课程名称:微积分(二)

2015-2016 学年第(2) 学期期末

本试卷共4道大题,满分100分

(考试结束后请将试卷、答题本一起交给监考老师)

1. (42分)计算下列各式(如不存在简要说明理由):

a)
$$\iint_{a^2 \le x^2 + y^2 \le 4a^2} \sin(x^2 + y^2) d(x, y);$$

b)
$$\iiint_{x^2+y^2+z^2\leq 1} (x^2+y^2+z^2)d(x,y,z);$$

- c) $\int_{\Gamma} (x+y)ds$ 其中 Γ 为以 O(0,0), A(1,0), B(0,1) 为顶点的三角形;
- d) $\int_{l} (x^2 2xy) dx + (y^2 2xy) dy$, l 为抛物线 $y = x^2$ 从 (1,1) 到 (-1,1) 的一段闭曲线;
- e) $\int_0^{+\infty} e^{-x^2} dx$.
- 2. (18 分) 叙述高斯公式, 并对 $\vec{F}(x, y, z) = (x, y, z), \Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$ 加以验证(即计算等式两侧的积分)。
- 3. (15 分) \mathbb{R}^2 上的两个闭方块 $Q \subset \tilde{Q}$,函数 f(x) 和 $\tilde{f}(x)$ 分别在这两个方块上定义,且有 $\tilde{f}(x) = \begin{cases} f(x), & x \in Q ; \\ 0, & x \in \tilde{Q} \setminus Q. \end{cases}$ 试写出 $\tilde{f}(x)$ 在 \tilde{Q} 上不可积的 $\varepsilon \delta$ 形式的定义,并证明若 $\tilde{f}(x)$ 在 \tilde{Q} 上不可积,必有 f(x) 在 Q 上不可积。
- 4. (25 分)写出螺旋面 $(x,y,z)=(u\cos v,u\sin v,v)$ 的第一和第二基本形式; 求出其上相应于 $(u,v)\in[0,2]\times[0,2\pi]$ 的区域 S 上的积分 $\iint_S xd\sigma$; 再考虑其上相应于 $u=1,v\geq 0$ 的螺旋线, 求出其 $\underline{T},\underline{N},\underline{B},\kappa,\tau$ 。