12. előadás

TÖBBSZÖRÖS INTEGRÁLOK 1.

Az egyváltozós analízisben hangsúlyoztuk, hogy a matematikai alkalmazások igen fontos fejezete az *integrálszámítás*. Bevezettük a határozott integrál (vagy Riemann-integrál) fogalmát, megismertük a legfontosabb tulajdonságait, és bemutattuk számos gyakorlati alkalmazását. A továbbiakban a Riemann-integrál többváltozós függvényekre való kiterjesztéséről lesz szó.

Fontos megjegyezni, hogy a valós-valós függvények körében megismert integrálfogalmat többféle módon lehet általánosítani. Sőt: különböző (pl. geometriai, fizikai és egyéb) problémák vizsgálata szükségessé is tette több integrálfogalom bevezetését. Ilyen pl. egy kétváltozós függvény grafikonja alatti térrész térfogatának a problémája, ami az $\mathbb{R}^n \to \mathbb{R}$ függvények többszörös integráljának a fogalmához vezet. A továbbiakban csak a többszörös integrálokról lesz szó.

A többszörös integrálok értelmezése n-dimenziós intervallumokon

Szeretnénk ara emlékeztetni, hogy a Riemann-integrál bevezetését az motiválta, hogy ki akartunk számítani függvények görbe alatti területét. Abból az Arkhimédész-óta ismert, egyébként elég természetes ötletből indultunk ki, hogy a szóban forgó (görbe vonallal határolt) síkidom területét téglalapok területeinek az összegével közelítsük. Ebből kiindulva jutottunk el a Riemann-integrálhatóság fogalmához.

A többszörös integrál bevezetését hasonló geometriai, illetve fizikai problémák motiválják. Példaként tekintsünk egy kétváltozós, valós értékű pozitív függvényt, amelyik az egyszerűség végett például egy, a koordináta-tengelyekkel párhuzamos oldalú téglalapon van értelmezve. A függvény grafikonja alatti térrész térfogatát téglatestek térfogatainak az összegével lehet közelíteni.

Látni fogjuk, hogy az egyváltozós Riemann-integrál fogalmának bevezetésénél követett út szó szerint átvihető $\mathbb{R}^n \to \mathbb{R}$ függvényekre, ezért a többszörös integrál értelmezése az egyváltozós Riemann-integrál definíciójának közvetlen általánosításaként adódik.

Induljunk ki a legegyszerűbb \mathbb{R}^n -beli halmazokból, az ún. n-dimenziós intervallumokból: Egy n-dimenziós intervallum (vagy más szóval n-dimenziós tégla) az

(1)
$$I := [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n \qquad (n \in \mathbb{N}^+)$$

Descartes-szorzattal értelmezett halmaz, ahol $a_k, b_k \in \mathbb{R}, a_k < b_k \ (k = 1, 2, ..., n)$. Az

$$|I| := \mu(I) := \prod_{k=1}^{n} (b_k - a_k)$$

számot az I intervallum $m\acute{e}rt\acute{e}k\acute{e}nek$ nevezzük.

- Ha n=1, akkor a "szokásos" (korlátos és zárt) \mathbb{R} -beli intervallumot kapunk, amelynek mértéke az $|I|=b_1-a_1$ intervallum hossza.
- Ha n=2, akkor a koordináta-síkon a koordináta-tengelyekkel párhuzamos oldalú téglalapot kapunk, amelynek mértéke az $|I|=(b_1-a_1)\cdot(b_2-a_2)$ téglalap területe.

• Ha n=3, akkor a térbeli derékszögű koordináta-rendszerben a koordináta-síkokkal párhuzamos oldallapú téglatestet kapunk, amelynek mértéke az $|I| = (b_1 - a_1) \cdot (b_2 - a_2) \cdot (b_3 - a_3)$ téglatest térfogata.

Emlékeztetünk arra, hogy egy korlátos és zárt $[a,b] \subset \mathbb{R}$ intervallum felosztásán olyan $\tau \subset [a,b]$ véges halmazt értettünk, amelyre $a,b \in \tau$, azaz

$$\tau := \{ a = x_0 < x_1 < x_2 < \dots < x_m = b \},\$$

ahol m egy adott természetes szám. Az intervallum felosztásainak a halmazát az $\mathcal{F}[a,b]$ szimbólummal jelöltük. A többdimenziós intervallum felosztásának az értelmezéséhez vegyük észre, hogy a fenti osztópontokkal megadott felosztást az $I_j := [x_j, x_{j+1}]$ intervallumok (j = 0, 1, 2, ..., m-1) halmazaként is értelmezhetjük:

$$\tau = \{I_j = [x_j, x_{j+1}] \mid j = 0, 1, 2, \dots, m-1\}.$$

Legyen ezek után egy $k=1,2,\ldots,n$ index esetén az $[a_k,b_k]$ intervallum egy felosztása

$$\tau_k = \left\{ x_{k,0} = a_k < x_{k,1} < x_{k,2} < \dots < x_{k,m_k} = b_k \right\} =$$

$$= \left\{ I_{k,j} = [x_{k,j}, x_{k,j+1}] \mid j = 0, 1, \dots, m_k - 1 \right\}.$$

