AD-A072 226

MIDWEST RESEARCH INST KANSAS CITY MO
CONVERGENCE PROOF OF ECONOMIC REPRESENTATION OF TRANSCENDENTAL --ETC(U)
JUL 60 J L FIELDS, Y L LUKE

UNCLASSIFIED

AD 772.26

COLUMBIA UNIVERSITY
HÜDSON LABORATORIES
CONTRACT NO-ONR-27135

CONVERGENCE PROOF OF ECONOMIC REPRESENTATION OF TRANSCENDENTAL FUNCTIONS

TECHNICAL REPORT July 15, 1960

M.R.I. Project No. 2229-P

Contract No. Nonr-2638(00)(X)

DC FILE COPY

DISTRIBUTION STATEMENT A

Approved for public released
Distribution Unlimited

For

78 03

A7 -094

Applied Mathematics Laboratory David W. Taylor Model Basin Washington, D. C.

9 08 03 117 AUG 10 1960

MIDWEST RESEARCH INSTITUTE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enter

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM				
I. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
4. TITLE (and Substite) CONVERGENCE PROOF OF ECONOMIC REPRESENTATION		S. TYPE OF REPORT & PERIOD COVERED			
TRANSCENDENTAL FUNCTIONS	PRESENTATION OF	Technical Report			
(RANSCENDENTAL TONOTIONS		6. PERFORMING ORG. REPORT NUMBER			
		S. CONTRACT OR GRANT NUMBER(s)			
Fields, Jerry L. and Luke, Yudel	1 1	Nonr-2638(00)(X)			
rieius, verry L. and Luke, iudei					
PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Midwest Research Insttiute					
		2229-P			
Office of Naval Research, Code 2		12. REPORT DATE			
	20	15 JUL 1960			
800 North Quincy Street Arlington, VA 22217		13. NUMBER OF PAGES			
4. MONITORING AGENCY NAME & ADDRESS(It different	from Controlling Office)	15. SECURITY CLASS. (of this report)			
		UNCLASSIFIED			
		15a. DECLASSIFICATION/DOWNGRADING			
7. DISTRIBUTION STATEMENT (of the abstract entered I	n Block 20, If different from	m Report)			
8. SUPPLEMENTARY NOTES					
. KEY WORDS (Continue on reverse side if necessary and	I identify by block number)				
The factor of the second of the second					
D. ABSTRACT (Continue on reverse side if necessary and	identify by block number)				

COLUMBIA UNIVERSITY HUDSON LABORATORIES

MIDWEST RESEARCH INSTITUTE CONTRACT NO-ONR-27135 CONVERGENCE PROOF OF ECONOMIC REPRESENTATION OF TRANSCENDENTAL FUNCTIONS. by Jerry L. Fields Yudell L. Luke TECHNICAL REPORT 1, 10, 1060 M.R.I. Project No. 2229-P / Contract No. / Nonr-2638(00)(X)

For

Applied Mathematics Laboratory David W. Taylor Model Basin Washington, D. C.

istribution/ Aveilability Codes Avail and/or		GRA&I	
yistribution/ Availability Codes [Availand/or			
yistribution/ Availability Codes Availand/or			, 니
istribution/ Aveilability Codes Avail and/or			
Availability Codes Availand/or	у		
Availability Codes Availand/or		hation	,
Avail and/or			
	Aveil	ability	Codes
		Availa	nd/or
st special	ist	speci	al
	/1	1	

79 08 03 117 AUG 10 1960 PREFACE

This report covers research initiated by the Applied Mathematics Laboratory, David W. Taylor Model Basin, Washington, D. C. The research work upon which this report is based was accomplished by Midwest Research Institute under Contract No. Nonr-2638(00)(X).

The numerics in this report are related to work previously done in earlier reports, and the authors wish to take this opportunity to again thank those members of the Midwest Research Institute staff who materially contributed. They are Geraldine Coombs, Betty Kahn, Anna Lee Samuels and Wanda Shelp.

J.L.F. and Y.L.L.

Approved for:

MIDWEST RESEARCH INSTITUTE

S. L. Levy, Manager

Mathematics and Physics Division

July 15, 1960

TABLE OF CONTENTS

																										Page No	2
	mary and In																										
Sum	mary and in	trod	ucti	on .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
1.	Convergence	e of	the	Rat	io	nal	LA	þį	pro	ixo	lme	at:	lor	36	•	•	•	•	•	•	•	•	•	•	•	2	
2.	Numerics .	٠.		•					•				•	•	•		•	•		•	•		•		•	13	
Bib	liography .																									16	

CONVERGENCE PROOF OF ECONOMIC REPRESENTATION OF TRANSCENDENTAL FUNCTIONS

by

Jerry L. Fields and Yudell L. Luke

Summary and Introduction

In a previous report [1] , it was shown that a large class of transcendental functions could be represented by a rational function, the ratio of two polynomials, together with a remainder term. More specifically, if E(z) is defined by a Laplace integral, then

$$E(z) = \varphi_n/f_n + R_n$$
, $R_n = F_n/f_n$

where φ_n and F_n are polynomials of degree n and R_n is the remainder. In Section I it is shown that this can be considered a regular summation technique.

By proper choice of some parameters, f_n is a polynomial of hypergeometric form. If, except for a multiplicative factor, E(z) has a generalized hypergeometric series representation, then F_n is a sum of a generalized hypergeometric series.

