Disciplina: Aprendizado Profundo Aula 1: Introdução, Motivação e Fundamentos

Eliezer de Souza da Silva sereliezer.github.io eliezer.silva@ufc.br

Mestrado e Doutorado em Ciência da Computação, Universidade Federal do Ceará (MDCC / UFC)

8 de Setembro de 2025

Roteiro da Aula de Hoje

- 1 O Curso e a Logística
- 2 A Trajetória Não-Linear do Deep Learning
- 3 Intuição e Fundamentos Matemáticos
- 4 Próximos Passos

Bem-vindos!

Meu nome é Eliezer. É um prazer tê-los aqui para explorarmos juntos as fronteiras do aprendizado profundo.

 Sou professor visitante no MDCC/UFC e pesquisador do Basque Center for Applied Mathematics (BCAM).

Bem-vindos!

Meu nome é Eliezer. É um prazer tê-los aqui para explorarmos juntos as fronteiras do aprendizado profundo.

- Sou professor visitante no MDCC/UFC e pesquisador do Basque Center for Applied Mathematics (BCAM).
- Pesquisa foca em aprendizado de máquina probabilístico, métodos Bayesianos e modelos generativos. Ph.D. em Ciência da Computação pela NTNU, Mestre pela FEEC/Unicamp e Bacharel pela UFES (Eng. Comp.).

Bem-vindos!

Meu nome é Eliezer. É um prazer tê-los aqui para explorarmos juntos as fronteiras do aprendizado profundo.

- Sou professor visitante no MDCC/UFC e pesquisador do Basque Center for Applied Mathematics (BCAM).
- Pesquisa foca em aprendizado de máquina probabilístico, métodos Bayesianos e modelos generativos. Ph.D. em Ciência da Computação pela NTNU, Mestre pela FEEC/Unicamp e Bacharel pela UFES (Eng. Comp.).
- Estou animado para conhecer vocês, os seus interesses e contribuir com o aprendizado de todos.

Bem-vindos!

Meu nome é Eliezer. É um prazer tê-los aqui para explorarmos juntos as fronteiras do aprendizado profundo.

- Sou professor visitante no MDCC/UFC e pesquisador do Basque Center for Applied Mathematics (BCAM).
- Pesquisa foca em aprendizado de máquina probabilístico, métodos Bayesianos e modelos generativos. Ph.D. em Ciência da Computação pela NTNU, Mestre pela FEEC/Unicamp e Bacharel pela UFES (Eng. Comp.).
- Estou animado para conhecer vocês, os seus interesses e contribuir com o aprendizado de todos.
- Página: https://sereliezer.github.io/
- Email: eliezer.silva@ufc.br

Terence Tao sobre o Aprendizado em Matemática

O ilustre matemático no post "Existe mais do que rigor e provas na matemática" apresenta um *processo cíclico* composto de estágios:

Terence Tao sobre o Aprendizado em Matemática

O ilustre matemático no post "Existe mais do que rigor e provas na matemática" apresenta um *processo cíclico* composto de estágios:

■ Pré-formal: Temos intuições, uma atitude lúdica, curiosa e aberta.

Terence Tao sobre o Aprendizado em Matemática

O ilustre matemático no post "Existe mais do que rigor e provas na matemática" apresenta um *processo cíclico* composto de estágios:

- Pré-formal: Temos intuições, uma atitude lúdica, curiosa e aberta.
- Formal: Buscamos desenvolver conhecimento rigoroso, de forma paulatina e cautelosa.

Terence Tao sobre o Aprendizado em Matemática

O ilustre matemático no post "Existe mais do que rigor e provas na matemática" apresenta um *processo cíclico* composto de estágios:

- Pré-formal: Temos intuições, uma atitude lúdica, curiosa e aberta.
- Formal: Buscamos desenvolver conhecimento rigoroso, de forma paulatina e cautelosa.
- Pós-formal: "Esquecemos"os formalismos e reaprendemos a partir dos fundamentos, conectando cada intuição a um formalismo e vice-versa.

