Chapter 1

automata abstract

1.1 Finite automata

Definition 1.1 (Finite automation). A finite automaton(an FA) is a 6-tuple (Q, V, T, E, S, F) where

- Q is a finite set of states,
- V is an alphabet,
- $T \in \mathbb{P}(Q \times V \times Q)$ is a transition relation,
- $E \in \mathbb{P}(Q \times Q)$ is an ε -transition relation
- $S \subseteq Q$ is a set of start states, and
- $F \subseteq Q$ is a set of final states.

```
class FA: virtual public FAabs {
    // Q is a finite set of states
    StatePool Q;
    // S is a set of start states, F is a
        set of final states
    StateSet S, F;
    // Transitions maps each State to its
        out-transitions.
    TransRel Transitions;
```

```
// E is the epsilon transition
    relation.
StateRel E;
}
```

StatePool:All states in an automaton are allocated from a StatePool. StatePool's can be merged together to form a larger one. (Care must be taken to rename any relations or sets (during merging) that depend on the one StatePool.) State is in [0,next)

```
class StatePool {
    int next; // The next one to be
        allocated.
}
```

StateSet:The StateSet is normally associated (implicitly) with a particular StatePool; whenever a StuteSet is to interact with another (from a different StatePool), its States must be renamed (to avoid a name clash). The capacity of a StateSet must be explicitly managed; many set operations are not bounds-checked when assert() is turned off.

```
class StateSet : protected BitVec {
    // How many States can this set
        contain?
    // [O, domain()) can be contained in
        *this.
    inline int domain() const;

    // set How many States can this set
        contain.
    // [O, r) can be contained in *this.
        inline void set_domain(const int r);
}
class BitVec {
```

1.1 Finite automata 3

```
// uesd max number bits in data,
    denote width(domain),[0,
    bits_in_use) == > [0, width)
int bits_in_use;
// number of words, 1,2,3,...
int words;
// save bytes of words,[0,1,2,...
    width(domain)]
unsigned int *data;
}
```

transition relation: $T \in Q \to \mathbb{P}(V \times Q), T(p) = \{(a,q) | (p,a,q) \in T\},$ 表示状态 p 的 out-transitions. see Fig 1.1

```
// V ---> Q
struct TransPair {
CharRange transition_label;
State transition_destination;
}
class TransImpl { TransPair *data; }
class Trans:protected TransIml { }
// map: state(r) ---> (T=Trans) out-
   transitions of r
// SteteTo::data[r] = out-transitions of
class TransRel:public StateTo<Trans> {}
// map: state(r) —> T
// data[r] = T
template <class T> class SteteTo {
T *data; // 动态数组的index(即状态的index)状
   态的out-transitions
}
```

```
class FA: virtual public FAabs {
TransRel Transitions; // maps each State to
   its out-transitions.
}
```

ε-relation: $E \in \mathbb{P}(Q \times Q) \Rightarrow E \in Q \rightarrow \mathbb{P}(Q), E(p) = \{q | (p,q) \in E\},$ 表示 ε 连接状态 p 和状态 q.

```
// Implement binary relations on States. This is most often used for epsilon transitions.

// map: state(r) -> {StateSet}

// StateTo::data[r] = {StateSet}, 表示状态r与 {StateSet}的二元关系
class StateRel:protected StateTo<StateSet> {
}

class FA: virtual public FAabs {

// E is the epsilon transition relation.
StateRel E;
}
```


图 1.1: q_1 in-transition: $\{(q_0, a, q_1)\}$; q_1 out-transition: $\{(q_1, b, q_2), (q_1, c, q_3)\}$

[WATSON93a, p6] the signatures of the transition relations:

$$T \in \mathbb{P}(Q \times V \times Q)$$
$$T \in V \to \mathbb{P}(Q \times Q)$$
$$T \in Q \times Q \to \mathbb{P}(V)$$
$$T \in Q \times V \to \mathbb{P}(Q)$$

$$T \in Q \to \mathbb{P}(V \times Q)$$
 for example, the function $T \in Q \to \mathbb{P}(V \times Q)$ is defined as $T(p) = \{(a,q): (p,a,q) \in T\}$
$$T \in \mathbb{P}(Q \times V \times Q), T = \{(s,a,q)\}$$

