

CNS Summer Students 2024

Intermediate Project Results

Fan Huang

Start from visualization of two Lung cell datasets

hubmap id

HBM948.GXMD.986

HBM975.WQQQ.853

Cell number: 202k

Embedding space: 201905 × 60286

Special settings:

1. Utilize the correct matrix layer:

'spliced unspliced sum'

2. Adopt two steps of normalization before conducting the UMAP function.

sc.pp.normalize_total(adata)
sc.pp.log1p(adata)

Same normalization settings for ALL 10 lung datasets

cell type number is: 48

CL_label	
capillary endothelial cell	119435
type I pneumocyte	94120
type II pneumocyte	51142
effector memory CD8-positive, alpha-beta T cell	42042
alveolar type 1 fibroblast cell	25102
multi-ciliated epithelial cell:non-nasal	24346
CD4-positive helper T cell	20184
ionocyte	14056
endothelial cell of venule	11042
endothelial cell of artery	10208
lung pericyte	6133
alveolar capillary type 2 endothelial cell	4925
alveolar type 2 fibroblast cell	4324
respiratory basal cell:resting	3358
smooth muscle cell	3066
endothelial cell of lymphatic vessel:mature	2203
endothelial cell of venule:pulmonary	2065
monocyte	1983
CD1c-positive myeloid dendritic cell	1877
B cell	1624

Alternative Visualization Published work based on PCA + t-SNE

Transcriptomic diversity of cell types across the adult human brain

Kimberly Siletti, D Rebecca Hodge, Alejandro Mossi Albiach, Lijuan Hu, Ka Wai Lee, Peter Lönnerberg,

Trygve Bakken, Song-Lin Ding, Michael Clark, Tamara Caspe Julie Nyhus, Herman Tung, Anna Marie Yanny, Ernest Arenas, Ed

doi: https://doi.org/10.1101/2022.10.12.511898

Now published in Science doi: 10.1126/science.add7046

Open-sourced github repository, code for this figure:

https://github.com/linnarsson-lab/adult-human-brain/blob/main/notebooks/Preprint/Figure1.ipynb

Alternative Visualization Published work based on PCA + t-SNE

We firstly adopt PCA for 200 dimensions, then use the t-SNE algorithm for final dimension reduction. We find the result is good, but the clusters are still not so perfectly separated.

- PCA, dimension to 200
- T-SNE, dimension to 2 (scanpy default T-SNE)
- Two-step normalizaiton

Alternative Visualization Published work based on PCA + t-SNE

We then try the openTSNE (paralleled version) to obtain more t-SNE algorithm parameter settings.

```
sc.tl.pca(adata_concat, n_comps=200)
```

```
from openTSNE import TSNE

pca_target = adata_concat.obsm['X_pca']
xy = TSNE(perplexity=20, exaggeration=1.5).fit(pca_target)
```

```
from openTSNE import TSNE

pca_target = adata_concat.obsm['X_pca']
xy = TSNE(perplexity=20, exaggeration=2.8).fit(pca_target)
```


PCA, dimension to 200

T-SNE, dimension to 2 (scanpy default T-SNE)

Two-step normalization

T-SNE: openTSNE package

pca_target = adata_concat.obsm['X_pca'] xy = TSNE(perplexity=20, exaggeration=1.5).fit(pca_target)

- PCA, dimension to 200
- T-SNE, dimension to 2 (scanpy default T-SNE)
- Two-step normalizaiton

T-SNE: openTSNE package

from openTSNE import TSNE

pca_target = adata_concat.obsm['X_pca'] xy = TSNE(perplexity=20, exaggeration=2.8).fit(pca_target)

Alternative Visualization Published work based on PCA + t-SNE

We then try the openTSNE (paralleled version) to obtain more t-SNE algorithm parameter settings.

```
from openTSNE import TSNE
pca_target = adata_concat.obsm['X_pca']
xy = TSNE(perplexity=20, exaggeration=1.5).fit(pca_target)

from openTSNE import TSNE
pca_target = adata_concat.obsm['X_pca']
xy = TSNE(perplexity=20, exaggeration=2.8).fit(pca_target)
```

As the **exaggeration** rate is higher, the clusters are more clearly separated in the visualization.

Alternative Visualization Published work based on PCA + t-SNE

To avoid the bias introduced by PCA re-processing dimension settings, we test 1000 dimension setting. Theoretically, the higher dimension number chosen should reflect better original embedding information.

```
sc.tl.pca(adata_concat, n_comps=1000)
```

```
from openTSNE import TSNE

pca_target = adata_concat.obsm['X_pca']
xy = TSNE(perplexity=20, exaggeration=1.5).fit(pca_target)
```

```
from openTSNE import TSNE

pca_target = adata_concat.obsm['X_pca']
xy = TSNE(perplexity=20, exaggeration=2.8).fit(pca_target)
```


- PCA, dimension to 1000
- T-SNE, dimension to 2 (scanpy default T-SNE)
- Two-step normalizaiton

- PCA, dimension to **1000**
- T-SNE, dimension to 2 (scanpy default T-SNE)
- Two-step normalizaiton

T-SNE: openTSNE package

from openTSNE import TSNE

pca_target = adata_concat.obsm['X_pca']
xy = TSNE(perplexity=20, exaggeration=1.5).fit(pca_target)

- PCA, dimension to 1000
- T-SNE, dimension to 2 (scanpy default T-SNE)
- Two-step normalizaiton

T-SNE: openTSNE package

pca_target = adata_concat.obsm['X_pca']

xy = TSNE(perplexity=20, exaggeration=2.8).fit(pca_target)

Alternative Visualization Published work based on PCA + t-SNE

For 1000 PCA setting, to better understand the most prevalent cell types, we filtered out the cell categories that is less than 1k in the whole embedding. $453k \rightarrow 448k$

```
sc.tl.pca(adata_concat, n_comps=1000)
```

```
from openTSNE import TSNE

pca_target = adata_concat.obsm['X_pca']
xy = TSNE(perplexity=20, exaggeration=1.5).fit(pca_target)
```

```
from openTSNE import TSNE

pca_target = adata_concat.obsm['X_pca']
xy = TSNE(perplexity=20, exaggeration=2.8).fit(pca_target)
```


- PCA, dimension to 1000
- T-SNE, dimension to 2 (scanpy default T-SNE)
- Two-step normalizaiton
- Filtered cells that less than 1k of its type

- 453k cell embedding vis:
- PCA, dimension to 1000T-SNE, dimension to 2
- Two-step normalizaiton

(scanpy default T-SNE)

 Filtered cells that less than 1k of its type

T-SNE: openTSNE package

```
pca_target = adata_concat.obsm['X_pca']
xy = TSNE(perplexity=20, exaggeration=1.5).fit(pca_target)
```


PCA, dimension to 1000

T-SNE, dimension to 2 (scanpy default T-SNE)

Two-step normalizaiton

Filtered cells that less than 1k of its type

T-SNE: openTSNE package

pca_target = adata_concat.obsm['X_pca']

xy = TSNE(perplexity=20, exaggeration=2.8).fit(pca_target)