ت

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出頗公開番号

特開平5-260264

(43)公開日 平成5年(1993)10月8日

(51)Int.Cl. ⁵	缺別記号	庁内整理番号	F I	技術表示箇所
H 0 4 N 1/04	103 Z	7251-5C		
G 0 6 F 15/62		8125-5L		
15/66	470 J	8420-5L	0	

審査請求 未請求 請求項の数8(全 31 頁)

(21)出願番号	特願平4-53417	(71)出願人	000005049 シャープ株式会社	
(22)出頗日	平成 4年(1992) 3月12日	(72)発明者	大阪府大阪市阿倍野区長池町22番22号 岩崎 圭介 大阪府大阪市阿倍野区長池町22番22号	シ
		(72)発明者	大阪府大阪市阿倍野区長池町22番22号	シ
·		(74)代理人	ャープ株式会社内 弁理士 梅田 勝	

(54)【発明の名称】 画像処理装置

(57)【要約】

【目的】 画索数の少ない複数の画像から、高精細・広 範囲の画像を得る画像処理装置を提供すること及び、通 常の撮像素子1個を用い非接触に撮像素子の解像度以上 の多値画像を入力でき、入力時の撮像素子の走査に特殊 かつ厳密な制限のないパノラマ多値画像の撮影が行える 画像処理装置および、低解像画像を入力し高解像度画像 を表示する画像処理装置を提供する。

【構成】 画像入力手段11から入力した画像と、画像 蓄積手段13内の画像をバラメタ決定回路27で比較することにより補正のパラメタを算出し、入力された画像 と以前に蓄積されている画像をそれぞれ別の補正方法により補正した後、合成する。該処理を、時間的に連続した入力画像に対し逐次行うことで画像蓄積手段内13に入力画像23よりも高解像度の画像が生成される。

٠.

(2)

特別平05-260264

【特許謝求の範囲】

【請求項1】 画像情報を蓄積する画像蓄積手段と、 画像を入力するための画像入力手段と、

前記画像蓉積手段に整稅された画像と前記画像入力手段から入力された画像の合成処理を行う画像合成手段と、前記画像審積手段に整稅された画像と前記画像入力手段から入力された画像を比較する画像比較手段とを備え、前記画像合成手段は、前記画像比較手段によって得られた2種の画像の差異に基づいて画像合成を行うことを特徴とする画像処理装置。

【請求項2】 前記合成処理が、前記入力手段から入力 された画像、または、前記画像蓄積手段に蓄積されてい る画像をアフィン変換するとともに、

画像督積手段に蓄積されている画像、または、入力手段 から入力された画像を平行移動し、

両面像を重み付き平均により加算することを特徴とする 請求項1記載の画像処理装置。

【請求項3】 前記画像比較手段が、画像を比較することにより、アフィン変換および平行移動のパラメータを 検出することを特徴とする請求項2記載の画像処理装 置、

【諸求項4】 前記画像比較手段が、予め設定された座標値を有する複数の代表点における動きベクトルから、アフィン変換および平行移動のパラメータを検出することを特徴とする請求項3記載の画像処理装置。

【請求項5】 前記画像比較手段が、入力画像における 両素データの統計量に応じて代表点の座標を決定することを特徴とする請求項4記載の画像処理装置。

【請求項6】 前記画像入力手段がジャイロ装置を有することを特徴とする請求項1記載の画像処理装置。

【詰求項7】 前記画像入力手段が振動子を有することを特徴とする請求項1記載の画像処理装置。

【請求項8】 前記画像比較手段が、比較対象となる画像を縮小した後に比較することを特徴とする請求項3記載の画像処理装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、画像データを入力し、 該入力データを処理して、高解像度の画像を生成する、 画像処理装置に関するものである。

[0002]

【従来の技術】従来、高解像度または、パノラマ画像を 入力するためには、以下の方法がある。

(1) 高解像度の撮像素子を用いる方法。

画像処理装置の入力手段に高解像度の撮像素子を用いる ことにより、高解像度の画像を入力できる。

【0003】 (2) ラインセンサをスキャンさせる方 法。

この方式は、主に密岩型イメージスキャナとして、イメージスキャナ、FAX、コピア等に広く用いられている

技術で、ライン状のCCDセンサの一回の読み取り動作で1主走査方向の画像を読み取り、副走査を機械的・光 学的に行うことにより、画像情報を入力する技術である。

【0004】また、下記の文献1には、非接触のラインイメージセンサを機械的・光学的に副走査することにより、パノラマ画像を得る試みが記載されている。

(文献1) 環境のパノラマ表現;辻(阪大・基礎 エ);信学誌

Vol. 74, No4, pp. 354-359 (199

(3) 複数の振像素子を用いる方法。

【0005】この方法は、下記の文献2万至文献5で述べられている方法で、複数の相対的な位置関係が既知の 振像索子から得られた画像情報を繋ぎ合わせることで高 解像度の画像を入力するものである。

(文献2) 超商精細画像取得のための基礎検討 -ステレオ画像処理による商精細画像取得-;相沢(東大工)済藤,小松(神奈川大工); IE90-54(1990)

(文献3) 操像領域合成法による高速静止画入力方式;上平(NTT HI研);信学者等全大予稿集7-103(1991)

(文献4) 撮像領域合成法による高速高精制文字読み取り技術;上平,松木(NTT):画像電子学会全国大会予稿集18pp75-78(1989)

(文献5) 光学校続型静止面カメラ;上平(NTT); 画像電子学会誌pp203-208, Vol. 20, No. 3(1991)

(4) 画像を張り合わせる方法。

この方法は、時系列的に入力した複数の画像を繋ぎ合わせることにより、パノラマまたは広範囲の画像を入力する方法で、下記の文献 6 乃至文献 8 に述べられている。

(文献6) 実時間画像貼り合わせ機能を持つハンドスキャン型文書画像入力装置;岡田,大田,坂井(京大工学部);IE81-17(1981)

(文献7) 動画像のパニングを考慮した背景画像の合成; 吉沢, 花村, 宮永(早大); 信学春季全大予稿集7 -51(1990)

(文献 8) 分割振像によるパノラマ画像の生成法;中村,金子(東京理科大),林(NHK放送技研);信学 春季全大予稿集7-165(1991)

この方法は、以下の文献9に述べられているように、C CD撮像素子を振動させることにより、振動方向に対し て2倍の解像度の画像が得られる。

(文献9) スウィング撮像によるCCDの高解像度 化;吉田,遠藤,原田(京芝);IE83-65(19 83)

[0006]

PAGE 105/134 * RCVD AT 9/15/2005 3:01:00 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-6/29 * DNIS:2738300 * CSID:+1 212 319 5101 * DURATION (mm-ss):40-24

特朋平05-260264

[発明が解決しようとする課題] しかしながら上記の様な画像入力方式においては、以下のような問題点が存在する。

(a) 上記従来技術の(1)で述べた「高解像度の提 像素子を用いる方法」では、入力する画像の画素数は摄 像素子に依存するため、振像素子の性能以上の画素数の 入力は不可能である。

【0007】(b) 上記従来技術の(2)で述べた「ラインセンサをスキャンさせる方式」では、主定変方向の画素数は、上記(a)と同様にラインセンサの画素数に制限される他、副定変方向の機械的・光学的スキャンを精密に行わないと、ライン間の画像の整合性が悪くなり、きれいな画像が入力できない。

【0008】(c) 上記従来技術の(3)で述べた「複数の操像素子を用いる方法」では、画素数は、個々の操像操子の「(画素数)×(操像素子の数)」で制限される他、複数の操像素子を用いるので、生産コストや操像系の規模の増大は必至である。

【0009】(d) 上記従来技術の(4)で述べた「画像を張り合わせる方式」においては以下の問題点がある。文献6に示す方式では、対象画像は2値画像に限られている他、オペレータによる走査方向が限られている、及び、走査方向と直角の手振れに弱いなどの問題点がある。

【0010】文献7に示す方式では、フレーム間の平行 移動成分のみでフレーム間の画像に対する位置合わせを 行っているため、フレーム間で画像が回転や拡大・縮小 した場合、解像度は低下するという欠点がある。

【0011】文献8に示す方法では、複数のフレームの 位置関係すなわち、カメラのパン/チルトの移動量・角 度等に制限がある他、1点から見たパノラマ画像をえる ことができるが、カメラの平行移動には対応できない。 【0012】(e) 上記従来技術の(5)で述べた

「振像素子を振動させる方法」では、振動は1方向のみで、解像度は高々撮像素子の画素数の2倍に殴られるほか、振動の振幅と撮像信号の取り込みを正確に同期させるための特殊な撮像素子が必要となる問題点がある。

【0013】本発明は、以上の種々の問題点を解決するためになされたものであり、その目的は、画素数の少ない複数の画像から、高精細・広範囲の画像を生成する画像処理装置を提供すること、及び、通常の撮像素子を単数用い、入力時の撮像第子の走査に特殊かつ厳密な制限のない、非接触に最像素子の解像度以上の多値画像を入力できる、また、バノラマ多値画像の撮影が行え、低解像度の画像が入力されても高解像度画像を生成出力できる特徴を持つ画像処理装置を提供することにある。

[0014]

【課題を解決するための手段】上記の目的を達成するために、本発明に係る面像処理装置は、面像情報を管積する面像密積手段と、画像を入力するための面像入力手段

と、前記画像密積手段に蓄積された画像と前記画像入力 手段から入力された画像の合成処理を行う画像合成手段 と、前記画像密積手段に替積された画像と前記画像入力 手段から入力された画像を比較する画像比較手段とを備 え、前記画像合成手段は、前記画像比較手段によって得 られた2種の画像の差異に基づいて画像合成を行うこと を特徴とするよう構成している。

[0015]

【作用】画像入力手段により入力した画像と、画像メモリに蓄積された画像とを画像合成手段によって合成する際に、画像比較手段によって前記2程の画像を比較し、その結果得られた画像の差異をパラメータとして合成処理がなされる。

[0016]

【実施例】<第1の実施例>本発明に係る、高解像度かつ広範囲な画像の生成が可能な画像処理装置を実施例として、図に基づいて説明する。

【0017】本実施例の画像処理装置のハードウエアは、図2に示す様に、画像入力手設11と入力処理手段12と画像蓄積手段13と出力処理手段14と画像出力手段15で構成される。

【0018】画像入力手段11は、画像を光電変換し、デジタルデータに変換するための装置で、例えばCCDカメラとA/Dコンパータおよび周辺回路で構成される。入力処理手段12は、画像入力手段によってデジタル信号に変換された画像データおよび画像密積手段13内の画像データを処理する装置で、例えばDSPやLSI、半導体メモリおよび周辺回路で構成される。

【0019】画像蓄積手段13は、入力処理手段12から出力される画像データを蓄積するための手段で、例えば半導体メモリおよび周辺回路から構成される。出力処理手段14は、画像蓄積手段13内の画像データを、出力手段15に出力可能な形式に変換する装置で、例えば、ICやLSI、半導体メモリおよび周辺回路で構成される。出力手段15は、出力処理手段によって適当な形式に変換された画像データを表示またはプリントアウトするための装置で、例えば、プリンタ装置またはディスプレイ装置で構成される。

【0020】図1は、本実施例の、画像入力手段11、 入力処理手段12および画像蓄積手段13の構成例を示 す図である。

【0021】本実施例では、オペレータが手に持ったカメラをパンしながら連続操像した複数フレームの画像を繋ぎ合わせることにより、撮像した範囲のパノラマ画像を生成するための装置の一例を示す。

【0022】図1において、同期手段20は、デジタル 回路で構成され、画像入力手段11、入力処理手段12 および画像蓄積手段13の処理を同期させるための同期 パルス信号を各種手段に出力する。同期手段20が発生 する同期パルス信号には、3種類ある。すなわち、図1 2に示すように、

リセット信号:システムのリセットを示し、アクティブ になった後の最初のフレーム切り替え信号がアクティブ になるまでアクティブ状態を保持する2値の信号。

フレーム切り替え信号:処理するフレーム毎にアクティ ブになり、フレームに対する処理が行われている間、ア クティブ状態を保持する2値の信号。

画案切り替え信号:メインメモリ1 画素の処理を行う毎 に発生する2値のパルス信号。

図12におけるこれらの信号の働きについては後に詳述 する。

【0023】図1の画像入力手段11は、CCD振像部 21およびA/D変換回路22で構成され、CCD擬像 部21は、CCD素子および周辺回路からなり、同期手 段20から入力する同期信号のフレーム切り替え信号に 同期して、画像を光電変換し、A/D変換回路22へ電 . 気信号として出力する。

