

Edited by A J Munday and R A Farrar

REASON FOR PUBLICATION

- This book has been produced to provide a pocketable source of data for students pursuing most Engineering Degree Courses, and for use in examinations. * It was not designed for use in Electrical Degree Courses.
- It differs from other data books in two respects; it has a comprehensive key-word index and a symbols index in order that users may find data efficiently.
- A Professional Engineer should not rely on the memory of facts for use in a design situation, <u>until</u> their frequent use has committed them permanently and accurately to the memory. Until that happy time is reached a data book makes life easier, and makes the permanent retention of accurate facts more likely.

The editors hope that no errors exist but cannot guarantee the accuracy of the data. If you find any errors the editors would appreciate your comments for inclusion in further editions.

A.J. MUNDAY and R.A. FARRAR
Department of Mechanical Engineering
Faculty of Engineering and Applied

Acknowledgements

- i) International Nickel Ltd for the Periodic Table
- ii) Biometrika Trustees for the Statistical Tables
- iii) Mrs E.H. Day for the layout and typing of the booklet
- iv) Members of University Staff who made contributions:-DJC, JRC, RJF, PWF, SPH, RMH, PJL, SJM, JAO, HJS, KVHS, MTT, PLT, DRW, JBW, PW.
- Other engineering data sources too numerous to mention individually for commonly used values and equations.

An Engineering Data Book

Edited by

A. J. Munday R. A. Farrar

© University of Southampton 1979

All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means without permission.

Published by MACMILLAN EDUCATION LTD Basingstoke and London

ISBN 0-333-25829-0

Printed in Hong Kong

M

First edition 1979 Reprinted 1979, 1980, 1982, 1986, 1989

^{*} Where permitted by the examining body.

1. UNITS AND ABBREVIATIONS

1.1 Decimal prefixes

symbol	prefix	factor by which unit is multiplied
T	tera	10 ¹²
G	giga	109
М	mega	106
k	kilo	103
h	hecto	10 ²
da	deca	10
d	deci	10-1
С	centi	10-2
m	milli	10-3
μ	micro	10-6
n	nano .	10-9
р	pico	10-12

1.2 SI units

(i) Basic units

K kelvin thermodynamic temperature	unit symbol	unit	quantity
s second time A ampere electric curren K kelvin thermodynamic temperature	m	metre	length
A ampere electric curren K kelvin thermodynamic temperature	kg	kilogramme	mass
K kelvin thermodynamic temperature	s	second	time
temperature	A	ampere	electric current
cd candela luminous intens	K	kelvin	
	cd	candela	luminous intensity

(ii) Supplementary and derived units

quantity	unit	symbol	equivalent
plane angle	radian	rad	-
force	newton	N	kg m/s ²
work, energy heat	joule	- J	N m
power	watt	W	J/s
frequency	hertz	Hz	s ⁻¹
viscosity: kinematic dynamic pressure stress		m ² /s Ns/m ² =Pa s Pa=N/m ² Pa or N/m ²	10 ⁶ cSt(centi- stoke) 10 ³ cP (centi- poise) Called pascal,Pa
	electrica	units	
potential	volt	V	W/A
resistance	ohm	Ω	V/A
charge	coulomb	С	A s
capacitance	farad	F	A s/V
electric field strength	-	V/m	
electric flux density	-	C/m ²	e same in-
	magnetic	units	
magnetic flux	weber	Wb	V s = Nm/A
inductance	henry	н	V s/A = Nm/A ²
magnetic field strength	-	A/m	- 10 to 1
magnetic flux density	tesla	Т	$Wb/m^2 = N/(Am)$

1.3 Conversion factors for other units into SI units

Length, area, volume

1 in = 25.4 mm exactly 1
$$A = 10^{-10}$$
 m

1 ft = 0.3048 m 1 thou=1 mil = 0.001 in = 25.4
$$\mu$$
m

1 yd = 0.914 m 1 micron =
$$1\mu$$
m

$$1 \text{ in}^3 = 16.39 \text{ cm}^3$$

$$1 \text{ ft}^3 = 0.02832 \text{ m}^3$$

1 gal =
$$0.1605 \text{ ft}^3 = 4546 \text{ cm}^3 = 4.546 \text{ l (Litre)}$$

1 USgal =
$$0.1337 \text{ ft}^3 = 3785 \text{ cm}^3$$

Velocity

$$1 \text{ mile/h} = 1.467 \text{ ft/s} = 1.609 \text{ km/h} = 0.447 \text{ m/s}$$

$$1 \text{ knot} = 1.689 \text{ ft/s} = 1.853 \text{ km/h} = 0.514 \text{ m/s}$$

Mass

$$1 \ 1b = 0.4536 \ kg$$

Flowrate

$$1 \text{ ft}^3/\text{s} (1 \text{ cusec}) = 0.02832 \text{ m}^3/\text{s}$$

1 gal/min =
$$7.577 \cdot 10^{-5} \text{ m}^3/\text{s} = 0.07577 \cdot \text{dm}^3/\text{s}$$

Density

$$1 \text{ 1b/in}^3 = 27.68 \text{ g/cm}^3$$

$$1 \text{ 1b/ft}^3 = 16.02 \text{ kg/m}^3$$

$$1 \text{ slug/ft}^3 = 515.4 \text{ kg/m}^3$$

Thermal conductivity

1 Btu/ft h deg R = 1.731 J/m s
$${}^{\circ}$$
C = 1.731 W/(mK)

1 cal/cm s deg K = 418.7 J/m s
$${}^{\circ}$$
C = 418.7 W/(mK)

Force

$$1 \text{ pd}1 = 0.1383 \text{ N}$$

1 lbf =
$$32.17 \text{ pdl} = 4.448 \text{ N}$$

1 kgf =
$$2.205$$
 1bf = 9.807 N

$$1 \text{ dyne} = 10^{-5} \text{ N}$$

Torque

$$1 \text{ tonf ft} = 3037 \text{ Nm}$$

Power

1 hp =
$$550 \text{ ft } 1\text{bf/s} = 0.7457 \text{ kW}$$

$$1 \text{ ft } 1\text{bf/s} = 1.356 \text{ W}$$

Energy, work, heat

$$1 \text{ ft } 1\text{bf} = 1.356 \text{ J}$$

$$1 \, kW \, h = 3.6 \, MJ$$

$$1 \text{ cal} = 4.187 \text{ J}$$

$$1 \text{ hp h} = 2.685 \text{ MJ}$$

Pressure, stress

$$1 \text{ 1bf/in}^2 = 0.07031 \text{ kgf/cm}^2 = 6895 \text{ N/m}^2$$

$$1 \text{ tonf/in}^2 = 157.5 \text{ kgf/cm}^2 = 15.44 \text{ MN/m}^2$$

$$1 \text{ kgf/cm}^2 = 0.09807 \text{ MN/m}^2 = 0.9807 \text{ bar}$$

$$1 \text{ kgf/mm}^2 = 9.807 \text{ MN/m}^2 = 0.9807 \text{ hbar}$$

$$1 \text{ 1bf/ft}^2 = 47.88 \text{ N/m}^2$$

1 ft
$$H_2O$$
 = 62.43 $1bf/ft^2$ = 2989 N/m^2

1 in Hg =
$$70.73 \text{ lbf/ft}^2 = 3386 \text{ N/m}^2$$

1 mm Hg = 1 torr =
$$133.3 \text{ N/m}^2$$

1 bar =
$$14.50 \text{ lbf/in}^2 = 10^5 \text{ N/m}^2$$

1 Int atm =
$$14.70 \text{ lbf/in}^2 = 10.34 \text{ m water} = 1.013 \times 10^5 \text{ N/m}^2$$

= 1.013 bar = 760 mm Hg = 101.3 kPa

$$= 1.013 \text{ bar} = 760 \text{ mm Hg} = 101.3 \text{ kP}$$

¹ tonne = 1 Mg = 1 metric ton

Dynamic viscosity

1	poise (g/cm s)	=	0.1 kg/m s = 0.1 N s/m ² = 0.1 Pa s
1	kgf s/m ²	=	0.9807 N s/m ²
1	lb/ft h	=	0.4132 mN s/m ²
1	slug/ft s	=	1 1bf $s/ft^2 = 47.88 \text{ N s/m}^2$
1	1bf s/in ²	=	6895 N s/m ²

Kinematic viscosity

1	ft ² /s	=	0.09290 m ² /s
1	in^2/s	=	645.2 mm ² /s
1	cSt	=	1 mm ² /s

Electrical units

The conversion factors which follow are from the C.G.S. system to the SI system. (Note: in the C.G.S. system l e.m.u. = 3 x 10^{10} e.s.u. of charge).

capacitance	1	e.s.u.	=	$\frac{1}{9} \times 10^{-11} \text{ F}$
charge	1	e.m.u.	=	10 C
current	1	e.m.u.	=	10 A
electric field strength	1	e.s.u.	=	$3 \times 10^4 \text{ V/m}$
electric flux density	1	e.s.u.	=	$\frac{1}{12\pi} \times 10^{-5} \text{ C/m}^2$
electric polarisation	1	e.s.u.	=	$\frac{1}{3} \times 10^{-5} \text{ C/m}^2$
inductance	1	e.m.u.	=	10 ⁻⁹ H
intensity of magnetisation	1	e.m.u.	=	10 ³ A/m
magnetic field strength	1	e.m.u.	=	$\frac{1}{4\pi} \times 10^3 \text{ A/m}$
magnetic flux	1	e.m.u.	=	10 ⁻⁸ Wb
magnetic flux density	1	e.m.u.	=	10 ⁻⁴ Wb/m ²
magnetic moment	1	e.m.u.	=	10 ⁻³ A m ²
magnetomotive force	1	e.m.u.	=	$\frac{10}{4\pi}$ A
mass susceptibility	1	e.m.u/g	=	$4\pi \times 10^{-3} \text{ kg}^{-1}$
potential	1	e.m.u.	=	10 ⁻⁸ V
resistance	1	e.m.u.	=	10 ⁻⁹ Ω

2. PHYSICAL CONSTANTS

Avogadro's number $N = 6.023 \times 10^{26}/(kg mol)$ Bohr magneton $\beta = 9.27 \times 10^{-24} \text{ A m}^2$ Boltzmann's constant $k = 1.380 \times 10^{-23} \text{ J/K}$ Stefan-Boltzmann constant $\sigma = 5.67 \times 10^{-8} \text{ W/}(\text{m}^2\text{K}^4)$ characteristic impedance of Z_0 $= (\mu_0/\epsilon_0)^{\frac{1}{2}} = 120\pi\Omega$ free space electron volt $\rho = 1.602 \times 10^{-19} \text{ J}$ $\rho = 1.602 \times 10^{-19} \text{ J}$ $\rho = 1.602 \times 10^{-19} \text{ C}$ $\rho = 1.759 \times 10^{-11} \text{ C/kg}$ $\rho = 1.672 \times 10^{-27} \text{ Kg}$ $\rho = 1.672 \times 10^{-27}$		사용하는 경험 가는 사람들이 되는 것이 되었습니다. 그 없는 것이 없는 것이 없다.		_	
Boltzmann's constant k = 1.380×10^{-23} J/K Stefan-Boltzmann constant σ = 5.67×10^{-8} W/(m^2 K ⁴) characteristic impedance of Z_0 = $(\mu_0/\epsilon_0)^{\frac{1}{2}} = 120\pi\Omega$ free space electron volt eV = 1.602×10^{-19} J electron charge e = 1.602×10^{-19} C electronic rest mass m_e = 9.109×10^{-31} kg electronic charge to mass e/m_e = 1.759×10^{11} C/kg ratio Faraday constant F = 9.65×10^7 C/(kg mol) permeability of free space μ_0 = $4\pi \times 10^{-7}$ H/M permittivity of free space ϵ_0 = 8.85×10^{-12} F/m Planck's constant h = 6.626×10^{-34} J s proton mass m_p = 1.672×10^{-27} kg proton to electron mass m_p/m_e = $1.836.1$ standard gravitational m_p/m_e = $1.836.1$ standard gravitational m_p/m_e = $1.836.1$ standard gravitational m_p/m_e = $1.836.1$ standard gravitation m_p/m_e = $1.836.1$ standard gravitational m_p/m_e = $1.836.1$ standard gravitation m_p/m_e = 1.672×10^{-27} kg = $1.$		Avogadro's number	N		
Stefan-Boltzmann constant σ = 5.67 x 10 ⁻⁸ W/(m²κ⁴) characteristic impedance of Z_0 = $(\mu_0/\epsilon_0)^{\frac{1}{2}}$ = 120 $\pi\Omega$ free space electron volt eV = 1.602 x 10 ⁻¹⁹ J electron charge e = 1.602 x 10 ⁻¹⁹ C electronic rest mass m_e = 9.109 x 10 ⁻³¹ kg electronic charge to mass e/m_e = 1.759 x 10 ¹¹ C/kg Faraday constant F = 9.65 x 10 ⁷ C/(kg mol) permeability of free space μ_0 = 4π x 10 ⁻⁷ H/m permittivity of free space ϵ_0 = 8.85 x 10 ⁻¹² F/m Planck's constant h = 6.626 x 10 ⁻³⁴ J s proton mass m_p = 1.672 x 10 ⁻²⁷ kg proton to electron mass m_p/m_e = 1836.1 standard gravitational m_p/m_e = 1836.1 standard gravitational m_p/m_e = 8.314 kJ/(kg mol K) velocity of light in vacuo m_p/m_e = 8.314 kJ/(kg mol K) velocity of light in vacuo m_p/m_e = 2.41 m³	-	Bohr magneton	β		
characteristic impedance of Z_0 = $(\mu_0/\epsilon_0)^{\frac{1}{2}}$ = $120\pi\Omega$ free space electron volt eV = 1.602×10^{-19} J electron charge e = 1.602×10^{-19} C electronic rest mass m_e = 9.109×10^{-31} kg electronic charge to mass e/m_e = 1.759×10^{11} C/kg Faraday constant F = 9.65×10^7 C/(kg mol) permeability of free space μ_0 = $4\pi \times 10^{-7}$ H/m permittivity of free space ϵ_0 = 8.85×10^{-12} F/m Planck's constant h = 6.626×10^{-34} J s proton mass m_p = 1.672×10^{-27} kg proton to electron mass m_p/m_e = 1836.1 standard gravitational m_p/m_e = 1836.1 standard gravitational m_p/m_e = 1836.1 standard gravitational m_p/m_e = 1836.1 standard gravitation m_p/m_e = 183665 standard gravitation m_p/m_e = 183665 standard g		Boltzmann's constant	k		
free space electron volt electron charge electronic rest mass	-	Stefan-Boltzmann constant	σ		
electron charge $= 1.602 \times 10^{-19} \text{ C}$ electronic rest mass $m_e = 9.109 \times 10^{-31} \text{ kg}$ electronic charge to mass $e/m_e = 1.759 \times 10^{11} \text{ C/kg}$ Faraday constant $F = 9.65 \times 10^7 \text{ C/(kg mol)}$ permeability of free space $\mu_o = 4\pi \times 10^{-7} \text{ H/m}$ permittivity of free space $\epsilon_o = 8.85 \times 10^{-12} \text{ F/m}$ Planck's constant $h = 6.626 \times 10^{-34} \text{ J s}$ proton mass $m_p = 1.672 \times 10^{-27} \text{ kg}$ proton to electron mass $m_p/m_e = 1836.1$ standard gravitational $g = 9.80665 \text{ m/s}^2 = 9.80665 \text{ N/kg}$ universal constant of $g = 9.80665 \text{ m/s}^2 = 9.80665 \text{ N/kg}$ universal gas constant $R_o = 8.314 \text{ kJ/(kg mol K)}$ velocity of light in vacuo $c = 2.9979 \times 10^8 \text{ m/s}$	-		Z _o		
electronic rest mass $m_e = 9.109 \times 10^{-31} \text{ kg}$ electronic charge to mass $e/m_e = 1.759 \times 10^{11} \text{ C/kg}$ Faraday constant $F = 9.65 \times 10^7 \text{ C/(kg mol)}$ permeability of free space $\mu_o = 4\pi \times 10^{-7} \text{ H/m}$ permittivity of free space $\epsilon_o = 8.85 \times 10^{-12} \text{ F/m}$ Planck's constant $h = 6.626 \times 10^{-34} \text{ J s}$ proton mass $m_p = 1.672 \times 10^{-27} \text{ kg}$ proton to electron mass $m_p/m_e = 1836.1$ standard gravitational $g = 9.80665 \text{ m/s}^2 = 9.80665 \text{ N/kg}$ universal constant of $g = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$ universal gas constant $g = 8.314 \text{ kJ/(kg mol K)}$ velocity of light in vacuo $g = 2.9979 \times 10^8 \text{ m/s}$	-	electron volt	eV		
electronic charge to mass ratio $e/m_{e} = 1.759 \times 10^{11} \text{ C/kg}$ Faraday constant $F = 9.65 \times 10^{7} \text{ C/(kg mol)}$ permeability of free space $\mu_{o} = 4\pi \times 10^{-7} \text{ H/m}$ permittivity of free space $\epsilon_{o} = 8.85 \times 10^{-12} \text{ F/m}$ Planck's constant $h = 6.626 \times 10^{-34} \text{ J s}$ proton mass $m_{p} = 1.672 \times 10^{-27} \text{ kg}$ proton to electron mass $m_{p}/m_{e} = 1836.1$ standard gravitational $acceleration$ universal constant of $gravitation$ $universal gas constant R = 8.314 \text{ kJ/(kg mol K)}$ velocity of light in vacuo $c = 2.9979 \times 10^{8} \text{ m/s}$ volume of 1 kg mol of ideal $= 22.41 \text{ m}^{3}$	-	electron charge	e		
Faraday constant $F = 9.65 \times 10^7 \text{ C/(kg mol)}$ permeability of free space $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$ permittivity of free space $\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$ Planck's constant $h = 6.626 \times 10^{-34} \text{ J s}$ proton mass $m_p = 1.672 \times 10^{-27} \text{ kg}$ proton to electron mass $m_p/m_e = 1836.1$ standard gravitational $g = 9.80665 \text{ m/s}^2 = 9.80665 \text{ N/kg}$ universal constant of gravitation $g = 9.80665 \text{ m/s}^2 = 9.80665 \text{ N/kg}$ universal gas constant $g = 8.314 \text{ kJ/(kg mol K)}$ velocity of light in vacuo $g = 2.9979 \times 10^8 \text{ m/s}$ volume of 1 kg mol of ideal $g = 22.41 \text{ m}^3$	-	electronic rest mass	m _e	=	9.109 x 10 ⁻³¹ kg
permeability of free space μ_0 = $4\pi \times 10^{-7}$ H/m permittivity of free space ϵ_0 = 8.85×10^{-12} F/m Planck's constant h = 6.626×10^{-34} J s proton mass m_p = 1.672×10^{-27} kg proton to electron mass m_p/m_e = 1836.1 standard gravitational m_p/m_e = 1836.1 standard gravitational m_p/m_e = 9.80665 m/s^2 = 9.80665 N/kg universal constant of m_p/m_e = $6.67 \times 10^{-11} \text{ N} \text{ m}^2/\text{kg}^2$ velocity of light in vacuo m_p/m_e = $8.314 \text{ kJ/(kg mol K)}$ velocity of light in vacuo m_p/m_e = $8.314 \text{ kJ/(kg mol K)}$ velocity of light in vacuo m_p/m_e = 2.9979×10^8 m/s	-		e/m _e	=	1.759 x 10 ¹¹ C/kg
permittivity of free space ϵ_0 = 8.85 x 10 ⁻¹² F/m Planck's constant h = 6.626 x 10 ⁻³⁴ J s proton mass m _p = 1.672 x 10 ⁻²⁷ kg proton to electron mass m _p /m _e = 1836.1 standard gravitational g = 9.80665 m/s ² = 9.80665 N/kg universal constant of G = 6.67 x 10 ⁻¹¹ N m ² /kg ² universal gas constant R = 8.314 kJ/(kg mol K) velocity of light in vacuo c = 2.9979 x 10 ⁸ m/s	-	Faraday constant	F	=	$9.65 \times 10^7 \text{ C/(kg mol)}$
Planck's constant h = $6.626 \times 10^{-34} \text{ J s}$ proton mass m _p = $1.672 \times 10^{-27} \text{ kg}$ proton to electron mass m _p /m _e = 1836.1 standard gravitational g = 9.80665 m/s^2 = 9.80665 N/kg universal constant of gravitation universal gas constant R _o = $8.314 \text{ kJ/(kg mol K)}$ velocity of light in vacuo c = $2.9979 \times 10^8 \text{ m/s}$	-	permeability of free space	μ_0		
proton mass $m_p = 1.672 \times 10^{-27} \text{ kg}$ proton to electron mass $m_p/m_e = 1836.1$ standard gravitational $g = 9.80665 \text{ m/s}^2$ $= 9.80665 \text{ N/kg}$ universal constant of $g = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$ universal gas constant $g = 8.314 \text{ kJ/(kg mol K)}$ velocity of light in vacuo $g = 2.9979 \times 10^8 \text{ m/s}$		permittivity of free space	ε0		
proton to electron mass $m_p/m_e = 1836.1$ standard gravitational $g = 9.80665 \text{ m/s}^2$ acceleration $g = 9.80665 \text{ N/kg}$ universal constant of $g = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$ universal gas constant $g = 8.314 \text{ kJ/(kg mol K)}$ velocity of light in vacuo $g = 2.9979 \times 10^8 \text{ m/s}$		Planck's constant	h		
ratio $^{11}p/^{11}e^{-1630.1}$ standard gravitational $g = 9.80665 \text{ m/s}^2$ acceleration $g = 9.80665 \text{ N/kg}$ universal constant of $g = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$ universal gas constant $g = 8.314 \text{ kJ/(kg mol K)}$ velocity of light in vacuo $g = 2.9979 \times 10^8 \text{ m/s}$ volume of 1 kg mol of ideal $g = 22.41 \text{ m}^3$		proton mass	m _p	=	1.672 x 10 ⁻²⁷ kg
acceleration = 9.80665 N/kg universal constant of G = $6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$ universal gas constant R = $8.314 \text{ kJ/(kg mol K)}$ velocity of light in vacuo c = $2.9979 \times 10^8 \text{ m/s}$ volume of 1 kg mol of ideal = 22.41 m^3	-		m _p /m _e	=	1836.1
gravitation universal gas constant $R_0 = 8.314 \text{ kJ/(kg mol K)}$ velocity of light in vacuo $c = 2.9979 \times 10^8 \text{ m/s}$ volume of l kg mol of ideal $= 22.41 \text{ m}^3$	The same of the same of the same		g		
velocity of light in vacuo c = 2.9979×10^8 m/s volume of 1 kg mol of ideal = 22.41 m ³	-		G	=	$6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$
volume of 1 kg mol of ideal = 22 41 m ³		universal gas constant	Ro	=	8.314 kJ/(kg mol K)
		velocity of light in vacuo	С	=	2.9979 x 10 ⁸ m/s
				=	22.41 m ³

