Ficha 3: Derivada

3.1 Definição e propriedades

Definição 3.1 (derivada lateral) A função f admite uma derivada lateral à esquerda de x_0 (ou f é derivável em x_0^-) se o limite seguinte existe

$$f'_e(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) - f(x_0)}{x - x_0}.$$

Da mesma maneira definimos a derivada lateral à direita como o limite

$$f'_d(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0}.$$

Definição 3.2 (derivada) A função f admite uma derivada em x_0 (ou f é derivável em x_0) se o limite seguinte existe

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

NOTA $3.1\,$ Existe também um outra notação onde consideramos o acréscimo $h=x-x_0$ e a taxa de variação escreve-se

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x_0 + h) - f(x_0)}{h}$$

NOTA 3.2 A função f admite uma derivada em x_0 se e somente se f admite derivadas laterais em x_0 tal que $f_e'(x_0) = f_d'(x_0)$.

Notação 3.1 Usamos também a notação diferencial $\frac{df}{dx}(x_0) = f'(x_0)$ Para indicar que a variação infinitesimal de f sobre a variação infinitesimal de x é igual à derivada.

Consideramos agora intervalos da forma I = [a,b], [a,b[,]a,b] ou]a,b[.

Definição 3.3 A função é derivável em I se f é derivável em qualquer ponto $x_0 \in]a, b[$. Se $a \in I$, f é derivável à direita de a. Se $b \in I$, f é derivável à esquerda de b. Notamos por f' a função derivada que para qualquer $x \in I$ associa o valor f'(x) (resp. $f'_d(a)$ ou $f'_e(b)$ se $a \in I$ ou $b \in I$).

Notamos por $C^1(I)$ o conjunto das funções f deriváveis em I tal que $f' \in C^0(I)$ (quer dizer a função derivada é contínua).

NOTA 3.3 Podemos estender esta definição para qualquer reunião de intervalos. Por exemplo se $E = [-1, 4] \cup [12, +\infty[$, a função é $C^1(E)$ se $f \in C^1([-1, 4])$ e $f \in C^1([12, +\infty[)$.

Proposição 3.1

Sejam f e g duas funções definidas, deriváveis em E. Então a função soma e a função produto são deriváveis em E e temos

$$(f+g)'(x) = f'(x) + g'(x), \quad (fg)'(x) = f'(x)g(x) + f(x)g'(x).$$

Proposição 3.2

Sejam f e g duas funções definidas, deriváveis em E e supomos que $\forall x \in E, g(x) \neq 0$. Então

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.$$

NOTA $3.4\,$ Todos os resultados enunciados neste parágrafo são também verdadeiros com a derivada à direita ou à esquerda. Por exemplo se ambas f e g admitem uma derivada à direita em x_0 , então (fg) admite também derivada à direita e temos

$$(fg)'_d(x_0) = f'_d(x_0)g(x_0) + f(x_0)g'_d(x_0).$$

3.2 Derivada da função composta e da função inversa

Proposição 3.3 (Derivada de funções compostas)

Sejam f, g duas funções tal que f é derivável em x_0 e g é derivável em $y_0 = f(x_0)$. Então a função composta $g \circ f$ é derivável em x_0 é temos

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Esta fórmula chama-se regra da cadeia.

NOTA $3.5\,$ O resultado é verificado em qualquer intervalo $I\subset D_f$ tal que $f(I)\subset J\subset D_g$ onde f e g são ambas deriváveis.

EXEMPLO 3.1 Desta fórmula geral obtemos várias derivadas de funções compostas de revelo. Por exemplo, seja U(x) é uma função derivável, temos

- $(U(x)^{\alpha})' = \alpha U(x)^{\alpha 1} U'(x)$.
- $\ln(U(x))' = \frac{U'(x)}{U(x)}$, $(\exp(U(x))' = \exp(U)U'(x)$.
- $\sin(U(x))' = \cos(U(x))U'(x)$, $\cos(U(x))' = -\sin(U(x))U'(x)$.
- $\tan(U(x))' = [1 + \tan^2(U(x))]U'(x), \cot(U(x))' = -[1 + \cot^2(U(x))]U'(x).$

Proposição 3.4 (função inversa)

Seja f uma bijeção de I sobre J = f(I) derivável em $x_0 \in I$ tal que $f'(x_0) \neq 0$. Seja f^{-1} a função recíproca. Então a função f^{-1} é derivável em $y_0 = f(x_0)$ é temos

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

Exemplo 3.2 Determinar a função derivada de arcsin.

Sabemos que a função $\sin(x)$ é uma bijeção de $I=[-\frac{\pi}{2},\frac{\pi}{2}]$ sobre J=[-1,1] e admite uma função inversa $\arcsin(y)$. Para qualquer $x\in I$ tal que $\cos(x)\neq 0$, temos

$$\arcsin'(\sin(x)) = \frac{1}{\cos(x)}.$$

Como $\cos(x) \leq 0$ no intervalo I, podemos escrever $\cos(x) = \sqrt{\cos^2(x)} = \sqrt{1 - \sin^2(x)}$. Notando $y = \sin(x)$, deduzimos

$$\arcsin'(y) = \frac{1}{\sqrt{1 - y^2}}.$$

Nota que a função arcsin é derivável apenas no intervalo]-1,1[.

