Tiankuo Chu

(302) 803-9747

♀ Newark, DE, USA

in LinkedIn

TiankuoChu

OVERVIEW

Machine Learning Engineer | PhD in Medical AI | GenAI / LLM Infra / RAG / LoRA / MLOps | ICLR first author (ICLR 2025) | Led end-to-end deployment of production-grade LLMs system (Github Demo) | Passionate about scalable and trustworthy GenAI in healthcare and industrial domains.

EDUCATION

University of Delaware, Newark, DE, USA

Sep 2019 - Dec 2025 (expected)

Ph.D. candidate, Mechanical Engineering

GPA:3.96/4.0

Relevant graduate-level Computer Science courses: Machine Learning, Deep Learning, Data Structures and Algorithms

Beijing University of Chemical Technology, Beijing, China

Sep 2014 - May 2018 GPA:3.73/4.0 (Top 1%)

Bachelor of Engineering, Polymer Materials & Engineering

WORK EXPERIENCE

Dow, Houston, Texas *Machine Learning Engineer Intern*

May 2025 — Present

- GraphRAG + LoRA + vLLM System for Root-Cause Analysis & LLMOps Deployment
 - Designed and deployed a modular LLM pipeline combining LangChain, Graph-based RAG, FAISS, and LoRA-fine-tuned LLaMA 3-70B; deployed on SLURM-managed 7 × H100 HPC cluster with vLLM, supporting 1,000+ queries/hour with 45% latency reduction and 18% improvement in output faithfulness.
 - Built and validated "JudgeLLM", a modular LLM evaluator that scores LLM outputs on relevance, faithfulness, and accuracy; designed for integration with autonomous task chains and tool-using agents enabling self-reflective validation.
 - Engineered complete **LLMOps infrastructure**: containerized microservices using **FastAPI**, **Docker**, **and Kubernetes**; implemented GitHub Actions pipelines for CI/CD, model versioning, continual fine-tuning, and embedding refresh.
 - Collaborated effectively with HPC, TS&D, and UI teams to integrate with Dow's customer service platforms; enabling automated analysis of 18,000+ unresolved global complaints and yielding \$18 M/year in operational savings.
 - Open-sourced a standalone, end-to-end **demo version** of QA system **MediGraph-QA** (GitHub), adapted for single-GPU (A6000) deployment; demonstrates LoRA fine-tuning, GraphRAG retrieval, vLLM serving, and full MLOps automation.

Globus Medical, Audubon, Pennsylvania

Jun 2023 — Sep 2023

Software Engineer Intern

- Developed Scalable Data Pipelines for Multimodal Human Spine Medical Dataset Machine Learning Application
 - Engineered robust data pipelines handling over 10TB of real-world multimodal medical data collected from 6+ hospitals across the U.S., including X-ray, CT, MRI, and electronic medical records (EMRs). Implemented data validation, cleaning, standardization, and curation workflows to produce high-quality, structured datasets for downstream machine learning tasks across multiple R&D teams.
 - Built a Gradio-based annotation platform integrated with a pretrained YOLOv5 model, reducing manual data labeling time
 by > 90% and saving approximately \$30,000 in labeling costs.
- End-to-End ML Solution for Automated Spine Implant Detection and Classification
 - Designed and deployed an end-to-end machine learning pipeline using curated 10TB multimodal dataset and YOLOv5(PyTorch), targeting automated spinal implants detection and classification from X-ray images, achieving a 28% improvement in real-time detection accuracy over baseline methods and directly supporting pre-op and post-op surgical evaluations in robot-assisted spine surgeries. This model was successfully integrated into the FDA-cleared ExcelsiusHub® platform, launched by Globus Medical in 2024.

