

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
25 October 2001 (25.10.2001)

PCT

(10) International Publication Number
WO 01/80015 A2

- (51) International Patent Classification⁷: **G06F 12/00**
- (21) International Application Number: **PCT/US01/12615**
- (22) International Filing Date: 18 April 2001 (18.04.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
09/551,113 18 April 2000 (18.04.2000) US
- (71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 San Antonio Road, Palo Alto, CA 94303 (US).
- (72) Inventors: MARTIN, Paul, A.; 70 Ronald Road, Arlington, MA 02474 (US). DETLEFS, David, L.; 94 Depot Street, Westford, MA 01886 (US). GARTHWAITE, Alexander, T.; 2 Burton Avenue, Beverly, MA 01915 (US). STEELE, Guy, L., Jr.; 9 Lantern Lane, Lexington, MA 02421 (US). MOIR, Mark, S.; 108 Liberty Road #2, Somerville, MA 02144 (US).
- (74) Agent: O'BRIEN, David, W.; Zagorin, O'Brien & Graham, LLP, Suite 870, 401 West 15th Street, Austin, TX 78701 (US).
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: CONCURRENT SHARED OBJECT IMPLEMENTED USING A LINKED-LIST WITH AMORTIZED NODE ALLOCATION

(57) Abstract: The Hat Trick deque requires only a single DCAS for most pushes and pops. The left and right ends do not interfere with each other until there is one or fewer items in the queue, and then a DCAS adjudicates between competing pops. By choosing a granularity greater than a single node, the user can amortize the costs of adding additional storage over multiple push (and pop) operations that employ the added storage. A suitable removal strategy can provide similar amortization advantages. The technique of leaving spare nodes linked in the structure allows an indefinite number of pushes and pops at a given deque end to proceed without the need to invoke memory allocation or reclamation so long as the difference between the number of pushes and the number of pops remains within given bounds. Both garbage collection dependent and explicit reclamation implementations are described.

WO 01/80015 A2

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

CONCURRENT SHARED OBJECT IMPLEMENTED USING A LINKED-LIST WITH AMORTIZED NODE ALLOCATION**Technical Field**

The present invention relates generally to coordination amongst execution sequences in a multiprocessor computer, and more particularly, to structures and techniques for facilitating non-blocking access to concurrent shared objects.

Background Art

An important abstract data structure in computer science is the “double-ended queue” (abbreviated “deque” and pronounced “deck”), which is a linear sequence of items, usually initially empty, that supports the four operations of inserting an item at the left-hand end (“left push”), removing an item from the left-hand end (“left pop”), inserting an item at the right-hand end (“right push”), and removing an item from the right-hand end (“right pop”).

Sometimes an implementation of such a data structure is shared among multiple concurrent processes, thereby allowing communication among the processes. It is desirable that the data structure implementation behave in a linearizable fashion; that is, as if the operations that are requested by various processes are performed atomically in some sequential order.

One way to achieve this property is with a mutual exclusion lock (sometimes called a semaphore). For example, when any process issues a request to perform one of the four deque operations, the first action is to acquire the lock, which has the property that only one process may own it at a time. Once the lock is acquired, the operation is performed on the sequential list; only after the operation has been completed is the lock released. This clearly enforces the property of linearizability.

However, it is generally desirable for operations on the left-hand end of the deque to interfere as little as possible with operations on the right-hand end of the deque. Using a mutual exclusion lock as described above, it is impossible for a request for an operation on the right-hand end of the deque to make any progress while the deque is locked for the purposes of performing an operation on the left-hand end. Ideally, operations on one end of the deque would never impede operations on the other end of the deque unless the deque were nearly empty (containing two items or fewer) or, in some implementations, nearly full.

In some computational systems, processes may proceed at very different rates of execution; in particular, some processes may be suspended indefinitely. In such circumstances, it is highly desirable for the implementation of a deque to be “non-blocking” (also called “lock-free”); that is, if a set of processes are using a deque and an arbitrary subset of those processes are suspended indefinitely, it is always still possible for at least one of the remaining processes to make progress in performing operations on the deque.

Certain computer systems provide primitive instructions or operations that perform compound operations on memory in a linearizable form (as if atomically). The VAX computer, for example, provided instructions to directly support the four deque operations. Most computers or processor architectures provide

- 2 -

simpler operations, such as "test-and-set"; (IBM 360), "fetch-and-add" (NYU Ultracomputer), or "compare-and-swap" (SPARC). SPARC® architecture based processors are available from Sun Microsystems, Inc., Mountain View, California. SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC 5 trademarks are based upon an architecture developed by Sun Microsystems.

The "compare-and-swap" operation (CAS) typically accepts three values or quantities: a memory address A, a comparison value C, and a new value N. The operation fetches and examines the contents V of memory at address A. If those contents V are equal to C, then N is stored into the memory location at address A, replacing V. Whether or not V matches C, V is returned or saved in a register for later inspection. All this 10 is implemented in a linearizable, if not atomic, fashion. Such an operation may be notated as "CAS(A, C, N)".

Non-blocking algorithms can deliver significant performance benefits to parallel systems. However, there is a growing realization that existing synchronization operations on single memory locations, such as compare-and-swap (CAS), are not expressive enough to support design of efficient non-blocking algorithms. As a result, stronger synchronization operations are often desired. One candidate among such operations is a 15 double-word ("extended") compare-and-swap (implemented as a CASX instruction in some versions of the SPARC architecture), which is simply a CAS that uses operands of two words in length. It thus operates on two memory addresses, but they are constrained to be adjacent to one another. A more powerful and convenient operation is "double compare-and-swap" (DCAS), which accepts six values: memory addresses A1 and A2, comparison values C1 and C2, and new values N1 and N2. The operation fetches and examines the 20 contents V1 of memory at address A1 and the contents V2 of memory at address A2. If V1 equals C1 and V2 equals C2, then N1 is stored into the memory location at address A1, replacing V1, and N2 is stored into the memory location at address A2, replacing V2. Whether or not V1 matches C1 and whether or not V2 matches C2, V1 and V2 are returned or saved in a registers for later inspection. All this is implemented in a linearizable, if not atomic, fashion. Such an operation may be notated as "DCAS(A1, A2, C1, C2, N1, N2)".

25 Massalin and Pu disclose a collection of DCAS-based concurrent algorithms. See e.g., H. Massalin and C. Pu, *A Lock-Free Multiprocessor OS Kernel*, Technical Report TR CUCS-005-9, Columbia University, New York, NY, 1991, pages 1-19. In particular, Massalin and Pu disclose a lock-free operating system kernel based on the DCAS operation offered by the Motorola 68040 processor, implementing structures such as stacks, FIFO-queues, and linked lists. Unfortunately, the disclosed algorithms are centralized in nature. In 30 particular, the DCAS is used to control a memory location common to all operations and therefore limits overall concurrency.

Greenwald discloses a collection of DCAS-based concurrent data structures that improve on those of Massalin and Pu. See e.g., M. Greenwald, *Non-Blocking Synchronization and System Design*, Ph.D. thesis, Stanford University Technical Report STAN-CS-TR-99-1624, Palo Alto, CA, 8 1999, 241 pages. In 35 particular, Greenwald discloses implementations of the DCAS operation in software and hardware and discloses two DCAS-based concurrent double-ended queue (dequeue) algorithms implemented using an array. Unfortunately, Greenwald's algorithms use DCAS in a restrictive way. The first, described in Greenwald,

5 *Non-Blocking Synchronization and System Design*, at pages 196-197, uses a two-word DCAS as if it were a three-word operation, storing two deque end pointers in the same memory word, and performing the DCAS operation on the two-pointer word and a second word containing a value. Apart from the fact that Greenwald's algorithm limits applicability by cutting the index range to half a memory word, it also prevents concurrent access to the two ends of the deque. Greenwald's second algorithm, described in Greenwald, *Non-Blocking Synchronization and System Design*, at pages 217-220, assumes an array of unbounded size, and does not deal with classical array-based issues such as detection of when the deque is empty or full.

10 Arora et al. disclose a CAS-based deque with applications in job-stealing algorithms. See e.g., N. S. Arora, Blumofe, and C. G. Plaxton, *Thread Scheduling For Multiprogrammed Multiprocessors*, in *Proceedings of the 10th Annual ACM Symposium on Parallel Algorithms and Architectures*, 1998. Unfortunately, the disclosed non-blocking implementation restricts one end of the deque to access by only a single processor and restricts the other end to only pop operations.

15 Accordingly, improved techniques are desired that provide linearizable and non-blocking (or lock-free) behavior for implementations of concurrent shared objects such as a deque, and which do not suffer from the above-described drawbacks of prior approaches.

DISCLOSURE OF THE INVENTION

20 A set of structures and techniques are described herein whereby an exemplary concurrent shared object, namely a double-ended queue (deque), is implemented. Although non-blocking, linearizable deque implementations exemplify several advantages of realizations in accordance with the present invention, the present invention is not limited thereto. Indeed, based on the description herein and the claims that follow, persons of ordinary skill in the art will appreciate a variety of concurrent shared object implementations. For example, although the described deque implementations exemplify support for concurrent push and pop operations at both ends thereof, other concurrent shared objects implementations in which concurrency requirements are less severe, such as LIFO or stack structures and FIFO or queue structures, may also be implemented using the techniques described herein. Accordingly, subsets of the functional sequences and techniques described herein for exemplary deque realizations may be employed to support any of these simpler structures.

25 Furthermore, although various non-blocking, linearizable deque implementations described herein employ a particular synchronization primitive, namely a double compare and swap (DCAS) operation, the present invention is not limited to DCAS-based realizations. Indeed, a variety of synchronization primitives may be employed that allow linearizable, if not atomic, update of at least a pair of storage locations. In general, N-way Compare and Swap (NCAS) operations ($N \geq 2$) may be employed.

30 Choice of an appropriate synchronization primitive is typically affected by the set of alternatives available in a given computational system. While direct hardware- or architectural-support for a particular primitive is preferred, software emulations that build upon an available set of primitives may also be suitable for a given implementation. Accordingly, any synchronization primitive that allows the access and spare node

maintenance operations described herein to be implemented with substantially equivalent semantics to those described herein is suitable.

Accordingly, a novel linked-list-based concurrent shared object implementation has been developed that provides non-blocking and linearizable access to the concurrent shared object. In an application of the underlying techniques to a deque, non-blocking completion of access operations is achieved without restricting concurrency in accessing the deque's two ends. While providing the a non-blocking and linearizable implementation, embodiments in accordance with the present invention combine some of the most attractive features of array-based and linked-list-based structures. For example, like an array-based implementation, addition of a new element to the deque can often be supported without allocation of additional storage.

However, when spare nodes are exhausted, embodiments in accordance with the present invention allow expansion of the linked-list to include additional nodes. The cost of splicing a new node into the linked-list structure may be amortized over the set of subsequent push and pop operations that use that node to store deque elements. Some realizations also provide for removal of excess spare nodes. In addition, an explicit reclamation implementation is described, which facilitates use of the underlying techniques in environments or applications where automatic reclamation of storage is unavailable or impractical.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings.

FIG. 1 depicts an illustrative state of a linked-list structure encoding a double-ended queue (deque) in accordance with an exemplary embodiment of the present invention.

FIG. 2 depicts an empty deque state of a linked-list structure encoding a double-ended queue (deque) in accordance with an exemplary embodiment of the present invention.

FIGS. 3A and 3B depict illustrative states of a linked-list structure encoding a deque in accordance with an exemplary embodiment of the present invention. **FIG. 3A** depicts the state before a synchronization operation of a `push_right` operation; while **FIG. 3B** depicts the state after success of the synchronization operation.

FIG. 4 depicts a state of a linked-list structure in which spare nodes are unavailable to support a `push_right` operation on a deque.

FIGS. 5A and 5B depict illustrative states of a linked-list structure encoding a deque in accordance with an exemplary embodiment of the present invention. **FIG. 5A** depicts the state before a synchronization operation of a `pop_right` operation; while **FIG. 5B** depicts the state after success of the synchronization operation.

FIG. 6 depicts a nearly empty deque state of a linked-list structure encoding a double-ended queue (deque) in accordance with an exemplary embodiment of the present invention. Competing `pop_left` and `pop_right` operations contend for the single node of the nearly empty deque.

5 FIG. 7 depicts identification of the likely right tail of a linked-list structure encoding a double-ended queue (deque) in accordance with an exemplary embodiment of the present invention.

FIG. 8 depicts the state of a linked-list structure encoding a deque before a synchronization operation of an `add_right_nodes` operation in accordance with an exemplary embodiment of the present invention.

FIG. 9 depicts the state of a linked-list structure of FIG. 8 after success of the synchronization operation of the `add_right_nodes` operation.

10 FIGS. 10A, 10B, 10C, 10D, 10E and 10F illustrate various exemplary states of a linked-list structure encoding a deque in accordance with some embodiments of the present invention.

FIG. 11 illustrates a linked-list state after successful completion of a `remove_right(0)` spare node maintenance operation in accordance with some embodiments of the present invention.

15 FIG. 12 illustrates a possible linked-list state after successful completion of an `add_right(2)` spare node maintenance operation in accordance with some embodiments of the present invention.

FIG. 13 illustrates a possible spur creation scenario addressed by some embodiments of the present invention.

FIG. 14 illustrates a resultant linked-list state after successful completion of an `unspur_right` operation in accordance with some embodiments of the present invention.

20 FIG. 15 depicts a shared memory multiprocessor configuration that serves as a useful illustrative environment for describing operation of some shared object implementations in accordance with the present invention.

The use of the same reference symbols in different drawings indicates similar or identical items.

DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

25 The description that follows presents a set of techniques, objects, functional sequences and data structures associated with concurrent shared object implementations employing linearizable synchronization operations in accordance with an exemplary embodiment of the present invention. An exemplary non-blocking, linearizable concurrent double-ended queue (deque) implementation that employs double compare-and-swap (DCAS) operations is illustrative. A deque is a good exemplary concurrent shared object
30 implementation in that it involves all the intricacies of LIFO-stacks and FIFO-queues, with the added complexity of handling operations originating at both of the deque's ends. Accordingly, techniques, objects,

functional sequences and data structures presented in the context of a concurrent deque implementation will be understood by persons of ordinary skill in the art to describe a superset of support and functionality suitable for less challenging concurrent shared object implementations, such as LIFO-stacks, FIFO-queues or concurrent shared objects (including deques) with simplified access semantics.

