Devoir maison 2.

À rendre le Jeudi 7 octobre 2021

Exercice 1

Résoudre dans \mathbb{R} l'équation : $\cos^4 x + \sin^4 x = \frac{7}{8}$.

Exercice 2

Montrer que : $\forall n \in \mathbb{N}^*, 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$.

Exercice 3

Montrer qu'il existe une unique fonction $f:\mathbb{R}^* \to \mathbb{R}$ que l'on déterminera telle que :

$$(*): \quad \forall x \in \mathbb{R}^*, \ f(x) + 2f\left(\frac{1}{x}\right) = x$$

Exercice 4

Soit n un entier ≥ 2 . On pose $S_n = \sum_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)$.

En calculant le produit $S_n \times \sin\left(\frac{\pi}{2n}\right)$, faire apparaître un téléscopage et en déduire que $S_n = \frac{1}{\tan\left(\frac{\pi}{2n}\right)}$.

Exercice 5

Soit A une partie de \mathbb{N}^* telle que $\begin{cases} (1): & 1 \in A \\ (2): & \forall n \in A, 2n \in A \\ (3): & \forall n \in A, \forall p \in \mathbb{N}^*, \ (p \leq n \implies p \in A) \end{cases}.$

- 1°) Traduire l'hypothèse (3) en une phrase simple en français.
- **2**°) Montrer que : $\forall m \in \mathbb{N}, 2^m \in A$.
- **3°)** Montrer que $A = \mathbb{N}^*$.