NSR 雷达系统 通信协议

湖南纳雷科技有限公司 Hunan Nanoradar Science and Technology Co.,Ltd.

版本历史

日期	版本	版本描述		
2017-05-09	1.0.0	RVS 通信协议第一版本		
2017-07-24	1.1.0	1.修改目标信息上传内容 2.修改关于连接方式		

目录

1	概述		1
2	通信协议说	明	1
	2.1 格式	,	1
	2.2 地址	L分配及型号说明	2
	2.3 雷达	5.传感器命令集	2
3	详细通信格	式	3
	3.1 SP #	系列雷达传感器命令集	3
	3.1.1	恢复出厂设置	3
	3.1.2	蜂鸣器设置	3
	3.1.3	添加坐标设置	4
	3.1.4	心跳时间设置	4
	3.1.5	读取雷达状态	
	3.1.6	地址编码设置	6
	3.1.7	保存参数配置	6
	3.1.8	心跳包	6
	3.1.9	目标信息上传	7
	3.1.10	固件更新	8
	3.1.11	更改网络设置	9
	3.1.12	安装信息设置	9
	3.1.13	采样参数配置	9
	3.1.14	算法参数配置	9
	3.1.15	系统时间设置	10
	3.1.16	下位机软件功能设置	11
	3.1.17	下位机软件功能查询	11
	3.1.18	FCT ADC 性能测试	12
	3.1.19	暗箱发射机性能测试	13
	3.1.20	广播雷达信息	14
	3 1 21	保存粉据功能	14

1 概述

雷达视频系统(RVS)通信协议是纳雷 SP 系列安防雷达的通用协议,作用是用于上位机和雷达数据交互。使用该协议的雷达包括 SP100、SP100W、SP300W、SP100-3D 和 SP50W。不同的雷达支持的协议命令可能所有不同。特此申明。

2 通信协议说明

上位机和雷达通过以太网的UDP协议通信。雷达服务系统分别使用了两个端口:8100 和7773。端口7773 只负责更改网络设置功能,其他的功能都由8100端口负责。以下分别对通信协议的格式及指令集进行说明。

2.1 格式

1) 数据包发送格式

0xA5 0x5A 0x10 0x60 0x88 0x00 0xF8 表 1 数据包发送格式

起始码		源地址	目标地址	命令	参数长度	参数	校验和
字节 0	字节 1	字节 2	字节3	字节 4	字节 5~6	字节 7~(N+6)	字节 N+7
0xA5	0x5A	源地址	目的地址	命令	参数长度 (N)	参数	校验和

- ◆ 起始码: 2 个字节帧头-<mark>-0xA5 0x5A</mark>;
- ◆ 源地址: 1 个字节--数据发送端(上位机地址);
- ◆ 目的地址: 1 个字节--数据接收端(雷达的地址编号)
- ◆ 命令: 1 个字节--区分不同命令类型;

相同

- ◆ 参数长度: 2 个字节--低位-字节 5, 高位-字节 6, N 有效值为 0~65535;
- ◆ 参数: N 个字节--可选参数,根据具体的命令而定;
- ◆ 校验和: 1个字节--校验和=源地址+目的地址+命令+参数长度+参**数**的数据。

2) 雷达应答格式

表 2 雷达应答格式

起始	码	源地址	目的地址	命令	参数长度		参数	校验和
字节 0	字节 1	字节 2	字节3	字节4	字节 5~6	字节	7 字节 8	字节 9
0xA5	0x5A	源地址	目的地址	0xA2	0x0002	Paran	n1 Param2	累加和

- ◆ 源地址:信息的发起者(雷达);
- ◆ 目的地址:信息的接收者(上位机);
- ◆ 0xA2: 应答命令,表示该命令为雷达的应答命令;
- ◆ Param1: PC 下发的命令类型,与上位机发送数据包的字节 4 对应;

Param2: 命令的执行结果--0xF0, 执行不成功; 0x0F, 执行成功。

NOTE:

