

Alexander Panchenko

INDUCING INTERPRETABLE WORD
SENSES FOR WSD AND ENRICHMENT OF
LEXICAL RESOURCES

Inducing word sense representations:

- word sense embeddings via retrofitting [Pelevina et al., 2016, Remus and Biemann, 2018];
- sparse sense representations [Panchenko et al., 2017c];
- inducing synsets [Ustalov et al., 2017]
- sense semantic classes [Panchenko et al., 2018]

Inducing word sense representations:

- word sense embeddings via retrofitting [Pelevina et al., 2016, Remus and Biemann, 2018]:
- sparse sense representations [Panchenko et al., 2017c];
- inducing synsets [Ustalov et al., 2017]
- sense semantic classes [Panchenko et al., 2018]
- Making induced senses interpretable [Panchenko et al., 2017b, Panchenko et al., 2017c]

Inducing word sense representations:

- word sense embeddings via retrofitting [Pelevina et al., 2016, Remus and Biemann, 2018];
- sparse sense representations [Panchenko et al., 2017c];
- inducing synsets [Ustalov et al., 2017]
- sense semantic classes [Panchenko et al., 2018]
- Making induced senses interpretable
 [Panchenko et al., 2017b, Panchenko et al., 2017c]
- Linking induced word senses to lexical resources [Faralli et al., 2016, Panchenko et al., 2017a, Biemann et al., 2018]

Word vs sense embeddings

Word vs sense embeddings

Related work

Related work: knowledge-based

AutoExtend [Rothe and Schütze, 2015]

^{*} image is reproduced from the original paper

Related work: knowledge-free

- Adagram [Bartunov et al., 2016]
- Multiple vector representations θ for each word:

Related work: knowledge-free

- Adagram [Bartunov et al., 2016]
- Multiple vector representations θ for each word:

$$p(Y, Z, \beta | X, \alpha, \theta) = \prod_{w=1}^{V} \prod_{k=1}^{\infty} p(\beta_{wk} | \alpha) \prod_{i=1}^{N} [p(z_i | x_i, \beta) \prod_{j=1}^{C} p(y_{ij} | z_i, x_i, \theta)],$$

- z_i a hidden variable: a sense index of word x_i in context C;
- α a meta-parameter controlling number of senses.

Related work: knowledge-free

- Adagram [Bartunov et al., 2016]
- Multiple vector representations θ for each word:

$$p(Y, Z, \beta | X, \alpha, \theta) = \prod_{w=1}^{V} \prod_{k=1}^{\infty} p(\beta_{wk} | \alpha) \prod_{i=1}^{N} [p(z_i | x_i, \beta) \prod_{j=1}^{C} p(y_{ij} | z_i, x_i, \theta)],$$

- z_i a hidden variable: a sense index of word x_i in context C;
- α a meta-parameter controlling number of senses.
- See also: [Neelakantan et al., 2014] and [Li and Jurafsky, 2015]

Related work: word sense induction

- Word sense induction (WSI) based on graph clustering:
 - [Lin, 1998]
 - [Pantel and Lin, 2002]
 - [Widdows and Dorow, 2002]
 - Chinese Whispers [Biemann, 2006]
 - [Hope and Keller, 2013]

* source of the image: http://ic.pics.livejournal.com/blagin_anton/33716210/2701748/2701748_800.jpg

RepL4NLP@ACL'16 [Pelevina et al., 2016], LREC'18 [Remus and Biemann, 2018]

Prior methods:

- Induce inventory by clustering of word instances
- Use existing sense inventories

Our method:

- Input: word embeddings
- Output: word sense embeddings
- Word sense induction by clustering of word ego-networks

■ From word embeddings to sense embeddings

Word sense induction using ego-network clustering

Neighbours of Word and Sense Vectors

Vector	Nearest Neighbors
	tray, bottom, diagram, bucket, brackets, stack, basket, list, parenthesis, cup, saucer, pile, playfield, bracket, pot, drop-down, cue, plate

