Structured Representations for Knowledge Transfer in Reinforcement Learning

Benjamin Rosman

Mobile Intelligent Autonomous Systems
Council for Scientific and Industrial Research

&

School of Computer Science and Applied Maths
University of the Witwatersrand
South Africa

Robots solving complex tasks

Large highdimensional action and state spaces

Many different task instances

Behaviour learning

Reinforcement learning (RL)

Markov decision process (MDP)

• $M = \langle S, A, T, R \rangle$

Looking into the future

Can't just rely on immediate rewards

Define value functions:

•
$$V^{\pi}(s) = E_{\pi}\{R_t | s_t = s\}$$

•
$$Q^{\pi}(s, a) = E_{\pi}\{R_t | s_t = s, a_t = a\}$$

• V^* (Q*) is a proxy for π^*

Value functions example

Random policy:

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

(b)

• Optimal:

(a)

В、

 22.0
 24.4
 22.0
 19.4
 17.5

 19.8
 22.0
 19.8
 17.8
 16.0

 17.8
 19.8
 17.8
 16.0
 14.4

 16.0
 17.8
 16.0
 14.4
 13.0

 14.4
 16.0
 14.4
 13.0
 11.7

a) gridworld

+10

b) v_*

c) π_*

RL algorithms

 So: solve a large system of nonlinear value function equations (Bellman equations)

$$V^{\pi'}(s) = \max_{a} E \left\{ r_{t+1} + \gamma V^{\pi'}(s_{t+1}) \mid s_{t} = s, a_{t} = a \right\}$$
$$= \max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi'}(s') \right].$$

- Optimal control problem
- But: transitions P & rewards R aren't known!

- RL learning is trial-and-error learning to find an optimal policy from experience
- Exploration vs exploitation

Exploring

Learned value function

An algorithm: Q-learning

- Initialise Q(s, a) arbitrarily
- Repeat (for each episode):
 - Initialise s
 - Repeat (for each step of episode):
 - 1. Choose a from s (ϵ -greedy policy from Q)

•
$$a \leftarrow \begin{cases} arg \max_{a} Q(s, a) & w. p. \ 1 - \epsilon & \text{exploit} \\ random & w. p. \ \epsilon & \text{explore} \end{cases}$$

- 2. Take action a, observe r, s'
- 3. Update estimate of *Q*

•
$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$
 learn

- $s \leftarrow s'$
- Until s is terminal

Solving tasks

Generalising solutions?

How does this help us solve other problems?

Hierarchical RL

- Sub-behaviours: options $o = \langle I_o, \pi_o, \beta_o \rangle$
 - Policy + initiation and termination conditions

- Abstract away low level actions
- Does not affect the state space

Abstracting states

- Aim: learn an abstract representation of the environment
 - Use with task-level planners
 - Based on agent behaviours (skills / options)
 - General: don't need to be relearned for every new task

Steven James (in collaboration with George Konidaris)

- S. James, B. Rosman, G. Konidaris. Learning to Plan with Portable Symbols. ICML/IJCAI/AAMAS 2018 Workshop on Planning and Learning, July 2018.
- S. James, B. Rosman, G. Konidaris. Learning Portable Abstract Representations for High-Level Planning. *Under review.*

Requirements: planning with skills

"SYMBOLS"

- Learn the preconditions
 - Classification problem:
 - *P*(can execute skill? | current_state)

- Learn the effects
 - Density estimation:
 - P(next_state | current_state, skill)
 - Possible if options are subgoal i.e.
 P(next_state | current_state, skill)

Subgoal options

- *P*(next_state | current_state, skill)
- Partition skills to ensure property holds
 - e.g. "walk to nearest door"

Generating symbols from skills [Konidaris, 2018]

- Results in abstract MDP/propositional PPDDL
- But $P(s \in I_o)$ and P(s' | o) are distributions/symbols over state space *particular to current task*
 - e.g. grounded in a specific set of xy-coordinates

Towards portability

- Need a representation that facilitates transfer
- Assume agent has sensors which provide it with (lossy) observations
- Augment the state space with action-centric observations
 - Agent space
- e.g. robot navigating a building
 - State space: xy-coordinates
 - Agent space: video camera

Portable symbols

- Learning symbols in agent space
 - Portable!
 - But: non-Markov and insufficient for planning
- Add the subgoal partition labels to rules
 - General abstract symbols + grounding → portable rules

Grounding symbols

- Learn abstract symbols
- Learning linking functions:
 - Mapping partition numbers from options to their effects
- This gives us a factored MDP or a PPDDL representation
- Provably sufficient for planning

