Right-Linear Grammars

• All productions have form:

$$A \to xB$$
or
$$A \to x$$

• Example: $S \rightarrow abS$

 $S \rightarrow a$

string of terminals

Left-Linear Grammars

• All productions have form:

$$A \to Bx$$
or
$$A \to x$$

• Example: $S \rightarrow Aab$

$$A \to Aab \mid B$$
$$B \to a$$

string of terminals

Regular Grammars

Regular Grammars

- A regular grammar is any right-linear or left-linear grammar
- Examples:

$$S \rightarrow abS$$

$$S \rightarrow Aab$$

$$S \rightarrow a$$

$$A \to Aab \,|\, B$$

$$B \rightarrow a$$

What languages are generated by these grammars?

Languages and Grammars

$$S \to abS \qquad \qquad S \to Aab$$

$$S \to a \qquad \qquad A \to Aab \mid B$$

$$B \to a$$

$$L(G_1) = (ab) * a \qquad \qquad L(G_2) = aab(ab) *$$
 Note both these languages are regular

we have regular expressions for these languages (above)

we can convert a regular expression into an NFA (how?)

we can convert an NFA into a DFA (how?)

we can convert a DFA into a regular expression (how?)

Do regular grammars also describe regular languages??

Regular Grammars Generate Regular Languages

The language L(G) generated by any regular grammar G is regular

The case of Right-Linear Grammars

- Let The a right-linear grammar
- We will prove: $L(\dot{G})^{
 m regular}$
- Proof idea: We will construct NFA using the grammar transitions

Example

Given right linear grammar:

$$V_0 \rightarrow aV_1$$

$$V_1 \rightarrow abV_0|b$$

Step 1: Create States for Each Variable

• Construct NFA $\,M\,$ such that every state is a grammar variable:

$$V_0 \rightarrow aV_1$$

$$V_1 \rightarrow abV_0|b$$

Step 2.1: Edges for Productions

- Productions of the form $V_i o a V_j$ result in $\delta(V_i,a) = V_j$

$$V_0 \to aV_1$$

$$V_1 \to abV_0|b$$

Step 2.2: Edges for Productions

• Productions of the form $V_i \to wV_j$ are only slightly harder.... Create row of states that derive w and end in V_j

$$V_0 \rightarrow aV_1$$
 $V_1 \rightarrow abV_0$

Step 2.3: Edges for Productions

• Productions of the form $V_i \to w$ Create row of states that derive w and end in a final state

 $V_0 \rightarrow aV_1$ $V_1 \rightarrow abV_0 | b$

In General

- Given any right-linear grammar, the previous procedure produces an NFA
 - We sketched a proof by construction
 - Result is both a proof and an algorithm
 - Why doesn't this work for a non linear grammar?
- Since we have an NFA for the language, the right-linear grammar produces a regular language

Any regular language $\,L\,$ is generated by some regular grammar $\,G\,$

Any regular language $\ L$ is generated by some regular grammar $\ G$

Proof idea:

Let M be the NFA with L = L(M).

Construct from M a regular grammar G such that L(M) = L(G)

NFA to Grammar Example

ullet Since $\,L\,$ is regular there is an NFA

Step 1: Convert Edges to Productions

$$q_{0} \rightarrow aq_{1}$$

$$q_{1} \rightarrow bq_{1}$$

$$q_{1} \rightarrow aq_{2}$$

$$q_{2} \rightarrow bq_{3}$$

$$M$$

$$q_{0} \qquad a \qquad q_{1}$$

$$q_{1} \qquad q_{2}$$

$$\lambda \qquad b$$

$\begin{array}{c} \text{Step 2:} \\ \lambda \text{ Edges and Final States} \end{array}$

In General

- Given any NFA, the previous procedure produces a right linear grammar
 - We sketched a proof by construction
 - Result is both a proof and an algorithm
- Every regular language has an NFA
 - Can convert that NFA into a right linear grammar
 - Thus every regular language has a right linear grammar
- Combined with Part 1, we have shown right linear grammars are yet another way to describe regular languages

But What About Left-Linear Grammars

What happens if we reverse a left linear grammar as follows:

$$V_i
ightarrow V_j w$$
 Reverses to $V_i
ightarrow w^R V_j$

- . The result is a right linear grammar. $V_i
 ightarrow w^R$
 - If the left linear grammar produced L, then what does the resulting right linear grammar produce?

But What About Left-Linear Grammars

• The previous slide reversed the language!

$$V_i
ightarrow V_j w$$
 Reverses to $V_i
ightarrow w^R V_j$ $V_i
ightarrow w$ Reverses to $V_i
ightarrow w^R$

- If the left linear grammar produced language L , then the resulting right linear grammar produces L^R Claim we just proved left linear grammars produce regular languages? Why?

Left-Linear Grammars Produce Regular Languages

- Start with a Left Linear grammar that produces I want to show $m{L}$ is regular
- Can produce a right linear grammar that produces L^R
- All right linear grammars produce regular languages so L^R is a regular language
- The reverse of a regular language is regular so $(L^R)^R = L$ is a regular language!

For regular languages L_1 and L_2 we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2 Star: L_1* Reversal: L_1^R Are regula
Languages

Are regular

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

We say: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: $L_1 *$

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Intersection

DeMorgan's Law:
$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

$$L_1$$
, L_2 regular

$$\Longrightarrow \overline{L_1}$$
 , $\overline{L_2}$ regular

$$\Longrightarrow \overline{L_1} \cup \overline{L_2} \qquad \text{regular}$$

$$\Longrightarrow \overline{\overline{L_1} \cup \overline{L_2}} \qquad \text{regular}$$

$$\Longrightarrow \overline{L_1} \cup \overline{L_2}$$
 regular

$$\Longrightarrow L_1 \cap L_2$$
 regular

What's Next

- - Linz Chapter 1,2.1, 2.2. 2.3, (skip 2.4), 3, and Chapter 4
 - JFLAP Startup, Chapter 1, 2.1, (skip 2.2), 3, 4
- Next Lecture Topics from Chapter 4.2 and 4.3
 - Properties of regular languages
 - The pumping lemma (for regular languages)
- Quiz 1 in Recitation on Wednesday 9/17
 - Covers Linz 1.1, 1.2, 2.1, 2.2, 2.3, and JFLAP 1, 2.1
 - Closed book, but you may bring one sheet of 8.5 x 11 inch paper with any notes you like.
 - Quiz will take the full hour on Wednesday
- Homework
 - Homework Due Thursday