Big O notation, bubble sort and insertion sort

Dr Yuhua Li School of Computer Science & Informatics

(Content adapted from slides by Dr Louise Knight)

Outline of lecture

- Last time
- Big O notation
- Bubble sort
- Different cases
- Insertion sort

Last time

- Total comparisons = $(n-1) + n(n-1)/2 = n^2/2 + n/2 1$
- This equation has the form

$$T(n) = Cn^2 + Bn + A$$

where $T(n)$ is the runtime

 As n gets bigger and bigger, can ignore smaller terms and coefficient C and just say T(n) is proportional to n²

Big O notation

- We use "Order of Magnitude" or "Big O" notation to describe the relationship between the time, T(n), taken by a particular algorithm and the number of inputs, n
- If T(n) doesn't vary with n we say it is O(1)
- If it is linear, i.e. T(n) = An + B for constants A and B, we say it is O(n)
- If it is quadratic, i.e. $T(n) = Cn^2 + Bn + A$ for constants A, B, and C, we say it is $O(n^2)$
- (Other possibilities like $O(n^3)$, $O(\log n)$, etc.)

Ordering of the complexities

 Bear in mind the ordering of the complexities will influence the final big O notation

1 $\log(n) \sqrt{n} \quad n \quad n \log(n) \quad n^2 \quad n^3 \quad 2^n \quad 3^n \quad n!$

Increasing complexity

Some fundamental functions

What about if we were timing code?

- Could instead plot time on y axis
- But how could we easily "prove" the complexity of an algorithm which has a theoretical complexity of n^2 , for example, if we have the array size on the x axis?
- How do we know the curve is definitely n² and not n³ or some other function?
- Could plot n² on x axis, this should give a straight line

Before squaring x axis

Array	Time
size	(ns)
1	2
2	2 4 9 16
3	9
4	16
5	25
	25 36
7	49
8	64
9	81
10	100

After squaring x axis

Array size	Array size squared	Time (ns)
1	1	2
2	4	4
3	9	9
4	16	16
5	25	
6	36	25 36
7	49	49
8	64	64
9	81	81
10	100	100

Calculating complexity

- As n increases
 - Highest complexity term dominates
 - Can ignore lower complexity terms and constants
- Quick exercise what does each of these give in terms of big O notation?
 - 2n + 100 gives
 - $n \log(n) + 10n$ gives
 - $\frac{1}{2} n^2 + 100n$ gives
 - $n^3 + 100n^2$ gives
 - $1/100 \ 2^n + 100 \ n^4$ gives

Bubble sort

- 1. Compare items 1 and 2 and exchange if necessary, then compare 2 and 3, 3 and 4, and so on...
- 2. After completing n-1 passes of step 1, the array will be sorted

```
Algorithm bubble—sort(n,A)
Input: An array, A, of numbers of length n.
Output: The array, A sorted
for i \leftarrow 1 to n-1 do
for j \leftarrow 1 to n-1 do
if A[j+1] < A[j] then
temp \leftarrow A[j]
A[j] \leftarrow A[j+1]
A[j+1] \leftarrow temp
end if
end for
```

Bubble sort example

Input = [10, 4, 14, -3, 12, 6]

First pass:

```
[4, 10, 14, -3, 12, 6] Swap
```

[4, 10, 14, -3, 12, 6] Leave

[4, 10, -3, 14, 12, 6] Swap

[4, 10, -3, 12, 14, 6] Swap

[4, 10, -3, 12, 6, 14] Swap

Bubble sort example

Input = [10, 4, 14, -3, 12, 6]

Second pass:

```
[4, 10, -3, 12, 6, 14] Leave
```

Bubble sort example

Input = [10, 4, 14, -3, 12, 6]

Third pass:

```
[-3, 4, 10, 6, 12, 14] Swap
```

[-3, 4, 10, 6, 12, 14] Leave

[-3, 4, 6, 10, 12, 14] Swap

[-3, 4, 6, 10, 12, 14] Leave

[-3, 4, 6, 10, 12, 14] Leave

Bubble sort

- Fourth and fifth iterations have no swaps as list already sorted
- This means that time is wasted comparing elements that are already sorted
- This problem also happens with selection sort (examine all elements regardless of how sorted the array already is)
- There are algorithms where this is less of a problem, though...

Bubble sort complexity

- n 1 comparisons per iteration (array indices start at 1 for simplicity here, would program this starting from 0)
- Two nested for loops so $(n-1)^2$ comparisons, $O(n^2)$

```
Algorithm bubble—sort(n,A)
Input: An array, A, of numbers of length n.
Output: The array, A sorted
for i \leftarrow 1 to n-1 do
for j \leftarrow 1 to n-1 do
if A[j+1] < A[j] then
temp \leftarrow A[j]
A[j] \leftarrow A[j+1]
A[j+1] \leftarrow temp
end if
end for
```

Improved bubble sort

- Bubble sort algorithm just described is one of least efficient ways of sorting data and is rarely used
- Why is it inefficient? Comparing array elements that are already sorted (see location of 14 after first iteration)
- After ith pass, the ith largest element will be in correct position
- So, can reduce upper bound of inner loop by 1 for each pass

After first improvement

```
Algorithm bubble-sort2(n, A)

Input: An array, A, of numbers of length n.

Output: The array, A sorted

for i \leftarrow 1 to n-1 do

for j \leftarrow 1 to n-i do

if A[j+1] < A[j] then

temp \leftarrow A[j]

A[j] \leftarrow A[j+1]

A[j+1] \leftarrow temp

end if
end for
```

