MP* KERICHEN 2021-2022

DS n^o2

Il sera, dans la notation, tenu compte de la présentation et de la qualité de la rédaction. Les résultats devront obligatoirement être soulignés ou encadrés à la règle, le texte et les formules ponctuées, un minimum de 80% des s du pluriel et de 70% des accents est requis.

Pénalités:

- Moins de 80% des s du pluriel ou moins de 70% des accents : -3 points,
- Formules mathématiques non ponctuées : -1 point,
- Recours à des abréviations (tt, qqs, fc., ens...) : -2 points.

L'usage de la calculatrice est interdite.

Les élèves traiteront un et un seul des trois sujets suivants.

Le sujet 1 s'adresse à la majorité des étudiants.

Le sujet 2 est destiné aux étudiants ayant éprouvé des difficultés lors du premier devoir surveillé.

Le sujet 3 à ceux des étudiants qui visent l'X ou les ÉNS.

Sujet 1

DIAMÈTRE TRANSFINI D'UNE PARTIE DU PLAN

Soit Π un espace affine euclidien orienté de dimension 2. Il sera appelé brièvement plan Π . La distance de deux points A et B de Π est notée d(A, B).

Une partie de Π désignée par la lettre E, avec ou sans indice, est un sous-ensemble de Π contenant une infinité de points. Les différentes figures géométriques considérées — segment, cercle — sont supposées posséder elles aussi cette propriété.

Soit un entier $n \geq 2$, et une partie E du plan Π ; pour toute suite finie de points de la partie $E: P_1, P_2, ..., P_n$, on note $g_n(P_1, P_2, ..., P_n)$ la moyenne géométrique des distances mutuelles de ces points, c'est-à-dire :

$$g_n(P_1, P_2, \dots, P_n) = \left(\prod_{i=1,\dots,n, j=1,\dots,n, i \neq j} d(P_i, P_j)\right)^{\frac{1}{n(n-1)}} = \left(\prod_{1 \leq i < j \leq n} d(P_i, P_j)\right)^{\frac{2}{n(n-1)}}$$

Considérons maintenant l'ensemble des réels $g_n(P_1, P_2, ..., P_n)$ définis pour toute suite de points $P_1, P_2, ..., P_n$; si cet ensemble est borné, la borne supérieure de ces réels sera designée par $\delta_n(E)$:

$$\delta_n(E) = \sup\{g_n(P_1, P_2, ..., P_n) | P_i \in E, 1 \le i \le n\};$$

si au contraire cet ensemble de réels n'est pas borné, on convient que $\delta_n(E)$ est égal à $+\infty$.

Préliminaires

Nous allons démontrer deux résultats utiles dans la suite.

1. Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de réel. On définit la suite $(v_n)_{n\in\mathbb{N}^*}$, par :

$$v_n = \frac{1u_1 + 2u_2 + \dots + nu_n}{n^2},$$

pour tout entier $n \geq 1$.

On suppose que la suite la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers ℓ . Montrer que la suite $(v_n)_{n\in\mathbb{N}^*}$ converge vers $\frac{\ell}{2}$.

2. Soient n un élément de \mathbb{N}^* , $z_1, z_2, \ldots, z_{n+1}$ des nombres complexes et U un polynôme unitaire de degré n. Donner la valeur du déterminant suivant, valeur qui ne dépend pas de U:

$$V = \begin{vmatrix} 1 & 1 & \dots & 1 \\ z_1 & z_2 & \dots & z_{n+1} \\ z_1^2 & z_2^2 & \dots & z_{n+1}^2 \\ \vdots & \vdots & & \vdots \\ z_1^{n-1} & z_2^{n-1} & \dots & z_{n+1}^{n-1} \\ U(z_1) & U(z_2) & \dots & U(z_{n+1}) \end{vmatrix}.$$

