ΠΡΟΓΡΑΜΜΑ

по дисциплине: Многомерный анализ, интегралы и ряды

по направлению

подготовки: <u>03.03.01 «Прикладные математика и физика»</u>,

09.03.01 «Информатика и вычислительная техника»,

10.05.01 «Компьютерная безопасность», 11.03.04 «Электроника и наноэлектроника».

16.03.01 «Техническая физика»,

19.03.01 «Биотехнология»

физтех-школы: ФАКТ, ФЭФМ, ФБМФ, ФРКТ

кафедра: **высшей математики**

 $\begin{array}{ccc} \text{курс:} & & \underline{1} \\ \text{семестр:} & & \underline{2} \end{array}$

лекции — 60 часов Экзамен — 2 семестр

практические (семинарские)

<u>занятия — 60 часов</u>

лабораторные занятия — нет

ВСЕГО АУДИТОРНЫХ ЧАСОВ — 120 — Самостоятельная работа:

 $_{\text{теор. курс}} - 30$ часов

Программу составили:

д. ф.-м. н., профессор С. А. Гриценко к. ф.-м. н., доцент В. П. Ковалёв к. ф.-м. н., доцент А. Ю. Петрович д. ф.-м. н., профессор В. Ж. Сакбаев

Программа принята на заседании кафедры высшей математики 2 ноября 2023 г.

Заведующий кафедрой д. ф.-м. н., профессор

Г. Е. Иванов

- 1. Точечное *п*-мерное пространство. Расстояние между точками, его свойства. Предел последовательности точек в *п*-мерном евклидовом пространстве. Теорема Больцано-Вейерштрасса и критерий Коши сходимости последовательности. Внутренние, предельные, изолированные точки множества, точки прикосновения. Открытые и замкнутые множества, их свойства. Внутренность, замыкание и граница множества.
- 2. Предел числовой функции нескольких переменных. Определения в терминах окрестностей и в терминах последовательностей. Предел функции по множеству. Пределы по направлениям. Повторные пределы. Исследование предела функции двух переменных при помощи перехода к полярным координатам.
- 3. Непрерывность функции нескольких переменных. Непрерывность по множеству. Непрерывность сложной функции. Свойства функций, непрерывных на компакте ограниченность, достижимость точных нижней и верхней граней, равномерная непрерывность. Теорема о промежуточных значениях функции, непрерывной в области.
- 4. Частные производные функции нескольких переменных. Дифференцируемость функции нескольких переменных в точке, дифференциал. Необходимые условия дифференцируемости, достаточные условия дифференцируемость сложной функции. Инвариантность формы дифференциала относительно замены переменных. Градиент, его независимость от выбора прямоугольной системы координат. Производная по направлению.
- 5. Частные производные высших порядков. Независимость смешанной частной производной от порядка дифференцирования. Дифференциалы высших порядков, отсутствие инвариантности их формы относительно замены переменных. Формула Тейлора для функций нескольких переменных с остаточным членом в формах Лагранжа и Пеано.
- 6. Мера Жордана в n-мерном евклидовом пространстве. Критерий измеримости. Измеримость объединения, пересечения и разности измеримых множеств. Конечная аддитивность меры Жордана.
- 7. Определенный интеграл Римана. Суммы Римана, суммы Дарбу, критерий интегрируемости. Интегрируемость непрерывной функции, интегрируемость монотонной функции, интегрируемость ограниченной функции с конечным числом точек разрыва. Свойства интегрируемых функций: аддитивность интеграла по отрезкам, линейность интеграла, интегрируемость произведения функций, интегрируемость модуля интегрируемой функции, интегрирование неравенств, теорема о среднем. Свойства интеграла с переменным верхним пределом непрерывность, дифференци-

