MS&E 226 Project

Peter Karnchanapimonkul (SUNET: phatk), Tyler Coleman (SUNET: colemant)

IMPORT DATA AND SPLIT INTO TRAIN AND HOLDOUT

```
NFL_DATA <- read.csv(file = "train.csv", header = TRUE, sep=",")
NFL_DATA_Run_Observations <- NFL_DATA[(NFL_DATA$NflIdRusher == NFL_DATA$NflId) , ]

# split 80:20 for training:test
set.seed(123)
training_data = sample(nrow(NFL_DATA_Run_Observations), size = nrow(NFL_DATA_Run_Observations) * 0.8)
NFL_DATA_Train = NFL_DATA_Run_Observations[training_data, ]
NFL_DATA_Holdout = NFL_DATA_Run_Observations[-training_data, ] # holdout is remaining indices
#View(NFL_DATA_Train)</pre>
```

DATA EXPLORATION OF OUTCOME VARIABLE

```
# Explore distribution of the continuos response variable we are predicting. (Yards/carry)
ggplot(data = NFL_DATA_Train) +
  geom_histogram(mapping = aes(x = Yards), bins = 100) +
  ggtitle("Distribution of Yards")
```

Distribution of Yards


```
# Zoom into specifically -10 to 20 yards
ggplot(data = NFL_DATA_Train) +
  geom_histogram(mapping = aes(x = Yards), bins = 100) +
  coord_cartesian(xlim=c(-10,20), ylim=c(0, 4000)) +
  geom_vline(xintercept = 4) +
  ggtitle("Distribution of Yards")
```

Distribution of Yards

2, 3, 4, 5 yards in particular are the peaks

What percentage of runs result in > 10 yards? 0.0956517

More_Than_10 = NFL_DATA_Train[(NFL_DATA_Train\$Yards > 10),]
Percentage_Over_10 = nrow(More_Than_10) / nrow(NFL_DATA_Train)
Percentage_Over_10

[1] 0.095652

What Percentage of runs is < 0 yards? 0.1101101
Less_Than_0 = NFL_DATA_Train[(NFL_DATA_Train\$Yards < 0),]
Percentage_under_0 = nrow(Less_Than_0) / nrow(NFL_DATA_Train)
Percentage_under_0</pre>

```
## [1] 0.11011
# See if there is difference in run yard by quarter

# FACTOR QUARTER
NFL_DATA_Train$Quarter = factor(NFL_DATA_Train$Quarter)
# First quarter
```

```
ggplot(data = NFL_DATA_Train[(NFL_DATA_Train$Quarter == 1), ]) +
geom_histogram(mapping = aes(x = Yards), bins = 100) +
ggtitle("Distribution of Yards in 1 Quarter")
```

Distribution of Yards in 1 Quarter


```
# Second quarter
ggplot(data = NFL_DATA_Train[(NFL_DATA_Train$Quarter == 2), ]) +
geom_histogram(mapping = aes(x = Yards), bins = 100) +
ggtitle("Distribution of Yards in 2 Quarter")
```

Distribution of Yards in 2 Quarter


```
# Third quarter
ggplot(data = NFL_DATA_Train[(NFL_DATA_Train$Quarter == 3), ]) +
geom_histogram(mapping = aes(x = Yards), bins = 100) +
ggtitle("Distribution of Yards in 3 Quarter")
```

Distribution of Yards in 3 Quarter


```
# Fourth quarter
ggplot(data = NFL_DATA_Train[(NFL_DATA_Train$Quarter == 4), ]) +
geom_histogram(mapping = aes(x = Yards), bins = 100) +
ggtitle("Distribution of Yards in 4 Quarter")
```

Distribution of Yards in 4 Quarter

DATA EXPLORATION

Warning in RColorBrewer::brewer.pal(\mathbb{N} , "Set2"): n too large, allowed maximum for palette Set2 is 8 ## Returning the palette you asked for with that many colors

Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
Returning the palette you asked for with that many colors

```
zaxis = list(title = 'Yards'))
)

## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors

## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
```

