(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 5 June 2003 (05.06.2003)

PCT

(10) International Publication Number WO 03/045318 A2

(51) International Patent Classification7:

.

A61K

- (21) International Application Number: PCT/US02/37738
- (22) International Filing Date:

21 November 2002 (21.11.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/331,958

21 November 2001 (21.11.2001) US

(71) Applicant (for all designated States except US): CELL-TECH R & D, INC. [US/US]; 1631 220th Street S.E., Bothell, WA 98021 (US).

(71) Applicants and

(72) Inventors: RAMSDELL, Fred [US/US]; 9891 NE Day Road, Bainbridge Island, WA 98110 (US). PROLL, Sean, C. [US/US]; 8211 22nd Avenuie N.E., Seattle, WA 98115 (US). STAEHLING-HAMPTON, Karen [US/US]; 2521 181st Place S.E., Bothell, WA 98019 (US). APPELBY, Mark, W. [GB/US]; 16211 15th Avenue N.E., Shoreline, WA 98155 (US). MARTINEZ, Leon, Fernando, Garcia [MX/US]; 4926 214th S.E., Woodinville, WA 98072 (US).

- (74) Agents: STEFFEY, Charles, E. et al.; Schwegman, Lundberg, Woessner & Kluth, P.O. Box 2938, Minniapolis, MN 55402 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE (utility model), EE, ES, FI (utility model), FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK (utility model), SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: MANIPULATION OF CYTOKINE LEVELS USING CD83 GENE PRODUCTS

(57) Abstract: The invention provides methods for modulating cytokine levels, GM-CSF levels and the immune system using CD83 nucleic acids, CD83 polypeptides, anti-CD83 antibodies and factors that influence CD83 activity or expression. The invention also provides mice having a mutant CD83 gene and mice having a transgenic CD83 gene, which are useful for defining the role of CD83 in the immune system and for identifying compounds that can modulate CD83 and the immune system.

3/045318 A2

MANIPULATION OF CYTOKINE LEVELS USING CD83 GENE PRODUCTS

This application is related to U.S. Application Ser. No. 60/331,958 filed November 21, 2001.

FIELD OF THE INVENTION

5

10

20

25

30

The invention relates to an altered CD83 gene product, and methods of modulating cytokine levels by modulating the expression of mutant and wild type CD83 gene products produced in a mammal. The invention also relates to the regulation of T cell and dendritic cell activity and conditions and treatments related thereto.

15 BACKGROUND OF THE INVENTION

CD83 is a 45 kilodalton glycoprotein that is predominantly expressed on the surface of dendritic cells and other cells of the immune system. Structural analysis of the predicted amino acid sequence of CD83 indicates that it is a member of the immunoglobulin superfamily. See, Zhou et al., J. Immunol. 149:735 (1992)). U.S. Patent 5,316,920 and WO 95/29236 disclose further information about CD83. While such information suggests that CD83 plays a role in the immune system, that role is undefined, and the interrelationship of CD83 with cellular factors remains unclear.

Moreover, treatment of many diseases could benefit from more effective methods for increasing or decreasing the immune response. Hence, further information about how to modulate the immune system by using factors such as CD83 are needed.

SUMMARY OF THE INVENTION

The invention provides a method of modulating cytokine levels by modulating the activity or expression of the CD83 gene products. According to the invention, cytokine levels can be modulated in a mammal or in mammalian

cells that are involved in the immune response, for example, antigen presenting cells or T cells.

The invention therefore provides a method of modulating cytokine production in a mammal or in an immune cell by modulating the activity or expression of a CD83 polypeptide. According to the invention, the production of a cytokine such as interleukin-2, interleukin-4, or interlekin-10 can be modulated by modulating the activity or expression of a CD83 polypeptide. In some embodiments, an antibody is used that can modulate the activity or expression of a CD83 polypeptide. For example, the antibody can be administered to the mammal or the immune cell can be contacted with the antibody. In some embodiments, the immune cells are T cells or antigen presenting cells. In other embodiments, the immune cells are CD4+ T cells.

10

15

20

25

30

The invention also provides a method of modulating granulocyte macrophage colony stimulating factor production in a mammal or in an immune cell by modulating the activity or expression of CD83 polypeptides. In some embodiments, an antibody is used that can modulate the activity or expression of a CD83 polypeptide. For example, the antibody can be administered to the mammal or the immune cell can be contacted with the antibody. In some embodiments, the immune cells are T cells or antigen presenting cells. In other embodiments, the immune cells are CD4+ T cells.

The invention also provides a method of modulating tumor necrosis factor production in a mammal or in a mammalian cell by modulating the activity or expression of CD83 polypeptides. In some embodiments, an antibody is used that can modulate the activity or expression of a CD83 polypeptide. For example, the antibody can be administered to the mammal or the mammalian cell can be contacted with the antibody. In some embodiments, the immune cells are T cells or antigen presenting cells. In other embodiments, the immune cells are CD4+ T cells.

The invention further provides a method of inhibiting proliferation of a human peripheral blood mononuclear cell by modulating the activity or expression of CD83 polypeptides. In some embodiments, an antibody is used that can modulate the activity or expression of a CD83 polypeptide. For

example, the antibody can be administered to the mammal or the human peripheral blood mononuclear cell can be contacted with the antibody.

The invention also provides an antibody that can bind to a CD83 polypeptide comprising SEQ ID NO:4, SEQ ID NO:8 or SEQ ID NO:9, wherein activated CD4⁺ T-cells produce lower levels of interleukin-4 when the T-cells are contacted with the antibody. The invention further provides an antibody that can bind to a CD83 polypeptide comprising SEQ ID NO:4, SEQ ID NO:8 or SEQ ID NO:9, wherein CD4⁺ T-cells proliferation is decreased when the T-cells are contacted with the antibody. Such an antibody can have an amino acid sequence that includes SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEO ID NO:52, SEO ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62 or SEQ ID NO:64. Nucleic acids encoding such an antibody can have, for example, a sequence that includes SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63 or SEQID NO:65.

The invention also provides a method for decreasing the activity of a CD83 gene product, comprising contacting the CD83 gene product with an antibody that comprises SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:60, SEQ ID

20

30

NO:62 or SEQ ID NO:64. The activity of a CD83 gene product can be decreased in a mammal or in a cell that is involved in an immune response, for example, a T cell.

The invention further provides a method for decreasing the translation of a CD83 gene product in a mammalian cell, comprising contacting the mammalian cell with a nucleic acid complementary to a CD83 nucleic acid comprising SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:10.

5

10

15

20

25

30

In another embodiment, the invention provides a method for decreasing the translation of a CD83 gene product in a mammal, comprising administering to the mammal a nucleic acid complementary to a CD83 nucleic acid comprising SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:10.

The invention further provides a method for decreasing proliferation of CD4+ T-cells in a mammal comprising administering to the mammal an antibody that can bind to a CD83 gene product, wherein the CD83 gene product comprises SEQ ID NO:2 or SEQ ID NO:9. The antibody can have a sequence comprising SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:55, SEQ ID NO:55, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62 or SEQ ID NO:64.

The invention also provides a method for decreasing interleukin-2 levels and increasing interleukin-4 levels in a mammal comprising administering to the mammal an antibody that can bind to a CD83 gene product, wherein the CD83 gene product comprises SEQ ID NO:2 or SEQ ID NO:9. The antibody can have a sequence comprising SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID

PCT/US02/37738 WO 03/045318

NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62 or SEQ ID NO:64.

The invention further provides a method for decreasing interleukin-2 levels and increasing interleukin-4 levels in a mammal comprising administering to the mammal a nucleic acid complementary to a CD83 nucleic acid comprising SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:10. In some embodiments the interleukin-2 levels are decreased and the interleukin-4 levels are increased to treat an autoimmune disease. In other embodiments, the interleukin-2 levels are decreased and the interleukin-4 levels are increased to stimulate production of Th2-associated cytokines in transplant recipients, for example, to prolong survival of transplanted tissues.

10

15

25

30

The invention also provides a method for increasing interleukin-10 levels in a mammal comprising administering to the mammal an antibody that can bind to a CD83 gene product, wherein the CD83 gene product comprises SEQ ID NO:2 or SEQ ID NO:9. The antibody can have a sequence comprising SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ 20 ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62 or SEQ ID NO:64.

The invention further provides a method for increasing interleukin-10 levels in a mammal comprising administering to the mammal a nucleic acid complementary to a CD83 nucleic acid comprising SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:10. In some embodiments, the interleukin-

10 levels are increased to treat neoplastic disease. In other embodiments, the interleukin-10 levels are increased to treat a tumor.

The invention also provides a method for increasing interleukin-2 levels in a mammal comprising administering to the mammal a functional CD83 polypeptide that comprises SEQ ID NO:9.

5

10

15

20

25

30

The invention further provides a method for increasing interleukin-2 levels in a mammal comprising: (a) transforming a T cell from the mammal with a nucleic acid encoding a functional CD83 polypeptide operably linked to a promoter functional in a mammalian cell, to generate a transformed T cell; (b) administering the transformed T cell to the mammal to provide increased levels of interleukin-2. In some embodiments, the CD83 polypeptide has a sequence that comprises SEQ ID NO:9 or the nucleic acid has a sequence that comprises SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:10. Such methods for increasing interleukin-2 levels can be used to treat an allergy or an infectious disease.

The invention also provides a method for increasing granulocyte macrophage colony stimulating factor levels in a mammal comprising administering to the mammal an antibody that can bind to a CD83 gene product, wherein the CD83 gene product comprises SEQ ID NO:2 or SEQ ID NO:9.

Such an antibody can have a sequence comprising SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:60, SEQ ID NO:662 or SEQ ID NO:64.

The invention further provides a method for increasing granulocyte macrophage colony stimulating factor levels in a mammal comprising administering to the mammal a nucleic acid complementary to a CD83 nucleic

acid comprising SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:10.

The invention also provides a method for increasing tumor necrosis factor levels at a selected site in a mammal comprising administering to the site a functional CD83 polypeptide. In another embodiment, the invention provides a method for increasing tumor necrosis factor levels in a selected mammalian cell comprising transforming the cell with a nucleic acid encoding a functional CD83 polypeptide. The CD83 polypeptide employed can, for example, have a sequence comprising SEQ ID NO:9.

Mammals and birds may be treated by the methods and compositions described and claimed herein. Such mammals and birds include humans, dogs, cats, and livestock, for example, horses, cattle, sheep, goats, chickens, turkeys and the like.

10

15

20

25

30

The invention further provides a mutant mouse that can serve as an animal model of diminished T cell activation or altered cytokine levels. The mutant mouse has an altered CD83 gene that produces a larger gene product, having SEQ ID NO:4 or containing SEQ ID NO:8. Also provided are methods of using the mutant mouse model to study the effects of cytokines on the immune system, inflammation, the function and regulation of CD83, T cell and dendritic cell activity, the immune response and conditions and treatments related thereto. Hence, the invention further provides a mutant mouse whose somatic and germ cells comprise a mutant CD83 gene encoding a polypeptide comprising SEQ ID NO:4 or SEQ ID NO:8, wherein expression of the mutant CD83 gene reduces CD4+T cell activation. The mutant CD83 gene can, for example, comprise SEQ ID NO:3.

The invention further provides a method of identifying a compound that can modulate CD4+T cell activation comprising administering a test compound to a mouse having a mutant or wild type transgenic CD83 gene and observing whether CD4+T cell activation is decreased or increased. The somatic and/or germ cells of the mutant mouse can comprise a mutant CD83 gene encoding a polypeptide comprising SEQ ID NO:4 or SEQ ID NO:8. Alternatively, the somatic and/or germ cells of the mouse can contain a wild type CD83 gene, for example, SEQ ID NO:1 or SEQ ID NO:9.

The invention also provides a mutant CD83 gene encoding a polypeptide comprising SEQ ID NO:4 or SEQ ID NO:8. The invention further provides a mutant CD83 gene comprising nucleotide sequence SEQ ID NO:3.

5 DESCRIPTION OF THE FIGURES

10

15

20

25

30

Figure 1 provides flow cytometry data for G3 animals. As shown, reduced numbers of CD4+ T cells are seen in two animals from Pedigree 9, mouse 9.4.1 and mouse 9.4.9. All other animals analyzed on that day exhibit normal numbers of CD4+ T cells.

Figure 2 provides a graph of flow cytometry data for G3 animals. Each diamond symbol represents an individual animal. As shown, multiple animals from the N2 generation exhibit a reduced percentage of CD4+ T cells.

Figure 3 provides the nucleotide sequence of wild type mouse CD83 (SEQ ID NO:1). The ATG start codon and the TGA stop codon are underlined.

Figure 4A-B provides the nucleotide sequence of the mutant CD83 gene (SEQ ID NO:3) of the invention derived from the mutant LCD4.1 animal. The ATG start codon, the mutation and the TGA stop codon are underlined.

Figure 5 provides the amino acid sequence for wild type (top, SEQ ID NO:2) and mutant (bottom, SEQ ID NO:4) CD83 coding regions. The additional C-terminal sequences arising because of the CD83 mutation are underlined.

Figure 6A illustrates that dendritic cells from wild type (*, WT DC) and mutant (**, mutant DC) mice are capable of the allogeneic activation of CD4+ T cells. CD4+ T cells were stimulated with 10,000, 1000 or 100 dendritic cells for 5 days and proliferation measured by incorporation of tritiated thymidine.

Figure 6B illustrates that CD4+ T cells from mutant mice (**•**, mutant CD4) fail to respond to allogeneic stimulation with BALBc dendritic cells, although wild type animals (**•**, WT CD4+) respond normally. CD4+ T cells were stimulated with 10,000, 1000 or 100 dendritic cells for 5 days and proliferation measured by incorporation of tritiated thymidine.

Figure 7 provides a bar graph illustrating IL-2, IL-4, IL-5, TNF α , and IFN γ production from wild type CD4+ T cells (white bar) or CD83 mutant CD4+ T cells (dark bar) that had been stimulated with 1 μ g/ml of anti-CD3 antibodies

and 0.2 μ g/ml of anti-CD28 antibodies for 72 hours. As illustrated, IL-2 levels are lower, and IL-4 levels are higher in the CD83 mutant T cells.

Figure 8 provides a bar graph illustrating IL-10 production from wild type CD4+ T cells (white bar) or CD83 mutant CD4+ T cells (dark bar) that had been stimulated with 0.1 μ g/ml of anti-CD28 antibodies and 1 to 10 μ g/ml of anti-CD3 antibodies for 72 hours. As illustrated, IL-10 levels are higher in the CD83 mutant T cells.

Figure 9 provides a bar graph illustrating GM-CSF production from wild type CD4+ T cells (white bar) or CD83 mutant CD4+ T cells (dark bar) that had been stimulated with anti-CD3 and anti-CD28 antibodies. As illustrated, GM-CSF production is higher in the CD83 mutant cells than in wild type cells.

10

15

20

25

30

Figure 10A provides a bar graph illustrating IL-4 mRNA levels from wild type CD4+ T cells (white bar) or CD83 mutant CD4+ T cells (dark bar) that had been stimulated with anti-CD3 and anti-CD28 antibodies. As illustrated, the IL-4 mRNA levels are higher in the CD83 mutant cells.

Figure 10B provides a bar graph illustrating IL-10 mRNA levels from wild type CD4+ T cells (white bar) or CD83 mutant CD4+ T cells (dark bar) that had been stimulated with anti-CD3 and anti-CD28 antibodies. As illustrated, the IL-10 mRNA levels are higher in the CD83 mutant cells.

Figure 11 provides a graph illustrating that various preparations of anti-CD83 antibodies inhibit IL-4 production in anti-CD3 and anti-CD28 antibody stimulated T cells. The amount of IL-4 produced by T cells in pg/ml is plotted versus the concentration of different anti-CD83 antibody preparations, including the 20B08 (♠) anti-CD83 preparation, the 20D04 (■) anti-CD83 preparation, the 14C12 (▲) anti-CD83 preparation and the 11G05 (X) anti-CD83 antibody preparation.

Figure 12 provides a graph illustrating that various preparations of anti-CD83 antibodies inhibit T cell proliferation. The graph plots the incorporation of radioactive thymidine in cpms, which was used as an indicator of the amount of T cell proliferation, versus the concentration of the different anti-CD83 antibody preparations, including the 20D04 (*) anti-CD83 preparation, the 11G05 (*) anti-CD83 antibody preparation, the 14C12 (*) anti-CD83 preparation and the 6G05 anti-CD83 preparation (X).

Figure 13 provides a graph illustrating that transgenic mice that overexpress wild type CD83 have increased T cell proliferation. The graph plots the incorporation of radioactive thymidine in cpms, which was used as an indicator of the amount of T cell proliferation, versus the concentration of OVA peptide.

- The transgenic mice utilized had a T-cell receptor specific for chicken ovalbumin (OVA) 323-339 peptide that can activate T-cells. When mixed with either transgenic or wild type dendritic cells in the presence of OVA peptide, transgenic CD4+ T cells had increased T-cell proliferation. However, transgenic dendritic cells could not substantially increase wild type CD4+ T cell proliferation.
- Transgenic CD83 CD4+ T cells mixed with wild type dendritic cells (♠); transgenic CD83 CD4+ T cells mixed with transgenic dendritic cells (♠); wild type CD4+ T cells mixed with transgenic dendritic cells (♠); and wild type CD4+ T cells mixed with wild type dendritic cells (★).

Figure 14 provides a schematic diagram of the structural elements included in the mouse CD83 protein used for generating antibodies.

15

20

25

30

Figure 15 provides a graph of ELISA data illustrating the titer obtained for different isolates of polyclonal anti-CD83 anti-sera. The first (*), second (*) and third (*) isolates had similar titers, though the titer of the second isolate (*) was somewhat higher.

Figure 16 illustrates that proliferation of PHA-activated human PBMCs was inhibited by antibodies raised against the external region of the mouse CD83 protein (*). Pre-immune serum (*) had little effect on the proliferation of human PBMCs.

Figure 17A provides a sequence alignment of anti-CD83 heavy chain variable regions isolated by the invention. Sequences for isolates 20B08H (SEQ ID NO:52), 6G05H (SEQ ID NO:53), 20D04H (SEQ ID NO:54), 11G05 (SEQ ID NO:66) and 14C12 (SEQ ID NO:67) are provided. The CDR regions are highlighted in bold.

Figure 17B provides a sequence alignment of anti-CD83 light chain variable regions isolated by the invention. Sequences for isolates 20B08H (SEQ ID NO:55), 6G05H (SEQ ID NO:56), 20D04H (SEQ ID NO:57), 11G05 (SEQ ID NO:68) and 14C12 (SEQ ID NO:69) are provided. The CDR regions are highlighted in bold.

DETAILED DESCRIPTION OF THE INVENTION

The invention provides methods for modulating the immune system by using CD83 proteins, CD83 nucleic acids and factors that modulate CD83 activity or expression.

According to the invention, loss or reduction of CD83 activity *in vivo* results in altered cytokine levels, for example, lower interleukin-2 levels, increased interleukin-4 levels, increased GM-CSF levels and increased interleukin-10 levels. Loss or reduction of CD83 activity *in vivo* can also result in decreased numbers of T cells.

Moreover, the invention also relates to increased CD83 activity in vivo that can result in altered cytokine levels, for example, higher interleukin-2 levels, decreased interleukin-4 levels, decreased GM-CSF levels and decreased interleukin-10 levels. Increased CD83 expression or activity in vitro and in vivo can also result in increased activation and increased numbers of T cells.

The effects of CD83 on the immune system, on GM-CSF and on cytokine levels were analyzed by using mutant and transgenic mice. The mutant mouse has an altered CD83 gene that expresses altered (defective) CD83 gene product. The transgenic mouse overexpresses CD83 gene products. Accordingly, the invention provides mammals such as mice that have a mutant or wild type CD83 gene. These mice are useful for identifying the role that CD83 plays in the immune response. These mutant and transgenic animals are useful for identifying factors for manipulating cytokine levels and T cell activation by testing whether those factors and compositions can modulate, inhibit or replace the activity of CD83 in vivo.

CD83

5

10

15

20

25

CD83 is a lymphocyte and dendritic cell activation antigen that is expressed by activated lymphocytes and dendritic cells. CD83 is also a single-chain cell-surface glycoprotein with a molecular weight of about 45,000 that is believed to be a member of the Ig superfamily. The structure predicted from the CD83 amino acid sequence indicates that CD83 is a membrane glycoprotein with a single extracellular Ig-like domain, a transmembrane domain and cytoplasmic

domain of approximately forty amino acids. The mature CD83 protein has about 186 amino acids and is composed of a single extracellular V type immunoglobulin (Ig)-like domain, a transmembrane domain and a thirty nine amino acid cytoplasmic domain. Northern blot analysis has revealed that CD83 is translated from three mRNA transcripts of about 1.7, 2.0 and 2.5 kb that are expressed by lymphoblastoid cell lines. It is likely that CD83 undergoes extensive post-translational processing because CD83 is expressed as a single chain molecule, but the determined molecular weight is twice the predicted size of the core protein. See U.S. Patent 5,766,570.

An example of a human CD83 gene product that can be used in the invention is provided below (SEQ ID NO:9):

- 1 MSRGLQLLLL SCAYSLAPAT PEVKVACSED VDLPCTAPWD
- 41 PQVPYTVSWV KLLEGGEERM ETPQEDHLRG QHYHQKGQNG
- 81 SFDAPNERPY SLKIRNTTSC NSGTYRCTLQ DPDGQRNLSG
- 121 KVILRVTGCP AQRKEETFKK YRAEIVLLLA LVIFYLTLII
- 161 FTCKFARLQS IFPDFSKAGM ERAFLPVTSP NKHLGLVTPH
- 201 KTELV

10

15

30

Such a CD83 gene product can be encoded by a number of different nucleic 20 acids. One example of a human CD83 nucleic acid is provided below (SEQ ID NO:10).

- 1 CCTGGCGCAG CCGCAGCAGC GACGCGAGCG AACTCGGCCG
- 41 GGCCCGGGCG CGCGGGGGGCG GGACGCGCAC GCGGCGAGGG
- 81 CGGCGGTGA GCCGGGGGCG GGGACGGGG CGGGACGGGG
- 25 121 GCGAAGGGG CGGGGACGGG GGCCCCGCC GGCCTAACGG
 - 161 GATTAGGAGG GCGCGCCACC CGCTTCCGCT GCCCGCCGGG
 - 201 GAATCCCCCG GGTGGCGCCC AGGGAAGTTC CCGAACGGGC
 - 241 GGGCATAAAA GGGCAGCCGC GCCGGCGCCC CACAGCTCTG
 - 281 CAGCTCGTGG CAGCGGCGCA GCGCTCCAGC CATGTCGCGC
 - 321 GGCCTCCAGC TTCTGCTCCT GAGCTGCGCC TACAGCCTGG
 - 361 CTCCCGCGAC GCCGGAGGTG AAGGTGGCTT GCTCCGAAGA
 - 401 TGTGGACTTG CCCTGCACCG CCCCCTGGGA TCCGCAGGTT
 - 441 CCCTACACGG TCTCCTGGGT CAAGTTATTG GAGGGTGGTG
 - 481 AAGAGAGGAT GGAGACACCC CAGGAAGACC ACCTCAGGGG
- 35 521 ACAGCACTAT CATCAGAAGG GGCAAAATGG TTCTTTCGAC

	561	GCCCCAAT	G AAAGGCCCTA	TICCCTGAAG	ATCCGAAACA
	601	CTACCAGCTO	G CAACTCGGGG	ACATACAGGT	GCACTCTGCA
	641	. GGACCCGGAT	r gggcagagaa	ACCTAAGTGG	CAAGGTGATC
	681	. TTGAGAGTGA	A CAGGATGCCC	TGCACAGCGT	' AAAGAAGAGA
5	721	. CTTTTAAGA	A ATACAGAGCG	GAGATTGTCC	TGCTGCTGGC
	761	TCTGGTTATT	TTCTACTTAA	CACTCATCAT	' TTTCACTTGT
	801	AAGTTTGCAC	GGCTACAGAG	TATCTTCCCA	GATTTTTCTA
	841	AAGCTGGCAT	GGAACGAGCT	TTTCTCCCAG	TTACCTCCCC
	881	AAATAAGCAT	TTAGGGCTAG	TGACTCCTCA	CAAGACAGAA
10	921	CTGGTATGAG	CAGGATTTCT	GCAGGTTCTT	CTTCCTGAAG
	961	CTGAGGCTCA	GGGGTGTGCC	TGTCTGTTAC	ACTGGAGGAG
	1001	AGAAGAATGA	GCCTACGCTG	AAGATGGCAT	CCTGTGAAGT
	1041	CCTTCACCTC	ACTGAAAACA	TCTGGAAGGG	GATCCCACCC
	1081	CATTTTCTGT	GGGCAGGCCT	CGAAAACCAT	CACATGACCA
. 15	1121	CATAGCATGA	GGCCACTGCT	GCTTCTCCAT	GGCCACCTTT
	1161	TCAGCGATGT	ATGCAGCTAT	CTGGTCAACC	TCCTGGACAT
	1201	TTTTTCAGTC	ATATAAAAGC	TATGGTGAGA	TGCAGCTGGA
	1241	AAAGGGTCTT	GGGAAATATG	AATGCCCCCA	GCTGGCCCGT
	1281	GACAGACTCC	TGAGGACAGC	TGTCCTCTTC	TGCATCTTGG
20	1321	GGACATCTCT	TTGAATTTTC	TGTGTTTTGC	TGTACCAGCC
	1361	CAGATGTTTT	ACGTCTGGGA	GAAATTGACA	GATCAAGCTG
	1401	TGAGACAGTG	GGAAATATTT	AGCAAATAAT	TTCCTGGTGT
	1441	GAAGGTCCTG	CTATTACTAA	GGAGTAATCT	GTGTACAAAG
	1481	AAATAACAAG	TCGATGAACT	ATTCCCCAGC	AGGGTCTTTT
25	1521	CATCTGGGAA	AGACATCCAT	AAAGAAGCAA	TAAAĢAAGAG
	1561	TGCCACATTT	ATTTTTATAT	CTATATGTAC	TTGTCAAAGA
			TTTTCTGCTT		
			TGTGAACTGA		
			AGTCAGAGAG		
30			GGCTGGAAAT		
			CCCACTTGTC		
			TTCCTTCTGG		
			CTGTTGCATG		
			TTTGAAAACA		
35			TTGAGTCATT		
	1961	GTTTTGGGGA	TGAGAGGGTG	CTATCCATTT	CTCATGTTTT

```
2001 CCATTGTTTG AAACAAAGAA GGTTACCAAG AAGCCTTTCC
    2041 TGTAGCCTTC TGTAGGAATT CTTTTGGGGA AGTGAGGAAG
    2081 CCAGGTCCAC GGTCTGTTCT TGAAGCAGTA GCCTAACACA
    2121 CTCCAAGATA TGGACACACG GGAGCCGCTG GCAGAAGGGA
    2161 CTTCACGAAG TGTTGCATGG ATGTTTTAGC CATTGTTGGC
    2201 TTTCCCTTAT CAAACTTGGG CCCTTCCCTT CTTGGTTTCC
    2241 AAAGGCATTT ATTGCTGAGT TATATGTTCA CTGTCCCCCT
     2281 AATATTAGGG AGTAAAACGG ATACCAAGTT GATTTAGTGT
     2321 TTTTACCTCT GTCTTGGCTT TCATGTTATT AAACGTATGC
    2361 ATGTGAAGAA GGGTGTTTTT CTGTTTTATA TTCAACTCAT
10
     2401 AAGACTTTGG GATAGGAAAA ATGAGTAATG GTTACTAGGC
     2441 TTAATACCTG GGTGATTACA TAATCTGTAC AACGAACCCC
     2481 CATGATGTAA GTTTACCTAT GTAACAAACC TGCACTTATA
     2521 CCCATGAACT TAAAATGAAA GTTAAAAATA AAAAACATAT
     2561 ACAAATAAAA AAAA
15
```

A sequence of a wild type mouse CD83 gene that can be used in the invention is provided herein as SEQ ID NO:1. SEQ ID NO:1 is provided below with the ATG start codon and the TGA stop codon identified by underlining.

20

```
1 GCGCTCCAGC CGCATGTCGC AAGGCCTCCA GCTCCTGTTT
     41 CTAGGCTGCG CCTGCAGCCT GGCACCCGCG ATGGCGATGC
     81 GGGAGGTGAC GGTGGCTTGC TCCGAGACCG CCGACTTGCC
     121 TTGCACAGCG CCCTGGGACC CGCAGCTCTC CTATGCAGTG
     161 TCCTGGGCCA AGGTCTCCGA GAGTGGCACT GAGAGTGTGG
25
     201 AGCTCCCGGA GAGCAAGCAA AACAGCTCCT TCGAGGCCCC
     241 CAGGAGAAGG GCCTATTCCC TGACGATCCA AAACACTACC
     281 ATCTGCAGCT CGGGCACCTA CAGGTGTGCC CTGCAGGAGC
     321 TCGGAGGGCA GCGCAACTTG AGCGGCACCG TGGTTCTGAA
     361 GGTGACAGGA TGCCCCAAGG AAGCTACAGA GTCAACTTTC
30
     401 AGGAAGTACA GGGCAGAAGC TGTGTTGCTC TTCTCTCTGG
     441 TTGTTTTCTA CCTGACACTC ATCATTTTCA CCTGCAAATT
     481 TGCACGACTA CAAAGCATTT TCCCAGATAT TTCTAAACCT
     521 GGTACGGAAC AAGCTTTTCT TCCAGTCACC TCCCCAAGCA
     561 AACATTTGGG GCCAGTGACC CTTCCTAAGA CAGAAACGGT
35
     601 ATGAGTAGGA TCTCCACTGG TTTTTACAAA GCCAAGGGCA
```

	641	. CATCAGATCA	GTGTGCCTGA	ATGCCACCC	GACAAGAGAA
	681	GAATGAGCTC	CATCCTCAGA	TGGCAACCTT	TCTTTGAAGT
	721	CCTTCACCTG	ACAGTGGGCT	CCACACTACT	CCCTGACACA
	761	GGGTCTTGAG	CACCATCATA	TGATCACGAA	GCATGGAGTA
5	801	TCACCGCTTC	TCTGTGGCTG	TCAGCTTAAT	GTTTCATGTG
	841	GCTATCTGGT	CAACCTCGTG	AGTGCTTTTC	AGTCATCTAC
	881	AAGCTATGGT	GAGATGCAGG	TGAAGCAGGG	TCATGGGAAA
	921	TTTGAACACT	CTGAGCTGGC	CCTGTGACAG	ACTCCTGAGG
	961	ACAGCTGTCC	TCTCCTACAT	CTGGGATACA	TCTCTTTGAA
10	1001	TTTGTCCTGT	TTCGTTGCAC	CAGCCCAGAT	GTCTCACATC
	1041	TGGCGGAAAT	TGACAGGCCA	AGCTGTGAGC	CAGTGGGAAA
	1081	TATTTAGCAA	ATAATTTCCC	AGTGCGAAGG	TCCTGCTATT
	1121	AGTAAGGAGT	ATTATGTGTA	CATAGAAATG	AGAGGTCAGT
	1161	GAACTATTCC	CCAGCAGGGC	CTTTTCATCT	GGAAAAGACA
15	1201	TCCACAAAAG	CAĢCAATACA	GAGGGATGCC	ACATTTATTT
	1241	TTTTAATCTT	CATGTACTTG	TCAAAGAAGA	ATTTTTCATG
	1281	TTTTTTCAAA	GAAGTGTGTT	TCTTTCCTTT	TATAAAATAT
	1321	GAAGGTCTAG	TTACATAGCA	TTGCTAGCTG	ACAAGCAGCC
	1361	TGAGAGAAGA	TGGAGAATGT	TCCTCAAAAT	AGGGACAGCA
20			ACTGTACAGT		-
	1441	CAATGGACTG	AGAAACCAGA	AGTCTGGCCA	CAAGATTGTC
	1481	TGTATGATTC	TGGACGAGTC	ACTTGTGGTT	TTCACTCTCT
			CCAGATAGTT		
			TTGCTTGGGG		
25			TCTACTGGGC		
			AGCTGAGCGA		
			TCCAAACACA		
			TTCTGTGTGA		
			AGCGCTTTGC		
30			ATATGGACCT		
			GTTCTCAGAT		
			TTAATGAGCT		
			ATTTTGTCCC		
			AAAGTAAAAG		
35			CTCAGCCATG	ACTTTCATGC	TATTAAAAGA
	2041	ATGCATGTGA	A		

Nucleic acids having SEQ ID NO:1 encode a mouse polypeptide having SEQ ID NO:2, provided below.

- 5 1 MSQGLQLLFL GCACSLAPAM AMREVTVACS ETADLPCTAP
 - 41 WDPQLSYAVS WAKVSESGTE SVELPESKQN SSFEAPRRRA
 - 81 YSLTIQNTTI CSSGTYRCAL QELGGQRNLS GTVVLKVTGC
 - 121 PKEATESTFR KYRAEAVLLF SLVVFYLTLI IFTCKFARLQ
 - 161 SIFPDISKPG TEQAFLPVTS PSKHLGPVTL PKTETV

10

15

20

25

30

According to the invention, loss or reduction of CD83 activity in vivo results in altered cytokine levels, for example, lower interleukin-2 levels, increased interleukin-4 levels, increased GM-CSF levels and increased interleukin-10 levels. Loss or reduction of CD83 activity in vivo can also result in decreased numbers of T cells.

Moreover, increased CD83 activity *in vivo* can also result in altered cytokine levels, for example, higher interleukin-2 levels, decreased interleukin-4 levels, decreased GM-CSF levels and decreased interleukin-10 levels. Increased CD83 expression or activity *in vivo* can also result in increased activation or increased numbers of T cells.

The effect of CD83 on cytokine levels was ascertained through use of a mutant mouse that encodes a mutant CD83. Such a mutant mouse has a CD83 gene encoding SEQ ID NO:4, with added C-terminal sequences provided by SEQ ID NO:8. In contrast to these wild type CD83 nucleic acids and polypeptides, the mutant CD83 gene of the invention has SEQ ID NO:3. SEQ ID NO:3 is provided below with the ATG start codon, the mutation, and the TGA stop codon are identified by underlining.

- 1 GCGCTCCAGC CGCATGTCGC AAGGCCTCCA GCTCCTGTTT
- 41 CTAGGCTGCG CCTGCAGCCT GGCACCCGCG ATGGCGATGC
- 81 GGGAGGTGAC GGTGGCTTGC TCCGAGACCG CCGACTTGCC
- 121 TTGCACAGCG CCCTGGGACC CGCAGCTCTC CTATGCAGTG
- 161 TCCTGGGCCA AGGTCTCCGA GAGTGGCACT GAGAGTGTGG
- 201 AGCTCCCGGA GAGCAAGCAA AACAGCTCCT TCGAGGCCCC
- 241 CAGGAGAAGG GCCTATTCCC TGACGATCCA AAACACTACC

	281	ATCTGCAGCT	CGGGCACCTA	CAGGTGTGCC	CTGCAGGAGC
	321	TCGGAGGGCA	GCGCAACTTG	AGCGGCACCG	TGGTTCTGAA
	361	GGTGACAGGA	TGCCCCAAGG	AAGCTACAGA	GTCAACTTTC
	401	AGGAAGTACA	GGGCAGAAGC	TGTGTTGCTC	TTCTCTCTGG
5	441	TTGTTTTCTA	CCTGACACTC	ATCATTTTCA	CCTGCAAATT
	481	TGCACGACTA	CAAAGCATTT	TCCCAGATAT	TTCTAAACCT
	521	GGTACGGAAC	AAGCTTTTCT	TCCAGTCACC	TCCCCAAGCA
	561	AACATTTGGG	GCCAGTGACC	CTTCCTAAGA	CAGAAACGGT
	601	A <u>A</u> GAGTAGGA	TCTCCACTGG	TTTTTACAAA	GCCAAGGGCA
10	641	CATCAGATCA	GTGTGCCTGA	ATGCCACCCG	GACAAGAGAA
	681	GAATGAGCTC	CATCCTCAGA	TGGCAACCTT	TCTTTGAAGT
	721	CCTTCACCTG	ACAGTGGGCT	CCACACTACT	CCCTGACACA
	761	GGGTCT <u>TGA</u> G	CACCATCATA	TGATCACGAA	GCATGGAGTA
	801	TCACCGCTTC	TCTGTGGCTG	TCAGCTTAAT	GTTTCATGTG
15	841	GCTATCTGGT	CAACCTCGTG	AGTGCTTTTC	AGTCATCTAC
	881	AAGCTATGGT	GAGATGCAGG	TGAAGCAGGG	TCATGGGAAA
	921	TTTGAACACT	CTGAGCTGGC	CCTGTGACAG	ACTCCTGAGG
	961	ACAGCTGTCC	TCTCCTACAT	CTGGGATACA	TCTCTTTGAA
	1001	TTTGTCCTGT	${\tt TTCGTTGCAC}$	CAGCCCAGAT	GTCTCACATC
20	1041	TGGCGGAAAT	TGACAGGCCA	AGCTGTGAGC	CAGTGGGAAA
	1081	TATTTAGCAA	ATAATTTCCC	AGTGCGAAGG	${\tt TCCTGCTATT}$
	1121	AGTAAGGAGT	ATTATGTGTA	CATAGAAATG	AGAGGTCAGT
	1161	GAACTATTCC	CCAGCAGGGC	CTTTTCATCT	GGAAAAGACA
	1201	TCCACAAAAG	CAGCAATACA	GAGGGATGCC	ACATTTATTT
25	1241	TTTTAATCTT	CATGTACTTG	TCAAAGAAGA	ATTTTTCATG
	1281	TTTTTTCAAA	GAAGTGTGTT	TCTTTCCTTT	TATAAAATAT
	1321	GAAGGTCTAG	TTACATAGCA	TTGCTAGCTG	ACAAGCAGCC
			TGGAGAATGT		
			ACTGTACAGT		
30			AGAAACCAGA		
			TGGACGAGTC		
			CCAGATAGTT		
			TTGCTTGGGG		
			TCTACTGGGC		
35			AGCTGAGCGA		
	1681	TGCCCATCAA	TCCAAACACA	GGAGGCTACA	AAAAGGACAT

1721 GAGCATGGTC TTCTGTGTGA ACTCCTCCTG AGAAACGTGG
1761 AGACTGGCTC AGCGCTTTGC GCTTGAAGGA CTAATCACAA
1801 GTTCTTGAAG ATATGGACCT AGGGGAGCTA TTGCGCCACG
1841 ACAGGAGGAA GTTCTCAGAT GTTGCATTGA TGTAACATTG
1881 TTGCATTTCT TTAATGAGCT GGGCTCCTTC CTCATTTGCT
1921 TCCCAAAGAG ATTTTGTCCC ACTAATGGTG TGCCCATCAC
1961 CCACACTATG AAAGTAAAAG GGATGCTGAG CAGATACAGC
2001 GTGCTTACCT CTCAGCCATG ACTTTCATGC TATTAAAAGA
2041 ATGCATGTGA A

10,

15

5

The change from a thymidine in SEQ ID NO:1 to an adenine in SEQ ID NO:3 at the indicated position (602) leads to read-through translation because the stop codon at positions 602-604 in SEQ ID NO:1 is changed to a codon that encodes an arginine. Accordingly, mutant CD83 nucleic acids having SEQ ID NO:3 encode an elongated polypeptide having SEQ ID NO:4, provided below, where the extra amino acids are underlined.

- 1 MSQGLQLLFL GCACSLAPAM AMREVTVACS ETADLPCTAP
- 41 WDPQLSYAVS WAKVSESGTE SVELPESKQN SSFEAPRRRA
- 20 81 YSLTIQNTTI CSSGTYRCAL QELGGQRNLS GTVVLKVTGC
 - 121 PKEATESTFR KYRAEAVLLF SLVVFYLTLI IFTCKFARLQ
 - 161 SIFPDISKPG TEQAFLPVTS PSKHLGPVTL PKTETVRVGS
 - 201 PLVFTKPRAH QISVPECHPD KRRMSSILRW QPFFEVLHLT
 - 241 VGSTLLPDTG S

25

In another embodiment, the invention provides mutant CD83 nucleic acids that include SEQ ID NO:5.

