Отчёт по практическому заданию №3.

Ю. Н. Лукашкина

julialukashkina@gmail.ru

МГУ имени М. В. Ломоносова, Москва $19~{\rm декабр} \ 2016~{\rm r}.$

Аннотация

Данный документ содержит отчет по практической работе №3 курса «Суперкомпьютерное моделирование и технологии» ВМК МГУ.

1 Математическая постановка задачи

В прямоугольной области

$$\Pi = [A_1, A_2] \times [B_1, B_2]$$

требуется найти дважды гладкую функцию u = u(x, y), удовлетворяющую дифференциальному уравнению

$$-\Delta u = F(x, y), \quad A_1 < x < A_2, B_1 < y < B_2 \tag{1}$$

и дополнительному условию

$$u(x,y) = \varphi(x,y) \tag{2}$$

во всех граничных точках (x, y) прямоугольника. Оператор Лапласа Δ определён равенством:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

$$F(x,y) = (x^2 + y^2)\sin(xy), \quad \varphi(x,y) = 1 + \sin(xy),$$

Прямоугольник $\Pi = [0, 2] \times [0, 2]$.

Было подобрано точное решение задачи Дирихле: $u(x,y) = 1 + \sin(xy)$.

2 Численный метод решения задачи

В расчётной области П определяется прямоугольная сетка

$$\bar{\omega}_h = \{(x_i, y_i), i = 0, 1, \dots, N_1, j = 0, 1, \dots, N_2\},\$$

где $A_1 = x_0 < x_1 < x_2 < \dots < x_{N_1} = A_2$ — разбиение отрезка $[A_1, A_2]$ оси (ox), $B_1 = y_0 < y_1 < y_2 < \dots < y_{N_2} = B_2$ — разбиение отрезка $[B_1, B_2]$ оси (oy).

Через $omega_h$ обозначим множество внутренних, а через γ_h — множество граничных узлов сетки $\bar{\omega}_h$. Пусть $h_i^{(1)}=x_{i+1}-x_i, i=0,1,\ldots,N_1-1,$ $h_j^{(2)}=y_{j+1}-y_j, j=0,1,\ldots,N_2-1$ — переменный шаг сетки по оси абсцисс и ординат соответствено. Средние шаги сетки определяются равенствами:

$$h_i^{(1)} = 0.5(h_i^{(1)} + h_{i-1}^{(1)}), \quad h_i^{(2)} = 0.5(h_i^{(2)} + h_{i-1}^{(2)})$$

2 Алгоритмика Ю. Н. Лукашкина

Рассмотрим линейное пространство H функций, заданных на сетке ω_h . Будем считать, что в пространстве H задано скалярное произведение и максимум норма

$$(u,v) = \sum_{i=1}^{N_1-1} \sum_{j=1}^{N_2-1} h_i^{(1)} h_j^{(2)} u_{ij} v_{ij}, \quad ||u|| = \max_{\substack{0 < i < N_1 \\ 0 < j < N_2}} |u_{i,j}|$$
(3)

где $u_{ij} = u(x_i, y_i), v_{ij} = v(x_i, y_j)$ — любые функции из пространства H.

Для аппроксимации уравнения Пуассона (1) воспользуемся пятиточечным разностным оператором Лапласа, который во внутренних узлах сетки определяется равенством:

$$-\Delta_h p_{ij} = \frac{1}{\hbar_i^{(1)}} \left(\frac{p_{ij} - p_{i-1j}}{h_{i-1}^{(1)}} - \frac{p_{i+1j} - p_{ij}}{h_i^{(1)}} \right) + \frac{1}{\hbar_j^{(2)}} \left(\frac{p_{ij} - p_{ij-1}}{h_{j-1}^{(2)}} - \frac{p_{ij+1} - p_{ij}}{h_j^{(2)}} \right).$$

Здесь предполагается, что функция $p = p(x_i, y_i)$ определена во всех узлах сетки $\bar{\omega}_h$.

Приближенным решением задачи (1), (2) называется функция $p = p(x_i, y_i)$, удовлетворяющая уравнениям

$$-\Delta_h p_{ij} = F(x_i, y_j), (x_i, y_j) \in \omega_h, \qquad p_{ij} = \varphi(x_i, y_j), (x_i, y_j) \in \gamma_h. \tag{4}$$

Эти соотношения представляют собой систему линейных алгебраических уравнений с числом уравнений равным числу неизвестных и определяют единственным образом неизвестные значения p_{ij} . Совокупность уравнений (4) назвается разностной схемой для задачи (1), (2).

Приближенное решение системы уравнений (4) может быть получено методом сопряжённых градиентов. Начальное приближение $p^{(0)}$ и первая итерация $p^{(1)}$ вычисляются так:

$$p_{ij}^{(0)} = \varphi(x_i, y_j), \quad (x_i, y_j) \in \gamma_h,$$

во внутренних узлах сетки $p_{ij}^{(0)}$ — любые числа. Метод является одношаговым. Итерация $p^{(k+1)}$ вычисляется по итерации $p^{(k)}$ согласно равенствам:

$$p_{ij}^{(k+1)} = p_{ij}^{(k)} - \tau_{k+1} g_{ij}^{(k)}, \quad k = 1, 2, \dots$$

Здесь

$$\tau_{k+1} = \frac{\left(r^{(k)}, g^{(k)}\right)}{\left(-\Delta_h g^{(k)}, g^{(k)}\right)},$$

вектор

$$g_{ij}^{(k)} = r_{ij}^{(k)} - \alpha_k g_{ij}^{(k-1)}, \quad k = 1, 2, \dots,$$

$$g_{ij}^{(0)} = r_{ij}^{(0)},$$

коэффициент

$$\alpha_k = \frac{\left(-\Delta_h r^{(k)}, g^{(k-1)}\right)}{\left(-\Delta_h g^{(k-1)}, g^{(k-1)}\right)}.$$

Вектор невязки $r^{(k)}$ вычисляется по следующим формулам:

$$r_{ij}^{(k)} = -\Delta_h p_{ij}^{(k)} - F(x_i, y_j), (x_i, y_j) \in \omega_h, \qquad r_{ij}^{(k)} = 0, (x_i, y_j) \in \gamma_h.$$

Итерационный процесс останавливается, как только

$$||p^{(n)} - p^{(n-1)}|| < \varepsilon,$$

по евклидовой норме, где epsilon — заранее выбранное положительное число ($epsilon = 10^{-4}$).

