This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Previously presented) A polymer comprising recurring units of the following general formula (1) and having a weight average molecular weight of 1,000 to 500,000,

wherein R¹ and R² each are hydrogen or methyl,

R³ and R⁴ each are hydrogen or a straight, branched or cyclic, monovalent hydrocarbon group of 1 to 15 carbon atoms which may contain a hetero atom, and R³ and R⁴ may bond together to form a ring, wherein R³ and R⁴ together represent a straight, branched or cyclic, divalent hydrocarbon group of 1 to 15 carbon atoms which may contain a hetero atom,

each of R^5 to R^8 is hydrogen, a hydroxyl group or a straight, branched or cyclic, monovalent hydrocarbon group of 1 to 15 carbon atoms which may contain a hetero atom, at least one of R^5 to R^8 contains a hetero atom, any two of R^5 to R^8 may bond together to form a

ring, wherein the ring forming two R's together represent a straight, branched or cyclic, divalent hydrocarbon group of 1 to 15 carbon atoms which may contain a hetero atom,

R⁹ and R¹⁰ each are hydrogen or methyl,

each of R¹¹ to R¹⁴ is hydrogen or a straight, branched or cyclic, monovalent hydrocarbon group of 1 to 15 carbon atoms which may contain a hetero atom, a pair of R¹¹ and R¹², a pair of R¹¹ or R¹² and R¹³, a pair of R¹¹ or R¹² and R¹⁴, or a pair of R¹³ and R¹⁴ may bond together to form a ring, wherein each pair represents a straight, branched or cyclic, divalent hydrocarbon group of 1 to 15 carbon atoms which may contain a hetero atom,

R¹⁵ is hydrogen, methyl or CH₂CO₂R¹⁷,

R^{15'} is hydrogen, methyl or CH₂CO₂R^{17'},

R¹⁵" is hydrogen, methyl or CH₂CO₂R¹⁷",

R^{15"} is hydrogen, methyl or CH₂CO₂R^{17"},

R¹⁶ is hydrogen, methyl or CO₂R¹⁷,

R^{16'} is hydrogen, methyl or CO₂R^{17'},

R¹⁶" is hydrogen, methyl or CO₂R¹⁷",

R¹⁶" is hydrogen, methyl or CO₂R¹⁷",

R¹⁷, R¹⁷, R¹⁷ and R¹⁷ may be identical or different between R¹⁵ and R¹⁶, between R¹⁵ and R¹⁶, between R¹⁵ and R¹⁶ and between R¹⁵ and R¹⁶, respectively, and each is a straight, branched or cyclic alkyl group of 1 to 15 carbon atoms,

R¹⁸ is hydrogen or a monovalent hydrocarbon group of 1 to 15 carbon atoms containing a carboxyl or hydroxyl group,

R¹⁹ is a monovalent hydrocarbon group of 2 to 15 carbon atoms containing at least one partial structure selected from the group consisting of ether, aldehyde, ketone, ester, carbonate, acid anhydride, amide and imide,

R²⁰ is a polycyclic hydrocarbon group of 7 to 15 carbon atoms or an alkyl group containing a polycyclic hydrocarbon group,

R²¹ is an acid labile group,

k is 0 or 1,

x1, x2, x3, a, b, c and d represent a molar compositional ratio of the recurring units associated therewith, satisfying x1+x2+x3+a+b+c+d=1, x1, x2, x3, a, b and c are numbers inclusive of 0, d is a number of more than 0, provided that at least two of x1, x2 and x3 are not equal to 0.

2. (Canceled)

- 3. (Original) A resist composition comprising the polymer of claim 1.
- 4. (Original) A process for forming a resist pattern comprising the steps of: applying the resist composition of claim 3 onto a substrate to form a coating,

heat treating the coating and then exposing it to high-energy radiation or electron beam through a photo mask, and

optionally heat treating the exposed coating and developing it with a developer.

