From Sampling to Optimization on Discrete Domains with Applications to Determinant Maximization

Nima Anari Thuy-Duong Vuong

Stanford

Conference on Learning Theory (COLT)
October 30, 2022

Optimization

```
Input: \mu:\Omega \to \mathbb{R}_{\geq 0}
```

Output: $x^* := \arg \max_{x \in \Omega} \mu(x)$.

Sampling

Input: $\mu:\Omega \to \mathbb{R}_{\geq 0}$

Output: x with probability proportional to $\mu(x)$.

Connection between sampling and optimization?

• In continuous domain (think $\Omega \equiv \mathbb{R}^n$), tractable functions for sampling and optimization are basically the same class, and they stem from convexity.

E.g.: log concave μ i.e. $\mu(x) = \exp(f(x))$ for $f : \mathbb{R}^n \to \mathbb{R}$ concave.

- In continuous domain (think $\Omega \equiv \mathbb{R}^n$), tractable functions for sampling and optimization are basically the same class, and they stem from convexity.
 - E.g.: log concave μ i.e. $\mu(x) = \exp(f(x))$ for $f : \mathbb{R}^n \to \mathbb{R}$ concave.
- What about discrete Ω?
 Here we study the domain (ⁿ_k), many other domains can be converted to this one [Anari-Liu-OveisGharan-FOCS'20]

The connection between discrete sampling & optimization is unclear.

	Bipartite independent set	DPPs
Sampling	hard	easy
Optimization	easy	hard

Main result

$Sampling \Rightarrow Optimization$

If we can sample from μ and its scaling using local random walks then can (approximately) optimize over μ using local search.

Scaling of a function

Let $\mu:\{0,1\}^n\to\mathbb{R}_{\geq 0}$ be a function, and $\lambda=(\lambda_i)_{i\in[n]}\in\mathbb{R}^n_{\geq 0}$ then the scaling of μ by λ is defined by

$$\lambda * \mu(x) \propto \mu(x) \exp(\langle \log \lambda, x \rangle)$$

Scaling of a function

Let $\mu: \{0,1\}^n \to \mathbb{R}_{\geq 0}$ be a function, and $\lambda = (\lambda_i)_{i \in [n]} \in \mathbb{R}^n_{\geq 0}$ then the scaling of μ by λ is defined by

$$\lambda * \mu(x) \propto \mu(x) \exp(\langle \log \lambda, x \rangle)$$

For continuous $\mu:[0,1]^n \to \mathbb{R}_{\geq 0}$: scaling preserves convexity (i.e. log concavity)

Scaling of a function

Let $\mu: \{0,1\}^n \to \mathbb{R}_{\geq 0}$ be a function, and $\lambda = (\lambda_i)_{i \in [n]} \in \mathbb{R}^n_{\geq 0}$ then the scaling of μ by λ is defined by

$$\lambda * \mu(x) \propto \mu(x) \exp(\langle \log \lambda, x \rangle)$$

For continuous $\mu:[0,1]^n \to \mathbb{R}_{\geq 0}$: scaling preserves convexity (i.e. log concavity)

For many discrete μ : scaling preserves "nice" properties too.

Random walk $k \leftrightarrow (k-\ell)$ (multi-step down-up walk)

1 Drop ℓ element uniformly at random.

Random walk $k \leftrightarrow (k - \ell)$ (multi-step down-up walk)

- Drop \(\ell \) element uniformly at random.
- **2** Add ℓ element with probability $\propto \mu$ (resulting set).

Local search

■ Local Search₁: Start with $S \in {[n] \choose k}$. Swap $i \in S$ for $j \notin S$ to improve $\mu(S)$ till can't.

Local search

■ Local Search_r: Start with $S \in {[n] \choose k}$. Swap $U \subseteq S$ for $V \subseteq S^c$ with $|U| = |V| \le r$ to improve $\mu(S)$ till can't.

