Linear Algebra Done Right

Week 3 Notes (a)

shaozewxy

June 2022

5.A Invariant Subspaces

Suppose we can decompose V into the direct sum of subspaces:

$$V=U_1\oplus U_2\oplus ...\oplus U_n$$

Then we can study T restricted to U_i for $i \in \{1, ..., n\}$ respectively. However, $T|_U$ might not map U to itself. Therefore, the concept of invariant subspace is useful.

5.2 Definition of invariant subspace

Given $T \in \mathcal{L}(V)$, a subspace U of V is called **invariant** if $\forall u \in U, Tu \in U$. In other words, U is invariant iff $T|_U$ is an operator on U.

5.3~5.4 Some examples of invariant subspaces

1. $\{0\}$ is invariant under T:

$$T(0) = 0 \in \{0\}$$

2. V is invariant under T:

$$\forall v \in V, Tv \in V$$

3. $null\ T$ is invariant under T:

$$\forall v \in null \ T, Tv = 0 \in null \ T$$

4. $range\ T$ is invariant under T:

$$\forall v \in range \ T, Tv \in range \ T$$

5. Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ is defined by

$$Tp = p'$$

then $\mathcal{P}_4(\mathbf{R})$ is a invariant under T because $\forall p \in \mathcal{P}_4(\mathbf{R}), Tp = p' \in \mathcal{P}_3(\mathbf{R}) \subseteq \mathcal{P}_4(\mathbf{R})$

Eigenvalues and Eigenvectors

The class of invariant subspaces with dimension 1 is of special interests.

Given $v \in V$, we create $U = \{\lambda v : \lambda \in \mathbf{F}\} = span(v)$, then U is a 1-dimensional subspace of V. If U is invariant under T, then $Tv \in U \to \exists \lambda \in \mathbf{F}, Tv = \lambda v$.

Conversely, if $Tv = \lambda v$, then span(v) is a 1-dimensional invariant subspace under T.

We thus give the defintion of eigenvalue and eigenvectors:

5.5 Defintion of eigenvalue

Given $T \in \mathcal{L}(V)$, $\lambda \in \mathbf{F}$ is called **eigenvalue** if $\exists v \neq 0 \in V, Tv = \lambda v$.

5.6 Conditions for eigenvalue

Given V finite-dimensional, $T \in \mathcal{L}(V)$, $\lambda \in \mathbf{F}$, then the following are equivalent:

- (a) λ is an eigenvalue of T.
- (b) $T \lambda I$ is not injective.
- (c) $T \lambda I$ is not surjective.
- (d) $T \lambda I$ is not invertible.

Proof:

 $a \iff b$: Because $Tv = \lambda v \to Tv - \lambda v = 0 \to (T - \lambda I)v = 0$

Therefore, $a \iff b$

It follows that $b \iff c \iff d$ since T is a linear operator.

5.7 Definition of eigenvector

Given $T \in \mathcal{L}(V)$. $v \neq 0 \in V$ is an **eigenvector** if $\exists \lambda \in \mathbf{F}, Tv = \lambda v$.

5.8 Example of eigenvector

Given $T \in \mathcal{L}(\mathbf{F}^2)$ defined by

$$T(w,z) = (-z,w)$$

(a) If $\mathbf{F} = \mathbf{R}$, then suppose $\exists v = (w, z) \in \mathbf{F}, Tv = \lambda v$, we have

$$\begin{cases} w = -\lambda z \\ z = \lambda w \end{cases}$$
 5.9

Therefore $w = -\lambda^2 w$.

Since $\mathbf{F} = \mathbf{R}$, w = 0 = z.

Therefore, no eigenvector exists for T when $\mathbf{F} = \mathbf{R}$

(b) Following the logic from above, we know that when $\lambda = i$, then

$$-\lambda^2 w = -i^2 w = w$$

and $z = \lambda w = iw$.

