

Mecânica do Voo

Aula Introdutória

• É o estudo do movimento de veículos voadores

Voo

- Movimento fora da superfície (solo ou água)
- Tem natureza tridimensional

- De acordo com o meio fluido de ocorrência podemos ter:
 - Ar → Voo atmosférico
 - Água → Voo oceânico ou subaquático
 - Vácuo → → Voo Espacial

Faculdade UnB Gama

Mecânica do Voo

Exemplo 1: Voo Atmosférico

Exemplo 2: Voo Atmosférico

Mecânica do Voo

Exemplo 2: Voo Atmosférico

Mecânica do Voo

Exemplo 2: Voo Atmosférico

Faculdade UnB Gama 🌇

Mecânica do Voo

Exemplo 3: Voo Atmosférico

Faculdade UnB Gama 🌇

Mecânica do Voo

Exemplo 4: Outros Voos Atmosféricos

Faculdade UnB Gama 🌇

Mecânica do Voo

Exemplo 5: Voo Trans atmosféricos

Faculdade UnB Gama 🌇

Mecânica do Voo

Exemplo 6: Voo Espacial

Mecânica do Voo

Exemplo 7: Voo Hipersônico

Faculdade UnB Gama 🌇

Mecânica do Voo

Exemplo 8: Voo?

Movimento

Brutos

- Trajetória do CG do veículo
- Movimento de atitude ou rotações do veículo como um todo

Fino

- Movimento relativo de rotação ou articulação de subsistemas, tais como motores, giroscópios, superfícies de controle, etc.
- Movimento de deformação estrutural, tais como flexão e torção.
- Liquid Sloshing.

Campos de Forças Externos

Maior Influência

- Empuxo Hidrostático Voo Atmosférico e Oceânico
- Aerodinâmico

Gravidade

Menor influência

- Magnético
- Radiação Solar

Voo Espacial

Faculdade UnB **Gama**

Mecânica do Voo

 A estimativa e medida das forças aerodinâmicas é uma tarefa muito importante para a mecânica do voo.

Spectrum of aerodynamic problems for wings.

- Além das forças aerodinâmicas, outros fatores importantes em mecânica do voo, são:
- Sistema Propulsivo
 - Motor a pistão
 - Motor a reação
 - Motor foguete
- Composição da Geometria do veículo
 - Asa
 - Fuselagem
 - Empenagem
 - Geometria variável

Mecânica do Voo

• Segundo o professor Bernand Etkin, Universidade de Toronto.

• Etkin, 1959

Mecânica do Voo

• Etkin, 1972

Mecânica do Voo

• Etkin, 1996

VOO ATMOSFÉRICO

- ✓ Desempenho
- ✓ Estabilidade e Controle
- ✓ Navegação, Guiagem e Controle
- ✓ Aeroelasticidade

VOO ESPACIAL

- ✓ Dinâmica do Voo Espacial
- ✓ Dinâmica e Controle de Espaçonaves
- ✓ Navegação, Guiagem e Controle

Objetivos principais

- Deduzir e compreender o modelo matemático dinâmico de aeronaves de asa fixa.
- Simular o comportamento de uma aeronave cujos parâmetros são conhecidos
- Compreender o comportamento da aeronave em voo
- Avaliar estabilidade e desempenho
- Projetar sistema de controle
 - Auto piloto
 - Melhoria da controlabilidade para o piloto

Objetivos principais

- Obter parâmetros de uma aeronave a partir de experimentos (túnel de vento, voos experimentais)
- A partir de um desempenho desejado, saber o que deve ser alterado na aeronave para obter o desempenho

Atmosfera

Atmosfera é a camada de gases que envolve a Terra.

NORMAL COMPOSITION OF CLEAN, DRY ATMOSPHERIC AIR NEAR SEA LEVEL					
Constituent gas and formula	Content, percent by volume				
Nitrogen (N ₂)	78.084				
Oxygen (O ₂)	20.948				
Argon (Ar)	0.934				
Carbon Dioxide (CO ₂)	0.031				
Neon (Ne), helium (He), krypton (Kr), hydrogen (H_2), xenon (Xe), methane (CH_4), nitrogen oxide (N_2O), ozone (O_3), sulfur dioxide (NO_2), ammonia (NH_3), carbon monoxide (CO), and iodine (I_2)	Traces of each gas for a total of 0.003				

U.S. Standard atmosphere, 1962

Válido para altitudes até mais ou menos 90 km

Faculdade UnB Gama

Atmosfera

Pressão: P é a Força Normal por unidade de área

$$P = \frac{F}{A}$$
 $\left[\frac{N}{m^2}\right]$, $[Pa]$, $[bar]$

$$(1Pa = 1N/m^2, 1bar = 10^5 Pa)$$

Densidade: ρ é a massa M por unidade de volume V

$$\rho = \frac{M}{V}, \qquad \left[\frac{kg}{m^3}\right]$$

Atmosfera

Atmosfera pode ser classificada como...

