Advanced Algorithm Analysis

Department of Computer Science Swat College of Science & Technology

CS Course: Advanced Algorithm Analysis Course Instructor: Muzammil Khan

Chapter 6

Recurrence Or Recurrence Relation

Recurrence (Cont...)

- When an algorithm contain recursive calls
 - Its running time often described by recurrence equation
 - \blacksquare Which describes running time for problem of size n
- ☐ Example "Merge Sort"

$$T(n) = \left\{ \begin{array}{ll} \Theta(1) & \text{if } n=1 \\ \\ 2T(n/2) + \Theta(n) & \text{if } n \geq 1 \end{array} \right.$$

- ☐ It can be solved by using mathematical loops
- ☐ Algorithms, recursive in nature
 - Usually follow divide and conquer strategy

Advanced Algorithm Analysis

Assignment (Due date: by the Next Lecture)

- Select a current research paper (discussing advance algorithm) in domain of your interest
- Summarize the paper
 - About One & Half page
- □ Be ready for presenting it in the class
 - Presentation duration upto 7-10 minutes
- □ Submit
 - Printed copy
 - Soft copy
- ☐ Best summary will be award with 2% marks

Advanced Algorithm Analysis

Recurrence

- □ Also called recurrence relation
- ☐ Recurrence is
 - An equation or inequality that describes a function in terms of its values on smaller inputs
 - Characteristics
 - ☐ The function is defined over a set of natural number
 - $\hfill \square$ The definition include a $\it base\ \it value$ for function
 - Also call boundary condition
- Example "Merge Sort" $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$

Advanced Algorithm Analysis

Examples

- \square The factorial function f(n) = n! can be expressed as
 - By recurrence

$$f(n) = n.f(n-1)$$

 $f(0)=1$ (boundary condition)

- \square The Fibonacci Sequence f(n) can be define as
 - By recurrence

$$f(n) = f(n-1) + f(n-2)$$

$$f(0) = 0, f(1)=1 (boundary condition)$$

Examples (Cont...)

- ☐ Recurrence for the running time of common algorithms
 - \blacksquare T(n) is the running time of a problem of size n
- ☐ Recurrence relation for *decrease-and-conquer* problem

T(n) = T(n-1) + cnSubproblem size Cost of decreasing

☐ Recurrence relation for divide-and-conquer problem

Advanced Algorithm Analysis

How to Solve Recurrence

- ☐ There are four techniques to solve recurrence relation
 - Iteration method
 - Substitution method
 - Recursion Tree method &
 - Master Theorem method

Advanced Algorithm Analysis

Iteration Method

- ☐ In iteration method
 - The recurrence is solved by Top-Down Approach
- ☐ Involve the following steps
 - 1. Using definition
 - ☐ Equations are set up for arguments n, n-1, n-2, ...
 - 2. On reaching the bottom level the boundary condition is applied
 - 3. The equations are summed up
 - 4. Finally, the solution is obtain by
 - ☐ Canceling out the identical terms on both sides of the iterated equation

Advanced Algorithm Analysis

Iteration Method (Cont...)

- ☐ The method is particularly useful in
 - Decrease and Conquer problems
- In other cases
 - Additional efforts are required for same terms cancelation
- Example
 - Next slide

Advanced Algorithm Analysis

Iteration Method Example 1

☐ Here is linear search recurrence, which is based on decrease-&-conquer algorithms

> T(0) = 0T(n) = T(n-1) + c

Iterating the recurrence:.

T(n) = T(n-1) + c

T(n-1) = T(n-2) + c T(n-2) = T(n-3) + c

T(3) = T(2) + c

T(2) = T(1) + c

T(1) = T(0) + c

Advanced Algorithm Analysis

Iteration Method Example 1 (Cont...)

☐ Adding both sides of the equations, and canceling equal terms T(n)= c + c + ... + cOr, T(n)=n.c

It follows that $T(n) = \theta(n)$

Iteration Method Example 2

- ☐ In selection sort the largest element is searched and placed at last position
 - This procedure is repeatedly applied to sub-arrays
- ☐ The recurrence of the selection sort algorithm is

```
T(n) = T(n-1)
Sorting n elements Sorting n-1 elem
☐ Iterating the recurrence:
     T(n) = T(n-1) + c.n
     T(n-1) = T(n-2) + c.(n-1)
     T(n-2) = T(n-3) + c.(c-2)
```

Advanced Algorithm Analysis

Iteration Method Example 2 (Cont...)

```
T(3)
          = T(2)
                    + c.3
         = T(1)
   T(2)
                   + c.2
   T(1) = T(0) + c.1
   Adding both sides of the equations, and canceling equal terms
         T(n) = c(1+2+3+...+n)
Summing the arithmetic series:
         T(n)=c.n(n+1)/2
☐ It follows that
        T(n) = \theta(n^2)
```

