1.2 Semântica do Cálculo Proposicional clássico

1. Sejam v_1 e v_2 as únicas valorações tais que

$$v_1(p) = \begin{cases} 0 \text{ se } p \in \{p_0, p_1\} \\ \\ 1 \text{ se } p \in \mathcal{V}^{CP} - \{p_0, p_1\} \end{cases} \qquad \text{e} \qquad v_2(p) = \begin{cases} 1 \text{ se } p \in \{p_1, p_3\} \\ \\ 0 \text{ se } p \in \mathcal{V}^{CP} - \{p_1, p_3\} \end{cases}.$$

Considere as fórmulas $\varphi_1 = (p_2 \lor p_0) \land \neg (p_2 \land p_0)$ e $\varphi_2 = p_1 \rightarrow ((p_5 \leftrightarrow p_3) \lor \bot)$. Calcule os valores lógicos das fórmulas φ_1 e φ_2 para as valorações v_1 e v_2 .

- 2. Considere as fórmulas: $\varphi_1 = \neg p_3 \land (\neg p_1 \lor p_2); \quad \varphi_2 = (\neg p_3 \lor \neg p_1) \leftrightarrow (p_1 \to p_2); \quad \varphi_3 = \neg p_3 \to (p_1 \land \neg p_2).$
 - a) Para cada um dos conjuntos $\{\varphi_1, \varphi_2\}$ e $\{\varphi_2, \varphi_3\}$, dê exemplo de uma valoração que atribua o valor lógico 1 a todos os seus elementos.
 - **b)** Mostre que não existem valorações que, em simultâneo, atribuam o valor lógico 1 a φ_1 e φ_3 .
- 3. Seja v uma valoração. Quais das seguintes proposições são verdadeiras?
 - a) $v((p_3 \rightarrow p_2) \rightarrow p_1) = 0$ e $v(p_2)=0$ é uma condição suficiente para $v(p_3)=0$.
 - **b)** Uma condição necessária para $v(p_1 \rightarrow (p_2 \rightarrow p_3)) = 0$ é $v(p_1) = 1$ e $v(p_3) = 0$.
 - c) Uma condição necessária e suficiente para $v(p_1 \land \neg p_3) = 1$ é $v((p_3 \to (p_1 \to p_3)) = 1$.
- 4. De entre as seguintes fórmulas, indique as tautologias e as contradições.
 - **a)** $(p_1 \rightarrow \bot) \lor p_1$

- **b)** $(p_1 \rightarrow p_2) \leftrightarrow (\neg p_2 \rightarrow \neg p_1)$
- c) $\neg (p_1 \land p_2) \rightarrow (p_1 \lor p_2)$
- **d)** $(p_1 \lor \neg p_1) \rightarrow (p_1 \land \neg p_1)$
- 5. Das seguintes proposições, indique as verdadeiras. Justifique.
 - a) $\models \varphi \land \psi$ se e só se $\models \varphi$ e $\models \psi$.
 - **b)** Se $\models \varphi \lor \psi$, então $\models \varphi$ ou $\models \psi$.
 - c) Se $\models \varphi$ ou $\models \psi$, então $\models \varphi \lor \psi$.
 - **d)** Se $\models \varphi \leftrightarrow \psi$ e $\not\models \psi$, então $\not\models \varphi$.
- 6. Seja $\varphi = (\neg p_2 \to \bot) \land p_1$.
 - a) Dê exemplo de:
 - i) uma valoração v tal que $v(\varphi) = v(\varphi[p_0 \land p_3/p_2]);$
 - ii) uma valoração v tal que $v(\varphi) \neq v(\varphi[p_0 \land p_3/p_2])$.
 - **b)** Seja ψ uma fórmula. Indique uma condição suficiente para que uma valoração ν satisfaça $\nu(\varphi) = \nu(\varphi[\psi/p_2])$. A condição que indicou é necessária?
- 7. Considere o conjunto $\mathcal{F}^{CP}_{\{\lor,\land\}}$ das fórmulas cujos conetivos estão no conjunto $\{\lor,\land\}$.
 - a) Enuncie o teorema de indução estrutural para $\mathcal{F}^{CP}_{\{\lor,\land\}}.$
 - b) Seja v a valoração que a cada variável proposicional atribui o valor lógico 0. Mostre que $v(\varphi)=0$ para qualquer $\varphi\in\mathcal{F}^{CP}_{\{\lor,\land\}}.$
 - c) Existem tautologias no conjunto $\mathcal{F}^{CP}_{\{\lor,\land\}}$? Justifique.

