2. Mostek Wheatstone'a

Zespół 3: Górski Paweł, Sozańska Ada EAIiIB Informatyka, Rok II 25 października 2017

1 Wprowadzenie

Celem tego doświadczenia jest wyznaczenie nieznanych oporów oraz zweryfikowanie wzorów na opór zastępczy oporników w połączeniach: szeregowym i równoległym, przy wykorzystaniu praw Kirchhoffa oraz prawa Ohma.

1.1 Prawa Kirchhoffa, prawo Ohma

Mostek Wheatstone'a jest oparty na trzech fundamentalnych prawach obwodów elektrycznych.

Pierwszym z nich jest Prądowe Prawo Kirchhoffa. Dotyczy ono prądów wpływających do węzła obwodu elektrycznego oraz mówi, że suma algebraiczna prądów wpływających do danego węzła jest równa zeru. Zakładając, że do węzła wpływa n prądów I_j , gdzie $j \in \{1, 2, \ldots, n\}$, prawo to można zapisać następująco:

$$\sum_{j=1}^{n} I_j = 0. (1.1)$$

Kolejnym prawem jest $Napięciowe\ Prawo\ Kirchhoffa$, które dotyczy spadków napięć w oczku (zamkniętej pętli sieci) obwodu elektrycznego. Mówi ono, że suma spadków napięć na wszystkich elementach w oczku jest równa zeru. Zakładając, że w oczku jest n elementów elektrycznych, prawo to można zapisać następująco:

$$\sum_{j=1}^{n} U_j = 0. (1.2)$$

Ostatnim prawem jest $Prawo\ Ohma$, które definiuje zależność natężenia i napięcia prądu. Mówi ono, że stosunek napięcia U między końcami przewodnika do natężenia prądu I w nim płynącego jest wielkością stałą. Wielkość ta jest nazywana opornością.

$$R = \frac{U}{I}. (1.3)$$

Prawo to może nie być spełnione w elementach nieliniowych (np. dioda) lub gdy temperatura przewodnika nie jest stała.

1.2 Mostek Wheatstone'a

Mostek Wheatstone'a jest układem do porównywania oporów. Oprócz pomiaru wielkości typowych dla obwodów elektrycznych jest on również wykorzystywany do budowania mierników naprężeń, ciśnień hydrostatycznych czy próżni.

Rys. 1: Schemat mostka Wheatstone'a. Niezrównoważony (po lewej) oraz zrównoważony (po prawej).

Żródło: Instrukcja do ćwiczenia

Składa się on z czterech oporników o oporach: R_x , R_2 , R_3 , R_4 oraz galwanometru o oporze R_5 . Stosując $Prądowe\ Prawo\ Kirchhoffa\ (1.1)$ dla węzłów B,D otrzymujemy następujące równania:

$$B: I_1 = I_2 + I_5,$$

 $D: I_5 = I_3 - I_4.$ (1.4)

Następnie wykorzystując $Napięciowe\ Prawo\ Kirchhoffa\ (1.2)$ dla oczek ABDA, BCDB otrzymujemy dwa równania:

$$ABDA: I_1R_x + I_5R_5 - I_3R_3 = 0,$$

$$BCDB: I_2R_2 - I_4R_4 - I_5R_5 = 0.$$
(1.5)

W doświadczeniu wykorzystujemy układ zrównoważony, w którym potencjały w węzłach B i D są równe. W konsekwencji mamy $I_5 = 0$ A, co powoduje uproszczenie układu równań (1.4) do:

$$I_1 = I_2,$$

$$I_3 = I_4.$$
(1.6)

Dalej, równania (1.5) upraszczają się do postaci:

$$I_1 R_x = I_3 R_3,$$

 $I_1 R_2 = I_3 R_4.$ (1.7)

Co nam daje:

$$R_x = R_2 \frac{R_3}{R_4}. (1.8)$$

W mostku zrównoważonym opory R_3 oraz R_4 są oporami wewnętrznymi przewodów o długości kolejno a oraz b=l-a (Rys. 1). Opory te można przedstawić wzorami:

$$R_3 = \rho \frac{a}{S} \quad \text{oraz} \quad R_4 = \rho \frac{l-a}{S}, \tag{1.9}$$

gdzie ρ to oporność właściwa, a S to pole przekroju wewnętrznego przewodu.

