AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC) STATEMENT OF TRANSMITTAL TO DDC.

This technical report has been reviewed and is approved for public release IAW AFR 190-12 (7b). Distribution is unlimited.

A. D. BLOSE

Technical Information Officer

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	. 3. RECIPIENT'S CATALOG NUMBER
AFOSR - TR - 77 - 0365 V	
THE CONTRIBUTION OF VASCULAR	Final Scientific Report
RECEPTORS TO +Gz TOLERANCE	1 Jan 75 - 30 Nov 75
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(4)
Christopher M. Stevens	A FOSD 75 2790/
Roland D. Rader	AFOSR-75-2780
PERFORMING ORGANIZATION NAME AND ACDRESS University of Southern California	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Department of Physiology	61102F
Los Angeles, California 90033	9777-02
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Air Force Office of Scientific Research (NL)	30 November 1975
Bolling AFB DC 20332	13. NUMBER OF PAGES
	62
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS, (of this report)
	Unclassified
	15. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	J
Ammoro for multiplications distable to the second	
Approve for public release; distribution unlimited.	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	om Report)
·	
18. SUPPLEMENTARY NOTES	
16. SUPPLEMENTARY NOTES	
}	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number,	
	·
•	
\$ \$	
20. ABSTRACT (Continue on reverse side it necessary and identity by block number) The feasibility of employing instrumental, restrain	and conscious done in
acceleration studies on the centrifuge has been dem	nonstrated. The leads from
implanted sensors pass through the skin on the upp	er back and when not
connected to signal conditioning equipment are place	ed in a nocket of a nulon
jacket worn by the dog. Protection of the sensor le	eads in addition to the
jacket, is afforded by an inflated rubber tube place	d short the destances
Measurements of carotid artery flow, yena caval fl	ow and aortic pressure have

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. been obtained during experimental sequences. The investigators felt that the primary effect of denervation was attenuation of peripheral resistance to rapid onset acceleration necessitating significantly higher heart rates and cardiac outputs for a given carotid flow and eye level blood pressure.

INTRODUCTION

Investigation of mammalian cardiovascular regulatory mechanisms have demonstrated the existence of both high pressure and low pressure receptor systems which provide information to the central regulatory centers concerning the hemodynamic status of the heart and circulation (1,2,3,6,7). In addition to the well known sinoaortic baroreceptor systems, there are intracardiac receptors located in the atria and in the ventricles which influence heart rate and peripheral vascular tone. When man is exposed to acceleration in excess of the 1 G experienced normally, the distribution of his circulating blood volume may be altered. The +Gz acceleration forces are particularly effective in pooling blood in dependent vascular beds, resulting in a diminution of blood flow to the brain and venous inflow to the heart from dependent vascular beds. The response of the cardiovascular system to this gravitational stress depends on afferent information received from both the high and low pressure receptor systems (4,5,8,9). Previous studies of the operation of these receptor mechanisms under increased acceleration loading have been primarily conducted under slowly developing G forces under specific levels of acceleration maintained for relatively brief periods. However, the aircrew in a high performance fighter aircraft is exposed to acceleration forces which are cyclic and rapidly changing in both magnitude and direction over relatively long periods of time. Information relating to response times, relative magnitude of response, specificity of response, and fatigue of response would

aid in the evaluation of aircrew performance in a rapidly changing +G environment as is encountered in modern fighter aircraft.

A. Three-Year Plan

The principal objective of the proposed three-year research plan was to investigate these factors in a conscious dog by assessing the contributions of the carotid sinus, the aortic arch, and the cardiac mechanoreceptor (baroreceptor) mechanisms to the maintenance of cerebral blood flow and venous inflow to the heart during exposure to the +Gz acceleration profiles simulating high performance jet aircraft air combat maneuvers. The original investigation was designed to (1) characterize the normal cardiovascular responses to cyclic +Gz exposure on the centrifuge in terms of carotid blood flow, head-level arterial blood pressure, inferior vena caval flow, central venous and/or right atrial pressure, electrocardiograms, and arterial oxygen saturation in the adult dog and adult miniature swine; (2) analyze the specific contribution of each receptor area to the normal response through the study of experimental subjects with denervated receptor areas; (3) assess the possible effects of fatigue and habituation of the receptor on the magnitude of the cardiovascular "antigravity" responses; and (4) contrast responses obtained with and without an antigravity suit.

B. Sixteen-Month Performance Program

Various factors precluded the opportunity to complete the three-year plan as outlined in the work statement. The first year's effort called for data acquisition from 6 dogs, 3 with carotid sinus denervation and 3 with aortic baroreceptor denervation. Pata were actually acquired from 5 dogs with the support received for the first 12-month effort. One dog served as a test case to develop acceleration levels, restraint systems, and data acquisition methods. Data were obtained from 1 dog with both carotid sinus and aortic baroreceptor denervation, from 2 dogs with carotid sinus denervation, and from all 5 dogs prior to any denervation. An antigravity suit was used on 2 dogs.

METHODS

This investigation required the degree of impairment in +Gz

tolerance of instrumented dogs to be evaluated on the basis of flow
and pressure responses to a set of acceleration profiles before and
after cardiovascular areas were selectively denervated. By a
procedure of surgical denervation of the carotid sinus receptor areas,
a determination of the contribution of these specific areas to the
maintenance of +Gz tolerance in the experimental subjects was made.
The analysis of alteration in response time, magnitude of the response,
specificity of the response, and fatigue of the remaining functional
cardiovascular receptor areas was determined with and without an
antigravity suit by assessing changes in carotid arterial flow, head-level
arterial pressure, and venous inflow to the heart.

A. Instrumentation

Flow in the common carotid arteries and in the thoracic vena cava was measured by the use of chronically implanted flow probes. The phase difference between brief pulses of ultrasonic energy transmitted simulteneously from a pair of barium titanate crystals diagonally through the vessel was used as the basic measurement of volumetric blood flow (11). Calibration was conducted before implantation by forcing fluid through the probe lumen and measuring the output voltage from the meter as a function of the quantity of flow. Central arterial pressure was measured with a small button-type transducer implanted in the thoracic aorta. The techniques of implantation and calibration have been presented elsewhere (10).

B. <u>Profiles</u>

The acceleration profiles used in this study were developed from an actual ACM profile obtained from the F-4-E fighter aircraft. This profile was scaled to the +Gz tolerance of the dog, using head-level arterial pressure and carotid blood flow as criteria for the determination of peripheral light loss (PLL) and central light loss (CTL). The profiles which were developed for conscious dogs are shown in Figure 1. These profiles consisted of (1) an ACM scaled to a peak of 4 + Gz, (2) a 5-cycle pulse to a peak level of 4 + Gz and a sustained 2.5 + Gz which was the mean level of the ACM profile.

Figure 2 illustrates the dog and the rider on the centrifuge.

