Kapitel 5

Timing:

- 1. Physikalische Eigenschaften
- 2. Timing wichtiger Komponenten
- 3. Exaktes Timing von ReTI

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Christoph Scholl Institut für Informatik WS 2015/16

Es gilt:

Bei hinreichend langsamem Takt funktioniert der Rechner.

Frage:

- Wie schnell kann man den Rechner takten?Wie lange muss ein Takt mind. sein?
- → Ersetze idealisiertes Timing durch exakte Timinganalyse
- → Gesucht: Untere Grenze für Zykluszeit t_c

Schritte der Analyse

- Einhalten von Setup- und Hold-Zeiten der Kontrolllogik
- Vermeidung von Bus-Contention
- PC-Inkrementierung
- 4 Compute-Befehle:OE: Compute Memory ←
- 5 Fetch, Load, Store, Jump
 - Wir werden uns auf Compute-Befehle beschränken.

Timing der Kontrolllogik (1/3)

- Setupzeit der Dateneingänge bis ck ist $t_{SDC}^+ \ge 0.88$, Setupzeit der Dateneingänge bis /ck ist $t_{SDC}^- \ge 0.88$.
- Dateneingänge $(s_0, s_1, E, I, ACC, reset)$ müssen rechtzeitig bereit sein.
- Alle Dateneingänge sind Ausgangssignale von FFs, die mit ck getaktet werden.

Timing der Kontrolllogik (2/3)

- Wähle eine beliebige steigende Taktflanke Pi als zeitlichen Bezugspunkt.
- Die Dateneingänge sind also bereit zur Zeit $\tau_{PCO} = [\underline{0.12}, \underline{0.26}]$ (Verzögerung eines D-FF).
- Die nächste steigende Taktflanke von $\frac{/ck}{2}$ ist bei $\frac{t_c}{2} + [0.01, 0.15]$, die nächste steigende Taktflanke von ck bei t_c .

$$\Rightarrow \frac{t_{c}}{2} + \underbrace{0.01}_{t_{c}} \geq \underbrace{0.88}_{t_{c}} + \underbrace{0.26}_{t_{CQ}} \text{ für FFs}$$

$$\Rightarrow t_{c} \geq \underbrace{0.88}_{t_{c}} + \underbrace{0.26}_{\tau_{PCQ}} \text{ für FFs}$$

Timing der Kontrolllogik (3/3)

- Hold-Zeiten sind unkritisch:
 - FFs, die mit ck getaktet sind: $t_{HDC}^+ \ge 0.06$ und Eingangsdaten werden mindestens noch 0.12 ns nach steigender Flanke von ck gehalten (Verzögerung D-FF).
- FFs, die mit /ck getaktet sind: t_{HDC} ≥ 0.06 und Eingangsdaten werden sowieso noch einen halben Takt gehalten nach steigender Flanke von /ck gehalten (+ D-FF-Verzögerung).

$$t_c \ge 2.26$$

Compute-Befehle

Am zeitkritischsten ist Compute memory!

FREBURG

 $[r] := [r] + [M(\langle i \rangle)]$

Analyse allgemein

- Beginn der Analyse bei P3 von Fetch als zeitlicher Bezugspunkt.
- Bei P3 von Fetch wird der Befehl ins Instruktionsregister übernommen.

I-Ausgänge (1/2)

I-Ausgänge gültig bei

$$au_1 = \underbrace{[0.12, 0.26]}_{ au_{PCQ} \text{ von Register } I}$$

D-FF	Bezeichnung	t ^{min}	t ^{max}
t _{SDC}	Setupzeit von D bis ck	0.08	
t _{HCD}	Holdzeit von D nach ck	0.14	
τ _{PCQ}	Verzögerungszeit von ck bis Q	0.12	0.26
τ _{PDQ}	Verzögerungszeit von D bis Q	0.10	0.21

- \[
 \begin{align*}
 \begin{align*}
 0^8 \, l_{23} \ldots \, l_0 \\
 \end{align*}
 \] wird \(\text{über Treiber} \)
 \[
 \ldots \, l_{23} \ldots \, l_0 \\
 \end{align*}
 \] wird \(\text{über Treiber} \)
 \[
 \ldots \, l_{23} \ldots \, l_0 \\
 \end{align*}
 \]

