高等热力学与统计物理第九次作业

董建宇

1. 一稀薄气体处于外力场内,相应的势能为 $V(\vec{r})$ 。假设 $V(\vec{r})$ 在分子相互作用力程范围内的变化很小,求出 Boltzmann 方程的近似静态解并用平均数密度平均动能定义的温度表示所得得解。

处于势场 $V(\vec{r})$ 中受力为:

$$\vec{F}(r) = -\vec{\nabla}V(\vec{r}).$$

则 Boltzmann 方程可以写为:

$$\frac{\partial}{\partial t} f(\vec{r}, \vec{p}; t) + \left(\frac{\vec{p}}{m} \cdot \vec{\nabla}_{\vec{r}} + \vec{F} \cdot \vec{\nabla}_{\vec{p}} \right) f(\vec{r}, \vec{p}; t)
= \int d^3 \vec{p}_2 d^3 \vec{p}_1' d^3 \vec{p}_2' |T_{fi}|^2 \delta^4 (P_f - P_i) [f(\vec{r}, \vec{p}_1'; t) f(\vec{r}, \vec{p}_2'; t) - f(\vec{r}, \vec{p}; t) f(\vec{r}, \vec{p}_2; t)].$$

假设 Boltzmann 方程的试探解为:

$$f(\vec{r}, \vec{p}; t) = C\rho e^{-A(\vec{p}-\vec{p}_0)^2}$$

则坐标空间中粒子数密度为:

$$\rho = \int d^3 \vec{p} f(\vec{r}, \vec{p}; t) = C \rho \int d^3 \vec{p} e^{-A(\vec{p} - \vec{p}_0)^2} = C \rho \left(\frac{\pi}{A}\right)^{3/2}.$$

则有系数间关系为:

$$C = \left(\frac{A}{\pi}\right)^{3/2}$$

则考虑动量空间中粒子数密度为: $g(\vec{p};t) = \frac{f(\vec{r},\vec{p};t)}{\rho(\vec{r};t)} = \left(\frac{A}{\pi}\right)^{3/2} e^{-A(\vec{p}-\vec{p}_0)^2}$ 。则平均动量为:

$$\langle \vec{p} \rangle = \int d^3 \vec{p} \vec{p} \left(\frac{A}{\pi} \right)^{3/2} e^{-A(\vec{p} - \vec{p}_0)^2} = \left(\frac{A}{\pi} \right)^{3/2} \int d^3 \vec{p} (\vec{p} + \vec{p}_0) e^{-A\vec{p}^2} = \vec{p}_0.$$

平均动量为 0 条件即为 $\vec{p_0} = 0$ 。此时平均动能为:

$$\epsilon \equiv \langle \frac{\vec{p}^2}{2m} \rangle = \left(\frac{A}{\pi}\right)^{3/2} \frac{1}{2m} \int d^3 \vec{p} \, \vec{p}^2 e^{-A\vec{p}^2} = \frac{3}{4mA}.$$

若定义平均动能对应的温度为 $T_0 = \frac{2\epsilon}{3k}$, 其中 k 为 Boltzmann 常数, 则系数可以写为:

$$A = \frac{1}{2mkT_0}.$$

对于该试探解, Boltzmann 方程右侧为 0, 则有:

$$\frac{\partial}{\partial t}\rho(\vec{r};t) + \frac{\vec{p}}{m} \cdot \vec{\nabla}_{\vec{r}}\rho(\vec{r};t) - \vec{\nabla}_{\vec{r}}V(\vec{r}) \cdot (-2A\vec{p})\rho(\vec{r};t) = 0.$$

2 董建宇

通解为:

$$\rho(\vec{r}) = C_1 e^{-2mAV(\vec{r})}.$$

其中 C₁ 满足:

$$\int d^3 \vec{r} \rho(\vec{r}) = N.$$

N 为气体分子总数。则 Boltzmann 方程近似静态解为:

$$f(\vec{r}, \vec{p}) = \frac{C_1}{(2\pi mkT_0)^{3/2}} \exp\left(-\frac{V(\vec{r})}{kT_0} - \frac{\vec{p}^2}{2mkT_0}\right).$$

2. 写下一个均匀且无外力作用的气体的 Boltzmann 方程并证明下列 Boltzmann H-定理:

$$\frac{dH}{dt} \le 0$$

其中 $H \equiv \int d^3\vec{p} f(\vec{p}, t) \ln f(\vec{p}, t)$ 。

对于均匀且无外力作用的气体,有:

$$\vec{\nabla}_{\vec{r}}f = 0, \ \vec{F} = 0.$$

则 Boltzmann 方程可以写为:

$$\frac{\partial}{\partial t} f(\vec{p};t) = \int d^3 \vec{p}_2 d^3 \vec{p}_1' d^3 \vec{p}_2' |T_{fi}|^2 \delta^4 (P_f - P_i) [f(\vec{p}_1';t) f(\vec{p}_2';t) - f(\vec{p};t) f(\vec{p}_2;t)].$$

