## Types of Morphisms in Bicategories

# The Clowder Project Authors July 21, 2025

In this chapter, we study special kinds of morphisms in bicategories:

Monomorphisms and Epimorphisms in Bicategories (Sections 14.1 and 14.2). There is a large number of different notions capturing the idea of a "monomorphism" or of an "epimorphism" in a bicategory.
 Arguably, the notion that best captures these concepts is that of a pseudomonic morphism (Definition 14.1.10.1.1) and of a pseudoepic morphism (Definition 14.2.10.1.1), although the other notions introduced in Sections 14.1 and 14.2 are also interesting on their own.

## Contents

| 14.1 | Monon   | norphisms in Bicategories                       | 2  |
|------|---------|-------------------------------------------------|----|
|      | 14.1.1  | Representably Faithful Morphisms                |    |
|      | 14.1.2  | Representably Full Morphisms                    | 3  |
|      | 14.1.3  | Representably Fully Faithful Morphisms          | 4  |
|      | 14.1.4  | Morphisms Representably Faithful on Cores       | 6  |
|      | 14.1.5  | Morphisms Representably Full on Cores           | 7  |
|      | 14.1.6  | Morphisms Representably Fully Faithful on Cores | 7  |
|      | 14.1.7  | Representably Essentially Injective Morphisms   | 10 |
|      | 14.1.8  | Representably Conservative Morphisms            | 10 |
|      | 14.1.9  | Strict Monomorphisms                            | 11 |
|      | 14.1.10 | Pseudomonic Morphisms                           | 12 |
| 14.2 | Epimo   | rphisms in Bicategories                         | 14 |
|      | 14.2.1  | Corepresentably Faithful Morphisms              | 14 |
|      | 14.2.2  | Corepresentably Full Morphisms                  | 15 |
|      |         |                                                 |    |

|   | 14.2.3  | Corepresentably Fully Faithful Morphisms          | 17  |
|---|---------|---------------------------------------------------|-----|
|   | 14.2.4  | Morphisms Corepresentably Faithful on Cores       | 18  |
|   | 14.2.5  | Morphisms Corepresentably Full on Cores           | 19  |
|   | 14.2.6  | Morphisms Corepresentably Fully Faithful on Cores | 20  |
|   | 14.2.7  | Corepresentably Essentially Injective Morphisms   | 22  |
|   | 14.2.8  | Corepresentably Conservative Morphisms            | 22  |
|   | 14.2.9  | Strict Epimorphisms                               | 23  |
|   | 14.2.10 | Pseudoepic Morphisms                              | 24  |
|   | 0.41    |                                                   | 0.0 |
| ٨ | Lithor  | Chapters                                          | 26  |

## 14.1 Monomorphisms in Bicategories

## 14.1.1 Representably Faithful Morphisms

Let C be a bicategory.

## **DEFINITION 14.1.1.1.1** ► REPRESENTABLY FAITHFUL MORPHISMS

A 1-morphism  $f: A \to B$  of C is **representably faithful**<sup>1</sup> if, for each  $X \in \text{Obj}(C)$ , the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is faithful.

## REMARK 14.1.1.1.2 ► Unwinding Definition 14.1.1.1.1

In detail, f is representably faithful if, for all diagrams in C of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta,$$

then  $\alpha = \beta$ .

<sup>&</sup>lt;sup>1</sup>Further Terminology: Also called simply a **faithful morphism**, based on Item 1 of Example 14.1.1.1.3.

#### **EXAMPLE 14.1.1.3** ► Examples of Representably Faithful Morphisms

Here are some examples of representably faithful morphisms.

- 1. Representably Faithful Morphisms in Cats<sub>2</sub>. The representably faithful morphisms in Cats<sub>2</sub> are precisely the faithful functors; see Categories, Item 2 of Proposition 11.6.1.1.2.
- 2. Representably Faithful Morphisms in Rel. Every morphism of Rel is representably faithful; see Relations, Item 1 of Proposition 8.5.11.1.1.

## 14.1.2 Representably Full Morphisms

Let C be a bicategory.

#### **DEFINITION 14.1.2.1.1** ► REPRESENTABLY FULL MORPHISMS

A 1-morphism  $f: A \to B$  of C is **representably full<sup>1</sup>** if, for each  $X \in \text{Obj}(C)$ , the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is full.

