JAO praca domowa

Bartosz Kucypera

30 kwietnia 2023

Zadanie 2.2

$$L_{\forall} = \{ab^{n_1}ab^{n_2}\dots ab^{n_k}a \in \{a,b\}^* \mid \forall i \in \mathbb{N}. \ 1 \le i \le k \implies n_i = k\}$$

Lemat 1

Jeśli w' jest podsłowem jakiegoś słowa z L_{\forall} , oraz w' zawiera conajmniej dwie litery a, to istnieje dokładnie jedno słowo $w \in L_{\forall}$, takie, że w' jest podsłowem w.

Zauważmy, że istnieje bardzo prosta biekcjia pomiędzy zbiorem L_{\forall} a zbiorem liczb naturalnych $(0 \in \mathbb{N})$. Każde słowo z L_{\forall} , ma strukturę $a(b^ka)^k$ (a dla k=0), czyli każde słowo z L_{\forall} możemy utożsamiać z jakimś $k \in \mathbb{N}$, i dla każdego k potrafimy wygenerować słowo z L_{\forall} . Teraz dla danego w', jeśli zawiera ono przynajmniej dwie litery a, możemy odczytać k licząc wystąpienia liter b pomiędzy dwoma kolejnymi literami a. Znając k potrafimy wskazać $w \in L_{\forall}$, którego w' jest podsłowem.

Rozwiązanie

Załóżmy, że L_\forall jest językiem bezkontekstowym.

 L_{\forall} spełnia założenia 'Lematu o pompowaniu dla języków bezkontekstowych'.

Niech $N \in \mathbb{N}$ stałą z tego lematu.

Niech $K \in \mathbb{N}, K = max(42, N)$ oraz niech w będzie słowem z L_{\forall} wyznaczonym przez $K, w = a(b^K a)^K$. Z lematu w posiada faktoryzację:

$$w = prefix \cdot left \cdot infix \cdot right \cdot suffix$$

o następujących własnościach:

- 1^* słowo $left \cdot right$ jest niepuste,
- 2^* słowo $left \cdot infix \cdot right$ ma długość co najwyżej N,
- 3^* dla każdej liczby $l \geq 0$, słowo $w_l = prefix \cdot left^l \cdot infix \cdot right^l \cdot suffix$ należy do języka L_{\forall} .

Bez straty ogólności załóżmy, że $|prefix| \geq |suffix|.$

Zachodzi:

$$|w| = K \cdot (K+1) + 1,$$

$$|prefix \cdot suffix| \ge_{2^*} K \cdot K + 1$$

oraz

$$|prefix| \ge K \cdot K/2 \ge K \cdot 21 \ge K + 2$$

Teraz skoro prefix zaczyna się od a oraz ma długośc przynajmniej K+2, to zawiera przynajmniej dwie litery a (wnioskujemy to ze struktury w), czyli spełnia założenia Lematu 1. Niech:

$$w_2 = prefix \cdot left^2 \cdot infix \cdot right^2 \cdot suffix,$$

Zachodzi:

$$w_2 \in L_\forall \ \mathrm{z} \ 3^*, \ \mathrm{oraz}$$

$$|w_2| > |w|$$
 bo z 1* $|left \cdot right| > 0$, czyli $|left^2 \cdot right^2| > |left \cdot right|$

Skoro $w, w_2 \in L_{\forall}$ posiadają takie samo podsłowo prefix które spełnia Lemat 1, to zachodzi $w = w_2$, czyli $|w| = |w_2|$.

Otrzymujemy sprzeczność:

$$|w| > |w_2| \wedge |w| = |w_2|,$$

czyli L_{\forall} nie jest językiem bezkontekstowym.