Introdução a Pesquisa Operacional

1 Lista de Exercícios de Método Gráfico

Exercise 1. Resolver pelo metodo grafico o seguinte problema: Max(Z) = 3x1 + 5x2. Sujeito a:

$$x1 <= 4 \tag{1}$$

$$2x2 <= 12 \tag{2}$$

$$3x1 + 2x2 \le 18$$
 (3)

$$x1; x2 >= 0 \tag{4}$$

Proof. Resolução

$$(2) 2x2 \le 4, x2 = 6$$

Encontrar P1

$$x1 = 0;$$

(3)
$$3*0+2x2=18$$
, $x2=9$; $P1(0;9)$.

Encontrar P2

$$x2 = 0;$$

(3)
$$3x1 + 2 * 0 = 18$$
, $x2 = 6$; $P2(6; 0)$.

Encontrar P3

$$x1 = 4;$$

(3)
$$3*4+2x2=18$$
, $x2=2$; $P3(4;2)$.

Encontrar P4

$$x2 = 6;$$

(3)
$$3x1 + 2 * 6 = 18$$
, $x2 = 9$; $P4(2; 6)$.

Maximização de Z

$$x1 = 2; x2 = 6; Max(z) = 36.$$

Função Objetivo

$$x1 = 0;$$

$$Max(z)$$
 3 * 0 + 5x2 = 35, x2 = 7; P5(0;7).

$$x2 = 0;$$

$$Max(z)$$
 $3x1 + 5 * 0 = 35$, $x2 = 11.6$; $P6(11.66; 0)$.

Exercise 2. Resolver pelo metodo grafico o seguinte problema: Max(Z) = 8x1 + 4x2. Sujeito a:

$$4x1 + 2x2 <= 16 \tag{5}$$

$$x1 + x2 \le 6 \tag{6}$$

$$x1; x2 >= 0 \tag{7}$$

Proof. Resolução

Encontrar P1

$$x1 = 0;$$

(5)
$$4*0+2x2=16$$
, $x2=$; $P1(0;8)$.

Encontrar P2

$$x2 = 0;$$

(5)
$$4x1 + 2 * 0 = 16$$
, $x2 = 6$; $P2(4; 0)$.

Encontrar P3

$$x1 = 0;$$

(6)
$$x2 = 2$$
; $P3(0; 6)$.

Encontrar P4

$$x2 = 0;$$

(6)
$$x2 = 0$$
; $P4(6; 0)$.

Encontrar P5

$$(5) = (6); 8 - 2x1 = 6 - x1; x1 = 2; x2 = 4; P5(2;4)$$

Maximização de Z

$$x1 = 2; x2 = 4; Max(z) = 32.$$

$$x1 = 4; x2 = 0; Max(z) = 32.$$

Solução múltipla.

Função Objetivo

x1 = 0;

Max(z) 8 * 0 + 4x2 = 30, x2 = 7.5; P6(0; 7.5).

x2 = 0;

Max(z) 8x1 + 4 * 0 = 35, x1 = 3.75; P7(3.75; 0).

Exercise 3. Resolver pelo metodo grafico o seguinte problema: Max(Z) = 8x1 + 4x2. Sujeito a:

$$4x1 + 2x2 <= 16 \tag{8}$$

$$x1 + x2 \le 6 \tag{9}$$

$$x1 + x2 >= 1 \tag{10}$$

$$x1; x2 >= 0 \tag{11}$$

Proof. Resolução

Encontrar P1

$$x1 = 0;$$

(8)
$$4 * 0 + 2x2 = 16$$
, $x2 = P1(0; 8)$.

Encontrar P2

$$x2 = 0;$$

(8)
$$4x1 + 2 * 0 = 16$$
, $x2 = 6$; $P2(4; 0)$.

Encontrar P3

$$x1 = 0;$$

(9)
$$x2 = 2$$
; $P3(0;6)$.
Encontrar P4
 $x2 = 0$;
(9) $x2 = 0$; $P4(6;0)$.
Encontrar P5Encontrar P3
 $x1 = 0$;
(10) $x2 = 2$; $P3(0;1)$.
Encontrar P4
 $x2 = 0$;
(10) $x2 = 0$; $P4(1;0)$.

