Assignment #4

Name:Feng Liu CWID:10446406

Gnuplot:

set xlabel "Array size"

set ylabel "Microseconds"

set yrange[0:40000]

set key right top

set key box

set key spacing 1.5

plot "LiuF_4.dat" using 1:2 with lines lw 2 lc "red" title "non-priority", "1.dat" using 1:6 with lines lw 2 lc "pink" title "max-priority", "1.dat" using 1:10 with lines lw 2 lc "blue" title "min-priority"

The output of my code(same as the file LiuF_4.dat):

Ē	☐ CPE593_2020S011 ×													
	/Users/fengliu/CLionProjects/CPE593_2020S/cmake-build-debug/CPE593_2020S011													
	A					В				C				
\downarrow	#n	AveTime	n/3	2n/3		AveTime	n/3	2n/3	n	AveTime	n/3	2n/3	n	
큵	10	214.2	66	213	475	172.5	36	147	475	350	264	416	475	
	110	2559.79	1578	3293	5092	1700.91	598.927	2167.96	5104	3437.6	2874.93	4474.96	5104	
₹	210	4879.83	3310	6407	9802	3089.79	876.333	4046.67	9824	6759.1	5777.33	8947.67	9824	
륨	310	7535.47	4948	9960	15264	5189.76	1805.96	6855.93	15297	10123.7	8376.96	13458.9	15297	
=	410	10395.8	6658	13951	21232	7162.4	2431.6	9517.3	21276	14121.6	11689.6	18812.3	21279	
•	510	12559.2	8694	16520	24968	8241.55	2710	10941	25022	16775.6	14081.3	22312.7	25023	
	610	15230.9	10474	20099	29935	9952.54	3291.96	13245.9	30001	20031.8	16689.3	26676.6	30002	
	710	16808	11081	22182	34711	11508.5	3863.93	15218	34789	23251.6	19504.3	30894.6	34790	
	810	20890.6	13583	28330	41999	14411.4	5211.67	19282.3	42085	27639.7	22811	36890	42110	
	910	23552.7	15490	31504	47286	16009.1	5410.3	21480.6	47386	31329.1	25837	41940.9	47388	
	1010	26183	17537	34847	51801	17596.9	6256.93	23500	51909	34255.6	28342.6	45617.3	51911	
	Process	finished w	ith exit co	ode 0										

My observation from data and from the plots:

Average queueing time of array B is the least. And when the elements number is the maxium, the waiting time of 3 arrays almost same. So do the job in the order of max-priority is the most efficient.

From the data and the plot, quick sorting is really an excellent algorithm.