Word-Level Multi-Fix Rectifiability of Finite Field Arithmetic Circuits

Vikas Rao¹, Irina Ilioaea², Haden Ondricek¹, Priyank Kalla¹, and Florian Enescu³

¹Electrical & Computer Engineering, University of Utah
²Department of Mathematics, Louisiana State University Shreveport
³Mathematics & Statistics, Georgia State University

Outline

- Problem Description
- Preliminaries
- Problem Statement and Objective
- Single-fix Application
- Multi-Fix setup
 - Mathematical Challenges
- Rectifiability Check
- Experimental Results
- Summary and Future work

A faulty implementation of a 3-bit modulo multiplier $(Z = A \cdot B \mod P(x))$

 Agnostic to the fault model, check for rectification at particular targets

- Agnostic to the fault model, check for rectification at particular targets
 - Single-fix Rectification (SFR)
 - Correct circuit by changing function at a single net

- Agnostic to the fault model, check for rectification at particular targets
 - Single-fix Rectification (SFR)
 - Correct circuit by changing function at a single net
- In a general setting, SFR might not be desired or may not exist

- Agnostic to the fault model, check for rectification at particular targets
 - Single-fix Rectification (SFR)
 - Correct circuit by changing function at a single net
- In a general setting, SFR might not be desired or may not exist
 - Multi-fix Rectification (MFR)
 - Correct circuit by changing functions at multiple nets
 - Contribution: Multi-fix rectifiability setup and check

Preliminaries: Finite fields

- \bullet Fields set of elements over which operations $(+,\cdot,/)$ can be performed
 - Ex. $\mathbb{R}, \mathbb{Q}, \mathbb{C}$

Preliminaries: Finite fields

- \bullet Fields set of elements over which operations $(+,\cdot,/)$ can be performed
 - Ex. ℝ, ℚ, ℂ
- Finite fields (Galois fields) Finite set of elements
 - Ex. \mathbb{F}_q , where $q = p^n$, p = prime, $n \in \mathbb{Z}_{\geq 1}$
 - With n = 1, and p = 2, $\mathbb{F}_2 = \mathbb{B} = \{0, 1\}$
 - On circuits, p = 2, n = data-operand width

Preliminaries: Finite fields

- Fields set of elements over which operations $(+,\cdot,/)$ can be performed
 - Ex. ℝ, ℚ, ℂ
- Finite fields (Galois fields) Finite set of elements
 - Ex. \mathbb{F}_q , where $q = p^n$, p = prime, $n \in \mathbb{Z}_{\geq 1}$
 - With n = 1, and p = 2, $\mathbb{F}_2 = \mathbb{B} = \{0, 1\}$
 - On circuits, p = 2, n = data-operand width
- Hardware cryptography extensively based on \mathbb{F}_{2^n} (we use \mathbb{F}_{2^n})

Preliminaries: Circuit polynomials over \mathbb{F}_{2^n}

 \bullet Boolean logic gates in $\mathbb{F}_2 \ (\mathbb{F}_2 \subset \mathbb{F}_{2^n}).$ Over $\mathbb{F}_2, \, -1 = +1 \pmod 2$

$$z = \sim a$$
 $\Longrightarrow z + a + 1$ (mod 2)
 $z = a \wedge b$ $\Longrightarrow z + a \cdot b$ (mod 2)
 $z = a \vee b$ $\Longrightarrow z + a \cdot b + a + b$ (mod 2)
 $z = a \oplus b$ $\Longrightarrow z + a + b$ (mod 2)

Preliminaries: Circuit polynomials over \mathbb{F}_{2^n}

• Boolean logic gates in \mathbb{F}_2 $(\mathbb{F}_2 \subset \mathbb{F}_{2^n})$. Over \mathbb{F}_2 , $-1 = +1 \pmod 2$

$$z = \sim a \qquad \Longrightarrow z + a + 1 \qquad \pmod{2}$$

 $z = a \wedge b \qquad \Longrightarrow z + a \cdot b \qquad \pmod{2}$
 $z = a \vee b \qquad \Longrightarrow z + a \cdot b + a + b \qquad \pmod{2}$
 $z = a \oplus b \qquad \Longrightarrow z + a + b \qquad \pmod{2}$

ullet Word-level polynomials [γ = primitive element of \mathbb{F}_{2^n}]

Output :
$$Z + z_0 + \gamma \cdot z_1 + \dots + \gamma^{n-1} \cdot z_{n-1}$$

Input : $A + a_0 + \gamma \cdot a_1 + \dots + \gamma^{n-1} \cdot a_{n-1}$

- ullet A multivariate specification polynomial $f \in \mathbb{F}_{2^n}$
 - *n* is the operand width

- A multivariate specification polynomial $f \in \mathbb{F}_{2^n}$
 - *n* is the operand width
- A faulty circuit implementation C for specification f
 - Model gates as polynomials over \mathbb{F}_{2^n}

- A multivariate specification polynomial $f \in \mathbb{F}_{2^n}$
 - *n* is the operand width
- A faulty circuit implementation C for specification f
 - Model gates as polynomials over \mathbb{F}_{2^n}
- A primitive polynomial $P_n(x)$ used to construct \mathbb{F}_{2^n}
 - $\bullet \ \mathbb{F}_{2^n} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_n(x))$

- A multivariate specification polynomial $f \in \mathbb{F}_{2^n}$
 - *n* is the operand width
- A faulty circuit implementation C for specification f
 - Model gates as polynomials over \mathbb{F}_{2^n}
- A primitive polynomial $P_n(x)$ used to construct \mathbb{F}_{2^n}
 - $\bullet \ \mathbb{F}_{2^n} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_n(x))$
- A set of m targets from C
 - Model it over \mathbb{F}_{2^m} challenges?