- руемость. Формула Ньютона-Лейбница. Интегрирование подстановкой и по частям в определенном интеграле.
- 8. Геометрические приложения определенного интеграла площадь криволинейной трапеции, объем тела вращения, длина кривой, площадь поверхности вращения.
- 9. Криволинейный интеграл первого рода и его свойства. Ориентация гладкой кривой. Криволинейный интеграл второго рода и его свойства.
- 10. Несобственный интеграл (случай неограниченной функции и случай бесконечного промежутка интегрирования). Критерий Коши сходимости интеграла. Интегралы от знакопостоянных функций. Признаки сходимости. Интегралы от знакопеременных функций: сходимость и абсолютная сходимость. Признаки Дирихле и Абеля сходимости интегралов.
- 11. Числовые ряды. Критерий Коши сходимости ряда. Знакопостоянные ряды: признаки сравнения сходимости, признаки Даламбера и Коши, интегральный признак. Знакопеременные ряды: сходимость и абсолютная сходимость. Признаки Дирихле и Абеля. Независимость суммы абсолютно сходящегося ряда от порядка слагаемых. Теорема Римана о перестановке членов сходящегося, но не абсолютно сходящегося ряда (без доказательства). Произведение абсолютно сходящихся рядов.
- 12. Равномерная сходимость функциональных последовательностей и рядов. Критерий Коши равномерной сходимости. Признак Вейерштрасса равномерной сходимости функциональных рядов. Непрерывность суммы равномерно сходящегося ряда из непрерывных функций. Почленное интегрирование и дифференцирование функциональных последовательностей и рядов. Признаки Дирихле и Абеля.
- 13. Степенные ряды с комплексными членами. Первая теорема Абеля. Круг и радиус сходимости. Характер сходимости степенного ряда в круге сходимости. Формула Коши—Адамара для радиуса сходимости. Непрерывность суммы комплексного степенного ряда.
- 14. Степенные ряды с действительными членами. Сохранение радиуса сходимости степенного ряда при почленном дифференцировании и интегрировании ряда. Бесконечная дифференцируемость суммы степенного ряда на интервале сходимости. Единственность разложения функции в степенной ряд, ряд Тейлора. Формула Тейлора с остаточным членом в интегральной форме. Пример бесконечно дифференцируемой функции, не разлагающейся в степенной ряд. Разложение в ряд Тейлора основных элементарных функций. Разложение в степенной ряд комплекснозначной функции e^z .

Литература

Основная

- 1. Бесов О. В. Лекции по математическому анализу. Москва: Физматлит, 2020.
- 2. Иванов Г. Е. Лекции по математическому анализу. Ч. 1. Москва : МФТИ, 2011.
- 3. *Петрович А. Ю.* Лекции по математическому анализу. Ч. 2. Многомерный анализ. Интегралы и ряды. Москва : МФТИ, 2017.
- 4. *Тер-Крикоров А. М.*, *Шабунин М. И*. Курс математического анализа. Москва : МФТИ, 2007.
- 5. Яковлев Г. Н. Лекции по математическому анализу. Ч. 1. Москва: Физматлит, 2004.

Дополнительная

- 6. Кудрявцев Л. Д. Курс математического анализа. 5-е изд. Москва : Дрофа, 2004.
- 7. $Ky \partial p \pi 6 u e 6 J. Д.$ Краткий курс математического анализа. Т. 1. Москва : Наука, 2004.
- 8. Никольский С. М. Курс математического анализа. Т. 1. Москва: Наука, 2000.
- 9. *Ильин В. А.*, *Позияк Э. Г.* Основы математического анализа. Т 1, 2. Москва : Наука-Физматлит, 1998.
- 11. Зорич В. А. Математический анализ. Т. 1. Москва : Наука, 1981.

ЗАДАНИЯ

Литература

- 1. Сборник задач по математическому анализу. Интегралы. Ряды: учебное пособие/под ред. Л.Д. Кудрявцева. Москва : Физматлит, 2012. (цитируется C2)
- Сборник задач по математическому анализу. Функции нескольких переменных: учебное пособие/под ред. Л.Д. Кудрявцева. — Москва: Физматлит, 2003. (цитируется — С3)

Замечания

- 1. Задачи с подчёркнутыми номерами рекомендовано разобрать на семинарских занятиях.
- 2. Задачи, отмеченные *, являются необязательными для всех студентов.

ПЕРВОЕ ЗАДАНИЕ

(срок сдачи 29 февраля-6 марта)

І. Неопределённый интеграл

C2, §1: 2(7,17); $\underline{10(7)}$; 11(5); $12(8)^*$; 13(7); $\underline{15(6)}$; 20(7); 21(3); $\underline{24(4)}$.

C2, §2: 3(1); 4(1); 4(3); $6(5)^*$; 8(1).

C2, §3: <u>2(7)</u>; 4(3); 5(3); 16(2); <u>18(5)</u>; 19(1).

C2, §4: $\underline{4(3)}$; 15(5); 17(1)*; 18(3); 21(2).

C2, §5: 131; 139; 144; <u>182</u>; 188.

Т.1. Вычислите интеграл:
$$\int \frac{1}{1+\sqrt{x}+\sqrt{1+x}} dx$$
.

II. Функции многих переменных

А) Множества в конечномерных евклидовых пространствах.

C3, §1: 14; 18; 24; 36.

C3, §2: 9(2,6) (a, 6, Γ); 12(6); 14(3); 20(4).

- **Т.2.** Для множества $A = [1,2] \cup \{3\} \cup ([4,5] \cap \mathbb{Q}) \subset \mathbb{R}$ найдите все: **a)** граничные точки; **б)** предельные точки; **в)** внутренние точки; **г)** точки прикосновения.
- **Т.3.** Докажите, что множество $A \subset \mathbb{R}^n$, имеющее лишь конечное число предельных точек, не более чем счетно.
- Т.4. Является ли множество

$$A = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 < x_4^2\}$$

в \mathbb{R}^4 : **а)** открытым; **б)** замкнутым; **в)** областью?

