Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Дополнительное задание к лабораторной работе №2

по дисциплине «Статистическое моделирование»

Выплолнил студент гр. 33534/5

Стойкоски Н.С.

Руководитель

Чуркин В.В.

Содержание

Цель работы	. 3
Проведение работы	3
Результаты	3
Вывод	∠
Текст программы	. 5

Цель работы

Дополнительное задание к лабораторной работе №2 состоит в выполнении проверки согласия теоретического и эмпирического распределения для равномерного распределения.

Вариант 2: Проверка выполняется с помощью критерия Колмогорова.

Проведение работы

Была написана программа на языке python, которая генерирует последовательность 104 равномерно распределенных чисел на промежутке [1, 100], имеющих дискретный характер распределения. Была выдвинута нулевая гипотеза 0 TOM, ЧТО полученная последовательность имеет дискретный характер равномерного распределения т.е. эмпирическая функция распределения соласуется с теоретическим распределением.

Результаты

Xi	F _n (x _i)	F ₀ (x _i)	Xi	F _n (x _i)	F ₀ (x _i)	хi	F _n (x _i)	F ₀ (x _i)
1	0.0093	0.01	34	0.3364	0.34	67	0.6641	0.67
2	0.0204	0.02	35	0.3458	0.35	68	0.6764	0.68
3	0.0299	0.03	36	0.3553	0.36	69	0.6876	0.69
4	0.0397	0.04	37	0.3664	0.37	70	0.6981	0.7
5	0.0498	0.05	38	0.3752	0.38	71	0.7072	0.71
6	0.0599	0.06	39	0.3866	0.39	72	0.7182	0.72
7	0.0701	0.07	40	0.3964	0.4	73	0.7286	0.73
8	0.0793	0.08	41	0.4074	0.41	74	0.7386	0.74
9	0.0884	0.09	42	0.416	0.42	75	0.7506	0.75
10	0.0987	0.1	43	0.4243	0.43	76	0.7594	0.76
11	0.1082	0.11	44	0.4352	0.44	77	0.7701	0.77
12	0.1185	0.12	45	0.4451	0.45	78	0.7815	0.78
13	0.1288	0.13	46	0.4541	0.46	79	0.7914	0.79
14	0.1392	0.14	47	0.4647	0.47	80	0.8012	0.8
15	0.1486	0.15	48	0.4748	0.48	81	0.8107	0.81
16	0.16	0.16	49	0.4851	0.49	82	0.8219	0.82
17	0.1693	0.17	50	0.494	0.5	83	0.8312	0.83
18	0.179	0.18	51	0.5044	0.51	84	0.8429	0.84
19	0.1912	0.19	52	0.5146	0.52	85	0.8535	0.85
20	0.201	0.2	53	0.5244	0.53	86	0.8604	0.86
21	0.2117	0.21	54	0.5345	0.54	87	0.8702	0.87
22	0.2221	0.22	55	0.5445	0.55	88	0.8809	0.88
23	0.2308	0.23	56	0.5557	0.56	89	0.8907	0.89
24	0.2414	0.24	57	0.5652	0.57	90	0.9002	0.9
25	0.2493	0.25	58	0.5764	0.58	91	0.9094	0.91
26	0.2587	0.26	59	0.5871	0.59	92	0.9198	0.92
27	0.2674	0.27	60	0.5966	0.6	93	0.9304	0.93
28	0.2785	0.28	61	0.605	0.61	94	0.9398	0.94
29	0.2882	0.29	62	0.6146	0.62	95	0.9502	0.95
30	0.2975	0.3	63	0.6239	0.63	96	0.96	0.96
31	0.3073	0.31	64	0.6344	0.64	97	0.9715	0.97
32	0.3158	0.32	65	0.6442	0.65	98	0.9819	0.98
33	0.3266	0.33	66	0.6538	0.66	99	0.9907	0.99
						100	1	1

$$D_n = \max |F_n(x_i) - F_0(x_i)| = 0.0062$$

$$D_n\sqrt{n}=0.62$$

При уровне значимости $\alpha=0.30$ гипотеза H_0 принимается, т.к. значение $D_n\sqrt{n}=0.62 < \lambda_{1-\alpha}=0.975.$

Вывод

В ходе лабораторной работы было смоделировано дискретное равномерное распределение. Была проверена гипотеза о соответствии полученного распределения теоретическому с поможью критерия Колмогорова. В результате, нулевая гипотеза принимается при α = 0.30

Текст программы

```
import numpy as np
import random
import math
def IRNUNI(ILOW, IUP):
    return int((IUP - ILOW + 1)*random.random() + ILOW)
def kolmogorov_test(a, b, n):
    u = np.array([IRNUNI(a, b) for _ in range(n)])
   maxD = 0
   f = open('sm2_dop.csv', 'w')
    for x in range(a, b+1, 1):
        fn_x = (u \le x).sum() / n
        f0_x = (x - a + 1) / (b - a + 1)
        \max D = \max(\max D, abs(fn_x - f0_x))
        print(f'x = \{x\}, Fn(x) = \{fn_x\}, F0(x) = \{f0_x\}')
        f.write(f'\{x\},\{fn_x\},\{f0_x\}\n')
    lam = math.sqrt(n) * maxD
    print(f'maxD = {maxD}, lambda = {lam}')
    f.write(f'{maxD}, {lam}')
kolmogorov_test(1, 100, 10**4)
```