

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM03

(9665/FM03) Unit FP2 Pure Mathematics

Mark scheme

January 2021

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

 $\sqrt{\text{or ft}}$ Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q	Answer	Marks	Comments
1(a)	$\begin{vmatrix} 25-1 & 8 \\ t & 3-1 \end{vmatrix} = 0$	M1	M1 for forming an equation such as $\begin{vmatrix} 25 - \lambda & 8 \\ t & 3 - \lambda \end{vmatrix} = 0$ with either $\lambda = 1$ or $\lambda = 27$ or $\begin{vmatrix} 25 & 8 \\ t & 3 \end{vmatrix} =$ product of the eigenvalues or
	t = 6	A 1	solving simultaneous equations $25x+8y=\lambda x$ and $tx+3y=\lambda y$ with either $\lambda=1$ or $\lambda=27$ to find a value for t CAO NMS $0/2$
		2	

Q	Answer	Marks	Comments
1(b)(i)	[invariant lines are] $\mathbf{r} = \mu \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \ y = 0.25x ;$		
	$\mathbf{r} = \mu \begin{bmatrix} -1 \\ 3 \end{bmatrix}, \ y = -3x$	B1	oe
		1	

Q	Answer	Marks	Comments
1(b)(ii)	line of invariant points is $y = -3x$	B1ft	Clearly identifies their line
	since it corresponds to $\lambda = 1$	E1	or fuller explanation
		2	

	5	5	Question 1 Total
--	---	---	------------------

Q	Answer	Marks	Comments
2	$\int (1+x)e^{-2x} dx ; \qquad u = 1+x \Rightarrow du = dx$ $dv = e^{-2x} dx \Rightarrow v = -\frac{1}{2}e^{-2x}$	M1	PI $u = 1 + x$; $dv = e^{-2x} dx$ $du = dx$; $v = -\frac{1}{2}e^{-2x}$
	$\int (1+x)e^{-2x} dx$		[the choice simplifies the integration]
	$= -\frac{1}{2}e^{-2x}(1+x) + \int \frac{1}{2}e^{-2x}dx$	A 1	PI
	$= -\frac{1}{2}e^{-2x}(1+x) - \frac{1}{4}e^{-2x}[+c]$	A 1	Fully correct integration of $(1+x)e^{-2x}$
	$I = \int_{-1}^{\infty} (1+x)e^{-2x} dx$ $= \lim_{a \to \infty} \int_{-1}^{a} (1+x)e^{-2x} dx$	М1	Evidence of limit ∞ replaced by a (oe) $\lim_{a\to\infty}$ seen or taken at any stage with no remaining \lim relating to -1
	$= \lim_{a \to \infty} \left[-\frac{1}{2} e^{-2a} (1+a) - \frac{1}{4} e^{-2a} - \left(-\frac{1}{4} e^2 \right) \right]$		
	$\lim_{a\to\infty} \left(ae^{-2a}\right) = 0$	B1	Accept if stated in the more general format.
	$I = \frac{1}{4} e^2$	A 1	CAO Must have scored the first 4 marks for this mark to be awarded
		6	

Question 2 Total	6	
------------------	---	--

Q	Answer	Marks	Comments
3(a)	Det = $3\begin{vmatrix} k & 3 \\ 1 & 2 \end{vmatrix} + 1\begin{vmatrix} 5 & 3 \\ k+2 & 2 \end{vmatrix} + 1\begin{vmatrix} 5 & k \\ k+2 & 1 \end{vmatrix}$	M1	oe Correctly expanding by any row or column
	$= 3(2k-3)+10-3(k+2)+5-k(k+2)$ $= 6k-9+10-3k-6+5-k^2-2k$ $= k-k^2$	A 1	AG Be convinced (must see correct expansion of the brackets)
		2	

Q	Answer	Marks	Comments
3(b)(i)	$[k=1, \triangle=0]$, no unique point] $3x-y+z=11$ (1) $5x+y+3z=10$ (2) $3x+y+2z=-2$ (3)	B1	Correct system of equations in the case $k = 1$
	(1) + (2) \Rightarrow 8x + 4z = 21 \Rightarrow 2x + z = 5.25	M1	oe Eliminating one variable in order to compare two simultaneous equations
	(1) + (3) \Rightarrow 6x + 3z = 9 \Rightarrow 2x + z = 3 [Inconsistent so] no solutions	A 1	From comparing correct equations. Note: $(2) - (3) \Rightarrow 2x + z = 12$
		3	