- 8. Para cada uma das seguintes fórmulas, encontre uma fórmula que lhe seja logicamente equivalente e que envolva apenas conetivos no conjunto $\{\neg, \lor\}$.
 - a) $(p_0 \wedge p_2) \to p_3.$ b) $p_1 \vee (p_2 \to \bot).$

 c) $\neg p_4 \leftrightarrow p_2.$ d) $(p_1 \vee p_2) \to \neg (p_2 \vee p_2).$
- **d)** $(p_1 \lor p_2) \to \neg (p_1 \land \bot).$
- 9. Defina, por recursão estrutural em fórmulas, uma função $f:\mathcal{F}^{CP}\longrightarrow\mathcal{F}^{CP}_{\{\neg,\vee\}}$ que a cada fórmula φ faça corresponder uma fórmula $f(\varphi)$ logicamente equivalente a φ .
- 10. Investigue se os conjuntos de conetivos $\{\lor, \land\}$ e $\{\neg, \lor, \land\}$ são ou não completos.
- 11. Calcule formas normais conjuntivas e disjuntivas logicamente equivalentes a cada uma das seguintes fórmulas:
 - a)

- $\neg p_0.$ **b)** $p_1 \wedge (p_2 \wedge p_3).$ **c)** $(p_1 \vee p_0) \vee \neg (p_2 \vee p_0).$ $(p_1 \to \bot).$ **e)** $(p_1 \vee p_0) \wedge (p_2 \vee (p_1 \wedge p_0)).$ **f)** $(p_1 \to p_2) \leftrightarrow (\neg p_2 \to \neg p_1).$
- 12. Considere que φ e ψ são fórmulas cujo conjunto de variáveis é $\{p_1, p_2\}$ e $\{p_1, p_2, p_3\}$, respetivamente, e que têm as seguintes tabelas de verdade:

p_1	p_2	φ
1	1	0
1	0	1
0	1	1
0	0	0

p_1	p_2	p_3	ψ
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	1

Determine FND's e FNC's logicamente equivalentes a cada uma das fórmulas.

- 13. Será que existem outros conetivos binários para além de \land , \lor , \rightarrow , e \leftrightarrow ? Para responder a esta questão, adotemos esta definição: um conetivo binário > é determinado pela sua função de verdade $v_{\diamond}: \{0,1\}^2 \longrightarrow \{0,1\}.$
 - a) Quantos conetivos binários existem?
 - **b)** Para cada $v_{\diamond}: \{0,1\}^2 \longrightarrow \{0,1\}$, escreva v_{\diamond} como uma tabela de verdade e traduza essa tabela de verdade como uma FND.
 - c) Conclua que $\{\neg, \land, \lor\}$ permaneceria um conjunto completo de conetivos, mesmo se tivéssemos adoptado no Cálculo Proposicional outros conetivos binários.

6 Lógica CC 2024/2025

14. Nenhum dos conetivos $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ é completo (i.e. constitui, por si só, um conjunto completo de conetivos). No entanto, existem conetivos binários completos.

Considere-se a extensão do conjunto das fórmulas proposicionais \mathcal{F}^{CP} com o conetivo binário \uparrow (conhecido como seta de Sheffer ou nand), determinado pela função booleana v_{\uparrow} t. q. $\nu_{\uparrow}(1,1) = 0$, $\nu_{\uparrow}(1,0) = 1$, $\nu_{\uparrow}(0,1) = 1$ e $\nu_{\uparrow}(0,0) = 1$. Mais precisamente:

- i) acrescente-se ao alfabeto do Cálculo Proposicional a letra ↑;
- ii) considere-se a definição indutiva de \mathcal{F}^{CP} (sobre este alfabeto estendido) com uma nova regra: se $\varphi, \psi \in \mathcal{F}^{CP}$, então $(\varphi \uparrow \psi) \in \mathcal{F}^{CP}$;
- iii) à definição de valoração v, acrescente-se a condição $v(\varphi \uparrow \psi) = v_{\uparrow}(v(\varphi), v(\psi))$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$.
- a) Encontre fórmulas φ , ψ logicamente equivalentes a $p_0 \uparrow p_1$ e tais que i) φ é FND; ii) ψ é FNC.
- **b)** Mostre que, para todo $\varphi, \psi \in \mathcal{F}^{CP}$: i) $\varphi \uparrow \psi \Leftrightarrow \neg(\varphi \land \psi)$; ii) $\neg \varphi \Leftrightarrow \varphi \uparrow \varphi$.
- c) Dê exemplo de tautologias e de contradições onde o único conetivo usado seja 1.
- **d)** O conjunto {↑} é completo? Justifique.
- 15. Justificando, indique quais dos seguintes conjuntos de fórmulas são satisfazíveis.
- **a)** $\{p_0 \land p_2, p_1 \to \neg p_3, p_1 \lor p_2\}.$ **b)** $\{p_0 \to p_1, p_0 \to \neg p_1, p_0\}.$ **c)** $\{p_0 \lor \neg p_1, p_1, p_0 \leftrightarrow (p_2 \lor p_3)\}.$ **d)** $\mathcal{F}^{CP}.$

