Three Dimensional Modeling Transformations

Three Dimensional Modeling Transformations

Methods for object modeling transformation in three dimensions are extended from two dimensional methods by including consideration for the z coordinate.

3D Point

We will consider points as column vectors. Thus, a typical point with coordinates (x, y, z) is represented as:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

3D Point Homogenous Coordinate

A 3D point P is represented in homogeneous coordinates by a 4-dim. Vect:

$$\mathbf{P} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

3D Point Homogenous Coordinate

- We don't lose anything
- The main advantage: it is easier to compose translation and rotation
- Everything is matrix multiplication

3D Coordinate Systems

Right Hand coordinate system:

Left Hand coordinate system:

3D Transformation

In homogeneous coordinates, 3D transformations are represented by 4×4 matrixes:

$$egin{bmatrix} a & b & c & t_x \ d & e & f & t_y \ g & h & i & t_z \ 0 & 0 & 0 & 1 \ \end{bmatrix}$$

P is translated to P' by:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\mathbf{P'} = \mathbf{T} \cdot \mathbf{P}$$

An object is translated in 3D dimensional by transforming each of the defining points of the objects.

An Object represented as a set of polygon surfaces, is translated by translate each vertex of each surface and redraw the polygon facets in the new position.

Inverse Translation:

$$T^{-1}(t_x,t_y,t_z) = T(-t_x,-t_y,-t_z)$$

3D Rotation

3D Rotation

- In general, rotations are specified by a rotation axis and an angle.
- Positive rotation angles produce counterclockwise rotations about a coordinate axis

Coordinate Axis Rotations

Coordinate Axis Rotations

Z-axis rotation: For z axis same as 2D rotation:

$$\begin{bmatrix} x' \\ y' \\ z' \\ \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\mathbf{P}' = \mathbf{R}_z(\theta) \cdot \mathbf{P}$$

Coordinate Axis Rotations X-axis rotation:

$$\begin{bmatrix} x' \\ y' \\ z' \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\mathbf{P}' = \mathbf{R}_{x}(\theta) \cdot \mathbf{P}$$

Coordinate Axis Rotations

Y-axis rotation:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\mathbf{P'} = \mathbf{R}_{_{\boldsymbol{v}}}(\boldsymbol{\theta}) \cdot \mathbf{P}$$

3D Scaling

About origin: Changes the size of the object and repositions the object relative to the coordinate origin.

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\mathbf{P'} = \mathbf{S} \cdot \mathbf{P}$$

3D Scaling

About any fixed point:

$$\mathbf{T}(x_f, y_f, z_f) \cdot \mathbf{S}(s_x, s_y, s_z) \cdot \mathbf{T}(-x_f, -y_f, -z_f) = \begin{bmatrix} s_x & 0 & 0 & (1-s_x)x_f \\ 0 & s_y & 0 & (1-s_y)y_f \\ 0 & 0 & s_z & (1-s_z)z_f \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Composite 3D Transformations

Composite 3D Transformations

- Same way as in two dimensions:
 - Multiply matrices
 - Rightmost term in matrix product is the first transformation to be applied

3D Reflections

3D Reflections

About an axis: equivalent to 180° rotation about that axis

3D Reflections

About a plane:

• A reflection through the xy plane:

$$\begin{bmatrix} x \\ y \\ -z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D Shearing

3D Shearing

- Modify object shapes
- Useful for perspective projections:
 - E.g. draw a cube (3D) on a screen (2D)
 - Alter the values for x and y by an amount proportional to the distance from z_{ref}

3D Shearing

$$m{M}_{zshear} = egin{bmatrix} 1 & 0 & sh_{zx} & -sh_{zx} \cdot z_{ref} \ 0 & 1 & sh_{zy} & -sh_{zy} \cdot z_{ref} \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

