

D.F.

FIG. 1

FIG. 2

FIG. 3

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 6E

FIG. 6D

FIG. 7A

FIG. 8A

FIG. 7B

FIG. 8B

FIG. 9A

FIG. 10A

FIG. 9B

FIG. 10B

FIG. 11

FIG. 13

FIG. 14

FIG. 12

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

30% Passage			40% Passage			60% Passage		
Air space	Wall Thick	Improvement	Air space	Wall Thick	Improvement	Air space	Wall Thick	Improvement
0.08mm	0.5mm	82%	0.08mm	0.5mm	50%	0.1mm	0.5mm	38%
0.05	1.0	55	0.08	1.0	35	0.1	1.0	22
0.08	1.5	32	0.1	1.5	19	0.1	1.5	8

FIG. 23

FIG. 20

FIG. 21

FIG. 22

FIG. 24

FIG. 25

FIG. 26

FIG. 27

Plastic contact holder can be ultrasonically welded to the two plastic pieces of the assembly joining the entire assembly together

Electrical contacts can be press fit or inermolded into the Plastic Contact holder and individually make contact to the positive and negative side of the Piezo Film

FIG. 28

FIG. 29

FIG. 30A

FIG. 31

FIG. 32

FIG. 30B

FIG. 33B

FIG. 33A

FIG. 34

FIG. 35A

FIG. 35B

FIG. 35C

Sensor Assembly

FIG. 35D

Semi-Cylindrical Sensor

**Plastic Housing w/Cutout for
Acoustic Energy to pass**

**Electric Contacts pass through
housing to connect to main circuit**

FIG. 35E

Semi Cylindrical Sensor

FIG. 35F

FIG. 36

FIG. 38A

FIG. 41 A

40KHz example:

$d_1 = 0.3$	$d_2 = 0.52$	$W_1 = 2\text{mm}$	$W_2 = 2\text{mm}$
0.5	0.35	0.5	0.12
0.75	0.24	0.75	0.09
1.0	0.17	1.0	0.05
1.5	0.05	1.5	0.02

FIG. 41 B

PZT or PVDF bonded on a flat plate mentioned in section ii

Capacitive Micro Machined Ultrasonic Transducer (c-MUT)
Following numbers are example of c-MUT diaphragm; material is silicon nitride.

- (a) 1-2 MHz range design ($\lambda = 0.34 - 0.17$ mm)
Diaphragm diameter; 50 μm , thickness 0.5 - 1 μm
 - (b) 300 - 900 KHz; ($\lambda = 1.1 - 3.8$ mm)
Diaphragm diameter; 200 μm , thickness 2.5 - 7.5 μm
 - (c) 80 - 200 KHz design; ($\lambda = 4.3 - 1.7$ mm)
Diaphragm diameter 0.4 mm, thickness 3 - 7 μm
- In all the designs, the diameters are roughly equal to quarter wavelength or smaller. In such a condition, the sensitivity has no angle dependence (no directivity).

Such a transducer can be mounted on the surface of receiving equipment.

FIG. 42

FIG. 43A

FIG. 43B

Desktop computer,

FIG. 44A

FIG. 44B

FIG. 44C

FIG. 45B