DOCUMENTS ET CALCULATRICES NON AUTORISÉS

La précision des raisonnements et le soin apporté à la rédaction seront pris en compte dans la notation

Exercice 1

- 1. Soit P un polynôme non nul à coefficients réels. On pose, pour tout $n \in \mathbb{N}$, $a_n = \frac{P(n)}{n!}$. Montrer que la série numérique $\sum_{n\geq 0} a_n$ est absolument convergente.
- 2. On pose $S = \sum_{n=1}^{+\infty} \frac{n^2 1}{n!}$.

Justifier l'existence de S puis calculer sa valeur. Vous justifierez soigneusement les étapes de calcul.

Exercice 2

Déterminer $\lim_{n\to+\infty}\int_0^{\frac{\pi}{2}}(\cos t)^n dt$. Justifier la réponse.

Exercice 3

On définit, pour $n \ge 1$, $f_n : [0,1] \longrightarrow \mathbb{R}$ $x \longmapsto \frac{2^n x}{1 + 2^n n x^2}$

- 1. Montrer que la suite d'applications $(f_n)_{n\geq 1}$ converge simplement sur [0,1] vers une application f à préciser.
- 2. On pose, pour $n \ge 1$, $I_n = \int_0^1 f_n(x) dx$.
 - (a) Soit $n \geq 1$. Calculer I_n .
 - (b) En déduire : $\lim_{n\to+\infty} I_n$.
 - (c) En comparant $\lim_{n\to+\infty} I_n$ et $\int_0^1 f(x) dx$, que peut-on dire de la convergence uniforme de la suite d'applications $(f_n)_{n\geq 1}$? Justifier la réponse.
- 3. Soit $a \in]0, 1[$.
 - (a) Etudier la convergence uniforme de la suite d'applications $(f_n)_{n\geq 1}$ sur [a,1].
 - (b) Etudier la convergence uniforme de la suite d'applications $(f_n)_{n\geq 1}$ sur [0,a].

Exercice 4

Soient f une fonction définie sur $[1, +\infty[$ et $C \in \mathbb{R}_+$ tels que pour tous réels a, b avec $b \ge a \ge 1$, on ait

$$|f(b) - f(a)| \le \frac{C}{a}.$$

On pose, pour tout entier $n \ge 1$, $u_n = f(n^2)$.

- 1. Montrer que la série numérique $\sum_{n\geq 1}(u_{n+1}-u_n)$ est absolument convergente.
- 2. En déduire que la suite (u_n) admet une limite finie ℓ .
- 3. Hors barème (à faire uniquement si les autres questions ont été traitées) Démontrer que $f(x) \underset{x \to +\infty}{\longrightarrow} \ell$.