1 Motion in one dimension

Proposition 1.1. Let Then, it is true that

$$\vec{F}^{ext} = m\vec{a} + (\vec{v} - \vec{u})\dot{m} \tag{1}$$

or which is equivalent,

$$\vec{F}^{ext} + \dot{m}\vec{u} = \dot{\vec{p}} \tag{2}$$

$\mathbf{2}$ Oscillations

Proposition 2.1. Let be the following differential equation

$$\ddot{x} + \omega_0^2 x = 0, (3)$$

with the initial value condition of $x(0) = x_0$ and $v(0) = v_0$. Then, the general solution is

$$x(t) = x_0 \cos \omega_0 t + \frac{v_0}{\omega_0} \sin \omega_0 t, \tag{4}$$

or, which is equivalent,

$$x(t) = A\cos\left[\omega_0 t + \phi_0
ight], \qquad A = \sqrt{x_0^2 + \left(rac{v_0}{\omega_0}
ight)^2}, \qquad egin{array}{c} \mathbf{5} & \mathbf{Coupled \ oscillations} \ \mathbf{2} \\ \phi_0 = -\arctanrac{v_0}{\omega_0 x_0}. \\ \mathbf{6} & \mathbf{Rotations} \end{array}$$

Definition 2.1. Let U(x) be a potential function of class $C^2(\mathbb{R})$. Then, we say x_0 is a point of stable equi*librium* if U has a maxima in x_0 .

Proposition 2.2. Let be the following differential equation

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0,\tag{6}$$

with the initial value conditions of $x(0) = x_0$ and

$$v(0) = v_0$$
. Then, the general solution is

$$x(t) = e^{-\beta t} \left[x_0 \cos \tilde{\omega} t + \frac{v_0 + \beta x_0}{\tilde{\omega}} \sin \tilde{\omega} t \right], \qquad \tilde{\omega} = \sqrt{\omega_0^2 - \beta^2}$$

$$(7) \qquad \qquad \langle \nabla, \mathbf{E} \rangle_I = \frac{\rho}{\epsilon},$$

if $\beta < \omega_0$,

$$x(t) = e^{-\omega_0 t} \left[x_0 + (x_0 \omega_0 + v_0)t \right]$$
 (8)

if $\beta = \omega_0$, and

$$x(t) = \frac{x_0(\bar{\omega} - \beta) - v_0}{2\bar{\omega}} e^{-(\beta + \bar{\omega})t} + \frac{x_0(\bar{\omega} + \beta) + v_0}{2\bar{\omega}} e^{-(\beta - \bar{\omega})t} \text{ are } in\bar{v} \bar{a}\bar{r} i \sqrt{\hbar^2 u \bar{n} dv^2} \text{ Galileo transformations, then } \mathbf{E} = 0$$

Proposition 2.3. Let be the following differential equation

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f(t) = f_0 \cos[\omega t + \psi_0], \tag{10}$$

with the initial value conditions of $x(0) = x_0$ and $v(0) = v_0$. Then, the particular solution is

$$x_p(t) = A\cos\left[\omega t + \psi_0 - \phi_0\right], \qquad A = \frac{f_0}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + 4\beta t \sin^2 \theta}} \frac{\text{Lemma 8.2. Let } f : \mathbb{R}^4_{2/\beta}\overline{\omega} \to \mathbb{R}^4 \text{ be a Lorentz transformation} \phi_0 Then, then, then the form t = ctt to lines that (11) are not contained in hyperplanes of the form t' = ctt.$$

3 Central forces

Definition 3.1. Central force

$$\vec{F}(\vec{r}) = f(r)\vec{e}_o \tag{12}$$

Proposition 3.1. All central forces are conservatives.

Proposition 3.2. The angular momentum with respect the origin is conserved.

$$\dot{\vec{L}} = \vec{0} \tag{13}$$

Proposition 3.3. The areal velocity is constant.

$$\frac{dA}{dt} = \frac{L}{2m} = ctt \tag{14}$$

Theorem 3.4 (Bertrand's Theorem). The only central potentials where every bounded orbit is closed are:

$$U(r) = -\frac{k}{r}, \qquad U(r) = \frac{k}{2}r^2, \qquad k > 0$$
 (15)

Coupled oscillations 1

Dynamics of rigid body

Proposition 7.1. The vector Ω is independent on the origin of the system S.

