Financial Linkages, Macroprudential Policy, and Systemic Risk¹

Co-Pierre Georg

Universidad Carlos III de Madrid

and

Oxford University

4th International IFABS Conference on Rethinking Banking and Finance: Money, Markets, and Models Valencia, 20 June 2012

¹Joint work with Silvia Gabrieli, Banque de France

Systemic Risk is Dynamic and Takes Various Forms

- Two dimensions of systemic risk
 - Systemic risk slowly builds in tranquil times and abruptly unravels in times of crisis

 \Rightarrow time-dimension

2 Systemic risk can be transmitted through various channels

⇒ cross-sectional dimension

- Systemic risk channels:
 - ▶ financial contagion: Allen and Gale (2000), Freixas, Parigi, and Rochet (2000)
 - common shocks: Acharya and Yorulmazer (2008), Georg (2011)
 - ▶ informational spillovers: Acharya and Yorulmazer (2008b), Nier et al. (2007) Ahnert and Georg (2012)

Modelling Systemic Risk is a Challenge

Four reasons why modelling systemic risk is a challenge for economists:

- Heterogeneous agents
- Complex interactions
- 3 Dynamic structural change
- 4 Deviations from rationality

⇒ In this talk: focus on the first three points

Financial Intermediaries are Heterogeneous

Figure: Concentration of the UK and US banking system. Source: Gai, Haldane and Kapadia (2011).

Modelling Systemic Risk is a Challenge

Four reasons why modelling systemic risk is a challenge for economists:

- Heterogeneous agents
- **2** Complex interactions
- 3 Dynamic structural change
- 4 Deviations from rationality

⇒ In this talk: focus on the first three points

The Network Structure Matters

Figure: A scale-free network (k = 4) of contracts amongst 50 banks.

Modelling Systemic Risk is a Challenge

Four reasons why modelling systemic risk is a challenge for economists:

- Heterogeneous agents
- 2 Complex interactions
- **3** Dynamic structural change
- 4 Deviations from rationality

⇒ In this talk: focus on the first three points

The Financial System is more Highly Interconnected Today

Figure: Interconnectedness of the international banking network in 1980 (left) and 2007 (right). Source: Minoiu and Reyes (2011) using BIS data.

Modelling Systemic Risk is a Challenge

Four reasons why modelling systemic risk is a challenge for economists:

- Heterogeneous agents
- 2 Complex interactions
- 3 Dynamic structural change
- 4 Deviations from rationality

 \Rightarrow In this talk: focus on the first three points

The Financial System from a Complex Systems Perspective

Figure: The building blocks for a simulation of the financial system

The Financial System from a Complex Systems Perspective

Figure: The building blocks for a simulation of the financial system

Agent Behaviour and Model Dynamics

Banks optimize their portfolio structure and -volume according to CRRA preferences

$$u = rac{1}{1- heta} \left(V(1+\lambda \mu - rac{1}{2} heta \lambda^2 \sigma^2)
ight)^{(1- heta)}$$

where θ is risk-aversion parameter

- **Update algorithm** for k = 1, ..., N banks and $t = 1, ..., \tau$ update steps:
 - 1 Obtain returns on investments, pay interest on deposits
 - Deposit in- and out-flows, required reserves
 - 3 Settle interbank loans
 - 4 Determine new investment level
 - 5 Settle liquidity position
 - 6 Pay dividends

Microfoundations of Banks Determine Model

Sources and Remedies of Systemic Risk

Systemic risk through interbank contagion and fire-sales

- Interbank contagion is a source of systemic risk, but not the major one
- Common shocks are quantitatively the greater threat
- Fire-sales can be caused by cash-in-the-market pricing:

$$p(\gamma, t, I_l(t)) = \exp\left(-\gamma \cdot \frac{(I(0) - I(t) + I_l(t))}{I(0)}\right)$$

Contagion and Common Shocks

Figure: The impact of different forms of systemic risk on financial stability in a crisis scenario ($\rho_f^+ = 0.09, \rho_f^- = -0.08$) in a random network (comnLevel=0.8)

Endogenous Fire Sales

Endogenous Fire Sales

Sources and Remedies of Systemic Risk

Systemic risk through interbank contagion and fire-sales

- Interbank contagion is a source of systemic risk, but not the major one
- Common shocks are quantitatively the greater threat
- Fire-sales can be caused by cash-in-the-market pricing

$$p(\gamma, t, I_l(t)) = \exp\left(-\gamma \cdot \frac{(I(0) - I(t) + I_l(t))}{I(0)}\right)$$

A number of tools has been proposed to alleviate systemic risk:

- Time-dimension: **countercyclical capital buffer**, leverage ratio, dynamic risk-weights, provisioning, liquidity requirements, **reserve requirements**
- Cross-sectional dimension: concentration limits, SIFI surcharge

Countercyclical Capital Buffers

Countercyclical Capital Buffers

Varying Reserve Requirements

A SIFI surcharge can be more effective

A SIFI surcharge can be more effective

Conclusion

- Heterogeneous agents, complex interactions, and dynamic structural change calls for a more flexible set of models ⇒ Multi-Agent Network Models
- Agent behaviour is the weak link in models today
- Network models to assess systemic risk can be used to analyse recently proposed **macroprudential measures**: ⇒ countercyclical capital buffers, reserve requirements, SIFI surcharge

Conclusion

- Heterogeneous agents, complex interactions, and dynamic structural change calls for a more flexible set of models ⇒ Multi-Agent Network Models
- Agent behaviour is the weak link in models today
- Network models to assess systemic risk can be used to analyse recently proposed macroprudential measures: ⇒ countercyclical capital buffers, reserve requirements, SIFI surcharge

Open Source MAS released on 1 July 2011: http://cabdyn.ox.ac.uk

⇒ Thank you!