

BEST AVAILABLE COPY

Abstract of DE19746452A

The mold system consists of at least one mold table (4) and elements on it to complete the mold. The mold table surface (1) and the mold elements (2, 3) are non-metallic, preferably of plastic. These mold elements have an anti-grip effect on their surfaces relative to the concrete, therefore they do not have to be treated with mold salt or other anti-grip substances. The table and other elements are connected to each other by vacuum force so that they cannot slide about.

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

Offenlegungsschrift

(10) DE 197 46 452 A 1

(51) int. Cl. 6
B 28 B 7/34
B 28 B 7/06

- (71) Anmelder:
Eipel, Ursula, 04741 Roßwein, DE
(74) Vertreter:
Bixi, F., Pat.-Ass., 04741 Roßwein

- (21) Aktenzeichen: 197 46 452.1
(22) Anmeldetag: 21. 10. 97
(43) Offenlegungstag: 29. 4. 99

- (72) Erfinder:
Eipel, Ursula, Dipl.-Ing., 04741 Roßwein, DE; Bixi,
Friedrich, 04741 Roßwein, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Der Inhalt dieser Schrift weicht von den am Anmeldetag eingereichten Unterlagen ab

- (54) Schalungssystem aus Kunststoff

Beschreibung

Die Erfindung betrifft ein Schalungssystem für die Herstellung von Betonteilen, z. B. Decken und Wände.

Bisher bekannte Einrichtungen in der Regel in Form von Palettenumlaufanlagen bestehen aus dem Schalungstisch und einer Stahluntergrundfläche und den Schalungsleisten, auch allgemein als "Absteller" bezeichnet, welche vorzugsweise mit Dauerhaftmagneten in irgendeiner Weise bestückt und verbunden werden. Dies wird allgemein aus dem Grund so konstuiert, um die sogenannten Absteller oder Schalungsleisten damit rüttelsicher auf dem Schalungstisch mit Hilfe der Magneteanziehkräfte zu fixieren, ohne daß es notwendig wird, beispielsweise irgendwelche Bohrungen für Befestigungselemente in den Schalungstisch einzubringen, die dann später bei anderen Betongießaufgaben hinderlich wären, um mit diesen Bohrungen Schraubverbindungen zwischen Absteller und Schalungstisch herzustellen.

Dieses Spannssystem mit Dauerhaftmagneten hat den Nachteil, daß die Untergrundfläche des Schalungstisches in sehr engtolerierten Umfang eben, und aus ferromagnetischen Werkstoff, z. B. Stahl, sein muß. Bekannterweise wirkt sich der Stahlwerkstoff an dieser Stelle nachteilig aus, da Beton mit Stahl eine gute Verbindung eingeht, was wiederum durch ständige Vorkehrungsleistungen, wie sorgfältige Reinigung der Stahlteile von Betonresten und das vorsorgliche präparieren dieser Teile mit Schalungssöl als Antihafmittel erforderlich macht. Außerdem nachteilig ist bei den erwähnten reinigungs- und vorsorglichen Präparationsleistungen der hohe Zeit- und Personalaufwand, der dafür erforderlich ist. Das gilt sowohl für den Stahl-Schalungstisch als auch für die Dauerhafte Magneten und weiteren eisen- oder stahlhaltigen Teile, die am Formprozeß beteiligt sind. Nachteilig ist auch die Rostbildung der Magneten, was zur Unbrauchbarkeit führt. Die Anwendung von Schalungssöl führt zwangsläufig zur Umweltverschmutzung.

Andererseits bewirken geringfügige Unebenheiten der Schalungstisch-Stahluntergrundfläche, daß die Haftmagnete in nicht mehr ausreichenden Maße halten oder sogar gänzlich versagen, da sich ein Spielraum zwischen der Stahloberfläche und der Magnetauflagefläche zwangsläufig eingestellt hat. Andererseits sind die Magnete nur mühevoll abnehmbar, ohne Hilfsgeräte.

Die Herstellung von Betonteilen mit architektonische bewußt gewölbten Oberflächen ist mit den herkömmlichen Magneten nicht möglich.

Ziel dieser Erfindung ist es, die vorbenannten Nachteile zu eliminieren. Dies wird erreicht, in dem die Bauteile des Schalungssystems, z. B. die Schalungsleisten oder Absteller als auch die Schalungstischoberfläche grundsätzlich aus Kunststoffen, z. B. PVC, PE, PP usw., bestehen. Damit entfallen die vorbenannten Präparationsleistungen, insbesondere die vorsorglichen Leistungen mittels Schalungssöl.

