In [1]:	<pre>Maive Bayes Classifier # importing the libraries import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt</pre>
In [2]:	<pre>from sklearn.metrics import confusion_matrix, f1_score, accuracy_score, roc_auc_score from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler # importing the dataset dataset = pd.read_csv('seeds_dataset.txt', sep="\t", error_bad_lines=False, warn_bad_l dataset.columns=['area', 'perimeter', 'compactness', 'length_kernel', 'width_kernel', 'asyr</pre>
In [3]:	b'Skipping line 8: expected 8 fields, saw 10\nSkipping line 36: expected 8 fields, saw 10\nSkipping line 61: expected 8 fields, saw 9\nSkipping line 69: expected 8 fields, saw 9\nSkipping line 136: expected 8 fields, saw 9\nSkipping line 136: expected 8 field s, saw 9\nSkipping line 170: expected 8 fields, saw 9\nSkipping line 171: expected 8 fields, saw 9\nSkipping line 173: expected 8 fields, saw 9\nSkipping line 202: expected 8 fields, saw 9\nSkipping line 202: expected 8 fields, saw 9\nSkipping line 204: expected 8 fields, saw 9\n' dataset.head(5)
Out[3]:	0 15.26 14.84 0.8710 5.763 3.312 2.221 5.220 1 14.88 14.57 0.8811 5.554 3.333 1.018 4.956 2 14.29 14.09 0.9050 5.291 3.337 2.699 4.825
In [4]:	<pre>3 13.84 13.94 0.8955 5.324 3.379 2.259 4.805 4 16.14 14.99 0.9034 5.658 3.562 1.355 5.175 # Handling Outliers by replacing them with group mean for column in dataset.columns[:-1]: for target in dataset["target"].unique(): Q1 = dataset[column][dataset["target"] == target].quantile(0.25) Q3 = dataset[column][dataset["target"] == target].quantile(0.75) IQR = Q3 - Q1 #Interquartile range fence_low = Q1 - (1.5 * IQR) fence_high = Q3 + (1.5 * IQR) df2 = pd.DataFrame(dataset[dataset['target'] == target][column])</pre>
In [5]:	<pre>for index in df2[df2[column] < fence_low].index:</pre>
In [6]:	<pre># Separating the dataset into matrix of features and target' X = dataset.iloc[:,:-1].values y = dataset.iloc[:,-1].values from sklearn.model_selection import train_test_split X_train_1, X_test_1, y_train_1, y_test_1 = train_test_split(X, y, test_size=0.2, randometric randomet</pre>
In [7]:	<pre>## Stime from sklearn.model_selection import GridSearchCV # Fitting the Classification Model from sklearn.naive_bayes import GaussianNB nb = GaussianNB() nb_params = [{'var_smoothing':[1e-10, 1e-9, 1e-5, 1e-3, 1e-1]}] nb_grid = GridSearchCV(nb, nb_params, cv=10) nb_grid.fit(X_train_1, y_train_1) nb_average_score = nb_grid.cv_results_['mean_test_score'].astype(float) result = nb_grid.cv_results_ nb_grid.best_estimator_</pre> Wall time: 56 ms
In [8]:	GaussianNB(var_smoothing=0.001) nb_average_score array([0.95 , 0.95 , 0.95 , 0.95625, 0.9375])
In [9]:	plt.figure() sns.lineplot(x=["le-10", "le-9", "le-5", "le-3", "le-1"], y=nb_average_score) plt.show() 0.9550 0.9525 0.9475 0.9450
In [10]:	# Building model with optimal parameters
In [11]:	<pre>nb_1 = GaussianNB(var_smoothing=0.001) nb_1.fit(X_train_1, y_train_1) print("Training Set Evaluation") print("Accuracy: ", round(100 * accuracy_score(y_train_1, nb_1.predict(X_train_1)), 2) print("F1_score: ", round(f1_score(y_train_1, nb_1.predict(X_train_1), average = 'weic print("AUC: ", round(roc_auc_score(y_train_1, nb_1.predict_proba(X_train_1), average = Training Set Evaluation Accuracy: 96.23 F1_score: 0.96 AUC: 1.0 Wall time: 8.96 ms</pre>
	<pre># Evaluating the model on the test set nb_pred = nb_1.predict(X_test_1) print("Test Set Evaluation") print("Accuracy: ", round(100 * accuracy_score(y_test_1, nb_pred), 2)) print("F1_score: ", round(f1_score(y_test_1, nb_pred, average = 'weighted'), 2)) print("AUC: ", round(roc_auc_score(y_test_1, nb_1.predict_proba(X_test_1), average = ' Test Set Evaluation Accuracy: 95.0 F1_score: 0.95 AUC: 0.99</pre> Notes About Smoothing Parameter