Proposition 7.2. The energy of the rigid body is an invariant scalar under change of basis.

Special relativity

$$\langle \mathbf{\nabla}, \mathbf{E} \rangle_I = \frac{\rho}{\epsilon_0},\tag{16}$$

$$\langle \mathbf{\nabla}, \mathbf{B} \rangle_I = 0, \tag{17}$$

$$\mathbf{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t},\tag{18}$$

$$\mathbf{V} \times \mathbf{E} = -\frac{1}{\partial t}, \tag{18}$$

$$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right). \tag{19}$$

(9) $\mathbf{B} = \mathbf{0}$.

Definition 8.1 (Reference system). We define a reference system S as a set of three axis and one origin over which we have determined an orientation. We will suppose we have selected a unit of length and that in each point a in the immobile space with respect the axis there is a clock q_a such that the clocks q_a and q_b corresponding to two different points a and b immobile with respect these axis are synchronized

Lemma 8.3. Let $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a Lorentz transformation. Let $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a Lorentz transformation. Then, f transforms planes that are not contained in hyperplanes of the form t = ctt to planes that are not contained in hyperplanes of the form t' = ctt.

Lemma 8.4. Let $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a Lorentz transformation. Then, f transforms hyperplanes that are not of the form t = ctt to hyperplanes that are not of the form t' = ctt.

Theorem 8.5. Let $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a Lorentz transformation. Then, f is an affine transformation.

Theorem 8.6. Let S, S' be two inertial reference systems. We can make orthogonal changes (isometries) of axis to S and S' and a change of origin of time such thate the Lorentz transformation has the form of the equation ??.

Theorem 8.7. (Lorenz transformation) Let S, S' be two reference systems with the same origin such that S' moves with a constant velocity $\mathbf{v} = v\mathbf{e}_x$. Then,

$$P_{\mathbf{s}'} = \Lambda P_{\mathbf{s}} \Leftrightarrow P_{\mathbf{s}'}^{\nu} = \Lambda_{\mu}^{\nu} P_{\mathbf{s}}^{\mu}, \qquad \Lambda = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ Theorem 8.17. (Work-Energy theorem)}$$

$$W = \Delta E.$$

Proposition 8.8. Let $\mathbf{R} \in L$ be a vector and $a \in \mathbb{R}$ a scalar. Then, $\|\mathbf{R}\|_m = |a| \|\mathbf{R}\|_m$.

Proposition 8.9. Every subspace W of L is either timelike, spacelike, or lightlike. Besides,

- 1. S is timelike $\Leftrightarrow W^{\perp}$ is spacelike.
- 2. S is spacelike $\Leftrightarrow W^{\perp}$ is timelike.
- 3. W is lightlike $\Leftrightarrow W^{\perp}$ is lightlike.

Proposition 8.10. Two orthogonal vectors different from zero and non spacelike are necessarily lightlike and collinear. In particular, there is not a subspace of dimension 2 where \langle , \rangle is null.

Proposition 8.11. Let $\mathbf{R}_1, \mathbf{R}_2 \in T$ be two timelike vectors. Then, the following statements are true.

- 1. $|\langle \mathbf{R}_1, \mathbf{R}_2 \rangle_m| \geq ||\mathbf{R}_1||_m ||\mathbf{R}_2||_m$, and the equality is equivalent to both vectors being collinear.
- 2. $\mathbf{R}_1, \mathbf{R}_2$ are in the same time cone $(C_+ \text{ or } C_-)$ if and only if $\langle \mathbf{R}_1, \mathbf{R}_2 \rangle_m < 0$. In this case,
 - (a) There is a unique $\varphi \in \mathbb{R}$ such that

$$\cosh \varphi = -\frac{\langle \mathbf{R}_1, \mathbf{R}_2 \rangle_m}{\|\mathbf{R}_1\|_m \|\mathbf{R}_2\|_m}.$$
 (21)

We call this φ the hyperbolic angle.

