CreditCruncher User's Guide Version 0.1

Gerard Torrent Gironella

January 3, 2005

Copyright © 2004-2005 Gerard Torrent Gironella. All rights reserved.
The image found in cover have been taken from Mark L. Winston. 1987. <i>The Biology of the Honey Bee</i> (ISBN: 0-671-07109-2). Harvard University Press. Cambridge, MA. These redrawn figures appear here without permission of Harvard University Press [Ref: 973029].
This file is part of the CreditCruncher software package. For license information, see the LICENSE file in the top level directory of the CreditCruncher source distribution.

Chapter 1

Introduction to CreditCruncher

1.1 About CreditCruncher

CreditCruncher valora el riesgo de impago de una cartera de créditos usando la técnica de simulación Monte Carlo. Es una implementación libre de la metodologia CreditMetrics¹.

Se dispone de una cartera de N clientes donde cada cliente tiene contratado uno o varios productos con riesgo de cr/'edito. Cada cliente tiene asignado un rating de calidad crediticia y existe una matriz de transici/'on que permite determinar la probabilidad de fallido a un horizonte de tiempo fijado. Los clientes pertenecen a diversos sectores de los que disponemos de una matriz de correlaci/'on que indica el grado de dependencia intersectorial en caso de fallido. A partir de la matriz de correlaci/'on intersectorial se construye la matriz de correlaci/'on entre clientes. Finalmente se genera un conjunto de N variables aleatorias uniformes correlacionadas seg/'un esta matriz (c/'opula). Se usa la matriz de transici/'on para determinar la evoluci/'on del rating inicial de cada cliente y se evalua el valor de sus productos. Si se repite este proceso un n/'umero elevado de veces disponemos de un conjunto de valores posibles de la cartera que permiten determinar la distribuci/'on del valor de la cartera y calcular el VAR (Value At Risk). Para mas informaci/'on cons/'ultese el manual de CreditCruncher donde se describe con detalle todos los pasos realizados.

¹http://www.riskmetrics.com/

Chapter 2

Formulación del problema

2.1 Hipotesis

La única fuente de riesgo es el riesgo de impago. No se contemplan los riesgos de variaci/'on de tipos de inter/'es, etc.

El tiempo está repartido uniformemente. blablabla.

Un fallido no se recupera. blablabla.

Las probabilidades de fallido no dependen del tiempo. blablabla.

El rating y la recuperaci/'on de un cliente no depende de otro cliente. blablabla.

2.2 La matriz de transici/'on

2.2.1 Definición.

La matriz de transici/'on nos proporciona la probabilidad que un cliente con rating inicial r_i pase a tener, al cabo de un tiempo T, rating r_i . La denotamos de la forma siguiente:

$$M_T = \begin{pmatrix} m_{1,1} & \dots & m_{1,n} \\ \vdots & \ddots & \vdots \\ m_{n,1} & \dots & m_{n,n} \end{pmatrix}$$

donde cada elemento de la matrix, $m_{i,j}$ corresponde a la probabilidad de que un cliente con rating r_i pase a tener, al cabo de T tiempo, rating r_i .

2.2.2 Ejemplo.

Matriz de transici/'on anual (T=1 ao) extraida del documento *CreditMetrics. Technical Document*. Las probabilidades est/'an expresadas en tanto por ciento.

	AAA	AA	A	BBB	BB	В	CCC	Default
AAA	90.81	8.33	0.68	0.06	0.12	0.00	0.00	0.00
AA	0.70	90.65	7.79	0.64	0.06	0.14	0.02	0.00
A	0.09	2.27	91.05	5.52	0.74	0.26	0.01	0.06
BBB	0.02	0.33	5.95	86.93	5.30	1.17	0.12	0.18
BB	0.03	0.14	0.67	7.73	80.53	8.84	1.00	1.06
В	0.00	0.11	0.24	0.43	6.48	83.46	4.07	5.20
CCC	0.22	0.00	0.22	1.30	2.38	11.24	64.86	19.79
Default	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00

en particular, la probabilidad que un cliente con rating AA pase a tener rating B al cabo de un ao es del 0.14%.

2.2.3 Propiedades

Propiedad 1. El valor de los elementos de la matriz de transición se encuentran entre 0 y 1 debido a que son probabilidades.

$$0 \le m_{i,j} \le 1 \quad \forall i, j$$

Propiedad 2. La suma de los elementos de cualquier fila de la matriz de transici/on suman 1. De esta forma se est/a imponiendo que el conjunto de ratings finales solo puede ser el de los ratings contemplados en la matriz.

$$\sum_{j=1}^{n} m_{i,j} = 1 \quad \forall i$$

Propiedad 3. Los elementos de la fila correspondiente al rating default, son todos 0, excepto el elemento de la columna que corresponde al rating default que vale 1. Esta condici/on indica que cuando se llega al estado de fallido no es posible salir de este estado.

$$m_{default,j} = 0$$
 $\forall j \neq default$ $m_{default,default} = 1$

2.2.4 Cambio de periodo

Deseamos obtener la matriz de transici/on para periodos distintos (m/'ultiplos o fraccionarios) del periodo proporcionado, T. Esto nos permitir/'a determinar la probabilidad que un cliente con rating inicial r_i tenga rating r_i al cabo de $x \cdot T$ tiempo.

