Example paper: Black-Box Optimization Benchmarking Template for the Comparison of More than Two Algorithms on the NoisyTestbed

Draft version *

BBOBies

ABSTRACT

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global optimization, unconstrained optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms

Keywords

Benchmarking, Black-box optimization

1. RESULTS

Results from experiments according to [?] on the benchmark functions given in [?, ?] are presented in Figures 2 and 3, and Figure 1. The expected running time (ERT), used in the figures and table, depends on a given target function value, $f_{\rm t} = f_{\rm opt} + \Delta f$, and is computed over all relevant trials as the number of function evaluations executed during each trial while the best function value did not reach $f_{\rm t}$, summed over all trials and divided by the number of trials that actually reached f_t [?, ?]. Statistical significance is tested with the rank-sum test for a given target Δf_t using, for each trial, either the number of needed function evaluations to reach Δf_t (inverted and multiplied by -1), or, if the target was not reached, the best Δf -value achieved, measured only up to the smallest number of overall function evaluations for any unsuccessful trial under consideration if available. Tables 1 and 2 give the Expected Running Time (ERT) for targets $10^{1,-1,-3,-5,-7}$ divided by the best ERT obtained during BBOB-2009 (given in the ERT_{best} row), respectively in 5-D and 20-D. Bold entries correspond to the best (or 3-best if there are more than 3 algorithms) values.

Entries with the \downarrow symbol are statistically significantly better (according to the rank-sum test) compared to the best algorithm in BBOB-2009, with p=0.05 or $p=10^{-k}$ where k>1 is the number following the \downarrow symbol, with Bonferroni correction of 30.

The median number of conducted function evaluations is additionally given in *italics*, if $ERT(10^{-7}) = \infty$. #succ is the

number of trials that reached the final target $f_{\rm opt} + 10^{-8}$.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO'12, July 7–11, 2012, Philadelphia, USA. Copyright 2012 ACM 978-1-4503-0073-5/10/07 ...\$10.00.

^{*}Submission deadline: March 28th.

Figure 1: Expected running time (ERT) divided by dimension for target function value 10^{-8} as \log_{10} values versus dimension. Different symbols correspond to different algorithms given in legend of f_{101} and f_{130} . Light symbols give the maximum number of function evaluations from all trials divided by the dimension. Horizontal lines give linear scaling, the slanted dotted lines give quadratic scaling. Legend: \circ : NEWUOA, ∇ : BIPOP-CMA-ES, \star : IPOP-CMA-ES

