

Real Coordinates Spaces

Source: Real coordinate spaces (video) | Vectors | Khan Academy

Coordinate Spaces

\mathbb{R}^2 – 2D Real Coordinate Space

- Meaning: All possible real-valued 2-tuples
- 2-tuple: Ordered list of 2 real numbers, e.g., (3, 4) or (-3, -4)
- Visual: Standard XY plane (horizontal & vertical axes)

Real Coordinates Spaces 1

• Examples:

$$\circ \ ec{a} = egin{bmatrix} 4 \ 3 \end{bmatrix}$$

$$\circ \; ec{b} = egin{bmatrix} -3 \ -4 \end{bmatrix}$$

$$\circ$$
 Zero vector: $ec{0} = egin{bmatrix} 0 \\ 0 \end{bmatrix}$

• Important: Order matters! (3,4)
eq (4,3)

\mathbb{R}^3 – 3D Real Coordinate Space

- Meaning: All possible real-valued 3-tuples
- 3-tuple: Ordered list of 3 real numbers
- Examples:

$$oldsymbol{\circ} \; ec{x} = egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} \in \mathbb{R}^3$$

$$egin{aligned} \circ & ec{b} = egin{bmatrix} -1 \ 5 \ 3 \end{bmatrix} \in \mathbb{R}^3 \end{aligned}$$

lacktriangle What **is Not** in \mathbb{R}^3 ?

- $egin{bmatrix} 3 \\ 4 \end{bmatrix}$ not a 3-tuple ightarrow belongs to \mathbb{R}^2
- $\begin{bmatrix} i \\ 0 \\ 1 \end{bmatrix}$ has imaginary part ightarrow not real-valued

Generalizing to Higher Dimensions

\mathbb{R}^n – n-Dimensional Real Coordinate Space

- **Definition**: The set of all real-valued n-tuples
 - Each vector has n components, all real numbers
- Examples:
 - $ec{x} \in \mathbb{R}^4$: 4 real values
 - $oldsymbol{ec{z}} \in \mathbb{R}^{100}$: 100-dimensional vector $oldsymbol{ec{v}}$

Visualization Note

- You can **visualize** up to \mathbb{R}^3 easily
- For n>3: you can still **represent mathematically** even though visualization gets impossible

Key Definitions

Term	Definition	Example
Tuple	Ordered list of numbers	(x,y), (x,y,z) , etc.
2-Tuple / 3- Tuple	Tuple with 2 / 3 elements	(4,3), $(-1,5,3)$
\mathbb{R}^n	Real coordinate space with n dimensions	\mathbb{R}^2 , \mathbb{R}^3 , etc.
$ec{v} \in \mathbb{R}^n$	Vector v belongs to n-dimensional real space	$ec{b} = egin{bmatrix} -1 \ 5 \ 3 \end{bmatrix} \in \mathbb{R}^3$

Key Takeaways

Concept	Summary	
\mathbb{R}^n	All real-valued n-tuples; each point is a vector	
Dimensions	\mathbb{R}^2 is 2D, \mathbb{R}^3 is 3D, and so on	
Real-valued	All components are real numbers (no imaginary parts)	
Visualization limits	We visualize up to 3D, but math allows any nD!	

Real Coordinates Spaces 4