

Real-Time Bridge Monitoring Final Project Report

Version 2.0

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

Revision History

Date	Version	Description	Author
2014-01-06	1.0	Initial version	Andrea Bottoli
		Chapter 1, 2, 3 and 4	
2014-01-13	2.0	Finalization	Andrea Bottoli
			Lorenzo Pagliari

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

Table of Contents

1. Introduction	∠
1.1 Purpose of this document	∠
1.2 Intended Audience	∠
1.3 Scope	
1.4 Definitions and acronyms	
1.5 References	∠
2. Background and Objectives	5
2.1 Project Goal	
2.2 Project Requirements	
2.3 Project Milestone	
2.4 Project Deliverables	5
2.5 Project testing.	
2.6 Project delivery	6
2 Operanization	4
3. Organization.	
3.1 Project group	
3.2 Customer	
5.5 Supervisor	
4. Development process	
4.1 Introduction	
4.2 Project Phases	8
4.3 Roles	
4.4 Quality Assurance	9
5. Milestones	
6. Project Results	
6.1 Requirements	
6.2 Deliverables	17
7. Risks	18
8. Project Experiences.	19
8.1 Positive Experiences.	
8.2 Improvement Possibilities	
9. Metrics	
9.1 Work per Member	
9.2 Milestone Metrics.	20

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

1. Introduction

1.1 Purpose of this document

The purpose of this document is to provide an overview of the Real-Time Bridge Monitoring project results and team member performance during the Distributed Software Development (DSD) course of 2013/2014.

This course is a joint course between Politecnico di Milano (PoliMi) in Italy, University of Zagreb (FER) in Croatia and Mälardalen University (MDH) in Sweden.

The Real-Time Bridge Monitoring members are from PoliMi and MDH.

This document is defined at the final phase of the project work.

1.2 Intended Audience

This document is intended to all the stakeholders in the Real-Time Bridge Monitoring project including:

- Project group members
- Project Supervisors (Raffaela Mirandola and Elisabetta Di Nitto)
- Project Customers (Francesco Ballio and Gianluca Crotti)
- DSD course staff

1.3 Scope

This document covers the results of the Real-Time Bridge Monitoring project via metrics, tables and snapshots from other documents; it will also cover some of the differences between the initially planned and finally delivered metrics and milestones.

1.4 Definitions and acronyms

1.4.1 Definitions

Keyword	Definitions
Real-Time Bridge Monitoring	The project name

1.4.2 Acronyms and abbreviations

Acronym or abbreviation	Definitions
POLIMI	Politecnico di Milano
MDH	Mälardalen University
FER	University of Zagreb
DSD	Distributed Software Development

1.5 References

 $Project\ homepage:\ \underline{http://www.fer.unizg.hr/rasip/dsd/projects/real-time_bridge_monitoring}$

Project application: http://161.53.67.134/BridgeMonitoring/

Project documents: http://www.fer.unizg.hr/rasip/dsd/projects/real-time bridge monitoring/documents

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

2. Background and Objectives

2.1 Project Goal

The Goal of this project is to develop a system that can help the monitoring process of bridges and to improve the speed of reaction at dangerous events. The system has to indicate the level of alarm in which the bridge is, so eventual security measures can be performed by the users; also make these information available on the web.

2.2 Project Requirements

2.2.1 Data sources

The system gathers data from various sensors that are:

- Anemometer
- Hydrometer
- Echo sonar
- Cameras

2.2.2 Data calculations

The system has to calculate the various characteristics of the bridge:

- The bridge stresses
- The forces acting on the bridge
- The wind speed
- The impact of the amount of traffic and its direction

2.2.3 User interface

The system has a user interface on which all the information will be displayed; it will also be displayed a temporal graph showing the temporal trend of values in the current day. The interface let to the users the possibilities to change some bounds or other variables.

There will be also the possibility to display historical data of the bridge on graph to allow the users to make comparison from the current state and the historical one; the users have to insert the period of time that they will want to see.

2.2.4 Web Application

The system can be reached on web to allow the uses to see all the information on their own devices.

2.3 Project Milestone

The main milestones are:

- Project Vision
- Project Plan
- Requirements definitions
- Design description
- Alpha prototype
- Beta prototype
- Acceptance test
- Final product

2.4 Project Deliverables

The deliverable are:

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

- Project Plan & Vision (with presentation)
- Project Plan Document
- Project Requirements and Architecture (with presentation)
- Design Description
- Alpha Prototype (with presentation)
- Beta Prototype (with presentation)
- Testing Report
- Final Project (with presentation)

2.5 Project testing

The testing phase expect to test the system reaction at some unexpected situations as the loss of network connection, loss of data, incorrect data, data missing and some other cases.

2.6 Project delivery

The final project/product will be delivered at 13-01-2014 on the web page with all the source codes.

3. Organization

3.1 Project group

The project group consists of seven members all together.

There are three members from the Italian side, that are coming from the Politecnico di Milano University: Andrea Bottoli, Lorenzo Pagliari and Marko Brčić.

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

The other four members are from the Mälardalens University: Dzana Kujan, Miraldi Fifo, Jörn Tillmanns and Nikola Radisavljevic.

Their roles in the group are defined and represented in the table below.

Name	Initials	Responsibility (roles)
Andrea Bottoli	AB	Project Manager
Dzana Kujan	DK	Team Leader
Marko Brcic	MB	Documentation manager
Lorenzo Pagliari	LP	Design manager
Miraldi Fifo	MF	Testing manager
Jorn Tillmanns	JT	Database manager
Nikola Radisavljevic	NR	Integration manager

3.2 Customer

There are two customers in this project: they are Ballio Francesco and Crotti Gianluca.

3.3 Supervisor

There are two supervisors in this project: they are Mirandola Raffaela and Di Nitto Elisabetta.

This organization structure is better depicted in the following picture.

4. Development process

4.1 Introduction

On the overall project the team follow a Waterfall model, but in the Requirements phase, Design phase and Implementation phase the team will follow a SCRUM model.

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

4.2 Project Phases

4.2.1 Analysis

In this phase the team analyzed the project, thinking at high level at the possible users, at the possible scenarios in which the system will work. Also works to build a shared vision of the project, on which each members of the team is agree.

4.2.2 Requirements Specification

In this phase the team set up with the customers the requirements of the project, focusing on the behavior of the final product and also on the type and structure of data in input at the system.

During the Design phase and Implementation phase the team can make some changes at the requirements, adding or removing some features depending on the issues that will rise.

4.2.3 Design

In this phase the team works on the design of the architecture of the system and on the behavior of the user interface to make it as user friendly, expressive and comprehensible as possible for the user.

4.2.4 Implementation

In this phase the team focus on the development of the various parts of the system.

4.2.5 Testing & Integration

In this phase the team will test the system's features in all the possible scenarios, to verify the correctness of the behavior of the system.

4.3 Roles

In the overall development process all the members of the team are developers. Adding this, threre are also other roles:

- Project leader
- Team leader
- Document manager
- Design manager
- Test manager

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

- Integration manager
- Database manager

4.4 Quality Assurance

During all the iterations of the Design phase and Implementation phase the Test manager will check that the system's features meet the customers desires.

Sometimes, the customers involvement guarantees that the product fits their needs.