Maximização de Z

$$x1 = 2; x2 = 4; Max(z) = 32.$$

$$x1 = 4; x2 = 0; Max(z) = 32.$$

Solução múltipla.

Função Objetivo

x1 = 0;

$$Max(z)$$
 8 * 0 + 4x2 = 30, x2 = 7.5; P6(0; 7.5).

x2 = 0;

$$Max(z)$$
 8x1 + 4 * 0 = 35, x1 = 3.75; $P7(3.75; 0)$.

Exercise 4. Resolver pelo metodo grafico o seguinte problema: Max(Z) = 5x1 + 4x2. Sujeito a:

$$6x1 + 4x2 <= 24 \tag{12}$$

$$x1 + 2x2 \le 6$$
 (13)

$$-x1 + x2 \le 1$$
 (14)

$$x2 \le 2 \tag{15}$$

$$x1; x2 >= 0 \tag{16}$$

Proof. Resolução

Encontrar P1

x1 = 0;

(13)
$$6*0+4x2=24$$
, $x2=6$; $P1(0;6)$.

Encontrar P2

x2 = 0;

(13)
$$6x1 + 4 * 0 = 24$$
, $x2 = 6$; $P2(4; 0)$.

Encontrar P3

x1 = 0;

$$(14) x1 * 0 + 2x2 = 6, x2 = 3; P3(0;3).$$

Encontrar P4

x2 = 0;

$$(14) x1 + 2 * 0 = 24, x1 = 6; P2(6; 0).$$

Encontrar P5

x1 = 0;

$$(15) x2 = 1; P2(0;1).$$

Encontrar P6 x2 = 0;

(15)
$$x1 = -1$$
; $P2(-1; 0)$.

Encontrar P7 (13) = (14);
$$4 - 2/3x^2 = 6 - 2x^2$$
; $x^2 = 1.5$; x^2

Maximização de Z

$$x1 = 3; x2 = 1.5; Max(z) = 21.$$

Função Objetivo

x1 = 0;

$$Max(z)$$
 5 * 0 + 4x2 = 21, x2 = 5.25; $P6(0; 5.25)$.

x2 = 0;

$$Max(z)$$
 $5x1 + 4 * 0 = 21$, $x1 = 4.2$; $P7(4.2; 0)$.

Exercise 5. Determinar as regiões factíveis e as soluções extremas de:

1.

$$x1 - x2 \le 2 \tag{17}$$

$$x1 - x2 > = -2 \tag{18}$$

$$x1 + x2 >= 1 \tag{19}$$

$$x1, x2 >= 0 \tag{20}$$

Proof. Resolução

Encontrar P1

$$x1 = 0;$$

(17)
$$x2 = -2$$
; $P1(0; -2)$.

Encontrar P2

$$x2 = 0;$$

$$(17) x1 = 2; P2(2;0).$$

Encontrar P3

$$x1 = 0;$$

$$(18)2 = 2; P3(0; 2).$$

Encontrar P4

$$x2 = 0;$$

(18)
$$x1 = -2$$
; $P2(-2; 0)$.

Encontrar P5

$$x1 = 0;$$

(19)
$$x2 = 1$$
; $P2(0; 1)$.

Encontrar P6

$$x2 = 0;$$

(19)
$$x1 = 1$$
; $P2(1;0)$.

2.

$$x1 - 2x2 \le 2$$
 (21)

$$2x1 - x2 > = -2 \tag{22}$$

$$x1, x2 >= 0 \tag{23}$$

Proof. Resolução

Encontrar P1

$$x1 = 0;$$

(21)
$$x2 = -1$$
; $P1(0; -1)$.

Encontrar P2

$$x2 = 0;$$

(21)
$$x1 = 2$$
; $P2(2; 0)$.

Encontrar P3

$$x1 = 0;$$

$$(22)2 = 2; P3(0; 2).$$

Encontrar P4

$$x2 = 0;$$

(22)
$$x1 = -1$$
; $P2(-1;0)$.

