E Chen¹[0009-0006-3013-8790] Yang Cao²[1111-2222-3333-4444] Gennian Ge^{1,3}
$$2023 \mp 5 月 4 日$$

Abstract. The abstract should briefly summarize the contents of the paper in 15–250 words.

Keywords: First keyword \cdot Second keyword \cdot Another keyword.

1 Introduction

Definition 1. For a domain \mathcal{D} , let $\mathcal{R}^{(i)}: \mathcal{S}^{(1)} \times \mathcal{S}^{(2)} \times \cdots \times \mathcal{S}^{(i-1)} \times \mathcal{D} \to \mathcal{S}^{(i)}$ for $i \in [n]$, where $\mathcal{S}^{(i)}$ is the range space of $\mathcal{R}^{(i)}$ be a sequence of algorithms such that $\mathcal{R}^{(i)}(z_{1:i-1}, \cdot)$ is an (ϵ_i, δ_i) -DP local randomizer for all values of auxiliary inputs $z_{1:i-1} \in \mathcal{S}^{(1)} \times \mathcal{S}^{(2)} \times \cdots \mathcal{S}^{(i-1)}$. Let $\mathcal{A}_R: \mathcal{D} \to \mathcal{S}^{(1)} \times \mathcal{S}^{(2)} \times \cdots \times \mathcal{S}^{(n)}$ be the algorithm that given a dataset $x_{1:n} \in \mathcal{D}^n$, then sequentially computes $z_i = \mathcal{R}^{(i)}(z_{1:i-1}, x_i)$ for $i \in [n]$ and outputs $z_{1:n}$. We say $\mathcal{A}_R(\mathcal{D})$ is an (ϵ_i, δ_i) -DP adaptive process. Similarly, if we first sample a permutation π uniformly at random, then sequentially computes $z_i = \mathcal{R}^{(i)}(z_{1:i-1}, x_{\pi_i})$ for $i \in [n]$ and outputs $z_{1:n}$, we say this process is shuffled (ϵ_0, δ_0) -DP adaptive and denote it by $\mathcal{A}_{R,S}(\mathcal{D})$.

Lemma 1 (KOV15). Let $R^{(i)}: D \to S$ be an (ϵ_i, δ_i) -DP algorithm, and $x_0, x_1 \in D$, then there exists two discrete random variables \tilde{X}_0 and \tilde{X}_1 , where

$$P(\tilde{X}_0 = x) = \begin{cases} \delta_i & \text{if } x = A, \\ \frac{(1 - \delta_i)e^{\epsilon_i}}{1 + e^{\epsilon_i}} & \text{if } x = 0, \\ \frac{1 - \delta_i}{1 + e^{\epsilon_i}} & \text{if } x = 1, \\ 0 & \text{if } x = B, \end{cases}$$

^{*}Corresponding author

and

$$P(\tilde{X}_1 = x) = \begin{cases} 0 & \text{if } x = A, \\ \frac{1 - \delta_i}{1 + e^{\epsilon_i}} & \text{if } x = 0, \\ \frac{(1 - \delta_i)e^{\epsilon_i}}{1 + e^{\epsilon_i}} & \text{if } x = 1, \\ \delta_i & \text{if } x = B. \end{cases}$$

The (ϵ_i, δ_i) -differentially private mechanism

Lemma 2. Given an (ϵ_i, δ_i) -DP adaptive process, then in the i-th step, local randomizer $\mathcal{R}^{(i)} \colon \mathcal{D} \to \mathcal{S}$ and for any n+1 inputs $x_1^0, x_1^1, x_2, \dots, x_n \in \mathcal{D}$, there exists distributions $\mathcal{Q}_1^0, \mathcal{Q}_1^1, \mathcal{Q}_1, \mathcal{Q}_2, \dots, \mathcal{Q}_n$ such that

$$\mathcal{R}^{(i)}(x_1^0) = \frac{(1-\delta_i)e^{\epsilon_i}}{1+e^{\epsilon_i}}\mathcal{W}_1^0 + \frac{1-\delta_i}{1+e^{\epsilon_i}}\mathcal{W}_1^1 + \delta_i\mathcal{W}_1,$$

