Guia de Machine Learning Floresta de Decisão Python

Case com os dados da NASA

Resumo sobre Dados da NASA

Esse banco de dados é sobre Classificação de Estrelas.

1º Vamos entender os tipo de estrelas que existem no Universo.

Na imagem há alguns exemplos de estrelas que existem pelo cosmo apenas para ilustrar. **Obs:** Existem outros tipos.

2º Vamos entender um pouco sobre Física (tipos espectrais de luz) que as estrelas emitem.

Classe	Temperatura ^[1] (kelvin)	Cor convencional	Cor aparente ^{[2][3]}	Massa ^[1] (massas solares)	Raio ^[1] (raios solares)	Luminosidade bolométrica ^[1] (L ₀	Linhas de hidrogênio	Fração das estrelas da sequência principal ^[4]
0	≥ 33 000 K	azul	azul	≥ 16 M _☉	≥ 6,6 R _o	≥ 30 000 L _☉	Fracas	~0,00003%
В	10 000– 33 000 K	azul-branco	azul-branco	2,1–16 M _©	1,8–6,6 R _o	25–30 000 L _o	Moderadas	0,13%
A	7 500– 10 000 K	branco	branco a azul- branco	1,4−2,1 M _☉	1,4-1,8 R _o	5–25 L _☉	Fortes	0,6%
F	6 000–7 500 K	amarelo- branco	branco	1,04-1,4 M _o	1,15–1,4 R _o	1,5–5 L _☉	Moderadas	3%
G	5 200–6 000 K	amarelo	amarelo-branco	0,8-1,04 M _o	0,96–1,15 R _o	0,6-1,5 L ₀	Fracas	7,6%
К	3 700–5,200 K	laranja	amarelo-laranja	0,45–0,8 M _☉	0,7–0,96 R _☉	0,08-0,6 L ₀	Muito fracas	12,1%
М	2 000–3 700 K	vermelho	laranja- vermelho	≤ 0,45 M _☉	≤ 0,7 R _o	≤ 0,08 L ₀	Muito fracas	76,45%
М	2 000–3 700 K	vermelho		≤ 0,45 M _@		≤ 0,08 L _@	Muito fracas	76,4

As classes indicam a temperatura da atmosfera da estrela e são normalmente listadas da mais quente para a mais fria.

Resumo sobre Dados da NASA

3º Vamos entender que tipo de informação há nos dados. Foi disponibilizado uma breve descrição dos dados no enunciado.

Descrição

Classificação do tipo estrela

Para comparar todos os modelos de ML, pode ser usado para previsão

Temperatura - K

L-L/Lo

R-R/Ro

- MA

Cor My - Cor Geral do Espectro

Spectral_Class - O, B, A, F, G, K, M / SMASS - https://en.wikipedia.org/wiki/Asteroid_spectral_types
Type - Red Dwarf, Brown Dwarf, White Dwarf, Main Sequence, Super Giants, Hyper Giants

ALVO:

Tipo

de O a 5

- Anā Vermelha 0
- Anā Marrom 1
- Anā Branca 2
- Sequência Principal 3
- Super Gigantes 4
- Hiper Gigantes 5

MATEMÁTICA:

Lo = 3,828 × 10 ^ 26 Watts (luminosidade média do sol) Ro = 6,9551 × 10 ^ 8 m (raio médio do sol)

^

Link para acessar os dados.

https://www.kaggle.com/brsdincer/star-type-classification

Vamos explorar os dados

```
[2] # Biblioteca para modelagem de dados
import pandas as pd

# Biblioteca para recursos matemáticos
import numpy as np

# Bibliotecas de plotagem de dados
import seaborn as sns
import matplotlib.pyplot as plt

# Biblioteca/Função para ignorar avisos
from warnings import filterwarnings
```

```
[4] # Lendo a Base de Dados
Base_Dados = pd.read_csv('Stars.csv')
```

[6] # Verificando as primeiras linhas
Base_Dados.head()

	Temperature	L	R	A_ M	Color	Spectral_Class	Туре
0	3068	0.002400	0.1700	16.12	Red	М	0
1	3042	0.000500	0.1542	16.60	Red	М	0
2	2600	0.000300	0.1020	18.70	Red	М	0
3	2800	0.000200	0.1600	16.65	Red	М	0
4	1939	0.000138	0.1030	20.06	Red	М	0

```
[82] # Verificando as colunas
    for c in Base_Dados.columns:
        print(c)
```

Temperature L R A_M Color Spectral_Class Type

```
[17] # Verificando a dimensão da base de dados
Base_Dados.shape
```

```
[10] # Verificando o formato dos campos
     Base_Dados.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 240 entries, 0 to 239
     Data columns (total 7 columns):
                        Non-Null Count Dtype
         Column
         ----
                          -----
         Temperature 240 non-null int64
      0
                         240 non-null float64
240 non-null float64
      1
      2 R
      3 A M
                         240 non-null
                                         float64
                         240 non-null
                                        object
     4
         Color
          Spectral_Class 240 non-null object
Type 240 non-null int64
     5
      6
     dtypes: float64(3), int64(2), object(2)
     memory usage: 13.2+ KB
```

```
# Gerando algumas estatística para entender um pouco os dados

# Dicionário para entender as estatísticas abaixo:

# count --> Total de registros

# mean --> Média

# std --> Desvio Padrão

# min --> Valor mínimo

# 25% --> 1º Quartil

# 50% --> Mediana

# 75% --> 3º Quartil

# max --> Valor Maior

# Comando para gerar estatísticas sobre os dados

Base_Dados.describe()
```

