

Manuscript Template

1 Supplementary Materials

Fig. S1. Rarefaction curves of OTU and ESV richness across total sequences for six species in the Arabian Gulf (blue) and Gulf of Oman (gold). OTU curves (a) indicate the diversity of

60000

Number of sequences

30000

90000

30000

60000

90000

4

90000

60000

30000

prey items for each species and population as obtained from gut content DNA metabarcoding with the COI marker, while ESV curves (b) show the diversity of prey items obtained with the 23S marker. Solid lines indicate interpolated richness, while dashed lines indicate extrapolated richness (to the maximum number of sequences across species). Shaded ribbons indicate 95% confidence intervals of extrapolations.

Table S1. Presence, abundance, and previous records of species sampled in the present study. Each row represents a species, with columns AG (Arabian Gulf) and GO (Gulf of Oman) indicating the abundance of the species in our samples. Column R indicates whether the species has been previously recorded in other parts of the Arabian Gulf (* = yes, - = no). References for previous records are provided.

Family	Species	AG	GO	R	Reference
Apogonidae	Apogon coccineus	6	10	*	present
Apogonidae	Apogonichthyoides taeniatus	2	0	*	present
Apogonidae	Cheilodipterus novemstriatus	2	9	*	present
Apogonidae	Cheilodipterus persicus	0	1	*	Krupp & Müller 1994
Apogonidae	Fowleria variegata	5	1	*	present
Apogonidae	Ostorhinchus cyanosoma	0	15	*	Krupp & Müller 1994
Apogonidae	Ostorhinchus fleurieu	0	30	*	Eagderi et al. 2019
Batrachoididae	Colletteichthys occidentalis	6	0	*	present
Blenniidae	Antennablennius adenensis	0	54	*	Bishop 2003
Blenniidae	Ecsenius pulcher	8	97	*	present
Blenniidae	Laiphognathus multimaculatus	1	0	*	present
Bythitidae	Dinematichthys iluocoeteoides	5	0	*	present
Gobiidae	Asterropteryx semipunctata	0	2	*	Krupp & Müller 1994
Gobiidae	Callogobius bifasciatus	2	0	*	present
Gobiidae	Callogobius speA	0	3	*	Eagderi et al. 2019
Gobiidae	Coryogalops anomalus	65	33	*	present
Gobiidae	Eviota guttata	0	69	*	Krupp & Müller 1994
Gobiidae	Eviota punyit	0	12	*	Krupp & Müller 1994ı
Gobiidae	Favonigobius melanobranchus	1	0	*	present
Gobiidae	Fusigobius inframaculatus	0	3	*	Eagderi et al. 2019
Gobiidae	Gnatholepis caudimaculata	0	14	*	Eagderi et al. 2019
Gobiidae	Gobiodon reticulatus	0	2	*	Bishop 2003
Gobiidae	Hetereleotris vulgaris	0	405	*	Eagderi et al. 2019
Gobiidae	Istigobius decoratus	0	15	*	Eagderi et al. 2019
Gobiidae	Priolepis cincta	0	4	*	Winterbottom & Burridge 1992
Gobiidae	Priolepis randalli	0	2	*	Winterbottom & Burridge 1993
Gobiidae	Priolepis semidoliata	0	10	_	NA
Gobiidae	Trimma corallinum	0	11	*	Eagderi et al. 20192
Muraenidae	Gymnothorax speA	0	12	*	Eagderi et al. 2019 ₃
Ostraciidae	Ostracion cubicus	0	3	*	Eagderi et al. 2019
Pomacanthidae	Pomacanthus maculosus	7	0	*	present
Pomacentridae	Chromis flavaxilla	0	19	*	Bishop 2003
Pomacentridae	Chromis xanthopterygius	0	3	*	Bishop 2003
Pomacentridae	Neopomacentrus cyanomos	0	38	*	Bishop 2003
Pomacentridae	Neopomacentrus miryae	0	38	_	NA
Pomacentridae	Neopomacentrus sindensis	0	6	*	Bishop 2003
Pomacentridae	Pomacentrus aquilus	3	0	*	present
Pomacentridae	Pomacentrus leptus	0	5	*	Bishop 2003
Pomacentridae	Pomacentrus trichrourus	5	0	*	present
Pseudochromidae	Pseudochromis aldabraensis	0	4	*	Bishop 2003
Pseudochromidae Pseudochromidae	Pseudochromis linda	1	0	*	present
1 seudocinonnuae	1 вениостопив инии	1	U		present

Science Advances Manuscript Template Page 2 of 5

Pseudochromidae	Pseudochromis nigrovittatus	2	1	*	present
Pseudochromidae	Pseudochromis persicus	1	0	*	present
Serranidae	Cephalopholis hemistiktos	2	2	*	present
Syngnathidae	Corythoichthys flavofasciata	0	5	*	Froese & Pauly 2019
Syngnathidae	Doryrhamphus excisus	0	3	*	Bishop 2003
Tripterygiidae	Enneapterygius ventermaculus	131	262	*	present
Tripterygiidae	Helcogramma fuscopinna	0	134	_	NA

identified as E. sebreei

2synonymous with T. winterbottomi

3genus level

Table S2. Contrasts between levels of the explanatory variable for the model testing CT_{max} differences in cryptobenthic reef fishes. Population columns highlight the contrast estimated in the model, whereas the estimate and its confidence intervals indicate estimated differences.