Local search

- Local Search_r: Start with $S \in {[n] \choose k}$. Swap $U \subseteq S$ for $V \subseteq S^c$ with $|U| = |V| \le r$ to improve $\mu(S)$ till can't.
- Local Search_r (LS_r) outputs $S := \arg \max \mathcal{N}_r(S)$ where $\mathcal{N}_r(S) := \{W : |S \setminus W| \le r\}.$

Main result

$Sampling \Rightarrow Optimization$

If we can sample from $\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$ and its scaling using ℓ -steps down-up walk in "time" $k^{O(1)}$ then can get $k^{O(k)}$ -approximation of $\max \mu(\cdot)$ using Local Search ℓ .

```
S \equiv \ell-neighborhood optima (output of redLocal Search_\ell). T \equiv \mathsf{OPT}. WLOG assume T \cap S = \emptyset. We will show \mu(T) \leq \mu(S) k^{O(\ell k)}.
```

```
S \equiv \ell\text{-neighborhood optima (output of redLocal Search}_{\ell}). T \equiv \text{OPT. WLOG assume } T \cap S = \emptyset. We will show \mu(T) \leq \mu(S) k^{O(\ell k)}. \blacksquare \text{Scale } \mu \text{ s.t. } \mu'(S) = \mu'(T) = \mu(S) \text{ for } \mu' = \lambda * \mu \text{ with } \lambda_i = \begin{cases} (\frac{\mu(S)}{\mu(T)})^{1/k} & \text{if } i \in T \\ 1 & \text{if } i \in S \\ 0 & \text{else} \end{cases}
```

 $S \equiv \ell$ -neighborhood optima (output of redLocal Search $_\ell$). $T \equiv \mathsf{OPT}.$ WLOG assume $T \cap S = \emptyset$. We will show $\mu(T) \leq \mu(S) k^{O(\ell k)}$.

- Scale μ s.t. $\mu'(S) = \mu'(T) = \mu(S)$ for $\mu' = \lambda * \mu$ with $\lambda_i = \begin{cases} (\frac{\mu(S)}{\mu(T)})^{1/k} & \text{if } i \in T \\ 1 & \text{if } i \in S \\ 0 & \text{else} \end{cases}$
- $k^{O(1)}$ -mixing implies

$$\begin{split} k^{-\Omega(1)} & \leq \Phi = \min_{\mu'(\mathcal{S}) \leq \mu'(\Omega)/2} \frac{Q(\mathcal{S}, \Omega \setminus \mathcal{S})}{\mu'(\mathcal{S})} \leq \frac{Q(\{\mathcal{S}\}, \Omega \setminus \{\mathcal{S}\})}{\mu'(\mathcal{S})} \\ & = \binom{k}{\ell}^{-1} \sum_{U_1 \in \binom{\mathcal{S}}{\ell}} \sum_{\substack{W \supseteq \mathcal{S} \setminus U_1 \\ W \in \mathsf{supp}(\mu') \setminus \{\mathcal{S}\}}} \frac{\mu'(W)}{\mu'(\mathcal{S} \setminus U_1)} \end{split}$$


```
S \equiv \ell-neighborhood optima (output of redLocal Search_\ell). T \equiv \mathsf{OPT}. WLOG assume T \cap S = \emptyset. We will show \mu(T) \leq \mu(S) k^{O(\ell k)}.
```

```
S \equiv \ell\text{-neighborhood optima (output of redLocal Search}_{\ell}). T \equiv \text{OPT. WLOG assume } T \cap S = \emptyset. We will show \mu(T) \leq \mu(S) k^{O(\ell k)}. \blacksquare \text{Scale } \mu \text{ s.t. } \mu'(S) = \mu'(T) = \mu(S) \text{ for } \mu' = \lambda * \mu \text{ with } \lambda_i = \begin{cases} (\frac{\mu(S)}{\mu(T)})^{1/k} & \text{if } i \in T \\ 1 & \text{if } i \in S \\ 0 & \text{else} \end{cases}
```

 $S \equiv \ell$ -neighborhood optima (output of redLocal Search $_{\ell}$).