	Temperature	L	R	A_ M	Type
count	240.000000	240.000000	240.000000	240.000000	240.000000
mean	10497.462500	107188.361635	237.157781	4.382396	2.500000
std	9552.425037	179432.244940	517.155763	10.532512	1.711394
min	1939.000000	0.000080	0.008400	-11.920000	0.000000
25%	3344.250000	0.000865	0.102750	-6.232500	1.000000
50%	5776.000000	0.070500	0.762500	8.313000	2.500000
75%	15055.500000	198050.000000	42.750000	13.697500	4.000000
max	40000.000000	849420.000000	1948.500000	20.060000	5.000000

Verificando se há um valor nulo na base de dados
Caso exista haverá linhas brancas no gráfico
plt.figure(figsize=(10,6))
sns.heatmap(Base_Dados.isnull());

[44] # Vamos explorar todas as variaveis da base de dados sns.pairplot(Base_Dados);


```
[31] # Plotagem da Temperatura
   plt.figure( figsize=(10,5) )
   Base_Dados['Temperature'].hist();
```



```
[32] # Plotagem da Luminosidade das Estrelas
plt.figure( figsize=(10,5) )
Base_Dados['L'].hist();
```


Plotagem do Tamanho das Estrelas
plt.figure(figsize=(10,5))
Base_Dados['R'].hist();


```
[35] # Plotagem da Magnitude das Estrelas
plt.figure( figsize=(10,5) )
Base_Dados['A_M'].hist();
```



```
[36] # Plotagem do Tamanho das Estrelas
  plt.figure( figsize=(10,5) )
  Base_Dados['Spectral_Class'].hist();
```



```
[38] # Plotagem as cores das estrelas
plt.figure( figsize=(15,5) )
Base_Dados['Color'].hist();
```



```
[40] # Plotagem o tipo
plt.figure( figsize=(10,5) )
Base_Dados['Type'].hist();
```



```
[46] # Plotagem a Magnitude das Estrelas por Tipo
plt.figure( figsize=(10,5) )
sns.boxplot(x='Type', y='A_M', data=Base_Dados);
```



```
# Preparando os dados para o modelo

# Separando os Dados de Caracteristicas
x = Base_Dados.iloc[:,0:4].values

# Separando os Dado de classificação
y = Base_Dados.iloc[:, 6:7].values

# Bilbioteca para fazer o escalonamento dos Dados
from sklearn.preprocessing import StandardScaler

# Fazendo o escalonamento do X
Escala_x = StandardScaler()
x = Escala_x.fit_transform( x )
```

```
[77] # Avaliando o modelo

# Prevendo os valores do X_teste
y_predicoes = Algoritmo_Floresta_Decisao.predict( x_teste )

# Metrica do score de acurracia
from sklearn.metrics import accuracy_score
Acuracio_Score = accuracy_score( y_teste, y_predicoes )
Acuracio_Score
```

1.0

```
[79]
    from sklearn.metrics import confusion_matrix
    Matriz_Confusao = confusion_matrix( y_teste, y_predicoes )
    print( Matriz_Confusao )
    sns.heatmap( Matriz_Confusao, annot=True);
```

```
0]
[[8
      0
         0
            0
      7
                   0]
         0
            0
                   0]
  0
      0 10
            0
                0
                  0]
  0
     0
        0
            6
                0
0
                8
                   0]
0
      0
            0
                0
                   9]]
         0
```


[81] from sklearn.metrics import classification_report
 Previsao = classification_report(y_teste, y_predicoes)
 print(Previsao)

	precision	recall	f1-score	support
0	1.00	1.00	1.00	8
1	1.00	1.00	1.00	7
2	1.00	1.00	1.00	10
3	1.00	1.00	1.00	6
4	1.00	1.00	1.00	8
5	1.00	1.00	1.00	9
accuracy			1.00	48
macro avg	1.00	1.00	1.00	48
weighted avg	1.00	1.00	1.00	48

Minha Conclusão

Nosso modelo apresentou uma acurácia de 100%.

1º Hipótese: Ocorreu um *overfitting* em nosso modelo.

"O modelo overfitting ocorre quando o modelo se adaptou muito bem aos dados com os quais está sendo treinado; porém, não generaliza bem para novos dados. Ou seja, o modelo "decorou" o conjunto de dados de treino, mas não aprendeu de fato o que diferencia aqueles dados para quando precisar enfrentar novos testes. "

Nesse caso seria preciso pedir mais dados para a NASA para podemos testar novamente o modelo e verificamos sua acurácia.

2º Hipótese: Porem a outro ponto, a divisão das estrelas é um **modelo bem definindo** (*2º pagina - tabela das divisão*) o que pode ocorrer é que a **classificação é bem exata** de acordo com as proporções da estrela.

Exemplo: **Não há** como uma estrela anã branca, apresentar uma **dimensão** próximo ou igual a uma gigante vermelha ou vice versa.

Final

Esse guia é um exemplo de uma floresta de decisão.

Guia da documentação caso queira mais detalhes

https://scikit-

<u>learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html</u>

Odemir Depieri Jr

Software Engineer Sr Tech Lead Specialization AI