Reticulados Compactos Reticulados Criptograficamente Relevantes Decodificadores LWE Existentes Aplicação dos Decodificadores no Reticulado Barnes-Wall Referências

Reticulados Compactos e Decodificadores LWE

Ramon Ribeiro

Instituto de Computação - UNICAMP

01/10/2018

Reticulados Compactos Reticulados Criptograficamente Relevantes Decodificadores LWE Existentes Aplicação dos Decodificadores no Reticulado Barnes-Wall Referências

Tópicos

- Reticulados Compactos
- Reticulados Criptograficamente Relevantes
- Decodificadores LWE Existentes
- Aplicação dos Decodificadores no Reticulado Barnes-Wall
- Referências

Reticulados Compactos Reticulados Criptograficamente Relevantes Decodificadores LWE Existes Aplicação dos Decodificadores no Reticulado Barnes-Wall Referências

Empacotamento

Se denota como δ_n a maior densidade de empacotamento por esferas em R^n .

Sendo que um reticulado \mathcal{L}_n é um subgrupo de R^n , um reticulado perfeito seria aquele cuja densidade δ fosse igual a δ_n . Implicando em um base melhor para criptografia, visto que possuem as menores distancias possíveis entre vetores.

Reticulados Compactos Reticulados Criptograficamente Relevantes Decodificadores LWE Existes Aplicação dos Decodificadores no Reticulado Barnes-Wall Referências

Reticulados Perfeitos

dim.	Nr. of perfect lattices	Absolute maximum
		of γ realized by
2	1 (Lagrange)	A_{hex}
3	1 (Gauss)	A_3
4	2 (Korkine & Zolotareff)	D_4
5	3 (Korkine & Zolotareff)	D_5
6	7 (Barnes)	E_6
7	33 (Jaquet)	E_7
8	10916 (Dutour, Schürmann & Vallentin)	E_8

Reticulados com os Melhores Empacotamentos Conhecidos

Dim.	Simbolo	Nome
9	Λ ₉	Laminated lattice
10	K ₁₀	Coxeter Todd lattice
11	Λ_{11}	Laminated lattice
12	K ₁₂	Coxeter Todd lattice
16	BW ₁₆	Barnes-Wall lattice
24	Λ_{24}	Leech lattice

Reticulados Criptograficamente Relevantes

Dim.	Simbolo	Nome
8	E ₈	Perfect 8 dim. lattice
9	Λ ₉	Laminated lattice
16	BW ₁₆	Barnes-Wall lattice
24	Λ_{24}	Leech lattice

O Problema LWE

Para n, q inteiros positivos, χ uma distribuição de probabilidade em \mathbb{Z} e s um vetor secreto em \mathbb{Z}_a^n .

Denotamos, portanto, $L_{s,\chi}$ como a distribuição de probabilidade em $\mathbb{Z}_q^n \times \mathbb{Z}_q$, ao escolher $a \in \mathbb{Z}_q^n$ aleatória e uniformemente, escolhendo $e \in \mathbb{Z}$ de acordo com χ e considerando-o contido em \mathbb{Z}_q .

Obtendo:

$$(a,c) = (a,\langle a,s\rangle + e) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$$

Decision-LWE e Search-LWE

Decision-LWE

É o problema em decidir se os pares $(a,c) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ são obtidos de acordo com $L_{s,\mathcal{X}}$ ou a distribuição uniforme em $\mathbb{Z}_q^n \times \mathbb{Z}_q$

Decision-LWE e Search-LWE

Decision-LWE

É o problema em decidir se os pares $(a,c) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ são obtidos de acordo com $L_{s,\mathcal{X}}$ ou a distribuição uniforme em $\mathbb{Z}_q^n \times \mathbb{Z}_q$

Search-LWE

É o problema em recuperar **s** de $(a,c)=(a,\langle a,s\rangle+e)\in\mathbb{Z}_q^n x\mathbb{Z}_q$, obtido de $L_{s,\mathcal{X}}$

SIS - Short Interger Solutions (Decision-LWE)

Pode-se tentar encontrar um vetor pequeno ${\bf v}$ tal que ${\bf v.a=0}$, a fim de distinguir se m casos (a,c) seguem/pertencem a $L_{s,\mathcal{X}}$, e, portanto, satisfazem $c=\langle as \rangle + e$, ou se ${\bf c}$ é uniformemente aleatório.

SIS - Perspectiva de reticulados

Dessa perspectiva, procura-se obter um vetor \mathbf{v} no reticulado dual escalado (por \mathbf{q}) gerado por \mathbf{a} .

Considere $\langle v, c \rangle$, se c = as + e então $\langle v, c \rangle$ seguindo a distribuição gaussiana em \mathbb{Z} (mod. q). Do outro lado, se **c** for uniforme, então $\langle v, c \rangle$ é uniforme em \mathbb{Z}_q .

Deve-se manter ||v|| pequeno o suficiente para manter a distribuição gaussiana de $\langle v,e\rangle$ boa para se distinguir de distribuições aleatórias.

