Subject index

$L^{1}[0,1],384$	generic, 154
M-estimator	Chebyshev's inequality, 21, 50
multivariate regression, 266	Chernoff bound, 22
U-statistics	chi-squared variable, 29, 30, 43
tail bounds, 38	classication, 299
$\ell^2(\mathbb{N}), 130, 384$	classification
\$ 77	
ℓ_1 -regularization, 227	logistic regression, 262, 299, 471
basis pursuit, 227	support vector machine, 299, 415, 472
generalized linear models, 261	CLIME estimator, 380
Ising model selection, 368	clique, 347
ℓ_q -ball, 428	compatibility function, 347
q-convex hull, 428	compressed sensing, 198
f-divergences	concentration
equivalent forms, 521	Brunn–Minkowski inequality, 72
<i>k</i> -clique problem, 256	concentration function
additive matrix decomposition, 343	Lipschitz, 70
approximation	data compression, 55
error, 411, 433, 434	Dvoretsky–Kiefer–Wolfowitz theorem, 117
theory, 154	function, 68
Azuma–Hoeffding inequality, 36	sphere, 68
basic inequality	Gaussian complexity, 43
general <i>M</i> -estimator, 274	Herbst argument, 60
Lasso, 212	Hilbert space, 54
modified nonparametric, 445	Ising model, 56
nonparametric least squares, 423, 431	kernel density estimation, 54
PCA, 243	Lévy's bound, 69
square-root Lasso, 234	Lipschitz function, 70, 432
basis pursuit, 227	means and medians, 53
Bayes error, 491	Orlicz norm, 150
	Pinsker–Csiszár–Kullback inequality, 78
Bayes risk, 491 Bennett's inequality, 51	Prékopa–Leindler inequality, 74
Bernstein's condition	Rademacher complexity, 40, 63
random matrix, 171	singular values, 64
random variable, 27	spin glasses, 56
Bernstein's inequality, 28	sub-exponential, 26
• •	sub-Gaussian, 23
matrix version, 176, 191, 192	suprema of Orlicz process, 151
uniform version, 89	uniform laws, 106
vector version, 192	conditional independence, 350
Bochner's theorem, 411	convex program
bounded differences inequality, 37	basic inequality, 213, 423, 431
Brunn–Minkowski inequality, 72, 94	constrained Lasso, 206
Cauchy sequence, 383, 384	Lasso, 206
chaining, 139, 154	linear program, 200
Dudley's entropy integral, 140	perturbation theory, 210

primal–dual witness, 258	sparse linear regression, 429
quadratic program, 206	uniform law, 457
relaxed basis pursuit, 206	VC class, 142
SDP, 258	Dvoretsky–Kiefer–Wolfowitz theorem, 117
semidefinite program, 258	Eckart-Young-Mirsky theorem, 237
convex regression, 430, 458	eigenvalues
corrected regression, 370	Courant–Fischer representation, 256
coupling, 77	perturbation, 241
Courant–Fischer theorem, 256	spectral gap, 242
covariance matrix	empirical process theory
ℓ_q -sparsity, 184	chaining, 140
graph-structured, 182	C.