#### REMARK 14.1.2.1.2 ► Unwinding Definition 14.1.2.1.1

In detail, f is representably full if, for each  $X\in \mathrm{Obj}(\mathcal{C})$  and each 2-morphism

$$\beta \colon f \circ \phi \Longrightarrow f \circ \psi, \qquad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad X \xrightarrow{\varphi} A$$

 $<sup>^1</sup>Further\ Terminology:$  Also called simply a **full morphism**, based on **Item 1** of **Example 14.1.2.1.3**.

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

#### **EXAMPLE 14.1.2.1.3** ► EXAMPLES OF REPRESENTABLY FULL MORPHISMS

Here are some examples of representably full morphisms.

- 1. Representably Full Morphisms in Cats<sub>2</sub>. The representably full morphisms in Cats<sub>2</sub> are precisely the full functors; see Categories, ?? of Proposition 11.6.2.1.2.
- 2. Representably Full Morphisms in Rel. The representably full morphisms in Rel are characterised in Relations, Item 2 of Proposition 8.5.11.1.1.

## 14.1.3 Representably Fully Faithful Morphisms

Let C be a bicategory.

## **DEFINITION 14.1.3.1.1** ► REPRESENTABLY FULLY FAITHFUL MORPHISMS

A 1-morphism  $f: A \to B$  of C is **representably fully faithful**<sup>1</sup> if the following equivalent conditions are satisfied:

- 1. The 1-morphism f is representably faithful (Definition 14.1.1.1.1) and representably full (Definition 14.1.2.1.1).
- 2. For each  $X \in \text{Obj}(\mathcal{C})$ , the functor

$$f_* \colon \operatorname{Hom}_{\mathcal{C}}(X,A) \to \operatorname{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is fully faithful.

<sup>&</sup>lt;sup>1</sup>Further Terminology: Also called simply a **fully faithful morphism**, based on Item 1 of Example 14.1.3.1.3.

## REMARK 14.1.3.1.2 ▶ Unwinding Representably Fully Faithful Morphisms

In detail, f is representably fully faithful if the conditions in Remark 14.1.1.1.2 and Remark 14.1.2.1.2 hold:

1. For all diagrams in  $\mathcal{C}$  of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta$$
,

then  $\alpha = \beta$ .

2. For each  $X \in \text{Obj}(\mathcal{C})$  and each 2-morphism

$$\beta \colon f \circ \phi \Longrightarrow f \circ \psi, \quad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-morphism

$$\alpha : \phi \Longrightarrow \psi, \quad X \xrightarrow{\phi} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

#### **EXAMPLE 14.1.3.1.3** ► Examples of Representably Fully Faithful Morphisms

Here are some examples of representably fully faithful morphisms.

- 1. Representably Fully Faithful Morphisms in Cats<sub>2</sub>. The representably fully faithful morphisms in Cats<sub>2</sub> are precisely the fully faithful functors; see Categories, Item 6 of Proposition 11.6.3.1.2.
- 2. Representably Fully Faithful Morphisms in Rel. The representably fully faithful morphisms of Rel coincide (Relations, Item 3 of Proposition 8.5.11.1.1) with the representably full morphisms in Rel, which are characterised in Relations, Item 2 of Proposition 8.5.11.1.1.

## 14.1.4 Morphisms Representably Faithful on Cores

Let C be a bicategory.

## **DEFINITION 14.1.4.1.1** ► Morphisms Representably Faithful on Cores

A 1-morphism  $f: A \to B$  of C is representably faithful on cores if, for each  $X \in \text{Obj}(C)$ , the functor

$$f_* \colon \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,A)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,B))$$

given by postcomposition by f is faithful.

## REMARK 14.1.4.1.2 ► Unwinding Definition 14.1.4.1.1

In detail, f is representably faithful on cores if, for all diagrams in  $\mathcal C$  of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if  $\alpha$  and  $\beta$  are 2-isomorphisms and we have

$$\mathrm{id}_f \star \alpha = \mathrm{id}_f \star \beta,$$

then  $\alpha = \beta$ .

## 14.1.5 Morphisms Representably Full on Cores

Let C be a bicategory.

## **DEFINITION 14.1.5.1.1** ► Morphisms Representably Full on Cores

A 1-morphism  $f: A \to B$  of C is **representably full on cores** if, for each  $X \in \text{Obj}(C)$ , the functor

$$f_* \colon \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,A)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,B))$$

given by postcomposition by f is full.

