§7. Нахождение частного решения линейного неоднородного уравнения с постоянными коэффициентами и со специальным видом правой части

Рассмотрим линейное неоднородное уравнение с постоянными коэффициентами

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = q(x).$$
 (7.1)

Вводя линейный дифференциальный оператор L[y], перепишем (7.1) в виде

$$L[y] = q(x). (7.2)$$

Частное решение этого уравнения можно искать с помощью изложенного выше метода вариации произвольных постоянных, однако это решение может быть найдено проще и без применения метода Лагранжа, при специальном виде правой части уравнения (7.1) в следующих трех случаях:

I.
$$q(x) = P_m(x) = A_0 + A_1 x + A_2 x^2 + ... + A_m x^m \ (m \ge 0);$$

II.
$$q(x) = P_m(x)e^{\alpha x} = (A_0 + A_1x + ... + A_mx^m)e^{\alpha x}$$
;

III.
$$q(x) = \left[P_m(x) \cos \beta x + P_l^*(x) \sin \beta x \right] e^{\alpha x}$$
,

где

$$P_m(x) = A_0 + A_1 x + \ldots + A_m x^m$$

$$P_l^*(x) = A_0^* + A_1^*x + \dots + A_l^*x^l.$$

Отметим, что из этих трех случаев каждый предыдущий, по существу, является частным случаем последующего.

Рассмотрим первый из указанных случаев.

І. Пусть дано уравнение

$$L[y] = P_m(x), (7.3)$$

где

$$P_m(x) = A_0 + A_1 x + \ldots + A_m x^m.$$

Запишем однородное уравнение L[y] = 0, соответствующее исходному неоднородному уравнению (7.3), и составим для него характеристическое уравнение

$$\varphi(\lambda) \equiv \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \ldots + a_n = 0.$$

1) Пусть $\lambda=0$ не является корнем характеристического уравнения; тогда $a_n \neq 0$.

В этом случае частное решение \tilde{y} неоднородного уравнения (7.3) будем искать в виде многочлена той же степени, что и многочлен $q(x) = P_m(x)$, т. е. в виде

$$\tilde{y} = B_0 + B_1 x + B_2 x^2 + \dots + B_m x^m = Q_m(x),$$
(7.4)

где B_0 , B_1 , ..., B_m – неизвестные пока числа, которые надо подобрать так, чтобы удовлетворить уравнению (7.3).

Подставляя (7.4) в (7.3) получаем тождественное равенство двух многочленов: в левой части многочлен с неопределенными коэффициентами B_i , а в правой части многочлен с известными коэффициентами A_i . Приравнивая коэффициенты при одинаковых степенях x, получим следующую систему:

Эта система уравнений разрешима, так как $a_n \neq 0$. Из первого уравнения системы (7.5) найдем $B_m = A_m/a_n$, затем из второго уравнения определим B_{m-1} и т. д. Из последнего уравнения найдем B_0 . Подставляя найденные коэффициенты B_i в (7.4), найдем искомое частное решение.

2) Пусть среди корней характеристического уравнения есть корень $\lambda = 0$ кратности k . Тогда

$$a_n = a_{n-1} = \dots = a_{n-k+1} = 0, \quad a_{n-k} \neq 0,$$

и уравнение (7.3) принимает вид

$$y^{(n)} + a_1 y^{(n-1)} + ... + a_{n-k} y^{(k)} = P_m(x).$$

Полагая здесь $y^{(k)} = z$, получим

$$z^{(n-k)} + a_1 z^{(n-k-1)} + \ldots + a_{n-k} z = P_m(x)$$
,

где $a_{n-k} \neq 0$.

По доказанному выше частное решение этого уравнения имеет вид

$$\widetilde{z} = B_0 + B_1 x + \ldots + B_m x^m = \widetilde{y}^{(k)},$$

откуда в результате k -кратного интегрирования получим частное решение исходного уравнения в виде многочлена степени (m+k)

$$\tilde{y} = x^k Q_m(x)$$

где $Q_m(x)$ имеет вид (7.4).

Таким образом, получаем следующее правило: уравнение $L[y] = P_m(x)$, правая часть которого – многочлен степени m, имеет частное решение вида

$$\tilde{y} = x^k (B_0 + B_1 x + ... + B_m x^m),$$
(7.6)

где k — кратность корня нуль характеристического уравнения (если нуль не является корнем характеристического уравнения, то k=0). Коэффициенты B_0, B_1, \ldots, B_m определяются из тождества, получающегося после подстановки \tilde{y} в уравнение $L[y] = P_m(x)$ указанным выше способом.

 $\it 3амечание.$ Из формулы Лейбница для производной $\it k$ -го порядка от произведения двух функций следует равенство

$$(e^{\alpha x}x)^{(k)} = e^{\alpha x} \sum_{i=1}^{k} C_k^i \alpha^i z^{(k-i)},$$

с помощью которого легко доказывается тождество

$$L^{0}[e^{\alpha x}z] \equiv e^{\alpha x} \sum_{k=0}^{n} \frac{1}{k!} \varphi^{(k)}(\alpha) z^{(k)}.$$

Используя это тождество, можно доказать следующие два правила:

II. Уравнение

$$L[y] = e^{\alpha x} P_m(x),$$

где $P_m(x)$ – многочлен степени m, имеет частное решение вида:

$$\tilde{y} = x^k e^{\alpha x} (B_0 + B_1 x + \dots + B_m x^m),$$
(7.7)

где k — кратность корня α характеристического уравнения (если α не является корнем характеристического уравнения, то k=0).