- A multivariate specification polynomial $f \in \mathbb{F}_{2^n}$
 - *n* is the operand width
- A faulty circuit implementation C for specification f
 - Model gates as polynomials over \mathbb{F}_{2^n}
- A primitive polynomial $P_n(x)$ used to construct \mathbb{F}_{2^n}
 - $\bullet \ \mathbb{F}_{2^n} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_n(x))$
- A set of m targets from C
 - Model it over \mathbb{F}_{2^m} challenges?
- Check if C is rectifiable at these m targets

- Let $R = \mathbb{F}_{2^n}[x_1, ..., x_d, Z]$
 - $\bullet \ \{\mathit{f}_{1},\ldots,\mathit{f}_{s}\} \in \mathit{R}$

- Let $R = \mathbb{F}_{2^n}[x_1, \dots, x_d, Z]$
 - $\{f_1, \ldots, f_s\} \in R$
- In our context
 - x_1, \ldots, x_d : Variables (nets of the circuit)
 - Z: bit-vector representation for variables
 - f_1, \ldots, f_s : Polynomials from the circuit (logic gate relations)

- Let $R = \mathbb{F}_{2^n}[x_1, \dots, x_d, Z]$
 - $\{f_1, \ldots, f_s\} \in R$
- In our context
 - x_1, \ldots, x_d : Variables (nets of the circuit)
 - Z: bit-vector representation for variables
 - f_1, \ldots, f_s : Polynomials from the circuit (logic gate relations)
- Multivariate polynomials: Impose monomial order ">" on R
 - We utilize lexicographic term order

- Let $R = \mathbb{F}_{2^n}[x_1, \dots, x_d, Z]$
 - $\bullet \ \{f_1,\ldots,f_s\} \in R$
- In our context
 - x_1, \ldots, x_d : Variables (nets of the circuit)
 - Z: bit-vector representation for variables
 - f_1, \ldots, f_s : Polynomials from the circuit (logic gate relations)
- Multivariate polynomials: Impose monomial order ">" on R
 - We utilize lexicographic term order
- Vanishing Polynomials: $F_0 = \langle x_1^2 + x_1, \dots, x_d^2 + x_d, Z^{2^n} + Z \rangle$
 - Restrict solutions to x_i in \mathbb{F}_2
 - Restrict solutions to Z in \mathbb{F}_{2^n}

Algebraic Geometry: Ideals and Varieties

• $J = \langle F \rangle = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}_{2^n}[x_1, \dots, x_d, Z]$ • $\{h_1 f_1 + \dots + h_s f_s : h_i \in R\}$

Algebraic Geometry: Ideals and Varieties

•
$$J = \langle F \rangle = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}_{2^n}[x_1, \dots, x_d, Z]$$

• $\{h_1 f_1 + \dots + h_s f_s : h_i \in R\}$

• Let ${\pmb a}=(a_1,\dots,a_d)\in {\mathbb F}_{2^n}^d \ s.t. \ f_1({\pmb a})=\dots=f_s({\pmb a})=0$

$$V(J) = ext{Set of all } \{ oldsymbol{a} \} ext{ s.t. } \left\{ egin{align*} f_1(oldsymbol{a}) &= 0, \\ f_2(oldsymbol{a}) &= 0, \\ \vdots & & & \\ f_S(oldsymbol{a}) &= 0 \end{array} \right.$$

Algebraic Geometry: Ideals and Varieties

- $J = \langle F \rangle = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}_{2^n}[x_1, \dots, x_d, Z]$ • $\{h_1 f_1 + \dots + h_s f_s : h_i \in R\}$
- Let ${\pmb a}=(a_1,\dots,a_d)\in {\mathbb F}_{2^n}^d \ s.t. \ f_1({\pmb a})=\dots=f_s({\pmb a})=0$

$$V(J) = ext{Set of all } \{ m{a} \} ext{ s.t. } \left\{ egin{align*} f_1(m{a}) = 0, \\ f_2(m{a}) = 0, \\ \vdots \\ f_s(m{a}) = 0. \end{array} \right.$$

• V(J) correspond to function mappings (Truth tables)

Gröbner Basis and Ideal membership

An ideal can have many generators.

•
$$J = \langle f_1, \dots, f_s \rangle = \langle p_1, \dots, p_m \rangle = \dots = \langle g_1, \dots, g_t \rangle$$

• Gröbner Basis (GB) is one such set with special properties

Gröbner Basis and Ideal membership

An ideal can have many generators.

•
$$J = \langle f_1, \ldots, f_s \rangle = \langle p_1, \ldots, p_m \rangle = \cdots = \langle g_1, \ldots, g_t \rangle$$

Gröbner Basis (GB) is one such set with special properties

• Let
$$J = \langle f_1, \dots, f_s \rangle = \langle g_1, \dots, g_t \rangle$$
 and $G = \{g_1, \dots, g_t\}$.

- G is a Gröbner basis of $J \iff \forall f \in J, f \xrightarrow{g_1, \dots, g_t} 0$
- Ideal membership: Let *f* be a polynomial in *R*:
 - if $f \xrightarrow{g_1, \dots, g_t} + 0$, then f is a member of J.

Gröbner Basis and Ideal membership

An ideal can have many generators.

•
$$J = \langle f_1, \ldots, f_s \rangle = \langle p_1, \ldots, p_m \rangle = \cdots = \langle g_1, \ldots, g_t \rangle$$

Gröbner Basis (GB) is one such set with special properties

$$ullet$$
 Let $J=\langle f_1,\ldots,f_s
angle=\langle g_1,\ldots,g_t
angle$ and $G=\{g_1,\ldots,g_t\}.$

- G is a Gröbner basis of $J \iff \forall f \in J, f \xrightarrow{g_1, \dots, g_t} 0$
- Ideal membership: Let *f* be a polynomial in *R*:
 - if $f \xrightarrow{g_1, \dots, g_t} + 0$, then f is a member of J.

- Reverse Topological Term Order (RTTO)
 - Exploit circuit structure to avoid expensive GB computation
 - Standard practice to order variables topologically from POs to PIs

A faulty implementation of a 3-bit modulo multiplier ($Z = A \cdot B \mod P_3(x)$)

- Reverse Topological Term Order (RTTO)
 - Exploit circuit structure to avoid expensive GB computation
 - Standard practice to order variables topologically from POs to PIs

- Reverse Topological Term Order (RTTO)
 - Exploit circuit structure to avoid expensive GB computation
 - Standard practice to order variables topologically from POs to PIs
- Impose RTTO > on circuit C:

$$f_1: Z + z_0 + \gamma \cdot z_1 + \gamma^2 \cdot z_2;$$
 $f_{22}: rr_1 + rr_3 + rr_2;$
 $f_2: A + a_0 + \gamma \cdot a_1 + \gamma^2 \cdot a_2;$ $f_{23}: r_1 + r_2 + r_3;$
 $f_3: B + b_0 + \gamma \cdot b_1 + \gamma^2 \cdot b_2;$ $f_{26}: r_3 + r_4 + d_4;$
 $f_4: z_0 + d_0 + e_1;$ $f_{27}: rr_3 + rr_4 + b_2;$
 $f_5: z_1 + f_0 + rr_0;$...
 $f_{30}: rr_4 + a_2 + b_2 + a_2b_2;$