5 In view of the above, and without limitation, the description that follows focuses on an exemplary linearizable, non-blocking concurrent deque implementation that behaves as if access operations on the deque are executed in a mutually exclusive manner, despite the absence of a mutual exclusion mechanism. Advantageously, and unlike prior approaches, deque implementations in accordance with some embodiments of the present invention are dynamically-sized and allow concurrent operations on the two ends of the deque to 10 proceed independently. Since synchronization operations are relatively slow and/or impose overhead, it is generally desirable to minimize their use. Accordingly, one advantage of some implementations in accordance with the present invention is that in typical execution paths of both access and spare node maintenance operations, only a single synchronization operation is required.

Computational Model

15 One realization of the present invention is as a deque implementation employing the DCAS operation on a shared memory multiprocessor computer. This realization, as well as others, will be understood in the context of the following computation model, which specifies the concurrent semantics of the deque data structure.

20 In general, a *concurrent system* consists of a collection of n *processors*. Processors communicate through shared data structures called *objects*. Each object has an associated set of primitive *operations* that provide the mechanism for manipulating that object. Each processor P can be viewed in an abstract sense as a sequential thread of control that applies a sequence of operations to objects by issuing an invocation and receiving the associated response. A *history* is a sequence of invocations and responses of some system execution. Each history induces a “real-time” order of operations where an operation A *precedes* another 25 operation B, if A’s response occurs before B’s invocation. Two operations are *concurrent* if they are unrelated by the real-time order. A *sequential history* is a history in which each invocation is followed immediately by its corresponding response. The *sequential specification* of an object is the set of *legal* sequential histories associated with it. The basic correctness requirement for a concurrent implementation is *linearizability*, which requires that every concurrent history is “equivalent” to some legal sequential history which is consistent with 30 the real-time order induced by the concurrent history. In a linearizable implementation, an operation appears to take effect atomically at some point between its invocation and response. In the model described herein, the collection of shared memory locations of a multiprocessor computer’s memory (including location L) is a linearizable implementation of an object that provides each processor P_i with the following set of sequentially specified machine operations:

35 $Read_i(L)$ reads location L and returns its value.

$Write_i(L, v)$ writes the value v to location L .

DCAS_i(L1, L2, o1, o2, n1, n2) is a double compare-and-swap operation with the semantics described below.

Implementations described herein are *non-blocking* (also called *lock-free*). Let us use the term *higher-level operations* in referring to operations of the data type being implemented, and *lower-level operations* in referring to the (machine) operations in terms of which it is implemented. A non-blocking implementation is one in which, even though individual higher-level operations may be delayed, the system as a whole continuously makes progress. More formally, a *non-blocking* implementation is one in which any infinite history containing a higher-level operation that has an invocation but no response must also contain infinitely many responses. In other words, if some processor performing a higher-level operation continuously takes steps and does not complete, it must be because some operations invoked by other processors are continuously completing their responses. This definition guarantees that the system as a whole makes progress and that individual processors cannot be blocked, only delayed by other processors continuously taking steps. Using locks would violate the above condition, hence the alternate name: *lock-free*.

Double Compare-and-Swap Operation

Double compare-and-swap (DCAS) operations are well known in the art and have been implemented in hardware, such as in the Motorola 68040 processor, as well as through software emulation. Accordingly, a variety of suitable implementations exist and the descriptive code that follows is meant to facilitate later description of concurrent shared object implementations in accordance with the present invention and not to limit the set of suitable DCAS implementations. For example, order of operations is merely illustrative and any implementation with substantially equivalent semantics is also suitable. Similarly, some formulations (such as described above) may return previous values while others may return success/failure indications. The illustrative formulation that follows is of the latter type. In general, any of a variety of formulations are suitable.

```

25      boolean DCAS(val *addr1, val *addr2,
                     val old1, val old2,
                     val new1, val new2) {
    atomically {
        if ((*addr1==old1) && (*addr2==old2)) {
            *addr1 = new1;
            *addr2 = new2;
            return true;
        } else {
            return false;
        }
    }
}

```

The above sequences of operations implementing the DCAS operation are executed atomically using support suitable to the particular realization. For example, in various realizations, through hardware support (e.g., as implemented by the Motorola 68040 microprocessor or as described in M. Herlihy and J. Moss, 40 *Transactional memory: Architectural Support For Lock-Free Data Structures*, Technical Report CRL 92/07, Digital Equipment Corporation, Cambridge Research Lab, 1992, 12 pages), through non-blocking software

- 8 -

emulation (such as described in G. Barnes, *A Method For Implementing Lock-Free Shared Data Structures*, in *Proceedings of the 5th ACM Symposium on Parallel Algorithms and Architectures*, pages 261–270, June 1993 or in N. Shavit and D. Touitou, *Software transactional memory, Distributed Computing*, 10(2):99–116, February 1997), or via a blocking software emulation.

5 Although the above-referenced implementations are presently preferred, other DCAS implementations that substantially preserve the semantics of the descriptive code (above) are also suitable. Furthermore, although much of the description herein is focused on double compare-and-swap (DCAS) operations, it will be understood that N-location compare-and-swap operations ($N \geq 2$) or transactional memory may be more generally employed, though often at some increased overhead.

10 **A Double-ended Queue (Deque)**

15 A *deque* object S is a concurrent shared object, that in an exemplary realization is created by an operation of a constructor operation, e.g., `make_deque()`, and which allows each processor P_i , $0 \leq i \leq n - 1$, of a concurrent system to perform the following types of operations on S : `push_righti(v)`, `push_lefti(v)`, `pop_righti()`, and `pop_lefti()`. Each push operation has an input, v , where v is selected from a range of values. Each pop operation returns an output from the range of values. Push operations on a full deque object and pop operations on an empty deque object return appropriate indications. In the case of a dynamically-sized deque, “full” refers to the case where the deque is observed to have no available nodes to accommodate a push and the system storage allocator reports that no more storage is available to the process.

20 A concurrent implementation of a deque object is one that is linearizable to a standard sequential deque. This sequential deque can be specified using a state-machine representation that captures all of its allowable sequential histories. These sequential histories include all sequences of push and pop operations induced by the state machine representation, but do not include the actual states of the machine. In the following description, we abuse notation slightly for the sake of clarity.

25 The state of a deque is a sequence of items $S = \langle v_0, \dots, v_k \rangle$ from the range of values, having cardinality $0 \leq |S| \leq \text{max_length_S}$. The deque is initially in the empty state (following invocation of `make_deque()`), that is, has cardinality 0, and is said to have reached a full state if its cardinality is `max_length_S`. In general, for deque implementations described herein, cardinality is unbounded except by limitations (if any) of an underlying storage allocator.

30 The four possible push and pop operations, executed sequentially, induce the following state transitions of the sequence $S = \langle v_0, \dots, v_k \rangle$, with appropriate returned values:

<code>push_right(v_new)</code>	if S is not full, sets S to be the sequence $S = \langle v_0, \dots, v_k, v_{\text{new}} \rangle$
<code>push_left(v_new)</code>	if S is not full, sets S to be the sequence $S = \langle v_{\text{new}}, v_0, \dots, v_k \rangle$

- 9 -

`pop_right()` if S is not empty, sets S to be the sequence S = $\langle v_0, \dots, v_{k-1} \rangle$ and returns the item, v_k .

`pop_left()` if S is not empty, sets S to be the sequence S = $\langle v_1, \dots, v_k \rangle$ and returns the item v_0 .

For example, starting with an empty deque state, S = $\langle \rangle$, the following sequence of operations and
5 corresponding transitions can occur. A `push_right(1)` changes the deque state to S = $\langle 1 \rangle$. A `push_left(2)` subsequently changes the deque state to S = $\langle 2, 1 \rangle$. A subsequent `push_right(3)` changes the deque state to S = $\langle 2, 1, 3 \rangle$. Finally, a subsequent `pop_right()` changes the deque state to S = $\langle 2, 1 \rangle$ and returns the value, 3. In some implementations, return values may be employed to indicate success or failure. Persons of ordinary skill in the art will appreciate a variety of suitable formulations.

10 **Storage Reclamation**

Many programming languages and execution environments have traditionally placed responsibility for dynamic allocation and deallocation of memory on the programmer. For example, in the C programming language, memory is allocated from the heap by the `malloc` procedure (or its variants). Given a pointer variable, p, execution of machine instructions corresponding to the statement `p=malloc(sizeof SomeStruct)` causes pointer variable p to point to newly allocated storage for a memory object of size necessary for representing a `SomeStruct` data structure. After use, the memory object identified by pointer variable p can be deallocated, or freed, by calling `free(p)`. Other languages provide analogous facilities for explicit allocation and deallocation of memory.

Dynamically-allocated storage becomes unreachable when no chain of references (or pointers) can be
20 traced from a “root set” of references (or pointers) to the storage. Memory objects that are no longer
reachable, but have not been freed, are called *garbage*. Similarly, storage associated with a memory object can
be deallocated while still referenced. In this case, a *dangling reference* has been created. In general, dynamic
memory can be hard to manage correctly. Because of this difficulty, garbage collection, i.e., automatic
25 reclamation of dynamically-allocated storage, can be an attractive model of memory management. Garbage
collection is particularly attractive for languages such as the JAVA™ language (JAVA and all Java-based
marks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries), Prolog, Lisp, Smalltalk, Scheme, Eiffel, Dylan, ML, Haskell, Miranda, Oberon, etc. See
generally, Jones & Lins, *Garbage Collection: Algorithms for Automatic Dynamic Memory Management*, pp.
1-41, Wiley (1996) for a discussion of garbage collection and of various algorithms and implementations for
30 performing garbage collection.

In general, the availability of particular memory management facilities are language, implementation
and execution environment dependent. Accordingly, for some realizations in accordance with the present
invention, it is acceptable to assume that storage is managed by a “garbage collector” that returns (to a “free
pool”) that storage for which it can be proven that no process will, in the future, access data structures
35 contained therein. Such a storage management scheme allows operations on a concurrent shared object, such

- 10 -

as a deque, to simply eliminate references or pointers to a removed data structure and rely upon operation of the garbage collector for automatic reclamation of the associated storage.

However, for some realizations, a garbage collection facility may be unavailable or impractical. For example, one realization in which automatic reclamation may be unavailable or impractical is a concurrent shared object implementation (e.g., a deque) employed in the implementation of a garbage collector itself. Accordingly, in some realizations in accordance with the present invention, storage is explicitly reclaimed or “freed” when no longer used. For example, in some realizations, removal operations include explicit reclamation of the removed storage.

Deque with Amortized Node Allocation

One embodiment in accordance with the present invention includes a linked-list-based implementation of a lock-free double-ended queue (deque). The implementation includes both structures (e.g., embodied as data structures in memory and/or other storage) and techniques (e.g., embodied as operations, functional sequences, instructions, etc.) that allow costs associated with allocation of additional storage to be amortized over multiple access operations. The exemplary implementation employs double compare and swap (DCAS) operations to provide linearizable behavior. However, as described elsewhere herein, other synchronization primitives may be employed in other realizations. In general, the exemplary implementation exhibits a number of features that tend to improve its performance:

- a) Access operations (e.g., push and pop operations) at opposing left and right ends of the deque do not interfere with each other except when the deque is either empty or contains only a single node.
- b) A single DCAS call is sufficient for an uncontended pop operation, and if a suitable spare node exists, for an uncontended push operation.
- c) A full storage width DCAS primitive that operates on two independently-addressable storage units may be employed. Accordingly, full storage width is available for addresses or data and tag bits need not be set aside.
- d) Storage for use in pushes is allocated in clumps and spliced onto the linked-list structure with a single DCAS. Storage corresponding to items that are popped from the deque remains in the linked-list structure until explicitly removed. Unless removed, such storage is available for use by subsequent pushes onto (and pops from) a respective end of the deque.

Although all of these features are provided in some realizations, fewer than all may be provided in

others.

The organization and structure of a doubly-linked list 102 and deque 101 encoded therein are now described with reference to FIG. 1. In general, individual elements of the linked-list can be represented as instances of a simple node structure. For example, in one realization, nodes are implemented in accordance with the following definition:

```

5      typedef node {
       node *R;
       node *L;
       val value;
   }

```

Each node encodes two pointers and a value field. The first pointer of a node points to the node to its right in a linked-list of such nodes, and the second pointer points to the node to its left. There are two shared variables `LeftHat` and `RightHat`, which always point to nodes within the doubly-linked list. `LeftHat` always points to a node that is to the left (though not necessarily immediately left) of the node to which

10 `RightHat` points. The node to which `LeftHat` points at a given instant of time is sometimes called the left sentinel and the node to which `RightHat` points at a given instant of time is sometimes called the right sentinel. The primary invariant of this scheme is that the nodes, including both sentinels, always form a consistent doubly-linked list. Each node has a left pointer to its left neighbor and a right pointer to its right neighbor. The doubly-linked chain is terminated at its end nodes by a null in the right pointer of the rightmost

15 node and a null in the left pointer of the leftmost node.

It is assumed that there are three distinguishing null values (called “`nullL`”, “`nullR`”, and “`nullX`”) that can be stored in the value field of a node but which are never requested to be pushed onto the deque. The left sentinel is always to the left of the right sentinel, and the zero or more nodes falling between the two sentinels always have non-null values in their value fields. Both sentinels and all nodes “beyond” the 20 sentinels in the linked structure always have null values in their value cells. Except as described below, left sentinel and the spare nodes (if any) to the logical left thereof have `nullL` in their value fields, while right sentinel and spare nodes (if any) to the logical right thereof have a corresponding `nullR` in their value fields. Notwithstanding the above, the most extreme node at each end of the linked-list structure holds the `nullX` in its value field rather than the usual left or right null value.

25 Terms such as always, never, all, none, etc. are used herein to describe sets of consistent states presented by a given computational system. Of course, persons of ordinary skill in the art will recognize that certain transitory states may and do exist in physical implementations even if not presented by the computational system. Accordingly, such terms and invariants will be understood in the context of consistent states presented by a given computational system rather than as a requirement for precisely simultaneous effect 30 of multiple state changes. This “hiding” of internal states is commonly referred to by calling the composite operation “atomic”, and by allusion to a prohibition against any process seeing any of the internal states partially performed.

Referring more specifically to FIG. 1, deque 101 is represented using a subset of the nodes of doubly-linked list 102. Left and right identifiers (e.g., left hat 103 and right hat 104) identify respective left and right 35 sentinel nodes 105 and 106 that delimit deque 101. In the illustration of FIG. 1, a single spare node 107 is provided beyond right sentinel node 106. In the drawings, we use LN to represent `nullL`, RN to represent `nullR`, and X to represent the `nullX` used in nodes at the ends of the linked-list. Values are represented as “V1”, “V2”, etc. In general, the value field of the illustrated structure may include either a literal value or a

pointer value. Particular data structures identified by pointer values are, in general, application specific. Literal values may be appropriate for some applications and, in some realizations, more complex node structures may be employed. Based on the description herein, these and other variations will be appreciated by persons of ordinary skill in the art. Nonetheless, and without loss of generality, the simple node structure defined above is used for purposes of illustration.