Only in certain cases could it be shown that the rational representation converges, i.e., for a fixed, lim R_n(s) = 0 one of the principal difficulties lies in the fact that asymptotic expansions of a certain class of hypergeometric polynomials were known only for a few special cases, the classical Jacobi polynomials, for example. Asymptotic expansions of this class of hypergeometric polynomials now exist, see [2] and the convergence question can be further explored.

^{1/} Numbers in square brackets pertain to references at end of report.

The structure of the numerator of the error term, i.e., F_n is complicated and only in a few special cases has it been possible to represent it in a useful form. This drawback is partly alleviated by the fact that one of the above-mentioned special cases includes the Whittaker functions and their natural generalizations. For those cases where F_n can be put into a useful form, we prove convergence of the rational representation.

In the case of particular interest, i.e., the Whittaker functions, we represent F_n as an integral and then find a suitable bound for it. This coupled with an asymptotic estimate of f_n enables us to prove that $\lim_{n \to \infty} R_n = 0$ and also to obtain an asymptotic bound for the error. This is the essence of Section I. In Section II, numerics are presented to display the effectiveness of this bound.

1. Convergence of the Rational Approximations

In [1], it was shown how to formally generate a rather general sequence of rational approximations for the generalized hypergeometric function [3]

$$E(z) = {}_{p+1}F_q\left(\boldsymbol{\sigma}, \alpha_1, \dots, \alpha_p \middle| \frac{\lambda}{z}\right) , \qquad (1.1)$$

where

$$m^{F_{n}(x)} = m^{F_{n}} \begin{pmatrix} \alpha_{1}, \dots, & \alpha_{m} | x \end{pmatrix} = \sum_{k=0}^{\infty} \frac{\prod_{t=1}^{m} (\alpha_{t})_{k}}{\prod_{t=1}^{n} (\beta_{t})_{k}} \frac{(x)^{k}}{k!}$$

$$(\omega)_{k} = \frac{\Gamma(\omega + k)}{\Gamma(\omega)}$$
(1.2)

Throughout this paper we employ a contracted notation and write

$$_{\mathbf{m}}\mathbf{F}_{\mathbf{n}}(\mathbf{x}) = _{\mathbf{m}}\mathbf{F}_{\mathbf{n}}\left(\begin{array}{c} \alpha_{\mathbf{m}} \\ \mathbf{r}_{\mathbf{n}} \end{array}\right| \mathbf{x} = \sum_{\mathbf{k}=0}^{\infty} \frac{\left(\begin{array}{c} \alpha_{\mathbf{m}} \right)_{\mathbf{k}}}{\left(\begin{array}{c} \mathbf{r}_{\mathbf{n}} \right)_{\mathbf{k}}} \frac{\left(\mathbf{x}\right)^{\mathbf{k}}}{\mathbf{k}!} \end{array} . \tag{1.3}$$

Thus (α_m) is interpreted as $\prod_{t=1}^m (\alpha_t)_k$, and a similar remark holds for t=1 $(\rho_n)_k$. We assume that none of the α_t 's, or ρ_t 's are zero or a negative integer. Also, it is assumed that the difference of any numerator parameter α_j , and any denominator parameter ρ_t , is never equal to zero. Empty terms in expression such as (1.3) are replaced by unity. Two distinct sequences of rational approximations were developed in the above paper [1]. They are as follows.

Type I or Homogeneous Case

$$E(z) = \frac{\varphi_n(z, \gamma)}{f_n(\gamma)} + R_n(z, \gamma), R_n(z, \gamma) = \frac{F_n(a_{k,z,\gamma})}{f(\gamma)}. \qquad (1.4)$$

$$\varphi_{n}(z, \gamma) = \sum_{r=0}^{n} \frac{(\sigma)_{r}(\alpha_{p})_{r}}{(1)_{r}(\rho_{q})_{r}} \left(\frac{\lambda}{z}\right)^{r} f_{n}^{[r]}(\gamma) \qquad (1.5)$$

$$f_n^{[r]}(y) = \sum_{k=r}^n a_{n-k} y^k$$
, $f_n^{[0]} = f_n(y)$ (1.6)

$$F_{n}(a_{k,z,z}) = \frac{z^{\sigma}}{\Gamma(\sigma)} \int_{0}^{\infty} e^{-zt} t^{\sigma-1} \sum_{k=0}^{n} a_{n-k} (\lambda x t)^{k} \sum_{r=0}^{\infty} \frac{(\alpha_{p})_{r+k+1} (\lambda t)^{r+1}}{(\rho_{q})_{r+k+1} (r+k+1)!} dt$$
(1.7)

$$=\frac{z^{\sigma}}{\Gamma(\sigma)_{0}}\int_{e^{-zt}t^{\sigma-1}}^{\infty} \sum_{k=0}^{n} a_{n-k} \left(\frac{\lambda \gamma}{z}\right) \sum_{r=0}^{k} \frac{(x_{p})_{r+k+1} (\sigma+r+1)_{k} (\lambda t)^{r+1}}{(\rho_{q})_{r+k+1} (r+k+1)!} dt$$
(1.8)

$$= \frac{\sigma \lambda \alpha_{p}}{z \rho_{q}} \sum_{r=0}^{\infty} \frac{(\sigma+1)_{r} (\alpha_{p}+1)_{r}}{(2)_{r} (\rho_{q}+1)_{r}} (\frac{\lambda}{z})^{r} \sum_{k=0}^{n} \frac{a_{n-k} (\sigma+r+1)_{k} (\alpha_{p}+r+1)_{k}}{(2+r)_{k} (\rho_{q}+r+1)_{k}} (\frac{\lambda \delta}{z})^{k}.$$
(1.9)

where $\alpha_p = \prod_{t=1}^p \alpha_t$, and $P_q = \prod_{t=1}^q P_t$. Here the coefficients a_k are as yet arbitrary, and γ is unrestricted except that $|\gamma/z| \le 1$.