- Reverse Topological Term Order (RTTO)
 - Exploit circuit structure to avoid expensive GB computation
 - Standard practice to order variables topologically from POs to PIs
- Impose RTTO > on circuit C:

$$f_{1}: Z + z_{0} + \gamma \cdot z_{1} + \gamma^{2} \cdot z_{2}; \quad f_{22}: rr_{1} + rr_{3} + rr_{2};$$

$$f_{2}: A + a_{0} + \gamma \cdot a_{1} + \gamma^{2} \cdot a_{2}; \quad f_{23}: r_{1} + r_{2} + r_{3};$$

$$f_{3}: B + b_{0} + \gamma \cdot b_{1} + \gamma^{2} \cdot b_{2}; \quad f_{26}: r_{3} + r_{4} + d_{4};$$

$$f_{4}: z_{0} + d_{0} + e_{1}; \quad f_{27}: rr_{3} + rr_{4} + b_{2};$$

$$f_{5}: z_{1} + f_{0} + rr_{0}; \quad \dots$$

$$\dots \quad f_{30}: rr_{4} + a_{2} + b_{2} + a_{2}b_{2};$$

- $\bullet \ F = \{f_1, \dots, f_{30}\}, \ F_0 = \{a_0^2 a_0, \dots, z_2^2 z_2, A^8 A, \dots, Z^8 Z\}.$
 - Ideal $J + J_0 = \langle F \cup F_0 \rangle$ models C.

• Denote polynomial $f: Z + A \cdot B$ as the design specification.

- Denote polynomial $f: Z + A \cdot B$ as the design specification.
- Ideal $J + J_0 = \langle F \cup F_0 \rangle$ representing circuit C.

- Denote polynomial $f: Z + A \cdot B$ as the design specification.
- Ideal $J + J_0 = \langle F \cup F_0 \rangle$ representing circuit C.
- Circuit designed over $\mathbb{F}_{2^n} = \mathbb{F}_{2^3}(n=3)$ using $P_n(x) = P_3(x) = x^3 + x + 1$ with $P_3(\gamma) = 0$

- Denote polynomial $f: Z + A \cdot B$ as the design specification.
- Ideal $J + J_0 = \langle F \cup F_0 \rangle$ representing circuit C.
- Circuit designed over $\mathbb{F}_{2^n} = \mathbb{F}_{2^3}(n=3)$ using $P_n(x) = P_3(x) = x^3 + x + 1$ with $P_3(\gamma) = 0$
- Is this circuit rectifiable at net r₃?

- Rectification check at net r_3 :
 - $J_1 = \langle F_1 \rangle$, where $F_1 = \{f_1, \dots, f_{26} = r_3 + 0, \dots, f_{30}\}$
 - $J_2 = \langle F_2 \rangle$, where $F_2 = \{f_1, \dots, f_{26} = r_3 + 1, \dots, f_{30}\}$

- Rectification check at net r_3 :
 - $\bullet \ \ J_1=\langle F_1\rangle, \text{ where } F_1=\{f_1,\ldots,f_{26}=r_3+0,\ldots,f_{30}\}$
 - $J_2 = \langle F_2 \rangle$, where $F_2 = \{f_1, \dots, f_{26} = r_3 + 1, \dots, f_{30}\}$
- Compute rem₁ and rem₂:
 - $rem_1 = f \xrightarrow{J_1, J_0} (\gamma + 1) \cdot a_2b_1b_2 + (\gamma^2 + \gamma) \cdot a_2b_2$
 - $rem_2 = f \xrightarrow{J_2, J_0} + (\gamma + 1) \cdot a_2b_1b_2 + (\gamma + 1) \cdot a_2b_1 + (\gamma^2 + \gamma) \cdot a_2b_2$

- Rectification check at net r_3 :
 - $J_1 = \langle F_1 \rangle$, where $F_1 = \{f_1, \dots, f_{26} = r_3 + 0, \dots, f_{30}\}$
 - $J_2 = \langle F_2 \rangle$, where $F_2 = \{f_1, \dots, f_{26} = r_3 + 1, \dots, f_{30}\}$
- Compute rem₁ and rem₂:
 - $rem_1 = f \xrightarrow{J_1, J_0} (\gamma + 1) \cdot a_2b_1b_2 + (\gamma^2 + \gamma) \cdot a_2b_2$
 - $rem_2 = f \frac{J_2, J_0}{} + (\gamma + 1) \cdot a_2 b_1 b_2 + (\gamma + 1) \cdot a_2 b_1 + (\gamma^2 + \gamma) \cdot a_2 b_2$
- **3** SFR possible **iff** $V(rem_1) \cup V(rem_2) = \mathbb{F}_{2^3}^{|X_{Pl}|} = V(J_0)$

- Rectification check at net r_3 :
 - $J_1 = \langle F_1 \rangle$, where $F_1 = \{f_1, \dots, f_{26} = r_3 + 0, \dots, f_{30}\}$
 - $J_2 = \langle F_2 \rangle$, where $F_2 = \{f_1, \dots, f_{26} = r_3 + 1, \dots, f_{30}\}$
- Compute rem₁ and rem₂:
 - $rem_1 = f \xrightarrow{J_1, J_0} (\gamma + 1) \cdot a_2b_1b_2 + (\gamma^2 + \gamma) \cdot a_2b_2$
 - $rem_2 = f \xrightarrow{J_2,J_0} + (\gamma + 1) \cdot a_2b_1b_2 + (\gamma + 1) \cdot a_2b_1 + (\gamma^2 + \gamma) \cdot a_2b_2$
- **3** SFR possible **iff** $V(rem_1) \cup V(rem_2) = \mathbb{F}_{2^3}^{|X_{Pl}|} = V(J_0)$
 - Compute $G = GB(rem_1 \cdot rem_2, J_0)$ and check if $G = J_0$
 - In this example, target r₃ doesn't admit SFR

- For Single-fix, m = 1
 - Rectification patch modeled over $\mathbb{F}_{2^m} = \mathbb{F}_{2^1} = \mathbb{F}_2$
 - Circuit modeled over \mathbb{F}_{2^n}

