Notizen zu Poon: Self assembly of colloidal pyramids...

Michael Kopp	
 THE CONTROL IN THE	· ·

Motivation Pyramiden sind wichtig in Anwendung mit schaften Strukturen – bspw. Kraftmikroskopie.

Pyramide vs Kette Eine 2D-Pyramide kann in einem homogenen H-Feld neiht im Gleichgewicht sein. Nachgewisen durch *Rechnung* mit Dipol-Dipol-Potential. Eine kette ist günstiger als Pyramide.

Ist dagegen die Basis (mit N_B Teilchen) fixiert, so sit die Pyramide günstiger als die kette, solange $N_B < 4$ ist, für $N_B = 4$ sind die Energien gleich. Für $N_B > 4$ werden sich dagegen Ketten bilden, deren Länge einzig durch "thermische Zersetzung" begrenzt ist.

Im Experiment ($a=1.4\mu m,~\chi=0.17,$ Teilchen in Konz. $c=10^7/mL$ in $V\sim 10\mu L$ hochreinem Wasser): Teilchen gehen zur Kontaktlinie Wasser-Fläche – vermutlich wegen geringer Strömungen durch Verdampfung an Oberfläche. Schaltet man H-Feld ein, bilden sich Pyramiden. Nur solche mit $N_B\leq 4$ wurden beobachtet. Experiment bestätigt Theorie.

Neue Idee für größere Pyramiden: Verwende magnet. Wand als 1D-Grenze. Diese hat H-Feld, welches mit magn. Momenten der Kolloid-Teilchen wechselwirkt. Die Magnetisierung der Kolloid-Teilchen wird nur nurch globales H-Feld bewirkt. Berechne theoretisch Energie E_{∇} für Dreieck und E_{\perp} für Kette. Bis zu einem best. kritischen H_c ist $E_{\nabla} \leq E_{\perp}$.

Im Experiment (Bismuth-Wände der Dicke $4\mu m$, Magnetisierung $M \sim 10^5 A/m$, Teilchen mit Konz. $c = 10^5/mL$): Pyramiden bilden sich, wenn H-Feld schwach genug, in starkem H-Feld dominieren Ketten.

Theoretisch wurde $H_c \sim 2.8 \, 10^3 A/m$ vorausgesagt, praktisch ergab sich $H_c \sim 5.0 \, 10^2 A/m$. Die Theorie ist also nur qualitativ gut, nicht quantitativ. Erklärung für Abweichung: Theorie ignoriert,d ass sich die Dipole untereinander beeinflussen. Hier: Diepole werden nur durch H_{ext} erzeugt.

Theoretisch ist H_c von Größe der Pyramide abhängig. In Praxis findet man jedoch immer Mischungen verschieden großer Pyramiden und nur bis zu einer best. Größe.