Song Recognition via Feed-Forward Deep Neural Networks

Campbell Clarkson

Drew Merrill

December 2021

Darla Moore School of Business

Introduction - Machine Learning

- Machine Learning is Ubiquitous today
 - Can deal with searching through large datasets
 - Solve heavily analytical problems

What is an application where machine learning can leverage the two advantages above?

AUDIO RECOGNITION!

Shazam - Modern Solution

- "Industrial Strength Music Search"
 - Wang et al. (2003)
- Helps users . . .

 o Find songs, advertisements, and media
- Without . . .
 - Knowledge of Title, Album, or Artist

Is it Trivial?

 Apple acquires Shazam for \$400 Million

 Modern music platforms allow for 'DIY' Music Publication

Our Project - Mimic Shazam

- Objective: Curate data and build a model to identify and name a particular song
- We build a dataset and deploy a model with a base accuracy of 94-97%

Has anyone done this?

The current body of work examines the robustness of recognition models relating to the audio *signal* (pitch, frequency, key, complexity)

Xiao 2018, Tao and Getachew 2020

We use a "fingerprint" style, like Shazam¹, but with metadata of the song.

Data

- 2000 Popular Songs Dataset
 - List of popular spotify Songs with related metadata
 - Danceability, tempo, energy, happiness, popularity
 - Mp3 files for select songs in model

- UrbanSound8k
 - Examination of robustness with noise added to model

Data Processing

- We take a 20 song-subset of the 2000
 - Segmented into 3-second snippets
 - Snippets are stored according to class label
 - Obtain Mel Frequency Cepstral Coefficient for each segment
 - Logan (2000)

Model: Feed Forward DNN

- We Implement a sequential DNN
- Mean MFCC Vector as input, model outputs prediction

Two Robustness Tests

Normalizing the MFCC on the y-axis at each time period

 Do environmental noises overlayed on the music reduce effectiveness?

Final Results

Test Data

Validation Data

Non-normalized Model

Normalized Model

Challenges/Limitations

- We have not fully developed a usable application yet
 - Recording Audio is the key missing component

- Pre-processing audio data takes a very long time
 - 20 Songs = 1 hour
 - Scalability issues?

Conclusion

Audio Recognition is a useful tool with numerous practical implications

 We identify a model based on characteristics published by the music platform, as opposed to the signal

The model is 94-97% accurate across three specifications

Thank You!

