PSALTer results panel $\mathcal{S} = \iiint \left(\frac{1}{6} \left(6t_{1} \, \mathcal{A}^{\alpha_{i}}_{\alpha} \, \mathcal{A}^{\theta}_{i} + 6 \, \mathcal{A}^{\alpha\beta\chi} \, \sigma_{\alpha\beta\chi} + 6 \, f^{\alpha\beta} \, \tau \left(\Delta + \mathcal{K}\right)_{\alpha\beta} - 12t_{1} \, \mathcal{A}^{\theta}_{\alpha\theta} \, \partial_{i}f^{\alpha_{i}} + 12t_{1} \, \mathcal{A}^{\theta}_{i\theta} \, \partial^{i}f^{\alpha}_{\alpha} - 6t_{1} \, \partial_{i}f^{\theta}_{\alpha} \, \partial^{i}f^{\alpha}_{\alpha} - 6t_{1} \, \partial_{i}f^{\alpha_{i}} \, \partial_{\theta}f^{\alpha_{i}} + 12t_{1} \, \mathcal{A}^{\theta}_{\alpha\theta} \, \partial^{i}f^{\alpha}_{\alpha} - 6t_{1} \, \partial_{i}f^{\alpha_{i}} \, \partial_{\theta}f^{\alpha_{i}} + 12t_{1} \, \mathcal{A}^{\theta}_{\alpha\theta} \, \partial^{i}f^{\alpha}_{\alpha} - 6t_{1} \, \partial_{i}f^{\alpha_{i}} \, \partial_{\theta}f^{\alpha_{i}} + 12t_{1} \, \mathcal{A}^{\theta}_{\alpha\theta} \, \partial^{i}f^{\alpha_{i}} + 12t_{1} \, \mathcal{A}^{\theta}_{\alpha\theta} \,$ $6r_{\underline{5}}\partial_{\imath}\mathcal{R}_{\theta\ \kappa}^{\ \kappa}\partial^{\theta}\mathcal{R}^{\alpha_{\imath}}_{\alpha}-6r_{\underline{5}}\partial_{\theta}\mathcal{R}_{\imath\ \kappa}^{\ \kappa}\partial^{\theta}\mathcal{R}^{\alpha_{\imath}}_{\alpha}+4t_{\underline{1}}^{\ }\mathcal{R}_{\imath\theta\alpha}^{\ }\partial^{\theta}f^{\alpha_{\imath}}+4t_{\underline{2}}^{\ }\mathcal{R}_{\imath\theta\alpha}^{\ }\partial^{\theta}f^{\alpha_{\imath}}-4t_{\underline{1}}^{\ }\partial_{\alpha}f_{\imath\theta}^{\ }\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f_{\imath\theta}^{\ }\partial^{\theta}f^{\alpha_{\imath}}-4t_{\underline{1}}^{\ }\partial_{\alpha}f_{\vartheta\theta}^{\ }\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f_{\vartheta\theta}^{\ }\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f_{\vartheta\theta}^{\ }\partial^{\theta}f^{\alpha_{\imath}}-4t_{\underline{1}}^{\ }\partial_{\alpha}f_{\vartheta\theta}^{\ }\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha}\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha}\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha_{\imath}}+2t_{\underline{1}}^{\ }\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha}\partial^{\theta}f^{\alpha}\partial^{\theta}f^{\alpha}$ $2t_{1} \frac{\partial_{i} f_{\alpha \theta}}{\partial^{\theta} f^{\alpha i}} - t_{2} \frac{\partial_{i} f_{\alpha \theta}}{\partial^{\theta} f^{\alpha i}} + 4t_{1} \frac{\partial_{\theta} f_{\alpha i}}{\partial^{\theta} f^{\alpha i}} + t_{2} \frac{\partial_{\theta} f_{\alpha i}}{\partial^{\theta} f^{\alpha i}} + 2t_{1} \frac{\partial_{\theta} f_{\alpha i}}{\partial^{\theta} f^{\alpha i}} - t_{2} \frac{\partial_{\theta} f_{\alpha i}}{\partial^{\theta} f^{\alpha i}} + 2(t_{1} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2} + t_{2}) \mathcal{A}_{\alpha i \theta} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2(t_{2}$

 $2\,\mathcal{A}_{\alpha\theta_i}\,((t_{.}\,-2\,t_{.})\,\mathcal{A}^{\alpha_i\theta}\,+\,2\,(2\,t_{.}\,-\,t_{.})\,\partial^\theta f^{\alpha_i})\,-\,6\,r_{.}\,\partial_\alpha\mathcal{A}^{\alpha_i\theta}\,\partial_\kappa\mathcal{A}_{i\theta}^{\kappa}\,+\,12\,r_{.}\,\partial^\theta\mathcal{A}^{\alpha_i\alpha}\,\partial_\kappa\mathcal{A}_{i\theta}^{\kappa}\,+\,6\,r_{.}\,\partial_\alpha\mathcal{A}^{\alpha_i\theta}\,\partial_\kappa\mathcal{A}_{\thetai}^{\kappa}\,-\,12\,r_{.}\,\partial^\theta\mathcal{A}_{\alpha\alpha}^{\alpha_i\alpha}\,\partial_\kappa\mathcal{A}_{\thetai}^{\kappa}))[t,\,x,\,y,\,z]\,dz\,dy\,dx\,dt$

