## ВСЕРОССИЙСКАЯ ПРОВЕРОЧНАЯ РАБОТА

### ХИМИЯ 11 КЛАСС

### Вариант 1

### Инструкция по выполнению работы

Проверочная работа включает в себя 15 заданий. На выполнение работы по химии отводится 1 час 30 минут (90 минут).

Оформляйте ответы в тексте работы согласно инструкциям к заданиям. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении работы разрешается использовать следующие дополнительные материалы:

- Периодическая система химических элементов Д.И. Менделеева;
- таблица растворимости солей, кислот и оснований в воде;
- электрохимический ряд напряжений металлов;
- непрограммируемый калькулятор.

При выполнении заданий Вы можете использовать черновик. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

#### Желаем успеха!

### Таблица для внесения баллов участника

| Номер<br>задания | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Сумма<br>баллов | Отметка<br>за работу |
|------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|-----------------|----------------------|
| Баллы            |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |                 |                      |

(1)

Из курса химии Вам известны следующие методы познания веществ и явлений: наблюдение, эксперимент, измерение, моделирование и др.

На рисунках 1–3 показаны примеры применения некоторых из этих методов.



Определите, какие методы можно применить для:

- 1) качественного анализа состава сульфата меди(II);
- 2) иллюстрации химического строения вещества.

Запишите в таблицу названия методов и соответствующие им номера рисунков.

| Химическое исследование                           | Метод познания | Номер рисунка |
|---------------------------------------------------|----------------|---------------|
| <br>Качественный анализ состава сульфата меди(II) |                |               |
| Иллюстрация химического строения вещества         |                |               |

2

На рисунке изображена схема распределения электронов по энергетическим уровням атома некоторого химического элемента.



Рассмотрите предложенную схему и выполните следующие задания:

- 1) запишите в таблицу символ химического элемента, которому соответствует данная модель атома;
- 2) запишите номер периода и номер группы в Периодической системе химических элементов Д.И. Менделеева, в которых расположен этот элемент;
- 3) определите, к металлам или неметаллам относится простое вещество, которое образует этот элемент.

Ответ запишите в таблицу.

| Ответ: | Символ химического | №       | №      | Металл/  |
|--------|--------------------|---------|--------|----------|
|        | элемента           | периода | группы | неметалл |
|        |                    |         |        |          |

|   |   | 1   |
|---|---|-----|
| ( | 3 | ١.  |
| \ | J | - / |
| \ | _ | /   |

2019 год объявлен Международным годом Периодической таблицы химических элементов Д.И. Менделеева. Мировое научное сообщество отметит 150-летие открытия Периодического закона химических элементов Д.И. Менделеевым в 1869 году.

Периодическая система химических элементов Д.И. Менделеева — богатое хранилище информации о химических элементах, их свойствах и свойствах их соединений. Так, например, известно, что с увеличением порядкового номера химического элемента кислотные свойства высших гидроксидов (кислот) в периодах усиливаются, а в группах ослабевают.

Учитывая эти закономерности, расположите в порядке ослабления кислотных свойств их высших гидроксидов следующие элементы: углерод, бериллий, азот. В ответе запишите символы элементов в нужной последовательности.

|   | OTDAT: |   |
|---|--------|---|
|   | OTBET. |   |
| • |        | _ |



В приведённой ниже таблице перечислены характерные свойства веществ с молекулярной и ионной кристаллической решетками.

| Характерные свойства веществ       |                                     |  |  |
|------------------------------------|-------------------------------------|--|--|
| С молекулярной кристаллической     | С ионной кристаллической решёткой   |  |  |
| решёткой                           |                                     |  |  |
| • При комнатной температуре, как   | • Твёрдые при обычных условиях;     |  |  |
| правило, находятся в жидком либо в | • хрупкие;                          |  |  |
| газообразном состоянии;            | • тугоплавкие;                      |  |  |
| • имеют низкую теплопроводность;   | • нелетучие;                        |  |  |
| • могут обладать запахом           | • при диссоциации распадаются на    |  |  |
|                                    | катионы металла и анионы кислотного |  |  |
|                                    | остатка или гидроксид-ионы          |  |  |