The tolerance and the availability of riders became a limiting factor in the data acquisition, so the requirement for the rider was eliminated

Figure 1

Figure 3

through the use of a special harness designed to restrain the dog's head (Fig. 3). With this improvement, fatiging of the dog became the limit on data acquisition.

C. Surgical Procedures

Instrumentation Implant

Surgical implantion of the blood flow and pressure sensors was performed in two successive procedures. The subjects were preoperatively medicated with 1/150 gr atropine sulfate and 75 mg Demerol. Anesthesia was induced with sodium thiamylal and the subjects were then intubated and anesthesia maintained, using halothane and oxygen. In the first procedure, blood flow sensors were placed bilaterally on the common carotid arteries and the sensor cables were led subcutaneously to the dorsum, medial to the scapulae. The subjects were given 600,000 units of aqueous penicillin G daily for 5 days postoperatively. After 7 to 10 days, the subjects were anesthetized again and a left thoracotomy was performed through the 5th intercostal space and a plood flow sensor was placed around the inferior vena cava. A solid state intravascular pressure transducer was then placed in the descending aorta at the level of the atrioventricular ring. These sensor cables were also led subcutaneously to the same region of the dorsum and the above postoperative regimen was performed.

After a sensor grow-in period of 21 to 30 days, the subjects were again anesthetized and the sensor connectors were exteriorized and placed in a pocket of the jacket worn by the experimental subject.

Denervation Procedures

The subjects were anesthetized and the carotid sinus exposed.

The carotid sinus nerves were sectioned and the animals were allowed to recover for 5 to 7 days.

Acrtic baroreceptor denervation was performed via a left thoracotomy through the 4th interestal space. A recovery period of 14 to 21 days was allowed after acrtic baroreceptor denervation.

D. Data Acquisition and Reduction

Preamplifiers for acceleration, pressure, and flow measurements were placed on the centrifuge near the location of the dog. The basic signals were conditioned and increased to an approximately 1-volt level. These signals were connected to a strip chart recorder through slip rings. Mean levels of the basic flow and pressure signal were obtained by electronic integration and displayed on the strip chart recorder. Data reduction consisted of charting mean levels of flow pressure and heart rate at particular points throughout the acceleration profiles. Analysis was made in terms of the percent change from control at each of the selected conditions of antigravity suit protection, denervation, and acceleration. The data were then analyzed for standard deviation and standard error of the mean.

E. Antigravity Protection

A modified abdominal bladder from a standard anti-G suit was used in conjunction with an Alar Products Inc. Automatic Pressure Regulating Anti-G Suit Valve to afford antigravity protection for the subjects.

Figures 4, 5, and 6 illustrate the pressure responses of the above system

during the 4 + Gz ACM, the 4 + Gz Pulse, and the 2.5 + Gz Sustained Acceleration Profiles, respectively. The subjects were exposed to the three acceleration profiles with and without antigravity protection.

RESULTS

Data were obtained from five dogs during the course of this study with the first subject (Dog B) being used primarily for the development of acceleration profiles and the scaling of these profiles to the dog's acceleration tolerance. In addition, it became necessary to further develop an animal restraint system for the dogs to eliminate the need for an investigator to ride with the conscious subject.

Consequently, Dog B was used for the further development of the restraint system. Results obtained from these preliminary studies on Dog B are not presented, since the acceleration profiles employed were variable both in magnitude of acceleration and in duration of exposure.

A. 4.0 + Gz ACM Profile Exposures

Control and carotid sinus denervation data obtained from Dog A and Dog L during exposure to the 4.0 + Gz ACM with and without antigravity protection are shown in Tables 1-4 and in Figures 7-19, and control data for Dog D and Dog M are shown in Tables 5 and 6 and in Figures 20-22. Figures 23-32 show the comparison between the control response and the response obtained after carotid sinus denervation in Dog A with and without antigravity protection and in Dog L without antigravity protection.

B. 4.0 + Gz Pulse Profile Exposures

Control and carotid sinus denervation data obtained from Dog A and Dog L during exposure to the 5-cycle 4.0 + Pulse Profile with and without antigravity protection are shown in Tables 7-10 and data obtained from Dog D and Dog M without antigravity protection are shown in Tables 11 and 12.

C. 2.5 + Gz Sustained Profile

Control and carotid sinus denervation data obtained from Dog A and Dog L during exposure to the 2.5 + Sustained Profile with and without antigravity protection are shown in Tables 13-16 and data obtained from Dog D and Dog M without antigravity protection are shown in Tables 17 and 18.

DISCUSSION

ACM Profile consisted of an average decrease in carotid flow of 20% below normal, and there was no apparent overall significant difference between the Control Group and the carotid sinus denervation group (Group A). Central arterial pressure in the Control Group rose to an average of 30% above normal, while the average pressure in Group A was 25% above normal. The major distinction between the Control Group and Group A appeared in the heart rate response required to maintain central arterial pressure and carotid arterial flow. The heart rate in the Control Group averaged 24% above normal, while in Group A the average rate was 74% above normal.

Exposure to the 4.0 + Gz Pulse Profile resulted in an average decrease in carotid blood flow of 49% at the 4.0 + Gz peaks in the Control Group and a decrease of 66% in Group A. Central arterial pressure at the 4.0 + Gz peak was increased 19% in the Control Group and 2% in Group A, while eye level pressure decreased 90% in the Control Group and 100% in Group A at the 4.0 + Gz peak. Average heart rates at the 4.0 + Gz peaks increased by 89% in the controls and by 141% in Group A.

Exposure to the 2.5 + Gz Sustained Profile resulted in an average decrease in carotid blood flow of 20% in both the Control Group and in Group A. Central arterial pressure was increased 20% above normal in the Control Group and 10% above normal in Group A. Eye level mean blood pressures decreased 35% below normal in the Control Group and 50% below normal in Group A. Heart rates increased an average of 40% above normal in the Control Group and 55% above normal in Group A.

The use of the antigravity suit abdominal bladder assisted in maintaining the carotid flow and eye level arterial pressure in both the control and denervated groups. The effect of the suit during exposure to all profiles was to create a condition where for a given level of carotid blood flow the heart rate was significantly lower and the central and eye level blood pressures were significantly higher than in the unprotected state. The most pronounced decrement in the ability to maintain carotid flow produced by carotid sinus denervation was in the environment where

the rate of onset of the acceleration forces was the greatest.

Further, denervation resulted in a lower central and eye level arterial pressure despite a greatly elevated heart rate. It was felt that the primary effect on cardiovascular hemodynamics of the denervation was to attenuate the expected p ripheral resistance changes to rapid onset acceleration, thus necessitating significantly higher heart rates and probably cardiac outputs for a given carotid flow and eye level blood pressure.