Q	Answer	Marks	Comments
3(b)(ii)	Three planes form a [triangular] prism	E1	oe
		1	

Question 3 Total	6	
------------------	---	--

Q	Answer	Marks	Comments
4	I.F. is $e^{\int \tanh x dx} \left[= e^{\ln \cosh x} \right]$	M1	I.F. identified and integration attempted
	$= \cosh x$	A 1	Correct integrating factor
	$y \cosh x = \int \cosh^3 x dx + \int 2e^x \cosh x dx$	m1	Multiplying both sides of the given DE by the I.F. and integrating LHS to get $y \times I.F$.
	$= \int (1+\sinh^2 x) d(\sinh x) + \int (e^{2x} + 1) dx$	M1 M1	Writing each integral in a suitable form for direct integration, PI by later work
	$y \cosh x = \sinh x + \frac{1}{3} \sinh^3 x + \frac{1}{2} e^{2x} + x + A$	A2,1,0	oe If not A2, A1 can be awarded for either $y \cosh x = \sinh x + \frac{1}{3} \sinh^3 x + + A \text{ oe}$ or $y \cosh x = + \frac{1}{2} e^{2x} + x + A \text{ oe}$
		7	

	7	Question 4 Total
--	---	------------------

Q	Answer	Marks	Comments
5(a)(i)	$\beta = 3 + \sqrt{3} i$	B1	
		1	

Q	Answer	Marks	Comments
5(a)(ii)	$\alpha\beta\gamma = -\left(-\frac{12}{4}\right)$	M1	
	$12\gamma = 3 \Rightarrow \gamma = \frac{1}{4}$	A 1	oe
		2	

Q	Answer	Marks	Comments
5(a)(iii)	$\alpha + \beta + \gamma = -\left(\frac{c}{4}\right)$; $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{d}{4}$	M1	Either one seen/used or ALT: Forming two simultaneous equations in c and d by substituting value(s) of root(s) into cubic equation eg $6c + 3d - 12 = 0$; $-d - 6c - 96 = 0$
	$\frac{25}{4} = -\left(\frac{c}{4}\right) \qquad \Rightarrow \qquad c = -25$	A1ft	ft on candidate's γ so $c = -4(6 + \gamma)$
	$12+1.5 = \frac{d}{4} \Rightarrow d = 54$	A 1	Correct value for <i>d</i>
		3	

Q	Answer	Marks	Comments
5(b)(i)	π	B1	$r = \sqrt{12}$ 0e exact value
	$3 - \sqrt{3} i = \sqrt{12} e^{-i\frac{\pi}{6}}$	B1	$\theta = -\frac{\pi}{6}$
		2	

Q	Answer	Marks	Comments
5(b)(ii)	$\alpha^n = \left\{ \sqrt{12} \left[\cos \left(-\frac{\pi}{6} \right) + i \sin \left(-\frac{\pi}{6} \right) \right] \right\}^n$	B1ft ft on c 's values for r and θ PI by later work	
	$\alpha^{n} = \left(\sqrt{12}\right)^{n} \left[\cos\left(-\frac{n\pi}{6}\right) + i\sin\left(-\frac{n\pi}{6}\right)\right]$	M1	PI Equivalent to de Moivre for either α^n or β^n
	$\beta^n = \left(\sqrt{12}\right)^n \left[\cos\left(\frac{n\pi}{6}\right) + i\sin\left(\frac{n\pi}{6}\right)\right]$	A 1	Correct α^n or β^n or $\alpha^n + \beta^n$ in trigonometric or exponential form
	$\alpha^n + \beta^n = 2\left(\sqrt{12}\right)^n \cos\left(\frac{n\pi}{6}\right)$	A 1	$A\cos\left(\frac{n\pi}{6}\right)$ allowing any correct exact form for A
		4	

Q	Answer	Marks	Comments
5(b)(iii)	$\alpha^n + \beta^n = 0 \Rightarrow \cos\left(\frac{n\pi}{6}\right) = 0$		$\frac{n\pi}{6} = (2k-1)\frac{\pi}{2}$. oe
	$\Rightarrow \frac{n\pi}{6} = (2k-1)\frac{\pi}{2}$ Since <i>n</i> is a positive integer,	M1	Must be using $\alpha^n + \beta^n = k\cos\left(\frac{n\pi}{6}\right)$ ft on candidate's θ from (b)(i)
	$n=3(2k-1)$, integer $k\geq 1$	A 1	$n=3(2k-1)$, integer $k \ge 1$ oe eg ' $n=$ odd positive multiples of 3'
		2	