Temperature

°c	=	5	(°F	-	32)							
K	=	<u>5</u>	(°F	+	459.67)	=	<u>5</u>	°R	=	°C	+	273.15

3 . SUMMARY OF "BASIC"

This language contains the facilities provided in most versions of extended BASIC. Some instructions may vary somewhat from one system to another; however, equivalents should be available. This applies particularly to String Functions, Commands and Control Codes, and to items marked with a \dagger . We suggest that you modify the SYSTEM DEPENDENT INSTRUCTIONS MARKED BY \dagger to conform to your own system and add other instructions in the spaces provided.

Arithmetic Variable Names

numeric variables: e.g. A,X;B4,Z1 arithmetic array variables: e.g. S(4),A(I+1),N2(1,J), C(1,B(1))

String Variable Names

character string variables: e.g. B\$ character string array variables: e.g. $Z^{(4)},N^{(A,B)}$

N.B. \$ may be \$ on some terminals. Use the key 'shift 4'.

Arithmetic Operators

- † exponentiation e.g. 2+3 gives 8
- unary minus
- * / multiplication, division
- + addition, subtraction

Operations inside any given pair of brackets are performed before those outside. Subject to this, BASIC performs operations in the order of the operators above. The only(\dagger) exception is A+-B, interpreted as A+(-B). Operators of equal priority are applied from left to right.

e.g. 2+(1+3/2*(1+1)) gives 16

Relational Operators (operate upon arithmetic and string values)

- >
- <= (less than equal to) <> (not equal to)

Logical Operators

AND

XOR exclusive

OR inclusive

Matrix Operators

- + addition or subtraction of matrices of equal dimensions
- * multiplication of conformable matrices
- * multiplication of a matrix by a scalar e.g. MAT A = (K)*A

Arithmetic Functions (x represents any expression)

PI has the constant value 3.1415927
SIN(x),COS(x),TAN(x) sine, cosine, tangent (x in radians)

ATN(x) arctan (radians)

LOG(x), LOGIO(x) natural log, common log

EXP(x) exponentiation e^+x where e = 2.71828

SQR(x) square root

SGN(x) sign of x

(+ve gives 1, 0 gives 0, -ve gives -1)

RS(x) absolute value of x

ABS(x) absolute value (|x|)

INT(x) largest integer < = x

RND or RND(x) returns a random number between 0 and 1.
x. if present, is ignored.

† String Functions

LEN(A\$) returns the number of characters in the string A\$, including trailing blanks

SUB\$(A\$,N1,N2) creates a sub string from the string A\$ starting with the Nith character and N2 characters long

SUB\$(A\$,N) creates a sub string from the string A\$, starting with the Nth character to the last character in A\$

*CHR\$(x) returns a one character string having

*ASCII(A\$) returns the ASCII value of the first

NUM\$(N) creates the string of characters that

NUM\$(N) creates the string of characters the would be printed by PRINT N;

NUM\$(N,field) creates the string of characters that would be printed by PRINTUSING field, N;

VAL(A\$) computes the value that would be generated by the INPUT of the characters of A\$ to an arithmetic variable

*The ASCII value is based on seven bit characters. Treatment of the parity bit is system dependent.

†Error functions	(only valid in an error handling routine entered by ONERROR)	MAT	MAT C = CON
ERR	contains the error number of the most recent error		all elements of C = 1
ERL	contains the line number of the most recent error		MAT B = IDN(10,10) identity matrix
			MAT A = ZER
Matrix functions			all elements of $A = 0$ MAT $B = ZER(5,10)$
	Y becomes the transpose of X		redimensions and zeros B
	Y becomes the inverse of X	MATINPUT	MATINPUT A,B,C(4)
DET	contains the determinant of X after the evaluation of INV(X)		MATINPUT # 3,A,C
Hean daffined fun	ctions - see DEF statement	MATPRINT	MATPRINT B
oser derined run	ctions, - see DEF statement		MATPRINT B(10,5); MATPRINT # 2,A
Statements		MATREAD	MATREAD A,B(4,4)
	line may contain several statements separated by	NEXT	NEXT I
the colon	(:) character		
Type	Example	ON ERROR GOTO	ON ERROR GOTO 140
CLOSE	CLOSE 2	ON GOSUB	ON X GOSUB 200,250,300 ON FNA(A) + FNB(A) GOSUB 10,15,30,5
DATA	DATA 4.3,85,"MONDAY"		on Thin(h) This(h) dosob To, To, To, To,
DEF	DEF FNA(X) = $X + X$	ON GOTO	ON A + 1 GOTO 14,25,50
+	DEF FNA1(A,B) = SQR(A+B) DEF FNF(M)	OPEN	†
	IF M = 1 THEN FNF = 1 ELSE FNF = M*FNF(M-1)	PRINT	PRINT A,B
	FNEND		PRINT "RESULT"; X1 PRINT # 4, I*A, "EXPERIMENT"; N
DIM	DIM A(10),B\$(5,10)	† PRINT USING	
END	END must be the last statement of a program	T PRINT USING	PRINT USING "# # #", A,B PRINT # 3, USING B\$,C,Z\$
FOR	FOR X = 1 TO 10		PRINT ÜSING 1000,X
TOK	FOR N = A TO A+R	RANDOM	RANDOM
	FOR 1 = 2 to 40 STEP 2	READ	READ A,B\$,F1,C
GOSUB	GOSUB 200	REM	REMARK THIS IS A COMMENT
GOTO	GOTO 151	:	An exclamation mark at the beginning of a
IF	IF B = A THEN 21		line is equivalent to REM An exclamation mark after any statement causes,
	IF A > Z THEN PRINT "BIGGER" IF R < N+1 THEN R = N ELSE R = N+2		the rest of the line to be treated as comment
	IF A > B OR B < C THEN STOP		X = 0: ZERO CONTROL
	IF FNA(R) = B GOTO 200	RESTORE	RESTORE
INPUT	INPUT A	RESUME	RESUME
	INPUT "TYPE YOUR NAME",A\$ INPUT # 4,N,M		RESUME 240
LET	LET A = 20	RETURN	RETURN
	LET A,B,C = 0	STOP	STOP
	A\$ = "TEXT" (LET is optional)	TRACE	TRACE
		† %	PRINTUSING image, e.g. 1000% X = # #.#

+Commands

RIIN

runs the current program

LOAD

loads a program from paper tape (or other medium)

CLEAR NEW

remove any existing program

LIST

prints the current program prints line n

LIST n-m prints lines n to m

DELETE

DELETE 40-45 deletes specified lines from the current program

SAVE REP

saves a program on paper tape (or other medium) edits a program line. Any non-numerical

character can be used as separator e.g. REP10/X1/A

REP30/,B/

RESEQUENCE

renumbers part or all of a program (including GOTO etc references) e.g. whole program, steps of 10 RESEQUENCE

RESEQUENCE 900,1000 after old line 900, which becomes 1000, steps of 10

RESEQUENCE,,5

whole program, steps of 5

+Special control codes

FSC ACCEPT breaks into the program and stops it. typing BASIC READY

CR RETURN

terminate a line of input

or \$

(on the same key as L, not 4) Abandon the current line of input

+ or RUBOUT

delete the previous character or space (may be used repeatedly)

4. ANALYSIS

4.1 Vector algebra

$$\hat{\underline{a}} = \underline{a}/|\underline{a}|$$

$$\underline{\mathbf{a}} = \mathbf{a}_1 \underline{\mathbf{i}} + \mathbf{a}_2 \underline{\mathbf{i}} + \mathbf{a}_3 \underline{\mathbf{k}} \equiv (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$$

$$\mathbf{a} \equiv |\underline{\mathbf{a}}| = \sqrt{\mathbf{a}_1^2 + \mathbf{a}_2^2 + \mathbf{a}_2^2}$$

$$\underline{a} + \underline{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

Scalar (dot) product:

$$\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = \mathbf{a}_1 \mathbf{b}_1 + \mathbf{a}_2 \mathbf{b}_2 + \mathbf{a}_3 \mathbf{b}_3 = \mathbf{a} \mathbf{b} \mathbf{C} \mathbf{o} \mathbf{s} \theta$$

Vector (cross) product:

$$\underline{\underline{a}} \times \underline{\underline{b}} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = abSin\theta \hat{\underline{n}}$$
where $\hat{\underline{n}} \perp \underline{\underline{a}}$, $\hat{\underline{n}} \perp \underline{\underline{b}}$

Triple scalar product:

$$\begin{bmatrix} \underline{a} \ \underline{b} \ \underline{c} \end{bmatrix} = \underline{a} \cdot \underline{b} \times \underline{c} = \underline{a} \times \underline{b} \cdot \underline{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Triple vector product:

$$\frac{\mathbf{a} \times (\underline{\mathbf{b}} \times \underline{\mathbf{c}}) = (\underline{\mathbf{a}} \cdot \underline{\mathbf{c}})\underline{\mathbf{b}} - (\underline{\mathbf{a}} \cdot \underline{\mathbf{b}})\underline{\mathbf{c}}}{(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \times \underline{\mathbf{c}} = (\underline{\mathbf{a}} \cdot \underline{\mathbf{c}})\underline{\mathbf{b}} - (\underline{\mathbf{b}} \cdot \underline{\mathbf{c}})\underline{\mathbf{a}}}$$

Differentiation of vectors:

$$\frac{d}{dt}(\underline{a} + \underline{b}) = \frac{d\underline{a}}{dt} + \frac{d\underline{b}}{dt} \qquad \qquad \frac{d}{dt}(\underline{f} \underline{a}) = \frac{d\underline{f}}{dt}\underline{a} + \underline{f}\frac{d\underline{a}}{dt}$$

$$\frac{d}{dt}(\underline{a} \cdot \underline{b}) = \underline{a} \cdot \frac{d\underline{b}}{dt} + \frac{d\underline{a}}{dt} \cdot \underline{b} \qquad \qquad \frac{d}{dt}(\underline{a} \times \underline{b}) = \underline{a} \times \frac{d\underline{b}}{dt} + \frac{d\underline{a}}{dt} \times \underline{b}$$

$$\frac{d}{dt}(\underline{a} \cdot \underline{b}) \times \underline{c} = \frac{d\underline{a}}{dt} \cdot \underline{b} \times \underline{c} + \underline{a} \cdot \underline{b} \times \frac{d\underline{c}}{dt}$$

grad V =
$$\nabla$$
V = $\frac{1}{3}\frac{\partial V}{\partial x}$ + $\frac{1}{2}\frac{\partial V}{\partial y}$ + $\frac{k}{2}\frac{\partial V}{\partial z}$ (Cartesian)
= $\frac{u}{r}\frac{\partial V}{\partial r}$ + u_{φ} $\frac{1}{r}\frac{\partial V}{\partial \varphi}$ + $\frac{u}{z}\frac{\partial V}{\partial z}$ (Cylindrical)

where
$$\underline{u}_r = \underline{i}\cos\phi + \underline{j}\sin\phi$$

 $\underline{u}_{\phi} = -\underline{i}\sin\phi + \underline{j}\cos\phi$
 $\underline{u}_Z = \underline{k}$

$$= \underline{u}_{r} \frac{\partial V}{\partial r} + \frac{\underline{u}_{\theta}}{r} \frac{\partial V}{\partial \theta} + \frac{\underline{u}_{\phi}}{r \sin \theta} \frac{\partial V}{\partial \phi}$$
 (Spherical)

where
$$\underline{u}_r = \underline{i}\cos\phi \sin\theta + \underline{j}\sin\phi \sin\theta + \underline{k}\cos\theta$$

$$\underline{u}_\theta = \underline{i}\cos\phi \cos\theta + \underline{j}\sin\phi \cos\theta - \underline{k}\sin\theta$$

$$\underline{u}_\phi = -\underline{i}\sin\phi + \underline{j}\cos\phi$$

curl
$$\underline{F} = \nabla x \underline{F} = \underline{i} \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) + \underline{i} \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) + \underline{k} \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) (Cartesian)$$

$$= \begin{vmatrix} \frac{1}{\partial x} & \frac{1}{\partial y} & \frac{1}{\partial z} \\ F_{X} & F_{y} & F_{z} \end{vmatrix}$$

$$= \frac{1}{r} \begin{vmatrix} \frac{1}{\partial r} & \frac{ru_{\phi}}{\partial \phi} & \frac{u}{\partial z} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \end{vmatrix}$$
 (Cylindrical)
$$= \frac{1}{r^{2} \sin \theta} \begin{vmatrix} \frac{u}{r} & \frac{ru_{\theta}}{r} & r\sin \theta \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ F_{r} & rF_{\theta} & r\sin \theta \\ F_{r} & rF_{\theta} & r\sin \theta \end{bmatrix}$$
 (Spherical)

Laplace:
$$\nabla . \nabla V = \nabla^2 V = \frac{\partial^2 V}{\partial \chi^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} + \frac{\partial^2 V}{\partial z^2} \quad \text{(Cartesian)}$$

$$= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} \quad \text{(Cylindrical)}$$

$$= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2}$$
(Spherical)

Space curves:

$$\underline{v} = \underline{u} \frac{ds}{dt}$$
, $s = arc length \underline{u} = unit tangent$

$$\underline{a} = \frac{v^2}{\rho} \underline{n} + \frac{dv}{dt} \underline{u}$$

$$=\frac{v}{\rho}\frac{n}{\rho}+\frac{dv}{dt}\frac{u}{u}$$

n = unit 'inward' normal

$$\frac{d\underline{u}}{ds} = \frac{1}{\rho} \underline{n}$$
 ρ = radius of curvature

$$\underline{b} = \underline{u} \times \underline{n}, \quad \underline{b} = \text{binormal vector}$$

$$\frac{\mathrm{d}\underline{b}}{\mathrm{d}s} = -\frac{1}{\tau} \; \underline{n} \,, \qquad \frac{\mathrm{d}\underline{n}}{\mathrm{d}s} = \frac{1}{\tau} \; \underline{b} \; - \; \frac{1}{\rho} \; \underline{u} \,, \qquad \frac{1}{\tau} \; = \; \mathrm{torsion}$$

Identities:

$$\nabla \cdot \phi \underline{u} \; = \; \phi \nabla \cdot \underline{u} \; + \; \underline{u} \cdot \nabla \phi$$

$$\nabla x \phi \underline{u} \ = \ \phi \underline{\nabla} x \underline{u} \ + \ \underline{\nabla} \phi x \ \underline{u}_0$$

$$\nabla \cdot \underline{\mathbf{u}} \times \underline{\mathbf{v}} = \underline{\mathbf{v}} \cdot \nabla \times \underline{\mathbf{u}} - \underline{\mathbf{u}} \cdot \nabla \times \underline{\mathbf{v}}$$

4.2 Series

$$(1 + x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^3 + \dots$$
for arbitrary α , $|x| < 1$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots$$
 for all x

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^n}{(2n)!} x^{2n} + \dots \text{ for all } x$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + \dots \text{ for all } x$$

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \dots \text{ for } |x| < \pi/2$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^n}{(n+1)} x^{n+1} + \dots$$

Taylor's

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots$$

$$+ \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(a) + \frac{h^n}{n!}f^{(n)}(c) \text{ where } a < c < a+h$$

Maclaurin's

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!} f''(0) + \dots$$

$$+ \frac{x^{n-1}}{(n-1)!} f^{(n-1)}(0) + \frac{x^n}{n!} f^{(n)}(\theta x) \text{ where } 0 < \theta < 1$$

Stirling's formula for n!

