Notes on Probability and Measure Theory

August 9, 2021

Contents

1	Overview		2
	1.1	References	2
	1.2	Motivation	2
2	§ 1.1	: Some notes on set theory	2
	2.1	Limits of sequences of sets	2
	2.2	Representing unions as disjoint unions	4
3	\S 1.2: Fields, σ -fields, measures		4
	3.1	\S 1.2.1-1.2.2: Fields and σ -fields	4
		3.1.1 σ -fields	4
		3.1.2 Fields	5
		3.1.3 "Good sets" strategy	6
	3.2	§ 1.2.3-1.2.4: Measures	7
	3.3	\S 1.2.5-1.2.6: Properties of measures (and some more general set functions) $\ \ldots \ \ldots$	8
	3.4	\S 1.2.7-1.2.8: Continuity of countably additive set functions	10
4	§ 1.3	3: Extension of measures	11
5	5 § 1.4: Lesbesgue-Stieltjes Measures and Distribution Functions		13
A	Defi	nitions	13

1 Overview

1.1 References

The primary reference here is [1]. The book is wonderful for statistical machine learning – it is rigorous, but also accessible (prerequisites are undergrad-level real analysis and mathematical probability). Most importantly, it is structured to build towards the kinds of applications in probability that we care about. (A point of contrast would be a book like that of Stein and Shakarchi, which tends to dwell heavily on things that are of higher interest to pure mathematicians — long existence proofs, Cantor sets and fractals, etc.)

Unless otherwise specified, all references to the "text" refers to this textbook. Likewise the symbol § refers to a Section of that textbook.

1.2 Motivation

Measure theory serves as a critical underpinning for some of the most interesting research in Bayesian statistics and probabilistic machine learning (see work from Stephen G. Walker, Michael Jordan, Tamara Broderick, David Dunson, and so on). Thus, fluency with measure theory opens doors to a higher level of research consumption.

Measure theory is convenient in unifying various kinds of random variables. In particular, it allows one to work with discrete and absolutely continuous random variables in a unified way. For example, the exponential family includes both types of random variables.

Probability measures, and measures more generally, cannot be defined on all subsets of many spaces that we would like to deal with. For instance, non-measurable sets can be shown to exist even for the uniform distribution. Proposition 1.2.6 of [2] shows that there is no definition of P(A) that is defined for all subsets $A \subseteq [0,1]$ satisfying all three conditions below

1.
$$P([a, b]) = b - a, \quad 0 \le a \le b \le 1.$$

2.
$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} A_n$$
 for A_1, A_2, \dots disjoint subsets of $[0, 1]$.

3.
$$P(A \bigoplus r) = P(A)$$
, $0 \le r \le 1$, where $A \bigoplus r$ denotes the *r-shift* of A, i.e.

$$A\bigoplus r:=\{a+r:a\in A,a+r\leq 1\}\cup\{a+r-1:a\in A,a+r>1\}$$

The solution to this problem is to define P on a restricted domain, σ -fields.

2 \S 1.1: Some notes on set theory

2.1 Limits of sequences of sets

Definition 2.1.1. The **upper limit** of a sequence of sets is given by

$$\lim \sup A_n := \bigcap_{n=1}^{\infty} \bigcup_{k > n} A_k$$

Alternatively,

 $x \in \limsup A_n \text{ iff } x \in A_n \text{ for infinitely many } n$

Figure 1: A sequence of sets with empty lower limit and non-empty upper limit.

Definition 2.1.2. The **lower limit** of a sequence of sets is given by

$$\liminf A_n := \bigcup_{n=1}^{\infty} \bigcap_{k > n} A_k$$

Alternatively,

 $x\in \liminf A_n$ iff $x\in A_n$ eventually (for all but finitely many n)

Δ

Discussion 2.1.1. Discuss why the two characterizations of upper limit and lower limit are equivalent. \triangle

Definition 2.1.3. If $\liminf A_n = \limsup A_n = A$, then A is called the **limit** of the sequence A_1, A_2, \dots

Now we present a particular kind of limit that will be useful when we discuss continuity of measure.

Definition 2.1.4. If $A_1 \subset A_2 \subset ...$ and $\bigcup_{n=1}^{\infty} A_n = A$, we say that the A_n form a **increasing** sequence of sets with limit A or that the A_n increase to A; we write $A_n \uparrow A$. If $A_1 \supset A_2 \supset ...$ and $\bigcap_{n=1}^{\infty} A_n = A$, we say that the A_n form a **decreasing** sequence of sets with limit A or that the A_n decrease to A; we write $A_n \downarrow A$.