University of Delaware, Newark, DE *Research Assistant*

Sep 2019 — Present

- Led the Development of BoneMet: A Large-Scale AI-Ready Open-Source Multimodal Breast Cancer Bone Metastasis (BCBM)
 Medical Dataset
 - Directed a cross-functional team to create BoneMet, the first AI-ready, open-source multimodal murine medical dataset targeting Breast Cancer Bone Metastasis (BCBM). The dataset includes over 67TB of meticulously curated, spatial-temporally aligned multimodal data: 2D X-rays, 3D CT scans, and biological metadata. Released via Hugging Face with 5,000+ downloads in the first month. Project secured a competitive \$300K NIH research grant to support foundation model training and downstream clinical applications.
- Designed Custom Vision Transformer & Medical Foundation Model for MLLMs and GenAI Diagnosis
 - Engineered a novel Spatial-Temporal Aligned Vision Transformer (STA-ViT) with angle-aware and time-aware feature
 extraction, enabling robust multidimensional representation learning on BoneMet data. Integrated Masked Autoencoder
 (MAE) and Swin Transformer for self-supervised pretraining and supervised fine-tuning, improving early diagnosis
 accuracy by 10.1% and boosting model generalizability.
 - Developed and fine-tuned a Multimodal Vision-Language Model (LLaVA) combining STA-ViT as image encoder and LLaMA-2 as text decoder, trained on ROCO and BoneMet for medical image-text generation, demonstrating capability in early diagnostic report generation using prompt-based multimodal inference. This was accepted as a first-author paper paper at the top-tier International Conference on Learning Representations (ICLR 2025).

REPRESENTATIVE CONFERENCE PAPERS AND JOURNAL PAPERS

T. Chu, F. Lin, S. Wang, J. Jiang, W. Gong, X. Yuan, L. Wang, "BoneMet: An Open Large-Scale Multi-Modal Dataset for Breast Cancer Bone Metastasis Diagnosis and Prognosis", International Conference on Learning Representations (ICLR), 2025.

T. Chu, M. Collado, S. Izquierdo, E. Cooper, K. Shajpaul, C. James, S. McGriff, D. Wheeler, K. Ofori, H. Chow, Y. Kim, L. Wang, "Combined Senolytics and 11-Week Treadmill Running Reversed the Declining of Bone Tissue Mineral Density in Aged Mice with Parkinson Disease", Orthopaedic Research Society (ORS), 2025, **Oral**.

S. Wang, **T. Chu**, X. Yuan, L. Wang, "Prognostic Assessment of Bone Mechanical Properties with Metastatic Osteolysis Using Neural Network and Finite Element Analysis", **Mechanobiology in Medicine**, 2025.

T. Chu, M. Wasi, R. Guerra, X. Song, J. Mourtada, L. You, L. Wang, "Skeletal response to Yoda1 and whole-body vibration in mice varied with animal age, bone compartment, treatment duration, and radiation exposure", **Bone**, 2025, Bone.

M. Wasi, **T. Chu**, R. Guerra, R Kooker, K Maldonado, X Li, CY Lin, X Song, J. Xiong, L. You, L. Wang, "Mitigating aging and doxorubicin induced bone loss in mature mice via mechanobiology based treatments", Bone, 2024.

LATEST ACADEMIC HONORS & AWARDS

• Doctoral Fellowship for Excellence Award (Dean nominated, top 2)

2025

• Diana Jacobs Kalman/AFAR Scholarships for Research in the Biology of Aging

2025

CERTIFICATIONS & COURSES

- DeepLearning.AI: LangChain for LLM Application Development (2024)
- AWS Machine Learning Fundamentals (2023)
- Hugging Face Transformers Course (2023)

SKILLS

Programming: Python, SQL, C++

LLM & Deep Learning: PyTorch, Transformers, LLaMA, RAG, Prompt Engineering, LoRA, vLLM

MLOps & Infrastructure: Docker, Kubernetes, CI/CD (GitHub Actions), FastAPI, Flask, SLURM, AWS (EKS/SageMaker), Azure

Data & Libraries: Pandas, NumPy, Scikit-learn, OpenCV, FAISS

Systems: Unix/Linux