Convolutional Neural Neural Neural

EECS 442 – Jeong Joon Park Winter 2024, University of Michigan

Administrivia

• HW3 Due this Wednesday

Previously – Backpropagation

$$f(x) = (-x+3)^2$$

Forward pass: compute function
Backward pass: compute derivative of all
parts of the function

Setting Up A Neural Net

Setting Up A Neural Net

Input Hidden 1 Hidden 2 Output

Each neuron connects to each neuron in the previous layer Fully-Connected Net

Define New Block: "Linear Layer" (It's Technically Affine)

Can get gradient with respect to all the inputs

Backpropagation lets us calculate derivative of the output/error with respect to all the Ws at a given point x

Putting It All Together – 1

Function: $NN(x; W_i,b_i)$ Parameterized by $W = \{W_i,b_i\}$

Putting It All Together

Putting It All Together

```
W = initializeWeights()
for i in range(numIterations):
      #sample a batch
      batch = random.subset(0,#datapoints,K)
      batchX, batchY = dataX[batch], dataY[batch]
      #compute gradient with batch
      gradW = backprop(Loss(NN(batchX,W),batchY))
      #update W with gradient step or use momentum
      W += -stepsize*gradW
return W
```

What Can We Represent?

$$L(n) = Wn + b$$

What Can We Represent

- Recall: ax+by+z is
 - proportional to signed distance to line
 - equal to signed distance if you normalize
- Generalization to N-D: hyperplane w^Tx+b

 $\max(\mathbf{w_1}^\mathsf{T}\mathbf{x} + \mathbf{b}, 0)$

max($\mathbf{w}_1^T\mathbf{x}$ +b,0)= Distance to line defined by \mathbf{w}_1

 $\max(\mathbf{w_2}^\mathsf{T}\mathbf{x} + \mathbf{b}, 0)$

 $max(\mathbf{w_2}^T\mathbf{x}+\mathbf{b},0) =$ Distance to line defined by $\mathbf{w_2}$

Distance to w₁

Next layer computes: max(w₁ Distance - w₂ Distance,0)

Distance to w₂

Three Neurons Demo

Can We Train a Network To Do It? use neurons to divide your space with half-spaces (possitive value / 2010)

Result: feedforward neural networks with a finite number of neurons in a hidden layer can approximate any continuous function with a bounded domain Universal Approximation Theorem.

Cybenko (1989) for neural networks with sigmoids; Hornik (1991) more generally

In practice, doesn't give a practical guarantee. **Why?**

Developing Intuitions

There is no royal road to geometry. – Euclid

- Best way: play with data, be skeptical of everything you do, be skeptical of everything you are told
- Remember: this is linear algebra, not magic
- Technique: How would you set the weights by hand if you were forced to be a deep net

How many parameters does this network have?

Weights: 1x2

Parameters: 3 (bias!)

How many parameters does this network have?

Weights: 1x4+4x2 = 12

Parameters: 12+5 = 17

How many parameters does this network have?

Weights: 3x4+4x4+4x2 = 36

Parameters: 36+11 = 47

P: 285x350 picture (terrible!), H: 1000, O: 3 102 million parameters (400MB)

- First layer converts all visual information into a single H dimensional vector.
 - Suppose you want a neuron to represent image gradient at each pixel. How many neurons do you need?
 - 2P each pixel has x and y direction gradient.

P: 285x350, H: 2P, O: 3

100 billion parameters (400GB)

Convnets

Keep Spatial Resolution Around

FC Neural net:

Data: vector Fx1

Transform: matrix-multiply

Convnet:

Data: image HxWxF

Transform: convolution

Convnet (Feature Volume)

Height: 300 Width: 500

Depth: 3

Height: 32 Width: 32

Depth: 3

Convnet

Fully connected:

Connects to everything

Convnet:

Connects locally Filter Small & Reused

Convnet

Neuron is the same: weighted linear average

Slide credit: Karpathy and Fei-Fei

Convnet

Neuron is the same: weighted linear average

Slide credit: Karpathy and Fei-Fei

Convnet

Get spatial output by sliding filter over image

Differences From Earlier Filtering

(a) #input channels can be greater than one(b) forget you learned the difference between convolution and cross-correlation

l11	F11	F12	F13	l15	I16
I21	F21	F22	F23	l25	126
I31	F31	F32	F33	135	136
141	142	143	144	I45	I46
l51	152	153	154	155	156

Convnet

How big is the output?