ACM PROFILE NO G-SUIT SUBJECT: DOG A

XS=()

	n	9			11	Ĺ	56	7	26	7	5¢	7
	STOP	116.9			106.5 (5.1)	163.5 (7.9)	106.5 (5.1)	138.3 (9.5)	107.2	138.3	123.6	151.0 (11.0)
	1.0	90.5 (6.6)			80.5 (2.4)	152.8 (7.9)	80.5 (2.4)	154.7 (6.4)	39.0	105.7	156.6 (8.7)	168.1 (6.8)
	3.0	46.3 (12.1)			77.9 (2. 9)	99.3	138.6 (3.5)	216.9 (5.6)	73.6	6.69	150.5	135.7 (11.7)
	2.5 ب	53.5 (11.1)			74.5 (2.8)	103.1 (6.6)	132.2	199.7 (6.3)	78.2	77.7	150.1	1 <i>24,</i> 0 (13.5 °
	ى ئ	31.4 (9.6)			7 <u>5</u> .3 (2.8)	102.6 (6.4)	138.4 (3.5)	223.0	62.4	52.0	152.2 (8.9)	140.3 (6.63
	2.5	38.7 (7.2)			76.2 (4.1)	103.7 (3.1)	132.1 (3.2)	200°4 (5°9)	78.1	78.4	145.9 (8.0)	121.3 (9.23
	4.0	14.6 (5.0)			73.4 (2.1)	92.4 (10.5)	136.0 (4.5)	219.7 (7.5)	0.64	23.7	152.6 (10.7)	123.6
I	2.0	61.7 (8.4)			76.6 (3.5)	115.1	120.0	165.6 (2.5)	76.0	71.0	142.6 (1a.)	101. { (16.5)
5	3.0	37.9 (8.9)			76.1 (2.7)	107.9 (4.9)	131.0 (2.9)	190.0 (5.6)	66.0	43.0	153.6 (8.1)	(19.3
	2.0	55.3 (7.2)			75.8 (2.2)	115.3	116.9 (2.1)	159.1 (3.7)	72.9	61.1	135.4	117. <i>(</i> (10.2)
7	2.5	66.4 (4.0)		- 1	73.6	103.3 (6.1)	118.5 (3.2)	165.1 (4.7)	64.5	43.1	157.4 (8.1)	134.1 (109)
	1.0	83.7 (3.4)			90.2	126.9 (9.1)	109.2 (1.2)	143.1 (6.1)	87.2	94.1	136.4 (4.9)	(119.4 (7.7)
	z vel	CONT	C/S DEN		CONT	C/S DEN	CONT	C/S DEN	COM	C/S DEN	CONT	NEC DEN
	+Gz Leve]	OTID	CARC FLX	1	AVAD WO.	VENA IA	TARE TAIR SURE	CENT PRES	ense E n er	EXE I	7. 7.4 2	

ACM PROFILE G-SUIT SUBJECT: DOG A

X = (

					·					
r.	7		4	u /	11	ц.	11	Lí,	11	цv
									·	
STOP	143.4		(2.5)	159.4 (8.9)	107.3	141.4 (8.4)	107.3	141.4	114.3 (3.9)	13£.4 (10.6)
1.0	10 <i>6.9</i> [11.2]		97.5 (6.7)	147.4 (13.4)	123.1 (2.0)	140.2 (4.5)	99.1	5,09	122.6 (5.2)) (10,7) (10,7)
3.0	28.1 (10.2)		86.8 (4.9)	80.4 (9.5)	148.4 (1.4)	209.4 (7.4)	76.4	59.4	127. E (4.9)	120.2 (5.1)
2.5	41.0 (9.5)		88.5 (6.0)	96.6 (8.1)	148.3 (2.2)	194.6 209.4 (12.2)(7.4)	88.3	<i>9</i> .69	122.3 (6.1)	110.4
3.5	21. [£] (9.8)		83.3 (4.0)	67.2 (9.3)	155.8 (2.5)	220.0 (13.3)	71.8	ηξ.0	126.2 (4.0)	120,2 (4,7
2.5	$\frac{35.\%}{(11.9)}$		91.3 (2.3)	90.8 (8.3)	$\begin{bmatrix} 147.3 \\ (3.1) \end{bmatrix}$	198.4 (10.6)	87.3	73.4	114.1 (2.1)	123.6 (10.5)
4.0	10.8 (5.1)		85.0 (3.3)	39.6 (9.2)	154.8	215.8 (15.2)	58.8	15,8	135.3 (4.6)	(2.9)
2.0	60.8 (5.4)		91.5	122.0 (7.3)	134.3	162.6 (7.9)	86.3	62.6	101.9	112.8 (0,7)
3.0	1)(5.6)		87.3 (7.2)	100.2 (13.0)	145.1	184.4 (8.4)	73.1	34.4	(3.4)	118.6
2.0	78.6 (10.4)		94.3 (4.0)	121.6 (8.0)	127.8 (1.2)	156.4 (7.1)	79.8	₽°.4	106.7	105. (8.8)
N E/	(5.3) (5.7)		97.5	141.0 (6.8)	133.4 (1.8)	159.0 (4.6)	73.4	34.0	(0°5) (°5°5)	118.0 (8.4)
0.1	$\frac{101.3}{(11.1)}$		103.5 (6.0)	146.8 (7.2)	113.4 (0.9)	139.6 (10.5)	£.68	3 6 .6	131.3 (4.4)	107,8 (F.1)
LEVEL	CONT	C/S DEN	CONT	C/S DEN	CONT	C/S DEN	_1011m	c/s den	CCNT	C/S DEN
+Gz	TID	CARO PLO	AVAD W	AENV AENV	IAL	CENTER PRTER PRESER	NYE EAET	bkess eke r	T FI A 크기	14 H 14 A

ACM PROFILE NO G-SUIT

)=SX

XO=/)	2.5 3.5 2 5 3 0 1.0 STOP n	$(\xi,7)$ (6.2) (7.8) (6.4) (8.8) (7.6) 30	(9.0) (5.5) (6.2) (6.9) (6.9) (6.6) (6.6) (6.6)	96.7 91.6 97.7 91.6 100.8 125.0			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		42.6 23.8 44.7 33.8 71.6 127.2	$= \frac{133.8}{(7.4)} \frac{156.0}{(6.3)} \frac{167.8}{(9.8)} \frac{169.4}{(8.3)} \frac{188.3}{(7.7)} \frac{170.0}{(6.3)} $ 30	8 132.6 173.4 157.8 12. 5 187.7 177.9
CT = DOG L	2.0 3.0 2.0 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} 89.2 \\ (5.4) \end{pmatrix} \begin{pmatrix} 91.4 \\ (5.6) \end{pmatrix} \begin{pmatrix} 6.3 \\ (6.3) \end{pmatrix} \begin{pmatrix} 5.6 \\ (5.3) \end{pmatrix}$	98.2 88.3 94.3 97.			130.0 121.0 119.3 130. (5.8) (9.1) (8.9) (9.1		50.0 15.0 48.3 0.	1) (5.2) (6	138.6 15F.5 169.4 152
SUBJE(+G _z Level 1.0 2.5	CONT (4.1) (5.3)	C/S 86.0 85.0 DEN (3.6) (7.3)			SUAE CONT	ENTES C/S 108.5 127.1 SERE DEN (4.3) (7.6)	SURE SO SO SO SO SO SO SO SO SO SO SO SO SO	C/S 23.7 38.7 PRESS DEN 73.7	- LU V	2 0 0 118 2 140 0

ACM PROFILE G-SUIT SUBJECT: DOG L

()=S₇.