Установите соответствие между данными, приведёнными в таблице, и свойствами указанных веществ: 1) оксид калия ( $K_2O$ ); 2) сероводород ( $H_2S$ ). Определите тип их кристаллических решёток.

| <br>F              |  |
|--------------------|--|
| 1) Оксид калия     |  |
| <br>2) Сероводород |  |

### Прочитайте следующий текст и выполните задания 5-7.

Азотная кислота  $(HNO_3)$  — одно из важнейших неорганических соединений. Её получают, растворяя в воде под давлением оксид азота(IV)  $(NO_2)$  в присутствии кислорода  $(O_2)$ . В водном растворе азотная кислота полностью диссоциирует на ионы.

Как и все кислоты, азотная кислота реагирует с металлами, оксидами и гидроксидами металлов, основаниями, солями. Так, при действии азотной кислоты на гидроксид калия (КОН) получают нитрат калия (KNO<sub>3</sub>) (калийную селитру, ценное минеральное удобрение). При нагревании нитрата калия получают нитрит калия (KNO<sub>2</sub>) и кислород (O<sub>2</sub>).

В химической лаборатории вы можете растворить в азотной кислоте мел ( $CaCO_3$ ), оксид меди (CuO), оксид кальция (CaO) или гидроксид кальция ( $Ca(OH)_2$ ) — во всех этих случаях образуются соли азотной кислоты — нитраты.

Сложные неорганические вещества условно можно распределить, то есть классифицировать, по четырём группам, как показано на схеме. В эту схему для каждой из четырёх групп впишите по одной химической формуле веществ из тех, о которых говорится в приведённом выше тексте.



| )        | 1) Составьте молекулярное уравнение реакции азотной кислоты с оксидом меди(II).                          |
|----------|----------------------------------------------------------------------------------------------------------|
| <i>/</i> | Ответ:                                                                                                   |
|          | 2) Укажите, что является признаком этой реакции.                                                         |
|          | Ответ:                                                                                                   |
|          |                                                                                                          |
| )        | 1) Составьте молекулярное уравнение упомянутой в тексте реакции разложения нитрата калия при нагревании. |
|          | Ответ:                                                                                                   |
|          |                                                                                                          |
|          | 2) Укажите, к какому типу (соединения, разложения, замещения, обмена) относится эта реакция.             |

| 8 | Вода гейзеров Исландии содержит следующие ионы: $HCO_3^-$ , $Na^+$ , $Cl^-$ . Для проведения качественного анализа к этой воде добавили раствор $H_2SO_4$ .          |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 1. Укажите, какое изменение можно наблюдать в растворе при проведении данного опыта, учитывая, что концентрация веществ является достаточной для проведения анализа. |
|   | Ответ:                                                                                                                                                               |

2. Запишите сокращённое ионное уравнение произошедшей химической реакции.

Ответ: \_\_\_\_\_

Дана схема окислительно-восстановительной реакции:  $H_2S + Fe_2O_3 \rightarrow FeS + S + H_2O$ 1. Составьте электронный баланс этой реакции.

Ответ:

2. Укажите окислитель и восстановитель.

3. Расставьте коэффициенты и запишите получившееся уравнение реакции.

Дана схема превращений: **10**  $H_3PO_4 \xrightarrow{NaOH} X \longrightarrow Nal \longrightarrow Agl$ 

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения.

1)\_\_\_\_\_

2)

Для выполнения заданий 11-13 используйте вещества, структурные формулы которых приведены ниже:

- 1) CH<sub>3</sub>—CH—CH<sub>3</sub> 2) CH<sub>3</sub>—CH=CH<sub>2</sub> 3) CH<sub>3</sub>—C≡CH OH

- 4) CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-OH 5) CH<sub>3</sub>-C
  OH
- Из приведённого перечня выберите вещества, которые соответствуют указанным в таблице классам/группам органических соединений. Запишите номера этих веществ в соответствующую графу таблицы.

| Алкен | Карбоновая кислота |
|-------|--------------------|
|       |                    |
|       |                    |