Partie I

QUELQUES PROPRIÉTÉS GÉNÉRALES ET EXEMPLES

1. (a) Montrer que si \mathbf{E} est une partie bornée du plan $\delta_2(E) = \sup\{d(A, B) | A \in E, B \in E\}$. Démontrer que pour tout entier n supérieur ou égal à 2, $\delta_n(E)$ est fini et majoré par $\delta_2(E)$. (b) Soient deux parties E_1 et E_2 du plan telles que E_1 soit contenue dans E_2 . Etablir pour tout entier $n \geq 2$, l'inégalité :

$$\delta_n(E_1) \leq \delta_n(E_2).$$

- (c) Démontrer que si un sous-ensemble E de Π n'est pas borné, il existe pour tout réel $\rho > 0$ et tout entier $k \geq 2$, une suite finie de points $(P_1, P_2, ... P_k)$ de Π telle que pour tout couple (i,j) d'élément de $\{1...k\}$ distincts, la distance de P_i à P_j soit supérieure ou égale à $\rho : d(P_i, P_j) \geq \rho$. En déduire que si E est non borné, alors; pour tout entier n supérieur ou égal à 2, $\delta_n(E)$ est infini.
- (d) Soit une partie E du plan Π ; soit \bar{E} l'adhérence de E. Montrer que pour tout entier n supérieur ou égal à 2

$$\delta_n(E) = \delta_n(\bar{E}).$$

2. Soient A et B des points de Π distincts. On désigne par I le segment [A,B] et par a la longueur de I.

Soient P_1 et P_3 des points de I. Montrer qu'il existe un point P_2 de $[P_1, P_3]$ tel que $g_3(P_1, P_2, P_3) = \max\{g_3(P_1, P, P_3)\}, P \in [P_1, P_3]\}$. En déduire $\delta_3(I)$.

3. Soient O un point de Π et C_R un cercle de centre O et de rayon R. Soit un repère orthonormé et direct $(O; (\vec{i}, \vec{j}))$ et trois points du cercle C_R , définis par leurs angles polaires, égaux respectivement à 0, θ et ϕ .

$$0 = (\vec{i}, \overrightarrow{0P_1}) \ \theta = (\vec{i}, \overrightarrow{0P_2}) \ \varphi = (\vec{i}, \overrightarrow{0P_3}) \ , 0 < \theta < \phi < 2\pi.$$

- (a) Montrer que φ étant fixé, $g_3(P_1, P_2, P_3)$ est maximum pour $\theta = \frac{\varphi}{2}$.
- (b) Pour quelles valeurs de φ et de θ , $g_3(P_1, P_2, P_3)$ est-il maximum .
- (c) Déduire des sous-questions précédente $\delta_3(C_R)$.

Partie II

ÉTUDE DE LA SUITE
$$(\delta_n(E))_{n\geq 2}$$

- 1. Soient E une partie bornée de Π et un entier $n \geq 2$.
 - (a) Soit une suite de n+1 points de $E, (P_1, P_2, ..., P_{n+1})$. Démontrer la relation :

$$(g_{n+1}(P_1, P_2, \dots, P_{n+1}))^{n+1} = \prod_{i=1}^{n+1} g_n(P_1, \dots P_i, \dots, P_{n+1}),$$

où pour $i = 1, ..., n+1, g_n(P_1, ..., P_{i-1}, P_{i-1}, P_{i-1})$ désigne $g_n(P_1, P_2, ..., P_{i-1}, P_{i+1}, ..., P_{n+1})$.

- (b) En déduire que $\delta_{n+1}(E) \leq \delta_n(E)$, puis montrer que la suite $(\delta_k(E))_{k\geq 2}$ converge. On notera $\Delta(E)$ sa limite.
- 2. Soit un entier $n \geq 2$.
 - (a) Soient z_i , i=0,1,...,n-1 les n racines $n^{\rm e}$ de l'unité. Démontrer que pour tout : élément k de $\{0,1,\ldots,n-1\}$

$$\prod_{j=0,\dots,n-1, j\neq k} (z_k - z_j) = n(z_k)^{n-1}.$$

(b) Calculer, lorsque les points $P_1, P_2, \ldots, ..., P_n$ sont les sommets d'un polygone régulier inscrit dans un cercle C_R de rayon R, la valeur de $g_n(P_1, P_2, ..., P_n)$.

(c) En déduire pour $E = C_R$, que la limite $\Delta(E)$ de la suite $(\delta_k(E))_{k \geq 2}$ est différente de 0.

