Case 1:21-cv-11007-DJC Document 151-5 Filed 04/05/24 Page 1 of 30

EXHIBIT E

February 23, 2024 23

1	TIMOTHY M. HICKS
2	
3	ad taken photographs of and working with Mr. Villani
4	on measurements that we were taking together.
5	Q. Okay. Did you make any notes of what you
6	observed Mr. Watkins doing during that inspection as
7	well?
8	A. Yes.
9	Q. Okay. And the photographs that you took at
10	the inspection, would you have taken photographs of
11	some of the measurements that you took?
12	A. I believe I did, but just to finish that
13	answer, most of the measurements I referenced in my
14	report were taken from the CT scan.
15	Q. And the inspection of the pistol when did
16	that take place?
17	A. I think it was October of 2022.
18	Q. Was it October 13th?
19	A. That's what I have in my report. Yes.
20	Q. Where did that inspection take place?
21	A. I'm sorry. I didn't hear you.
22	Q. Sorry. I asked you where the inspection took
23	place. I mean, was it at NSI in Marlborough?
24	A. It was.
25	Q. Okay. Was Peter Villani at that inspection

1	TIMOTHY M. HICKS
2	
3 v	vith you?
4	A. Yes.
5	Q. Was Derek Watkins at that inspection as well?
6	A. Yes.
7	Q. Were any other experts at that inspection?
8	A. I don't believe there were any other experts
9 t	here.
10	Q. Okay. And at that inspection, the pistol
11	went through a CT scan and some 2D X-rays, correct?
12	A. Yes.
13	Q. Did you do any testing of the P320 pistol at
14	the inspection?
15	A. Testing, no. And that was not the intent of
16	the inspection. I did cycle the firearm a couple of
17	times just to get a feel for it.
18	Q. What was the intent of the inspection of the
19	P320 from what you wanted to get out of the
20	inspection?
21	A. The main takeaway was going to be the CT scan
22	to be able to memorialize the condition of the firearm
23	when it's energized or cocked, and that's all we did.
24	The 2D scans just show the functionality of other
25	components, and then the other main takeaway was to

1	TIMOTHY M. HICKS
2	
3 r	eviewed his deposition transcripts. You reviewed
4 \$	ome other deposition transcripts, as you've
5 (iscussed. Looked at some CT scans of the pistols.
6 `	You looked at the pistol. You took some photographs.
7	You took some measurements, looked at some testing
8 t	hat had been produced to you and collected some
9 i	nformation about the pistol. You collected some
10	information about the incident itself, right? And
11	collected the data that you had. Is that an accurate
12	statement?
13	A. Yes. And and the only piece of that that
14	was missing was comparing the other similar incidents,
15	the videos and the reports of other incidents
16	involving the P320.
17	Q. Sure. And I think that sort of goes into
18	two, which I was going to get into, which is going
19	into analyze data. But collecting the data, you
20	gathered the information that you had available to
21	you.
22	A. Yep. I'm sorry.
23	Q. Yeah. About the P320, right? So you got
24	nformation about the model pistol and you got
25	nformation about the subject incident, and that's

1	TIMOTHY M. HICKS
2	•
3	A. Correct.
4	Q. And then you have listed the inspection, the
5 (T scans, the Peter Villani inspection photographs,
6 y	our inspection photographs, and then you have the
7 (omplaint listed. So you had this information and
8 t	hen you also had, as you mentioned, the folder that
9	you had of the I believe it was seven other P320
10	incident videos, right?
11	A. Yes.
12	Q. Okay. So you have your data that you
13	compiled. And then too, you analyzed that data, and
14	you set forth your analysis of that data within the
15	body of your report, correct?
16	A. Yes.
17	Q. Okay. And part of your analysis of that data
18	was to take some measurements and make some
19	observations and come to some conclusions about what
20	you've identified as some manufacturing defects as
21	outlined within your report, correct?
22	A. Yes. Taken the take those measurements,
23	calculating what it means as relative to the drawings,
24	and then that's a testing that I utilized to determine
25	that the parts in the subject firearm do not meet the

