Chapter I Background

March 11, 2023

1 Euclidean Spaces

1.1.1

Prove the intersection of an arbitrary collection of convex sets is convex. Deduce that the convex hull of a set $D \subseteq \mathbb{E}$ is well-defined as the intersection of all convex sets containing D.

Proof: Let C_i , $i \in \mathcal{I}$ be a collection of convex sets. Then for all $x, y \in \cap_{i \in \mathcal{I}} C_i$, and all $\lambda \in [0, 1]$, we have

$$\lambda x + (1 - \lambda)y \in C_i \quad \forall i \in \mathcal{I}, \text{ since } C_i \text{ is convex and } x, y \in C_i.$$

Thus $\cap_{i\in\mathcal{I}}C_i$ is convex. The rest is clear.

1.1.2

• Prove that if the set $C \subseteq \mathbb{E}$ is convex and if

$$x^1, \dots, x^m \in C, 0 \le \lambda_1, \dots, \lambda_m \in \mathbb{R},$$

and $\sum \lambda_i = 1$ then $\sum \lambda_i x^i \in C$. Prove, furthermore, that if $f: C \to \mathbb{R}$ is a convex function then $f(\sum \lambda_i x^i) \leq \sum \lambda_i f(x^i)$.

• We know that $-\log$ is convex. Deduce, for any strictly positive reals x^1, \dots, x^m , and any nonnegative reals $\lambda_1, \dots, \lambda_m$ with sum 1, the *arithmetic-geometric* mean inequality

$$\prod_{i} (x^{i})^{\lambda_{i}} \le \sum_{i} \lambda_{i} x^{i}.$$

• Prove that for any set $D \subseteq \mathbb{E}$, convD is the set of all convex combinations of elements of D.

Proof:

- Obvious induction.
- Since $-\log$ is convex, we have

$$-\log(\sum_i \lambda_i x^i) \le \sum_i \lambda_i (-\log(x^i)) \Rightarrow \sum_i \lambda_i (\log(x^i)) \le \log(\sum_i \lambda_i x^i).$$

So,

$$\log(\prod_{i} (x^{i})^{\lambda_{i}}) \leq \log(\sum_{i} \lambda_{i} x^{i}) \Rightarrow \prod_{i} (x^{i})^{\lambda_{i}} \leq \sum_{i} \lambda_{i} x^{i}..$$

• Easy.

1.1.3

Prove that a convex set $D \subseteq \mathbb{E}$ has convex closure, and deduce that cl(conv D) is the smallest closed convex set containing D.

Proof:

Let $x, y \in cl(D)$ and suppose $x_i \to x$ and $y_i \to y$ with $x_i, y_i \in D$. Then for $\lambda \in [0, 1]$,

$$\lambda x + (1 - \lambda)y = \lim_{i} \lambda x_i + (1 - \lambda)y_i.$$

Thus $\lambda x + (1 - \lambda)y$ belongs to the closure of D, and thus cl(D) is convex.

Now for $D \subseteq \mathbb{E}$, if C is the smallest closed convex set containing it, then $cl(conv(D)) \subseteq C$ as first C is convex and contains D and so contains conv(D), also C is closed and hence contains cl(conv(D)). On the other hand, since conv(D) is convex, cl(conv(D)) is also convex. However, C is the smallest closed convex set containing D, and therefore C = cl(conv(D)).

1.1.4. Randstorm cancellation

Suppose sets $A, B, C \subseteq \mathbb{E}$ satisfy

$$A + C \subseteq B + C$$
.

If A, B are convex, B is closed, and C is bounded, prove

$$A \subseteq B$$
.

Show this result can fail if B is not convex.

Proof: Since A is convex we have 2A = A + A. In fact, $A \subseteq \frac{1}{2}(A + A)$ as $a = \frac{1}{2}(a + a)$. On the other hand, for $a, b \in A$, $\frac{1}{2}(a + b) \in A$, by definition of convexity. Similarly, 2B = B + B. Thus, we have

$$2A + C = A + A + C = A + (A + C) \subseteq A + (B + C) = (A + C) + B \subseteq (B + C) + B = 2B + C$$

By induction,

$$nA + C \subseteq nB + C \ \forall n \in \mathbb{N}.$$

Now, suppose $a \in A$. Then there exist $b_n \in B$ and $c_n \in C$ such that $na = nb_n + c_n$. Since, C is bounded, we can assume there exists a subsequence c_{n_k} of c_n such that c_{n_k} converges. Now since $a = b_{n_k} + \frac{1}{n_k} c_{n_k}$. Since, c_{n_k} is convergent and so bounded, we deduce, $\lim_k \frac{1}{n_k} c_{n_k} = 0$. So, $a = \lim_k b_{n_k}$. But, B is closed and so $\lim_k b_{n_k}$, if it exists, belongs to B. Hence, $a \in B$ and so $A \subseteq B$.

so $\lim_k b_{n_k}$, if it exists, belongs to B. Hence, $a \in B$ and so $A \subseteq B$. Now let $A = \{\frac{1}{2}\}, B = \{0,1\}, C = [0,1]$. Then $A + C = [\frac{1}{2}, \frac{3}{2}], B + C = [0,2]$. So, $A + C \subseteq B + C$ and also $A \not\subseteq B$.

1.1.5 Strong separation

Suppose that the set $C \subseteq \mathbb{E}$ is closed and convex, and that the set $D \subseteq \mathbb{E}$ is compact and convex.

- Prove the set D-C is closed and convex.
- Deduce that if in addition D and C are disjoint then there exists a nonzero element a in \mathbb{E} with $\inf_{x \in D} \langle a, x \rangle > \sup_{y \in C} \langle a, y \rangle$. Interpret geometrically.
- Show part (b) fails for the closed convex sets in \mathbb{R}^2 ,

$$D = \{x : x_1 > 0, x_1 x_2 \ge 1\}$$
$$C = \{x : x_2 = 0\}.$$

Proof:

• Note that for $d_1, d_2 \in D$ and $c_1, c_2 \in C$, and $\lambda \in [0, 1]$,

$$\lambda(d_1 - c_1) + (1 - \lambda)(d_2 - c_2) = (\lambda d_1 + (1 - \lambda)d_2) - (\lambda c_1 + (1 - \lambda)c_2) \in D - C.$$

Thus, D-C is convex.

Now, let $d_i \in D$ and $c_i \in C$ such that $d_i - c_i \to x$. We wish to prove that $x \in D - C$. Since D is compact, we may assume $d_i \to d \in D$. So c_i converges to some $c \in \mathbb{E}$. Now since C is closed we have $c \in C$. Thus x = d - c belongs to D - C.

• Since $D \cap C \neq \emptyset$, we have $0 \notin D - C$ and so, due to the basic separation, there exists $a \in \mathbb{E}$ such that $\langle a, x \rangle > b > 0$ for all $x \in D - C$ and some fixed b > 0. So $\inf_{x \in D} \langle a, x \rangle > \sup_{y \in C} \langle a, y \rangle$.

Geometrically, it means two disjoint closed, convex sets one of which is compact, can be separated via a hyperplane.

• Let $a \in \mathbb{R}^2$, such that $\inf_{x \in D} \langle a, x \rangle > \sup_{y \in C} \langle a, y \rangle$.. Then $\sup_{y \in C} \langle a, y \rangle = \sup_{y \in C} a_1 y_1$, which since it is finite, must be equal to zero and thus $a_1 = 0$. Now,

$$\inf_{x \in D} \langle a, x \rangle = a_2 x_2 > 0,$$

which is a contradiction as $x_2 \to 0$ implies $a_2x_2 \to 0$.

1.1.6. Recession cones

Consider a nonempty closed convex set $C \subseteq \mathbb{E}$. We define the recession cone of C by

$$0^+(C) = \{ d \in \mathbb{E} : C + \mathbb{R}_+ d \subseteq C \}.$$

- Prove $0^+(C)$ is a closed convex cone.
- Prove $d \in 0^+(C)$ if and only if $x + \mathbb{R}_+ d \subseteq C$ for some point x in C. Show this equivalence can fail if C is not closed.
- Consider a family of closed convex sets C_{γ} ($\gamma \in \Gamma$) with nonempty intersection. Prove $0^+(\cap C_{\gamma}) = \cap 0^+(C_{\gamma})$.
- For a unit vector u in \mathbb{E} , prove $u \in 0^+(C)$ if and only if there is a sequence x^r in C satisfying $||x^r|| \to \infty$ and $||x^r||^{-1}x^r \to u$. Deduce C is unbounded if and only if $0^+(C)$ is nontrivial.
- If Y is a Euclidean space, the map $A : \mathbb{E} \to Y$ is linear, and $N(A) \cap 0^+(C)$ is a linear subspace, prove AC is closed. Show this result can fail without the last assumption.
- Consider another nonempty closed convex set $D \subseteq \mathbb{E}$ such that $0^+(C) \cap 0^+(D)$ is a linear subspace. Prove C - D is closed.

Proof:

- Let $d_1, d_2 \in 0^+(C)$ and $\lambda > 0$, then $C + \mathbb{R}_+(\lambda d_1) = C + \mathbb{R}_+ d_1 \subseteq C$. Also, $C + \mathbb{R}_+(d_1 + d_2) \subseteq C + \mathbb{R}_+ d_1 + \mathbb{R}_+ d_2 \subseteq C + \mathbb{R}_+ d_2 \subseteq C$.
- Let $C_{\infty}(x) = \{d \in \mathbb{E} : x + td \in C, \forall t > 0\}$. Now let $d \in \mathbb{C}_{\infty}(x)$ and also fix $\bar{y} \in C$. We wish to show that $\bar{y} + d \in C$. Since $d \in C_{\infty}(x)$ for every $\bar{t} > 0$ we have $x + \bar{t}d \in C$. Thus, for $\lambda > 0$ we have

$$\bar{y}_{\lambda} = \lambda \bar{y} + (1 - \lambda)(x + \frac{1}{1 - \lambda}d) \in C,$$

as C is convex. But $\bar{y}_{\lambda} = \lambda \bar{y} + (1 - \lambda)x + d \in C$. Clearly, $\lim_{\lambda \to 1^{-}} \bar{y}_{\lambda} = \bar{y} + d$ and since C is closed we conclude that $\bar{y} + d \in C$. Thus, $C_{\infty}(x) \subseteq 0^{+}(C)$.

Conversely, let $d \in 0^+(C)$. Then, by definition, $x \in C_\infty(x)$.

Example: Take $C = \{(x, y) : y > 0\} \cup \{(0, 0)\}.$

- Let $x \in \cap C_{\gamma}$. Then $d \in 0^{+}(\cap C_{\gamma})$ if and only if $x + \mathbb{R}_{+}d \subseteq \cap C_{\gamma}$, and this holds, if and only if $x + \mathbb{R}_{+}d \subseteq C_{\gamma}$ for all $\gamma \in \Gamma$ or equivalently $d \in 0^{+}(C_{\gamma})$ for all $\gamma \in \Gamma$.
- Let $x \in C$ and $u \in 0^+(C)$. Then $x^r := x + ru \in C$ for $r \in \mathbb{N}$. Note that $\langle x^r, u \rangle = \langle x, u \rangle + r$ and thus $||x^r|| \to +\infty$. We have

$$\lim_r \frac{x^r}{||x^r||} = \lim_r \frac{x^r||x^r||}{||x^r||^2} = \lim_r \frac{x^r||x^r||}{r^2 + 2r\langle x, u \rangle + ||x||^2} = \lim_r \frac{x^r||x^r||}{r^2} = \lim_r (x/r + u)||x/r + u|| = u.$$

Conversely, suppose $u^r := ||x^r||^{-1}x^r \to u$ for some $||x^r|| \to +\infty$. Now fix $t \ge 0$,

$$x + tu = x + t \lim_{r} ||x^{r}||^{-1}x^{r} = \lim_{r} (1 - t||x^{r}||^{-1})x + \lim_{r} t||x^{r}||^{-1}x^{r} = \lim_{r} [(1 - t||x^{r}||^{-1})x + t||x^{r}||^{-1}x^{r}].$$

But, $(1-t||x^r||^{-1})x+t||x^r||^{-1}x^r\in C$ and thus the above limit lies in C as C is closed.

Now if C is bounded then there is no such sequence x^r in C and hence $0^+(C)$. Now suppose that C is unbounded and thus there is a sequence $x^r \in C$ with $||x^r|| \to +\infty$. By passing to a subsequence, we can suppose $||x^r||^{-1}x^r \to u$ for some ||u|| = 1.

• Define $L = N(A) \cap 0^+(C)$. Let $c_i \in C$ and $y_i := Ac_i \to y$. Note that if $||c_i||$ is bounded then, passing to a subsequence, we can assume $c_i \to c$ and since C is closed we have $c \in C$. Hence, $Ac_i \to Ac \in AC$. Thus, suppose that $||c_i|| \to +\infty$ and also $||c_i||^{-1}c_i \to u$ for some ||u|| = 1. Then, according to the above part, $u \in 0^+(C)$. Now note that

$$Au = \lim_{i} ||c_i||^{-1} Ac_i = 0$$
 as Ac_i is bounded and $||c_i|| \to +\infty$.

Thus, $u \in N(A) \cap 0^+(C) = L$. Hence, if $L = \{0\}$, AC will be closed.

Note that $C+L\subseteq C+0^+(C)\subseteq C$. Define $\tilde{C}:=C\cap L^\perp$. Then \tilde{C} is nonempty as for $c\in C$, write c=c'+c'' wherein $c'\in L, c''\in L^\perp$. Then, $c''=c-c'\in C+L\subseteq C$. Hence, $c''\in C\cap L^\perp\neq\emptyset$. Note that we also proved that $C\subseteq \tilde{C}+L$. Note that also $C=\tilde{C}+L$ as in fact, $\tilde{C}+L\subseteq C+L\subseteq C$, thus $C=\tilde{C}+L$. However, $AC=A\tilde{C}+AL=A\tilde{C}$.

Further, \tilde{C} is closed and convex as it is the intersection of two closed convex sets in \mathbb{E} . Note that $0^+(\tilde{C}) \subseteq 0^+(C)$ as $\tilde{C} \cap C = \tilde{C}$ and thus $0^+(\tilde{C}) = 0^+(\tilde{C}) \cap 0^+(C)$ and so $0^+(\tilde{C}) \subseteq 0^+(C)$.

Now, we claim that $0^+(\tilde{C}) \cap N(A) = \{0\}$. In fact, let $d \in 0^+(\tilde{C}) \cap N(A)$, then $d \in 0^+(\tilde{C}) \cap N(A) \subseteq 0^+(C) \cap N(A) = L$. Let $c \in \tilde{C}$, then $c + d \in \tilde{C} \subseteq L^\perp$ and so $d \in L^\perp - c \subseteq L^\perp - L^\perp$. Hence, $d \in L^\perp$ and therefore $d \in L \cap L^\perp = \{0\}$. Now according to the above discussion $A\tilde{C}$ is closed. However, we have $AC = A\tilde{C}$.

• Let $A: \mathbb{E} \times \mathbb{E} \to \mathbb{E}$ with A(x,y) = x - y. Then $A(C \times D) = C - D$. However, $N(A) = \{(x,x) : x \in \mathbb{E}\}$ and since $0^+(C \times D) = 0^+(C) \times 0^+(D)$, we have $N(A) \cap 0^+(C \times D) = 0^+(C) \cap 0^+(D) = \{0\}$. Thus, based on the previous part, $A(C \times D) = C - D$ is closed.

1.1.7

For any set of vectors a^1, \dots, a^m in \mathbb{E} , prove the function $f(x) = \max_i \langle a^i, x \rangle$ is convex on \mathbb{E} .

Proof: We prove if $f: \mathbb{E} \to (-\infty, +\infty]$ are convex then $f(x) = \max f_i(x)$ is convex. Then for $x, y \in \mathbb{E}$ and $\lambda \in [0, 1]$ we have

$$f_i(\lambda x + (1-\lambda)y) \le \lambda f_i(x) + (1-\lambda)f_i(y) \le \lambda f(x) + (1-\lambda)f(y) \ \forall i.$$

Thus $f(x) = \max_{i} f_i(x) \le \lambda f(x) + (1 - \lambda)f(y)$.

Note that $f_i(x) = \langle a^i, x \rangle$ is obviously linear.

1.1.8

Prove the Weiestrass theorem: Suppose that the set $D \subseteq \mathbb{E}$ is nonempty and closed and that all the level sets of the continuous function $f: D \to \mathbb{R}$ are bounded. Then f has a global minimizer.

Proof

Let $\alpha \in \mathbb{R}$ such that $\{x \in D : f(x) \leq \alpha\}$ is nonempty. Then there exists r > 0 such that $\{x \in D : f(x) \leq \alpha\} \subseteq B_r$. However, $\{x \in D : f(x) \leq \alpha\} = D \cap f^{-1}(-\infty, \alpha]$ is closed and thus it is compact as well. Now if f is unbounded below then there exists $x_i \in D$ such that $f(x_i) \to -\infty$. Then $x_i \in \{x \in D : f(x) \leq \alpha\} = D \cap f^{-1}(-\infty, \alpha]$ and thus $x_i \to x$ and hence $f(x_i) \to f(x)$ and so $f(x) = \infty$, which is a contradiction. So f is bounded below and so if $c = \inf_{x \in \mathbb{R}}$ then there exists $f(x_i) \to c$. Let $x_i \to x$ and hence f(x) = c. x is a global minimizer.

1.1.10. Convex growth conditions

• Find a function with bounded level sets which does not satisfy the growth condition:

$$\liminf_{||x|| \to +\infty} \frac{f(x)}{||x||} > 0.$$

• Prove that any function satisfying the above condition has bounded level sets.

• Suppose the convex function $f: C \to \mathbb{R}$ has bounded level sets but the growth condition fails. Deduce the existence of a sequence (x^m) in C with $f(x^m) \le ||x^m||/m \to +\infty$. For a fixed point \bar{x} in C, derive a contradiction by considering the sequence

$$\bar{x} + \frac{m}{||x^m||}(x^m - \bar{x}).$$

Hence, prove that for a convex function f, it has bounded level sets if and only if it satisfies the growth condition.

Proof:

- Let $f(x) = x^3$ for $f: \mathbb{R} \to \mathbb{R}$.
- Assume that f satisfies the growth condition and does not have bounded level sets. Then there exists x_1, x_2, \cdots such that $f(x_i) \leq M$ for some M > 0 and $||x_i|| > i$. But then,

$$0 < \liminf_{||x|| \to +\infty} \frac{f(x)}{||x||} \le \lim_{i} \frac{f(x_i)}{||x_i||} \le 0.$$

 \bullet If f does not satisfy the growth condition then

$$\liminf_{||x|| \to +\infty} \frac{f(x)}{||x||} \le 0,$$

and hence there exists x^m with $||x^m|| \ge m^2$ such that $f(x^m) \le ||x^m||/m$. Hence, $f(x^m) \le ||x^m||/m \to +\infty$. We have

$$f(\bar{x} + \frac{m}{||x^m||}(x^m - \bar{x})) \leq \frac{m}{||x^m||}f(x^m) + (1 - \frac{m}{||x^m||})f(\bar{x}) \leq 1 + (1 - \frac{m}{||x^m||})f(\bar{x}) \leq 1 + |f(\bar{x})|.$$

However, $\bar{x} + \frac{m}{||x^m||}(x^m - \bar{x})$ is not bounded as in fact $||\frac{m}{||x^m||}(x^m - \bar{x})|| = m$. Hence, we have proved that if f has bounded level sets then f satisfies the growth condition. We proved the opposite for general functions.

2 Symmetric Matrices

1.2.1

Prove \mathbb{S}^n_+ is a closed convex cone with interior \mathbb{S}^n_{++} .

Proof: It is clear that \mathbb{S}^n_+ is convex and a cone. However, let $X \notin \mathbb{S}^n_+$ then $\lambda_{\min}(X) < 0$ with $x^T X x \le -\delta$ for some ||x|| = 1. Then let $A \in \mathbb{S}^n$ with $||A|| \le \frac{1}{2}\delta$ then

$$x^{T}(X+A)x \le x^{T}Xx + ||x||||Ax|| = x^{T}Xx + ||Ax|| \le x^{T}Xx + ||A|| \le -\delta + \frac{1}{2}\delta < 0.$$

Thus, A + X can't be positive semidefinite.

On the other hand, let $X \in \mathbb{S}^n_{++}$, then $S^n \to \mathbb{R}$ defined by $x \mapsto x^T X x$ attains its minimum and hence there exists $\delta > 0$ such that $x^T X x \geq \delta$.

Now let $A \in \mathbb{S}^n$ such that $||A|| \leq \frac{1}{2}\delta$ then for all x with ||x|| = 1 we have

$$x^{T}(X+A)x \le \delta - ||x||||A||x|| \ge \delta - \frac{1}{2}\delta \ge \frac{1}{2}\delta.$$

Hence, X + A > 0.

Explain why \mathbb{S}^2_+ is not a polyhedron.

Proof: Suppose that $\mathbb{S}^2_+ = \{x \in \mathbb{R}^3 : Ax \geq b\}$. Then since \mathbb{S}^2_+ is a cone we have b = 0. Let $A = [A_{11} : A_{12} : A_{21} : A_{22}]$, then $A_{11}, A_{22} \geq 0$. But $A_{12} + A_{21}$ is not less than 0 as $e_{12} + e_{21}$ does not belong to \mathbb{S}^2_+ .

1.2.4. A nonlattice ordering

Suppose the matrix Z in \mathbb{S}^2 satisfies

$$W \succeq \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $W \succeq \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \iff W \succeq Z$.

• By considering diagonal W, prove

$$Z = \begin{bmatrix} 1 & a \\ a & 1 \end{bmatrix}$$

for some real a.

- By considering W = I, prove Z = I.
- Derive a contradiction by considering

$$W = \frac{2}{3} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Proof:

• Let

$$W = \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}.$$

Then $x,y\geq 1$ if and only if $W\succeq Z$. Thus, $W\succeq I$ if and only if $W\succeq Z$. Hence, $I\succeq Z$ as well as $Z\succeq I$. Hence, Z=I.

• However,

$$W = \frac{2}{3} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \succeq \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, W = \frac{2}{3} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \succeq \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

Hence, $W \succeq I$ which is incorrect.

1.2.5 Order preservation

- Prove any matrix X in \mathbb{S}^n satisfies $(X^2)^{\frac{1}{2}} \succeq X$.
- Find matrices $X \succeq Y$ in \mathbb{S}^2_+ such that $X^2 \not\succeq Y^2$.
- For matrices $X \succeq Y$ in \mathbb{S}^n_+ , prove $X^{\frac{1}{2}} \succeq Y^{\frac{1}{2}}$.