$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7		1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f101 11	37	44 2.1(0.9)*2	62	69	75	15/15 f116	5730	14472	22311	26868	30329	31661	15/15
NEWUOA 2.5(1) BIPOP-C 3.2(2)	1.6(0.7)* 3.1(0.8)	4.6(0.9)	2.6 (2)*2 6.1(0.5)	3.0(2)*3 8.0(0.4)	3.1(2)*4 10(0.7)	15/18EWUOA 15/18IPOP-C		∞ 2.0 (2)	∞ 1.9(2)	∞ 2.1(2)	$_{2.0(2)}^{\infty}$	$\infty 2e4$ 2.0(2)	0/15 15/15
IPOP-CM 3.3(3)	3.4(1)	4.7(1)	6.0(1)	7.8(1)	9.3(0.5)	15/1 P OP-CM		2.3(2)	1.9(2)	1.8(1)	1.7(1)	1.7(1)	15/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\# \mathrm{succ} \Delta f_{\mathrm{opt}}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f102 11	35	50	72	86	99	15/15 f117	26686	76052	1.1e5	1.4e5	1.7e5	1.9e5	15/15
NEWUOA 6.3(11) BIPOP-C 2.7 (2)	6.0(7) 3.0(1)	7.0(9) 4.0(0.6)	20(19) 5.1(0.5)	33(32) 6.3(0.5)	41(57) 7.2(0.7)	15/18 EWUOA 15/18 IPOP-C	. ∞ 1(0.7)	∞ $1(0.8)$	$\infty \\ 1(0.7)$	$\infty \\ 1(0.6)$	∞ $1(0.6)$	$\infty 2e4$ 1(0.5)	0/15 15/15
IPOP-CM 3.4(2)	3.1(2)	4.1(0.9)	5.1 (0.8)	6.5(0.9)	7.3(0.6)	15/18POP-CM		0.95(0.8)	0.77(0.6)	0.73(0.5)	0.67(0.5)	0.69 (0.5)	15/15
$\Delta f_{ m opt}$ [1e1]	1e0	1e-1 1	.e-3	1e-5	1e-7		1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f103 11				35	115	15/15 f118	429	1217	1555	1998	2430	2913	15/15
NEWUOA 2.4(1.0) BIPOP-C 3.5(4)	1.9(0.7)*2			178(172)	136(176)	12/18 EWUOA 15/18 IPOP-C	13.2(1)	10(11) 2.0(0.7)	116(134) 1.9(0.7)	∞ 2.1(0.4)	$_{2.0(0.4)}^{\infty}$	$\infty 3e4$ 1.8(0.3)	0/15 $15/15$
IPOP-CM 3.6(2)		7.4(1) 1 6.6(1) 1	3(1) 2(2)	17(2) 17(3)	6.9(0.9) 7.1(0.6)	15/15 OP-CM	3.2(1)	2.0(0.9)	1.9(0.8)	2.0(0.4)	1.9(0.3)	1.7(0.2)	15/15
$\Delta f_{ m opt}$ [1e1]	1e0	1e-1	1e-3	1e-5	1e-7	$I_{\#_{SUCC}}\Delta f_{ODt}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f104 173	773	1287	1768	2040	2284	15/15 f119	12	657	1136	10372	35296	49747	15/15
NEWUOA 1.2(2) BIPOP-C 1.4(0.3)	3.4(4) 1.9(0.6)	6.0(8) 2.0 (0.3)	24(27) 2.0(0.2)	∞ 1.9(0.2)	$\infty 3e4$ 1.8(0.2)	0/18EWUOA 15/18IPOP-C	1.9(3)	35(41) $1(2)$	$\frac{\infty}{1(2)}$	0.000	∞ 1.5(0.8)	$\infty 2e4$ 2.3(1)	$0/15 \\ 15/15$
IPOP-CM 1.4(0.4)	3.4(3)	2.9(2)	2.7(1)	2.5(1)	2.4(1)	15/15 OP-CM	1.1(1)	0.35(0.2)		0.83(0.7)	1.0(0.4)	1.4(0.7)	15/15
$\Delta f_{ m opt}$ [1e1]	1e0	1e-1	1e-3	1e-5	1e-7	$ _{\#_{SUCC}}\Delta f_{ODt} $	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f105 167	1436	5174	10388	10824	11202	15/15 f120	16	2900	18698	72438	3.3e5	5.5e5	15/15
NEWUOA 1.7(2) BIPOP-C 1.7(0.4)	2.7(3) 3.7(2)	3.3(4) $1.7(0.9)$	$\infty \\ 1(0.4)$	∞ $1(0.4)$	$\infty 3e4$ 1(0.4)	0/19EWUOA 15/18IPOP-C	17(16)	55(67) 1.1(1)	$_{1(0.6)}^{\infty}$	$_{1(0.8)}^{\infty}$	0.5 $1(0.5)$	$\infty 2e4$ 1(0.4)	0/15 15/15
IPOP-CM 1.6(0.7)	3.8(3)	1.6(0.9)	0.90(0.3)	0.90(0.3)	0.90(0.3)	15/15 OP-CM	6.0(8)	1.6(2)	0.68(0.4				15/15
