Static Routing

Routing Protocols

Static Routing Reach Remote Networks

A router can learn about remote networks in one of two ways:

- Manually Remote networks are manually entered into the route table using static routes.
- Dynamically Remote routes are automatically learned using a dynamic routing protocol.

Why Use Static Routing?

Static routing provides some advantages over dynamic routing, including:

- Static routes are not advertised over the network, resulting in better security.
- Static routes use less bandwidth than dynamic routing protocols, no CPU cycles are used to calculate and communicate routes.
- The path a static route uses to send data is known.

Static Routing

Why Use Static Routing? (continued)

Static routing has the following disadvantages:

- Initial configuration and maintenance is timeconsuming.
- Configuration is error-prone, especially in large networks.
- Administrator intervention is required to maintain changing route information.
- Does not scale well with growing networks;
 maintenance becomes cumbersome.
- Requires complete knowledge of the whole network for proper implementation.

Static Routing When to Use Static Routes

Static routing has three primary uses:

- Providing ease of routing table maintenance in smaller networks that are not expected to grow significantly.
- Routing to and from stub networks. A stub network is a network accessed by a single route, and the router has no other neighbors.
- Using a single default route to represent a path to any network that does not have a more specific match with another route in the routing table. Default routes are used to send traffic to any destination beyond the next upstream router.

Types of Static Routes Static Route Applications

Static Routes are often used to:

- Connect to a specific network
- Provide a Gateway of Last Resort for a stub network
- Reduce the number of routes advertised by summarizing several contiguous networks as one static route
- Create a backup route in case a primary route link fails

Types of Static Routes

Standard Static Route

Connecting to a Stub Network

Types of Static Routes Default Static Route

- A default static route is a route that matches all packets.
- A default route identifies the gateway IP address to which the router sends all IP packets that it does not have a learned or static route.
- A default static route is simply a static route with 0.0.0.0/0 as the destination IPv4 address.

Types of Static Routes Summary Static Route

Using One Summary Static Route

Types of Static Routes Floating Static Route

- Floating static routes are static routes that are used to provide a backup path to a primary static or dynamic route, in the event of a link failure.
- The floating static route is only used when the primary route is not available.
- In order to accomplish this, the floating static route is configured with a higher administrative distance than the primary route.

Configure IPv4 Static Routes ip route Command

ip route Command Syntax

Router(config)#ip route network-address subnet-mask {ip-address | exit-intf}

Parameter	Description				
network-address	Destination network address of the remote network to be added to the routing table.				
subnet-mask	 Subnet mask of the remote network to be added to the routing table. The subnet mask can be modified to summarize a group of networks. 				
ip-address	 Commonly referred to as the next-hop router's IP address. Typically used when connecting to a broadcast media (i.e., Ethernet). Commonly creates a recursive lookup. 				
exit-intf	 Use the outgoing interface to forward packets to the destination network. Also referred to as a directly attached static route. Typically used when connecting in a point-to-point configuration. 				

Next-Hop Options

The next hop can be identified by an IP address, exit interface, or both. How the destination is specified creates one of the three following route types:

- Next-hop route Only the next-hop IP address is specified.
- Directly connected static route Only the router exit interface is specified.
- Fully specified static route The next-hop IP address and exit interface are specified.

Configure IPv4 Static Routes

Configure a Next-Hop Static Route

When a packet is destined for the 192.168.2.0/24 network, R1:

- 1. Looks for a match in the routing table and finds that it has to forward the packets to the next-hop IPv4 address 172.16.2.2.

 Verify the Routing Table of R1
- 2. R1 must now determine how to reach 172.16.2.2; therefore, it searches a second time for a 172.16.2.2 match.

Configure IPv4 Static Routes

Configure Directly Connected Static Route

Configure IPv4 Static Routes

Configure a Fully Specified Static Route

- In a fully specified static route, both the output interface and the next-hop IP address are specified.
- This is another type of static route that is used in older IOS's, prior to CEF.
- This form of static route is used when the output interface is a multi-access interface and it is necessary to explicitly identify the next hop.
- The next hop must be directly connected to the specified exit interface.

Verify a Static Routes Verify a Static Route

Along with ping and traceroute, useful commands to verify static routes include:

- show ip route
- show ip route static
- show ip route network

Configure IPv4 Default Routes Default Static Route

Default Static Route Syntax

Router(config) #ip route 0.0.0.0 0.0.0.0 {ip-address | exit-intf}

Parameter	Description			
0.0.0.0	Matches any network address.			
0.0.0.0	Matches any subnet mask.			
ip-address	 Commonly referred to as the next-hop router's IP address. Typically used when connecting to a broadcast media (i.e., Ethernet). Commonly creates a recursive lookup. 			
exit-intf	 Use the outgoing interface to forward packets to the destination network. Also referred to as a directly attached static route. Typically used when connecting in a point-to-point configuration. 			

Configure IPv4 Default Routes

Configure a Default Static Route

Configuring a Default Static Route

Configure IPv4 Default Routes

Verify a Default Static Route

Classful Addressing

Classful Routing Protocol Example

CIDR and Route Summarization

Static Routing CIDR Example

One Summary Static Route

CIDR

Classless Routing Protocol Example

Classless Routing Update

Configure IPv4 Summary Routes Route Summarization

- Route summarization, also known as route aggregation, is the process of advertising a contiguous set of addresses as a single address with a lessspecific, shorter subnet mask.
- CIDR is a form of route summarization and is synonymous with the term supernetting.
- CIDR ignores the limitation of classful boundaries, and allows summarization with masks that are smaller than that of the default classful mask.
- This type of summarization helps reduce the number of entries in routing updates and lowers the number of entries in local routing tables.

Configure IPv4 Summary Routes Calculate a Summary Route

Calculating a Route Summary


```
Step 2: Count the number of far-left matching bits to determine the mask.

Answer: 14 matching bits = /14 or 255.252.0.0
```

Configure IPv4 Summary Routes Summary Static Route Example

Floating Static Routes Floating Static Routes

- Floating static routes are static routes that have an administrative distance greater than the administrative distance of another static route or dynamic routes.
- The administrative distance of a static route can be increased to make the route less desirable than that of another static route or a route learned through a dynamic routing protocol.
- In this way, the static route "floats" and is not used when the route with the better administrative distance is active.
- However, if the preferred route is lost, the floating static route can take over, and traffic can be sent through this alternate route.

Configure Floating Static Routes

Configure a Floating Static Route

Configuring a Floating Static Route to R3

Configure Floating Static Routes

Test the Floating Static Route

- Use a show ip route command to verify that the routing table is using the default static route.
- Use a traceroute command to follow the traffic flow out the primary route.
- Disconnect the primary link or shutdown the primary exit interface.
- Use a show ip route command to verify that the routing table is using the floating static route.
- Use a traceroute command to follow the traffic flow out the backup route.

