Deep Q-Networks (DQN)

Roteiro

- Recap de Q-Learning tabular
- Limitações de Q-Learning tabular
- Deep Q-Networks (DQNs) e aproximação da função de valor
- Intervalo
- Prática (Lunar Lander)

Recap: Q-Valores

$$G_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots$$

$$q_{\pi}(s, a) = E_{\pi} [G_t \mid S_t = s, A_t = a]$$

Recap: Q-Learning

Recap: Q-Learning

$$Q_{\text{bootstrap}}(s, a) = r + \gamma \cdot \max_{a'} Q_*(s', a')$$
recompensa fator de desconto valor futuro ótimo

Atualização das estimativas Q_{*}:

$$Q_{*}(s,a) \leftarrow \underbrace{Q_{*}(s,a)}_{\text{valor}} + \underbrace{\alpha \cdot \left(r + \gamma \max_{a'} Q_{*}(s',a') - Q_{*}(s,a)\right)}_{\text{taxa de aprendizado}} - \underbrace{Q_{\text{bootstrap}}(s,a')}_{\text{Q}_{\text{bootstrap}}(s,a)} - \underbrace{Q_{*}(s,a)}_{\text{pootstrap}}$$

Recap: Q-Learning Tabular

 Os Q-valores Q(s,a) são armazenados numa tabela, com uma célula para cada par (s,a)

Q	а0	a1	a2
s0	1	15	2
s1	24	5	16
s2	10	62	-7
s3	10	15	35

Limitações da Abordagem Tabular

- Em tarefas com espaços de estados grandes:
 - Estado = imagem preto e branco 10x10

Cada pixel: 256 possibilidades

Total: $256^{10 \times 10} = 6.7 \times 10^{240}$

Estado contínuo:

Quantidade "infinita" de estado (é necessário discretizar)

Limitações da Abordagem Tabular

- Em tarefas com espaços de estados grandes, a abordagem tabular demanda:
- uma tabela imensa
- 2. uma quantidade absurda de experiências

Q	а0	a1	a2
s0	1	15	2
s1	24	5	16
s2	10	62	-7
s3	10	15	35

Deep Q-Networks (DQN)

Deep Q-Networks

- Uma saída por ação:
 - Intuição
 - as primeiras camadas pré-processam o estado (igual para todas as ações).
 - as últimas camadas calculam o valor de cada ação

Deep Q-Networks

- Treinamento com gradient descent
 - Q-Learning como minimização de erro:

$$Q_{*}(s,a) \leftarrow \underbrace{Q_{*}(s,a)}_{\text{valor}} + \underbrace{\alpha \cdot \left(r + \gamma \max_{a'} Q_{*}(s',a') - Q_{*}(s,a)\right)}_{\text{Q}_{\text{bootstrap}}(s,a)} - \underbrace{V_{*}(s,a)}_{\text{Q}_{\text{bootstrap}}(s,a)} - \underbrace{V_{*}(s,a)}_{\text{Q}_{\text{Q}_{\text{bootstrap}}(s,a)} - \underbrace{V_{*}(s,a)}_{\text{Q$$

- Passando para redes neurais:
 DQN corresponde a um passo de gradient descent em direção a $Q_{\text{bootstrap}}(s, a)$
- ∘ Gradient descent: $w \leftarrow w \alpha \cdot \nabla J(w)$

Aproximação da Função de Valor

 Técnicas que substituem a tabela de Q-Learning por algum estimador, como uma rede neural (DQN) ou uma regressão linear

Experience Replay

Treinamento linear

t	S	а	r	s'	terminal
3	S_3	A_3	R_3	S ₄	não

- o agente pode "se esquecer" das experiências antigas
- Treinamento com experience replay
 - o agente relembra as experiências antigas
 - o as experiências são menos correlacionadas:
 - melhor para a rede neural

replay buffer

t	S	а	r	s'	terminal
1	S_1	A_1	R_1	S ₂	não
2	S ₂	A ₂	R_2	S ₃	não
3	S ₃	A_3	R_3	S ₄	não
4	S ₄	A ₄	R_4	S ₅	não
5	S ₅	A_5	R_5	S ₆	não
:	:	:	:	:	:

Algoritmo de DQN

```
Parâmetros: parâmetros \alpha, \gamma \in (0, 1], \varepsilon pequeno > 0.
Inicialize a memória de replay D e a rede neural Q(s,a)
Loop para cada episódio:
      Inicialize s<sub>+</sub>
      Loop para cada instante t do episódio:
            Escolha a_{\scriptscriptstyle +} usando uma política arepsilon-gulosa
            Tome a ação a_t, observe r_t, s_{t+1}
            Guarde a transição (s_t, a_t, r_t, s_{t+1}, terminal) em D
            Amostre um conjunto de transições de D
            Calcule Q<sub>hootstran</sub> para cada transição amostrada:
                 Q_{bootstrap}(s_j, a_j) = \begin{cases} r_j \\ r_j + \gamma \max_a, Q(s_{j+1}, a') \end{cases} se s_j for terminal caso contrário
            Treine a rede neural utilizando Q_{\text{bootstrap}} como target
      até que s_{t+1} estado terminal
```

Intervalo (aprox. 15 min)

Em seguida: parte prática

Repositório da aula: github.com/GrupoTuring/Aula-Aberta-DQN

Recursos:

- Repositório de RL
- Turing Talks: post de DQN com Flappy Bird
- Spinning Up (OpenAl)