COVID-19 Linear Regression Model for Sonoma County By Paris Osuch

Abstract

The research in this document can conclude that the population may have a strong correlation with covid cases per 100k people.

Introduction and Methods

This paper explores the correlation between a multitude of variables vs. COVID-19 cases per 100k people. The explanatory variables being explored in this model include: population, median household income, median age, and median house value. To determine the correlation between these variables, we were tasked to create a linear regression model. To create these linear regression models I wrote a program in python using Pandas, Matplotlib, and the standard python library. Both Pandas and Matplotlib are powerful data analysis tools that are used to create the tables and plot the data in the tables. To help me with the task of finding the standard deviation, mean, correlation, and plot the best fit line; I developed a number of functions that fit accordingly to the prior tasks at hand. These python files can be found in my git repository at: https://github.com/parisosuch-dev/COVID-19-Correlation-Model. In the stats py file, you will find the stats functions I created for my analysis. In the main.py file, you will find the plotting and analysis portion of the research. In the beginning of the program, the user is prompted to enter the name of an explanatory variable they would like to find correlated with COVID-19 cases. See Figure 1

	zone	zip code	case_rate_per_100k	population	med_hh_income	med_age	med_home_value
	Calistoga	94515	0	5281	52131	42.6	913300
	Cloverdale	95425	1077	10571	57400	41.8	538000
	Cotati	94931	628	8462	64625	38.3	587000
	Forestville	95436	803	6227	53368	51.3	519000
	Glen_Ellen	95442	687	3366	64712	46.6	1094000
	Guernville	95446	194	4728	43564	50.9	458000
	Geyserville	95441	319	1889	59545	42.7	899000
	Healdsburg	95448	799	17666	62076	47.9	843000
	Kenwood	95452	408	1276	78114	58.2	1236000
	Occidental	95456	0	2041	68636	47.9	906000
0	Penngrove	94951	426	4489	93389	47.6	1045000
1	Petaluma	94954	1056	38316	81980	40.9	647000
2	Petaluma	94952	809	35423	75221	44.1	820900
3	RohnertPark	94928	636	43663	57484	32.6	539000
4	SantaRosa	95403	904	46288	63029	37.8	552000
5	SantaRosa	95401	1057	39229	52813	35.8	516000
6	SantaRosa	95404	618	41536	67001	41.7	667000
7	SantaRosa	95405	508	20994	72156	45.9	603000
8	SantaRosa	95409	300	26905	65425	51.0	676000
9	SantaRosa	95407	2024	41797	53652	32.1	513000
0	Sebastopol	95472	211	30723	68804	50.4	848000
1	Sonoma	95476	833	37187	60100	47.8	748000
2	Windsor	95492	704	29590	81093	40.9	627000

Figure 1

Initial Model

The data set being used is from Sonoma county official website as of 8/19/20 and from the website bestplaces.net, with the variables; zone, zip code, cases per 100k people, population, median household income, median age, and median home value. The model being created is a linear regression model analyzing COVID-19 cases vs. an explanatory variable. The equation for the best fit line is: Y = a + bX. The intercept of the line is a and the slope of the line is b. The correlation coefficient assesses the relationship between two variables and how related they are. However, it can not be used for causation. The formula for the correlation coefficient is:

$$r_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

If r is less than 0, it has a negative correlation. If r is greater than 0, it has a positive correlation. As you can see from the model created below, the population has a 0.536 positive correlation with COVID-19 cases.

