19-01 Assignment 8

 $\chi_{n} \geq \sqrt{\chi_{1}^{2} + \cdots + \chi_{n-1}^{2}}$

 $|| \langle \chi_n \rangle | \langle \chi_1^2 + ... + \chi_{n-1}^2 \rangle = || \langle (\chi_1)^2 + ... + ((\chi_{n-1})^2)^2 \rangle$

即 dx eLT ··· LT是锥

证明: O VxeLn

ZT Vy EL": xTy = xnyn + Zxiyi

≥ \xi+xi, \yi+...+yi, + xiyi

20 (Cauchy-Schwarz不等式)

: x ∈ (L")* IP)" ⊄ (L")*

Ø ∀y ∈(L")*

D若y=0,则yn= Nyi+…+ym=0

" YEL"

少若y≠0,下用反证法证明 yn≥√yi+···+yin-1

1段设 yn < \yi+…+yn+

1 若 147+…+ 47 = 0 月 41=…= 41 = 0

型 yn <0 、取 x=(0,0,...,0,-yn)を)ⁿ

则 xy = -yn <0, 这与y∈(L!) >矛盾

Date. Page.	
ii. 若从yi+···+ yin >0	呉
$\mathbb{R}[\mathbb{R}] \mathbb{R} = (-y_1, -y_2, \dots, -y_n, \mathbb{R}, \mathbb{R}, \mathbb{R}) \in \mathbb{R}^n$	
$xy = -y_1^2 - y_2^2 - \cdots + y_{n-1}^2 + y_{n-1}y_1^2 + \cdots + y_{n-1}^2$	2. La
$<-y_1^2-y_2^2+\cdots+y_{n-1}^2+y_1^2+\cdots+y_{n-1}^2$	
and in the court of the like in the	dua
这与 y ∈ (山1) × 矛盾	
0.1段设不成立	
· yn > yi+ · · + yi , RP y E L"	dı
综合了、习,得(2 ⁿ)*CL ⁿ 13x	
综合0.0, 50 17=(27)*, 即 ice_cream cone 自对偶	
Los trapit of the right	
(c)证明: 81100000000000000000000000000000000000	3. ca
O AXES! ("1) SIT AND MILLION	_
对サドモST: 別知X·Y >0 : XE(ST)* 即STC(ST)*	
@ YYE(ST)*, 下用反证法证明 YEST	_
1段设 1年57 70 日入(0, x6 R) \$1503, St. Yx= xx	
THO THO XIX IX IX IX IX	
:. tr(YxxT) = tr(xTxx) = xTx<0	_
$Y \cdot (xx^{T}) = \operatorname{tr}(Yxx^{T}) < 0$	<u> </u>
"18 (114 . DZ " DXXT EST 1	_
这与YE(SI)*矛盾,故假设不成立	
: YEST : (ST)*CST	

综合の。图知,5年=(5年)* 耶野是自对假的

2. Lagrangian: $L(x, x) = c^T x + x^T (Ax - b)$

 $= (c + A^T \lambda)^T x - \lambda^T b$

dual function: $g(x) = \inf_{x} L(x, x)$

ETu

 $\Gamma - \lambda^T b$, $C + A^T \lambda = 0$

= -w, otherwise

dual problem max - xTb

s.t ATI+c=0

Server Sillo X ZXX O

3.(a) 今yi=Aix+bi ti=cix+di

则原问题转化为 min fTx

M st Nyill2≤ ti i=1,...m

yi= Aix+bi-, i=1...m

ti = Cix + di, i=1

Lagrangian: L(x, yot, x,)

= ftx + F(11 yills ti). li + Fx (yi-Aixbi)

- wix(ti-cix-di)

 $= \left(f - \sum_{m}^{m} A_{i} \gamma_{i} - \sum_{m}^{m} u_{i} c_{i} \gamma_{x} + \sum_{m}^{m} \left(\frac{1}{12} \frac{1}{12} + V_{i} \gamma_{i} \right) \right)$

+ 1 (+ bi-Midi)

Date. Page.

O, $f = \sum_{i=1}^{m} (A_i^T r_i + u_i c_i)$ inf $(f - \sum_{i=1}^{m} (A_i^T r_i + u_i c_i))^T x = \{-\omega, \text{ otherwise}\}$ $\inf_{y_i} (|x_i||y_i||z| + |y_i|y_i|) = \begin{cases} 0 & ||Y_i||z \le \lambda^{\frac{1}{2}} \\ -\infty & \text{otherwise} \end{cases}$ $\inf_{t \in \mathcal{L}} (ui - \lambda i) ti = \begin{cases} 0 & ui = \lambda i \\ -10 & otherwise \end{cases}$ dua dual function: = $\inf_{x,y,t} L(x,y,t,\lambda,Y,M) = \int_{\mathbb{R}^{n}} \frac{m}{f} \int_{\mathbb{R}^{n}} \frac{m}{f} \int_{\mathbb{R}^{n}} \frac{dx}{f} \int_{\mathbb{R}^{n}} \frac{dx}{f}$ A 11/21/25 x2, it, 且, 11= 入 1 - w, otherwise di .: dual problem max - E (ribi + Midi) s.t. - 5 (Airi+uici)+f=0 11 Pill2 5 Mi, i=1,..., m 海山、替换为以入了社替换为一心即可得到题中给 出的开针。 (b) 原河题可转化为、minflx S.t. - (Aix+bi, Cix+di) < , i=1..., m William Strain

V	Date. Page.
	Lagrangian: $L(x, u, v) = fx - \int_{z=1}^{m} (Aix+bi) - \int_{z=1}^{m} v_{z}(Cix+bi)$
	$= \left(f - \sum_{i=1}^{m} A_i u_i - \sum_{i=1}^{m} V_i C_i \right)^T \times - \sum_{i=1}^{m} (u_i b_i)^T$
	+Vi di)
	dual function: $g(u,v) = \inf_{x} L(x,u,v)$
riCi)	$-\frac{m}{i}(biwi+vidi), f=\frac{m}{i}(Aiwi+vidi)$
计元	-w, otherwise
_	proc more
	dual problem: max - = (bilit divi)
_	$S.t = \int_{i=1}^{\infty} (A_i u_i + V_i c_i) + f = 0$
10	= Ui 2 < Vi, iF1,m
	净的替换为一的可得题中所给开线式
	$ = 4k_1 \times x \times $
	注: 对1.(c)的补充说明 产半正定阵的内积非负)
	若XEST, YEST /=diag { >1, >2,, >n}
	由谱分解可得 $X = Q \Lambda Q^T$, Λ 是对角阵且对角之都非负
	す。 「新日对角元也非负(bxep", x o T ox dox) tox) ≥0 即 の Tox fox fox fox) ≥0 即 の Tox fox fox fox fox fox fox fox fox fox f
m-	$\therefore X \cdot Y = tr(X - Y) = tr(Q \wedge Q^T Y)$
	$= tr(\Lambda Q^T Y Q)$
	= 1. (aTra) (设aTra的对角成为
	$= \Lambda \cdot (a + ra) (\partial a + ra $