Line Integrals

Reading

Section 4.1

Problems

Practice problems (page 56): 1, 2, 3, 4

Topics to know

- 1. Notions of piecewise-differentiable curves and of smooth curves (4.2)
- 2. Integral of a complex-valued function of a real variable (4.1).
- 3. Integrate 1/z and $1/z^2$ over a circle around 0. (page 48)
- 4. Integral of f(z) along a smooth curve.
- 5. Integrals of f(z) over equivalent curves are equal.
- 6. Integral over the opposite curve is the negative of the integral over the curve.
- 7. Linearity of the integral (proposition 4.8).

8.
$$\int_a^b G(t)dt \ll \int_a^b |G(t)|dt.$$

- $\int_a^b G(t)dt = Re^{i\theta}$ $\int_a^b e^{i\theta}G(t)dt = R$ is real
- Then $R = \int_a^b A(t)dt = \int_a^b \operatorname{Re}\left(e^{-\theta}G(t)\right)dt \le \int_a^b |G(t)|dt$.
- 9. ML-formula: If $f \ll M$ along a curve C of length L, then:

$$\int_C f(z)dz = \int_a^b f(z(t))\dot{z}(t) \ll \int_a^b |f(z(t))\dot{z}(t)|dt \ll M \int_a^b |\dot{z}(t)|dt = ML$$

- 10. If $f_n \to f$ uniformly on C, then $\int_C f_n(z)dz \to \int_C f(z)dz$.
 - Notion of uniform convergence: For every $\epsilon > 0$ there is an N such that for all $n \ge N$ and for all $x \in C$ we have $|f_n(x) - f(x)| < \epsilon$.
 - Key idea: n depends only on \$epsilon, but works for all x.
- 11. If F'(z) = f(z) then $\int_C f(z)dz = F(z(b)) F(z(a))$.
 - If $\lambda(t)$ is the curve, $\gamma(t) = F(\lambda(t))$
 - Then $\dot{\gamma}(t) = F'(\lambda(t))\dot{\lambda}(t) = f(\lambda(t))\dot{\lambda}(t)$
 - $\int_C f(z)dz = \int_a^b f(\lambda(t))\dot{\lambda}(t)dt = \int_a^b \dot{\gamma}(t) = \gamma(b) \gamma(a) = F(z(b)) F(z(a))$

1