For n large, n:
$$\sim \sqrt{(2\pi)} \, n^{n+\frac{1}{2}} \, e^{-n}$$

or, \log_{10} n: $\approx 0.39909 + (n+\frac{1}{2})\log_{10}$ n - 0.43429n.

Fourier series

(i) General formulae

If
$$f(x)$$
 is periodic of period $2L$, $f(x+2L) = f(x)$

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

where

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} dx$$
 $n = 0, 1, 2, ...$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx \quad n = 1, 2, 3, \dots$$
If $f(x)$ is an even function of x, i.e., $f(-x) = f(x)$
then $a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n\pi x}{L} dx \quad n = 0, 1, 2 \dots$
and $b_n = 0$ $n = 1, 2, 3, \dots$

If
$$f(x)$$
 is an odd function of x, i.e., $f(-x) = -f(x)$

- (ii) Special waveforms, all of period 2L
- (a) Square wave, sine series

$$f(x) = \frac{4A}{\pi} \left[\sin \frac{\pi x}{L} + \frac{1}{3} \sin \frac{3\pi x}{L} + \frac{1}{5} \sin \frac{5\pi x}{L} + \cdots \right]$$
mean square value = A^2

(b) Square wave, cosine series

$$f(x) = \frac{.4A}{\pi} \left[\cos \frac{\pi x}{L} - \frac{1}{3} \cos \frac{3\pi x}{L} + \frac{1}{5} \cos \frac{5\pi x}{L} - \dots \right]$$
mean square value = A^2

(c) Triangular wave

$$f(x) = \frac{8A}{\pi^2} \left[\cos \frac{\pi x}{L} + \frac{1}{3^2} \cos \frac{3\pi x}{L} + \frac{1}{5^2} \cos \frac{5\pi x}{L} + \dots \right]$$
 mean square value = $\frac{A^2}{3}$

(d) Saw-tooth wave

$$f(x) = \frac{2A}{\pi} \left[\sin \frac{\pi x}{L} - \frac{1}{2} \sin \frac{2\pi x}{L} + \frac{1}{3} \sin \frac{3\pi x}{L} - \dots \right]$$

mean square value = $\frac{A^2}{3}$

(e) Half-wave rectification

$$f(x) = \frac{A}{2} \sin \frac{\pi x}{L} + \frac{2A}{\pi} \left[\frac{1}{2} - \frac{1}{3} \cos \frac{2\pi x}{L} - \frac{1}{15} \cos \frac{4\pi x}{L} - \dots \right]$$
mean square value = $\frac{A^2}{4}$ average value = $\frac{A}{\pi}$

(f) Full-wave rectification

$$f(x) = \frac{4A}{\pi} \left[\frac{1}{2} - \frac{1}{3} \cos \frac{2\pi x}{L} - \frac{1}{15} \cos \frac{4\pi x}{L} - \dots \right]$$
mean square value = $\frac{A^2}{2}$ average value = $\frac{2A}{\pi}$

4.3 Trigonometric, hyperbolic and algebraic relations

$$tan(A\pm B) = \frac{tanA \pm tanB}{1 \mp tanA \ tanB}$$

$$\sin^2 A + \cos^2 A = 1$$

$$Sec^2A = Tan^2A + 1$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\sinh A = \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)} \text{ where } s = \frac{1}{2}(a+b+c)$$

$$= \frac{2}{bc} \text{ area}$$

$$a^2 = b^2 + c^2 - 2 \text{ bc cos } A$$

Relation for Spherical Triangles

$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}$$

cosa = cosb cosc + sinb sinc cosA

$$\sin \frac{A}{2} = \sqrt{\frac{\sin(s-b)\sin(s-c)}{\sin b \sin c}}$$
 where $s = \frac{1}{2}(a+b+c)$

$$\sin \frac{a}{2} = \sqrt{-\frac{\cos S \cos (S-A)}{\sin B \sin C}}$$
 where $S = \frac{1}{2}(A+B+C)$

Napiers Rules for right spherical triangles:

Arrange the five parts about the right angle with co attached to the three parts opposite the right angle. E.g. for the right angle at A we have

N.B. co-a is the complement of a. i.e. 90°-a

Then: The sine of the middle part is the product of the tangents of adjacent parts and is the product of the cosines of opposite parts.

A leg and its opposite angle are always in the same quadrant. If the hypotenuse is less than 90° the legs are in the same quadrant, otherwise they are in opposite quadrants.

$$\sin x = \frac{e^{ix} - e^{-ix}}{2!}$$

$$\sinh x = \frac{e^{x} - e^{-x}}{2}$$

$$\cosh x = \frac{e^{x} + e^{-x}}{2}$$

$$\cos iz = \cosh z$$
 $\sin iz = i \sinh z$
 $\cosh iz = \cos z$ $\sinh iz = i \sin z$

$$e^z = \cosh z + \sinh z$$
 $\log_{10}(10^x) \equiv \log_{10}(antilog_{10}x) \equiv x \equiv 10^{log_{10}x} \equiv e^{log}e^x = e^{\ell nx}$

$$a^{2} - b^{2} = (a+b)(a-b) : a^{3} - b^{3} = (a-b)(a^{2}+ab+b^{2})$$

 $x = \frac{-b \pm \sqrt{(b^{2} - 4ac)}}{2a}$

$$\frac{\text{equations of curves}}{\text{circle}} \quad \text{ellipse} \quad \text{hyperbola} \quad \text{parabola}$$

$$x^2 + y^2 = a^2 \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad y^2 = ax$$

4.4 Complex numbers

$$z = r (\cos \theta + i \sin \theta) = x + iy$$

 $= r e^{i(\theta + 2n\pi)}$ $(n = 0, \pm 1, \pm 2,)$
 $e^{iz} = \cos z + i \sin z$ [Euler's Formula]

$$x + iy = \sqrt{x^2 + y^2} e^{i \tan^{-1}(y/x)}; z^c = e^{c \ln z}$$

N.B. $\tan^{-1}(y/x)$ must be chosen to lie in the appropriate quadrant

4.5 Partial differentiation

(a) If F = f(x,y), where x = X(t), y = Y(t) then
$$F = F(t) \text{ and } \frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dX}{dt} + \frac{\partial f}{\partial y} \frac{dY}{dt}$$

(b) If
$$F = f(x,y)$$
, where $y = Y(x)$, then $F = F(x)$ and

$$\frac{dF}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dY}{dx}$$

(c) If
$$F = f(x,y)$$
, where $x = X(u,v)$, $y = Y(u,v)$ then

$$F = F(u,v)$$
 and $\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial X}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial Y}{\partial u}$,

$$\frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial X}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial Y}{\partial v}.$$

4.6 Differential Equations

(i) First Order

Type	Characteristic	Method of solution
separable	y' = P(x)Q(y)	rearrange:- $\int \frac{1}{Q} dy = \int Pdx + c$
homogeneous	$y' = f\left(\frac{y}{x}\right)$	by substitution y = ux to make equation separable
exact	M(x,y)dx + N(x,y)dy where $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	$\frac{\partial G}{\partial x} = M, \frac{\partial G}{\partial y} = N$ Solve for G
linear	y' + P(x)y = Q(x)	multiply through by e Pdx

(ii) Second Order, linear with constant coefficients

$$m\ddot{x} + \alpha\dot{x} + kx = 0$$

$$\ddot{x} + 2\xi\omega_0\dot{x} + \omega_0^2x = 0, \quad \xi = \frac{\alpha}{2\sqrt{m}k}, \omega_0 = \sqrt{\frac{k}{m}}$$

(a)
$$\xi < 1$$
 (underdamping)

$$x = a e^{-\xi \omega_0 t} \cos(\omega t - \theta)$$

$$\omega = \omega_0 \sqrt{1 - \xi^2}$$

(b) $\xi > 1$ (overdamping)

(c) $\xi = 1$ (critical damping)

$$x = (A + Bt)e^{-\xi\omega}o^{t}$$

Forced oscillations

$$\ddot{x} + 2\xi\omega_0\dot{x} + \omega_0^2x = a \cos pt$$
, $a = \frac{F}{m}$, $x_1 = \frac{F}{k}$

$$x = \frac{\text{AaCos}(\text{pt} - \phi)}{\omega^2}$$

$$x = \frac{\text{AaCos}(pt - \phi)}{\omega_0}$$

$$Tan\phi = \frac{2 \xi p/\omega_0}{1 - \left(\frac{p}{\omega_0}\right)^2}$$

$$A = \left| \frac{x}{x_1} \right| = \frac{1}{\left[\left(1 - \left(\frac{p}{\omega_0} \right)^{\frac{2}{3}} \right)^2 + \left(2 \xi \frac{p}{\omega_0} \right)^{\frac{2}{3}} \right]^{\frac{1}{2}}}$$

At resonance
$$p = \omega_0 \sqrt{1 - 2\xi^2}$$

$$x = \frac{x_1}{2\xi\sqrt{1-\xi^2}}$$

$$Tan\phi = \sqrt{\frac{1-2\xi^2}{\xi}}$$

$$Tan\phi = \sqrt{\frac{1-2\xi^2}{\xi}}$$

4.7 Rules of Differentiation and Integration

$$\frac{d}{dx} (uv) = u \frac{dv}{dx} + v \frac{du}{dx}$$

$$\frac{d}{dx} (uvw) = uv \frac{dw}{dx} + uw \frac{dv}{dx} + vw \frac{du}{dx}$$

$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{1}{v^2} \left(v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx} \right)$$

$$\int uv \ dx = uw - \int \frac{du}{dx} \ w \ dx, \ where \ w = \int v \ dx$$

4.8 Standard Differentials and Integrals

$$\frac{d}{dx} x^n = nx^{n-1}$$

$$\int x^n dx = \frac{x^{n+1}}{n+1}, \quad n \neq -1$$

$$\frac{d}{dx} \ln|x| = \frac{1}{x}$$

$$\int \frac{dx}{x} = \ln|x|$$

$$\int e^{ax} dx = \frac{e^x}{a} \quad a \neq 0$$

$$\frac{d}{dx} a^x = a^x \quad \text{in a}$$

$$\int a^x dx = \frac{a^x}{\ln a}, \quad a > 0, \quad a \neq 1$$

$$\frac{d}{dx} x^{X} = x^{X} (1+\ln x)$$

$$\int \ln x \ dx = x(\ln x-1)$$

$$\frac{d}{dx} \sin x = \cos x \qquad \int \cos x \, dx = \sin x$$

$$\frac{d}{dx} \cos x = -\sin x \qquad \int \sin x \, dx = -\cos x$$

$$\frac{d}{dx} \tan x = \sec^2 x \qquad \int \sec^2 x \, dx = \tan x$$

$$\frac{d}{dx} \cot x = -\csc^2 x \qquad \int \csc^2 x \, dx = -\cot x$$

$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{(1-x^2)}} \qquad \int \frac{dx}{\sqrt{(1-x^2)}} = \sin^{-1} x, \quad |x| < 1$$

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2} \qquad \int \frac{dx}{1+x^2} = \tan^{-1} x$$

$$\frac{d}{dx} \cosh x = \sinh x \qquad \int \sinh x \, dx = \cosh x$$

$$\frac{d}{dx} \sinh x = \cosh x \qquad \int \cosh x \, dx = \sinh x$$

$$\frac{d}{dx} \tanh x = \operatorname{sech}^2 x \qquad \int \operatorname{sech}^2 x \, dx = \tanh x$$

$$\frac{d}{dx} \coth x = -\operatorname{cosech}^2 x \qquad \int \operatorname{cosech}^2 x \, dx = -\coth x$$

$$\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{(1+x^2)}} \qquad \int \frac{dx}{\sqrt{(1+x^2)}} = \sinh^{-1} x$$

$$= \ln |x + \sqrt{(1+x^2)}|$$

$$\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{(x^2-1)}} \qquad \int \frac{dx}{\sqrt{(x^2-1)}} = \cosh^{-1} x$$

$$= \ln |x + \sqrt{(x^2-1)}|, x \ge 1$$

$$\frac{d}{dx} \tanh^{-1} x = \frac{1}{1-x^2} \qquad \int \frac{dx}{1-x^2} = \tanh^{-1} x$$

$$= \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right|, x^2 < 1$$

$$\frac{d}{dx} \coth^{-1} x = \frac{1}{1-x^2} \qquad \int \frac{dx}{1-x^2} = -\coth^{-1} x$$

$$= \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right|, x^2 < 1$$

$$\frac{d}{dx} \coth^{-1} x = \frac{1}{1-x^2} \qquad \int \frac{dx}{1-x^2} = -\coth^{-1} x$$

$$= \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right|, x^2 > 1$$

Some definite integrals (m,n integers)

$$\int_{0}^{\frac{\pi}{2}} \sin^{n}x \, dx = \int_{0}^{\frac{\pi}{2}} \cos^{n}x \, dx = \begin{cases} \frac{n-1}{n} \frac{n-3}{n-2} \cdots \frac{3}{4} \frac{1}{2} \frac{\pi}{2}, & n \text{ even} \\ \frac{n-1}{n} \frac{n-3}{n-2} \cdots \frac{4}{5} \frac{2}{3} 1, & n \text{ odd} \end{cases}$$

$$I_{m,n} = \int_{0}^{\frac{\pi}{2}} \sin^{m}x \cos^{n}x \, dx = \left(\frac{m-1}{m+n}\right) I_{m-2,n} = \left(\frac{n-1}{m+n}\right) I_{m,n-2}, & m \neq -n$$

$$\int_{0}^{\pi} \sin mx \sin nx \, dx = \int_{0}^{\pi} \cos mx \cos nx \, dx = 0 \quad (m \neq n)$$

$$\int_{0}^{\pi} \sin nx \cos nx \, dx = 0$$

$$\int_{0}^{\infty} e^{-ax} \sinh x dx = \frac{b}{a^2 + b^2}, a > 0$$

$$\int_{0}^{\infty} e^{-ax} \cosh x dx = \frac{a}{a^2 + b^2}, a > 0$$

$$\int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$$

The error function $\operatorname{erfz} = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-u^{2}} du$ (refer to page 30 for tabulated value)

$$\int_{0}^{\pi} \frac{\sin\theta \cos\theta}{(1+\epsilon\cos\theta)^{3}} d\theta = \frac{-2\epsilon}{(1-\epsilon^{2})^{2}}$$

$$\int_{0}^{\pi} \frac{\sin^{2} \theta d\theta}{(1+\epsilon \cos \theta)^{3}} = \frac{\pi}{2(1-\epsilon^{2})^{3/2}}$$

$$\int_{0}^{2\pi} \frac{d\theta}{(1+\epsilon\cos\theta)} = \frac{2\pi}{(1-\epsilon^{2})^{1/2}}$$

4.9 Laplace Transforms

efinition					ſ [∞] • +
	F(s)	=	L[f(t)]	=	$\int_{0}^{\infty} f(t)e^{-st}dt$

	- ' ' '		
Theorems	10		
Linearity	L[af(t)+bg(t)]	=	aF(s)+bG(s)
Final Value	$\begin{array}{ll} \text{lim } f(t) \\ t \rightarrow \infty \end{array}$	=	lim sF(s) s → o
Initial Value	$ \lim_{t \to 0} f(t) $	=	$\begin{array}{l} \text{lim sF(s)} \\ \text{s} \rightarrow \infty \end{array}$
Differentiation	$L\left[\frac{df(t)}{dt}\right]$	=	sF(s)-f(o)
	$L\left[\frac{d^2f(t)}{dt^2}\right]$		s 2 F (s) - s f (o) - f 1 (o
Integration	L[f(t)dt]	=	$\frac{F(s)}{s} + \frac{f^{-1}(0)}{s}$
First Shifting	L[eatf(t)]	=	F(s-a)
Second Shifting	L[f(t-a)] t>a	=	e ^{-as} F(s)
Convolution L [f*g] ≡	$L\left[\int_{0}^{t} f(u)g(t-u)du\right]$	=	F(s)G(s)
Partial Differentiation	$L\left[\frac{\partial f(t,\alpha)}{\partial \alpha}\right]$	=	$\frac{\partial}{\partial \alpha}$ F(s, α)
Time Multiplication	L[tf(t)]	=	-dF(s)

Transform Pairs

Function	Laplace Transform
1	$\frac{1}{s}$
H(t-T) = 0 t < T = 1 t > T	$\frac{1}{s} e^{-sT}$
t ⁿ	$\frac{n!}{s^{n+1}}$
e ^{-at}	1 S+a
sin ωt	$\frac{\omega}{S^2 + \omega^2}$
cos wt	$\frac{S}{S^2+\omega^2}$
1 - e ^{-t} /T	1 s(1+Ts)
$\frac{\omega_n}{\sqrt{1-\xi^2}} e^{-\xi \omega_n t} \sin \left(\omega_n \sqrt{1-\xi^2} t \right)$	$\frac{1}{1+2\frac{\xi S}{\omega_n}+\frac{S^2}{\omega_n^2}}$

$$1 - \frac{1}{\sqrt{1-\xi^2}} e^{-\xi \omega_n t} \sin\left[\omega_n \sqrt{1-\xi^2} t + \cos^{-1} \xi\right] \qquad \frac{1}{s \left[1 + 2\frac{\xi s}{\omega_n} + \frac{s^2}{\omega_n z}\right]}$$

4.10 Numerical analysis

- (i) Approximate solution of an algebraic equation f(x) = 0
- (a) Newton's Method

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

(b) Secant Method

$$x_1 = \frac{-x_0 f(x_{-1}) + x_{-1} f(x_0)}{f(x_0) - f(x_{-1})}$$

(ii) Least-squares fitting of a straight line

If y_i (i = 1, 2, ... n) are the experimentally observed values of y at chosen (exact) values of x_i of the variable x, the line of 'best fit' passes through the centroid

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

and is given by y = mx + c where,

$$m = \frac{\sum (x_{1} - \bar{x})(y_{1} - \bar{y})}{\sum (x_{1} - \bar{x})^{2}}, \quad c = \bar{y} - m\bar{x}$$
$$= \frac{\sum x_{1}y_{1} - n\bar{x}\bar{y}}{\sum x_{2} - n\bar{x}^{2}}$$

(iii) Finite-difference formulae $\Delta f(x) = f(x + h) - f(x)$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + 0(h^2)$$

$$f''(x) = \frac{f(x+h) - 2 f(x) + f(x-h)}{h^2} + 0(h^2)$$

$$f'''(x) = \frac{f(x+2h) - 2 f(x+h) + 2 f(x-h) - f(x-2h)}{2h^2}$$

(iv) Lagrange's interpolation formula for unequal intervals.