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

5. Milestones

		Finished week					
Id Milestone	Desponsible Dept /Initials		Forec	ast	1	Matr	Rem
Description	Responsible Dept./Initials	Plan	Week	4/-		IVICUI	
M-001 Project Plan & Vision	All	42	42	0	43		
M-002 Requirements gathering	All	43	43	0	43		
M-003 Requirements document	All	43	44	1	43		
M-004 System Design	All	43	44	0	43		
M-005 Requirement Document	All	44	44	0	44		
M-006 Design Document	All	44	44	0	44		
M-007 Status Report	All	44	44	0	44		
M-008 Organize Repository	Marko Breic	45	45	0	45		
M-009 Team Policies	Marko Breie	45	45	0	45		
M-010 Share telephone number	All	45	45	0	45		
M-011 Modify Requirement Doc	Dzana Kujan	45	46	1	45		
M-012 Modify Design Doc	Lorenzo Pagliari	45	46	1	45		
M-013 Setup tools on PC	All	45	45	0	45		
M-014Change DB	Jorn Tillmanns	45	45	0	45		
M-015 Implementation Parser	Jorn Tillmanns	45	45	0	45		
M-016 Implementation DAO	Jorn Tillmanns	45	45	0	45		
M-017 Start Implementation Math	Andrea Bottoli	45	46	1	45		
M-018 Test Parser	Miraldi Fifo	46	47	0	46		
M-019 Test Classes alpha prot.	Miraldi Fifo	46	47	0	46		
M-020 Alpha prototype	All	46	48	2	46		
M-021 Requirements Gathering	Andrea Bottoli	47	47	0	47		
M-022 Update Design Doc.	Andrea Bottoli	47	48	0	48		
M-023 Update Requirem. Doc.	Dzana Kujan	47	48	0	48		
M-024 Finalize Math Engine	Lorenzo Pagliari	48	49	1	48		
M-025 Web Design	Miraldi Fifo	48	49	1	48		
M-026 Status Report	All	49	49	0	48		
M-027 UserLoginSystem	Jorn Tillmanns	49	50	1	48		
M-028 Finalize Math Engine	Lorenzo Pagliari	49	50	0	49		
M-029 Junit tests v1	Miraldi Fifo	49	50	0	49		
M-030 Web Site Mockups	Nikola Radisavljevic	49	49	0	49		
M-031 Web Site Graphs	Dzana Kujan	49	50	0	49		
M-032 Beta Prototype	All	50	51	0	50		
M-033 Beta Prototype pres.	Lorenzo Pagliari	51	51	0	51		
M-034 Technical documentation	Andrea Bottoli	51	51	0	51		
M-035 Acceptance Test Plan	Miraldi Fifo	51	52	0	52		
M-036 Test Report	Miraldi Fifo	01	02	1	52		
M-037 Final Presentation	All	02	02	0	01		
M-038 Final Documentation	All	02	03	1	01		
M-039 Final Product	All	02	03	1	01		
M-040 Final Questionnaire	All	02	03	1	01		

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

6. Project Results

6.1 Requirements

6.1.1 Requirement Compliance Matrix

	n	
Id	Requirement Description	Completed
	-	
	EXTERNAL USER REQUIREMENTS	1
EU1	The external user should be able to see the stack image with each pylons, with also the flow	YES
	direction.	
EU2	The external user should be able to see the latest pictures of the both sides of the bridge.	YES
EU3	The external user should be able to see the diagram showing the change of value of wind speed	YES
	for the current day.	
EU4	The external user should be able to see the diagram showing the change of value of wind	YES
	direction for the current day.	
EU5	The external user should be able to see the diagram showing the change of water level for the	YES
	current day.	
EU6	The external user should be able to see the diagram showing the change of depth of river bed	YES
	for the current day.	
EU7	The external user should be able to see the diagram showing the change of maximum wind	YES
	speed for the current day.	
EU8	The external user should be able to see the diagram showing the change of maximum direction	YES
	value for the current day.	
EU9	The external user should be able to see the current value of the flow rate.	YES
EU10	The external user should be able to see the current value of the wind speed.	YES
EU11	The external user should be able to see the current value of the water speed.	YES
EU12	The external user should be able to see the current value of the Wind Direction.	YES
EU13	The external user should be able to see the current value of the Water level.	YES
EU14	The external user should be able to see the current value of the River Bed level.	YES
EU15	The external user should be able to see a Google maps picture of the bridge with a wind rose	YES
	picture.	

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

Id	Requirement Description	Completed
	HUMAN CONTROLLER REQUIREMENTS	
HC1	The human controller should be able to log into the system with user-name and password.	YES
HC2	The human controller should be able to see the stack image with each pylons, with also the flow	YES
	direction.	
HC3	The human controller should be able to see the latest pictures of the both sides of the bridge.	YES
HC4	The human controller should be able to see the diagram showing the change of value of wind	YES
	speed for the current day.	
HC5	The human controller should be able to see the diagram showing the change of value of wind	YES
	direction for the current day.	
HC6	The human controller should be able to see the diagram showing the change of water level for	YES
	the current day.	**************************************
HC7	The human controller should be able to see the diagram showing the change of depth of river	YES
HC0	bed for the current day.	VEC
HC8	The human controller should be able to see the diagram showing the change of maximum wind	YES
НС9	speed for the current day. The human controller should be able to see the diagram showing the change of maximum	YES
1109	direction value for the current day.	IES
HC10	The human controller should be able to see the current value of the flow rate.	YES
HC11	The human controller should be able to see the current value of the wind speed.	YES
HC12	The human controller should be able to see the current value of the water speed.	YES
HC13	The human controller should be able to see the current value of the Wind Direction.	YES
HC14	The human controller should be able to see the current value of the Water level.	YES
HC15	The human controller should be able to see the current value of the River Bed level.	YES
HC16	The human controller should be able to see a Google maps picture of the bridge with a wind	YES
	rose picture.	
HC17	The human controller should be able to change the debris value. The debris value is a boolean.	YES
HC18	The human controller should be able to change the traffic value. The traffic value is a boolean.	YES
HC19	The human controller should be able to see the alarm button.	YES
HC20	The human controller should be able to send an alarm by clicking on the 'Send Alarm' button.	YES
HC21	The human controller should be able to see the M-N Domain graph with the location of each	YES
	pylon in the domain.	
HC22	The human controller should see the table for CS values for each pylon, their combination	YES
	label, and values N, M, Tx, Ty, Mx and My.	
HC23	The human controller should be able to see the history diagram showing wind speed during	YES
TICOA	chosen period of time.	MEG
HC24	The human controller should be able to see the history diagram showing wind direction during chosen period of time.	YES
HC25	The human controller should be able to see the history diagram showing maximum wind speed	YES
11023	during chosen period of time.	1120
HC26	The human controller should be able to see the history diagram showing maximum wind	YES
11020	direction during chosen period of time.	
HC27	The human controller should be able to view the history graph showing the water level during	YES
	chosen period of time.	
HC28	The human controller should be able to view the history graph showing the river bed height	YES
	during chosen period of time.	
HC29	The human controller should be able to view the history graph showing the safety trend during	YES
	chosen period of time.	
HC30	The human controller can choose a start date and end date for the historical graphs.	YES
HC31	The human controller can choose a specific day for the historical graphs.	YES
HC32	The human controller can choose a specific month for the historical graphs.	YES
HC33	The human controller should be able to log out of the system.	YES

