

09/89694

INVESTOR IN PEOPLE

4

OB00 / 323

NP10 8QQ
REC'D 06 MAR 2000

WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Signed

Dated 24 February 2000

05FEB99 E422964-5 D02864
P01/7700 0.00 - 9902477.0

The Patent Office

Cardiff Road
Newport
Gwent NP9 1RH

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

1. Your reference

P23140/AL0/CLF/PPP

2. Patent application number

(The Patent Office will fill in this part)

99024770

3. Full name, address and postcode of the or of each applicant (*underline all surnames*)

The University Court of the University of Glasgow
University Avenue
Glasgow
G12 8QQ

15 FEB 1999

Patents ADP number *(if you know it)*

If the applicant is a corporate body, give the country/state of its incorporation

United Kingdom

4. Title of the invention

"Optical Waveguide with Multiple Core Layers and Method of Fabrication Thereof"

5. Name of your agent *(if you have one)*

Murgitroyd & Company

"Address for service" in the United Kingdom to which all correspondence should be sent
(including the postcode)

373 Scotland Street
GLASGOW
G5 8OA

Patents ADP number *(if you know it)*

1198013

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and *(if you know it)* the or each application number

Country

Priority application number
(if you know it)

Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? *(Answer 'Yes' if:*

Yes

- a) *any applicant named in part 3 is not an inventor, or*
 - b) *there is an inventor who is not named as an applicant, or*
 - c) *any named applicant is a corporate body.*
- See note (d))*

9. Enter the number of sheets or any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form -

Description 12

Claim(s) 11

Abstract 1

Drawing(s) 2 + 2

10. If you are also filing any of the following,
state how many against each item.

Priority documents -

Translations of priority documents -

Statement of inventorship and right
to grant of a patent (Patents Form 7/77) 2 -

Request for preliminary examination
and search (Patents Form 9/77) 1 -

Request for substantive examination
(Patents Form 10/77) -

Any other documents
(please specify) -

11.

I/We request the grant of a patent on the basis of this application.

Signature

Murgitroyd & Company

Date

4 February 1999

12. Name and daytime telephone number of
person to contact in the United Kingdom

Paolo Pacitti

0141 307 8400

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- Write your answers in capital letters using black ink or you may type them.
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

1 OPTICAL WAVEGUIDE WITH MULTIPLE CORE LAYERS AND METHOD
2 OF FABRICATION THEREOF

3

4

5 FIELD OF THE INVENTION

6

7 This invention relates to an optical waveguide with
8 multiple core layers and a method of fabrication
9 thereof.

10

11 In particular, the invention relates to a doped planar
12 waveguide with multiple core layers and which includes
13 both active and passive components and to a method of
14 fabricating a planar waveguide for an optical circuit
15 in which the core is composed of layers of different
16 materials.

17

18

19 BACKGROUND OF THE INVENTION

20

21 Planar waveguides can be passive devices or can
22 include active components; for example, modulators,
23 couplers, and switches. Planar waveguides
24 incorporating active components are extremely
25 advantageous as they can be used to provide integrated
26 optic packages which can serve as complete transmitting
27 modules with, for example, components for amplitude or
28 phase modulation, or multiplexing in an optical

1 communication network.

2

3 Rare earth doped fibre amplifiers, for example erbium
4 or neodymium doped fibre amplifiers, are known to have
5 several advantages in optical communication networks
6 such as high gain, low noise, high power conversion
7 efficiency and wide spectral bandwidth. The present
8 invention seeks to provide the same advantages in
9 planar rare earth doped waveguides and moreover to
10 provide a laser waveguide amplifier which can be used,
11 for example, in an optical communication network to
12 amplify attenuated signals.

13

14 Planar waveguide technology is important in the
15 fabrication of lasers and optical amplifiers due to the
16 superior stability, compact geometry of planar
17 waveguide technology. Also, active components, for
18 example modulators, can be integrated into the planar
19 device.

20

21 A variety of techniques, including flame hydrolysis
22 deposition (FHD), sputtering, plasma enhanced chemical
23 vapour deposition (CVD) and ion-exchange can be used in
24 the fabrication of silica-based planar waveguides doped
25 with rare-earth ions and which display laser
26 characteristics.