- 1 ATGTCGCAAG GCCTCCAGCT CCTGTTTCTA GGCTGCGCCT
- 30 41 GCAGCCTGGC ACCCGCGATG GCGATGCGGG AGGTGACGGT
 - 81 GGCTTGCTCC GAGACCGCCG ACTTGCCTTG CACAGCGCCC
 - 121 TGGGACCCGC AGCTCTCCTA TGCAGTGTCC TGGGCCAAGG
 - 161 TCTCCGAGAG TGGCACTGAG AGTGTGGAGC TCCCGGAGAG
 - 201 CAAGCAAAAC AGCTCCTTCG AGGCCCCCAG GAGAAGGGCC
- 35 241 TATTCCCTGA CGATCCAAAA CACTACCATC TGCAGCTCGG

	281	ĢCACCTACAG	GTGTGCCCTG	CAGGAGCTCG	GAGGGCAGCG
	321	CAACTTGAGC	GGCACCGTGG	TTCTGAAGGT	GACAGGATGC
	361	CCCAAGGAAG	CTACAGAGTC	AACTTTCAGG	AAGTACAGGG
	401	CAGAAGCTGT	${\tt GTTGCTCTTC}$	TCTCTGGTTG	TTTTCTACCT
5	441	GACACTCATC	ATTTTCACCT	GCAAATTTGC	ACGACTACAA
	481	AGCATTTTCC	CAGATATTTC	TAAACCTGGT	ACGGAACAAG
	521	CTTTTCTTCC	AGTCACCTCC	CCAAGCAAAC	ATTTGGGGCC
	561	AGTGACCCTT	CCTAAGACAG	AAACGGTA <u>A</u> G	AGTAGGATCT
	601	CCACTGGTTT	TTACAAAGCC	AAGGGCACAT	CAGATCAGTG
10	641	TGCCTGAATG	CCACCCGGAC	AAGAGAAGAA	TGAGCTCCAT
	681	CCTCAGATGG	CAACCTTTCT	TTGAAGTCCT	TCACCTGACA
	721	GTGGGCTCCA	CACTACTCCC	TGACACAGGG	TCT <u>TGA</u>

Nucleic acids having SEQ ID NO:5 also encode a polypeptide having SEQ ID NO:4.

In another embodiment, the invention provides mutant CD83 nucleic acids that include SEQ ID NO:7.

- 1 AGAGTAGGAT CTCCACTGGT TTTTACAAAG CCAAGGGCAC
- 20 41 ATCAGATCAG TGTGCCTGAA TGCCACCCGG ACAAGAGAAG
 - 81 AATGAGCTCC ATCCTCAGAT GGCAACCTTT CTTTGAAGTC
 - 121 CTTCACCTGA CAGTGGGCTC CACACTACTC CCTGACACAG
 - 161 GGTCTTGA
- The invention also provides a mutant CD83 containing SEQ ID NO:8, provided below.
 - 1 RVGSPLVFTK PRAHQISVPE CHPDKRRMSS ILRWQPFFEV
 - 41 LHLTVGSTLL PDTGS
- 30 SEQ ID NO:8 contains read through sequences that are not present in the wild type CD83 polypeptide but are present in the mutant CD83 gene product provided by the invention.

CD83 Modulation of Cytokine Levels

The invention also provides compositions and methods for increasing interleukin-4 levels, increasing GM-CSF levels, increasing interleukin-10 levels and decreasing interleukin-2 levels in a mammal. Such compositions and methods generally operate by decreasing the expression or function of CD83 gene products in the mammal. Interleukin-4 promotes the differentiation of Th2 cells while decreasing the differentiation of precursor cells into Th1 cells. Th2 cells are involved in helping B lymphocytes and in stimulating production of IgG1 and IgE antibodies. Enhancement of Th2 formation may be useful, for example, in autoimmune diseases and in organ transplantation.

5

10

15

20

25

30

Alternatively, the invention provides compositions and methods for decreasing interleukin-4 levels, decreasing interleukin-10 levels and increasing interleukin-2 levels in a mammal. Such compositions and methods generally increase the expression or function of CD83 gene products in the mammal. Interleukin-2 promotes the differentiation of Th1 cells and decreases the differentiation of Th-2 cells. Th1 cells are, for example, involved in inducing autoimmune and delayed type hypersensitivity responses. Inhibition of Th2 formation may be useful in treating allergic diseases, malignancies and infectious diseases.

CD4+T helper cells are not a homogeneous population but can be divided on the basis of cytokine secretion into at least two subsets termed T helper type 1 (Th1) and T helper type 2 (Th2) (see e.g., Mosmann, T. R. et al. (1986) J. Immunol. 136:2348-2357; Paul, W. E. and Seder, R. A. (1994) Cell 76:241-251; Seder, R. A. and Paul, W. E. (1994) Ann. Rev. Immunol. 12:635-673). Th1 cells secrete interleukin-2 (IL-2) and interferon-γ (IFN-γ) while Th2 cells produce interleukin-4 (ILA), interleukin-5 (IL-5), interleukin-10 (IL-10) and interleukin-13 (IL-13). Both subsets produce cytokines such as tumor necrosis factor (TNF) and granulocyte/macrophage-colony stimulating factor (GM-CSF).

In addition to their different pattern of cytokine expression, Th1 and Th2 cells are thought to have differing functional activities. For example, Th1 cells are involved in inducing delayed type hypersensitivity responses, whereas Th2 cells are involved in providing efficient "help" to B lymphocytes and stimulating production of IgG1 and IgE antibodies.

The ratio of Th1 to Th2 cells is highly relevant to the outcome of a wide array of immunologically-mediated clinical diseases including autoimmune, allergic and infectious diseases. For example, in experimental leishmania infections in mice, animals that are resistant to infection mount predominantly a Th1 response, whereas animals that are susceptible to progressive infection mount predominantly a Th2 response (Heinzel, F. P., et al. (1989) J. Exp. Med. 169:59-72; Locksley, R. M. and Scott, P. (1992) Immunoparasitology Today 1:A58-A6.1). In murine schistosomiasis, a Th1 to Th2 switch is observed coincident with the release of eggs into the tissues by female parasites and is associated with a worsening of the disease condition (Pearce, E. J., et al. (1991) J. Exp. Med. 173:159-166; Grzych, J-M.,et al. (1991) J. Immunol 141:1322-1327; Kullberg, M. C., et al. (1992) J. Immunol. 148:3264-3270).

10

15

20

25

30

Many human diseases, including chronic infections (such as with human immunodeficiency virus (HIV) and tuberculosis) and certain metastatic carcinomas, also are characterized by a Th1 to Th2 switch (see e.g., Shearer, G. M. and Clerici, M. (1992) Prog. Chem. Immunol. 54:21-43; Clerici, M and Shearer, G. M. (1993) Immunology Today 14:107-111; Yamamura, M., et al. (1993) J Clin. Invest. 91:1005-1010; Pisa, P., et al. (1992) Proc. Natl. Acad. Sci. USA 89:7708-7712; Fauci, A. S. (1988) Science 239:617-623).

Certain autoimmune diseases have been shown to be associated with a predominant Th1 response. For example, patients with rheumatoid arthritis have predominantly Th1 cells in synovial tissue (Simon, A. K., et al. (1994) Proc. Natl. Acad. Sci. USA 91:8562-8566) and experimental autoimmune encephalomyelitis (EAE) can be induced by autoreactive Th1 cells (Kuchroo, V. K., et al. (1993) J. Immunol. 151:4371-4381).

The ability to alter or manipulate ratios of Th1 and Th2 subsets requires an understanding of the mechanisms by which the differentiation of CD4 T helper precursor cells (Thp), which secrete only IL-2, choose to become Th1 or Th2 effector cells. It is clear that the cytokines themselves are potent Th cell inducers and form an autoregulatory loop (see e.g., Paul, W. E. and Seder, R. A. (1994) Cell 76:241-251; Seder, R. A. and Paul, W. E. (1994) Ann. Rev. Immunol. 12:635-673). Thus, IL4 promotes the differentiation of Th2 cells while

preventing the differentiation of precursors into Th1 cells, while IL-12 and IFN- γ have the opposite effect.

According to the invention, one way to alter Th1:Th2 ratios is to increase or decrease the level of selected cytokines by using CD83. Direct administration of cytokines or antibodies to cytokines has been shown to have an effect on certain diseases mediated by either Th1 or Th2 cells. For example, administration of recombinant IL-4 or antibodies to IL-12 ameliorate EAE, a Th1-driven autoimmune disease (see Racke; M. K. et al. (1994) J. Exp. Med. 180:1961-1966; and Leonard, J. P. et al. (1995) J. Exp. Med. 181:381-386), while anti-IL-4 antibodies can ameliorate the Th2-mediated parasitic disease, Leishmania major (Sadick, M. D. et al. (1990) J. Exp. Med. 171:115-127).

Numerous disease conditions are associated with either a predominant Th1-type response or a predominant Th2-type response and the individuals suffering from such disease conditions could benefit from treatment with the CD83 related compositions and methods of the invention. Application of the immunomodulatory methods of the invention to such diseases is described in further detail below.

Allergies

5

10

15

20

25

30

Allergies are mediated through IgE antibodies whose production is regulated by the activity of Th2 cells and the cytokines produced thereby. In allergic reactions, IL-4 is produced by Th2 cells, which further stimulates production of IgE antibodies and activation of cells that mediate allergic reactions, i.e., mast cells and basophils. IL-4 also plays an important role in eosinophil mediated inflammatory reactions.

Accordingly, the stimulation of CD83 production by use of the compositions and methods of the invention can be used to inhibit the production of Th2-associated cytokines, for example IL-4, in allergic patients as a means to down-regulate production of pathogenic IgE antibodies. A stimulatory agent may be directly administered to the subject mammal. Alternatively, the CD83 stimulatory agent (e.g. CD83 expression cassette) can be administered to cells (e.g., Thp cells or Th2 cells) that may be obtained from the subject and those modified cells can be readministered to the subject mammal. Moreover, in

certain situations it may be beneficial to co-administer the allergen together with the stimulatory agent either to the subject or to cells treated with the stimulatory agent. Such co-administration can inhibit (e.g., desensitize) the allergen-specific response. The treatment may be further enhanced by administering Th1-promoting agents, such as the cytokine IL-12 or antibodies to Th2-associated cytokines (e.g., anti-IL-4 antibodies), to the allergic subject in amounts sufficient to further stimulate a Th1-type response.

Cancer

5

10

15

20

25

30

The invention also relates to CD83-related methods for increasing interleukin-10 (IL-10) levels to reduce the spread of neoplastic diseases and/or prevent neoplastic diseases and the growth of a tumor. According to the invention, decreased CD83 activity can dramatically increase the levels of IL-10 in the body and such increased interleukin-10 can be used to treat neoplastic diseases. Hence, the invention provides a method for preventing or treating tumors in a mammal, which involves diminishing CD83 expression or activity in the mammal. In various embodiments, the tumor is IL-2-dependent, a plasmacytoma, or a leukemia, including a lymphocytic leukemia such as a B cell lymphocytic leukemia.

The invention also provides methods for increasing T cell activation or T cell proliferation by increasing CD83 activity or expression. Such methods can also be used to prevent or treat tumors in a mammal.

Infectious Diseases

The expression of Th2-promoting cytokines also has been reported to increase during a variety of infectious diseases. For example, HIV infection, tuberculosis, leishmaniasis, schistosomiasis, filarial nematode infection, intestinal nematode infection and other such infectious diseases are associated with a Th1 to Th2 shift in the immune response. See e.g., Shearer, G. M. and Clerici, M. (1992) Prog. Chem. Immunol. 54:2143; Clerici, M and Shearer, G. M. (1993) Immunology Today 14:107-111; Fauci, A. S. (1988) Science 239:617-623; Locksley, R. M. and Scott, P. (1992) Immunoparasitology Today 1:A58-A61; Pearce, E. J., et al. (1991) J. Exp. Med. 173:159-166; Grzych, J-M., et al.

(1991) J. Immunol. 141:1322-1327; Kullberg, M. C., et al. (1992) J. Immunol.
148:3264-3270; Bancroft, A. J., et al. (1993) J. Immunol 150:1395-1402;
Pearlman, E., et al. (11993) Infect. Immun. 61:1105-1112; Else, K. J., et al.
(1994) J. Exp. Med. 179:347-351.

5

10

15

20

30

Accordingly, the stimulatory CD83-related compositions and methods of the invention can be used to inhibit the production of Th2-cells in subjects with infectious diseases to promote an ongoing Th1 response in the patients and to ameliorate the course of the infection. The treatment may be further enhanced by administering other Th1-promoting agents, such as the cytokine IL-12 or antibodies to Th2-associated cytokines (e.g., anti-IL-4 antibodies), to the recipient in amounts sufficient to further stimulate a Th 1-type response.

Hence, for example, infections of the following microbial organisms can be treated by the methods of the invention: Aeromonas spp., Bacillus spp., Bacteroides spp., Campylobacter spp., Clostridium spp., Enterobacter spp., Enterococcus spp., Escherichia spp., Gastrospirillum sp., Helicobacter spp., Klebsiella spp., Salmonella spp., Shigella spp., Staphylococcus spp., Pseudomonas spp., Vibrio spp., Yersinia spp., and the like. Infections that can be treated by the methods of the invention include those associated with staph infections (Staphylococcus aureus), typhus (Salmonella typhi), food poisoning (Escherichia coli, such as O157:H7), bascillary dysentery (Shigella dysenteria), pneumonia (Psuedomonas aerugenosa and/or Pseudomonas cepacia), cholera (Vivrio cholerae), ulcers (Helicobacter pylori) and others. E. coli serotype 0157:H7 has been implicated in the pathogenesis of diarrhea, hemorrhagic colitis, hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). The methods of the invention are also active against drugresistant and multiply-drug resistant strains of bacteria, for example, multiplyresistant strains of Staphylococcus aureus and vancomycin-resistant strains of Enterococcus faecium and Enterococcus faecalis.

The methods of the invention are also effective against viruses. The term "virus" refers to DNA and RNA viruses, viroids, and prions. Viruses include both enveloped and non-enveloped viruses, for example, hepatitis A virus, hepatitis B virus, hepatitis C virus, human immunodeficiency virus (HIV), poxviruses, herpes viruses, adenoviruses, papovaviruses, parvoviruses,

reoviruses, orbiviruses, picornaviruses, rotaviruses, alphaviruses, rubivirues, influenza virus type A and B, flaviviruses, coronaviruses, paramyxoviruses, morbilliviruses, pneumoviruses, rhabdoviruses, lyssaviruses, orthmyxoviruses, bunyaviruses, phleboviruses, nairoviruses, hepadnaviruses, arenaviruses, retroviruses, enteroviruses, rhinoviruses and the filovirus.

Autoimmune Diseases

5

10

15

20

25

30

The CD83-related compositions and methods of the invention can be used in the treatment of autoimmune diseases that are associated with a Th2-type dysfunction. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against "self tissues" and that promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Modulation of T helper-type responses can have an effect on the course of the autoimmune disease. For example, in experimental allergic encephalomyelitis, stimulation of a Th2-type response by administration of IL-4 at the time of the induction of the disease diminishes the intensity of the autoimmune disease (Paul, W. E., et al. (1994) Cell 76:241-251). Furthermore, recovery of the animals from the disease has been shown to be associated with an increase in a Th2-type response as evidenced by an increase of Th2-specific cytokines (Koury, S. J., et al. (1992) J Exp. Med. 176:1355-1364). Moreover, T cells that can suppress EAE secrete Th2-specific cytokines (Chen, C., et al. (1994) Immunity 1:147-154). Since stimulation of a Th2-type response in experimental allergic encephalomyelitis has a protective effect against the disease, stimulation of a Th2 response in subjects with multiple sclerosis (for which EAE is a model) is likely to be beneficial therapeutically.

Similarly, stimulation of a Th2-type response in type I diabetes in mice provides a protective effect against the disease. Indeed, treatment of NOD mice with IL-4 (which promotes a Th2 response) prevents or delays onset of type I diabetes that normally develops in these mice (Rapoport, M. J., et al. (1993) J. Exp. Med. 178:87-99). Thus, inhibition of CD83 production can stimulate IL-4 production and/or a Th2 response in a subject suffering from or susceptible to diabetes may ameliorate the effects of the disease or inhibit the onset of the disease.

Yet another autoimmune disease in which stimulation of a Th2-type response may be beneficial is rheumatoid arthritis (RA). Studies have shown that patients with rheumatoid arthritis have predominantly Th1 cells in synovial tissue (Simon, A. K., et al., (1994) Proc. Natl. Acad. Sci. USA 91:8562-8566). By stimulating a Th2 response in a subject with rheumatoid arthritis, the detrimental Th1 response can be concomitantly down-modulated to thereby ameliorate the effects of the disease.

Accordingly, the CD83-related compositions and methods of the invention can be used to stimulate production of Th2-associated cytokines in subjects suffering from, or susceptible to, an autoimmune disease in which a Th2-type response is beneficial to the course of the disease. Such compositions and methods would modulate CD83 activity. In some embodiments, the compositions would decrease CD83 activity and thereby increase the level of certain cytokines, for example, IL-4 levels are increased when CD83 activity is diminished. The treatment may be further enhanced by administering other Th2-promoting agents, such as IL-4 itself or antibodies to Th1-associated cytokines, to the subject in amounts sufficient to further stimulate a Th2-type response. The treatment may be further enhanced by administering a Th1-promoting cytokine (e.g., IFN-γ) to the subject in amounts sufficient to further stimulate a Th1-type response.

10

15

20

25

30

The efficacy of CD83-related for treating autoimmune diseases can be tested in the animal models provided herein or other models of human diseases (e.g., EAE as a model of multiple sclerosis and the NOD mice as a model for diabetes). Such animal models include the mrl/lpr/lpr mouse as a model for lupus erythematosus, murine collagen-induced arthritis as a model for rheumatoid arthritis, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856). A CD83-modulatory (i.e., stimulatory or inhibitory) agent of the invention is administered to test animals and the course of the disease in the test animals is then monitored by the standard methods for the particular model being used. Effectiveness of the modulatory agent is evidenced by amelioration of the disease condition in animals treated with the agent as compared to untreated animals (or animals treated with a control agent).

Non-limiting examples of autoimmune diseases and disorders having an autoimmune component that may be treated according to the invention include diabetes mellitus, arthritis (including rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, psoriatic arthritis), multiple sclerosis, myasthenia gravis, systemic lupus erythematosis, autoimmune thyroiditis, dermatitis (including atopic dermatitis and eczematous dermatitis), psoriasis, Sjogren's Syndrome, including keratoconjunctivitis sicca secondary to Sjogren's Syndrome, alopecia areata, allergic responses due to arthropod bite reactions, Crohn's disease, aphthous ulcer, iritis, conjunctivitis, keratoconjunctivitis, ulcerative colitis, asthma, allergic asthma, cutaneous lupus erythematosus, scleroderma, vaginitis, proctitis, drug eruptions, leprosy reversal reactions, erythema nodosum leprosum, autoimmune uveitis, allergic encephalomyelitis, acute necrotizing hemorrhagic encephalopathy, idiopathic bilateral progressive sensorineural hearing loss, aplastic anemia, pure red cell anemia, idiopathic thrombocytopenia, polychondritis, Wegener's granulomatosis, chronic active hepatitis, Stevens-Johnson syndrome, idiopathic sprue, lichen planus, Crohn's disease, Graves ophthalmopathy, sarcoidosis, primary biliary cirrhosis, uveitis posterior, and interstitial lung fibrosis.

20 Transplantation

5

10

15

25

30

While graft rejection or graft acceptance may not be attributable exclusively to the action of a particular T cell subset (i.e., Th1 or Th2 cells) in the graft recipient, studies have implicated a predominant Th2 response in prolonged graft survival and a predominant Th1 response in graft rejection (for a discussion see Dallman, M. J. (1995) Curr. Opin. Immunol. 7:632-638; Takeuchi, T. et al. (1992) Transplantation 53:1281-1291; Tzakis, A. G. et al. (1994) J. Pediatr. Surg. 29:754-756; Thai, N. L. et al. (1995) Transplantation 59:274-281. Additionally, adoptive transfer of cells having a Th2 cytokine phenotype prolongs skin graft survival (Maeda, H. et al. (1994) Int. Immunol. 6:855-862) and reduces graft-versus-host disease (Fowler, D. H. et al. (1994) Blood 84:3540-3549; Fowler, D. H. et al. (1994) Prog. Clin. Biol. Res. 389:533-540). Furthermore, administration of IL-4, which promotes Th2 differentiation, prolongs cardiac allograft survival (Levy, A. E. and Alexander, J. W. (1995)

Transplantation 60:405-406), whereas administration of IL-12 in combination with anti-IL-10 antibodies, which promotes Th1 differentiation, enhances skin allograft rejection (Gorczynski, R. M. et al. (1995) Transplantation 60:1337-1341).

As provided herein, loss of CD83 function increases interleukin-4 production, which in turn promotes the differentiation of Th2 cells and depresses the differentiation of precursor cells into Th1 cells. Accordingly, methods of the invention that involve decreasing CD83 function can be used to stimulate production of Th2-associated cytokines in transplant recipients to prolong survival of the graft. These methods can be used both in solid organ transplantation and in bone marrow transplantation (e.g., to inhibit graft-versus-host disease). These methods can involve either direct administration of a CD83 inhibitory agent to the transplant recipient or ex vivo treatment of cells obtained from the subject (e.g., Thp, Th1 cells, B cells, non-lymphoid cells) with an inhibitory agent followed by readministration of the cells to the subject. The treatment may be further enhanced by administering other Th2-promoting agents, such as IL-4 itself or antibodies to Th1-associated cytokines, to the recipient in amounts sufficient to further stimulate a Th2-type response.

20 Additional Methods of Using CD83

5

10

15

25

30

In addition to the foregoing disease situations, the modulatory methods of the invention also are useful for other purposes.

For example, inhibition of CD83 activity or function gives rise to increased granulocyte macrophage-colony stimulating factor (GM-CSF). Granulocyte macrophage colony stimulating factor is a hematopoietic growth factor that promotes the proliferation and differentiation of hematopoietic progenitor cells. GM-CSF is approved for treatment of patients requiring increased proliferation of white blood cells. Data indicates that GM-CSP is also useful as a vaccine adjuvant Morrissey, et al., J. Immunology 139, 1113-1119 (1987). GM-CSF can also be used to treat patients prone to infection such as those undergoing high risk bowel surgery, trauma victims and individuals with HTV.

Accordingly, the invention provides a method of increasing the levels of

GM-CSF in a mammal or in a mammalian cell by administering an agent that modulates or inhibits CD83 activity or expression.

The invention also provides a method of decreasing the levels of GM-CSF in a mammal or in a mammalian cell by administering an agent that modulates or stimulates CD83 activity or expression.

Moreover, in other embodiments the CD83 inhibitory methods of the invention can be used to stimulate production of IL-4 or IL-10 in vitro for commercial production of these cytokines. For example, CD4+ T cells with a null or other mutation in the CD83 gene can be cultured and then stimulated to produce cytokines, for example, by use of anti-CD3 and/or anti-CD28 antibodies to activate the mutant CD4+ T cells. Significant amounts of IL-4 and IL-10 can then be isolated from the culture media. Alternatively, CD4+ T cells can be contacted with the CD83 inhibitory agent in vitro to stimulate IL-4 or IL-10 production and the IL-4 or IL-10 can be recovered from the culture supernatant. The isolated IL-4 and/or IL-10 can be further purified if necessary, and packaged for commercial use.

10

15

20

25

30

The methods of the invention can be adapted to vaccinations to promote either a Th1 or a Th2 response to an antigen of interest in a subject. That is, CD83 or CD83 modulators of the invention can serve as adjuvants to direct an immune response to a vaccine either to a Th1 response or a Th2 response. For example, to stimulate an antibody response to an antigen of interest (i.e., for vaccination purposes), the antigen and a CD83 inhibitory agent of the invention can be coadministered to a subject to promote a Th2 response to the antigen in the subject, since Th2 responses provide efficient B cell help and promote IgG1 production.

Alternatively, to promote a cellular immune response to an antigen of interest, the antigen and a CD83 stimulating agent of the invention can be coadministered to a subject to promote a Th1 response to the antigen in a subject, since Th1 responses favor the development of cell-mediated immune responses (e.g., delayed hypersensitivity responses).

The antigen of interest and the modulatory agent can be formulated together into a single pharmaceutical composition or in separate compositions.

Thus, in some embodiments, the antigen of interest and the modulatory agent are administered simultaneously to the subject. Alternatively, in certain situations it may be desirable to administer the antigen first and then the modulatory agent or vice versa. For example, in the case of an antigen that naturally evokes a Th1 response, it may be beneficial to first administer the antigen alone to stimulate a Th1 response and then administer a CD83 inhibitory agent, alone or together with a boost of antigen, to shift the immune response to a Th2 response.

According to the invention, any agent that can modulate CD83 to increase or decrease cytokine levels, increase or decrease T cell levels or produce any other CD83-related response can be used in the compositions and methods of the invention. In some embodiments, anti-CD83 antibodies of the invention are used to either activate or inhibit CD83 activity. Activation or inhibition by such antibodies can depend on the epitope to which the antibody binds. Hence, antibodies may play a role in boosting or depressing CD83 activity. These CD83 modulatory agents, including anti-CD83 antibodies, are described in more detail below.

Stimulating or Inhibiting CD83

5

10

15

25

30

According to the invention, any agent that can stimulate CD83 to perform its natural functions can be used in the compositions and methods of the invention as a CD83 stimulatory agent. Indicators that CD83 activity is stimulated include increased IL-2 cytokine levels, increased T cell levels, and increased TNF levels relative to unstimulated levels in wild type CD83 cells.

Examples of CD83 stimulatory agents include, for example, the CD83 gene product itself, certain anti-CD83 antibodies, CD83-encoding nucleic acids (DNA or RNA), factors that promote CD83 transcription or translation, organic molecules, peptides and the like.

Also, according to the invention, any agent that can inhibit CD83 from performing its natural functions can be used in the compositions and methods of the invention as a CD83 inhibitory agent. Indicators that CD83 activity is inhibited include increased IL-4 cytokine levels, increased IL-10 levels, decreased IL-2

production, decreased T cell levels, and decreased TNF levels relative to uninhibited levels in wild type CD83 cells.

Examples of CD83 inhibitors include anti-CD83 antibodies, CD83 antisense nucleic acids (e.g. nucleic acids that can hybridize to CD83 nucleic acids),
organic compounds, peptides and agents that can mutate an endogenous CD83
gene. In some embodiments, the CD83 stimulatory or inhibitory agents are
proteins, for example, CD83 gene products, anti-CD83 antibody preparations,
CD83 inhibitors, peptides and protein factors that can promote CD83
transcription or translation. In other embodiments, the CD83 stimulatory or
inhibitory agents are peptides or organic molecules. Such proteins, organic
molecules and organic molecules can be prepared and/or purified as described
herein or by methods available in the art, and administered as provided herein.

5

10

15

20

25

30

In other embodiments, the CD83 stimulatory or inhibitory agents can be nucleic acids including recombinant expression vectors or expression cassettes encoding CD83 gene products, CD83 transcription factors, CD83 anti-sense nucleic acid, intracellular antibodies capable of binding to CD83 or dominant negative CD83 inhibitors. Such nucleic acids can be operably linked to a promoter that is functional in a mammalian cell, and then introduced into cells of the subject mammal using methods known in the art for introducing nucleic acid (e.g., DNA) into cells.

The "promoter functional in a mammalian cell" or "mammalian promoter" is capable of directing transcription of a polypeptide coding sequence operably linked to the promoter. The promoter should generally be active in T cells and antigen presenting cells and may be obtained from a gene that is expressed in T cells or antigen presenting cells. However, it need not be a T cell-specific or an antigen presenting cell specific-promoter. Instead, the promoter may be selected from any mammalian or viral promoter that can function in a T cell. Hence the promoter may be an actin promoter, an immunoglobulin promoter, a heat-shock promoter, or a viral promoter obtained from the genome of viruses such as adenoviruses, retroviruses, lentiviruses, herpes viruses, including but not limited to, polyoma virus, fowlpox virus, adenovirus 2, bovine papilloma virus, avian sarcoma virus, cytomegalovirus (CMV), hepatitis-B virus, Simian Virus 40 (SV40), Epstein Barr virus (EBV),

feline immunedeficiency virus (FIV), and Sr.alpha., or are respiratory synsitial viral promoters (RSV) or long terminal repeats (LTRs) of a retrovirus, i.e., a Moloney Murine Leukemia Virus (MoMuLv) (Cepko et al. (1984) Cell 37:1053-1062). The promoter functional in a mammalian cell can be inducible or constitutive.

5

10

15

20

25

30

Any cloning procedure used by one of skill in the art can be employed to make the expression vectors or expression that comprise a promoter operably linked to a CD83 nucleic acid, CD83 transcription factor or a nucleic acid encoding an anti-CD83 antibody. *See, e.g.*, Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y., 1989; Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y., 2001.

After constructing an expression vector or an expression cassette encoding CD83 gene products, CD83 transcription factors, CD83 anti-sense nucleic acid, intracellular antibodies capable of binding to CD83 or dominant negative CD83 inhibitors, mammalian cells can be transformed with the vector or cassette. Examples of such methods include:

Direct Injection: Naked DNA can be introduced into cells in vivo by directly injecting the DNA into the cells (see e.g., Acsadi et al. (1991) Nature 332:815-818; Wolff et al. (1990) Science 247:1465-1468). For example, a delivery apparatus (e.g., a "gene gun") for injecting DNA into cells in vivo can be used. Such an apparatus is commercially available (e.g., from BioRad).

Receptor-Mediated DNA Uptake: Naked DNA can also be introduced into cells in vivo by complexing the DNA to a cation, such as polylysine, which is coupled to a ligand for a cell-surface receptor (see for example Wu, G. and Wu, C. H. (1988) J. Biol. Chem. 263:14621; Wilson et al. (1992) J. Biol. Chem. 267:963-967; and U.S. Pat. No. 5,166,320). Binding of the DNA-ligand complex to the receptor facilitates uptake of the DNA by receptor-mediated endocytosis. A DNA-ligand complex linked to adenovirus capsids that naturally disrupt endosomes, thereby releasing material into the cytoplasm can be used to avoid degradation of the complex by intracellular lysosomes (see for example Curiel et al. (1991) Proc. Natl. Acad Sci. USA 88:8850; Cristiano et al. (1993) Proc. Natl. Acad. Sci. USA 90:2122-2126).

Retroviruses: Defective retroviruses are well characterized for use in gene transfer for gene therapy purposes (for a review see Miller, A. D. (1990) Blood 76:271). A recombinant retrovirus can be constructed having nucleotide sequences of interest incorporated into the retroviral genome. Additionally, portions of the retroviral genome can be removed to render the retrovirus replication defective. The replication defective retrovirus is then packaged into virions that can be used to infect a target cell through the use of a helper virus by standard techniques. Protocols for producing recombinant retroviruses and for infecting cells in vitro or in vivo with such viruses can be found in Current Protocols in Molecular Biology, Ausubel, F. M. et al. (eds.) Greene Publishing 10 Associates, (1989), Sections 9.10-9.14 and other standard laboratory manuals. Examples of suitable retroviruses include pLJ, pZIP, pWE and pEM which are available to those skilled in the art. Examples of suitable packaging virus lines include ΨCrip, ΨCre, Ψ2 and ΨAm. Retroviruses have been used to introduce a variety of genes into many different cell types, including epithelial cells, 15 endothelial cells, lymphocytes, myoblasts, hepatocytes, bone marrow cells, in vitro and/or in vivo (see for example Eglitis, et al. (1 985) Science 230:1395-1398; Danos and Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:6460-6464; Wilson et al. (1988) Proc. Natl. Acad. Sci. USA 85:3014-3018; Armentano et al. (1990) Proc. Natl. Acad. Sci. USA 87:6141-6145; Huber et al. (1991) Proc. Natl. 20 Acad. Sci. USA 88:8039-8043; Ferry et al. (1991) Proc. Natl. Acad. Sci. USA 88:8377-8381; Chowdhury et al. (1991) Science 254:1802-1805; van Beusechem et al. (1992) Proc. Natl. Acad. Sci. USA 89:7640-7644; Kay et al. (1992) Human Gene Therapy 3:641-647; Dai et al. (1992) Proc. Natl. Acad. Sci USA 89:10892-10895; Hwu et al. (1993) J. Immunol. 150:4104-4115; U.S. Pat. Nos. 4,868,116; 4,980,286; PCT Application WO 89/07136; PCT Application WO 89/02468; PCT Application WO 89/05345; and PCT Application WO 92/07573). Retroviral vectors require target cell division in order for the retroviral genome (and foreign nucleic acid inserted into it) to be integrated into the host genome to stably introduce nucleic acid into the cell. Thus, it may be necessary to stimulate replication of the target cell.

Adenoviruses: The genome of an adenovirus can be manipulated such that it encodes and expresses a gene product of interest but is inactivated in terms

25

30

of its ability to replicate in a normal lytic viral life cycle. See, for example, Berkner et al. (1988) BioTechniques 6:616; Rosenfeld et al. (1991) Science 252:431-434; and Rosenfeld et al. (1992) Cell 68:143-155. Suitable adenoviral vectors derived from the adenovirus strain Ad type 5 d1324 or other strains of adenovirus (e.g., Ad2, Ad3, Ad7 etc.) are available to those skilled in the art. Recombinant adenoviruses are advantageous in that they do not require dividing cells to be effective gene delivery vehicles and can be used to infect a wide variety of cell types, including airway epithelium (Rosenfeld et al. (1992) cited supra), endothelial cells (Lemarchand et al. (1992) Proc. Natl. Acad. Sci. USA 89:6482-6486), hepatocytes (Herz and Gerard (1993) Proc. Natl. Acad Sci. USA 90:2812-2816) and muscle cells (Quantin et al. (1992) Proc. Natl. Acad. Sci. USA 89:2581-2584). Additionally, introduced adenoviral DNA (and foreign DNA contained therein) is not integrated into the genome of a host cell but remains episomal, thereby avoiding potential problems that can occur as a result of insertional mutagenesis in situations where introduced DNA becomes integrated into the host genome (e.g., retroviral DNA). Moreover, the carrying capacity of the adenoviral genome for foreign DNA is large (up to 8 kilobases) relative to other gene delivery vectors (Berkner et al. cited supra; Haj-Ahmand and Graham (1986) J. Virol. 57:267). Most replication-defective adenoviral vectors currently in use are deleted for all or parts of the viral E1 and E3 genes but retain as much as 80% of the adenoviral genetic material.

5

10

15

20

25

30

Adeno-Associated Viruses: Adeno-associated virus (AAV) is a naturally occurring defective virus that requires another virus, such as an adenovirus or a herpes virus, as a helper virus for efficient replication and a productive life cycle. (For a review see Muzyczka et al. Curr. Topics in Micro. and Immunol. (1992) 158:97-129). It is also one of the few viruses that may integrate its DNA into non-dividing cells, and exhibits a high frequency of stable integration (see for example Flotte et al. (1992) Am. J. Respir. Cell. Mol. Biol. 7:349-356; Samulski et al. (1989) J. Virol. 63:3822-3828; and McLaughlin et al. (1989) J. Virol. 62:1963-1973). Vectors containing as little as 300 base pairs of AAV can be packaged and can integrate. Space for exogenous DNA is limited to about 4.5 kb. An AAV vector such as that described in Tratschin et al. (1985) Mol. Cell. Biol. 5:3251-3260 can be used to introduce DNA into cells. A variety of nucleic

acids have been introduced into different cell types using AAV vectors (see for example Hermonat et al. (1984) Proc. Natl. Acad. Sci. USA 81:6466-6470; Tratschin et al. (1985) Mol. Cell. Biol. 4:2072-2081; Wondisford et al. (1988) Mol. Endocrinol. 2:32-39; Tratschin et al. (1984) J Virol. 51:611-619; and Flotte et al. (1993) J. Biol. Chem. 268:3781-3790).

Transformed mammalian cells can then be identified and administered to the mammal from whence they came to permit expression of a CD83 gene product, CD83 transcription factor, CD83 anti-sense nucleic acid, intracellular antibody capable of binding to CD83 proteins, or dominant negative CD83 inhibitors. The efficacy of a particular expression vector system and method of introducing nucleic acid into a cell can be assessed by standard approaches routinely used in the art. For example, DNA introduced into a cell can be detected by a filter hybridization technique (e.g., Southern blotting). RNA produced by transcription of an introduced DNA can be detected, for example, by Northern blotting, RNase protection or reverse transcriptase-polymerase chain reaction (RT-PCR). The CD83 gene product can be detected by an appropriate assay, for example, by immunological detection of a produced CD83 protein, such as with a CD83-specific antibody.

20 CD83 Antibodies

5

10

15

25

30

The invention provides antibody preparations directed against the mutant and wild type CD83 polypeptides of the invention, for example, against a polypeptide having SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9. Other antibodies of interest can bind to the cytoplasmic tail of CD83.

In one embodiment, the invention provides antibodies that block the function of CD83 polypeptides. Such antibodies may be used as CD83 inhibitory agents in the methods of the invention as described herein. In another embodiment, the antibodies of the invention can activate CD83 activity. Such activating antibodies may be used as CD83 stimulatory agents.

All antibody molecules belong to a family of plasma proteins called immunoglobulins, whose basic building block, the immunoglobulin fold or domain, is used in various forms in many molecules of the immune system and

other biological recognition systems. A typical immunoglobulin has four polypeptide chains, containing an antigen binding region known as a variable region and a non-varying region known as the constant region.

5

10

20

25

Native antibodies and immunoglobulins are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains. Each light chain has a variable domain at one end (VL) and a constant domain at its other end. The constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain.

Particular amino acid residues are believed to form an interface between the light and heavy chain variable domains (Clothia et al., J. Mol. Biol. 186, 651-66,

Depending on the amino acid sequences of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are at least five (5) major classes of immunoglobulins: IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (isotypes), e.g. IgG-1, IgG-2, IgG-3 and IgG-4; IgA-1 and IgA-2. The heavy chains constant domains that correspond to the different classes of immunoglobulins are called alpha (α) , delta (δ) , epsilon (ϵ) , gamma (γ) and mu (μ) , respectively. The light chains of antibodies can be assigned to one of two clearly distinct types, called kappa (κ) and lambda (λ) , based on the amino sequences of their constant domain. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.

1985); Novotny and Haber, Proc. Natl. Acad. Sci. USA 82, 4592-4596 (1985).

The term "variable" in the context of variable domain of antibodies, refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies. The variable domains are for binding and determine the specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed through the variable domains

of antibodies. It is concentrated in three segments called complementarity determining regions (CDRs) also known as hypervariable regions both in the light chain and the heavy chain variable domains.

5

10

20

25

30

The more highly conserved portions of variable domains are called the framework (FR). The variable domains of native heavy and light chains each comprise four FR regions, largely adopting a β -sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the β -sheet structure. The CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen binding site of antibodies. The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector function, such as participation of the antibody in antibody-dependent cellular toxicity.

An antibody that is contemplated for use in the present invention thus can 15 , be in any of a variety of forms, including a whole immunoglobulin, an antibody fragment such as Fv, Fab, and similar fragments, a single chain antibody that includes the variable domain complementarity determining regions (CDR), and the like forms, all of which fall under the broad term "antibody," as used herein. The present invention contemplates the use of any specificity of an antibody, polyclonal or monoclonal, and is not limited to antibodies that recognize and immunoreact with a specific antigen. In preferred embodiments, in the context of both the therapeutic and screening methods described below, an antibody or fragment thereof is used that is immunospecific for an antigen or epitope of the invention.

The term "antibody fragment" refers to a portion of a full-length antibody, generally the antigen binding or variable region. Examples of antibody fragments include Fab, Fab', F(ab') 2 and Fv fragments. Papain digestion of antibodies produces two identical antigen binding fragments, called the Fab fragment, each with a single antigen binding site, and a residual "Fc" fragment, so-called for its ability to crystallize readily. Pepsin treatment yields an F(ab'), fragment that has two antigen binding fragments, which are capable of crosslinking antigen, and a residual other fragment (which is termed pFc'). Additional fragments can include diabodies, linear antibodies, single-chain antibody

molecules, and multispecific antibodies formed from antibody fragments. As used herein, "functional fragment" with respect to antibodies, refers to Fv, F(ab) and F(ab')₂ fragments.