(A felosztás tehát $m_k + 1$ osztópontot, illetve m_k intervallumot tartalmaz.) Ekkor az (1) ndimenziós I intervallum egy **felosztásán** a

$$\tau := \tau_1 \times \tau_2 \times \cdots \times \tau_n \subset I$$

halmazt értjük, a felosztások halmazát a $\mathcal{F}(I)$ szimbólummal jelöljük. A τ halmaz elemei tehát az

$$I_{1,j_1} \times I_{2,j_2} \times \cdots \times I_{n,j_n}$$

n-dimenziós intervallumok, ahol $0 \le j_l \le m_l - 1$ (l = 1, 2, ..., n).

A fentieket az n=2 esetben az alábbi ábra szemlélteti.

Egyszerűen igazolható, hogy

$$I = \bigcup_{J \in \tau} J, \qquad \mu(I) = \sum_{J \in \tau} \mu(J).$$

Az egyváltozós esethez hasonlóan értelmezzük az alsó-, illetve a felső közelítő összeg fogalmát. Legyen τ az n-dimenziós I intervallum egy felosztása és $f:I\to\mathbb{R}$ korlátos függvény. Ekkor

$$s(f,\tau) := \sum_{J \in \tau} \inf_{x \in J} f(x) \cdot \mu(J)$$

az f függvény τ felosztáshoz tartozó **alsó közelítő összege**,

$$S(f,\tau) := \sum_{J \in \tau} \sup_{x \in J} f(x) \cdot \mu(J)$$

az f függvény τ felosztáshoz tartozó **felső közelítő összege**. Mivel tetszőleges $\tau \in \mathcal{F}(I)$ felosztás esetén

$$\inf_{x \in I} f(x) \cdot \mu(I) \le s(f, \tau) \le S(f, \tau) \le \sup_{x \in I} f(x) \cdot \mu(I),$$

ezért minden korlátos f függvényre az

$$\{s(f,\tau) \mid \tau \in \mathcal{F}(I)\}$$
 és az $\{S(f,\tau) \mid \tau \in \mathcal{F}(I)\}$

halmazok korlátosak. Az

$$I_*(f) := \sup \{ s(f, \tau) \mid \tau \in \mathcal{F}(I) \}$$

valós számot az f függvény **Darboux-féle alsó integráljának**, az

$$I^*(f) := \inf \{ S(f, \tau) \mid \tau \in \mathcal{F}(I) \}$$

valós számot pedig az f függvény Darboux-féle felső integráljának nevezzük.

1. Definíció. Akkor mondjuk, hogy a korlátos $f: I \to \mathbb{R}$ függvény Riemann-integrálható (röviden integrálható) az I intervallumon (jelben $f \in R(I)$), ha $I_*(f) = I^*(f)$. A közös $I_*(f) = I^*(f)$ számot az f függvény I intervallumon vett Riemann-integráljának (röviden integráljának) nevezzük, és az alábbi szimbólumok valamelyikével jelöljük:

$$\int_{I} f, \quad \int_{I} f(x) dx, \quad \int \cdots \int_{I} f(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{n}.$$

Jegyezzük meg, hogy tetszőleges $f: I \to \mathbb{R}$ korlátos függvényre $I_*(f)$ és $I^*(f)$ létezik, mindegyik véges, továbbá bármely két $\tau, \sigma \in \mathcal{F}(I)$ felosztásra $s(f, \tau) \leq S(f, \sigma)$, következésképpen

$$I_*(f) \le I^*(f).$$

Az egyváltozós esethez hasonlóan egyszerű példát lehet megadni olyan korlátos f függvényre, amelyre az $I_*(f) < I^*(f)$, ami azt jelenti, hogy a függvény nem integrálható.

Példa. Legyen $f:[0,1]\times[0,1]\to\mathbb{R}$,

$$f(x,y) := \begin{cases} 0, & \text{ha } x \text{ \'es } y \text{ racion\'alis}, \\ 1, & \text{k\"ul\"onben}. \end{cases}$$

Ekkor $I_*(f) = 0$ és $I^*(f) = 1$, ezért az f függvény nem integrálható a $[0,1] \times [0,1] \subset \mathbb{R}^2$ intervallumon.