Initial Model - COVID-19 Cases vs Population

```
population
mean: 21636.826
standard deviation: 1695.622

cases per 100k population
mean: 652.217
standard deviation: 11.04

other stats
sample size: 23
correlation: 0.536
slope: 0.005
intercept 346.107
```


Initial Model - COVID-19 Cases vs Median Household Income

Initial Model - COVID-19 Cases vs Median Age

median age
mean: 44.209
standard deviation: 6.405

cases per 100k population
mean: 652.217
standard deviation: 435.999

check the stats
correlation: -0.568
slope: -38.659756562896256 3
intercept 2361.315

Initial Model - COVID-19 Cases vs Median Home Value

median home value
mean: 730226.087
standard deviation: 212512.195

cases per 100k population
mean: 652.217
standard deviation: 435.999

other stats
sample size: 23
correlation: -0.442
slope: -0.0009073011397436089 3
intercept 1314.752

Refined Model

It seems like the population happens to be the only one with a positive association with cases so let's focus on that. To refine this model, the data must be narrowed down to places that have higher population density. Because of how disease ultimately functions, higher density populations have higher cases due to it being easier to spread viruses in tighter living spaces. For this model, we will be focusing on regions that have populations higher than 30,000 which would make these cities larger. Santa Rosa, Sonoma, Rohnert Park, Sebastopol, and Petaluma will be the subset.

population
mean: 36551.0
standard deviation: 7607.597

cases per 100k population
mean: 814.182
standard deviation: 488.031

other stats
sample size: 11
correlation: 0.52
slope: 0.03336361486546634 3
intercept -405.292

Confounding Variables

Two confounding variables found in this research are population and how dense the population is. This is because it is easier for a virus to spread in dense areas rather than rural areas. More people tend to come in contact with a multitude of others than people who live in smaller areas. You could collect data on population density for these areas and then compare them to cases.

Personal Reflections

The hardest part of this project for me was creating some of the formulas for the slope and intercept. This project taught me that linear regression is helpful when trying to find correlation between variables. I personally believe projects reflect someone's ability more than just answering questions in a test. Especially when I get to use something I love, like programming.

Data Tables

	zone	zip code	case_rate_per_100k	population	med hh income	med_age	med home value
0	Calistoga	94515	case_rate_per_rook	5281	52131	42.6	913300
1	Cloverdale	95425	1077	10571	57400	41.8	538000
2	Cotati	94931	628	8462	64625	38.3	587000
3	Forestville	95436	803	6227	53368	51.3	519000
3 4	Glen Ellen	95442	687	3366	64712	46.6	1094000
	Guernville						
5		95446	194	4728	43564	50.9	458000
6	Geyserville	95441	319	1889	59545	42.7	899000
7	Healdsburg	95448	799	17666	62076	47.9	843000
8	Kenwood	95452	408	1276	78114	58.2	1236000
9	Occidental	95456	0	2041	68636	47.9	906000
10	Penngrove	94951	426	4489	93389	47.6	1045000
11	Petaluma	94954	1056	38316	81980	40.9	647000
12	Petaluma	94952	809	35423	75221	44.1	820900
13	RohnertPark	94928	636	43663	57484	32.6	539000
14	SantaRosa	95403	904	46288	63029	37.8	552000
15	SantaRosa	95401	1057	39229	52813	35.8	516000
16	SantaRosa	95404	618	41536	67001	41.7	667000
17	SantaRosa	95405	508	20994	72156	45.9	603000
18	SantaRosa	95409	300	26905	65425	51.0	676000
19	SantaRosa	95407	2024	41797	53652	32.1	513000
20	Sebastopol	95472	211	30723	68804	50.4	848000
21	Sonoma	95476	833	37187	60100	47.8	748000
22	Windsor	95492	704	29590	81093	40.9	627000

	zone	zip code	case_rate_per_100k	population	med_hh_income	med_age	med_home_value
0	Petaluma	94954	1056	38316	81980	40.9	647000
ı	Petaluma	94952	809	35423	75221	44.1	820900
2	RohnertPark	94928	636	43663	57484	32.6	539000
3	SantaRosa	95403	904	46288	63029	37.8	552000
4	SantaRosa	95401	1057	39229	52813	35.8	516000
5	SantaRosa	95404	618	41536	67001	41.7	667000
6	SantaRosa	95405	508	20994	72156	45.9	603000
7	SantaRosa	95409	300	26905	65425	51.0	676000
8	SantaRosa	95407	2024	41797	53652	32.1	513000
9	Sebastopol	95472	211	30723	68804	50.4	848000
10	Sonoma	95476	833	37187	60100	47.8	748000