表 2 的字节 7 与表 1 的字节 4 值相同, 无另外特殊说明, 雷达传感器的命令均以此格式返回。

举例说明:上位机发送保存参数指令 校验和=源地址+目的地址+命令+参数长度+参数的数据 字节8,0xf0表示执行成功 1)上位机发送: 0xA5 0x5A 0x10 0x60 0x88 0x00 0x0f表示执行失败 2) 雷达应答: 0xA5 0x5A 0x60 0x10 0xA2 0x02 0x00 0x88 0xF0 0x1C 雷达的应答命令, 2.2 地址分配及型号说明 字节5<u>机子节6</u> 雷达应答的参数长度,一般是两个字节

表 3 相关设备地址分配

设备	地址编号
PC (上位机)	0x10
SP100 雷达	0x40
SP100W 雷达	0x60
SP50W 雷达	0x70
SP300W 雷达	0x90
广播地址	0xFF

表 4 雷达型号编号

设备名称	设备编号(2个字节)
SP100	0x01
SP100W	0x03
SP50W	0x04
SP300W	0x06

2.3 雷达传感器命令集

表 5 雷达传感器命令集

命令值	命令功能	上位机	备注
0x01	恢复出厂设置	$\sqrt{}$	未公开
0x02	蜂鸣器设置	$\sqrt{}$	未公开
0x03	添加坐标设置	$\sqrt{}$	
0x09	心跳时间设置	$\sqrt{}$	
0x0A	读取雷达状态	$\sqrt{}$	
0x0B	地址编码设置		未公开
0x88	保存参数配置	V	

0xA4	心跳包	$\sqrt{}$	
0xA8	目标信息上传	$\sqrt{}$	
0xCC	固件升级		未公开
0x04	网络设置	$\sqrt{}$	
0x20	安装信息设置		未公开
0x21	采样参数配置		未公开
0x22	算法参数配置	$\sqrt{}$	未公开
0x24	系统时间设置	√	未公开
0x25	下位机软件功能设置	$\sqrt{}$	未公开
0x26	下位机软件功能查询		未公开
0x30	FCT ADC 性能测试	$\sqrt{}$	未公开
0x31	暗箱发射机性能测试	√	未公开
0xFF	广播信息	√	
0x23	保存雷达数据功能	√	未公开

3 详细通信格式

3.1 SP 系列雷达传感器命令集

3.1.1 恢复出厂设置

上位机使雷达恢复出厂设置操作的指令如下表所示:

表 6 恢复出厂设置指令格式

起始码		源地址	目的地址	命令	参数长度	校验和
字节 0	字节 0 字节 1 字节 2		字节3	字节 4	字节 5~6	字节7
0xA5	0x5A	Src_Addr	Dst_Addr	0x01	0x00	累加和

- Src_Addr: 信息的发起者, 例如 0x10 表示 PC(上位机);
- ◆ Dst Addr: 信息的接受者,例如 0x60 表示雷达 SP100W。

雷达执行命令后返回帧格式如下表所示:

表 7 雷达执行出厂设置后返回的命令格式

起始码		源地址	目的地址	命令	参数长度	参	数	校验和
字节 0	字节1	字节 2	字节3	字节 4	字节 5~6	字节 7	字节8	字节 9
0xA5	0x5A	Src_Addr	Dst_Addr	0xA2	0x02	Param1	Param2	累加和

- ◆ Param1: 命令源,例如 PC 下发的命令为 0x01, Param1 则为 0x01;
- ◆ Param2: 命令的执行结果--0xF0, 执行不成功; 0x0F, 执行成功。

3.1.2 蜂鸣器设置

蜂鸣器设置操作指令如下表所示:

表 8 蜂鸣器设置命令格式

起始码		源地址	目的地址	命令	参数长度	参数	校验和
字节 0	字节1	字节 2	字节3	字节4	字节 5~6	字节7	字节8
0xA5	0x5A	Src_Addr	Dst_Addr	0x02	0x01	Param1	累加和