Height? 32-5+1=28 Width? 32-5+1=28 Channels? 1

One filter not very useful by itself

Multiple Filters

You've already seen this before

Input: 400x600x1

Output: 400x600x2

Convnet Multiple out channels via multiple filters. How big is the output?

Height? 32-5+1=28 Width? 32-5+1=28 Channels? 200

Convnet

Multiple out channels via multiple filters.

How big is the output?

Height? 32-5+1=28

Width? 32-5+1=28

Channels? 200

Convnet, Summarized

Neural net:
series of matrix-multiplies
parameterized by **W**,**b** +
nonlinearity/activation
Fit by gradient descent

Convnet:
series of convolutions
parameterized by **F,b** +
nonlinearity/activation
Fit by gradient descent

One Additional Subtlety – Stride Warmup: how big is the output spatially?

F11	F12	F13	114	l15	l16	117
F21	F22	F23	124	I25	126	127
F31	F32	F33	134	135	136	137
141	142	143	144	I45	146	147
I51	152	153	154	155	156	157
l61	162	163	164	165	166	I67
171	172	173	174	175	176	177

Normal (Stride 1): 5x5 output

Stride: skip a few (here 2)

F11	F12	F13	l14	115	l16	117
F21	F22	F23	124	125	126	127
F31	F32	F33	134	I35	136	137
141	142	143	144	I45	146	147
I51	152	153	154	155	156	157
l61	162	163	164	165	166	167
171	172	173	174	175	176	177

Normal (Stride 1): 5x5 output

Stride: skip a few (here 2)

l11	l12	F11	F12	F13	l16	117
121	122	F21	F22	F23	126	127
I31	132	F31	F32	F33	136	137
141	142	143	144	I45	146	147
I51	152	153	154	155	156	157
l61	162	163	164	165	166	l67
171	172	173	174	175	176	177

Normal (Stride 1): 5x5 output

Stride: skip a few (here 2)

I11	l12	l13	l14	F11	F12	F13
I21	122	I23	124	F21	F22	F23
I31	l32	I33	134	F31	F32	F33
141	142	143	144	145	146	147
I51	152	153	154	155	156	157
l61	162	163	164	165	166	167
171	172	173	174	175	176	177

Normal (Stride 1): 5x5 output

Stride 2 convolution: 3x3 output

What about stride 3?

F11	F12	F13	114	l15	l16	117
F21	F22	F23	124	125	126	127
F31	F32	F33	134	135	136	137
141	142	143	144	I45	146	147
151	152	153	154	155	156	157
l61	162	163	164	165	166	167
171	172	173	174	175	176	177

Normal (Stride 1): 5x5 output

Stride 2 convolution: 3x3 output

What about stride 3?

l11	l12	l13	F11	F12	F13	117
I21	122	I23	F21	F22	F23	127
l31	132	133	F31	F32	F33	137
I41	142	I43	144	I45	146	147
I51	152	153	154	155	156	157
l61	162	163	164	165	166	167
171	172	173	174	175	176	177

Normal (Stride 1): 5x5 output

Stride 2 convolution: 3x3 output

Stride 3 convolution: Not Common!

One Additional Subtlety

Zero padding is extremely common, although other forms of padding do happen

Symm: fold sides over

Circular/Wrap: wrap around

pad/fill: add value, often 0

In General

Output Size

$$\left|\frac{(N-F)}{S}\right|+1$$

In General

Output Size with Padding

$$\left|\frac{(N+2P-F)}{S}\right|+1$$

In General

With Proper Padding: Output Size Preserved

$$\left|\frac{N}{S}\right|$$

Proper Padding Size?

$$\left|\frac{F}{2}\right|$$

Input volume: 32x32x3

Receptive fields: 5x5, stride 1

Number of neurons: 5

$$\frac{(N-F)}{s}+1$$

Output volume size?

Input volume: 32x32x3

Receptive fields: 5x5, stride 1

Number of neurons: 5

$$\frac{(N-F)}{s}+1$$

Output volume: (32 - 5) / 1 + 1 = 28, so: 28x28x5

Number of Parameters?

Each filter we have five filters

Input volume: 32x32x3

Receptive fields: 5x5, stride 1

Number of neurons: 5

$$\frac{(N-F)}{s}+1$$

Output volume: (32 - 5) / 1 + 1 = 28, so: 28x28x5

How many parameters? 5x5x3x5 + 5 = 380

Smaller than FC (32x32x3x5+5)=15365

Input volume: 32x32x3

Receptive fields: 5x5, stride 3

Number of neurons: 5

$$\frac{(N-F)}{s}+1$$

Output volume size?