Ejemplo. Calculemos la probabilidad de pasar de rating AA a rating B en un plazo de dos aos disponiendo de la matriz de transici/on anual.

$$P(AA \rightarrow B; 2) = \begin{array}{ccc} P(AA \rightarrow AAA; 1) & \cdot P(AAA \rightarrow B; 1) & + \\ P(AA \rightarrow AA; 1) & \cdot P(AA \rightarrow B; 1) & + \\ P(AA \rightarrow A; 1) & \cdot P(A \rightarrow B; 1) & + \\ P(AA \rightarrow BBB; 1) & \cdot P(BBB \rightarrow B; 1) & + \\ P(AA \rightarrow BB; 1) & \cdot P(BB \rightarrow B; 1) & + \\ P(AA \rightarrow B; 1) & \cdot P(B \rightarrow B; 1) & + \\ P(AA \rightarrow CCC; 1) & \cdot P(CCC \rightarrow B; 1) & + \\ P(AA \rightarrow default; 1) & \cdot P(default \rightarrow B; 1) \end{array}$$

Proposición Sean M_{T_1} y M_{T_2} las matrices de transición para los periodos T_1 y T_2 . Entonces, la matriz de transición para el periodo $T_1 + T_2$ es:

$$M_{T_1+T_2} = M_{T_1} \cdot M_{T_2}$$

Corolario Sean M_T la matriz de transición para el periodo T y $k \in \mathbb{N}$. Entonces:

$$M_{k\cdot T} = M_T^k$$

$$M_{\frac{T}{k}} = \sqrt[k]{M_T}$$

2.3 Cálculo de la raiz de una matriz

Definición. Diremos que 2 matrices A y B de orden n son semejantes si existe una matriz, P, de orden n con $det(P) \neq 0$ tal que $B = P^{-1} \cdot A \cdot P$.

Proposición. Si dos matrices A y B son semejantes $(B = P^{-1} \cdot A \cdot P)$ entonces:

$$det(A) = det(B)$$

$$B^n = P^{-1} \cdot A^n \cdot P$$

Definición. Diremos que Una matriz A de orden n es diagonalizable si es semejante a una matriz diagonal D, o sea, $A = P^{-1} \cdot D \cdot P$ siendo $det(D) \neq 0$.

Proposición. Para que una matriz A sea diagonalizable es necesario y suficiente que:

- Los valores propios de A sean todos reales
- \bullet Los n vectores propios de A sean independientes

Proposición. Si una matriz A es diagonalizable $(A = P^{-1} \cdot D \cdot P)$ entonces:

- \bullet D es una matriz diagonal compuesta por los valores propios de la matriz A
- P es la matriz formada por los vectores propios de la matriz A

Resultado. Sea A la ra/'iz n-esima de una matriz diagonalizable B. Entonces:

$$A^n = B = P^{-1} \cdot D \cdot P \Longrightarrow A = \sqrt[n]{B} = P^{-1} \cdot \sqrt[n]{D} \cdot P$$

2.4 La variable aleatoria normal

2.4.1 Definición y propiedades

$$P(X \le x) = \Phi(x) = \int_{-\infty}^{x} \frac{e^{-t^2}}{\sqrt{2\pi}} dt$$

2.4.2 Simulación

Para la generaci/'on de una realizaci/'on, z, de una variable aleatoria normal $Z \sim N(\mu, \sigma)$ utilizamos el siguiente algoritmo:

$$z = \mu + \sigma \cdot \sqrt{-2 \cdot ln(u[0,1])} \cdot cos(2 \cdot \pi \cdot u[0,1])$$

donde u[0,1] son realizaciones de una variable aleatoria uniforme en el intervalo [0,1].

2.5 Copulas. Variables aleatorias correlacionadas

Definición. Una copula es la función de distribución de un vector aleatorio sobre \Re^n donde las funciones de distribución marginales son U[0,1].

$$C(u_1, \dots, u_n) = P\{U_1 \le u_1, \dots, U_n \le u_n\}$$

Proposición. C es una cópula $\iff C: [0,1]^n \to [0,1]$ y cumple las siguientes propiedades:

- $C(x_1, \dots, x_n)$ es creciente en cada componente x_i
- $C(1, \dots, 1, x_i, 1, \dots, 1) = x_i \quad \forall i \in \{1, \dots, n\}, x_i \in [0, 1]$
- $\forall (a_1, \dots, a_n) \in [0, 1]^n \text{ y } \forall (b_1, \dots, b_n) \in [0, 1]^n \text{ con } a_i \leq b_i \text{ se cumple:}$

$$\sum_{i_1=1}^{2} \cdots \sum_{i_n=1}^{2} (-1)^{i_1+\cdots+x_n} C(x_{1i_1}, \cdots, x_{ni_n}) \ge 0$$

siendo $x_{i1} = a_i$ y $x_{i2} = b_i$ $\forall j \in \{1, \dots, n\}$

Generación de cópulas normales o arquimedianas. Sea (Z_1, \dots, Z_n) un vector aleatorio con marginales $Z_i \sim N(0, 1)$ con

$$\Sigma = \begin{pmatrix} 1 & \rho_{12} & \dots & \rho_{1n} \\ \rho_{21} & 1 & \dots & \rho_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1} & \rho_{n2} & \dots & 1 \end{pmatrix}$$

siendo $\rho_{ij} = \rho_{ji}$ el coeficiente de correlación entre Z_i y Z_j .

Calculamos la raiz de Σ usando el algoritmo de Cholesky. De esta forma obtenemos la matriz triengular inferior

$$B = \begin{pmatrix} b_{11} & 0 & \dots & 0 \\ b_{21} & b_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}$$

que cumple $B \cdot B' = \Sigma$

Generamos una simulación del vector aleatorio $Y=(Y_1,\cdots,Y_n)'$ donde $Y_k\sim N(0,1)$ son variables aleatorias independientes.

Calculamos $Z = B \cdot Y$. El vector aleatorio resultante, Z tiene marginales $Z_k \sim N(0,1)$ y se encuentran correlacionadas según la matriz Σ .

Calculamos $X = (X_1, \dots, X_n)'$ de la forma:

$$x_i = \Phi^{-1}(y_i)$$

donde
$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2} dt$$