射影空间

Guanyu Li

1 定义与基本概念

在这份材料中如非特殊声明,分次环都是 N 分次的交换环.

定义. 给定一个分次环 $S=\bigoplus_{n\in\mathbb{N}}S_n$,令 $S_+=\bigoplus_{n\in\mathbb{N}^*}S_n$,我们可以做构造 Proj S 使得它成为一个概型: 其中它的底拓扑空间

 $|\text{Proj } S| := \{ \mathfrak{p} \mid \mathfrak{p} \in S \text{ 的齐次素理想且不包含} S_+ \},$

称 |Proj S| 中的理想为相关素理想 (relavant prime ideal),对任意齐次理想 I,

$$V_{+}(I) := \{ \mathfrak{p} \mid \mathfrak{p}$$
是相关素理想且 $I \subseteq \mathfrak{p} \}$

是 |Proj S| 中的闭集且 |Proj S| 的拓扑完全由此给出;最后要给出 |Proj S| 的结构层 $\mathcal{O}_{\text{Proj }S}$,取 |S| 中次数为正的一个齐次元素 |f|,令开集

$$D_{+}(f) := |\text{Proj } S| - V_{+}(f),$$

作为集合 $|D_+(f)| \cong |\text{Proj } S[f^{-1}]|$,同时后者和 $S[f^{-1}]$ 中所有的 0 次元素组成的环 $S[f^{-1}]_0$ 中的素理想 ——对应,即有双射

$$\varphi_f: |\operatorname{Proj} S[f^{-1}]| \to |\operatorname{Spec} S[f^{-1}]_0|$$

且它是连续的,这样我们可以给 $|D_+(f)|$ 同于 Spec $S[f^{-1}]_0$ 的概型结构,这样只要选取足够多的 f 使得 $|D_+(f)|$ 构成一个开覆盖即可(后面的习题会给出这样一个开覆盖).

例 1. 考虑 $S := k[x_0, \dots, x_n]$,其中对任意的 $1 \le i \le n$, $\deg x_i = 1$. 于是, x_0, \dots, x_n 生成的理想是 S_+ ,那 么 $\{D(x_i)\}_{i=0,\dots,n}$ 构成了 Proj S 的一个开覆盖. $U_i \cap U_i$ 上的粘合

例 2. 考虑 $S := k[x_0, \cdots, x_3]/(x_1^3 - x_0^2 x_3, x_2^3 - x_0 x_3^2, x_1 x_2 - x_0 x_3), \ U_0 = \operatorname{Spec} k[x_1, \cdots, x_3]/(x_1^3 - x_3, x_2^3 - x_2^2, x_1 x_2 - x_3) = \operatorname{Spec} [x_0 = 1]$

引理 1.1. 设 $S \in \mathbb{Z}$ 分次的环, $f \in S$ 是阶数为正的元素,且它的逆存在. 那么 S 中的相关素理想与 S_0 中的素理想——对应.

证明. 记 Spec S 中的齐次素理想的集合为 H, $\deg f = d$, 构造集合的映射

$$\varphi: H \leftrightarrows |\operatorname{Spec} S_0| : \psi$$
$$\mathfrak{p} \mapsto \mathfrak{p} \cap S_0$$
$$\sqrt{\mathfrak{q}S} \leftarrow \mathfrak{q}.$$

由于 $\mathfrak{p} \cap S_0$ 是 \mathfrak{p} 在嵌入映射 $S_0 \hookrightarrow S$ 下的拉回, 故 φ 是良定义的.

另一方面,由于 \mathfrak{q} 只包含阶数为 0 的元素,因此 $\mathfrak{q}S$ 是齐次理想. 任取 $g\in\sqrt{\mathfrak{q}S}$,它可以写成齐次元素的和

$$g = \sum_{i=1}^{n} g_i,$$

满足 $\deg g_1 < \deg g_2 < \cdots < \deg g_n$,由于 $\deg f > 0$,存在正整数 m 使得 $\deg(f^m g_1) \geq 0$. 同时, $f^m g \in \sqrt{\mathfrak{q} S}$ 意味着存在整数 N 使得

$$(f^mg)^N = \left(f^m\sum_{i=1}^n g_i\right)^N = f^{mN}g_n^N + 其他低阶项 \in \mathfrak{q}S.$$

但 $\mathfrak{q}S$ 是齐次理想,因此 $f^{mN}g_n^N \in \mathfrak{q}S$, 进而

$$\left(\frac{f^{mNd}g_n^{Nd}}{f^{mNd+N\deg g_n}}\right)\in \mathfrak{q}S\cap S_0=\mathfrak{q}.$$

由于 \mathfrak{q} 是素理想, $\left(\frac{g_n^d}{f^{\deg g_n}}\right)^N \in \mathfrak{q}$ 意味着 $\frac{g_n^d}{f^{\deg g_n}} \in \mathfrak{q}$,故 $g_n^d \in \mathfrak{q}S$,即

$$g_n \in \sqrt{\mathfrak{q}S}$$
.