【0024】A/D変換回路22は、A/D変換器およ び周辺回路からなり、同期手段20から入力する信号に 同期して、すなわち、フレーム切り替え信号が非アクテ ィブに変化するか、リセット信号がアクティブに変化して た後、再度フレーム切り替え信号がアクティブになるま での期間に、CCD撮像部21から送られてきた電気信 号をA/D変換し、1画面分のデジタル画像データとし て入力画像メモリ23に出力する。この1画面分の画像 データを以後フレームと呼ぶ。

【0025】入力処理手段12は、入力画像メモリ2 3、画像合成回路24、入力画像補正回路25、メイン 画像補正回路26およびパラメタ決定回路27で構成さ れる。

【0026】入力画像メモリ23は、半導体メモリと周 辺回路からなり、A/D変換回路から入力したデジタル 画像データを次の入力があるまで蓄積するとともに、パ ラメタ決定回路27および入力画像補正回路25からの 座標入力に対し、対応する画素値をそれぞれの回路に出 力する。ただし、メモリ内に画素が存在しない座標を入 カレた場合、0を出力する。

【0027】入力画像メモリの画索数は、画像入力手段 における1フレームの画素数で決定され、メイン画像メ モリの画素数より少ない。

【0028】本実施例では、入力画像メモリ23は、横 方向XI、縦方向YIの画素数を持ち、各画素にはGI 階調の明度情報が格納されている。この入力画索メモリ の座標(i, j)での画素値をI(i, j)とする。た だし、0≦i<XI, 0≦j<YI, 0≦I(i, j) <GI、また、i,j,およびI(i,j)は整数であ る。

【0029】画做合成回路24は、デジタル演算回路で 構成され、入力画像補正回路 2 5 およびメイン画像補正 回路26に座標値を出力し、その結果として得られるそ

れぞれの回路からの画器データを演算し、座標値ととも に演算結果の値をメイン画像メモリ28に出力する。こ の画像合成回路24の詳細な動作は、後に述べる。

【0030】入力画像補正回路25は、デジタル演算回 路、半導体メモリおよび周辺回路からなり、パラメタ決 定回路27か6入力するパラメタによって、入力画像メ モリ23内に蓄積されているデジタル面像データを変換 補正し、画像合成回路24から入力する座標値に対応す る画家データを画像合成回路24に出力する。この入力 画像補正回路25の詳細な動作は、後に詳述する。

【0031】本実施例では、記述を簡便にするため、入 力画像補正回路 2 5 での補正処理を関数をF₁で記述 し、補正後の座標(k, l)での画素値をFi(k,

1) とする。ただし、0≤k<XM, 0≤l<YM, 0 ≦Fi(k, l) < GM、また、k, l, およびF i(k, 1)は整数である。

【0032】メイン画像補正回路26は、デジタル演算 回路、半導体メモリおよび周辺回路で構成され、パラメ タ決定回路27から入力するパラメタにより、メイン画 像メモリ28内の画像データを座標変換し、画像合成回 路24から入力する座標値に対応する画素データを画像 合成回路24に出力する。このメイン画像補正回路26 の詳細な動作は、後に述べる。

【0033】本実施例では、記述を簡便にするため、メ イン画像補正回路26での補正処理を関数をFoで記述 し、補正後の座標(k, l)での画素値をF。(k.

1)とする。ただし、0≦k<XM, 0≤l<YM, 0 ≦F₀(k, 1) <GM, また、k, 1, およびF g(k, 1) は整数である。

【0034】パラメタ決定回路27は、デジタル演算回 路、半導体メモリおよび周辺回路で構成され、入力画像 メモリ23とメイン画像メモリ28のそれぞれに蓄積さ れている画像データを比較し、補正バラメタを入力画像 補正回路25およびメイン画像補正回路26に出力す る。このパラメタ決定回路27の詳細な動作は、後で詳 述する。

【0035】画像蓄積手段13は、メイン画像メモリ2 8で構成され、メイン画像メモリ28は、半導体メモリ と周辺回路からなり、画像合成回路24から座標と面素 値を入力し、入力した座標に対応するメモリ領域に画素 値を告き込む。また、パラメタ決定回路27および画像 補正回路26からの座標入力に対し、対応する画素値 を、それぞれの回路に出力する。ただし、メモリ内に画 素が存在しない座標を入力した場合、0を出力する。

【0036】また、メイン画像メモリ28は、同期手段 20からのリセット信号がアクティブになった後、フレ ーム切り替え信号がアクティブになるまでに、全ての画 素の値を0にクリアする。

【0037】メイン画像メモリ28の画素数は、入力画 俊メモリの画素敷より多く、本実施例では、XM×YM

(5)

特開平05-260264

【0038】<図1による処理の詳細説明>以下に、画像合成回路24、入力画像補正回路25、メイン画像補正回路26および、パラメタ決定回路27の動作について、さらに詳細に述べる。

【0039】<画像合成回路24の説明>画像合成回路24は、図3に示すように座標発生部31と画素演算部32で構成され、座標発生部31で生成されるメイン画像メモリの座標値に対応する画条値を入力画像補正回路25およびメイン画像補正回路26から入力し、演算した結果を上記座標値に対応するメイン画像メモリに書き込む。

【0040】座標発生部31は、同期手段20からの同期信号30の画索切り替えパルス信号に同期して、メイン画像メモリに存在する全座標値を、ラスタ順に発生する。すなわち、図4のフローチャートに示すように、内部のX、ソ方向のカウンタを同期信号によってインクリメントする。

【0041】S41では、Yカウンタの値yをOにリセットする。S42では、Xカウンタの値xをOにリセットする。S43では、画素切り替えパルスが立ち上がるまで処理を中断する。S44では、現在のX, Yカウンタの値の組(x, y)を信号線33および34に出力する。S45では、Xカウンタの値xを1だけ増加する。S46では、Xカウンタの値xと、メイン画像メモリのX方向画素数XMを比較する。x≧XMの場合、S47に進み、x<XMの場合、S43からの処理を再度行う。S47では、Yカウンタの値yを1だけ増加する。S48では、Yカウンタの値yを1だけ増加する。S48では、Yカウンタの値yと、メイン画像メモリのY方向画素数YMを比較する。y≧YMの場合、S41からの、y<YMの場合、S42からの処理を再度行う。

【0042】図3の画素演算部32は、同期手段20からの同期信号30に同期して、すなわち、画素切り替え信号がアクティブから非アクティブに変化した時点で、入力画像補正回路25およびメイン画像補正回路26から、それぞれ信号線35または36を介して画素値を入

カし、それらの画素値に下記の数式1の演算を施し、その結果を画素切り替え信号が再度アクティブになるまでにメイン画像メモリ28に信号線37を介して出力する。

[0043]

【数1】

 $M=\alpha \times F_i + (1-\alpha) \times F_p$ ($F_i > 0$ かつ F_a > 0 の場合)

 M=F_s
 (F_i=0 の場合)

 M=F_i
 (F_s=0 の場合)

 $M=0 (F_i=F_m=0 \mathcal{O}$

場合)

if M≧GM then M=GM ただし、

 α は、予め定めた定数で、 $0<\alpha<1$ Mは、信号線 3 7に出力する画素値 F_i は、信号線 3 5 から入力する画素値 F_m は、信号線 3 6 から入力する画素値 ただし、リセット信号がアクティブである間は、下記の数式 2 の演算、すなわち、入力画像補正回路 2 5 からの入力のみをメイン画像メモリ 2 8 に書き込む処理を行う。

[0044]

【数2】

 $M = F_i$

if M≧GM then M=GM <入力画像補正回路25の説明>入力画像補正回路25の説明>入力画像補正回路25は、図5に示すようにアフィン変換部51と補間演算部52で構成される。

【0045】アフィン変換部51は、以下の処理を行う。

- (1) 同期信号30のフレーム切り替え信号が立ち上がってから、画案切り替え信号が立ち上がるまでに、パラメタ決定回路27から信号線53を介して、アフィン変換係数を入力する。
- (2) 画素切り替え信号が立ち上がる毎に、画像合成 回路24から信号線33を介して入力する座標値を、下 記の数式3により変換して、信号線56に出力する。

[0046]

【数3】

$$(x', y', 1) = (x, y, 1)$$

$$\begin{pmatrix}
P_{00} & P_{01} & 0 \\
P_{10} & P_{11} & 0 \\
P_{20} & P_{21} & 1
\end{pmatrix}$$

【0047】ただし、行列要素 p i j は、パラメタ決定回路 27から入力するアフィン変換係数。(x, y)は、信号線 33から入力する座標値。(x', y') は、信

另線56に出力する座標値。

【0048】補間演算部52は、以下の処理を行う。

(3) 上記のアフィン変換部51における上記(2)

(6)

特別平05-260264

の処理結果である座標値をアフィン変換部51から信号 線56を介して入力する。

(4) 入力した座擦値に対して、画素切り替え信号が アクティブである期間に以下の数式4で示す3次補間法 による画案補間演算処理を行い、得られた結果を信号線

35を介して画像合成回路24に出力する。 【0049】<椭間方式1:3次補間法> [0050] 【数4】

$$M = \sum_{m} \sum_{n} I(m, n) \times c(x'-m) \times c(y'-n)$$

ただし、

$$c(a) = \begin{bmatrix} 1-2 \times |a|^{2} + |a|^{8} & 0 \le |a| < 1 \\ 4-8 \times |a| + 5 \times |a|^{2} - |a|^{8} & 1 \le |a| < 2 \\ 0 & 2 \le |a| \end{bmatrix}$$

∑の加算範囲は、以下の範囲の、信号線 5 6 から入力する座標 (x',y')の近傍16画素である。(m,n は整数)

$$x' - 2 \le m < x' + 2$$
, $y' - 2 \le n < y' + 2$

Mは、信号線35に出力する画素値。

I (m, n)は、 信号 線 5 4 を 介 して入 力 画 像 メ モ リ 2 3 に 座標値 (m, n)を出力し、信号線 5 5 を介して入力画像メモリ 2 3の

対応する回案値を得る処理を意味する。

【0051】また、上記の3次補間法による画素補間処 【0052】 <補間方式2:双線形補間法> 理方式の他、下記の双線形補間法、あるいは最近傍法に よる演算でも画索補間処理が可能である。

[0053] 【数5】

$$M=I(x'', y')\times(1-\beta')\times(1-\gamma')+I(x''+1, y'')\times\beta\times(1-\gamma')$$

$$+I(x', y'' + 1) \times (1-\beta) \times r + I(x'' + 1, y'' + 1) \times \beta \times r$$

【0054】 <補間方式3: 最近傍法>

【数6]

[0055]

β≦0.5 γ≦0.5の時 M=M (x", y") $\beta > 0.5$ $\gamma \le 0.5$ の時 M=M(x"+1, y") β≦0.5 y>0.5の時 M=M(x", y"+1) $\beta > 0$. 5 $\gamma > 0$. 5の時 M=M (x"+1, y"+1)

なお、これらの画素補間方法は、下記の文献10に記載 されている。

「画像処理ハンドブック」昭晃堂刊p (01 ⁄ ⁄ / / (0 /) p. 274-275

<メイン面像補正回路26の説明>メイン画像補正回路 26は、図6に示すように画像パッファ61と座標演算 部62で構成される。画像パッファ61は、メイン画像 メモリ28と同容量の画像メモリで、同期手段20から の同期信号30のフレーム切り替え信号が非アクティブ になった時点から、符度アクティブになるまでの間に、

メイン画像メモリの内容全部を複写する。ただし、リセ ット信号がアクティブである場合は、この被写処理を行 わない。

【0056】また、画像パッファ61は、座標演算部6 2から入力した座標値に対応する画素の値を信号線36 を介して画像合成回路24に出力する。

【0057】座標演算部62は、以下の処理を行う。

(1) 同期手段20からの同期信号30のフレーム切 り替え信号がアクティブになった時点から画素切り替え 信号がアクティブになるまでに、パラメタ決定回路27

から信号線 6 3 を介して座標変換のための係数 (qx, qy) を入力する。

[0059]

