Question 1

Part A

If λ is an eigenvalue of A, then $A\vec{\mathbf{v}} = \lambda \vec{\mathbf{v}}$ for an eigenvector $\vec{\mathbf{v}} \neq \vec{\mathbf{0}}$. $c\lambda + d$ is an eigenvalue of B = cA + dI if $B\vec{\mathbf{v}} = (c\lambda + d)\vec{\mathbf{v}}$.

Since

$$B\vec{\mathbf{v}} = (cA + dI)\vec{\mathbf{v}}$$

$$= cA\vec{\mathbf{v}} + dI\vec{\mathbf{v}}$$

$$= c\lambda\vec{\mathbf{v}} + d\vec{\mathbf{v}}$$

$$= (c\lambda + d)\vec{\mathbf{v}},$$

$$(c\lambda + d)\vec{\mathbf{v}}$$

 $(c\lambda + d)\overrightarrow{\mathbf{v}}$ is an eigenvalue of B.

Part B

If λ is an eigenvalue of A, then $A\vec{\mathbf{v}} = \lambda \vec{\mathbf{v}}$. For A^k , consider k=2:

$$A^{2}\vec{\mathbf{v}} = A(A\vec{\mathbf{v}}) = A(\lambda\vec{\mathbf{v}}) = \lambda(A\vec{\mathbf{v}}) = \lambda(\lambda\vec{\mathbf{v}}) = \lambda^{2}\vec{\mathbf{v}}.$$

Then, for any positive integer k, we have that:

$$A^{k} \overrightarrow{\mathbf{v}} = (\underbrace{A \cdot A \cdot \cdots A}_{k \text{ terms}}) \overrightarrow{\mathbf{v}} = (\underbrace{A \cdot A \cdot \cdots A}_{k-1 \text{ terms}}) (A \overrightarrow{\mathbf{v}})$$

$$= (\underbrace{A \cdot A \cdot \cdots A}_{k-1 \text{ terms}}) (\lambda \overrightarrow{\mathbf{v}})$$

$$= \lambda (\underbrace{A \cdot A \cdot \cdots A}_{k-2 \text{ terms}}) (A \overrightarrow{\mathbf{v}})$$

$$= \lambda (\underbrace{A \cdot A \cdot \cdots A}_{k-2 \text{ terms}}) (\lambda \overrightarrow{\mathbf{v}})$$

$$= \lambda^{2} (\underbrace{A \cdot A \cdot \cdots A}_{k-3 \text{ terms}}) (A \overrightarrow{\mathbf{v}})$$

Hence, after each successive applications of k, we have that $A^k \vec{\mathbf{v}} = \lambda^k \vec{\mathbf{v}}$.

Part C

If λ is an eigenvalue of A, then $A\vec{\mathbf{v}} = \lambda \vec{\mathbf{v}}$. For $\lambda = 0$, we have that $A\vec{\mathbf{v}} = 0\vec{\mathbf{v}} = \vec{\mathbf{0}}$.

If A is singular, then A has a nontrivial kernel i.e., $\ker(A) \neq \{\vec{0}\}$. As such, there exists a nonzero vector $\vec{\mathbf{v}} \in \ker(A)$. This means that the subspace containing eigenvectors (hereinafter, *eigenspace*) corresponding to the eigenvalue $\lambda = 0$ is precisely $\ker(A)$ and thus have the same dimension.

Conversely, A must be singular for $\lambda = 0$ to be its eigenvalue. If A is nonsingular, then A has a trivial kernel. This means that there exists no nonzero vector $\vec{\mathbf{v}}$ such that $A\vec{\mathbf{v}} = \vec{\mathbf{0}}$.

Part D

Let A be an $n \times n$ matrix where each entry of A is equal to one:

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}.$$

Obviously, we first note that $\operatorname{rank}(A) = 1$ and that A has a nontrivial kernel. Thus A is singular and by (c), we know that $\lambda = 0$ is an eigenvalue of A.

By the rank–nullity theorem, the nullity of A is n - rank(A) = n - 1. From (c), we found that the dimension of eigenspace corresponding to the eigenvalue $\lambda = 0$ is the nullity of A. As such $\lambda = 0$ is an eigenvalue of A with multiplicity n - 1. This means there exists one other nonzero eigenvalue.

