Санкт-Петербургский Государственный университет

Реализация алгоритма поиска путей в графовых базах данных через тензорное произведение на GPGPU

Орачев Егор Станиславович, 17.Б11-мм

Научный руководитель: доцент кафедры информатики, к.ф.-м.н. С.В. Григорьев Рецензент: разработчик биоинформатического ПО, ЗАО "БИОКАД" А.С. Хорошев

Программная инженерия

5 июня 2021

Введение

- Графовая модель данных
- Графовые базы данных
- Граф программы, потока управления, данных и т.д
- Запрос к графовой БД: ограничение на пути

Рисунок: Пример графовой БД

Запросы с КС ограничениями

- Мотивация: навигация в графе
- Пример: находятся ли вершины А и В на одном уровне иерархии?
- Применение: анализ RDF данных, биоинформатика, статический анализ кода
- Проблема: отсутствие поддержки КС запросов как в современных СУБД, так и в отдельных инструментах

Рисунок: Пример графа

Алгоритмы поиска путей с КС ограничениями

- На основе линейной алгебры:
 - Алгоритм Рустама Азимова
 - Алгоритм на основе тензорного произведения¹
- Операции: матричное умножение, поэлементное сложение, произведение Кронекера и т.д. для булевых значений
- Структура матриц: разреженная
- Для эффективной реализации требуется библиотека примитивов разреженной булевой линейной алгебры на GPU

¹Context-Free Path Querying by Kronecker Product, Egor Orachev, Ilya Epelbaum, Rustam Azimov, Semyon Grigorev. Дата обращения: 9.04.2021. Ссылка на статью: https://link.springer.com/chapter/10.1007/978-3-030-54832-2_6

Цель и задачи

Целью данной работы является реализация алгоритма поиска путей в графовых базах данных через тензорное произведение на GPGPU **Задачи**:

- Разработка архитектуры библиотеки примитивов разреженной линейной булевой алгебры для вычислений на GPGPU
- Реализация библиотеки в соответствии с разработанной архитектурой
- Реализация алгоритма поиска путей с КС ограничениями через тензорное произведение с использованием разработанной библиотеки
- Экспериментальное исследование полученных результатов

Требования к библиотеке

- Поддержка вычислений на Cuda-устройстве
- Поддержка вычислений на CPU
- С-совместимый АРІ для работы с библиотекой
- Python-пакет для работы с примитивами и операциями библиотеки в управляемой высокоуровневой среде языка Python
- Поддержка логирования, функций для отладки и прототипирования конечных пользовательских алгоритмов

Архитектура библиотеки

Рисунок: Архитектура разработанной библиотеки

Последовательность обработки операций

Рисунок: Последовательность выполнения вычислительной матричной операции на Nvidia GPU с использованием pycubool

Пример использования С АРІ

```
#include <cubool/cubool.h>
3 cuBool Status TransitiveClosure(cuBool_Matrix A, cuBool_Matrix* T) {
      cuBool_Matrix_Duplicate(A, T);
                                                           /* Копируем матрицу смежности A */
     cuBool_Index total = 0;
      cuBool_Index current;
      cuBool Matrix Nvals(*T, &current);
                                                           /* Количество ненулевых значений */
      while (current != total) {
                                                           /* Пока результат меняется */
          total = current:
          cuBool MxM(*T. *T. *T. CUBOOL HINT ACCUMULATE): /* T += T x T */
          cuBool Matrix Nvals(*T. &current):
16
      return CUBOOL STATUS SUCCESS:
17 }
```

Рисунок: Вычисление транзитивного замыкания для ориентированного графа без меток с использованием **сиBool C API**

Пример использования Python API

```
import pycubool

def transitive_closure(a: pycubool.Matrix):
    t = a.duplicate()  # Копируем матрицу смежности A
    total = 0  # Количество ненулевых значений результата

while total != t.nvals:  # Пока результат меняется
    total = t.nvals  # t += t x t

total = t.nvals  # t += t x t
```

Рисунок: Вычисление транзитивного замыкания для ориентированного графа без меток с использованием **pycubool**

