2014 级大学物理(Ⅱ)期末考试卷(A卷)

参考答案及评分标准

一、选择题(每题3分,共36分)

1, (B) 2, (A) 3, (B) 4, (B) 5, (C) 6, (A) 7, (B) 8, (C) 9, (D) 10, (C)

11, (A) 12, (A)

二、填空题(共34分)

1、2 (3分)

2、 等于 (1分) 大于 (1分) 大于 (1分)

3、不变 (1分) 增加 (2分)

 $4, \quad A\cos(\frac{2\pi t}{T} - \frac{1}{2}\pi) \quad (3 \, \%)$

5、

(3分)

6、 三者相互垂直,成右手关系,即 $\vec{E} \times \vec{H}$ 的方向为波传播的方向.(3

分)

7、3 (3分)

- 8、 自然光或(和)圆偏振光 (1分) 线偏振光(完全偏振光) (1分) 部分偏振光或椭圆偏振光 (1分)
- 9、部分 (2分)

11、 1.33×10⁻²³ (3分)

三、计算题(每题10分,共30分)

1、解:

(1) 循环过程对外所作总功为图中矩形面积

$$W = p_b(V_c - V_b) - p_d(V_d - V_a) = 100 \text{ J}$$
 (3 $\%$)

(2) 过程 ab 与 bc 为吸热过程,

吸热总和为
$$Q_1=C_V(T_b-T_a)+C_p(T_c-T_b)$$

$$= \frac{3}{2}(p_b V_b - p_a V_a) + \frac{5}{2}(p_c V_c - p_b V_b)$$

(3) 该的循环效率

$$\eta = \frac{W_{\text{A}}}{Q_{\text{IIV}}} = \frac{100}{800} = 12.5\%$$
(3 分)

2、解:

(1) 由 P 点的运动方向,可判定该波向左传播. (2分)

(2) 原点 O 处质点, t=0 时

$$\sqrt{2}A/2 = A\cos\phi$$
, $v_0 = -A\omega\sin\phi < 0$
 $\phi = \pi/4$ (2%)

所以

0 处振动方程为

$$y_0 = A\cos(500\pi t + \frac{1}{4}\pi)$$
 (SI) (2 $\%$)

由图可判定波长λ=200 m, 故波动表达式为

$$y = A\cos[2\pi(250t + \frac{x}{200}) + \frac{1}{4}\pi]$$
 (SI) (2 $\%$)

(2) 距 O 点 100 m 处质点的振动方程是

$$y_1 = A\cos(500\pi t + \frac{5}{4}\pi)$$
 (2 $\%$)

$$dx/D \approx k\lambda$$

$$x \approx Dk\lambda / d = (1200 \times 5 \times 500 \times 10^{-6} / 0.50) \text{mm} = 6.0 \text{ mm}$$
 (5 $\frac{4}{3}$)

(2) 从几何关系,近似有

$$r_2-r_1\approx dx'/D$$

有透明薄膜时,两相干光线的光程差

$$\delta = r_2 - (r_1 - l + nl)$$

= $r_2 - r_1 - (n-1)l$
= $d x' / D - (n-1)l$ (3分)

$$\delta = k\lambda$$

零级上方的第五级明条纹坐标

$$x' = D[(n-1)l + k\lambda]/d$$

=1200[(1.58-1)×0.01±5×5×10⁻⁴]/0.50mm
=19.9 mm (2 $\frac{1}{2}$)

昆明理工大学理学院 物理系

2015年12月14日