A többszörös integrál tulajdonságai

A továbbiakban felsorolt állítások azt fejezik ki, hogy a Riemann-integrálhatóság, illetve maga a Riemann-integrál a többváltozós esetben is rendelkezik az egyváltozós esetben megismert tulajdonságokkal. Az állításokat nem fogjuk bizonyítani.

Először azt fogalmazzuk meg, hogy az említett fogalmak "érzéketlenek" a függvény véges halmazon való "viselkedésére". Más szóval, ha egy Riemann-integrálható függvényt egy véges halmazon (tetszőlegesen) megváltoztatunk, akkor az így kapott "új" függvény is Riemannintegrálható lesz, és a (Riemann-)integrálja ugyanaz marad, mint a kiindulási függvényé. Tehát, ha egy intervallumon értelmezett két (valós) értékű függvény legfeljebb véges sok helven különbözik egymástól, akkor vagy mindkettő integrálható (és ekkor az integráljuk megegyezik), vagy egyikük sem integrálható.

1. Tétel. Tekintsük az $I \subset \mathbb{R}^n$ $(n \in \mathbb{N}^+)$ intervallumon értelmezett $f, g: I \to \mathbb{R}$ korlátos függvényeket. Tegyük fel, hogy az $A:=\left\{x \in I \mid f(x) \neq g(x)\right\}$ halmaz véges. Ekkor

- a) $f \in R(I) \iff g \in R(I),$ b) $ha \ f \in R(I), \ akkor \ \int_I f = \int_I g$

A következő tételben kiderül, hogy a folytonosság "erősebb" tulajdonság a Riemann-integrálhatóságnál.

2. Tétel. Tegyük fel, hogy az $I \subset \mathbb{R}^n$ $(n \in \mathbb{N}^+)$ intervallumon értelmezett $f: I \to \mathbb{R}$ függvény folytonos. Ekkor $f \in R(I)$, azaz $C(I) \subseteq R(I)$.

Az állítás megfordítása nem igaz. Az n=1 esetben például az

$$f(x) := \begin{cases} 1, & \text{ha } 0 < x \le 1 \\ 0, & \text{ha } x = 0. \end{cases}$$

függvényre $f \in R[0,1]$, de $f \notin C[0,1]$.

Megjegyzés. Az előző tételekből következik, hogy a véges sok szakadási hellyel rendelkező korlátos függvények integrálhatók. Kérdés, hogy a szakadási helyek számát valamilyen értelemben lehet-e növelni úgy, hogy a függvény továbbra is integrálható maradjon. Kiderül, hogy egy függvény Riemann-integrálhatósága lényegében azon múlik, hogy a függvény szakadási helyeinek a halmaza mennyire "kicsi".

Precízen: Azt mondjuk, hogy az $A \subset \mathbb{R}^n$ halmaz **nullmértékű**, ha tetszőleges $\varepsilon > 0$ számhoz megadható $I_k \subset \mathbb{R}^n \ (k \in \mathbb{N}^+)$ n-dimenziós intervallumoknak egy olyan sorozata, hogy

$$A \subseteq \bigcup_{k=1}^{+\infty} I_k$$
 és $\sum_{k=1}^{+\infty} |I_k| < \varepsilon$.

A Riemann-integrálhatóság Lebesque-kritériuma: Tegyük fel, hogy az $I \subset \mathbb{R}^n$ n-dimenziós intervallumon értelmezett $f: I \to \mathbb{R}$ függvény korlátos, és legyen az f szakadási helyeinek a halmaza

$$\mathcal{A} := \left\{ x \in I \mid f \notin C\{x\} \right\}.$$

Ekkor $f \in R(I)$ azzal ekvivalens, hogy az A halmaz nullmértékű.

Az integrálás és bizonyos függvényműveletek kapcsolatára vonatkozik az alábbi állítás.

- **3. Tétel.** Legyen $I \subset \mathbb{R}^n$ $(n \in \mathbb{N}^+)$ egy intervallum, és tegyük fel, hogy $f, g \in R(I)$. Ekkor
 - a) minden $\alpha, \beta \in \mathbb{R}$ esetén

$$\alpha f + \beta g \in R(I)$$
 és $\int_{I} (\alpha f + \beta g) = \alpha \int_{I} f + \beta \int_{I} g$,

- b) $f \cdot g \in R(I)$,
- c) ha valamilyen m > 0 állandóval fennáll az

$$|g(x)| \ge m > 0 \quad (x \in I)$$

egyenlőtlenség, akkor az $\frac{f}{g}$ függvény is integrálható az I intervallumon.

A többváltozós Riemann-integrál is rendelkezik az egydimenziós esetben megismert monotonitási tulajdonsággal. Ezt fejezi ki az alábbi állítás.