27

28 In such laser amplifying waveguides, it is desirable to
29 obtain a high concentration of rare earth ions in order
30 to achieve very compact and efficient devices.
31 However, high concentrations of rare earth ions in a
32 waveguide layer with relatively low solubility can
33 result in the formation of clusters of rare earth ions.
34 The interaction between the rare earth ions in such
35 clusters quenches the excited state required for the
36 lasing process and thus degrades the optical

1 amplification provided by the waveguide.
2
3 Other complications arise in the fabrication of laser
4 waveguides for applications which require single mode
5 transmission, narrow spectral bandwidths, and/or
6 precise control of the lasing wavelength depend
7 critically on their cavity type. Laser waveguides
8 which have butt-coupled mirrors on the waveguide ends
9 or dielectric reflection mirrors are known in the art
10 but suffer to a greater or lesser degree from certain
11 disadvantages; for example, low spectral selectivity.
12

13 Bragg gratings incorporated in a waveguide core can
14 provide enhanced spectral selectivity. The fabrication
15 of such gratings is affected by the host glass
16 composition present in the waveguide core which
17 determine the UV absorption band of the core material
18 and thus its photosensitive properties. For example,
19 if phosphorus is used as a core dopant ion it can
20 alleviate the formation of rare earth ion clusters but
21 has the disadvantage that it reduces the amount of
22 absorption in the UV and thus reduces the
23 photosensitivity of the core. If germanium is used as
24 a core dopant ion it can increase the photosensitivity
25 of the core but has the disadvantage of promoting rare
26 earth cluster formation.
27

28 The introduction of a Bragg grating can be effected in
29 a planar waveguide by a number of known methods which
30 suffer to a greater or lesser degree from certain
31 disadvantages. The invention provides an optical
32 waveguide with multiple core layers which is suitable
33 for forming a laser waveguide with a high degree of
34 spectral selectivity. The waveguide core combines two
35 different types of silica based layers and these core
36 layers obviate or mitigate the aforementioned

1 disadvantages which arise when seeking to fabricate an
2 in-core Bragg grating to enhance the spectral
3 selectivity of the laser waveguide. The waveguide
4 formed enables in-core Bragg grating formation at a
5 range of UV wavelengths above 150 nm.

6

7 SUMMARY OF THE INVENTION

8

9 In accordance with a first aspect of the invention
10 there is provided an optical waveguide with multiple
11 core layers comprising:

12

13 In accordance with a second aspect of the invention
14 there is provided a laser waveguide with multiple core
15 layers comprising:

16

17 In accordance with a third aspect of the invention
18 there is provided a method of fabricating an optical
19 waveguide with multiple core layers comprising:

20

21 In accordance with a fourth aspect of the invention
22 there is provided a method of fabricating a laser
23 waveguide with multiple core layers comprising:

24

25

26

27

28 DESCRIPTION OF THE DRAWINGS

29

30 Embodiments of the present invention will now be
31 described, by way of example only, with reference to
32 the accompanying drawings, in which:-

33

34 Figs. 1A to 1C are schematic cross-sectional diagrams
35 of a waveguide with multiple core layers during various
36 stages of fabrication.

1 Fig. 2A is a schematic representation of a laser
2 waveguide formed from the waveguide shown in Figs. 1A
3 to 1C; and

4

5 Fig. 2B is a detail, to an enlarged scale, of the
6 structure shown in Fig. 2A.

7

8

9 DETAILED DESCRIPTION OF THE INVENTION

10

11 Referring now to the drawings, Figs. 1A to 1C
12 illustrate schematically stages in the fabrication of a
13 waveguide with a multi-layered core according to the
14 invention.

15

16 Referring now to Fig. 1A, there is illustrated a
17 waveguide 1 which is fabricated from a substrate 2.
18 The substrate 2 comprises a silicon wafer. However,
19 other suitable substrates including silica and
20 sapphire, may be used.

21

22 A silica buffer layer 3, comprising a thermally
23 oxidised layer of the substrate 2, is formed on the
24 substrate 2. The thickness of the buffer layer 3 is 15
25 μm which lies in a preferred range of 5 μm to 20 μm .

26

27 A suitable method, for example, a flame hydrolysis
28 deposition (FHD) method, is used to deposit a first
29 core layer 4 on top of the buffer layer 3. The
30 thickness of the first core layer 4 is 2 μm which lies
31 in a preferred range of 0.2 μm to 30 μm .