## REMARK 14.1.5.1.2 ► UNWINDING DEFINITION 14.1.5.1.1

In detail, f is representably full on cores if, for each  $X \in \mathrm{Obj}(\mathcal{C})$  and each 2-isomorphism

$$\beta \colon f \circ \phi \xrightarrow{\sim} f \circ \psi, \quad X \xrightarrow{f \circ \phi} B$$

of  $\mathcal{C}$ , there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\qquad \qquad }} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

## 14.1.6 Morphisms Representably Fully Faithful on Cores

Let C be a bicategory.

A 1-morphism  $f: A \to B$  of C is representably fully faithful on cores if the following equivalent conditions are satisfied:

- 1. The 1-morphism f is representably faithful on cores (Definition 14.1.5.1.1) and representably full on cores (Definition 14.1.4.1.1).
- 2. For each  $X \in \text{Obj}(\mathcal{C})$ , the functor

$$f_* \colon \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,A)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,B))$$

given by postcomposition by f is fully faithful.

## REMARK 14.1.6.1.2 ▶ Unwinding Definition 14.1.6.1.1

In detail, f is representably fully faithful on cores if the conditions in Remark 14.1.4.1.2 and Remark 14.1.5.1.2 hold:

1. For all diagrams in C of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if  $\alpha$  and  $\beta$  are 2-isomorphisms and we have

$$id_f \star \alpha = id_f \star \beta$$
,

then  $\alpha = \beta$ .

2. For each  $X \in \text{Obj}(\mathcal{C})$  and each 2-isomorphism

$$\beta \colon f \circ \phi \stackrel{\sim}{\Longrightarrow} f \circ \psi, \qquad X \underbrace{\beta \downarrow}_{f \circ \psi} B$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\qquad \qquad }} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

## 14.1.7 Representably Essentially Injective Morphisms

Let C be a bicategory.

## **DEFINITION 14.1.7.1.1** ► REPRESENTABLY ESSENTIALLY INJECTIVE MORPHISMS

A 1-morphism  $f: A \to B$  of C is representably essentially injective if, for each  $X \in \text{Obj}(C)$ , the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is essentially injective.

#### REMARK 14.1.7.1.2 ► Unwinding Definition 14.1.7.1.1

In detail, f is representably essentially injective if, for each pair of morphisms  $\phi, \psi \colon X \rightrightarrows A$  of C, the following condition is satisfied:

$$(\star) \ \text{ If } f \circ \phi \cong f \circ \psi, \text{ then } \phi \cong \psi.$$

## 14.1.8 Representably Conservative Morphisms

Let  $\mathcal{C}$  be a bicategory.

#### **DEFINITION 14.1.8.1.1** ▶ REPRESENTABLY CONSERVATIVE MORPHISMS

A 1-morphism  $f: A \to B$  of C is **representably conservative** if, for each  $X \in \text{Obj}(C)$ , the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is conservative.

## REMARK 14.1.8.1.2 ► Unwinding Definition 14.1.8.1.1

In detail, f is representably conservative if, for each pair of morphisms  $\phi, \psi \colon X \rightrightarrows A$  and each 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad X \xrightarrow{\varphi} A$$

of C, if the 2-morphism

$$\operatorname{id}_f \star \alpha \colon f \circ \phi \Longrightarrow f \circ \psi, \qquad X \xrightarrow[f \circ \psi]{\operatorname{id}_f \star \alpha} B$$

is a 2-isomorphism, then so is  $\alpha$ .

## 14.1.9 Strict Monomorphisms

Let C be a bicategory.

## **DEFINITION 14.1.9.1.1** ► STRICT MONOMORPHISMS

A 1-morphism  $f: A \to B$  of C is a **strict monomorphism** if, for each  $X \in \text{Obj}(C)$ , the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is injective on objects, i.e. its action on objects

$$f_* \colon \mathrm{Obj}(\mathsf{Hom}_{\mathcal{C}}(X,A)) \to \mathrm{Obj}(\mathsf{Hom}_{\mathcal{C}}(X,B))$$

is injective.

#### REMARK 14.1.9.1.2 ➤ Unwinding Definition 14.1.9.1.1

In detail, f is a strict monomorphism in C if, for each diagram in C of the form

$$X \stackrel{\phi}{\Longrightarrow} A \stackrel{f}{\longrightarrow} B,$$

if  $f \circ \phi = f \circ \psi$ , then  $\phi = \psi$ .