- **4. Tétel.** Tegyük fel, hogy $f \in R(I)$, ahol I egy intervallum. Ekkor
 - a) ha $g \in R(I)$, és $f(x) \le g(x)$ $(x \in I)$, akkor $\int_I f \le \int_I g$,
 - b) $|f| \in R(I)$, és $\left| \int_{I} f \right| \leq \int_{I} |f|$.

Szukcesszív integrálás

Egy n-dimenziós intervallumon értelmezett függvény integráljának a kiszámítását vissza lehet vezetni valós-valós függvények egymásra következő (szukcesszív) integráljának a kiszámolására. A tételt n=2-re fogjuk kimondani, az ún. **kettős integrálokra**, de hasonlóan általánosítható n>2-re is.

A továbbiakban feltesszük, hogy adott egy

$$I := I_1 \times I_2 := [a, b] \times [c, d] \subset \mathbb{R}^2$$

kétdimenziós intervallum és egy $f:I\to\mathbb{R}$ korlátos függvény.

Kétváltozós függvény viselkedésének az áttekintését megkönnyítheti, ha az egyik változóját rögzítjük, és a függvényt a másik változó függvényének fogjuk fel. Az így kapott függvények az eredeti függvény ún. szekciófüggvényei.

Ha $f: I_1 \times I_2 \to \mathbb{R}$ adott kétváltozós függvény, akkor tetszőlegesen rögzített $x \in I_1$ esetén az

$$f_x: I_2 \to \mathbb{R}, \quad f_x(y) := f(x,y) \qquad (y \in I_2);$$

tetszőlegesen rögzített $y \in I_2$ esetén az

$$f^y: I_1 \to \mathbb{R}, \quad f^y(x) := f(x, y) \qquad (x \in I_1)$$

az f függvény szekciófüggvényei.

5. Tétel (Fubini-tétel). Legyen $I = [a, b] \times [c, d]$ és $f: I \to \mathbb{R}$. Tegyük fel, hogy

a) $f \in R(I)$, b) $\forall x \in [a, b] : f_x \in R[c, d]$, c) $\forall y \in [c, d] : f^y \in R[a, b]$.

Ekkor

(2)
$$\iint\limits_I f(x,y) \, dx \, dy = \int\limits_a^b \left(\int\limits_c^d f(x,y) \, dy \right) dx = \int\limits_c^d \left(\int\limits_a^b f(x,y) \, dx \right) dy.$$

Bizonyítás. A tételt nem bizonyítjuk.

Megjegyzés.

- 1. Ha az f függvény folytonos az I téglalapon, akkor $f \in R(I)$, illetve az f_x $(x \in [a,b])$ és az f^y ($y \in [c,d]$) szekciófüggvények is folytonosak, következésképpen Riemann-integrálhatóak. Így a tétel feltételei teljesülnek. Ebben az esetben az állítás egyszerűen bebizonyítható. Ennek a fontos speciális esetnek a felfedezése Leonhard Euler (1707– 1783) érdeme. Euler eredményét Guido Fubini (1879–1943) általánosította integrálható függvényekre. Az "igazi" Fubini-tétel ennél sokkal általánosabb érvényű az ún. Lebesgueintegrálható, ill. az absztrakt integrálható függvények elméletében.
- 2. Formálisan megfogalmazva tehát a fenti feltételek teljesülése esetén egy kétváltozós függvény integrálját kiszámíthatjuk úgy is, hogy az egyik változót először (tetszőlegesen) rögzítjük, és a másik változó szerint integrálunk, majd az így kapott (a rögzített változótól függő) integrált integráljuk. (Innen ered a szukcesszív (egymás utáni) jelző.) Az (2) egyenlőség azt is állítja, hogy az integrálást bármelyik változóval kezdhetjük, tehát az integrálás sorrendje felcserélhető.

Példa. Számítsuk ki a következő kettős integrált!

$$\iint_{I} (x^{3}y + xy^{2} + 1) dx dy \qquad (I := [0, 1] \times [1, 2]).$$

Az integrálandó $f(x,y) := x^3y + xy^2 + 1$ $((x,y) \in \mathbb{R}^2)$ függvény folytonos I-n, ezért $f \in R(I)$. A Fubini-tétele alapján mindegy, hogy milyen sorrendben integrálunk, az eredmény ugyanaz lesz. Ezzel kétféle módon tudjuk kiszámítani az integrált. Ha először az $x \in [0,1]$ változót (tetszőlegesen) rögzítjük, és az y változó szerint integrálunk, akkor

