Phylodynamics in RevBayes

Full Bayesian inference of time trees and population dynamic parameters

Tracy Heath & Tanja Stadler

Darwin's first phylogenetic tree

Darwin's two types of trees

Notebook, 1837

Origin of Species, 1859

Population dynamic model

Growth of tree

parameters η

Population dynamic model

Growth of tree

parameters η

Population dynamic model

Growth of tree

parameters η

Evolutionary model Evolution of sequences along tree

parameters θ

Population dynamic model

Growth of tree

parameters η

Evolutionary model Evolution of sequences along tree

parameters θ

Tree distribution

Defined through η and θ

Population dynamic model

Growth of tree

parameters η

Evolutionary model Evolution of sequences along tree

parameters θ

Tree distribution

Defined through η and θ

Sequence alignment

time tree population dynamics evolutionary dynamics
$$f[\Psi,\eta,\theta|data]$$

time tree population dynamics
$$f[\Psi,\eta,\theta|data] = \frac{f[data|\Psi,\theta]f[\Psi|\eta]f[\eta,\theta]}{f[data]}$$

RevBayes samples the posterior distribution of trees and parameters

The birth-death model as a model for speciation and extinction

- stem age of a clade T
- speciation rate λ
- extinction rate μ
- sampling probability ρ

Rates may depend on:

- 1) constant
- 2) time (environmental-dependence)
- 3) # of species (diversity-dependence)
- 4) type of species

Stadler (JTB, 2009) 6

The birth-death model as a model for speciation and extinction

- stem age of a clade T
- speciation rate λ
- extinction rate μ
- sampling probability ρ

Rates may depend on:

- 1) constant
- 2) time (environmental-dependence)
- 3) # of species (diversity-dependence)
- 4) type of species

Phylogenetic trees

Stadler (JTB, 2009)

Yule model in RevBayes

Yule model (simplest tree prior): tree age T, constant birth rate λ , no extinction (μ =0), sampling probability ρ

Calculating the probability of a Yule tree with complete sampling $f[\Psi|\lambda, \rho=1, T]$

Model

Age of a clade: T Speciation rate: λ

Sampling probability: p

<u>constant speciation rate λ means:</u>

constant speciation rate λ means: Prob(speciation event during Δt) = $\lambda \Delta t$

constant speciation rate λ means: Prob(speciation event during Δt) = $\lambda \Delta t$

constant speciation rate λ means: Prob(speciation event during Δt) = $\lambda \Delta t$

What is probability that a lineage did not speciate for time u?

constant speciation rate λ means: Prob(speciation event during Δt) = $\lambda \Delta t$

What is probability that a lineage did not speciate for time u? Let $u = k\Delta t$.

```
<u>constant speciation rate λ means:</u>
```

Prob(speciation event during Δt) = $\lambda \Delta t$

What is probability that a lineage did not speciate for time u?

Let $u = k\Delta t$.

```
<u>constant speciation rate λ means:</u>
```

Prob(speciation event during Δt) = $\lambda \Delta t$

What is probability that a lineage did not speciate for time u?

Let $u = k\Delta t$.

Prob(no speciation event during u/k) = $1-\lambda u/k$

```
<u>constant speciation rate λ means:</u>
```

Prob(speciation event during Δt) = $\lambda \Delta t$

What is probability that a lineage did not speciate for time u?

Let $u = k\Delta t$.

Prob(no speciation event during u/k) = $1-\lambda u/k$

constant speciation rate λ means:

Prob(speciation event during Δt) = $\lambda \Delta t$

What is probability that a lineage did not speciate for time u?

Let $u = k\Delta t$.

Prob(no speciation event during u/k) = $1-\lambda u/k$

$$(1-\lambda u/k)^k = e^{-\lambda u}$$
 for $k \rightarrow \infty$

constant speciation rate λ means:

Prob(speciation event during Δt) = $\lambda \Delta t$

What is probability that a lineage did not speciate for time u?

Let $u = k\Delta t$.

Prob(no speciation event during u/k) = $1-\lambda u/k$

$$(1-\lambda u/k)^k = e^{-\lambda u}$$
 for $k \rightarrow \infty$

constant speciation rate λ means:

Prob(speciation event during Δt) = $\lambda \Delta t$

What is probability that a lineage did not speciate for time u?

Let $u = k\Delta t$.

Prob(no speciation event during u/k) = $1-\lambda u/k$

Prob(no speciation event during u) = $(1-\lambda u/k)^k$

$$(1-\lambda u/k)^k = e^{-\lambda u}$$
 for $k \rightarrow \infty$

...which is the exponential distribution, $Exp(\lambda)$.

constant speciation rate λ means:

Prob(speciation event during Δt) = $\lambda \Delta t$

What is probability that a lineage did not speciate for time u?

Let $u = k\Delta t$.

Prob(no speciation event during u/k) = $1-\lambda u/k$

Prob(no speciation event during u) = $(1-\lambda u/k)^k$

$$(1-\lambda u/k)^k = e^{-\lambda u}$$
 for $k \rightarrow \infty$

...which is the exponential distribution, $Exp(\lambda)$.

What is probability that a **n** lineage did not speciate for time u?

Let $u = k\Delta t$.