III. Уравнение

$$L[y] = e^{\alpha x} \left[P_m(x) \cos \beta x + P_l^*(x) \sin \beta x \right],$$

где $P_{m}(x)$, $P_{l}^{*}(x)$ — многочлены степени соответственно m и l, имеет частное решение вида

$$\widetilde{y} = x^k e^{\alpha x} \Big[(B_0 + B_1 x + \dots + B_s x^s) \cos \beta x + (B_0^* + B_1^* x + \dots + B_s^* x^s) \sin \beta x \Big].$$
 (7.8)

Здесь $s = \max(m, l)$, k – кратность корня $\alpha + i\beta$ характеристического уравнения.

Таблица (правило построения частного решения в трех рассмотренных случаях)

$N_{\underline{0}}$	Вид правой части уравнения $L[y] = q(x)$	Вид частного решения
1	$q(x) = A_0 + A_1 x + \ldots + A_m x^m$	$\widetilde{y} = x^k (B_0 + B_1 + \ldots + B_m x^m)$, где k – кратность корня $\lambda = 0$ характеристического уравнения (если нуль не является корнем характеристического уравнения, то $k = 0$).
2	$q(x) = e^{\alpha x} (A_0 + A_1 x + \dots + A_m x^m)$	$\widetilde{y} = x^k e^{\alpha x} (B_0 + B_1 + \ldots + B_m x^m)$, где k – кратность корня $\lambda = \alpha$ характеристического уравнения (если α не является корнем характеристического уравнения, то $k = 0$).
3	$q(x) = e^{\alpha x} \Big[(A_0 + A_1 x + \dots + A_m x^m) \cos \beta x + + (A_0^* + A_1^* x + \dots + A_l^* x^l) \sin \beta x \Big]$	$\widetilde{y} = x^k e^{\alpha x} \Big[(B_0 + B_1 + + B_s x^s) \cos \beta x + \\ + (B_0^* + B_1^* x + B_s^* x^s) \sin \beta x \Big],$ где $s = \max(m, l), k$ — кратность корня $\lambda = \alpha + i\beta$ характеристического уравнения (если $\alpha + i\beta$ не является корнем характеристического уравнения, то $k = 0$).

Пример. Найти общее решение уравнения $y''' + y' = x + \sin x$.

▶ Ищем общее решение исходного уравнения в виде

$$y = Y + \widetilde{y}$$
,

где Y — общее решение соответствующего однородного уравнения y''' + y' = 0, а \tilde{y} — какое-либо частное решение данного неоднородного уравнения. Это решение по теореме о суперпозиции решений будем искать в виде суммы двух решений

$$\widetilde{y} = \widetilde{y}_1 + \widetilde{y}_2$$

где $\widetilde{y}_1,\ \widetilde{y}_2$ — соответственно решения уравнений y'''+y'=x , $y'''+y'=\sin x$.

Составим характеристическое уравнение $\lambda^3 + \lambda = 0$ и найдем его корни $\lambda_1 = 0$, $\lambda_{2,3} = \pm i$. Общее решение однородного уравнения имеет вид

$$Y = C_1 + C_2 \cos x + C_3 \sin x.$$

Найдем \tilde{y}_1 — частное решение уравнение y''' + y' = x (см. случай I). Так как в правой части уравнения стоит многочлен первой степени и среди корней характеристического уравнения есть корень $\lambda_1 = 0$, то решение \tilde{y}_1 будем искать по формуле (7.6) в виде

$$\widetilde{y}_1 = x(A_1 x + A_0).$$

Подставляя \widetilde{y}_1 , $\widetilde{y}_1'=2A_1x+A_0$ и $\widetilde{y}_1'''=0$ в данное уравнения, получим , откуда $A_1=1/2$, $A_0=0$. Итак,

$$\widetilde{y}_1 = \frac{x^2}{2} \, .$$

Найдем \tilde{y}_2 — частное решение уравнения $y''' + y' = \sin x$ (см. случай III). Здесь правая часть $q(x) = \sin x$ и, следовательно, $\alpha + i\beta = i$, $P_m(x) = 0$, $P_l^*(x) = 1$. Среди корней характеристического уравнения есть комплексно-сопряженный корень $\lambda_{2,3} = \pm i$ и поэтому \tilde{y}_2 ищем по формуле (8), положив k = 1:

$$\tilde{y}_2 = x(M\cos x + N\sin x)$$
.

Найдем производные \tilde{y}_2' и \tilde{y}_2''' (проделайте выкладки подробно):

$$\widetilde{y}_2' = (M + Nx)\cos x + (N - Mx)\sin x,$$

$$\widetilde{y}_2''' = (-Nx - 3M)\cos x + (Mx - 3N)\sin x$$

и подставим в данное уравнение; после упрощения получим

$$-2M\cos x - 2N\sin x \equiv \sin x$$
,

откуда найдем M = 0; -2N = 1, N = -1/2.

Итак,
$$\widetilde{y}_2 = -\frac{x}{2}\sin x$$
.

Таким образом, получаем общее решение данного неоднородного уравнения:

$$y = C_1 + C_2 \cos x + C_3 \sin x + \frac{x^2}{2} - \frac{x}{2} \sin x$$
.