Type II or Non-Homogeneous

$$E(z) = \frac{\Phi_{n}(z, y)}{f_{n}(y)} + R_{n}(z, y) , R_{n}(z, y) = \frac{F_{n}(a_{k,z}, y)}{f_{n}(y)} . \qquad (1.10)$$

$$\varphi_{n}(z, \gamma) = \sum_{r=0}^{n-1} \frac{(\sigma)_{r}(\alpha_{p})_{r}}{(1)_{r}(\rho_{q})_{r}} \left(\frac{\lambda}{z}\right)^{r} f_{n}^{[r+1]}(\gamma) \qquad (1.11)$$

$$f_n^{[r]}(\gamma) = \sum_{k=r}^n a_{n=k} \gamma^k$$
, $f_n^{[0]}(\gamma) = f(\gamma)$. (1.12)

$$F_{n}(a,z,y) = \frac{z^{\sigma}}{\Gamma(\sigma)_{0}} \int_{0}^{\infty} e^{-zt}t^{\sigma-1} \sum_{k=0}^{n} a_{n-k}(\lambda yt)^{k} \sum_{r=0}^{\infty} \frac{(\alpha_{p})_{r+k}(\lambda t)^{r}}{(\rho_{q})_{r+k}(r+k)!} dt$$

$$= \frac{z^{\sigma}}{\Gamma(\sigma)_{0}} \int_{0}^{\infty} e^{-zt}t^{\sigma-1} \sum_{k=0}^{n} a_{n-k} \left(\frac{\lambda y}{z}\right)^{k} \sum_{r=0}^{\infty} \frac{(\alpha_{p})_{r+k}(\sigma+r)_{k}(\lambda t)^{r}}{(\rho_{q})_{r+k}(r+k)!} dt$$

$$(1.13)$$

$$= \sum_{r=0}^{\infty} \frac{(\sigma)_r (\alpha_p)_r}{(1)_r (\rho_q)_r} \left(\frac{\lambda}{z}\right)^r \sum_{k=0}^n \frac{a_{n-k} (\sigma+r)_k (\alpha_p+r)_k}{(1+r)_k (\rho_q+r)_k} \left(\frac{\lambda_{\chi}}{z}\right)^k$$
(1.15)

where, as before, the a_k 's are unspecified and γ is subject only to the restriction $|\delta/z| \le 1$.

The difference between the two sequences is that when $z=\delta$, in the Type I representation, $\mathscr{P}_n(0)\neq 0$, whereas for the Type II representation under the same condition, $\mathscr{P}_n(0)=0$. For some particular case one of the representations may be more desirable than the other. Also, it sometimes happens that one sequence approaches the desired limit monotonically from above, and the other monotonically from below, thus yielding rational inequalities for the functions in question. The above formal sequences were derived, strictly speaking, with the restrictions $p \leq q$ and Re(z) > 0 if p < q, while $Re(z) > Re(\lambda)$ if p = q. However, these restrictions may be weakened whenever the resulting expressions are defined and make sense.

The merit of [1] lies in the fact that it motivates how the arbitrary coefficients a_k should be chosen and gives a closed form expression for the error. The a_k 's were chosen in [1] to agree under certain circumstances, at least, with the rational approximations given by application of Lanczos' τ -method (see [4]) to the linear differential equation satisfied by E(z) (see [3]). The choices made for the a_k were

Type I - Homogeneous

$$a_{n-k} = \frac{c_{nk}(\rho_q)_k}{(\alpha_p+1)_k \lambda^k}, \quad \text{if } \sigma = 1 \quad (1.16)$$

$$a_{n-k} = \frac{c_{nk}(\rho_q)_k(1)_k}{(\alpha_p+1)_k(\sigma+1)_k}, \quad \text{if } \tau \neq 1$$
 (1.17)

where

$$c_{nk} = \frac{(-n)_k(n+\alpha+\beta+1)_k}{(\beta+1)_k k!}.$$

Type II - Non-Homogeneous

$$a_{n-k} = \frac{c_{nk}(\rho_{q-1})_k(1)_k}{(\alpha_p)_k(\sigma)_k \lambda^k}$$
 (1.18)

and C_{nk} is defined as above. With this selection of the coefficients a_k , we show that the rational sequences defined by (1.4) - (1.9) and (1.10) - (1.15) converge for two general classes of functions defined as follows: Class I is composed of those hypergeometric functions such that $p \leq q$ in (1.1) and Class II is made up of the hypergeometric functions such that p = q+1 in (1.1). Class II includes the Whittaker functions, modified Bessel functions, the Weber Parabolic Cylinder functions, and various special cases thereof. For completeness, we define a Class III composed of all hypergeometric functions such that $p \geq q+1$ in (1.1).

Considering E(z) as a formal infinite series, we define the partial sum of this series by

$$P_{n}(z) = \sum_{r=0}^{n-1} \frac{(\sigma)_{r}(\alpha_{p})_{r}}{(\mathcal{E}_{q})_{r}} \frac{(\lambda/z)^{r}}{r!}$$
 (1.19)

Rearrangement of (1.5) and (1.11) gives

$$\varphi_{n}(z, \forall) = \sum_{k=a}^{n} a_{n-k} y^{k} P_{k}(z)$$
 (1.20)

where a = 0 for the Type I or Homogeneous Case,

a = 1 for the Type II or Non-Homogeneous Case.

