TECHNICKÁ UNIVERZITA V KOŠICIACH FAKULTA ELEKTROTECHNIKY A INFORMATIKY KATEDRA ELEKTROTECHNIKY A MECHATRONIKY

Meranie na asynchrónnom motore

Meranie č. 1

Meno a priezvisko:

Skupina:

Akademický rok:

1 Úvod

Asynchrónny motor je jedným z najrozšírenejších striedavých otáčavých elektrických strojov. Svorkovnica bežného asynchrónneho motora je usporiadaná podľa Obr. 1. Začiatky vinutí sú pripojené na svorky U_1 , V_1 , W_1 , konce vinutí na svorky U_2 , V_2 , W_2 . Takéto usporiadanie umožňuje jednoduchým spôsobom zapojiť motor do trojuholníka (Δ), alebo do hviezdy (Y).

Pripojenie cievok

Zapojenie do hviezdy

Zapojenie do trojuholníka

Obr. 1: Zapojenia svorkovnice asynchrónneho motora

Podľa konštrukcie rotora rozdeľujeme asynchrónne motory:

- Asynchrónne motory s kotvou nakrátko kotvu tvorí spravidla hliníková klietka spojená kruhmi nakrátko.
- Asynchrónne motory s kotvou krúžkovou trojfázové rotorové vinutie, ktoré je spojené obyčajne do hviezdy a vyvedené na krúžky. Rotorová svorkovnica má tri svorky, ktoré sú označené, K, L, M.

Na asynchrónnom motore s kotvou krúžkovou vykonáme merania a urobíme teoretické rozbory, ktoré rozdelíme do štyroch častí:

- Merania asynchrónneho motora v chode naprázdno a v stave nakrátko.
- Určenie parametrov náhradnej schémy asynchrónneho motora.
- Zaťažovanie asynchrónneho motora.
- Výpočet momentovej charakteristiky.

Všetky merania vykonáme na trojfázovom asynchrónnom motore s kotvou krúžkovou, so štítkovými údajmi:

a) Nominálny výkon motora:

$$P_{\rm N} =$$

$$n_{\rm N} =$$

b) Počet pólov:

f) Frekvencia:

$$2p =$$

$$f =$$

c) Nominálne napätie statora:

g) Nominálny prúd statora:

$$U_{1N} =$$

$$I_{1N} =$$

d) Nominálne napätie rotora:

h) Nominálny prúd rotora:

$$U_{2N} =$$

$$I_{2N} =$$

2 Meranie odporov vinutí

Odpory statorového a rotorového vinutia asynchrónneho motora meriame miliohmmetrom. Namerané hodnoty zapisujeme do Tab. 1.

Tab. 1: Meranie odporu vinutia

Vinutie		$R(\Omega)$	$R_{\rm av} (\Omega)$	$R(\Omega)$
	UV			
Statorové vinutie	VW			
	WU			
	KL			
Rotorové vinutie	LM			
	MK			

Z nameraných hodnôt vypočítame:

a) Strednú hodnotu odporu statorového vinutia:

$$R_{1av} = \frac{R_{UV} + R_{VW} + R_{WU}}{3} = \tag{1}$$

b) Fázovú hodnotu statorového odporu:

$$R_1 = \frac{R_{1av}}{2} = \tag{2}$$

c) Strednú hodnotu odporu rotorového vinutia:

$$R_{2av} = \frac{R_{KL} + R_{LM} + R_{MK}}{3} =$$
 (3)

d) Fázovú hodnotu rotorového odporu:

$$R_2 = \frac{R_{\text{2av}}}{2} = \tag{4}$$

3 Meranie prevodu motora

Prevod motora sa meria pri rozpojenom rotorovom vinutí. Meriame pri zníženom napätí (približne $0.8\,U_{\rm 1N}$), aby sme sa vyhli oblasti nasýtenia. Namerané a vypočítané hodnoty zapisujeme do Tab. 2.