这样 $g - g_n \in \sqrt{\mathfrak{q}S}$, 于是归纳地可证明 $g_i \in \sqrt{\mathfrak{q}S}$, 因此 $\sqrt{\mathfrak{q}S}$ 是齐次的.

再证明 $\sqrt{\mathfrak{q}S} \cap S_0 = \mathfrak{q}$. 显然 $\mathfrak{q} \subseteq \sqrt{\mathfrak{q}S} \cap S_0$. 对任意 $g \in \sqrt{\mathfrak{q}S} \cap S_0$,存在正整数 M 使得 $g^M \in \mathfrak{q}S$,阶数计算说明 $g^M \in \mathfrak{q}S \cap S_0 = \mathfrak{q}$,再根据 \mathfrak{q} 的素性 $g \in \mathfrak{q}$,因此 $\sqrt{\mathfrak{q}S} \cap S_0 \subseteq \mathfrak{q}$.

若 $a = \sum_{i=1}^m a_i, b = \sum_{j=1}^n b_j$ 满足 $ab \in \sqrt{\mathfrak{q}S}$,那么由刚刚的证明 $a_n b_m \in \sqrt{\mathfrak{q}S}$,由于 a_n, b_m 都是齐次元素,故

$$\frac{a_n^d}{f^{\deg a_n}} \frac{b_m^d}{f^{\deg b_m}} = \frac{a_n^d b_m^d}{f^{\deg a_n + \deg b_m}} \in \sqrt{\mathfrak{q}S} \cap S_0 = \mathfrak{q},$$

再次由于 \mathfrak{q} 是素理想, $\frac{a_n^d}{f^{\deg a_n}} \in \mathfrak{q}$ 或 $\frac{b_m^d}{f^{\deg b_m}} \in \mathfrak{q}$,于是 $a_n \in \sqrt{\mathfrak{q}S}$ 或 $b_m \in \sqrt{\mathfrak{q}S}$,归纳可以得到 $\sqrt{\mathfrak{q}S}$ 是素理想,而它不包含 f,因此是相关素理想,故 ψ 也是良定义的.

之前证明了 $\psi \circ \varphi(\mathfrak{q}) = \sqrt{\mathfrak{q}S} \cap S_0 = \mathfrak{q}$,于是,只需要再证明 $\varphi \circ \psi = \mathrm{id}$. 显然 $(\mathfrak{p} \cap S_0)S \subseteq \mathfrak{p}$,因此 $\sqrt{(\mathfrak{p} \cap S_0)S} \subseteq \mathfrak{p}$. 反过来任取 \mathfrak{p} 中的齐次元素 a, $\frac{a^d}{f^{\deg a}} \in \mathfrak{p} \cap S_0$,因此 $a^d \in (\mathfrak{p} \cap S_0)S$,即 $a \in \sqrt{(\mathfrak{p} \cap S_0)S}$,这意味着 $\mathfrak{p} \subseteq \sqrt{(\mathfrak{p} \cap S_0)S}$.

习题 1.1. 1. 验证所有的 $V_+(I)$ 构成闭集.

- 2. 验证集合的双射 $\varphi_f: |\operatorname{Proj} S[f^{-1}]| \to |\operatorname{Spec} S[f^{-1}]_0|$ 及它是同胚.
- 3. 验证若 S_+ 中由齐次元素组成的子集 T 满足它生成理想的根理想 $\sqrt{\langle T \rangle} = S_+$,那么

$$\{D(f)\mid f\in T\}$$

构成 Proj S 的一组开覆盖.

4. 验证

$$D_{+}(f) \cap D_{+}(g) = D_{+}(fg) = D_{+}(f^{m}g^{n}),$$

其中 $m, n \in \mathbb{N}^*$.

