Mathematical Finance Solution 4

Solution 4-1

a) Let $(\vartheta^n) \subseteq \Theta^a$ such that $G_T(\vartheta^n)$ converges to Y in L^0 . By Proposition 3.4 of the lecture, we know that there exists a predictable process ϑ such that $Y = G_T(\vartheta)$. We need to check that $\vartheta \in \Theta^a$. $G_T(\vartheta^n)$ converges in L^0 , there is a subsequence $G_T(\vartheta^{n_k})$ which converges P-a.s. to $G_T(\vartheta)$. Thus, as $G_T(\vartheta^n) \ge -a$ P-a.s. for all n, we obtain that $G_T(\vartheta) \ge -a$ P-a.s. Now, we claim that $G_T(\vartheta) \ge -a$ P-a.s. Assume by contradiction that this is not true. Then, define $k^* := \max \{k \in 1, ..., T - 1 \mid G_k(\vartheta) + a \in L^0_- \setminus \{0\}\}$. We remind that k^* is deterministic. Now define

$$\hat{\vartheta} := \vartheta 1_{\llbracket k^*, k^* + 1 \rrbracket}.$$

Then, we see that

$$G_T(\hat{\vartheta}) = G_{k^*+1}(\hat{\vartheta}) - G_{k^*}(\hat{\vartheta}) \in L^0_+ \setminus \{0\},$$

which implies that $\mathcal{C} \cap L^0_+ \neq \{0\}$. But by assumption, S satisfies (NA), which gives us a contradiction (see Theorem 3.1).

b) We construct an example to show that \mathcal{G}_{adm} is not closed in L^0 even when (NA) is satisfied. Let T=2 and let $\Omega=[-1,1]\times\{-1,0,1\}$ with its Borel σ -field \mathcal{F} ; elements of Ω will be denoted by $\omega:=(u,v)$ with $u\in[-1,1]$ and $v\in\{-1,0,1\}$, and we denote by $U(\omega):=u$ the first and by $V(\omega):=v$ the second coordinate. Let $\mathcal{F}_0=\{\emptyset,\Omega\}, \mathcal{F}_1=\sigma(U), \mathcal{F}_2=\mathcal{F},$ and let P be the measure on (Ω,\mathcal{F}) such that U is uniformly distributed on [-1,1] and the conditional distribution of V given U is $\frac{1}{2}\delta_{+1}+\frac{1}{2}|U|\delta_{-1}+(1-\frac{1}{2}-\frac{1}{2}|U|)\delta_0$. Finally, set $S_0=0,\Delta S_1=U,$ and

$$\Delta S_2 = 1_{\{V=1\}} + 0 \cdot 1_{\{V=0\}} - \frac{1}{|U|} 1_{\{V=-1\}}.$$

By construction, we obtain that $E[\Delta S_1 | \mathcal{F}_0] = 0 = E[\Delta S_2 | \mathcal{F}_1]$. Thus the price process S is a martingale under P. In particular, (NA) holds true. Next, consider the sequence of investment strategy (ϑ^n) defined by

$$\vartheta_1^n := 1, \ \vartheta_2^n := \frac{1}{|U|} \, 1_{\{|U| \ge \frac{1}{n}\}}$$

By construction, each ϑ^n is predictable and satisfies P-a.s.

$$G_1(\vartheta^n) = \vartheta_1^n \Delta S_1 = U \ge -1$$

$$G_2(\vartheta^n) = \vartheta_1^n \Delta S_1 + \vartheta_2^n \Delta S_2 = U + \frac{1}{|U|} \mathbf{1}_{\{|U| \ge \frac{1}{n}\}} \mathbf{1}_{\{V=1\}} - \frac{1}{|U|^2} \mathbf{1}_{\{|U| \ge \frac{1}{n}\}} \mathbf{1}_{\{V=-1\}} \ge -n^2 - 1,$$

which means that $(\vartheta^n) \subseteq \Theta_{adm}$. Moreover, we see that the sequence $(G_2(\vartheta^n))$ converges P-a.s., in particular also in L^0 , to $Y:=U+\frac{1}{|U|}1_{\{V=1\}}-\frac{1}{|U|^2}1_{\{V=-1\}}$. From Proposition 3.4, we know that $Y=G_2(\vartheta)$ for some predictable process ϑ . But since U is uniformly distributed on [-1,1], we see that we cannot find a constant $a\in\mathbb{R}$ such that $G_2(\vartheta)\geq -a$ P-a.s., which means that $G_2(\vartheta)\notin\mathcal{G}_{adm}$. This shows that in this example, \mathcal{G}_{adm} is not closed in L^0 .