Б) Предел и непрерывность.

C3, §2: 37(8); 45; 48(5,7); 54; 62(5); 77(3).

В) Частные производные, дифференциал.

C3, §3:
$$2(4)$$
; 12 ; $19(\underline{1}, 4)$; $20(3, \underline{5})$; $21(2^*, 10)$; $40(4)$.

C3, §4: 1(3); 4; 7(2); 14(2); 39(6).

Г) Формула Тейлора.

C3, §4: 70(2); 71(2); 74(5).

Рекомендации по решению

первого домашнего задания по неделям

- '	
1 неделя	C2 , §1: $2(7,17)$; $\underline{10(7)}$; $11(5)$; $12(8)^*$; $13(7)$; $\underline{15(6)}$; $20(7)$; $21(3)$;
	24(4).
	C2 , §2: $3(1)$; $4(1)$; $4(3)$; $6(5)^*$; $8(1)$.
	C2, §3: $2(7)$; 4(3); 5(3); 16(2) $18(5)$; 19(1).
2 неделя	C2 , §4: $\underline{4(3)}$; $15(5)$; $17(1)^*$; $18(3)$; $21(2)$.
	C2 , §5 : 131; 139; 144; <u>182</u> ; 188; T.1 (a, 6).
	C3, §1: <u>14;</u> 18; 24; 36; 38.
3 неделя	C3 , §2: 9(2,6); 12(6); 14(3); 20(4); T.2; T.3*; T.4.
	C3 , §2: $37(8)$; 45 ; $48(5,7)$; 54 ; $62(5)$; $77(3)$.
	C3 , §3: $2(4)$; 12; $19(1,4)$; $20(3,5)$; $21(2^*,10)$; $40(4)$.
4 неделя	C3 , §4: 1(3); 4; <u>7(2)</u> 14(2); 39(6).
	C3 , §4: 70(2); 71(2); 74(5).

ВТОРОЕ ЗАДАНИЕ

(срок сдачи 4-10 апреля)

I. Мера Жордана

C3, §7: 16; 22; 24; 40(3).

- **Т.1.** Доказать, что мера Жордана графика непрерывной на отрезке функции равна нулю.
- Т.2. Измеримо ли множество нулей функции

$$f(x,y) = \sin\left(\frac{1}{x^2 + y^2}\right)$$

в круге $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < R^2\}$ радиуса R > 0?

II. Определенный интеграл

А) Свойства определенного интеграла и его вычисление.

C2, §6: 7; 11; 24; 30; 54(4); 96; 106; 118; 155.

C2, §10: 49(3).

Т.3. Доказать, что
$$\left| \int\limits_a^b \frac{\sin x}{x} \, dx \right| \leqslant \frac{2}{a}$$
, где $b > a > 0$.

- **Т.4.** Пусть функция f ограничена на полуинтервале (a,b] и при любом $\varepsilon \in (0,b-a)$ интегрируема по Риману на отрезке $[a+\varepsilon,b]$. Доказать, что при любом доопределении функции f в точке x=a, функция f интегрируема по Риману на отрезке [a,b] и справедливо следующее равенство: $\int_a^b f(x) \, dx = \lim_{\varepsilon \to +0} \int_{a+\varepsilon}^b f(x) \, dx$.
- **<u>Т.5.</u>** а) Функция f имеет первообразную F на отрезке [a, b]. Верно ли, что f интегрируема на отрезке [a, b]?
 - б) Функция f интегрируема на отрезке [a, b]. Верно ли, что f имеет первообразную на отрезке [a, b]?
 - в) Пусть функция f интегрируема на $[a,\,b]$ и имеет первообразную F на отрезке $[a,\,b]$. Доказать, что верно равенство $\int_a^b f(x)\,dx = F(b) F(a)$.
- **Т.6*.** Докажите, что разрывная функция $f(x) = \mathrm{sign}\Big(\sin\frac{\pi}{x}\Big)$ интегрируема на отрезке [0,1].
- **Т.7***. Если функции y = f(x) и y = g(x) интегрируемы, то обязательно ли функция y = f(g(x)) также интегрируема?

Б) Геометрические приложения определенного интеграла.

C2, §7: 5(6); 26; 33(6); 69(5); 72(1).

C2, §8: 12(1); 13(2); 82(4,5).

III. Криволинейный интеграл

C3, §10: 10(1); 17; 21(2) 27(2); 43.

IV. Несобственный интеграл

C2, §11: 70; 76; 85; 94; 98.