		Y			·	T	†	1			,	T	
r		u i					ĽΊ			Цì			ц.
STOP		182.3 (15.6)					133.2 (4.4)			133.2			162.4)
1.0		135.7 182.3 (10.9)(15.6)					122.2 (6.0)			2.43			186.6 (11.3)
3.0		117.0 (8.6)					174.5 (7.6)			59.4			148.3 186.6 (14.0)(11.3)
2.5		95.8 128.2 (12.6)(6.5)					168.5			72.5			169.2 (11.1)
3.5		95.8 (12.6)					174.0			39			(3.61)
2.5							161.5 (4.5)			6 <u>5, 5</u>			139.2 161.5 (18.1)(23.5
0.4		.8 87.7 126.7 .3)(10.2)(10.7					170.0			16.0			136.2) (181)
2.0		129					155.7 (3.0)			78.7			145.2
3.0) (12.5)					157.2 (4.6)			41.9			(6.21) (6.31)
2.0		120.0 (11.0)					148.7			71.7			148.E (11.E)
2.5		86.2					147.0			p== Li \			[30.2] (4.0)
٥٠٢		97.7)					111.8 (4.1)			73			154.9 (9.4)
+Gz Level	CONT	C/S DEN		CONT	C, 'S DEN	CONT	C/S DEN		EMOD	C/S DEN		CCNT	C/S DEN
Le	OTID WC	CAR(FL		AVAD W	VENA	LARS LAIS ERUS	СЕ ИТ Р В ТР В В В В В В В В В В В В В В В В В В В	1	PROBE TEAE	BRES RAE		ТЯА ?	

ACM PROFILE NO G-SUIT SUBJECT = DOG D

Ľ	Ų				9		\o		(#)	
STOP	139.2 (7.1)				121.7 (13.5)		321.7		124.0 (8.0)	
1.0	112.¢ (3.°)				110.3		9.17		129.2 (a.0)	
3.0	87.5 (3.3)				118.2 (25.3)		1.6		143.3 (20.9)	
2.5	90.3 (3.7)				125.8 (188)		28.3		179.2 (111.7)	
3.5	94.3 (4.2)				141. (19.8)		4.5		184.2	
2.5	96.0 (4.4)				129.8 (15.7)		21.6		184.2	
4.0	93.7				122.8 (30.2)		0.0		192.2 (9.5)	
2.0	90.2 (3.1)				119.2 (26.3)		41.4		188.3 (13.2)	
3.0	87.3 (2.2)				131.7 (æ.3)		15.1		200.5 (11.6)	
2.0	84.2				143.8 (12.2)		66.1		1.88()	
2.5	81.0 (3.1)				110.5 (20.4)		J3.0		190°B (9°B)	
1.0	88.8 (4.7)				139.5 (28.7)		±00.0		112.8	
+Gz Level	CONT	C/S DEN	CONT	NEC S/S	CONT	C/S DEN	CCIVIT	C/S DEN	CONT	O,/S DEN
Le,)M OLID	CARC FIC		AEN P	STAT. STAT. BUNE	CENTE ARTER PRESE	NE E	BEEZ EXE I	ART TE	

ACM PROFILE NO G-SUIT SUBJECT: NOG M

 $\times S = ()$

	п					ιι\		n,		u١	
	STOP					110.7 (6.3)		110.7		148.0	
	1.0					129.7 (8.3)		3.68		168.2 (13.0)	
	3.0					194.5 (6.8)		40.6		155.8 (17.6)	
	2.5					189. F (8.9)		63.3		143.4 (16.9)	
	3.5					192.4 (11.7)		7.4		141.4 (6.9)	
	2.5					145.4		0.0		152.6 (15.0)	
	4.0					169.0 (11.2)		0.0		139.0 (8.3)	
S	2.0					137.5 (12.0)		26.7		181.0 (113)	
200	3.0					151.7 (9.5)		0.0		122.6	
-	2.0					125.2 (160)		15.1		197.4 (15.4)	
SUBJEC	2.5					99.7 (13.5)		0.0		207.6 (9.7)	
0 0 0	1.0					91.2 (10.8)		39.9		179.1 (1.11)	
	+Gz Level	CONT	C/S DEN	CONT	C/S DEN	CONT	C/S DEN	CONT	C/S Den	LNOC	C/S DEN
	+ 3	OTID	SAAS AIA	CAVA	VENA FL	ARE TAL EARE	CENTE ATTER PREZE	CAEL EVEL	нан Еквез	TAA TE	

PULSE PROFILE NO G-SUIT SUBJECT: DOG A

L	<u>c</u>	17		ļ.,	12	٧.	Ļ	56	¥	\downarrow	26	٧,	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	27.2	(t)
	COLLI	0 do			08.£ (3.3)	01.0 (£.a)		102 2 (1 a)	(5.2)		102.2	000		(5.5) (5.0)	(6.2)
000	+30	03.4 (F.1)			103. f (4.7)	102. ^c (14.1)		102.2	1		102.2	101.7		107.7	(8:3)
9	02+	99.E (4.7)			97.6 (4,1)	100.7 (10.7)		103.3 (1.9)	7.7		103.3	102,7		110.0 (4.2)	121 (2.1)
5	01.+	113.0 (10.5)			93.3 (3.4)	o€.0 (120)		102.1 (1.6)	2.3		102.1	10£.3		114.3	123, g (5, 5)
CH.O.D.	2010 2010	116.8 (13 5)			110.7 (3.5)	1 <i>64.3</i> (12.5.)		114. É (2.3)	139. r (6.8)		114. ز	130, £		(0.2) (5.0)	153.5 (3.5)
MITT) T	£4.3 (6.3)			(1.E (3.E)	115.4 (9.5)		124.2 (4.1)	18£.2 (111)		39.2	19.2		175.7 (11.9)	131.0
TAT ME	17 T				121.3 (6.9)	172.0 (12.6)		124.1 (4.8)	179.5 (8.0)		103.1	137.5		121.7	(2.2)
MTM	4	F2. F (4. G)			(3.7 (2.4)	12£. ((2,9)		123.0 (4.2)	187. ^E (8.0)		38.0	20. Ë		162.5 (9.5)	14 <u>9</u> .5)
MTM	3				120. f (§ . o)	174.4 (4.0)		124.7 (2.6)	177.7 (10.7)		103.7	135.7		105.3 (5.4)	105.3
GTM	3	55.3 (5.0)			(8.1)	107.8 (8.3)		125.0 (3.6)	188.6 (12.6)		40,0	21.6		162.6 (10.4)	144. E (17. C)
MTN	2	146.6 (13.2)			116.9 (7.0)	169.6 (13.2)		123. ^F (3. 7)	170.3 (7.8)		162.5	128.3		116.8 (10.3)	(5.3)
MTD	2	69. E (4.1)		- 1	74.0	118.7		120.6 (4.0)	181.2 (5.5)		35.6	14.2		174.3 (8.2)	124.0 (4.5)
MTM	1	123.3			123.8 (5.8)	179.4 (11.3		122.3 (4.3)	164.5 (7.5)		1.01.3	122.5		131 s (11.8)	110.7 (£.0)
GIM	1	44.8 (6.9)		- 1	79.2 (4.5)	125,0		114.2	146.8 (8.4)		2ò.2	C		P-1 \	168.7 (12.2)
START		101 (2.5)		,	10¢ (2.8)	103.3 (2.6)		102.4	106. F (3.2)		102	10ć. s		107.3 (2.7)	104.2 (4.2)
1	rulse#	<u> </u>	NEG DEN	!		O/S DEN		CONT	C/S DEN		8	C/S COEN		INCO	S/S DEM
	ro.	OTID		1	'OM CV A t				CENTE PRESE		ense: E A FT	BRESS EXE I		ART.	