Advanced Algorithm Analysis

Substitution Method

- ☐ It is a symmetric procedure for solving recursive equation
 - It follows Top-down approach (as iteration method)
- ☐ Involve the following steps
 - 1. In the recurrence
 - □ Values are plugged in repeatedly on the right hand side of the equation
 - 2. The procedure is repeated until the base case is reached
 - 3. The iteration step guarantee some kind of pattern or a series
 - 4. The summation for the series is analyzed to determine the asymptotic behavior
- Is useful method for both
 - Decrease-and-conquer and divide-and-conquer approaches

Advanced Algorithm Analysis

Substitution Method Example 1

☐ The recurrence of binary search algorithm is

```
T(n)=T(n/2)+c, n>1
                  Is substitution.
2nd substitution.
3rd substitution,
kth substitution,
                  T(n) = T(n/2k) + k.c.
It will be seen that, on continuing, the base case T(1) is reached when n/2^k = 1, or n=2^k
i.e. k = \lg n
Substituting for k, we get
                T(n) = T(1) + \lg n. c
          Thus, T(n) = \theta(\lg n)
```

Advanced Algorithm Analysis

Substitution Method Example 2

☐ The recurrence of *finding largest element* in the array

```
T(1) = c

T(n)=2T(n/2) + c, n > 1
Initially:
T(n) = 2.T(n/2) + c
                                              = 2.T(n/2^{l}) + 2^{\theta} c
Substituting for T(n/2):

T(n) = 2 \cdot [2 \cdot T(n/4) + c] + c

= 4 \cdot T(n/4) + 3c
                                                = 2^2T(n/2^2) + (2^0 + 2^1).c
 Substituting for T(n/4):

T(n) = 4.[2 T(n/8)+c] + 3c
          =8.T(n/8)
                                                = 2^3T(n/2^3) + (2^0+2^1+2^2).c
After k^{th} substitution,

T(n) = 2^{k}T(n/2^{k}) + (2^{0}+2^{l}+2^{2}+.....2^{k-l}).c
= 2^{k}T(n/2^{k}) + (2^{k}-1)c
```

Advanced Algorithm Analysis

Substitution Method Example 2 (Cont...)

- Continuing.
- \square it will be seen that the base case T(1) is reached when
 - $n/2^k = 1$, or $n=2^k$,
- \square Substituting for 2^k , we get
 - T(n) = n.T(1) + (n-1).c = n.c + n.c-c
 - T(n) = 2n.c-c
 - $T(n) = \theta(n)$

Recursion Tree

- ☐ Recursion tree provide visual tool for solving recursive equation
 - Involve 4 steps
- □ Step # 1 : The recurrence is expressed in a hierarchical way
 - Using a tree structure, such that
 - Each node contained two fields
 - The size field and cost field
 - ☐ The number of child nodes equals to the number of sub-problems

Recursion Tree (Cont...)

□ Step # 2

- The size field of a node is set by plugging
 - \square The size of the parent into the relation

■ The cost field is set by substituting node into cost function of the relation

□ Step # 4

■ The solution is found by *summing the cost over all* nodes of

Advanced Algorithm Analysis

Recursion Tree Example 1

- T(n) = 2 T(n/2) + cn, n > 1 and T(1) = c, n = 1
- □ Constructing tree structure
 - Fully extended tree has 2^d nodes, called *leaves* and d is treedepth
 - At bottom level $T(n/2^d) = T(1)$,
 - It follows $2^d = 1$, or $2^d = n$, i.e. d = lgn
 - Thus
 - \square Tree depth = lg n and
 - \square Number of leaves $2^d = n$
- ☐ As shown in the figure

Advanced Algorithm Analysis

Recursion Tree Example 1 (Cont...)

Recursion Tree Example 1 (Cont...)

- ☐ The root associated with size n and cost cn
- ☐ Each child of root has size n/2 and cost cn/2
 - Next level costs are reduces by a factor 2
- ☐ Each leaf has associated cost c t(n/2)

Recursion Tree Example 1 (Cont...)

- ☐ Each row has cost cn
- ☐ There are lg (n-1) internal nodes and one root node
- Total cost is cn (lg n-1) + cn = cn lgn
- Each n leaf node has cost c, So

Recursion Tree Example 2

Recursion Tree Example 2 (Cont...)

Recursion Tree Example 2 (Cont...)

Recursion Tree Example 2 (Cont...)

