関数と2次方程式

2022.04.18

関数

- ullet 変数xの値を与えると変数yの値が求まる例) $y=2x+1,\;y=x^2+2x+1$
- ullet これを変数 x の関数という

関数記号

- 関数 f(x) の x に定数 a を代入した値を f(a) で表す
- ullet 例) $f(x)=x^2+x-1$ のとき $f(2)=2^2+2-1=5$
- ullet 課題 0418-1 f(x)=3x+1 のとき,次を求めよ.

 $[1] \, f(0)$

 $[2] \ f(2)$

[3] f(-3)

 $[4] \ f(a-1) \quad (a$ は定数)

TextP80

関数 y = f(x)

ullet x を変えるとき,点 $(x,\ f(x))$ も変わる.

例) 1次関数 y = 2x + 1

$oxed{x}$	-5	-4	-3	-2	-1	0	1	2	3	4	5
y	-9	-7	-5	-3	-1	1	3	5	7	9	11

この点の集まりを、その関数のグラフという。

例)
$$y = 2x + 1$$

	-5										
\boldsymbol{y}	-9	-7	-5	-3	-1	1	3	5	7	9	11

傾き 2 y 切片 1

課題 0418-2 「2. 関数のグラフ」を用いて,次の1次関数のグラフをかけ、また,傾きaとy切片bを求めよ、

$$[1] y = 3x + 3$$

TextP81

$$[2] y = 10 - 2x$$

TextP81

[3]
$$y = 2x + 2$$

TextP81

$$[4] \,\, y = \frac{1}{2}x + 1$$

2次関数のグラフ(基本形)

「2. 関数のグラフ」で $y=x^2,\;y=-x^2$ をかこう.

• $y=x^2$ 軸はx=0(y軸) 頂点は $(0,\ 0)$ 下に凸

 $ullet y = -x^2$ 上に凸

カッコ内の定数を変えたときのグラフをかこう.

- (1) $y=ax^2$ (定数 a) 開き (増え方) が変わる
- (2) $y=ax^2+c$ (定数c) 縦方向に<math>cだけ平行移動
- (3) $y = a(x-b)^2$ (定数b) 横方向にbだけ平行移動

課題 2次関数のグラフ

課題 0418-3 「2. 関数のグラフ」を用いて,次の 2 次関数のグラフをかけ.また, $y=x^2$ のグラフをどのように移動 (変形) したかを答えよ.

$$[1]$$
 $y=2x^2$

[2]
$$y = x^2 + 1$$

[3]
$$y = (x-3)^2$$

[4]
$$y = (x+1)^2$$

$$(x^2+2bx+b^2)+d$$

•
$$y = x^2 + 2bx + c$$
 $\Longrightarrow (x+b)^2 + d$ の形に変形

(例)
$$y = x^2 - 2x + 3$$

= $(x^2 - 2x + 1) - 1 + 3$
= $(x - 1)^2 + 2$

課題 (2 次関数のグラフ)

課題 0418-4 $a(x+b)^2+c$ の形に変形せよ.

[1]
$$y = x^2 + 4x - 5$$

[2]
$$y = x^2 - 2x - 1$$

[3]
$$y = -x^2 - 4x + 1$$

$$[4] \ y = x^2 + x + 1$$

2次方程式

2次式の因数分解

(1)
$$x^2 - a^2 = (x+a)(x-a)$$

 $x^2 - 9 = x^2 - 3^2 = (x+3)(x-3)$

$$(2) \ x^2 + 2ax + a^2 = (x+a)^2 \ x^2 + 4x + 4 = x^2 + 2 \cdot 2 + 2^2 = (x+2)^2$$

(3)
$$x^2 + (a+b)x + ab = (x+a)(x+b)$$

 $x^2 + 5x + 6 = (x+2)(x+3)$
 $x^2 - 6x + 8 = (x-2)(x-4)$

2次方程式(因数分解)

• 「AB=0ならばA=0またはB=0」を用いる.

(例)
$$x^2 - 9 = 0$$
 $\iff (x+3)(x-3) = 0$
 $\iff x = -3 \text{ (または) } x = 3$
 $\iff x = \pm 3 \text{ と書く}$

課題 0418-5 次の方程式を解け.

$$\begin{bmatrix} 1 \end{bmatrix} x^2 - 49 = 0$$
 $\begin{bmatrix} 2 \end{bmatrix} x^2 - 2x + 1 = 0$ $\begin{bmatrix} 3 \end{bmatrix} x^2 - 7x + 12 = 0$ $\begin{bmatrix} 4 \end{bmatrix} x^2 - x - 20 = 0$

平方根

- ullet 2 乗して 4 になる数($x^2=4$ となる x)
 - $\implies 2, -2 \, \mathcal{O} \, 2 \, \mathcal{O} \,$
- このうち,正の方の2を $\sqrt{4}$ とかく
- 正の数a について,2 乗してa になる数のうち正の方を を \sqrt{a} とかく

$$(\sqrt{a})^2 = a, \ (-\sqrt{a})^2 = a$$

平方根の性質

- ullet a>0のとき, $\sqrt{a^2}=a$ 2乗して $4^2(=16)$ になるのは4と-4 正の方をとって, $\sqrt{4^2}=4$ a<0のとき, $\sqrt{a^2}=-a$ 2乗して $(-4)^2$ になるのも4と-4 正の方をとって, $\sqrt{(-4)^2}=4$
- $ullet \sqrt{a^2} = |a|$
- ullet b>0のとき, $\sqrt{a^2b}=|a|\sqrt{b}$

課題 平方根

課題 0418-6 次の数を根号を用いないで表せ

TextP17

$$[1] - \sqrt{64}$$

$$[2] \ \sqrt{\frac{4}{9}}$$

$$[3] \left(-\sqrt{11}\right)^2$$

$$[4] - (-\sqrt{3})^2$$

課題 0418-7 次を計算せよ (√の中を簡単にせよ)

$$[1]$$
 $-\sqrt{12}$

$$[2] \sqrt{18}$$

$$[3] \sqrt{27} - \sqrt{3}$$

$$[4] \sqrt{100} \sqrt{8}$$

2次方程式(平方完成)

• 平方完成
$$(x+a)^2 = x^2 + 2ax + a^2$$

$$x^2 + 6x + 2 = (x^2 + 6x + 9) - 9 + 2 = (x+3)^2 - 7$$

• 2次方程式
$$x^2+6x+2=0$$
 $(x+3)^2-7=0$ $(x+3)^2=7$ $x+3=\sqrt{7},\ -\sqrt{7}$ 合わせて $x+3=\pm\sqrt{7}$ $x=-3\pm\sqrt{7}$

解の公式1

•
$$x^2 + 2ax + b = 0$$

 $(x+a)^2 - a^2 + b = 0$
 $(x+a)^2 = a^2 - b$
 $x + a = \pm \sqrt{a^2 - b}$
よって $x = -a \pm \sqrt{a^2 - b}$

課題 0418-8 次の2次方程式を解け.

$$egin{array}{lll} [1] \ x^2 + 4x + 2 &= 0 & [2] \ x^2 + 2x - 2 &= 0 \ [3] \ x^2 - 6x + 1 &= 0 & [4] \ x^2 - 8x + 2 &= 0 \ \end{array}$$

解の公式

ullet 2次方程式 $ax^2+bx+c=0$ の解は

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

例)
$$2x^2 - 5x + 1 = 0$$

$$x = \frac{5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{5 \pm \sqrt{17}}{4}$$

課題 0418-9 $ax^2+bx+c=0$ より $x^2+\frac{b}{a}x+\frac{c}{a}=0$ これを用いて上の公式を導け