

TITLE OF INVENTION

Technology Center 2600

"A METHOD OF COLOR CORRECTION IN A DIGITAL CAMERA SYSTEM"

FIELD OF THE INVENTION

The present invention relates substantially to the concept of a disposable camera having instant printing capabilities and in particular, discloses-A-Method of Color Correction in a Digital Camera System a method of color correction in a digital camera.

BACKGROUND OF THE INVENTION

Recently, the concept of a "single use" disposable camera has become an increasingly popular consumer item. Disposable camera systems presently on the market normally include an internal film roll and a simplified gearing mechanism for traversing the film roll across an imaging system including a The user, after utilising a single film roll shutter and lensing system. returns the camera system to a film development centre for processing. film roll is taken out of the camera system and processed and the prints returned to the user. The camera system is then able to be re-manufactured through the insertion of a new film roll into the camera system, the replacement of any worn or wearable parts and the re-packaging of the camera system in accordance with requirements. In this way, the concept of a single use "disposable" camera is provided to the consumer.

Recently, a camera system has been proposed by the present applicant which provides for a handheld camera device having an internal print-head, image sensor and processing means such that images sense by the image sensing means, are processed by the processing means and adapted to be instantly printed out by the printing means on demand. The proposed camera system further discloses a system of internal "print rolls" carrying print media such as film on to which images are to be printed in addition to ink tofor supplying to the printing means for the printing process. roll is further disclosed to be detachable and replaceable within the camera system.

Unfortunately, such a system is likely to only be constructed at a substantial cost and it would be desirable to provide for a more inexpensive form of instant camera system which maintains a substantial number of the quality aspects of the aforementioned arrangement.

It would be advantageous to provide for a camera system having an effective color correction or gamut gamma remapping capabilitiesy.

10

15

20

25

SUMMARY OF THE INVENTION

5

10

15

20

25

30

It is an object of the present invention to provide for the an efficient and effective color correction capabilities for a camera system.

In accordance with a first aspect of the present invention, there is provided in a camera system including: an image sensor device for sensing an image; a processing means for processing the sensed image; and a printing system for printing out the sensed image; a method of color correcting a sensed image to be printed out by the print—head, comprising: utilizing the image sensor device to sense a first image; processing the first image to determine color characteristics of a first sensed image; utilizing the image sensor device to sense a second image, in rapid succession to the first image; applying color correction methods to the second image based on the determined color characteristics of the first sensed image; and printing out the second image.

Preferably, the second sensed image is sensed within 1 second of the first sensed image and the processing step includes examining the intensity characteristics of the first image. The processing step can include determining a maximum and minimum intensity of the first image and utilizing the intensities to rescale the intensities of the second image.

BRIEF DESCRIPTION OF THE DRAWINGS

Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:

- Fig. 1 illustrateds a side—front perspective view of the assembled camera of the preferred embodiment;
- Fig. 2 illustrates a back siderear perspective view, partly exploded, of the preferred embodiment;
 - Fig. 3 is a side-perspective view of the chassis of the preferred embodiment;
 - Fig. 4 is side—a perspective view of the chassis illustrating the insertion—mounting of the electric motors;
- Fig. 5 is an exploded perspective <u>view</u> of the ink supply mechanism of the preferred embodiment;
 - Fig. 6 is a <u>side</u> rear perspective of the assembled form of the ink supply mechanism of the preferred embodiment;
- Fig. 7 is a front perspective view of the assembled form of the ink supply mechanism of the preferred embodiment;
 - Fig. 8 is an exploded perspective view of the platten unit of the

preferred embodiment;

5

10

15

25

30

35

40

Fig. 9 is a side—perspective view of the assembled form of the platten unit;

Fig. 10 is also a perspective view of the assembled form of the platten unit;

Fig. 11 is an exploded perspective unit view of the printhead recapping mechanism of the preferred embodiment;

Fig. 12 is a close up exploded perspective <u>view</u> of the recapping mechanism of the preferred embodiment;

Fig. 13 is an exploded perspective <u>view</u> of the ink supply cartridge of the preferred embodiment;

Fig. 14 is a close up perspective view, partly in section of the internal portions of the ink supply cartridge in an assembled form;

Fig. 15 is a schematic block diagram of one form of chip layer of the image capture and processing chip of the preferred embodiment;

Fig. 16 is an exploded perspective <u>view</u>illustrating the assembly process of the preferred embodiment;

Fig. 17 illustrates a front exploded perspective view of the assembly process of the preferred embodiment;

20 Fig. 18 illustrates a side perspective view of the assembly process of the preferred embodiment;

Fig. 19 illustrates a side perspective view of the assembly process of the preferred embodiment;

Fig. 20 is a perspective view illustrating the insertion of the platten unit in the preferred embodiment;

Fig. 21 illustrates the interconnection of the electrical components of the preferred embodiment;

Fig. 22 illustrates the process of assembling the preferred embodiment; and

Fig. 23 is a perspective view further illustrating the assembly process of the preferred embodiment.

DESCRIPTION OF PREFERRED AND OTHER EMBODIMENTS

Turning initially simultaneously—to Fig. 1[[,]] and Fig. 2 there is an illustrated perspective views of an assembled camera constructed in accordance with the preferred embodiment with Fig. 1 showing a front side perspective view and Fig. 2 showing a back side rear perspective view. The camera 1 includes a paper or plastic film jacket 2 which can include simplified instructions 3 for the operation of the camera system 1. The camera system 1 includes a first "take" button 4 which is depressed to capture an image. The captured image is output via output slot 6. A

further copy of the image can be obtained through depressing a second "printer copy" button 7 whilst an LED light 5 is illuminated. The camera system also provides the usual view finder 8 in addition to a CCD image capture/lensing system 9.

The camera system 1 provides for a standard number of output prints after which the camera system 1 ceases to function. A prints left indicator slot 10 is provided to indicate the number of remaining prints. A refund scheme at the point of purchase is assumed to be operational for the return of used camera systems for recycling.

Turning now to Fig. 3, the assembly of the camera system is based around an internal chassis 12 which can be a plastic injection molded part. A pair of paper pinch rollers 28, 29 utilized for decurling are snap fitted into corresponding frame holes eg. 26, 27.

As shown in Fig. 4, the chassis 12 includes a series of mutually opposed prongs eg. 13, 14 into which is snap fitted a series of electric motors 16, 17. The electric motors 16, 17 can be entirely standard with the motor 16 being of a stepper motor type. The motors 16, 17—and include a cogged end portion cogs 19, 20 for driving a series of gear wellswheels. A first set of gear wells—wheels is provided for controlling a paper cutter mechanism and a second set is provided for controlling print roll movement.

Turning next to Figs. 5 to 7, there is illustrated an ink supply mechanism 40 utilized in the camera system. Fig. 5 illustrates a back_rear exploded perspective view, Fig. 6 illustrates a back assembled perspective view and Fig. 7 illustrates a front assembled view. The ink supply mechanism 40 is based around an ink supply cartridge 42 which contains printer ink and a print—head mechanism for printing out pictures on demand. The ink supply cartridge 42 includes a side aluminium strip 43 which is provided as a shear strip to assist in cutting images from a paper roll.

A dial mechanism 44 is provided for indicating the number of "prints left". The dial mechanism 44 is snap fitted through a corresponding mating portion 46 so as to be freely rotatable.

As shown in Fig. 6, the print head mechanism 40 includes a flexible PCB strip 47 which interconnects with the print—head and provides for control of the print—head. The interconnection between the Flex PCB strip and an image sensor and print—head chip can be via Tape Automated Bonding (TAB) [[S]]strips 51, 58. A moulded aspherical lens and aperture shim 50 (Fig. 5) is also provided for imaging an image onto the surface of the image sensor chip normally located within cavity 53 and a light box module or hood 52 is provided for snap fitting over the cavity 53 so as to provide for proper light control. A series of decoupling capacitors eg. 34 can

5

10

15

20

25

30

35

also be provided. Further a plug 45 (Fig. 7) is provided for re-plugging ink holes after refilling. A series of guide prongs eg. 55-57 are further provided for guiding the flexible PCB strip 47.

The ink supply mechanism 40 interacts with a platten unit 60 which guides print media under a printhead located int chin the ink supply Fig. 8 shows an exploded view of the platten unit 60, while Figs. 9 and 10 show assembled views of the platten unit. The platten unit 60 includes a first pinch roller 61 which is snap fitted to one side of a Attached to a second side of the platten base 62 is a platten base 62. cutting mechanism 63 which traverses the platen unit 60 by means of a rod 64 having a screw thread which is rotated by means of cogged wheel 65 which is also fitted to the platen base 62. The screwed threaded engages rod 64 mounts a block 67 which includes a cutting wheel 68 fastened via a fastener Also mounted to the block 67 is a counter actuator which includes a prong-pawl 71. The prong-pawl 71 acts to rotate the dial mechanism 44 of Fig. 6 upon the return traversal of the cutting wheel. As shown previously in Fig. 6, the dial mechanism 44 includes a cogged surface which interacts with pawl lever 7371, thereby maintaining a count of the number of photographs taken by means of numbers embossed on the surface of dial mechanism 44. The cutting mechanism 63 is inserted into the platten base 62 by means of a snap fit via receptacle eg. clips 74.

The platten 62—unit 60 includes an internal recapping mechanism 80 for recapping the print—head when not in use. The recapping mechanism 80 includes a sponge portion 81 and is operated via a solenoid coil so as to provide for recapping of the print—head. In the preferred embodiment, there is provided an inexpensive form of printhead re-capping mechanism provided for incorporation into a handheld camera system so as to provide for printhead re-capping of an inkjet printhead.

Fig. 11 illustrates an exploded view of the recapping mechanism whilst Fig. 12 illustrates a close up of the end portion thereof. The recapping mechanism 8090—is structured around a solenoid including a 16 turn coil 75 which can comprise insulated wire. The coil 75 is turned around a first stationery solenoid arm 76 which is mounted on a bottom surface of the pattern—platen base 62(Fig. 8) and includes a post portion 77 to magnify effectiveness of operation. The arm 76 can comprise a ferrous material.

A second moveable arm 78 of the solenoid actuator is also provided 78. The arm 78 being is moveable and also is made of ferrous material. Mounted on the arm is a sponge portion surrounded by an elastomer strip 79. The elastomer strip 79 is of a generally arcuate cross-section and acts as

5

10

15

20

25

30

35

a leaf spring[[s]] against the surface of the printhead ink supply cartridge 42 (Fig. 5) so as to provide for a seal against the surface of the printhead ink supply cartridge 42. In the quiescent position [[a]] elastomer spring units 87, 88 act to resiliently deform the elastomer seal 79 against the surface of the ink supply unit 42.

When it is desired to operate the printhead unit, upon the insertion of paper, the solenoid coil 75 is activated so as to cause the arm 78 to move down to be adjacent to the end plate 76. The arm 78 is held against end plate 76 while the printhead is printing by means of a small "keeper current" in coil 7775. Simulation results indicate that the keeper current can be significantly less than the actuation current. Subsequently, after photo printing, the paper is guillotined by the cutting mechanism 63 of Fig. 8 acting against Aluminium Strip 43 of Fig. 5, and rewound so as to clear the area of the re-capping mechanism 8088. Subsequently, the current is turned off and springs 87, 88 return the arm 78 so that the elastomer seal is again resting against the printhead ink supply cartridge.

It can be seen that the preferred embodiment provides for a simple and inexpensive means of re-capping a printhead through the utilisation of a solenoid type device having a long rectangular form. Further, the preferred embodiment utilises minimal power in that currents are only required whilst the device is operational and additionally, only a low keeper current is required whilst the printhead is printing.

Turning next to Fig. 13 and 14, Fig. 13 illustrates an exploded perspective of the ink supply cartridge 42 whilst Fig. 14 illustrates a close up sectional view of a bottom of the ink supply cartridge with the printhead unit in place. The ink supply cartridge 42 is based around a pagewidth printhead 102 which comprises a long slither of silicon having a series of holes etched on the back surface for the supply of ink to a front surface of the silicon wafer for subsequent ejection via a micro electro mechanical system. The form of ejection can be many different forms such as those set out in the tables below.

Of course, many other inkjet technologies, as referred to the attached tables below, can also be utilised when constructing a printhead unit 102. The fundamental requirement of the ink supply cartridge 42 being is the supply of ink to a series of colour channels etched through the back surface of the printhead 102. In the description of the preferred embodiment, it is assumed that a three colour printing process is to be utilised so as to provide full colour picture output. Hence, the print supply unit 42—includes three ink supply reservoirs being a cyan reservoir 104, a magenta reservoir 105 and a yellow reservoir 106. Each of these

5

10

15

20

25

30

35

reservoirs is required to store ink and includes a corresponding sponge type material 107 - 109 which assists in stabilising ink within the corresponding ink channel and therefore preventing inhibiting the ink from sloshing back and forth when the printhead is utilised in a handheld camera system. The reservoirs 104, 105, 106 are formed through the mating of first exterior plastic piece 110 mating with and a second base piece[[)]] 111.

At a first end <u>118</u> of the base piece <u>11 includes111</u> a series of air inlets 113 - 115 are provided. The Each air inlet leads to a corresponding winding channel which is hydrophobically treated so as to act as an ink repellent and therefore repel any ink that may flow along the air inlet channel. The air inlet channel further takes a convoluted path further assisting in resisting any ink flow out of the chambers 104 - 106. An adhesive tape portion 117 is provided for sealing the channels within end portion 118.

At the top end, there is included a series of refill holes (not shown) for refilling corresponding ink supply chambers 104, 105, 106. A plug 121 is provided for sealing the refill holes.

Turning now to Fig. 14, there is illustrated a close up perspective view, partly in section through the ink supply cartridge 42 of Fig. 13 when formed as a unit. The ink supply cartridge includes the three colour ink reservoirs 104, 105, 106 which supply ink to different portions of the back surface of printhead 102 which includes a series of apertures 128 defined therein for carriage of the ink to the front surface.

The ink supply unit cartridge 42 includes two guide walls 124, 125 which separate the various ink chambers and are tapered into an end portion abutting the surface of the printhead 102. The guide walls 124, 125 are further mechanically supported and regular spaces by [[a]] block portions eg. 126 which are placed at regular intervals along the length of the printhead ink supply unit. The block portions 126 leaving leave space at portions close to the back of printhead 102 for the flow of ink around the back surface thereof.

The <u>printhead_ink</u> supply unit is preferably formed from a multi-part plastic injection mould and the mould pieces eg. 10, 11 110, 111 (Fig. ±13) snap together around the sponge pieces 107, 109. Subsequently, a syringe type device can be inserted in the ink refill holes and the ink reservoirs filled with ink with the air flowing out of the air outlets 113 - 115. Subsequently, the adhesive tape portion 117 and plug 121 are attached and the printhead tested for operation capabilities. Subsequently, the ink supply cartridge 42 can be readily removed for refilling by means of

5

10

15

20

25

30

35

removing the ink supply cartridge, performing a washing cycle, and then utilising the holes for the insertion of a refill syringe filled with ink for refilling the ink chamber before returning the ink supply cartridge 42 to a camera.

5 Turning now to Fig. 15, there is shown an example layout of the Image Capture and Processing Chip (ICP) 48.

The Image Capture and Processing Chip 48 provides most of the electronic functionality of the camera with the exception of the print—head chip. The chip 48 is a highly integrated system. It combines CMOS image sensing, analog to digital conversion, digital image processing, DRAM storage, ROM, and miscellaneous control functions in a single chip.

The chip is estimated to be around 32 mm² using a leading edge 0.18 micron CMOS/DRAM/APS process. The chip size and cost can scale somewhat with Moore's law, but is dominated by a CMOS active pixel sensor array 201, so scaling is limited as the sensor pixels approach the diffraction limit.

The ICP 48 includes CMOS logic, a CMOS image sensor, DRAM, and analog circuitry. A very small amount of flash memory or other non-volatile memory is also preferably included for protection against reverse engineering.

Alternatively, the ICP can readily be divided into two chips: one for the CMOS imaging array, and the other for the remaining circuitry. The cost of this two chip solution should not be significantly different than the single chip ICP, as the extra cost of packaging and bond-pad area is somewhat cancelled by the reduced total wafer area requiring the color filter fabrication steps.

The ICP preferably contains the following functions:

Function
1.5 megapixel image sensor
Analog Signal Processors
Image sensor column decoders
Image sensor row decoders
Analogue to Digital Conversion (ADC)
Column ADC's
Auto exposure
12 Mbits of DRAM
DRAM Address Generator
Color interpolator
Convolver
Color ALU
Halftone matrix ROM
Digital halftoning
printhead interface
8 bit CPU core
Program ROM

10

15

20

Function	
Flash memory	
Scratchpad SRAM	
Parallel interface (8 bit)	
Motor drive transistors (5)	
Clock PLL	
JTAG test interface	
Test circuits	
Busses	
Bond pads	

The CPU, DRAM, Image sensor, ROM, Flash memory, Parallel interface, JTAG interface and ADC can be vendor supplied cores. The ICP is intended to run on 1.5V to minimize power consumption and allow convenient operation from two AA type battery cells.

Fig. 15 illustrates a layout of the ICP 48. The ICP 48 is dominated by the imaging array 201, which consumes around 80% of the chip area. The imaging array is a CMOS 4 transistor active pixel design with a resolution of $1,500 \times 1,000$. The array can be divided into the conventional configuration, with two green pixels, one red pixel, and one blue pixel in each pixel group. There are 750 \times 500 pixel groups in the imaging array.