32

33 The material included in the first core layer 4
34 provides a high photosensitive response to an optical
35 signal. In a preferred embodiment, the first core
36 layer 4 includes a high concentration of Germanium

1 dopant, for example 17 %wt, co-doped with Boron, for
2 example 5 %wt. Other dopant ions can be included, or a
3 mixture of dopant ions, for example, tin, cerium,
4 and/or sodium.

5

6 The dopant and co-dopants are introduced during the
7 deposition of the first core layer 4. The Germanium
8 dopant induces a high photosensitive response and the
9 Boron co-dopant lowers the refractive index induced by
10 the high level of Germanium in the first core layer 4.
11 The concentrations of the dopant and co-dopant are
12 adjusted to 17% wt and 5% wt to give a difference
13 between the refractive index of the first core layer 4
14 and the refractive index of the buffer layer 3 of 0.75%
15 which lies in a preferred range of 0.05% to 2.0% .

16

17 The first core layer 4 is then consolidated by a
18 suitable method, for example by a second pass of the
19 FHD burner or by consolidating the waveguide 1 in an
20 electrical furnace.

21

22 Fig. 1B shows a further stage in the fabrication of the
23 waveguide 1 in which a second core layer 5 is formed on
24 the first core layer 4.

25

26 The second core layer 5 is deposited on the first core
27 layer 4 using a suitable method, for example FHD, and
28 is then suitably consolidated, for example, in an
29 electrical furnace.

30

31 The second core layer 5 is doped with rare earth dopant
32 ions, for example Er^{+3} , using an aérosol doping
33 technique, and co-doped, for example, with Phosphorus
34 during the deposition of the second core layer 5. The
35 thickness of the second core layer 5 is $4\mu\text{m}$, which lies
36 in the range of $0.2\mu\text{m}$ to $30\mu\text{m}$.

1 Alternative methods can be used to dope the second core
2 layer 5 such as solution doping. Preferably, the dopant
3 and co-dopant are simultaneously introduced in a
4 controlled manner during the deposition of the second
5 core layer 5. The concentrations of the dopant and co-
6 dopant can be controlled so that the second core layer
7 5 provides the desired signal gain for optical signals
8 propagating through the waveguide and also to ensure
9 that the refractive index of the second core layer 5 is
10 matched to the refractive index of the first core layer
11 4. In this embodiment, the indices are substantially
12 matched. Alternatively, the first core layer 4 and the
13 second core layer 5 can be subjected to a further
14 process, for example, UV trimming, to effect matching
15 of their refractive indices.

16
17 The photosensitive response of the first core layer 4
18 in combination with the optical signal gain of the
19 second core layer 5 effect the overall level of optical
20 signal amplification provided by the waveguide 1.
21

22 A waveguide core 6 is then formed from the first core
23 layer 4 and the second core layer 5 by using a suitable
24 method, for example conventional photolithographic
25 and/or reactive ion etching (RIE) methods. A portion
26 of the second core layer 5 is suitably masked and the
27 unwanted portions of the second core layer 5 and the
28 underlying first core layer 4 are etched away to leave
29 the waveguide core 6. The overall dimensions of the
30 waveguide core 6 formed are $6\mu\text{m} \times 6\mu\text{m}$ which is in a
31 preferred range of $0.4\mu\text{m} \times 0.4\mu\text{m}$ to $60\mu\text{m} \times 60\mu\text{m}$.
32

33 The co-dopant, here Boron, in the first core layer 4
34 reduce the refractive index of the waveguide core 6 and
35 enable single mode operation even for large waveguide
36 cores, for example waveguide cores whose dimensions are

1 in the range of $0.4\mu\text{m} \times 0.4\mu\text{m}$ to $60\mu\text{m} \times 60\mu\text{m}$. The co-
2 dopant in the first core layer 4 can also provide other
3 advantages such as enabling higher refractive index
4 changes to occur during later stages of fabrication of
5 a waveguide with multiple core layers.

6
7 The first core layer 4 effectively can reduce the
8 optical signal gain provided by the second core layer
9 5. It is thus advantageous for the first core layer 4
10 to be as photosensitive as possible in particular as
11 the refractive index modulation no longer occurs over
12 the entire volume of the waveguide core 6.