Antibody fragments retain some ability to selectively bind with its antigen or receptor and are defined as follows:

5

10

15

20

25

30

- (1) Fab is the fragment that contains a monovalent antigen-binding fragment of an antibody molecule. A Fab fragment can be produced by digestion of whole antibody with the enzyme papain to yield an intact light chain and a portion of one heavy chain.
- (2) Fab' is the fragment of an antibody molecule can be obtained by treating whole antibody with pepsin, followed by reduction, to yield an intact light chain and a portion of the heavy chain. Two Fab' fragments are obtained per antibody molecule. Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxyl terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region.
- (3) $(Fab')_2$ is the fragment of an antibody that can be obtained by treating whole antibody with the enzyme pepsin without subsequent reduction. $F(ab')_2$ is a dimer of two Fab' fragments held together by two disulfide bonds.
- (4) Fv is the minimum antibody fragment that contains a complete antigen recognition and binding site. This region consists of a dimer of one heavy and one light chain variable domain in a tight, non-covalent association $(V_H V_L \text{ dimer})$. It is in this configuration that the three CDRs of each variable domain interact to define an antigen binding site on the surface of the $V_H V_L$ dimer. Collectively, the six CDRs confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
- (5) Single chain antibody ("SCA"), defined as a genetically engineered molecule containing the variable region of the light chain, the variable region of the heavy chain, linked by a suitable polypeptide linker as a genetically fused single chain molecule. Such single chain antibodies are also referred to as "single-chain Fv" or "sFv" antibody fragments. Generally, the Fv polypeptide further comprises a polypeptide linker between the VH and VL

domains that enables the sFv to form the desired structure for antigen binding. For a review of sFv see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds. Springer-Verlag, N.Y., pp. 269-315 (1994).

5

10

15

20

25

30

The term "diabodies" refers to a small antibody fragments with two antigen-binding sites, which fragments comprise a heavy chain variable domain (VH) connected to a light chain variable domain (VL) in the same polypeptide chain (VH-VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161, and Hollinger et al., Proc. Natl. Acad Sci. USA 90: 6444-6448 (1993).

The preparation of polyclonal antibodies is well-known to those skilled in the art. See, for example, Green, et al., Production of Polyclonal Antisera, in:

Immunochemical Protocols (Manson, ed.), pages 1-5 (Humana Press); Coligan, et al., Production of Polyclonal Antisera in Rabbits, Rats Mice and Hamsters, in:

Current Protocols in Immunology, section 2.4.1 (1992), which are hereby incorporated by reference.

The preparation of monoclonal antibodies likewise is conventional. See, for example, Kohler & Milstein, Nature, 256:495 (1975); Coligan, et al., sections 2.5.1-2.6.7; and Harlow, et al., in: Antibodies: A Laboratory Manual, page 726 (Cold Spring Harbor Pub. (1988)), which are hereby incorporated by reference. Methods of *in vitro* and *in vivo* manipulation of monoclonal antibodies are also available to those skilled in the art. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler and Milstein, Nature 256, 495 (1975), or may be made by recombinant methods, e.g., as described in U.S. Patent No. 4,816,567. The monoclonal antibodies for use with the present invention may also be isolated from antibody libraries using the techniques described in Clackson et al. Nature 352: 624-628 (1991), as well as in Marks et al., J. Mol Biol. 222: 581-597 (1991).

Monoclonal antibodies can be isolated and purified from hybridoma cultures by a variety of well-established techniques. Such isolation techniques

include affinity chromatography with Protein-A Sepharose, size-exclusion chromatography, and ion-exchange chromatography. See, e.g., Coligan, et al., sections 2.7.1-2.7.12 and sections 2.9.1-2.9.3; Barnes, et al., Purification of Immunoglobulin G (IgG), in: Methods in Molecular Biology, Vol. 10, pages 79-104 (Humana Press (1992).

5

10

15

20

25

30

Another method for generating antibodies involves a Selected Lymphocyte Antibody Method (SLAM). The SLAM technology permits the generation, isolation and manipulation of monoclonal antibodies without the process of hybridoma generation. The methodology principally involves the growth of antibody forming cells, the physical selection of specifically selected antibody forming cells, the isolation of the genes encoding the antibody and the subsequent cloning and expression of those genes.

More specifically, an animal (rabbit, mouse, rat, other) is immunized with a source of specific antigen. This immunization may consist of purified protein, in either native or recombinant form, peptides, DNA encoding the protein of interest or cells expressing the protein of interest. After a suitable period, during which antibodies can be detected in the serum of the animal (usually weeks to months), blood (or other tissue) from the animal is harvested. Lymphocytes are isolated from the blood and cultured under specific conditions to generate antibody-forming cells, with antibody being secreted into the culture medium. These cells are detected by any of several means (complement mediated lysis of antigen-bearing cells, fluorescence detection or other) and then isolated using micromanipulation technology. The individual antibody forming cells are then processed for eventual single cell PCR to obtain the expressed Heavy and Light chain genes that encode the specific antibody. Once obtained and sequenced, these genes are cloned into an appropriate expression vector and recombinant, monoclonal antibody produced in a heterologous cell system. These antibodies are then purified via standard methodologies such as the use of protein A affinity columns. These types of methods are further described in Babcook, et al., Proc. Natl. Acad. Sci. (USA) 93: 7843-7848 (1996); U.S. Patent No. 5,627,052; and PCT WO 92/02551 by Schrader.

Another method involves humanizing a monoclonal antibody by recombinant means to generate antibodies containing human specific and

recognizable sequences. See, for review, Holmes, et al., J. Immunol., 158:2192-2201 (1997) and Vaswani, et al., Annals Allergy, Asthma & Immunol., 81:105-115 (1998). The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional polyclonal antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In additional to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the antibody is obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.

10

15

20

25

30

The monoclonal antibodies herein specifically include "chimeric" antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567); Morrison et al. Proc. Natl. Acad Sci. 81, 6851-6855 (1984).

Methods of making antibody fragments are also known in the art (see for example, Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, (1988), incorporated herein by reference). Antibody fragments of the present invention can be prepared by proteolytic hydrolysis of the antibody or by expression in *E. coli* of DNA encoding the fragment. Antibody fragments can be obtained by pepsin or papain digestion of whole antibodies conventional methods. For example, antibody fragments can be produced by enzymatic cleavage of antibodies with pepsin to provide a 5S

fragment denoted F(ab')₂. This fragment can be further cleaved using a thiol reducing agent, and optionally a blocking group for the sulfhydryl groups resulting from cleavage of disulfide linkages, to produce 3.5S Fab= monovalent fragments. Alternatively, an enzymatic cleavage using pepsin produces two monovalent Fab' fragments and an Fc fragment directly. These methods are described, for example, in U.S. Patents No. 4,036,945 and No. 4,331,647, and references contained therein. These patents are hereby incorporated in their entireties by reference.

5

10

15

20

25

30

Other methods of cleaving antibodies, such as separation of heavy chains to form monovalent light-heavy chain fragments, further cleavage of fragments, or other enzymatic, chemical, or genetic techniques may also be used, so long as the fragments bind to the antigen that is recognized by the intact antibody. For example, Fv fragments comprise an association of V_H and V_L chains. This association may be noncovalent or the variable chains can be linked by an intermolecular disulfide bond or cross-linked by chemicals such as glutaraldehyde. Preferably, the Fv fragments comprise V_H and V_L chains connected by a peptide linker. These single-chain antigen binding proteins (sFv) are prepared by constructing a structural gene comprising DNA sequences encoding the V_H and V_L domains connected by an oligonucleotide. The structural gene is inserted into an expression vector, which is subsequently introduced into a host cell such as E. coli. The recombinant host cells synthesize a single polypeptide chain with a linker peptide bridging the two V domains. Methods for producing sFvs are described, for example, by Whitlow, et al., Methods: a Companion to Methods in Enzymology, Vol. 2, page 97 (1991); Bird, et al., Science 242:423-426 (1988); Ladner, et al, US Patent No. 4,946,778; and Pack, et al., Bio/Technology 11:1271-77 (1993).

Another form of an antibody fragment is a peptide coding for a single complementarity-determining region (CDR). CDR peptides ("minimal recognition units") can be obtained by constructing genes encoding the CDR of an antibody of interest. Such genes are prepared, for example, by using the polymerase chain reaction to synthesize the variable region from RNA of antibody-producing cells. See, for example, Larrick, et al., Methods: a Companion to Methods in Enzymology, Vol. 2, page 106 (1991).

The invention further contemplates human and humanized forms of non-human (e.g. murine) antibodies. Such humanized antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other antigen-binding subsequences of antibodies) that contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a nonhuman species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity.

10

15

20

25

30

In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and optimize antibody performance. In general, humanized antibodies can comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the Fv regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see: Jones et al., Nature 321, 522-525 (1986); Reichmann et al., Nature 332, 323-329 (1988); Presta, Curr. Op. Struct. Biol. 2, 593-596 (1992); Holmes, et al., J. Immunol., 158:2192-2201 (1997) and Vaswani, et al., Annals Allergy, Asthma & Immunol., 81:105-115 (1998).

The invention also provides methods of mutating antibodies to optimize their affinity, selectivity, binding strength or other desirable property. A mutant antibody refers to an amino acid sequence variant of an antibody. In general, one or more of the amino acid residues in the mutant antibody is different from what is present in the reference antibody. Such mutant antibodies necessarily have less than 100% sequence identity or similarity with the reference amino acid sequence. In general, mutant antibodies have at least 75% amino acid sequence identity or similarity with the amino acid sequence of either the heavy or light chain variable domain of the reference antibody. Preferably, mutant antibodies

have at least 80%, more preferably at least 85%, even more preferably at least 90%, and most preferably at least 95% amino acid sequence identity or similarity with the amino acid sequence of either the heavy or light chain variable domain of the reference antibody.

5

10

15

20

25

30

The antibodies of the invention are isolated antibodies. An isolated antibody is one that has been identified and separated and/or recovered from a component of the environment in which it was produced. Contaminant components of its production environment are materials that would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. The term "isolated antibody" also includes antibodies within recombinant cells because at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.

If desired, the antibodies of the invention can be purified by any available procedure. For example, the antibodies can be affinity purified by binding an antibody preparation to a solid support to which the antigen used to raise the antibodies is bound. After washing off contaminants, the antibody can be eluted by known procedures. Those of skill in the art will know of various techniques common in the immunology arts for purification and/or concentration of polyclonal antibodies, as well as monoclonal antibodies (see for example, Coligan, et al., Unit 9, Current Protocols in Immunology, Wiley Interscience, 1991, incorporated by reference).

In preferred embodiments, the antibody will be purified as measurable by at least three different methods: 1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight; 2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequentator; or 3) to homogeneity by SDS-PAGE under reducing or non-reducing conditions using Coomasie blue or, preferably, silver stain.

The invention also provides antibodies that can bind to CD83 polypeptides. Sequences of complementarity determining regions (CDRs) or hypervariable regions from light and heavy chains of these anti-CD83 antibodies

are provided. For example, a heavy chain variable region having a CDR1 sequence of SYDMT (SEQ ID NO:23), SYDMS (SEQ ID NO:24), DYDLS (SEQ ID NO:25) or SYDMS (SEQ ID NO:26) can be used in an antibody or other binding moiety to bind to CD83 gene products. In other embodiments, a heavy chain variable region having a CDR2 sequence of YASGSTYY (SEQ ID NO:27), SSSGTTYY (SEQ ID NO:28), YASGSTYY (SEQ ID NO:29), AIDGNPYY (SEQ ID NO:30) or STAYNSHY (SEQ ID NO:31) can be used in an antibody or other binding moiety to bind to CD83 gene products. In further embodiments of the invention, a heavy chain variable region having a CDR3 sequence of EHAGYSGDTGH (SEQ ID NO:32), EGAGVSMT (SEQ ID NO:33), EDAGFSNA (SEQ ID NO:34), GAGD (SEQ ID NO:35) or GGSWLD (SEQ ID NO:36) can be used in an antibody or other binding moiety to bind to CD83 gene products.

Moreover, a light chain variable region having a CDR1 sequence of RCAYD (SEQ ID NO:37), RCADVV (SEQ ID NO:38), or RCALV (SEQ ID NO:39) can be used in an antibody or other binding moiety to bind to CD83 gene products. In other embodiments, a light chain variable region having a CDR2 sequence of QSISTY (SEQ ID NO:40), QSVSSY (SEQ ID NO:41), ESISNY (SEQ ID NO:42), KNVYNNNW (SEQ ID NO:43), or QSVYDNDE (SEQ ID NO:43) can be used in an antibody or other binding moiety to bind to CD83 gene products. In further embodiments, a light chain variable region having a CDR3 sequence of QQGYTHSNVDNV (SEQ ID NO:44), QQGYSISDIDNA (SEQ ID NO:45), QCTSGGKFISDGAA (SEQ ID NO:46), AGDYSSSSDNG (SEQ ID NO:47), or QATHYSSDWLTY (SEQ ID NO:48) can be used in an antibody or other binding moiety to bind to CD83 gene products.

Light and heavy chains that can bind CD83 polypeptides are also provided by the invention. For example, in one embodiment, the invention provides a 20D04 light chain that can bind to CD83 polypeptides. The amino acid sequence for this 20D04 light chain is provided below (SEQ ID NO:11).

30

35

10

15

20

25

¹ MDMRAPTQLL GLLLLWLPGA RCADVVMTQT PASVSAAVGG

⁴¹ TVTINCQASE SISNYLSWYQ QKPGQPPKLL IYRTSTLASG

⁸¹ VSSRFKGSGS GTEYTLTISG VQCDDVATYY CQCTSGGKFI

¹²¹ SDGAAFGGGT EVVVKGDPVA PTVLLFPPSS DEVATGTVTI

¹⁶¹ VCVANKYFPD VTVTWEVDGT TQTTGIENSK TPQNSADCTY

201 NLSSTLTLTS TQYNSHKEYT CKVTQGTTSV VQSFSRKNC

A nucleic acid sequence for this 20D04 anti-CD83 light chain is provided below (SEQ ID NO:12).

```
5
        1 ATGGACATGA GGGCCCCCAC TCAGCTGCTG GGGCTCCTGC
       41 TGCTCTGGCT CCCAGGTGCC AGATGTGCCG ATGTCGTGAT
       81 GACCCAGACT CCAGCCTCCG TGTCTGCAGC TGTGGGAGGC
      121 ACAGTCACCA TCAATTGCCA GGCCAGTGAA AGCATTAGCA
      161 ACTACTTATC CTGGTATCAG CAGAAACCAG GGCAGCCTCC
      201 CAAGCTCCTG ATCTACAGGA CATCCACTCT GGCATCTGGG
10
      241 GTCTCATCGC GGTTCAAAGG CAGTGGATCT GGGACAGAGT
      281 ACACTCTCAC CATCAGCGGC GTGCAGTGTG ACGATGTTGC
     321 CACTTACTAC TGTCAATGCA CTTCTGGTGG GAAGTTCATT
     361 AGTGATGGTG CTGCTTTCGG CGGAGGGACC GAGGTGGTGG
     401 TCAAAGGTGA TCCAGTTGCA CCTACTGTCC TCCTCTTCCC
15
     441 ACCATCTAGC GATGAGGTGG CAACTGGAAC AGTCACCATC
     481 GTGTGTGGG CGAATAAATA CTTTCCCGAT GTCACCGTCA
     521 CCTGGGAGGT GGATGGCACC ACCCAAACAA CTGGCATCGA
     561 GAACAGTAAA ACACCGCAGA ATTCTGCAGA TTGTACCTAC
20
     601 AACCTCAGCA GCACTCTGAC ACTGACCAGC ACACAGTACA
     641 ACAGCCACAA AGAGTACACC TGCAAGGTGA CCCAGGGCAC
     681 GACCTCAGTC GTCCAGAGCT TCAGTAGGAA GAACTGTTAA
```

In another embodiment, the invention provides a 20D04 heavy chain that can bind to CD83 polypeptides. The amino acid sequence for this 20D04 heavy chain is provided below (SEQ ID NO:13).

25

```
1 METGLRWLLL VAVLKGVQCQ SVEESGGRLV TPGTPLTLTC

30 41 TVSGFSLSNN AINWVRQAPG KGLEWIGYIW SGGLTYYANW

81 AEGRFTISKT STTVDLKMTS PTIEDTATYF CARGINNSAL

121 WGPGTLVTVS SGQPKAPSVF PLAPCCGDTP SSTVTLGCLV

161 KGYLPEPVTV TWNSGTLTNG VRTFPSVRQS SGLYSLSSVV

201 SVTSSSQPVT CNVAHPATNT KVDKTVAPST CSKPTCPPPE

35 241 LLGGPSVFIF PPKPKDTLMI SRTPEVTCVV VDVSQDDPEV

281 QFTWYINNEQ VRTARPPLRE QQFNSTIRVV STLPIAHQDW

321 LRGKEFKCKV HNKALPAPIE KTISKARGQP LEPKVYTMGP

361 PREELSSRSV SLTCMINGFY PSDISVEWEK NGKAEDNYKT

401 TPAVLDSDGS YFLYNKLSVP TSEWQRGDVF TCSVMHEALH

40 441 NHYTQKSISR SPGK
```

A nucleic acid sequence for this 20D04 anti-CD83 heavy chain is provided below (SEQ ID NO:14).

	1	ATGGAGACAG	GCCTGCGCTG	GCTTCTCCTG	GTCGCTGTGC
5	41	TCAAAGGTGT	CCAGTGTCAG	TCGGTGGAGG	AGTCCGGGGG
	81	TCGCCTGGTC	ACGCCTGGGA	CACCCTGAC	ACTCACCTGC
	121	ACCGTCTCTG	GATTCTCCCT	CAGTAACAAT	GCAATAAACT
	161	GGGTCCGCCA	GGCTCCAGGG	AAGGGGCTAG	AGTGGATCGG
	201	ATACATTTGG	AGTGGTGGGC	TTACATACTA	CGCGAACTGG
10	241	GCGGAAGGCC	GATTCACCAT	CTCCAAAACC	TCGACTACGG
	281	TGGATCTGAA	GATGACCAGT	CCGACAATCG	AGGACACGGC
	321	CACCTATTTC	TGTGCCAGAG	GGATTAATAA	CTCCGCTTTG
	361	TGGGGCCCAG	GCACCCTGGT	CACCGTCTCC	TCAGGGCAAC
	401	${\tt CTAAGGCTCC}$	ATCAGTCTTC	CCACTGGCCC	CCTGCTGCGG
15	441	GGACACACCC	TCTAGCACGG	TGACCTTGGG	CTGCCTGGTC
	481	AAAGGCTACC	TCCCGGAGCC	AGTGACCGTG	ACCTGGAACT
	521	CGGGCACCCT	CACCAATGGG	GTACGCACCT	TCCCGTCCGT
	561	${\tt CCGGCAGTCC}$	${\bf TCAGGCCTCT}$	ACTCGCTGAG	CAGCGTGGTG
	601	AGCGTGACCT	CAAGCAGCCA	GCCCGTCACC	TGCAACGTGG
20	641	CCCACCCAGC	CACCAACACC	AAAGTGGACA	AGACCGTTGC
	681	GCCCTCGACA	TGCAGCAAGC	${\tt CCACGTGCCC}$	ACCCCTGAA
	721	CTCCTGGGGG	${\tt GACCGTCTGT}$	${\tt CTTCATCTTC}$	CCCCCAAAAC
	761	CCAAGGACAC	CCTCATGATC	TCACGCACCC	CCGAGGTCAC
	801	ATGCGTGGTG	GTGGACGTGA	GCCAGGATGA	CCCCGAGGTG
25	841	CAGTTCACAT	GGTACATAAA	CAACGAGCAG	GTGCGCACCG
	881	CCCGGCCGCC	GCTACGGGAG	CAGCAGTTCA	ACAGCACGAT
	921	CCGCGTGGTC	AGCACCCTCC	CCATCGCGCA	CCAGGACTGG
	961	CTGAGGGGCA	AGGAGTTCAA	GTGCAAAGTC	CACAACAAGG
	1001	CACTCCCGGC	CCCCATCGAG	AAAACCATCT	CCAAAGCCAG
30	1041	AGGGCAGCCC	CTGGAGCCGA	AGGTCTACAC	CATGGGCCCT
	1081	CCCCGGGAGG	AGCTGAGCAG	${\tt CAGGTCGGTC}$	AGCCTGACCT
	1121	GCATGATCAA	${\tt CGGCTTCTAC}$	${\tt CCTTCCGACA}$	TCTCGGTGGA
	1161	GTGGGAGAAG	AACGGGAAGG	CAGAGGACAA	CTACAAGACC
	1201	ACGCCGGCCG	TGCTGGACAG	CGACGGCTCC	TACTTCCTCT
35	1241	ACAACAAGCT	CTCAGTGCCC	ACGAGTGAGT	GGCAGCGGGG
	1281	CGACGTCTTC	ACCTGCTCCG	TGATGCACGA	GGCCTTGCAC

1321 AACCACTACA CGCAGAAGTC CATCTCCCGC TCTCCGGGTA
1361 AA

In another embodiment, the invention provides a 11G05 light chain that can bind to CD83 polypeptides. The amino acid sequence for this 11G05 light chain is provided below (SEQ ID NO:15).

```
1 MDTRAPTQLL GLLLWLPGA RCADVVMTQT PASVSAAVGG
41 TVTINCQSSK NVYNNNWLSW FQQKPGQPPK LLIYYASTLA
10 81 SGVPSRFRGS GSGTQFTLTI SDVQCDDAAT YYCAGDYSSS
121 SDNGFGGGTE VVVKGDPVAP TVLLFPPSSD EVATGTVTIV
161 CVANKYFPDV TVTWEVDGTT QTTGIENSKT PQNSADCTYN
201 LSSTLTLTST QYNSHKEYTC KVTQGTTSVV QSFSRKNC
```

15 A nucleic acid sequence for this 11G05 anti-CD83 light chain is provided below (SEQ ID NO:16).

```
1 ATGGACACCA GGGCCCCCAC TCAGCTGCTG GGGCTCCTGC
       41 TGCTCTGGCT CCCAGGTGCC AGATGTGCCG ACGTCGTGAT
       81 GACCCAGACT CCAGCCTCCG TGTCTGCAGC TGTGGGAGGC
      121 ACAGTCACCA TCAATTGCCA GTCCAGTAAG AATGTTTATA
20
      161 ATAACAACTG GTTATCCTGG TTTCAGCAGA AACCAGGGCA
      201 GCCTCCCAAG CTCCTGATCT ATTATGCATC CACTCTGGCA
      241 TCTGGGGTCC CATCGCGGTT CAGAGGCAGT GGATCTGGGA
      281 CACAGTTCAC TCTCACCATT AGCGACGTGC AGTGTGACGA
      321 TGCTGCCACT TACTACTGTG CAGGCGATTA TAGTAGTAGT
25
      361 AGTGATAATG GTTTCGGCGG AGGGACCGAG GTGGTGGTCA
      401 AAGGTGATCC AGTTGCACCT ACTGTCCTCC TCTTCCCACC
      441 ATCTAGCGAT GAGGTGGCAA CTGGAACAGT CACCATCGTG
      481 TGTGTGGCGA ATAAATACTT TCCCGATGTC ACCGTCACCT
      521 GGGAGGTGGA TGGCACCACC CAAACAACTG GCATCGAGAA
30
      561 CAGTAAAACA CCGCAGAATT CTGCAGATTG TACCTACAAC
      601 CTCAGCAGCA CTCTGACACT GACCAGCACA CAGTACAACA
      641 GCCACAAAGA GTACACCTGC AAGGTGACCC AGGGCACGAC
      681 CTCAGTCGTC CAGAGCTTCA GTAGGAAGAA CTGTTAA
```

In another embodiment, the invention provides a 11G05 heavy chain that can bind to CD83 polypeptides. The amino acid sequence for this 11G05 heavy chain is provided below (SEQ ID NO:17).

40 1 METGLRWLLL VAVLKGVQCQ SVEESGGRLV TPGTPLTLTC 41 TVSGFTISDY DLSWVRQAPG EGLKYIGFIA IDGNPYYATW

35

```
81 AKGRFTISKT STTVDLKITA PTTEDTATYF CARGAGDLWG
121 PGTLVTVSSG QPKAPSVFPL APCCGDTPSS TVTLGCLVKG
161 YLPEPVTVTW NSGTLTNGVR TFPSVRQSSG LYSLSSVVSV
201 TSSSQPVTCN VAHPATNTKV DKTVAPSTCS KPTCPPPELL
5 241 GGPSVFIFPP KPKDTLMISR TPEVTCVVVD VSQDDPEVQF
281 TWYINNEQVR TARPPLREQQ FNSTIRVVST LPIAHQDWLR
321 GKEFKCKVHN KALPAPIEKT ISKARGQPLE PKVYTMGPPR
361 EELSSRSVSL TCMINGFYPS DISVEWEKNG KAEDNYKTTP
401 AVLDSDGSYF LYNKLSVPTS EWQRGDVFTC SVMHEALHNH
```

A nucleic acid sequence for this 11G05 anti-CD83 heavy chain is provided below (SEQ ID NO:18).

15	1	ATGGAGACAG	GCCTGCGCTG	GCTTCTCCTG	GTCGCTGTGC
	41	TCAAAGGTGT	CCAGTGTCAG	TCGGTGGAGG	AGTCCGGGGG
	81	TCGCCTGGTC	ACGCCTGGGA	CACCCTGAC	ACTCACCTGC
	121	ACAGTCTCTG	GATTCACCAT	CAGTGACTAC	GACTTGAGCT
	161	GGGTCCGCCA	GGCTCCAGGG	GAGGGGCTGA	AATACATCGG
20	201	ATTCATTGCT	ATTGATGGTA	ACCCATACTA	CGCGACCTGG
	241	GCAAAAGGCC	GATTCACCAT	${\tt CTCCAAAACC}$	TCGACCACGG
	281	TGGATCTGAA	AATCACCGCT	CCGACAACCG	AAGACACGGC
	321	CACGTATTTC	TGTGCCAGAG	$\tt GGGCAGGGGA$	CCTCTGGGGC
	361	CCAGGGACCC	TCGTCACCGT	${\tt CTCTTCAGGG}$	CAACCTAAGG
25	401	CTCCATCAGT	CTTCCCACTG	GCCCCTGCT	GCGGGGACAC
	441	ACCCTCTAGC	ACGGTGACCT	TGGGCTGCCT	GGTCAAAGGC
	481	TACCTCCCGG	AGCCAGTGAC	${\tt CGTGACCTGG}$	AACTCGGGCA
	521	CCCTCACCAA	TGGGGTACGC	ACCTTCCCGT	CCGTCCGGCA
	561	GTCCTCAGGC	CTCTACTCGC	TGAGCAGCGT	GGTGAGCGTG
30	601	ACCTCAAGCA	GCCAGCCCGT	CACCTGCAAC	GTGGCCCACC
	641	CAGCCACCAA	CACCAAAGTG	GACAAGACCG	TTGCGCCCTC
	681	GACATGCAGC	AAGCCCACGT	GCCCACCCC	TGAACTCCTG
	721	GGGGGACCGT	CTGTCTTCAT	${\tt CTTCCCCCCA}$	AAACCCAAGG
	761	ACACCCTCAT	GATCTCACGC	ACCCCCGAGG	TCACATGCGT
35	801	GGTGGTGGAC	GTGAGCCAGG	ATGACCCCGA	GGTGCAGTTC
	841	ACATGGTACA	TAAACAACGA	GCAGGTGCGC	ACCGCCCGGC

```
921 GGTCAGCAC CTCCCCATCG CGCACCAGGA CTGGCTGAGG
921 GGTCAGCACC CTCCCCATCG CGCACCAGGA CTGGCTGAGG
961 GGCAAGGAGT TCAAGTGCAA AGTCCACAAC AAGGCACTCC
1001 CGGCCCCAT CGAGAAAACC ATCTCCAAAG CCAGAGGGCA
5 1041 GCCCCTGGAG CCGAAGGTCT ACACCATGGG CCCTCCCCGG
1081 GAGGAGCTGA GCAGCAGGTC GGTCAGCCTG ACCTGCATGA
1120 TCAACGGCTT CTACCCTTCC GACATCTCGG TGGAGTGGGA
1161 GAAGAACGGG AAGGCAGAGG ACAACTACAA GACCACGCCG
1201 GCCGTGCTGG ACAGCGACGG CTCCTACTTC CTCTACAACA
10 1241 AGCTCTCAGT GCCCACGAGT GAGTGGCAGC GGGGCGACGT
1281 CTTCACCTGC TCCGTGATGC ACGAGGCCTT GCACAACCAC
1321 TACACGCAGA AGTCCATCTC CCGCTCTCCG GGTAAA
```

In another embodiment, the invention provides a 14C12 light chain that can bind to CD83 polypeptides. The amino acid sequence for this 14C12 light chain is provided below (SEQ ID NO:19).

```
1 MDXRAPTQLL GLLLWLPGA RCALVMTQTP ASVSAAVGGT
41 VTINCQSSQS VYDNDELSWY QQKPGQPPKL LIYLASKLAS
20 81 GVPSRFKGSG SGTQFALTIS GVQCDDAATY YCQATHYSSD
121 WYLTFGGGTE VVVKGDPVAP TVLLFPPSSD EVATGTVTIV
161 CVANKYFPDV TVTWEVDGTT QTTGIENSKT PQNSADCTYN
201 LSSTLTLTST QYNSHKEYTC KVTQGTTSVV QSFSRKNC
```

A nucleic acid sequence for this 14C12 anti-CD83 light chain is provided below (SEQ ID NO:20).

```
1 ATGGACATRA GGGCCCCCAC TCAGCTGCTG GGGCTCCTGC
       41 TGCTCTGGCT CCCAGGTGCC AGATGTGCCC TTGTGATGAC
30
       81 CCAGACTCCA GCCTCCGTGT CTGCAGCTGT GGGAGGCACA
      121 GTCACCATCA ATTGCCAGTC CAGTCAGAGT GTTTATGATA
     161 ACGACGAATT ATCCTGGTAT CAGCAGAAAC CAGGGCAGCC
     201 TCCCAAGCTC CTGATCTATC TGGCATCCAA GTTGGCATCT
     241 GGGGTCCCAT CCCGATTCAA AGGCAGTGGA TCTGGGACAC
     281 AGTTCGCTCT CACCATCAGC GGCGTGCAGT GTGACGATGC
35
     321 TGCCACTTAC TACTGTCAAG CCACTCATTA TAGTAGTGAT
     361 TGGTATCTTA CTTTCGGCGG AGGGACCGAG GTGGTGGTCA
     401 AAGGTGATCC AGTTGCACCT ACTGTCCTCC TCTTCCCACC
     441 ATCTAGCGAT GAGGTGGCAA CTGGAACAGT CACCATCGTG
     481 TGTGTGGCGA ATAAATACTT TCCCGATGTC ACCGTCACCT
40
     521 GGGAGGTGGA TGGCACCACC CAAACAACTG GCATCGAGAA
     561 CAGTAAAACA CCGCAGAATT CTGCAGATTG TACCTACAAC
```

601 CTCAGCAGCA CTCTGACACT GACCAGCACA CAGTACAACA 641 GCCACAAAGA GTACACCTGC AAGGTGACCC AGGGCACGAC 681 CTCAGTCGTC CAGAGCTTCA GTAGGAAGAA CTGTTAA

5

In another embodiment, the invention provides a 14C12 heavy chain that can bind to CD83 polypeptides. The amino acid sequence for this 14C12 heavy chain is provided below (SEQ ID NO:21).

```
1 METGLRWLLL VAVLKGVHCQ SVEESGGRLV TPGTPLTLTC
10 41 TASGFSRSSY DMSWVRQAPG KGLEWVGVIS TAYNSHYASW
81 AKGRFTISRT STTVDLKMTS LTTEDTATYF CARGGSWLDL
121 WGQGTLVTVS SGQPKAPSVF PLAPCCGDTP SSTVTLGCLV
161 KGYLPEPVTV TWNSGTLTNG VRTFPSVRQS SGLYSLSSVV
201 SVTSSSQPVT CNVAHPATNT KVDKTVAPST CSKPTCPPPE
15 241 LLGGPSVFIF PPKPKDTLMI SRTPEVTCVV VDVSQDDPEV
281 QFTWYINNEQ VRTARPPLRE QQFNSTIRVV STLPIAHQDW
321 LRGKEFKCKV HNKALPAPIE KTISKARGQP LEPKVYTMGP
361 PREELSSRSV SLTCMINGFY PSDISVEWEK NGKAEDNYKT
401 TPAVLDSDGS YFLYNKLSVP TSEWQRGDVF TCSVMHEALH
```

A nucleic acid sequence for this 14C12 anti-CD83 heavy chain is provided below (SEQ ID NO:22).

```
25
        1 ATGGAGACAG GCCTGCGCTG GCTTCTCCTG GTCGCTGTGC
       41 TCAAAGGTGT CCACTGTCAG TCGGTGGAGG AGTCCGGGGG
       81 TCGCCTGGTC ACGCCTGGGA CACCCCTGAC ACTCACCTGC
      121 ACAGCCTCTG GATTCTCCCG CAGCAGCTAC GACATGAGCT
      161 GGGTCCGCCA GGCTCCAGGG AAGGGGCTGG AATGGGTCGG
30
      201 AGTCATTAGT ACTGCTTATA ACTCACACTA CGCGAGCTGG
      241 GCAAAAGGCC GATTCACCAT CTCCAGAACC TCGACCACGG
      281 TGGATCTGAA AATGACCAGT CTGACAACCG AAGACACGGC
      321 CACCTATTTC TGTGCCAGAG GGGGTAGTTG GTTGGATCTC
      361 TGGGGCCAGG GCACCCTGGT CACCGTCTCC TCAGGGCAAC
      401 CTAAGGCTCC ATCAGTCTTC CCACTGGCCC CCTGCTGCGG
35
      441 GGACACCCC TCTAGCACGG TGACCTTGGG CTGCCTGGTC
      481 AAAGGCTACC TCCCGGAGCC AGTGACCGTG ACCTGGAACT
```

```
521 CGGGCACCCT CACCAATGGG GTACGCACCT TCCCGTCCGT
      561 CCGGCAGTCC TCAGGCCTCT ACTCGCTGAG CAGCGTGGTG
      601 AGCGTGACCT CAAGCAGCCA GCCCGTCACC TGCAACGTGG
      641 CCCACCCAGC CACCAACACC AAAGTGGACA AGACCGTTGC
 5
      681 GCCCTCGACA TGCAGCAAGC CCACGTGCCC ACCCCCTGAA
      721 CTCCTGGGGG GACCGTCTGT CTTCATCTTC CCCCCAAAAC
      761 CCAAGGACAC CCTCATGATC TCACGCACCC CCGAGGTCAC
      801 ATGCGTGGTG GTGGACGTGA GCCAGGATGA CCCCGAGGTG
      841 CAGTTCACAT GGTACATAAA CAACGAGCAG GTGCGCACCG
      881 CCCGGCCGCC GCTACGGGAG CAGCAGTTCA ACAGCACGAT
10
      921 CCGCGTGGTC AGCACCCTCC CCATCGCGCA CCAGGACTGG
      961 CTGAGGGGCA AGGAGTTCAA GTGCAAAGTC CACAACAAGG
     1001 CACTCCCGGC CCCCATCGAG AAAACCATCT CCAAAGCCAG
     1041 AGGGCAGCCC CTGGAGCCGA AGGTCTACAC CATGGGCCCT
    .1081 CCCCGGGAGG AGCTGAGCAG CAGGTCGGTC AGCCTGACCT
     1121 GCATGATCAA CGGCTTCTAC CCTTCCGACA TCTCGGTGGA
     1161 GTGGGAGAG AACGGGAAGG CAGAGGACAA CTACAAGACC
     1200 ACGCCGGCCG TGCTGGACAG CGACGGCTCC TACTTCCTCT
     1241 ACAACAAGCT CTCAGTGCCC ACGAGTGAGT GGCAGCGGGG
20
    1281 CGACGTCTTC ACCTGCTCCG TGATGCACGA GGCCTTGCAC
    1321 AACCACTACA CGCAGAAGTC CATCTCCCGC TCTCCGGGTA
    1361 AA
```

In another embodiment, the invention provides a M83 020B08L light
chain that can bind to CD83 polypeptides. The amino acid sequence for this
M83 020B08L light chain is provided below (SEQ ID NO:58).

