1. Primitive Recursive Functions (PR)

Definition Check Template

Given function f, prove $f \in PR$ using exclusively:

```
    Base functions: 0, s (successor), U<sup>k</sup> (projections)
```

- Composition: $h(x \square) = g(f_1(x \square),...,f_n(x \square))$
- Primitive recursion: $h(x \square, 0) = f(x \square), h(x \square, y+1) = g(x \square, y, h(x \square, y))$

Standard Building Blocks

```
1. \neg sg(x): \neg sg(0) = 1, \neg sg(y+1) = 0

2. sg(x): sg(0) = 0, sg(y+1) = 1

3. x - y: x - 0 = x, x - (y+1) = (x - y) - 1

4. rm_2(x): rm_2(0) = 0, rm_2(x+1) = \neg sg(rm_2(x))

5. eq(x,y): eq(x,y) = \neg sg(|x-y|)
```

Strategy by Function Type

- Characteristic functions: Use sg, ¬sg, rm2 patterns
- Arithmetic: Build through bounded recursion
- Conditional: Use multiplication by characteristic functions
- Bounded search: µz≤x.P(z) = minimize with explicit bound

2. SMN Theorem Applications

Standard Construction Pattern

Goal: Construct s: $N \to N$ such that $W_{s(x)}$ and $E_{s(x)}$ have specified properties.

Template:

```
Step 3: Apply SMN: \exists s total computable: \phi_{s(x)}(y) = g(x,y)

Step 4: Verify:

-W_{s(x)} = \{y \mid g(x,y)\downarrow\} = [desired domain]

-E_{s(x)} = \{g(x,y) \mid y \in W_{s(x)}\} = [desired codomain]
```

Common Patterns

- Finite sets: Use bounded conditions y < bound(x)
- Arithmetic progressions: g(x,y) = f(x) + h(y)
- Specific codomains: Map systematically to target range

3. Function Computability Analysis

Diagonalization Template

For functions $f: N \to N$ of form:

```
f(x) = \{
expr_1(\phi_{\times}(x)) \quad \text{if } \phi_{\times}(x)\downarrow
expr_2(x) \quad \text{if } \phi_{\times}(x)\uparrow
\}
```

Non-computability Test:

- **Find**: computable h such that $\chi_k(x) = h(f(x),x)$
- Common patterns:

```
    χ<sub>k</sub>(x) = sg(f(x) ÷ 2x)
    χ<sub>k</sub>(x) = ¬sg(|f(x) - x²|)
    χ<sub>k</sub>(x) = ¬sg(|f(x) - (x+1)|)
```

Totality Verification

- By construction: Show f(x) defined for all x
- By cases: Verify both branches produce values

4. Set Recursiveness Classification

Decision Tree Algorithm

Phase 1: Saturation Check

Set $A \subseteq N$ is **saturated** iff: $x \in A \land \phi_x = \phi_y \Longrightarrow y \in A$

Test: A = $\{x \mid \phi_x \in \mathcal{A}\}\$ for some property \mathcal{A} of functions?

- YES: Apply Rice's Theorem or Rice-Shapiro
- NO: Proceed to direct analysis

Phase 2: Rice's Theorem Application

If A saturated:

- A ≠ Ø, N: Then A, Ā not recursive
- Further classification: Use Rice-Shapiro for r.e. analysis

Phase 3: Rice-Shapiro Theorem

For saturated A = $\{x \mid \varphi_x \in \mathcal{A}\}$:

A not r.e. iff: $\exists f \notin \mathcal{A}$ such that $\forall \theta \subseteq f$ finite: $\theta \notin \mathcal{A}$ **Ā not r.e. iff**: $\exists f \in \mathcal{A}$ such that $\forall \theta \subseteq f$ finite: $\theta \in \mathcal{A}$

Standard witnesses:

- Use id, Ø, constants, finite functions as test cases
- Check subset relationships carefully

Phase 4: Direct Analysis (Non-saturated)

To prove non-recursive: Show $K \leq_m A$ or $\overline{K} \leq_m A$

Reduction Construction Template:

```
sc_a(x) = 1(\mu w.P(x,w))
```

where P is decidable and captures membership condition.

