```
### **Oxigênio (O)**
**Propriedades:**
- Símbolo: **O**
- Número atômico: **8**
- Massa atômica: **16,00 u**
- Ponto de fusão: **-218,8 °C**
- Ponto de ebulição: **-183 °C**
- Eletronegatividade: **3,44** (2° maior)
- Estados de oxidação: **-2, -1 (peróxidos), +2 (OF<sub>2</sub>)**
- Distribuição eletrônica: **[He] 2s2 2p4**
**Características:**
- Gás diatômico (O₂) incolor (O₃ ozônio é azul)
- 21% da atmosfera e 49% da crosta terrestre
- Forma ligações com quase todos elementos
**Para que serve?**
- Respiração celular (medicina, mergulho)
- Produção de aço (conversor Bessemer)
- Tratamento de água e efluentes
- Combustão (usado em maçaricos)
**Onde é encontrado?**
- Atmosfera (O<sub>2</sub>)
- Água (H<sub>2</sub>O)
- Minerais (silicatos, óxidos)
### **Enxofre (S)**
**Propriedades:**
- Símbolo: **S**
- Número atômico: **16**
- Massa atômica: **32,06 u**
- Ponto de fusão: **115,2 °C** (monoclínico)
- Ponto de ebulição: **444,6 °C**
- Eletronegatividade: **2,58**
- Estados de oxidação: **-2, +2, +4, +6**
- Distribuição eletrônica: **[Ne] 3s2 3p4**
**Características:**
- Não-metal amarelo, múltiplos alótropos
- Cheiro característico (ovos podres - H2S)
- Essencial para aminoácidos (metionina, cisteína)
**Para que serve?**
- Produção de ácido sulfúrico (H₂SO₄)
- Vulcanização da borracha
```

```
- Fertilizantes (sulfatos)
- Pólvora negra (enxofre + carvão + salitre)
**Onde é encontrado?**
- Depósitos vulcânicos (nativo)
- Gipsita (CaSO<sub>4</sub>·2H<sub>2</sub>O)
- Petróleo (compostos sulfurosos)
### **Selênio (Se)**
**Propriedades:**
- Símbolo: **Se**
- Número atômico: **34**
- Massa atômica: **78,97 u**
- Ponto de fusão: **221 °C** (cinza)
- Ponto de ebulição: **685 °C**
- Eletronegatividade: **2,55**
- Estados de oxidação: **-2, +4, +6**
- Distribuição eletrônica: **[Ar] 3d10 4s2 4p4**
**Características:**
- Semimetal fotocondutor
- Existência em formas alotrópicas
- Antioxidante biológico (glutatião peroxidase)
**Para que serve?**
- Fotocopiadoras (fotocondutor)
- Suplementos nutricionais
- Vidros vermelhos (decorativos)
- Painéis solares (CIGS - CuInGaSe<sub>2</sub>)
**Onde é encontrado?**
- Subproduto da refinação de cobre
- Castanha-do-pará (alto teor natural)
### **Telúrio (Te)**
**Propriedades:**
- Símbolo: **Te**
- Número atômico: **52**
- Massa atômica: **127,60 u**
- Ponto de fusão: **449,5 °C**
```

Ponto de ebulição: **988 °C**Eletronegatividade: **2,10**

Estados de oxidação: **-2, +2, +4, +6**
Distribuição eletrônica: **[Kr] 4d¹º 5s² 5p⁴**

```
**Características:**
- Semimetal prateado e quebradiço
- Compostos com odor desagradável
- Aumenta ductilidade do cobre
**Para que serve?**
- Ligas metálicas (aço e cobre)
- Painéis solares (CdTe)
- Revestimento óptico (infravermelho)
- Memórias PCRAM (fase-change)
**Onde é encontrado?**
- Associado a minérios de ouro e cobre
- Subproduto da produção de chumbo
### **Polônio (Po)**
**Propriedades:**
- Símbolo: **Po**
- Número atômico: **84**
- Massa atômica: **[209]** (isótopo mais estável)
- Ponto de fusão: **254 °C**
- Ponto de ebulição: **962 °C**
- Eletronegatividade: **2,00**
- Estados de oxidação: **-2, +2, +4**
- Distribuição eletrônica: **[Xe] 4f14 5d10 6s2 6p4**
**Características:**
- Metal radioativo raro
- Emite partículas alfa intensamente
- Descoberto por Marie Curie (1898)
**Para que serve?**
- Fontes de nêutrons (Be + Po)
- Eliminador de estática (industrial)
- Armas nucleares (iniciador)
**Onde é encontrado?**
- Traços em minérios de urânio
- Produzido em reatores nucleares
### **Livermório (Lv) - Elemento Sintético**
```

Propriedades:
- Símbolo: **Lv**

- Número atômico: **116**
- Massa atômica: **[293]** (isótopo mais estável)
- Estado físico: **Sólido (previsto)**
- Eletronegatividade: **Desconhecida**
- Distribuição eletrônica: **[Rn] 5f¹⁴ 6d¹⁰ 7s² 7p^{4**} (prevista)
- **Características:**
- Altamente radioativo (meia-vida ~60 ms)
- Comportamento químico similar ao polônio
- Produzido em quantidades mínimas
- **Para que serve?**
- Pesquisa em física nuclear
- Estudo de elementos superpesados
- **Onde é encontrado?**
- Produzido em aceleradores de partículas
- Joint Institute for Nuclear Research (Rússia)

Comparação entre os Elementos do Grupo 6A

- **Evolução de Propriedades:**
- 1. **Oxigênio** → Gás vital (mais eletronegativo após o flúor)
- 2. **Enxofre** → Não-metal essencial para a vida
- 3. **Selênio** → Semimetal fotossensível
- 4. **Telúrio** → Semimetal semicondutor
- 5. **Polônio** → Metal radioativo perigoso
- 6. **Livermório** → Elemento artificial superpesado
- **Aplicações Chave:**
- **Oxigênio**: Medicina e indústria siderúrgica
- **Enxofre**: Produção de ácido sulfúrico (composto industrial mais importante)
- **Selênio**: Eletrônica e nutrição
- **Telúrio**: Tecnologia solar e ligas
- **Polônio**: Fontes de nêutrons
- **Livermório**: Pesquisa fundamental
- **Fatos Interessantes:**
- 1. O oxigênio é o 3º elemento mais abundante no universo
- 2. Enxofre era usado na Grécia Antiga como desinfetante
- 3. Selênio recebeu nome da deusa grega da Lua (Selene)
- 4. Telúrio foi usado para produzir o primeiro CD regravável
- 5. Polônio foi usado no assassinato de Alexander Litvinenko (2006)
- 6. Livermório homenageia o Lawrence Livermore National Laboratory

Conclusão sobre o Grupo 6A

Esta família apresenta:

- **Elementos vitais**: Oxigênio e enxofre essenciais para a vida
- **Tecnologia avançada**: Selênio e telúrio em aplicações eletrônicas
- **Riscos radioativos**: Polônio extremamente perigoso
- **Fronteira científica**: Livermório na pesquisa nuclear

O grupo 6A ilustra a transição de não-metais reativos (O, S) para semimetais tecnológicos (Se, Te) e metais radioativos (Po), mostrando como a configuração eletrônica ns² np⁴ se manifesta em propriedades químicas diversas, desde a bioquímica essencial até aplicações industriais de ponta e desafios de segurança nuclear.