A NOVEL APPROACH TO NON-PARAMETRIC TWO-WAY ANOVA: PERMOVA

01. THEORETICAL DEVELOPMENT

✓ Why? Traditional two-way ANOVA assumes normality, homoscedasticity—often violated in real-world data.

 \checkmark Solution: Develop a bootstrap + permutation method for η^2 estimation and hypothesis testing.

▼ Key Idea: Uses resampling techniques instead of parametric assumptions.

ART ANOVA @

- No normality needed
- Ranks & aligns data before running traditional ANOVA
- Interaction Effects: <a> Yes
- Effect Size: Not directly estimated, ANOVA F-test
- Computational Cost: **→** Fast

Bootstrap-Permutation ANOVA 🔾

- Fully distribution-free
- Permutations for significance testing
- Interaction Effects: ✓ Yes
- Effect Size: Provides bootstrap Cl for n²
- requires many resamples

- Bootstraps effect sizes (n²)

- Computational Cost:

 ✓ Slower,

TEST STATISTIC

Measures proportion of variance explained

Effect Size

02. METHODOLOGY

✓ Step 1: Bootstrap Sampling

- Resample data with replacement to estimate the distribution of η^2
- Provides confidence intervals without parametric assumptions.

✓ Step 2: Permutation Testing

- Shuffle factor labels to generate a null distribution of η^2 .
- Compute p-values based on permutation-based significance testing.

SS_{Effect} $\eta^2 = -$ SS_{Total}

HYPOTHESIS

- Null Hypothesis (H0): There are no significant differences among the
- Alternative Hypothesis (Ha): At least one group shows a significant

$$p = \frac{\sum_{p=1}^{P} I\left(\eta_{\mathsf{perm},p}^{\,2} \geq \eta_{\mathsf{obs}}^{\,2}\right)}{P}$$

04. REAL DATA APPLICATION

A dataset of 2930 observations, obtained from Kaggle was used. Factor A Season has 4 levels, Factor B Heating Quality has 5 levels. Link here

DATA CATEGORY TABLE

	Ex	Fa	Gd	Ро	TA
Autumn	244	14	71	1	147
Spring	448	34	150	0	274
Summer	612	32	200	0	343
Winter	191	12	55	2	100

AUTHOR TISHANI WIJEKOON Index: S16379 IS 3003 RESEARCH

Bootstrap Type: Winsorized mean_Eta: 0.3073

ci_lower: 0.2812 0.3333 ci_upper:

se_eta: 0.0131

BOOTSTRAPPING

Distribution of Y (Non-Normal, Heteroscedastic

OUR APPROACH

Term	η²	P value	Sig.
А	0.0050	0.002	***
В	0.2138	0.000	***
A*B	0.0038	0.337	

RESULTS OF REAL DATA

ANOVA APPROACH

Term	F value	P value	Sig.
А	0.3004	0.000	***
В	0.3407	0.000	***
A*B	0.0459	0.003	

03. SIMULATION RESULTS

DISTRIBUTION OF

ORIGINAL DATA

This synthetic dataset is of 200 sample size with interaction effects, non-normal residuals, and heteroscedasticity is ideal for testing nonparametric methods.

OUR APPROACH

Term	η²	P value	Sig.
А	0.3004	0.000	***
В	0.3407	0.000	***
A*B	0.0459	0.003	**

ART APPROACH

Term	F value	P value	Sig.
А	325.450	2.22e-16	***
В	323.403	2.22e-16	***
A*B	49.532	3.20e-11	***

ART approach cannot be used for original data since, there are is 0 occurrences of combinations. ART requires each combination to have at least 1 observation. Therefore, the specific level of Factor B was removed to conduct ART analysis.

ART APPROACH

Term	F value	P value	Sig.
А	4.2175	0.0055	**
В	283.9718	<2e-16	***
A*B	2.8747	0.0022	**