Package 'MetAlyzer'

December 6, 2024

```
Type Package
Title Read and Analyze 'MetIDQ™' Software Output Files
Version 1.1.0
Maintainer Nils Mechtel <nils.mech@gmail.com>
Depends R (>= 4.0.0)
Imports SummarizedExperiment, openxlsx, stringr, dplyr, tidyr, tibble,
      agricolae, ggplot2, ggrepel, utils, rlang, data.table,
      S4Vectors, viridis, viridisLite, plotly, limma
Description The 'MetAlyzer' S4 object provides methods to read and refor-
      mat metabolomics data for convenient data handling, statistics and downstream analysis. The re-
      sulting format corresponds to input data of the Shiny app 'MetaboEx-
      tract'(<https://www.metaboextract.shiny.dkfz.de/MetaboExtract/>).
License GPL-3
Encoding UTF-8
Language en-US
RoxygenNote 7.3.2
Suggests rmarkdown, knitr
VignetteBuilder knitr
URL https://github.com/nilsmechtel/MetAlyzer
BugReports https://github.com/nilsmechtel/MetAlyzer/issues
NeedsCompilation no
Author Nils Mechtel [aut, cre] (<a href="https://orcid.org/0000-0002-1278-7125">https://orcid.org/0000-0002-1278-7125</a>),
      Luis Herfurth [aut] (<a href="https://orcid.org/0009-0000-9933-3056">https://orcid.org/0009-0000-9933-3056</a>),
      Carolin Andresen [aut] (<a href="https://orcid.org/0000-0002-8960-7719">https://orcid.org/0000-0002-8960-7719</a>),
      Daniel Huebschmann [aut] (<a href="https://orcid.org/0000-0002-6041-7049">https://orcid.org/0000-0002-6041-7049</a>)
Repository CRAN
Date/Publication 2024-12-06 14:00:02 UTC
```

2 aggregatedData

Contents

Index		22
	updateMetaData	21
	summarizeQuantData	
	summarizeConcValues	
	renameMetaData	
	read_named_region	
	polarity	
	plot_network	
	plot_log2FC	
	plotly_vulcano	
	plotly_scatter	
	plotly_network	
	pathway	
	MetAlyzer_dataset	
	·	
	log2FC	
	filterMetaData	
	exportConcValues	
	example_mutation_data_xl	
	example_meta_data	
	example_extraction_data	
	calculate_log2FC	
	calculate_cv	
	calculate_anova	
	aggregatedData	

Description

This function returns the tibble "aggregated_data".

Usage

aggregatedData(metalyzer_se)

Arguments

metalyzer_se SummarizedExperiment

calculate_anova 3

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
aggregatedData(metalyzer_se)</pre>
```

calculate_anova

One-way ANOVA

Description

This method performs a one-way ANOVA on the grouped aggregated_data (the categorical variable is removed from grouping first). The vector of the categorical variable needs to have at least two levels after removing NAs from the dependent variable vector. Otherwise a vector of NA is returned. A Tukey post-hoc test is then used to determine group names, starting with "A" followed by further letters. These group names are added to aggregated_data in the column ANOVA_Group. Thereby, metabolites can be identified which are significantly higher in one or more of the categorical variable compared to all other for each metabolite.

Usage

```
calculate_anova(
  metalyzer_se,
  categorical,
  groups = NULL,
  impute_perc_of_min = 0.2,
  impute_NA = TRUE
)
```

Arguments

metalyzer_se A Metalyzer object

categorical A column defining the categorical variable

groups A vector of column names of aggregated_data to calculate the ANOVA group

wise. If the column does not exists in aggregated_data it is automatically added from meta data. The default value is set to NULL, which uses the existing

grouping of aggregated_data.

impute_perc_of_min

A numeric value below 1

impute_NA Logical value whether to impute NA values

Value

A data frame containing the log2 fold change for each metabolite

4 calculate_cv

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())</pre>
metalyzer_se <- renameMetaData(</pre>
  metalyzer_se,
  Extraction_Method = "Sample Description"
)
# reduced to only 'Acylcarnitines' (first metabolic class) for simplicity
drop_vec = unique(metalyzer_se@elementMetadata$metabolic_classes)[2:24]
metalyzer_se <- filterMetabolites(</pre>
  metalyzer_se,
  drop_metabolites = drop_vec
)
metalyzer_se <- filterMetaData(</pre>
  metalyzer_se,
  Tissue == "Drosophila"
)
metalyzer_se <- calculate_anova(</pre>
  metalyzer_se,
  categorical = "Extraction_Method",
  groups = c("Metabolite"),
  impute_perc_of_min = 0.2,
  impute_NA = TRUE
)
```

calculate_cv

Add mean, SD and CV

Description

This function calculates the mean, standard deviation (SD) and the coefficient of variation (CV) for each group and adds them to aggregated_data.