Montrer que :

$$R \le \Delta(E) \le \sqrt{3}R.$$

Partie III

ÉTUDE DE LA SUITE $(\delta_n(E))_{n\geq 2}$

L'objet de cette partie et de relier $\Delta(E)$ à un réel $\mu(E)$ défini à l'aide de valeurs prises par des polynômes.

On considère un repère orthonormé direct $(O; (\vec{i}, \vec{j}))$ du plan Π . A chacun des points P du plan Π on peut alors associé un nombre complexe : l'affixe de P.

Soit E une partie bornée de Π . On note \mathcal{E} , l'ensemble des affixes des points de E.

Pour tout entier $n \geq 1$, soit \mathcal{U}_n l'ensemble des polynômes complexes unitaires U de degré n.

1. (a) Justifier, pour tout polynôme complexe unitaire U, l'existence de la quantité

$$S(E, U) = \sup\{|U(z)|, z \in \mathcal{E}\}.$$

Justifier pour tout entier $n \ge 1$ l'existence de la quentité

$$\sigma_n(E) = \inf\{S(E, U), U \in \mathcal{U}_n\}.$$

(b) On admet que $\sigma_n(E)$ ne dépend pas du choix du repère $(O;(\vec{i},\vec{j}))$. Oon pose

$$\mu_n(E) = \sigma_n^{\frac{1}{n}}(E).$$

Déterminer deux réels a et b strictement positifs tels que :

$$a\sigma_1(E) \le \delta_2(E) \le b\sigma_1(E)$$
.

2. Cas d'un segment

Soit I le segment fermé joignant les points A et B de coordonnées respectives (-1,0) et (1,0). L'intervalle [-1,1] sera identifié à [A,B] et également désigné par I.

Pour tout entier $n \geq 1$, on note T_n l'application

$$T_n : I \to \mathbf{R}; x \mapsto \frac{1}{2^{n-1}} \cos(n \arccos(x)).$$

(a) Montrer que pour tout $x \in I$,

$$T_{n+2}(x) = xT_{n+1}(x) - \frac{1}{4}T_n(x).$$

Indication : on pourra calculer $2^{n+1}T_{n+2} + 2^{n-1}T_n$.

(b) En déduire que pour tout entier $n \geq 1$, T_n est une application polynômiale sur I, on note encore T_n le polynôme associé.

Démontrer que pour tout entier $n \geq 1$, le polynôme T_n est unitaire de degré n.

Déterminer le maximum de l'application T_n sur I.

- (c) Soit U un polynôme unitaire de degré n. Montrer l'existence de $M_U = \max\{U(x)|x \in I\}$. le but des sous-questions suivantes et d'établir que $M_U \geq \frac{1}{2^{n-1}}$
- (d) Supposons que U soit réel et tel que, pour tout $x \in I$, :

$$|U(x)| < \frac{1}{2^{n-1}}. (1)$$

Déterminer les signes des valeurs prises par le polynôme $U-T_n$ aux points x_k définis pour $k=0,1,\ldots,n,$ par : $x_k=\cos\left(\frac{k\pi}{n}\right)$. En déduire que l'hypothèse (1) est fausse.

- (e) On ne suppose plus que U est réel. Démontrer que $M_U \geq \frac{1}{2^{n-1}}$.
- (f) En déduire la valeur de $\mu_n(I)$. Démontrer que la suite $(\mu_k(I))_{k \in \mathbb{N}^*}$ admet une limite notée $\mu(I)$ à déterminer.

Nous repassons au cas général.

3. Soit $(u_n)_{n \in \mathbb{N}^*}$ une suite de réels strictement positifs telle que pour tout couple (p,q) d'entiers strictements positifs,

$$u_{p+q}^{p+q} \le u_p^p u_q^q. \tag{2}$$

- (a) Montrer que pour tout k et tout p, entier strictement positifs, $u_{kp} \leq u_p$.
- (b) Etablir l'existence de $\ell = \inf\{u_n | n \in \mathbf{N}^*\}$. Montrer que la suite $(u_n)_{n \in \mathbf{N}^*}$ converge. Indication : on rappelle que pour tout réel $\varepsilon > 0$, il existe $p \in \mathbf{N}^*$ tel que

$$\ell \le u_p < \ell + \varepsilon$$

et que tout entier n s'écrit de manière unique n = pq + r , avec $0 \le r < p$.

