DOZEEBO DELBOL

•

FIG. 2A

FIG. 2B

_

FIG. 5C

FIG. 6
DEAD RECKONING RE-SYNC

FIG. 7
PRECURSOR EMBODIMENT

FIG. 9

FIG. 10

FIG. 11

FIG. 15

FIG. 16

FIG. 17

FIG. 18

	0000	111	111	
	0001	001	111	= 1 - j
	0010	001	001	= 1+ j
	0011	111	001	= -1+ j
	0100	011	111	= 3 - j
	0101	001	011	= 1+3*j
403~	0110	101	001	= -3 + j
	0111	111	101	= -1 - 3* j
	1000	011	011	=+3 + 3*j
	1001	101	011	= -3 + 3*j
	1010	101	101	= -3 - 3* j
	1011	011	101	= 3 - 3* j
	1100	111	011	= -1 + 3 * j
	1101	101	111	= -3 - j
	1110	001	101	= 1 - 3 * j
	1111	011	001	= 3 + j

FIG. 19

FIG. 20A

FIG. 20B

MAPPING FOR FALL-BACK MODE - LSB'S

<u> </u>				
0 +jQ	3-j	1+j3	-3+j	-1-j3
PHASE	0	06	180	06-
LSBs y1 y0	00	10	10	11

1+jQ WHEN LSB=11	-1-j3	3-j	1+j3	-3+j
1+jQ WHEN LSB=10	-3+j	-1-j3	3-j	1+j3
1+jQ WHEN LSB=01	1+j3	-3+j	-1-j3	3-j
1+jQ WHEN LSB=00	3-j	1+j3	-3+j	-1-j3
PHASE difference (2nd-1st symbol)	0	90	180	06-
MSBs y3 y2	00	01	10	11

LSB & MSB FALLBACK MODE MAPPINGS

FIG. 22

FIG. 25

FIG. 27

FIG. 29

CU TRANSMITTER FIG. 32

GAP ACQUISITION TIMING **ACTUAL ENDOF** 962 GAP POSITION FRAME 992A NOISE 990 BARKER **PULSE** CODE PULSE **FRAME** A: NOISE 992B BARKER 994 **PULSE CODE PULSE FRAME** B: 9621 NOISE 996 ·992C **PULSE** FRAME 3 992D **FRAME** - 992E **FRAME** 998 ~ 1000 **FRAME** 6 11 SAMPLE SAMPLE SAMPLE SAMPLE GAP a 2 4 & 5 G. T1 T2 T3 T4 T5 ΤØ T6

FIG. 35

-T7

NEW GAP_a

FIG. 36

FIG. 37
FINE TUNING TO
CENTER BARKER CODE

FIG. 45

CU RANGING AND CONTENTION RESOLUTION FIG. 47

FIG. 48

FIG. 51

FIG. 52

FROM FIG. 53A **UPSTREAM** - 1114 **EQUALIZATION** CU SENDS MESSAGE TO RU TELLING IT TO SEND EQUALIZATION DATA TO CU USING ALL 8 OF THE FIRST 8 ORTHOGONAL CYCLIC CODES AND BPSK MODULATION. 1116 RU SENDS SAME TRAINING DATA TO CU ON 8 DIFFERENT CHANNELS SPREAD BY EACH OF FIRST 8 ORTHOGONAL CYCLIC CODES. - 1118 CU RECEIVER RECEIVES DATA, AND FFE 765, DFE 820 AND LMS 830 PERFORM ONE INTERATION OF TAP WEIGHT (COEFFICIENT) ADJUSTMENTS. **~ 1120** TAP WEIGHT (COEFFICIENT) **ADJUSTMENTS CONTINUE** UNTIL CONVERGENCE WHEN ERROR SIGNALS DROP OFF TO NEAR ZERO. -1122AFTER CONVERGENCE DURING TRAINING INTERVAL, CU SENDS FINAL FFE AND DFE COEFFICIENTS TO RU. -1124 CONVOLVES FINAL SE CIRCUIT FFE & DFE COEFFICIENTS IN CU WITH OLD PRECODE FFE/DFE FILTER COEFFICIENTS IN RU TRANSMITTER AND LOAD NEWLY CALCULATED COEFFICIENTS INTO RU TRANSMITTER PRECODE FILTER -1126CU SETS COEFFICIENTS OF FFE 765 AND DFE 820 TO TRANSPARENCY VALUES FOR RECEPTION OF UPSTREAM FIG. 53B PAYLOAD DATA.

TO FIG. 53C

FIG. 53C

FIG. 54

SIMPLE CU SPREAD SPECTRUM RECEIVER FIG. 55

SIMPLE RU SPREAD SPECTRUM TRANSMITTER FIG. 56

SYNCHRONOUS TDMA SYSTEM

FIG. 57

OFFSET	1B /	ASIC	2A ASIC		
(CHIPS)	RGSRH	RGSRL	RGSRH	RGSRL	
0	0x0000	0x8000	0x0001	0x0000	
1/2	0x0000	0xC000	0x0001	0x8000	
1	0x0000	0x4000	0x0000	0x8000	
-1	0x0001	0x0000	0x0002	0x0000	

FIG. 58

TRAINING ALGORITHM

SE FUNCTION

FIG. 59

2-STEP INITIAL EQUALIZATION TRAINING FIG. 60

EQ STABILITY CHECK 1560 FOR k=0,2 1564 1562 NO YES SECFF k <THRLDCOEFF **EQ UNSTABLE** 1566 FOR k=0,3 1570 1568 YES **EQ UNSTABLE** SECFB_k <THRLD_{COEFF} 1570 $AMP_{SIDE} = \sum_{k=0}^{2} (SECFFI_{k}^{2} + SECFFQ_{k}^{2}) + \sum_{K=0}^{3} (SECFBI_{K}^{2} + SECFBQ_{K}^{2})$ 1572 $AMP_{MAIN} = SECFFI_{3}^{2} + SECFFQ_{3}^{2}$ 1574 $AMP_{RATIO} = \frac{AMP_{MAIN}}{AMP_{MAIN}}$ FIG. 61 -1576 NO AMP RATIO <THRLD STABLE **~**1577 1578 **EQ UNSTABLE EQ STABLE** NOTE: THRLD_{COEFF} = 7F00H THRLD_{STABLE} = 10⁻³

PERIODIC 2-STEP TRAINING ALGORITHM

RACM CORRECTION

NOTE: THRLD_{AMP} = TBD

THRLD_{PHASE} = TBD

ROTATIONAL AMPLIFIER CORRECTION

FIG. 63

EQ CONVERGENCE CHECK

NOTE: THRLD CONVERGE = 10⁻⁵

FIG. 64

POWER ALIGNMENT FLOW CHART

NOTE: TH = 600HN = 12

FIG. 65

FIG. 66

TOTAL TURN AROUND (TTA) IN FRAMES = OFFSET FIG. 67

FIG. 68

CONTROL MESSAGE (DOWNSTREAM) AND FUNCTION (UPSTREAM) PROPAGATION IN A 3 FRAMES TTA CHANNEL

FIG. 69

FIG. 70

CHIP\FR	1	2	3	4	5	6	7		33
1	0	0	1	0	0	1	1	•••	0
2	1	0	0	1	1	1	1	•••	
3	, 0	0	0	1	1	1			
4	0	0	0	1	0	0	0	•••	0
5	0	1	0	0	1				
6	0	0	-	1	1				
7	0	0	0	1	1				
8	0	0	0	0	1	0	0	•••	

FIG. 72

- 1