Probabilitas

Bayes and Redipils

20XX:00:00

Contents

2	Boh							
	2.1	Belief,	, odds, &Co					
	2.2	Assion	ni					
	2.3	Appro	occio soggettivo alla probabilità					
		2.3.1	Dutch book					
		2.3.2	Teorema					
		2.3.3	Esercizietto					
	2.4	Indipe	endenza condizionata					
	2.5	Cosa	ci interessa calcolare					
		2.5.1	Prior					
		2.5.2	Altri dati					
					٠	•	•	
	It's	grafo	time					

1 Altri libri consigliati

David Barber, roba bayesiana e probaiblosa pdf online legale molto sintetico, molto compatto, buon complemento al Russel Norvig

2 Boh

2.1 Belief, odds, &Co.

$$Bel(E) \triangleq \frac{1}{1+m} \ odds$$

2.2 Assiomi

il tizio che inizia con la K

2.3 Approccio soggettivo alla probabilità

2.3.1 Dutch book

un libro olandese qualcosa con delle scommesse

qualcosa che ... vinci(o era perdi) indipendentemente da come scommetti, e mi sa che c'è qualcosa che non va

caso "degenere" dovuto al mancato rispetto del cazzo che me ne frega questo dutch book è un sistema di scommesse incosistente, si scopre che la cosa è dovuta al "non vale il principio di unione esclusione"

2.3.2 Teorema

un sistema di scommesse è consistente **SE E SOLO SE**, leggendo i *belief* come probabilità, questi rispettano gli assiomi (de Kolmocazzov)

- se non valgono gli assiomi c'è un dutch book
- se valgono gli assiomi non c'è un dutch book

ora possiamo ragionare sui belief come se fossero probabilità, basta che siano consistenti con gli assiomi

2.3.3 Esercizietto

due variabili sono indipendenti quando la congiunta è il prodotto

2.4 Indipendenza condizionata

abemus 3 variabili

- patologie
- cause
- sintomi

gruppi di variabili che vanno da causa ad effetto¹

¹la nozione di causalità è molto complicata e "insert berserk reference"

prendiamo come esempio molto allegro della malattia della mucca pazza prendiamo

$$\mathbb{P}(H|MC) = 0.9$$

dove $\mathbb{P}(H|MC)$ è la probabilità di H (Hamburger) dato che MC (Mad Cow) nella base di conoscenza abbiamo anche

$$\mathbb{P}(H) = 0.5$$

questa non è metà della popolazione italiana, è la metà della gente che è entrata in ospedale per qualche motivo

si ricorda che

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

2.5 Cosa ci interessa calcolare

di solito ci interessa calcolare una cosa tipo

$$\mathbb{P}(Query \mid Evidence)$$

dove

Query è una variabile aleatorai

Evidence è un insieme di osservazioni su altre variabili aleatorie

si pensi alla procedure per pronto soccorso per dolore toracico quando arriva un tizio con dolore toracico bisogna vedere "ok, e che cazzo succede?" tipo i dottori per pronto soccorso hanno dati per pazienti entrati per dolore toracico

poi devi fare decisioni tipo "conviene fargli la scintigrafia² a questo paziente?"

2.5.1 Prior

si parte da $\mathbb{P}(MC)=0.9$ come credenza iniziale sapendo che ha mangiato un hamburger, abbiamo

$$\mathbb{P}(MC|H) = \frac{\mathbb{P}(H|MC)MC}{H} = \frac{0.9 \times 10^{-5}}{0.5} = 1.8 \times 10^{-5}$$

poi abbiamo la verosimiglianza, la verosimiglianza (o likelihood) è la **probabilità dei dati sapendo l'ambiente** quindi in questo caso la verosimiglianza è $\mathbb{P}(H|MC)$

²un fottio di radiografie

serviva $\mathbb{P}(H)$? a dire il vero no, quello è un fattore di normalizzazione, è quello che garantisce che la somma faccia 1

tanto si sa che $\mathbb{P}(malattia) + \mathbb{P}(non\ malattia) = 0$, e boh abemus formuletta informale

 $Posterior \propto Likelihood \times Prior$

dove \propto vuol dire "è proporzionale a"

2.5.2 Altri dati

• si raccolgono altri dati, un altro sintomo della mucca pazza è M, perdita di memoria, possiamo aggiungere alla base di conoscenza a cui chiedere "oh, ma mucca?"

condizioniamo a due

$$\mathbb{P}(MC|H,M) = \frac{\mathbb{P}(M|MC,H)\mathbb{P}(MC|H)}{\mathbb{P}(M|H)}$$

possiamo ancora applicare bayes

qui si usa il vecchio posterior come nuovo prior e quello per cui lo moltiplicassi è di nuovo una verosimiglianza, la verosimiglianza della variabile osservata date le due variabili aleatore precedentemente osservate

il fatto che ho mangiato l'hamburger, se ho perso la memoria, è diventato irrilevante la memoria l'ho persa per la malattia, indipendemente dall'hamburger

si ha quindi che

$$\mathbb{P}(M|MC,H)$$
 è abbastanza uguale a $\mathbb{P}(M|MC)$

si legge che

$$M \perp H | MC$$

quindi "M condizionatamente indipendente da H dato che MC ", detto formalese

indipendenza normale $\mathbb{P}(A,B) = \mathbb{P}(A), \mathbb{P}(B)$

indipendenza condizionata $\mathbb{P}(A, B|C) = \mathbb{P}(A|C), \mathbb{P}(B|C)$

3 It's grafo time

PORCO DIO! – Germano Mosconi

 \bullet i NODI sono le VARIABILI ALEATORIE (r.v., random variables), tipo così

$$H \to MC \to M$$

e gli archi? Guardando questa cosa si potrebbe dire che gli archi collegano cause ad effetti, in modo più formale qui si dice che

• la MANCANZA DI ARCHI rappresenta un indipendenza (±condizionata)