УДК 535.853.2

ПОВЫШЕНИЕ ЧУВСТВИТЕЛЬНОСТИ СКАНИРУЮЩЕГО СУБМИЛЛИМЕТРОВОГО СПЕКТРОМЕТРА РАД ПРИМЕНЕНИЕМ НЕНАСТРАИВАЕМОГО РЕЗОНАТОРА*

В. П. Казаков

Увеличение чувствительности радиоспектроскопа с акустическим детектором можно достигнуть несколькими способами. Например, в $[^1]$ был рассмотрен способ повышения чувствительности спектрометра РАД за счет увеличения мощности пронизывающего ячейку излучения, а в $[^2]$ — он был опробован в одной точке диапазона на длине волны $\lambda \approx 8$ мм. Однако мощность сканирующих когерентных источников субмиллиметрового диапазона весьма ограничена $[^3]$. По этой причине для увеличения плотности мощности, поглощаемой молекулами, предпочтительно использовать многократное прохождение излучения через ячейку поглощения с фиксированной длиной $l \approx l_{\rm opt}$.

Наибольшего увеличения чувствительности, по-видимому, можно достигнуть, применяя высокодобротный резонатор типа Фабри — Перо, но такой способ трудоемок изза требования постоянной подстройки частоты резонатора для обеспечения широкодиа-пазонного сканирования. Наиболее простым и удобным методом повышения чувствительности в сканирующем режиме является использование большого по сравнению с длиной волны объемного неперестраиваемого резонатора.

Рис. 1. Упрощенная блок-схема спектрометра:

трометра:
1— объемный неперестраиваемый резонатор с исследуемым газом; 2— акустический детектор, 3— источник когерентного излучения, 4— тефлоновая линза; 5—частотно-измерительный комплекс, 6— делитель мощности, 7— вспомогательный отражатель, 8— усилитель, 9— регистрирующее устройство.

Объемный многомодовый резонатор представляет собой цилиндрическую медную ячейку \varnothing 20 мм, $l\approx 180$ мм с двумя фиксированными отражателями, в одном из которых имеется дифракционная связь \varnothing 2 мм. Упрощенная блок-схема установки, на которой производились исследования, приведена на рис. 1.

На рис. 2 представлены экспериментальные записи одного и того же перехода $J=13 \to 14$ молекулы $^{14}{\rm N}_2{\rm O}^{16}$ при давлении в поглощающей ячейке $p\approx 1$ Top, полученные при использовании ячейки проходного типа — рис. 2а и описанной выше резонаторной ячейки — рис. 26. Как видно из сравнения рис. 2а, б, повышение чувствительности спектрометра РАД таким методом не сопровождается резкими резонансными эффектами, и по-прежнему возможно сканирование большого диапазона длин волн. Определенный в результате усреднения по многим переходам $N_2{\rm O}$ (сотни точек) в широком частотном интервале выигрыш по чувствительности благодаря применению ненастраиваемого резонатора составляет в среднем около 10 раз по сравнению с режимом однократного пропускания излучения через ячейку поглощения.

Повышение чувствительности сканирующего спектрометра позволило впервые методами РАД исследовать спектры молекул с коэффициентами поглощения $\alpha_{\max} \sim 10^{-8}~cm^{-1}$. Подтверждением служит запись участка спектра молекулы закиси азота (рис. 3) в возбужденно-колебательных состояниях $00^{\circ}1$, $20^{\circ}0$ с колебательной энергией $E_{\text{кол}} \approx 2224~cm^{-1}$ и $2563~cm^{-1}$ соответственно. Наивысшая чувствительность по минимально обнаружимому коэффициенту поглощения, определенная при условии S/N=1, составляет $\gamma_{\min} \approx 6 \cdot 10^{-10}~cm^{-1}$ для данного экземпляра ЛОВ. Такое значение было реализовано для состояния $20^{\circ}0$ молекулы $^{14}\text{N}_2\text{O}^{16}$ с расчетной интенсивностью $\alpha_{\max} \approx$

^{. *} Результаты данной работы частично докладывались на IV Всесоюзном симпозиуме по Молекулярной спектроскопии высокого и сверхвысокого разрешения (Новосибирск, 1978).

Рис. 2. Запись одного и того же перехода $J=13 \rightarrow 14$ $^{14}\rm{N}_2\rm{O}^{16}$ на ячейке проходного типа а) и на резонаторной ячейке б), где усиление уменьшено в ~ 3 раза. Запись производилась в одинаковых условиях:при давлении в поглощающей ячейке $p\approx 1Top,\ T\approx 300\rm{K},$ при постоянной записи $\tau\approx 1c$, идентичных микрофонной схеме и акустическом детекторе, одной и той же ЛОВ.

 $pprox 4\cdot 10^{-8}$ см $^{-1}$ в переходе J=13 o 14 на частоте fpprox 349 $\Gamma \Gamma \mu$. Отметим, что спектр молекулы N₂O удобно использовать для относительной калибровки и проверки чувствительности аппаратуры.

Рис. 3. Запись спектра слабых линий двух вращательных переходов основной изотопической комбинации N2O в возбужденно-колебательных состояниях 00°1, 20°0 при $p \approx 1\, Top$, $T \approx 300\, {\rm K}, \ \tau \approx 1c$.

Достоинство предлагаемого метода заключается в том, что не требуется синхронной подстройки частоты ЛОВ и резонатора и увеличение чувствительности доступно, практически, во всем диапазоне сканирования 0,5 мм ≤ λ ≤ 1,5 мм. Рассматриваемый метод может быть наиболее успешно применен при изучении спектров молекул со слабыми линиями, начиная с α max $\approx 10^{-6}$ см $^{-1}$, в частности, при исследовании запрещенных переходов и спектров молекул в возбужденно-колебательных состояниях, а также в химическом анализе летучих веществ особой чистоты на полярные примеси с малым процентным содержанием.

В заключение автор выражает признательность А. Ф. Крупнову за постоянное

внимание к работе.

ЛИТЕРАТУРА

1. А. Ф. Крупнов, Л. И. Герштейн, В. Г. Шустров, С. П. Белов, Изв. вузов — Радиофизика, 13, № 9, 1403 (1970). 2. А. А. Антаков, С. П. Белов, Л. И. Герштейн, В. Л. Гинцбург, А. Ф. Крупнов, Письма в ЖЭТФ, 19, 634 (1974).

3. М. Б. Голант, Р. Л. Виленкин, Е. А. Зюлина, З. Ф. Каплун, А. А. Негирев, В. А. Парилов, Т. Б. Реброва, В. С. Савельев, ПТЭ, № 4, 136 (1965); № 3, 231 (1969).

Институт прикладной физики AH CCCP

Поступила в редакцию 11 ноября 1979 г.