Apresentação do Curso I

Estrutura da Disciplina

- Objetivo: Construir uma base teórica e prática sólida em redes neurais modernas.
- Metodologia: Desenvolver aprendizado em diferentes frentes
 - Modelagem, Teoria, Técnica e Aplicações. Participação ativa, perspectiva crítica e um "olhar de pesquisa".
- Comunicação: Usaremos o SIGAA para notícias, materiais e entregas.

Avaliação e Logística I

Método de Avaliação

O foco é 100% no aprendizado contínuo, integrado e prático. **Não** haverá provas.

- Listas de Exercícios (60%): N (N > 3) listas teórico-práticas. Alguns laboratórios contarão como listas práticas. Detalhes ainda a definir.
- **Projeto Final (40%):** Mini-projeto de pesquisa em grupos de 3, com duas entregas parciais e um seminário final.

Avaliação e Logística II

Logística Híbrida

- Presencial: Setembro, Dezembro e Janeiro.
- Remoto: Outubro e Novembro.

Feedback sobre as aulas

Feedback é necessário para aprendizado. Disponibilizarei um link para feedback anônimo, mas sintam-se à vontade para falar abertamente comigo.

Livros-Texto e Leitura Complementar I

Livros-Texto Principais

Estes livros formam a base da nossa disciplina.

- Christopher M. Bishop e Hugh Bishop (2023). *Deep Learning:* Foundations and Concepts. Springer
- Simon J.D. Prince (2023). *Understanding Deep Learning*. The MIT Press
- Kevin Patrick Murphy (2023). Probabilistic Machine Learning: Advanced Topics. The MIT Press
- Christopher M. Bishop (2006). Pattern Recognition and Machine Learning. Springer

Livros-Texto e Leitura Complementar II

Leitura Complementar Sugerida

Para aprofundar em tópicos específicos que discutiremos.

- Sam Buchanan et al. (ago. de 2025). Learning Deep Representations of Data Distributions.
 - https://ma-lab-berkeley.github.io/deep-representation-learning-book/. Online
- Peter D. Grünwald (2007). The Minimum Description Length Principle. The MIT Press
- Andreas Krause e Jonas Hübotter (2025). *Probabilistic* Artificial Intelligence. arXiv: 2502.05244 [cs.AI]

O Impacto do Deep Learning no Mundo Real I

Por que estudar Redes Neurais agora?

Estamos vivendo uma revolução tecnológica impulsionada por avanços em arquiteturas de redes neurais.

- Redes Convolucionais (CNNs): Dominaram a Visão Computacional.
 - Aplicações: Carros autônomos, diagnóstico médico por imagem, reconhecimento facial.
- Transformers: A arquitetura que define a era da IA moderna.
 - Aplicações: NLP (ChatGPT, BERT), tradução, bioinformática (AlphaFold).

O Impacto do Deep Learning no Mundo Real II

- Modelos Generativos (GANs, Difusão): Criam dados novos e realistas.
 - Aplicações: Geração de imagens, vídeos e arte (Midjourney, Dall-e), extração de conhecimento.

A Revolução Está Apenas Começando I

O Futuro: Desafios Abertos

Apesar do sucesso, os maiores desafios ainda estão por vir. A próxima geração de avanços irá além das tarefas atuais.

A Revolução Está Apenas Começando II

De Padrões a Sistemas Complexos

Precisamos ir além de "simplesmente" reconhecer padrões para resolver problemas de larga escala na engenharia e na sociedade:

- Engenharia: Design autônomo de materiais, controle de redes elétricas inteligentes, sistemas logísticos globais.
- Ciência: Modelagem climática, simulação de sistemas biológicos complexos, raciocínio matemático automatizado.
- **Sociedade**: Sistemas de ensino personalizados, otimização de políticas públicas, medicina de precisão.

O Objetivo Deste Curso: De Usuário a Criador I

1. Entender os Princípios de Design

O objetivo é saber **como construir**.