$$\begin{split} \iint\limits_{I} \left(x^{3}y + xy^{2} + 1\right) dx \, dy &= \int\limits_{0}^{1} \left(\int\limits_{1}^{2} \left(x^{3}y + xy^{2} + 1\right) dy\right) dx = \int\limits_{0}^{1} \left[\frac{x^{3}y^{2}}{2} + \frac{xy^{3}}{3} + y\right]_{y=1}^{y=2} dx = \\ &= \int\limits_{0}^{1} \left(\left(\frac{x^{3} \cdot 2^{2}}{2} + \frac{x \cdot 2^{3}}{3} + 2\right) - \left(\frac{x^{3} \cdot 1^{2}}{2} + \frac{x \cdot 1^{3}}{3} + 1\right)\right) dx = \int\limits_{0}^{1} \left(\frac{3x^{3}}{2} + \frac{7x}{3} + 1\right) dx = \\ &= \left[\frac{3x^{4}}{8} + \frac{7x^{2}}{6} + x\right]_{x=0}^{x=1} = \left(\frac{3}{8} + \frac{7}{6} + 1\right) - 0 = \frac{61}{24}. \end{split}$$

Másképpen, ha először az $y \in [1,2]$ változót (tetszőlegesen) rögzítjük, és az x változó szerint integrálunk, akkor

$$\iint_{I} (x^{3}y + xy^{2} + 1) dx dy = \int_{1}^{2} \left(\int_{0}^{1} (x^{3}y + xy^{2} + 1) dx \right) dy = \int_{1}^{2} \left[\frac{x^{4}y}{4} + \frac{x^{2}y^{2}}{2} + x \right]_{x=0}^{x=1} dy =$$

$$= \int_{1}^{2} \left(\left(\frac{1^{4} \cdot y}{4} + \frac{1^{2} \cdot y^{2}}{2} + 1 \right) - 0 \right) dy = \int_{1}^{2} \left(\frac{y}{4} + \frac{y^{2}}{2} + 1 \right) dy = \left[\frac{y^{2}}{8} + \frac{y^{3}}{6} + y \right]_{y=1}^{y=2} =$$

$$= \left(\frac{2^{2}}{8} + \frac{2^{3}}{6} + 2 \right) - \left(\frac{1^{2}}{8} + \frac{1^{3}}{6} + 1 \right) = \frac{61}{24}.$$

Megjegyzés. A szukcesszív integrálás tétele azt állítja, hogy (a tétel feltételeinek a teljesülése esetén) mindegy, hogy melyik sorrendben integrálunk, az eredmény ugyanaz lesz. Ez azonban nem jelenti azt, hogy a kétféle sorrendben történő kiszámolás során ugyanolyan technikai jellegű nehézségek lépnek fel.

Példa. Számítsuk ki a következő kettős integrált!

$$\iint_{I} x \cdot \sin(xy) \, dx \, dy \qquad \left(I := [1, 3] \times [0, \frac{\pi}{2}]\right).$$

Az integrálandó $f(x,y):=x\cdot\sin(xy)$ $\left((x,y)\in\mathbb{R}^2\right)$ függvény folytonos I-n, ezért $f\in R(I)$. A Fubini-tétele alapján mindegy, hogy milyen sorrendben integrálunk, az eredmény ugyanaz lesz. Ha először az $x\in[1,3]$ változót (tetszőlegesen) rögzítjük, és az y változó szerint integrálunk, akkor az

(*)
$$\int_{1}^{3} \left(\int_{0}^{\pi/2} x \cdot \sin(xy) \, dy \right) dx$$

egyváltozós integrálokat kell egymás után kiszámolni.

Ha először az $y \in \left[0, \frac{\pi}{2}\right]$ változót (tetszőlegesen) rögzítjük, és az x változó szerint integrálunk, akkor pedig azt kapjuk, hogy

$$\int_{0}^{\pi/2} \left(\int_{1}^{3} x \cdot \sin(xy) \, dx \right) dy$$

Vegyük észre azonban azt, hogy a (**) esetben először parciálisan kell integrálni, a (*) esetben pedig a belső integrált rögtön kiszámíthatjuk. Ezért a (*) alatti sorrendben integrálunk:

$$\iint_{I} x \cdot \sin(xy) \, dx \, dy = \int_{1}^{3} \left(\int_{0}^{\pi/2} x \cdot \sin(xy) \, dy \right) dx = \int_{1}^{3} \left[-\cos(xy) \right]_{y=0}^{y=\pi/2} dx = \int_{1}^{3} \left(-\cos\frac{\pi x}{2} + \cos 0 \right) dx = \int_{1}^{3} \left(-\cos\frac{\pi x}{2} + 1 \right) dx = \left[-\frac{\sin\frac{\pi x}{2}}{\frac{\pi}{2}} + x \right]_{1}^{3} = \left(-\frac{2}{\pi} \sin\frac{3\pi}{2} + 3 \right) - \left(-\frac{2}{\pi} \sin\frac{\pi}{2} + 1 \right) = 2 + \frac{4}{\pi}.$$