One can verify that this definition is consistent with the definition of limits, i.e.

If
$$A_n \uparrow A$$
 or $A_n \downarrow A$ then $\liminf A_n = \limsup A_n = A$.

As shown in Figure 2, limits of increasing and decreasing sequences are very special kinds of limits.

Figure 2: An increasing and decreasing sequence of sets, followed by a sequence of sets which is neither, but which has a limit.

2.2 Representing unions as disjoint unions

Remark 2.2.1. If $A_1, A_2, ...$ are subsets of some set Ω , then

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} \left(A_n \cap A_{n-1}^c \cap \dots \cap A_1^c \right)$$
 (2.2.1)

In other words, any union can be re-represented as a disjoint union. This is useful because measures are countably additive on disjoint sets, so we prefer to work with collections of disjoint sets. \triangle

Remark 2.2.2. If $A_n \uparrow A$, then (2.2.1) becomes

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} \left(A_n - A_{n-1} \right)$$
 (2.2.2)

 \triangle

This is because $A_{n-1} \subset A_n$, so $A_{n-1}^c \supset A_n^c$ by contraposition.

3 § 1.2: Fields, σ -fields, measures

3.1 § 1.2.1-1.2.2: Fields and σ -fields

3.1.1 σ -fields

We begin with a discussion of σ -fields, which are typically the domains of probability measures, and measures more generally.¹ As stated in the motivation (Section 1.2), measures cannot be defined on all subsets of many spaces that we would like to deal with.

Definition 3.1.1. Let \mathcal{F} be a collection of subsets of a set Ω . Then \mathcal{F} is called a **sigma-field** (or *sigma-algebra*) if it satisfies

- a) $\Omega \in \mathcal{F}$
- b) If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.

¹In the construction of Lesbesgue measure, Ash defines a probability measure on a field. See 1.3.1 of [1].

c) If $A_1, A_2, ... \in \mathcal{F}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

that is, if $\Omega \in \mathcal{F}$ and \mathcal{F} is closed under complementation and countable unions.

Remark 3.1.1. It follows that σ -fields are closed under countable intersections, since

$$\cap_{i=1}^{\infty}A_i \overset{\mathrm{DeMorgan's\ Law}}{=} \cup_{i=1}^{\infty}A_i^c$$

Example 3.1.1. $\mathcal{F} = \{\emptyset, \Omega\}$ is the smallest σ -field on Ω .

Example 3.1.2. $\mathcal{F} = 2^{\Omega}$, i.e. the set of all subsets of Ω , is the largest σ -field on Ω .

Example 3.1.3. If $A \in \Omega$ is non-empty, then $\mathcal{F} = \{\emptyset, A, A^c, \Omega\}$ is the smallest σ -field containing A.

Notation 3.1.1. If C is a class of sets, the smallest σ -field containing the sets of C is written as $\sigma(C)$. This is sometimes called the *minimal* σ -field over C or the σ -field generated by C. \triangle

Exercise 3.1.1. Let $A_1, ..., A_n$ be subsets of Ω . Describe $\mathcal{F} := \sigma(\{A_1, ..., A_n\})$, the smallest σ -field containing $A_1, ..., A_n$. Also describe the number of sets in \mathcal{F} . This is Ash's Problem 1.2.8. We can derive the strict upper bound $|\mathcal{F}| \le 2^{2^n}$. For a complete answer, see GoodNotes.

Remark 3.1.2. The gist of exercise 3.1.1 is that the collection $\{A_1, ..., A_n\}$ partitions Ω into up to $M = 2^N$ pieces, and the minimal sigma field contains all possible finite unions of these pieces, so has at most 2^M elements.

Δ

 \triangle

 \triangle

Δ

3.1.2 Fields

Fields are more general than σ -fields. Measures are sometimes constructed by being defined on fields, and then extended to σ -fields. Indeed, we will see this strategy with Lesbesgue measure.

Definition 3.1.2. Let \mathcal{F} be a collection of subsets of a set Ω . Then \mathcal{F} is called a **field** (or *algebra*) if satisfies Definition 3.1.1 after replacing condition c) with

c') If
$$A_1, ... A_n \in \mathcal{F}$$
 then $\bigcup_{i=1}^n A_i \in \mathcal{F}$.

that is, if $\Omega \in \mathcal{F}$ and \mathcal{F} is closed under complementation and *finite* unions.