Neighbours of Word and Sense Vectors

Vector	Nearest Neighbors
table	tray, bottom, diagram, bucket, brackets, stack, basket, list, parenthesis, cup, saucer, pile, playfield, bracket, pot, drop-down, cue, plate
table#0	leftmost#0, column#1, tableau#1, indent#1, bracket#3, pointer#0, footer#1, cursor#1, diagram#0, grid#0
table#1	pile#1, stool#1, tray#0, basket#0, bowl#1, bucket#0, box#0, cage#0, saucer#3, mirror#1, pan#1, lid#0

Word Sense Disambiguation

- Context extraction: use context words around the target word
- Context filtering: based on context word's relevance for disambiguation
- Sense choice in context: maximise similarity between a context vector and a sense vector

They bought a table and chairs for kitchen. table senses data furniture

Evaluation on SemEval 2013 Task 13 WSI&D:

Model	Jacc.	Tau	WNDCG	F.NMI	F.B-Cubed
AI-KU (add1000)	0.176	0.609	0.205	0.033	0.317
AI-KU	0.176	0.619	0.393	0.066	0.382
AI-KU (remove5-add1000)	0.228	0.654	0.330	0.040	0.463
Unimelb (5p)	0.198	0.623	0.374	0.056	0.475
Unimelb (50k)	0.198	0.633	0.384	0.060	0.494
UoS (#WN senses)	0.171	0.600	0.298	0.046	0.186
UoS (top-3)	0.220	0.637	0.370	0.044	0.451
La Sapienza (1)	0.131	0.544	0.332	_	_
La Sapienza (2)	0.131	0.535	0.394	_	_
AdaGram, α = 0.05, 100 dim	0.274	0.644	0.318	0.058	0.470
w2v	0.197	0.615	0.291	0.011	0.615
w2v (nouns)	0.179	0.626	0.304	0.011	0.623
JBT	0.205	0.624	0.291	0.017	0.598
JBT (nouns)	0.198	0.643	0.310	0.031	0.595
TWSI (nouns)	0.215	0.651	0.318	0.030	0.573

LREC'2018 [Remus and Biemann, 2018]

	AUTOEXTEND	ADAGRAM	sans .	GLOVE .	SYMPAT .	^{LSABO} W	^{LSAHA} L	PARAGRAMS <u>I</u>
SIMLEX999	0.45	0.29	0.44	0.37	0.54	0.30	0.27	0.68
MEN	0.72	0.67	0.77	0.73	0.53	0.67	0.71	0.77
SIMVERB	0.43	0.27	0.36	0.23	0.37	0.15	0.19	0.53
WORDSIM353	0.58	0.61	0.70	0.61	0.47	0.67	0.59	0.72
SIMLEX999-N	0.44	0.33	0.45	0.39	0.48	0.32	0.34	0.68
MEN-N	0.72	0.68	0.77	0.76	0.57	0.71	0.73	0.78

- Sense-aware similarities are marked with +senses.
- These results are using a sense inventory based on sparse dependency features (JoBimText).

 Word and sense embeddings of words iron and vitamin.

LREC'18 [Remus and Biemann, 2018]

Sparse sense representations

Sparse sense representations

Watset: synset induction

Watset: synset induction

Watset: synset induction

Induction of sense semantic classes

Induction of sense semantic classes

Induction of sense semantic classes

Knowledge-based sense representations are **interpretable**

bn:01713224n
 NOUN
 Named Entity
 Categories: High-level programming languages, Dutch inventions, Class-based programming languages, Cros platform free software...

Python (programming language) ◄○ · /usr/bin/python ◄○ ·
 /usr/local/bin/python ◄○ · Python language ◄○ · Python programming language ◄○

Python is a widely used general-purpose, high-level programming language. (4) Wikipedia

HAS PART
HAS KIND
DESIGNER
DEVELOPER

RT panda ND Stacki ER Guido ER Pythor

DESIGNER
DEVELOPER
DIALECTS
INFLUENCED BY
LICENSE

programming language • free software • scripting language (1)
pandas
Stackless Python

Guido van Rossum Python Software Foundation = Guido van Rossum Cython = Stackless Python

ALGOL 68 = alphabet = ruby

Python Software Foundation License

More relations

EXPLORE NETWORK

More definitions

Knowledge-free sense representations are uninterpretable

Making induced senses interpretable

Making induced senses interpretable

Conclusion 0000

Vectors + Graphs = \heartsuit

Conclusion 0 • 0 0

Take home messages

We can induce word senses, synsets and semantic classes in a knowledge-free way using graph clustering and distributional models.