可以计算:

$$\begin{split} \frac{dH}{dt} &= \int \,d^3\vec{p} \frac{\partial}{\partial t} (f(\vec{p},t) \ln f(\vec{p},t)) \\ &= \int \,d^3\vec{p} \frac{\partial}{\partial t} f(\vec{p};t) + \int \,d^3\vec{p} \ln f(\vec{p};t) \frac{\partial}{\partial t} f(\vec{p};t) \end{split}$$

考虑等式右侧第一项则有:

$$\int\,d^3\vec{p}\frac{\partial}{\partial t}f(\vec{p};t)=\frac{d}{dt}\int\,d^3\vec{p}f(\vec{p};t)=\frac{d\rho}{dt}=0.$$

其中 ρ 为实空间中粒子数密度,由于均匀且无外力作用,则有: $\frac{d\rho}{dt}=0$ 。将 Boltzmann 方程带入上式可得:

$$\frac{dH}{dt} = \int d^3\vec{p} d^3\vec{p}_2 d^3\vec{p}_1' d^3\vec{p}_2' |T_{fi}|^2 \delta^4(P_f - P_i) [f(\vec{p}_1; t) f(\vec{p}_2; t) - f(\vec{p}; t) f(\vec{p}_2; t)] \ln f(\vec{p}; t).$$

交换 \vec{p} 和 \vec{p}_2 以及 \vec{p}_1 和 \vec{p}_2 可得:

$$\frac{dH}{dt} = \int d^3\vec{p} d^3\vec{p}_2 d^3\vec{p}_1 d^3\vec{p}_2 |T_{fi}|^2 \delta^4(P_f - P_i) [f(\vec{p}_1';t)f(\vec{p}_2';t) - f(\vec{p}_1;t)f(\vec{p}_2;t)] \ln f(\vec{p}_2;t).$$

对上面两式利用时间反演不变性可得:

$$\frac{dH}{dt} = \int d^3\vec{p} d^3\vec{p}_2 d^3\vec{p}_1 d^3\vec{p}_2' |T_{fi}|^2 \delta^4(P_f - P_i) [f(\vec{p};t)f(\vec{p}_2;t) - f(\vec{p}_1;t)f(\vec{p}_2;t)] \ln f(\vec{p}_1;t).$$

$$\frac{dH}{dt} = \int d^3\vec{p} d^3\vec{p}_2 d^3\vec{p}_1 d^3\vec{p}_2' |T_{fi}|^2 \delta^4(P_f - P_i) [f(\vec{p};t)f(\vec{p}_2;t) - f(\vec{p}_1;t)f(\vec{p}_2;t)] \ln f(\vec{p}_2';t).$$

则有:

$$\frac{dH}{dt} = \frac{1}{4} \int d^3 \vec{p} d^3 \vec{p}_2 d^3 \vec{p}_1' d^3 \vec{p}_2' |T_{fi}|^2 \delta^4 (P_f - P_i)$$

$$\times \left[f(\vec{p}_1'; t) f(\vec{p}_2'; t) - f(\vec{p}; t) f(\vec{p}_2; t) \right] \ln \frac{f(\vec{p}; t) f(\vec{p}_2; t)}{f(\vec{p}_1'; t) f(\vec{p}_2'; t)}.$$

注意到如果 $f(\vec{p_1};t)f(\vec{p_2};t)-f(\vec{p};t)f(\vec{p_2};t)>0$,则有: $\ln\frac{f(\vec{p};t)f(\vec{p_2};t)}{f(\vec{p_1};t)f(\vec{p_2};t)}<0$;如果 $f(\vec{p_1};t)f(\vec{p_2};t)-f(\vec{p};t)f(\vec{p_2};t)<0$,则有: $\ln\frac{f(\vec{p};t)f(\vec{p_2};t)}{f(\vec{p_1};t)f(\vec{p_2};t)}>0$;如果 $f(\vec{p_1};t)f(\vec{p_2};t)-f(\vec{p_2};t)=0$,则有: $\ln\frac{f(\vec{p_1};t)f(\vec{p_2};t)}{f(\vec{p_1};t)f(\vec{p_2};t)}=0$;综上所述,有

 $\frac{dH}{dt} \le 0.$