【数 7 】 $(x', y', 1) = (x + q_x, y + q_y)$ ただし、係数 q_x , q_y は、パラメタ決定回路 2.7 から入力する整数値。 (x, y) は、画像合成回路 2.4 から信号線 3.3 を介して入力する座標値。 (x', y') は、画像パッファ 6.1 に出力する座標値。

【0060】(3) この結果、画像バッファ61から、座標(x', y')に対応する画紫値が画像合成回路に出力される。ただし上記(2)、(3)の処理は、画素切り替え信号がアクティブである間に行われ、リセット信号がアクティブである間は、これらの処理は行わない。

【0061】上記の処理により、メイン画像補正回路26は、メイン画像メモリの画像データを軽数値(gx, qy)だけ平行移動し、画像合成回路24に出力処理が実現される。

【0062】<パラメタ決定回路27の説明>パラメタ 決定回路27は、図7に示すように、ベクトル検出部7 1、係数計算部72、パラメタ分割部73および、原点 パッファ75で構成され、同期手段20からの同期信号 30に同期して処理を行う。

【0063】原点パッファ75には、ベクトル検出部7 1、係数計算部72、およびパラメタ分割部73で用いるためのマッチング原点座標値

(X_o, Y_o) ただし、X_o, Y_oは整数。

が格納されており、同期手段20からの同期信号30に 同期して、パラメタ分割部73によって、1画面の処理 終了毎に書き換えられる。

【0064】初期値は

 $(X_o, Y_o) = (D_x, D_y)$

で、本実施例では図8に示すように、入力画像が、メイン画像メモリ28の中心に位置するように配置するため、(D_{x} , D_{y})は、

 $D_x = i n t \{ (XM - X1) / 2 \}$

 $D_y = i n t \{ (YM - YI) / 2 \}$

ただし、int {a}は、aを越えない最大の整数。XM,YMは、メイン画像メモリ28のx,y方向の画素数。XI,YIは、入力画像メモリ23のx,y方向の画素数。で計算される定数を、同期信号30からのリセット信号がアクティブになった時点で、パラメタ分割部73が書き込む。

【0065】ベクトルバッファ76は、代表点の座標値 と各代表点における助きベクトル値を、図30に示すよ うな表形式で蓄積するための一時的な記憶手段で、半導 体メモリと周辺回路で構成される。ベクトルバッファ76は、ベクトル検出部71によって普き込みと読み出しが行われ、係数計算部72によって読み出される。

【0066】ベクトル検出部71では、メイン画像メモリ内28の画像データと、入力画像メモリ23内の画像データを比較し、入力画像中に設定した複数の代表点における動きベクトルを求める。

【0067】次に代表点決定部の説明を行う。本実施例では、入力画像中にK個の代表点をとり、これらの代表点の座標を、

 (x_i, y_i)

ただし、

 $i = 0 \sim (K-1)$

 $0 \le x_i < XI$, $0 \le y_i < YI$

とする。

【0068】入力画像中に、複数の代表点を設定する場合、図9(a)に示すように、水平、垂直方向に予め決めておいた周期で決定するか、図9(b)のように、入力両像毎に、エッジ部分や局所的に画紫の統計量が大きい領域に築中してとる。

【0069】図9(a)に示すように周期的に代表点を設定する場合、代表点の座標は、例えば以下の数式のようになる。すなわち、x方向にKx個、y方向にKy個の代表点が、問隔Iax Iay画素毎に配置される場合、i番目の代表点の座標(xi, yi)は、以下の数式によ

り求められる。

[0070]

 $x_{j} = I_{dx} \times \{1 + i \mod K_{x}\} \}$ $y_{i} = I_{dy} \times \{1 + i n t (i/K_{y})\}$

 $I_{dx}=i n t \{XI/(K_x+1)\}$

 $I_{dy}=i_{n}t_{(K_y+1)}$

 K_x 、 K_y は、x 方向、y 方向における代表点の個数で、 $K_x \times K_y = K$ を満たす整数。a mod b は、a を b で割った際の剰汆を示す。

【0071】これらの代表点の座標は、入力画像によっては変化しないため、予めK個の代表点座標を、上記ベクトルバッファの「代表点番号」の項に書き込んでおく。

【0072】図9(b)に示すように、入力画像によって代表点の座標を変化させる場合は、以下に例示する処理を行い、代表点座標を決定する必要がある。

【0073】 (1) 図10 (a) に示すように、入力 画像メモリ内の画像を $(K_x \times K_y)$ 個のブロックに分割 する。この際、ブロックの個数 $(K_x \times K_y)$ は、必要な 代表点の数Kよりも大きい値どする。

【0074】(2) 全てのブロックにおいて、各ブロック内の国索データの統計量(例:最大値と最小値の差、分散のいずれか)を計算する。

【0075】(3) 上記(2)で計算した統計量の大

(8)

特别平05-260261

きい順にドブロックを選び、その選ばれたブロックの中 心座標をi番目の代表点の座標とする。

【0076】上記の処理方式を実現するためには、以下 の手段を用いる。すなわち、上記(1)のプロック分割 においては、 j 番目のブロックの左上の座標 (Bxi. B yi) は、以下の数式により求められる。

[0077]

 $B_{xj} = (j \mod K_x) \times I_{dx}$ $B_{yj} = int(j/K_y) \times I_{dx}$ ただし、

Idz=int (XI/Kz) I dy = int (Y I/Ky)

Kx、Kyは、x方向、y方向におけるブロックの個数 で、Kx×Kx>K を満たす整数。

【0078】これらの座標は、入力画像によっては変化 しないため、ブロック番号jを入力することによりブロ ック左上座標 (Bxj, Byj) を出力する回路を、半導体 メモリを用いたルックアップテーブルまたは上記の計算 を行う回路として、ベクトル検出部71内に持つことに より実現する。

【0079】上記(2)のブロック内の統計量計算にお いては、以下の手段を用いる。すなわち、1番目のプロ ックにおいては、上記(1)より、左上座標(Bzj, B rj) が得られるから、以下のC言語で記述した処理を行 い、各ブロックでの統計量S」を求める。例として、ブ ロック内の最大値と最小値の差を統計量S;とする処理 を示す。

```
[0080]
    for (j=0; j < (K_1 * K_7); j++)
    {x=B_{11};}
       y = B_{11};
       max=0;
      min=GI;
       for (n=0; n < K_7; n++)
       { for (m=0; m < K_x; m++)
          { a=I(x+m, y+n);
            if (a<max) max=a;
             if (a < min) min=a;
         }
       S[j] = max - min;
```

ただし、x, y, max, min, S [j] は、整数型

を、以下に説明するプロックマッチングまたは濃度勾配 法のいずれかの方式によって求める。

【0087】<方式1-1:ブロックマッチング>第1 の方式は、一般的にブロックマッチングと呼ばれている 方法で、図11に示すように、各代表点を中心とするM ×Nの面索を1つのプロックとして、メイン画像メモリ

の変数パッファ。

【0081】a=bは、左辺のバッファaに右辺の値b を書き込む処理を示す。

【0082】Bxj, Byjは、j 番目のプロックの左上の 座標を上記(1)に示す手段で求める処理を示す。 I

(m, n)は、信号線713を介して入力画像メモリ2 3に座標値(m, n)を出力し、信号線714を介して 入力画像メモリ23の対応する画索値を得る処理を意味 する。

【0083】上記(3)の代表点選択においては、以下 の手段で実現する。

[I] S [j] を、大きい順にソートした配列パッフ ァSS[i]を作成する。結果として、SS[i]に は、「番目に統計量S[j]の大きい」の値が格納され

[0084][II] SS[i] 0i = 0 bbK-1までが、選択された代表点番号となるので、i番目の代 表点の座標 (xi, yi) は、以下の計算処理により求め られる。

```
j = SS[i]
x_i = B_{xj} + i n t (I_{dx}/2)
y_i = B_{yi} + i n t (I_{dy}/2)
```

ただし、 B_{xj} , B_{yj} は、上記(1)で示した手段で得ら れる、プロックの左上座標。

【0085】そして、上記の処理によって計算された代 表点の座標 (xi. yi)を、入力画像が入力画像メモリ に取り込まれてから、同期信号30のフレーム切り替え 信号が非アクティブである扨間に、ベクトルパッファ7 6の「代表点座標」の項に書き込む。ただし、リセット 信号がアクティブである場合は、上記の処理は行わな

【0086】以下にベクトル検出部71におけるベクト ル計算部の説明を行う。以上の処理で求めた各代表点

(xi, yi) の、メイン画像メモリ上対応点

 $(x^{\prime}_{i},\ y^{\prime}_{i})$, $i=0\sim(K-1)$ または動きベクトル

 $(v_{xi}, v_{yi}) = (x'_i - x_i, y'_i - y_i), i = 0 \sim (K-1)$

と画像の差を計算し、各代表点での動きベクトル (vxi, vyi)を求める。すなわち、以下の処理を、全 ての代表点に対して行う。この際、メイン画像メモリの 座標 (X。, Y。) と、入力画像の座標 (0,0)を対応 させてマッチングを行う。

【OO88】入力画像の各代表点(xi, yi)を含むブ

(9)

特別平05-260264

ロックBi内の画素について、

[数8]

[0089]

$$D_{i}(v_{x}, v_{y}) = \sum_{m,n} \sum_{i} |M(X_{o} + x_{i} - v_{x} + m, Y_{o} + y_{i} - v_{y} + n) - I(x_{i} + m, y_{i} + n)$$

または、

$$D_{i}(v_{x}, v_{y})$$
= $\sum_{mn} \{M(X_{0} + x_{i} - v_{x} + m, Y_{0} + y_{i} - v_{y} + n) - I(x_{i} + m, y_{i} + n)\}^{2}$

ただし、

Σの加算範囲はブロックΒi内のM×N個の画素で、m, nは、

$$-(M/2) \leq m < (M/2)$$

$$-(N/2) \le n < (N/2)$$

を満たす整数。

【0090】M (m, n) は、信号線711を介してメ イン画像メモリ28に座標値(m, n)を出力し、信号 線712を介してメイン画像メモリ28の対応する画素 値を得る処理を意味する。 I(m, n)は、信号線54 ・ を介して入力画像メモリ23に座標値(m, n)を出力 し、信号線55を介して入力画像メモリ23の対応する 画素値を得る処理を意味する。X。, Y。は、信号線を介 して、原点パッファ75内に記録されている座標値を参 照する処理を意味する。 vz vyは整数である。 なる計 算を、予め限定した範囲の (vz, xy) の組について全 てを行い、最も上記の数式のDi(vx, vx)の値を小 さくする (vx, xv) の組を、代表点 (xi, yi) にお ける動きベクトル (vri, vri) とする。

【0091】上記の処理において、一般的には、M×N =4×4,8×8,16×16,32×32などの値 で、vx, xyの範囲は、プロック内すなわち、

 $M \ge_{\kappa} v \ge M$ である。

-N≤v,≦N

【0092】<方式1-2:濃度勾配法>第2の方式 は、一般的に凌度勾配法と呼ばれている方法で、以下の 文献11に詳細に述べられている。

「画像信号による動対象の移動量、速度 の測定」吹抜;電子通信学会 画像工学研究会資料: 1 E78-67 (1978年)

この譲度勾配法によって、各代表点における動きベクト

 (v_{xi}, v_{yi}) , $i = 0 \sim (K-1)$

を求める際にも、ペクトル検出部71は、メイン画像メ モリの座標 (X。, Y。) と、入力画像の座標 (0, 0) を対応させて、すなわち、入力画像I(i, j)と、メ イン画像M(m, n)において、原点パッファ内の座標 (X。Y。)を基準点として、

 $(i+X_0, j+Y_0) = (m, n)$

と対応させて処理を行う。

【0093】上記いずれかの処理をベクトルバッファ7 6内に蓄積されている各代表点(xi, yi)に対して行 い、結果(vxi, vyi)を、ベクトルパッファ76の 「動ベクトル」の所定の項に記録する。

