CS231A Midterm Review

2/11/2021

Agenda

- Exam logistics
- Preparation tips
- Core topics
- Review & practice question walkthrough

Midterm logistics

- Format:
 - Online exam, on Canvas
 - 15 True/False questions, 10 multiple choice questions, and 4 short answer questions
- 2 hour time limit (+ 5 mins to upload)
- Practice exam on Canvas
- Available for 24 hour window @ 2/14
- Open notes & open book

Preparing for the midterm

Resources:

- Lectures 1 10
- Lecture notes
- Homeworks

Again: open book & open notes!

 Focus on foundations & high-level understanding; you will have time to look up details.

Core topics (1/2)

- General background
 - Homogeneous coordinates
 - Transformations
 - Formulating & solving least squares problems (when do we use an SVD?)
- Camera models
 - Perspective & non-perspective
 - Degrees of freedom
 - Distortion
 - Calibration
- Single view metrology
 - Vanishing points, lines

Core topics (2/2)

- Multiview geometry
 - Epipolar geometry; essential and fundamental matrices; 8-point algorithm
 - Structure from motion.
 - Stereo
 - Perspective, affine, similarity ambiguities
- Active and volumetric stereo
 - Structured lighting
 - Voxel coloring
- Fitting and matching
 - Least squares
 - RANSAC
 - Hough transforms
- Representation learning

Homogeneous Coordinates

Augmented space for writing coordinates:

2D:
$$\begin{bmatrix} x \\ y \end{bmatrix} \iff \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \iff \begin{bmatrix} wx \\ wy \\ w \end{bmatrix}$$

3D:
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \iff \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \iff \begin{bmatrix} wx \\ wy \\ wz \\ w \end{bmatrix}$$

2D Lines

Homogeneous coordinates give us a neat way of representing 2D lines as vectors/orthogonality constraints:

$$ax + by + c = 0 \ egin{bmatrix} a & b & c \end{bmatrix} egin{bmatrix} x & y & 1 \end{bmatrix}^T = 0 \ \end{bmatrix}$$

- => symmetry between lines and points
- => cross products suddenly becomes very useful!

2D Lines

How can we get the line connecting two points?

Given: $\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{bmatrix}$

Unknown: $\begin{bmatrix} a & b & c \end{bmatrix}$

Subject to: $\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x_1 & y_1 & 1 \end{bmatrix}^T = 0$ $\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x_2 & y_2 & 1 \end{bmatrix}^T = 0$

Solution:

$$egin{bmatrix} a \ b \ c \end{bmatrix} = egin{bmatrix} x_1 \ y_1 \ 1 \end{bmatrix} imes egin{bmatrix} x_2 \ y_2 \ 1 \end{bmatrix}$$

2D Lines

How can we get the intersection of two lines?

Given:
$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{bmatrix}$$

Unknown: $\begin{bmatrix} x & y & 1 \end{bmatrix}$

$$\begin{bmatrix} x & y & 1 \end{bmatrix}$$

Subject to:
$$egin{bmatrix} a_1 & b_1 & c_1 \end{bmatrix} egin{bmatrix} x & y & 1 \end{bmatrix}^T = 0 \ egin{bmatrix} a_2 & b_2 & c_2 \end{bmatrix} egin{bmatrix} x & y & 1 \end{bmatrix}^T = 0 \end{bmatrix}$$

Solution:

$$egin{bmatrix} wx \ wy \ w \end{bmatrix} = egin{bmatrix} a_1 \ b_1 \ c_1 \end{bmatrix} imes egin{bmatrix} a_2 \ b_2 \ c_2 \end{bmatrix}$$

Transformations

Isometric transformations:

Distances preserved

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Similarity transformations:

Shapes preserved

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} SR & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, S = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$$

Affine transformations:

Parallelism preserved

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Projective transformations:

Lines preserved

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A & t \\ v & b \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Pinhole Cameras

$$P'=Kegin{bmatrix}R&T\end{bmatrix}P_w$$

$$K = egin{bmatrix} f & 0 & c_x \ 0 & f & c_y \ 0 & 0 & 1 \end{bmatrix}$$

Single View Metrology

Under projective transformation, parallel lines converge to a vanishing point:

We used this for camera calibration in your homework!