(c) Soit E une partie bornée du plan Π . Montrer que pour tout couple (p,q) d'éléments de \mathbf{N}^* ,

$$\sigma_{p+q}(E) \le \sigma_p(E)\sigma_q(E).$$

(d) Soit $\mu(E)$ la borne inférieure de $\{\mu_n(E)|n\in\mathbf{N}^*\}$ Démontrer que la suite $(\mu_n(E))_{n\in\mathbf{N}^*}$ est convergente et de limite $\mu(E)$.

Vérifier cette propriété sur l'exemple du segment traité en 2.

- 4. Soient E une partie bornée du plan et n un entier strictement possitif. On utilisera dans ce qui suit la question préliminaire sur le calcul de V.
 - (a) Montrer que:

$$\delta_{n+1}(E)^{\frac{n(n+1)}{2}} < (n+1)\delta_n(E)^{\frac{n(n-1)}{2}}\mu_n(E)^n.$$

(b) Montrer que:

$$\delta_n(E)^{\frac{n(n-1)}{2}}\mu_n(E)^n \le \delta_{n+1}(E)^{\frac{n(n+1)}{2}}.$$

Indication : on pourra considérer le polynôme $U_0 = \prod_{i=1}^n (X - z_i)$

- 5. E désigne toujours une partie bornée du plan.
 - (a) Démontrer que pour tout $n \in \mathbb{N}^*$, $\mu_n(E) \leq \delta_{n+1}(E)$.
 - (b) Donner pour tout $n \in \mathbf{N}^*$, un majorant de δ_{n+1} en fonction de $\mu_1(E), \mu_2(E), \dots, \mu_n(E)$ et de n.
 - (c) Démontrer que $\Delta(E) = \mu(E)$.

* *

Sujet 2

EXERCICE On note \mathcal{R} l'ensemble des éléments de $\mathcal{M}_2(\mathbf{R})$ de rang inférieur ou égal à 1. On munit $\mathcal{M}_2(\mathbf{R})$ de la norme N_{∞} , ou pour tout $M \in \mathcal{M}_2(\mathbf{R})$ $N_{\infty}(M) = \max\{M[i,j], (i,j) \in [1,2]\}$.

- 1. L'ensemble \mathcal{R} est-il borné ?
- 2. L'ensemble \mathcal{R} est-il fermé ?
- 3. L'ensemble \mathcal{R} est-il ouvert ?

PROBLÈME

Dans tout le problème, n est un entier naturel supérieur ou égal à 2. Cet entier est quelconque sauf dans la partie I, où il est égal à 2.

On note $\mathcal{M}_n(\mathbf{R})$ l'algèbre des matrices carrées d'ordre n à coefficients réels, $(E_{i,j})$ sa base canonique $(1 \leq i \leq n \text{ et } 1 \leq j \leq n)$ et I_n sa matrice unité (tous les coefficients de $E_{i,j}$ sont nuls, sauf celui situé à la i^e ligne et à la j^e colonne, qui vaut 1).

On note $\mathbf{R}[X]$ l'algèbre des polynômes à coefficients réels.

Dans tout le problème, A est une matrice quelconque de $\mathcal{M}_n(\mathbf{R})$ et u l'endomorphisme de \mathbf{R}^n canoniquement associé à la matrice A.

Pour tout $P = \sum_{k=0}^{d} a_k X^k \in \mathbf{R}[X]$, on note $P(A) = \sum_{k=0}^{d} a_k A^k$. L'ensemble des matrices P(A) pour tout $P \in \mathbf{R}[X]$ est noté $\mathbf{R}[A]$.

On dit que P annule A lorsque P(A) = 0, ce qui équivaut à P(u) = 0. On appelle polynôme minimal de la matrice A le polynôme minimal de l'endomorphisme u; c'est par définition le polynôme unitaire de plus petit degré qui annule A.

