2020 数学分析 C 期中考试

Zavalon from TG

2014.11.05

- 一. 简答题 (每题 5 分, 共 20 分, 简要说明理由).
- 1. 设 $f, g: \mathbb{R}^n \to \mathbb{R}^n$ 为互逆可微映射, 则 f, g 的 Jacobi 矩阵均非退化.
- 2. 设 $f: \mathbb{R}^n \to \mathbb{R}^n$ 可微且恒有 $\|Df(x)\| < 1$, 则 g(x) = x + f(x) 为单射.
- 3. 设 $\{A_i\}_{i=1}^k$ 为 \mathbb{R}^n 中有限个可求体积的集合. 证明其的交集也可求体积.
- 4. 用多元函数的积分解释一元函数 e^{-x^2} 在 ℝ 上的积分等于 $\sqrt{\pi}$.
- 二. 计算题 (每题 10 分, 共 40 分)
- 1. 设函数 $f(x,y) = \sqrt{x^2 + y^2 + 1}$, 计算其一阶和二阶偏导数.
- 2. 方程 $x^2 xy + yz + e^z = 0$ 在 $(x_0, y_0, z_0) = (1, 2, 0)$ 附近决定了隐函数 z = z(x, y), 在 (1, 2) 处计算 z 关于 x, y 的一阶和二阶偏导数.
- 3. 在约束条件 $2x + y + z = 1, x^2 + y^2 = 1$ 下求函数 f(x, y, z) = 3y + z 的最值.
- 4. 设 a,b>0,q>p>0. 计算由椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,\frac{x^2}{a^2}+\frac{y^2}{b^2}=2$ 以及直线 y=px,y=qx 在平面第一象限所围区域的面积.
- 三. 综合题 (每题 10 分, 共 40 分)
- 1. 设函数 $f: \mathbb{R}^n \to \mathbb{R}$ 满足 $|f(x) f(y)| \le ||x y||^2, \forall x, y \in \mathbb{R}^n$. 证明:
- (1).f 可微且微分恒为 0;
- (2).f 为常值函数.
- 2. 设函数 $f: \mathbb{R}^n \to \mathbb{R}$ 为可微函数,且满足 $\langle \nabla f(x) \nabla f(y), x y \rangle \geq 0$, $\forall x, y \in \mathbb{R}^n$ 其中 $\langle \cdot, \cdot \rangle$ 为 \mathbb{R}^n 中的标准内积.证明 f 为凸函数.
- 3. 设函数 $f \in C^2(\mathbb{R}^2)$, 记 $\varphi(r) = \iint_{\{x_1^2 + y^2 \le r^2\}} f(x, y) \, dx dy, \forall r \ge 0$. 证明:
- 当 $r \to 0^+$ 时,有 $\varphi(r) = \pi r^2 f(0,0) + \frac{1}{8} \pi r^4 [f_{xx}^{"}(0,0) + f_{yy}^{"}(0,0)] + o(r^4)$.
- 4. 设函数 $f \in C^1(\mathbb{R}^n)$, 且满足 $||f(x) f(y)|| \ge ||x y||$, $\forall x, y \in \mathbb{R}^n$. 证明:
- (1).f 的 Jacobi 矩阵 Df(x) 处处非退化.
- (2). 如果 A 可求体积, 则 f(A) 也可求体积, 且 $v(f(A)) \ge v(A)$.