5. (Previously presented) The polymer of claim 1 wherein the acid labile group represented by R²¹ is an acid labile group selected from the group consisting of groups of the following general formulae (L1) to (L4):

wherein the broken line denotes a free valence bond, R^{L01} and R^{L02} are hydrogen or straight, branched or cyclic alkyl groups of 1 to 18 carbon atoms, R^{L03} is a monovalent hydrocarbon group of 1 to 18 carbon atoms which may contain a hetero atom, a pair of R^{L01} and R^{L02}, R^{L01} and R^{L03}, or R^{L02} and R^{L03} may form a ring, wherein each of R^{L01}, R^{L02} and R^{L03} is a straight or branched alkylene group of 1 to 18 carbon atoms when they form a ring,

R^{L04} is a tertiary alkyl group of 4 to 20 carbon atoms, a trialkylsilyl group in which each alkyl moiety has 1 to 6 carbon atoms, an oxoalky group of 4 to 20 carbon atoms, or a group of formula (L1),

R^{L05} is a monovalent hydrocarbon group of 1 to 8 carbon atoms which may contain a hetero atom or a substituted or unsubstituted aryl group of 6 to 20 carbon atoms,

R^{L06} is a monovalent hydrocarbon group of 1 to 8 carbon atoms which may contain a hetero atom or a substituted or unsubstituted aryl group of 6 to 20 carbon atoms, and

R^{L07} to R^{L16} independently represent hydrogen or monovalent hydrocarbon groups of 1 to 15 carbon atoms which may contain a hetero atom, or R^{L07} to R^{L16}, taken together, form a ring, wherein each of R^{L07} to R^{L16} represents a divalent C₁-C₁₅ hydrocarbon group which may contain a hetero atom, when they form a ring, or two of R^{L07} to R^{L16} which are attached to adjoining carbon atoms may bond together directly to form a double bond.

6. (Currently Amended) A polymer comprising recurring units of the following general formula (1a) and having a weight average molecular weight of 1,000 to 500,000,

$$(\frac{R^{1}}{R^{4}}, \frac{R^{2}}{O})_{x1}$$

(1a)

wherein R¹ and R² each are hydrogen or methyl,

R³ is hydrogen or a straight, branched or cyclic, monovalent hydrocarbon group of 1 to 15 carbon atoms or a straight, branched or cyclic, monovalent hydrocarbon group of 3 to 15 carbon atoms which may contain a hetero atom; and

R⁴ each are <u>is</u> hydrogen or a straight, branched or cyclic, monovalent hydrocarbon group of 1 to 15 carbon atoms which may contain a hetero atom, and <u>or</u>

R³ and R⁴ may bond together to form a ring, wherein R³ and R⁴ together represent a straight, branched or cyclic, divalent hydrocarbon group of 1 to 15 carbon atoms which may contain a hetero atom,

R¹⁵ is hydrogen, methyl or CH₂CO₂R¹⁷,

R^{15'} is hydrogen, methyl or CH₂CO₂R^{17'},

R¹⁵" is hydrogen, methyl or CH₂CO₂R¹⁷",

R^{15"} is hydrogen, methyl or CH₂CO₂R^{17"},

R¹⁶ is hydrogen, methyl or CO₂R¹⁷,

R¹⁶ is hydrogen, methyl or CO₂R¹⁷,

R¹⁶ is hydrogen, methyl or CO₂R¹⁷,

R¹⁶" is hydrogen, methyl or CO₂R¹⁷",

R¹⁷, R¹⁷ and R¹⁷ may be identical or different between R¹⁵ and R¹⁶, between R¹⁵ and R¹⁶, between R¹⁵ and R¹⁶, and between R¹⁵ and R¹⁶, respectively, and each is a straight, branched or cyclic alkyl group of 1 to 15 carbon atoms,

R¹⁸ is hydrogen or a monovalent hydrocarbon group of 1 to 15 carbon atoms containing a carboxyl or hydroxyl group,

R¹⁹ is a monovalent hydrocarbon group of 2 to 15 carbon atoms containing at least one partial structure selected from the group consisting of ether, aldehyde, ketone, ester, carbonate, acid anhydride, amide and imide,

R²⁰ is a polycyclic hydrocarbon group of 7 to 15 carbon atoms or an alkyl group containing a polycyclic hydrocarbon group,

R²¹ is an acid labile group selected from the group consisting of groups of the following general formulae (L1) to (L4):

wherein the broken line denotes a free valence bond, R^{L01} and R^{L02} are hydrogen or straight, branched or cyclic alkyl groups of 1 to 18 carbon atoms, R^{L03} is a monovalent hydrocarbon group of 1 to 18 carbon atoms which may contain a hetero atom, a pair of R^{L01} and R^{L02}, R^{L01} and R^{L03}, or R^{L02} and R^{L03} may form a ring, wherein each of R^{L01}, R^{L02} and R^{L03} is a straight or branched alkylene group of 1 to 18 carbon atoms when they form a ring,

