$11a_{188} (K11a_{188})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{33} + u^{32} + \dots - u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}}=0,$ with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{33} + u^{32} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1\\u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -v^{5} - 2u^{3} + u\\u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3}\\u^{9} + 5u^{7} + 7u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{12} - 7u^{10} - 17u^{8} - 16u^{6} - 4u^{4} + u^{2} + 1\\-u^{14} - 8u^{12} - 23u^{10} - 28u^{8} - 14u^{6} - 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{24} - 13u^{22} + \dots - 5u^{4} + 1\\u^{24} + 14u^{22} + \dots - 30u^{6} - 10u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{17} - 10u^{15} - 39u^{13} - 74u^{11} - 69u^{9} - 26u^{7} + 4u^{5} + 8u^{3} + u\\ -u^{19} - 11u^{17} + \dots + 3u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{17} - 10u^{15} - 39u^{13} - 74u^{11} - 69u^{9} - 26u^{7} + 4u^{5} + 8u^{3} + u\\ -u^{19} - 11u^{17} + \dots + 3u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $-4u^{32} - 4u^{31} - 80u^{30} - 76u^{29} - 704u^{28} - 632u^{27} - 3580u^{26} - 3016u^{25} - 11624u^{24} - 9108u^{23} - 25160u^{22} - 18136u^{21} - 36848u^{20} - 24152u^{19} - 36272u^{18} - 21456u^{17} - 22940u^{16} - 12348u^{15} - 7568u^{14} - 3960u^{13} + 668u^{12} - 108u^{11} + 1756u^{10} + 388u^9 + 672u^8 + 200u^7 + 28u^6 + 44u^5 - 28u^4 + 32u^3 - 8u^2 + 12u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{33} + u^{32} + \dots + u + 1$
c_2	$u^{33} + 19u^{32} + \dots - 3u - 1$
c_3, c_7, c_8	$u^{33} - u^{32} + \dots + u + 5$
c_4, c_5, c_9 c_{10}	$u^{33} - u^{32} + \dots - u + 1$
c_{11}	$u^{33} - 11u^{32} + \dots + 825u - 187$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{33} + 19y^{32} + \dots - 3y - 1$
c_2	$y^{33} - 9y^{32} + \dots - 15y - 1$
c_3, c_7, c_8	$y^{33} - 37y^{32} + \dots + 281y - 25$
c_4, c_5, c_9 c_{10}	$y^{33} + 39y^{32} + \dots - 3y - 1$
c_{11}	$y^{33} - 21y^{32} + \dots + 34353y - 34969$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.432708 + 0.835688I	-10.12330 + 1.05032I	-7.28000 + 0.76825I
u = -0.432708 - 0.835688I	-10.12330 - 1.05032I	-7.28000 - 0.76825I
u = -0.467680 + 0.807931I	-9.85167 - 8.36620I	-6.60862 + 7.12105I
u = -0.467680 - 0.807931I	-9.85167 + 8.36620I	-6.60862 - 7.12105I
u = 0.441389 + 0.806737I	-6.24327 + 3.55068I	-3.65965 - 4.08940I
u = 0.441389 - 0.806737I	-6.24327 - 3.55068I	-3.65965 + 4.08940I
u = 0.410896 + 0.632341I	-1.74331 + 5.24520I	-3.08967 - 9.50750I
u = 0.410896 - 0.632341I	-1.74331 - 5.24520I	-3.08967 + 9.50750I
u = 0.189812 + 0.728281I	-3.26709 - 0.39865I	-8.78755 - 0.39915I
u = 0.189812 - 0.728281I	-3.26709 + 0.39865I	-8.78755 + 0.39915I
u = -0.643564 + 0.026463I	-7.51632 + 4.64153I	-2.88542 - 3.11188I
u = -0.643564 - 0.026463I	-7.51632 - 4.64153I	-2.88542 + 3.11188I
u = -0.333302 + 0.543113I	0.01425 - 1.43543I	1.18967 + 5.27444I
u = -0.333302 - 0.543113I	0.01425 + 1.43543I	1.18967 - 5.27444I
u = 0.620531	-3.83643	0.489420
u = -0.347286 + 0.367281I	0.489336 - 1.105190I	3.80448 + 5.83190I
u = -0.347286 - 0.367281I	0.489336 + 1.105190I	3.80448 - 5.83190I
u = 0.445942 + 0.189934I	-0.50516 - 2.21066I	1.15388 + 3.33162I
u = 0.445942 - 0.189934I	-0.50516 + 2.21066I	1.15388 - 3.33162I
u = -0.02425 + 1.52826I	-5.83685 - 2.02148I	0
u = -0.02425 - 1.52826I	-5.83685 + 2.02148I	0
u = -0.07256 + 1.57034I	-7.21966 - 2.79655I	0
u = -0.07256 - 1.57034I	-7.21966 + 2.79655I	0
u = 0.10256 + 1.58115I	-9.24914 + 7.07591I	0
u = 0.10256 - 1.58115I	-9.24914 - 7.07591I	0
u = 0.04854 + 1.61236I	-11.31290 + 0.47869I	0
u = 0.04854 - 1.61236I	-11.31290 - 0.47869I	0
u = 0.12471 + 1.64061I	-14.6375 + 5.7063I	0
u = 0.12471 - 1.64061I	-14.6375 - 5.7063I	0
u = -0.13328 + 1.64240I	-18.2479 - 10.6589I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.13328 - 1.64240I	-18.2479 + 10.6589I	0
u = -0.11947 + 1.64926I	-18.6687 - 1.0564I	0
u = -0.11947 - 1.64926I	-18.6687 + 1.0564I	0

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{33} + u^{32} + \dots + u + 1$
c_2	$u^{33} + 19u^{32} + \dots - 3u - 1$
c_3, c_7, c_8	$u^{33} - u^{32} + \dots + u + 5$
c_4, c_5, c_9 c_{10}	$u^{33} - u^{32} + \dots - u + 1$
c_{11}	$u^{33} - 11u^{32} + \dots + 825u - 187$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{33} + 19y^{32} + \dots - 3y - 1$
c_2	$y^{33} - 9y^{32} + \dots - 15y - 1$
c_3, c_7, c_8	$y^{33} - 37y^{32} + \dots + 281y - 25$
c_4, c_5, c_9 c_{10}	$y^{33} + 39y^{32} + \dots - 3y - 1$
c_{11}	$y^{33} - 21y^{32} + \dots + 34353y - 34969$