Networks II: Market Design—Lecture 11 Markets with Initial Endowments: The Core

ARPITA GHOSH

Dept. Of Information Science, Cornell University

Recap: Existence of core matching

Theorem (Shapley and Scarf 1974)

Assume agents have strict preferences. There exists a core matching for any housing market.

Proof by construction: Top Trading Cycles (TTC) algorithm

- $p_k = (a_k, h_k)$: Pair of agent k and her initial endowment h_k
- P: (Running) set of pairs p_k
- Directed graph G(P): Directed edge from $p_i = (a_i, h_i) \in P$ to $p_j = (a_j, h_j) \in P$ if item h_j is agent a_i 's top preference amongst items in P
- Each agent points to (pair corresponding to) her most-preferred item in P

Recap: Gale's Top Trading Cycles (TTC) algorithm

- Initialize *P* with all agent-item pairs. Repeat until *P* is empty:
 - Create graph G(P)
 - There exists at least one cycle in G(P) and no cycles intersect
 - Assign each agent in a cycle the item she is pointing to
 - Update P to remove (pairs p_k corresponding to) all cycles in G(P) from P
- True ([A]) or False ([B])?
 - ① There is exactly one cycle in G(P) at every step of algorithm
 - ② At any step: Each agent in P belongs to exactly one cycle in G(P)
 - 3 Suppose that at step l, a_1 's second choice is h_2 and a_2 's top choice is h_1 . If a_1 does not belong to a cycle in step l, then
 - $\mathbf{0}$ a_2 does not belong to a cycle either
 - ② a_1 and a_2 will both be removed in step l+1

Proving TTC returns a core matching

- Let M_T be matching returned by TTC
- If M_T is not in the core: There exists coalition $C^* \subseteq A$ that 'prefers' a different matching \hat{M}
 - $C_{strict} \subseteq C^*$: Agents who *strictly* prefer allocation under \hat{M} to M
 - a_0 : A_n agent who is matched **earliest** in TTC in C_{strict}
 - ullet Item $\hat{M}(a_0)$ is owned by an agent $a_1 \in C^*$
 - a_1 obtains an item belonging to $a_2 \in C^* \cap C_l'$ both in \hat{M} and M_T
 - $m{\cdot}$... and so on until $a^* \in C^* \cap C_l'$ obtains $\hat{M}(a_0)$ in both \hat{M} and M_T
- A contradiction: Two different agents a_0 and $a^* \neq a_0$ are allocated same item in \hat{M} , so \hat{M} is not a matching

TTC returns a core matching

- ullet Can $\hat{M}(a_0)$ be a_0 's own initial endowment? [A] Yes [B] No
- What if C_{strict} equals C^* ?
- Why can't a_1 be in the same step I as a_0 ?

Understanding matchings under initial endowments

- Allocation in markets without initial endowments
 - Agent set $A = \{a_1, \ldots, a_n\}$, item set $H = \{h_1, \ldots, h_n\}$
 - Allocation represented as matching M in bipartite graph
 - M is set of edges: $(a_i, h_j) \in M$ if agent a_i is assigned item h_j in matching M
- Allocation in markets with initial endowments
 - Agent-item pairs $\{(a_1, h_1), \dots, (a_n, h_n)\}$: Item h_i is agent a_i 's initial endowment
 - Allocation can still be represented as matching M in bipartite graph
 - But can also be represented via directed, non-bipartite graph

Understanding matchings under initial endowments

- Given any matching M in initial-endowments market, can construct directed graph G_M :
 - Vertices: Agent-item pairs $P = \{(a_i, h_i)\}$
 - Create directed edge from i to j if a_i is assigned item h_j in M: $M(a_i) = h_j$
 - G_M : An alternative *directed, non-bipartite*, graph representation of matching M
- Fact: G_M can be decomposed into non-intersecting cycles for any such matching M
 - Each cycle consists of agents who trade their initial endowments amongst themselves in *M*
 - 'Such' matching: All agents matched (complete preferences)