Thus our rational approximations may be considered as a summation technique. A method of summability is said to be regular if it sums a convergent series to its ordinary sum. We now show that our economization process is a regular summability process.

Theorem. If

(1)
$$\Phi_n(z, y) = \sum_{k=0}^n a_{n-k} y^k P_k(z)$$
, $f_n(y) = \sum_{k=0}^n a_{n-k} y^k$,

(2)
$$\lim_{k\to\infty} P_k(z) = E(z)$$
, for fixed z,

(3)
$$a_{n-k} > 0$$
 , $x > 0$, and

(4)
$$\lim_{n\to\infty} f_n(\gamma) = \infty$$
, $f_{n+1}(\gamma) > f_n(\gamma)$ for fixed γ ,

then
$$\lim_{n\to\infty} |\phi_n(z, \ell)/f_n(\ell) - E(z)| = 0$$
 for fixed ℓ and ℓ .

Proof.

Given $\epsilon>0$, there exists a positive integer N (usually dependent on z) such that n>N implies $|P_k(z)-E(z)|<\epsilon/3$. Then

$$\varphi_{n}(z, \gamma)/f_{n}(\gamma) = \sum_{k=0}^{N} \left\{ a_{n-k} \gamma^{k} \left[P_{k}(z) - E(z) - \epsilon/3 \right] \right\} + \epsilon/3 \sum_{k=0}^{N} a_{n-k} \gamma^{k}$$

$$+ \frac{\sum_{k=N}^{n} a_{n-k} y^{k} \left[P_{k}(z) - E(z) \right] - a a_{n} \left[\epsilon / 3 + E(z) \right]}{f_{n}(y)}$$

Thus, for n>N,

$$\left| \phi_{n}(z, \forall) / f_{n}(\forall) - E(z) \right| \leq \frac{\sum_{k=a}^{N} \left\{ a_{n-k} | \chi^{k} | P_{k}(z) - E(z) - \epsilon/3 | \right\} + a | a_{n}(\epsilon/3 + |E(z)|)}{f_{n}(\forall)} + \epsilon/3 \frac{f_{n}(\forall)}{f_{n}(\forall)}.$$

Since N is fixed, n can be chosen large enough such that the right hand side of the above ls less than \in . This proves the theorem. From the results of [2], and (1.16) - (1.18), we see that convergence for Class I of the hypergeometric functions is proved, when $\lambda \geq 0$.

We now consider Class II, i.e., the situation where p=q+l. Treating the non-homogeneous or Type II (ase only, for p=l and q=0, from (1.15) and (1.18) we get

$$F_{n}(z,\gamma) = \frac{z^{\sigma}}{\Gamma(\sigma)} \int_{0}^{\infty} e^{-zt_{t}\sigma-1} \sum_{k=0}^{n} c_{nk}(\gamma/z)^{k} \, _{3}F_{2} \left(\begin{array}{c} \alpha_{1}+k,\sigma+k,1 \\ k+1,\sigma \end{array} \right) dt . \tag{1.21}$$

By use of the relationships, see [3]

$$p+1^{F}q+1\begin{pmatrix} \alpha_{p},\sigma_{1} \\ \rho_{q},\sigma_{1}+\sigma_{2} \end{pmatrix}|^{z} = \frac{\Gamma(\sigma_{1}+\sigma_{2})}{\Gamma(\sigma_{1})\Gamma(\sigma_{2})} \int_{0}^{1} u^{\sigma_{1}-1}(1-u)^{\sigma_{2}-1} p^{F}q \begin{pmatrix} \alpha_{p} \\ \rho_{q} \end{pmatrix} zu du,$$

$$Re \sigma_{1}>0, Re \sigma_{2}>0 \qquad (1.22)$$

and

$$2^{F_1}\begin{pmatrix} \alpha, \beta \mid z \end{pmatrix} = (1-z)^{-\beta} 2^{F_1}\begin{pmatrix} \gamma - \alpha, \beta \mid \frac{z}{z-1} \end{pmatrix} , \qquad (1.23)$$

we can write

$$F_{n}(z, \lambda) = \frac{z^{\sigma}}{\Gamma(\sigma-1)\Gamma(1-\alpha_{1})\Gamma(\alpha_{1})} \int_{0}^{\infty} \int_{0}^{1} \frac{e^{-zt_{t}\sigma-1_{u}\alpha_{1}-1}(1-u)^{-\alpha}1_{v}\sigma-2}{(1-t\lambda u)}$$

$$\times 3^{F_2} \begin{pmatrix} -n, n+\alpha+\beta+1, 1 \\ \alpha_1, 1+\beta \end{pmatrix} u \begin{pmatrix} \frac{y}{z} \end{pmatrix} \begin{pmatrix} \frac{1-t \lambda uv}{1-t \lambda u} \end{pmatrix} dv du dt ,$$

$$Re \lambda < 0, Re(z) > 0, 0 < Re \alpha_1 < 1, Re \sigma > 1 . \qquad (1.24)$$