- For Single-fix, m = 1
 - Rectification patch modeled over $\mathbb{F}_{2^m} = \mathbb{F}_{2^1} = \mathbb{F}_2$
 - Circuit modeled over \mathbb{F}_{2^n}
 - $\forall n \in \mathbb{Z}_{>1}$, $1 \mid n$, $\mathbb{F}_2 \subset \mathbb{F}_{2^n}$,

- For Single-fix, m = 1
 - Rectification patch modeled over $\mathbb{F}_{2^m} = \mathbb{F}_{2^1} = \mathbb{F}_2$
 - Circuit modeled over \mathbb{F}_{2^n}
 - $\forall n \in \mathbb{Z}_{>1}$, $1 \mid n$, $\mathbb{F}_2 \subset \mathbb{F}_{2^n}$,
- For Multi-fix, since m > 1, \mathbb{F}_{2^m} might not be contained in \mathbb{F}_{2^n}

- For Single-fix, m = 1
 - Rectification patch modeled over $\mathbb{F}_{2^m} = \mathbb{F}_{2^1} = \mathbb{F}_2$
 - Circuit modeled over \mathbb{F}_{2^n}
 - $\forall n \in \mathbb{Z}_{>1}$, $1 \mid n$, $\mathbb{F}_2 \subset \mathbb{F}_{2^n}$,
- For Multi-fix, since m > 1, \mathbb{F}_{2^m} might not be contained in \mathbb{F}_{2^n}
 - Ex. For $m=2, n=3, 2 \nmid 3, \mathbb{F}_{2^2} \not\subset \mathbb{F}_{2^3}$

- For Single-fix, m = 1
 - Rectification patch modeled over $\mathbb{F}_{2^m} = \mathbb{F}_{2^1} = \mathbb{F}_2$
 - Circuit modeled over \mathbb{F}_{2^n}
 - $\forall n \in \mathbb{Z}_{>1}$, $1 \mid n$, $\mathbb{F}_2 \subset \mathbb{F}_{2^n}$,
- For Multi-fix, since m > 1, \mathbb{F}_{2^m} might not be contained in \mathbb{F}_{2^n}
 - ullet Ex. For $m=2, n=3, 2
 mid 3, <math>\mathbb{F}_{2^2}
 ot\subset \mathbb{F}_{2^3}$
- Composite field \mathbb{F}_{2^k}
 - ullet $\mathbb{F}_{2^m}\subset \mathbb{F}_{2^k}$ and $\mathbb{F}_{2^n}\subset \mathbb{F}_{2^k}$

- For Single-fix, m = 1
 - Rectification patch modeled over $\mathbb{F}_{2^m} = \mathbb{F}_{2^1} = \mathbb{F}_2$
 - Circuit modeled over \mathbb{F}_{2^n}
 - $\forall n \in \mathbb{Z}_{>1}$, $1 \mid n$, $\mathbb{F}_2 \subset \mathbb{F}_{2^n}$,
- For Multi-fix, since m > 1, \mathbb{F}_{2^m} might not be contained in \mathbb{F}_{2^n}
 - Ex. For $m=2, n=3, 2 \nmid 3, \mathbb{F}_{2^2} \not\subset \mathbb{F}_{2^3}$
- Composite field F₂^k
 - ullet $\mathbb{F}_{2^m}\subset \mathbb{F}_{2^k}$ and $\mathbb{F}_{2^n}\subset \mathbb{F}_{2^k}$
 - What are the mathematical challenges?

- For Single-fix, m = 1
 - Rectification patch modeled over $\mathbb{F}_{2^m} = \mathbb{F}_{2^1} = \mathbb{F}_2$
 - Circuit modeled over \mathbb{F}_{2^n}
 - $\forall n \in \mathbb{Z}_{>1}$, $1 \mid n$, $\mathbb{F}_2 \subset \mathbb{F}_{2^n}$,
- For Multi-fix, since m > 1, \mathbb{F}_{2^m} might not be contained in \mathbb{F}_{2^n}
 - Ex. For $m=2, n=3, 2 \nmid 3, \mathbb{F}_{2^2} \not\subset \mathbb{F}_{2^3}$
- Composite field F₂^k
 - ullet $\mathbb{F}_{2^m}\subset \mathbb{F}_{2^k}$ and $\mathbb{F}_{2^n}\subset \mathbb{F}_{2^k}$
 - What are the mathematical challenges?
 - What $P_K(x)$ should be used for constructing \mathbb{F}_{2^k}

Multi-fix Rectification: Prior work

- Craig interpolation and/or iterative SAT solving [Huang. et al, DAC'11][Huang. et al, DATE'12]
 - Iteratively and incrementally patch the circuit
 - Compute multiple partial single-fix functions at the given *m* targets
- Resource aware ECO patch generation [Jiang. et al, DAC'18][Mishchenko. et al, DAC'18] [Fujita. et al, ISCAS'19]
- Symbolic sampling technique [Jiang. et al, DAC'19]
 - Enumerate rectification points functionally and match the circuitry of patches implicitly
 - Scalability achieved by modeling computations in symbolic sampling domain

Multi-fix Rectification: Prior work

- Craig interpolation and/or iterative SAT solving [Huang. et al, DAC'11][Huang. et al, DATE'12]
 - Iteratively and incrementally patch the circuit
 - Compute multiple partial single-fix functions at the given *m* targets
- Resource aware ECO patch generation [Jiang. et al, DAC'18][Mishchenko. et al, DAC'18] [Fujita. et al, ISCAS'19]
- Symbolic sampling technique [Jiang. et al, DAC'19]
 - Enumerate rectification points functionally and match the circuitry of patches implicitly
 - Scalability achieved by modeling computations in symbolic sampling domain
- Approaches infeasible on arithmetic circuits

Application: Multi-fix Rectification

A faulty implementation of a 3-bit (*n*=3) Mastrovito multiplier

• Circuit with data-path size n modeled over \mathbb{F}_{2^n}

- Circuit with data-path size n modeled over \mathbb{F}_{2^n}
 - $\bullet \ \mathbb{F}_{2^n} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_n(x))$
 - $P_n(x) \in \mathbb{F}_2[x]$ is a given degree-n primitive polynomial; $P_n(\gamma) = 0$