The latest advances in the field of image sensing and CMOS image sensing in particular can be found in the October, 1997 issue of IEEE Transactions on Electron Devices and, in particular, pages 1689 to 1968. Further, a specific implementation similar to that disclosed in the present application is disclosed in Wong et. al, "CMOS Active Pixel Image Sensors Fabricated Using a 1.8V, 0.25 μ m CMOS Technology", IEDM 1996, page 915

The imaging array uses a 4 transistor active pixel design of a standard configuration. To minimize chip area and therefore cost, the image sensor pixels should be as small as feasible with the technology available. With a four transistor cell, the typical pixel size scales as 20 times the lithographic feature size. This allows a minimum pixel area of around 3.6 μm x 3.6 μm . However, the photosite must be substantially above the diffraction limit of the lens. It is also advantageous to have a square photosite, to maximize the margin over the diffraction limit in both horizontal and vertical directions. In this case, the photosite can be specified as 2.5 μm x 2.5 μm . The photosite can be a photogate, pinned photodiode, charge modulation device, or other sensor.

The four transistors are packed as an 'L' shape, rather than a rectangular region, to allow both the pixel and the photosite to be square. This reduces the transistor packing density slightly, increasing pixel size. However, the advantage in avoiding the diffraction limit is greater

5

10

15

20

25

than the small decrease in packing density.

The transistors also have a gate length which is longer than the minimum for the process technology. These have been increased from a drawn length of 0.18 micron to a drawn length of 0.36 micron. This is to improve the transistor matching by making the variations in gate length represent a smaller proportion of the total gate length.

The extra gate length, and the 'L' shaped packing, mean that the transistors use more area than the minimum for the technology. Normally, around 8 μm^2 would be required for rectangular packing. Preferably, 9.75 μm^2 has been allowed for the transistors.

The total area for each pixel is 16 μm^2 , resulting from a pixel size of 4 μm x 4 μm . With a resolution of 1,500 x 1,000, the area of the imaging array 101 is 6,000 μm x 4,000 μm , or 24 mm^2 .

The presence of a color image sensor on the chip affects the process required in two major ways:

-The CMOS fabrication process should be optimized to minimize dark current

Color filters are required. These can be fabricated using dyed photosensitive polyimides, resulting in an added process complexity of three spin coatings, three photolithographic steps, three development steps, and three hardbakes.

There are 15,000 analog signal processors (ASPs) 205, one for each of the columns of the sensor. The ASPs amplify the signal, provide a dark current reference, sample and hold the signal, and suppress the fixed pattern noise (FPN).

There are 375 analog to digital converters 206, one for each four columns of the sensor array. These may be delta-sigma or successive approximation type ADC's. A row of low column ADC's are used to reduce the conversion speed required, and the amount of analog signal degradation incurred before the signal is converted to digital. This also eliminates the hot spot (affecting local dark current) and the substrate coupled noise that would occur if a single high speed ADC was used. Each ADC also has two four bit DAC's which trim the offset and scale of the ADC to further reduce FPN variations between columns. These DAC's are controlled by data stored in flash memory during chip testing.

The column select logic 204 is a 1:1500 decoder which enables the appropriate digital output of the ADCs onto the output bus. As each ADC is shared by four columns, the least significant two bits of the row select control 4 input analog multiplexers.

A row decoder 207 is a 1:1000 decoder which enables the appropriate

5

10

15

20

25

30

row of the active pixel sensor array. This selects which of the 1000 rows of the imaging array is connected to analog signal processors. As the rows are always accessed in sequence, the row select logic can be implemented as a shift register.

An auto exposure system 208 adjusts the reference voltage of the ADC 205 in response to the maximum intensity sensed during the previous frame period. Data from the green pixels is passed through a digital peak detector. The peak value of the image frame period before capture (the reference frame) is provided to a digital to analogue converter(DAC), which generates the global reference voltage for the column ADCs. The peak detector is reset at the beginning of the reference frame. The minimum and maximum values of the three RGB color components are also collected for color correction.

The second largest section of the chip is consumed by a DRAM 210 used to hold the image. To store the 1,500 x 1,000 image from the sensor without compression, 1.5 Mbytes of DRAM 210 are required. This equals 12 Mbits, or slightly less than 5% of a 256 Mbit DRAM. The DRAM technology assumed is of the 256 Mbit generation implemented using 0.18 μ m CMOS.

Using a standard 8F cell, the area taken by the memory array is $3.11 \, \text{mm}^2$. When row decoders, column sensors, redundancy, and other factors are taken into account, the DRAM requires around $4 \, \text{mm}^2$.

This DRAM 210 can be mostly eliminated if analog storage of the image signal can be accurately maintained in the CMOS imaging array for the two seconds required to print the photo. However, digital storage of the image is preferable as it is maintained without degradation, is insensitive to noise, and allows copies of the photo to be printed considerably later.

A DRAM address generator 211 provides the write and read addresses to the DRAM 210. Under normal operation, the write address is determined by the order of the data read from the CMOS image sensor 201. This will typically be a simple raster format. However, the data can be read from the sensor 201 in any order, if matching write addresses to the DRAM are generated. The read order from the DRAM 210 will normally simply match the requirements of a color interpolator and the print—head. As the cyan, magenta, and yellow rows of the print—head are necessarily offset by a few pixels to allow space for nozzle actuators, the colors are not read from the DRAM simultaneously. However, there is plenty of time to read all of the data from the DRAM many times during the printing process. This capability is used to eliminate the need for FIFOs in the print—head interface, thereby saving chip area. All three RGB image components can be read from the DRAM each time color data is required. This allows a color

5

10

15

20

25

30

35

space converter to provide a more sophisticated conversion than a simple linear RGB to CMY conversion.

Also, to allow two dimensional filtering of the image data without requiring line buffers, data is re-read from the DRAM array.

The address generator may also implement image effects in certain models of camera. For example, passport photos are generated by a manipulation of the read addresses to the DRAM. Also, image framing effects (where the central image is reduced), image warps, and kaleidoscopic effects can all be generated by manipulating the read addresses of the DRAM.

While the address generator 211 may be implemented with substantial complexity if effects are built into the standard chip, the chip area required for the address generator is small, as it consists only of address counters and a moderate amount of random logic.

A color interpolator 214 converts the interleaved pattern of red, 2 x green, and blue pixels into RGB pixels. It consists of three 8 bit adders and associated registers. The divisions are by either 2 (for green) or 4 (for red and blue) so they can be implemented as fixed shifts in the output connections of the adders.

A convolver 215 is provided as a sharpening filter which applies a small convolution kernel (5 x 5) to the red, green, and blue planes of the image. The convolution kernel for the green plane is different from that of the red and blue planes, as green has twice as many samples. The sharpening filter has five functions:

-To improve the color interpolation from the linear interpolation provided by the color interpolator, to a close approximation of a sync interpolation.

-To compensate for the image 'softening' which occurs during digitization.

-To adjust the image sharpness to match average consumer preferences, which are typically for the image to be slightly sharper than reality. As the single use camera is intended as a consumer product, and not a professional photographic products, the processing can match the most popular settings, rather than the most accurate.

-To suppress the sharpening of high frequency (individual pixel) noise. The function is similar to the 'unsharp mask' process.

-To antialias Image Warping.

These functions are all combined into a single convolution matrix. As the pixel rate is low (less than 1 Mpixel per second) the total number of multiplies required for the three color channels is 56 million multiplies

5

10

15

20

25

30

35

per second. This can be provided by a single multiplier. Fifty bytes of coefficient ROM are also required.

A color ALU 113 combines the functions of color compensation and color space conversion into the one matrix multiplication, which is applied to every pixel of the frame. As with sharpening, the color correction should match the most popular settings, rather than the most accurate.

A color compensation circuit of the color ALU provides compensation for the lighting of the photo. The vast majority of photographs are substantially improved by a simple color compensation, which independently normalizes the contrast and brightness of the three color components.

A color look-up table (CLUT) 212 is provided for each color component. These are three separate 256 x 8 SRAMs, requiring a total of 6,144 bits. The CLUTs are used as part of the color correction process. They are also used for color special effects, such as stochastically selected "wild color" effects.

A color space conversion system of the color ALU converts from the RGB color space of the image sensor to the CMY color space of the printer. The simplest conversion is a 1's complement of the RGB data. However, this simple conversion assumes perfect linearity of both color spaces, and perfect dye spectra for both the color filters of the image sensor, and the ink dyes. At the other extreme is a tri-linear interpolation of a sampled three dimensional arbitrary transform table. This can effectively match any non-linearity or differences in either color space. Such a system is usually necessary to obtain good color space conversion when the print engine is a color electrophotographic.

However, since the non-linearity of a halftoned ink jet output is very small, a simpler system can be used. A simple matrix multiply can provide excellent results. This requires nine multiplies and six additions per contone pixel. However, since the contone pixel rate is low (less than 1 Mpixel/sec) these operations can share a single multiplier and adder. The multiplier and adder are used in a color ALU which is shared with the color compensation function.

Digital halftoning can <u>be</u> performed as a dispersed dot ordered dither using a stochastic optimized dither cell. A halftone matrix ROM <u>216</u> <u>116</u>—is provided for storing dither cell coefficients. A dither cell size of 32 x 32 is adequate to ensure that the cell repeat cycle is not visible. The three colors — cyan, magenta, and yellow — are all dithered using the same cell, to ensure maximum co-positioning of the ink dots. This minimizes 'muddying' of the mid-tones which results from bleed of dyes from one dot to adjacent dots while still wet. The total ROM size required is 1 KByte,

5

10

15

20

25

30

35

as the one ROM is shared by the halftoning units for each of the three colors.

The digital halftoning used is dispersed dot ordered dither with stochastic optimized dither matrix. While dithering does not produce an image quite as 'sharp' as error diffusion, it does produce a more accurate image with fewer artifacts. The image sharpening produced by error diffusion is artificial, and less controllable and accurate than 'unsharp mask' filtering performed in the contone domain. The high print resolution (1,600 dpi x 1,600 dpi) results in excellent quality when using a well formed stochastic dither matrix.

Digital halftoning is performed by a digital halftoning unit 217 using a simple comparison between the contone information from the DRAM 210 and the contents of the dither matrix 216. During the halftone process, the resolution of the image is changed from the 250 dpi of the captured contone image to the 1,600 dpi of the printed image. Each contone pixel is converted to an average of 40.96 halftone dots.

The ICP incorporates <u>a an</u> 16 bit microcontroller CPU core 219 to run the miscellaneous camera functions, such as reading the buttons, controlling the motor and solenoids, setting up the hardware, authenticating the refill station. The processing power required by the CPU is very modest, and a wide variety of processor cores can be used. As the entire CPU program is run from a small ROM 220. Pprogram compatibility between camera versions is not important, as no external programs are run. A 2 Mbit (256 Kbyte) program and data ROM 220 is included on chip. this ROM space is allocated to data for outline graphics and fonts for specialty cameras. The program requirements are minor. The single most complex task is the encrypted authentication of the refill station. The ROM requires a single transistor per bit.

A Flash memory 221 may be used to store a 128 bit authentication code. This provides higher security than storage of the authentication code in ROM, as reverse engineering can be made essentially impossible. The Flash memory is completely covered by third level metal, making the data impossible to extract using scanning probe microscopes or electron beams. The authentication code is stored in the chip when manufactured. At least two other Flash bits are required for the authentication process: a bit which locks out reprogramming of the authentication code, and a bit which indicates that the camera has been refilled by an authenticated refill station. The flash memory can also be used to store FPN correction data for the imaging array. Additionally, a phase locked loop rescaling parameter is stored and is provided for scaling the clocking cycle to an

5

10

15

20

25

30

35

appropriate correct time. The clock frequency does not require crystal accuracy since no date functions are provided. To eliminate the cost of a crystal, an on chip oscillator with a phase locked loop 224 124—is used. As the frequency of an on-chip oscillator is highly variable from chip to chip, the frequency ratio of the oscillator to the PLL is digitally trimmed during initial testing. The value is stored in Flash memory 221121. This allows the clock PLL to control the ink-jet heater pulse width with sufficient accuracy.

A scratchpad SRAM is a small static RAM 222 with a 6T cell. The scratchpad providesd temporary memory for the 16 bit CPU. 1024 bytes is adequate.

A print—head interface 223 formats the data correctly for the print head. The print—head interface also provides all of the timing signals required by the print—head. These timing signals may vary depending upon temperature, the number of dots printed simultaneously, the print medium in the print roll, and the dye density of the ink in the print roll.

The following is a table of external connections to the print—head interface:

Connection	Function	Pins
DataBits[0-7]	Independent serial data to the eight segments of the print—head	8
BitClock	Main data clock for the print-head	1
ColorEnable[0-2]	Independent enable signals for the CMY actuators, allowing different pulse times for each color.	. 3
BankEnable[0-1]	Allows either simultaneous or interleaved actuation of two banks of nozzles. This allows two different print speed/power consumption tradeoffs	2
NozzleSelect[0-4]	Selects one of 32 banks of nozzles for simultaneous actuation	5
ParallelXferClock	Loads the parallel transfer register with the data from the shift registers	1
Total		20

20

25

5

10

15

The print—head utilized is composed of eight identical segments, each $1.25~\rm cm$ long. There is no connection between the segments on the print—head chip. Any connections required are made in the external TAB bonding film, which is double sided. The division into eight identical segments is to simplify lithography using wafer steppers. The segment width of $1.25~\rm cm$ fits easily into a stepper field. As the print—head chip is long and narrow (10 cm x 0.3 mm), the stepper field contains a single segment of 32 print head chips. The stepper field is therefore $1.25~\rm cm$ x $1.6~\rm cm$. An average of

four complete print-heads are patterned in each wafer step.

A single BitClock output line connects to all 8 segments on the print head. The 8 DataBits lines lead one to each segment, and are clocked in to the 8 segments on the print—head simultaneously (on a BitClock pulse). For example, dot 0 is transferred to segment₀, dot 750 is transferred to segment₁, dot 1500 to segment₂ etc simultaneously.

The ParallelXferClock is connected to each of the 8 segments on the print—head, so that on a single pulse, all segments transfer their bits at the same time.

The NozzleSelect, BankEnable and ColorEnable lines are connected to each of the 8 segments, allowing the print—head interface to independently control the duration of the cyan, magenta, and yellow nozzle energizing pulses. Registers in the print—head Interface allow the accurate specification of the pulse duration between 0 and 6 ms, with a typical duration of 2 ms to 3 ms.

A parallel interface 125 connects the ICP to individual static electrical signals. The CPU is able to control each of these connections as memory mapped I/O via a low speed bus.

The following is a table of connections to the parallel interface:

2	1	٦
_	•	•

25

30

5

10

15

Connection	Direction	Pins
Paper transport stepper motor	Output	4
Capping solenoid	Output	1
Copy LED	Output	1
Photo button	Input	1
Copy button	Input	1
Total		8

A serial interface is also included to allow authentication of the refill station. This is included to ensure that the cameras are only refilled with paper and ink at authorized refill stations, thus preventing inferior quality refill industry from occurring. The camera must authenticate the refill station, rather than the other way around. The secure protocol is communicated to the refill station via a serial data connection. Contact can be made to four gold plated spots on the ICP/print head. TAB by the refill station as the new ink is injected into the print head.

Seven high current drive transistors eg. 227 are required. Four are for the four phases of the main stepper motor, two are for the guillotine motor, and the remaining transistor is to drive the capping solenoid. These transistors are allocated 20,000 square microns (600,000 F) each. As the

transistors are driving highly inductive loads, they must either be turned off slowly, or be provided with a high level of back EMF protection. If adequate back EMF protection cannot be provided using the chip process chosen, then external discrete transistors should be used. The transistors are never driven at the same time as the image sensor is used. This is to avoid voltage fluctuations and hot spots affecting the image quality. Further, the transistors are located as far away from the sensor as possible.

A standard JTAG (Joint Test Action Group) interface 228 is included in the ICP for testing purposes and for interrogation by the refill station. Due to the complexity of the chip, a variety of testing techniques are required, including BIST (Built In Self Test) and functional block isolation. An overhead of 10% in chip area is assumed for chip testing circuitry for the random logic portions. The overhead for the large arrays, the image sensor and the DRAM is smaller.

The JTAG interface is also used for authentication of the refill station. This is included to ensure that the cameras are only refilled with quality paper and ink at a properly constructed refill station, thus preventing inferior quality refills from occurring. The camera must authenticate the refill station, rather than vice versa. The secure protocol is communicated to the refill station during the automated test procedure. Contact is made to four gold plated spots on the ICP/print—head TAB by the refill station as the new ink is injected into the print—head.

Fig. 16 illustrates a rear view of the next step in the construction process whilst Fig. 17 illustrates a front camera view.

Turning now to Fig. 16, the assembly of the camera system proceeds via first assembling the ink supply mechanism 40. The flex PCB is interconnected with batteries 84 only one 84 of which is shown, which are inserted in the middle portion of a print roll 85 which is wrapped around a plastic former 86. An end cap 89 is provided at the other end of the print roll 85 so as to fasten the print roll and batteries firmly to the ink supply mechanism.