◆ Param1: 0xA0, 打开蜂鸣器; 0xA2, 关闭蜂鸣器。

雷达传感器执行命令后返回帧格式类似表 2 雷达应答格式。

3.1.3 添加坐标设置

添加坐标设置操作指令如下表所示:

表 9 添加坐标指令格式

起如	台码	源地址	目的地址	命令	参数长度	参数		校验和	
字节 0	字节1	字节 2	字节3	字节 4	字节 5~6	字节 7	字节 8~10	字节 11~13	字节 14
0xA5	0x5A	Src_Addr	Dst_Addr	0x03	0x07	Param1	Param2	Param3	累加和

- ◆ Param1: 坐标序号, 范围 0x01~0x04, 用来设置过滤区域;
- ◆ Param2: X 方向坐标;
 - ◆ 字节 8: 最高位为符号位(0为正,1为负),0~3位为小数位;
 - ◇ 字节 9: 坐标高八位;
 - ◆ 字节 10: 坐标低八位,例: -250.3 表示为 1000 0011 0000 0000 11111010;
- ◆ Param3: Y方向坐标,格式与 X方向坐标一致。

雷达传感器执行命令后返回帧格式类似表 2 雷达应答格式。

3.1.4 心跳时间设置

雷达传感器心跳上传时间间隔设置格式如下表所示:

表 10 传感器心跳时间间隔设置

起始码		源地址	目的地址	命令	参数长度	参数	校验和
字节 0 字节 1		字节 2	字节3	字节4	字节 5~6	字节7	字节 8
0xA5 0x5A		Src_Addr	Dst_Addr	0x09	0x01	Param1	累加和

◆ Param1: 设置时间单位为秒(s),有效值 0~255;

雷达传感器执行命令后返回帧格式类似表 2 雷达应答格式。

3.1.5 读取雷达状态

读取雷达状态指令格式如下表示:

表 11 读取雷达状态命令包格式

起如	始码	源地址	目的地址	命令	参数长度	校验和
字节 0 字节 1		字节 2	字节3	字节 4	字节 5~6	字节7
0xA5	0x5A	Src_Addr	Dst_Addr	0x0A	0x00	累加和

雷达传感器执行命令后返回帧格式如下表所示:

表 12 返回帧格式

起始	;码	源地址	目的地址	命令	参数长度	参数		校验和
字节 0	字节1	字节 2	字节3	字节4	字节 5~6	字节7	字节 8~(14+7n)	字节 15+7n
0xA5	0x5A	Src_Addr	Dst_Addr	0xA2	8+7n	Param1	Status	累加和

- ◆ Param1:PC 下发的命令 这里是 0x0A
- ◆ Status 含义:
 - ◆ 字节 8: 本地地址 0x40~0x4F:
 - ◇ 字节 9: 心跳时间 0x00~0xFF 单位 s 默认 5;
 - ◆ 字节 10: 蜂鸣器状态 0xA0 打开 0xA2 关闭;
 - ◆ 字节11: 固件版本 主版本号【高4位】 + 次版本号【低4位】;
 - ◆ 字节12: 固件版本 阶段版本号 有效值 0~255;
 - ◆ 字节 13: FPGA 版本 主版本号【高 4 位】 + 次版本号【低 4 位】;
 - ◆ 字节 14: FPGA 版本 阶段版本号 有效值 0~255;
 - ◆ 字节 15: 算法版本 主版本号【高 4 位】 + 次版本号【低 4 位】;
 - ◆ 字节 16: 算法版本 阶段版本号 有效值 0~255;
 - ◆ 字节 17-18: 雷达型号 <参考雷达型号>。

坐标 1:

- ◆ 字节 19: 坐标序号范围 0x01~0x0A
- X方向坐标
- ◆ 字节 20: 最高位为符号位(0为正,1为负),0~3位为小数位
- ◆ 字节 21: 坐标高八位
- ◆ 字节 22: 坐标低八位例: -2500.3 表示为 1000 0011 0000 1001 1100 0100
- Y方向坐标
- ◆ 字节 23: 最高位为符号位(0为正,1为负),0~3位为小数位
- ◆ 字节 24: 坐标高八位
- ◇ 字节 25: 坐标低八位