The polynomial P(x) of degree 2 passing through the three points (x_1,y_1) , i=1,2,3, is

$$P(x) = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} y_1 + \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} y_2 + \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)} y_3$$

(v) Formulae for numerical integration

Equal intervals h

$$x_n = x_0 + nh$$
, $y_n = y(x_n)$

(a) Trapezoidal Rule (1-strip):

$$\int_{x_0}^{x_1} y(x) dx = \frac{h}{2} [y_0 + y_1] + \epsilon ,$$

$$\epsilon \simeq \frac{-h^3}{12} y'' \text{ or, } \frac{-h}{12} \Delta^2 y_0$$

(b) Simpson's Rule (2-strip):

$$\int_{x_0}^{x_2} y(x) dx = \frac{h}{3} [y_0 + 4y_1 + y_2] + \varepsilon,$$

$$\varepsilon \simeq -\frac{h^5}{90} y_1^{(4)}, \text{ or } -\frac{h}{90} \Delta^4 y_0$$

(vi Runge-Kutta

2nd order:
$$y_{n+1} = y_n + \frac{h}{2} \left\{ f(x_n, y_n) + f(x_n + h, y_n + k_1) \right\}$$

4th order: $y_{n+1} = y_n + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$
 $k_1 = hf(x_n, y_n)$
 $k_2 = hf\left[x_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right]$
 $k_3 = hf\left[x_n + \frac{h}{2}, y_n + \frac{k_2}{2}\right]$
 $k_4 = hf(x_n + h, y_n + k_3)$

5. ANALYSIS OF EXPERIMENTAL DATA

5.1 Probability distributions for discrete random variables

$$\mu$$
 = mean value of $r = \sum_{i=1}^{N} r_i f(r_i)$

$$\sigma^2$$
 = variance of r = $\sum_{i=1}^{N} r_i^2 f(r_i) - \mu^2$

(a) Binomial:

n = number of trials with constant probability p of success in each

r = number of successes

$$P(r) = {n \choose r} p^r (1-p)^{n-r}$$
 $r = 0, 1, 2, ... n$
 $\mu = np$, $\sigma^2 = np (1-p)$

(b) Poisson:

 μ = mean rate of occurrence of an event

r = number of events actually occurring in unit time

$$P(r) = e^{-\mu} \mu^{r}/r!$$
 $r = 0, 1, ...$ $\sigma^{2} = \mu$

5.2 Probability distributions for continuous random variables

(a) Exponential:

probability density function $f(x)=\lambda e,^{-\lambda x}$, $x>0,\ \lambda>0$ $\mu=1/\lambda \qquad \qquad \sigma^2=1/\lambda^2$

(b) Normal: the standardised normal distribution, N(0,1)

has probability density function

$$\phi(z) = \frac{1}{\sqrt{(2\pi)}} e^{-\frac{1}{2}z^2}$$

$$\mu = 0 \qquad \sigma = 1$$

 Φ = cumulative distribution function

 $\Phi(z)$ = probability that the random variable is observed to have a value ϵ z (the shaded area shown)

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} dt$$

For negative z use $\Phi(-z) = 1 - \Phi(z)$

z	Φ(z)	z	Φ(z)	Z	Φ(z)
0.0 .1 .2 .3	.5000 .5398 .5793 .6179	1.0 .1 .2 .3 .4	.8413 .8643 .8849 .9032	2.0 .1 .2 .3	.9772 .9821 .9861 .9893
0.5 .6 .7 .8	.6915 .7257 .7580 .7881 .8159	1.5 .6 .7 .8	.9332 .9452 .9554 .9641	2.5 .6 .7 .8	.9938 .9953 .9965 .9974
				3.0	.9987

Percentage points of the Normal Distribution N(0,1)

Φ(z)	%(1-tail)	%(2-tails)	z
.9500	5.0	10	1.6449
.9750	2.5	5	1.9600
.9900	1.0	2	2.3263
.9950	0.5	1	2.5758

The general normal distribution $N(\mu, \sigma^2)$ has probability density function $f(x) = \frac{1}{\sigma \sqrt{(2\pi)}} e^{-(x-\mu)^2/2\sigma^2}$, $-\infty < x < \infty$ where $\int_{-\infty}^{\infty} f(x) dx = 1$

and cumulative distribution function F(x) $F(x) = \int_{-\pi/2}^{(x-\mu)/\sigma} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du = \Phi\left(\frac{x-\mu}{\sigma}\right)$

To use tables of $\Phi(z)$, take $z = \frac{x - \mu}{\sigma}$.

5.3 Experimental Samples

 $x_1, x_2, \ldots x_n$ denote a set of n observations of a random variable having a normal distribution whose population mean μ is unknown.

Range = $x_{max} - x_{min}$ Sample mean $m = \frac{1}{n} \Sigma x_i$ Average deviation = $\frac{1}{n} \Sigma |x_i - m|$ Sample standard deviation = s , Sample variance = $s^2 = \frac{1}{n-1} \Sigma(x_i - m)^2$ Distribution of x is $N(\mu, \sigma^2)$ Distribution of m is $N(\mu, \sigma^2/n)$ Distribution of $\frac{m-\mu}{(\sigma/\sqrt{n})}$ is N(0,1)

i.e. standard error of sample means = $\frac{\sigma}{\sqrt{n}}$

If population variance σ^2 is known,

95% confidence interval for μ is m ±1.96 σ/\sqrt{n} " " " m +2.58 σ/√n

If population variance σ^2 is unknown: $\frac{m-\mu}{s/\sqrt{n}}$ has the t-distribution

with n-1 degrees of freedom (t_{n-1}) and the 95% confidence interval for μ is obtained from $\mbox{ m } \pm t_{C} \mbox{ s}/\sqrt{n}$ and the table.

95% points of the t-distribution

n-1	t _c	n - 1	t _c	n-1	t _c
1	12.7	6	2.45	12	2.18
2	4.30	7	2.36	15	2.13
3	3.18	8	2.31	20	2.09
4	2.78	9	2.26	30	2.04
5	2.57	10	2.23	60	2.00
				00	1.96

Thus for n > 20.m $\pm 1.96 \text{ s}/\sqrt{n}$ is a good approximation to the population mean with a 95% confidence.

5.4 Combination of Errors

If results are Normally Distributed,the Most Probable Error S_z in the calculated result $z=f(x,\ y,\ \text{etc.})$, due to the independent standard errors S_x , S_y , etc. in $x,\ y$, etc. is given by,

$$(s_z)^2 = \left(\frac{\partial z}{\partial x} s_x\right)^2 + \left(\frac{\partial z}{\partial y} s_y\right)^2 + \dots \text{ etc.}$$

If the function $\, f \,$ consists of multiplied and divided terms ONLY (i.e. no addition or subtraction)

$$\left(\frac{S_z}{z}\right)^2 = \left(n \frac{S_x}{x}\right)^2 + \left(m \frac{S_y}{y}\right)^2 + \dots \text{ etc.}$$

where n, m, etc. are the powers of x, y, etc. in f.

Notes

- (1) The Maximum Possible Error ($\delta z = \frac{\partial z}{\partial x} \delta x + \frac{\partial z}{\partial y} \delta y$, etc.) is rarely of interest in engineering
- (2) Instrument 'rounding off' error $\pm \delta x$ may be treated as a Normally Distributed error by the equivalence $S_\chi \cong \frac{2}{3} \delta x$.

6. MECHANICS

Moments of inertia and Second moments of area - General theorems

- N.B. The symbol I is used for both second moment of area and moment of inertia.
- (i) Parallel axis theorem: Solids or laminae Centroid is at G Centre of mass is at G $I_{X_1X_1} = I_{\chi\chi} + Cy^2$

(ii) Perpendicular axis theorem for laminae: Polar second moment $J_0 = I_{XY} + I_{YY} = I_{77}$

Radii of gyration k

Second moment of area $I = Ak^2$ Moment of inertia $I = mk^2$ where A = area, m = mass.

(a) UNIFORM ROD	k ² _X X	k ² _Y	А
G X X X X X X X X X X X X X X X X X X X	-	2 12	-
(b) LAMINAE			
Rectangle Y	1/12 d ²	1 b ²	db
Circle G X	1/4 a ²	1/4 a ²	πa ²

(b) LAMINAE (cont)	k ² _{XX}	k ² _Y Y	Α
Semi-circle $\frac{4a}{3\pi}$ $\frac{1}{4}$ $\frac{G}{G}$ $\frac{A}{G}$ $\frac{A}{G}$	$a^2 \left \frac{1}{4} - \left(\frac{4}{3\pi} \right)^2 \right $	1/4 a ²	πa ²
Triangle $\frac{1}{3}(b_1 - b_2)$	1 h2	$\frac{1}{18} (b_1^2 + b_1 b_2 + b_2^2)$ $h(b_1 - b_2)$	h/2(b ₁ +b ₂)
Ellipse Y	<u>b²</u>	a ² / ₄	παδ
(c) SOLIDS	k ² _X X	k_{YY}^2 and k_{ZZ}^2	ν
Cylinder a $\frac{Y}{G}$ $\frac{2}{2}$ $\frac{2}{2}$ X	1/2 a ²	$\frac{1}{4} a^2 + \frac{1}{12} \ell^2$	πa ² £
Thin-walled cylinder X	$a^2 + \frac{1}{4} t^2$	$\frac{1}{2} a^2 + \frac{1}{8}t^2 + \frac{1}{12} \ell^2$	2πatl
Thick walled cylinder X	$\frac{1}{2}(R^2 + r^2)$	$\frac{\ell^2}{12} + \frac{R^2 + r^2}{4}$	π(R ² - r ²)

(c) SOLIDS (cont)	k_{XX}^2 and k_{ZZ}^2	k _y y	V
Sphere Y A G	2/5 a ²	2/5 a ²	4/3 πa ³
Cone X G A	3(4a ² + h ²)	3a ² 10	$\frac{\pi}{3}$ a ² h

Mohr's Circle for Second Moment of Area

Constant acceleration equations

$$v = u + at$$

$$v^{2} = u^{2} + 2ax$$

$$x = ut + \frac{1}{2}at^{2}$$

Accelerations due to rotation

Coriolis =
$$2 \underline{\omega} \times \left[\frac{\partial \underline{r}}{\partial t}\right]$$

Central = $\underline{\omega} \times (\underline{\omega} \times \underline{r})$

Friction

coefficient of static friction μ = tan ϕ for no slipping $\frac{F}{N} \leqslant \mu$

DRY SLIDING FRICTION COEFFICIENTS

Clutches Brakes (lining)	0.3-0.4 0.35-0.5 ~0.3 0.3-0.5 0.05-0.3 ~0.5 0.6-0.9
Rubber/Asphalt Lignum vitae/Steel	0.5-0.8

7. PROPERTIES AND MECHANICS OF SOLIDS

7.1 Bonding

- (a) Condon-Morse Equation $V_{\text{total}} = \frac{-Ae^2}{r^n} + \frac{B}{r^m} + C$
- (b) Ionic Bond Equation $V_0 = \frac{-Z_1^* Z_2^* e^2}{4\pi d \epsilon_0} (1 \frac{1}{n}) + \Delta E$
- (c) Theoretical Density $\rho = \frac{nA}{VN}$

7.2 Atomic sizes in substitutional alloys

Element	Seitz radius r (Å) (at 20°C)°	Effective valency in solution
A1	1.58	3
Au	1.59	1
Cu	1.41	1
Fe(a)	1.41	?
Mg	1.85	2
Ni	1.38	1
P	1.58	3
.Pb	1.95	4
Si	1.67	4
Sn	1.86	4
Zn	1.54	2

7.3 Phase Transformations

Length and volume changes may be related by:-

$$(1 + \Delta V/V) = (1 + \Delta L/L)^3$$

7.4 Crystallography

(a) In the Miller system:

٠.		
	Specific Plane	(h.k.l)
	Family of Planes	{h.k.l}
	Specific Direction	[h.k.l]
	Family of Directions	<h 0="" k=""></h>

(b) Inter-planar spacings for Cubics

$$d(h.k.l) = \frac{a}{\sqrt{h^2 + k^2 + l^2}} = \frac{a}{\sqrt{N}}$$

(c) Quadratic Forms of Miller Indicies (N values)

Cubic Structure N values

Simple 1,2,3,4,5,6,8,9,10,11,12,13,14,16,17,18,19,20.....
Face Centred 3,4,8,11,12,16,19,20,24,27,32.....
2,4,6,8,10,12,14,16,18,20,22,24,26,30.....

Diamond 3,8,11,16,19,24,27,32....

7.5 Defects and Diffusion Data

(a) Number of Defects
$$n = \alpha Ne^{kT}$$

(b) Diffusivity $D = De^{kT}$

Note: these equations may be expressed in terms of $R_{\rm o}$ rather than k, the value of Q must be quoted in the appropriate units.

- (c) Macroscopic Diffusion
 - (i) D constant with composition, $\frac{dc}{dx}$ constant with time $J = -D \frac{dc}{dx}$ (This is a special case of (ii))
 - (ii) D constant with composition, $\frac{dc}{dx}$ varies with time $\frac{dc}{dt} = D \frac{d^2c}{dx^2}$

Solution for a constant surface potential and impermeable sides

7.6 Selected Values of Error Function $\sqrt{\frac{2}{\pi}} \int_{0}^{z} e^{-u^{2}} du$

Z	erfz	z	erfz	Z	erfz	Z	erfz
0.00	0.0000	0.68	0.6638	1.36	0.9456	2.00	0.9953
0.02	0.0226	0.70	0.6778	1.38	0.9490	2.05	0.9963
0.04	0.0451	0.72	0.6914	1.40	0.9523	2.10	0.9970
0.06	0.0676	0.74	0.7047	1.42	0.9554	2.15	0.9976
0.08	0.0901	0.76	0.7175	1.44	0.9583	2.20	0.9981
0.10	0.1125	0.78	0.7300	1.46	0.9611	2.25	0.9983
0.12	0.1348	0.80	0.7421	1.48	0.9637	2.30	0.9989
0.14	0.1570	0.82	0.7538	1.50	0.9661	2.35	0.9991
0.16	0.1790	0.84	0.7651	1.52	0.9684	2.40	0.9993
0.18	0.2009	0.86	0.7761	1.54	0.9706	2.45	0.9995
0.20	0.2227	0.88	0.7867	1.56	0.9726	2.50	0.9996
0.22	0.2443	0.90	0.7969	1.58	0.9746	2.55	0.9997
0.24	0.2657	0.92	0.8068	1.60	0.9764	2.60	0.9998
0.26	0.2869	0.94	0.8163	1.62	0.9780	2.65	0.9998
0.28	0.3079	0.96	0.8254	1.64	0.9796	2.70	0.9999
0.30	0.3286	0.98	0.8342	1.66	0.9811	2.75	0.9999
0.32	0.3491	1.00	0.8427	1.68	0.9825	2.80	0.9999
0.34	0.3694	1.02	0.8508	1.70	0.9838	2.85	0.9999
0.36	0.3893	1.04	0.8587	1.72	0.9850	2.90	1.0000
0.38	0.4090	1.06	0.8661	1.74	0.9861	2.95	1.0000
0.40	0.4284	1.08	0.8733	1.76	0.9872	3.00	1.0000
0.42	0.4475	1.10	0.8802	1.78	0.9882	4.00	1.0000
0.44	0.4662	1.12	0.8868	1.80	0.9891		
0.46	0.4847	1.14	0.8931	1.82	0.9899		
0.48	0.5028	1.16	0.8991	1.84	0.9907		
0.50	0.5205	1.18	0.9048	1.86	0.9915		
0.52	0.5379	1.20	0.9103	1.88	0.9922		
0.54	0.5549	1.22	0.9155	1.90	0.9928		
0.56	0.5716	1.24	0.9205	1.92	0.9934		
0.58	0.5879	1.26	0.9252	1.94	0.9939		
0.60	0.6039	1.28	0.9297	1.96	0.9944		
0.62	0.6194	1.30	0.9340	1.98	0.9949		
0.64	0.6346	1.32	0.9381				
0.66	0.6494	1.34	0.9419		The second second		

7.7 Fracture

i) Fatigue

 $\begin{array}{lll} \text{Manson-Coffin Law} & \sqrt{Np} \ \ \epsilon p = c & (c = constant) \\ \text{Miner's Rule} & \sum \left(\frac{ni}{N1}\right) = 1 \\ \text{Rayleigh Distribution} & P(\sigma) = \sigma r^{-2} \text{exp} \left\{-\frac{1}{2}(\frac{\sigma}{r})^2\right\} \\ \text{Fraction of peak exceeding stress} & (\sigma) \ \ \text{expressed in} \\ \text{terms of } E & E(\sigma) = \exp \left\{-\frac{1}{2}(\frac{\sigma}{r})^2\right\} \end{array}$

ii) Fracture Toughness

Stress Intensity K = $Q\sigma\sqrt{\pi a}$ Paris Equation $\frac{da}{dN}$ = $A(\Delta K)^n$ = $A_1a^{m/2}$ (A, A_1 , n and m are constants)

7.8 Some typical values of physical properties

All values are given, unless otherwise stated, for a temperature of 20^{0}C .

