

Embedding Planar Graphs

John C. Hart
Department of Computer Science
University of Illinois

at Urbana-Champaign

Graphs

non-planar embedding

planar embedding

none of the edges crosses each other

Layout of a Large Graph

- "Happy Buddha"
 3-D mesh model
- 50,000 nodes
- 100,000 faces
- Can be cut (with six cuts) into a simply connected graph
- Can we find a planar layout of this graph?

Tutte, How to draw a graph, Proc. London Math Soc. 13, 1963, pp. 743-767

- Input is a graph G consisting of nodes (1,...,N) and edges (i,j) $(1 \le i < j \le N)$
- Identify some of the nodes as boundary nodes and assign them 2-D positions
- In this example, we have nodes (1,2,3,4,5,6,7,8) and edges (1,2), (1,3), (2,4), (3,4), (1,5), (2,6), (3,7), (4,8), (5,6), (5,7), (6,8) and (7,8)
- Identify nodes 1,2,3 and 4 as boundary nodes, and assign them coordinates (0,0), (1,0), (0,1) and (1,1)

- Create the graph Laplacian matrix
- Adjacency matrix with elements $L_{ij} = 1/\deg(i)$ for an edge between node i and node j

- Zero out the rows for the nodes we have already positioned
- Subtract it from the identity matrix

- Create linear systems of equations
- Solve $A\mathbf{x} = \mathbf{b}_x$ for the x coordinates

_										_
1	0	0	0	0	0	0	0	x_1		0
0	1	0	0	0	0	0	0	x ₂		1
0	0	1	0	0	0	0	0	X ₃		0
0	0	0	1	0	0	0	0	X ₄		1
$-\frac{1}{3}$	0	0	0	1	$-\frac{1}{3}$	$-\frac{1}{3}$	0	X ₅	=	0
0	$-\frac{1}{3}$	0	0	$-\frac{1}{3}$	1	0	$-\frac{1}{3}$	x ₆		0
0	0	$-\frac{1}{3}$	0	$-\frac{1}{3}$	0	1	$-\frac{1}{3}$	X ₇		0
0	0	0	$-\frac{1}{3}$	0	$-\frac{1}{3}$	$-\frac{1}{3}$	1_	X ₈		0

- Create linear systems of equations
- Solve $A\mathbf{x} = \mathbf{b}_x$ for the x coordinates
- Solve $A\mathbf{y} = \mathbf{b}_{v}$ for the y coordinates

- Create linear systems of equations
- Solve $A\mathbf{x} = \mathbf{b}_x$ for the x coordinates
- Solve $A\mathbf{y} = \mathbf{b}_{v}$ for the y coordinates

1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
$-\frac{1}{3}$	0	0	0	1	$-\frac{1}{3}$	$-\frac{1}{3}$	0
0 -	$-\frac{1}{3}$	0	0	$-\frac{1}{3}$	1	0	$-\frac{1}{3}$
0	0	$-\frac{1}{3}$	0	$-\frac{1}{3}$	0	1	$-\frac{1}{3}$
0	0	0	$-\frac{1}{3}$	0	$-\frac{1}{3}$	$-\frac{1}{3}$	1

1		0
2		1
3		0
4		1
5	=	0
6		0
7		0
8		0

$$x_1 = 0, x_2 = 1$$

 $x_3 = 0, x_4 = 1$
 $x_5 = (x_1 + x_6 + x_7)/3$
 $x_6 = (x_2 + x_5 + x_8)/3$
 $x_7 = (x_3 + x_5 + x_8)/3$
 $x_8 = (x_4 + x_6 + x_7)/3$

.

- Create linear systems of equations
- Solve $A\mathbf{x} = \mathbf{b}_x$ for the x coordinates
- Solve $A\mathbf{y} = \mathbf{b}_{v}$ for the y coordinates

- Create linear systems of equations
- Solve $A\mathbf{x} = \mathbf{b}_x$ for the x coordinates
- Solve $A\mathbf{y} = \mathbf{b}_{v}$ for the y coordinates

$$x_1, y_1 = (0,0), \quad x_2, y_2 = (1,0)$$

 $x_3, y_3 = (0,1), \quad x_4, y_4 = (1,1)$
 $x_5, y_5 = ((x_1, y_1) + (x_6, y_6) + (x_7, y_7))/3 = (1/3, 1/3)$
 $x_6, y_6 = ((x_2, y_2) + (x_5, y_5) + (x_8, y_8))/3 = (2/3, 1/3)$
 $x_7, y_7 = ((x_3, y_3) + (x_5, y_5) + (x_8, y_8))/3 = (1/3, 2/3)$
 $x_8, y_8 = ((x_4, y_4) + (x_6, y_6) + (x_7, y_7))/3 = (2/3, 2/3)$

