

#### УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

| Группа Р3114             | К работе допущен 3.12.20 14:02 |
|--------------------------|--------------------------------|
| Студент Нуруллаев Даниил | Работа выполнена 3.12.20       |
| Преподаватель            | Отчет принят                   |

# Отчет по виртуальной лабораторной работе 1.07V

Маятник Максвелла

### Цель работы.

- 1)Изучение динамики плоского движения твердого тела на примере маятника Максвелла
- 2)Проверка выполнения закона сохранения энергии маятника с учетом потерь на отражение и трение
- 3)Определение центрального осевого момента инерции маятника Максвелла

#### Объект исследования.

Маятник Максвелла

#### Рабочие формулы и исходные данные.

$$\frac{gt^2}{2} = \left(1 + \frac{I_c}{mr^2}\right) \Delta h, \qquad \Delta_{\alpha} = 2\sigma_{\alpha}. \qquad I_c = (\alpha - 1)mr^2$$
 
$$\begin{cases} \alpha = \frac{\sum_{i=1}^{N} Y_i X_i}{\sum_{i=1}^{N} X_i^2}; & \delta_{\alpha} = \frac{\Delta_{\alpha}}{\alpha} \cdot 100\%. & I_{\text{теор}} = mR^2 \end{cases}$$
 
$$\begin{cases} \sigma_{\alpha} = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - \alpha X_i)^2}{(N-1)\sum_{i=1}^{N} X_i^2}}, & I_c = (\alpha - 1)mr^2, & \Delta_{\alpha} = 2\sigma_{\alpha} \end{cases}$$
 
$$\begin{cases} E_{\text{кин},i} = \frac{1}{2}m \left(\frac{I_c}{mr^2} + 1\right) \cdot v_i^2, & gt^2 \\ E_{\text{пот}} = mgH, & \frac{gt^2}{2} = \alpha \Delta h \end{cases}$$
 
$$\delta_{\alpha} = \frac{\Delta_{\alpha}}{\alpha} \cdot 100\%$$
 
$$\begin{cases} E_{\text{кин},i} = E_{\text{кин},i} + E_{\text{пот}}, & \frac{gt^2}{2} = \alpha \Delta h \end{cases}$$

# Описание виртуальной установки



Рис. 2. Схема лабораторного стенда

- 1. Цифровой счетчик
- 2. Колесо (масса  $m=470\,$  г, радиус оси  $r=2.5\,$  мм, радиус маховика  $R=65\,$  мм)
- 3. Рамка с фотоэлементами
- 4. Вертикальная линейка (длина 100 см)
- 5. Пусковой механизм

# Результаты прямых измерений и их обработки

#### Таблица 1.

|                                                                                                                            |                         | Высота, м |        |        |        |        |        |        |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|--------|--------|--------|--------|--------|--------|
|                                                                                                                            | h <sub>0</sub> = 0,1, м | 0,2       | 0,3    | 0,4    | 0,5    | 0,6    | 0,7    | 0,8    |
|                                                                                                                            | t <sub>1</sub>          | 2615,6    | 3716,1 | 4554,8 | 5272,4 | 5898,6 | 6462,1 | 6973,7 |
|                                                                                                                            | t <sub>2</sub>          | 2615,4    | 3715   | 4561,9 | 5267,2 | 5896,5 | 6462,9 | 6980,9 |
| Время,<br>мс                                                                                                               | t <sub>3</sub>          | 2611,9    | 3715,5 | 4556,1 | 5272,4 | 5898   | 6459,3 | 6982,4 |
|                                                                                                                            | t <sub>4</sub>          | 2612,5    | 3715,8 | 4563,4 | 5265,9 | 5891,3 | 6464   | 6982,4 |
|                                                                                                                            | t <sub>s</sub>          | 2612,6    | 3719,7 | 4562,2 | 5272,6 | 5893,1 | 6453,2 | 6973,2 |
| Δh, м                                                                                                                      |                         | 0,1       | 0,2    | 0,3    | 0,4    | 0,5    | 0,6    | 0,7    |
| <t< td=""><td>&gt;, c</td><td>2,61</td><td>3,72</td><td>4,56</td><td>5,27</td><td>5,90</td><td>6,46</td><td>6,98</td></t<> | >, c                    | 2,61      | 3,72   | 4,56   | 5,27   | 5,90   | 6,46   | 6,98   |
| g* <t>/</t>                                                                                                                | ^2/2, M                 | 33,54     | 67,82  | 102,08 | 136,37 | 170,66 | 204,92 | 239,12 |