Baseado na Composição

Homosfera

- Altitude <≈ 90km
- Proporção dos elementos químicos 11ão variam com a altitude

Heterosfera

- Altitude >≈ 90km
- Proporção dos elementos químicos variam com a altitude
- Podem ser encontrados H2, He que são os gases com as mais baixas densidades.

Faculdade UnB Gama

Atmosfera

Atmosfera pode ser classificada como...

Baseado na distribuição de Temperatura

Exosfera

Termosfera

Mesosfera

Estratosfera

Troposfera

Atmosfera: Troposfera

- É a camada mais baixa da atmosfera e é onde ocorrem os fenômenos meteorológicos.
- Caracterizada pelo decréscimo da temperatura com a altitude (temperatura lapse rate) de 2°C/1000 pés (6,5°C/Km) até a tropopausa.
- Caracterizada pelo decréscimo da densidade com a altitude...
- Embora contenha 1% do volume total, representa 75% da massa total da atmosfera. Metade da massa da atmosfera está contida dentro da camada que vai até 18 mil pés (5,3 km).

Atmosfera: Troposfera

- Caracterizada pelo decréscimo da pressão com a altitude. Isso é devido à gravidade e à compressibilidade dos gases.
- Tropopausa: camada que separa a troposfera da próxima camada. Caracterizada pela isotermia (temperatura constante).
- Camada de Inversão: uma camada onde a temperatura aumenta com a altitude.
- Espessura apresenta uma variação diurna. Varia também com a latitude. Pode atingir 50 mil pés (15,2 km) no equador e 25 mil pés (7,6 km) nos polos.

Atmosfera: Estratosfera

- É a camada acima da troposfera.
- Possui uma camada isotérmica que vai do limite superior da tropopausa até 50 a 105 mil pés (16 a 32 km), onde apresenta uma temperatura em torno de -56,5°C.
 Acima desse ponto, a temperatura aumenta com a altitude, atingindo um valor máximo a 157 mil pés (48 km), cujo valor estima-se ser em torno de -2,5°C.
- Além desse ponto onde ocorre o pico de temperatura, encontra-se a estratopausa.

Atmosfera: Mesosfera

- É a camada acima da estratosfera.
- Ao contrário de sua vizinha, a estratosfera, que é estável, a mesosfera é turbulenta e sua temperatura cai rapidamente com a altitude. Chega a -92,5 °C a 260 mil pés (80 km).
- A camada superior da mesosfera é a mesopausa.

Faculdade UnB Gama \Upsilon

Atmosfera: Termosfera

- É a camada acima da mesosfera. Nesta camada, a temperatura aumenta com a altitude.
- Sua espessura é de 80 a 500 km de altitude.
- Nessa camada são encontradas as auroras e os rastros de meteoro. Existe ar suficiente para causar arrasto e aquecimento nos veículos que cruzam suas camadas inferiores.

Faculdade UnB Gama

Atmosfera: Exosfera

- É a região limítrofe entre a atmosfera e o espaço.
- Seus limites inferiores e superiores são difíceis de serem definidos, mas adota-se que a exosfera se inicia a 560 km e vai até o limite superior que varia de 960 km a 1600 km de altitude.

Faculdade UnB Gama 🌇

Faculdade UnB Gama 💜

Atmosfera Padrão

- A atmosfera pode apresentar grandes variações de suas propriedades, e dependem da localização, do período dia, da época do ano, etc, devido à movimentação dos sistemas meteorológicos.
- Para fins práticos, visando a padronização das propriedades da atmosfera, foi criado um modelo universalmente aceito de atmosfera, a ISA (International Standard Atmosphere). Este é o modelo adotado pela ICAO (International Civil Aviation Organization). O modelo ISA estabelece como a pressão, temperatura, velocidade do som, densidade e viscosidade da atmosfera da Terra variam com a altitude.
- Com a atmosfera ISA é possível a calibração de altímetros, comparação de performance de aeronaves e motores... No modelo da atmosfera ISA, o ar é considerado seco (sem umidade e sem vapor d'água) e em repouso em relação à Terra (sem vento e turbulência).