R^{L04} is a tertiary alkyl group of 4 to 20 carbon atoms, a trialkylsilyl group in which each alkyl moiety has 1 to 6 carbon atoms, an oxoalkyl group of 4 to 20 carbon atoms, or a group of formula (L1),

R^{L05} is a monovalent hydrocarbon group of 1 to 8 carbon atoms which may contain a hetero atom or a substituted or unsubstituted aryl group of 6 to 20 carbon atoms,

R^{L06} is a monovalent hydrocarbon group of 1 to 8 carbon atoms which may contain a hetero atom or a substituted or unsubstituted aryl group of 6 to 20 carbon atoms, and

R^{L07} to R^{L16} independently represent hydrogen or monovalent hydrocarbon groups of 1 to 15 carbon atoms which may contain a hetero atom, or R^{L07} to R^{L16}, taken together, form a ring, wherein each of R^{L07} to R^{L16} represents a divalent C₁-C₁₅ hydrocarbon group which may contain a hetero atom, when they form a ring, or two of R^{L01} to R^{L16} which are attached to adjoining carbon atoms may bond together directly to form a double bond,

k is 0 or 1,

xl, a, b, c and d represent a molar compositional ratio of the recurring units associated therewith, satisfying xl+a+b+c+d=1, a, b and c are numbers inclusive of 0, d is a number of more than 0, xl is a number not equal to 0.

- 7. (Previously presented) A resist composition comprising the polymer of claim 6.
- 8. (Previously presented) A process for forming a resist pattern comprising the steps of:

applying the resist composition of claim 6 onto a substrate to form a coating,

heat treating the coating and then exposing it to high-energy radiation or electron beam through a photo mask, and

optionally heat treating the exposed coating and developing it with a developer.

9. (Currently Amended) A polymer comprising recurring units of the following general formula (1b) and having a weight average molecular weight of 1,000 to 500,000,

$$R^{5} \xrightarrow{Q} R^{8}$$

$$(1b)$$

$$R^{16} \xrightarrow{R^{15}}_{Q} R^{15} \xrightarrow{R^{16'}}_{Q} R^{15'} \xrightarrow{R^{16''}}_{Q} \xrightarrow{R^{16'''}}_{Q} \xrightarrow{R^{16'''}}_{Q} \xrightarrow{R^{16'''}}_{Q} \xrightarrow{R^{15'''}}_{Q}$$

wherein each of R⁵ to R⁸ is hydrogen, a hydroxyl group or a straight, branched or cyclic, monovalent hydrocarbon group of 1 to 15 carbon atoms which may contain a hetero atom, at least one of R⁵ to R⁸ contains a hetero atom, any two of R⁵ to R⁸ may bond together to form a ring, wherein the ring-forming two R's together represent a straight, branched or cyclic, divalent hydrocarbon group of 1 to 15 carbon atoms which may contain a hetero atom,

R¹⁵ is hydrogen, methyl or CH₂CO₂R¹⁷,

R¹⁶ is hydrogen, methyl or CO₂R¹⁷,

R¹⁶ is hydrogen, methyl or CO₂R¹⁷,

R¹⁶" is hydrogen, methyl or CO₂R¹⁷",

R¹⁶" is hydrogen, methyl or CO₂R¹⁷",

R¹⁷, R¹⁷, R¹⁷ and R¹⁷ may be identical or different between R¹⁵ and R¹⁶, between R¹⁵ and R¹⁶, between R¹⁵ and R¹⁶, and between R¹⁵ and R¹⁶, respectively, and each is a straight, branched or cyclic alkyl group of 1 to 15 carbon atoms,

R¹⁸ is hydrogen or a monovalent hydrocarbon group of 1 to 15 carbon atoms containing a carboxyl or hydroxyl group,

R¹⁹ is a monovalent hydrocarbon group of 2 to 15 carbon atoms containing at least one partial structure selected from the group consisting of ether, aldehyde, ketone, ester, carbonate, acid anhydride, amide and imide,

R²⁰ is a polycyclic hydrocarbon group of 7 to 15 carbon atoms or an alkyl group containing a polycyclic hydrocarbon group,

