SQL QUERIES

Retrieve the name of all employees who earn more than the Average Salary

NESTED QUERIES

A complete SELECT query, called a <u>nested query</u>, can be specified within the WHERE-clause of another query, called the <u>outer query</u>

Retrieve the name of all employees who earn more than the Average Salary

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE Salary > (SELECT AVG(SALARY)

FROM EMPLOYEE)

DEPARTMENT

EMI	PLOYEE	DNAME	<u>DI</u>	NUMBER	MGRSSN	MGRST	ARTDATE
OVERTON CONTRACT	22.000000000	Metaway conserv	555355V	WEAR OF STATE	0.0000000000000000000000000000000000000	5959755	195100 9000000

NESTING OF QUERIES

A complete SELECT query, called a <u>nested query</u>, can be specified within the WHERE-clause of another query

FNAME

Franklin

Ramesh

DNUMBER

Joyce

John

LNAME

Smith

Wong

English

Narayan

Retrieve the name of all employees who work for the

'Research' department.

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE DNO = (SELECT DNUMBER

FROM DEPARTMENT

WHERE DNAME='Research')

If `=` is used the inner query must return one value

If more than one value is returned then an error msg is generated

		DEF	PARTMEN	NT					
EMI	PLOYEE	DNAM	<u>D1</u>	NUMBER	MGRSSN	MGRST	ARTDATE		
FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO

NESTING OF QUERIES

Retrieve the name of all employees who work for the 'Research' or Administration 'department .

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE DNO IN (SELECT DNUMBER

FROM DEPARTMENT

WHERE DNAME='Research' OR

DNAME='Administration')

If `=` is used the inner query must return one value.

If inner query returns more than one value then use IN

NESTING OF QUERIES

Retrieve the name of all employees who do not work for the 'Research' department.

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE DNO NOT IN (SELECT DNUMBER

FROM DEPARTMENT

WHERE DNAME='Research')

DEPARTMENT

DNAME	DNUMBER	MGRSSN	MGRSTARTDATE	

EMPLOYEE

FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
7.17.11	Members	L. 47 11VIL	0011	DD/TIL	ADDITIEOU	OL/	0,10,111	OO! ENCON	2,,0

NESTED QUERIES

You can also use: s > ALL R (means greater than every value)

s > ANY R (means greater than any value)

= ANY is same as IN, <> ALL is same as NOT IN

Find name of employees whose salary is greater than the salary of all employees in department 5

EMPLOYEE

SELECT Fname
FROM Employee
WHERE Salary > ALL (SELECT Salary
FROM Employee
where Dno=5)

	Fname
1	James
2	Jennifer

NESTED QUERIES & TSQL

A subquery can be nested inside the **WHERE or HAVING** clause of an outer SELECT, INSERT, UPDATE, or DELETE statement.

Statements with subquery usually take one of these formats:

- WHERE expression [NOT] IN (subquery)
- •WHERE expression comparison_operator [ANY | ALL] (subquery)
- WHERE [NOT] EXISTS (subquery)

- Up to 32 levels of nesting is possible,
 - This limit depends on available memory and the complexity of other expressions in the query.

Why NESTED QUERIES?

- Many Transact-SQL statements that include subqueries can be alternatively formulated as joins.
- Other questions can be posed only with subqueries.
- An aggregate may not appear in the WHERE clause
 - unless it is in a subquery contained in a HAVING clause or a select list, and the column being aggregated is an outer reference

CORRELATED NESTED QUERIES

- If a condition in the nested query references an attribute of a relation declared in the outer query =>
 - Then two queries are said to be correlated

Retrieve the name of each employee who has a dependent with the same first name as the employee.

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James .	_	David	000000000	1007 11 10	JEO Change Handan TV		EEOOO	NU II I	

Nested Correlated query is evaluated once for each tuple in outer query

CORRELATED NESTED QUERIES

A **correlated subquery** (also called repeating subquery) depends on the outer query for its values.

 This means that the nested subquery is executed repeatedly, once for each row that might be selected by the outer query.

Retrieve the name of each employee who has a dependent with the same first name as the employee.

SELECT E.FNAME, E.LNAME

FROM EMPLOYEE AS E

WHERE E.SSN IN (SELECT ESSN FROM DEPENDENT

WHERE SSN = ESSN AND FNAME=DEPENDENT_NAME)

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

NESTED QUERIES

 A query written with nested SELECT... FROM... WHERE... blocks and using the = or IN comparison operators can *always* be expressed as a single block query.

Retrieve the name of each employee who has a dependent with the same first name as the employee.

SELECT E.FNAME, E.LNAME

FROM EMPLOYEE E, DEPENDENT D

WHERE E.SSN=D.ESSN AND

E.FNAME=D.DEPENDENT_NAME

EXISTS Function checks whether the result of a nested query is empty or not

 Retrieve the name of each employee who has a dependent with the same first name as the employee.

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE EXISTS (SELECT *

FROM DEPENDENT

WHERE SSN=ESSN AND

FNAME=DEPENDENT_NAME)

Retrieve the names of employees who have no dependents.

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE NOT EXISTS (SELECT *

FROM DEPENDENT WHERE SSN=ESSN)

EXISTS is necessary for the expressive power of SQL

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4

James

The above correlated nested query retrieves all DEPENDENT tuples related to an EMPLOYEE tuple.

If none exist, the EMPLOYEE tuple is selected

Find the names of managers who have at least one dependents.