36

Atmosfera Padrão

Atmosphere ISA – Tabulated Data

International Standard Atmosphere

Sea Level Conditions

	Metric Value	Imperial Value
Pressure	101.3 kPa	2116.2 lbf/ft^2
Density	1.225 Kg/m^3	0.002378 slug/ft^3
Temperature	15 oC or 288.2 K	59 oF or 518.69 oR
Speed of Sound	340 m/s	1116.4 ft/s
Viscosity	1.789x10^-5 Kg/m/s	3.737x10^-7 slug/ft/s
Kinematic Visc.	1.460x10^-5 m^2/s	1.5723x10^-4 ft^2/s
Thermal Conductivity	0.02596 W/m/K	0.015 BTU/hr/ft/oR
Gas Constant	287.1 J/Kg/K	1715.7 ft lbf/slug/oR
Specific Heat Cp	1005 J/Kg/K	6005 ft lbf/slug/oR
Specific Heat Cv	717.98 J/Kg/K	4289 ft lbf/slug/oR
Ratio of Specific Hea	ats 1.40	
Gravitational Acceler	ration 9.80665 m/s^2	32.174 ft/s^2

Variation with Altitude

Altitu	de Temperature		≘			Kinematic	Speed
m	ft	οС	Pressure Ratio	Density Ratio	Viscosity Ratio	Viscosity Ratio	of Sound
0	0	15.2	1.0000	1.0000	1.0000	1.0000	340.3
152	500	14.2	0.9821	0.9855	0.9973	1.0121	339.7
304	1000	13.2	0.9644	0.9711	0.9947	1.0243	339.1
457	1500	12.2	0.9470	0.9568	0.9920	1.0367	338.5
609	2000	11.2	0.9298	0.9428	0.9893	1.0493	338.0
762	2500	10.2	0.9129	0.9289	0.9866	1.0622	337.4
914	3000	9.3	0.8962	0.9151	0.9839	1.0752	336.8
1066	3500	8.3	0.8798	0.9015	0.9812	1.0884	336.2
1219	4000	7.3	0.8637	0.8881	0.9785	1.1018	335.6
1371	4500	6.3	0.8477	0.8748	0.9758	1.1155	335.0
1524	5000	5.3	0.8320	0.8617	0.9731	1.1293	334.4

Prof. William Reis Mecânica do Voo: Aula Introdutória

Atmosfera Padrão

http://www.aeromech.usyd.edu.au/aero/atmosphere/atmtab.txt

ALTITUDE	TEMPERATURA	DENSIDADE	PRESSÃO
(PÉS)	(°C)	(KG/M³)	(hPa)
0	15,2	1,225	1013,25
1000	13,2	1,190	977,18
2000	11,2	1,155	942,12
3000	9,3	1,121	908,07
4000	7,3	1,088	875,14
5000	5,3	1,056	843,02
10000	-4,6	0,905	696,81
15000	-14,5	0,771	571,78
20000	-24,4	0,653	465,59
25000	-34,3	0,549	376,02
30000	-44,2	0,458	300,94
36000	-56,1	0,365	227,27
41000	-56,3	0,287	178,74
50000	-56,3	0,186	116,02

Atmosfera Padrão

$$P = 1013,2 \times (1 - 6,8755856 \times 10^{-6} \times h)^{5,2558797}, \qquad h < 36089 ft$$

$$P = 226,3093 \times e^{[-4,806346 \times 10^{-5} \times (h-36089,24)]}, \qquad h > 36089 ft$$

$$\rho = 1,225 \times (1 - 6,8755856 \times 10^{-6} \times h)^{4,2558797}, \qquad h < 36089 ft$$

$$\rho = 0,363918 \times e^{[-4,806346 \times 10^{-5} \times (h-36089,24)]}, \qquad h > 36089 ft$$

P = pressão em hPa ρ = densidade em kg/m^3

Faculdade UnB Gama

Atmosfera Padrão

Atmosfera Padrão

Standard Atmosphere Computations

https://www.digitaldutch.com/atmoscalc/
http://www.patarnott.com/atms749/usatm.htm

Standard Atmosphere Computations

ote: this form us	es JavaScript to	compute propertie	related to the 1976 standard atmosphere up to 230,000 ft. The computations require Netscape 2.0 or lat	er.
elect unit system	• English •	Metric		
nputs				
Ititude	0.0	ft		
peed	1.0	ft/sec		
eference Length	1.0	ft		
Compute Reset]			
emperature		°R		
ensity		sI/ft^3		
ressure		lb/ft^2		
peed of Sound		ft/sec		
iscosity		lb sec/ft^2		
Iach Number				
ynamic Pressure		lb/ft^2		
ritical Cp				
acuum Cp				
leynolds Number				
aminar Cf				
urbulent Cf				

Ilan Kroo, Aircraft Aerodynamics and Design Group 4/16/97.

