CIIGNOME - NOME

1)
$$\int_{Q} \frac{1}{\rho^{2}} g \, d\rho \, d\rho$$
 $\int_{Q} \frac{1}{\rho^{2}} g \, d\rho \, d\rho$ $\int_{Q} \frac{1}{\rho^{2}} g \, d\rho$

2 Integrability per serve on
$$[0,1]$$
 - sin $x' = \frac{1}{2}(-1)(x^2)^{1/2}$ con tot on $[0,1]$

Sin x' de $x' = \frac{1}{2}(-1)^{1/2}$ $\frac{1}{2}(-1)^{1/2}$ $\frac{1}{2}(-1)^{1$

but generate
$$\varphi(t) = (q + q t) e^{-2t}$$
 $c_1 = 3$
 $c_2 \in \mathbb{R}$ prohipre

infinite solutioni

4) Eq. di Bernaulli (ma anche eq. a variobo de separabili)

Bernaulli
$$z(t) = \frac{1}{4(t)}$$
 $z' = -10z + 1$
 $z'(t) = ce + \frac{1}{10}$
 $z'(t) = \frac{1}{2(t)} = \frac{10}{1+10ce}$
 $z'(t) = 0$

dut
$$(A - \Lambda T) = (3 - \Lambda)(-1 - \Lambda) = 0$$

$$A_1 = 3$$

$$A_2 = -1$$

$$\Phi(t) = c_1 h e \rightarrow 0 \quad \text{per } t \rightarrow +\infty \quad \text{in finite isolarsion}$$

$$h \text{ outs veltore} \quad h_1 + 2h_2 = 0 \quad h = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad \Phi(t) = c_1 \begin{bmatrix} e^{\frac{t}{2}} \\ -2e^{\frac{t}{2}} \end{bmatrix}$$

6)
$$f \in m$$
 polinomio punidi $f \in \mathcal{C}^{\infty}(\mathbb{R}^2)$
 $\nabla f(2,1) = (0,2)$ $f(2,1) = -15$
 $z = 2y - 17$

lim
$$f(x,y) = +\infty$$
 Sup $f = +\infty$ $\Rightarrow J \text{ Tim } f \Rightarrow$

$$||(x,y)|| \rightarrow +\infty$$

$$||x|| = f(\pm 2,0) = -16$$

$$||x|| = R^2$$

$$9/y^2 - 8 \times^2 + \times^4 = 0$$
 sinumetrice rispetto aghi asso.

 $y = + \sqrt{8^2(8-x^2)}$
 $C.E. 0 \le x \le \sqrt{8}$

9(x) N 18 x per x >0

$$\frac{10|}{z(t)} = (t, 1-t^2) \quad t \in [0, 2] \quad \underline{z'(t)} = (1, -2t)$$

$$\int_{Y} F \cdot (dx, dy) = \int_{0}^{2} F(\underline{z}(t)) \cdot \underline{z}'(t) dt = \int_{0}^{2} (z(t)) \cdot (1+t^{2}) \cdot 1 + (1+t^{2})(-2t) dt$$

$$= \int_{0}^{2} (-4t^{3}) dt (z = 16) = -16$$

$$\mathcal{U}(x,y) = (1+x^2)y + c$$

13)
$$|y'' + \alpha(t)y' + \beta(t)y' = \beta(t)$$
 Feorema doto il proble di Conchy (4)

(4) $|y'(t_0)| = y_0$ se $a, b, f \in \mathcal{C}(I)$, I intendbo, f to GI
 $|y'(t_0)| = y_1$
 $|y'' + \alpha(t)y' + \beta(t)y' = \beta(t)$

Se $a, b, f \in \mathcal{C}(I)$, I intendbo, f to GI
 $|y'' + \alpha(t)y' + \beta(t)y' = \beta(t)$

Se $a, b, f \in \mathcal{C}(I)$, I intendbo, f to GI
 $|y'' + \alpha(t)y' + \beta(t)y' = \beta(t)$

Se $a, b, f \in \mathcal{C}(I)$, I intendbo, f to GI
 $|y'' + \alpha(t)y' + \beta(t)y' = \beta(t)$

Se $a, b, f \in \mathcal{C}(I)$, I intendbo, f to GI

Soluzione di f obtained on f to f obtained on f obt

X