The "-2" in the definition makes the log-likelihood loss for the Gaussian distribution match squared-error loss.

For ease of exposition, for the remainder of this chapter we will use Y and f(X) to represent all of the above situations, since we focus mainly on the quantitative response (squared-error loss) setting. For the other situations, the appropriate translations are obvious.

In this chapter we describe a number of methods for estimating the expected test error for a model. Typically our model will have a tuning parameter or parameters α and so we can write our predictions as $\hat{f}_{\alpha}(x)$. The tuning parameter varies the complexity of our model, and we wish to find the value of α that minimizes error, that is, produces the minimum of the average test error curve in Figure 7.1. Having said this, for brevity we will often suppress the dependence of $\hat{f}(x)$ on α .

It is important to note that there are in fact two separate goals that we might have in mind:

Model selection: estimating the performance of different models in order to choose the best one.

Model assessment: having chosen a final model, estimating its prediction error (generalization error) on new data.

If we are in a data-rich situation, the best approach for both problems is to randomly divide the dataset into three parts: a training set, a validation set, and a test set. The training set is used to fit the models; the validation set is used to estimate prediction error for model selection; the test set is used for assessment of the generalization error of the final chosen model. Ideally, the test set should be kept in a "vault," and be brought out only at the end of the data analysis. Suppose instead that we use the test-set repeatedly, choosing the model with smallest test-set error. Then the test set error of the final chosen model will underestimate the true test error, sometimes substantially.

It is difficult to give a general rule on how to choose the number of observations in each of the three parts, as this depends on the signal-to-noise ratio in the data and the training sample size. A typical split might be 50% for training, and 25% each for validation and testing:

The methods in this chapter are designed for situations where there is insufficient data to split it into three parts. Again it is too difficult to give a general rule on how much training data is enough; among other things, this depends on the signal-to-noise ratio of the underlying function, and the complexity of the models being fit to the data.