

Цели вебинара | После занятия вы узнаете

Recap: линейная регрессия

2 Градиентный спуск

З Регуляризация

Применение на практике

Задачи машинного обучения

C учителем Supervised learning

Классификация

кредит одобрен

Регрессия

Без учителя
Unsupervised learning

Снижение размерности

Поиск аномалий

Через две точки на плоскости можно легко провести прямую и тольку одну

Через две точки на плоскости можно легко провести прямую и тольку одну

А если точек три или более?

Через две точки на плоскости можно легко провести прямую и тольку одну

$y = \omega_0 + \omega_1 x$

А если точек три или более?

$$y = \omega_0 + \omega_1 x + \epsilon$$

Картина мира:

$$y = \omega_0 + \omega_1 x + \epsilon$$

- ullet матожидание случайных ошибок равно нулю: $orall i:\mathbb{E}\left[\epsilon_i
 ight]=0$;
- дисперсия случайных ошибок одинакова и конечна, это свойство называется гомоскедастичностью: $\forall i: \mathrm{Var}\left(\epsilon_i\right) = \sigma^2 < \infty$;
- ullet случайные ошибки не скоррелированы: $orall i
 eq j: \mathrm{Cov}\left(\epsilon_i,\epsilon_j
 ight) = 0.$

А если точек три или более?

Можно конечно попробовать провести ее руками, опираясь зрительно.

Но как понять, что вы проверили ее хорошо?

А если точек три или более?

Можно сделать умнее. Пусть зависимость линейная, тогда прямая будет иметь вид:

$$\hat{y} = \hat{\omega_0} + \hat{\omega_1} x$$

Какие взять $\widehat{\omega_0}$ и $\widehat{\omega_1}$?

Нам нужен какой-то показатель качества проведенной прямой

$$\mathcal{L}(y,\hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i) \to min$$

В чем проблема с такой функцией ошибок?

$$\mathcal{L}(y,\,\hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i) \to min$$

В чем проблема с такой функцией ошибок?

$$\mathcal{L}(y,\hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i) \to min$$

В чем проблема с такой функцией ошибок?

Идея: брать квадраты!

$$RSS = \mathcal{L}(y, \hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \to min$$

RSS - Residual Sum of Squares (сумма квадратов ошибок)

Простыми словами - это сумма квадратов разности между точкой и значением проведенной прямой

$$RSS = \mathcal{L}(y, \hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \to min$$

$$RSS = \mathcal{L}(y, \hat{y}) = \sum_{i=1}^{n} (y_i - (\hat{\omega_0} + \hat{\omega_1} x))^2 \to min$$

RSS - Residual Sum of Squares (сумма квадратов ошибок)

Простыми словами - это сумма квадратов разности между точкой и значением проведенной прямой

Оптимизируем RSS градиентным спуском

$$RSS = \mathcal{L}(y, \hat{y}) = \sum_{i=1}^{n} (y_i - (\hat{\omega}_0 + \hat{\omega}_1 x))^2 \to min$$

$$RSS = \mathcal{L}(y, \hat{y}) = \sum_{i=1}^{n} ((\hat{\omega_0} + \hat{\omega_1} x) - y_i)^2 \to min$$

RSS

Квадратичная функция от ω_0 и ω_1 - парабола ветвями вверх

Оптимизируем RSS градиентным спуском

$$RSS = \mathcal{L}(y, \hat{y}) = \sum_{i=1}^{n} (y_i - (\hat{\omega}_0 + \hat{\omega}_1 x))^2 \rightarrow min$$

$$RSS = \mathcal{L}(y, \hat{y}) = \sum_{i=1}^{n} ((\hat{\omega_0} + \hat{\omega_1} x) - y_i)^2 \to min$$

Квадратичная функция от ω_0 и ω_1 - парабола ветвями вверх

$$w^{(t)} = w^{(t-1)} - \eta L'(w^{(t-1)})$$

RSS

Оптимизируем RSS градиентным спуском

$$RSS = \mathcal{L}(y, \hat{y}) = \sum_{i=1}^{n} (y_i - (\hat{\omega}_0 + \hat{\omega}_1 x))^2 \to min$$

$$RSS = \mathcal{L}(y, \hat{y}) = \sum_{i=1}^{n} ((\hat{\omega_0} + \hat{\omega_1} x) - y_i)^2 \to min$$

Квадратичная функция от ω_0 и ω_1 - парабола ветвями вверх

$$w^{(t)} = w^{(t-1)} - \eta \nabla L(w^{(t-1)})$$

Градиентный спуск работает и когда признаков много!

$$\hat{y} = \omega_0 + \omega_1 x_1 + \omega_2 x_2 + \ldots + \omega_p x_p = x^T \omega$$

$$w^{(t)} = w^{(t-1)} - \eta \nabla L(w^{(t-1)})$$

Метрики качества

Средняя абсолютная ошибка

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

Корень из средней квадратичной ошибки

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

Средняя квадратичная ошибка

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

Регуляризация

Проблема: выбросы и переобучение

Регуляризация

Проблема: выбросы и переобучение

Идея: ввести штраф за излишнюю сложность

Регуляризация — ограничение на норму вектора весов

$$\sum_{n=1}^{N} (x_n^T \omega - y_n)^2 + \lambda R(\omega) \to \min_{\beta}$$

Регуляризация

Регуляризация — ограничение на норму вектора весов

$$\sum_{n=1}^{N} (x_n^T \omega - y_n)^2 + \lambda R(\omega) \to \min_{\beta}$$

$$R(\omega) = ||\omega||_1$$
 (L1) Lasso regression

$$R(\omega) = ||\omega||_2^2$$
 (L2) Ridge regression