		1		
Vinutie		U(V)	$U_{\rm av}$ (V)	a
	UV			
Statorové vinutie	VW			
	WU			
	KL			
Rotorové vinutie	LM			
	MK			

Tab. 2: Meranie prevodu motora

Z nameraných hodnôt vypočítame:

a) Strednú hodnotu napätí nameraných na statore:

$$U_{1av} = \frac{U_{UV} + U_{VW} + U_{WU}}{3} =$$
 (5)

b) Strednú hodnotu napätí nameraných na rotore:

$$U_{2av} = \frac{U_{KL} + U_{LM} + U_{MK}}{3} =$$
 (6)

c) Prevod asynchrónneho motora

$$a = \frac{U_{1\text{av}}}{U_{2\text{av}}} = \tag{7}$$

4 Meranie asynchrónneho motora naprázdno

Meraním v chode naprázdno zisťujeme, ako sa mení prúd naprázdno I_{10} , príkon naprázdno P_0 a účinník naprázdno $\cos \varphi_0$ v závislosti od zmeny napájacieho napätia U_1 . Z merania určíme prúd naprázdno I_{10} , účinník naprázdno $\cos \varphi_0$, straty v železe $\Delta P_{\rm Fe}$ a mechanické straty $\Delta P_{\rm m}$ pre nominálnu hodnotu napájacieho napätia $U_{\rm 1N}$. Asynchrónny motor v chode naprázdno je pripojený na symetrické trojfázové napätie a jeho hriadeľ je bez mechanického zaťaženia ($M_{\rm z}=0$). Rotorové vinutie je na svorkovnici spojené nakrátko. Schéma zapojenia merania je uvedená na Obr. 2. Napájacie napätie motora postupne zvyšujeme od hodnoty $U_1\approx 0.3\,U_{\rm 1N}$ do $U_1\approx 1.1\,U_{\rm 1N}$. Meriame napätia, prúdy a výkony vo všetkých fázach. Namerané hodnoty zapisujeme do Tab. 3.

Obr. 2: Schéma zapojenia asynchrónneho motora

$U_{\mathrm{U}}\left(\mathrm{V}\right)$	$U_{\rm V}\left({ m V}\right)$	$U_{\mathrm{W}}\left(\mathrm{V}\right)$	$I_{\mathrm{U}}\left(\mathrm{A} ight)$	$I_{\mathrm{V}}\left(\mathrm{A}\right)$	$I_{\mathrm{W}}\left(\mathrm{A}\right)$	$P_{\mathrm{U}}\left(\mathrm{W}\right)$	$P_{\mathrm{V}}\left(\mathrm{W}\right)$	$P_{\mathrm{W}}\left(\mathrm{W}\right)$				

Tab. 3: Namerané hodnoty asynchrónneho motora naprázdno

Z nameraných hodnôt vypočítame:

a) Napätie naprázdno:

$$U_0 = \frac{U_{\rm U} + U_{\rm V} + U_{\rm W}}{3} = \tag{8}$$

b) Prúd naprázdno:

$$I_0 = \frac{I_{\rm U} + I_{\rm V} + I_{\rm W}}{3} = \tag{9}$$

c) Príkon naprázdno:

$$P_0 = P_{\rm U} + P_{\rm V} + P_{\rm W} = \tag{10}$$

d) Straty v medi:

$$\Delta P_{\text{Cu}0} = 3R_1 I_0^2 = \tag{11}$$

e) Straty naprázdno:

$$\Delta P_0 = P_0 - \Delta P_{\text{Cu}0} = \tag{12}$$

f) Účinník naprázdno:

$$\cos \varphi_0 = \frac{P_0}{3U_0I_0} = \tag{13}$$

Vypočítané hodnoty zapisujeme do Tab. 4. Vypočítané hodnoty vynesieme do rastra na Obr. 3. Typické tvary priebehov vypočítaných veličín naprázdno sú uvedené na Obr. 12.

Tab. 4: Vypočítané hodnoty asynchrónneho motora nakrátko

$U_0\left(\mathbf{V}\right)$	$I_0\left(\mathbf{A}\right)$	$P_0\left(\mathbf{W}\right)$	$\Delta P_{\mathrm{Cu0}}\left(\mathbf{W}\right)$	$P_0\left(\mathbf{W}\right)$	$\cos \varphi_0 \left(- \right)$	$U_0^2 \left(\mathbf{V}^2 \right)$

Obr. 3: Meranie naprázdno

Straty naprázdno ΔP_0 sa delia na straty v železe $\Delta P_{\rm Fe}$ a straty mechanické $\Delta P_{\rm m}$. Mechanické straty sú s ohľadom na konštantnú rýchlosť rotora konštantné ($\Delta P_{\rm m}={\rm cst.}$). Straty v železe rastú s kvadrátom napätia ($\Delta P_{\rm Fe}=f(U_1^2)$). Na oddelenie strát v železe a mechanických použijeme kvadratickú extrapoláciu, tak ako je to znázornené na Obr. 4.