- A atmosfera real não corresponde ao modelo da atmosfera padrão devido aos seguintes fatores:
 - Efeitos térmicos do Sol.
 - Presença de continentes e oceanos.
 - Rotação da Terra.
- Embora a atmosfera padrão forneça os critérios necessários ao projeto de aeronaves, é necessário que o desempenho numa atmosfera não padrão (atmosfera real) seja conhecido.

- São uns dos efeitos mais importantes da atmosfera real.
- Embora a atmosfera padrão esteja em repouso em relação à Terra, a massa de ar na qual o avião voa está em constante movimento em relação à superfície.
 - Esse movimento varia no espaço e no tempo.
 - Movimento de larga escala (Vento) => Afeta a navegação e o desempenho da aeronave.
 - Movimento de pequena escala (Turbulência e Rajadas) => A resposta da aeronave à turbulência e à rajada é uma questão importante. Nos passageiros, podem causar desde um desconforto até ferimentos (caso não estejam usando os cintos de segurança). Em casos extremos de turbulência severa e por longos períodos, podem causar perda de controle e falha estrutural.

https://www.youtube.com/watch?v=Y2Q1mgSedTo

(b) Aircraft yawed into wind with angle ψ to account for wind drift.

FIGURA EXTRAÍDA DA REF. 10.2

Prof. William Reis Mecânica do Voo: Aula Introdutória 43

Atmosfera Real

Faculdade UnB Gama 💜

Atmosfera Real

Umidade:

- É outro importante efeito da atmosfera real.
- A água, apesar de não constar na atmosfera padrão, afeta a operação área de várias maneiras.
- A umidade afeta adversamente o desempenho da aeronave pela formação de gelo nas diversas partes da aeronave e motor, redução da visibilidade devido a neblina, chuva ou neve, danos devido ao granizo.
- O ar úmido é menos denso que o ar seco, afetando diretamente o desempenho de decolagem.

- Densidade do ar:
 - É um parâmetro importante para determinação da sustentação, arrasto e desempenho do motor. Como a atmosfera padrão não fornece as reais condições de determinado local em determinado tempo, o piloto deve obter as informações atmosféricas de pressão e temperatura, através dos serviços AIS ou ATS.

https://www.exactearth.com/products/exactais-density-maps

- Pressão atmosférica:
 - A pressão local (QNH) deve ser obtida para ajuste do altímetro para fins de pouso e decolagem.
 - Apesar da discussão apresentada sobre os efeitos da atmosfera real novo o das aeronaves, a atmosfera padrão é uma referência primária no projeto preliminar de uma aeronave.

Aeronaves

- Aeronave é todo veículo capaz de se sustentar e navegar na atmosfera.
 - Aeróstatos
 - Aeródinos

Aeronaves

AERÓSTATOS => Aeronaves mais leves que o ar.

Aeronaves

AERÓDINOS => Aeronaves mais pesadas que o ar.

Aviões

✓ Asas Fixas

✓ Asa Rotativas

Planadores

Helicópteros

Girocópteros

Faculdade UnB **Gama**

Estruturas de um avião

PARTES PRINCIPAIS

Componentes da estrutura ou célula de um avião:

- > Asas
- ≻Fuselagem
- >Body / Fuselage
- ➤ Empenagem
- > Superfícies de controle >Control surfaces

ESFORÇOS ESTRUTURAIS

A estrutura do avião deve resistir a diversos esforços

durante a operação (no ar ou no solo).

Os principais esforços são:

- ➤ Tração
- >Tension
- ► Compressão
- **≻**Compression
- Flexão
- >Bending
- >Cisalhamento
- ➤ Torção ➤ Torsion

MATERIAIS

Os materiais utilizados em aviões devem ser leves e resistentes => Elevada relação resistência/peso.

Os materiais mais comuns utilizados em aviões são: Aço (steel), alumínio, magnésio, aço inoxidável (stainless steel), bronze, latão (brass), plásticos e materiais compostos (composites), Kevlar.

