The group G is isomorphic to the group PSL(3,2):C2. Ordinary character table of $G \cong PSL(3,2):C2$:

	1a	2a	3a	4a	7a	2b	6a	8a	8b
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	-1	-1	-1	-1
χ_3	6	-2	0	2	-1	0	0	0	0
χ_4	6	2	0	0	-1	0	0	$E(8) - E(8)^3$	$-E(8) + E(8)^3$
χ_5	6	2	0	0	-1	0	0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$
χ_6	7	-1	1	-1	0	1	1	-1	-1
χ_7	7	-1	1	-1	0	-1	-1	1	1
χ_8	8	0	-1	0	1	2	-1	0	0
χ_9	8	0	-1	0	1	-2	1	0	0

Trivial source character table of $G \cong PSL(3,2)$: C2 at p = 7:

111 Mai 2001 to 1100 to 1 to 1 to 1 to 1 to 1 to																
Normalisers N_i		N_1									N_2					
p-subgroups of G up to conjugacy in G		P_1								P_2						
Representatives $n_j \in N_i$	1a	3a	6a	2b	2a	8a	8b	4a	1a	2a	3b	6b	3a	6a		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	7	1	1	1	3	$1 + E(8) - E(8)^3$	$1 - E(8) + E(8)^3$	1	0	0	0	0	0	0		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	7	1	-1	-1	3	$-1 - E(8) + E(8)^3$	$-1 + E(8) - E(8)^3$	1	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	14	-1	1	-2	-2	0	0	2	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	14	-1	-1	2	-2	0	0	2	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	14	-1	-1	2	2	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	14	-1	1	-2	2	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	7	1	-1	-1	-1	1	1	-1	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	7	1	1	1	-1	-1	-1	-1	0	0	0	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	8	-1	-1	2	0	0	0	0	1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$		-1	-1	2	0	0	0	0	1	1	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		1	-1	-1	1	-1	-1	1	1	-1	1	-1	1	-1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	8	-1	1	-2	0	0	0	0	1	-1	$E(3)^{2}$	$-E(3)^2$	E(3)	-E(3)		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	8	-1	1	-2	0	0	0	0	1	-1	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$		

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(2, 5, 7, 6, 8, 3, 4)]) \cong C7$

 $N_1 = Group([(2,4)(3,5)(7,8),(1,2,3)(4,6,7)]) \cong PSL(3,2) : C2$ $N_2 = Group([(2,5,7,6,8,3,4),(3,6,4)(5,7,8),(3,7)(4,5)(6,8)]) \cong C7 : C6$