1	TIMOTHY M. HICKS	
2		
3 ١	vere looking at alleged defects within the gun, but	
4 y	ou have done no calculations or testing to show that	
5 t	hey will actually lead to a discharge without a	
6 t	rigger pull, correct?	
7	A. The testing and calculations I did is to	
8 1	neasure the parts and compare it to the drawings.	
9	Q. Right.	
10	A. That's what I did to develop my opinions.	
11	Q. Correct. And those opinions are that they	
12	don't meet the drawings, but you have not done any	
13	calculations or testing that that in turn will lead to	
14	a discharge without a trigger pull.	
15	A. I'm not sure I agree with that. The defects	
16	that I identify will lead to an uncommanded discharge,	
17	so it's not only the assessment of this subject	
18	firearm. It's also the other videos that show the	
19	firearm going off when it's in somebody's holster and	
20	the other, what, 200 plus incidents reported across	
21	the country.	
22	Q. So let's talk about that. You talk about	
23	other incidents reported across the country. You have	
24	been retained as an expert in Hilton v. Sig, right?	
25	A. Yes.	

1	TIMOTHY M. HICKS
2	
3	A. Thank you.
4	MR. MCKENDRY: Peter, I think you are muted.
5	MR. LEVITT: Thank you.
6	EXAMINATION
7 E	BY MR. LEVITT:
8	Q. Mr. Hicks, you testified that in your
9 i	nspection of the Ahern firearm, you identified
10	certain defects, correct?
11	A. Yes, sir.
12	Q. And you identified that there were parts that
13	were designed in a way that didn't meet Sig Sauer's
14	drawing specifications?
15	A. Correct.
16	Q. And it was a conclusion that because of these
17	defects, the firearm would not necessarily operate as
18	intended; is that correct?
19	MS. DENNISON: Objection to form.
20	THE WITNESS: That's correct.
21	BY MR. LEVITT:
22	Q. Since nobody asked you to do so, why don't we
23	actually identify the defects that you identified that
24	you feel are pertinent to the question of whether the
25	Ahern P320 is susceptible to an uncommanded discharge.
	1

1	TIMOTHY M. HICKS
2	
3	And maybe you could do these by sort of like
4 r	numbering them, like number 1, number 2
5	A. Okay.
6	Q in some sort of order. We're going to
7 p	oull up your report. If you want to refer to your
8 r	eport at all in connection with your testimony, you
9 a	are welcome to do so.
10	A. Okay. It's probably best to go to my summary
11	and opinions at the end so we don't belabor all the
12	specific measurements that I took. So the
13	Q. So maybe you could just start though, Mr.
14	Hicks if you have got your report
15	A. Uh-huh.
16	Q if you could start with the big picture.
17	What are the sort of identify the key points the
18	key defects that you identify.
19	A. Okay. As I was asked by Ms. Dennison,
20	the there is two so called internal safety features
21	of the design of this firearm that Sig has described.
22	Those being the striker to sear interface and then the
23	safety lock.
24	And as I describe in my report, both those have
25	to fail for the uncommanded discharge to occur. So

1	TIMOTHY M. HICKS
2	
3 1	hat's the high level. And then the report walks
4 1	hrough the analysis of the parts that are part of
5	hat analysis.
6	Q. Okay. Well, let's start with the striker
7	sear connection. Your report mentions that these are
8	MIM pieces, MIM parts with no secondary machine.
9	A. That's correct.
10	Q. Is that correct?
11	A. Yes, sir.
12	Q. What does that mean?
13	A. MIM is molded metal injection molding.
14	People probably have heard of plastic injection
15	molding more than they have with metal injection
16	molding. But it's a common process that is used out
17	there where they take powdered metal and some
18	binding binder materials, inject it into a mold
19	that typically has two halves. The parts are formed,
20	and they are heat treated after they are formed to
21	bake out the binder and that type of thing.
22	So it's those two are MIM parts. And
23	this in some of the literature that I have relied
24	on, the ASM documentation for powder metal components
25	describes a need when there are critical surfaces or