## **EXAMPLE 14.1.9.1.3** ► EXAMPLES OF STRICT MONOMORPHISMS

Here are some examples of strict monomorphisms.

- 1. Strict Monomorphisms in Cats<sub>2</sub>. The strict monomorphisms in Cats<sub>2</sub> are precisely the functors which are injective on objects and injective on morphisms; see Categories, Item 1 of Proposition 11.7.2.1.2.
- 2. Strict Monomorphisms in Rel. The strict monomorphisms in Rel are characterised in Relations, Proposition 8.5.10.1.1.

## 14.1.10 Pseudomonic Morphisms

Let C be a bicategory.

## **DEFINITION 14.1.10.1.1** ▶ PSEUDOMONIC MORPHISMS

A 1-morphism  $f: A \to B$  of  $\mathcal{C}$  is **pseudomonic** if, for each  $X \in \text{Obj}(\mathcal{C})$ , the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is pseudomonic.

## REMARK 14.1.10.1.2 ▶ Unwinding Definition 14.1.10.1.1

In detail, a 1-morphism  $f: A \to B$  of C is pseudomonic if it satisfies the following conditions:

1. For all diagrams in C of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta$$
,

then  $\alpha = \beta$ .

2. For each  $X \in \text{Obj}(\mathcal{C})$  and each 2-isomorphism

$$\beta \colon f \circ \phi \xrightarrow{\sim} f \circ \psi, \qquad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\circ}_{\psi}} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

## PROPOSITION 14.1.10.1.3 ▶ PROPERTIES OF PSEUDOMONIC MORPHISMS

Let  $f: A \to B$  be a 1-morphism of  $\mathcal{C}$ .

- 1. Characterisations. The following conditions are equivalent:
  - (a) The morphism f is pseudomonic.

- (b) The morphism f is representably full on cores and representably faithful.
- (c) We have an isocomma square of the form

$$A \stackrel{\operatorname{id}_{A}}{\cong} A \overset{\operatorname{id}_{A}}{\times} A$$

$$A \stackrel{\operatorname{id}_{A}}{\cong} A \overset{\operatorname{id}_{A}}{\times} \downarrow_{F}$$

$$A \xrightarrow{F} B$$

in C up to equivalence.

- 2. Interaction With Cotensors. If C has cotensors with 1, then the following conditions are equivalent:
  - (a) The morphism f is pseudomonic.
  - (b) We have an isocomma square of the form

$$A \stackrel{\text{eq.}}{\cong} A \stackrel{\leftrightarrow}{\times}_{1 \pitchfork F} B, \qquad A \stackrel{\text{eq.}}{=} A \stackrel{\text{eq.}}{\cong} A \stackrel{\text{def}}{\times} B \stackrel{\text{def}}{=} A \stackrel{\text{def}}$$

in C up to equivalence.



## 14.2 Epimorphisms in Bicategories

## 14.2.1 Corepresentably Faithful Morphisms

Let C be a bicategory.

#### **DEFINITION 14.2.1.1.1** ► COREPRESENTABLY FAITHFUL MORPHISMS

A 1-morphism  $f: A \to B$  of C is **corepresentably faithful** if, for each  $X \in \text{Obj}(C)$ , the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is faithful.

#### REMARK 14.2.1.1.2 ➤ Unwinding Definition 14.2.1.1.1

In detail, f is corepresentably faithful if, for all diagrams in C of the form

$$A \xrightarrow{f} B \underbrace{\alpha \parallel \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then  $\alpha = \beta$ .

## **EXAMPLE 14.2.1.1.3** ► Examples of Corepresentably Faithful Morphisms

Here are some examples of corepresentably faithful morphisms.

- 1. Corepresentably Faithful Morphisms in Cats<sub>2</sub>. The corepresentably faithful morphisms in Cats<sub>2</sub> are characterised in Categories, Item 5 of Proposition 11.6.1.1.2.
- 2. Corepresentably Faithful Morphisms in Rel. Every morphism of Rel is corepresentably faithful; see Relations, Item 1 of Proposition 8.5.13.1.1.

## 14.2.2 Corepresentably Full Morphisms

Let C be a bicategory.

#### **DEFINITION 14.2.2.1.1** ► COREPRESENTABLY FULL MORPHISMS

A 1-morphism  $f: A \to B$  of C is **corepresentably full** if, for each  $X \in \text{Obj}(C)$ , the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is full.