- В предложенные схемы химических реакций впишите структурные формулы пропущенных веществ, выбрав их из приведённого выше перечня, и расставьте коэффициенты.
  - 1)  $+ H_2O \xrightarrow{\text{HgSO}_4} CH_3 C-CH_3$
  - 2) + HBr → CH<sub>3</sub>-CH-CH<sub>3</sub> + H<sub>2</sub>O
- Пропионовый альдегид одно из органических веществ, обнаруженных в межзвёздном пространстве. В промышленности его синтезируют из углеводородов нефти и используют для получения красок и алкидных эмалей. В лабораторных условиях пропионовый альдегид можно получить в соответствии с приведённой схемой превращений:

$$CH_{\overline{3}}-CH_{\overline{2}}-CH_{\overline{2}} \xrightarrow{KOH(BOJH.)} X \xrightarrow{CuO, t^{\circ}} CH_{\overline{3}}-CH_{\overline{2}}-C\xi_{H}^{O}$$

Выберите из предложенного перечня вещество Х и запишите уравнения двух реакций, с помощью которых можно осуществить эти превращения. При написании уравнений реакций используйте структурные формулы органических веществ.

1)\_\_\_\_\_

Запишите название вещества Х.

3)

| КОД |
|-----|

|    | Одним из важных понятий в экологии и химии является «предельно допустимая                                                                                               |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | онцентрация» (ПДК). ПДК — это такая концентрация вещества в окружающей сределоторая при повседневном воздействии в течение длительного времени не оказывает             |
|    | оторая при повседневном воздеиствии в течение длительного времени не оказывает<br>рямого или косвенного неблагоприятного влияния на настоящее или будущее поколение, не |
|    | нижает работоспособности человека, не ухудшает его самочувствия и условий жизни.                                                                                        |
|    | ІДК угарного газа в воздухе жилых помещений составляет 3 мг/м <sup>3</sup> .                                                                                            |
|    | В помещении с печным отоплением площадью 15 м <sup>2</sup> с высотой потолка 2,8 м из-за                                                                                |
| Н  | еполного сгорания угля в печи в воздух выделилось 105 мг угарного газа. Определите                                                                                      |
|    | ревышает ли концентрация угарного газа в воздухе данного помещения значение ПДК.                                                                                        |
| Γ  | Іредложите способ, позволяющий снизить концентрацию угарного газа в помещении.                                                                                          |
| _  | Ответ:                                                                                                                                                                  |
| ·  | )IBC1                                                                                                                                                                   |
|    |                                                                                                                                                                         |
|    |                                                                                                                                                                         |
| _  |                                                                                                                                                                         |
|    |                                                                                                                                                                         |
| Т  | Іля приготовления маринадов используют 5%-ный раствор сахара. Для приготовления                                                                                         |
|    | ыя приготовления маринадов используют 576-ный раствор сахара. Для приготовления наринада взяли 2 столовые ложки (50 г) сахара. Рассчитайте, какую массу раствора        |
|    | казанной концентрации при этом получили и какую массу воды использовали для                                                                                             |
|    | казанной концентрации при этом получили и какую массу воды использовали для приготовления этого маринада. Запишите подробное решение задачи.                            |
| 11 | риготовления этого маринада. Запишите подрооное решение зада ил.                                                                                                        |
| (  | Этвет:                                                                                                                                                                  |
| _  |                                                                                                                                                                         |
| `  |                                                                                                                                                                         |
| `  |                                                                                                                                                                         |

1

### Ответы и критерии оценивания проверочной работы по химии

Содержание верного ответа и указания по оцениванию Баллы (допускаются иные формулировки ответа, не искажающие его смысла) Химическое исследование Метод познания Номер рисунка Качественный анализ состава сульфата 1 Эксперимент меди(II) Иллюстрация химического строения 3 Моделирование вещества Ответ правильный и полный, содержит все названные выше элементы 2 Допущена ошибка в одном из элементов ответа 1 Допущено две и более ошибки, или ответ отсутствует 0 Максимальный балл