13
14 Fig. 1C shows a further stage in the fabrication of the
15 waveguide. An upper cladding layer 7 is deposited on
16 the waveguide core 6 using an FHD method. The upper
17 cladding layer 7 embeds the waveguide core 6. The upper
18 cladding layer 7 is doped during deposition, for
19 example with Phosphorus and Boron, to adjust its
20 refractive index until the refractive index of the
21 upper cladding layer 7 matches the refractive index of
22 the buffer layer 3. The upper cladding layer 7 is then
23 consolidated, for example in an electrical furnace.

24
25 In a second preferred embodiment of the invention, a
26 lower cladding layer is formed on top of the buffer
27 layer 3 before the first core layer 4 is deposited and
28 in which the level of dopant in the upper cladding
29 layer 7 is adjusted until the refractive index of the
30 upper cladding layer 7 matches that of the lower
31 cladding layer. The lower cladding layer can be
32 deposited and consolidated using the same techniques as
33 the upper cladding layer 7.

34
35 In an alternative layer structure the first core layer
36 4 may be deposited on top of the second core layer 5 or

1 respective first core layers 4 may be provided both
2 below and on top of the second core layer 5. The core
3 layer 5 is then sandwiched between two photo-sensitive
4 first core layers 4 increasing the coupling coefficient
5 of the device.

6

7 It is possible also, for certain applications, to dope
8 the photo-sensitive first core layer 4 with a small
9 amount of rare earth ions.

10

11 Referring now to Figs. 2A and 2B of the drawings, there
12 is shown a schematic diagram of laser waveguide
13 according to the invention. Figs. 2A and 2B show a
14 cross-section parallel to the longitudinal axis of the
15 laser waveguide core, such that the waveguide core is
16 seen only in profile.

17

18 Fig. 2A shows a planar laser waveguide 10 incorporating
19 a Bragg grating 11. The laser waveguide 10 includes a
20 silicon substrate layer 12 and a silica buffer layer 13
21 comprising a thermally oxidised layer of the substrate
22 12. The buffer layer 13 is formed on the substrate
23 layer 12.

24

25 Fig. 2B is an enlarged view of a section of Fig. 2A. A
26 first core layer 14 is deposited and consolidated on
27 the buffer layer 13 and second core layer 15 is
28 deposited and consolidated on the first core layer 14
29 using the techniques described above for the deposition
30 and consolidation of first and second core layers 4 and
31 5 in the waveguide 1. The first core layer 14 can
32 alternatively be formed on an lower cladding layer (not
33 shown) formed on buffer layer 13.

34

35 The second core layer 15 is doped with neodymium
36 instead of the erbium used as a dopant in the second

1 core layer 5. Fig. 2A represents a cross-section
2 through the laser waveguide 10 parallel to the
3 direction of light propagation through the waveguide 10
4 (i.e., normal to the cross-sectional plane through the
5 waveguide shown in Fig. 1C). The waveguide core 16 is
6 formed from said first core layer 14 and said second
7 core layer 15 using the same technique described above
8 for the formation of the first core layer 4 and the
9 second core layer 15.

10
11 An upper cladding layer 17 is then deposited on the
12 second core layer 15 and the grating 11. The upper
13 cladding layer 17 is deposited and consolidated using
14 the same methods as described above for the deposition
15 and consolidation of the upper cladding layer 7 in the
16 fabrication of waveguide 1.

17
18 The laser cavity of the laser waveguide 10 is
19 fabricated by writing the Bragg grating 11 into a
20 generally central portion of the first core layer 14
21 and the second core layer 15. Conventionally, the
22 Bragg grating 11 may be written using a KrF excimer
23 laser operating at 248 nm through a quartz phase mask
24 deposited on top of the upper cladding layer.

25
26
27 An input 18 of the laser waveguide 10 provides an
28 optical signal at a pump wavelength to the laser
29 waveguide 10. An optical interference mirror 19 butt-
30 coupled to the input end 18 of the laser waveguide 10
31 has a high reflectivity ($R_{sig} = 99.9\%$) around the maxima
32 of the desired output wavelength and has a high
33 transmittance at the pump wavelength ($T_{pump} > 95\%$). The
34 grating 11 forms an output coupler at the output 20 of
35 the laser waveguide 10.

