BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-074138

(43)Date of publication of application: 11.03.2004

(51)Int.Cl.

B01J 23/58 B01D 53/94 F01N 3/10 F01N 3/20 F02D 41/04

(21)Application number: 2002-285223

(71)Applicant: TOYOTA MOTOR CORP

(22)Date of filing:

30.09.2002

(72)Inventor:

HARA NAOYUKI

(30)Priority

Priority number: 2002175830

Priority date : 17.06.2002

Priority country: JP

(54) CATALYST FOR EXHAUST GAS PURIFICATION, AND EXHAUST GAS PURIFICATION METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To suppress the granular growth of noble metals using cerium oxide and to prevent lowering of NOx purification rate.

SOLUTION: A noble metal is carried on an oxide carrier containing cerium-based compound oxide particles of an ununiform constitution having a large amount of CeO2 on the surface and less in the inner part. The granular growth the noble metal is suppressed by CeO2 much existing on the surface. The absolute amount of CeO2 is less than that in the conventional case, as the content of CeO2 in the inner part is small, causing less capacity of oxygen storing and releasing. This suppresses the consumption of a reducing component in rich spiking, to suppress the lowering of the NOx purification rate.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]
[Date of extinction of right]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]

They are noble metals and NOx to oxide support. NOx which comes to support occlusion material In the catalyst for emission gas purification of an occlusion reduction type,

For this oxide support, CeO2 is the catalyst for emission gas purification characterized by including the Seria system multiple oxide particle of little [inside] heterogeneity structure many to a front face.

[Claim 2]

Said Seria system multiple oxide is a catalyst for emission gas purification according to claim 1 which is CeO2-ZrO2 multiple oxide.

Said noble metals are catalysts for emission gas purification according to claim 1 currently supported by said Seria system multiple oxide particle at least.

[Claim 4]

Said Seria system multiple oxide particle is a catalyst for emission gas purification according to claim 1 that to the exhaust gas downstream included. [than the exhaust gas upstream] [more]

The catalyst for emission gas purification according to claim 1 to 4 is contacted to the exhaust gas discharged from the lean-burn engine with which it is operated by 15 or more fuel lean atmosphere, and an air-fuel ratio (A/F) is intermittently made into a SUTOIKI - fuel rich ambient atmosphere. NOx contained in this exhaust gas It is this NOx at the Lean side. Occlusion is carried out to occlusion material and it is this NOx at a rich side from SUTOIKI. NOx emitted from occlusion material The emission-gas-purification approach characterized by returning.

[Claim 6]

Said fuel lean atmosphere is the emission-gas-purification approach according to claim 5 that an air-fuel ratio (A/F) is 18 or more.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[0003]

[Field of the Invention]

This invention is NOx used in the exhaust gas with which the lean atmosphere of hyperoxia and the rich ambient atmosphere where a reduction component is superfluous are changed by turns. It is related with the emission-gas-purification approach using the catalyst for emission gas purification and its catalyst for emission gas purification of an occlusion reduction type.

[Description of the Prior Art]

The lean burn engine which burns in the lean atmosphere of hyperoxia is used for the automobile in recent years for the purpose of control of discharge of a carbon dioxide with improvement in fuel consumption. However, with a three way component catalyst general since the exhaust gas from a lean burn engine is the lean atmosphere of hyperoxia, purification of HC and CO is NOx, although it is possible. Reduction purification is difficult.

Then, they are noble metals and NOx to oxide support. NOx which comes to support occlusion material An occlusion reduction type catalyst is developed and it is used under the combustion conditions which change by turns lean atmosphere with superfluous air, and the rich ambient atmosphere where a fuel is superfluous. Since the combustion gas in lean atmosphere with superfluous air is the lean atmosphere of hyperoxia, NO in exhaust gas is NO2 by oxidation. It becomes and is NOx. Occlusion is carried out to occlusion material as a nitrate etc. And the combustion gas of the rich ambient atmosphere where a fuel is superfluous is NOx by which is the rich ambient atmosphere where a reduction component is superfluous, and occlusion was carried out under the ambient atmosphere. NOx It is returned and purified to N2 by the reduction component which is emitted from occlusion material and exists in an ambient atmosphere at abundance. [0004]

And in order to attain the purpose of the improvement in fuel consumption, and discharge control of a carbon dioxide, it is necessary to lengthen burn time in lean atmosphere with superfluous air, and to shorten burn time in the rich ambient atmosphere where a fuel is superfluous, and what (rich spike) it is made to burn in lean atmosphere and the rich ambient atmosphere where a fuel is superfluous is always introduced for in pulse is performed. However, since it is a hot oxidizing atmosphere, the combustion gas in lean atmosphere with superfluous air is NOx. Grain growth arose in the noble metals currently supported by the occlusion reduction type catalyst, and there was fault that the purification engine performance fell by reduction in the active spot.

Then, NOx which supported noble metals to cerium oxide powder or CeO2-ZrO2 multiple-oxide powder at JP,2001-149757,A The occlusion reduction type catalyst is indicated. Thus, although the noble metals of a reason supported by the support which contains a cerium oxide at least are unknown, the grain growth in hot lean atmosphere is controlled. Therefore, it can consider as the catalyst excellent in endurance.

[0006]

Moreover, NOx It is NOx, in order to raise the activity as a three way component catalyst and to

control grain growth of noble metals in the control system of an air-fuel ratio using an occlusion reduction type catalyst, also when an air-fuel ratio is SUTOIKI regularity. It is more desirable that cerium oxide powder or CeO2-ZrO2 multiple oxide is included in an occlusion reduction type catalyst.

[0007]

[Patent reference 1] JP,2001-149757,A

[Patent reference 2] JP,05-168927,A

[8000]

[Problem(s) to be Solved by the Invention]

A cerium oxide is equipped with oxygen occlusion emission ability, under the lean atmosphere of hyperoxia, carries out occlusion of the oxygen and has the property (henceforth OSC ability) of emitting oxygen, under the rich ambient atmosphere where a reduction component is superfluous. Therefore, NOx containing cerium oxide With an occlusion reduction type catalyst, a reduction component is consumed by the oxygen emitted from cerium oxide at the time of a rich spike, and it is NOx. There was fault that purification became difficult. Therefore, NOx Occlusion material is NOx. Where occlusion is carried out, it will be again put to the exhaust gas of the lean atmosphere of hyperoxia, and it is new NOx. Occlusion becomes difficult and it is NOx. The phenomenon of decline in the rate of purification arises.

[0009]

It is made in view of such a situation, a cerium oxide is used efficiently, and this invention is NOx. It aims at preventing decline in the rate of purification.

[0010]

[Means for Solving the Problem]

The description of the catalyst for emission gas purification of this invention which solves the above-mentioned technical problem is noble metals and NOx to oxide support. NOx which comes to support occlusion material In the catalyst for emission gas purification of an occlusion reduction type, oxide support has CeO2 in the Seria system multiple oxide particle of many heterogeneity structures of little [inside] on a front face being included.

[0011]

As for the Seria system multiple oxide, it is desirable that it is CeO2-ZrO2 multiple oxide. Moreover, as for noble metals, it is desirable to be supported by the Seria system multiple oxide particle at least.

[0012]

Furthermore, as for the Seria system multiple oxide particle, being mostly contained in the exhaust gas downstream is more desirable than the exhaust gas upstream.

[0013]

And the description of the emission-gas-purification approach of this invention is NOx which the catalyst for emission gas purification of this invention is contacted to the exhaust gas discharged from the lean-burn engine with which it is operated by 15 or more fuel lean atmosphere, and an airfuel ratio (A/F) is intermittently made into a SUTOIKI - fuel rich ambient atmosphere, and is contained in exhaust gas. It is NOx at the Lean side. Occlusion is carried out to occlusion material and it is NOx at a rich side from SUTOIKI. NOx emitted from occlusion material It is in returning. [0014]

As for fuel lean atmosphere, it is still more desirable that an air-fuel ratio (A/F) is 18 or more. [0015]

[Embodiment of the Invention]

Support containing a cerium oxide It turns out that OSC ability is proportional to the amount of a cerium oxide. However, it became clear by research of this invention person that there is almost no operation of the internal cerium oxide for which the depressant action of grain growth of the noble metals supported by the support containing a cerium oxide was influenced by only the amount of the cerium oxide near [which is supported] the noble metals and which is separated from the noble metals currently supported.