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

EI 1 The engineer should be able to see the stack image with each pytons, with also the flow direction. Fig. 2 The engineer should be able to see the stack image with each pytons, with also the flow direction. Fig. 3 The engineer should be able to see the latest pictures of the both sides of the bridge. Fig. 4 The engineer should be able to see the diagram showing the change of value of wind speed for the current day. Fig. 5 The engineer should be able to see the diagram showing the change of value of wind direction for the current day. Fig. 6 The engineer should be able to see the diagram showing the change of value of wind direction for the current day. Fig. 7 The engineer should be able to see the diagram showing the change of water level for the current day. Fig. 8 The engineer should be able to see the diagram showing the change of depth of river bed for the current day. Fig. 9 The engineer should be able to see the diagram showing the change of maximum wind speed for the eurent day. Fig. 1 The engineer should be able to see the diagram showing the change of maximum wind speed for the current day. Fig. 1 The engineer should be able to see the diagram showing the change of maximum direction value for the current day. Fig. 2 The engineer should be able to see the current value of the wind speed. Fig. 3 The engineer should be able to see the current value of the wind speed. Fig. 4 The engineer should be able to see the current value of the wind speed. Fig. 5 The engineer should be able to see the current value of the Wind Direction. Fig. 6 The engineer should be able to see the current value of the Wind Direction. Fig. 7 The engineer should be able to see the current value of the Wind Direction. Fig. 8 The engineer should be able to see the current value of the Wind Direction. Fig. 8 The engineer should be able to see the current value of the Wind Direction. Fig. 9 The engineer should be able to see the current value of the Wind Direction. Fig. 9 The engineer should be able to see the curr	Id	Requirement Description	Completed
The engineer should be able to see the stack image with each pylons, with also the flow direction. YES		•	<u> </u>
The engineer should be able to see the latest pictures of the both sides of the bridge. YES	E1		YES
The engineer should be able to see the latest pictures of the both sides of the bridge. YES	E2	The engineer should be able to see the stack image with each pylons, with also the flow	YES
The enginer should be able to see the diagram showing the change of value of wind speed for the current day. The enginer should be able to see the diagram showing the change of value of wind direction for the current day. The enginer should be able to see the diagram showing the change of water level for the current day. The enginer should be able to see the diagram showing the change of depth of river bed for the current day. The enginer should be able to see the diagram showing the change of depth of river bed for the current day. The enginer should be able to see the diagram showing the change of maximum wind speed for the current day. The enginer should be able to see the diagram showing the change of maximum wind speed for the current day. The enginer should be able to see the diagram showing the change of maximum direction value for the current day. The enginer should be able to see the current value of the flow rate. YES	F2		VEC
the current day. The engineer should be able to see the diagram showing the change of value of wind direction for the current day. E6 The engineer should be able to see the diagram showing the change of water level for the current day. E7 The engineer should be able to see the diagram showing the change of depth of river bed for the current day. E8 The engineer should be able to see the diagram showing the change of depth of river bed for the current day. E8 The engineer should be able to see the diagram showing the change of maximum wind speed for the current day. E9 The engineer should be able to see the diagram showing the change of maximum direction value for the current day. E10 The engineer should be able to see the diagram showing the change of maximum direction value for the current value. E11 The engineer should be able to see the current value of the Water speed. YES E11 The engineer should be able to see the current value of the water speed. YES E13 The engineer should be able to see the current value of the Water speed. YES E14 The engineer should be able to see the current value of the Water level. YES E15 The engineer should be able to see the current value of the Water level. YES E16 The engineer should be able to see the current value of the bridge with a wind rose picture. E17 The engineer should be able to see the current value of the bridge with a wind rose picture. E18 The engineer should be able to see the current value. The debris value is a boolean. YES E18 The engineer should be able to change the tarffic value. The debris value is a boolean. YES E19 The engineer should be able to see the All-N Domain graph with the location of each pylon in the domain. YES E20 The engineer should be able to see the history diagram showing wind speed during chosen period of time. E21 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E23 The engineer should be able to see the history diagram showin			i
The engineer should be able to see the diagram showing the change of value of wind direction for the current day. Fe engineer should be able to see the diagram showing the change of water level for the current day. The engineer should be able to see the diagram showing the change of depth of river bed for the current day. The engineer should be able to see the diagram showing the change of maximum wind speed for the current day. The engineer should be able to see the diagram showing the change of maximum wind speed for the current day. The engineer should be able to see the diagram showing the change of maximum direction value for the current day. The engineer should be able to see the current value of the flow rate. Fe	L4		YES
The engineer should be able to see the diagram showing the change of water level for the current day. E7	E5	The engineer should be able to see the diagram showing the change of value of wind direction	YES
The engineer should be able to see the diagram showing the change of depth of river bed for the current day. F8 The engineer should be able to see the diagram showing the change of maximum wind speed for the current day. F9 The engineer should be able to see the diagram showing the change of maximum direction value for the current day. F10 The engineer should be able to see the diagram showing the change of maximum direction value for the current day. F11 The engineer should be able to see the current value of the wind speed. F12 The engineer should be able to see the current value of the wind Speed. F13 The engineer should be able to see the current value of the Wind Direction. F14 The engineer should be able to see the current value of the Wind Direction. F15 The engineer should be able to see the current value of the Wind Direction. F16 T17 The engineer should be able to see the current value of the Wind Bircetion. F17 The engineer should be able to see the current value of the River Bed level. F18 The engineer should be able to change the debris value. The debris will a wind rose picture. F19 T10 T10 T10 T10 T10 T10 T10 T	E6	The engineer should be able to see the diagram showing the change of water level for the	YES
The engineer should be able to see the diagram showing the change of maximum wind speed for the current day. The engineer should be able to see the diagram showing the change of maximum direction yalue for the current day. The engineer should be able to see the current value of the flow rate. The engineer should be able to see the current value of the wind speed. The engineer should be able to see the current value of the wind Direction. YES The engineer should be able to see the current value of the Wind Direction. YES The engineer should be able to see the current value of the Water speed. YES The engineer should be able to see the current value of the Water level. YES The engineer should be able to see the current value of the Briver Bed level. YES The engineer should be able to see the current value of the Briver Bed level. YES The engineer should be able to see a Google maps picture of the bridge with a wind rose picture. The engineer should be able to change the debris value. The debris value is a boolean. YES The engineer should be able to change the traffic value. The traffic value is a boolean. YES The engineer should be able to see the alarm button. YES The engineer should be able to see the Alarm button. YES The engineer should be able to see the Alarm button. YES The engineer should be able to see the Alarm button. YES The engineer should be able to see the history diagram showing wind speed during chosen period of time. The engineer should be able to see the history diagram showing wind direction during chosen period of time. The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. The engineer should be able to view the history graph showing the water level during chosen period of time. The engineer should be able to view the history graph showing the water level during chosen period of time.	E7	The engineer should be able to see the diagram showing the change of depth of river bed for the	YES