5. 证明

$$(S[f^{-1}][(g/f)^{-1}])_0 \cong S[f^{-1}]_0[(g^{\deg f}/f^{\deg g})^{-1}] \cong S[f^{-1},g^{-1}]_0.$$

- 证明以上给出的同构是相容的,即
 说明以上的验证了之前的定义给出了一个概型.
- 证明. 1. 一方面,若 $\mathfrak{p} \in V_+(I) \cup V_+(J)$,那么相关素理想 \mathfrak{p} 满足 $I \subseteq \mathfrak{p}$ 或 $J \subseteq \mathfrak{p}$,不妨设前者成立,于 是 $I \cap J \subseteq I \subseteq \mathfrak{p}$, $\mathfrak{p} \in V_+(I \cap J)$. 另一方面若 $\mathfrak{p} \in V_+(I \cap J)$,则由交换代数 $I \subseteq \mathfrak{p}$ 或 $J \subseteq \mathfrak{p}$,因此 $\mathfrak{p} \in V_+(I) \cup V_+(J)$.

再考虑 $\mathfrak{p} \in \bigcap_{\lambda \in \Lambda} V_+(I_\lambda)$,那么 $I_\lambda \subseteq \mathfrak{p}$ 对所有 $\lambda \in \Lambda$ 成立,因此 $\bigcap_{\lambda \in \Lambda} V_+(I_\lambda) \subseteq V_+(\bigcup_{\lambda \in \Lambda} I_\lambda)$. 反过来若 $\mathfrak{p} \in V_+(\bigcup_{\lambda \in \Lambda} I_\lambda)$,那么 $I_\lambda \subseteq \bigcup_{\lambda \in \Lambda} I_\lambda \subseteq \mathfrak{p}$,因此 $\mathfrak{p} \in \bigcap_{\lambda \in \Lambda} V_+(I_\lambda)$.

2. 构造

$$\varphi_f : |\operatorname{Proj} S[f^{-1}]| \leftrightarrows |\operatorname{Spec} S[f^{-1}]_0| : \psi_f$$
$$\mathfrak{p} \mapsto \mathfrak{p} \cap S[f^{-1}]_0$$
$$\sqrt{\mathfrak{q}S[f^{-1}]} \leftarrow \mathfrak{q},$$

引理 1.1说明二者是双射,于是只要验证二者连续即可. 若 J 是 $S[f^{-1}]_0$ 的理想,那么

$$\begin{split} \psi_f(V(J)) &= \psi_f(\{\mathfrak{q} \mid \mathfrak{q} \supseteq J\}) \\ &= \{\sqrt{\mathfrak{q}S[f^{-1}]} \mid \mathfrak{q} \supseteq J\}, \end{split}$$

显然 $JS[f^{-1}] \subseteq \sqrt{\mathfrak{q}S[f^{-1}]}$,于是 $\psi_f(V(J)) \subseteq V(JS[f^{-1}]) = V(\sqrt{JS[f^{-1}]})$;反过来,若 $\mathfrak{p} \in V(\sqrt{JS[f^{-1}]})$,那么

$$\mathfrak{p} = \psi_f(\varphi_f(\mathfrak{p})),$$

因此 $\psi_f(V(J)) = V(JS[f^{-1}])$,这样 φ_f 是连续的.

另一方面,对 |Proj $S[f^{-1}]$ | 中的闭集 $V(I) \cap |Proj S[f^{-1}]|$,

$$\varphi_f(V(I) \cap |\operatorname{Proj} S[f^{-1}]|) = \{ \mathfrak{p} \cap S_0 \mid \mathfrak{p} \in V(I) \cap |\operatorname{Proj} S[f^{-1}]| \}$$
$$\subseteq V(I \cap S_0),$$

而且对任意 $q \in V(I \cap S_0)$,

$$\mathfrak{q} = \varphi_f(\psi_f(\mathfrak{q})),$$

因此 $\varphi_f(V(J)) = V(I \cap S_0)$, 这样 ψ_f 是连续的.

3. 任取 $\mathfrak{p} \in \operatorname{Proj} S$,由定义存在 $f \in S_+$ 使得 $f \notin \mathfrak{p}$,由于 S 是分次环,

$$f = (f_1 + \dots + f_n)^N,$$

使得每个 $f_i \in T$ 都是齐次的. 这样一定存在 i_0 使得 $f_{i_0} \notin \mathfrak{p}$,因此 $\mathfrak{p} \in D_+(f_{i_0})$.

4. 若 $\mathfrak{p} \in D_+(fg)$,那么 $fg \notin \mathfrak{p}$,显然 $f \notin \mathfrak{p}$ 且 $g \notin \mathfrak{p}$,所以 $D_+(fg) \subseteq D_+(f) \cap D_+(g)$. 反过来,若 $\mathfrak{p} \in D_+(f) \cap D_+(g)$,按定义 $f \notin \mathfrak{p}$ 且 $g \notin \mathfrak{p}$,因为 \mathfrak{p} 是素理想,故 $D_+(f) \cap D_+(g) \subseteq D_+(fg)$,这意味 着 $D_+(f) \cap D_+(g) = D_+(fg)$. 同样根据 \mathfrak{p} 是素理想, $D_+(fg) = D_+(f^mg^n)$.