1	TIMOTHY M. HICKS
2	
3 (ritical dimensions on those parts being designed with
4	MIM that they should be secondarily machined. And
5 t	hey are not in this particular case.
6	Q. And you are talking about the striker and the
7 9	sear, correct?
8	A. That's correct. The two main, primary
9 (components that make up that first feature.
10	Q. And those are MIM parts that are manufactured
11	somewhere and then essentially dropped into the
12	firearm?
13	A. That's correct. Yeah. SIG purchases those
14	parts from an outside supplier overseas somewhere and
15	then brought into their factory to be assembled into
16	the firearm.
17	Q. And what is the purpose of secondary
18	machining?
19	A. It's to control or to ensure that the part
20	meets the design intent. So if you have a critical
21	dimension or a critical surface on the parts that you
22	are designing, you would use some type of secondary
23	machining, like a actual machining, or grinding.
24	Something to remove the radiused edges and the rough
25	surfaces that exist when there the parts are

1	TIMOTHY M. HICKS
2	
3 (created with the MIM process.
4	Q. And were the MIM parts, the striker and the
5 s	sear, that you inspected in this case, had those been
6 s	secondarily machined?
7	A. No. They have not.
8	Q. And in any of the firearms, any of the P320's
9 t	hat you have inspected, has the striker and the sear
0	had secondary machining?
1	A. They have not. In none of the firearms that
2	have inspected or have seen from other cases none
13	of them have been secondarily machined.
14	Q. And you have testified about a precarious
15	connection between the striker and the sear. Can you
16	describe what you mean by that?
17	A. Sure. Kristen had asked about the CT scan
18	measurements that I made on that connection. The
19	ower leg, or or step I'm sorry. The leg of the
20	striker pin itself is that first surface, and it's
21	forward edge engages with a step that is molded into
22	the sear to create that engagement between those two
23	parts that occurs when you cock or energize the
24	firearm.
25	And that, by design, is less than a millimeter

1	TIMOTHY M. HICKS	İ
2		
3 (verall, as far as the available engagement surface.	
4 /	and neither the striker nor the sear in that area are	
5 1	nachined to engage to make ensure that	
6 t	he you are getting the full engagement between	
7 1	hose two parts.	
8	Q. And what makes you say that the results of	
9 1	he CT scan and the inspection show that the actual	
10	design does not meet the drawing specifications with	
11	regard to the striker and the sear connection?	
12	A. Yeah. And Kristen had walked me through the	
13	CT scan images that I have in the report and then	
14	adjacent to those, I have the sections of the Sig	
15	drawings that apply to the areas that I am measuring	
16	with the CT scan.	
17	So I take a measurement on the CT scan. Those	
18	measurements have been verified by the microscope and	
19	by the outside lab that did measurements. And then I	
20	take those measurements and compare it to the drawing	
21	specs that have been supplied.	
22	Q. So is that a big deal that it doesn't that	
23	the design doesn't meet the drawing specifications?	
24	A. Well, the	
25	MS. DENNISON: Objection to the form.	

1	TIMOTHY M. HICKS
2	
3	THE WITNESS: the designers of this, to
4 t	egin with, felt it was important to put certain
5 d	limensions, and certain features, and certain
6 d	characteristics on the drawings at the onset. And the
7 i	ntent is, like I have with the automotive industry
8 f	or several years, is to get the parts produced that
9 v	vill meet that specification.
10	And most manufacturers will take those parts,
11	and measure them, you know as part of the first
12	articles that are received, and verify that they do
13	meet that spec.
14	If they don't, then it can't be expected to
15	operate as intended.
16	BY MR. LEVITT:
17	Q. And the way in which the striker and sear
18	engagement fails to meet the drawing specifications,
19	is it your view that that failure makes it more likely
20	or less likely that that engagement would disengage
21	without a trigger pull?
22	MS. DENNISON: Objection to form.
23	THE WITNESS: Because of the lack of meeting
24	the drawing specifications and I'll just use the
25	radius radii as an example. If you have a larger