	Carbon Steel	Alumi- nium Alloys	Brass 65/35	Copper	Con- crete	Stain- less Steels	Wood
ρ (kg/m ³)	7850	2720	8450	8960	2,400	8000	400-800
E (GN/m ²)	207	68.9	105	104	13.8	213	8-13
G (GN/m ²)	79.6	26.5	38.0	46		82	
K (GN/m ²)	172	57.5	115	130	445380	178	
ν	0.3	0.3	0.35	0.35	0.1	0.3	
α (μm/(mK))	11	23	19	11.2	N. C. C.	18	~0.15
$\sigma_{\rm y}(\rm MN/m^2)$	230-460	30-280	62-430	47-320		200-585	
of(MN/m2)	400-770	90-300	330-530	200-350	27-55	500-800	50-100

K for water is 2.3 GN/m²

The lower values of σ_y and σ_f for carbon and stainless steels refer to materials such as plates and tubes while the higher figures refer to heat-treated material such as used for bolts. The range of values for aluminium, copper and brass is due to the change in material property achieved by heat-treatment and/or mechanical work.

7.6 Selected Values of Error Function $\sqrt{\frac{2}{\pi}} \int_{0}^{z} e^{-u^{2}} du$

Z	erfz	z	erfz	Z	erfz	z	erfz
0.00	0.0000	0.68	0.6638	1.36	0.9456	2.00	0.9953
0.02	0.0226	0.70	0.6778	1.38	0.9490	2.05	0.9963
0.04	0.0451	0.72	0.6914	1.40	0.9523	2.10	0.9970
0.06	0.0676	0.74	0.7047	1.42	0.9554	2.15	0.9976
0.08	0.0901	0.76	0.7175	1.44	0.9583	2.20	0.9981
0.10	0.1125	0.78	0.7300	1.46	0.9611	2.25	0.9983
0.12	0.1348	0.80	0.7421	1.48	0.9637	2.30	0.9989
0.14	0.1570	0.82	0.7538	1.50	0.9661	2.35	0.9991
0.16	0.1790	0.84	0.7651	1.52	0.9684	2.40	0.9993
0.18	0.2009	0.86	0.7761	1.54	0.9706	2.45	0.9995
0.20	0.2227	0.88	0.7867	1.56	0.9726	2.50	0.9996
0.22	0.2443	0.90	0.7969	1.58	0.9746	2.55	0.9997
0.24	0.2657	0.92	0.8068	1.60	0.9764	2.60	0.9998
0.26	0.2869	0.94	0.8163	1.62	0.9780	2.65	0.9998
0.28	0.3079	0.96	0.8254	1.64	0.9796	2.70	0.9999
0.30	0.3286	0.98	0.8342	1.66	0.9811	2.75	0.9999
0.32	0.3491	1.00	0.8427	1.68	0.9825	2.80	0.9999
0.34	0.3694	1.02	0.8508	1.70	0.9838	2.85	0.9999
0.36	0.3893	1.04	0.8587	1.72	0.9850	2.90	1.0000
0.38	0.4090	1.06	0.8661	1.74	0.9861	2.95	1.0000
0.40	0.4284	1.08	0.8733	1.76	0.9872	3.00	1.0000
0.42	0.4475	1.10	0.8802	1.78	0.9882	4.00	1.0000
0.44	0.4662	1.12	0.8868	1.80	0.9891		
0.46	0.4847	1.14	0.8931	1.82	0.9899		
0.48	0.5028	1.16	0.8991	1.84	0.9907		
0.50	0.5205	1.18	0.9048	1.86	0.9915		
0.52	0.5379	1.20	0.9103	1.88	0.9922		
0.54	0.5549	1.22	0.9155	1.90	0.9928		
0.56	0.5716	1.24	0.9205	1.92	0.9934		
0.58	0.5879	1.26	0.9252	1.94	0.9939		
0.60	0.6039	1.28	0.9297	1.96	0.9944		
0.62	0.6194	1.30	0.9340	1.98	0.9949		
0.64	0.6346	1.32	0.9381				
0.66	0.6494	1.34	0.9419				

7.7 Fracture

i) Fatigue

 $\begin{array}{lll} \text{Manson-Coffin Law} & \sqrt{Np} \ \ \epsilon p = c & \text{$(c = constant)$} \\ \text{Miner's Rule} & \sum \left(\frac{ni}{N1}\right) = 1 \\ \text{Rayleigh Distribution} & P(\sigma) = \sigma r^{-2} \text{exp} \left\{-\frac{1}{2}(\frac{\sigma}{r})^2\right\} \\ \text{Fraction of peak exceeding stress (σ) expressed in terms of E} \\ & E(\sigma) = \text{exp} \left\{-\frac{1}{2}(\frac{\sigma}{r})^2\right\} \end{array}$

ii) Fracture Toughness

Stress Intensity K = $Q\sigma\sqrt{\pi a}$ Paris Equation $\frac{da}{dN}$ = $A(\Delta K)^n$ = $A_1a^{m/2}$ (A, A_1 , n and m are constants)

7.8 Some typical values of physical properties

All values are given, unless otherwise stated, for a temperature of $20\,^{\circ}\text{C}_{\cdot}$

	Carbon Steel	Alumi- nium Alloys	Brass 65/35	Copper	Con- crete	Stain- less Steels	Wood
ρ (kg/m ³)	7850	2720	8450	8960	2,400	8000	400-800
E (GN/m ²)	207	68.9	105	104	13.8	213	8-13
G (GN/m ²)	79.6	26.5	38.0	46		82	
K (GN/m ²)	172	57.5	115	130	101 880	178	
ν	0.3	0.3	0.35	0.35	0.1	0.3	
α·(μm/(mK))	11	23	19	11.2	100	18	~0.15
σ _y (MN/m ²)	230-460	30-280	62-430	47-320		200-585	
of(MN/m2)	400-770	90-300	330-530	200-350	27-55	500-800	50-100

K for water is 2.3 GN/m²

The lower values of σ_y and σ_f for carbon and stainless steels refer to materials such as plates and tubes while the higher figures refer to heat-treated material such as used for bolts. The range of values for aluminium, copper and brass is due to the change in material property achieved by heat-treatment and/or mechanical work.

Property	Copper	Iron
Crystal structure	f.c.c.	b.c.c.
Bonding	metallic	metallic
Lattice constant (A)	3.61	2.86
Atomic volume (m ³ /kg mol)	7.09 x 10 ⁻³	7.10 x 10 ⁻³
ρ (kg/m ³)	8.96 x 10 ³	7.87 x 10 ³
Resistivity (Ω m)	1.72 x 10 ⁻⁸	10 x 10 ⁻⁸ .
Cohesive energy (J/kg mol)	3.38 x 10 ⁸	4.05 x 10 ⁸
Melting point (°C)	1083	1530
$\alpha(\mu m/(mK))$	16.7	12.1
Fermi energy (eV)	7.04	11.2
Work function (eV)	4.07 - 4.18	3.91 - 4.77
Temperature coefficient of resistance (K^{-1}) Effective radius (A) of	+0.0043	+0.0065
	1 07	1.00
(a) neutral atom	1.27	1.26
(b) singly charged ion	0.96	-
(c) doubly charged ion	0.70	0.75

Semiconductors

Property	Germanium	Silicon
Crystal structure	diamond	diamond
Bonding	covalent	covalent
Lattice constant (Å)	5.6575	5.4307
Atomic volume (m ³ /kg mol)	13.5 x 10 ⁻³	12.0 x 10 ⁻³
Density (kg/m ³)	5.32 x 10 ³	2.33 x 10 ³
Cohesive energy (J/kg mol)	3.72 x 10 ⁸	4.39 x 10 ⁸
Melting point (°C)	958.5	1412
Mobility (m ² /(V s))	{electrons 0.38 holes 0.18	electrons 0.19 holes 0.05
Energy gap (eV) (room temperature)	0.67	1.107
Density of states effective mass	electrons 0.35 me holes 0.56 me	electrons 0.58 me holes 1.06 me
$\alpha(\mu m/(mK))$	5.75	7.6

Polymers

PROPERTY	Polyethylene (H.D)	Polyvinyl (Chloride	Polystyrene	
Polymer Structure		[●−CH₂−CH i		●-CH ₂ -CH-●	
Structural State	Crystalline	Amorpho Slightly Cry		Amorphous/ Crystalline	
p(kg/m ³)	0.96 x 10 ³	1.7 x 1		1.05 x 10 ³	
Resistivity (Ωm)	10 ⁶ - 10 ¹⁰	10 ⁵		1010	
α(μm/mK)	120	190		63	
E(GN/m ²) M	70-280	25.00 - 35	00	3500-4200	
σ _f (MN/m ²)	7-14	28-40		35-50	
Tg(K)	153	353		373	
PROPERTY	Polymethyl- methacrylate	Polytetrafluc ethylene		olyisoprene tural Rubber)	
Polymer Structure	CH ₃	[← CF ₂ -CF ₂ -•] _n	1	CH ₃ •-CH ₂ -C=CH-CH ₂ -•] _n	
Structural State	Amorphous	Crystalline		Elastomer	
ρ(kg/m ³)	1.2 x 10 ³	2.2 x 10 ³		1.5 x 10 ³	
Resistivity (Ωm)	108	108		10 ⁵ - 10 ⁷	
α(μm/mK)	90	100		-	
E(GN/m ²)	2500-4000	400-650		7-70	
σ _f (MN/m ²)	50-70	14-30		2-10	
Tg(K)	380	399		203	
PROPERTY	Nylo	on 6:6		ormaldehyde (Bakelite)	
Polymer Structure		NH-C-(CH ₂) ₄ -C-• O O	OH CH,	OH CH ₂ —CH ₂ —	
Structure State	Crys	stalline	Am	orphous	
ρ(kg/m ³)	1.19	5 x 10 ³	1.	1.3 x 10 ³	
Resistivity (Ωm)		10 ⁶		104	
α(μm/mK)		100		72	
E(GN/m ²)	200	00-3000	7000		
$\sigma_{f}(MN/m^{2})$		50-70		50	
Tg(K)		323		- 4	

Periodic Table of the Elements

A = Re	* 7 * 8 * E		
≥ • r • Ω	* * = = = = = = = = = = = = = = = = = =		
S • O • S	0 0 0 0 0		
5-Z =a	S - 6 - 18		
S= O • \(\overline{\over	2 2 2 2 ° 6 2 °	Fm F T T T T T T T T T T T T T T T T T T	
8-8-₹	- G * T = T		
2p		/ Ho uter sub-	Sub-shell Total Number of electrons required to fill each sub-shell
		Dy Dy Correction of the Corret	- Sub-shell - Total Nur electrons fill each st
<u>_</u>			
	F P F L	C C C C C C C C C C C C C C C C C C C	n · n
	- R - C - L		2 6 10
>	Ru Ru R	Pr Nd Pm Sm Outer sub-helts at face. 2 U Np Pu 4 C C C C C C C C C C C C C C C C C C	p · 0
<u> </u>		Par	2 · P
^ VIIA	r Mn o Tc	*** *** *** *** *** ***	2 · P d . 2
VIA		Pr Pr 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 6 10
, A	*>=另 = E		2 · 8
He i NA NA	Tr. Zr. Hr.	2 1 0	+
	- × × × × × × × × × × × × × × × × × × ×	- V	Φ)
H ∀III		V 5-	
Z- Be- E	S S S S S S S S S S S S S S S S S S S	Ra 6	
N= E: ₹			
3 2 L L		" %	

- 1. The atomic number indicates the number of protons in the nucleus of an atom. In the neutral atom these protons are electrically balanced by an equal number of electrons outside the nucleus. Only neutral atoms are considered in the Periodic Classification.
- 2. Electrons travel far from the nucleus but if those regions where they spend most of their time are considered, a well-defined pattern of layers or 'Principal Shells' appears. Each shell is known by a Principal Quantum Number 1, 2, 3...7 or sometimes by the letters K, L, M... etc.
- 3. In each shell the electrons move around the nucleus in complicated, threedimensional patterns called Orbitals. The laws of Quantum Mechanics permit only certain types of orbital. An electron following one of these paths possesses an amount of energy (Energy Level) characteristic of that
- 4. Four types of orbital are encountered; they are identified by the letters s p d and f. s is the simplest whilst p, d and f are progressively more complex.
- 5. The number of orbitals per shell increases with shell number. (See the lower diagram overleaf.) The first contains only an s orbital, the second an s and three p's, the third adds five d orbitals and the fourth seven f's. These groups of like orbitals in any Principal Shell are called spd or f sub-shells.

Each sub-shell, depending on its principal quantum number and type, has a characteristic energy the order of which is generally proportional to the distance of the sub-shell from the nucleus.

- 6. Each orbital accepts either one or two electrons and the maximum number of electrons per sub-shell is shown on the diagram.
- 7. Electrons take positions in orbitals where the energy level is lowest. Up to element 18 (Argon) sub-shells and shells are built in an orderly sequence to maximum capacity. But in the next group the order changes because it happens that the energy level of the 4 s state is a little lower than that of the 3 d state.
- 8. The first transition series begins with Scandium (element 21) where the energy levels of the 4 s and 3 d orbitals are so nearly equal that there is a tendency for electrons to move from one orbital to another, causing variable valency. The same happens in the fifth period with 5 s and 4 d orbitals and in the sixth period with the 6 s and 5 d orbitals.
- 9. In the Lanthanide and Actinide series of elements, the 4 f and 5 f orbitals are occupied only after the s b d and s orbitals outside them have filled or begun to fill. The effect upon the chemistry of the elements is very small because the f orbitals are deep in the core of the atom. For this reason there is little difference between one element and its immediate neigh-
- 10. In any element, the so called Valency Electrons are those moving in orbitals of the highest energy levels. In this Chart of the Periodic Classification, the number and position of the valency electrons is indicated in the boxes underneath the various columns e.g. Rhodium-element 45has nine valency electrons; 8 in the 4 d sub-shell and 1 in the 5 s.

The particular sub-shell being filled with electrons is shown by the figures 4 s, 3 d, 4 p etc. in front of the rows of elements e.g. the 3 d in front of elements 21-30.

1. The following atomic weights are based on the exact number 12 for the carbon isotope 12, as agreed between the International Unions of Pure and Applied Physics and of Pure and Applied Chemistry, 1961. 2. The values given normally indicate the mean atomic weight of the mixture of isotopes found in nature. Particular attention is drawn to the value for hydrogen, boron, carbon, oxygen, silicon and sulphur, where the deviation shown is due to variation in relative concentration of isotopes.

c t !	Name	Atomic Number	Atomic Weight	Symbol	Name	Atomic Number	Atomic Weight
Symbol				Mg	Magnesium	12	24.312
AorAr	Argon	18	39 - 948	Mn	Manganese	25	54-9380
Ac	Actinium	89	_	Mo	Molybdenum	42	95.94
Ag	Silver	47	107 - 870	N	Nitrogen	7	14.0067
Al	Aluminium	13	26.9815			íı	22 - 9898
Am	Americium	95	-	Na	Sodium		
As	Arsenic	33	74-9216	Nb	Niobium	41	92.906
At	Astatine	85	_	Nd	Neodymium	60	144-24
Au	Gold	79	196 - 967	Ne	Neon	10	20 - 183
В	Boron	5	10.811	Ni	Nickel	28	58.71
			+0.003	No	Nobelium	102	_
Ba	Barium	56	137 - 34	Np	Neptunium	93	_
Be	Beryllium	4	9.0122	0	Oxygen	8	15.9994
Bi	Bismuth	83	208 - 980				±0.0001
Bk	Berkelium	97	200 700	Os	Osmium	76	190-2
Br .	Bromine	35	79.909	P	Phosphorus	15	30 - 9738
		6		Pa	Protoactinium	91	
С	Carbon	6	12.01115	Pb	Lead	82	207 - 19
			±0.00005	Pd	Palladium	46	106.4
Ca	Calcium	20	40.08	Pm	Promethium	61	100 1
Cd	Cadmium	48	112-40	Po	Polonium	84	
Ce	Cerium	58	140 · 12	Pr	Praseodymium	59	140.907
Cf	Californium	98				78	195.09
CI	Chlorine	17	35 · 453	Pt	Platinum	94	
Cm	Curium	96	_	Pu	Plutonium		_
Co	Cobalt	27	58 - 9332	Ra	Radium	88	_
Cr	Chromium	24	51 - 996	Rb	Rubidium	37	85 - 47
Cs	Caesium	55	132.905	Re	Rhenium	75	186 - 2
Cu	Copper	29	63 - 54	Rh	Rhodium	45	102 - 905
Dy	Dysprosium	66	162 - 50	Rn	Radon	86	_
Er	Erbium	68	167 - 26	Ru	Ruthenium	44	101.07
Es	Einsteinium	99	107 20	S	Sulphur	16	32.064
Es Eu		63	151-96				+0.003
	Europium	9	18-9984	Sb	Antimony	51	121.75
F	Fluorine			Sc	Scandium	21	44.956
Fe	Iron	26	55 · 847	Se	Selenium	34	78.96
Fm	Fermium	100	-	Si	Silicon	14	28.086
Fr	Francium	87	-	31	Silicon		+0.001
Ga	Gallium	31	69.72	Sm	Samarium	62	150.35
Gd	Gadolinium	64	157 - 25	Sn	Tin	50	118-69
Ge	Germanium	32	72 - 59	Sr	Strontium	38	87 - 62
Н	Hydrogen	-	1.00797	Ta	Tantalum	73	180 - 948
			±0.00001			65	
He	Helium	2	4.0026	ТЬ	Terbium		158-924
Hf	Hafnium	72	178 - 49	Tc	Technetium	43	
Hg	Mercury	80	200 - 59	Te	Tellurium	52	127-60
Но	Holmium	67	164-930	Th	Thorium	90	232-038
	lodine	53	126 - 9044	Ti	Titanium	22	47.90
In	Indium	49	114-82	TI	Thallium	81	204 - 37
	Iridium	77	192.2	Tm	Thulium	69	168 - 934
lr K	Potassium	19	39.102	U	Uranium	92	238 - 03
		36	83 - 80	٧	Vanadium	23	50.942
Kr	Krypton			W	Tungsten	74	183 - 85
La	Lanthanum	57	138-91	Xe	Xenon	54	131-30
Li	Lithium	3	6.939	Y	Yttrium	39	88-905
Lu	Lutetium	71	174-97	Yb	Ytterbium	70	173.04
Md	Mendeleevium	101	-	Zn	Zinc	30	65.37
						40	91.22
			The state of the s	Zr	Zirconium	10	21.77