DEPARTMENT

DNAME	DNUM	BER N	MGRSSN	MGRSTA	ARTDATE						
			i i	DEPENDE	NT		457.4			-5	
EMI	PLOYEE			Essn	Depe	ndent_na	me (Sex	Bdate	Relations	ship
FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALA	RY	SUPERSSN	DNO	

Retrieve the name of each employee who works on all the projects controlled by department number 4.

Set theory: S1 contains S2 if (S2 - S1 = 0)

S1 = set of projects of each employee

S2 = set of Dept 4 projects

PROJECT

Pname	Pnumber	Plocation	Dnum	
ProductX	1	Bellaire	5	
ProductY	2	Sugarland	5	
ProductZ	3	Houston	5	
Computerization	10	Stafford	4	
Reorganization	20	Houston	1	
Newbenefits	30	Stafford	4	

WORKS_ON

Essn	Pno	Hours	
123456789	1	32.5	
123456789	2	7.5	
666884444	3	40.0	
453453453	1	20.0	
453453453	2	20.0	
333445555	2	10.0	
333445555	3	10.0	
333445555	10	10.0	
333445555	20	10.0	
999887777	30	30.0	
999887777	10	10.0	
987987987	10	35.0	
987987987	30	5.0	
987654321	30	20.0	
987654321	20	15.0	
888665555	20	NULL	

Retrieve the name of each employee who works on all the projects controlled by department number 4.

Set theory: S1 contains S2 if (S2 - S1 = 0)

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE NOT EXISTS (

(SELECT PNUMBER

FROM PROJECT

WHERE DNUM=4)

EXCEPT

(SELECT P. FROM WHERE S

PNO WORKS_ON

WHERE SSN=ESSN)

S1 = set of projects of each employee

S2 = set of dept 4 projects

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

WORKS_ON

Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

HOW to do this in Relational Algebra?

Yet another Example

Find SSN of employees who work on all the projects of Dnum= 4

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

- PD4(Pno) $\leftarrow \pi_{\text{Pnumber}}$ ($\sigma_{\text{DNUM=4}}$ Project)
- Ssn_Pnos $\leftarrow \pi_{Essn.Pno}$ (Works_on)
- SSNS(ssn)← Ssn_Pnos ??? PD4

WORKS_ON

Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

DIVISION

Yet an other Example

Find SSN of employees who work on all the projects of Dnum= 4

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

PD4 Pno 10

30

SSN_PNOS

Essn	Pno
123456789	1
123456789	2
666884444	3
453453453	1
453453453	2
333445555	2
333445555	3
333445555	10
333445555	20
999887777	30
999887777	10
987987987	10
987987987	30
987654321	30
owaniania wa makama a Mili	94090

987654321

888665555

20

20

- PD4(Pno) $\leftarrow \pi_{\text{Pnumber}}$ ($\sigma_{\text{DNUM=4}}$ Project)
- Ssn_Pnos $\leftarrow \pi_{Essn,Pno}$ (Works_on)
- SSNS(ssn) ← Ssn_Pnos ÷ PD4

DIVISION

DIVISION (Binary Operation)

Division operation is applied to two relations R1 and R2

R1(Attributes_R1) ÷ R2(Attributes_R2)

Let Result = $R1 \div R2$

Attr_Res = Attributes_R1 - Attributes_R2

 Attr_Res is a set of attributes of R1 that are not the attributes of R2. R1

A B a1 b1
a2 b1
a3 b1
a4 b1
a1 b2
a3 b2
a3 b2
a3 b3
a4 b3
a4 b3
a1 b4

b1

b4

For a **tuple t** to appear in the result of the DIVISION, the values in t must appear in R1 in combination with *every* tuple in R2.

Example of DIVISION

Find <u>SSN</u> of employees who work on all the projects that *John Smith* works on

- Smith $\leftarrow \sigma_{\text{fname='John'} \text{ and } \text{lname='Smith'}}$ (Employee)
- Smith_Pnos $\leftarrow \pi_{Pno}$ (Works_on essn=ssn Smith)
- Ssn_Pnos $\leftarrow \pi_{Essn,Pno}$ (Works_on)
- SSNS(ssn) ← Ssn_Pnos ÷ Smith_Pnos

SSN_PNOS Essn

123456789 123456789 Pno

30 20

20

	666884444	3
	453453453	1
	453453453	2
	333445555	2
MITH_PNOS	333445555	3
Pno	333445555	10
1	333445555	20
2	999887777	30
	999887777	10
SNS	987987987	10
Con	987987987	30

987654321

987654321

888665555

123456789

453453453

Examples of Queries in RA

Find the names of employees who work on *all* the projects controlled by department number 5.

T1(Pno)
$$\leftarrow \pi_{\text{Pnumber}} (\sigma_{\text{Dnum}=5}(\text{Project}))$$

T2 $\leftarrow \pi_{\text{Essn, Pno}} (\text{Work_On})$
T3 $\leftarrow (\text{T2} \div \text{T1})$
R $\leftarrow \pi_{\text{LNAME, FNAME}} (\text{T3} * \text{Employee})$

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

Essn	Pno
123456789	1
123456789	2
666884444	3
453453453	1
453453453	2
333445555	2
333445555	3
333445555	10
333445555	20
999887777	30
999887777	10
987987987	10
987987987	30
987654321	30
987654321	20
888665555	20