Question 5 Tota	14	
-----------------	----	--

Q	Answer	Marks	Comments
6(a)(i)	$\frac{1}{(r+2)(r+3)} = \frac{A}{r+2} + \frac{B}{r+3}$	M1	
	A = 1; $B = -1$	A 1	A = 1; $B = -1$
	$\sum_{r=1}^{n} \frac{1}{(r+2)(r+3)} = \frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \dots$		Uses method of differences showing at least terms which cancel
	$\dots + \frac{1}{n+1} - \frac{1}{n+2} + \frac{1}{n+2} - \frac{1}{n+3}$	М1	
	$=\frac{1}{3}-\frac{1}{n+3}$	A 1	AG Be convinced
		4	

Q	Answer	Marks	Comments
6(a)(ii)	When $n = 1$, LHS = $\frac{2}{24} = \frac{1}{12}$, RHS = $\frac{1}{6} - \frac{1}{12} = \frac{1}{12}$ [so formula is true for $n = 1$]	В1	Correct values
	Assume formula true for $n = k$ (*), integer $k \ge 1$, so $\sum_{r=1}^{k+1} \frac{2}{(r+1)(r+2)(r+3)} = \frac{1}{6} - \frac{1}{(k+2)(k+3)} + \frac{2}{(k+2)(k+3)(k+4)}$	M1	Assumes the result true for $n = k$ and considers $\sum_{r=1}^{k+1} \frac{2}{(r+1)(r+2)(r+3)}$
	$= \frac{1}{6} - \frac{k+4-2}{(k+2)(k+3)(k+4)}$ $= \frac{1}{6} - \frac{1}{(k+3)(k+4)}$ Hence formula is true for $n = k+1$ (**) and since true for $n = 1$ (***), formula is true for $n = 1, 2, 3, \ldots$ (****) by induction	A1 E1	Be convinced Must have (*), (**) & (***) present, previous 3 marks scored and final statement (****) clearly indicating that it relates to positive integers
		4	

Q	Answer	Marks	Comments
6(b)	$\sum_{r=1}^{n} \frac{r}{(r+1)(r+2)(r+3)} = \sum_{r=1}^{n} \frac{1}{(r+2)(r+3)}$ $-\sum_{r=1}^{n} \frac{1}{(r+1)(r+2)(r+3)}$	M1	Writes the given summation as a difference so that (a) and (b) results can be used
	$= \left[\frac{1}{3} - \frac{1}{n+3}\right] - \frac{1}{2} \left[\frac{1}{6} - \frac{1}{(n+2)(n+3)}\right]$	A 1	$\left[\frac{1}{3} - \frac{1}{n+3}\right] - \frac{1}{2}\left[\frac{1}{6} - \frac{1}{(n+2)(n+3)}\right]$
	$=\frac{1}{4}+\frac{1-2(n+2)}{2(n+2)(n+3)}$		
	$=\frac{n^2+5n+6+2-4n-8}{4(n+2)(n+3)}$		
	$= \frac{n(n+1)}{4(n+2)(n+3)}$	A 1	$\frac{n(n+1)}{4(n+2)(n+3)}$ obtained convincingly
		3	

Question 6 Total	11	
------------------	----	--

Q	Answer	Marks	Comments
7(a)	$y_{\rm PI} = a x^2 \mathrm{e}^{-3x} + b$		
	$y'_{PI} = 2a x e^{-3x} - 3a x^2 e^{-3x}$	M1	Differentiates ax^2e^{-3x} as $\pm pxe^{-3x} \pm qx^2e^{-3x}$ form
	$y''_{PI} = e^{-3x} (2a - 12ax + 9ax^2)$	A 1	$y'_{ m PI}$ and $y''_{ m PI}$ both correct
	$e^{-3x} (2a - 12ax + 9ax^2 + 12ax - 18ax^2 + 9ax^2) + 9b = 9e^{-3x} + 18$ $\Rightarrow 2a = 9$ and $9b = 18$	M1	Substitutes into the given DE, ft their derivatives, and equates coefficients to obtain two equations, at least one correct.
	$\Rightarrow a = 4.5$ $\Rightarrow b = 2$	A1 B1	Correct value for a with no errors seen in any term involving x $b=2$
	<i>- U</i> − Z	<u>Бі</u> 5	<i>U</i> – Z