【0094】次にパラメタ決定回路27の係数計算部7 2の説明を行う。係数計算部72においては、ベクトル 検出部71による以上の処理の結果としてベクトルパッ ファ76に記録された、各代表点(xi, yi)に対する 動きベクトル(vxi、vxi)から、以下のいずれかの方 式による処理により、パラメタ(pa, pb, pc, pd. pe, pf) を計算する。

【0095】 <方式1-3: 最小二栗法>各代装点 (x i, yi) の動きベクトル (vxi, vyi) を、アフィン変 換を示す方程式

 $x' = p_a \cdot x + p_b \cdot y + p_c$

 $y' = p_d \cdot x + p_s \cdot y + p_f$

に代入した結果として得られる。

[0096]

(10)

特別平05-260264

【数9】

る技術である。

 $v_{xi} = x_i' - x_i = (p_i - 1) \cdot x_i + p_b \cdot y_i + p_c$ $v_{yi} = y_i' - y_i = p_d \cdot x_i + (p_\sigma - 1) \cdot y_i + p_f$ $i = 0 \sim (K - 1)$ に示す2K個の方程式から最小二乗法により、変換バラ メタ (pa, pb, ・・・, pt) を計算する。 【0097】この方法は、下記文献12に述べられてい

【0098】(文献12) 「大きさ・向きを変える物 体の動きベクトル検出法の一検討」田中、八木、榎並; 電子情報通信学会1989年春季全国大会予稿集p. 7 <方程式1-4:偏微分方程式による方法>上記数式9 を、誤差を明らかにして書き直し、

[0099] 【数10】

 $\delta_{xi} = (P_a - 1) \cdot x_i + P_b \cdot y_i + P_c - v_{xi}$ $^{\delta}y_{i} = P_{d} \cdot x_{i} + (P_{e} - 1) \cdot y_{i} + P_{d} - v_{y_{i}}$ ただし、 $i=0\sim (K-1)$

 $\delta_{\mathbf{x}\,\mathbf{i}}$, $\delta_{\mathbf{v}\,\mathbf{i}}$ は、それぞれの式での誤差。

【0100】に示す2K個の方程式を得る。

【0101】上記数式10で示された誤差の二梁和

[0102]

【数11】

$$\sum_{i}$$
 (δ_{xi})², \sum_{i} (δ_{yi})²

【0103】を最小にするパラメタ (ps. ps. ps. pa, pa, pt) は、誤差の二乗和を各パラメタで偏微 分して、 [0104]

【数12】

$$\frac{\partial}{\partial P_{a_i}} \sum (\delta_{x_i})^2 = 0 \quad \frac{\partial}{\partial P_{b_i}} \sum (\delta_{x_i})^2 = 0 \quad \frac{\partial}{\partial P_{c_i}} \sum (\delta_{x_i})^2 = 0$$

$$\frac{\partial}{\partial P_{di}} \Sigma (\delta_{yi})^{2} = 0 \quad \frac{\partial}{\partial P_{ei}} \Sigma (\delta_{yi})^{2} = 0 \quad \frac{\partial}{\partial P_{fi}} \Sigma (\delta_{yi})^{2} = 0$$

【0105】で示す連立方程式を解くことによって得ら

パラメタ (pa, pb, pc, pd, pe, pf) を求める。 [0107]

【0106】すなわち、以下の計算を行うことにより、

【数13】

(11)

特別平05-260264

$$\overline{x} = \frac{1}{K} \Sigma x_{i} \quad \overline{y} = \frac{1}{K} \Sigma y_{i} \quad \overline{x}^{2} = \frac{1}{K} \Sigma (x_{i})^{2} \quad \overline{y}^{2} = \frac{1}{K} \Sigma (y_{i})^{2}$$

$$\overline{x \cdot y} = \frac{1}{K} \Sigma x_{i} y_{i} \quad \overline{y}_{x} = \frac{1}{K} \Sigma y_{x} \quad \overline{y}_{y} = \frac{1}{K} \Sigma y_{y} \quad \overline$$

【0108】ただし、上記の数式において、この加算範

読み込む処理を意味する。

囲は、i=0~(K-1)とする。

【0110】また

【0109】xi, yi, vxi, vyiは、i番目の代表点

[0111]

座標または動きベクトルを、ベクトルバッファ78から 【数14】

$$\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{x}}, \overline{\mathbf{y}}^2, \overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{v}_{\mathbf{x}}}, \overline{\mathbf{v}_{\mathbf{y}}}, \overline{\mathbf{x}}, \overline{\mathbf{v}_{\mathbf{y}}}, \overline{\mathbf{x}}, \overline{\mathbf{v}_{\mathbf{y}}}, \overline{\mathbf{x}}, \overline{\mathbf{v}_{\mathbf{y}}}, \overline{\mathbf{x}}, \overline{\mathbf{v}_{\mathbf{y}}}, \overline{\mathbf{x}}, \overline{\mathbf{v}_{\mathbf{y}}}, \overline{\mathbf{v}}, \overline{\mathbf{$$

【0112】上記、数式14とA, B, C, D, E, F, G, a, ps, pb, pc, pd, pe, psは、ベクト

ル検出部71内の、浮動小数点型変数パッファで、a= bは、左辺のバッファaに右辺の値bを書き込む処理を

(12)

特別平05-260264

示す。また、演算は、浮動小数点精度で行われる。 【0113】係数計算部72は、以上の計算処理により 得られた、パラメタ(pan pbn pc. pd. po, pt) を、パラメタ分割部73に出力する。

【0114】次にパラメタ分割部73の説明を行う。パ ラメタ分割部73は、係数計算部72から入力したパラ メタ(pa pb pa pa pe pg)を、メイン画像 補正回路26および入力画像補正回路25に出力するた

めのパラメタに、すなわち、整数画索単位の平行移動成 分とアフィン変換成分に分割すると共に、必要に応じ て、原点バッファ75の内容を変更する。 【0115】すなわち、以下の処理を行う。

【0116】(1) 入力画像の4項点の変換後のメイ ンメモリ上での座標を計算する。すなわち、以下の計算 を行う。

```
X_{i0} = p_a \cdot X_o + p_b \cdot Y_o + p_c
Y_{10} = p_d \cdot X_0 + p_e \cdot Y_0 + p_f
X_{i1}=p_a \cdot (X_0+XI-1) + p_b \cdot Y_0+p_c
Y_{i1} = p_d \cdot (X_0 + X_1 - 1) + p_e \cdot Y_0 + p_f
X_{i2} = p_e \cdot (X_e + X_I - 1) + p_e \cdot (Y_e + Y_I - 1) + p_e
Y_{i2} = p_d \cdot (X_0 + X_1 - 1) + p_e \cdot (Y_0 + Y_1 - 1) + p_f
X_{i3} = p_a \cdot X_o + p_b \cdot (Y_o + Y_i - 1) + p_c
Y_{i3} = p_d \cdot X_0 + p_e \cdot (Y_0 + Y_1 - 1) + p_f
```

ただし、Xi0, Yi0, Xi1, Yi1, Xi2, Yi2, Xi3, Yigは、パラメタ分割部73内の、浮動小数点型変数バ ッファで、aubは、左辺のバッファaに右辺の催bを 書き込む処理を示す。 Xo, Yoは、原点パッファ75か ら、現在の原点の座標を読み出す処理を示す。XI, Y Iは、入力画像のX, Y方向の画素数を示す定数であ

【0117】(2) 変換後の4項点の座標値が、メイ ン画像メモリ28内の予め設定された矩形範囲 (M_{x0}, M_{y0}) - (M_{x2}, M_{y2}) の内側に位置するかど うかを判別する。すなわち、

 $D_{xl} = X_{il} - M_{xi}$

 $D_{x0} = X_{10} - M_{x0}$

示す。

 $D_{x3} = X_{i3} - M_{x0}$ $D_{x2} = X_{12} - M_{x1}$ $D_{y0} = Y_{10} - M_{y0}$ $D_{yl}=Y_{il}-M_{yl}$ $D_{y3} = Y_{i3} - M_{y0}$ $D_{y2} = Y_{12} - M_{y1}$ ただし、 D_{x0} , D_{x1} , D_{x3} , D_{x2} , D_{y0} , D_{y1} , D_{y3} , Dy2は、パラメタ分割部73内の、浮動小数点型変数バ ッファで、a=bは、左辺のパッファaに右辺の値bを 書き込む処理を示す。M₂₀, M_{y0}, M_{x1}, M_{y1}は0≤M x0<Mx1<XM, 0≤My0<My1<YM, を満たす整数 の定数で、変数後の入力画像がメイン画像メモリ内のこ の座標範囲内におさまる様にするための座標値である。 Xio, Yio, Xii, Yii, Xi2, Yi2, Xi3, Yi3/1, 上記のバッファから、記録された数値を読み出す処理を

【0118】(3) 変換後の入力画像が、メイン画像 メモリ内の上記範囲内におさまるように、パラメタ (p 00, p10, · · · , p21), (qx, qy) および、次の 処理での原点座標(X。, Y。) を、以下の処理により計 質する.

【0119】[1] 以下の通りに、各変数を設定す る。

 $X_o = D_{x0}$, $Y_o = D_{y0}$, $p_{00} = p_a$, $p_{10} = p_b$, $p_{20} = p_c + D_{x0}$, $p_{01} = p_d$, $p_{11} = p_c$, $p_{21} = p_f + D_{y0}$ $q_x = 0$, $q_y = 0$ [2] 以下の通りに、場合に応じて変数の一部を書き

直す。 [2-1] $D_{x0} < 0$ または $D_{x3} < 0$ の場合、 $X_0 = M_{x0}$

Dx0<Dx3の場合: qx=int (Dx0) Dx3≦Dx0の場合: qx=int (Dx3) p₂₀=p_c-q₂

[2-2] Dyo<0またはDy3<0の場合、 $Y_0 = M_{y0}$

Dy0<Dy3の場合:qy=int (Dy0) Dy3≦Dy0の場合: qy=int (Dy3) $p_{21} = p_f - q_y$

[2-3] D_{x1}>0またはD_{x2}>0の場合、 $D_{x1}>D_{x2}$ の場合: $q_x=-\{int(D_{x1})+1\}$

D_{x2}≦D_{x1}の場合: q_x=~ {int·(D_{x2})+1} $X_0 = X_{i0} + q_x$

 $p_{20} = p_c + q_x$

[2-4] D₁>0またはD₁>0の場合、

Dy1>Dy2の場合: qy=- {int(Dy1)+1} Dx2≦Dx1の場合: qy=- {int (Dy2) +1}

 $Y_0 = Y_{i0} + q_y$ $p_{21} = p_f + q_y$

ただし、上記の数式で、X₀, Y₀, p₀₀, p₁₀, p₂₀, poi, pii, p2i, qx, qyは、パラメタ分割部73内 の、変数パッファで、Xo, Yo, qx, qyは実数型、そ の他は浮動小数点型である。a=bは、左辺のパッファ aに右辺の値 bを書き込む処理を示す。

【0120】以上の処理により計算されたパラメタのう ち、X。、Y。は、原点パッファ75に含き込み、以前の 値を変更する。 poo, p10, p20, p01, p11. p 21は、信号線53を介して入力画像補正回路25に出力 、される。 qx、 qyは、信号線 6 3 を介してメイン画像植

正回路26に出力される。

【0121】ベクトル検出部71、係数計算部72およ びパラメタ分割部73は、上記の処理を、阿期手段20 から発生するフレーム切り替え信号がアクティブになっ た時点から、画案切り替え信号がアクティブになるまで の期間に行う。

【0122】ただし、同期手段20から発せられるリセ ット信号がアクティブである際は、ベクトル検出部 7 1 および係数計算部72は処理を行わず、パラメタ分割部 73のみが、以下の処理を行う。

【0123】すなわち、

 $p_{00}=0$, $p_{10}=0$, $p_{20}=D_x$, $p_{10}=0$, $p_{11}=$ $0, p_{21} = D_{y}$

を入力画像補正回路25に出力し、

 $q_x = 0$, $q_y = 0$

をメイン画像補正回路 qx、 q vに出力する。

【0124】また、上記の方式によるアフィン変換パラ メタ計算方式の以外の方式によってでも、パラメタ (p a, pb, pc, pd, pe, pf) を決定できる場合、その 方式を、フレーム切り替え信号がアクティブになった時 点から、画案切り替え信号がアクティブになるまでの期 間に行うことで、本実施例でのパラメタ決定回路27は 上記方式と同様に動作する。

【0125】〈第1の実施例の金体的な説明〉以上に述 べたような動作を行う各回路を用いて、以下の順に処理 を行うことにより、時間的に連続して入力した画像(以 下フレーム)を繋ぎ合わせ、広範囲の画像をメイン画像 メモリ内に構成することを説明する。

【0126】すべての処理は、同期手段20から、信号 線30を介して出力される同期信号に同期して行われ る。同期信号には、以下の3種類が存在する。

【0127】すなわち、

(1) リセット信号

システムをリセットするためのパルス信号で、オペレー タの操作により立ち上げられ、第0フレームの間アクテ ィブである。

【0128】 (2) フレーム切り替え信号

処理するフレームが切り替わる事を示すためのパルス信 号で、フレームの処理を開始する際に立ち上げられ、フ レーム内の処理が行われている間アクティブである。

【0129】(3) 画素切り替え信号

処理する画家が切り替わる事を示すためのパルス信号 で、画素毎にパルスが発せられる。

【0130】図12に、各同期信号の関係を示す。図1 2では、ハイレベルがアクティブ状態である。リセット 信号の立ち上がりに反応して、フレーム切り替え信号が アクティブになり、画索切り替え信号が、メイン画像メ モリ28の画案数であるXM×YM個のパルスを発生す る。画索切り替え信号がXM×YM個のパルスを発生し 終えると、フレーム切り替え信号は、非アクティブにな

り、次のフレームの処理を開始するために再度立ち上が Õ.