36

1 The grating 11 is designed for use at 1050 nm and the
2 reflectivity of the grating 11 formed saturates at 80%.
3 The phase mask used to form the grating 11 has a pitch
4 of 720 nm. In other embodiments, however, it is
5 possible to form gratings 11 which can be used at a
6 wavelength in the range of 500 nm to 2100 nm by using
7 suitable phase masks.

8
9 In another embodiment of a laser waveguide, a grating
10 11 can be provided at both the input 18 and the output
11 20 of the laser waveguide 10, preferably with both
12 gratings having substantially the same Bragg wavelength
13 thus providing a distributed Bragg reflection laser
14 (DBR).

15
16 In yet another embodiment, a distributed feedback laser
17 (DFB) can also be formed by having a grating extending
18 along the length of the gain cavity formed by the core
19 layer 5.

20
21 Further, a multicavity laser can be formed by butt-
22 coupling another mirror to the output end of the laser
23 waveguide 10. These external mirrors can be bulk
24 mirror butt-coupled or mirrors directly deposited on
25 the ends of the waveguide. A multiple wavelength laser
26 can be provided by photoimprinting a sampled grating in
27 the waveguide core, with precise control of channel
28 spacing. Additionally, a multiple wavelength laser can
29 be achieved by exposing the same core area to very
30 similar UV patterns, with each exposure determining
31 each one of the emission wavelengths of the
32 superimposed Bragg gratings. An additional grating can
33 be defined to provide gain equalisation for the several
34 wavelengths.

35
36 Thus, a multicavity laser can be constructed by using

1 two mirrors and a grating, one mirror and two gratings,
2 or indeed three gratings.

3

4 Still further, in a different application, for example,
5 optical amplifiers, a grating can also be formed on the
6 first core layer 4 to act as a "tap" to flatten optical
7 gain spectra.

8

9 While several embodiments of the present invention have
10 been described and illustrated, it will be apparent to
11 those skilled in the art once given this disclosure
12 that various modifications, changes, improvements and
13 variations may be made without departing from the
14 spirit or scope of this invention.

1 Claims:-

2

3 1. An optical waveguide with multiple core layers
4 for transmitting an optical signal, the waveguide
5 including:

6 a substrate;

7 a waveguide core formed on said substrate; and
8 an upper cladding layer embedding said waveguide
9 core;

10 wherein said waveguide core comprises a first core
11 layer and a second core layer.

12

13 2. A waveguide as claimed in any preceding claim,
14 wherein the substrate comprises silicon and/or silica
15 and/or sapphire.

16

17 3. A waveguide as claimed in either preceding claim,
18 wherein the substrate includes an intermediate layer.

19

20 4. A waveguide as claimed in Claim 3, and wherein the
21 intermediate layer includes a buffer layer formed on
22 the substrate.

23

24 5. A waveguide as claimed in Claim 4, wherein said
25 buffer layer comprises a thermally oxidised layer of
26 the substrate.

27

28 6. A waveguide as claimed in any one of Claims 4 or
29 5, wherein the intermediate layer further includes a
30 lower cladding layer formed on said buffer layer.

31

32 7. A waveguide as claimed in any one of Claims 4 to
33 6, wherein the thickness of the buffer layer is in the
34 range 5 μm to 20 μm .

35

36

1 8. A waveguide as claimed in any preceding claim,
2 wherein the second core layer is formed on the first
3 core layer and said first core layer is formed on the
4 substrate.

5

6 9. A waveguide as claimed in any one of Claims 1 to
7 7, wherein the first core layer is formed on the second
8 core layer and said second core layer is formed on the
9 substrate.

10

11 10. A waveguide as claimed in Claim 8, wherein a
12 further first core layer is formed on the second core
13 layer such that the first core layer sandwiches the
14 second core layer.

15

16 11. An optical waveguide as claimed in any preceding
17 claim, wherein the first core layer includes a dopant
18 to permit the first core layer to exhibit a
19 photosensitive response.

20

21 12. A waveguide as claimed in any preceding claim,
22 wherein the first core layer includes silica.

23

24 13. A waveguide as claimed in any preceding claim,
25 wherein the first core layer includes a germanium oxide
26 and/or a boron oxide.