PULSE PROFILE G-SUIT SUBJECT: DOG A

	E	0			u)	Q	14	Q	77	Ų	17.7	11
	COME	110 4			96 E		οφ / (1 γ)	04 B (E 3)	9.65	e 70	102.3 (3 £)	(0 - 3)
	30	1160			8e. ((9°5) (4°5)	(5 o) (5 70L	118 / (10.7)	107 3	α []	(3.0)	102.3
	÷20	123 1 (9, k)			84.E (7.7)	77.2 (3.2)	102. £ (3.6)	118 5 (11.3)	102	118.5	107.3	120 F (1 Q B)
	0 [+	135 4 (13.1)			86.6 (5.6)	8 <u>5</u> (6.3)	10c.8 (1.7)	137 1 (15.5)	10c 8	137.1	110,9	128 E (2.8)
	STOF	141 1 (11.5)			108.2 (8.8)	146.8 (14.3)	124.1 (3 0)	100.0	124 1	190.0	118.0 (3.9)	(6.3) (6.3)
	MED F	$\overline{}$			88.6 (1.9)	87.0 (14.1)	160.7 (3.2)	287.3 (27.0)	£ 83	9°.5	131.0	122.8
	NIM	103.2 (8.0)			115.0 (3.9)	13¢.8 (5.4)	141.8 (2.8)	222.3 (18.0)	117 8	159.0	116.9 (3.0)	126.7
	MID 4	43.7 (7.4)			8F.2 (2.8)	45.8 (8.7)	162.1 (2.8)	279. E (22. E)	T 73	22.0	131.0 (3.£)	$(\frac{117}{(5.2)}, \frac{3}{3})$
	MIN 3	98.0 (6.8)			116.0 (2.2)	128 (6.3)	140.3 (2.4)	218.6 (17.9)	116.0	154.3	112.9	124.5
	MID 3	40.3			90.0 (1.4)	56.8 (8.5)	160.8 (2.8)	263 (21.1)	62.8	π. π.	135.7	(?; 3)
	MIN 2	108.8 (3.2)			116.0 (5.0)	108.5 (6.9)	139.7 (1.8)	213.5	115.7	149.2	$\frac{112.2}{(\hat{\epsilon},0)}$	126.7 (6.4)
	MID	42.1 (6.9)			89.8 (2.0)	F1.E (0.4)	153.6 (3.4)	2£7.8 (17.1)	U)	0.3	136.1 (e.6)	
5	ZH.	121.0			131.3 (4.0)	142.8 (11.3)	138.9 (3.0)	220 (18.5)	114.9	t	 103 S	119.7
	MID I	£8.6 (4.0)			103. É (4.0)	95.6	139.6 (3.5)	239.1	B). C	၁	157.0 (7.2)	(21.0)
	START	106.6 (5.6)			100.2	97.5	102.9 (1.3)	$\begin{pmatrix} 11\tilde{\epsilon} . 3 \\ (4\tilde{\cdot}\tilde{\epsilon}) \end{pmatrix}$	C (5) E	115.3	99. C (1.2)	109.5
	.se #	CONT	C,/S NEU		CONT	071	Eg S	DES SE	CONT	O/S SEC	EWC 2	្ត ខេត្ត ឧត
	Puls		OARO DIM	V	A CAVI			CENT?	PEAE		마위 A : 문다	

PULSE PROFILE NO G-SUIT SUBJECT: DOG L

	E	<u>~</u>	-	L	m		_] ~	Ï.		18	L	m	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	J
	CONT	101.5	105.0		9£.8 (2.2)				100 £		į	100.€		112.0 (8.0)	38.3) (£.3)	
	+30				75.4				98.g)			98.2		143.5	(i.i)	
	+20	135.2 113.8 (21.6) (12.5)	118.5		79.7				97.8)			9.70		140.2 (9.8)	122.E	
	+10	126.8 (≈. 0)	126.1 (4.6)		71.5				106.0		1	106.0		161.5 (5.2)	140.5 (E.5)	
	STOP	160.8 (22.3)	132. F (6.4)		£7.4 (7.7)				116.6			26		1633	168.6 (10.8)	
	MID	čř.5 (8.8)	40.0 (6.8)		1				126.6 (7.0)			0		218.0 (10.8)	\{i&6\	
	MIN 4	115.9	106.5 (4.5)		59.0 88.5 (11.6)(8.6)				101. g (2. ó)			6£		211.8 (10.8)	165.8 (13.9)	
	MID 4	67.8 (8.4)	40.1 (7.5)		88.1 (10.5)				115.4			, O		225.1 (20.9)	171.7	
	MHN 3	106.3 (3.8)	99.5 (4.4)		51.3 (8.6)				100.0			- 47		189.5 (5.3)	166.4 (11.7)	
	e m	55.8 (13.8)	40.6 (7.5)		96.9 (6.1)				101.8			0		172.2	120.g (16.7)	
	MIN 2	128.5 (17.9)	104.0		69.0 (11.8)				103.0 (3.0)			68		171.1 (14. £)	165.5 (10.8)	
	M1D	(3.9) (7.6)	47.5 (5.8)		88.6 (7.7)				116. 2 (5.7)			0			168.0 (11.6)	
1	MT N	115.7 (13.6)	86.5 (3.9)		74.1 (12.1)				89.8 (9.3)			33		160.2 (38.2)	176.3 (9.7)	
L	MLD 1	61.4 (7.7)	(8.6) (6.6)		66.0 (n.5)				41.6 (5.9)			0		177.8 (28.1)	124.8 (7.9)	
CHADIN	THRIC	77.9 (8.9)	101.5 (2.5)		102.9 (1.5)				96.4 (1.9)			96.4		128.4 (19.3)	96.8 (3.0)	
#		CONT	C/S DEN		LNOS	C/S DEN		CONT	C/S DEN		MOO	C/S DEN		LNOC	0/8 DEW	
PITTSE	,)A5)JA		140/1	AEN AEN			CENTI FATTA PRESS			ьиег еле		ТЯА ? ЭТ,		