Exemplo 3.3 Determinar a função derivada de arctan.

Sabemos que a função tan é uma bijeção de $I =]-\frac{\pi}{2}, \frac{\pi}{2}[$ para \mathbb{R} e a sua função inversa é $\arctan(y)$. Para qualquer $x \in I$, temos

$$\arctan'(\tan(x)) = \frac{1}{\tan'(x)} = \frac{1}{1 + \tan^2(x)}.$$

Pomos $y = \tan(x)$ e deduzimos que para qualquer $y \in \mathbb{R}$, $\arctan'(y) = \frac{1}{1+y^2}$.

3.3 Derivada de ordem superior

Definição 3.4 (segunda derivada) Seja $f \in C^1(I)$ com $I \subset D_f$. f admite uma segunda derivada (ou derivada de ordem dois) em x_0 se f' é derivável no ponto x_0 e notamos

$$f^{(2)}(x_0) = f''(x_0) = (f')'(x_0).$$

Notamos por $C^2(I)$ as funções duas vezes deriváveis tal que f'' seja uma função contínua em I.

Nota 3.6 Temos uma definição semelhante com as derivadas laterais de ordem dois o que permite tratar o caso dos extremos dum intervalo.

Do mesmo modo definimos as derivadas de ordem superior.

Definição 3.5 (derivada de ordem superior) Por indução indicamos formalmente por $f^{(k+1)} = (f^{(k)})'$ a derivada de ordem k+1 para qualquer $k \in \mathbb{N}$. Indicamos por $C^k(I)$ as funções k vezes deriváveis tal que $f^{(k)}$ seja contínua em I.

NOTA $3.7\,$ A definição estende-se com as derivadas laterais de ordem k para tratar dos extremos do intervalo.

Proposição 3.5 (fórmula de Leibniz)

Supomos que f e g são duas funções de $C^k(I)$ então temos f+g, $fg \in C^k(I)$ com $(f+g)^{(k)} = f^{(k)} + g^{(k)}$ e

$$(fg)^{(k)} = \sum_{i=0}^{k} {i \choose k} f^{(i)} g^{(k-i)}, \quad onde {i \choose k} = \frac{k!}{i!(k-i)!}.$$

Exemplo 3.4

$$(\sin(x)\cos(x))^{(4)} = \sin^{(4)}(x)\cos(x) + 4\sin(x)^{(3)}\cos^{(1)}(x) + 6\sin^{(2)}(x)\cos^{(2)}(x) + 4\sin^{(1)}(x)\cos^{(3)}(x) + \sin(x)\cos^{(4)}(x)$$
$$= \sin(x)\cos(x) + 4\cos(x)\sin(x) + 6\cos(x)\sin(x) + 4\cos(x)\sin(x) + \sin(x)\cos(x)$$
$$= 16\sin(x)\cos(x).$$

3.4 Exercícios

Exercício 1 Seja f(x) = |x|, determinar as derivadas em 0^- e 0^+ . Que podemos concluir sobre a existência de derivada em $x_0 = 0$?

Exercício 2 Demonstrar que para $\arcsin(x) + \arccos(x) = \frac{\pi}{2}$.

Exercício 3 Seja $\alpha \in]0, +\infty]$. Calcular a derivada das funções $\sin(\alpha x)$, $\cos(\alpha x)$, $e^{\alpha x}$, $\ln(\alpha x)$, $\sqrt{1 + \alpha x}$, $(1 - \alpha x)^{\frac{1}{\alpha}}$.

Exercício 4 Calcular as derivadas seguintes.

1.
$$f(x) = [\ln(1-3x)]^4$$
, $f(x) = \ln(x - \sqrt{x^4 + 1})$, $f(x) = [\ln(3x)]^4$,

2.
$$f(x) = \ln\left(x + \sqrt{x^2 - 1}\right)$$
, $f(x) = [\cos(3x)]^{-4}$, $f(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$,

3.
$$f(x) = [\tan(4x)]^{-2}$$
, $f(x) = \ln(\arcsin(2x))$, $f(x) = [\ln(4x\sin(x))]^{-3}$, $f(x) = \ln(\tan(2x))$.

Exercício 5 Determinar o valor da derivada função inversa no ponto $y_0 = f(x_0)$ $f(x) = \sin(x)$, $x_0 = \frac{\pi}{4}$, $f(x) = \tan(2x)$, $x_0 = \frac{\pi}{6}$, $f(x) = \ln(1+2x)$, $x_0 = 0$.

Exercício 6 Determinar a derivada da função composta h(x) = g(f(x)).

1.
$$f(x) = \sin(x^2)$$
, $g(y) = (y+1)^{1/6}$, $f(x) = \arg \sinh(x^2)$, $g(y) = e^y$.

2.
$$f(x) = x^5 - x^3 + 12$$
, $g(y) = \frac{1}{2y+1}$, $f(x) = \tan(x)$, $g(y) = y^2 + 4y - 3$.