DATA MANIPULATION AND CLEANING

Adding the covariates that we want to include, and modififying the dataframe

```
NFL DATA TRAIN Modified <- NFL DATA Train
# Function to take the difference in time from the dataframe
timeDifference <- function(time) {</pre>
 num <- gsub("[:]", "" , str_sub(time, 12, 19), perl=TRUE)</pre>
  hr \leftarrow ifelse(str_sub(num, 1, 2) == "00", 24, as.numeric(str_sub(num, 1, 2)))
 min <- as.numeric(str_sub(num, 3, 4))</pre>
  sec <- as.numeric(str_sub(num, 5, 6))</pre>
 newTime <- 3600*hr + 60 * min + sec
  return(newTime)
# Add Time_Difference between the snap and the handoff
NFL_DATA_TRAIN_Modified$TimeDifference <-</pre>
 timeDifference(NFL_DATA_TRAIN_Modified$TimeHandoff) - timeDifference(NFL_DATA_TRAIN_Modified$TimeSnap
# Add the Difference in Score by home score - visitor score
# Difference in Score (Pair with which team is winning (HomeScore-AwayScore))
NFL DATA TRAIN Modified$HomeScoreAdvantage <-
 NFL_DATA_TRAIN_Modified$HomeScoreBeforePlay - NFL_DATA_TRAIN_Modified$VisitorScoreBeforePlay
# Add the age of the running player
# Change the birth dates to strings
NFL_DATA_TRAIN_Modified$PlayerBirthDate = as.character(NFL_DATA_TRAIN_Modified$PlayerBirthDate)
# Grab the Year for each of the running player
Birth_Year = str_sub(NFL_DATA_TRAIN_Modified$PlayerBirthDate, 7, 11)
# Grab Month of each running player
Birth_Month = str_sub(NFL_DATA_TRAIN_Modified$PlayerBirthDate, 1, 2)
# If Born in July (07) Have lived 5/12 of a year. ie (12 - (Birth_Month)) / 12
How_Much_Of_Year_Lived = (12 - as.numeric(Birth_Month)) / 12
Years_Lived = NFL_DATA_TRAIN_Modified$Season - as.numeric(Birth_Year)
Total_Years_Lived = Years_Lived + How_Much_Of_Year_Lived
NFL DATA TRAIN Modified$PlayerAge = Total Years Lived
# Change HEIGHT to inches and continuous
Feet = as.numeric(str_sub(NFL_DATA_TRAIN_Modified$PlayerHeight, 1, 1))
Inches = as.numeric(str_sub(NFL_DATA_TRAIN_Modified$PlayerHeight, 3, 4))
Heights = (Feet * 12) + Inches
NFL_DATA_TRAIN_Modified$PlayerHeight = Heights
```

```
# Changes GAMECLOCK to Seconds.

NFL_DATA_TRAIN_Modified$GameClock = as.numeric(NFL_DATA_TRAIN_Modified$GameClock)

# FACTORING VARIABLES INTO CATEGORICAL

# Factor OFFENSE FORMATION

NFL_DATA_TRAIN_Modified$OffenseFormation = factor(NFL_DATA_TRAIN_Modified$OffenseFormation)

# DEFENDERS IN BOX (Need Categorical and Ordinal)

NFL_DATA_TRAIN_Modified$DefendersInTheBox = factor(NFL_DATA_TRAIN_Modified$DefendersInTheBox)
```

MORE EXPLORATION WITH NEW/FACTORED COVARIATES (Still before Analyzing Techniques)

```
# Plot 3d of offense formation and defenders in box, and yards gotten. More defenders, less yards
# Might be ok, might only need 2 yards, same for 4th down
plot_ly(
 NFL_DATA_TRAIN_Modified, x = ~OffenseFormation, y = ~DefendersInTheBox, z = ~Yards, color = ~Possessi
  add_markers() %>%
 layout(
    scene = list(xaxis = list(title = 'OffenseForm'),
                 yaxis = list(title = 'DefendInBox'),
                 zaxis = list(title = 'Yards'))
## Warning: Ignoring 2 observations
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
# Yards vs. Difference in Score, Color = Quarter
ggplot(NFL_DATA_TRAIN_Modified, aes(x=HomeScoreAdvantage, y=Yards, color = Quarter )) +
 geom_point(size=2, shape=23)
```


ggplot(NFL_DATA_TRAIN_Modified, aes(x=TimeDifference, y=Yards, color = OffenseFormation)) +

Time between handoff and yards, color = offense style

geom_point(size=2, shape=23)

```
9
```


Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8 ## Returning the palette you asked for with that many colors

Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8 ## Returning the palette you asked for with that many colors

REFACTOR DEFENDER IN BOX TO INCLUDE ORDINALITY

```
# Leaving them unordered was for graphs above, to look good
NFL_DATA_TRAIN_Modified$DefendersInTheBox = factor(NFL_DATA_TRAIN_Modified$DefendersInTheBox, order = T.
```

