UNIVERSITAT POLITÈCNICA DE CATALUNYA
DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS

Senyal i Sistemes II

7 de Juny de 2006

Data notes provisionals: 19 de Juny
Període d'al.legacions: 19 a 22 de Juny
Data notes revisades: 30 de Juny

Professors: R. Banchs, A. De Gispert, J. Hernando, E. Monte, A. Oliveras, J. Ruiz, P. Salembier.

Informacions addicionals:

- Durada de la prova: 1h 30 min
- Responeu a cada problema en <u>fulls separats</u>.
- No podeu utilitzar ni llibres, ni apunts, ni taules, ni formularis, ni calculadora, ni telèfon mòbil.
- Poseu un document d'identificació en un lloc visible.
- El vostre nom ha de figurar en tots els fulls que utilitzeu, en format: COGNOMS, NOM.
- Justifiqueu tots els resultats. Els resultats sense justificació no seran valorats en la correcció.

Problema 1 3 puntos

Se pretende realizar un filtro discreto paso alto con una pulsación de corte $\omega_c = \frac{\pi}{2}$ a partir de un filtro paso bajo ideal.

- a) A partir de la respuesta frecuencial del filtro paso alto ideal con pulsación de corte $\omega_c = \frac{\pi}{2}$, encuentre la expresión de la respuesta impulsional del filtro ideal $h_i[n]$.
- b) El valor de las muestras de la respuesta impulsional enventanada $h_e[n] = h_i[n] \cdot v[n]$ si se enventana con una ventana rectangular $v[n] = \{1, \underline{1}, 1\}$.
- c) ¿El filtro $h_e[n]$ es causal y estable? Proponga una h[n] causal y estable del filtro anterior. ¿Qué retardo introducirá al sistema?
- d) A partir de la respuesta impulsional h[n], justifique si el filtro es de fase lineal.
- e) Calcule la autocorrelación del filtro h[n].
- f) Calcule la salida y[n] del filtro causal h[n] cuando la entrada es $x[n] = 1 + \cos(\pi n)$.

Problema 2 4 puntos

Queremos diseñar dos filtros, uno paso bajo y otro paso alto, para un sistema demultiplexor en frecuencia. Para ello, realizaremos el diseño por dos métodos diferentes. El filtro paso bajo $h_{PB}[n]$ y el paso alto $h_{PA}[n]$ tendrán la misma frecuencia de corte que será de $\frac{1}{4}$.

Para obtener la respuesta impulsional del filtro paso alto, modularemos la del paso bajo de la forma siguiente: $h_{PA}[n] = h_{PB}[n] \times (-1)^n$

- a) Diseñe $H_{PB}^{b}(z)$ del filtro paso bajo por el método de la transformación bilineal. Use como prototipo analógico un filtro de primer orden paso bajo $H_A^{b}(s) = \frac{\Omega_c}{s + \Omega_c}$ con frecuencia de corte Ω_c . (nota: $\tan(\pi/4) = 1$)
- b) Dibuje el diagrama de polos y ceros de $H_{PB}^{b}(z)$ y relacione con los polos y ceros del prototipo analógico.
- c) Calcule $h^b_{PA}[n]$ a partir del método de modular $h^b_{PB}[n]$ y calcule también $H^b_{PA}(z)$

d) Esboce y compare los módulos y las fases de $H_{PB}^{b}(e^{j\omega})$ y $H_{PA}^{b}(e^{j\omega})$

A continuación, se propone diseñar los filtros mediante el muestreo en frecuencia del filtro paso bajo ideal con de corte que a ¼.

- e) Diseñe el filtro paso bajo a partir de 3 muestras del espectro del filtro paso bajo ideal. Indique claramente las muestras del $H_{PB}^m[k]$ y la frecuencia a la que corresponde cada componente.
- f) Calcule la DFT inversa de $H_{PB}^m[k]$ para obtener la nueva $h_{PB}^m[n]$.
- g) Esboce los módulos de $H_{PB}^{b}(e^{j\omega})$ y $H_{PB}^{m}(e^{j\omega})$.

Problema 3 3 puntos

Sea el sistema de la figura siguiente:

Se pide:

a) La respuesta impulsional h[n] del filtro interpolador que interpola por 4 tal como se ilustra en la figura siguiente (supondremos que h[n]=h[-n]):

- b) Calcular la respuesta frecuencial $H(e^{j\omega})$ del filtro interpolador e indicar el retardo que introduce.
- c) Expresar y[n] en función de x[n] suponiendo que h[n] es el filtro interpolador.
- d) Consideramos el filtro interpolador h'[n]=h[n-1]. Expresar su respuesta frecuencial $H'(e^{j\omega})$ en función de $H(e^{j\omega})$. Indicar el retardo introducido por h'[n]. ¿Cuál es el retardo equivalente introducido entre x[n] e y[n]?
- e) Expresar y[n] en función de x[n] suponiendo que h'[n] es el filtro interpolador.
- f) Determinar y[n] cuando x[n] es una señal periódica con periodo fundamental $\{1,0,-1,0\}$ y h'[n] es el filtro interpolador. Interpretar este resultado.