| 2 | Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла) |                    |                 | Баллы               |   |
|---|---------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|---------------------|---|
|   | Символ химического<br>элемента                                                                                      | №<br>периода       | №<br>группы     | Металл/<br>неметалл |   |
|   | Na                                                                                                                  | 3                  | 1 (или I)       | Металл              |   |
|   | Ответ правильный и полны                                                                                            | й, содержит все н  | азванные выше э | лементы             | 2 |
|   | Допущена ошибка в одном                                                                                             | из элементов отво  | ета             |                     | 1 |
|   | Допущено две и более оши                                                                                            | бки, или ответ отс | сутствует       |                     | 0 |
|   |                                                                                                                     |                    |                 | Максимальный балл   | 2 |

| (3) | Содержание верного ответа и указания по оцениванию               | Баллы |
|-----|------------------------------------------------------------------|-------|
| 3   | (допускаются иные формулировки ответа, не искажающие его смысла) |       |
|     | Записан ряд химических элементов:                                |       |
|     | $N \to C \to Be$ (или $N, C, Be$ )                               |       |
|     | Записана правильная последовательность символов                  | 1     |
|     | Последовательность символов записана неверно                     | 0     |
|     | Максимальный балл                                                | 1     |

| 1 | Содержание верного ответа и указания по оцениванию               | Баллы |
|---|------------------------------------------------------------------|-------|
| 4 | (допускаются иные формулировки ответа, не искажающие его смысла) |       |
|   | Элементы ответа:                                                 |       |
|   | 1) Оксид калия имеет ионную кристаллическую решетку.             |       |
|   | 2) Сероводород имеет молекулярную кристаллическую решетку        |       |
|   | Ответ правильный и полный, содержит все названные выше элементы  | 2     |
|   | Допущена ошибка в одном из элементов ответа                      | 1     |
|   | Все элементы ответа записаны неверно                             | 0     |
|   | Максимальный балл                                                | 2     |

| Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла) | Баллы |
|---------------------------------------------------------------------------------------------------------------------|-------|
| Элементы ответа:                                                                                                    |       |
| Оксид: NO <sub>2</sub> , CuO или CaO                                                                                |       |
| Основание: КОН или Са(ОН)2                                                                                          |       |
| Кислота НОО3                                                                                                        |       |
| Соль: KNO <sub>3</sub> , KNO <sub>2</sub> , или CaCO <sub>3</sub>                                                   |       |
| Ответ правильный и полный, содержит все названные выше элементы                                                     | 2     |
| Правильно заполнены три ячейки схемы                                                                                | 1     |
| Допущено две и более ошибки                                                                                         | 0     |
| Максимальный балл                                                                                                   | 2     |

| <u>6</u> | Содержание верного ответа и указания по оцениванию                         | Баллы |
|----------|----------------------------------------------------------------------------|-------|
| U        | (допускаются иные формулировки ответа, не искажающие его смысла)           |       |
|          | Элементы ответа:                                                           |       |
|          | 1) $CuO + 2HNO_3 = Cu(NO_3)_2 + H_2O$                                      |       |
|          | 2) Признак реакции – растворение чёрного порошка и образование окрашенного |       |
|          | раствора                                                                   |       |
|          | Ответ правильный и полный, содержит все названные выше элементы            | 2     |
|          | Допущена ошибка в одном из элементов ответа                                | 1     |
|          | Все элементы ответа записаны неверно                                       | 0     |
|          | Максимальный балл                                                          | 2     |

| 7 | Содержание верного ответа и указания по оцениванию               | Баллы |
|---|------------------------------------------------------------------|-------|
|   | (допускаются иные формулировки ответа, не искажающие его смысла) |       |
|   | Элементы ответа:                                                 |       |
|   | 1) $2KNO_3 = 2KNO_2 + O_2 \uparrow$                              |       |
|   | 2) Реакция разложения                                            |       |
|   | Ответ правильный и полный, содержит все названные выше элементы  | 2     |
|   | Допущена ошибка в одном из элементов ответа                      | 1     |
|   | Все элементы ответа записаны неверно                             | 0     |
|   | Максимальный балл                                                | 2     |