$$\mathcal{R}^{(i)}(x_1^1) = \frac{(1-\delta_i)e^{\epsilon_i}}{1+e^{\epsilon_i}}\mathcal{W}_1^0 + \frac{1-\delta_i}{1+e^{\epsilon_i}}\mathcal{W}_1^1 + \delta_i\mathcal{W}_1.$$

$$\forall x_i \in \{x_2, \cdots, x_n\}, \mathcal{R}(x_i) = \frac{1 - \delta_i}{1 + e^{\epsilon_i}} \mathcal{Q}_1^0 + \frac{1 - \delta_i}{1 + e^{\epsilon_i}} \mathcal{Q}_1^1 + (1 - \frac{2(1 - \delta_i)}{1 + e^{\epsilon_i}}) \mathcal{Q}^i$$

Proof. For inputs $X_0 = \{x_1^0, x_2, \dots, x_n\}$ and $X_1 = \{x_1^1, x_2, \dots, x_n\}$, $\mathcal{R}^{(i)}$ satisfies the constraints of Lemma ??, so there exists an (ϵ_i, δ_i) -DP local randomizer $\mathcal{R}' : \mathcal{D} \to \mathcal{Z}$ for the *i*-th output, and post-processing function $proc(\cdots)$ such that $proc(\mathcal{R}'^{(i)}(x)) = \mathcal{R}^{(i)}(x)$, and

$$P(\mathcal{R}'^{(i)}(x_1^0) = z) = \begin{cases} 0 & \text{if } z = A, \\ \frac{1 - \delta_i}{1 + e^{\epsilon_i}} & \text{if } z = 0, \\ \frac{(1 - \delta_i)e^{\epsilon_i}}{1 + e^{\epsilon_i}} & \text{if } z = 1, \\ \delta_i & \text{if } z = B. \end{cases}$$

$$P(\mathcal{R}'^{(i)}(x_1^1) = z) = \begin{cases} \delta_i & \text{if } z = A, \\ \frac{1 - \delta_i}{1 + e^{\epsilon_i}} & \text{if } z = 0, \\ \frac{(1 - \delta_i)e^{\epsilon_i}}{1 + e^{\epsilon_i}} & \text{if } z = 1, \\ 0 & \text{if } z = B. \end{cases}$$

Let $L=\{z\in\mathcal{Z}|\mathbb{P}(\mathcal{R}'(x_1^0=z))=\frac{(1-\delta_i)e^{\epsilon_i}}{1+e^{\epsilon_i}}$ and $\mathbb{P}(\mathcal{R}'(x_1^1=z))=\frac{1-\delta_i}{1+e^{\epsilon_i}}\}$, $U=\{z\in\mathcal{Z}|\mathbb{P}(\mathcal{R}'(x_1^1=z))=\frac{1-\delta_i}{1+e^{\epsilon_i}}$ and $\mathbb{P}(\mathcal{R}'(x_1^1=z))=\frac{(1-\delta_i)e^{\epsilon_i}}{1+e^{\epsilon_i}}\}$. Let $M=\mathcal{Z}\{L\bigcup U\}$ and $p=\sum_{z\in\mathcal{L}}p_z=\sum_{z\in\mathcal{U}}p_z$. Since conditioned on the output

lying in \mathcal{L} , the distribution of $\mathcal{R}'(x_1^0)$ and $\mathcal{R}'(x_1^1)$ are same. Let $\mathcal{W}_1^0 = \mathcal{R}'(x_1^0)|L = \mathcal{R}'(x_1^1)|L$, $\mathcal{W}_1^1 = \mathcal{R}'(x_1^0)|U = \mathcal{R}'(x_1^1)|U$ and $\mathcal{W}_1 = \mathcal{R}'(x_1^0)|M = \mathcal{R}'(x_1^1)|M$. Then

$$\mathcal{R}'(x_1^0) = \frac{(1-\delta_i)e^{\epsilon_i}}{1+e^{\epsilon_i}}\mathcal{W}_1^0 + \frac{1-\delta_i}{1+e^{\epsilon_i}}\mathcal{W}_1^1 + \delta_i\mathcal{W}_1,$$

$$\mathcal{R}'(x_1^1) = \frac{(1-\delta_i)e^{\epsilon_i}}{1+e^{\epsilon_i}}\mathcal{W}_1^0 + \frac{1-\delta_i}{1+e^{\epsilon_i}}\mathcal{W}_1^1 + \delta_i\mathcal{W}_1.$$