SELECTION OF COVARIATES FOR ANALYSIS

NOW THAT HAVE SELECTED COVARIATES. MORE DATA CLEANING, FACTORING, ETC...

```
# Need to count how many NA / Empty cells there are for each column
# summary(NFL_DATA_TRAIN_Filtered) # changed empty to NA when reading in file
# GameWeather, Temperature, Humidy all have missing or NA data
# sum(is.na(NFL_DATA_TRAIN_Filtered$GameWeather))
# sum(NFL DATA TRAIN Filtered$GameWeather == "")
# Factor the DOWNS, Ordinally
NFL_DATA_TRAIN_Filtered$Down = factor(as.numeric(NFL_DATA_TRAIN_Filtered$Down), order = TRUE, levels =
# Player WEIGHT
NFL DATA TRAIN Filtered PlayerWeight = as.numeric(NFL DATA TRAIN Filtered PlayerWeight)
# Factor POSITION
NFL_DATA_TRAIN_Filtered$Position = factor(NFL_DATA_TRAIN_Filtered$Position)
# factor POSITION
NFL_DATA_TRAIN_Filtered$Position = factor(NFL_DATA_TRAIN_Filtered$Position)
# factor SEASON
NFL_DATA_TRAIN_Filtered$Season = factor(NFL_DATA_TRAIN_Filtered$Season)
# DATA CLEANING (REMOVING NA'S, and observations that happen less than 3 times)
# This was causing issues where one fold has a factor but another fold does not
# Need to delete a row within a column if there is just 1 special case. (Minimun 3 observations)
# DefensePersonnel (reduces observations by 11)
NFL DATA TRAIN Filtered = NFL DATA TRAIN Filtered[unsplit(table(NFL DATA TRAIN Filtered$DefensePersonne
# Same for OffensePersonnel (reduces by 18 observations)
# Same for Position
```

```
NFL_DATA_TRAIN_Filtered = NFL_DATA_TRAIN_Filtered[unsplit(table(NFL_DATA_TRAIN_Filtered$Position), NFL_TABLE_NFL_DATA_TRAIN_Filtered$Position), NFL_TABLE_NFL_DATA_TRAIN_Filtered$Position, NFL_DATA_TRAIN_Filtered$DefendersInTheB

# Same for Offense Formation
NFL_DATA_TRAIN_Filtered = NFL_DATA_TRAIN_Filtered[unsplit(table(NFL_DATA_TRAIN_Filtered$OffenseFormation])

# Need to remove NA Rows: Still 16,758 observations out of ~18,000
NFL_DATA_TRAIN_Filtered_Final <- na.omit(NFL_DATA_TRAIN_Filtered)

# View(NFL_DATA_TRAIN_Filtered_Final)
```

BEGINNING OF ANALYSIS

Regression with all Covariates

```
NFL_Train_Total_Model = lm(Yards ~ ., data=NFL_DATA_TRAIN_Filtered_Final)
NFL_Train_Total_Model.cv = cvFit(NFL_Train_Total_Model, data=NFL_DATA_TRAIN_Filtered_Final, y=NFL_DATA_
NFL Train Total Model.cv # RMSE= 6.388 # May have collinearity
## 10-fold CV results:
##
      CV
## 6.573
NFL_Train_Total_Model$coefficients
##
                                     (Intercept)
##
                                      4.36400296
##
                                      0.00136289
##
##
##
                                      0.01324105
##
                                      Season2018
##
                                      0.25591227
##
                                        Quarter2
##
                                      0.24042162
##
                                        Quarter3
##
                                      0.24208899
##
                                        Quarter4
##
                                      0.13308696
##
                                        Quarter5
##
                                      1.18448991
##
                                       GameClock
                                      0.00027695
##
##
                              PossessionTeamATL
##
                                      0.52279214
##
                              PossessionTeamBLT
##
                                      1.78413256
##
                              PossessionTeamBUF
##
                                      0.27577077
##
                              {\tt PossessionTeamCAR}
##
                                      0.94340163
```

##	PossessionTeamCHI
##	0.28630036
##	${\tt PossessionTeamCIN}$
##	-1.03309945
##	${\tt PossessionTeamCLV}$
##	1.20458119
##	${\tt PossessionTeamDAL}$
##	0.76922709
##	${\tt PossessionTeamDEN}$
##	0.84305634
##	PossessionTeamDET
##	0.39927663
##	${\tt PossessionTeamGB}$
##	0.59790966
##	PossessionTeamHST
##	0.93271280
##	${\tt PossessionTeamIND}$
##	1.13432263
##	PossessionTeamJAX
##	0.64910649
##	${\tt PossessionTeamKC}$
##	0.74554290
##	${\tt PossessionTeamLA}$
##	0.88134301
##	PossessionTeamLAC
##	1.12016728
##	PossessionTeamMIA
##	0.66096948
##	PossessionTeamMIN
##	0.68265047
##	PossessionTeamNE
##	0.52885765
##	PossessionTeamNO
##	1.47683784
##	PossessionTeamNYG
##	0.73977295
##	PossessionTeamNYJ
##	0.47931667
##	PossessionTeamOAK
##	0.80688463
##	PossessionTeamPHI
##	0.81505089
##	PossessionTeamPIT
##	0.98387679
##	PossessionTeamSEA
##	0.00523551
##	PossessionTeamSF
##	1.09890839
##	PossessionTeamTB
##	0.03094075
##	PossessionTeamTEN
##	1.28413364
##	PossessionTeamWAS
	0 1170100F