(b) $\|\mathbf{R}_1\|_m + \|\mathbf{R}_2\|_m \le \|\mathbf{R}_1 + \mathbf{R}_2\|_m$.

Proposition 8.12. The Lorenz-Minkowski metric is invariant under Lorentz transformations.

Proposition 8.13. Let S, S' be two inertial reference systems such that the velocity of S' is $\mathbf{w} = w\mathbf{e}_x$ with respect to S. Then,

$$v_{\mathbf{s'}}^{1} = \frac{v_{\mathbf{s}}^{1} - w}{1 - \beta_{v}\beta_{w}}, \qquad v_{\mathbf{s'}}^{2} = \frac{1}{\gamma_{w}} \frac{v_{\mathbf{s}}^{2}}{1 - \beta_{v}\beta_{w}}, \qquad v_{\mathbf{s'}}^{3} = \frac{1}{\gamma_{w}} \frac{v_{\mathbf{s}}^{3}}{1 - \beta_{v}\beta_{w}},$$
(22)

Proposition 8.14. If the system has a general velocity w, then

$$\mathbf{v}' = \frac{1}{1 - \langle \boldsymbol{\beta}_v, \boldsymbol{\beta}_2 \rangle_I} \left[\frac{\mathbf{v}}{\gamma_w} - \mathbf{w} + \frac{1}{c^2} \frac{\gamma_w}{1 + \gamma_w} \langle \mathbf{v}, \mathbf{w} \rangle_I \mathbf{w} \right], \tag{23}$$

$$\mathbf{v} = \frac{1}{1 + \langle \boldsymbol{\beta}_{v'}, \boldsymbol{\beta}_{w} \rangle_{I}} \left[\frac{\mathbf{v}'}{\gamma_{w}} + \mathbf{w} + \frac{1}{c^{2}} \frac{\gamma_{w}}{1 + \gamma_{w}} \langle \mathbf{w}', \mathbf{w} \rangle_{I} \mathbf{v} \right].$$
(24)

Proposition 8.15. Let S, S' two inertial reference systems. Then,

$$\mathbf{U}_{\mathbf{s}'} = \mathbf{\Lambda} \mathbf{U}_{\mathbf{s}} \Leftrightarrow U_{\mathbf{s}'}^{\nu} = \Lambda_{\mu}^{\nu} U_{\mathbf{s}}^{\mu}. \tag{25}$$

Theorem 8.16.

$$E^1 = p^2 c^2 + m^2 c^4. (26)$$

$$W = \Delta E. \tag{27}$$

Generalized coordinates

Definition 9.1. Let S be a system of particles p_1, \ldots, p_n with masses m_1, \cdots, m_n . Then, we say the system has non stationary holonomic constraints or rheonomic constraints if and only if there is a function $\mathbf{f}: \mathbb{R}^{3n} \times \mathbb{R} \longrightarrow \mathbb{R}^k$ such that

$$\mathbf{f}(\mathbf{r}_1, \dots, \mathbf{r}_n, t) = \mathbf{0}. \tag{28}$$

Proposition 9.1. Let S be a system of n particles with a constraint $\mathbf{f}: \mathbb{R}^{3n} \times \mathbb{R} \longrightarrow \mathbb{R}^k$ and V the set of possible velocities at an instant t. If $\dot{\mathbf{x}} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$, then

$$\sum_{i=1}^{n} \langle \nabla_i f_j, \mathbf{v}_i \rangle_I + \frac{\partial f_j}{\partial t} = 0, \ j = 1, \dots, k.$$
 (29)

Theorem 9.2 (D'Alembert's principle). Let S be a system of particles. Then,

$$\sum_{i=1}^{n} \langle \mathbf{F}_{i} - m\mathbf{a}_{i}, \delta \mathbf{r}_{i} \rangle_{I} = 0, \ \forall \, \delta \mathbf{r}_{i}.$$
(30)

