Spring 2018 STAT5261 Midterm Practice Questions

No Submission is required. Solution will be posted later.

1 Fixed Income Securities

- 1. Suppose that the yearly compounded rate is 3%. There is a 5-year coupon bond with face value (PAR) \$1000 and yearly coupon payment \$30. Suppose that this coupon bond may default and the default time X follows a geometric distribution: $P(X = t) = (1 p)^{t-1}p$, t = 1, 2, ... and p = 0.05. Find the expected present value of the coupon. (if the default happens at year 1, no coupon or the premium will be paid; if the default happens at year 2, only the coupon \$30 for year 1 will be paid...)
- 2. Suzanne paid \$800 for a 1-year zero-coupon bond with face value (PAR) \$1000. The current 1-year interest rate (yearly compounded) is r = 5%. Suppose there is a 10% probability that the bond will default and the recovery rate is 0 (i.e. no recovery).
 - (a) For Suzanne's purchase, the (1-year) net return is a random variable due to the possibility of default. Compute this (1-year) net return and find its mean and standard deviation.
 - (b) Suppose that Suzanne's portfolio contains, in addition to the above bond (A), another 1-year zero-coupon bond (B) for which she also paid \$800. Suppose that bond B has face value (PAR) of \$1000 and that its default probability is 10%. If the two default events are mutually exclusive, find the mean and standard deviation of the (1-year) net return of this portfolio.
- 3. Suppose that the forward rate is $r(t) = 0.03 + 0.001t + 0.0002t^2$
 - (a) What is the 5-year spot rate?
 - (b) What is the price of a zero-coupon bond that matures in 5 years?
- 4. Suppose that the continuous forward rate is r(t) = 0.04 + 0.001t when a 8-year zero coupon bond is purchased. Six months later the forward rate is r(t) = 0.03 + 0.0013t and the bond is sold. What is the return?

2 Portfolio Theory

- 1. Suppose that the market consists of two risky assets. The mean and standard deviation of the return for asset 1 are $\mu_1 = 10\%$ and $\sigma_1 = 20\%$, respectively and those for asset 2 are $\mu_2 = 4\%$ and $\sigma_2 = 10\%$.
 - (a) Assume that the two returns are uncorrelated. Find the minimum variance point, (σ_{mv}, μ_{mv}) , on the $\mu \sigma$ diagram for this market.
 - (b) What if the correlation between the two returns is $\rho = 0.3$ or $\rho = -0.3$?

- 2. Suppose that a market consists of one risk-free asset with rate of return $\mu_f = 1\%$, and two risky assets with means and standard deviations of returns being $\mu_1 = 3\%$, $\mu_2 = 6\%$, $\sigma_1 = 20\%$ and $\sigma_2 = 30\%$.
 - (a) Find the Sharpe ratios of the tangency portfolios for different $\rho = 0.2, 0.4, 0.8$ and write down the equations for the capital market lines.
 - (b) Suppose instead we have $\sigma_1 = 40\%$ and $\sigma_2 = 60\%$. How do Sharpe ratios change and the portfolio weights change corresponding to the changes in σ 's?
- 3. Suppose that the risk-free interest rate is 0.023, that the expected return on the market portfolio is $\mu_M = 0.10$, and that the volatility of the market portfolio is $\sigma_M = 0.12$.
 - (a) What is the expected return on an efficient portfolio with $\sigma_R = 0.05$?
 - (b) Stock A returns have a covariance of 0.004 with market returns. What is the beta of Stock A?
 - (c) Stock B has beta equal to 1.5 and $\sigma_{\epsilon} = 0.08$. Stock C has beta equal to 1.8 and $\sigma_{\epsilon} = 0.10$. What is the expected return of a portfolio that is one-half Stock B and one-half Stock C? What is the volatility of a portfolio that is one-half Stock B and one-half Stock C? Assume that the ϵ 's of Stocks B and C are independent.

3 Rank Correlation and Copula

- 1. U is a uniform random variable on the interval [0,1], V is a Bernoulli random variable with P(V=1)=p, where $0 \le p \le 1$. Suppose U and V are independent, Compute Kendall's τ , Spearman's ρ and Pearson's correlation coefficient for (U, U+V) as a function of p.
- 2. Let (X,Y) has the bivariate distribution $F_{\theta}(x,y)$ of the form

$$F_{\theta}(x,y) = 1 - e^{-x} - e^{-y} - e^{-(x+y+\theta xy)}$$

if $x \ge 0, y \ge 0$ and $F_{\theta}(x, y) = 0$ otherwise. Here $\theta \in [0, 1]$ is a parameter.

- (a) What are the marginal distributions of X and Y?
- (b) What is the copula function associated with (X,Y)?
- 3. Suppose that we have two bonds A and B. Denote by T_A and T_B their respective default times (in year). Suppose that T_A follows exponential distribution with hazard $\lambda_A = 0.03$ (i.e. $P(T_A \ge t) = e^{-\lambda_A t}$) and T_B follows exponential distribution with hazard $\lambda_B = 0.02$. Suppose that jointly they satisfy the Gumbel copula with $\alpha = 3$. Find the probabilities that
 - (a) Both will default by the end of the second year;
 - (b) At least one will default by the end of the second year.
 - (c) Only Bond A defaults by the end of the second year.

4 Risk Management

1. Suppose that \mathcal{L} is the loss over 1 year. Suppose that \mathcal{L} follows a double exponential distribution, whose density $f(\cdot)$ has the form

$$f(x) = \frac{1}{Z} \exp(-\lambda |x|), \quad x \in \mathbb{R}$$

where Z is the normalizing constant and $\lambda > 0$ is a parameter. Find

- (a) VaR(0.05) as a function of λ
- (b) ES(0.05) as a function of λ .
- 2. Suppose the yearly returns of stock A, B and C have a multivariate normal distribution with mean (0.03, 0.04, 0.05) and covariance matrix

$$\begin{pmatrix} 0.4 & 0.3 & -0.1 \\ 0.3 & 0.5 & 0.2 \\ -0.1 & 0.2 & 0.8 \end{pmatrix}.$$

Suppose we have a portfolio that invest \$50,000, \$100,000 and \$200,000 to stock A, B and C respectively. Compute the following quantities for the portfolio:

- (a) VaR(0.05).
- (b) ES(0.05).
- 3. For a loss random variable L, recall that expected shortfall is defined as

$$ES(\alpha) := \frac{\int_0^\alpha VaR(s)ds}{\alpha}.$$

Another risk measure, the conditional tail expectation (CTE) is defined as

$$CTE(\alpha) = \mathbb{E}(L|L > VaR(\alpha)). \tag{1}$$

Show that $ES(\alpha) = CTE(\alpha)$ when L is a continuous random variable. Note that (1) can be used to derive the expected shortfall formula when the loss follows a normal distribution (see HW6).