Soluções prova 2

Questão 1 (Formulação, 2 pt)

Para facilitar a formulação vamos definir um conjunto de cachorros

$$C = \{Tyson, Essqua, Holyfield, Maggie, Taylor, Kika\}$$

e um conjunto de baias B = [|C|]. Observe que na escolhe do conjunto de baias estamos supondo que |C| é um limite superior para o número de baias usadas.

Com isso seja $x_{cb} \in \mathbb{B}$ uma variável que indica que o cachorro $c \in C$ está na baia $b \in B$, e seja $y_b \in \mathbb{B}$ uma variável que indica que a baia b está usada. Logo o número de baias usadas é $\sum_{b \in B} y_b$, e caso $y_n = 0$ para alguma baia, nenhum cachorro pode ser alocado nela, i.e. $x_{cb} \leq y_b$. Com isso podemos formular

A segunda restrição garante que cada cachorro fica em exatamente uma baia, e a terceira que nenhuma baia recebe mais que três cachorros. As últimas duas restrições garantam que Tyler e Holyfield não ficam na mesma baia, e que a Maggie fica com a Essqua ou a Kika.

Questão 2 (Formulação, 2 pt)

Para facilitar a formulação seja $T=[n]^2$ o conjunto que representa todos quadros do tabuleiro, e $L_i=\{i\}\times[n]$ e $C_i=[n]\times\{i\}$ os quadros da —-ésima linha ou coluna, respectivamente. Além disso seja c_i a soma desejada na coluna i e l_i a soma desejada na linha i. Para a formulação nos vamos supor que os valores dos itens são $1,2,\ldots,9$ como no exemplo, mesmo que isso pode ser diferente num Bokkusu arbitrário. A marca dos campos é simplesmente representado por uma variável $x_t\in\mathbb{B}$ para todo $t\in T$. Com isso podemos formular

$$\begin{aligned} & \mathbf{minimiza} & & \sum_{t \in T} x_t \\ & \mathbf{sujeito~a} & & \sum_{j \in [n]} j x_{ij} = l_i & & \forall i \in [n] \\ & & & \sum_{i \in [n]} j x_{ij} = c_j & & \forall j \in [n]. \end{aligned}$$

A primeira restrição garante as somas das linhas e a segunda das colunas.

Questão 3 (Dualidade, 2pt)

- a) Falso. O primal pode ser ilimitado.
- b) Verdadeiro.
- c) Verdadeiro.
- d) Falso, as soluções ótimas podem ter o mesmo valor.

Questão 4 (Dualidade, 2 pt)

Sejam α_j para $j \in C$ e β_{ij} para $i \in F, j \in C$ as variáveis duais correspondentes com o primeiro e o segundo conjunto de restrições, respectivamente. Temos o dual

maximiza	$\sum_{j \in C} \alpha_j$	
sujeito a	$\alpha_j - \beta_{ij} \le c_{ij}$	$\forall i \in F, j \in C$
	$\sum_{i \in C} \beta_i \le f_i$	$\forall i \in F$
	$j \in C$ $\alpha_j \in \mathbb{R}_+$	$j \in C$
	$\beta_{ij} \in \mathbb{R}_+$	$i \in F, j \in C$.

Questão 5 (Analise de sensibilidade, 2 pt)

a) Para o nova lado direito \hat{b} a nova solução básica $B^{-1}\hat{b}$ tem que ser viável. Logo

$$1/51\begin{pmatrix} -3 & 9 \\ 6 & -1 \end{pmatrix}\begin{pmatrix} 2+t \\ 5 \end{pmatrix} = 1/51\begin{pmatrix} 39-3t \\ 7+6t \end{pmatrix} \ge 0$$

ou seja $t \le 13$ e $t \ge -7/6$.

b) Com $B^{-1}\hat{b}$ do item a), temos para o novo valor

$$c_B^t 1/51 \begin{pmatrix} 39-3t \\ 7+6t \end{pmatrix} = 1/51 \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 39-3t \\ 7+6t \end{pmatrix} = 1/51(145-15t) = 145/51-5/17t.$$