Obr. 4: Kvadratická extrapolácia strát naprázdno

Do rastra na Obr. 5 vynesieme závislosť $\Delta P_0 = f(U_0^2)$. Hodnoty potrebné pre vykreslenie závislosti berieme z Tab. 4, pričom je potrebné dať si pozor na kvadrát napätia U_0 .

Obr. 5: Kvadratická extrapolácia strát naprázdno z nameraných veličín

Z extrapolovaného priebehu odčítame hodnoty strát v železe $\Delta P_{\rm Fe}$ pre rôzne hodnoty napätia U_0 . Hodnoty zapíšeme do Tab. 5.

Tab. 5: Tabuľka odčítaných hodnôt z kvadratickej extrapolácie strát naprázdno

$U_0\left(\mathrm{V}\right)$					
$\Delta P_{\mathrm{Fe}}\left(\mathbf{W}\right)$					

Z priebehov na Obr. 3 a Obr. 5 odčítame pre nominálnu hodnotu napätia U_0 veličiny:

$$I_0 = \cos \varphi_0 =$$

$$P_{\rm m} = \Delta P_{\rm Fe} =$$

5 Meranie asynchrónneho motora nakrátko

Meraním motora v stave nakrátko zisťujeme prúd statora nakrátko I_k , príkon motora nakrátko P_k a účinník nakrátko $\cos \varphi_k$. Schéma zapojenia je rovnaká ako pri meraní motora vchode naprázdno, avšak rotor stroja je zabrzdený. Statorové vinutie napájame súmerným zníženým napätím tak, aby hodnota prúdu nakrátko neprekročila $I_k \approx 1,1\,I_{\rm IN}$. Pri meraní postupujeme od najvyššej hodnoty smerom nadol. Namerané hodnoty zapisujeme do Tab. 6.

Tab. 6: Namerané hodnoty asynchrónneho motora nakrátko

Z nameraných hodnôt vypočítame:

a) Napätie nakrátko:

$$U_{\rm k} = \frac{U_{\rm U} + U_{\rm V} + U_{\rm W}}{3} = \tag{14}$$

b) Prúd nakrátko:

$$I_{\rm k} = \frac{I_{\rm U} + I_{\rm V} + I_{\rm W}}{3} = \tag{15}$$

c) Prúd nakrátko:

$$P_{\rm k} = P_{\rm U} + P_{\rm V} + P_{\rm W} = \tag{16}$$

d) Účinník nakrátko:

$$\cos \varphi_{\mathbf{k}} = \frac{P_{\mathbf{k}}}{3U_{\mathbf{k}}I_{\mathbf{k}}} = \tag{17}$$

Vypočítané hodnoty zapisujeme do Tab. 7.

Tab. 7: Vypočítané hodnoty asynchrónneho motora nakrátko

$U_{\mathrm{U}}\left(\mathrm{V}\right)$	$U_{\mathrm{V}}\left(\mathrm{V}\right)$	$U_{\mathrm{W}}\left(\mathrm{V}\right)$	$P_{\mathrm{W}}\left(\mathrm{W}\right)$

Na základe hodnôt z Tab 7 vynesieme priebehy vypočítaných veličín do rastra na Obr. 6 ako funkciu prúdu nakrátko $I_{\rm k}$. Na Obr. 13 sú znázornené tvary priebehov veličín nakrátko.

Obr. 6: Meranie nakrátko

Z priebehov na Obr. 6 odčítame pre nominálnu hodnotu prúdu $I_{\mathbf{k}}$ veličiny:

$$U_{\mathbf{k}} = \cos \varphi_{\mathbf{k}} = \Delta P_{\mathbf{k}} =$$

Z priebehu $U_k = f(I_k)$ môžeme určiť nominálny skratový prúd, t. j. prúd, ktorý by tiekol statorovým vinutím pri napájaní nominálnym napätím. Priebeh napätia linearizujeme a určíme priesečník na osi U'_k (viď Obr. 13). Prúd nakrátko pri nominálnom napätí určíme výpočtom:

$$I_{kN} = \frac{U_N - U_k'}{U_k - U_k'} I_{1N} =$$
(18)

6 Určenie parametrov náhradnej schémy

Úplná náhradná schéma asynchrónneho motora s kotvou krúžkovou je na Obr. 7.

