Interview Questions on Algebra

Wenhan Dai

Set IX: Categories and Functors

1. Which is the connection between Hom and tensor product? What is this called in representation theory?

Answer. They are a pair of adjoint functors, i.e., in some small category C,

$$\operatorname{Hom}_{\mathcal{C}}(X \otimes Y, Z) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X, \operatorname{Hom}(Y, Z)).$$

This is called **Frobenius reciprocity** in representation theory, which states tensor product as the functor for induced representations and Hom as the functor of restrictions, respectively.

2. Can you get a long exact sequence from a short exact sequence of abelian groups together with another abelian group?

Answer. This is just the long exact sequence of group cohomology. For a (discrete) group G, which is not necessarily abelian, acting on another abelian group M (with discrete topology), which is called a G-module, we can define $H^i(G, M) := \operatorname{Ext}^i_{\mathbb{Z}[G]}(\mathbb{Z}, M)$. This theory is covariant in M and contravariant in G.

3. Do you know what the Ext functor of an abelian group is? Do you know where it appears? What is $\text{Ext}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$? What is $\text{Ext}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z})$? How about $\text{Ext}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Q})$?

Answer. The Ext functor is a derived functor that measures the failure of a short exact sequence of modules to split. Also, $\operatorname{Ext}(A,B)$ classifies abelian extensions of A by B. It appears in Cartan–Eilenberg's 1956 book $Homological\ Algebra$.

Solution. For any \mathbb{Z} -module M, the homomorphism $\mathbb{Z} \to M$ is defined by the image of 1 in H. So

$$\operatorname{Hom}(\mathbb{Z}, M) = M, \quad \operatorname{Ext}(\mathbb{Z}, M) = 0$$

because \mathbb{Z} is a projective module (c.f. Set 7, Question 8). We begin the computation with a projective resolution of $\mathbb{Z}/m\mathbb{Z}$ as follows:

$$0 \longrightarrow \mathbb{Z} \stackrel{\times m}{\longrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z} \longrightarrow 0.$$

Taking the contravariant functor Hom(-, M), we get

$$0 \longrightarrow \operatorname{Hom}(\mathbb{Z}/m\mathbb{Z}, M) \longrightarrow \operatorname{Hom}(\mathbb{Z}, M) \xrightarrow{\times m} \operatorname{Hom}(\mathbb{Z}, M) \longrightarrow \operatorname{Ext}(\mathbb{Z}/m\mathbb{Z}, M) \longrightarrow \operatorname{Ext}(\mathbb{Z}, M) = 0.$$

It follows that

$$\operatorname{Hom}(\mathbb{Z}/m\mathbb{Z}, M) = \operatorname{Ker} m = M[m], \quad \operatorname{Ext}(\mathbb{Z}/m\mathbb{Z}, M) = M/mM.$$

In particular, for d=(m,n), $\operatorname{Hom}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z})=0$ and $\operatorname{Hom}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z})=\mathbb{Z}/d\mathbb{Z}$. Moreover,

$$\operatorname{Ext}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/d\mathbb{Z}, \quad \operatorname{Ext}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}) = \mathbb{Z}/m\mathbb{Z}.$$

Also, we have $\text{Hom}(\mathbb{Z}/m\mathbb{Z},\mathbb{Q}) = \text{Ext}(\mathbb{Z}/m\mathbb{Z},\mathbb{Q}) = 0$.