#### REMARK 14.2.2.1.2 ▶ Unwinding Definition 14.2.2.1.1

In detail, f is corepresentably full if, for each  $X \in \mathrm{Obj}(\mathcal{C})$  and each 2-morphism

$$\beta \colon \phi \circ f \Longrightarrow \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-morphism

$$\alpha : \phi \Longrightarrow \psi, \quad B \xrightarrow{\psi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\phi} X = A \xrightarrow{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star \mathrm{id}_f$$
.

## **EXAMPLE 14.2.2.1.3** ► EXAMPLES OF COREPRESENTABLY FULL MORPHISMS

Here are some examples of corepresentably full morphisms.

1. Corepresentably Full Morphisms in Cats<sub>2</sub>. The corepresentably full morphisms in Cats<sub>2</sub> are characterised in Categories, Item 7 of Proposition 11.6.2.1.2.

2. Corepresentably Full Morphisms in Rel. The corepresentably full morphisms in Rel are characterised in Relations, Item 2 of Proposition 8.5.13.1.1.

## 14.2.3 Corepresentably Fully Faithful Morphisms

Let C be a bicategory.

#### **DEFINITION 14.2.3.1.1** ► COREPRESENTABLY FULLY FAITHFUL MORPHISMS

A 1-morphism  $f: A \to B$  of C is **corepresentably fully faithful**<sup>1</sup> if the following equivalent conditions are satisfied:

- 1. The 1-morphism f is corepresentably full (Definition 14.2.2.1.1) and corepresentably faithful (Definition 14.2.1.1.1).
- 2. For each  $X \in \text{Obj}(\mathcal{C})$ , the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is fully faithful.

## REMARK 14.2.3.1.2 ► UNWINDING DEFINITION 14.2.3.1.1

In detail, f is corepresentably fully faithful if the conditions in Remark 14.2.1.1.2 and Remark 14.2.2.1.2 hold:

1. For all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha | \downarrow \downarrow \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$

then  $\alpha = \beta$ .

<sup>&</sup>lt;sup>1</sup>Further Terminology: Corepresentably fully faithful morphisms have also been called **lax epimorphisms** in the literature (e.g. in [Adá+01]), though we will always use the name "corepresentably fully faithful morphism" instead in this work.

2. For each  $X \in \text{Obj}(C)$  and each 2-morphism

$$\beta : \phi \circ f \Longrightarrow \psi \circ f, \quad A \xrightarrow[\psi \circ f]{\phi \circ f} X$$

of C, there exists a 2-morphism

$$\alpha : \phi \Longrightarrow \psi, \quad B \xrightarrow{\phi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\overset{\phi}{\underset{\psi}{\longrightarrow}}} X = A \underbrace{\overset{\phi \circ f}{\underset{\psi \circ f}{\longrightarrow}}} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star \mathrm{id}_f.$$

## **EXAMPLE 14.2.3.1.3** ► Examples of Corepresentably Fully Faithful Morphisms

Here are some examples of corepresentably fully faithful morphisms.

- 1. Corepresentably Fully Faithful Morphisms in Cats<sub>2</sub>. The fully faithful epimorphisms in Cats<sub>2</sub> are characterised in Categories, Item 10 of Proposition 11.6.3.1.2.
- 2. Corepresentably Fully Faithful Morphisms in Rel. The corepresentably fully faithful morphisms of Rel coincide (Relations, Item 3 of Proposition 8.5.13.1.1) with the corepresentably full morphisms in Rel, which are characterised in Relations, Item 2 of Proposition 8.5.13.1.1.

## 14.2.4 Morphisms Corepresentably Faithful on Cores

Let C be a bicategory.

#### **DEFINITION 14.2.4.1.1** ► Morphisms Corepresentably Faithful on Cores

A 1-morphism  $f: A \to B$  of C is **corepresentably faithful on cores** if, for each  $X \in \text{Obj}(C)$ , the functor

$$f^* \colon \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

given by precomposition by f is faithful.

## REMARK 14.2.4.1.2 ▶ Unwinding Definition 14.2.4.1.1

In detail, f is corepresentably faithful on cores if, for all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha \parallel \beta}_{\psi} X,$$

if  $\alpha$  and  $\beta$  are 2-isomorphisms and we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then  $\alpha = \beta$ .

## 14.2.5 Morphisms Corepresentably Full on Cores

Let C be a bicategory.