Proof:

- Let $X = \sum_i \lambda_i u_i u_i^T$ with u_i form an orthogonal basis for \mathbb{R}^n . $X^2 = \sum_i \lambda_i^2 u_i u_i^T$, and hence $(X^2)^{\frac{1}{2}} = \sum_i |\lambda_i| u_i u_i^T$. However, since $|\lambda_i| \ge \lambda_i$, we have $\sum_i |\lambda_i| u_i u_i^T \ge \sum_i \lambda_i u_i u_i^T$.
- Let

$$X = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \succeq \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = Y.$$

However,

$$X^2 = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} \succeq \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = Y^2.$$

• Let v be an eigenvector of $X^{\frac{1}{2}} - Y^{\frac{1}{2}}$ with $(X^{\frac{1}{2}} - Y^{\frac{1}{2}})v = \lambda v$. Then

$$\langle (X^{\frac{1}{2}} + Y^{\frac{1}{2}})v, (X^{\frac{1}{2}} - Y^{\frac{1}{2}})v \rangle = \langle (X - Y)v, v \rangle \ge 0.$$

However, $\langle (X^{\frac{1}{2}} + Y^{\frac{1}{2}})v, (X^{\frac{1}{2}} - Y^{\frac{1}{2}})v \rangle = \lambda v^T (X^{\frac{1}{2}} + Y^{\frac{1}{2}})v$. If $(X^{\frac{1}{2}} + Y^{\frac{1}{2}})v = 0$ then $2X^{\frac{1}{2}}v = (X^{\frac{1}{2}} + Y^{\frac{1}{2}})v + (X^{\frac{1}{2}} - Y^{\frac{1}{2}})v = \lambda v$. Hence, $\lambda \geq 0$. Thus, $v^T (X^{\frac{1}{2}} + Y^{\frac{1}{2}})v > 0$.

1.2.6. Square-root iteration

Suppose a matrix A in \mathbb{S}^n_+ satisfies $I \succeq A \succeq 0$. Prove that the iteration

$$Y_0 = 0, Y_{n+1} = \frac{1}{2}(A + Y_n^2) \ (n = 0, 1, \dots)$$

is nondecreasing and converges to the matrix $I - (I - A)^{\frac{1}{2}}$.

Proof: Note that A, Y_0 commute and Y_1 is a polynomial in A and so so forth. Hence, there exists $Q \in O(n)$ such that $Q^T Y_i Q = D_i$ is a diagonal matrix for $i = 0, 1, \dots, T+1$. Now the below argument complete the proof.

Consider $x_0 = 0$ and $x_{n+1} = \frac{1}{2}(a + x_n^2)$ with $1 \ge a \ge 0$. First, note that $0 \le x_n \le 1$ for all n obviously, simple induction.

Then $x_{n+1} - x_n = \frac{1}{2}(a + x_n^2 - 2x_n) = \frac{1}{2}(a + (x_n - 1)^2 - 1)$. Thus, $x_{n+1} \ge x_n$ if and only if $(1 - x_n)^2 \ge 1 - a$ which holds if and only if $(1 - x_n) \ge \sqrt{1 - a}$. So assume $1 - \sqrt{1 - a} \ge x_t \ge 0$, them $x_{t+1} \le \frac{1}{2}(a + (1 - \sqrt{1 - a})^2) = \frac{1}{2}(a + 1 + 1 - a - 2\sqrt{1 - a}) = 1 - \sqrt{1 - a}$.

Now let $Y_n \to Y$, then $2Y = A + Y^2$. Hence, $I - A = (Y - I)^2$ and thus $\sqrt{I - A} = I - Y$.

1.2.14 Level sets of perturbed log barriers

• For δ in \mathbb{R}_{++} , prove the function

$$t \in \mathbb{R}^n_{++} \to \delta t - \log t$$

has compact level sets.

• For c in R_{++}^n , prove the function

$$x \in \mathbb{R}^n_{++} \mapsto c^T x - \sum_{i=1}^n \log x_i$$

has compact level sets.

• For C in S_{++}^n , prove the function

$$X \in \mathbb{S}^n_{\perp\perp} \mapsto \langle C, X \rangle - \log \det X$$

has compact level sets.

Proof:

- Since $\delta t \log t = \delta t \log \delta t + \log \delta$, without loss of generality suppose, $\delta = 1$. We need to show $\{t \in \mathbb{R}_{++} : t \log t \le c\}$ is bounded. If not, $\exists t_n \to +\infty$, s.t. $t_n \log t_n \le c$ for some constant c. $\frac{t_n}{\log t_n} 1 \le \frac{c}{\log t_n}$. However, $\lim_{t \to +\infty} \frac{t}{\log t} = +\infty$. This contradiction completes the proof.
- Note that $\sum c_i x_i \sum \log x_i = \sum c_i x_i \sum \log c_i x_i + \sum \log c_i$, without loss of generality, suppose that $c_i = 1$. But $t \log t \ge 0$ for all t > 0. In fact, for $0 \le t \le 1$, $t \log t \ge t > 0$. Also for $t \ge 1$, $(t-]\log t)' = 1 \frac{1}{t} \le 0$ and thus $t \log t$ is nondecreasing on $t \ge 1$. Note that $t \log t|_{t=1} = 0$. Now, $t_1 = \log t_1 \le \sum t_i \log t_i \le c$. Thus, to the previous part, t_1 is bounded above. This completes the proof.
- Let $\mu(C)_i = \lambda(C)_{n+1-i}$, then $\mu(C)^T \lambda(X) \leq \langle C, X \rangle$. Thus, $\mu(C)^T \lambda(X) \sum \log \lambda_i(X) \leq c$. Hence, $\lambda(X)$ is upperbounded and so is $||X|| = \sqrt{\lambda_i(X)^{\frac{1}{2}}}$.

Chapter II Inequality Constraints

March 11, 2023

1 Optimality Conditions

2.1.1

Prove the normal cone is a closed convex cone.

Proof: Let $C \subseteq \mathbb{E}$ be a convex set and $\bar{x} \in C$. Then

$$N_C(\bar{x}) = \{ d \in \mathbb{E} : \langle d, x - \bar{x} \rangle \le 0 \}.$$

If $d \in N_C(\bar{x})$, then obviously $\alpha d \in N_C(\bar{x})$ for $\alpha \geq 0$. Also, if $d_i \in N_C(\bar{x})$ and $d_i \to d \in \mathbb{E}$, then for a fixed $x \in C$,

$$\langle d_i, x - \bar{x} \rangle \to \langle d, x - \bar{x} \rangle,$$

and since $\langle d_i, x - \bar{x} \rangle \leq 0$, $\langle d, x - \bar{x} \rangle \leq 0$. Thus $d \in N_C(\bar{x})$ and so $N_C(\bar{x})$ is closed. Convexity is also clear.

2.1.3 Self-dual cones

Prove that each of the following cones K satisfy the relationship $N_K(0) = -K$.

 $\bullet \mathbb{R}^n_{\perp}$

Proof: Recall that

$$N_K(\bar{x}) = \{ d \in \mathbb{E} : \langle d, x - \bar{x} \rangle \le 0 \}.$$

Thus, $d \in N_{\mathbb{R}^n_+}(0)$ if and only if

$$\langle d, x \rangle \le 0 \quad \forall x \in \mathbb{R}^n_+.$$

So, for $x = e_i$, we realize that $x_i \leq 0$ and hence $x \in -\mathbb{R}^n_+$. Conversely, for all $x \in -\mathbb{R}^n_+$ and all $d \in \mathbb{R}^n_+$ we clearly have $\langle d, x \rangle \leq 0$. Thus $N_{\mathbb{R}^n_+}(0) = -\mathbb{R}^n_+$.

 \bullet \mathbb{S}^n_{\perp}

Proof: Recall that

$$N_{\mathbb{S}^n_+}(0) = \{ X \in \mathbb{S}^n : \langle X, A \rangle \le 0 \} \quad \forall A \in \mathbb{S}^n_+.$$

So clearly if $-X \in \mathbb{S}^n_+$ then $X \in N_{\mathbb{S}^n_+}(0)$. Conversely, suppose $X \in N_{\mathbb{S}^n_+}(0)$, then

$$a^T X a \leq 0 \quad \forall a \in \mathbb{R}^n \text{ or equivalently } a^T (-X) a \geq 0 \quad \forall a \in \mathbb{R}^n.$$

Thus by definition $-X \in \mathbb{S}^n_+$.

• $K = \{x \in \mathbb{R}^n : x_1 \ge 0, x_1^2 \ge x_2^2 + \dots + x_n^2\}$

Proof: Let $y \in N_K(0)$. Then

$$\inf \langle -y, x \rangle$$
$$x_1^2 \ge x_2^2 + \dots + x_n^2$$

has nonnegative optimum value. Note that if \bar{x} is a local minimum of the function $f(x) := \langle -y, x \rangle$, then if $\bar{x} \neq 0$ then $\bar{x}_1 \neq 0$ as otherwise since $\bar{x}_1^2 \geq \bar{x}_2^2 + \cdots + \bar{x}_n^2$, $\bar{x} = 0$. So $y \in N_K(0)$ if and only if the following problem has optimum value at least 0,

$$\inf -y_1 - \sum_{i=2}^n y_i x_i$$

$$1 \ge x_2^2 + \dots + x_n^2.$$

However,

$$\sum_{i=2}^{n} y_i x_i \le (x_2^2 + \dots + x_n^2)^{\frac{1}{2}} (y_2^2 + \dots + y_n^2)^{\frac{1}{2}} \le (y_2^2 + \dots + y_n^2)^{\frac{1}{2}}.$$

Now let $\bar{x} = (1, 0, 0, \dots, 0)$ and so $-y_1 \ge 0$. Now let $x_i = \frac{y_i}{\sqrt{\sum_{i=2}^n y_i^2}}$ for $2 \le i \le n$, the above inequality holds with equality. Thus,

$$\sup \sum_{i=2}^{n} x_i y_i$$

$$1 \ge x_2^2 + \dots + x_n^2,$$

has optimum value $(y_2^2 + \cdots + y_n^2)^{\frac{1}{2}}$. Thus, $y \in N_K(0)$ if and only if $(y_2^2 + \cdots + y_n^2)^{\frac{1}{2}} \leq -y_1$ or equivalently $-y \in N_K(0)$.

2.1.7

Suppose a convex function $g:[0,1]\to\mathbb{R}$ satisfies g(0)=0. Prove the function $t\in(0,1]\mapsto g(t)/t$ is nondecreasing. Hence prove that for a convex function $f:C\to\mathbb{R}$ and points $\bar x,x\in C\subseteq\mathbb{E}$, the quotient $(f(\bar x+t(x-\bar x)-f(\bar x))/t$ is nondecreasing as a function of t in (0,1], and complete the proof of Proposition 2.1.2.

Proof: Note that g is convex and thus $g(ts) \leq tg(s)$ for all $t, s \in [0, 1]$. Thus if $t, s \neq 0$ then

$$\frac{g(ts)}{ts} \le \frac{g(s)}{s}$$

and this means that g is nondecreasing. The rest is clear as $t \in (0,1] \mapsto (f(\bar{x}+t(x-\bar{x}))-f(\bar{x})/t)$ is convex. Hence, since $f'(\bar{x},x-\bar{x})=\lim_{t\to 0}(f(\bar{x}+t(x-\bar{x}))-f(\bar{x})/t) \geq 0$, we conclude that $(f(\bar{x}+1(x-\bar{x}))-f(\bar{x})/t) \geq 0$ or equivalently $f(x) \geq f(\bar{x})$.

2.1.10

- Prove the function $f: \mathbb{S}_{++}^n \to \mathbb{R}$ defined by $f(X) = \text{Tr}(X^{-1})$ is differentiable on \mathbb{S}_{++}^n .
- Define a function $f: \mathbb{S}_{++}^n \to \mathbb{R}$ by $f(X) = \log \det(X)$. Prove $\nabla f(I) = I$. Deduce $\nabla f(X) = X^{-1}$ for any X in \mathbb{S}_{++}^n .

Proof:

• Let $f(X) = \text{Tr}(X^{-1})$. Note that for $H \in \mathbb{S}^n$ and small enough |t|,

$$\operatorname{Tr}((X+tH)^{-1}) = \operatorname{Tr}(X^{-\frac{1}{2}}(I+tX^{-\frac{1}{2}}HX^{-\frac{1}{2}})^{-1}X^{-\frac{1}{2}}) =$$

$$\operatorname{Tr}(X^{-\frac{1}{2}}(I-tX^{-\frac{1}{2}}HX^{-\frac{1}{2}}+O(t^2))X^{-\frac{1}{2}}) = \operatorname{Tr}(X^{-1}) - t\operatorname{Tr}(X^{-2}H) + O(t^2).$$

Hence, $\nabla f(X)[H] = \text{Tr}(-X^{-2}H)$. Thus, $\nabla f(X) = -X^{-2}$.

• Note that for $H \in \mathbb{S}^n$,

$$\log \det(X + tH) = \log(1 + t \operatorname{Tr}(X^{-\frac{1}{2}}HX^{-\frac{1}{2}}) + O(t^2)) + \log \det(X)$$

So,

$$\begin{split} \nabla f(X)(H) &= \lim_{t \to 0} \frac{1}{t} \log(1 + t \operatorname{Tr}(X^{-\frac{1}{2}} H X^{-\frac{1}{2}}) + O(t^2)) \\ &= \lim_{t \to 0} \frac{\operatorname{Tr}(X^{-\frac{1}{2}} H X^{-\frac{1}{2}}) + O(t)}{1 + t \operatorname{Tr}(X^{-\frac{1}{2}} H X^{-\frac{1}{2}}) + O(t^2)} = \operatorname{Tr}(X^{-\frac{1}{2}} H X^{-\frac{1}{2}}) = \operatorname{Tr}(X^{-1} H). \end{split}$$

Thus $\nabla f(X) = X^{-1}$.

Side: This is also an immediate consequence of chain rule via using the fact $\nabla \det(X) = adj(X)$.

2.1.10 Matrix completion

For a set $\Delta \subseteq \{(i,j) : 1 \le i \le j \le n\}$, suppose the subspace $L \subseteq \mathbb{S}^n$ of matrices with (i,j)th entry of zero for all (i,j) in Δ satisfies $L \cap \mathbb{S}^n_{++} \ne \emptyset$. By considering the problem (for $C \in \mathbb{S}^n_{++}$)

$$\inf\{\langle C, X \rangle - \log \det X : X \in L \cap \mathbb{S}^n_{++}\},\tag{1}$$

prove there exists a matrix X in $L \cap \mathbb{S}^n_{++}$ with $C - X^{-1}$ having (i,j)th entry of zero for all (i,j) not in Δ . We now the function $X \in \mathbb{S}^n_{++} \mapsto \langle C, X \rangle - \log \det(X)$ has compact level sets. Now let $A_{i,j} \in \mathbb{S}^n$ be symmetric matrices with (i,j)th and (j,i)th entry equals to 1 and 0 elsewhere. Then

$$L = \{ X \in \mathbb{S}^n : \langle A_{i,j}, X \rangle = 0 \ \forall \ (i,j) \in \Delta \},\$$

which is a closed subspace of \mathbb{S}^n . So the level sets of 1 are also compact and thus there exists a global minimizer \bar{X} in $L \cap \mathbb{S}^n_{++}$. So due to "First order conditions for linear constraints" there exists $y_{i,j}$ for all $(i,j) \in \Delta$ such that

$$C - \bar{X}^{-1} = \sum_{(i,j)\in\Delta} y_{i,j} A_{i,j}.$$

 \bar{X} satisfies the desired property.

2.1.13. BFGS update Given a matrix C in \mathbb{S}^n_{++} and vectors s and y in \mathbb{R}^n satisfying $\langle s, y \rangle > 0$, consider the problem

$$\inf\{\langle C, X \rangle - \log \det(X) : Xs = y, X \in \mathbb{S}_{++}^n\}.$$

• Prove that for the problem above, the point

$$X = \frac{(y - \delta s)(y - \delta s)^{T}}{\langle s, y - \delta s \rangle} + \delta I$$

is feasible for small $\delta > 0$.

- Prove problem has an optimal solution.
- Use "First order conditions for linear constraints" to find the solution. (The solution is called BFGS update of C^{-1} under the secant condition Xs = y.)

Proof:

• Note that

$$Xs = \frac{(y - \delta s)(y - \delta s)^T s}{\langle s, y - \delta s \rangle} + \delta X = y - \delta X + \delta X = y.$$

Also, for $\delta > 0$ small enough, $\langle s, y - \delta s \rangle > 0$ and thus X will be the sum of a positive semi-definite matrix with δI and thus positive definite. Therefore, X is feasible for small $\delta > 0$.

- We know the map $X \in \mathbb{S}^n_{++} \mapsto \langle C, X \rangle \log \det(X)$ has compact level sets and also $\{X \in \mathbb{S}^n : Xs = y\}$ is a closed affine subspace of \mathbb{S}^n . Thus the map $X \in \mathbb{S}^n_{++} \cap \{X \in \mathbb{S}^n : Xs = y\} \mapsto \langle C, X \rangle \log \det(X)$ has compact level sets.
- ullet From "First order conditions for linear constraints" for a local minimum \bar{X} we know there exists w such that

$$C - \bar{X}^{-1} = sw^T + ws^T \Rightarrow (C - (sw^T + ws^T))^{-1} = \bar{X}.$$

Therefore,

$$(C - (sw^T + ws^T))y = s \Rightarrow (sw^T + ws^T)y = Cy - s.$$

So.

$$y^T(sw^T + ws^T)y = y^TCy - y^Ts \Rightarrow 2\langle y, s \rangle \langle y, w \rangle = y^TCy - y^Ts.$$

Now,

$$\langle w, y \rangle = \frac{y^T C y - \langle s, y \rangle}{2 \langle s, y \rangle}.$$

2.1.15. Nearest polynomial with a given root

Consider the Euclidean space of complex polynomials of degree no more than n, with inner product

$$\left\langle \sum_{j=0}^{n} x_j z^j, \sum_{j=0}^{n} y_j z^j \right\rangle = \sum_{j=0}^{n} \overline{x_j} y_j.$$

Given a polynomial p in this space, calculate the nearest polynomial with a given complex root α , and prove the distance to this polynomial is

$$\left(\sum_{j=0}^{n} |\alpha|^{2j}\right)^{-\frac{1}{2}} ||p(\alpha)||.$$

Proof: The problem translates into the following optimization problem

$$\inf\{\sum_{i=0}^{n}||a_i - b_i||^2 : \langle b, \overline{\tilde{\alpha}} \rangle = 0\},\,$$

where $p(x) = \sum_{j=0}^{n} a_i x^i$ and $\tilde{\alpha} = (1, \alpha, \dots, \alpha^n)^T \in \mathbb{R}^{2n+2}$. Note that $\langle ., . \rangle : \mathbb{R}^{2n+2} \to \mathbb{R}^2$ is a linear map. Then for $b \in \mathbb{R}^{2n+2}$ a local minimizer to the above problem, we have

$$b-a=z\tilde{\alpha}$$
 for some $z\in\mathbb{C}$

Now note that

$$b_i - a_i = z\alpha^i \Rightarrow 0 = \sum_{i=0}^n b_i \alpha^i = p(\alpha) + z \sum_{i=0}^n ||\alpha||^{2i}$$

So.

$$\sum_{i=0}^{n} ||a_i - b_i||^2 ||z||^2 \sum_{i=0}^{n} |\alpha|^{2i} \Rightarrow \sqrt{\sum_{i=0}^{n} ||a_i - b_i||^2} = \left(\sum_{j=0}^{n} |\alpha|^{2j}\right)^{-\frac{1}{2}} ||p(\alpha)||.$$

2 Max Functions

2.3.3

Prove by induction that if the functions $g_1, \dots, g_m : \mathbb{E} \to \mathbb{R}$ are all continous at the point \bar{x} then so is the max-function $g(x) = \max_i \{g_i(x)\}.$

Proof: It is clearly enough to prove the question for m=2. If $g_1(\bar{x}) \neq g_2(\bar{x})$ then for instance if $g_1(\bar{x}) < g_2(\bar{x})$, then due to continuity for a small neighborhood about \bar{x} , g_1 is smaller than g_2 and thus g is equal to g_2 . Since g_2 is continuous at \bar{x} so is g.

So suppose that $g_1(\bar{x}) = g_2(\bar{x})$ and let $x^k \in \mathbb{E}$ be a converging sequence to \bar{x} . We aim to show $g(x^k) \to g(\bar{x})$. However, let R_1, R_2 be two subsequences of \mathbb{N} such that for all $r \in R_i$, $g(x^r) = g_i(x^r)$, note that $R_1 \cap R_2$ is not necessarily empty, but $R_1 \cup R_2 = \mathbb{N}$. Now, suppose R_1 and R_2 are both infinite sized, then $g(x^k)$ is divided into two subsequences which both converge to $g(\bar{x}) = g_1(\bar{x}) = g_2(\bar{x})$. If only one of R_1 and R_2 are infinite, say for instance R_1 , then $\lim g(x^k) = \lim g_1(x^k) = g_1(\bar{x})$ which equals to $g(\bar{x})$. The proof is complete.

2.3.5. Cauchy-Schwarz and steepest descent

For a nonzero vector y in \mathbb{E} , use Karush-Kuhn-Tucker conditions to solve the problem

$$\inf\{\langle y, x \rangle : ||x||^2 < 1\}$$

Deduce the Cauchy-Schwarz inequality.

Proof: Note that the feasible region is compact and the objective function is linear and thus continous. So there exists an optimal solution, not necessary unique, detoned by \bar{x} . Suppose $\bar{x} \neq 0$, then $\langle \nabla g(\bar{x}), -\bar{x} \rangle = 2\langle \bar{x}, -\bar{x} \rangle < 0$ and thus Mangasarian-Fromovitz constraint qualification holds at \bar{x} . Hence, there exists $\lambda \in \mathbb{R}_+$ such that

$$y + \lambda \bar{x} = 0.$$

So, since $y \neq 0$, λ is also nonzero and thus $||\bar{x}|| = 1$ and also $\bar{x} = -\frac{1}{\lambda}y$. Thus $\lambda = ||y||$. Hence, the objective value at \bar{x} equals to

$$\langle y, \frac{-y}{||y||} \rangle = -||y|| < 0,$$

which is negative and thus the assumption that $\bar{x} \neq 0$ is justified. Finally we have for $x \neq 0$

$$\langle y, \frac{x}{||x||} \rangle \ge -||y|| \Rightarrow \langle y, x \rangle \ge -||y||||x||.$$

Intechanging x with -x results in, which also holds for $x \neq 0$.

$$-||y||||x|| \le \langle y, x \rangle \le ||y||||x||.$$

2.3.7.

Consider a matrix $A \in \mathbb{S}_{++}^n$ and a real b > 0.