Q	Answer	Marks	Comments
7(b)	Aux equation $m^2 + 6m + 9 = 0$ $(m+3)^2 = 0 \implies m = -3$	М1	Factorising or using quadratic formula oe on correct aux. equation. PI by correct value of <i>m</i> seen/used
	$\left[y_{\rm CF} = \right] (Ax + B) e^{-3x}$	A 1	Correct CF
	$[y_{GS} =] (Ax+B)e^{-3x} + 4.5x^{2}e^{-3x} + 2$	B1ft	(c's CF + c's PI) but must have exactly two arbitrary constants in CF
	$x=0$, $y=3 \Rightarrow 3=B+2 \Rightarrow B=1$	A1ft	Ft on $B=3-c's b$
	$x=0$, $y'=0 \Rightarrow 0=A-3B \Rightarrow A=3$	A1ft	Ft on $A = 3 \times c's B$
	$y = (3x+1+4.5x^2)e^{-3x} + 2$	A 1	
		6	
	Question 7 Total	11	

Q	Answer	Marks	Comments
8(a)	$\det \mathbf{M} = 6 - 4k$	B1	Seen or used
	Cofactor matrix		
	$\begin{bmatrix} 6 & 2 & 3k+4 \\ -6 & -2 & -k-7 \\ 6-2k & 4-2k & 8-k-k^2 \end{bmatrix}$	M1	One complete row or column correct PI by later work
	$\begin{bmatrix} 6-2k & 4-2k & 8-k-k^2 \end{bmatrix}$	A2,1,0	A2 all nine correct; else A1 at least six correct PI by later work
	Inverse matrix $\mathbf{M}^{-1} = \frac{1}{6-4k} \begin{bmatrix} 6 & -6 & 6-2k \\ 2 & -2 & 4-2k \\ 3k+4 & -k-7 & 8-k-k^2 \end{bmatrix}$	M1 A1	Transpose of their cofactors with no more than one further error and division by their det \mathbf{M} provided det $\mathbf{M} \neq 0$ when k is an integer
		6	

Q	Answer	Marks	Comments
8(b)	$\begin{bmatrix} \mathbf{A}^{-1} = \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B2,1,0	If not B2 , then B1 for $\begin{bmatrix} \cos(-90^\circ) & -\sin(-90^\circ) & 0\\ \sin(-90^\circ) & \cos(-90^\circ) & 0\\ 0 & 0 & 1 \end{bmatrix}$ or better
		2	

Question 8 Tota	8	
-----------------	---	--

Q	Answer	Marks	Comments
9(a)	$\tan y = \frac{1+x}{1-x}$		
	$\sec^2 y \frac{dy}{dx} = \frac{(1-x)(1)-(1+x)(-1)}{(1-x)^2}$	М1	Correct differentiation wrt x of either $\tan y$ or $\frac{1+x}{1-x}$
	$\left(1 + \left(\frac{1+x}{1-x}\right)^2\right) \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\left(1-x\right)^2}$	m1	Replacing $\sec^2 y$ by $1 + \left(\frac{1+x}{1-x}\right)^2$ Accept if part of the differentiation of $\tan^{-1}\left(\frac{1+x}{1-x}\right)$
	$\frac{dy}{dx} = \frac{2}{(1-x)^2 + (1+x)^2} = \frac{1}{1+x^2}$	A 1	AG Be convinced
		3	

Q	Answer	Marks	Comments
9(b)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\tan^{-1} \left(\frac{1+x}{1-x} \right) \right) = \frac{1}{1+x^2}$		
	$\tan^{-1}\left(\frac{1+x}{1-x}\right) = \tan^{-1}x \left[+c\right]$	M1	Integrates both sides wrt x oe to obtain $\tan^{-1} \left(\frac{1+x}{1-x} \right) = \tan^{-1} x \ [+c]$
	when $x = 0$, $\tan^{-1} 1 = 0 + c \implies c = \frac{\pi}{4}$	m1	Finds a value of the constant of integration by using a value for \boldsymbol{x} in the given domain
	$\tan^{-1}\left(\frac{1+x}{1-x}\right) = \tan^{-1}x + \frac{\pi}{4}$		
	hence graph of $y = \tan^{-1} x$, $x < 1$		
	can be transformed onto the graph of		
	$y = \tan^{-1} \left(\frac{1+x}{1-x} \right)$, $x < 1$ by means of a	A 1	Correct equation, with terms written in any order, and 'translation'
	translation.		
	[Translation vector =] $\begin{bmatrix} 0 \\ \frac{\pi}{4} \end{bmatrix}$	B1	Correct translation vector in exact form
		4	