Usage

```
calculate_cv(
  metalyzer_se,
  groups = NULL,
  cv_thresholds = c(0.1, 0.2, 0.3),
  na.rm = TRUE
)
```

Arguments

metalyzer_se A

A Metalyzer object

groups

A vector of column names of aggregated_data to calculate mean, SD and CV group wise. If the column does not exists in aggregated_data it is automatically added from meta data. The default value is set to NULL, which uses the existing grouping of aggregated_data.

calculate_log2FC 5

cv_thresholds A numeric vector of upper thresholds (CV <= t) between 0 and 1 for CV cate-

gorization.

na.rm a logical evaluating to TRUE or FALSE indicating whether NA values should

be stripped before the computation proceeds.

Value

An updated aggregated_data tibble data frame

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
metalyzer_se <- renameMetaData(
    metalyzer_se,
    Extraction_Method = "Sample Description"
)
metalyzer_se <- filterMetaData(
    metalyzer_se,
    Tissue == "Drosophila"
)
metalyzer_se <- calculate_cv(
    metalyzer_se,
    groups = c("Tissue", "Extraction_Method", "Metabolite"),
    cv_thresholds = c(0.1, 0.2, 0.3),
    na.rm = TRUE
)</pre>
```

calculate_log2FC

Calculate log2 fold change

Description

This function calculates log2(FC), p-values, and adjusted p-values of the data using limma.

Usage

```
calculate_log2FC(
  metalyzer_se,
  categorical,
  impute_perc_of_min = 0.2,
  impute_NA = FALSE
)
```

Value

A data frame containing the log2 fold change for each metabolite

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl())
metalyzer_se <- filterMetabolites(
    metalyzer_se,
    drop_metabolites = "Metabolism Indicators"
)
metalyzer_se <- renameMetaData(
    metalyzer_se,
    Mutant_Control = "Sample Description"
)

metalyzer_se <- calculate_log2FC(
    metalyzer_se,
    categorical = "Mutant_Control",
    impute_perc_of_min = 0.2,
    impute_NA = FALSE
)</pre>
```

example_extraction_data

Get example extraction data

Description

This function returns the extraction_data_MxP_Quant_500.xlsx file path.

Usage

```
example_extraction_data()
```

Value

```
extraction_data_MxP_Quant_500.xlsx file path
```

```
fpath <- example_extraction_data()</pre>
```

example_meta_data 7

example_meta_data

Get example meta data

Description

This function returns the data frame loaded from example_meta_data.RDS.

Usage

```
example_meta_data()
```

Value

data frame loaded from example_meta_data.RDS

Examples

```
fpath <- example_meta_data()</pre>
```

```
example_mutation_data_xl
```

Get example mutation data

Description

This function returns the mutation_data_MxP_Quant_500_XL.xlsx file path.

Usage

```
example_mutation_data_x1()
```

Value

```
mutation_data_MxP_Quant_500_XL.xlsx file path
```

```
fpath <- example_mutation_data_xl()</pre>
```

8 filterMetabolites

exportConcValues

Export filtered raw data as csv

Description

This function exports the filtered raw data in the CSV format.

Usage

```
exportConcValues(metalyzer_se, ..., file_path = "metabolomics_data.csv")
```

Arguments

```
metalyzer_se SummarizedExperiment
... Additional columns from meta_data
file_path file path
```

Examples

 ${\it filter Metabolites}$

Filter metabolites

Description

This function filters out certain classes or metabolites of the metabolites vector. If aggregated_data is not empty, metabolites and class will also be filtered here.

Usage

```
filterMetabolites(
  metalyzer_se,
  drop_metabolites = c("Metabolism Indicators"),
  drop_NA_concentration = FALSE,
  drop_quant_status = NULL,
  min_percent_valid = NULL,
```

filterMetabolites 9

```
valid_status = c("Valid", "LOQ"),
  per_group = NULL,
  inplace = FALSE
)
```

Arguments

metalyzer_se SummarizedExperiment

drop_metabolites

A character vector defining metabolite classes or individual metabolites to be removed

drop_NA_concentration

A boolean whether to drop metabolites which have any NAs in their concentration value

drop_quant_status

A character, vector of characters or list of characters specifying which quantification status to remove. Metabolites with at least one quantification status of this vector will be removed.

min_percent_valid

A numeric lower threshold between 0 and 1 (t less than or equal to x) to remove invalid metabolites that do not meet a given percentage of valid measurements per group (default per Metabolite).

valid_status

A character vector that defines which quantification status is considered valid.

per_group

A character vector of column names from meta_data that will be used to split each metabolite into groups. The threshold 'min_percent_valid' will be applied for each group. The selected columns from meta_data will be added to aggregated_data.

inplace

If FALSE, return a copy. Otherwise, do operation inplace and return None.