Алгоритм поиска путей с КС ограничениями через тензорное произведение

Рисунок: Архитектура CFPQ-PyAlgo стенда, в котором доступна реализация алгоритма

Экспериментальное исследование

- Рабочая станция: Intel Core i7-6790, 3.40GHz, RAM DDR4 64Gb, GeForce GTX 1070 с 8Gb VRAM, OC Ubuntu 20.04
- Данные, необходимые для замеров, предварительно загружаются в RAM или VRAM в требуемом формате
- Исследовательские вопросы:
 - **B1**: Какова производительность отдельных операций реализованной библиотеки примитивов разреженной линейной булевой алгебры на GPGPU по сравнению с существующими аналогами?
 - **B2:** Какова производительность реализованного алгоритма поиска путей через тензорное произведение на GPGPU по сравнению с существующими аналогами, также полагающимися на примитивы линейной алгебры?

В1: Набор данных

Матрица М	Кол-во Строк R	$\operatorname{Nnz} M$	Nnz/R	$\operatorname{Max} \operatorname{Nnz}/R$	$\operatorname{Nnz} M^2$	Nnz $M + M^2$
wing	62,032	243,088	3.9	4	714,200	917,178
$luxembourg_osm$	114,599	239,332	2.0	6	393,261	632,185
amazon0312	400,727	3,200,400	7.9	10	14,390,544	14,968,909
amazon-2008	735,323	5,158,388	7.0	10	25,366,745	26,402,678
web-Google	916,428	5,105,039	5.5	456	29,710,164	30,811,855
roadNet-PA	1,090,920	3,083,796	2.8	9	7,238,920	9,931,528
roadNet-TX	1,393,383	3,843,320	2.7	12	8,903,897	12,264,987
belgium_osm	1,441,295	3,099,940	2.1	10	5,323,073	8,408,599
roadNet-CA	1,971,281	5,533,214	2.8	12	12,908,450	17,743,342
$netherlands_osm$	2,216,688	$4,\!882,\!476$	2.2	7	8,755,758	13,626,132

Рисунок: Разреженные матричные данные

В1: Матричное умножение

5 июня 2021

14 / 20

Рисунок: Поэлементное матричное умножение, время (t) в миллисекундах, память (m) в мегабайтах, отклонение в пределах 10%

В1: Поэлементное матричное сложение

5 июня 2021

15 / 20

Рисунок: Поэлементное матричное сложение, время (t) в миллисекундах, память (m) в мегабайтах, отклонение в пределах 10%

В2: Набор данных

Γ раф \mathcal{G}	V	E	Кол-во <i>sco</i>	Кол-во $type$	Кол-во bt	Кол-во а	Кол-во d
go-hierarchy	45 007	980 218	490 109	0	_	_	_
enzyme	48 815	109 695	8 163	14 989	_	_	_
eclass_514en	239 111	$523\ 727$	90 512	$72\ 517$	_	_	_
go	272 770	$534\ 311$	90 512	58 483	_	_	_
geospecies	450 609	$2\ 201\ 532$	0	89 062	20 867	_	_
taxonomy	5 728 398	$14\ 922\ 125$	2 112 637	$2\ 508\ 635$	_	_	_
arch	3 448 422	5 940 484	_	_	_	671 295	2 298 947
crypto	3 464 970	5 976 774	_	_	_	678 408	2 309 979
drivers	4 273 803	$7\ 415\ 538$	_	_	_	858 568	2 849 201
fs	4 177 416	7 218 746	_	_	_	824 430	2 784 943

Рисунок: RDF графы и графы программ для экспериментов

В2: Запросы с КС ограничениями

$$S \to \overline{subClassOf} \quad S \quad subClassOf \mid \overline{type} \quad S \quad type$$

$$\mid \overline{subClassOf} \quad subClassOf \mid \overline{type} \quad type$$
(1)

$$S \to \overline{subClassOf} \ S \ subClassOf | \ subClassOf$$
 (2)

$$S \rightarrow broaderTransitive \quad S \quad \overline{broaderTransitive}$$

$$\mid broaderTransitive \quad \overline{broaderTransitive}$$

$$(3)$$

$$S \to \overline{d} \ V \ d$$

$$V \to ((S?)\overline{a})^* (S?)(a(S?))^*$$
(4)

Рисунок: КС грамматики запросов для анализа. Запросы, для анализа RDF данных: G_1 (1), G_2 (2), G_{geo} (3), для анализа указателей в графах программ — G_{ma} (4).

