3.4 Aktivitäts-Sicht

- Aktivitätsdiagramm (Activity diagram) = spezielle Form eines Zustandsübergangsdiagramms, welches die Ablaufmöglichkeiten der Aktivitäten eines Systems betont
- *Aktivität* (Activity) = eine länger andauernde, nicht atomare Ausführung von Anweisungen
- *Aktion* (Action) = atomare Berechnung

Aktivitäts-Sicht (Forts.)

- Übergänge sind i.a. *auslöserlos* (triggerless) und finden jeweils bei Beendigung einer Aktivität statt
- Anwendung:
 - Arbeitsvorgänge, Geschäftsprozesse
 - Komplexe Operationen und Algorithmen
 - Parallele Programme
 - Anwendungsfälle

Aktivitäts-Sicht (Forts.)

Vergleich:

	Zustandsübergangs- diagramm	Aktivitätsdiagramm
Zustände	Bedingung erfülltWarten auf Ereignis	Ausführung einer Aktivität
Übergänge	Auslösung durch Ereignis	Nach Beendigung einer Aktivität (auslöserlos)
Anwendung	- Assoziation zu einzelnem Objekt	- Geschäftsprozesse - Entwürfe auf hohem Abstraktionsgrad, die u.U. mehrere Objekte betreffen
Nebenläufigkeit	Eher selten	Oft genutzt

Zustände

- Zwei Arten von Zuständen, die anhand ihrer Granularität unterschieden werden
 - Aktionszustand (Action State) = Zustand, in dem eine Aktion ausgeführt wird (atomar)
 - Aktivitätszustand (Activity State) = Zustand, der in Aktions- und weitere Aktivitätszustände zerlegt werden kann (nicht atomar)
 - Kann Eingangs-/Ausgangsaktion enthalten
 - Verweis auf Untermaschine (weiteres Akt.diagr.)

Zustände (Forts.)

Graphische Darstellung:

- Zustandssymbol leicht modifiziert
- Aktionszustand

```
index := index + 1;
```

Aktivitätszustand (Andeutung durch Klammern)

Bearbeite Rechnung(r)

Übergänge

Merkmale:

- Übergänge aus einem Zustand heraus finden statt, wenn Aktivität beendet ist
- Keine Einwirkung von aussen (auslöserlos)
- Modellierung von Übergängen durch
 Ereignisse ⇒ Zustandsübergangsdiagramme

Übergänge (Forts.)

Beispiel: Hausbau

Entscheidungs-Verzweigung (Branch)

• In Abhängigkeit von *Zusatzbedingungen* (Boolesche Ausdrücke) können sich verschiedene Übergänge ergeben

• Graphische Darstellung:

– explizit über"Diamanten" Symbol

Entscheidungs-Verzweigung (Forts.)

- Zusatzbedingungen müssen
 - disjunkt sein(sonst nichtdeterministisches Verhalten)
 - vollständig sein(sonst eventuell Hängen des Systems)

Verzweigung und Synchronisation (Fork and Join)

- Konstrukte zur Darstellung von Nebenläufigkeit
 - Verzweigung (Fork) =Aufspaltung in parallele Abläufe
 - Synchronisation (Join) =
 Zusammenführung paralleler Abläufe;
 Weiterbearbeitung, wenn alle eingehenden Übergänge vollzogen wurden

Verzweigung und Synchronisation (Forts.)

Beispiel: Bearbeiten einer Bestellung

Verantwortlichkeitsbereiche (Swimlanes)

• Motivation:

- Mehrere Parteien oder Objekte sind in einen Prozess involviert; Zuständigkeit für Aktivitäten soll dargestellt werden
- Modellierung in Aktivitätsdiagramm:
 - Einteilung der Aktivitäten in Verantwortlichkeitsbereiche (Swimlanes)
- Graphische Darstellung:
 - Vertikale Abgrenzungen, verantwortliche Partei

Objektfluss (Object Flow)

• Motivation:

 Darstellung, wann wichtige Objekte kreiert/zerstört werden und wie sich deren Zustände im Laufe der Aktivitäten ändern

• Graphische Darstellung:

- Objekten werden dort ins Aktivitätsdiagramm eingezeichnet, wo sie kreiert/modifiziert werden
- Vebindung mit gestrichelten Übergangspfeilen

Dynamische Nebenläufigkeit (Dynamic Concurrency)

- Modellierung nebenläufiger Ausführung dergleichen Aktivität
- Graphische Darstellung:
 - Multiplizität (>1) in Aktivität

Dynamische Nebenläufigkeit

Erhalte
Bestellung

Posten

Dynamische Nebenläufigkeit

Auslieferung
der Bestellung

• Übergang findet statt, wenn alle Aktivitäten beendet sind

Aktivitäts-Sicht - Zusammenfassung

- Betonung auf Aktivitäten
- Zerlegung komplexer Geschäftsprozesse, Algorithmen, Operationen in Einzelbestandteile
 - Top-Down Modellierung durch Unterdiagramme
 - Identifikation nebenläufiger Bearbeitung
- Festlegen/Veranschaulichen von Verantwortlichkeiten

