ĐỀ THI HSG LỚP 12 TỈNH THÁI NGUYÊN

NĂM HỌC: 2018-2019

THỜI GIAN: 180 PHÚT

Bài 1(4 điểm). Cho hàm số $y = x^3 - 3x^2 + 4$ có đồ thị (C), đường thẳng (d) đi qua A(1;2) và có hệ số góc m. Tìm m để (d) cắt (C) tại ba điểm phân biệt A,B,C sao cho $BC = 4\sqrt{2}$.

Bài 2(4 điểm). Giải phương trình

$$x^3 - 7x^2 + 9x + 12 = (x - 3)(x - 2 + 5\sqrt{x - 3})(\sqrt{x - 3} - 1)$$

Bài 3 (4 điểm).

Cho dãy số
$$\left(u_n\right)_{n=1}^\infty$$
 thỏa mãn
$$\begin{cases} u_1=2\\ u_1+u_2+\ldots+u_{n-1}+u_n=n^2u_n,\ n\geq 1 \end{cases}.$$

Tìm giới hạn $\lim (n^2 u_n)$.

Bài 4 (4 điểm). Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Gọi I là trung điểm của AC. Biết hình chiếu của S lên mặt phẳng ABC là điểm H thỏa mãn $\overrightarrow{BI} = 3\overrightarrow{IH}$ và góc giữa hai mặt phẳng (SAB); (SBC) bằng 60° . Tính thể tích khối chóp S.ABC đã cho và tính khoảng cách giữa hai đường thẳng AB, SI theo a.

Bài 5 (4 điểm). Cho các số thực dương x, y thỏa mãn điều kiện $x^2 + 2y^2 = \frac{8}{3}$. Tìm giá trị lớn nhất của biểu thức

$$P = 7(x+2y) - 4\sqrt{x^2 + 2xy + 8y^2}.$$

HÉT

HƯỚNG DẪN GIẢI

Bài 1(4 điểm). Cho hàm số $y=x^3-3x^2+4$ có đồ thị (C), đường thẳng (d) đi qua A(1;2) và có hệ số góc m. Tìm m để (d) cắt (C) tại ba điểm phân biệt A,B,C sao cho $BC=4\sqrt{2}$.

Lời giải

- +) Phương trình đường thẳng (d): y = m(x-1)+2
- +) Phương trình hoành độ giao điểm $x^3 3x^2 + 4 = m(x-1) + 2 \Leftrightarrow x^3 3x^2 mx + m + 2 = 0$

$$\Leftrightarrow (x-1)(x^2-2x-m-2) = 0 \Leftrightarrow \begin{bmatrix} x=1 \\ g(x) = x^2 - 2x - m - 2 = 0 \end{bmatrix}$$

Giả sử g(x) = 0 có hai nghiệm x_1, x_2 , khi đó $B(x_1; m(x_1 - 1) + 2); C(x_2; m(x_2 - 1) + 2)$

$$BC^{2} = (m^{2} + 1)(x_{1} - x_{2})^{2} = (m^{2} + 1)[(x_{1} + x_{2})^{2} - 4x_{1}x_{2}]$$

$$=(m^2+1)(4+4m+8)=32 \Leftrightarrow m=1$$

Thay m=1 vào $g(x) = x^2 - 2x - 3 = 0 \Leftrightarrow x = -1; x = 3$ (thỏa mãn).

Vây m=1.

Bài 2(4 điểm). Giải phương trình $x^3 - 7x^2 + 9x + 12 = (x - 3)(x - 2 + 5\sqrt{x - 3})(\sqrt{x - 3} - 1)$ **Lời giải**

Điều kiện: $x-3 \ge 0 \Leftrightarrow x \ge 3$.

Phương trình đã cho tương đương với

$$(x-4)(x^{2}-3x-3) = (x-3)(x-2+5\sqrt{x-3})(\sqrt{x-3}-1)$$

$$\Leftrightarrow (\sqrt{x-3}-1)(\sqrt{x-3}+1)(x^{2}-3x-3) = (x-3)(x-2+5\sqrt{x-3})(\sqrt{x-3}-1)$$

$$\Leftrightarrow [\sqrt{x-3}-1=0 \longrightarrow \sqrt{x-3}=1 \Leftrightarrow x=4 \\ (x^{2}-3x-3)(\sqrt{x-3}+1) = (x-3)(x-2+5\sqrt{x-3})$$
(*)

Dễ thấy x = 3 không là nghiệm của phương trình đã cho.