5. 构造

$$\begin{split} \varphi: S[f^{-1}][(g/f)^{-1}] &\leftrightarrows S[f^{-1},g^{-1}]: \psi \\ &\frac{\frac{r}{f^n}}{(g/f)^m} \mapsto \frac{r}{f^{n-m}g^m} \\ &\frac{\frac{r}{f^{n+m}}}{(g/f)^m} \hookleftarrow \frac{r}{f^ng^m}, \end{split}$$

显然二者是良定义的, 它们是齐次环同态,且互为逆映射. 于是, $S[f^{-1},g^{-1}]_0\cong (S[f^{-1}][(g/f)^{-1}])_0$. 若齐次元素

$$\frac{r}{f^n g^m} \in S[f^{-1}, g^{-1}]$$

满足 $\deg \frac{r}{f^n q^m} = 0$,那么由定义

 $\deg r = m \deg g + n \deg f.$

同时,

$$\frac{r}{f^ng^m} = \frac{g^{m\deg f - m}f^{m\deg g}}{g^{m\deg f - m}f^{m\deg g}}\frac{r}{f^ng^m} = \left(\frac{f^{\deg g}}{g^{\deg f}}\right)^m \frac{g^{m\deg f - m}r}{f^{n+m\deg g}},$$

且 $\deg\left(\frac{f^{\deg g}}{g^{\deg f}}\right)^m \frac{g^{m \deg f - m}r}{f^{n+m \deg g}} = \deg\frac{g^{m \deg f - m}r}{f^{n+m \deg g}} = \deg r + \deg g(m \deg f - m) - \deg f(n+m \deg g) = 0.$ 这意味着 $S[f^{-1},g^{-1}]_0 = S[f^{-1}]_0[(g^{\deg f}/f^{\deg g})^{-1}],$ 得证.

以上的验证中,前三条说明了存在一个仿射的开覆盖,第四条说明开覆盖当中两个的交集是什么样的——它也是开覆盖中的一个,因此可以用前面的方式得到上面的层结构——第五条证明了层结构的相容性. 这样, $Proj\ S\$ 是一个概型.

特别地, 我们记 $\mathbb{P}^n_{\mathbb{Z}} := \operatorname{Proj} \mathbb{Z}[x_0, \cdots, x_n].$

引理 1.2. 设 S,T 是给定的分次环, $\varphi:S\to T$ 是分次环同态 (即 $\varphi(S_n)\subseteq T_n$), 求证:

- 1. $U := \{ \mathfrak{q} \in \operatorname{Proj} T \mid \varphi(S_+) \not\subset \mathfrak{q} \}$ 是 $\operatorname{Proj} T$ 中的开集.
- 2. φ 诱导了态射 $U \to \text{Proj } S$.

证明. 1. 记 X = Proj T. 要证明 U 是开集,只要证明 X - U 是闭集即可. 令 $J := (\varphi(S_+))$,那 T 中的齐次 素理想 \mathfrak{q} 包含 $\varphi(S_+)$ 当且仅当它包含 J. 于是根据定义, $X - U = V_+(J)$ 是闭集,得证.

2. 首先给定映射 $f:U\to \operatorname{Proj} S$,它将素理想 \mathfrak{q} 映到 $(\varphi^{-1}(\mathfrak{q}))$,我们要验证它是连续的. 任取 $\operatorname{Proj} S$ 中的闭集 $V_+(I)$,

$$f^{-1}(V(I)) = \{ \mathfrak{q} \in U \mid f(\mathfrak{q}) \in V_{+}(I) \}$$
$$= \{ \mathfrak{q} \in U \mid \varphi^{-1}(\mathfrak{q}) \supseteq I \}$$
$$= \{ \mathfrak{q} \in \operatorname{Proj} T \mid \varphi^{-1}(\mathfrak{q}) \supseteq I \} \cap U,$$

这是 U 中的闭集,因此 f 是连续映射.