Essential matrix:

A point → epipolar line mapping for canonical cameras (K = I)

$$egin{aligned} l' &= E^T p \ l &= E p' \ p^T E p' &= 0 \end{aligned}$$

Given a 2D point in one camera, a correspondence in the other must lie on an epipolar line

If **p**' is known, we can compute **l** and search for **p** using:

$$l^T p = 0$$

If **p** is known, we can compute **l**' and search for **p**' using:

$$l'^T p' = 0$$

Fundamental matrix:

A point → epipolar line mapping for general projective cameras

$$egin{aligned} l' &= F^T p \ l &= F p' \ p' F p' &= 0 \end{aligned}$$

Computing the fundamental matrix with the 8-point algorithm:

$$\mathbf{p}^{\mathrm{T}} \mathbf{F} \mathbf{p'} = \mathbf{0} \begin{bmatrix} u_{1}u'_{1} & v_{1}u'_{1} & u'_{1} & u_{1}v'_{1} & v_{1}v'_{1} & v'_{1} & u_{1} & v_{1} & 1 \\ u_{2}u'_{2} & v_{2}u'_{2} & u'_{2} & u_{2}v'_{2} & v_{2}v'_{2} & v'_{2} & u_{2} & v_{2} & 1 \\ u_{3}u'_{3} & v_{3}u'_{3} & u'_{3} & u_{3}v'_{3} & v_{3}v'_{3} & v'_{3} & u_{3} & v_{3} & 1 \\ u_{4}u'_{4} & v_{4}u'_{4} & u'_{4} & u_{4}v'_{4} & v_{4}v'_{4} & v'_{4} & u_{4} & v_{4} & 1 \\ u_{5}u'_{5} & v_{5}u'_{5} & u'_{5} & u_{5}v'_{5} & v_{5}v'_{5} & v'_{5} & u_{5} & v_{5} & 1 \\ u_{6}u'_{6} & v_{6}u'_{6} & u'_{6} & u_{6}v'_{6} & v_{6}v'_{6} & v'_{6} & u_{6} & v_{6} & 1 \\ u_{7}u'_{7} & v_{7}u'_{7} & u'_{7} & u_{7}v'_{7} & v_{7}v'_{7} & v'_{7} & u_{7} & v_{7} & 1 \\ u_{8}u'_{8} & v_{8}u'_{8} & u'_{8} & u_{8}v'_{8} & v_{8}v'_{8} & v'_{8} & u_{8} & v_{8} & 1 \end{bmatrix} \begin{bmatrix} F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix}$$

=> Solve with SVD, then project to rank 2

Parallel images planes or rectification:

simplifies correspondence problem, moves epipoles to infinity

Structure from Motion

Determining structure and motion You've implemented a few algorithms for this!

- Factorization, triangulation

Factorization Method

$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1n} \\ \hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2n} \\ & & \ddots & \\ \hat{\mathbf{x}}_{m1} & \hat{\mathbf{x}}_{m2} & \cdots & \hat{\mathbf{x}}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

Assume all points are visible

Algebraic approach

- Compute fundamental matrix F
- Use F to estimate projective cameras
- Use these cameras to triangulate and estimate points in 3D

Works with 2 views

Bundle Adjustment

Non-linear method for refining structure and motion Goal: minimize reprojection error

Advantages

- Handle large number of views
- Handle missing data

Limitations

- Large minimization problem
- Require good initialization

Active Stereo

Active Stereo

- Replaces one camera with a projector
- Solves matching problem

Volumetric Stereo

Volumetric Stereo

- Space carving
 - Cannot carve concavity
- Shadow carving
- Voxel coloring

Least square

Find a line to minimize the sum of squared distance to the points

$$E = \sum_{i=1}^{n} (ax_i + by_i + d)^2$$

RANSAC

Random sample consensus

For fitting a model to noisy data!

Iterative approach:

- Sample a subset of points
- Fit our model
- Count the total # of inliers that match this model
- Repeat

Hough Transforms

Key idea for line fitting:

- Map points in (x,y) to a line in our Hough space
- Each point in our Hough space represents a line in our (x,y) space
- Intersection of lines in hough space = line
- + Polar line representation
- + Discretization and voting

Representation Learning

State: Quantity that describes the most important aspect of a dynamical system at time t

Representation: data format of input or output including a low-dimensional representation of sensor data

- Compact
- Explanatory
- Disentangled
- Hierarchical
- Makes subsequent problem easier

Representation

Learned representation

- Supervised
- Unsupervised
- Self-supervised

Visualizing learned representation

Interpretable representation

Deformable

Part based

Models

(DPM)

Model based Shapes

Histogram of Gradients (HOG)