3 Описание работы по созданию MPI / CUDA реализации

Все операции, кроме вычисления разностного оператора Лапласа, производятся независимо для каждого элемента матрицы. Это позволяет эффективно распараллелить работу с матрицами по процессорам, каждый из которых будет работать только с своей частью исходной матрицы. Для вычисления величин, которые требуют всю матрицу (таких как норма, скалярное произведение двух матриц и т.д.), процессоры будут синхронизироваться. Распараллеливание матрицы будет происходить по блокам/клеткам.

Чтобы корректно производить вычисление разностного оператора Лапласа каждый процессор кроме своей части матрицы будет хранить ещё граничные строки и столбцы. То есть одну предыдущую и одну последующую строчки относительно выделенных ему собственных строк (для процессоров, работающих с граничными частями матрицы соответствующие строки всегда будут пустыми). Аналогично будут храниться и дублирующие столбцы. Перед и после каждой операции подсчёта разностного оператора Лапласа процессоры будут обмениваться этими пограничными строками и столбцами.

3.1 Разделение матрицы

Исходная матрица делится между процессорами на клетки примерно одинакового размера. Для вычисления количества клеток по каждой из размерностей матрицы была использована функция SplitFunction, прилагающаяся к заданию. Число процессоров p является входным параметром и должно быть степенью двойки $p=2^{power}$. Данную степень можно представить в следующем виде: $power=p_1+p_2$, где $2^{p_1}, 2^{p_2}$ — число процессоров по первой и второй размерностям матрицы соотвественно.

3.2 MPI

Были использованы следующие функции:

Для вычисления максимум нормы и подсчёта суммы.

— Для обмена строками матрицы.

— Для подсчёта времени.

3.3 CUDA

- Для вычисления матричных операций и приближенных операций использовалась 2D сетка.
- Для вычисления reduce операций (максимума и суммы) использовалась 1D сетка.

3.4 Вывод результатов программы

Результатом работы программы является вывод в консоль времени работы программы и погрешности решения. Также каждый процессор сохраняет в отдельные файлы свои части получившейся приближенной матрицы решения.

4 Алгоритмика Ю. Н. Лукашкина

Таблина 1.	Таблица с г	результатами	расчётов	на ПВС	«Ломоносов»

Число процессоров N_p	Число точек сетки N^3	m Bремя решения T	Ускорение S	Эффективность
1	1000×1000	379.135		
2	1000×1000	192.87	1.97	0.99
4	1000×1000	99.3778	3.82	0.96
8	1000×1000	56.7781	6.78	0.85
1	2000×2000	2979.66		
2	2000×2000	1505.57	1.98	0.99
4	2000×2000	761.021	3.91	0.98
8	2000×2000	478.44	6.23	0.78

Таблица 2. Таблица с результатами расчётов на ПВС «Ломоносов», CUDA

Число процессоров N_p	Число точек сетки N^3	m Bремя решения T	Ускорение S	Эффективность
1	1000×1000	20.3783		
2	1000×1000	11.9322	1.70	0.85
4	1000×1000	7.62324	2.67	0.66
8	1000×1000	5.1586	3.83	0.48
1	2000×2000	144.604		
2	2000×2000	76.009	1.90	0.95
4	2000×2000	41.346	3.50	0.88
8	2000×2000	24.0867	6.01	0.75

4 Результаты расчётов

4.1 МРІ ПВС «Ломоносов»

По таблице 1 видно, что реализованная программа распараллеливается хорошо. На обеих сетках для небольшого числа процессоров эффективность примерно одинаковая. Значения ускорения на сетках в 1000 и 2000 узлов отличаются незначительно. При конфигурации запуска с 8 процессорами эффективность ощутимо уменьшается. Это связано с тем, что затраты на передачу информации между процессорами становятся слишком высокими.

4.2 CUDA/MPI «Ломоносов»

По таблице 2 видно, что для сетки из 1000 точек значения эффективности в среднем ниже, чем для сетки из 2000 точек. На сетке большего размера достигается большее ускорение и эффективность в среднем выше. На обеих сетках эффективность уменьшается с ростом числа процессоров. Это, скорее всего, связано с тем, что размер клетки, выделяемой каждому процессору становится всё меньше и накладные расходы на управление потоками не компенсируются полученным ускорением. Этот эффект особенно хорошо заметен на сетке из 1000 точек.

4.3 CUDA/MPI и MPI «Ломоносов»

При одинаковом числе процессоров время работы на ПВС «Ломоносов» с использованием CUDA значительно меньше, чем без. Для 1 процессора ≈ 20 и 144 против ≈ 379 и 2979. Для 8 процессоров ≈ 5 и 24 против ≈ 56 и 478. Значение эффективности в среднем ниже с использованием CUDA, чем без.

5 Выводы

Выполненная программная реализация хорошо масштабируется. Однако при росте числа процессоров и уменьшении размера клетки накладные расходы на распараллеливание уменьшают эффективность параллельной программы. Ускорение CUDA версии по сравнению с обычной значительно.