Unit I: Virtualization Techniques and Distributed Computing

- *Virtualization Techniques:*
- Virtualization is the process of creating virtual instances or representations of physical hardware, softwar e. or resources.
- It allows for efficient resource utilization, isolation, and flexibility.
- Types of virtualization include:
 - Server Virtualization: Running multiple virtual servers on a single physical server.
 - Storage Virtualization: Pooling and managing storage resources.
 - Network Virtualization: Creating multiple virtual networks within a physical network.
 - Desktop Virtualization: Running virtual desktops on a central server.
- Benefits of virtualization:
 - Cost savings through resource optimization.
 - Enhanced scalability and flexibility.
 - Improved disaster recovery and backup solutions.

Concept of VLAN (Virtual Local Area Network):

- VLAN is a network technology that divides a physical network into multiple logical networks.
- It isolates broadcast domains, improving network security and efficiency.
- Benefits of VLANs include simplified network management, enhanced security, and efficient bandwidth u tilization.

Concept of SLAN (Secure Local Area Network) and VSAN (Virtual Storage Area Network):

- SLAN refers to a secure version of a Local Area Network (LAN).
- It incorporates security measures to protect data and resources within a LAN.
- VSAN is a virtualized storage networking technology:
 - It enhances storage management in virtualized environments.
 - Benefits include improved scalability, simplified storage management, and resource optimization.

Overview of Distributed Computing:

- Distributed computing involves multiple interconnected computers working together to solve complex problems.
- Parallel Computing:
 - Involves multiple processors working on a single task simultaneously.
 - Improves performance and efficiency for compute-intensive tasks.
- Parallel Computer Architecture:
 - Focuses on designing computers optimized for parallel processing.
 - Utilizes multi-core processors and parallel algorithms.
- Distributed Systems:
 - Consist of interconnected computers that share resources and coordinate tasks.
 - Improve fault tolerance and scalability.
- Differences and Similarities Among Computing Types:
 - Different types of computing include centralized, distributed, grid, and cloud computing.
 - Differences lie in resource ownership, task distribution, and communication methods.
 - Similarities include resource sharing and coordination.

Unit II: Cloud Computing

Introduction to Cloud Computing:

- Cloud computing delivers computing services, such as storage, processing, and networking, over the int ernet.
- Key characteristics include:
 - On-demand self-service.
 - Broad network access.

- Resource pooling.
- Rapid elasticity.
- Measured service (pay-as-you-go).

Migrating into a Cloud:

- Cloud migration involves moving applications, data, and services to cloud infrastructure.
- Broad approaches to migration:
 - Rehosting: Lift and shift existing applications to the cloud.
 - Refactoring: Optimize applications for cloud-native environments.
 - Rebuilding: Re-create applications using cloud-native services.
- The Seven-Step Model of Migration guides the migration process.
- Cloud middleware facilitates the integration of cloud services.
- Quality of Service (QoS) issues in the cloud pertain to performance, availability, and security.
- Data migration and streaming in the cloud involve moving data to and from cloud environments.
- Interoperability ensures that different cloud services and platforms work together seamlessly.

Unit III: Understanding Cloud Architecture

Exploring Cloud Computing Stack:

- The cloud computing stack includes Infrastructure as a Service (laaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
- Each layer offers different levels of control and services.

Workload Distribution Architecture:

- Workload distribution in the cloud involves distributing tasks and resources efficiently.
- Load balancing and auto-scaling optimize workload distribution.

Capacity Planning:

- Capacity planning estimates resource requirements to meet current and future workload demands.
- Cloud services enable dynamic and scalable capacity planning.

Cloud Bursting Architecture:

- Cloud bursting dynamically scales workloads to the public cloud during demand spikes.
- It optimizes costs and ensures high performance.

Disk Provisioning Architecture:

- Disk provisioning allocates and manages storage resources in the cloud.
- Techniques include thin provisioning and thick provisioning.

Dynamic Failure Detection and Recovery Architecture:

- Cloud environments use mechanisms to detect failures and recover resources for high availability.

Service Level Agreements (SLAs):

- SLAs define terms of service between cloud providers and consumers, specifying performance metrics a nd commitments.

Service Oriented Architecture (SOA):

- SOA organizes software components as reusable services.
- Promotes flexibility, scalability, and reusability in cloud-based applications.

These comprehensive notes cover the key topics in your syllabus, enabling you to answer a wide range of MCQs related to virtualization techniques, distributed computing, cloud computing, and cloud architecture

.