[0016]

So, with the catalyst for emission gas purification of this invention, CeO2 uses the oxide support

containing many Seria system multiple oxide particle of little [inside] heterogeneity structure on a front face. Grain growth of noble metals is controlled by considering as such a configuration by CeO2 which exists on a particle front face mostly. and inside a particle, since there is little CeO2, the absolute magnitude of CeO2 decreases conventionally -- since OSC ability becomes lower than before, consumption of the reduction component at the time of a rich spike controls -- having -- this -- NOx Decline in the rate of purification is controlled. In addition, in order to make max discover this operation effectiveness, as for noble metals, it is desirable to be supported by the Seria system multiple oxide particle of heterogeneity structure at least.

As for the Seria system multiple oxide particle of heterogeneity structure, being mostly contained in the exhaust gas downstream is more desirable than the exhaust gas upstream. Thus, with constituting, consumption by the oxygen of the reduction component at the time of a rich spike can be controlled in the exhaust gas upstream. Therefore, it is NOx also in the same amount of reducing agents as the former. The rate of purification improves and it is NOx. Since equivalent, then the amount of reducing agents can reduce the rate of purification, fuel consumption improves. That is, it is NOx about a reduction component. It can use for reduction efficiently. And oxidation purification of the excessive reduction component can be carried out by the oxygen emitted since OSC ability was discovered also in the exhaust gas downstream. Therefore, it is NOx about the reduction component introduced by the rich spike. It can use for reduction purification efficiently and is NOx. While the rate of purification improves, discharge of HC and CO is also controlled.

As a Seria system multiple oxide particle of heterogeneity structure, although CeO2-ZrO2 multiple oxide, 2OCeO2-aluminum3 multiple oxide, CeO2-TiO2 multiple oxide, CeO2-SiO2 multiple oxide, etc. can be used, especially CeO2-ZrO2 multiple oxide is desirable. Since the stability of CeO2 improves by compound-izing ZrO2 and grain growth of CeO2 the very thing is controlled, grain growth of the noble metals accompanying grain growth of CeO2 can also be controlled. For example, although especially the presentation ratio of CeO2-ZrO2 multiple oxide is not restricted, it is desirable that it is the range of Ce/Zr=5 / 95 - 50/50 in a mole ratio. If control of grain growth of noble metals will become difficult if there is less Ce than this range, and Ce increases more than this range OSC ability becomes high too much and it is NOx. The rate of purification comes to fall.

In the Seria system multiple oxide particle of little [inside] heterogeneity structure with much CeO2 on a front face, it is desirable for the amount of cerium elements in a front face especially to be 60% or more that what is necessary is just to exceed 50% of the total amount of cerium elements in the Seria system multiple oxide particle of heterogeneity structure. Control of the grain growth of noble metals by the amount of cerium elements in a front face being 50% or less of the total amount of cerium elements becomes difficult. Moreover, as for the total amount of cerium elements in the Seria system multiple oxide particle, it is desirable that it is less than [50 mol %] to the total amount of metallic elements of the Seria system multiple oxide particle of heterogeneity structure. If the total amount of cerium elements increases more than this range OSC ability becomes high too much and it is NOx. The rate of purification comes to fall.

It is ZrO2 powder in order for CeO2 to manufacture many Seria system multiple oxide particles of little [inside] heterogeneity structure on a front face. There is a method of sinking in and calcinating a cerium-nitrate water solution to 20aluminum3 powder. Or ZrO2 precursor is deposited from an oxy-zirconium-nitrate water solution, a cerium-nitrate water solution can be mixed after that, CeO2 precursor can be deposited on the front face of ZrO2 precursor, and it can also manufacture by calcinating it. Moreover, it is also possible to make a cerium alkoxide hydrolyze on front faces, such as ZrO2 or ZrO2 precursor, and to calcinate and manufacture it.

That what is necessary is just to include the Seria system multiple oxide particle of the abovementioned heterogeneity structure, the oxide support in the catalyst for emission gas purification of this invention may be constituted only from powder of the Seria system multiple oxide particle of heterogeneity structure, and can also mix other oxide powder. Moreover, the overcoat of the coat layer containing the powder of the Seria system multiple oxide particle of heterogeneity structure can also be carried out to the front face of the coat layer which consists of other oxides. Although aluminum 2O3, ZrO2, TiO2, etc. are illustrated as other oxide powder, when mixing and using the powder of the Seria system multiple oxide particle of heterogeneity structure, and other oxide powder, it is desirable for the powder of the Seria system multiple oxide particle of heterogeneity structure to be made to be contained in oxide support more than 10 volume %.

Although chosen from Pt, Rh, Pd, Ir, etc. as noble metals, it is desirable to include Pt with high oxidation activity at least. In addition, the amount of support of the noble metals of the oxide support containing the Seria system multiple oxide particle of heterogeneity structure receives support. It will be expensive, while activity will be saturated even if the purification activity as a catalyst for emission gas purification is not acquired but it supports exceeding 10 % of the weight if there is less 0.1 - 10 % of the weight than being suitable and 0.1 % of the weight.

NOx Occlusion material can be chosen from the rare earth elements except alkali metal, alkaline earth metal, and a cerium, and can be used. It is desirable that it is the metal chosen from alkali metal and alkaline earth metal, and especially the thing for which both alkali metal and alkaline earth metal are supported is desirable. Moreover, NOx The range of 0.01-5 mols per l. of the catalyst for emission gas purification is suitable for the amount of support of occlusion material. It is NOx if fewer than 0.01 mols. If decontamination capacity is too low, is not practical and supports exceeding five mols, the activity of noble metals will come to fall. [0024]

When considering as the catalyst for emission gas purification containing more Seria system multiple oxide particles to the exhaust gas downstream of heterogeneity structure than the exhaust gas upstream, you may make it the concentration of the Seria system multiple oxide particle increase more than the exhaust gas upstream in the exhaust gas downstream, and it does not contain the Seria system multiple oxide particle in the exhaust gas upstream, but you may make it contain only in the exhaust gas downstream. In addition, it is desirable that the die length from a downstream end face considers as 10 - 70% of range to the overall length of the catalyst for emission gas purification of an exhaust gas flow direction, and, as for the exhaust gas downstream, it is desirable especially to consider as 30 - 50% of range.

[0025]

Moreover, when considering as the catalyst for emission gas purification containing more Seria system multiple oxide particles to the exhaust gas downstream of heterogeneity structure than the exhaust gas upstream, it can mix to oxide support, a coat layer may be formed, and an overcoat can also be carried out to the front face of an oxide support layer.

[0026]

And NOx which the catalyst for emission gas purification of this invention is contacted to the exhaust gas discharged from the lean-burn engine with which it is operated by 15 or more fuel lean atmosphere, and an air-fuel ratio (A/F) is intermittently made into a SUTOIKI - fuel rich ambient atmosphere by the emission-gas-purification approach of this invention, and is contained in exhaust gas It is NOx at the Lean side. Occlusion is carried out to occlusion material and it is NOx at a rich side from SUTOIKI. NOx emitted from occlusion material It returns.

In the exhaust gas of a SUTOIKI - fuel rich ambient atmosphere, it is NOx. NOx by which occlusion was carried out to occlusion material It is emitted and is returned by reduction components, such as HC, CO, etc. which exist in an ambient atmosphere. although the Seria system multiple oxide particle of heterogeneity structure is contained in oxide support at this time -- the -- since OSC ability is lower than before, consumption of a reduction component controls -- having -- this -- NOx decline in the rate of purification controls -- having -- high NOx Decontamination capacity is discovered.