#### Таблица 2.

|                   |                         | Высота, м |      |      |      |      |      |      |
|-------------------|-------------------------|-----------|------|------|------|------|------|------|
|                   | h <sub>0</sub> = 0,1, M | 0,2       | 0,3  | 0,4  | 0,5  | 0,6  | 0,7  | 0,8  |
| _                 | t <sub>1</sub>          | 53,0      | 37,1 | 30,5 | 26,5 | 24,9 | 21,6 | 19,9 |
| Время,<br>мс      | t <sub>2</sub>          | 81,0      | 44,2 | 33,8 | 28,5 | 25,1 | 22,6 | 20,8 |
|                   | t <sub>3</sub>          | 81,7      | 44,4 | 33,8 | 28,6 | 26,7 | 23,8 | 20,7 |
| Скорост<br>ь, м/с | <b>v</b> <sub>1</sub>   | 0,094     | 0,13 | 0,16 | 0,19 | 0,20 | 0,23 | 0,25 |
|                   | v <sub>2</sub>          | 0,062     | 0,11 | 0,15 | 0,18 | 0,20 | 0,22 | 0,24 |
|                   | V <sub>3</sub>          | 0,061     | 0,11 | 0,15 | 0,17 | 0,19 | 0,21 | 0,24 |

# Расчет результатов косвенных измерений

|       | X_i * Y_i |       |       |       |        |        |  |  |  |
|-------|-----------|-------|-------|-------|--------|--------|--|--|--|
| 3,35  | 13,56     | 30,62 | 54,55 | 85,33 | 122,95 | 167,38 |  |  |  |
|       |           |       |       |       |        |        |  |  |  |
| X_i^2 |           |       |       |       |        |        |  |  |  |
| 0,01  | 0,04      | 0,09  | 0,16  | 0,25  | 0,36   | 0,49   |  |  |  |
|       |           |       |       |       |        |        |  |  |  |

$$\alpha = \frac{\sum_{i=1}^{7} Y_i X_i}{\sum_{i=1}^{7} X_i^2} = 341,25$$

$$\sigma_{\alpha} = \sqrt{\frac{\sum_{i=1}^{7} (Y_i - \alpha X_i)^2}{(7-1)\sum_{i=1}^{7} X_i^2}} = 0.29$$

Центральный момент инерции маятника Максвелла:  $I_c = (\alpha - 1) m r^2 =$  0,001

$$I_c = (\alpha - 1)mr^2 = 0.001$$

Теоретический момент инерции маятника:

$$I_{\text{reop}} = m * R^2 = 0,00264$$

|               |                | Высота, м |       |       |           |       |       |       |
|---------------|----------------|-----------|-------|-------|-----------|-------|-------|-------|
|               |                | 0,8       | 0,7   | 0,6   | 0,5       | 0,4   | 0,3   | 0,2   |
| _             | t <sub>1</sub> | 0,71      | 1,46  | 2,16  | 2,85      | 3,23  | 4,30  | 5,06  |
| Е_кин,<br>Дж  | t <sub>2</sub> | 0,31      | 1,03  | 1,75  | 2,47      | 3,18  | 3,93  | 4,63  |
| дл            | t <sub>3</sub> | 0,30      | 1,02  | 1,75  | 2,45      | 2,81  | 3,54  | 4,68  |
|               |                |           |       |       |           |       |       |       |
|               |                | L         |       | E     | Высота, м |       |       |       |
|               |                | 0,8       | 0,7   | 0,6   | 0,5       | 0,4   | 0,3   | 0,2   |
| _             | t <sub>1</sub> | 3,692     | 3,231 | 2,769 | 2,308     | 1,846 | 1,385 | 0,923 |
| E_пот,        | t <sub>2</sub> | 3,692     | 3,231 | 2,769 | 2,308     | 1,846 | 1,385 | 0,923 |
| Дж            | t <sub>3</sub> | 3,692     | 3,231 | 2,769 | 2,308     | 1,846 | 1,385 | 0,923 |
|               |                |           |       |       |           |       |       |       |
|               |                |           |       |       |           |       |       |       |
|               |                | Высота, м |       |       |           |       |       |       |
|               |                | 0,8       | 0,7   | 0,6   | 0,5       | 0,4   | 0,3   | 0,2   |
| Е_полн,<br>Дж | t <sub>1</sub> | 4,41      | 4,69  | 4,92  | 5,16      | 5,08  | 5,68  | 5,99  |
|               | t <sub>2</sub> | 4,00      | 4,26  | 4,52  | 4,78      | 5,03  | 5,31  | 5,56  |
|               | t <sub>3</sub> | 3,99      | 4,25  | 4,52  | 4,76      | 4,66  | 4,92  | 5,60  |

# Расчет погрешностей измерений (для прямых и косвенных измерений).

Абсолютная погрешность углового коэффициента:

$$\Delta_{\alpha} = 2\sigma_{\alpha} = 0.58629$$

Относительная погрешность углового коэффициента:

$$\delta_{\alpha} = \frac{\Delta_{\alpha}}{\alpha} \cdot 100\% = 0.172\%$$

Погрешность центрального момента инерции:

$$\Delta_{I} = \sqrt{\left(\frac{\partial((\alpha - 1)mr^{2})}{\partial\alpha}\Delta_{\alpha}\right)^{2} + \left(\frac{\partial((\alpha - 1)mr^{2})}{\partial m}\Delta_{m}\right)^{2} + \left(\frac{\partial((\alpha - 1)mr^{2})}{\partial r}\Delta_{r}\right)^{2}}$$

$$\Delta_I = \sqrt{(mr^2 \Delta_{\alpha})^2 + ((\alpha - 1)r^2 \Delta_m)^2 + (2(\alpha - 1)mr\Delta_r)^2} = 8.3 \cdot 10^{-5}$$

$$\varepsilon_I = \frac{\Delta_I}{I_c} \cdot 100\% = 8.3\%$$

# Графики

Екин При t=1 y=-7.071x+6.36 При t=2 y=-6.957x+5.849 При t=3 y=-6.871x+5.8 Еполн y = -2.457 t + 6.361 y = -2.604 t + 6.082 y = -2.254 t + 5.798

График зависимости кинетической и полной энергии от высоты при t1 график зависимости кинетической и полной энергии от высоты



Оранжевым цветом график Еполн Синим цветом график Екин

График зависимости кинетической и полной энергии от высоты при t2



Оранжевым цветом график Еполн Синим цветом график Екин

# График зависимости кинетической и полной энергии от высоты при t3



# Оранжевым цветом график Еполн Синим цветом график Екин

# График зависимости $g < t >^2/2$ от $\Delta h$



#### Окончательные результаты.

$$\alpha = \frac{\sum_{i=1}^{7} Y_i X_i}{\sum_{i=1}^{7} X_i^2} = 341,25$$

$$I_{\text{Teop}} = m * R^2 = 0,00264$$

$$I_c = (\alpha - 1)mr^2 = 0,001$$

$$\sigma_{\alpha} = \sqrt{\frac{\sum_{i=1}^{7} (Y_i - \alpha X_i)^2}{(7-1)\sum_{i=1}^{7} X_i^2}} = 0,29$$

$$\varepsilon_I = \frac{\Delta_I}{I_c} \cdot 100\% = 8.3\%$$

# Выводы и анализ результатов работы.

В ходе проделанной работы удалось доказать работоспособность законов зависимости кинетической и полной энергии от положения маятника над поверхностью, а также выполнение закона сохранения полной механической энергии.