NCEP staff perspective on bio-energy

Drew Kodjak February 23, 2004 Washington DC

What is the NCEP?

- Bi-Partisan group of 18 experts from academia, government, industry, labor, consumer protection and environment.
- Developing long-term strategy of Near-term measures. Final Report January 2005.
- Philanthropic. Hewlett, Pew, MacArthur Packard and Energy Foundations.
- Seek to combine academic credibility and political immediacy.

Commissioners

Commissioners

John P. Holdren

Co-Chair

Teresa and John Heinz Prof. of Environmental Policy, Harvard University

William K. Reilly

Co-Chair

President and CEO of Aqua International Partners, Chairman of the World Wildlife Fund, and former Administrator, U.S. EPA

John W. Rowe

Co-Chair

Chairman and CEO, Exelon Corporation

Philip R. Sharp

Congressional Chair

Senior Advisor, Lexecon, Inc.; Former U.S. Representative, Indiana

Marilyn Brown

Director, Energy Efficiency and Renewable Energy Program, Oak Ridge National Labs

Ralph Cavanagh

Senior Attorney and Co-Director of Energy Program, Natural Resources Defense Council

Archie W. Dunham

Chairman and CEO, Conoco, Inc.

Rodney Ellis

State Senator, Texas

Leo Gerard

International President, United Steelworkers of America

F. Henry Habicht

CEO, Global Environment and Technology Foundation, Former Deputy Administrator, Environmental Protection Agency

Paul L. Joskow

Professor of Economics and Director of MIT Center for Energy and Environmental Policy Research, Massachusetts Institute of Technology

Andrew Lundquist

President, The Lundquist Group, and former Executive Director, National Energy Policy Development, The White House

Mario J. Molina

Institute Professor, Massachusetts Institute of Technology

Sharon L. Nelson

Senior Assistant Attorney General, Consumer Protection Division, Washington Attorney Generals Office and Chair, Board of Directors, Consumers Union

Linda Stuntz

Partner, Stuntz, Davis & Staffier, Former Deputy Secretary of Energy

Susan Tierney

Senior Vice President, Lexecon, Inc., former Assistant Secretary of Energy

James Woolsey

Vice President, Booz, Allen, Hamilton; former Director of the Central Intelligence Agency

Martin B. Zimmerman

Group Vice President, Corporate Affairs, Ford Motor Company

Research & Analysis

Completed Studies

- Reviving the Electricity Sector
- Increasing Natural Gas Supplies

Studies Underway

30+ Studies Underway in 3 Topic Areas:

- National Security
- Climate Change
- Technology Policy

Quantifiable Externalities: Economic literature finds significant external costs in transportation / oil use.

Note: These are midpoint estimates within wide ranges of possible values.

Difficult-to-Quantify Market Failures

- These market failures are important to consider when making policy choices, despite difficulty in quantifying marginal costs.
- Examples:
 - Indirectly funding our terrorist organizations with petrodollars, particularly after 9/11.
 - Preparing for the future economic scarcity of oil
 - Uncertainty surrounding the political stability of Saudi Arabia
 - Potential conflict with China over future oil reserves
 - Diplomatic coddling of hostile regimes.

Transportation Largely Unaffected by a Global Carbon Price Because No Alternative to Oil.

Base Case

Carbon Stabilization Regime

Table 1: Major* Transportation Policy Evaluation

Policy	Cost Effectiveness		Other Externalities		Politics	Ease of
	Oil	Climate Change	Traffic	Local Pollutants	and Equity	Implementation
Gasoline Tax (28 cents/gal) Tax is a Transfer Payment	•	00	•	•	••	00
Passenger vehicle fuel economy standards (15% increase)	0	00	•	•	•	00
Heavy and medium duty fuel economy standards (38% increase)	0	00	•	•	•	••
Bioethanol (Agricultural Waste and Energy Crops)	•	•	0	0	•	•
Domestic Oil Production (ANWR+)	•	0	0	•	•	•
Gasoline Tax (28 cents/gal) Tax is a Cost	•	••	•	•	•	00

Key: ○○ = **Excellent**, **○** = **Good**, **○** = **Mixed or Neutral**, **○** = **Fair**, **○○** = **Poor**

*Major Transportation Policies are capable of reducing or generating ~ 1 MMBD oil by 2025.

What we hope to learn...

- How much land will it take to meet half our transportation fuel consumption needs?
- How much more will a gallon of bioethanol cost compared to a gallon of gasoline / diesel fuel with and without accounting for?
- When will commercial plants become competitive, and what and where are the most likely early feedstocks?
- What will be the impact on wildlife, farmer incomes, agricultural subsidies?
- What are the three major challenges for R&D, and how might we better target current efforts?
- What policies are needed to accelerate the transition towards significant production of bioethanol in the US?

Cost of bioethanol ranges widely based on DOE cost estimates.

Cost Ranges of Gasoline, Corn Ethanol and Bioethanol

Five pending commercial bio-ethanol plants suggests that for certain waste feedstocks, bio-ethanol costs are much lower than current DOE estimates.

Company Project location	Startup	Technology	Feedstock	Ethanol production
BCI Jennings, LA	2003	Two-stage dilute acid	Bagasse	20 MM GPY (gallon/year)
Masada Middletown, NY	2003	Concentrated acid	MSW	10 MM GPY
BCI/Gridley LLC Gridley, CA	2004	Two-stage dilute acid	agricultural wastes and wood wastes	20 MM GPY
Sealaska Ketchikan, Alaska	2004	Two-stage Dilute acid	Timber harvest and mill residues	6 MM GPY
BCI/Collins Pine Chester, CA	2003	Enzymatic	Timber harvest and mill residues	20 MM GPY