sample, 160	Dudley's entropy integral, 140
sparse, 180	Glivenko–Cantelli theorem, 100, 111 localization, 448
spiked model, 255	*
covering number, 122	peeling, 302, 336, 447, 448
ℓ_1 -ball, 149	polynomial discrimination, 110
binary hypercube, 123	Rademacher complexity, 105
Lipschitz function class, 127	symmetrization, 107
	uniform laws, 98
parametric function class, 126	Vapnik–Chervonenkis dimension, 111
relation to packing number, 124, 154	VC class, 112
relation to VC dimension, 155	entropic method
relation to volume ratios, 125	Bernstein's inequality, 61
singular values, 157	general ϕ -entropy, 58
Sobolev class, 129	Herbst argument, 60
unit balls, 126	separately convex functions, 62
unit cube, 123	sub-Gaussian bound, 60
Dantzig selector, 227	tensorization, 64
data compression, 55	entropy
principal component analysis, 239	bounded random variables, 93
decomposability, 270	constant shifts, 93
ℓ_1 -norm, 270	exponential families, 93, 94
group norm, 271	rescaling, 93
key consequence, 273	Shannon, 92
nuclear norm, 318	Gaussian distributions, 522
	variational representation, 92
overlapping group norm, 271	evaluation functional, 390
density estimation, 484	exponential families, 365
design matrix	concentration, 94
irrepresentable condition, 229	entropy, 94
pairwise incoherence, 227	10,
restricted eigenvalue, 208	Fano's inequality, 517
restricted eigenvalue condition, 213, 228	Fano's method, 500
restricted nullspace, 227	density estimation, 504, 513
restricted nullspace property, 202	Gaussian location family, 502
direct sum, 402	linear regression, 503
discretization	local packing, 504
basic bound, 135	local packing approach, 503
Gaussian complexity of unit ball, 137	principal component analysis, 509
sub-Gaussian random matrix, 137, 166	sparse linear regression, 506
discriminant analysis, 3	sparse PCA, 511
Dudley's entropy integral, 140, 154	sparse variable selection, 507
ℓ_q -"balls", 429	with Gaussian entropy bounds, 506
Lipschitz function class, 430	Yang–Barron version, 512
nonparametric least squares, 426	filtration, 33
Orlicz process, 151	fixed design, 417
parametric function class, 142	Fourier basis, 435
ridge regression, 427	Fourier coefficient, 398

free energy, 56	Slepian, 145, 154
function	Sudakov minoration, 148
Lipschitz, 70	Sudakov–Fernique, 146, 148, 154
matrix monotone, 169, 190	generalized linear models, 261, 278, 308
restricted strong convexity, 277	Glivenko-Cantelli
separately convex, 62	class, 101
strongly convex, 277	classical theorem, 100, 111
function class	failure, 118, 119
b-uniformly bounded, 454	relation to Rademacher complexity, 105
Lipschitz, 127, 139, 429	graphical Lasso, 265, 306, 353
parametric, 126, 142	corrected version, 370, 381
Sobolev, 129	graphical model
star hull, 424	exponential families, 365
star-shaped, 424, 454	factorization, 347–349
functional	Gaussian, 265, 349, 352
ANOVA decomposition, 402	Hammersley–Clifford theorem, 265, 351
bounded linear, 385	Ising model, 56, 349, 380
continuous in sup-norm, 118	Markov property, 350
evaluation, 390	mixed variables, 366
linear, 385	neighborhood cutsets, 350
,	parameter estimation, 352
gauge function, 256	Poisson variables, 366
Gaussian	Potts model, 365, 366
ϕ -entropy, 59	selection, 352
canonical process, 132	Gaussian case, 352
chaos variable, 44, 54	Ising case, 367
complexity, 43, 117, 132, 306	Sherrington–Kirkpatrick model, 56
ℓ_0 -"balls", 133, 156	undirected, 347
ℓ_1 -norm ball, 133	Hammersley-Clifford theorem, 265, 351
ℓ_q -balls, 155	Hanson-Wright inequality, 54