Materiais Compostos:

- >MMC (metal matrix composites)
- ►PMC (polymer matrix composites)

Fibra de vidro Fibra de carbono CMC (ceramic matrix composites)

Madeira, tela, etc.

Faculdade UnB **Gama**

Asas

PROCESSOR SOCIONAL CONTRACTOR

- ►Produzir sustentação para o voo.
- Asa Entelada: Revestimento não resistente. Revestimento para suportar a pressão aerodinâmica.
- Asa Metálica: Ausência de tirantes e montantes. Revestimento resistente.

Asas

Wing structure nomenclature.

Posição em relação à fuselagem

FIGURA EXTRAÍDA DA REF. 2.2

ASA SEMI-CANTILÉVER

Fixação

Externally braced wings, also called semicantilever wings, have wires or struts to support the wing.

Full cantilever wings have no external bracing and are supported internally.

FAA-H-8083-31 Aviation Maintenance Technician Handbook-Airframe Volume 1, 2012.

Forma em planta

Faculdade UnB Gama 🌇

Various wing design shapes yield different performance.

- É o corpo do avião.
- São fixadas as asas e a empenagem.
- Aloja os tripulantes, passageiros e carga.
- Tripulantes + Passageiros (PAX) = Ocupantes = POB (Persons On Board)
- Aloja alguns sistemas do avião.
- Aloja o trem de pouso e o motor, dependendo da arquitetura.

Principais tipos

FAA-H-8083-31 Aviation Maintenance Technician Handbook-Airframe Volume 1, 2012.

ESTRUTURA TUBULAR

(TRUSS-FRAME)

- Caverna e revestimento
- Caverna dá a forma aerodinâmica à fuselagem
- Revestimento suporta esforços
- Revestimentos => Chapa metálica, plástico reforçado ou contraplacado de madeira

ESTRUTURA MONOCOQUE

- Caverna, revestimento e longarinas (reforçador)
- Caverna dá a forma aerodinâmica à fuselagem
- Revestimento suporta esforços
- Revestimentos => Chapa metálica, plástico reforçado ou contraplacado de madeira

ESTRUTURA SEMI-MONOCOQUE

Empenagem

- Empenagem (tail) é o conjunto de superfícies destinadas à estabilizar o voo do avião.
 - Empenagem Horizontal (H-Tail)
 - Estabilização do avião em relação ao eixo transversal o se opõe à tendência ao movimento de arfagem (pitch)
 - Estabilizador Horizontal fixo + Profundor (Elevator) ou Estabilizador Horizontal móvel
 - Empenagem Vertical (V-Tail)
 - Estabilização do avião em relação ao eixo vertical ou se opõe à tendência ao movimento de guinada (yaw)
 - Estabilizador Vertical fixo (deriva) + Leme de Direção (rudder)

Empenagem

Components of a typical empennage.

68

Faculdade UnB Gama 🕐

Empenagem

FIGURA EXTRAÍDA DA REF. 2.2

Prof. William Reis Mecânica do Voo: Aula Introdutória 69

Bibliografia

- Jorge M. Homa, Aeronaves e Motores, Editora Asa, 29ª Edição.
- Theodore A. Talay, Introduction to the Aerodynamics of Flight, NASA SP-367, 1975. Disponível no site:
- http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760003955_19760 03955.pdf
- Acyr Costa Schiavo, Conhecimentos Técnicos e Motores para Pilotos, Editora EAPAC, 1982.
- Luiz Pradines, Fundamentos da Teoria de Voo, Edições Inteligentes, 2004.
- John F. Welch, Van Sickle's Modern Airmanship, Tab Books, 7th Edition, 1995.
- FAA-H-8083-31 Aviation Maintenance Technician Handbook-Airframe Volume 1, 2012.
- FAA-H-8083-25A Pilot's Handbook of Aeronautical Knowledge, 2008.

Bibliografia

- Newton Soler Saintive, Teoria de Voo, Editora Asa, 3ª Edição, 2001.
- Theodore A. Talay, Introduction to the Aerodynamics of Flight, NASA SP-367, 1975.
- Jorge M. Homa, Aeronaves e Motores, Editora Asa, 29ª Edição.
- Jan Roskan, Chuan-Tau Edward Lan, Airplane Aerodynamics and Performance, DARCorporation, Lawrence - KS, 1997.
- Embraer, EMB-120 Brasília, Airplane Flight Manual, 1999.
- Newton Soler Saintive, Performance de Aviões a Jato, Peso e Balanceamento, Editora Asa, 1999.