Most operations on a deque are performed by “moving a hat” (*i.e.*, redirecting a sentinel pointer) between a sentinel node and an adjacent node, taking advantage of the presence of spare nodes to avoid the expense of frequent memory allocation calls. One way to understand operation of the deque is to contrast its operation with other algorithms that push a new element onto a linked-list implemented data structure by creating a new node and then splicing the new node onto one end. In contrast, embodiments in accordance with the present invention treat a doubly-linked list structure more as if it were an array. For example, addition of a new element to the deque can often be supported by simple adjustment of a pointer and installation of the new value into a node that is already present in the linked list. However, unlike a typical array-based algorithm, which, on exhaustion of pre-allocated storage, must report a full deque, embodiments in accordance with the present invention allow expansion of the linked-list to include additional nodes. In this way, the cost of splicing a new node into the doubly-linked structure may be amortized over the set of subsequent push and pop operations that use that node to store deque elements. In this manner, embodiments in accordance with the present invention combine some of the most attractive features of array-based and linked-list-based implementations.

In addition to value-encoding nodes (if any), two sentinel nodes are also included in a linked-list representation in accordance with the present invention. The sentinel nodes are simply the nodes of the linked-list identified by **LeftHat** and **RightHat**. Otherwise, the sentinel nodes are structurally-indistinguishable from other nodes of the linked-list. When the deque is empty, the sentinel nodes are a pair of nodes linked adjacent to one another. FIG. 2 illustrates a linked-list 200 encoding an empty deque between sentinel nodes 205 and 206. In general, contents of the deque consist of those nodes of the linked-list that fall ‘between’ the sentinels.

Besides the sentinels and the nodes that are logically “in the deque,” additional spare nodes may also be linked into the list. These spare nodes, *e.g.*, nodes 201, 202, 203 and 204 (see FIG. 2), are logically “outside” the deque, *i.e.*, beyond a respective sentinel. In the illustration of FIG. 1, node 107 is a spare node. In general, the set of nodes (including deque, sentinel and spare nodes) are linked by right and left pointers, with terminating null values in the right pointer cell of the right “end” node (*e.g.*, node 204) and the left pointer cell of the left “end” node (*e.g.*, node 201).

An empty deque is created or initialized by stringing together a convenient number of nodes into a doubly-linked list that is terminated at the left end with a null left pointer and at the right end with a null right pointer. A pair of adjacent nodes are designated as the sentinels, with the one pointed to by the left sentinel pointer having its right pointer pointing to the one designated by the right sentinel pointer, and vice versa. Both spare and sentinel nodes have null value fields that distinguish them from nodes of the deque. FIG. 2

shows an empty deque with a few spare nodes. Right- and left-end nodes (e.g., nodes 201 and 204) of the linked-list structure use the nullX variant of the null value, while remaining spare and sentinel nodes (if any) inside the right- and left-end nodes encode an appropriate variant (nullL for left-side ones and nullR for right-side ones).

5 Access operations

The description that follows presents an exemplary non-blocking implementation of a deque based on an underlying doubly-linked-list data structure wherein access operations (illustratively, `push_right`, `pop_right`, `push_left` and `pop_left`) facilitate concurrent access. Exemplary code and illustrative drawings will provide persons of ordinary skill in the art with detailed understanding of one particular realization of the present invention; however, as will be apparent from the description herein and the breadth of the claims that follow, the invention is not limited thereto. Exemplary right-hand-side code is described with the understanding that left-hand-side operations are symmetric. Use herein of directional signals (e.g., left and right) will be understood by persons of ordinary skill in the art to be somewhat arbitrary. Accordingly, many other notational conventions, such as top and bottom, first-end and second-end, etc., and implementations denominated therein are also suitable. With the foregoing in mind, `pop_right` and `push_right` access operations and related right-end spare node maintenance operations are now described.

An illustrative `push_right` access operation in accordance with the present invention follows:

```
push_right(val newVal) {
    while(true) {
        rh = RightHat;
        if (DCAS(&RightHat, &rh->value, rh, nullR,
                 rh->R, newVal))
            return "okay";
        else if (rh->value == nullX)
            if (!add_right_nodes(handyNumber))
                return "full";
    }
}
```

To perform a `push_right` access operation, a processor uses the DCAS in lines 4-5 to attempt to move the right hat to the right and replace the right null value formerly under it (nullR) with the new value passed to the push operation (`newVal`). If the DCAS succeeds, the push has succeeded. Otherwise, the DCAS failed either because the hat was moved by some other operation or because there is not an available cell—a condition indicated by a nullX in the value cell of the sentinel node. FIG. 4 illustrates a linked-list state that does not have room for a push right. When the sentinel node is flagged by holding the terminal nullX value, line 7 of `push_right` invokes a spare node maintenance operation (`add_right_nodes`) to allocate and link one or more spare nodes into the list. Operation of spare node maintenance operations is described in greater detail below. After adding storage, the `push_right` operation is retried from the beginning. If one or more other executions of `push_right` operations intervene and consume the newly allocated nodes, this retry behavior will again note the shortage and again call upon `add_right_nodes` to allocate more nodes until eventually there is at least one.

- 14 -

FIGS. 3A and 3B illustrate states of the linked-list and deque before and after a successful DCAS of the `push_right` access operation. In the illustrations, heavy black rectangles are used to indicate storage locations (*i.e.*, right hat 301 and value field 302 of the node identified thereby) operated upon by the DCAS. The DCAS fails if the right hat has been moved or if the value cell is found to be holding a value other than nullR. If the value was nullX, spare nodes are added and the push is retried. In both other cases (hat movement and non-null value), the `push_right` operation loops for another attempt.

An illustrative `pop_right` access operation in accordance with the present invention follows:

```

10    val pop_right() {
        while (true) {
            rh = RightHat;
            rhL = rh->L;
            result = rhL->value;
            if ((result==nullL) || (result==nullX)) {
                if(DCAS(&RightHat,&rhL->value,rh,result,rh,result))
                    return "empty";
                } else if (DCAS(&RightHat,&rhL->value,
                    rh,result,rhL,nullR))
                    return result;
            }
        }

```

To perform a `pop_right` access operation, a processor first tests for an empty deque (see lines 3-6). Note that checking for empty does not access the other hat, and therefore does not create contention with operations at the other end of the deque. Because changes are possible between the time we read the RightHat and the time we read the L pointer, we use a DCAS (line 7) to verify that these two pointers, are at the same moment, equal to the values individually read. If the deque is non-empty, execution of the `pop_right` operation uses a DCAS to insert a nullR value in the value field of a node immediately left of the right sentinel (*i.e.*, into `rhL->value`, where `rhL=rh->L`) and to move the right sentinel hat onto that node. **FIGS. 5A and 5B** illustrate states of the linked-list and deque before and after a successful DCAS of the `pop_right` access operation. In particular, **FIG. 5A** illustrates operation of the DCAS on the right hat store 501 and value field 502. If the DCAS succeeds, the value (illustratively, V3) removed from the popped node is returned. Note that a successful DCAS (and pop) contributes a node (illustratively, node 503) to the set of spare nodes beyond the then-current right sentinel. A DCAS failure means that either the hat has been moved by another push or pop at the same end of the queue or (in the case of a single element deque) the targeted node was popped from the opposing end of the deque. In either case, the `pop_right` operation loops for another attempt.

There is one instance in this implementation of the deque where access operations at opposing ends of the deque may conflict, namely, if the deque contains just one element and both a `pop_right` and `pop_left` are attempted 'simultaneously'. **FIG. 6** illustrates the DCAS operations of competing `pop_right` and `pop_left` operations. Because of the semantics of the DCAS only one instance can succeed and the other necessarily fails. For example, in the illustration of **FIG. 6**, either the `pop_right` succeeds in returning the contents of value store 602 and updating the right hat to identify node 601 or the

- 15 -

`pop_left` succeeds in returning the contents of value store 602 and updating the left hat to identify node 601. The pop operation that wins gets the lone node and returns its value (see lines 9-10).

Spare Node Maintenance Operations

The push operations described above work smoothly so long as the linked-list includes sufficient
 5 spare nodes. However, pushes that exceed pops at a given end of the deque will eventually require addition of nodes to the linked-list. As with access operations, exemplary code and illustrative drawings will provide persons of ordinary skill in the art with detailed understanding of one particular realization of the present invention; however, as will be apparent from the description herein and the breadth of the claims that follow,
 10 the invention is not limited thereto. Exemplary right-hand-side code is described with the understanding that left-hand-side operations are symmetric.

FIG. 4 illustrates a linked-list state in which no additional nodes are available beyond right sentinel node 401 to support successful completion of a `push_right` operation. Depending on the particular implementation, addition of spare nodes may be triggered on discovery that spare nodes have been exhausted at the relevant end, or additions may be triggered at a level that allows a larger buffer of spare nodes to be
 15 maintained. In general, threshold points for spare node additions (and removal) are implementation dependent.

An illustrative `add_right_nodes` operation in accordance with the present invention follows:

```
boolean add_right_nodes(int n) {
    newNodeChain = allocate_right_nodes(n);
    if (newNodeChain == null) return false;
    20   while (true) {
        Rptr = RightHat;
        while ((next = Rptr->R) != null)
            Rptr = next;
        newNodeChain->L = Rptr;
        if (DCAS(&Rptr->R, &Rptr->value, null, nullX,
                 25           newNodeChain, nullR))
            return true;
    }
}
```

FIG. 7 illustrates a linked-list state upon which an invocation of `add_right_nodes` may operate. A single spare node exists beyond right sentinel and `add_right_nodes` follows right pointers (see lines 5-7) from the right sentinel to find the node with a null right pointer. In the illustrated case, node 701 is the resultant `Rptr`. However, because the linked-list (and encoded deque) is a concurrent shared object, other operations may have intervened and `Rptr` may no longer be the tail of the linked-list.

35 A service routine, `allocate_right_nodes`, is used to allocate storage and initialize a doubly-linked node chain with null values in each value field (nullX in the rightmost one, nullR in the rest). The chain of nodes 801 is terminated by a null right pointer in the rightmost node (see FIG. 8). An exemplary version of `allocate_right_nodes` is included below to illustrate the desired results. In general, suitable lower level storage allocation techniques will be appreciated by persons of ordinary skill in the art. For

example, one efficient implementation requests N nodes worth of storage as a single contiguous block and then builds the linked list and node structure within the contiguous block. In this way, a functionally equivalent data structure is returned with more efficient utilization of an underlying storage allocation system.

5 In line 8 of `add_right_nodes`, we see the left pointer of the leftmost node of new chain 801 being set to point to the likely tail node of the deque structure. A DCAS in lines 9-10 then attempts to replace the null right pointer of the likely tail node with a link to the new structure and replaces the `nullX` in its value cell with a `nullR`. If the DCAS succeeds, the new storage is spliced onto the node chain as illustrated in FIG. 9. This DCAS may fail if some processor concurrently splices storage onto the likely tail node. Accordingly, a failed DCAS causes `add_right_nodes` to loop back and try again to attach the new storage.

10

```
15       Node allocate_right_nodes(int howMany) {
20        lastNode = new Node();
25        if (lastNode == null) return null;
30        lastNode->R = null;
35        lastNode->value = nullX;
40        for (int i=1; i<howMany; i++) {
45           newNode = new Node();
50           if (newNode == null) break;
55           newNode->value = nullR;
60           newNode->R = lastNode;
65           lastNode->L = newNode;
70           lastNode = newNode;
75        }
80        lastNode->L = null;
85        return lastNode;
90 }
```

Additional Refinements

While the above-described implementation of a dynamically sized deque illustrates some aspects of some realizations in accordance with the present invention, a variation now described provides certain additional benefits. For example, spare node maintenance facilities are extended to allow removal of excess spare nodes and a possible behavior that results in creation of a “spur” is handled. Related modifications have been made to push and pop access operations and to the set of distinguishing values stored in the value field of a node but which are not pushed onto the deque.

As before, the deque implementation is based on a doubly-linked list representation. Each node contains left and right pointers and a value field, which can store a value pushed onto the deque or store one of several special distinguishing values that are never pushed onto the deque. In addition to the distinguishing values `nullL` and `nullR` (hereafter LN and RN), left and right variants `LX` and `RX` of a terminal value (previously `nullX`) and two additional distinguishing values, `LY` and `RY` have been defined. As before, the list contains one node for each value in the deque, plus additional nodes that can be used for values in the future, and which are used to synchronize additions to and removals from the list.

Values currently in the deque are stored in consecutive nodes in the list, and there is at least one additional node on each side of the nodes that encode the deque's state. Each node other than those containing values of the deque state is distinguished by one of the special distinguishing values listed above. The node directly to the right (left) of the rightmost (leftmost) value is called the right (left) sentinel. Except in a special 5 case, which is described later, two shared pointers, hereafter RHat and LHat, point to the right and left sentinels, respectively. For an empty state of the deque, left and right sentinels are adjacent. Thus, FIG. 10A depicts one representation of an empty deque.

As before, the implementation is completely symmetric. Accordingly, we therefore restrict our presentation to the right side with the understanding that left side representations and operations are 10 symmetric. Referring then to FIG. 10B, a list representation 1001 of a particular deque state 1005 that includes two values, A and B, is illustrated. In general, a sequence of distinguishing values appears in nodes of the list representation beginning with a sentinel node (e.g., right sentinel 1002) and continuing outward (e.g., following right pointers to nodes 1003 and 1004). The sequence includes zero or more "right null" values, distinguished by the RN value, followed by a "right terminator" value, distinguished by the RX value. 15 In the illustration of FIG. 10B, two nodes containing RN values are followed by a terminating node 1004. In general, zero or more additional nodes may appear to the right of a first node containing an RX value. These additional nodes (if any) can be distinguished by an RN, RX, or RY value and exist because of a previous removal operation, which is explained later. As described below, we use the terminating RX value to avoid further use of these nodes so that they can eventually become garbage.

20 In the illustration of FIG. 10B, the right null nodes (i.e., those marked by RN) between the rightmost value and the first RX node are "spare" nodes, which can be used for new values that are pushed onto the deque from the right. FIG. 10C shows another representation of an empty deque. In contrast with the representation of FIG. 10A, this list state includes spare nodes onto which values can be pushed in the future.