8. THERMODYNAMICS AND FLUID MECHANICS

8.1 Thermodynamic Relationships

	dO - dW = dU
1st Law	
Enthalpy	H = U + pV or $h = u + pV$
For reversible process	$dS = \left(\frac{dQ}{T}\right)_{rev} or dQ = TdS$
и и	dW = pdV
Helmholtz function	F = U = TS or f = u - Ts
Gibbs function Gibbs free energy	G = H - TS or $g = h - Ts$
From 1st Law for a homo- geneous fluid	Tds = du + pdv = dh - vdp
Specific heat at constant volume	$c_{V} = \left(\frac{\partial u}{\partial T}\right)_{V}$
Specific heat at constant pressure	$c_p = \left(\frac{\partial h}{\partial T}\right)_p$
Specific heat ratio	$\gamma = c_p/c_v$
Reversible engine (Carnot) efficiency	= 1 - (T _{sink} /T _{source})
Engine indicated Power	$P_i = P_m V_s N_c$
Steady flow energy (Q-W)/m equation	$= h_2 - h_1 + \frac{1}{2}(c_2^2 - c_1^2) + g(z_2 - z_1)$
Continuity equation	m = ρAc

Van der Waals' equation $(p + \frac{a}{v^2})(v - b) = RT$

$$S = k \ln P$$
 $k = R_0/N$

Availability, (closed system): $(A_1 - A_0) = (U_1 + P_0 V_1 - T_0 S_1) - (U_0 + P_0 V_0 - T_0 S_0)$

(flow process) :
$$(B_1 - B_0) = (H_1 - T_0 S_1) - (H_0 - T_0 S_0)$$

Maximum work of a Reaction $W_{max} = G_{react} - G_{prod} = R_o T ln(K_p, p^n)$

For reversible polytropic (pV
n
 = constant) closed system: W = (p₁V₁ - p₂V₂)/(n-1)

For perfect gas also:

Prect gas also:

$$W = mR(T_1 - T_2)/(n-1)$$

$$Q = \frac{\gamma - n}{T_1} \cdot W$$

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{n-1} = \left(\frac{v_1}{v_2}\right)^{n-1}$$

For adiabatic reversible (isentropic reversible):

 $n = \gamma$

For isothermal reversible:

$$W = Q = pV \ln \left(\frac{V_1}{V_2} \right) \quad (n = 1)$$

Maxwell relations

Heat transfer

Forced convection in a tube Nu = .023 Re^{0.8}Pr^{0.4} (characteristic length = hydraulic mean diameter)(see 8.5)

 $\label{eq:log_log_log_log_log} \text{Log.mean temperature difference} \quad \frac{\Delta T_{\mbox{in}} - \Delta T_{\mbox{out}}}{2\pi \left(\Delta T_{\mbox{in}}/\Delta T_{\mbox{out}}\right)} = \Delta T_{\mbox{m}}$

Stefan-Boltzmann Law of radiation $q_b = \sigma T^4$ Radiation exchange:

Grey body to black or large enclosure $\sqrt[6]{A} = \sigma \epsilon_1 \left[T_1^4 - T_2^4 \right]$

Large parallel grey surfaces $\frac{\sigma}{Q/A} = \frac{\sigma \left(T_1^4 - T_2^4\right)}{1/\epsilon_1 + 1/\epsilon_2 - 1}$

Heat transfer coefficient h = $\mathring{\mathbb{Q}}/\mathbb{A}\Delta T$ emissivity ϵ = \mathbb{q}/\mathbb{q}_b

Fluid Mechanics

Statics

$$\frac{\partial p}{\partial z} = -g\rho$$
Force = $g\rho A\bar{h}$

$$\varepsilon = \frac{(Ak^2)centroid}{A\bar{y}}$$

Dynamics

For simple Newtonian flow
$$\tau = \mu \frac{dV}{dy}$$

Euler's equation
$$\frac{1}{\rho} \frac{dp}{dx} + c \frac{dc}{dx} + g \frac{dz}{dx} = 0$$
Bernoulli's equation
$$\frac{p}{\rho g} + \frac{c^2}{2\rho} + z = constant$$

For constant area flow with friction (Fanno)

$$\frac{dp}{\rho} + c dc + 2\frac{fc^2}{D} d\ell = 0$$

Acceleration along a stream-
$$a_{s} = V_{s} \frac{\partial V_{s}}{\partial s} + \frac{\partial V_{s}}{\partial t}$$
line

Acceleration normal to a
$$a_n = \frac{V\frac{2}{s}}{r} + \frac{\partial V_n}{\partial t}$$

Reynolds' Equation for bearings:

$$\frac{\partial}{\partial x} \left(\frac{\rho h^3}{12 \eta} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\rho h^3}{12 \eta} \frac{\partial p}{\partial y} \right) = \frac{1}{2} \frac{\partial}{\partial x} (\rho U h) + \frac{\partial}{\partial t} (\rho h) + \rho W$$

$$\frac{1}{r} \frac{\partial}{\partial r} \left(\frac{\rho r h^3}{12 \eta} \frac{\partial p}{\partial r} \right) + \frac{1}{r^2} \frac{\partial}{\partial \phi} \left(\frac{\rho h^3}{12 \eta} \frac{\partial p}{\partial \phi} \right) = \frac{1}{2} \frac{\partial}{\partial \phi} (\rho h \omega) + \frac{\partial}{\partial t} (\rho h) + \rho W$$

Hydraulic machines

Head coefficient
$$\psi = \gamma/\omega^2 D^2$$
 Flow
$$\phi = Q/\omega D^3$$
 Dimensionless specific
$$n_S = \left| \omega Q^{\frac{1}{2}} / \gamma^{\frac{3}{4}} = \phi^{\frac{1}{2}} / \psi^{\frac{3}{4}} = \frac{\omega (Power)^{\frac{1}{2}}}{\rho^{\frac{1}{2}} \gamma^{\frac{5}{2}}} \right|_{n_{MA}}$$

Dimensionless diameter	Δ	=	$DY^{\frac{1}{2}}/Q^{\frac{1}{2}}$
Dimensionless suction specific speed			$\omega Q^{\frac{1}{2}} / (NPSE)^{\frac{3}{4}}$
Cavitation number	σ or k	=	$(P_{\infty} - P_{V})/(\frac{1}{2}\rho V_{\infty}^{2})$, suffix ∞ , reference condition.
Cavitation number (Thoma)	σ_{Th}	=	$(P_1 - P_v)/(P_2 - P_1)$
			suffix 1, abs. pressure at 1p side of machine; suffix 2

machine; suffix v, vapour

Open Channel Hydraulics

Manning equation:
$$V = \frac{1}{n} R^{2/3} S^{1/2}$$
Steady gradually varied
$$\frac{dd}{dx} = \frac{S_0 - S_f}{1 - \sqrt{2}}$$
 (rectangular channel)

Unsteady gradually varied flow equation:
$$\frac{\partial d}{\partial x} + \frac{V}{g} \frac{\partial V}{\partial x} + \frac{1}{g} \frac{\partial V}{\partial t} = S_0 - S_f$$
 no local inflow or Continuity equation:
$$A \frac{\partial V}{\partial x} + V \frac{\partial A}{\partial x} + T \frac{\partial d}{\partial t} = 0$$
 outflow

Conjugate depths in
$$\frac{d_2}{d_1} = \frac{1}{2} \left(\sqrt{1 + 8F_1^2} - 1 \right)$$
 (rectangular channel) hydraulic jump:

High speed gas flow

zles:
Mass flow given by
$$\hat{m} = AC_d \sqrt{\frac{2n}{(n-1)}} p_0 \rho_0 \left[\left(\frac{p}{p_0} \right)^2 / n - \left(\frac{p}{p_0} \right)^{n+1} \right]$$

Critical pressure ratio
$$\frac{p^*}{p_0} = \left(\frac{2}{n+1}\right)^{\frac{n}{n+1}}$$

Sonic velocity
$$a = \sqrt{np/\rho}$$

where n
$$\simeq$$
 1.3 for steam, initially superheated

$$\simeq$$
 1.135 for steam, initially wet or dry saturated = $\gamma \simeq$ 1.4 for air

For perfect gas:

Stagnation temperature
$$T_0 = T \left[1 + \frac{(\gamma - 1)}{2} M^2 \right]$$

For air in isentropic flow (
$$\gamma = 1.4$$
) $\frac{\vec{m} \sqrt{T_0}}{A^* p_0} = 0.0404 \frac{kgK^{\frac{1}{2}}}{Ns}$
Turbine Ellipse Law $\frac{\vec{m} \sqrt{T_0}}{Ap_0} = \left[1 - \left(\frac{p}{P_0}\right)^2\right]^{\frac{1}{2}}$

8.5 <u>Dimensionless groups</u>

Drag coefficient	$C_{\rm D} \equiv {\rm drag\ force}/{1\over 2} \rho V^2 A$
Discharge coefficient C _d ≡ Q _{actual} /	$/ \left\{ A_{\text{throat}} \left\{ \frac{2\Delta p_{\text{meter}}/\rho}{1 - \left[\frac{A_{\text{throat}}}{A_{\text{min}}} \right]^{2}} \right\} \right\}$
	(pripe)

Fourier number	Fo	Ξ	(k/pc _p)t/L ²
Froude number			V/√ Lg
Grashof number	Gr	Ξ	gβΔTL ³ ρ ² /μ ²
Mach number	М	Ξ	V/a

Pipeflow friction factor
$$f \equiv gDh_f/2xV^2$$
 (round pipes)

$$2gmh_f/2V^2 \ \, (\text{non-circular duct})$$
 Wall shear stress coefficient f $\ \equiv \ \tau_W/\frac{1}{2} \rho V^2$

8.6 Composition of air

As at the little of the little	Vol. Analysis	Grav. Analysis
Nitrogen (N ₂ - 28.013)	0.7809	0.7553
0xygen (0 ₂ - 31.999)	0.2095	0.2314
Argon (A _r - 39.948)	0.0093	0.0128
Carbon dioxide (CO ₂ - 44.010)	0.0003	0.0005

Mean Molecular Weight M = 28.96Specific Gas Constant R = 0.2871 kJ/(kgK)

8.7 Temperatures at the primary fixed points

Normal	boiling p	oint o	f	oxygen (oxygen point)	-182.97°C
Triple	point of	water			0.01°C
Normal	boiling p	oint o	f	water (steam point)	100.00°C
Normal	boiling p	oint o	f	sulphur (sulphur point)	444.6°C
Normal	melting p	oint o	f	silver (silver point)	960.8°C
Normal	melting p	oint o	f	gold (gold point)	1063°C

8.8 Critical constants

	molecular weight	T _c (K)	P _c (bar) (10 ⁵ N/m ²)	Pc(kg/m ³)
hydrogen	2.02	33.3	13.0	31
helium (4)	4.00	5.3	2.29	69.3
water vapour	18.02	647.30	221.2	318.3
nitrogen 😹	28.01	126.1	33.9	311
oxygen	32.00	154.4	50.4	430
carbon dioxide	44.01	304.15	73.8	468

8.9 Approximate physical properties at 20 $^{\circ}$ C, 1 bar (10^{5} N/m 2)

	R kJ kgK	р <u>kg</u> m ³	c _p kJ kgK	c _p /c _v	μ mNs m ² =cP	k W mK
hydrogen	4.16	0.082	14.3	1.40	8.8x10 ⁻³	1.8x10 ⁻¹
helium	2.08	0.164	5.23	1.66	1.96x10 ⁻²	1.4×10 ⁻¹
nitrogen	0.294	1.16	1.04	1.40	1.76x10 ⁻²	2.6x10 ⁻²
oxygen	0.260	1.31	0.91	1.40	2.03x10 ⁻²	2.6x10 ⁻²
carbon dioxide	0.190	1.80	0.84	1.28	1.47x10 ⁻²	
air	0.287	1.19	1.005	1.40	1.82x10 ⁻²	2.6x10 ⁻²

(ii) Liquids

			11	k	σ	R
	kg/m ³	kJ/(kgK)	р cP	W/(mK)	N/m	10-3 _K -1
water	1,000	4.19	1.002	0.6	0.073	0.21
mercury	13,600	0.14	1.55	8.7	0.51	0.18
castor oil	960	2.20	1000	0.18	0.039	en in
benzene	880	1.80	0.656	0.16	0.029	
ethyl alcohol	790	2.86	1.20	0.19	0.022	1.08
engine oil∿	890	1.9	80	0.15	-	0.8
Freon 12	1,350	0.96	0.273	0.073	-	0.00
	1	1	1			

(iii) Solids

	ρ kg/m ³	c _p kJ/(kgK)	k W/(mK)	α μm/(mK)
duralumin	2720	0.88	170	23
mild steel	7850	0.46	52	11
stainless steel (18% Ni, 8% Cr)	7810	0.46	16	18
brass (65/35)	8450	0.37	120	19
concrete	2400	0.88	1.1	10-14
wood (pine)	500	2.8	0.15	0.15
firebrick	170	0.81	0.38	3-9

(iv) Fuels

(a) Gases (fuels)

			Comp	ositio	n by V	olume		Relative Density (Air) = 1	rific Va	MJ/m ³ 15 ⁰ C 1.01325 bar	Theoretical Air
	N ₂	H ₂	CH ₄	C2H6	C3H8	C ₄ H 10	C ₃ H ₆	Rel	Gross	Net	Vo1/Vo1
Hydrogen		100				la la via		0.0696	12.10	10.22	2.38
Methane		4	100					0.5537	37.71	33.95	9.52
North Sea Gas	1.5		94.4	3.0	0.5	0.2		0.589	38.62	34.82	9.75
Propane*				1.5	91.0	2.5	5.0	1.523	93.87	86.43	23.76
Butane*			0.1	0.5	7.2	87.0	4.2	1.941	117.75	108.69	29.92

^{*}Commercial Liquid petroleum Gas (L.P.G.) See also data on liquid fuels below.

(b) Liquids (fuels), typical values

	Composition % Mass			Density at 15°C kg/m ³	Calorific Value MJ/k		
	С	Н	S	<u> </u>	Gross	Net	
Propane*	82.0	18.0		505	50.0	46.3	
Butane*	81.9	17.0		575	49.3	45.8	
Petrol	85.5	14.4	0.1	733	46.9	43.7	
Kerosene	85.9	14.0	0.1	780	46.5	43.4	
Diesel (Gas Oil)	85.7	13.4	0.9	840	45.4	42.4	

9. AUTOMATIC CONTROL

1. Block Diagrams

2. Feedback Notation

forward path, c/e

Input/Output closed loop transfer function = $\frac{C}{R} = \frac{G_1 G_2}{1 + G_1 G_2 H}$

Input/Error closed loop transfer function = $\frac{E}{R} = \frac{1}{1+G_1G_2H}$ $= 1 + G_1 G_2 H = 0$ Characteristic equation

$$\mathsf{G_1G_2H} \triangleq \mathsf{KGH} = \frac{\mathsf{K}}{\mathsf{s}^{\mathcal{R}}} \underbrace{\begin{array}{l} \underset{1}{\overset{\Pi}{=}} 1 \ (\mathsf{s} + \mathsf{z}_{\frac{1}{1}}) \\ \underset{1}{\overset{\Pi}{=}} 1 \ (\mathsf{s} + \mathsf{p}_{\frac{1}{1}}) \end{array}}_{\mathsf{h}}$$

3. Stability Criteria for Linear Systems

- 3.1 Root location: No closed loop system pole may have positive real part
- 3.2 Routh Array

Characteristic equation $a_n s^n + a_{n-1} s^{n-1} \dots + a_1 s + a_0 = 0$

		1	2	3		
	n	a n	a n - 2.	a n - 4	и	
	n - 1	a _{n-1}	a _{n-3}	a _{n-5}	"	
	n - 2	bl	b ₂	b 3	п	
	n - 3	c ₁	c ₂	c 3	п	
		н		п		
b ₁ =	an-1an-2	anan-3	b 2	$=\frac{a_{n-1}a_{n-4}}{a_{n-1}}$	a _n a _{n-5}	
c ₁ =	$\frac{b_1 a_{n-3}}{b_1}$	a _{n-1} b ₂	c ₂	$=\frac{b_1a_{n-5}-a_{n-5}}{b_1}$	n-1 ^b 3	etc.

Number of closed loop poles with positive real part = number of sign changes in column 1.