$$T(p) \in Q \to \mathbb{P}(V \times Q), T(p) = \{(a,q): (s,a,q) \in T\}$$

$$p,q \in Q, a \in V$$

$$T: Q \times V \to Q$$

$$T(p,a) = q$$

$$Q_{map}: \mathbb{P}(Q \times V), Q_{map} = \{(q,a): (s,a,q) \in T\}$$

$$Q_{map}(q) = \{a: (s,a,q) \in T\}$$

$$Q_{map}^{-1}: V \to \mathbb{P}(Q), Q_{map}^{-1} = \{(a,q): (s,a,q) \in T\}$$

1.2 Properties of finite automata

$$M = (Q, V, T, E, S, F), M_0 = (Q_0, V_0, T_0, E_0, S_0, F_0), M_1 = (Q_1, V_1, T_1, E_1, S_1, F_1)$$

Definition 1.2 (Size of an FA). Define the size of an FA as |M| = |Q|

Definition 1.3 (Isomorphism 同构 (\cong) **of** FA's**).** We define isomorphism (\cong) as an equivalence relation on FA's. M_0 and M_1 are isomorphic (written $M_0 \cong M_1$) if and only if $V_0 = V_1$ and there exists a bijection 双射 $g \in Q_0 \to Q_1$ such that

- $T_1 = \{(g(p), a, g(q) | (p, a, q) \in T_0\}$
- $E_1 = \{(g(p), g(q) | (p, q) \in E_0\}$
- $S_1 = \{g(s) | s \in S_0\}$ and
- $F_1 = \{g(f) | f \in F_0\}$

(see Fig 1.2).
$$\Box$$

Definition 1.4 (Extending the transition relation T**).** We extend transition relation $T \in V \to \mathbb{P}(Q \times Q)$ to $T^* \in V^* \to \mathbb{P}(Q \times Q)$ as follows:

 I.2: Isomorphism $M_0\cong M_1$ if and only if $V_0=V_1$ and there exists a bijection $g\in Q_0\to Q_1$

$$T^*(\varepsilon) = E^*$$

and (for
$$a \in V, w \in V^*$$
)

 $T^*(aw) = E^* \circ T(a) \circ T^*(w)$

Operator • (composition is defined in Convention 1).

This definition could also have been presented symmetrically. \Box

Note 1.1.
$$s_1, s_2, s_3, s_4 \in Q, a \in V, w \in V^*$$

$$E = T(\varepsilon) = \{(s_1, s_2)\}, T(a) = \{(s_2, s_3)\}, T^*(w) = \{(s_3, s_4)\}$$

$$T^*(aw) = E^* \circ T(a) \circ T^*(w)$$

= $\{(s_1, s_2)\} \circ \{(s_2, s_3)\} \circ \{(s_3, s_4)\} = \{(s_1, s_3)\} \circ \{(s_3, s_4)\} = \{(s_1, s_4)\}$

Note 1.2.
$$T \in Q \times V \to \mathbb{P}(Q)$$
, extend to: $T^* \in Q \times V^* \to \mathbb{P}(Q)$
 $\forall q \in Q, w \in V^*, a \in V$,

1.
$$T^*(q, \varepsilon) = q$$

2.
$$T^*(q, wa) = T(T^*(q, w), a)$$

$$\begin{split} T^*(q,a) &= T^*(q, \varepsilon a) \\ &= T(T^*(q, \varepsilon), a) \\ &= T(q, a) \end{split}$$

两值相同,不用区分这两个符号。

Convention 1 (Relation composition) Given sets A, B, C (not necessarily different) and two relations, $E \subseteq A \times B$ and $F \subseteq B \times C$, we define relation composition (infix operator 中缀操作符 \circ) as:

$$E \circ F = \{(a,c) | (\exists b \in B), (a,b) \in E \land (b,c) \in F)\}$$

Note 1.3. if
$$\exists b \in B, (a,b) \in E, (b,c) \in F$$
, then

$$E: A \rightarrow B \Rightarrow E(a) = b$$

$$F: B \to C \Rightarrow F(b) = c$$

$$E \circ F = \{(a,b)\} \circ \{(b,c)\} = \{a,c\}$$

$$(E \circ F)(a) = F(E(a))$$
$$= F(b) = c$$

Remark 1.1. We also sometimes use the signature $T^* \in Q \times Q \to \mathbb{P}(V^*)$

Note 1.4.
$$T(p,q) = \{w | p, q \in Q, w \in V^*\}$$

Remark 1.2. if $E = \emptyset$ then $E^* = \emptyset^* = I_Q$ where I_Q is the identity relation 单位关系 on the states of M.