27

28 14. A waveguide as claimed in of Claims 11 to 13,
29 wherein the first core layer dopant includes dopant
30 ions.

31

32 15. A waveguide as claimed in Cláim 14, wherein the
33 first core layer dopant ions include tin and/or cerium
34 and/or sodium.

35

36 16. An optical waveguide as claimed in any preceding

1 claim, wherein the second core layer includes a dopant
2 to induce amplification of an optical signal
3 transmitted through said waveguide core.
4

5 17. A waveguide as claimed in any preceding claim,
6 wherein the second core layer includes silica.
7

8 18. A waveguide as claimed in any preceding claim,
9 wherein the second core layer includes a phosphorus
10 oxide.
11

12 19. A waveguide as claimed in any of Claims 16 to 18,
13 wherein the second core layer dopants include dopant
14 ions.
15

16 20. A waveguide as claimed in Claim 19, wherein the
17 second core layer dopant includes a mobile dopant.
18

19 21. A waveguide as claimed in one of Claims 17 to 20,
20 wherein the second core layer dopants include a rare
21 earth and/or a heavy metal and/or compounds of these
22 elements.
23

24 22. A waveguide as claimed in Claim 21, wherein the
25 rare earth is Erbium or Neodymium.
26

27 23. A waveguide as claimed in any preceding claim,
28 wherein the refractive indices of the first core layer
29 and the second core layer are substantially equal.
30

31 24. A waveguide as claimed in any preceding claim,
32 wherein the refractive index of the waveguide core
33 differs from that of the substrate by at least 0.05%.
34

35 25. A waveguide as claimed in any preceding claim,
36 wherein the thickness of the first core layer is in the

1 range 0.2 μm to 30 μm .

2

3 26. A waveguide as claimed in any preceding claim,
4 wherein the thickness of the second core layer is in
5 the range 0.2 μm to 30 μm .

6

7 27. A waveguide as claimed in Claim 25, wherein the
8 width of the waveguide core lies in the range 0.4 μm to
9 60 μm .

10

11 28. A waveguide as claimed in any one of Claims 6 to
12 27, wherein the upper cladding layer and the lower
13 cladding layer comprise the same material.

14

15 29. A waveguide as claimed in any preceding claim,
16 wherein the refractive index of the substrate and the
17 refractive index of the upper cladding layer are
18 substantially equal.

19

20 30. A method of fabricating a waveguide comprising the
21 steps of:

22 providing a substrate;
23 forming a waveguide core on the substrate; and
24 forming an upper cladding layer to embed the
25 waveguide core, wherein the waveguide core is formed
26 from a first core layer and a second core layer.

27

28 31. A method as claimed in Claim 30, wherein the
29 formation of the substrate includes the formation of an
30 intermediate layer formed on said substrate.

31

32 32. A method as claimed in Claim 31, wherein the
33 formation of the intermediate layer includes the
34 formation of a buffer layer.

35

36 33. A method as claimed in Claim 33, wherein the

1 buffer layer is formed by thermally oxidising the
2 substrate.

3

4 34. A method as claimed in any of Claims 32 to 33,
5 wherein the formation of the intermediate layer further
6 includes the formation of a lower cladding layer formed
7 on said buffer layer.

8

9 35. A method as claimed in Claim 34, wherein the
10 formation of the lower cladding layer includes doping
11 said lower cladding layer with a dopant.

12

13 36. A method as claimed in Claim 34, wherein the
14 dopant includes dopant ions.

15

16 37. A method as claimed in any of Claims 30 to 36,
17 wherein the second core layer is formed on the first
18 core layer and wherein the first core layer is formed
19 on the substrate.

20

21 38. A waveguide as claimed in any of Claims 30 to 37,
22 wherein the first core layer is formed on the second
23 core layer and said second core layer is formed on the
24 substrate.

25

26 39. A waveguide as claimed in Claim 37, wherein a
27 further first core layer is formed on the second core
28 layer such that the first core layer sandwiches the
29 second core layer.

30

31 40. A method as claimed in any of Claims 30 to 39,
32 wherein the steps of forming any one of the substrate,
33 first core layer, the second core layer, and the upper
34 cladding layer comprise the steps of:

35 depositing each layer; and

36 at least partially consolidating each layer.