Geringfügige Betonreste sind leichter entfernbare da sie nicht so stark anhaften wie am Stahl mit beispielsweise einfachen Wasser, g.g.f. mit einem Strahl aus dem Wasserschlauch. Die Verwendung von Wasser ist wegen seiner sofortigen Aufbereitungsmöglichkeit am Verwendungsort umweltbewußter als die Arbeit mit Schalungssöl und auf Dauer auch billiger.

Das rüttelsichere fixieren der Kunststoffschalungsleisten oder Absteller erfolgt in der Weise, daß diese mittels Vakuumhaftkraft mit der Kunststofftischoberfläche verbunden wird, was natürlich auch an einer Stahltafeloberfläche erzielt werden kann. Den Abstellern oder Schalungsleisten werden Saughebern oder Saugmembranen zugeordnet, derenlei aus dem Stand der Technik bekannt sind, und sogar für diesen Zweck noch modifizierbar sind.

Auch ist das bisherige mühevolle entfernen der Absteller oder Schalungsleisten nicht mehr nötig, da das Vakuum vor der Entnahme beseitigt wird und lediglich das Eigengewicht der Absteller oder Schalungsleisten für das Handling zu disponieren ist.

Auch der Grad der Mechanisierung und Automatisierung des Formprozesses ist damit erhöhbar infolge der bewußt erzeugbaren Hafiverbindungen der Absteller oder Schalungsleisten mit dem Schalungstisch.

Die Werkstoffe der Saugheber bzw. Saugmembranen bestehen in der Regel aus Polymeren z. B. aus Gummi. Bekannterweise wirkt sich die Benetzung der Gummioberfläche mit Wasser außerst förderlich in Bezug auf die Hafikraft und Haftungsdauer aus, so daß bereits vorhandene Wasserrückstände aus dem vorangegangenen Reinigungs- und Spülprozeß nicht hinderlich, sondern gerade zu förderlich sind; für den bevorstehenden Festspannprozeß der Absteller oder Schalungsleisten. Beim Entspannprozeß wiederum, wenn das Vakuum bewußter Weise aufgehoben wird, beispielsweise durch Handarbeit mittels entsprechenden Vorrichtungen oder in automatisierten Verfahren, so besteht durch das Wasser keinerlei Behinderung. Auch die Gefahr des Rostens an den Kunststoff- und Gummiteilen besteht nicht. Die Absteller oder Schalungsleisten können somit jederzeit mühevlos vom Schalungstisch entfernt werden.

Da der gummiartige Werkstoff der Saugheber oder der Saugmembranen infolge seiner Weichheit und Biegsamkeit sich noch relativ großen Unebenheiten anpassen kann, kann auch hier noch die Dichtheit bei angelegten Vakuum erzielt, und somit die Spannkraft gehalten werden. Dies führt dazu, das gewölbte Schalungstische zur Aufführung gelangen, und somit großflächige Betonflächen architekturgemäß gewölbt erzeugt werden können.

Nachfolgend am Ausführungsbeispiel der Erfindung soll diese näher erläutert werden, wozu auch die Schemazeichnungen dienen.

Fig. 1 zeigt einen Schalungstisch dessen formgebende Schalungstischoberfläche 1, aber auch die Schalungsleisten oder Absteller 2 und 3, aus Kunststoff bestehen. Der Tischunterbau 4 selber kann üblicherweise aus Stahl oder Beton weiterbestehen. Der sog. Längsabsteller 2 darf dabei aus dem selben Werkstoff wie die Schalungstischoberfläche 1 bestehen; kann aber auch wahlweise aus einem anderen Kunststofftyp bestehen. Das Gleiche gilt ebenso für den Querabsteller 3.

Fig. 2 zeigt einen beweglichen Absteller der sowohl als Längsabsteller 2 oder Querabsteller 3 funktioniert. An diesem Absteller oder an der Schalungsleiste 2, 3 befestigt ist ein Saughebermechanismus 5 dessen Saugmembran 6 in der Saugaktionsstellung dargestellt ist. Dies wird in diesem Beispiel durch die manuelle Betätigung des Exenterkippebels 7 in Pfeilrichtung erreicht. Bekannterweise wird mit solchen Saughebern eine Arretierkraft erreicht, die sogar die Hafikraft der z.Z. üblichen in Anwendung befindlichen Dauerhafte Magneten überschreitet. Soll der Absteller oder die Schalungsleiste 2, 3 wieder entfernt werden, so ist der Exenterkippebel 7 entgegen der dargestellten Pfeilrichtung zu betätigen. Damit wird der vorhandene Vakuumhohlraum 8 minimiert oder gar beseitigt, die Vakuumhaftkraft des Saughebermechanismus 5 wird abgebaut und der Absteller oder die Schalungsleiste 2, 3 ist unproblematisch entfernbare. Außer technisch konstruktiven Gründen erhalten im Regelfall pro Absteller oder Schalungsleiste 2, 3 mindesten zwei im Abstand angebrachte Saughebermechanismen 5. Im Bedarfsfalle je nach Länge und Höhe bzw. Belastung durch den Beton 9 und Rüttelprozeß der Absteller oder Schalungsleisten 2, 3 im Formprozeß können dies auch mehr Saughebermechanismen 5 sein.