- Circuit with data-path size n modeled over \mathbb{F}_{2^n}
 - $\bullet \ \mathbb{F}_{2^n} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_n(x))$
 - $P_n(x) \in \mathbb{F}_2[x]$ is a given degree-n primitive polynomial; $P_n(\gamma) = 0$
 - Word-level polynomials for Z, A:
 - $f_Z: Z + \sum_{i=0}^{n-1} \gamma^i z_i, f_A: A + \sum_{i=0}^{n-1} \gamma^i a_i$

- Circuit with data-path size n modeled over \mathbb{F}_{2^n}
 - $\bullet \ \mathbb{F}_{2^n} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_n(x))$
 - $P_n(x) \in \mathbb{F}_2[x]$ is a given degree-n primitive polynomial; $P_n(\gamma) = 0$
 - Word-level polynomials for Z, A:
 - $f_Z: Z + \sum_{i=0}^{n-1} \gamma^i z_i, f_A: A + \sum_{i=0}^{n-1} \gamma^i a_i$
- Patch size m modeled over \mathbb{F}_{2^m}

- Circuit with data-path size n modeled over \mathbb{F}_{2^n}
 - $\bullet \ \mathbb{F}_{2^n} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_n(x))$
 - $P_n(x) \in \mathbb{F}_2[x]$ is a given degree-n primitive polynomial; $P_n(\gamma) = 0$
 - Word-level polynomials for Z, A:

•
$$f_Z: Z + \sum_{i=0}^{n-1} \gamma^i z_i, f_A: A + \sum_{i=0}^{n-1} \gamma^i a_i$$

- Patch size m modeled over \mathbb{F}_{2^m}
 - $\bullet \ \mathbb{F}_{2^m} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_m(x))$
 - We select a degree-m primitive polynomial $P_m(x) \in \mathbb{F}_2[x]; P_m(\beta) = 0$

- Circuit with data-path size n modeled over \mathbb{F}_{2^n}
 - $\bullet \ \mathbb{F}_{2^n} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_n(x))$
 - $P_n(x) \in \mathbb{F}_2[x]$ is a given degree-n primitive polynomial; $P_n(\gamma) = 0$
 - Word-level polynomials for Z, A:

•
$$f_Z: Z + \sum_{i=0}^{n-1} \gamma^i z_i, f_A: A + \sum_{i=0}^{n-1} \gamma^i a_i$$

- Patch size m modeled over \mathbb{F}_{2^m}
 - $\bullet \ \mathbb{F}_{2^m} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_m(x))$
 - We select a degree-m primitive polynomial $P_m(x) \in \mathbb{F}_2[x]$; $P_m(\beta) = 0$
 - Word-level polynomial for W:
 - $f_w: W + \sum_{i=0}^{m-1} \beta^i w_i$
 - $\{w_0, \ldots, w_{m-1}\} \subset \{x_1, \ldots, x_d\}$

Application: Word-level representation

Patch function modeled as a 2-bit-vector word (\emph{m} =2), $\emph{f}_{\emph{W}}$: $\emph{W} + \emph{r}_{3} + \beta \cdot \emph{rr}_{3}$

MFR Challenges: \mathbb{F}_{2^k} and $P_k(x)$

- Smallest k is LCM(n, m)
 - ullet $\mathbb{F}_{2^k}\supset\mathbb{F}_{2^n}$ and $\mathbb{F}_{2^k}\supset\mathbb{F}_{2^m}$
 - $\bullet \ \mathbb{F}_{2^k} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_k(x))$
 - $P_k(x)$ is a degree-k primitive polynomial; $P_k(\alpha) = 0$

MFR Challenges: \mathbb{F}_{2^k} and $P_k(x)$

- Smallest k is LCM(n, m)
 - ullet $\mathbb{F}_{2^k}\supset\mathbb{F}_{2^n}$ and $\mathbb{F}_{2^k}\supset\mathbb{F}_{2^m}$
 - $\bullet \ \mathbb{F}_{2^k} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_k(x))$
 - $P_k(x)$ is a degree-k primitive polynomial; $P_k(\alpha) = 0$
- Mathematical challenge: Given $P_n(x)$ and $P_m(x)$, compute $P_k(x)$ such that $P_n(\gamma) = P_m(\beta) = P_k(\alpha) = 0$
 - $\gamma = \alpha^{(2^k 1)/(2^n 1)} = \alpha^{\lambda}$
 - $\beta = \alpha^{(2^k 1)/(2^m 1)} = \alpha^{\mu}$

MFR Challenges: \mathbb{F}_{2^k} and $P_k(x)$

- Smallest k is LCM(n, m)
 - ullet $\mathbb{F}_{2^k}\supset\mathbb{F}_{2^n}$ and $\mathbb{F}_{2^k}\supset\mathbb{F}_{2^m}$
 - $\bullet \ \mathbb{F}_{2^k}^- = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_k(x))$
 - $P_k(x)$ is a degree-k primitive polynomial; $P_k(\alpha) = 0$
- Mathematical challenge: Given $P_n(x)$ and $P_m(x)$, compute $P_k(x)$ such that $P_n(\gamma) = P_m(\beta) = P_k(\alpha) = 0$
 - $\gamma = \alpha^{(2^k 1)/(2^n 1)} = \alpha^{\lambda}$
 - $\beta = \alpha^{(2^k 1)/(2^m 1)} = \alpha^{\mu}$
- Solved using factorization of univariate polynomials over finite fields

Contribution: Computing $P_k(x)$

- Obtain UPFs of $P_n(x^{\lambda})$ and $P_m(x^{\mu})$ in $\mathbb{F}_2[x]$
- Then, $\exists P_k(x) \in \mathbb{F}_2[x]$ as a common factor of $P_n(x^{\lambda})$ and $P_m(x^{\mu})$, such that:
 - $P_k(x)$ is a degree-k primitive polynomial in $\mathbb{F}_2[x]$ with $P_k(\alpha) = 0$

- $P_3(x) = x^3 + x + 1$, $P_2(x) = x^2 + x + 1$, $\gamma = \alpha^9$, $\beta = \alpha^{21}$
- Composite field: k = LCM(2,3) = 6

- $P_3(x) = x^3 + x + 1$, $P_2(x) = x^2 + x + 1$, $\gamma = \alpha^9$, $\beta = \alpha^{21}$
- Composite field: k = LCM(2,3) = 6
 - $UPF(P_3(x^9)) = (x^9)^3 + (x^9) + 1 = (x^6 + x^5 + x^2 + x + 1)(x^6 + x^5 + 1)(x^6 + x^4 + x^3 + x + 1)(x^6 + x^4 + x^2 + x + 1)(x^3 + x + 1);$