Routing Dynamically

Routing Protocols

Dynamic Routing Protocol Operation The Evolution of Dynamic Routing Protocols

- Dynamic routing protocols used in networks since the late 1980s
- Newer versions support the communication based on IPv6

Routing Protocols Classification

	Interior Gate	way Protocol	Exterior Gateway Protocols		
	Distance Vector		Link-State		Path Vector
IPv4	RIPv2	EIGRP	OSPFv2	IS-IS	BGP-4
IPv6	RIPng	EIGRP for IPv6	OSPFv3	IS-IS for IPv6	BGP-MP

Dynamic Routing Protocol Operation Purpose of Dynamic Routing Protocols

- Routing Protocols
 - Used to facilitate the exchange of routing information between routers
- Purpose of dynamic routing protocols includes:
 - Discovery of remote networks
 - Maintaining up-to-date routing information
 - Choosing the best path to destination networks
 - Ability to find a new best path if the current path is no longer available

Dynamic Routing Protocol Operation Purpose of Dynamic Routing Protocols

Main components of dynamic routing protocols include:

- Data structures Routing protocols typically use tables or databases for its operations. This information is kept in RAM.
- Routing protocol messages Routing protocols use various types of messages to discover neighboring routers, exchange routing information, and other tasks to learn and maintain accurate information about the network.
- Algorithm Routing protocols use algorithms for facilitating routing information for best path determination.

Dynamic Routing Protocol Operation The Role of Dynamic Routing Protocols

- Advantages of dynamic routing
 - Automatically share information about remote networks
 - Determine the best path to each network and add this information to their routing tables
 - Compared to static routing, dynamic routing protocols require less administrative overhead
 - Help the network administrator manage the timeconsuming process of configuring and maintaining static routes
- Disadvantages of dynamic routing
 - Dedicate part of a routers resources for protocol operation, including CPU time and network link bandwidth
- Times when static routing is more appropriate

Dynamic verses Static Routing Using Static Routing

- Networks typically use a combination of both static and dynamic routing
- Static routing has several primary uses
 - Providing ease of routing table maintenance in smaller networks that are not expected to grow significantly
 - Routing to and from a stub network
 - a network with only one default route out and no knowledge of any remote networks
 - Accessing a single default router
 - used to represent a path to any network that does not have a match in the routing table

Dynamic verses Static Routing Using Static Routing

Dynamic verses Static Routing Static Routing Scorecard

Static Routing Advantages and Disadvantages

Advantages	Disadvantages
Easy to implement in a small network.	Suitable only for simple topologies or for special purposes such as a default static route. Configuration complexity increases dramatically as network grows.
Very secure. No advertisements are sent as compared to dynamic routing protocols.	
Route to destination is always the same.	Manual intervention required to re-route traffic.
No routing algorithm or update mechanism required; therefore, extra resources (CPU or RAM) are not required.	

Dynamic verses Static Routing Dynamic Routing Scorecard

Dynamic Routing Advantages and Disadvantages

Advantages	Disadvantages
Suitable in all topologies where multiple routers are required.	Can be more complex to implement.
Generally independent of the network size.	Less secure. Additional configuration settings are required to secure.
Automatically adapts topology to reroute traffic if possible.	Route depends on the current topology.
	Requires additional CPU, RAM, and link bandwidth.

Routing Protocol Operating Fundamentals Dynamic Routing Protocol Operation

In general, the operations of a dynamic routing protocol can be described as follows:

- 1. The router sends and receives routing messages on its interfaces.
- 2. The router shares routing messages and routing information with other routers that are using the same routing protocol.
- 3. Routers exchange routing information to learn about remote networks.
- 4. When a router detects a topology change the routing protocol can advertise this change to other routers.

Routing Protocol Operating Fundamentals Cold Start

Directly Connected Networks Detected

Network	Interface	Нор
10.1.0.0	Fa0/0	0
10.2.0.0	S0/0/0	0

Network	Interface	Нор
10.2.0.0	S0/0/0	0
10.3.0.0	S0/0/1	0

Network	Interface	Нор
10.3.0.0	S0/0/1	0
10.4.0.0	Fa0/0	0

Routers running RIPv2

- R1 adds the 10.1.0.0 network available through interface FastEthernet 0/0 and 10.2.0.0 is available through interface Serial 0/0/0.
- R2 adds the 10.2.0.0 network available through interface Serial 0/0/0 and 10.3.0.0 is available through interface Serial 0/0/1.
 - R3 adds the 10.3.0.0 network available through interface Serial 0/0/1 and 10.4.0.0 is available through interface FastEthernet 0/0.

Routing Protocol Operating Fundamentals Network Discovery

Network	Interface	Нор	Network	Interface	Нор	Network	Interface	Нор
10.1.0.0	Fa0/0	0	10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/0	0
10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/1	0	10.4.0.0	Fa0/0	0
10.3.0.0	S0/0/0	1	10.1.0.0	S0/0/0	1	10.2.0.0	S0/0/1	1
			10.4.0.0	S0/0/1	1			

Routers running RIPv2

R1:

- Sends an update about network
 10.1.0.0 out the Serial0/0/0 interface
- Sends an update about network 10.2.0.0 out the FastEthernet0/0 interface
- Receives update from R2 about network 10.3.0.0 with a metric of 1
- Stores network
 10.3.0.0 in the routing
 table with a metric of 1

Routing Protocol Operating Fundamentals Network Discovery

Network	Interface	Нор	I	Network	Interface	Нор	Network	Interface	Нор
10.1.0.0	Fa0/0	0	ľ	10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/0	0
10.2.0.0	S0/0/0	0		10.3.0.0	S0/0/1	0	10.4.0.0	Fa0/0	0
10.3.0.0	S0/0/0	1		10.1.0.0	S0/0/0	1	10.2.0.0	S0/0/1	1
				10.4.0.0	S0/0/1	1			

Routers running RIPv2

R2:

- Sends an update about network 10.3.0.0 out the Serial 0/0/0 interface
- Sends an update about network 10.2.0.0 out the Serial 0/0/1 interface
- Receives an update from R1 about network 10.1.0.0 with a metric of 1
- Stores network 10.1.0.0 in the routing table with a metric of 1
- Receives an update from R3 about network 10.4.0.0 with a metric of 1
- Stores network 10.4.0.0 in the routing table with a metric of 1

Routing Protocol Operating Fundamentals Network Discovery

Network	Interface	Нор	Network	Interface	Нор	Network	Interface	Нор
10.1.0.0	Fa0/0	0	10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/0	0
10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/1	0	10.4.0.0	Fa0/0	0
10.3.0.0	S0/0/0	1	10.1.0.0	S0/0/0	1	10.2.0.0	S0/0/1	1
			10.4.0.0	S0/0/1	1			

Routers running RIPv2

R3:

- Sends an update about network 10.4.0.0 out the Serial 0/0/1 interface
- Sends an update about network 10.3.0.0 out the FastEthernet0/0
- Receives an update from R2 about network 10.2.0.0 with a metric of 1
- Stores network
 10.2.0.0 in the routing
 table with a metric of 1