• Assuming the problem

$$\inf\{-\log \det X : \operatorname{Tr} AX \leq b, X \in \mathbb{S}^n_{++}\}\$$

has a solution, find it.

• Repeat using the objective function $Tr(X^{-1})$.

Proof:

• Note that $X \mapsto A^{\frac{1}{2}}XA^{\frac{1}{2}}$ is a homeomorphism and thus the following problem has a solution

$$\inf\{-\log\det(A^{\frac{1}{2}}XA^{\frac{1}{2}}): \operatorname{Tr} A^{\frac{1}{2}}XA^{\frac{1}{2}} \leq b, A^{\frac{1}{2}}XA^{\frac{1}{2}} \in \mathbb{S}^{n}_{++}\}.$$

Thus without loss of generality suppose that A = I. Thus we know the problem

$$\inf\{-\log \det X : \operatorname{Tr} X \leq b, X \in \mathbb{S}_{++}^n\}$$

has a solution. Now, for any feasible matrix X, we have

$$\sqrt[1/n]{\det(X)} \le \frac{1}{n} \operatorname{Tr}(X) \le \frac{b}{n} \Rightarrow \det(X) \le (\frac{b}{n})^{1/n} \Rightarrow -\log \det(X) \ge -\log(\frac{b}{n})^{1/n}.$$

However, in the above equation, equality happens if and only if $\lambda_1(X) = \cdots = \lambda_n(X)$ and also $\operatorname{Tr}(X) = b$. So the optimal solution equals to $\bar{X} = \frac{b}{n}I$.

Now for the original problem if X is the optimal solution \bar{X} , then $A^{\frac{1}{2}}XA^{\frac{1}{2}}=\frac{b}{n}I$ and so $\bar{X}=\frac{b}{n}A^{-1}$.

• Note that $\langle A, -A \rangle < 0$ and thus MFCQ holds at any $X \in \mathbb{S}^n_{++}$. Now note that if \bar{X} is a local minimizer for the problem then since MFCQ holds at \bar{X} there exists $\lambda \geq 0$ such that

$$-\bar{X}^{-1} + \lambda A = 0 \Rightarrow \bar{X}^{-1} = \lambda A$$

Note that λ can't be zero and so $\operatorname{Tr}(A\bar{X}) = b$. Hence, $\operatorname{Tr}(\frac{1}{\lambda}I) = b$ and so $\lambda = \frac{n}{b}$. Finally, $\bar{X} = \frac{b}{n}A^{-1}$.

2.3.8. Minimum volume ellipsoid

• For a $y \in \mathbb{R}^n$ and the function $g : \mathbb{S}^n \to \mathbb{R}$ defined by $g(X) = ||Xy||^2$, prove $\nabla g(X) = Xyy^T + yy^TX$ for all the matrices X in \mathbb{S}^n .

- Consider a set $\{y^1, \dots, y^m\} \subseteq \mathbb{R}^n$. Prove this set spans \mathbb{R}^n if and only if the matrix $\sum_i y^i (y^i)^T$ is positive definite.
- Prove the problem

$$\inf - \log \det X$$
 subject to $||Xy^i||^2 - 1 \le 0$ for $i = 1, 2, \dots, m$
$$X \in \mathbb{S}^n_{++}$$

has an optimal solution.

- Show that the Mangasarian-Fromovitz constraint qualification holds at \bar{X} by considering the direction $d=-\bar{X}$.
- Write down the KKT conditions that \bar{X} must satisfy.
- When $\{y^1, \dots, y^n\}$ is the standard basis of \mathbb{R}^n , the optimal solution of the problem in part (c) is $\bar{X} = I$. Find the corresponding Lagrange multiplier vector.

Proof:

• Let $A = yy^T \in \mathbb{S}^n$, then g(X) = Tr(XAX) and thus

$$\lim_{t\to 0}\frac{1}{t}(g(X+tY)-g(X))=\lim_{t\to 0}\frac{1}{t}(t\operatorname{Tr}(XAY)+\operatorname{Tr}(AXY)+t^2\operatorname{Tr}(YAY))=\operatorname{Tr}((XA+AX)Y).$$

Thus $\nabla g(X) = XA + AX$. Note that in the above equation we are using the fact that Tr(YAX) = Tr(AXY).

• Clearly, $\sum_i y^i(y^i)^T \succeq 0$, also note that

$$x^T \left[\sum_i y^i (y^i)^T \right] x = \sum_i \langle x, y^i \rangle^2 \Rightarrow \left[\sum_i y^i (y^i)^T \right] x = 0 \iff \langle x, y^i \rangle = 0 \; \forall i$$

So $\operatorname{Ker}(\sum_i y^i(y^i)^T) = 0$ if and only if it doesn't exist a vector x such that $\langle x, y^i \rangle = 0$ for all i and this holds if and only if the set $\{y^1, \cdots, y^m\} \subseteq \mathbb{R}^n$ spans \mathbb{R}^n .

Now suppose the vector y^1, \dots, y^m span \mathbb{R}^n .

• Denote the feasible region of the above problem by Ω . Let $A = \sum_i y^i (y^i)^T$. Then as y^1, \dots, y^m span \mathbb{R}^n , we have $A \succ 0$. Also for $X \in \Omega$, we have $\langle X^2, A \rangle \leq n$. Thus if for $X \in \Omega$, $-\log \det X \leq c$ for some $c \in \mathbb{R}$, then

$$\langle A, X^2 \rangle - \log \det X^2 \le n - \frac{1}{2} \log \det X \le n - \frac{1}{2} c.$$

But we know that the level sets of $\langle C, X \rangle - \log \det X$ are compact for any $C \in \mathbb{S}^n_{++}$ from section 1.2, Question 14. However, $X \mapsto X^2$ is a homeomorphism from \mathbb{S}^n_{++} to \mathbb{S}^n_{++} . Thus the set of $x \in \Omega$ which satisfies $-\log \det X \leq c$ lie in a compact set. Thus the optimum is obtained.

Now suppose that \bar{X} is an optimal solution for the problem in part (c).

 \bullet Note that for all i

$$\langle \bar{X}y^{i}(y^{i})^{T} + y^{i}(y^{i})^{T}\bar{X}, -\bar{X}\rangle = -2\operatorname{Tr}(\bar{X}y^{i}(y_{i})^{T}\bar{X}) = -2 < 0.$$

• The KKT conditions are as the followings

$$\bar{X} \in \mathbb{S}^n_{++}$$

$$||\bar{X}y^i||^2 - 1 \le 0 \text{ for } i = 1, 2, \dots, m$$

$$\exists \lambda \in \mathbb{R}^m_+, \ s.t. \ -\bar{X}^{-1} + \sum_i \lambda_i (\bar{X}y^i(y^i)^T + y^i(y^i)^T \bar{X}) = 0$$

$$\lambda_i (||Xy^i||^2 - 1) = 0 \ \forall i$$

• Note that $I \in \Omega$ and $\log \det I = 0$. So we need to show that for $X \in \Omega$ we have $\log \det X \leq 0$ or equivalently $\det X \leq 1$. However, as we mentioned before, $\langle X, \sum_i y^i (y^i)^T \rangle \leq n$, but $\sum_i y^i (y^i)^T = I$ and thus $\langle X, I \rangle = \operatorname{Tr}(X) \leq n$. Now if $\lambda_1(X), \cdots, \lambda_n(X) > 0$ are the eigenvalues of X, the we have

$$\sqrt[1/n]{\prod_{i}\lambda_{i}(X)} \leq \frac{1}{n}(\sum_{i}\lambda_{i}(X)) = \frac{1}{n}\operatorname{Tr}(X) \leq 1 \Rightarrow \det(X) = \prod_{i}\lambda_{i}(X) \leq 1.$$

So I is the optimal solution. Now if $\lambda \in \mathbb{R}^n_+$ is a Lagrange multiplier then

$$-I + 2\operatorname{diag}(\lambda) = 0 \Rightarrow \lambda_i = \frac{1}{2} \,\forall i.$$

Chapter III Fenchel Duality

March 11, 2023

1 Subgradients and Convex Functions

3.1.1

A function $f: \mathbb{E} \to (+\infty, +\infty]$ is sublinear if and only if it is positively homogeneous and subadditive. For a sublinear function f, the lineality space $\lim f$ is the largest subspace of \mathbb{E} on which f is linear. Recall that

$$\lim f = \{x \in \mathbb{E} : -f(x) = f(-x)\}.$$

Proof: First suppose that f is sublinear. Then $f(\lambda x + \mu y) \leq \lambda f(x) + \mu f(y)$ for all $x, y \in \mathbb{E}$ and $\lambda, \mu \in \mathbb{R}_+$. Now let x = y = 0, then

$$f(0) \le f(0) + f(0) \Rightarrow 0 \le f(0).$$

Now let $\lambda = \mu = 0$ and so

$$f(0) \le 0.$$

So, we have f(0) = 0. Now let y = 0 and conclude that

$$f(\lambda x) \le \lambda f(x) \ \forall \lambda \in \mathbb{R}_+.$$

Let $\lambda > 0$ and thus

$$f(x) \le \frac{1}{\lambda} f(\lambda x) \Rightarrow \lambda f(x) \le f(\lambda x).$$

So $f(x) = \lambda f(x)$ for all $\lambda \in \mathbb{R}_+$ and thus f is positively homogeneous. Finally let $\lambda = \mu = 1$ and thus $f(x+y) \leq f(x) + f(y)$ and thus f is subadditive.

Conversely, suppose f is subadditive and positively homogeneous. Then $f(\lambda x + \mu y) \le f(\lambda x) + f(\mu y) = \lambda f(x) + \mu f(y)$. Thus f is sublinear.

Now let $x, y \in \text{lin } f$, then if $\lambda, \mu \in \mathbb{R}_{-}$, then

$$f(\lambda x + \mu y) = f(-\lambda(-x) - \mu(-y)) \le -\lambda f(-x) - \mu f(-y) = \lambda f(x) + \mu f(y)$$

3.1.6.

If the function $f: \mathbb{E} \to (+\infty, +\infty]$ is convex and the point \bar{x} lies in dom f, then an element ϕ of \mathbb{E} is a subgradient of f at \bar{x} if and only if it satisfies $\langle \phi, . \rangle \leq f'(\bar{x}; .)$.

Proof:

" \Rightarrow ".

For $d \in \mathbb{E}$ let $\epsilon > 0$ be small enough such that $x_t := \bar{x} + td \in \text{dom } f$ for all $t \in [0, \epsilon]$. Then,

$$\langle \phi, x_t - \bar{x} \rangle \le f(x_t) - f(\bar{x}) \Rightarrow \langle \phi, d \rangle \le \frac{f(x + td) - f(\bar{x})}{t} \quad \forall t \in (0, \epsilon].$$

Now, taking $t \downarrow 0$ completes the proof.

Conversely, suppose that $\langle \phi, . \rangle \leq f'(\bar{x}; .)$ and let $x \in \mathbb{E}$. Then since $t \mapsto \frac{f(\bar{x} + t(x - \bar{x})) - f(\bar{x})}{t}$ is nondecreasing we have $f'(x, x - \bar{x}) \leq f(x) - f(\bar{x})$

$$\langle \phi, x - \bar{x} \rangle \le f'(x; x - \bar{x}) \le f(x) - f(\bar{x}).$$

This completes the proof.

3.1.7.

Suppose that the function $p: \mathbb{E} \to (+\infty, +\infty]$ is sublinear and that the point \bar{x} lies in core(dom p). Then the function $q(.) = p'(\bar{x}; .)$ satisfies the conditions

- $q(\lambda \bar{x}) = p(\lambda \bar{x}).$
- \bullet $q \leq p$.
- $\lim p + span\{\bar{x}\} \subseteq \lim q$.

Proof:

•

$$q(\lambda \bar{x}) = \lim_{t\downarrow 0} \frac{p(\bar{x} + t\lambda \bar{x}) - p(\bar{x})}{t} = \lim_{t\downarrow 0} \frac{(1 + t\lambda)p(\bar{x}) - p(\bar{x})}{t} = \lambda p(\bar{x}).$$

Note that for small enough t, $1 + t\lambda > 0$.

• For $d \in \mathbb{E}$,

$$q(d) = \lim_{t \downarrow 0} \frac{p(\bar{x} + td) - p(\bar{x})}{t} \le \lim_{t \downarrow 0} \frac{p(\bar{x}) + p(td) - p(\bar{x})}{t} = \lim_{t \downarrow 0} \frac{p(td)}{t} = p(d).$$

• Note that $\lim q$ is a linear subspace and thus due to part 1, it suffices to prove $\lim p \subseteq \lim q$. Suppose $d \in \lim p$ and hence p(-d) + p(d) = 0. Now we have

$$q(d) \leq p(d) \Rightarrow -q(d) \geq -p(d) = p(-d) \geq q(-d) \Rightarrow q(-d) \leq -q(d) \leq q(-d) \Rightarrow q(d) + q(-d) = 0.$$

Note that $-q(d) \le q(-d)$ holds true since q is sublinear.

3.1.9. Subgradients of maximum eigenvalue

Prove

$$\partial \lambda_1(0) = \{ Y \in \mathbb{S}^n_+ : \text{Tr}(Y) = 1 \}.$$

Proof: $Y \in \partial \lambda_1(0)$ if and only if $\text{Tr}(XY) \leq \lambda_1(X)$ for all $X \in \mathbb{S}^n$. Let X = I and X = -I respectively to conclude that Tr(Y) = 1. Now from Fan inequality we know

$$\operatorname{Tr}(XY) \leq \lambda(X)^T \lambda(Y) = \sum \lambda_i(X) \lambda_i(Y) \leq \lambda_1(X) \sum \lambda_i(Y) = \lambda_1(X).$$

3.1.6. (Bregman distances)

For a function $\phi : \mathbb{E} \to (\infty, +\infty]$ that is strictly convex and differentiable on $int(\operatorname{dom} \phi)$, define the Bregman distance $d_{\phi} : \operatorname{dom} \phi \times int(\operatorname{dom} \phi) \to \mathbb{R}$ by

$$d_{\phi}(x,y) = \phi(x) - \phi(y) - \phi'(y)(x-y).$$

• Prove $d_{\phi}(x,y) \geq 0$ with equality if and only if x = y.

- Compute d_{ϕ} when $\phi(t) = \frac{t^2}{2}$ and when ϕ is the function p defined in Exercise 27.
- Suppose ϕ is three times differentiable. Prove d_{ϕ} is convex if and only if $-1/\phi''$ is convex on $int(\text{dom }\phi)$.

Proof:

- By definition of strictly convex.
- Let $\phi = t^2/2$, then $d_{\phi}(x,y) = \frac{(x-y)^2}{2}$. Also for the function p from Exercise 27, if u, v > 0, then

$$u \log u - u - v \log v + v - \log v (u - v) = u(\log u - \log v) - (u - v).$$

Note that

$$u(\log u - \log v) - (u - v) \ge 0 \iff u/v \ge e^{1 - \frac{v}{u}}.$$

On the other hand, $e^x - xe$ is a convex function with minimum occurs at x = 1, and so $e^x - xe \ge 0$.

However, if u = 0, then

$$d_{\phi}(0, v) = -v \log v + v - \log v(-v) = v.$$

• Note that the second derivative of d_{ϕ} can be calculated as the following:

$$\nabla^2 d_{\phi}(x,y) = \begin{bmatrix} \phi''(x) & -\phi''(y) \\ -\phi''(y) & \phi''(y) + \phi'''(y)(y-x) \end{bmatrix}$$

Now, due to Schur complement criterion, $\nabla^2 d_{\phi}(x,y)$ is positive semi-definite if and only if

$$\phi''(x) > 0$$
, $\phi''(y) + \phi'''(y)(y-x) - \phi''(y)^2/\phi''(x) > 0$

3.1.20. Monotonicity of gradients

Suppose that $S \subseteq \mathbb{R}^n$ is open and convex and the function $f: S \subseteq \mathbb{R}$ is differentiable. Prove f is convex if and only if

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge 0$$
 for all $x, y \in S$,

and f is strictly convex if and only if the above inequality holds strictly whenever $x \neq y$.

Proof: First suppose that f is convex and let $x, y \in S$, then

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle,$$

 $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle.$

Summing the above two inequalities we obtain

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge 0,$$

as desired.

Conversely, suppose that for all $x, y \in S$, $\langle \nabla f(y) - \nabla f(x), y - x \rangle \geq 0$ holds true. We wish to show that f is convex. It suffices to show that $g: t \in [0,1] \to f((1-t)x+ty)$ is convex. For that, we just need to show that g'(t) is non-decreasing. But, $g'(t) = \langle \nabla f((1-t)x+ty), y-t \rangle$. Now let $0 \leq t_1 < t_2 \leq 1$ and notice

$$(t_2 - t_1)(g'(t_2) - g'(t_1)) = \langle \nabla f((1 - t_2)x + t_2y) - \nabla f((1 - t_1)x + t_1y), y - x \rangle$$

= $\langle \nabla f((1 - t_2)x + t_2y) - \nabla f((1 - t_1)x + t_1y), ((1 - t_2)x + t_2y) - ((1 - t_1)x + t_1y) \rangle \ge 0,$

thus g'(t) is non-decreasing as desired.

Now suppose f is strictly convex and then

$$f(y) > f(x) + \langle \nabla f(x), y - x \rangle,$$

 $f(x) > f(y) + \langle \nabla f(y), x - y \rangle.$

Summing the above two inequalities we obtain

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle > 0,$$

as desired.

Conversely, suppose that for all $x, y \in S$, $\langle \nabla f(y) - \nabla f(x), y - x \rangle > 0$ holds true. We wish to show that f is strictly convex. It suffices to show that $g: t \in [0,1] \to f((1-t)x+ty)$ is strictly convex. For that, we just need to show that g'(t) strictly increasing. But, $g'(t) = \langle \nabla f((1-t)x+ty), y-x \rangle$. Now let $0 \le t_1 < t_2 \le 1$ and notice

$$(t_2 - t_1)(g'(t_2) - g'(t_1)) = \langle \nabla f((1 - t_2)x + t_2y) - \nabla f((1 - t_1)x + t_1y), y - x \rangle$$

= $\langle \nabla f((1 - t_2)x + t_2y) - \nabla f((1 - t_1)x + t_1y), ((1 - t_2)x + t_2y) - ((1 - t_1)x + t_1y) \rangle > 0,$

thus q'(t) is strictly increasing as desired.

3.1.21. The log barrier

Use Exercise 20 (Monotonicity of gradients), Exercise 10 in Section 2.1. and Exercise 8 in Section 1.2 to prove that the function $f: \mathbb{S}^n_{++} \to \mathbb{R}$ defined by $f(X) = -\log \det(X)$ is strictly convex. Deduce the uniqueness of the minimum volume ellipsoid in Section 2.3, Exercise 8, and the matrix completion in Section 2.1, Exercise 12.

Proof: Recall that $\nabla f(X) = -X^{-1}$ and so we should prove for all $X, Y \in \mathbb{S}_{++}^n$ we have

$$\langle -X^{-1} + Y^{-1}, X - Y \rangle \ge 0 \iff \operatorname{Tr}(XY^{-1}) + \operatorname{Tr}(YX^{-1}) \ge 2n \iff \sum \lambda_i(A) + \sum \frac{1}{\lambda_i(A)} \ge 2n,$$

where $A = XY^{-1}$ and $\lambda_i(A)$ are eigenvalues of A. Note that eigenvalues of A and the positive definite matrix $Y^{-\frac{1}{2}}XY^{-\frac{1}{2}}$ are identical. So since for any x > 0 one has $x + \frac{1}{x} \ge 2$, the proof of convexity of f is complete.

Also, note that $X \mapsto ||Xy||^2 - 1$ is convex for any fixed $y \in \mathbb{R}^n$. In fact, we know that $\nabla g(X) = Xyy^T + yy^TX$. So we need to show that for $X, Y \in \mathbb{S}^n_{++}$ we have

$$\langle \nabla g(X) - \nabla g(Y), X - Y \rangle \ge 0 \iff \langle (X - Y)yy^T + yy^T(X - Y), X - Y \rangle \ge 0.$$

So, we need to prove for $Z \in \mathbb{S}^n$ one has for the positive semi-definite $A = yy^T$

$$\langle ZA + AZ, Z \rangle \ge 0 \iff 2\operatorname{Tr}(ZAZ) \ge 0 \iff 2\operatorname{Tr}((ZA^{\frac{1}{2}})(A^{\frac{1}{2}}Z)) \ge 0,$$

which is immediate as $(ZA^{\frac{1}{2}})(A^{\frac{1}{2}}Z)$ is positive semi-definite.

3.1.22.

Let $f: \mathbb{R}^n \to \mathbb{R}$ with

$$f(x) = \log(\sum_{i=1}^{m} \exp\langle a^i, x \rangle),$$

where a^1, \dots, a^m are vectors in \mathbb{R}^n . Compute the Hessian of f and prove it is positive semi-definite matrix.

Proof: Note that $e^{f(x)} = \sum_{i=1}^{m} \exp\langle a^i, x \rangle$ and thus

$$e^{f(x)}\nabla f(x) = \sum_{i=1}^{m} \exp(\langle a^i, x \rangle) a^i.$$

So,

$$e^{f(x)}\nabla^2 f(x) + e^{f(x)}\nabla f(x)\nabla^T f(x) = \sum_{i=1}^m \exp(\langle a^i, x \rangle) a^i a^{iT},$$

and hence,

$$e^{f(x)}\nabla^2 f(x) = \sum_{i=1}^m \exp(\langle a^i, x \rangle) a^i a^{i^T} - e^{f(x)} \nabla f(x) \nabla^T f(x).$$

Let $t_i = \exp\langle a^i, x \rangle$, then

$$e^{2f(x)}\nabla^2 f(x) = \left(\sum_{k=1}^m t_k\right) \left(\sum_{i=1}^m t_i a^i a^{iT}\right) - \left(\sum_{i=1}^m t_i a^i\right) \left(\sum_{i=1}^m t_i a^i\right)^T.$$

Now let $\lambda_i = \frac{t_i}{\sum_{i=1}^m t_i}$, then $\lambda_i > 0$ and $\sum_{i=1}^m \lambda_i = 1$. Then

$$\nabla^2 f(x) = \left(\sum_{i=1}^m \lambda_i a^i a^{iT}\right) - \left(\sum_{i=1}^m \lambda_i a^i\right) \left(\sum_{i=1}^m \lambda_i a^i\right)^T.$$

Now $\nabla^2 f(x) \succeq 0$ if and only if

$$\begin{bmatrix} 1 & \sum_{i=1}^{m} \lambda_i a^{i^T} \\ \sum_{i=1}^{m} \lambda_i a^i & \sum_{i=1}^{m} \lambda_i a^i a^{i^T} \end{bmatrix} \succeq 0.$$

But the above matrix equals to

$$\sum_{i=1}^{m} \lambda_i \begin{bmatrix} 1 & a^{iT} \\ a^i & a^i a^{iT} \end{bmatrix}$$

which is clearly positive semi-definite.