A többszörös integrálok értelmezése \mathbb{R}^n -beli korlátos halmazokon

Az integrálhatóság fogalma egyszerűen kiterjeszthető tetszőleges korlátos $H \subset \mathbb{R}^n$ -beli halmazokon értelmezett korlátos függvényekre. Legyen H egy ilyen halmaz és $f: H \to \mathbb{R}$ egy adott korlátos függvény. Ekkor van olyan n-dimenziós I intervallum, amelyre $H \subseteq I$. Terjesszük ki az f függvény értelmezését az I intervallumra a következőképpen:

$$\tilde{f}(x) := \begin{cases} f(x), & \text{ha } x \in H, \\ 0, & \text{ha } x \in I \setminus H. \end{cases}$$

Azt mondjuk, hogy az $f: H \to \mathbb{R}$ függvény (Riemann)-integrálható a H halmazon (jelben $f \in R(H)$), ha az $\tilde{f}: I \to \mathbb{R}$ függvény integrálható az I intervallumon. Ekkor legyen

$$\int_{H} f := \int_{I} \tilde{f}.$$

Egyszerűen belátható, hogy ez az értelmezés $f\ddot{u}ggetlen$ a H-t tartalmazó intervallum megválasztásától.

A kettős integrálok geometriai jelentései

Ha az $f \in \mathbb{R}^2 \to \mathbb{R}$ korlátos függvény integrálható a $H \subset \mathbb{R}^2$ korlátos halmazon, akkor az integrálját a korábban alkalmazott jelölésekhez hasonlóan a

$$\iint\limits_H f \quad \text{vagy az} \quad \iint\limits_H f(x,y) \, dx \, dy$$

szimbólumok valamelyikével fogjuk jelölni.

Az egyváltozós esetben már definiáltuk egy korlátos, nem negatív függvény grafikonja alatti síkidom területét. Kettős integrálokkal bármely korlátos síkidom területét is értelmezhetjük.

2. Definíció. Legyen $H \subset \mathbb{R}^2$ egy korlátos halmaz és f(x,y) := 1 $(x,y) \in H$. Azt mondjuk, hogy a H síkidomnak **van területe**, ha $f \in R(H)$, és ekkor H **területét** a

$$t(H) := \iint_{H} f = \iint_{H} 1 \, dx \, dy$$

kettős integrállal értelmezzük.

Megjegyzés. Igazolható, hogy függvények grafikonja alatti síkidomok esetén a két definíció ekvivalens.

Most arra emlékeztetünk, hogy az egyváltozós analízisben már értelmeztük forgástestek térfogatát, és annak kiszámolására egy képletet is megismertünk.

Kettős integrálok alsó- és a felső közelítő összegeinek geometriai jelentése alapján kézenfekvő bizonyos "térrészek" (pl. kétváltozós függvény grafikonja alatti tartományok) térfogatának az alábbi értelmezése.

3. Definíció. Legyen $H \subset \mathbb{R}^2$ korlátos halmaz és $f: H \to \mathbb{R}$ nemnegatív korlátos függvény. Azt mondjuk, hogy a

$$T := \left\{ (x, y, z) \mid (x, y) \in H, \quad 0 \le z \le f(x, y) \right\} \subset \mathbb{R}^3$$

"térrésznek" (hengerszerű testnek) van térfogata, ha $f \in R(H)$. Ekkor a

$$V(T) := \iint_{H} f = \iint_{H} f(x, y) dx dy$$

kettős integrált a T test térfogatának nevezzük.

Kettős integrál kiszámítása normáltartományon

Gyakran előfordul, hogy két függvény által határolt tartományon kell egy integrált kiszámítani.

Legyenek $\varphi_1, \varphi_2 : [a, b] \to \mathbb{R}$ folytonos függvények, és tegyük fel, hogy $\varphi_1(x) \le \varphi_2(x)$ minden $x \in [a, b]$ esetén. A

$$H_x := \left\{ (x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ \varphi_1(x) \le y \le \varphi_2(x) \right\}$$

halmazt a x tengelyre nézve normáltartománynak nevezzük.

Legyenek $\psi_1, \psi_2 : [c, d] \to \mathbb{R}$ folytonos függvények, és tegyük fel, hogy $\psi_1(y) \le \psi_2(y)$ minden $x \in [a, b]$ esetén. A

$$H_y := \{(x, y) \in \mathbb{R}^2 \mid c \le y \le d, \ \psi_1(y) \le x \le \psi_2(y) \}$$

halmazt a y tengelyre nézve normáltartománynak nevezzük.

