Math 4B Summer 2020 Quiz #4		PERM NUMBER
No calculators	PRINT NAME	
110 calculators		

Put your answer in the

box provided.

TA: Trevor

Variation of Parameters

Following is the formula for the variation of parameters method, which we will explore in today's quiz. I have suppressed the notation a bit, to make it easier to read and remember.

For an ODE of the form

$$y'' + p(t)y' + q(t)y = g(t)$$

with homogeneous solution

$$y_h = C_1 y_1 + C_2 y_2,$$

you can find a particular solution by

$$y_p = -y_1 \int \frac{y_2 g}{W} + y_2 \int \frac{y_1 g}{W}$$

where W is the Wronskian $W[y_1, y_2]$.

The general solution can be found by adding these together:

$$y_g = y_h + y_p.$$

Let's try a step-by-step example.

1. Find a general solution to the following differential equation.

$$y'' + 9y = 3\tan(3t)$$

(a) First we find y_h . To do this, find the general solution to y'' + 9y = 0.

 $y_h =$

(b)	Next we'r	re going to use th	ne formula	$y_p = -y_1 \int \frac{y_2 g}{W}$	$+ y_2 \int \frac{y_1 g}{W}$, so let's compu	te the Wro	onskian W	$V[y_1,y_2]$ a	and
	write dow	n everything we	'll need to	plug in:						
			1		1					

$$y_2 =$$

$$g =$$

$$W =$$

(c) Now let's use the formula

$$y_p = -y_1 \int \frac{y_2 g}{W} + y_2 \int \frac{y_1 g}{W}.$$

By the way, there's no need to worry about +C for the integrals in this formula.

To make it a little easier to break up into steps, let's call $u_1 = -\int \frac{y_2g}{W}$ and $u_2 = \int \frac{y_1g}{W}$ so that

$$y_p = y_1 u_1 + y_2 u_2.$$

Find
$$u_1 = -\int \frac{y_2 g}{W}$$
.

[Hint: put everything in terms of cos and use the fact that $\int \frac{1}{\cos(x)} = \ln|\sec(x) + \tan(x)|$]

$$u_1 =$$

(d) Find
$$u_2 = \int \frac{y_1 g}{W}$$
.

$$u_2 =$$

¹This is because when we want the most general solution, adding y_h does for us what +C does for an indefinite integral.

	<i>(</i> \	T. T		• .					,	. 1.0
((e)	Now	we	write	y_p	$= y_1 u_1$	+	y_2u_2	and	simplify.

$$y_p =$$

(f) To find the general solution, we just write $y_g = y_h + y_p$.

$$y_g = oxed{ }$$

2. Now try one on your own:

$$y'' - 2y' + y = \frac{e^t}{t^2 + 1}$$

[Hint: start by rewriting the formula from memory as much as possible, so you can work on memorizing it.]

$$y_g =$$

