YEAR TWELVE FINAL TESTS 1994

MATHEMATICS

3/4 UNIT COMMON PAPER

(i.e. 3 UNIT COURSE — ADDITIONAL PAPER: 4 UNIT COURSE — FIRST PAPER)

ternoon session

Friday 12th August 1994.

Time Allowed - Two Hours

EXAMINERS

Glenn Abrahams, Patrician Brothers' College, Fairfield Graham Arnold, John Paul II Senior High, Marayong Sandra Hayes, All Saints Catholic Senior High, Casula.

RECTIONS TO CANDIDATES:

- L questions may be attempted.
- I. questions are of equal value.
- necessary working should be shown in every question.
- I marks may not be awarded for careless or badly arranged work.
- proved calculators may be used.
- indard integrals are printed on a separate page.

QUESTION 7

- (a) An employer wishes to choose two people for a job. There are eight applicants, three of whom are women and five d whom are men.
 - (i) If each applicant is interviewed separately and all of the women are interviewed before any of the men, find how many ways there are of carrying out the interviews.
 - (ii) If the employer chooses two of the applicants at random, fir the probability that at least one of those chosen is a woman
- (b) A particle moving in a straight line is performing Simple Harmonic Motion. At time t seconds its displacement x metres from a fixed point O on the line is given by $x = 2\cos^2 t$.
 - Show that its velocity v ms⁻¹ and its acceleration \ddot{x} ms⁻² are given by $v^2 = 4(2x x^2)$ and $\ddot{x} = -4(x-1)$ respectively.
 - (ii) Find the centre, amplitude and period of the motion.

QUESTION 1

(a) If the positive numbers a, b, c are three consecutive terms in a geometric sequence show that log_e a, log_e b, log_e c are three consecutive terms in an arithmetic sequence.

- (b) (i) Write down the expansion of $\cos(\alpha + \beta)$.
 - (ii) Write down the exact values of cos 30' and cos 45'.
 - (iii) Hence find the exact value of cos 75°.
- (c) The equation $x^3 2x^2 + 4x 5 = 0$ has roots $\alpha \cdot \beta \cdot \gamma$.
 - (i) Write down the values of $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$.
 - (ii) Hence find the value of $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$.

QUESTION 2

- (a) (i) Find $\frac{d}{dx} e^{3x^2}$ = $6xe^{5x^2}$
 - (ii) Hence find $\int x e^{3x^2} dx \frac{1}{\sqrt{2}} \left[e^{3x^2} \right]_{x} dx$
- (b) Use the substitution $u = \log_e x$ to evaluate $\int_1^e \frac{(\log_e x)}{x} dx$
- (c) The diagram below shows the graph of $y = \pi + 2 \sin^{-1} 3x$

- (i) Write down the coordinates of the endpoints A and C.
- (ii) Write down the coordinates of the point B.
- (iii) Find the equation of the tangent to the curve $y = \pi + 2 \sin^{-1} 3x$ at the point B.

QUESTION 3

(a)

In the diagram above ABCD is a cyclic quadrilateral. CD is produced to E . P is a point on the circle through A, B, C, D such that \angle ABP = \angle PBC.

- (i) Copy the diagram showing the above information.
- (ii) Explain why LABP = LADP. angles in the some segment
- (iii) Show that PD bisects ∠ADE.
- (iv) If, in addition, \angle BAP = 90° and \angle APD = 90°, explain where the centre of the circle is located.
- (b) For the function $y = x + e^{-x}$
 - (i) find the coordinates and the nature of any stationary points on the graph of y = f(x) and show that the graph is concave upwards for all values of x.
 - (ii) sketch the graph of y = f(x) showing clearly the coordinates of any turning points and the equations of any asymptotes

QUESTION 4

(a)

 $P(2at,at^2)$ is a point on the parabola $x^2=4ay$. S is the focus of the parabola. PQ is the perpendicular from P to the directrix d the parabola. The tangent at P to the parabola cuts the axis of the parabola at the point R.

- (i) Show that the tangent at P to the parabola has equation $tx y at^2 = 0$.
- (ii) Show that PR and QS bisect each other.
- (iii) Show that PR and QS are perpendicular to each other.
- (iv) State with reason what type of quadrilateral PQRS is.
- (b) In the expansion of $(1-2x)(1+ax)^{10}$ the coefficient of x^6 is 0. Find the value of a.

QUESTION 5

(a) Abody is moving in a straight line. At time $\,t\,$ seconds its displacement is $\,x\,$ metres from a fixed point $\,O\,$ on the line and its velocity is $\,v\,$ ms⁻¹, if $\,v\,$ = $\,\underline{1}\,$ find its acceleration when $\,x\,$ = 0.5.

x = 104 m + c = 104 m + c

(b) A pipe which is 12 metres long is bent into a circular arc which subtends an angle of 29 radians at the centre of the circle. The chord of the circle joining the ends of the arc is 10 metres long.

- (i) Show that $6 \sin \theta 5\theta = 0$.
- (ii) Show that $\theta_0 = 1$ radian is a good first approximation to the value of θ .
- (iii) Use one application of Newton's method to find a better approximation θ_1 to the value of θ .

 Use this value of θ_1 to find an approximation to the length of the radius of the arc, rounding off this approximation correct to two decimal places.

QUESTION 6

- (a) (i) Write down the expression for tan 2a in terms of tan a.
 - (ii) If $f(a) = a \cot a$ show that $f(2a) = (1 \tan^2 a) f(a)$.

(b)

In $\triangle XYZ$, ZX = y and $\angle YZX = 90^{\circ}$.

- (i) Show that the area A and perimeter P of the triangle are given by $A = \frac{1}{2}y^2 \tan X$ and $P = y(1 + \tan X + \sec X)$ respectively.
- (a) If $X = \frac{\pi}{4}$ radians and y is increasing at a constant rate of 0.1 cm s⁻¹ find the rate at which the area of the triangle is increasing at the instant when y = 20 cm.
- (β) If y = 10 cm and X is increasing at a constant rate of 0.2 radians s⁻¹ find the rate at which the perimeter of the triangle is increasing when X = $\frac{\pi}{6}$ radians.