3.1.23

Suppose $f : \mathbb{E} \to (\infty, +\infty]$ is essentially strictly convex, prove all distinct points x and y satisfy $\partial f(x) \cap \partial f(y) = \emptyset$. Deduce that f has at most one minimizer.

Proof: Let $s \in \partial f(x) \cap \partial f(y)$ for some $x, y \in \text{dom } \partial f$. Then $g := f + \langle s, . \rangle$ is an essentially strictly convex that satisfies $0 \in \partial g(x) \cap \partial g(y)$. Thus, without loss of generality, suppose s = 0 and thus x and y are minimizer to f. However, since f is convex all the points lying on the line segment [x, y] are also minimizers of f. Thus, $[x, y] \in \text{dom } \partial f$ and this is a contradiction as f is essentially strictly convex on $\text{dom } \partial f$.

3.1.25. Convex matrix functions

Consider a matrix C in \mathbb{S}^n_+ .

• For matrices $X \in \mathbb{S}_{++}^n$ and D in \mathbb{S}^n , use a power series expansion to prove

$$\frac{d^2}{dt^2} \operatorname{Tr}(C(X+tD)^{-1})|_{t=0} \ge 0.$$

- Deduce $X \in \mathbb{S}_{++}^n \mapsto \operatorname{Tr}(CX^{-1})$ is convex.
- Prove similarly the function $X \in \mathbb{S}^n \mapsto \operatorname{Tr}(CX^2)$ and the function $X \in \mathbb{S}^n_+ \mapsto -\operatorname{Tr}(CX^{\frac{1}{2}})$ are convex.
- One version of Hölder inequality states, for real p, q > 1 satisfying $p^{-1} + q^{-1} = 1$ and functions $u, v : \mathbb{R}_+ \to \mathbb{R}$,

$$\int uv \le \left(\int |u|^p\right)^{\frac{1}{p}} \left(\int |v|^q\right)^{\frac{1}{q}}$$

when the right hand side is well-defined. Use this to prove the gamma function Γ : $\mathbb{R}_{++} \to \mathbb{R}$ given by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

is log-convex.

• Note that

$$(X+tD)^{-1} = X^{-\frac{1}{2}}(I+tX^{-\frac{1}{2}}DX^{-\frac{1}{2}})^{-1}X^{-\frac{1}{2}} = X^{-\frac{1}{2}}(I-tX^{-\frac{1}{2}}DX^{-\frac{1}{2}}+t^2(X^{-\frac{1}{2}}DX^{-\frac{1}{2}})^2 + O(t^3))X^{-\frac{1}{2}}.$$
 Thus,

$$\mathrm{Tr}(C(X+tD)^{-1}) = \mathrm{Tr}(CX^{-1}) - t\,\mathrm{Tr}(X^{-1}CX^{-1}D) + t^2\,\mathrm{Tr}(CX^{-1}DX^{-1}DX^{-1}) + O(t^3).$$

However,

$$\operatorname{Tr}(CX^{-1}DX^{-1}X^{-1}DX^{-1}) = \operatorname{Tr}(C^{\frac{1}{2}}X^{-1}DX^{-\frac{1}{2}}X^{-\frac{1}{2}}DX^{-1}C^{\frac{1}{2}}) = \operatorname{Tr}(AA^{T}) \ge 0,$$

where $A := C^{\frac{1}{2}}X^{-1}DX^{-\frac{1}{2}}$. Note that AA^T is positive semidefinite and thus has non-negative trace.

- Let $Y \in \mathbb{S}^n_{++}$ and let $g: t \in [0,1] \to \text{Tr}(C(X+t(Y-X))^{-1})$. Then due to part 1, g is convex and thus so is the function $X \in \mathbb{S}^n_{++} \mapsto \text{Tr}(CX^{-1})$.
- Note that

$$Tr(C(X+tD)^2) = Tr(C(X^2 + t(DX + XD) + t^2D^2)).$$

Thus,

$$\frac{d^2}{dt^2} \operatorname{Tr}(C(X+tD)^2)|_{t=0} = 2 \operatorname{Tr}(CD^2) = 2 \operatorname{Tr}(C^{\frac{1}{2}}DDC^{\frac{1}{2}}) \ge 0.$$

Also, for $X \in \mathbb{S}^n_{++}$,

$$Tr(C(X+tY)^{\frac{1}{2}}) =$$

3.1.26. Log-convexity

Given a convex set $C \subseteq \mathbb{E}$, we say that a function $f: C \to \mathbb{R}_{++}$ is log-convex if $\log f(.)$ is convex.

- Prove any log-convex function is convex.
- If a polynomial $p: \mathbb{R} \to \mathbb{R}$ has all real roots, prove 1/p is log-convex on any interval on which p is strictly positive.

Proof:

• Suppose that $f: C \to \mathbb{R}_{++}$ is log-convex. Then let $x, y \in C$ and $\lambda \in (0, 1)$, we need to show

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$$
 or equivalently $\log(f(\lambda x + (1-\lambda)y)) \le \log(\lambda f(x) + (1-\lambda)f(y))$.

However, since f is log-convex, $\log(f(\lambda x + (1 - \lambda)y)) \le \lambda \log f(x) + (1 - \lambda) \log f(y)$. Now notice that log is concave and so

$$\lambda \log f(x) + (1 - \lambda) \log f(y) \le \log(\lambda f(x) + (1 - \lambda)f(y)).$$

Thus the proof is complete.

• We show first that $p^{\frac{1}{n}}$ is concave. Let a, a_1, \dots, a_n be such that $p(x) = a \prod_{i=1}^n (x - a_i)$ and let $I = (\alpha, \beta)$ be any interval on which p is positive. Note that

$$\frac{d}{dt}p(t)^{\frac{1}{n}} = \frac{1}{n}p(t)^{\frac{1}{n}-1}p'(t),$$

and so,

$$\frac{d^2}{dt^2}p(t)^{\frac{1}{n}} = \frac{1}{n}(\frac{1}{n}-1)p(t)^{\frac{1}{n}-2}p'(t)^2 + \frac{1}{n}p(t)^{\frac{1}{n}-1}p''(t)$$
$$= \frac{1}{n^2}p(t)^{\frac{1}{n}-2}\left[(1-n)p'(t)^2 + np''(t)p(t)\right].$$

On the other hand, for $t \neq a_i$,

$$p'(t) = a\left(\sum_{i=1}^{n} \frac{1}{t - a_i}\right) p(t),$$

and.

$$p''(t) = a\left(-\sum_{i=1}^{n} \frac{1}{(t-a_i)^2}\right)p(t) + a\left(\sum_{i=1}^{n} \frac{1}{t-a_i}\right)^2 p(t).$$

Let $r_i := (t - a_i)^{-1}$ and thus we have

$$\frac{n^2}{p(t)^{2-\frac{1}{n}}}\frac{d^2}{dt^2}p(t)^{\frac{1}{n}} = a^2\left[(1-n)(\sum_{i=1}^n r_i)^2 + n(-\sum_{i=1}^n r_i^2 + (\sum_{i=1}^n r_i)^2)\right]p(t)^2.$$

However,

$$(1-n)(\sum_{i=1}^{n} r_i)^2 + n(-\sum_{i=1}^{n} r_i^2 + (\sum_{i=1}^{n} r_i)^2) = (\sum_{i=1}^{n} r_i)^2 - n\sum_{i=1}^{n} r_i^2 \le 0,$$

due to Cauchy-Schwartz inequality. Thus $p^{\frac{1}{n}}$ is concave and so is $\log p^{\frac{1}{n}}$ since \log is non-decreasing and concave. Thus $\log p$ is concave,

• Note that we have the following as a special case of *Hölder inequality*

$$\log \int_0^\infty u^{\lambda} v^{1-\lambda} dt \le \lambda \log \int_0^\infty u dt + (1-\lambda) \log \int_0^\infty v dt,$$

where $u, v : \mathbb{R}_{++} \to \mathbb{R}_{++}$ and $\lambda \in (0, 1)$. Now suppose $x, y \in \mathbb{R}_{++}$ and let

$$u(t) = t^x e^{-t}, v(t) = t^y e^{-t}.$$

Then the convexity of the Gamma function follows immediately.

2 The Value Function

3.2.1 Lagrangian sufficient conditions.

Prove the Lagrangian sufficient conditions:

Suppose λ is a Lagrangian multiplier for a feasible solution \bar{x} such that \bar{x} minimizes $L(.,\bar{\lambda})$ over \mathbb{E} . Then \bar{x} is an optimal solution.

Proof: Note that since $\bar{\lambda}$ is a Lagrangian multiplier we have $L(\bar{x}, \bar{\lambda}) = f(\bar{x})$. However,

$$f(\bar{x}) = L(\bar{x}, \bar{\lambda}) \le L(y, \bar{\lambda}) \le f(y) \quad \forall \text{ feasible solution } y.$$

Thus \bar{x} is an optimal solution.

3.2.2.

Use the Lagrangian sufficient conditions to the following problem s.

• a)

inf
$$x_1^2 + x_2^2 - 6x_1 - 2x_2 + 10$$

subject to $2x_1 + x_2 - 2 \le 0$
 $x_2 - 1 \le 0$
 $x \in \mathbb{R}^2$.

Proof: Let $y_1 = x_1 - 3$, $y_2 = x_2 - 1$ then

$$\inf y_1^2 + y_2^2$$
subject to
$$2y_1 + y_2 + 5 \le 0$$

$$y_2 \le 0$$

$$y \in \mathbb{R}^2.$$

If $y_2 = 0$, then the obvious minimum will be 25/4. So suppose that $y_2 < 0$ and so $\bar{\lambda}_2 = 0$. Now let $\bar{\lambda}_1 = 2$, then

$$L(y, \bar{\lambda}) = y_1^2 + y_2^2 + 4y_1 + 2y_2 + 10 = (y_1 + 2)^2 + (y_2 + 1)^2 + 5.$$

So, y = -(2, 1) minimizes $L(., \bar{\lambda})$. Since y is feasible and its objective value is 5 < 25/4, the optimal value is 5 with the optimal solution (1, 0).

 $\inf -2x_1 + x_2$ subject to $x_1^2 - x_2 \le 0$ $x_2 - 4 \le 0$ $x \in \mathbb{R}^2.$

Proof: If $x_2 = 4$ then the obvious minimum will be 0. So suppose that $x_2 < 4$ and then $\bar{\lambda}_2 = 0$,

$$L(x, \bar{\lambda}) = -2x_1 + x_2 + \bar{\lambda}_1(x_1^2 - x_2).$$

Now let $\bar{\lambda}_1 = 1$ and let $\bar{x} = (1, 1)$. Note that since

$$L(x, \bar{\lambda}) = x_1^2 - 2x_1 \ge -1,$$

and since $L(\bar{x}, \bar{\lambda}) = -1$. Thus $\bar{\lambda}$ is a Lagrangian multiplier \bar{x} and since \bar{x} minimizes $L(., \bar{\lambda})$, we conclude the optimum value is -1.

 $\inf x_1 + \frac{2}{x_2}$ subject to $-x_2 + \frac{1}{2} \le 0$ $-x_1 + x_2^2 \le 0.$

Proof: If $x_2 = \frac{1}{2}$ then the obvious inf will be $4 + \frac{1}{4}$. Now suppose that $x_2 > \frac{1}{2}$. Then $\bar{\lambda}_1 = 0$ and

$$L(x,\bar{\lambda}) = x_1 + \frac{2}{x_2} + \bar{\lambda}_2(-x_1 + x_2^2).$$

Now let $\bar{\lambda}_2 = 1$ then

$$L(x,\bar{\lambda}) = x_1 + \frac{2}{x_2} + \bar{\lambda}_2(-x_1 + x_2^2) = \frac{2}{x_2} + x_2^2 \ge 3.$$

Note that $\frac{2}{x_2} + x_2^2 = \frac{1}{x_2} + \frac{1}{x_2} + x_2^2 \ge 3$. Now let $\bar{x} = (1,1)$, then the objective value equals to 3 and thus the optimum value is 3.

3 The Fenchel Conjugate

3.1.7. Quadratics

For all matrices A in \mathbb{S}^n_{++} , prove the function $x \in \mathbb{R}^n \to x^T Ax/2$ is convex and calculate its conjugate. Use the order preserving property to the conjugacy operation to prove

$$A \succeq B \iff B^{-1} \succeq A^{-1} \text{ for all } A \text{ and } B \text{ in } \mathbb{S}^n_{++}.$$

Proof: Note that for $f(x) = \frac{1}{2}x^TAx$ we have $\nabla^2 f = A$ and thus f is convex. However, $\nabla f(x) = Ax$ and hence $\sup_x \langle x, y \rangle - f(x)$ is realized at $x = A^{-1}y$. Thus, $f^*(x) = \frac{1}{2}x^TA^{-1}x$. Now if $A \succeq B$ then $f_A \geq f_B$ and hence $f_B^* \geq f_A^*$.

3.1.3.

Verify the conjugates of the log barrier Ib and Id claimed in the text.

Proof: Let $f(x) = -\log x$, then

$$f^*(y) = \sup_{x \in \mathbb{E}} \langle x, y \rangle + \log x.$$

However, $(\langle x,y\rangle + \log x)'' = \frac{-1}{x^2} < 0$. Now since $y + \frac{1}{x}$. Hence, $f^*(x) = -1 + f(-x)$. Now since $Id^*(X) = \sup_{Y \succ 0} \langle X, Y \rangle + \log \det Y$. Then if $X \not\prec 0$ then $\langle X, Y \rangle + \log \det Y$

Now since $Id^*(X) = \sup_{Y \succ 0} \langle X, Y \rangle + \log \det Y$. Then if $X \not\prec 0$ then $\langle X, Y \rangle + \log \det Y$ is unbounded above as for $Xx = \lambda x$ with $\lambda \ge 0$ we have $\langle X, xx^T + I \rangle + \log \det(xx^T + I) = \lambda ||x||^2 + 1 + ||x||^2 + \text{Tr}(X)$. Now let $||x|| \to +\infty$. Hence, $Id^*(X) = \infty$. So suppose that $X \prec 0$. Then since $\langle X, Y \rangle + \log \det(Y)$ is concave with gradient $Y^{-1} + X$ or $Y = -X^{-1}$. Now

$$\langle -X^{-1}, X \rangle + \log \det(-X^{-1}) = -n - \log \det(-X).$$

3.3.4 Self Conjugacy

Consider functions $f: \mathbb{E} \to (\infty, \infty]$.

- Prove $f^* = f$ if and only if $f(x) = ||x||^2/2$ for all points x in \mathbb{E} .
- Find two distinct functions f satisfying $f(-x) = f^*(x)$ for all x in \mathbb{E} .

Proof:

- Suppose that $f(x) = \frac{1}{2}||x||^2$. Then $f^*(x) = \sup\langle y, x \rangle \frac{1}{2}||x||^2$. Now note that $\langle y, x \rangle \frac{1}{2}||x||^2$ is strictly concave and $\nabla(\langle y, x \rangle \frac{1}{2}||x||^2) = y x$. Thus, $f^*(y) = \frac{1}{2}||y||^2$. Conversely, suppose that $f = f^*$. Then since f^* is convex, f is convex as well. If dom $f = \emptyset$, then $f^* \equiv -\infty$ which is a contradiction as $f = f^*$ and f never takes the value $-\infty$. So dom $f \neq \emptyset$. Let $x \in \text{dom } f$, then $f(x) + f(y) \geq \langle x, y \rangle$ for all $y \in \text{dom } f$. Also, if $y \in \partial f(x)$, then $f(x) + f(y) = \langle x, y \rangle$ and hence $y \in \partial f^*(x)$ and thus $y \in \partial f(x)$. Now since $f(x) + f(y) \geq \langle x, y \rangle$ we obtain $f(x) \geq \frac{1}{2}\langle x, x \rangle$. Now let $x \in \mathbb{E}$ and $y \in \partial f(x)$ then $\langle x, y \rangle \geq \frac{1}{2}(||x||^2 + ||y||^2)$. Hence, $f(x) = \frac{1}{2}||x||^2$. This completes the proof.
- Let $f(x) = -\log x$. Note that $f^*(y) = -1\log(-y) = -1 + f(-y)$. Thus, $f^*(x) = -1 + f(-x)$. Let $g(x) = f(x) \frac{1}{2}$. Then $g^*(x) = g(-x)$.

Question 7. Maximum entropy example

• Prove the function g defined by

$$g(z) = \inf_{x \in \mathbb{R}^{m+1}} \left\{ \sum_{i} \exp^*(x_i) : \sum_{i} x_i = 1, \sum_{i} x_i a^i = z \right\}$$

is convex.

• For any point $y \in \mathbb{R}^{m+1}$, prove

$$g^*(y) = \sup_{x \in \mathbb{R}^{m+1}} \left\{ \sum_i (x_i \langle a^i, y \rangle - \exp^*(x_i)) : \sum_i x_i = 1 \right\}.$$

- Apply Exercise 27 in Section 3.1 to deduce the conjugacy formula 3.3.2.
- Compute the conjugate of the function of $x \in \mathbb{R}^{m+1}$,

$$\begin{cases} \sum_{i} \exp^*(x_i) & \text{if } \sum_{i} x_i = 1 \\ +\infty & \text{otherwise.} \end{cases}$$

Proof:

• Let $\epsilon > 0$ be arbitrary and fix $\lambda \in [0,1]$. We show for all $z, z' \in \mathbb{R}^m$

$$g(\lambda z + (1 - \lambda)z') \le \lambda g(z) + (1 - \lambda)g(z') + 2\epsilon.$$

Let $\tilde{x_i}$ be such that

$$\sum \exp^*(\tilde{x}_i) \le g(z) + \epsilon.$$

Similarly, let \tilde{y}_i be such that

$$\sum \exp^*(\tilde{y_i}) \le g(z') + \epsilon.$$

Let $\tilde{z}_i = \lambda \tilde{x}_i + (1 - \lambda)\tilde{y}_i$, so

$$g(\tilde{z}_i) \le \sum \exp^*(\tilde{z}_i) \le \lambda g(z) + (1 - \lambda)g(z') + 2\epsilon.$$

3.3.20. Pointed cones and bases

Consider a closed convex cone K in \mathbb{E} . A base for K is a convex set C with $0 \notin cl(C)$ and $K = \mathbb{R}_+C$. Prove the following properties are equivalent

- (a) K is pointed, i.e. $K \cap -K = \{0\}$.
- (b) $cl(K^{\circ} K^{\circ}) = \mathbb{E}$.
- (c) $K^{\circ} K^{\circ} = \mathbb{E}$.
- (d) K° has non-empty interior.
- (e) There exists a vector y in \mathbb{E} and real $\epsilon > 0$ with $\langle y, x \rangle \ge \epsilon ||x||$ for all points x in K.
- (f) K has a bounded base.

Proof:

• $(a) \Rightarrow (b)$. Suppose $cl(K^{\circ} - K^{\circ}) \neq \mathbb{E}$ and let $x \in \mathbb{E} \setminus cl(K^{\circ} - K^{\circ})$. Then due to Hyperplane separation theorem, there exists $0 \neq \phi \in \mathbb{E}$ and $\alpha \in \mathbb{R}$ such that

$$\langle x, \phi \rangle > \alpha \ge \langle z_1 - z_2, \phi \rangle \quad \forall z_1, z_2 \in K^{\circ}.$$

Thus for all $z \in K^{\circ}$, $\langle z, \phi \rangle$ is bounded above and thus $\langle z, \phi \rangle \leq 0$ as K° is a cone. On the other hand, due to the above equation, $\langle -z, \phi \rangle$ is bounded as well for all $z \in K^{\circ}$ and so $\langle z, -\phi \rangle \leq 0$ for all $z \in K^{\circ}$. So, ϕ and $-\phi$ both belongs to $K^{\circ\circ}$ which equals to K. Thus, since K is pointed we conclude that $\phi = 0$. This contradiction completes the proof.

- $(b) \Rightarrow (c)$. Note that $K^{\circ} K^{\circ}$ is a subspace. In fact, it is clearly a convex cone and since $-(K^{\circ} K^{\circ}) = K^{\circ} K^{\circ}$ and it contains 0, it is also a subspace. Thus, since every subspace is closed, $K^{\circ} K^{\circ} = cl(K^{\circ} K^{\circ})$.
- $(c) \Rightarrow (d)$. We already now that every nonempty convex set in \mathbb{E} has a nontrivial relative interior. Now note that

$$\operatorname{aff}(K^{\circ}) = \operatorname{aff}(-K^{\circ}) = \operatorname{aff}(K^{\circ} - K^{\circ}).$$

Thus, since K° has a nonempty interior and its affine hull is \mathbb{E} , we conclude that K° has a nonempty interior.

• $(d) \Rightarrow (e)$. Let $y \in (K^{\circ})$, and $\epsilon > 0$ such that $y + td \in K^{\circ}$ for all $t \in [-\epsilon, \epsilon]$ and any $d \in \mathbb{E}$ with ||d|| = 1. So, we have

$$\langle y + td, x \rangle \le 0 \ \forall t \in [-\epsilon, \epsilon], \forall ||d|| = 1, \forall x \in K,$$

or equivalently for $0 \neq x \in K$,

$$|t\langle d, x\rangle| \le \langle -y, x\rangle \Rightarrow |t\langle d, \frac{x}{||x||}\rangle| \le \langle -y, \frac{x}{||x||}\rangle.$$

Now let $d = \frac{x}{||x||}$ in above, and let $t = \epsilon$ we realize that

$$\epsilon \le \langle -y, \frac{x}{||x||} \rangle.$$

Thus, $\epsilon||x|| \leq \langle -y, x \rangle$ holds true for all $x \in K$.

• $(e) \Rightarrow (f)$. Now suppose $y \in \mathbb{E}$ and $\epsilon > 0$ are such that

$$\langle y, x \rangle \ge \epsilon ||x|| \ \forall x \in K.$$

Define

$$C = \{x \in K : \langle x, y \rangle = 1\}.$$

First note that C is bounded, as if $x \in C$, then $\epsilon ||x|| \leq 1$ and so $||x|| \leq \frac{1}{\epsilon}$. Also, note that clearly C is closed and also $0 \notin C$. Last, note that $\mathbb{R}_+C = K$ as in fact for $0 \neq x \in K$, $\langle y, x \rangle \geq \epsilon ||x|| > 0$ and thus $\langle y, x \rangle > 0$ and so there exists $\lambda > 0$ such that $\langle y, \lambda x \rangle = 1$. Thus, $\lambda x \in C$.