$\Delta f_{ m opt}$ [1e1]	1e0	1e-1	1e-3	1e-5	1e-7	$\#_{\text{succ}}\Delta f_{\text{opt}}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f106 92	529	1050	2666	2887	3087	15/15 f121	8.6	111	273	1583	3870	6195	15/15
NEWUOA 0.93(0.7)*	³ 2.2 (3)	5.0(6)	59(63)	∞	∞ 3e4	0/18EWUOA	4.8(13) 2.7(3)	15(24) 1.1(0.4)	76(82) 1(0.2)	∞ 1.1(0.5)	∞ 2.0 (0.2)	$\infty 2e4$ 2.2(0.2)	0/15 $15/15$
BIPOP-C 3.3(0.9) IPOP-CM 3.1(1)	4.3(5) 2.5(1)	3.2(3) 2.2(0.6)	1.6(1) 1.2(0.2)	1.7(1) 1.3(0.2)	1.7(1) 1.3(0.2)	15/15 OP-CM	1.9(2)	1.1(0.5)	1.0(0.3)	1.1(0.4)	2.1(0.4)	2.3(0.4)	15/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$ _{\# \text{succ}} \Delta f_{\text{opt}} $	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f107 40	228	453	940	1376	1850	15/15 f122	10	1727	9190	30087	53743	1.1e5	15/15
NEWUOA 60(50)	194(204)	∞ 1(0.5)	∞	∞ 1(0,0)	∞ 2e4	0/19EWUOA 15/18IPOP-C	114(23) 2.2(2)	91(104) 1(1)	$\infty \\ 1(0.8)$	∞ $1(0.5)$	$\infty \\ 1(0.6)$	$\infty 2e4$ 1(0.6)	$0/15 \\ 15/15$
BIPOP-C 1.7(2) IPOP-CM 2.1(3)	1(0.7) 0.98 (0.	1(0.5) 4) 1.1(0.7)	1(0.3) 1.3(1)	1(0.2) 1.2(1.0)	1(0.2) 1.1(0.7)	15/15 OP-CM	4.8(5)	0.94(0.7)		0.56(0.3)			15/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\#\operatorname{succ}\Delta f_{\operatorname{opt}}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f108 87	5144	14469	30935	58628	80667	15/15 f123	11	16066	81505	3.4e5	6.7e5	2.2e6	15/15
NEWUOA 77(89) BIPOP-C 6.1 (10)	64(74) 1.0(0.9)	$\infty \\ 1(0.8)$	$\infty \\ 1(0.6)$	$ \begin{array}{c} \infty \\ 1(0.4) \end{array} $	$\infty 2e4$ 1(0.3)	0/1NEWUOA 15/1BIPOP-C		$_{1(0.8)}^{\infty}$	1(0.6)	$_{1(0.6)}^{\infty}$	$\infty \\ 1(0.6)$	$\infty 2e4$ 1(0.9)	$0/15 \\ 15/15$
IPOP-CM 9.1(13)	0.80(0.9)				1(0.3) 1 0.69 (0.3)	15/18POP-CM	23(38)	0.62(0.5)	0.52(0.3)	0.74(0.5)	0.65(0.4)	0.45(0.3)	15/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\#_{\operatorname{succ}}\Delta f_{\operatorname{opt}}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f109 11	57	216	572	873	946	15/15 f124	10	202	1040	20478	45337	95200	15/15
NEWUOA 4.8(10)	13(10) 2.2(0.9)	83(108) 1.1(0.3)	∞ 1.1(0.2)	∞ 1.1(0.3)	$\infty 2e4$ 1.5(0.3)	0/19EWUOA 15/1BIPOP-C	3.0(1) 1.5(2)	158(177) 1.1(0.4)	∞ 1(0.3)	∞ 1.1(0.7)	∞ 1.2(1.0)	$\infty 2e4$ 1(0.5)	0/15 $15/15$
BIPOP-C 3.5(2) IPOP-CM 2.9 (3)	2.2(0.9) 2.2(0.9)	1.1(0.3) $1.2(0.5)$	1.1(0.2) 1.0(0.3)	1.1(0.3) 1.1(0.2)	1.5(0.3)	15/15 OP-CM	2.8(3)	1.3(0.6)	4.0(8)	1.2(0.8)	0.93(0.2)	0.65(0.4)	15/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\#_{\text{succ}}\Delta f_{\text{opt}}$		1e0	1e-1	1e-3	1e-5	1e-7	#succ
f110 949	33625	1.2e5	5.9e5	6.0e5	6.1e5	15/15 f125	1	1	1	2.4e5	2.4e5	2.5e5	15/15
NEWUOA 118(111) BIPOP-C 1(1)	10(12) 4.8(7)	∞ $3.7(4)$	0.000	0.7	$\infty 2e4$ 1(0.6)	0/19EWUOA	11.1(0)	15(6) 17(18)	6088(8822) 3443(2609)		${f 1}(0.7)$	$\infty 2e4$ 1(0.7)	0/15 15/15