Population I	Population II	Estimate	LCI	UCI
C. anomolus.AG	E. pulcher.AG	0.486	-0.079	1.054
C. anomolus.AG	E. ventermaculus.AG	1.360	0.808	1.949
C. anomolus.AG	E. pulcher.GoO	1.114	0.581	1.726
C. anomolus.AG	E. ventermaculus.GoO	1.633	0.939	2.342
C. anomolus.AG	E. guttata.GoO	1.143	0.534	1.759
C. anomolus.AG	H. fuscopinna.GoO	2.392	1.758	2.992
C. anomolus.AG	H. vulgaris.GoO	0.492	-0.061	1.078
E. pulcher.AG	E. ventermaculus.AG	0.879	0.509	1.252
E. pulcher.AG	E. pulcher.GoO	0.636	0.244	1.016
E. pulcher.AG	E. ventermaculus.GoO	1.159	0.624	1.737
E. pulcher.AG	E. guttata.GoO	0.656	0.227	1.134
E. pulcher.AG	H. fuscoguttata.GoO	1.905	1.463	2.341
E. pulcher.AG	H. vulgaris.GoO	0.011	-0.368	0.417
E. ventermaculus.AG	E. pulcher.GoO	-0.245	-0.640	0.118
E. ventermaculus.AG	E. ventermaculus.GoO	0.277	-0.260	0.815
E. ventermaculus.AG	E. guttata.GoO	-0.225	-0.680	0.212
E. ventermaculus.AG	H. fuscopinna.GoO	1.024	0.578	1.449
E. ventermaculus.AG	H. vulgaris.GoO	-0.878	-1.265	-0.508
E. pulcher.GoO	E. ventermaculus.GoO	0.519	-0.0290	1.073
E. pulcher.GoO	E. guttata.GoO	0.020	-0.426	0.494
E. pulcher.GoO	H. fuscopinna.GoO	1.274	0.839	1.726
E. pulcher.GoO	H. vulgaris.GoO	-0.628	-1.037	-0.253
E. ventermaculus.GoO	E. guttata.GoO	-0.502	-1.125	0.106
E. ventermaculus.GoO	H. fuscopinna.GoO	0.750	0.130	1.344
E. ventermaculus.GoO	H. vulgaris.GoO	-1.148	-1.710	-0.584
E. guttata.GoO	H. fuscopinna.GoO	1.252	0.735	1.778
E. guttata.GoO	H. vulgaris.GoO	-0.647	-1.094	-0.148
H. fuscopinna.GoO	H. vulgaris.GoO	-1.906	-2.363	-1.449

Science Advances Manuscript Template Page 3 of 5

Table S3. Contrasts between levels of the explanatory variable for the model testing CT_{min} differences in cryptobenthic reef fishes. Population columns highlight the contrast estimated in the model, whereas the estimate and its confidence intervals indicate estimated differences.

Population I	Population II	Estimate	LCI	UCI
C. anomolus.AG	E. pulcher.AG	0.613	0.173	1.069
C. anomolus.AG	E. ventermaculus.AG	-0.400	-0.851	0.054
C. anomolus.AG	E. pulcher.GoO	0.747	0.316	1.211
C. anomolus.AG	E. ventermaculus.GoO	-1.391	-1.887	-0.888
C. anomolus.AG	E. guttata.GoO	-0.784	-1.241	-0.317
C. anomolus.AG	H. fuscopinna.GoO	-1.235	-1.736	-0.754
C. anomolus.AG	H. vulgaris.GoO	-0.080	-0.549	0.384
E. pulcher.AG	E. ventermaculus.AG	-1.011	-1.313	-0.709
E. pulcher.AG	E. pulcher.GoO	0.137	-0.165	0.446
E. pulcher.AG	E. ventermaculus.GoO	-2.003	-2.402	-1.641
E. pulcher.AG	E. guttata.GoO	-1.394	-1.704	-1.076
E. pulcher.AG	H. fuscopinna.GoO	-1.847	-2.206	-1.489
E. pulcher.AG	H. vulgaris.GoO	-0.694	-1.010	-0.358
E. ventermaculus.AG	E. pulcher.GoO	1.149	0.847	1.459
E. ventermaculus.AG	E. ventermaculus.GoO	-0.990	-1.382	-0.610
E. ventermaculus.AG	E. guttata.GoO	-0.381	-0.706	-0.065
E. ventermaculus.AG	H. fuscopinna.GoO	-0.836	-1.201	-0.475
E. ventermaculus.AG	H. vulgaris.GoO	0.318	-0.016	0.648
E. pulcher.GoO	E. ventermaculus.GoO	-2.138	-2.526	-1.766
E. pulcher.GoO	E. guttata.GoO	-1.530	-1.843	-1.213
E. pulcher.GoO	H. fuscopinna.GoO	-1.985	-2.341	-1.615
E. pulcher.GoO	H. vulgaris.GoO	-0.832	-1.174	-0.519
E. ventermaculus.GoO	E. guttata.GoO	0.607	0.231	1.018
E. ventermaculus.GoO	H. fuscopinna.GoO	0.152	-0.260	0.582
E. ventermaculus.GoO	H. vulgaris.GoO	1.307	0.895	1.691
E. guttata.GoO	H. fuscopinna.GoO	-0.453	-0.822	-0.088
E. guttata.GoO	H. vulgaris.GoO	0.700	0.360	1.041
H. fuscopinna.GoO	H. vulgaris.GoO	1.153	0.799	1.543