

Project Overview

- Goal: Analyze social media posts to uncover emotional trends and user behavior.
- Dataset includes text, sentiments, timestamps, hashtags, engagement metrics, and geography.
- Focus: Sentiment patterns, hashtag trends, platform and regional engagement insights.

Problem Statement

1

Classify sentiment from user content.

2

Explore emotional trends over time and location.

3

Analyze user engagement (likes/retweets).

4

Compare platformspecific and hashtag-based behavior.

Dataset **Exploration**

- Cleaned unnecessary columns and standardized key features.
- Extracted time features: Hour, Day, Month.
- Parsed hashtags and cleaned platform/country fields.
- Selected features: Text, Sentiment, Time, Engagement, Platform, Country, Hashtags.

Sentiment Cleaning

- Over 270 raw sentiment values grouped into: positive, neutral, negative.
- Used domain-based mapping to ensure 100% coverage.
- Prepared 'Sentiment_grouped' column for consistent analysis.

```
Remaining unmapped sentiments:
Series([], Name: count, dtype: int64)
Remaining unmapped total: 0
```

Temporal & Platform Trends

- Analyzed sentiment by hour of day.
- Detected engagement peaks during mid-day.
- Twitter: Neutral | Instagram:
 Positive | Facebook: Balanced

User Engagement Insights

- Analyzed average Likes and Retweets by sentiment.
- Found positive sentiment yields higher engagement.
- Likes vs. Retweets Correlation: 0.998

Hashtag Analysis

- Exploded hashtags for analysis.
- Plotted: top hashtags by count, sentiment, likes, retweets.
- High engagement examples: #adeleconcert, #motivation, #sunsetbeauty

Avg Retweets

Geographical Trends

- Standardized country names.
- Top 10 countries plotted by sentiment group.
- USA, UK trend positive; some regions neutral.

Dominant Sentiment on 2010-05-15

Daily Dominant Sentiment by Country (Chronological, Emoji-Enhanced)

Timeline & Progress

- Dataset Exploration
- Feature Engineering
- Sentiment Grouping
- EDA & Visualization
- Hashtag & Engagement Analysis
- Predictive Modeling (Week 6)

Next Steps

Predictive Modeling - Classification

- Used TF-IDF + metadata (platform, hashtags, time) as features
- Trained 5 models: Logistic Regression, Naive Bayes, Random Forest, XGBoost, SVM
- Compared test accuracies across all models
- SVM achieved the highest performance

Model Evaluation (Before SMOTE)

Best Parameters: C=1, kernel=linear

• Test Accuracy: **81.81%**

• Macro F1 Score: **0.74**

 Class imbalance impacted recall for Negative sentiment class (recall = 0.37)

 $\overline{\mathbf{T}}$

Fitting 5 folds for each of 12 candidates, totalling 60 fits
Best Parameters: {'C': 1, 'gamma': 'scale', 'kernel': 'linear'}
Best Cross-Validation Accuracy: 0.836283185840708

Test Accuracy: 0.81818181818182

Classification Report:

	precision	recall	f1-score	support
0	0.84	0.82	0.83	44
1	1.00	0.37	0.54	19
2	0.80	0.93	0.86	80
accuracy			0.82	143
macro avg	0.88	0.70	0.74	143
weighted avg	0.84	0.82	0.80	143

SMOTE & Improvement

Performance After Balancing with SMOTE:

- Applied SMOTE to balance class distribution
- Recall for negative sentiment improved: 0.37 → 0.47
- Test Accuracy: **82.5**%
- Macro F1: 0.77 | Weighted F1: 0.82

Accuracy: 0.8251748251748252

Classification Report:

	precision	recall	f1-score	support
0	0.84	0.84	0.84	44
1	0.82	0.47	0.60	19
2	0.82	0.90	0.86	80
accuracy			0.83	143
macro avg	0.83	0.74	0.77	143
weighted avg	0.83	0.83	0.82	143

```
Best Params: {'C': 10, 'kernel': 'linear'}
Test Accuracy: 0.8111888111888111
```

......

Hyperparameter Tuning

- Re-ran GridSearch on SMOTE-balanced data
- Best Parameters: C=10, kernel=linear
- Slight drop in accuracy → stuck with original (C=1)
- Final model = SVM + SMOTE (C=1, linear)

Engagement Prediction - Regression

Used Random Forest Regressor to predict post likes

Features: TF-IDF + Time + Platform + Hashtags

RMSE: **0.63**

 R^2 Score: **0.997** \rightarrow Excellent fit

→

Regression Results:
RMSE: 0.6300510579820776
R² Score: 0.9976485804042663

Actual vs Predicted Likes (Sample of 50)

Final Insights

SVM + SMOTE = BEST SENTIMENT CLASSIFIER WITH BALANCED RECALL & PRECISION

POSITIVE POSTS LEAD TO HIGHER USER ENGAGEMENT

HASHTAGS LIKE #MOTIVATION, #ADELECONCERT DRIVE MOST LIKES

PREDICTIVE REGRESSION
MODEL IS HIGHLY RELIABLE
FOR ENGAGEMENT
FORECASTING

Thank You

QUESTIONS?

TEAM: DATA BUSTERS

GITHUB: GITHUB.COM/DOTBION/SENTIMENT-ANALYSIS-NYU-DSB