坐标 n:

◆ 字节 26+7(n-1): 坐标序号 范围 0x01~0x0A

X方向坐标

- ◆ 字节 27+7(n-1): 最高位为符号位(0为正,1为负),0~3位为小数位
- ◆ 字节 28+7(n-1): 坐标高八位
- ◆ 字节 29+7(n-1): 坐标低八位

Y方向坐标

- ◆ 字节 30+7(n-1): 最高位为符号位(0为正,1为负),0~3位为小数位
- ◆ 字节 31+7(n-1): 坐标高八位
- ◆ 字节 32+7(n-1): 坐标低八位

默认坐标: (-2.5,0.5) (-2.5,100) (2.5,100) (2.5,0.5)

3.1.6 地址编码设置

地址编码设置格式如下表所示:

表 13 地址编码设置命令格式

起始	台码	源地址	目的地址	命令	参数长度	参数	校验和
字节 0 字节 1		字节 2	字节3	字节4	字节 5~6	字节7	字节 8
0xA5	0x5A	Src_Addr	Dst_Addr	0x0B	0x01	Param1	累加和

Param1: 地址编码按地址分配表设置,有效值 0x40~0x4F。

雷达传感器执行命令后返回帧格式类似表 2 雷达应答格式。

3.1.7 保存参数配置

保存参数的配置如下表所示。当修改了配置需要下次启动雷达时该参数生效,需要执行此命令。

表 14 保存参数配置命令

起	始码	源地址	目的地址	命令	参数长度	校验和
字节 0	字节1	字节 2	字节3	字节 4	字节 5~6	字节7
0xA5	0x5A	Src_Addr	Dst_Addr	0x88	0x00	累加和

雷达传感器执行命令后返回帧格式类似表 2 雷达应答格式。

3.1.8 心跳包

雷达传感器上传心跳包的格式如下表:

表 15 雷达传感器心跳包格式

起如	始码	源地址	目的地址	命令	参数长度	参数	校验和
字节 0	字节1	字节 2	字节 3	字节4	字节 5~6	字节 7	字节 8
0xA5	0x5A	Src_Addr	Dst_Addr	0xA4	0x01	Param1	累加和

- ◆ Param1 含义:
- ◆ 字节 7: 心跳时间 0x00~0xFF, 单位 s, 默认 5。

雷达传感器执行命令后返回帧格式类似表 2 雷达应答格式。

3.1.9 目标信息上传

雷达传感器上传报警数据格式如下表:

表 16 目标信息上传命令包

起如	起始码 源地址		目的地址	命令	参数长度	参数	参数	校验和
字节 0	字节 1	字节 2	字节3	字节4	字节 5~6	字节 7	字节 8~72+68(n-1)	字节 77+68(n-1)
0xA5	0x5A	Src_Addr	Dst_Addr	0xA8	Param1	Param2	Param3	累加和

- ◆ Param1:参数长度,取值为:目标个数 n*68+1;
- Param2: 目标个数 n, 取值范围为 0~32
- ◆ Param3: 所有目标所占字节空间为 n*68

单个目标内容如下: 字节 8~字节 56 所有数据按照大端格式存储

表 17 目标信息参数结构

	字节	数据类型	范围	描述	单位
ID	4	unsigned int	0~4294967295	目标 ID	1
type	4	unsigned char	0~255	目标类型	(暂时不支持)
x_speed	4	float	-3.4E38∼3.4E38	X 方向速度	m/s
y_speed	4	float	-3.4E38~3.4E38	Y方向速度	m/s
z_speed	4	float	-3.4E38~3.4E38	Z方向速度	m/s
x_axes	4	float	-3.4E38~3.4E38	X 方向坐标	m
y_axes	4	float	-3.4E38∼3.4E38	Y 方向坐标	m
z_axes	4	float	-3.4E38~3.4E38	Z 方向坐标	m
length	4	float	0.0~3.4E38	测量距离	m
azimuth_angle	4	float	-90~90	方位角	度
elevation_angle	4	float	-90~90	俯仰角	度
SNR	4	float	-3.4E38∼3.4E38	信噪比	度
Peak_energy	4	float	-3.4E38∼3.4E38	峰值能量	1 (归一化)
保留字节	16	\	\	\	\

