Corrigé - DM n°1: Analyse dimensionnelle

I La course des dinosaures

I.1 Dimensions

- 1. En utilisant les symboles dimensionnels M (masse), L (longueur) et T (temps), on a :
 - Foulée relative : $[f] = \left[\frac{D}{\ell}\right] = \frac{[D]}{[\ell]} = \frac{L}{L} \text{ soit } [f] = 1$;
 - Nombre de Froude : $[F_r] = \left[\frac{v}{\sqrt{g\ell}}\right] = \frac{[v]}{[g]^{1/2}} = \frac{LT^{-1}}{(LT^{-2})^{1/2}L^{1/2}} = \frac{LT^{-1}}{LT^{-1}}$ soit $[F_r] = 1$.

I.2 Coût énergétique d'une foulée

- 3. Pour $f \ll 1$ alors $\sqrt{1 \frac{f^2}{16}} \simeq 1 \frac{1}{2} \times \frac{f^2}{16} = 1 \frac{f^2}{32}$. Dans ce cas, l'expression obtenue à la question précédente se simplifie en $h = \frac{\ell f^2}{32}$.
- 4. Pour s'élever d'une hauteur h, l'animal doit s'opposer au travail du poids d'où $W_{\text{foulée}} = mgh$. Par conséquent, $W_{\text{foulée}} = \frac{1}{32} mg\ell f^2$.

I.3 Évaluation de l'énergie cinétique

5. Commençons par donner la dimension de toutes les grandeurs mises en jeu : $[\omega] = T^{-1}$, $[\ell] = L$, [m] = M, $[g] = LT^{-2}$ et k=1. Les deux membres de l'égalité ayant nécessairement la même dimension, il vient : $T^{-1} = L^a M^b L^c T^{-2c}$. On en déduit le système :

$$\begin{cases} b = 0 \\ a + c = 0 \\ -2c = -1 \end{cases} \Leftrightarrow \begin{cases} a = -1/2 \\ b = 0 \\ c = 1/2 \end{cases}$$

Finalement,
$$\omega = \sqrt{\frac{g}{\ell}}$$
 et $T = \frac{2\pi}{\omega}$, soit $T = 2\pi\sqrt{\frac{\ell}{g}}$.

- 6. Pendant une période T, l'animal avance de D d'où $v = \frac{D}{T}$
- 7. Par définition, $E_{\rm c}=\frac{1}{2}mv^2$. Ainsi, $E_{\rm c}=\frac{1}{2}m\left(\frac{D}{T}\right)^2=\frac{1}{2}mD^2\times\frac{1}{4\pi^2}\frac{g}{\ell}=\frac{1}{8\pi^2}gml\frac{D^2}{\ell^2}$, soit finalement $E_{\rm c}=\frac{1}{8\pi^2}gmlf^2$

I.4 Similitude dynamique

- **8.** $F_{\rm r} = \frac{v}{\sqrt{g\ell}}$; or $v = \frac{D}{T} = \frac{D}{2\pi} \sqrt{\frac{g}{\ell}}$ d'où $F_{\rm r} = \frac{1}{2\pi} \frac{D}{\ell} \iff \boxed{F_{\rm r} = \frac{f}{2\pi}}$
- 9. Compte tenu des chiffres significatifs proposés par l'énoncé, on trouve un nombre de Froude $F_r = 1, 6$ identique pour le furet et le rhinocéros qui sont pourtant des animaux assez dissemblables.

10. Par définition, le nombre de Froude est égal à $F_{\rm r} = \frac{v}{\sqrt{g\ell}}$. On trouve ainsi $v_{\rm T-rex} \simeq 5~{\rm m\cdot s^{-1}}$ (20 km·h⁻¹) et $v_{\rm raptor} \simeq 9~{\rm m\cdot s^{-1}}$ (30 km·h⁻¹).