LOGICĂ MATEMATICĂ ȘI COMPUTAȚIONALĂ

CURS 4

UNITATEA DE ÎNVĂŢARE NR.2

LOGICA PROPOZIŢIONALĂ

LOGICA PROPOZIŢIONALĂ

Logica s-a dezvoltat ca o ştiinţă independentă după 1920, prin reprezentaţii ei de marcă Lukasiewicz (1878-1956), Lewis (1883-1964), Gödel (1906-1978), Tarski (1901-1983), Church (1903-1995) şi Kleene (1909-1994).

LOGICA PROPOZIŢIONALĂ

CALCULATORUL ŞI PRELUCRAREA SIMBOLURILOR LOGICE:

- -programarea funcţională(McCarthy) utilizată în SUA
- -programarea logică (Colmerauer și Kowalski) utilizată în Europa.

- Formalizarea propoziţiilor logice şi matematice:
 - (1) Conjuncţia este formalizată prin ∧.

Să presupunem că ştim următoarele două proprietăți ale unui anume x:

- A: "x>3"
- *B*: " x<10"

Atunci ştim despre x că este mai mare decât 3 şi mai mic decât 10. Cu alte cuvinte, cunoaştem propoziția:

 $A \wedge B$: "x > 3 şi x < 10",

ceea ce înseamnă "3 < x < 10".

(2) Negaţia este formalizată cu ajutorul simbolului ¬.

C: "50 este divizibil cu 7"

 $\neg C$: "50 nu este divizibil cu 7"

(3) **Disjuncţia** este reprezentată prin simbolul ∨.

D: "60 este multiplu de 6".

E: "60 este multiplu de 5".

 $D \lor E$: "60 este multiplu de 6 sau 60 este multiplu de 5".

(4) Implicaţia "dacă ... atunci..." este reprezentată în logică prin "→".

F: "numărul a este un multiplu de 10"

G: "numărul a este multiplu de 5"

 $F \rightarrow G$: "dacă a este multiplu de 10, atunci este multiplu de 5".

(5) "... dacă şi numai dacă ..." se reprezintă prin simbolul de **echivalenţă** " \leftrightarrow ".

H: "16 este multiplu de 2"

I: "16 este număr par"

 $H \leftrightarrow I$: "16 este multiplu de 2 dacă şi numai dacă 16 este număr par"

Pentru fiecare limbaj formal există:

- a) un alfabet ce conţine toate simbolurile limbajului;
- b) o **sintaxă** care stabileşte cum sunt utilizate simbolurile şi care este forma corectă a propozițiilor din limbaj;
- c) o **semantică**, pe baza căreia se stabileşte interpretarea și semnificația simbolurilor din limbaj.

Alfabetul limbajului logicii propoziţiilor conţine:

- i. Simboluri propoziţionale: $A, A_1, A_2, ..., B_n$ $B_1, B_2 ...$
- ii. Conectori logici: \vee , \wedge , \neg , \rightarrow , \leftrightarrow
- iii. Virgule și paranteze: ", " și "(" , ")".

Definiția inductivă a propozițiilor:

- 1. Simbolurile propoziţionale sunt propoziţii, numite *propoziţii atomice* sau *atomi*.
- 2. Dacă σ , τ sunt propoziții, atunci expresiile $(\sigma \wedge \tau)$, $(\sigma \vee \tau)$, $(\sigma \to \tau)$, $(\sigma \leftrightarrow \tau)$, $(\neg \sigma)$ sunt de asemenea propoziții numite *propoziții* compuse.
- 3. Expresiile construite conform regulilor (i) şi (ii) sunt singurele expresii din limbaj care sunt propoziţii.

• **Exemplul 1**: Expresiile $\vee A \vee B$ şi $\longleftrightarrow A$ nu sunt propoziţii.

• Exemplul 2: $(A \lor B)$ şi $((\neg A) \lor (B \longleftrightarrow (\neg C))$ sunt propoziţii.

• **Exemplul 3**: Expresia E: $(\neg(A \land B) \rightarrow C)$ este o propoziţie.

• **Exemplul 4**: Se consideră propoziția *F* în limbaj cotidian:

F: "Dacă nu plouă atunci merg la plimbare"

Consideram simbolurile propoziţionale auxiliare:

A: "Plouă"

B: "Merg la plimbare"

atunci F devine $((\neg A) \rightarrow B)$, aceasta fiind o propoziţie.

Dacă nu există riscul unei confuzii, parantezele pot fi omise:

Observaţie: Pentru a evita confuzia în cazul utilizării conectorilor în formule fără paranteze, considerăm ¬ ca având cea mai mare prioritate, ∨ şi ∧ ca având prioritate mai mare decât → şi ↔, şi ↔ cu prioritate mai mare decât →.