Access operations

25 We begin by describing the operation of "normal" push and pop operations that do not encounter any boundary cases or concurrent operations. Later, we describe special cases for these operations, interaction with concurrent operations, and operations for growing and shrinking the list. As before, exemplary right-hand-side code is described with the understanding that left-hand-side operations are symmetric and the choice of a naming convention, i.e., "right" (and "left"), is arbitrary.

30 An illustrative implementation of a pushRight access operation follows:

```
pushRight (valtype v) {
    while (true) {
        rh = RHat;
        rhR = rh->R;
        if (rhR != NULL &&
            DCAS (&RHat, &rh->V, rh, RN, rhR, v))
            return OKval;
        else if (rh->V == RX) {
```

- 18 -

```

        if (!add_right(some_number))
            return FULLval;
    } else unspur_right();
5     }
}

```

The pushRight access operation turns the current right sentinel into a value node and changes RHat to point to the node to the right of the current right sentinel, thereby making it the new right sentinel. In the illustrated implementation, this objective is achieved by reading RHat to locate the right sentinel (line 3), by determining the next node to the right of the right sentinel (line 4) and then using a DCAS primitive (line 6) 10 to atomically move RHat to that next node and to change the value in the previous right sentinel from the distinguishing value RN to the new value, v.

For example, starting from the deque and list state shown in FIG. 10B, execution of a pushRight (C) operation results in the state shown in FIG. 10D. In particular, node 1002 contains the value, C, pushed onto deque 1005 and the pointer RHat identifies node 1003 as the right sentinel. Subsequent 15 execution of a pushRight (D) operation likewise results in the state shown in FIG. 10E. After successful completion of the pushRight (D) operation, node 1003 contains the value, D, and the pointer RHat identifies node 1004 as the right sentinel. As illustrated, node 1004 is distinguished by the RX terminator value. Note that, given the list state 1011 illustrated in FIG. 10E, a further rightPush would fail to find a 20 spare node marked by the distinguishing value RN, and so this simple scenario would not succeed in pushing the new value. In fact, there are several possible reasons that the simple pushRight operation described above might not succeed, as discussed below.

First, the DCAS primitive can fail due to the effect of a concurrent operation, in which case, pushRight simply retries. Such a DCAS failure can occur only if another operation (possibly including another pushRight operation) succeeds in changing the deque state during execution of the pushRight 25 operation. Accordingly, lock-freedom is not compromised by retrying. Otherwise, execution of the pushRight operation may fail because it detects that there is no node available to become the new right sentinel (line 5), or because the distinguishing value in the old sentinel is not RN (in which case the DCAS of line 6 will fail). In such a case, it may be that we have exhausted the right spare nodes as illustrated in FIG. 10E. The pushRight access operation checks for this case at line 8 by checking if the right sentinel 30 contains the terminating value RX. If so, it calls add_right (line 9) to grow the list to the right (by some_number of nodes) before retrying. In general, some_number is an implementation-dependent, non-zero positive integer. Operation of the add_right operation and the special case dealt with at line 11 are each described later.

An illustrative implementation of a popRight access operation follows:

```

35 popRight() {
    while (true) {
        rh = RHat;
        rhL = rh->L;

```

- 19 -

```

if (rhL!=NULL) {
    result = rhL->V;
    if (result != RN && result != RX &&
        result != LY && result != RY)
5     if (result == LN || result == LX) {
        if (DCAS(&RHat,&rhL->V,rh,result,rh,result))
            return EMPTYval;
    } else if (DCAS(&RHat,&rhL->V,rh,result,rhL,RN))
        return result;
10
}
}
}

```

The popRight access operation locates the rightmost value node of the deque and turns this node into the right sentinel by atomically changing its value to RN and moving the RHat to point to it. For 15 example, a successful rightPop access operation operating on the list and deque state shown in FIG. 10B results in the state shown in FIG. 10F.

The popRight access operation begins by reading the pointer RHat to locate the right sentinel (line 3), and then reads (at line 4) the left pointer of this node to locate the node containing the rightmost value of the deque. The popRight operation reads the value stored in this node (line 6). It can be shown that the 20 value read can be one of the distinguishing values RN, RX, LY, or RY only in the presence of successful execution of a concurrent operation. Accordingly, the popRight operation retries if it detects any of these values (lines 7-8). However, if the popRight operation read either a left null or left terminating value (i.e., either LN or LX), then either the deque is empty (i.e., there are no values between the two sentinels) or the popRight operation read values that did not exist simultaneously due to execution of a concurrent operation.

To disambiguate, the popRight access operation uses a DCAS primitive (at line 10) to check 25 whether the values read from RHat and the value field of the rightmost value node exist simultaneously in the list representation. Note that the last two arguments to the DCAS are the same as the second two, so the DCAS does not change any values. Instead, the DCAS checks that the values are the same as those read previously. If so, the popRight operation returns "empty" at line 11. Otherwise, the popRight operation 30 retries. Finally, if the popRight operation finds a value other than a distinguishing value in the node to the left of the right sentinel, then it uses a DCAS primitive (at line 12) to attempt to atomically change this value to RN (thereby making the node that stored the value to be popped available for subsequent pushRight operations) and to move RHat to point to the popped value node. If the DCAS succeeds in atomically removing the rightmost value and making the node that stored it become the new right sentinel, the value can 35 be returned (line 13). Otherwise, the popRight operation retries.

As before, if the deque state includes two or more values, symmetric left and right variants of the 40 above-described pop operation execute independently. This independence is an advantage over some DCAS-based deque implementations, which do not allow left and right operations to execute concurrently without interfering with one another. However, when there are zero or one values in the deque, concurrently executed popLeft and popRight access operations do interact. For example, if popLeft and popRight access

- 20 -

operations operate concurrently on a deque state such as that illustrated in FIG. 10F, then one of the access operations should succeed in popping the value (e.g., A), while the other should receive an indication that the deque is empty (assuming no other concurrent operations). Our implementation handles this case correctly because the pop operations use a DCAS primitive to change the value they are attempting to pop to a
5 distinguishing null value (e.g., LN or RN, depending on the side from which the pop operation is attempted). The pop operation that executes its DCAS first succeeds while the other fails.

Spare Node Maintenance Operations

As before, the push operations described above work smoothly so long as the linked-list includes sufficient spare nodes. However, pushes that exceed pops at a given end of the deque will eventually require
10 addition of nodes to the linked-list. In addition, removal of some of the unused nodes that are beyond the sentinels (e.g., to the right of the right sentinel) may be desirable at a deque end that has accumulated an excessive number of spare nodes resulting from pops that exceed pushes.

We next describe an implementation of an add_right operation that can be used to add spare nodes to the right of the linked list for use by subsequently executed pushRight access operations. One
15 suitable implementation is as follows:

```

add_right(int n) {
    chain = alloc_right(n);
    if (chain == NULL) return false;
    while (true) {
        rptr = RHat;
        20      while (rptr !=NULL && (v = rptr->V) == RN)
            rptr = rptr->R;
        if (v == RY)
            unspur_right();
        25      else if (rptr != NULL && v == RX) {
            chain->L = rptr;
            rptr = rptr->R;
            if (DCAS(&rptr->R, &rptr->V, rptr, RX, chain, RN))
                return true;
        30      }
    }
}

```

The add_right operation can be called directly if desired. However, as illustrated above, the add_right operation is called by the pushRight access operation if execution thereof determines that
35 there are no more right null nodes available (e.g., based on observation of a terminating RX value in the right sentinel at line 9 of the illustrated pushRight implementation). In the illustrated implementation, the add_right operation takes an argument that indicates the number of nodes to be added. In the illustrated implementation, add_right begins by calling alloc_right to construct a doubly-linked chain of the desired length. Any of a variety of implementations are suitable and one such suitable implementation
40 follows:

```

alloc_right(int n) {
    last = new Node(RX);
    if (last == NULL) return NULL;
    for (i=0; i<n; i++) {
        newnode = new Node(RN);
        if (newnode == NULL) break;
        newnode->R = last;
        last->L = newnode;
        last=newnode;
    }
    last->L = NULL;
    return newnode;
}

```

where we have assumed a constructor that initializes a new node with a value passed thereto.

Accordingly, the rightmost node in of a newly allocated chain encodes an RX value, and all others encode an RN value. Implementation of an `alloc_right` operation is straightforward because no other process can concurrently access the chain as it is constructed from newly-allocated nodes.

Next, the `add_right` operation attempts to splice the new chain onto the existing list. For example, given the list and deque state illustrated by FIG. 10E, the `add_right` operation attempts to replace both the right pointer in the right terminating node (e.g., node 1004, FIG. 10E) with a pointer to the new chain and the terminating RX value thereof with an RN value. If successful, the existing right terminating node becomes just another spare node and the rightmost node of the new chain is the new right terminating node. These replacements are performed atomically using the DCAS primitive at line 13 of the `add_right` operation.

In preparation for a splice, the `add_right` operation first traverses the right referencing chain of the list from the right sentinel, past the nodes encoding a right null distinguishing value RN (lines 5-7), looking for an RX terminating value (line 10). When the executing `add_right` operation finds the RX terminating value, it attempts to splice the new chain onto the existing list, as described above, by using a DCAS primitive (line 13). In preparation, the `add_right` operation first sets the left pointer of the leftmost node of its new chain to point back to finds the previously found node with an RX terminating value (line 11) so that, if the DCAS succeeds, the doubly-linked list will be complete, and then reads (line 12) the current right pointer, `rrptr`, for use in the DCAS.

Because of the possibility of concurrent operations, traversal of the right referencing chain may encounter any value, e.g., a deque value or one of the other distinguishing values, before finding the a node containing the RX terminating value. In most such cases, the `add_right` operation simply repeats its search again after re-reading the `RHat` value (at line 5). As usual, a retry does not compromise lock-freedom because a concurrent operation that altered the list state must have succeeded. However, a special case can arise even in the absence of concurrent operations. This case is handled at lines 8-9 and is explained below following discussion of a `remove_right` operation.

Some realizations may also include an operation to remove excess spare nodes. In the implementation described below, a `remove_right` operation is used to remove all but a specified number of the spare right nodes. Such a `remove_right` operation can be invoked with a number that indicates the maximum number of spare nodes that should remain on the right of the list. If such a `remove_right` 5 operation fails to chop off part of the list due to concurrent operations, it may be that the decision to chop off the additional nodes was premature. Therefore, rather than insisting that a `remove_right` implementation retry until it is successful in ensuring there are no more spare nodes than specified, we allow it to return false in the case that it encounters concurrent operations. Such an implementation leaves the decision of whether to 10 retry the `remove_right` operation to the user. In fact, decisions regarding when to invoke the `remove` operations, and how many nodes are to remain, may also be left to the user.

In general, storage removal strategies are implementation-dependent. For example, in some implementations it may be desirable to link the need to add storage at one end to an attempt to remove some (for possible reuse) from the other end. Determination that excessive spare nodes lie beyond a sentinel can be made with a counter of pushes and pops from each end. In some realizations, a probabilistically accurate 15 (though not necessarily precise) counter may be employed. In other realizations, a synchronization primitive such as a CAS can be used to ensure a precise count. Alternatively excess pops may be counted by noting the relevant sentinel crossing successive pseudo-boundaries in the link chain. A special node or marker can be linked in to indicate such boundaries, but such an approach typically complicates implementation of the other operations.

20 Whatever the particular removal strategy, the `remove_right` operation implementation that follows is illustrative.

```

remove_right (int n) {
    chop = RHat;
    for (i=0; i<n; i++) {
        25      if (chop->V == RX)
                  return true;
        chop = chop->R;
        if (chop == NULL) return true;
    }
    rptr = chop->R;
    if (rptr == NULL) return true;
    if (v = DCAS (&chop->V, &rptr->V, RN, RN, RX, RY)) {
        30      CAS (&chop->R, rptr, NULL);
        break_cycles_right(rptr);
    }
    35      return v;
}

```

We begin by discussing a straightforward (and incorrect) approach to removing spare nodes, and then explain how this approach fails and how the implementation above addresses the failure. In such a 40 straightforward approach, execution of a `remove_right` operation (such as illustrated above) traverses the right referencing chain of the list beginning at the right sentinel, counting the null nodes that will not be removed, as specified by the argument, `n` (see lines 2-7). If the traversal reaches the end of the list (at line 7)

or a node containing the terminating value RX (see line 4) before counting the specified number of right null nodes, then the `remove_right` operation returns true, indicating that no excess nodes needed to be excised. Otherwise, the traversal reaches a chop point node that contains the distinguishing right null value RN.

5 A straightforward approach is to simply use a DCAS primitive to change the right pointer of this chop point node to null, thereby making nodes to the right of the chop point available for garbage collection, and to change the value in the chop point node from RN to RX, thereby preserving the invariant that an RX terminator exists. However, careful examination of the resulting algorithm reveals a problem, illustrated by the following scenario. For purposes of illustration, use in the drawings of a special distinguishing value, RY,
10 (which turns out to be part of a solution) should be ignored.

Consider a `pushRight` (E) access operation that runs alone from the list and deque state illustrated in FIG. 10B, but which is suspended just before it executes its DCAS (see `pushRight`, at line 5, above). If the DCAS is executed and succeeds, then the new value, E, will be stored in node 1002, and RHat will be changed to point to node 1003. However, note that the DCAS does not access the right pointer of the current
15 right sentinel (i.e., the right pointer of node 1002). Accordingly, the DCAS may succeed even if this pointer changes, and this is the root of the problem.

Suppose now that `remove_right` (0) is invoked (using the straightforward, but incorrect approach) and that it runs alone to completion, resulting in the state shown in FIG. 11. If the DCAS of the previously suspended `pushRight` access operation executed now, it would fail because the value in the
20 sentinel node has changed from RN (to RX). However, suppose instead that an `add_right` (2) is invoked at this point and runs alone to completion. The resulting shared object state is illustrated in FIG. 12. Note that node 1002 encodes a right null value RN. If the DCAS of the previously suspended `pushRight` access operation executes at this point, it will succeed, resulting in the shared object state illustrated in FIG. 13. Observe that the RHat pointer has failed to properly move along the list 1301 and has instead gone onto a
25 "spur" 1302. This problem can result in incorrect operation because subsequent values pushed onto the right-end of the deque can never be found by `popLeft` operations.