Routing Protocol Operating Fundamentals **Exchanging the Routing Information**

Network	Interface	Нор	Network	Interface	Нор	Network	Interface	Нор
10.1.0.0	Fa0/0	0	10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/1	0
10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/1	0	10.4.0.0	Fa0/0	0
10.3.0.0	S0/0/0	1	10.1.0.0	S0/0/0	1	10.2.0.0	S0/0/1	1
10.4.0.0	S0/0/0	2	10.4.0.0	S0/0/1	1	10.1.0.0	S0/0/1	2

Routers running RIPv2

R1:

- Sends an update about network 10. 1. 0. 0 out the Serial 0/0/0 interface
- Sends an update about networks 10. 2. 0. 0 and 10.
 3. 0. 0 out the FastEthernet0/0 interface
- Receives an update from R2 about network 10. 4. 0. 0 with a metric of 2
- Stores network 10. 4. 0. 0 in the routing table with a metric of 2
- Same update from R2 contains information about network 10. 3. 0. 0 with a metric of 1. There is no change; therefore, the routing information remains the same

Routing Protocol Operating Fundamentals Exchanging the Routing Information

Network	Interface	Нор	Network	Interface	Нор	Network	Interface	Нор
10.1.0.0	Fa0/0	0	10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/1	0
10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/1	0	10.4.0.0	Fa0/0	0
10.3.0.0	S0/0/0	1	10.1.0.0	S0/0/0	1	10.2.0.0	S0/0/1	1
10.4.0.0	S0/0/0	2	10.4.0.0	S0/0/1	1	10.1.0.0	S0/0/1	2

Routers running RIPv2

R2:

- Sends an update about networks 10. 3. 0. 0 and 10.
 4. 0. 0 out of Serial 0/0/0 interface
- Sends an update about networks 10. 1. 0. 0 and 10.
 2. 0. 0 out of Serial 0/0/1 interface
- Receives an update from R1 about network 10. 1. 0. 0. There is no change; therefore, the routing information remains the same.
- Receives an update from R3 about network 10. 4. 0. 0. There is no change; therefore, the routing information remains the same.

Routing Protocol Operating Fundamentals Exchanging the Routing Information

Network	Interface	Нор	Network	Interface	Нор	Network	Interface	Нор
10.1.0.0	Fa0/0	0	10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/1	0
10.2.0.0	S0/0/0	0	10.3.0.0	S0/0/1	0	10.4.0.0	Fa0/0	0
10.3.0.0	S0/0/0	1	10.1.0.0	S0/0/0	1	10.2.0.0	S0/0/1	1
10.4.0.0	S0/0/0	2	10.4.0.0	S0/0/1	1	10.1.0.0	S0/0/1	2

Routers running RIPv2

R3:

- Sends an update about network 10. 4. 0. 0 out the Serial 0/0/1 interface
- Sends an update about networks 10. 2. 0. 0 and 10. 3. 0. 0 out the FastEthernet0/0 interface
- Receives an update from R2 about network 10. 1. 0. 0 with a metric of 2
- Stores network 10. 1. 0. 0 in the routing table with a metric of 2
- Same update from R2 contains information about network 10. 2. 0. 0 with a metric of 1. There is no change; therefore, the routing information remains the same.

Achieving Convergence

- Network converged when all routers have complete and accurate information about the entire network.
- Convergence time is the time it takes routers to share information, calculate best paths, and update their routing tables.
- A network is not completely operable until the network has converged.
- Convergence properties include the speed of propagation of routing information and the calculation of optimal paths. The speed of propagation refers to the amount of time it takes for routers within the network to forward routing information.
- Generally, older protocols, such as RIP, are slow to converge, whereas modern protocols, such as EIGRP and OSPF, converge more quickly.

Types of Routing Protocols Classifying Routing Protocols

Types of Routing Protocols IGP and EGP Routing Protocols

IGP versus EGP Routing Protocols

Interior Gateway Protocols (IGP) -

- Used for routing within an AS
- Include RIP, EIGRP, OSPF, and IS-IS

Exterior Gateway Protocols (EGP) -

- Used for routing between AS
- Official routing protocol used by the Internet

Types of Routing Protocols Distance Vector Routing Protocols

For R1, 172.16.3.0/24 is one hop away (distance) it can be reached through R2 (vector)

Distance vector IPv4 IGPs:

- RIPv1 First generation legacy protocol
- RIPv2 Simple distance vector routing protocol
- IGRP First generation Cisco proprietary protocol (obsolete)
- EIGRP Advanced version of distance vector routing

Types of Routing Protocols Distance Vector or Link-State Routing Protocols

Distance vector protocols use routers as sign posts along the path to the final destination.

A link-state routing protocol is like having a complete map of the network topology. The sign posts along the way from source to destination are not necessary, because all link-state routers are using an identical map of the network. A link-state router uses the link-state information to create a topology map and to select the best path to all destination networks in the topology.

Types of Routing Protocols Link-State Routing Protocols

Link-State Protocol Operation

Link-state protocols forward updates when the state of a link changes.

Types of Routing Protocols Classful Routing Protocols

- Classful routing protocols do not send subnet mask information in their routing updates
 - Only RIPv1 and IGRP are classful
 - Created when network addresses were allocated based on classes (class A, B, or C)
 - Cannot provide variable length subnet masks (VLSMs) and classless interdomain routing (CIDR)
 - Create problems in discontiguous networks

Types of Routing Protocols Classless Routing Protocols

- Classless routing protocols include subnet mask information in the routing updates
 - RIPv2, EIGRP, OSPF, and IS_IS
 - Support VLSM and CIDR
 - IPv6 routing protocols

Types of Routing Protocols Routing Protocol Characteristics

	Distanc	e Vector			Link State		
	RIPv1	RIPv2	IGRP	EIGRP	OSPF	IS-IS	
Speed Convergence	Slow	Slow	Slow	Fast	Fast	Fast	
Scalability - Size of Network	Small	Small	Small	Large	Large	Large	
Use of VLSM	No	Yes	No	Yes	Yes	Yes	
Resource Usage	Low	Low	Low	Medium	High	High	
Implemenation and Maintenance	Simple	Simple	Simple	Complex	Complex	Complex	

Types of Routing Protocols Routing Protocol Metrics

A metric is a measurable value that is assigned by the routing protocol to different routes based on the usefulness of that route

- Used to determine the overall "cost" of a path from source to destination
- Routing protocols determine the best path based on the route with the lowest cost

Distance Vector Routing Protocol Operation Distance Vector Technologies

Distance vector routing protocols

- Share updates between neighbors
- Not aware of the network topology
- Some send periodic updates to broadcast IP 255.255.255.255 even if topology has not changed
- Updates consume bandwidth and network device CPU resources
- RIPv2 and EIGRP use multicast addresses
- EIGRP will only send an update when topology has changed

Distance Vector Routing Protocol Operation Distance Vector Algorithm

Purpose of Routing Algorithms Sending and receiving updates Calculate best path and install route Detect and react to topology changes 172.16.1.0/24 172.16.2.0/24 172.16.3.0/24 Fa0/0 R1 S0/0/0 R2 Fa0/0

