Control Review

Reading: Robot Modeling and Control 6.2, 6.3, 6.4

This Lecture

- Why use control?
- What are open-loop and closed-loop control?
- How do we start choosing a controller?

- 1-DoF Robot
- Model as a mass-damper
- *f* is the force applied by the actuator
- *d* is a disturbance force

What are the dynamics of this robot?

- 1-DoF Robot
- Model as a mass-damper
- *f* is the force applied by the actuator
- *d* is a disturbance force

$$f(t) + d(t) = m\ddot{\theta}(t) + b\dot{\theta}(t)$$

Convert to Laplace domain

- 1-DoF Robot
- Model as a mass-damper
- *f* is the force applied by the actuator
- *d* is a disturbance force

$$F(s) + D(s) = ms^2\theta(s) + bs\theta(s)$$

Convert to block diagram

$$\theta_d(s)C(s)G(s) + D(s)G(s) = \theta(s)$$

$$\theta_d(s)C(s)G(s) + D(s)G(s) = \theta(s)$$

Pick C(s) so $\theta = \theta_d$ For the moment, assume D = 0

$$\theta_d(s) + D(s)G(s) = \theta(s)$$

Pick $C(s) = \frac{1}{G(s)}$ to cancel dynamics

1. Need accurate **model** of system.

$$C(s) = \frac{1}{G(s)} = ms^2 + bs$$

For 1-DoF robot example, need *m* and *b* exactly.

1. Need accurate **model** of system.

$$C(s) = \frac{1}{G(s)} = ms^2 + bs$$

2. Cannot deal with a disturbance.

$$\theta_d(s) + D(s)G(s) = \theta(s)$$
 External force moves system away from desired position

Closed-Loop Control

Measure the joint position θ , base control decisions on $(\theta_d - \theta)$ Need an accurate sensor here

Closed-Loop Control

$$\theta(s) = \frac{C(s)G(s)}{1 + C(s)G(s)}\theta_d(s) + \frac{G(s)}{1 + C(s)G(s)}D(s)$$

 $Ideally \to 1 \text{ so that}$ $\theta = \theta_d$

Ideally \rightarrow 0 so that disturbances do not affect θ

Find a controller that drives $\theta \rightarrow \theta_d$ while rejecting disturbances.

$$G(s) = \frac{1}{ms^2 + bs}$$

$$\theta(s) = \frac{C(s)G(s)}{1 + C(s)G(s)}\theta_d(s) + \frac{G(s)}{1 + C(s)G(s)}D(s)$$

Find a controller that drives $\theta \rightarrow \theta_d$ while rejecting disturbances.

$$G(s) = \frac{1}{ms^2 + bs}$$

$$\theta(s) = \frac{C(s)}{ms^2 + bs + C(s)}\theta_d(s) + \frac{1}{ms^2 + bs + C(s)}D(s)$$

Find a controller that drives $\theta \rightarrow \theta_d$ while rejecting disturbances.

$$\theta(s) = \frac{C(s)}{ms^2 + bs + C(s)}\theta_d(s) + \frac{1}{ms^2 + bs + C(s)}D(s)$$

Try $C(s) = k_p$ so that the actuator force is:

$$f = k_p(\theta_d - \theta)$$

Find a controller that drives $\theta \rightarrow \theta_d$ while rejecting disturbances.

$$\theta(s) = \frac{\mathbf{k_p}}{ms^2 + bs + \mathbf{k_p}} \theta_d(s) + \frac{1}{ms^2 + bs + \mathbf{k_p}} D(s)$$

control gain increases

Approaches $\frac{k_p}{k_n} = 1$ as the Approaches $\frac{1}{k_n} = 0$ as the control gain increases

What are some challenges for closed-loop control?

This Lecture

- Why use control?
- What are open-loop and closed-loop control?
- How do we start choosing a controller?

Next Lecture

- How do we know if a controller is stable?
- How do we extend this to multi-DoF robot arms?