##

0.14761205

```
##
                                          Down.L
##
                                     -0.49376306
##
                                          Down.Q
##
                                     -0.47586885
##
                                          Down.C
##
                                     -0.24474125
##
                                        Distance
                                      0.06705364
##
##
                         OffenseFormationI_FORM
##
                                     -0.45031458
##
                          OffenseFormationJUMBO
##
                                     -0.15875945
                         OffenseFormationPISTOL
##
##
                                     -0.33596008
##
                        OffenseFormationSHOTGUN
##
                                     -0.38570103
##
                     OffenseFormationSINGLEBACK
##
                                     -0.32342080
##
                        OffenseFormationWILDCAT
##
                                     -0.56743232
##
              OffensePersonnelO RB, 2 TE, 3 WR
##
                                      0.95596500
##
              OffensePersonnelO RB, 3 TE, 2 WR
##
                                     -2.03306037
##
         OffensePersonnel1 RB, 0 TE, 3 WR,1 DB
                                     11.46310616
##
##
              OffensePersonnel1 RB, 0 TE, 4 WR
##
                                      2.78450477
##
         OffensePersonnel1 RB, 1 TE, 2 WR,1 DB
##
                                      7.04022435
##
         OffensePersonnel1 RB, 1 TE, 2 WR,1 DL
##
                                      1.62058401
##
              OffensePersonnel1 RB, 1 TE, 3 WR
##
                                      3.03476877
##
         OffensePersonnel1 RB, 2 TE, 1 WR,1 DB
##
                                      4.00775212
##
         OffensePersonnel1 RB, 2 TE, 1 WR,1 DL
##
                                      3.71319993
##
         OffensePersonnel1 RB, 2 TE, 1 WR,1 LB
##
                                      6.94399691
##
              OffensePersonnel1 RB, 2 TE, 2 WR
##
                                      2.98552445
         OffensePersonnel1 RB, 3 TE, 0 WR,1 DL
##
##
                                      2.99541932
##
         OffensePersonnel1 RB, 3 TE, 0 WR,1 LB
##
                                      5.06695308
              OffensePersonnel1 RB, 3 TE, 1 WR
##
##
                                      2.84947963
##
              OffensePersonnel1 RB, 4 TE, 0 WR
                                      2.87175018
##
##
        OffensePersonnel2 QB, 1 RB, 0 TE, 3 WR
##
                                      3.29414301
##
        OffensePersonnel2 QB, 1 RB, 1 TE, 2 WR
                                      3.30885850
##
```

```
##
        OffensePersonnel2 QB, 1 RB, 2 TE, 1 WR
##
                                      1.70215731
##
        OffensePersonnel2 QB, 2 RB, 1 TE, 1 WR
##
                                     7.03294294
##
              OffensePersonnel2 RB, 0 TE, 3 WR
                                     3.63855112
##
              OffensePersonnel2 RB. 1 TE. 2 WR
##
##
                                     3.38905662
##
              OffensePersonnel2 RB, 2 TE, 1 WR
##
                                     3.66270453
##
              OffensePersonnel2 RB, 3 TE, 0 WR
                                      2.43564786
##
##
              OffensePersonnel3 RB, 0 TE, 2 WR
                                      2.64966017
##
##
              OffensePersonnel3 RB, 1 TE, 1 WR
##
                                      2.70186985
              OffensePersonnel3 RB, 2 TE, 0 WR
##
##
                                      3.50371553
        OffensePersonnel6 OL, 1 RB, 0 TE, 3 WR
##
##
                                     3.58936284
##
   OffensePersonnel6 OL, 1 RB, 1 TE, 1 WR,1 DL
##
                                     1.91550695
##
        OffensePersonnel6 OL, 1 RB, 1 TE, 2 WR
##
                                      2.38036923
   OffensePersonnel6 OL, 1 RB, 2 TE, 0 WR,1 DL
##
##
                                     3.55171043
##
   OffensePersonnel6 OL, 1 RB, 2 TE, 0 WR,1 LB
##
                                     4.07472385
##
        OffensePersonnel6 OL, 1 RB, 2 TE, 1 WR
##
                                      3.36056987
##
        OffensePersonnel6 OL, 1 RB, 3 TE, 0 WR
##
                                      3.57372879
##
        OffensePersonnel6 OL, 2 RB, 0 TE, 2 WR
##
                                     5.09858830
##
   OffensePersonnel6 OL, 2 RB, 1 TE, 0 WR,1 DL
##
                                     3.01072723
##
        OffensePersonnel6 OL, 2 RB, 1 TE, 1 WR
##
                                     3.60057607
##
        OffensePersonnel6 OL, 2 RB, 2 TE, 0 WR
##
                                     4.06041580
##
        OffensePersonnel7 OL, 1 RB, 0 TE, 2 WR
##
                                     3.14554063
        OffensePersonnel7 OL, 1 RB, 2 TE, 0 WR
##
##
                                      3.62122212
        OffensePersonnel7 OL, 2 RB, 0 TE, 1 WR
##
##
                                     4.48123748
##
                            DefendersInTheBox.L
##
                                    -6.96017364
##
                            DefendersInTheBox.Q
##
                                     1.58359080
##
                            DefendersInTheBox.C
##
                                    -0.56595335
##
                            DefendersInTheBox^4
##
                                     0.22197237
```

```
##
                            DefendersInTheBox^5
##
                                      0.55012865
##
                            DefendersInTheBox^6
##
                                     -0.04065856
##
                            DefendersInTheBox^7
##
                                     -0.07257713
##
                            DefendersInTheBox^8
##
                                      0.06691407
##
              DefensePersonnelO DL, 5 LB, 6 DB
##
                                     -1.90367142
##
              DefensePersonnel1 DL, 3 LB, 7 DB
##
                                     -1.63831555
##
              DefensePersonnel1 DL, 4 LB, 6 DB
##
                                     -1.64102659
              DefensePersonnel1 DL, 5 LB, 5 DB
##
##
                                     -0.43307818
              DefensePersonnel2 DL, 2 LB, 7 DB
##
##
                                      3.41441670
##
              DefensePersonnel2 DL, 3 LB, 6 DB
##
                                     -0.96370024
##
              DefensePersonnel2 DL, 4 LB, 5 DB
##
                                     -1.12173181
##
              DefensePersonnel2 DL, 5 LB, 4 DB
                                     -2.24849996
##
##
              DefensePersonnel3 DL, 1 LB, 7 DB
##
                                     -2.76827913
##
              DefensePersonnel3 DL, 2 LB, 6 DB
                                     -1.28256756
##
##
              DefensePersonnel3 DL, 3 LB, 5 DB
##
                                     -1.29077009
##
              DefensePersonnel3 DL, 4 LB, 4 DB
##
                                     -1.12210347
##
              DefensePersonnel3 DL, 5 LB, 3 DB
##
                                     -0.58904955
##
              DefensePersonnel4 DL, 1 LB, 6 DB
##
                                     -0.70220371
##
              DefensePersonnel4 DL, 2 LB, 5 DB
##
                                     -1.11749447
##
              DefensePersonnel4 DL, 3 LB, 4 DB
                                     -1.37702947
##
              DefensePersonnel4 DL, 4 LB, 3 DB
##
##
                                     -2.34898232
##
              DefensePersonnel5 DL, 1 LB, 5 DB
##
                                     -2.26531078
              DefensePersonnel5 DL, 2 LB, 4 DB
##
##
                                     -0.92526644
##
        DefensePersonnel5 DL, 3 LB, 2 DB, 1 OL
##
                                     -3.48683503
##
              DefensePersonnel5 DL, 3 LB, 3 DB
##
                                     -3.00113451
##
              DefensePersonnel5 DL, 4 LB, 2 DB
##
                                     -2.11957449
              DefensePersonnel5 DL, 5 LB, 1 DB
##
                                     -3.31938419
##
```