Therefore T has eigenvalue i and eigenvector v = (w, iw) when $\mathbf{F} = \mathbf{C}$

Properties of eigenvectors

5.10 Distinct eigenvectors are independent

Given $T \in \mathcal{L}(V)$, suppose $\lambda_1, ..., \lambda_m$ are distinct eigenvalues and $v_1, ..., v_m$ are corresponding eigenvectors. Then $v_1, ..., v_m$ linearly independent.

Proof:

Suppose $v_1, v_2, ...$ are all linearly independent until v_k . Then we have

$$v_k \in span(v_1, ..., v_{k-1})$$
 5.11

and therefore,

$$\sum_{i=1}^{k-1} a_i v_i = v_k 5.12$$

Since also $Tv_k = \lambda_k v_k$,

$$Tv_k = T\left(\sum_{i=1}^{k-1} a_i v_i\right) = \sum_{i=1}^{k-1} a_i \lambda_i v_i = \lambda_k v_k = \sum_{i=1}^k a_i \lambda_k v_i$$

This means that

$$\sum_{i=1}^{k-1} a_i \lambda_i v_i = \sum_{i=1}^{k-1} a_i \lambda_k v_i \Rightarrow \sum_{i=1}^{k-1} a_i (\lambda_i - \lambda_k) v_i = 0$$

Which is contradiction to the fact that $v_1, v_2, ...$ are linearly independent until v_k .

Therefore no such v_k exists, i.e. $v_1, ..., v_k$ are linearly independent.

5.13 Number of eigenvalues is smaller than dimension

Proof:

This naturally follows from the statement above since $v_1, ..., v_m$ are linearly independent, there can only be at most $\dim V$ linearly independent vectors.

Restriction and Quotient Operators

5.14 Definition of $T|_U$ and T/U

Given $T \in \mathcal{L}(V)$ and U invariant in V under T.

• The **restirction operator** $T|_U$ is defined as

$$\forall u \in U, T|_{U}(u) = Tu$$

• The quotient operator T/U is defined as

$$\forall v \in V, (T/U)(v+U) = Tv + U$$

For the two defintions above, the fact that U is invariant under T is very important.

 $T|_U$ only maps U to U when U is invariant.

For T/U to make sense, we need to show that $\forall, v, w \in V, v + U = w + U \Rightarrow Tv + U = Tw + U$:

 $v+U=w+U\to \exists u\in U, u+v=w.$ Therefore, we have

$$Tw = T(v + u) = Tv + Tu$$

Since U invariant under $T, Tu \in U$, i.e. $\exists u' \in U, Tv + u' = Tw$. This shows that Tv + U = Tw + U.

5.15 Limitations of restriction and quotient operators

Sometimes $T|_U$ and T/U do not provide useful information about T. See the example below:

Given $T \in \mathcal{L}(\mathbf{F}^2)$ defined by

$$T(x,y) = (y,0)$$

and define $U = \{(x,0) | x \in \mathbf{F}\}$, we observe the following facts:

- (a) U invariant under T, and $T|_U$ is 0: $\forall (x,0) \in U, T(x,0) = (0,0) \in U, \text{ therefore, } U \text{ invariant under } T.$ This also proves that $T|_U = 0$.
- (b) \nexists a subspace $W \subseteq \mathbf{F}^2$ such that W invariant and $F^2 = U \oplus W$: Suppose $\exists W$ that satisfies the requirements. Then we know that since $\mathbf{F}^2 = W \oplus U, \forall (x,y) \in W, x \neq 0 \iff y \neq 0$, because otherwise (x,y) would be of form $(x,0), x \neq 0 \to (x,y) \in U$, contradiction to the fact that U,W independent.

Therefore given $(x,y) \in W, T(x,y) = (y,0) \in U \to T(x,y) \notin W$. Therefore W not invariant under T.

(c) T/U is 0: $\forall v=(x,y)\in \mathbf{F}^2, T/U(v+U)=T(x,y)+U=(y,0)+U$ Now obviously $T(x,y)=(y,0)\in U \to (y,0)+U=U,$ i.e. $\forall v\in \mathbf{F}^2, (T/U)(v+U)=U.$ Therefore T/U=0.

The example above shows that while U is not $\{0\}$, the restriction and quotient on U doesn't provide any meaningful information of T.