接下来要给出层的态射 $f^{\#}: \mathcal{O}_{\operatorname{Proj}} T|_{U} \to f_{*}\mathcal{O}_{\operatorname{Proj}} S$. 注意到

$$G = \{s \in S \mid s$$
是齐次元素且 $\deg s > 0\}$

生成的理想的根理想是 S_+ ,于是 $\{D_+(s)\mid s\in G\}$ 是 Proj S 的一个开覆盖,于是只需要给出一族相容的环同态

$$(f^{\#})_s: \mathscr{O}_{\operatorname{Proj}} S(D_+(s)) \to f_* \mathscr{O}_{\operatorname{Proj}} T(D_+(s)).$$

注意到

$$f_* \mathscr{O}_{\operatorname{Proj}} T(D_+(s)) = \mathscr{O}_{\operatorname{Proj}} T(f^{-1}(D_+(s)))$$
$$= \mathscr{O}_{\operatorname{Proj}} T(D_+(\varphi(s)) \cap U).$$

注意到 $D_+(\varphi(s)) = \operatorname{Spec} T[\varphi(s^{-1})]_0$ 是仿射概型,因此 $(f^{\#})_s$ 可以定义为复合

$$\mathscr{O}_{\operatorname{Proj}} S(D_{+}(s)) = S[s^{-1}]_{0} \to \mathscr{O}_{\operatorname{Proj}} T(D_{+}(\varphi(s))) = T[\varphi(s^{-1})]_{0} \to \mathscr{O}_{\operatorname{Proj}} T(D_{+}(\varphi(s)) \cap U),$$

其中第一个映射由 φ 诱导,第二个映射是 $\mathcal{O}_{\text{Proj }T}$ 所给的信息.

对于相容性, 给定 $s_1, s_2 \in S$, 只要证明图

$$\mathscr{O}_{\operatorname{Proj}\ S}(D_{+}(s_{1})) \xrightarrow{(f^{\#})_{s_{1}}} f_{*}\mathscr{O}_{\operatorname{Proj}\ T}(D_{+}(s_{1}))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathscr{O}_{\operatorname{Proj}\ S}(D_{+}(s_{1}s_{2})) \xrightarrow{(f^{\#})_{s_{1}s_{2}}} f_{*}\mathscr{O}_{\operatorname{Proj}\ T}(D_{+}(s_{1}s_{2}))$$

是交换的,即

$$S[s_1^{-1}]_0 \longrightarrow T[\varphi(s_1^{-1})]_0 \longrightarrow \mathscr{O}_{\operatorname{Proj}} T(D_+(\varphi(s_1)) \cap U)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S[s_1s_2^{-1}]_0 \longrightarrow T[\varphi(s_1s_2^{-1})]_0 \longrightarrow \mathscr{O}_{\operatorname{Proj}} T(D_+(\varphi(s_1s_2)) \cap U)$$

是交换的,但这由构造是明显的.

例 3. 考虑环同态

 φ :

命题 1.1. 设
$$R$$
 是任意交换环, $S = R[x_0, \cdots, x_n]$, 那么 $Proj\ S = \mathbb{P}_R^n := \mathbb{P}_{\mathbb{Z}}^n \times Spec\ R$.

证明.

习题 1.2. 证明 \mathbb{P}_R^r 是开集 \mathbb{A}_R^r 和闭集 \mathbb{P}_R^{r-1} 的不交并.

习题 1.3. 任意给定 \mathbb{P}_R^n 中的两不同点 P,Q,求证存在超平面 H 使得 $P \in H$ 且 $Q \notin H$.

2 射影空间上的层 6

命题 1.2. 设 R 是交换环, $S = R[x_0, \dots, x_n]$, 那么态射 $Proj S \to Spec R$ 是正规的.

证明. 回顾概型之间的态射 $f: X \to Y$, 是有限型的、分离的, 且满足

习题 1.4. 分类所有的态射

Spec
$$\mathbb{Z} \to \mathbb{P}^1_{\mathbb{Z}}$$
.

习题 1.5. 设 S 是分次交换环,对任意正整数 d, 定义 S 的第 d 个 Veronese 子环为

$$S^{(d)} := \bigoplus_{n \ge 0} S_{dn}.$$

- 1. 证明 Proj $S \cong \text{Proj } S^{(d)}$.
- 2. 证明若 S = R[x, y], 作为分次环(甚至只作为环) $S = S^{(d)}$ 不同构.

证明. 1. 由于 $S^{(d)}$ 自然地是 S 的子环,我们将 $S^{(d)}$ 的元素当作 S 中的元素. 对任意 $f \in S_{dn}$,记

$$D_{+}^{(d)}(f) := |\operatorname{Proj} S^{(d)}| - V_{+}^{(d)}(f),$$

那么可以构造映射

$$\begin{split} \varphi_f : D_+^{(d)}(f) &\leftrightarrows D_+(f) : \psi_f \\ \mathfrak{p} &\mapsto \sqrt{\mathfrak{p} S} \\ \mathfrak{q} \cap S^{(d)} &\hookleftarrow \mathfrak{q}, \end{split}$$

显然 ψ_f 是良定义的,另一方面

$$\sqrt{\mathfrak{p}S} = \sqrt{(\mathfrak{p} \cap S_0)S}$$

2 射影空间上的层

定义. 给定分次环 S 和分次 S 模 M, 如下构造给出 \tilde{M} : 按定义 $D_+(f)$ 给出 Proj S 的一族仿射开覆盖,取

$$\tilde{M}(D_+(f)) = (M_f)_0,$$

其中 $(M_f)_0$ 是 M 关于 f 局部化的阶数为 0 的部分.

