Exercice 1 : Séries à la limite de la convergence On se place dans $X = \ell^1(\mathbb{N})$. Soit (c_n) une suite de coefficients strictement positifs qui tend vers 0 quand n tend vers $+\infty$ et soit T l'application de X dans X définie par $Tx = T(x_n) = (c_n x_n)$.

- 1) Montrer que T est bien définie et injective.
- 2) Montrer que T ne peut admettre d'inverse borné et en déduire que T n'est pas surjective.
- 3) Montrer que pour toute suite positive (c_n) qui tend vers 0, il existe une suite positive (u_n) telle que $(\sum c_n u_n)$ converge mais $(\sum u_n)$ diverge. 4) (*) Etant donné une séries (c_n) de coefficients strictement positifs qui tend vers 0 construire explicitement une suite positive (u_n) telle que $(\sum_n c_n u_n)$ converge mais $(\sum u_n)$ diverge.

$$||T_{\infty}|| = \sum_{n=1}^{\infty} |C_{n} \times ||C_{n}|| = \sum_{n=1}^{\infty} |C_{n}$$

$$U = \{ ||x|| < 1 \}$$

$$T(U) \text{ onvert } \Rightarrow \exists r > 0 + q \quad V = \{ ||v|| < r \} \in U$$

$$T^{-1} \lor \subset T^{-1} (TU) = U$$

$$\Rightarrow \text{ Sup } |T^{-1} x| \leq 1$$

$$||x|| < r$$

$$\Rightarrow ||T^{-1}|| \leq \frac{1}{r}$$

3) Soit $c = (c_n)$, $c_n \rightarrow 0$ $lm T \leftarrow \ell' \Rightarrow \exists v = (v_n) \not\in lm T$ Si $v = (v_n)$, $v_n = v_n/c_n$ alors $Tv = v \Rightarrow u \not\in \ell'$ cow $v \not\in lm T$

4/