Physics 2C 1/7/20

- (1) Go over syllabus
- (2) Definitions: Density, Fluids, Pressure
- 3 Variation of pressure with depth in a fluid
- 4) Pascal's Principle
- (5) Buoyany & Archimedes' Principle

1 Density S = Mass Volume

SI units = [kg]

(2 clicker Q's)

Swater = 1000 \$9/m3

gair = 1.3 kg/m3

Non-SI Zwater = 1 g/cm3

Fluids: - a substance that "Flows" - takes the shape of its container

States of matter: satisty, liquids, gases which are fluids? similarity; both flow

difference: gas compressible (diff. in)

31= CB3

 $V = \frac{4}{3}\pi r^3$ N=CL3

Ball 2

Which of the following describes how the average densities of the two balls compare?

(A) Ball 1 is 4x the density of ball 2 (B) Ball 1 is 2x the density of ball 2

(c) Ball 1 is the same desity as ball 2

(D) None of the above

Estimate the mass of air in this room (GH242) (c) 3000 kg Sair 2 15 I sig (A) 3 kg (B) 100 kg (D) 100,000 kg

Vroom = (10m) (30m) (5m) = 2000 6 m3 Mair = Pair · Vroom = 2000 kg

P = force (area), Pressure: Force is perpendicular to the are - Which direction? All directions! - which area? All areas. Sec Fig. 14.4 SI units $\frac{[N]}{[m^2]} = [Pa]$ "Pascal" Both gases and liquids exert have pressure Under "normal", every day conditions, there's two different causes: gases have a thermal contribution to pressure E 000 3 liquids have a gravitational contribution to pressure Vacuum pressure p=0 Atmospheric Pressure 1 atm Po = 1.01 × 105 Pa = 760 mm Hg How much force do you feel from the atmosphere on your Forearmhand? (0.02 m2)(105 Pa) = 2000 N = 450 pounds E) But no net force!

(3)

As book derives:

mg Joh

Since cylinder of water is not moving, Fret = 0 So the upward force balances the 2 donward forces

PA = PoA+mg

fluid mass m = g Ad

P = Po + Sqd

Important Consequence: (a) A connected liquid in hydrostatic equilibrium rises to the same height in all open regions of the container (b) The pressue is the same at all points on a horizontal line through a connected liquid in hydrostatic equil.

FIGURE 14.4 Learning about pressure.

Vacuum; no fluid force is exerted on the piston from this side.

2. The last of the piston from the piston fro

- ...1. The fluid exerts force \vec{F} on a piston with surface area A.
- 2. The force compresses the spring. Because the spring constant *k* is known, we can use the spring's compression to find *F*.
- 3. Because *A* is known, we can find the pressure from p = F/A.

(b) Pressure-measuring device in fluid

- .1. There is pressure *everywhere* in a fluid, not just at the bottom or at the walls of the container.
- 2. The pressure at one point in the fluid is the same whether you point the pressure-measuring device up, down, or sideways. The fluid pushes up, down, and sideways with equal strength.
- below the surface. In a *gas*, the pressure is nearly the same at all points (at least in laboratory-size containers).

Phys 2C	Phy	VS	2	C
---------	-----	-----------	---	---

Instruc: Duarte

Phys 2C

W	ed	n	es	d	a١
				_	-

CENTR 207	HSS 2154	APM 2301	Mayer 5301	CENTR 207	CENTR 218
8:00am-8:50am	8:00am-8:50am	8:00am-8:50am	4:00pm-4:50pm	4:00pm-4:50pm	4:00pm-4:50pm
A01	A02	A03	A04	A05	A06
Platt	Fu	Huang	Fu	Wang	Kambalur
993461	993462	993463	993464	993465	993466

Wednesday

CENTR 207 CENTR 218 CENTR 207		CENTR 207	CENTR 218	CENTR 207	CENTR 218	
5:00pm-5:50pm	5:00pm-5:50pm	6:00pm-6:50pm	6:00pm-6:50pm	7:00pm-7:50pm	7:00pm-7:50pm	
A07	A08	A09	A10	A11	A12	
Wang	Kambalur	Huang	Kambalur	Huang	Wang	
993467	993468	993469	993470	993471		

Lead TA

_	Last Name	First Name	Dept.	% Time	Hrs/Wk	Email
	Platt	Jason	Physics	50%	20	jplatt@ucsd.edu

Lecture TAs

Last Name	First Name	Dept.	% Time	Hrs/Wk	Email
Fu	Haochen	Phys	33%	13	h4fu@ucsd.edu
Huang	Yiwen	Phys	50%	20	yih003@ucsd.edu
Kambalur	Bharat	hys	50%	20	bkambalu@ucsd.edu
Wang	Paul	Phys	50%	20	pywang@ucsd.edu

Density table of the elements

Chemistry Software Download

Density table of the elements

Chemistry Software - Home