第 1 章

複素行列と計量空間上の変換

複素正方行列 A の転置行列において、各成分をその共役複素数に置き換え ref: 長岡亮介 線形代数 た行列を随伴行列という

入門講義 p275

| 随伴行列 複素正方行列 $A = (a_{ij})$ に対し、 $\overline{a_{ji}}$ を (i,j)成分にもつ行列 ${}^t\overline{A}$ を A の随伴行列といい、 A^* と表す

実数 x の複素共役は $\overline{x} = x$ であるので、A が実行列のときは、

$$A^* = {}^t A$$

すなわち、

実行列の世界では、随伴行列は転置行列

にすぎない

転置を二回行うと元に戻ることと同様に、次が成り立つ

・ 随伴行列の自己反転性 複素正方行列 A に対し、随伴行列を

二回とると元に戻る

$$(A^*)^* = A$$

随伴行列の定義より、

$$(A^*)^* = {}^t \overline{A^*} = {}^t \overline{\overline{A}}$$

 $A = (a_{ij})$ とすると、A の各成分を共役複素数にした行列は、

$$\overline{A} = (\overline{a_{ij}})$$

これを転置すると、

$${}^{t}\overline{A} = (\overline{a_{ji}})$$

さらに、もう一度各成分の複素共役をとると、

$$t\overline{\overline{A}} = (\overline{\overline{a_{ji}}}) = (a_{ji})$$

したがって、

$$(A^*)^* = {}^{t}\overline{\overline{A}} = (a_{ij}) = A$$

が成り立つ

転置行列と複素共役の性質から、次の性質が成り立つ

♣ 積に対するエルミート共役の順序反転性 複素行列 ABの積 AB が定義できるとき、

$$(AB)^* = B^*A^*$$

[Todo 1:]

随伴行列と標準内積は、次のような関係で結ばれる

・ 随伴公式 複素行列 A と計量空間上のベクトル u, v に対し、

$$(A\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{u},A^*\boldsymbol{v})$$

証明 証明

転置を用いて内積を表すと、

$$(A\boldsymbol{u},\boldsymbol{v}) = {}^{t}(A\boldsymbol{u})\overline{\boldsymbol{v}}$$

転置と行列積の順序反転性より、 $^t(A\boldsymbol{u})=^t\boldsymbol{u}^t\!A$ なので、

$$(A\boldsymbol{u},\boldsymbol{v})=({}^t\boldsymbol{u}{}^t\!A)\overline{\boldsymbol{v}}$$

行列の積の結合法則を用いて、

$$(A\boldsymbol{u},\boldsymbol{v}) = {}^{t}\boldsymbol{u}({}^{t}\!A\overline{\boldsymbol{v}})$$

ここで、 \overline{tA} は、 $A=(a_{ij})$ とすると、

1.
$$\overline{A} = (\overline{a_{ij}})$$

2.
$${}^{t}\overline{A} = (\overline{a_{ji}})$$

3.
$$\overline{{}^t\overline{A}} = (\overline{\overline{a_{ji}}}) = (a_{ji}) = {}^tA$$

となり、 tA と一致する

これを用いて書き換えると、

$$(A\boldsymbol{u},\boldsymbol{v}) = {}^{t}\boldsymbol{u}(\overline{{}^{t}\overline{A}}\overline{\boldsymbol{v}})$$

複素共役の積の性質 $\overline{z_1} \cdot \overline{z_2} = \overline{z_1 z_2}$ を用いて、

$$(A\boldsymbol{u},\boldsymbol{v})={}^{t}\boldsymbol{u}^{\overline{t}}\overline{\overline{A}\boldsymbol{v}}$$

この時点で、右辺を内積として書き直すと、**Av** の複素共役がなくなることに注意して、

$$(A\boldsymbol{u},\boldsymbol{v}) = (\boldsymbol{u},{}^{t}\overline{A}\boldsymbol{v})$$

随伴行列の定義 $A^* = {}^t\overline{A}$ より、

$$(A\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{u},A^*\boldsymbol{v})$$

となり、目的の等式が得られた

直交行列とユニタリ行列

▶ ユニタリ行列 複素正方行列 *A* が次を満たすとき、*A* をユニタリ行列という

$$A^* = A^{-1}$$

A が実正方行列のときは、

$$A$$
 がユニタリ行列 \iff $^tA = A^{-1}$

となり、このような A は直交行列と呼ばれる

■ 直交行列 実正方行列 A が次を満たすとき、A を直交行列という

$$^t A = A^{-1}$$

直交行列という名前の由来は、次のように考えられる

ref: 長岡亮介 線形代数 入門講義 p275~276 ref: 行列と行列式の基

礎 p204

A を n 個の列ベクトルを横一列に並べたものとみなし、

$$A = (\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n)$$

 $\forall t \in \mathcal{L}, t$

$$egin{pmatrix} t^t oldsymbol{a}_1 \ t^t oldsymbol{a}_2 \ \vdots \ t^t oldsymbol{a}_n \end{pmatrix} (oldsymbol{a}_1, oldsymbol{a}_2, \dots, oldsymbol{a}_n) = egin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ \vdots & \vdots & \ddots & \vdots \ 0 & 0 & \cdots & 1 \end{pmatrix}$$