Ostatecznie, korzystając z (1.8) i (1.9) otrzymujemy wzór, w którym wszystkie parametry są mierzalne:

$$R_x = R_2 \frac{a}{l-a}. (1.10)$$

2 Wykonanie ćwiczenia

W celu wykonania doświadczenia wykorzystaliśmy:

- Listwę o długości 1 m z podziałką milimetrową, drutem oporowym i suwakiem,
- Opornicę dekadową R_2 ,
- Zestaw pięciu oporników R_x ,
- Mikroamperomierz,
- Zasilacz stabilizowany 3 A/30 V.

Doświadczenie rozpoczęliśmy od połączenia elementów w zrównoważony mostek Wheatstone'a. Suwak na listwie przesunęliśmy do połowy jej długości (a=50 cm). Dla każdego z pięciu oporników R_x ustawialiśmy opór R_2 na opornicy dekadowej tak, aby amperomierz wskazywał 0 A. Następnie osiem razy zmienialiśmy opór R_2 , żeby oscylował w okół wartości początkowej R_2 (ustawionej dla a=50 cm) i dostosowywaliśmy suwak, tak aby za każdym razem amperomierz wskazywał 0 A.

Analogiczne pomiary wykonaliśmy dla połączenia szeregowego (opory R_{x1} i R_{x2}), równoległego (opory R_{x1} i R_{x2}) i mieszanego (opór R_{x3} szeregowo z równolegle połączonymi oporami R_{x1} i R_{x2}).

3 Opracowanie danych pomiarowych

3.1 Pomiary

W poniższej tabeli prezentujemy wyniki pomiarów dla każdego opornika. Pomiary zostały wykonane tak, jak opisano to w sekcji Wykonanie ćwiczenia. Opór R_x każdego z oporników został obliczony ze wzoru (1.10) dla l=1000 mm (długość całego drutu), oraz dla wartości a i R_2 podanych w tabeli.

Tab. 1: Wartości pomiarów nieznanych oporów R_x

Opornik 1										
$R_2 [\Omega]$	8,2	9,2	10,2	11,2	12,2	13,2	14,2	15,2	16,2	
a [mm]	599	572	550	522	500	482	465	450	431	
$R_{x1} [\Omega]$	12,249	12,295	12,467	12,231	12,200	12,283	12,342	12,436	12,271	
	Opornik 2									
$R_2 [\Omega]$	31,1	32,1	33,1	34,1	35,1	36,1	37,1	38,1	39,1	
a [mm]	530	521	514	507	500	492	483	476	470	
$R_{x2} [\Omega]$	35,070	34,915	35,007	35,068	35,100	34,963	34,660	34,610	34,674	
Opornik 3										
$R_2 [\Omega]$	62,0	64,0	66,0	68,0	70,0	72,0	74,0	76,0	78,0	
$a [\mathrm{mm}]$	527	519	511	503	500	494	487	481	474	
$R_{x3} [\Omega]$	69,07	69,05	68,96	68,82	70,00	70,29	70,25	70,43	70,28	
				Opori	nik 4					
$R_2 [\Omega]$	35,8	36,8	37,8	38,8	39,8	40,8	41,8	42,8	43,8	
$a [\mathrm{mm}]$	527	519	513	506	500	494	487	481	475	
$R_{x4} [\Omega]$	39,887	39,707	39,818	39,743	39,800	39,832	39,681	39,666	39,629	
Opornik 5										
$R_2 [\Omega]$	72,7	82,7	92,7	102,7	112,7	122,7	132,7	142,7	152,7	
a [mm]	608	577	548	520	500	481	461	443	419	
$R_{x5} [\Omega]$	112,76	112,81	112,39	111,26	112,70	113,72	113,50	113,49	110,12	