Beschreibung

Die Erfindung betrifft ein Schalungssystem für die Herstellung von Betonteilen, z. B. Decken und Wände.

Bisher bekannte Einrichtungen in der Regel in Form von Palettenumlaufanlagen bestehen aus dem Schalungstisch und einer Stahluntergrundfläche und den Schalungsleisten, auch allgemein als "Absteller" bezeichnet, welche vorzugsweise mit Dauerhaftmagneten in irgendeiner Weise bestückt und verbunden werden. Dies wird allgemein aus dem Grund so konstruiert, um die sogenannten Absteller oder Schalungsleisten damit rüttelsicher auf dem Schalungstisch mit Hilfe der Magnetanziehungskräfte zu fixieren, ohne daß es notwendig wird, beispielsweise irgendwelche Bohrungen für Befestigungselemente in den Schalungstisch einzubringen, die dann später bei anderen Betonierarbeiten hinderlich wären, um mit diesen Bohrungen Schraubverbindungen zwischen Absteller und Schalungstisch herzustellen.

Dieses Spannssystem mit Dauerhaftmagneten hat den Nachteil, daß die Untergrundfläche des Schalungstisches in sehr engtolerierten Umfang eben, und aus ferromagnetischen Werkstoff, z. B. Stahl, sein muß. Bekannterweise wirkt sich der Stahlwerkstoff an dieser Stelle nachteilig aus, da Beton mit Stahl eine gute Verbindung eingeht, was wiederum durch ständige Vorkehrungsleistungen, wie sorgfältige Reinigung der Stahlteile von Betonresten und das vorsorgliche präparieren dieser Teile mit Schalungssöl als Antihafmittel erforderlich macht. Außerdem nachteilig ist bei den erwähnten reinigungs- und vorsorglichen Präparationsleistungen der hohe Zeit- und Personalaufwand, der dafür erforderlich ist. Das gilt sowohl für den Stahl-Schalungstisch als auch für die Dauerhafemagneten und weiteren eisen- oder stahlhaltigen Teile, die am Formprozeß beteiligt sind. Nachteilig ist auch die Rostbildung der Magneten, was zur Unbrauchbarkeit führt. Die Anwendung von Schalungssöl führt zwangsläufig zur Umweltverschmutzung.

Andererseits bewirken geringfügige Unebenheiten der Schalungstisch-Stahluntergrundfläche, daß die Haftmagneten in nicht mehr ausreichenden Maße haften oder sogar gänzlich versagen, da sich ein Spielraum zwischen der Stahloberfläche und der Magnetauflagefläche zwangsläufig eingestellt hat. Andererseits sind die Magnete nur mühevoll abnehmbar, ohne Hilfsgeräte.

Die Herstellung von Betonteilen mit architektonische bewußt gewölbten Oberflächen ist mit den herkömmlichen Magneten nicht möglich.

Ziel dieser Erfindung ist es, die vorbenannten Nachteile zu eliminieren. Dies wird erreicht, in dem die Bauteile des Schalungssystems, z. B. die Schalungsleisten oder Absteller als auch die Schalungstischoberfläche grundsätzlich aus Kunststoffen, z. B. PVC, PE, PP usw., bestehen. Damit entfallen die vorbenannten Präparationsleistungen, insbesondere die vorsorglichen Leistungen mittels Schalungssöl.

Geringfügige Betonreste sind leichter entfernbare da sie nicht so stark anhaften wie am Stahl mit beispielsweise einfachen Wasser, g.g.f. mit einem Strahl aus dem Wasserschlauch. Die Verwendung von Wasser ist wegen seiner sofortigen Aufbereitungsmöglichkeit am Verwendungsort umweltbewußter als die Arbeit mit Schalungssöl und auf Dauer auch billiger.

Das rüttelsichere fixieren der Kunststoffschalungsleisten oder Absteller erfolgt in der Weise, daß diese mittels Vakuumhaftkraft mit der Kunststofftischoberfläche verbunden wird, was natürlich auch an einer Stahltafeloberfläche erzielt werden kann. Den Abstellern oder Schalungsleisten werden Saughebern oder Saugmembranen zugeordnet, derlei aus dem Stand der Technik bekannt sind, und sogar für diesen Zweck noch modifizierbar sind.