定义. 给定分次环 S, 则 Proj S 上的层 $\mathcal{O}(n)$ 是 S(n), 其中 S(n) 定义为分次 S 模, 满足

$$S(n)_d := S_{n+d}$$
.

2 射影空间上的层 7

例 4. 我们来考虑射影空间 \mathbb{P}_R^n 的可逆层 $\mathcal{O}(1)$. 记 $S=R[x_0,\cdots,x_n]$,按照例 1的分析, \mathbb{P}_R^n 有仿射开覆盖 $\{U_i:=\mathrm{Spec}\ R[\frac{x_0}{x_i},\cdots,\frac{x_n}{x_i}]\}_{i=0,\cdots,n}$,于是

$$\mathcal{O}(1)(U_i) = ((S(1))_{x_i})_0 = \left\langle \frac{f}{x_i^d} \middle| f$$
是S中的齐次元素且 $\deg f = d + 1 \right\rangle$,

最后一个等式是由于做局部化时 $x_i \in S$ 满足阶数为 1, 且张成是 R 模在 $(S(1))_{x_i}$ 中的. 于是映射

$$\frac{f}{x_i^d} \mapsto \frac{f}{x_i^{d+1}}$$

恰好给出了 $R[\frac{x_0}{x_i}, \cdots, \frac{x_n}{x_i}]$ 模同构 $((S(1))_{x_i})_0 \cong R[\frac{x_0}{x_i}, \cdots, \frac{x_n}{x_i}]$,这意味着 $\mathcal{O}(1)$ 是局部自由的. 另一方面,考虑如上给出的局部平凡化的转移函数,在 $D_+(x_i) \cap D_+(x_i) = D_+(x_ix_i)$ 上,考虑

$$\varphi_{i,j}: (\mathscr{O}(1)|_{U_i})|_{U_i \cap U_j} \to (\mathscr{O}(1)|_{U_j})|_{U_i \cap U_j}$$

$$(((S(1))_{x_i x_j})_0) \cong R[\frac{x_0}{x_i}, \cdots, \frac{x_n}{x_i}]_{\frac{x_j}{x_i}} \to R[\frac{x_0}{x_j}, \cdots, \frac{x_n}{x_j}]_{\frac{x_i}{x_j}} \cong (((S(1))_{x_i x_j})_0),$$

其中按照之前的描述,

$$((S(1))_{x_ix_j})_0 = \left\langle \frac{f}{x_i^d x_i^d} \middle| f$$
是 S 中的齐次元素且 $\deg f = 2d + 1 \right\rangle$

并且同构是 $\frac{f}{x_q^d x_q^d} \mapsto \frac{f}{x_q^{d+1} x_q^d}$, 另一个对应地是 $\frac{f}{x_q^d x_q^d} \mapsto \frac{f}{x_q^d x_q^{d+1}}$, 这样转移函数很明显的是

$$\frac{f}{x_i^{d+1} x_j^d} \mapsto \frac{f}{x_i^d x_j^{d+1}} = \frac{f}{x_i^{d+1} x_j^d} \frac{x_i}{x_j}.$$

非常类似地, \mathbb{P}_R^n 上的层 $\mathcal{O}(m)$ 也是可逆层,转移函数是 $\cdot \left(\frac{x_i}{x_j}\right)$.

在古典代数几何中, 给定 k 代数簇 X, D 是 X 的余维数为 1 的不可约子簇, 那么可以定义

$$\mathcal{O}_{X,D} := \{ f \in k[X] \mid f \in X$$
的开集 U 上有定义且 $U \cap D \neq \emptyset \}$

定义. 给定分次环 S 和 Proj S 上的层 \mathscr{F} , 那么分次 S 模

$$\Gamma_*(\mathscr{F}) := \bigoplus_{n \in \mathbb{N}} H^0(\mathscr{F}(n))$$

称为 \mathscr{F} 对应的分次 S 模 (graded S-module associated to \mathscr{F}).