Value

An updated SummarizedExperiment

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())</pre>
drop_metabolites <- c("C0", "C2", "C3", "Metabolism Indicators",</pre>
  inplace = TRUE
metalyzer_se <- filterMetabolites(metalyzer_se, drop_metabolites)</pre>
filterMetabolites(metalyzer_se, drop_metabolites, inplace = TRUE)
```

10 log2FC

filterMetaData

Filter meta data

Description

This function updates the "Filter" column in meta_data to filter out samples.

Usage

```
filterMetaData(metalyzer_se, ..., inplace = FALSE)
```

Arguments

```
metalyzer_se SummarizedExperiment
... Use 'col_name' and condition to filter selected variables.
inplace If FALSE, return a copy. Otherwise, do operation inplace and return None.
```

Value

An updated SummarizedExperiment

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
metalyzer_se <- filterMetaData(metalyzer_se, !is.na(Tissue))
metalyzer_se <- filterMetaData(metalyzer_se, `Sample Description` %in% 1:6)
# or
filterMetaData(metalyzer_se, !is.na(Tissue), inplace = TRUE)
filterMetaData(metalyzer_se, `Sample Description` %in% 1:6, inplace = TRUE)</pre>
```

log2FC

Get log2FC Data

Description

This function returns the tibble "log2FC".

Usage

```
log2FC(metalyzer_se)
```

```
metalyzer_se SummarizedExperiment
```

metalyzer_colors 11

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl())</pre>
metalyzer_se <- filterMetabolites(</pre>
 metalyzer_se,
  drop_metabolites = "Metabolism Indicators"
)
metalyzer_se <- renameMetaData(</pre>
  metalyzer_se,
  Mutant_Control = "Sample Description"
)
metalyzer_se <- calculate_log2FC(</pre>
  metalyzer_se,
  categorical = "Mutant_Control",
  impute_perc_of_min = 0.2,
  impute_NA = TRUE
)
log2FC(metalyzer_se)
```

metalyzer_colors

Get MetAlyzer colors

Description

This function returns the vector loaded from metalyzer_colors.RDS.

Usage

```
metalyzer_colors()
```

Value

data frame loaded from metalyzer_colors.RDS

```
fpath <- metalyzer_colors()</pre>
```

12 pathway

MetAlyzer_dataset

Open file and read data

Description

This function creates a SummarizedExperiment (SE) from the given 'MetIDQ' output Excel sheet: metabolites (rowData), meta data (colData), concentration data (assay), quantification status(assay) The column "Sample Type" and the row "Class" are used as anchor cells in the Excel sheet and are therefore a requirement.

Usage

```
MetAlyzer_dataset(
   file_path,
   sheet = 1,
   status_list = list(Valid = c("#B9DE83", "#00CD66"), LOQ = c("#B2D1DC", "#7FB2C5",
        "#87CEEB"), LOD = c("#A28BA3", "#6A5ACD"), `ISTD Out of Range` = c("#FFF099",
        "#FFFF33"), Invalid = "#FFFFCC", Incomplete = c("#CBD2D7", "#FFCCCC")),
        silent = FALSE
)
```

Arguments

file_path A character specifying the file path to the Excel file.

sheet A numeric index specifying which sheet of the Excel file to use.

status_list A list of HEX color codes for each quantification status.

silent If TRUE, mute any print command.

Value

A Summarized Experiment object

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())</pre>
```

pathway

Get pathway file path

Description

This function returns the pathway.xlsx file path.

Usage

```
pathway()
```

plotly_network 13

Value

pathway.xlsx file path

Examples

```
fpath <- pathway()</pre>
```

plotly_network

Plotly Log2FC Network Plot

Description

This function returns a list with interactive networkplot based on log2 fold change data.