Defining

$$M_1^{\text{II}} = \max_{0 \le w \le 1} |\mathbf{3}^{\text{F}_2} \begin{pmatrix} -n, n+\alpha+\beta+1, 1 \\ \beta+1, \alpha_1 \end{pmatrix}$$
, (1.25)

and noticing that

$$\left|1-t\lambda u\right| \ge 1, \ 0 \le t \le \infty, \ 0 \le u \le 1,$$

$$0 \le \left|u\left(\frac{x}{z}\right)\left(\frac{1-t\lambda uv}{1-t\lambda u}\right)\right| \le 1, \quad \left|x/z\right| \le 1, \ 0 \le v \le 1$$
(1.26)

it is easily seen by direct computation that

$$F_n(z, \gamma) \le M_1^{II}$$
. (1.27)

By repeated use of (1.22) and the same method of proof as above, it can be shown that

$$F_{n}(z, y) \leq M_{q+1}^{II}$$

$$M_{q+1}^{II} = \max_{0 \leq w \leq 1} |q+3^{F}q+2 \begin{pmatrix} -n, n+\alpha+\beta+1, pq-1, 1 \\ \beta+1, \alpha_{q+1} \end{pmatrix}$$
(1.28)

From [2], if $(2\omega+\alpha+\beta+3/2)>0$, where

$$2\omega = \left\{ 1/2 + \sum_{i=1}^{q} c_i^2 - \left(q + \beta + \sum_{i=1}^{q+1} \alpha_i \right) \right\} ,$$
 (1.29)

$$M_{q+1}^{II} = \left| \frac{\Gamma(\beta+1)\Gamma(\alpha_{q+1}) N^{2\omega+\alpha+\beta+1}}{\Gamma(\beta_{q}-1)\Gamma(2\omega+\alpha+\beta+3/2)} \left\{ 1 + O(1/N) \right\} \right|$$

$$N^{2} = n(n+\alpha+\beta+1)$$
(1.30)

Thus $F_n(z, \chi)$ is bounded by a term of algebraic order in n . On the other hand, by (1.18), (1.12) and a result given in [2],

$$F_{n}(\gamma) = \frac{1}{q+3} F_{q+3} \left(\frac{-n, n+\alpha+\beta+1}{\alpha_{q+1}, \sigma, 1+\beta}, \frac{1}{q-1, 1} \right) \lambda \lambda$$

$$= \frac{\Gamma(\alpha_{q+1}) \Gamma(\sigma) \Gamma(1+\beta)}{\Gamma(\alpha_{q+1}) 2\pi 3^{1/2}} \left(\frac{n^{2} \gamma}{\lambda} \right)^{2} \exp \left\{ 3 \left(n^{2} \frac{\gamma}{\lambda} \right)^{1/3} - \left(\frac{\gamma}{3 \lambda} \right) \right\}$$

$$+ \frac{\varphi\left(-\frac{\gamma}{\lambda} \right)}{\left(n^{2} \frac{\gamma}{\lambda} \right)^{1/3}} + o\left(\frac{\gamma^{7/3}}{n^{4/3}} \right) \right\} + \text{terms of algebraic order}$$
in N

where

$$\begin{split} N^2 &= n(n+\alpha+\beta+1) \\ \bar{\omega} &= \frac{2\omega+1/2-\sigma}{3} \\ \bar{\lambda} &= -\lambda , \text{ Re } (\bar{\lambda}) \ge 0 \\ \Phi(-\gamma/\bar{\lambda}) &= +\frac{1}{15} (\gamma/\bar{\lambda})^2 - (\alpha+\beta+2/3+2\bar{\omega})(\gamma/\bar{\lambda}) \\ &+ \frac{(D_1-D_2)}{3} (2D_1+D_2-1) + \mathbb{E}_2 - \mathbb{E}_1 - 2/9 \\ D_1 &= 1 + \sum_{t=1}^{q} (\rho_1-1) , D_2 = \sum_{i=1}^{q+3} \alpha_i , \alpha_{q+2} = \sigma, \alpha_{q+3} = 1+\beta \\ E_1 &= D_1-1 + \sum_{n=2}^{q} \sum_{j=1}^{n-1} (\rho_n-1)(\rho_j-1) \\ E_2 &= \sum_{n=2}^{q+3} \sum_{j=1}^{n-1} (\alpha_n)(\alpha_j) \end{split}$$

Since $f_n(\gamma)$ is of exponential order in n,

$$\lim_{n\to\infty} R_n(z,\gamma) = \lim_{n\to\infty} \frac{F_n(z,\gamma)}{f_n(z,\gamma)} = 0 . \qquad (1.33)$$

Similarly in the homogeneous or Type I case, one can show

$$F_n(z, \gamma) \leq \frac{\alpha_{q+1} \lambda \sigma}{\rho_{q^2}} M_{q+1}^{I}$$
 (1.34)

where

$$M_{q+1} = \max_{0 \le w \le 1} \left| q + 3^{F} q + 2 \left(-n, n + \alpha + \beta + 1, 1 + \rho_{q}, 1 \mid w \right) \right| \\
= \max_{0 \le w \le 1} \left| q + 3^{F} q + 2 \left(-n, n + \alpha + \beta + 1, \rho_{q}, 2 \mid w \right) \right| \\
\beta + 1, 1 + \alpha_{q+1} \\
\sigma = 1$$
(1.35)