C2, §12: 89; 91; 100; 104; 118; 120; 121; 136; 137; 141; 182; 230.

Рекомендации по решению

второго домашнего задания по неделям

1 нелеля	C3 , §7: 16; <u>22</u> ; 24; 40(3); T.1; T.2.
т педели	05, 81. 10, 22, 24, 40(5), 1.1, 1.2.
	C2 , §6: 7; 11; <u>24</u> ; 30; 54(4); 96; 106; 118; 155.
2 неделя	С2 , §10: 49(3); Т.3; Т.4; Т.5 (а, б, в); Т6*; Т7*.
	C2 , §7: 5(6); 26; <u>33(6)</u> ; 69(5); 72(1).
	C2 , §8: 12(1); 13(2); 82(4,5).
3 неделя	C3 , §10: 10(1); 17; 21(2); 27(2); <u>43</u> .
	C2 , §11: 70; 76; 85; 94; <u>98</u> .
4 неделя	C2 , §12: 89; 91; 100; <u>104</u> ; 118; 120; 121; 136; <u>137</u> ; <u>141</u> ; <u>182</u> ; 230.

 $49 + 2^*$

ТРЕТЬЕ ЗАДАНИЕ

(срок сдачи 9-15 мая)

I. Числовые ряды

А) Ряды с неотрицательными членами.

C2, §13: 2(2); $\underline{10(1)}$; 11(6); $\underline{13(2)}$; 14(3); 20.

C2, §14: 2(5); 5(4); 12(2); 14(4); 18(5); 19(10); 21(12); $27(7)^*$; 25(8).

<u>Т.1.</u> Является ли сходящимся ряд $\sum_{n=1}^{\infty} a_n$, если при $p=1,2,3,\ldots$ выполняется $\lim_{n\to\infty} (a_{n+1}+a_{n+2}+\ldots+a_{n+p})=0$?

Б) Знакопеременные ряды.

C2, §15: 3(2); 3(4); 4(5); 8(4); 9(2).

Во всех задачах §15 исследовать также абсолютную сходимость рядов.

Т.2. Пусть $\{a_n\}_{n=1}^\infty\subset\mathbb{R}$ и ряд $\sum_{n=1}^\infty a_n$ сходится. Верно ли, что сходятся ряды

a)
$$\sum_{n=1}^{\infty} a_n^2$$
; 6) $\sum_{n=1}^{\infty} a_n^3$?

Т.3. Верно ли, что если ряд $\sum a_n$ сходится, а ряд $\sum b_n$ сходится абсолютно, то ряд $\sum a_n b_n$ сходится?

II. Функциональные последовательности и ряды

C2, §17: 5(4); 7(4); 8(5); 9(4); 11(6); 12(5); 16(10).

C2, §18: 20(3); 22(2); 31(9); 33(12); 34(1); 37(11).

C2, §19: 4; 6; 14; 18; 22.

- **Т.4.** Может ли последовательность разрывных функций сходиться равномерно к непрерывной функции?
- **Т.5.** Исследовать на поточечную и равномерную сходимость на множествах A=(0,1) и $B=(1,+\infty)$ функциональные последовательность $\{f_n(x)\}_{n=1}^\infty$ и ряд $\sum_{n=1}^\infty f_n(x)$, если:

a)
$$f_n(x) = \frac{2nx}{1 + n^2x^2};$$
 6) $f_n(x) = n\left(\sqrt{x + \frac{1}{n}} - \sqrt{x}\right).$

III. Степенные ряды

C2, §20: 2(5); 3(1); 5(1); 8(4); $9(4)^*$.

C2, §21: 6(4); 11(6); 19(3); 27(1); $29(4)^*$; 56(2); 80.

Т.6. Найдите радиус сходимости ряда $\sum_{n=1}^{\infty} \frac{x^{n^2}}{2^n}$.

Рекомендации по решению

третьего домашнего задания по неделям

1 неделя	, o , , , , , , , , , , , , , , , , , , ,
	C2 , §14: $2(5)$; $5(4)$; $12(2)$; $14(4)$; $19(10)$; $21(12)$; $27(7)^*$; T.1.
2 неделя	
	C2 , §17: 5(4); <u>7(4)</u> ; 8(5); 9(4); 11(6); <u>12(5)</u> ; 16(10).
3 неделя	C2 , §18: 20(3); 22(2); 31(9); 33(12); 34(1); 37(11).
	C2, §19: 4; 6; 14; 18; <u>22;</u> T.3; T.4 (a, 6).
4 неделя	
	C2 , §21: $6(4)$; $11(6)$; $19(3)$; $27(1)$; $29(4)^*$; $56(2)$; 80 ; T.5.
	TO + 2*

 $50 + 3^*$