Solutions to final exam in CRYPTOGRAPHY on 16 December 1996

Problem 1

- a) $H_0 = \log 17$, H(M) = 3, $H(\underline{K}) = \log 17$, $D = H_0 H(M) = 4.09 3 = 1.09$, and $N_0 = H(\underline{K})/D = 4.09/1.09 = 3.75$.
- b)

$$K = \sum_{i} y_i \prod_{j,j \neq i} x_j / (x_j - x_i) = 7 \frac{2}{2 - 1} \frac{3}{3 - 1} + 11 \frac{1}{1 - 2} \frac{3}{3 - 2} + 0 \frac{1}{1 - 3} \frac{2}{2 - 3} = 5 \pmod{17}.$$

Problem 2

- a) WRONG, since $p_1(x) = (x^2 + x + 1)^2$.
- **b)** WRONG, since the cycles are $1(1) \oplus 1(3) \oplus 2(6)$.
- c) CORRECT, since $S_1 \otimes S_2 = (1(1) \oplus 1(3) \oplus 2(6)) \otimes (1(1) \oplus ...)$.
- d) CORRECT, since $p_1(x)$ generates the sequence and since the sequence starts with three 0's the length must be at least 4.
- e) CORRECT, since $2^7 1 = 127$, a prime, and $ord(\alpha)|127$ for $p_2(\alpha) = 0$.

Problem 3

We get the following table:

We get the following tuble.														
		0												
В	1	1	G	$lpha^5$	$4\alpha + 1$	Μ	α^{10}	$3\alpha + 1$	R	$lpha^{15}$	$\alpha + 2$	W	α^{20}	$3\alpha + 4$
\mathbf{C}	α	α	Н	$lpha^6$	2	Ν	α^{11}	$3\alpha + 2$	S	α^{16}	$3\alpha + 3$	X	α^{21}	$2\alpha + 4$
D	$lpha^2$	$\alpha + 3$	$_{\mathrm{I,J}}$	$lpha^7$	2α	О	α^{12}	4	Τ	α^{17}	$\alpha + 4$	Y	α^{22}	$\alpha + 1$
\mathbf{E}	$lpha^3$	$4\alpha + 3$	K	$lpha^8$	$2\alpha + 1$	Р	α^{13}	4α	U	α^{18}	3	\mathbf{Z}	α^{23}	$2\alpha + 3$

The first five known letters of the plaintext gives us the first five symbols of the key sequence by $K_i = C_i - M_i$. So

$$(K_1,\ldots,K_5)=(1,\alpha,\alpha^7,\alpha^{13},\alpha^{19}).$$

Using Massey's algorithm, we get $C(z) = 1 - \alpha^6 z^{-1}$ and L = 2. This must be a correct LFSR, since if not, then $d \neq 0$ for the sixth symbol and we would need a LFSR of length 6-2=4 to generate the sequence, a contradiction.

Problem 4

a)

$$D_K(E_K(M)) = (M^e)^d \pmod{n}$$

$$= M^{ed} \pmod{n}$$

$$= M^{1+\phi(n)} \pmod{n}$$

$$= M \cdot M^{\phi(n)} \pmod{n}$$

$$= M,$$

since $M^{\phi(n)} = 1 \pmod{n}$ by Euler's theorem.

b) First, we calculate d to be 107. Then

$$D_K(E_K(22)) = (22^3)^{107} \pmod{187}$$

$$= 176^{107} \pmod{187}$$

$$= 176 \cdot 176^2 \cdot 176^8 \cdot 176^{32} \cdot 176^{64} \pmod{187}$$

$$= 176 \cdot 121 \cdot 33 \cdot 154 \cdot 154 \pmod{187}$$

$$= 22 \pmod{187}$$

- c) $\phi(\phi(n)) = \phi((p-1)(q-1)) = \phi(4p_1q_1) = 2(p_1-1)(q_1-1).$
- d) If we can find $\phi(n)$ we have two equations n=pq and $\phi(n)=(p-1)(q-1)$ in two unknowns. Hence we can solve for p or q. For example, put q=n/p in the second equation and we obtain $\phi(n)=(p-1)(n/p-1)$, or $p^2+p(\phi(n)-n-1)+n=0$. Showing vice versa is trivial.

Problem 5

- a) 00000000
- b) the same as encryption, but using partial key K_{3-i} in round i. For a formal derivation, see home exercise in DES laboratory lesson.
- c) input x-or = $E(L_3) \oplus E(L_3^*) = 101010$. Output x-or = $R_3' \oplus L_0' = 1001$. There are 64 pairs $(B \oplus K_3, B \oplus K_3 \oplus 101010)$ with input x-or 101010 but only a few of them has output x-or 1001. These can be calculated from S and by subtracting $B = E(L_3)$ from the one coordinate, we get all possible values of K_3 .