BMAT201L: Complex Variables and Linear Algebra

Tutorial Sheet 1 (Module 3)

- 1. Expand $f(z) = \sin z$ in a Taylor series about $z = \frac{\pi}{4}$ and determine the region of convergence.
- 2. Expand ze^{2z} in a Taylor series about z=-1 and determine the region of convergence.
- 3. Find the Taylor series representation of $\frac{z^2-1}{(z+2)(z+3)}$ in |z|<2.
- 4. Expand $f(z) = \frac{z}{(z-1)(2-z)}$ in a Laurent series valid for (i) |z| < 1, (ii) 1 < |z| < 2, (iii) |z| > 2, (iv) |z-1| > 1, and (v) 0 < |z-2| < 1.
- 5. Find the Laurent series expansions of $f(z) = \frac{z+4}{(z+3)(z-1)^2}$ in (i) 0 < |z-1| < 4 and (ii) |z-1| > 4.
- 6. Expand $f(z) = \frac{e^{2z}}{(z-1)^3}$ about z=1 in a Laurent series. Also indicate the region of convergence of the series.
- 7. Determine and classify the singular points of $f(z) = \frac{z}{e^z 1}$.
- 8. Determine and classify the singularities of $f(z) = \sin(\frac{1}{z})$.
- 9. Determine and classify the singular points of $\frac{1}{(2\sin z 1)^2}$.
- 10. Find the residue of $f(z) = \frac{1+e^z}{z\cos z + \sin z}$ at z = 0.
- 11. Find the poles of $f(z) = \frac{z^2+4}{z^3+2z^2+2z}$ and determine the residues at the poles.
- 12. Find the residues of $\frac{e^z}{z^2(z^2+9)}$ at its poles.
- 13. Find the residue of $\frac{1}{z-\sin z}$ at its pole.