 (a)
 \[
 \text{ind} \, \text{distance} \, \text{din
- 0^8 ist eine Konstante und steht daher ebenfalls zu τ_1 bereit.

$$au$$
 $au_1 = [0.12, 0.26]$

$$t_c \ge 2.26$$

I-Ausgänge (2/2)

IAd enabled bei *N*0 von Execute, d.h. / *IAdoe* aktiv zur Zeit

/IAdoe wird verteilt auf 32 Tristate-Treiber von IAd, also Treiberbaum mit Tiefe 2.

$$\frac{\tau_2' + 2 \cdot [0.02, 0.11]}{2} = \frac{3}{2}t_c + [0.17, 0.78]$$

I schon gültig vor Aktivierung von IAd bei Punkt 2, falls

$$\frac{\max(\tau_1)}{0.26} \leq \min(\tau_2) \Leftrightarrow$$

$$0.26 \leq \frac{3}{2}t_c + 0.17 \Leftrightarrow$$

$$\frac{3}{2}t_c \geq 0.09 \Leftarrow$$

$$t_c > 0.06$$

13 / 44

■
$$\tau_1 = [0.12, 0.26]$$

■ $\tau_2 = t_c + \tau_{p,al}^- = \frac{3}{2}t_c + [0.17, 0.78]$

Gültiges A (1/2)

\rightarrow A gültig zur Zeit

$$\tau_3 = \tau_2 + \underbrace{[0.03, 0.11]}_{\text{Enable Zeit Treiber}}$$

$$= \frac{3}{2}t_c + [0.20, 0.89]$$

	Tristate-Treiber	min	max
τ _{PZL}	Enable-Zeiten	0.03	0.10
τ_{PZH}	Enable-Zeiten	0.03	0.11
τ_{PLZ}	Disable-Zeiten	0.03	0.11
τ_{PHZ}	Disable-Zeiten	0.03	0.10
$ au_{PLH}$	Umschaltverzögerung bei $\underline{/OE = 0}$	0.02	0.07
$ au_{PHL}$	Umschaltverzögerung bei $/\underline{\mathit{OE}} = 0$	0.03	0.10

$$\begin{aligned}
& \mathbf{\tau}_1 = [0.12, 0.26] \\
& \mathbf{\tau}_2 = t_c + \tau_{p,al}^- = \frac{3}{2}t_c + [0.17, 0.78] \\
& \mathbf{\tau}_3 = \tau_2 + [0.03, 0.11] = \frac{3}{2}t_c + [0.20, 0.89]
\end{aligned}$$

■
$$t_c \ge 2.26$$
■ $t_c \ge 0.06$

Gültiges A (2/2)

- ASMd immer enabled
- ightarrow nur Treiber-Verzögerung berücksichtigt
- ightarrow A an SM bei

$$\begin{aligned}
& \tau_1 = [0.12, 0.26] \\
& \tau_2 = t_c + \tau_{p,al}^- = \frac{3}{2}t_c + [0.17, 0.78] \\
& \tau_3 = \tau_2 + [0.03, 0.11] = \frac{3}{2}t_c + [0.20, 0.89] \\
& \tau_4 = \tau_3 + [0.02, 0.10] = \frac{3}{2}t_c + [0.22, 0.99]
\end{aligned}$$

$$t_c \ge 2.26$$

Daten am Speicherausgang (1/3)

- Lesezugriffszeit von SRAM: [0.0, 12.0] (siehe Daten von CY7C1079DV33)
- → Gültige Daten am Speicherausgang bei

$$\tau_5 = \tau_4 + \underline{[0.0, 12.0]}$$

$$= \frac{3}{2}t_c + \underline{[0.22, 0.99]} + \underline{[0.0, 12.0]}$$

$$= \frac{3}{2}t_c + \underline{[0.22, 12.99]}$$

Das ist aber nur korrekt, wenn der interne Ausgangstreiber durch / SMDdoe rechtzeitig enabled ist!