On note ϕ_A l'application de $\mathcal{M}_n(\mathbf{R})$ dans $\mathcal{M}_n(\mathbf{R})$ définie par :

$$\phi_A(M) = AM - MA$$

L'objet du problème est d'étudier quelques propriétés des éléments propres de ϕ_A . Les parties I et II étudient la diagonalisabilité de ϕ_A , les parties III et IV en étudient les vecteurs propres.

Les quatre parties sont indépendantes.

Partie I. Étude du cas n=2

Dans toute cette partie, on prendra n=2.

- 1) Vérifier que l'application ϕ_A est linéaire et que I_2 et A appartiennent à $\operatorname{Ker} \phi_A$.

 Dans la suite de cette partie, on pose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbf{R})$.
- 2) Donner la matrice de ϕ_A dans la base $(E_{1,1}, E_{2,2}, E_{1,2}, E_{2,1})$ de $\mathcal{M}_2(\mathbf{R})$. Dans la suite de cette partie, on suppose que $\phi_A \neq 0$ (c'est-à-dire que $A \neq \lambda I_2$ pour tout $\lambda \in \mathbf{R}$).
- 3) Donner le polynôme caractéristique de ϕ_A sous forme factorisée
- 4) En déduire que ϕ_A est diagonalisable si et seulement si $(d-a)^2 + 4bc > 0$.
- 5) Démontrer que ϕ_A est diagonalisable si et seulement si A est diagonalisable.

Partie II. Étude du cas général

On note $c = (c_1, \ldots, c_n)$ la base canonique de \mathbb{R}^n .

6) On suppose dans cette question que A est diagonalisable.

On note $e = (e_1, \ldots, e_n)$ une base de vecteurs propres de u (défini au début du problème) et, pour tout entier i tel que $1 \le i \le n$, λ_i la valeur propre associée au vecteur e_i . On

et, pour tout entier i tel que $1 \le i \ge n$, λ_i la valeur properties note alors P la matrice de passage de la base c à la base e et $D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$.

Enfin, pour tout couple (i, j) d'entiers tels que $1 \le i \le n$ et $1 \le j \le n$, on pose :

$$B_{i,j} = PE_{i,j}P^{-1}$$

- a) Exprimer, pour tout couple (i, j), la matrice $DE_{i,j} E_{i,j}D$ en fonction de la matrice $E_{i,j}$ et des réels λ_i et λ_j .
- **b)** Démontrer que, pour tout couple (i, j), $B_{i,j}$ est un vecteur propre de ϕ_A .
- c) En déduire que ϕ_A est diagonalisable.
- 7) On suppose dans cette question que ϕ_A est diagonalisable en tant qu'endomorphisme de $\mathcal{M}_n(\mathbf{R})$.

On note $(P_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ une base de vecteurs propres de ϕ_A et, pour tout couple (i,j), $\lambda_{i,j}$ la valeur propre associée à $P_{i,j}$.

- a) Dans cette question, on considère A comme une matrice à coefficients complexes $(A \in \mathcal{M}_n(\mathbf{R}) \subset \mathcal{M}_n(\mathbf{C}))$ et ϕ_A comme un endomorphisme de $\mathcal{M}_n(\mathbf{C})$ (défini par $\phi_A(M) = AM MA$ pour tout $M \in \mathcal{M}_n(\mathbf{C})$).
 - i) Justifier que toutes les valeurs propres de ϕ_A sont réelles.
 - ii) Soit $z \in \mathbb{C}$. Justifier que si z est une valeur propre de A, alors z est aussi une valeur propre de tA .
 - iii) Soit $z \in \mathbf{C}$. On suppose que z et \overline{z} sont deux valeurs propres de la matrice A. On considère alors $X \in \mathcal{M}_{n,1}(\mathbf{C})$ $(X \neq 0)$ et $Y \in \mathcal{M}_{n,1}(\mathbf{C})$ $(Y \neq 0)$ tels que AX = zX et ${}^t\!AY = \overline{z}Y$.

En calculant $\phi_A(X^tY)$, démontrer que $z-\overline{z}$ est une valeur propre de ϕ_A .