Với
$$x > 3$$
, giải phương trình (*), ta được $\frac{x^2 - 3x - 3}{x - 3} = \frac{x - 2 + 5\sqrt{x - 3}}{\sqrt{x - 3} + 1}$

$$\Leftrightarrow \frac{(x-4)^2 + 5(x-4) + 1}{x-4+1} = \frac{x-3+5\sqrt{x-3}+1}{\sqrt{x-3}+1} \Leftrightarrow f(x-4) = f(\sqrt{x-3}).$$

Xét hàm số
$$f(t) = \frac{t^2 + 5t + 1}{t + 1}$$
 trên $(-1; +\infty)$, có $f'(t) = 1 + \frac{3}{(t+1)^2} > 0$; $\forall t > -1$.

Suy ra f(t) là hàm số đồng biến trên f(t) mà $f(x-4) = f(\sqrt{x-3})$

Do đó
$$x-4=\sqrt{x-3} \Leftrightarrow \begin{cases} x-4 \ge 0 \\ \left(x-4\right)^2 = x-3 \end{cases} \Leftrightarrow \begin{cases} x \ge 4 \\ x^2-9x+19=0 \end{cases} \Leftrightarrow x = \frac{9+\sqrt{5}}{2}.$$

Vậy phương trình đã cho có hai nghiệm là x = 4; $x = \frac{9 + \sqrt{5}}{2}$.

Bài 3 (4 điểm).

Cho dãy số
$$\left(u_n\right)_{n=1}^\infty$$
 thỏa mãn $\begin{cases} u_1=2\\ u_1+u_2+\ldots+u_{n-1}+u_n=n^2u_n,\ n\geq 1 \end{cases}$. Tìm giới hạn $\lim\left(n^2u_n\right)$.

Lời giải

Theo giả thiết ta có:

$$(n+1)^{2} u_{n+1} = (u_{1} + u_{2} + \dots + u_{n}) + u_{n+1} = n^{2} u_{n} + u_{n+1} \Rightarrow (n^{2} + 2n) u_{n+1} = n^{2} u_{n} \Rightarrow (n+2) u_{n+1} = n u_{n}$$

$$\Rightarrow u_{n+1} = \frac{n}{n+2} u_{n} = \frac{n}{n+2} \cdot \frac{n-1}{n+1} u_{n-1} = \frac{n}{n+2} \cdot \frac{n-1}{n+1} \cdot \frac{n-2}{n} \cdot u_{n-2}$$

$$= \dots = \frac{n}{n+2} \cdot \frac{n-1}{n+1} \cdot \frac{n-2}{n} \cdot \dots \cdot \frac{1}{3} u_{1} = \frac{4}{(n+2)(n+1)}$$

$$\Rightarrow u_{n} = \frac{4}{n(n+1)} \Rightarrow n^{2} u_{n} = \frac{4n}{n+1} \Rightarrow \lim_{n \to \infty} (n^{2} u_{n}) = \lim_{n \to \infty} \frac{4n}{n+1} = 4.$$

Bài 4 (4 điểm). Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Gọi I là trung điểm của AC. Biết hình chiếu của S lên mặt phẳng ABC là điểm H thỏa mãn $\overrightarrow{BI} = 3\overrightarrow{IH}$ và góc giữa hai mặt phẳng (SAB); (SBC) bằng 60° . Tính thể tích khối chóp S.ABC đã cho và tính khoảng cách giữa hai đường thẳng AB, SI theo a.

Lời giải

a) Từ giả thiết của bài toán ta có
$$\begin{cases} BH \perp AC \\ SH \perp AC \end{cases} \Rightarrow AC \perp \left(SBH\right) \Rightarrow AC \perp SB \, .$$

Kẻ $IJ \perp SB \Rightarrow \begin{cases} AJ \perp SB \\ CJ \perp SB \end{cases} \Rightarrow \text{góc giữa hai mặt phẳng } (SAB) \text{ và } (SCB) \text{ bằng góc giữa hai đường thẳng } AJ \text{ và } CJ \text{ .}$

Dễ thấy ΔAIJ là tam giác cân tại J, kết hợp với giả thiết góc giữa hai mặt phẳng (SAB) và (SCB) bằng 60° ta có hai trường hợp sau:

TH1:
$$\widehat{AJC} = 60^{\circ} \Rightarrow \widehat{AJI} = 30^{\circ}$$
.