 \triangle

Example 3.1.4. What is an example of a collection that is a *field*, but not a σ -*field*?

Let $\Omega = \mathbb{R}$ and $\mathcal{F}_0 = \{\text{finite disjoint unions of right semi-closed intervals } (a, b], a \neq b\}$. Then \mathcal{F}_0 is a field, as can be easily verified.²

But \mathcal{F}_0 is <u>not</u> a σ -field. Note that if $A_n = (-\frac{1}{n}, 0]$, then $\bigcap_{n=1}^{\infty} A_n = \{0\} \notin \mathcal{F}_0$.

Remark 3.1.3. A σ -field can also be described as a field that is closed under limits of increasing sequences. For if $A_n \in \mathcal{F}$ and $A_n \uparrow A$, then A is a countable union of sets in \mathcal{F} by definition. Conversely, if $A = \bigcup_{n=1}^{\infty} A_n$, then set $B_N := \bigcup_{n=1}^N A_n$ and $B_N \uparrow A$. So if \mathcal{G} is the collection of all limits of increasing sequences of sets in some field \mathcal{F}_0 , we can also describe \mathcal{G} as the collection of all countable unions of sets in \mathcal{F}_0 .

3.1.3 "Good sets" strategy

Ash says that there is a type of reasoning that occurs so often in problems involving σ -fields that it deserves explicit mention. It is called the *good sets strategy*. Suppose you want to show that all members of a σ -algebra \mathcal{F} have some property P. Define "good sets" as those that satisfy the property

$$\mathcal{G} := \{G \in \mathcal{F} : G \text{ has property } P\}$$

The strategy is then to simply

- 1. Show \mathcal{G} is a σ -algebra
- 2. Show \mathcal{G} contains some class \mathcal{C} such that $\mathcal{F} = \sigma(\mathcal{C})$

Then you're done!

Why does this work?

$$\begin{array}{ll} \mathcal{C} \subset \mathcal{G} & \text{by 2} \\ \Longrightarrow \sigma(\mathcal{C}) \subset \sigma(\mathcal{G}) \\ \Longrightarrow \mathcal{F} \subset \mathcal{G} & \text{by 1,2} \\ \text{Yet } \mathcal{G} \subset \mathcal{F} \text{ by definition of } \mathcal{G}. \\ \text{So } \mathcal{G} = \mathcal{F}. \\ \text{So all sets in } \mathcal{F} \text{ are good.} \end{array}$$

Some example applications:

²By convention, we also count (a, ∞) as right semi-closed for $-\infty \le a < \infty$, which is necessary for the σ -field to be closed under complements.

• In the text, Ash uses this strategy (see pp.5) to show that if \mathcal{C} is a class of subsets of Ω , and $A \in \Omega$, then

$$\underbrace{\sigma_{\Omega}(\mathcal{C}) \cap A}_{\text{take minimal sigma field first, then intersect}} = \underbrace{\sigma_{A}(\mathcal{C} \cap A)}_{\text{intersect first, then take minimal sigma-field}}$$

- See my handwritten homework exercise for § 1.2, Problem 6.
- See the proof of Caratheodory Extension Theorem (Theorem 4.0.3.)

3.2 § 1.2.3-1.2.4: Measures

Definition 3.2.1. A **measure** on a σ -field \mathcal{F} is a non-negative, extended real-valued function μ on \mathcal{F} such that whenever $A_1, A_2, ...$ form a finite or countably infinite collection of disjoint sets in \mathcal{F} , we have countable additivity; that is,

$$\mu\bigg(\bigcup_n A_n\bigg) = \sum_n \mu(A_n)$$

 \triangle

Definition 3.2.2. A probability measure is a measure (Definition 3.2.1) where $\mu(\Omega) = 1$.

Remark 3.2.1. Ash additionally assumes that a measure does not take $\mu(A) = \infty$ for all $A \in \mathcal{F}$. From this, we automatically obtain $\mu(\emptyset) = 0$. For $\mu(A) < \infty$ for some A, and by considering the sequence $A, \emptyset, \emptyset, ...$, we have that $\mu(\emptyset) = 0$ by countable additivity.

Example 3.2.1. Let Ω be any set. Fix $x_0 \in \Omega$. Let $\mathcal{F} = 2^{\Omega}$. For any $A \in \mathcal{F}$ define $\mu(A) = 1$ if $x_0 \in A$ and $\mu(A) = 0$ if $x_0 \notin A$. Then μ may be called the **unit mass** concentrated at x_0 .