命题 2.1. 给定环 R 和 R 上的多项式环 $S := R[x_0, \dots, x_n]$, 那么

$$\Gamma_*(\mathscr{O}_{\operatorname{Proj} S}) \cong S.$$

3 射影空间的闭子概型 8

这个命题对非多项式环并不成立; 但是反过来我们有

命题 2.2. 给定分次环 S, 满足 S 是 S_1 生成的 S_0 代数, 那么对于 $Proj\ S$ 上的任意拟凝聚层 $\mathscr F$ 存在自然的同构

$$\widetilde{\Gamma(\mathscr{F})}\cong\mathscr{F}.$$

证明.

引理 2.1. 给定概型 X 和可逆层 \mathcal{L} , 取 $f \in \Gamma(X, \mathcal{L})$, 定义 $X_f := \{x \in X \mid f_x \notin \mathfrak{m}_x \mathcal{L}_x\}$, 且 \mathscr{F} 是 X 上的拟凝聚层.

- 1. 若 X 是拟紧的,那么若 $\mathscr F$ 的全局截面 $s\in\Gamma(X,\mathscr F)$ 满足 $s|_{X_f}=0$,那么存在 n>0 使得 $f^ns\in\Gamma(X,\mathscr F\otimes\mathscr L^n)$ 为 0 截面,
- 2. 进一步假设 X 可以由有限多个仿射开集 $\{U_i\}_{i=1,\dots,m}$ 覆盖,满足 $\mathcal{L}|_{U_i}$ 是自由的且 $U_i \cap U_j$ 是拟紧的,那么对于任意的 $t \in \Gamma(X_f, \mathcal{F})$,存在 n 使得 $f^n t$ 延拓为 \mathcal{F} 的一个全局截面.

定理 2.3. 给定 Noether 环 R 和 R 上射影概型 X 的凝聚 \mathcal{O}_X 模 \mathscr{F} , 那么存在正整数 N 使得对所有的 n > N, $\mathscr{F}(n)$ 都是全局生成的.

证明. 设 $i: X \to \mathbb{P}_R^n$ 是闭浸入,且 $i^*\mathcal{O}_{\mathbb{P}_R^n}(1) = \mathcal{O}_X(1)$,那么 $i_*\mathscr{F}$ 是 \mathbb{P}_R^n 上的凝聚层,并且 $(i_*\mathscr{F})(n) = i_*(\mathscr{F}(n))$. 这样 $(i_*\mathscr{F})(n)$ 是全局生成的当且仅当 $i_*(\mathscr{F}(n))$ 是全局生成的(事实上二者的生成元是相同的),于是这个问题归结到 \mathbb{P}_R^n 上的凝聚 $\mathcal{O}_{\mathbb{P}_R^n}$ 模 \mathscr{F} .

按照之前的讨论,我们有仿射开覆盖 $\mathbb{P}_R^n = \bigcup_{i=0}^n U_i$,于是存在有限生成的 $R[x_0, \cdots, \hat{x}_i, \cdots, x_n]$ 模 $\mathscr{F}|_{U_i} = \tilde{M}_i$. 对任意的 i,取定 M_i 的一族(有限多个)生成元 $\{s_{i,j}\}$,根据引理 2.1存在(一致的)自然数 n 使得 $x_i^n s_{i,j}$ 扩张为 $\mathscr{F}(n)$ 的全局截面 $t_{i,j}$.

3 射影空间的闭子概型

定理 3.1. 给定交换环 R 和 R 上的概型 X,

- 1. 若 $f: X \to \mathbb{P}_R^n$ 是 R 同态,那么 $f^* \mathcal{O}(1)$ 是 X 上的可逆层,且由全局截面 $\{s_i := f^*(x_i)\}_{i=0,\dots,n}$ 生成,
- 2. 反过来给定 X 上的可逆层 \mathcal{L} , 且 \mathcal{L}

4 全局 PROJ 构造 9

命题 3.2. 设 I 是分次交换环 S 的齐次理想,那么存在集合的包含

 $|\operatorname{Proj} S/I| \subseteq |\operatorname{Proj} S|,$

并且子集 |Proj S/I| 与任意仿射开集 $(\text{Proj }S)_f$ 的交都是 $(\text{Proj }S)_f$ 中的闭集,并且交集对应的子概型同构于 $(\text{Proj }S/I)_f$. 因此 $(\text{Proj }S/I)_f$ 可看作 $(\text{Proj }S)_f$ 的闭子概型.

证明.

$$0 \to \mathscr{I}_Y \to \mathscr{O}_X \to \mathscr{O}_Y \to 0$$

M 5. 考虑分次 S 模

$$0 \to S(-1) \xrightarrow{\cdot x_i} S \to S/(x_i) \to 0$$

诱导了

$$0 \to \mathscr{O}(-1) \to \mathscr{O}_{\mathbb{P}^n_R} \to \mathscr{O}_{\mathbb{P}^{n-1}_R} \to 0,$$

4 全局 Proj 构造

定理 4.1.