## **DEFINITION 14.2.5.1.1** ► Morphisms Corepresentably Full on Cores

A 1-morphism  $f: A \to B$  of C is **corepresentably full on cores** if, for each  $X \in \text{Obj}(C)$ , the functor

$$f^* \colon \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

given by precomposition by f is full.

#### REMARK 14.2.5.1.2 ➤ Unwinding Definition 14.2.5.1.1

In detail, f is corepresentably full on cores if, for each  $X \in \mathrm{Obj}(\mathcal{C})$  and each 2-isomorphism

$$\beta \colon \phi \circ f \xrightarrow{\sim} \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \stackrel{\phi}{\underset{\psi}{\Longrightarrow}} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\overset{\phi}{\underset{\psi}{\longrightarrow}}} X = A \underbrace{\overset{\phi \circ f}{\underset{\psi \circ f}{\longrightarrow}}} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star \mathrm{id}_f.$$

## 14.2.6 Morphisms Corepresentably Fully Faithful on Cores

Let C be a bicategory.

## **DEFINITION 14.2.6.1.1** ► MORPHISMS COREPRESENTABLY FULLY FAITHFUL ON CORES

A 1-morphism  $f: A \to B$  of C is **corepresentably fully faithful on cores** if the following equivalent conditions are satisfied:

1. The 1-morphism f is corepresentably full on cores (Definition 14.2.5.1.1) and corepresentably faithful on cores (Definition 14.2.1.1.1).

2. For each  $X \in \text{Obj}(\mathcal{C})$ , the functor

$$f^* \colon \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

given by precomposition by f is fully faithful.

## REMARK 14.2.6.1.2 ▶ Unwinding Definition 14.2.6.1.1

In detail, f is corepresentably fully faithful on cores if the conditions in Remark 14.2.4.1.2 and Remark 14.2.5.1.2 hold:

1. For all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha \iiint_{\beta}}_{\psi} X,$$

if  $\alpha$  and  $\beta$  are 2-isomorphisms and we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$

then  $\alpha = \beta$ .

2. For each  $X \in \text{Obj}(\mathcal{C})$  and each 2-isomorphism

$$\beta \colon \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \quad A \stackrel{\phi \circ f}{\underbrace{\beta \downarrow}} X$$

of C, there exists a 2-isomorphism

$$\alpha : \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \stackrel{\phi}{\underset{\psi}{\Longrightarrow}} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\phi} X = A \xrightarrow{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star \mathrm{id}_f.$$

## 14.2.7 Corepresentably Essentially Injective Morphisms

Let C be a bicategory.

## **DEFINITION 14.2.7.1.1** ► COREPRESENTABLY ESSENTIALLY INJECTIVE MORPHISMS

A 1-morphism  $f: A \to B$  of C is corepresentably essentially injective if, for each  $X \in \text{Obj}(C)$ , the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is essentially injective.

## REMARK 14.2.7.1.2 ► UNWINDING DEFINITION 14.2.7.1.1

In detail, f is corepresentably essentially injective if, for each pair of morphisms  $\phi, \psi \colon B \rightrightarrows X$  of C, the following condition is satisfied:

$$(\star)$$
 If  $\phi \circ f \cong \psi \circ f$ , then  $\phi \cong \psi$ .

## 14.2.8 Corepresentably Conservative Morphisms

Let C be a bicategory.

#### **DEFINITION 14.2.8.1.1** ► COREPRESENTABLY CONSERVATIVE MORPHISMS

A 1-morphism  $f: A \to B$  of C is **corepresentably conservative** if, for each  $X \in \text{Obj}(C)$ , the functor

$$f^* \colon \operatorname{Hom}_{\mathcal{C}}(B,X) \to \operatorname{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is conservative.

#### REMARK 14.2.8.1.2 ▶ Unwinding Definition 14.2.8.1.1

In detail, f is corepresentably conservative if, for each pair of morphisms  $\phi, \psi \colon B \rightrightarrows X$  and each 2-morphism

$$\alpha : \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \stackrel{\phi}{\underset{\psi}{\Longrightarrow}} X$$

of C, if the 2-morphism

$$\alpha \star \mathrm{id}_f \colon \phi \circ f \Longrightarrow \psi \circ f, \quad A \xrightarrow[\psi \circ f]{\phi \circ f} X$$

is a 2-isomorphism, then so is  $\alpha$ .

## 14.2.9 Strict Epimorphisms

Let C be a bicategory.