 $T \equiv \mathsf{OPT}$. WLOG assume $T \cap S = \emptyset$.

We will show $\mu(T) \leq \mu(S)k^{O(\ell k)}$.

Scale μ s.t. $\mu'(S) = \mu'(T) = \mu(S)$ for $\mu' = \lambda * \mu$ with $\left(\left(\frac{\mu(S)}{\mu(T)} \right)^{1/k} \right)$ if $i \in T$

$$\lambda_i = \begin{cases} (\frac{\mu(S)}{\mu(T)})^{1/k} & \text{if } i \in T \\ 1 & \text{if } i \in S \\ 0 & \text{else} \end{cases}$$

$$k^{-\Omega(1)} \leq \Phi = \min_{\mu'(\mathcal{S}) \leq \mu'(\Omega)/2} \frac{Q(\mathcal{S}, \Omega \setminus \mathcal{S})}{\mu'(\mathcal{S})} \leq \frac{Q(\{S\}, \Omega \setminus \{S\})}{\mu'(S)}$$
$$= \binom{k}{\ell}^{-1} \sum_{U_1 \in \binom{S}{\ell}} \sum_{\substack{W \supseteq S \setminus U_1 \\ W \in \operatorname{supp}(\mu') \setminus \{S\}}} \frac{\mu'(W)}{\mu'(S \setminus U_1)}$$

Q(5°5°)

 $S \equiv \ell$ -neighborhood optima (output of redLocal Search $_\ell$). $T \equiv \mathsf{OPT}.$ WLOG assume $T \cap S = \emptyset$. We will show $\mu(T) \leq \mu(S) k^{O(\ell k)}$.

- Scale μ s.t. $\mu'(S) = \mu'(T) = \mu(S)$ for $\mu' = \lambda * \mu$ with $\lambda_i = \begin{cases} (\frac{\mu(S)}{\mu(T)})^{1/k} & \text{if } i \in T \\ 1 & \text{if } i \in S \\ 0 & \text{else} \end{cases}$
- $k^{O(1)}$ -mixing implies

$$k^{-\mathbf{Q}(1)} \leq \Phi = \min_{\mu'(S) \leq \mu'(\Omega)/2} \frac{Q(S, \Omega \setminus S)}{\mu'(S)} \leq \frac{Q(\{S\}, \Omega \setminus \{S\})}{\mu'(S)}$$

$$= \binom{k}{\ell}^{-1} \sum_{U_1 \in \binom{S}{\ell}} \sum_{\substack{W \supseteq S \setminus U_1 \\ W \in \text{supp}(\mu') \setminus \{S\}}} \frac{\mu'(W)}{\mu'(S \setminus U_1)}$$

Proof sketch (continue)

Hence there must be $W\subseteq T\cup S$ with $1\leq |W\setminus S|=|W\cap T|\leq \mathcal{U}$ s.t.

$$\mu(S) = \mu'(S) \le \mu'(S \setminus U_1) \le k^{\ell + O(1)} \mu'(W) = k^{\ell + O(1)} \mu(W) (\frac{\mu(S)}{\mu(T)})^{|W \cap T|/k}$$

Proof sketch (continue)

Hence there must be $W \subseteq T \cup S$ with $1 \le |W \setminus S| = |W \cap T| \le P$ s.t.

$$\mu(S) = \mu'(S) \le \mu'(S \setminus U_1) \le k^{\ell + O(1)} \mu'(W) = k^{\ell + O(1)} \mu(W) (\frac{\mu(S)}{\mu(T)})^{|W \cap T|/k}$$