IPOP-CM 0.73 (0.8		3.4(2)	0.72(0.4			15/15 OP-CM	1(0)	27(28)	2599 (2294)			1.3(0.6)	15/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$I_{\#_{\text{SUCC}}} \Delta f_{\text{ODt}}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f111 6856	6.1e5	8.8e6	2.3e7	3.1e7	3.1e7	3/15 f126 0/15NEWUOA	1 2(0)	1 1053(1172)	1 3.5e5(3	∞ .5)	∞	∞	$0 \\ 0/15$
NEWUOA ∞ BIPOP-C 1(1.0)	∞ 2.5 (3)	∞ 1(1)	∞ 1(0.9)	∞ 1(1.0)	$\infty 2e4$ 1(1.0)	0/15 BIPOP-C	1(0)	160(130)	1.3e4(1				0/15
IPOP-CM 0.78 (0.8)	15(19)	3.9(5)	3.2(3)	2.4(3)	2.4(3)	1/15POP-CM	1(0)	63(59)			e7) 1.9e7 (2e	e7) 1.9e7 (2e7	2/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7		1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f112 107	1684	3421	4502	5132	5596	15/15 f127 0/18EWUOA	2.5(6)	1 14(4)	1 7248(1e4)	$3.4e5$ ∞	3.9e5 ∞	4.0e5 ∞ 2e4	15/15 0/15
NEWUOA 1.9(3) BIPOP-C 4.0(2)	7.7(9) 1(0.6)	105(112) 1.2(0.2)	∞ 1.3(0.2)	∞ 1.3(0.2)	$\infty 2e4$ 1.3(0.2)	In E / ABIPOP-C	H(0)	19(24)	2136(1530)	1(1.0)	1(0.8)	1(0.8)	15/15
IPOP-CM 2.1(1)	1.4(0.5)	1.4(0.2)	1.5(0.2)	1.5(0.2)	1.5(0.2)	15/15POP-CM	1 (0)	15(18)	1542 (1498)	•			15/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\# \operatorname{su}_{\operatorname{CC}} \Delta f_{\operatorname{opt}}$	1e1			1e-3	1e-5	1e-7	#succ
f113 133 NEWUOA13(16)	1883	8081	24128	24128 ~	24402 \(\times 2e \lambda \)	15/15 f128 0/19EWUOA	111	4248 17(19)		12447 ∞	17217 ∞	21162 $\infty 2e4$	15/15 0/15
BIPOP-C 1.5(1.0)	44(43) 1.3(2)	$\frac{\infty}{1.7(2)}$	$\frac{\infty}{1.1(1)}$	∞ 1.1(1)	∞ 2e4 1.1(1)	15/1BIPOP-C	2.2(2)	6.9(9)	10(17)	6.6(11)	4.8(8)	3.9(6)	15/15
IPOP-CM 3.7(8)	1.4(1)	1.4(1)	0.67(0.4)	0.67 (0.4)	0.67(0.4)	15/1FOP-CM	1.0(0.7)				132(150)	108(196)	10/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\# \operatorname{succ}^{\Delta f_{\text{opt}}}$	1e1 64	1e0 10710	1e-1 59443	1e-3 2.8e5	1e-5	1e-7 5.8e5	#succ
f114 767 NEWUOA43(40)	14720 ∞	56311 ∞	83272 ∞	83272 ∞	84949 ∞ 2e4	15/15 f129 0/18 EWUOA	124(124)	10710 16(16)	59443 ∞	$2.8e5$ ∞	$5.1e5$ ∞	5.8e5 ∞ 2e4	15/15 0/15
BIPOP-C 2.2(2)	$\frac{\infty}{1(0.6)}$	$\frac{\infty}{1(0.7)}$	1(0.7)	$_{1(0.7)}^{\infty}$	∞ ze4 1(0.7)	In a 74BIPOP-C	I 12(15)	7.1(8)	9.2(2)	3.9(12)	2.2(7)	1.9(6)	13/15
IPOP-CM $3.2(4)$	0.45(0.5)			0.79 (0.7)	0.80(0.7)	15/15POP-CM	8.5(10)	13(18)	18(35)	6.7(9)	3.8(5)	3.3(4)	11/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\# \operatorname{succ}^{\Delta} f_{\text{opt}}$	1e1 55	1e0 812	1e-1 3034	1e-3 32823	1e-5 33889	1e-7 34528	#succ 10/15
f115 64 NEWUOA 2.9(3)	485 14(20)	1829 42(48)	2550 ∞	2550	2970 ∞ 2e4	15/15 f130 0/18 EWUOA	2.3(4)	11(10)	10(10)	∞	∞	∞ 2e4	0/15
BIPOP-C 1.5(0.8)	2.6(2)	6.5(7)	5.9(6)	5.9(6)	5.7(5)	15/1RIPOP-C	1.9(1)	57(82)	55(101)	5.1 (9)	5.0 (9)	5.0 (9)	15/15
IPOP-CM 1.7(2)	2.4(4)	2.7(4)	3.1 (3)	3.1 (3)	2.7 (3)	15/14POP-CM	µ.2(1)	59(10)	321(634)	37(62)	36(60)	35(59)	12/15