- $P_3(x) = x^3 + x + 1$, $P_2(x) = x^2 + x + 1$, $\gamma = \alpha^9$, $\beta = \alpha^{21}$
- Composite field: k = LCM(2,3) = 6
 - $UPF(P_3(x^9)) = (x^9)^3 + (x^9) + 1 = (x^6 + x^5 + x^2 + x + 1)(x^6 + x^5 + 1)(x^6 + x^4 + x^3 + x + 1)(x^6 + x^4 + x^2 + x + 1)(x^3 + x + 1);$
 - $UPF(P_2(x^{21})) = (x^{21})^2 + (x^{21}) + 1 = (x^6 + x^5 + x^2 + x + 1)(x^6 + x^5 + 1)(x^6 + x^4 + x^3 + x + 1)(x^6 + x^5 + x^3 + x^2 + 1)(x^6 + x^5 + x^4 + x + 1)(x^6 + x + 1)(x^6 + x^3 + 1);$

- $P_3(x) = x^3 + x + 1$, $P_2(x) = x^2 + x + 1$, $\gamma = \alpha^9$, $\beta = \alpha^{21}$
- Composite field: k = LCM(2,3) = 6
 - $UPF(P_3(x^9)) = (x^9)^3 + (x^9) + 1 = (x^6 + x^5 + x^2 + x + 1)(x^6 + x^5 + 1)(x^6 + x^4 + x^3 + x + 1)(x^6 + x^4 + x^2 + x + 1)(x^3 + x + 1);$
 - $UPF(P_2(x^{21})) = (x^{21})^2 + (x^{21}) + 1 = (x^6 + x^5 + x^2 + x + 1)(x^6 + x^5 + 1)(x^6 + x^4 + x^3 + x + 1)(x^6 + x^5 + x^3 + x^2 + 1)(x^6 + x^5 + x^4 + x + 1)(x^6 + x^3 + 1);$
 - We choose $P_6(x) = x^6 + x^5 + 1$ as the required $P_k(x)$.

• If we incorrectly choose $P_k(x) = x^6 + x^3 + 1$

24/39

- If we incorrectly choose $P_k(x) = x^6 + x^3 + 1$
- ullet For its root α , we have

- If we incorrectly choose $P_k(x) = x^6 + x^3 + 1$
- For its root α , we have

$$\alpha^6 + \alpha^3 + 1 = 0$$

$$(\alpha^3)(\alpha^6 + \alpha^3 + 1) = 0 \text{ (multiply by } \alpha^3)$$

$$\alpha^9 + \alpha^6 + \alpha^3 = 0$$

$$\gamma + 1 = 0$$

- If we incorrectly choose $P_k(x) = x^6 + x^3 + 1$
- For its root α , we have

$$\alpha^{6} + \alpha^{3} + 1 = 0$$

$$(\alpha^{3})(\alpha^{6} + \alpha^{3} + 1) = 0 \text{ (multiply by } \alpha^{3})$$

$$\alpha^{9} + \alpha^{6} + \alpha^{3} = 0$$

$$\gamma + 1 = 0$$

- However, $\gamma \neq 1$, as γ is a primitive element of \mathbb{F}_{2^n}
- Selecting arbitrary $P_k(x)$ leads to erroneous results

Application: Word-level representation

Patch function modeled as a 2-bit-vector word (\emph{m} =2), $\emph{f}_{\emph{W}}$: $\emph{W} + \emph{r}_{3} + \beta \cdot \emph{rr}_{3}$

MFR Notation: Word-level reasoning

- Obtain each w_i as a polynomial function in W, β
 - $\forall i \in 1, \ldots, m, \ w_i = \mathcal{F}_i(W, \beta)$

MFR Notation: Word-level reasoning

• Obtain each w_i as a polynomial function in W. β

•
$$\forall i \in 1, ..., m, \ w_i = \mathcal{F}_i(W, \beta)$$

$$W = w_0 + \cdots + \beta^{m-1} \cdot w_{m-1}$$

$$W^2 = w_0^2 + \cdots + \beta^{2(m-1)} \cdot w_{m-1}^2$$

$$\cdots$$

$$W^{2^{m-1}} = w_0 + \cdots + \beta^{2^{m-1}(m-1)} \cdot w_{m-1}$$

$$W^{2^{m-1}} = w_0 + \cdots + \beta^{2^{m-1}(m-1)} \cdot w_{m-1}$$

MFR Notation: Word-level reasoning

• Obtain each w_i as a polynomial function in W, β

•
$$\forall i \in 1, ..., m, \quad w_i = \mathcal{F}_i(W, \beta)$$

$$W = w_0 + \cdots + \beta^{m-1} \cdot w_{m-1}$$

$$W^2 = w_0^2 + \cdots + \beta^{2(m-1)} \cdot w_{m-1}^2$$

$$\cdots$$

$$W^{2^{m-1}} = w_0 + \cdots + \beta^{2^{m-1}(m-1)} \cdot w_{m-1}$$

Solved using Gaussian elimination

• Setup a new ring $R' = \mathbb{F}_{2^k}[x_1, \dots, x_d, Z, A, W]$

- **1** Setup a new ring $R' = \mathbb{F}_{2^k}[x_1, \dots, x_d, Z, A, W]$
- ② \mathbb{F}_{2^k} is constructed using $P_k(x)$

- **1** Setup a new ring $R' = \mathbb{F}_{2^k}[x_1, \dots, x_d, Z, A, W]$
- ② \mathbb{F}_{2^k} is constructed using $P_k(x)$
- **3** Construct a polynomial set F' as follows:

- Setup a new ring $R' = \mathbb{F}_{2^k}[x_1, \dots, x_d, Z, A, W]$
- ② \mathbb{F}_{2^k} is constructed using $P_k(x)$
- **3** Construct a polynomial set F' as follows:
 - Start with F' = F

- Setup a new ring $R' = \mathbb{F}_{2^k}[x_1, \dots, x_d, Z, A, W]$
- ② \mathbb{F}_{2^k} is constructed using $P_k(x)$
- Construct a polynomial set F' as follows:
 - Start with F' = F
 - Remove polynomials with w_i 's as leading terms