[0028]

And consumption by the oxygen of a reduction component can be controlled in the catalyst for emission gas purification containing more Seria system multiple oxide particles to the exhaust gas

downstream of heterogeneity structure than the exhaust gas upstream, then the exhaust gas upstream, and it is NOx about a reduction component. It can use for reduction efficiently. Therefore, it is NOx also in the same amount of reducing agents as the former. The rate of purification improves and it is NOx. Since equivalent, then the amount of reducing agents can reduce the rate of purification, fuel consumption improves. And to some extent in the exhaust gas downstream Oxidation purification of the excessive reduction component can be carried out by the oxygen emitted since OSC ability was discovered.

[0029]

[Example]

Hereafter, an example and the example of a comparison explain this invention concretely. [0030]

(Example 1)

The aqueous ammonia of the amount which serves as Zr:NH 3 = 2:3 by the mole ratio was fed into the water solution of predetermined concentration which dissolved the oxy-zirconium nitrate in distilled water, it agitated at 80 degrees C for 30 minutes, and ZrO2 precursor (zirconium hydroxide) was deposited. Subsequently, in this solution, the cerium-nitrate water solution containing the cerium ion of the amount used as Zr:Ce=9:1 was added and agitated by the mole ratio, and the aqueous ammonia of the amount which serves as Ce:NH 3 = 2:3 by the mole ratio was thrown in, and it agitated at 80 degrees C for 30 minutes. Thereby, CeO2 precursor deposited on the front face by using ZrO2 precursor as a nucleus. this solution is filtered -- it calcinated at the 24-hour desiccation back and 600 degree C by 110 degree C for 5 hours, and CeO2-ZrO2 multiple-oxide powder was prepared.

[0031]

CeO2 (2) distributed and compound-ized by the front face of ZrO2 as a nucleus (1), and ZrO2 (1) as this CeO2-ZrO2 multiple-oxide powder was shown in <u>drawing 1</u> -- since -- it consists of particles of the becoming heterogeneity structure.

[0032]

a binder (aluminium nitrate) is mixed with this CeO2-ZrO2 multiple-oxide powder and distilled water, a slurry is prepared, and a wash coat is carried out to the 35 cc monolith honeycomb base material made from a ceramic -- it calcinated at the 2-hour desiccation back and 500 degree C by 250 degree C for 2 hours, and the coat layer was formed. A coat layer is per 11. of monolith honeycomb base materials. 200g was formed.

[0033]

next, the specified quantity of the dinitrodiammine platinum solution of predetermined concentration is infiltrated into the monolith honeycomb base material with which the coat layer was formed -- it calcinated at 500 degree C for 1 hour, and Pt was supported in the coat layer. subsequently, the specified quantity of the water solution which barium acetate and potassium acetate dissolved by predetermined concentration is infiltrated -- it calcinated at 550 degree C for 2 hours, and Ba and K were supported. 2g and Ba the amount of support of each component 0.2 mols and K are 0.15 mols. [per / Pt / 11. of monolith honeycomb base materials]

[0034]

(Example 2)

Except having added the cerium-nitrate water solution which contains the cerium ion of the amount set to Zr:Ce=7:3 by the mole ratio in the solution with which ZrO2 precursor (zirconium hydroxide) deposited, CeO2-ZrO2 multiple-oxide powder was prepared like the example 1, and the catalyst of an example 2 was prepared like the example 1 except having used the CeO2-ZrO2 multiple-oxide powder.

[0035]

(Example 1 of a comparison)

The aqueous ammonia of the amount which serves as :(Zr+Ce) NH 3 = 2:3 by the mole ratio was fed into the water solution which dissolved the oxy-zirconium nitrate and the cerium nitrate in distilled water so that it might be set to Zr:Ce=9:1 by the mole ratio, and it agitated at 80 degrees C for 30 minutes. this solution is filtered -- 110 degree C -- after 24-hour desiccation It calcinated at 600 degrees C for 5 hours, and the CeO2-ZrO2 multiple-oxide powder which consists of a homogeneous

CeO2-ZrO2 multiple-oxide particle from a front face to the interior was prepared.

[0036]

And the catalyst of the example 1 of a comparison was prepared like the example 1 except having used this CeO2-ZrO2 multiple-oxide powder.

[0037]

(Example 2 of a comparison)

Except having used the water solution which dissolved the oxy-zirconium nitrate and the cerium nitrate in distilled water so that it might be set to Zr:Ce=7:3 by the mole ratio, CeO2-ZrO2 multiple-oxide powder was prepared like the example 1 of a comparison, and the catalyst of the example 2 of a comparison was prepared like the example 1 except having used the CeO2-ZrO2 multiple-oxide powder.

[0038]

<A trial and evaluation>

The amount of surface Ce(s) of the CeO2-ZrO2 multiple-oxide powder prepared in the example 1-2 and the example 1-2 of a comparison was measured in XPS. A result is shown in <u>drawing 2</u>. <u>Drawing 2</u> to the example 1 has more amounts of surface Ce(s) than the example 1 of a comparison, from the example 2 of a comparison, it is clear that there are many amounts of surface Ce(s), and, as for an example 2, most is considered to have structure as shown in <u>drawing 1</u>, as for the CeO2-ZrO2 multiple-oxide particle prepared in the example 1-2. [0039]

Next, saturation NOx of the whole catalyst when circulating the Lean model gas which arranges each catalyst to evaluation equipment, respectively, and is shown in Table 1 The amount of occlusion It measured at each temperature of the range of 250 to 550 degree C, respectively. A result is shown in drawing 3. Moreover, NOx NOx of the whole catalyst when switching the Rich model gas shown in Table 1 at the catalyst with which the amount of occlusion was saturated to Lean model gas a sink and after that for 3 seconds The amount of occlusion (RSNOx the amount of occlusion) was measured at each temperature, respectively. The total flow is a part for 30L/. A result is shown in drawing 4.

[0040]

[Table 1]

	H ₂ (%)	NO (ppm)	C ₃ H ₆ (ppmC)	CO ₂ (%)	CO (%)	0 ₂ (%)	SO₂ (ppm)	N2
Leanガス		400	2500	9.5	0.1	7.0	-	残部
Richガス	2. 0	400	3200	12	6.0			残部

[0041]

Subsequently, the durability test as for which the Lean model gas shown in Table 2 circulates Rich model gas at 800 degree C by turns by a unit of 5 second for 55 seconds for 4 hours was performed to each catalyst. The total flow is a part for 30L/. [0042]

[Table 2]

	H ₂	NO	C ₃ H ₆	. CO2	CO	02	SO ₂	N2
	(%)	(ppm)	(ppmC)	(%)	(%)	(%)	(ppm)	
Leanガス		800	930	7. 3	1	10.5	_	残部
Richガス	0.89		2000	11.3	3. 59	-	_	残部

[0043]

And it is the saturation NOx of the whole catalyst like [catalyst / after a durability test / each] the above. The amount of occlusion, and RSNOx The amount of occlusion is measured, respectively and

a result is shown in <u>drawing 5</u> and <u>drawing 6</u>. [0044]

It is the early saturation NOx from drawing 3 and drawing 4. If it is equivalent also to each catalyst and the amount of support of Pt (the number of the active spots) is the same, NO will oxidize, and the amount of occlusion is NO2. It becomes and is NOx. It turns out that the amount by which occlusion is carried out to occlusion material is fixed regardless of the amount of Ce(s). moreover, NOx after a rich spike the amount of occlusion (RSNOx the amount of occlusion) -- < (example 1 of an example 1** comparison) (example 2 of an example 2** comparison) -- it is. Namely, the amount in which a reduction component is consumed by the oxygen emitted from CeO2 at the time of a rich spike and NOx which remains without being purified by it An amount is determined by the total amount of Ce(s) in a coat layer, and its unrelated thing is clear to the amount of surface Ce(s). [0045]

Saturation NOx of a low-temperature-on the other hand region after [drawing 5 and drawing 6 to] a durability test The amount of occlusion is the example of example of comparison 1< example 1< comparison 2< example 2, and is RSNOx of a low-temperature region. The amount of occlusion serves as the example of example of comparison 1< comparison 2< example 1< example 2. That is, if the same amount of Ce(s) compares, the direction of an example 1 and an example 2 is Saturation NOx from the example 1 of a comparison, and the example 2 of a comparison. The amount of occlusion, and RSNOx There are many both amounts of occlusion. The direction of the catalyst of an example 1 and an example 2 means that the activity of Pt is high, and this means that grain growth of Pt at the time of a durability test has few catalysts of an example 1 and an example 2. That is, with the catalyst of an example 1 and an example 2, since there are many amounts of surface Ce(s) of a CeO2-ZrO2 multiple-oxide particle, it turns out that grain growth of Pt at the time of a durability test was controlled.