PULSE PROFILE G-SUIT SUBJECT: DOG L

 $\overline{x}S=()$

	Pulse ;	OM CONT	FIC	T.NO.	A CAY	VEN VEN	IAL TAL	CENTER ANTER PRESS DEN	URE	EXE I DEN DEN	TE CONT	AH C/S
	# START	Į,	C/S 120. DEN (104)	E		S N	T	(S 113, 2 IN (12.8)	L.	'S 113.2	T.	(S 110.0
	I MID		(3.0) (3.0)					104.5		0		165.0
-	MEN		13°.8 (9.3)					139.0 (16.0)		104		141.0 (102)
	MID 2		(1.0) (4.7)					137.5 (9.2)		9.5		136. F (36. G)
j	MIN		129.7 (10.5)					127.0		25°		140.0
i	e e		68.2 (5.5)		,			139.2 (9.2)		11.2		154 O (17.0)
	MIN 3		138.2 (8.3)					128.0 (5.8)		93		164 0 (12.8)
	MID 4		73.2 (5.a)					143.2 (8.0)		15.2		175.2
	MIN 4		133.2 (11.6)					14r. 0 (16.3)		110.0		177 9 (16.5)
	MET C		74.3 (3.2)					140.0 (8.1)		12.0		172. S
	STOP		169.2 (9.0)					129.7		120.7		167.6
	+10		144.3 (8.0)					131.0 (9.6)		131		13.85
	+20		128.0 (8.9)					122.8		122	·	716.7
	+30		115.7					110.2		110 2		106.7
	CONT		(ma)	. 1 1				106.0		106		000

PULSE PROFILE NO G-SUIT SUBJECT: DOG D

n=2

CONT	85.0				116.5			ў.9П			0.111	
+30	97.0				0.401			104.0			137.5	- The same of the
- 2C	88.0				72.0	,		0.97			123.0	
+ 10	97.0		·		76.0			76.0		·	112.8	
STOP	108.0				115.0			115.0			0.961	
MID 5	5*11				152.0			0.94			131.3.	
MIN 4	93.0				0.611		7.7 ()	2.38			200,0	
MID 4	3.64				142.5	:		39.0	·		129.3	
MIN 3	93.0				0.911			7.56			२•96इ	
MID 3	5*6† ₁				0.321			0°≟τ			ाकेड-8	
MIN	93.5				116.5			2.98			0°0,0	
MID	5.82				0.541			32.0	·		0.27	
MIN 1	ડ•ાઇ				85.0			2.03				
MID 1	5 * 6ħ				64.5			O			0.001	
START	72.0		·		81.5			100			0.001	
# 2	CONT	C/S Den	ಂಬ್	C/S Den	CONT	C/S Den		CCNT	C/S Den		CONT	C/S DEN
PULSE	an:	CAROI		VENA CAVA PILOW	JAI	CENTR CENTRA			BYES PEAE! EKE			AASH HTAA

XS = ()PULSE PROFILE NO G-SUIT SUBJECT: DOG M

2						_	-7		=	addina staine		A STATE OF THE PARTY OF THE PAR
CONT	1100						99.3		99.3		106.3 15.5)	
+30	2						94.3		94.3		123.7	
+20)						92.7		92.7		138, <u>C</u> (9,7)	
+10)	,					(3.5)		89.3		124.7 (7.4)	
STOP	· !						91.0		Ιό			
MID	ďΛ	d.			-		67.3 (1.7)		10.0	·	142.3 (19.8)	
MIN	4						97.7		62.7		151.3 142.3 136 0 (12.0)(19.8)(9.0)	
MID	4						66.7		10.0		158.0 (17.6)	
MIN	3						99.3		64.3		147.0 (6.0)	
MID	3						65.0 (7.8)		8.0		168.3 (12.2)	
MIN	2						97.7 (5.2)		62.7		.0)(11.1)(12.2)	
MID	2						67.0 (3.6)		10.0		.5 170.0 ? ((11.0)	
MIN	1						86.7 (5.5)		51.7		100 (25)	
QIM	FT.						38.7 (8.8)		0		209.0 (16.5)	
START							,					
#		CONT	C/S DEN	CONT	C/S Den		CONT	C/S DEN	CONT	C/S DEN	CONT	C/S DEN
PULSE			OARO M¶	M	VENA PLC		JAR JAI ERIT	CE NT E PRTER PRESS		FRES	TAA: ST:	4A

SUSTAINED PROFILE

NO G-SUIT

SUBJECT = DOG A

ជ	17		7	6	25	10	25	10	<u>در</u>	10
CONT	107.4		05.4 (5.2)	99.7	104.6 (2.9)	103.3 (4.6)	104.E	103.3	110.0	103.3 (4.3)
· ÷30	111.5		106.2 (8.6)	98.6 (2.2)	102.8 (1.9)	111.7	102.8	111.7	121.0 (3.9)	122.2 (5.5)
0.7 + 50	122.5		103.3 (5.6)	100.4	103.2	110.5	103.2	110.5	126.7	125.2
+10	125.3 (6.7)		100.4 (5.6)	98.6 (2.0)	104.9	106.9	104.9	106.9	132.0	148.9 (7.9)
STOP	125.0 (6.7)	·	97.4 (6.7)	98.4 (3.4)	112.6 (2.9)	166.7 (5.3)	112.6	166.7	145.1	157.7
+2.51	56.5 (8.2)		103.9	98.4 (1.8)	144.5 (3.4)	201.7 (4.8)	84.0	101.3	146.4 (7.0)	123.6 (6.0)
+5,	59.7 (6.9)		106.1 (8.9)	99.5 (2.3)	152.5 (5.6)	190.6 (4.4)	92.0	90.2	151.2 (6.3)	123.7
+1.51	61.1 (4.7)		100.4	96.4 (2.0)	151.5 (6.4)	181.4	91.3	81.0	143.1 (6.6)	128.5)
, T +	59.3 (5.9)		9F.4 (4.8)	98.5 (2.8)	150.6 (7.8)	176.9 (5.4)	90.1	ш, 9 1:-	138.0	(7:3)
n. +	54.3 (5.7)		87.6 (6.2)	99.E (2.4)	141.5 (6.4)	163.4 (4.0)	81.0	63.0	153.7	126.2
To+10"	36.1		104.9	93.2 (2.7)	129.5	135.5	0.69	(M)	1005 1005 1005 1005 1005 1005 1005 1005	140.5
₫ <u>₲</u> =೦	40.5 (8.3)		95.9	96.0	107.5	111.2 (4.4)	 6.74	10.8	18c.3 (4.3)	150,4
C C	101.5		101.1	96.4 (1.3)	101.7	100.8 (1.3)	101.7	100.8	104.8	(3.5)
(v)	CONT	C/S DEN	CONT	S/O	CCNT	C/S DEN	CONT	c,′s	CONT	3/0
TIME		OARO DIG		VENA	AIAI	CENTH ARTER PRESS		EXES EXES	TAA: :at.	