Ta có
$$IJ = AI \cdot \tan 60^\circ = \frac{a\sqrt{6}}{2} \Rightarrow BJ = \sqrt{BI^2 + IJ^2} = \sqrt{2}a$$
.

$$\Delta BIJ \sim \Delta BSH \Rightarrow SH = \frac{IJ.BH}{BJ}$$
. Mặt khác $IB = \frac{AC}{2} = \frac{a}{\sqrt{2}} \Rightarrow BH = \frac{4a}{3\sqrt{2}}$.

Nên ta có
$$SH = \frac{a\sqrt{6}}{3} \Rightarrow V_{S.ABC} = \frac{1}{3}SH.S_{ABC} = \frac{\sqrt{6}a^3}{18}$$
 (đvtt).

TH2:
$$\widehat{AJC} = 120^{\circ} \Rightarrow \widehat{AJI} = 60^{\circ}$$
.

Ta có
$$IJ = AI \cdot \tan 30^\circ = \frac{a}{\sqrt{6}} \Rightarrow BJ = \sqrt{BI^2 + IJ^2} = \frac{2a}{\sqrt{6}}$$

Làm tương tự **TH1** ta có
$$SH = \frac{\sqrt{2}a}{3} \Rightarrow V_{S.ABC} = \frac{1}{3}SH.S_{ABC} = \frac{\sqrt{2}a^3}{18}$$
 (đvtt).

b) Gọi E là trung điểm của $BC \Rightarrow IE \parallel AB$. Do vậy ta có d(AB,SI) = d(AB,(SIE)) = d(B,(SIE)).

Do
$$\overrightarrow{BI} = 3\overrightarrow{IH} \Rightarrow d(B,(SIE)) = 3d(H,(SIE))$$
.

Kẻ $HK \perp IE$ (K thuộc IE).

Mặt khác ta lại có $SH \perp (ABC)$ nên $SH \perp IE \Rightarrow IE \perp (SHK) \Rightarrow (SIE) \perp (SHK)$.

Kė
$$HF \perp SK \Rightarrow HF \perp (SIE) \Rightarrow d(H, (SIE)) = HJ$$
.

Xét tam giác vuông
$$SHK$$
 ta có: $\frac{1}{HF^2} = \frac{1}{HK^2} + \frac{1}{SH^2} \Rightarrow HF = \frac{SH.HK}{\sqrt{SH^2 + HK^2}}$.

Mặt khác
$$\frac{HK}{BE} = \frac{IH}{IB} = \frac{1}{3} \Rightarrow HK = \frac{1}{3}BE = \frac{a}{6}$$
.

- Khi
$$SH = \frac{a\sqrt{6}}{3}$$
 ta có $HF = \frac{\sqrt{6}a}{15}$.

- Khi
$$SH = \frac{\sqrt{2}a}{3}$$
 ta có $HF = \frac{\sqrt{2}a}{9}$.

Bài 5 (4 điểm). Cho các số thực dương x, y thỏa mãn điều kiện $x^2 + 2y^2 = \frac{8}{3}$. Tìm giá trị lớn nhất của biểu thức

$$P = 7(x+2y) - 4\sqrt{x^2 + 2xy + 8y^2}.$$

Lời giải

Ta có:
$$4\sqrt{x^2 + 2xy + 8y^2} = \sqrt{16x^2 + 32xy + 128y^2} = \sqrt{7(x - 2y)^2 + (3x + 10y)^2} \ge 3x + 10y(1)$$

Suy ra:
$$P = 7(x+2y) - 4\sqrt{x^2 + 2xy + 8y^2} \le 7x + 14y - (3x+10y) = 4(x+y)$$
.

Mặt khác:
$$x + y = \left(1.x + \frac{1}{\sqrt{2}}\sqrt{2}y\right) \le \sqrt{\left(1 + \frac{1}{2}\right)\left(x^2 + 2y^2\right)} = 2 \Rightarrow P \le 4.2 = 8(2).$$

Đẳng thức xảy ra ở (1) & (2) khi và chỉ khi
$$\begin{cases} 7(x-2y)^2 = 0\\ \frac{x}{1} = \frac{\sqrt{2}y}{\frac{1}{\sqrt{2}}} & \Leftrightarrow \begin{cases} x = \frac{4}{3}\\ y = \frac{2}{3} \end{cases}\\ x^2 + 2y^2 = \frac{8}{3} \end{cases}$$

Vậy GTLN
$$P = 8$$
 đạt được khi
$$\begin{cases} x = \frac{4}{3} \\ y = \frac{2}{3} \end{cases}$$