The solenoid coil is interconnected (not shown) to interconnects 97, 98 (Fig. 8) which include leaf spring ends for interconnection with electrical contacts on the Flex PCB so as to provide for electrical control of the solenoid.

Turning now to Figs. 17 - 19 the next step in the construction process is the insertion of the relevant gear chains trains into the side of the camera chassis. Fig. 17 illustrates a front camera view. Fig. 18 illustrates a back side rear view and Fig. 19 also illustrates a back

5

10

-15

20

25

30

35

siderear view. The first gear chain trains comprising gear wheels 22, 23 are utilised for driving the guillotine blade with the gear wheel 23 engaging the gear wheel 65 of Fig. 8. The second gear chain comprising gear wheels 24, 25 and 26 engage one end of the print roller 61 of Fig. 8. As best indicated in Fig. 18, the gear wheels mate with corresponding buttons pins on the surface of the chassis with the gear wheel 26 being snap fitted into corresponding mating hole 27.

Next, as illustrated in Fig. 20, the assembled platten unit 60 is then inserted between the print roll 85 and aluminium cutting blade 43.

Turning now to Fig. 21, by way of illumination, there is illustrated the electrically interactive components of the camera system. As noted previously, the components are based around a Flex PCB board and include a TAB film 58 which interconnects the printhead 102 with the image sensor and processing chip 5148. Power is supplied by two AA type batteries 83, 84 and a paper drive stepper motor 16 is provided in addition to a rotary guillotine motor 1720.

An optical element 31 is provided for snapping into a top portion of the chassis 12. The optical element 31 includes portions defining an optical view finder 32, 33 which are slotted into mating portions 35, 36 in view finder channel 37. Also provided in the optical element 31 is a lensing system 38 for magnification of the "prints left" number in addition to an optical pipe element 39 for piping light from the LED 5 for external display.

Turning next to Fig. 22, the assembled unit 90 is then inserted into a front outer case 91 which includes button 4 for activation of printouts.

Turning now to Fig. 23, next, the unit 9092 is provided with a snapon back cover 93 which includes a slot 6 and copy print button 7. A wrapper label containing instructions and advertising (not shown) is then wrapped around the outer surface of the camera system and pinch clamped to the cover by means of clamp strip 96 which can comprise a flexible plastic or rubber strip.

Subsequently, the preferred embodiment is ready for use as a one time use camera system that provides for instant output images on demand.

It will be evident that the preferred embodiment further provides for a refillable camera system. A used camera can be collected and its outer plastic cases removed and recycled. A new paper roll and batteries can be added and the ink cartridge refilled. A series of automatic test routines can then be carried out to ensure that the printer is properly operational. Further, in order to ensure only authorised refills are conducted so as to enhance quality, routines in the on-chip program ROM can be executed such

5

10

15

20

25

30

35

that the camera authenticates the refilling station using a secure protocol. Upon authentication, the camera can reset an internal paper count and an external case can be fitted on the camera system with a new outer label. Subsequent packing and shipping can then take place.

It will be further readily evident to those skilled in the art that the program ROM can be modified so as to allow for a variety of digital processing routines. In addition to the digitally enhanced photographs optimised for mainstream consumer preferences, various other models can readily be provided through mere re-programming of the program ROM. example, a sepia classic old fashion style output can be provided through a remapping of the colour mapping function. A further alternative is to provide for black and white outputs again through a suitable colour remapping algorithm. Minimumless colour can also be provided to add a touch of colour to black and white prints to produce the effect that was traditionally used to colourize black and white photos. Further, passport photo output can be provided through suitable address remappings within the address generators. Further, edge filters can be utilised as is known in the field of image processing to produce sketched art styles. Further, classic wedding borders and designs can be placed around an output image in addition to the provision of relevant clip arts. For example, a wedding style camera might be provided. Further, a panoramic mode can be provided so as to output the well known panoramic format of images. postcard style output can be provided through the printing of postcards including postage on the back of a print roll surface. Further, cliparts can be provided for special events such as Halloween, Christmas etc. Further, kaleidoscopic effects can be provided through address remappings and wild colour effects can be provided through remapping of the colour lookup table. Many other forms of special event cameras can be provided for example, cameras dedicated to the Olympics, movie tie-ins, advertising and other special events.

The operational mode of the camera can be programmed so that upon the depressing of the take photo a first image is sampled by the sensor array to determine irrelevant parameters. Next a second image is again captured which is utilised for the output. The captured image is then manipulated in accordance with any special requirements before being initially output on the paper roll. The LED light is then activated for a predetermined time during which the DRAM is refreshed so as to retain the image. If the print copy button is depressed during this predetermined time interval, a further copy of the photo is output. After the predetermined time interval where no use of the camera has

5

10

15

20

25

30

35

occurred, the onboard CPU shuts down all power to the camera system until such time as the take button is again activated. In this way, substantial power savings can be realized.

5 Ink Jet Technologies

10

15

20

The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.

The most significant problem with thermal ink jet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal ink jet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.

The most significant problem with piezoelectric ink jet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print—head, but is a major impediment to the fabrication of pagewide print—heads pagewidth printheads with 19,200 nozzles.

Ideally, the ink jet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new ink jet technologies have been created. The target features include:

low power (less than 10 Watts)
high resolution capability (1,600 dpi or more)
photographic quality output
low manufacturing cost

small size (pagewidth times minimum cross section)

35 high speed (< 2 seconds per page).

All of these features can be met or exceeded by the ink jet systems described below with differing levels of difficulty. Forty five different ink jet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part of separate applications assigned to the present Assignee as set out in the

table below under the heading CROSS REFERENCES TO RELATED APPLICATIONS.

The ink jet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems

For ease of manufacture using standard process equipment, the print head is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing. For color photographic applications, the print—head is 100 mm long, with a width which depends upon the ink jet type. The smallest print head designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm. The print—heads each contain 19,200 nozzles plus data and control circuitry.

Ink is supplied to the back of the print—head by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The print head is connected to the camera circuitry by tape automated bonding.

Cross-Referenced Applications

The following table is a guide to cross-referenced patent applications filed concurrently herewith and discussed hereinafter with the reference being utilized in subsequent tables when referring to a particular case.

Docket	Reference	Title
No.		
IJ01US	IJ01	Radiant Plunger Ink Jet Printer
IJ02US	IJ02	Electrostatic Ink Jet Printer
IJ03US	IJ03	Planar Thermoelastic Bend Actuator Ink Jet
IJ04US	IJ04	Stacked Electrostatic Ink Jet Printer
IJ05US	IJ05	Reverse Spring Lever Ink Jet Printer
IJ06US	IJ06	Paddle Type Ink Jet Printer
IJ07US	IJ07	Permanent Magnet Electromagnetic Ink Jet Printer
IJ08US	IJ08	Planar Swing Grill Electromagnetic Ink Jet Printer
IJ09US	IJ09	Pump Action Refill Ink Jet Printer
IJ10US	IJ10	Pulsed Magnetic Field Ink Jet Printer
IJ11US	IJ11	Two Plate Reverse Firing Electromagnetic Ink Jet Printer
IJ12US	IJ12	Linear Stepper Actuator Ink Jet Printer
IJ13US	IJ13	Gear Driven Shutter Ink Jet Printer
IJ14US	IJ14	Tapered Magnetic Pole Electromagnetic Ink Jet Printer
IJ15US	IJ15	Linear Spring Electromagnetic Grill Ink Jet Printer

5

10

15

IJ16US	IJ16	Lorenz Diaphragm Electromagnetic Ink Jet Printer
IJ17US	IJ17	PTFE Surface Shooting Shuttered Oscillating Pressure Ink
		Jet Printer
IJ18US	IJ18	Buckle Grip Oscillating Pressure Ink Jet Printer
IJ19US	IJ19	Shutter Based Ink Jet Printer
IJ20US	IJ20	Curling Calyx Thermoelastic Ink Jet Printer
IJ21US	IJ21	Thermal Actuated Ink Jet Printer
IJ22US	IJ22	Iris Motion Ink Jet Printer
IJ23US	IJ23	Direct Firing Thermal Bend Actuator Ink Jet Printer
IJ24US	IJ24	Conductive PTFE Ben Activator Vented Ink Jet Printer
IJ25US	IJ25	Magnetostrictive Ink Jet Printer
IJ26US	IJ26	Shape Memory Alloy Ink Jet Printer
IJ27US	IJ27	Buckle Plate Ink Jet Printer
IJ28US	IJ28	Thermal Elastic Rotary Impeller Ink Jet Printer
IJ29US	IJ29	Thermoelastic Bend Actuator Ink Jet Printer
IJ30US	IJ30	Thermoelastic Bend Actuator Using PTFE and Corrugated
		Copper Ink Jet Printer
IJ31US	IJ31	Bend Actuator Direct Ink Supply Ink Jet Printer
IJ32US	IJ32	A High Young's Modulus Thermoelastic Ink Jet Printer
IJ33US	IJ33	Thermally actuated slotted chamber wall ink jet printer
IJ34US	IJ34	Ink Jet Printer having a thermal actuator comprising an
		external coiled spring
IJ35US	IJ35	Trough Container Ink Jet Printer
IJ36US	IJ36	Dual Chamber Single Vertical Actuator Ink Jet
IJ37US	IJ37	Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet
IJ38US	IJ38	Dual Nozzle Single Horizontal Actuator Ink Jet
IJ39US	IJ39	A single bend actuator cupped paddle ink jet printing
		device
IJ40US	IJ40	A thermally actuated ink jet printer having a series of
		thermal actuator units
IJ41US	IJ41	A thermally actuated ink jet printer including a tapered
		heater element
IJ42US	IJ42	Radial Back-Curling Thermoelastic Ink Jet
IJ43US	IJ43	Inverted Radial Back-Curling Thermoelastic Ink Jet
IJ44US	IJ44	Surface bend actuator vented ink supply ink jet printer
IJ45US	<u>IJ45</u>	Coil Actuated Magnetic Plate Ink Jet Printer
		

Tables of Drop-on-Demand Ink Jets

Eleven important characteristics of the fundamental operation of individual ink jet nozzles have been identified. These characteristics are largely orthogonal, and so can be elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee.

The following tables form the axes of an eleven dimensional table of ink jet types.

Actuator mechanism (18 types)

10 Basic operation mode (7 types)

5

Auxiliary mechanism (8 types)

Actuator amplification or modification method (17 types)

Actuator motion (19 types)

Nozzle refill method (4 types)

15 Method of restricting back-flow through inlet (10 types)

Nozzle clearing method (9 types)

Nozzle plate construction (9 types)

Drop ejection direction (5 types)

Ink type (7 types)

The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of ink jet nozzle. While not all of the possible combinations result in a viable ink jet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain ink jet types have been investigated in detail. These are designated IJ01 to IJ45 above which match the docket numbers in the table under the heading Cross References to Related Applications.

Other ink jet configurations can readily be derived from these 45 forty-five examples by substituting alternative configurations along one or more of the 11 axes. Most of the IJ01 to IJ45 examples can be made into ink jet print heads with characteristics superior to any currently available ink jet technology.

Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The IJ01 to IJ45 series are also listed in the examples column. In some cases, a printer print technology may be listed more than once in a table, where it shares characteristics with more than one entry.

Suitable applications for the ink jet technologies include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers,

30

35

Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.

The information associated with the aforementioned 11 dimensional matrix are set out in the following tables.

ACTUATOR MECHANISM (APPLIED ONLY TO SELECTED INK DROPS)

Actuator Mechanism	Description	Advantages	Disadvantages	Examples
Thermal bubble	An electrothermal heater heats the ink to above boiling point, transferring significant heat to the aqueous ink. A bubble nucleates and quickly forms, expelling the ink. The efficiency of the process is low, with typically less than 0.05% of the electrical energy being transformed into kinetic energy of the drop.	Large force generated Simple construction No moving parts Fast operation Small chip area required for actuator	 High power Ink carrier limited to water Low efficiency High temperatures required High mechanical stress Unusual materials required Large drive transistors Cavitation causes actuator failure Kogation reduces bubble formation Large print heads are difficult to fabricate 	◆ Canon Bubblejet 1979 Endo et al GB patent 2,007,162 ◆ Xerox heater-in-pit 1990 Hawkins et al USP 4,899,181 ◆ Hewlett-Packard TIJ 1982 Vaught et al USP 4,490,728
Piezoelectric	A piezoelectric crystal such as lead lanthanum zirconate (PZT) is electrically activated, and either expands, shears, or bends to apply pressure to the ink, ejecting drops.	 Low power consumption Many ink types can be used Fast operation High efficiency 	 Very large area required for actuator Difficult to integrate with electronics High voltage drive transistors required Full pagewidth print heads impractical due to actuator size Requires electrical poling in high field strengths during manufacture 	 ★ Kyser et al USP 3,946,398 ★ Zoltan USP 3,683,212 ◆ 1973 Stemme USP 3,747,120 ◆ Epson Stylus ◆ Tektronix ◆ IJ04
Electro-strictive	An electric field is used to activate electrostriction in relaxor materials such as lead lanthanum zirconate titanate (PLZT) or lead magnesium niobate (PMN).	Low power consumption Many ink types can be used Low thermal expansion Electric field strength required (approx. 3.5 V/µm) can be generated without difficulty Does not require electrical poling	 Low maximum strain (approx. 0.01%) Large area required for actuator due to low strain Response speed is marginal (~ 10 μs) High voltage drive transistors required Full pagewidth print heads impractical due to actuator size 	 ♦ Seiko Epson, Usui et all JP 253401/96 ♦ IJ04

١	_

		0.7		
Ferroelectric	An electric field is used to induce a phase transition between the antiferroelectric (AFE) and ferroelectric (FE) phase. Perovskite materials such as tin modified lead lanthanum zirconate titanate (PLZSNT) exhibit large strains of up to 1% associated with the AFE to FE phase transition.	• Low power consumption • Many ink types can be used • Fast operation (< 1 µs) • Relatively high longitudinal strain • High efficiency • Electric field strength of around 3 V/µm can be readily provided	Difficult to integrate with electronics Unusual materials such as PLZSnT are required Actuators require a large area	◆ IJ04
Electrostatic plates	Conductive plates are separated by a compressible or fluid dielectric (usually air). Upon application of a voltage, the plates attract each other and displace ink, causing drop ejection. The conductive plates may be in a comb or honeycomb structure, or stacked to increase the surface area and therefore the force.	 ◆ Low power consumption ◆ Many ink types can be used ◆ Fast operation 	Difficult to operate electrostatic devices in an aqueous environment The electrostatic actuator will normally need to be separated from the ink Very large area required to achieve high forces High voltage drive transistors may be required Full pagewidth print heads are not competitive due to actuator size	◆ IJ02, IJ04
Electrostatic pull on ink	A strong electric field is applied to the ink, whereupon electrostatic attraction accelerates the ink towards the print medium.	◆ Low current consumption ◆ Low temperature	 ◆ High voltage required ◆ May be damaged by sparks due to air breakdown ◆ Required field strength increases as the drop size decreases ◆ High voltage drive transistors required ◆ Electrostatic field attracts dust 	 + 1989 Saito et al, USP 4,799,068 + 1989 Miura et al, USP 4,810,954 ◆ Tone-jet

•			
ı	ľ		۰
ı	ī	L	

		17		
Permanent magnet electro- magnetic	An electromagnet directly attracts a permanent magnet, displacing ink and causing drop ejection. Rare earth magnets with a field strength around 1 Tesla can be used. Examples are: Samarium Cobalt (SaCo) and magnetic materials in the neodymium iron boron family (NdFeB, NdDyFeBNb, NdDyFeB, etc)	 Low power consumption Many ink types can be used Fast operation High efficiency Easy extension from single nozzles to pagewidth print heads 	Complex fabrication Permanent magnetic material such as Neodymium Iron Boron (NdFeB) required High local currents required Copper metalization should be used for long electromigration lifetime and low resistivity Pigmented inks are usually infeasible Operating temperature limited to the Curie temperature (around 540 K)	• IJ07, IJ10
Soft magnetic core electro-magnetic	A solenoid induced a magnetic field in a soft magnetic core or yoke fabricated from a ferrous material such as electroplated iron alloys such as CoNiFe [1], CoFe, or NiFe alloys. Typically, the soft magnetic material is in two parts, which are normally held apart by a spring. When the solenoid is actuated, the two parts attract, displacing the ink.	Use Low power consumption Many ink types can be used Fast operation High efficiency Easy extension from single nozzles to pagewidth print heads	Complex fabrication Materials not usually present in a CMOS fab such as NiFe, CoNiFe, or CoFe are required High local currents required Copper metalization should be used for long electromigration lifetime and low resistivity Electroplating is required High saturation flux density is required High saturation flux density is required It is achievable with CoNiFe [1])	♦ 1J01, 1J05, 1J08, 1J10 ♦ 1J12, 1J14, 1J15, 1J17