[0046]

Therefore, it is clear that the amount in which a reduction component is consume by the oxygen emit from CeO2 at the time of a rich spike can be lessen while being able to control grain growth of Pt at the time of a durability test, if the total amount of Ce(s) is control by lessen the internal amount of Ce(s) while make [many] the amount of surface Ce(s), and the catalyst of this invention is NOx high [excel in endurance]. It is clear that the purification engine performance is discover. [0047]

(Example 3)

20aluminum3 powder 100g and TiO2 powder after mixing 100g, a slurry is prepared, and a wash coat is carried out to the 35 cc monolith honeycomb base material made from a ceramic -- it calcinated at the 2-hour desiccation back and 500 degree C by 250 degree C for 2 hours, and the coat layer was formed. A coat layer is per 11. of monolith honeycomb base materials. 200g was formed. The specified quantity of the dinitrodiammine platinum solution of predetermined concentration was infiltrated into the monolith honeycomb base material with which this coat layer was formed, it calcinated at 500 degrees C for 1 hour, and Pt was supported in the coat layer. The amount of support of Pt is 2g per 11. of monolith honeycomb base materials.

next, the slurry which contains the CeO2-ZrO2 multiple-oxide powder of heterogeneity structure prepared in the example 1 30% of the weight is prepared, and a wash coat is carried out only to 1/10 of an overall length of the range of die length from the downstream end face of a monolith honeycomb base material with the coat layer which supported Pt -- it calcinated at the 2-hour desiccation back and 500 degree C by 250 degree C for 2 hours, and the overcoat layer was formed. 10g per 11. of monolith honeycomb base materials of overcoat layers was formed. 100491

subsequently, the specified quantity of the water solution which barium acetate and potassium acetate dissolved by predetermined concentration is infiltrated -- it calcinated at 550 degree C for 2 hours, and Ba and K were supported. 2g and Ba the amount of support of each component 0.2 mols and K are 0.15 mols. [per / Pt / 11. of monolith honeycomb base materials] [0050]

(Example 4)

It is the same as that of an example 3 except having formed the overcoat layer only in one third of the range of die length of an overall length from the downstream end face. 10g per 11. of monolith honeycomb base materials of overcoat layers is formed.

[0051]

(Example 5)

It is the same as that of an example 3 except having formed the overcoat layer only in one half of the range of die length of an overall length from the downstream end face. 10g per 11. of monolith honeycomb base materials of overcoat layers is formed.

[0052]

(Example 6)

It is the same as that of an example 3 except having formed the overcoat layer only in two thirds of the range of die length of an overall length from the downstream end face. 10g per 11. of monolith honeycomb base materials of overcoat layers is formed.

[0053]

(Example 7)

It is the same as that of an example 3 except having formed the overcoat layer in the overall length. 10g per 11. of monolith honeycomb base materials of overcoat layers is formed.

[0054]

(Example 3 of a comparison)

An overcoat layer is not formed but they are Ba and K in Pt. It is the same as that of an example 3 except having supported in the coat layer which consists of aluminum 2O3 and TiO2.

[0055]

<A trial and evaluation>

Each catalyst has been arranged to evaluation equipment, respectively, and the durability test as for which the Lean model gas shown in Table 2 circulates Rich model gas at 800 degree C by turns by a unit of 5 second for 55 seconds for 4 hours was performed, respectively. The total flow is a part for 30L/.

[0056]

And NOx when repeating Rich model gas by turns by a unit of 3 second, and circulating the Lean model gas shown in Table 1 for 60 seconds, about each catalyst after a durability test, The rate of purification and HC discharge were measured. Whenever [catalyst floor temperature] It is 300 degrees C. A result is shown in <u>drawing 7</u> and <u>drawing 8</u>. [0057]

The catalyst of each example is compared with the catalyst of the example 3 of a comparison from drawing 7, and it is high NOx. The rate of purification is shown and it is clear that this it is the effectiveness in which the coat layer which consists of Seria system multiple oxide powder of heterogeneity structure was formed. Moreover, it is clear from the comparison of examples that formation range's of an overcoat layer it is desirable to consider as 10 - 70% of range to an overall length, and it is also desirable especially to consider as 30 - 50% of range.

The catalyst of each example shows low HC discharge compared with the catalyst of the example 3 of a comparison, and it is still clearer than drawing 8 that this it is the effectiveness in which the coat layer which consists of Seria system multiple oxide powder of heterogeneity structure was formed. Moreover, it is NOx to what no difference is almost in the discharge of HC although each example of the amount of the Seria system multiple oxide of heterogeneity structure is the same. There is a big difference in the rate of purification. For this, consumed HC is NOx. HC which is because the effectiveness used for reduction differs, is forming an overcoat layer in the exhaust gas downstream like examples 3-6, and is consumed by oxygen is reduced, and the part is NOx. It is thought that it was consumed by reduction and it is thought that the use effectiveness of HC improved.

[Effect of the Invention]

That is, since CeO2 is used efficiently and grain growth of noble metals is controlled, while the endurance of the purification engine performance improves according to the catalyst for emission gas purification and the emission-gas-purification approach of this invention, consumption of the

reducibility component at the time of a rich spike is controlled, and it is NOx. Decline in the rate of purification can be prevented.

[Brief Description of the Drawings]

[<u>Drawing 1</u>] It is the explanatory view showing the configuration of the CeO2-ZrO2 multiple-oxide particle of the heterogeneity structure prepared in the one example of this invention.

[Drawing 2] It is the graph which shows the amount of surface Ce(s) of the CeO2-ZrO2 multiple-oxide particle of the heterogeneity structure prepared in the example and the example of a comparison.

[Drawing 3] Saturation NOx in the early stages of the catalyst of an example and the example of a comparison It is the graph which shows the amount of occlusion.

[Drawing 4] RSNOx in the early stages of the catalyst of an example and the example of a comparison It is the graph which shows the amount of occlusion.

[Drawing 5] Saturation NOx after the durability test of the catalyst of an example and the example of a comparison It is the graph which shows the amount of occlusion.

[Drawing 6] RSNOx after the durability test of the catalyst of an example and the example of a comparison It is the graph which shows the amount of occlusion.

[Drawing 7] NOx after the durability test of the catalyst of an example and the example of a comparison It is the graph which shows the rate of purification.

[Drawing 8] It is the graph which shows HC discharge after the durability test of the catalyst of an example and the example of a comparison.

[Description of Notations]

1:ZrO2 2:CeO2

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the explanatory view showing the configuration of the CeO2-ZrO2 multiple-oxide particle of the heterogeneity structure prepared in the one example of this invention.

[<u>Drawing 2</u>] It is the graph which shows the amount of surface Ce(s) of the CeO2-ZrO2 multiple-oxide particle of the heterogeneity structure prepared in the example and the example of a comparison.

[Drawing 3] Saturation NOx in the early stages of the catalyst of an example and the example of a comparison It is the graph which shows the amount of occlusion.

[Drawing 4] RSNOx in the early stages of the catalyst of an example and the example of a comparison It is the graph which shows the amount of occlusion.

[Drawing 5] Saturation NOx after the durability test of the catalyst of an example and the example of a comparison It is the graph which shows the amount of occlusion.

[Drawing 6] RSNOx after the durability test of the catalyst of an example and the example of a comparison It is the graph which shows the amount of occlusion.

