

BC2406 Business Analytics I: Predictive Techniques

Seminars 8 Classification and Decision Tree II

Instructor: Prof. Lee Gun-woong

Nanyang Business School

Review & Supplementary Slides

Decision Trees

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Tree Construction

- Build a Decision Tree
 - Choose the *best* attribute(s) to split the remaining instances and make that attribute a decision node
 - Select the attribute that produces the "purest" nodes
 - Repeat this process for recursively for each child node
 - Stop when:
 - All (almost all) the instances have the same class attribute value
 - There are no more instances / attributes
- Determine how to split the instances
 - How to determine the best split?
 - Nodes with homogeneous class distribution are preferred

C0: 5 C1: 5

C0: 9

C1: 1

Non-homogeneous,

Homogeneous,

High degree of impurity

Low degree of impurity

Impurity

Which attributes is more informative (purer)?

Split over whether income exceeds 50K Split over whether an applicant is married

Example: Tree Construction

- Consider the training data given below. In the dataset, X1, X2, X3 are the attributes and Y is the class attribute.
- Draw the (full) decision tree for this dataset using the Gini Index

X1	X2	Х3	Υ
1	0	0	Yes
1	0	0	No
1	0	1	Yes
1	1	0	No
1	1	0	Yes
1	1	1	No
0	0	0	No
0	1	0	No
0	0	1	No
0	1	1	No

Example: Tree Construction (Cont.)

- At the first node:
 - Before Splitting
 - $Gini(Y) = 1 P(Yes)^2 P(No)^2 = 1 (0.3)^2 (0.7)^2 = 0.42$
 - After Splitting
 - Gini(X1) = 6/10*Gini(1) + 4/10*Gini(0) = 0.6*0.5 + 0.4*0 = 0.30
 - Gini(X2) = 5/10*Gini(1) + 5/10*Gini(0) = 0.5*0.32+0.5*0.48 = 0.40
 - Gini(X3) = 4/10*Gini(1) + 6/10*Gini(0) = 0.4*0.375+0.6*0.44 = 0.42

Example: Tree Construction (Cont.)

- At the second node:
 - Before Splitting
 - $Gini(Y|X1=1) = 1 P(Yes)^2 P(No)^2 = 1 (0.5)^2 (0.5)^2 = 0.5$
 - After Splitting
 - Gini(X2|X1=1) = 3/6*Gini(1|X1=1) + 3/6*Gini(0|X1=1) = 0.5*0.44+0.5*0.44 = 0.44
 - Gini(X3|X1=1) = 2/6*Gini(1|X1=1) + 4/6*Gini(0|X1=1) = 0.5*0.50+0.5*0.50 = 0.50

Example: Tree Construction (Cont.)

- At the Third node:
 - Before Splitting
 - $Gini(Y|X1=1, X2=0) = 1 P(Yes)^2 P(No)^2 = 1 (2/3)^2 (1/3)^2 = 0.44$
 - $Gini(Y|X1=1, X2=1) = 1 P(Yes)^2 P(No)^2 = 1 (1/3)^2 (2/3)^2 = 0.44$
 - After Splitting
 - Gini(X3|X1=1, X2=0) = 2/3*Gini(1|X1=1, X2=0) + 1/3*Gini(0|X1=1, X2=0) = 1/3*0.0 + 2/3*0.5 = 0.33
 - Gini(X3|X1=1, X2=1) = 1/3*Gini(1|X1=1, X2=1) + 2/3*Gini(0|X1=1, X2=1) = 1/3*0.0 + 2/3*0.5 = 0.33

Binary Attributes: GINI Index

- Splits into two partitions
- Finds larger and purer partitions

Categorical Attributes: Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

	Marital Status							
	Single Married Divorce							
Yes	1	2	1					
No	4 1 1							
Gini	0.393							

Two-way split (find best partition of values)

	Marital Status				
	{Married, Divorced}	{Single}			
Yes	3	1			
No	2	4			
Gini	0.400				

	Marital Status					
	(Married)	{Single, Divorced}				
Yes	2	2				
No	1 5					
Gini	0.419					