Our approach to dealing with this problem is not to avoid it, but rather to modify our algorithm so that we can detect and correct it. We separate the removal of nodes into two steps. In the first step, in addition to marking the node that will become the new right terminator with the terminating value RX, we also mark its
30 successor with the special distinguishing value RY. FIG. 11 illustrates the result of such an approach (employed by a `remove_right` (0) operation implemented as above) operating on the list or shared object state of FIG. 10B. The RY node value is stable. For example, in the illustrative implementation described herein, an RY value marks a node as forever dead, prevents subsequent values from being pushed onto the node, and prevents new chains of nodes from being spliced onto the node. Changing the two adjacent nodes
35 (e.g., nodes 1002 and 1003, respectively, in FIG. 11) to have RX and RY values is performed atomically using a DCAS primitive (line 11, `remove_right`). The DCAS "logically" chops off the rest of the list, but the

pointer to the chopped portion is still intact. Accordingly, in the second step (line 12), we change this pointer to null using a CAS primitive, thereby allowing the chopped portion of the list to eventually be garbage collected.

By employing the distinguishing value RY, an implementation prevents further pushes from proceeding down the old chain. In particular, consider the case of the (i) previously described pushRight (E) access operation that runs alone from the list and deque state illustrated in FIG. 10B, but which is suspended just before it executes its DCAS and (ii) intervening remove_right_nodes and add_right operations alter the state of the concurrent shared object (e.g., as illustrated in FIG. 12). While the previously suspended pushRight (E) access operation still creates the spur, further pushes will not proceed down the chain since the DCAS at line 6 of the above-described pushRight access operation will fail if it does not find the value RN in node 1003.

The implementation of the pushRight access operation further allows processes that are attempting to push values to detect that RHat has gone onto a spur (e.g., as illustrated in FIG. 13) based on failure of the DCAS and presence of a distinguishing value RY in the node identified by the RHat. The pushRight access operation rectifies the problem by invoking unspur_right (at line 11) before retrying the push operation. The unspur_right operation implementation that follows is illustrative.

```
20    unspur_right() {
        rh = RHat;
        if (rh->V == RY) {
            rhL = rh->L;
            ontrack = rhL->R;
            if (ontrack != NULL)
                CAS (&RHat, rh, ontrack);
        }
    }
```

The unspur_right operation verifies that RHat still points to a node labeled with the distinguishing value RY (lines 1-2), follows (line 3) the still-existing pointer from the spur back to the list (e.g., from node 1313 to node 1312, in FIG. 13), determines the correct right-neighbor (line 4), and then uses a CAS primitive to move RHat to the correct node (line 7). FIG. 14 illustrates the result of executing the unspur_right operation from the shared object state shown in FIG. 13. The implementation of unspur_right is simple because nothing except unspurring can happen from a spurred state. In particular, the distinguishing value RY prevents further pushRight operations from completing without first calling unspur_right, and popRight operations naturally move off the spur. Execution of a popLeft operation also poses no problem if it reaches the node where the spur occurred, as it will see the right null value RN in the first node of the newly-added chain, and will correctly conclude that the deque is empty.

The break_cycles_right operation, which is invoked at line 13 of remove_right and described below, is optional (and may be omitted) in implementations for execution environments that provide a facility, such as garbage collection, for automatic reclamation of storage.

Explicit Reclamation of Storage

While the above description has focused on implementations for execution environments that provide intrinsic support for automatic reclamation of storage, or garbage collection, some implementations in accordance with the present invention support explicit reclamation. This is important for several reasons. First, many common 5 programming environments do not support garbage collection. Second, almost all of those that do provide garbage collection introduce excessive levels of synchronization overhead, such as locking and/or stop-the-world collection mechanisms. Accordingly, the scaling of such implementations is questionable. Finally, designs and implementations that depend on existence of a garbage collector cannot be used in the implementation of the garbage collector itself.

10 It has been discovered that a variation on the above-described techniques may be employed to provide explicit reclamation of nodes as they are severed from the deque as a result of remove operations. The variation builds on a lock-free reference counting technique that allows us to transform a garbage-collection-dependent concurrent data structure implementation that satisfies the two criteria into an equivalent implementation that does not depend on garbage collection. These criteria are:

- 15 1. **LFRC Compliance** The implementation does not access or manipulate pointers other than through a set of pointer operations that ensure that if the number of pointers to an object is non-zero, then so too is its reference count, and that if the number of pointers is zero, then the reference count eventually becomes zero. For example, compliance with such a criterion generally precludes the use of pointer arithmetic, unless the implementation thereof enforces the criterion. For example, in some 20 implementations, arithmetic operations on pointers could be overloaded with compliant versions of the arithmetic operations. In an illustrative realization described below, an implementation of a concurrent shared object accesses and manipulates pointers only through a set of functions, procedures or methods (e.g., load, store, copy, destroy, CAS and/or DCAS operations) that ensure compliance.
- 25 2. **Cycle-Free Garbage** There are no pointer cycles in garbage. Note that, cycles may exist in the concurrent data structure, but not amongst objects that have been removed from the data structure, and which should be freed.

Our transformation preserves lock-freedom. In particular, if the original implementation is lock-free, so too is the garbage-collection-independent algorithm.

30 LFRC Operations – An Illustrative Set

An illustrative set of LFRC pointer operations is now described. As stated above, we assume that pointers in a data structure implementation under consideration are accessed *only* by means of these operations.

- 35 1. **LFRCLoad (A, p)** — A is a pointer to a shared memory location that contains a pointer, and p is a pointer to a local pointer variable. The effect is to load the value from the location pointed to by A into the variable pointed to by p.

- 26 -

2. `LFRCStore (A, v)` — A is a pointer to a shared memory location that contains a pointer, and v is a pointer value to be stored in this location.
3. `LFRCCopy (p, v)` — p is a pointer to a local pointer variable and v is a pointer value to be copied to the variable pointed to by p .
5. `LFRCDestroy (v)` — v is the value of a local pointer variable that is about to be destroyed.
10. `LFRCCAS (A0, old0, new0)` — A0 is a pointer to a shared memory location that contains a pointer, and old0 and new0 are pointer values. The effect is to atomically compare the contents of the location pointed to by A0 with old0 and to change these contents to new0 and return *true* if the comparison succeeds; if it fails, then the contents of the location pointed to by A0 are left unchanged, and LFRCCAS returns *false*.
15. `LFRCDCAS (A0, A1, old0, old1, new0, new1)` — A0 and A1 are pointers to shared memory locations that contain pointers, and old0, old1, new0, and new1 are pointer values. The effect is to atomically compare the contents of the location pointed to by A0 with old0 and the contents of the location pointed to by A1 with old1, to change the contents of the locations pointed to by A0 and A1 to new0 and new1, respectively, and to return *true* if the comparisons both succeed; if either comparison fails, then the contents of the locations pointed to by A0 and A1 are left unchanged, and LFRCDCAS returns *false*.

FIG. 15 depicts a shared memory multiprocessor configuration in which the illustrated set of LFRC pointer operations may be employed. In particular, FIG. 15 depicts a pair of processors 1511 and 1512 that access storage 1540. Storage 1540 includes a shared storage portion 1530 and local storage portions 1521 and 1522, respectively accessible by execution threads executing on processors 1511 and 1512. In general, the multiprocessor configuration is illustrative of a wide variety of physical implementations, including implementations in which the illustrated shared and local storage portions correspond to one or more underlying physical structures (e.g., memory, register or other storage), which may be shared, distributed or partially shared and partially distributed.

Accordingly, the illustration of FIG. 15 is meant to exemplify an architectural view of a multiprocessor configuration from the perspective of execution threads, rather than any particular physical implementation. Indeed, in some realizations, data structures encoded in shared storage portion 1530 (or portions thereof) and local storage (e.g., portion 1521 and/or 1522) may reside in or on the same physical structures. Similarly, shared storage portion 1530 need not correspond to a single physical structure. Instead, shared storage portion 1530 may correspond to a collection of sub-portions each associated with a processor, wherein the multiprocessor configuration provides communication mechanisms (e.g., message passing facilities, bus protocols, etc.) to architecturally present the collection of sub-portions as shared storage. Furthermore, local storage portions 1521 and 1522 may correspond to one or more underlying physical structures including addressable memory, register, stack or other storage that are architecturally presented as local to a corresponding processor. Persons of ordinary skill in the art will appreciate a wide variety of

suitable physical implementations whereby an architectural abstraction of shared memory is provided. Realizations in accordance with the present invention may employ any such suitable physical implementation.

In view of the foregoing and without limitation on the range of underlying physical implementations of the shared memory abstraction, LFRC pointer operations may be better understood as follows. Pointer A references a shared memory location 1531 that contains a pointer to an object 1532 in shared memory. One or more pointers such as pointer A is (are) employed as operands of the LFRCLoad, LFRCStore, LFRCCAS and LFRCDCAS operations described herein. Similarly, pointer p references local storage 1534 that contains a pointer to an object (e.g., object 1532) in shared memory. In this regard, FIG. 15 illustrates a state,

5 *A == *p, consistent with successful completion of either a LFRCLoad or LFRCStore operation. In
10 general, pointers A and p may reside in any of a variety storage locations. Often, both pointers reside in storage local to a particular processor. However, either or both of the pointers may reside elsewhere, such as in shared storage.

In our experience, the operations presented above are typically sufficient for many concurrent shared object implementations, but can result in somewhat non-transparent code. Accordingly, we have also
15 implemented some extensions that allow more elegant programming and handle issues such as the pointer created by passing a pointer by value transparently. For example,

1. p = LFRCLoad2 (A) — A is a pointer to a shared memory location that contains a pointer, and p is a local pointer variable, where p is known not to contain a pointer (e.g., it has just been declared).
The effect is to load the value from the location pointed to by A into p.
- 20 2. LFRCStoreAlloc (A, v) — A is a pointer to a shared memory location that contains a pointer, and v is a pointer value that will not be used (or destroyed) again. Accordingly, there is no need to increment a reference count corresponding to v. This variation is useful when we want to invoke an allocation routine directly as the second parameter, e.g., as
`LFRCStoreAlloc (&X, allocate_structure ())`.
- 25 3. LFRCDCAS2 (A0, A1, old0, old1, new0, new1) — A0 is a pointer to a shared memory location that contains a pointer, A1 is a pointer to a shared memory location that contains a non-pointer value, old0 and new0 are pointer values, and old1 and new1 are values, e.g., literals, for which no reference counting is required.
- 30 4. LFRCPass (p) — p is a pointer value to be passed by value and for which a reference count should be incremented. This variation is useful when we want to pass p to a routine, e.g., as
`Example (, , ..., LFRCPass (p))`.

Based on the description herein, persons of ordinary skill in the art will appreciate variations of the described implementations, which may employ these and other extensions and/or variations on a set of supported pointer operations.

LFRC Transformation

Building on the previously described illustrative set of pointer operations, we transform from a GC-dependent implementation into a GC-independent implementation as follows.

1. **Add reference counts:** Add a reference count field `rc` to each object type to be used by the implementation. This field should be set to 1 in a newly-created object (in an object-oriented language such as C++, initialization may be achieved through object constructors).
5
2. **Provide an `LFRCDestroy(v)` function:** Write a function `LFRCDestroy(v)` that accepts a pointer `v` to an object. If `v` is `NULL`, then the function should simply return; otherwise it should atomically decrement `v->rc`. If the reference count field becomes zero as a result, `LFRCDestroy` should recursively call itself with each pointer in the object, and then free the object. An example is provided below, and we provide a function (`add_to_rc`) for the atomic decrement of the `rc` field, so writing this function is straightforward. We employ this function only because it is the most convenient and language-independent way to iterate over all pointers in an object. Other implementations may provide similar facility using language-specific constructs.
10
3. **Ensure no garbage cycles:** Ensure that the implementation does not result in referencing cycles in or among garbage objects. Note that, as illustrated below, the concurrent data structure may include cycles. However, storage no longer reachable should not include cycles.
15
4. **Produce correctly-typed LFRC pointer operations:** We have provided code for the LFRC pointer operations to be used in the example implementation presented in the next section. In this implementation, there is only one type of pointer. For simplicity, we have explicitly designed the LFRC pointer operations for this type. For other simple concurrent shared object implementations, this step can be achieved by simply replacing the `Node` type used in this implementation with a new type. In algorithms and data structure implementations that use multiple pointer types, a variety of alternative implementations are possible. In general, operations may be duplicated for the various
20 pointer types or, alternatively, the code for the operations may be unified to accept different pointer types. For example, in some realizations an `rc` field may be defined uniformly, e.g., at the same offset in all objects, and `void` pointers may be employed instead of specifically-types ones. In such realizations, definition of multiple object-type-specific LFRC pointer operations can be eliminated. Nonetheless, for clarity of illustration, an object-type-specific set of LFRC pointer operations is
25 described below.
30
5. **Replace pointer operations:** Replace each pointer operation with its LFRC pointer operation counterpart. For example, if `A0` and `A1` are pointers to shared pointer variables, and `x0, x1, old0, old1, new0, new1` are pointer variables, then replacements may be made as follows:
35

Replaced Pointer Operation	LFRC Pointer Operation
<code>x0 = *A0;</code> <code>*A0 = x0;</code> <code>x0 = x1;</code> <code>CAS(A0, old0, new0)</code> <code>DCAS(A0, A1, old0, old1, new0, new1)</code>	<code>LFRCLoad(A0, &x0);</code> <code>LFRCStore(A0, x0);</code> <code>LFRCCopy(&x0, x1);</code> <code>LFRCCAS(A0, old0, new0)</code> <code>LFRCCAS(A0, A1, old0, old1, new0, new1)</code>

Note that the table does not contain an entry for replacing an assignment of one shared pointer value to another, for example `*A0 = *A1`. Such assignments are not atomic. Instead, the location pointed to by `A1` is read into a register in one instruction, and the contents of the register are stored into the location pointed to by `A0` in a separate instruction. This approach should be reflected explicitly in a transformed implementation, e.g., with the following code:

```

{
    ObjectType *x = NULL;
    LFRCLoad(A1, &x);
    LFRCStore(A0, x);
    LFRCDestroy(x);
}

```

or its substantial equivalent, whether included directly or using a “wrapper” function.

6. **Management of local pointer variables:** Finally, whenever a thread loses a pointer (e.g., when a function that has local pointer variables returns, so its local variables go out of scope), it first calls `LFRCDestroy()` with this pointer. In addition, pointer variables are initialized to `NULL` before being used with any of the LFRC operations. Thus, pointers in a newly-allocated object should be initialized to `NULL` before the object is made visible to other threads. As illustrated in the example below, it is also important to explicitly remove pointers contained in a statically allocated object before destroying that object.

20 Explicitly Reclaimed Concurrent Deque Implementation

By applying the lock-free reference counting technique, a deque implementation has been developed that provides explicit reclamation of storage. As before, the deque is represented as a doubly-linked list of nodes, but includes an additional facility that ensures that nodes removed from the list (e.g., by operation of a `remove_right_nodes` operation) are free of cyclic referencing chains.