- Escolher a arquitetura correta.
- Entender trade-offs (custo vs. performance).
- Diagnosticar e depurar modelos.
- Criar soluções inovadoras.

2. Avaliar Capacidades e Limitações

Desenvolver um olhar crítico para saber o que é possível.

- Quando DL é a ferramenta certa?
- Reconhecer modos de falha (alucinações).
- Avaliar modelos além da acurácia: robustez, ética e interpretabilidade.

O Objetivo Deste Curso: De Usuário a Criador II

Leitura Adicional

Para uma visão crítica sobre os desafios futuros da IA:

Michael I Jordan (2019). "Artificial intelligence—the revolution hasn't happened yet". Em: *Harvard Data Science Review* 1.1

As Sementes Intelectuais I: Computação e Aprendizado I

Alan Turing (1948): "Intelligent Machinery"

Neste ensaio, Turing foi além da computabilidade e explorou como uma máquina poderia aprender. Turing 1969

- Ele propôs as "máquinas não-organizadas" (unorganised machines).
- Eram redes de circuitos lógicos simples (e.g., portas NAND) interconectados aleatoriamente.
- A ideia central: um sistema desorganizado poderia, através de "interferência apropriada" (treinamento), se tornar organizado.

As Sementes Intelectuais I: Computação e Aprendizado II

Figura: Ilustração da B-Type Network de Turing, uma precursora das redes neurais.

Leitura Adicional

Para aprofundar sobre as ideias de Turing

Alan M. Turing (1969). "Intelligent Machinery". Em: *Machine Intelligence 5*. Ed. por Bernard Meltzer e Donald Michie. Edinburgh University Press, pp. 3–23

As Sementes Intelectuais II: Conexões Interdisciplinares I

Cibernética

Wiener, McCulloch & Pitts (anos 40-50): A ideia de que sistemas (biológicos ou artificiais) podem aprender e se auto-regular através de feedback. Criaram o primeiro modelo matemático do neurônio.

Conexionismo e Ciências Cognitivas

Nos anos 80, o conexionismo ressurgiu como alternativa ao simbolismo, postulando que a inteligência emerge da interação de muitas unidades simples e interconectadas.

O "Teseu" de Shannon (1950), um rato artificial que aprendia a navegar em um labirinto.

As Sementes Intelectuais II: Conexões Interdisciplinares II

Leitura Adicional

Artigo trazendo uma narrativa detalhada da vida e obra de Pitts e sua relação com McCulloch e outros intelectuais da sua época

Amanda Gefter (fev. de 2015). "The Man Who Tried to Redeem the World with Logic". Em: *Nautilus*. URL:

https://nautil.us/the-man-who-tried-to-redeem-the-world-with-logic-235253/

Teoria da Informação

Claude Shannon (1948): Formalizou o conceito de *informação* e entropia. Nossos modelos aprendem para extrair informação dos dados e reduzir a incerteza sobre uma previsão.

As Sementes Intelectuais II: Conexões Interdisciplinares III

Leitura Adicional

Artigo seminal que fundamenta a área de Teoria de Informação

Claude E. Shannon (1948). A Mathematical Theory of Communication. Vol. 27, pp. 379–423, 623–656

Visão Panorâmica dos Fundamentos

O Que Vamos Explorar

Nessa seção, iremos explorar de forma conceitual os fundamentos matemáticos necessários, construindo uma intuição sólida.

- Teoria do Aprendizado Estatístico
- Teoria da Probabilidade
- Teoria da Informação
- Teoria da Otimização (próximas aulas)

Fundamento 1: Teoria do Aprendizado Estatístico I

O Espaço de Hipóteses e o Risco

- O espaço de funções que exploramos é o espaço de hipóteses, H.
- O aprendizado consiste em escolher uma hipótese $h \in \mathcal{H}$ que generalize bem para dados não vistos.
- **Risco Empírico** (\hat{R}) : O erro que medimos no conjunto de treino.
- Risco Real (R): O erro esperado na distribuição real dos dados (o que realmente queremos minimizar).