| <b>8</b> | Содержание верного ответа и указания по оцениванию               | Баллы |
|----------|------------------------------------------------------------------|-------|
| <b>o</b> | (допускаются иные формулировки ответа, не искажающие его смысла) |       |
|          | Элементы ответа:                                                 |       |
|          | 1) Выделение (бесцветного) газа                                  |       |
|          | 2) $H^+ + HCO_3^- = CO_2 \uparrow + H_2O$                        |       |
|          | Ответ правильный и полный, содержит все названные выше элементы  | 2     |
|          | Допущена ошибка в одном из элементов ответа                      | 1     |
|          | Все элементы ответа записаны неверно                             | 0     |
|          | Максимальный балл                                                | 2     |

| / |   | , |
|---|---|---|
| ( | 0 |   |
|   | • | , |

| Содержание верного ответа и указания по оцениванию                                                         | Баллы |
|------------------------------------------------------------------------------------------------------------|-------|
| (допускаются иные формулировки ответа, не искажающие его смысла)                                           |       |
| Элементы ответа:                                                                                           |       |
| 1) Составлен электронный баланс:                                                                           |       |
| $1 \mid \mathbf{S}^{-2} - 2\bar{e} \to \mathbf{S}^0$                                                       |       |
| $ \begin{array}{c c} 1 & S^{-2} - 2\bar{e} \to S^{0} \\ 1 & 2Fe^{+3} + 2\bar{e} \to 2Fe^{+2} \end{array} $ |       |
| 2) Указано, что H <sub>2</sub> S (или сера в степени окисления –2) является восстановителем,               |       |
| а $Fe_2O_3$ (или железо в степени окисления $+3$ ) — окислителем.                                          |       |
| 3) Составлено уравнение реакции:                                                                           |       |
| $3H_2S + Fe_2O_3 = 2FeS + S + 3H_2O$                                                                       |       |
| Ответ правильный и полный, включает в себя все названные выше элементы                                     | 3     |
| Правильно записаны два из названных выше элементов ответа                                                  | 2     |
| Правильно записан один из названных выше элементов ответа                                                  | 1     |
| Все элементы ответа записаны неверно, или ответ отсутствует                                                | 0     |
| Максимальный балл                                                                                          | 3     |

(10)

| Содержание верного ответа и указания по оцениванию               | Баллы |
|------------------------------------------------------------------|-------|
| (допускаются иные формулировки ответа, не искажающие его смысла) |       |
| Написаны уравнения реакций, соответствующие схеме превращений    |       |
| 1) $H_3PO_4 + 3NaOH = Na_3PO_4 + 3H_2O$                          |       |
| 2) $2Na_3PO_4 + 3CaI_2 = Ca_3(PO_4)_2 + 6NaI$                    |       |
| $3) NaI + AgNO_3 = AgI + NaNO_3$                                 |       |
| Правильно записаны 3 уравнения реакций                           | 3     |
| Правильно записаны 2 уравнения реакций                           | 2     |
| Правильно записано 1 уравнение реакции                           | 1     |
| Все уравнения записаны неверно или ответ отсутствует             | 0     |
| Максимальный балл                                                | 3     |

(11)

| Содержание верного ответа и указания по оцениванию               |   |
|------------------------------------------------------------------|---|
| (допускаются иные формулировки ответа, не искажающие его смысла) |   |
| 25                                                               |   |
| Записана правильная последовательность цифр                      | 2 |
| В последовательности цифр допущена одна ошибка                   | 1 |
| Последовательность цифр записана неверно                         | 0 |
| Максимальный балл                                                | 2 |

|   |   | \  |
|---|---|----|
| 1 | 1 | ١  |
| ı | Z |    |
| - | _ | 1  |
|   | 1 | 12 |

| Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла) |   |
|---------------------------------------------------------------------------------------------------------------------|---|
| Элементы ответа:                                                                                                    |   |
| 1) $CH_3$ - $C\equiv CH + H_2O \xrightarrow{HgSO_4} CH_3$ - $C$ - $CH_3$                                            |   |
| 2) CH <sub>3</sub> -CH-CH <sub>3</sub> + HBr — CH <sub>3</sub> -CH-CH <sub>3</sub> + H <sub>2</sub> O<br>OH Br      |   |
| ÓН Br                                                                                                               |   |
| Правильно записаны два уравнения реакций                                                                            | 2 |
| Правильно записано одно уравнение реакции                                                                           | 1 |
| Все уравнения записаны неверно, или ответ отсутствует                                                               | 0 |
| Максимальный балл                                                                                                   | 2 |