		07		
Magnetic Lorenz force	The Lorenz force acting on a current carrying wire in a magnetic field is utilized. This allows the magnetic field to be supplied externally to the print head, for example with rare earth permanent magnets. Only the current carrying wire need be fabricated on the print-head, simplifying materials requirements.	Uow power consumption Many ink types can be used Fast operation High efficiency Easy extension from single nozzles to pagewidth print heads	 ♦ Force acts as a twisting motion ♦ Typically, only a quarter of the solenoid length provides force in a useful direction ♦ High local currents required ♦ Copper metalization should be used for long electromigration lifetime and low resistivity ♦ Pigmented inks are usually infeasible 	 • I/06, I/11, I/13, I/16
Magneto- striction	The actuator uses the giant magnetostrictive effect of materials such as Terfenol-D (an alloy of terbium, dysprosium and iron developed at the Naval Ordnance Laboratory, hence Ter-Fe-NOL). For best efficiency, the actuator should be pre-stressed to approx. 8 MPa.	 ♦ Many ink types can be used ♦ Fast operation ♦ Easy extension from single nozzles to pagewidth print heads ♦ High force is available 	 ♦ Force acts as a twisting motion ♦ Unusual materials such as Terfenol-D are required ♦ High local currents required ♦ Copper metalization should be used for long electromigration lifetime and low resistivity ♦ Pre-stressing may be required 	• Fischenbeck, USP 4,032,929 • IJ25
Surface tension reduction	Ink under positive pressure is held in a nozzle by surface tension. The surface tension of the ink is reduced below the bubble threshold, causing the ink to egress from the nozzle.	 ◆ Low power consumption ◆ Simple construction ◆ No unusual materials required in fabrication ◆ High efficiency ◆ Easy extension from single nozzles to pagewidth print heads 	 ◆ Requires supplementary force to effect drop separation ◆ Requires special ink surfactants ◆ Speed may be limited by surfactant properties 	• Silverbrook, EP 0771 658 A2 and related patent applications

Viscosity The ink viscosity is reduction Niscosity					
which drops are to be in the brain of the drops are to be in the brain of the drops are to be in the brain of the drops are to be in the brain of the drop are to be a chieved a lectrochermally with most inks can be engineered for a 100:1 An acoustic wave is generated and focussed upon the drop ejection region. An actuator which relies which relies and ifferential thermal whom differential thermal expansion upon Joule sexpansion upon Joule sexpansion upon differential thermal seath actuator the drop establishment of the brain oursels to pagewidth print the drop ejection region. An actuator which relies and focussed upon the drop ejection region. An actuator which relies and focuses and the drop ejection region. An actuator which relies and focuses and focused	Viscosity	The ink viscosity is	◆ Simple construction	◆ Requires supplementary force to effect drop	♦ Silverbrook, EP 0771
which drops are to be which drops are to be ejected. A viscosity reduction can be achieved alectrothermally with most inks, but special inks can be engineered for a 100:1 viscosity reduction. An accustic wave is An actuator which relies upon differential thermal established expansion upon Joule established establish	reduction	locally reduced to select	◆ No unusual materials required	separation	658 A2 and related
reduction can be achieved reduction. An actuator which relies upon 4 actuator which relies be actuator with first is used. An actuator which relies a wool of the ating is used. An actuator which relies be actuator which relies a wool of the actuator which relies be actually and the ficiency actually with most actuator which relies be engineered for a 100:1 An actuator which relies a wool of the drop ejection region. An actuator which relies a wool of the drop of th		which drops are to be	in fabrication	◆ Requires special ink viscosity properties	patent applications
reduction can be achieved nozales to pagewidth print heads inks, but special inks can be engineered for a 100:1 viscosity reduction. An accustic wave is generated and focussed upon the drop ejection region. An actuator which relies upon differential thermal word is used. An actuator which relies expansion upon Joule expansion upon Joule + Fast operation for single heating is used. Simple planar fabrication be used currents CMOS compatible voltages and currents Standard MEMS processes can beads seem of the drop stander of the position to the hot side actuator which relies be used currents Standard MEMS processes can be used to sale the processes to sale the processes to sale the used to sale the processes to sale the processes to the proc		ejected. A viscosity	◆ Easy extension from single	◆ High speed is difficult to achieve	11
electrothermally with most leads be engineered for a 100:1 Viscosity reduction. An accoustic wave is generated and focussed upon the drop ejection region. An actuator which relies expansion upon differential thermal expansion upon Joule expansion which relies expansion which relies expansion which relies expansion upon differential thermal expansion formation expansion from single learned for pigment particles may jam the bend actuator pigment particles may jam the bend actuator expansion from single nozzles to pagewidth print heads		reduction can be achieved	nozzles to pagewidth print	• Remires oscillating ink pressure	
inks, but special inks can be engineered for a 100:1 Viscosity reduction. An acoustic wave is generated and focussed upon the drop ejection region. An actuator which relies wheating is used. An actuator which relies expansion upon differential thermal expansion from single our prevention expansion from single or engage and our prevention the pend actuator expansion from single or engage and our prevention		electrothermally with most	heads	▲ A high termeenting difference (+ = 10.110)	
be engineered for a 100:1 Viscosity reduction. An acoustic wave is generated and focussed upon the drop ejection region. An actuator which relies whay ink types can be used expansion upon Joule Simple planar fabrication heating is used. Figh efficiency Pigment particles may jam the bend actuator be used actuator Figh efficiency Complex drive circuitry Complex drive drive drive circuitry Complex drive driv		inks, but special inks can		dames) is required	
An accustic wave is plate the drop ejection region. An actuator which relies upon differential thermal expansion upon Joule expansion upon Joule theating is used. * Easy extension from single nozzles to pagewidth print heads		be engineered for a 100:1		refrees) is reduited	
An accustic wave is plate the drop ejection region. An actuator which relies expansion upon differential thermal extraction reating is used. Simple planar fabrication An actuator which relies expansion upon Joule expansion upon Joule extracting is used. Figure drop ejection region. An actuator which relies expansion upon differential thermal expansion upon Joule expansion for seach actuator expansion upon Joule expansion upon Joule expansion upon Joule expansion upon Joule expansion for seach actuator expansion for seach actuator expansion from single or seach actuator be used expansion from single nozzles to pagewidth print heads		viscosity reduction.			
generated and focussed upon the drop ejection region. An actuator which relies expansion upon Joule expansion upon Joule An actuator which relies expansion upon Joule exp	Acoustic	An acoustic wave is	◆ Can operate without a nozzle	◆ Complex drive circuitry	♦ 1993 Hadimioglu et al
the drop ejection region. the drop ejection region. the drop ejection region. An actuator which relies the drop ejection region. An actuator which relies the drop ower consumption the drop osition the d		generated and focussed upon	plate	◆ Complex fabrication	EUP 550,192
An actuator which relies bugon differential thermal expansion upon Joule expansion for expansion upon Joule expansion upon Joule expansion for expans		the drop ejection region.		◆ Low efficiency	 ◆ 1993 Elrod et al, EUP
An actuator which relies + Low power consumption + Poor control of drop volume + Low power consumption + Efficient aqueous operation requires a thermal insulator on the hot side + Simple planar fabrication + Fast operation + Righ efficiency + CMOS compatible voltages and currents + Easy extension from single - Easy extension from single - Poor control of drop volume + Efficient aqueous operation requires a thermal insulator on the hot side - Corrosion prevention can be difficult - Pigmented inks may be infeasible, as pigment particles may jam the bend actuator of the properation of the pr				◆ Poor control of drop position	572,220
An actuator which relies • Low power consumption • Expansion upon differential thermal • Simple planar fabrication • Small chip area required for • Figurented inks may be infeasible, as • Pigment particles may jam the bend actuator • Fast operation • High efficiency • CMOS compatible voltages and • Caurents • Easy extension from single • Easy extension from single • Low power consumption requires a • Corrosion prevention can be difficult • Pigmented inks may be infeasible, as • Pigmented inks may be infeasible, as • Pigment particles may jam the bend actuator • Fast operation • Easy extension from single •				◆ Poor control of drop volume	
upon differential thermal expansion upon differential thermal expansion upon Joule expansion the eating is used. Small chip area required for each actuator expansion for act	Thermoelastic	An actuator which relies	◆ Low power consumption	◆ Efficient aqueous operation requires a	♦ IJ03, IJ09, IJ17, IJ18
 Simple planar fabrication Small chip area required for each actuator Small chip area required for each actuator Fast operation High efficiency CMOS compatible voltages and currents Standard MEMS processes can be used Easy extension from single nozzles to pagewidth print heads 	Dend actuator	upon differential thermal	◆ Many ink types can be used	thermal insulator on the hot side	◆ IJ19, IJ20, IJ21, IJ22
 Small chip area required for each actuator Fast operation High efficiency Currents Standard MEMS processes can be used Easy extension from single nozzles to pagewidth print heads 		expansion upon Joule	◆ Simple planar fabrication	 ◆ Corrosion prevention can be difficult 	◆ IJ23, IJ24, IJ27, IJ28
pigment particles may jam the bend actuator and can		heating is used.	◆ Small chip area required for	 ◆ Pigmented inks may be infeasible, as 	+ IJ29, IJ30, IJ31, IJ32
s and can			each actuator	pigment particles may jam the bend actuator	+ IJ33, IJ34, IJ35, IJ36
• can			◆ Fast operation		♦ IJ37, IJ38, IJ39, IJ40
s and can			◆ High efficiency		◆ 1141
◆ Standard MEMS processes can be used ★ Easy extension from single nozzles to pagewidth print heads			◆ CMOS compatible voltages and		
 ◆ Standard MEMS processes can be used ◆ Easy extension from single			currents	-	
be used ◆ Easy extension from single nozzles to pagewidth print heads			◆ Standard MEMS processes can		
◆ Easy extension from single nozzles to pagewidth print heads			be used		
nozzles to pagewidth print heads			◆ Easy extension from single		
heads			nozzles to pagewidth print		
			heads		

٠		

		VC		
High CIE Thermoelastic	A material with a very high	• High force can be generated	◆ Requires special material (e.g. PTFE)	♦ IJ09, IJ17, IJ18, IJ20
actuator	expansion (CTE) such as	diefectric constant insulation in	• Requires a PIFE deposition process, which is not vet standard in III ST 6.1.	◆ IJ21, IJ22, IJ23, IJ24
	polytetrafluoroethylene	NTSI	 Is not yet standard in OLSI 1208 PTFF denosition counct be followedit 	♦ 1J27, 1J28, 1J29, 1J30
	(PTFE) is used. As high CTE	◆ Very low power consumption	high temperature (above 350 %)	◆ 1J31, 1J42, 1J43, 1J44
	materials are usually non-	♦ Many ink types can be used	 Piomented inks may be infeasible as 	
	conductive, a heater	◆ Simple planar fabrication	pigment particles may jam the bend actuator	
	rapricated from a	◆ Small chip area required for		
	conductive material is	each actuator		
	incorporated. A 50 µm long	◆ Fast operation		
	PTFE bend actuator with	◆ Hioh efficiency		
	polysilicon heater and 15	◆ CMOS competible collected		
	mW power input can provide	Contraction Contraction		
	180 uN force and 10 um	curents		
	deflection Actuator	◆ Easy extension from single		
	motions include:	nozzles to pagewidth print		
		heads		
	Bend			ć
	Push			
11	Buckle			
	Rotate			
Condinative		4 TT:-1. C		
conductive	A polymer with a high	◆ High force can be generated	 Requires special materials development 	◆ IJ24
polymer		◆ Very low power consumption	(High CTE conductive polymer)	
thermoelastic	expansion (such as PTFE) is	◆ Many ink types can be used	◆ Requires a PTFE deposition process, which	
actuator	doped with conducting	◆ Simple planar fabrication	is not vet standard in UT.SI fahs	
	substances to increase its	Small chip area required for	◆ PTFF denosition cannot be followed with	
	conductivity to about 3	each actuator	high teamsempting (chairs 250 00)	
	orders of magnitude below	That canadation	ingui temperature (above 550°C) processing	
	that of copper. The	Title optiation	▼ Evaporation and C v D deposition	
	conducting polymer expands	♦ High efficiency	techniques cannot be used	
	when resistively heated.	• CMUS compatible voltages and	• Figmented inks may be inteasible, as	
	Examples of conducting	currents	pigment particles may jam the bend actuator	
	dopants include:	• Easy extension from single		
	Carbon nanotubes	heads to pagewiden print		
	Metal fibers	COROL		
	Conductive polymers such as	•		
	doped polythiophene			
	Carbon granules			

Shape memory	A shape memory alloy such	◆ High force is available (stresses	♦ Fatigue limits maximum number of cycles	◆1126
alloy	as TiNi (also known as	of hundreds of MPa)	◆ Low strain (1%) is required to extend	
	Nitinol - Nickel Titanium	◆ Large strain is available (more	fatione resistance	
	alloy developed at the	than 3%)	◆ Cycle rate limited by heat removed	
	Naval Ordnance Laboratory)	♦ High corrosion resistance	• Requires unisual materials (TiNi)	
	is thermally switched	◆ Simple construction	◆ The latent heat of transformation must be	
	between its weak	◆ Easy extension from single	nrowded	
	martensitic state and its	nozzles to pagewidth print	province	
	high stiffness austenic	heads	• nign current operation	
	state. The shape of the	* T c	 Kequires pre-stressing to distort the 	
	actuator in its martensitic	◆ Low voltage operation	martensitic state	
	state is deformed relative			
	to the austenic shape. The			
	shape change causes			
	ejection of a drop.			
Linear Magnetic	Linear magnetic actuators	◆ Linear Magnetic actuators can	◆ Requires unusual semiconductor materials	▲111 2
Actuator	include the Linear	be constructed with high thrust.	such as soft magnetic allow (e.g. CoNiFe	7177
	Induction Actuator (LIA),	long travel, and high efficiency	[1]	
	Linear Permanent Magnet	using planar semiconductor	Some varieties also require permanent	
	Synchronous Actuator	fabrication techniques	magnetic materials such as Neodymium	
	(LPMSA), Linear Reluctance	◆ Long actuator travel is	iron horon (NdFeB)	
	Synchronous Actuator	available	Remires complex multi-phase drive	
	(LRSA), Linear Switched	◆ Medium force is available	circuity	
	Reluctance Actuator (LSRA),	◆ I ow voltage oneration	High number connection	
	and the Linear Stepper		▼ 111gn current operation	
	Actuator (LSA).			

BASIC OPERATION MODE

Operational mode	Description	Advantages	Disadvantages	Examples
Actuator directly pushes ink	This is the simplest mode of operation: the actuator directly supplies sufficient kinetic energy to expel the drop. The drop must have a sufficient velocity to overcome the surface tension.	 Simple operation No external fields required Satellite drops can be avoided if drop velocity is less than 4 m/s Can be efficient, depending upon the actuator used 	 Drop repetition rate is usually limited to less than 10 KHz. However, this is not fundamental to the method, but is related to the refill method normally used All of the drop kinetic energy must be provided by the actuator Satellite drops usually form if drop velocity is greater than 4.5 m/s 	 Thermal inkjet Piezoelectric inkjet U01, U02, U03, U04 U05, U06, U07, U09 U11, U12, U14, U16 U20, U22, U23, U24 U25, U26, U27, U28 U25, U30, U31, U32 U33, U34, U35, U36 U37, U38, U39, U40 U37, U38, U39, U40
Proximity	The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are separated from the ink in the nozzle by contact with the print medium or a transfer roller.	◆ Very simple print head fabrication can be used ◆ The drop selection means does not need to provide the energy required to separate the drop from the nozzle	 ◆ Requires close proximity between the print head and the print media or transfer roller ◆ May require two print heads printing alternate rows of the image ◆ Monolithic color print heads are difficult 	◆ Silverbrook, EP 0771 658 A2 and related patent applications
Electrostatic pull on ink	The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are separated from the ink in the nozzle by a strong electric field.	 Very simple print head fabrication can be used The drop selection means does not need to provide the energy required to separate the drop from the nozzle 	 Requires very high electrostatic field Electrostatic field for small nozzle sizes is above air breakdown Electrostatic field may attract dust 	• Silverbrook, EP 0771 658 A2 and related patent applications • Tone-Jet

۰		
	٠	•

		60		
Magnetic pull on	The drops to be printed are	◆ Very simple print head	◆ Requires magnetic ink	◆ Silverbrook EP 0771
ink	selected by some manner	fabrication can be used	• Ink colors other than black are difficult	658 A2 and related
	(e.g. thermally induced	◆ The drop selection means does	• Requires very high magnetic fields	natent applications
	surface tension reduction	not need to provide the energy	coron anarement for combact	bucar appropriate
	of pressurized ink).	required to separate the drop		
	Selected drops are	from the nozzle		
	separated from the ink in			
	the nozzle by a strong			
	magnetic field acting on			
	the magnetic ink.			
Shutter	The actuator moves a	 ◆ High speed (>50 KHz) 	♦ Moving parts are required	+ IJ13 IJ17 IJ21
	shutter to block ink flow	operation can be achieved due	◆ Requires ink pressure modulator	
	to the nozzle. The ink	to reduced refill time	◆ Friction and wear must be considered	
	pressure is pulsed at a	◆ Drop timing can be very	• Chickion is nossible	
	multiple of the drop	accurate	orogeod or monore	
	ejection frequency.	◆ The actuator energy can be		
		very low		
Shuttered grill	The actuator moves a	◆ Actuators with small travel can	◆ Moving parts are required	♦ IJ08, IJ15, IJ18, IJ19
	shutter to block ink flow	pe nsed	◆ Requires ink pressure modulator	
	through a grill to the	 ◆ Actuators with small force can 	◆ Friction and wear must be considered	
	nozzle. The shutter	be used	◆ Stiction is nossible	
	movement need only be equal	◆ High speed (>50 KHz)		
	to the width of the grill	operation can be achieved		
	holes.			
Pulsed magnetic	A pulsed magnetic field	◆ Extremely low energy	◆ Requires an external pulsed magnetic field	♦ IJ10
pull on ink	attracts an 'ink pusher' at	operation is possible	◆ Requires special materials for both the	
pusher	the drop ejection	 ♦ No heat dissipation problems 	actuator and the ink pusher	
	frequency. An actuator		◆ Complex construction	
	controls a catch, which			
	prevents the ink pusher			
	from moving when a drop is			
	not to be ejected.			