TIMOTHY	M.	HI	CKS	
AHERN vs	SI	G	SAU	ER

1	TIMOTHY M. HICKS
2	
3 r	adius on the bottom of the striker foot, it will
4 r	elease from the sear earlier than if it was made per
5 t	he drawing. So because of that, it will not operate
6 8	and will release earlier than the design intent had
7 i	ntended.
8	BY MR. LEVITT:
9	Q. So if it had been designed to spec, that
10	connection would have been more solid than it was?
11	A. That's correct.
12	MS. DENNISON: Objection to form.
13	BY MR. LEVITT:
14	Q. Now, so that's the striker and the sear. You
15	also mentioned the safety lock as another component of
16	the sort of the safety design of the firearm; is
17	that correct?
18	A. Yes. And again, to use Sig's nomenclature,
19	t's the second internal safety feature that
20	they that they claim the firearm exhibits.
21	Q. And did your inspection in your
22	nspection, did you determine whether, with respect to
23	the Ahern firearm, that system was designed to spec?
24	A. It was not. We did we did verify that
25	with the same process as the other components.

1	TIMOTHY M. HICKS
2	
3 8	lot smaller and a lot lower smaller gauge than
4 8	nything you probably have seen.
5	But that will go into a stamping press, which has
6 a	specific dye set manufactured to produce these
7	arts. And I liken it to, like a cookie cutter. As
8 i	t goes into the dye, the first stage will cut out the
9 (outline for the part. And either in that stage or at
10	a secondary stage, you will do any additional forming
11	of the part, such as the tab that engages with
12	the with the striker pin.
13	Q. Why don't we look at figure 11 in your
14	report? It's at page 12.
15	A. Okay.
16	MS. DENNISON: I still have control. I'll
17	put it up. Unless you want me to relinquish control
18	to you, but I'm happy to put it up.
19	MR. LEVITT: Could you give control over,
20	Kristen?
21	MS. DENNISON: Oh, do you think I'm the kind
22	of person who can give control over, Peter? I can. I
23	have to close out of it, and then you can just go in
24	and pop the document up, and you should be able to
25	ake control. Okay. So I'll close out, and then you

1	TIMOTHY M. HICKS
2	
3	A. Yes, in the right hand image. That's
4 (correct.
5	Q. Okay. And is that the so what is the sort
6 (of there is something that looks like kind of like
7 a	golf club.
8	A. That's exactly how I described it. That is
9 t	he at least a cross section of the safety lock
10	with a tab kind of the well, it's supposed to be a
11	horizontal portion at the top in the middle of that
12	yellow circle.
13	Q. Okay. So if this were and this an example
14	of something that was not designed to spec?
15	A. Correct. The angle between the vertical
16	piece and the horizontal piece is supposed to be at 90
17	degrees.
18	Q. So that sort of golf club is supposed to be
19	flush with no gap in between it and that sort of
20	horizontal wall there?
21	A. Correct. In fact, if you look at Mr.
22	Watkins' report and the graphics that they have in
23	there and I think Mr. Toner's reports in past
24	cases, it shows a very flush fit and the very end of
25	that golf club area being very close to the vertical

1	TIMOTHY M. HICKS
2	
3 i	dentified in connection with the fire control unit?
4	A. Yes. You asked me about figure 12 in my
5 r	eport, which is page 13 at the top.
6	Q. Yes.
7	A. This is a slice through looking at
8 t	he from the rear of the firearm. And the angles
9 a	and dimensions in yellow on the right hand side are of
10	the so called rails of the the main stamping of the
11	fire control unit. So that stamping is what all the
12	other components in the fire control unit itself are
13	assembled to. So that whole thing then sits into the
14	grip module.
15	Q. Okay. And did you identify particular
16	defects in this respect?
17	A. Yes. The main defect are the angles, again,
18	of the what is supposed to be a 90 degree bend.
19	But I'm only showing two. There are two out of four
20	of these tabs or rails that are created that go into
21	the or that ride into slots in a slight assembly.
22	They are supposed to be 90. I had one that is almost
23	20 degrees out of spec, and the other one is what, 13,
24	almost 14 degrees out of spec. So those are supposed
25	to be 90, and they are much greater than that.