【0131】この同期信号に沿って、各部の励作を説明 する。 図12中の期間番号は、以下に説明する各期間番 号を示している。

【0132】期間(1):リセット信号がアクティブに なり、フレーム切り替え信号がアクティブになるまで に、以下の処理が行われる。

【0133】 [1] メイン画像メモリ28は、メモリ の全内容をクリアする。すなわち、全てのメイン画像メ モリ内の画素値をりに書き換える。

【0134】 [2] パラメタ決定回路27は、原点バ ッファの原点座標を初期値(D_x 、 D_y)に設定する。

【0135】[3] 画像入力手段11は、1フレーム 分の画像データを入力画像メモリ23に書き込む。

【0136】期間(2): リセット信号および、第1フ レームを示すフレーム切り替え信号がアクティブで、か つ、第1画素を示す画素切り替え信号がアクティブにな るまでに、以下の処理が行われる。

【0137】パラメタ決定回路27は、入力画像補正回 路25に、以下のパラメタを出力する。

[0138] (pao, p₁₀, p₂₀, p₀₁, p₁₁, p₂₁) $= (0, 0, D_x, 0, 0, D_y)$

また、メイン画像補正回路26に、以下のパラメタを出 カする。

 $(q_x, q_y) = (0, 0)$

これらのパラメタは、入力画像を拡大・縮小・回転処理 を行わず、平行移動のみでメイン画像メモリ25の中央 部に(図8に示すように)書き込むためのものである。

【0139】期間(3):リセット信号がアクティブの 間で、画素切り替えパルスがアクティブになる毎に、画 像合成回路24は、入力画像補正回路25を介して入力 した画素値をヲスタ順にメイン画像メモリ28に書き込

【0140】以上の「朔間(1)~(3)」で行う処理 の結果として、図8に示されるような、メイン画像メモ リ28の中央部分に、入力画像メモリ23上の画像デー タが書き込まれる。

【0141】リセット信号が非アクティブになった後 は、以下の処理が繰り返し実行される。

【0142】期間(4):フレーム切り替え信号が非ア クティブになった時点から、再度アクティブになるまで の期間には、以下の処理が行われる。

[1] 画像入力手段11は、次の1フレーム分の画像 データを入力画像メモリ23に書き込む。

[2] メイン画像補正回路26は、メイン画像メモリ 28の内容を、画像パッファ61に複写する。

[3] パラメタ決定回路27は、必要ならば入力画像 から代表点を選択し、座標値をベクトルパッファ76に 書き込む。

【0143】期間(5):リセット信号が非アクティブ の状態で、フレーム切り替え信号がアクティブになった 時点から、画素切り替え信号がアクティブになるまでの 間には、以下の処理が行われる。

【0144】パラメタ決定回路27は、入力画像メモリ 23に記録された次のフレームの画像とメイン画像メモ リ28に記録されている、いままでに作成された画像と のマッチングを行い、パラメタ (poo, pio, pzo, p 01, p11, p21) および (q1, qy) を計算し、入力面 俊補正回路25およびメイン画俊補正回路26に出力す るとともに、必要ならば原点バッファの内容を新しい原 点座標に書き換える。

【0145】期間(6):リセット信号が非アクティブ の間で、両素切り替えパルスがアクティブになる毎に、 画像合成回路24は、入力画像補正回路25を介して入 力した画素値と、メイン画像補正回路26を介して入力 したメイン画像を合成し、ラスタ順にメイン画像メモリ 28に杏き込む。

【0146】この画素毎の処理を、タイムチャートで示 すと、図13の通りである。図13において、左端の項 目にふられた番号は、本実施例の図3における信号線の 番号で、一座標1一、一画索1一、一結果1一などは、 各信号線上で値が確定していることを示すもので、x は、各信号線での値が不定であることを示すものであ

【0147】また、図13中の[1] [2]・・・は、 下記の処理を行う時期を示す。

[1] 画像合成回路24は、同期信号30の画素切り 替え信号の立ち上がりを検出して、座標値を信号線33 を介して入力画像補正回路 2 5 およびメイン画像補正回 路26に出力する。また、同じ座標値を信号線34を介 してメイン画像メモリに出力する。

【0148】[2] 入力画像補正回路25は、信号線 33を介して入力した座標に対応する画素データを、パ ラメタ決定回路27から入力したパラメタに基づいて、 入力画像メモリ23内の画像から計算し、画索切り替え 信号の立ち下がりまでに画像合成回路 24 に出力する。

【0149】[3] メイン画像補正回路26は、パラ メタ決定回路27から入力したパラメタに基づいて、信 **号線33を介して入力した座標に対応する面楽データ** を、画家切り替え信号の立ち下がりまでに画像合成回路 24に出力する。

【0150】上記[1]、[2]、[3]の結果、画素 切り替え信号の立ち下がりでは、座標値 (33) および 画素値(35、36)が確定となる。

【0151】[4] 画像合成回路24は、画素切り容 え信号の立ち下がりを検出し、入力画像補正回路25お よびメイン画像補正回路26から、信号線35、36を 介して入力した画素データを演算処理し、演算結果を大 の画索切り替え信号の立ち上がりまでに、信号線37を

介してメイン画像メモリ28に出力する。

【0152】 [5] この結果、画素切り替え信号の立 ち上がりでは、座標値 (34) 演算結果 (37) が確定 となるため、メイン画像メモリは、画緊切り替え信号の 立ち上がりで、座標値(34)に対応する面素に、画素 値(37)を杏き込む。

【0153】以上の「期間(4)~期間(6)」で行う 処理により、メイン画像メモリ28には、図14に示す ように、画像入力手段11から時間的に連続して入力し たフレームが、同じ画像を示す領域をのりしろ様に繋ぎ 合わされた画像が作成される。

【0154】また、本実施例においては、入力画像補正 回路25でアフィン変換を行い、メイン画像補正回路2 6で1画素単位の平行移動を行ったが、入力画像補正回 路25で1画像単位の平行移動を、メイン画像楠正回路 26でアフィン変換を行う様にすることも同様に可能 で、この場合、以下の点が、本実施例と異なる。

【0155】(1) パラメタ決定回路27において、代 **袤点をメイン画像メモリ28上の画像に取り、入力画像** とのマッチングを取る。

【0156】(2)パラメタ決定回路で、平行移動成分 (qx、qy)を入力画像補正回路に、アフィン変換パラ メタ (poo, pio, pao.・・・, pai) をメイン画像 補正回路に出力する。

【0157】(3)入力画俊楠正回路は、上記実施例で のメイン画像補正回路と同様の構成を持ち、入力画像メ モリの画像データに対して整数画素単位の平行移動を行 った結果を画像合成回路に出力する。

【0158】(4)メイン画像補正回路は、上記実施例 での入力画像補正回路と同様の処理すなわち、メイン画 像メモリの画像全体に対してアフィン変換および画索補 問処理を行う。この際のメイン画像補正回路の構成およ び動作は、以下に示す第2の実施例でのメイン面像補正 回路156と同様である。

【0159】<第2の実施例>次に、本発明における、 画像処理装置の第2の実施例を、図に基づいて説明す る。本実施例では、画案拡大補間によって動画高画質化 を行う装置、即ち、連続して入力した面像の画素数を、 以前に入力したフレームの画像情報を用いて補間するこ とにより、入力両像よりも画素数の多い面像を生成する 画像処理装置の一例を示す。

【0160】図15は、本発明における第2の実施例 の、入力処理手段12および画像蓄積手段13の構成例 を示す図である。図15において、同期手段150、入 力画像メモリ153および、メイン画像メモリ158 は、それぞれ第1の実施例での同期手段20、入力画像 メモリ23、メイン画像メモリ28と同様の回路で、以 下に述べる点を除いては、同様の仕様を持ち、同様の動 作を行う。

【0161】入力処理手段12は、入力画像メモリ15

3、 画像合成回路 154、 画像拡大回路 155、メイン 画像補正回路 156、パラメタ決定回路 157、拡大画 像メモリ 159で構成され、入力画像メモリ 153は、 画像拡大回路 155からの座標入力に対し、対応する画 素値を出力する。

【0162】 阿像合成回路154は、拡大阿像メモリ159およびメイン 関係 補正回路156に座標値を出力し、その結果として得られるそれぞれの回路からの画素データを演算し、座標値とともに演算結果の値をメイン 関像メモリ158に出力する。この画像合成回路154の詳細な動作は、後に述べる。

【0163】画像拡大回路155は、デジタル演算回路、半導体メモリおよび周辺回路からなり、入力画像メモリ153内に蓄積されているデジタル画像データをメイン画像メモリ158の画素数に拡大処理し、拡大画像メモリ159に書き込む。この画像拡大回路155の詳細な動作は、後に述べる。

【0164】拡大画像メモリ159は、画像拡大回路によって拡大された入力画像を記録するための回路で、半 等体メモリおよび周辺回路からなる。拡大画像メモリ159の容量は、メイン画像メモリと同じで、本実施例では、XM×YMの画索数を持ち、各画素にはGM階調の明度情報が格納される。

【0165】また、表記を簡便にするため、拡大画像メモリの座標 (m, n) での画素値を $F_i(m, n)$ とする。ただし、 $0 \le i < XM$, $0 \le j < YM$, $0 \le F_i(m, n) < GM$ 、また、m, n, $F_i(m, n)$ は整数である。

【0166】メイン画像補正回路156は、デジタル演算回路、半導体メインおよび周辺回路で構成され、パラメタ決定回路157から入力するパラメタにより、メイン画像メモリ28内の画像データを変換し、画像合成回路154から入力する座標値に対応する画像データを画像合成回路154に出力する。このメイン画像補正回路156の詳細な動作は、後に述べる。

【0167】本実施例では、記述を俯便にするため、メイン画像補正回路156での補正処理を関数を F_n で記述し、補正後の座標(k, 1)での画素値を F_n (m, 1)とする。ただし、 $0 \le k < XM$, $0 \le 1 \le YM$, 0. $\le F_n$ (k, 1) < GM、また、k, 1, F_n (k, 1) は整数とする。

【0168】パラメタ決定回路157は、デジタル演算 回路、半導体メモリおよび周辺回路で構成され、拡大画 像メモリ159とメイン画像メモリ158のそれぞれに 密積されている画像データを比較し、補正パラメタをメ イン画像補正回路156に出力する。このパラメタ決定 回路157の詳細な動作は、後に述べる。

【0169】画像蓄積手段13は、メイン画像メモリ158で存成され、メイン画像メモリ158は、画像合成 回路154から座標と画索値を入力し、入力した座標に 対応するメモリ領域に画素値を書き込む。また、パラメ タ決定回路157およびメイン画像補正回路156から の座標入力に対し、対応する画素値を、それぞれの回路 に出力する。