RIP uses the Bellman-Ford algorithm as its routing algorithm

IGRP and EIGRP use the Diffusing Update Algorithm (DUAL) routing algorithm developed by Cisco

Types of Distance Vector Routing Protocols Routing Information Protocol

RIPv1 versus RIPv2

Routing updates broadcasted every 30 seconds

Characteristics and Features	RIPv1	RIPv2
Metric	Both use hop count as a simple metric. The maximum number of hops is 15.	
Updates Forwarded to Address	255.255.255.255	224.0.0.9
Supports VLSM	×	✓
Supports CIDR	×	✓
Supports Summarization	×	✓
Supports Authentication	×	~

Updates use UDP port 520

RIPng is based on RIPv2 with a 15 hop limitation and the administrative distance of 120

RIP Routing

Router RIP Configuration Mode Advertising Networks

```
R1# conf t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)# router rip
R1(config-router)#
```


Configuring the RIP Protocol **Examining Default RIP Settings**

Verifying RIP Settings on R1

```
R1# show ip protocols
*** IP Routing is NSF aware ***
Routing Protocol is "rip"
  Outgoing update filter list for all interfaces is not set
  Incoming update filter list for all interfaces is not set
  Sending updates every 30 seconds, next due in 16 seconds
  Invalid after 180 seconds, hold down 180, flushed after 240
  Redistributing: rip
  Default version control: send version 1, receive any version
                         Send Recv Triggered RIP Key-chain
    GigabitEthernet0/0
    Serial0/0/0
                               1 2
  Automatic network summarization is in effect
  Maximum path: 4
  Routing for Networks:
   192.168.1.0
   192,168,2,0
  Routing Information Sources:
    Gateway
                    Distance
                                  Last Update
                                  00:00:15
    192.168.2.2
                        120
  Distance: (default is 120)
R1#
```

Verifying RIP Routes on R1

```
R1# show ip route | begin Gateway
Gateway of last resort is not set

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.1.0/24 is directly connected, GigabitEthernet0/0
L 192.168.1.1/32 is directly connected, GigabitEthernet0/0
192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.2.0/24 is directly connected, Serial0/0/0
L 192.168.2.1/32 is directly connected, Serial0/0/0
R 192.168.3.0/24 [120/1] via 192.168.2.2, 00:00:24, Serial0/0/0
R 192.168.4.0/24 [120/2] via 192.168.2.2, 00:00:24, Serial0/0/0
R1#
```

Configuring the RIP Protocol Enabling RIPv2

Verifying RIP Settings on R1

```
R1# show ip protocols
*** IP Routing is NSF aware ***
Routing Protocol is "rip"
 Outgoing update filter list for all interfaces is not
 Incoming update filter list for all interfaces is not
 Sending updates every 30 seconds, next due in 16 seconds
 Invalid after 180 seconds, hold down 180, flushed after
 Redistributing: rip
 Default version control: send version 1, receive any
version
                      Send Recv Triggered RIP Key-chain
   Interface
   GigabitEthernet0/0
                               1 2
   Serial0/0/0
 Automatic network summarization is in effect
 Maximum path: 4
 Routing for Networks:
   192.168.1.0
   192,168,2,0
 Routing Information Sources:
   Gateway
                    Distance
                                  Last Update
```


Configuring the RIP Protocol Configuring Passive Interfaces

Configuring Passive Interfaces on R1

Sending out unneeded updates on a LAN impacts the network in three ways:

- Wasted Bandwidth
- Wasted Resources
- Security Risk

```
R1(config) # router rip
R1(config-router) # passive-interface g0/0
R1(config-router) # end
R1# show ip protocols | begin Default
 Default version control: send version 2, receive version 2
                          Send Recv Triggered RIP Key-chain
    Serial0/0/0
 Automatic network summarization is not in effect
 Maximum path: 4
  Routing for Networks:
   192,168,1.0
   192.168.2.0
  Passive Interface(s):
    GigabitEthernet0/0
  Routing Information Sources:
                                  Last Update
   Gateway
                    Distance
   192.168.2.2
                                  00:00:06
 Distance: (default is 120)
R1#
```

Propagating a Default Route


```
R1(config) # ip route 0.0.0.0 0.0.0.0 S0/0/1 209.165.200.226
R1(config) # router rip
R1(config-router) # default-information originate
R1(config-router) # ^Z
*Mar 10 23:33:51.801: %SYS-5-CONFIG I: Configured from
console by console
R1# show ip route | begin Gateway
Gateway of last resort is 209.165.200.226 to network
0.0.0.0
      0.0.0.0/0 [1/0] via 209.165.200.226, Serial0/0/1
      192.168.1.0/24 is variably subnetted, 2 subnets, 2
masks
         192.168.1.0/24 is directly connected,
GigabitEthernet0/0
         192.168.1.1/32 is directly connected,
GigabitEthernet0/0
      192.168.2.0/24 is variably subnetted, 2 subnets, 2
masks
lc.
         192.168.2.0/24 is directly connected, Serial0/0/0
L
         192.168.2.1/32 is directly connected, Serial0/0/0
      192.168.3.0/24 [120/1] via 192.168.2.2, 00:00:08,
```

Link-State Dynamic Routing

Link-State Routing Protocol Operation Shortest Path First Protocols

Link-State Routing Protocol Operation Dijkstra's Algorithm

Dijkstra's Shortest Path First Algorithm

Shortest Path for host on R2 LAN to reach host on R3 LAN: R2 to R1 (20) + R1 to R3 (5) + R3 to LAN (2) = 27

Link-State Updates Link-State Routing Process

Link-State Routing Process

- Each router learns about each of its own directly connected networks.
- Each router is responsible for "saying hello" to its neighbors on directly connected networks.
- Each router builds a Link State Packet (LSP) containing the state of each directly connected link.
- Each router floods the LSP to all neighbors who then store all LSP's received in a database.
- Each router uses the database to construct a complete map of the topology and computers the best path to each destination networks.

Link-State Updates Link and Link-State

Link 1

The first step in the link-state routing process is that each router learns about its own links, its own

directly connected networks. Link-State of Interface Fa0/0

Link 2

Say Hello

The second step in the link-state routing process is that each router is responsible for meeting its neighbors on directly connected networks.

Link-State Updates LSP

The third step in the link-state routing process is that each router builds a link-state packet (LSP) containing the state of each directly connected link.

Building the LSP

- 1. R1; Ethernet network 10.1.0.0/16; Cost 2
- R1 -> R2; Serial point-topoint network; 10.2.0.0/16; Cost 20
- 3. R1 -> R3; Serial point-topoint network; 10.3.0.0/16; Cost 5
- R1 -> R4; Serial point-topoint network; 10.4.0.0/16; Cost 20

Flooding the LSP

The fourth step in the link-state routing process is that each router floods the LSP to all neighbors, who then store all LSPs received in a database.

Link-State Updates

Building the Link-State Database

The final step in the link-state routing process is that each router uses the database to construct a complete map of the topology and computes the best path to each destination network.