3.3 Nyquist Encirclement

$$P = N + Z$$

N = number of clockwise encirclements of (-1,j0) by open loop locus

P = number of closed loop poles with positive real part

Z = number of open loop poles with positive real part

3.4 Gain Margin =
$$|KG(j\omega_{\alpha})H(j\omega_{\alpha})|^{-1}$$
, ω_{α} such that

$$/KG(j\omega_g)H(j\omega_g) = -180^\circ$$

3.5 Phase Margin =
$$180^{0}$$
 + $\frac{\text{KG}(j\omega_{p})\text{H}(j\omega_{p})}{\text{KG}(j\omega_{n})\text{H}(j\omega_{n})}$, ω_{p} such that
$$\left|\text{KG}(j\omega_{n})\text{H}(j\omega_{n})\right| = 1$$

4. Rules of Root Locus Sketching

4.1 Every point, α , on the root locus for positive K satisfies

$$|G(\alpha)H(\alpha)| = 1/K$$

$$/G(\alpha)H(\alpha) = (1+2k)180^{\circ}$$
 $k = 0, \pm 1, \pm 2...$

4.2 The number of branches of the root locus is equal to the number of poles.

- 4.3 Branches of the locus can be considered to start on the poles ($_{K}$ = 0) and terminate on zeros ($_{K}$ = $^{\infty}$).
- 4.4 Points of the root locus exist on the real axis to the left of an odd number of poles plus zeros.
- 4.5 The locus is symmetrical with respect to the real axis.
- 4.6 The angles of asymptotes, α_k , to the root locus are given by $\alpha_k = \frac{\pm (2k+1)^m}{n-m} \qquad \qquad k=0, 1, 2 \dots.$
- 4.8 The locus leaves the real axis or arrives at it at points α where α is given by

$$\frac{d}{d\alpha} \left[\ln \{ KG(\alpha) H(\alpha) \} \right] = 0$$

4.9 The intersection of the root locus and the imaginary axis can be found by application of Routh's Stability criteria.

5. TABLE OF CHARACTERISTIC SYSTEMS

	Typical Example		Basic form of transfer function
Electrical	Dynamic	Hydraulic	G(s)
V 1 0 0	×i — ×o	×i	К
I i vo	F _i ,× _o	q _i	1/s
v ₁ v ₀	× i	x ₁	1 1+Ts
I _i v _o	↓ F _i	x _i x _o	7 1 5 (1+Ts)
v _i v _o	↓F ₁ ,x ₀	×i	^ω n ² s ² +2ξω _n s+ω _n ²
v ₁	× _i	X ₁	<u>1+αTs</u> 1+Ts
v _i	×;	× in the second	$\frac{\omega_n^2(1+2\xi s/\omega_n)}{s^2+2\xi\omega_n s+\omega_n^2}$

10. ELECTRICITY

$$\frac{O\,\text{hm's Law}}{V\,=\,I\,R\,,}\quad R\,=\,\frac{V}{I},\quad I\,\,=\,\frac{V}{R}$$

DC Power = $VI = I^2R = V^2/R$ AC Power = $Re(\underline{V}.\underline{I}) = |V| |I| Cos \phi$

Resistance

$$I = \frac{a}{\rho_0 (1 + \alpha T)} \frac{dV}{dx} \qquad R = \int \frac{\rho_0 (1 + \alpha T)}{a} dx$$

Inductance

$$e = -L \frac{di}{dt} \qquad i = -\int \frac{V}{L} dt$$

$$L = N^2 \mu_0 \mu_r a / \ell$$

for L R circuit decay i = $Ie^{-Rt/L}$ Stored energy = $\frac{1}{2}LI^2$

Capacitance

$$Q = CV = \int i dt$$

$$i = \frac{dQ}{dt} = C\frac{dV}{dt}$$

C =
$$\varepsilon_0 \varepsilon_r$$
(n-1)a/d, for n parallel plates $\varepsilon_0 = 8.85.10^{-12} \; {\rm Fm}^{-1}$ for RC circuit discharge i = -Ie^{-t/RC}

Stored energy = $\frac{1}{2}$ CV² $F = \frac{1}{2} \varepsilon_0 \varepsilon_r a \left(\frac{V}{X} \right)^2$

Electrostatics

$$\underline{F} = e\underline{E} = -e \text{ gradV}$$

$$Q = \oint \underline{D} \cdot d\underline{S} (= \Psi)$$

$$\underline{D} = \varepsilon_0 \varepsilon_r \underline{E}$$

Electromagnetism

$$E = -N \frac{d\Phi}{dt}$$

$$B = \frac{\mu_0 I}{2\pi r}$$

$$F = \frac{\mu_0 I_1 I_2 \ell}{2\pi d}$$

$$\frac{dH}{d\ell} = \frac{I \sin \alpha}{4\pi x^2}$$

For solenoid $H = \frac{NI}{0}$

Magnetism

$$H = \frac{B}{\mu_{-}\mu_{-}}$$

For a magnetic circuit

$$B = \frac{\Phi}{a}$$

$$B = \frac{\Phi}{}$$

$$B = \frac{\Phi}{a}$$

$$\Phi = \frac{N1}{\frac{k_1}{\mu_1 a_1} + \frac{k_2}{\mu_2 a_2}}$$

 $\phi = \frac{\frac{\alpha}{\frac{k_1}{\mu_1 a_1} + \frac{k_2}{\mu_2 a_2}}}{\frac{\mu_1 a_1}{\mu_1 a_1} + \frac{k_2}{\mu_2 a_2}}$ Stored Energy Density = $\frac{1}{2}$ HB = $\frac{1}{2}$ $\frac{B^2}{\mu_0}$

$$F = (\frac{1}{2}HB)a = \frac{B^2a}{2\mu_0}$$

DC Machines

$$E = \frac{2Z}{c} \frac{n}{60} p\Phi$$

$$T = \frac{I_a Z p \Phi}{2\pi c}$$

$$\frac{\text{Machines}}{E = \frac{2Z}{c} \frac{n}{60} \text{ p} \phi \qquad T = \frac{I}{2\pi c} \frac{Z}{2\pi c} \qquad \text{where c = 2 (wave) or 2p (lap)}$$

$$V = E \pm I_a R_a$$

Series motor AC or DC

AC Machines

Synchronous speed =
$$f/p$$

E = 2.22 $k_d k_p Z f \Phi(rms)$

f/p
$$T \propto \frac{\phi^2 \text{ sR}}{R^2 + (sX_0)^2}$$

Induction

$$\frac{\text{AC Circuits}}{\text{Series LCR}} \quad \text{V}_{\text{rms}} = \frac{1}{\sqrt{2}} \quad \text{V}_{\text{max}}$$

$$Z = (R^2 + (\omega L - \frac{1}{\omega C})^2)^{\frac{1}{2}}$$

$$\omega = 2\pi f$$

$$\underline{Z} = R + j_{\omega}L + \frac{1}{j_{\omega}C}$$
 $Cos\phi = \frac{R}{7}$

$$Cos\phi = \frac{R}{Z}$$

At resonance
$$\omega = \omega_0 = \sqrt{\frac{1}{LC}}$$
 Q factor = $\omega_0 \frac{L}{R}$

Basic Op'Amp' Circuits

non-inverting amplifier

Colour Code 4 Yellow 8 Grey O Black 2 Red 1 Brown 3 Orange 5 Green 7 Violet 9 White Preferred Values

10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82

11 SOIL MECHANICS

11.1 Soil Classification

1. Size Classification

CLASSIF	ICATION	M.I.T. Size limits mm	B.S. Sieves used for separation mm
	Coarse		- 1
Grave1	Medium	20	20
	Fine	6 —	6.3
	Coarse	2 —	2
Sand	Medium	0.6	0.6 ——
	Fine	0.2	0.2.2
	Coarse		0.063 ——
Silt	Medium	0.02	
	Fine	0.006	
Clay		0.002	

Casagrande Soil Classification, fine grained (50% or more passing B.S. No.200 sieve)

Inorganic silts, silty or clayey fine sands, with slight plasticity	ML
Inorganic clays, silty clays, sandy clays of low plasticity	CL
Organic silts and organic silty clays of low plas- ticity	0L
Inorganic silts of high plasticity	МН
Inorganic clays of high plasticity	СН
Organic clays of high plasticity	ОН
Peat and other highly organic soils	Pt
	clayey fine sands, with slight plasticity Inorganic clays, silty clays, sandy clays of low plasticity Organic silts and organic silty clays of low plasticity Inorganic silts of high plasticity Inorganic clays of high plasticity Organic clays of high plasticity Peat and other highly

M silt L low pasticity C clay organic H high plasticity

3. Volume-weight Relationships

Vol.		Weight	n	=	1+e
† e —	Air	0	W	=	Se Ge
e Se	Water	Se Y w			G _s (1+w)
1			Υ	=	1+e
	Solids	G _s Y _w	Υ'	=	$\frac{G_s-1}{1+e} \gamma_w =$

Period

Quaternary

Tertiary

Cretaceous

Jurassic Triassic Permian Carboniferous Devonian

Silurian Ordovician Cambrian Epoch

Pleistocene Pliocene

Miocene

Oligocene Eocene

Paleocene

4. Stratigraphic Table

Era

Cenozoic

Mesozoic

Paleozoic

Precambrian

Subdivisions of Quaternary

 $\gamma_W = \gamma_{sat} - \gamma_{w}$

 $e = \frac{n}{1-n}$

Relative Climate	U.K. Name
Warm (current) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold	Flandrian (Holocene Devensian Ipswichia Wolstonia Hoxnian Anglian Cromerian Beestonian Pastonian Baventian Antian Thurnian Ludhamian Waltonian

11.2 Stresses and Displacements in Elastic Half-space

1. Vertical stress at depth \boldsymbol{z} below corner of uniformly loaded rectangle

(a) Point load Q at surface

$$\sigma_{z} = \frac{30}{2\pi z^{2}} \cos^{5}\theta$$

$$w_s = \frac{Q(1+v)}{2\pi z E} \cos\theta [\cos^2\theta + 2(1-v)]$$

(b) Line load q at surface

$$\sigma_z = \frac{2q}{\pi z} \cos^4 \theta$$

$$W_S = \frac{2q(1-v^2)}{\pi E} 2n(\frac{d}{x})$$
 where displacement at d is assumed = 0 (d $\geqslant x$)

3. Surface displacement of uniformly loaded rectangle

L/B Ratio		Ιδ	
270 84010	Centre	Corner	Average
1	1.12	.56	.95
1.5	1.36	.68	1.15
2	1.53	.76	1.30
3	1.78	.89	1.53
4	1.96	.98	1.70
5	2.10	1.05	1.83
7	2.33	1.16	2.04
10	2.53	1.27	2.25
20	2.95	1.47	2.64
30	3.23	1.61	2.88
50	3.54	1.77	3.22
100	4.01	2.00	3.69
Circle	1.00	Edge .64	.85

$$w_s = qB \frac{1-v^2}{E} I_{\delta}$$

11.3 Terzaghi Bearing Capacity Factors

Note: Reduce c and $tan\phi$ to two thirds of measured values for local shear

11.4 Slope Stability

11.5 Consolidation-Time Curves

For curve (1): U < .60 T =
$$\frac{\pi}{4}$$
 U²
U > .60 T = -.933 log₁₀(1-U) - 0.085
T₅₀ = .197
T₉₀ = .848

Buckling Load:

π ² EI	4π ² ΕΙ	2.045π ² EΙ	π ² EI	π ² EI
L ²	L ²	L ²	4 L 2	L ²

Effective Length:

0.5L 0.699L 2L

Beams bent about principal axi	is	
ω is load/unit length	end slope	maximum deflection Δ
	ML E I	ML ² 2ET
₩ W	WL ² ZEI	WL ³ 3ET
,	ωL ³ GEI	ωL 4 8EI
M(ML ZEI	ML ² 8EI
₩ Δ	WL ² 16EI	WL ³ 48EI
**********	ωL ³ 24ΕΙ	5ωL ⁴ 384EI
a W b	$\theta_b = \frac{Wac^2}{2LEI}$	Wac ³ 3LEI
$a \in b$ (Δ) $c = \sqrt{\frac{b(L+a)}{3}}$	$\theta_a = \frac{L+b}{L+a} \cdot \theta_b$	a ≤ b

Fixed End Moments

	noments		,
moment-	and a moment	maximum de- flection Δ	maximum de- flection po- sition c
ωL ²)	$\frac{\omega L}{2}$ $\frac{\omega L}{2}$ $\left(\frac{\omega L^2}{12}\right)$	ωL ⁴ 384ET	L 2
	Jammannam Marian		
WL)	₩ <u>₩</u> ₩ <u>₩</u> ₩ <u>₩</u> ₩ ₩ <u>₩</u> ₩ ₩ ₩ ₩ ₩ ₩ ₩	WL ³ T92ET	<u>L</u>
	L/2 —		
$\frac{\text{Wab}^2}{\text{L}^2}$	$ \oint \frac{Wb^2(L+2a)}{L^3} \qquad \frac{Wa^2(L+2b)}{L^3} \oint \left(\frac{Wa^2b}{L^2}\right) $	2Wa ² b ³ 3EI(L+2b) ²	2Lb L+2b
	W b c	a ≼ b	
$\frac{6EI}{L^2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	1		-
$\frac{Mb}{L^2}(2a-b)$	$\downarrow \frac{M}{L} \qquad \qquad \frac{M}{L} \uparrow \left(\frac{Ma}{L^2}(2b-a)\right)$		
	a M b	-	-
ωL ²	$\frac{3\omega L}{20}$ $\frac{7\omega L}{20}$ $\left(\frac{\omega L^2}{20}\right)$		
5.0	- c - T	ωL ⁴ 764EI	0.475L
3WL)	↑ 11W 5W ↑ 0	2WL ³ 215EI	2507
	L PROP		0.447L
Wab(L+b)	↑ Wb + M Wa - M ↑ 0	$\frac{Wa^2b}{6EI}\sqrt{\frac{b}{2L+b}}$	L/ b 2L+b
	a b PROP	b≽0.4142L	b>0.4142L
<u>ωL²</u>)	<u>1 5ωL</u> 3ωL 1 0	ωL ⁴ 185ΕΙ	0.422L
	PROP PROP	TO SEE THE	Table to

Relations with elastic constants

$$G = E/(2(1 + \nu))$$
Simple bending $\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$

$$Torsion of circular section $\frac{T}{I} = \frac{T}{L} = \frac{G\theta}{I}$$$

Beam stiffness Coefficients

In the following the F's can be axial or shear forces, or, bending or torsional couples corresponding to the mode of deformation.

All beam and frame stiffness matrices may be built up from the following components of each beam element.

(a) axial stiffness
$$\xrightarrow{x_1} \xrightarrow{x_2} \text{giving } \begin{bmatrix} F_1 \\ F_2 \end{bmatrix} = \frac{\dot{E}A}{\mathcal{R}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

(b) torsional
$$x_1$$
 x_2 giving $\begin{bmatrix} F_1 \\ F_2 \end{bmatrix} = \frac{GJ}{Z} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

(c) bending stiffness and lateral deflection stiffness in one plane

In each case if one end is fixed and considered as a reaction. its deflections and forces may be ignored with a corresponding reduction of the stiffness matrix. Another possible form of reaction for case (c) occurs if the reaction end is pinned. Then the stiffness matrix components for the other end are given by

(c)(i)
$$\frac{x_2}{f_{x_1}} = \lim_{\epsilon \to \infty} giving \begin{bmatrix} F_1 \\ F_2 \end{bmatrix} = \underbrace{EI}_{x_1} \begin{bmatrix} 3 & 3x \\ 3x & 3x^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

A general plane frame element will have components (a) and (c) and require a 6 x 6 stiffness matrix. A general space frame element will require components of (a), (b) and (c) - the latter twice for two planes of bending - and will, require a 12 x 12 stiffness matrix. The three modes of deflection (a), (b), (c) are orthogonal and may be combined into larger matrices with 0's in all unspecified positions. Space frame elements will, in general, have different values of I in the two principal planes of bending.

Shear

Shear flow per unit length of wall resulting from the $\underline{\rm applied}$ shear forces $\rm S_{_{7}},\, S_{_{V}}$ is

The resultant force from this shear flow acts through the SHEAR CENTRE.

Torsion

For a circular section
$$\frac{T_X}{J} = \frac{\tau_{\theta X}}{r} = \frac{G\theta}{L}$$

$$J = \frac{\pi D^4}{32} \text{ for a solid section}$$

$$= \frac{\pi}{32} \left[D_{\text{outer}}^4 - D_{\text{inner}}^4 \right] \text{ for a hollow section}$$

For a thin walled closed section

$$x = 2Aq$$

$$= \frac{4A^2G}{\int_0^{S} \frac{dS}{t}} \cdot \frac{\theta}{L}$$
A = area enclosed by walls

For a thin rectangular section

$$T_{X} = \frac{dt^{2}}{3} \tau_{ZX \text{ max}}$$
$$= \frac{dt^{3}G}{3} \frac{\theta}{L}$$

Asymmetric Bending

When the principal axes m,n lie in directions y,z, then: $\alpha_{y,y} = \frac{p}{x} + \frac{nM_m}{t} - \frac{mN_n}{t}$

Stress and strain transformations

Mohr circle of stresses

Equilibrium of prism in $\sigma_1^{},\sigma_3^{}$ directions gives

$$\sigma_1 \cos \theta = \sigma_n \cos \theta + \tau_s \sin \theta$$

 $\sigma_3 \sin \theta = \sigma_n \sin \theta - \tau_s \cos \theta$

Then:
$$\sigma_1 \cos^2\theta + \sigma_3 \sin^2\theta = \sigma_n = \frac{\sigma_1}{2}(1 + \cos 2\theta) + \frac{\sigma_3}{2}(1 - \cos 2\theta)$$

$$= \frac{\sigma_1 + \sigma_3}{2} + \frac{\sigma_1 - \sigma_3}{2} \cos 2\theta$$

$$(\sigma_1 - \sigma_3) \sin \theta \cos \theta = \tau_s = \frac{\sigma_1 - \sigma_3}{2} \sin 2\theta$$
Also: $\sigma_1 = \frac{\sigma_x + \sigma_y}{2} + \tau_{max}$; $\sigma_3 = \frac{\sigma_x + \sigma_y}{2} - \tau_{max}$; $\tau_{max} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + (\tau_{xy})^2}$
and: $\tan 2\alpha = \frac{-2\tau_{xy}}{\alpha - \sigma_x}$

Two-dimensional strain system

 $\boldsymbol{\varepsilon}_{\chi}, \boldsymbol{\varepsilon}_{y}, \, \boldsymbol{\varepsilon}$ are direct strains 'corresponding' to $\boldsymbol{\sigma}_{\chi}, \boldsymbol{\sigma}_{y}, \, \boldsymbol{\sigma}$

 $\frac{\gamma_{xy}}{2}$, $\frac{\gamma}{2}$ are shear strains 'corresponding' to τ_{xy} , τ

Three-dimensional stress system

If the principal stresses are σ_1 , σ_2 , σ_3 , the principal shear stresses are $(\sigma_1 - \sigma_2)/2$, $(\sigma_2 - \sigma_3)/2$ and $(\sigma_3 - \sigma_1)/2$. Strain energy per unit volume U may be expressed as

$$U = (\sigma_1 + \sigma_2 + \sigma_3)^2 / 18K$$

$$+ \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right] / 12G$$

13. SYMBOLS INDEX

GREEK ALPHABET

Α, α	alpha	Н,	η	eta	N,	ν	nu	Τ,	τ	tau
В, в	beta	Θ,	θ	theta	Ξ,	ξ	xi	Т,	υ	upsilor
Γ, γ	gamma	Ι,	ι	iota	0,	0	omicron	Φ,	ф	phi
Δ, δ	delta	К,	K	kappa	П,	π	pi	Х,	χ	chi
Ε, ε	epsilon	Λ,	λ	lambda	Р,	ρ	rho	Ψ,	ψ	psi
Ζ, ζ	zeta	М,	μ	mu	Σ,	σ	sigma	Ω.	ω	omega