a) We define the stopping time $\rho + := \inf\{t \in \mathcal{D}_n \mid t \geq \rho\}$. First, we observe that for each $t_i \in \mathcal{D}_n$

$$E[X_{t_{i+1}}^{\rho+} - X_{t_i}^{\rho+} \mid \mathcal{F}_{t_i}] = E[(X_{t_{i+1}} - X_{t_i}) 1_{\{t_i < \rho\}} \mid \mathcal{F}_{t_i}] = 1_{\{t_i < \rho\}} E[X_{t_{i+1}} - X_{t_i} \mid \mathcal{F}_{t_i}].$$

Thus, we obtain that

$$MV(X^{\rho+}, \mathcal{D}_n) := E\Big[\sum_{t_i \in \mathcal{D}_n} \left| E[X_{t_{i+1}}^{\rho+} - X_{t_i}^{\rho+} \,|\, \mathcal{F}_{t_i}] \right| \Big] = \sum_{t_i \in \mathcal{D}_n} E\Big[1_{\{t_i < \rho\}} \,\left| E[X_{t_{i+1}} - X_{t_i} \,|\, \mathcal{F}_{t_i}] \right| \Big].$$

By Jensen's inequality, we obtain for any two processes X' and X'' that

$$\left| \text{MV}(X', \mathcal{D}_n) - \text{MV}(X'', \mathcal{D}_n) \right| \le E \left[\sum_{t_i \in \mathcal{D}_n} \left| (X_{t_{i+1}} - X_{t_i}) - (X'_{t_{i+1}} - X'_{t_i}) \right| \right]$$

Take $X' := X^{\rho}$ and $X'' := X^{\rho+}$. Then, we see that the only (possibly) non-zero term above in the sum is the one for which $\rho \in [t_i, t_{i+1})$. Thus, we obtain that

$$\left| \operatorname{MV}(X^{\rho}, \mathcal{D}_n) - \operatorname{MV}(X^{\rho+}, \mathcal{D}_n) \right| \le 2||X||_{\infty}.$$

Remark: In fact, this holds true for any partition π of [0, T].

b) Let $n \in \mathbb{N}$ and let $0 = t_0 < \cdots < t_n = T$ be a finite partition of [0,T]. We have for all i := 0, ..., n-1 the existence of a sequence $(k_i^m)_m$ such that for each m, we have $k_i^m \in \mathcal{D}_m$, $k_i^m \le k_{i+1}^m$, $k_i^m \ge t_i$ and $\lim_{m \to \infty} k_i^m = t_i$. Set $k_n^m := T$ for each m. Then we have for each m

$$\begin{aligned} \text{MV}(X,\pi) &= E\Big[\sum_{i=0}^{n-1} \left| E[X_{t_{i+1}} - X_{t_i} \mid \mathcal{F}_{t_i}] \right| \Big] \\ &\leq E\Big[\sum_{i=0}^{n-1} \left| E[X_{k_{i+1}^m} - X_{k_i^m} \mid \mathcal{F}_{k_i^m}] \right| + \left| E[X_{k_{i+1}^m} - X_{t_{i+1}} \mid \mathcal{F}_{t_{i+1}}] \right| + \left| E[X_{k_i^m} - X_{t_i} \mid \mathcal{F}_{t_i}] \right| \Big] \\ &\leq E\Big[\sum_{j=0}^{2^{m}-1} \left| E[X_{jT/2^m} - X_{(j-1)T/2^m} \mid \mathcal{F}_{(j-1)T/2^m}] \right| \Big] \\ &+ E\Big[\sum_{i=0}^{n-1} \left| E[X_{k_{i+1}^m} - X_{t_{i+1}} \mid \mathcal{F}_{t_{i+1}}] \right| + \left| E[X_{k_i^m} - X_{t_i} \mid \mathcal{F}_{t_i}] \right| \Big]. \end{aligned}$$

$$= \text{MV}(X, \mathcal{D}_m) + E\Big[\sum_{i=0}^{n-1} \left| E[X_{k_{i+1}^m} - X_{t_{i+1}} \mid \mathcal{F}_{t_{i+1}}] \right| + \left| E[X_{k_i^m} - X_{t_i} \mid \mathcal{F}_{t_i}] \right| \Big].$$

By dominated convergence, as X is bounded and right-continuous, we have

$$\lim_{m \to \infty} E\left[\sum_{i=0}^{n-1} \left| E[X_{k_{i+1}^m} - X_{t_{i+1}} \,|\, \mathcal{F}_{t_{i+1}}] \right| + \left| E[X_{k_i^m} - X_{t_i} \,|\, \mathcal{F}_{t_i}] \right| \right] = 0.$$