Contents of the Link-State Database

R1 Link-State Database R1 Link-states: Connected to network 10.1.0.0/16. cost = 2 Connected to R2 on network 10.2.0.0/16, cost = 20 Connected to R3 on network 10.3.0.0/16, cost = 5 Connected to R4 on network 10.4.0.0/16. cost = 20 R2 Link-states: Connected to network 10.5.0.0/16, cost = 2 Connected to R1 on network 10.2.0.0/16, cost = 20 Connected to R5 on network 10.9.0.0/16. cost = 10 R3 Link-states: Connected to network 10.6.0.0/16, cost = 2 Connected to R1 on network 10.3.0.0/16. cost = 5 Connected to R4 on network 10.7.0.0/16, cost = 10 R4 Link-states: Connected to network 10.8.0.0/16. cost = 2 Connected to R1 on network 10.4.0.0/16. cost = 20 Connected to R3 on network 10.7.0.0/16, cost = 10 Connected to R5 on network 10.10.0.0/16. cost = 10 R5 Link-states: Connected to network 10.11.0.0/16. cost = 2 Connected to R2 on network 10.9.0.0/16. cost = 10 Connected to R4 on network 10.10.0.0/16. cost = 10

Building the SPF Tree

Identify the Directly Connected Networks

Link-State Updates **Building the SPF Tree**

Resulting SPF Tree of R1

Destination	Shortest Path	Cost
10.5.0.0/16	R1 → R2	22
10.6.0.0/16	R1 → R3	7
10.7.0.0/16	R1 → R3	15
10.8.0.0/16	$R1 \rightarrow R3 \rightarrow R4$	17
10.9.0.0/16	R1 → R2	30
10.10.0.0/16	R1 → R3 → R4	25
10.11.0.0/16	$R1 \rightarrow R3 \rightarrow R4 \rightarrow R5$	27

Link-State Updates

Adding OSPF Routes to the Routing Table

Populate the Routing Table

Destination	Shortest Path	Cost
10.5.0.0/16	R1 → R2	22
10.6.0.0/16	R1 → R3	7
10.7.0.0/16	R1 → R3	15
10.8.0.0/16	$R1 \rightarrow R3 \rightarrow R4$	17
10.9.0.0/16	R1 → R2	30
10.10.0.0/16	$R1 \rightarrow R3 \rightarrow R4$	25
10.11.0.0/16	$R1 \rightarrow R3 \rightarrow R4 \rightarrow R5$	27

R1 Routing Table

Directly Connected Networks

- 10.1.0.0/16 Directly Connected Network
- 10.2.0.0/16 Directly Connected Network
- 10.3.0.0/16 Directly Connected Network
- 10.4.0.0/16 Directly Connected Network

Remote Networks

- 10.5.0.0/16 via R2 serial 0/0/0,cost=22
- 10.6.0.0/16 via R3 serial 0/0/1,cost=7
- 10.7.0.0/16 via R3 serial 0/0/1,cost=15
- 10.8.0.0/16 via R3 serial 0/0/1,cost=17
- 10.9.0.0/16 via R2 serial 0/0/0,cost=30
- 10.10.0.0/16 via R3 serial 0/0/1,cost=25
- 10.11.0.0/16 via R3 serial 0/0/1,cost=27

Why Use Link-State Routing Protocols Why Use Link-State Protocols?

Advantages of Link-State Routing Protocols

- Each router builds its own topological map of the network to determine the shortest path.
- Immediate flooding of LSPs achieves faster convergence.
- LSPs are sent only when there is a change in the topology and contain only the information regarding that change.
- Hierarchical design used when implementing multiple areas.

Disadvantages compared to distance vector routing protocols:

- Memory Requirements
- Processing Requirements
- Bandwidth Requirements

Why Use Link-State Routing Protocols **Disadvantages of Link-State Protocols**

Create Areas to Minimize Router Resource Usage

The Routing Table

Parts of an IPv4 Route Entry Routing Table Entries

Routing Table of R1

```
R1#show ip route | begin Gateway
Gateway of last resort is 209.165.200.234 to network 0.0.0.0
S* 0.0.0.0/0 [1/0] via 209.165.200.234, Serial0/0/1
                     is directly connected, Serial0/0/1
  172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
  172.16.1.0/24 is directly connected, GigabitEthernet0/0
  172.16.1.1/32 is directly connected, GigabitEthernet0/0
  172.16.2.0/24 [120/1] via 209.165.200.226, 00:00:12, Serial0/0/0
  172.16.3.0/24 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
   172.16.4.0/28 [120/2] via 209.165.200.226, 00:00:12, serial0/0/0
R 192.168.0.0/16 [120/2] via 209.165.200.226, 00:00:03, serial0/0/0
   209.165.200.0/24 is variably subnetted, 5 subnets, 2 masks
   209.165.200.224/30 is directly connected, Serial0/0/0
   209.165.200.225/32 is directly connected, Serial0/0/0
  209.165.200.228/30 [120/1] via 209.165.200.226, 00:00:12,
                    Serial0/0/0
     209.165.200.232/30 is directly connected, Serial0/0/1
     209.165.200.233/30 is directly connected, Serial0/0/1
R1#
```

Parts of an IPv4 Route Entry Directly Connected Entries

Directly Connected Interfaces of R1

```
R1#show ip route | begin Gateway
Gateway of last resort is 209.165.200.234 to network 0.0.0.0
S* 0.0.0.0/0 [1/0] via 209.165.200.234, Serial0/0/1
                is directly connected, Serial0/0/1
   172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
    172.16.1.0/24 is directly connected, GigabitEthernet0/0
   172.16.1.1/32 is directly connected, GigabitEthernet0/0
   172.16.2.0/24 [120/1] via 209.165.200.226,00:00:12, Serial0/0/0
    172.16.3.0/24 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
   172.16.4.0/28 [120/2] via 209.165.200.226, 00:00:12, Serial0/0/0
    192.168.0.0/16 [120/2] via 209.165.200.226, 00:00:03, Serial0/0/0
   209.165.200.0/24 is variably subnetted, 5 subnets, 2 masks
   209.165.200.224/30 is directly connected, Serial0/0/0
   209.165.200.225/32 is directly connected, Serial0/0/0
   209.165.200.228/30 [120/1] via 209.165.200.226, 00:00:12, Serial0/0/0
    209.165.200.232/30 is directly connected, Serial0/0/1
    209.165.200.233/32 is directly connected, Serial0/0/1
R1#
```

Parts of an IPv4 Route Entry Remote Network Entries

Routing Table Terms

Routes are discussed in terms of:

- Ultimate route
- Level 1 route
- Level 1 parent route
- Level 2 child routes

Routing Table of R1

```
R1#show ip route | begin Gateway
Gateway of last resort is 209.165.200.234 to network 0.0.0.0
S*
      0.0.0.0/0 [1/0] via 209.165.200.234, Serial0/0/1
                is directly connected, Serial0/0/1
      172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
        172.16.1.0/24 is directly connected, GigabitEthernet0/0
        172.16.1.1/32 is directly connected, GigabitEthernet0/0
        172.16.2.0/24 [120/1] via 209.165.200.226, 00:00:12,
         Serial0/0/0
        172.16.3.0/24 [120/2] via 209.165.200.226, 00:00:12,
         Serial0/0/0
        172.16.4.0/28 [120/2] via 209.165.200.226, 00:00:12,
         Serial0/0/0
     192.168.0.0/16 [120/2] via 209.165.200.226, 00:00:03,
      Seria10/0/0
      209.165.200.0/24 is variably subnetted, 5 subnets, 2 masks
         209.165.200.224/30 is directly connected, Serial0/0/0
         209.165.200.225/32 is directly connected, Serial0/0/0
R
         209.165.200.228/30 [120/1] via 209.165.200.226, 00:00:12,
         Serial0/0/0
         209.165.200.232/30 is directly connected, Serial0/0/1
         209.165.200.233/32 is directly connected, Serial0/0/1
R1#
```

Dynamically Learned IPv4 Routes Ultimate Route

An ultimate route is a routing table entry that contains either a next-hop IP address or an exit interface. Directly connected, dynamically learned are ultimate routes.

Ultimate Routes of R1

```
Ri#show ip route | begin Gateway
Gateway of last resort is 209.165.200.234 to network 0.0.0.0
      0.0.0.0/0 [1/0] via 209.165.200.234, Serial0/0/1
                is directly connected, Serial0/0/1
      172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
         172.16.1.0/24 is directly connected, GigabitEthernet0/0
         172.16.1.1/32 is directly connected, GigabitEthernetO/0
        172.16.2.0/24 [120/1] via 209.165.200.226, 00:00:12,
         Serial0/0/0
         172.16.3.0/24 [120/2] via 209.165.200.226, 00:00:12,
          Serial0/0/0
         172.16.4.0/28 [120/2] via 209.165.200.226, 00:00:12,
         Serial0/0/0
      192.168.0.0/16 [120/2] via 209.165.200.226, 00:00:03,
      Serial0/0/0
      209.165.200.0/24 is variably subnetted, 5 subnets, 2 masks
         209.165.200.224/30 is directly connected, Serial0/0/0
         209.165.200.225/32 is directly connected, Serial0/0/0
         209.165.200.228/30 [120/1] via 209.165.200.226, 00:00:12,
         Serial0/0/0
         209.165.200.232/30 is directly connected, Serial0/0/1
         209.165.200.233/32 is directly connected, Serial0/0/1
R1#
```

Dynamically Learned IPv4 Routes Level 1 Route

Sources of Level 1 Routes

Dynamically Learned IPv4 Routes Level 1 Parent Route

Level 1 Parent Routes of R1

```
R1#show ip route | begin Gateway
Gateway of last resort is 209.165.200.234 to network
0.0.0.0
     0.0.0.0/0 [1/0] via 209.165.200.234, Serial0/0/1
                is directly connected, Serial0/0/1
     172.16.0.0/16 is variably subnetted, 5 subnets, 3
masks
         172.16.1.0/24 is directly connected,
GigabitEthernet0/0
        172.16.1.1/32 is directly connected,
GigabitEthernet0/0
        172.16.2.0/24 [120/1] via 209.165.200.226,
00:00:12, Serial0/0/0
        172.16.3.0/24 [120/2] via 209.165.200.226,
00:00:12, Serial0/0/0
        172.16.4.0/28 [120/2] via 209.165.200.226,
00:00:12, Serial0/0/0
     192.168.0.0/16 [120/2] via 209.165.200.226, 00:00:03,
Serial0/0/0
     209.165.200.0/24 is variably subnetted, 5 subnets, 2
masks
         209.165.200.224/30 is directly connected,
Serial0/0/0
```

Dynamically Learned IPv4 Routes Level 2 Child Route

Example of Level 2 Child Routes

```
R1#show ip route | begin Gateway
Gateway of last resort is 209.165.200.234 to network
0.0.0.0
      0.0.0.0/0 [1/0] via 209.165.200.234, Serial0/0/1
                is directly connected, Serial0/0/1
      172.16.0.0/16 is variably subnetted, 5 subnets, 3
masks
         172.16.1.0/24 is directly connected,
GigabitEthernet0/0
         172.16.1.1/32 is directly connected,
GigabitEthernet0/0
         172.16.2.0/24 [120/1] via 209.165.200.226,
00:00:12, Serial0/0/0
         172.16.3.0/24 [120/2] via 209.165.200.226,
00:00:12, Serial0/0/0
         172.16.4.0/28 [120/2] via 209.165.200.226,
00:00:12, Serial0/0/0
     192.168.0.0/16 [120/2] via 209.165.200.226, 00:00:03,
Serial0/0/0
      209.165.200.0/24 is variably subnetted, 5 subnets, 2
masks
         209.165.200.224/30 is directly connected,
Serial0/0/0
```

The IPv4 Route Lookup Process Best Route = Longest Match

Matches for Packet Destined to 172.16.0.10

IP Packet Destination	172.16.0.10	10101100.00010000.00000000.00 <mark>001010</mark>
Route 1	172.16.0.0/12	10101100.0001 0000.00000000.00000000
Route 2	172.16.0.0/18	10101100.00010000.00
Route 3	172.16.0.0/26	10101100.00010000.00000000.00

Longest Match to IP Packet Destination

Single-Area OSPF

Routing Protocols

Open Shortest Path First **Evolution of OSPF**

Interior Gateway Protocols

Open Shortest Path First Features of OSPF

Components of OSPF

OSPF Data Structures

Database	Table	Description
Adjacency Database	Neighbor Table	 List of all neighbor routers to which a router has established bidirectional communication. This table is unique for each router. Can be viewed using the show ip ospf neighbor command.
Link-state Database (LSDB)	Topology Table	 Lists information about all other routers in the network. The database shows the network topology. All routers within an area have identical LSDB. Can be viewed using the show ip ospf database command.
Forwarding Database	Routing Table	 List of routes generated when an algorithm is run on the link-state database. Each router's routing table is unique and contains information on how and where to send packets to other routers. Can be viewed using the show ip route command.

Open Shortest Path First Components of OSPF

OSPF Routers Exchange Packets - These packets are used to discover neighboring routers and also to exchange routing information to maintain accurate information about the network.

94

Link-State Operation

Routers Exchange Hello Packets

If a neighbor is present, the OSPF-enabled router attempts to establish a neighbor adjacency with that neighbor

Link-State Operation

- LSAs contain the state and cost of each directly connected link.
- Routers flood their LSAs to adjacent neighbors.
- Adjacent neighbors receiving the LSA immediately flood the LSA to other directly connected neighbors, until all routers in the area have all LSAs.

Link-State Operation

- Build the topology table based on the received LSAs.
- This database eventually holds all the information about the topology of the network.
- Execute the SPF Algorithm.

Link-State Operation

Content of the R1 SPF Tree

From the SPF tree, the best paths are inserted into the routing table.