1		TIMOTHY M. HICKS
2		
3	Q.	And these are stamped
4	Α.	That is a
5	Q.	parts again?
6	Α.	Yes. That is a stamped and formed part also.
7	Correct	· ·
8	Q.	And is figure 11 on page 12 also an example
9 ¢	of this?	Or is that
10	A.	Yes.
11	Q.	is that figure 11 on the left?
12	A.	Yes. With the blue circles is another view
13	of that	relationship of the stamping that we were just
14	alking	about and the slide rails or the slide
15	assem	bly.
16	Q.	And those blue circles so those parts are
17	suppo	sed to fit neatly into that area at a 90 degree
18	angle?	
19	A.	Yes. They are supposed to fit in there
20	neatly	and squarely. Yes.
21	Q.	So that the end of that piece will be flush
22	agains	t the wall, I guess I'll call it?
23	A.	That's the intent. Correct.
24	Q.	Okay.
25	A.	Almost flush. There is going to be some
	l .	

1	TIMOTHY M. HICKS
2	
3	saying that it cannot be expected to perform as
4	ntended because of those defects.
5	Q. And so just so I can sort of try to
6	understand this as a layperson, if the slide assembly
7	and the grip if the connection between the slide
8	assembly and the grip module is continuous or there is
9	variations in it, and it can move, then that could
10	affect the parts within those two assemblies, i.e. the
11	striker and the sear, and how they interact?
12	A. Correct.
13	MS. DENNISON: Object to form.
14	BY MR. LEVITT:
15	Q. And why don't you just maybe you can put
16	that in your own words.
17	MS. DENNISON: Object to form. Go ahead.
18	THE WITNESS: Yes. It's the
19	BY MR. LEVITT:
20	Q. My question is, could you put that sort of
21	nteraction into your own words?
22	A. Yes. The the like I just described the
23	tabs on this fire control unit stamping that are not
24	made at 90 degrees. There are four of these tabs that
25	are probably a maximum of half inch long, but that's

1	TIMOTHY M. HICKS
2	
3 ј	ust a guess at this point. I'm not looking at the
4 (drawing.
5	But those four locations control the positioning
6 (of the slide assembly to the grip module assembly. So
7 i	f there is excessive play or slack in between those
8 1	two parts, and if the parts are not made to the design
9 i	intent, directly it impacts the positioning of the
10	slide I'm sorry the striker to the sear, the
11	first defects that we were talking about.
12	So it contributes to the variation of that
13	precarious joint that is at issue here.
14	Q. So if there is some play or movement between
15	the slide assembly and the grip module, that could
16	impact the connection between the striker and the
17	sear, which already has a precarious connection; is
18	that accurate?
19	MS. DENNISON: Objection to form.
20	THE WITNESS: There is excessive play between
21	the two assemblies. Kristen will probably follow up
22	with a question about what is an appropriate amount of
23	clearance between the two. It has to have some in
24	order for it to function. And related to that there
25	would also be a certain amount of lubrication that

1	TIMOTHY M. HICKS
2	
3 r	nanual safety in the P320?
4	A. Yes, California for sure. I don't recall
5 s	pecifically if Massachusetts does, but I believe they
6 0	to also.
7	Q. So California for sure you know?
8	A. Yes.
9	Q. You testified repeatedly that a to test
10	the Ahern P320 to try to replicate his uncommanded
11	discharge would not be realistic and practical. Do
12	you recall that?
13	A. Yes.
14	Q. You were never asked why it would not be
15	realistic and practical, so I thought I'd ask you
16	that. Why would it not be realistic and practical?
17	A. Well, the first step is you need to collect
18	the data from usage of the firearm for all the
19	different scenarios that we talked about today. The
20	forces imparted on it in and out of the holster, the
21	firearm the loads on the firearm when it's in a
22	holster, you know, on a person, getting in and out of
23	a vehicle, running with it, you know, apprehending
24	suspects, whatever the case may be.
25	And trying to quantify all those inputs into a
	1