Prob(no speciation event during u/k) = $(1-\lambda u/k)^n$

Prob(no speciation event during u) = $(1-\lambda u/k)^{nk}$

$$(1-\lambda u/k)^{nk} = e^{-n\lambda u}$$
 for $k \rightarrow \infty$

...which is the exponential distribution, $Exp(\mathbf{n}\lambda)$.

Prob(no speciation event during u) = $e^{-n\lambda u}$

Prob(speciation before u) = $1-e^{-n\lambda u}$

Prob(speciation at u) = $\frac{d}{du}$ (1-e^{-n\lambda}u) = n\lambde e^-n\lambdau

Calculating the probability of a Yule tree with complete sampling $f[\Psi|\lambda, \rho=1, T]$

Age of a clade: T Speciation rate: λ

Sampling probability: p

Calculating the probability of a Yule tree with complete sampling $f[\Psi|\lambda, \rho=1, T]$

Age of a clade: T Speciation rate: λ Sampling probability: ρ

Waiting time until a single lineage splits: Waiting time until n lineages split:

Calculating the probability of a Yule tree with complete sampling $f[\Psi|\lambda, \rho=1, T]$

Model

Age of a clade: T Speciation rate: λ Sampling probability: ρ

Waiting time until a single lineage splits: $Exp(\lambda)$

Waiting time until n lineages split: Exp(nλ)

Calculating the probability of a Yule tree with complete sampling $f[\Psi|\lambda, \rho=1, T]$

Model

Age of a clade: T Speciation rate: λ Sampling probability: ρ

Probability of tree

Waiting time until a single lineage splits: $Exp(\lambda)$

Waiting time until n lineages split: Exp(nλ)

$$f(\Psi | \lambda, \rho = 1, T = t_2 + t_3 + t_4 + t_5) =$$

Calculating the probability of a Yule tree with complete sampling $f[\Psi|\lambda, \rho=1, T]$

Model

Age of a clade: T Speciation rate: λ Sampling probability: ρ

Probability of tree

Waiting time until a single lineage splits: $Exp(\lambda)$

Waiting time until n lineages split: Exp(nλ)

f(Ψ| λ ,ρ=1, T=t₂+t₃+t₄+t₅) = 2 λ exp(2 λ t₂)/2 x 3 λ exp(3 λ t₃)/3 x 4 λ exp(4 λ t₄)/4 x exp(5 λ t₅)

The general birth-death model

- stem age of a clade T
- speciation rate λ
- extinction rate μ
- sampling probability ρ

Rates may depend on:

- 1) constant
- 2) time (environmental-dependence)
- 3) # of species (diversity-dependence)
- 4) type of species

reconstructed phylogeny

Phylogenetic trees

Constant rate birth-death model in RevBayes

Constant rate birth-death model in RevBayes

Piecewise constant birth-death model

Stadler (PNAS, 2011)

Piecewise constant birth-death model

Calculate **likelihood** of reconstructed phylogeny by "integrating" over all complete phylogenies:

Efficiently done using differential equations and recursions

Stadler (PNAS, 2011)

Calculating the likelihood: recursion

 $\underline{q(t)}$: probability density that a given individual at time t produces the descending edge.

<u>q(t):</u> probability density that a given individual at time t produces the descending edge.

$$q(e) = Prob()$$

$$q(s) = 1$$

 $\underline{q(t)}$: probability density that a given individual at time t produces the descending edge.

$$q(e) = Prob()$$

$$q(s) = 1$$

p(t): probability that a given individual at time t has no extant and sampled species offspring.

 $\underline{q(t)}$: probability density that a given individual at time t produces the descending edge.

$$q(e) = Prob()$$

$$q(s) = 1$$

p(t): probability that a given individual at time t has no extant and sampled species offspring.

$$q(t + \Delta t) = (1 - (\lambda_i + \mu_i)\Delta t - O(\Delta t^2))q(t) + \lambda_i \Delta t 2q(t)p(t) + O(\Delta t^2)$$

 $\underline{q(t)}$: probability density that a given individual at time t produces the descending edge.

$$q(e) = Prob()$$

$$q(s) = 1$$

p(t): probability that a given individual at time t has no extant and sampled species offspring.

$$q(t + \Delta t) = (1 - (\lambda_i + \mu_i)\Delta t - O(\Delta t^2))q(t) + \lambda_i \Delta t 2q(t)p(t) + O(\Delta t^2)$$

$$\Delta t \to 0$$

$$\frac{d}{dt}q(t) = -(\lambda_i + \mu_i)q(t) + 2\lambda_i q(t)p(t)$$

Tree Probability density

$$f\left(\frac{1}{1-p_{l(x_1)}(x_1)^2}\prod_{i=2}^{n-1}\lambda_{l(x_i)}q_{l(x_i)}(x_i)\prod_{i=1}^{m}(\lambda_i-\mu_i)^{2n_i}q_{i-1}(t_i)^{n_i}\right)$$

...with the x_i being the branching times and $p(x_i), q(x_i), l(x_i)$ being known functions (solutions for the differential equations) depending on the parameters λ, μ, ρ, t

Bayesian approach for estimating trees and parameters

Using a birth-death model allows us to estimate phylogenies together with speciation and extinction rates

Reminder: birth-death model in RevBayes

Exercises

Fixed phylogeny of bears

Pick best model (with or without extinction?)

Quantify speciation and extinction rate