CS208: Mathematical Foundations of CS

Fall 2018

Lecture 20: September 27

Lecturer: Samar Scribes: Kanika Gupta, Khushi Gupta

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

20.1 Structural induction for recursive data types

Lemma 1. $|s.t| = |s| + |t| \forall s, t \in A^*$

By structural induction on the definition of $s \in A$. The induction hypothesis is

$$P(s) :: \forall t \in A^*, |s.t| = |s| + |t|$$

Base Case $(s = \lambda)$:

$$| s.t | = | s | + | t | = | t |$$

= 0+ | t |
= | s | + | t |

Constructor Case:(s := < a, r >) Base Case $(s = \lambda)$:

$$\mid s.t \mid = \mid < a, r > .t \mid = \mid t \mid$$

= 0+ $\mid t \mid$
= $\mid s \mid + \mid t \mid$

This proves that P(s) holds, completing the constructor case. By structural induction, we conclude that P(s) holds \forall strings $s \in A^*$

20.2 Recursive Functions on Nonnegative Integers

The nonnegative integers can be understood as a recursive data type.

Definition 3.5.8. The set, $\mathbb N$, is a data type defined recursivly as:

- Base case: $0 \in \mathbb{N}$
- Constructor Case: If $n \in \mathbb{N}$, then the successor, n + 1, of n is in \mathbb{N} .

Any function defined on recursive data types is recursive.

Example: f(n) = 2f(n-1)

Solution: This is not a valid function, since we don't have a base case.

Example:

$$f(n) = \begin{cases} 0 & \text{if } n = 0; \\ f(n+1) & \text{if } n > 0. \end{cases}$$

Solution: We can't find f(1), so it is not a recursive function.

Example:

$$f(n) = \begin{cases} 0 & \text{if } n \text{ is divisible by 2;} \\ 1 & \text{if } n \text{ is divisible by 3;} \\ 2 & \text{otherwise.} \end{cases}$$

Solution: Every multiple of 6 will have 2 values. Therefore not a recursive function.

Example:

$$f(n) = \left\{ \begin{array}{ll} 1 & \text{if } n <= 1 \ ; \\ f(n/2) & \text{if } n > 1 \ \text{and even;} \\ f(3n+1) & \text{if } n > 1 \ \text{and odd.} \end{array} \right.$$

Solution : Suppose n = 12

$$f(12) = f(6) = f(3) = f(10) = f(5) = f(16) = f(8) = f(4) = f(2) = f(1) = 1$$

 $f(13) = f(40) = f(20) = f(10) = f(5) = f(16) = f(8) = f(4) = f(2) = f(1) = 1$

The last function was Collatz conjecture or Ulam conjecture or Syracuse problem or Hasse's Algorithm, 3n +1 conjecture.

The sequence 12, 6, 3, 10, 5... 1 is called Hailstone sequence.

20.2.1 Ackermann function

It is an extremely fast growing function.

$$A(m,n) = \begin{cases} 2n & \text{if } m = 0, n <= 1 ; \\ A(m-1,A(m,n-1)) & \text{otherwise.} \end{cases}$$

- We can't use induction here but it is a well defined function.
- It's inverse grows very slowly.
- During algo analysis, it occurs as a pre-factor(linear(n)).

It is a total computable function that is not primitive recursive.