Take $\vec{\mathbf{v}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix}^{\top}$, an $n \times 1$ vector whose entries consists of ones. Since the sum of each rows of A is n, we have that

$$A\vec{\mathbf{v}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} n \\ n \\ \vdots \\ n \end{pmatrix} = n \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = n \vec{\mathbf{v}}.$$

As such, $\lambda = n$ is an eigenvalue of A.

So, the eigenvalues of A are $\lambda = 0$ with the corresponding eigenvectors forming the subspace $\{\vec{\mathbf{v}} \in \mathbb{R}^n \mid A\vec{\mathbf{v}} = \vec{\mathbf{0}}\}$ and $\lambda = n$ with the corresponding eigenvector $\begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix}^{\top}$.

Part E

If λ is an eigenvalue of A, then $A\vec{\mathbf{v}} = \lambda \vec{\mathbf{v}}$. If A is nonsingular, then applying A^{-1} yields:

$$A^{-1}A\vec{\mathbf{v}} = A^{-1}\lambda\vec{\mathbf{v}}$$
$$\vec{\mathbf{v}} = A^{-1}\lambda\vec{\mathbf{v}}$$
$$\frac{1}{\lambda}\vec{\mathbf{v}} = A^{-1}\vec{\mathbf{v}}$$

Thus, λ^{-1} is an eigenvalue of A^{-1} .

Question 2

Part A

Let $\vec{\mathbf{u}} \in \mathbb{R}^n$ be a unit vector and let $A = \vec{\mathbf{u}} \vec{\mathbf{u}}^{\top}$. Since we construct A in such a way that the columns are spanned by $\vec{\mathbf{u}}$, A has a rank of one.

From 1(c) and 1(d), we found that such a matrix (a rank-one, singular matrix) contains an eigenvalue of $\lambda = 0$ with multiplicity n - 1 and exactly one other nonzero eigenvalue.

To find the nonzero eigenvalue, take $\vec{\mathbf{v}} = \vec{\mathbf{u}}$. Then, $A\vec{\mathbf{v}} = \lambda\vec{\mathbf{v}} \implies \vec{\mathbf{u}}\vec{\mathbf{u}}^{\top}\vec{\mathbf{u}} = \lambda\vec{\mathbf{u}}$. Since $||\vec{\mathbf{u}}|| = 1$ and $\vec{\mathbf{u}}^{\top}\vec{\mathbf{u}} = \langle \vec{\mathbf{u}}, \vec{\mathbf{u}} \rangle = 1$, we have that $\vec{\mathbf{u}} = \lambda\vec{\mathbf{u}}$. Thus, $\lambda = 1$ is an eigenvalue of A and the corresponding eigenvector is $\vec{\mathbf{u}}$.

As such, the eigenvalues of A are $\lambda = 0$ with the corresponding eigenvectors forming the subspace $\{\vec{\mathbf{v}} \in \mathbb{R}^n \mid A\vec{\mathbf{v}} = \vec{\mathbf{u}}\vec{\mathbf{u}}^\top\vec{\mathbf{v}} = \vec{\mathbf{0}}\}$ and $\lambda = 1$ with the corresponding eigenvector $\vec{\mathbf{u}}$.

Part B

If λ is an eigenvalue of H, then $H\vec{\mathbf{v}} = \lambda \vec{\mathbf{v}}$. If $H = I - 2\vec{\mathbf{u}}\vec{\mathbf{u}}^{\top}$ is a Householder matrix where I is the identity matrix and $\vec{\mathbf{u}}$ are unit vector.

First, consider the case where the vector lies in the span of the unit vector $\vec{\mathbf{u}}$. Take $\vec{\mathbf{v}} = \vec{\mathbf{u}}$. Then,

$$\begin{split} H \overrightarrow{\mathbf{u}} &= \lambda \overrightarrow{\mathbf{u}} \\ &= (I - 2 \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{\top}) \overrightarrow{\mathbf{u}} \\ &= \overrightarrow{\mathbf{u}} - 2 (\overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{\top}) \overrightarrow{\mathbf{u}} \\ &= \overrightarrow{\mathbf{u}} - 2 \overrightarrow{\mathbf{u}} \\ &= -\overrightarrow{\mathbf{u}} \end{split} \qquad \therefore \lambda = -1.$$

Thus, $\lambda = -1$ is an eigenvector of H.