Definition 1.5 (The language between states). The language between any two states $q_0, q_1 \in Q$ is $T^*(q_0, q_1)$.

Definition 1.6 (Left and right languages). The left language of a state (in M) is given by function, $\overleftarrow{L}_M \in Q \to \mathbb{P}(V^*)$, where

$$\overleftarrow{L}_M(q) = (\cup s : s \in S : T^*(s,q))$$

The right language of a state (in M) is given by function $\overrightarrow{L}_M \in Q \to \mathbb{P}(V^*)$, where

$$\overrightarrow{L}_{M}(q) = (\cup f : f \in F : T^{*}(q,f))$$

The subscript M is usually dropped when no ambiguity can arise. \square

Example 1.1.
$$T^* \in Q \times Q \to \mathbb{P}(V^*), \overleftarrow{L}_M, \overrightarrow{L}_M \in Q \to \mathbb{P}(V^*).$$

 $\overleftarrow{L}_{M}(q) = \{$ 所有开始状态到 q 状态的字符串集合 $\}$, (从 q 往左看)

 $\overrightarrow{L}_{M}(q) = \{$ 所有从 q 状态到接受状态的字符串集合 $\}$, (从 q 往右看)

start
$$\longrightarrow$$
 s $\overleftarrow{L}_M(q)$ q $\overrightarrow{L}_M(q)$ f

see Fig 1.3.

$$\overleftarrow{L}_{M}(q_{2}) = (s \to q_{1} \to q_{2}) \cup (s \to (q_{1} \to q_{3})^{*} \to q_{1} \to q_{2}) \cup (s \to (q_{1} \to q_{3})^{*} \to q_{3} \to q_{2})$$

$$= [(s \to q_{1} \to q_{2}) \cup (s \to (q_{1} \to q_{3})^{*} \to q_{1} \to q_{2})] \cup (s \to (q_{1} \to q_{3})^{*} \to q_{3} \to q_{2})$$

$$= (s \to (q_{1} \to q_{3})^{*} \to q_{1} \to q_{2}) \cup (s \to (q_{1} \to q_{3})^{*} \to q_{3} \to q_{2})$$

$$= \{1(10)^{*}0, 1(10)^{*}1\}$$

$$\overrightarrow{L}_{M}(q_{2}) = \{01^{*}0, 10^{*}1(001^{*}0 + (10)^{*}1)\}$$

图 1.3: $\{x|x\in\{0,1\}^+$ 且当把 x 看成二进制数时,x 模 5 与 3 同余,要求当 x 为 0 时,|x|=1,且当 $x\neq0$ 时,x 的首字符为 1} 语言对应的 DFA

Definition 1.7 (Language of an FA). The language of a finite automaton (with alphabet V) is given by the function $L_{FA} \to \mathbb{P}(V^*)$ defined as:

$$L_{FA}(M) = (\cup s, f : s \in S \land f \in F : T^*(s, f))$$
 (所有从开始状态到接受状态的字符串集合)

Property 1.1 (Language of an FA). From the definition of left and right languages (of a state), we can also write:

 $L_{FA}(M) = (\cup f : f \in F : \overleftarrow{L}(f))$ (所有从 s 到 f 的字符串集合,从 f 向左看)

and

$$L_{FA}(M) = (\cup s : s \in S : \overrightarrow{L}(s))$$
 (所有从 s 到 f 的字符串集合,从 s 向右看)

Definition 1.8 (ε -free 无 ε 转移). Automaton M is ε -free if and only if $E = \emptyset$.

Remark 1.3. Even if M is ε-free it is still possible that $\varepsilon \in L_{FA}(M)$: inthiscase $S \cap F \neq \emptyset$. (开始状态也是接受状态)

Form [WATSON93a, Convention A.4] (Tuple projection).

Convention 2 (Tuple projection) For an n-tuple $t = (x_1, x_2, ..., x_n)$ we use the notation $\pi_i(t)(1 \le i \le n)$ to denote tuple element x_i ; we use the notation $\bar{\pi}_i(t)(1 \le i \le n)$ to denote the (n-1)-tuple $(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$. Both π and $\bar{\pi}$ extend naturally to sets of tuples.

Form [WATSON93a, Definition A.20] (Tuple and relation reversal).