R²¹ is an acid labile group <u>selected from the group consisting of groups of the</u> following general formulae (L1) to (L4):

wherein the broken line denotes a free valence bond, R^{L01} and R^{L02} are hydrogen or straight, branched or cyclic alkyl groups of 1 to 18 carbon atoms, R^{L03} is a monovalent hydrocarbon group of 1 to 18 carbon atoms which may contain a hetero atom, a pair of R^{L01} and R^{L02}, R^{L01} and R^{L03}, or R^{L02} and R^{L03} may form a ring, wherein each of R^{L01}, R^{L02} and R^{L03} is a straight or branched alkylene group of 1 to 18 carbon atoms when they form a ring,

R^{L04} is a tertiary alkyl group of 4 to 20 carbon atoms, a trialkylsilyl group in which each alkyl moiety has 1 to 6 carbon atoms, an oxoalkyl group of 4 to 20 carbon atoms, or a group of formula (L1),

R^{L05} is a monovalent hydrocarbon group of 1 to 8 carbon atoms which may contain a hetero atom or a substituted or unsubstituted aryl group of 6 to 20 carbon atoms,

R^{L06} is a monovalent hydrocarbon group of 1 to 8 carbon atoms which may contain a hetero atom or a substituted or unsubstituted aryl group of 6 to 20 carbon atoms, and

R^{L07} to R^{L16} independently represent hydrogen or monovalent hydrocarbon groups of 1 to 15 carbon atoms which may contain a hetero atom, or R^{L07} to R^{L16}, taken together, form a ring,

wherein each of R^{L07} to R^{L16} represents a divalent C₁-C₁₅ hydrocarbon group which may contain a hetero atom, when they form a ring, or two of R^{L07} to R^{L16} which are attached to adjoining carbon atoms may bond together directly to form a double bond,

k is 0 or 1,

x2, a, b, c and d represent a molar compositional ratio of the recurring units associated therewith, satisfying x2+a+b+c+d=1, a, b and c are numbers inclusive of 0, d is a number of more than 0, x2 is a number not equal to 0.

10. (Canceled)

11. (Previously presented) A resist composition comprising the polymer of claim 9.

- 12. (Previously presented) A process for forming a resist pattern comprising the steps of:
 - applying the resist composition of claim 9 onto a substrate to form a coating,

heat treating the coating and then exposing it to high-energy radiation or electron beam through a photo mask, and

- optionally heat treating the exposed coating and developing it with a developer.
- 13. (Currently Amended) A polymer comprising recurring units of the following general formula (1c) and having a weight average molecular weight of 1,000 to 500,000,

$$(\frac{R^9}{R^{14}}, \frac{R^{10}}{R^{12}})_{x3}$$

wherein R⁹ and R¹⁰ each are hydrogen or methyl,

each of R¹¹ to R¹² is hydrogen or a straight, branched or cyclic, monovalent hydrocarbon group of 1 to 15 carbon atoms,

each of R^{11} R^{13} to R^{14} is hydrogen or a straight, branched or cyclic, monovalent hydrocarbon group of 1 to 15 carbon atoms which may contain a hetero atom, a pair of R^{11} and R^{12} , a pair of R^{11} or R^{12} and R^{13} , a pair of R^{11} or R^{12} and R^{14} , or a pair of R^{13} and R^{14} may bond together to form a ring, wherein each pair represents a straight, branched or cyclic,

divalent hydrocarbon group of 1 to 15 carbon atoms which may contain a hetero atom,

```
R<sup>15</sup> is hydrogen, methyl or CH<sub>2</sub>CO<sub>2</sub>R<sup>17</sup>,

R<sup>15''</sup> is hydrogen, methyl or CH<sub>2</sub>CO<sub>2</sub>R<sup>17''</sup>,

R<sup>15'''</sup> is hydrogen, methyl or CH<sub>2</sub>CO<sub>2</sub>R<sup>17''</sup>,

R<sup>15'''</sup> is hydrogen, methyl or CH<sub>2</sub>CO<sub>2</sub>R<sup>1'''</sup>,

R<sup>16</sup> is hydrogen, methyl or CO<sub>2</sub>R<sup>17</sup>,

R<sup>16''</sup> is hydrogen, methyl or CO<sub>2</sub>R<sup>17'</sup>,

R<sup>16'''</sup> is hydrogen, methyl or CO<sub>2</sub>R<sup>17''</sup>,

R<sup>16'''</sup> is hydrogen, methyl or CO<sub>2</sub>R<sup>17'''</sup>,
```