AUXILIARY MECHANISM (APPLIED TO ALL NOZZLES)

Auxiliary	Description	Advantages	O. Constant	
Mechanism			Disauvailtages	Examples
None	The actuator directly fires the ink drop, and there is no external field or other mechanism required.	 Simplicity of construction Simplicity of operation Small physical size 	♦ Drop ejection energy must be supplied by individual nozzle actuator	• Most inkjets, including piezoelectric and thermal bubble. • IJ01- IJ07, IJ09, IJ11
Oscillating ink pressure (including acoustic stimulation)	The ink pressure oscillates, providing much of the drop ejection energy. The actuator selects which drops are to be fired by selectively blocking or enabling nozzles. The ink pressure oscillation may be achieved by vibrating the print head, or preferably by an	 ◆ Oscillating ink pressure can provide a refill pulse, allowing higher operating speed ◆ The actuators may operate with much lower energy ◆ Acoustic lenses can be used to focus the sound on the nozzles 	 ◆ Requires external ink pressure oscillator ◆ Ink pressure phase and amplitude must be carefully controlled ◆ Acoustic reflections in the ink chamber must be designed for 	• 5125-1345 • Silverbrook, EP 0771 658 A2 and related patent applications • 1108, 1113, 1117 • 1118, 1119, 1121
Media proximity	The print head is placed in close proximity to the print medium. Selected drops protrude from the print head further than unselected drops, and contact the print medium. The drop soaks into the medium fast enough to cause drop separation.	◆ Low power ◆ High accuracy ◆ Simple print head construction	 Precision assembly required Paper fibers may cause problems Cannot print on rough substrates 	Silverbrook, EP 0771 658 A2 and related patent applications
Transfer roller	Drops are printed to a transfer roller instead of straight to the print medium. A transfer roller can also be used for proximity drop separation.	 ◆ High accuracy ◆ Wide range of print substrates can be used ◆ Ink can be dried on the transfer roller 	◆ Bulky ◆ Expensive ◆ Complex construction	◆ Silverbrook, EP 0771 658 A2 and related patent applications ◆ Tektronix hot melt piezoelectric inkjet ◆ Any of the IJ series

v	-

Electrostatic	An electric field is used	◆ Low power	◆ Field strength required for senaration of	A Silverbrook ED 0771
	to accelerate selected	◆ Simple print head construction	small drops is near or above air breakdown	658 A) and mileted
	drops towards the print		TMONUNCIO UN OLOGIO DO TRATO CI CALO	030 Az anu iciateu
	medium.			patent applications
Direct mannetic	D morrotic field in the			♦ Tone-Jet
fold	A magnetic fleta is used to	◆ Low power	 Requires magnetic ink 	◆ Silverbrook, EP 0771
3	accelerate selected drops	◆ Simple print head construction	 ◆ Requires strong magnetic field 	658 A2 and related
	of magnetic ink towards the			natant annlications
	print medium.			patent appueations
Cross magnetic	The print head is placed in	♦ Does not require magnetic	◆ Requires external magnet	★ 110,6 111,6
field	a constant magnetic field.	materials to be integrated in the	◆ Current densities may be high resulting in	Trock talo
	The Lorenz force in a	print head manufacturing	electromioration problems	
	current carrying wire is	process		
	used to move the actuator.			
Pulsed magnetic	Pulsed magnetic A pulsed magnetic field is	♦ Very low power operation is	◆ Complex print head construction	◆ TT10
field	used to cyclically attract	possible	◆ Magnetic materials required in print head	
	a paddle, which pushes on	◆ Small print head size	חמסון זווויול זון הסייהאסין היייניים ביייניים ו	
	the ink. A small actuator	•		
	moves a catch, which			
	selectively prevents the			
	paddle from moving.			

ACTUATOR AMPLIFICATION OR MODIFICATION METHOD

Action				
amplification	Describition	Advantages	Disadvantages	Examples
None	No actuator mechanical amplification is used. The actuator directly drives the drop ejection process.	♦ Operational simplicity	◆ Many actuator mechanisms have insufficient travel, or insufficient force, to efficiently drive the drop ejection process	 Thermal Bubble Inkjet II01, II02, II06, II07 II16, II25, II26
Differential expansion bend actuator	An actuator material expands more on one side than on the other. The expansion may be thermal, piezoelectric, magnetostrictive, or other mechanism.	 Provides greater travel in a reduced print head area The bend actuator converts a high force low travel actuator mechanism to high travel, lower force mechanism. 	 High stresses are involved Care must be taken that the materials do not delaminate Residual bend resulting from high temperature or high stress during formation 	• Piezoelectric • IJ03, IJ09, IJ17-IJ24 • IJ27, IJ29-IJ39, IJ42, • IJ43, IJ44
Transient bend actuator	A trilayer bend actuator where the two outside layers are identical. This cancels bend due to ambient temperature and residual stress. The actuator only responds to transient heating of one side or the other.	 Very good temperature stability High speed, as a new drop can be fired before heat dissipates Cancels residual stress of formation 	 High stresses are involved Care must be taken that the materials do not delaminate 	 ◆ IJ40, IJ41
Actuator stack	A series of thin actuators are stacked. This can be appropriate where actuators require high electric field strength, such as electrostatic and piezoelectric actuators.	 Increased travel Reduced drive voltage 	 Increased fabrication complexity Increased possibility of short circuits due to pinholes 	◆ Some piezoelectric ink jets ◆ IJ04
Multiple actuators	Multiple smaller actuators are used simultaneously to move the ink. Each actuator need provide only a portion of the force required.	 Increases the force available from an actuator Multiple actuators can be positioned to control ink flow accurately 	 Actuator forces may not add linearly, reducing efficiency 	♦ 1J12, 1J13, 1J18, 1J20 ♦ 1J22, 1J28, 1J42, 1J43

_	
5	•
~	,

		10		
Linear Spring	A linear spring is used to transform a motion with small travel and high force into a longer travel, lower force motion.	 ◆ Matches low travel actuator with higher travel requirements ◆ Non-contact method of motion transformation 	◆ Requires print head area for the spring	+ IJ15
Reverse spring	The actuator loads a spring. When the actuator is turned off, the spring releases. This can reverse the force/distance curve of the actuator to make it compatible with the force/time requirements of the drop ejection.	♦ Better coupling to the ink	 ◆ Fabrication complexity ◆ High stress in the spring 	+ IJ05, IJ11
Coiled actuator	A bend actuator is coiled to provide greater travel in a reduced chip area.	 ◆ Increases travel ◆ Reduces chip area ◆ Planar implementations are relatively easy to fabricate. 	◆ Generally restricted to planar implementations due to extreme fabrication difficulty in other orientations.	+ IJ17, IJ21, IJ34, IJ35
Flexure bend actuator	A bend actuator has a small region near the fixture point, which flexes much more readily than the remainder of the actuator. The actuator flexing is effectively converted from an even coiling to an angular bend, resulting in greater travel of the actuator tip.	• Simple means of increasing travel of a bend actuator	 Care must be taken not to exceed the elastic limit in the flexure area Stress distribution is very uneven Difficult to accurately model with finite element analysis 	◆ U10, U19, U33
Gears	Gears can be used to increase travel at the expense of duration. Circular gears, rack and pinion, ratchets, and other gearing methods can be used.	◆ Low force, low travel actuators can be used ◆ Can be fabricated using standard surface MEMS processes	 Moving parts are required Several actuator cycles are required More complex drive electronics Complex construction Friction, friction, and wear are possible 	♦ IJ13

á	n	d	•
ľ	۳	2	•

Catal				
Catch	The actuator controls a	• Very low actuator energy	• Complex construction	◆ IJ10
	small carch. The carch	◆ Very small actuator size	◆ Requires external force	
	either enables or disables		◆ Unsuitable for nipmented inks	
	movement of an ink pusher		Current Police of the Communication of the Communic	
	that is controlled in a			
	bulk manner.			
Buckle plate	A buckle plate can be used	◆ Very fast movement achievable	◆ Must stav within elastic limits of the	AC Hirsts at al "An Inc
	to change a slow actuator		materials for long device life	iet Head " Droc
	into a fast motion. It can		◆ High stresses involved	JULIICAU , 110C.
	also convert a high force,		A Generally high nourae requirement	1006 nm 418 422
	low travel actuator into a		• Octobrany taga power requirement	1930, pp 410-423.
	high travel, medium force			♦ D18, D2/
	motion.			
Tapered	A tapered magnetic pole can	◆ Linearizes the magnetic	◆ Complex construction	4 II14
magnetic pole	increase travel at the	force/distance curve	·	
	expense of force.			
Lever	A lever and fulcrum is used	◆ Matches low travel actuator	◆ High stress around the fulcum	◆ 113.2 113.6 113.7
	to transform a motion with	with higher travel requirements		100, 100, 100,
	small travel and high force	A Fulculm area has no linear		
	into a motion with longer	Tuicium area mas no mear		
	tillo a motion with longer	movement, and can be used for		
	travel and lower force. The	a fluid seal		
	lever can also reverse the			
	direction of travel.			
Rotary impeller	The actuator is connected	♦ High mechanical advantage	◆ Complex construction	♦ II28
	to a rotary impeller. A	◆ The ratio of force to travel of	◆ Unsuitable for nigmented inks	
-	small anqular deflection of	the actuator can be matched to	to premium of premium and the second	
	the actuator results in a	the nozzle requirements by		
	rotation of the impeller	varying the number of impeller		
	vanes, which push the ink	vanes		
	against stationary vanes			
	and out of the nozzle.			
Acoustic lens	A refractive or diffractive	♦ No moving parts	◆ Large area required	♦ 1993 Hadimioolu et al
	(e.g. zone plate) acoustic		◆ Only relevant for acoustic ink iets	EUP 550 192
	lens is used to concentrate			◆ 1993 Flrod et al FUP
!	sound waves.			572.220
Sharp	A sharp point is used to	◆ Simple construction	◆ Difficult to fabricate using standard VLSI	◆ Tone-jet
conductive	concentrate an		processes for a surface ejecting ink-jet	,
point	electrostatic field.		♦ Only relevant for electrostatic ink jets	

ACTUATOR MOTION

Actuator motion	Description	Advantages	0.	
Vel		Advantages	Disadvantages	Examples
volume	The volume of the actuator changes, pushing the ink in	◆ Simple construction in the case of thermal ink jet	 High energy is typically required to achieve volume expansion. This leads to thermal 	◆ Hewlett-Packard Thermal Inkiet
	all directions.		stress, cavitation, and kogation in thermal	◆ Canon Bubblejet
Linear, normal	The actuator moves in a	◆ Efficient coupling to ink drons	High fahrication complayity may be	COLL FOLL COLL FOLL
to chip surface	direction normal to the	ejected normal to the surface	required to achieve perpendicular motion	◆ 1301, 1302, 1304, 1307
	print head surface. The			◆ 1311, 1314
	nozzle is typically in the			
	line of movement.			
Linear, parallel	The actuator moves parallel	 ◆ Suitable for planar fabrication 	◆ Fabrication complexity	♦ [J]2 [J]3 [J]5 [J]3
to chip surface	to the print head surface.		♦ Friction	♦ 1134 1135 1136
	Drop ejection may still be		◆ Stiction	, 10 1, 10 10 10 10 10 10 10 10 10 10 10 10 10
	normal to the surface.			
Membrane push	An actuator with a high	 The effective area of the 	◆ Fabrication complexity	♦ 1982 Howkins 11SP
	force but small area is	actuator becomes the	◆ Actuator size	4 459 601
	used to push a stiff	membrane area	♦ Difficulty of integration in a VI CI access	100,001
	membrane that is in contact		Trincard of micgration in a vicin process	
	with the ink.			
Rotary	The actuator causes the	◆ Rotary levers may be used to	◆ Device complexity	◆ 1105 1108 1113 1128
)	rotation of some element.	increase travel	▲ May have friction of a minet agint	OFFI (C) IT (C) IT (C)
		◆ Small chip area requirements	• iviay mave micholi at a pivot point	
Rend	The actuator hends when	▲ A very emall chance in	A D	
2	energized This may be due	dimensions can be converted to	• Kequires the actuator to be made from at	♦ 1970 Kyser et al USP
	to differential themal	o force motion	least two distinct layers, or to have a	3,946,398
	co dilerencial chermal	a large motion.	thermal difference across the actuator	◆ 1973 Stemme USP
	expansion, piezoelectric			3,747,120
				◆ IJ03, IJ09, IJ10, IJ19
	magnerostriction, or other			♦ IJ23, IJ24, IJ25, IJ29
	dimensional shanse			♦ IJ30, İJ31, IJ33, IJ34
	dimensional change.			♦ IJ35
Swivel	The actuator swivels around	net -	◆ Inefficient coupling to the ink motion	♦ IJ06
	a central pivot. This	linear force on the paddle is		
	morion is suitable where	0197		
		 ♦ Small chip area requirements 	*	
	applied to opposite sides			
	of the paddle, e.g. Lorenz			
	TOTCE:			

Stroighton	THE STATE OF THE S	40		
Straignen	ine actuator is normally bent, and straightens when energized.	 Can be used with shape memory alloys where the austenic phase is planar 	 Requires careful balance of stresses to ensure that the quiescent bend is accurate 	♦ IJ26, IJ32
Double bend	The actuator bends in one direction when one element is energized, and bends the other way when another element is energized.	 ◆ One actuator can be used to power two nozzles. ◆ Reduced chip size. ◆ Not sensitive to ambient temperature 	 Difficult to make the drops ejected by both bend directions identical. A small efficiency loss compared to equivalent single bend actuators. 	◆ IJ36, IJ37, IJ38
Shear	Energizing the actuator causes a shear motion in the actuator material.	◆ Can increase the effective travel of piezoelectric actuators	 ◆ Not readily applicable to other actuator mechanisms 	♦ 1985 Fishbeck USP 4,584,590
Radial constriction	The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle.	 Relatively easy to fabricate single nozzles from glass tubing as macroscopic structures 	 High force required Inefficient Difficult to integrate with VLSI processes 	♦ 1970 Zoltan USP 3,683,212
Coil / uncoil	A coiled actuator uncoils or coils more tightly. The motion of the free end of the actuator ejects the ink.	 Easy to fabricate as a planar VLSI process Small area required, therefore low cost 	 Difficult to fabricate for non-planar devices Poor out-of-plane stiffness 	+ IJ17, IJ21, IJ34, IJ35
Вом	The actuator bows (or buckles) in the middle when energized.	◆ Can increase the speed of travel◆ Mechanically rigid	 ◆ Maximum travel is constrained ◆ High force required 	♦ IJ16, IJ18, IJ27
Push-Pull	Two actuators control a shutter. One actuator pulls the shutter, and the other pushes it.	◆ The structure is pinned at both ends, so has a high out-of-plane rigidity	 Not readily suitable for inkjets which directly push the ink 	♦ IJ18
Curl inwards	A set of actuators curl inwards to reduce the volume of ink that they enclose.	 ◆ Good fluid flow to the region behind the actuator increases efficiency 	♦ Design complexity	◆ IJ20, IJ42
Curl outwards	A set of actuators curl outwards, pressurizing ink in a chamber surrounding the actuators, and expelling ink from a nozzle in the chamber.	 ◆ Relatively simple construction 	• Relatively large chip area	 ₩ 1043

•	-
-	-
	ч

		•••		
<u>ii</u>	Multiple vanes enclose a volume of ink. These simultaneously rotate, reducing the volume between the vanes.	◆ High efficiency◆ Small chip area	 ◆ High fabrication complexity ◆ Not suitable for pigmented inks 	• 1J22
Acoustic vibration	The actuator vibrates at a high frequency.	◆ The actuator can be physically distant from the ink	◆ Large area required for efficient operation at useful frequencies	♦ 1993 Hadimioglu et al, EUP 550.192
			 Acoustic coupling and crosstalk Complex drive circuitry Poor control of dron volume and position 	♦ 1993 Elrod et al, EUP 572,220
None	In various ink jet designs the actuator does not move.	♦ No moving parts	♦ Various other tradeoffs are required to eliminate moving parts	◆ Silverbrook, EP 0771 658 A2 and related
				patent applications Tone-iet

NOZZLE REFILL METHOD

Nozzle refill method	Description	Advantages	Disadvantages .	Examples
Surface tension	After the actuator is energized, it typically returns rapidly to its normal position. This rapid return sucks in air through the nozzle opening. The ink surface tension at the nozzle then exerts a small force restoring the meniscus to a minimum area.	 Fabrication simplicity Operational simplicity 	 Low speed Surface tension force relatively small compared to actuator force Long refill time usually dominates the total repetition rate 	• Thermal inkjet • Piezoelectric inkjet • IJ01-IJ07, IJ10-IJ14 • IJ16, IJ20, IJ22-IJ45
Shuttered oscillating ink pressure	Ink to the nozzle chamber is provided at a pressure that oscillates at twice the drop ejection frequency. When a drop is to be ejected, the shutter is opened for 3 half cycles: drop ejection, actuator return, and refill.	 High speed Low actuator energy, as the actuator need only open or close the shutter, instead of ejecting the ink drop 	 Requires common ink pressure oscillator May not be suitable for pigmented inks 	♦ 1J08, 1J13, 1J15, 1J17 ♦ 1J18, 1J19, 1J21
Refill actuator	After the main actuator has ejected a drop a second (refill) actuator is energized. The refill actuator pushes ink into the nozzle chamber. The refill actuator returns slowly, to prevent its return from emptying the chamber again.	 High speed, as the nozzle is actively refilled 	• Requires two independent actuators per nozzle	♦ IJ09

C	
_	

		CL		
Positive ink	The ink is held a slight	◆ High refill rate, therefore a high ◆ Surface spill must be prevented	◆ Surface spill must be prevented	◆ Silverbrook, EP 0771
pressure	positive pressure. After	drop repetition rate is possible	◆ Highly hydrophobic print head surfaces are	658 A2 and related
	the ink drop is ejected,		required	patent applications
	the nozzle chamber fills		1	◆ Alternative for:
	quickly as surface tension			◆ 1101_1107 11104
	and ink pressure both			• 111-1120', 1210-1214-
	operate to refill the			▼ 1310, 1320, 1322-1343
	nozzle.			

