```
RSA The set up: Key generation.
      1. Pick 2 big primes p, q (Ex: p=59, q=73)
      2. Let n=pg (h=4307)
      3. Find $\phi(n)=(p-1)(q-1) (\phi(n)=58.72=4/76)
       4. Pick e coprime with $60) (e=19)
       5. Calculate & such that ed = 1 (mod $(n))
          [This exists since gcd(0,$\phi(n))=1.)
           (19d=1 (mod 4176), d=1099)
       Public Key: (e,n)
       Private Key: (d,n)
       Mon it works
       Enorption: Message M satisfies 0≤M<0
           Calculate C=Me (mod n) (remainder of Me C=ciphertant, soud to neceiver.
       Decryption: Calculate D=Cd (mod n) D=decrypted mg.
       To be successful, need D=M
   Example: (e,n)=(19,4307) (d,n)=(1099,4807)
    Message: TED \rightarrow 20.05/04 M, M
     Enorypt: C= 2007 (mod 4307)
               C= 1356
     Decrypt: D= C = 1356 (mod 4307)
                to = 2005
```

Theorem in RSA, $D = M \pmod{n}$
Proof: D= Cd (mod n) = Med (mod n)
(Goal MEMod (mod h))
Now napp and god (p,q)=1, so we split the
madulus into mod p and mod q.
(mod p): God MEMed (mod p)
Recall: ed = 1 (mod \$(n) = 1 (mod (p-1)(q-1)).
So ed=ltk(pu)(g-1) Som some KEZ.
So ed=ltk(p-1)(g-1) 5m some KEZ. Suppose ptm. By FlT, M"=1 (mod p)
so Med = M (trope) (trad p)
3 M (Mp-1) k(g-1) (mod p)
3 M (mod P)
If p/M, M=0 (mod p), Mad = 0 (mod p)
So ME Med (mod P)
So M=M ^{ed} (mod p) in oill cases.
By switching the notes of p and q in the proof above, we got M=Med (mod q).
So of Mamed (mod p) since god (p.9)=1, by CRT, Mamed (mod pg) Mamed (mod pg)
So of Mamed (mod p) since god (p.9)=1, by CRT, Mamed (mod pg) = Mad (mod pg) = Mad (mod n) []