Fundamento 1: Teoria do Aprendizado Estatístico II

Espaços de Funções/Hipóteses (\mathcal{H})

Onde procuramos por h? Em uma classe de modelos (ou espaço de funções) \mathcal{H} .

- Regressão Linear: \mathcal{H} é o espaço de funções lineares $h(x) = w^{\top}x$.
- **Redes Neurais:** \mathcal{H} é um espaço vasto e altamente expressivo de funções não-lineares.

O "aprendizado" é um processo de **busca** pela função $h^* \in \mathcal{H}$ que satisfaça alguns critérios.

Fundamento 1: Teoria do Aprendizado Estatístico III

O Dilema Central

Queremos minimizar o Risco Real, mas só podemos calcular o Risco Empírico. A diferença entre eles é o gap de generalização, e seu tamanho depende da complexidade do espaço de hipóteses \mathcal{H} .

Mergulho Raso: Minimum Description Length (MDL) I

O Princípio MDL: Aprendizado como Compressão

A melhor hipótese (modelo) para explicar um conjunto de dados é aquela que permite a **compressão máxima** dos dados, resultando na descrição mais curta possível.

Mergulho Raso: Minimum Description Length (MDL) II

O Código de Duas Partes e a Navalha de Occam

O comprimento total da descrição dos dados D é a soma do comprimento da descrição da hipótese H e do comprimento da descrição dos dados codificados com a ajuda de H:

$$L(D) \approx \underbrace{L(H)}_{\text{Complexidade do Modelo}} + \underbrace{L(D|H)}_{\text{Ajuste aos Dados (Erro)}}$$

A complexidade L(H) pode ser entendida como o **tamanho do programa** que implementa o modelo. A Indução de Solomonoff formaliza isso, postulando que a melhor previsão é uma média de todos os programas que geram os dados, com peso maior para os programas **mais curtos**.

Mergulho Raso: Minimum Description Length (MDL) III

Figura: MDL busca o balanço: um modelo muito simples não captura os dados; um modelo muito complexo custa caro para ser descrito (um "programa"longo) e não generaliza.

Fundamento 2: A Linguagem da Incerteza - Probabilidade I

Axiomas da Probabilidade (Kolmogorov)

A teoria da probabilidade é uma extensão da lógica, construída sobre 3 axiomas:

- **1** A probabilidade de um evento é não-negativa: $P(A) \ge 0$.
- 2 A probabilidade do espaço amostral (evento certo) é 1: $P(\Omega) = 1$.
- 3 A probabilidade da união de eventos disjuntos é a soma de suas probabilidades.

A partir destes, derivamos as regras de soma e produto.

Fundamento 2: A Linguagem da Incerteza - Probabilidade II

Modelos Gráficos e Independência

- Permitem representar distribuições complexas sobre muitas variáveis de forma compacta, codificando suposições de independência condicional.
- Exemplo (Rede Bayesiana): $A \rightarrow B \rightarrow C$. A distribuição conjunta fatoriza:

$$p(A, B, C) = p(A)p(B|A)p(C|B)$$

 Redes neurais profundas podem ser vistas como um tipo de modelo gráfico, onde as camadas representam variáveis latentes.

Regras Fundamentais da Probabilidade I

Regra do Produto e da Soma

A partir dos axiomas, derivamos duas regras essenciais:

- Regra da Soma: $p(X) = \sum_{Y} p(X, Y)$ (Marginalização)
- Regra do Produto: p(X, Y) = p(Y|X)p(X) = p(X|Y)p(Y)

Regras Fundamentais da Probabilidade II

A Regra de Bayes

Combinando as duas formas da regra do produto, obtemos a Regra de Bayes, fundamental para o aprendizado:

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$Posterior = \frac{Verossimilhança \times Prior}{Evidência}$$

Ela nos permite "inverter" a inferência: a partir do que observamos (X), atualizamos nossa crença sobre o que não vemos (Y).