Again, by [2], if $(2\Omega+\alpha+\beta+3/2)>0$, where

$$2\Omega = \frac{1}{2} + q - \beta + \sum_{i=1}^{q} \rho_i - \sum_{i=1}^{q+1} \alpha_{q+1}$$

$$\sigma \neq 1$$

$$= \frac{1}{2} - q - \beta + \sum_{i=1}^{q} \rho_i - \sum_{i=1}^{q+1} \alpha_{q+1}$$

$$\sigma = 1$$

$$(1.36)$$

$$\sigma = 1$$

$$M_{q+1}^{I} = \left| \frac{\Gamma(\beta+1)\Gamma(\alpha_{q+1}) N^{4\Omega+\alpha+\beta+1}}{\Gamma(1+\rho_q)\Gamma(2\Omega+\alpha+\beta+3/2)} \left\{ 1 + o\left(\frac{1}{N}\right) \right\} \right|$$

$$= \left| \frac{\Gamma(\beta+1)\Gamma(1+\alpha_{q+1}) N^{4\Omega+\alpha+\beta+1}}{\Gamma(\rho_q)\Gamma(2\Omega+\alpha+\beta+3/2)} \left\{ 1 + o\left(\frac{1}{N}\right) \right\} \right|$$

$$\sigma \neq 1$$

$$0 \neq 1$$

COLUMBIA UNIVERSITY
HUDSON LABORATORIES
CONTRACT NO-ONR-27135

Thus, by (1.34) and (1.37), $F_n(z, \chi)$ is again bounded by a term of algebraic order in n. Combining this with (1.31), we again have

$$\lim_{n \to \infty} R_n(z, \chi) = \lim_{n \to \infty} \frac{F_n(z, \chi)}{f_n(\chi)} = 0 . \qquad (1.38)$$

It calls for remark that the bound for the integral in (1.24) was obtained by ignoring the oscillatory nature of the hypergeometric function in its integrand over the entire region of integration. Thus, the asymptotic bound for the remainder is conservative as the rational approximations converge much more rapidly than indicated by (1.28). Realistic estimates of $F_n(z, \gamma)$ and so of $R_n(z, \gamma)$ seem to be much more difficult. However, though (1.28) is quite rough, it is easy to use and not excessively misleading.

2. Numerics

To give a qualitative idea of the effectiveness of the bound $M_{q+1}^{\ \ II}$ for $F_n(z,\gamma)$, we consider an example given in [1] (Table (8.2)). The example is connected with the modified Bessel function $K\gamma$ (z).

$$K_{\nu}(z) = e^{-z} (\pi/2z)^{1/2} E(z)$$

 $E(z) = {}_{2}F_{0}(1/2 - \nu, 1/2 + \nu | - 1/2z)$ (2.1)

Using the non-homogeneous or Type II approach,

$$f_{n}(x) = {}_{3}F_{3}\left(\begin{array}{c} -n, n+\alpha+\beta+1, 1\\ \beta+1, 1/2-\nu, 1/2+\nu \end{array}\right) -2x$$

$$\phi_{n}(z, x) = (1/4-\nu^{2}) \sum_{r=0}^{n} \frac{C_{n,r}(x/z)^{r}}{(1/2+\nu+r)(1/2-\nu+r)}$$

$$\times {}_{3}F_{3}\left(\begin{array}{c} -n+r, n+\alpha+\beta+1+r, 1\\ \beta+1+r, 3/2+\nu+r, 3/2-\nu+r \end{array}\right) -2x$$

$$= E_{n}(z, x) + R_{n}(z, x)$$

$$= E_{n}(z, x) + R_{n}(z, x)$$

$$(2.2)$$

If $\alpha = \beta = -1/2$, $\nu = 0$, $\gamma = z$, and denoting asymptotic values as computed from (1.30) and (1.31) by \sim , we have to four significant figures,

Z	<u>f₃(z)</u>	$\sim f_3(z)$	<u>)</u>	R ₃ (z	, 8)
0.5	298.3	2	95.5	5.598	x 10-4
1.0	1 265.	1 2	76.		x 10-4
2.0	6 515.	7 0	07.	5.84	x 10-5
5.0	72 400.	121 0	00.	0	
7.0	184 300.	507 8	00.	-1.	x 10-6
10.0	506 600.	3 994 0	00.	-8.	x 10-7
2	F3(z, X)	M _{II}	~M1II	~	M ₁ II /~f ₃ (z)
0.5	0.1670	-9.4	9.42		3.188 x 10-2
1.0	0.3977	1			7.382 x 10 ⁻³
2.0	0.3805				1.344 x 10-3
5.0	0.0				7.785 x 10-5
7.0	-0.1843				1.855 x 10 ⁻⁵
10.0	-0.4053	V	•		2.359 x 10 ⁻⁶
					(2.3

(2.3)

2	f ₄ (z)	$\frac{\sim f_{\phi}(z)}{}$	$R_4(z, \gamma)$	
0.5	1 206.	1 198.	1.170 x 10-4	
1.0	7 169.	7 217.	-6.1 x 10 ⁻⁶	
2.0	55 840.	61 170.	-5.4 x 10 ⁻⁶	
5.0	1 208 000.	1 754 000.	-2. x 10 ⁻⁷	
7.0	4 052 000.	8 491 000.	-1. × 10 ⁻⁷	
10.0	15 140 000.	68 760 000.	-1. x 10 ⁻⁷	
8	F4(z, y)	MıII	~M1I ~M1I/~f4(z)	
0.5	0.1411	12.58	12.57 1.049 x 10 ⁻²	
1.0	-0.04373		1.742 x 10-3	
2.0	-0.3015		2.055 x 10-4	
5.0	-0.2417		7.166 x 10 ⁻⁶	
7.0	-0.4052		1.480 x 10 ⁻⁶	
10.0	-1.514	•	1.828 x 10-7	
			((2.4)

The above example shows that our error analysis is quite conservative, as expected. For the present, a pragmatic view should be taken concerning the error. That is, if more precise information is required, in those cases where convergence is assured, one should compute for successive values of n and accept the common digits as correct. To illustrate, in the above example for $K_{\rm O}(z)$, if

and it is quite reasonable to say

with a possible error of one unit in the third decimal place.

