Producto por bloques y Jacto triangular
MODUCTO POR BLOQUES
Simplificación de produto de matrices
D'Multiplicacion de 1360 per de jels por
otas Laga,
$G: A = \begin{pmatrix} c & b \\ c & F \end{pmatrix} \qquad B: \begin{pmatrix} G & A \\ A & K \end{pmatrix}$
$AB : \begin{pmatrix} (6 - DJ & CH & DK \\ E6 + EJ & EH \end{pmatrix}$
EG + EJ (E) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Importante mantiner el respeto hacia que te-so-
m:, mo numero de joke y colonar en blegar
mi, mo numero de joke y colonar en blegar
m:, mo numero de joke y colonar en blegar
mi, mo numero M file y colonario en flegar Es decr nº fles A = nº cols G: Jos siguientes los podria mos multiplicar A (-2 0 (5 5 5) B (2 4 13)
mi, mo numero M Jilu y colu-nei en bligei Es dic.r nº Jilus A = nº cols G. dos siguientes los podríasmos multiplicar A (2 4 3) A (-2 0 5 5) 1 1 2 -3 2 3 4 0 1 12
Mi, mo numero M Jilu y colono con plegaria. Es decr ni Jles A = ni cols G. Jos siguientes la podria. mos multiplicar A $\begin{pmatrix} 1 & -1 & 1 & 2 & 4 \\ -2 & 0 & 1 & 5 & 5 \\ 1 & 1 & 1 & 2 & 3 \\ 2 & 3 & 1 & 0 \end{pmatrix}$ B: $\begin{pmatrix} 2 & 4 & 1 & 3 \\ 2 & -3 & 0 \\ -3 & 2 & 1 & 2 \\ 2 & 1 & 1 & 2 \end{pmatrix}$

Propiedades del producto por Bloque Donde el producto por bloque coura importancia es cuando en alguna de la sub-atricas encontre-co matrices identidad (In) ó matrices nulas. $A = \begin{pmatrix} ln & l & c \\ - & - & - & - \\ 0 & ln \end{pmatrix} \qquad B = \begin{pmatrix} ln & ln & ln \\ - & - & - \\ 0 & ln \end{pmatrix}$ AB(- 1) D+C) & Simplificamos una horboridad y necesifama hater muchas mens operados

FACTORIZACIONES TRIANGULARES Matriz deneral por filos. Se ostiene a traves I la In

I l Gemplos: intercompler file, 2 g 3 corres pooderse a Multiplicar la 1º dila por -2 seria $F_{2}(-2) A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \end{pmatrix} A = \begin{pmatrix} 1 & 1 & 0 & -3 \\ -4 & 0 & -2 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ Sumar a la 3° j'la la 2° . 5 $F_{32}(5) A = \begin{pmatrix} 1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{pmatrix} A = \begin{pmatrix} 1 & 1 & 0 & -3 \\ 2 & 0 & 1 & -1 \\ 10 & 0 & 8 & -1 \end{pmatrix}$ Jas trons Jormanone, ele-enelle por columnos ta- y Juneione-

facto ci	acio nes	Trongu	crc,				
Fj = Fig	=) Fig (-d,) (Fi (d) -	.D Son	d'a son	رعاء	. \	,_
Fi (a) - fi (3	<u> </u>	Fig (d)	\$i {	of tri	angular	injer.	
(d) =	Fig (-d) ((14	} -D +r;	angubr	super	~.'0^

TRIANGUARES OLLU FACTORIZACIONES Teoremo. A E Mmxn ElK

U D Escalonada equivalente de A con todos la,
pivo tes 1 (triangular superior) De Si V se puede estener de A sin permuter files entonces existe [(una matrix triangular inferior) de Forma A=LU y s: A es invortible est a Jactorización es unica · Si para tener U hay que permuter y A = invalle existe P tel que PA = LU Jonde P es or producto de metrice, ele-colos k for-Fig. Para code P (poele ser mas de una) la dectoritación a unica 1. Encontrar U con transformados, deserbles de Jora Fila) j Fig (d) an icy. As: U=Ln. L1.A 2. $A = (L_n ... L_1)^{\frac{1}{2}} U = L_1^{\frac{1}{2}} ... L_n^{\frac{1}{2}} ... U = L U$

SIMPLIFICACION LU

A=1:0

AYPb => LUYPb => Y= UY => LYPb

al sar L transplan information from the sclere information

$$UX = Y$$
 In-lie line sclere information

 $Ux = Y$ In-lie line sclere

 $Ux = Y$ In-lie line sclere

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_1 \\ y_2 \\ y_1 \\ y_2 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_1 \\ y_1 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_2 \\ y_3 \\ y_4 \\ y_4 \\ y_5 \\ y_6 \\$$

	Ē		_	3										
		١	•)										
			r)										
		_)										