The engineer should be able to see the diagram showing the change of maximum direction value for the current day. E10 The engineer should be able to see the current value of the flow rate. E11 The engineer should be able to see the current value of the wind speed. F12 The engineer should be able to see the current value of the water speed. F13 The engineer should be able to see the current value of the Water level. F14 The engineer should be able to see the current value of the Water level. F15 The engineer should be able to see the current value of the River Bed level. F16 The engineer should be able to see the current value of the River Bed level. F17 The engineer should be able to see a Google maps picture of the bridge with a wind rose picture. F18 The engineer should be able to change the debris value. The debris value is a boolean. F19 The engineer should be able to change the traffic value. The traffic value is a boolean. F19 The engineer should be able to seen the alarm button. F19 The engineer should be able to seen the alarm button. F19 The engineer should be able to seen the alarm button. F10 The engineer should be able to seen the alarm button. F10 The engineer should be able to seen the M-N Domain graph with the location of each pylon in the domain. F10 The engineer should see the table for CS values for each pylon, their combination label, and values N, M, Tx, Ty, Mx and My. F10 The engineer should be able to see the history diagram showing wind speed during chosen period of time. F10 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. F10 The engineer should be able to see the history giagram showing maximum wind speed during chosen period of time. F11 The engineer should be able to view the history graph showing the water level during chosen period of time. F12 The engineer should be able to view the history graph showing the vater level during chosen period of time. F13 The engineer should be able to view the hist	E8	The engineer should be able to see the diagram showing the change of maximum wind speed	YES
E10 The engineer should be able to see the current value of the flow rate. PYES E11 The engineer should be able to see the current value of the wind speed. PYES E13 The engineer should be able to see the current value of the wind speed. PYES E14 The engineer should be able to see the current value of the Wind Direction. PYES E15 The engineer should be able to see the current value of the Wind Direction. PYES E16 The engineer should be able to see the current value of the Wind Direction. PYES E17 The engineer should be able to see the current value of the River Bed level. PYES E18 The engineer should be able to see a Google maps picture of the bridge with a wind rose picture. E19 The engineer should be able to change the debris value. The debris value is a boolean. PYES E19 The engineer should be able to change the traffic value. The traffic value is a boolean. PYES E19 The engineer should be able to see the alarm button. PYES E20 The engineer should be able to see the M-N Domain graph with the location of each pylon in the domain. E21 The engineer should be able to See the M-N Domain graph with the location of each pylon in the domain. E22 The engineer should be able to see the history diagram showing wind speed during chosen period of time. E23 The engineer should be able to see the history diagram showing wind direction during chosen period of time. E24 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E25 The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. E26 The engineer should be able to see the history graph showing the water level during chosen period of time. E27 The engineer should be able to view the history graph showing the vater level during chosen period of time. E28 The engineer should be able to view the history graph showing the safety trend during chosen period of time. E29 The engineer can choose a start date and end date for the historic	E9	The engineer should be able to see the diagram showing the change of maximum direction	YES
E11 The engineer should be able to see the current value of the wind speed. FES The engineer should be able to see the current value of the water speed. The engineer should be able to see the current value of the Wind Direction. YES E13 The engineer should be able to see the current value of the Wind Direction. YES E14 The engineer should be able to see the current value of the Wind Direction. YES E15 The engineer should be able to see the current value of the River Bed level. YES E16 The engineer should be able to see the current value of the Bit River Bed level. YES E17 The engineer should be able to see the current value of the bridge with a wind rose picture. E17 The engineer should be able to change the debris value. The debris value is a boolean. YES E18 The engineer should be able to change the traffic value. The traffic value is a boolean. YES E19 The engineer should be able to see the alarm button. YES E10 The engineer should be able to see the alarm button. YES E11 The engineer should be able to see the M-N Domain graph with the location of each pylon in the domain. E11 The engineer should see the table for CS values for each pylon, their combination label, and values N, M, Tx, Ty, Mx and My. E12 The engineer should be able to see the history diagram showing wind speed during chosen period of time. E12 The engineer should be able to see the history diagram showing wind direction during chosen period of time. E12 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E12 The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. E12 The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. E12 The engineer should be able to view the history graph showing the water level during chosen period of time. E12 The engineer should be able to view the history graph showing the safety trend during chosen period of	E10	*	YES
E12 The engineer should be able to see the current value of the Water speed. E13 The engineer should be able to see the current value of the Wind Direction. YES E14 The engineer should be able to see the current value of the Wind Direction. YES E15 The engineer should be able to see the current value of the River Bed level. YES E16 The engineer should be able to see the current value of the River Bed level. YES E17 The engineer should be able to see the current value of the Briver Bed level. YES E18 The engineer should be able to change the debris value. The debris value is a boolean. YES E19 The engineer should be able to change the traffic value. The traffic value is a boolean. YES E20 The engineer should be able to see the alarm button. YES E21 The engineer should be able to see the A-N Domain graph with the location of each pylon in the domain. The engineer should see the table for CS values for each pylon, their combination label, and values N, M, Tx, Ty, Mx and My. E22 The engineer should be able to see the history diagram showing wind speed during chosen period of time. E24 The engineer should be able to see the history diagram showing wind direction during chosen period of time. E25 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E26 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E27 The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. E28 The engineer should be able to view the history graph showing the water level during chosen period of time. E29 The engineer should be able to view the history graph showing the safety trend during chosen period of time. E29 The engineer and choose a specific day for the historical graphs. E30 The engineer can choose a specific day for the historical graphs. YES E31 The engineer can choose a specific month for the historical graphs. TES E33 The engi		-	i e
E13 The engineer should be able to see the current value of the Wind Direction. YES E14 The engineer should be able to see the current value of the Water level. YES E15 The engineer should be able to see the current value of the River Bed level. YES E16 The engineer should be able to see a Google maps picture of the bridge with a wind rose picture. E17 The engineer should be able to change the debris value. The debris value is a boolean. YES E18 The engineer should be able to change the traffic value. The debris value is a boolean. YES E19 The engineer should be able to see the alarm button. YES E20 The engineer should be able to see the M-N Domain graph with the location of each pylon in the domain. YES E21 The engineer should see the table for CS values for each pylon, their combination label, and values N, M, Tx, Ty, Mx and My. E22 The engineer should be able to see the history diagram showing wind speed during chosen period of time. E24 The engineer should be able to see the history diagram showing wind direction during chosen period of time. E25 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E26 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E27 The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. E28 The engineer should be able to view the history graph showing the water level during chosen period of time. E29 The engineer should be able to view the history graph showing the safety trend during chosen period of time. E29 The engineer should be able to view the history graph showing the safety trend during chosen period of time. E29 The engineer can choose a start date and end date for the historical graphs. E30 The engineer can choose a specific day for the historical graphs. YES E31 The engineer can choose a specific month for the historical graphs. YES E33 The engineer can change any p		•	†
E14 The engineer should be able to see the current value of the Water level. YES E15 The engineer should be able to see the current value of the River Bed level. YES E16 The engineer should be able to see a Google maps picture of the bridge with a wind rose picture. E17 The engineer should be able to change the debris value. The debris value is a boolean. YES E18 The engineer should be able to change the traffic value. The traffic value is a boolean. YES E19 The engineer should be able to see the alarm button. YES E20 The engineer should be able to see the alarm button. YES E11 The engineer should be able to see the M-N Domain graph with the location of each pylon in the domain. YES E21 The engineer should be able to see the M-N Domain graph with the location of each pylon in the domain. YES E22 The engineer should be able to see the history diagram showing wind speed during chosen period of time. E23 The engineer should be able to see the history diagram showing wind direction during chosen period of time. E24 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E25 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E26 The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. E27 The engineer should be able to view the history graph showing the water level during chosen period of time. E28 The engineer should be able to view the history graph showing the river bed height during chosen period of time. E29 The engineer should be able to view the history graph showing the safety trend during chosen period of time. E30 The engineer should be able to view the history graph showing the safety trend during chosen period of time. E31 The engineer can choose a specific day for the historical graphs. E32 The engineer can choose a specific month for the historical graphs. E33 The engineer can choose a specific month for the h			i e