- 1 MDMRAPTQLL GLLLWLPGA RCAYDMTQTP ASVEVAVGGT
 41 VTIKCQASQS ISTYLDWYQQ KPGQPPKLLI YDASDLASGV
 30 81 PSRFKGSGSG TQFTLTISDL ECADAATYYC QQGYTHSNVD
 121 NVFGGGTEVV VKGDPVAPTV LLFPPSSDEV ATGTVTIVCV
 161 ANKYFPDVTV TWEVDGTTQT TGIENSKTPQ NSADCTYNLS
 201 STLTLTSTQY NSHKEYTCKV TQGTTSVVQS FSRKNC
- A nucleic acid sequence for this M83 020B08L anti-CD83 light chain is provided below (SEQ ID NO:59).

```
1 ATGGACATGA GGGCCCCCAC TCAGCTGCTG GGGCTCCTGC
      41 TGCTCTGGCT CCCAGGTGCC AGATGTGCCT ATGATATGAC
      81 CCAGACTCCA GCCTCTGTGG AGGTAGCTGT GGGAGGCACA
     121 GTCACCATCA AGTGCCAGGC CAGTCAGAGC ATTAGTACCT
     161 ACTTAGACTG GTATCAGCAG AAACCAGGGC AGCCTCCCAA
    201 GCTCCTGATC TATGATGCAT CCGATCTGGC ATCTGGGGTC
    241 CCATCGCGGT TCAAAGGCAG TGGATCTGGG ACACAGTTCA
    281 CTCTCACCAT CAGCGACCTG GAGTGTGCCG ATGCTGCCAC
10
    321 TTACTACTGT CAACAGGGTT ATACACATAG TAATGTTGAT
    361 AATGTTTTCG GCGGAGGGAC CGAGGTGGTG GTCAAAGGTG
    401 ATCCAGTTGC ACCTACTGTC CTCCTCTTCC CACCATCTAG
    441 CGATGAGGTG GCAACTGGAA CAGTCACCAT CGTGTGTGTG
    481 GCGAATAAAT ACTTTCCCGA TGTCACCGTC ACCTGGGAGG
15
    521 TGGATGGCAC CACCCAAACA ACTGGCATCG AGAACAGTAA
    561 AACACCGCAG AATTCTGCAG ATTGTACCTA CAACCTCAGC
    601 AGCACTCTGA CACTGACCAG CACACAGTAC AACAGCCACA
    641 AAGAGTACAC CTGCAAGGTG ACCCAGGGCA CGACCTCAGT
    681 CGTCCAGAGC TTCAGTAGGA AGAACTGTTA A
20
```

In another embodiment, the invention provides a M83 020B08H heavy chain that can bind to CD83 polypeptides. The amino acid sequence for this M83 020B08H heavy chain is provided below (SEQ ID NO:60).

```
25 1 METGLRWLLL VAVLKGVQCQ SVEESGGRLV TPGTPLTLTC
41 TVSGFSLSSY DMTWVRQAPG KGLEWIGIIY ASGTTYYANW
81 AKGRFTISKT STTVDLKVTS PTIGDTATYF CAREGAGVSM
121 TLWGPGTLVT VSSGQPKAPS VFPLAPCCGD TPSSTVTLGC
161 LVKGYLPEPV TVTWNSGTLT NGVRTFPSVR QSSGLYSLSS
30 201 VVSVTSSQP VTCNVAHPAT NTKVDKTVAP STCSKPTCPP
241 PELLGGPSVF IFPPKPKDTL MISRTPEVTC VVVDVSQDDP
281 EVQFTWYINN EQVRTARPPL REQQFNSTIR VVSTLPIAHQ
321 DWLRGKEFKC KVHNKALPAP IEKTISKARG QPLEPKVYTM
361 GPPREELSSR SVSLTCMING FYPSDISVEW EKNGKAEDNY
35 401 KTTPAVLDSD GSYFLYNKLS VPTSEWQRGD VFTCSVMHEA
441 LHNHYTQKSI SRSPGK
```

A nucleic acid sequence for this M83 020B08H anti-CD83 heavy chain is provided below (SEQ ID NO:61).

```
40 1 ATGGAGACAG GCCTGCGCTG GCTTCTCCTG GTCGCTGTGC
41 TCAAAGGTGT CCAGTGTCAG TCGGTGGAGG AGTCCGGGGG
81 TCGCCTGGTC ACGCCTGGGA CACCCCTGAC ACTCACCTGC
121 ACAGTCTCTG GATTCTCCCT CAGCAGCTAC GACATGACCT
161 GGGTCCGCCA GGCTCCAGGG AAGGGGCTGG AATGGATCGG
45 201 AATCATTTAT GCTAGTGGTA CCACATACTA CGCGAACTGG
241 GCGAAAGGCC GATTCACCAT CTCCAAAACC TCGACCACGG
281 TGGATCTGAA AGTCACCAGT CCGACAATCG GGGACACGGC
321 CACCTATTTC TGTGCCAGAG AGGGGGCTGG TGTTAGTATG
361 ACCTTGTGGG GCCCAGGCAC CCTGGTCACC GTCTCCTCAG
401 GGCAACCTAA GGCTCCATCA GTCTTCCCAC TGGCCCCCTG
```

	441	CTGCGGGGAC	ACACCCTCTA	GCACGGTGAC	CTTGGGCTGC
	481	CTGGTCAAAG		GGAGCCAGTG	ACCGTGACCT
	521	GGAACTCGGG		AATGGGGTAC	GCACCTTCCC
	561	GTCCGTCCGG	CAGTCCTCAG	GCCTCTACTC	GCTGAGCAGC
5	601	GTGGTGAGCG	TGACCTCAAG	CAGCCAGCCC	GTCACCTGCA
	641	ACGTGGCCCA	CCCAGCCACC	AACACCAAAG	TGGACAAGAC
	681	CGTTGCGCCC	TCGACATGCA	GCAAGCCCAC	
	721	CCTGAACTCC	TGGGGGGACC	GTCTGTCTTC	ATCTTCCCCC
	761	CAAAACCCAA		ATGATCTCAC	
10	801	GGTCACATGC		ACGTGAGCCA	
	841	GAGGTGCAGT		CATAAACAAC	
	881	GCACCGCCCG		CGGGAGCAGC	
	921	CACGATCCGC			CGCGCACCAG
	961	GACTGGCTGA		GTTCAAGTGC	
15	1001	ACAAGGCACT		ATCGAGAAAA	
	1041	AGCCAGAGGG		AGCCGAAGGT	
	1081	GGCCCTCCCC		GAGCAGCAGG	TCGGTCAGCC
	1121	TGACCTGCAT		TTCTACCCTT	CCGACATCTC
	1161	GGTGGAGTGG		GGAAGGCAGA	
20	1201	AAGACCACGC	CGGCCGTGCT	GGACAGCGAC	
	1241	TCCTCTACAA	CAAGCTCTCA	GTGCCCACGA	
	1281	GCGGGGCGAC	GTCTTCACCT		
	1321	TTGCACAACC	ACTACACGCA	GAAGTCCATC	
	1361	CGGGTAAA			
25					

In another embodiment, the invention provides a M83 006G05L light chain that can bind to CD83 polypeptides. The amino acid sequence for this M83 006G05L light chain is provided below (SEQ ID NO:62).

```
1 MDMRAPTQLL GLLLWLPGA RCAYDMTQTP ASVEVAVGGT
41 VAIKCQASQS VSSYLAWYQQ KPGQPPKPLI YEASMLAAGV
81 SSRFKGSGSG TDFTLTISDL ECDDAATYYC QQGYSISDID
121 NAFGGGTEVV VKGDPVAPTV LLFPPSSDEV ATGTVTIVCV
161 ANKYFPDVTV TWEVDGTTQT TGIENSKTPQ NSADCTYNLS
35 201 STLTLTSTQY NSHKEYTCKV TQGTTSVVQS FSRKNC
```

A nucleic acid sequence for M83 006G05L anti-CD83 light chain is provided below (SEQ ID NO:63).

```
40 41 TGCTCTGGCT CCCAGGTGCC AGATGTGCTG ATGATATGAC
81 CCAGACTCCA GCCTCTGTGG AGATGTGCCT ATGATATGAC
121 GTCGCCATCA AGTGCCAGGC CAGTCAGAGC GTTAGTAGTT
161 ACTTAGCCTG GTATCAGCAG AAACCAGGGC AGCCTCCCAA
201 GCCCCTGATC TACGAAGCAT CCATGCTGGC GGCTGGGGTC
45 241 TCATCGCGGT TCAAAGGCAG TGGATCTGAG
281 CTCTCACCAT CAGCGACCTG GAGTGTGACG ATGCTGCCAC
```

```
321 TTACTATTGT CAACAGGGTT ATTCTATCAG TGATATTGAT
361 AATGCTTTCG GCGGAGGGAC CGAGGTGGTG GTCAAAGGTG
401 ATCCAGTTGC ACCTACTGTC CTCCTCTTCC CACCATCTAG
441 CGATGAGGTG GCAACTGGAA CAGTCACCAT CGTGTGTGTG
5 481 GCGAATAAAT ACTTTCCCGA TGTCACCGTC ACCTGGGAGG
521 TGGATGGCAC CACCCAAACA ACTGGCATCG AGAACAGTAA
561 AACACCGCAG AATTCTGCAG ATTGTACCTA CAACCTCAGC
601 AGCACTCTGA CACTGACCAG CACACAGTAC AACAGCCACA
641 AAGAGTACAC CTGCAAGGTG ACCCAGGGCA CGACCTCAGT
10 681 CGTCCAGAGC TTCAGTAGGA AGAACTGTTA A
```

In another embodiment, the invention provides a M83 006G05L heavy chain that can bind to CD83 polypeptides. The amino acid sequence for this M83 006G05L heavy chain is provided below (SEQ ID NO:64).

15

```
1 METGLRWLLL VAVLKGVQCQ SVEESGGRLV SPGTPLTLTC
41 TASGFSLSSY DMSWVRQAPG KGLEYIGIIS SSGSTYYASW
81 AKGRFTISKT STTVDLEVTS LTTEDTATYF CSREHAGYSG
121 DTGHLWGPGT LVTVSSGQPK APSVFPLAPC CGDTPSSTVT
20 161 LGCLVKGYLP EPVTVTWNSG TLTNGVRTFP SVRQSSGLYS
201 LSSVVSVTSS SQPVTCNVAH PATNTKVDKT VAPSTCSKPT
241 CPPPELLGGP SVFIFPPKPK DTLMISRTPE VTCVVVDVSQ
281 DDPEVQFTWY INNEQVRTAR PPLREQQFNS TIRVVSTLPI
321 AHQDWLRGKE FKCKVHNKAL PAPIEKTISK ARGQPLEPKV
25 361 YTMGPPREEL SSRSVSLTCM INGFYPSDIS VEWEKNGKAE
401 DNYKTTPAVL DSDGSYFLYN KLSVPTSEWQ RGDVFTCSVM
441 HEALHNHYTQ KSISRSPGK
```

A nucleic acid sequence for this M83 006G05L anti-CD83 heavy chain is

```
30 provided below (SEQ ID NO:65).
```

```
1 ATGGAGACAG GCCTGCGCTG GCTTCTCCTG GTCGCTGTGC
        41 TCAAAGGTGT CCAGTGTCAG TCGGTGGAGG AGTCCGGGGG
        81 TCGCCTGGTC TCGCCTGGGA CACCCCTGAC ACTCACCTGC
       121 ACAGCCTCTG GATTCTCCCT CAGTAGCTAC GACATGAGCT
35
       161 GGGTCCGCCA GGCTCCAGGG AAGGGGCTGG AATACATCGG
       201 AATCATTAGT AGTAGTGGTA GCACATACTA CGCGAGCTGG
       241 GCGAAAGGCC GATTCACCAT CTCCAAAACC TCGACCACGG
       281 TGGATCTGGA AGTGACCAGT CTGACAACCG AGGACACGGC
       321 CACCTATTTC TGTAGTAGAG AACATGCTGG TTATAGTGGT
       361 GATACGGGTC ACTTGTGGGG CCCAGGCACC CTGGTCACCG
40
       401 TCTCCTCGGG GCAACCTAAG GCTCCATCAG TCTTCCCACT
       441 GGCCCCTGC TGCGGGGACA CACCCTCTAG CACGGTGACC
       481 TTGGGCTGCC TGGTCAAAGG CTACCTCCCG GAGCCAGTGA
       521 CCGTGACCTG GAACTCGGGC ACCCTCACCA ATGGGGTACG
       561 CACCTTCCCG TCCGTCCGGC AGTCCTCAGG CCTCTACTCG
45
       601 CTGAGCAGCG TGGTGAGCGT GACCTCAAGC AGCCAGCCCG
       641 TCACCTGCAA CGTGGCCCAC CCAGCCACCA ACACCAAAGT
       681 GGACAAGACC GTTGCGCCCT CGACATGCAG CAAGCCCACG
       721 TGCCCACCCC CTGAACTCCT GGGGGGACCG TCTGTCTTCA
```

	761	TCTTCCCCCC	AAAACCCAAG	GACACCCTCA	ጥር አጥርጥር አርር
	801				
			GTCACATGCG		
	841	GATGACCCCG	AGGTGCAGTT	CACATGGTAC	ATAAACAACG
	881	AGCAGGTGCG	CACCGCCCGG	CCGCCGCTAC	GGGAGCAGCA
· 5	921	GTTCAACAGC	ACGATCCGCG	TGGTCAGCAC	CCTCCCCATC
	961	GCGCACCAGG	ACTGGCTGAG	GGGCAAGGAG	TTCAAGTGCA
	1001	AAGTCCACAA	CAAGGCACTC	CCGGCCCCCA	TCGAGAAAAC
	1041	CATCTCCAAA	GCCAGAGGGC	AGCCCCTGGA	GCCGAAGGTC
	1081	TACACCATGG	GCCCTCCCCG	GGAGGAGCTG	AGCAGCAGGT
10	1121	CGGTCAGCCT	GACCTGCATG	ATCAACGGCT	TCTACCCTTC
	1162	CGACATCTCG	GTGGAGTGGG	AGAAGAACGG	GAAGGCAGAG
	1201	GACAACTACA	AGACCACGCC	GGCCGTGCTG	GACAGCGACG
	1241	GCTCCTACTT	CCTCTACAAC	AAGCTCTCAG	TGCCCACGAG
	1281		CGGGGCGACG		
15	1321		TGCACAACCA		
	1361	CCCGCTCTCC	GGGTAAA		

Anti-sense Nucleic Acids

20

25

30

35

Anti-sense nucleic acids can be used to inhibit the function of CD83. In general, the function of CD83 RNA is inhibited, for example, by administering to a mammal a nucleic acid that can inhibit the functioning of CD83 RNA.

Nucleic acids that can inhibit the function of a CD83RNA can be generated from coding and non-coding regions of the CD83 gene. However, nucleic acids that can inhibit the function of a CD83 RNA are often selected to be complementary to CD83 nucleic acids that are naturally expressed in the mammalian cell to be treated with the methods of the invention. In some embodiments, the nucleic acids that can inhibit CD83 RNA functions are complementary to CD83 sequences found near the 5' end of the CD83 coding region. For example, nucleic acids that can inhibit the function of a CD83 RNA can be complementary to the 5' region of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5 or SEQ ID NO:10.

A nucleic acid that can inhibit the functioning of a CD83 RNA need not be 100% complementary to SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5 or SEQ ID NO:10. Instead, some variability the sequence of the nucleic acid that can inhibit the functioning of a CD83 RNA is permitted. For example, a nucleic acid that can inhibit the functioning of a CD83 RNA from a human can be complementary to a nucleic acid encoding either a human or a mouse CD83 gene product.

Moreover, nucleic acids that can hybridize under moderately or highly stringent hybridization conditions to a nucleic acid comprising SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5 or SEQ ID NO:10 are sufficiently complementary to inhibit the functioning of a CD83 RNA and can be utilized in the methods of the invention.

5

10

15

20

25

30

"Stringent hybridization conditions" and "stringent hybridization wash conditions" in the context of nucleic acid hybridization are somewhat sequence dependent, and may differ depending upon the environmental conditions of the nucleic acid. For example, longer sequences tend to hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Laboratory Techniques in Biochemistry and Molecular biology-Hybridization with Nucleic Acid Probes, page 1, chapter 2 "Overview of principles of hybridization and the strategy of nucleic acid probe assays" Elsevier, New York (1993). See also, J. Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, N.Y., pp 9.31-9.58 (1989); J. Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, N.Y. (3rd ed. 2001).

Generally, highly stringent hybridization and wash conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific double-stranded sequence at a defined ionic strength and pH. For example, under "highly stringent conditions" or "highly stringent hybridization conditions" a nucleic acid will hybridize to its complement to a detectably greater degree than to other sequences (e.g., at least 2- fold over background). By controlling the stringency of the hybridization and/or washing conditions nucleic acids that are 100% complementary can be hybridized. For DNA-DNA hybrids, the T_m can be approximated from the equation of Meinkoth and Wahl Anal. Biochem. 138:267-284 (1984):

 T_m 81.5°C + 16.6 (log M) +0.41 (%GC) - 0.61 (% form) - 500/L where M is the molarity of monovalent cations, %GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The T_m is the temperature (under defined ionic strength and pH) at which

50% of a complementary target sequence hybridizes to a perfectly matched probe.

Very stringent conditions are selected to be equal to the $T_{\mathfrak{m}}$ for a particular probe.

5

10

15

20

25

30

Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity can hybridize. Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.

Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37°C, and a wash in 1X to 2X SSC (20X SSC = 3.0 M NaCl and 0.3 M trisodium citrate) at 50 to 55°C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl, 1% SDS at 37°C, and a wash in 0.5X to 1X SSC at 55 to 60°C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 0.1X SSC at 60 to 65°C.

The degree of complementarity or sequence identity of hybrids obtained during hybridization is typically a function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. The type and length of hybridizing nucleic acids also affects whether hybridization will occur and whether any hybrids formed will be stable under a given set of hybridization and wash conditions.

An example of stringent hybridization conditions for hybridization of complementary nucleic acids that have more than 100 complementary residues on a filter in a Southern or Northern blot is 50% formamide with 1 mg of heparin at 42°C, with the hybridization being carried out overnight. An example of highly stringent conditions is 0.1 5 M NaCl at 72°C for about 15 minutes. An example of stringent wash conditions is a 0.2x SSC wash at 65°C for 15 minutes (see also, Sambrook, infra). Often, a high stringency wash is preceded by a low

stringency wash to remove background probe signal. An example of medium stringency for a duplex of, e.g., more than 100 nucleotides, is 1x SSC at 45°C for 15 minutes. An example low stringency wash for a duplex of, e.g., more than 100 nucleotides, is 4-6x SSC at 40°C for 15 minutes. For short probes (e.g., about 10 to 50 nucleotides), stringent conditions typically involve salt concentrations of less than about 1.0M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3, and the temperature is typically at least about 30°C.

5

10

15

20

25

30

Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide. In general, a signal to noise ratio of 2x (or higher) than that observed for an unrelated probe in the particular hybridization assay indicates detection of a specific hybridization. Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the proteins that they encode are substantially identical. This occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code.

The following are examples of sets of hybridization/wash conditions that may be used to detect and isolate homologous nucleic acids that are substantially identical to reference nucleic acids of the present invention: a reference nucleotide sequence preferably hybridizes to the reference nucleotide sequence in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C with washing in 2X SSC, 0.1% SDS at 50°C, more desirably in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C with washing in 1X SSC, 0.1% SDS at 50°C, more desirably still in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C with washing in 0.5X SSC, 0.1% SDS at 50°C, preferably in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C with washing in 0.1X SSC, 0.1% SDS at 50°C, more preferably in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C with washing in 0.1X SSC, 0.1% SDS at 50°C, more preferably in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C with washing in 0.1X SSC, 0.1% SDS at 65°C.

In general, T_m is reduced by about 1°C for each 1% of mismatching. Thus, T_m , hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired sequence identity. For example, if sequences with >90% identity are sought, the T_m can be decreased 10°C. Generally, stringent

conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4°C lower than the thermal melting point (T_m); moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10°C lower than the thermal melting point (T_m); low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20°C lower than the thermal melting point (T_m).

If the desired degree of mismatching results in a T_m of less than 45°C 10 (aqueous solution) or 32°C (formamide solution), it is preferred to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes, Part 1, Chapter 2 (Elsevier, New York); and Ausubel et al., eds. (1995) Current Protocols in Molecular Biology, Chapter 2 (Greene Publishing 15 and Wiley - Interscience, New York). See Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York). Using these references and the teachings herein on the relationship between T_m, mismatch, and hybridization and wash conditions, those of ordinary skill can generate variants of the present homocysteine Smethyltransferase nucleic acids.

20

25

30

Precise complementarity is therefore not required for successful duplex formation between a nucleic acid that can inhibit a CD83 RNA and the complementary coding sequence of a CD83 RNA. Inhibitory nucleic acid molecules that comprise, for example, 2, 3, 4, or 5 or more stretches of contiguous nucleotides that are precisely complementary to a CD83 coding sequence, each separated by a stretch of contiguous nucleotides that are not complementary to adjacent CD83 coding sequences, can inhibit the function of CD83 RNA. In general, each stretch of contiguous nucleotides is at least 4, 5, 6, 7, or 8 or more nucleotides in length. Non-complementary intervening sequences are preferably 1, 2, 3, or 4 nucleotides in length. One skilled in the art can easily use the calculated melting point of an anti-sense nucleic acid hybridized to a sense nucleic acid to determine the degree of mismatching that

will be tolerated between a particular anti-sense nucleic acid and a particular CD83 RNA.

5

10

15

20

25

30

Nucleic acids that complementary a CD83 RNA can be administered to a mammal or to directly to the site of the inappropriate immune system activity. Alternatively, nucleic acids that are complementary to a CD83 RNA can generated by transcription from an expression cassette that has been administered to a mammal. For example, a complementary RNA can be transcribed from a CD83 nucleic acid that has been inserted into an expression cassette in the 3' to 5' orientation, that is, opposite to the usual orientation employed to generate sense RNA transcripts. Hence, to generate a complementary RNA that can inhibit the function of an endogenous CD83 RNA, the promoter would be positioned to transcribe from a 3' site towards the 5' end of the CD83 coding region.

In some embodiments an RNA that can inhibit the function of an endogenous CD83 RNA is an anti-sense oligonucleotide. The anti-sense oligonucleotide is complementary to at least a portion of the coding sequence of a gene comprising SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5 or SEQ ID NO:10. Such anti-sense oligonucleotides are generally at least six nucleotides in length, but can be about 8, 12, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides long. Longer oligonucleotides can also be used. CD83 anti-sense oligonucleotides can be provided in a DNA construct and introduced into cells whose division is to be decreased, for example, into CD4+ T cells, Th-1 cells, Th-2 cells or lymphocyte precursor cells.

Anti-sense oligonucleotides can be composed of deoxyribonucleotides, ribonucleotides, or a combination of both. Oligonucleotides can be synthesized endogenously from transgenic expression cassettes or vectors as described herein. Alternatively, such oligonucleotides can be synthesized manually or by an automated synthesizer, by covalently linking the 5' end of one nucleotide with the 3' end of another nucleotide with non-phosphodiester internucleotide linkages such alkylphosphonates, phosphorothioates, phosphorodithioates, alkylphosphonothioates, alkylphosphonates, phosphoramidates, phosphate esters, carbamates, acetamidate, carboxymethyl esters, carbonates, and phosphate

triesters. See Brown, 1994, Meth. Mol. Biol. 20:1-8; Sonveaux, 1994, Meth. Mol. Biol. 26:1-72; Uhlmann et al., 1990, Chem. Rev. 90:543-583.

5

10

15

20

25

30

CD83 anti-sense oligonucleotides can be modified without affecting their ability to hybridize to a CD83 RNA. These modifications can be internal or at one or both ends of the anti-sense molecule. For example, internucleoside phosphate linkages can be modified by adding peptidyl, cholesteryl or diamine moieties with varying numbers of carbon residues between these moities and the terminal ribose. Modified bases and/or sugars, such as arabinose instead of ribose, or a 3', 5'-substituted oligonucleotide in which the 3' hydroxyl group or the 5' phosphate group are substituted, can also be employed in a modified antisense oligonucleotide. These modified oligonucleotides can be prepared by methods available in the art. Agrawal et al., 1992, Trends Biotechnol. 10:152-158; Uhlmann et al., 1990, Chem. Rev. 90:543-584; Uhlmann et al., 1987, Tetrahedron. Lett. 215:3539-3542.

In one embodiment of the invention, expression of a CD83 gene is decreased using a ribozyme. A ribozyme is an RNA molecule with catalytic activity. See, e.g., Cech, 1987, Science 236: 1532-1539; Cech, 1990, Ann. Rev. Biochem. 59:543-568; Cech, 1992, Curr. Opin. Struct. Biol. 2: 605-609; Couture and Stinchcomb, 1996, Trends Genet. 12: 510-515. Ribozymes can be used to inhibit gene function by cleaving an RNA sequence, as is known in the art (see, e.g., Haseloff et al., U.S. Pat. No. 5,641,673).

CD83 nucleic acids complementary to SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5 or SEQ ID NO:10 can be used to generate ribozymes that will specifically bind to mRNA transcribed from a CD83 gene. Methods of designing and constructing ribozymes that can cleave other RNA molecules in trans in a highly sequence specific manner have been developed and described in the art (see Haseloff et al. (1988), Nature 334:585-591). For example, the cleavage activity of ribozymes can be targeted to specific RNAs by engineering a discrete "hybridization" region into the ribozyme. The hybridization region contains a sequence complementary to the target RNA and thus specifically hybridizes with the target (see, for example, Gerlach et al., EP 321,201). The target sequence can be a segment of about 10, 12, 15, 20, or 50 contiguous nucleotides selected from a nucleotide sequence shown in SEQ ID NO:1, SEQ

ID NO:3, SEQ ID NO:5 or SEQ ID NO:10. Longer complementary sequences can be used to increase the affinity of the hybridization sequence for the target. The hybridizing and cleavage regions of the ribozyme can be integrally related; thus, upon hybridizing to the target RNA through the complementary regions, the catalytic region of the ribozyme can cleave the target.

Other CD83 Modulating Molecules

A wide variety of molecules may be used to modulate CD83 activity or function. Such molecules can also be used to modulate the immune system independent of CD83. Compositions and methods for modulating CD83 activity or expression can include these molecules as well as other components. Representative examples that are discussed in more detail below include transciption factors, RNA-binding factors, organic molecules, or peptides.

15 RNA-Binding Factors:

5

10

20

25

30

One class of molecules that can be used to modulate cytokine levels or GM-CSF levels by way of the CD83 gene is the RNA binding factors. Such factors include those described in PCT/EP01/14820 and other sources.

For example, the HuR protein (Genbank accession number U38175) has the ability to specifically bind to CD83 RNA at AU-rich elements or sites. Such AU-rich elements comprise sequences such as AUUUA (SEQ ID NO:49), AUUUUA (SEQ ID NO:50) and AUUUUUA (SEQ ID NO:51). Binding by such HuR proteins to CD83 mRNA is thought to increase the stability, transport and translation of CD83 mRNA, and thereby increase the expression of CD83 polypeptides. Hence, CD83 expression may be increase by administering HuR proteins or nucleic acids to a mammal.

Conversely, CD83 expression may be decreased by administering factors that block HuR binding to CD83 mRNA. Factors that block HuR binding include proteins or nucleic acids that can bind to the AU-rich elements normally bound by HuR, for example, nucleic acids or anti-sense nucleic acids that are complementary to AU-rich elements.

Organic Molecules:

10

15

20

25

Numerous organic molecules may be used to modulate the immune system. These compounds include any compound that can interact with a component of the immune system. Such compounds may interact directly with CD83, indirectly with CD83 or with some other polypeptide, cell or factor that plays a role in the function of the immune system. In some embodiments, the organic molecule can bind to a CD83 polypeptide or a CD83 nucleic acid.

Organic molecules can be tested or assayed for their ability to modulate CD83 activity, CD83 function or for their ability to modulate components of the immune system. For example, within one embodiment of the invention suitable organic molecules may be selected either from a chemical library, wherein chemicals are assayed individually, or from combinatorial chemical libraries where multiple compounds are assayed at once, then deconvoluted to determine and isolate the most active compounds.

Representative examples of such combinatorial chemical libraries include those described by Agrafiotis et al., "System and method of automatically generating chemical compounds with desired properties," U.S. Patent No. 5,463,564; Armstrong, R.W., "Synthesis of combinatorial arrays of organic compounds through the use of multiple component combinatorial array syntheses," WO 95/02566; Baldwin, J.J. et al., "Sulfonamide derivatives and their use," WO 95/24186; Baldwin, J.J. et al., "Combinatorial dihydrobenzopyran library," WO 95/30642; Brenner, S., "New kit for preparing combinatorial libraries," WO 95/16918; Chenera, B. et al., "Preparation of library of resin-bound aromatic carbocyclic compounds," WO 95/16712; Ellman, J.A., "Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support," U.S. Patent No. 5,288,514; Felder, E. et al., "Novel combinatorial compound libraries," WO 95/16209; Lerner, R. et al., "Encoded combinatorial chemical libraries," WO 93/20242; Pavia, M.R. et al., "A method for preparing and selecting pharmaceutically useful non-peptide compounds from a structurally diverse universal library," WO 95/04277; Summerton, J.E. and D.D. Weller, "Morpholinosubunit combinatorial library and method," U.S. Patent No. 5,506,337; Holmes, C., "Methods for the Solid Phase Synthesis of Thiazolidinones, Metathiazanones, and Derivatives thereof," WO 96/00148; Phillips, G.B. and G.P. Wei, "Solid-phase

Synthesis of Benzimidazoles," *Tet. Letters* 37:4887-90, 1996; Ruhland, B. et al., "Solid-supported Combinatorial Synthesis of Structurally Diverse \Box -Lactams," *J. Amer. Chem. Soc.* 111:253-4, 1996; Look, G.C. et al., "The Indentification of Cyclooxygenase-1 Inhibitors from 4-Thiazolidinone Combinatorial Libraries," *Bioorg and Med. Chem. Letters* 6:707-12, 1996.

Peptides:

Peptide molecules that modulate the immune system may be obtained through the screening of combinatorial peptide libraries. Such libraries may either be prepared by one of skill in the art (see e.g., U.S. Patent Nos. 4,528,266 and 4,359,535, and Patent Cooperation Treaty Publication Nos. WO 92/15679, WO 92/15677, WO 90/07862, WO 90/02809, or purchased from commercially available sources (e.g., New England Biolabs Ph.D.TM Phage Display Peptide Library Kit).

15

20

25

30

5

Methods of Using the CD83 Mutant Mouse

In one embodiment, the invention provides a method for identifying ligands, receptors, therapeutic drugs and other molecules that can modulate the phenotype of the mutant CD83 in vivo. This method involves administering a test compound to the mutant CD83 mouse of the invention and observing whether the compound causes a change in the phenotype of the mutant mouse. Changes in phenotype that are of interest include increases or decreases in T cells (especially CD4+ T cells), increases or decreases in GMCSF, IL-2, IL-4 or IL-10 cytokine production, increases or decreases in inflammation, increases or decreases in dendritic cell function and other T cell responses known to one of skill in the art.

Test compounds can be screened in vitro to ascertain whether they interact directly with CD83. In vitro screening can, for example, identify whether a test compound or molecule can bind to the cytoplasmic tail or the membrane-associated portions of CD83. Such information, combined with observation of the in vivo phenotype before and after administration of the test compound provides further insight into the function of CD83 and provides

targets for manipulation T cell activation and other functions modulated by CD83.

The invention is not limited to identification of molecules that directly associate with CD83. The in vivo screening methods provided herein can, also identify test compounds that have an indirect effect on CD83, or that partially or completely replace a function of CD83.

Increases or decreases in T cell numbers can be observed in blood samples or in samples obtained from thymus, spleen or lymph node tissues. In order to observe the activation of T cells and/or the interaction of T cells and dendritic cells, dendritic cells can be pulsed with antigens ex vivo and then injected into mice to prime CD4+ T cells in draining lymphoid organs. *See* Inaba et al., J. Exp. Med. 172: 631-640, 1990; Liu, et al., J. Exp. Med. 177: 1299-1307, 1993; Sornasse et al., J. Exp. Med. 175: 15-21, 1992. Antigens can also be deposited intramuscularly and dendritic cells from the corresponding afferent lymphatics can carry that antigen in a form stimulatory for T cells. Bujdoso et al., J. Exp. Med. 170: 1285-1302, 1989. According to the invention, factors stimulating the interaction of dendritic cells with T cells in vivo can be identified by administering antigens in this manner and then observing how T cell respond, e.g. by observing whether T cell activation occurs.

Increases or decreases in cytokine levels can be observed by methods provided herein or by other methods available in the art.

Compositions

10

15

20

25

30

The CD83 polypeptides and antibodies of the invention, including their salts, are administered so as to achieve a reduction in at least one symptom associated with an infection, indication or disease.

To achieve the desired effect(s), the polypeptide or antibody, a variant thereof or a combination thereof, may be administered as single or divided dosages, for example, of at least about 0.01 mg/kg to about 500 to 750 mg/kg, of at least about 0.01 mg/kg to about 300 to 500 mg/kg, at least about 0.1 mg/kg to about 100 to 300 mg/kg or at least about 1 mg/kg to about 50 to 100 mg/kg of body weight, although other dosages may provide beneficial results. The amount administered will vary depending on various factors including, but not limited to,

the polypeptide or antibody chosen, the disease, the weight, the physical condition, the health, the age of the mammal, whether prevention or treatment is to be achieved, and if the polypeptide or antibody is chemically modified. Such factors can be readily determined by the clinician employing animal models or other test systems that are available in the art.

5

10

15

20

25

30

Administration of the therapeutic agents in accordance with the present invention may be in a single dose, in multiple doses, in a continuous or intermittent manner, depending, for example, upon the recipient's physiological condition, whether the purpose of the administration is therapeutic or prophylactic, and other factors known to skilled practitioners. The administration of the CD83 polypeptides and antibodies of the invention may be essentially continuous over a preselected period of time or may be in a series of spaced doses. Both local and systemic administration is contemplated.

To prepare the composition, CD83 polypeptides and antibodies are synthesized or otherwise obtained, purified as necessary or desired and then lyophilized and stabilized. The polypeptide or antibody can then be adjusted to the appropriate concentration, and optionally combined with other agents. The absolute weight of a given polypeptide or antibody included in a unit dose can vary widely. For example, about 0.01 to about 2 g, or about 0.1 to about 500 mg, of at least one polypeptide or antibody of the invention, or a plurality of CD83 polypeptides and antibodies specific for a particular cell type can be administered. Alternatively, the unit dosage can vary from about 0.01 g to about 50 g, from about 0.01 g to about 35 g, from about 0.1 g to about 25 g, from about 0.5 g to about 2 g, or from about 0.5 g to about 2 g.

Daily doses of the CD83 polypeptides or antibodies of the invention can vary as well. Such daily doses can range, for example, from about 0.1 g/day to about 50 g/day, from about 0.1 g/day to about 25 g/day, from about 0.1 g/day to about 12 g/day, from about 0.5 g/day to about 8 g/day, from about 0.5 g/day to about 4 g/day, and from about 0.5 g/day to about 2 g/day.

Thus, one or more suitable unit dosage forms comprising the therapeutic CD83 polypeptides or antibodies of the invention can be administered by a variety of routes including oral, parenteral (including subcutaneous, intravenous,

intramuscular and intraperitoneal), rectal, dermal, transdermal, intrathoracic, intrapulmonary and intranasal (respiratory) routes. The therapeutic CD83 polypeptides or antibodies may also be formulated for sustained release (for example, using microencapsulation, see WO 94/07529, and U.S. Patent No.4,962,091). The formulations may, where appropriate, be conveniently presented in discrete unit dosage forms and may be prepared by any of the methods well known to the pharmaceutical arts. Such methods may include the step of mixing the therapeutic agent with liquid carriers, solid matrices, semisolid carriers, finely divided solid carriers or combinations thereof, and then, if necessary, introducing or shaping the product into the desired delivery system.

10

15

20

25

30

When the therapeutic CD83 polypeptides or antibodies of the invention are prepared for oral administration, they are generally combined with a pharmaceutically acceptable carrier, diluent or excipient to form a pharmaceutical formulation, or unit dosage form. For oral administration, the CD83 polypeptides or antibodies may be present as a powder, a granular formulation, a solution, a suspension, an emulsion or in a natural or synthetic polymer or resin for ingestion of the active ingredients from a chewing gum. The active CD83 polypeptides or antibodies may also be presented as a bolus, electuary or paste. Orally administered therapeutic CD83 polypeptides or antibodies of the invention can also be formulated for sustained release, e.g., the CD83 polypeptides or antibodies can be coated, micro-encapsulated, or otherwise placed within a sustained delivery device. The total active ingredients in such formulations comprise from 0.1 to 99.9% by weight of the formulation.

By "pharmaceutically acceptable" it is meant a carrier, diluent, excipient, and/or salt that is compatible with the other ingredients of the formulation, and not deleterious to the recipient thereof.

Pharmaceutical formulations containing the therapeutic CD83 polypeptides or antibodies of the invention can be prepared by procedures known in the art using well-known and readily available ingredients. For example, the polypeptide or antibody can be formulated with common excipients, diluents, or carriers, and formed into tablets, capsules, solutions, suspensions, powders, aerosols and the like. Examples of excipients, diluents, and carriers that are suitable for such formulations include buffers, as well as fillers and extenders

such as starch, cellulose, sugars, mannitol, and silicic derivatives. Binding agents can also be included such as carboxymethyl cellulose, hydroxymethylcellulose, hydroxypropyl methylcellulose and other cellulose derivatives, alginates, gelatin, and polyvinyl-pyrrolidone. Moisturizing agents can be included such as glycerol, disintegrating agents such as calcium carbonate and sodium bicarbonate. Agents for retarding dissolution can also be included such as paraffin. Resorption accelerators such as quaternary ammonium compounds can also be included. Surface active agents such as cetyl alcohol and glycerol monostearate can be included. Adsorptive carriers such as kaolin and bentonite can be added. Lubricants such as talc, calcium and magnesium stearate, and solid polyethyl glycols can also be included. Preservatives may also be added. The compositions of the invention can also contain thickening agents such as cellulose and/or cellulose derivatives. They may also contain gums such as xanthan, guar or carbo gum or gum arabic, or alternatively polyethylene glycols, bentones and montmorillonites, and the like.

10

15

20

25

30

For example, tablets or caplets containing the CD83 polypeptides or antibodies of the invention can include buffering agents such as calcium carbonate, magnesium oxide and magnesium carbonate. Caplets and tablets can also include inactive ingredients such as cellulose, pregelatinized starch, silicon dioxide, hydroxy propyl methyl cellulose, magnesium stearate, microcrystalline cellulose, starch, talc, titanium dioxide, benzoic acid, citric acid, corn starch, mineral oil, polypropylene glycol, sodium phosphate, zinc stearate, and the like. Hard or soft gelatin capsules containing at least one polypeptide or antibody of the invention can contain inactive ingredients such as gelatin, microcrystalline cellulose, sodium lauryl sulfate, starch, talc, and titanium dioxide, and the like, as well as liquid vehicles such as polyethylene glycols (PEGs) and vegetable oil. Moreover, enteric-coated caplets or tablets containing one or more CD83 polypeptides or antibodies of the invention are designed to resist disintegration in the stomach and dissolve in the more neutral to alkaline environment of the duodenum.

The therapeutic CD83 polypeptides or antibodies of the invention can also be formulated as elixirs or solutions for convenient oral administration or as solutions appropriate for parenteral administration, for instance by intramuscular,

subcutaneous, intraperitoneal or intravenous routes. The pharmaceutical formulations of the therapeutic CD83 polypeptides or antibodies of the invention can also take the form of an aqueous or anhydrous solution or dispersion, or alternatively the form of an emulsion or suspension or salve.

5

10

15

20

25

30

Thus, the therapeutic CD83 polypeptides or antibodies may be formulated for parenteral administration (e.g., by injection, for example, bolus injection or continuous infusion) and may be presented in unit dose form in ampules, pre-filled syringes, small volume infusion containers or in multi-dose containers. As noted above, preservatives can be added to help maintain the shelve life of the dosage form. The active CD83 polypeptides or antibodies and other ingredients may form suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active CD83 polypeptides or antibodies and other ingredients may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilization from solution, for constitution with a suitable vehicle, e.g., sterile, pyrogen-free water, before use.

These formulations can contain pharmaceutically acceptable carriers, vehicles and adjuvants that are well known in the art. It is possible, for example, to prepare solutions using one or more organic solvent(s) that is/are acceptable from the physiological standpoint, chosen, in addition to water, from solvents such as acetone, ethanol, isopropyl alcohol, glycol ethers such as the products sold under the name "Dowanol," polyglycols and polyethylene glycols, C₁-C₄ alkyl esters of short-chain acids, ethyl or isopropyl lactate, fatty acid triglycerides such as the products marketed under the name "Miglyol," isopropyl myristate, animal, mineral and vegetable oils and polysiloxanes.

It is possible to add, if necessary, an adjuvant chosen from antioxidants, surfactants, other preservatives, film-forming, keratolytic or comedolytic agents, perfumes, flavorings and colorings. Antioxidants such as t-butylhydroquinone, butylated hydroxyanisole, butylated hydroxytoluene and α-tocopherol and its derivatives can be added.

Also contemplated are combination products that include one or more CD83 polypeptides or antibodies of the present invention and one or more other anti-microbial agents. For example, a variety of antibiotics can be included in the

pharmaceutical compositions of the invention, such as aminoglycosides (e.g., streptomycin, gentamicin, sisomicin, tobramycin and amicacin), ansamycins (e.g. rifamycin), antimycotics (e.g. polyenes and benzofuran derivatives), β-lactams (e.g. penicillins and cephalosporins), chloramphenical (including thiamphenol and azidamphenicol), linosamides (lincomycin, clindamycin), macrolides (erythromycin, oleandomycin, spiramycin), polymyxins, bacitracins, tyrothycin, capreomycin, vancomycin, tetracyclines (including oxytetracycline, minocycline, doxycycline), phosphomycin and fusidic acid.

Additionally, the CD83 polypeptides or antibodies are well suited to formulation as sustained release dosage forms and the like. The formulations can be so constituted that they release the active polypeptide or antibody, for example, in a particular part of the intestinal or respiratory tract, possibly over a period of time. Coatings, envelopes, and protective matrices may be made, for example, from polymeric substances, such as polylactide-glycolates, liposomes, microemulsions, microparticles, nanoparticles, or waxes. These coatings, envelopes, and protective matrices are useful to coat indwelling devices, e.g., stents, catheters, peritoneal dialysis tubing, draining devices and the like.

10

15

20

25

30

For topical administration, the therapeutic agents may be formulated as is known in the art for direct application to a target area. Forms chiefly conditioned for topical application take the form, for example, of creams, milks, gels, dispersion or microemulsions, lotions thickened to a greater or lesser extent, impregnated pads, ointments or sticks, aerosol formulations (e.g., sprays or foams), soaps, detergents, lotions or cakes of soap. Other conventional forms for this purpose include wound dressings, coated bandages or other polymer coverings, ointments, creams, lotions, pastes, jellies, sprays, and aerosols. Thus, the therapeutic CD83 polypeptides or antibodies of the invention can be delivered via patches or bandages for dermal administration. Alternatively, the polypeptide or antibody can be formulated to be part of an adhesive polymer, such as polyacrylate or acrylate/vinyl acetate copolymer. For long-term applications it might be desirable to use microporous and/or breathable backing laminates, so hydration or maceration of the skin can be minimized. The backing layer can be any appropriate thickness that will provide the desired

protective and support functions. A suitable thickness will generally be from about 10 to about 200 microns.

Ointments and creams may, for example, be formulated with an aqueous

or oily base with the addition of suitable thickening and/or gelling agents.

Lotions may be formulated with an aqueous or oily base and will in general also contain one or more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents, or coloring agents. The active CD83 polypeptides or antibodies can also be delivered via iontophoresis, e.g., as disclosed in U.S. Patent Nos. 4,140,122; 4,383,529; or 4,051,842. The percent by weight of a therapeutic agent of the invention present in a topical formulation will depend on various factors, but generally will be from 0.01% to 95% of the

total weight of the formulation, and typically 0.1-85% by weight.

15

20

25

30

Drops, such as eye drops or nose drops, may be formulated with one or more of the therapeutic CD83 polypeptides or antibodies in an aqueous or non-aqueous base also comprising one or more dispersing agents, solubilizing agents or suspending agents. Liquid sprays are conveniently delivered from pressurized packs. Drops can be delivered via a simple eye dropper-capped bottle, or via a plastic bottle adapted to deliver liquid contents dropwise, via a specially shaped closure.