Daten am Speicherausgang (2/3)

SRAM CY7C1079DV33			
Symbol	Bezeichnung	tmin	tmax
tacc	Lesezugriffszeit		12.0
t _{OED}	Zeit von $\underline{/SMDdoe = 0}$ bis \underline{D}		7.0

- /SMDdoe aktiviert zur Zeit $\tau' = 2 \cdot t_c + \tau_{p,al}^{\bullet} = 2 \cdot t_c + [0.12, 0.41]$.
- Daten am Speicherausgang aufgrund Treiber-Enable gültig zur Zeit $\tau'' = \underline{\tau'} + [0.0, 7.0] = 2 \cdot t_c + [0.12, 7.41].$
- Daten am Speicherausgang gültig spätestens zur Zeit t" = max(max(τ₅),max(τ")).

Daten am Speicherausgang (3/3)

- Daten am Speicherausgang gültig zur Zeit $t''' = \max(\max(\tau_5), \max(\tau''))$.
- Bedingung für $max(\tau_5) \ge max(\tau'')$:

$$\frac{3}{2}t_c + 12.99 \ge \underbrace{2 \cdot t_c + 7.41}_{2} \Rightarrow$$

$$\frac{1}{2}t_c \le 5.58 \Leftrightarrow$$

$$\underline{t_c \le 11.16}$$

- Wir nehmen ab jetzt an, dass die minimale Taktperiode $t_c \le 11.16$ und rechnen mit τ_5 weiter.
- (Es gilt auf jeden Fall min(τ_5) (= $\frac{3}{2}t_c + 0.22$) < min(τ'') (= $2 \cdot t_c + 0.12$)
- Sollte sich später ergeben, dass die minimale Taktperiode $t_c > 11.16$, dann müssten wir die Rechnung nochmals korrigieren.

■
$$au_1 = [0.12, 0.26]$$

■ $au_2 = t_c + au_{p,al}^- = \frac{3}{2}t_c + [0.17, 0.78]$
■ $au_3 = au_2 + [0.03, 0.11] = \frac{3}{2}t_c + [0.20, 0.89]$
■ $au_4 = au_3 + [0.02, 0.10] = \frac{3}{2}t_c + [0.22, 0.99]$
■ $au_5 = au_4 + [0.0, 12.0] = \frac{3}{2}t_c + [0.22, 12.99]$
■ $au_6 \ge 2.26$
■ $au_6 \ge 0.06$
■ $au_6 \le 11.16$

Daten auf *R*

DRd enabled bei *P*0 von Execute, also einen Takt vor Ausgangstreiber von *SM*

- \rightarrow Enable nicht kritisch
- → Daten auf R spätestens bei

$$\tau_6 = \underline{\tau_5 + [0.02, 0.10]}$$
 (Treiber-Verzögerung)
$$= \underline{\frac{3}{2}}t_c + [0.24, 13.09]$$

■
$$au_1 = [0.12, 0.26]$$

■ $au_2 = t_c + au_{p,al}^- = \frac{3}{2}t_c + [0.17, 0.78]$
■ $au_3 = au_2 + [0.03, 0.11] = \frac{3}{2}t_c + [0.20, 0.89]$
■ $au_4 = au_3 + [0.02, 0.10] = \frac{3}{2}t_c + [0.22, 0.99]$
■ $au_5 = au_4 + [0.0, 12.0] = \frac{3}{2}t_c + [0.22, 12.99]$
■ $au_6 = au_5 + [0.02, 0.10] = \frac{3}{2}t_c + [0.24, 13.09]$
■ $au_6 \ge 0.06$
■ $au_6 < 11.16$

Daten auf *L*

- Registerausgänge $r \in \{PC, ACC, IN1, IN2\}$ schon seit letzter Execute-Phase gültig.
- → nicht kritisch
 - Treiber rLd enabled bei P0 von Execute, d.h. wie auch bei DRd ist Zeit zum Enablen unkritisch im Vergleich zu τ₆.