METHOD OF RESTRICTING BACK-FLOW THROUGH INLET

infot book flore	7.5			
restriction		Advantages	Disadvantages	Examples
Long inlet channel	The ink inlet channel to the nozzle chamber is made long and relatively narrow, relying on viscous drag to reduce inlet back-flow.	 Design simplicity Operational simplicity Reduces crosstalk 	 ♦ Restricts refill rate ♦ May result in a relatively large chip area ♦ Only partially effective 	 ◆ Thermal inkjet ◆ Piezoelectric inkjet ◆ IJ42, IJ43
Positive ink pressure	The ink is under a positive pressure, so that in the quiescent state some of the ink drop already protrudes from the nozzle. This reduces the pressure in the nozzle chamber which is required to eject a certain volume of ink. The reduction in chamber pressure results in a reduction in ink pushed out through the inlet. One or more baffles are	◆ Drop selection and separation forces can be reduced ◆ Fast refill time ◆ The refill rate is not as	◆ Requires a method (such as a nozzle rim or effective hydrophobizing, or both) to prevent flooding of the ejection surface of the print head. ◆ Design complexity	◆ Silverbrook, EP 0771 658 A2 and related patent applications ◆ Possible operation of the following: ◆ IJ01-IJ07, IJ09- IJ12 ◆ IJ14, IJ16, IJ20, IJ22, ◆ IJ23-IJ34, IJ36- IJ41 ◆ IJ44
	placed in the inlet ink flow. When the actuator is energized, the rapid ink movement creates eddies which restrict the flow through the inlet. The slower refill process is unrestricted, and does not result in eddies.	restricted as the long inlet method. • Reduces crosstalk	• May increase fabrication complexity (e.g. Tektronix hot melt Piezoelectric print heads).	Tektronix piezoelectric ink jet
Flexible flap restricts inlet	In this method recently disclosed by Canon, the expanding actuator (bubble) pushes on a flexible flap that restricts the inlet.	♦ Significantly reduces back-flow for edge-shooter thermal ink jet devices	 ♦ Not applicable to most inkjet configurations ♦ Increased fabrication complexity ♦ Inclastic deformation of polymer flap results in creep over extended use 	◆ Canon

V	3	
₹	۰	
	-	

Inlot filtor	7 62-1	* * * * * * * * * * * * * * * * * * *		
	the ink inlet and the nozzle chamber. The filter has a multitude of small holes or slots, restricting ink flow. The filter also removes particles which may block the nozzle.	Additional advantage of the filtration Ink filter may be fabricated with no additional process steps	 ◆ Kestricts refull rate ◆ May result in complex construction 	♦ 1004, 1112, 1124, 1127 ♦ 1129, 1130
Small inlet compared to nozzle	The ink inlet channel to the nozzle chamber has a substantially smaller cross section than that of the nozzle, resulting in easier ink egress out of the nozzle than out of the inlet.	◆ Design simplicity	 Restricts refill rate May result in a relatively large chip area Only partially effective 	 ◆ IJ02, IJ37, IJ44
Inlet shutter	A secondary actuator controls the position of a shutter, closing off the ink inlet when the main actuator is energized.	 ◆ Increases speed of the ink-jet print head operation 	• Requires separate refill actuator and drive circuit	♦ IJ09
The inlet is located behind the ink-pushing surface	The method avoids the problem of inlet back-flow by arranging the ink-pushing surface of the actuator between the inlet and the nozzle.		• Requires careful design to minimize the negative pressure behind the paddle	◆ 1101, 1103, 1105, 1106 ◆ 1107, 1110, 1111, 1114 ◆ 1116, 1122, 1123, 1125 ◆ 1128, 1131, 1132, 1133 ◆ 1134, 1135, 1136, 1139 ◆ 1140, 1141
Part of the actuator moves to shut off the inlet	The actuator and a wall of the ink chamber are arranged so that the motion of the actuator closes off the inlet.	back-	 Small increase in fabrication complexity 	 1107, 1120, 1126, 1138
Nozzle actuator does not result in ink back-flow	In some configurations of ink jet, there is no expansion or movement of an actuator which may cause ink back-flow through the inlet.	 ◆ Ink back-flow problem is eliminated 	 None related to ink back-flow on actuation 	◆ Silverbrook, EP 0771 658 A2 and related patent applications ◆ Valve-jet ◆ Tone-jet ◆ IJ08, IJ13, IJ15, IJ17 ◆ IJ18, IJ19, IJ21

Nozzle Clearing Method

Nozzle Clearing	Description	Advantages		
method			Disadvantages	Examples
Normal nozzle firing	All of the nozzles are fired periodically, before the ink has a chance to dry. When not in use the nozzles are sealed (capped) against air. The nozzle firing is usually performed during a special clearing cycle, after first moving the	• No added complexity on the print head	♦ May not be sufficient to displace dried ink	• Most ink jet systems • 1J01- 1J07, 1J09-1J12 • 1J14, 1J16, 1J20, 1J22 • 1J23- 1J34, 1J36-1J45
	print head to a cleaning station.			
Extra power to ink heater	In systems which heat the ink, but do not boil it under normal situations, nozzle clearing can be achieved by over-powering the heater and boiling ink at the nozzle.	◆ Can be highly effective if the heater is adjacent to the nozzle	 Requires higher drive voltage for clearing May require larger drive transistors 	• Silverbrook, EP 0771 658 A2 and related patent applications
Rapid succession of actuator pulses	The actuator is fired in rapid succession. In some configurations, this may cause heat build-up at the nozzle which boils the ink, clearing the nozzle. In other situations, it may cause sufficient vibrations to dislodge clogged nozzles.	Does not require extra drive circuits on the print head Can be readily controlled and initiated by digital logic	• Effectiveness depends substantially upon the configuration of the inkjet nozzle	• May be used with: • IJ01-IJ07, IJ09- IJ11 • IJ14, IJ16, IJ20, IJ22 • IJ23-IJ25, IJ27-IJ34 • IJ36-IJ45
Extra power to ink pushing actuator	Where an actuator is not normally driven to the limit of its motion, nozzle clearing may be assisted by providing an enhanced drive signal to the actuator.	◆ A simple solution where applicable	• Not suitable where there is a hard limit to actuator movement	 May be used with: 103, 1109, 1116, 1120 1123, 1124, 1125, 1127 1129, 1130, 1131, 1132 1139, 1140, 1141, 1142 1143, 1144, 1145

	_

Acoustic	An ultrasonic wave is applied to the ink chamber. This wave is of an appropriate amplitude and frequency to cause sufficient force at the nozzle to clear blockages. This is easiest to achieve if the ultrasonic wave is at a resonant frequency of	◆ A high nozzle clearing capability can be achieved ◆ May be implemented at very low cost in systems which already include acoustic actuators	♦ High implementation cost if system does not already include an acoustic actuator	+ 1108, 1113, 1115, 1117 + 1118, 1119, 1121
Nozzle clearing plate	the ink cavity. A microfabricated plate is pushed against the nozzles. The plate has a post for every nozzle. The array of posts	 ◆ Can clear severely clogged nozzles 	 Accurate mechanical alignment is required Moving parts are required There is risk of damage to the nozzles Accurate fabrication is required 	• Silverbrook, EP 0771 658 A2 and related patent applications
Ink pressure pulse	The pressure of the ink is temporarily increased so that ink streams from all of the nozzles. This may be used in conjunction with actuator energizing.	 May be effective where other methods cannot be used 	 ◆ Requires pressure pump or other pressure actuator ◆ Expensive ◆ Wasteful of ink 	• May be used with all IJ series ink jets
Print head wiper	A flexible 'blade' is wiped across the print head surface. The blade is usually fabricated from a flexible polymer, e.g. rubber or synthetic elastomer.	Effective for planar print head surfaces Low cost	 Difficult to use if print head surface is non-planar or very fragile Requires mechanical parts Blade can wear out in high volume print systems 	♦ Many ink jet systems
Separate ink boiling heater	A separate heater is provided at the nozzle although the normal drop ection mechanism does not require it. The heaters do not require individual drive circuits, as many nozzles can be cleared simultaneously, and no imaging is required.	Can be effective where other nozzle clearing methods cannot be used Can be implemented at no additional cost in some inkjet configurations	• Fabrication complexity	• Can be used with many IJ series ink jets

Nozzle Plate Construction

N-1-1-				
nozzle plate construction	Description	Advantages	Disadvantages	Examples
Electroformed nickel	A nozzle plate is separately fabricated from electroformed nickel, and bonded to the print head chip.	♦ Fabrication simplicity	 ◆ High temperatures and pressures are required to bond nozzle plate ◆ Minimum thickness constraints ◆ Differential thermal expansion 	 ◆ Hewlett Packard Thermal Inkjet
Laser ablated or drilled polymer	Individual nozzle holes are ablated by an intense UV laser in a nozzle plate, which is typically a polymer such as polyimide or polysulphone	 No masks required Can be quite fast Some control over nozzle profile is possible Equipment required is relatively low cost 	 ◆ Each hole must be individually formed ◆ Special equipment required ◆ Slow where there are many thousands of nozzles per print head ◆ May produce thin burrs at exit holes 	 Canon Bubblejet 1988 Sercel et al., SPIE, Vol. 998 Excimer Beam Applications, pp. 76-83 1993 Watanabe et al., ITSP 5.708 604
Silicon micro- machined	A separate nozzle plate is micromachined from single crystal silicon, and bonded to the print head wafer.	 ◆ High accuracy is attainable 	 ◆ Two part construction ◆ High cost ◆ Requires precision alignment ◆ Nozzles may be clogged by adhesive 	◆ K. Bean, IEEE Transactions on Electron Devices, Vol. ED-25, No. 10, 1978, pp 1185- 1195 ★ Xerox 1990 Hawkins et
Glass capillaries	Fine glass capillaries are drawn from glass tubing. This method has been used for making individual nozzles, but is difficult to use for bulk manufacturing of print heads with thousands of nozzles.	 ♦ No expensive equipment required ♦ Simple to make single nozzles 	♦ Very small nozzle sizes are difficult to form ♦ Not suited for mass production	4.1970 Zoltan USP 3,683,212

9
4

The nozzle plate is a layer using deposition tetching. The nozzle plate is a layer using etching. The nozzle plate is a layer using processes can be used etching. The nozzle chambers are etching. Nozzles and the wafer is the etch stop in the wafer is the etch stop layer. Interest is consistent etched in the back side. Nozzles entitely, to prevent nozzle cloging. These include thermal accounted thermal accounted to prostition accountely the etch sing merchanisms and accustic lens mechanisms and accustic lens mechanisms and accustic lens mechanisms and accustic lens mechanisms and accustic plate is no nozzles entitely, to nozzles the limination of nozzle plate. The elimination of nozzle holes and replacement by a slitt encompassing many actuator positions reduces in link surface waves					
phic ecciniques. Nozzles are etching. The nozzle plate is a etching. The nozzle plate is a briting processe can be used etching. The nozzle plate is a briting processe can be used etching. The nozzle plate is a briting processe can be used etching. The nozzle plate is a briting processe can be used etching. The nozzle plate is a briting processe can be used etching. The nozzle plate is a briting brocesse can be used etching. The etch stop in the wafer is etched in the wafer is thinned from the back side. Nozzles are then exchail in the etch stop layer. In	Monolithic, surface micro-	The nozzle plate is deposited as a layer using	 ◆ High accuracy (<1 μm) ◆ Monolithic 	 Requires sacrificial layer under the nozzle plate to form the nozzle chamber 	◆ Silverbrook, EP 0771 658 A2 and related
etching. The nozzle plate is a etching. The etch stop layer. The	VLSI	techniques. Nozzles are	 ◆ Low cost ◆ Existing processes can be used 	 Surface may be fragile to the touch 	patent applications
through buried etch stop in the wafer is a high accuracy (< m) wafer. Nozale chambers are etched in the front of the wafer is a hooling thinned from the back side. No differential expansion the etch stop layer. Is plate Various methods have been crited to eliminate the nozale elogiang. These include thermal bubble mechanisms and acoustic lens mechanisms which a complexity paddle moves. There is no holes and replacement by a slit encompassing many actuator positions reduces nozale clogging, but increases crosstalk due to ink surface waves	lithographic	etched in the nozzle plate			♦ 1312, 1317, 1318, 1320
hic, The nozzle plate is a housing etch control buried etch stop in the etched buried etch stop in the etched to buried etch stop in the etched in the front of the wafer, and the wafer is thinned from the back side. No differential expansion the etched in the etch stop layer. Is plate Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle cloging. These include thermal bubble mechanisms and accoustic lens mechanisms and accoustic lens mechanisms and accoustic lens mechanisms. If the elimination of nozzle plate. The elimination of nozzle elactor has a subport wafer. No nozzles are then etched in the etched in the etched in the etch stop layer. No nozzles entirely, to prevent nozzle cloging. These include thermal complete thermal accoustic lens mechanisms and accoustic lens mechanisms. If the elimination of nozzle plate. The elimination of nozzle plate. The elimination of nozzle of housing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves	2000	etching.			◆ IJ22, IJ24, IJ27, IJ28
hic, The nozzle plate is a high accuracy (<1 µm) wafer. Nozzle can be trong of the wafer is a wafer. Nozzle chambers are etched in the front of the wafer is wafer and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer. In the etch stop layer. In plate various methods have been tried to eliminate the nozzles entirely, to prevent nozzles entirely, to prevent nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms and lens mechanisms and acoustic lens mechanisms and a		'n			♦ IJ29, IJ30, IJ31, IJ32
hic, The nozzle plate is a huried etch stop in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer. Nozzles entirely, to prevent nozzle clogging. These include thermal hubble mechanisms and acoustic lens mechanisms and trough which a trough through side many actuator positions reduces and replacement by a slit encompassing many actuator positions reduces increases crosstalk due to ink surface waves					◆ 1133, 1134, 1136, 1137
hic, The nozzle plate is a high accuracy (< mm) • Requires long etch times • Monolithic wafer a support wafer • Low cost • Low cost • Low cost • Low cost • No differential expansion • No nozzles to become clogged • Difficult to control drop position accurately • Crosstalk problems • No nozzles to become clogged • Difficult to control drop position accurately • Crosstalk problems • No nozzles to become clogged • Drop firing direction is sensitive to wicking • Crosstalk problems • No nozzles to become clogged • Drop firing direction is sensitive to wicking • Crosstalk problems • No nozzles to become clogged • Drop firing direction is sensitive to wicking • Crosstalk problems • No nozzles to become clogged • Drop firing direction is sensitive to wicking • Crosstalk problems • No nozzles to become clogged • Drop firing direction is sensitive to wicking • Crosstalk problems • No nozzles to become clogged • Drop firing direction is sensitive to wicking • Crosstalk problems • No nozzles to become clogged • Drop firing direction is sensitive to wicking • Crosstalk problems • No nozzles to become clogged • Drop firing direction is sensitive to wicking • Drop firing direction is sensitive to wicking • No nozzles to become clogged • Drop firing direction is sensitive to wicking • Drop firing direction is direction is direction is direction is direct					• IJ38, IJ39, IJ40, IJ41 • IJ42 IJ42 IJ44
hrough buried etch stop in the each stop in the etch stop in the etch din the front of the wafer, and the wafer is thinned from the back side. Nozales are then etched in the trad to eliminate the nozales entirely, to prevent nozales entirely, to prevent nozales entirely, to prevent nozale enchanisms and accustic lens mechanisms Each drop ejector has a complexity paddle moves. There is no nozale plate. Bach drop ejector has a complexity paddle moves. There is no nozale plate. If the elimination of nozale of normalization of nozale plate. A Requires a support wafer events a character of the enchanisms and accustic lens mechanisms Each drop ejector has a complexity paddle moves. There is no nozale plate. A Reduced manufacturing of morals to become clogged trough through which a nozale plate. A Requires a support wafer events is exported in the etch stop of the plate in the plate in the etch size and replacement by a slit encompassing many actuator positions reduces no in case acrosstalk due to in case acrosstalk due to in known and the plate in creases crosstalk due to ink surface waves	Monolithic,	The nozzle plate is a	♦ High accuracy (<1 µm)	◆ Requires long etch times	◆ 1103, 1105, 1104, 1107
No care chambers are No differential expansion	etched through	buried etch stop in the	◆ Monolithic	◆ Requires a support wafer	◆ 1108 1100 1110 1113
wafer, and the wafer is thinned from the back side. Nozales are then etched in the etch stop layer. Various methods have been nozales entirely, to prevent nozale clogging. These include thermal bubble mechanisms and acoustic lens mechanisms Bach drop ejector has a coustic lens mechanisms Bach drop ejector has a coustic lens mechanisms Bach drop ejector has a complexity paddle moves. There is no nozale plate. No nozales to become clogged Omphexity Amonolithic nozale plate. No nozales to become clogged Omphexity Omphexity Omphexity Omphexity Omphexity Official to control drop position accurately Constalk problems Omphexity Omp	substrate	wafer. Nozzle chambers are	◆ Low cost	77	◆ III4 III5 III6
thinned from the back side. Nozzles are then etched in the etch stop layer. No nozzles are then etched in the etch stop layer. Is plate Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms and acoustic lens mechanisms Each drop ejector has a complexity paddle moves. There is no nozzle plate. If The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves		etched in the front of the	◆ No differential expansion		4 H21 H22 H26 H26
thinned from the back side. Nozzles are then etched in the etch stop layer. Is plate (Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms and acoustic lens mechanisms and acoustic lens mechanisms Each drop ejector has a complexity paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves		wafer, and the wafer is	•		V 1321, 1323, 1323, 1320
Nozzles are then etched in the etch stop layer. All the etch stop layer.		thinned from the back side.			
the etch stop layer. Politicul to control drop position accurately tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms a complexity through through which a paddle moves. There is no nozzle plate. Politicul to control drop position accurately to morphism and acoustic lens mechanisms and acoustic lens mechanisms and acoustic lens mechanisms a complexity paddle moves. There is no nozzle plate. Monolithic not		Nozzles are then etched in			
tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms Each drop ejector has a coustic lens mechanisms Each drop ejector has a complexity Trough through which a paddle moves. There is no nozzle plate. The elimination of nozzle holos and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves		the etch stop layer.			
tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms Each drop ejector has a complexity paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves	No nozzle plate	Various methods have been	◆ No nozzles to become clogged	◆ Difficult to control drop position accurately	♦ Ricoh 1995 Sekiva et al
prevent nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms Each drop ejector has a complexity paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves houszle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves		tried to eliminate the		◆ Crosstalk problems	USP 5,412,413
prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms Each drop ejector has a complexity paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves		nozzles entirely, to			♦ 1993 Hadimioglu et al
These include thermal bubble mechanisms and acoustic lens mechanisms Each drop ejector has a complexity trough through which a complexity paddle moves. There is no holes and replacement by a slit encompassing many a structor positions reduces nozzle clogging, but increases crosstalk due to ink surface waves		prevent nozzle clogging.			EUP 550.192
bubble mechanisms and acoustic lens mechanisms Each drop ejector has a trough through which a trough through which a complexity paddle moves. There is no holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves		These include thermal		•	◆ 1993 Flrod et al FUD
acoustic lens mechanisms Each drop ejector has a trough through which a trough through which a paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves		bubble mechanisms and			\$17.3 Enga et al Egi
Each drop ejector has a complexity trough through which a complexity paddle moves. There is no holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves		acoustic lens mechanisms			077,7
trough through which a complexity paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves	Trough	Each drop ejector has a	◆ Reduced manufacturing	◆ Drop firing direction is sensitive to wicking.	♦ IJ35
paddle moves. There is no hozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves		trough through which a	complexity		
nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves		paddle moves. There is no	◆ Monolithic		
The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves		nozzle plate.			
holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves	Nozzle slit	The elimination of nozzle	\vdash	◆ Difficult to control drop position accurately	♦ 1989 Saito et al USP
slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves	instead of	holes and replacement by a		◆ Crosstalk problems	4,799,068
	individual	slit encompassing many		•	
nozzle clogging, but increases crosstalk due to ink surface waves	nozzles	actuator positions reduces			
increases crosstalk due to		nozzle clogging, but			
ink surface waves		increases crosstalk due to			
		ink surface waves			

