数算作业

林涛 1600012773

2017年10月28日

1 计算循环次数

(1) 设次数为F(n)

$$F(1) = F(2) = 0$$

 $n \geq 3$ 时,

$$F(n) = \sum_{i=1}^{n-2} n - i + 1$$
$$= \sum_{k=3}^{n} k$$
$$= \frac{(n+3)(n-2)}{2}$$

(2) 先考虑i=n的情况,设次数为F(n)

2 证明 2

$$\begin{split} F(1) &= 0 \\ F(n) &= 1 + F(\lfloor \frac{n}{2} \rfloor) \\ &= 1 + 1 + F(\lfloor \frac{\lfloor \frac{n}{2} \rfloor}{2} \rfloor) \\ &= 2 + F(\lfloor \frac{n}{4} \rfloor) \\ &= 3 + F(\lfloor \frac{n}{8} \rfloor) \\ &= \dots \\ &= k + F(\lfloor \frac{n}{2^k} \rfloor) \end{split}$$

令 $\lfloor \frac{n}{2^k} \rfloor = 1$ 解得: $k = \lfloor log_2 n \rfloor$ 所以 $F(n) = \lfloor log_2 n \rfloor$ 所以i=n*n的循环次数为: $F(n^2) = \lfloor 2log_2 n \rfloor (n \geq 1)$

(3) 第k次循环后: i = k, $s = 5k(k+1) \ge i$, 只需考虑结束条件: $s \ge n$, 解得: $k \ge \frac{\sqrt{20n+25}-5}{10}$ 因此次数F(n)为:

$$F(n) = \begin{cases} \lceil \frac{\sqrt{20n + 25} - 5}{10} \rceil, & n \ge 1 \\ 1, & n = 0 \end{cases}$$

(4) 执行k次 \iff $2^{k-1} \le n$ 且 $2^k > n$ \iff $k-1 \le log_2 n < k$ \iff $k = \lfloor log_2 n \rfloor + 1$

2 证明

- 1) $\because \lim_{n \to +\infty} \frac{b^n}{a^n} = \lim_{n \to +\infty} (\frac{b}{a})^n = 0$ $\therefore \Leftrightarrow \mathbf{c} = 1, \exists N, \text{ s.t. } \forall n > N, b^n < ca^n \therefore b^n = O(a^n)$ 但是 $\lim_{n \to +\infty} \frac{a^n}{b^n} = \infty, \therefore \forall c > 0, \exists n, s.t.a^n > cb^n \therefore a^n \neq O(b^n)$
- 2) $\because \lim_{n \to +\infty} \frac{\sqrt[n]{n!}}{n} = \frac{1}{e} < 1$ $\therefore \lim_{n \to +\infty} \frac{n!}{n^n} = 0$ $\therefore n! = O(n^n)$

同时
$$\lim_{n\to+\infty} \frac{n^n}{n!} = +\infty$$

∴ $n^n \neq O(n!)$

3)

4) 己知:
$$T(N) = T(\frac{N}{2}) + 1$$
,证明: $T(N) = O(\log N)$
$$T(1) = c,$$

$$T(N) = T(N/2) + 1$$

$$= T(N/4) + 1 + 1$$

$$= \dots$$

$$= T(N/2^k) + k$$

$$= T(1) + \log_2 N$$

$$= O(\log N)$$

3 元素右移k位的算法

描述:

- 1.按k将数组a分成m+1段,前m段每段长度为k,最后一段长度为r = n mod k,编号为0,...,m-1,m
- 2.交换第0段与第1段的位置,保持段中顺序不变。交换新的第0段与第2段,...,交换新的第0段与第m-1段。使第0段到第m-2段整体后移k位,第m-1段

移到第0段的位置。

- 3.交换第m段与a[0..r-1], 使得原来第m-1段的前r个元素到位。
- 4.递归地,第0段内部右移k-r位。

```
Algorithm 1 rightShift(a, n, k)
Require: a[0..n-1], n \ge 1, 0 \le k \le n
Ensure: shift a to a[n-k], a[n-k+1], ..., a[0], a[1], ..., a[n-k-1]
  if k == 0 then
    return
  end if
  r = nmodk, m = ndivm
  for i = 1..m - 1 do
    for j = 0..k - 1 do
       \operatorname{swap}(a[j], a[i * k + j])
    end for
  end for
  if r == 0 then
    return
  end if
  for i = 0..r - 1 do
    \operatorname{swap}(a[i], a[m * k + i])
  end for
  rightShift(a, k, k - r)
  return
```

交换次数: F(n) = (m-1)*k + r + F(k), F(1) = O(1) 归纳地,得: F(n) = m*k - k + O(k) + n - m*k = O(n)

4 判断单向链表L是否有环

描述:

- 1.**♦**N=1
- 2.从L的头出发移动N-1步,设该点为p,若遇到尾部则返回False

3.从p出发,移动N步,每步都判断是否回到p,是则返回True,遇到尾部返回False

4.N+=1, 转到1

时间复杂度:

设n为L中的点数,运算次数: $F(n) = \sum_{N=1}^{m} 2*N = O(n^2)$, m为表头到环的距离与环的长度的较大值。当环的长度为n/2,表头距离环的距离也为n/2,则 $F(n) = \sum_{N=1}^{\frac{n}{2}} 2*N = \Omega(n^2)$ 因此时间复杂度为 $O(n^2)$