[Drawing 7] NOx after the durability test of the catalyst of an example and the example of a comparison It is the graph which shows the rate of purification.

[Drawing 8] It is the graph which shows HC discharge after the durability test of the catalyst of an example and the example of a comparison.

[Description of Notations]

1:ZrO2 2:CeO2

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

[Drawing 2]

[Drawing 3]

[Drawing 4]

[Drawing 5]

[Drawing 6]

[Drawing 7]

[Drawing 8]

[Translation done.]

EUROPEAN PAIENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

2004074138

PUBLICATION DATE

11-03-04

APPLICATION DATE

30-09-02

APPLICATION NUMBER

2002285223

APPLICANT: TOYOTA MOTOR CORP;

INVENTOR: HARA NAOYUKI;

INT.CL.

: B01J 23/58 B01D 53/94 F01N 3/10

F01N 3/20 F02D 41/04

TITLE

: CATALYST FOR EXHAUST GAS

PURIFICATION, AND EXHAUST GAS

PURIFICATION METHOD

ABSTRACT: PROBLEM TO BE SOLVED: To suppress the granular growth of noble metals using cerium oxide and to prevent lowering of NOx purification rate.

> SOLUTION: A noble metal is carried on an oxide carrier containing cerium-based compound oxide particles of an ununiform constitution having a large amount of CeO2 on the surface and less in the inner part. The granular growth the noble metal is suppressed by CeO2 much existing on the surface. The absolute amount of CeO2 is less than that in the conventional case, as the content of CeO2 in the inner part is small, causing less capacity of oxygen storing and releasing. This suppresses the consumption of a reducing component in rich spiking, to suppress the lowering of the NOx purification rate.

COPYRIGHT: (C)2004,JPO

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2004-74138 (P2004-74138A)

(43) 公開日 平成16年3月11日(2004.3.11)

(51) 1		E.					· (#0.#¥)
(51) Int . C1 . 7		F I				テーマコー	下(多考)
BO1J	23/58	BO1J	23/58	ZABA		3G091	
BO1D	53/94	FO1N	3/10	A		3G3O1	
FO1N	3/10	FO1N	3/20	R		4D048	
FO1N	3/20	FO2D	41/04	305A		4G069	
FO2D	41/04	BO1D	53/36	104A			
		審査請求 未	請求	請求項の数 6	ΟL	(全 12 頁)	最終頁に続く

(21) 出願番号

特願2002-285223 (P2002-285223)

(22) 出願日

平成14年9月30日 (2002.9.30)

(31) 優先権主張番号 特願2002-175830 (P2002-175830)

(32) 優先日

平成14年6月17日 (2002.6.17)

(33) 優先権主張国

日本国(JP)

(71) 出願人 000003207

トヨタ自動車株式会社

愛知県豊田市トヨタ町1番地

(74) 代理人 100081776

弁理士 大川 宏

(72) 発明者 原 尚之

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

Fターム(参考) 3G091 AA12 AB05 AB06 BA14 BA39

GA06 GB02Y GB03Y GB04W GB04Y

GB05W GB17X

3G301 HA15 JA21 JA25 LB04 MA01

NE13 NE14

最終頁に続く

(54) 【発明の名称】排ガス浄化用触媒及び排ガス浄化方法

(57)【要約】

【課題】セリウム酸化物を用いて貴金属の粒成長を抑制 するとともに、NO_x 浄化率の低下を防止する。

【解決手段】CeO2が表面に多く内部に少ない不均質 構造のセリア系複合酸化物粒子を含む酸化物担体に貴金 属を担持した。

表面に多く存在するCeO₂によって貴金属の粒成長が 抑制される。そして内部にはСеО2が少ないのでСе O₂ の絶対量が従来より少なくなり、酸素吸蔵放出能が 従来より低くなるため、リッチスパイク時における還元 成分の消費が抑制され、これによってNO、 浄化率の 低下が抑制される。

【選択図】 図 1

【特許請求の範囲】

【請求項1】

酸化物担体に貴金属とNO_x 吸蔵材とを担持してなるNO_x 吸蔵還元型の排ガス浄化用触媒において、

該酸化物担体は、CeO₂が表面に多く内部に少ない不均質構造のセリア系複合酸化物粒子を含むことを特徴とする排ガス浄化用触媒。

【請求項2】

前記セリア系複合酸化物はCeO2-ZrO2複合酸化物である請求項1に記載の排ガス浄化用触媒。

【請求項3】

前記貴金属は少なくとも前記セリア系複合酸化物粒子に担持されている請求項1に記載の排ガス浄化用触媒。

【請求項4】

前記セリア系複合酸化物粒子は排ガス上流側より排ガス下流側に多く含まれている請求項 1に記載の排ガス浄化用触媒。

【請求項5】

請求項1~4のいずれかに記載の排ガス浄化用触媒を、空燃比(A/F)が15以上の燃料リーン雰囲気で運転され間欠的にストイキ~燃料リッチ雰囲気とされる希薄燃焼エンジンから排出される排ガスと接触させ、該排ガス中に含まれるNO、 をリーン側で該NO、 吸蔵材に吸蔵し、ストイキからリッチ側で該NO、 吸蔵材から放出されたNO、を還元することを特徴とする排ガス浄化方法。

【請求項6】

前記燃料リーン雰囲気は空燃比(A/F)が18以上である請求項5に記載の排ガス浄化方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、酸素過剰のリーン雰囲気と還元成分過剰のリッチ雰囲気とが交互に切り替えられる排ガス中で使用されるNO 、 吸蔵還元型の排ガス浄化用触媒と、その排ガス浄化用触媒を用いた排ガス浄化方法に関する。

[0002]

【従来の技術】

燃費の向上とともに二酸化炭素の排出の抑制を目的とし、近年の自動車には酸素過剰のリーン雰囲気で燃焼されるリーンバーンエンジンが用いられている。ところがリーンバーンエンジンからの排ガスは酸素過剰のリーン雰囲気であるために、一般の三元触媒では、HC、COの浄化は可能であるもののNO、の還元浄化が困難である。

[0003]

そこで酸化物担体に貴金属とNO $_{x}$ 吸蔵材とを担持してなるNO $_{x}$ 吸蔵還元型触媒が開発され、空気過剰のリーン雰囲気と燃料過剰のリッチ雰囲気とを交互に切り替える燃焼条件下にて用いられている。空気過剰のリーン雰囲気での燃焼排ガスは酸素過剰のリーン雰囲気であるので、排ガス中のNOは酸化によってNO $_{z}$ となりNO $_{x}$ 吸蔵材に硝酸塩などとして吸蔵される。そして燃料過剰のリッチ雰囲気の燃焼排ガスは還元成分過剰のリッチ雰囲気であり、その雰囲気下では吸蔵されていたNO $_{x}$ がNO $_{x}$ 吸蔵材から放出され雰囲気中に豊富に存在する還元成分によってN $_{z}$ まで還元され浄化される。

[0004]

そして燃費の向上及び二酸化炭素の排出抑制の目的を達成するためには、空気過剰のリーン雰囲気での燃焼時間を長くし、燃料過剰のリッチ雰囲気での燃焼時間は短くする必要があり、常時はリーン雰囲気で燃焼させ燃料過剰のリッチ雰囲気をパルス的に導入する(リッチスパイク)ことが行われている。しかし空気過剰のリーン雰囲気での燃焼排ガスは、高温の酸化性雰囲気であるために、NO 、 吸蔵還元型触媒に担持されている貴金属に粒

10

20

30

40

50

10

20

30

40

成長が生じ、活性点の減少によって浄化性能が低下するという不具合があった。

[0005]

そこで特開 2001-149757 号公報には、セリウム酸化物粉末又は CeO_2-ZrO_2 複合酸化物粉末に貴金属を担持した NO_x 吸蔵還元型触媒が開示されている。このように少なくともセリウム酸化物を含む担体に担持された貴金属は、理由は不明であるが、高温のリーン雰囲気における粒成長が抑制される。したがって耐久性に優れた触媒とすることができる。