Definition 1.9 (Tuple and relation reversal). For an *n*-tuple $(x_1, x_2, ..., x_n)$ define reversal as (postfix and superscript) function R:

$$(x_1, x_2, ..., x_n)^R = (x_n, x_n - 1, ..., x_2, x_1)$$

Given a set A of tuples, we define $A^R = \{x^R : x \in A\}$.

Definition 1.10 (Reachable states). For M we can define a reachability relation $Reach(M) \subseteq (Q \times Q)$ defined as

$$Reach(M) = (\bar{\pi}_2(T) \cup E)^* \text{ see}^1$$

Functions π and $\bar{\pi}$ are defined in Convention 2. Similarly the set of start-reachable states is defined to be:

$$SReachable(M) = Reach(M)(S) \text{ see}^2$$

and the set of final-reachable states is defined to be:

$$FReachable(M) = (Reach(M))^R(F) \text{ see}^3$$

Reversal of a relation is defined in Definition 1.9. The set of useful states is: $Reachable(M) = SReachable(M) \cap FReachable(M)$

Remark 1.4. For FAM = (Q, V, T, E, S, F), function SReachable satisfies the following interesting property:

$$q \in SReachable(M) \equiv \overleftarrow{L}_M(q) \neq \emptyset$$

FReachable satisfies a similar property:

$$q \in FReachable(M) \equiv \overrightarrow{L}_M(q) \neq \emptyset$$

 $^{^{1}}$ { $(p_{1},q_{1}),(p_{2},q_{2}),...$ }

² 从 start state 可以到达的状态集合

³ 可以到达 final state 的状态集合

Example 1.2.
$$T \in \mathbb{P}(Q \times V \times Q), T = \{(p, a, q) | p, q \in Q, a \in V\},\$$

 $\bar{\pi}_2(T) = \{(p, q) | (p, a, q) \in T\}$
 $Q_{map} = (\bar{\pi}_1(T))^R, Q_{map} = \{(a, q) | (p, a, q) \in T\}^R = \{(q, a) | (p, a, q) \in T\}$

e.g.
$$p = \{1,2\} \in Q_1 \subseteq \mathbb{P}(Q_0), \overrightarrow{L}_{M_1}(p) = \overrightarrow{L}_{M_0}(1) \cup \overrightarrow{L}_{M_0}(2)$$

1.3 Σ -algebras and regular expressions

X 集合中的元素与有序集 S 中的元素——对应、称 X 是 S-sorted.

$$S = \{1, 3, 7, 9\}, X = \{d, a, c, f\}, s \in S, X_s \in X$$

$$S$$
 是有序的, $S_{s_1} = 1$, $S_{s_2} = 3$, $S_{s_3} = 7$, $S_{s_4} = 9$

$$X$$
 与 S 中的元素——对应。 $X_{s_1}=d,X_{s_2}=a,X_{s_3}=c,X_{s_4}=f$

Σ -homomorphism

```
\Sigma-同态: (V,F)\Leftrightarrow (W,G),载体 (V,W) 和操作 (F,G) ——对应。 V:=\{re_1,re_2\}\ RE(正则表达式),\ W:=\{fa_1,fa_2\}\ FA(有限自动机) F:RG 运算,二元: union(or),concat; 一元: star,plus,question; 常量:epsilon,empty,symbol G:FA 运算,同上 V_{s_1}=re_1,V_{s_2}=re_2;W_{s_1}=fa_1,W_{s_2}=fa_2 re_1 \qquad re_2 \qquad RE_{concat}(re_1,re_2) \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad
```

```
//Sigma.h
template < class T>
class Reg : public T {
// Helper for constructing the homomorphic
   image of a regular expression.
// T is carrier set: RE,FA,RFA,
// 各自的操作, 分别在Sig-RE.cpp,Sig-FA.cpp,
   Sig-RFA.cpp中定义
inline void homomorphic_image(const RE& r);
Reg < T > \& epsilon();
Reg < T > \& empty();
Reg<T>& symbol(const CharRange r);
Reg<T>\& Or(const Reg<T>\& r);
Reg < T > \& concat (const Reg < T > \& r);
Reg<T>& star();
Reg<T>\& plus();
Reg<T>& question();
}
```

1.4 Others

Definition 1.11 (Prefix-closure[Chrison2007]). Let $L \subseteq V^*$, then

$$\overline{L} := \{ s \in V^* : (\exists t \in V^*) [st \in L] \}$$

In words, the prefix closure of L is the language denoted by \overline{L} and consisting of all the prefixes in L. In general, $L \subseteq \overline{L}$.