	1e-3 is the best smoothing parameter with a training accuracy of 96.23% and test accuracy of 95% A Gaussian curve can serve as a "low pass" filter, allowing only the samples close to its mean to "pass." In the context of Naive Bayes, assuming a Gaussian distribution is essentially giving more weights to the samples closer to the distribution mean. This might filter out some values that we want to "pass". The variable, var_smoothing, artificially adds a user-defined value to the distribution's variance (whose default value is derived from the training data set). This essentially widens (or "smooths") the curve and accounts for more samples that are further away from the distribution mean. Tuning this parameter, will also modify the variance in a way that will give the best accuracy
In [12]: In [13]:	<pre>Improving the model computation by removing multicollinear features dataset2 = data[['area', 'compactness', 'width_kernel', 'asymmetry_coeff', 'length_o: # Separating the dataset into matrix of features and target' X = dataset2.iloc[:,:-1].values y = dataset2.iloc[:,-1].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=</pre>
In [14]:	<pre># Fitting the Classification Model nb_grid.fit(X_train, y_train) nb_average_score = nb_grid.cv_results_['mean_test_score'].astype(float) result = nb_grid.cv_results_ nb_grid.best_estimator_</pre> Wall time: 55 ms
In [15]:	GaussianNB(var_smoothing=0.001) nb_average_score array([0.94375, 0.94375, 0.94375, 0.9625 , 0.94375])
In [16]:	<pre>plt.figure() sns.lineplot(x=["1e-10", "1e-9", "1e-5", "1e-3", "1e-1"], y=nb_average_score) plt.show()</pre>
In [17]:	0.9575 - 0.9550 - 0.9500 - 0.9475 - 0.9450 - le-10 le-9 le-5 le-3 le-1
	<pre># Building model with optimal parameters nb = GaussianNB(var_smoothing=0.001) nb.fit(X_train, y_train) print("Training Set Evaluation") print("Accuracy: ", round(100 * accuracy_score(y_train, nb.predict(X_train)), 2)) print("Fl_score: ", round(fl_score(y_train, nb.predict(X_train), average = 'weighted') print("AUC: ", round(roc_auc_score(y_train, nb.predict_proba(X_train), average = "macr Training Set Evaluation Accuracy: 96.86 Fl_score: 0.97 AUC: 1.0 Wall time: 10 ms</pre>
In [18]:	<pre># Evaluating the model on the test set nb_pred = nb.predict(X_test) print("Test Set Evaluation") print("Accuracy: ", round(100 * accuracy_score(y_test, nb_pred), 2)) print("F1_score: ", round(f1_score(y_test, nb_pred, average = 'weighted'), 2)) print("AUC: ", round(roc_auc_score(y_test, nb.predict_proba(X_test), average = "macro') Test Set Evaluation Accuracy: 92.5 F1_score: 0.92 AUC: 0.99</pre>
	 Effect of removing multicolinear features The training set accuracy increased from 96.23% to 96.86%. The test set accuracy reduced from 95% to 92.5%. Improving the model by feature scaling
In [19]:	<pre>X_scaler = StandardScaler() X_SS = X_scaler.fit_transform(X_train) X_SS_test = X_scaler.transform(X_test) nb_grid.fit(X_SS, y_train) nb_average_score = nb_grid.cv_results_['mean_test_score'].astype(float) result = nb_grid.cv_results_</pre>
In [20]:	nb_grid.best_estimator_ GaussianNB(var_smoothing=0.1) nb_average_score array([0.94375, 0.94375, 0.94375, 0.95])
In [21]:	<pre>plt.figure() sns.lineplot(x=["1e-10", "1e-9", "1e-5", "1e-3", "1e-1"], y=nb_average_score) plt.show()</pre>
In [22]:	0.948 - 0.947 - 0.946 - 0.945 - 0.944 - le-10 le-9 le-5 le-3 le-1
	<pre># Building model with optimal parameters nb = GaussianNB(var_smoothing=0.1) nb.fit(X_SS, y_train) print("Training Set Evaluation") print("Accuracy: ", round(100 * accuracy_score(y_train, nb.predict(X_SS)), 2)) print("Fl_score: ", round(fl_score(y_train, nb.predict(X_SS), average = 'weighted'), 2 print("AUC: ", round(roc_auc_score(y_train, nb.predict_proba(X_SS), average = "macro") Training Set Evaluation Accuracy: 95.6 Fl_score: 0.96 AUC: 1.0 Wall time: 7.99 ms</pre>