##	DefensePersonnel6 DL, 2 LB, 3 DB
##	-3.18296116
##	DefensePersonnel6 DL, 3 LB, 2 DB
##	-3.12072944
##	DefensePersonnel6 DL, 4 LB, 1 DB
##	-3.00687073
##	${\tt PlayDirectionright}$
##	-0.02558475
##	PlayerHeight
##	-0.02678516
##	PlayerWeight
##	-0.00018641
##	PositionFB
##	0.32109939
##	PositionHB
##	2.45225873
##	PositionQB
##	-0.60699802
##	PositionRB
##	0.48727282
##	PositionTE
##	2.33283997
##	PositionWR
##	2.64722612
##	HomeTeamAbbrATL
##	-0.34076403
##	HomeTeamAbbrBAL
##	-0.17950982
##	HomeTeamAbbrBUF
##	0.26056064
##	HomeTeamAbbrCAR
##	0.45528471
##	HomeTeamAbbrCHI
##	-0.19392233
##	HomeTeamAbbrCIN
##	0.35223469
##	HomeTeamAbbrCLE
##	-0.03682803
##	HomeTeamAbbrDAL
##	0.11077453
##	HomeTeamAbbrDEN
##	-0.46466064
##	HomeTeamAbbrDET
##	-0.06176218
##	HomeTeamAbbrGB
##	-0.13296029
##	HomeTeamAbbrHOU
##	-0.28582071
##	HomeTeamAbbrIND
##	-0.16448220
##	HomeTeamAbbrJAX
##	0.12239543
##	HomeTeamAbbrKC
##	-0.18233362
##	-0.16233362