Thus, we obtain that

$$MV(X, \pi) \le \lim_{m \to \infty} MV(X, \mathcal{D}_m).$$

As the partition was arbitrarily chosen, taking the sup over all the finite partitions in the above inequality yields that $MV(X) \leq \lim_{m \to \infty} MV(X, \mathcal{D}_m)$, and so $MV(X) = \lim_{m \to \infty} MV(X, \mathcal{D}_m)$.

a) By monotone convergence, we can without loss of generality assume that X is bounded. Consider first $X = \xi \, \mathbf{1}_{[0,u)}$ with $u \in [0,\infty]$ and ξ a bounded \mathcal{F} -measurable random variable. Then, let M be an RCLL version of the martingale $E[\xi \mid \mathbb{F}]$. We define ${}^{\mathcal{O}}X := M \, \mathbf{1}_{[0,u)}$. Then ${}^{\mathcal{O}}X$ is adapted and RCLL, hence optional. Moreover, by the stopping theorem, we have for every stopping time τ that

$$E[X_\tau \, \mathbf{1}_{\{\tau < \infty\}} \, | \mathcal{F}_\tau] = \mathbf{1}_{\{\tau < \infty\}} \, \mathbf{1}_{\{0,\tau \wedge u\}} \, E[\xi \, | \, \mathcal{F}_\tau] = \mathbf{1}_{\{\tau < \infty\}} \, (^{\mathcal{O}}X)_\tau \quad \text{P-a.s.}$$

Now, we define

$$\mathcal{H} := \{ \text{bounded processes } X \text{ for which } ^{\mathcal{O}}X \text{ exists} \}$$

as well as

$$\mathcal{M} := \{ \xi \, 1_{\llbracket 0, u \rrbracket} \text{ with } u \in [0, \infty] \text{ and } \xi \text{ a bounded } \mathcal{F}\text{-measurable random variable} \}.$$

From the above calculation, we see that $\mathcal{M} \subseteq \mathcal{H}$. Moreover, \mathcal{M} is closed under multiplication. Furthermore, \mathcal{H} is a vector space of bounded processes containing the constant process 1 and by monotone convergence it is also closed under monotone bounded convergence. Thus, $(\mathcal{H}, \mathcal{M})$ satisfy the conditions needed for being able to apply the monotone class theorem. As every product measurable process is $\sigma(\mathcal{M})$ -measurable, we are done.

b) Take (τ_n) a foretelling sequence for σ . Then, $\mathcal{F}_{\sigma^-} = \bigvee_n \mathcal{F}_{\tau_n}$. Now, by the usual stopping theorem, we have $E[Y_{\tau} | \mathcal{F}_{\tau_n}] = Y_{\tau_n}$ for every n. For the left-hand side, use the martingale convergence theorem for $n \to \infty$ to get

$$E[Y_{\tau} | \mathcal{F}_{\sigma-}] = Y_{\sigma-} \quad P\text{-a.s.}$$

c) The argument is similar to a). By monotone convergence, we can without loss of generality assume that X is bounded. Consider first $X = \xi 1_{[0,u)}$ with $u \in [0,\infty]$ and ξ a bounded \mathcal{F} -measurable random variable. Then, let M be an RCLL version of the martingale $E[\xi \mid \mathbb{F}]$. We define $^{\mathcal{P}}X := M_{-}1_{[0,u)}$. Then $^{\mathcal{P}}X$ is predictable as u is a predictable time, therefore $[0,u) \in \mathcal{P}$ and as M_{-} is adapted and left-continuous. Moreover, by the predictable stopping theorem, we have for every predictable stopping time σ that

$$E[X_{\sigma} 1_{\{\sigma < \infty\}} | \mathcal{F}_{\sigma-}] = 1_{\{\sigma < \infty\}} 1_{\{0,\sigma \wedge u\}} E[\xi | \mathcal{F}_{\sigma-}] = 1_{\{\sigma < \infty\}} (^{\mathcal{P}}X)_{\sigma} \quad \text{P-a.s.}$$

Now, we define

$$\mathcal{H} := \{ \text{bounded processes } X \text{ for which } ^{\mathcal{P}} X \text{ exists} \}$$

as well as

$$\mathcal{M} := \{ \xi 1_{\llbracket 0, u \rrbracket} \text{ with } u \in [0, \infty] \text{ and } \xi \text{ a bounded } \mathcal{F}\text{-measurable random variable} \}.$$

As in a), we see that $(\mathcal{H}, \mathcal{M})$ satisfy the conditions needed for being able to apply the monotone class theorem. As every product measurable process is $\sigma(\mathcal{M})$ -measurable, we are done.