Question 9 Tota	7	
-----------------	---	--

Q	Answer	Marks	Comments
10(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = (\sinh 2x)(2\cosh 2x)$	M1	$\frac{\mathrm{d}y}{\mathrm{d}x} = k(\sinh 2x)(\cosh 2x) , k \neq 0$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sinh 4x$	A 1	$\frac{\mathrm{d}y}{\mathrm{d}x}$ = sinh 4x seen or clearly used
	$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 + \sinh^2 4x = \cosh^2 4x$	A 1	Seen or used convincingly
	$S = 2\pi \int_0^{0.5} (1 + 0.5 \sinh^2 2x) \cosh 4x dx$	М1	Substitution into correct formula ft their derivative
	$S = 2\pi \int_0^{0.5} \left(1 + \frac{1}{4} \cosh 4x - \frac{1}{4} \right) \cosh 4x dx$	A 1	$\sinh^2 2x = \frac{1}{2} (\cosh 4x - 1) \text{used}$
	$S = \frac{\pi}{2} \int_0^{0.5} (3 + \cosh 4x) \cosh 4x dx$	A 1	AG Be convinced
		6	

Q	Answer	Marks	Comments
10(b)	$S = \frac{\pi}{2} \int_0^{0.5} \left(3 \cosh 4x + \frac{1}{2} (\cosh 8x + 1) \right) dx$	M1	$\cosh^2 4x = \frac{1}{2} (\cosh 8x + 1) \text{used}$ PI by correct integration of $\cosh^2 4x$
	$S = \frac{\pi}{2} \left[\frac{3}{4} \sinh 4x + \frac{1}{2} \left(\frac{1}{8} \sinh 8x + x \right) \right]_0^{0.5}$	A 1	Correct integration in hyperbolic form
	$S = \frac{\pi}{2} \left(\frac{3}{4} \sinh 2 + \frac{1}{16} \sinh 4 + \frac{1}{4} \right)$	A 1	ACF in terms of hyperbolic functions NMS scores 0/3
		3	

Question 10 Tota	9
------------------	---

Q	Answer	Marks	Comments
11(a)	[Direction vector $\mathbf{v} = \begin{bmatrix} 3 \\ -2 \\ 6 \end{bmatrix}$	B1	Correct direction vector stated or used
	$[\mathbf{v} =] \sqrt{3^2 + (-2)^2 + 6^2} $ [= 7]	M1	$\sqrt{3^2 + (-2)^2 + 6^2}$ or $\sqrt{1^2 + 0^2 + 2^2}$ oe
	Direction cosines: $\frac{3}{7}$; $-\frac{2}{7}$; $\frac{6}{7}$	A 1	Correct direction cosines
		3	

Q	Answer	Marks	Comments
11(b)(i)	At point A , $\mathbf{r} = \begin{bmatrix} -2 \\ 2 \\ -4 \end{bmatrix}$		
	$\left[\begin{bmatrix} -2\\2\\-4 \end{bmatrix} - \begin{bmatrix} 1\\0\\2 \end{bmatrix} \right] \times \begin{bmatrix} 3\\-2\\6 \end{bmatrix} = \begin{bmatrix} -3\\2\\-6 \end{bmatrix} \times \begin{bmatrix} 3\\-2\\6 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$		
	so A lies on L	B1	Correctly verifies that position vector of <i>A</i> satisfies equation of <i>L</i> and states the conclusion
	$\begin{bmatrix} -2 \\ 2 \\ -4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} = -2 + 4 + 8 = 10 \neq 37$ So <i>A</i> does not lie on plane Π	В1	Correctly verifies that position vector of A does not satisfy equation of Π and states the conclusion SC If verifications both correct but no conclusions then award SC B1
	1	2	

