4616 – Métodos Numéricos Computacionais

Larissa Oliveira oliveira.t.larissa@gmail.com

Datas...

Domingo	Segunda	Terça	Quarta	Quinta	Sexta	Sábado
09	10 Ajuste (Lista 4 e trab 3)	11 Ajuste	12	13	14	15
16	17 Integração	18 Integração Trab 2	19	20	21	22
23	24 Integração (Lista 5)	25 SNL Lista 4	26	27	28	29
30	31 SNL	O1 EDO Trab 3	02	03	04 Notas parciais	05
06	07 Repor!	08 P2 Lista 5	09	10	11 Médias	12
13	14	15 Exame	16	17	18	19

Hoje...

Interpolação: O polinômio de aproximação foi definido de tal maneira a coincidir com o valor da função dada em pontos definidos.

- ✓ Consiste em uma boa aproximação para valores tabelados, que nos permita obter um valor da função em algum ponto fora do intervalo tabelado com certa margem de segurança;
- ✓ **Problema:** aproximar f por outra função g de uma família previamente escolhida em que $g(x) = a_1g_1(x) + a_2g_2(x) + ... + a_ng_n(x)$;
- ✓ Se f é apresentada na forma tabelada temos o caso discreto;
- ✓ Se f é apresentada na forma analítica temos o caso **contínuo**;

 $g(x) = a_1 g_1(x) + a_2 g_2(x) + ... + a_n g_n(x)$

Polinomins

 $g(x) = ae^{bx}$ $g(x) = e^{ax+b}$ $g(x) = ab^{x}$

 $g(x) = \frac{1}{a_1 x + a_2}$

Como Aproximar???

Ao aproximarmos uma função *f* por uma função *g* de uma família previamente escolhida estamos introduzindo um erro(ou desvio ou resíduo), dado por:

erro (e) =
$$(f(x) - g(x))$$

Devemos impor:

$$\checkmark$$
 e = 0?

√ absoluto(e) mínimo?

minimizar erros²

desvios quadráticos mínimos

$$\min \sum_{i=1}^{n} (f(x_i) - g(x_i))^2 \rightarrow \min \sum_{i=1}^{n} e_i^2$$

AJUSTE DE CURVA - CASO DISCRETO

Dados os pontos $(x_i, f(x_i))$, i = 1, ..., n, e as n funções $g_1(x)$, $g_2(x)$, ..., $g_n(x_n)$ escolhidas de alguma forma, devemos determinar os coeficientes a_1 , a_2 , ..., a_n tal que $g(x) = a_1g_1(x) + a_2g_2(x) + ... + a_ng_n(x)$ se aproxime ao máximo de f(x).

O ajuste de curvas pelo Método dos Mínimos Quadrados tem por objetivo ajustar g(x) = f(x), de forma que os desvios quadráticos sejam mínimos

Dados n pontos (x_i, y_i) , i = 1,... n, deseja-se ajustar a eles uma reta $g(x) = a_1g_1(x) + a_2g_2(x) = (a_1x + a_2)$

$$E(a_1, a_2) = \min \sum_{i=1}^{n} e_i^2$$

$$= \min \sum_{i=1}^{n} (f(x_i) - g(x_i))^2$$

$$= \min \sum_{i=1}^{n} [f(x_i) - (a_1 x_i + a_2)]^2$$

$$= \min \sum_{i=1}^{n} (f(x_i) - a_1 x_i - a_2)^2$$

Variáveis do problema

Se a função $E(a_1, a_2)$ possui um ponto de mínimo...

$$\begin{cases} \frac{\partial \sum_{i=1}^{n} e_{i}^{2}}{\partial a_{1}} = 0 \\ \frac{\partial \sum_{i=1}^{n} e_{i}^{2}}{\partial a_{2}} = 0 \end{cases} \Rightarrow \begin{cases} 2\sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(-x_{i}) = 0 \\ 2\sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(-1) = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2})(x_{i}) = 0 \\ \sum_{i=1}^{n} (y_{i} - a_{1}x_{i} - a_{2}) = 0 \end{cases} \end{cases}$$

$$\begin{cases} \sum_{i=1}^{n} x_{i}y_{i} - \sum_{i=1}^{n} a_{1}x_{i}^{2} - \sum_{i=1}^{n} a_{2}x_{i} = 0 \\ \sum_{i=1}^{n} x_{i}y_{i} - \sum_{i=1}^{n} a_{1}x_{i} - \sum_{i=1}^{n} a_{2}x_{i} = 0 \end{cases} \Rightarrow \begin{cases} a_{1}\sum_{i=1}^{n} x_{i}^{2} + a_{2}\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} x_{i}y_{i} \\ a_{1}\sum_{i=1}^{n} x_{i} + a_{2}(n) = \sum_{i=1}^{n} y_{i} \end{cases}$$

Sistema linear: Simethich

$$\begin{pmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{pmatrix} \begin{pmatrix} a_2 \\ a_1 \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i y_i \end{pmatrix}$$

Exemplo

Ajuste os pontos abaixo a g(x) e calcule o erro.