5 求链表A和B的交

Algorithm 2 intersect(a,b)

```
p=a,q=b
\mathrm{newLink} = \mathrm{NULL}
while p!=NULL and q!=NULL do
  while p!=NULL and (q==NULL or p.value < q.value) do
    p = p.next
  end while
  while q!=NULL and (p==NULL or q.value < p.value) do
    q = q.next
  end while
  if p!=NULL and q!=NULL and p.value == q.value then
    //找到一个交点
    将p的信息复制到newNode
    {\color{blue} \text{newNode.next}} {\color{blue} =} {\color{blue} \text{NULL}}
    if newLink==NULL then
      将newLink设置为newNode
    else
      将newNode插到newLink尾部
    end if
    p = p.next, q = q.next
  end if
end while
return newLink
```

复杂度:恰好遍历a,b,所以时间复杂度为 $\Theta(n)$ 。因为复制出了新的链表,所以空间复杂为O(n)。

6 用栈S1和S2模拟一个队列

思想: S1中保存队列的元素,元素在队列中的顺序是从头到尾,在S1中是从栈底到栈顶。 enqueue直接PUSH到S1的栈顶。 dequeue需将S1中的元素逆序转移到S2中,使队列头的元素处在S2的栈顶,从而POP。队列空等价于S1空。

$\overline{\mathbf{Algorithm}} \ \mathbf{3} \ \mathrm{enqueue}(\mathbf{x})$

PUSH(S1,x)

Algorithm 4 dequeue

//将S1的元素转移到S2,顺序变反

while not Sempty(S1) do

POP(S1,x)

PUSH(S2,x)

end while

//此时S1的栈底元素在S2的栈顶

POP(S2,x)

while not Sempty(S2) do

POP(S2,x)

PUSH(S1,x)

end while

//原来的S1的栈底元素已被删除,即出队

Algorithm 5 queue_empty

return Sempty(S1)

7

7.1 火车进站台问题

设F(n)为n辆火车进出站台后的顺序数。有递推式:

$$F(0) = F(1) = 1$$

$$F(n) = \sum_{k=1}^{k=n} F(k-1) * F(n-k)$$

证明如下:考虑序列1,2,...,n。首先1入栈,考虑1第几个出栈。

设1第 $k(1 \le k \le n)$ 个出栈,1出栈时需保证栈中除1外没有其它元素,所以序列2,...,n进行了k-1次入栈和k-1次出栈操作。可用数学归纳法证明,这些出入栈操作只涉及2,...,k这k-1个元素,不涉及k+1及以后的元素。 2,...,k进栈、出栈的方案数为F(k-1),然后1出栈,剩下n-k个元素再进栈、出栈,方案数为F(n-k)。

所以F(n) = F(0)*F(n-1) + ... + F(k-1)*F(n-k) + ... + F(n-1)*F(0)

7.2 关于栈的性质的证明

 $p_1, ..., p_n$ 是合法的出栈序列 \iff 不存在i < j < k, s.t. $p_j < p_k < p_i$ 。 首先有: $p_i < p_j \iff p_i \bowtie p_j$ 先进栈

先证明充分性:要证明 $p_1,p_2,...,p_n$ 可以依次出栈

首先将比 p_1 小的元素 $p_{i_1},...,p_{i_k}$ 入栈。然后将 p_1 入栈、出栈。得到序列 p_1 。考虑此时 p_2 可能的位置:

- 1. 不在栈中:继续将小于 p_2 的元素入栈,然后将 p_2 入栈、出栈,得到序列 p_1,p_2 。
- 2. 在栈顶: 出栈。得到 p_1, p_2 。
- 3. 在栈中,不在栈顶: 由入栈的顺序知,栈顶元素 p_{i_k} 满足: $p_2 < p_{i_k} < p_1$,但 $1 < 2 < i_k$,矛盾。这种情况不会出现。

因此,总可以得到 p_1, p_2 。归纳地,若已得到序列 $p_1, ..., p_i$,此时 p_{i+1} 还未入栈或在栈顶,若在栈中不在栈顶则出现矛盾,于是可以使 p_{i+1} 紧接着出栈。从而得到序列 $p_1, ..., p_i, p_{i+1}$ 。因此 $p_1, p_2, ..., p_n$ 可以依次出栈。

再证明必要性: 已知 $p_1, p_2, ..., p_n$ 是合法出栈序列。假设存在i < j < k,使

8

表 1: 转化为后缀式

符号	栈	后缀式
12		12
*	*	12
(*(12
8	*(12 8
*	*(*	12 8
9	*(*	12 8 9
-	*(-	12 8 9 *
10	*(-	12 8 9 * 10
)	*	12 8 9 * 10 -
-	_	12 8 9 * 10 - *
11	-	12 8 9 * 10 - * 11
		12 8 9 * 10 - * 11 -

得 $p_j < p_k < p_i$ 。

 p_i 比 p_j 和 p_k 先出栈,但后入栈。说明 p_i 出栈时 p_j 和 p_k 都在栈中。 $p_j < p_k$ 说明 p_j 比 p_k 先入栈,从而后出栈,因此j > k,矛盾。 因此不存在这样的i,j,k。

8

- 8.1 把12*(8*9-10)-11转化为后缀式 _{见表(1)}
- 8.2 利用栈计算上一题中得到的后缀表达式 见表(2)

表 2: 计算12 8 9 * 10 - * 11 -

J. 11 JF 12 0 0 10		
符号	栈	
12	12	
8	12 8	
9	12 8 9	
*	12 72	
10	12 72 10	
-	12 62	
*	744	
11	744 11	
-	733 (答案)	
10 - *	12 72 10 12 62 744 744 11	