[0006]

また NO $_{x}$ 吸蔵還元型触媒を用いた空燃比の制御システムにおいて、空燃比がストイキー定の場合にも、三元触媒としての活性を向上させ、かつ貴金属の粒成長を抑制するために、NO $_{x}$ 吸蔵還元型触媒にセリウム酸化物粉末又は $CeO_{2}-ZrO_{2}$ 複合酸化物を含むことがより好ましい。

[0007]

【特許文献1】特開2001-149757号

【特許文献2】特開平05-168927号

[0008]

【発明が解決しようとする課題】

セリウム酸化物は酸素吸蔵放出能を備え、酸素過剰のリーン雰囲気下では酸素を吸蔵し、還元成分過剰のリッチ雰囲気下では酸素を放出するという特性(以下OSC能という)を有している。そのためセリウム酸化物を含むNO $_{x}$ 吸蔵還元型触媒では、リッチスパイク時にセリウム酸化物から放出された酸素によって還元成分が消費され、NO $_{x}$ の浄化が困難になるという不具合があった。そのためNO $_{x}$ 吸蔵材は、NO $_{x}$ が吸蔵された状態で再び酸素過剰のリーン雰囲気の排ガスに曝されることとなり、新たなNO $_{x}$ の吸蔵が困難となってNO $_{x}$ 浄化率の低下という現象が生じる。

[0009]

本発明はこのような事情に鑑みてなされたものであり、セリウム酸化物を効率的に用いて NO、 浄化率の低下を防止することを目的とする。

[0010]

【課題を解決するための手段】

上記課題を解決する本発明の排ガス浄化用触媒の特徴は、酸化物担体に貴金属とNO、吸蔵材とを担持してなるNO、吸蔵還元型の排ガス浄化用触媒において、酸化物担体は、CeO2が表面に多く内部に少ない不均質構造のセリア系複合酸化物粒子を含むことにある。

[0011]

セリア系複合酸化物はCeO2-ZrO2複合酸化物であることが望ましい。また、貴金属は少なくともセリア系複合酸化物粒子粒子に担持されていることが望ましい。

[0012]

さらに、セリア系複合酸化物粒子は排ガス上流側より排ガス下流側に多く含まれていることが望ましい。

[0013]

そして本発明の排ガス浄化方法の特徴は、本発明の排ガス浄化用触媒を、空燃比(A/F)が15以上の燃料リーン雰囲気で運転され間欠的にストイキ〜燃料リッチ雰囲気とされる希薄燃焼エンジンから排出される排ガスと接触させ、排ガス中に含まれるNO $_{x}$ をリーン側でNO $_{x}$ 吸蔵材に吸蔵し、ストイキからリッチ側でNO $_{x}$ 吸蔵材から放出されたNO $_{x}$ を還元することにある。

[0014]

燃料リーン雰囲気は空燃比(A/F)が18以上であることがさらに好ましい。

[0015]

【発明の実施の形態】

セリウム酸化物を含む担体の OSC能は、セリウム酸化物の量に比例することがわかっ

30

40

50

ている。しかしセリウム酸化物を含む担体に担持された貴金属の粒成長の抑制作用は、担持されている貴金属近傍のセリウム酸化物の量にのみ影響され、担持されている貴金属から離れた内部のセリウム酸化物の作用はほとんどないことが、本発明者の研究により明らかとなった。

[0016]

そこで本発明の排ガス浄化用触媒では、 CeO_2 が表面に多く内部に少ない不均質構造のセリア系複合酸化物粒子を含む酸化物担体を用いている。このような構成とすることにより、粒子表面に多く存在する CeO_2 によって貴金属の粒成長が抑制される。そして粒子内部には CeO_2 が少ないので CeO_2 の絶対量が従来より少なくなり、 OSC能が従来より低くなるため、リッチスパイク時における還元成分の消費が抑制され、これによって NO_x 浄化率の低下が抑制される。なお、この作用効果を最大に発現させるには、貴金属は少なくとも不均質構造のセリア系複合酸化物粒子に担持されていることが望ましい

[0017]

不均質構造のセリア系複合酸化物粒子は、排ガス上流側より排ガス下流側に多く含まれていることが望ましい。このように構成することで、排ガス上流側においては、リッチスパイク時の還元成分の酸素による消費を抑制することができる。したがって従来と同じ還元剤量でもNO $_{x}$ 浄化率を同等とすれば還元剤量が低減できるので燃費が向上する。すなわち、還元成分をNO $_{x}$ の還元に効率よく利用することができる。そして排ガス下流側においては、 OSC能が発現されるため放出された酸素によって余剰の還元成分を酸化浄化することができる。したがってリッチスパイクにより導入された還元成分をNO $_{x}$ の還元浄化に効率よく利用することができ、NO $_{x}$ 浄化率が向上するとともにHC及びCOの排出も抑制される。

[0018]

不均質構造のセリア系複合酸化物粒子としては、 CeO_2-ZrO_2 複合酸化物, $CeO_2-Al_2O_3$ 複合酸化物, CeO_2-TiO_2 複合酸化物, CeO_2-SiO_2 複合酸化物, CeO_2-SiO_2 複合酸化物, CeO_2-SiO_2 複合酸化物が特に好ましい。 ZrO_2 を複合化することで CeO_2 の安定性が向上し、 CeO_2 自体の粒成長が抑制されるので、 CeO_2 の粒成長に伴う貴金属の粒成長も抑制することができる。例えば CeO_2-ZrO_2 複合酸化物の組成比は特に制限されないが、モル比で $Ce/Zr=5/95\sim50/50$ の範囲であるのが好ましい。Ceがこの範囲より少ないと貴金属の粒成長の抑制が困難となり、Ceがこの範囲より多くなると OSC能が高くなりすぎて NO_x 浄化率が低下するようになる。

[0019]

CeO2 が表面に多く内部に少ない不均質構造のセリア系複合酸化物粒子において、表面におけるセリウム元素量は不均質構造のセリア系複合酸化物粒子中の全セリウム元素量の50%を超えればよく、60%以上であることが特に望ましい。表面におけるセリウム元素量が全セリウム元素量の50%以下であると、貴金属の粒成長の抑制が困難となる。またセリア系複合酸化物粒子中の全セリウム元素量は、不均質構造のセリア系複合酸化物粒子の全金属元素量に対して50モル%以下であることが望ましい。全セリウム元素量がこの範囲より多くなると OSC能が高くなりすぎ、NOx 浄化率が低下するようになる

[0020]

 CeO_2 が表面に多く内部に少ない不均質構造のセリア系複合酸化物粒子を製造するには、例えば ZrO_2 粉末や Al_2O_3 粉末に硝酸セリウム水溶液を含浸して焼成する方法がある。あるいはオキシ硝酸ジルコニウム水溶液から ZrO_2 前駆体を析出させ、その後に硝酸セリウム水溶液を混合して ZrO_2 前駆体の表面に CeO_2 前駆体を析出させ、それを焼成することで製造することもできる。また ZrO_2 あるいは ZrO_2 前駆体などの表面でセリウムアルコキシドを加水分解させ、それを焼成して製造することも可能である

[0021]

本発明の排ガス浄化用触媒における酸化物担体は、上記した不均質構造のセリア系複合酸化物粒子を含めばよく、不均質構造のセリア系複合酸化物粒子の粉末のみから構成してもよいし他の酸化物粉末を混合することもできる。また他の酸化物おりなるコート層のおいて均質構造のセリア系複合酸化物粒子の粉末を含むコート層をオーバーコートすることもできる。他の酸化物粉末としては、 Al2O3、ZrO2、TiO2などが例示されるが、不均質構造のセリア系複合酸化物粒子の粉末と他の酸化物粉末を混合して用いる場合は、酸化物担体中に不均質構造のセリア系複合酸化物粒子の粉末が10体積%以上含まれるようにすることが望ましい。

[0022]