Table 1: Expected running time (ERT in number of function evaluations) divided by the respective best ERT measured during BBOB-2009 (given in the respective first row) for different Δf values in dimension 5. The inter-80%tile range divided by two is given in braces. The median number of conducted function evaluations is additionally given in *italics*, if $\text{ERT}(10^{-7}) = \infty$. #succ is the number of trials that reached the final target $f_{\text{opt}} + 10^{-8}$. Best results are printed in bold.

$\Delta f_{ m opt}$ [1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\#\operatorname{succ}\Delta f_{\operatorname{opt}}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f101 59	425	571	700	739	783	15/15 f116	5.0e5	6.9e5	8.9e5	1.0e6	1.1e6	1.1e6	15/15
NEWUOA 3.1 (0.8)*3 BIPOP-C 6.1(1)	0.85(0.2)* 1.5(0.2)	³ 0.90(0.2)* 1.6(0.1)	⁴ 1.1(0.2)*4 2.1(0.1)	1.5(0.3)*2 2.7(0.1)	1.6(0.4)*2 3.3(0.2)	15/1SEWUOA 15/1BIPOP-C		∞ 1.2(0.6)	∞ 1.1(0.5)	$\frac{\infty}{1(0.4)}$	∞ $1(0.4)$	$\infty 8e4$ 1(0.4)	0/15 15/15
IPOP-CM 6.0(2)	1.5(0.2)	1.5(0.2)	2.0(0.2)	2.6(0.1)	3.2(0.2)	15/18POP-CM		1.1(0.5)	1.00(1)	0.92(1.0)	0.93(0.9)	0.93(0.9)	15/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\#_{\mathrm{succ}}\Delta f_{\mathrm{opt}}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f102 231	399	579	921	1157	1407	15/15 f117	1.8e6	2.5e6	2.6e6	2.9e6	3.2e6	3.6e6	15/15
NEWUOA 2.9(4) BIPOP-C 1.6 (0.3)	6.1(9) 1.6(0.2)	6.3(7)	45(49) 1.6(0.1)	∞ 1.8(0.1)	$\infty 1e5$ 1.8(0.1)	0/1SEWUOA 15/1SIPOP-C	∞ 1(0.5)	∞ $1(0.2)$	$\infty \\ 1(0.2)$	∞ $1(0.2)$	$\infty \\ 1(0.2)$	$\infty 8e4$ 1(0.2)	0/15 15/15
IPOP-CM 1.6(0.2)	1.6(0.2) 1.6(0.3)	1.6(0.2) 1.6(0.2)	1.6(0.1) 1.6(0.1)	1.8(0.1) 1.7(0.1)	1.8(0.1)	15/15POP-CM						20.72(0.3)	
$\Delta f_{ m opt}$ 1e1	1e0		1e-3	1e-5	1e-7	$\# \mathrm{succ} \Delta f_{\mathrm{opt}}$	11e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f103 65	417	629	1313	1893	2464	14/15 f118	6908	11786	17514	26342	30062	32659	15/15
NEWUOA 2.3(0.9)*4	1.00(0.2)*		1231(1324)	∞	$\infty~1e5$	0/1SEWUOA	∞	∞	∞	∞	∞	∞ 1e5	0/15
BIPOP-C 5.5(1) IPOP-CM 5.5(1)		1.5(0.1) 1.4(0.2)	1.2(0.1) 1.2(0.1)	1.2(0.1) 1.2(0.1)	1.2(0.1) 1.2(0.1)	15/1BIPOP-C 15/1POP-CM		1.8(0.4) 1.8(0.5)	1.6(0.2) 1.7(0.2)	1.5(0.1) 1.5(0.1)	1.6(0.1) 1.5(0.2)	1.6(0.1) 1.5(0.1)	$\frac{15}{15}$
! ` '	1.5(0.2) 1e0	1.4(0.2) 1e-1	1.2(0.1) 1e-3	1.2(0.1) 1e-5	1.2(0.1) 1e-7	$\#_{\text{succ}}\Delta f_{\text{opt}}$	12.0(0.4)	1.8(0.5) 1e0	1.7(0.2) 1e-1	1.5(0.1) 1e-3	1.3(0.2) 1e-5	1.3(0.1) 1e-7	#succ