SUSTAINED PROFILE G-SUIT SUBJECT: DOG A

xS=()

	ជ	u 7		u,	80		10	ω	10	ω	10	αo
	Cont	93.8 (6.2)		101.3	96.5) (5.6)		8. ₆₆ 8 (2.6)	103.0 (2.9)	დ. დ.	103	(e, e)	
	130	101.3		84.0 (3.7)	114.8 (3.5)		104.6 99 (1.6)	112.6 (6.7)	104. É	112.6	103.° (4.9)	105.1
	+50	100. ^r (6. 1)		78.4 (3.4)	114.8		104.9 (1.4)	111.4 (7.5)	104.9	111.4	102 F (4.3)	(5.5)
j		112.5		81.6 (1.8)	$105.3 \ 1$		106.4 (1.8)	119.2 (3.8)	106.4	Ilo.2	(7'4) 3'3[T	(10.0)
	Stop	122.0		91.6 (5.9)	192.3 (8.3)		113.0	156.8 (10.9	0.811	756. A	(8.2) (6.2)	145.0) (5.0)
	+2.5	66.8 (4.5)		101.0	110.0 (10.5)		145.0 (2.4)	213.8 (5.2)	≎.43	F. 4.	(3.7)	15.5
	+51	58.8 (4.5)		108.4 (3.0)	94.3		141.0	202.3 (7.4)	80.0	73.2	117 (5.5)	107.1 (4,2)
	+1.5.	59.3 (5.1)		96.2 (3.7)	98.3		145.3	(8.E)	94.3	[* U * Y * Y * Y * Y * Y * Y * Y * Y * Y	113.1 (4.6)	10.5
	+] +	60.2 (6.2)		97.4 (2.9)	111.7		142 (2.8)	196.3 (12.1)	81.0	84.5	$\frac{126.z}{(4.7)}$	106.3
	+ u\	72.2 (5.7)		99.6	104.0		138.6 (2.9)	186.4 (7.9)	9.77	n 7 .3	 (3.8)	mb opei
-	To+10"	68.3 (4.4)		108.2 (1.3)	146.9		129.1 (4.0)	165.7 (7.7)	68.1	5.36	147.; (12.2)	10.1.6
	ರಿ_0=೦	70.7 (2.7)		107.0	126.4 (7.2)		114.5	139.9 (5.9)	 53.5	10.8	(3.1)	0.000
	To	100		98.4	99.7 (3.4)		0,0 0,0 0,0	103.3	00°0	103.3	103.	(4.4.)
		CONT	C/S DEN	CCNT	C/S DEN		CONE	S/S NEC	TNOO	S/2 SEC	CCMT	9 K 5 G
		OM OLID		AVAO WO				OENT SEAT OENTE		SSBBB UNIXU	TRT 1	NH.

SUSTAINED PROFILE
NO G-SUIT
SUBJECT=, DOG L

×S=()

E	22	34	22			34		34	25	34
CONT	100.2 (4 1)	102 ; (3.0)	97.8			103.0 (2.8)		103.0	(8.4)	06.8 (4.6)
+30	127 B (77)	131.§ (4.6)	108. ^E (1.3)			116.3 (3.2)		116 3	132.7 (£.2)	(
+20	120 0 (5 5)	135 4 (5.4)	110.É (1.5)			116.2 (2.3)		116.2		130.5 (3.8)
+10	$\{\xi_{.1}^{134.3}\}$	146.2 (5.1)	116.0 (2.8 ⁻)			119.9		117.9	-1-	145.2 (5.0)
STOP	137.0 (6.3)	139.8 (6.0)	121.8 (3.8)			126.8 (5.4)		126. P	$\{\vec{r},\vec{\tau},\vec{\tau}\}$	157 (4.)
+2.5.	76.0	72.2 (6.0)	99.6 (1.0)			130, 6 (6,3)		£0.6	15 (£	(3.4) 9.3£1
+5.	74.3	76.7 (4.7)	(0.9) (5.7)			150.7 (6.2)		61.7	122.0 (5.4)	131.2 (6.5)
+1, £'	72.2 (5.7)	73.4 (4.8)	100.0			137.1		48.5	140.3 (5.5)	140.9 (6.5)
+],	76.3	74.0 (5.1)	96.7			126.0 (5.4)		37.0	0.1	151.C (6.5)
+ ~	66.7 (4.2)	73.2 (3.2)	97.6			115.1 (5.1)		26.1	138.7 (10.9)	163.7
To+10	[6.9]	(3.9 (4.3)	92.1			(6.9)		0.0	 ,,,,	(6.1)
₫ © =0	48.7 (4.6)	(5 .5)	01.2			92.8		ω ω	166.9 (10.5)	$(\tilde{\epsilon}, 1)$
οH	92.4	107.0	99.1			104.2		104.2		104.0 (2.6)
Time	CONT	C/S DEN	CONT	C/S DEN	CONT	C/S DEN	CCAT	C/S DEN	CONT	C/S DEN
EL.	OTID	AAD LIA	AVAD WO	VENA IA	HARAI, SIAI, SURE	CENT PRES	SURE SURE	BBES EXE	ጥ <i>ዘ /</i> ዝባ	IBH IAR

ABLE

SUSTAINED PROFILE G-SUIT SUBJECT: DOG L

	u		٤				9		ę		Ų
	Cont		96.7 (E.7)				97.7		07.7		100.7 (4.4)
	+30		114.3				99.3		e. 00		105.3 (2.8)
	+20		12£.2 (7.9)				97.3		ġ7.3		137.0 (a. ^)
	+10		135.2 (8.4)				108.2 (2.3)		108.2		1,2,9,1,4,7 (102) (12.9)
	Stop		128.3 (9.0)				115.3		115.3		1,2,9 (102)
	+2.51		94.3				144.1 (8.4)		F. 7		1,52.0 (17.5)
	+21		101.3				(† † †) E = 1		56.3		130 g (101)
	+1,5"		or.8 (4.2)				147.0 (5.6)		58.0		110,2 (5,3)
	+1,		95.0 (4.2)				136.0 (2.9)		0.74		130.g (9.2)
]	+.51		90.5 (7.0)				133.3		£.44		(170°.0 (14°.0)
	To+10		71.7 (7.0)				110.3 (8.0)		21.3		162.8 (15.5)
	₫ G :=0		73.3 (6.4)				100.8		11.8		130.0 (4.6)
ا د	To		121.0 (9.8)				100.2 (5.2)		100.2		118.3 (2.2)
		CONT	C/S DEN	CONT	C/S DEN	CONT	C/S DEN	 CONT	C/S DEN	 LNOS	O./S DEN
	Time	MID)	OĦ A O ○.1됵		VENA FLC	LARI LAIS ARUS	СЕИТН АНТЕН РЯБББ		ьиегг еле т	Т/і А) д-р.	