• $(f) \Rightarrow (a)$. Let C be a bounded base for K and suppose $a \in K \cap -K$. Then there exists $\lambda, \mu \in \mathbb{R}_+$ such that $a = \lambda c_1 = -\mu c_2$ for some $c_1, c_2 \in C$. Now, if $a \neq 0$ then λ and μ are both nonzero and thus $0 = \frac{\lambda}{\lambda + \mu} c_1 + \frac{\mu}{\mu + \lambda} c_2 \in C$ as C is convex. But this contradicts the fact that $0 \notin cl(C)$. So, K is pointed.

Chapter IV Convex Analysis

March 11, 2023

1 Continuity of Convex Functions

4.1.6 Polar sets and strict separation

Fix a nonempty set C in \mathbb{E} .

- For points x in int(C) and ϕ in C° , prove $\langle \phi, x \rangle < 1$.
- Assume further that C is a convex set. Prove γ_C is sublinear.
- Assume in addition that $0 \in \operatorname{core}(C)$. Deduce

$$cl(C) = \{x : \gamma_C(x) \le 1\}$$

• Finally, suppose in addition that $D \subseteq \mathbb{E}$ is a convex set disjoint from the interior of C. By considering the Fenchel problem $\inf\{\delta_D + \gamma_C\}$, prove there is a closed halfspace containing D but disjoint from the interior of C.

Proof:

- Note that $\langle \phi, z \rangle \leq 1$ for all $z \in C$. Now since $x \in C^{\circ}$, we have $x + \epsilon d \in C$ for all ||d|| = 1, for some $\epsilon > 0$. Thus, $\langle \phi, x \rangle + \langle \phi, \epsilon \frac{\phi}{||\phi||} \rangle \leq 1$. Hence, $\langle \phi, x \rangle < 1$.
- Note that $\gamma(\mu c) = \inf\{\lambda : \mu x \in \lambda C\} = \inf\{\lambda \mu : \mu x \in \lambda \mu C\} = \mu \inf\{\lambda : x \in \lambda C\}$, for $\mu > 0$. Thus, γ_C is homogeneous. Now notice

$$\{\lambda_1 : x \in \lambda_1 C\} + \{\lambda_2 : y \in \lambda_2 C\} \subseteq \{\lambda : x + y \in \lambda C\},\$$

as C is convex we have $\lambda_1 C + \lambda_2 C = (\lambda_1 + \lambda_2)C$, and thus

$$\inf\{\lambda: x+y \in \lambda C\} \le \inf\{\lambda_1: x \in \lambda_1 C\} + \inf\{\lambda_2: x \in \lambda_2 C\} \Rightarrow \gamma_C(x+y) \le \gamma_C(x) + \gamma_C(y).$$

- Note that for $x \in C$, we have $\gamma_C(x) \leq 1$ and thus $C \subseteq \{x : \gamma_C(x) \leq 1\}$. Since the latter is closed, as γ is everywhere finite continuous, we have $\operatorname{cl}(C) \subseteq \{x : \gamma_C(x) \leq 1\}$. Now let $x \in \{x : \gamma_C(x) \leq 1\}$. Then since $0 \in C$, $\lambda_1 C \subseteq \lambda_2 C$ for all $\lambda_1 \leq \lambda_2$. Thus, $x \in (1 + \epsilon)C$ for all $\epsilon > 0$. Hence, $x \in \operatorname{cl}(C)$.
- Note that

$$\inf_{x \in \mathbb{E}} \{ \delta_D(x) + \gamma_C(x) \} \ge \sup_{\phi \in Y} \{ -\delta_D^*(\phi) - \gamma_C^*(-\phi) \}.$$

Note that dom γ_C – dom $\delta_D = \mathbb{E} - D = \mathbb{E}$ hence CQ holds. However, note that if $\inf_{x \in \mathbb{E}} \{\delta_D(x) + \gamma_C(x)\} < 1$ then there exists $x \in D$ such that

$$x \in \lambda C \subseteq C$$

for some $\lambda < 1$. But, $\lambda C \subseteq \text{int}(C)$ and hence $x \in D \cap \text{int}(C)$ which is a contradiction. Thus, $\inf_{x \in \mathbb{E}} \{\delta_D(x) + \gamma_C(x)\} \ge 1$.

But, this contradicts the fact that $D \cap \operatorname{int}(C) = \emptyset$. Thus, $\inf_{x \in \mathbb{E}} \{\delta_D(x) + \gamma_C(x)\} > 0$. Hence, there exists $\phi^* \in Y$ such that $-\delta_D^*(\phi^*) - \gamma_C^*(-\phi^*) > 0$ or $\delta_D^*(\phi^*) + \gamma_C^*(-\phi^*) < 0$. Note that $\gamma_C^* = \delta_{C^\circ}$. Thus, $-\phi^* \in C^\circ$ and also $\langle \phi^*, y \rangle \leq -1$ for all $y \in D$. Thus,

$$\langle \phi^*, y \rangle \le -1 < \langle \phi^*, x \rangle \ \forall x \in C^{\circ}, y \in D.$$

4.1.7. Polar calculus

Suppose C and D are subsets of \mathbb{E} .

- Prove $(C \cup D)^{\circ} = C^{\circ} \cap D^{\circ}$.
- If C and D are convex, prove

$$\operatorname{conv}(C \cup D) = \bigcup_{\lambda \in [0,1]} (\lambda C + (1-\lambda)D).$$

• If C is a convex cone and the convex set D contains 0, prove

$$C + D \subseteq cl \operatorname{conv}(C \cup D).$$

Now suppose the closed convex sets K and H of \mathbb{E} both contain 0.

• Prove $(K \cap H)^{\circ} = cl \operatorname{conv}(K^{\circ} \cup H^{\circ}).$

Proof:

• Note that

$$\phi \in (C \cup D)^{\circ} \iff \langle \phi, x \rangle \le 1 \ \forall x \in C \cup D \iff \langle \phi, x \rangle \le 1 \ \forall x \in C \ \& \ \langle \phi, y \rangle \le 1 \ \forall y \in D.$$

Thus, $x \in (C \cup D)^{\circ}$ if and only if $x \in C^{\circ} \cap D^{\circ}$.

• For $\lambda \in [0,1]$, let $X_{\lambda} = \lambda C + (1-\lambda)D$. Now since $\operatorname{conv}(C \cup D)$ is convex and $C, D \subseteq \operatorname{conv}(C \cup D), X_{\lambda} \subseteq \operatorname{conv}(C \cup D)$ for all $\lambda \in [0,1]$. So, $\bigcup_{\lambda \in [0,1]} X_{\lambda} \subseteq \operatorname{conv}(C \cup D)$. Conversely, since, $X_1 = C$ and $X_0 = D$. So, $C \cup D \subseteq \bigcup_{\lambda \in [0,1]} X_{\lambda}$. Thus, in order to prove, $\operatorname{conv}(C \cup D) \subseteq \bigcup_{\lambda \in [0,1]} X_{\lambda}$, we just need to show that $\bigcup_{\lambda \in [0,1]} X_{\lambda}$ is convex. Let $\lambda_1, \lambda_2 \in [0,1]$ and

$$\lambda_1 c_1 + (1 - \lambda_1) d_1 \in X_{\lambda_1} \& \lambda_2 c_2 + (1 - \lambda_2) d_2 \in X_{\lambda_2},$$

in which $c_1, c_2 \in C$ and $d_1, d_2 \in D$. Now we need to show for any $\mu \in [0, 1]$ we have

$$\mu(\lambda_1 c_1 + (1 - \lambda_1)d_1) + (1 - \mu)(\lambda_2 c_2 + (1 - \lambda_2)d_2) \in \cup_{\lambda \in [0,1]} X_{\lambda}.$$

However, $\mu(\lambda_1 c_1 + (1 - \lambda_1)d_1) + (1 - \mu)(\lambda_2 c_2 + (1 - \lambda_2)d_2)$ equals to

$$(\mu \lambda_1 c_1 + (1 - \mu)\lambda_2 c_2) + (\mu (1 - \lambda_1)d_1 + (1 - \mu)(1 - \lambda_2))d_2,$$

and if $t = \mu \lambda_1 + (1 - \mu)\lambda_2$, then the above equals to, notice $1 - t = \mu(1 - \lambda_1) + (1 - \mu)(1 - \lambda_2)$,

$$t(\frac{\mu\lambda_1}{t}c_1 + \frac{(1-\mu)\lambda_2}{t}c_2) + (1-t)(\frac{\mu(1-\lambda_1)}{1-t}d_1 + \frac{(1-\mu)(1-\lambda_2)}{1-t}d_2).$$

Note that $0 \le t, 1 - t$ and thus $t \in [0, 1]$.

• Note that C is a cone and thus $\lambda C = C$ for all $\lambda \in (0,1]$. So

$$\bigcup_{\lambda \in [0,1]} (\lambda C + (1-\lambda)D) = D \cup \left(\bigcup_{\lambda \in (0,1]} (C + (1-\lambda)D)\right).$$

Now since, $0 \in D$ we should have $(1 - \lambda)D \subseteq D$ for all $\lambda \in [0, 1]$. Thus,

$$\bigcup_{\lambda \in (0,1]} (C + (1-\lambda)D) = C + D.$$

So,

$$\operatorname{conv}(C \cup D) = \bigcup_{\lambda \in [0,1]} (\lambda C + (1-\lambda)D) = (C+D) \cup D.$$

So, the proof is complete.

• Note that since K, H are closed convex set we obtain

$$K = K^{\circ \circ}, H = H^{\circ \circ}.$$

Thus, due to part 1,

$$(K \cap H)^{\circ} = (K^{\circ} \cup H^{\circ})^{\circ}$$

4.1.13. Existence of extreme points

Prove any nonempty compact convex set $C \subseteq \mathbb{E}$ has an extreme point, without using Minkowski's theorem, by considering the furthest point in C from the origin.

Proof: Since C is compact closed, there exists $\bar{x} \in C$ such that $||\bar{x}|| = \sup_{a \in C} ||a||$. We prove \bar{x} is an extreme point. Let $\bar{x} = \lambda a + (1 - \lambda)b$ for some $a, b \in C$. Then $||\bar{x}|| \le \lambda ||a|| + (1 - \lambda)||b|| \le \lambda ||\bar{x}|| + (1 - \lambda)||\bar{x}|| = ||\bar{x}||$. Thus $||a|| = ||b|| = ||\bar{x}||$ and hence a, b, \bar{x} are collinear and since they have the same norm we conclude that $a = b = \bar{x}$.

Note that fixing any point $c \in \mathbb{E}$, there exists $\bar{x} \in C$ such that $||\bar{x} - c|| = \sup_{a \in C} ||a - c||$. Thus, \bar{x} is also an extreme point.

Remark: All the extreme points can be obtained this way.

4.1.14.

Given a supporting hyperplane H of a convex set $C \subseteq \mathbb{E}$, any extreme points of $C \cap H$ is also an extreme point of C.

Proof: Let \bar{x} be an extreme point of $C \cap H$ in which

$$H = \{ x \in \mathbb{E} : \langle a, x - \bar{x} \rangle = 0 \},\$$

and for all $x \in C$, $\langle a, x \rangle \geq \langle a, \bar{x} \rangle$. Now let $\bar{x} = \lambda x_1 + (1 - \lambda)x_2$ for some $x_1, x_2 \in C$. Then

$$\langle a, x_1 \rangle, \langle a, x_2 \rangle \ge \langle a, \bar{x} \rangle \& \langle a, \bar{x} \rangle = \lambda \langle a, x_1 \rangle + (1 - \lambda) \langle a, x_2 \rangle.$$

Thus, $\langle a, x_1 \rangle = \langle a, x_2 \rangle = \langle a, \bar{x} \rangle$, and hence $x_1, x_2 \in H$. However, \bar{x} is an extreme point of $C \cap H$. Thus, $\bar{x} = x_1 = x_2$. This completes the proof.

4.1.15.

For any compact convex set $C \subseteq \mathbb{E}$, prove C = conv(bd C).

Proof: Clearly, $\operatorname{conv}(\partial C) \subseteq C$. Now let $\bar{x} \in C \setminus \operatorname{conv}(\partial C)$. $\partial C = C \setminus \operatorname{int}(C)$ and thus ∂C is closed. Also $\partial C \subseteq C$ and thus it is compact. We know that the convex hull of a closed set is closed, we realize that $\operatorname{conv}(\partial C)$ is closed ,convex and bounded.

Now consider the following general case:

Question: Let $C_1 \subsetneq C_2$ be two compact convex sets in \mathbb{E} . We know there exists $\bar{x} \in C_2$ such that $d(\bar{x}, C_1) = \sup_{a \in C_2} d(a, C_1)$ as C_2 is compact. Is it true that \bar{x} is an extreme point of C_2 ?

Answer: Suppose $\bar{x} = \lambda x_1 + (1 - \lambda)x_2$, with $x_1, x_2 \in C_2$. Now, since C_1 is compact, there exists $c \in C_1$ such that $||\bar{x} - c|| = \inf_{a \in C_1} ||x - a||$. Thus, due to the way we picked \bar{x} , we have

$$||\bar{x} - a|| \ge ||x_1 - a||, ||\bar{x} - a|| \ge ||x_2 - a||.$$

But,

$$||x-a|| = ||\lambda(x_1-a) + (1-\lambda)(x_2-a)|| \le \lambda ||x_1-a|| + (1-\lambda)||x_2-a|| \le \lambda ||x-a|| + (1-\lambda)||x-a|| = ||x-a||.$$

Thus, $||x - a|| = ||x_1 - a|| = ||x_2 - a||$. Since in the triangle inequality above, equality holds, x - a, $x_1 - a$, $x_2 - a$ are collinear, and since $||x - a|| = ||x_1 - a|| = ||x_2 - a||$, we have $x_1 = x_2 = x$. Hence, x is an extreme point of C_2 .

Now, back to the main question, since $\operatorname{conv}(\partial C) \subseteq C$, if $\operatorname{conv}(\partial C) \neq C$, then the above discussion gives us an extreme point \bar{x} of C lying outside of $\operatorname{conv}(\partial C)$. However, we know that no point in $\operatorname{int}(C)$ can be an extreme point. Thus $\bar{x} \in \partial(C)$ and this is a contradiction.

4.1.16. A converse of Minkowski's theorem

Suppose D is a subset of a compact convex set $C \subseteq \mathbb{E}$ satisfying $\operatorname{cl}(\operatorname{conv}(D)) = C$. Prove ext $C \subseteq \operatorname{cl} D$.

Proof: Since $\operatorname{conv}(\operatorname{cl} D) = \operatorname{cl}(\operatorname{conv}(D))$, we need to prove for $D \subseteq \mathbb{E}$ closed with $C = \operatorname{conv}(D)$, we should have $\operatorname{ext}(C) \subseteq D$. Suppose that $\operatorname{aff}(C) = \mathbb{E}$. Then, let $\bar{x} \in \operatorname{ext}(C)$. Then $\bar{x} = \sum_{i=1}^m \lambda_i x_i$ for some $\lambda_i \geq 0$ with $\sum_{i=1}^m \lambda_i = 1$ and some $x_i \in D$. Since, $s \in \operatorname{bd}(C)$, there exists a supporting hyperplane for C at \bar{x} . Clearly, $x_i \in H$ and thus $x \in \operatorname{conv}(D \cap H)$. x must be an extreme point of $\operatorname{conv}(D \cap H)$ and thus due to induction, $x \in D \cap H$. Note that $\operatorname{dim}(D \cap H) < \operatorname{dim}(D)$. This completes the proof.

4.1.17 Extreme points

Consider a compact convex set $C \subseteq \mathbb{E}$.

- If dim $\mathbb{E} \leq 2$, prove the set ext(C) is closed.
- If \mathbb{E} is \mathbb{R}^3 and C is the convex hull of the set

$$\{(x,y,0): x^2+y^2=1\} \cup \{(1,0,1),(1,0,-1)\},\$$

prove ext(C) is not closed.

Proof:

• Suppose that $\operatorname{aff}(C) = \mathbb{E}$. If $\dim \mathbb{E} = 0$ then $\operatorname{ext}(C) = C = \mathbb{E} = \{0\}$. If $\dim \mathbb{E} = 1$, then C is closed and compact, C = [a, b] for some $a, b \in \mathbb{R}$. In this case, $\operatorname{ext}(C) = \{a, b\}$. Now suppose $\dim(E) = 2$. Let $x_i \in \operatorname{ext}(C) \to x$ for some $x \in \operatorname{bd}(C)$. Then there exists a hyperplane

$$H := \{ \phi : \langle a, \phi \rangle = \beta \},$$

such that $x \in H$ and $\langle a, y \rangle \geq \beta$ for all $y \in C$. If $x \in \text{ext}(C \cap H)$ then $x \in \text{ext}(C)$. So suppose that $x \notin \text{ext}(C \cap H)$. Then if ||b|| = 1 such that $b \in H$ and $\langle b, a \rangle = 0$, then for some $\epsilon > 0$, $x + tb \in C$ for all $t \in [-\epsilon, +\epsilon]$. Now let $\bar{x} \in C \setminus H$. Then let $D = \text{conv}\{x + \epsilon b, x - \epsilon b, \bar{x}\}$. Now there exists $\delta > 0$ such that $B_{\delta}(x) \cap C \subseteq D$. So since, $x_i \to x$, for some $n, x_n \in D$. So, x_n can't be an extreme point as it is a convex combination of $x + \epsilon, x - \epsilon, \bar{x}$.

• We show that $P = (1, 0, 0) \in \text{cl}(\text{ext}(C))$ but at the same time (1, 0, 0) is not an extreme point. In fact, P is not an extreme point is clear: $P = \frac{1}{2}((1, 0, 1) + (1, 0, -1))$ and thus P is not extreme point. Now we show $Q = (x, y, 0) \in \text{ext}(C)$ for all $Q \neq P$. Let

$$H_Q = \{ z \in \mathbb{R}^3 : \langle z, Q \rangle = 1 \}.$$

Then since $x^2 + y^2 = 1$ and $Q \neq P$, x < 1 and hence

$$\langle (1,0,-1),Q\rangle = \langle (1,0,1),Q\rangle = x < 1 \Rightarrow (1,0,-1), (1,0,1) \in \{z \in \mathbb{R}^3 : \langle z,Q\rangle < 1\}.$$

However, let $(x', y', 0) \in C$ with $(x', y') \neq (x, y)$. Then due to Cauchy-Schwartz inequality we have

$$\langle (x',y'),(x,y)\rangle < \sqrt{||(x',y')||||(x,y)||} = 1 \Rightarrow \langle (x',y',0),Q\rangle < 1.$$

Thus, C which is the convex hull of (x', y', 0) with $x'^2 + y'^2 = 1$ and (1, 0, 1), (1, 0, -1) lie inside $\{z \in \mathbb{R}^3 : \langle z, Q \rangle \leq 1\}$ and P is the only point of $C \cap H$. Hence, P is a vertex.

Now let
$$P_n = (\sqrt{1 - \frac{1}{n}}, \sqrt{\frac{1}{n}}, 0)$$
 for $n \in \mathbb{N}$. Then $\lim_n P_n = P$ and thus $P \in \text{cl}(\text{ext}(C))$.

4.1.21 Essential smoothness

For any convex function f and any point $x \in \operatorname{bd} \operatorname{dom} f$, prove $\partial f(x)$ is either empty or unbounded. Deduce that a function is essentially smooth if and only if its subdifferential is always singleton or empty.

Proof: Let C = dom f. Note that according to problem 4.1.20, $N_C(\bar{x}) = \{0\}$ implies $\bar{x} \in \text{ri} C$. Thus, there exists $s \in N_C(\bar{x})$ and if $\phi \in \partial f(\bar{x})$ then

$$\langle \phi + s, y - \bar{x} \rangle + f(\bar{x}) \le f(y) \ \forall y \in \mathbb{E}.$$

Note that the above holds for $y \notin C$ obviously, and if $y \in C$, then $\langle s, y - \bar{x} \rangle \leq 0$ and the result follows from the fact that $\phi \in \partial f(\bar{x})$. Thus, $\phi + ts \in \partial f(\bar{x})$ for all $t \in \mathbb{R}_+$.

2 Fenchel Biconjugation

4.2.12 Compact bases for cones

Consider a closed convex cone K. Using Moreau-Rockafellar theorem, show that a point x lies in int(K) if and only if the set $\{\phi \in K^- : \langle \phi, x \rangle \ge -1\}$ is bounded. If the set $\{\phi \in K^- : \langle \phi, x \rangle = -1\}$ is nonempty and bounded, prove $x \in int(K)$.

Proof: First, suppose $x \in \text{int}(K)$. Then there exists $\epsilon > 0$ such that $x + \epsilon d \in K$ for all $d \in \mathbb{E}$ with ||d|| = 1. So, if $\langle \phi, x \rangle \ge -1$ for some $0 \ne \phi \in K^-$, then since $x + \epsilon \phi/||\phi|| \in K$, then $\langle \phi, x + \epsilon \phi/||\phi|| \rangle \le 0$. Thus, $\epsilon ||\phi|| - 1 \le 0$ and hence $||\phi|| \le 1/\epsilon$.

Conversely, suppose $\{\phi \in K^- : \langle \phi, x \rangle \ge -1\}$ is bounded. Thus first note that if $\langle \phi, x \rangle = 0$ for some $\phi \in K^-$ then $\phi = 0$. Now, let $f(.) = \langle ., x \rangle + \delta_{K^-}(.)$. Then clearly,

$$f^*(\psi) = \sup_{\phi \in K^-} \langle \psi, \phi \rangle - \langle x, \phi \rangle = \sup_{\phi \in K^-} \langle \psi - x, \phi \rangle.$$

Note that $f^*(0) = 0$ and thus f^* is bounded about 0. Thus, for all $\psi_i \to x$, $\langle \psi_i - x, \phi \rangle \leq 0$ for all $\phi \in K^-$. So, $\langle \psi_i, \phi \rangle \leq \langle x, \phi \rangle \leq 0$ for all $\phi \in K^-$. Thus, $\psi_i \in K$, and hence x lies inside the interior of K.

Now suppose the set $\{\phi \in K^- : \langle \phi, x \rangle = -1\}$ is nonempty and bounded. Then let $0 \neq \phi \in K^-$ such that $\langle \phi, x \rangle \geq -1$. Then since $\langle \phi, x \rangle \neq 0$, then $\langle \phi/|\langle \phi, x \rangle|, x \rangle = -1$. So, $||\phi||/|\langle \phi, x \rangle| \leq M$. Thus, $||\phi|| \leq M|\langle \phi, x \rangle| \leq M$.

4.2.13

For any function $h: \mathbb{E} \to [-\infty, +\infty]$, prove the set cl(epi h) is the epigraph of some function.