DROP EJECTION DIRECTION

Ejection	Description	Advantages	Disadvantages	Evample
direction		•		Cyampies
Edge shooter')	Ink flow is along the surface of the chip, and ink drops are ejected from the chip edge.	Simple construction No silicon etching required Good heat sinking via substrate Mechanically strong Ease of chip handing	 Nozzles limited to edge High resolution is difficult Fast color printing requires one print head per color 	• Canon Bubblejet 1979 Endo et al GB patent 2,007,162 • Xerox heater-in-pit 1990 Hawkins et al USP 4,899,181
Surface ('roof shooter')	Ink flow is along the surface of the chip, and ink drops are ejected from the chip surface, normal to the plane of the chip.	 ♦ No bulk silicon etching required ♦ Silicon can make an effective heat sink ♦ Mechanical strength 	 ◆ Maximum ink flow is severely restricted 	◆ 1 one-jet ◆ Hewlett-Packard TIJ 1982 Vaught et al USP 4,490,728 ◆ IJ02, IJ11, IJ12, IJ20 ◆ IJ22
Through chip, forward ('up shooter')	Ink flow is through the chip, and ink drops are ejected from the front surface of the chip.	 ◆ High ink flow ◆ Suitable for pagewidth print ◆ High nozzle packing density therefore low manufacturing cost 	 ◆ Requires bulk silicon etching 	◆ Silverbrook, EP 0771 658 A2 and related patent applications ◆ IJ04, IJ17, IJ18, IJ24
Through chip, reverse ('down shooter')	Ink flow is through the chip, and ink drops are ejected from the rear surface of the chip.	 High ink flow Suitable for pagewidth print High nozzle packing density therefore low manufacturing cost 	 Requires wafer thinning Requires special handling during manufacture 	• 101, 1103, 1105, 1106 • 1107, 1108, 1109, 1110 • 1113, 1114, 1115, 1116 • 1119, 1121, 1123, 1125
Through actuator	Ink flow is through the actuator, which is not fabricated as part of the same substrate as the drive transistors.	 Suitable for piezoelectric print heads 	 ◆ Pagewidth print heads require several thousand connections to drive circuits ◆ Cannot be manufactured in standard CMOS fabs ◆ Complex assembly required 	Epson Stylus Tektronix hot melt piezoelectric ink jets

INK TYPE

1				
iiik type	Description	Advantages	Disadvantages	Examples
Aqueous, dye	Water based ink which typically contains: water, dye, surfactant, humectant, and biocide. Modern ink dyes have high water-fastness, light fastness	♦ Environmentally friendly	 Slow drying Corrosive Bleeds on paper May strikethrough Cockles paper 	 Most existing inkjets All IJ series ink jets Silverbrook, EP 0771 658 A2 and related patent applications
Aqueous, pigment	Water based ink which typically contains: water, pigment, surfactant, humectant, and biocide. Pigments have an advantage in reduced bleed, wicking and strikethrough.	 Environmentally friendly No odor Reduced bleed Reduced wicking Reduced strikethrough 	 ◆ Slow drying ◆ Corrosive ◆ Pigment may clog nozzles ◆ Pigment may clog actuator mechanisms ◆ Cockles paper 	◆ 1102, 1104, 1121, 1126 ◆ 1127, 1130 ◆ Silverbrook, EP 0771 658 A2 and related patent applications ◆ Piezoelectric ink-jets ◆ Thermal ink jets (with
Methyl Ethyl Ketone (MEK)	MEK is a highly volatile solvent used for industrial printing on difficult surfaces such as aluminum cans.	◆ Very fast drying ◆ Prints on various substrates such as metals and plastics	♦ Odorous	◆ All IJ series ink jets
Alcohol (ethanol, 2- butanol, and others)	Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer photographic printing.	Fast drying Operates at sub-freezing temperatures Reduced paper cockle Low cost	◆ Slight odor◆ Flammable	♦ All IJ series ink jets

		76		
Phase change	The ink is solid at room	◆ No drying time- ink instantly	♦ High viscosity	◆ Tektronix hot melt
(hot melt)	temperature, and is melted	freezes on the print medium	◆ Printed ink typically has a 'waxy' feel	piezoelectric ink iets
	in the print head before	 ◆ Almost any print medium can 	◆ Printed pages may 'block'	◆ 1989 Nowak USP
	jetting. Hot melt inks are	pe nsed	◆ Ink temperature may be above the curie	4.820.346
	usually wax based, with a	◆ No paper cockle occurs	point of permanent magnets	◆ All II series ink iets
	melting point around 80 °C.	♦ No wicking occurs	◆ Ink heaters consume nower	
	After jetting the ink	♦ No bleed occurs	◆ Long warm-up time	
	freezes almost instantly	◆ No strikethrough occurs	2000 da 1000 8-100	
	upon contacting the print			
	medium or a transfer			
	roller.			
iio	Oil based inks are	◆ High solubility medium for	♦ High viscosity: this is a significant	◆ All IJ series ink iets
	extensively used in offset	some dyes	limitation for use in inkiets, which usually	
	printing. They have	◆ Does not cockle paper	require a low viscosity. Some short chain	
	advantages in improved	◆ Does not wick through paper	and multi-branched oils have a sufficiently	
	characteristics on paper	•	low viscosity.	
	(especially no wicking or		♦ Slow drving	
	cockle). Oil soluble dies		9-7-	
	and pigments are required.			
Microemulsion	A microemulsion is a	◆ Stops ink bleed	♦ Viscosity higher than water	◆ All IJ series ink iets
	stable, self forming	◆ High dye solubility	◆ Cost is slightly higher than water based ink	
-	emulsion of oil, water, and	◆ Water, oil, and amphiphilic	◆ High surfactant concentration required	
	surfactant. The	soluble dies can be used	(around 5%)	
	characteristic drop size is	◆ Can stabilize pigment		
	less than 100 nm, and is	suspensions		
	determined by the preferred	•		
	curvature of the			
	surfactant.			

Ink Jet Printing

5

A large number of new forms of ink jet printers have been developed to facilitate alternative ink jet technologies for the image processing and data distribution system. Various combinations of ink jet devices can be included in printer devices incorporated as part of the present invention. Australian Provisional Patent Applications relating to these ink jets which are specifically incorporated by cross reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisiona l Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PO8066	15-Jul-97	Image Creation Method and Apparatus (IJ01)	6,227,652 (July 10, 1998)
PO8072	15-Jul-97	Image Creation Method and Apparatus (IJ02)	6,213,588 (July 10, 1998)
PO8040	15-Jul-97	Image Creation Method and Apparatus (IJ03)	6,213,589 (July 10, 1998)
PO8071	15-Jul-97	Image Creation Method and Apparatus (IJ04)	6,231,163 (July 10, 1998)
PO8047	15-Jul-97	Image Creation Method and Apparatus (IJ05)	6,247,795 (July 10, 1998)
P08035	15-Jul-97	Image Creation Method and Apparatus (IJ06)	6,394,581 (July 10, 1998)
PO8044	15-Jul-97	Image Creation Method and Apparatus (IJ07)	6,244,691 (July 10, 1998)
P08063	15-Jul-97	Image Creation Method and Apparatus (IJ08)	6,257,704 (July 10, 1998)
P08057	15-Jul-97	Image Creation Method and Apparatus (IJ09)	6,416,168 (July 10, 1998)
P08056	15-Jul-97	Image Creation Method and Apparatus (IJ10)	6,220,694 (July 10, 1998
PO8069		Image Creation Method and Apparatus (IJ11)	6,257,705 (July 10, 1998
PO8049		Image Creation Method and Apparatus (IJ12)	6,247,794 (July 10, 1998
PO8036	1	Image Creation Method and Apparatus (IJ13)	6,234,610 (July 10, 1998
PO8048		Image Creation Method and Apparatus (IJ14)	6,247,793 (July 10, 1998
P08070		Image Creation Method and Apparatus (IJ15)	6,264,306 (July 10, 1998
PO8067		Image Creation Method and Apparatus (IJ16)	6,241,342 (July 10, 1998

PO8001	15-Jul-97	Image Creation Method and Apparatus (IJ17)	6,247,792 (July 10, 1998
PO8038	15-Jul-97	Image Creation Method and Apparatus (IJ18)	6,264,307 (July 10, 1998
PO8033	15-Jul-97	Image Creation Method and Apparatus (IJ19)	6,254,220 (July 10, 1998
PO8002	15-Jul-97	Image Creation Method and Apparatus (IJ20)	6,234,611 (July 10, 1998
PO8068	15-Jul-97	Image Creation Method and Apparatus (IJ21)	6,302,528 (July 10, 1998
PO8062	15-Jul-97	Image Creation Method and Apparatus (IJ22)	6,283,582 (July 10, 1998
PO8034	15-Jul-97	Image Creation Method and Apparatus (IJ23)	6,239,821 (July 10, 1998
PO8039	15-Jul-97	Image Creation Method and Apparatus (IJ24)	6,338,547 (July 10, 1998
PO8041	15-Jul-97	Image Creation Method and Apparatus (IJ25)	6,247,796 (July 10, 1998
P08004	15-Jul-97	Image Creation Method and Apparatus (IJ26)	09/113,122 (July 10, 1998
PO8037	15-Jul-97	Image Creation Method and Apparatus (IJ27)	6,390,603 (July 10, 1998
PO8043	15-Jul-97	Image Creation Method and Apparatus (IJ28)	6,362,843 (July 10, 1998
P08042	15-Jul-97	Image Creation Method and Apparatus (IJ29)	6,293,653 (July 10, 1998
PO8064	15-Jul-97	Image Creation Method and Apparatus (IJ30)	6,312,107 (July 10, 1998
PO9389	23-Sep-97	Image Creation Method and Apparatus (IJ31)	6,227,653 (July 10, 1998
PO9391	23-Sep-97	Image Creation Method and Apparatus (IJ32)	6,234,609 (July 10, 1998
PP0888	12-Dec-97	Image Creation Method and Apparatus (IJ33)	6,238,040 (July 10, 1998
PP0891	12-Dec-97	Image Creation Method and Apparatus (IJ34)	6,188,415 (July 10, 1998
PP0890	12-Dec-97	Image Creation Method and Apparatus (IJ35)	6,227,654 (July 10, 1998
PP0873	12-Dec-97	Image Creation Method and Apparatus (IJ36)	6,209,989 (July 10, 1998
PP0993	12-Dec-97	Image Creation Method and Apparatus (IJ37)	6,247,791 (July 10, 1998
PP0890	12-Dec-97	Image Creation Method and Apparatus (IJ38)	6,336,710 (July 10, 1998

PP1398	19-Jan-98	An Image Creation Method and Apparatus (IJ39)	6,217,153 (July 10, 1998
PP2592	25-Mar-98	An Image Creation Method and Apparatus (IJ40)	6,416,167 (July 10, 1998
PP2593	25-Mar-98	Image Creation Method and Apparatus (IJ41)	6,243,113 (July 10, 1998
PP3991	9-Jun-98	Image Creation Method and Apparatus (IJ42)	6,283,581 (July 10, 1998
PP3987	9-Jun-98	Image Creation Method and Apparatus (IJ43)	6,247,790 (July 10, 1998
PP3985	9-Jun-98	Image Creation Method and Apparatus (IJ44)	6,260,953 (July 10, 1998
PP3983	9-Jun-98	Image Creation Method and Apparatus (IJ45)	6,267,469 (July 10, 1998

Ink Jet Manufacturing

5

Further, the present application may utilize advanced semiconductor fabrication techniques in the construction of large arrays of ink jet printers. Suitable manufacturing techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australia n Provision al Number	Date	Title	US Patent/Patent Application and Filing Date
P07935	15-Jul-	A Method of Manufacture of an Image	6,224,780
	97	Creation Apparatus (IJM01)	(July 10, 1998
P07936	15-Jul-	A Method of Manufacture of an Image	6,235,212
	97	Creation Apparatus (IJM02)	(July 10, 1998
P07937	15-Jul-	A Method of Manufacture of an Image	6,280,643
	97	Creation Apparatus (IJM03)	(July 10, 1998
P08061	15-Jul-	A Method of Manufacture of an Image	6,284,147
	97	Creation Apparatus (IJM04)	(July 10, 1998
PO8054	15-Jul-	A Method of Manufacture of an Image	6,214,244
	97	Creation Apparatus (IJM05)	(July 10, 1998
PO80é2	15-Jul-	A Method of Manufacture of an Image	6,071,750
	97	Creation Apparatus (IJM06)	(July 10, 1998
PO8055	15-Jul-	A Method of Manufacture of an Image	6,267,905
	97	Creation Apparatus (IJM07)	(July 10, 1998
PO8053	15-Jul-	A Method of Manufacture of an Image	6,251,298
	97	Creation Apparatus (IJM08)	(July 10, 1998
	15-Jul- 97	A Method of Manufacture of an Image Creation Apparatus (IJM09)	6,258,285

