HW6 - 4. The subgroup $H = \{(1), (12)(34), (13)(24), (14)(23)\} \leq S_4$ contains the identity, all three permutations with cycle structure (ab)(cd), and no other permutations. Explain how this implies directly that H is a normal subgroup, i.e. that $\sigma H = H\sigma$ or $\sigma H\sigma^{-1} = H$ for all $\sigma \in S_4$.

H is a normal subgroup of G if $gxg^{-1} \in H$ for all $x \in H$ and $g \in G$.

 $(gxg^{-1}$ is called a conjugate of x, it is obtained under conjugation of x by g, see Definition 14.15)

From Rotman (midterm1 syllabus): Two permutations a and b of $\{1, 2, ..., n\}$ have the same cycle structure if and only if $b = sas^{-1}$. (In the symmetric group S_n , conjugation of an element preserves the cycle structure)

For the given H the three elements (12)(34), (13)(24), (14)(23) are precisely the three elements in S_4 with cycle structure (ab)(cd).

For each $x \in \{(12)(34), (13)(24), (14)(23)\}$ and $g \in S_4$, $gxg^{-1} \in \{(12)(34), (13)(24), (14)(23)\}$. And thus H is normal.

HW8 - 4. For each of the given polynomials find all zeros in the indicated ring.

- a) $x^3 + 7x + 4$ in \mathbb{Z}_{13} .
- b) (x+3)(x+1)(x-1) in \mathbb{Z}_{15} .
- a) x = 2, 3, 8 (try all $x \in \mathbb{Z}_{13}$; \mathbb{Z}_{13} is a field and there are at most 3 zeros)
- b) x=1,2,4,6,7,9,11,12,14. A possibility is to try all $x\in\mathbb{Z}_{15}$. With the CRT this can be divided into two searches. Modulo 3 the zeros are $x_1\equiv -3,-1,+1$ (mod 3). Modulo 5 the zeros are $x_2\equiv -3,-1,+1$ (mod 5). Using the isomorphism $\mathbb{Z}_3\times\mathbb{Z}_5\longrightarrow\mathbb{Z}_{15}$, $(x_1,x_2)\mapsto x=10x_1+6x_2$ (so that $x\equiv x_1\pmod 3$ and $x\equiv x_2\pmod 5$) we find the zeros in \mathbb{Z}_{15}

	$x_2 = 1$	2	4
$x_1 = 0$	6	12	9
=1	1	7	4
=2	11	2	14

HW7 - 1. Let $G = D_{12} = \{1, \rho, \dots, \rho^5, \sigma, \sigma\rho, \dots, \sigma\rho^5\}$ be the group of symmetries of a regular hexagon and let $H = [G, G] = \{1, \rho^2, \rho^4\}$ be its commutator subgroup.

- a) Give the partition of G into left cosets of H.
- b) Determine the structure of the group G/H as abelian group.
- a) $G = H \cup \rho H \cup \sigma H \cup \rho \sigma H$.
- b) G/H is of size |G|/|H| = 12/3 = 4. The two possibilities are \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$. For any element $g \in G$, $g^2 \in H$. Thus any element in G/H other than the identity is of order 2 and $G/H \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$.

HW7 - 2. Determine the structure as abelian group for the following factor groups.

- a) $G = (\mathbb{Z}_8 \times \mathbb{Z}_{12})/\langle (2,2) \rangle$.
- b) $G = (\mathbb{Z}_8 \times \mathbb{Z}_{12}) / \langle (3,3) \rangle$.
- a) The group

$$H = \langle (2,2) \rangle = \{(0,0), (2,2), (4,4), (6,6), (0,8), (2,10), (4,0), (6,2), (0,4), (2,6), (4,8), (6,10)\}.$$

The factor group G/H is of size $|G|/|H| = 8 \cdot 12/12 = 8$. The two possibilities are \mathbb{Z}_8 or $\mathbb{Z}_4 \times \mathbb{Z}_2$.

For an element $(a, b) \in G$, $4(a, b) = (4a, 4b) \in \{(0, 0), (0, 4), (0, 8), (4, 0), (4, 4), (4, 8)\} \subset H$. Thus any element in G/H has order dividing 4 and $G/H \simeq \mathbb{Z}_4 \times \mathbb{Z}_2$.

b) The group $H = \langle (3,3) \rangle = \{(0,0), (3,3), (6,6), (1,9), (4,0), (7,3), (2,6), (5,9) \}$.

Note that the first coordinate takes on all values of \mathbb{Z}_8 once. For each coset (a,b)+H we can therefore assume that it is represented as (0,b')+H for some $b' \in \mathbb{Z}_{12}$. The group $G/H \simeq \mathbb{Z}_{12}$.

Another solution is to look at the order $|G|/|H| = 8 \cdot 12/8 = 12$. The two possibilities are \mathbb{Z}_{12} or $\mathbb{Z}_6 \times \mathbb{Z}_2$. The coset (0,1) + H has order 12 in G/H (the minimal k such that $k(0,1) = (0,k) \in H$ is 12) and thus $G/H \simeq \mathbb{Z}_{12}$.