Machine Learning for Graphs and Sequential Data Exercise Sheet 03 Temporal Point Processes

Problem 1: Consider a temporal point process, where all the inter-event times $\tau_i = t_i - t_{i-1}$ are sampled i.i.d. from the distribution with the survival function

$$S(\tau) = \exp\left(-(e^{b\tau} - 1)\right)$$

with a parameter b > 0.

- a) Write down the closed-form expression for the conditional intensity function $\lambda^*(t)$ of this TPP. Simplify as far as you can.
- b) Write down the closed-form expression for the log-likelihood of a sequence $\{t_1, ..., t_N\}$ generated from this TPP on the interval [0, T]. Simplify as far as you can.

Problem 2: Consider an inhomogeneous Poisson process (IPP) on [0,1] with the intensity function $\lambda(t) = 2t$. We simulate a sample from this IPP using thinning. For this, we first simulate a homogeneous Poisson process (HPP) with intensity $\mu = 4$ and apply the thinning procedure described in the lecture. What is the expected number of events from the HPP that will be rejected when using this procedure?

Problem 3: Consider an inhomogeneous Poisson process on [0,4] with the intensity function $\lambda(t) = \beta t$, where $\beta > 0$ is a parameter that has to be estimated. You have observed a single sequence $\{1, 2.1, 3.3, 3.8\}$ generated from this IPP. What is the maximum likelihood estimate of the parameter β ?

Problem 4: Consider a neural temporal point process where the conditional intensity function is defined with a neural network. In particular, for a time point t_i , we represent the history $\{t_1, t_2, \ldots, t_{i-1}\}$ with a fixed-sized vector $\mathbf{h}_i \in \mathbb{R}^d$. The conditional intensity function $\lambda^*(t)$ is defined as a function of \mathbf{h}_i . We will use the transformer architecture (see previous lecture). We propose the following implementation.

Given the full sequence $\{t_1, t_2, \dots, t_n\}$, we calculate all $\{\boldsymbol{h}_1, \boldsymbol{h}_2, \dots, \boldsymbol{h}_n\}$ in parallel. We first calculate vectors $\boldsymbol{q}_i, \boldsymbol{k}_i, \boldsymbol{v}_i \in \mathbb{R}^d$ as a function of t_i . We stack these vectors into matrices $\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V} \in \mathbb{R}^{n \times d}$. The output of the transformer is: $\boldsymbol{H} = \operatorname{softmax}(\boldsymbol{Q}\boldsymbol{K}^T)\boldsymbol{V}$, then \boldsymbol{h}_i is the *i*th row of \boldsymbol{H} .

Identify the errors in this implementation compared to the original definition of h_i . Propose a solution.