By local optimality of $S, \mu(W) \leq \mu(S)$ thus

$$\mu(T) \le (k^{\ell+O(1)})^{k/|W\cap T|} \mu(S) \le k^{\ell k+O(k)} \mu(S).$$

Applications

Optimization (MAP-inference) for nonsymmetric determinantal point processes (DPPs)

Determinantal point processes (DPPs)

Determinantal point processs (DPP) with kernel $L \in \mathbb{R}^{n \times n}$:

$$\mu_L(S) = \det(L_S) \qquad \forall S \subseteq [n]$$

Determinantal point processes (DPPs)

Determinantal point processs (DPP) with kernel $L \in \mathbb{R}^{n \times n}$:

$$\mu_L(S) = \det(L_S) \qquad \forall S \subseteq [n]$$

$$\begin{pmatrix}
1 & 1 & 1 & 0 \\
5 & 2 & 4 \\
4 & 8 & 9 & 5 & 3 & 3 \\
\hline
9 & 2 & 3 \\
3 & 7 & 9 & 5 & 3 & 3 \\
4 & 8 & 6 & 1 & 3 & 0
\end{pmatrix}$$

Figure: n = 6, $S = \{1, 2, 4\}$. L_S is the red submatrix.

Determinantal point processes (DPPs)

Determinantal point processs (DPP) with kernel $L \in \mathbb{R}^{n \times n}$:

$$\mu_L(S) = \det(L_S) \qquad \forall S \subseteq [n]$$

$$\left(\begin{array}{c|ccccc}
1 & 1 & 0 \\
5 & 2 & 4 \\
4 & 8 & 9 & 5 & 3 & 3 \\
\hline
& 9 & 2 & 3 \\
3 & 7 & 9 & 5 & 3 & 3 \\
4 & 8 & 6 & 1 & 3 & 0
\end{array}\right)$$

Figure: n = 6, $S = \{1, 2, 4\}$. L_S is the red submatrix.

Applications: Data summarization [Gong-Chao-Grauman-Sha'14], recommender systems [Gillenwater-Paquet-Koenigstein'16,Wilhelm-Ramanathan-Bonomo-Jain-Chi-Gillenwater'18], image search [Kulesza-Taskar'11] . . .

Cardinality constrained DPPs (k-DPPs)

k-DPP with kernel $L \in \mathbb{R}^{n \times n}$ and cardinality constraint k

$$\mu_{L,k}(S) = \det(L_S) \qquad \forall S \subseteq [n], |S| = k$$

Cardinality constrained DPPs (k-DPPs)

k-DPP with kernel $L \in \mathbb{R}^{n \times n}$ and cardinality constraint k

$$\mu_{L,k}(S) = \det(L_S) \qquad \forall S \subseteq [n], |S| = k$$

Useful for application requiring fixed-size output (recommendation system)

Partition constrained DPPs

Partition DPP with kernel $L \in \mathbb{R}^{n \times n}$ and partition constraint $(P_1,...,P_s),(c_1,\cdots,c_s)$:

$$\mu_{L,\mathcal{P},\vec{c}}(S) = \mathbb{1}[|S \cap P_i| = c_i]\det(L_S)$$

Partition constrained DPPs

Partition DPP with kernel $L \in \mathbb{R}^{n \times n}$ and partition constraint $(P_1,...,P_s),(c_1,\cdots,c_s)$:

$$\mu_{L,\mathcal{P},\vec{c}}(S) = \mathbb{1}[|S \cap P_i| = c_i] \det(L_S)$$

Useful for fairness

Nonsymmetric DPP

■ Traditionally, kernel L is symmetric i.e. $L = L^{\mathsf{T}}$. Need L PSD for μ_L to map to positive numbers.