Dla każdego opornika policzyliśmy średnią arytmetyczną z dziewięciu wyznaczonych wartości oporów zawartych w tabeli (Tab. 1). Następnie obliczyliśmy niepewność standardową pomiarów, korzystając z estymatora odchylenia standardowego średniej tych wyników. Wyniki przedstawiliśmy w tabeli poniżej.

Tab. 2: Średnie arytmetyczne oporów R_x oraz ich niepewności $u(R_x)$

L, p,	1	2	3	4	5
$R_x [\Omega]$	12,308	34,896	69,68	39,751	112,53
$u(R_x) [\Omega]$	0,030	0,065	0,22	0,029	0,38

W tabeli poniżej znajdują się analogiczne pomiary dla połączenia szeregowego (opory R_{x1} i R_{x2}), równoległego (opory R_{x1} i R_{x2}) i mieszanego (opór R_{x3} szeregowo z równolegle połączonymi oporami R_{x1} i R_{x2}).

Tab. 3: Wartości pomiarów nieznanych oporów dla różnych połączeń

Połączenie szeregowe									
$R_2 [\Omega]$	39,5	41,5	43,5	45,5	47,5	49,5	51,5	53,5	55,5
a [mm]	547	535	523	512	500	489	472	463	454
$R_{szer} \left[\Omega \right]$	47,69	47,74	47,69	47,73	47,50	47,36	46,03	46,12	46,14
Połączenie równoległe									
$R_2 [\Omega]$	5,5	6,5	7,5	8,5	9,5	10,5	11,5	12,5	13,5
a [mm]	631	587	555	524	500	474	449	427	409
$R_{row} [\Omega]$	9,405	9,238	9,353	9,357	9,500	9,462	9,371	9,315	9,342
Połączenie mieszane									
$R_2 [\Omega]$	72,0	74,0	76,0	78,0	80,0	82,0	84,0	86,0	88,0
a [mm]	526	520	513	506	500	494	487	481	476
$R_{miesz} [\Omega]$	79,899	80,167	80,057	79,895	80,000	80,055	79,743	79,703	79,939

Następnie obliczyliśmy średnią arytmetyczną z wyników w tabeli (Tab. 3) oraz niepewności pomiarów tych wyników. Dodatkowo, poniżej zawarliśmy obliczone wartości oporów zastępczych w tych konfiguracjach oraz ich niepewności złożone, korzystając z wyników zawartych w tabeli (Tab. 2).

Tab. 4: Średnie arytmetyczne oporów R oraz ich niepewności u(R) dla różnych połączeń

_					
Λ	Λi	er	70	n	^

Połączenie	Szeregowe	Równoległe	Mieszane	
$R_{mierz} [\Omega]$	47,11	9,371	79,939	
$u(R_{mierz}) [\Omega]$	0,25	0,025	0,050	

Obliczone

Połączenie	Szeregowe	Równoległe	Mieszane	
$R_{oblicz} [\Omega]$	47,204	9,098	78,77	
$u(R_{oblicz}) [\Omega]$	0,071	0,016	0,22	

W celu obliczenia wartości oporów zastępczych dla rozważanych w doświadczeniu połączeń wykorzystaliśmy następujące wzory, wynikające z praw Kirchhoffa:

$$R_{szer} = R_1 + R_2, (3.1)$$

$$R_{row} = \frac{R_1 R_2}{R_1 + R_2},\tag{3.2}$$

$$R_{miesz} = \frac{R_1 R_2}{R_1 + R_2} + R_3. (3.3)$$

Dla połączenia szeregowego wykorzystaliśmy wzór (3.1), do połączenia równoległego wzór (3.2), a do połączenia mieszanego wzór (3.3) (będący konsekwencją użycia dwóch poprzednich wzorów).