- Setup a new ring $R' = \mathbb{F}_{2^k}[x_1, \dots, x_d, Z, A, W]$
- ② \mathbb{F}_{2^k} is constructed using $P_k(x)$
- Construct a polynomial set F' as follows:
 - Start with F' = F
 - Remove polynomials with w_i 's as leading terms
 - Substitute $\forall i \in 1, ..., m, w_i = \mathcal{F}_i(W, \beta)$

- Setup a new ring $R' = \mathbb{F}_{2^k}[x_1, \dots, x_d, Z, A, W]$
- 2 \mathbb{F}_{2^k} is constructed using $P_k(x)$
- Construct a polynomial set F' as follows:
 - Start with F' = F
 - Remove polynomials with w_i 's as leading terms
 - Substitute $\forall i \in 1, ..., m, \ w_i = \mathcal{F}_i(W, \beta)$
 - Add $f_w: W + \sum_{i=0}^{m-1} \beta^i w_i$

- Setup a new ring $R' = \mathbb{F}_{2^k}[x_1, \dots, x_d, Z, A, W]$
- 2 \mathbb{F}_{2^k} is constructed using $P_k(x)$
- Construct a polynomial set F' as follows:
 - Start with F' = F
 - Remove polynomials with w_i 's as leading terms
 - Substitute $\forall i \in 1, ..., m, \ w_i = \mathcal{F}_i(W, \beta)$
 - Add $f_w : W + \sum_{i=0}^{m-1} \beta^i w_i$
 - Substitute $\beta = \alpha^{\mu}, \gamma = \alpha^{\lambda}$

Preliminaries: Circuit Polynomials

Impose RTTO > on circuit C:

$$f_{1}: Z + z_{0} + \gamma \cdot z_{1} + \gamma^{2} \cdot z_{2}; \quad f_{22}: rr_{1} + rr_{3} + rr_{2};$$

$$f_{2}: A + a_{0} + \gamma \cdot a_{1} + \gamma^{2} \cdot a_{2}; \quad f_{23}: r_{1} + r_{2} + r_{3};$$

$$f_{3}: B + b_{0} + \gamma \cdot b_{1} + \gamma^{2} \cdot b_{2}; \quad f_{26}: r_{3} + r_{4} + d_{4};$$

$$f_{4}: z_{0} + d_{0} + e_{1}; \quad f_{27}: rr_{3} + rr_{4} + b_{2};$$

$$f_{5}: z_{1} + f_{0} + rr_{0}; \quad \dots$$

$$\dots \quad f_{30}: rr_{4} + a_{2} + b_{2} + a_{2}b_{2};$$

Preliminaries: Circuit Polynomials

• Impose RTTO > on circuit C:

$$f_1: Z + z_0 + \gamma \cdot z_1 + \gamma^2 \cdot z_2;$$
 $f_{22}: rr_1 + rr_3 + rr_2;$
 $f_2: A + a_0 + \gamma \cdot a_1 + \gamma^2 \cdot a_2;$ $f_{23}: r_1 + r_2 + r_3;$
 $f_3: B + b_0 + \gamma \cdot b_1 + \gamma^2 \cdot b_2;$ $f_{26}: r_3 + r_4 + d_4;$
 $f_4: z_0 + d_0 + e_1;$ $f_{27}: rr_3 + rr_4 + b_2;$
 $f_5: z_1 + f_0 + rr_0;$...
 $f_{30}: rr_4 + a_2 + b_2 + a_2b_2;$

- $F = \{f_1, \ldots, f_{30}\}, F_0 = \{a_0^2 a_0, \ldots, z_2^2 z_2, A^8 A, \ldots, Z^8 Z\}.$
 - Ideal $J + J_0 = \langle F \cup F_0 \rangle$ models C.

MFR Application: Word-level Formulation

- 2-bit rectification patch over the 3-bit circuit can be performed over the field \mathbb{F}_{26}
 - $\mathbb{F}_{2^6} = \mathbb{F}_2[x] \pmod{P_6(x)}$
 - $P_6(x) = x^6 + x^5 + 1$
- Update polynomial set F to F' as:

$$rr_3 = W^2 + W, \quad r_3 = \beta W^2 + \beta^2 W$$

 $f'_{22} : rr_1 + (W^2 + W) + rr_2$
 $f'_{23} : r_1 + r_2 + (\beta W^2 + \beta^2 W)$
 $f_W : W + r_3 + \beta \cdot rr_3$
 $\beta = \alpha^{21} \text{ and } \gamma = \alpha^9$
 $F' = \{f_1, \dots, f_{21}, f'_{22}, f'_{23}, f_W, \dots, f_{30}\} - \{f_{26}, f_{27}\}$

MFR Contribution: Rectification Check

- Multi-fix rectification at target W
 - Construct the following ideals:

where
$$F'_l$$
 is obtained from F' by replacing $f_W \in F'$ with $f'_W : W + \delta[I]$, 1

- Performing the reductions for all $1 \le l \le 2^m$:
 - $f \xrightarrow{F_l', F_0}_+ rem_l$
- Let $V_{\mathbb{F}_q}(rem_l)$ denote the varieties of the respective rem_l 's
- Multi-fix rectification exists at target W:

if and only if
$$\bigcup\limits_{l=1}^{2^m}V_{\mathbb{F}_q}(rem_l)=\mathbb{F}_q^{|X_{P_l}|}=V(J_0)$$

MFR Application: Rectification Check

- Constructing the J_i ideals:
 - $J_1 = \langle F_1' \rangle$, where $F_1'[f_w] = W + \delta(1) = W$,
 - $J_2 = \langle F_2' \rangle$, where $F_2'[f_w] = W + \delta(2) = W + 1$,
 - $J_3 = \langle F_3' \rangle$, where $F_3'[f_w] = W + \delta(3) = W + \beta$,
 - $J_4 = \langle F_4' \rangle$, where $F_4'[f_w] = W + \delta(4) = W + \beta^2$
- Reducing the specification f: Z + A · B modulo these ideals, we get:
 - $rem_1 = f \xrightarrow{F_1' \cup F_0'} \alpha^{27}(a_2b_1b_2) + \alpha^{36}(a_2b_2)$
 - $rem_2 = f \xrightarrow{F_2' \cup F_0'} \alpha^{27} (a_2b_1b_2 + a_2b_1) + \alpha^{36} (a_2b_2)$
 - $rem_3 = f \xrightarrow{F_3' \cup F_0'} \alpha^{27} (a_2b_1b_2)$
 - $rem_4 = f \frac{F_4' \cup F_0'}{} + \alpha^{27} (a_2b_1b_2 + a_2b_1)$
- Compute $GB(r_1 \cdot r_2 \cdot r_3 \cdot r_4, F_0) = F_0$
- Target W with nets r₃ and rr₃ admits MFR

