Chapitre 5-4) Classification Ascendante Hiérarchique (CAH)

Maxime El Masri

3 MIC / INSA Toulouse

2023-2024

Partie 4

- Hiérarchie indicée et CAH
- 2 Mesures d'agrégation entre classes
- Coupure du dendrogramme
- 4 Applications et conclusion

2/31

Introduction

Données : On observe n individus décrits par p variables

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix} \text{ avec } x_i = (x_{i1}, \dots, x_{ip}) \in \mathcal{X}$$

L'ensemble des individus sera également désigné par la matrice X.

- Objectif : Hiérarchiser les données c'est à dire obtenir une suite de partitions emboîtées des données.
- Notation : on note d la dissimilarité choisie entre les individus.

Hiérarchie

Définition : Hiérarchie

Une **hiérarchie** \mathcal{H} est un ensemble de parties de \mathbf{X} satisfaisant:

- $\mathbf{2} \mathbf{X} \in \mathcal{H}$
- ③ $\forall A, B \in \mathcal{H}, A \cap B \in \{\emptyset, A, B\}$ (autrement dit $A \cap B = \emptyset$ ou $A \subset B$ ou $B \subset A$).

 $\frac{\mathsf{Exemple}}{\mathsf{de}\ \{1\},\{2\},\{3\},\{4\},\{1,2\},\{3,4\},\{1,2,3,4\}\}}\ \mathsf{est}\ \mathsf{une}\ \mathsf{hi\acute{e}rarchie}\ \mathsf{de}\ \{1,2,3,4\}.$

 $\frac{\text{Remarque}}{\text{par partitionnements de type kmeans, DBSCAN...}} (\to \text{méthodes}$

Hiérarchie indicée

Définition: Hiérarchie indicée

Une **hiérarchie indicée** est un couple (\mathcal{H}, h) où \mathcal{H} est une hiérarchie et $h: \mathcal{H} \to \mathbb{R}^+$ satisfait :

 $\underline{\mathsf{Exemple}} \ : \ \mathcal{H} = \{ \{A\}, \{B\}, \{C\}, \{D\}, \{E\}, \{C, D\}, \{A, B\}, \{C, D, E\}, \{A, B, C, D, E\} \}$

- $h({x}) = 0, \forall x \in {A, B, C, D, E}$
- $h({A, B}) = 1, h({C, D}) = 3.5$
- $h({C, D, E}) = 5$
- $h({A, B, C, D, E}) = 7.5$
- Représentation graphique d'une hiérarchie indicée : le **dendrogramme**.

Représentation par dendrogramme

La représentation du dendrogramme n'est pas unique : si \mathbf{X} est un ensemble de n points, il existe 2^{n-1} possibilités pour ordonner les feuilles de l'arbre.

Construction d'une hiérarchie indicée

• <u>lère stratégie</u>: on part du bas du dendrogramme (les singletons) et on <u>agrège deux à deux</u> les parties les plus proches jusqu'à obtenir qu'une seule classe. ⇒ **Classification Ascendante Hiérarchique (CAH)**

Question : Comment choisir les classes à agréger ?

 <u>2ème stratégie</u>: on part du haut du dendrogramme en procédant par divisions successives de X jusqu'à obtenir des classes réduites à des singletons

⇒ Classification Descendante Hiérarchique (CDH)

Question : Comment choisir la classe à diviser à chaque étape ?

Algorithme général de CAH

- Initialisation : partition en n singletons $\mathcal{P}_n = \{\{x_1\}, \dots, \{x_n\}\}$
- Étapes agrégatives :
 - on part de la partition précédente $\mathcal{P}_K = \{\mathcal{C}_1, \dots, \mathcal{C}_K\}$ en K classes
 - ▶ on agrège les deux classes C_k et $C_{k'}$ qui minimisent une **mesure** d'agrégation $D(C_k, C_{k'})$
 - ightharpoonup on obtient ainsi une partition en K-1 classes
- On recommence l'étape d'agrégation jusqu'à obtenir une partition en une seule classe

Maxime El Masri CAH 2023-2024 8 / 31

(Bisson 2001)

Les choix à faire

- Choix d'une **dissimilarité** d entre les points
- Choix d'une **mesure d'agrégation** *D* entre classes
- Construction d'un dendrogramme
- Choix d'un critère pour la coupure du dendrogramme pour en déduire une classification des données

Partie 4

- Hiérarchie indicée et CAH
- 2 Mesures d'agrégation entre classes
- Coupure du dendrogramme
- 4 Applications et conclusion