Theorem 9.3. Let S be a system of n particles with generalized coordinates q^1, \ldots, q^r . Then,

$$\sum_{\mu=1}^{n} \left\langle \mathbf{F}_{\mu}, \frac{\partial \mathbf{p}_{\mu}}{\partial q^{\nu}} \right\rangle_{I} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial T}{\partial \dot{q}^{\nu}} - \frac{\partial T}{\partial q^{\nu}}, \ \nu = 1, \dots, r.$$
(31)

And if **F** is derived from a potential $\Phi(\mathbf{r})$, then

$$\left| \frac{\partial L}{\partial q^{\nu}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}^{\nu}} = 0, \ \nu = 1, \dots, r. \right|$$
 (32)

Theorem 9.4. Let $J: C^2[x_0, x_1] \longrightarrow \mathbb{R}$ be a functional of the form

$$J(y) = \int_{x_0}^{x_1} f(x, y, y') \, dx,$$

where f has continuous partial derivatives of second order with respect to x, y, and y', and $x_0 < x_1$. Let

$$S = \{ y \in C^2[x_0, x_1] \mid y(x_0) = y_1 \text{ and } y(x_1) = y_1 \},$$

where y_0 and y_1 are given real numbers. If $y \in S$ is an extremal for J, then

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial u'} \right) - \frac{\partial f}{\partial u} = 0 \tag{33}$$

for all $x \in [a_0, x_1]$.

Theorem 9.5 (Lagrange multipliers method for non-holonomic constraints). If we want to find an extrema having a set of m non-holonomic constraints

$$\overline{\delta f_1} = A_{11}\delta u_1 + \dots + A_{1n}\delta u_n = 0,$$

$$\vdots = \vdots \qquad \qquad = \vdots$$

$$\overline{\delta f_m} = A_{m1}\delta u_1 + \dots + A_{mn}\delta u_n = 0,$$
(34)

Then we can proceed as the original multipliers method by considering every variation as independent and solving the following equation.

$$\delta F + \lambda_1 \overline{\delta f_1} + \dots + \lambda_m \overline{\delta f_m} = 0$$
 (35)

Theorem 9.6. Let f be a continuous functions with a variation $\delta f = \epsilon \phi$. Then,

$$\frac{\mathrm{d}}{\mathrm{d}x}\delta y = \delta \frac{\mathrm{d}}{\mathrm{d}x}y, \qquad \delta \int_{a}^{b} f(x) \,\mathrm{d}x = \int_{a}^{b} \delta f(x) \,\mathrm{d}x. \quad (36)$$

Theorem 9.7. Let $J : \mathbf{C}^2[t_0, t_1] \longrightarrow \mathbb{R}$ be a functional of the form

$$J(\mathbf{q}) = \int_{t_0}^{t_1} L(\mathbf{q}, \dot{\mathbf{q}}, t) dt, \qquad (37)$$

where $\mathbf{q} = (q_1, \dots, q_n)$, and L has continuous secondorder partial derivatives with respect to t, q_k , and \dot{q}_k , $k = 1, \dots, n$. Let

$$S = \left\{ \mathbf{q} \in \mathbf{C}^{2}[t_{0}, t_{1}] \mid \mathbf{q}(t_{0}) = \mathbf{q}_{0}, \mathbf{q}(t_{1}) = \mathbf{q}_{1} \right\}, \quad (38)$$

where $\mathbf{q}_0, \mathbf{q}_1 \in \mathbb{R}^n$ are given vectors. If \mathbf{q} is an extremal for J in S then for k = 1, ..., n

$$\frac{\partial L}{\partial q_k} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_k} = 0.$$
 (39)

Theorem 9.8. If we have a set of holonomic constraints

$$f_1(q_1, \dots, q_n, t) = 0,$$

 $\dots = \vdots,$
 $f_m(q_1, \dots, q_n, t) = 0,$

$$(40)$$

then we can treat each variable as independent and search the stationary value of

$$J' = \int_{t_1}^{t_2} L + \sum_{k=1}^{m} \lambda_m f_m \, \mathrm{d}t \,, \tag{41}$$

which leads to the equation

$$\frac{\partial L}{\partial q_k} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_k} + \lambda_1 \frac{\partial f_1}{\partial q_k} + \dots + \lambda_m \frac{\partial f_m}{\partial q_k} = 0.$$
(42)