25 As described so far, our deque implementation allows cycles in garbage, because the chains cut off the list by a `remove_right_nodes` operation are doubly linked. Therefore, in preparation for applying the LFRC methodology, we modified our implementation so that cycles are broken in chains that are cut off from the list. This is achieved (on the right side) by the `break_cycles_right` operation, which is invoked after successfully performing the DCAS at line 11 of the `remove_right` operation. The following
30 implementation of a `break_cycles_right` operation is illustrative.

```

break_cycles_right(p) {
    v = RY;
    q = p->R;
}

```

- 30 -

```

        while (v != RX && q != NULL) {
            do {
                v = q->V;
            } until (CAS(&q->V, v, RY));
            p->R = NULL;
            p = q;
            q = p->R;
        }
        p->R = NULL;
10
    }

```

The approach employed is straightforward. We simply walk down the referencing chain, setting the forward pointers (e.g., right pointers in the case of `break_cycles_right`) to null. However, there are some subtleties involved with breaking these cycles. In particular, we need to deal with the possibility of concurrent accesses to the broken off chain while we are breaking it, because some processes may have been accessing it before it was cut off. Concurrent pop and push operations pose no problem. Their DCASs will not succeed when trying to push onto or pop from a cut-off node because the relevant hat (RHat or LHat) no longer points to it. Also, these operations check for null pointers and take appropriate action, so there is no risk that setting the forward pointers to null will cause concurrent push and pop operations to de-reference a null pointer. However, dealing with concurrent remove and add operations is more challenging, as it is possible for both types of operation to modify the chain we are attempting to break it up.

First, simply walking down the list, setting forward pointers to null (presumably using the detection of a null forward pointer as a termination condition), does nothing to prevent another process from adding a new chain onto any node in the chain that contains a terminating RX value. If this happens, the cycles in this newly added chain will never be broken, resulting in a memory leak. Second, a simplistic approach can result in multiple processes concurrently breaking links in the same chain in the case that one process executing `remove_right` succeeds at line 11 in chopping off some nodes within an already chopped-off chain. This results in unnecessary work and more difficulty in reasoning about correctness.

In the illustrated `break_cycles_right` implementation, we address both of these problems with one technique. Before setting the forward pointer of a node to null (at line 8), we first use a CAS primitive to set the next node's value field to the distinguishing value RY (lines 5-7). The reason for using a CAS instead of an ordinary store is that we can determine the value overwritten when storing the RY value. If the CAS changes a terminating value RX to an RY value, then the loop terminates (*see* line 4). It is safe to terminate in this case because either the terminating value RX was in the rightmost node of the chain (and changing the RX to an RY prevents a new chain from being added subsequently), or some process executing a `remove_right` operation set the value of this node to the terminating value RX (*see* line 11, `remove_right`), in which case that process has the responsibility to break the cycles in the remainder of the chain.

Since the `break_cycles_right` implementation ensures that referencing cycles are broken in chopped node chains, the implementation described is amenable to transformation to a GC-independent form using the lock-free reference counting (LFRC) methodology described in detail above. However, to summarize, (1) we added a reference count field `rc` to the node object, (2) we implemented an

LFRCDestroy(v) function, (3) we ensured (using the break_cycles_right implementation) that the implementation does not result in referencing cycles in or among garbage objects, (4, 5) we replaced accesses and manipulations of pointer variables with corresponding LFRC pointer operations and (6) we ensured that local pointer variables are initialized to NULL before being used with any of the LFRC operations and are
 5 properly destroyed using LFRCDestroy upon return (or when such local pointer variables otherwise go out of scope). LFRC pointer operations employed include LFRCLoad, LFRCStore, LFRCCopy, LFRCPass, LFRCStoreAlloc, LFRCDCAS, LFRCCAS, LFRCDCAS1 and LFRCDestroy. An illustrative implementation of each is included below.

The illustrative object definitions that follow, including constructor and destructor methods provide
 10 the reference counts and ensure proper initialization of a deque and reclamation thereof.

```

 15   class HattrickNode {
 16     valtype v;
 17     class HattrickNode *L, *R;
 18     long rc;
 19
 20     HattrickNode(valtype v) : L(NULL), R(NULL), v(v), rc(1)
 21       {};
 22   };
 23
 24   class Hattrick {
 25     HattrickNode *LeftHat;
 26     HattrickNode *RightHat;
 27
 28     Hattrick() : LeftHat(NULL), RightHat(NULL) {
 29       LFRCStoreAlloc(&LeftHat, AllocHattrickNode(LX));
 30       LFRCStoreAlloc(&RightHat, AllocHattrickNode(RX));
 31       LFRCStore(&LeftHat->R, RightHat);
 32       LFRCStore(&RightHat->L, LeftHat);
 33     };
 34
 35     ~Hattrick() {
 36       HattrickNode *p = NULL, *q = NULL;
 37       LFRCLoad(&LeftHat, &p);
 38       while (p) {
 39         LFRCCopy(&q, p);
 40         LFRCLoad(&p->L, &p);
 41       }
 42       break_cycles_right(LFRCPass(q));
 43       LFRCStore(&LeftHat, NULL);
 44       LFRCStore(&RightHat, NULL);
 45       LFRCDestroy(p, q);
 46     };
 47   };
 48 }
```

wherein the notation LFRCDestroy(p, q) is shorthand for invocation of the LFRCDestroy operation on
 45 each of the listed operands.

Corresponding pushRight and popRight access operations follow naturally from the above-described GC-dependent implementations thereof. Initialization of local pointer values, replacement of pointer

- 32 -

operations and destruction of local variables as they go out of scope are all straightforward. The following transformed `pushRight` and `popRight` access operation implementations are illustrative.

```

pushRight(valtype v) {
    HattrickNode *rh = NULL, *rhR = NULL;
5     while (true) {
        LFRCLoad(&RightHat, &rh);
        LFRCLoad(&rh->R, &rhR);
        if (rhR != NULL &&
            LFRCDCAS1(&RightHat, &rh->V, rh, RN, rhR, v)) {
10       LFRCDestroy(rh, rhR);
           return OKval;
        } else if (rh->V == RX) {
            if (!add_right_nodes(some_number)) {
                LFRCDestroy(rh, rhR);
15           return FULLval;
            }
        } else unspur_right();
    }
}

20 popRight() {
    HattrickNode *rh = NULL, *rhL = NULL;
    valtype result;

    while (true) {
25       LFRCLoad(&RightHat, &rh);
       LFRCLoad(&rh->L, &rhL);
       if (rhL!=NULL) {
           result = rhL->V;
           if (result != RN && result != RX &&
               result != LY && result != RY)
30           if (result == LN || result == LX) {
               if (LFRCDCAS1(&RightHat, &rhL->V,
                               rh, result, rh, result)) {
                   LFRCDestroy(rh, rhL);
35           return EMPTYval;
               }
           } else if (LFRCDCAS1(&RightHat, &rhL->V,
                               rh, result, rhL, RN)) {
               LFRCDestroy(rh, rhL);
40           return result;
           }
       }
    }
}

```

45 Corresponding spare node maintenance operations also follow naturally from the above-described implementations thereof. As before, initialization of local pointer values, replacement of pointer operations and destruction of local variables as they go out of scope are all straightforward. The following transformed `add_right_nodes` and `allocate_right_nodes` operation implementations are illustrative.

```

add_right_nodes(int n) {
50   HattrickNode *newNodeChain = allocate_right_nodes(n);
   HattrickNode *rptr = NULL, *rrptr = NULL;
   valtype v;

```

- 33 -

```

if (newNodeChain == NULL) return false;
while (true) {
    LFRCLoad(&RightHat, &rptr);
    while (rptr !=NULL && (v = rptr->V) == RN)
        LFRCLoad(&rptr->R, &rptr);
    if (v == RY)
        unspur_right();
    else if (rptr != NULL && v == RX) {
        LFRCStore(&newNodeChain->L, rptr);
        LFRCLoad(&rptr->R, &rrptr);
        if (LFRCDCAS1(&rptr->R, &rptr->V,
                       rrptr, RX, newNodeChain, RN)) {
            LFRCDestroy(newNodeChain, rptr, rrptr);
            return true;
    }
}
}

allocate_right_nodes(int n) {
    HattrickNode *last = new HattrickNode(RX),
    *newnode = NULL;
    int i;

    if (last==NULL) return NULL;
    for (i=1; i<n; i++) {
        LFRCCopyAlloc(&newnode, new HattrickNode(RN));
        if (newnode==NULL) break;
        LFRCStore(&newnode->R, last);
        LFRCStore(&last->L, newnode);
        LFRCCopy(&last, newnode);
    }
    LFRCStore(&last->L, NULL);
    LFRCDestroy(last, newnode);
    return newnode;
}
}

```

wherein the `LFRCDCAS1` pointer operation provides LFRC pointer operation support only for a first addressed location. Because the second addressed location is a literal value, the `LFRCDCAS1` operation is employed rather than a `LFRCDCAS`. The `LFRCCopyAlloc` pointer operation, like the `LFRCStoreAlloc` pointer operation described above, is a variant that forgoes certain reference count manipulations for a newly allocated node.

The transformed `remove_right_nodes` operation implementation that follows is also illustrative.

```

remove_right_nodes(int n) {
    HattrickNode *choppoint = LFRCLoad(&RightHat);
    HattrickNode *rptr = NULL;
    bool rv;

    for (int i=0; i<n; i++) {
        if (choppoint->V==RX) {
            LFRCDestroy(choppoint, rptr);
            return true;
        }
        LFRCLoad(&choppoint->R, &choppoint);
        if (choppoint == NULL) {

```

- 34 -

```

        LFRCDestroy(choppoint,rptr);
        return true;
    }
}
LFRCLoad(&choppoint->R,&rptr);
if (rptr == NULL) {
    LFRCDestroy(choppoint,rptr);
    return true;
}
if (rv = DCAS(&choppoint->V,&rptr->V,RN,RN,RX,RY)) {
    LFRCCAS(&choppoint->R,rptr,NULL);
    break_cycles_right(LFRCPass(rptr));
}
LFRCDestroy(choppoint,rptr);
return rv;
}

```

wherein the DCAS primitive at line 22 operates on literals, rather than pointers. Accordingly, replacement with an LFRC pointer operation is not implicated.

Finally, transformed versions of the previously described unspur_right and
20 break_cycles_right operations are as follows:

```

unspur_right() {
    HattrickNode *rh = LFRCLoad(&RightHat);
    HattrickNode *rhL = NULL, *ontrack = NULL;

25   if (rh->V == RY) {
        LFRCLoad(&rh->L,&rhL);
        LFRCLoad(&rhL->R,&ontrack);
        if(ontrack != null)
            LFRCCAS(&RightHat,rh,ontrack);
    }
    LFRCDestroy(rh,rhL,ontrack);
}

break_cycles_right(HattrickNode *p) {
    HattrickNode *q = LFRCLoad(&p->R);
35   valtype v = RY;

    while (v != RX && q != NULL) {
        do {
            v = q->V;
40        } while (!CAS(&q->V,v,RY));
        LFRCCStore(&p->R,NULL);
        LFRCCopy(&p,q);
        LFRCLoad(&p->R,&q);
    }
    LFRCCStore(&p->R,NULL);
45   LFRCDestroy(p,q);
}

```

where, as before, the CAS primitive at line 20 operates on a literal, rather than a pointer values. Accordingly, replacement with an LFRC pointer operation is not implicated.

Implementation of LFRC Pointer Operations

In the description that follows, we describe an illustrative implementation of LFRC pointer operations and explain why the illustrative operations ensure that there are no memory leaks and that memory is not freed prematurely. The LFRC pointer operations maintain a reference count in each object, which reflects the 5 number of pointers to the object. When this count reaches zero, there are no more pointers to the object and the object can be freed.

The main difficulty is that we cannot atomically change a pointer variable from pointing to one object to pointing to another and update the reference counts of both objects. We overcome this problem with the observations that:

- 10 1. provided an object's reference counter is always *at least* the number of pointers to the object, it will never be freed prematurely, and
2. provided the count eventually becomes zero when there are no longer any pointers to the object, there are no memory leaks.

Thus, we conservatively increment an object's reference count *before* creating a new pointer to it. If 15 we subsequently fail to create that pointer, then we can decrement the reference count again afterwards to reflect that the new pointer was not created. An important mechanism in the illustrated implementation is the use of DCAS to increment an object's reference count while simultaneously checking that some pointer to the object exists. This avoids the possibility of updating an object after it has been freed, thereby potentially corrupting data in the heap, or in an object that has been reallocated.

20 We now describe a lock-free implementation of the LFRC pointer operations, beginning with an implementation of LFRCLoad as follows:

```
void LFRCLoad(SNode **A, SNode **dest) {
    SNode *a, *olddest = *dest;
    long r;
    while (true) {
        a = *A;
        if (a == Null) {
            *dest = Null;
            break;
        }
        r = a->rc;
        if (DCAS(A, &a->rc, a, r, a, r+1)) {
            *dest = a;
            break;
        }
    }
    LFRCDestroy(olddest);
}
```

where LFRCLoad accepts two parameters, a pointer A to a shared pointer, and a pointer dest to a local 40 pointer variable of the calling thread. The semantics of the LFRCLoad operation is to load the value in the

location pointed to by A into the variable pointed to by dest. This has the effect of destroying one pointer (the previous value in the location pointed to by dest) and creating another (the new value of *dest). Thus, we must potentially update two reference counts. The LFRCLoad operation begins by recording the previous value of the pointer (line 2), so that it can be destroyed later. Note that we cannot destroy it yet, as this would risk destroying the object to which we are about to create a pointer.

Next, the LFRCLoad operation loads a new value from *A and, if the pointer read is non-NUL, increments the reference count of the object pointed to by *A in order to record that a new pointer to this object has been created. In this case, because the calling thread does not (necessarily) already have a pointer to this object, it is not safe to update the reference count using a simple CAS primitive. The object might be freed before the CAS executes, creating a risk that execution of the CAS modifies a location in a freed object or in an object that has subsequently been reallocated for another purpose. Therefore, the LFRCLoad operation uses a DCAS primitive to attempt to atomically increment the reference count, while ensuring that the pointer to the object still exists.

