Grand Marie-Anne Note: 9/20 (score total : 9/20)

+251/1/38+

QCM THLR 4

	<u>.G</u>	Identifiant (de haut en bas) :
2/2	sieurs plus r pas pe incorr	Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases à que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plusréponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est ossible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les rectes pénalisent; les blanches et réponses multiples valent 0. I J'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +251/1/xx+···+251/2/xx+.
	Q.2	Le langage $\{a^nb^n\mid \forall n\in\mathbb{N}\}$ est
2/2		☐ rationnel ☐ vide ☐ fini
	Q.3	Le langage $\{0^n 1^n \mid n < 42^{51} - 1\}$ est
0/2		
	Q.4	Un automate fini qui a des transitions spontanées
-1/2	×] n'est pas déterministe \square est déterministe \square n'accepte pas $arepsilon$ accepte $arepsilon$
	Q.5	Quels langages ne vérifient pas le lemme de pompage?
0/2		 ☐ Certains langages reconnus par DFA ☐ Tous les langages non reconnus par DFA ☐ Tous les langages reconnus par DFA
	Q.6	Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si :
0/2		$\ \ \ \ \ \ \ \ \ \ \ \ \ $
	Q.7	Si un automate de n états accepte a^n , alors il accepte
0/2		$\boxtimes a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^*$: $p+q \le n \qquad \square \qquad a^{n+1} \qquad \square \qquad (a^n)^m$ avec $m \in \mathbb{N}^*$ $\square \qquad a^n a^m$ avec $m \in \mathbb{N}^*$
	Q.8 dont	Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
2/2		\square Il n'existe pas. \square 4^n \square $\frac{n(n+1)(n+2)(n+3)}{4}$ \square 2^n
	Q.9	$a, b a, b a, b$ Déterminiser cet automate : $ \xrightarrow{a \ b} a \xrightarrow{b} a \xrightarrow{b} a \xrightarrow{b} $

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

2/2

 \square $Det(T(Det(T(Det(\mathscr{A})))))$

Fin de l'épreuve.