X	0	1	2	3	4
У	0,98	-3,01	-6,99	-11,01	-15

Exemplo Ajuste os pontos abaixo a g(x) e calcule o erro.

X	0	1	2	3	4
У	0,98	-3,01	-6,99	-11,01	-15

$$\frac{3(x) = a_1 \times + a_2}{x_1} = \frac{5}{2} \times i$$

$$\frac{5}{2} \times i = \frac{5}{2} \times i = \frac{5}{2} \times i$$

$$\frac{5}{2} \times i = \frac{5}{2} \times i = \frac{5}{2}$$

-110,02

30

$$\frac{1}{2} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1$$

$$3(x) = -4x + 0.986$$

$$C(x_1) = (1(x_1) - 9(x_1))^2 = (6,98 - 0,986)^2 = 0,0000$$

$$e(x_2) = (-3.01 + 3.014)^2 = 0.0000$$

Dados n pontos (x_i, y_i) , i = 1,..., n, e o grau do polinômio a ser determinado, deseja-se encontrar os coeficientes do polinômio de modo que

Resolvendo min
$$\sum_{i=1}^{n} (f(x_i) - g(x_i))^2$$

$$\Im(x) = a_1 \Im(x) + a_2 \Im(x) + \dots + a_n \Im(x)$$

$$\begin{pmatrix}
 n & \sum x_{i} & \sum x_{i}^{2} & \dots & \sum x_{i}^{n} \\
 \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} & \dots & \sum x_{i}^{n+1} \\
 \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} & \dots & \sum x_{i}^{n+2} \\
 \vdots & \vdots & \ddots & \vdots \\
 \sum x_{i}^{n} & \sum x_{i}^{n+1} & \sum x_{i}^{n+2} & \dots & \sum x_{i}^{n+n}
\end{pmatrix}
\begin{pmatrix}
 a_{n} \\
 a_{n-1} \\
 \vdots \\
 a_{2} \\
 a_{1}
\end{pmatrix} = \begin{pmatrix}
 \sum y_{i} \\
 \sum x_{i}^{2} y_{i} \\
 \vdots \\
 \sum x_{i}^{n} y_{i}
\end{pmatrix}$$

Exemplo

Ajuste os pontos da tabela abaixo à uma equação do 2º grau.

X	-2,0	-1,5	0,0	1,0	2,2	3,1
У	-30,5	-20,2	-3,3	9,2	16,8	21,4

X	-2,0	-1,5	0,0	1,0	2,2	3,1	
У	-30,5	-20,2	-3,3	9,2	16,8	21,4	4

$$\begin{pmatrix} 6 & 23 & 213 \\ 23 & 213 & 301 \\ 213 & 301 & 3238 \end{pmatrix} \begin{pmatrix} 63 \\ 82 \\ 20338 \\ 213 & 301 & 3238 \end{pmatrix} \begin{pmatrix} 63 \\ 82 \\ 20338 \\ 213 & 301 & 3238 \end{pmatrix} \begin{pmatrix} 63 \\ 82 \\ 12837 \end{pmatrix} = \begin{pmatrix} -616 \\ 20338 \\ 12837 \end{pmatrix} = \begin{pmatrix} -1.9 \\ 12837 \end{pmatrix}$$

	J Xi	ل Xر	۸٠ 3	, ×) Yi	Xi Ýi	z Xi Yi	
	-2	4	- 3	16	-30.5	41	-122	
	-1,5	2,3	-3,4	5,1	-20.2	30.3	- 45.5	
	0	0	0	\Diamond	-3.3	0	0	
	1	٨	٨	4	9.2	9.2	9.2	
	2.2	4.8	10,6	23,4	168	31,0	81,3	
	3.1	9,6	29,3	72,4	21.4	66,3	205,7	
5	2,3	21,7	30,1	137R	-6,6	203,8	1287	4

AJUSTE DE CURVA - CASO DISCRETO

Atividade para contabilizar presença – 10/08/2020.

Considere uma função f(x) definida conforme a tabela:

x_i	-2	-1	0	1	2	3
$f(x_i)$	19,01	3,99	-1	4,01	48,99	45

Usando o método dos mínimos quadrados, determine uma função g(x) que melhor se ajuste aos dados da tabela.