ISLR Chapter 4, Ex 13 7/20/15
Tatiana Romanchishina

13. Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.

First I added a new binary variable that indicates whether the crime rate is above or below the median. Then I standardized the other predictors, so that their means are 0 and standard deviation is 1. Then I assigned 100 observations to a test set and the remaining 406 to the training set. (see the R script)

Now I am ready to fit different models.

• Logistic Regression

First I try all the predictors:

	Dependent variable:			
	crimbin			
zn	-1.328* (0.719)			
indus	0.208 (0.354)			
chas	0.040 (0.191)			
nox	4.344*** (0.887)			
rm	-0.102 (0.585)			
age	0.425 (0.390)			
dis	1.374** (0.542)			

rad 6.542*** (1.636) tax -0.971** (0.450)

ptratio 0.021 (0.319)

black -0.454 (0.513)

lstat 0.517 (0.435)

medv 1.291* (0.692)

Constant 3.020*** (0.817)

Observations 406 Log Likelihood -83.782 Akaike Inf. Crit. 195.564

Note: *p<0.1; **p<0.05; ***p<0.01

It looks like nox, dis, rad, and tax have a significant relationship with the crime rate.

Now I am going to try to make predictions about my test set but I will try several thresholds: (Ir.pred are the predictions of the model with the specified threshold)

→ probability of crime rate being above median = 50%:

testCrim Ir.pred 0 1 0 73 21 1 5 1

with the error rate = 0.15.

Even though it looks like the error rate is low, it only predicts well if a suburb has a crime rate below median, but it does not predict correctly otherwise.

→ probability of crime rate being above median = 75%:

testCrim Ir.pred 0 1 0 76 22 1

with the error rate = 0.24.

2 0

The error rate is even higher than before and now it cannot predict the suburbs with crime rate above median at all.

→ probability of crime rate being above median = 25%

testCrim Ir.pred 0 1 0 <mark>66</mark> 3 1 12 **19**

with the error rate = 0.15.

The error rate is as low as in the first try, but the predictions are looking better, because now it predicts most of both classes.

LDA

1) All predictors:

Call: Ida(crimbin ~ ., data = trainBoston)

Prior probabilities of groups:

0

0.4310345 0.5689655

Group means:

... (omitted)

Coefficients of linear discriminants:

LD1 -0.28143254 zn indus 0.30673534 chas -0.03874451 nox 0.70535833 0.10665269 rm

age 0.25878572 dis 0.16752656

rad 0.94919860

-0.19917231 tax

ptratio -0.26897926

black -0.03284464

Istat 0.12984063

medv 0.32316451

Now I can try to predict the test class using this model:

lda.class 0 1

0 76 22

1 2 0

with the error rate = 0.24. Though it is a low error rate, it does not predict the suburbs with a crime rate above the median.

2) Some of the predictors: nox, dis, rad, tax, ptratio, medv

Call: Ida(crimbin ~ nox + dis + rad + tax + ptratio + medv, data = trainBoston)
Prior probabilities of groups:

0 1

0.4310345 0.5689655

Group means:

nox dis rad tax ptratio medv 0 -0.6515262 0.5396006 -0.6084553 -0.5520955 -0.2803591 0.3142349 1 0.8050526 -0.6929524 0.7388406 0.7232653 0.1655096 -0.2275223

Coefficients of linear discriminants:

LD1

nox 0.89150541 dis -0.27457496 rad 0.83731211 tax -0.06205007 ptratio -0.14532932 medv 0.22763105

Now I can try to predict whether the crime rate is above the median or below:

testCrim

lda.class2 0 1 0 78 22 1 0 0

with the error rate = 0.22. Again the model does not predict correctly the suburbs that have a crime rate above the median, but it predicted correctly the suburbs that have a crime rate below the median.

KNN

All predictors

Amazingly KNN model with all predictors and k=1 predicted correctly almost all instances of both classes:

	testCı	<mark>im</mark>
knn.pred	0	1
0	77	0
1	1	22
with the a	ccuracy	<mark>/ = 98%.</mark>

Just to confirm whether this is random or not, I am going to use another test and train sets, k=1. The results are less exciting, but still high accuracy:

	testCrim2		
knn.pred2	0	1	
0	51	27	
1	4	19	

with the accuracy = 69%.

Now I will try using the same sets for training and testing, but try using different values of k:

with the accuracy = 81%

It appears that increasing the value of k increases the accuracy of the model. However, the first result must have been due to "lucky" sampling. Though as one can see using a different set of training/testing data did not make the result much worse.

The accuracy of the KNN model appears to be much higher than the accuracy of the previous two models.