E15 The engineer should be able to see the current value of the River Bed level. The engineer should be able to see a Google maps picture of the bridge with a wind rose picture. E17 The engineer should be able to change the debris value. The debris value is a boolean. YES E18 The engineer should be able to change the traffic value. The traffic value is a boolean. YES E19 The engineer should be able to see the alarm button. YES E20 The engineer should be able to see the alarm button. YES E11 The engineer should be able to see the Ann Domain graph with the location of each pylon in the domain. E21 The engineer should see the table for CS values for each pylon, their combination label, and values N, M, Tx, Ty, Mx and My. E23 The engineer should be able to see the history diagram showing wind speed during chosen period of time. E24 The engineer should be able to see the history diagram showing wind direction during chosen period of time. E25 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E26 The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. E27 The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. E28 The engineer should be able to see the history graph showing the water level during chosen period of time. E29 The engineer should be able to view the history graph showing the river bed height during chosen period of time. E29 The engineer should be able to view the history graph showing the safety trend during chosen period of time. E30 The engineer can choose a start date and end date for the historical graphs. E31 The engineer can choose a specific day for the historical graphs. YES E33 The engineer can choose a specific month for the historical graphs. T45 The engineer can choose a specific month for the historical graphs. T58 The engineer can choose a specific month for the historical graphs. T69		-	i
E16 The engineer should be able to see a Google maps picture of the bridge with a wind rose picture. E17 The engineer should be able to change the debris value. The debris value is a boolean. YES E18 The engineer should be able to see the alarm button. YES E20 The engineer should be able to see the alarm button. YES E21 The engineer should be able to see the M-N Domain graph with the location of each pylon in the domain. E22 The engineer should see the table for CS values for each pylon, their combination label, and values N, M, Tx, Ty, Mx and My. E23 The engineer should be able to see the history diagram showing wind speed during chosen period of time. E24 The engineer should be able to see the history diagram showing wind direction during chosen period of time. E25 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E26 The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. E27 The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. E28 The engineer should be able to see the history graph showing the water level during chosen yes period of time. E29 The engineer should be able to view the history graph showing the river bed height during chosen period of time. E29 The engineer should be able to view the history graph showing the safety trend during chosen period of time. E30 The engineer can choose a start date and end date for the historical graphs. E31 The engineer can choose a specific day for the historical graphs. E32 The engineer can choose a specific month for the historical graphs. E33 The engineer can choose a specific month for the historical graphs. E34 The engineer can choase any parameter that is stored in the database and used for calculations.			1
E17 The engineer should be able to change the debris value. The debris value is a boolean. YES E18 The engineer should be able to change the traffic value. The traffic value is a boolean. YES E19 The engineer should be able to see the alarm button. YES E20 The engineer should be able to see the alarm button. YES E21 The engineer should be able to see the M-N Domain graph with the location of each pylon in the domain. E22 The engineer should see the table for CS values for each pylon, their combination label, and values N, M, Tx, Ty, Mx and My. E23 The engineer should be able to see the history diagram showing wind speed during chosen period of time. E24 The engineer should be able to see the history diagram showing wind direction during chosen period of time. E25 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E26 The engineer should be able to see the history diagram showing maximum wind direction yES during chosen period of time. E27 The engineer should be able to view the history graph showing the water level during chosen period of time. E28 The engineer should be able to view the history graph showing the river bed height during chosen period of time. E29 The engineer should be able to view the history graph showing the river bed height during chosen period of time. E29 The engineer should be able to view the history graph showing the safety trend during chosen period of time. E29 The engineer should be able to view the history graph showing the safety trend during chosen period of time. E30 The engineer can choose a start date and end date for the historical graphs. E31 The engineer can choose a specific day for the historical graphs. E32 The engineer can choose a specific month for the historical graphs. E33 The engineer can choose a specific month for the historical graphs. E34 The engineer can change any parameter that is stored in the database and used for calculations.		The engineer should be able to see a Google maps picture of the bridge with a wind rose	i e
E18 The engineer should be able to change the traffic value. The traffic value is a boolean. YES E19 The engineer should be able to see the alarm button. YES E20 The engineer should be able to send an alarm by clicking on the 'Send Alarm' button. YES E21 The engineer should be able to see the M-N Domain graph with the location of each pylon in the domain. YES The engineer should see the table for CS values for each pylon, their combination label, and values N, M, Tx, Ty, Mx and My. E22 The engineer should be able to see the history diagram showing wind speed during chosen period of time. E24 The engineer should be able to see the history diagram showing wind direction during chosen period of time. E25 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E26 The engineer should be able to see the history diagram showing maximum wind direction yES during chosen period of time. E27 The engineer should be able to view the history graph showing the water level during chosen period of time. E28 The engineer should be able to view the history graph showing the river bed height during chosen period of time. E29 The engineer should be able to view the history graph showing the river bed height during chosen period of time. E29 The engineer can choose a start date and end date for the historical graphs. E30 The engineer can choose a start date and end date for the historical graphs. E31 The engineer can choose a specific day for the historical graphs. E32 The engineer can choose a specific month for the historical graphs. E33 The engineer can choose a specific month for the historical graphs. E34 The engineer can choase an specific month for the historical graphs. E34 The engineer can choase an specific month for the database and used for calculations.	E17		YES
E19 The engineer should be able to see the alarm button. E20 The engineer should be able to send an alarm by clicking on the 'Send Alarm' button. E21 The engineer should be able to see the M-N Domain graph with the location of each pylon in the domain. E22 The engineer should see the table for CS values for each pylon, their combination label, and values N, M, Tx, Ty, Mx and My. E23 The engineer should be able to see the history diagram showing wind speed during chosen period of time. E24 The engineer should be able to see the history diagram showing wind direction during chosen period of time. E25 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E26 The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. E27 The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. E28 The engineer should be able to view the history graph showing the water level during chosen period of time. E29 The engineer should be able to view the history graph showing the river bed height during chosen period of time. E29 The engineer should be able to view the history graph showing the safety trend during chosen period of time. E30 The engineer can choose a start date and end date for the historical graphs. E31 The engineer can choose a specific day for the historical graphs. E32 The engineer can choose a specific month for the historical graphs. E33 The engineer can choose a specific month for the historical graphs. E34 The engineer can change any parameter that is stored in the database and used for calculations.			•
E20 The engineer should be able to see the M-N Domain graph with the location of each pylon in the domain. E22 The engineer should see the table for CS values for each pylon, their combination label, and values N, M, Tx, Ty, Mx and My. E23 The engineer should be able to see the history diagram showing wind speed during chosen period of time. E24 The engineer should be able to see the history diagram showing wind direction during chosen period of time. E25 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E26 The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. E27 The engineer should be able to see the history diagram showing maximum wind direction yES during chosen period of time. E28 The engineer should be able to view the history graph showing the water level during chosen period of time. E29 The engineer should be able to view the history graph showing the river bed height during yES chosen period of time. E29 The engineer should be able to view the history graph showing the safety trend during chosen period of time. E30 The engineer can choose a start date and end date for the historical graphs. E31 The engineer can choose a specific day for the historical graphs. E32 The engineer can choose a specific day for the historical graphs. E33 The engineer can choose a specific month for the historical graphs. E34 The engineer can change any parameter that is stored in the database and used for calculations. YES			1