Distribuições Típicas e Momentos I

Momentos de uma Distribuição

Momentos descrevem a forma de uma distribuição. Os mais importantes são:

- Média (1º Momento): O valor esperado. $\mathbb{E}[X] = \int xp(x)dx$
- Variância (2º Momento Central): A dispersão em torno da média. $var(X) = \mathbb{E}[(X \mathbb{E}[X])^2]$

Distribuições Típicas e Momentos II

Distribuições de Probabilidade Comuns

■ Gaussiana (Normal): Usada para modelar quantidades contínuas (e.g., erros em regressão).

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

 Bernoulli: Usada para modelar um evento binário (e.g., classificação com duas classes).

Bern
$$(x|\mu) = \mu^x (1-\mu)^{1-x}$$
 para $x \in \{0,1\}$

O Princípio da Máxima Verossimilhança (MLE) I

Como encontrar os melhores pesos w? Escolhemos aqueles que tornam os dados observados $\mathcal D$ os mais prováveis.

A Função de Verossimilhança (Likelihood)

Assumindo que os dados são i.i.d., a probabilidade de todo o conjunto de dados de alvos $y = \{y_1, ..., y_N\}$ é:

$$p(y|X,w) = \prod_{n=1}^{N} p(y_n|x_n,w)$$

O objetivo do Maximum Likelihood Estimation (MLE) é encontrar os pesos w_{ML} que maximizam esta função C. M. Bishop e H. Bishop 2023.

O Princípio da Máxima Verossimilhança (MLE) II

Log-Likelihood

Na prática, maximizamos o logaritmo da verossimilhança, que transforma o produto em uma soma e é numericamente mais estável:

$$\ln p(y|X,w) = \sum_{n=1}^{N} \ln p(y_n|x_n,w)$$

De Máxima Verossimilhança a Funções de Custo I

Maximizar o log-likelihood é equivalente a minimizar o negativo do log-likelihood (NLL).

Regressão (Likelihood Gaussiano) \rightarrow Erro Quadrático

Assumindo que o alvo y_n é a saída da rede $g(x_n, w)$ mais um ruído Gaussiano, temos $p(y_n|x_n, w) = \mathcal{N}(y_n|g(x_n, w), \sigma^2)$. O NLL do dataset é:

$$-\ln p(y|X,w) = \frac{1}{2\sigma^2} \sum_{n=1}^{N} (y_n - g(x_n, w))^2 + \frac{N}{2} \ln(2\pi\sigma^2)$$

Minimizar isso em relação a w é o mesmo que minimizar o erro da soma dos quadrados (sum-of-squares error).

De Máxima Verossimilhança a Funções de Custo II

Classificação (Likelihood de Bernoulli) o Cross-Entropy

Para um alvo binário $y_n \in \{0,1\}$, assumimos $p(y_n|x_n,w) = \text{Bern}(y_n|g(x_n,w))$. O NLL é:

$$-\ln p(y|X,w) = -\sum_{n=1}^{N} \{y_n \ln g(x_n,w) + (1-y_n) \ln(1-g(x_n,w))\}$$

Esta é exatamente a função de custo de **entropia cruzada binária** (binary cross-entropy).

Fundamento 3: Teoria da Informação I

Mergulho Raso: De Onde Vem o Logaritmo na Entropia?

Queremos uma função S(p) que meça a "surpresa" de um evento com probabilidade p. Intuitivamente, ela deve satisfazer:

- 1 Surpresa é não-negativa e decresce com p.
- 2 A surpresa de dois eventos **independentes** ocorrendo juntos é a **soma** de suas surpresas individuais:

$$S(p_1 \cdot p_2) = S(p_1) + S(p_2)$$

A única família de funções que satisfaz a propriedade aditiva (2) é a logarítmica, $S(p) = -C \log(p)$. A Entropia é, portanto, a surpresa média de uma distribuição, $\mathbb{E}[S(p(X))]$.