Nonsymmetric DPP

- Traditionally, kernel L is symmetric i.e. $L = L^{\mathsf{T}}$. Need L PSD for μ_L to map to positive numbers.
- Symmetric kernel cannot encode positive interaction $\stackrel{\text{\tiny op}}{=}$ think $1=\stackrel{\text{\tiny f}}{=}$, $2=\stackrel{\text{\tiny op}}{=}$, want $\mathbb{P}[1,2]\gg\mathbb{P}[1]\mathbb{P}[2]$ thus

Nonsymmetric DPP

- Traditionally, kernel L is symmetric i.e. $L = L^{\mathsf{T}}$. Need L PSD for μ_L to map to positive numbers.
- Symmetric kernel cannot encode positive interaction $\stackrel{\text{\tiny (a)}}{=}$ think $1=\stackrel{\text{\tiny (i)}}{=}$, $2=\stackrel{\text{\tiny (i)}}{=}$, want $\mathbb{P}[1,2]\gg\mathbb{P}[1]\,\mathbb{P}[2]$ thus

$$\begin{split} \det(L_{\{1,2\}}) \gg \det(L_{\{1\}}) \det(L_{\{2\}}) \\ \Leftrightarrow L_{1,1}L_{1,2} - L_{1,2}L_{2,1} \gg L_{1,1}L_{2,2} \Rightarrow L_{1,2}L_{2,1} \ll 0 \end{split}$$

Nonsymmetric DPP

- Traditionally, kernel L is symmetric i.e. $L = L^{\mathsf{T}}$. Need L PSD for μ_L to map to positive numbers.
- Symmetric kernel cannot encode positive interaction 😊
- Nonsymmetric kernel (NDPP) \rightarrow more modelling power [Brunel-NEURIPS'18,Gartrell-Brunel-Dohmatob-Krichene-NEURIPS'19] ⑤ Still want kernel to be nonsymmetric PSD $L+L^{\mathsf{T}}\succeq 0$

Nonsymmetric DPP

- Traditionally, kernel L is symmetric i.e. $L = L^{\mathsf{T}}$. Need L PSD for μ_L to map to positive numbers.
- Symmetric kernel cannot encode positive interaction 😊
- Nonsymmetric kernel (NDPP) \rightarrow more modelling power [Brunel-NEURIPS'18,Gartrell-Brunel-Dohmatob-Krichene-NEURIPS'19] ⑤ Still want kernel to be nonsymmetric PSD $L+L^{\mathsf{T}}\succeq 0$
- [Gartrell-Brunel-Dohmatob-Krichene-NEURIPS'19,Gartrell-Han-Dohmatob-Gillenwater-Brunel-ICLR'21] introduced the use of nonsymmetric kernels in machine learning applications

Scaling DPPs

■ Scaling by $\lambda \in \mathbb{R}^n_{\geq 0}$ transforms $\mu_{L,k}$ into $\mu_{L',k}$ with $L' = \operatorname{diag}(\sqrt{\lambda})L\operatorname{diag}(\sqrt{\lambda}).$

Scaling DPPs

- Scaling by $\lambda \in \mathbb{R}^n_{\geq 0}$ transforms $\mu_{L,k}$ into $\mu_{L',k}$ with $L' = \operatorname{diag}(\sqrt{\lambda})L\operatorname{diag}(\sqrt{\lambda}).$
- Similar statement holds for partition constrained DPPs.

Scaling DPPs

- Scaling by $\lambda \in \mathbb{R}^n_{\geq 0}$ transforms $\mu_{L,k}$ into $\mu_{L',k}$ with $L' = \operatorname{diag}(\sqrt{\lambda})L\operatorname{diag}(\sqrt{\lambda}).$
- Similar statement holds for partition constrained DPPs.
- L is symmetric (nonsymmetric resp.) PSD iff L' is symmetric (nonsymmetric resp.).