と表される

これは、ベクトル $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_n$ が、次の性質

$${}^toldsymbol{a}_ioldsymbol{a}_j=(oldsymbol{a}_i,oldsymbol{a}_j)=\delta_{ij}$$

を満たすことを意味する

すなわち、直交行列 A の列ベクトル a_1, a_2, \ldots, a_n は、互いに直交する単位ベクトルである

この事実は、複素行列に対しても成立する

北 todo 複素正方行列 U を $U = (\boldsymbol{u}_1, \ldots, \boldsymbol{u}_n)$ と列ベクトル分解するとき、

$$U$$
 がユニタリ行列 \iff $(\boldsymbol{u}_i, \boldsymbol{u}_j) = \delta_{ij}$

すなわち、ユニタリ行列の列ベクトルは、互いに直交する単位ベクトルである

ユニタリ変換

体 ℂ 上の計量空間において、内積を保つ線形変換をユニタリ変換という

ref: 行列と行列式の基

礎 p77~82

ref: 図で整理!例題で

納得!線形空間入門

p126~131

ightharpoonup ightharpoonup 体 m C 上の計量空間 $m \emph{V}$ における線形変換 $m \emph{f}$ がユニタリ変換であるとは、任意の $m \emph{u}$, $m \emph{v}$ $m \in \emph{V}$ に対し、

$$(f(\boldsymbol{u}), f(\boldsymbol{v})) = (\boldsymbol{u}, \boldsymbol{v})$$

が成り立つことである

体 ℝ 上のユニタリ変換は、直交変換と呼ばれる

ユニタリ変換とノルム

ユニタリ変換は、ベクトルの長さを変えない変換でもある

 $oldsymbol{\$}$ ユニタリ変換とノルム保存性 計量空間 V における線形変換を f がユニタリ変換であることと、任意の $oldsymbol{v} \in V$ に対し

$$\|f(\boldsymbol{v})\| = \|\boldsymbol{v}\|$$

が成り立つことは同値である

証明

f がユニタリ変換 \Longrightarrow f はノルムを保つ

ユニタリ変換の定義より、

$$(f(\boldsymbol{v}), f(\boldsymbol{v})) = (\boldsymbol{v}, \boldsymbol{v}) = \|\boldsymbol{v}\|^2$$

ここで、
$$\|f(oldsymbol{v})\| = \sqrt{(f(oldsymbol{v}),f(oldsymbol{v}))}$$
 であるから、 $\|f(oldsymbol{v})\| = \|oldsymbol{v}\|$

が成り立つ

f はノルムを保つ $\Longrightarrow f$ はユニタリ変換

任意の $\boldsymbol{v} \in V$ に対し、

$$||f(\boldsymbol{v})|| = ||\boldsymbol{v}||$$

が成り立つというのが仮定である

 $\forall a, b \in V \ \text{Etable}$

$$\|a + b\| = \|f(a) + f(b)\|$$

両辺を二乗して、

$$\|\boldsymbol{a} + \boldsymbol{b}\|^2 = \|f(\boldsymbol{a}) + f(\boldsymbol{b})\|^2$$

このとき、左辺は次のように展開できる

$$\|\mathbf{a} + \mathbf{b}\|^2 = (\mathbf{a} + \mathbf{b}, \mathbf{a} + \mathbf{b})$$

= $(\mathbf{a}, \mathbf{a}) + 2(\mathbf{a}, \mathbf{b}) + (\mathbf{b}, \mathbf{b})$
= $\|\mathbf{a}\|^2 + 2(\mathbf{a}, \mathbf{b}) + \|\mathbf{b}\|^2$

右辺も同様に、

$$||f(\mathbf{a}) + f(\mathbf{b})||^2$$

= $||f(\mathbf{a})||^2 + 2(f(\mathbf{a}), f(\mathbf{b})) + ||f(\mathbf{b})||^2$

さて、仮定より、 $\|f(\boldsymbol{a})\| = \|\boldsymbol{a}\|$ と $\|f(\boldsymbol{b})\| = \|\boldsymbol{b}\|$ が成り立つことから、

$$\|\boldsymbol{a} + \boldsymbol{b}\|^2 = \|f(\boldsymbol{a}) + f(\boldsymbol{b})\|^2$$

という等式の両辺を展開した結果、残る項は

$$2(a, b) = 2(f(a), f(b))$$

だけとなる

したがって、

$$(\boldsymbol{a}, \boldsymbol{b}) = (f(\boldsymbol{a}), f(\boldsymbol{b}))$$

が成り立つので、f はユニタリ変換である

ユニタリ変換の表現行列

ユニタリ変換の表現行列は、ユニタリ行列である

 todo 計量空間上の線形変換 f がユニタリ変換であること と、f の表現行列 A がユニタリ行列であることは同値である

f がユニタリ変換 \Longrightarrow A がユニタリ行列

A がユニタリ行列 \Longrightarrow f がユニタリ変換

対称行列とエルミート行列

ref: 長岡亮介 線形代数 入門講義 p275~276

 $A^* = A$

A が実正方行列のときは、

A がエルミート行列 \iff $^tA = A$

となり、このような A は対称行列、あるいは実対称行列と呼ばれる

エルミート変換

ightharpoonup エルミート変換 体 m C 上の計量空間 m V における線形空間 m f がエルミート変換であるとは、任意の m u , m v $m \in V$ に対し、

 $(f(\boldsymbol{u}), \boldsymbol{v}) = (\boldsymbol{u}, f(\boldsymbol{v}))$

が成り立つことである

体 ℝ 上のエルミート変換は、対称変換と呼ばれる

納得!線形空間入門 p126~131

ref: 図で整理!例題で

随伴写像

[Todo 2:]

ref: 図で整理!例題で 納得!線形空間入門 p131~133

直交補空間

[Todo 3:]

.....

ref: 図で整理!例題で 納得!線形空間入門 p136~140

Zebra Notes

Туре	Number
todo	3