

- 1. Use dark blue or black pen for markings.
- 2. Do not write or scribble anything extra.
- 3. Do not fold, tear, wrinkle or staple.
- 4. Mark only one choice per question.
- 5. Correct marking: 0 • 0 0
- 6. Incorrect markings: $\otimes \emptyset \ominus \ominus$

SIWS College,	Wadala
Invigilator:	
Name:	
Class:	Div:
Exam : U2	

Subject: Mathematics

- (d) 000000000 0000000000
- (b) (d) 18

MODEL QUESTION PAPER FOR THE SECOND UNIT TEST

PORTION: VECTORS, MATRICES, PERMUTATIONS, COMBINATIONS, BINOMIAL THM

1. If
$$\overline{a} = 2\overline{i} + 3\overline{j} + 4\overline{k}$$
 and $\overline{b} = -2\overline{i} - 2\overline{j} + 3\overline{k}$ then $\overline{a}.\overline{b}$ is

- (a) 2
- (b) -2
- (c) 6
- (d) -6

2. If
$$A \equiv (-4, -4, 2)$$
 and $B = \equiv (3, -6, 4)$, then the unit vector along \overline{AB} is

- (a) $\frac{7\bar{i} 2\bar{j} 2\bar{k}}{2\sqrt{57}}$ (b) $\frac{7\bar{i} 2\bar{j} + 2\bar{k}}{2\sqrt{57}}$ (c) $\frac{7\bar{i} + 2\bar{j} + 2\bar{k}}{2\sqrt{57}}$
- (d) none of these

3. If
$${}^{8}P_{r} = {}^{7}P_{3} + 3({}^{7}P_{2})$$
, then

- (a) r = 2
- (b) r = 3
- (c) r = 4
- (d) r = 5

- (a) 90
- (b) 119
- (c) 236
- (d) none of these

5. If
$$\overline{p} = -\overline{i} + 3\overline{j} + a\overline{k}$$
 is perpendicular to $\overline{q} = 4\overline{i} + 2\overline{j} + \overline{k}$ then the value of 'a' is

[1]

- (a) 2
- (b) -2
- (c) 0

(d) -1

[1]

[1]

[1]

[1]

0.	and 3 women?	[1]
	(a) 36 (b) 18 (c) 48 (d) none	of these
7.	If $A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then $ AB =$	[1]
	(a) -21 (b) 21 (c) -3 (d) 3	
8.	Numbers of four different digits are formed from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9. How of them are greater than 4000?	many [2]
	(a) 2010 (b) ${}^{9}P_{4} - 4!$ (c) 7016 (d) none	of these
9.	If $A = \begin{bmatrix} 2 & 5 & -3 \\ -1 & 3 & 1 \\ 4 & 1 & 2 \end{bmatrix}$ then A^2 is	[2]
	(a) $\begin{bmatrix} -13 & 22 & -7 \\ 15 & 25 & -7 \\ -1 & 5 & 8 \end{bmatrix}$ (b) $\begin{bmatrix} -13 & 22 & -7 \\ -1 & 5 & 8 \\ 15 & 25 & -7 \end{bmatrix}$ (c) $\begin{bmatrix} -13 & 22 & -7 \\ 15 & 25 & 7 \\ 1 & 5 & 8 \end{bmatrix}$ (d) $\begin{bmatrix} 13 \\ 15 \\ -1 \end{bmatrix}$	22 7 25 -7 5 8
10.	If $\left(3\begin{bmatrix}2-5&7\\1-1&3\end{bmatrix}-\begin{bmatrix}1&2&1\\2&0&3\end{bmatrix}\right)\begin{bmatrix}3\\0\\1\end{bmatrix}=\begin{bmatrix}x\\y\end{bmatrix}$ then	[2]
	(a) $x = 35$, $y = -9$ (b) $x = -35$, $y = -9$ (c) $x = -35$, $y = 9$ (d) $x = 35$,	y = 9
11.	The angle between the vectors $\overline{a} = \overline{i} + 2\overline{j} + 2\overline{k}$ and $\overline{b} = 2\overline{i} + 2\overline{j} + \overline{k}$ is	[2]
	(a) $\cos^{-1}(8/9)$ (b) $\cos^{-1}(9/8)$ (c) $\cos^{-1}(3/2)$ (d) $\cos^{-1}(8/9)$	(2/3)
12.	If ${}^{56}P_{r+6}: {}^{54}P_{r+3} = 30800:1$, then	[2]
	(a) $r = 28$ (b) $r = 32$ (c) $r = 41$ (d) none	of these
13.	There are 22 points in a plane of which p points are collinear. If 211 different lines can be obtained by joining the given points, then	[2]
	(a) $p = 7$ (b) $p = 8$ (c) $p = 9$	of these
14.	If ${}^{28}C_{2r}: {}^{24}C_{2r-4} = 225:11$, then	[2]
	(a) $r = 4$ (b) $r = 3$ (c) $r = 7$ (d) $r = 8$	
15.	The value of $(\sqrt{5} + 1)^5 - (\sqrt{5} - 1)^5$ is	[2]
	(a) 152 (b) 156 (c) 352 (d) none	of these
16.	The coefficient of x^9 in the expansion of $\left(\frac{1}{x^2} + x\right)^{18}$ is	[2]
	(a) 916 (b) ${}^{18}C_9$ (c) 816 (d) none	of these
	End Page No 2 - Model II2	

Page No 2 - Model U2