# CMPE 462 Assignment 1 Report

### Part 1

- Samples are randomly chosen from [-100,100) range for x and [-300,300) range for y. Range of y is 3 times that of x, in order to make sure the final plot looks full while the target function plot line is fully visible for that range.
- Random seed can be set by changing the global variable RANDOM\_SEED
  By default it is kept as None (numpy requests a random seed from os)
- Below are the results and plots for each step with RANDOM\_SEED=12345

#### Step 1

Finished calculation in 25 iterations

Calculated weights are: [ 0. 531.02365676 197.25030511]

Decision Boundary is y = -2.69x + -0.00



Step 2

Finished calculation in 119 iterations

Calculated weights are: [ -50. 1122.35262344 371.32963463]

Decision Boundary is y = -3.02x + 0.13

# Assignment 1 Part 1 Step 2 - 100 points



Step 3

Finished calculation in 23867 iterations

Calculated weights are: [-6418. 20547.05277251 6856.03386458]

Decision Boundary is y = -3.00x + 0.94

# Assignment 1 Part 1 Step 3 - 5000 points



### Part 1 Overview

When we check out above results, we can see that the decision boundary gets closer to the original target function as the number of sampled points are increased.

Also, as the number of sampled points are increased, PLA needs to make much more iterations to fully converge.

See below table for comparing above results.

Step Samples Iterations y = -3x + 11 50 25 y = -2.69x + -0.002 100 119 y = -3.02x + 0.133 5000 23867 y = -3.00x + 0.94

### Part 2

- Implemented closed form solution, so there will not be any loss over iterations graphs.
- Chose to apply 5-fold cross validation, this can be changed via the global variable, PART2\_S\_FOLD\_S\_VALUE
- Created a few supplementary graphs in order to get a better grasp of how well it predicts, and which lambda value to choose.

- Timing includes cross validation, but none of the extra-supplementary graph generations.
- Set PART2\_PLOT\_PREDICTIONS=True to create part2\_stepN\_predictions.png which shows predictions vs actual target values for each sample.
- Set PART2\_PLOT\_LAMBDA\_VALUES=True to create part2\_stepN\_regularization.png a graph of training & testing results (root mean square errors) over varying In-lambda value. This will be same for step2 and step3 as expected, because they are only varied by regularization.
- Chosen the lambda value for regularization as e^-10 yet it is neither beneficial nor harmful, as it seems.
- When we choose to do 2-fold cross validation instead, regularization becomes useful because of tolerating the lack of many training values causing over-fitting.
   But such analysis is out of this report's scope.
   If interested, one can set PART2\_S\_FOLD\_S\_VALUE=2 and PART2\_PLOT\_LAMBDA\_VALUES=True and run the program on part2, and check out the generated graph, part2\_stepN\_regularization.png.

#### Step 1

Applying 5-fold cross validation

There were 100 independent variables and 1 dependent variables

There were 1000 samples in total

Completed in 3.160 milliseconds

Average Erms\_train = 36.257771814312136

Average Erms\_test = 41.3584787667631

# Assignment 1 Part 2 Step 1 - Predictions - No Cross-Validation



Assignment 1 Part 2 Step 1 - Regularization - 5-Fold Cross-Validation



## Step 2

Applying 5-fold cross validation

There were 500 independent variables and 1 dependent variables

There were 1000 samples in total

Completed in 48.580 milliseconds

Average Erms\_train = 23.6657974544233

Average Erms\_test = 65.28337321386573

# Assignment 1 Part 2 Step 2 - Predictions - No Cross-Validation



Assignment 1 Part 2 Step 2 - Regularization - 5-Fold Cross-Validation



## Step 3

Applying 5-fold cross validation

There were 500 independent variables and 1 dependent variables

There were 1000 samples in total

Completed in 52.595 milliseconds

Average Erms\_train = 23.665797456855017

Average Erms\_test = 65.28335649367837





Assignment 1 Part 2 Step 3 - Regularization - 5-Fold Cross-Validation



Part 2 Overview

TODO