The engineer should be able to see the M-N Domain graph with the location of each pylon in the domain. The engineer should see the table for CS values for each pylon, their combination label, and values N, M, Tx, Ty, Mx and My. The engineer should be able to see the history diagram showing wind speed during chosen period of time. The engineer should be able to see the history diagram showing wind direction during chosen period of time. The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. The engineer should be able to see the history diagram showing maximum wind direction the engineer should be able to see the history diagram showing maximum wind direction the engineer should be able to see the history graph showing the water level during chosen period of time. The engineer should be able to view the history graph showing the river bed height during chosen period of time. The engineer should be able to view the history graph showing the safety trend during chosen period of time. The engineer should be able to view the history graph showing the safety trend during chosen period of time. The engineer can choose a start date and end date for the historical graphs. The engineer can choose a specific day for the historical graphs. The engineer can choose a specific day for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs.		-	i
The engineer should see the table for CS values for each pylon, their combination label, and values N, M, Tx, Ty, Mx and My. The engineer should be able to see the history diagram showing wind speed during chosen period of time. The engineer should be able to see the history diagram showing wind direction during chosen period of time. The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. The engineer should be able to view the history graph showing the water level during chosen period of time. The engineer should be able to view the history graph showing the river bed height during chosen period of time. The engineer should be able to view the history graph showing the river bed height during chosen period of time. The engineer should be able to view the history graph showing the safety trend during chosen period of time. The engineer can choose a start date and end date for the historical graphs. The engineer can choose a specific day for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can view all the parameters that are stored in the database and used for calculations. The engineer can change any parameter that is stored in the database and used for calculations.		The engineer should be able to see the M-N Domain graph with the location of each pylon in	i
The engineer should be able to see the history diagram showing wind speed during chosen period of time. E24 The engineer should be able to see the history diagram showing wind direction during chosen period of time. E25 The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. E26 The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. E27 The engineer should be able to view the history graph showing the water level during chosen period of time. E28 The engineer should be able to view the history graph showing the river bed height during chosen period of time. E29 The engineer should be able to view the history graph showing the safety trend during chosen period of time. E30 The engineer can choose a start date and end date for the historical graphs. E31 The engineer can choose a specific day for the historical graphs. E32 The engineer can choose a specific month for the historical graphs. E33 The engineer can view all the parameters that are stored in the database and used for calculations. E34 The engineer can change any parameter that is stored in the database and used for calculations. YES	E22	The engineer should see the table for CS values for each pylon, their combination label, and	YES
The engineer should be able to see the history diagram showing wind direction during chosen period of time. The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. The engineer should be able to view the history graph showing the water level during chosen period of time. The engineer should be able to view the history graph showing the river bed height during chosen period of time. The engineer should be able to view the history graph showing the river bed height during chosen period of time. The engineer should be able to view the history graph showing the safety trend during chosen period of time. The engineer can choose a start date and end date for the historical graphs. The engineer can choose a specific day for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can choose a specific month for the historical graphs.	E23	The engineer should be able to see the history diagram showing wind speed during chosen	YES
The engineer should be able to see the history diagram showing maximum wind speed during chosen period of time. The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. The engineer should be able to view the history graph showing the water level during chosen period of time. The engineer should be able to view the history graph showing the river bed height during chosen period of time. The engineer should be able to view the history graph showing the river bed height during chosen period of time. The engineer should be able to view the history graph showing the safety trend during chosen period of time. The engineer can choose a start date and end date for the historical graphs. The engineer can choose a specific day for the historical graphs. The engineer can choose a specific month for the historical graphs. The engineer can view all the parameters that are stored in the database and used for calculations. The engineer can change any parameter that is stored in the database and used for calculations.	E24	The engineer should be able to see the history diagram showing wind direction during chosen	YES
The engineer should be able to see the history diagram showing maximum wind direction during chosen period of time. The engineer should be able to view the history graph showing the water level during chosen period of time. The engineer should be able to view the history graph showing the river bed height during chosen period of time. The engineer should be able to view the history graph showing the safety trend during chosen period of time. The engineer should be able to view the history graph showing the safety trend during chosen period of time. The engineer can choose a start date and end date for the historical graphs. YES The engineer can choose a specific day for the historical graphs. YES The engineer can choose a specific month for the historical graphs. YES The engineer can view all the parameters that are stored in the database and used for calculations. The engineer can change any parameter that is stored in the database and used for calculations. YES	E25	The engineer should be able to see the history diagram showing maximum wind speed during	YES
The engineer should be able to view the history graph showing the water level during chosen period of time. E28 The engineer should be able to view the history graph showing the river bed height during chosen period of time. E29 The engineer should be able to view the history graph showing the safety trend during chosen period of time. E30 The engineer can choose a start date and end date for the historical graphs. E31 The engineer can choose a specific day for the historical graphs. E32 The engineer can choose a specific month for the historical graphs. E33 The engineer can view all the parameters that are stored in the database and used for calculations. E34 The engineer can change any parameter that is stored in the database and used for calculations. YES	E26	The engineer should be able to see the history diagram showing maximum wind direction	YES
The engineer should be able to view the history graph showing the river bed height during chosen period of time. The engineer should be able to view the history graph showing the safety trend during chosen period of time. YES The engineer can choose a start date and end date for the historical graphs. YES The engineer can choose a specific day for the historical graphs. YES The engineer can choose a specific month for the historical graphs. YES The engineer can view all the parameters that are stored in the database and used for calculations. The engineer can change any parameter that is stored in the database and used for calculations. YES	E27	The engineer should be able to view the history graph showing the water level during chosen	YES
The engineer should be able to view the history graph showing the safety trend during chosen period of time. E30 The engineer can choose a start date and end date for the historical graphs. E31 The engineer can choose a specific day for the historical graphs. E32 The engineer can choose a specific month for the historical graphs. E33 The engineer can view all the parameters that are stored in the database and used for calculations. E34 The engineer can change any parameter that is stored in the database and used for calculations. YES	E28	The engineer should be able to view the history graph showing the river bed height during	YES
E30 The engineer can choose a start date and end date for the historical graphs. E31 The engineer can choose a specific day for the historical graphs. E32 The engineer can choose a specific month for the historical graphs. E33 The engineer can view all the parameters that are stored in the database and used for calculations. E34 The engineer can change any parameter that is stored in the database and used for calculations. YES YES YES	E29	The engineer should be able to view the history graph showing the safety trend during chosen	YES
E31 The engineer can choose a specific day for the historical graphs. E32 The engineer can choose a specific month for the historical graphs. E33 The engineer can view all the parameters that are stored in the database and used for calculations. E34 The engineer can change any parameter that is stored in the database and used for calculations. YES YES	E30		YES
E32 The engineer can choose a specific month for the historical graphs. E33 The engineer can view all the parameters that are stored in the database and used for calculations. E34 The engineer can change any parameter that is stored in the database and used for calculations. YES			i
E33 The engineer can view all the parameters that are stored in the database and used for calculations. E34 The engineer can change any parameter that is stored in the database and used for calculations. YES			†
E34 The engineer can change any parameter that is stored in the database and used for calculations. YES		The engineer can view all the parameters that are stored in the database and used for	1
	E34		YES
			i