4 D > 4 A D > 4 E > 4 E > 9 Q P

Future work: Rectification function

- A polynomial which can be computed to rectify the circuit
 - $W = a_2b_1b_2 + \beta \cdot a_2b_2$
 - $r_3 = (a_2 \wedge b_1 \wedge b_2), rr_3 = (a_2 \wedge b_2)$

Focus: Finite Field Arithmetic Circuits

- Applications:
 - RSA, ECC, Error correcting codes, RFID, etc.
 - Crypto-system bugs can leak secret keys [Biham. et al, Crypto'08]
 - RFID tag cloning could cause counterfeiting [Batina. et al, Security'09]
 - Large datapath sizes in ECC crypto systems
 - In \mathbb{F}_{2^n} , n = 163, 233, 283, 409, 571 (NIST standard)

Focus: Finite Field Arithmetic Circuits

- Applications:
 - RSA, ECC, Error correcting codes, RFID, etc.
 - Crypto-system bugs can leak secret keys [Biham. et al, Crypto'08]
 - RFID tag cloning could cause counterfeiting [Batina. et al, Security'09]
 - Large datapath sizes in ECC crypto systems
 - In \mathbb{F}_{2^n} , n = 163, 233, 283, 409, 571 (NIST standard)
- Rectification Motivation:
 - Synthesize sub-functions as opposed to complete redesign
 - Automated debugging

MFR Experiments: Mastrovito

Table: Word-level multi-fix rectifiability check against word level specification. Time is in seconds; rows marked '*' indicates *m* ∤ *n*; Benchmark = Mastrovito architecture, *n* = Datapath Size, #Gates = No. of gates, K = 10³, *m* = patch size, *k* = encompassing composite field size, PF = time for polynomial factorization and computing minpoly for the composite field, RC = time for rectification check

n	#Gates	m	k	PF	RC
12	0.45K	2	12	NA	0.4
16	0.8K	2	16	NA	3.2
*16	0.8K	3	48	_	_
*20	0.0	3	60	_	_
32	2.8K	2	32	NA	184
48	6.4K	3	48	NA	_
64	11.2K	2	64	NA	_

- Algebraic approach for m-target MFR checking
 - Efficiency derived by interpreting targets as a bit-vector

- Algebraic approach for m-target MFR checking
 - Efficiency derived by interpreting targets as a bit-vector
- New mathematical insights for unified framework
 - Field incompatibility
 - Primitive polynomial computation

- Algebraic approach for m-target MFR checking
 - Efficiency derived by interpreting targets as a bit-vector
- New mathematical insights for unified framework
 - Field incompatibility
 - Primitive polynomial computation
- Computation of rectification function at the word-level
 - Define and formulate existence of don't cares at the word-level

- Algebraic approach for m-target MFR checking
 - Efficiency derived by interpreting targets as a bit-vector
- New mathematical insights for unified framework
 - Field incompatibility
 - Primitive polynomial computation
- Computation of rectification function at the word-level
 - Define and formulate existence of don't cares at the word-level
- Extend the approach to integer arithmetic circuits

MFR Function Example

- Compute a rectification function of the form $W = U(X_{Pl})$
 - Here U is the unknown component computed as an m-bit-vector word
 - It represents the function $W = \sum_{i=0}^{m-1} \beta^i u_i$
 - Where u_i 's represent the individual Boolean functions for the respective w_i 's.

MFR Function Example

- Compute a rectification function of the form $W = U(X_{Pl})$
 - Here U is the unknown component computed as an m-bit-vector word
 - It represents the function $W = \sum_{i=0}^{m-1} \beta^i u_i$
 - Where u_i 's represent the individual Boolean functions for the respective w_i 's.
- The unknown component problem is then formulated as an ideal membership test and solved using extended Gröbner Basis:

$$W + \beta^0 e_0 + \beta d_5 = W + U = W + \beta^0 (a_1 b_2 + a_2 b_1) + \beta a_2 b_2;$$

 $e_0 = a_1 b_2 + a_2 b_1; d_5 = a_2 b_2;$

THANK YOU

Email: vikas.k.rao@utah.edu

Sum, Product, and Quotient of Ideals

Given
$$J_1 = \langle f_1, \dots, f_s \rangle \in R$$
 and $J_2 = \langle h_1, \dots, h_r \rangle \in R$

- Sum of ideals:
 - $J_1 + J_2 = \langle f_1, \ldots, f_s, h_1, \ldots, h_r \rangle$
- Product of ideals:
 - $J_1 \cdot J_2 = \langle f_i \cdot h_j : 1 \leq i \leq s, 1 \leq j \leq r \rangle$
- Ideal quotient of J_1 by J_2 :
 - $J_1: J_2 = \{f \in R \mid f \cdot h \in J_1, \forall h \in J_2\}$
- Ideals and varieties are dual concepts
 - $V(J_1 + J_2) = V(J_1) \cap V(J_2)$
 - $V(J_1 \cdot J_2) = V(J_1) \cup V(J_2)$
 - $V(J_1:J_2)=V(J_1)-V(J_2)$

MFR Application: Word-level Formulation

- Update ring properties
 - $R = \mathbb{F}_q[x_1, ..., x_d, Z, A, W]$
 - Modify RTTO > to place the target W before the lowest indexed target e₀
 - $\{Z\} > \{A > B\} > \{z_0 > z_1 > z_2\} > \{f_0 > e_2 > e_3\} > \{W > e_0 > e_1 > d_5 > d_6 > d_7 > d_8\} > \{d_0 > d_1 > d_2 > d_3 > d_4\} > \{a_0 > a_1 > a_2 > b_0 > b_1 > b_2\}.$
- Update polynomial set F to F':
 - Delete polynomials for wi's
 - Delete polynomials in the transitive fan-in of w_i's only
 - Transitive fan-outs of w_i 's need to be replaced with their equivalent word-level representations in terms of W
 - Add $f_w : W + \sum_{i=0}^{m-1} \beta^i w_i$