##	HomeTeamAbbrLA
##	0.06118917
##	HomeTeamAbbrLAC
##	-0.20257936
##	HomeTeamAbbrMIA
##	-0.13993846
##	HomeTeamAbbrMIN
##	0.09406523
##	${\tt HomeTeamAbbrNE}$
##	0.83606442
##	HomeTeamAbbrNO
##	-0.14217071
##	${\tt HomeTeamAbbrNYG}$
##	0.17937087
##	${\tt HomeTeamAbbrNYJ}$
##	0.38781682
##	${\tt HomeTeamAbbrOAK}$
##	0.14923110
##	${\tt HomeTeamAbbrPHI}$
##	0.12023634
##	${\tt HomeTeamAbbrPIT}$
##	-0.00804839
##	HomeTeamAbbrSEA
##	0.37715297
##	${\tt HomeTeamAbbrSF}$
##	-0.31175042
##	${\tt HomeTeamAbbrTB}$
##	0.34331602
##	HomeTeamAbbrTEN
##	0.14974627
##	HomeTeamAbbrWAS
##	0.18317262
##	VisitorTeamAbbrATL
##	0.11926127
##	VisitorTeamAbbrBAL
##	-1.22593702
##	VisitorTeamAbbrBUF
##	-0.14853578
##	VisitorTeamAbbrCAR
##	-0.22602736
##	VisitorTeamAbbrCHI
##	-0.21665419
##	VisitorTeamAbbrCIN
##	-0.46257061
##	VisitorTeamAbbrCLE
##	0.02072874
##	VisitorTeamAbbrDAL
##	-0.05521551
##	VisitorTeamAbbrDEN
##	-0.01958155
##	VisitorTeamAbbrDET
##	-0.12727400
##	VisitorTeamAbbrGB
##	0.03796966

##	${\tt VisitorTeamAbbrHOU}$
##	-1.29096177
##	VisitorTeamAbbrIND
##	-0.51274503
##	VisitorTeamAbbrJAX
##	0.26487852
##	VisitorTeamAbbrKC
##	-0.04753699
##	VisitorTeamAbbrLA
##	0.65637090
##	VisitorTeamAbbrLAC
##	-0.41161468
##	VisitorTeamAbbrMIA
##	-0.03750437
##	VisitorTeamAbbrMIN
##	-0.28207140
##	VisitorTeamAbbrNE
##	0.32397861
##	VisitorTeamAbbrNO
##	-0.56852449
##	VisitorTeamAbbrNYG
##	-0.28675035
##	VisitorTeamAbbrNYJ
##	-0.38133070
##	VisitorTeamAbbrOAK
##	-0.02212047
##	VisitorTeamAbbrPHI
##	-0.08990205
##	VisitorTeamAbbrPIT
##	-0.52749840
##	VisitorTeamAbbrSEA
##	0.01376558
##	VisitorTeamAbbrSF
##	-0.13122065
##	VisitorTeamAbbrTB
##	0.07175978
##	VisitorTeamAbbrTEN
##	-0.52592300
##	VisitorTeamAbbrWAS
##	0.53538537
##	Week
##	-0.01288763
##	Temperature
##	-0.00513192
##	Humidity
##	-0.00685989
##	TimeDifference
##	0.21244143
##	HomeScoreAdvantage
##	-0.00937183
##	PlayerAge
##	-0.05285723

What if we always predicted the mean of yards? (Just Intercept Term)

```
NFL_Train_Total_Model1 = lm(Yards ~ 1, data=NFL_DATA_TRAIN_Filtered_Final)
NFL_Train_Total_Model1.cv = cvFit(NFL_Train_Total_Model1, data=NFL_DATA_TRAIN_Filtered_Final, y=NFL_DATA_NFL_Train_Total_Model1.cv # RMSE= 6.4191
## 10-fold CV results:
## CV
## 6.5943
```

Forward Stepwise Regression

```
min_model = NFL_Train_Total_Model1
max_model = NFL_Train_Total_Model
stepwise_model = step(min_model, direction='forward', scope=max_model)
## Start: AIC=63218
## Yards ~ 1
summary(stepwise_model)
##
## lm(formula = Yards ~ 1, data = NFL_DATA_TRAIN_Filtered_Final)
##
## Residuals:
     Min 1Q Median
                         3Q
## -18.28 -3.28 -1.28 1.72 94.72
##
## Coefficients:
              Estimate Std. Error t value
                                                    Pr(>|t|)
                          0.0509 84 < 0.000000000000000 ***
## (Intercept) 4.2793
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.59 on 16757 degrees of freedom
# Ultimately, this is saying that the extra info we gain is not worth the complexity
```