The therapeutic polypeptide or antibody may further be formulated for topical administration in the mouth or throat. For example, the active ingredients may be formulated as a lozenge further comprising a flavored base, usually sucrose and acacia or tragacanth; pastilles comprising the composition in an inert base such as gelatin and glycerin or sucrose and acacia; and mouthwashes comprising the composition of the present invention in a suitable liquid carrier.

The pharmaceutical formulations of the present invention may include, as optional ingredients, pharmaceutically acceptable carriers, diluents, solubilizing or emulsifying agents, and salts of the type that are available in the art.

Examples of such substances include normal saline solutions such as physiologically buffered saline solutions and water. Specific non-limiting examples of the carriers and/or diluents that are useful in the pharmaceutical formulations of the present invention include water and physiologically

acceptable buffered saline solutions such as phosphate buffered saline solutions pH 7.0-8.0.

The CD83 polypeptides or antibodies of the invention can also be administered to the respiratory tract. Thus, the present invention also provides aerosol pharmaceutical formulations and dosage forms for use in the methods of the invention. In general, such dosage forms comprise an amount of at least one of the agents of the invention effective to treat or prevent the clinical symptoms of a specific infection, indication or disease. Any statistically significant attenuation of one or more symptoms of an infection, indication or disease that has been treated pursuant to the method of the present invention is considered to be a treatment of such infection, indication or disease within the scope of the invention.

5

10

15

20

25

30

Alternatively, for administration by inhalation or insufflation, the composition may take the form of a dry powder, for example, a powder mix of the therapeutic agent and a suitable powder base such as lactose or starch. The powder composition may be presented in unit dosage form in, for example, capsules or cartridges, or, e.g., gelatin or blister packs from which the powder may be administered with the aid of an inhalator, insufflator, or a metered-dose inhaler (see, for example, the pressurized metered dose inhaler (MDI) and the dry powder inhaler disclosed in Newinan, S. P. in Aerosols and the Lung, Clarke, S. W. and Davia, D. eds., pp. 197-224, Butterworths, London, England, 1984).

Therapeutic CD83 polypeptides or antibodies of the present invention can also be administered in an aqueous solution when administered in an aerosol or inhaled form. Thus, other aerosol pharmaceutical formulations may comprise, for example, a physiologically acceptable buffered saline solution containing between about 0.1 mg/ml and about 100 mg/ml of one or more of the CD83 polypeptides or antibodies of the present invention specific for the indication or disease to be treated. Dry aerosol in the form of finely divided solid polypeptide or antibody or nucleic acid particles that are not dissolved or suspended in a liquid are also useful in the practice of the present invention. CD83 polypeptides or antibodies of the present invention may be formulated as dusting powders and comprise finely divided particles having an average particle size of between about 1 and 5 μ m, alternatively between 2 and 3 μ m. Finely divided particles

may be prepared by pulverization and screen filtration using techniques well known in the art. The particles may be administered by inhaling a predetermined quantity of the finely divided material, which can be in the form of a powder. It will be appreciated that the unit content of active ingredient or ingredients contained in an individual aerosol dose of each dosage form need not in itself constitute an effective amount for treating the particular infection, indication or disease since the necessary effective amount can be reached by administration of a plurality of dosage units. Moreover, the effective amount may be achieved using less than the dose in the dosage form, either individually, or in a series of administrations.

5

10

15

20

30

For administration to the upper (nasal) or lower respiratory tract by inhalation, the therapeutic CD83 polypeptides or antibodies of the invention are conveniently delivered from a nebulizer or a pressurized pack or other convenient means of delivering an aerosol spray. Pressurized packs may comprise a suitable propellant such as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount. Nebulizers include, but are not limited to, those described in U.S. Patent Nos. 4,624,251; 3,703,173; 3,561,444; and 4,635,627. Aerosol delivery systems of the type disclosed herein are available from numerous commercial sources including Fisons Corporation (Bedford, Mass.), Schering Corp. (Kenilworth, NJ) and American Pharmoseal Co., (Valencia, CA). For intra-nasal administration, the therapeutic agent may also be administered via nose drops, a liquid spray, such as via a plastic bottle atomizer or metered-dose inhaler. Typical of atomizers are the Mistometer (Wintrop) and the Medihaler (Riker).

Furthermore, the active ingredients may also be used in combination with other therapeutic agents, for example, pain relievers, anti-inflammatory agents, antihistamines, bronchodilators and the like, whether for the conditions described or some other condition.

The present invention further pertains to a packaged pharmaceutical composition for controlling microbial infections such as a kit or other container. The kit or container holds a therapeutically effective amount of a pharmaceutical

composition for controlling microbial infections and instructions for using the pharmaceutical composition for control of the microbial infection. The pharmaceutical composition includes at least one polypeptide or antibody of the present invention, in a therapeutically effective amount such that the selected disease or immunological condition is controlled.

The invention will be further described by reference to the following detailed examples, which are given for illustration of the invention, and are not intended to be limiting thereof.

10 EXAMPLE 1: Mouse Mutation and Characterization Mutant Generation

Male C57BL6 mice received 3 weekly injections of N-ethyl-N-nitrosourea (ENU) at a concentration of 100mg/kg. N-Ethyl-N-nitrosourea was quantified prior to injection by spectrophotometry. Mice that regained fertility after a minimum period of 12 weeks were then used to generate pedigree founder G1 animals. G1 male mice were crossed to C57BL6J females and their female progeny (G2 animals) crossed back to their fathers to generate G3 animals for screening.

G3 mice were weaned at 3 weeks of age. Each animal then underwent a series of screens designed to assess a number of parameters, including immune function, inflammatory response and bone development. In the initial screen, conducted at 6 weeks of age, 150-200ul of whole blood was collected by retro-orbital bleed into heparinized tubes. Cells were pelleted and red blood cells lysed. Samples were then stained with antibodies to cell surface markers expressed on distinct lymphoid and myeloid sub-populations. These samples were analyzed by flow-cytometry.

Mutant Identification

15

20

25

30

A group of 27 G3 mice from 2 different pedigrees, pedigree 9 and pedigree 57 (i.e. derived from 2 distinct G1 fathers) were analyzed in this screen. Two animals from pedigree 9 were identified as having a reduced (>2 standard deviation from normal) percentage of CD4+ T cells in peripheral blood (Figure 1). Both animals were descended from the same G1 and shared the same

mother. All other animals screened on that day had a normal percentage of CD4+ T cells. The number of phenodeviants identified (2 from a litter of 9 animals) was suggestive of a trait controlled by a single gene and inherited in a Mendelian fashion.

A second litter generated from Pedigree 9 bred to G2 daughter #4 exhibited an identical phenotype with reduced numbers of CD4+ T cells, further suggesting that the trait had a genetic basis. The phenotype was designated LCD4.1 (Low CD4 Mutant #1) and was used for mapping experiments.

10 Mutation Mapping

5

15

20

25

30

In order to map the LCD4.1 mutant phenotype, affected G3 male mice (presumptive homozygous for the mutation) were bred to female animals from the C3HeB/FeJ strain to generate F1 progeny. These F1 females (presumptively heterozygous for the mutation) were then mated back to their affected father to generate N2 progeny.

Blood was collected from N2 animals and flow cytometric analysis was performed to identify CD4+ T cells. For a phenotype controlled by a single gene, breeding homozygous fathers to heterozygous daughters should yield 50% normal N2 animals and 50% affected N2 animals. This ratio of normal to affected animals was observed in the N2 generation: Multiple N2 animals exhibited a reduced percentage of CD4+ T cells, indicating that the phenotype was heritable (Figure 2).

DNA samples were prepared from samples of tail tissue collected from these N2 mice and used for a genome scan, using a collection of assembled markers, and performed on the ABI 3100 DNA analyzer. Initial genetic linkage was seen to the tip of chromosome 13, where the closest microsatellite marker was D13Mit139 with a LOD score of 8.2. By calculating upper and lower confidence limits, the mutant gene was located between 13.4 and 29.6 cM on chromosome 13. Through additional genotyping, this region was reduced to an 11 cM interval on chromosome 13. No significant linkage to other chromosomal regions was seen.

Mutation Identification

5

10

15

20

25

30

A candidate gene, CD83, was identified for gene-testing based upon its reported position within the interval. CD83 has previously been used as a marker of dendritic cell activation, suggesting that it might play a role in dendritic cell function and hence in regulating T cell development and function.

Sequence analysis of the mutant DNA revealed a mutation in the stop codon of CD83. All affected animals were homozygous for this mutation while non-affected animals carried one wild-type allele and one mutant allele (Figure 3 and Figure 4). The mutation destroyed the stop codon and resulted in the addition of a unique 55 amino acid tail to the C-terminus of CD83 (Figure 5).

Additional Functional Data

A reduction in CD4+ T cells was seen in peripheral blood, spleen tissues and lymph nodes from homozygous LCD4.1 mice. Although there was a reduced number of CD4+ T cells in the thymus there is no overt block in the developmental process and there was no alteration in B cell development in the bone marrow. Histological evaluation of thymus, spleen and lymph nodes from affected mice revealed no gross alteration in tissue architecture.

Dendritic cells can be differentiated from bone marrow of wild type mice by culture in GM-CSF. These cells can be characterized by the surface expression of dendritic cell markers, including CD86 and CD11c. Both LCD4.1 affected and normal animals were capable of giving rise to CD86+CD11c+ cells under these culture conditions. LCD4.1 mutant mice thus were capable of generating dendritic cells under in vitro culture conditions. These data suggest that the phenotype seen in LCD4.1 mice is not due to a failure of dendritic cells to develop but rather may reflect a defect in function.

To track dendritic cells the sensitizing agent FTTC was applied to the dorsal surface of the ears of LCD4.1 affected and wild-type mice. FITC was picked up by dendritic cells that then migrated to the draining auricular lymph nodes, where the presence of the FITC label on the dendritic cell surface permitted detection by flow-cytometry. FITC labeled cells expressing CD86 were detected in equal proportions in draining lymph node from normal and affected LCD4.1 mice. These data indicate that LCD4.1 mutant animals are

capable of generating dendritic cells in vivo and that these cells are able to pick up antigen in the ear and travel to the draining lymph node.

EXAMPLE 2: CD83 and CD4+T Cell Function

Materials and Methods

5

10

15

20

25

30

Spleens were removed from wild type and mutant mice and digested with collagenase to liberate dendritic cells. Spleens were stained for surface expression of CD4 (helper T cells) and CD11c (dendritic cells). Cells expressing these markers were purified by fluorescence activated cell sorting (FACS sorting). CD11c and CD4+ positive cells were also purified from an allogeneic mouse strain, BALBc.

Mixed lymphocyte cultures were set up using purified cell populations. Dendritic cells from BALBc animals were used to stimulate CD4+ T cells from wild type and mutant mice. In a reciprocal experiment dendritic cells prepared from wild type and mutant mice were used to stimulate BALBc CD4+ T cells. After 5 days in culture proliferative responses were measured by incorporation of tritiated thymidine.

Dendritic cells from wild type and mutant mice were both capable of activating allogeneic T cells, suggesting that dendritic cell function was unimpaired in the mutant animal (Figure 6a). In contrast CD4+ T cells from mutant animals exhibited a diminished response after 5 days of stimulation (Figure 6b).

These data suggest that the mutation in the CD83 gene has minimal effect on dendritic cells intrinsic function but rather has a profound effect upon T cell activity. The CD4+ T cell therefore may have a novel requirement for CD83 functionality on T cells during allogeneic activation. CD83 may be influencing the extent of CD4+ T cell activation or altering the duration of the CD4+ T cell proliferative response. The therapeutic manipulation of CD83 may thus represent a mechanism for the specific regulation of T cell function in the treatment of T cell mediated diseases, including autoimmune disorders.

Antibodies capable of blocking CD83 function may be used as therapeutics in

the treatment of immune diseases whilst the activation of CD83 may have utility in enhancing immune responses in cancer and other circumstances.

Conclusion

5

10

15

Although CD83 has been described as a marker of dendritic cell activation there is little data as to its function in vivo. The mutation provided by the invention destabilizes or inactivates the protein and leads to impaired surface expression. As a consequence, CD4+ T cell function is impaired although the development of dendritic cells is not inhibited and mutant dendritic cells retain functionality. This results in the impaired development of CD4+ T cells. This impaired ability to activate T cells is also seen in a slight decrease in contact sensitivity responses in LCD4.1 mutant mice.

EXAMPLE 3: Mutant CD83 Have Different Cytokine Levels than Wild Type Mice

This Example demonstrates that CD4⁺ T-cells from CD83 mutant animals express higher levels of IL-4 and lower levels of IL-2 compared to CD4⁺ T-cells from CD83 wild type animals.

20

25

30

Methods for cell activation and cytokine measurements:

Spleens cells from 6-8-week-old homozygous CD83 wild type or CD83 mutant (LCD4.1) mice were used to isolate CD4⁺ T-cells by positive selection using magnetic beads (Miltenyi Biotec). A 96 round bottom plate was coated with 50 μ L per well of a solution containing either 1 or 10 μ g/mL of anti-CD3 and 0.1 or 0.2 μ g/mL of anti-CD28 antibodies (both from Pharmingen) in PBS overnight. This plate was then washed using 150 μ L of PBS three times. To this pre-coated plate, 20,000 CD4⁺ T-cells (either wild type or CD83 mutant) were added in a 200 μ L final volume of RPMI containing 10% FBS, 55 μ M β -mercaptoethanol and antibiotics. The plates were then incubated in a CO₂ incubator at 37 °C for 44 to 72 hours. For determination of cytokine levels, supernatants were harvested and cytokines were measured using either a Cytometric Bead Array system (Pharmingen) or ELISA (R&D). For RNA

measurements, the cells were harvested and RNA was isolated using Tri reagent (Sigma). IL-10 and IL-4 mRNA levels were measured by reverse transcription and TaqMan (Applied Biosystems) analysis.

5 Results:

10

15

20

30

Figure 7 shows the IL-2, IL-4, IL-5, TNF α and IFN γ levels produced by either wild type or CD83 mutant CD4⁺ T-cells. Purified cells were incubated as described above in the presence of 1 μ g/mL of anti-CD3 and 0.2 μ g/mL of anti-CD28 antibodies for 72 hours. The supernatants were then simultaneously analyzed for production of IL-2, IL-4, IL-5, TNF α and IFN γ using the cytometric bead array system from Pharmingen.

Figure 7 demonstrates that CD4⁺ T-cells from CD83 mutant animals expressed higher levels of IL-4 and lower levels of IL-2 compared to CD4⁺ T-cells from CD83 wild type animals. Other cytokines and a new set of stimulation assays were analyzed including the production levels of IL-10 and GMCSF by these cells (Figures 8 and 9). In both cases, cells from mutant animals produce larger amounts of IL-10 and GMCSF than did wild type animals. Figure 10 shows that mRNA levels for both IL-4 and IL-10 were increased in cells from activated mutant CD83, CD4⁺ T-cells compared with cells from wild type animals.

EXAMPLE 4: Anti-CD83 Antibodies May Mimicthe Effects of the CD83 Mutation

25 Methods for antibody testing:

For modulation of cytokine production by anti-CD83 antibodies, CD4⁺ T-cells were isolated and activated as mentioned above in the presence of increasing concentrations of anti-CD83 antibodies. For proliferation assays, CD4⁺ T-cells were isolated from an OT2tg [transgenic mice with a T-cell receptor specific for chicken ovalbumin (OVA) 323-339 peptide]. Dendritic cells were isolated from a C57BL6 mouse by a negative selection using B220 magnetic beads (Miltenyi Biotec) followed by positive selection using CD11-c magnetic beads (Milteny Biotec). Five thousand CD4⁺ T-cells were then mixed

with five thousand dendritic cells in a 96 well plate in the presences of 1 μ M OVA peptide using RPMI (55 μ M BME, 10%FBS plus antibiotics) in a final 200uL volume. These cells were then incubated for 48 to 72 hours in a CO₂ incubator at 37°C and pulsed using [³H] thymidine for 8 hours. Cells were then harvested and [³H] thymidine incorporation was quantified using a top counter.

Results:

5

10

15

20

25

30

In some assays, anti-CD83 antibodies decreased production of IL-4 by activated CD4⁺ T-cells in a dose dependent manner. Different antibody preparations did provide somewhat different degrees of inhibition of IL-4 production (Figure 11). Accordingly, the epitope and/or degree of affinity of the antibodies for the CD83 antigen may influence whether or not IL-4 production is significantly inhibited.

The effects of anti CD83 antibodies on proliferation of a peptide specific T-cell proliferation assay using the OT2 T-cell receptor (TCR) transgenic system were also observed. CD4⁺ T-cells derived from these TCR transgenic animals express high levels of a T-cell receptor specific for chicken ovalbumin (OVA) 323-339 peptide and thus have high levels of proliferation when mixed with antigen presenting cells (dendritic cells were used) in the presence of the OVA peptide. In such assays, anti-CD83 antibodies were able to decrease proliferation of CD4⁺ T-cells in this system (Figure 12). However, different antibody preparations had somewhat different effects on the proliferation of CD4⁺ T-cells. Accordingly, the CD83 epitope and/or degree of affinity of the antibodies for the CD83 antigen may influence whether or not CD4⁺ T-cell proliferation is significantly inhibited.

EXAMPLE 5: Increased T-Cell Proliferation by Transgenic Expression of CD83

This Example illustrates that over expression of CD83 in transgenic mice leads to increased T-cell proliferation.

Materials and Methods

A 34.3 kb fragment of normal mouse genomic DNA, including the ~18 kb coding region of the CD83 gene, as well as ~10.6 kb of upstream flanking sequences and ~5.7 kb of downstream sequences was microinjected into normal mouse one-cell embryos. Four individual founder animals were generated. Transgenic mice were then crossed to a male OT2tg mouse. Male offspring carrying both the CD83 and OT2 transgene were used to analyze peptide specific T-cell proliferation.

For proliferation assays, CD4⁺ T-cells and dendritic cells were isolated from either OT2tg [transgenic mice with a T-cell receptor specific for chicken ovalbumin (OVA) 323-339 peptide] CD83 wild type or from OT2tg CD83 transgenic mice as described above (Example 4). Five thousand OT2tg CD4⁺ T-cells from either wild type or CD83 transgenic animals were then mixed with five thousand wild type dendritic cells or five thousand CD83 transgenic dendritic cells in a 96 well plate in the presence of increasing concentrations of OVA peptide using RPMI (55 µM BME, 10%FBS plus antibiotics) in a final 200uL volume. These cells were then incubated for 48 to 72 hours in a CO₂ incubator at 37C and pulsed using [³H] thymidine for 8 hours. Cells were then harvested and [³H] thymidine incorporation was quantified using a top counter.

20

10

15

Results:

OT2tg CD4⁺ T-cells derived from CD83 transgenic mice proliferated at higher rates than the same cell population derived from a CD83 wild type animal (Figure 13). This increased proliferation was seen at all the concentrations of OVA peptide tested. Whereas OT2tg CD4⁺ T-cells derived from CD83 transgenic animals exhibited increased proliferation, dendritic cells from CD83 transgenic animals did not exhibit a substantial increase in proliferation.

Therefore, it appears that transgenic expression in the CD4⁺ T-cell, and not in dendritic cells is what led to the increased proliferation of CD4⁺ T-cells.

30

EXAMPLE 6: Inhibition of proliferation of PHA activated human PBMCs by protein A purified rabbit anti mouse CD83 polyclonal sera.

This Example shows that antibodies raised against the mouse CD83 protein can inhibit proliferation of human peripheral blood mononuclear cells.

5

10

15

20

Materials and Methods

Rabbit polyclonal sera was raised against mouse CD83 protein by immunizing rabbits using a mouse CD83 external domain protein fused to a rabbit Ig domain (Figure 14). Pre-immune sera and anti-mouse polyclonal sera were then purified using a protein A column (Pharmacia Biotech) as described by the manufacturer, then dialyzed against PBS and stored at 4° C. To monitor the recognition of mouse CD83 protein by the polyclonal sera, which was obtained at different dates post immunization, a titer was obtained using an antigen specific ELISA (Figure 15). As illustrated by Figure 15, a good polyclonal response was obtained against the mouse CD83 protein.

Human peripheral blood mononuclear cells (PBMCs) were isolated using a Ficoll gradient (Ficoll Paque Plus, Pharmacia) and washed with PBS buffer. For activation and proliferation studies, five thousand cells were incubated in 200 μL of media (RPMI, 10%FBS, antibiotics) and 5ug/mL of Phaseolus vulgaris leucoagglutinin (PHA) in the presence or absence of increasing concentrations of Protein A purified pre-immune sera or with similarly purified anti-CD83 polyclonal antibodies. After 48 hours at 37°C in a CO₂ incubator the cells were pulsed with [³H] thymidine for ~8 hours and harvested. Thymidine incorporation into the PBMCs was measured using a top counter for analysis.

25

30

Results

Figure 16 illustrates that proliferation of PHA-activated human PBMCs was inhibited by antibodies raised against the external region of the mouse CD83 protein. Proliferation of PHA-activated human PBMCs was not affected by addition of increasing concentrations of protein A purified rabbit pre-immune sera. When increasing concentrations of protein A purified rabbit polyclonal sera raised against the mouse CD83 protein was added, a concentration dependent decrease in proliferation was observed.

These data indicate that antibodies raised against the mouse protein are able to cross-react with the human protein. Moreover, antibodies raised against the mouse protein are able to inhibit proliferation of PHA-activated human PBMCs.

All publications, patents and patent applications are incorporated herein by reference. While in the foregoing specification this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein may be varied considerably without departing from the basic principles of the invention.

WHAT IS CLAIMED

WO 03/045318

1. A method of modulating cytokine production in a mammal by modulating the activity or expression of a CD83 polypeptide.

PCT/US02/37738

- 5 2. A method of modulating cytokine production in a mammal by administering to the mammal an antibody that can modulate the activity or expression of a CD83 polypeptide.
- 3. A method of modulating cytokine production by a T cell by modulating the activity or expression of a CD83 polypeptide in the T cell.
 - 4. A method of modulating cytokine production by a T cell by contacting the T cell with an antibody that can modulate the activity or expression of a CD83 polypeptide.

15

- 5. A method of modulating a CD4+ T cell by modulating the activity or expression of a CD83 polypeptide in the T cell.
- 6. A method of modulating a CD4+ T cell by contacting the T cell with an antibody that can modulate the activity or expression of a CD83 polypeptide.
 - 7. A method of modulating granulocyte macrophage colony stimulating factor production in a mammal by modulating the activity or expression of CD83 polypeptides.

- 8. A method of modulating granulocyte macrophage colony stimulating factor production in a mammal by administering to the mammal an antibody that can modulate the activity or expression of CD83 polypeptides.
- 30 9. A method of modulating granulocyte macrophage colony stimulating factor production by a T cell by modulating the activity or expression of a CD83 polypeptide in the T cell.

10. A method of modulating granulocyte macrophage colony stimulating factor production by a T cell by contacting the T cell with an antibody that can modulate the activity or expression of a CD83 polypeptide.

11. A method of tumor necrosis factor production in a mammal by modulating the activity or expression of CD83 polypeptides.

10

- 12. A method of modulating tumor necrosis factor production in a mammal by administering to the mammal an antibody that can modulate the activity or expression of CD83 polypeptides.
- 13. A method of inhibiting proliferation of a human peripheral blood mononuclear cell by modulating the activity or expression of CD83 polypeptides.
- 15 14. A method of inhibiting proliferation of a human peripheral blood mononuclear cell in a mammal by administering to the mammal an antibody that can modulate the activity or expression of CD83 polypeptides.
- 15. An antibody that can bind to a CD83 polypeptide comprising SEQ ID
 NO:4, SEQ ID NO:8 or SEQ ID NO:9, wherein activated CD4⁺ T-cells produce lower levels of interleukin-4 when said T-cells are contacted with the antibody.
 - 16. An antibody that can bind to a CD83 polypeptide comprising SEQ ID NO:4, SEQ ID NO:8 or SEQ ID NO:9, wherein CD4⁺ T-cells proliferation is decreased when said T-cells are contacted with the antibody.
 - 17. An antibody comprising SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID

NO:47, SEQ ID NO:48, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62 or SEQ ID NO:64.

5 18. A nucleic acid encoding an antibody comprising SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58. SEQ ID NO:60, SEQ ID NO:62 or SEQ ID NO:64.

The nucleic acid of claim 18, wherein the nucleic acid comprises 19. nucleotide sequence SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEO ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63 or SEQID NO:65.

20

30

15

20. A method for decreasing the activity of a CD83 gene product, comprising contacting the CD83 gene product with an antibody that comprises SEO ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, 25 SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:52, SEO ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57. SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62 or SEQ ID NO:64.

21. A method for decreasing the activity of a CD83 gene product in a mammal, comprising administering to the mammal an antibody that comprises SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:55, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62 or SEQ ID NO:64.

- A method for decreasing the translation of a CD83 gene product in a mammalian cell, comprising contacting the mammalian cell with a nucleic acid
 complementary to a CD83 nucleic acid comprising SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:10.
 - 23. A method for decreasing the translation of a CD83 gene product in a mammal, comprising administering to the mammal a nucleic acid complementary to a CD83 nucleic acid comprising SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:10.

20

25

- 24. A method for decreasing proliferation of CD4⁺ T-cells in a mammal comprising administering to the mammal an antibody that can bind to a CD83 gene product, wherein the CD83 gene product comprises SEQ ID NO:2 or SEQ ID NO:9.
- 25. The method of claim 24, wherein the antibody comprises SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ

ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62 or SEQ ID NO:64.

5

26. A method for decreasing interleukin-2 levels and increasing interleukin-4 levels in a mammal comprising administering to the mammal an antibody that can bind to a CD83 gene product, wherein the CD83 gene product comprises SEQ ID NO:2 or SEQ ID NO:9.

10

27. The method of claim 26, wherein the antibody SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEO ID NO:27. SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ 15 ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEO ID NO:41. SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62 or SEQ ID NO:64.

20

28. A method for decreasing interleukin-2 levels and increasing interleukin-4 levels in a mammal comprising administering to the mammal a nucleic acid complementary to a CD83 nucleic acid comprising SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:10.

30

25

29. The method of claim 26 or 28, wherein the interleukin-2 levels are decreased and the interleukin-4 levels are increased to treat an autoimmune disease.

30. The method of claim 29, wherein the autoimmune disease is diabetes mellitus, arthritis, rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, psoriatic arthritis, multiple sclerosis, myasthenia gravis, systemic

lupus erythematosis, autoimmune thyroiditis, dermatitis, atopic dermatitis, eczematous dermatitis, psoriasis, Sjogren's Syndrome, keratoconjunctivitis sicca secondary to Sjogren's Syndrome, alopecia areata, allergic responses due to arthropod bite reactions, Crohn's disease, aphthous ulcer, iritis, conjunctivitis, keratoconjunctivitis, ulcerative colitis, asthma, allergic asthma, cutaneous lupus erythematosus, scleroderma, vaginitis, proctitis, drug eruptions, leprosy reversal reactions, erythema nodosum leprosum, autoimmune uveitis, allergic encephalomyelitis, acute necrotizing hemorrhagic encephalopathy, idiopathic bilateral progressive sensorineural hearing loss, aplastic anemia, pure red cell anemia, idiopathic thrombocytopenia, polychondritis, Wegener's granulomatosis, chronic active hepatitis, Stevens-Johnson syndrome, idiopathic sprue, lichen planus, Crohn's disease, Graves ophthalmopathy, sarcoidosis, primary biliary cirrhosis, uveitis posterior, or interstitial lung fibrosis.

- 15 31. The method of claim 26 or 28, wherein the interleukin-2 levels are decreased and the interleukin-4 levels are increased to stimulate production of Th2-associated cytokines in transplant recipients.
- 32. The method of claim 31, wherein the Th2-associated cytokines prolong survival of transplanted tissue.
 - 33. The method of claim 32, wherein the transplanted tissue is skin, cardiac or bone marrow.
- 25 34. The method of claim 26 or 28, wherein the mammal is a human.

30

35. A method for increasing interleukin-10 levels in a mammal comprising administering to the mammal an antibody that can bind to a CD83 gene product, wherein the CD83 gene product comprises SEQ ID NO:2 or SEQ ID NO:9.

36. The method of claim 35, wherein the antibody comprises SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ

ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:52, SEQ ID

NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ

37. A method for increasing interleukin-10 levels in a mammal comprising administering to the mammal a nucleic acid complementary to a CD83 nucleic acid comprising SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:10.

ID NO:58, SEQ ID NO:60, SEQ ID NO:62 or SEQ ID NO:64.

- 38. The method of claim 35 or 37, wherein the interleukin-10 levels are increased to treat neoplastic disease.
 - 39. The method of claim 35 or 37, wherein the interleukin-10 levels are increased to treat a tumor.
- 40. A method for increasing interleukin-2 levels in a mammal comprising administering to the mammal a functional CD83 polypeptide that comprises SEQ ID NO:9.
 - 41. A method for increasing interleukin-2 levels in a mammal comprising:

25

- (a) transforming a T cell from the mammal with a nucleic acid encoding a functional CD83 polypeptide operably linked to a promoter functional in a mammalian cell, to generate a transformed T cell;
- (b) administering the transformed T cell to the mammal to provide increased levels of interleukin-2.
- 42. The method of claim 41, wherein the CD83 polypeptide comprises SEQ ID NO:9.

43. The method of claim 41, wherein the nucleic acid comprises SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:10.

- 5 44. The method of claim 41, wherein the mammal is a human.
 - 45. The method of claim 41, wherein the interleukin-2 levels are increased to treat an allergy or an infectious disease.
- 10 46. The method of claim 45, wherein the infectious disease is related to HIV infection, tuberculosis, leishmaniasis, schistosomiasis, filarial nematode infection, or intestinal nematode infection.
- 47. The method of claim 45, wherein the infectious disease is related to

 infection by Aeromonas spp., Bacillus spp., Bacteroides spp., Campylobacter

 spp., Clostridium spp., Enterobacter spp., Enterococcus spp., Escherichia spp.,

 Gastrospirillum sp., Helicobacter spp., Klebsiella spp., Salmonella spp., Shigella

 spp., Staphylococcus spp., Pseudomonas spp., Vibrio spp., or Yersinia spp.
- 48. The method of claim 45, wherein the infectious disease is related to staph infection, typhus, food poisoning, bascillary dysentery, pneumonia, cholera, an ulcer, diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, or thrombotic thrombocytopenic purpura.
- 49. The method of claim 45, wherein the infectious disease is related to infection by Staphylococcus aureus, Salmonella typhi, Escherichia coli, Escherichia coli O157:H7, Shigella dysenteria, Psuedomonas aerugenosa, Pseudomonas cepacia, Vivrio cholerae, Helicobacter pylori, a multiply-resistant strain of Staphylococcus aureus, a vancomycin-resistant strain of Enterococcus
 faecium, or a vancomycin-resistant strain of Enterococcus faecalis.
 - 50. The method of claim 45, wherein the infectious disease is related to infection by a virus.

51. The method of claim 50, wherein the virus is a hepatitis A virus, hepatitis B virus, hepatitis C virus, human immunodeficiency virus, poxvirus, herpes virus, adenovirus, papovavirus, parvovirus, reovirus, orbivirus, picornavirus, rotavirus, alphavirus, rubivirus, influenza virus type A, influenza virus type B, flavivirus, coronavirus, paramyxovirus, morbillivirus, pneumovirus, rhabdovirus, lyssavirus, orthmyxovirus, bunyavirus, phlebovirus, nairovirus, hepadnavirus, arenavirus, retrovirus, enterovirus, rhinovirus or filovirus.

- 10 52. A method for increasing granulocyte macrophage colony stimulating factor levels in a mammal comprising administering to the mammal an antibody that can bind to a CD83 gene product, wherein the CD83 gene product comprises SEQ ID NO:2 or SEQ ID NO:9.
- 15 53. The method of claim 52, wherein the antibody comprises SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID
- NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62 or SEQ ID NO:64.

25

54. A method for increasing granulocyte macrophage colony stimulating factor levels in a mammal comprising administering to the mammal a nucleic acid complementary to a CD83 nucleic acid comprising SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:10.

30

55. A method for increasing tumor necrosis factor levels at a selected site in a mammal comprising administering to the site a functional CD83 polypeptide.

56. A method for increasing tumor necrosis factor levels in a selected mammalian cell comprising transforming the cell with a nucleic acid encoding a functional CD83 polypeptide.

- 5 57. The method of claim 55 or 56, wherein the mammal is human and the CD83 polypeptide comprises SEQ ID NO:9.
 - 58. A method of identifying a compound that can modulate CD4+T cell activation comprising administering a test compound to a mutant mouse and observing whether CD4+ T cells become activated, wherein the somatic and germ cells of the mutant mouse comprise a mutant CD83 gene encoding a polypeptide comprising SEQ ID NO:4 or SEQ ID NO:8.

- 59. A mutant CD83 gene encoding a polypeptide comprising SEQ ID NO:4 15 or SEQ ID NO:8.
 - 60. The mutant CD83 gene of claim 63 comprising nucleotide sequence SEQ ID NO:3.
- 20 61. A mutant mouse whose somatic and germ cells comprise a mutant CD83 gene encoding a polypeptide comprising SEQ ID NO:4 or SEQ ID NO:8, wherein expression of said mutant CD83 gene reduces CD4+T cell activation.
- 62. The mutant mouse of claim 61, wherein the mutant CD83 gene comprises SEQ ID NO:3.

	Mom	G3 ID	% CD4+
Pedigree	G2 # 1	57.1.1	22
57			
		57.1.2	26
		57.1.3	24
	G2 # 4	57.4.1	15
		57.4.2	18
	G2 # 5	57.5.1	21
		57.5.2	19
		57.5.3	24
		57.5.4	22
		57.5.5	19
		57.5.6	17
Pedigree 9	G2 # 4	9.4.1	6
		9.4.2	20
		9.4.3	16
		9.4.4	12
		9.4.5	20
		9.4.6	15
		9.4.7	24
		9.4.8	27
		9.4.9	5
	G2 # 5	9.5.1	18
		9.5.2	20
		9.5.3	22
		9.5.4	20
		9.5.5	22
		9.5.6	20
		9.5.7	23

average	19.1
stdev	5.2
=+2SD	29.6
= -2SD	8.7

FIG. 1

3/20

1	GCGCTCCAGC	CGC <u>ATG</u> TCGC	AAGGCCTCCA	GCTCCTGTTT	CTAGGCTGCG
51	CCTGCAGCCT	GGCACCCGCG	ATGGCGATGC	GGGAGGTGAC	GGTGGCTTGC
101	TCCGAGACCG	CCGACTTGCC	TTGCACAGCG	CCCTGGGACC	CGCAGCTCTC
151	CTATGCAGTG	TCCTGGGCCA	AGGTCTCCGA	GAGTGGCACT	GAGAGTGTGG
201	AGCTCCCGGA	GAGCAAGCAA	AACAGCTCCT	TCGAGGCCCC	CAGGAGAAGG
251	GCCTATTCCC	TGACGATCCA	AAACACTACC	ATCTGCAGCT	CGGGCACCTA
301	CAGGTGTGCC	CTGCAGGAGC	TCGGAGGGCA	GCGCAACTTG	AGCGGCACCG
351	TGGTTCTGAA	GGTGACAGGA	TGCCCCAAGG	AAGCTACAGA	GTCAACTTTC
401	AGGAAGTACA	GGGCAGAAGC	TGTGTTGCTC	TTCTCTCTGG	TTGTTTTCTA
451	CCTGACACTC	ATCATTTTCA	CCTGCAAATT	TGCACGACTA	CAAAGCATTT
501	TCCCAGATAT	TTCTAAACCT	GGTACGGAAC	AAGCTTTTCT	TCCAGTCACC
551	TCCCCAAGCA	AACATTTGGG	GCCAGTGACC	CTTCCTAAGA	CAGAAACGGT
601	A TGA GTAGGA	TCTCCACTGG	TTTTTACAAA	GCCAAGGGCA	CATCAGATCA
651	GTGTGCCTGA	ATGCCACCCG	GACAAGAGAA	GAATGAGCTC	CATCCTCAGA
701	TGGCAACCTT	TCTTTGAAGT	CCTTCACCTG	ACAGTGGGCT	CCACACTACT
751	CCCTGACACA	GGGTCTTGAG	CACCATCATA	TGATCACGAA	GCATGGAGTA
801	TCACCGCTTC	TCTGTGGCTG	TCAGCTTAAT	GTTTCATGTG	GCTATCTGGT
851	CAACCTCGTG	AGTGCTTTTC	AGTCATCTAC	AAGCTATGGT	GAGATGCAGG
901	TGAAGCAGGG	TCATGGGAAA	TTTGAACACT	CTGAGCTGGC	CCTGTGACAG
951	ACTCCTGAGG	ACAGCTGTCC	TCTCCTACAT	CTGGGATACA	TCTCTTTGAA
1001	TTTGTCCTGT	TTCGTTGCAC	CAGCCCAGAT	GTCTCACATC	TGGCGGAAAT
1051	TGACAGGCCA	AGCTGTGAGC	CAGTGGGAAA	TATTTAGCAA	ATAATTTCCC
1101	AGTGCGAAGG	TCCTGCTATT	AGTAAGGAGT	ATTATGTGTA	CATAGAAATG
1151	AGAGGTCAGT	GAACTATTCC	CCAGCAGGGC	CTTTTCATCT	GGAAAAGACA
1201	TCCACAAAAG	CAGCAATACA	GAGGGATGCC	ACATTTATTT	TTTTAATCTT
1251	CATGTACTTG	TCAAAGAAGA	ATTTTTCATG	TTTTTTCAAA	GAAGTGTGTT
1301	TCTTTCCTTT	TTTAAAATAT	GAAGGTCTAG	TTACATAGCA	TTGCTAGCTG
1351	ACAAGCAGCC	TGAGAGAAGA	TGGAGAATGT	TCCTCAAAAT	AGGGACAGCA
1401	AGCTAGAAGC	ACTGTACAGT	GCCCTGCTGG	GAAGGGCAGA	CAATGGACTG
1451	AGAAACCAGA	AGTCTGGCCA	CAAGATTGTC	TGTATGATTC	TGGACGAGTC
1501	ACTTGTGGTT	TTCACTCTCT	GGTTAGTAAA	CCAGATAGTT	TAGTCTGGGT
1551	TGAATACAAT	GGATGTGAAG	TTGCTTGGGG	AAAGCTGAAT	GTAGTGAATA
1601	CATTGGCAAC	TCTACTGGGC	TGTTACCTTG	TTGATATCCT	AGAGTTCTGG
1651	AGCTGAGCGA	ATGCCTGTCA	TATCTCAGCT	TGCCCATCAA	TCCAAACACA
1701	GGAGGCTACA	AAAAGGACAT	GAGCATGGTC	TTCTGTGTGA	ACTCCTCCTG
1751	AGAAACGTGG	AGACTGGCTC	AGCGCTTTGC	GCTTGAAGGA	CTAATCACAA
	GTTCTTGAAG				
	GTTCTCAGAT				,
1901	GGGCTCCTTC	CTCATTTGCT	TCCCAAAGAG	ATTTTGTCCC	ACTAATGGTG
	TGCCCATCAC				
2001	GTGCTTACCT	CTCAGCCATG	ACTTTCATGC	TATTAAAAGA	ATGCATGTGA
2051	A				

FIG. 3

4/20

1	GCGCTCCAGC	CGC <u>ATG</u> TCGC	AAGGCCTCCA	GCTCCTGTTT	CTAGGCTGCG
51	CCTGCAGCCT	GGCACCCGCG	ATGGCGATGC	GGGAGGTGAC	GGTGGCTTGC
101	TCCGAGACCG	CCGACTTGCC	TTGCACAGCG	CCCTGGGACC	CGCAGCTCTC
151	CTATGCAGTG	TCCTGGGCCA	AGGTCTCCGA	GAGTGGCACT	GAGAGTGTGG
201	AGCTCCCGGA	GAGCAAGCAA	AACAGCTCCT	TCGAGGCCCC	CAGGAGAAGG
251	GCCTATTCCC	TGACGATCCA	AAACACTACC	ATCTGCAGCT	CGGGCACCTA
301	CAGGTGTGCC	CTGCAGGAGC	TCGGAGGGCA	GCGCAACTTG	AGCGGCACCG
351	TGGTTCTGAA	GGTGACAGGA	TGCCCCAAGG	AAGCTACAGA	GTCAACTTTC
401	AGGAAGTACA	GGGCAGAAGC	TGTGTTGCTC	TTCTCTCTGG	TTGTTTTCTA
451	CCTGACACTC	ATCATTTTCA	CCTGCAAATT	TGCACGACTA	CAAAGCATTT
501	TCCCAGATAT	TTCTAAACCT	GGTACGGAAC	AAGCTTTTCT	TCCAGTCACC
551	TCCCCAAGCA	AACATTTGGG	GCCAGTGACC	CTTCCTAAGA	CAGAAACGGT
601	A <u>A</u> GAGTAGGA	TCTCCACTGG	TTTTTACAAA	GCCAAGGGCA	CATCAGATCA
651	GTGTGCCTGA	ATGCCACCCG	GACAAGAGAA	GAATGAGCTC	CATCCTCAGA
701	TGGCAACCTT	TCTTTGAAGT	CCTTCACCTG	ACAGTGGGCT	CCACACTACT
751	CCCTGACACA	GGGTCT <u>TGA</u> G	CACCATCATA	TGATCACGAA	GCATGGAGTA
801	TCACCGCTTC	TCTGTGGCTG	TCAGCTTAAT	GTTTCATGTG	GCTATCTGGT
851	CAACCTCGTG	AGTGCTTTTC	AGTCATCTAC	AAGCTATGGT	GAGATGCAGG
901	TGAAGCAGGG	TCATGGGAAA	TTTGAACACT	CTGAGCTGGC	CCTGTGACAG
951	ACTCCTGAGG	ACAGCTGTCC	TCTCCTACAT	CTGGGATACA	TCTCTTTGAA
1001	TTTGTCCTGT	TTCGTTGCAC	CAGCCCAGAT	GTCTCACATC	TGGCGGAAAT
1051	TGACAGGCCA	AGCTGTGAGC	CAGTGGGAAA	TATTTAGCAA	ATAATTTCCC
1101	AGTGCGAAGG	TCCTGCTATT	AGTAAGGAGT	ATTATGTGTA	CATAGAAATG
1151	AGAGGTCAGT	GAACTATTCC	CCAGCAGGGC	CTTTTCATCT	GGAAAAGACA
1201	TCCACAAAAG	CAGCAATACA	GAGGGATGCC	ACATTTATTT	TTTTAATCTT
1251	CATGTACTTG	TCAAAGAAGA	ATTTTTCATG	TTTTTTCAAA	GAAGTGTGTT

FIG. 4A

5/20

1301	TCTTTCCTTT	TTTAAAATAT	GAAGGTCTAG	TTACATAGCA	TTGCTAGCTG
1351	ACAAGCAGCC	TGAGAGAAGA	TGGAGAATGT	TCCTCAAAAT	AGGGACAGCA
1401	AGCTAGAAGC	ACTGTACAGT	GCCCTGCTGG	GAAGGGCAGA	CAATGGACTG
1451	AGAAACCAGA	AGTCTGGCCA	CAAGATTGTC	TGTATGATTC	TGGACGAGTC
1501	ACTTGTGGTT	TTCACTCTCT	GGTTAGTAAA	CCAGATAGTT	TAGTCTGGGT
1551	TGAATACAAT	GGATGTGAAG	TTGCTTGGGG	AAAGCTGAAT	GTAGTGAATA
1601	CATTGGCAAC	TCTACTGGGC	TGTTACCTTG	TTGATATCCT	AGAGTTCTGG
1651	AGCTGAGCGA	ATGCCTGTCA	TATCTCAGCT	TGCCCATCAA	TCCAAACACA
1701	GGAGGCTACA	AAAAGGACAT	GAGCATGGTC	TTCTGTGTGA	ACTCCTCCTG
1751	AGAAACGTGG	AGACTGGCTC	AGCGCTTTGC	GCTTGAAGGA	CTAATCACAA
1801	GTTCTTGAAG	ATATGGACCT	AGGGGAGCTA	TTGCGCCACG	ACAGGAGGAA
1851	GTTCTCAGAT	GTTGCATTGA	TGTAACATTG	TTGCATTTCT	TTAATGAGCT
1901	GGGCTCCTTC	CTCATTTGCT	TCCCAAAGAG	ATTTTGTCCC	ACTAATGGTG
1951	TGCCCATCAC	CCACACTATG	AAAGTAAAAG	GGATGCTGAG	CAGATACAGC
2001	GTGCTTACCT	CTCAGCCATG	ACTTTCATGC	TATTAAAAGA	ATGCATGTGA
2051	A				

FIG. 4B

Wild Type Amino Acid Sequence for CD83 protein [Mus musculus]
MSQGLQLLFL GCACSLAPAM AMREVTVACS ETADLPCTAP WDPQLSYAVS
WAKVSESGTE SVELPESKQN SSFEAPRRRA YSLTIQNTTI CSSGTYRCAL
QELGGQRNLS GTVVLKVTGC PKEATESTFR KYRAEAVLLF SLVVFYLTLI
IFTCKFARLQ SIFPDISKPG TEQAFLPVTS PSKHLGPVTL PKTETV

Mutant CD83 Amino Acid Sequence: novel tail underlined, in bold.