Proof: Let

$$f(x) := \inf\{y : (x, y) \in \operatorname{cl}(\operatorname{epi} h)\}.$$

Then, note that if $(x, y_i) \in \text{cl}(\text{epi } h) \to (x, f(x))$, then $(x, f(x)) \in \text{cl}(\text{epi } h)$ as the latter is closed. Now, note that for r > 0 and some $(x, y) \in \text{cl}(\text{epi } h)$, since there exists $(x_i, y_i) \in \text{epi } h$ such that $(x_i, y_i) \to (x, y)$. Then since $(x_i, y_i + r) \in \text{epi } h$ and $(x_i, y_i + r) \to (x, y + r)$ we realize that $(x, y + r) \in \text{cl}(\text{epi } h)$. Thus, cl(epi h) = epi f.

4.2.14 Lower semicontinuity and closure

For any convex function $h: \mathbb{E} \to [-\infty, +\infty]$ and any point x^0 in \mathbb{E} , prove

$$(\operatorname{cl} h)(x^0) = \lim_{\delta \downarrow 0} \inf_{||x-x^0|| < \delta} h(x).$$

Deduce

Proposition 4.2.7 If a function $f: \mathbb{E} \to [-\infty, +\infty]$ is convex then it is lower semi-continuous at a point x where it is finite if and only if $f(x) = \operatorname{cl} f(x)$. In this case, f is proper.

Proof:

4.2.15

For any point x in \mathbb{E} and any function $h: \mathbb{E} \to (-\infty, +\infty]$ with a sub-gradient at x, prove h is lower semicontinuous at x.

Proof: Note that

$$(\operatorname{cl} f)(x) = \lim_{\delta \downarrow 0} \inf_{||y-x|| \le \delta} f(y) \le f(x).$$

However, suppose $s \in \partial f(x)$. Then

$$\langle s, y - x \rangle + f(x) \le f(y) \ \forall y \in \mathbb{E},$$

and thus

$$\inf_{||y-x|| \le \delta} f(y) \ge f(x) - \delta||s|| \Rightarrow (\operatorname{cl} f)(x) \ge f(x).$$

Thus, $\operatorname{cl} f(x) = f(x)$ and due to Proposition 4.2.7, since f is finite at x as otherwise $f \equiv +\infty$ and in that case obviously f is lower semicontinuous everywhere, we have f is lower semicontinuous at x.

4.2.16. Von Neumann's minmax theorem

Suppose Y is a Euclidean space. Suppose that the sets $C \subseteq \mathbb{E}$ and $D \subseteq Y$ are nonempty and convex with D closed and that the map $A : \mathbb{E} \to Y$ is linear.

Proof:

• By considering the Fenchel problem

$$\inf_{x \in \mathbb{E}} \{ \delta_C(x) + \delta_D^*(Ax) \}$$

prove

$$\inf_{x \in \mathbb{E}} \sup_{y \in D} \langle y, Ax \rangle = \max_{y \in D} \inf_{x \in C} \langle y, Ax \rangle$$

(where the max is attained if finite), under the assumption

$$0 \in \operatorname{core}(\operatorname{dom} \delta_D^* - AC).$$

- Prove property above holds in either of the two cases
 - 1. D is bounded, or
 - 2. A is surjective and 0 lies in int C.
- Suppose both C and D are compact. Prove

$$\min_{x \in C} \max_{y \in D} \langle y, Ax \rangle = \max_{y \in D} \min_{x \in C} \langle A^*y, x \rangle.$$

Proof:

• Note that under the assumption $0 \in \operatorname{core}(\operatorname{dom} \delta_D^* - AC)$.

$$\inf_{x \in \mathbb{E}} \{ \delta_C(x) + \delta_D^*(Ax) \} = \sup_{y \in Y} \{ -\delta_C^*(A^*y) - \delta_D(-y) \},$$

since D is closed, δ_D is a closed convex function. Also,

$$\inf_{x \in \mathbb{E}} \{ \delta_C(x) + \delta_D^*(Ax) \} = \inf_{x \in C} \{ \delta_D^*(Ax) \} = \inf_{x \in C} \sup_{y \in D} \langle y, Ax \rangle = \inf_{x \in C} \max_{y \in D} \langle y, Ax \rangle.$$

Also,

$$\sup_{y\in Y} \{-\delta_C^*(A^*y) - \delta_D(-y)\} = \sup_{y\in -D} \{-\delta_C^*(A^*y)\} = \sup_{y\in -D} \{-\sup_{x\in C} \langle x, A^*y\rangle\} = \sup_{y\in -D} \inf_{x\in C} \langle x, -A^*y\rangle,$$

which equals to $\max_{y \in D} \inf_{x \in C} \langle x, A^*y \rangle$.

• Note that

$$\delta_D^*(x) = \sup_{y \in D} \langle x, y \rangle \Rightarrow \operatorname{dom} \delta_D^* = \mathbb{E}.$$

Also, if A is surjective and 0 lies in interior of C, then since $0 \in \text{dom } \delta_D^*$, then due problem 4.1.9 we are done.

• Clear!

4.2.8. Closed subdifferential

If a function $h: \mathbb{E} \to (\infty, +\infty]$ is closed, prove the multifunction ∂h is closed: that is,

$$\phi_r \in \partial h(x_r), x_r \to x, \phi_r \to \phi \Rightarrow \phi \in \partial h(x).$$

Deduce that if h is essentially smooth and a sequence of points x_r in int(dom h) approaches a point in ∂ (dom h) then $||\nabla h(x_r)|| \to \infty$.

Proof: Let $y \in \mathbb{E}$ then

$$\langle \phi_r, y - x_r \rangle + h(x_r) \le h(y).$$

But, since h is lower semicontinuous at x, we have

$$h(x) \le \liminf_{r \to +\infty} h(x_r) \le h(y) - \langle \phi, y - x \rangle.$$

Hence, $\phi \in \partial h(x)$.

Note that if $\partial h(x) \neq \emptyset$ then h has Gâteaux differential at x and hence $x \in \operatorname{int} \operatorname{dom}(h)$. So $\partial h(x) = \emptyset$ and thus if $||\nabla h(x_r)|| \leq C$ for some C, w can assume that $\nabla h(x_r) \to \phi$ for some $\phi \in \mathbb{E}$ and thus $\phi \in \partial h(x)$ which is a contradiction.

4.2.9. Support functions

Prove that if the set $C \subseteq \mathbb{E}$ is nonempty then δ_C^* is a closed sublinear function and $\delta_C^{**} = \delta_{\operatorname{cl\,conv}\,C}$. Prove that if C is also bounded then δ_C^* is everywhere finite.

• Prove that any sets $C, D \subseteq \mathbb{E}$ satisfy

$$\delta_{C+D}^* = \delta_C^* + \delta_D^* \text{ and }$$

$$\delta_{\text{conv}(C \cup D)}^* = \max(\delta_C^*, \delta_D^*).$$

• Suppose the function $h: \mathbb{E} \to (-\infty, +\infty]$ is positively homogeneous, and define a closed convex set

$$C = \{ \phi \in \mathbb{E} : \langle \phi, d \rangle \le h(d) \; \forall d \}.$$

Prove $h^* = \delta_C$. Prove that if h is in fact sublinear and everywhere finite then C is nonempty and compact.

Proof:

• Let $c \in \mathbb{R}$, then

$$\delta_C^*(x) \le c \iff \langle x, y \rangle - \delta_C(y) \le c \ \forall y \in C \iff x \in \cap_{y \in C} H_y,$$

where $H_y = \{ \phi \in \mathbb{E} : \langle \phi, y \rangle \leq c \}$. Thus δ_C^* is closed.

Also, let $\lambda \in \mathbb{R}_+$, then

$$\delta_C^*(\lambda x) = \sup_{y \in \mathbb{E}} \langle \lambda x, y \rangle - \delta_C(y) = \lambda \sup_{y \in \mathbb{E}} \langle x, y \rangle - \delta_C(y) = \lambda \delta_C^*(x).$$

Now let $x, y \in \mathbb{E}$, then

$$\langle x + y, z \rangle - \delta_C(z) = \langle x + y, z \rangle - 2\delta_C(z).$$

On the other hand,

$$\delta_C^*(x) + \delta_C(z) \ge \langle x, z \rangle, \ \delta_C^*(y) + \delta_C(z) \ge \langle y, z \rangle.$$

Thus, it can be derived from the above two statements

$$\langle x + y, z \rangle - \delta_C(z) \le \delta_C^*(x) + \delta_C^*(y).$$

Now, let $\bar{x} \in \operatorname{cl}\operatorname{conv}(C)$, then we want to show that

$$\delta_C^{**}(\bar{x}) = 0.$$

Note that $\delta_C^*(0) = 0$ as C is nonempty, thus $\delta_C^{**}(\bar{x}) \geq 0$. Now we want to show for all $y \in \mathbb{E}$, $\langle \bar{x}, y \rangle - \delta_C^*(y) \leq 0$, or $\langle \bar{x}, y \rangle \leq \delta_C^*(y)$. So, we can suppose that $x \in \text{conv}(C)$ and hence $x = \sum_i \lambda_i x_i$ for some $x_i \in C$. Now note that $\langle x_i, y \rangle \leq \delta_C^*(y)$ and hence

$$\lambda_i \langle x_i, y \rangle \le \lambda_i \delta_C^*(y) \Rightarrow \langle \bar{x}, y \rangle \le \delta_C^*(y),$$

for all $y \in C$. Thus $\delta_C^{**}(\bar{x}) \leq 0$.

Now let $\bar{x} \in C \setminus \operatorname{clconv}(C)$. So, there exists $\phi \in \mathbb{E}$ such that $\langle \bar{x}, \phi \rangle > b \geq \langle y, \phi \rangle$ for all $y \in C$. Thus $\delta_C^*(y) \leq b$

$$\delta_C^{**}(\bar{x}) \ge \langle \bar{x}, \phi \rangle - \delta_C^*(\phi) \ge \langle \bar{x}, \phi \rangle - b > 0.$$

Thus $\delta_C^{**}(\bar{x}) \geq \langle \bar{x}, \lambda \phi \rangle - \delta_C^*(\lambda \phi) = \lambda(\langle \bar{x}, \phi \rangle - \delta_C^*(\phi)) \to +\infty$. Thus, $\delta_C^{**}(\bar{x}) = +\infty$. Now, suppose $C \subseteq rB$ for some r > 0. Then $\delta_C^*(\bar{x}) = \sup_{y \in C} \langle x, y \rangle \leq \sup_{y \in rB} \langle x, y \rangle \leq r||x|| < +\infty$.

- Very easy! Omitted.
- C is trivially closed and convex, and if $\phi \notin C$, then $h^*(\phi) > 0$ by definition of C. However, if $\langle \phi, d \rangle - h(d) > 0$ for some $d \in \mathbb{E}$, then $\langle \phi, td \rangle - h(td) \to +\infty$ as $t \to +\infty$. Thus, $h^*(\phi) = \infty$. Now, let $\phi \in C$, then $\langle \phi, d \rangle - h(d) \leq 0$ by definition and hence $h^*(\phi) \leq 0$. However, $\langle \phi, 0 \rangle - h(0) = 0$. Thus, $h^*(\phi) = 0$. Therefore, we have proved that $h^* = \delta_C$. Now, since h is sublinear and everywhere finite $h(d) \leq M$, for some M > 0, for all ||d|| = 1. Thus, for $\phi \in C$, we have $\langle \phi, d \rangle \leq M$ for all ||d|| = 1 and hence $||\phi|| \leq M$. Now, if $C = \emptyset$, then $h^* \equiv +\infty$ and thus since h is closed and convex we have $h = h^{**}$, we obtain $h \equiv -\infty$ which is a contradiction.

4.2.21 cofiniteness

Consider a function $h: \mathbb{E} \to (\infty, +\infty]$ and the following properties:

- 1. $h(.) \langle \phi, . \rangle$ has bounded level sets for all ϕ in \mathbb{E} .
- 2. $\lim_{\|x\| \to \infty} \|x\|^{-1} h(x) = +\infty$.
- 3. h^* is everywhere finite.

Complete the following steps.

- Prove properties 1 and 2 are equivalent.
- \bullet If h is closed, convex and proper, use and Moreau-Rockafellar theorem to prove properties 1 and 3 are equivalent.

Proof:

• Suppose 1 holds. Then if $\lim_{||x||\to\infty} ||x||^{-1}h(x) = +\infty$ does not hold true then there exists x_i with $||x_i|| \to +\infty$ such that $||x_i||^{-1}h(x_i) \le C$ for some constant C > 0. Thus, since $||x_i|| \to +\infty$ and hence

$$h(x_i) - \langle \phi, x_i \rangle \to +\infty,$$

for all $\phi \in \mathbb{E}$. However, without loss of generality, suppose that $||x_i||^{-1}x_i \to v$ for some $v \in \mathbb{E}$. Then, let $\phi = Cv$. We have

$$||x_i||^{-1}\langle\phi,x_i\rangle\uparrow C.$$

However, $||x_i||^{-1}(h(x_i) - \langle \phi, x_i \rangle) \leq C - C \leq 0$ and hence $h(x_i) - \langle \phi, x_i \rangle \to +\infty$ cannot hold true.

Conversely, suppose that 2 holds, and $\phi \in \mathbb{E}$. Then $\lim_{||x|| \to \infty} ||x||^{-1} (h(x) - \langle \phi, x \rangle) = +\infty$. and thus without loss of generality we can assume that $\phi = 0$. Now suppose $h(x) \leq M$ is not bounded for some $M \in \mathbb{R}$ and hence there exists $||x_i|| \to +\infty$ such that $h(x_i) \leq M$. So $\lim_{i \to \infty} ||x_i||^{-1} h(x_i) = 0$, which is a contradiction.

• Let $h_{\phi}(.) := h(.) - \langle \phi, . \rangle$. Then $h_{\phi}^{*}(\psi) = h^{*}(\phi + \psi)$. Thus h^{*} is continuous at ϕ if and only if h_{ϕ}^{*} is continuous at 0. But, we know h_{ϕ}^{*} has bounded level set if and only if h_{ϕ}^{*} is continuous at zero. Hence, h^{*} is finite everywhere.

4.2.22 Computing closures

- Prove that any closed convex function $g: \mathbb{R} \to (\infty, +\infty]$ is continuous on its domain.
- Consider a convex function $f: \mathbb{E} \to (\infty, +\infty]$. For any point $x \in \mathbb{E}$ and any $y \in \operatorname{int}(\operatorname{dom} f)$, prove

$$f^{**}(x) = \lim_{t \uparrow 1} f(y + t(x - y)).$$

Proof:

• Without loss of generality assume that $\operatorname{aff}(\operatorname{dom} f) = \mathbb{E}$. Note that $f = f^{**}$ is continuous at 0 if and only if f^* has bounded level sets.

Suppose this does not hold. Then there exists $x_i \in \mathbb{E}$ such that $||x_i|| \to +\infty$ and

$$f^*(x_i) \leq M$$
 for some $M > 0$.

So, for every $y \in \mathbb{E}$ and every $i = 1, 2, \cdots$ we have

$$\langle x_i, y \rangle \le f(y) + M \Rightarrow \langle x, y \rangle \le f(y) + M \ \forall x \in \text{conv}\{x_1, x_2, \dots\}.$$

But since $||x_i|| \to +\infty$, $C = \text{conv}\{x_1, x_2, \dots\}$ is unbounded and thus $d \in 0^+(C)$ for some $d \neq 0$. Thus, for all $t \in \mathbb{R}_+$,

$$\langle x_1 + td, y \rangle \le f(y) + M \Rightarrow \langle d, y \rangle \le 0 \ \forall y \in ri(dom f).$$

But, then d=0 as $aff(dom f)=\mathbb{E}$. This contradiction completes the proof.

4.2.24 Fisher information function

Let $f: \mathbb{R} \to (\infty, +\infty]$ be a given function, and define a function $g: \mathbb{R}^2 \to (\infty, +\infty]$ by

$$g(x,y) = \begin{cases} yf(\frac{x}{y}) & \text{if } y > 0 \\ +\infty & \text{otherwise.} \end{cases}$$

• Prove g is convex if and only if f is convex.

Proof:

• Suppose f is convex with epi $f = C \subseteq \mathbb{R}^2$. Then C is convex. Now $((x, y), r) \in \text{epi } g$ for some y > 0 if and only if

$$r \ge yf(\frac{x}{y}) \iff (\frac{x}{y}, \frac{r}{y}) \in C \iff (x, r) \in yC.$$

Now for some $\lambda \in (0,1)$ and $((x_1,y_1),r_1),((x_2,y_2),r_2) \in \text{epi } g$ we have $\lambda((x_1,y_1),r_1) + (1-\lambda)((x_2,y_2),r_2) \in \text{epi } g$ if and only if

$$(\lambda x_1 + (1 - \lambda)x_2, \lambda r_1 + (1 - \lambda)r_2) \in (\lambda y_1 + (1 - \lambda)y_2)C,$$

which holds true as C is convex and $(x_1, r_1) \in y_1C$ and $(x_2, r_2) \in y_2C$.

Now conversely suppose that epi g is convex, then $(x,r) \in C$ if and only if $((x,1),r) \in$ epi g. Thus, C is the image of the projection of epi $g \cap \{y=1\}$ onto \mathbb{R}^2 . Hence, C is convex.

3 Lagrangian Duality

4.3.1 Weak duality

Prove that the primal and dual values p and d defined by equations

$$p = \inf_{x \in \mathbb{E}} \sup_{\lambda \in \mathbb{R}^n_+} L(x; \lambda), d = \sup_{\lambda \in \mathbb{R}^n_+} \inf_{x \in \mathbb{E}} L(x; \lambda),$$

satisfies $d \leq p$.

Proof: We only need to show $\inf_{x\in\mathbb{E}} L(x;\tilde{\lambda}) \leq \sup_{\lambda\in\mathbb{R}^n_+} L(\tilde{x};\lambda)$ for fixed $\tilde{\lambda}\in\mathbb{R}^n_+$ and $\tilde{x}\in\mathbb{E}$. But, $\inf_{x\in\mathbb{E}} L(x;\tilde{\lambda}) \leq L(\tilde{x};\tilde{\lambda}) \leq \sup_{\lambda\in\mathbb{R}^n_+} L(\tilde{x};\lambda)$.

4.3.2

Calculate the Lagrangian dual of the problem:

$$\inf_{x \in \mathbb{R}_{++}^n} \{ \sum_{i=1}^n \frac{c_i}{x_i} : \sum_{i=1}^n a_i x_i \le b \},$$

where $a_1, c_1, \dots, a_n, c_n, b \in \mathbb{R}_{++}$.

Proof: Define $\Phi(\lambda) = \inf_{x \in \mathbb{R}^n_{++}} L(x; \lambda)$. Fix $\tilde{\lambda} \in \mathbb{R}_{++}$. Then

$$L(x; \tilde{\lambda}) = \sum_{i=1}^{n} \frac{c_i}{x_i} + \tilde{\lambda} \left(\sum_{i=1}^{n} a_i x_i - b\right) = -\tilde{\lambda} b + \sum_{i=1}^{n} \frac{c_i}{x_i} + \tilde{\lambda} a_i x_i \ge -\tilde{\lambda} b + 2 \sum_{i=1}^{n} \sqrt{\tilde{\lambda} c_i a_i}.$$

Note that equality happens if $x_i = \frac{c_i}{\bar{\lambda}a_i}$ and $x_i = +\infty$ if $\tilde{\lambda} = 0$. Thus, $\Phi(\tilde{\lambda}) = -\tilde{\lambda}b + 2\sum_{i=1}^n \sqrt{\tilde{\lambda}c_ia_i}$. Note that $\Phi(\lambda^2)$ is a concave function in λ . Thus,

$$\Phi(\lambda^2) = -\lambda^2 b + 2\lambda \sum_{i=1}^n \sqrt{c_i a_i} \Rightarrow \sup_{\lambda \in \mathbb{R}_+^n} \Phi(\lambda^2) = \sup_{\lambda \in \mathbb{R}_+^n} -\lambda^2 b + 2\lambda \sum_{i=1}^n \sqrt{c_i a_i}.$$

However, the supremum happens at $\lambda^* = \frac{\sum \sqrt{c_i a_i}}{b}$. Thus $d = \frac{(\sum \sqrt{c_i a_i})^2}{b}$.

4.3.3 (Slater and compactness)

Prove the Slater condition holds for problem

$$\inf\{f(x): g(x) \le 0, x \in \mathbb{E}\},\$$

if and only if there exists $\hat{x} \in \mathbb{E}$ for which the level sets

$$\{\lambda \in \mathbb{R}^n_+ : -L(\hat{x};\lambda) \le \alpha\},\$$

is compact for all $\alpha \in \mathbb{R}$.

Proof: Suppose there exists a Slater point, then $-\lambda^T g(\hat{x}) \leq \alpha$ has compact level sets for all $\alpha \in \mathbb{R}$. In fact, for each $i = 1, \dots, m$, we have $-\lambda_i g_i(\hat{x}) \leq \alpha$. Thus, $\lambda_i \leq \frac{\alpha}{-g_i(\hat{x})}$. Thus, λ is bounded above.

Conversely, suppose $\{\lambda \in \mathbb{R}^n_+ : -L(\hat{x}; \lambda) \leq \alpha\}$, is compact for all $\alpha \in \mathbb{R}$. Then, if some $i, g_i(\hat{x}) \geq 0$, then if $\mu \in \{\lambda \in \mathbb{R}^n_+ : -L(\hat{x}; \lambda) \leq \alpha\}$, then so is $\mu + te_i$ for all $t \geq 0$. Thus, $\{\lambda \in \mathbb{R}^n_+ : -L(\hat{x}; \lambda) \leq \alpha\}$ is empty for all real α , which is a contradiction.

