Arithmétique Division Euclidienne MPSI 2

Propriété 0.0.1

Soit a un entier naturel, b un entier naturel non nul. Alors il existe un unique couple d'entiers naturels q et r tels que :

$$\begin{cases} a = b * q + r \\ 0 \le r < b \end{cases}$$

- q est le quotient de la division euclidienne de a par b.
- r est le **reste** de la division euclidienne de a par b.

① Existence

• si a = 0, 0 = 0 * b + 0

Le couple (q, r) = (0, 0) convient.

 $\bullet \ \operatorname{si} \, b = 1, a = 1*a+0$

Le couple (q, r) = (a, 0) convient.

• Cas géneral :

Supposons $a \ge 1$ et $b \ge 2$.

Cas 1: $a < \overline{b}$

Alors a = b * 0 + a

Le couple (0, a) convient.

Cas 2 : $a \ge b$

Soit $E = \{q \in \mathbb{N}^*, b * q > a\}$

- E est une partie de \mathbb{N} .
- -E est non vide car $a \in E$ $(a \neq 0 \text{ et } b \geq 2)$.

Donc E admet un plus petit élément noté q_1 .

 $q1 \in \mathbb{N}^*$ et $1 \notin E$ car $a \ge b$.

Donc $q_1 \geq 2$.

Ainsi, $q_1 - 1 \in \mathbb{N}^*$. Posons $q_0 = q_1 - 1$.

On a : $q_0 \in \mathbb{N}$ et $q_0 < q_1$ donc $q_0 \notin E$.

On en deduit que $b * q_0 \le a$.

Par ailleurs, $q_1 \in E$, donc $a < bq_1$.

Donc $bq_0 \le a < b(q_0 + 1)$.

Posons $r = a - bq_0$. Donc $0 \le r < b$.

Conclusion: Le couple (q_0, r) satisfait:

$$q_0 \in \mathbb{N}, r \in \mathbb{N}, \begin{cases} a = b * q_0 + r \\ 0 \le r < b \end{cases}$$

② Unicité

Soit a un entier naturel et b un entier naturel non nul.

Supposons qu'il existe deux couples d'entiers naturels (q,r) et (q',r') tels que :

$$\begin{cases} a = bq + r \\ a = bq' + r' \\ 0 \le r < b \\ 0 \le r' < b \end{cases}$$

Montrons que (q, r) = (q', r').

On remarque que : b(q'-q) = r - r'.

Ainsi, $q = q' \iff r = r'$.

Il suffit donc de montrer que q = q'.

| HA | Supposons q = q'. Par exemple, q < q'.

Alors q - q' > 0.

Donc $q - q' \ge 1$ car $(q, q') \in \mathbb{N}^2$.

On en deduit que
$$r - r' \ge b$$
.
Par ailleurs,
$$\begin{cases} 0 \le r < b \\ 0 \le r' < b \end{cases}$$

D'où -b < r - r < b

Or $r - r' \ge b$, donc contradiction.

Donc q = q', d'où r = r'.

On a donc existence et unicité de l'écriture.

Remarque: Avec les notations de la démonstration, on a : $bq_0 \le a < b(q_0 + 1)$. Ou encore, sachant $b \in \mathbb{N}^*$, $q_0 \leq \frac{a}{b} < q_0 + 1$. Donc $q_0 = \left| \frac{a}{b} \right|$.

Corollaire 0.0.1

① Soit $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$, alors:

$$\exists ! (q, r) \in \mathbb{Z} \times \mathbb{N}, \begin{cases} a = bq + r \\ 0 \le r < b \end{cases}$$

$$\exists ! (q,r) \in \mathbb{Z} \times \mathbb{N}, \begin{cases} a = bq + r \\ 0 \le r < b \end{cases}$$

$$\exists ! (q,r) \in \mathbb{Z} \times \mathbb{N}, \begin{cases} a = bq + r \\ 0 \le r < b \end{cases}$$

$$\exists ! (q,r) \in \mathbb{Z} \times \mathbb{N}, \begin{cases} a = bq + r \\ 0 \le r < |b| \end{cases}$$