Backward Stepwise Regerssion

```
backward_step = step(max_model, direction='backward')
backward_step
backward_step.cv = cvFit(backward_step, data=NFL_DATA_TRAIN_Filtered_Final, y=NFL_DATA_TRAIN_Filtered_F
backward_step.cv # RMSE= 6.5386 # Best Model so far

## 10-fold CV results:
## CV
## 6.5386
```

Ridge Regression

plot(cvfit)

```
library(glmnet)
## NORMALIZE Continuous Covariates # Will have to normalize defenders in box if we make continuous
Standardized NFL TRAIN = NFL DATA TRAIN Filtered Final
Standardized_NFL_TRAIN$X = scale(Standardized_NFL_TRAIN$X)
Standardized_NFL_TRAIN$Y = scale(Standardized_NFL_TRAIN$Y)
Standardized_NFL_TRAIN$GameClock = scale(Standardized_NFL_TRAIN$GameClock)
Standardized_NFL_TRAIN$Distance = scale(Standardized_NFL_TRAIN$Distance)
Standardized_NFL_TRAIN$PlayerHeight = scale(Standardized_NFL_TRAIN$PlayerHeight)
Standardized NFL TRAIN$PlayerWeight = scale(Standardized NFL TRAIN$PlayerWeight)
Standardized_NFL_TRAIN$Week = scale(Standardized_NFL_TRAIN$Week)
Standardized_NFL_TRAIN$Temperature = scale(Standardized_NFL_TRAIN$Temperature)
Standardized_NFL_TRAIN$Humidity = scale(Standardized_NFL_TRAIN$Humidity)
Standardized_NFL_TRAIN$TimeDifference = scale(Standardized_NFL_TRAIN$TimeDifference)
Standardized NFL TRAIN$HomeScoreAdvantage = scale(Standardized NFL TRAIN$HomeScoreAdvantage)
Standardized_NFL_TRAIN$PlayerAge = scale(Standardized_NFL_TRAIN$PlayerAge)
# Ridge Regression
# Ridge alpha = 0
x = model.matrix(Yards~. , Standardized_NFL_TRAIN)
y = Standardized_NFL_TRAIN$Yards
ridge_mod = glmnet(x, y, alpha = 0)
# install.packages("plotmo")
plot_glmnet(ridge_mod, label = TRUE)
## Warning in TeachingDemos::spread.labs(beta[iname, ncol(beta)], mindiff =
## 1.2 * : Maximum iterations reached
                                  Lambda
                                     7.4
           400
                        55
                                                              0.14
                                                                       OPR0T3WD
                                                                              2WR.1DB
                                                                       OPR3T0WL
                                                                       PsssTBLT
OO2R0T1W
                                                                       PssssTNO
Coefficients
                                                                              WR.19b
                                                                       OP1RB,1TE,2WR,1DL
                                                                       DP5D3L3D
DP6D4L1D
                                                                       DP5D5I 1D
                                      ż
            6
                                                  0
                                                               -2
                               Log Lambda
cvfit = cv.glmnet(x, y, alpha = 0)
```


Get coefficients when log lamda is 10.098

```
y_predicted <- predict(cvfit, s = bestlam, newx = x) # same x, in sample prediction
ridge_RMSE = sqrt(mean((y_predicted - y)^2))
# ridge_RMSE # = 6.3333
#coef(ridge_mod)[,4.9384] # Best is again basically forcing all the betas to 0. Just predict mean</pre>
```

Lasso Regression

```
lasso_mod= glmnet(x, y, alpha = 1)
# coef(lasso_mod)[,50]
plot_glmnet(lasso_mod, label = TRUE)

## Warning in TeachingDemos::spread.labs(beta[iname, ncol(beta)], mindiff =
## 1.2 * : Maximum iterations reached
```


cvfit_lasso = cv.glmnet(x, y, alpha = 1)
plot(cvfit_lasso)

203 202 200 196 197 181 153 105 57 12 4 3 1 0

bestlam_lasso = cvfit_lasso\$lambda.min # = 0.046056

y_predicted_lasso <- predict(cvfit_lasso, s = bestlam_lasso, newx = x) # same x, in sample prediction
lasso_RMSE = sqrt(mean((y_predicted_lasso - y)^2))
lasso_RMSE # = 6.3349</pre>

```
## [1] 6.5326

out = glmnet(x, y, alpha = 1) # Fit ridge regression model on full dataset
#predict(out, type = "coefficients", s = bestlam_lasso)[1:80,] # Display coefficients using lambda chos
```

Classification. Outcome Variable: NFL Yards >= distance. (Whether or not they get a first down)