Example 3.2.2. Let $\Omega = \{x_1, x_2, ...\}$ be a finite or countably infinite set. Let $p_1, p_2, ...$ be nonnegative reals. Let $\mathcal{F} = 2^{\Omega}$. Define

$$\mu(A) = \sum_{x_i \in A} p_i \quad \text{ for all } A \in \mathcal{F}$$

Then μ is a measure on \mathcal{F} . We might call it the "point weighting" measure.

- If $p_i \equiv 1 \ \forall i$, then μ is called the **counting measure**.
- If $\sum_i p_i = 1$, then μ is a probability measure.

 \triangle

Example 3.2.3. (Lesbesgue measure) Define μ such that

$$\mu(a,b] = b - a \quad \forall a,b \in \mathbb{R} : b > a$$

As we will see in Section 4, this requirement determines μ on a large collection of sets, the Borel Sets $\mathcal{B}(\mathbb{R})$, defined as the smallest σ -field of subsets of \mathbb{R} containing all intervals $(a, b] \subset \mathbb{R}$.

We may alternately characterize $\mathcal{B}(\mathbb{R})$ as the smallest σ -field containing

- all intervals $(a, b], a, b \in \mathbb{R}$
- all intervals $(a, b), a, b \in \mathbb{R}$

³Likewise, he assumes that signed measures do not take $\mu(A) = -\infty$ for for all $A \in \mathcal{F}$.

- all intervals $[a,b), a,b \in \mathbb{R}$
- all intervals $[a, b], a, b \in \mathbb{R}$.
- all intervals $(a, \infty), a \in \mathbb{R}$.
- all intervals $[a, \infty), a \in \mathbb{R}$.
- all intervals $(-\infty, b), b \in \mathbb{R}$.
- all intervals $(-\infty, b], b \in \mathbb{R}$.
- all open sets of \mathbb{R}^4
- all closed sets of \mathbb{R}^{5}

To illustrate these equivalences, let us equate the first two conditions. That is, let us show that a σ -field contains all open intervals (a,b) iff it contains all right semi-closed intervals (a,b]. To see this, simply note

$$(a,b] = \bigcap_{n=1}^{\infty} \left(a, b + \frac{1}{n}\right)$$

and

$$(a,b) = \bigcup_{n=1}^{\infty} \left(a, b - \frac{1}{n}\right)$$

 \triangle

Question 3.2.1. The text gives another description of the Borel sets $\mathcal{B}(\mathbb{R})$ as the smallest σ -field containing \mathcal{F}_0 , the field of disjoint unions of right semi-closed intervals (a,b]. Can we make the same statement about the field of finite disjoint unions of left semi-closed intervals?

3.3 § 1.2.5-1.2.6: Properties of measures (and some more general set functions)

The text considers some generalizations of measures that can be obtained

- 1. by restricting the domain to a field (in other texts, such functions are called *pre-measures*)
- 2. by only assuming finite additivity
- 3. by allowing the range to be extended reals $(\bar{\mathbb{R}})$ instead of non-negative extended reals $(\bar{\mathbb{R}})$.

Remark 3.3.1. With respect to pre-measures, a countably additive function can be defined on a *field* (rather than σ -field) if the condition is taken to hold whenever a countable union *does* happen to still be in the field. Unless otherwise specified, I will assume in these notes by that countably additive functions are always defined on σ -fields, and finitely additive functions are defined on fields. \triangle

In Table 1, we introduce some notation to try to clarify more immediately when results hold. Note the relations⁶

$$\{\mu\} \subset \{\mu_0\}, \{\tilde{\mu}\} \subset \{\tilde{\mu}_0\}.$$

⁴Recall that an open set is a countable union of open intervals.

⁵Recall that a set is open iff its complement is closed.

⁶So, for example, if something holds for $\tilde{\mu}_0$, it holds for μ . A simple mnemonic is that adding stuff to the notation generalizes the function.

Range

$\begin{array}{ccc} & \textbf{non-negative} & \textbf{signed} \\ \textbf{finitely additive} & \mu_0 & \tilde{\mu}_0 \\ \textbf{countably additive} & \mu \text{ measure} & \tilde{\mu} \text{ signed measure} \end{array}$

Table 1: Notation for generalizations of measure (For assumed domain in each case, see Remark 3.3.1.)

