$\iiint (\frac{1}{6}\left(2\left(t_{1}^{-}-2\,t_{3}^{-}\right)\,\mathcal{A}_{\alpha}^{\alpha\prime}\,\mathcal{A}_{\theta}^{\theta}+6\,\,\mathcal{A}_{\alpha}^{\alpha\beta\chi}\,\,\sigma_{\alpha\beta\chi}+6\,\,f^{\alpha\beta}\,\,\tau\left(\Delta+\mathcal{K}\right)_{\alpha\beta}-4\,t_{1}^{-}\,\mathcal{A}_{\alpha\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+8\,t_{3}^{-}\,\mathcal{A}_{\alpha\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{1}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{1}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+8\,t_{2}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\theta\theta}^{\theta}\,\partial_{\imath}f^{\alpha\imath}+4\,t_{3}^{-}\,\mathcal{A}_{\phantom{a$ $t_{\overset{\cdot}{1}}\partial_{i}f^{\theta}_{\theta}\partial^{i}f^{\alpha}_{\alpha}+4\,t_{\overset{\cdot}{3}}\partial_{i}f^{\theta}_{\theta}\partial^{i}f^{\alpha}_{\alpha}-2\,t_{\overset{\cdot}{1}}\partial_{i}f^{\alpha i}\,\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{3}}\partial_{i}f^{\alpha i}\,\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial^{i}f^{\alpha}_{\alpha}\partial_{\theta}f_{\alpha}^{\theta}-2\,t_{\overset{\cdot}{1}}\partial_{i}f^{\alpha i}\,\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{i}f^{\alpha i}\,\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta}f_{\alpha}^{\theta}+4\,t_{\overset{\cdot}{1}}\partial_{\theta$ $8t. \frac{\partial^{\prime} f^{\alpha}_{\alpha} \partial_{\theta} f^{\beta}_{} + 8r. \frac{\partial_{\beta} \mathcal{A}_{\alpha_{l}\theta}}{2} \partial_{\theta} \mathcal{A}^{\alpha\beta_{l}} - 4r. \frac{\partial_{\beta} \mathcal{A}_{\alpha_{\theta_{l}}}}{2} \partial_{\theta} \mathcal{A}^{\alpha\beta_{l}} + 4r. \frac{\partial_{\beta} \mathcal{A}_{\alpha_{\theta_{l}}}}{2} \partial_{\theta} \mathcal{A}^{\alpha\beta_{l}} - 2r. \frac{\partial_{\beta} \mathcal{A}_{\alpha_{\theta_{l}}}}{2} \partial_{\theta} \mathcal{A}^{\alpha\beta_{l}} + 4r. \frac{\partial_{\beta} \mathcal{A}_{\alpha_{\theta_{l}}}}{2} \partial_{\theta} \mathcal{A}^{\alpha\beta_{l}} - 2r. \frac{\partial_{\beta} \mathcal{A}_{\alpha_{\theta_{l}}}}{2} \partial_{\theta} \mathcal{A}^{\alpha\beta_{l}} + 4r. \frac{\partial_{\beta} \mathcal{A}_{\alpha_{\theta_{l}}}}{2} \partial_{\theta} \mathcal{A}^{\alpha\beta_{l}} - 2r. \frac{\partial_{\beta} \mathcal{A}_{\alpha_{\theta_{l}}}}{2} \partial_{\theta} \mathcal{A}^{\alpha\beta_{l}} - 2r. \frac{\partial_{\beta} \mathcal{A}_{\alpha_{\theta_{l}}}}{2} \partial_{\theta} \mathcal{A}^{\alpha\beta_{l}} + 4r. \frac{\partial_{\beta} \mathcal{A}_{\alpha_{\theta_{l}}}}{2} \partial_{\theta} \mathcal{A}^{\alpha\beta_{l}} - 2r. \frac{\partial_{\beta} \mathcal{A}_{\alpha_{l}}}{2} \partial_{\theta} \mathcal{A}^$ $2r\underset{2}{\cdot}\partial_{\theta}\mathcal{A}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}}-4r\underset{2}{\cdot}\partial_{\theta}\mathcal{A}_{\alpha_{i}\beta}\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}}-6t\underset{1}{\cdot}\partial_{\alpha}f_{_{i\theta}}\partial^{\theta}f^{\alpha_{i}}-3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{i}f_{_{\alpha\theta}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f_{_{\theta_{i}}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t\underset{1}{\cdot}\partial_{\alpha}f^{\alpha_{i}}\partial$ $3t_{1}\partial_{\theta}f_{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}+3t_{1}\partial_{\theta}f_{i\alpha}\partial^{\theta}f^{\alpha_{i}}+6t_{1}\mathcal{A}_{\alpha\theta_{i}}\left(\mathcal{A}^{\alpha_{i}\theta}+2\partial^{\theta}f^{\alpha_{i}}\right)))[t,x,y,z]\,dz\,dy\,dx\,dt$ Wave operator $0.+f\| + i \sqrt{2} kt$. $2k^2t$. 0 ${}^{0}\mathcal{F}^{\parallel}$ † ${}^{1}\mathcal{H}^{\parallel}{}_{lpha}$