Exemplu:

Formulele:

$$\neg A \rightarrow B \lor C$$
, $A \land B \rightarrow C$, $A \rightarrow B \longleftrightarrow C$ se citesc:

$$(\neg A) \rightarrow (B \lor C), (A \land B) \rightarrow C, A \rightarrow (B \longleftrightarrow C)$$

Valorizări şi valori de adevăr

O valorizare este orice funcţie:

$$F: Q \rightarrow \{a, f\}$$

unde Q este mulţimea de atomi din limbaj.

Mulţimii de valori de adevăr $\{a, f\}$ îi asociem operatorii interni \sim , \sqcup , \sqcap , \sim >, < \sim > care corespund conectorilor logici \neg , \wedge , \vee , \rightarrow şi \longleftrightarrow .

Operaţiile interne \sim , \sqcup , \sqcap , \sim >, $<\sim$ > peste mulţimea $\{a, f\}$ sunt definite de următoarele tabele:

a	f
f	a

Ш	a	f
a	а	а
f	а	f

П	a	f
a	a	f
f	f	f

~>	a	f
a	a	f
f	а	а

<~>	a	f
a	a	f
f	f	a

Structura ($\{a, f\}, \sim, \sqcap, \sqcup$) cu operaţiile \sim, \sqcap, \sqcup definite de tabelele de mai sus este o algebră booleană cu două valori.

Fie S mulţimea de propoziţii din limbajul logicii propoziţionale. Prin *valorizare de adevăr* sau *valorizare booleană* se înţelege funcţia:

$$V: S \rightarrow \{a, f\}$$

astfel încât, pentru orice $\sigma, \tau \in S$:

a) dacă σ este un atom, atunci $V(\sigma) \in \{a, f\}$

b)
$$V(\neg\sigma) = {}^{\sim}V(\sigma)$$

c)
$$V(\sigma \vee \tau) = V(\sigma) \sqcup V(\tau)$$

d)
$$V(\sigma \wedge \tau) = V(\sigma) \sqcap V(\tau)$$

e)
$$V(\sigma \rightarrow \tau)$$
 = $V(\sigma) \sim V(\tau)$

$$f)$$
 $V(\sigma \longleftrightarrow \tau) = V(\sigma) <^{\sim} V(\tau)$

Teorema 4.3.4: Pentru fiecare valorizare F
există o unică valorizare de adevăr V, astfel
încât V extinde F.

• Exercitiul 1: Fie S muţimea de propoziţii atomice $S = \{A_1, A_2\}$ şi F o valorizare pentru care:

 $F(A_1) = a$ şi $F(A_2) = f$. Calculţi $V_F((A_1 \lor A_2) \rightarrow A_2)$, unde V_F este o valorizare de adevăr care extinde F.

- O propoziţie σ din **LP** este *logic adevărată*, sau *tautologie*, dacă pentru orice valorizare de adevăr V, $V(\sigma) = a$. Acest lucru se notează $\models \sigma$. Vom scrie $\not\models \sigma$ ca să indicăm că σ nu este o tautologie, adică există o valorizare de adevăr V pentru care $V(\sigma) = f$.
- O propoziţie σ este **realizabilă** sau **verificabilă** dacă există o valorizare de adevăr V, astfel încât $V(\sigma) = a$.
- O propoziţie σ se numeşte *logic falsă* sau *neverificabilă* sau *contradicţie* dacă pentru orice valorizare de adevăr V, $V(\sigma) = f$.

• Două propoziții σ și τ cu proprietatea că $V(\sigma) = V(\tau)$ pentru orice valorizare de adevăr V se numesc *logic echivalente*. Aceasta se notează $\sigma \equiv \tau$.

• Exercitiul 2: Demonstrți că propozițiile $A \lor \neg A$ și $((A \to B) \to A) \to A$ sunt tautologii.

• Exercitiul 3: Demonstrați că propoziția

 $K: [[(\neg A \land B) \rightarrow C] \lor D]$ este realizabilă.

• Propoziţiile compuse $\neg A, A \lor B, A \land B, A \rightarrow B$ şi $A \longleftrightarrow B$ au următoarele tabele de adevăr:

\boldsymbol{A}	$\neg A$
а	f
f	a

A	В	$A \vee B$
а	а	а
а	f	а
f	а	а
f	f	f

A	В	$A \wedge B$
а	a	а
a	f	f
f	а	f
f	f	f

\boldsymbol{A}	В	$A \rightarrow B$
а	a	а
а	f	f
f	a	а
f	f	а

\boldsymbol{A}	В	$A \leftrightarrow B$
a	а	а
a	f	f
f	а	f
f	f	а

• Exercitiul 4: Construiți tabela de adevăr a propoziției $A \wedge B \rightarrow C$.

- Exercitiul 5: Demonstrați ca:
- a) propoziţia $((A \rightarrow B) \rightarrow A) \rightarrow A$ este o tautologie.
- b) propozitia $(P \rightarrow Q) \land (P \land \neg Q)$ este nerealizabilă.