Then consider the case where the vector is orthogonal to $\vec{\mathbf{u}}$. That is, any vector $\vec{\mathbf{v}}$ such that $\langle \vec{\mathbf{v}}, \vec{\mathbf{u}} \rangle = \vec{\mathbf{u}}^\top \vec{\mathbf{v}} = 0$. We have that:

$$H \overrightarrow{\mathbf{v}} = (I - 2\overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{\top}) \overrightarrow{\mathbf{v}}$$

$$= \overrightarrow{\mathbf{v}} - 2(\overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{\top}) \overrightarrow{\mathbf{v}}$$

$$= \overrightarrow{\mathbf{v}} - 0$$

$$= \lambda \overrightarrow{\mathbf{v}} \qquad \therefore \lambda = 1.$$

As such, the eigenvalues of $H = I - 2\vec{\mathbf{u}}\vec{\mathbf{u}}^{\top}$ are $\lambda = -1$ and $\lambda = -1$.

Part C

If λ is an eigenvalue of P, then $P\vec{\mathbf{v}} = \lambda \vec{\mathbf{v}}$. Since $P^2 = P$, then:

$$P^{2}\vec{\mathbf{v}} = P\vec{\mathbf{v}}$$

$$P(P\vec{\mathbf{v}}) = \lambda \vec{\mathbf{v}}$$

$$\lambda(\lambda \vec{\mathbf{v}}) = \lambda \vec{\mathbf{v}}$$

$$\lambda^{2} = \lambda$$

$$\lambda^{2} - \lambda = 0$$

As such, the eigenvalues of P are $\lambda = 0$ and $\lambda = 1$.

Question 3

Let
$$A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix}$$
.

Then,

$$\det(A - \lambda I) = \det\begin{pmatrix} -\lambda & c & -b \\ -c & -\lambda & a \\ b & -a & -\lambda \end{pmatrix} = 0$$

$$= (-\lambda) \begin{vmatrix} -\lambda & a \\ -a & -\lambda \end{vmatrix} - c \begin{vmatrix} -c & a \\ b & -\lambda \end{vmatrix} - b \begin{vmatrix} -c & -\lambda \\ b & -a \end{vmatrix} = 0$$

$$= \text{careful calculations...} = 0$$

$$= (-\lambda)(\lambda^2 - a^2) - c(c\lambda - ab) - b(ac + \lambda b) = 0$$

$$= -\lambda^3 + \lambda a^2 - c^2\lambda + abc - b^2\lambda - abc = 0$$

$$= -\lambda^3 - (c^2 + b^2)\lambda + a^2\lambda = 0$$

$$= -\lambda (\lambda^2 - (a^2 + b^2 + c^2)) = 0.$$

And so, the eigenvalues are $\lambda = 0$, $\lambda = -\sqrt{a^2 + b^2 + c^2}$, and $\lambda = \sqrt{a^2 + b^2 + c^2}$. Since we have three distinct eigenvalues, the three corresponding eigenvectors will be linearly independent and form a basis. Thus, A is diagonalizable.

Question 4

Let
$$S = \begin{pmatrix} -1 & 2 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$
 and $\Lambda = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$. Using the power of technology, we find
$$S^{-1} = \begin{pmatrix} 2 & 3 & -1 \\ 3/2 & 3/2 & -1/2 \\ -1/2 & -1/2 & 1/2 \end{pmatrix}.$$

Then,
$$S\Lambda S^{-1} = \begin{pmatrix} -1 & 2 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 2 & 3 & -1 \\ 3/2 & 3/2 & -1/2 \\ -1/2 & -1/2 & 1/2 \end{pmatrix} = \begin{pmatrix} 6 & 6 & -2 \\ -2 & -2 & 0 \\ 6 & 6 & -4 \end{pmatrix}$$
 is a matrix with eigenvalues 0, 2, and -2 with the corresponding eigenvectors $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$.

Question 5