$f[2:0], c_{in}$

- f[2:0], c_{in} werden durch den kombinatorischen Schaltkreis der Kontrolllogik aus $\underline{I_{31}, \ldots, I_{24}}$ berechnet.
- *I*-Ausgänge aber schon gültig bei $\tau_1 = [0.12, 0.26]$.
- Verzögerungszeit des kombinatorischen Schaltkreises $< t_{SDC}^{+} = 0.88$
- f[2:0], c_{in} gültig spätestens bei $t_7 = 0.26 + 0.88 = 1.14$.
- \rightarrow völlig unkritisch verglichen mit $\max(\tau_6) = \frac{3}{2}t_c + 13.09$

■
$$au_1 = [0.12, 0.26]$$

■ $au_2 = t_c + au_{p,al}^- = \frac{3}{2}t_c + [0.17, 0.78]$
■ $au_3 = au_2 + [0.03, 0.11] = \frac{3}{2}t_c + [0.20, 0.89]$
■ $au_4 = au_3 + [0.02, 0.10] = \frac{3}{2}t_c + [0.22, 0.99]$
■ $au_5 = au_4 + [0.0, 12.0] = \frac{3}{2}t_c + [0.22, 12.99]$
■ $au_6 = au_5 + [0.02, 0.10] = \frac{3}{2}t_c + [0.24, 13.09]$
■ $au_7 = 1.14$

27 / 44

Voraussetzungen für die exakte Timinganalyse von *Compute memory*

■ ALU

- Analyse der ALU (32-Bit mit Conditional Sum) unter folgender Annahme:
 - Funktionsselect-Signale liegen 0.28 ns vor den Daten an (unkritisch, da $t_7 + 0.28 = 1.14 + 0.28 = 1.42 < min(\tau_6) = \frac{3}{2}t_c + 0.24$).
 - Resultatsausgänge gültig 3.25 ns, nachdem die Daten anliegen.

Symbol	Bezeichnung	t ^{min}	t ^{max}
t _{select}		0.28	
t _{ALU}	Verzögerungszeit von <i>a</i> , <i>b</i> bzw. <i>c_{in}</i> bis Ausgang		3.25

ALU-Ausgänge

Spätestens gültig bei

$$t_8 = \underbrace{\max(\tau_6)}_{\text{Delay ALU}} + \underbrace{3.25}_{\text{Delay ALU}} = \frac{3}{2}t_c + 13.09 + 3.25$$

$$= \frac{3}{2}t_c + 16.34$$

 \blacksquare $t_8 = \max(\tau_6) + 3.25 = \frac{3}{2}t_c + 16.34$

■
$$au_1 = [0.12, 0.26]$$

■ $au_2 = t_c + au_{p,al}^- = \frac{3}{2}t_c + [0.17, 0.78]$
■ $au_3 = au_2 + [0.03, 0.11] = \frac{3}{2}t_c + [0.20, 0.89]$
■ $au_4 = au_3 + [0.02, 0.10] = \frac{3}{2}t_c + [0.22, 0.99]$
■ $au_5 = au_4 + [0.0, 12.0] = \frac{3}{2}t_c + [0.22, 12.99]$
■ $au_6 = au_5 + [0.02, 0.10] = \frac{3}{2}t_c + [0.24, 13.09]$
■ $au_7 = 1.14$

REIBURG

- /ALUDIdoe wird wie /SMDdoe aktiviert bei P1 von Execute
- Daten kommen an ALUDId später an als an als Daten am internen SRAM-Treiber
- Enable-Zeit von ALUDId jedoch kürzer als bei SRAM
- Mit $t_c < 11.16$ ist auf jeden Fall auch für ALUDId gewährleistet, dass Treiber enabled, wenn Daten kommen.
- Berücksichtige nur Treiberverzögerung.
- Gültig spätestens bei

$$t_9 = t_8 + 0.10$$

$$= \frac{3}{2}t_c + 16.34 + 0.10$$

$$= \frac{3}{2}t_c + 16.44$$

■
$$au_1 = [0.12, 0.26]$$

■ $au_2 = t_c + au_{p,al}^- = \frac{3}{2}t_c + [0.17, 0.78]$
■ $au_3 = au_2 + [0.03, 0.11] = \frac{3}{2}t_c + [0.20, 0.89]$
■ $au_4 = au_3 + [0.02, 0.10] = \frac{3}{2}t_c + [0.22, 0.99]$
■ $au_5 = au_4 + [0.0, 12.0] = \frac{3}{2}t_c + [0.22, 12.99]$
■ $au_6 = au_5 + [0.02, 0.10] = \frac{3}{2}t_c + [0.24, 13.09]$
■ $au_7 = 1.14$
■ $au_8 = \max(au_6) + 3.25 = \frac{3}{2}t_c + 16.34$
■ $au_9 = t_8 + 0.10 = \frac{3}{2}t_c + 16.44$

