MA166: Recitation 8 Prep

Carlos Salinas

March 2, 2016

1 Homework Solutions

Section 1.1: Homework 18

Problem 1.1. The masses m_i are located at the points P_i . Find the moments M_x and M_y and the center of mass of the system.

$$m_1 = 2,$$
 $m_2 = 1,$ $m_3 = 7;$ $P_1(2, -5),$ $P_2(-3, 1),$ $P_3(3, 5).$

Solution. The definitions for the moment of the system about the y-axis is

$$M_y = \sum_{i=1}^n m_i x_i,\tag{1}$$

and for the moment of the system about the x-axis is

$$M_x = \sum_{i=1}^n m_i y_i. (2)$$

So all you need to do for this problem is to plug in the values

$$M_y = m_1 x_1 + m_2 x_2 + m_3 x_3 = \boxed{-4,}$$

and

$$M_x = m_1 y_1 + m_2 y_2 + m_3 y_3 = \boxed{-2.}$$

Then the total mass is M = 10 so

$$(\bar{x},\bar{y}) = \left[\left(-\frac{2}{5},-\frac{1}{5}\right).\right]$$

(2)

Problem 1.2. Sketch the region bounded by the curves, and visually estimate the location of the centroid.

$$y = 4x, y = 0, x = 1.$$

Solution. The image you can find yourself. It's at the centroid of the triangle (assuming uniform distribution of mass) and there's a very simple formula for finding the centroid of a triangle, from a purely geometric perspective, it is

$$(\bar{x}, \bar{y}) = \frac{1}{3}(x_1 + x_2 + x_3, y_1 + y_2 + y_3)$$
(3)

where (x_1, y_1) , (x_2, y_2) and (x_3, y_3) are the vertices of the triangle. The vertices are very clearly (0,0), (1,0) and (1,4) hence

$$(\bar{x}, \bar{y}) = \boxed{\left(\frac{2}{3}, \frac{4}{3}\right).}$$

(3)

Problem 1.3. Sketch the region bounded by the curves, and visually estimate the location of the centroid. Find the exact coordinates of the centroid.

$$y = e^x, \qquad y = 0, \qquad x = 5.$$

Find the exact coordinates of the centroid.

Solution. I'll assume you can plot this on your own. Having me do it is asking for too much this late at night:-). Now, recall the definition of the moments about the axes

$$M_y = \int_a^b x(f(x) - g(x)) dx \tag{4}$$

and

$$M_x = \int \frac{(f(x) - g(x))^2}{2} dx \tag{5}$$

and of course the formula for the centroid

$$(\bar{x}, \bar{y}) = \left(\frac{M_y}{A}, \frac{M_x}{A}\right). \tag{6}$$

0

Now the first thing we need to do is to calculate the area

$$A = \int_0^5 e^x \, dx = e^5 - 1.$$

Next, we calculate M_y and M_x like so

$$M_x = \int_0^5 x e^x dx$$

$$= [xe^x - e^x]_0^5$$

$$= 4e^5 + 1$$

$$M_y = \int_0^5 \frac{e^{2x}}{2} dx$$

$$= \frac{1}{4} [e^{2x}]_0^5$$

$$= \frac{e^{10} - 1}{4}.$$

So the centroid is

$$(\bar{x}, \bar{y}) = \left(\frac{1+4e^5}{e^5-1}, \frac{e^5+1}{4}\right).$$

Problem 1.4. Find the centroid of the region bounded by the given curves.

$$y = 6\sin 5x$$
, $y = 6\cos 5x$, $x = 0$, $x = \frac{\pi}{20}$.

Solution. What a horrible calculation. Spare my poor fingers having to type this out in details : ^). The area is

$$A = 6 \int_0^{\pi/12} \cos 3x - \sin 3x \, dx$$

$$= 2[\sin 3x + \cos 3x]_0^{\pi/12}$$
$$= 2(\sqrt{2} - 1).$$

Skipping straight to the centroid, we have the following

$$\bar{x} = \frac{1}{2(\sqrt{2} - 1)} \int_0^{\pi/12} x \cos 3x - x \sin 3x \, dx \qquad \bar{y} = \frac{1}{4(\sqrt{2} - 1)} \int_0^{\pi/12} \cos^2 3x - \sin^2 3x \, dx$$

(

Problem 1.5. Find the centroid of the region bounded by the given curves.

$$y = x^3$$
, $x + y = 10$, $y = 0$.

Solution.

Problem 1.6. Calculate the moments M_x , M_y and the center of mass of the lamina with the given density and shape.

Solution.

Problem 1.7.

Solution.

Section 1.2: Homework 19

Problem 1.8.

 \odot

Problem 1.9.

 \odot

Problem 1.10.

Solution.

Problem 1.11.

Solution.

Problem 1.12.

Solution.

Problem 1.13.

Solution.

Problem 1.14.		
Solution.		©
Problem 1.15.		
Solution.		©
Problem 1.16.		
Solution.		©
Problem 1.17.		
Solution.		©
Problem 1.18.		
Solution.		©
Section 1.3:	Homework 20	
Problem 1.19.		
Solution.		©
Problem 1.20.		
Solution.		©
Problem 1.21.		
Solution.		©
Problem 1.22.		
Solution.		©
Problem 1.23.		
Solution.		(2)
Problem 1.24.		
Solution.		(2)
Problem 1.25.		
Solution.		©
Problem 1.26.		
Solution.		©

Probl	em 1.27.		
Solutio	on.		©

2 Past Exam Problems

Problem 2.1.

Solution.