Recitation: Data analysis

Felipe Balcazar

NYU

October, 2021

Recall: Lobbying and tariffs

- We ask whether lobbying increases tariffs on imports.
- Exporting firms have incentives to liberalize.
- Unit of observation (i) is the firm.

Recall: Lobbying and tariffs

- We ask whether lobbying increases tariffs on imports.
- Exporting firms have incentives to liberalize.
- Unit of observation (i) is the firm.

Let's start with the basics: statistics

- How can we begin to analyze Y? We can compute...

 - The mean: $\mu=\frac{\sum_i y}{N}$. The (sample) variance: $\sigma^2=\frac{\sum_i (y-\mu)^2}{(N-1)}$.
 - The (sample) standard deviation: $\sigma = \sqrt{\frac{\sum_i (y-\mu)^2}{(N-1)}}$.
 - The median or 50th percentile.
 - Maximum or minimum.

Summary statistics

- The mean: $E(tariff) = \frac{\sum_{i} tariffs}{N_{firms}}$
- The (sample) variance: $Var(tariff) = \frac{\sum_{i} (tariffs_{i} tariff)^{2}}{(N_{firms} 1)}$
- The (sample) standard deviation:

$$Sd(\textit{tariff}) = \sqrt{\textit{Var}(\textit{tariff})} = \sqrt{\frac{\sum_{i}(\textit{tariff}_{i} - \textit{E}(\textit{tariff}))^{2}}{(\textit{N}_{\textit{firms}} - 1)}}$$

- The median or 50th percentile.
- The maximum and the minimum.

- Is the average tariff rate 0.07?
 - Null hypothesis (H_0): E(tariff) = 0.07.
 - The alternative (H_a) : $E(tariff) \neq 0.07$.

- Is the average tariff rate 0.07?
 - Null hypothesis (H_0): E(tariff) = 0.07.
 - The alternative (H_a) : $E(tariff) \neq 0.07$.

		Null hypothesis	
		TRUE	FALSE
Findings	Reject null	Type I error (α)	Correct decision
	Accept null	Correct decision	Type II error (β)

- ullet α is what is called "significance." Probability of type I error.
- ullet eta is what is called "power." Probability of type II error.

- Is the average tariff rate 0.07?
 - Null hypothesis (H_0): E(tariff) = 0.07.
 - The alternative (H_a): $E(tariff) \neq 0.07$.

		Null hypothesis	
		TRUE	FALSE
Findings		False positive (α)	Correct decision
	Accept null	Correct decision	False negative (β)

- ullet α is what is called "significance." Probability of false positive.
- ullet eta is what is called "power." Probability of false negative.

- We do not want to reject the null when it is true: type I error
 i.e., we do not want false positives.
- The probability for this must be small, less than α .
 - α is the statistical significance (usually 0.05 or 5%).
- We do not want to accept the null when it is false: type II
 error i.e., we do not want false negatives.
 - If the number of unit of observations you have is too small (below 42) you will be underpowered.
 - Important: I talk about the number of unit of observations, not the number of observations!

• To test this hypothesis we compute a t-statistic:

$$\hat{t} = \frac{E(Tariff) - H_0}{SE}.$$

• $SE = \frac{SD(Tariff)}{\sqrt{N_{firms}}}$ - this is the standard error.

• To test this hypothesis we compute a t-statistic:

$$\hat{t} = \frac{E(Tariff) - 0.07}{SE}.$$

• $SE = \frac{SD(Tariff)}{\sqrt{N_{firms}}}$ - this is the standard error.

To test this hypothesis we compute a t-statistic:

$$\hat{t} = \frac{E(Tariff) - 0.07}{SE}.$$

- $SE = \frac{SD(Tariff)}{\sqrt{N_{firms}}}$ this is the standard error.
- Then we ask $Pr(|t| \ge |\hat{t}|) \equiv \text{p-value}$.
 - p-value is the probability of type I error.
- If p-value $< \alpha$, we reject the null hypothesis.
 - Don't worry, the computer does all of this for you.
 - You probably have seen stars in papers.

To test this hypothesis we compute a t-statistic:

$$\hat{t} = \frac{E(Tariff) - 0.07}{SE}.$$

- $SE = \frac{SD(Tariff)}{\sqrt{N_{firms}}}$ this is the standard error.
- Then we ask $Pr(|t| \ge |\hat{t}|) \equiv \text{p-value}$.
 - p-value is the probability of type I error.
- ullet If p-value $< \alpha$, we reject the null hypothesis.
 - Don't worry, the computer does all of this for you.
 - You probably have seen stars in papers.

Eyeballing the answer to the same question

- Use a confidence interval!
- Focus on the statistical significance (α) ,
- So $(1-\alpha) \times 100$ is the confidence that H_0 is true.
 - 90% confidence when $\alpha = 0.1$.

$$H_0 \in [E(\textit{Tariff}) - 1.65SE; E(\textit{Tariff}) + 1.65SE]$$

• 95% confidence when $\alpha = 0.05$.

$$H_0 \in [E(\textit{Tariff}) - 1.96SE; E(\textit{Tariff}) + 1.96SE]$$

• 99% confidence when $\alpha = 0.01$.

$$H_0 \in [E(Tariff) - 2.56SE; E(Tariff) + 2.56SE]$$

Statistical significance

- Null hypothesis (H_0): E(tariff) = 0.0.
- The alternative (H_a) : $E(tariff) \neq 0.0$.
- If we reject the null hypothesis then E(tariff) is statistically significant that is statistically different from zero.
 - 90% confident that is not zero if

$$0 \not\in [\textit{E(Tariff)} - 1.65\textit{SE}; \textit{E(Tariff)} + 1.65\textit{SE}]$$

• 95% confident that is not zero if

$$0 \notin [E(\textit{Tariff}) - 1.96SE; E(\textit{Tariff}) + 1.96SE]$$

99% confident that is not zero if

$$0 \notin [E(\textit{Tariff}) - 2.56SE; E(\textit{Tariff}) + 2.56SE]$$

Statistical significance (II)

- Null hypothesis (H_0): E(tariff) = 0.0.
- The alternative (H_a) : $E(tariff) \neq 0.0$.
- Only for this type of hypothesis we can also check the absolute value of the E(Tariff) against the SE:
 - 90% confident that is not zero if

$$\frac{|\textit{E(Tariff})|}{1.65} > \textit{SE}$$

• 95% confident that is not zero if

$$\frac{|\textit{E(Tariff})|}{1.96} > \textit{SE}$$

• 99% confident that is not zero if

$$\frac{|\textit{E(Tariff})|}{2.56} > \textit{SE}$$