Fundamento 3: Teoria da Informação II

Entropia

Para uma variável aleatória X com função de probabilidade p, a entropia mede a "surpresa" média Claude E. Shannon 1948:

$$H(p) = -\sum_{k=1}^{K} p(x_k) \log_2 p(x_k)$$

É a quantidade média de informação (em bits) que ganhamos ao observar uma amostra de X.

- Uma moeda honesta (P(cara) = 0.5) tem entropia máxima (1 bit). Cada resultado é igualmente surpreendente.
- Uma moeda viciada (P(cara) = 0.99) tem entropia próxima de zero, então não há surpresa.

Fundamento 3: Teoria da Informação III

Divergência KL e Cross-Entropy

A Divergência Kullback-Leibler (KL) mede a dissimilaridade entre duas distribuições $p \in q$:

$$\mathsf{KL}(P||Q) = -\sum_{k=1}^K p(x_k) \log_2 \left(\frac{q(x_k)}{p(x_k)} \right) \ge 0$$

Isso nos leva à **Cross-Entropy**, H(p,q), que é a base para a função de custo em classificação. Minimizar a cross-entropy é equivalente a minimizar a divergência KL entre a distribuição real dos dados (P) e a previsão do nosso modelo (Q) C. M. Bishop 2006.

$$H(P,Q) = H(P) + KL(P||Q)$$

Anatomia de uma Rede Neural I

Blocos de Construção

Uma rede neural é um **grafo computacional** composto em camadas, onde cada neurônio (ou unidade) realiza uma operação simples:

- Transformação Linear: Uma soma ponderada das entradas, mais um viés. $z = w^T x + b$
- Função de Ativação: Uma transformação não-linear aplicada ao resultado. $a = \sigma(z)$

Os **pesos** (w) e **vieses** (b) são os parâmetros que o modelo aprende durante o treinamento.

Anatomia de uma Rede Neural II

Composição em Camadas

A saída de uma camada de neurônios, $a^{(I)} = \sigma(W^{(I)}a^{(I-1)} + b^{(I)})$, serve como entrada para a próxima. Essa composição hierárquica é o que permite que redes profundas aprendam representações (features) cada vez mais complexas dos dados.

Aproximação de Funções com Funções de Base I

A Ideia Central da Teoria da Aproximação

Qualquer função "bem comportada" pode ser representada como uma **soma ponderada** de um conjunto de funções mais simples (as "funções de base" ϕ_i).

$$g(x) = \sum_{i=1}^{M} w_i \phi_i(x)$$

Exemplos clássicos de funções de base:

- Polinômios: Base para a expansão em Série de Taylor.
- Senos e Cossenos: Base para a representação em Série de Fourier.

Aproximação de Funções com Funções de Base II

■ Funções Radiais de Base (RBFs): Usadas em SVMs e outros métodos.

Conexão com Redes Neurais

Uma camada de uma rede neural calcula uma combinação linear (soma ponderada) das saídas da camada anterior. Essas saídas atuam como funções de base não-lineares que são aprendidas a partir dos dados, em vez de serem fixas. Portanto a classe de modelos com funções de base $g(x) = \sum_{i=1}^{M} w_i \phi_i(x)$ define uma rede neural rasa, ou seja, de apenas uma ou poucas camadas.

Exemplo Prático: Rede Rasa vs. Aprendizado de Features I

Para ilustrar a diferença entre bases fixas e bases aprendidas, vamos analisar um exemplo prático.

Laboratório Interativo no Google Colab

O código completo para este exemplo está disponível como um notebook interativo. Recomendo que todos abram e executem o código para explorar os resultados.

Abrir Notebook no Colab

Exemplo Prático: Rede Rasa vs. Aprendizado de Features II

Objetivo do Experimento

Vamos tentar aproximar um polinômio desconhecido usando uma rede RBF de duas maneiras:

- Modelo 1 (Raso): Centros e larguras das RBFs são fixos. Apenas os pesos da camada final são aprendidos (via Mínimos Quadrados).
- 2 Modelo 2 (Deep-like): Centros, larguras e pesos são todos aprendidos simultaneamente via Descida de Gradiente.