Input volume: 32x32x3

Receptive fields: 5x5, stride 3

Number of neurons: 5

Output volume: (32 - 5) / 3 + 1 = 10, so: 10x10x5

Number of Parameters?

Input volume: 32x32x3

Receptive fields: 5x5, stride 3

Number of neurons: 5

Output volume: (32 - 5) / 3 + 1 = 10, so: 10x10x5

How many parameters? 5x5x3x5 + 5 = 380. Same!

Idea: want spatial resolution of activations / images smaller; applied per-channel

Idea: want spatial resolution of activations / images smaller; applied per-channel

1	1	2	4	Avg-pool 2x2 Filter		
5	6	7	8	Stride 2	3.25	5.25
3	2	1	0		1.75	2.0
1	1	3	4			

Idea: want spatial resolution of activations / images smaller; applied per-channel

l11	l12	l13	l14	l15	l16	l17
I21	122	123	124	125	126	127
I31	132	133	134	135	136	137
I41	142	143	144	I45	146	147
I51	152	153	154	155	156	157
l61	162	163	164	165	166	167
171	172	173	174	175	176	177

Max-pool 3x3 Filter Stride 2

O11

O11 = maximum value in blue box

Idea: want spatial resolution of activations / images smaller; applied per-channel

I11	l12	l13	114	l15	l16	l17
I21	l22	123	124	l25	126	127
I31	l32	133	134	135	136	137
I41	142	143	144	I45	I46	147
I51	152	153	154	155	156	157
l61	162	163	164	l65	166	167
l71	172	173	174	175	176	177

Max-pool 3x3 Filter Stride 2

O12 = maximum value in blue box

Idea: want spatial resolution of activations / images smaller; applied per-channel

I11	l12	I13	l14	I15	l16	117	
I21	122	I23	124	125	126	127	
I31	l32	I33	I34	135	136	137	
I41	142	143	144	I45	146	147	Ī
I51	152	153	154	155	156	157	
I61	162	163	164	165	166	167	
l71	172	173	174	175	176	177	

Max-pool 3x3 Filter Stride 2

O13 = maximum value in blue box

Idea: want spatial resolution of activations / images smaller; applied per-channel

Smaller Resolution → Smaller Computation

Squeezing a Loaf of Bread

Suppose we want to convert a 32x32x3 image into a 10x1 vector of classification results

Figure Credit: Karpathy and Fei-Fei; see http://cs231n.stanford.edu/

```
input: [32x32x3]
CONV with 10 3x3 filters, stride 1, pad 1:
gives: [32x32x10]
new parameters: (3*3*3)*10 + 10 = 280
RFI U
CONV with 10 3x3 filters, stride 1, pad 1:
gives: [32x32x10]
new parameters: (3*3*10)*10 + 10 = 910
RFIU
POOL with 2x2 filters, stride 2:
gives: [16x16x10]
parameters: 0
```

```
Previous output: [16x16x10]
CONV with 10 3x3 filters, stride 1:
gives: [16x16x10]
new parameters: (3*3*10)*10 + 10 = 910
RFI U
CONV with 10 3x3 filters, stride 1:
gives: [16x16x10]
new parameters: (3*3*10)*10 + 10 = 910
RFI U
POOL with 2x2 filters, stride 2:
gives: [8x8x10]
parameters: 0
```

Conv, Relu, Conv, Relu, Pool continues until it's [4x4x10]

Fully-Connected FC layer to 10 neurons (which are our class scores)

Number of parameters:

10 * 4 * 4 * 10 + 10 = 1610

done!

An Alternate Conclusion

Conv, Relu, Conv, Relu, Pool continues until it's [4x4x10]

Average POOL 4x4x10 to 10 neurons Fully-Connected FC layer to 10 neurons (which are our class scores) Number of parameters: 10 * 10 + 10 = 110

done!

- (1) filter image with 96 7x7 filters with stride 2
- (2) ReLU
- (3) 3x3 max pool with stride 2 (and *contrast* normalization now ignored)

What Do The Filters Represent?

Recall: filters are images and we can look at them

What Do The Filters Represent?

First layer filters
(11x11) of a network
(AlexNet) trained to
distinguish 1000
categories of objects
(ImageNet)

Remember these filters go over color.

For the interested:

Gabor filter

Figure Credit: Karpathy and Fei-Fei

What Do The Filters Do? FC (Fully-CONVPOODONV CONVPOODONV CONVPOOL CONV connected) ReLU ReLU ReLU ReLU ReLU ReLUI bird deer frog dog cat

Next Class: More CNNs