Tricks généraux

- utiliser le principe de superposition : quand il n'y a pas de charge, on peut dire qu'il y a en fait une charge positive et une négative.
- toujours justifier que le champ est uniforme car la distance entre les plaques est faible et les plaques sont grandes
- $P = \frac{E}{dt}$
- faire des matrices pour les équations loi mailles/noeuds

Force électrostatique

$$\vec{F} = k \frac{q_a q_b}{r^2}$$

Méthode pour calculer la force exercée par la barre sur q_0 .

- écrire l'expression de la force selon un vecteur \vec{r} .
- ici, on sait que la force sur y va se compenser, donc on intègre la force selon \vec{x} pour trouver F_{tot}

Attention, quand on intègre, il ne faut pas oublier de décomposer le vecteur \vec{r} selon les différentes composantes (qui seront dans le calcul de l'intégrale !) :

$$\vec{r} = \frac{D_1 \vec{e_r} + D_2 \vec{e_z}}{\sqrt{D_1^2 + D_2^2}}$$

Dipôle électrique

Moment dipolaire : $\vec{p}=q\vec{d}$, décrit la séparation des charges

La force sur un dipôle dans un champ électrique E (externe): $\vec{F} = \left(\vec{p} \cdot \vec{\nabla} \right) \vec{E}$

Moment de force : $\vec{\tau} = \vec{r} \times \vec{E}$, permet de décrire la rotation du dipôle (une fois que le dipôle est parallèle à E, le moment de force devient nul).

Théorème du moment cinétique : $\vec{\tau} = \frac{dL_O}{dt}$

$$\overrightarrow{L_O} = \sum_i \vec{r_i} \times m_i \vec{v_i}$$

Champ électrique

Seule la direction importe, le sens sera apporté par la charge sur laquelle on "appliquera" le champ.

Quand on a une surface avec une forme facile (symmétrique) on peut utiliser Gauss :

$$\Phi_E = \int \overrightarrow{E(r)} \cdot d\vec{S} = \frac{Q_{\rm int}}{\varepsilon_0}$$

En fait on va entourer nos charges avec une forme (par exemple une sphère), donc on aura $Q_{\rm int}$ et on va calculer $d\vec{S}$ est toujours orthogonal à la surface par laquelle les charges passent (donc si le champ est dans le même sens alors le produit scalaire fera 1).

Potentiel électrique

Ce n'est pas un vecteur. C'est comparable à la hauteur en méca.

$$E = -\nabla V \Leftrightarrow V = \int E \vec{dl}$$

On en déduit :

Comment calculer V **en un point** ? Charge(s) ponctuelle(s) :

$$V(r) = \sum_{i}^{n} k \frac{Q_i}{r_i}$$

Pour une surface avec une distribution de charges continue :

$$V(r) = \int_S k \frac{d_q}{r}$$

Attention V est un scalaire, pas un vecteur!

Conservation de l'énergie

$$E = K + U$$

L'énergie cinétique et l'énergie potentielle d'une charge q dans un potentiel électrique V créé par d'autres charges :

$$K = \frac{1}{2}mv^2$$

$$U = V \cdot q$$

U s'exprime toujours comme une énergie potentielle entre une charge et une ou plusieurs autres charges.

En méca, l'énergie potentielle dépend du champ dans lequel la charge est introduite (en méca U=mgh). En électromag pareil, elle dépend des autres charges présentes autour.

L'énergie potentielle est définie à une constante près. En méca on dit que U(surface de la Terre)=0 pour simplifier les calculs. En électromag on dit $U(\infty)=0$ (quand les deux charges sont éloignées à l'infini alors l'énergie potentielle est nulle).

$$W_{A o B} = \Delta U$$

(par exemple en méca $W_{A \rightarrow B} = mgh_a - mgh_b$)

Si $\nabla V = 0$, le potentiel est constant, ça signifie que le champ est nul dans la direction dans laquelle on effectue le travail, mais on peut avoir un champ perpendiculaire à la direction.

Propriété des conducteurs dans un cas électrostatique

- $\vec{E} = 0$ à l'intérieur
- à l'intérieur ce n'est pas chargé (il y a un équilibre)
- \vec{E} est \perp , car c'est à la surface que toutes les charges se trouvent (et toute composante du champ parallèle ferait bouger les charges, ce qui n'est pas autorisé).