$\frac{\Delta f_{ m opt}}{{ m f104}}$ 1e1	85656	1.7e5	1.8e5	1.9e5	2.0e5	15/15 f119	2771	29365	35930	4.1e5	1.4e6	1.9e6	15/15
NEWUOA 68(78)	∞	∞	∞	∞	∞ 1e5	0/1MEWUOA		∞	∞	∞	∞	∞ 8e4	0/15
BIPOP-C 10(7)	3.2(2)	1.7(1)	1.6(1)	1.6(1.0)	1.6(0.9)	15/1BIPOP-C	1.6(1) 1.9(0.6)	1(1) 0.58(0.4)	1(1) 0.69(0.3)	1(0.5) 0.58 (0.3)	1.3(0.3)	1.1(0.2)	15/15
IPOP-CM 7.5(6)	2.5(2)	1.3(0.9)	1.3(0.9)	1.3(0.9)	1.2(0.8)	15/18POP-CM		` ′	` ′	` ′		↓2 0.97 (0.5)	15/15
$\frac{\Delta f_{\text{opt}}}{\text{f105}}$ 1e1	1e0 6.1e5	1e-1 6.3e5	1e-3 6.5e5	1e-5 6.6e5	1e-7 6.7e5	$\# succ \Delta f_{opt}$ 15/15 f120	1e1 36040	1e0 1.8e5	1e-1 2.8e5	1e-3 1.6e6	1e-5 6.7e6	1e-7	#succ 13/15
NEWUOA ∞	∞	∞	∞	∞	∞ 9e4	0/18 EWUOA		∞	∞	∞	∞	∞ 8e4	0/15
BIPOP-C 2.7(2)	1(0.6)	1(0.6)	1(0.6)	1(0.6)	1(0.6)	15/1BIPOP-C	1(0.6)	1(0.9)	1(0.6)	1(0.6)	1(0.4)	1(0.4)	13/15
IPOP-CM 1.9(0.9)	0.76 (0.3)	0.76 (0.3)	0.77 (0.3)	0.77 (0.3)	0.76(0.2)	15/15POP-CM	0.69 (0.4)	0.60 (0.4)	0.74 (0.5)	0.67(0.4) _↓	0.69(0.4)	0.69 (0.3)	15/15
$\frac{\Delta f_{\text{opt}}}{\text{f106}}$ 1e1	1e0	1e-1 23746	1e-3 25470	1e-5 26492	1e-7 27360	$\#\operatorname{succ}\Delta f_{\operatorname{opt}}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f106 11480 NEWUOA 7.0(5)	21668 31(32)	23740	25470	20492 ∞	27360 $\infty 2e5$	15/15 f121 0/1 Ñ EWUOA	249	769 ∞	1426 ∞	9304 ∞	34434 ∞	57404 ∞ 8e4	15/15 0/15
BIPOP-C 1.0(0.3)	1.3(0.3)	1.4(1)	1.5(1)	1.5(1)	1.5(1)	15/1 § IPOP-C	1.2(0.5)	1.0(0.2)	1.2(0.3)	1.1(0.2)	1.3(0.1)	1.9(0.1)	15/15
IPOP-CM 1.0(0.4)	1.4(1)	1.5(1.0)	1.5(0.9)	1.5(0.9)	1.5(0.9)	15/1 f POP-CM	1.3(0.4)	1.1(0.2)	1.1(0.2)	1.1(0.1)	1.4(0.1)	1.9(0.2)	15/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\#\operatorname{succ}\Delta f_{\operatorname{opt}}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f107 8571 NEWUOA ∞	13582 ∞	16226 ∞	27357 ∞	52486 ∞	65052 $\infty 8e4$	15/15 f122 0/1 % EWUOA	692	52008	1.4e5 ∞	7.9e5 ∞	2.0e6 ∞	5.8e6 ∞ 8e4	15/15 0/15
BIPOP-C 1(0.4)	1(0.7)	1(0.6)	1(0.4)	1(0.8)	1(0.8)	15/15IPOP-C	1.8(2)	1(0.5)	1(0.7)	1(0.7)	1(0.5)	1(0.8)	15/15
IPOP-CM 1.1(0.6)	0.95 (0.4)	1.1(0.7)	0.96 (0.5)	0.68 (0.3)	0.65 (0.3)	15/15POP-CM	2.0(2)	0.92 (0.5)	0.74 (0.2)	0.63 (0.5)	0.95 (0.5)	0.64 (0.4)	15/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7		1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f108 58063 NEWUOA ∞	97228 ∞	2.0e5 ∞	4.5e5 ∞	6.3e5 ∞	9.0e5 ∞ 8e4	15/15 f123	1063	5.3e5	1.5e6	5.3e6	2.7e7	1.6e8	0 /15
