In [1]:

```
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import OneHotEncoder, MinMaxScaler
from sklearn.compose import make_column_transformer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
```

In [2]:

```
tweet = pd.read_csv("Tweets.csv")
len(tweet)
```

Out[2]:

14640

In [3]:

tweet.head()

Out[3]:

	tweet_id	airline_sentiment	airline_sentiment_confidence	negativereason	nega
0	570306133677760513	neutral	1.0000	NaN	
1	570301130888122368	positive	0.3486	NaN	
2	570301083672813571	neutral	0.6837	NaN	
3	570301031407624196	negative	1.0000	Bad Flight	
4	570300817074462722	negative	1.0000	Can't Tell	
4					

In [4]:

tweet.describe()

Out[4]:

	tweet_id	airline_sentiment_confidence	negativereason_confidence	retweet_count
count	1.464000e+04	14640.000000	10522.000000	14640.000000
mean	5.692184e+17	0.900169	0.638298	0.082650
std	7.791112e+14	0.162830	0.330440	0.745778
min	5.675883e+17	0.335000	0.000000	0.000000
25%	5.685592e+17	0.692300	0.360600	0.000000
50%	5.694779e+17	1.000000	0.670600	0.000000
75%	5.698905e+17	1.000000	1.000000	0.000000
max	5.703106e+17	1.000000	1.000000	44.000000
4				

In [5]:

tweet.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14640 entries, 0 to 14639
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	tweet_id	14640 non-null	int64
1	airline_sentiment	14640 non-null	object
2	<pre>airline_sentiment_confidence</pre>	14640 non-null	float64
3	negativereason	9178 non-null	object
4	negativereason_confidence	10522 non-null	float64
5	airline	14640 non-null	object
6	airline_sentiment_gold	40 non-null	object
7	name	14640 non-null	object
8	negativereason_gold	32 non-null	object
9	retweet_count	14640 non-null	int64
10	text	14640 non-null	object
11	tweet_coord	1019 non-null	object
12	tweet_created	14640 non-null	object
13	<pre>tweet_location</pre>	9907 non-null	object
14	user_timezone	9820 non-null	object

dtypes: float64(2), int64(2), object(11)

memory usage: 1.7+ MB

In [7]:

```
def deal_missing_values(X_full):
    #drop col where data is very less
    X_full = X_full.drop('airline_sentiment_gold', axis=1)
    X_full = X_full.drop('negativereason_gold', axis=1)
    X_full = X_full.drop('tweet_coord', axis=1)
    # replace null values with mean
    X_full['negativereason_confidence'] = X_full['negativereason_confidence'].fillna(X_f return X_full

tweet = deal_missing_values(tweet)
tweet.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14640 entries, 0 to 14639
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	tweet_id	14640 non-null	int64
1	airline_sentiment	14640 non-null	object
2	<pre>airline_sentiment_confidence</pre>	14640 non-null	float64
3	negativereason	9178 non-null	object
4	negativereason_confidence	14640 non-null	float64
5	airline	14640 non-null	object
6	name	14640 non-null	object
7	retweet_count	14640 non-null	int64
8	text	14640 non-null	object
9	tweet_created	14640 non-null	object
10	tweet_location	9907 non-null	object
11	user_timezone	9820 non-null	object
d+vn	$\frac{1}{6}$	c+(8)	-

dtypes: float64(2), int64(2), object(8)

memory usage: 1.3+ MB

In [8]:

```
tweet.hist(bins = 30, figsize = (8,5))
plt.show()
```



```
In [9]:
(tweet['airline'].unique())
Out[9]:
array(['Virgin America', 'United', 'Southwest', 'Delta', 'US Airways',
        'American'], dtype=object)
In [10]:
(tweet['negativereason'].unique())
Out[10]:
array([nan, 'Bad Flight', "Can't Tell", 'Late Flight',
        'Customer Service Issue', 'Flight Booking Problems',
        'Lost Luggage', 'Flight Attendant Complaints', 'Cancelled Flight',
        'Damaged Luggage', 'longlines'], dtype=object)
In [11]:
tweet.tail()
Out[11]:
                 tweet_id airline_sentiment airline_sentiment_confidence negativereason |
14635 569587686496825344
                                  positive
                                                             0.3487
                                                                             NaN
                                                                         Customer
14636 569587371693355008
                                  negative
                                                             1.0000
                                                                      Service Issue
14637 569587242672398336
                                   neutral
                                                             1.0000
                                                                             NaN
                                                                         Customer
14638 569587188687634433
                                                             1.0000
                                  negative
                                                                      Service Issue
```

In [19]:

14639 569587140490866689

```
X = tweet.drop('airline_sentiment', axis = 1)
y = tweet['airline_sentiment']
```

0.6771

NaN

neutral

In [20]:

In [22]:

```
lr_model = LogisticRegression(max_iter = 1000)
lr_model.fit(X_train_normal, y_train)
tree_model = SVC()
tree_model.fit(X_train_normal, y_train)
```

Out[22]:

In [23]:

```
y_pred = lr_model.predict(X_test_normal)
accuracy = accuracy_score(y_test, y_pred)
y_pred_tree = tree_model.predict(X_test_normal)
accuracy_tree = accuracy_score(y_test, y_pred_tree)
print("Accuracy: ", accuracy_tree)
```

Accuracy: 0.6454918032786885