Варіанти завдань до лабораторної роботи №3 (ПА-18-3)

Знайти наближений розв'язок крайової задачі

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + f(x,t), \quad x \in (0;1), \quad t > 0,$$

$$u(x,0) = \varphi(x), x \in [0;1],$$

$$u(0,t) = \eta(t), u(1,t) = \mu(t), t \ge 0.$$

№	$\eta(t)$	$\mu(t)$ ль	Точний розв'язок	
1	√ 5e ^{-t} BO	0 ДН $7e^{-t}$ 0 го	$(x^2 + x + 5)e^{-t}$	
2	$\sqrt{\frac{1}{1+t}}$ Ta		кор $\frac{x^2+1}{t+1}$ /ван	
3	0	$\frac{t+1}{t^2+1}$	$\frac{t+1}{t^2+1}x$	
4	e^{-t}	$\frac{\overline{t^2 + 1}}{e^{1-t}}$	e^{x-t}	
5	1	$t^{2} + 1$	$\frac{e^{x-t}}{x^2t^2+1}$	
6	2^{-t}	$3 \cdot 2^{-t}$	$2^{-t}3^x$	
7	$-\frac{1}{t+1}$	0	$\frac{x-1}{t+1}$	
8	$\cos t$	$1 + \cos t$	$x + \cos t$	
9	5	$2e^{-t} + 3$	$2e^{-xt} + 3$	
10	$\sin t$	$1 + \sin t$	$x^2 + \sin t$	
11	2 <i>t</i>	$\frac{1}{t+1} + 2t$	$\frac{x^2}{t+1} + 2t$	
природ 12	$\arcsin\left(\frac{1}{t+2}\right)$	$\arcsin(\frac{2}{t+2})$	$\arcsin(\frac{x+1}{t+2})$	
13	$\sin^2 t$	$\sin^2 t + \sin^2 1$	$\sin^2 t + \sin^2 x$	
14	$\frac{1}{t+1}$	$\frac{\cos 1}{t+1}$	$\frac{\cos x}{t+1}$	
15	$\sin t$	$\frac{1}{2}\sin t$	$\frac{\sin t}{t}$	
16	0	$t\sin^2 1$	$x+1$ $t\sin^2 x$	
			3	
17	$\frac{3}{t+1}$	$\frac{3}{t+2}$	$\frac{3}{t+x+1}$	
18	$1+\frac{1}{t+1}$	$\frac{1}{t+1}$	$\sqrt{1-x} + \frac{1}{t+1}$	
19	$\frac{8}{(t+1)^3}$	$(1+\frac{2}{t+1})^3$	$(x+\frac{2}{x})^3$	
20	V 0 Ta	$\frac{t+1}{t+2}$ ОДО	$\frac{t+1}{x(t+1)}$	
21	0	$\frac{3}{1+e^t}$	3	
22	t	$t \cdot \sqrt[3]{2}$	$\frac{\overline{x+e^t}}{t\cdot\sqrt[3]{1+x}}$	
23	0	$\sqrt{1+t}$	$(1-x^2)\sqrt{1+t}$	
24	t + 1	t + 1	t+1	
24	$\frac{t+1}{5}$	$3+2\cos 1$	$\frac{1}{3+2\cos x}$	
25	$t^{3}+1$	t^3e^2+1	$t^3e^{2x}+1$	

№	f(x,t)	$\varphi(x)$
1	$-(x^2+x+7)e^{-t}$	$x^2 + x + 5$
2	$-\frac{x^2+1}{(t+1)^2} - \frac{2}{t+1}$	х
3	та природокористування $\frac{1-2t-t^2}{\left(t^2+1\right)^2}x$	x
4	$-2e^{x-t}$	e^x
5	$2t(x^2-t)$	1
6	$-2^{-t}3^{x}(\ln 2 + \ln^{2} 3)$	3 ^x
7	$\frac{1-x}{(t+1)^2}$	x-1
8	$-\sin t$	x+1
9	$-4e^{-xt}$	5
10	$\cos t - 2$	x^2
11	$\frac{2t}{t+1} - \frac{x^2}{\left(t+1\right)^2}$	x^2
12	$-\frac{x+1}{t+2} \left(\frac{(t+2)^2 - (x+1)^2}{\sqrt{(t+2)^2 - (x+1)^2}} \right)^3 + \frac{1}{\sqrt{(t+2)^2 - (x+1)^2}} \right)$	$\arcsin(\frac{x+1}{t+2})$
13	sin 2t – 2 cos 2x ОДОКО DИСТ	$/B = \sin^2 x$
14	$\frac{t\cos x}{(t+1)^2}$	cos x
15	$\frac{\cos t}{x+1} - \frac{2\sin t}{\left(x+1\right)^3}$	0
16	$\sin^2 x - 2t \cos 2x$	0
17	$-\frac{3}{(t+x+1)^2} - \frac{6}{(t+x+1)^3}$	$\frac{3}{x+1}$
18	$-\frac{1}{(t+1)^2} + \frac{1}{4(\sqrt{1-x})^3}$	$1+\sqrt{1-x}$
19	$-\frac{6}{(t+1)^2}(x+\frac{2}{t+1})^2 - 6(x+\frac{2}{t+1})$ $\frac{x^2}{(t+x+1)^2} + \frac{2(t+1)^2}{(t+x+1)^3}$	$(x+2)^3$
20	$\frac{x^2}{(t+x+1)^2} + \frac{2(t+1)^2}{(t+x+1)^3}$	$\frac{x}{1+x}$

21	та природокористування $3e^t = \frac{6}{(x+e^t)^2}$	$\frac{3x}{x+1}$
22	$\sqrt[3]{1+x} + \frac{2t}{9(1+x)^{\frac{5}{3}}}$	0
23	$\frac{1 - x^2}{2\sqrt{1 + t}} + 2\sqrt{1 + t}$	$1-x^2$
24	$\frac{1}{3+2\cos x} - \frac{2(t+1)(3\cos x + 2)}{(3+2\cos x)^3}$	$\frac{1}{3+2\cos x}$
25	$t^2e^{2x}(3-4t)$	1