ellipsoid, 156	Hellinger distance, 490
Euclidean ball, 132, 148	and Kullback–Leibler, 484
Lipschitz functions, 139	decoupling, 520
relation to Rademacher, 155	Hilbert space, 384
unit ball, 137	$L^{2}[0,1],384$
concentration for Lipschitz functions, 40, 432	$\ell^2(\mathbb{N})$, 384
concentration for suprema, 157	concentration, 54
contraction inequality, 147, 157	nullspace of bounded linear functional, 412
covariance selection, 352	projections, 412
graphical Lasso, 353	separable, 384
graphical model, 265, 352	Hilbert–Schmidt operator, 394
covariance selection, 352	hinge cost, 299, 415, 472
kernel function, 398, 411	histogram estimator, 477, 484
Kullback–Leibler divergence, 521	Hoeffding's inequality, 24
local complexity, 421	matrix version, 174
critical inequality, 422	uniform version, 87
location family, 492	inner product, 383
maximum Shannon entropy, 522	integral probability metric, 412
Mills ratio, 50	irrepresentable condition, 234
mixture model, 240, 257, 366	graphical Lasso, 357
moment generating function, 22	Ising model, 56, 349
random matrix, 44, 157	conditional distributions, 380
sequence model, 196, 227	graph selection, 367
minimax risk, 227	isoperimetry
upper bounds for maxima, 53	discrete, 72
Gaussian comparison inequality, 144, 228	Johnson–Lindenstrauss embedding, 30, 49
Gordon, 154, 185, 186	
random matrix, 157, 185	Kantorovich–Rubinstein duality, 77, 92

kernel	Lipschitz function, 40, 429
Cauchy–Schwarz inequality, 413	concentration for Gaussian variables, 40
density estimation, 54	contraction inequality, 147, 157
discrete space, 395	Lipschitz functions, 484
Gaussian, 386, 398, 415, 422, 442, 459	M-estimators, 228
linear, 386	Marčenko–Pastur law, 7
Mercer's theorem, 396	Markov properties
polynomial, 386, 413, 440	effect of additive noise, 380
positive semidefinite, 386	neighborhood regression, 380
power set, 413	Markov's inequality, 21, 50
probability space, 413	martingale, 33
Sobolev, 422, 440	difference sequence, 35
Sobolev space, 395, 397	Doob construction, 34
uniqueness, 389, 412	likelihood ratio, 34
universal, 412	mass transportation, 92
Kullback–Leibler divergence, 52, 92, 490	matrix
and Hellinger distance, 484	ℓ_2 -operator norm, 6, 44, 63
and Shannon entropy, 92	analysis, 255
chain rule, 92	approximation, 237
mixture representation, 521	low-rank, 238
multivariate Gaussian, 521	completion problem, 177, 313
properties of, 519	compressed sensing, 315
Löwner-Heinz theorem, 169, 190	decomposition problem, 267
Lasso, 361	eigengap, 242
ℓ_2 -bounds, 233	Frobenius norm, 44, 312
ℓ_{∞} -bounds, 232, 233	Gaussian random, 44
constrained form, 418	inverse covariance, 349, 380
corrected version, 371, 381	monotone function, 169, 190
additive corruptions, 381	non-negative and operator norms, 190
missing data, 382	nuclear norm, 268, 313
generalized linear, 262	operator norm, 6, 63, 190
graphical, 265, 353	perturbation theory, 255
corrected version, 370	power method, 257
edge selection, 357	precision, 265, 349, 380
Frobenius bounds, 355	regression, 312
operator norm bounds, 357	sample covariance, 160
group, 262	singular values, 157
irrepresentable condition, 234	spectral norm, 6, 44, 63
multivariate group, 266	spiked covariance, 245
non-convex version, 372	sparse version, 252
overlapping group, 271, 293, 307	Toeplitz, 238
pairwise incoherence, 234	trace inner product, 312
population cost, 260	tri-diagonal, 352
primal–dual witness, 229	unitarily invariant norm, 256
special case of <i>M</i> -estimator, 260	maximum likelihood
square-root, 229, 234	uniform laws, 118