5 切空间和切锥

习题 5.1. 给定域 k, 求证 \mathbb{P}^n_k 中的所有 d 阶超平面自然地构成 \mathbb{P}^N_k , 其中 $N = \binom{n+d}{n} - 1$.

证明.

$$X_d = \{ \sum a_l x^l = 0 \} \leftrightarrow \{a_l\}.$$

例 6. 我们尝试分类 \mathbb{P}_k^1 上的所有线丛.

6 射影空间的上同调

定理 6.1. 给定 Noether 环 R, $S := R[x_0, \dots, x_d]$, $\mathbb{P}_R^d = \operatorname{Proj} S \ \mathbb{R} \ R$ 上的 d 维射影空间, $\mathcal{O}(1)$ 是 Serre 扭曲层,那么

1. 自然存在的分次 S 模同构

$$S \to \Gamma_*(\mathscr{O}_{\mathbb{P}^d_R}) := \bigoplus_{n \in \mathbb{N}} H^0(\mathscr{O}_{\mathbb{P}^d_R}(n)),$$

6 射影空间的上同调 10

- 2. 对任意的 0 < i < d 和 $n \in \mathbb{Z}$, $H^i(\mathbb{P}^d_R, \mathscr{O}_{\mathbb{P}^d_R}(n)) = 0$,
- 3. $H^d(\mathbb{P}_R^d, \mathscr{O}_{\mathbb{P}_R^d}(-d-1)) \cong R$,
- 4. 对任意的 $n \in \mathbb{Z}$, 映射

$$H^0(\mathbb{P}^d_R, \mathscr{O}_{\mathbb{P}^d_R}(n)) \times H^d(\mathbb{P}^d_R, \mathscr{O}_{\mathbb{P}^d_R}(-d-n-1)) \to H^d(\mathbb{P}^d_R, \mathscr{O}\mathbb{P}^d_R(-d-1)) \cong R$$

是有限生成自由 R 模的配对.

推论 6.1.1. 如定理的假定,

$$H^{q}(\mathbb{P}_{R}^{d}, \mathscr{O}_{\mathbb{P}_{R}^{d}}(n)) = \begin{cases} (R[x_{0}, \cdots, x_{d}])_{n} & q = 0, \\ 0 & q \neq 0, d, \\ (\frac{1}{x_{0} \cdots x_{d}} R[\frac{1}{x_{0}}, \cdots, \frac{1}{x_{d}}])_{n} & q = n. \end{cases}$$

定理 6.2. 给定 *Noether* 环 R, X 是 R 上的射影概型, $\mathcal{O}(1)$ 是 X 的一个相对于 Spec R 的极丰可逆层, \mathcal{F} 是 X 上的凝聚层,那么

- 1. 对任意的 $i \geq 0$, $H^i(X, \mathcal{F})$ 是有限生成的 R 模,
- 2. 存在依赖于 $\mathscr F$ 的正整数 N 使得对任意 n > N 和 i > 0, $H^i(X,\mathscr F(n)) = 0$.

证明.

命题 6.3. 给定 Noether 环 R 和 Spec R 上的正规概型 X, \mathcal{L} 是 X 上的可逆层, 那么如下等价:

- $1. \mathcal{L}$ 是丰满的,
- 2. 对任意 X 上的凝聚层 \mathscr{F} , 都存在 (依赖于 \mathscr{F} 的) 正整数 N 使得对任意 n>N 和 i>0, $H^i(X,\mathscr{F}\otimes\mathscr{L}^n)=0$.

定理 6.4 (\mathbb{P}_k^n 的对偶). 给定域 k 和 $\mathbb{P}_k^n = \operatorname{Proj} k[x_0, \dots, x_n]$, 那么

- 1. $H^n(\mathbb{P}^n_k, \omega_{\mathbb{P}^n_k}) \cong k$, 并且接下来选定一个同构,
- 2. 对任意 \mathbb{P}_{k}^{n} 上的凝聚层 \mathscr{F} , 自然存在的配对

$$\operatorname{Hom}(\mathscr{F},\omega)\times H^n(\mathbb{P}^n_k,\mathscr{F})\to H^n(\mathbb{P}^n_k,\omega)\cong k$$

是非退化的,

3. 对任意的 $i \geq 0$,存在自然的同构

$$\operatorname{Ext}^{i}(\mathscr{F},\omega)\cong H^{n-i}(\mathbb{P}^{n}_{k},\mathscr{F})^{\vee}.$$

7 应用: Hirzebruch 曲面