【0170】以下に、図15を用いて、四像合成回路154、画像拡大回路155、メイン画像補正回路156、パラメタ決定回路157、の作用について、さらに詳細に述べる。

【0171】画像合成回路154について説明する。画像合成回路154は、図3に示す画像合成回路24と同様の構成・機能を持つもので、画像合成回路24と比較した場合、構成上、以下の点が異なる。

【0172】(1) 入力画像捕亚回路25の代わりに 拡大画像メモリ159と接続されている。

(2) メイン画像補正回路26の代わりにメイン画像 補正回路156と接続されている。

【0173】座標発生部は、第1の実施例で示したと同様に、四素切り替えパルス信号立ち上がり毎に、メイン 画像メモリに存在する全座標値を、ラスタ順に順次発生 する。

【0174】画像演算部は、画素切り替え信号がアクティブから非アクティブに変化した時点で、拡大入力メモリ159およびメイン画像補正回路156から、それぞれの画素値を入力し、それらの画素値に以下の演算を施し、その結果を画素切り替え信号が再度アクティブになるまでにメイン画像メモリ158に出力する。

[0175]

 $M = \alpha \times F_i + (1 - \alpha) \times F_a$

if M≧GM then M=GM ただし、

 α は、予め定めた定数で、 $0 < \alpha < 1$

Mは、メイン画像メモリ158に出力する両素値。

【0176】Fiは、拡大画像メモリ159から入力する画家値。

【0177】F_mは、メイン画像補正回路156から入力する画素値。

【0178】ただし、リセット信号がアクティブである 間は、以下の演算、すなわち、拡大画像メモリ159か らの入力のみをメイン画像メモリ158に書き込む処理 を行う。

[0179]

 $M = F_i$

if $M \ge GM$ then M = GM

画像拡大回路155について説明する。画像拡大回路155は、入力画像メモリ内の(XI, YI) 画素の画像 データを、メイン画像メモリの画素数(XM, YM) に 拡大する処理を行う部分で、図16に示すように座標発 生部161、座標縮小部162および補間液算部163で構成される。

【0180】座標発生部161は、フレーム切り替え信

(16)

特朗平05-260264

号が非アクティブになり、入力画像メモリに次のフレー ムの画像が入力された後、再度フレーム切り替え信号が アクティブになるまでに、上記画像合成回路154の座 標発生部と同様に、拡大画像メモリ内の全ての面素の座 標をラスタ順に発生し、座標縮小部162に順次出力す るとともに、信号線164を介して拡大両像メモリ15 9に出力する。

【0181】座標縮小部162は、座標発生部161か ら入力する各座標値に対して以下の処理を行い結果値を 補間演算部163に出力する。

[0182]

$$(x', y') = (a \cdot x, b \cdot y)$$

ただし、a, bは、拡大率を示す浮動小数点型の定数 で、以下の計算により算出される。

a = X I / XM

b = YI/YM

x, yは、座標発生部161から入力する整数の座標 値。 x′, y′は、補間演算部163に出力する浮動小 数点型の座標値。補間演算部163は、第1の実施例に おける補間演算部52と同様の以下の処理を、座標縮小 部162から入力する各座標値について行う。

【0183】すなわち、

 $M_i = F(x', y')$

ただし、(x', y')は、座標縮小部162から入力 する座標値。Miは、信号線165を介して拡大画像メ モリ159に出力する計算結果。F (x', y')は、 各座標値(x', y')に対して、第1の実施例で示し た、「3次補間法」「双線形補間法」「再近傍法」のい づれかの方法を用いて、入力画像メモリ153の画像デ ータの演算を行うことを意味する。図16の信号線16 6は、この演算の際に、入力画像メモリ153に必要な 画家の座標値を出力するためのもので、信号線168 は、信号線166から出力した遊標値に対する画素値を 入力するためのものである。

【0185】次にメイン画像補正回路156の説明を行 う。メイン画像補正回路156は、図17に示すように 画像パッファ171とアフィン変換部172および福間 演算部173で構成され、第1の実施例における入力画 像補正回路25と同様なアフィン変換をメイン画像に対 して行う。

【0186】画像パッファ171は、メイン画像メモリ 158と同容量の画像メモリで、同期信号160のフレ 一ム切り替え信号が非アクティブになった時点から、再 度アクティブになるまでの間に、メイン画像メモリの内 容全部を被写する。

【0187】また、画像パッファ171は、補間演យ部 173から入力した座標値に対応する画案の値を補間液 算部173に出力する。

【0188】アフィン変換部172は、第1の実施例に おけるアフィン変換部51と同様の、以下の処理を行

【0189】(1) 同期信号160のフレーム切り樹 え信号が立ち上がってから、画素切り替え信号が立ち上 がるまでに、パラメダ決定回路157から信号線175 を介してアフィン変換係数を入力する。

【0190】(2) 画索切り替え信号が立ち上がる毎 に、画像合成回路154から信号線177を介して入力 する座標値を、以下の数式15により変換して、補間液 算部173に出力する。

[0191]

【数15】

$$(x', y', 1) = (x, y, 1)$$

$$\begin{bmatrix}
P_a & P_d & 0 \\
P_b & P_e & 0 \\
P_c & P_f & 1
\end{bmatrix}$$

【0192】ただし、行列要素 pa, pb, pc, pd, p e. prは、パラメタ決定回路157から入力するアフィ ン変換係数。 (x, y) は、画俊合成回路154から入 力する座標値。(x′, y′)は、補間演算部173に 出力する座標値。

【0193】補間液算部173は、第1の実施例におけ る補間演算部52と同様の、以下の作用を行う。

- (3) アフィン変換部172から上記処理結果の座標 値を入力する。
- (4) 入力した座標値に対して、画素切り替え信号が

アクティブである期間に以下の函素補間演算処理を行 い、得られた結果を信号線176を介して画像合成回路 154に出力する。

[0194]

 $M_0 = F (x', y')$

ただし、(\mathbf{x}' , \mathbf{y}')は、アフィン変換部172かち 入力する座標値。Maは、信号線176を介して画像合 成回路拡大画像メモリ154に出力する、計算結果。F (x', y')は、各座標値(x', y')に対して、 第1の実施例で示した、「3次補間法」「双線形補間

法」「再近傍法」のいづれかの方法を用いて、画像バッファ171の画像データに対して演算を行うことを意味 する。

【0195】上記の処理により、このメイン画像補正回路156は、メイン画像メモリ158の画像データを、パラメク決定回路157からのパラメタによってアフィン変換し、画像合成回路154に出力する。ただし、同期手段150から発せられるリセット信号がアクティブである際は、メイン画像補正回路156は処理を行わない。

【0196】次にパラメタ決定回路157の説明を行う。パラメタ決定回路157は、図18に示すように、ベクトル検出部181、係数計算部182、ベクトルバッファ183で構成され、同期手段150からの同期信号160に同期して処理を行う。

【0197】ベクトルバッファ183は、第1の実施例におけるベクトルバッファ76と同様に、K個の代表点の座標値と各代表点における動きベクトル値を、要1に示すような表形式で幇積するための一時的な記憶手段で、半導体メモリと周辺回路で構成される。ベクトルバッファ183は、ベクトル検出部181によって書き込み/読み出しが行われ、係数計算部182によって読み出される。

【0198】ベクトル検出部181では、メイン面像メモリ内158の画像データと、拡大画像メモリ159内の画像データを比較し、メイン画像中に設定した複数の代表点における動きベクトルを求める。

【0199】代表点決定部について説明する。本实施例では、メイン画像中にK個の代表点をとり、これらの代表点の座標を、

(xi, yi) ただし、

 $i = 0 \sim (K-1)$

 $0 \le x_i < XI$, $0 \le y_i \le YI$ とする。

【0200】代表点の座標決定の方法は、第1の実施例のベクトル検出部71と同様に、

(1) 対象画像によらず、予め決定して、その座標値をベクトルパッファ183の「代表点座標」の項に書き込んでおく。または、(2) フレーム切り替え信号が非アクティブにである期間に、第1の実施例と同様の方法により、メイン画像メモリの画から代表点の座標を決定し、その都度ベクトルパッファに記入する。ただし、リセット信号がアクティブである場合は、上記の処理は行わない。

【0201】次にベクトル計算部を説明する。以上の処理で求めたメイン画像中の各代表点(xi, yi)に対する、拡大画像中の画像の対応点

(x'_i, y'_i), i=0~(K-1) または効きベクトル $(v_{xi}, v_{yi}) = (x^{i}_{i} - x_{i}, y'_{i} - y_{i}), i = 0 \sim (K-1)$

を、第1の実施例と同様に、ブロックマッチングまたは 濃度勾配法のいずれかの方式によって求め、結果をベク トルバッファ183の「助ベクトル」の項に書き込む。 【0202】第1の実施例との違いは以下の通りであ る。すなわち、第1の実施例では、図11に示すよう に、入力画像の原点(左上)をメイン画像の座標

(X_n, Y_n) と対応させた後、各代表点での動きベクトルを検出していたが、本実施例では、拡大面像とメイン画像の画来数が等しいため、拡大面像との原点をメイン画像の原点に常時対応させて動きベクトルの計算処理を行う。

【0203】次に、係数計算部182を説明する。係数計算部182は、ベクトル検出部181による以上の処理の結果としてベクトルパッファ183に記録された、各代表点(xi, yi)に対する動きベクトル(vxi, vyi)から、第1の実施例に示した、最小二乗法、偏微分方程式による方法のいずれかの処理により、パラメタ(Pa. Pb. Pc. Pd. Pe. Pi)を計算し、信号線184を介してメイン画像補正回路156に送出する。

【0204】ベクトル検出部181および係数計算部182は、上記の処理を、同期手段20から発生するフレーム切り替え信号がアクティブになった時点から、回素切り替え信号がアクティブになるまでの期間に行う。

【0205】ただし、同期手段150から発せられるリセット信号がアクティブである際は、パラメタ決定回路 157は処理を行わない。

【0206】 <第2の実施例の全体的な説明>以上に述べたような助作を行う各回路を用いて、以下の順に処理を行うことにより、時間的に連続して入力した画像(以下フレーム)を拡大・合成し、入力画像より高解像度の画像をメイン画像メモリ内に構成することを説明する。 【0207】すべての処理は、同期手段150から、信号線160を介して出力される同期信号に同期して行われる。同期信号には、第1の実施例の図12に示すと同

(1) リセット信号

様に、

- (2) フレーム切り替え信号
- (3) 画家切り替え信号

の3種類が存在する。

【0208】この図12に示す同期信号に沿って、各部の動作を説明する。

【0209】期間(1): リセット信号がアクティブになり、フレーム切り替え信号がアクティブになるまでに、以下の処理が行われる。

[1] メイン画像メモリ158は、メモリの金内容を クリアする。すなわち、全てのメイン画像メモリ内の画 素値を0に書き換える。

[2] 画像入力手段11は、1フレーム分の画像デー

タを入力画像メモリ153に書き込む。

[3] 画像拡大回路155は、上記[2]の処理により入力画像メモリ153に書き込まれた画像を拡大・補間し、拡大画像メモリ159内に書き込む。

【0210】期間(2): リセット信号および、第1フレームを示すフレーム切り替え信号アクティブで、かつ、第1 画素を示す画素切り替え信号がアクティブになるまでは、特に処理は行わない。

【0211】期間(3):リセット信号がアクティブの 間で、画素切り替えパルスがアクティブになる毎に、画 像合成回路154は、拡大画像メモリ159に記録され た画像をラスタ順にメイン画像メモリ28に告き込む。

【0212】以上の「期間(1)〜期間(3)」で行う 処理の結果として、メイン画像メモリ158の面素数に 拡大された入力画像が、メイン画像メモリ158に書き 込まれる。

【0213】リセット信号が非アクティブになった後は、以下の処理が繰り返し実行される。

【0214】期間(4):フレーム切り替え信号が非アクティブになった時点から、再度アクティブになるまでの期間には以下の処理が行われる。

[1] 画像入力手段11は、次の1フレーム分の画像 データを入力画像メモリ153に書き込む。

[2] 両俊拡大回路155は、入力画像メモリ153 に記録された画像を拡大補間処理し拡大画像メモリ15 9に書き込む。

[3] メイン画像柿正回路156は、メイン画像メモリの内容を、画像パッファ171に複写する。

[4] パラメタ決定回路157は、必要ならばメイン 画像から代表点を選択し、座標値をベクトルパッファ1 83に書き込む。

【0215】期間(5): リセット借号が非アクティブの状態で、フレーム切り替え信号がアクティブになった時点から、画素切り替え信号がアクティブになるまでの間には以下の処理が行われる。

パラメタ決定回路157は、拡大画像メモリ159に記録された次のフレームの拡大画像とメイン画像メモリ158に記録されている、いままでに作成された画像とのマッチングを行い、パラメタ(pa. pb. pc. pd. pc. pf. な計算し、メイン画像補正回路156に出力する。

【0216】期間(6): リセット信号が非アクティブの間で、画素切り替えパルスがアクティブになる毎に、画像合成回路154は、拡大画像メモリ159内の画像と、メイン画像補正回路156を介して入力したメイン画像を合成し、ラスタ順にメイン画像メモリ28に書き込む。

【0217】これらの画像毎の処理を、タイムチャートで示すと、図19の通りである。図19において、左端の項目に付した番号は、以下の信号を伝達する信号線を

ボす。

160:同期手段150から出力される同期信号160 の内、画索切り替えパルス信号。

177: 画像合成回路154からメイン画像補正回路156に出力される座標値。

191: 画像合成回路154から拡大画像メモリ159 に出力される座標値。

176:メイン画像補正回路156から画像合成回路1 54に出力される画索値。

192:拡大画像メモリ159から画像合成回路154 に出力される画案値。

193: 画像合成回路154からメイン画像メモリ15 8に出力される座標値および画表値。

【0218】また、図19において、-座標1-、-画 素1-、-結果1-などは、各信号線での値が確定して いることを示すもので、xは、各信号線での値が不定で あることを示すものである。図19中の[1].