• Given matrix L, parameter k, find $\arg \max_{|S|=k} \det(L_S)$

- Given matrix L, parameter k, find arg $\max_{|S|=k} \det(L_S)$
- Symmetric DPP: $2^{O(k)}$ -approx [Nikolov'15] with matching NP-hardness [Di Summa-Eisenbrand-Faenza-Moldenhauer'14], practical heuristics get $k^{O(k)}$ -approx [Civril-Magdon-Ismail'10,Kathuria-Deshpande'16]

- Given matrix L, parameter k, find arg $\max_{|S|=k} \det(L_S)$
- Symmetric DPP: $2^{O(k)}$ -approx [Nikolov'15] with matching NP-hardness [Di Summa-Eisenbrand-Faenza-Moldenhauer'14], practical heuristics get $k^{O(k)}$ -approx [Civril-Magdon-Ismail'10,Kathuria-Deshpande'16]
- Nonsymmetric DPP: multiplicative approx of log det under restrictive assumption on *L* using greedy [Gartrell-Han-Dohmatob-Gillenwater-Brunel-ICLR'21].

- Given matrix L, parameter k, find arg $\max_{|S|=k} \det(L_S)$
- Symmetric DPP: $2^{O(k)}$ -approx [Nikolov'15] with matching NP-hardness [Di Summa-Eisenbrand-Faenza-Moldenhauer'14], practical heuristics get $k^{O(k)}$ -approx [Civril-Magdon-Ismail'10,Kathuria-Deshpande'16]
- Nonsymmetric DPP: multiplicative approx of log det under restrictive assumption on L using greedy [Gartrell-Han-Dohmatob-Gillenwater-Brunel-ICLR'21]. $\sigma_{\min}, \sigma_{\max} = \min, \max \text{ singular value of } L_Y \text{ for } |Y| \leq 2k.$ Approx-factor depends on $\sigma_{\max}/\sigma_{\min}$.

■ For k-DPP with nPSD kernel L ($L + L^{\mathsf{T}} \succeq 0$): [Alimohammadi-Anari-Shiragur-V.-STOC'21] 4-steps DU walk mixes in $k^{O(1)}$ -time. In this work: we improve 4-step to 2-step

- For k-DPP with nPSD kernel L ($L + L^{\mathsf{T}} \succeq 0$): [Alimohammadi-Anari-Shiragur-V.-STOC'21] 4-steps DU walk mixes in $k^{O(1)}$ -time. In this work: we improve 4-step to 2-step
- For partition DPPs with symmetric PSD kernel and O(1) partitions, O(1)-steps DU walk mixes in $k^{O(1)}$ -time.

- For k-DPP with nPSD kernel L ($L + L^{\mathsf{T}} \succeq 0$): [Alimohammadi-Anari-Shiragur-V.-STOC'21] 4-steps DU walk mixes in $k^{O(1)}$ -time. In this work: we improve 4-step to 2-step
- For partition DPPs with symmetric PSD kernel and O(1) partitions, O(1)-steps DU walk mixes in $k^{O(1)}$ -time.

- For k-DPP with nPSD kernel L ($L + L^{\mathsf{T}} \succeq 0$): [Alimohammadi-Anari-Shiragur-V.-STOC'21] 4-steps DU walk mixes in $k^{O(1)}$ -time. In this work: we improve 4-step to 2-step
- For partition DPPs with symmetric PSD kernel and O(1) partitions, O(1)-steps DU walk mixes in $k^{O(1)}$ -time.
- For k-DPP with symmetric PSD kernel $L(L = L^\intercal, L \succeq 0)$: [Anari-OveisGharan'15, Hermon-Salez]: 1-step DU walk mixes in $\tilde{O}(k)$ -"time".

Main theorem

$Sampling \Rightarrow Optimization$

If we can sample from μ and its scaling using local random walks then can (approximately) optimize over μ using local search.

■ $k^{O(k)}$ -approximation for MAP-inference on nonsymmetric DPPs with nPSD kernel L i.e. $L + L^{\mathsf{T}} \succeq 0$ using Local Search₂ LS₂: Swap $U \subseteq S$ for $V \subseteq S^c$ with $|U| = |V| \le 2$ to improve $\det(L_S)$ till can't.