Learning grounded symbols

USING AGENT-SPACE DATA

The treasure game

Agent and problem space

 State space: xy-position of agent, key and treasure, angle of levers and state of lock

 Agent space: 9 adjacent cells about the agent

Skills

Options:

- GoLeft, GoRight
- JumpLeft, JumpRight
- DownRight, DownLeft
- Interact
- ClimbLadder,
 DescendLadder

Learning portable rules

- Cluster to create subgoal agent-space options
- Use SVM and KDE to estimate preconditions and effects
- Learned rules can be transferred between tasks

Grounding rules

- Partition options in state space to get partition numbers
 - Learn grounded rule instances: linking

Partitioned rules

Experiments

Require fewer samples in subsequent tasks

Portable rules

- Learn abstract rules and their groundings
 - Transfer between domain instances
 - Just by learning linking functions
- But what if there is additional structure?
- In particular, there are many rule instances (objects of interest)?

Ofir Marom

Example: Sokoban

Sokoban (legal move)

Sokoban (legal move)

Sokoban (illegal move)

Sokoban (goal)

Representations

$$s = (agent_x = 3, agent_y = 4, box1_x = 4, box1_y = 4, box2_x = 3, box2_y = 2)$$

- Poor scalability
 - 100s of boxes?
 - Transferability?

 Effects of actions depend on interactions further away, complicating a mapping to agent space

Object-oriented representations

- Consider objects explicitly
 - Object classes have attributes
 - Relationships based on formal logic: $On(box_1, storage_1)$

Propositional OO-MDPs_[Duik, 2010]

- Describe transition rules using schemas
- Propositional Object-Oriented MDPs
 - Provably efficient to learn (KWIK bounds)

East ∧ $Touch_{East}(Person, Wall)$ ⇒ $Person.x \leftarrow Person.x + 0$

Benefits

- Propositional OO-MDPs
 - Compact representation
 - Efficient learning of rules

Limitations

Propositional OO-MDPs are efficient, but restrictive

 $East \land Touch_{West}(Box, Person) \land Touch_{East}(Box, Wall)$ ⇒ $Box.x \leftarrow ?$

Limitations

- Propositional OO-MDPs are efficient, but restrictive
 - Restriction that preconditions are propositional
 - Can't refer to the same box

 $East \land Touch_{West}(Box, Person) \land Touch_{East}(Box, Wall)$ ⇒ $Box.x \leftarrow ?$

Limitations

- Propositional OO-MDPs are efficient, but restrictive
 - Restriction that preconditions are propositional
 - Can't refer to the same box

$$East \land Touch_{West}(Box, Person) \land Touch_{East}(Box, Wall)$$
⇒ $Box.x \leftarrow ?$

Ground instances! But then relearn dynamics for box1, box2, etc.

Deictic OO-MDPs

- Deictic predicates instead of propositions
 - Grounded only with respect to a central deictic object ("me" or "this")
 - Relates to other non-grounded objects
- Transition dynamics of Box. x depends on grounded box object

$$East \land \\ Touch_{West}(box, Person) \land Touch_{East}(box, Wall) \\ \Rightarrow box. x \leftarrow box. x + 0$$

Also provably efficient

Learning the dynamics

- Learning from experience:
 - For each action, how do attributes change?
- KWIK framework
- Propositional OO-MDPs: DOORMAX algorithm
 - Transition dynamics for each attribute and action must be representable as a binary tree
 - Effects at the leaf nodes
 - Each possible effect can occur at most at one leaf, except for a failure condition (globally nothing changes)

Learning the dynamics

Example: action = North

- Given:
 - Each effect can only occur once on the tree
 - Global failure condition
 - Deterministic effects
- Learn from common elements in state propositions (experience)

DOORMAX for deictic OO-MDPs

- We adapt the DOORMAX algorithm to deictic OO-MDPs
 - Remove global failure condition
 - Bound the number of times a condition can occur
 - Can still be learned efficiently

Experiments

Zero-shot transfer: one run of value iteration

Experiments

- Taxi domain
 - Multi-passengers
 - Only one in the taxi at a time
- On executing a pickup action
 - Change in_taxi
 attribute of
 correct passenger

Experiments

Take away thoughts

- Reinforcement learning gives us a powerful tool for learning behaviours, but extra work is required for generalisation
- Reasoning in an agent-centric manner:
 - Symbol-based view on skills
 - Enable knowledge reuse
- Reasoning in an object-centric manner:
 - Learn models of local object interactions
 - Efficient learning and transfer

Thank you!

www.benjaminrosman.com - www.raillab.org

Funded by