variable selection, 229	Mercer's theorem, 395, 396
weighted version, 233	discrete space, 396
Le Cam's inequality, 490, 520	polynomial kernel, 396
Le Cam's method	Sobolev, 397
Gaussian location family, 492, 498	metric
pointwise density estimation, 494	Euclidean, 121
quadratic functionals, 496, 499	Hamming, 121
uniform location family, 493	Hellinger, 484
Lieb's inequality, 173	integral probability, 409, 412
linear functional	Kolmogorov distance, 409
bounded, 412	total variation, 410

Wasserstein, 76	$L^{2}(\mathbb{P}_{n}), 453$
metric entropy, 123	$L^{2}(\mu, [0, 1]), 122$
ℓ_1 -ball, 149, 154	$\ell_1, 231$
ℓ_{a} -ball, 428, 449	atomic, 306
<i>q</i> -convex hull, 428, 449	decomposable, 270, 317
chaining, 140	ℓ_1 -norm, 270
Dudley's entropy integral, 140	group norm, 271
ellipsoid, 130, 154	nuclear norm, 318
Lipschitz function class, 127	dual, 272, 306, 308
parametric function class, 126	empirical L^2 , 453
relation to VC dimension, 155	Euclidean, 121
relation to volume ratios, 125	Frobenius, 312
RKHS, 130	group sparse, 262
Sobolev class, 129, 130	Hamming, 121
unit balls, 126	nuclear, 268, 313
VC class, 154	operator, 6, 63, 190
metric space, 121	overlapping group, 294, 307
C[0,1], 122	overlapping group sparse, 264
$L^{2}(\mu, [0, 1]), 122$	sup-norm, 122
complete, 384	total variation, 76, 410, 414, 519
covering number, 122, 154	Wasserstein distance, 95
measure, 67	weighted ℓ_1 , 230, 233
packing number, 124, 154	optimal transport, 92
totally bounded, 154	oracle inequality, 280
Mills ratio, 50	Fourier expansions, 436
minimax risk, 486	general <i>M</i> -estimator, 280
additive nonparametric regression, 523	matrix decomposition, 340
computational constraints, 519	nonparametric least squares, 433
constrained versions, 519	nuclear norm regularization, 320
density estimation, 504, 513	orthogonal series expansion, 434
Fano's method, 500, 502	sparse regression, 436
Gaussian location family, 502	order statistic, 43
Gaussian sequence model, 227	Orlicz
generalized linear models, 522	concentration, 150
Le Cam's method, 498	Dudley's entropy integral, 151
linear regression, 503	maxima of random variables, 55
pointwise density estimation, 494	norm, 55, 150
principal component analysis, 509	process, 151
private versions, 519	random variables, 55
quadratic functionals, 496, 499	orthogonal series, 434
sparse linear regression, 506	
sparse PCA, 255, 511, 522	packing number, 124
sparse variable selection, 507	Boolean hypercube, 155
Minkowski sum, 72	relation to covering number, 124, 154
mixture model	unit cubes, 124 pairwise incoherence, 227, 230, 231, 234
Gaussian components, 257	Parseval's theorem, 384
neighborhood selection, 361	peeling technique, 302, 336, 447, 448
non-convex optimization, 227, 372	perturbation
nonparametric	bound for eigenvalues, 241
density estimation, 54, 475, 513	bound for eigenvectors, 243
least squares, 416	eigenvalues, 241
maximum likelihood, 484	eigenvectors, 241
regression, 7, 417	role of eigengap, 242
basic inequality, 431	theory for operators, 255
variable selection, 229	phase retrieval, 257, 315, 327, 343
norm	Pinsker–Csiszár–Kullback inequality, 79, 490, 520
$L^2(\mathbb{P})$, 453	plug-in principle, 3
× //	1 0 F F

corrected Lasso, 371	Wishart, 161
principal component analysis, 237	random projection, 30, 198, 211
population cost function, 259	random variable
Potts model, 365	χ^2 , 42
Prékopa–Leindler inequality, 74	chi-squared, 29, 30, 43
precision matrix, 265	Gaussian, 22
CLIME estimator, 380	Gaussian chaos, 54
graphical Lasso, 358	Rademacher, 23