注意: 多目标情况下, Param2 为多目标格式, 同时 Param3 包括多个目标结构。

图 1 雷达目标坐标系示意图

3.1.10 固件更新

雷达固件更新操作指令如下表:

表 18 固件更新命令包

起如	台码	源地址	目的地址	命令	参数长度	参数	校验和
字节 0	字节1	字节 2	字节 3	字节4	字节 5~6	字节 7+ param2.len	字节 8+ param2.len
0xA5	0x5A	Src_Addr	Dst_Addr	0xCC	1+param2.len	Param1+param2	累加和

- ◆ Param1: 0x01:开始升级; 0x02: 发送文件内容; 0x10: 发送校验码;
- ◆ Param2:根据 Param1来定。

表 19 Param1 和 Param2 对应关系

Param1	0x01	0x02	0x03	0x10
Param2	无	文件内容	文件发送完毕	MD5 校验码(4byte)
Param2.len	0x00	(最大每次发送 1k)		0x04
返回帧	表 7	无		返回升级状态参数

返回帧(返回升级状态参数)如下表:

表 20 返回命令格式

起始	台码	源地址	目的地址	命令	参数长度	参	数	校验和
字节 0	字节1	字节 2	字节3	字节 4	字节 5~6	字节 7	字节8	字节 9
0xA5	0x5A	Src_Addr	Dst_Addr	0xA2	0x02	Param1	Param2	累加和

Param1: PC 下发的命令,这里是 0xCC;

◆ Param2: 升级状态码。0x01: 升级超时,0x02: 升级校验码失败,0xF0: 其他失败,0x0F: 升级成功。 注意: 该命令不对外开放。

3.1.11 更改网络设置

雷达传感器网络设置指令格式如下表所示:

表 21 更改网络设置命令包

起始	闷	源地址	目的地址	命令	长度		参数		校验和
字节 0	字节1	字节 2	字节3	字节 4	字节 5~6	字节 7~10	字节 11~14	字节 15~18	字节 19
0xA5	0x5A	Src_Addr	Dst_Addr	0x04	0x0C	Param1	Param2	Param3	累加和

- ◆ Param1: IP 地址: xxx: xxx: xxx: xxx 对应 字节7: 字节8: 字节9: 字节10;
- Param2: NetMask: xxx: xxx: xxx: xxx 对应 字节 11: 字节 12: 字节 13: 字节 14;
- ◆ Param3: GateWay: xxx: xxx: xxx: xxx 对应 字节 16: 字节 16: 字节 17: 字节 18;

雷达传感器执行命令后返回帧格式类似表 7。

注意:该命令只在 UDP 模式下支持。

3.1.12 安装信息设置

略。

3.1.13 采样参数配置

略。

3.1.14 算法参数配置

雷达采样参数信息的配置如下表所示:

表 22 算法参数配置

起如	台码	源地址	目的地址	命令	参数长度	参数	校验和
字节 0	字节1	字节 2	字节3	字节 4	字节 5~6	字节 7~14	字节 15
0xA5	0x5A	Src_Addr	Dst_Addr	0x22	0x08	Param1	累加和

• Param1:

- ◆ 字节 7: 恒虚警参数。范围: 0x00~0x14;
- ◇ 字节8:聚类参数。范围: 0x00~0x64;
- ◇ 字节 9: 距离门限参数。范围: 0x00~0x3F;

- ◆ 字节 10: 多普勒门限参数。范围: 0x00~0x3F;
- ◇ 字节 11: 方位门限参数。范围: 0x00~0x3F;
- ◆ 字节 12: 确认航迹门限参数。范围: 0x00~0x3F;
- ◆ 字节 13: 撤销航迹门限参数。范围: 0x00~0x3F;
- ◆ 字节 14: 临时撤销航迹门限参数。范围: 0x00~0x3F。