Niepewności dla obliczonych wartości oporów zastępczych wyliczyliśmy ze wzorów wynikających z prawa przenoszenia niepewności oraz powyższych równań:

$$u(R_{szer}) = \sqrt{u(R_1)^2 + u(R_2)^2},$$

$$u(R_{row}) = \sqrt{\left(\frac{R_2^2}{(R_1 + R_2)^2} u(R_1)\right)^2 + \left(\frac{R_1^2}{(R_1 + R_2)^2} u(R_2)\right)^2},$$

$$u(R_{miesz}) = \sqrt{\left(\frac{R_2^2}{(R_1 + R_2)^2} u(R_1)\right)^2 + \left(\frac{R_1^2}{(R_1 + R_2)^2} u(R_2)\right)^2 + u(R_3)^2}.$$
(3.4)

3.2 Analiza wyników

Analizując dane zawarte w tabeli (Tab. 4) jesteśmy w stanie sprawdzić zgodność między wartościami zmierzonymi, a obliczonymi dla różnych konfiguracji połączeń oporników.

Dla połączenia szeregowego:

$$R_{mierz} = 47,11 \ \Omega, \qquad R_{oblicz} = 47,204 \ \Omega,$$

$$\Delta R = \left| R_{mierz} - R_{oblicz} \right| = 0,094 \ \Omega,$$

$$U(\Delta R) = 2\sqrt{u(R_{mierz})^2 + u(R_{oblicz})^2} = 0,52 \ \Omega.$$
(3.5)

Wartości mierzona oraz obliczona dla połączenia szeregowego są zgodne, gdyż $\Delta R=0,094~\Omega < U(\Delta R)=0,52~\Omega.$

Dla połączenia równoległego:

$$R_{mierz} = 9,371 \ \Omega, \qquad R_{oblicz} = 9,098 \ \Omega,$$

$$\Delta R = \left| R_{mierz} - R_{oblicz} \right| = 0,27 \ \Omega,$$

$$U(\Delta R) = 2\sqrt{u(R_{mierz})^2 + u(R_{oblicz})^2} = 0,060 \ \Omega.$$
(3.6)

Wartości mierzona oraz obliczona dla połączenia równoległego okazują się być niezgodne, gdyż $\Delta R=0,27~\Omega>U(\Delta R)=0,060~\Omega.$

Dla połaczenia mieszanego:

$$R_{mierz} = 79,939 \ \Omega, \qquad R_{oblicz} = 78,77 \ \Omega,$$

$$\Delta R = \left| R_{mierz} - R_{oblicz} \right| = 1,169 \ \Omega,$$

$$U(\Delta R) = 2\sqrt{u(R_{mierz})^2 + u(R_{oblicz})^2} = 0,45 \ \Omega.$$
(3.7)

Wartości mierzona oraz obliczona dla połączenia mieszanego nie są zgodne, gdyż $\Delta R=1,169~\Omega>U(\Delta R)=0,45~\Omega.$

4 Wnioski

Z analizy wartości zmierzonych i obliczonych oporów zastępczych jesteśmy w stanie potwierdzić prawdziwość wzoru na opór zastępczy dla połączenia szeregowego, ponieważ wyniki są ze sobą zgodne w granicach błędu.

Niestety dla połączeń równoległego oraz mieszanego wyniki nie były ze sobą zgodne. Mogło to wynikać z faktu, iż założyliśmy, że opornica dekadowa ma pomijalnie mały błąd. Wpływ na ten wynik mógł mieć również stan okablowania, ponieważ nie wszystkie przewody dało się stabilnie przyłączyć do elementów układu elektrycznego, co wiązało się z fałszowaniem wyników wskazywanych przez amperomierz.