Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher Go to next item

 Check all the techniques that can be used to improve the accuracy of detecting objects and encapsulating them entirely within a single bounding box. 	1/1 point
☑ Use Selective Search technique	
 Correct Correct! It is an advanced technique, and faster than a naive approach. 	
✓ Increase the size of the bounding box until the object fits entirely in it.	
○ Correct Correct! That is one of the simplest techniques.	
Scale down the image and then detect the object within it using the bounding box	
2. Check all that are true for Selective Search.	1/1 point
It tries to identify larger objects by grouping together initially identified smaller objects.	
✓ Image segmentation is used in this technique	
Correct! Correct! It is used to identify smaller objects.	
☐ The biggest bounding box detected of the smaller objects in the end becomes the final bounding box around the identified object.	
 The technique of selecting the best bounding box based on the highest intersection over union (IOU) between the true label and several predicted bounding boxes is called non-maximum (NMS). (Hint: it is a one word answer) 	1/1 point
suppression	
⊘ correct Correct!	
A. Consider the following image, according to the NMS technique which coloured bounding box will be eventually selected as the best bounding box around the football? Red (# 3) Purple (# 4) Yellow (# 2) Green (# 1) Correct	1/1 point
Correct! As this bounding box encapsulates the maximum area of the object.	
 5. One of the differences between R-CNN and Fast R-CNN is that, Fast R-CNN proposes regions of interest to the input image (generates), whereas in R-CNN regions of interest are expected to be an input (as opposed to generating them) to the model. False True 	1/1 point
Correct Correct! R-CNN generates regions of interest to the input image, whereas in Fast R-CNN regions of interest are an input (as opposed to generating them).	

viz_utils.visualize_boxes_and_labels_on_image_array(
 image_np_with_detections[0],
 result['detection_boxes'][0]

	<pre>(result['detection_classes'][0] + label_id_offset).astype(int), result['detection_scores'][0], category_index, use_normalized_coordinates=True, min_score_thresh=.40,)</pre> <pre> image_np_with_detections[0] is a numpy array containing the image, and 0 index shows there are multiple input image, below parced to this function.</pre>	
ı	input images being passed to this function. ✓ label_id_offsets an adjustment in case the 'detection classes' starting index and actual starting index have an offset between them. ✓ Correct	
ı	Correct! win_score_threshis used to leave out object labels and their bounding boxes if their score falls below the set threshold.	
(✓ correct Correct! Setting use_normalized_coordinates=True indicates that your bounding box coordinates are not normalized, so you want them to be normalized. 	
	The following code initializes a model and restores pre-trained weights, detection_model, using the .config file method configs = config_util.get_configs_from_pipeline_file("xyz.config") model_config = configs['model'] model_config.ssd.num_classes = num_classes model_config.ssd.freeze_batchnorm = True detection_model = model_builder.build(model_config=model_config, is_training=True)	1/1 point
(True ● False ✓ Correct Correct To code here only initializes a new model architecture with "empty" weights and does not restore pre-trained weights. 	
(Which of the following is the correct syntax to print a list of your trainable variables in a model? for varName in myModel.Variables: print(varName.name) for varName in myModel.trainableVariables: print(varName.name)	1 / 1 point
	of or varName in myModel.trainable_variables: print(varName.name) for varName in myModel.trainables: print(varName.name)	