Remark 3.3.2. Being able to work with these generalizations will be important in Section 4 on extension of measures. In particular, it will help us show that we can construct the Lesbesgue measure on the Borel sets. \triangle

Example 3.3.1. Let \mathcal{F}_0 be the field of finite disjoint unions of right semi-closed intervals (see Definition A.0.1), and define the set function $\tilde{\mu}_0$ on \mathcal{F}_0 as follows⁷:

$$\begin{split} \tilde{\mu}_0(-\infty,a] &= a, & a \in \mathbb{R} \\ \tilde{\mu}_0(a,b] &= b-a, & a,b \in \mathbb{R}, \quad a < b \\ \tilde{\mu}_0(b,\infty) &= -b, & b \in \mathbb{R} \\ \tilde{\mu}_0(\mathbb{R}) &= 0 \\ \tilde{\mu}_0(\bigcup_{i=1}^n I_i) &= \sum_{i=1}^n \tilde{\mu}_0(I_i), & \text{if } I_1,...,I_n \text{ are right semi-closed intervals} \end{split}$$

Then $\tilde{\mu}_0$ is finitely additive, but not countably additive on \mathcal{F}_0 . (Why?) For a proof, see GoodNotes.

Measure-like set functions have useful properties. Using the notation in Table 1, we rewrite Theorem 1.2.5 of the text:

Theorem 3.3.1. Let $\tilde{\mu}_0$ be a finitely additive set function on the field \mathcal{F}_0 . Then

- a) $\tilde{\mu}_0(\emptyset) = 0$
- b) $\tilde{\mu}_0(A \cup B) + \tilde{\mu}_0(A \cap B) = \tilde{\mu}_0(A) + \tilde{\mu}_0(B)$ for all $A, B \in \mathcal{F}_0$.
- c) If $A, B \in \mathcal{F}_0$ and $B \subset A$, then

$$\tilde{\mu}_0(A) = \tilde{\mu}_0(B) + \tilde{\mu}_0(A - B)$$
 (piece-and-difference)

So $\tilde{\mu}_0(A) \geq \tilde{\mu}_0(B)$ if $\tilde{\mu}_0(A-B) \geq 0$. More generally, for non-negative set functions, we have

$$\mu_0(A) \ge \mu_0(B)$$
 (monotonicity)

d) Subadditivity holds if $\tilde{\mu}_0$ is non-negative, i.e.

$$\mu_0(\cup_{i=1}^n A_i) \le \sum_{i=1}^n \mu_0(A_i)$$

$$\mu(\cup_{i=1}^\infty A_i) \le \sum_{i=1}^\infty \mu(A_i)$$

⁷This example comes from Problem 4 in Section 1.2 of the text

Proof. We prove Theorem 3.3.1 (b). The rest is an exercise for the reader (or see the text). First, we break things into disjoint pieces

$$A = \left(A \cap B\right) \bigcup \left(A \cap B^c\right) \qquad \Longrightarrow \tilde{\mu}_0(A) = \tilde{\mu}_0(A \cap B) + \tilde{\mu}_0(A \cap B^c) \tag{1}$$

$$B = \left(A \cap B\right) \bigcup \left(A^c \cap B\right) \qquad \Longrightarrow \tilde{\mu}_0(B) = \tilde{\mu}_0(A \cap B) + \tilde{\mu}_0(A^c \cap B) \tag{2}$$

$$A = \left(A \cap B\right) \bigcup \left(A \cap B^{c}\right) \qquad \Longrightarrow \tilde{\mu}_{0}(A) = \tilde{\mu}_{0}(A \cap B) + \tilde{\mu}_{0}(A \cap B^{c}) \tag{1}$$

$$B = \left(A \cap B\right) \bigcup \left(A^{c} \cap B\right) \qquad \Longrightarrow \tilde{\mu}_{0}(B) = \tilde{\mu}_{0}(A \cap B) + \tilde{\mu}_{0}(A^{c} \cap B) \tag{2}$$

$$A \cup B = \left(A \cap B\right) \bigcup \left(A \cap B^{c}\right) \bigcup \left(A^{c} \cap B\right) \qquad \Longrightarrow \tilde{\mu}_{0}(A \cup B) = \tilde{\mu}_{0}(A \cap B) + \tilde{\mu}_{0}(A \cap B^{c}) + \tilde{\mu}_{0}(A^{c} \cap B) \tag{3}$$

Summing (1) and (2), we obtain

$$\tilde{\mu}_0(A) + \tilde{\mu}_0(B) = 2\tilde{\mu}_0(A \cap B) + \tilde{\mu}_0(A \cap B^c) + \tilde{\mu}_0(A^c \cap B).$$

We use (3) to simplify the RHS, and the result follows.