表 23 算法参数说明

说明	分辨率	取值范围
恒虚警	1	1-20
聚类参数	1	0~100
距离门限(单元数)	1	0~64
多普勒门限 (单元数)	1	0~64
方位门限	1	0~64
升级为确认航迹的连续更新次数	1	0~64
确认航迹撤销的连续未更新次数	1	0~64
临时航迹撤销的连续未更新次数	1	0~64

3.1.15 系统时间设置

雷达系统的时间配置如下所示:

表 24 系统时间设置命令包

起如	台码	源地址	目的地址	命令	参数长度	参数	校验和
字节 0	字节 1	字节 2	字节3	字节 4	字节 5~6	字节 7~14	字节 15
0xA5	0x5A	Src_Addr	Dst_Addr	0x24	0x08	Param1	累加和

• Param1:

- ◆ 字节7: 年设置。范围: 0x00~0x63;
- ◇ 字节8: 月设置。范围: 0x01~0x0C;
- ◆ 字节 9: 日设置。范围: 0x01~0x1F;
- ◆ 字节 10: 时设置。范围: 0x00~0x17;
- ◆ 字节 11: 分设置。范围: 0x00~0x3B;
- ◆ 字节 12: 秒设置。范围: 0x00~0x3B。

表 25 系统时间设置说明

说明	分辨率	取值范围
年	1	19702099
月	1	112
日	1	131
时	1	023
分	1	059

秒	1	059
---	---	-----

3.1.16 下位机软件功能设置

下位机软件功能设置指令格式如下:

表 26 下位机软件设置命令包

起如	台码	源地址	目的地址	命令	参数长度	参数	校验和
字节 0	字节 1	字节 2	字节 3	字节 4	字节 5~6	字节 7~8	字节 9
0xA5	0x5A	Src_Addr	Dst_Addr	0x25	0x02	Param1	累加和

• Param1:

◆ 字节 7-8: 两个字节 16 位, 共支持 16 个功能, 该位为 1:表示支持该功能, 该位为 0 不支持该功能。同时如果两个功能是互斥,则需要软件自己实现互斥。

对应表如下:

表 27 下位机软件设置说明

编码表	功能	支持/不支持	备注	
第1位	雷达算法带目标跟踪/雷达算法	xxxx xxxx xxxx xxx1/	没有互斥项	
州1匹	不带目标跟踪(自然处理)	xxxx xxxx xxxx xxx0	汉 有五//-次	
第2位	四边形过滤规则	xxxx xxxx xxxx xx1x/	没有互斥项	
第 2 世	四边形过滤规则	xxxx xxxx xxxx xx0x	仅有互序项	
第3位	多叉树过滤规则	xxxx xxxx xxxx x1xx/	没有互斥项	
知3世	多人們及認然則	xxxx xxxx xxxx xxxx	仅有互序项	
第 4-16 位	预留	注意: x 表示与之前保持一致		

雷达传感器执行命令后返回帧格式类似表7。

3.1.17 下位机软件功能查询

下位机软件功能设置指令格式如下:

表 28 下位机软件功能查询命令包

起始码		源地址	目的地址	命令	参数长度	校验和
字节 0	字节1	字节 2	字节3	字节 4	字节 5~6	字节 7
0xA5	0x5A	Src_Addr	Dst_Addr	0x26	0x00	累加和

雷达传感器执行命令后返回帧格式如下表所示:

表 29 返回帧格式

起如	台码	源地址	目的地址	命令	参数长度	参数	校验和
字节 0	字节 1	字节 2	字节3	字节4	字节 5~6	字节 7~8	字节 9
0xA5	0x5A	Src_Addr	Dst_Addr	0x2A	0x02	Param1	累加和

• Param1:

◆ 字节 7-8: 两个字节 16 位, 共支持 16 个功能, 该位为 1:表示支持该功能, 该位为 0 不支持该功能。同时如果两个功能是互斥,则需要软件自己实现互斥。

对应表如下:

表 30 返回帧格式数据说明

编码表	功能	支持/不支持	备注	
第1位	雷达算法带目标跟踪/雷达算法	xxxx xxxx xxxx xxx1/	没有互斥项	
第1世	不带目标跟踪(自然处理)	xxxx xxxx xxxx xxx0	仅有互序项	
第2位	四边形过滤规则	xxxx xxxx xxxx xx1x/	没有互斥项	
第 2 世	四位形位临外则	xxxx xxxx xxxx xx0x	仅有互序项	
第3位	多叉树过滤规则	xxxx xxxx xxxx x1xx/	没有互斥项	
分 3世	多文例 は WE MAR		仅有互序项	
第 4-16 位	预留	注意: x 表示与之前保持一致		

雷达传感器执行命令后返回帧格式类似表 2 雷达应答格式。

3.1.18 FCT ADC 性能测试

ADC 性能测试指令格式如下:

表 31 ADC 性能测试命令包

起如	台码	源地址	目的地址	命令	参数长度	校验和
字节 0	字节 1	字节 2	字节3	字节 4	字节 5~6	字节 7
0xA5	0x5A	Src_Addr	Dst_Addr	0x30	0x00	累加和

雷达传感器执行命令后返回帧格式如下所示:

表 32 返回帧格式

起	始码	源地址	目的地址	命令	参数长度		参数		校验和
字节 0	字节 1	字节 2	字节 3	字节4	字节 5~6	字节 7	字节8	字节 9~23	字节 24
0xA5	0x5A	Src_Addr	Dst_Addr	0XA2	0x11 0x00	Param1	Param2	Param3	累加和

- ◆ Param1:PC 下发的命令,这里是 0x30。
- ◆ Param2: 返回数据通道号,范围 0x01~0x04。
- Param3:
 - ♦ 字节 9~11: 基波频率

0x00~0x8A: 最高位为符号位(0为正,1为负)0~3位为小数位;

0x00~0x07: 基波频率高 8 位;

0x00~0xFF: 基波频率低 8 位;

♦ 字节 12~14: 基波信号幅度

0x00~0x8A: 最高位为符号位(0为正,1为负)0~3位为小数位;

0x00~0x1F: 基波信号幅度高 8 位;

0x00~0xFF: 基波信号幅度低 8 位;

◇ 字节 15~17: 基波信号相角

0x00~0x8A: 最高位为符号位(0为正,1为负)0~3位为小数位;

0x00~0x0E: 基波信号相角高 8 位;

0x00~0xFF: 基波信号相角低 8 位;

◆ 字节 18~20: 基波信号 SNR

0x00~0x8A: 最高位为符号位(0为正,1为负)0~3位为小数位;

0x00~0x03: 信号 SNR 高 8 位;

0x00~0xFF: 信号 SNR 低 8 位;

◆ 字节 21~23: 基波信号 THD

0x00~0x8A: 最高位为符号位(0为正,1为负)0~3位为小数位;

0x00~0x03: 信号 THD 高 8 位;

0x00~0xFF: 信号 THD 低 8 位。

3.1.19 暗箱发射机性能测试

发射机性能测试指令格式如所示:

表 33 暗箱发射性能测试命令包

起	出始码	源地址	也址 目的地址 命令 参数长度 参数		参数		校验和		
字节0	字节1	字节 2	字节3	字节 4	字节 5~6	字节7	字节 8	字节 9~9 + n*5	字节 10+n*5
0xA5	0x5A	Src_Addr	Dst_Addr	0X31	2 + 5*n	Param1	Param2	Param3	累加和

- ◆ Param1: 发射机性能测试状态 0x01 开启测试; 0x10 关闭测试;
- ◆ Param2:寄存器个数 0>= 1 且 n <=60;
- ◆ Param3: 寄存器位置(0x00-0x0A) + 测试频点的寄存器值。