4.3.4 (Examples of duals)

Calculate the Lagrangian duals for the following problem:

• The linear program

$$\inf_{x \in \mathbb{R}^n} \{ \langle c, x \rangle : \langle a^i, x \rangle \le b_i \text{ for } i = 1, \dots, m \}.$$

Proof: Let $A = [a^1| \cdots | a^m]$, then $\langle a^i, x \rangle \leq b_i$ translates into $A^T x \leq b$. We have

$$\langle c, x \rangle + \lambda^T (A^T x - b) = \langle c + A\lambda, x \rangle - \lambda^T b.$$

Thus the dual problem is as follows:

$$\sup_{A\lambda+c=0,\lambda\in\mathbb{R}^m_+}-\lambda^T b.$$

• Another linear program

$$\inf_{x \in \mathbb{R}^n} \{ \langle c, x \rangle + \delta_{\mathbb{R}^n_+(x)} : \langle a^i, x \rangle \le b_i \text{ for } i = 1, \dots, m \}.$$

Proof: Again

$$\langle c, x \rangle + \lambda^T (A^T x - b) = \langle c + A\lambda, x \rangle - \lambda^T b.$$

Thus, the dual problem is a follows:

$$\sup_{A\lambda+c\geq 0,\lambda\in\mathbb{R}^m_+}-\lambda^T b.$$

• The quadratic program for some $C \in \mathbb{S}_{++}^n$

$$\inf_{x \in \mathbb{R}^n} \{ \frac{1}{2} (x^T C x) : \langle a^i, x \rangle \le b_i \text{ for } i = 1, \dots, m \}.$$

Proof: We have

$$\frac{1}{2}(x^TCx) + \lambda^T(A^Tx - b)$$
 is strictly convex w.r.t x ,

thus the dual function equals to (for $Cx^* + A\lambda = 0$)

$$\inf_{x \in \mathbb{R}} \Phi(\lambda) = -\frac{1}{2} x^{*T} A \lambda + \lambda^T A^T x^* - \lambda^T b = \frac{1}{2} x^{*T} A \lambda - \lambda^T b = -[\frac{1}{2} (C^{-1} A \lambda)^T A \lambda + \lambda^T b],$$

Hence,

$$\sup_{\lambda > 0} - [\frac{1}{2}(C^{-1}A\lambda)^T A\lambda + \lambda^T b] = -\inf_{\lambda \ge 0} \frac{1}{2}(\lambda^T A^T C^{-T} A\lambda) + \lambda^T b = \frac{1}{2}b^T A^{-1} C A^{-T} b.$$

• The *separable* problem

$$\inf_{x \in \mathbb{R}^n} \{ \sum_{j=1}^n p(x_j) : \langle a^i, x \rangle \le b_i \text{ for } i = 1, \dots, m \}$$

for a given function $p: \mathbb{R} \to (\infty, +\infty]$

Proof:
$$\Phi(\lambda) = \inf_{x \in \mathbb{E}} \sum_{j=1}^{n} (p(x_j) + \lambda_j(\langle a^j, x \rangle - b_j))$$

4.3.7

Given a matrix C in \mathbb{S}^n_{++} , calculate

$$\inf_{X\in\mathbb{S}^n_{++}}\{\mathrm{Tr}(CX):-\log\det(X)\leq 0\}$$

by the Lagrangian duality.

Proof: Suppose that b < n and consider the problem

$$\inf_{X \in \mathbb{S}^n_{++}} \{ \operatorname{Tr}(CX) : -\log \det(X) \le b \}$$

Let $\lambda \in \mathbb{R}_+$. Then the Lagrangian equals to

$$\operatorname{Tr}(CX) - \lambda \log \det(X) - \lambda b \Rightarrow \Phi(\lambda) = -\lambda b + \inf_{X \in \mathbb{S}^n_{++}} \operatorname{Tr}(CX) - \lambda \log \det(X).$$

Note that $\nabla^2(\operatorname{Tr}(CX) - \lambda \log \det(X)) = \lambda X^{-2} \succeq 0$. Thus, since $\nabla(\operatorname{Tr}(CX) - \lambda \log \det(X)) = C - \lambda X^{-1}$, we have $\Phi(\lambda) = -\lambda b + n\lambda + \lambda \log \det(C) - n\lambda \log \lambda$ for $\lambda > 0$ and $\Phi(0) = 0$.

Now note that $(n\lambda + \lambda \log \det(C) - n\lambda \log \lambda)'' = -n/\lambda < 0$ for $\lambda \in \mathbb{R}_{++}$. Now notice $(-\lambda b + n\lambda + \lambda \log \det(C) - n\lambda \log \lambda)' = -b + \log \det(C) - n \log \lambda$, thus, $\lambda^* = \sqrt[1/n]{e^{-b} \det(C)}$. Notice that $\sup_{\lambda > 0} \Phi(\lambda) = \Phi(\lambda^*) = n\lambda^* - \lambda^* b > 0$.

4.3.8. Mixed constraints

Explain why an appropriate dual for the problem

$$\inf\{f(x) : g(x) \le 0, h(x) = 0\}$$

for a function $h : \text{dom } f \to \mathbb{R}^k$ is

$$\sup_{\lambda \in \mathbb{R}_+^m, \mu \in \mathbb{R}^k} \inf_{x \in \text{dom } f} \{ f(x) + \lambda^T g(x) + \mu^T h(x) \}.$$

Proof: Come on!

4.3.9. Fenchel and Lagrangian duality

Let Y be a Euclidean space. By suitably rewriting the problem Fenchel problem

$$\inf_{x \in \mathbb{E}} \{ f(x) + g(Ax) \}$$

for given function $f: \mathbb{E} \to (\infty, +\infty]$, $g: Y \to (\infty, +\infty]$ and linear map $A: \mathbb{E} \to Y$, interpret the dual Fenchel problem

$$\sup_{\phi \in Y} \{ -f^*(A^*\phi) - g^*(-\phi) \}$$

as a Lagrangian dual problem.

Proof: Note that

$$\inf_{x \in \mathbb{E}} \{ f(x) + g(Ax) \} = \inf_{(x,y) \in \mathbb{E}^2} \{ f(x) + g(y) : Ax = y \}.$$

Thus, $L(x, y, \phi) = f(x) + g(y) + \langle \phi, Ax - y \rangle$ with $L : \mathbb{E}^2 \times \mathbb{R} \to [-\infty, +\infty]$. Then

$$\Phi(\phi) = \inf_{(x,y)} f(x) + g(y) + \langle \phi, Ax - y \rangle = -\sup_{x} [\langle -A^*\phi, x \rangle - f(x)] - \sup_{y \in \mathbb{E}} [\langle \phi, y \rangle - g(y)]$$

which equals to $-f^*(-A^*\phi) - g^*(\phi)$. This completes the proof.

Chapter V Special cases

March 11, 2023

1 Functions of Eigenvalues

5.2.11 Semidefinite complementarity Suppose matrices X and Y lie in \mathbb{S}^n_+ .

- If Tr(XY) = 0, prove $-Y \in \partial \delta_{\mathbb{S}^n}(X)$.
- Hence prove the following properties are equivalent:
 - 1. Tr(XY) = 0.
 - 2. XY = 0.
 - 3. XY + YX = 0.
- Prove for any matrices U and V in \mathbb{S}^n

$$(U^2 + V^2)^{\frac{1}{2}} = U + V \iff U, V \succ 0, \text{Tr}(UV) = 0.$$

Proof:

- Note that $\langle -Y, Z X \rangle = \langle -Y, Z \rangle = -\langle Y, Z \rangle \le 0$ for all $Z \in \mathbb{S}^n_+$. Thus, $-Y \in \partial \delta_{\mathbb{S}^n_+}(X)$.
- Suppose $\operatorname{Tr}(XY)=0$ and hence $-Y\in\partial\delta_{\mathbb{S}^n_+}(X)$. Thus, we have $\lambda(-Y)\in\delta_{\mathbb{R}^n_+}(\lambda(X))$ and so $\langle\lambda(-Y),\lambda(X)\rangle=0$. Thus, $\operatorname{Tr}(X(-Y))=\langle\lambda(-Y),\lambda(X)\rangle=0$. Thus, X and -Y have common spectral decomposition. But, $\lambda(X)\geq 0$ and $\lambda(-Y)\leq 0$ and hence $\langle\lambda(-Y),\lambda(X)\rangle$ along with the fact that X and -Y have common spectral decomposition implies -XY=0. The rest is clear.
- Suppose $(U^2+V^2)^{\frac{1}{2}}=U+V$ then since $U^2+V^2\succeq (U^2)^{\frac{1}{2}}$, we should have $U+V=(U^2+V^2)^{\frac{1}{2}}\succeq (U^2)^{\frac{1}{2}}\succeq U$. Note that if $U=Q\operatorname{Diag}(\lambda)Q^T$ for some $\lambda\in\mathbb{R}^n$ and some $Q\in O(n)$, then $(U^2)^{\frac{1}{2}}=Q\operatorname{Diag}(|\lambda|)Q^T$. Hence, $V\succeq 0$ and similarly $U\succeq 0$. Now since $(U^2+V^2)^{\frac{1}{2}}=U+V$ we have $U^2+V^2=U^2+V^2+UV+VU$ and hence $\operatorname{Tr}(UV)=0$. The other way is clear.

Chapter VI Nonsmooth Optimization

March 11, 2023

1 Generalized Derivatives

6.1.2 Continuity of Dini derivative

For a point in \mathbb{E} , prove the function $f^-(x;.)$ is Lipschitz if f is locally Lipschitz around x.

Proof: Note that

$$|f^{-}(x;h_1) - f^{-}(x;h_2)| = |\liminf_{t \downarrow 0} \frac{f(x+th_1) - f(x)}{t} - \liminf_{t \downarrow 0} \frac{f(x+th_2) - f(x)}{t}|.$$

But, note that lim sup is sublinear and thus

 $\liminf x^r \ge \liminf x^r + y^r + \liminf -y^r \implies \liminf x^r + y^r - \liminf x^r \le \limsup y^r$.

Thus,

$$|\liminf_{t\downarrow 0} \frac{f(x+th_1) - f(x)}{t} - \liminf_{t\downarrow 0} \frac{f(x+th_2) - f(x)}{t}| \le ||h_1 - h_2||.$$

Similarly,

$$|\liminf_{t\downarrow 0} \frac{f(x+th_2) - f(x)}{t} - \liminf_{t\downarrow 0} \frac{f(x+th_1) - f(x)}{t}| \le ||h_1 - h_2||.$$

Hence, $|f^{-}(x; h_1) - f^{-}(x; h_2)| \le ||h_1 - h_2||$.

6.1.4 Surjective Dini subdifferentials

Suppose the continuous function $f: \mathbb{E} \to \mathbb{R}$ satisfies the growth condition

$$\lim_{||x|| \to +\infty} \frac{f(x)}{||x||} = +\infty. \tag{1}$$

For any element $\phi \in \mathbb{E}$, prove there is a point x in \mathbb{E} with $\phi \in \partial_- f(x)$.

Proof: Note that $\langle \phi, . \rangle - f(.)$ also satisfies 1. Thus without loss of generality suppose $\phi = 0$. Thus, we need to show f has a local minimum if f satisfies 1. Suppose not! Then let $B_i := \{x \in \mathbb{E} : ||x|| \le i\}$. Then B_i is compact and thus $f|_{B_i}$ obtains its minimum on B_i and assume it happens at $x_i \in B_i$. If $||x_i|| < i$, then x_i is a local minimum for f and we are done. Thus, suppose $||x_i|| = i$. Hence, we have $f(x_{i+1}) < f(x_i)$ by definition of x_{i+1} and the fact that $x_i \in B_{i+1}$ and also x_i is not a local minimum for $f|_{B_{i+1}}$ (and thus the strict inequality). Now note that $||x_i|| \to +\infty$ and thus $\lim_{i \to +\infty} \frac{f(x_i)}{||x_i||} = +\infty$ which is a contradiction as $f(x_i)$ is decreasing.

6.1.6. Failure of Dini calculus

Show that the inclusion

$$\partial_{-}(f+g)(x) \subseteq \partial_{-}f(x) + \partial_{-}g(x)$$

can fail for locally Lipschitz functions f and g.

Proof: Let $f(x) = ||x|| - ||x||^2$ and also $g(x) = ||x||^2$. Then we claim

$$\partial_-g(0)=\{0\}.$$

If $\phi \in \partial_{-}g(0)$ then for any ||h|| = 1, and small enough t > 0 we have

$$\langle s, th \rangle \le t^2 ||h||^2 \Rightarrow \langle s, h \rangle \le t ||h||^2 \Rightarrow \langle s, h \rangle = 0.$$

Thus, s = 0. It is clear that $0 \in \partial_- g(0)$. However, (f+g)(x) = ||x|| and hence $\partial_- (f+g)(0) = B$. Now if $\partial_- (f+g)(0) \subseteq \partial_- f(0) + \partial_- g(0)$ then $B \subseteq \partial_- f(0)$. Now, let $s \in B$ with ||s|| = 1 and hence $\langle s, ts \rangle \leq t - t^2$ for small enough t. Thus, $t \leq t - t^2$ for small enough t, which is a contradiction.

Side: Note that the function

$$f: B_{\frac{1}{2}} \subseteq \mathbb{E} \to \mathbb{R}, f(x) = \sqrt{1 - ||x||^2}$$

is Lipschitz and also has no Dini subgradient at 0. In fact, suppose $\phi \in \partial_- f(0)$ then for each h with ||h|| = 1,

$$\langle \phi, th \rangle \leq f(th) - 1$$
 for small enough $t > 0$.

But, $f(th) - 1 \le 0$ and thus $\langle \phi, h \rangle \le 0$ for all h and hence $\phi = 0$. Thus, f(th) = 1 if and only if th = 0 or h = 0.

6.1.9. Mean value theorem

• Suppose the function $f: \mathbb{E} \to \mathbb{R}$ is locally Lipschitz. For any points x and y, prove there is a real t in (0,1) satisfying

$$f(x) - f(y) \in \langle x - y, \partial_{\Diamond} f(tx + (1 - t)y) \rangle$$

• Monocity and convexity If the set C in \mathbb{E} is open and convex and the function $f: C \to \mathbb{R}$ is locally Lipschitz, prove f is convex if and only if it satisfies

$$\langle x-y,\phi-\psi\rangle\geq 0 \text{ for all } x,y\in C,\phi\in\partial_{\diamondsuit}f(x)\ \&\ \psi\in\partial_{\diamondsuit}f(y).$$

• If $\partial_{\diamondsuit} f(y) \subseteq kB$ for all points y near x, prove f has local Lipschitz constant k about x.

Proof:

- To be done!
- Suppose that f is convex on C, then $\partial_{\Diamond} f(x) = \partial f(x)$ and thus

$$f(y) \ge f(x) + \langle \phi, y - x \rangle, f(x) \ge f(y) + \langle \psi, y - x \rangle \Rightarrow \langle \phi - \psi, x - y \rangle \ge 0.$$

Conversely, suppose that the above statement holds. Then, let $\phi \in \partial_{\diamondsuit} f(x)$, note that this set is nonempty since f is locally Lipschitz on \mathbb{E} . Then,

$$f(y) - f(x) = \langle y - x, \psi \rangle$$
 for some $\psi \in f(ty + (1 - t)x)$ for some $t \in (0, 1)$.

Now it suffices to prove that $\langle y-x,\psi\rangle\geq \langle y-x,\phi\rangle$. But we have

$$\langle tx + (1-t)y - x, \psi - \phi \rangle \ge 0 \Rightarrow \langle y - x, \psi - \phi \rangle \ge 0.$$

• Let y, z be in a small neighborhood about x, then

$$f(y) - f(z) = \langle y - z, \phi \rangle$$
 for some $\phi \in \partial_{\Diamond} f(w)$ wherein w lies on the line segment $[y, z]$.

Thus,
$$|f(y) - f(x)| \le k||y - z||$$
.

6.1.11 Order statistics

Calculate the Dini, the Michel-Penot, and the Clarke directional derivatives and differentials of the function

$$x \in \mathbb{R}^n \to [x]_k$$
.

Proof:

Dini directional derivative

Suppose that

$$[x]_1 = \cdots = [x]_{l_1} > [x]_{l_1+1} = \cdots = [x]_{l_1+l_2} > \cdots > [x]_{l_1+l_2+\cdots+l_{t-1}+1} = \cdots = [x]_{l_1+\cdots+l_t}$$

and assume

$$h_{i_{1,1}} \ge h_{i_{1,2}} \ge \cdots \ge h_{i_{1,l_1}}, h_{i_{2,1}} \ge \cdots \ge h_{i_{2,l_2}}, \cdots, h_{i_{t,1}} \ge \cdots \ge h_{i_{t,l_t}},$$

wherein, for all $1 \leq j \leq t$

$$S_j := \{i_{j,l_l+\cdots+l_{j-1}+1}, \cdots, i_{j,l_l+\cdots+l_{j-1}+l_j}\} = \{l_1+\cdots+l_{j-1}+1, l_1+\cdots+l_{j-1}+2, \cdots, l_1+\cdots+l_{j-1}+l_j\}.$$

Then, for t > 0 small enough,

$$[x+th]_k = [x]_k + th_{i_{i_k}}$$
 where $k \in S_i$.

Thus, $[.]_k^-(x;h) = h_{i_{j,k}}$.

Michel-Penot directional derivative

From the above discussion we have $[.]_k^{\circ}(x;h) = h_{i_{j,1}}$ where $k \in S_j$.

6.1.12 Closed subdifferentials

• Suppose the function $f: \mathbb{E} \to (\infty, +\infty]$ is convex, and the point x lies in $\operatorname{int}(\operatorname{dom} f)$. Prove the convex subdifferential $\partial f(.)$ is closed at x; in other words, $x^r \to x$ and $\phi^r \to \phi$ in \mathbb{E} with ϕ^r in $\partial f(x^r)$ implies $\phi \in \partial f(x)$.

Suppose the real function f is locally Lipschitz around the point x in \mathbb{E} .

- For any direction h in \mathbb{E} , prove the Clarke directional derivative has the property that $-f^{\circ}(.;h)$ is lower semicontinuous at x.
- Deduce the Clarke subdifferential is closed at x.
- Deduce further the inclusion \subseteq in the Intrinsic Clarke subdifferential theorem:

$$\partial_{\circ} f(x) = \operatorname{conv}\{\lim_{r} \nabla f(x^{r}) : x^{r} \to x, x^{r} \notin S\},\$$

wherein outside of the measure zero set S, f is Gateaux differentiable.

• Show that Dini and Michel-Penot subdifferentials are not necessary closed.

Proof:

- Note that f on int(dom f) is continuous and thus closed. Hence, the proof is complete due to 4.2.8.
- We need to show for any $x^r \to x$ we have

$$\liminf_{r} -f^{\circ}(x^{r}; h) \ge -f^{\circ}(x; h) \iff \limsup_{r} f^{\circ}(x^{r}; h) \le f^{\circ}(x; h).$$

This holds if and only if

$$\limsup_{r} \limsup_{t \downarrow 0, y \to x^r} \frac{f(y+th) - f(y)}{t}.$$

Let $\epsilon > 0$, then let y^r, t_r be such that $||y^r - x^r|| \le \frac{1}{r}$ and $t_r < \frac{1}{r}$.

$$\left| \frac{f(y^r + t_r h) - f(y^r)}{t_r} - \limsup_{t \downarrow 0, y \to x^r} \frac{f(y + t h) - f(y)}{t} \right| \le \frac{\epsilon}{2^r}.$$

Then,

$$\limsup_{r} \limsup_{t \downarrow 0, u \to x^r} \frac{f(y+th) - f(y)}{t} = \limsup_{r} \frac{f(y^r + t_r h) - f(y^r)}{t_r} \le \limsup_{t \downarrow 0, u \to x} \frac{f(y+th) - f(y)}{t} = f^{\circ}(x; h)$$

• Let $x^r \to x$ and also $\phi^r \to \phi$ where $\phi^r \in \partial_{\circ} f(x^r)$. Then we wish to show that $\phi \in \partial_{\circ} f(x)$. This holds true if and only if

$$\langle \phi, h \rangle \le f^{\circ}(x; h).$$

But,

$$\langle \phi, h \rangle = \lim_{r} \langle \phi^r, h \rangle \le \limsup_{r} f^{\circ}(x^r, h) \le f^{\circ}(x; h).$$

This completes the proof.

• Note that $\operatorname{conv}\{\lim_r \nabla f(x^r) : x^r \to x, x^r \notin S\} \subseteq \partial_{\circ} f(x)$ as Clarke subdifferntials are convex and closed. Then we claim that $\operatorname{conv}\{\lim_r \nabla f(x^r) : x^r \to x, x^r \notin S\}$ is compact. In fact, $\operatorname{conv}\{\lim_r \nabla f(x^r) : x^r \to x, x^r \notin S\} \subseteq \partial_{\circ} f(x)$ and thus $\operatorname{conv}\{\lim_r \nabla f(x^r) : x^r \to x, x^r \notin S\}$ is bounded as $\partial_{\circ} f(x)$ is compact. Let $s_i = \lim_r \nabla f(x_i^r) \in \partial_{\circ} f(x)$ with $x_i^r \to x$. Let $||x_i^{r_i} - x|| < \frac{1}{i}$ and $||s_i - \nabla f(x_i^{r_i})|| < \frac{1}{i}$. Now

$$\lim_{j} \nabla f(x_j^{r_j}) = \lim_{j} s_j.$$

Thus, $\lim_j s_j \in \operatorname{conv}\{\lim_r \nabla f(x^r) : x^r \to x, x^r \notin S\}.$

Now let $s \in \partial_{\circ} f(x) \setminus \operatorname{conv}\{\lim_{r} \nabla f(x^{r}) : x^{r} \to x, x^{r} \notin S\}$, then there exists $\phi \in \mathbb{E}$ such that

$$\langle s, \phi \rangle < a < b \le \langle \lim_r \nabla f(x^r), \phi \rangle$$
 wherein $x^r \to x, x^r \notin S$.

Let $\phi = y - x$. Then choose $x^r \to x$ with $x^r \notin S$ and $x^r \in [x, y]$. Thus,

$$0 < b - a \le \langle \nabla f(x^r) - s, y - x \rangle.$$

We obtain a contradiction as we tend r to infinity.

2 Regularity and Strict Differentiability

6.2.6.

Prove that a unique Clarke subgradient implies regularity. Note that the function is Lipschitz about the point x.

Proof: Recall that Clarke subgradient is a unique vector ϕ if and only if

$$\lim_{y \to x, t \downarrow 0} \frac{f(y + th) - f(y)}{t} = \langle \phi, h \rangle.$$

Note that

$$f^{-}(x;h) = -\limsup_{t \downarrow 0} \frac{f((x+th) - th) - f(x+th)}{t} = -\langle \phi, -h \rangle = \langle \phi, h \rangle.$$

This completes the proof.

6.2.7 Strict differentiability

A real function f has strict derivative ϕ at a point x in $\mathbb E$ if and only if it is locally Lipschitz around x with

$$\lim_{y \to x, t \downarrow 0} \frac{f(y+th) - f(y)}{t} = \langle \phi, h \rangle$$

for all direction h in \mathbb{E} . In particular, this holds if f is continuously differentiable around x with $\nabla f(x) = \phi$.