Az eddigiekből egyszerűen adódnak az alábbi fontos állítások, amelyeket bizonyítás nélkül kimondunk.

6. Tétel (Integrálás H_x normáltartományon). Legyen H_x az x tengelyre nézve normáltartomány, és tegyük fel, hogy az $f: H_x \to \mathbb{R}$ függvény folytonos. Ekkor $f \in R(H_x)$ és

$$\iint_{H_x} f(x,y) dx dy = \int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy \right) dx.$$

7. Tétel (Integrálás H_y normáltartományon). Legyen H_y az y tengelyre nézve normáltartomány, és tegyük fel, hogy az $f: H_y \to \mathbb{R}$ függvény folytonos. Ekkor $f \in R(H_y)$ és

$$\iint\limits_{H_y} f(x,y) \, dx \, dy = \int\limits_{c}^{d} \left(\int\limits_{\psi_1(y)}^{\psi_2(y)} f(x,y) \, dx \right) dy.$$

Példa. Számítsuk ki a következő kettős integrált:

$$\iint\limits_{H} xy^2 \, dx \, dy,$$

ahol H az $y=x^2$ és az $y=\sqrt{x}$ egyenletű görbék által közrezárt korlátos síkrész!

Ábrázoljuk a H halmazt!

Az integrandus folytonos az egész \mathbb{R}^2 -őn, tehát a korlátos H halmazon is. Következésképpen $f \in R(H)$.

Az integrál kiszámításához először a görbék metszéspontjainak a koordinátáit határozzuk meg:

A metszéspontok tehát A(0,0) és B(1,1).

A H halmaz a x tengelyre és az y tengelyre nézve is normáltartomány, ezért mindegyik megismert képle-

tet használhatjuk. (érdemes arra is figyelni, hogy mindegyik esetben a "belső" integrálokat könnyen kiszámolhatjuk, ezért bármelyik változó szerinti integrálással kezdhetünk.)

Tekintsük a H halmazt az x tengelyre nézve normáltartománynak:

$$0 \le x \le 1, \qquad x^2 \le y \le \sqrt{x}.$$

Ekkor először y szerint kell integrálnunk. (A nyíl jelzi a "belső" integrál irányát.) Így

$$\iint_{H} xy^{2} dx dy = \int_{0}^{1} \left(\int_{x^{2}}^{\sqrt{x}} xy^{2} dy \right) dx = \int_{0}^{1} \left[x \cdot \frac{y^{3}}{3} \right]_{y=x^{2}}^{y=\sqrt{x}} dx = \frac{1}{3} \int_{0}^{1} x \cdot \left(x^{3/2} - x^{6} \right) dx = \frac{1}{3} \int_{0}^{1} \left(x^{5/2} - x^{7} \right) dx = \frac{1}{3} \cdot \left[\frac{x^{7/2}}{7/2} - \frac{x^{8}}{8} \right]_{0}^{1} = \frac{1}{3} \cdot \left(\frac{1}{7/2} - \frac{1}{8} \right) = \frac{3}{56}.$$

Tegyük fel, hogy a H integrálási tartomány az x tengelyre és az y tengelyre nézve is normáltartomány és az f függvény folytonos H-n. Ekkor a fenti tétel szerint az $\iint_H f$ kettős integrált kétféle sorrendben is kiszámíthatjuk. Az integrálás sorrendjének felcserélésénél azonban körültekintően kell eljárnunk.

P'elda. Tegyük fel, hogy $f: \mathbb{R}^2 \to \mathbb{R}$ folytonos függvény. Tekintsük a következő integrált:

$$\int_{0}^{1} \left(\int_{-\sqrt{1-y^2}}^{1-y} f(x,y) \, dx \right) \, dy \, .$$

10

Szemléltessük az integrálási tartományt! Cseréljük fel az integrálás sorrendjét!

A H-val jelölt integrálási tartomány a

$$0 \le y \le 1, \quad -\sqrt{1 - y^2} \le x \le 1 - y$$

egyenlőtlenségeknek eleget tevő $(x,y) \in \mathbb{R}^2$ pontok halmaza. Mivel H az y tengelyre nézve normáltartomány, ezért először az x változó, utána pedig az y változó szerint integrálunk. (A nyíl jelzi a belső integrálban az integrálás irányát.)