MSQGLQLLFL GCACSLAPAM AMREVTVACS ETADLPCTAP WDPQLSYAVS
WAKVSESGTE SVELPESKQN SSFEAPRRA YSLTIQNTTI CSSGTYRCAL
QELGGQRNLS GTVVLKVTGC PKEATESTFR KYRAEAVLLF SLVVFYLTLI
IFTCKFARLQ SIFPDISKPG TEQAFLPVTS PSKHLGPVTL PKTETVRVGS
PLVFTKPRAH QISVPECHPD KRRMSSILRW QPFFEVLHLT VGSTLLPDTG
S

FIG. 5

FIG. 6A

FIG. 6B

•	.0, 20	
CDR1 METGLRWILLUAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGFSLSSYDMTWVRQAPGKGLEWIGIIYAS- METGLRWILLUAVLKGVQCQSVEESGGRLVSPGTPLTLTCTASGFSLSSYDMSWVRQAPGKGLEYIGIISSS- METGLRWILLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGFSLSSYDMSWVRQAPGKGLEWIGIIYAS- METGLRWILLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGFTISDYDLSWVRQAPGEGLKYIGFIAID- METGLRWILLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGFFTISDYDLSWVRQAPGKGLEWVGVISTA- METGLRWILLVAVLKGVHCQSVEESGGRLVTPGTPLTLTCTASGFSRSSYDMSWVRQAPGKGLEWVGVISTA-	CDR3 GSTYYASWAKGRFTISKTSTTVDLEVTSLTTEDTATYFCSREHAGYSGDTGHLWGPGTLVTVSSGQPKAPSVF GTTYYANWAKGRFTISKTSTTVDLKVTSPTIGDTATYFCAREGAGVSMTLWGPGTLVTVSSGQPKAPSVF GSTYYASWAKGRVAISKTSTTVDLKITSPTTEDTATYFCAREDAGFSNALWGPGTLVTVSSGQPKAPSVF GNPYYATWAKGRFTISKTSTTVDLKITAPTTEDTATYFCARGAGDLWGPGTLVTVSSGQPKAPSVF YNSHYASWAKGRFTISRTSTTVDLKMTSLTTEDTATYFCARGGSWLDLWGQGTLVTVSSGQPKAPSVF	PLAPCCGDTPSS PLAPCCGDTPSS PLAPCCGDTPSS PLAPCCGDTPSS PLAPCCGDTPSS PLAPCCGDTPSS
20B08H 6G05H 20D04H 11G05 14C12	20B08H 6G05H 20D04H 11G05 14C12	20B08H 6G05H 20D04H 11G05

FIG. 17A

CDR1 CDR2	MDMRAPTQLLGLLLLWLPGA RC-AYD MTQTPASVEVAVGGTVTIKCQAS QSISTY	MDMRAPTQLLGLLLLWLPGA RC-AYD MTQTPASVEVAVGGTVAIKCQAS QSVSSY- -	MDMRAPTQLLGLLLLWLPGA RCADVV MTQTPASVSAAVGGTVTINCQAS ESISNY	MDTRAPTQLLGLLLLWLPGARCADVVMTQTPASVSAAVGGTVTINCQSSKNVYNNNW	MDXRAPTQLLGLLLLWLPGARCA-LVMTQTPASVSAAVGGTVTINCQSSQSVYDNDE	CDR3	LDWYQQKPGQPPKLLIYDASDLASGVPSRFKGSGSGTQFTLTISDLECADAATYYCQQGYT	LAWYQQKPGQPPKPLIYEASMLAAGVSSRFKGSGSGTDFTLTISDLECDDAATYYC QQGYS	LSWYQQKPGQPPKLLIYRTSTLASGVSSRFKGSGSGTEYTLTISGVQCDDVATYYC QCTSGG -	LSWFQQKPGQPPKLLIYYASTLASGVPSRFRGSGSGTQFTLTISDVQCDDAATYYCAG-DYSSS	LSWYQQKPGQPPKLLIYLASKLASGVPSRFKGSGSGTQFALTISGVQCDDAATYYC QATHYSSD -	- HSNVDNVFGGGTEVVVKGDPVAPTVLLFPPSS	- ISDIDNA FGGGTEVVVKGDPVA PTVLLFPPSS	KFISDGAAFGGGTEVVVKGDPVAPTVLLFPPSS	SDNGFGGGTEVVVKGDPVAPTVLLFPPSS	- WYLTFGGGTEVVVKGDPVAPTVLLFPPSS
	20B08L	6G05L	20D04L	11G05L	14C12L		20B08L	6G05L	20D04L	11G05L	14C12L	20B08L	6G05L	20D04L	11G05L	14C12L

FIG. 17E

SEQUENCE LISTING

```
<110> Appleby, MW
        Proll, S
        Paeper, B
        Staehling-Hampton, K
 <120> MANIPULATION OF CYTOKINE LEVELS USING CD83 GENE PRODUCTS
10
 <130> 1427.004WO1
 <150> US 60/331,958
 <151> 2001-11-21
15
 <160> 69
  <170> FastSEO for Windows Version 4.0
20<210> 1
  <211> 2051
  <212> DNA
  <213> Mus musculus
25<400> 1
  gegetecage egeatgtege aaggeeteea geteetgttt etaggetgeg eetgeageet
                                                                         60
                                                                        120
  ggcacccgcg atggcgatgc gggaggtgac ggtggcttgc tccgagaccg ccgacttgcc
                                                                        180
  ttgcacageg ccctgggacc cgcagetete ctatgcagtg teetgggeca aggteteega
                                                                        240
  gagtggcact gagagtgtgg agctcccgga gagcaagcaa aacagctcct tcgaggcccc
                                                                        300
30caggagaagg gcctattccc tgacgatcca aaacactacc atctgcagct cgggcaccta
  caggtgtgcc ctgcaggagc tcggagggca gcgcaacttg agcggcaccg tggttctgaa
                                                                         360
                                                                         420
  ggtgacagga tgccccaagg aagctacaga gtcaactttc aggaagtaca gggcagaagc
  tgtgttgctc ttctctctgg ttgttttcta cctgacactc atcattttca cctgcaaatt
                                                                         480
  tgcacgacta caaagcattt tcccagatat ttctaaacct ggtacggaac aagcttttct
                                                                         540
                                                                         600
35tccagtcacc tccccaagca aacatttggg gccagtgacc cttcctaaga cagaaacggt
                                                                         660
  atgagtagga tctccactgg tttttacaaa gccaagggca catcagatca gtgtgcctga
  atgccacccg gacaagagaa gaatgagctc catcctcaga tggcaacctt tctttgaagt
                                                                         720
                                                                         780
  cetteacetg acagtggget ceacactact ceetgacaca gggtettgag caccateata
  tgatcacgaa gcatggagta tcaccgcttc tctgtggctg tcagcttaat gtttcatgtg
                                                                         840
                                                                         900
40qctatctqqt caacctcgtg agtgcttttc agtcatctac aagctatggt gagatgcagg
                                                                        960
  tgaagcaggg tcatgggaaa tttgaacact ctgagctggc cctgtgacag actcctgagg
  acagetgtee tetectaeat etgggataea tetetttgaa titigteetgt tiegttgeae
                                                                        1020
                                                                        1080
  cagcccagat gtctcacatc tggcggaaat tgacaggcca agctgtgagc cagtgggaaa
  tatttagcaa ataatttccc agtgcgaaqg tcctgctatt agtaaggagt attatgtgta
                                                                        1140
```

2

catagaaatg agaggtcagt gaactattcc ccagcagggc cttttcatct ggaaaagaca 1200 tccacaaaag cagcaataca gagggatgcc acatttattt ttttaatctt catgtacttg 1260 tcaaagaaga atttttcatg ttttttcaaa gaagtgtgtt tctttccttt tttaaaatat 1320 1380 gaaggtctag ttacatagca ttgctagctg acaagcagcc tgagagaaga tggagaatgt Stoctcaaaat agggacagca agctagaagc actgtacagt gccctgctgg gaagggcaga 1440 1500 caatggactg agaaaccaga agtctggcca caagattgtc tgtatgattc tggacgagtc 1560 acttgtggtt ttcactctct ggttagtaaa ccagatagtt tagtctgggt tgaatacaat ggatgtgaag ttgcttgggg aaagctgaat gtagtgaata cattggcaac tctactgggc 1620 tgttaccttg ttgatatcct agagttctgg agctgagcga atgcctgtca tatctcagct 1680 10tgcccatcaa tccaaacaca ggaggctaca aaaaggacat gagcatggtc ttctgtgtga 1740 actectectg agaaacgtgg agactggete agegetttge gettgaagga etaatcacaa 1800 1860 gttcttgaag atatggacct aggggagcta ttgcgccacg acaggaggaa gttctcagat gttgcattga tgtaacattg ttgcatttct ttaatgagct gggctccttc ctcatttgct 1920 tcccaaagag attttgtccc actaatggtg tgcccatcac ccacactatg aaagtaaaag 1980

> 2040 2051

15ggatgctgag cagatacagc gtgcttacct ctcagccatg actttcatgc tattaaaaga

<210> 2

<211> 196

atgcatgtga a

20<212> PRT

<213> Mus musculus

<400> 2

Met Ser Gln Gly Leu Gln Leu Leu Phe Leu Gly Cys Ala Cys Ser Leu 5 10 Ala Pro Ala Met Ala Met Arg Glu Val Thr Val Ala Cys Ser Glu Thr 25 20 Ala Asp Leu Pro Cys Thr Ala Pro Trp Asp Pro Gln Leu Ser Tyr Ala 40 35 30Val Ser Trp Ala Lys Val Ser Glu Ser Gly Thr Glu Ser Val Glu Leu 60 55 Pro Glu Ser Lys Gln Asn Ser Ser Phe Glu Ala Pro Arg Arg Ala 75 70 Tyr Ser Leu Thr Ile Gln Asn Thr Thr Ile Cys Ser Ser Gly Thr Tyr 90 Arg Cys Ala Leu Gln Glu Leu Gly Gly Gln Arg Asn Leu Ser Gly Thr 105 Val Val Leu Lys Val Thr Gly Cys Pro Lys Glu Ala Thr Glu Ser Thr 120 40Phe Arg Lys Tyr Arg Ala Glu Ala Val Leu Leu Phe Ser Leu Val Val 130 135 Phe Tyr Leu Thr Leu Ile Ile Phe Thr Cys Lys Phe Ala Arg Leu Gln

3

```
145
                      150
                                          155
  Ser Ile Phe Pro Asp Ile Ser Lys Pro Gly Thr Glu Gln Ala Phe Leu
                  165
                                      170
 Pro Val Thr Ser Pro Ser Lys His Leu Gly Pro Val Thr Leu Pro Lys
             180
                                  185
                                                       190
  Thr Glu Thr Val
          195
  <210> 3
10<211> 2051
  <212> DNA
  <213> Artificial Sequence
  <220>
15<223> Mutant CD83 sequence
 <400> 3
 gcgctccagc cgcatgtcgc aaggcctcca gctcctgttt ctaggctgcg cctgcagcct
                                                                          60
 ggcaccegeg atggcgatgc gggaggtgac ggtggcttgc tccgagaccg ccgacttgcc
                                                                         120
20ttgcacagcg ccctgggacc cgcagctctc ctatgcagtg tcctgggcca aggtctccga
                                                                         180
 gagtggcact gagagtgtgg agctcccgga gagcaagcaa aacagctcct tcgaggcccc
                                                                         240
 caggagaagg gcctattccc tgacgatcca aaacactacc atctgcagct cgggcaccta
                                                                         300
                                                                         360
 caggtgtgcc ctgcaggagc tcggagggca gcgcaacttg agcggcaccg tggttctgaa
 ggtgacagga tgccccaagg aagctacaga gtcaactttc aggaagtaca gggcagaagc
                                                                         420
25tgtgttgctc ttctctctgg ttgttttcta cctgacactc atcattttca cctgcaaatt
                                                                         480
 tgcacgacta caaagcattt tcccagatat ttctaaacct ggtacggaac aagcttttct
                                                                         540
                                                                         600
 tocaqtcacc tococaaqca aacatttqqq qocaqtqacc ottoctaaqa caqaaacqqt
 aagagtagga totocactgg tttttacaaa gocaagggca catcagatca gtgtgcctga
                                                                         660
 atgccacccg gacaagagaa gaatgagete cateeteaga tggcaacctt tetttgaagt
                                                                         720
30ccttcacctg acagtgggct ccacactact ccctgacaca gggtcttgag caccatcata
                                                                         780
 tgatcacgaa qcatggagta tcaccgcttc tctgtggctg tcagcttaat gtttcatgtg
                                                                         840
 gctatctggt caacctcgtg agtgcttttc agtcatctac aagctatggt gagatgcagg
                                                                         900
 tgaagcaggg tcatgggaaa tttgaacact ctgagctggc cctgtgacag actcctgagg
                                                                         960
 acagetqtee tetectacat etqqqataca tetetttqaa tttgteetqt tteqttqcae
                                                                        1020
35cagcccagat gtctcacatc tggcggaaat tgacaggcca agctgtgagc cagtgggaaa
                                                                        1080
 tatttagcaa ataatttccc agtgcgaagg tcctgctatt agtaaggagt attatgtgta
                                                                        1140
                                                                        1200
 catagaaatg agaggtcagt gaactattcc ccagcagggc cttttcatct ggaaaagaca
 tocacaaaag cagcaataca gagggatgoo acatttattt ttttaatott catgtacttg
                                                                        1260
 tcaaagaaga atttttcatg ttttttcaaa gaagtgtgtt tctttccttt tttaaaatat
                                                                        1320
40gaaggtctag ttacatagca ttgctagctg acaagcagcc tgagagaaga tggagaatgt
                                                                        1380
 tecteaaaat agggacagca agetagaage aetgtacagt geeetgetgg gaagggeaga
                                                                        1440
```

caatggactg agaaaccaga agtctqqcca caagattgtc tgtatgattc tqqacqaqtc

4

acttgtggtt	ttcactctct	ggttagtaaa	ccagátagtt	tagtctgggt	tgaatacaat	1560
ggatgtgaag	ttgcttgggg	aaagctgaat	gtagtgaata	cattggcaac	tctactgggc	1620
tgttaccttg	ttgatatcct	agagttctgg	agctgagcga	atgcctgtca	tatctcagct	1680
tgcccatcaa	tccaaacaca	ggaggctaca	aaaaggacat	gagcatggtc	ttctgtgtga	1740
5actcctcctg	agaaacgtgg	agactggctc	agcgctttgc	gcttgaagga	ctaatcacaa	1800
gttcttgaag	atatggacct	aggggagcta	ttgcgccacg	acaggaggaa	gttctcagat	1860
gttgcattga	tgtaacattg	ttgcatttct	ttaatgagct	gggctccttc	ctcatttgct	1920
tcccaaagag	attttgtccc	actaatggtg	tgcccatcac	ccacactatg	aaagtaaaag	1980
ggatgctgag	cagatacagc	gtgcttacct	ctcagccatg	actttcatgc	tattaaaaga	2040
10atgcatgtga	a					2051

<210> 4

<211> 251

<212> PRT

15<213> Artificial Sequence

<220>

<223> Mutant CD83 sequence

165

20<400> 4

Met Ser Gln Gly Leu Gln Leu Leu Phe Leu Gly Cys Ala Cys Ser Leu 10 Ala Pro Ala Met Ala Met Arg Glu Val Thr Val Ala Cys Ser Glu Thr 20 25 25Ala Asp Leu Pro Cys Thr Ala Pro Trp Asp Pro Gln Leu Ser Tyr Ala 40 Val Ser Trp Ala Lys Val Ser Glu Ser Gly Thr Glu Ser Val Glu Leu 55 Pro Glu Ser Lys Gln Asn Ser Ser Phe Glu Ala Pro Arg Arg Ala ` 70 Tyr Ser Leu Thr Ile Gln Asn Thr Thr Ile Cys Ser Ser Gly Thr Tyr 90 Arg Cys Ala Leu Gln Glu Leu Gly Gly Gln Arg Asn Leu Ser Gly Thr 105 35Val Val Leu Lys Val Thr Gly Cys Pro Lys Glu Ala Thr Glu Ser Thr 120 Phe Arg Lys Tyr Arg Ala Glu Ala Val Leu Leu Phe Ser Leu Val Val 135 140 Phe Tyr Leu Thr Leu Ile Ile Phe Thr Cys Lys Phe Ala Arg Leu Gln 155 40145 150 Ser Ile Phe Pro Asp Ile Ser Lys Pro Gly Thr Glu Gln Ala Phe Leu

5

Pro Val Thr Ser Pro Ser Lys His Leu Gly Pro Val Thr Leu Pro Lys 185 Thr Glu Thr Val Arg Val Gly Ser Pro Leu Val Phe Thr Lys Pro Arg 205 200 5Ala His Gln Ile Ser Val Pro Glu Cys His Pro Asp Lys Arg Arg Met 215 220 Ser Ser Ile Leu Arg Trp Gln Pro Phe Phe Glu Val Leu His Leu Thr 230 235 240 Val Gly Ser Thr Leu Leu Pro Asp Thr Gly Ser 250 10 245

<210> 5

<211> 756

<212> DNA

15<213> Artificial Sequence

<220>

<223> Mutant CD83 sequence

20<400> 5

60 atgtcgcaag gcctccagct cctgtttcta ggctgcgcct gcagcctggc acccgcgatg 120 gcgatgcggg aggtgacggt ggcttgctcc gagaccgccg acttgccttg cacagcgccc 180 tgggacccgc agetetecta tgcagtgtec tgggccaagg tetecgagag tggcactgag agtgtggagc tcccggagag caagcaaaac agctccttcg aggcccccag gagaagggcc 240 300 25tattccctga cgatccaaaa cactaccatc tgcagctcgg gcacctacag gtgtgccctg caggageteg gagggeageg caacttgage ggeacegtgg ttetgaaggt gacaggatge 360 420 cccaaqqaaq ctacaqaqtc aactttcagg aagtacaggg cagaagctgt gttgctcttc tetetggttg ttttetacct gacactcate attttcacct gcaaatttgc acgactacaa 480 agcattttcc cagatatttc taaacctggt acggaacaag cttttcttcc agtcacctcc 540 600 30ccaaqcaaac atttqqqqcc aqtqaccctt cctaagacag aaacggtaag agtaggatct 660 ccactggttt ttacaaagcc aagggcacat cagatcagtg tgcctgaatg ccacccggac 720 aaqagaagaa tgagctccat cctcagatgg caacctttct ttgaagtcct tcacctgaca 756 gtgggeteca cactactece tgacacaggg tettga

35<210> 6

<400> 6

000

40<210> 7

<211> 168

<212> DNA

```
<213> Artificial Sequence
 <220>
 <223> Mutant CD83 sequence
 <400> 7
 60
 tgccacccgg acaagagaag aatgagetee atecteagat ggcaacettt etttgaagte
                                                                   120
 cttcacctga cagtgggctc cacactactc cctgacacag ggtcttga
                                                                   168
10
 <210> 8
 <211> 55
 <212> PRT
 <213> Artificial Sequence
15
 <220>
 <223> Mutant CD83 sequence
 <400> 8
20Arg Val Gly Ser Pro Leu Val Phe Thr Lys Pro Arg Ala His Gln Ile
                                   10
 Ser Val Pro Glu Cys His Pro Asp Lys Arg Arg Met Ser Ser Ile Leu
            20
                                                  30
                               25
 Arg Trp Gln Pro Phe Phe Glu Val Leu His Leu Thr Val Gly Ser Thr
         35
                            40
                                              45
 Leu Leu Pro Asp Thr Gly Ser
     50
                        55
 <210> 9
30<211> 205
 <212> PRT
 <213> Homo sapiens
 <400> 9
35Met Ser Arg Gly Leu Gln Leu Leu Leu Ser Cys Ala Tyr Ser Leu
                                   10
 Ala Pro Ala Thr Pro Glu Val Lys Val Ala Cys Ser Glu Asp Val Asp
                               25
 Leu Pro Cys Thr Ala Pro Trp Asp Pro Gln Val Pro Tyr Thr Val Ser
 Trp Val Lys Leu Glu Gly Gly Glu Glu Arg Met Glu Thr Pro Gln
     50
                        55
```

7

Glu	Asp	His	Leu	Arg	Gly	Gln	His	Tyr	His	Gln	Lys	Gly	Gln	Asn	Gly
65					70					75					80
Ser	Phe	Asp	Ala	Pro	Asn	Glu	Arg	Pro	Tyr	Ser	Leu	Lys	Ile	Arg	Asn
				85					90					95	
5Thr	Thr	Ser	Cys	Asn	Ser	Gly	Thr	Tyr	Arg	Cys	Thr	Leu	Gln	Aşp	Pro
	•		100					105					110	·	
Asp	Gly	Gln	Arg	Asn	Leu	Ser	Gly	Lys	Val	Ile	Leu	Arg	Val	Thr	Gly
		115					120					125			
Cys	Pro	Ala	Gln	Arg	Lys	Glu	Glu	Thr	Phe	Lys	Lys	Tyr	Arg	Ala	Glu
10	130					135					140				
Ile	Val	Leu	Leu	Leu	Ala	Leu	Val	Ile	Phe	Tyr	Leu	Thr	Leu	Ile	Ile
145					150					155					160
Phe	Thr	Cys	Lys	Phe	Ala	Arg	Leu	Gln	Ser	Ile	Phe	Pro	Asp	Phe	Ser
				165					170					175	
15Lys	Ala	Gly	Met	Glu	Arg	Ala	Phe	Leu	Pro	Val	Thr	Ser	Pro	Asn	Lys
			180					185					190	•	
His	Leu	Gly	Leu	Val	Thr	Pro	His	Lys	Thr	Glu	Leu	Val			
		195					200					205			

20<210> 10

<211> 2574

<212> DNA

<213> Homo sapiens

25<400> 10

60 cetggegeag cegcageage gacgegageg aacteggeeg ggeeegggeg egeggggeg 120 ggacgcac gcggcgaggg cggcgggtga gccgggggcg gggacggggg cgggacgggg 180 gcgaaggggg cggggacggg ggcgcccgcc ggcctaacgg gattaggagg gcgcgccacc cgcttccgct gcccgccggg gaatcccccg ggtggcgccc agggaagttc ccgaacgggc 240 300 30gggcataaaa gggcagccgc gccggcgccc cacagctctg cagctcgtgg cagcggcgca 360 gegetecage catgtegege ggeetecage ttetgeteet gagetgegee tacageetgg 420 ctcccgcgac gccggaggtg aaggtggctt gctccgaaga tgtggacttg ccctgcaccg 480 ccccctggga tccgcaggtt ccctacacgg tctcctgggt caagttattg gagggtggtg 540 aagagaggat ggagacaccc caggaagacc acctcagggg acagcactat catcagaagg 35ggcaaaatgg ttctttcgac gcccccaatg aaaggcccta ttccctgaag atccgaaaca 600 ctaccagctg caactcgggg acatacaggt gcactctgca ggacccggat gggcagagaa 660 720 acctaagtgg caaggtgatc ttgagagtga caggatgccc tgcacagcgt aaagaagaga 780 cttttaagaa atacagagcg gagattgtcc tgctgctggc tctggttatt ttctacttaa cactcatcat tttcacttgt aagtttgcac ggctacagag tatcttccca gatttttcta 840 900 40aagctggcat ggaacgagct tttctcccaq ttacctcccc aaataagcat ttagggctag 960 tgactcctca caagacagaa ctggtatgag caggatttct gcaggttctt cttcctgaag 1020 ctgaggctca ggggtgtgcc tqtctqttac actggaggag agaagaatga gcctacgctg

8

WO 03/045318 PCT/US02/37738

aagatggcat	cctgtgaagt	ccttcacctc	actgaaaaca	tctggaaggg	gatcccaccc	1080
cattttctgt	gggcaggcct	cgaaaaccat	cacatgacca	catagcatga	ggccactgct	1140
gcttctccat	ggccaccttt	tcagcgatgt	atgcagctat	ctggtcaacc	tcctggacat	1200
tttttcagtc	atataaaagc	tatggtgaga	tgcagctgga	aaagggtctt	gggaaatatg	1260
5aatgccccca	gctggcccgt	gacagactcc	tgaggacagc	tgtcctcttc	tgcatcttgg	1320
ggacatctct	ttgaattttc	tgtgttttgc	tgtaccagcc	cagatgtttt	acgtctggga	1380
gaaattgaca	gatcaagctg	tgagacagtg	ggaaatattt	agcaaataat	ttcctggtgt	1440
gaaggtcctg	ctattactaa	ggagtaatct	gtgtacaaag	aaataacaag	tcgatgaact	1500
attccccagc	agggtctttt	catctgggaa	agacatccat	aaagaagcaa	taaagaagag	1560
10tgccacattt	atttttatat	ctatatgtac	ttgtcaaaga	aggtttgtgt	ttttctgctt	1620
ttgaaatctg	tatctgtagt	gagatagcat	tgtgaactga	caggcagcct	ggacatagag	1680
agggagaaga	agtcagagag	ggtgacaaga	tagagagcta	tttaatggcc	ggctggaaat	1740
gctgggctga	cggtgcagtc	tgggtgctcg	cccacttgtc	ccactatctg	ggtgcatgat	1800
cttgagcaag	ttccttctgg	tgtctgcttt	ctccattgta	aaccacaagg	ctgttgcatg	1860
15ggctaatgaa	gatcatatac	gtgaaaatta	tttgaaaaca	tataaagcac	tatacagatt	1920
cgaaactcca	ttgagtcatt	atccttgcta	tgatgatggt	gttttgggga	tgagagggtg	1980
ctatccattt	ctcatgtttt	ccattgtttg	aaacaaagaa	ggttaccaag	aagcctttcc	2040
tgtagccttc	tgtaggaatt	cttttgggga	agtgaggaag	ccaggtccac	ggtctgttct	2100
tgaagcagta	gcctaacaca	ctccaagata	tggacacacg	ggagccgctg	gcagaaggga	2160
20cttcacgaag	tgttgcatgg	atgttttagc	cattgttggc	tttcccttat	caaacttggg	2220
cccttccctt	cttggtttcc	aaaggcattt	attgctgagt	tatatgttca	ctgtccccct	2280
aatattaggg	agtaaaacgg	ataccaagtt	gatttagtgt	ttttacctct	gtcttggctt	2340
tcatgttatt	aaacgtatgc	atgtgaagaa	gggtgttttt	ctgttttata	ttcaactcat	2400
aagactttgg	gataggaaaa	atgagtaatg	gttactaggc	ttaatacctg	ggtgattaca	2460
25taatctgtac	aacgaacccc	catgatgtaa	gtttacctat	gtaacaaacc	tgcacttata	2520
cccatgaact	taaaatgaaa	gttaaaaata	aaaaacatat	acaaataaaa	aaaa	2574

<210> 11

<211> 239

30<212> PRT

<213> Oryctolagus cuniculus

<400> 11

 Met
 Asp
 Met
 Arg
 Ala
 Pro
 Thr
 Gln
 Leu
 Leu
 Gly
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Bro
 Ala
 Arg
 Cys
 Ala
 Asp
 Val
 Val
 Met
 Thr
 Gln
 Thr
 Pro
 Ala

 Ser
 Val
 Ser
 Ala
 Ala
 Val
 Gly
 Gly
 Thr
 Val
 Thr
 Ile
 Asn
 Cys
 Gly

 40Ser
 Glu
 Ser
 Ala
 Ser
 Asn
 Tyr
 Leu
 Ser
 Trp
 Tyr
 Gln
 Gln
 Gln
 Lys
 Pro
 Gly

 Gln
 Pro
 Pro
 Leu
 Leu
 Ile
 Tyr
 Arg
 Thr
 Ser
 Thr
 Leu
 Ala
 Ser
 Gly

9

65					70					75					80
Val	Ser	Ser	Arg	Phe	Lys	Gly	Ser	Gly	Ser	Gly	Thr	Glu	Tyr	Thr	Leu
				85					90					95	
Thr	Ile	Ser	Gly	Val	Gln	Cys	Asp	Asp	Val	Ala	Thr	Tyr	Tyr	Cys	Gln
5			100					105					110		
Cys	Thr	Ser	Gly	Gly	Lys	Phe	Ile	Ser	Asp	Gly	Ala	Ala	Phe	Gly	Gly
		115					120					125			
Gly	Thr	Glu	Val	Val	Val	Lys	Gly	Asp	Pro	Val	Ala	Pro	Thr	Val	Leu
	130					135					140				
10Leu	Phe	Pro	Pro	Ser	Ser	Asp	Glu	Val	Ala	Thr	Gly	Thr	Val	Thr	Ile
145					150					155					160
Val	Cys	Val	Ala	Asn	Lys	Tyr	Phe	Pro		Val	Thr	Val	Thr	Trp	Glu
				165					170					175	
	Asp	Gly	Thr	Thr	Gln	Thr	Thr	Gly	Ile	Glu	Asn	Ser	Lys	Thr	Pro
15			180					185					190		
Gln	Asn		Ala	Asp	Cys	Thr		Asn	Leu	Ser	Ser	Thr	Leu	Thr	Leu
		195			;		200					205			
Thr		Thr	Gln	Tyr	Ash		His	Lys	Glu	Tyr		Суѕ	Lys	Val	Thr
	210					215					220				
20Gln	Gly	Thr	Thr	Ser		Val	Gln	Ser	Phe		Arg	Lys	Asn	Суѕ	
225					230					235					
407.6															,
)> 12														
	L> 72														
25<212			.1 . ~			.1									
\21.)/ OI	.yett	olagu	is Ci	micu	itus									
<400)> 12)													
			iaacc	ccca	c to	aact	acto		ctcc	+ ~ ~	tact	otas	rat a		gtgcc
30agat															
															atcag
															ctggg
															acaac

gtgcagtgtg acgatgttgc cacttactac tgtcaatgca cttctggtgg gaagttcatt

cctactgtcc tcctctccc accatctagc gatgaggtgg caactggaac agtcaccatc

gtgtgtgtgg cgaataaata ctttcccgat gtcaccgtca cctgggaggt ggatggcacc

acccaaacaa ctggcatcga gaacagtaaa acaccgcaga attctgcaga ttgtacctac

aacetcagea geactetgae actgaecage acaeagtaea acageeacaa agagtaeace

40tgcaaggtga cccagggcac gacctcagtc gtccagagct tcagtaggaa gaactgttaa

35agtgatggtg ctgctttcgg cggagggacc gaggtggtgg tcaaaggtga tccagttgca

360

420

480

540

600

660

720

<210> 13

10

PCT/US02/37738

<211> 454

WO 03/045318

<212> PRT

<213> Oryctolagus cuniculus

5<400> 13 Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly 10 Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 25 . 30 10Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Asn Asn Ala Ile Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly Tyr Ile Trp Ser Gly Gly Leu Thr Tyr Tyr Ala Asn Trp Ala Glu Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 Lys Met Thr Ser Pro Thr Ile Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 20Arg Gly Ile Asn Asn Ser Ala Leu Trp Gly Pro Gly Thr Leu Val Thr 120 Val Ser Ser Gly Gln Pro Lys Ala Pro Ser Val Phe Pro Leu Ala Pro 135 Cys Cys Gly Asp Thr Pro Ser Ser Thr Val Thr Leu Gly Cys Leu Val 25145 150 155 Lys Gly Tyr Leu Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Thr 170 Leu Thr Asn Gly Val Arg Thr Phe Pro Ser Val Arg Gln Ser Ser Gly 185 190 30Leu Tyr Ser Leu Ser Ser Val Val Ser Val Thr Ser Ser Ser Gln Pro 200 Val Thr Cys Asn Val Ala His Pro Ala Thr Asn Thr Lys Val Asp Lys 215 Thr Val Ala Pro Ser Thr Cys Ser Lys Pro Thr Cys Pro Pro Pro Glu 35225 230 235 Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp 245 250 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 265 40Val Ser Gln Asp Asp Pro Glu Val Gln Phe Thr Trp Tyr Ile Asn Asn

280

Glu Gln Val Arg Thr Ala Arg Pro Pro Leu Arg Glu Gln Gln Phe Asn

11

	290					295					300				
Ser	Thr	Ile	Arg	Val	Val	Ser	Thr	Leu	Pro	Ile	Ala	His	Gln	Asp	Trp
305					310					315					320
Leu	Arg	Gly	Lys	Glu	Phe	Lys	Cys	Lys	Val	His	Asn	Lys	Ala	Leu	Pro
5				325					330					335	
Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Arg	Gly	Gln	Pro	Leu	Glu
			340					345					350		
Pro	Lys	Val	Tyr	Thr	Met	Gly	Pro	Pro	Arg	Glu	Glu	Leu	Ser	Ser	Arg
		355					360					365			
10Ser	Val	Ser	Leu	Thr	Cys	Met	Ile	Asn	Gly	Phe	Tyr	Pro	Ser	Asp	Ile
	370					375					380				
Ser	Val	Glu	\mathtt{Trp}	Glu	Lys	Asn	Gly	Lys	Ala	Glu	Asp	Asn	Tyr	Lys	Thr
385			•		390					395					400
Thr	Pro	Ala	Val	Leu	Asp	Ser	Asp	Gly	Ser	Tyr	Phe	Leu	Tyr		Lys
15				405					410					415	
Leu	Ser	Val	Pro	Thr	Ser	Glu	Trp		Arg	Gly	Asp	Val		Thr	Cys
			420					425					430		
Ser	Val	Met	His	Glu	Ala	Leu	His	Asn	His	Tyr	Thr		Lys	Ser	Ile
		435					440					445			
20Ser	_	Ser	Pro	Gly	Lys										
	450														
	0> 1														
	1> 1:														
25<21															
<21.	3> O:	ryct	olagı	us CI	nıcı	u⊥us									

<400> 14

atggagacag gcctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60 120 30tcggtggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 180 acceptctctg gattctccct cagtaacaat gcaataaact gggtccgcca ggctccaggg 240 aaggggctag agtggatcgg atacatttgg agtggtgggc ttacatacta cgcgaactgg 300 gcggaaggcc gattcaccat ctccaaaacc tcgactacgg tggatctgaa gatgaccagt 360 ccgacaatcg aggacacggc cacctatttc tgtgccagag ggattaataa ctccgctttg 420 35tggggcccag gcaccctggt caccgtctcc tcagggcaac ctaaggctcc atcagtcttc ccactggccc cctgctgcgg ggacacaccc tctagcacgg tgaccttggg ctgcctggtc 480 540 aaaggctacc tcccggagcc agtgaccgtg acctggaact cgggcaccct caccaatggg gtacgcacct tcccgtccgt ccggcagtcc tcaggcctct actcgctgag cagcgtggtg 600 660 agegtgacct caageageca geeegteace tgeaacgtgg eccaeceage caccaacace 720 40aaagtggaca agaccgttgc gccctcgaca tgcagcaagc ccacgtgccc accccctgaa ctcctggggg gaccgtctgt cttcatcttc cccccaaaac ccaaggacac cctcatgatc 780 840 tcacgcaccc ccqaqqtcac atgcgtggtg gtggacgtga gccaggatga ccccgaggtg