B2: Анализ RDF данных

	G_1								G_2							
Γ раф \mathcal{G}	Tn	S_{gpu}	Tn	S_{cpu}	Mtz	ζ_{gpu}	Mtz	ζ_{cpu}	Tns	gpu	Tn	S_{cpu}	Mtx	gpu	Mt	X_{cpu}
	t	\mathbf{m}	t	\mathbf{m}	t	$^{\mathrm{m}}$	t	$^{\mathrm{m}}$	t	$^{\mathrm{m}}$	t	\mathbf{m}	t	$^{\mathrm{m}}$	t	\mathbf{m}
go-hierarchy	0.15	315	0.17	265	0.11	208	0.08	254	0.27	484	0.24	252	0.06	6	0.09	255
enzyme	0.02	9	0.04	137	0.01	<1	0.01	181	0.01	4	0.02	132	0.01	<1	0.01	181
eclass_514en	0.10	57	0.24	205	0.04	14	0.07	180	0.09	36	0.27	193	0.02	2	0.06	181
go	1.67	176	1.58	282	0.43	68	1.00	244	0.82	119	1.27	243	0.18	12	0.94	246
taxonomy	2.21	1266	4.42	2018	0.71	364	1.13	968	0.90	969	3.56	1776	0.24	91	0.72	1175

Рисунок: Анализ RDF данных с использованием запросов G_1 и G_2 , время (t) в секундах, память (m) в мегабайтах, отклонение в пределах 10%

5 июня 2021

В2: Анализ RDF данных

	G_1								G_2							
Γ раф \mathcal{G}	Tn	S_{gpu}	Tn	S_{cpu}	Mt	χ_{gpu}	Mtz	ζ_{cpu}	Tns	gpu	Tn	S_{cpu}	Mtx	gpu	Mt	X_{cpu}
	t	m	t	\mathbf{m}	t	m	t	$^{\mathrm{m}}$	t	$^{\mathrm{m}}$	t	\mathbf{m}	t	m	t	m
go-hierarchy	0.15	315	0.17	265	0.11	208	0.08	254	0.27	484	0.24	252	0.06	6	0.09	255
enzyme	0.02	9	0.04	137	0.01	<1	0.01	181	0.01	4	0.02	132	0.01	<1	0.01	181
$eclass_514en$	0.10	57	0.24	205	0.04	14	0.07	180	0.09	36	0.27	193	0.02	2	0.06	181
go	1.67	176	1.58	282	0.43	68	1.00	244	0.82	119	1.27	243	0.18	12	0.94	246
taxonomy	2.21	1266	4.42	2018	0.71	364	1.13	968	0.90	969	3.56	1776	0.24	91	0.72	1175

Рисунок: Анализ RDF данных с использованием запросов G_1 и G_2 , время (t) в секундах, память (m) в мегабайтах, отклонение в пределах 10%

Γ раф \mathcal{G}	Tns	S_{gpu}	Tn	S_{cpu}	Mt	\mathbf{x}_{gpu}	Mtx_{cpu}		
	t	\mathbf{m}	t	$^{ m m}$	t	m	t	\mathbf{m}	
geospecies	err	err	26.32	19537	1.17	5272	7.48	7645	

Рисунок: Анализ RDF данных с использованием запроса G_{geo} , время (t) в секундах, память (m) в мегабайтах, отклонение в пределах 10%

В2: Анализ указателей

Рисунок: Анализ указателей с использованием запроса G_{ma} , время (t) в секундах, память (m) в мегабайтах, отклонение в пределах 10%

Заключение

- Спроектирована библиотека примитивов линейной булевой алгебры для работы с разреженными данными на GPGPU
- Реализована библиотека сuBool² в соответствии с разработанной архитектурой, опубликован соответствующий python-пакет³

5 июня 2021

20 / 20

- С использованием pycubool peanизован алгоритм поиска путей с КС ограничениями через тензорное произведение
- Выполнено экспериментальное исследование полученных артефактов
- Результаты исследования были представлены на конференции GrAPL 2021⁴

Erop Opayes (CП6ГУ)
Tensor CFPQ GPGPU

³GitHub cuBool: https://github.com/JetBrains-Research/cuBool

³PyPI pycubool: https://pypi.org/project/pycubool/

⁴Workshop on Graphs, Architectures, Programming, and Learning: https://hpc.pnl.gov/grapl/