L is said to be prefix-closed if $L = \overline{L}$. Thus language L is prefix-closed if any prefix of any string in L is also an element of L.

$$L_1 = \{\varepsilon, a, aa\}, L_1 = \overline{L_1}, L_1 \text{ is prefix-closed.}$$

 $L_2 = \{a, b, ab\}, \overline{L_2} = \{\varepsilon, a, b, ab\}, L_2 \subset \overline{L_2}, L_2 \text{ is not prefix closed.}$

Definition 1.12 (Post-closure[Chrison2007]). Let $L \subseteq V^*$ and $s \in L$. Then the post-language of L after s, denoted by L/s, is the language

$$L/s := \{t \in V^* : st \in L\}$$

By definition, $L/s = \emptyset$ if $s \notin \overline{L}$.

Definition 1.13 (Left derivatives[WATSON93a]). Given language $A \subseteq V^*$ and $w \in V^*$ we define the left derivative of A with respect to w as:

$$w^{-1}A = \{x \in V^* : wx \in A\}$$

A 关于 w 的左导数, 就是 A 中: $\{w$ 的后缀组成的字符串集合 $\}$ 。

Sometimes derivatives are written as $D_w A$ or as $\frac{dA}{dw}$. Right derivatives are analogously defined. Derivatives can also be extended to $B^{-1}A$ where B is also a language.

Example 1.3.
$$A = \{a, aab, baa\}, a^{-1}A = D_aA = \frac{dA}{da} = \{\varepsilon, ab, \emptyset\} = \{\varepsilon, ab\}$$

Example 1.4. $L = \{ba, baa, baab, ca\}, w = \{ba\},$

$$w^{-1}L = \{\varepsilon, a, ab, \emptyset\} = \{\varepsilon, a, ab\}$$

$$(wa)^{-1}L = (baa)^{-1}L = \{\emptyset, \varepsilon, b, \emptyset\} = \{\varepsilon, b\}$$

$$a^{-1}(w^{-1}L) = a^{-1}\{\varepsilon, a, ab\} = \{\emptyset, \varepsilon, b\} = \{\varepsilon, b\}$$

$$w \in L \equiv \varepsilon \in w^{-1}L, and(wa)^{-1}L = a^{-1}(w^{-1}L)$$

1.4 Others 13

Example 1.5.
$$a^{-1}\{a\} = \{\varepsilon\}; \quad a^{-1}\{b\} = \emptyset, \quad \Leftarrow if(a \neq b)$$

Example 1.6.
$$L_0 = \{ab\}, L_1 = \{ac\}, L_0L_1 = \{abac\}$$

 $a^{-1}(L_0L_1) = \{bac\}$
 $a^{-1}(L_0L_1) = (a^{-1}L_0)L_1 \cup \emptyset \quad \Leftarrow (\varepsilon \notin L_0)$
 $= \{b\}L_1 = \{bac\}$

Example 1.7.
$$L_0 = \{\varepsilon, ab\}, L_1 = \{ac\}, L_0L_1 = \{ac, abac\}$$

$$a^{-1}(L_0L_1) = \{c, bac\}$$

$$a^{-1}(L_0L_1) = (a^{-1}L_0)L_1 \cup a^{-1}L_1 \quad \Leftarrow (\varepsilon \in L_0)$$

$$= \{\emptyset, b\}L_1 \cup \{c\} = \{c, bac\}$$

注明.
$$a^{-1}(L_0L_1)$$

 $1.if(\varepsilon \in L_0) \Rightarrow a^{-1}(L_0L_1) = (a^{-1}L_0)L_1 \cup a^{-1}L_1$
 $L_0 = (L_0 \setminus \{\varepsilon\}) \cup \{\varepsilon\}$
 $a^{-1}(L_0L_1) = a^{-1}(((L_0 \setminus \{\varepsilon\}) \cup \{\varepsilon\})L_1)$
 $= a^{-1}(L_0L_1 \cup L_1)$
 $a^{-1}L_0 = a^{-1}((L_0 \setminus \{\varepsilon\}) \cup \{\varepsilon\})$
 $= a^{-1}(L_0 \setminus \{\varepsilon\}) \cup a^{-1}\{\varepsilon\}$
 $= a^{-1}L_0 \cup \emptyset = a^{-1}L_0$