Remark 3.3.3. In the proof of Theorem 3.3.1 (b), note that we use a common strategy – breaking sets into disjoint pieces so that we can apply the assumed (finite or countable) additivity of the set function.

Remark 3.3.4. Is finiteness $(|\mu_g(A)| < \infty \ \forall \ A \in \mathcal{F}_g)$ equivalent to boundedness $(\sup\{|\mu_g(A)| : A \in \mathcal{F}_g\})$ ∞)?

П

- $\mu_0, \widetilde{\mu}$? \checkmark
- $\tilde{\mu}_0$? \times (too general)

The fact that equivalence holds for signed measures $\widetilde{\mu}$ is surprising. Somehow countable additivity compensates for the signedness. See Section 2.1.3 of the text.

3.4 § 1.2.7-1.2.8: Continuity of countably additive set functions

Countably additive set functions have a basic continuity property. Continuity of measure is a special case.

Theorem 3.4.1. Let $\widetilde{\mu}$ be a countably additive set function on the σ -field \mathcal{F} . Then

- a) (continuity from below) If $A_1, A_2, ... \in \mathcal{F}$ and $A_n \uparrow A$, then $\widetilde{\mu}(A_n) \to \widetilde{\mu}(A)$ as $n \to \infty$.
- b) (continuity from above) If $A_1, A_2, ... \in \mathcal{F}$, $A_n \downarrow A$, and $\widetilde{\mu}(A_1)$ is finite, then $\widetilde{\mu}(A_n) \to \widetilde{\mu}(A)$ as $n \to \infty$.

Proof. We prove continuity from below, and leave continuity from above as an exercise to the reader (or see text). First let us assume that all $\widetilde{\mu}(A_n)$ are finite (*). Then

$$\begin{split} A &= A_1 \cup A_2 - A_1 \cup A_3 - A_2 \cup \dots & \text{by (2.2.2)} \\ \Longrightarrow \widetilde{\mu}(A) &= \widetilde{\mu}(A_1) + \widetilde{\mu}(A_2 - A_1) + \widetilde{\mu}(A_3 - A_2) + \dots & \text{(countable additivity)} \\ &= \widetilde{\mu}(A_1) + \widetilde{\mu}(A_2) - \widetilde{\mu}(A_1) + \widetilde{\mu}(A_3) - \widetilde{\mu}(A_2) + \dots & \text{(Theorem 3.3.1 c), (*)} \\ &= \lim_{n \to \infty} \widetilde{\mu}(A_n) \end{split}$$

Now suppose $\widetilde{\mu}(A_n) = \infty$ for some n. So write

$$A = A_n \cup A - A_n \qquad \qquad \text{(increasing sequence)}$$

$$\implies \widetilde{\mu}(A) = \widetilde{\mu}(A_n) + \widetilde{\mu}(A - A_n) \qquad \qquad \text{(countable additivity)}$$

$$= \infty + \widetilde{\mu}(A - A_n)$$

So $\widetilde{\mu}(A) = \infty$. Replace A by A_k for any $k \geq n$ to also find $\widetilde{\mu}(A_k) = \infty$ for all $k \geq n$ and the result follows.

Finally suppose $\widetilde{\mu}(A_n) = -\infty$ for some n. Then the result follows in the same way as for $\widetilde{\mu}(A_n) = \infty$.

Remark 3.4.1. The logic of the proof of Theorem 3.4.1 under the finiteness assumption is as follows. First, we re-represent the union as a disjoint union (the form is particularly simple since the sets are increasing). This allows us to apply countable additivity. Then we apply the piece-and-difference decomposition (and the subtraction is defined under the finiteness assumption). \triangle

Remark 3.4.2. In proving Theorem 3.4.1 for the case where $\mu(A_n) = \infty$ for some n, it is tempting to make the simpler argument

$$\mu(A) \ge \mu(A_n)$$
 (monotonicity)
 $\mu(A_k) \ge \mu(A_n)$ (monotonicity)

for $k \ge n$. But recall from Theorem 3.3.1 that monotonicity only holds under non-negativity, and the theorem statement is more general, applying to *signed* set functions as well.

We have the result that finite additivity plus continuity equals countable additivity.

