1. Consider the following integration

$$\int_{-\infty}^{\infty} e^{-x^2} dx.$$

- (a) Evaluate the integral in closed form using π
- (b) Estimate the above integral using Riemman's Rule. Give a estimate of π . Does it at least provide a couple digits worth of accuracy?
- (c) Redo part (b) to estimate π using Gauss-Hermite quadrature. You may use the **fastGHQuad()** function in R.
- 2. Use Monte Carlo simulation to evaluate the confidence (coverage) level of 95% CI for regression slope in the model

$$y_i = 3x_i + \epsilon_i, \epsilon_i \sim N(0, 1)$$

In each Monte Carlo sample, first generate a vector of x (you may pick x from any distribution, say a normal or a uniform). Then generate ϵ from N(0,1) and then y according to the regression formula. Use lm() to fit the regression model, and confint() to get the 95% confidence interval for the slope parameter. Run the MC iterations for 10000 times and get the proportion of CI that covers the true slope $\beta_1 = 3$. Verify the proportion is close to 0.95.

- 3. Let $Y \sim Bernoulli(0.7)$ and the conditional distribution of X given Y is $X|Y \sim N(\mu_Y, 1)$, where $\mu_0 = -2$ and $\mu_1 = 2$.
- (a) Derive the marginal pdf of X.
- (b) Use iterated expectation and variance to find E(X) and Var(X) exactly.
- (c) Obtain a Monte Carlo sample of size m = 10000. Use this sample to compute (i) E(X), (ii) Var(X), (iii) 90th percentile of X.