Datenübernahme in Register $r \in \mathcal{ACC}_1 | \mathcal{M}_1 | \mathcal{M}_2 | \mathcal{PC}_3$

- Clocksignale bei P3 von Execute
 - \rightarrow steigende Flanke bei $\tau_{10} = 4t_c$
- Minimale Taktperiode wird aus Setup-Zeit von r berechnet (Setup-Zeit am größten, wenn r = PC)

■
$$au_1 = [0.12, 0.26]$$

■ $au_2 = t_c + au_{\rho,al}^- = \frac{3}{2}t_c + [0.17, 0.78]$
■ $au_3 = au_2 + [0.03, 0.11] = \frac{3}{2}t_c + [0.20, 0.89]$
■ $au_4 = au_3 + [0.02, 0.10] = \frac{3}{2}t_c + [0.22, 0.99]$
■ $au_5 = au_4 + [0.0, 12.0] = \frac{3}{2}t_c + [0.22, 12.99]$
■ $au_6 = au_5 + [0.02, 0.10] = \frac{3}{2}t_c + [0.24, 13.09]$
■ $au_7 = 1.14$
■ $au_8 = \max(au_6) + 3.25 = \frac{3}{2}t_c + 16.34$
■ $au_9 = t_8 + 0.10 = \frac{3}{2}t_c + 16.44$
■ $au_{10} = 4 \cdot t_c$

Timing: Zähler

Aus einer Analyse des Zählers in einer Implementierung gemäß Kapitel 4.1 (aber mit zusätzlichem Clock-Enable für das Register!) ergeben sich folgende Zeiten:

Symbol	Bezeichnung	t ^{min}	tmax
t _{SDC}	Setup-Zeit von D vor ck	0.53	
t _{HDC}	Hold-Zeit von <i>D</i> nach <i>ck</i>	0.05	
t _{SLC}	Setup-Zeit von /L vor ck	0.76	
t _{HLC}	Hold-Zeit von /L nach ck	0.02	
t _{SEC}	Setup-Zeit von PCcken vor ck	0.46	
t _{HEC}	Hold-Zeit von <i>PCcken</i> nach <i>ck</i>	0.08	

Setup-Zeit von Zähler

- Setup-Zeit: $t_{SDC} = 0.53 \ ns$ (siehe Aufbau Zähler)
- → Bedingung:

■
$$t_9 + 0.53 \le \min(\tau_{10})$$

 $\Leftrightarrow \frac{3}{2}t_c + 16.97 \le 4t_c$
 $\Leftrightarrow \frac{5}{2}t_c \ge 16.97$
 $\Leftrightarrow t_c \ge 6.78$

■
$$au_1 = [0.12, 0.26]$$

■ $au_2 = t_c + au_{p,al}^- = \frac{3}{2}t_c + [0.17, 0.78]$
■ $au_3 = au_2 + [0.03, 0.11] = \frac{3}{2}t_c + [0.20, 0.89]$
■ $au_4 = au_3 + [0.02, 0.10] = \frac{3}{2}t_c + [0.22, 0.99]$
■ $au_5 = au_4 + [0.0, 12.0] = \frac{3}{2}t_c + [0.22, 12.99]$
■ $au_6 = au_5 + [0.02, 0.10] = \frac{3}{2}t_c + [0.24, 13.09]$
■ $au_7 = 1.14$
■ $au_8 = ext{max}(au_6) + 3.25 = \frac{3}{2}t_c + 16.34$
■ $au_9 = t_8 + 0.10 = \frac{3}{2}t_c + 16.44$
■ $au_{10} = 4 \cdot t_c$

■
$$t_c \ge 2.26$$

■ $t_c \ge 0.06$
■ $t_c \le 11.16$
■ $t_c \ge 6.78$

Es bleiben zu beachten:

- Hold-Zeit t_{HCD}
- Maximal bei $r \in \{ACC, IN1, IN2\}, t_{HCD} = \underbrace{0.11}$
 - Unproblematisch, da alle Treiber noch mindestens $\frac{1}{2}$ Takt nach *rck* enabled sind.

