Stat 5309 Lab 5

Tom Wilson Feb 21, 2019

1.

The yield of a chemical process is being studied. The two most important variables are thought of be th pressure and the temperature. Three levels of each factor are selected and a factorial experiment with two replicates is performed. The yield data follows.

\mathbf{a}

Set up the dataframe.

pressure	temperature	yield
200	150	90.4
215	150	90.7
230	150	90.2
200	150	90.2
215	150	90.6
230	150	90.4
200	160	90.1
215	160	90.5
230	160	89.9
200	160	90.3
215	160	90.6
230	160	90.1
200	170	90.5
215	170	90.8
230	170	90.4
200	170	90.7
215	170	90.9
230	170	90.1

b

Build a linear model using aov(). Are the pressure means significant? Are the temp means significant? Is the interaction significant?

```
yield_model <- aov(yield ~ temperature * pressure, data=process)
summary(yield_model)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)

## temperature 2 0.3011 0.1506 8.469 0.008539 **

## pressure 2 0.7678 0.3839 21.594 0.000367 ***

## temperature:pressure 4 0.0689 0.0172 0.969 0.470006

## Residuals 9 0.1600 0.0178

## ---

## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

The interaction between temperature and pressure is not significant. The main effects of temperature and pressure are significant.

```
yield_model <- aov(yield ~ temperature + pressure, data=process)
summary(yield_model)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)

## temperature 2 0.3011 0.1506 8.551 0.00426 **

## pressure 2 0.7678 0.3839 21.803 7.03e-05 ***

## Residuals 13 0.2289 0.0176

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

 \mathbf{c}

Create a boxplot of

yield vs temp

```
boxplot(yield~temperature, data=process)
```


yield vs pressure

boxplot(yield~pressure, data=process)

yield vs temp and pressure

boxplot(yield~temperature*pressure, data=process)

\mathbf{d}

Perform a residuals assumption check

```
qqnorm(yield_model$residuals)
qqline(yield_model$residuals)
```

Normal Q-Q Plot

The residuals are consistent with a normal distribution centered on zero with constant variance.

$\mathbf{2}$

Johnson an dLeone describe an experiment to investigate warping of copper plates. The two factors studied were the temperature and the copper content of the plates. The response variable was a meaure of the amont of warping. The data were as follows.

\mathbf{a}

Set up the dataframe

copper_	_content	temperature	warping
40		50	17
60		50	16
80		50	24
100		50	28
40		50	20
60		50	21
80		50	22
100		50	27
40		75	12
60		75	18
80		75	17
100		75	12
40		75	9
60		75	13
80		75	12
100		75	31
40		100	16
60		100	18
80		100	25
100		100	30
40		100	12
60		100	21
80		100	23
100		100	23
40		125	21
60		125	23
80		125	23
100		125	29
40		125	17
60		125	21
80		125	22
100		125	31

b

##

##

build a response model surface (RSM) with warpage as response, use rsm().

```
temp_nums <- copperplate$temperature %>% as.numeric()
cu_nums <- copperplate$copper_content %>% as.numeric()
response <- copperplate$warping
copper_model<- rsm(response ~ SO(temp_nums, cu_nums), data=copperplate)
summary(copper_model)
##</pre>
```

```
Estimate Std. Error t value Pr(>|t|)
```

rsm(formula = response ~ SO(temp_nums, cu_nums), data = copperplate)

```
6.63925 3.5678 0.001427 **
## (Intercept)
                     23.68750
## temp_nums
                    -10.33750
                                 3.90821 -2.6451 0.013670 *
## cu nums
                      0.57500
                                 3.90821 0.1471 0.884167
                                 0.57274 0.2794 0.782181
## temp_nums:cu_nums
                      0.16000
## temp_nums^2
                      2.18750
                                 0.71593 3.0555 0.005142 **
## cu nums^2
                      0.50000
                                 0.71593 0.6984 0.491131
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared: 0.6165, Adjusted R-squared: 0.5427
## F-statistic: 8.358 on 5 and 26 DF, p-value: 8.125e-05
## Analysis of Variance Table
##
## Response: response
##
                          Df Sum Sq Mean Sq F value
                                                       Pr(>F)
## FO(temp_nums, cu_nums)
                           2 523.03 261.513 15.9442 3.027e-05
## TWI(temp_nums, cu_nums) 1 1.28
                                      1.280 0.0780
                                                       0.7822
## PQ(temp_nums, cu_nums)
                          2 161.12 80.562 4.9118
                                                       0.0155
## Residuals
                          26 426.45 16.402
## Lack of fit
                          10 145.44 14.544
                                            0.8282
                                                       0.6093
## Pure error
                          16 281.00 17.563
##
## Stationary point of response surface:
                cu_nums
## temp_nums
## 2.3979170 -0.9586667
##
## Eigenanalysis:
## eigen() decomposition
## $values
## [1] 2.1912841 0.4962159
##
## $vectors
##
                               [,2]
                    [,1]
## temp_nums -0.99888317 0.04724851
## cu_nums -0.04724851 -0.99888317
```