貴金属としては P t , R h , P d , I r などから選択されるが、酸化活性の高い P t を少なくとも含むことが望ましい。なお不均質構造のセリア系複合酸化物粒子を含む酸化物担体の貴金属の担持量は担体に対して 0 . 1~10重量%が適当であり、 0 . 1重量%より少ないと排ガス浄化用触媒としての浄化活性が得られず、10重量%を超えて担持しても活性が飽和するとともに高価となってしまう。

[0023]

NO、 吸蔵材は、アルカリ金属、アルカリ土類金属、セリウムを除く希土類元素の中から選択して用いることができる。アルカリ金属及びアルカリ土類金属の中から選ばれる金属であることが好ましく、アルカリ金属とアルカリ土類金属の両方を担持することが特に望ましい。またNO、 吸蔵材の担持量は、排ガス浄化用触媒の1リットル当たり0.01~5 モルの範囲が適当である。0.01 モルより少ないとNO、 浄化能が低すぎて実用的でなく、5 モルを超えて担持すると貴金属の活性が低下するようになる。

[0024]

不均質構造のセリア系複合酸化物粒子を排ガス上流側より排ガス下流側に多く含む排ガス浄化用触媒とする場合、セリア系複合酸化物粒子の濃度が排ガス上流側より排ガス下流側に多くなるようにしてもよいし、セリア系複合酸化物粒子を排ガス上流側に含まず排ガス下流側にのみ含むようにしてもよい。なお排ガス下流側とは、下流側端面からの長さが排ガス流れ方向の排ガス浄化用触媒の全長に対して10~70%の範囲とするのが好ましく、30~50%の範囲とするのが特に好ましい。

[0025]

また不均質構造のセリア系複合酸化物粒子を排ガス上流側より排ガス下流側に多く含む排ガス浄化用触媒とする場合、酸化物担体に混合してコート層を形成してもよいし、酸化物担体層の表面にオーバーコートすることもできる。

[0026]

そして本発明の排ガス浄化方法では、本発明の排ガス浄化用触媒を、空燃比(A/F)が15以上の燃料リーン雰囲気で運転され間欠的にストイキ〜燃料リッチ雰囲気とされる希薄燃焼エンジンから排出される排ガスと接触させ、排ガス中に含まれるNO $_{x}$ をリーン側でNO $_{x}$ 吸蔵材に吸蔵し、ストイキからリッチ側でNO $_{x}$ 吸蔵材から放出されたNO $_{x}$ を還元する。

[0027]

ストイキ〜燃料リッチ雰囲気の排ガス中では、NO $_{x}$ 吸蔵材に吸蔵されていたNO $_{x}$ が放出され、雰囲気中に存在するHC及びCOなどの還元成分によって還元される。このとき酸化物担体には不均質構造のセリア系複合酸化物粒子が含まれているが、その OSC能は従来より低いため還元成分の消費が抑制され、これによってNO $_{x}$ 浄化率の低下が抑制され高いNO $_{x}$ 浄化能が発現される。

[0028]

そして不均質構造のセリア系複合酸化物粒子を排ガス上流側より排ガス下流側に多く含む排ガス浄化用触媒とすれば、排ガス上流側においては還元成分の酸素による消費を抑制することができ、還元成分をNOx の還元に効率よく利用することができる。したがって従来と同じ還元剤量でもNOx 浄化率が向上し、NOx 浄化率を同等とすれば還元剤

10

20

30

40

50

量が低減できるので燃費が向上する。そして排ガス下流側においては、ある程度の OSC能が発現されるため放出された酸素によって余剰の還元成分を酸化浄化することができる。

[0029]

【実施例】

以下、実施例及び比較例により本発明を具体的に説明する。

[0030]

(実施例1)

オキシ硝酸ジルコニウムを蒸留水に溶解した所定濃度の水溶液に、モル比で $Zr:NH_3=2:3$ となる量のアンモニア水を投入し、80 ℃で30 分撹拌して ZrO_2 前駆体(水酸化ジルコニウム)を析出させた。次いでこの溶液に、モル比でZr:Ce=9:1 となる量のセリウムイオンを含む硝酸セリウム水溶液を添加して撹拌し、モル比で $Ce:NH_3=2:3$ となる量のアンモニア水を投入して80 ℃で30 分撹拌した。これにより ZrO_2 前駆体を核として、その表面に CeO_2 前駆体が析出した。この溶液を濾過し、110 ℃で24 時間乾燥後、600 ℃で5 時間焼成して CeO_2-ZrO_2 複合酸化物粉末を調製した。

[0031]

この CeO_2-ZrO_2 複合酸化物粉末は、図 1 に示すように、核としての ZrO_2 (1) と、 ZrO_2 (1) の表面に分散して複合化された CeO_2 (2) と、からなる不均質構造の粒子から構成されている。

20

10

[0032]

この CeO_2-ZrO_2 複合酸化物粉末と、蒸留水と、バインダ(硝酸アルミニウム)を混合してスラリーを調製し、 35cc のセラミック製モノリスハニカム基材にウオッシュコートして、 250 ℃で 2 時間乾燥後、 500 ℃で 2 時間焼成しコート層を形成した。コート層は、モノリスハニカム基材 1 リットルあたり 200 g 形成された。

[0033]

次に、コート層が形成されたモノリスハニカム基材に、所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、 500℃で1時間焼成してコート層にPtを担持した。次いで酢酸バリウムと酢酸カリウムが所定濃度で溶解した水溶液の所定量を含浸させ、550℃で2時間焼成してBaとKを担持した。各成分の担持量は、モノリスハニカム基材1リットルあたりPtが2g、Baが 0.2モル、Kが0.15モルである。

30

50

[0034]

(実施例2)

Z r O $_2$ 前駆体(水酸化ジルコニウム)が析出した溶液に、モル比で Z r : C e = 7 : 3 となる量のセリウムイオンを含む硝酸セリウム水溶液を添加したこと以外は実施例 1 と同様にして C e O $_2$ - Z r O $_2$ 複合酸化物粉末を調製し、その C e O $_2$ - Z r O $_2$ 複合酸化物粉末を用いたこと以外は実施例 1 と同様にして、実施例 2 の触媒を調製した。

[0035]

(比較例1)

[0036]

そしてこのCeO2-ZrO2複合酸化物粉末を用いたこと以外は実施例1と同様にして、比較例1の触媒を調製した。

[0037]

(比較例2)

オキシ硝酸ジルコニウムと硝酸セリウムをモル比で Zr:Ce=7:3となるように蒸留

水に溶解した水溶液を用いたこと以外は比較例1と同様にして CeO2 - ZrO2 複合酸化物粉末を調製し、その CeO2 - ZrO2 複合酸化物粉末を用いたこと以外は実施例1と同様にして、比較例2の触媒を調製した。

[0038]

<試験・評価>

実施例 1-2 及び比較例 1-2 で調製された C e O $_2$ - Z r O $_2$ 複合酸化物粉末の表面 C e 量を X P S にて測定した。結果を図 2 に示す。図 2 から、実施例 1 は比較例 1 より表面 C e 量が多く、実施例 2 は比較例 2 より表面 C e 量が多いことが明らかであり、実施例 1-2 で調製された C e O 2-Z r O 2 複合酸化物粒子は大部分が図 1 に示すような構造になっていると考えられる。

[0039]

次に、各触媒を評価装置にそれぞれ配置し、表 1 に示す L e a n モデルガスを流通させたときの触媒全体の飽和 N O $_x$ 吸蔵量を 2 5 0 ∞ の範囲の各温度でそれぞれ測定した。結果を図 3 に示す。また N O $_x$ 吸蔵量が飽和した触媒に表 1 に示す R i c h モデルガスを 3 秒間流し、その後 L e a n モデルガスに切り換えた時の触媒全体の N O $_x$ 吸蔵量(R S N O $_x$ 吸蔵量)を各温度でそれぞれ測定した。総流量は 3 0 L / 分である。結果を図 4 に示す。

[0040]