Open Shortest Path First Single-area and Multiarea OSPF

Single-Area OSPF

- Implemented using a two-layer area hierarchy as all areas must connect to the backbone area (area 0).
- Interconnecting routers are called Area Border Routers (ABR).
- Useful in larger network deployments to reduce processing and memory overhead.

Single-area and Multiarea OSPF

Link Change Impacts Local Area Only

- Link failure affects the local area only (area 51).
- The ABR (R2) isolates the fault to area 51 only.
- Routers in areas 0 and 1 do not need the run the SPF algorithm.

OSPF Messages

Encapsulating OSPF Messages

OSPF IPv4 Header Fields

Data Link Frame Header

IP Packet Header

OSPF Packet Header OSPF Packet Type-Specific Database

Data Link Frame (Ethernet Fields shown here)

MAC Destination Address = Multicast: 01-00-5E-00-00-05 or 01-00-5E-00-00-06 MAC Source Address = Address of sending interface

IP Packet

IP Source Address = Address of sending interface
IP Destination Address = Multicast: 224.0.0.5 or 224.0.0.6
Protocol field = 89 for OSPF

OSPF Packet Header

Type code for OSPF Packet type Router ID and Area Id

OSPF Packet types

0x01 Hello 0x02 Database Description (DD) 0X03 Link State Request 0X04 Link State Update 0X05 Link State Acknowledgment

OSPF Messages

Types of OSPF Packets

OSPF Packet Descriptions

Туре	Packet Name	Description
1	Hello	Discovers neighbors and builds adjacencies between them
2	Database Description (DBD)	Checks for database synchronization between routers
3	Link-State Request (LSR)	Requests specific link-state records from router to router
4	Link-State Update (LSU)	Sends specifically requested link- state records
5	Link-State Acknowledgment (LSAck)	Acknowledges the other packet types

OSPF Messages Hello Packet

OSPF Type 1 packet = Hello packet

- Discover OSPF neighbors and establish neighbor adjacencies
- Advertise parameters on which two routers must agree to become neighbors
- Elect the Designated Router (DR) and Backup Designated Router (BDR) on multiaccess networks like Ethernet.

OSPF Messages Hello Packet

OSPF Hello Packet Content

OSPF Messages

Hello Packet Intervals

OSPF Hello packets are transmitted

- To 224.0.0.5 in IPv4
- Every 10 seconds (default on multiaccess and point-topoint networks)
- Every 30 seconds (default on non-broadcast multiaccess [NBMA] networks)
- Dead interval is the period that the router waits to receive a Hello packet before declaring the neighbor down
- Router floods the LSDB with information about down neighbors out all OSPF enabled interfaces
- Cisco's default is 4 times the Hello interval

OSPF Messages

Link-State Updates

LSUs Contain LSAs

Туре	Packet Name	Description
1	Hello	Discovers neighbors and builds adjacencies between them
2	DBD	Checks for database synchronization between router
3	LSR	Requests specific link-state records from router to router
4	LSU	Sends specifically requested link-state records
5	LSAck	Acknowledges the other packet types

- An LSU contains one or more LSAs.
- LSAs contain route information for destination networks.

LSA Type	Description
1	Router LSAs
2	Network LSAs
3 or 4	Summary LSAs
5	Autonomous System External LSAs
6	Multicast OSPF LSAs
7	Defined for Not-So-Stubby Areas
8	External Attributes LSA for Border Gateway Protocol (BGP)
9,10,11	Opaque LSAs

OSPF Operation

OSPF Operational States

When an OSPF router is initially connected to a network, it attempts to:

- Create adjacencies with neighbors
- Exchange routing information
- Calculate the best routes
- Reach convergence
- OSPF progresses through several states while attempting to reach convergence.

OSPF Operation

Establish Neighbor Adjacencies

Down State to Init State

OSPF Operation

Establish Neighbor Adjacencies

DR and BDR election only occurs on multi-access networks such as Ethernet LANs.

OSPF Operation OSPF DR and BDR

Creating Adjacencies With Every Neighbor

Number of Adjacencies=n(n-1)/2 n=number of routers Example:5 routers (5-1)/2=10 adjacencies

OSPF Operation

Synchronizing OSPF Database

Decide Which Router Sends the First DBD

OSPF Operation

Synchronizing OSPF Database

Exchange DBD Packets

8.2 Configuring Single-area OSPFv2

OSPF Router ID

OSPF Network Topology

Entering Router OSPF Configuration Mode on R1

```
R1 (config) # router ospf 10
R1(config-router)# ?
Router configuration commands:
                         Calculate OSPF interface cost
  auto-cost
                         according to bandwidth
                         Enable routing on an IP network
 network
                         Negate a command or set its defaults
 DO.
                         Suppress routing updates on an
 passive-interface
                         interface.
 priority
                         OSPF topology priority
  router-id
                         router-id for this OSPF process
```

Note: Output has been altered to display only the commands that will be used in this chapter.

OSPF Router ID Router IDs

Router ID Order of Precedence

Yes

Yes

Use that as the router ID.

```
R1 (config) # router ospf 10
R1(config-router)# router-id 1.1.1.1
% OSPF: Reload or use "clear ip ospf process" command, for
this to take effect
R1(config-router)# end
*Mar 25 19:46:09.711: %SYS-5-CONFIG I: Configured from
console by console
```

```
R1(config) # interface loopback 0
R1(config-if) # ip address 1.1.1.1 255.255.255.255
R1(config-if) # end
R1#
```

No Use the highest active configured IP address.

Router ID explicitly

configured?

No

Loopback interface

configured?

Clearing the OSPF Process

```
R1# clear ip ospf process
Reset ALL OSPF processes? [no]: y
*Mar 25 19:46:22.423: %OSPF-5-ADJCHG: Process 10, Nbr
3.3.3.3 on Serial0/0/1 from FULL to DOWN, Neighbor Down:
Interface down or detached
*Mar 25 19:46:22.423: %OSPF-5-ADJCHG: Process 10, Nbr
2.2.2.2 on Serial0/0/0 from FULL to DOWN, Neighbor Down:
Interface down or detached
```

Configure Single-area OSPFv2

The network Command

Assigning Interfaces to an OSPF Area

```
R1(config) # router ospf 10
R1(config-router) # network 172.16.1.0 0.0.0.255 area 0
R1(config-router) # network 172.16.3.0 0.0.0.3 area 0
R1(config-router) # network 192.168.10.4 0.0.0.3 area 0
R1(config-router) # R1#
```

Assigning Interfaces to an OSPF Area with a Quad Zero

```
R1(config) # router ospf 10
R1(config-router) # network 172.16.1.1 0.0.0.0 area 0
R1(config-router) # network 172.16.3.1 0.0.0.0 area 0
R1(config-router) # network 192.168.10.5 0.0.0.0 area 0
R1(config-router) #
R1#
```

Configure Single-area OSPFv2

Configuring Passive Interfaces

Configuring a Passive Interface on R1

```
R1(config) # router ospf 10
R1(config-router) # passive-interface GigabitEthernet 0/0
R1(config-router) # end
R1#
```

Use the **passive-interface** router configuration mode command to prevent the transmission of routing messages through a router interface, but still allow that network to be advertised to other routers.