Auch ist das bisherige mühevolle entfernen der Absteller oder Schalungsleisten nicht mehr nötig, da das Vakuum vor der Entnahme beseitigt wird und lediglich das Eigengewicht der Absteller oder Schalungsleisten für das Handling zu disponieren ist.

Auch der Grad der Mechanisierung und Automatisierung des Formprozesses ist damit erhöhbar infolge der bewußt erzeugbaren Haftverbindungen der Absteller oder Schalungsleisten mit dem Schalungstisch.

- 10 Die Werkstoffe der Saugheber bzw. Saugmembranen bestehen in der Regel aus Polymeren z. B. aus Gummi. Bekannterweise wirkt sich die Benetzung der Gummioberfläche mit Wasser äußerst förderlich in Bezug auf die Haftkraft und Haftungsdauer aus, so daß bereits vorhandene Wasserrückstände aus dem vorangegangenen Reinigungs- und Spülprozeß nicht hinderlich, sondern gerade zu förderlich sind; für den bevorstehenden Festspannprozeß der Absteller oder Schalungsleisten. Beim Entspannprozeß wiederum, wenn das Vakuum bewußter Weise aufgehoben wird, beispielsweise durch Handarbeit mittels entsprechenden Vorrichtungen oder in automatisierten Verfahren, so besteht durch das Wasser keinerlei Behinderung. Auch die Gefahr des Rostens an den Kunststoff- und Gummiteilen besteht nicht. Die Absteller oder Schalungsleisten können somit jederzeit mühevoll vom Schalungstisch entfernt werden.

Da der gummiartige Werkstoff der Saugheber oder der Saugmembranen infolge seiner Weichheit und Biegsamkeit sich noch relativ großen Unebenheiten anpassen kann, kann auch hier noch die Dicke bei angelegten Vakuum erzielt, und somit die Spannkraft gehalten werden. Dies führt dazu, das gewölbte Schalungstische zur Aufführung gelangen, und somit großflächige Betonflächen architekturgemäß gewölbt erzeugt werden können.

Nachfolgend am Ausführungsbeispiel der Erfindung soll diese näher erläutert werden, wozu auch die Schemazeichnungen dienen.

Fig. 1 zeigt einen Schalungstisch dessen formgebende Schalungstischoberfläche 1, aber auch die Schalungsleisten oder Absteller 2 und 3, aus Kunststoff bestehen. Der Tischunterbau 4 selber kann üblicherweise aus Stahl oder Beton weiterbestehen. Der sog. Längsabsteller 2 darf dabei aus dem selben Werkstoff wie die Schalungstischoberfläche 1 bestehen; kann aber auch wahlweise aus einem anderen Kunststofftyp bestehen. Das Gleiche gilt ebenso für den Querabsteller 3.

Fig. 2 zeigt einen beweglichen Absteller der sowohl als Längsabsteller 2 oder Querabsteller 3 funktioniert. An diesem Absteller oder an der Schalungsleiste 2, 3 befestigt ist ein Saughebermechanismus 5 dessen Saugmembran 6 in der Saugaktionsstellung dargestellt ist. Dies wird in diesem Beispiel durch die manuelle Betätigung des Exenterkipphabes 7 in Pfeilrichtung erreicht. Bekannterweise wird mit solchen Saughebern eine Arretierkraft erreicht, die sogar die Haftkraft der z. Z. üblichen in Anwendung befindlichen Dauerhafemagneten überschreitet. Soll der Absteller oder die Schalungsleiste 2, 3 wieder entfernt werden, so ist der Exenterkipphobel 7 entgegen der dargestellten Pfeilrichtung zu betätigen. Damit wird der vorhandene Vakuumhohlraum 8 minimiert oder gar beseitigt, die Vakuumhaftkraft des Saughebermechanismus 5 wird abgebaut und der Absteller oder die Schalungsleiste 2, 3 ist unproblematisch entfernbare. Aus technisch konstruktiven Gründen erhalten im Regelfall pro Absteller oder Schalungsleiste 2, 3 mindestens zwei im Abstand angebrachte Saughebermechanismen 5. Im Bedarfssfalle je nach Länge und Höhe bzw. Belastung durch den Beton 9 und Rüttelprozeß der Absteller oder Schalungsleisten 2, 3 im Formprozeß können dies auch mehr Saughebermechanismen 5 sein.

- Leerseite -

Fig. 1

Fig. 2

Fig. 1

Fig. 2

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.