Another improvement

- Bubble sort still compares elements even when data has been completely sorted already
- Use a variable to keep track of whether any swaps took place in this iteration
 Algorithm bubble-sort3(n, A)

```
Input: An array, A, of numbers of length n.
Output: The array, A sorted
limit \leftarrow n-1
done \leftarrow 0
while done = 0 do
   done \leftarrow 1
   for j \leftarrow 1 to limit do
     if A[j + 1] < A[j] then
         temp \leftarrow A[j]
         A[j] \leftarrow A[j+1]
         A[j+1] \leftarrow temp
         done \leftarrow 0
      end if
      limit \leftarrow limit - 1
   end for
end while
```

Different cases

- Selection sort and (naïve) bubble sort perform the same number of steps, regardless of the input
- However, there are some algorithms, like the improved bubble sort (v3) and insertion sort, that have different performances depending on the input:
 - Best case: data is already sorted e.g. [1, 2, 3, 4]
 - Average case: data is random e.g. [4, 2, 3, 1]
 - Worst case: data is reverse ordered e.g. [4, 3, 2, 1]

How do these cases apply?

- What kind of performance does each of the two algorithms we've discussed have for each of the three cases?
- Selection sort?
 - Best case
 - Average case
 - Worst case
- Improved bubble sort (v3)?
 - Best case
 - Average case O(n²)
 - Worst case O(n²)

Insertion sort

At every iteration, we inspect another value and find where to insert it into the already-sorted portion of the array

```
Algorithm insertionSort(A, n)
Input: An array A storing n integers.
Output: Array, A, sorted in non-descending order.

for i = 1 to (n - 1) do
item \leftarrow A[i]
j \leftarrow i - 1
while \ j \geq 0 \ \text{and} \ A[j] > item \ \text{do}
A[j + 1] \leftarrow A[j]
j \leftarrow j - 1
A[j + 1] \leftarrow item
```

```
[10, 4, 14, -3, 12, 6]
```

```
i = 1, item = 4

j = 0, 10 > 4

[10, 10, 14, -3, 12, 6]
```

```
j = -1, exit while [4, 10, 14, -3, 12, 6]
```

```
Algorithm insertionSort(A, n)
Input: An array A storing n integers.
Output: Array, A, sorted in non-descending order.
for i = 1 to (n - 1) do
item \leftarrow A[i]
j \leftarrow i - 1
while j \geq 0 and A[j] > item do
A[j + 1] \leftarrow A[j]
j \leftarrow j - 1
A[j + 1] \leftarrow item
```

```
[4, 10, 14, -3, 12, 6]
```

```
i = 2, item = 14

j = 1, 10 < 14, exit while

[4, 10, 14, -3, 12, 6]
```

```
Algorithm insertionSort(A, n)
Input: An array A storing n integers.
Output: Array, A, sorted in non-descending order.

for i = 1 to (n - 1) do
item \leftarrow A[i]
j \leftarrow i - 1
while j \geq 0 and A[j] > item do
A[j + 1] \leftarrow A[j]
j \leftarrow j - 1
A[j + 1] \leftarrow item
```

$$i = 3$$
, $item = -3$
 $j = 2$, $14 > -3$
[4, 10, 14, 14, 12, 6]

$$j = 1, 10 > -3$$
 [4, 10, 10, 14, 12, 6]

$$j = 0, 4 > -3$$
 [4, 4, 10, 14, 12, 6]

Algorithm insertionSort(A, n) Input: An array A storing n integers. Output: Array, A, sorted in non-descending order. for i = 1 to (n - 1) do $item \leftarrow A[i]$ $j \leftarrow i - 1$ while $j \geq 0$ and A[j] > item do $A[j + 1] \leftarrow A[j]$ $j \leftarrow j - 1$ $A[j + 1] \leftarrow item$

$$j = -1$$
, exit while [-3, 4, 10, 14, 12, 6]

```
[-3, 4, 10, 14, 12, 6]
```

$$i = 4$$
, $item = 12$
 $j = 3$, $14 > 12$
[-3, 4, 10, 14, 14, 6]

```
j = 2, 10 < 12, exit while [-3, 4, 10, 12, 14, 6]
```

```
Algorithm insertionSort(A, n)
Input: An array A storing n integers.
Output: Array, A, sorted in non-descending order.
for i = 1 to (n - 1) do
item \leftarrow A[i]
j \leftarrow i - 1
while j \geq 0 and A[j] > item do
A[j + 1] \leftarrow A[j]
j \leftarrow j - 1
A[j + 1] \leftarrow item
```

$$i = 5$$
, $item = 6$
 $j = 4$, $14 > 6$
[-3, 4, 10, 12, 14, 14]

Algorithm insertionSort(A, n) Input: An array A storing n integers. Output: Array, A, sorted in non-descending order. for i = 1 to (n - 1) do $item \leftarrow A[i]$ $j \leftarrow i - 1$ while $j \geq 0$ and A[j] > item do $A[j + 1] \leftarrow A[j]$ $j \leftarrow j - 1$ $A[j + 1] \leftarrow item$

$$j = 1, 4 < 6$$
, exit while [-3, 4, 6, 10, 12, 14]

Different cases for insertion sort

- O(*n*) best case already sorted [1, 2, 3, 4]
- $O(n^2)$ average case random array [2, 1, 4, 3]
- $O(n^2)$ worst case reverse sorted array [4, 3, 2, 1]