中国矿业大学(北京)

《概率论与数理统计》试卷(A卷)

得分:

题	号	_	$\vec{=}$	111	四	五.	六	七	八
得	分								
阅卷	人念								

注意: 可能用到的上分位点 $u_{0.025} = 1.96, u_{0.05} = 1.65$

- 一、 填空题(每空3分,共30分)
- 1. 将 3 个小球随机地放入 4 个大杯子中,则 3 个球恰好在同一个杯子中的概率为
- 2. 设 P(B) = 0.4, P(A B) = 0.3,则 $P(A|\overline{B}) =$ _______.
- 3. 设随机变量 $X \square N(2,9)$,则 $P\{5 \le X \le 8\} =$ _______
- 5. 设总体 $X \square N(\mu, 0.09)$, X_1, X_2, \dots, X_9 是来自 X 的样本,已知 $\overline{x} = 4.2$,则 μ 的置信 度为 95%的置信区间为 直接使用相应的上分位点表示).
- 6. 设 X_1, X_2, \dots, X_n 是来自总体X的简单随机样本, μ 为总体均值,令 $\hat{\mu} = \sum_{i=1}^n c_i X_i$,其中

7. 设X和Y是两个连续型随机变量,且 $P(X \ge 0, Y \ge 0) = \frac{3}{7}, P(X \ge 0) = P(Y \ge 0) = \frac{4}{7}$,

8. 设随机变量 X 和 Y 相互独立且都服从正态分布 $N(0,3^2)$,而 X_1,\cdots,X_9 和 Y_1,\cdots,Y_9 分别

是来自总体 X 和 Y 的简单随机样本,则统计量 $U = \frac{X_1 + \dots + X_9}{\sqrt{Y_1^2 + \dots + Y_9^2}}$ 服从_____分布。

- 二、(12分)某产品只由三个厂家供货,甲、乙、丙三个厂家的产品分别占总数的 5%,80%,15%,其次品率分别为 0.03,0.01,0.02,求
- (1) 从这批产品中任取一件是次品的概率:
- (2)已知从这批产品中随机取出的一件为次品,问这件产品由哪个厂家生产的可能性最大?

(1) 确定常数c; (2) 求X的分布函数F(x); (3) 求 $P\{|X|<\frac{1}{2}\}$; (4) 设Y=2X+1, 求Y的概率密度函数.

五、(12 分)设随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} \frac{1}{8}(x+y) & 0 \le x \le 2, 0 \le y \le 2\\ 0 &$ 其它

(1) 求边缘概率密度 $f_X(x)$, $f_Y(y)$, 并判断 X,Y 是否独立; (2) 求 COV(X,Y).

四、(12分)设二维随机变量(X,Y)的联合分布律为

X Y	-1	0	1	$P\{X=x_i\}$
-1	1/24	1/8	1/12	
1	1/8	3/8	1/4	
$P\{Y=y_j\}$				

求(1)(X,Y)的边缘分布律 $P\{X=x_i\}$, $P\{Y=y_i\}$ (直接填入上表);

(2) 求 $P{X = -1 | Y = 1}$; (3) Z = XY的分布律.

(请将后两问的解答写在右上方的空白处)

第2页(共3页)

六、(8分)一个工厂生产一个系统由100个独立起作用的部件构成,在该产品运行期间每 个部件损坏的概率为0.10,为使整个产品起作用,至少要有85个部件正常工作,试用中心极 限定理估算整个系统起作用的概率。($\Phi(1.67) = 0.9525$)

八、(7分)设总体 X 的概率密度函数为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, x > \\ 0, 其他 \end{cases}$$

未知参数 $\theta > 0$ 。设 $X_1, X_2, ..., X_n$ 为总体X的一个样本,求参数 θ 的最大似然估计量。

七、(7分) 设总体X 的概率分布为

$$\begin{array}{c|cccc} X & 1 & 2 & 3 \\ \hline p_k & \theta^2 & 2\theta(1-\theta) & (1-\theta)^2 \end{array}$$

其中 θ 为未知参数. 现抽得一个样本 $x_1 = 1, x_2 = 2, x_3 = 1$, 求 θ 的矩估计值.