[2]、・・・は、下記の処理を行う時期を示す。

【0219】[1] 画像合成回路154は、同期信号160の画案切り替え信号の立ち上がりを検出して、座標値を信号線177、191を介してメイン画像補正回路156および拡大画像メモリ159に出力する。また、同じ座標値を信号線193を介してメイン画像メモリに出力する。

【0220】 [2] 拡大画像メモリ159は、信号線191を介して入力した座標に対応する画素データを、 画素切り替え信号の立ち下がりまでに画像合成回路15 4に信号線192を介して出力する。

【0221】 [3] メイン画像補正回路156は、バラメタ決定回路157から入力したパラメタに基づいて、信号線177を介して入力した座標に対応する画素データを画像パッファ171の画像データから計算し、画案切り替え信号の立ち下がりまでに画像合成回路154に信号線176を介して出力する。

【0222】上記[1]、[2]、[3]の結果、この結果画素切り替え信号の立ち下がりでは、座標値(177、192、193)および画素値(176、192)が確定となる。

【0224】[5] この結果、画索切り替え信号の立ち上がりでは、信号線193上で座標値および演算結果が確定となるため、メイン画像メモリ158は、画索切り替え信号の立ち上がりで、画像合成回路154から入力する座標値に対応する画案に、画索値を書き込む。

【0225】以上の「期間(4)~期間(6)」で行う

(19)

特開平05-260264

処理により、メイン画像メモリ158には、画像入力手段11から時間的に連続して入力したフレームの内、最後に入力したフレームの拡大画像を、それまでに入力したフレームの画像の情報によって補間・補正処理した画像が作成される。この様子を模式的に示すと図20のようになる。

【0226】図20で、A, N, Mは、座標に対する変換処理を示しており、Aは、アフィン変換、Nは変換なし、Mは拡大処理を示す。また、i0, i1, i2は、時間頃に入力する画像を、im0, im1, im2は、入力した画像i0, i1, i2を拡大処理した画像を、m0, m1, m2は、メイン画像メモリ上に作成される画像を示す。

【0227】第0フレームの処理は、リセット信号がアクティブの際に行われるもので、入力画像i0を拡大した画像im0がメイン画像メモリに画像m0として記録される。

【0228】第1フレームでは、次の入力画像i1を拡大した画像im1と、第0フレームで作成された画像m0が合成され、画像m1としてメイン画像メモリ上に作成されるが、この際、im1は座標変換されず、m0がim1に合わせるべくアフィン変換により座標変換されているため、画像im1を画像m0で補間・補正した画像m1が作成される。

【0229】第2フレームでは、第1フレームでの処理で作成された画像と同様に、次の入力画像i2を拡大した画像im2を、第1フレームで作成された画像m1で補間・補正した画像m2がメイン画像メモリ上に作成される。

【0230】これらの処理の際、以前の画像の情報が次の画像に寄与する場合は、画像合成回路154での処理における定数αを変化させることで制御可能である。

【0231】<第3の実施例>上記第2の実施例では、 拡大画像メモリ159の画像を中心に、メイン画像メモ リ158の画像を合成することにより、時間的に一番最 後に入力した画像を以前に入力した画像で補正・補間していたが、図21のような構成をとり、メイン画像を中心に、拡大画像を合成するようにすることにより、最初 (システムリセット時)に入力した画像を補間・補正することも可能である。この第3の実施例として入力画像 補正が可能な画像処理装置を以下に説明する。

【0232】図21において、同期手段210、入力画 俊メモリ213、画像拡大回路215、拡大画像メモリ 219、画像合成回路214、拡大画像補正回路21 6、パラメタ決定回路217およびメイン画像メモリ2 18は、それぞれ第2の実施例での同期手段15、入力 画像メモリ153、画像拡大回路155、拡大画像メモ リ159、画像合成回路154、メイン画像補正回路1 56、パラメタ決定回路157およびメイン画像メモリ 158と同様の回路で、以下に示すように、同様の仕様 を持ち、同様の動作を行う。

【0233】入力画像メモリ213は、画像拡大回路2 15からの座標入力に対し、対応する画素値を出力する。

【0234】 画像合成回路214は、第2の実施例と同様に、同期信号の画落切り替え信号の立ち上がり毎に、拡大画像補正回路216およびメイン画像メモリ218に、メイン画像メモリの全座標をラスタ順に順次出力し、画素切り替え信号立ち下がり時に、その結果として得られるそれぞれの回路からの画素値に対して以下の演算を施し、画素切り替え信号が再度立ち上がるまでに、座標値とともに演算結果の値をメイン画像メモリ218に出力する。

[0235]

 $M = \alpha \times F_{\alpha} + (1 - \alpha) \times F_{i}$

if M≥GM then M=GM ただし、αは、予め定めた定数で、0<α<1 Mは、メイン画像メモリ158に出力する画素値。Fi は、拡大画像補正回路216から入力する画素値。Fn は、メイン画像メモリ218から入力する画素値。

【0236】ただし、リセット信号がアクティブである 間は、以下の演算。すなわち、拡大画像補正回路216 からの入力のみをメイン画像メモリ218に響き込む処理を行う。

[0237]

M = F

if M≧GM then M=GM

画像拡大回路215は、第2の実施例と同様に、入力画像メモリ213内に苦積されているデジタル画像データをメイン画像メモリ218の画素数に拡大補間し、拡大画像メモリ219に書き込む処理を、フレーム切り替え信号非アクティブである期間に行う。

【0238】拡大値像メモリ219は、値像拡大回路によって拡大された入力面像が書き込まれ、拡大画像補正 回路216によって読み出される、メイン画像メモリと 同じ画素数を持つ画像パッファである。

【0239】拡大画像補正回路216は、図22に示すように、パラメタ決定回路217から入力するパラメタ(pa pb pc pd pe pf)により、拡大画像メモリ219内の画像データをアフィン変換し、画像合成回路214から入力する座標値に対応する画素データを画像合成回路214に出力する回路で、内部構成および処理方式は第1の実施例におけるメイン画像補正回路156と比較した場合、以下の点を除き、向機である。

【0240】(1) メイン両像の代わりに拡大画像を 変換する。そのため、楠間演算部223は、拡大画像メ モリ219に接続される。また、拡大画像メモリの画像 を直接参照すればよく、画像パッファは必要ない。

【0241】(2) 同期手段210から発せられるリセット信号がアクティブである際は、拡大面像補正回路

216は変換処理を行わず、画像合成回路214からの 座標入力に対し、拡大画像メモリの対応する画素値をそ のまま出力する。

【0242】すなわち、この期間は、

・アフィン変換部222は画像合成回路214から入力 した座標値をそのまま補間演算部223に出力する。

・補間演算部223では、アフィン変換部222から入力した座標値に対して、以下の処理を行う。

 $[0243] F_k = F_1(x, y)$

ただし、F_kは、画像合成回路 2 1 4 に出力する画家 値。(x, y)は、アフィン変換部 2 2 2 から入力する 座標値。F_i(x, y)は、拡大画像メモリの、座標 (x, y)に対応する画案値。

【0244】パラメタ決定回路217は、フレーム切り 替え信号が立ち上がってから、画素切り替え信号が立ち 上がるまでに、拡大画像メモリ219およびメイン画像 メモリ218のそれぞれに苦積されている画像データを 比較し、補正パラメタ(pa, pb, pc, pa, po, pr)を拡大画像補正回路216に出力する。

【0245】この際、第2の夷施例との相違は、第2の 実施例では、メイン画像上に代表点を取り、拡大画像と のマッチングを行っていたが、本実施例では、拡大画像 上に代表点を設定し、メイン画像とのマッチング処理を 行う点のみである。

【0246】メイン画像メモリ218は、画像合成回路214から座標と画素値を入力し、入力した座標に対応するメモリ領域に画案値を書き込む。また、パラメタ決定回路217からの座標入力に対し、対応する画案値を出力する。

【0247】以上の構成を持つ装置による、第2の実施例と同様の処理により、メイン画像には、画像入力手段11から時間的に連続して入力したフレームの内、最初に入力したフレームの拡大画像を、以後に入力したフレームの画像の情報によって補間・補正処理した画像が作成される。

【0248】この様子を模式的に示すと図23のようになる。図23で、A, N, Mは、座標に対する変換処理を示しており、Aは、アフィン変換、Nは変換なし、Mは拡大処理を示す。

【0249】また、i0, i1, i2, は、順に入力する画像を、im0, im1, im2は、入力した画像i0, i1, i2を拡大処理した画像を、m0, m1, m2は、メイン画像メモリ上に作成される画像を示す。

【0250】第0フレームの処理は、リセット信号がアクティブの際に行われるもので、入力画像i0を拡大した画像im0がメイン画像メモリに画像m0として記録される。

【0251】第1フレームでは、次の入力画像i 1を拡大した画像i m1と、第0フレームで作成された画像m0が合成され、面像m1としてメイン画像メモリ上に作

成されるが、この際、m0は座標変換されず、im1がm0に合わせるべくアフィン変換により座標変換されているため、画像m0を画像im0で補間・補正した画像m1が作成される。

【0252】第2フレームでは、第1フレームでの処理で作成された画像と同様に、次の入力画像i2を拡大した画像im2により、第1フレームで作成された画像m1を補間・補正した画像m2がメイン画像メモリ上に作成される。

【0253】<第4の実施例>上記第2および第3の実施例では、バラメタ決定回路において、メイン画像メモリと拡大画像メモリ159の画像を比較し、変換バラメタを決定していたが、図24、図25に示すような構成をとることにより、バラメタ決定の処理量を軽減することが可能である。この縮小マッチングを行う画像処理装置を第4の実施例として以下に説明する。

【0254】図24は第2の夷施例を、図25は、第3の実施例を変更したものであるが、これらの実施例と第2、第3の実施例との相違は以下の項目である。

【0255】すなわち、パラメタ決定回路において、第2、第3の実施例においては、拡大画像メモリとメイン 画像メモリの比較を行っていたが、本実施例では、入力 画像メモリと、メイン画像を紹小した画像が記録されて いる縮小画像メモリとの比較を行う点である。

【0256】このため本実施例では、拡大画像メモリおよび画像拡大回路を削減し、縮小画像メモリ249、259および画像縮小回路242、252を新設している。これらの回路の作用を以下に示す。