- (i) O propoziție este tautologie dacă și numai dacă negația ei nu este realizabilă;
- (ii) O propoziție este realizabilă dacă și numai dacă negația ei nu este o tautologie;
- (iii)O propoziție care este tautologie este realizabilă în timp ce o propoziție realizabilă nu este neaparat tautologie;
- (iv) Există anumite tautologii de bază ce sunt frecvent utilizate:

1.
$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$

2.
$$\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$$

3.
$$\neg(\neg A) \leftrightarrow A$$

4.
$$(A \rightarrow B) \leftrightarrow (\neg B \rightarrow \neg A)$$

5.
$$(B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

6.
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

7.
$$(A \rightarrow (B \rightarrow C)) \leftrightarrow ((A \land B) \rightarrow C)$$

8.
$$A \vee \neg A$$

Legea lui De Morgan

Legea lui De Morgan

Legea dublei negații

Legea contrapoziției

Prima lege a silogismului

A doua lege a silogismului

Legea transportării

Legea terţului exclus

MULŢUMESC!

★Ex1: Stabiliţi care dintre expresiile următoare sunt propoziţii şi care nu sunt:

a)
$$(A \wedge B) \vee \neg$$

b)
$$((A \land B)) \lor (\neg C) \rightarrow D$$

c)
$$(A \vee B) \vee \rightarrow C$$

d)
$$A \leftrightarrow B$$
 $\rightarrow (A \lor B)$

e)
$$(A \wedge B) \rightarrow A$$

$$f) (A_1 \wedge A_2) \leftrightarrow \neg A_3$$

- **Ex2:** Reprezentaţi următoarele propoziţii prin simboluri atomice şi folosiţi aceste simboluri pentru a crea propoziţii compuse.
- ★a) "12 se împarte cu 2""9 se împarte cu 3""11 se împarte cu 2"
 - b) "George este tată""George are un copil""Mary este tată""Mary are un copil"

Ex3: Se dau următoarele propozitii atomice:

A₁: "3 este număr prim"

A₂: "15 se împarte cu 3"

A₃: "2 se împarte cu 3"

A₄: "13 se împarte cu 3"

- a) Stabiliţi o valorizare *F* pentru propziţiile de mai sus.
- b) Fie W_F valorizarea de adevăr care extinde pe F. Calculați $W_F((A_1 \land A_2) \rightarrow (A_3 \lor A_4))$.

Ex4: Folosind valorizări de adevăr, demonstrați că următoarele propoziții sunt tautologii:

- \star a) (A $\wedge \neg$ A) \rightarrow A
- $\star b$) b) $(A \rightarrow B) \lor (A \rightarrow \neg B)$
 - c) $A \rightarrow \neg \neg A$
 - d) $[(A \land B) \rightarrow C] \leftrightarrow [A \rightarrow (B \rightarrow C)]$

Ex5: Folosind valorizări de adevăr, demonstrați că următoarele propoziții sunt contradicții:

- a) $A \wedge \neg A$
- b) $(\neg A \lor (B \land \neg B)) \leftrightarrow A$
- c) $(A \rightarrow B) \land (B \rightarrow C) \land (A \land \neg C)$
- d) $\neg (A \land B) \land (A \rightarrow B) \land A$

★ Ex6: Completaţi următoarea tabelă de adevăr:

А	В	⊸А	¬В	A <i>→</i> B	¬A∨B	$(A \rightarrow B) \leftrightarrow (\neg A \lor B)$
а	а					
а	f					
f	а					
f	f					

Ex7: Demonstraţi că următoarele propoziţii sunt logic echivalente:

$$\star$$
a) \neg (A ∧ B) şi \neg A ∨ \neg B
b) B \rightarrow A şi \neg B ∨A
 \star c) A \leftrightarrow B şi (A ∧ B) ∨(\neg A ∧ \neg B)

Ex8: Folosind tabele de adevăr, demonstraţi că următoarele propoziţii sunt tautologii:

- a) $A \lor B \leftrightarrow B \lor A$
- \star b) (A \vee B) \vee C \leftrightarrow A \vee (B \vee C)
 - c) $(A \lor B) \land C \leftrightarrow (A \land C) \lor (B \land C)$
 - d) $A \leftrightarrow \neg \neg A$
 - e) $A \wedge (B \vee \neg B) \leftrightarrow A$
 - f) $\neg (A \lor B) \leftrightarrow \neg A \land \neg B$

Ex9: Sa se arate prin tabele de adevăr că următoarele formule propoziţionale sunt tautologii:

1.
$$\neg p \rightarrow (p \rightarrow q)$$

2.
$$(p \land q) \rightarrow p$$

3.
$$(\neg p \land (p \lor q)) \rightarrow q$$

4.
$$(p \land (p \rightarrow q)) \rightarrow q$$

$$\star$$
 5.(¬ p ∧(p \rightarrow q)) \rightarrow ¬ q