<u> </u>			(July 10, 1998
PO7933	15-Jul-	A Method of Manufacture of an Image	
ļ	97	Creation Apparatus (IJM10)	(July 10, 1998
PO7950	15-Jul-	A Method of Manufacture of an Image	6,241,904
	97	Creation Apparatus (IJM11)	(July 10, 1998
PO7949	15-Jul-	A Method of Manufacture of an Image	6,299,786
	97	Creation Apparatus (IJM12)	(July 10, 1998
PO8060	15-Jul-	A Method of Manufacture of an Image	09/113,124
	97	Creation Apparatus (IJM13)	(July 10, 1998
PO8059	15-Jul-	A Method of Manufacture of an Image	6,231,773
	97	Creation Apparatus (IJM14)	(July 10, 1998
PO8073	15-Jul-	A Method of Manufacture of an Image	6,190,931
	97	Creation Apparatus (IJM15)	(July 10, 1998
PO8076	15-Jul-	A Method of Manufacture of an Image	6,248,249
	97	Creation Apparatus (IJM16)	(July 10, 1998
PO8075	15-Jul-	A Method of Manufacture of an Image	6,290,862
	97	Creation Apparatus (IJM17)	(July 10, 1998
PO8079	15-Jul-	A Method of Manufacture of an Image	6,241,906
	97	Creation Apparatus (IJM18)	(July 10, 1998
PO8050	15-Jul-	A Method of Manufacture of an Image	09/113,116
	97	Creation Apparatus (IJM19)	(July 10, 1998
PO8052	15-Jul-	A Method of Manufacture of an Image	6,241,905
	97	Creation Apparatus (IJM20)	(July 10, 1998
PO7948	15-Jul-	A Method of Manufacture of an Image	6,451,216
	97	Creation Apparatus (IJM21)	(July 10, 1998
PO7951	15-Jul-	A Method of Manufacture of an Image	6,231,772
	97	Creation Apparatus (IJM22)	(July 10, 1998
PO8074	15-Jul-	A Method of Manufacture of an Image	6,274,056
	97	Creation Apparatus (IJM23)	(July 10, 1998
PO7941	15-Jul-	A Method of Manufacture of an Image	6,290,861
	97	Creation Apparatus (IJM24)	(July 10, 1998
PO8077	15-Jul-	A Method of Manufacture of an Image	6,248,248
	97	Creation Apparatus (IJM25)	(July 10, 1998
PO8058	15-Jul-	A Method of Manufacture of an Image	6,306,671
	97	Creation Apparatus (IJM26)	(July 10, 1998
PO8051	15-Jul-	A Method of Manufacture of an Image	6,331,258
	97	Creation Apparatus (IJM27)	(July 10, 1998
PO8045	15-Jul-	A Method of Manufacture of an Image	6,110,754
	97	Creation Apparatus (IJM28)	(July 10, 1998
PO7952	15-Jul-	A Method of Manufacture of an Image	6,294,101
	97	Creation Apparatus (IJM29)	(July 10, 1998
PO8046	15-Jul-	A Method of Manufacture of an Image	6,416,679
	97	Creation Apparatus (IJM30)	(July 10, 1998
PO8503	11-Aug-	A Method of Manufacture of an Image	6,264,849
	97	Creation Apparatus (IJM30a)	(July 10, 1998
		· · · · · · · · · · · · · · · · · · ·	

PO9390	23-Sep- 97	A Method of Manufacture of an Image 6,254 Creation Apparatus (IJM31) (July	,793 10, 1998
PO9392	23-Sep- 97	A Method of Manufacture of an Image 6,235 Creation Apparatus (IJM32) (July	7,211 10, 1998
PP0889	12-Dec- 97	A Method of Manufacture of an Image 6,235 Creation Apparatus (IJM35) (July	, <u>211</u> , 10, 1998
PP0887	12-Dec- 97	A Method of Manufacture of an Image 6,264 Creation Apparatus (IJM36) (July	,850 10, 1998
PP0882	12-Dec- 97	A Method of Manufacture of an Image 6,258 Creation Apparatus (IJM37) (July	,284 10, 1998
PP0874	12-Dec- 97	A Method of Manufacture of an Image 6,258 (July	,284 10, 1998
PP1396	19-Jan- 98	A Method of Manufacture of an Image 6,228 Creation Apparatus (IJM39) (July	,668 10, 1998
PP2591	25-Mar- 98	A Method of Manufacture of an Image 6,180 (July	,427 10, 1998
PP3989	9-Jun-98	A Method of Manufacture of an Image 6,171 Creation Apparatus (IJM40) (July	,875 10, 1998
PP3990	9-Jun-98	A Method of Manufacture of an Image 6,267 Creation Apparatus (IJM42) (July	,904 10, 1998
PP3986	9-Jun-98	A Method of Manufacture of an Image 6,245 Creation Apparatus (IJM43) (July	,247 10, 1998
PP3984	9-Jun-98	A Method of Manufacture of an Image 6,245 Creation Apparatus (IJM44) (July	,247 10, 1998
PP3982	9-Jun-98	A Method of Manufacture of an Image 6,231 Creation Apparatus (IJM45) (July	,148 10, 1998

Fluid Supply

5

15

Further, the present application may utilize an ink delivery system to the ink jet head. Delivery systems relating to the supply of ink to a series of ink jet nozzles are described in the following Australian provisional patent specifications, the disclosure of which are hereby incorporated by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
P08003	15-Jul-97	Supply Method and Apparatus (F1)	6,350,023 (July 10, 1998)
PO8005	15-Jul-97	Supply Method and Apparatus (F2)	6,318,849 (July 10, 1998)
PO9404	23-Sep-97	A Device and Method (F3)	09/113,101 (July 10, 1998)

10 MEMS Technology

Further, the present application may utilize advanced semiconductor microelectromechanical techniques in the construction of large arrays of ink jet printers. Suitable microelectromechanical techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PO7943	15-Jul-97	A device (MEMS01)	
PO8006	15-Jul-97	A device (MEMS02)	6,087,638 (July 10, 1998)
PO8007	15-Jul-97	A device (MEMS03)	09/113,093 (July 10, 1998)
PO8008	15-Jul-97	A device (MEMS04)	6,340,222 (July 10, 1998)
PO8010	15-Jul-97	A device (MEMS05)	6,041,600 (July 10, 1998)
P08011	15-Jul-97	A device (MEMS06)	6,299,300 (July 10, 1998)
P07947	15-Jul-97	A device (MEMS07)	6,067,797 (July 10, 1998)
P07945	15-Jul-97	A device (MEMS08)	09/113,081 (July 10, 1998)
PO7944	15-Jul-97	A device (MEMS09)	6,286,935

			(July 10, 1998)
PO7946	15-Jul-97	A device (MEMS10)	6,044,646
			(July 10, 1998)
PO9393	23-Sep-97	A Device and Method	09/113,065
		(MEMS11)	(July 10, 1998)
PP0875	12-Dec-97	A Device (MEMS12)	09/113,078
			(July 10, 1998)
PP0894	12-Dec-97	A Device and Method (MEMS13)	09/113,075 (July 10, 1998)
			(001) 10, 1000

IR Technologies

5

Further, the present application may include the utilization of a disposable camera system such as those described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PP0895	12-Dec-97	An Image Creation Method and Apparatus (IR01)	6,231,148 (July 10, 1998)
PP0870	12-Dec-97	A Device and Method (IR02)	09/113,106 (July 10, 1998)
PP0869	12-Dec-97	A Device and Method (IR04)	6,293,658 (July 10, 1998)
PP0887	12-Dec-97	Image Creation Method and Apparatus (IR05)	09/113,104 (July 10, 1998)
PP0885	12-Dec-97	An Image Production System (IR06)	6,238,033 (July 10, 1998)
PP0884	12-Dec-97	Image Creation Method and Apparatus (IR10)	6,312,070 (July 10, 1998)
PP0886	12-Dec-97	Image Creation Method and Apparatus (IR12)	6,238,111 (July 10, 1998)
PP0871	12-Dec-97	A Device and Method (IR13)	09/113,086 (July 10, 1998)
PP0876		An Image Processing Method and Apparatus (IR14)	09/113,094 (July 10, 1998)
PP0877	12-Dec-97	A Device and Method (IR16)	6,378,970 (July 10, 1998
PP0878	12-Dec-97	A Device and Method (IR17)	6,196,739 (July 10, 1998)
PP0879	12-Dec-97	A Device and Method (IR18)	09/112,774 (July 10, 1998)
PP0883	12-Dec-97	A Device and Method (IR19)	6,270,182 (July 10, 1998)
PP0880		A Device and Method (IR20)	6,152,619 (July 10, 1998)
PP0881		A Device and Method (IR21)	09/113,092 (July 10, 1998)

DotCard Technologies

5

10

15

Further, the present application may include the utilization of a data distribution system such as that described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PP2370	16-Mar-98	Data Processing Method and Apparatus (Dot01)	09/112,781 (July 10, 1998
PP2371	16-Mar-98	Data Processing Method and Apparatus (Dot02)	09/113,052 (July 10, 1998

Artcam Technologies

Further, the present application may include the utilization of camera and data processing techniques such as an Artcam type device as described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australia n Provision al Number	Date	Title	US Patent/Patent Application and Filing Date
PO7991	15-Jul-97	Image Processing Method and Apparatus (ART01)	09/113,060 (July 10, 1998)
PO7988	15-Jul-97	Image Processing Method and Apparatus (ART02)	6,476,863 (July 10, 1998)
PO7993	15-Jul-97	Image Processing Method and Apparatus (ART03)	09/113,073 (July 10, 1998)
PO9395	23-Sep-97	Data Processing Method and Apparatus (ART04)	6,322,181 (July 10, 1998)
PO8017	15-Jul-97	Image Processing Method and Apparatus (ART06)	09/112,747 (July 10, 1998)
PO8014	15-Jul-97	Media Device (ART07)	6,227,648 (July 10, 1998)
PO8025	15-Jul-97	Image Processing Method and Apparatus (ART08)	09/112,750 (July 10, 1998)
PO8032	15-Jul-97	Image Processing Method and Apparatus (ART09)	09/112,746 (July 10, 1998)
PO7999	15-Jul-97	Image Processing Method and Apparatus (ART10)	09/112,743 (July 10, 1998)
PO7998	15-Jul-97	Image Processing Method	09/112,742

		[200]	
		and Apparatus (ART11)	(July 10, 1998)
PO8031	15-Jul-97	Image Processing Method and Apparatus (ART12)	09/112,741 (July 10, 1998)
PO8030	15-Jul-97	Media Device (ART13)	6,196,541 (July 10, 1998)
PO7997	15-Jul-97	Media Device (ART15)	6,195,150 (July 10, 1998)
PO7979	15-Jul-97	Media Device (ART16)	6,362,868 (July 10, 1998)
PO8015	15-Jul-97	Media Device (ART17)	09/112,738 (July 10, 1998)
PO7978	15-Jul-97	Media Device (ART18)	09/113,067 (July 10, 1998)
PO7982	15-Jul-97	Data Processing Method and Apparatus (ART19)	6,431,669 (July 10, 1998
PO7989	15-Jul-97		6,362,869 (July 10, 1998
PO8019	15-Jul-97	Media Processing Method and Apparatus (ART21)	6,472,052 (July 10, 1998
PO7980	15-Jul-97	Image Processing Method and Apparatus (ART22)	6,356,715 (July 10, 1998)
PO8018	15-Jul-97	Image Processing Method and Apparatus (ART24)	09/112,777 (July 10, 1998)
PO7938	15-Jul-97	Image Processing Method and Apparatus (ART25)	09/113,224 (July 10, 1998)
P08016	15-Jul-97	Image Processing Method and Apparatus (ART26)	6,366,693 (July 10, 1998)
PO8024	15-Jul-97	Image Processing Method and Apparatus (ART27)	6,329,990 (July 10, 1998)
PO7940	15-Jul-97	Data Processing Method and Apparatus (ART28)	09/113,072 (July 10, 1998)
PO7939	15-Jul-97	Data Processing Method and Apparatus (ART29)	09/112,785 (July 10, 1998)
PO8501	11-Aug-97	Image Processing Method and Apparatus (ART30)	6,137,500 (July 10, 1998)
PO8500	11-Aug-97	Image Processing Method and Apparatus (ART31)	09/112,796 (July 10, 1998)
207987	15-Jul-97	Data Processing Method and Apparatus (ART32)	09/113,071 (July 10, 1998)
208022	15-Jul-97	Image Processing Method and Apparatus (ART33)	6,398,328 (July 10, 1998
08497	11-Aug-97	Image Processing Method and Apparatus (ART34)	09/113,090 (July 10, 1998)
PO8020		Data Processing Method and Apparatus (ART38)	6,431,704 (July 10, 1998

			
PO8023	15-Jul-97	Data Processing Method and Apparatus (ART39)	09/113,222 (July 10, 1998)
PO8504	11-Aug-97	Image Processing Method and Apparatus (ART42)	09/112,786
PO8000	15-Jul-97		(July 10, 1998) 6,415,054 (July 10, 1998)
PO7977	15-Jul-97		(July 10, 1998) 09/112,782 (July 10, 1998)
PO7934	15-Jul-97	- 	09/113,056 (July 10, 1998)
PO7990	15-Jul-97	Data Processing Method and Apparatus (ART46)	09/113,059 (July 10, 1998)
PO8499	11-Aug-97	Image Processing Method and Apparatus (ART47)	6,486,886 (July 10, 1998)
PO8502	11-Aug-97	Image Processing Method and Apparatus (ART48)	6,381,361 (July 10, 1998)
PO7981	15-Jul-97		6,317,192 (July 10, 1998
PO7986	15-Jul-97	Data Processing Method and Apparatus (ART51)	09/113,057 (July 10, 1998)
PO7983	15-Jul-97	Data Processing Method and Apparatus (ART52)	09/113,054 (July 10, 1998)
PO8026	15-Jul-97	Image Processing Method and Apparatus (ART53)	09/112,752 (July 10, 1998)
PO8027	15-Jul-97	Image Processing Method and Apparatus (ART54)	09/112,759 (July 10, 1998)
PO8028	15-Jul-97	Image Processing Method and Apparatus (ART56)	09/112,757 (July 10, 1998)
PO9394	23-Sep-97	Image Processing Method and Apparatus (ART57)	6,357,135 (July 10, 1998
PO9396	23-Sep-97	Data Processing Method and Apparatus (ART58)	09/113,107 (July 10, 1998)
PO9397	23-Sep-97	Data Processing Method and Apparatus (ART59)	6,271,931 (July 10, 1998)
PO9398	23-Sep-97	Data Processing Method and Apparatus (ART60)	6,353,772 (July 10, 1998)
PO9399	23-Sep-97	Data Processing Method and Apparatus (ART61)	6,106,147 (July 10, 1998)
PO9400	23-Sep-97	Data Processing Method and Apparatus (ART62)	09/112,790 (July 10, 1998)
PO9401	23-Sep-97	Data Processing Method and Apparatus (ART63)	6,304,291 (July 10, 1998)
909402	23-Sep-97	Data Processing Method and Apparatus (ART64)	09/112,788 (July 10, 1998)
209403	23-Sep-97	Data Processing Method	6,305,770

		and Apparatus (ART65)	(July 10, 1998)
PO9405	23-Sep-97	Data Processing Method and Apparatus (ART66)	6,289,262 (July 10, 1998)
PP0959	16-Dec-97	A Data Processing Method and Apparatus (ART68)	6,315,200 (July 10, 1998)
PP1397	19-Jan-98	A Media Device (ART69)	6,217,165 (July 10, 1998)

Claims as amended Jan. 03

We Claim:

10

15

20

5 1. (Twice Amended) A method of colour correcting a sensed image before printing by a hand held camera system, said camera system including: an image sensor device for sensing an image;

a processing means for processing said sensed image; and

a printing system including a printhead for printing out said sensed image; wherein the

method of colour correcting a sensed image before printing comprises:

utilizing said image sensor device to sense a first image; processing said first image to determine colour characteristics of said first image; utilizing said image sensor device to sense a second image, in rapid succession to said first image; applying colour correction to said second image based on the determined colour characteristics of said first image; and printing out said second image by said printhead.

- 2. (Amended) A method as claimed in claim 1 wherein said second image is sensed within 1 second of said first image.
- 3. A method as claimed in claim 1 wherein said processing step includes examining the intensity characteristics of said first image.
 - 4. A method as claimed in claim 1 wherein said processing step includes determining a maximum and minimum intensity of said first image and utilizing said intensities to rescale the intensities of said second image.

Abstract

A camera system is disclosed—includesing: an image sensor device—for sensing an image; a processoring means—for processing the sensed image; and a printing system for printing out the sensed image. a method—of—The processor provides color correcting—on of a sensed image to—before being printed out by the print head comprising—the steps of utilizing the image sensor device to sense a first image; processing the first image to determine color characteristics of a—the first sensed—image; utilizing the image sensor device to sense a second image, in rapid succession to the first image; applying color correction methods—to the second image based on the determined color characteristics of the first sensed—image; and printing out the second image. Preferably, the second sensed—image is sensed within 1 second of the first sensed—image and the processing step includes examining the intensity characteristics of the first image. The processing step can also include determining a maximum and minimum intensity of the first image and utilizing the intensities to rescale the intensities of the second image.