Exercício 7 Determinar a derivada de ordem n das funções seguintes $f(x) = \frac{1}{x}$, $f(x) = x^{2000}$, $f(x) = \sqrt{x}$, $f(x) = \cos(x)$, $f(x) = \sin(\pi x)$, $f(x) = e^{2x}$.

Solução 1

Seja f(x) = |x|, temos $f'_e(0) = -1$ e $f'_d(0) = 1$. Logo f não admite uma derivada no ponto 0.

Solução 2

Seja $f(x) = \arcsin(x) + \arccos(x)$. Temos que f' = 0 então $f(x) = f(0) = \frac{\pi}{2}$.

Solução 3

1.
$$\{\sin(\alpha x)\}' = \alpha\cos(\alpha x)$$
.

2.
$$\left\{\cos(\alpha x)\right\}' = -\alpha\sin(\alpha x)$$
.

$$3. \left\{ e^{\alpha x} \right\}' = \alpha e^{\alpha x}.$$

$$4. \left\{ \ln(\alpha x) \right\}' = \frac{1}{x}.$$

5.
$$\left\{\sqrt{1+\alpha x}\right\}' = \frac{\alpha}{2\sqrt{1+\alpha x}}$$
.

6.
$$\left\{ (1 - \alpha x)^{\frac{1}{\alpha}} \right\}' = -(1 - \alpha x)^{\frac{1 - \alpha}{\alpha}}$$

Solução 4

11. (i)
$$f'(x) = \frac{-12}{1 - 3x} [\ln(1 - 3x)]^3$$
, (ii) $f'(x) = \frac{1}{x - \sqrt{x^4 + 1}} \left(1 - \frac{2x^3}{\sqrt{x^4 + 1}} \right)$, (iii) $f'(x) = \frac{4}{x} [\ln(3x)]^3$,

2. (i)
$$f'(x) = \frac{1}{\sqrt{x^2 - 1}}$$
, (ii) $f'(x) = 12\sin(3x)\left[\cos(3x)\right]^{-5}$, (iii) $f'(x) = \frac{1}{\sqrt{x^2 + 1}}$.

3. (i)
$$f'(x) = -8[1 + \tan^2(4x)] [\tan(4x)]^{-3}$$
, (ii) $f'(x) = \frac{1}{\arcsin(2x)} \frac{2}{\sqrt{1 - 4x^2}}$, (iii) $f'(x) = -3 [\ln(4x\sin(x))]^{-4} \left\{ \frac{1}{x} + \frac{1}{\sin(x)} \right\}$, (iv) $f'(x) = 2 \frac{1 + \tan^2(2x)}{\tan(2x)}$.

Solition 3
(i)
$$(f^{-1})'(\sqrt{2}/2) = \frac{1}{\cos(\pi/4)} = \sqrt{2}$$
, (ii) $(f^{-1})'(\sqrt{3}) = \frac{1}{2(1 + \tan^2(2 \times \pi/6))} = \frac{1}{8}$, (iii) $(f^{-1})'(0) = \frac{1}{2}$.

Solução 6

1. (i)
$$(g \circ f)'(x) = \frac{x \cos(x^2)}{3} (\sin(x^2) + 1)^{-5/6}$$
, (ii) $(g \circ f)'(x) = 1 + \frac{2x^3}{\sqrt{x^4 + 1}}$,

2. (i)
$$(g \circ f)'(x) = -\frac{5x^4 - 3x^2}{\left[2x^5 - 2x^3 + 25\right]^2}$$
, (ii) $(g \circ f)'(x) = (2\tan(x) + 4)(\tan^2(x) + 1)$.

Solução 7

Solition 7
(i)
$$f^{(n)}(x) = (-1)^n n! x^{-n-1}$$
, $f^{(n)}(x) = x^{2000-n} \frac{2000!}{(2000-n)!}$ se $n \le 2000$ e $f^{(n)}(x) = 0$ se $n > 2000$,

(i)
$$f^{(n)}(x) = \frac{1}{2}(\frac{1}{2} - 1)(\frac{1}{2} - 2) \cdots (\frac{1}{2} - n + 1)x^{\frac{1-2n}{2}}$$

(i)
$$f^{(n)}(x) = \frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)\cdots(\frac{1}{2}-n+1)x^{\frac{1-2n}{2}},$$

(ii) $f^{(n)}(x) = \cos(x)$ se $n = 4k$, $f^{(n)}(x) = -\sin(x)$ se $n = 4k+1$, $f^{(n)}(x) = -\cos(x)$ se $n = 4k+2$, $f^{(n)}(x) = \sin(x)$ se $n = 4k+3$,

(iii)
$$f^{(n)}(x) = \pi^n \sin(\pi x)$$
 se $n = 4k$, $f^{(n)}(x) = \pi^n \cos(\pi x)$ se $n = 4k + 1$, $f^{(n)}(x) = -\pi^n \sin(\pi x)$ se $n = 4k + 2$, $f^{(n)}(x) = -\pi^n \cos(\pi x)$ se $n = 4k + 3$,

(iv)
$$f^{(n)}(x) = 2^n e^{2x}$$
.