Understanding matchings under initial endowments

- Recall: Matching M is in the **core** if there is no coalition of agents $B \subseteq A$, and a matching \hat{M} , such that
 - For any $a \in B$, $\hat{M}(a)$ is the *initial house* of some $b \in B$, and
 - $\hat{M}(a) \succeq_a M(a)$ for all $a \in B$
 - $\hat{M}(b) \succ_b M(b)$ for some $b \in B$
- Revisit core in terms of $G_M, G_{\hat{M}}$
- Revisiting TTC algorithm proof:
 - TTC algorithm produces matching M: Cycles in G_M are 'top trading cycles', where agents get 'current-best' items
 - Consider hypothetical matching \hat{M} that is better for some cycle of agents in $G_{\hat{M}}$: Find contradiction

Recap: TTC returns a core matching

- Let M_T be matching returned by TTC: If M_T is not in core, there exists coalition C^* that 'prefers' a different matching \hat{M}
 - $a_0 \in C^*$: First agent in 'TTC order' to *strictly prefer* \hat{M} to M_T
 - Item $\hat{M}(a_0)$ is owned by an agent $a_1 \in C^*$: Agent a_1 must have been removed by TTC in a strictly earlier step, say in cycle C_I
 - a_1 obtains item belonging to $a_2 \in C^* \cap C_I$ both in \hat{M} and M_T
 - ..., and so on until $a^* \in C^* \cap C_I$ obtains $\hat{M}(a)$ both at \hat{M} and M_T
- A contradiction: Two different agents a_0 and agent $a^* \neq a_0$ are allocated same item in \hat{M} , so \hat{M} is not a matching

Understanding the set of core matchings: An example

- Housing market with 4 agents, 4 items
 - Initial endowments (a_i, h_i) as usual
 - Preferences are:

$$a_1: h_2 \succ h_3 \succ h_1 \succ h_4$$

 $a_2: h_3 \succ h_1 \succ h_2 \succ h_4$
 $a_3: h_4 \succ h_3 \succ h_2 \succ h_1$
 $a_4: h_3 \succ h_1 \succ h_2 \succ h_4$

- Is $M_1 = (a_1 h_2, a_2 h_1, a_3 h_4, a_4 h_3)$ [A] Yes [B] No (i) in the core? (ii) Pareto-efficient?
- Is matching $M_2 = (a_1 h_2, a_2 h_3, a_3 h_4, a_4 h_1)$ in the core?
- Can you locate any other matching in the core?

Uniqueness of core matching

Theorem (Roth and Postlewaite 1977)

The matching produced by Gale's TTC algorithm is the **unique** core matching.

- Let M_T be matching returned by TTC; $\hat{M} \neq M_T$ be hypothetical other matching in core
- a_0 : Any of **first** agents with $\hat{M}(a) \neq M(a)$, according to order of being matched in TTC
- C_l : Set of agents in same TTC cycle as agent a_0
- C_I is a coalition demonstrating \hat{M} is not a core matching:
 - $M_T(a)$ is an item owned by some other agent in C_I for all $a \in C_I$
 - $M_T(a)\succeq_a \hat{M}(a)$ for all $a\in C_I$ (Why?)
 - $\hat{M}(a') = M(a')$ for all agents a' matched before C_l in TTC
 - $\hat{M}(a_0) \neq M_T(a_0)$ and $a_0 \in C_I$: $M_T(a_0) \succ_{a_0} \hat{M}(a_0)$

Properties of TTC algorithm

- TTC algorithm: Produces a matching in the core for reported preference profile ≻
- But what about with respect to true preferences?
- Notational aside: TTC algorithm also called the 'core mechanism'
 - Recall: Unique core matching
 - Core mechanism: Return matching in the core of market $((a_k, h_k), \succ)$

Theorem (Roth'82)

The TTC mechanism is strategyproof.

 So TTC mechanism produces a core matching wrt true preferences!

Strategyproofness of TTC: Appreciating the result

- Consider the following argument:
 - TTC induces an ordering amongst agents (the TTC order)
 - When an agent's turn comes, he/she gets her top choice amongst remaining items
 - Therefore, no agent has an incentive to lie
 - Therefore, TTC mechanism is strategyproof
- Is this argument correct? [A] Yes [B] No

Characterization of the core mechanism

- Recall question from markets without initial endowments:
 Why use serial dictatorship?
 - Characterization result: Any mechanism with certain desirable properties is a serial dictatorship
- Why use TTC mechanism in markets with initial endowments?

Theorem (Ma'94)

The core mechanism is the only mechanism that is individually rational, Pareto-efficient, and strategyproof for a 'housing market'.