In [23]:	<pre>nb_pred = nb.predict(X_SS_test) print("Test Set Evaluation") print("Accuracy: ", round(100 * accuracy_score(y_test, nb_pred), 2)) print("Fl_score: ", round(fl_score(y_test, nb_pred, average = 'weighted'), 2)) print("AUC: ", round(roc_auc_score(y_test, nb.predict_proba(X_SS_test), average = "mac Test Set Evaluation Accuracy: 90.0 Fl_score: 0.9 AUC: 0.99</pre>
<pre>In [24]: Out[24]: In [25]:</pre>	<pre>MinMax Scaler X_scaler = MinMaxScaler() X_MMS = X_scaler.fit_transform(X_train) X_MMS_test = X_scaler.transform(X_test) nb_grid.fit(X_MMS, y_train) nb_average_score = nb_grid.cv_results_['mean_test_score'].astype(float) result = nb_grid.cv_results_ nb_grid.best_estimator_ GaussianNB(var_smoothing=0.1)</pre>
Out[25]: In [26]:	array([0.94375, 0.94375, 0.94375, 0.94375, 0.95]) plt.figure() sns.lineplot(x=["1e-10", "1e-9", "1e-5", "1e-3", "1e-1"], y=nb_average_score) plt.show()
	0.949 - 0.948 - 0.947 - 0.946 - 0.945 - 0.944 -
In [27]:	<pre>le-10 le-9 le-5 le-3 le-1 %%time # Building model with optimal parameters nb = GaussianNB(var_smoothing=0.1) nb.fit(X_MMS, y_train) print("Training Set Evaluation") print("Accuracy: ", round(100 * accuracy_score(y_train, nb.predict(X_MMS)), 2)) print("F1_score: ", round(f1_score(y_train, nb.predict(X_MMS), average = 'weighted'), print("AUC: ", round(roc_auc_score(y_train, nb.predict_proba(X_MMS), average = "macro') Training Set Evaluation Accuracy: 94.97 F1 score: 0.95</pre>
In [28]:	F1_score: 0.95 AUC: 0.99 Wall time: 7.95 ms
<pre>In [29]: Out[29]:</pre>	<pre>F1_score: 0.93 AUC: 0.99 Robust Scaler X_scaler = RobustScaler() X_RS = X_scaler.fit_transform(X_train) X_RS_test = X_scaler.transform(X_test) nb_grid.fit(X_RS, y_train) nb_average_score = nb_grid.cv_results_['mean_test_score'].astype(float) result = nb_grid.cv_results_ nb_grid.best_estimator_</pre> GaussianNB(var_smoothing=0.1)
In [30]:	nb_average_score array([0.94375, 0.94375, 0.94375, 0.95]) plt.figure()
	<pre>sns.lineplot(x=["1e-10", "1e-9", "1e-5", "1e-3", "1e-1"], y=nb_average_score) plt.show() 0.950 0.949 0.948 0.947 0.946 0.945</pre>
In [32]:	<pre>%%time # Building model with optimal parameters nb = GaussianNB(var_smoothing=0.1) nb.fit(X_RS, y_train) print("Training Set Evaluation") print("Accuracy: ", round(100 * accuracy_score(y_train, nb.predict(X_RS)), 2)) print("F1_score: ", round(f1_score(y_train, nb.predict(X_RS), average = 'weighted'), 2 print("AUC: ", round(roc_auc_score(y_train, nb.predict_proba(X_RS), average = "macro", 2 Training Set Evaluation</pre>
In [33]:	Accuracy: 96.23 F1_score: 0.96 AUC: 0.99 Wall time: 9.94 ms # Evaluating the model on the test set nb_pred = nb.predict(X_RS_test) print("Test Set Evaluation") print("Accuracy: ", round(100 * accuracy_score(y_test, nb_pred), 2)) print("F1_score: ", round(f1_score(y_test, nb_pred, average = 'weighted'), 2)) print("AUC: ", round(roc_auc_score(y_test, nb.predict_proba(X_RS_test), average = "mac Test Set Evaluation
	Accuracy: 90.0 F1_score: 0.9 AUC: 0.99 Notes About Feature Scaling on Naive Bayes Effects of Scaling on Training Set
	Scaling Method Accuracy F1 Score AUC Standard Scaler 95.6 0.96 1 MinMax Scaler 94.97 0.95 0.99 Robust Scaler 96.23 0.96 0.99 No Scaler 96.86 0.97 1
	Scaling Method Accuracy F1 Score AUC Standard Scaler 90 0.9 0.99 MinMax Scaler 92.5 0.93 0.99 Robust Scaler 90 0.9 0.99
In []:	Robust Scaler 90 0.9 0.99 No Scaler 92.5 0.92 0.99 The Naive Bayes classifier performs better without feature scaling. Naive Bayes is not very sensitive to distance between values like KNN, so we did not expect much improvement from Feature Scaling.