Theorem 3.4.2. Let $\tilde{\mu}_0$ be a finitely additive set function on the field \mathcal{F}_0 . Then $\tilde{\mu}_0$ is countably additive if either

- a) $\tilde{\mu}_0$ is continuous from below
- b) $\tilde{\mu}_0$ is continuous from above at the empty set.

Proof. We prove (a) and leave (b) as an exercise to the reader (or see text).

Given $A = \bigcup_{n=1}^{\infty} A_n$, we define $P_n := \bigcup_{m \le n} A_n$ and so $P_n \uparrow A$. So we have

$$\begin{split} \tilde{\mu}_0(P_n) &\to \tilde{\mu}_0(A) & \text{(continuity from below)} \\ \Longrightarrow & \tilde{\mu}_0(\bigcup_{m \leq n} A_n) \to \tilde{\mu}_0(A) & \text{(definition)} \\ \\ \Longrightarrow & \sum_{m=1}^n \tilde{\mu}_0(A_n) \to \tilde{\mu}_0(A) & \text{(finite additivity)} \end{split}$$

Taking $n \to \infty$ gives countable additivity.

4 § 1.3: Extension of measures

In Example 3.2.3, we discussed the concept of length of a subset of \mathbb{R} ; in particular, we mentioned extending the set function given on intervals by $\mu(a,b] = b-a$ to a larger class of subsets of \mathbb{R} . As remarked in Example 3.1.4, if we define \mathcal{F}_0 as the disjoint unions of right semi-closed intervals, it is straightforward to show that \mathcal{F}_0 is a field. But how can we extend μ to $\sigma(\mathcal{F}_0)$, the minimal σ -field containing \mathcal{F}_0 ?

In Section 5, we will show that μ is countably additive on \mathcal{F}_0 , and we will generalize our problem to set functions given by $\mu(a,b] = F(b) - F(a)$, where F is an increasing right-continuous function from \mathbb{R} to \mathbb{R} . For now, we will deal with the problem of extending a measure on \mathcal{F}_0 to a measure on $\sigma(\mathcal{F}_0)$. We do so using Theorem 4.0.3. Along the way, we will use Theorem 4.0.1 and Theorem 4.0.2 to prove Theorem 4.0.3.

⁸Note that we cannot have $\widetilde{\mu}(A-A_n)=-\infty$, because that would violate additivity.

Theorem 4.0.1. (Theorem 1.3.6 [1]) A finite measure on a field \mathcal{F}_0 can be extended to a measure on $\sigma(\mathcal{F}_0)$.

Proof. See pp. 12-17 of [1]. \Box

Theorem 4.0.2. (Monotone Class Theorem) Let \mathcal{F}_0 be a field of subsets of Ω and \mathcal{C} be a class of subsets of Ω that is monotone (if $A_n \in \mathcal{C}$ and $A_n \uparrow A$ or $A_n \downarrow A$, then $A \in \mathcal{C}$). If $\mathcal{C} \supset \mathcal{F}_0$ then $\mathcal{C} \supset \sigma(\mathcal{F}_0)$, then minimal σ -field over \mathcal{F}_0 .

Proof. See pp. 18-19 of [1]. □

Remark 4.0.1. Some key observations made during the proof of Theorem 4.0.2 are:

- A monotone class that is also field is a sigma-field. (See Remark 3.1.3.)
- The smallest monotone class and smallest sigma-field over a field coincide.

Theorem 4.0.3. (Caratheodory Extension Theorem) Let μ be a measure on the field \mathcal{F}_0 of subsets of Ω , and assume that μ is σ -finite on \mathcal{F}_0 , so that Ω can be decomposed as $\bigcup_{n=1}^{\infty} A_n$ where $A_n \in \mathcal{F}_0$ and $\mu(A_n) < \infty$ for all n. Then μ has a unique extension to a measure on $\mathcal{F} := \sigma(\mathcal{F}_0)$, the minimal

Δ

Proof. (We follow the argument of [1], but add some detail.) First we prove existence. [Without loss of generality, we assume the A_n are disjoint. This is possible because we can use (2.2.1) to re-express the countable union as a disjoint countable union: $\Omega = \bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$, where $B_i := A_i \cap A_{i-1}^c \dots \cap A_1^c$.]

