Ana C. Huamán Quispe

Institute for Robotics & Intelligent Machines @ Georgia Tech 801 Atlantic Drive,
Atlanta, GA 30332-3000
ahuaman3@gatech.edu
www.cc.gatech.edu/~ahuaman3
www.github.com/ana-GT

Research Interests

My main work motivation is to enable robots to do useful tasks, ideally as independently as possible. My thesis work comprehends the implementation of a robot manipulation pipeline that allows a bimanual manipulator to perform elementary manipulation tasks with household objects for which partial information might or might not be known. As most roboticists, I have experience working on the areas of perception, artificial intelligence, planning and control. Besides manipulation, I have a special interest in motion planning, having worked on this area during the first years of my PhD – I actually decided to go to grad school after reading a RRT paper.

Education

PhD candidate, Robotics
Georgia Institute of Technology, USA

MS, Computational Perception and Robotics
Georgia Institute of Technology, USA

B.Sc, Mechatronics

2010 – expected May 2016

2010 – 2013

2013 – 2013

Universidad Nacional de Ingeniería, Perú

Software Experience

Student Developer May 2014 - August 2014 **PointCloud Library (PCL) - Google Summer of Code**

Implemented a hierarchical fitting algorithm to represent simple household objects with geometrical primitives (superquadrics) using as inputs one-view pointclouds from a RGBD sensor.

Student Developer May 2011 - August 2011

Open Source Computer Vision (OpenCV) - Google Summer of Code

Wrote diverse tutorials as user documentation for the OpenCV project. Topics covered include edge detection, feature matching, image processing and cascade classifiers.

Graduate Research Assistant Georgia Institute of Technology

August 2010 - present

- Developed a baseline object recognition system currently supporting a database of 42 household objects. The recognition is based on RCNN features feeding a standard SVM.
- Developed a full pipeline for picking up unknown objects using superquadrics as a base representation, which allowed fast online planning of simple manipulation tasks.
- Developed a deterministic algorithm for path planning for redundant robotic arms. Designed simulation cases for arms with different kinematics.
- Developed a deterministic algorithm to generate diverse end-effector trajectories for a given manipulation task.

Robot Experience

Schunk Light Weight Arms (LWA3 and LWA4)

Most of my current manipulation experiments have been carried out in bimanual manipulators manufactured by Schunk. These arms possess 7 degrees of freedom each and are endowed with a gripper (LWA3) and a 3 Schunk Dexterous Hand (LWA4). For videos of the robots in action, please refer to my website or upon request. The communication between my planning software and the low-level robot control software is done purely in C and C++ (purposely we did not use ROS in these platforms as at the time its latency was not acceptable for our real-time control needs).

Baxter

Experience transferring our planning platform from the LWA3 / LWA4 robot to a Baxter platform (in collaboration with colleagues at Arizona State University). For this, ROS was used as the framework for robot communication. Used Python for low-level commanding and designed libraries to communicate our original ROS-free C++ planning code to the robot.

Publications

A Taxonomy of Benchmark Tasks for Robot Manipulation

A. Huamán Quispe, H. Ben Amor and H.I. Christensen International Symposium on Robotics Research (ISRR 2015)

Efficient Manipulation Planning with basic primitives

A. Huamán Quispe, B. Melville, C. Erdogan, H. Ben Amor, H.I. Christensen and M. Stilman Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA)

Handover Planning for Every Occasion

A. Huamán Quispe, Heni Ben Amor and M. Stilman

Proceedings of 2014 IEEE-RSJ International Conference on Humanoid Robots (Humanoids)

Generation of Diverse Paths in 3D Environments

A. Huamán Quispe, T. Kunz and M. Stilman

Proceedings of 2013 IEEE-RSJ International Conference on Intelligent Robots and Systems (IROS)

Deterministic Motion Planning for Redundant Robots along End-Effector Paths

A. Huamán Quispe and M. Stilman

Proceedings of 2012 IEEE-RAS International Conference on Humanoid Robots (Humanoids)

Software Skills

Languages: C, C++, Python

Computational: Matlab, Mathematica, Maxima

Robotics: OpenCV, PCL, ROS **OS:** Linux **SCM:** Git, svn.

Familiar with: Caffe, Blender, Meshlab, SolidWorks, SketchUp.

Languages

English: Fluent. Spanish: Native. Italian: Basic