With all Covariates

```
NFL_Train_Total_Model_c <- NFL_DATA_TRAIN_Filtered_Final
NFL_Train_Total_Model_c$FirstDown <- ifelse(
   NFL_Train_Total_Model_c$Yards >= NFL_Train_Total_Model_c$Distance, 1, 0)
NFL_Train_Total_Model_c$FirstDown <-
   factor(NFL_Train_Total_Model_c$FirstDown)
NFL_Train_Total_Model_c <- select(NFL_Train_Total_Model_c, -Yards) #remove colinear response variable f</pre>
```

Implementing Cross-Fold Validation for Classification

```
set.seed(122)
f <- createFolds(y=NFL_Train_Total_Model_c$FirstDown, k=10)
train_fold <- function (i) {
   NFL_Train_Total_Model_c[-unlist(f[i]),]
}

test_fold <- function (i) {
   NFL_Train_Total_Model_c[unlist(f[i]),]
}</pre>
```

Baseline model

```
## Confusion Matrix and Statistics
##
##
             Reference
                 0
## Prediction
                      1
##
            0 1233
                     82
            1 226 134
##
##
##
                  Accuracy: 0.816
##
                    95% CI: (0.797, 0.834)
       No Information Rate: 0.871
##
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa: 0.363
##
##
    Mcnemar's Test P-Value : 0.00000000000000369
##
##
               Sensitivity: 0.845
##
               Specificity: 0.620
##
            Pos Pred Value : 0.938
##
            Neg Pred Value: 0.372
                Prevalence: 0.871
##
##
            Detection Rate: 0.736
##
      Detection Prevalence: 0.785
         Balanced Accuracy: 0.733
##
##
##
          'Positive' Class: 0
##
Why you don't use in-prediction error - biased -lower error or higher accuracy
  glm_Model = glm(FirstDown ~ ., data=NFL_Train_Total_Model_c,
                               family = binomial)
  predict_result <- predict(glm_Model, newdata=NFL_Train_Total_Model_c, type="response")</pre>
  predict_logit <- ifelse(predict_result > 0.5, 1, 0)
  t <- table(predict_logit, NFL_Train_Total_Model_c$FirstDown)
  accuracyR = (t[1,1]+t[2,2])/dim(NFL_Train_Total_Model_c)[1] #0.82438
```

#Penalized Logistic Regression #Ridge error in prediction

Lasso

```
lasso_mod= glmnet(x, y, alpha = 1)
```

SVM

have to use parallelSVM since SVM from e1071 would time out.

```
predict_result <- predict(parallel_svm,</pre>
                            newdata=test_fold(i), type="response")
 t <- table(predict_result, test_fold(i)$FirstDown)</pre>
  accuracyR[i] = (t[1,1]+t[2,2])/dim(test_fold(i))[1]
cat("Mean accuracy of 10-fold validation is: ", mean(accuracyR))
## Mean accuracy of 10-fold validation is: 0.81328
#print(mean(accuracyR)) #0.81483
confusionMatrix(test_fold(i)$FirstDown, factor(predict_result))
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
              0
           0 1250
##
                     65
##
            1 240 120
##
##
                  Accuracy: 0.818
##
                    95% CI: (0.799, 0.836)
##
       No Information Rate: 0.89
##
       P-Value [Acc > NIR] : 1
##
                     Kappa : 0.345
##
##
##
   Mcnemar's Test P-Value : <0.0000000000000002
##
##
               Sensitivity: 0.839
##
               Specificity: 0.649
            Pos Pred Value: 0.951
##
            Neg Pred Value: 0.333
##
                Prevalence: 0.890
##
##
            Detection Rate: 0.746
##
      Detection Prevalence: 0.785
##
         Balanced Accuracy: 0.744
##
##
          'Positive' Class: 0
##
```

Ada

```
## Mean accuracy of 10-fold validation is: 0.81066
#print(mean(accuracyR)) #0.81251
confusionMatrix(test_fold(i)$FirstDown, factor(predict_ada))
## Confusion Matrix and Statistics
##
##
           Reference
              0
## Prediction
                   1
##
           0 1237
                   78
           1 247 113
##
##
##
                Accuracy: 0.806
##
                  95% CI: (0.786, 0.825)
      No Information Rate: 0.886
##
      P-Value [Acc > NIR] : 1
##
##
##
                   Kappa : 0.307
##
   ##
##
             Sensitivity: 0.834
##
##
             Specificity: 0.592
##
           Pos Pred Value : 0.941
##
           Neg Pred Value : 0.314
              Prevalence: 0.886
##
##
           Detection Rate: 0.739
##
     Detection Prevalence: 0.785
##
        Balanced Accuracy: 0.713
##
##
         'Positive' Class : 0
##
```