Continuous Attributes: Gini Index

- Use Binary decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
- Each splitting value (v) has a count matrix associated with it
 - Class counts in each of the partitions
 - $Income < v \text{ and } Income \ge v$
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Refund Marital 1 Status I		Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

Sorted Values
Split Positions

Cheat		No		No		N	0	Ye	s	Ye	s	Υe	es	N	0	N	lo	N	lo		No	
<u></u>		Taxable Income																				
		60		70		7	5	85	,	90)	9	5	10	00	12	20	12	25		220	
	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	10	12	22	17	72	23	0
-	<=	>	<=	>	<=	>	\=	>	<=	>	\=	>	<=	>	\=	>	<=	>	<=	>	"	>
Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini	0.4	20	0.4	100	0.3	375	0.3	43	0.4	17	0.4	100	<u>0.3</u>	<u>300</u>	0.3	43	0.3	75	0.4	00	0.4	20

Model Evaluation

	PREDICTED CLASS						
ACTUAL		Class=1 (Important)	Class=0 (Less Important)				
CLASS	Class=1 (Important)	a (20) (True Positive)	b (30) (False Negative)				
	Class=0 (Less Important)	c (50) (False Positive)	d (100) (True Negative)				

• Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{20+100}{20+30+50+100} = 0.6$$

- Error Rate = 1- Accuracy = 0.4
- Sensitivity (True Positive Rate) = $\frac{a}{a+b} = \frac{20}{20+30} = 0.4$
 - Accuracy in classifying the important class correctly
- Specificity (True Negative Rate) = $\frac{d}{c+d} = \frac{100}{50+100} = 0.67$
 - Accuracy in classifying the less important class correctly

ROC Curve

- Receiver Operating Characteristic
- The closer to upper left corner the better

Overfitting and Pruning

Overfitting

- A good classification model must not only fit the training data well, it must also accurately classify instances it has never seen before.
 - Low Training Error and Low Generalisation Error

Notes on Overfitting

- Overfitting results in decision trees that are more complex than necessary
 - Needs a shallower tree
- Training error no longer provides a good estimate of how well the tree will perform on previously unseen records
 - Improves generalization error

How to avoid Overfitting...

• Pruning (Optimization): Identify and remove nodes in the decision tree that are not useful for classification

Post-pruning

- Grow a decision tree entirely that over-fits the training data
- Evaluate the tree using the test data
- Remove the nodes that have little effect on the classification errors
 - If classification error improves after trimming, replace sub-tree by a leaf node.
 - Stop when no more improvement
- Use a set of different data from the training data to decide which is the —best pruned tree

Subtree Replacement

• Entire subtree is replaced by a single leaf node

Subtree Replacement

- Node 6 replaced the subtree
- Generalises tree a little more, but may increase accuracy

• Minimise the cost in misclassifications

$$-C_{\alpha}(T) = R(T) + /T_{\alpha}/$$

- $C_{\alpha}(T)$: total cost in misclassifications
- R(T): the expected misclassification rate
 - the fraction of misclassified instances
- /T/: the number of terminal nodes in the tree
- α: a cost complexity parameter (CP)
- $-\alpha = 0$, the original fully grown tree
- $-\alpha = \infty$, the model with no splits at all (i.e., a single node)
 - Smaller CP means larger decision tree
- As α increases, we incur a penalty that is proportional to the number of terminal nodes.
 - This will cause the minimum cost to occur for a tree that is a subtree of the original one (since a subtree will have a smaller number of terminal nodes.
- Vary α and pick the value that gives the subtree that <u>results</u> in the smallest prediction error.

Cost Complexity Pruning

Full Tree

Start Pruning

Too Much!

Pruning with Re-sampling

- Resampling the training data allows us to know when we can make the best choice for the values of complexity parameter (α).
- Why do we need resampling approaches?
 - Comparing classifiers (rules) for the given dataset
 - Different classifiers will favor different domain of datasets
 - One needs to estimate how good the prediction will be.
- Resampling and Accuracy Measures
 - Holdout randomly partition the given data into two independent sets and use one for training (e.g., 80%) and the other for testing (e.g., 20%)
 - K-fold cross-validation randomly partition the given data into k-mutually exclusive subsets (folds). Training and testing is performed k times.

