МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Компьютерные науки и прикладная математика» Кафедра: 806 «Вычислительная математика и программирование»

Группа	М8О-109Б-22
Студент	Нгуен Н. Х. А.
Преподаватель	Сысоев М. А.
Оценка	
Дата	27 декабря 2022 г.

Задание

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n+1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью є * k, где є - машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k — экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна обеспечивать корректные размеры генерируемой таблицы.

Вариант 1:

No	ряд	a	b	функция
1	$\frac{x}{9} - \frac{x^3}{9^2} + \ldots + (-1)^n \frac{x^{2n+1}}{9^{n+1}}$	-1.0	1.0	$\frac{x}{9+x^2}$

Теоретическая часть

Формула Тейлора — формула разложения функции в бесконечную сумму степенных функций. Формула широко используется в приближённых вычислениях, так как позволяет приводить трансцендентных функций к более простым. Сама она является следствием теоремы Лагранжа о среднем значении дифференцируемой функции. В случае а=0 формула называется рядом Маклорена.

$$\sum\nolimits_{n = 0}^k {\frac{{{f^{(n)}}(a)}}{{n!}}(x - a)^n} = f(a) + f^{(1)}(a)(x - a) + \frac{{f^{(2)}}(a)}{{2!}}(x - a)^2 + \ldots + \frac{{f^{(k)}}(a)}{{k!}}(x - a)^k$$

Машинное эпсилон — числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа. Абсолютное значение для машинного эпсилон зависит от разрядности сетки применяемой ЭВМ и от разрядности используемых при расчёте чисел. Формально это машинное эпсилон определяют как число, удовлетворяющее равенству $1 + \varepsilon = 1$. Фактически, два отличных от нуля числа являются равными с точки зрения машинной арифметики, если их модуль разности меньше или не превосходит машинное эпсилон.

В языке Си машинные эпсилон определено для следующих типов: float — 1.19*10-7, double — 2.20*10-16, long double — 1.08*10-19

Алгоритм решения

Для каждой из строк таблицы нужно просуммировать члены формулы Тейлора до тех пор, пока новые члены ряда больше или равны є*k. Для этого просто ищем каждый новый член из формулы Тэйлора и суммируем с результатом.

Использованные в программе переменные

Название переменной	Тип переменной	Смысл переменной			
P					
a	long double	Начало отрезка			
b	long double	Конец отрезка			
	• ,	Число n, на которое нужно разбить			
iter	int	отрезок			
х	1 1 11	Значения в промежутке [a;b], для			
	long double	которого вычисляются значения			
,	1 1 11	Значение, прибавляемое к х на каждом			
step	long double	шаге			
k	long double	Коэффициент для вычисления точности			
t	long double	Текущий член ряда Тейлора			
sum	long double	Сумма ряда Тейлора			
count int		Количество итераций вычисления			
I DDI EDGU ON	1 1 11	Машинный эпсилон.			
LDBL_EPSILON	long double	Для long double $\varepsilon = 1.08 * 10^{-19}$			

Исходный код программы:

```
#include <stdio.h>
#include <float.h>
#include <math.h>
#include <assert.h>
long double f(long double x) {
  return x / (9 + x * x);
}
void create table() {
                 Taylor series values table for f(x) = x / (9 + x^2) n'';
  printf("
  printf(" -----\n");
  printf("| x \t| Taylor series\t\t | Function\t\t | Iters | Difference\t\t
                                                               |n";
  }
void print row(long double x, long double sum, int iter) {
  if (sum < 0) {
    printf("| %.2Lf\t| %.19Lf | %.19Lf | %d\t | %.19Lf |\n", x, sum, f(x), iter, fabsl(f(x) -
sum));
  } else {
    printf("| %.2Lf\t| %.19Lf | %.19Lf | %d\t | %.19Lf |\n", x, sum, f(x), iter, fabsl(f(x) -
sum));
}
int main() {
  const long double a = -1,
           b = 1;
  long double sum, t, k;
```

```
int count = 0;
int iter;
printf("Enter number of iterations (n): ");
scanf("%d", &iter);
assert((iter > 0) && "Enter positive number!");
printf("Enter the coefficient (k): ");
scanf("%Lf", &k);
printf("\n\n");
create table();
long double step = (b - a) / iter;
for (long double x = a; x \le b; x += step) {
  for (int n = 0; n < 99; ++n) {
    t = powl(-1, n) * powl(x, 2 * n + 1) / powl(9, n + 1);
    sum += t;
    ++count;
    if (fabsl(sum - f(x)) < LDBL EPSILON * k) {
      break;
    }
  print row(x, sum, count);
  sum = 0;
  count = 0;
}
printf(" -----\n");
printf("* machine epsilon (long double) = %.10Le\n", LDBL EPSILON);
```

}

Входные данные

Единственная строка содержит два целых числа n — число разбиений отрезка на равные части, k — коэффициент для вычисления точности формулы Тейлора.