Ha a H halmazt az x tengelyre nézve normáltartománynak tekintjük, akkor először az y, utána pedig az x változó szerint kell integrálnunk. Az f függvény folytonos \mathbb{R}^2 -őn (tehát a H halmazon is), ezért az integrálás sorrendje felcserélhető. A H tartományt ebben az esetben az alábbi módon két részre bontjuk.

$$H_1: -1 \le x \le 0, \quad 0 \le y \le \sqrt{1-x^2},$$

 $H_2: \quad 0 \le x \le 1, \quad 0 \le y \le 1-x.$

Így

$$\iint_{H_1} f = \int_{-1}^{0} \left(\int_{0}^{\sqrt{1-x^2}} f(x,y) \, dy \right) \, dx, \qquad \iint_{H_2} f = \int_{0}^{1} \left(\int_{0}^{1-x} f(x,y) \, dy \right) \, dx.$$

Mivel

$$\iint\limits_{H} f = \iint\limits_{H_{1}} f + \iint\limits_{H_{2}} f,$$

ezért

$$\int_{0}^{1} \left(\int_{-\sqrt{1-y^2}}^{1-y} f(x,y) \, dx \right) \, dy = \int_{-1}^{0} \left(\int_{0}^{\sqrt{1-x^2}} f(x,y) \, dy \right) dx + \int_{0}^{1} \left(\int_{0}^{1-x} f(x,y) \, dy \right) dx.$$

Itt emlékeztetünk arra, hogy egyváltozós határozott integrálok kiszámításához bizonyos esetekben a Newton–Leibniz-formula nem használható. Ez a helyzet például akkor, amikor az integrálandó függvénynek van primitív függvénye (mert pl. folytonos), azonban a primitív függvény nem elemi függvény. Bebizonyítható, hogy ilyenek a következő függvények:

$$e^{\pm x^2} \quad (x \in \mathbb{R}), \quad \sin x^2 \quad (x \in \mathbb{R}), \quad \cos x^2 \quad (x \in \mathbb{R}),$$

$$\frac{\sin x}{x} \quad \left(x \in (0, +\infty)\right), \quad \frac{\cos x}{x} \quad \left(x \in (0, +\infty)\right), \quad \frac{e^x}{x} \quad \left(x \in (0, +\infty)\right),$$

$$\frac{1}{\ln x} \quad \left(x \in (0, +\infty)\right), \sqrt{x^3 + 1} \quad \left(x \in (0, +\infty)\right).$$

Ha egy kettős integrál kiszámolásánál ilyen függvények adódnak, akkor bizonyos esetekben az integrálás sorrendjének a felcserélése segíthet.

Példa. Számítsuk ki a

$$\iint_{H} y \sin x^{2} dx dy \qquad H := \{(x, y) \in \mathbb{R}^{2} : 0 \le y \le 1, \ y^{2} \le x \le 1\}$$

integrált!

A H-val jelölt integrálási halmaz az

$$y^2 \le x \le 1, \quad 0 \le y \le 1$$

egyenlőtlenségekkel meghatározott y tengelyre nézve normáltartomány (l. az (a) ábrát).

Ezért

$$\iint\limits_H y \sin x^2 \, dx \, dy = \int\limits_0^1 \left(\int\limits_{y^2}^1 y \sin x^2 \, dx \right) dy.$$

Ha a fenti képlet szerint először x szerint integrálunk, akkor a következő problémába ütközünk: A $\sin x^2$ ($x \in \mathbb{R}$) függvénynek van primitív függvénye (hiszen folytonos), de az nem elemi függvény, így a belső (egyváltozós) integrál kiszámítására a Newton–Leibniz-tétel nem alkal-mazható. Próbáljuk meg az integrálás sorrendjét felcserélni, azaz először y szerint integrálni. Ezt megtehetjük, mert a szóban forgó halmaz az x tengelyre nézve is normáltartomány, amelyet a (b) ábra alatti egyenlőtlenségek határoznak meg.

H az y-ra normáltartomány $0 \le y \le 1, \quad y^2 \le x \le 1$

H az x-re normáltartomány $0 \le x \le 1, \quad 0 \le y \le \sqrt{x}$

(A nyíl jelzi az eredeti felírásban, illetve az integrálok felcserélése után a belső integrálok irányát.)

Így

$$\iint_{H} y \sin x^{2} dx dy = \int_{0}^{1} \left(\int_{0}^{\sqrt{x}} y \sin x^{2} dy \right) dx = \int_{0}^{1} \left(\sin x^{2} \right) \cdot \left[\frac{y^{2}}{2} \right]_{y=0}^{y=\sqrt{x}} dx =$$

$$= \frac{1}{2} \int_{0}^{1} x \cdot \sin x^{2} dx = \frac{1}{2} \cdot \frac{1}{2} \int_{0}^{1} 2x \cdot \sin x^{2} dx = \frac{1}{4} \left[-\cos x^{2} \right]_{0}^{1} = \frac{1}{4} \left(1 - \cos 1 \right).$$