If we define $\mu_n(A) = \mu(A \cap A_n)$ for each $A \in \mathcal{F}_0$, then we can decompose μ into a countable sum of finite measures:

- μ_n is a measure on \mathcal{F}_0 . [Its countable additivity is inherited from μ . If $\bigcup_{i=1}^{\infty} A_i$ is a disjoint union, then so is $\bigcup_{i=1}^{\infty} (A_i \cap A_n)$, and $\mu(\bigcup_{i=1}^{\infty} (A_i \cap A_n)) = \sum_{i=1}^{\infty} \mu(A_i \cap A_n)$ since $A_i \cap A_n$ are in \mathcal{F}_0 .]
- μ_n is finite. [True because $\mu_n(A) = \mu(A \cap A_n) \stackrel{\text{monotonicity}}{\leq} \mu(A_n) < \infty$.]
- $\mu = \sum_{n=1}^{\infty} \mu_n$. [True because $\mu(A) = \mu(A \cap \Omega) = \mu(A \cap (\cup_{n=1}^{\infty} A_n)) = \mu(\cup_{n=1}^{\infty} (A \cap A_n)) = \sum_{n=1}^{\infty} \mu(A \cap A_n) = \mu_n(A)$.]

Now by Theorem 4.0.1, we can extend each μ_n to a measure μ_n^* on \mathcal{F} . Thus $\mu^* := \sum_{n=1}^{\infty} \mu_n^*$ extends μ to \mathcal{F} . Moreover, μ^* is still a measure since the order of summation in a double series of nonnegative terms can be reversed. [Countable additivity still holds since:

$$\begin{split} \mu^*(\cup_{i=1}^\infty A_i) &= \sum_{n=1}^\infty \mu_n^*(\cup_{i=1}^\infty A_i) \\ &= \sum_{n=1}^\infty \sum_{i=1}^\infty \mu_n^*(A_i) \qquad \qquad \mu_n^* \text{ is measure, so countably additive} \\ &= \sum_{i=1}^\infty \sum_{n=1}^\infty \mu_n^*(A_i) \qquad \qquad \text{reverse order of summation for double series with non-negative terms} \\ &= \sum_{i=1}^\infty \mu^*(A_i) \qquad \qquad \text{def. of } \mu^* \end{split}$$

].

 σ -field over \mathcal{F}_0 .

Now we prove uniqueness. That is, we prove that if λ is a measure on \mathcal{F} and $\lambda = \mu^*$ on \mathcal{F}_0 , then $\lambda = \mu^*$ on \mathcal{F} . To see this, as before, we decompose the measure into a sum of finite measures:

 $\lambda = \sum_{n=1}^{\infty} \lambda_n$ where $\lambda_n := \lambda(A_n \cap A)$. Now by assumption $\lambda_n = \mu_n^*$ on \mathcal{F}_0 . Where are they equal on \mathcal{F} ? Let us define the "good sets" (recall Section 3.1.3)

$$\mathcal{G} := \{ A \in \mathcal{F} : \lambda_n(A) = \mu_n^*(A) \}$$

Now we can show $\mathcal{G} = \mathcal{F}$ – that is, *all* sets in the σ -field are good sets – by observing

- G is a monotone class. [This is true by continuity from below (see Theorem 3.4.1). In particular, a countable union can be considered the limit of an increasing sequence of partial unions (See Remark 3.1.3.) As a result, the measure of the limiting set is determined, as the limit of the measure of the sets in that sequence.]
- $\mathcal{G}\supset\mathcal{F}_0$. [This is true by construction.]

And so by Monotone Class Theorem (Theorem 4.0.2), we have $\mathcal{G} \supset \mathcal{F}$. But by construction $\mathcal{G} \subset \mathcal{F}$, and so $\mathcal{G} = \mathcal{F}$. Therefore $\lambda = \sum_n \lambda_n = \sum_n \mu_n^* = \mu^*$, proving uniqueness.

Remark 4.0.2. The proof of Theorem 4.0.3 reveals the appeal of σ -finite measures – they can be decomposed as the countable sum of finite measures (and the order of summation of double series can be reversed for nonnegative series).

5 § 1.4: Lesbesgue-Stieltjes Measures and Distribution Functions

References

- [1] Robert B Ash, B Robert, Catherine A Doleans-Dade, and A Catherine. *Probability and measure theory*. Academic Press, 2000.
- [2] Jeffrey S Rosenthal. First Look At Rigorous Probability Theory, A. World Scientific Publishing Company, 2006.

A Definitions

Definition A.0.1. A **right semi-closed interval** is a set of the form $(a,b] = \{x : a < x \le b\}, -\infty \le a < b < \infty$. By convention, we also count (a,∞) as right semi-closed for $-\infty \le a < \infty$. \triangle