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

Id	Requirement Description	Completed			
	ADMINISTRATOR REQUIREMENTS				
A1	The administrator should be able to log into the system with user-name and password.	YES			
A2	The administrator should be able to register a new user by entering information about the user:	YES			
	first name, last name, user-name, email and permission level (Engineer or Human Controller).				
A3	The administrator should be able to edit any information about any user (except password).	YES			
A4	The administrator should be able to delete a registered user from the system.	YES			
A5	The administrator should be able to log out of the system.	YES			

Id	Requirement Description	Completed			
	PARSER REQUIREMENTS				
P1	Each received package should be parsed into the database in the following way. Every hour the system receives a packet in which there are an analog file, a sonar file both with 3600 lines of values and two images, one for each camera. All these values are to be converted from the parser into the db.	YES			
P2	For the analog and sonar sensors, the name of the files should be parsed in the following way. In the file names, analog**********.txt and sonar********.txt, the ID (**) represents the number of seconds that have elapsed since 1 st January 1904 (using Labview encode), on the Greenwich meridian.	YES			
Р3	For the picture files, the ID of the name Modean[Mantova]******.jpg should represent the exact time and date when the picture was taken.	YES			
P4	The first column of the analog*********.txt file should be parsed in the following way. Each row in the column represents the wind speed (measured in mA). It should be converted to [m / s] by using the following formula: $V [m / s] = (((V [mA] * 1000) - 4) * 3,75)$.	YES			
P5	The second column of the analog*********.txt file should be parsed in the following way. Each row in the column represents the distance between the hydrometer and the level of water (measured in mA). The actual distance [m] should be parsed by using the following formula: h [m] = $20 + (((h [mA] * 1000) - 4) * (-1,25))$). The water height should be parsed by using the following formula: h _{water} [m] = $29,86 - h [m]$.	YES			
P6	The third column of the analog********.txt file should be parsed in the following way. Each row in the column represents the wind direction (measured in mA). It should be converted to [$^{\circ}$] by using the following formula: dir [$^{\circ}$] = (((dir [mA] * 1000) - 4) * 22,5).	YES			
P7	The fourth column of the analog********.txt file should be parsed in the following way. Each row in the timestamp of the detection of the sample (Labview encode). The decimals for the timestamp are allowed to be dropped.	YES			
P8	The first column from the sonar********.txt file should be parsed in the following way. The first column is the distance between sonar and the bottom of the river (measured in meters). The height of the bottom [m] should be parsed by using the following formula: hBottom[m] = $12.3 - xx.xx$ [m].	YES			
P9	The second column from the sonar********.txt file is the timestamp of the detection of the sample and should be parsed by using the Labview encode: the number represents the number of seconds that have elapsed since 1st January 1904, on the Greenwich meridian.	YES			

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13
	_

Id	Requirement Description									
C1	CALCULATIONS REQUIREMENTS All calculations should be preformed after each parse of the data.									
C2				be calculated by the formula:		YES YES				
62	_	1				1 LS				
	+		$A_{air} * A_{traf} * V_{EF}^2$							
C3	_	-	i	combination A1 should be ca	lculated by the	YES				
	formula: S	$V_{V(A1traf)} = \frac{1}{2}$	$\frac{1}{2} * C_{Dwi} * \rho_{air} * ($	$\beta_1 * A_{traf}) * V_{EFFwind}^2$						
C4	The push of t	he wind on th	e traffic for traffic	combination A2 should be ca	lculated by the	YES				
	formula: $S_{V(A2traf)} = \frac{1}{2} * C_{Dwi} * \rho_{air} * (\beta_1 * A_{traf}) * V_{EFFwind}^2$									
C5		lculated by the	YES							
	_		i	$\beta_2 * A_{traf}) * V_{EFFwind}^2$	iculated by the	TES .				
	+		-							
C6				be calculated using the table	below.	YES				
			es with fixed section		ш —25 2					
	Parameters a _i	h _{water} <17m	17m <hwater<22m< td=""><td></td><td>H_{MAXwater}=25,3m</td><td></td></hwater<22m<>		H _{MAXwater} =25,3m					
	<i>a</i> ₁	46	60	96						
	b _i	-902	-1350	50 -2800 -2800						
	Ci	4658	8000	22500						
C7	The flow rate	should be cal	culated using the fo	ormula: $Q = a_i * h_{water}^2 +$	$b_i * h_{water} + c_i$	YES				
C8	The speed of water should be calculated using the formulas:									
	2D analysis – fixed bottom									
	h _{water} [m]	Q [m ³ /s]	V _{water} [m/s]							
	3	510	0,24	$V_{water} = a * h_{water}^3 + b * h$						
	10,5	5400	2,73							
	14	10000	3,54							
C9	The area of st	tack should be	e calculated using the	ne formula: $A_s = B_s * h_s$		YES				
	The area of stack should be calculated using the formula: $A_s = B_s * h_s$ with: a. if [SONAR1] < bottom_ref $\rightarrow h_s = [IDRO2] - bottom_ref$									
	b. if [SONAR1] > bottom_ref \rightarrow h _s = [IDRO2] - [SONAR1] and: a. if D = 0 \rightarrow B _s = B _{s0} = c									
			$_{\rm s} = \rm B_{\rm s0} = 2*D_{\rm pylon}$							
C10		ck and Swater	should be calculat	ed using the formulas:		YES				
	(D=0)									
	$A_s = B$									
	S _{water} =									
	(D = 1)									
	$A_s = B_{sl} * h_s$									
	$S_{water} = \frac{1}{2} * C_{DI} * \rho_{water} * (A_s * \beta_A) * V_{water}^2$									
C11	The nortion o	f pollsing sho	uld be calculated w	ith the formula:	-	YES				

Real-Time Bridge Monitoring	Version: 2.0		
Final Project Report Date: 2014-01-13			

6.1.2 Requirements Compliance Summary

Total number of requirements	108
Number of requirements implemented	108
Requirements partially fulfilled	0
Requirements not fulfilled	0
Requirements dropped	0

6.2 Deliverables

То	Output	Planned week	Promised week	Late +/-	Delivered week	Rem
Supervisors/ DSD	Project Plan	43	44	+1	44	
staff	Document					
Supervisors/ DSD	Requirements	44	45	-	-	
staff	Definition Document					
Supervisors/ DSD	Design Description	45	45	-	-	
staff	Document					
Supervisors/ DSD	Alpha Prototype	48	48	-	-	1
staff						
Supervisors/ DSD	Status Report	49	49	-	-	
staff						
Supervisors/ DSD	Beta Prototype	51	51	-	-	2
staff						
Supervisors/ DSD	Acceptance Test	1	1	-	-	
staff	Plan					
Supervisors/ DSD	Test Report	2	2	-	-	
staff						
Supervisors/ DSD	Final Project	2	2	-	-	
staff/ Customers	Presentation					
Supervisors/ DSD	Final Project Report	3	3	-	-	
staff/ Customers						
Supervisors/ DSD	Final Product	3	3	-	-	3
staff/ Customers						

6.2.1 Remarks

Remark Id	Description
1	The alpha prototype will have the basic features required, so the data parser and the DB integration
2	The beta prototype will have the main features of the product, like a math engine, graphs, statistics.
3	The final product will have all the features settled with the customers, like historical statistics, graphs, access control, system authentication.