BIBLIOGRAPHY

- [1] Luke, Y. L., "On Economic Representations of Transcendental Functions", Journal of Mathematics and Physics, 38, No. 4, January 1960, 279-294.
- [2] Fields, J. L., and Luke, Y. L., "Asymptotic Expansions of a Class of Hypergeometric Polynomials with Respect to the Order", Midwest Research Institute Technical Report, July 1, 1959.
- [3] Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G.,

 <u>Higher Transcendental Functions</u>, Vols. I and II, McGraw-Hill Book
 Company (1953).
- [4] Luke, Y. L., "Remarks on the T-Method for the Solution of Linear Differential Equations with Rational Coefficients", SIAM, 3 (1955), 179-191.

DISTRIBUTION LIST

Contract No. Nonr-2638(00)(X)

No. of Copies	Recipient
14	CHBUSHIPS 10 Tech. Library (Code 512) 1 Tech. Asst. to Chief (Code 106) 1 Electronic Computer Div. (Code 280) 1 Asst. Chief for Field Activities (Code 700) 1 Asst. Chief for Nuclear Propulsion (Code 1500)
1	CHBUAER
1	CHBUORD
1	CHBUSANDA
1	CHBUCENSUS
1	CHONR
1	navshipyd BSN
1	NAVSHIPYD CHASN
1	NAVSHIPYD LBEACH
1	NAVSHIPYD MARE
1	NAVSHIPYD NYK
1	NAVSHIPYD NORVA
1	navshipyd SFRAN
1	NAVSHIPYD PHILA
1	navshipyd ptsmi
1	NAVSHIPYD PUG
1	NAVSHIPYD PEARL

No. of Copies	Recipient
1	CO & DIR, USNBIL
	Philadelphia, Pennsylvania
1	CO & DIR, USNEL
	San Diego, California
1	CO & DIR, USNRDL
	San Francisco, California
1.	CO & DIR, USN Trg. Device Ctr.
	Computer Branch
	Port Washington, New York
1	CO, USNCML
	St. Paul, Minnesota
1	CDR, USNPG
	Dahlgren, Virginia
3	CDR, USNOTS
	China Lake, California
	1 Pasadena Annex
	1 Tech. Library
	1 Michelson Lab (Code 5058)
1	CDR, USNOL
	White Oak, Silver Spring, Maryland
1	DIR, USNEES
	Annapolis, Maryland
1	DIR, USNRL
	Washington 25, D. C.
1	SUPT, USN Postgrad School
	Monterey, California
	Attn: Library, Technical Reports Section
1	SUPT, US Naval Academy
	Department of Math
	Annapolis, Maryland

No. of Copies	Recipient
1	CG, Aberdeen Proving Ground Aberdeen, Maryland
1	DIR, National Bureau of Standards Washington 25, D. C.
1	Chief, AFSWP Washington 25, D. C.
1	DIR, Langley Aero Lab Langley Field, Virginia
1	DIR, Lewis Flight Propulsion Lab
	Cleveland 11, Ohio
1	CDR, Wright Air Development Center Attn: WCRRN-4
	Wright-Patterson Air Force Base, Ohio
1	CG, Frankford Arsenal Head, Math Section
	Pitman-Dunn Laboratories Philadelphia 57, Pennsylvania
1	CG, White Sands Proving Ground Flight Determination Lab
	Las Cruces, New Mexico
1	USAEC, Technical Information Service Oak Ridge, Tennessee
2	U. S. Atomic Energy Commission
	Washington 25, D C.
	Attn: Tech. Library
1	CO, Diamond Ordnance Fuze Laboratory
	Washington 25, D. C.
	Attn: Library
1	George Washington University
	Logistics Research
	Washington, D. C.

No. of Copies	Recipient
1	Johns Hopkins University
	Applied Physics Laboratory
	Silver Spring, Maryland
1	University of California
	Librarian, Numerical Analysis
	Los Angeles 24, California
1	Carnegie Institute of Technology
	Pittsburgh, Pennsylvania
1	Hudson Laboratory
	Columbia University
	Dobbs Ferry, New York
2	Harvard University
	Cambridge, Massachusetts
	1 Department of Math
	Attn: Prof. J. L. Walsh
	1 Computation Laboratory
1	Institute for Advanced Study
	Princeton, New Jersey
2	Massachusetts Institute of Technology
	Cambridge, Massachusetts
	Attn: Computation Center
2	New York University
	New York, New York
	l Inst. of Math Sciences
	1 AEC Computing Facility
1	DIR, Research Center
	Ohio State University
	Columbus, Ohio
1	Pennsylvania State University
	Department of Math
	University Park, Pennsylvania

