Barème.

- Calculs : chaque question sur 2 point, total sur 28 points, ramené sur 5 points, +15%.
- Problèmes : chaque question sur 4 points, total sur 120 points (V1) ou 92 points (V2), ramené sur 15 points, +25% (V1) ou , +100% (V2).

Statistiques descriptives.

Soit
$$\varphi : \mathbb{R} \to \mathbb{R}, \ x \mapsto \min\left(\frac{1}{10} \lceil 10x \rceil; 20\right).$$

	Calculs	Pb V1	Pb V2	Note finale
Transformation	c	p_1	p_2	$\varphi\left(1,15\frac{5c}{28}+1,25\frac{15p_1}{120}+2\frac{15p_2}{92}\right)$
Note maximale	21	71	51	19,6
Note minimale	7	23	11	5,4
Moyenne	$\approx 12,98$	$\approx 49,59$	$\approx 33,33$	$\approx 10,73$
Écart-type	$\approx 3,74$	$\approx 13,94$	$\approx 12,96$	$\approx 3,12$
Premier quartile	10	37	24	8,85
Médiane	12	51	35	10, 3
Troisième quartile	16,5	62	38	12,75

Remarques générales.

- Les copies sont globalement bien présentées et rédigées, c'est bien!
- Certains perdent inutilement des points en ne vérifiant pas les hypothèses/définitions des objets manipulés.

Un exercice vu en TD (V1)

Exercice globalement bien traité. Lorsque vous utilisez la formule de Taylor, déterminez le degré de P(1) + P'(1)(X - 1) pour justifier que ce polynôme est bien le reste demandé.

Une relation fonctionnelle (V1 – Petites Mines)

Un problème assez élémentaire. Si vous ne l'avez pas réussi, reprenez-le pendant les vacances.

- 1-2-3) Il convenait de bien justifier les continuités des fonctions en jeu.
- 4) Certains ont parfois divisé par f(x). C'est au mieux maladroit, au pire une \mathbb{Z} HORREUR \mathbb{Z} (lorsque vous n'étudiez pas le cas f(x) = 0).
- **5a)** Il convenait de détailler l'annulation sur \mathbb{R}_+^* : il y a annulation sur \mathbb{R} et $f(0) \neq 0$, donc annulation sur \mathbb{R}^* , puis on utilise la parité.
- **5b)** Question ultra-classique, que vous devez maîtriser.
- **5c)** Il était plus satisfaisant de redémontrer l'argument : $a + \frac{1}{n}$ ne minore pas E, donc... L'argument d'encadrement n'est pas toujours donné, c'est dommage (car c'est très simple).
- **5d)** Beaucoup montrent correctement que f(a) = 0. Vient ensuite l'erreur : « donc $a \in E$, donc a > 0 ». Or, pour justifier que $a \in E$, vous devez vérifier que a > 0! C'est une grosse erreur de raisonnement...
- 5e) Préférez la version élémentaire du TVI. Je vous avais prévenu : je suis peu indulgent pour les étudiants qui choisissent d'utiliser une version « avancée » du TVI, de manière non satisfaisante.
 On vous disait d'utiliser le TVI. Je ne comprends pas que certains puissent rédiger la question sans...
- 6b) Le passage le plus important est celui où l'on discute du signe des nombres manipulés.
- 7) J'attendais deux choses dans cette question : la synthèse et un ensemble écrit correctement.

Les polynômes de Tchebychev (V1)

- 1a) Question souvent bien traitée. La discussion sur le degré est centrale, ici.
- **1b)** Grâce au **1a)**, nul besoin de récurrence double ici : une simple suffit. Vous pouviez aussi vous passer de récurrence en observant que la suite des coefficients dominants est géométrique, de raison 2.
- 1c) Encore une récurrence double, assez élémentaire (il suffit d'effectuer une disjonction de cas).
- 1d) La relation $P_{n+2} = 2P_{n+1} P_n(1)$ donne une relation de récurrence linéaire d'ordre 2. Comme $P_0(1)$ et $P_1(1)$ sont déterminés, il y a une unique solution (évidente) : nul besoin de récurrence! La question précédente donnait ensuite $P_n(-1)$ immédiatement. Ensuite, la relation $P_{n+2} = -P_n(0)$ donnait une relation géométrique sur $(P_{2n}(0))$ et $(P_{2n+1}(0))$. Bref, pas de récurrence (si on ouvre bien les yeux!). "
- 2b) Question assez élémentaire, peu vue et encore moins bien traitée.

Une relation fonctionnelle (V2)

3) Après avoir montré la relation pour $n \ge 0$, il convenait de la montrer pour n = -1, puis d'étendre cela à -n pour $n \ge 1$. C'est un procédé classique, à maîtriser.

Un théorème de Kronecker (V2)

Les questions étaient finalement assez élémentaires, mais ont posé des problèmes à beaucoup d'entre vous.

- **1c)** Un résultat utile à savoir démontrer : si $a_1, \ldots, a_n \in [0, 1]$ vérifient $a_1 \ldots a_n = 1$, alors $a_1 = \cdots = a_n = 1$. Il suffit de voir que $1 = a_1 \ldots a_n \leqslant a_i \leqslant 1$.
- 3) P n'était pas supposé unitaire, dans cette question.
- **3c)** En plus du traitement des racines, il convenait de justifier que \hat{P} était à coefficients entiers (déjà fait), unitaire et de degré n.
- **4a)** $\sigma_k(P)$ dépend de P: c'est surtout en fonction de cette variable qu'il convenait de borner.

Et vu qu'il me reste un peu de place, une once de culture...