MATHEMATICAL SYMBOLS

L[] - Laplace Transform

 Δ - defined as

 Σ - repeated summation

Π - repeated multiplication

a - partial differential

a - modulus

∇ - Laplace differential, Del, Nabla

a - vector

 $\hat{\underline{a}}$ - unit vector

_ - 'at right angles to'

- scalar (dot) product

x - vector (cross) product

Re - real part of complex number

Im - imaginary part of complex number

Symbol	Page No. of use		Recommended S.I. Unit
a a a a A	51 38 41 60 37 48,50	velocity of sound lattice parameter ½ crack length area acceleration area	m/s m m ² m m ² m/s ²
A A B B	38 47 47 60 66,67	Atomic weight availability function (non-flow) availability function (flow) magnetic flux density breadth of footing	kJ kJ T

×	nf	Sne	ci	fied	flui

		or specific	
c	67	cohesion	kN/m ²
c c c c v	49	velocity.	m/s
	47	specific heat	kJ/(kgK) m ² /s
p, v	69	coefficient of consolidation	m ² /s
CV	60	capacitance	F 2-
C	39	concentration	11101/111
C	50	Chézy coefficient	(m²)/s
C d d	50,51	discharge coefficient	
Cd	51	drag coefficient	-
ا م	38	interatomic spacing	m
d()	38	interplanar spacing	m
d	50	depth of flow	m
1,d2	50	" " before jump, after jump	m
1 D 2	51,54	diameter	m
D	39	diffusion coefficient	m ² /s
D	67	depth of overburden	m
D	68,69	depth factor	-
e	65	void ratio	
E	41,70	Young's Modulus	N/m ²
ΔE	38	energy difference	J
f	61	supply frequency	Hz
f	54	friction factor	-
f	51	wall shear stress coefficient	
f	47	specific Helmholtz free energy function	kJ/kg
F	47	Helmholtz free energy function	kJ
F,F1	50,51	Froude Number, before jump	
1,11		force	N
F	60 47	specific Gibbs free energy function	kJ/kg
9	65	specific gravity of solids	
G			kJ 2-
G S	4/	Gibbs free energy function modulus of rigidity	N/m2
0 0	41,72 55	transfer function	117 111
G1,G2,G			m*
h f	51,54	frictional head loss	kJ/kg
n	47	specific enthalpy	W/(m ² K)
h	51	heat transfer coefficient	kJ kJ
Н	47	enthalpy field atmosph	A/m
Н	60	magnetising force magnetic field strength	A/ III
H	5.5	transfer function	
I	60	current	M ⁴
I	35,70	second moment of area	
I	35	moment of inertia	kgm ² kg/(m ² s
J	39	diffusion flux	Kg/(III-S
k	48,51	thermal conductivity	W / (mK)
k	54	surface roughness	μm
k	35,49	radius of gyration	m
kd,kp	61	distribution factor, pitch factor of winding	Į.
KP	55	gain constant	3/
K	41	stress intensity factor	MNm N / m ² N / m ³ / ₂
K	41,72	bulk modulus	N/m ² _{3/-}
ΔK	41	stress intensity range	MNn - 3/2
Кр	47	equilibrium constant (atmos)'/n	
2	51	length	m
ê l	60	length of conductor	m
Ĺ	51	characteristic length	m
i l	60	inductance	H
in	47	mass	kg
m	51,54	mean hydraulic radius	m
m	47,50	mass flowrate	kg/s
HI	77,50	11000	٠.

	Nm
M 70 moment	,
M 51 Mach number	-
n 65 porosity n 61 speed of rotation	
	r/min
n 50 Manning roughness coefficient n 38 atoms per unit cell	
	-
ni 41 total cycles at stress amplitude total cycles to failure at strain amp	litudo -
NP 41 total cycles to latture at strain amp	" -
No 41 " " " " stress	-
N 7,38 Avogadro's number	kg/(kgmol)
N 47 leveles now unit time	Hz Hz
N°C 39 total number of atoms	-
p 30 probability	- 1
	N/m ²
p 47 mean effective pressure B 61 number of pole pairs	17/11
P 47 thermodynamic probability or No.of qu	antum states -
15	
q 66,67 surface normal stress	power kN/m2 W/m2 W/m2 W/m2
q 48 heat flowrate per unit area emissive	nower W/m2
	W/m2
	j"/"
Q 39 activation energy heat (input + ve)	kJ m ³ /s
Q 49 volumetric flowrate	m ³ /s
0 41 crack shape factor	- 30
Q 41 crack shape factor Q 60 charge	Ca
r 41 r.m.s. of stress	MN/m ²
R 60,61 resistance, resistance per phase	Ω
R 50 hydraulic radius	m
R 47 characteristic gas constant	kJ/(kgK)
	kJ/(kgmo1K)
R 47 Universal gas constant s 47 specific entropy	kJ/(kgK)
s 61 fractional slip	
S 65 degree of saturation	
s 61 fractional slip S 65 degree of saturation S 47 entropy	kJ/K
S 50 channel slope in uniform flow S 50 friction slope S 50 invert slope t 37 time T 68 time factor	
S _c 50 friction slope	
S 50 invert slope	
t 37 time	S
T 68 time factor	Nm
T 61 torque	Nm m
T 50 water surface width	K
T 47 temperature (absolute)	oc l
ΔT 48 temperature difference	K
T _q 43 glass transition temperature	kJ/kg
ug 43 grass transition temperature 47 specific internal energy	m/s ₂
u 37 velocity	kN/m ²
u 68 pore pressure	-
U 68 degree of consolidation	, kJ
U 47 internal energy v 47 specific volume	m ³ /kg
v 47 specific volume v 37 velocity	
47 molan volumo	-3//kamall
VO 60 woltage	V
V 38,49 volume	m3
V 38 volume of unit cell	m ³
V 50,51 velocity	2 m/s
V _S 47 cylinder swept volume	m ³ m/s
S 1 Tr Cyrinder Shept vorume	

W	65	water content	
W_	66,67	surface displacement	m
WS	47	work (output,+ve)	kJ
X	61	leakage reactance per phase	Ω
Xo	49	change in specific energy through a machine	J/kg
	49	potential head	m*
Z Z Z	61	number of armature conductors	-
7	62	impedance	Ω
α	41	coefficient of linear expansion	μm/(mK)
α	60	resistance coefficient	-1 Ω/K
β	51	coefficient of volumetric expansion	K '
γ -	65	unit weight of soil	kN/m ³
Y	47,50	specific heat ratio	-
	65	unit weight of water	kN/m3
YW	65	unit weight of saturated soil	I kN/m ^o
Ysat-	65	submerged unit weight of soil	kN/m3
	54	relative roughness	
ε εο,ε ε	60	permittivity, free space, relative	F/m,-
co'r	48	emissivity	-
6	41	plastic straining range	µm/m ₂
$\frac{\varepsilon}{\eta}p$ —	49	viscosity (dynamic)	mNs/m2
11 11	60	permeability of free space, relative	H/m, -2 mNs/m ²
μο, μr	49,51	dynamic viscosity	mNs/m2
μ	37	coefficient of friction	-
μ ν 7		Poisson's ratio	-
ξ	1 58,23	damping ratio	-
5		resistivity	Ωm ₂
Po		density	kg/m ³
Q	1 48	Stefan-Boltzmann constant	kg/m ³ W/(m ² K ⁴
	51	surface tension in contact with air	N/m
σ	41	proof or yield stress	N/m
σy σf	41	ultimate (failure) stress	N/m N/m
f	49,51	shear stress	N/m
τ		friction angle of soil	0
ф	67	magnetic flux, flux per pole	Wb.
-	60,61		N/m
ω	70,71	load per unit length	rad/
ω	51	angular velocity	rad/
ωn	58	natural frequency	rad/
	23,62	natural frequency	rad/
ωd	59	damped natural frequency	l rad/

14. KEYWORD INDEX

A.AC circuits 62 AC machines 61 Acceleration equations (constant) 37 Acceleration of fluids 49 Activation energy 39 Air, composition 51 Algebra 13,19 Amplifier arrangements 62 Area of shapes 35,36 Asymmetric bending 73 Atomic number 46 Atomic sizes 38 Atomic volume 42 Atomic weight 46 Availability function 47 Avogadro's number 7,38

B.BASIC Language 8 Beams 70 Beam deflections 70,71 Beam stiffness coefficients 72 Bearings, Reynolds' equation 49 Bending 70.71 Bernoulli's equation 49 Binomial distribution 30 Binomial series 15 Black body 48 Block diagrams (control) 55 Bode diagram 59 Bohr magneton 7 Boiling point 51 Boltzmann's constant 7 Bonding 38,42

Boussinesa relationships 66 Buckling loads 70 Bulk modulus 41,72 C.Calorific value 53 Capacitance 6,60 Carnot efficiency 47 Casagrande soil classification 64 Cavitation number 50 Centre of buoyancy 49 Centre of gravity 35,49 Centre of mass 35 Centre of pressure 49 Centroid 35,49 Channels 50 Characteristic equation (control) 55,56 Characteristic gas constant 47 Chézy equation 50 Coefficient: Linear expansion 41,42,43 Resistance 42 Cohesive energy 42 Colour codes (resistors) 63 Complex numbers 22 Condon-Morse equation 38 Conductivity 6 Conjugate depths 50 Consolidation, degree 68 Consolidation - Time curves 68 Constants 7 Continuity equation 47,50 Control: Order number 55 Type number 55 Control systems: Dynamic 58 Electrical 58 Hydraulic 58 Convection 48 Conversion factors 4,5,6 Coriolis 37 Cosine rule for triangle 20 Critical constants, pressure, temperature, density 51 Critical damping 23 Cross product 13 Crystallography 38 Crystal structure 42 Cubic crystals 38,39 Cumulative distribution function 31,32 Curl 14 Curve fitting 28,29 Cylindrical coordinates 14 D.Damping ratio 23,58 DC machines 61 Defects 39 Definite integrals 26 Degrees of freedom 33 Density 4,38,41,42,43,53 Depth factors 68,69 Differentials 24 Differential equations 22 Differentiation, rules 24 Diffusivity 39 Dimensionless groups 51

Div 14 Dot product 13 Drag coefficient 51 Dynamics, fluids 49 Dynamic responses 23 E.Elastic constants 41,43,72 Elastic half spaces 65 Electricity, formulae 60 Electricity, units 2,6,60 Electromagnetism 60 Electron: Charge 7 Rest mass 7 Charge/Mass ratio 7 Flectrostatics 60 Elements 44,46 Emissivity 48 Energy gap 42 Engine indicated power 47 Enthalpy 47 Entropy 47 Equations: 1st Order Differential 22 2nd Errors 33.34 Error function 26,39,40 Euler buckling 70 Euler's formula 49 Exact DE 22 Expansion coefficient 41,42,53 Experimental samples 33 F.Faraday constant 7 Fatigue 41 Fermi energy 42 Feedback notation 55 Fick's Laws 39 Finite difference formulae 28 First Law 47 Fixed end moments 71 Flow coefficient 49 Flowrate of gases 50 Flowrate units 4 Fluid mechanics 47,49 Footings 67 Forced convection 48 Forced oscillation 23 Forward path 55 Fourier number 51 Fourier series 16 Fracture stress 41 Frequency response 23,59,63 Friction angle of soil 67 Friction coefficients 37 Friction factor 51,54 Friction head loss 51,54 Froude number 50,51 Fuels 53 G. Gas properties 52,53 Gas flow 50 Gauss' theorem 60 General normal distribution 32 Geological divisions 65

Discharge coefficient 50.51

Gibbs function 47 Glass transition temperature 43 Grad 14 Grashof number 51 Gravitational constant 7 Greek alphabet 75 H.Hall mobility 42 Head coefficient 49 Heat conduction 48 Heat transfer 48 Heat transfer coefficient 48 Helmholtz function 47 Homogenous DE 22 Hyperbolic relations 19 I. Indefinite integrals 24 Identities 15 Inductance 6,60 Instrument error 34 Integrals 24 Integration by parts 24 Internal energy 47 International atmosphere 5 Interplanar spacing 38 Ionic bond equation 38 Ionic radii 42 L.Lagrange's interpolation formula 29 Laminar flow 54 Laplace 15 Laplace transforms 27 Lattice constant (parameter) 38,42 Least-squares fitting 28 Linear DE 22,23 Liquid limit 65 Liquids, properties 52.53 Loads: Line 66 Point 66 Logarithmic mean temperature difference Logarithmic relations 21 Loops: Closed 55 Open 55 M. Mach number 51 Machines, electrical: DC 61, Machines, hydraulic 49 Maclaurin's series 16 Magnetism, formulae 60,61 Magnetism, units 2.6 Manning equation 50 Manson-Coffin Law 41 Margin (control): Gain 56 Phase 56 Materials 38,52,53 Mathematical symbols 75 Maxwell relationships 48 Melting point 42,51 Mesh openings 64 Metacentre 49 Miller index system 38,39

Molar volume 47 Molecular weight 52 Moments of beams 71 Moments of inertia 35 Most probable error 34 Motors, electrical 61 N.Natural frequency 23,58,62 Napier's rule 20 Newtonian flow 49 Newton's method 28 Normal distribution 31,32 Nozzle flow 50 Numerical analysis 28 Numerical integration 29 Nusselt number 51 Nyquist 56,59 0.0hm's Law 60 Open channels 50 Op 'Amp': Circuits 62 Characteristics 63 Orbitals 45 Oscillations 23,59 P.Parallel axes theorem 35 Paris equation 41 Partial differentiation 22,27 Pascal's triangle 30 Perfect gas equations 47,50 Periodic table of the elements 44 Perpendicular axes theorem 35 Planck's constant 7 Plasticity index (soil) 65 Phase transformations 38 Physical properties of solids 41,53 Liquids and gases 52,53 Pipe flow friction factor 51.54 Poisson distribution 30 Poisson's ratio 41.72 Polar moment 35 Poles 55 Pole-Zero map 59 Polymer structure 43 Population variance 33 Porosity 65 Potential head 49 Prandtl number 51 Primary fixed points 51 Principal shell 45 Principal stresses 74 Probability 30 Probability density function 31 Proof stress 41 Q.Q factor 62 Quadratic equation, solution 21 R.Radiation 48 Radius of gyration 35,49 Random variables 30 Rayleigh distribution 4 Rectification 19 Resistance: Formulae 60 Preferred values 63 Colour code 63

Resonance 23,58,62 Response (control): Frequency 59 Step 59 Revnolds' equation 49 Reynolds' number 51,54 Rolling (buoyancy) 49 Root locus 56,57,59 Root mean square 17 Rotation : Acceleration 37 Roughness of pipes 54 Rounding off error 34 Routh array 56 Runge Kutta equations 29 S.Saw tooth wave 18 Scalar product 13 Secant method 28 Second moment of area 35,37,70 Seitz radius 38 Series 15 Semiconductors 42 Separable DE 22 Shear modulus 41 Shear centre 73 Shear stress 73 Shear strain 74 Shell (orbitals) 44 SI system 2 Sieve sizes 64 Simpson's rule 29 Single degree of freedom 22,23 Slope angle 68 : Stability 68 Soil mechanics 64 Soil classification 64 Soils: Volume-weight relationships 65 Solids, properties 41,42,43,53 Sonic velocity 50 Space curves 15 Specific entropy 47 Specific heat 47,52,53 Specific heat ratio 47,50 Specific internal energy 47 Specific speed 49 Spherical coordinates 14 Spherical triangles 20 Square wave 17,18 Stability criteria 56 Stability numbers 68,69 Stagnation temperature 50 Standard deviations 33 Standardised normal distribution 31 Statics, fluids 49 Stefan-Boltzmann's constant 7,48 Step response 23,59 Stirling's formula 16 Strain-energy 74 Strain systems 74 Statisgraphic periods 65 Streamlines 49

Relative density 53

Resistivity 42,43

Stress systems 74 Stress intensity factor 41 Stress transformation 74 Structures 70 Substitutional alloys 38 Suction specific speed 50 Surface concentration 39 Surface displacement 66,67 Surface potential 39 Surface tension 51 Symbols 75 Synchronous speed 61 T.t-distribution 33 Taylor's series 16 Taylor stability numbers 68,69 Temperature scales 6 Terzaghi bearing capacity 67 Thermal conductivity 48,51,52,53 Thermal expansion coefficient 41,42,43, 52.53 Theoretical air 53 Theoretical density 38 Thermodynamics 47 Thoma (cavitation number) 50 Torsion 73 Torsion of circular shaft 73 Transfer function 55 Transition zone 54 Trapezoidal rule 29 Triangular wave 18 Trigonometric: Functions 21 Relations 19,20 Triple point 51 Triple scalar product 13 Triple vector product 13 Turbine Ellipse Law 50 Turbulent flow 54 U.Ultimate stress 41 Units, SI 2,3 Units, conversion facts 4,5,6 Unit weight: Soil, water 65 Universal gas constant 7,47 V.Valency 38 Valency electrons 45 Van der Waals' equation 47 Variance 33 Variation 30,33 Vectors 13 Vector: Differentiation 13 Product 13 Velocity of light 7 Viscosity 5,6,49,52 Volume of shapes 36,37 W.Wall shear stress 51 Water content 65 Waveforms 17 Weber number 51 Work function 42 Y. Yield stress 41,43 Young's modulus 41,43,70

Zeros (control) 55

Miner's rule 41

Mohr's Circle 37

Modulus of rigidity 41,72

2. Physical Constants

3. Summary of BASIC

4. Analysis

5. Analysis of Experimental Data

6. Mechanics

7. Properties and Mechanics of Solids

8. Thermodynamics and Fluid Mechanics

9. Automatic Control

10. Electricity

11. Soil Mechanics

12. Structures

13. Symbols Index

14. Keyword Index

12BN 0-333-52859-0

An Engineering Data Book

An Engineering Data Boo

Edited by
A J Munday and R A Farrar