February 23, 2024 220

1	TIMOTHY M. HICKS
2	
3 t	est. And then the test would have to be developed to
4 r	eplicate that or reproduce it in that same
5 6	nvironment, which would be in a holster, coming in
6 a	and out of a holster, and all the dynamics that went
7 i	nto the description of the activities of the of
8 t	he firearm being used to generate that test.
9	And to do that realistically, you are probably
10	ooking at a several month process of test duration,
11	you know, to get to the point to where this subject
12	firearm was used, and the amount of use, and firing
13	that it actually had put into it.
14	So that's another difficulty in trying to
15	replicate that test. You also have to stop it to
16	remove the firearm to test fire, you know, so many
17	rounds through it, to field strip it to clean it,
18	ubricate it, put it back in, and continue running the
19	test in order to try to comprehend and test for what
20	lead to uncommanded discharges.
21	So it's just a very complicated and complex
22	process. And expensive.
23	Q. Yeah. I mean, the way that the questions
24	were that you were fielding earlier made it sound
25	ike it's just a question of shaking it. You just,

1	TIMOTHY M. HICKS
2	
3 y	ou know, shake the gun and see if it goes off. But
4 ١	vouldn't that be enough?
5	MS. DENNISON: Objection to form.
6	THE WITNESS: No. For the the reasons
7 t	hat I gave Ms. Dennison when she asked me too,
8 i	t's that's only one condition. You know, the
9 '	ibration or the shock testing that she asked about,
10	the same firearms and the same fixture, but nobody is
11	firing them in between and nobody is using them. And
12	that same test does not necessarily comprehend the
13	oads with the firearm in a holster.
14	BY MR. LEVITT:
15	Q. So I mean, correct me if I'm wrong, what you
16	are saying is that it's not a single impulse or a
17	single vibration that's important here? It's the life
18	of the firearm that's important?
19	A. Correct.
20	Q. And so in order to try to replicate that in a
21	test, you have to try to replicate the life of that
22	firearm?
23	MS. DENNISON: Objection to form.
24	THE WITNESS: Correct. Correct. And it's
25	the same thing that we did in the automotive industry.

1	TIMOTHY M. HICKS
2	
3 \	We would collect the data, develop a test, and with a
4 (ertain level of confidence and reliability hoping
5 t	hat test does replicate the average use of that
6 p	roduct. So the same thing would apply with these
7 f	rearms.
8 1	BY MR. LEVITT:
9	Q. And is it feasible to do that in this context
10	to try to replicate the life of well, it would
11	really have to be that specific firearm, right,
12	because you already testified that each of these
13	firearms are going to be different. The internal
14	parts are going to be different, and the variances are
15	going to be different, correct?
16	A. That's correct.
17	MS. DENNISON: Objection to form.
18	THE WITNESS: Ideally, we
19	BY MR. LEVITT:
20	Q. In order to
21	A. Yep. Sorry.
22	Q. Yeah. In order to have a reliable test, you
23	would need to have that same firearm with those same
24	predicate defects, correct?
25	MS. DENNISON: Objection to form.

February 23, 2024 223

1	TIMOTHY M. HICKS	
2		
3	THE WITNESS: That is correct. Correct.	
4 E	BY MR. LEVITT:	
5	Q. And then you would have to replicate the life	
6 (of that particular firearm with whoever was handling	ĺ
7 i		
8	MS. DENNISON: Objection to form.	
9 E	BY MR. LEVITT:	
10	Q and however that person was let me say	-
11	however that person was handling it?	
12	A. That that's correct.	
13	Q. And is it your view that what happens to	
14	these firearms in terms of the connections becoming	
15	ess tight is something that happens over time, or is	
16	t something that happens just in an instant, and	
17	that's what causes the discharge?	
18	MS. DENNISON: Objection to form.	
19	THE WITNESS: It's it's over time. You	
20	know, the springs are degrading over time as the	
21	firearm is used. There is different levels of	
22	contamination or dirt, or even grease and lubricant	
23	when they are cleaning the firearms. And then there	
24	is wear of the components in the interfaces that we	
25	have been talking about today. All of that leads to a	