Usage

```
plotly_network(
   metalyzer_se,
   q_value = 0.05,
   metabolite_node_size = 11,
   connection_width = 1.25,
   pathway_text_size = 20,
   pathway_width = 10,
   plot_height = 800
)
```

Arguments

Value

plotly object

14 plotly_scatter

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_x1())
metalyzer_se <- filterMetabolites(
    metalyzer_se,
    drop_metabolites = "Metabolism Indicators"
)
metalyzer_se <- renameMetaData(
    metalyzer_se,
    Mutant_Control = "Sample Description"
)

metalyzer_se <- calculate_log2FC(
    metalyzer_se,
    categorical = "Mutant_Control",
    impute_perc_of_min = 0.2,
    impute_NA = FALSE
)

p_network <- plotly_network(metalyzer_se, q_value = 0.05)</pre>
```

plotly_scatter

Plotly Log2FC Scatter Plot

Description

This function returns a list with an interactive scatterplot based on log2 fold change data and a comprehensive Legend.

Usage

```
plotly_scatter(
  metalyzer_se,
  signif_colors = c(`#5F5F5F` = 1, `#FEBF6E` = 0.1, `#EE5C42` = 0.05, `#8B1A1A` = 0.01),
  class_colors = metalyzer_colors()
)
```

Arguments

```
metalyzer_se A Metalyzer object
signif_colors signif_colors
class_colors A csv file containing class colors hexcodes
```

Value

plotly object

plotly_vulcano 15

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl())
metalyzer_se <- filterMetabolites(
    metalyzer_se,
    drop_metabolites = "Metabolism Indicators"
)
metalyzer_se <- renameMetaData(
    metalyzer_se,
    Mutant_Control = "Sample Description"
)
metalyzer_se <- calculate_log2FC(
    metalyzer_se,
    categorical = "Mutant_Control",
    impute_perc_of_min = 0.2,
    impute_NA = TRUE
)
p_scatter <- plotly_scatter(metalyzer_se)</pre>
```

plotly_vulcano

Plotly Log2FC Vulcano Plot

Description

This function returns a list with interactive vulcanoplot based on log2 fold change data.

Usage

```
plotly_vulcano(
  metalyzer_se,
  cutoff_y = 0.05,
  cutoff_x = 1.5,
  class_colors = metalyzer_colors()
)
```

Arguments

```
metalyzer_se A Metalyzer object

cutoff_y A numeric value specifying the cutoff for q-value

cutoff_x A numeric value specifying the cutoff for log2 fold change

class_colors A csv file containing class colors hexcodes
```

Value

plotly object

plot_log2FC

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl())</pre>
metalyzer_se <- filterMetabolites(</pre>
  metalyzer_se,
  drop_metabolites = "Metabolism Indicators"
)
metalyzer_se <- renameMetaData(</pre>
  metalyzer_se,
  Mutant_Control = "Sample Description"
metalyzer_se <- calculate_log2FC(</pre>
 metalyzer_se,
  categorical = "Mutant_Control",
  impute_perc_of_min = 0.2,
  impute_NA = TRUE
)
p_vulcano <- plotly_vulcano(metalyzer_se,</pre>
                         cutoff_y = 0.05,
                        cutoff_x = 1.5
```

plot_log2FC

Plot log2 fold change

Description

This method plots the log2 fold change for each metabolite.

Usage

```
plot_log2FC(
  metalyzer_se,
  signif_colors = c(`#5F5F5F` = 1, `#FEBF6E` = 0.1, `#EE5C42` = 0.05, `#8B1A1A` = 0.01),
  hide_labels_for = c(),
  class_colors = "MetAlyzer",
  polarity_file = "MxPQuant500",
  vulcano = FALSE
)
```

```
metalyzer_se A Metalyzer object
signif_colors signif_colors
hide_labels_for
vector of Metabolites or Classes for which no labels are printed
class_colors class_colors
polarity_file polarity_file
vulcano boolean value to plot a vulcano plot
```

plot_network 17

Value

ggplot object

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl())</pre>
metalyzer_se <- filterMetabolites(</pre>
  metalyzer_se,
  drop_metabolites = "Metabolism Indicators"
)
metalyzer_se <- renameMetaData(</pre>
  metalyzer_se,
  Mutant_Control = "Sample Description"
)
metalyzer_se <- calculate_log2FC(</pre>
  metalyzer_se,
  categorical = "Mutant_Control",
  impute_perc_of_min = 0.2,
  impute_NA = TRUE
)
# p_vulcano <- plot_log2FC(metalyzer_se, vulcano=TRUE)</pre>
# p_fc <- plot_log2FC(metalyzer_se, vulcano=FALSE)</pre>
```

plot_network

Plot Pathway Network

Description

This function plots the log2 fold change for each metabolite and visualizes it, in a pathway network.

