Rohan Gonjari

(774) 301-6307 • rohan.gonjari@outlook.com • linkedin.com/in/rohangonjari2504 • github.com/rohang2504

PROFESSIONAL EXPERIENCE

Machine Learning Researcher | UMass Dartmouth | North Dartmouth, MA

Aug 2022 – Aug 2023

- Utilized GNNs, Neural Networks, K-means clustering, Support Vector Machines (SVMs), & Decision Tree models to implement supervised machine learning using graph data.
- Performed dimensionality reduction (PCA, t-SNE) to help visualize graph nodes and edges using Seaborn.
- Designed ML architectures to efficiently fuse information for multimodal data (EEG, fNIRS) to improve BCI-systems.
- Proposed model showcased a notable improvement in classification by 16.25% & 21.65% in two distinct studies indicating potential impacts on patient care (<u>Master's Thesis</u>).

Data Analyst | Destek Infosolutions | India

Aug 2020 – July 2022

- Collaborated with 120+ clients to implement GA4 via GTM to meet project requirements with a 95% success rate.
- Implemented A/B testing to ensure accuracy & reliability of data collected in GA4 when updating event triggers.
- Led a data sourcing initiative to establish a robust pipeline, including data sourcing, cleansing, and feature selection using NumPy and Panda's libraries.
- Applied regression models for targeted customer segmentation, resulting in a substantial 18% sales boost.
- Developed different Tableau dashboards to have more visibility of companies' sales portfolio & other KPIs.

PROJECTS

Sentiment Analysis of 2022 FIFA World Cup

• Extracted real-time sentiment data from Twitter's API, categorized FIFA World Cup tweets using VADER sentiment analysis, and deployed a scalable data pipeline on Amazon Airflow & EC2 for processing, storing results on S3.

Hospital Management System (HMS)

• Established MySQL data architecture for Health Management System, performed ETL using Selenium for NHS surveys, and transformed prescription data with NumPy and Pandas for loading into the HMS database.

Evaluating Medical Condition of Patients

• Diagnosed patient health based on predicted health scores using EDA and modeling. Predicted scores using regression model with Cross-Validation & Recursive Feature Elimination with significant & engineered features.

Visualizing Olympics Performance | Link

• Leveraged D3.js, HTML, and CSS to create an interactive visualization of Olympics athlete data, facilitating insights into medal-winning factors and country-level correlations.

TECHNICAL SKILLS

• **Technologies** : Python, MATLAB, R, SQL, MySQL, SAS, Java, Tableau, Power BI, CUDA, Docker, PowerShell, Google Analytics, Google Tag Manager, Linux

Libraries : PyTorch, TensorFlow, Pandas, NumPy, PySpark, XGBoost, NLTK, OpenCV, Ggplot, Selenium

Cloud : AWS, SageMaker, S3, Snowflake, EC2, Airflow

• Skills : Statistical Modeling, Market Mix Modeling, Predictive Analytics, ETL Tools, Deep Learning, Data

Wrangling, Data Analysis

EDUCATION

University of Massachusetts Dartmouth | North Dartmouth, MA

Sept 2021 – Aug 2023

Master of Science in Data Science

• Coursework: High-Performance Parallel Computing, Advanced Data Mining, Deep Learning, Data Visualization, Data Architecture & Design, Business Analytics, Graph Neural Networks

National Institute of Technology Karnataka (NITK) | Surathkal, India

July 2016 – June 2020

- Bachelor of Technology in Electronics & Communications Engineering
- Coursework: Numerical Analysis, Discrete Mathematics, Data Structures & Algorithms, Statistical Analysis

PUBLICATIONS

- Kumar, C., Rahimi, N., Gonjari, R., McLinden, J., Hosni, S.I., Shahriari, Y. and Shao, M., 2023, July. Context-aware Multimodal Auditory BCI Classification through Graph Neural Networks. In 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1-4). IEEE.
- Kumar, C., Donohue, J.P., Gonjari, R., Rahimi, N., McLinden, J., Shahriari, Y. and Shao, M., 2023, April. Adversary on Multimodal BCI-based Classification. In 11th International IEEE EMBS Conference on Neural Engineering.