Phone Price Prediction

PLACHETZKY NICOLAI, KIRI NERTIL, PUKA BENJAMIN, VURAL ZELIHA, ILIAGOUEV ALON

Goal

AUTOMATED WAY TO DECIDE ON PRICE RANGES FOR NEW PHONES

Program Architecture

Price Class Prediction **Plots** Feature Distribution X w

Battery Power

Device Position from Low-End to High-End by Average Feature Value

Plots Price Class Prediction

K-Nearest Neighbors Prediction

Predict

Predictions with k=5

Test point 1: High Cost (Average distance: 3.37)

Test point 2: Very High Cost (Average distance: 2.83)

Test point 3: Low Cost (Average distance: 3.29)

Test point 4: Very High Cost (Average distance: 3.67)

Test point 5: Low Cost (Average distance: 3.02)

Test point 6: Low Cost (Average distance: 3.08)

Test point 7: Very High Cost (Average distance: 3.13)

Test point 8: Low Cost (Average distance: 3.24)

Test point 9: Very Low Cost (Average distance: 3.15)

Test point 10: Low Cost (Average distance: 3.21)

Test point 11: High Cost (Average distance: 3.73)

Test point 12: High Cost (Average distance: 2.99)

△ Errors ¾ Callbacks

v3.0.4

Model

Technical Perspective

- Challenges
 - Slow on large datasets
 - No learning phase
- Why it does not matter
 - Datasets are always small
 - Can not learn on fluctuating market data

Domain Expert Perspective

Mistakes & Risks

Misclassification

Constant monitoring of trends

Solutions

Double checking
Simulate Predictions early

Societal Perspective

Dangers

Biases in data

Over-reliance

Consumer trust

Positive

Help smaller companies

Fast classification