```
Laboratorium 1
```

```
Bartosz Więcek
Zad. 3
```

```
def f(x): return x**2 + 5
```

```
In [1]:
```

Biblioteki potrzebne do realizacji zadania import matplotlib.pyplot as plt import numpy as np

In [2]:

```
 \begin{array}{l} x\_1 = np.linspace(-1,\,1) \\ plt.figure \\ plt.plot(x\_1,\,f(x\_1),label='y=x^2+5') \\ plt.title('Wykres funkcji x^2 + 5 dla przedziału [-1,\,1]') \\ plt.xlabel('argumenty') \\ plt.ylabel('wartości') \\ plt.legend() \\ plt.show() \end{array}
```


In [4]:

```
x_2 = np.linspace(-6, 6)
plt.figure
plt.plot(x_2, f(x_2),label='y=x^2+5')
plt.title('Wykres funkcji x^2 + 5 dla przedziału [-6, 6]')
plt.xlabel('argumenty')
plt.ylabel('wartości')
plt.legend()
plt.show()
```


In [5]:

```
x_3 = np.linspace(0, 5)
plt.figure
plt.plot(x_1, f(x_1),label='y=x^2+5')
plt.title('Wykres funkcji x^2 + 5 dla przedziału [0, 5]')
plt.xlabel('argumenty')
plt.ylabel('wartości')
plt.legend()
plt.show()
```


Zad. 4

In [6]:

Out[6]:

import pandas as pd

d = {'name': ['Ola', 'Dominik', 'Bartosz', 'Mateusz', 'Krzysztof'], 'surname': ['Lis', 'Czyżyk', 'Więcek', 'Kowalski', 'Kandefer'], 'age': [19, 21, 20, 18, 21], 'sex': ['ferrange': ['Ola', 'Dominik', 'Bartosz', 'Mateusz', 'Krzysztof'], 'surname': ['Lis', 'Czyżyk', 'Więcek', 'Kowalski', 'Kandefer'], 'age': [19, 21, 20, 18, 21], 'sex': ['ferrange': ['Ola', 'Dominik', 'Bartosz', 'Mateusz', 'Krzysztof'], 'surname': ['Lis', 'Czyżyk', 'Więcek', 'Kowalski', 'Kandefer'], 'age': [19, 21, 20, 18, 21], 'sex': ['ferrange': ['Ola', 'Dominik', 'Bartosz', 'Mateusz', 'Krzysztof'], 'surname': ['Lis', 'Czyżyk', 'Więcek', 'Kowalski', 'Kandefer'], 'age': [19, 21, 20, 18, 21], 'sex': ['ferrange': ['Ola', 'Dominik', 'Bartosz', 'Mateusz', 'Krzysztof'], 'surname': ['Lis', 'Czyżyk', 'Więcek', 'Kowalski', 'Kandefer'], 'age': [19, 21, 20, 18, 21], 'sex': ['ferrange': ['Ola', 'Dominik', 'Bartosz', 'Mateusz', 'Mateusz', 'Krzysztof'], 'surname': ['Lis', 'Czyżyk', 'Więcek', 'Kowalski', 'Kandefer'], 'age': ['Is', 'Czyżyk', 'Więcek', 'Kowalski', 'Kandefer'], 'age': ['Is', 'Czyżyk', 'Więcek', 'Kowalski', 'Kandefer'], 'age': ['Is', 'Czyżyk', 'Więcek', 'Kowalski', df = pd.DataFrame(data=d)

	name	surname	age	sex
0	Ola	Lis	19	female
1	Dominik	Czyżyk	21	undefined
2	Bartosz	Więcek	20	male
3	Mateusz	Kowalski	18	male
4	Krzysztof	Kandefer	21	male

Informacje o danych:

In [7]:

df.info(verbose=True)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 4 columns): # Column Non-Null Count Dtype

0 name 5 non-null object

- 1 surname 5 non-null object
- 2 age 5 non-null
- 3 sex 5 non-null object

dtypes: int64(1), object(3)

memory usage: 288.0+ bytes

age

Opis danych:

In [8]:

df.describe()

Out[8]:

5.00000 count mean 19.80000 1.30384 std min 18.00000 19.00000 25% 20.00000 50% 21.00000 75% max 21.00000

Pierwsze trzy rekordy:

In [9]:

df.head(3)

namesurnameagesex0OlaLis19female1DominikCzyżyk21undefined2BartoszWięcek20male

In []:

Out[9]:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js