OSPF Cost OSPF Metric = Cost

Cost = <u>reference bandwidth</u> / <u>interface bandwidth</u> (default reference bandwidth is 10^8)
Cost = <u>100,000,000 bps</u> / <u>interface bandwidth in bps</u>

Default Cisco OSPF Cost Values

Interface Type	Reference Bandwidth in I	ps	Default Bandwidth in bps	Cost	
Gigabit Ethernet 10 Gbps	100,000,000	÷	10,000,000,000	1	Same Cos
Gigabit Ethernet 1 Gbps	100,000,000	÷	1,000,000,000	1	due to reference bandwidth
Fast Ethernet 100 Mbps	100,000,000	÷	100,000,000	1]
Ethernet 10 Mbps	100,000,000	÷	10,000,000	10	
Serial 1.544 Mbps	100,000,000	÷	1,544,000	64	
Serial 128 kbps	100,000,000	÷	128,000	781	
Serial 64 kbps	100,000,000	÷	64,000	1562	

www.ncp.edu.pk

OSPF Accumulates Costs

Cost of an OSPF route is the accumulated value from one router to the destination network

Adjusting the Reference Bandwidth

- Use the command auto-cost reference-bandwidth
- Must be configured on every router in the OSPF domain
- Notice that the value is expressed in Mb/s:

Gigabit Ethernet - auto-cost reference-bandwidth 1000 10 Gigabit Ethernet - auto-cost reference-bandwidth 10000

Verifying the S0/0/0 Link Cost

```
R1# show ip ospf interface serial 0/0/0
Serial0/0/0 is up, line protocol is up
Internet Address 172.16.3.1/30, Area 0, Attached via Network Statement
Process ID 10, Router ID 1.1.1.1, Network Type POINT TO POINT, Cost: 647
Topology-MTID
                  Cost
                          Disabled
                                      Shutdown
                                                    Topol
                                                                              Verifying the Metric to the R2 LAN
                    647
Transmit Delay is 1 sec, State POINT TO POINT
Timer intervals configured, Hello 10, Dead 40, Wait 40,
  oob-resvnc timeout 40
                                                            R1# show ip route | include 172.16.2.0
  Hello due in 00:00:01
                                                                    172.16.2.0/24 [110/648] via 172.16.3.2, 00:06:03, Serial0/0/0
 Supports Link-local Signaling (LLS)
                                                            R1#
Cisco NSF helper support enabled
                                                            R1# show ip route 172.16.2.0
IETF NSF helper support enabled
                                                            Routing entry for 172,16,2,0/24
Index 3/3, flood queue length 0
                                                              Known via "ospf 10", distance 110, metric 648, type intra area
Next 0x0(0)/0x0(0)
                                                              Last update from 172.16.3.2 on Serial0/0/0, 00:06:17 ago
Last flood scan length is 1, maximum is 1
                                                              Routing Descriptor Blocks:
Last flood scan time is 0 msec, maximum is 0 msec
                                                              * 172.16.3.2, from 2.2.2.2, 00:06:17 ago, via Serial0/0/0
Neighbor Count is 1, Adjacent neighbor count is 1
                                                                  Route metric is 648, traffic share count is 1
  Adjacent with neighbor 2.2.2.2
                                                            R1#
 Suppress hello for 0 neighbor(s)
                                                            R1#
R1#
```

Default Interface Bandwidths

On Cisco routers, the default bandwidth on most serial interfaces is set to 1.544 Mb/s

Verifying the Default Bandwidth Settings of R1 Serial 0/0/0 R1# show interfaces serial 0/0/0 Serial0/0/0 is up, line protocol is up Hardware is WIC MBRD Serial Description: Link to R2 Internet address is 172.16.3.1/30 MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation HDLC, loopback not set Keepalive set (10 sec) Last input 00:00:05, output 00:00:03, output hang never Last clearing of "show interface" counters never Input queue: 0/75/0/0 (size/max/drops/flushes); Total

Adjusting the Interface Bandwidths

Adjusting the R1 Serial 0/0/1 Interface

```
R1(config) # int s0/0/1
R1(config-if) # bandwidth 64
R1(config-if) # end
R1#

*Mar 27 10:10:07.735: %SYS-5-CONFIG_I: Configured from console by c
R1#
R1# show interfaces serial 0/0/1 | include BW

MTU 1500 bytes, BW 64 Kbit/sec, DLY 20000 usec,
R1#
R1# show ip ospf interface serial 0/0/1 | include Cost:

Process ID 10, Router ID 1.1.1.1, Network Type
POINT_TO_POINT, Cost: 15625
R1#
```

Manually Setting the OSPF Cost

Both the **bandwidth** interface command and the **ip ospf cost** interface command achieve the same result, which is to provide an accurate value for use by OSPF in determining the best route.

```
R1(config) # int s0/0/1
R1(config-if) # no bandwidth 64
R1(config-if) # ip ospf cost 15625
R1(config-if) # end
R1#
R1# show interface serial 0/0/1 | include BW
MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec,
R1#
R1# show ip ospf interface serial 0/0/1 | include Cost:
Process ID 10, Router ID 1.1.1.1, Network Type POINT_TO_POINT,
Cost: 15625
R1#
```

Verify OSPF Verify OSPF Neighbors

Verify that the router has formed an adjacency with its neighboring routers

```
R1# show ip ospf neighbor

Neighbor ID Pri State Dead Time Address Interface
3.3.3.3 0 FULL/- 00:00:37 192.168.10.6 Seria10/0/1
2.2.2.2 0 FULL/- 00:00:30 172.16.3.2 Seria10/0/0
R1#
```

Verify OSPF

Verify OSPF Protocol Settings

Verifying R1's OSPF Neighbors

```
R1# show ip protocols
*** IP Routing is NSF aware ***
Routing Protocol is "ospf 10"
  Outgoing update filter list for all interfaces is not
  set
  Incoming update filter list for all interfaces is not
  set
  Router ID 1.1.1.1
  Number of areas in this router is 1. 1 normal 0 stub 0
  nssa
 Maximum path: 4
  Routing for Networks:
    172.16.1.0 0.0.0.255 area 0
   172.16.3.0 0.0.0.3 area 0
    192.168.10.4 0.0.0.3 area 0
 Routing Information Sources:
    Gateway
                    Distance
                                 Last Update
    2.2.2.2
                         110
                                00:17:18
    3.3.3.3
                                  00:14:49
                         110
  Distance: (default is 110)
R1#
```

Verify OSPF Verify OSPF Interface Settings

Verifying R1's OSPF Interfaces

```
R1# show ip ospf interface brief
Interface PID Area IP Address/Mask Cost State Nbrs F/C
Se0/0/1 10 0 192.168.10.5/30 15625 P2P 1/1
Se0/0/0 10 0 172.16.3.1/30 647 P2P 1/1
Gi0/0 10 0 172.16.1.1/24 1 DR 0/0
R1#
```