Formule de Poisson

On part de la formule de Gauss:

$$\int_{S} \vec{E} \cdot d\vec{S} = \frac{Q_{\rm int}}{\varepsilon_0}$$

Intégrer sur la surface c'est comme intégrer sur le volume en dérivant le vecteur :

$$\Leftrightarrow \int_V \vec{\nabla} \cdot \vec{E} \cdot dV = \frac{Q_{\rm int}}{\varepsilon_0}$$

On retrouve la charge :

$$\Leftrightarrow \vec{\nabla} \cdot \vec{E} \int_{V} dV = \frac{1}{\varepsilon_{0}} \int_{V} \rho \cdot dV$$

$$\Leftrightarrow \vec{\nabla} \cdot \vec{E} \int_{V} dV = \frac{\rho}{\varepsilon_{0}} \int_{V} dV$$

$$\Leftrightarrow \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_{0}}$$

$$\Leftrightarrow \vec{\nabla}^{2} \cdot \vec{V} = \frac{\rho}{\varepsilon_{0}}$$

Capacité

Dans le cas d'un condensateur, $Q = C \cdot V$

Ou $Q=\frac{C}{\Delta V}$ pour un condensateur, avec ΔV la différence de potentiel entre les deux plaques.

$$C = \frac{\varepsilon A}{d}$$

donc C ne dépend que de la géométrie du condensateur

d distance entre les plaques (en mètres)

A l'aire des plaques (en mètres carrés)

 ε permissivité du milieu entre les plaques (la capacité ne dépend donc pas uniquement de la géométrie mais aussi du facteur χ_i du matériau)

$$E = \frac{E_0}{K}$$

 E_0 le champ électrique si on était dans l'air K la constante diélectrique du milieu

Calculer une différence de potentiel avec différents milieux:

$$\begin{split} V(A) - V(B) &= \int_0^{\text{fin du milieu A}} \vec{E} d\vec{l} + \int_{\text{fin du milieu A}}^{\text{fin du milieu B}} \vec{E} d\vec{l} \\ \Leftrightarrow V(A) - V(B) &= \frac{E_0}{K_{A(d_A)}} + \frac{E_0}{K_{B(d_B)}} \end{split}$$

Calculer la capacité des condensateurs en série :

$$\frac{1}{C_{\rm tot}} = \sum_{{\rm capacit\acute{e}\ du\ condensateur\ i}} \frac{1}{C_i}$$

Calculer la capacité des condensateurs en parallèle :

$$C_{\rm tot} = \sum_{\rm capacit\acute{e}\ du\ condensateur\ i} C_i$$

Circuits

La tension va généralement du - au + d'un générateur.

Règle des noeuds (pour un noeud donné)

$$\begin{array}{l} \sum_k i_k = 0 \\ \sum_n i_{\rm in} = \sum_n i_{\rm out} \end{array}$$

Règle des mailles (autour de chaque maille fermée)

$$\sum_{k} \Delta V_k = 0$$

On choisit un sens pour compter.

On ajoute les tensions (de batterie par exemple) dans le sens dans lequel on va.

On ajoute les résistances comme $\pm i_k \cdot R_k \Omega$ en fonction du sens (si on compte dans le sens opposé au courant, on ajoute, sinon on enlève). donc le + des résistances est le - des tensions de batteries

Loi d'ohm

V = Ri (elle s'applique aux bornes d'un dipôle)

Charger un condensateur

temps caractéristique d'un condensateur $\tau = RC$.

On a qu'à l'état d'équilibre (quand le condensateur est chargé), le courant est nul :

$$CV = q \Rightarrow C \frac{dV}{dt} = \frac{dq}{dt} = i$$

donc
$$i = C \frac{dq}{dt}$$

• partir de la loi U_c (le générateur) $+U_r$ (la tension générée par la résistance du condensateur) =0.

$$U_c + RC\frac{dU}{dt} = 0$$

$$\frac{Q}{RC} = \frac{dU}{dt}$$

Résoudre.

Charge

$$V_{C(t)} = \varepsilon \left(1 - \exp\left(-\frac{t}{RC}\right)\right)$$

Décharge

$$V_{C(t)} = \varepsilon \exp \Bigl(-\frac{t}{RC} \Bigr)$$