Conclusion 0 • 00

Take home messages

- We can induce word senses, synsets and semantic classes in a knowledge-free way using graph clustering and distributional models.
- We can make the induced word senses interpretable in a knowledge-free way with hypernyms, images, definitions.

Take home messages

- We can induce word senses, synsets and semantic classes in a knowledge-free way using graph clustering and distributional models.
- We can make the induced word senses interpretable in a knowledge-free way with hypernyms, images, definitions.
- We can link induced senses to lexical resources to
 - improve performance of WSD;
 - enrich lexical resources with emerging senses.

An ongoing shared task on WSI&D

- Participate in an ACL SIGSLAV sponsored shared task on word sense induction and disambiguation for Russian!
- More details: http://russe.nlpub.org/2018/wsi

Conclusion 000

Acknowledgments

Thank you! Questions?

This research was supported by

German Academic Exchange Service

Bartunov, S., Kondrashkin, D., Osokin, A., and Vetrov, D. (2016).

Breaking sticks and ambiguities with adaptive skip-gram. In *Artificial Intelligence and Statistics*, pages 130–138.

Biemann, C., Faralli, S., Panchenko, A., and Ponzetto, S. P. (2018).

A framework for enriching lexical semantic resources with distributional semantics.

In *Journal of Natural Language Engineering*, pages 56–64. Cambridge Press.

Faralli, S., Panchenko, A., Biemann, C., and Ponzetto, S. P. (2016).

Linked disambiguated distributional semantic networks. In *International Semantic Web Conference*, pages 56–64. Springer.

Panchenko, A., Faralli, S., Ponzetto, S. P., and Biemann, C. (2017a).

Using linked disambiguated distributional networks for word sense disambiguation.

In Proceedings of the 1st Workshop on Sense, Concept and Entity Representations and their Applications, pages 72–78, Valencia, Spain. Association for Computational Linguistics.

Panchenko, A., Marten, F., Ruppert, E., Faralli, S., Ustalov, D., Ponzetto, S. P., and Biemann, C. (2017b).

Unsupervised, knowledge-free, and interpretable word sense disambiguation.

In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 91–96, Copenhagen, Denmark. Association for Computational Linguistics.

Panchenko, A., Ruppert, E., Faralli, S., Ponzetto, S. P., and Biemann, C. (2017c).

Unsupervised does not mean uninterpretable: The case for word sense induction and disambiguation.

In Proceedings of the 15th Conference of the European Chapter

Long Papers, pages 86–98, Valencia, Spain. Association for Computational Linguistics.

Panchenko, A., Ustalov, D., Faralli, S., Ponzetto, S. P., and Biemann, C. (2018).

Improving hypernymy extraction with distributional semantic classes.

In *Proceedings of the LREC 2018*, Miyazaki, Japan. European Language Resources Association.

Pelevina, M., Arefiev, N., Biemann, C., and Panchenko, A. (2016).

Making sense of word embeddings.

In Proceedings of the 1st Workshop on Representation Learning for NLP, pages 174–183, Berlin, Germany. Association for Computational Linguistics.

Remus, S. and Biemann, C. (2018).

Retrofittingword representations for unsupervised sense aware word similarities.

In *Proceedings of the LREC 2018*, Miyazaki, Japan. European Language Resources Association.

Rothe, S. and Schütze, H. (2015).

Autoextend: Extending word embeddings to embeddings for synsets and lexemes.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1793–1803, Beijing, China. Association for Computational Linguistics.

Ustalov, D., Panchenko, A., and Biemann, C. (2017).
Watset: Automatic induction of synsets from a graph of synonyms.

In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1579–1590, Vancouver, Canada. Association for Computational Linguistics.