例: 寄存器 0x02 的表示方法值为 0x00001F46

Byte9	Byte10	Byte11	Byte12	Byte13
0x02	0x00	0x00	0x1F	0x46

注: 关闭测试时 Param2 为 0, Param3 即字节 9 为校验位。

Byte7	Byte8	Byte9
0x10	0x00	校验位

雷达执行命令后返回帧格式如表 2 雷达应答格式。

3.1.20 广播雷达信息

该信息主要用来给上位机设置雷达 IP, 因此采用广播方式。

表 34 广播雷达信息命令包

起始	ì码	源地址	目的地址 命令 长度 参数		校验和				
字节 0	字节 1	字节 2	字节3	字节 4	字节 5~6	字节 7~8	字节 9~10	字节 11~16	字节 17
0xA5	0x5A	Src_Addr	Dst_Addr	0xFF	0x04	Param1	Param2	Param3	累加和

◆ Src_Addr: 信息的发起者 0x60;

Dst_Addr: 信息的接受者 0xFF;

• Param1

◆ 字节7: 固件版本 主版本号【高4位】 + 次版本号【低4位】;

◆ 字节8: 固件版本 阶段版本号 有效值0~255;

• Param2

◆ 字节 9: 设备类型 0x03;

◆ 字节 10: 保留 默认值为 0:

• Param3

MAC 地址: XX-XX-XX-XX-XX;

对应字节: 11 12 13 14 15 16;

雷达传感器执行命令后返回帧格式类似表 2 雷达应答格式。

注意:该命令属于公司内部工具使用,暂时不对外开放。

3.1.21 保存数据功能

保存参数的配置如下所示:

表 35 保存数据功能命令包

起始码		源地址	目的地址	命令	参数长度	参数	校验和
字节 0	字节 0 字节 1 字节 2		字节 3	字节 4	字节 5~6	字节 7~9	字节7
0xA5	0x5A	Src_Addr	Dst_Addr	0x23	0x03	Param1	累加和

• Param1:

◆ 字节 7: 0x00: 关闭保存原始数据, 0x01: 打开保存原始数据;

◆ 字节 8: 0x00: 关闭保存预处理数据, 0x01: 打开保存预处理数据;

◆ 字节 9: 0x00: 关闭保存目标数据, 0x01: 打开保存目标数据;

雷达传感器执行命令后返回帧格式类似表 2 雷达应答格式。

4 连接方式

NSR 系统雷达支持 TCP 和 UDP 通信方式,其中 UDP 通信方式主要针对简单的应用场景,TCP 针对网络

层次较多的应用场景。第三方开发时,需要考虑连接方式。

4.1 TCP 通信

采用 TCP 通信方式,雷达作为服务器方,其他设备作为客户端方。由客户端方主动发起连接,与雷达建立连接后,采用第三章详细通信格式进行数据交换。

雷达作为服务器方,最大支持5个客户端接入。

通信端口为 50000。

4.1.1 建立连接

图 2 TCP 通信建立连接图

4.1.2 断开连接

图 3 TCP 通信断开连接图

4.1.3 维持连接

通信双方采用心跳报文维持连接。心跳报文由客户端发起,接收方(服务器)给心跳确认报文。默认心跳时间为5秒。

图 4 TCP 通信维持连接图

4.2 UDP 通信方式

采用 UDP 通信方式,雷达作为主动发起数据方,其他设备作为数据接收方。由客户端方主动发起连接,与雷达建立连接后,采用第三章详细通信格式进行数据交换。

通信端口为8100。

4.2.1 建立连接

UDP 通信中没有实际的建立链路的过程,下图中虚线框图表示示意过程。其中 online 状态采用读取雷达状态帧 (3.1.5 读取雷达状态)来实现。

图 5 UDP 通信建立连接图

4.2.2 维持连接

通信双方采用心跳报文维持连接。心跳报文由雷达发起,接收方(服务器)给心跳确认报文。默认心跳时

间为5秒。

图 6 UDP 通信维持连接图

湖南纳雷科技 Tel.: 0731-88939916

长沙高新区文轩路 27 号 E-Mail: <u>sales@nanoradar.cn</u>

麓谷企业广场 B7 栋 URL: <u>www.nanoradar.cn</u>

