17. a. Copy everything shown and complete the proof.

Given:
$$\frac{\overline{PQ}}{\overline{PS}} \perp \frac{\overline{QR}}{\overline{SR}}$$
;

 $\angle 1 \cong \angle 4$

Prove: $\angle 2 \cong \angle 5$

Proof:

Statements	Reasons
$1. \ \overline{PQ} \perp \overline{QR}; \ \overline{PS} \perp \overline{SR}$	1?
2. ∠2 is comp. to ∠1; ∠5 is comp. to ∠4.	2
3. $\angle 1 \cong \angle 4$ 4. $\angle 2 \cong \angle 5$	$\frac{3}{4} = \frac{?}{?}$
4. $\angle z = \angle s$	

- **b.** After proving that $\angle 2 \cong \angle 5$ in part (a), tell how you could go on to prove that $\angle 3 \cong \angle 6$.
- **B** 18. Prove Theorem 2-8: If two angles are complements of congruent angles, then the two angles are congruent. Note: You will need to draw your own diagram and state what is given and what you are to prove in terms of your diagram. (Hint: See the proof of Theorem 2-7 on page 61.)

Copy everything shown and write a two-column proof.

19. Given:
$$\angle 2 \cong \angle 3$$

Prove: $\angle 1 \cong \angle 4$

20. Given: $\angle 3$ is supp. to $\angle 1$; $\angle 4$ is supp. to $\angle 2$. Prove: $\angle 3 \cong \angle 4$

22. Given: $m \angle 1 = m \angle 2$; Prove: $\overrightarrow{YS} \perp \overrightarrow{XZ}$