BIPOP-C 1(0.5)	1(0.4)	1(0.5)	1(0.5)	1(0.5)	1(0.4)	0/15EWUOA 15/15IPOP-C	5.7(4)	$_{1(0.8)}^{\infty}$	$\infty \\ 1(0.7)$	$\infty \\ 1(0.6)$	$_{1(0.8)}^{\infty}$	∞ 8e4 1(1)	$0/15 \ 0/15$
IPOP-CM 0.72(0.2)	0.87 (0.6)	0.66 (0.3)	0.77 (0.4)	0.94 (0.4)	1.0(0.6)	15/15POP-CM	7.2(5)	0.72(0.4)			0.62 (0.4)	∞ $2e7$	0/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\#\operatorname{succ}\Delta f_{\mathrm{opt}}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f109 333 NEWUOA17(23)	632 ∞	1138 ∞	2287 ∞	3583 ∞	4952 ∞ 8e4	15/15 f124 0/1 N EWUOA	192	1959 ∞	40840 ∞	1.3e5	3.9e5	8.0e5 ∞ 8e4	15/15 0/15
BIPOP-C 1.2(0.3)	1.2(0.2)	1.1(0.2)	1.1(0.1)	1.1(0.1)	1.0(0.1)	15/1BIPOP-C		1.0(0.5)	1(1.0)	$_{1(0.9)}^{\infty}$	∞ 1(0.8)	0.4	15/15
IPOP-CM 1.1(0.2)	1.2(0.1)	1.1 (0.1)	1.1(0.1)	1.0(0.1)	1.00(0.1)	15/1POP-CM	1.1(0.5)	0.99 (0.7)	0.75 (0.7)	0.98 (0.5)	0.84 (0.4)	0.78 (0.3)	15/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7		1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f110 ∞ NEWUOA .	∞	∞	∞	∞	∞	0 f125 0/15NEWUOA	1	1	1	2.5e7	8.0e7	8.1e7	4/15
BIPOP-C .						0/15BIPOP-C	1(0)	414(426) 383(356)	∞ 9.8e6(7e	∞ 6)1(0.9)	∞ 1(1)	$\infty 8e4$ 1(1.0)	0/15 $4/15$
IPOP-CM .						0/15IPOP-CM		957(1360)		e6) 0.79 (0.6)	1.8(2)	1.8(2)	2/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\# \operatorname{succ} \Delta f_{\mathrm{opt}}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f111 ∞ NEWUOA	∞	∞	∞	∞	∞	0 f126	1	1	1	∞	∞	∞	0
BIPOP-C .						0/15NEWUOA 0/15BIPOP-C	4.2(0) 1(0)	1.3e5(1e5) 5781(4226)	∞ ∞				0/15 0/15
IPOP-CM .						0/15IPOP-CM	1(0)	5759 (3156)					0/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\#\operatorname{succ}\Delta f_{\operatorname{opt}}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f112 25552 NEWUOA ∞	64124 ∞	69621 ∞	73557 ∞	76137 ∞	78238 ∞ 1e5	15/15 f127	1	1	1	4.4e6	7.3e6	7.4e6	15/15
BIPOP-C 1(0.3)	1.1(0.8)	1.1(0.8)	1.2(0.7)	1.2(0.7)	1.2(0.7)	0/15EWUOA 15/15IPOP-C	3.7(0) 1(0)	253(389) 176(91)	∞ 9.0e5(1e	∞ e6)1(0.6)	0.000	$\infty 8e4$ 1(0.7)	0/15 15/15
IPOP-CM 0.95 (0.4)	0.94 (0.2)	1.0(0.1)	1.1(0.1)	1.1(0.1)	1.1 (0.1)	15/15POP-CM	1(0)	267(132)		6) 0.81 (0.6)	0.84(0.5)	0.85 (0.5)	15/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7		1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f113 50123 NEWUOA ∞	$3.6e5$ ∞	$5.6e5$ ∞	5.9e5 ∞	5.9e5 ∞	5.9e5 $\infty 8e4$	15/15 f128	1.4e5	1.3e7	1.7e7	1.7e7	1.7e7	1.7e7	9/15