1 41. A method as claimed in Claim 40, wherein any one
2 of the substrate, the first core layer, the second core
3 layer and the upper cladding layer partially
4 consolidated after deposition is fully consolidated
5 with the full consolidation of any other of the first
6 core layer, the second core layer or the upper cladding
7 layer.

8
9 42. A method as claimed in any of Claims 30 to 41,
10 wherein the formation of the first core layer includes
11 the doping of the first core layer with a dopant.

12
13 43. A method as claimed in Claim 42, wherein the first
14 core layer dopant permits the first core layer to
15 exhibit a photosensitive response.

16
17 44. A method as claimed in any of Claims 30 to 43,
18 wherein the formation of the second core layer includes
19 the doping of the second core layer with a dopant.

20
21 45. A method as claimed in any of Claims 30 to 44,
22 wherein the second core layer dopant induces
23 amplification of an optical signal transmitted through
24 said waveguide core.

25
26 46. A method as claimed in any of Claims 30 to 45,
27 wherein the formation of the substrate includes the
28 doping of the substrate with a dopant.

29
30 47. A method as claimed in any one of Claims 42 to 46,
31 wherein the dopant includes dopant ions.

32
33 48. A method as claimed in Claim 47, wherein the
34 substrate dopant includes a mobile dopant.

35
36 49. A method as claimed in any of Claims 47 to 48,

1 wherein said first core layer dopant ions include tin
2 and/or cerium and/or sodium.

3

4 50. A method as claimed in any of Claims 47 to 49,
5 wherein said second core layer dopant ions include a
6 rare earth and/or a heavy metal and/or compounds
7 thereof.

8

9 51. A method as claimed in Claim 50, wherein said rare
10 earth is Erbium and/or Neodymium.

11

12 52. A method as claimed in any of Claims 42 to 51,
13 wherein the concentration of the first core layer
14 dopant is selectively controlled during the formation
15 of the first core layer and the concentration of the
16 second core layer dopant is selectively controlled
17 during the formation of the second core layer so that
18 the refractive index of the first core layer and the
19 refractive index of the second core layer are
20 substantially equal.

21

22 53. A method as claimed in Claim 52, wherein the
23 concentrations of the first core layer dopant and
24 second core layer dopant are controlled to give a
25 refractive index for the waveguide core which differs
26 from that of the substrate layer by at least 0.05%.

27

28 53. A method as claimed in any of claim 34, wherein
29 said lower cladding layer and said buffer layer are
30 formed substantially in the same step.

31

32 54. A method as claimed in any of Claims 40 to 53,
33 wherein at least one of the substrate, the first core
34 layer, the second core layer, and the upper cladding
35 layer is deposited by a Flame Hydrolysis Deposition
36 process and/or Chemical Vapour Deposition process.

1 55. A method as claimed in Claim 54, wherein the
2 Chemical Vapour Deposition process is a Low Pressure
3 Chemical Vapour Deposition process or a Plasma Enhanced
4 Chemical Vapour Deposition process.

5

6 56. A method as claimed in any of Claims 40 to 55,
7 wherein the consolidation is by fusing using a Flame
8 Hydrolysis Deposition burner.

9

10 57. A method as claimed in any of Claims 40 to 56,
11 wherein the consolidation is by fusing in a furnace.

12

13 58. A method as claimed in either of Claims 57 or 58,
14 wherein the step of fusing the lower cladding layer and
15 the step of fusing the first core layer and/or the
16 second core layer are performed simultaneously.

17

18 59. A method as claimed in any of Claims 30 to 58,
19 wherein the waveguide core is formed from the first
20 core layer and the second core layer using a dry
21 etching technique and/or a photolithographic technique
22 and/or a mechanical sawing process.

23

24 60. A method as claimed in Claim 59, wherein the dry
25 etching technique comprises a reactive ion etching
26 process and/or a plasma etching process and/or an ion
27 milling process.

28

29 61. A method as claimed in any of Claims 30 to 60,
30 wherein the waveguide core formed from the first core
31 layer and the second core layer is square or
32 rectangular in cross-section.

33

34 62. A laser waveguide with multiple core layers for
35 transmitting an optical signal, the laser waveguide
36 comprising a waveguide as claimed in any one of claims

1 1 to 29, the laser waveguide further comprising:
2 at least one grating formed in said waveguide
3 core.