1	TIMOTHY M. HICKS
2	
3 (legradation of the overall system and maybe to the
4 ι	incommanded discharge.
5 E	BY MR. LEVITT:
6	Q. And then could impulses or impacts that the
7 f	rearm has had over that long time period contribute
8 t	o that degradation?
9	MS. DENNISON: Objection to form.
10	THE WITNESS: Yes.
11	BY MR. LEVITT:
12	Q. So if, for example, I think you read that
13	Lieutenant Ahern dropped his firearm a couple of days
14	before the discharge here. Is that type of impact
15	that could make those connections more precarious?
16	A. Yes.
17	MS. DENNISON: Objection to form.
18	THE WITNESS: All of that leads into the wear
19	and tear on the firearm.
20	BY MR. LEVITT:
21	Q. So rather than trying to replicate all of
22	those conditions, a manufacturer could do a CT scan of
23	the firearm to see if it meets its own specifications?
24	MS. DENNISON: Objection to form.
25	THE WITNESS: Correct.

1	TIMOTHY M. HICKS
2	
3 E	BY MR. LEVITT:
4	Q. Ms. Dennison asked you some questions about
5 h	olsters and how many holsters are there out there.
6 \	Vould you expect Sig Sauer, when it's manufacturing
7 t	his firearm, to be testing the safety of the firearm,
8 0	of the P320, in a holster do you remember all of
9 t	hose questions?
10	A. I do.
11	Q. Okay. Isn't the real question whether once
12	Sig Sauer is on notice of numerous allegations of the
13	P320 discharging in a holster, that then might be a
14	good time for them to test the safety of the P320 in a
15	holster?
16	MS. DENNISON: Objection to form.
17	THE WITNESS: That certainly makes sense.
18	And that's what we did in the automotive industry. If
19	you would see a trend with a product outside of what
20	you had expected, you would then do additional
21	testing, additional investigation to address those
22	issues.
23	BY MR. LEVITT:
24	Q. You were shown the transportation balance
25	test that you say you did. Do you remember that?

1	TIMOTHY M. HICKS	
2		
3	A. On the new firearm, that's correct, or the 2	
4 (of the 10 firearms, correct.	
5	Q. But isn't that sort of an example of what	
6 y	ou've been talking about that overtime different	
7 (onditions impact the firearm and make that connection	
8 I	ess tight?	
9	MS. DENNISON: Objection to form.	
10	THE WITNESS: Yes. And and, you know, me	
11	being the inquisitive engineer, I probably would have	
12	wanted to see those two firearms continue on with that	
13	test to see if it did beyond that one hour test lead	
14	to a disconnecting of those two components.	
15	MS. DENNISON: Peter, how much longer do you	
16	think you have?	
17	MR. LEVITT: Not that much longer.	
18	BY MR. LEVITT:	
19	Q. And sort of along these lines, there was a	
20	host of questions about sort of what impulse caused	
21	Lieutenant Ahern's firearm to discharge. What	
22	vibration, what impulse, what shock? Do you remember	
23	all those questions?	
24	A. Yes.	
25	Q. And I think at one point in answering those,	

1	TIMOTHY M. HICKS
2	
3 t	housands of parts in the automotive industry where
4 t	he vibration is a portion of it, but you also want to
5 I	ave tests that the that are representative of
6 (ther conditions. It goes beyond just vibration or
7 :	hock testing.
8	Q. I think you also said when Mr. Levitt was
9 8	sking you some questions, I think you said that part
10	of I mean, you indicated that you would not expect
11	all P320s to have susceptibility to discharge without
12	a trigger pull. Did I hear that correctly?
13	A. Some are more susceptible than others, yes.
14	mean, with two to three million of these things in
15	circulation, there would be enough time in the day for
16	me to investigate all of them if they were all
17	susceptible to it. There are varying degrees.
18	Q. And you would have to inspect them to be able
19	to determine whether they exhibited the same types of
20	feedback that you're alleging Mr. Ahern's pistol has,
21	correct?
22	A. I would expect to find similar issues with
23	the components at issue that we have that I have
24	dentified in Mr. Ahern's pistol. I haven't inspected
25	a firearm in these cases yet that had all the