From [Hopcroft2008, p99]

(1) 如果 L 是一个语言,a 是一个符号,则 L/a(称作 L 和 a 的商) 是所有满足如下条件的串 w 的集合: wa 属于 L。例如,如果 $L = \{a, aab, baa\}$,则 $L/a = \{\varepsilon, ba\}$,证明: 如果 L 是正则的,那么 L/a 也是。提示: 从 L 的 DFA 出发,考虑接受状态的集合。

(2) 如果 L 是一个语言,a 是一个符号,则 $a \setminus L$ 是所有满足如下条件的串 w 的集合: aw 属于 L。例如,如果 $L = \{a, aab, baa\}$,则 $a \setminus L = \{\varepsilon, ab\}$,证明:如果 L 是正则的,那么 $a \setminus L$ 也是。提示:记得正则语言在反转运算下是封闭的,又由 (1) 知,正则语言的商运算下是封闭的。

Definition 1.14 (Kleene-closure[Chrison2007]). Let $L \subseteq V^*$, then

$$L^* := \{\varepsilon\} \cup L \cup LL \cup LLL \cup \cdots$$

This is the same operation that we defined above for the set V, except that now it is applied to set L whose elements may be strings of length greater than one. An element of L^* is formed by the concatenation of a finite (but possibly arbitrarily large) number of elements of L; this includes the concatenation of "zero" elements, that is the empty string ε . Note that * operation is idempotent: $(L^*)^* = L^*$.

$$\begin{split} L^* &= \{\varepsilon\} + L^+ \\ &= \{\varepsilon\} \cup (L \setminus \{\varepsilon\}) L^* \\ &= \{\varepsilon\} + L + LL + LLL + \cdots \end{split}$$

1.5 Linear equation

see [Jean2018, 5.3,p64].

We give an algorithm to covert an automaton to a rational (regular) expression. The algorithm amounts to solving a system of linear equations on languages. We first consider an equation of the form

$$X = KX + L \tag{1.1}$$

Proposition 1.1 (Arden's Lemma). if K does not contain the empty word, then $X = K^*L$ is the unique solution of the equation X = KX + L.

where K and L are languages and X is the unknown. When K does not contain the empty word, the equation admits a unique solution.

证明. Replacing X by K^*L in the expression KX + L, one gets

$$K(K^*)L + L = K^+L + L = (K^+L + L) = K^*L.$$

and hence $X = K^*L$ is a solution of (1.1). see¹

To Prove uniqueness, consider two solutions X_1 and X_2 of (1.1). By symmetry, it suffices to show that each word u of X_1 also belongs to X_2 . Let us prove this result by induction on the length of u.

If |u| = 0, u is the empty word² and if $u \in X_1 = KX_1 + L$, then necessarily $u \in L$ since $\varepsilon \notin K$. But in this case, $u \in KX_2 + L = X_2$. see³

For the induction step, consider a word u of X_1 of length n+1. Since $X_1 = KX_1 + L$, u belongs either to L or to KX_1 . if $u \in L$, then $u \in KX_2 + L = X_2$. If $u \in KX_1$ then u = kx for some $k \in K$ and $x \in X_1$. Since k is not the empty word, one has necessarily $|x| \le n$ and hence by induction $x \in X_2$. [see⁴] It follows that $u \in KX_2$ and finally $u \in X_2$. This conclude the induction and the proof of the proposition.

From [Wonham2018, p74] The length |s| of a string $s \in \Sigma^*$ is defined according to

$$|\varepsilon| = 0; |s| = k, \text{if } s = \sigma_1 \sigma_2 \cdots \sigma_k \in \Sigma^+$$

Thus |cat(s,t)| = |s| + |t|.

$$K^* = \{\varepsilon\} + K^+$$

$$= \{\varepsilon\} + (K \setminus \{\varepsilon\})K^*$$

$$= \{\varepsilon\} + K + KK + KKK + \cdots$$

 $^{^2}$ The empty word $= \varepsilon, |\varepsilon| = 0$; if a language $M = \{\varepsilon\}, |M| = 1$, The empty language $M = \emptyset, |M| = 0$. 文献 [Jean2018] 用 1 表示 ε , 因为 $\varepsilon K = K\varepsilon = K$, 因此, ε 是连接运算的单位元,正是 1 表示的用意。 0 表示 \emptyset , 它是并运算的单位元, $K \cup \emptyset = \emptyset \cup K = K$.