Выходные данные

Программа должна вывести n+1 строку, в каждой из которых должно быть значение x, для которого вычисляется функция, число P — значение, вычисленное c помощью формулы Тейлора, Q — значение, вычисленное c помощью встроенных функций языка, i — количество итераций, требуемых для вычисления, и Δ — разница значений P и Q по модулю.

Протокол исполнения и тесты

Тест №1

Входные данные:

10

20

Выходные данные:

```
Enter number of iterations (n): 10 Enter the coefficient (k): 20
```

Taylor series values table for $f(x) = x / (9 + x^2)$

x	Taylor series	Function	Iters	Difference
-1.00 -0.80 -0.60 -0.40 -0.20 -0.00 0.20 0.40 0.60	+	-0.100000000000000000056 -0.0829875518672199136 -0.0641025641025641107 -0.0436681222707423627 -0.0221238938053097446 -0.000000000000000000062 0.0221238938053097307 0.0436681222707423558 0.0641025641025641107	99 14 12 10 7 1 99 99	0.0000000000000000278 0.0000000000000000000000000000000000
0.80	0.0829875518672199136 0.0999999999999999778	0.0829875518672199136 0.100000000000000000056	14 99	0.000000000000000000000 0.0000000000

^{*} machine epsilon (long double) = 1.0842021725e-19

Тест №2

Входные данные:

8

2

Выходные данные:

Enter number of iterations (n): 8
Enter the coefficient (k): 2

Taylor series values table for $f(x) = x / (9 + x^2)$

		Taylan canias	Function	T+one	Difference	-
-	x	Taylor series		Iters	Difference	ı
ı	-1.00	-0.09999999999999778	-0.100000000000000000056	99	0.000000000000000000278	ī
i	-0.75	-0.0784313725490196068	-0.0784313725490196068	14	0.00000000000000000000	i
i	-0.50	-0.0540540540540540432	-0.0540540540540540571	99	0.00000000000000000139	İ
	-0.25	-0.0275862068965517203	-0.0275862068965517238	99	0.00000000000000000035	ĺ
	0.00	0.00000000000000000000	0.00000000000000000000	1	0.00000000000000000000	
	0.25	0.0275862068965517203	0.0275862068965517238	99	0.00000000000000000035	
	0.50	0.0540540540540540432	0.0540540540540540571	99	0.00000000000000000139	
	0.75	0.0784313725490196068	0.0784313725490196068	14	0.00000000000000000000	
	1.00	0.09999999999999778	0.10000000000000000056	99	0.000000000000000000278	

^{*} machine epsilon (long double) = 1.0842021725e-19

Тест №3

Входные данные:

6

13

Выходные данные:

Enter number of iterations (n): 6 Enter the coefficient (k): 13

Taylor series values table for $f(x) = x / (9 + x^2)$

x	Taylor series	Function	Iters	Difference	
-1.00 -0.67 -0.33 -0.00 0.33 0.67 1.00	-0.0999999999999999778 -0.0705882352941176600 -0.0365853658536585483 -0.000000000000000000123 0.0365853658536585205 0.0705882352941176322 0.0999999999999999778	-0.10000000000000000056 -0.0705882352941176600 -0.0365853658536585483 -0.000000000000000000123 0.0365853658536585205 0.0705882352941176322 0.0999999999999999778	99 13 9 1 9 13	0.00000000000000000278 0.00000000000000000000000000000000000	1 1 1 1 1 1

^{*} machine epsilon (long double) = 1.0842021725e-19

Вывод

Из-за того, что существует понятие ограниченности разрядной сетки, вещественные числа имеют диапазон представления в памяти компьютера, что неизбежно приводит к тому, что в вычислениях в окрестности границ этого диапазона возникают погрешности.

Вычисление значения функции по ряду Тейлора требует много процессорного времени, что неэффективно в перспективе глобального применения.