【0257】まず縮小画像メモリについて説明する。縮小画像メモリ249、259は、メイン画像メモリに作成された画像を入力画像メモリと同じ画素数に縮小した画像を蓄積するための画像パッファで入力画像メモリと同じ画素数を持つ。また、縮小画像メモリは、パラメタ決定回路247、257からの座標入力により、対応する画素値を出力する。

【0258】次に画像縮小回路について説明する。画像縮小回路242、252は、メイン画像メモリ内の(XM, YM)画素の画像データを、入力画像メモリの画素数(XI, YI)に縮小する処理を行う部分で、図26に示す様に座標発生部261、座標拡大部262および補間演算部263で構成される。

【0259】座標発生部261は、同期手段からのフレーム切り替え信号立ち下がりから、再度フレーム切り替え信号が立ち上がるまでの期間に、縮小面像メモリ内の全ての両器の座標をラスタ順に発生し、座標拡大部262に順次出力するとともに、同じ座標値を結小面像メモリ249/259に出力する。

【0260】座標拡大部262は、座標発生部261から入力する各座標値に対して以下の処理を行い、結果値を補間演算部263に出力する。

(ZI)

特別平05-260264

【0261】 (x', y') = (a·x, b·y) ただし、a, bは、縮小率を示す浮勁小数点型の定数 で、以下の計算により算出される。

a = XM/XI

b = YM/YI

x, yは、座標発生部261から入力する整数の座標値。x',y'は、補間演算部263に出力する浮動小数

点型の座標値。

【0262】 柿間演算部263は、座標拡大部262から入力した各座標値について、例えば以下の様な重み付き平均演算を行う。

[0263]

【数16】

$$M_{i} = \sum \sum a_{m-x', n-y'} \cdot I_{m, n}$$

ただし、(m,n)は、座標拡大部262から入力する座標値(x',y')の近傍の整数座標値で、以下の範囲の整数値である。

$$x' - (a/2) < m < x' + (a/2)$$

 $y' - (b/2) < n < y' + (b/2)$

M iは、縮小画像メモリ 249/259に出力する、計算結果。 a(m-x',n-y')は、画素値 I(m,n)に対する重みで、例えば以下の式のように座標 (x',y')と(m,n)の 2次元距離で央定される、総和が 1 である浮動小数点型の数値である。

b
$$(m-x' \cdot n-y') = (m-x')^2 + (n-y')^2$$

 $c = \sum \sum b (m-x', n-y')$

$$a(m-x', n-y')=b(m-x', n-y')/c$$

【0264】以上の画俊縮小回路242、252における処理の結果、フレーム切り替え信号立ち下がりから再度立ち上がるまでの期間に、メイン画像メモリ内の画像が入力画像メモリの画楽数に縮小された画像が、縮小画像メモリ249/259内に作成される。

【0265】次にパラメタ決定回路について説明する。パラメタ決定回路247/257は、フレーム切り替え信号が立ち上がってから、画素切り替え信号が立ち上がるまでの期間に、入力画像メモリと縮小画像メモリのそれぞれに蓄積されている画像データを比較し、補正パラメタ(pa, pb, po, pd, po, pf)をメイン画像補正回路246または入力画像補正回路255に出力する

【0266】この際、第2、第3の実施例との相違は、 それぞれ、マッチングする画素数が異なる。すなわち、 第2、第3の実施例では、メイン画像メモリの画素数 (XM, YM)の画素に対して処理を行っていたのに対 し、本実施例では、入力画像メモリの画素数 (XI, YI) の画像に対してのみ処理を行えば良いため、計算量が減少される点である。

【0267】<第5の実施例>上記の各実施例においては、パラメタ決定回路において、画像処理のみでパラメタを快定していたが、図27に示すように、画像入力手段11において、ジャイロ271を装備し、オペレータが画像入力手段を持ち、パン操作等で移動するる際の動きに応じた移動パラメタをパラメタ決定回路に出力し、パラメタ決定回路は、ジャイロから入力するカメラ移動量により、補正パラメタの決定の処理最を軽減することが可能である。以下にジャイロを利用した、本発明に係る画像処理装置を第5の実施例として説明する。

【0268】図27は、第1の実施例におけるパノラマ 画像生成装置の画像入力手段11にジャイロ装置を装備 したもので、本実施例では、ジャイロ装置は、画像入力 手段11のCCD操像面に対する平行移動速度(jx)

(22)

特開平05-260264

jy)をパラメタ決定回路に出力する。

【0269】パラメタ決定回路では、ジャイロ装置から得られるカメラの平行移動速度(j_x , j_y)を、パラメタ決定回路27のベクトル検出部におけるプロックマッチングの際に、ベクトル検索範囲 v_x , v_y を減少させることが可能で、例えば、以下の方法により、検索範囲を1/4にすることが可能である。

[0270]

 $M_0 = -M$, $M_1 = M$, $N_0 = -N$, $N_1 = N$ if $(j_x > 0)$ then $M_0 = 0$ if $(j_x \le 0)$ then $M_1 = 0$ if $(j_y > 0)$ then $N_0 = 0$ if $(j_y \le 0)$ then $N_1 = 0$ とし、検索範囲を

 $M_0 \le v_x \le M_1$ $N_0 \le v_y \le N_1$

とすることにより、検索範囲は、 v_x がM画素、 v_y がN画素となり、第1の実施例に示す方式では合計 $(2M \times 2N)$ 画素の範囲の検索が必要であったのに対し、本実施例では、 $(N \times N)$ 画素のみの検索でよくなる。

【0271】また、本実施例では第1の実施例にジャイロ装置を装備する例について示したが、第2、第3、第4の実施例においても同様に、ジャイロ装置を画像入力手段に装備することにより、パラメタ決定回路での処理量の軽減が可能である。

【0272】<第6の実施例>上記の各実施例においては、入力画像は、画像入力手段11を操作するオペレータのカメラ移動によって変化していたが、図28に示すように、画像入力手段11を能動的に移動させることにより、オペレータが画像入力手段を固定していた場合でも、パノラマ画像または高解像度の画像を入力することが可能である。以下に第6の実施例として説明する。図28(a)は、本実施例での画像入力手段の正面図で、図28(b)は、側面断面図である。

【0273】281は画像入力手段におけるCCD撮像部で、CCD素子および周辺回路で構成され、信号線によってA/D変換部に接続される。CCD振像面は、図28(a)では、正面に、図28(b)では左面に位置する。

【0274】282は外殻で、プラスチックや金属で構成される。283はCCD撮像部281と外殻282を物理的に結合するための振動素子で、圧電素子またはパネなどで構成される。

【0275】本実施例における画像入力手段において、振動素子が圧電紫子の場合、圧電素子は、電源からの交流電圧により、常時振動している。この際、外殻をオペレータが固定して持つのみで、圧電素子の振動によりCCD撮像部には振動範囲での複数種の画像が連続して入力され、これを上記の実施例における入力処理手段に順次入力することにより、振動範囲での高解像度画像がメイン画像メモリ上に作成される。

【0276】また、振動子がバネの場合、外角をオペレータが持ち、最初に微小振動を与えることにより、バネが振動する期間、その振動範囲での画像が連続して入力され、これを上記の実施例における入力処理手段に順次入力することにより、振動範囲での高解像度画像がメイン画像メモリ上に作成される。

【0277】<第7の実施例>上記第2の実施例における入力処理手段を、図29に示す様に、高解像度表示装置に接続することにより、低解像度の動画像を高解像度化することが可能である。以下に第7の実施例として説明する。

【0278】第29図における高解像皮画像表示装置は、助画供給手段291、入力処理手段292、画像潜 様手段293および画像表示手段294で構成される。

【0279】動画供給手段291は、動画すなわち時間的に連続した複数の画像を、第2の実施例の画像入力手段と同様の形式のデジタルデータとして入力処理手段292に出力するもので、たとえばNTSCの信号をフレーム毎にデジタイズする装置等で構成される。

【0280】入力処理手段292および画像蓄積手段293は、第2の実施例と向様の装置である。画像表示手段294は、動画供給手段291で供給される画像の画素数よりも多い画紫数の画像を表示可能な装置で、入力処理手段292の一回のフレーム処理毎に、画像蓄積手段293の画像をそのまま表示する。例えばハイビジョン表示装置などで構成される。

【0281】本装置によれば、動画供給手段29]から入力する動画像に、第2の実施例における処理を施し、画像表示手段294に出力することにより、少ない画素の動画像から、多い画案の動画像を得、表示することが可能である。

【図面の純単な説明】

【図1】第1の実施例の構成図

【図2】本発明の画像生成装置の構成図

【図3】第1の実施例における画像合成回路の構成図

【図4】座標発生部の処理を示すフローチャート

【図5】第1の実施例における入力画像補正回路の構成 図

【図 6】第1の実施例におけるメイン画像補正回路の構成図

【図7】第1の実施例におけるパラメタ決定回路の構成 図

【図8】第1の実施例におけるメイン画像と入力画像と の関係を説明するための図

【図9】パラメタ決定回路での代表点の例を示す図

【図10】代表点の遊択方法を説明するための図

【図11】プロックマッチングを説明するための図

【図12】 同期信号の関係を説明するための図

【図13】画素毎の処理を説明するための図

【図14】第1の実施例における処理結果を例示した図

(23)

特開平05-260264

【図15】	第2	の実施値	列の桝成図
-------	----	------	-------

【図16】第2の実施例における画像拡大回路の構成図

【図17】第2の実施例におけるメイン画像補正回路の

【図18】第2の実施例におけるパラメタ決定回路の構

【図19】第2の実施例における画森事の処理を説明す

【図20】第2の実施例における処理を模式的に説明す るための図

【図21】第3の実施例の構成図

【図22】第3の実施例における拡大画像補正回路の構 163 補間演算部

【図23】第3の実施例における処理を模式的に説明す 172 アフィン変換部 るための図

【図24】第4の実施例の構成図

【図25】第4の実施例の構成図 🕟

【図26】第4の実施例における画像縮小回路の構成図 183 ベクトルパッファ

【図27】第5の実施例の構成図

【図28】第6の実施例における画像入力手段の構成図 213 入力画像メモリ

【図29】第7の実施例の構成図

【図30】代表点の例を示す図

【符号の説明】、

11 画像入力手段

12 入力処理手段

13 画像器積手段

14 出力処理手段

15 画像出力手段

20 同期手段

21 CCD振像部

22 A/D変換

23 入力画像メモリ

2.4 画级合成回路

25 入力画像補正回路

26 メイン画像補正回路

27 パラメタ決定回路

28 メイン画像メモリ

31 座標発生部

32 画素演算部

51 アフィン変換部

52 補間液算部

61 画像バッファ

62 座標演算部

71 ペクトル検出部

72 係数計算部

73 パラメタ分割部

75 原点バッファ

76 ベクトルバッファ

150 同期手段

153 入力画像メモリ

154 画像合成回路

155 面像拡大回路

156 メイン画像補正回路

157 パラメタ決定回路

158 メイン画像メモリ

161 座標発生部

162 座標縮小部

171 画像パッファ

173 補間演算部

181 ベクトル検出部

182 係数計算部

210 同期手段

214 画像合成回路

215 画像拡大回路

216 拡大兩像補正回路

217 パラメタ決定回路

218 メイン画像メモリ

219 拡大画像メモリ

222 アフィン変換部

223 補閒演算部

240 同期手段

252 画像縮小回路

253 入力画像メモリ

254 画像合成回路

255 入力面像補正回路

257 パラメタ決定回路

258 メイン画像メモリ

261 座標発生部

262 座標拡大部

263 補間演算部

271 ジャイロ

281 CCD振像部

282 外殻

283 振動泰子

291 動画供給手段

292 入力処理手段 293 画像蓄稿手段

294 画像表示手段

(24)

特別平05-260264

(25)

特朗平05-260264

(26)

特别平05-260264

【図10】

【図11】

・は代表点、M , N は画素数、(Xy)は、メイン画像メモリでの座標

(27)

特開平05-260264

[図12]

【図13】

【図15】

[図29]

(28)

特別平05-260264

代表点座標 代表点 動ペフトル 春号 Χı V x ٧y Уi Χo Уo 0 KV Vy O X_1 Уı Vzl Vyi K-2 K - 1

[図30]

(29)

特開平05-260264

【図1.9】

【図21】

\$20

(30)

特別平05-260264

[図25]

【図26】

(31)

特別平05-260264

[图28]