Standard Reduction Targets

- K ≤_m A: For sets containing "positive" computational behavior
- K
 ≤_m A: For sets containing "negative" computational behavior
- Mixed reductions: Use appropriate conditional functions

5. Second Recursion Theorem Applications

Non-saturation Proof Template

Goal: Prove set C not saturated

Standard Construction:

```
Step 1: Define g(x,y) with self-reference property

Step 2: Apply SMN: \exists s total computable: \phi_{s(x)}(y) = g(x,y)

Step 3: Apply 2nd Recursion Theorem: \exists e : \phi_e = \phi_{s(e)}

Step 4: Show e \in C by construction

Step 5: Find e' \neq e with \phi_e = \phi_{e'} but e' \notin C
```

Common Self-reference Patterns

```
    Identity: g(x,y) = x
```

- Quadratic: g(x,y) = x²
- Conditional: g(x,y) = {value if condition(x,y); ↑ otherwise}
- **Domain control**: $g(x,y) = \{f(y) \text{ if } y \in \text{specific set}(x); \uparrow \text{ otherwise}\}$

Fixed Point Construction

Use when proving existence of special indices:

Want: ϕ_e with property P(e)

Define: g(x,y) encoding property P

Get: e such that $\phi_e = \phi_{s(e)}$ and P(e) holds

6. Decidability and Semi-decidability

Classification Strategy

Decidable: χ_p : $N^k \to N$ computable **Semi-decidable**: sc_p : $N^k \to N$ computable

Structure Theorem Applications

 $P(x \square)$ semi-decidable $\square \square Q$ decidable: $P(x \square) \equiv \square y.Q(x \square, y)$

Proof patterns:

- Forward: P semi-decidable \square P(x \square) \equiv \square t.H(e,x \square ,t) for index e
- Backward: $P(x \square) \equiv \square y.Q(x \square, y) \square sc_p(x \square) = 1(\mu y.|\chi Q(x \square, y) 1|)$

Counterexample Construction

To show implication fails:

- Use variants of halting problem
- Construct predicates involving K, K
- Standard pattern: $P(x,y) = "x \in \bar{K} \land y = 0"$

7. URM Machine Variants

Comparison Methodology

Step 1: Instruction Simulation

New → Standard URM:

- Show each new instruction encodable as URM subroutine
- Prove encoding preserves semantics
- Conclude C new ⊆ C

Standard → New URM:

- Show each URM instruction encodable in variant
- Or prove impossibility using invariants

Step 2: Inclusion Analysis

Proper inclusion $C_1 \subsetneq C_2$:

- Prove $C_1 \subseteq C_2$ by simulation
- Find function in C2 \ C1 using invariant properties

Common Invariant Arguments

- Bounded values: Max register value bounded by initial configuration
- Monotonicity: Register values can only increase/decrease
- Reachability: Certain values impossible to generate

8. Reduction Theory

Formal Definition

 $A \leq_m B$ iff $\exists f: N \to N$ total computable: $x \in A \Leftrightarrow f(x) \in B$

Standard Constructions

Type 1: Conditional Functions

```
g(x,y) = {
  target_function(y) if x ∈ source_set
  ↑ otherwise
}
```

Type 2: Domain Manipulations

```
g(x,y) = expression_creating_desired_domain_codomain_relationship
```

Type 3: Diagonal Constructions

```
g(x,y) = expression_ensuring_diagonal_property
```

Verification Checklist

- 1. **Computability**: g is computable (explicit construction)
- 2. SMN application: Obtain s total computable
- 3. Reduction property: $x \in A \Leftrightarrow s(x) \in B$
- 4. **Direction verification**: Prove both \Rightarrow and \Leftarrow

9. Problem-Solving Workflow

Phase 1: Problem Classification

- Identify keywords: "prove f ∈ PR", "classify A", "show non-computable"
- Determine technique category from above

Phase 2: Strategy Selection

- Saturated sets: Rice/Rice-Shapiro pathway
- Function computability: Diagonalization
- Existence proofs: 2nd Recursion Theorem
- Construction problems: SMN Theorem

Phase 3: Formal Execution

- Apply template precisely
- Verify all conditions explicitly
- Check edge cases and special values

Phase 4: Verification

- Confirm all required properties
- Validate computational claims
- Ensure logical completeness

10. Common Pitfalls and Precision Points

Rice-Shapiro Applications

- Critical: Verify finite subfunction relationships exactly
- Common error: Confusing ⊆ with proper subset
- Check: Both directions of equivalence in theorem statement

SMN Constructions

• Ensure: Target function actually computable

Verify: Domain/codomain properties hold exactly as stated

Check: Parameter dependencies correctly handled

Diagonalization Arguments

Verify: Constructed function differs from ALL computable functions

Check: Totality when claimed

• Ensure: Reduction to halting problem is valid

Reduction Proofs

Critical: Both directions of equivalence

Verify: Function totality and computability

Check: SMN application gives correct index function

This rigorous framework provides systematic approaches for all major computability exercise categories, with precise mathematical templates and verification procedures.