WO 03/045318 PCT/US02/37738

cag	ttca	cat	ggta	cata	aa c	aacga	agca	g gt	gege	accg	ccc	ggcc	gcc (gctad	cgggag		900
cag	cagt	tca	acago	cacga	at c	cgcg	tggt	c ago	cacco	ctcc	ccat	cgc	gca d	ccag	gactgg		960
ctg	aggg	gca	agga	gttca	aa gi	tgcaa	aagt	c ca	caaca	aagg	cact	ccc	ggc (ccca	atcgag	1	020
aaa	acca	tct	ccaa	agcca	ag a	gggca	agcc	c ct	ggag	ccga	aggt	cta	cac d	catg	ggccct	1	080
5ccc	cggg	agg	agct	gagca	ag ca	aggto	eggt	c ago	cctga	acct	gcat	tgato	caa d	egget	tctac	1	140
cct	tccg	aca	tctc	ggtg	ga gi	tggga	agaa	g aad	eggga	aagg	caga	aggad	caa d	ctaca	aagacc	1	200
acg	ccgg	ccg	tgct	ggaca	ag c	gacg	gctc	c tad	cttc	ctct	acaa	acaa	gct (ctca	gtgccc	1	260
acg	agtg	agt	ggca	gegg	gg c	gacgt	tctt	c acc	etgel	tccg	tgat	gca	cga 🤄	ggcct	tgcac	1	320
aac	cact	aca	cgca	gaagt	tc ca	atct	cccg	e te	ccg	ggta	aa					1	362
10												-					
<21	0> 1	5															
<21	1> 2	38															
<21	2> P	RT															
<21	3> 0:	ryct	olagı	ıs cı	unic	ılus											
15																	
-	0> 1	_															
	Asp	Thr	Arg	Ala	Pro	Thr	Gln	Leu		Gly	Leu	Leu	Leu		Trp		
1				5					10					15			
	Pro	Gly		Arg	Суѕ	Ala	Asp		Val	Met	Thr	Gln		Pro	Ala		
20		_	20					25				_	30				
Ser			Ala	Ala	Val	Gly		Thr	Val	Thr	Ile		Cys	Gln	Ser		
_	`	35		_	_	_	40	_	_	_	_	45			_		•
Ser	_	Asn	Val	Tyr	Asn		Asn	Trp	Leu	Ser	_	Phe	GIn	GIn	Lys		
٥٥٥٠٠	50	01		5	•	55	_		_	_	60	_		_			
25Pro 65	GIĀ	GIN	Pro	Pro	ьуs 70	ьeu	Leu	ше	Tyr		Ата	Ser	Thr	Leu			
	C1	17-1	Dwo	C 0 7		Dho	7 m ~	C1	C = 11	75	C =	C1	mb	C1-	80 Db-		
ser	сту	Val	PIO	Ser 85	AIG	rne	Arg	GIA	90	сту	ser	сту	THE	95	rne		
Thr	T.011	Thr	Tla	Ser	Λen	Val	Gln	Cyc		7.50	70.7 -	ת 1 ת	Thr		Tur		
30	Deu	1111	100	DCI	пор	V G I	GIII	105	пор	АЗР	HIG	AIG	110	ı yı	ıyı		
	Ala	Glv		Tyr	Ser	Ser	Ser		Asn	Asn	Glv	Phe		Glv	Glv		
0,0		115	110P	- 1 -	551	501	120	001	110р	11011	رين	125	CLy	O _L y	O _x y		
Thr	Glu		Val	Val	Lvs	Glv		Pro	Val	Ala	Pro		Val	Len	Leu		
	130				-1-	135					140		- 42	200	Lou		
35Phe		Pro	Ser	Ser	Asp		Val	Ala	Thr	Glv		Val	Thr	Ile	Val		
145					150					155					160		
	Val	Ala	Asn	Lys	Tyr	Phe	Pro	Asp	Val		Val	Thr	Trp	Glu			
-				165	_			-	170				-	175			
Asp	Gly	Thr	Thr	Gln	Thr	Thr	Gly	Ile		Asn	Ser	Lys	Thr		Gln		
40	-		180				-	185				-	190				
Asn	Ser	Ala	Asp	Cys	Thr	Tyr	Asn	Leu	Ser	Ser	Thr	Leu	Thr	Leu	Thr		
		195				_	200					205					

13

Ser Thr Gln Tyr Asn Ser His Lys Glu Tyr Thr Cys Lys Val Thr Gln 220 215 Gly Thr Thr Ser Val Val Gln Ser Phe Ser Arg Lys Asn Cys 225 230 235 <210> 16 <211> 717 <212> DNA <213> Oryctolagus cuniculus 10 <400> 16 60 atggacacca qqqcccccac tcaqctqctq qqqctcctqc tgctctggct cccaggtgcc 120 agatgtgccg acgtcgtgat gacccagact ccagcctccg tgtctgcagc tgtgggaggc 180 acaqtcacca tcaattgcca gtccagtaag aatgtttata ataacaactg gttatcctgg 15tttcagcaga aaccagggca gcctcccaag ctcctgatct attatgcatc cactctggca 240 300 tctggggtcc catcgcggtt cagaggcagt ggatctggga cacagttcac tctcaccatt 360 agcgacgtgc agtgtgacga tgctgccact tactactgtg caggcgatta tagtagtagt agtgataatg gtttcggcgg agggaccgag gtggtggtca aaggtgatcc agttgcacct 420 actgtcctcc tcttcccacc atctagcgat gaggtggcaa ctggaacagt caccatcgtg 480 540 20tqtqtqqcqa ataaatactt tcccqatqtc accqtcacct gggaggtgga tggcaccacc caaacaactg gcatcgagaa cagtaaaaca ccgcagaatt ctgcagattg tacctacaac 600 660 ctcagcagca ctctgacact gaccagcaca cagtacaaca gccacaaaga gtacacctgc 717 aaggtgaccc agggcacgac ctcagtcgtc cagagcttca gtaggaagaa ctgttaa 25<210> 17 <211> 452 <212> PRT <213> Oryctolagus cuniculus 30<400> 17 Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly 1 Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 25 20 35Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Thr Ile Ser Asp Tyr Asp Leu Ser Trp Val Arg Gln Ala Pro Gly Glu Gly Leu Lys 55 Tyr Ile Gly Phe Ile Ala Ile Asp Gly Asn Pro Tyr Tyr Ala Thr Trp 75 70 Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 90 95 85

Lys	Ile	Thr	Ala 100	Pro	Thr	Thr	Glu	Asp 105	Thr	Ala	Thr	Tyr	Phe 110	Cys	Ala
Arg	Gly	Ala 115	Gly	Asp	Leu	Trp	Gly 120	Pro	Gly	Thr	Leu	Val 125	Thr	Val	Ser
5Ser	Gly 130	Gln	Pro	Lys	Ala	Pro 135	Ser	Val	Phe	Pro	Leu 140	Ala	Pro	Cys	Cys
Gly 145	Asp	Thr	Pro	Ser	Ser 150	Thr	Val	Thr	Leu	Gly 155	Cys	Leu	Val	Lys	Gly 160
Tyr 10	Leu	Pro	Glu	Pro 165	Val	Thr	Val	Thr	Trp 170	Asn	Ser	Gly	Thr	Leu 175	Thr
Asn	Gly	Val	Arg 180	Thr	Phe	Pro	Ser	Val 185	Arg	Gln	Ser	Ser	Gly 190	Leu	Tyr
Ser	Leu	Ser 195	Ser	Val	Val	Ser	Val 200	Thr	Ser	Ser	Ser	Gln 205	Pro	Val	Thr
15Cys	Asn 210	Val	Ala	His	Pro	Ala 215	Thr	Asn	Thr	Lys	Val 220	Asp	Lys	Thr	Val
Ala 225	Pro	Ser	Thr	Cys	Ser 230	Lys	Pro	Thr	Cys	Pro 235	Pro	Pro	Glu	Leu	Leu 240
Gly 20	Gly	Pro	Ser	Val 245	Phe	Ile	Phe	Pro	Pro 250	Lys	Pro	Lys	Asp	Thr 255	Leu
Met	Ile	Ser	Arg 260	Thr	Pro	Glu	Val	Thr 265	Суs	Val	Val	Val	Asp 270	Val	Ser
Gln	Asp	Asp 275	Pro	Glu	Val	Gln	Phe 280	Thr	Trp	Tyr	Ile	Asn 285	Asn	Glu	Gln
25Val	Arg 290	Thr	Ala	Arg	Pro	Pro 295	Leu	Arg	Glu	Gln	Gln 300	Phe	Asn	Ser	Thr
Ile 305	Arg	Val	Val	Ser	Thr 310	Leu	Pro	Ile	Ala	His 315	Gln	Asp	Trp	Leu	Arg 320
Gly 30	Lys	Glu	Phe	Lys 325	Cys	Lys	Val	His	Asn 330	Lys	Ala	Leu	Pro	Ala 335	Pro
Ile	Glu	Lys	Thr 340	Ile	Ser	Lys	Ala	Arg 345	Gly	Gln	Pro	Leu	Glu 350	Pro	Lys
	_	355		Gly			360	•				365			
35Ser	370					375					380				
385				Asn	390					395					400
40				Ser 405					410					415	
Val	Pro	Thr	Ser 420	Glu	Trp	Gln	Arg	Gly 425	Asp	Val	Phe	Thr	Cys 430	Ser	Va]

WO 03/045318

15

PCT/US02/37738

```
Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Ile Ser Arg
                              440
                                                  445
  Ser Pro Gly Lys
      450
5
  <210> 18
  <211> 1356
  <212> DNA
  <213> Oryctolagus cuniculus
10
  <400> 18
  atggagacag gcctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag
                                                                          60
  teggtggagg agteeggggg tegeetggte acgeetggga cacceetgae acteaeetge
                                                                        120
                                                                        180
  acagtetetg gatteaceat cagtgactac gacttgaget gggteegeea ggeteeaggg
                                                                        240
15gaggggctga aatacatcgg attcattgct attgatggta acccatacta cgcgacctgg
  gcaaaaggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgaa aatcaccgct
                                                                        300
                                                                        360
  ccqacaaccq aaqacacqqc cacqtatttc tgtgccagag gggcagggga cctctggggc
                                                                         420
  ccagggaccc tcgtcaccgt ctcttcaggg caacctaagg ctccatcagt cttcccactg
                                                                         480
  gccccctgct gcggggacac accctctagc acggtgacct tgggctgcct ggtcaaaggc
                                                                         540
20tacctcccgg agccagtgac cgtgacctgg aactcgggca ccctcaccaa tggggtacgc
                                                                         600
  accttcccqt ccqtccqqca qtcctcaqqc ctctactcqc tqaqcaqcqt qqtqaqcqtq
  acctcaagca gccagcccgt cacctgcaac gtggcccacc cagccaccaa caccaaagtg
                                                                         660
  gacaagaccg ttgcgccctc gacatgcagc aagcccacgt gcccaccccc tgaactcctg
                                                                        720
  gggggaccgt ctgtcttcat cttcccccca aaacccaagg acaccctcat gatctcacgc
                                                                        780
25acccccgagg tcacatgcgt ggtggtggac gtgagccagg atgaccccga ggtgcagttc
                                                                         840
                                                                        900
  acatggtaca taaacaacga gcaggtgcgc accgcccggc cgccgctacg ggagcagcag
                                                                        960
  ttcaacagca cgatccgcgt ggtcagcacc ctccccatcg cgcaccagga ctggctgagg
                                                                        1020
  qqcaaqqaqt tcaaqtqcaa agtccacaac aaggcactcc cggcccccat cgagaaaacc
  atctccaaag ccagagggca gcccctggag ccgaaggtct acaccatggg ccctccccgg
                                                                        1080
30gaggagctga gcagcaggtc ggtcagcctg acctgcatga tcaacggctt ctaccettcc
                                                                        1140
  gacatctcgg tggagtggga gaagaacggg aaggcagagg acaactacaa gaccacgccg
                                                                        1200
                                                                        1260
  qccqtqctqq acagcqacgg ctcctacttc ctctacaaca agctctcagt gcccacgagt
                                                                        1320
  qaqtqqcaqc qqqqcgacgt cttcacctgc tccgtgatgc acgaggcctt gcacaaccac
                                                                        1356
  tacacgcaga agtccatctc ccgctctccg ggtaaa
35
  <210> 19
  <211> 238
  <212> PRT
  <213> Oryctolagus cuniculus
40
  <220>
  <221> SITE
```

16

<222> (1)...(238)

<223> Xaa = any amino acid

<400> 19

5Met Asp Xaa Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp

1 5 10 15

Leu Pro Gly Ala Arg Cys Ala Leu Val Met Thr Gln Thr Pro Ala Ser 20 25 30

Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ser Ser

Gln Ser Val Tyr Asp Asn Asp Glu Leu Ser Trp Tyr Gln Gln Lys Pro
50 55 60

Gly Gln Pro Pro Lys Leu Leu Ile Tyr Leu Ala Ser Lys Leu Ala Ser 65 70 75 80

15Gly Val Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Ala 85 90 95

Leu Thr Ile Ser Gly Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys
100 105 110

Gln Ala Thr His Tyr Ser Ser Asp Trp Tyr Leu Thr Phe Gly Gly
O 115 120 125

Thr Glu Val Val Lys Gly Asp Pro Val Ala Pro Thr Val Leu Leu 130 135 140

Phe Pro Pro Ser Ser Asp Glu Val Ala Thr Gly Thr Val Thr Ile Val
145 150 155 160

25Cys Val Ala Asn Lys Tyr Phe Pro Asp Val Thr Val Thr Trp Glu Val 165 170 175

Asp Gly Thr Thr Gln Thr Thr Gly Ile Glu Asn Ser Lys Thr Pro Gln 180 185 190

Asn Ser Ala Asp Cys Thr Tyr Asn Leu Ser Ser Thr Leu Thr

Ser Thr Gln Tyr Asn Ser His Lys Glu Tyr Thr Cys Lys Val Thr Gln

Gly Thr Thr Ser Val Val Gln Ser Phe Ser Arg Lys Asn Cys 225 230 235

35

<210> 20

<211> 717

<212> DNA

<213> Oryctolagus cuniculus

40

<400> 20

atggacatra gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc

17

WO 03/045318 PCT/US02/37738

agatgtgccc	ttgtgatgac	ccagactcca	gcctccgtgt	ctgcagctgt	gggaggcaca	120
gtcaccatca	attgccagtc	cagtcagagt	gtttatgata	acgacgaatt	atcctggtat	180
cagcagaaac	cagggcagcc	tcccaagctc	ctgatctatc	tggcatccaa	gttggcatct	240
ggggtcccat	cccgattcaa	aggcagtgga	tctgggacac	agttcgctct	caccatcagc	300
5ggcgtgcagt	gtgacgatgc	tgccacttac	tactgtcaag	ccactcatta	tagtagtgat	360
tggtatctta	ctttcggcgg	agggaccgag	gtggtggtca	aaggtgatcc	agttgcacct	420
actgtcctcc	tcttcccacc	atctagcgat	gaggtggcaa	ctggaacagt	caccatcgtg	480
tgtgtggcga	ataaatactt	tcccgatgtc	accgtcacct	gggaggtgga	tggcaccacc	540
caaacaactg	gcatcgagaa	cagtaaaaca	ccgcagaatt	ctgcagattg	tacctacaac	600
10ctcagcagca	ctctgacact	gaccagcaca	cagtacaaca	gccacaaaga	gtacacctgc	660
aaggtgaccc	agggcacgac	ctcagtcgtc	cagagcttca	gtaggaagaa	ctgttaa	717

<210> 21

<211> 454

15<212> PRT

<213> Oryctolagus cuniculus

<400> 21

Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly Val His Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 25 Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Arg Ser 40 25Ser Tyr Asp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 55 Trp Val Gly Val Ile Ser Thr Ala Tyr Asn Ser His Tyr Ala Ser Trp 70 75 Ala Lys Gly Arg Phe Thr Ile Ser Arg Thr Ser Thr Thr Val Asp Leu 90 Lys Met Thr Ser Leu Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Gly Gly Ser Trp Leu Asp Leu Trp Gly Gln Gly Thr Leu Val Thr 120 35Val Ser Ser Gly Gln Pro Lys Ala Pro Ser Val Phe Pro Leu Ala Pro 135 Cys Cys Gly Asp Thr Pro Ser Ser Thr Val Thr Leu Gly Cys Leu Val 160 150 155 Lys Gly Tyr Leu Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Thr 165 170 Leu Thr Asn Gly Val Arg Thr Phe Pro Ser Val Arg Gln Ser Ser Gly 185 190 180

WO 03/045318

18

PCT/US02/37738

Leu Tyr Ser Leu Ser Ser Val. Val Ser Val Thr Ser Ser Ser Gln Pro 200 Val Thr Cys Asn Val Ala His Pro Ala Thr Asn Thr Lys Val Asp Lys 215 220 5Thr Val Ala Pro Ser Thr Cys Ser Lys Pro Thr Cys Pro Pro Pro Glu 230 235 Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp 250 245 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 260 265 Val Ser Gln Asp Asp Pro Glu Val Gln Phe Thr Trp Tyr Ile Asn Asn 280 . Glu Gln Val Arg Thr Ala Arg Pro Pro Leu Arg Glu Gln Gln Phe Asn 295 300 15Ser Thr Ile Arg Val Val Ser Thr Leu Pro Ile Ala His Gln Asp Trp 305 310 315 Leu Arg Gly Lys Glu Phe Lys Cys Lys Val His Asn Lys Ala Leu Pro 325 330 Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Arg Gly Gln Pro Leu Glu 340 345 20 Pro Lys Val Tyr Thr Met Gly Pro Pro Arg Glu Glu Leu Ser Ser Arg 360 Ser Val Ser Leu Thr Cys Met Ile Asn Gly Phe Tyr Pro Ser Asp Ile 375 25Ser Val Glu Trp Glu Lys Asn Gly Lys Ala Glu Asp Asn Tyr Lys Thr 395 390 Thr Pro Ala Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Asn Lys 410 Leu Ser Val Pro Thr Ser Glu Trp Gln Arg Gly Asp Val Phe Thr Cys 420 425 Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Ile 440 445 435 Ser Arg Ser Pro Gly Lys 450 35 <210> 22 <211> 1362 <212> PRT <213> Oryctolagus cuniculus <400> 22 Ala Thr Gly Gly Ala Gly Ala Cys Ala Gly Gly Cys Cys Thr Gly Cys

1				5					10					15	
Gly	Cys	Thr	Gly 20	Gly	Cys	Thr	Thr	Cys 25	Thr	Суѕ	Cys	Thr	Gly 30	Gly	Thr
Cys 5	Gly	Cys 35	Thr	Gly	Thr	Gly	Cys 40	Thr	Cys	Ala	Ala	Ala 45	Gly	Gly	Thr
Gly	Thr 50	Cys	Cys	Ala	Cys	Thr 55	Gly	Thr	Cys	Ala	Gly 60	Thr	Cys	G1y	Gly
Thr 65	Gly	Gly	Ala	Gly	Gly 70	Ala	Gly	Thr	Cys	Cys 75	Gly	Gly	Gly	Gly	Gly 80
10Thr	Cys	Gly	Cys	Cys 85	Thr	Gly	Gly	Thr	Cys 90	Ala	Cys	Gly	Cys	Cys 95	Thr
Gly	Gly	Gly	Ala 100	Cys	Ala	Cys	Cys	Cys 105	Суз	Thr	Gly	Ala	Cys 110	Ala	Cys
Thr 15	Cys	Ala 115	Cys	Cys	Thr	Gly	Cys 120	Ala	Cys	Ala	Gly	Cys 125	Суз	Thr	Cys
Thr	Gly 130	Gly	Ala	Thr	Thr	Cys 135	Thr	Cys	Суѕ	Cys	Gly 140	Cys	Ala	Gly	Cys
Ala 145	Gly	Cys	Thr	Ala	Cys 150	Gly	Ala	Суѕ	Ala	Thr 155	Gly	Ala	Gly	Cys	Thr 160
20Gly	Gly	Gly	Thr	Суs 165	Cys	Gly	Суз	Суѕ	Ala 170	Gly	Gly	Cys	Thr	Cys 175	Cys
Ala	Gly	Gly	Gly 180	Ala	Ala	Gly	Gly	Gl <u>y</u> 185	Gly	Cys	Thr	Gly	Gly 190	Ala	Ala
Thr 25	Gly	Gly 195	Gly	Thr	Cys	Gly	Gly 200	Ala	Gly	Thr	Cys	Ala 205	Thr	Thr	A1a
Gly	Thr 210	Ala	Суѕ	Thr	Gly	Cys 215	Thr	Thr	Ala	Thr	Ala 220	Ala	Cys	Thr	Cys
Ala 225	Cys	Ala	Cys	Thr	Ala 230	Cys	Gly	Cys	Gly	Ala 235	Gly	Cys	Thr	Gly	Gly 240
30Gly	Cys	Ala	Ala	Ala 245	Ala	Gly	Gly	Cys	Cys 250	Gly	Ala	Thr	Thr	Cys 255	Ala
Cys	Cys	Ala	Thr 260	Cys	Thr	Cys	Cys	Ala 265	Gly	Ala	Ala	Cys	Cys 270	Thr	Cys
Gly 35	Ala	Cys 275	Cys	Ala	Cys	Gly	Gly 280	Thr	Gly	Gly	Ala	Thr 285	Cys	Thr	Gly
Ala	Ala 290	Ala	Ala	Thr	Gly	Ala 295	Cys	Cys	Ala	Gly	Thr 300	Cys	Thr	Gly	Ala
Cys 305	Ala	Ala	Cys	Cys	Gly 310	Ala	Ala	Gly	Ala	Cys 315	Ala	Cys	Gly	Gly	Cys 320
40Cys	Ala	Cys	Cys	Thr 325	Ala	Thr	Thr	Thr	Cys 330	Thr	Gly	Thr	Gly	Cys 335	Cys
Ala	Gly	Ala	Gly	Gly	Gly	Gly	Gly	Thr	Ala	Gly	Thr	Thr	Gly	Gly	Thr

20

345 Thr Gly Gly Ala Thr Cys Thr Cys Thr Gly Gly Gly Cys Cys Ala 360 Gly Gly Gly Cys Ala Cys Cys Cys Thr Gly Gly Thr Cys Ala Cys Cys 375 Gly Thr Cys Thr Cys Cys Thr Cys Ala Gly Gly Cys Ala Ala Cys 390 Cys Thr Ala Ala Gly Gly Cys Thr Cys Cys Ala Thr Cys Ala Gly Thr 405 410 10Cys Thr Thr Cys Cys Cys Ala Cys Thr Gly Gly Cys Cys Cys Cys Cys 425 Thr Gly Cys Thr Gly Cys Gly Gly Gly Gly Ala Cys Ala Cys 440 Cys Cys Thr Cys Thr Ala Gly Cys Ala Cys Gly Gly Thr Gly Ala Cys 455 Cys Thr Thr Gly Gly Gly Cys Thr Gly Cys Cys Thr Gly Gly Thr Cys 470 Ala Ala Ala Gly Gly Cys Thr Ala Cys Cys Thr Cys Cys Gly Gly 490 20Ala Gly Cys Cys Ala Gly Thr Gly Ala Cys Cys Gly Thr Gly Ala Cys 505 Cys Thr Gly Gly Ala Ala Cys Thr Cys Gly Gly Cys Ala Cys Cys 520 Cys Thr Cys Ala Cys Cys Ala Ala Thr Gly Gly Gly Thr Ala Cys 535 540 Gly Cys Ala Cys Cys Thr Thr Cys Cys Cys Gly Thr Cys Cys Gly Thr 550 555 Cys Cys Gly Gly Cys Ala Gly Thr Cys Cys Thr Cys Ala Gly Gly Cys 570 30Cys Thr Cys Thr Ala Cys Thr Cys Gly Cys Thr Gly Ala Gly Cys Ala 585 Gly Cys Gly Thr Gly Gly Thr Gly Ala Gly Cys Gly Thr Gly Ala Cys Cys Thr Cys Ala Ala Gly Cys Ala Gly Cys Cys Ala Gly Cys Cys 620 610 615 Gly Thr Cys Ala Cys Cys Thr Gly Cys Ala Ala Cys Gly Thr Gly Gly 630 635 Cys Cys Cys Ala Cys Cys Ala Gly Cys Cys Ala Cys Cys Ala Ala 645 650 40Cys Ala Cys Cys Ala Ala Gly Thr Gly Gly Ala Cys Ala Ala Gly 665 Ala Cys Cys Gly Thr Thr Gly Cys Gly Cys Cys Thr Cys Gly Ala

21

675 680 Cys Ala Thr Gly Cys Ala Gly Cys Ala Gly Cys Cys Cys Ala Cys 695 700 Gly Thr Gly Cys Cys Cys Ala Cys Cys Cys Cys Cys Thr Gly Ala Ala 715 710 Cys Thr Cys Cys Thr Gly Gly Gly Gly Gly Gly Ala Cys Cys Gly Thr 730 Cys Thr Gly Thr Cys Thr Thr Cys Ala Thr Cys Thr Thr Cys Cys 745 10Cys Cys Cys Ala Ala Ala Cys Cys Cys Ala Ala Gly Gly Ala Cys 760 Ala Cys Cys Cys Thr Cys Ala Thr Gly Ala Thr Cys Thr Cys Ala Cys 775 Gly Cys Ala Cys Cys Cys Cys Gly Ala Gly Gly Thr Cys Ala Cys 795 790 Ala Thr Gly Cys Gly Thr Gly Gly Thr Gly Gly Thr Gly Gly Ala Cys 810 805 Gly Thr Gly Ala Gly Cys Cys Ala Gly Gly Ala Thr Gly Ala Cys Cys 825 20Cys Cys Gly Ala Gly Gly Thr Gly Cys Ala Gly Thr Thr Cys Ala Cys 840 Ala Thr Gly Gly Thr Ala Cys Ala Thr Ala Ala Ala Cys Ala Ala Cys Gly Ala Gly Cys Ala Gly Gly Thr Gly Cys Gly Cys Ala Cys Cys Gly 870 875 Cys Cys Cys Gly Gly Cys Cys Gly Cys Gly Cys Thr Ala Cys Gly 885 890 Gly Gly Ala Gly Cys Ala Gly Cys Ala Gly Thr Thr Cys Ala Ala Cys 905 900 30Ala Gly Cys Ala Cys Gly Ala Thr Cys Cys Gly Cys Gly Thr Gly Gly 920 Thr Cys Ala Gly Cys Ala Cys Cys Cys Thr Cys Cys Cys Cys Ala Thr 935 Cys Gly Cys Gly Cys Ala Cys Cys Ala Gly Gly Ala Cys Thr Gly Gly 35945 950 Cys Thr Gly Ala Gly Gly Gly Cys Ala Ala Gly Gly Ala Gly Thr Thr Cys Ala Ala Gly Thr Gly Cys Ala Ala Ala Gly Thr Cys Cys Ala 985 40Cys Ala Ala Cys Ala Ala Gly Gly Cys Ala Cys Thr Cys Cys Cys Gly 1005 1000 Gly Cys Cys Cys Cys Ala Thr Cys Gly Ala Gly Ala Ala Ala Ala WO 03/045318

		1010)				1015	,				1020)			
	Cys	Cys	Ala	Thr	Cys	Thr	Cys	Cys	Ala	Ala	Ala	Gly	Суѕ	Cys	Ala	Gly
	1025	,				1030)				1035	5				1040
	Ala	Gly	Gly	Gly	Cys	Ala	Gly	Cys	Cys	Cys	Cys	Thr	Gly	Gly	Ala	Gly
5					1045	5				1050)				1055	,
	Cys	Cys	Gly	Ala	Ala	Gly	Gly	Thr	Cys	Thr	Ala	Cys	Ala	Cys	Cys	Ala
				1060)				1065	5				1070)	
	Thr	Gly	Gly	Gly	Cys	Cys	Cys	Thr	Cys	Cys	Cys	Cys	Gly	Gly	Gly	Ala
•			1075	5				1080)				1085	5		
10	Gly	Gly	Ala	Gly	Cys	Thr	Gly	Ala	Gly	Cys	Ala	Gly	Cys	Ala	Gly	Gly
	_	1090)				1095	5				1100)			
	Thr	Cys	Gly	Gly	Thr	Cys	Ala	Gly	Cys	Cys	Thr	Gly	Ala	Cys	Cys	Thr
	1105			_		1110					1115					1120
	Gly	Cys	Ala	Thr	Gly	Ala	Thr	Cys	Ala	Ala	Cys	Gly	Gly	Cys	Thr	Thr
15	,	_			1125	5				1130)				1135	5
	Cys	Thr	Ala	Cys	Cys	Cys	Thr	Thr	Cys	Cys	Gly	Ala	Cys	Ala	Thr	Cys
				1140)				1145	5				1150)	
	Thr	Cys	Gly	Gly	Thr	Gly	Gly	Ala	Gly	Thr	Gly	Gly	Gly	Ala	Gly	Ala
			1155	5				1160)				1165	5		
20	Ala	Gly	Ala	Ala	Cys	Gly	Gly	Gly	Ala	Ala	Gly	Gly	Cys	Ala	Gly	Ala
		1170)				1175	5				1180)			
	Gly	Gly	Ala	Cys	Ala	Ala	Cys	Thr	Ala	Cys	Ala	Ala	Gly	Ala	Cys	Cys
	1185	5				1190)				119	5				1200
	Ala	Cys	Gly	Cys	Cys	Gly	Gly	Cys	Cys	Gly	Thr	Gly	Cys	Thr	Gly	Gly
25	5				120	5				121)				1215	5
	Ala	Cys	Ala	Gly	Cys	Gly	Ala	Cys	Gly	Gly	Cys	Thr	Cys	Cys	Thr	Ala
				1220)				1225	5				1230)	
	Cys	Thr	Thr	Cys	Cys	Thr	Cys	Thr	Ala	Cys	Ala	Ala	Cys	Ala	Ala	Gly
			123	5				1240)				1245	5		
30	Cys	Thr	Cys	Thr	Cys	Ala	Gly	Thr	Gly	Cys	Cys	Суѕ	Ala	Cys	Gly	Ala
		1250)				125	5				1260)			
	Gly	Thr	Gly	Ala	Gly	Thr	Gly	Gly	Cys	Ala	Gly	Cys	Gly	Gly	Gly	Gly
	1265	5				1270	0				127	5				1280
	Cys	Gly	Ala	Cys	Gly	Thr	-Cys	Thr	Thr	Cys	Ala	Cys	Cys	Thr	Gly	Суѕ
35	5				128	5				129	0				129	5
	Thr	Cys	Cys	Gly	Thr	Gly	Ala	Thr	Gly	Cys	Ala	Cys	Gly	Ala	Gly	Gly
				1300)				130	5				1310)	
	Cys	Cys	Thr	Thr	Gly	Cys	Ala	Cys	Ala	Ala	Cys	Cys	Ala	Cys	Thr	Ala
			131	5				1320	0				132	5		
4()Cys	Ala	Cys	Gly	Cys	Ala	Gly	Ala	Ala	Gly	Thr	Cys	Cys	Ala	Thr	Cys
		1330	0				133	5				134)			
	Thr	Cvs	Cvs	Cvs	Glv	Cvs	Thr	Cvs	Thr	Cvs	Cvs	Glv	Glv	Glv	Thr	Ala

23

1360

1355 1345 1350 Ala Ala 5<210> 23 <211> 5 <212> PRT <213> Oryctolagus cuniculus 10<400> 23 Ser Tyr Asp Met Thr 5 <210> 24 15<211> 5 <212> PRT <213> Oryctolagus cuniculus <400> 24 20Ser Tyr Asp Met Ser 5 1 <210> 25 <211> 5 25<212> PRT <213> Oryctolagus cuniculus <400> 25 Asp Tyr Asp Leu Ser 30 1 <210> 26 <211> 5 <212> PRT 35<213> Oryctolagus cuniculus <400> 26 Ser Tyr Asp Met Ser 5 1 40 <210> 27

<211> 8

```
<212> PRT
  <213> Oryctolagus cuniculus
  <400> 27
 5 \mbox{Tyr} Ala Ser Gly Ser Thr Tyr Tyr
  <210> 28
  <211> 8
10<212> PRT
  <213> Oryctolagus cuniculus
 <400> 28
 Ser Ser Ser Gly Thr Thr Tyr Tyr
15 1
  <210> 29
  <211> 8
  <212> PRT
20<213> Oryctolagus cuniculus
  <400> 29
  Tyr Ala Ser Gly Ser Thr Tyr Tyr
25
  <210> 30
  <211> 8
 <212> PRT
  <213> Oryctolagus cuniculus
30
  <400> 30
  Ala Ile Asp Gly Asn Pro Tyr Tyr
   1
                   5
35<210> 31
  <211> 8
  <212> PRT
  <213> Oryctolagus cuniculus
40<400> 31
  Ser Thr Ala Tyr Asn Ser His Tyr
                   5
   1
```

```
<210> 32
 <211> 11
 <212> PRT
 <213> Oryctolagus cuniculus
 <400> 32
 Glu His Ala Gly Tyr Ser Gly Asp Thr Gly His
                   5
10<210> 33
 <211> 8
 <212> PRT
 <213> Oryctolagus cuniculus
15<400> 33
 Glu Gly Ala Gly Val Ser Met Thr
  <210> 34
20<211> 8
  <212> PRT
  <213> Oryctolagus cuniculus
  <400> 34
25Glu Asp Ala Gly Phe Ser Asn Ala
                   5
  <210> 35
  <211> 4
30<212> PRT
  <213> Oryctolagus cuniculus
  <400> 35
  Gly Ala Gly Asp
35 1
  <210> 36
  <211> 6
  <212> PRT
40<213> Oryctolagus cuniculus
  <400> 36
```

26

```
Gly Gly Ser Trp Leu Asp
 <210> 37
5<211> 5
 <212> PRT
 <213> Oryctolagus cuniculus
  <400> 37
10Arg Cys Ala Tyr Asp
 <210> 38
 <211> 6
15<212> PRT
  <213> Oryctolagus cuniculus
 <400> 38
 Arg Cys Ala Asp Val Val
20 1
 <210> 39
 <211> 5
 <212> PRT
25<213> Oryctolagus cuniculus
 <400> 39
 Arg Cys Ala Leu Val
  1
30
  <210> 40
 <211> 6
 <212> PRT
  <213> Oryctolagus cuniculus
35
  <400> 40
  Gln Ser Ile Ser Thr Tyr
40<210> 41
  <211> 6
```

<212> PRT

```
<213> Oryctolagus cuniculus
 <400> 41
 Gln Ser Val Ser Ser Tyr
 5 1
                 5
 <210> 42
 <211> 6
 <212> PRT
10<213> Oryctolagus cuniculus
 <400> 42
  Glu Ser Ile Ser Asn Tyr
15
 <210> 43
 <211> 8
 <212> PRT
 <213> Oryctolagus cuniculus
20
  <400> 43
  Lys Asn Val Tyr Asn Asn Asn Trp
  1
                 5
25<210> 44
 <211> 12
  <212> PRT
  <213> Oryctolagus cuniculus
30<400> 44
  Gln Gln Gly Tyr Thr His Ser Asn Val Asp Asn Val
                                     10
                 5
  <210> 45
35<211> 12
  <212> PRT
  <213> Oryctolagus cuniculus
40Gln Gln Gly Tyr Ser Ile Ser Asp Ile Asp Asn Ala
                  5
                                     10
```

28

```
<210> 46
 <211> 14
 <212> PRT
 <213> Oryctolagus cuniculus
 <400> 46
  Gln Cys Thr Ser Gly Gly Lys Phe Ile Ser Asp Gly Ala Ala
                                      10
10<210> 47
 <211> 11
 <212> PRT
  <213> Oryctolagus cuniculus
15<400> 47
 Ala Gly Asp Tyr Ser Ser Ser Ser Asp Asn Gly
                  5
  <210> 48
20<211> 12
 <212> PRT
  <213> Oryctolagus cuniculus
 <400> 48
25Gln Ala Thr His Tyr Ser Ser Asp Trp Leu Thr Tyr
                  5
 1
                                      10
 <210> 49
 <211> 5
30<212> RNA
  <213> Artificial Sequence
  <220>
  <223> AU-rich sequence
35
  <400> 49
  auuua
 <210> 50
40<211> 6
  <212> RNA
```

<213> Artificial Sequence

29

<220>

<223> AU-rich sequence

<400> 50

5auuuua

<210> 51

<211> 7

<212> RNA

10<213> Artificial Sequence

<220>

<223> AU-rich sequence

15<400> 51

auuuuua 7

<210> 52

<211> 157

20<212> PRT

<213> Oryctolagus cuniculus

<400> 52

Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly 5 10

Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 25

Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser 40

30Ser Tyr Asp Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 55

Trp Ile Gly Ile Ile Tyr Ala Ser Gly Ser Thr Tyr Tyr Ala Ser Trp

Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90

Glu Val Thr Ser Leu Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ser 105

Arg Glu His Ala Gly Tyr Ser Gly Asp Thr Gly His Leu Trp Gly Pro 120

40Gly Thr Leu Val Thr Val Ser Ser Gly Gln Pro Lys Ala Pro Ser Val 135

Phe Pro Leu Ala Pro Cys Cys Gly Asp Thr Pro Ser Ser

30

150 155 145 <210> 53 <211> 154 5<212> PRT <213> Oryctolagus cuniculus <400> 53 Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly 10 1 Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Ser Pro 25 20 Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser 15Ser Tyr Asp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Tyr Ile Gly Ile Ile Ser Ser Ser Gly Thr Thr Tyr Tyr Ala Asn Trp 70 75 Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 90 Lys Val Thr Ser Pro Thr Ile Gly Asp Thr Ala Thr Tyr Phe Cys Ala 105 Arg Glu Gly Ala Gly Val Ser Met Thr Leu Trp Gly Pro Gly Thr Leu 120 25Val Thr Val Ser Ser Gly Gln Pro Lys Ala Pro Ser Val Phe Pro Leu 135 140 130 Ala Pro Cys Cys Gly Asp Thr Pro Ser Ser 145 150 30<210> 54 <211> 154 <212> PRT <213> Oryctolagus cuniculus 35<400> 54 Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly 10 Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro

25

40Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser 35 40 45

Ser Tyr Asp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu

31 55 Trp Ile Gly Ile Ile Tyr Ala Ser Gly Ser Thr Tyr Tyr Ala Ser Trp 70 75 Ala Lys Gly Arg Val Ala Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 90 Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 105 100 Arg Glu Asp Ala Gly Phe Ser Asn Ala Leu Trp Gly Pro Gly Thr Leu 120 10Val Thr Val Ser Ser Gly Gln Pro Lys Ala Pro Ser Val Phe Pro Leu 135 140 Ala Pro Cys Cys Gly Asp Thr Pro Ser Ser 145 150 15<210> 55 <211> 147 <212> PRT <213> Oryctolagus cuniculus 20<400> 55 Met Asp Met Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Trp 5 10 Leu Pro Gly Ala Arg Cys Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser 25 25Val Glu Val Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Ser 40 Gln Ser Ile Ser Thr Tyr Leu Asp Trp Tyr Gln Gln Lys Pro Gly Gln 55 Pro Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asp Leu Ala Ser Gly Val Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr 90 Ile Ser Asp Leu Glu Cys Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 105

35Gly Tyr Thr His Ser Asn Val Asp Asn Val Phe Gly Gly Gly Thr Glu 120 125

Val Val Lys Gly Asp Pro Val Ala Pro Thr Val Leu Leu Phe Pro 130 135 140

Pro Ser Ser

40145

<210> 56

32

PCT/US02/37738

<211> 147

WO 03/045318

<212> PRT

<213> Oryctolagus cuniculus

5<400> 56

Met Asp Met Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Trp

1 5 10 15

Leu Pro Gly Ala Arg Cys Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser 20 25 30