BDD - Bounded Distance Decoder (Search-LWE)

observar que ${\bf c}$ é próximo a uma combinação linear das colunas de ${\bf a}$. Além disso, o ruido é gaussiano, sendo que quase todo ele esta contido em três vezes o desvio padrão $(\frac{3\alpha q}{\sqrt{2\pi}})$. Logo, o problema seria achar o ponto w=as do qual ${\bf c}$ esta contido através do limitante. A partir disso recuperaremos ${\bf s}$ com álgebra linear.

Dadas amostras de (a, c) = (a, as + e) dentro de $L_{s, \mathcal{X}}$, pode-se

Reticulados Compactos Reticulados Criptograficamente Relevantes **Decodificadores LWE Existentes** Aplicação dos Decodificadores no Reticulado Barnes-Wall Referências

Solving for s (Search-LWE)

Usa uma estrategia similar a anterior, só que busca ${\bf s}$ diretamente, tal que $||a{\bf s}-c||$ seja mínimo.

BBD - Tipos de algoritmos (Search-LWE)

- Parallel Bounded Distance Decoding Algorithm Micciancio e Nicolosi
- List-Decoding Algorithm Grigorescu e Peikert†

Reticulado de Barnes-Wall

Sendo $\mathbb{G}=\mathbb{Z}+i\mathbb{Z}$ o grupo de inteiros gaussianos, definimos $\phi=1+i$ como o inteiro gaussiano de menor norma. Dessas definições, escreve-se o reticulado assim:

$$BW^n = \left[\begin{array}{cc} 1 & 1 \\ 0 & \phi \end{array} \right]^{\otimes n}.$$

Definindo $N=2^n$ como a dimensão do reticulado de Barnes-Wall, vê-se que ele possui distancia miníma $d_{min}(BW^n)=\sqrt{N}$, volume $V(BW^n)=\sqrt{N^N}$, e ganho nominal de código $\gamma_c(BW^n)=\sqrt{N}$.

Reticulado de Barnes-Wall

Definindo o produto de Kronecker deste modo:

$$\mathbf{A}\otimes\mathbf{B}=egin{bmatrix} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \ dots & \ddots & dots \ a_{m1}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix}$$

Temos que o reticulado pode ser representado assim:

$$BW^{n} = \begin{bmatrix} BW^{n-1} & BW^{n-1} \\ \mathbf{O} & \phi \cdot BW^{n-1} \end{bmatrix}$$

Parallel Bounded Distance Decoding Algorithm

O tempo de uso do algorítimo (paralelo), medido em termos de operações aritméticas é $O(Nlog^2N/\sqrt{p})$.

end if

15: end function

14:

Parallel Bounded Distance Decoding Algorithm

Algorithm 1 Parallel Bounded Distance Decoder (BDD) for Barnes-Wall Lattices 1: function ParbW(p, s) if p < 4 or $s \in \mathbb{C}^1$ then return SEQBW(0,s) 3: ▶ Run the sequential decoder from Section 3 4. else $[\mathbf{s}_0, \mathbf{s}_1] \leftarrow \mathbf{s}$ Split s into two halves \triangleright Compute T(s) $\begin{bmatrix} \mathbf{z}_0 \\ \mathbf{z}_1 \\ \mathbf{z}_- \\ \mathbf{z}_+ \end{bmatrix} \leftarrow \begin{bmatrix} \operatorname{ParBW}(p/4, \mathbf{s}_0) \\ \operatorname{ParBW}(p/4, \mathbf{s}_1) \\ \operatorname{ParBW}(p/4, \mathbf{s}_-) \\ \operatorname{ParBW}(p/4, \mathbf{s}_-) \\ \operatorname{ParBW}(p/4, \mathbf{s}_+) \end{bmatrix}$ Execute recursive calls in parallel $\begin{array}{l} \mathbf{z}_{0}^{-} \leftarrow [\mathbf{z}_{0}, \mathbf{z}_{0} - 2\phi^{-1} \, \mathbf{z}_{-}] \\ \mathbf{z}_{0}^{+} \leftarrow [\mathbf{z}_{0}, 2\phi^{-1} \, \mathbf{z}_{+} - \mathbf{z}_{0}] \\ \mathbf{z}_{1}^{-} \leftarrow [2\phi^{-1} \, \mathbf{z}_{-} + \mathbf{z}_{1}, \mathbf{z}_{1}] \\ \mathbf{z}_{1}^{+} \leftarrow [(2\phi^{-1} \, \mathbf{z}_{+} - \mathbf{z}_{1}, \mathbf{z}_{1}] \end{array}$ 10: 11: $\mathbf{z} = \operatorname*{argmin}_{\mathbf{z}' \in \{\mathbf{z}_0^-, \mathbf{z}_0^+, \mathbf{z}_0^-, \mathbf{z}_1^+, \mathbf{z}_1^+\}} \{\|\mathbf{s} - \mathbf{z}'\|\}$ 12: Select the candidate closest to s 13:

Parallel BDD - Sequential BDD

Algorithm 2 Sequential Bounded Distance Decoder for Barnes-Wall Lattices and Their Principal Sublattices

```
function SeqBW(r, s)
     if \mathbf{s} \in \mathbb{C}^N with N \leq 2^r then
           return \lceil \mathbf{s} \rceil \in \mathbb{G}^N
                                                           Round s component-wise to the closest Gaussian integer
     else
           \mathbf{b} \leftarrow [\Re(\mathbf{s})] + [\Im(\mathbf{s})] \mod 2
                                                                                      Compute binary target component-wise
           \rho = 1 - 2\max(|\Re(\mathbf{s}) - [\Re(\mathbf{s})]|, |\Im(\mathbf{s}) - [\Im(\mathbf{s})]|)
                                                                                            ▶ Compute the reliability information
                                                                                  \triangleright Component-wise pairing, i.e., t_i = (b_i, \rho_i)
           \mathbf{t} \leftarrow (\mathbf{b}, \boldsymbol{\rho})
           \psi(\mathbf{c}) \leftarrow \text{RMDEC}^{\psi}(r, \mathbf{t})
                                                                                 Call the Reed-Muller soft-decision decoder
           \mathbf{v} \leftarrow \text{SeqBW}(r+1, (\mathbf{s} - \psi(\mathbf{c}))/\phi)
           return \psi(\mathbf{c}) + \phi \mathbf{v}
     end if
end function
```

Parallel BDD - Definições

Cada vetor do reticulado BW^n pode ser unicamente representado assim:

$$v = \sum_{r=0}^{n-1} \phi^r \psi(c_r) + \phi^n c_n$$

em que $c_n \in \mathbb{G}^N$ e $c_r \in RM_r^n$, para r=0,1,...,n-1. Também tem-se que:

$$egin{cases} \psi(\mathbf{0}) = \mathbf{0} \ \psi(\mathbf{1}) = \mathbf{1} \ \psi([\mathbf{u}, \mathbf{u} \oplus \mathbf{v}]) = [\psi(\mathbf{u}), \psi(\mathbf{u}) + \psi(\mathbf{v})] \end{cases}$$

Parallel BBD - Soft Decision

```
Algorithm 3 Soft Decision Decoder for Reed-Muller Codes
   function RMDEC^{\psi}(r, t)
                                                                                              ▷ Input: r \ge 0, t \in (\{0, 1\} \times [0, 1])^N
        if r = 0 then
             if \sum_{b_i=0}^{} \rho_j > \sum_{b_i=1}^{} \rho_j then
                  return [0, ..., 0]
             else
                   return [1, ..., 1]
             end if
        else if N = 2^r then
             return [b_1, \ldots, b_N]
                                                                                                                       \triangleright where (b_i, \rho_i) = t_i
        else
             [\mathbf{t}^0, \mathbf{t}^1] \leftarrow \mathbf{t}
                                                                                                                        Split t into halves
             for j = 1, \dots, N/2 do
                  t_i^+ \leftarrow (b_i^0 \oplus b_i^1, \min(\rho_i^0, \rho_i^1))
                                                                                             \triangleright where (b_i^0, \rho_i^0) = t_i^0 and (b_i^1, \rho_i^1) = t_i^1
             end for
             \mathbf{v} \leftarrow \text{RMDec}^{\psi}(r-1, \mathbf{t}^+)
             for j = 1, ..., n/2 do
                   if b_i^0 \oplus b_i^1 = v_j \mod 2 then
                  t_j^- \leftarrow (b_j^0, (\rho_j^0 + \rho_j^1)/2) else
                        t_i^- = (b_i^0 \oplus \text{EVAL}(\rho_i^0 < \rho_i^1), |\rho_i^0 - \rho_i^1|/2) \Rightarrow where \text{EVAL}(\varphi) = 1 iff formula \varphi holds
                   end if
             end for
             \mathbf{u} \leftarrow \mathrm{RMdec}^{\phi}(r, \mathbf{t}^{-})
             return [u, u + v].
        end if
   end function
```

Reticulados Compactos Reticulados Criptograficamente Relevantes Decodificadores LWE Existentes Aplicação dos Decodificadores no Reticulado Barnes-Wall **Referências**

Referências

- Sphere packings and lattice sphere packings Mathieu Dutour Sikiric
- A Simple Construction for the Barnes-Wall Lattices
- Efficient Bounded Distance Decoders for Barnes-Wall Lattices
 - Daniele Micciancio and Antonio Nicolosi April 30, 2008
- List Decoding Barnes-Wall Lattices Elena Grigorescu and Chris Peikert April 10, 2012

Referências

- On the concrete hardness of Learning with Errors Martin R.
 Albrecht, Rachel Player, and Sam Scott
- On Lattices, Learning with Errors, Random Linear Codes, and Cryptography - Oded Regev May 2, 2009
- Post-Quantum Cryptography Daniel J. Bernstein and Johannes Buchmann (Lattice-based Cryptography Chapter)
- Lecture 3 CVP Algorithm Lecturer: Oded Regev