³ In this case, $|u| = 0, X = \{\varepsilon\}, |X| = 1$. i.e. $\varepsilon = K\varepsilon + L, \varepsilon = K + L$

 $[|]u| = kx, |u| = |kx| = n + 1, \epsilon \notin K, |k| \ge 1, |x| \le n$, 由假设知,u 属于 X_1 , 归纳 $|x| = 0, |x| = 1, \cdots, n, x \in X_2$.

A language over Σ is any subset of Σ^* , i.e. an element of the power set $Pwr(\Sigma^*)$; thus the definition includes both the empty language \emptyset , and Σ^* itself.

Note the distinction between \emptyset (the language with no strings) and ε (the string with no symbols). For instance the language $\{\varepsilon\}$ is nonempty, but contains only the empty string.

From [Wonham2018, p78]

Proposition 1.2 ([Wonham2018]).

1. If
$$L = M^*N$$
 then $L = ML + N$
2. If $\varepsilon \notin M$ then $L = ML + N$ implies $L = M^*N$

Part(2) is Known as Arden's rule. Taken with Part(1) it says that if $\varepsilon \notin M$ then $L = M^*N$ is the unique solution of L = ML + N; in particular if L = ML (with $\varepsilon \notin M$) then $L = \emptyset$

Exercise 1.1. Show by counterexample that the restriction $\varepsilon \notin M$ in Arden's rule cannot be dropped.

Solution 1.1. Examples text goes here.

Exercise 1.2. Prove Arden's rule. Hint: If L = ML + N then for every $k \ge 0$

$$L = M^{k+1}L + (M^k + M^{k-1} + \dots + M + \varepsilon)N$$

Solution 1.2.

Preliminaries:

$$M^* = M^k + M^{k-1} + \dots + M^1 + M^0 \qquad (k \ge 0)$$

$$= M^k + M^{k-1} + \dots + M^1 + \varepsilon$$

$$= M^+ + \varepsilon$$

$$= MM^* + \varepsilon$$

$$= (M \setminus \{\varepsilon\})M^* + \varepsilon$$

$$M^+ = M^k + M^{k-1} + \dots + M^1 \qquad (k > 0)$$

$$= M(M^k + M^{k-1} + \dots + M^1 + M^0)$$

$$= MM^*$$

$$M^0 = \{\varepsilon\} = 1$$

$$M\varepsilon = \varepsilon M = M$$

$$\varepsilon + \varepsilon = \varepsilon$$

$$M + M = M$$

证明.

$$L = ML + N \Rightarrow$$

$$M^0 L = M^1 L + M^0 N (1.2)$$

$$M^{1}L = M^{2}L + M^{1}N \tag{1.3}$$

$$M^2L = M^3L + M^2N (1.4)$$

(1.5)

. . .

$$(M^{0} + M^{1} + M^{2} + \cdots)L = (M^{1} + M^{2} + M^{3} + \cdots)L + (M^{0} + M^{1} + M^{2} + \cdots)N$$

$$\Rightarrow$$
so,if $L = ML + N$, then for every $k \ge 0$

$$L = M^{k+1}L + (M^{k} + M^{k-1} + \cdots + M + M^{0})N$$

 \Rightarrow

$$L = M^{k+1}L + (M^k + M^{k-1} + \dots + M + \varepsilon)N$$
 (1.6)

$$(1) k = 0$$

$$L = ML + (\varepsilon)N = ML + N$$

$$\Rightarrow (1 - M)L = N$$

$$(\varepsilon - M)L = N$$

由于 $\varepsilon \notin M$, 左端不会消去 $\{\varepsilon\}$. 因此, 只能在 N 中找 L, 仅有唯一解: $L = \{\varepsilon\} = \{\text{empty word}\} \subseteq N$.