No. of Copies	Recipient
1	Princeton University
	Princeton, New Jersey
	Attn: Library
1	University of California
	Berkeley, California
2	University of Illinois
	Urbana, Illinois
	1 Department of Math
	1 Electronic Digital Computer Project
2	University of Maryland
	College Park, Maryland
	1 Department of Math
	l Inst. for Fluid Dynamics and
	Applied Math
1	Willow Run Research Center
	University of Michigan
	Ypsilanti, Michigan
1	University of Washington
	Department of Math
	Seattle, Washington
1	Yale University
	New Haven, Connecticut
1	State College of Washington
	Department of Math
	Pullman, Washington
1	Stanford University
	Palo Alto, California
	Attn: Dr. G. E. Forsythe
1	Johns Hopkins University
	Charles and 34th Streets
	Baltimore 18, Maryland
1	Rutgers University
	New Brunswick, New Jersey
	Attn: Prof. E. P. Starke

No. of Copies	Recipient
1	Brown University
	Division of Engineering
	Providence, Rhode Island
	Attn: Dr. R. D. Kodis
1	Princeton University
	Princeton, New Jersey
	Attn: Prof. H. J. Maehly
	Chief of Computer Project
1	University of Rochester
	Department of Math
	Rochester, New York
	Modestoly now 2011
1	The Scripps Institute of Oceanography
	University of California
	LaJolla, California
	Attn: Dr. Walter Munk
1	Dr. Werner C. Rheinboldt, Director
	Computing Center, 112 Hinds Hall
	Syracuse University
	Syracuse 10, New York
1	DIR, Combustion Engineering, Inc.
	Windsor, Connecticut
1	DIR, Westinghouse Electric Corporation
	Bettis Atomic Power Division
	P.O. Box 1468
	Pittsburgh 30, Pennsylvania
2	Argonne National Laboratory
	P.O. Box 299
	Lemont, Illinois
1	Armour Research Foundation
	35 W. 33rd Street
	Chicago 16, Illinois
	Battelle Memorial Institute
1	505 King Avenue
	: 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Columbus, Ohio

No. of Copies	Recipient
1	Brookhaven National Laboratory Upton, Long Island, New York
1	Cornell Aero Laboratory, Inc. Buffalo, New York
1	Curtiss-Wright Corporation Research Division
	Clifton, New Jersey
1	Douglas Aircraft Company, Inc. Santa Monica Division 5000 Ocean Park Boulevard Santa Monica, California
1	Engineering Research Associates St. Paul 4, Ninnesota
1	IBM Corporation 590 Madison Avenue New York 22, New York
1	Knolls Atomic Power Laboratory General Electric Company Math Analysis Unit Schenectady, New York
1	Lincoln Lab
	B-125 Lexington, Massachusetts
1	Lockhead Aircraft Corporation Missile Systems Division Sunnyvale, California
1	Lockheed Aircraft Corporation Van Nuys, California
1	Los Alamos Scientific Lab Los Alamos, New Mexico

No. of Copies	Recipient
1	Remington Rand Division of Sperry Rand Electronic Computer Department 315 Fourth Avenue New York 10, New York
1	Ramo-Wooldridge Corporation 8820 Bellanca Avenue Los Angeles 45, California
1	Rand Corporation Santa Monica, California
1	Sandia Corporation Albuquerque, New Mexico Attn: Library
1	United Aircraft Corporation 400 Main Street East Hartford 8, Connecticut
1	Vitro Corporation of America 261 Madison Avenue New York 16, New York
1	Oregon State College Corvallis, Oregon Attn: Professor W. Milne
1	Professor A. C. Aitken University of Edinburgh Edinburgh, Scotland
1	Professor D. E. Rutherford University of St. Andrews St. Andrews, Scotland
1	Professor J. L. Synge Dublin Institute for Advanced Studies Dublin, Eire

No. of Copies	Recipient
1	Professor T. S. Broderick
	Trinity College
	Dublin, Eire
1	Professor R. E. Langer
	Mathematics Research Center
	University of Wisconsin
	Madison 6, Wisconsin
1	Professor Wallace Givens
	Department of Mathematics
	Wayne State University
	Detroit 2, Michigan
1	Dr. A. S. Householder
	Oak Ridge National Laboratories
	Oak Ridge, Tennessee
1	Professor John Todd
	Department of Math
	California Institute of Technology
	Pasadena, California
1	Dr. Franz Alt
	Mathematical Computation Laboratory
	National Bureau of Standards
	Washington 25, D. C.
1	Dr. E. W. Cannon
	Applied Mathematics Division
	National Bureau of Standards
	Washington 25, D. C.
1	Miss Irene Stegun
	Mathematical Computation Laboratory
	National Bureau of Standards
	Washington 25, D. C.
1	Mr. Cecil Hastings, Jr.
	136 Kuwala Street
	Kailua, Hawaii

DISTRIBUTION LIST (Concluded)

No. of Copies	Recipient
1	Professor E. J. McShane
	University of Virginia
	Charlottesville, Virginia
1	Professor J. B. Rosser
	Department of Math
	Cornell University
	Ithaca, New York
1	Professor D. H. Lehmer
	Department of Math
	University of California
	Berkeley 4, California
1	Professor Arthur Erdélyi
	Department of Math
	California Institute of Technology
	Pasadena, California
5	Navy Department
	David W. Taylor Model Basin
	Washington, D. C.
	Attn: Dr. John W. Wrench, Jr.
1	Professor Bertram Bussell
	Department of Engineering
	University of California
	Los Angeles 24, California
75	Midwest Research Institute
	Attn: Yudell L. Luke
1	Midwest Research Institute
	Attn: Mathematics and Physics Division
1	Midwest Research Institute
	Attn: Library