- b) En déduire que la matrice A a au moins une valeur propre réelle. On note λ une valeur propre réelle de A et $X \in \mathcal{M}_{n,1}(\mathbf{R})$ $(X \neq 0)$ une matrice colonne telle que $AX = \lambda X$.
- c) Démontrer que, pour tout couple (i, j), il existe un réel $\mu_{i,j}$, que l'on exprimera en fonction de λ et $\lambda_{i,j}$, tel que $AP_{i,j}X = \mu_{i,j}P_{i,j}X$.
- d) En déduire que A est diagonalisable.

Partie III. Étude des vecteurs propres de ϕ_A associés à la valeur propre 0

Soit m le degré du polynôme minimal de A.

- 8) Démontrer que la famille (I_n, A, \dots, A^{m-1}) est une base de $\mathbf{R}[A]$.
- 9) Vérifier que $\mathbf{R}[A]$ est inclus dans $\operatorname{Ker} \phi_A$ et en déduire une minoration de dim $\operatorname{Ker} \phi_A$.

10) Un cas d'égalité

On suppose que l'endomorphisme u (défini au début du problème) est nilpotent d'indice n (c'est-à-dire que $u^n = 0$ et $u^{n-1} \neq 0$). On considère un vecteur y de \mathbf{R}^n tel que $u^{n-1}(y) \neq 0$ et, pour tout entier i tel que $1 \leq i \leq n$, on pose $e_i = u^{n-i}(y)$.

- a) Démontrer que la famille (e_1, e_2, \dots, e_n) est une base de \mathbb{R}^n .
- b) Soient $B \in \operatorname{Ker} \phi_A$ et v l'endomorphisme de \mathbf{R}^n canoniquement associé à B.

Démontrer que si
$$v(y) = \sum_{i=1}^{n} \alpha_i e_i \ (\alpha_i \in \mathbf{R}) \text{ alors } v = \sum_{i=1}^{n} \alpha_i u^{n-i}.$$

- c) En déduire Ker ϕ_A .
- 11) Cas où u est diagonalisable

On suppose que u est diagonalisable. On note $\lambda_1, \lambda_2, \ldots, \lambda_p$ $(1 \leq p \leq n)$ les p valeurs propres distinctes de u et, pour tout entier k tel que $1 \leq k \leq p$, $E_u(\lambda_k)$ le sous-espace propre associé à la valeur propre λ_k . On note m_k la dimension de cet espace propre.

- a) Soient $B \in \mathcal{M}_n(\mathbf{R})$ et v l'endomorphisme de \mathbf{R}^n canoniquement associé à B. Démontrer que $B \in \operatorname{Ker} \phi_A$ si et seulement si, pour tout entier k tel que $1 \le k \le p$, $E_u(\lambda_k)$ est stable par v (c'est-à-dire v ($E_u(\lambda_k)$) $\subset E_u(\lambda_k)$).
- b) En déduire que $B \in \text{Ker } \phi_A$ si et seulement si la matrice de v, dans une base adaptée à la décomposition de \mathbb{R}^n en somme directe des sous-espaces propres de u, a une forme que l'on précisera.
- c) Préciser la dimension de Ker ϕ_A .
- d) Lorsque n = 7, donner toutes les valeurs possibles pour cette dimension en envisageant les différentes valeurs possibles de p et des m_k (on ne demande pas de justification).

Partie IV. Étude des vecteurs propres de ϕ_A associés à une valeur propre non nulle

Dans cette partie, α est une valeur propre non nulle de ϕ_A et B un vecteur propre associé $(B \in \mathcal{M}_n(\mathbf{R}), B \neq 0)$. On note π_B le polynôme minimal de B et d le degré de π_B .

- 12) Démontrer que, pour tout $k \in \mathbb{N}$, $\phi_A(B^k) = \alpha k B^k$.
- **13)** Soit $P \in \mathbf{R}[X]$. Exprimer $\phi_A(P(B))$ en fonction de α , B et P'(B).
- 14) Démontrer que le polynôme $X\pi'_B d\pi_B$ est le polynôme nul $(\pi'_B$ étant le polynôme dérivé du polynôme minimal de la matrice B).
- 15) En déduire que $B^d = 0$.