Video 11: Inference Rules in Propositional Logic

- Important inference rules
- Examples
- Fallacies

Inference Rules

- 1. Propositional Logic: Inference Rules
- 2. Predicate Logic: Inference rules for propositional logic plus additional inference rules to handle variables and quantifiers

Conjunction and Modus Ponens

$$\frac{p}{q}$$

$$\therefore p \land q$$

$$\begin{array}{c} p \to q \\ \hline p \\ \hline \therefore q \end{array}$$

Conjunction and Modus Ponens

$$\frac{p}{q}$$

$$\therefore p \wedge q$$

$$\begin{array}{c} p \to q \\ \hline p \\ \hline \therefore q \end{array}$$

Corresponding Tautology:

$$(p \land q) \rightarrow (p \land q)$$

$$(p \land (p \rightarrow q)) \rightarrow q$$

$$\begin{array}{c}
p \to q \\
\neg q \\
\hline
\vdots \neg p
\end{array}$$

Corresponding Tautology:

$$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$$

$$\begin{array}{c} p \to q \\ \neg q \\ \hline \therefore \neg p \end{array}$$

Corresponding Tautology:

$$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$$

Example:

p := "I have passed AICC"

q := "I can advance to year 2 of the studies"

$$\begin{array}{c} p \to q \\ \neg q \\ \hline \vdots \neg p \end{array}$$

Corresponding Tautology:

$$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$$

Example:

p := "I have passed AICC"

q := "I can advance to year 2 of the studies"

Premises

"If I have passed AICC, I can advance to year 2 of the studies"

"I cannot advance to year 2 of the studies."

$$\begin{array}{c} p \to q \\ \neg q \\ \hline \vdots \neg p \end{array}$$

Corresponding Tautology:

$$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$$

Example:

p := "I have passed AICC"

q := "I can advance to year 2 of the studies"

Premises

"If I have passed AICC, I can advance to year 2 of the studies"

"I cannot advance to year 2 of the studies."

Conclusion

"I did not pass AICC."

$$\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$$

Corresponding Tautology:

$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

$$\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$$

Corresponding Tautology:

$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

Example:

r := "I can take Analysis 4"

$$\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$$

Corresponding Tautology:

$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

Example:

r := "I can take Analysis 4"

Premises

"If I have passed AICC, I can advance to year 2 of the studies"

"If I can advance to year 2 of the studies, I can take Analysis 4"

$$\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$$

Corresponding Tautology:

$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

Example:

r := "I can take Analysis 4"

Premises

"If I have passed AICC, I can advance to year 2 of the studies"

"If I can advance to year 2 of the studies, I can take Analysis 4"

Conclusion

"If I have passed AICC, I can take Analysis 4"

$$\frac{\neg p \lor r}{p \lor q}$$

$$\therefore q \lor r$$

Corresponding Tautology:

$$((\neg p \lor r) \land (p \lor q)) \rightarrow (q \lor r)$$

$$\frac{\neg p \lor r}{p \lor q}$$

$$\therefore q \lor r$$

Corresponding Tautology:

$$((\neg p \lor r) \land (p \lor q)) \rightarrow (q \lor r)$$

Example:

p := "The weather is nice

q := "I am at home"

r := "I am at the beach"

$$\frac{\neg p \lor r}{p \lor q}$$

$$\therefore q \lor r$$

Corresponding Tautology:

$$((\neg p \lor r) \land (p \lor q)) \rightarrow (q \lor r)$$

Example:

p := "The weather is nice

q := "I am at home"

r := "I am at the beach"

Premises:

"The weather is bad or I am at the beach"

"The weather is nice or I am at home"

$$\frac{\neg p \lor r}{p \lor q}$$
$$\therefore q \lor r$$

Corresponding Tautology:

$$((\neg p \lor r) \land (p \lor q)) \rightarrow (q \lor r)$$

Example:

p := "The weather is nice

q := "I am at home"

r := "I am at the beach"

Premises:

"The weather is bad or I am at the beach"

"The weather is nice or I am at home"

Conclusion:

"I am at home or at the beach"

$$\frac{\neg p \lor r}{p \lor q}$$

$$\therefore q \lor r$$

Corresponding Tautology:

$$((\neg p \lor r) \land (p \lor q)) \rightarrow (q \lor r)$$

Example:

p := "The weather is nice

q := "I am at home"

r := "I am at the beach"

Resolution plays an important role in automated theorem proofing and AI

Premises:

"The weather is bad or I am at the beach"

"The weather is nice or I am at home"

Conclusion:

"I am at home or at the beach"

It allows to eliminate propositional variables from the premises

Other Inference Rules

$p \lor q$ $\neg p$ $\therefore q$	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification

Simpler form of resolution

Dual to Conjunction

Simpler form of Modus Ponens

Valid Arguments

Attention: even seemingly "obvious" conclusions imply an argument

Example: From $p \land (p \rightarrow q)$ conclude q

$$((p \rightarrow q) \land q) \rightarrow p$$
 is not a tautology

fallacy of affirming the conclusion

$$((p \rightarrow q) \land q) \rightarrow p$$
 is not a tautology

fallacy of affirming the conclusion

Example:

- If you do every problem in this book, then you will learn discrete mathematics. You learned discrete mathematics.
- Therefore, you did every problem in this book?

$$((p \rightarrow q) \land \neg p) \rightarrow \neg q$$
 is not a tautology

fallacy of denying the hypothesis

$$((p \rightarrow q) \land \neg p) \rightarrow \neg q$$
 is not a tautology

fallacy of denying the hypothesis

Example:

- If you do every problem in this book, then you will learn discrete mathematics. You did not do every problem in this book.
- Therefore, you did not learn discrete mathematics?

Summary

- Modus Ponens, Modus Tollens
- Hypothetical Syllogism
- Resolution
- How to build valid arguments
- Fallacies
 - affirming the conclusion
 - denying the hypothesis