■ $k^{O(k)}$ -approximation for MAP-inference on nonsymmetric DPPs with nPSD kernel L i.e. $L + L^{\mathsf{T}} \succeq 0$ using Local Search₂ LS₂: Swap $U \subseteq S$ for $V \subseteq S^c$ with $|U| = |V| \le 2$ to improve $\det(L_S)$ till can't.

- $k^{O(k)}$ -approximation for MAP-inference on nonsymmetric DPPs with nPSD kernel L i.e. $L + L^{\mathsf{T}} \succeq 0$ using Local Search₂ LS₂: Swap $U \subseteq S$ for $V \subseteq S^c$ with $|U| = |V| \le 2$ to improve $\det(L_S)$ till can't.
- For partition DPPs on O(1) partitions, Local Search_r with r = O(1) gives $k^{O(k)}$ -approximation.

- $k^{O(k)}$ -approximation for MAP-inference on nonsymmetric DPPs with nPSD kernel L i.e. $L + L^{\mathsf{T}} \succeq 0$ using Local Search₂ LS₂: Swap $U \subseteq S$ for $V \subseteq S^c$ with $|U| = |V| \le 2$ to improve $\det(L_S)$ till can't.
- For partition DPPs on O(1) partitions, Local Search_r with r = O(1) gives $k^{O(k)}$ -approximation.
- Recover $k^{O(k)}$ -approximation for symmetric DPP using Local Search₁.

Summary: MAP-inference for nonsymmetric DPPs

- We obtain first $k^{O(k)}$ -approximation for NDPPs
- Other popular heuristics for symmetric DPP like LS₁ or Greedy don't work for nonsymmetric DPP!

Summary: MAP-inference for nonsymmetric DPPs

	Symmetric PSD	Nonsymmetric PSD
Greedy	$k^{O(k)}$	∞
	[CM10]	
LS_1	$k^{O(k)}$	∞
	[KD16]	
LS ₂	$k^{O(k)}$	$k^{O(k)}$
	"	[A V '21]

Table: Approximation guarantee for MAP-inference on symmetric vs. nonsymmetric DPP.

• $k^{O(k)}$ is optimal for Local Search_r for r = O(1)

- $k^{O(k)}$ is optimal for Local Search, for r = O(1)
- NP hard to get c^k for some c > 1, even for symmetric PSD

- $k^{O(k)}$ is optimal for Local Search, for r = O(1)
- NP hard to get c^k for some c > 1, even for symmetric PSD
- Getting $e^{O(k)}$ for nonsymmetric PSD implies O(1)-approximation for determinantal lowerbound [Lovasz-Spencer-Vesztergombi'86] and hereditary discrepancy (long time open problem, see [Jiang-Res-SOSA'22] for recent progress)

$$\begin{split} \det & \mathsf{lb}(A) = \max_{k} \max_{I \subseteq [m], J \subseteq [n], |I| = |J| = k} |\det(A_{I,J})|^{1/k} \\ & \mathsf{herdisc}(A) = \max_{S} \min_{x \in [-1,1]^n} ||A_{|S}x||_{\infty} \end{split}$$

- $k^{O(k)}$ is optimal for Local Search, for r = O(1)
- NP hard to get c^k for some c > 1, even for symmetric PSD
- Getting $e^{O(k)}$ for nonsymmetric PSD implies O(1)-approximation for determinantal lowerbound [Lovasz-Spencer-Vesztergombi'86] and hereditary discrepancy (long time open problem, see [Jiang-Res-SOSA'22] for recent progress)

$$\begin{split} \det & \operatorname{Ib}(A) = \max_{k} \max_{I \subseteq [m], J \subseteq [n], |I| = |J| = k} |\det(A_{I,J})|^{1/k} \\ & \operatorname{herdisc}(A) = \max_{S} \min_{x \in [-1,1]^n} ||A_{|S}x||_{\infty} \end{split}$$

■ Thank you!