Q	Answer	Marks	Comments
11(b)(ii)	Line through A perpendicular to plane Π has equation $\mathbf{r} = \begin{bmatrix} -2 \\ 2 \\ -4 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$	M1	Finds equation of perpendicular from A to the plane; PI by general point on the line.
	Meets the plane when $(-2+t)1+(2+2t)2+(-4-2t)(-2)=37$	m1	Solving in order to find a linear equation for the value of $\it t$ at the foot of the perpendicular to $\it \Pi$
	$9t = 27 \implies t = 3$	A 1	
	at D , $t=6$	m1	Ft on 2 \times c's t value at foot of perp
	Posn. vector of $D = \begin{bmatrix} -2 \\ 2 \\ -4 \end{bmatrix} + 6 \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ 14 \\ -16 \end{bmatrix}$		
	Coordinates of <i>D</i> (4, 14, -16)	A 1	Correct coordinates for D
		5	

Question 11 Total	10	

Q	Answer	Marks	Comments
12(a)	$\frac{\pi}{1}$	M1	$\frac{1}{2} \int r^2 \left[d\theta \right]$ or $\int_0^{\frac{\pi}{3}} r^2 \left[d\theta \right]$ used
	$\frac{1}{2} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} (3 - \tan^2 \theta)^2 \sec^2 \theta \ d\theta$	B1	Correct limits, correct integrand and $\mathrm{d}\theta$ present
	let $u = \tan\theta$, area = $\int_{[0]}^{\left[\sqrt{3}\right]} \left(9 - 6u^2 + u^4\right) du$	M1	Evidence of valid method to integrate $\tan^n\theta\sec^2\theta$, $n=2$ or 4; could be by inspection. Ignore limits
	area = $\left[9u - 2u^3 + \frac{1}{5}u^5\right]_{[0]}^{\left[\sqrt{3}\right]}$	A 1	Integrates $(3-\tan^2\theta)^2\sec^2\theta$ correctly
	$=9\sqrt{3}-6\sqrt{3}+\frac{9}{5}\sqrt{3}=\frac{24\sqrt{3}}{5}$	A 1	CSO AG
		5	

Q	Answer	Marks	Comments
12(b)(i)	$C_1: r \cos \theta = 3 - \tan^2 \theta$ $\Rightarrow x = 3 - \frac{y^2}{x^2}, y^2 = x^2(3-x)$	M1	Using $r \cos \theta = x$ or $\tan \theta = \frac{y}{x}$ oe
	x^2 , x^2	A 1	oe a correct Cartesian equation for C₁
	at A and B, $x^3 - 4x^2 + 8 = 0$	A 1	Obtaining a correct cubic equation when solving C_1 with C_2
	$(x-2)(x^2-2x-4)=0$, $x=2$, $x=1 \pm \sqrt{5}$		
	when $x=1+\sqrt{5}$ for C_2 , $y^2=2-2\sqrt{5}<0$ eg non-real values for y so invalid. and since C_1 has domain $-\frac{\pi}{3} \le \theta \le \frac{\pi}{3}$ eg $0 \le x \le 3$, $x=1-\sqrt{5}$ is also invalid. When $x=2$, $y=\pm 2$	E1	Showing that the cubic equation only has one root which gives real values for the coordinates of <i>A</i> and <i>B</i>
	A and B, coordinates $(2, 2)$ and $(2, -2)$	A 1	Previous 4 marks must have been scored
12(b)(i)	$r^2 = 8$	M1	Obtaining $r^2 = 8$ as polar eqn of C_2
ALT	$\sqrt{8}c^3 - 4c^2 + 1 = 0 \text{where } c = \cos \theta$	A 1	A correct cubic equation involving $ heta$
		A 1	Further conversion identity to change from polar to Cartesian
		E1 A1	As in main scheme
		5	

Q	Answer	Marks	Comments
12(b)(ii)	Area of sector <i>OAB</i> of circle $C_2 = \frac{1}{2} (\sqrt{8})^2 \frac{\pi}{2}$	B1	$\frac{1}{2}(\sqrt{8})^2\frac{\pi}{2}$ oe exact value
	Area of region bounded by arc <i>ADB</i> of <i>C</i> ₁ and lines <i>OA</i> and <i>OB</i>		
	$= \left[9u - 2u^3 + \frac{1}{5}u^5\right]_0^1 [= 7.2]$	M1	
	Required area = $7.2 - 2\pi$	A 1	$7.2 - 2\pi$ oe in an exact form
		3	

Question 12 Total	13	
-------------------	----	--

Q	Answer	Marks	Comments
13(a)		B1 B1	Graph only in the 1st and 3 rd quadrants, passing through <i>O</i> , and roughly correct shape either in the 1st or 3rd quadrant gradient always positive, increasing in 3rd quadrant but decreasing in the 1st quadrant
		2	