Resultados do Experimento

Figura: Passo 1: Geramos 100 pontos de dados com ruído a partir de um polinômio aleatório (a "verdade" que queremos descobrir).

Figura: Passo 2: O modelo de bases aprendidas (azul) se ajusta muito melhor à função verdadeira do que o modelo de bases fixas (vermelho).

Conclusão do Exemplo: A Formulação

A rede RBF implementada tem a seguinte forma:

$$g(x) = \sum_{i=1}^{M} w_i \phi_i(x) + w_0$$
 onde $\phi_i(x) = \exp\left(-\frac{(x-c_i)^2}{2\sigma_i^2}\right)$

Modelo 1

Os parâmetros das funções de base (c_i, σ_i) são **fixos**. O aprendizado se resume a encontrar os pesos w que resolvem um problema de Mínimos Quadrados. A não-linearidade é pré-definida, não aprendida.

Modelo 2

Os parâmetros das funções de base (c_i, σ_i) também são aprendidos via otimização. A rede descobre as representações (ou features) mais eficientes diretamente a partir dos dados.

O Mapa do Nosso Curso

Nossa Jornada

Vamos explorar diferentes formas de construir o espaço de hipóteses \mathcal{H} :

- Começaremos com o Perceptron, a unidade mais básica.
- 2 Construiremos FNNs para aproximação de funções gerais.
- 3 Especializaremos para diferentes tipos de dados:
 - Sequências com RNNs e Transformers.
 - Grafos com GNNs.
- Exploraremos modelos que aprendem a própria distribuição dos dados p(x) para gerar amostras novas (Modelos Generativos).

Encerramento e Perguntas

Para a Próxima Aula (Quarta-feira)

- **Tópico**: O Perceptron e a Descida de Gradiente.
- Objetivo: Implementar nosso primeiro algoritmo de aprendizado.

Tarefa

Comecem a pensar e a formar os grupos de 3 pessoas para o projeto final.

Perguntas?

Referências I

- Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer.
- Bishop, Christopher M. e Hugh Bishop (2023). *Deep Learning: Foundations and Concepts*. Springer.
- Buchanan, Sam et al. (ago. de 2025). Learning Deep Representations of Data Distributions.
 - https://ma-lab-berkeley.github.io/deep-representation-learning-book/. Online.
- Gefter, Amanda (fev. de 2015). "The Man Who Tried to Redeem the World with Logic". Em: Nautilus. URL: https://nautil.us/the-man-who-tried-to-redeem-the-world-with-logic-235253/.
- Grünwald, Peter D. (2007). The Minimum Description Length Principle. The MIT Press.

Referências II

- Jordan, Michael I (2019). "Artificial intelligence—the revolution hasn't happened yet". Em: Harvard Data Science Review 1.1.
- Krause, Andreas e Jonas Hübotter (2025). *Probabilistic Artificial Intelligence*. arXiv: 2502.05244 [cs.AI].
- Minsky, Marvin e Seymour A Papert (1969). Perceptrons: An introduction to computational geometry. MIT press.
- Murphy, Kevin Patrick (2023). Probabilistic Machine Learning: Advanced Topics. The MIT Press.
- Prince, Simon J.D. (2023). *Understanding Deep Learning*. The MIT Press.
- Rosenblatt, Frank (1958). "The perceptron: a probabilistic model for information storage and organization in the brain.". Em: *Psychological review* 65.6, p. 386.

Referências III

- Shannon, C. E. (1988). "Programming a computer for playing chess". Em: *Computer Chess Compendium*. Berlin, Heidelberg: Springer-Verlag, pp. 2–13. ISBN: 0387913319.
- Shannon, Claude E. (1948). A Mathematical Theory of Communication. Vol. 27, pp. 379–423, 623–656.
- Turing, Alan M. (1969). "Intelligent Machinery". Em: *Machine Intelligence 5*. Ed. por Bernard Meltzer e Donald Michie. Edinburgh University Press, pp. 3–23.