training, our model does an okay job at recognizing the trained data

PHY 604: Computational Methods in Physics and Astrophysics II

code: last_num.py

And about 45% success on data we've never seen before

The matrix A has elements:

```
[[-0.64781066 -0.5222319 -0.3895293 -0.56014527 -0.51573424 -0.7674345 -0.29920656 -0.48140874 -0.61986531 4.84708543]]
```

Notice that the last element is by far the largest—as expected

 We can add more more parameters by another layer of nodes/neurons

- Hidden layers sit between the input and output
- For hidden layer of dimension k:
 - Inputs: $\mathbf{x} \in \mathbb{R}^n$
 - Outputs: \mathbf{z} ∈ \mathbb{R}^{m}
 - A is an m × k matrix
 - **B** is an $k \times n$ matrix
 - The product **AB** is m × n, as we had before
- Universal approximation theorem: single layer network can represent any continuous function
- From now on, we will not use an α , so the sigmoid functions are the same in each layer.

We transform the input in two steps:

$$\tilde{\mathbf{z}} = g(\mathbf{B}\mathbf{x})$$

$$\mathbf{z} = g(\mathbf{A}\tilde{\mathbf{z}})$$

- Note: Franklin shifts the result of the first step by subtracting ½
 - Argues that g(), maps into (0, 1); subtracting ½ to get it into (-½, ½)
 - This is unnecessary: A will have positive and negative entries, so the input to the next sigmoid will already span the nonlinear transition

Graphically this appears as:

Now we minimize:

$$f(A_{ls}, B_{ij}) = \sum_{l=1}^{m} (z_l - y_l)^2$$

$$\tilde{z}_i = g\left(\sum_{j=1}^{n} B_{ij} x_j\right)$$

$$z_l = g\left(\sum_{s=1}^{k} A_{ls} \tilde{z}_s\right)$$

Minimization

- We need to do the minimization now for both sets of weights (matricies)
- In practice, we do them one at a time, with each seeing the result from its layer
 - This process is also called backpropagation in neural networks—we are using the errors at the end to change the weights that came earlier in the network

Backpropagation

- In the evaluation step, we progress though the neural network in a forward direction: input layer → hidden layer → output layer
- Backpropagation is the process of taking the errors that we compute at the output layer and moving them backwards to the hidden layer

Gradient Descent

- We can do our gradient descent on A and B separately now
 - This is the strength of backpropagation and gradient descent vs. some "canned" minimization routine—we are not optimizing the entire system all together
- Differentiating our error and lots of chain rule gives:

$$\Delta A = -2\eta \, \mathbf{e} \circ \mathbf{z} \circ (1 - \mathbf{z}) \cdot \tilde{\mathbf{z}}^{\mathsf{T}}$$
$$\Delta B = -2\eta \, \tilde{\mathbf{e}} \circ \tilde{\mathbf{z}} \circ (1 - \tilde{\mathbf{z}}) \cdot \mathbf{x}^{\mathsf{T}}$$

With

Note: this is a single dot product, the combination of vectors on the left are multiplied element-byelement (the Hadamard product)

$$\tilde{\mathbf{e}} = \mathbf{A}^{\mathsf{T}} \mathbf{e} \circ \mathbf{z} \circ (1 - \mathbf{z}) \approx \mathbf{A}^{\mathsf{T}} \mathbf{e}$$

This approximation seems to be commonly made and supposedly doesn't affect convergence much

- Usually only a single hidden layer is needed
- In general, you want fewer nodes in your hidden layer than in your input layer
 - n > k > m should be reasonable
- Interactive exploration of hidden layers:
 - http://playground.tensorflow.org

Signal Analysis

- Example (from Franklin):
 - We are given a noisy signal that we expect to lie in one of 4 frequency bands, f = {1, 2, 3, 4}.
 - The clean signal should be:

$$s = \cos(2\pi f t)$$

We are given n points of the form

$$x_i = \cos(2\pi f t) + 5r_i$$

- Here, r_i is a random number in [-1, 1]
- The noise is much higher amplitude than the signal
- We'll take a different approach from Franklin:
 - Our output will have m = 4, with a 1 in the position corresponding to the frequency, e.g., 1 Hz: [1, 0, 0, 0]; 2 Hz: [0, 1, 0, 0]
- We'll train a neural net on known pairs of input-output and then test with unknown inputs—can we recover the frequency?

• Here's a single frequency sample data set

- We use 5 epochs
- Learning rate, $\eta = 0.05$

- Hidden layer: k = 2
 - Here's how we do on the trained data (1000 random data sets)

This is Δf —0 means that we got the frequency right

- Hidden layer: k = 2
 - And now on data we've never seen

• Hidden layer: k = 4

• Hidden layer: k = 8

Hidden layer: k = 32

Notice that we are getting almost 100% of the training set right and over 80% of data we've never seen correct

Is a Neural Net the Best Choice?

- We could imagine doing this same example using an FFT
 - Simply take the FFT of the test signal and return the frequency corresponding to the maximum power

Here's the FFT of a sample dataset. Lots of high-frequency noise, but one of our frequencies appears to dominate

Is a Neural Net the Best Choice?

- We could imagine doing this same example using an FFT
 - The FFT gets the right frequency almost 50% of the time
 - But a single frequency off is not the next dominant result

PHY 604: Computational Methods in Physics and Astrophysics II

Image Classification

- We'll try to recognize a digit (0 9) from an image of a handwritten digit.
 - MNIST dataset (http://yann.lecun.com/exdb/mnist/)
 - Popular dataset for testing out maching learning techniques
 - Training set is 60,000 images
 - Approximately 250 different writers
 - Test set is 10,000 images
 - Correct answer is know for both sets so we can test our performance
- Image details:
 - 28 × 28 pixels, grayscale (0 255 intensity)
- The best learning algorithms can get accuracy > 99%

Image Classification

- Neural network characteristics:
 - Input layer will be 784 nodes
 - One for each pixel in the input image
 - Output layer will be 10 nodes
 - An array with an entry for each possible digit
 - "3" would be represented as:
 [0, 0, 0, 1, 0, 0, 0, 0, 0]
 - We'll start with a hidden layer size of 100
- We'll train on the training set, using up to 60000 images
 - Rescale the input to be in [0.01, 1]
- We'll test on the test set of 10000 images

First digit MNIST in the training set

Image Classification

- Default configuration:
 - The full training set (60000 images)
 - Hidden layer of 100 nodes
 - 5 epochs of training
 - Learning rate of 0.1

code: char_recognition.py

We achieve 95 – 96% accuracy

PHY 604: Computational Methods in Physics and Astrophysics II

Some Image Classification Failures

Some Image Classification Failures

Some Image Classification Failures

Image Classification Weights

- Weights (matrix elements of A and B) seem symmetric about 0
 - Interestingly, with more training, the width of the distribution seems to grow

Effect of Number of Epochs

 When we use the full training set (60000 images) the number of epochs (passes through the training data) doesn't seem to matter much

Effect of Training Set Size

No surprise: the larger the training set, the better we do

Effect of Hidden Layer Size

Also not unexpected: the larger the hidden layer the better we do

Effect of Learning Rate

A smaller learning rate seems to do better

Deep Learning

- A deep neural network is one with many hidden layers (certainly > 1 hidden)
 - Very nice discussion:
 https://stats.stackexchange.com/questions/182734/what-is-the-difference-between-a-neural-network-and-a-deep-neural-network
- There are other learning algorithms aside from neural networks there's a link to a text on the class website