Q	Answer	Marks	Comments
13(b)	$y = \sinh^{-1} x \implies \sinh y = x$ $\cosh y \frac{dy}{dx} = 1$	М1	oe Use of $\cosh^2 y - \sinh^2 y = 1$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\pm\sqrt{1+\sinh^2 y}}$	m1	Condone missing ±
	Graph of $y = \sinh^{-1} x$ always has positive gradient so $\frac{dy}{dx} = \frac{1}{\sqrt{1+x^2}}, \frac{dy}{dx} = \left(1+x^2\right)^{-\frac{1}{2}}$	A 1	\textbf{AG} Must see \pm and negative sign rejected with a valid reason for doing so otherwise $\textbf{A0}$
13(b) ALT	$y = \ln\left(x + \sqrt{x^2 + 1}\right) \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 + \frac{0.5 \times 2x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}}$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{x^2 + 1} + x}{\left(\sqrt{x^2 + 1}\right)\left(x + \sqrt{x^2 + 1}\right)}$	m1	Multiplying top and bottom by $\sqrt{x^2 + 1}$ or by $x - \sqrt{x^2 + 1}$
	$\frac{dy}{dx} = \frac{1}{\sqrt{x^2 + 1}}$, $\frac{dy}{dx} = (1 + x^2)^{-\frac{1}{2}}$	A 1	AG
		3	

Q	Answer	Marks	Comments
13(c)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -x(1+x^2)^{-1.5}$	B1	ACF a correct expression for $\frac{d^2y}{dx^2}$ PI
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = -(1+x^2)^{-1.5} + 3x^2(1+x^2)^{-2.5}$	М1	Product rule used to find at least one derivative after the 2nd derivative
	when $x = 0$, $\frac{d^3y}{dx^3} = -1 \implies a = \frac{-1}{3!} = -\frac{1}{6}$ $\left[\frac{d^4y}{dx^4} = (9x - 6x^3)(1 + x^2)^{-3.5}\right]$	A 1	AG Must see a correct expression and value at $x=0$ for $\frac{d^3y}{dx^3}$ before $a=-\frac{1}{6}$
	$\frac{d^{5}y}{dx^{5}} = (9 - 72x^{2} + 24x^{4})(1 + x^{2})^{-4.5}$ when $x = 0$, $\frac{d^{5}y}{dx^{5}} = 9 \implies b = \frac{9}{120} \left[= \frac{3}{40} \right]$	A 1	$b = \frac{9}{120}$ oe condone incorrect coefficients of terms in expression for $\frac{d^5y}{dx^5}$ which are 0 when $x = 0$
		4	

Q	Answer	Marks	Comments
13(d)	$\cos 3x = 1 - \frac{9}{2}x^2 + O(x^4)$	B1	$\cos 3x = 1 - \frac{9}{2}x^2 + \dots$ seen or used
	$\left[\frac{x^2 - x \sinh^{-1}x}{(1 - \cos 3x)^2}\right] = \frac{x^2 - x(x + ax^3 + bx^5 \dots)}{\left(\frac{9}{2}x^2 - O(x^4)\right)^2}$	M1	Substitution of series
	$\lim_{x \to 0} \left[\frac{x^2 - x \sinh^{-1}x}{(1 - \cos 3x)^2} \right]$ $= \lim_{x \to 0} \left[\frac{-ax^4 - bx^6 \dots}{\frac{81}{4}x^4 - O(x^6)} \right]$ $= \lim_{x \to 0} \left[\frac{-a - bx^2 \dots}{\frac{81}{4} - O(x^2)} \right] $ [so the limit exists]	m1	Dividing numerator and denominator by x^4 to get the form $\lim_{x\to 0} \left[\frac{P+O\left(x^2\right)}{Q+O\left(x^2\right)}\right] \text{, so the limit exists}$ = $\frac{P}{Q}$ and condone one $O\left(x^2\right)$ missing or incorrect power. In place of $O($) may see equivalent term(s)
	$\left[= \lim_{x \to 0} \left[\frac{\frac{1}{6} - \frac{3}{40} x^2 \dots}{\frac{81}{4} - O(x^2)} \right] \right] = \frac{2}{243}$	A 1	$\frac{2}{243}$ A0 if previous 3 marks are not scored
		4	

Question 13 Total	13	
-------------------	----	--