In the above implementation, these goals are achieved as follows. First, the LFRCLoad operation reads the contents of *A (line 5). If it sees a NULL pointer, there is no reference count to be incremented, so LFRCLoad simply sets *dest to NULL (lines 6-8). Otherwise, it reads the current reference count of the object pointed to by the pointer it read in line 5, and then attempts to increment this count using a DCAS (line 11) to ensure that the pointer to the object containing the reference count still exists. Note that there is no risk that the object containing the pointer being read by LFRCLoad is freed during the execution of LFRCLoad because the calling thread has a pointer to this object that is not destroyed during the execution of LFRCLoad. Accordingly, the reference count cannot fall to zero. If the DCAS succeeds, then the value read is stored (line 12) in the variable passed to LFRCLoad for this purpose. Otherwise, LFRCLoad retries. After LFRCLoad succeeds in either loading a NULL pointer, or loading a non-NUL pointer and incrementing the reference count of the object to which it points, it calls LFRCDestroy in order to record that the pointer previously in *dest has been destroyed (line 16).

An illustrative implementation of the LFRCDestroy operation will be understood as follows:

```
void LFRCDestroy(SNode *p) {
    if (p != Null && add_to_rc(p, -1)==1) {
        LFRCDestroy(p->L, p->R);
        delete p;
    }
}
```

If the LFRCDestroy operation's argument is non-NUL, then it decrements the reference count of the object pointed to by its argument (line 2, above). This is done using an add_to_rc function (such as that shown below) implemented using a CAS primitive. The add_to_rc function is safe (in the sense that there is no risk that it will modify a freed object) because it is called only in situations in which we know that the calling thread has a pointer to this object, which has previously been included in the reference count. Therefore, there is no risk that the reference count will become zero, thereby causing the object to be freed,

- 37 -

before the `add_to_rc` function completes. If execution of the `add_to_rc` function causes the reference count to become zero, then we are destroying the last pointer to this object, so it can be freed (line 4, above). First, however, `LFRCDestroy` calls itself recursively (line 3, above) with each pointer in the object in order to update the reference counts of objects to which the soon-to-be-freed object has pointers.

```

5   long add_to_rc(SNode *p, int v) {
        long oldrc;
        while (true) {
            oldrc = p->rc;
            if (CAS(&p->rc), oldrc, oldrc+v)
                return oldrc;
10
10    }
}

```

An `LFRCStore` operation can be implemented as follows:

```

void LFRCStore(SNode **A, SNode *v) {
15    SNode *oldval;
    if (v != Null)
        add_to_rc(v, 1);
    while (true) {
        oldval = *A;
        if (CAS(A, oldval, v)) {
20            LFRCDestroy(oldval);
            return;
        }
25    }
}

```

where the `LFRCStore` operation accepts two parameters, a pointer `A` to a location that contains a pointer, and a pointer value `v` to be stored in this location. If the value `v` is not `NULL`, then the `LFRCStore` operation increments the reference count of the object to which `v` points (lines 3-4). Note that at this point, the new pointer to this object has not been created, so the reference count is greater than the number of pointers to the 30 object. However, this situation will not persist past the end of the execution of the `LFRCStore` operation, since `LFRCStore` does not return until that pointer has been created. In the illustrated implementation, the pointer is created by repeatedly reading the current value of the pointer and using a CAS primitive to attempt to change the contents of the location referenced by `A` to the pointer value `v` (lines 5-9). When the CAS succeeds, we have created the pointer previously counted and we have also destroyed a pointer, namely the 35 previous contents of `*A`. Therefore, `LFRCStore` calls `LFRCDestroy` (line 8) to decrement the reference count of the object to which the now-destroyed pointer points.

Finally, a `LFRCDCAS` operation can be implemented as follows:

```

bool LFRCDCAS(SNode **A0, SNode **A1,
               SNode *old0, SNode *old1,
               SNode *new0, SNode *new1) {
40    if (new0 != Null) add_to_rc(new0, 1);
    if (new1 != Null) add_to_rc(new1, 1);
    if (DCAS(A0, A1, old0, old1, new0, new1)) {
        LFRCDestroy(old0, old1);
45    }
    return true;
}

```

- 38 -

```

    } else {
        LFRCDestroy(new0, new1);
        return false;
    }
5 }
```

where the LFRCDCAS operation accepts six parameters, corresponding to the DCAS parameters described earlier. The illustrated implementation of the LFRCDCAS operation is similar to that of the LFRCStore operation in that it increments the reference counts of objects before creating new pointers to them (lines 4-5) using the add_to_rc function, thereby temporarily setting these counts artificially high. However, the 10 LFRCDCAS operation differs from the LFRCStore operation in that it does not insist on eventually creating those new pointers. If the DCAS at line 6 fails, then LFRCDCAS calls LFRCDestroy for each of the objects whose reference counts were previously incremented, thereby compensating for the previous increments and then returning false (see lines 9-11). On the other hand, if the DCAS succeeds, then the previous increments were justified but we have destroyed two pointers, namely the previous values of the two locations 15 updated by the DCAS. Therefore, the LFRCDCAS operation calls LFRCDestroy to decrement the reference counts of (and potentially free) the corresponding objects and then returns true (see lines 7-8). One suitable implementation of an LFRCAS operation (not shown) is just a simplification of the LFRCDCAS with handling of the second location omitted.

An LFRCCopy operation is also employed in some of the above-illustrated spare node maintenance 20 operations. One implementation is as follows:

```

void LFRCCopy(SNode **v, SNode *w) {
    if (w != Null)
        add_to_rc(w, 1);
    LFRCDestroy(*v);
    *v = w;
25 }
```

where the LFRCCopy operation accepts two parameters, a pointer v to a local pointer variable, and a value w of a local pointer variable. The semantics of this operation is to assign the value w to the variable pointed to by v. This creates a new pointer to the object referenced by w (if w is not NULL), so LFRCCopy increments the 30 reference count of that object (lines 2-3). The LFRCCopy operation also destroys a pointer, namely the previous contents of *v, so LFRCCopy calls LFRCDestroy (line 4) to decrement the reference count of the object referenced by the now-destroyed pointer. Finally, LFRCCopy assigns the value w to the pointer variable pointed to by v and returns.

Other LFRC operations that may be useful in some implementations include a variant of the 35 previously described LFRCLoad operation suitable for use in situations where the target of the load cannot contain a pointer. For example, such a variation may be implemented as follows:

```

void LFRCLoad(SNode **A) {
    SNode *a;
    long r;
40    while (true) {
```

- 39 -

```

    a = *A;
    if (a == NULL)
        return NULL;
    r = a->rc;
5     if (DCAS(A,&a->rc,a,r,a,r+1))
        return a;
    }
}

```

Another LFRC operation employed in some of the above-illustrated spare node maintenance
10 operations is a LFRCStoreAlloc operation, which may be implemented as follows:

```

void LFRCStoreAlloc(SNode **A, SNode *v) {
    SNode *oldval;
    while (true) {
        oldval = *A;
15       if (CAS(A,oldval,v)) {
            LFRCDestroy (oldval);
            return;
        }
    }
20   }
}

```

in situations in which we want to invoke an allocation routine directly as the second parameter of a LFRC store operation. In addition, some implementations or transformations employ a variant of the LFRCDCAS operation such as the following:

```

bool LFRCDCAS1(SNode **a0, int *a1, SNode *old0, int old1,
25   SNode *new0, int new1){

    if (new0 != NULL)
        add_to_rc(new0,1);

30   if (DCAS(a0,a1,old0,old1,new0,new1)) { // Do DCAS
        LFRCDestroy (old0);
        return true;
    } else {
        LFRCDestroy (new0);
35       return false;
    }
}

```

where the second location operated upon by the DCAS pointer operation contains a literal (e.g., an integer) rather than a pointer.

40 Some implementations or transformations may exploit other LFRC pointer operations such as the previously described LFRCPass operation, which may be implemented as follows:

```

SNode* LFRCPass (SNode *p) {
    if (p!=NULL)
        add_to_rc(p,1);
45   return p;
}

```

where the LFRCPass function may be employed to facilitate passing a pointer by value while appropriately maintaining a corresponding reference count. These and other variations on the illustrated set of LFRC pointer operations will be appreciated by persons of ordinary skill in the art based on the description herein.

While the invention has been described with reference to various embodiments, it will be understood
5 that these embodiments are illustrative and that the scope of the invention is not limited to them. Terms such as always, never, all, none, etc. are used herein to describe sets of consistent states presented by a given computational system. Of course, persons of ordinary skill in the art will recognize that certain transitory states may and do exist in physical implementations even if not presented by the computational system. Accordingly, such terms and invariants will be understood in the context of consistent states presented by a
10 given computational system rather than as a requirement for precisely simultaneous effect of multiple state changes. This "hiding" of internal states is commonly referred to by calling the composite operation "atomic", and by allusion to a prohibition against any process seeing any of the internal states partially performed.

Many variations, modifications, additions, and improvements are possible. For example, while
various full-function deque realizations have been described in detail, realizations of other shared object data
15 structures, including realizations that forgo some of access operations, e.g., for use as a FIFO, queue, LIFO, stack or hybrid structure, will also be appreciated by persons of ordinary skill in the art. In addition, more complex shared object structures may be defined that exploit the techniques described herein. Other synchronization primitives may be employed and a variety of distinguishing values may be employed. In general, the particular data structures, synchronization primitives and distinguishing values employed are
20 implementation specific and, based on the description herein, persons of ordinary skill in the art will appreciate suitable selections for a given implementation.

Plural instances may be provided for components, operations or structures described herein as a single instance. Finally, boundaries between various components, operations and data stores are somewhat arbitrary, and particular operations are illustrated in the context of specific illustrative configurations. Other allocations
25 of functionality are envisioned and may fall within the scope of claims that follow. Structures and functionality presented as discrete components in the exemplary configurations may be implemented as a combined structure or component. These and other variations, modifications, additions, and improvements may fall within the scope of the invention as defined in the claims that follow.

WHAT IS CLAIMED IS:

1. A double-ended concurrent shared object organized as a dynamically sized bi-directional referencing chain of nodes, the double-ended concurrent shared object employing distinguishing values to indicate spare nodes thereof and supporting concurrent non-interfering opposing-end accesses for states of two or more values.

5 2. The double-ended concurrent shared object of claim 1, wherein the concurrent non-interfering opposing-end accesses include pop-type accesses.

3. The double-ended concurrent shared object of claim 1, wherein the concurrent opposing-end accesses are push- and pop-type accesses, respectively, and wherein the push- and pop-type accesses are non-interfering for states of one or more values.

10 4. The double-ended concurrent shared object of claim 1, wherein the concurrent opposing-end accesses are push-type accesses, and wherein the push-type accesses are non-interfering for all states.

5. The double-ended concurrent shared object of claim 1, further supporting at least one spare node maintenance operation.

15 6. The double-ended concurrent shared object of claim 1, wherein the distinguishing values include opposing-end and terminal node variants thereof.

7. The double-ended concurrent shared object of claim 6, wherein the distinguishing values further include opposing-end terminal node variants.

8. The double-ended concurrent shared object of claim 6, wherein the distinguishing values further include at least one dead node marker variant.

20 9. The double-ended concurrent shared object of claim 1, embodied as a doubly-linked list of nodes allocated from a shared memory of a multiprocessor and access operations executable by processors thereof.

10. The double-ended concurrent shared object of claim 1, embodied as a computer program product encoded in media, the computer program product defining a data structure instantiable in shared memory of a multiprocessor and instructions executable thereby implementing access operations.

25 11. The double-ended concurrent shared object of claim 10,
 wherein the data structure includes a double-ended queue; and
 wherein the access operations include opposing-end variants of push and pop operations.

12. The double-ended concurrent shared object of claim 1, embodied as a doubly-linked list of nodes allocated from a memory of a processor and access operations executable thereby.

13. The double-ended concurrent shared object of claim 1, embodied as a computer program product encoded in media, the computer program product defining a data structure instantiable in memory of a processor and instructions executable thereby implementing access operations.

5 14. The double-ended concurrent shared object of claim 1,
wherein each of the nodes that is severed from the referencing chain are explicitly reclaimed by a
respective process that destroys a last pointer thereto.

10 15. The double-ended concurrent shared object of claim 1,
wherein those of the nodes that are severed from the referencing chain are reclaimed by an automatic
storage reclamation facility of an execution environment.

15 16. A method of facilitating concurrent programming using a dynamically-sized, linked-list representation of a double ended queue (deque), the method comprising:
encoding the deque using a subset of nodes of the linked-list, the linked-list including spare nodes at
either or both ends of the deque;
defining opposing-end variants of push and pop access operations on the deque; and
defining opposing-end variants of at least one spare node maintenance operation,
wherein execution of any of the access and spare node maintenance operations is linearizable and
non-blocking with respect to any other execution of the access and spare node maintenance
operations.

20 17. The method of claim 16, further comprising:
employing left and right sentinel nodes of the linked-list to delimit the deque, wherein the left and
right sentinel nodes and any spare nodes beyond a respective sentinel node encode a
distinguishing value in a value field thereof.

25 18. The method of claim 17, further comprising:
employing opposing-end and terminal node variants of the distinguishing value.

19. The method of claim 18, further comprising:
employing opposing-end terminal node variants of the distinguishing value.

30 20. The method of claim 18, further comprising:
employing at least one dead node marker variant of the distinguishing value.

21. The method of claim 16,
wherein each of the access operations includes a synchronization operation targeting both a respective sentinel node and a value of a corresponding node, thereby ensuring linearizable and non-blocking execution with respect to any other execution of an access operation.
- 5 22. The method of claim 16,
wherein each of the spare node maintenance operations includes a synchronization operation targeting both a respective target node and a value of a corresponding node, thereby ensuring linearizable and non-blocking execution with respect to any other execution of an access or spare node maintenance operation.
- 10 23. The method of claim 16,
wherein each of the pop access operations includes a single synchronization operation per uncontended execution path thereof.
24. The method of claim 16,
wherein, if a suitable spare node is available, each of the push access operations includes a single synchronization operation per uncontended execution path thereof.
- 15 25. The method of claim 16,
wherein overhead associated with execution of each of the spare node maintenance operations is amortizable over multiple executions of the access operations that target a particular maintained node.
- 20 26. The method of claim 16,
wherein the at least one spare node maintenance operation is an add-type maintenance operation and includes a single synchronization operation per uncontended execution path thereof.
27. The method of claim 26,
wherein the at least one spare node maintenance operation further includes a remove-type maintenance operation that employs a dead node distinguishing value encoding to facilitate at least detection of a spur condition.
- 25 28. The method of claim 21,
wherein for at least some of the access operations, the synchronization operation is a Double Compare And Swap (DCAS) operation.

29. The method of claim 21,
wherein for at least some of the access operations, the synchronization operation is an N-way
Compare And Swap (NCAS) operation.

30. The method of claim 21,
5 wherein for at least some of the access operations, the synchronization operation employs
transactional memory.

