# Project 1

# **Explore Weather Trends**

Steps taken to prepare the data to be visualized are as follows:-

### • Extract the data:

In order to extract the city and global level data, I used the following SQL query-

- ✓ SELECT \* FROM city\_list; (This gives the list of cities and countries)
- ✓ SELECT \* FROM global\_data; (This gives the list of average global temperature by year)
- ✓ SELECT year,city,country,avg\_temp
  FROM city\_data
  WHERE city='Delhi'; (This gives the list of average temperature of Delhi by year)

After exporting data to CSV, I opened all the 3 files using Excel.

### • Creating a Line chart:

I live in Delhi, India. In order to create a line chart for comparison between my city's temperatures and global temperatures, I followed the following steps:-

✓ Opened the city\_data CSV file.

|   | Α    | В С   |         | D             |  |
|---|------|-------|---------|---------------|--|
| 1 | year | city  | country | city_avg_temp |  |
| 2 | 1796 | Delhi | India   | 25.03         |  |
| 3 | 1797 | Delhi | India   | 26.71         |  |
| 4 | 1798 | Delhi | India   | 24.29         |  |
| 5 | 1799 | Delhi | India   | 25.28         |  |

✓ Found the global average temperature for the corresponding years from global data file.

|   | Α    | В     | С       | D             | E               |  |
|---|------|-------|---------|---------------|-----------------|--|
| 1 | year | city  | country | city_avg_temp | global_avg_temp |  |
| 2 | 1796 | Delhi | India   | 25.03         | 8.27            |  |
| 3 | 1797 | Delhi | India   | 26.71         | 8.51            |  |
| 4 | 1798 | Delhi | India   | 24.29         | 8.67            |  |
| 5 | 1799 | Delhi | India   | 25.28         | 8.51            |  |

✓ Calculated the Moving Average for both city\_avg\_temp and global\_avg\_temp columns in order to make trends more observable.

 $Moving\ Average = 15\ years$ 



✓ Selected the required columns i.e 15yr\_city-MA and 15yr\_global MA to create a line chart showing comparison between city's temperature and global temperatures



✓ Finally, the line chart created is shown below:



Some of the key considerations when deciding ways to visualize trends include:

- ✓ Selecting the appropriate columns for the line chart.
- ✓ Calculating the 15yr moving average for city\_temp and global\_temp columns in order to smooth out the lines.
- ✓ The correlation can be identified by using correlation coefficient and by observing the trends.

## • Calculating the Temperature Coefficient (K<sub>t</sub>)

There is an observable proportional relation between my city's temperature and the global average temperature.

This relation coefficient (K<sub>t</sub>) can be estimated as below:-

✓ Select few years randomly and find out the difference between Delhi's average temperature and Global average temperature for each year.

| 4  | Α    | В     | С       | D             | E               | F          |
|----|------|-------|---------|---------------|-----------------|------------|
| 1  | year | city  | country | city_avg_temp | global_avg_temp | difference |
| 2  | 1999 | Delhi | India   | 26.36         | 9.29            | =(D2-E2)   |
| 3  | 2000 | Delhi | India   | 26.05         | 9.2             |            |
| 4  | 2001 | Delhi | India   | 25.86         | 9.41            |            |
| 5  | 2002 | Delhi | India   | 26.63         | 9.57            |            |
| 6  | 2003 | Delhi | India   | 25.72         | 9.53            |            |
| 7  | 2004 | Delhi | India   | 26.24         | 9.32            |            |
| 8  | 2005 | Delhi | India   | 25.72         | 9.7             |            |
| 9  | 2006 | Delhi | India   | 26.37         | 9.53            |            |
| 10 | 2007 | Delhi | India   | 26.15         | 9.73            |            |
| 11 | 2008 | Delhi | India   | 25.68         | 9.43            |            |
| 12 | 2009 | Delhi | India   | 26.55         | 9.51            |            |
| 13 | 2010 | Delhi | India   | 26.52         | 9.7             |            |
| 14 | 2011 | Delhi | India   | 25.63         | 9.52            |            |
| 15 | 2012 | Delhi | India   | 25.89         | 9.51            |            |
| 16 | 2013 | Delhi | India   | 26.71         | 9.61            |            |