primal–dual witness, 229	sub-exponential, 26, 48
Gaussian graph selection, 229	sub-Gaussian, 23, 25, 45
graphical Lasso, 229, 358	rate distortion, 55
group Lasso, 229	Rayleigh-Ritz formula, 160
Lasso, 229	regression
Lasso with random design, 362	additive nonparametric, 452, 463, 466, 484
logistic regression, 368	approximation error, 433
nonparametric variable selection, 229	constrained ℓ_q , 418
sparse PCA, 258	convex, 419, 420, 449
principal component analysis, 236	convex Lipschitz, 430
basic inequality, 243	corrected version of neighborhood-based, 370
eigenfaces, 239	estimation error, 433
Gaussian mixture model, 240	Gaussian kernel, 442
lower bounds, 509	isotonic, 449
mixture models, 257	kernel ridge, 407, 419, 439, 440
phase retrieval, 257	linear, 194, 427
plug-in principle, 237	matrix completion, 315
sparse eigenfaces, 248	matrix version, 312
spiked covariance, 245	monotonic, 420, 449
with sparsity, 252	multivariate, 265, 313
with sparsity, 248, 258	group, 267, 291
Rademacher	overlapping group, 267, 293
chaos variable, 95	neighborhood-based, 360, 366, 380
complexity, 40, 105, 117, 132	noiseless linear, 194
ℓ_1 -norm ball, 133	oracle inequality, 433
concentration, 63	orthogonal series, 434
Euclidean ball, 132	phase retrieval, 315, 327
kernel classes, 448	polynomial functions, 440
local empirical, 448, 455, 480	random design, 417
local population, 448, 454, 480	regularized estimator, 439 regularized nonparametric, 418
polynomial discrimination, 110	ridge, 418
properties, 119	shape-constrained, 449
relation to Gaussian, 155	smoothing spline, 419
VC-based upper bounds, 109	Sobolev space, 442
contraction inequality, 147	sparse linear, 428, 436
desymmetrization, 107	ℓ_0 -"balls", 436
random variable, 23	ℓ_q -"balls", 232, 429
symmetrization, 107	with corrupted covariates, 370
random design, 229, 417	regularizer
random matrix	<i>M</i> -estimator, 260
Bernstein's condition, 171, 191	ℓ_0 -based, 235
Gaussian comparison inequality, 158, 164, 185,	ℓ_1 -norm, 261
188	decomposable, 270, 306
Gaussian ensemble, 44, 161	group norm, 262, 307
singular values, 44, 63, 157	non-convex, 227
sub-Gaussian, 174, 190	nuclear norm, 268
Sudakov minoration, 149	overlapping group norm, 264, 307
symmetrization, 173	weakly decomposable, 306
variance of, 190	representer theorem, 408

reproducing kernel Hilbert space, 390	semidefinite program, 255
direct sum, 412	Shannon entropy, 92
eigenfunctions, 396	chain rule, 520
ellipsoid, 400	properties of, 519
Fourier expansion, 387	Shannon's rate distortion theorem, 55
function interpolation, 405	shatter coefficient, 112
Gaussian kernel, 386, 398, 442	Sherrington–Kirkpatrick model, 56
regression, 442	Slepian's inequality, 145
uniform law, 459	smoothing spline, 419
kernel integral operator, 394	Sobolev space
kernel ridge regression, 419	regression, 442
kernel trick, 387, 388	reproducing kernel Hilbert space, 392
linear functions, 391	sparse PCA, 248, 255, 258
linear kernel, 386, 413	hardness result, 256
Mercer's theorem, 396	lower bounds for ℓ_2 -estimation, 522
operations on, 400	lower bounds for variable selection, 511, 522
polynomial kernel, 386, 396, 413, 440	sparsity
positive semidefinite kernel, 386	ℓ_0 -"balls", 235
representer of evaluation, 390	ℓ_q -"balls", 195, 229, 418
representer theorem, 408, 411	covariance matrices, 184
smoothing spline, 395	vector, 195
smoothing splines, 393, 397	compressed sensing, 198, 211
Sobolev space, 392, 393, 395, 397, 401, 442	graph structure, 182
uniform law, 459	hard, 195
translation-invariant kernels, 397	covariance matrices, 181