31. The method of claim 16,
wherein the at least one spare node maintenance operation includes opposing-end variants of both
add-type and remove-type operations.

10 32. A concurrent double ended queue (deque) representation encoded in one or more computer
readable media, the deque representation comprising:
a doubly-linked list of nodes, including an interior subset thereof encoding the deque, left and right
sentinel ones immediately adjacent to the interior subset, and one or more spare nodes
beyond each of the left and right sentinel nodes;
15 push and pop access operations executable to access each of opposing ends of the deque; and
spare node maintenance operations executable to control numbers of the spare nodes beyond the left
and right sentinel nodes,
wherein execution of any of the access and spare node maintenance operations is linearizable and
non-blocking with respect to any other execution of the access and spare node maintenance
20 operations.

33. The deque representation of claim 32, further comprising:
separate left sentinel and right sentinel identifier storage; and
separate value storage associated with each of the nodes of the list, wherein a distinguishing value
encoded therein is distinguishable from a literal or pointer value,
25 wherein each of the access operations employs a synchronization operation to ensure linearizable
modification of corresponding sentinel identifier storage and value storage, despite
concurrent execution of conflicting ones of the access operations.

34. The deque representation of claim 33, wherein the distinguishing value includes three variants
thereof, respectively indicative of:

30 a terminal node;
a non-terminal left spare or sentinel node; and
a non-terminal right spare or sentinel node.

35. The deque representation of claim 33, wherein the distinguishing value includes four variants thereof, respectively indicative of:

- a left terminal node;
- a right terminal node;
- 5 a non-terminal left spare or sentinel node; and
- a non-terminal right spare or sentinel node.

36. The deque representation of claim 33, wherein the distinguishing value includes at least five variants thereof, respectively indicative of:

- a left terminal node;
- 10 a right terminal node;
- a dead node;
- a non-terminal left spare or sentinel node; and
- a non-terminal right spare or sentinel node.

37. The deque representation of claim 33, wherein the synchronization operation employed by each 15 one of the access operations is selected from the set of:

- a Double Compare And Swap (DCAS) operation; and
- an N-way Compare And Swap (NCAS) operation.

38. The deque representation of claim 33, wherein the synchronization operation employed by each one of the access operations employs transactional memory.

20 39. The deque representation of claim 33,
wherein the synchronization operation employed by each one of the access operations is not
necessarily the same.

40. The deque representation of claim 32,
wherein the spare node maintenance operations include add-type spare node operations.

25 41. The deque representation of claim 32,
wherein the spare node maintenance operations include both add-type and remove-type spare node
operations.

42. The deque representation of claim 33,
wherein the spare node maintenance operations include a remove-type spare node operation operable
30 at a chop point; and
wherein left and right variants of the distinguishing value are themselves distinguishable.

43. The deque representation of claim 33,
wherein the spare node maintenance operations operate on the list at respective target nodes; and
wherein each of the spare node maintenance operations includes a synchronization operation to
ensure linearizable modification of a pointer to the respective target node and corresponding
5 value storage, despite concurrent execution of conflicting ones of the access and spare node
maintenance operations.

44. The deque representation of claim 32,
wherein at least the nodes are allocated from a garbage-collected memory space.

45. A method of managing access to elements of a sequence encoded in a linked-list susceptible to
10 concurrent accesses to one or both ends of the sequence, the method comprising:
encoding the sequence using a subset of nodes of the linked-list, the linked-list including spare nodes
at least one end of the subset of sequence encoding nodes;
mediating the concurrent accesses using a linearizable synchronization operation operable on an end-
of-sequence identifier and a corresponding node value, wherein node values distinguish
15 between sequence encoding nodes and spare nodes; and
in response to a depletion of the spare nodes, adding one or more additional nodes to the linked-list.

46. The method of claim 45, further comprising:
in response to an excess of the spare nodes, removing one or more of the spare nodes from the linked-
list.

20 47. The method of claim 45,
wherein the node values further distinguish between terminal nodes and spare nodes.

48. The method of claim 45,
wherein the sequence is susceptible to access at both ends thereof, and
wherein the node values further distinguish spare nodes at one end from those at the other.

25 49. The method of claim 45,
wherein the sequence encoding nodes represent a double ended queue (deque);
wherein the concurrent accesses include add and remove operations at each end of the deque; and
wherein the adding of one or more additional nodes is performed at each end of the deque in response
to a depletion of the spare nodes at that respective end of the deque.

30 50. The method of claim 45,
wherein the sequence encoding nodes represent a stack;
wherein the concurrent accesses include add and remove operations at a top-end of the stack; and

wherein the adding of one or more additional nodes is performed at the top-end in response to a depletion of the spare nodes at the top-end.

51. The method of claim 45,

wherein the sequence encoding nodes represent a queue;

5 wherein the concurrent accesses include add and remove operations at respective ends of the queue.

52. The method of claim 45, wherein the concurrent accesses include less than all of:

a first-end add operation;

a first-end remove operation;

a second-end add operation; and

10 a second-end remove operation.

53. The method of claim 45,

wherein a subset of the concurrent accesses are performed only by a single process or processor.

54. The method of claim 45,

wherein at least some instances of the linearizable synchronization operation include a double

15 compare and swap (DCAS) operation.

55. The method of claim 45,

wherein at least some instances of the linearizable synchronization operation employ transactional memory.

56. A concurrent shared object representation encoded in one or more computer readable media, the

20 concurrent shared object representation comprising:

a doubly-linked list of nodes, each having a left pointer, a right pointer and a value;

a pair of shared variables that identify respective left and right sentinel ones of the nodes, each encoding a distinguishing value;

25 a sequence of zero or more values encoded using respective ones, zero or more, of the nodes linked between the left and right sentinel nodes in the list;

spare ones of the nodes beyond either or both of the left and right sentinel nodes in the list;

access operations defined for access to opposing ends of the sequence; and

25 spare node maintenance operations defined to add additional spare nodes to and remove excess spare nodes from the list,

30 wherein concurrent operation of competing ones of the access and spare node maintenance operations is mediated by linearizable synchronization operations.

57. A computer program product encoded in at least one computer readable medium, the computer program product comprising:

functional sequences implementing left- and right-end access operations and at least one spare node maintenance operation on a double-ended concurrent shared object instantiable as a doubly-linked list of nodes, including an interior subset thereof encoding a double-ended sequence, left and right sentinel nodes immediately adjacent the interior subset, and one or more spare nodes beyond each of the left and right sentinel nodes,
5 wherein instances of the functional sequences are concurrently executable by plural execution units and each include a linearizable synchronization operation to mediate competing executions of the functional sequences.

10 58. The computer program product of claim 57, wherein the spare node maintenance operations include:
both add- and remove-type operations.

59. The computer program product of claim 57, wherein the access operations include:
the left- and right-end remove-type operations; and
at least one insert-type operation.

15 60. The computer program product of claim 57, wherein the access operations include:
the left- and right-end insert-type operations; and
at least one remove-type operation.

61. The computer program product of claim 57, wherein the access operations include left- and right-end push and pop operations.

20 62. The computer program product of 57,
wherein the at least one computer readable medium is selected from the set of a disk, tape or other magnetic, optical, or electronic storage medium and a network, wireline, wireless or other communications medium.

25 63. An apparatus comprising:
plural processors;
one or more stores addressable by the plural processors;
left and right identifiers accessible to each of the plural processors for identifying a double-ended sequence represented by an interior subset of nodes of a doubly-linked list encoded in the one or more stores, the doubly-linked list including left and right sentinel nodes immediately adjacent the interior subset and one or more spare nodes beyond each of the left and right sentinel nodes; and
30 means for coordinating competing left- and right-end access operations and at least one spare node maintenance operation on the list, the coordinating means employing instances of a linearizable synchronization operation and distinguishing node value encodings.

64. The apparatus of claim 63,
means for explicitly reclaiming a node severed from the list.

1/15

FIG. 2

2/15

FIG. 3A

FIG. 3B

3/15

FIG. 4

4/15

FIG. 5A

FIG. 5B

5/15

FIG. 6

6/15

FIG. 7

7/15

FIG. 8

8/15

FIG. 9

9/15

10/15

FIG. 10B

FIG. 10F

11/15

FIG. 10D

1005

FIG. 10E

1011

12/15

FIG. 11

FIG. 12

13/15

FIG. 13

14/15

FIG. 14

15/15

FIG. 15

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
25 October 2001 (25.10.2001)

PCT

(10) International Publication Number
WO 01/080015 A3

- (51) International Patent Classification⁷: **G06F 9/46**
- (21) International Application Number: **PCT/US01/12615**
- (22) International Filing Date: 18 April 2001 (18.04.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
09/551,113 18 April 2000 (18.04.2000) US
- (71) Applicant: **SUN MICROSYSTEMS, INC. [US/US]**; 901 San Antonio Road, Palo Alto, CA 94303 (US).
- (72) Inventors: **MARTIN, Paul, A.**; 70 Ronald Road, Arlington, MA 02474 (US). **DETLEFS, David, L.**; 94 Depot Street, Westford, MA 01886 (US). **GARTHWAITE, Alexander, T.**; 2 Burton Avenue, Beverly, MA 01915 (US). **STEELE, Guy, L., Jr.**; 9 Lantern Lane, Lexington, MA 02421 (US). **MOIR, Mark, S.**; 108 Liberty Road #2, Somerville, MA 02144 (US).
- (74) Agent: **O'BRIEN, David, W.**; Zagorin, O'Brien & Graham, LLP, Suite 870, 401 West 15th Street, Austin, TX 78701 (US).
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
- Published:
— with international search report
- (88) Date of publication of the international search report:
23 October 2003

[Continued on next page]

(54) Title: CONCURRENT SHARED OBJECT IMPLEMENTED USING A LINKED-LIST WITH AMORTIZED NODE ALLOCATION

WO 01/080015 A3

(57) Abstract: The Hat Trick deque requires only a single DCAS for most pushes and pops. The left and right ends do not interfere with each other until there is one or fewer items in the queue, and then a DCAS adjudicates between competing pops. By choosing a granularity greater than a single node, the user can amortize the costs of adding additional storage over multiple push (and pop) operations that employ the added storage. A suitable removal strategy can provide similar amortization advantages. The technique of leaving spare nodes linked in the structure allows an indefinite number of pushes and pops at a given deque end to proceed without the need to invoke memory allocation or reclamation so long as the difference between the number of pushes and the number of pops remains within given bounds. Both garbage collection dependent and explicit reclamation implementations are described.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

INTERNATIONAL SEARCH REPORT

PCT/US 01/12615

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G06F9/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	ARORA N. S., BLUMOFER R. D., PLAXTON C. G.: "THREAD SCHEDULING FOR MULTIPROGRAMMED MULTIPROCESSORS" PROCEEDINGS OF THE TENTH ANNUAL ACM SYMPOSIUM ON PARALLEL ALGORITHMS AND ARCHITECTURES (SPAA98), PUERTO VALLARTA, MEXICO, 'Online' 28 June 1998 (1998-06-28) - 2 July 1998 (1998-07-02), pages 119-129, XP002172092 ASSOCIATION FOR COMPUTING MACHINERY, ACM, NEW YORK, NY, US ISBN: 0-89791-989-0 Retrieved from the Internet: <URL: http://www.cs.utexas.edu/users/plaxton/ps/1998/spaa.ps> 'retrieved on 2001-07-13! cited in the application	1-3, 5-15, 45-48, 52-54, 56-59, 62-64
Y	-/-	4,16-28,

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

15 January 2002

Date of mailing of the International search report

30/01/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5618 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Archontopoulos, E

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	abstract page 121, left-hand column, line 57 -right-hand column, line 6 page 122, left-hand column, line 23 -page 123, left-hand column, last line figure 3 ---	31-37, 39-44, 49-51, 55,60,61 29,30,38
X	MASSALIN H.: "SYNTHESIS: AN EFFICIENT IMPLEMENTATION OF FUNDAMENTAL OPERATING SYSTEM SERVICES" DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE GRADUATE SCHOOL OF ARTS AND SCIENCES, COLUMBIA UNIVERSITY, NEW YORK, NY, US, 'Online! 1992, pages 1-142, XP002172093 Retrieved from the Internet: <URL:ftp://ftp.cs.columbia.edu/reports/rep orts-1992/cucs-039-92.ps.gz> 'retrieved on 2001-07-13!	56-59, 62-64
Y	page 78, line 10 -page 81, last line figures 5.5,5.6,5.7 ---	50 1,16,32, 45
Y	GREENWALD M. B.: "NON-BLOCKING SYNCHRONIZATION AND SYSTEM DESIGN" DISSERTATION IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE DEPARTMENT OF COMPUTER SCIENCE, STANFORD UNIVERSITY, US, 'Online! August 1999 (1999-08), pages 1-241, XP002172098 Retrieved from the Internet: <URL:ftp://elib.stanford.edu/pub/reports/c s/tr/99/1624/CS-TR-99-1624.pdf> 'retrieved on 2001-07-13! cited in the application page 217, line 25 -page 222, line 20	4,16-28, 31-37, 39-44, 49,51, 60,61
A	abstract figures D.19,D.20 ---	1,29,30, 38,45, 56,57,63
		-/-

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>MASSALIN H., PU C.: "A LOCK-FREE MULTIPROCESSOR OS KERNEL" TECHNICAL REPORT NO. CU-CS-005-91, DEPARTMENT OF COMPUTER SCIENCE, COLUMBIA UNIVERSITY, NEW YORK, NY, US, 'Online! 19 June 1991 (1991-06-19), pages 1-19, XP002172094 Retrieved from the Internet: <URL:http://www.cs.columbia.edu/{library/TR-repository/reports/reports-1991/cu/cs-005-91.ps.gz> 'retrieved on 2001-07-13! cited in the application</p>	56-59, 62-64
A	<p>abstract page 4, line 13 -page 6, line 12 page 17, line 8 - line 31</p> <p>---</p>	1, 16, 32, 45, 50
Y	<p>HERLIHY M., MOSS J. E. B.: "TRANSACTIONAL MEMORY: ARCHITECTURAL SUPPORT FOR LOCK-FREE DATA STRUCTURES" PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA'92), SAN DIEGO, CA, US, 'Online! vol. 21, no. 2, 16 - 19 May 1993, pages 289-300, XP002172097 ISSN: 0163-5964 Retrieved from the Internet: <URL:http://www.cs.brown.edu/people/mph/isca2.ps> 'retrieved on 2001-07-13! cited in the application</p>	55
A	<p>the whole document</p> <p>-----</p>	1, 16, 30-32, 38, 45, 56, 57, 63

THIS PAGE BLANK (USPTO)