

왜(Why)?

이 보조기기인가

Problems

http://it.chosun.com > site > data > html_dir > 2017/12/26

VR 게임 즐기던 러시아 40대 남성 사망 - IT조선 > 기업 > 외신

Dec 26, 2017 — 러시아 국영 통신사인 이타르타스 통신은 22일(이하 현지시각) 모스크바에 거주하는 44세 한 남성이 'VR게임'을 즐기던 중 사고로 목숨을 잃었다고 ...

https://www.insight.co.kr > news :

가상현실에 몰입해 현실서 사고 난 줄도 모르고 계속 VR 게임 ...
Mar 21, 2022 — VR 속 가상현실에 몰입해 기계가 고장나 사고가 난 줄도 모르는 여성의 모습이 포착됐다.

영국 보험사 아비바에 따르면 VR 콘텐츠 관련 가정 보험 청구 건수가 1년 전보다 31% 증가 했다고 가디언이 12일(현지 시각) 보도했다. Feb 14, 2022

VR기기 끼고 어퍼컷 날리다 천장팬 와장창... 가구 파손 보험 ...

사람(동물)을 인식해서

시각적인 알림을 주고

보조기기 제작

무엇을(What)?

어떤 보조기기를 만들 것인가

PIR센서로 사람 탐지

사람의 존재를 판단 다만 정확한 거리는 알 수 없음 적외선센서와 상호 보완

각 PIR센서를 통해서 값을 받아 옴

총 12개의 PIR센서로부터 결과 값을 받음 (3 개 X 4 CLUSTER)

CLUSTER 업데이트

CLUSTER의 3개 PIR센서 중 2개 동작 시 CLUSTER에서 사람을 탐지한 것으로 판단

반응한 CLUSTER 개수 파악

사람을 탐지한 CLUSTER의 개수를 탐지

적외선센서 호출

탐지한 CLUSTER 의 개수와 위치에 따라 적절한 위치의 적외선 센서 동작

적절한 위치?

반대쪽 무릎이 탐지 되지 않도록 각 무릎을 절반으로 나누어 센서 탑재

PIR센서의 탐지 각도는 대략 110도!

4개 CLUSTER 탑재하는 경우, 각각 60도를 이루고 그 결과 서로 탐지 범위가 겹침.

따라서 센서는 4개 CLUSTER이지만, 겹침 여부에 따라 7개 단위로 나누어 탐지 가능

각 탐지 범위에 거리 센서 배치 시, 각 무릎에 적외선 센서 7개와 PIR 센서

적외선 센서로 거리 측정

적외선 센서

PIR센서를 보완하여 사람과의 거리를 직접적으로 측정

사람을 탐지한 CLUSTER가 1개인 경우

해당 CLUSTER 와 동일한 방향으로 배치된 적외선 센서가 동작

연속한 CLUSTER 2개가 탐지한

두 CLUSTER 사이에 있는 적외선센터가 동작

연속하지 않은 CLUSTER 2개가

2명의 사람이 서로 다른 방향에서 접근하는 것으로 판단 각 CLUSTER 방향의 적외선 센서가 동작

거리 측정

적외선센서가 측정한 거리 값 저장

거리 필터링

필터링

유효하지 않은 값을 걸러내고 측정된 값이 출렁이는 것을 방지 가장 신뢰할 수 있는 결과 반환

필터링

측정된 거리가 센서 최소 측정거리보다 적은 경우 센서 최대 측정거리보다 먼 경우 해당 값을 제외

중간 값 선택

필터링 된 거리 값을 제외하고 총 10개의 값을 받아와 그 중 중간값 선택

결과 반환

선택된 값에 이상이 없는지 최종 확인 이상 없을 경우 return

판단 및 경고

어떻게(How)?

만들 것인가

W I R I N G

COM5 - 🗆 X 전송 get_ir_dis initiate sensor loop finished sorting complete yet num ≥번 클러스터 : 충돌위험. 초측거리 : 산출거리 : 570번 클러스터 : 0 1번 클러스터 : 1 2번 클러스터 : 0 3번 클러스터 : 0 get_ir_dis initiate sensor loop finished sorting complete jet num)번 클러스터 : 0 1번 클러스터 : 1 2번 클러스터 : 0 3번 클러스터 : 0 get_ir_dis initiate sensor loop finished sorting complete jet num)번 클러스터 : 0 l번 클러스터 : 1 2번 클러스터 : 0 3번 클러스터 : 0 get_ir_dis initiate sensor loop finished sorting complete jet num)번 클러스터 : 0 l번 클러스터 : 0 2번 클러스터 : 0 3번 클러스터 : 0 탐지된 사람 없음 ☑ 자동 스크롤 □ 타임스탬프 표시 새 중 ∨ 9600 보드레이트 ∨ 총력 지우기

PROTOTYPE 1

완성된 2가지 프로토타입

거치형 모델 PROTOTYPE 1

PROTOTYPE 2

완성된 2가지 프로토타입

착용형 모델 PROTOTYPE 2

어떻게(How)?

나아갈 것인가

VS.

적외선 센서

장점

정확한 거리 측정 합리적인 가격

단점

아날로그 기반 센서 값이 일부 튐

인식한 것이 사람인지 사물인지 구분 불가

사용 가능

PIR 센서

장점

매우 저렴한 가격 넓은 탐지 범위 인식률 조절 가능

단점

정확한 거리를 받지 못함

거리 측정위해 다른 센서와의 동시 사용

사용 가능

카메라

장점

가장 정확한 사람 탐 지

단점

정보 처리 위해 고성능의 프로세서 필요

단기간 개발하기 부적합 (데이터 학습 강제)

부적합

LIDAR

장점

높은 정밀도 넓은 탐지 범위

단점

매우 비싼 가격

같은 선상에 걸리는 물체 없어야 함

부적합

주변 환경에 영향을 많이 받으며 EMI 이슈에 민감함.

Infrared Sensor

직선 거리 측정은 정확하나 측정 각도에 따라 정확성의 차이가 존재함.

Depth Camera

적외선 센서보다 정확하게 거리를 측정할 수 있으며 Object Detection 분야로의 확장성이 뛰어남.

VR기기에 부착된 LED를 구현할 때 사용자 입장에서 불편한 선을 줄일 수 있다.

Arduino Mega

동작 속도가 빠르지 않으며 기능 구현에 한계가 존재함.

Jetson Nano

Object Detection과 같은 비디오 연산에 특화되어 있음.

01. Object Detection

'Depth camera'와 'Jetson Nano'를 이용하여 탐지 범위 내에서 고정되어 있는 물체를 배제하고 움직이는 물체에 대해서만 VR 사용자에게 위험을 알릴 수 있어 기존에 Oculus에서 제공하는 Room Scale 기능과 효율적으로 연계할 수 있다.

02. 경량화 및 소형화

현재 제품을 구현할 때 PIR 센서의 인식 정확도를 높이기 위해 차용한 Cluster 구조와 적외선 센서의 좁은 탐지 는 센서의 개수를 증가시켜 제품이 커지고 무거워졌다. 이를 Depth camera의 높은 정확도와 비교적 큰 탐지 범위를 이용해 더 가볍고 작게 제품을 구현하여 사용자의 몰입도를 해치지 않는 선에서 안전성을 제공할 수 있다.