10Val Glu Val Ala Val Gly Gly Thr Val Ala Ile Lys Cys Gln Ala Ser 35 40 45

Gln Ser Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
50 55 60

Pro Pro Lys Pro Leu Ile Tyr Glu Ala Ser Met Leu Ala Ala Gly Val 1565 70 75 80

Ser Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr

Ile Ser Asp Leu Glu Cys Asp Asp Ala Ala Thr Tyr Tyr Cys Gln Gln
100 105 110

20Gly Tyr Ser Ile Ser Asp Ile Asp Asn Ala Phe Gly Gly Gly Thr Glu 115 120 125

Val Val Val Lys Gly Asp Pro Val Ala Pro Thr Val Leu Leu Phe Pro 130 135 140

Pro Ser Ser

25145

<210> 57

<211> 150

<212> PRT

30<213> Oryctolagus cuniculus

<400> 57

Met Asp Met Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp

1 5 10 15

35Leu Pro Gly Ala Arg Cys Ala Asp Val Val Met Thr Gln Thr Pro Ala

Ser Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ala

Ser Glu Ser Ile Ser Asn Tyr Leu Ser Trp Tyr Gln Gln Lys Pro Gly
55 60

Gln Pro Pro Lys Leu Leu Ile Tyr Arg Thr Ser Thr Leu Ala Ser Gly 65 70 75 80

33 Val Ser Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Glu Tyr Thr Leu 90 Thr Ile Ser Gly Val Gln Cys Asp Asp Val Ala Thr Tyr Tyr Cys Gln 100 105 5Cys Thr Ser Gly Gly Lys Phe Ile Ser Asp Gly Ala Ala Phe Gly Gly 120 Gly Thr Glu Val Val Lys Gly Asp Pro Val Ala Pro Thr Val Leu 135 Leu Phe Pro Pro Ser Ser 10145 150 <210> 58 <211> 236 <212> PRT 15<213> Oryctolagus cuniculus Met Asp Met Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Trp 20Leu Pro Gly Ala Arg Cys Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser 25 Val Glu Val Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Ser 40 Gln Ser Ile Ser Thr Tyr Leu Asp Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 25

5 50 55 60

Pro Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asp Leu Ala Ser Gly Val
65 70 75 80

Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr 85 90 95

30Ile Ser Asp Leu Glu Cys Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Gln
100 105 110

Gly Tyr Thr His Ser Asn Val Asp Asn Val Phe Gly Gly Gly Thr Glu 115 120 125

Val Val Val Lys Gly Asp Pro Val Ala Pro Thr Val Leu Leu Phe Pro

Pro Ser Ser Asp Glu Val Ala Thr Gly Thr Val Thr Ile Val Cys Val
145 150 155 160

Ala Asn Lys Tyr Phe Pro Asp Val Thr Val Thr Trp Glu Val Asp Gly
165 170 175

40Thr Thr Gln Thr Thr Gly Ile Glu Asn Ser Lys Thr Pro Gln Asn Ser 180 185 190

Ala Asp Cys Thr Tyr Asn Leu Ser Ser Thr Leu Thr Leu Thr Ser Thr

```
195
                              200
                                                  205
  Gln Tyr Asn Ser His Lys Glu Tyr Thr Cys Lys Val Thr Gln Gly Thr
                          215
  Thr Ser Val Val Gln Ser Phe Ser Arg Lys Asn Cys
 5225
                      230
                                          235
  <210> 59
  <211> 711
  <212> DNA
10<213> Oryctolagus cuniculus
 <400> 59
  atggacatga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc
                                                                          60
  agatgtgcct atgatatgac ccagactcca gcctctgtgg aggtagctgt gggaggcaca
                                                                         120
15gtcaccatca agtgccaggc cagtcagagc attagtacct acttagactg gtatcagcag
                                                                         180
  aaaccaqqqc agcctcccaa gctcctgatc tatgatgcat ccgatctggc atctgggtc
                                                                         240
                                                                         300
  ccatcgcggt tcaaaggcag tggatctggg acacagttca ctctcaccat cagcgacctg
  gagtgtgccg atgctgccac ttactactgt caacagggtt atacacatag taatgttgat
                                                                         360
  aatgttttcg gcggagggac cgaggtggtg gtcaaaggtg atccagttgc acctactgtc
                                                                         420
20ctcctcttcc caccatctag cgatgaggtg gcaactggaa cagtcaccat cgtgtgtgt
                                                                         480
  gcgaataaat actttcccga tgtcaccgtc acctgggagg tggatggcac cacccaaaca
                                                                         540
                                                                         600
  actggcatcg agaacagtaa aacaccgcag aattctgcag attgtaccta caacctcagc
  agcactetqa cactqaccaq cacacaqtac aacaqccaca aagagtacac etqcaaggtg
                                                                         660
  acccagggca cgacctcagt cgtccagagc ttcagtagga agaactgtta a
                                                                         711
25
 <210> 60
 <211> 456
 <212> PRT
 <213> Oryctolagus cuniculus
30
  <400> 60
 Met Glu Thr Gly Leu Arg Trp Leu Leu Val Ala Val Leu Lys Gly
                                      10
 Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro
35
                                  25
                                                      30
  Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser
                              40
 Ser Tyr Asp Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu
                          55
                                              60
40Trp Ile Gly Ile Ile Tyr Ala Ser Gly Thr Thr Tyr Tyr Ala Asn Trp
  65
                                                               80
                    ! 70
                                          75
 Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu
```

				85					90					95	
Lys	. Val	Thr	Ser	Pro	Thr	Ile	Gly	Asp	Thr	Ala	Thr	Tyr	Phe	Cys	Ala
			100	•				105	,				110		
Arg	G1u	Gly	A1a	Gly	Val	Ser	Met	Thr	Leu	Trp	Gly	Pro	Gly	Thr	Let
5		115					120)				125			
Val	Thr	Val	Ser	Ser	Gly	Gln	Pro	Lys	Ala	Pro	Ser	Val	Phe	Pro	Lei
	130	1				135					140)			
Ala	Pro	Суз	Cys	Gly	Asp	Thr	Pro	Ser	Ser	Thr	Val	Thr	Leu	Gly	Cys
145					150					155					160
10Leu	Val	Lys	Gly	Tyr	Leu	Pro	Glu	Pro	Val	Thr	Val	Thr	Trp	Asn	Ser
				165					170					175	
Gly	Thr	Leu	Thr	Asn	Gly	Val	Arg	Thr	Phe	Pro	Ser	Val	Arg	Gln	Ser
			180					185					190		
Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Ser	Val	Thr	Ser	Ser	Ser
15		195					200					205			
Gln	Pro	Val	Thr	Суѕ	Asn	Val	Ala	His	Pro	Ala	Thr	Asn	Thr	Lys	Val
	210					215					220				
Asp	Lys	Thr	Val	Ala	Pro	Ser	Thr	Cys	Ser	Lys	Pro	Thr	Cys	Pro	Pro
225					230					235					240
20Pro	Glu	Leu	Leu	Gly	Gly	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Lys	Pro
				245					250					255	
Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys	Val	Val
			260					265					270		
	Asp	Val	Ser	Gln	Asp	Asp	Pro	Glu	Val	Gln	Phe	Thr	Trp	Tyr	Ile
25		275					280					285			
Asn		Glu	Gln	Val	Arg		Ala	Arg	Pro	Pro	Leu	Arg	G1u	Gln	Gln
	290	_				295					300				
	Asn	Ser	Thr	Ile		Val	Val	Ser	Thr	Leu	Pro	Ile	Ala	His	Gln
305	_	_	_		310					315					320
30Asp	Trp	Leu	Arg		Lys	Glu	Phe	Lys		Lys	Val	His	Asn	Lys	Ala
.	D		_	325		_	•		330					335	
Leu	Pro	Ala		Ile	GLu	Lys	Thr		Ser	Lys	Ala	Arg		Gln	Pro
7	G1		340		_			345	_				350		
	GIU	Pro	гàг	Val	Tyr	Thr		Gly	Pro	Pro	Arg		Glu	Leu	Ser
35	7	355		_	_		360					365			
ser		Ser	Val	Ser	Leu		Cys	Met	Ile	Asn		Phe	Tyr	Pro	Ser
7.00	370	C				375	_	_			380				
385	тте	Ser	val	GLU		Glu	гуѕ	Asn	СŢĀ		Ala	Glu	Asp	Asn	
	Th∽	Th ∽	Dw-	73.7	390	.	7	0 -	ъ.	395	_	_			400
40Lys	TIIT	TIIL	rro		val	ьеи	Asp	ser		GLY	Ser	Tyr	Phe		Tyr
Aen	Lve	Leu	S	405	D	m L	C	C1	410	6 1	7			415	
11011	ټ و س	⊒e u	2GI	v al T	LIO	1117	aer	17 11	מידו	1-117	ATO	(- 1 37	Acn	Val	Dha

36

420 425 430 Thr Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 435 445 Ser Ile Ser Arg Ser Pro Gly Lys 450 <210> 61 <211> 1368 <212> DNA 10<213> Oryctolagus cuniculus <400> 61 atggagacag gcctgcgctg gcttctcctg gtcgctgtgc tcaaaqqtqt ccaqtqtcaq 60 teggtggagg agteeggggg tegeetggte aegeetggga cacecetgae aeteaeetge 120 15acagtetetg gatteteeet cageagetae gacatgacet gggteegeea ggeteeaggg 180 aaggggctgg aatggatcgg aatcatttat gctagtggta ccacatacta cqcqaactqq 240 gcgaaaggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgaa aqtcaccaqt 300 ccgacaatcg gggacacggc cacctatttc tgtgccagag agggggctgg tgttagtatg 360 accttgtggg gcccaggcac cctggtcacc gtctcctcag ggcaacctaa ggctccatca 420 20gtetteccae tggececetg etgeggggae acaeceteta geaeggtgae ettgggetge 480 ctggtcaaag gctacctccc ggagccagtg accgtgacct ggaactcggg caccctcacc 540 aatggggtac gcaccttccc gtccgtccgg cagtcctcag gcctctactc gctgagcagc 600 gtggtgagcg tgacctcaag cagccagccc gtcacctgca acgtggccca cccagccacc 660 aacaccaaagi tggacaagac cgttgcgccc tcgacatgca gcaagcccac gtgcccaccc 720 25cctgaactcc tggggggacc gtctgtcttc atcttccccc caaaacccaa ggacacctt 780 atgateteae geaceeega ggteacatge gtggtggtgg aegtgageea ggatgaceee 840 gaggtgcagt tcacatggta cataaacaac gagcaggtgc gcaccgcccg gccgccgcta 900 cgggagcagc agttcaacag cacgatccgc gtggtcagca ccctccccat cgcgcaccag 960 gactggctga ggggcaagga gttcaagtgc aaagtccaca acaaggcact cccggcccc 1020 30atcgagaaaa ccatctccaa agccagaggg cagcccctgg agccgaaggt ctacaccatg 1080 ggccctcccc gggaggagct gagcagcagg tcggtcagcc tgacctgcat gatcaacggc 1140 ttctaccctt ccgacatctc ggtggagtgg gagaagaacg ggaaggcaga ggacaactac 1200 aagaccacgc cggccgtgct ggacagcgac ggctcctact tcctctacaa caaqctctca 1260 gtgcccacga gtgagtggca gcggggcgac gtcttcacct gctccgtgat gcacgaggcc 1320 35ttgcacaacc actacacgca gaagtccatc tcccgctctc cgggtaaa 1368 <210> 62

<211> 236

<212> PRT

40<213> Oryctolagus cuniculus

<400> 62

WO 03/045318

37

PCT/US02/37738

Met	Asp	Met	Arg	Ala	Pro	Thr	Gln	Leu	Leu	Gly	Leu	Leu	Leu	Leu	Trp	
1				5					10					15		
Leu	Pro	Gly	Ala 20	Arg	Cys	Ala	Tyr	Asp 25	Met	Thr	Gln	Thr	Pro 30	Ala	Ser	
5Val	Glu	Val		Val	Glv	Glv	Thr		Ala	Ile	Lvs	Cvs		Ala	Ser	
		35			1	2	40				-1-	45				
Gln	Ser 50	Val	Ser	Ser	Tyr	Leu 55	Ala	Trp	Tyr	Gln	Gln 60	Lys	Pro	Gly	Gln	
Pro		Lvs	Pro	Leu	Ile		Glu	Ala	Ser	Met		Ala	Ala	Glv	Val	
1065		-			70	-				75				2	80	
Ser	Ser	Arg	Phe	Lys 85	Gly	Ser	Gly	Ser	Gly 90	Thr	Asp	Phe	Thr	Leu 95	Thr	
Ile	Ser	Asp	Leu 100		Cys	Asp	Asp	Ala 105		Thr	туг	Tyr	Cys		Gln	
15Gly	Tyr			Ser	Asp	Ile	_		Ala	Phe	Gly	-		Thr	Glu	
v. l	17-1	115	T	C1	7	D	120	71-	D	m 1	**- 1	125	T	Dl	D	
Val	130	Val	ту	GIY	ASP	135	Val	ATG	PIO	Thr	140	теп	ьец	Pne	Pro	
Pro	Ser	Ser	Asp	Glu	Val	Ala	Thr	Gly	Thr	Val	Thr	Ile	Val	Cys	Val	
20145					150					155					160	
Ala	Asn	Lys	Tyr	Phe 165	Pro	Asp	Val	Thr		Thr	Trp	Glu	Val	_	Gly	
ሞh r	Thr	Gln	Thr		Gl v	Tlo	Glu	A en	170	Lys	Thr	Pro	Gln.	175	Sor	
1112	1111	OIII	180	1111	СТУ	116	Gru	185	Der	пуз	1111	rio	190	ASII	Ser	
25Ala	Asp	Cys		Tyr	Asn	Leu	Ser		Thr	Leu	Thr	Leu		Ser	Thr	
	•	195		-			200					205				
Gln		Asn	Ser	His	Lys		Tyr	Thr	Cys	Lys		Thr	Gln	Gly	Thr	
	210					215	_				220					
	Ser	Val	Val	Gln		Phe	Ser	Arg	Lys	Asn	Cys					
30225					230					235						
<210)> 63	3														
<211	.> 71	.1														
<212	2> DN	IA														
35<213	> Or	ycto	olagu	ıs cu	ınicu	ılus										
<400)> 63	}														
atgg	acat	ga g	ggcc	ccca	ic to	aact	gctg	ggg	ctcc	tgc	tgct	ctgg	ct c	ccag	gtgcc	60
agat	gtgc	ct a	tgat	atga	ic co	agac	tcca	gcc	tctg	ıtgg	aggt	agct	gt g	ggag	gcaca	120
40gtcg	ccat	ca a	gtgc	cago	jc ca	gtca	gago	gtt	agta	gtt	actt	agco	tg g	tato	agcag	180
aaac	cagg	gc a	gcct	ccca	a go	ccct	gato	: tac	gaag	cat	ccat	gctg	gc g	gete	gggtc	240
tcat	cgcg	gt t	caaa	iggca	ig tg	gato	tgga	aca	gact	tca	ctct	cacc	at c	ageg	acctg	300

gag	tgtg	acg	atgc	tgcc	ac t	tact	attg	t ca	acag	ggtt	att	ctat	cag	tgat	attgat	
aat	gctt	tcg	gcgg	aggg	ac c	gagg	tggt	g gt	caaa	ggtg	atc	cagt	tgc	acct	actgtc	
ctc	ctct	tcc	cacc	atct	ag c	gatg	aggt	g gc	aact	ggaa	cag	tcac	cat	cgtg	tgtgtg	
gcg	aata	aat	actt	tccc	ga t	gtca	ccgt	c ac	ctgg	gagg	tgg	atgg	cac	cacc	caaaca	
5act	ggca	tcg	agaa	cagt	aa a	acac	cgca	g aa	ttct	gcag	att	gtac	cta	caac	ctcagc	
agc	actc	tga	cact	gacc	ag c	acac	agta	c aa	cagc	caca	aag	agta	cac	ctgc	aaggtg	
acc	cagg	gca	cgac	ctca	gt c	gtcc	agag	c tt	cagt	agga	aga	actg	tta	a		
	0> 6															
10<21	1> 4	59							-							
<21	2> P	RT														
<21	3> 0:	ryct	olag	us ci	unic	ulus										
	0> 6															
15Met	Glu	Thr	Gly		Arg	Trp	Leu	Leu		Val	Ala	Val	Leu	_	Gly	
1		_		5					10					15		
Val	GIn	Cys	Gln	Ser	Val	Glu	Glu		Gly	Gly	Arg	Leu		Ser	Pro	
		_	20				_	25					30			
	Thr		Leu	Thr	Leu	Thr		Thr	Ala	Ser	Gly		Ser	Leu	Ser	
20		35		_	_		40			_		45				
ser		Asp	Met	Ser	Trp		Arg	Gln	Ala	Pro	_	Lys	Gly	Leu	Glu	
	50	63	T 3 -	T. 1 -	•	55	_	- 23	_		60	_			_	
	ire	ста	Ile	TIE		Ser	Ser	GLY	Ser		Tyr	Tyr	Ala	Ser	=	
65 2521-	T	C1	7	Db -	70	T1.	G	7	m1	75 2	 1			_	80	
25Ala	ъу	GLY	ALG	85	IHL	тте	ser	гда		ser	Thr	Thr	vaı		Leu	
Glu	Wal	ሞኮ ~	Sor		mb.r	Πh⊶	C1	7.00	90 mb~	71.	መኤኤ	m	Dh.	95	0	
GIU	Val	1111	Ser 100	Deu	1111	1111	GIU	105	1111	мта	Int	Tyr		Cys	Ser	
Ara	Glu	His	Ala	Glv	Tur	Ser	Glv		Thr	Gl v	uie	Lon	110	C1++	Dro	
30		115	****	OLY	- 7-	DCI	120	лор	1111	GIY	1113	125	тър	GTĀ	FIO	
_	Thr		Val	Thr	Val	Ser		Glv	Gln	Pro	Lvs		Pro	Ser	Val	
	130					135					140		110	DCI	Val	
Phe		Leu	Ala	Pro	Cvs		Glv		Thr	Pro		Ser	Thr	Val	Thr	
145					150		2			155				• • • •	160	
35Leu	Gly	Cys	Leu	Val		Glv	Tvr	Leu	Pro		Pro	Val	Thr	Val		
	_	_		165	•	_	-		170					175		
Trp	Asn	Ser	Gly	Thr	Leu	Thr	Asn	Gly	Val	Arg	Thr	Phe	Pro		Val	
			180					185		_			190			
Arg	Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Ser	Va1	Thr	
10		195		-		-	200					205				
Ser	Ser	Ser	Gln	Pro	Val	Thr		Asn	Val	Ala	His		Ala	Thr	Asn	
	210					215	-				220					

WO 03/045318

39

PCT/US02/37738

Thr	Lys	Val	Asp	Lys	Thr	Val	Ala	Pro	Ser	Thr	Cys	Ser	Lys	Pro	Thr	
225			•		230					235					240	
Cys	Pro	Pro	Pro	Glu 245	Leu	Leu	Gly	Gly	Pro 250	Ser	Val	Phe	Ile	Phe 255	Pro	
5Pro	Lys	Pro	Lys		Thr	Leu	Met	Ile		Ara	Thr	Pro	Glu		Thr	
	•		260					265		3			270			
Cys	Val	Val		Asp	Val	Ser	Gln	Asp	Asp	Pro	Glu	Val		Phe	Thr	
		275					280	_	_			285				
Trp	Tyr	Ile	Asn	Asn	Glu	Gln	Val	Arg	Thr	Ala	Arg	Pro	Pro	Leu	Arg	
10	290			,		295					300					
Glu	Gln	Gln	Phe	Asn	Ser	Thr	Ile	Arg	Val	Val	Ser	Thr	Leu	Pro	Ile	
305					310					315					320	
Ala	His	Gln	Asp	Trp	Leu	Arg	Gly	Lys	Glu	Phe	Lys	Cys	Lys	Val	His	
				325					330					335		
15Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Arg	
			340					345					350			
Gly	Gln		Leu	Glu	Pro	Lys	Val	Tyr	Thr	Met	Gly	Pro	Pro	Arg	Glu	
		355					360					365				
	Leu	Ser	Ser	Arg	Ser		Ser	Leu	Thr	Cys		Ile	Asn	Gly	Phe	
20	370					375					380					
	Pro	Ser	Asp	Ile		Va1	Glu	Trp	Glu		Asn	Gly	Lys	Ala		
385	-	_	_		390	_			_	395	_	_		_	400	
Asp	Asn	Tyr	гàг		Thr	Pro	А1а	Val		Asp	Ser	Asp	Gly		Tyr	
25 Db o	T 0.11	П	7	405	T	C	17 1	D	410	0	61	m	C1	415	63	
25Phe	ьеи	ıyı	420	гуѕ	ьeu	Ser	Val	425	rnr	Ser	GIU	Trp		Arg	СТĀ	
Asn	Val	Dha		Cvc	Sor	Wa l	Mot		Clu	71-	T 0.11	и.	430	ni o	M* ***	
дор	4 41	435	1111	Cys	261	Val	440	пто	GIU	мта	ъеп	445	ASII	птэ	TAL	
Thr	Gln		Ser	Ile	Ser	Ara		Pro	Glv	Lvs		110				
30	450	-1-				455		-10	011	2,0						
<210)> 65	5														
<211	.> 13	377														
<212	2> DN	IA														
35<213	8> Or	ycto	lagu	ıs cu	nicu	ılus										
<400)> 65	i														
atgg	gagac	ag g	cctg	cgct	g gc	ttct	cctg	gto	gcto	tgc	tcaa	aggt	gt c	cagt	gtcag	60
tcgg	ıtgga	gg a	gtco	gggg	g to	gcct	ggto	tcg	ccto	gga	cacc	cctg	jac a	ctca	cctgc	120
40acag	cctc	tg g	atto	tccc	t ca	igtag	ctac	gac	atga	gct	gggt	ccgc	ca ç	gcto	caggg	180
															igctgg	240
gcga	aagg	cc g	atto	acca	t ct	ccaa	aacc	tcg	acca	cgg	tgga	tctg	ıga a	igtga	ccagt	300

40

getecateag tetteceaet ggeeceetge tgeggggaca caccetetag caeggtgace ttgggetgee tggteaaagg etaceteeeg gagecagtga eegtgacetg gaacteggge 540 5acceteacea atggggtacg cacctteeeg teegteegge agteeteagg eetetacteg 600 etgageageg tggtgagegt gaceteaage agecageeg teaeetgeaa egtggeecae 660 eeagecacea acaceaaagt ggacaagace gttgegeect egacatgeag eaageceaeg 720 tgeecaceee etgaacteet ggggggaceg tetgtettea tetteeeee aaaaceeaag 780 gacaceetea tgateteaeg cacceeegag gteacatgeg tggtggtgga egtgageeag 840 10gatgaceeg aggtgeagt eacatggtae ataaacaaeg ageaggtgeg eacegeegg 900 eegecaceaeg actggetgaa gteaacage acgateegeg tggteageae eeteeeate 960 gegeaceagg actggetgag gggeaaggag tteaagtgea aagteeaeaa eaaggeaete 1020 eeggeeceea tegagaaaac eateteeaaa geeagaggee ageeeetgga geegaaggte 1080 tacaceatgg geeeteeeeg ggaggagetg ageageaggt eggteageet gaeetgeatg 1140 15ateaaegget tetaeeette egacateeg gtggagtggg agaagaacagg gaaggeagag 1200 gacaactaca agaceaegee ggeegtgetg gaeageagg geteetaett eetetaeaa 1260 aageteteag tggeeaegag tggeegaagg tetteaeett eetetaeaae 1260 aageteteag tggeeaegag tggggggaeg tetteaett eetetaeae 1260 aageteteag tggeeaegag tgggggagag tetteaeett eetetaeae 1260 aageteteag tggeeaegag tgggggagaeg tetteaeett eetetaeae 1260 aageteteag tggeeaegag tggggggaeg tetteaeett eeteetgatg 1320 aageteeag tggeegaaggte tetteaeet eeteetgatg 1320 aageteeaga tggeeaeegag tegggggaeg tetteaeett eeteetaeae 1260 aageteeteag tggeegaaggaeg tggggggaeg tetteaeett eeteetaeae 1260 aageteeteag tggeegaaggaeg tetteaeett eeteetaeae 1260 aageteeteag tggeegaaggeegaegaegaeggeegaegaegaegaegaeg	ctgacaaccg	aggacacggc	cacctatttc	tgtagtagag	aacatgctgg	ttatagtggt	360
ttgggctgcc tggtcaaagg ctacctcccg gagccagtga ccgtgacctg gaactcgggc 540 Saccctcacca atggggtacg caccttcccg tccgtccggc agtcctcagg cctctactcg 600 ctgagcagcg tggtgagcgt gacctcaagc agccagcccg tcacctgcaa cgtggcccac 660 ccagccacca acaccaaagt ggacaagacc gttgcgccct cgacatgcag caagcccaccg tgccaccac ccagccacca ctgaactcct ggggggaccg tctgtcttca tcttccccc aaaacccaaag 780 gacaccctca tgatctcacg cacccccgag gtcacatgcg tggtggtgga cgtgagccag 840 l0gatgaccccg aggtgcagtt cacatggtac ataaacaacg agcaggtgcg caccgccgg 900 ccgccgctac gggagcaga gttcaacagc acgatccgcg tggtcagcac cctcccatc gcgcaccagg actggctgag gggcaaggag ttcaagtgca aagtccacaa caaggcactc l020 ccggccccaa tcgagaaaac catctccaaa gccagagggc agcccctgga gccgaaggtc l080 tacaaccatgg gccctccccg ggaggagctg agcagcaggt cggtcagcct gacctgcatg l140 l5atcaaccgct tctaccctc cgacatctcg gtggagtggg agaagaacgg gaaggcagag l200 gacaacctaca agaccaccac ggccgtgctg gacagcagcg gctcctactt cctctacaac aagccactcaa agaccaccac ggccgtgctg gacagcagcg gctcctactt cctctacaac aagccactcaa gacaactcaa gacaaccaca ggcaggagg gacaactaca agaccaccac ggccgtgctg gacagcagcg gctcctactt cctctacaac aagccactcaa gacaactcaa gacaaccacac ggccgtgctg gacagcaccac gctcctactt cctctacaac l260 aagctctcaa tgcccacaag tgagtggcag cggggcgacg tcttcacctg ctccgtgatg l320 caagctccaca ggccgtgctg gacagcacc cctcccctacct cccctaccac aagcccctcaaccacaccac	gatacgggtc	acttgtgggg	cccaggcacc	ctggtcaccg	tctcctcggg	gcaacctaag	420
5acceteacea atggggtacy cacettecey teegteegge agteeteagg cetetacteg 600 ctgageageg tggtgagegt gaceteaage agecageegg teacetgeaa egtggeeeae 660 ceagecacea acaceaaagt ggacaagace gttgegeeet egacatgeag caageceaeg 720 tgeecaceee etgaacteet ggggggaceg tetgtettea tetteeeeee aaaaceeaag 780 gacaceetea tgateteaeg caceeeegag gteacatgeg tggtggtgga egtgageeag 840 10gatgaceeeg aggtgeagtt cacatggtac ataaacaaeg ageaggtgeg cacegeegg 900 cegeegetae gggageagea gtteaacage acgateegeg tggteageae eeteeceate gegeaceagg actggetgag gggcaaggag tteaagtgea aagteeacaa caaggeaete 1020 eeggeeeeea tegagaaaac cateteeaaa gecagaggge ageceetgga geegaaggte 1080 tacaceatgg geeeteeeeg ggaggagetg ageageaggt eggteageet gacetgeatg 1140 15ateaaceget tetaceette egacateeeg gtggagtggg agaagaacgg gaaggeagag 1200 gacaacetaca agaceacegee ggeegtgetg gacagegaeg geteetactt eetetacaae 1260 aageeteeag tggeecacegag tgggegaeg tetteacetg eteegtgatg 1320	gctccatcag	tcttcccact	ggccccctgc	tgcggggaca	caccctctag	cacggtgacc	480
ctgagcagcg tggtgagcgt gacctcaagc agccagcccg tcacctgcaa cgtggcccac ccagccacca acaccaaagt ggacaagacc gttgcgcct cgacatgcag caagcccacg 72 cgacacccc ctgaactcct ggggggaccg tctgtcttca tcttccccc aaaacccaaag 78 cgacaccccc tgatctcaccc cacccccag gtcacatgcg tggtggtgga cgtgagccag 84 cgacacccca tgatctcacg cacccccgag gtcacatgcg tggtggtgga cgtgagccag 84 cgaccccca aggtgcagtt cacatggtac ataaacaacg agcaggtgcg caccgcccgg 90 ccgccgctac gggagcagca gttcaacagc acgatccgcg tggtcagcac cctccccatc 96 cgccaccagg actggctgag gggcaaggag ttcaagtgca aagtccacaa caaggcactc 102 ccggccccaa tcgagaaaac catctccaaa gccagagggc agcccctgga gccgaaggtc 108 ccgccccatacg gcccccca tcgagaaaac catctccaaa gccagagggc agcccctgga gccgaaggtc 114 ccacccacacggc tctaccccc ggaggagctg agcagcaggg gaaggacagag 12 ccacaccacacacaccacaccacaccacccaccaccacc	ttgggctgcc	tggtcaaagg	ctacctcccg	gagccagtga	ccgtgacctg	gaactcgggc	540
ccagccacca acaccaaagt ggacaagacc gttgcgcct cgacatgcag caagcccacg tgcccaccc ctgaactcct ggggggaccg tctgtcttca tcttccccc aaaacccaaag gacaccctca tgatctcacg cacccccgag gtcacatgcg tggtggtgga cgtgagccag 10gatgaccccg aggtgcagtt cacatggtac ataaacaacg agcaggtgcg caccgcccgg ccgccgctac gggagcagca gttcaacagc acgatccgcg tggtcagcac cctccccatc gcgcaccagg actggctgag gggcaaggag ttcaagtgca aagtccacaa caaggcactc ccggccccca tcgagaaaac catctccaaa gccagagggc agcccctgga gccgaaggtc tacaccatgg gccctccccg ggaggagctg agcagcaggt cggtcagcct gacctgcatg 1140 15atcaacggct tctacccttc cgacatctcg gtggagtggg agaagaacgg gaaggcagag gacaactaca agaccacgcc ggccgtgctg gacagcgacg ctctactt cctctacaac aagctctcag tgcccacgag tgagtggcag cggggcgacg tcttcacct ctccgtgatg 1320	5accctcacca	atggggtacg	caccttcccg	tccgtccggc	agtcctcagg	cctctactcg	600
tgcccaccc ctgaactcct ggggggaccg tctgtcttca tcttccccc aaaacccaag 780 gacaccctca tgatctcacg cacccccgag gtcacatgcg tggtggtgga cgtgagccag 840 10gatgaccccg aggtgcagtt cacatggtac ataaacaacg agcaggtgcg caccgcccgg 900 ccgccgctac gggagcagca gttcaacagc acgatccgcg tggtcagcac cctccccatc gcgcaccagg actggctgag gggcaaggag ttcaagtgca aagtccacaa caaggcactc 1020 ccggcccca tcgagaaaac catctccaaa gccagagggc agccctgga gccgaaggtc 1080 tacaccatgg gccctccccg ggaggagctg agcagcaggt cggtcagcct gacctgcatg 1140 15atcaacggct tctacccttc cgacatctcg gtggagtggg agaagaacgg gaaggcagag 1200 gacaactaca agaccacgcc ggccgtgctg gacagcgacg gctcctactt cctctacaac agaccaccag tgagtggcag tcttcacctg ctccgtgatg 1320 aagctctcag tgcccacgag tgagtggcag cggggcgacg tcttcacctg ctccgtgatg	ctgagcagcg	tggtgagcgt	gacctcaagc	agccagcccg	tcacctgcaa	cgtggcccac	660
gacaccetca tgatetcacg caccecegag gteacatgeg tggtggtgga egtgagecag 840 10gatgaccecg aggtgeagtt cacatggtac ataaacaacg ageaggtgeg cacegeegg 900 cegeegetac gggageagea gtteaacage aegateegeg tggteageac cetececate 960 gegeaceagg aetggetgag gggeaaggag tteaagtgea aagteeacaa caaggeacte 1020 ceggeececa tegagaaaac cateteeaaa geeagaggge ageeettgga geegaaggte 1080 tacaccatgg geeeteeeeg ggaggagetg ageageaggt eggteageet gaeetgeatg 1140 15ateaaegget tetaecette egacateteg gtggagtggg agaagaaegg gaaggeagag 1200 gacaactaca agaccaegee ggeegtgetg gacagegaeg geteetaett cetetacaac 1260 aageteteag tgeeeacgag tgagtggeag eggggegaeg tetteacetg eteegtgatg	ccagccacca	acaccaaagt	ggacaagacc	gttgcgccct	cgacatgcag	caagcccacg	720
10gatgaccccg aggtgcagtt cacatggtac ataaacaacg agcaggtgcg caccgcccgg 900 ccgccgctac gggagcagca gttcaacagc acgatccgcg tggtcagcac cctccccatc 960 gcgcaccagg actggctgag gggcaaggag ttcaagtgca aagtccacaa caaggcactc 1020 ccggcccca tcgagaaaac catctccaaa gccagaggcc agcccctgga gccgaaggtc 1080 tacaccatgg gccctccccg ggaggagctg agcagcaggt cggtcagcct gacctgcatg 1140 15atcaacggct tctacccttc cgacatctcg gtggagtggg agaagaacgg gaaggcagag 1200 gacaactaca agaccacgcc ggccgtgctg gacagcgacg gctcctactt cctctacaac 1260 aagctctcag tgcccacgag tgagtggcag cggggcgacg tcttcacctg ctccgtgatg	tgcccacccc	ctgaactcct	ggggggaccg	tctgtcttca	tcttccccc	aaaacccaag	780
ccgccgctac gggagcagca gttcaacagc acgatccgcg tggtcagcac cctccccatc gcgcaccagg actggctgag gggcaaggag ttcaagtgca aagtccacaa caaggcactc ccggccccca tcgagaaaac catctccaaa gccagagggc agcccctgga gccgaaggtc tacaccatgg gccctccccg ggaggagctg agcagcaggt cggtcagcct gacctgcatg 1140 15atcaacggct tctacccttc cgacatctcg gtggagtggg agaagaacgg gaaggcagag gacaactaca agaccacgcc ggccgtgctg gacagcgacg gctcctactt cctctacaac aagctctcag tgcccacgag tgagtggcag cggggcgacg tcttcacctg ctccgtgatg 1320	gacaccctca	tgatctcacg	cacccccgag	gtcacatgcg	tggtggtgga	cgtgagccag	840
gegeaceagg actggetgag gggeaaggag tteaagtgea aagteeacaa caaggeacte 1020 ceggeececa tegagaaaac cateteeaaa geeagaggge ageeettgga geegaaggte 1080 tacaceatgg geeeteeceg ggaggagetg ageageaggt eggteageet gacetgeatg 1140 15ateaacgget tetaceette egacateteg gtggagtggg agaagaacgg gaaggeagag 1200 gacaactaca agaceacgee ggeegtgetg gacagegaeg geteetaett eetetacaac 1260 aageeteeag tgeeeacga tgagtggeag eggggegaeg tetteacetg eteegtgatg 1320	10gatgaccccg	aggtgcagtt	cacatggtac	ataaacaacg	agcaggtgcg	caccgcccgg	900
ceggeecea tegagaaaac cateteeaaa geeagagge ageeetgga geegaaggte 1080 tacaccatgg geeeteeeg ggaggagetg ageageaggt eggteageet gaeetgeatg 1140 15ateaaegget tetaceette egacateteg gtggagtggg agaagaaegg gaaggeagag 1200 gacaactaca agaccaegee ggeegtgetg gacagegaeg geteetaett eetetacaac 1260 aageteteag tgeeeacgag tgagtggeag eggggegaeg tetteacetg eteegtgatg 1320	ccgccgctac	gggagcagca	gttcaacagc	acgatccgcg	tggtcagcac	cctccccatc	960
tacaccatgg gccctccccg ggaggagctg agcagcaggt cggtcagcct gacctgcatg 1140 15atcaacggct tctacccttc cgacatctcg gtggagtggg agaagaacgg gaaggcagag 1200 gacaactaca agaccacgcc ggccgtgctg gacagcgacg gctcctactt cctctacaac 1260 aagctctcag tgcccacgag tgagtggcag cggggcgacg tcttcacctg ctccgtgatg 1320	gcgcaccagg	actggctgag	gggcaaggag	ttcaagtgca	aagtccacaa	caaggcactc	1020
15atcaacgget tetaccette egacateteg gtggagtggg agaagaacgg gaaggeagag 1200 gacaactaca agaccacgee ggeegtgetg gacagegaeg geteetaett eetetacaac 1260 aageteteag tgeecacgag tgagtggeag eggggegaeg tetteacetg eteegtgatg 1320	ccggccccca	tcgagaaaac	catctccaaa	gccagagggc	agcccctgga	gccgaaggtc	1080
gacaactaca agaccacgcc ggccgtgctg gacagcgacg gctcctactt cctctacaac 1260 aagctctcag tgcccacgag tgagtggcag cggggggacg tcttcacctg ctccgtgatg 1320	tacaccatgg	gccctccccg	ggaggagctg	agcagcaggt	cggtcagcct	gacctgcatg	1140
aageteteag tgeeceaegag tgagtggeag eggggegaeg tetteaeetg eteegtgatg 1320	15atcaacggct	tctacccttc	cgacatctcg	gtggagtggg	agaagaacgg	gaaggcagag	1200
	gacaactaca	agaccacgcc	ggccgtgctg	gacagcgacg	gctcctactt	cctctacaac	1260
cacgaggeet tgcacaacca ctacacgcag aagtecatet eeegetetee gggtaaa 1377	aagctctcag	tgcccacgag	tgagtggcag	cggggcgacg	tcttcacctg	ctccgtgatg	1320
	cacgaggcct	tgcacaacca	ctacacgcag	aagtccatct	cccgctctcc	gggtaaa	1377

20<210> 66

<211> 150

<212> PRT

<213> Oryctolagus cuniculus

25<400> 66

Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Thr Ile Ser 40 Asp Tyr Asp Leu Ser Trp Val Arg Gln Ala Pro Gly Glu Gly Leu Lys 55 Tyr Ile Gly Phe Ile Ala Ile Asp Gly Asn Pro Tyr Tyr Ala Thr Trp 3565 70 75 Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 90 Lys Ile Thr Ala Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 105 40Arg Gly Ala Gly Asp Leu Trp Gly Pro Gly Thr Leu Val Thr Val Ser 115 120 Ser Gly Gln Pro Lys Ala Pro Ser Val Phe Pro Leu Ala Pro Cys Cys

41

130 135 140

Gly Asp Thr Pro Ser Ser 145 150

5<210> 67

<211> 152

<212> PRT

<213> Oryctolagus cuniculus

10<400> 67

Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly

1 5 10 15

Val His Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro

15Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Arg Ser

Ser Tyr Asp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu
50 55 60

Trp Val Gly Val Ile Ser Thr Ala Tyr Asn Ser His Tyr Ala Ser Trp 2065 70 75 80

Ala Lys Gly Arg Phe Thr Ile Ser Arg Thr Ser Thr Thr Val Asp Leu 85 90 95

Lys Met Thr Ser Leu Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110

25Arg Gly Gly Ser Trp Leu Asp Leu Trp Gly Gln Gly Thr Leu Val Thr 115 120 125

Val Ser Ser Gly Gln Pro Lys Ala Pro Ser Val Phe Pro Leu Ala Pro 130 135 140

Cys Cys Gly Asp Thr Pro Ser Ser

30145 150

<210> 68

<211> 149

<212> PRT

35<213> Oryctolagus cuniculus

<400> 68

Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Trp

1 5 10 15

40Leu Pro Gly Ala Arg Cys Ala Asp Val Val Met Thr Gln Thr Pro Ala
20 25 30

Ser Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ser

. 42 35 40 Ser Lys Asn Val Tyr Asn Asn Trp Leu Ser Trp Phe Gln Gln Lys 55 Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Tyr Ala Ser Thr Leu Ala 70 75 Ser Gly Val Pro Ser Arg Phe Arg Gly Ser Gly Ser Gly Thr Gln Phe 85 90 Thr Leu Thr Ile Ser Asp Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr 100 105 10Cys Ala Gly Asp Tyr Ser Ser Ser Asp Asn Gly Phe Gly Gly Gly 120 Thr Glu Val Val Lys Gly Asp Pro Val Ala Pro Thr Val Leu Leu 130 135 140 Phe Pro Pro Ser Ser 15145 <210> 69 <211> 149 <212> PRT 20<213> Oryctolagus cuniculus <220> <221> SITE <222> (1)...(149) 25<223> Xaa = any amino acid <400> 69 Met Asp Xaa Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Trp 10 30Leu Pro Gly Ala Arg Cys Ala Leu Val Met Thr Gln Thr Pro Ala Ser 25 Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ser Ser Gln Ser Val Tyr Asp Asn Asp Glu Leu Ser Trp Tyr Gln Gln Lys Pro

Gln Ala Thr His Tyr Ser Ser Asp Trp Tyr Leu Thr Phe Gly Gly Gly

43

115 120 125

Thr Glu Val Val Lys Gly Asp Pro Val Ala Pro Thr Val Leu Leu

130 135 140

Phe Pro Pro Ser Ser