Wave operator

Saturated propagator

 $\overset{0^{+}}{\cdot}\sigma^{\parallel} \qquad \overset{0^{+}}{\cdot}\tau^{\parallel} \qquad \overset{0^{+}}{\cdot}\tau^{\perp} \qquad \overset{0^{-}}{\cdot}\sigma^{\parallel}$

	. 0			. 0										
^{0,+} σ †	$-\frac{1}{(1+2k^2)^2t_{.1}}$	$\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	0	0										
^{0,+} τ †	$-\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	$-\frac{2 k^2}{(1+2 k^2)^2 t_1}$	0	0										
0. ⁺ τ [⊥] †	0	0	0	0										
⁰ σ †	0	0	0	$\frac{1}{k^2 r. + t.}$	$^{1,^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$\overset{1^+}{\cdot}\sigma^{{}^{\perp}}{}_{\alpha\beta}$	$1^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}_{\alpha}$	$\frac{1}{2}\sigma^{\perp}_{\alpha}$	$1^{-}\tau^{\parallel}_{\alpha}$	$1 \tau_{\alpha}$			
				$\overset{1^+}{\cdot}\sigma^{\parallel} \overset{\alpha\beta}{\dagger}$	$\frac{2(t.+t.)}{3t.t.+2k^2r.(t.+t.)}$	$\frac{\sqrt{2} (t_{1}^{-2} t_{1})}{(1+k^{2}) (3t_{1} t_{2}^{+2} + 2k^{2} r_{5} (t_{1}^{+} t_{2}^{-}))}$	$\frac{i \sqrt{2} k (t, -2 t, 1)}{(1+k^2) (3 t, t, +2 k^2 r, (t, +t, 1))}$	0	0	0	0			
				$1.^+\sigma^{\perp}$ † lphaeta	$\frac{\sqrt{2} (t_1^{-2} t_1)}{(1+k^2) (3t_1 t_2^{-2} + 2k^2 r_1 (t_1^{-2} + t_1^{-2}))}$	$\frac{6 k^2 r_1 + t_1 + 4 t_2}{(1+k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_1))}$	$\frac{i k (6 k^2 r.+t.+4 t.)}{(1+k^2)^2 (3 t. t.+2 k^2 r. (t.+t.))}$	0	0	0	0			
				$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{i\sqrt{2}k(t,-2t)}{(1+k^2)(3t,t,+2k^2r,(t,+t))}$	$-\frac{ik(6k^2r_{.5}\!+\!t_{.1}\!+\!4t_{.2})}{(1\!+\!k^2)^2(3t_{.1}t_{.2}\!+\!2k^2r_{.5}(t_{.1}\!+\!t_{.2}))}$	$\frac{k^2 \left(6 k^2 r + t + 4 t\right)}{\left(1 + k^2\right)^2 \left(3 t t + 2 k^2 r \left(t + t\right)\right)}$	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$\frac{2 i k}{t_1 + 2 k^2 t_1}$			
				$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 r + t}{(t + 2 k^2 t)^2}$	0 -	$\frac{i \sqrt{2} k (2 k^2 rt.)}{(t. +2 k^2 t.)^2}$			
				$\dot{\tau}^{\parallel} \dot{\tau}^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$1^{-}\tau^{\perp} \uparrow^{\alpha}$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i \sqrt{2} k (2 k^2 rt.)}{(t.+2 k^2 t.)^2}$	0	$\frac{-4 k^4 r_1 + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$	$^{2^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$2^+_{\cdot} \tau^{\parallel}{}_{\alpha\beta}$	$^{2}\sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2.^{+}}\sigma^{\parallel}$ † lphaeta	$\frac{2}{(1+2k^2)^2t_{.1}}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
											$2.^{+}\tau^{\parallel}$ $+^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t}$	$\frac{4k^2}{(1+2k^2)^2t_{.1}}$	0
														2

Source constraints

Spin-parity form	Covariant form	Multiplicities		
0 ⁺ τ [±] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1		
$-2 i k^{0^+} \sigma^{\parallel} + {}^{0^+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1		
$\frac{1}{2 i k $	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3		
$1^{-}\tau^{\parallel^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3		
$\overline{i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0}$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\partial_{\sigma}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{$	3		
$-2 i k 2^{+}_{0} \sigma^{\parallel^{\alpha\beta}} + 2^{+}_{0} \tau^{\parallel^{\alpha\beta}} == 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi}_{\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+2\partial_{\delta}\partial^{\delta}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha$	5		
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon}+$			
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$			
Total expected gauge generators:				

Massive spectrum

Massless spectrum

(No particles)

Unitarity conditions

t. > 0 && -t. < t. < 0 && r. > 0 && r. < 0