SUSTAINED PROFILE
NO G-SUIT
SUBJECT = DOG D

Ę	7					2			2		ک	
CONT	122.8 (21.0)	·				105.4 (16.8)			105.4		101.6 (14.0)	
+30	196.0 165.3 122.8 (23.8) (20.5) (21.0					90.0 90.3 92.8 95.8 105.0) (10.8) (8.8) (7.1) (10.0) (16.8)			95.8		91.0	
+20	196. 0 (23.8)					92.8 (7.1)			92.8		133.4 115.0 (14.3)	
+10	200.7 (19.7)					90.3 (8.8)			90.3		133.4	
STOP	230.5 (184)					90.0			0.06		146,4 (16,7)(
+2.5'	131.6 (13.3)					87.0 (4.0)			13.8		212.3 205.6 204.3 203.6 (17.6)(17.8)(18.3)(19.4)	
+21	114.9					100.0 89.9 87.0 (10.0)(12.0)(4.0)			17.8		204.3 (18.3)	
+1.5	126.4					100.0 (10.0)			6.73		205.6 (17.8)	
+1.	103.2 (11.9)					(8.4°)			19.9		212.3 (17.6)	
Ť	102, 6 (10.8)					90.5			18.5		 (19.13) (19.1)	
To÷13"	82.9 (6.9)					98.5			26.5		3 218.7 (20.8)	
d <u>G</u> =0	83.6 (7.0)				·	98.3			26.2		210. (25.4	
То	3,101 (8,1)					100.0			100		103. 6 (3.6)	
Time	CONT	C/S DEN		CONT	C/S DEN	CONT	C/S DEN		CONT	C/S DEN	CONT	C/S DEN
Tí	CAROTID WO.14			AVENA CAVA WOLT		CENTERAL ARTERIAL PRESSURE			EXE PEAEL		ТЯА ЭН Э ТА Я	

SUSTAINEL OFILE
NO G-SUIT
SUBJECT = DOG M

E							9		9		9	
CONT							101.4		101.4		109.2 (4.9)	
+30							116.3 (4.0)		116.3		132.0 (5.1)	
+20							110,3		110.3		123.7 (3.7)	
+10							96. 2 (5.9)		96.2		151.5 (8.4)	
STOP							134.2 (9.1)		134.2		144.5 (6.1)	
+2.51							2.7 188.0 201.0 193.2 5)(21.9)(13.4 (13.3)		59.2		139.7	
+5,							201.0		67.0		116.0	
+1.5'							188.0 (21.9)		54.0		0°11)	
+1;							5 182.7 (20.5)		48.7		136.3 (10.1)	
+.5.							154.5)(19.6)		20.5		169.2 (15.4)	
To+10"							92.5 (10.5)		0		(8.8)	
0 <u>-</u> 5p							79.2 92.5 (10.7)(10.5)		0		186.5 (10.0)	
To							95.5 (2.2)		95.5		101.7	
(6)	CONT	C/S DEN		CONT	C/S DEN		CONT	C/S DEN	CONT	C/S DEN	CONT	C/S DEN
TIME	CAROTID WOIT		AVAD WC		AENA FLC		CENTERAL ARTERIAL ERESSURE		EXE PEAEL		THA.	HН АЯ

REFERENCES

- 1. Brown, A. M: Mechanoreceptors in or near the Coronary Arteries.

 J Physiol (Lond) 177:203, 1965.
- 2. Folkow B., Heymans, C., and Neil, E. Integrated Aspects of Cardiovascular Regulation. In, W. F. Hamilton (ed): <u>Handbook of Physiology: Circulation, Vol. III, Section 3.</u> American Physiological Society, Washington, D. C., 1963, pp. 1781-1824.
- 3. Gauer, O. H. and Henry, J. P. Circulatory Basis of Fluid Volume Control. Physiol Rev 43:423-481, 1963.
- 4. Gauer, O. H. and Salzman, E. W. Reflex Responses of the Circulation.

 In, O. H. Gauer and G. D. Zuidema: <u>Gravitational Stress in</u>

 Aerospace Medicine, Little, Brown & Co., Boston, 1961, pp. 46-51.
- 5. Gauer, O. H. and Zuidema, G. D. The Physiology of Positive Acceleration.

 In (their) <u>Gravitational Stress in Aerospace Medicine</u>, Little,

 Brown & Co., Boston, 1961, pp. 115-133.
- 6. Frink, R. J. and James, T. N. Intracardiac Route of the Bezold-Jarisch
 Reflex. Am J Physiol 221: 1464, 1971.
- 7. Lisander, B. Factors influencing the Autonomic Component of the Defence Reaction. Acta Physiol Scand (Suppl 351) 1970.
- 8. Doba, N. and Reis, D. J. Role of the Cerebellum and the Vestibular

 Apparatus in Regulation of Orthostatic Reflexes in the Cat.

 Circ Res 34:9, 1974.

- 9. Stevens, C. M. The Contribution of Atrial and Carotid Sinus

 Baroreceptors to the Maintenance of Blood Pressure Under

 Increased Gravitational Stress. M.S. thesis, University

 of Southern California, Los Angeles, 1968.
- 10. Stevens, C. M., Meehan, J. P., and Rader, R. D.: Blood Pressure

 Measurement with Chronically Implanted Intravascular Transducers.

 In, E. P. McCutcheon (ed): Chronically Implanted Cardiovascular

 Instrumentation, Academic Press, New York, 1973, Chap. 26,

 pp. 235-245.
- 11. Rader, R. D., Stevens, C. M., and Meehan, J. P. An Interferometric Flow Measurement Technique: A Brief Analysis.
 <u>IEEE Trans Biomed Eng</u> 21:293-297, 1974.

PUBLICATIONS

- 1. Stevens, C. M. and Rader, R. D. The Contribution of Vascular

 Receptors to +Gz Tolerance (Air Force Grant AFOSR 75-2780).

 In, Review of Air Force Sponsored Basic Research in

 Environmental and Acceleration Physiology, October 10-12, 1975,

 at University of California, Santa Barbara, Calif.,

 Air Force Office of Scientific Research, Arlington, Va., 1975.
- 2. Stevens, C. M., Rader, R. D., and Shaffstall, R. M. The Contribution
 of Vascular Receptors to +Gz Tolerance. To be presented at the
 47th Annual Scientific Meeting of the Aerospace Medical Association,
 Bal Harbour, Fla., May 10-13, 1976.