Setup- und Hold-Zeiten von rcken

rcken aktiv bei P2 von Execute, inaktiv bei P3 von Execute, d.h. aktiv von:

$$\tau_{11} = 3t_c + \tau_{p,ah}^{\bullet} = 3t_c + [0.12, 0.26]$$
 bis $\tau_{12} = 4t_c + \tau_{p,ah}^{+} = 4t_c + [0.12, 0.26]$

Setup-Zeit:

Für alle
$$r \in \{PC, ACC, IN1, IN2\}$$
: $\underline{t_{SEC} = 0.46}$
 $\Rightarrow \max(\tau_{11}) + 0.46 \le 4\underline{t_c}$, d.h. $3\underline{t_c} + 0.26 + 0.46 \le 4\underline{t_c}$ bzw.
 $\Rightarrow t_c > 0.72$ (unkritisch im Vergleich zu bisherigen Constraints)

■ Hold-Zeit:

■ Für alle
$$r \in \{PC, ACC, IN1, IN2\}$$
: $t_{HEC} = 0.08$
⇒ $\min(\tau_{12}) \ge 4t_c + 0.08$, d.h. $0.12 \ge 0.08$

(Analog auch für alle anderen Takte.)

Setup- und Hold-Zeiten / PCload beim Zähler

- Setup /L bis ck: $t_{SLC} = 0.76$ Hold /L nach ck: $t_{HIC} = 0.02$
- /PCload (benötigt, wenn neue Werte in Zähler kommen) aktiv bei P2 von Execute, inaktiv bei P0 von Fetch

Bedingungen für Setup- und Hold-Zeiten / PCload beim Zähler

Setup: Am kritischsten, wenn /PCload seinen Wert bei der vorangegangenen Taktflanke geändert hat, d.h. bei P3 von execute bzw. P1 von fetch.

$$\max(\tau_{p,al}^+) + 0.76 \le t_c \Leftrightarrow 0.41 + 0.76 \le t_c \Leftrightarrow t_c \ge 1.18$$

Hold: Am kritischsten, wenn sich / PCload ändert, d.h. bei P2 von execute und P0 von fetch.

$$\begin{aligned} & \min(\tau_{p,al}^+) \geq 0.02 \Leftrightarrow \\ & 0.12 \geq 0.02 \end{aligned}$$

→ Beide unkritisch im Vergleich zu bisherigen Constraints.

Fazit: Zykluszeit und Befehlsrate

Vorläufiges Ergebnis: Falls sich durch andere Befehle keine schärferen Bedingungen an die Zykluszeit ergeben, dann lautet sie:

■
$$t_c \ge 6.78 \ ns$$

Taktfrequenz:

$$V = \frac{1}{6.78} \cdot 10^9 \ Hz = 147.4 \ MHz$$

■ 8 Takte pro Befehl → 18.4 Millionen Befehle pro Sekunde, d.h. Befehlsrate von 18.4 MIPS (= Million Instructions per Second)

Ausblick

Beschleunigung

- Schnellere Komponenten, z.B. ALU
- Schnellere Adressberechnung (Treiber schon bei P0 öffnen)
- Evtl. Überdenken des kompletten Schemas des idealisierten Timings (z.B.: Verkürzung des Fetch-Zyklus um 1 Takt)
- schnellerer Speicher, Speicherhierarchie mit "Caches"
- Pipelining
- ...

Anmerkungen zur Timing-Analyse

- Eine "echte" Timing–Analyse müsste noch Leitungslaufzeiten auf dem Chip berücksichtigen.
- Dazu muss dann aber schon das <u>Layout des Chips</u> bekannt sein, um die Leitungslängen und -kapazitäten zu berechnen.
- Leitungslaufzeiten waren früher bei einem Aufbau mit diskreten Bausteinen vernachlässigbar, sind es bei den heutigen Technologien aber nicht mehr.
- Exakte Timing-Analysen sind heute daher kaum ohne maschinelle Unterstützung durchführbar.
- Synthesetools sind in der Lage, durch Optimierung der <u>Treiberstärken</u> von Grundgattern (verschiedene Versionen in der Bibliothek!)
 Laufzeiten zu minimieren.
- Wird das SRAM nicht auf dem Chip integriert (d.h. stattdessen ein kommerzielles externes SRAM angeschlossen), dann muss man noch Verzögerungszeiten für I/O-Pads des Chips mit eventueller Anpassung von Spannungspegeln berücksichtigen.

