

CM3: Biomécanique Cinématique en translation (1D)

Dorian Verdel, Bastien Berret

Année universitaire 2020-2021

Contact:

Université Paris-Saclay, CIAMS, 91405 Orsay, France. dorian.verdel@universite-paris-saclay.fr

Introduction

- <u>Cinématique</u>: Etude des positions, vitesses et accélérations d'un système ou d'un ensemble de systèmes
- Trajectographie: Etude des trajectoires suivies par un corps en mouvement

• Balistique: Cas particulier, étude du mouvement des projectiles

I. Trajectographie

Trajectographie

Objectifs:

- Analyse du mouvement des segments humains
- En STAPS:
 - Définir des critères de performance spécifiques
 - Optimiser la performance

• Obtention de données :

- Mesure directe du mouvement (Caméras, MotionCapture, ...)
- Données issues de la modélisation physique. Par exemple via :

$$\sum_{i} \vec{F}_{ext} = m\vec{a}_{G}$$

Classification des mouvements

- Classement par complexité:
 - Mouvement rectiligne uniforme
 - Mouvement uniformément accéléré
 - Mouvement circulaire* (ex : tourniquet)
 - Mouvement curviligne* (ex : slalom géant)
- Espaces d'étude:
 - Un axe (noté x)
 - Dans un plan (2 axes, notés x et y)
 - Dans l'espace (3 axes, notés x, y et z)*

Segmentation de l'espace en plans

II. Cinématique (1D)

Position instantanée

• La position (à un instant t)

• Exemple : position de P à l'instant t=1

$$\overrightarrow{OP} = \begin{pmatrix} 2\\2 \end{pmatrix}$$

Déplacement

Le déplacement

 Ensemble des positions successives occupées par un point à chaque instant.

• Exemple : x(0) = 0 et x(1) = 2 et $x(2) \approx 1$

Vitesse moyenne

- Distance parcourue par rapport à la durée du parcours
- Variation de position pour un temps donné
- Formule:

$$\overline{V} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$

- <u>Application</u>: Vitesse moyenne d'un coureur de 100 m terminant en 9.91 s. Vitesse d'Usain Bolt sur le record à 9.58s
- <u>Réponse</u> : $10.09 \, m/_s$; Bolt : $10.44 \, m/s$

Vitesse instantanée

- Se calcule à un instant t
- Variation de position pour un temps infiniment court
- Dérivée de la position instantanée
- Formule:

$$v = \dot{x} = \frac{dx}{dt}$$

Représentation graphique:

Accélération

- Variation de vitesse par unité de temps
- Accélération instantanée ≠ Accélération moyenne
- Dérivée de la vitesse instantanée
- Formule:

$$a = \ddot{x} = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

 Grandeur très communément utilisée (Principe Fondamental de la Dynamique)

Equations horaires

Graphiquement sur 1 axe

Dans un plan : il faut deux fois plus de graphes!

III. Mouvement rectiligne uniforme

Définition

Mouvement rectiligne uniforme

- Mouvement en ligne droite à vitesse constante
- \circ Vitesse moyenne = vitesse instantanée $\forall t$
- \circ Vecteur vitesse du CM constant : $\vec{v}(t) = \overrightarrow{cste}$
- \circ Accélération nulle : $\vec{a}(t) = \vec{0}$
- Somme des forces extérieures qui s'exercent sur le corps nulle *

Etude de cas

Supposons les mesures suivantes en marche :

Temp	Positio	Distance
s (s)	n (m)	parcourue
		chaque
		seconde
		(m)
0	0	
1	3	
2	6	
3	9	
4	12	

Etude de cas

• Représentation horaire :

Temp	Positio	Distance
s (s)	n (m)	parcourue
		chaque
		seconde
		(m)
0	0	
1	3	3
2	6	3
3	9	3
4	12	3

Equations horaires

Position

- o Fonction affine de coefficient directeur *v*
- o Formule:

$$x(t) = x_i + v\Delta t$$
, $avec \Delta t = t - t_i$

Vitesse et accélération :

- \circ Vitesse : v(t) = v
- o Accélération : a(t) = 0

Applications

- Combien de temps un cycliste en MRU à $25 \ km/h$ met-il à faire $500 \ m$?
- Réponse : 1 min 12 s
- Combien de temps faut-il à un de ses concurrents, ayant 500m de retard et roulant à 30km/h pour le rattraper?
- Réponse : 6min
- Le concurrent arrivera-t-il à rattraper le premier sachant que celui-ci est à 3km de l'arrivée? Où se croisent-ils?
- Réponse : Oui, à 500m de l'arrivée.

Questions?