Further, for all $x_i \in \{x_2, \cdots, x_n\}$,

$$\mathcal{R}'(x_i) \ge \frac{1 - \delta_i}{1 + e^{\epsilon_i}} \mathcal{W}_1^0 + \frac{1 - \delta_i}{1 + e^{\epsilon_i}} \mathcal{W}_1^1 + (1 - \frac{2(1 - \delta_i)}{1 + e^{\epsilon_i}}) \mathcal{W}_i.$$

Letting $\mathcal{Q}_1^0 = proc(\mathcal{W}_1^0)$, $\mathcal{Q}_1^1 = proc(\mathcal{W}_1^1)$, $\mathcal{Q}_1 = proc(\mathcal{W}_1)$ and for all $i \in \{2, \dots, n\}$, $\mathcal{Q}_i = proc(\mathcal{W}_i)$.

Theorem 1. For a domain D, if $\mathcal{A}_R(\mathcal{D})$ is an shuffled (ϵ_i, δ_i) -DP adaptive process, then there exists a post-processing function $proc(\cdot)$: $(0, 1, 2) \to \mathcal{S}^{(1)} \times \mathcal{S}^{(2)} \times \cdots \times \mathcal{S}^{(n)}$, such that

$$T(\mathcal{A}_{R,S}(X_0), \mathcal{A}_{R,S}(X_1)) = T(proc(P_0), proc(P_1)),$$

where $(X_0, X_1, X_2) \sim P_0, X_0 = \sum_{i=1}^{n-1} Bern(\frac{1-\delta_i}{1+e_i^{\epsilon}}), X_1 = \sum_{i=1}^{n-1} Bern(\frac{1-\delta_i}{1+e_i^{\epsilon}}), X_2 = \sum_{i=1}^{n-1} Bern(1 - \frac{2(1-\delta_i)}{1+e_i^{\epsilon}}).$

Proof. According to Lemma ??, for arbitrary

注意到多项分布趋近于正态分布,但是趋近速率使用Berry-Esseen bound只能达到 $O(1/\sqrt{n})$,这相对于洗牌模型,误差会很大.因此,这边使用连续修正的方法给出O(1/n)的收敛速率.对于二项分布和正态分布的逼近速率,见[DRS22].

$$\mathbb{P}(X=k) = \int_{k-0.5}^{k+0.5} \frac{1}{\sqrt{2\pi np(1-p)}} e^{-\frac{(x-np)^2}{2np(1-p)}} dx$$

对于多项分布Multinom(n; p/2, p/2, 1-p)和对应的正态分布 $N(\mu, \Sigma)$,有

$$\mu = n(p/2, p/2, 1-p)$$

 $\tilde{\mathbf{\Sigma}} = n \begin{pmatrix} \frac{p}{2}(1 - \frac{p}{2}) & -\frac{p^2}{4} & -\frac{p(1-p)}{2} \\ -\frac{p^2}{4} & \frac{p}{2}(1 - \frac{p}{2}) - \frac{p(1-p)}{2} \\ -\frac{p(1-p)}{2} & -\frac{p(1-p)}{2} & p(1-p) \end{pmatrix}$

,

又因为根据post-processing的相关性质知,考虑前两个分量的分布即可.因此下面考虑(X_1, X_2)同正态分布的全变差即可,根据公式可以得到对应的界.

$$\alpha + \beta \ge 1 - TV(P, Q) \tag{1}$$

数值结果已经表明, 多项分布以O(1/n)的速率趋近正态, 下面给出理论证明.

Lemma 3. Let $P \sim Multinom(n; p/2, p/2, 1-p), Q \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, 那么

$$||P - Q||_{TV} = O(1/n)$$

,其中 $\|P(A)-Q(A)\|_{TV}$ 表示 supremum of |P(A)-Q(A)| over all measurable sets A.

Lemma 4 (参照Lemma E.2, 67-73). Let $F_n(x)=P(\frac{X-E(X)}{\sqrt{Var(X)}}\leq x),~X\sim Bin(n,p),$ 则有

$$|F_n(x) - \Phi(x)| \le \frac{C}{n},$$

for $n \geq 2$.

Proof.

References

- 1. On the dependence of the Berry Esseen bound on dimension.
- 2. A multivariate Berry Esseen theorem with explicit constants.