Evaluation of Text Retrieval Systems

Evaluation of Text Retrieval Systems

Why Evaluation?

- Reason 1: Assess the actual utility of a TR system
 - Measures should reflect the utility to users in a real application
 - Usually done through user studies (interactive IR evaluation)
- Reason 2: Compare different systems and methods
 - Measures only need to be correlated with the utility to actual users, thus don't have to accurately reflect the exact utility to users
 - Usually done through test collections (test set IR evaluation)

What to Measure?

- Effectiveness/Accuracy: how accurate are the search results?
 - Measuring a system's ability of ranking relevant documents on top of non-relevant ones
- Efficiency: how quickly can a user get the results? How much computing resources are needed to answer a query?
 - Measuring space and time overhead
- Usability: How useful is the system for real user tasks?
 - Doing user studies

The Cranfield Evaluation Methodology

- A methodology for laboratory testing of system components developed in 1960s
- Idea: Build <u>reusable</u> test collections & define measures
 - A sample collection of documents (simulate real document collection)
 - A sample set of queries/topics (simulate user queries)
 - Relevance judgments (ideally made by users who formulated the queries) → Ideal ranked list
 - Measures to quantify how well a system's result matches the ideal ranked list
- A test collection can then be reused many times to compare different systems

Test Collection Evaluation

Evaluation of TR Systems: Basic Measures

Evaluation of TR Systems: Basic Measures

Test Collection Evaluation

Slide adapted from ChengXiang Zhai's presentation

Test Collection Evaluation

Evaluating a Set of Retrieved Docs:Precision and Recall

Action	Retrieved	Not Retrieved
Relevant	Relevant Retrieved a	Relevant Rejected b
Not relevant	Irrelevant Retrieved c	Irrelevant Rejected d

Precision =
$$\frac{a}{a+c}$$

Ideal results: Precision=Recall=1.0

Recall =
$$\frac{a}{a+b}$$

In reality, high recall tends to be associated with low precision

Set can be defined by a cutoff (e.g., precision @ 10 docs)

Combine Precision and Recall: F-Measure

$$F_{\beta} = \frac{1}{\frac{\beta^{2}}{\beta^{2}+1} \frac{1}{R} + \frac{1}{\beta^{2}+1} \frac{1}{R}} = \frac{(\beta^{2}+1)P * R}{\beta^{2}P + R}$$

$$F_1 = \frac{2PR}{P + R}$$

Why not 0.5*P+0.5*R?

P: precision

R: recall

β: parameter (often set to

1)

Summary

- Precision: are the retrieved results all relevant?
- Recall: have all the relevant documents been retrieved?
- F measure combines Precision and Recall
- Tradeoff between Precision and Recall depends on the user's search task

Evaluation of TR Systems: Evaluating a Ranked List

Evaluation of TR Systems: Evaluating a Ranked List

Evaluating Ranking: Precision-Recall (PR) Curve

Total number of relevant documents in collection: 10

10/10

Comparing PR Curves

How to Summarize a Ranking

Total number of relevant documents in collection: 10

	Precision	Recall
D1 +	1/1	1/10
D2 +	2/2	2/10
D3 –	2/3	2/10
D4 –		
D5 +	3/5	3/10
D6 –		<i>O</i> / 1 <i>O</i>
D7 –		
D8 +	4/8	4/10
D9 –		
D10	0	10/10

Evaluation of TR Systems: Evaluating a Ranked List

Evaluation of TR Systems: Evaluating a Ranked List

Mean Average Precision (MAP)

Average Precision:

- The average of precision at every cutoff where a new relevant document is retrieved
- Normalizer = the total # of relevant docs in collection
- Sensitive to the rank of each relevant document
- Mean Average Precisions (MAP)
 - MAP = arithmetic mean of average precision over a set of queries
 - gMAP = geometric mean of average precision over a set of queries
 - Which is better: MAP or gMAP?

Special Case: Mean Reciprocal Rank

- When there's only one relevant document in the collection (e.g., known item search)
 - Average Precision = Reciprocal Rank = 1/r, where r is the rank position of the single relevant doc
 - Mean Average Precision → Mean Reciprocal Rank
 - Why not simply use r?

Summary

- Precision-Recall curve characterizes the overall accuracy of a ranked list
- The actual utility of a ranked list depends on how many top-ranked results a user would examine
- Average Precision is the standard measure for comparing two ranking methods
 - Combines precision and recall
 - Sensitive to the rank of every relevant document

What if we have multiple levels of relevance judgments?

