北京航空航天大学

2010~2011 学年第 1 学期

随机过程理论_期末考试试卷

(2010年11月28日)

班级:	: 学号:	: 姓名:	: 成绩;
(1) 厂义平4	^{會随机过程通过线性} f机过程广义联合平	"√",错的打"×"。 系统后的输出随机过程仍是 稳,则这两个随机过程一定 在同一时刻相关,且不正	定是广义平稳的。
(4) 泊松过程 (5) 齐次马尔	中,很短的时间间可夫链是广义平稳	隔内到达人数为2个或2个	文。 个以上的可能性很小。
(2) 平稳随机; (3) 平稳随机; (4) 高斯随机;	列问题。 过程的相关时间和时程的各态历经性。 过程的各态历经性。 过程相关函数的性。 过程的广义平稳与数 过程的定义,并举使	及其意义。 质。 陕义平稳等价。	(共30分, 每小题6分)
(6) 什么是马尔 设随机过程 Z(x可夫特性,并举3 $(t) = X \sin t + Y \cos t$	实例说明。 pst, 其中 X 和 Y 是两个	~ 互不相关的随机变量,并且有
1) 求 Z(t) 的均 2) 证明 Z(t) 是	 E[X²]=E[Y²] 值和自相关函数; 广义平稳过程; 还需满足什么条件 		$f_{Z}(z_{1},z_{2},\tau), \tau=t_{1}-t_{2}.$
			实随机过程: ω, 为实数, 且有
$B \cdot i = 1, \dots,$	n.		(15分)
		并写出其复表示 $ ilde{X}(t)$; , , , 足什么条件可使得 $ ilde{X}(t)$	(t) 为复平稳过程,即
		$)] = R_{\tilde{X}}(\tau) , \tau = t_1 - t$	2
图 1 所示的系统	充中, 若已知		(15分)
	h(t	$=e^{-\alpha t}II(t)$ $\alpha > 0$	

并且输入W(t)是均值为零,功率谱密度为 $N_0/2$ 的高斯白噪声,求:

(1) Y(t) 的均值和自相关函数;

0, >

(1)

(2)

5. 在图

- (2) Y(t)的功率谱密度:
- (3) Y(t)的一维概率密度函数。

6. 若X(t)是自相关函数为 $e^{-|t|}$ 的随机过程,令

(15分)

$$Y_1(t) = X(t) + \frac{dX(t)}{dt}, \quad Y_2(t) = \int_{-T} X(\lambda) d\lambda$$

求:

- (1) $R_{Y_1}(t_1,t_2) \in R_{XY_2}(t_1,t_2)$;
- (2) $S_{Y_1X}(\omega)$ 和 $S_{Y_2X}(\omega)$