From [R.Su and Wonham2004, definition 2.3]

Definition 1.15. Let

$$G_A = (X_A, \Sigma, \xi_A, x_{A,0}, X_{A,m})$$

 $G_A = (X_B, \Sigma, \xi_B, x_{B,0}, X_{B,m})$

 G_B is a DES-epimorphic image(满射像) of G_A under DES-epimorphism $\theta: X_A \to X_B$ if

- 1. $\theta: X_A \to X_B$ is surjective(满射)
- 2. $\theta(x_{A,0}) = x_{B,0}$ and $\theta(X_{A,m}) = X_{B,m}$
- 3. $(\forall x \in X_A)(\forall \sigma \in \Sigma)\xi_A(x,\sigma)! \Rightarrow [\xi_B(\theta(x),\sigma)!\&\xi_B(\theta(x),\sigma) = \theta(\xi_A(x,\theta))]$
- 4. $(\forall x \in X_B)(\forall \sigma \in \Sigma)\xi_B(x,\sigma)! \Rightarrow [(\exists x' \in X_A)\xi_A(x',\sigma)!\&\theta(x') = x]$

In particular, G_B is DES-isomorphic (同构) to G_A if $\theta: X_A \to X_B$ is bijective (双射).

see figure 1.5.

$$\theta(x_{A,0}) = x_{B,0} \text{ and } \theta(X_{A,m}) = X_{B,m}$$

$$\theta(x_A) = x_B \text{ and } \theta(x_A') = x_B'$$

$$\xi_A(x_A, \sigma) = x_A' \text{ and } \xi_B(x_B, \sigma) = x_B' \Rightarrow \text{ definition } 1.15 \ (3,4)$$

$$\text{start} \longrightarrow (x_{A,0}) \longrightarrow (x_A) \longrightarrow (x_A) \longrightarrow (x_{A,m}) \longrightarrow (x_{A,m}) \longrightarrow (x_{B,0}) \longrightarrow (x_{B,0}) \longrightarrow (x_{B,m}) \longrightarrow (x_{B,m})$$

图 1.5: definition 1.15, G_B is a DES-epimorphic image(满射像) of G_A under DES-epimorphism $\theta: X_A \to X_B$

References 19

References

[Hopcroft2008] John E. Hopcroft,Rajeev Motwani,Jeffrey D. Ullman 著, 孙家骕等译,自动机理论、语言和计算机导论,Third Edition,机械工业出版社,2008.7

- [WATSON93a] WATSON, B. W. A taxonomy of finite automata construction algorithms, Computing Science Note 93/43, Eindhoven University of Technology, The Netherlands, 1993. Available by ftp from ftp.win.tue.nl in pub/techreports/pi.
- [WATSON93b] WATSON, B. W. A taxonomy of finite automata minimization algorithms, Computing Science Note 93/44, Eindhoven University of Technology, The Netherlands, 1993. Available by ftp from ftp.win.tue.nl in pub/techreports/pi.
- [WATSON94a] WATSON, B. W. An introduction to the FIRE engine: A C++ toolkit for FInite automata and Regular Expressions, Computing Science Note 94/21, Eindhoven University of Technology, The Netherlands, 1994. Available by ftp from ftp.win.tue.nl in pub/techreports/pi
- [WATSON94b] WATSON, B.W. The design. and implementation of the FIRE engine: A C++ toolkit for FInite automata and Regular Expressions, Computing Science Note 94/22, Eindhoven University of Technology, The Netherlands, 1994. Available by ftp from ftp.win.tue.nl in pub/techreports/pi.
- [Chris<an display="1">[Chris (100) G. Cassandras and Stéphane Lafortune, Introduction to Discrete Event Systems, Second Edition, New York, Springer, 2007
- [Wonham2018] W. M. Wonham and Kai Cai, Supervisory Control of Discrete-Event Systems, Revised 2018.01.01
- [Jean2018] Jean-Éric Pin, Mathematical Foundations of Automata Theory, Version of June 15,2018
- [蒋宗礼 2013] 蒋宗礼,姜守旭,形式语言与自动机理论(第 3 版),清华大学出版 社,2013.05
- [Lipschutz2007] S. Lipschutz and M. L. Lipson, Schaum's Outline of Theory and Problems of Discrete Mathematics, Third Edition, New York: McGraw-Hill, 2007.
- [Rosen2007] K. H. Rosen, Discrete Mathematics and Its Applications, Seventh Edition, New York: McGraw-Hill, 2007.
- [R.Su and Wonham2004] R. Su and W. M. Wonham, Supervisor reduction for discrete-event systems, Discrete Event Dyn. Syst., vol. 14, no. 1, pp. 31–53, Jan. 2004.

1. S. Maclane and G. Birkhoff, *Algebra*, Third Edition, New York: Bchelsea Publishing Company, 1988.