Obr. 7: Náhradná schéma asynchrónneho stroja

Výpočet parametrov náhradnej schémy urobíme za predpokladov:

- Rozptylové reaktancie statorových a rotorových vinutí sú rovnaké $X_{1\sigma}=X_{2\sigma}'$
- V náhradnej schéme, ktorá odpovedá stavu nakrátko zanedbáme R_{Fe} a Xm, pretože ich hodnoty sú viacnásobne väčšie ako ohmické odpory a rozptylové reaktancie vinutí.
- V náhradnej schéme, ktorá odpovedá chodu naprázdno pokladáme rotorový prúd $I_2 = 0$, pretože rýchlost stroja sa len minimálne odlišuje od synchrónnej otáčavej rýchlosti sklz je prakticky nulový.

Výpočet parametrov z merania nakrátko

Náhradná schéma asynchrónneho stroja nakrátko je zobrazená na Obr. 8.

Obr. 8: Náhradná schéma asynchrónneho stroja nakrátko

Z doposiaľ nameraných a vypočítaných hodnôt vypočítame:

a) Odpor rotorového vinutia prepočítaný na stator:

$$R_2' = a^2 R_2 = \tag{19}$$

b) Odpor rotorového vinutia prepočítaný na stator:

$$R_{k} = R_1 + R_2' = \tag{20}$$

c) Impedanciu nakrátko:

$$Z_{\mathbf{k}} = \frac{U_{\mathbf{k}}}{I_{\mathbf{k}}} = \tag{21}$$

d) Reaktanciu nakrátko:

$$X_{k} = \sqrt{Z_{k}^{2} - R_{k}^{2}} = \tag{22}$$

e) Rozptylové reaktancie:

$$X_{1\sigma} = X_{2\sigma}' = \frac{X_{k}}{2} = \tag{23}$$

Výpočet parametrov z merania naprázdno

Náhradná schéma asynchrónneho stroja naprázdno je zobrazená na Obr. 9.

Obr. 9: Náhradná schéma asynchrónneho stroja naprázdno

Z doposiaľ nameraných a vypočítaných hodnôt vypočítame:

a) Impedanciu naprázdno:

$$Z_0 = \frac{U_{\rm N}}{I_0} = \tag{24}$$

b) Magnetizačný prúd:

$$I_{\rm m} = I_0 \sin \varphi_0 = \tag{25}$$

c) Magnetizačnú reaktanciu:

$$X_{\rm m} = \frac{U_{\rm N}}{I_{\rm m}} = \tag{26}$$

d) Pre straty v železe platí vzťah $\Delta P_{\rm Fe}=3R_{\rm Fe}I_{\rm Fe}^2$. Po úprave pre ekvivalentný odpor strát v železe platí:

$$R_{\rm Fe} = 3 \frac{U_{\rm i0}^2}{\Delta P_{\rm Fe}} \approx 3 \frac{U_{\rm Nf}^2}{\Delta P_{\rm Fe}} = \tag{27}$$

7 Zaťažovanie asynchrónneho motora

Pri zaťažovaní má motor pracovať za rovnakých podmienok ako v prevádzke. Motor môžeme zaťažovať dynamometrom, brzdou alebo derivačným dynamom, ktoré pracuje do odporov. Zaťažujeme od najvyšších hodnôt smerom k najnižším, aby sa teplota stroj počas merania menila čo najmenej. Napätie pri zaťažovaní udržujeme na konštantnej hodnote.

Asynchrónny motor budeme zaťažovať od hodnoty $M_{\rm p}\approx 1,2\,M_{\rm N}$ smerom nadol. Aby sme sa vyhli prúdovému nárazu pri spúšťaní, pripojíme stroj na znížené napätie, ktoré postupne zvýšime na nominálnu hodnotu. Pri konšťantnom nominálnom napätí $U_1=U_{\rm 1N}$ meriame prúdy a príkon vo všetkých troch fázach motora, záťažový moment ako aj otáčky motora

Pred meraním si odmeriame napájacie napätie:

$$U_{1N} =$$

Namerané hodnoty zapisujeme do Tab. 8.