uniform law, 458	vector, 195
uniqueness of kernel, 412, 413	models, 194
restricted	weak, 195
curvature condition, 276, 284	spiked covariance matrix, 255
dual norm form, 284	spin glass, 56
operator norm, 320	spline, 419
eigenvalue condition, 207, 208, 213, 228	star-shaped, 424
ℓ_1 -version, 230	sub-exponential, 26
ℓ_2 -version, 208, 228, 230–232, 278	Bernstein's condition, 27
ℓ_{∞} -version, 233, 285	Bernstein's inequality, 28
isometry property, 227, 230, 231	chi-squared, 29, 30, 43
nullspace condition, 213	equivalent characterizations, 31, 48
nullspace property, 202, 227	Johnson-Lindenstrauss embedding, 30
strong convexity, 277, 319	operations, 29
error bounds, 280	tail bound, 26
generalized linear models, 278	sub-Gaussian, 23, 51
graphical Lasso, 355	bounded random variables, 51
group Lasso, 290	equivalent characterizations, 25, 45
least-squares, 278	lower tail bounds, 51
low-rank matrix, 319	operations on variables, 53
overlapping group, 294	random matrix, 174
ridge regression, 418	discretization argument, 166
Riesz representation theorem, 385	random variable, 23
RKHS, 419	upper bounds for maxima, 53
feature map, 396	Sudakov minoration, 148, 149
Gaussian kernel, 415	singular value, 149
kernel ridge regression, 440	Sudakov–Fernique inequality, 146, 157, 164
kernel trick, 411	support vector machine, 299, 411, 415, 472
polynomial kernel, 413	symmetrization, 24, 107
universal, 412	random matrix, 173
Rosenthal's inequality, 55	
	tail bounds
sample covariance, 5	U-statistics, 38

Azuma–Hoeffding inequality, 36 Bennett's inequality, 51 Bernstein's inequality, 28, 52 matrix version, 176 uniform version, 89, 96 bounded differences inequality, 37 Chebyshev's inequality, 21, 50 Chernoff inequality, 22 Dvoretsky–Kiefer–Wolfowitz theorem, 117 for order statistics, 43 Gaussian concentration for Lipschitz functions, 40	Dudley integral, 142 VC dimension, 111, 112 closed convex sets, 120 half-intervals, 112, 120 half-spaces, 116 infinite, 120 linear functions, 116 monotone Boolean conjunctions, 120 polygons, 120 relation to metric entropy, 155 spheres, 116, 120 two-sided intervals, 112
Hanson–Wright inequality, 54 Hoeffding's inequality, 24 matrix version, 174 uniform version, 87 lower binomial bounds, 52 lower bounds for non-negative RVs, 31 lower for squared sub-Gaussians, 51 Markov's inequality, 21, 50 martingale difference sequences, 35 matrix completion, 177 Mills ratio, 50 moment-based, 51, 55	VC–Sauer–Shelah bound, 113 vector spaces, 115 variational representation, 93, 94, 160, 161, 307 Courant–Fischer, 256 eigenvectors, 257 vertex cutset, 350 volume ratios, 125 Wasserstein distance, 76 Weyl's inequality, 45, 189, 241, 256
non-symmetric random matrices, 191 one-sided Bernstein's inequality, 31 Rosenthal's inequality, 55 sub-exponential, 26 upper binomial bounds, 52	
tensor product, 403 thresholding hard, 180, 197, 229 soft, 197, 229, 310 sparse PCA, 255 total variation distance, 489, 519 mixture distributions, 521 Wasserstein distance, 95 truncation argument, 468	
uniform law $L^2(\mathbb{P}_n)$ - and $L^2(\mathbb{P}_n)$ -norms one-sided, 464 two-sided, 455 convex Lipschitz functions, 457 Dudley's entropy integral, 457 Gaussian kernel, 459 Glivenko—Cantelli theorem, 100, 111 kernel classes, 458, 482, 483 Lipschitz cost functions, 473 quadratic functions, 455 random matrix, 161 restricted eigenvalues, 484 Sobolev space, 459 uniformly bounded functions, 105	
Vapnik–Chervonenkis theory operations on VC classes, 115 shatter coefficient, 111 VC class, 112	