Mesures de lien

Soit d une dissimilarité sur \mathcal{X}

• Lien simple (Single linkage) ou saut minimum :

$$D(\mathcal{C}_k, \mathcal{C}_{k'}) = \min_{i \in \mathcal{C}_k, \ell \in \mathcal{C}_{k'}} d(x_i, x_\ell)$$

- Classes avec des diamètres très différents, aux formes irrégulières
- Lien complet (Complete linkage) ou saut maximum :

$$D(C_k, C_{k'}) = \max_{i \in C_k, \ell \in C_{k'}} d(x_i, x_\ell)$$

- Classes compactes, de tailles similaires et rapprochées
- Sensible aux données aberrantes
- Lien moyen (Average linkage) ou saut moyen :

$$D(C_k, C_{k'}) = \frac{1}{|C_k||C_{k'}|} \sum_{i \in C_k} \sum_{\ell \in C_{k'}} d(x_i, x_\ell)$$

- Classes de variance proche
- Plus robuste aux données aberrantes

Mesures de lien

Exemple jouet

Exemple jouet

• d : distance euclidienne usuelle

Propriété

Soit $\mathcal{P}_K = \{\mathcal{C}_1, \dots, \mathcal{C}_K\}$ une partition des données et soit $k \neq k'$. Si l'on rassemble les deux classes \mathcal{C}_k et $\mathcal{C}_{k'}$ en une classe notée $\mathcal{C}_{k \cup k'}$ alors l'inertie intraclasse augmente (l'inertie interclasse diminue) de :

$$\frac{|\mathcal{C}_k||\mathcal{C}_{k'}|}{|\mathcal{C}_k|+|\mathcal{C}_{k'}|}d(m_k,m_{k'})^2.$$

où m_k (resp. $m_{k'}$) centre de gravité de C_k (resp. $C_{k'}$) et d est une distance euclidienne.

Méthode de Ward : Elle consiste à choisir à chaque étape les deux classes dont le regroupement implique une **augmentation minimale de l'inertie intraclasse**.

Mesure d'agrégation de Ward

$$D_W(\mathcal{C}_k,\mathcal{C}_{k'}) = \frac{|\mathcal{C}_k||\mathcal{C}_{k'}|}{|\mathcal{C}_k|+|\mathcal{C}_{k'}|}d(m_k,m_{k'})^2$$

où m_k (resp. $m_{k'}$) centre de gravité de C_k (resp. $C_{k'}$) et d est une distance euclidienne.

- Tendance à construire des classes ayant des effectifs très proches
- Méthode optimale lorsque les classes sont gaussiennes
- Méthode utilisée par défaut dans R notamment.

Exemple jouet

Formule de Lance et Williams

Permet de mettre à jour les distances pour l'agrégation :

$$D(\mathcal{C}_{u}, \mathcal{C}_{k \cup k'}) = \alpha_{1}D(\mathcal{C}_{u}, \mathcal{C}_{k}) + \alpha_{2}D(\mathcal{C}_{u}, \mathcal{C}_{k'}) + \alpha_{3}D(\mathcal{C}_{k}, \mathcal{C}_{k'}) + \alpha_{4}|D(\mathcal{C}_{u}, \mathcal{C}_{k}) - D(\mathcal{C}_{u}, \mathcal{C}_{k'})|$$

Lien	α_1	α_2	α_3	$lpha_{ extsf{4}}$
simple	0.5	0.5	0	-0.5
complet	0.5	0.5	0	0.5
moyen	$rac{ \mathcal{C}_k }{ \mathcal{C}_{k'} + \mathcal{C}_k }$	$rac{ \mathcal{C}_{k'} }{ \mathcal{C}_{k'} + \mathcal{C}_k }$	0	0
Ward	$\frac{ \mathcal{C}_u + \mathcal{C}_k }{ \mathcal{C}_k + \mathcal{C}_{k'} + \mathcal{C}_u }$	$\frac{ \mathcal{C}_u + \mathcal{C}_{k'} }{ \mathcal{C}_k + \mathcal{C}_{k'} + \mathcal{C}_u }$	$-rac{ \mathcal{C}_u }{ \mathcal{C}_k + \mathcal{C}_{k'} + \mathcal{C}_u }$	0

