Week 3 Handout Rubric.

Let (\cdot, \cdot) denote possible sample points. $N = \{(i, i), i, j=1, 2\cdots 6\}$ Sample space. $A = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}$ $B = \{(1, 6), \{2, 3\}, (3, 2), (6, 1)\}$ $A \cap B = A \text{ and } B = \{(1, 6), (6, 1)\}$

+, "Side-by-side" => permutation $qP_4 = \frac{9!}{5!} = 3024$

We have $3P_3 = 6$ ways to determine the order of 3 artists in a row (e.g. $\frac{2}{\text{van Grogn}}$ $\frac{3}{\text{prasso Nonet}}$ or $\frac{3}{\text{prasso Nonet}}$ $\frac{3}{\text{prasso Nonet}}$

For each artist, we then calculation the permutation of its paintings: ZP2: 5P3:8P3 = 1440

Together we have 6x1440=8640 ways

b. All in a sequence, each cell has 40 possibilities.

Together 40×40×40 = 64000

7. It's equivalent to say $40P_3$ (Since in a sequence, we need to consider the order of) $40P_3 = 40\times39\times38 = 59280$ each number

8. Its combination question. 5207 = 2598960

9. Equivalent to say, in each suit, we select five different Cards. In this sense, we have $4 \times 13 C_0 = 1287$

(0. Let's consider this question in different situations:

Oif A and H leave, then you have 6 choices (B~G) left for the ramaining one

© if A and H Stay home together, then we just need to select 3 children in (BnG, overall, we have 6+20=26 different ways.