INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT368Hex buffer/line driver; 3-state; inverting

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT368

FEATURES

Inverting outputs

· Output capability: bus driver

I_{CC} category: MSI

The 74HC/HCT368 are hex inverting buffer/line drivers with 3-state outputs. The 3-state outputs $(n\overline{Y})$ are controlled by the output enable inputs $(1\overline{OE}, 2\overline{OE})$.

A HIGH on nOE causes the outputs to assume a high impedance OFF-state.

The "368" is identical to the "367" but has inverting outputs.

GENERAL DESCRIPTION

The 74HC/HCT368 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	ICAL	UNIT	
STWIBOL	PARAIVIETER	CONDITIONS	нс	нст	UNII	
t _{PHL} / t _{PLH}	propagation delay nA to $n\overline{Y}$	C _L = 15 pF; V _{CC} = 5 V	9	11	ns	
C _I	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per buffer	notes 1 and 2	30	30	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz

 f_0 = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT368

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 15	1 OE , 2 OE	output enable inputs (active LOW)
2, 4, 6, 10, 12, 14	1A to 6A	data inputs
3, 5, 7, 9, 11, 13	1 √ to 6 √	data outputs
8	GND	ground (0 V)
16	V _{CC}	positive supply voltage

74HC/HCT368

FUNCTION TABLE

INP	UTS	OUTPUTS				
nOE	nA	nΫ				
L	L	Н				
L	Н	L				
Н	X	Z				

Note

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - Z = high impedance OFF-state

Philips Semiconductors Product specification

Hex buffer/line driver; 3-state; inverting

74HC/HCT368

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)							UNIT	TEST CONDITIONS	
SYMBOL		74HC									WAVEFORMS
		+25			−40 to +85		-40 to +125		ONII	V _{CC} (V)	WAVEI OKWIS
		min.	typ.	max.	min.	max.	min.	max.		(
t _{PHL} / t _{PLH}	propagation delay nA to nY		30 11 9	95 19 16		120 24 20		145 29 25	ns	2.0 4.5 6.0	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time nOE to nY		41 15 12	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time nOE to nY		55 20 16	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.6

Philips Semiconductors Product specification

Hex buffer/line driver; 3-state; inverting

74HC/HCT368

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT						
1 OE	1.00						
2 OE	0.90						
nA	1.00						

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)							UNIT	TEST CONDITIONS	
SYMBOL		74HCT									WAVEFORMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORING
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay nA to $n\overline{Y}$		13	24		30		36	ns	4.5	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time nOE to nY		17	35		44		53	ns	4.5	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time nOE to nY		20	35		44		53	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6

74HC/HCT368

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".