13

| Содержание верного ответа и указания по оцениванию                                                   | Баллы |
|------------------------------------------------------------------------------------------------------|-------|
| (допускаются иные формулировки ответа, не искажающие его смысла)                                     |       |
| Элементы ответа:                                                                                     |       |
| Написаны уравнения реакций, соответствующие схеме:                                                   |       |
| 1) $CH_3$ - $CH_2$ - $CH_2$ + $KOH$ $\longrightarrow$ $CH_3$ - $CH_2$ - $CH_2$ + $KBr$               |       |
| Br ÖH                                                                                                |       |
| 2) $CH_3$ - $CH_2$ - $CH_2$ + $CuO$ $\longrightarrow$ $CH_3$ - $CH_2$ - $C$ $H$ + $Cu$ + $H_2O$ $OH$ |       |
| 3) Записано название вещества Х: пропанол-1                                                          |       |
| Правильно записаны все элементы ответа                                                               | 3     |
| Правильно записаны два элемента ответа                                                               | 2     |
| Правильно записан один элемент ответа                                                                | 1     |
| Все элементы ответа записаны неверно, или ответ отсутствует                                          | 0     |
| Максимальный балл                                                                                    | 3     |

14

| Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла) |   |  |
|---------------------------------------------------------------------------------------------------------------------|---|--|
| Элементы ответа:                                                                                                    |   |  |
|                                                                                                                     |   |  |
| 1) Определён объём помещения и определена концентрация угарного газа                                                |   |  |
| в нём:                                                                                                              |   |  |
| $V$ (помещения) = $15 \cdot 2.8 = 42 \text{ m}^3$                                                                   |   |  |
| Содержание угарного газа = $105 / 42 = 2,5 \text{ мг/м}^3$                                                          |   |  |
| 2) сформулирован вывод о превышении ПДК;                                                                            |   |  |
| Значение ПДК угарного газа в помещении не превышает показатель                                                      |   |  |
| $3 \text{ M}\Gamma/\text{M}^3$ ;                                                                                    |   |  |
| 3) сформулировано одно предложение по снижению Содержания угарного                                                  |   |  |
| газа в помещении.                                                                                                   |   |  |
| Возможные варианты: замена печного отопления на газовое или электрическое;                                          |   |  |
| регулярное проветривание (вентиляция) помещения                                                                     |   |  |
| Ответ правильный и полный, содержит все названные выше элементы                                                     | 3 |  |
| Правильно записаны два из названных выше элементов ответа                                                           |   |  |
| Правильно записан один из названных выше элементов ответа                                                           |   |  |
| Все элементы ответа записаны неверно                                                                                | 0 |  |
| Максимальный балл                                                                                                   | 3 |  |



| Содержание верного ответа и указания по оцениванию                     |   |
|------------------------------------------------------------------------|---|
| (допускаются иные формулировки ответа, не искажающие его смысла)       |   |
| Элементы ответа:                                                       |   |
| 1) Рассчитана масса раствора:                                          |   |
| $m(pacтвоpa) = 50 \cdot 100 / 5 = 1000 г$                              |   |
| 2) Рассчитана масса воды:                                              |   |
| $m(воды) = 1000 - 50 = 950 \ \Gamma$                                   |   |
| Ответ правильный и полный, содержит все названные выше элементы ответа | 2 |
| Допущена ошибка в одном из элементов ответа                            | 1 |
| Все элементы ответа записаны неверно                                   | 0 |
| Максимальный балл                                                      | 2 |

# Система оценивания выполнения всей работы

Максимальный балл за выполнение работы -33.

Рекомендуемая шкала перевода суммарного балла за выполнение ВПР в отметку по пятибалльной шкале

| Отметка по пятибалльной шкале | «2»  | «3»   | <b>«4»</b> | «5»   |
|-------------------------------|------|-------|------------|-------|
| Суммарный балл                | 0–10 | 11–19 | 20–27      | 28–33 |