 R^{17} , $R^{17"}$, $R^{17"}$ and $R^{17"}$ may be identical or different between R^{15} and R^{16} , between $R^{15"}$ and $R^{16"}$, between $R^{15"}$ and $R^{16"}$, and between $R^{15"}$ and $R^{16"}$, respectively, and each is a straight, branched or cyclic alkyl group of 1 to 15 carbon atoms,

R¹⁸ is hydrogen or a monovalent hydrocarbon group of 1 to 15 carbon atoms containing a carboxyl or hydroxyl group,

R¹⁹ is a monovalent hydrocarbon group of 2 to 15 carbon atoms containing at least one partial structure selected from the group consisting of ether, aldehyde, ketone, ester, carbonate, acid anhydride, amide and imide,

R²⁰ is a polycyclic hydrocarbon group of 7 to 15 carbon atoms or an alkyl group containing a polycyclic hydrocarbon group,

R²¹ is an acid labile group selected from the group consisting of groups of the following general formulae (L1) to (L4):

wherein the broken line denotes a free valence bond, R^{L01} and R^{L02} are hydrogen or straight, branched or cyclic alkyl groups of 1 to 18 carbon atoms, R^{L03} is a monovalent hydrocarbon group of 1 to 18 carbon atoms which may contain a hetero atom, a pair of R^{L01} and R^{L02}, R^{L01} and R^{L03}, or R^{L02} and R^{L03} may form a ring, wherein each of R^{L01}, R^{L02} and R^{L03} is a straight or branched alkylene group of 1 to 18 carbon atoms when they form a ring,

R^{L04} is a tertiary alkyl group of 4 to 20 carbon atoms, a trialkylsilyl group in which each alkyl moiety has 1 to 6 carbon atoms, an oxoalkyl group of 4 to 20 carbon atoms, or a group of formula (L1),

R^{L05} is a monovalent hydrocarbon group of 1 to 8 carbon atoms which may contain a hetero atom or a substituted or unsubstituted aryl group of 6 to 20 carbon atoms,

R^{L06} is a monovalent hydrocarbon group of 1 to 8 carbon atoms which may contain a hetero atom or a substituted or unsubstituted aryl group of 6 to 20 carbon atoms, and

R^{L07} to R^{L16} independently represent hydrogen or monovalent hydrocarbon groups of 1 to 15 carbon atoms which may contain a hetero atom, or R^{L07} to R^{L16}, taken together, form a ring, wherein each of R^{L07} to R^{L16} represents a divalent C₁-C₁₅, hydrocarbon group which may contain a hetero atom, when they form a ring, or two of R^{L07} to R^{L16} which are attached to adjoining carbon atoms may bond together directly to form a double bond,

k is 0 or 1,

x3, a, b, c and d represent a molar compositional ratio of the recurring units associated therewith, satisfying x3+a+b+c+d=1, x3, a, b and c are numbers inclusive of 0, d is a number of more than 0, and x3 is a number not equal to 0.

- 14. (Previously presented) A resist composition comprising the polymer of claim 13.
- 15. (Previously presented) A process for forming a resist pattern comprising the steps of:

applying the resist composition of claim 13 onto a substrate to form a coating,

heat treating the coating and then exposing it to high-energy radiation or electron beam through a photo mask, and

optionally heat treating the exposed coating and developing it with a developer.

16. (New) The polymer of claim 6, wherein in formula (1a),

R³ is hydrogen or a straight, branched or cyclic, monovalent hydrocarbon group of 1 to 15 carbon atoms or a group selected from those of the following formulae:

$$0 \longrightarrow 0 \longrightarrow and 0 \longrightarrow and 0$$

; and

R⁴ is hydrogen or a straight, branched or cyclic, monovalent hydrocarbon group of 1 to 15 carbon atoms which may contain a hetero atom, or

R³ and R⁴ may bond together to form a ring, wherein R³ and R⁴ together represent a straight, branched or cyclic, divalent hydrocarbon group of 1 to 15 carbon atoms which may contain a hetero atom.