$I_{ m U} \ (m A)$	$I_{ m V}$ (A)	I_{W} (A)	P_{U} (W)	P_{V} (W)	P_{W} (W)	$M_{ m p} \ m (Nm)$	$n \pmod{\cot{\min}}$

Tab. 8: Tabulka nameraných hodnôt

Z nameraných priebehov vypočítame:

a) Prúd motora:

$$I_1 = \frac{I_{\rm U} + I_{\rm V} + I_{\rm W}}{3} = \tag{28}$$

b) Príkon:

$$P_1 = P_{\rm U} + P_{\rm V} + P_{\rm W} = \tag{29}$$

c) Uhlovú rýchlosť:

$$\omega_{\rm m} = \frac{2\pi n}{60} = \frac{n}{9.55} = \tag{30}$$

d) Mechanický výkon motora:

$$P_2 = M\omega_{\rm m} = \tag{31}$$

e) Účinník:

$$\cos \varphi = \frac{P_1}{3U_{1N}I_1} = \tag{32}$$

f) Sklz:

$$s = \frac{n_{\rm s} - n}{n_{\rm s}} = \tag{33}$$

g) Účinnosť:

$$\eta = \frac{P_2}{P_1} = \tag{34}$$

Vypočítané hodnoty zapisujeme do Tab. 9.

Tab. 9: Tabuľka vypočítaných hodnôt

$I_1(A)$	$P_1(W)$	$\omega_{\rm m}({\rm rad/s})$	$P_2\left(\mathbf{W}\right)$	$\cos_{\varphi}\left(-\right)$	s(-)	$\eta\left(-\right)$

Priebehy vypočítaných hodnôt vynesieme graficky do rastra na Obr. 10.

Obr. 10: Meranie zátažových charakteristík motora

8 Meranie momentovej charakteristiky pri zníženom napätí

Schéma zapojenia zostáva rovnaká ako pri záťažovej skúške. Napájacie napätie nastavíme na hodnotu $U_1 \approx U \text{N}/2$. Pri meraní odčítavame moment a otáčky. Súčasne sledujeme, aby prúdy v jednotlivých fázach neboli väčšie ako 1,5 $I_{1\text{N}}$. Tým istým spôsobom odmeriame aj druhú statickú charakteristiku pri napätí $U_1 \approx U_{\text{N}}/3$. Namerané hodnoty zapisujeme do Tab. 10 a Tab. 11.

Tab. 10: Tabuľka nameraných hodnôt

$U_1 = \qquad (V)$											
$M\left(\mathrm{Nm}\right)$											
$n \left(\text{ot/min} \right)$											
s (-)											

Tab. 11: Tabuľka nameraných hodnôt

$U_1 = \qquad (V)$										
$M\left(\mathrm{Nm}\right)$										
$n \left(\text{ot/min} \right)$										
s (-)										

Obr. 11: Namerané momentové charakteristiky pri zníženom napätí

9 Výpočet momentovej charakteristiky pri zmene napätia

Z parametrov náhradnej schémy nakrátko môžeme vypočítať momentovú charakteristiku asynchrónneho motora M=f(s) pri nominálnom, polovičnom a tretinovom napätí. Moment asynchrónneho motora vypočítame ako:

$$M = \frac{3}{\omega_{\rm s}} \frac{R_2'}{s} \frac{U_1^2}{\left(R_1 + \frac{R_2'}{s}\right)^2 + X_{\rm k}^2} = \tag{35}$$

kde synchrónna rýchlosť je daná:

$$\omega_{\rm s} = \frac{2\pi f}{p} = \tag{36}$$

Vypočítané hodnoty momentu zapisujeme do Tab. 12.

Tab. 12: Tabuľka vypočítaných hodnôt

			$s\left(-\right)$									
		0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
m)	$U_1 = 220 \mathrm{V}$ $U_1 = 110 \mathrm{V}$											
M	$U_1 = 75 \mathrm{V}$											

Vypočítané hodnoty momentových charakteristík vynesieme graficky do rastra na Obr. 14.

Charakteristiky asynchrónneho motora

Na Obr. 12 až 13 sú zobrazené základné charakteristiky asynchrónneho motora.

Obr. 12: Meranie naprázdno

Obr. 13: Merania nakrátko

Obr. 14: Vypočítané momentové charakteristiky

Poznámka o úprave

Tento dokument vznikol ako revízia pôvodného dokumentu:

Názov: Návody na cvičenia z elektrických strojov

Autori: prof. Ing. Pavel Záskalický, CSc., Ing. Ján Kaňuch, PhD.

Vydavateľ: Technická univerzita v Košiciach

Rok: 2016

ISBN: 978-80-553-2579-8

Revízia zahŕňa opravy chýb a malé úpravy obsahu pôvodného dokumentu.