Usage

```
plot_network(
  metalyzer_se,
  q_value = 0.05,
  metabolite_text_size = 3,
  connection_width = 0.75,
  pathway_text_size = 6,
  pathway_width = 4,
  scale_colors = c("green", "black", "magenta")
)
```

```
metalyzer_se A Metalyzer object
q_value The q-value threshold for significance
```

18 polarity

```
metabolite_text_size
The text size of metabolite labels

connection_width
The line width of connections between metabolites

pathway_text_size
The text size of pathway annotations

pathway_width
The line width of pathway-specific connection coloring

scale_colors
A vector of length 3 with colors for low, mid and high of the gradient.
```

Value

ggplot object

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl())
metalyzer_se <- filterMetabolites(
    metalyzer_se,
    drop_metabolites = "Metabolism Indicators"
)
metalyzer_se <- renameMetaData(
    metalyzer_se,
    Mutant_Control = "Sample Description"
)

metalyzer_se <- calculate_log2FC(
    metalyzer_se,
    categorical = "Mutant_Control",
    impute_perc_of_min = 0.2,
    impute_NA = FALSE
)

network <- plot_network(metalyzer_se, q_value = 0.05)</pre>
```

polarity

Get polarity file path

Description

This function returns the polarity.csv file path.

Usage

```
polarity()
```

Value

polarity.csv file path

read_named_region 19

Examples

```
fpath <- polarity()</pre>
```

read_named_region

Read Named Regions

Description

This function reads in the named regions of an excel file.

Usage

```
read_named_region(file_path, named_region)
```

Arguments

file_path

The file path of the file

named_region

The region name u want to read in

renameMetaData

Rename meta data

Description

This function renames a column of meta_data.

Usage

```
renameMetaData(metalyzer_se, ..., inplace = FALSE)
```

Arguments

metalyzer_se Summarize

SummarizedExperiment

... Use new_name = old_name to rename selected variables

inplace If FALSE, return a copy. Otherwise, do operation inplace and return None.

Value

An updated SummarizedExperiment

20 summarizeQuantData

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
metalyzer_se <- renameMetaData(
    metalyzer_se,
    Method = `Sample Description`
)
# or
renameMetaData(metalyzer_se, Model_Organism = Tissue, inplace = TRUE)</pre>
```

summarizeConcValues

Summarize concentration values

Description

This function prints quantiles and NAs of raw data.

Usage

```
summarizeConcValues(metalyzer_se)
```

Arguments

```
metalyzer_se SummarizedExperiment
```

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
summarizeConcValues(metalyzer_se)</pre>
```

summarizeQuantData

Summarize quantification status

Description

This function lists the number of each quantification status and its percentage.

Usage

```
summarizeQuantData(metalyzer_se)
```

```
metalyzer_se SummarizedExperiment
```

updateMetaData 21

Examples

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
summarizeQuantData(metalyzer_se)</pre>
```

updateMetaData

Update meta data

Description

This function adds another column to filtered meta_data.

Usage

```
updateMetaData(metalyzer_se, ..., inplace = FALSE)
```

Arguments

```
metalyzer_se SummarizedExperiment
... Use 'new_col_name = new_column' to rename selected variables
inplace If FALSE, return a copy. Otherwise, do operation inplace and return None.
```

Value

An updated SummarizedExperiment

```
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
metalyzer_se <- updateMetaData(
    metalyzer_se,
    Date = Sys.Date(), Analyzed = TRUE
)
# or
updateMetaData(
    metalyzer_se,
    Date = Sys.Date(), Analyzed = TRUE, inplace = TRUE
)</pre>
```

Index

```
{\tt aggregatedData}, \\ 2
calculate_anova, 3
calculate_cv, 4
{\tt calculate\_log2FC, 5}
\verb|example_extraction_data|, 6
example_meta_data, 7
example_mutation_data_x1,7
exportConcValues, 8
filterMetabolites, 8
filterMetaData, 10
log2FC, 10
metalyzer\_colors, 11
MetAlyzer_dataset, 12
pathway, 12
plot_log2FC, 16
plot_network, 17
plotly_network, 13
plotly_scatter, 14
plotly_vulcano, 15
polarity, 18
read_named_region, 19
renameMetaData, 19
summarizeConcValues, 20
summarizeQuantData, 20
update \texttt{MetaData}, \textcolor{red}{21}
```