- 1. Sea $V = \mathbb{R}_2[x]$ el \mathbb{R} -espacio vectorial de los polinomios de grado a lo sumo 2 con coeficientes en \mathbb{R} . Sea $f: V \to V$ una transformación lineal tal que
 - i) $f(1) = 1 + x x^2$, ii) $x 2x^2 \in \text{Im}(f)$, iii) $\text{Nu}(f) = \text{Im}(f) \cap \{p \in V \mid p(1) = 0\}$.
 - a) Hallar bases de Nu(f) e Im(f) para cualquier transformación lineal $f: V \to V$ que cumpla las condiciones anteriores.
 - b) Si $V = \mathbb{R}_3[x]$, probar que no existe $f: V \to V$ que cumpla simultáneamente i) y iii).
 - 2. Sean $A \in \mathbb{R}^{4 \times 5}$ y $B \in \mathbb{R}^{5 \times 4}$ tales que $\det(A \cdot B) \neq \det(B \cdot A)$. Probar que $\operatorname{rg}(A) = \operatorname{rg}(B) = 4$.
 - 3. Sean V un \mathbb{R} -espacio vectorial de dimensión 4, B una base de V y $B^* = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ su base dual. Sean $v \in V$ y $S, T \subset V$ subespacios tales que

$$[v]_B = (2, 2, -2, 1), \quad S^{\circ} = \langle \varphi_1 - \varphi_2, \varphi_3 + 2\varphi_4 \rangle \quad \text{y} \quad T^{\circ} = \langle \varphi_1 - 2\varphi_2 + 3\varphi_3 + 8\varphi_4, \varphi_2 - 2\varphi_4 \rangle.$$

a) Hallar $\dim(S+T)$.

- b) Decidir si $v \in S \cap T$.
- 4. Sea $B=\{v_1,v_2,v_3\}$ una base de \mathbb{R}^3 tal que

$$\det \left(v_1 + v_2 \mid v_1 - 3v_2 \mid 2v_2 - 2v_3\right) = 16.$$

Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por

$$f(v_1) = (1, 2, 3), \quad f(v_2) = (3, 0, -1) \quad \text{y} \quad f(v_3) = (2, 4, 5).$$

Calcular el determinante de la matriz $[f]_B$.