Computer overview

(Hardware)

SW

(Software)

Input

RAM

HDD

CPU

Output

OS(운영체제)

- 1. Windows
- 2. Linux
- 3. Max OS

Application

- 1. Words
- 2. Excel
- 3. PowerPoint
- 4. Photoshop

CPU

System Bus

System Bus

RAM

HDD

- 산술연산, 논리연산
- 제어(Control)
- 연산 속도가 중요
 클럭 주파수에 맞춰 연산,
 주파수가 빠를수록 연산속도 ↑)
- CPU가 작업할 데이터
- 1Byte마다 주소
- 실행시키는 프로그램은모두 메모리에 로딩 되어야함
- 컴퓨터를 끄면 데이터 사라짐
- 용량이 중요

- 저장된 파일에는 이름이 있음
- 실행시키려면 메모리에 로딩 되어야함
- 컴퓨터를 꺼도 데이터가 존재
- 용량이 중요

Save

Load

저장용량

단위	설명
비트(bit)	컴퓨터는 2진수(binary digits)를 처리. 이를 줄여서 비트(bit)라고 한다. 비트는 0 혹은 1, 또는 오프(off) 혹은 온(on)이 될 수 있다. 즉, 하나의 비트는 두 가지 상태를 나타낼 수 있다.
바이트(byte) :	1바이트는 8비트다. 예) 1111 0010
킬로바이트(KB : Kilo Byte)	1024Byte는 1KB 스마트폰, 태블릿, PC의 가장 작은 파일 저장 단위는 보통 4KB(Cluster)를 한 단위로 사용
메가바이트(MB : Mega Byte)	1024KB는 1MB
기가바이트(GB : Giga Byte)	1024MB는 1GB
테라바이트(TB : Tera Byte)	1024GB는 1TB
페타바이트(PB : Peta Byte)	1024TB는 1PB
엑사바이트(EB : Exa Byte)	1024PB는 1EB
제타바이트(ZB: Zeta Byte)	1024EB는 1ZB
요타바이트(YB : Yota Byte)	1024ZB는 1YB

Notation

01100 10110 1110

컴퓨터가 다루는 숫자 → 2진수 컴퓨터는 문자도 2진수로 다룬다.(코드) 예) 'a' → 97, 'A' → 65

10진수(Decimal)	2진수(Binary)	8진수(Octal)	16진수(Hexa)
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	a
11	1011	13	b
12	1100	14	C
13	1101	15	d
14	1110	16	е
15	1111	17	f

• 10개의 Digit로 이루어진 수

$$2345$$
= 2×10^{3}
+ 3×10^{2}
+ 4×10^{1}
+ 5×10^{0}

$$2345.71$$
 $= 2 \times 10^{3}$
 $+ 3 \times 10^{2}$
 $+ 4 \times 10^{1}$
 $+ 5 \times 10^{0}$
 $+ 7 \times 10^{-1}$
 $+ 1 \times 10^{-2}$

• 2개의 Digit로 이루어진 수

101101	1011.01
$= 1 \times 2^{5}$	$= 1 \times 2^{3}$
$+0 \times 2^{4}$	$+ 0 \times 2^{2}$
$+1 \times 2^{3}$	$+1 \times 2^{1}$
$+1 \times 2^{2}$	$+1 \times 2^{0}$
$+0 \times 2^{1}$	$+0 \times 2^{-1}$
$+ 1 \times 2^{0}$	$+1 \times 2^{-2}$

음수는 어떻게??

음수의 표현(부호와 절대값)

맨 앞부분을 부호로 쓰자!!!

(MSB: Most Significant Bit)

0: 양수

1 : 음수

1 0 1 1 0 1 1 0

나머지 부분에 값을 넣자

음수의 표현(부호와 1의 보수)

맨 앞부분을 부호로 쓰자!!!

0 : 양수

1 : 음수

양수일 때는 2진수를, 음수일 때는 **1의 보수**를

1의 보수(1'complement)

음수의 표현(부호와 2의 보수)

맨 앞부분을 부호로 쓰자!!!

0 : 양수

1 : 음수

양수일 때는 2진수를, 음수일 때는 **2의 보수**를

2의 보수(2'complement)

소수점이 있으면?

Floating Point(실수)

✓ IEEE 754 규약에 맞추어 변환

✓ 컴퓨터에서는 실수를 '부동(浮動) 소수점수 ' 라고 함.
소수점의 '위치가 변경된다'는 의미

✓ 컴퓨터의 메모리 용량은 한정되어 있으므로 2진수로 변환될 때 무한 반복되면 필연적으로 오차가 발생

✔ 용량은 32bit(Float), 64bit(Double) 두 가지

정규 표현

가수부(23bit or 52bit)

풀어봅시다!

1) 1345(10)를 각각 2, 8, 16진수로!

2) 10110111(2)가 <u>부호와 2의보수</u>로 된 값이다. 10진수, 8진수, 16진수로 바꾸면?

3) $3121(10) \rightarrow 2$, 8, 16

4) 100010110.001011 -> 8, 16