$0 \qquad \frac{1}{6} (t_{.} + 4t_{.}) \qquad \frac{t_{.} - 2t_{.}}{3\sqrt{2}} \qquad 0 \qquad \frac{1}{3} i k (t_{.} - 2t_{.})$ $\frac{t_{1}-2t_{1}}{\frac{1}{3}\sqrt{2}} \qquad \qquad \frac{t_{1}+t_{1}}{\frac{1}{3}} \qquad \qquad 0 \quad \frac{1}{3} \, i \, \sqrt{2} \, k \, (t_{1}+t_{1})$ $^{1}\mathcal{A}^{\perp}\dagger^{\alpha}$ $f^{\parallel} \uparrow^{\alpha}$ $0 \quad -\frac{1}{3} i k (t_1 - 2t_3) - \frac{1}{3} i \sqrt{2} k (t_1 + t_3) \quad 0 \quad \frac{2}{3} k^2 (t_1 + t_3) \quad 2^+ \mathcal{A}^{\parallel}_{\alpha\beta} \quad 2^+ f^{\parallel}_{\alpha\beta} \quad 2^- \mathcal{A}^{\parallel}_{\alpha\beta\chi}$ Saturated propagator $0.^{+}\tau^{\parallel} + \frac{i\sqrt{2}k}{(1+2k^{2})^{2}t_{3}} \frac{2k^{2}}{(1+2k^{2})^{2}t_{3}} 0$

$0.^{+}\tau^{\perp}$ † $^{0.7}\sigma^{\parallel}$ †

 $\frac{1}{2}\sigma^{\perp} \uparrow^{\alpha}$

PSALTer results panel

	$2^{+}_{\cdot} \tau^{\parallel} + {}^{\alpha\beta} \frac{2 i \sqrt{2} k}{(1+2 k^{2})^{2} t_{1}} \frac{1}{(1+2 k^{2})^{2} t_{1}}$	$\frac{4 k^2}{+2 k^2)^2 t}$	0
	$2 \sigma^{\parallel} + \alpha^{\alpha \beta \chi} 0$	0	$\frac{2}{t}$
Source constrai	ints		
Spin-parity form	Covariant form	Multipl	icities
$0^{+}_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$	1	
$-2 i k^{0^{+}} \sigma^{\parallel} + {}^{0^{+}} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1	
$2ik 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3	
$1 \tau^{\parallel^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3	
$\overline{i k 1^+_{\cdot \boldsymbol{\sigma}^{\perp}}^{\alpha\beta} + 1^+_{\cdot \boldsymbol{\tau}^{\parallel}}^{\alpha\beta} == 0}$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3	
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$		
$-2 \bar{\imath} k 2^+_{\sigma} \sigma^{\parallel}^{\alpha\beta} + 2^+_{\tau} \tau^{\parallel}^{\alpha\beta} == 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi}_{\chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \partial^$	5	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+$		
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta}^{\epsilon} -$		
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} +$		
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}{}^{\epsilon}) == 0$		

3 t. t.

 $\frac{2ikt.-4ikt.}{1} \frac{3}{3}t.t.+6k^2t.t. \frac{1}{3} \frac{1}{3} \frac{i\sqrt{2}k(t.+4t.)}{3(1+2k^2)^2t.t.} 0 \frac{2k^2(t.+4t.)}{3(1+2k^2)^2t.t.}$

16

Massive spectrum

Total expected gauge generators:

(No particles)

r. < 0 && t. < 0

Unitarity conditions