BIPOP-C 1(1.0)	1(0.7)	1(0.4)	1(0.4)	1(0.4)	1(0.4)	0/15EWUOA 15/15IPOP-C		${\bf 1}(2)$	∞ 1(1)	${f 1}(1)$	∞ 1(1)	∞ 8e4 1(1)	0/15 9/15
IPOP-CM 1.0(0.8)	0.53 (0.4)	0.58(0.3) _↓	0.59(0.2) _↓		0.59(0.2)	15/15POP-CM		1.0(1)	1.4(2)	1.4(2)	1.4(2)	1.4(2)	6/15
$\Delta f_{ m opt}$ 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\# \operatorname{succ} \Delta f_{\operatorname{opt}}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f114 2.1e5	1.1e6	1.4e6	1.6e6	1.6e6	1.6e6	15/15 f129	7.8e6	4.1e7	4.2e7	4.2e7	4.2e7	4.2e7	5/15
NEWUOA ∞ BIPOP-C 1(0.4)	$\infty \\ 1(0.5)$	$\infty \\ 1(0.5)$	$\infty \\ 1(0.5)$	$\infty \\ 1(0.5)$	$\infty 8e4$ 1(0.5)	0/1%EWUOA 15/1BIPOP-C		∞ $1(1)$	∞ $1(1)$	∞ $1(1)$	∞ 1(1)	∞ 8e4 1(1)	$0/15 \\ 5/15$
IPOP-CM 0.59(0.3)		0.84(0.3)	0.91(0.3)	0.91(0.3)	0.92 (0.4)	15/15POP-CM		0.30(0.4)	0.77 (1.0)	0.77 (0.9)	0.77 (1.0)	0.77 (0.9)	$\frac{3}{15}$
Δf_{opt} 1e1	1e0	1e-1	1e-3	1e-5	1e-7	$\#_{\text{succ}}\Delta f_{\text{opt}}$	1e1	1e0	1e-1	1e-3	1e-5	1e-7	#succ
f115 2405	30268	91749	1.3e5	1.3e5	1.3e5	15/15 f130	4904	93149	2.5e5	2.5e5	2.6e5	2.6e5	7/15
NEWUOA 236(283) BIPOP-C 1(1)	$\infty \\ 6.5(7)$	∞ $3.9(2)$	∞ $3.0(1)$	$_{3.0(1)}^{\infty}$	$\infty 8e4 \\ 3.0(2)$	0/1NEWUOA 15/1BIPOP-C	9.1(9) 1.9(4)	∞ 33(75)	∞ 14(28)	∞ 14(27)	$\infty \\ 14(27)$	$\infty 8e4$ 14(27)	0/15 15/15
IPOP-CM 1.1(2)	4.8(3)	2.2(1.0)	1.8(0.8)	1.8(0.8)	1.9(0.8)	15/18POP-CM			37(57)	37(56)	37(57)	37(55)	9/15
						•							

Table 2: Expected running time (ERT in number of function evaluations) divided by the respective best ERT measured during BBOB-2009 (given in the respective first row) for different Δf values in dimension 20. The inter-80%tile range divided by two is given in braces. The median number of conducted function evaluations is additionally given in italics, if $\mathrm{ERT}(10^{-7}) = \infty$. #succ is the number of trials that reached the final target $f_{\mathrm{opt}} + 10^{-8}$. Best results are printed in bold.

Figure 2: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimension (FEvals/D) for 50 targets in $10^{[-8..2]}$ for all functions and subgroups in 5-D. The "best 2009" line corresponds to the best ERT observed during BBOB 2009 for each single target.

Figure 3: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimension (FEvals/D) for 50 targets in $10^{[-8..2]}$ for all functions and subgroups in 20-D. The "best 2009" line corresponds to the best ERT observed during BBOB 2009 for each single target.