- ☐ Step # 3 : Summing up rows and leaves costs
 - $T(n) = cn^2 \left[\frac{1}{2^0} + \frac{1}{2^1} + \frac{1}{2^3} + \dots + \frac{1}{2^{lg \, n-1}} \right] + cn$
 - Asymptotic behavior of the series is determine by
 - $\hfill\Box$ The largest term
 - ☐ Which is 1

 - Therefore
 - $T(n) = cn^2 \cdot \theta(1) + cn = \theta(n^2)$
 - \square n^2 is the dominant term of the sum

Advanced Algorithm Analysis

Recursion Tree Example 3

□ Homework

T $(n) = 3T(n/4) + cn^2$, n > 1 and T(1) = c, n = 1

Master Theorem

- \square Let a >= 1 and b > 1 be constants, then the recurrence
 - T(n) = a T(n/b) + f(n)
 - Has solutions like
 - 1. $T(n) = \theta(n^{\log_b a})$
 - □ When $f(n)=O(n^{\log_b a-\epsilon})$ for some ε>0
 - 2. $T(n) = \theta(n^{\log_b a} \lg n)$
 - 3. $T(n) = \theta(f(n))$
 - When $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$
- Provide also that $af(n/b) \le c.f(n)$ for some c < l and large n
- $\hfill \square$ MT provide generalized solution to $\emph{divide-and-Conquer}$ Algos

Advanced Algorithm Analysis

Master Theorem

- ☐ In Master Theorem
 - The cost function f(n) is compared with the function $n^{\log_b a}$
 - □ Depends on outcome
 - ☐ The larger of the two functions provides the solution, subject to some additional constraints
 - The constraint is that the function f(n) and $n^{\log_b a}$ should not be simply larger or smaller asymptotically, but
 - ☐ Should grow faster or slower by polynomial factor n^e
 - Where ε is some arbitrary small positive constant
 - Having the following 3 cases

Advanced Algorithm Analysis

Master Theorem (Cont...)

- \square Case 1: If $f(n) = O(n^{\log_b a \varepsilon}) f(n)$ grows slower than
 - \blacksquare $n^{\log} b^a$ by a factor of n^{ε_a} then
 - The solution of recurrence
 - $T(n) = \theta(n^{\log_b a})$
- \square Case 2: If $f(n) = \theta(n^{\log_b a})$, i. e. f(n) grows as fast as $n^{\log_b a}$.
 - Then, the solution of recurrence
 - $T(n) = \theta(n^{\log_b a} \log n)$
- \square Case 3: If $f(n) = \Omega(n^{\log_b a + \varepsilon})$, i. e. f(n) grows faster than
 - $n^{\log_b a}$ by a factor of n^{ϵ} , and $f(n/b) \le c.f(n)$ for some c < 1
 - The solution of recurrence

ced Algorithm Analysis

Master Theorem Examples

- - Here a = 4, b = 2, f(n) = n
 - Consider $n^{\log_b a \varepsilon} = n^{\log_2 4 \varepsilon} = n^{2-\varepsilon}$ take $\varepsilon = 0.5$
 - f(n) = n grows slower then = $n^{\log_b a \epsilon} n^{1.5}$, it follows that $f(n) = O(n^{\log_b a \epsilon})$
 - Thus (Case 1)
- \square Example 2: T(n) = T(n/2) + 1
 - Here a = 1, b = 2, f(n) = 1
 - Consider $n \log_b a = n \log_2 l = n^{\theta l}$ take $\varepsilon = 1$
 - f(n) = I grows as fast as $n^{\log_b a} = I$ it follows that $f(n) = \theta(n^{\log_b a})$
 - Thus (Case 2) $T(n) = \theta(n^{\log_b a} . \lg n) = \theta(n^{\log_2 1} . \lg n) = \theta(\lg n)$

Advanced Algorithm Analysis

Master Theorem Examples (Cont...)

 \square Example(3): T(n)=T(n/3)+n

Here a=1, b=3, f(n)=1Consider $n^{\log_b a+\varepsilon} = n^{\log_3 1+\varepsilon} = n^{\varepsilon}$. Take $\varepsilon=0.5$

Since f(n) = n grows faster than $n^{\log_b a + \varepsilon} = n^{0.5}$, it follows that $f(n) = \Omega(n^{\log_b a + \varepsilon})$

Further, af(n/b) < c. f(n) if 1/(n/3) < c.n i.e, n/3 < c.n for some c. This is true if c = 1/4This is case 3 of Master Theorem. Therefore, $T(n) = \theta(f(n)) = \theta(n)$

Example(4): $T(n)=3T(n/4)+n \lg n$

Here a=3, b=4, $f(n)=n \log n$ Consider $n^{\log_b a+\varepsilon}=n^{\log_3 3^{4+\varepsilon}}=n^{0.793+\varepsilon}$. Take $\varepsilon=0.207$

Since $f(n) = n \log n$ grows faster than $n^{\log_b a + \varepsilon} = n$, it follows that $f(n) = \Omega(n^{\log_b a + \varepsilon})$ Further, $af(n/b) \le c$. f(n) if $3(n/4)lg(n/4) \le c$. n lg n some c = 3/4.

This is case 3 of Master Theorem. Therefore, $T(n) = \theta(f(n)) = \theta(n \lg n)$

Advanced Algorithm Analysis

End of the Chapter

- ☐ Solve the given (uploaded document) examples
 - Using
 - ☐ Iteration Method
 - Substitution Method
 - ☐ Recursive Tree Method
 - Master Theorem

☐ You may have quiz next week