Proof: First, suppose that f has strict derivative ϕ at x. Then if f is not locally Lipschitz around x, then for any fixed $C \in \mathbb{R}_{++}$ and for every i, there exists $y_i, z_i \in B_{\frac{1}{i}}(x)$ such that $|f(y_i) - f(z_i)| > C||y_i - z_i||$. However,

$$0 = \lim_{i \to +\infty, t \downarrow 0} \left| \frac{f(y_i) - f(z_i) - \langle \phi, y_i - z_i \rangle}{||y_i - z_i||} \right| \ge C - \limsup_{i \to +\infty} \frac{\langle \phi, y_i - z_i \rangle}{||y_i - z_i||},$$

so,

$$||\phi|| \ge \limsup_{i \to +\infty} \frac{\langle \phi, y_i - z_i \rangle}{||y_i - z_i||} \ge C,$$

which is a contradiction. Thus, f is locally Lipschitz around x. Now, fix h and let $y \leftarrow y + th$ and $z \leftarrow y$. Thus,

$$0 = \lim_{y \to x, t \downarrow 0} \frac{f(y+th) - f(y) - t\langle \phi, h \rangle}{t} \Rightarrow \lim_{y \to x, t \downarrow 0} \frac{f(y+th) - f(y)}{t} = \langle \phi, h \rangle.$$

Conversely, suppose that

$$\lim_{y \to x, t \downarrow 0} \frac{f(y + th) - f(y)}{t} = \langle \phi, h \rangle$$

for all $\phi \in \mathbb{E}$ and also f is locally Lipschitz around x, then we wish to prove

$$\lim_{y,z\to x,y\neq z} \frac{f(y) - f(z) - \langle \phi, y - z \rangle}{||y - z||} = 0.$$

However, the above equals to,

$$\lim_{z \to x, w \in S^1, t \downarrow 0} \frac{f(z+tw) - f(z) - \langle \phi, tw \rangle}{t} = \lim_{z \to x, w \in S^1, t \downarrow 0} \frac{f(z+tw) - f(z)}{t} - \langle \phi, w \rangle = \lim_{z \to x, w \in S^1, t \downarrow 0} g(z, w, t).$$

Now suppose the above does not hold, then there exists (z_i, w_i, t_i) with $t_i \downarrow 0$ and $w_i \in S^1$ and also $||w_i|| \to ||w||$ such that $|g(z_i, w_i, t_i)| \ge \epsilon$ for some $\epsilon > 0$. However,

$$|g(z_i, w_i, t_i) - g(z_i, w, t_i)| \le ||w - w_i|| + |\langle \phi, w - w_i \rangle|.$$

However, $|g(z_i, w, t_i)| \to 0$ and thus $g(z_i, w_i, t_i) \to 0$ as desired.

Now if f is continuously differentiable then $||\nabla f||$ is bounded above in a neighborhood of x and thus

$$||f(x+h) - f(x)|| \le ||\nabla f(x+th)|| ||h|| \le C||h||,$$

for some constant C; note that $t \in (0,1)$ comes from the Taylor expansion. Now for each $t \in (0,\epsilon)$ for some small enough ϵ , there exists $t^* \in (0,t)$ such that

$$\frac{f(y+th) - f(y)}{t} = \nabla f(y+t^*h)^T h.$$

Now if $y \to x$ and $t \downarrow 0$, then the above tends to $\nabla f(x)^T h = \langle \phi, h \rangle$.

6.1.8

Prove the following results:

- $f^{\circ}(x; -h) = (-f)^{\circ}(x; h)$
- $(\lambda f)^{\circ}(x;h) = \lambda f^{\circ}(x;h)$ for $0 \le \lambda \in \mathbb{R}$.
- $\partial_{\circ}(\lambda f)(x) = \lambda \partial_{\circ} f(x)$ for all λ in \mathbb{R} .

Proof:

• Note that

$$f^{\circ}(x; -h) = \limsup_{y \to x. t \downarrow 0} \frac{f(y - th) - f(y)}{t},$$

and

$$(-f)^{\circ}(x;h) = \limsup_{y \to x, t \downarrow 0} \frac{-f(y+th) + f(y)}{t} = \limsup_{y-th \to x, t \downarrow 0} \frac{-f((y-th) + th) + f(y-th)}{t}.$$

Now note that $y \to x$ is the same as $y - th \to x$.

 $(\lambda f)^{\circ}(x;h) = \limsup_{y \to x, t \downarrow 0} \frac{\lambda f(y+th) - \lambda f(y)}{t} = \lambda \limsup_{y \to x, t \downarrow 0} \frac{f(y+th) - f(y)}{t} = \lambda f^{\circ}(x;h)$

$$\partial_{\circ}(\lambda f)(x) = \{\phi : \langle \phi, h \rangle \le \lambda f^{\circ}(x; h) \ \forall h \in \mathbb{E}\}$$

6.2.9. Mixed sum rules

Suppose that the real function f is locally Lipschitz around the point x in \mathbb{E} and that the function $g: \mathbb{E} \to (infty, +\infty]$ is convex with xinint(dom g). Prove:

- $\partial_{\diamondsuit}(f+g)(x) = \nabla f(x) + \partial g(x)$ if f is Gateaux differentiable at x.
- $\partial_{\circ}(f+g)(x) = \nabla f(x) + \partial g(x)$ if f is strictly differentiable at x.

Proof:

• We have

$$(f+g)^{\diamondsuit}(x;h) = \sup_{u \in \mathbb{E}} \limsup_{t \downarrow 0} \frac{(f+g)(x+th+tu) - (f+g)(x+th)}{t}$$
$$= \langle \nabla f(x), h \rangle + \sup_{u \in \mathbb{E}} \limsup_{t \downarrow 0} \frac{g(x+th+tu) - g(x+th)}{t} = \langle \nabla f(x), h \rangle + g'(x;h).$$

Thus $\nabla f(x) + \phi \in \partial_{\diamondsuit}(f+g)(x)$ if and only if $\langle \phi, h \rangle \leq g'(x;h)$.

• We have

$$(f+g)^{\circ}(x;h) = \limsup_{y \to x, x \downarrow 0} \frac{(f+g)(y+th) - (f+g)(y)}{t}$$

$$= \limsup_{y \to x, t \downarrow 0} \frac{f(y+th) - f(y)}{t} + \limsup_{y \to x, t \downarrow 0} \frac{g(y+th) - g(y)}{t}.$$

$$= \langle \nabla f(x), h \rangle + g'(x;h).$$

Thus $\nabla f(x) + \phi \in \partial_{\circ}(f+g)(x)$ if and only if $\langle \phi, h \rangle \leq g'(x;h)$.

6.2.13 Dense Dini subgradients

Suppose the real function f is locally Liptschitz around the point x in \mathbb{E} . By considering the closet point in epi f to the point $(x, f(x) - \delta)$ (for a small real $\delta > 0$), prove there are Dini Subgradients at points arbitrary close to x.

Proof:

Lemma: Let $B_{\frac{\sqrt{2}}{2}}$ be the ball of radius $\frac{\sqrt{2}}{2}$ around the origin. Then the function $f: \mathbb{E} \to \mathbb{R}$ with $f(x) = \sqrt{1 - ||x||^2}$ is Lipschitz on $B_{\frac{\sqrt{2}}{2}}$.

Proof of Lemma: Note that

$$|\sqrt{1-||x||^2}-\sqrt{1-||y||^2}|\leq |\sqrt{1-||x||^2}-\sqrt{1-||y||^2}||\sqrt{1-||x||^2}+\sqrt{1-||y||^2}|=|||x||^2-||y||^2|\leq 2|||x||-||x||^2+||x||$$

Note that f has no Dini subgradients at 0.

Now let (y, r) to be the closest point on the epigraph from $(x, f(x) - \delta)$. We claim r = f(y). In fact, suppose that r > f(y) and therefore

$$d^2 = (r - f(x) + \delta)^2 + ||x - y||^2 \le (f(y) - f(x) + \delta)^2 + ||x - y||^2 \Rightarrow (r - f(y))(r + f(y) + 2\delta - 2f(x)) \le 0.$$

Thus, $2f(y) + 2\delta - 2f(x) \le r + f(y) + 2\delta - 2f(x) \le 0$. Thus, $f(x) - \delta \ge f(y)$. Note that if $f(y) < f(x) - \delta$, then there exists y' closed enough to y such that $f(y') \le f(x) - \delta$ and also ||x - y'|| < ||x - y||. So, $(y', f(x) - \delta)$ is closer to $(x, f(x) - \delta)$ than $(y, f(x) - \delta)$. Thus, $f(y) = f(x) - \delta$. After all, $r = f(x) - \delta$ which is a contradiction. Thus, r = f(y) and also $f(y) \ge f(x) - \delta$. Now if $y \ne x$, then choose $||x - y|| > \epsilon > 0$ small enough such that $|f(z) - f(x)| < \delta$ for all $||z - x|| < \epsilon$. Then we have

$$(f(z) - f(x) + \delta)^2 + ||x - z||^2 \ge (f(y) - f(x) + \delta)^2 + ||x - y||^2 \ge (f(y) - f(x) + \delta)^2 + ||x - z||^2.$$

Thus, $f(z) - f(x) + \delta \ge f(y) - f(x) + \delta$, or $f(z) \ge f(x)$. Thus, f is a local minimum of hence $0 \in \partial_- f(x)$. Thus suppose that x = y and $d = \delta$. Hence,

$$(f(y)-f(x)+\delta)^2+||x-y||^2\geq \delta^2 \Rightarrow f(y)-f(x)\geq \sqrt{\delta^2-||x-y||^2}-\delta \text{ for } y \text{ close enough to } x.$$

So for y closed enough to x we have

$$f(y) - f(x) \ge \delta[\sqrt{1 - (\frac{||y - x||}{\delta})^2} - 1].$$

But, the RHS has subgradients for points arbitrary close to x.

3 Tangent Cones

6.3.1 Exact penalization

For a set $U \subseteq \mathbb{E}$, suppose that the function $f: U \to \mathbb{R}$ has Lipschitz constant L', and that the set $S \subseteq U$ is closed. For any L > L', if the point x minimizes $f + Ld_S$ on U, prove $x \in S$.

Proof: Suppose $x \in U$ is not in S and also $y \in S$ such that $||y - x|| = d_S(x)$. Then we have

$$(f + Ld_S)(x) \le (f + Ld_S)(y) = f(y) \Rightarrow Ld_S(x) \le f(y) - f(x) \le L'||y - x|| < L||y - x||.$$

Thus, $d_S(x) < ||y - x||$. This contradiction completes the proof.

6.3.3 Examples of tangent cones

For the following sets $S \subseteq \mathbb{R}^2$, calculate $T_S(0)$ and $K_S(0)$:

- $\{(x,y): y \ge x^3\}.$
- $\{(x,y): x \ge 0, y \ge 0\}.$
- $\{(x,y): x=0 \text{ or } y=0\}.$
- $\{r(\cos\theta,\sin\theta): 0 \le r \le 1, \frac{\pi}{4} \le \theta \le \frac{7\pi}{4}\}.$

6.3.4 Topology of contingent cone

Prove that the contingent cone is closed, and derive the following topological description: Suppose $x \in S$. The contingent cone $K_S(x)$ consists of those vectors h in \mathbb{E} such that there are sequences $t_r \downarrow 0$ in \mathbb{R} and $h^r \to h$ in \mathbb{E} such that $x + t_r h^r$ lies in S for all r.

Proof: Recall that

$$K_S(x) = \{h : d_S^-(x; h) = 0\}.$$

Since, $x \in S$, x is a local minimum for d_S and thus $0 \le d_S^-(s;h)$ for all $h \in \mathbb{E}$, so $T_S(x) \subseteq K_S(x)$. However, suppose $d_S^-(x;h) = 0$ and hence $\liminf_{t \downarrow 0} \frac{d_S(x+th)}{t} = 0$. Thus, there exists $t_r \downarrow 0$ such that $d_S(x+t_rh)/t_r \to 0$. Thus, if $x+t_rh^r \in S$ such that $||x+t_rh-x-t_rh^r|| \le d_S(x+t_rh)+t_r^2$. Thus, $||h-h^r|| \to 0$ and hence $h^r \to h$.

Conversely, suppose that $x + t_r h^r \in S$ and $h^r \to h$ and also $t_r \downarrow 0$. Then wish to show that $h \in K_S(x)$. Note that

$$d_S(x + t_r h) \le ||x + t_r h - x - t_r h^r|| = t_r ||h - h^r|| \Rightarrow 0 \le \liminf_{t \downarrow 0} \frac{d_S(x + t h)}{t} \le \lim_{t_r \to +\infty} \frac{d_S(x + t_r h^r)}{t_r} = 0.$$

Thus, $d_S^-(x;h) = 0$ and $h \in K_S(x)$.

6.3.5 Topology of Clarke cone

Suppose that x lies in the set $S \subseteq \mathbb{E}$.

- Prove $d_S^{\circ}(x;.) \geq 0$.
- Prove

$$d_S^{\circ}(x;h) = \limsup_{y \to x \text{ in } S, t \downarrow 0} \frac{d_S(y+th)}{t}.$$

• Prove that the Clarke Tangent cone consists of those vectors h in \mathbb{E} such that for any sequence $t_r \downarrow 0$ in \mathbb{R} and $x^r \to x$ in S, there is a sequence $h^r \to h$ such that $x^r + t_r h^r$ lies in S for all r.

Proof:

• Let $h \in \mathbb{E}$, then

$$d_S^{\circ}(x;h) = \limsup_{y \to x, t \downarrow 0} \frac{d_S(y+th) - d_S(y)}{t} \ge \limsup_{t \downarrow 0} \frac{d_S(x+th)}{t} \ge 0.$$

• Note that

$$d_S^{\circ}(x;h) = \limsup_{y \to x, t \downarrow 0} \frac{d_S(y+th) - d_S(y)}{t} \ge \limsup_{y \to x \text{ in } S, t \downarrow 0} \frac{d_S(y+th)}{t}.$$

Now fix some $\epsilon > 0$. Note that $||y'+th-y''|| \le d_S(y'+th) + \frac{1}{2}\epsilon$ and $||y-y'|| \le d_S(y) + \frac{1}{2}\epsilon$ for some $y', y'' \in S$. Thus,

$$d_S(y+th) \le ||y+th-y''|| \le d_S(y'+th) + d_S(y) + \epsilon \Rightarrow d_S(y'+th) + \epsilon \ge d_S(y+th) - d_S(y).$$

Thus,

$$\limsup_{y \to x, t \downarrow 0} \frac{d_S(y + th) - d_S(y)}{t} \le \limsup_{y' \to x \text{ in } S, t \downarrow 0} \frac{d_S(y' + th)}{t} + \epsilon.$$

Thus,

$$\limsup_{y \to x, t \downarrow 0} \frac{d_S(y + th) - d_S(y)}{t} \le \limsup_{y \to x \text{ in } S, t \downarrow 0} \frac{d_S(y + th)}{t}.$$

This completes the proof.

 \bullet Suppose h has the aforementioned properties then

$$d_{S}^{\circ}(x;h) = \limsup_{y \to x \text{ in } S, t \downarrow 0} \frac{d_{S}(y+th)}{t} \leq \limsup_{x^{r} \to x \text{ in } S, t_{r} \downarrow 0, h^{r} \to h} \frac{||x^{r} + t_{r}h - x^{r} - t_{r}h^{r}||}{t_{r}} = 0.$$

Thus, $h \in T_S(x)$. Conversely, suppose that $d_S^{\circ}(x;h) = 0$. Then for every $x^r \to x$ and every $t_r \to 0$, we must have $\lim_{r \to +\infty} d_S(x^r + t_r h)/t_r = 0$. Let $y^r \in S$ such that $||x^r + t_r h - y^r|| \le d_S(x^r + t_r h) + t_r^2$. Suppose $h^r \in \mathbb{E}$ such that $y^r = x^r + t_r h^r$. Then $||h - h^r|| \le d_S(x^r + t_r h)/t_r + t_r$. Thus, $h^r \to h$. Since, $x^r + t_r h^r \in S$, we are done.

6.3.8 Isotonicity

Suppose $x \in U \subseteq V \subseteq \mathbb{E}$. Prove $K_U(x) \subseteq K_V(x)$, but give an example where $T_U(x) \not\subseteq T_V(x)$.

Proof: Recall that

$$K_S(x) = \{h : d_S^-(x; h) = 0\}.$$

Now we want to show that $d_U^-(x;h)=0$ implies $d_V^-(x;h)=0$. Note that

$$0 \le d_V^-(x;h) = \liminf_{t \downarrow 0} \frac{d_V(x+th)}{t} \le \liminf_{t \downarrow 0} \frac{d_U(x+th)}{t} = 0.$$

This completes the proof.

Now recall that

$$d_S^{\circ}(x;h) = \limsup_{y \to x \text{ in } S, t \downarrow 0} \frac{d_S(y+th)}{t}.$$

So we wish to find $U \subseteq V$ and some $h \in \mathbb{E}$ such that

$$\limsup_{y \to x \text{ in } U, t \downarrow 0} \frac{d_U(y + th)}{t} = 0 \text{ but } \limsup_{w \to x \text{ in } V, t \downarrow 0} \frac{d_V(w + th)}{t} \neq 0.$$

Let $U = S^1$ and $V = S^1 \cup \{(x,y) : x \ge 1, y = 0\}$ and also h = (0,1) and x = (1,0). Then we first show that

$$d_U(x;h) = 0.$$

In fact, let $p_i = (x_i, y_i) \to x$ inside U, then $x_i^2 + y_i^2 = 1$ and $x_i \to 1$ and $y_i \to 0$. Note that $d_U(p_i + th) = \sqrt{x_i^2 + (y_i + t)^2} - 1$. Hence,

$$d_U^{\circ}(x;h) = \limsup_{i \to +\infty, t \to 0} \frac{x_i^2 + (y_i + t)^2 - 1}{t(\sqrt{x_i^2 + (y_i + t)^2} + 1)} = \limsup_{i \to +\infty, t \to 0} \frac{t^2 + 2ty_i}{t(\sqrt{1 + t^2 + 2ty_i} + 1)},$$

which equals to

$$\lim_{i \to +\infty, t \to 0} \frac{t + 2y_i}{\sqrt{1 + t^2 + 2ty_i} + 1} = 0.$$

Now let $p_t = (\sqrt{2t+1}, 0)$. Note that $p_t + th = (\sqrt{2t+1}, t)$ with distance $\sqrt{2t+1+t^2} - 1 = t$ to U. Hence, $d_V(p_t + th) = t$. Hence,

$$\lim_{t\downarrow 0}\frac{d_V(p_t+th)}{t}=1\leq \limsup_{w\to x \text{ in } V,t\downarrow 0}\frac{d_V(w+th)}{t}\neq 0.$$

6.4.3 Local minimizers

Consider a function $f: \mathbb{E} \to [-\infty, +\infty]$ which is finite at the point $x \in \mathbb{E}$.

- If x is local minimizer, prove $0 \in \partial_- f(x)$.
- If $0 \in \partial_- f(x)$, prove for any $\delta > 0$ that x is a strict local minimizer of the function $f(.) \delta||. x||.$

Proof:

• We know that $0 \in \partial_- f(x)$ if and only if $f^-(x;h) \ge 0$ for all $h \in \mathbb{E}$. However,

$$f^-(x;h) = \liminf_{t \downarrow 0, h' \to h} \frac{f(x+th') - f(x)}{t} \ge 0$$
 as x is a local minimizer.

• Now suppose that $0 \in \partial_- f(x)$. Then if x is not a strict local minimizer for $f() + \delta ||.||$, then there exists $x_i \to x$ such that

$$f(x_i) + \delta||x_i|| \le f(x).$$

Let $x_i = x + t_i u_i$ where $u_i = \frac{x_i - x}{||x_i - x||}$ and also $t_i = ||x_i - x|| \to 0$. Also, assume $u_i \to u$. Then

$$0 \le f^-(x; u) = \liminf_{t \downarrow 0, v \to u} \frac{f(x + tv) - f(x)}{t} \le \liminf_i \frac{f(x + t_i u_i) - f(x)}{t_i} \le \liminf_i \frac{-\delta ||x_i||}{t_i}.$$

If x = 0 then $\frac{-\delta||x_i||}{t_i} = -\delta < 0$ which is a contradiction. If $x \neq 0$, then $\liminf_i \frac{-\delta||x_i||}{t_i} = -\infty$, again a contradiction.

6.4.6. Prove a limiting sub differential sum rule for a finite number of lower semi continuous functions, with all but one being locally Lipschitz.

Proof:

Let f_1, \dots, f_k be lower semicontinuous at x and also g locally Lipschitz around x. Recall the Fuzzy sum rule:

Fuzzy sum rule: Fix $\delta > 0$. Then

$$\partial_{-}(\sum_{i=1}^{k} f_i + g)(x) \subseteq \delta B + \sum_{i=1}^{k} \partial_{-}(f_i)(U(f_i, x, \delta)) + \partial_{-}(g)(U(f_i, x, \delta)).$$

Let $\phi^r \in \partial_-(\sum_{i=1}^k f_i + g)$ and also $\phi^r_i \in \partial_-(f_i)(x^r)$ and $\psi^r \in \partial_-g(y^r)$ such that

$$||\phi^r - \sum_{i=1}^k \phi_i^r - \psi^r|| < \frac{1}{r}, \ ||x^r - x|| < \frac{1}{r}, ||f_i(x^r) - f_i(x)|| < \frac{1}{r}, ||g(y^r) - g(x)|| < \frac{1}{r}, ||y^r - y|| < \frac{1}{r}$$

Note that for all $\psi \in \partial_- g(x')$ we have $\langle \psi, v \rangle \leq C||v||$. Hence, $||\psi|| \leq C$. So, suppose that $\psi^r \to \psi$. 0

6.4.7 Limiting and Clarke sub differentials

Suppose the real function f is locally Lipschitz around the point x in \mathbb{E} .

- Use the fact that the Clarke sub differential is a closed multi-function to show $\partial_a f(x) \subseteq \partial_{\circ} f(x)$.
- Deduce from the Intrinsic Clarke sub differential theorem the property $\partial_{\circ} f(x) = \operatorname{conv} \partial_{a} f(x)$.
- Prove $\partial_a f(x) = \{\phi\}$ if and only if ϕ is the strict derivative of f at x.

Proof:

- Let $\phi \in \partial_a f(x)$, then there exists $\phi_i \in \partial_- f(x^i)$ for some $x^i \to x$ such that $\phi_i \to \phi$. Then $\phi_i \in \partial_\circ f(x^i)$ and thus $\phi \in \partial_a f(x)$ as Clarke sub differentials are closed under limit.
- Now since $\partial_{\circ} f(x)$ is convex we have conv $\partial_a f(x) \subseteq \partial_{\circ} f(x)$. On the other hand,

$$\partial_{\circ} f(x) = \operatorname{conv} \{ \lim \nabla f(x^{i}) : f \text{ is differentiable at } x^{i} \text{ and also } x^{i} \to x \} \subseteq \operatorname{conv} \{ \lim \phi_{i} : \phi_{i} \in \partial_{-} f(x^{i}) \text{ and also } x^{i} \to x \} = \operatorname{conv} \partial_{a} f(x).$$

• Note that $\partial_{\circ} f(x)$ is a singleton if and only if $\partial_a f(x)$ is a singleton.