Indicer la hiérarchie

- En général, $\forall A, B \in \mathcal{H}$, $h(A \cup B) = D(A, B)$ (vrai pour les mesures des liens simple et complet, et pour la mesure de Ward)
- Si (H, h) ainsi définie ne vérifie pas les propriétés d'une hiérarchie indicée, on peut utiliser la relation suivante:

$$\forall A, B \in \mathcal{H}, \ h(A \cup B) = \max[D(A, B), h(A), h(B)]$$

(c'est le cas si D est la mesure du lien moyen)

Algorithme CAH de Ward

• Initialisation : Calculer les mesures de Ward entre les n singletons $\{x_1\}, \ldots, \{x_n\}$:

$$D_W(\{x_i\}, \{x_j\}) = \frac{1}{2}d(x_i, x_j)^2$$

- Étapes agrégatives :
 - ▶ on part de la partition précédente $\mathcal{P}_K = \{\mathcal{C}_1, \dots, \mathcal{C}_K\}$ en K classes
 - on agrège les deux classes C_k et $C_{k'}$ qui minimisent la mesure de Ward $D_W(C_k, C_{k'})$ pour une partition en K-1 classes
 - ▶ on calcule la mesure de Ward entre $C_k \cup C_{k'}$ et les autres C_j avec la formule de Lance et Williams :

$$D_{W}(C_{j}, C_{k \cup k'}) = \sum_{i \in \{k, k'\}} \frac{|C_{j}| + |C_{i}|}{|C_{j}| + |C_{k}| + |C_{k'}|} D_{W}(C_{j}, C_{i}) - \frac{|C_{j}|}{|C_{j}| + |C_{k}| + |C_{k'}|} D_{W}(C_{k}, C_{k'})$$

• On recommence l'étape d'agrégation jusqu'à obtenir une partition en une seule classe

Partie 4

- Hiérarchie indicée et CAH
- 2 Mesures d'agrégation entre classes
- 3 Coupure du dendrogramme
- Applications et conclusion

Comment faire?

- Le choix du niveau de coupure du dendrogramme détermine le nombre de classes et ces classes sont alors uniques
- On peut définir la coupure du dendrogramme en déterminant à l'avance le nombre de classes dans lesquelles on désire répartir l'ensemble des données
- On peut couper le dendrogramme à une hauteur considérée comme suffisamment réduite (= faible inertie intra-classe pour la mesure de Ward)
- On peut aussi faire ce choix en utilisant les indices tels que R², CH, Silhouette . . .

Rappels

- Critères fondés sur les inerties
 - R-Square :

$$K \mapsto RSQ(K) = 1 - \frac{I_{intra}(\mathcal{P}_K)}{I_{totale}} = \frac{I_{inter}(\mathcal{P}_K)}{I_{totale}}$$

On retient l'endroit où la courbe $K \mapsto RSQ(K)$ forme un coude.

Semi-Partial R-Square :

$$K \mapsto SPRSQ(K) = \frac{I_{inter}(\mathcal{P}_K) - I_{inter}(\mathcal{P}_{K-1})}{I_{totale}}$$

On retient l'endroit où on a la plus forte réduction du SPRSQ.

CH (Calinski-Harabasz) :

$$K \mapsto CH(K) = \frac{I_{inter}(\mathcal{P}_K)/(K-1)}{I_{intra}(\mathcal{P}_K)/(n-K)}$$

On cherche un pic sur cette courbe

Critère Silhouette

Exemple des données simulées

Exemple des données simulées

Exemple des données simulées

Partie 4

- Hiérarchie indicée et CAH
- 2 Mesures d'agrégation entre classes
- Coupure du dendrogramme
- Applications et conclusion

Commandes R

- hc=hclust(d,method=)
 - ightharpoonup d: tableau de distances (produit par exemple par dist() ou daisy())
 - method : agrégation "ward.D2", "single", "complete", "average", . . .
- plot(hc,hang=,...) ou ggdendrogram(hc,...) ou fviz_dend()
 pour tracer le dendrogramme
- cutree(hc,k=..) pour obtenir la classification en k classes.

Exemple des iris

```
dx<-dist(iris[,-5],method="euclidian")
hward<-hclust(dx,method="ward.D2")</pre>
```


Exemple des iris

Avantages et inconvénients CAH

Avantages :

- ► Méthode flexible pour le niveau de finesse de la classification (pas nécessaire de fixer le nombre de classes à l'avance)
- Prise en compte facile de distances et d'indices de similarité de n'importe quel type

Limites:

- Choix de la coupure de l'arbre
- Classes très différentes selon la mesure d'agrégation choisie
- ▶ Coûteux en calcul et mémoire pour de grands jeux de données.