K-Fold Cross-Validation

 Misclassification errors are obtained through cross-validation to select the best model

2-Fold Cross-Validation

- Partition the data into two equal-size subsets (S1 and S2)
- Run1: choose S1 for training and S2 for testing
- Run2: choose S2 for training and S1 for testing
- Average Error = (Error from Run1 + Error from Run2) / 2

K-fold Cross-Validation

- Segment the data into k equal-sized partitions
- In each run, one of the partitions is chosen for testing, while others of them are used for training
- Average Error = sum of the errors for all K runs / K

Repeated K-fold Cross-validation

Creates multiple versions of the folds and aggregate the results

5-fold Cross-Validation

Cross-Validation: Example

Example: Repeated K-Fold Cross-Validation

- 10-fold cross validation with 3 repeats
 - Model performance over various levels of CP

Before Pruning vs. After Pruning

Improving Model Performance

Accuracy Improvement

- Bagging (Bootstrap aggregation) Number of trees are constructed on subsets of given data and majority voting is taken from these trees to classify a test sample.
- Boosting attaching weights (importance) to the training samples and optimizing the weights during training and further using these weights to classify the test sample.

Boosting

- A method to "boost" weak learning algorithms (e.g., single trees) into strong learning algorithms.
- Boosting is an ensemble-based method.
 - It combines a number of weak learning algorithms to create a stronger learning algorithm than any of the algorithms alone.
 - The second tree corrects for the errors of the first tree, the third tree corrects for the errors of the first and second trees, and so forth.
 - Predictions are based on the entire ensemble of trees together that makes the prediction.

Learn in iterations

- Each iteration focuses on hard to learn parts of the attributes
 - i.e., instances that were misclassified by previous trees (weak learners)

Boosting Procedure

- Suppose the class attributes includes 20 instances
- 1st weak learner misclassifies 3 instances (D5, D10, D13)
- Update weights D_i
 - Weights of instances D5, D10 and D13 increase
 - Weights of other (correctly classified) instances decrease
- 2nd weak learner focuses more on the instances incorrectly classified by 1st weak learner and correctly classifies D10.
 - Weights of instances D5 and D13 increase
 - Weights of other (correctly classified) instances decrease
- 3rd weak leaner focuses more on the instances incorrectly classified by 2nd weak learner...

Making Mistakes More Costlier than Others

- The cost of making a misclassification error may be higher for one class than the other(s)
- Looked at another way, the benefit of making a correct classification may be higher for one class than the other(s)
- Example: Identify risky bank loans (default or not default)
 - Giving a loan out to an applicant who is likely to default can be an expensive mistake.
 - The interest the bank would earn from a risky loan is far outweighed by the massive loss it would incur if the money is not paid back.

Making Mistakes More Costlier than Others

- Assign a penalty to different types of error in order to discourage a tree from making more costly mistakes
 - Reduce the number of false negatives (FN)
- The penalties are designated in a cost matrix, which specifies how much costlier each error is relative to any other prediction
- Cost Matrix Example
 - Suppose that a loan default costs the bank four times as much as a missed opportunity

	PREDICTED CLASS							
		Default	Not Default					
ACTUAL CLASS	Default	0 (TP)	4 (FN)					
	Not Default	1 (FP)	0 (TN)					

Oversampling

- Asymmetric costs/benefits typically go hand in hand with presence of rare but important class
 - Responder to mailing
 - Someone who commits fraud
 - Debt defaulter
- Often we oversample rare cases to give model more information to work with

An Oversampling Procedure

- Typically use 50% "1" and 50% "0" for training
 - Method 1
 - Separate the responders (rare) from non-responders
 - Randomly select *n* responders, plus equal number of non-responders
 - Method 2
 - Replicating the existing class1's several times to have *n* responders
 - Plus equal number of non-responders

Evaluation

- Evaluate the model on a testing set that has been selected without over- sampling (i.e., via simple random sampling).
- Evaluate the model on an oversampled testing set, and reweight the results to remove the effects of oversampling.