## **DEFINITION 14.2.9.1.1** ► STRICT EPIMORPHISMS

A 1-morphism  $f: A \to B$  is a **strict epimorphism in** C if, for each  $X \in \text{Obj}(C)$ , the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is injective on objects, i.e. its action on objects

$$f_* \colon \operatorname{Obj}(\operatorname{\mathsf{Hom}}_{\mathcal{C}}(B,X)) \to \operatorname{Obj}(\operatorname{\mathsf{Hom}}_{\mathcal{C}}(A,X))$$

is injective.

## REMARK 14.2.9.1.2 ► Unwinding Definition 14.2.9.1.1

In detail, f is a strict epimorphism if, for each diagram in C of the form

$$A \stackrel{f}{\longrightarrow} B \stackrel{\phi}{\Longrightarrow} X,$$

if  $\phi \circ f = \psi \circ f$ , then  $\phi = \psi$ .

## **EXAMPLE 14.2.9.1.3** ► EXAMPLES OF STRICT EPIMORPHISMS

Here are some examples of strict epimorphisms.

1. Strict Epimorphisms in Cats<sub>2</sub>. The strict epimorphisms in Cats<sub>2</sub> are characterised in Categories, Item 1 of Proposition 11.7.3.1.2.

2. Strict Epimorphisms in Rel. The strict epimorphisms in Rel are characterised in Relations, Proposition 8.5.12.1.1.

## 14.2.10 Pseudoepic Morphisms

Let C be a bicategory.

#### **DEFINITION 14.2.10.1.1** ▶ PSEUDOEPIC MORPHISMS

A 1-morphism  $f: A \to B$  of  $\mathcal{C}$  is **pseudoepic** if, for each  $X \in \text{Obj}(\mathcal{C})$ , the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is pseudomonic.

## REMARK 14.2.10.1.2 ► UNWINDING DEFINITION 14.2.10.1.1

In detail, a 1-morphism  $f: A \to B$  of C is pseudoepic if it satisfies the following conditions:

1. For all diagrams in  $\mathcal{C}$  of the form

$$A \xrightarrow{f} B \underbrace{\alpha \iiint \beta}_{yb} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then  $\alpha = \beta$ .

2. For each  $X \in \text{Obj}(\mathcal{C})$  and each 2-isomorphism

$$\beta \colon \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \quad A \stackrel{\phi \circ f}{\biguplus_{\psi \circ f}} X$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \stackrel{\phi}{\underset{\psi}{\Longrightarrow}} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\overset{\phi}{\underset{\psi}{\longrightarrow}}} X = A \underbrace{\overset{\phi \circ f}{\underset{\psi \circ f}{\longrightarrow}}} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star \mathrm{id}_f.$$

## PROPOSITION 14.2.10.1.3 ▶ PROPERTIES OF PSEUDOEPIC MORPHISMS

Let  $f: A \to B$  be a 1-morphism of C.

- 1. Characterisations. The following conditions are equivalent:
  - (a) The morphism f is pseudoepic.
  - (b) The morphism f is corepresentably full on cores and corepresentably faithful.
  - (c) We have an isococomma square of the form

$$B \stackrel{\text{eq.}}{\cong} B \stackrel{\text{id}_B}{\coprod} B, \quad \text{id}_B \qquad \uparrow F$$

$$B \stackrel{\text{eq.}}{\longleftarrow} A$$

in C up to equivalence.

## PROOF 14.2.10.1.4 ▶ PROOF OF PROPOSITION 14.2.10.1.3

Item 1: Characterisations

Omitted.

## Appendices

#### Other Chapters $\mathbf{A}$

## **Preliminaries**

- 1. Introduction
- 2. A Guide to the Literature

## Sets

- 3. Sets
- 4. Constructions With Sets
- 5. Monoidal Structures on the Category of Sets
- 6. Pointed Sets
- 7. Tensor Products of Pointed Sets

## Relations

- 8. Relations
- 9. Constructions With Relations

## 10. Conditions on Relations

## Categories

- 11. Categories
- 12. Presheaves and the Yoneda Lemma

## **Monoidal Categories**

13. Constructions With Monoidal Categories

## **Bicategories**

14. Types of Morphisms in Bicategories

## Extra Part

15. Notes

## References

[Adá+01]Jiří Adámek, Robert El Bashir, Manuela Sobral, and Jiří Velebil. "On Functors Which Are Lax Epimorphisms". In: Theory Appl. Categ. 8 (2001), pp. 509–521. ISSN: 1201-561X (cit. on p. 17).