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

7. Risks

Possibility	Risk	Preventive action
Н	Poor communication with the	Try to insist on more frequent meetings with the
	customer	customers.
Н	Undefined date for receiving input	Try to insist on receiving it as soon as possible.
	data	
Н	Unclear requirements	Try to have as much contact with customer, and ask them
		for feedback. Get acceptance of requirements from the
		customer early in the project.
M	Communication within the team	Define precise roles of the team members (team
		manager, team leader) and define communication flow
		between all the sides of the team. Also, define fixed dates
		for group meetings.
L	Communication within the	This will be solved by planning to have daily meetings
	distributed groups	and try to have sprints together.
L	Lack of technical background	We deal with this by choosing technologies that are
		widely used and well known to the team members
L	Cultural differences	Be patient and open-minded
L	Language misunderstandings	Be patient and ask a lot of questions, in order to not get a
		wrong understanding of what a person meant
M	Information flow – risk of now	Work on frequent communication especially between
	receiving all information or of	customer-project manager, project manager-team leader
	receiving correct one	
M	Losing data	Always have a back-up of all the files that have been
		created during the project
M	Integration problems	Good interface definitions
L	Missing Inputs	Create fake .txt files and images with fake plausible data,
		to simulate the situation of the bridge

Real-Time Bridge Monitoring	Version: 2.0
Final Project Report	Date: 2014-01-13

8. Project Experiences

8.1 Positive Experiences

The first thing that went well is the **communication** between all the team member. There were a lot of team meeting. We had discussed about each topic of the project all together and everyone could say his opinion; into a discussion there were no role preferences when we had to take a decision. This resulted into a great coordination between all members. For each meeting the project leader made a meeting agenda, that was shared with the group before the meeting, and used this agenda to lead the meeting and go through all the points noted into it. Our communications were made using Skype for chatting, Google Hangout for Video Call, Google Drive for share information and e-mail when the previous were unable.

As said, another thing went well was the **organization & managing** of the whole team. Due to a large and clear communication, was easy to organize the division of tasks and workload. This also was helped by the good design of the system, that was as a guide line for the managing and organization of the work. We used mainly the GitHub Issue system to manage the tasks division and to keep track of the work done. As said we used GitHub Issue system and Google Calendar to track tasks division, team and global DSD events.

Members behavior. Each team member was willing to work hard and learn something news to achieve the best result; each member was always ready to help a his mate when needed, even if he didn't ask it and/or was to late for work. Anyone was not shy to ask something that was not clear and no one treat badly other teammates for his role or for the role he had. Everyone was polite, kind and friendly to all, so we could work with the smile.

The scenario: we worked on a <u>real</u> project, encountered real problems that allow us to face situation as could happen in a real scenario. That was interesting because someone has never tried his role and now we could improve our skills in team work.

8.2 Improvement Possibilities

Requirements gathering: the requirement gathering was no go wrong but was not perfect also. Due to our inexperience we could not able to clarify in a good way and since the beginning the customer requirements. That caused some misunderstandings and some mess during the implementation, forcing us to change some parts or ideas during the implementation. Also because the customers itself didn't know what wanted exactly. But to avoid as much as possible these problems, we had a lot of meetings with the customers to keep they updated and to clarify each time something that wasn't.

Design: the design was good, but due to the fact that we had to use some technologies and instruments that we didn't know very well, we had to set some restrictions on the design, of course the customers were in agreement. So the design manager thought about the of system design, made a draft and has discussed it with the whole group and listening the teammates opinions made a first version of the system design. Then project leader and design manager discussed with the customers about the design and they reach and agreement. During the project the system design was little changed and fixed due to requirement changes but always with the agreement of all parts. A major experience of the instruments, technologies and design could be produce a better design phase and design document.

Real-Time Bridge Monitoring	Version: 2.0		
Final Project Report Date: 2014-01-13			

9. Metrics

9.1 Work per Member

Member	W42	W43	W44	W45	W46	W47	W48	W49	W50	W51	W52	W01	W02	Total
Andrea Bottoli	11	40	50	45	47	68	40	41	14	53	7	8	32	456
Lorenzo Pagliari	10	37	53	51	46	57	37	51	43	54	10	26	17	492
Dzana Kujan	9	36	43	36	27	36	27	49	24	17	2	5	17	328
Marko Brcic	11	40	54	60	28	36	26	15	15	15	11	4	22	337
Jorn Tillmanns	9	37	51	43	20	13	39	16	15	22	18	12	15	310
Nikola Radisavljevic	9	37	45	36	26	35	26	46	25	17	12	7	17	338
Miraldi Fifo	9	38	45	35	16	28	14	18	18	13	12	10	15	271
Ghazaleh Shojaee	-	-	53	13	32	26	-	-	-	-	-	-	-	124
Total	68	265	394	319	242	299	209	236	154	191	72	72	135	2656

Excepted one member, all the other that were present for the whole project have worked a lot and quite homogeneously. There are some differences into the total between some members due to the role and the task. Mainly who was responsible of the math engine development had a total of hours more big than the others because that part was the most affected by requirements changes and misunderstandings with the customer. Except this fact, the whole team worked homogeneously.

9.2 Milestone Metrics

From Milestone section of this document compile the summary data for milestones, enter the number of milestones completed on time or earlier, total number of milestones defined in the project and calculate the percentage of milestones on time or earlier and enter it in the Timeliness cell.

Completed as planned or earlier	Total	Timeliness
40	40	2

9.3 Effort Metrics

List all the activities in the project (project phases like requirement definition, design, implementation of certain artifacts, testing etc.), enter the actual number of days (total number of days invested by the project team) for each effort, planned number of days for that activity (see project plan document), and calculate deviation from the plan (+- percentage).

ID	Activity	Actual Effort	Planned Effort	Deviation (%)
0	Analysis Phase	11	11	0
1	Design Phase	8	6	33
2	Setup Phase	10	8	25
3	Alpha Phase	16	16	0
4	Beta Phase	49	30	63
5	Last Phase	23	22	4

There some big deviation due to changes in the requirements over the whole project that forced us to work more than we planned.

Effort estimation accuracy (%)	000/	
(100*(1 - abs(Actual – Planned)/Actual))	80%	