4

5 63. A laser waveguide as claimed in Claim 62, wherein
6 the laser waveguide further comprises at least one
7 optical interference mirror.

8

9 64. A laser waveguide as claimed in Claim 63, wherein
10 the optical interference mirror is provided at the
11 input of the waveguide.

12

13 65. A laser waveguide as claimed in Claim 64, wherein
14 the interference mirror is butt-coupled to or directly
15 deposited at the input of the waveguide.

16

17 66. A laser waveguide as claimed in any of Claims 62
18 to 65, wherein the laser waveguide includes two mirrors
19 and a grating.

20

21 67. A laser waveguide as claimed in any of Claims 62
22 to 65, wherein the laser waveguide includes one mirror
23 and two gratings.

24

25 68. A laser waveguide as claimed in Claim 62, wherein
26 the laser waveguide includes three gratings.

27

28 69. A laser waveguide as claimed in any of Claims 62
29 to 68, wherein the grating formed is a Bragg grating.

30

31 70. A laser waveguide as claimed in any one of Claims
32 62 to 69, wherein said grating forms an output coupler
33 for said laser waveguide.

34

35 71. A laser waveguide as claimed in any one of Claims
36 62 to 70 further comprising an optical interference

1 mirror butt coupled to or directly deposited at the
2 output of the waveguide.

3

4 72. A method of fabricating a laser waveguide,
5 comprising forming a waveguide according to a method as
6 claimed in any of claims 30 to 61, the method of
7 fabricating the laser waveguide further including the
8 steps of:

9 forming at least one grating in said waveguide
10 core.

11

12 73. A method as claimed in Claim 72, further including
13 the step of attaching at least one optical interference
14 mirror to the waveguide.

15

16 74. A method as claimed in Claim 73, wherein the
17 optical interference mirror is attached to an input of
18 the waveguide.

19

20 75. A method as claimed in Claim 72 to 74, wherein the
21 grating is formed using a laser operating at a
22 wavelength in the range of 150 nm to 400 nm through a
23 phase mask deposited on top of said upper cladding
24 layer of the waveguide.

25

26 76. A method as claimed in Claim 75, wherein said mask
27 is a quartz mask.

28

29 77. A method as claimed in Claim 72 to 74, wherein the
30 grating is formed using a using an interference side
31 writing technique.

32

33 78. A method as claimed in any one of Claims 72 to 74,
34 wherein the grating is formed using a direct writing
35 technique.

36

1 79. A method as claimed in any one of Claims 72 to 78,
2 wherein the grating formed is a Bragg grating.
3

4 80. A method as claimed in any one of Claims 73 to 79,
5 wherein the optical interference mirror is butt-coupled
6 to or directly deposited at the input of the waveguide.
7

8 81. A method as claimed in any one of Claims 72 to 79,
9 further comprising the step of attaching a second
10 optical interference mirror to the output of the
11 waveguide.
12

13 82. A waveguide substantially as described herein and
14 with reference to Figs. 1A to 1C of the accompanying
15 drawings.
16

17 83. A laser waveguide substantially as described
18 herein and with reference to Figs. 2A and 2B of the
19 accompanying drawings.
20

21 84. A method of fabricating a waveguide with multiple
22 core layers substantially as described herein and with
23 reference to Figs. 1A to 1C of the accompanying
24 drawings.
25

26 85. A method of fabricating a laser waveguide with
27 multiple core layers substantially as described herein
28 and with reference to Figs. 2A and 2B of the
29 accompanying drawings.
30

31

32

33

1 ABSTRACT OF THE DISCLOSURE

2 An optical waveguide with multiple core layers for
3 transmitting an optical signal comprises a substrate;
4 an intermediate layer formed on said substrate; a
5 waveguide core formed on said intermediate layer; and
6 an upper cladding layer embedding said waveguide core.
7 The waveguide core comprises a first core layer formed
8 on said intermediate layer and a second core layer
9 formed on said first core layer. The first core layer
10 has photosensitive properties and the second core layer
11 has optical gain properties.

12

13 (Figs. 2A and 2B)

14

1 | 2

FIG. 1A

FIG. 1B

FIG. 1C

FIG. 2A

FIG. 2B

323

6/20/2021

28 - room