Evaluation of TR Systems: Multi-Level Judgments

Evaluation of TR Systems: Multi-Level Judgments

What If We Have Multi-level Relevance Judgments?

Relevance level: r=1 (non-relevant), 2 (marginally relevant), 3 (very relevant)

Gain	Cumulative Gain	Discounted Cumulative Gain	
D1 3	3	Gain	N
D2 2	3+2	3+2/log 2	Normalized DCG=?
D3 1	3+2+1	3+2/log 2+1/log 3	
D4 1	3+2+1+1		DCG@10
D5 3		• • •	$\overline{IdealDCG@10}$
D6 1			
D7 1	••• D	CG@10 = 3+2/log <mark>2</mark> +1/log	3 ++ 1/log 10
D8 2		_	_
D9 1	IdeaIDCG	@10 = <mark>3+3</mark> /log 2+ <mark>3</mark> /log 3 +	+ <mark>3</mark> /log 9+ <mark>2</mark> /log 10

D Assume: there are 9 documents rated "3" in total in the collection

Normalized Discounted Cumulative Gain (nDCG)

- Applicable to multi-level judgments in a scale of [1,r], r>2
- Main idea of nDCG@k documents
 - Measure the total utility of the top k documents to a user
 - Utility of a lowly ranked document is discounted
 - Normalized to ensure comparability across queries

Evaluation of TR Systems: Practical Issues

Course Schedule

Challenges in Creating a Test Collection

Queries: representative & many

Relevance Judgments

D3

D48

Judgments:

completeness vs. minimum human work

Measures: capture the perceived utility by users

Q2 D1 – Q2 D2 +

Q2 D3 +

Q2 D4 –

. . .

Q50 D1 –

Q50 D2 -

Q50 D3 +

Docs: representative & many

Statistical Significance Tests

 How sure can you be that an observed difference doesn't simply result from the particular queries you chose?

	Experiment	t 1		Experiment	t 2
Query	System A	System B	<u>Query</u>	System A	System B
1	0.20	0.40	1	0.02	0.76
2	0.21	0.41	2	0.39	0.07
3	0.22	0.42	3	0.16	0.37
4	0.19	0.39	4	0.58	0.21
5	0.17	0.37	5	0.04	0.02
6	0.20	0.40	6	0.09	0.91
7	0.21	0.41	7	0.12	0.46
Average	0.20	0.40	Average	0.20	0.40

Statistical Significance Testing

<u>Query</u>	System A	System B	<u>Sign Test</u>	<u>Wilcoxon</u>
1	0.02	0.76	+	+0.74
2	0.39	0.07	-	- 0.32
3	0.16	0.37	+	+0.21
4	0.58	0.21	-	- 0.37
5	0.04	0.02	-	- 0.02
6	0.09	0.91	+	+0.82
7	0.12	0.46	+	+0.34
Average	0.20	0.40	<i>p</i> =1.0	p=0.9375

Pooling: Avoid Judging all Documents

- If we can't afford judging all the documents in the collection, which subset should we judge?
- Pooling strategy
 - Choose a diverse set of ranking methods (TR systems)
 - Have each to return top-K documents
 - Combine all the top-K sets to form a pool for human assessors to judge
 - Other (unjudged) documents are usually assumed to be non-relevant (though they don't have to)
 - Okay for comparing systems that contributed to the pool, but problematic for evaluating new systems

Summary of TR Evaluation

- Extremely important!
 - TR is an empirically defined problem
 - Inappropriate experiment design misguides research and applications
 - Make sure to get it right for your research or application
- Cranfield evaluation methodology is the main paradigm
 - MAP and nDCG: appropriate for comparing ranking algorithms
 - Precision@10docs is easier to interpret from a user's perspective
- Not covered
 - A-B Test [Sanderson 10]
 - User studies [Kelly 09]

Additional Readings

- Donna Harman, Information Retrieval Evaluation. Synthesis Lectures on Information Concepts, Retrieval, and Services, Morgan & Claypool Publishers 2011
- Mark Sanderson, Test Collection Based Evaluation of Information Retrieval Systems. Foundations and Trends in Information Retrieval 4(4): 247-375 (2010)
- Diane Kelly, Methods for Evaluating Interactive Information Retrieval Systems with Users. Foundations and Trends in Information Retrieval 3(1-2): 1-224 (2009)