- 16. Sejam $\Gamma, \Delta \subseteq \mathcal{F}^{CP}$. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações.
 - a) Se $\Gamma \cup \Delta$ é satisfazível, então Γ e Δ são conjuntos satisfazíveis.
 - **b)** Se Γ e Δ são conjuntos satisfazíveis, então $\Gamma \cup \Delta$ é satisfazível.
 - c) Se Γ é satisfazível e $\varphi \in \Gamma$, então $\neg \varphi \notin \Gamma$.
 - **d**) Se Γ contém uma contradição, então Γ não é satisfazível.
- 17. Este exercício ilustra um método, conhecido por resolução, para decidir se uma fórmula do Cálculo Proposicional é uma tautologia. O método assenta em formas normais conjuntivas e na análise de conjuntos de fórmulas não serem satisfazíveis.

Considere as fórmulas

$$\varphi = (p_3 \to (p_1 \lor p_2)) \lor \neg(\neg p_1 \to p_2),$$

$$\psi = \neg p_2 \land p_3 \land (\neg p_3 \lor \neg p_1 \lor p_2) \land (p_2 \lor p_1).$$

- a) Observe que ψ é uma FNC e mostre que ψ é logicamente equivalente a $\neg \varphi$.
- $p_2 \vee p_1$ }.
- c) Mostre que $\{\neg p_2, p_3, \neg p_3 \lor \neg p_1 \lor p_2, p_2 \lor p_1\}$ não é satisfazível e diga se ψ é uma contradição.
- **d)** Diga se φ é uma tautologia.
- e) Aplique a sequência de passos anterior, considerando

$$\varphi = (p_2 \to p_1) \to (\neg p_2 \land p_3), \qquad \psi = (p_1 \lor \neg p_2) \land (p_2 \lor \neg p_3).$$

- 18. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - **a)** $p_3 \vee p_0, \neg p_0 \models p_3$.
- **b**) $p_0 \vee \neg p_1, p_1 \vee p_2 \models p_0 \vee p_2.$
- c) $\neg p_2 \rightarrow (p_1 \lor p_3), \neg p_2 \models \neg p_1$. d) para todos $\varphi, \psi, \sigma \in \mathcal{F}^{CP}, \neg \psi, \psi \rightarrow \sigma \models \sigma \lor \varphi$.

Lógica CC 2024/2025 7

- 19. Sejam $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$ e Γ um conjunto de fórmulas. Demonstre que:
 - **a)** $\varphi \lor \psi, \neg \varphi \lor \sigma \models \psi \lor \sigma$.
- **b)** $\models \varphi \rightarrow \psi$ se e só se $\varphi \models \psi$.
- c) $\Gamma \models \varphi \lor \psi$ se e só se $\Gamma, \neg \varphi \models \psi$.
- **d)** Γ não é satisfazível se e só se $\Gamma \models \bot$.
- 20. Considere as seguintes afirmações:
 - Se há vida em Marte, então Zuzarte gosta de tarte.
 - Zuzarte é um marciano ou não gosta de tarte.
 - Zuzarte não é um marciano, mas há vida em Marte.
 - **a)** Exprima as afirmações anteriores através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar as frases atómicas.
 - b) Mostre que as três afirmações acima não podem ser simultaneamente verdadeiras.
- 21. Considere as seguintes afirmações:
 - Se a porta do cofre foi arrombada, então: o inspetor Heitor desvenda o crime ou o segurança Bragança é culpado.
 - O segurança Bragança não é culpado se e só se: a porta do cofre não foi arrombada e o inspetor Heitor desvenda o crime.
 - Não é verdade que: o segurança Bragança não é culpado ou a porta do cofre foi arrombada.
 - a) Exprima as afirmações anteriores através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar as frases atómicas.
 - **b)** Admitindo que todas as afirmações são verdadeiras, podemos concluir que o inspetor Heitor desvenda o crime? Justifique.
- 22. O Carlos, o João e o Manuel, suspeitos de um crime, fizeram os seguintes depoimentos, respetivamente:
 - O João é culpado, mas o Manuel é inocente.
 - Se o Carlos é culpado, o Manuel também o é.
 - Eu estou inocente, mas um dos outros dois é culpado.
 - a) Os três depoimentos são compatíveis entre si?
 - b) Algum dos depoimentos é consequência dos outros dois?
 - c) Supondo os três réus inocentes, quem mentiu?
 - d) Supondo que todos disseram a verdade, quem é culpado?
 - e) Supondo que os inocentes disseram a verdade e que os culpados mentiram, quem é culpado?