【表 1 】

	H ₂ (%)	00 (mqq)	C ₃ H _e (ppmC)	CO ₂ (%)	CO (%)	0 ₂ (%)	SO ₂ (ppm)	N ₂
Leanガス	_	400	2500	9.5	0. 1	7.0	-	残部
Richガス	2.0	400	3200	12	6. 0			残部

[0041]

[0042]

【表2】

	H ₂ (%)	NO (ppm)	C ₃ H ₆ (ppmC)	CO₂ (%)	CO (%)	0 ₂ (%)	SO ₂ (ppm)	N2
Leanガス	_	800	930	7.3	_	10. 5	-	残部
Richガス	0.89	_	2000	11.3	3. 59			残部

[0043]

そして耐久試験後の各触媒について、上記と同様にして触媒全体の飽和NO、 吸蔵量とRSNO、 吸蔵量をそれぞれ測定し、結果を図5及び図6に示す。

[0044]

図 3 、図 4 より、初期の飽和 N O $_{x}$ 吸蔵量は各触媒とも同等であり、 P t の担持量(活性点数)が同一であれば N O が酸化され N O $_{2}$ となって N O $_{x}$ 吸蔵材に吸蔵される量は、 C e 量に無関係に一定であることがわかる。またリッチスパイク後の N O $_{x}$ 吸蔵量(R S N O $_{x}$ 吸蔵量)は、(実施例 $_{1}$ 与比較例 $_{1}$) <(実施例 $_{2}$ 与比較例 $_{2}$)である。すなわちリッチスパイク時に C e O $_{2}$ から放出される酸素によって還元成分が消費される量、及びそれによって浄化されずに残る N O $_{x}$ 量はコート層中の総 C e 量によって決定され、表面 C e 量には無関係であることが明らかである。

[0045]

一方、図5、図6から、耐久試験後における低温域の飽和NOx 吸蔵量は、比較例1<

20

10

30

40

50

10

20

30

40

50

[0046]

したがって、表面Ce量を多くするとともに内部のCe量を少なくすることで総Ce量を抑制すれば、耐久試験時のPtの粒成長を抑制できるとともに、リッチスパイク時にCeO₂から放出される酸素によって還元成分が消費される量を少なくすることができることが明らかであり、本発明の触媒は耐久性に優れかつ高いNOェ 浄化性能が発現されることが明らかである。

[0047]

(実施例3)

Al $_2$ O $_3$ 粉末 100gとTiO $_2$ 粉末 100gを混合した後スラリーを調製し、35ccのセラミック製モノリスハニカム基材にウオッシュコートして、 250 $\mathbb C$ で2時間乾燥後、 500 $\mathbb C$ で2時間焼成しコート層を形成した。コート層は、モノリスハニカム基材1リットルあたり 200g形成された。このコート層が形成されたモノリスハニカム基材に、所定濃度のジニトロジアンミン白金水溶液の所定量を含浸させ、500 $\mathbb C$ で1時間焼成してコート層にPtを担持した。Ptの担持量はモノリスハニカム基材1リットルあたり2gである。

[0048]

[0049]

次いで酢酸バリウムと酢酸カリウムが所定濃度で溶解した水溶液の所定量を含浸させ、550℃で2時間焼成してBaとKを担持した。各成分の担持量は、モノリスハニカム基材1リットルあたりPtが2g、Baが O.2モル、KがO.15モルである。

[0050]

(実施例4)

オーバーコート層を下流側端面から全長の1/3の長さの範囲のみに形成したこと以外は実施例3と同様である。オーバーコート層は、モノリスハニカム基材1リットルあたり10g形成されている。

[0051]

(実施例5)

オーバーコート層を下流側端面から全長の1/2の長さの範囲のみに形成したこと以外は 実施例3と同様である。オーバーコート層は、モノリスハニカム基材1リットルあたり1 0g形成されている。

[0052]

(実施例6)

オーバーコート層を下流側端面から全長の2/3の長さの範囲のみに形成したこと以外は 実施例3と同様である。オーバーコート層は、モノリスハニカム基材1リットルあたり1 0g形成されている。

[0053]

(実施例7)

オーバーコート層を全長に形成したこと以外は実施例3と同様である。オーバーコート層

は、モノリスハニカム基材1リットルあたり10g形成されている。

[0054]

(比較例3)

[0055]

<試験・評価>

各触媒を評価装置にそれぞれ配置し、表 2 に示した L e a n モデルガスを 5 5 秒, R i c h モデルガスを 5 秒ずつ交互に、 800℃で 4 時間流通させる耐久試験をそれぞれ行った。総流量は 3 0 L / 分である。

10

[0056]

そして耐久試験後の各触媒について、表1に示したLeanモデルガスを60秒、Richモデルガスを3秒ずつ交互に繰り返し流通させたときのNOx 浄化率及びHC排出量を測定した。触媒床温度は 300℃である。結果を図7及び図8に示す。

[0057]

図7より各実施例の触媒は比較例3の触媒に比べて高い NO_x 浄化率を示し、これは不均質構造のセリア系複合酸化物粉末からなるコート層を形成した効果であることが明らかである。また実施例どうしの比較から、オーバーコート層の形成範囲は、全長に対して $10\sim70\%$ の範囲とするのが好ましく、 $30\sim50\%$ の範囲とするのが特に好ましいことも明らかである。

20

30

[0058]

さらに図8より、各実施例の触媒は比較例3の触媒に比べて低いHC排出量を示し、これは不均質構造のセリア系複合酸化物粉末からなるコート層を形成した効果であることが明らかである。また各実施例ともに不均質構造のセリア系複合酸化物の量は同一であるが、HCの排出量にはほとんど差が無いのにNOェ 浄化率には大きな差がある。これは消費されたHCがNOェ の還元に利用された効率が異なるためであり、実施例3~6のように排ガス下流側にオーバーコート層を形成することで、酸素によって消費されるHCが低減されその分がNOェ の還元に消費されたと考えられ、HCの利用効率が向上したと考えられる。

[0059]

【発明の効果】

すなわち本発明の排ガス浄化用触媒及び排ガス浄化方法によれば、 Ce O2 が効率的に利用されて貴金属の粒成長が抑制されているので浄化性能の耐久性が向上するとともに、 リッチスパイク時の還元性成分の消費が抑制され NOx 浄化率の低下を防止することができる。

【図面の簡単な説明】

【図1】本発明の一実施例で調製された不均質構造のCeO₂ -ZrO₂ 複合酸化物粒子の構成を示す説明図である。

【図2】実施例及び比較例で調製された不均質構造のCeO2-ZrO2複合酸化物粒子の表面Ce量を示すグラフである。

40

【図3】実施例及び比較例の触媒の初期における飽和NOx 吸蔵量を示すグラフである

【図4】実施例及び比較例の触媒の初期におけるRSNO、 吸蔵量を示すグラフである

【図 5 】実施例及び比較例の触媒の耐久試験後における飽和NO、 吸蔵量を示すグラフである。

【図 6】実施例及び比較例の触媒の耐久試験後におけるRSNO、 吸蔵量を示すグラフである。

【図7】実施例及び比較例の触媒の耐久試験後におけるNOx 浄化率を示すグラフである。

50

【図8】実施例及び比較例の触媒の耐久試験後におけるHC排出量を示すグラフである。 【符号の説明】

 $1 : Z r O_2$

2 : C e O 2

[図1]

[図2]

【図3】

[図4]

【図5】

[図6]

【図7】

[図8]

フロントページの続き

(51) Int.C1.7

FΙ

テーマコード (参考)

BO1D 53/36 102H

F ターム(参考) 4D048 AA06 AA18 AB02 AB07 BA03X BA08X BA10X BA14X BA15X BA19X BA30X BA31X BA31Y BA32Y BA33Y BA41X BA42X BB02 BB16 DA03 DA20 EA04

4G069 AA03 BA05A BA13B BB02A BB02B BB06A BB06B BC01A BC03B BC08A BC13B BC38A BC43A BC51A BC51B BC69A BC75A BC75B CA03 CA09 EA19 EC29

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.