✓ Then calculate the mean from the differences calculated.

| 1  | Α    | В     | С       | D             | Е               | F          | G        | Н        |
|----|------|-------|---------|---------------|-----------------|------------|----------|----------|
| 1  | year | city  | country | city_avg_temp | global_avg_temp | difference | mean     |          |
| 2  | 1999 | Delhi | India   | 26.36         | 9.29            | 17.07      | =AVERAGE | (F2:F16) |
| 3  | 2000 | Delhi | India   | 26.05         | 9.2             | 16.85      |          |          |
| 4  | 2001 | Delhi | India   | 25.86         | 9.41            | 16.45      |          |          |
| 5  | 2002 | Delhi | India   | 26.63         | 9.57            | 17.06      |          |          |
| 6  | 2003 | Delhi | India   | 25.72         | 9.53            | 16.19      |          |          |
| 7  | 2004 | Delhi | India   | 26.24         | 9.32            | 16.92      |          |          |
| 8  | 2005 | Delhi | India   | 25.72         | 9.7             | 16.02      |          |          |
| 9  | 2006 | Delhi | India   | 26.37         | 9.53            | 16.84      |          |          |
| 10 | 2007 | Delhi | India   | 26.15         | 9.73            | 16.42      |          |          |
| 11 | 2008 | Delhi | India   | 25.68         | 9.43            | 16.25      |          |          |
| 12 | 2009 | Delhi | India   | 26.55         | 9.51            | 17.04      |          |          |
| 13 | 2010 | Delhi | India   | 26.52         | 9.7             | 16.82      |          |          |
| 14 | 2011 | Delhi | India   | 25.63         | 9.52            | 16.11      |          |          |
| 15 | 2012 | Delhi | India   | 25.89         | 9.51            | 16.38      |          |          |
| 16 | 2013 | Delhi | India   | 26.71         | 9.61            | 17.1       |          |          |

Mean = 16.634

✓ This mean is the temperature coefficient  $K_t$ 

## **Other trends**

Overall trend



### • Bangkok Vs Global



### • Albuquerque Vs Global



#### • Novosibirsk Vs Global



### **Observations**

From the line chart, the following observations can be made:-

- My city i.e., Delhi is *hotter* on average as compared to the global average, and the difference has been constant over time..
- There is a *positive correlation* between changes in Delhi's temperature over time and changes in the global average.
  - Correlation coefficient is near to +1 (0.8 approx). It is calculated using the following formula in excel :- =**CORREL**(array1,array2)
- The *difference* between Delhi's average temperature and the global average temperature over the years has been *large*. Delhi's Average temperature has been nearly 25 and that of world is nearly 8, i.e there is a difference of approx. 17 which is quite huge.
- Apart from delhi, if we compare the average temperature of other cities from different countries with the global average, it can be concluded that they have positive correlation among them.
- If we look at the overall trend, the *world is getting hotter* since the global average has been increasing since past hundred years.
- The average temperature of some cities like Novosibirsk is fluctuating over the years.
- By the help of temperature coefficient  $K_t$ , we can derive an estimation (prediction) relation between my city(Delhi) and Global average as follows:-

My city's avg temperature in year  $X \approx Global$  average temperature in year  $X + K_t$ 

For eg:- Global avg temperature in 1996  $\approx 9.04$ 

 $Coefficient \ K_t \quad \approx 16.634$ 

My City's avg temperature  $\approx 9.04 + 16.634$ 

 $\approx 25.67$  which is nearly equal to 25.55

Submitted By Divya Bajaj (Delhi ,India)