Part IB — Methods Example Sheet 4 $\,$

Supervised by Dr. Saxton
Examples worked through by Christopher Turnbull
Michaelmas 2017

(i) Along characteristic curves,

$$\frac{\mathrm{d}x}{\mathrm{d}s} = 1$$
 $\frac{\mathrm{d}y}{\mathrm{d}s} = y$

which has general solution x = s + c and $y = Ae^s$ for some constants c, A. Cauchy data is $B(t) = \{(x = 0, y = t)\}$, intersect B at s = 0, thus characteristic curves are

$$x = s$$
 $y = te^s$

 $\frac{\partial u}{\partial s}|_t=0$ so that u=cst along these characteristics. and the Cauchy data fixes $u(s,t)=t^3$ on the $t^{\rm th}$ curve. Inverting gives

$$s = x$$
 $t = ye^{-x}$

and therefore the solution to our problem is

$$u(x,y) = y^3 e^{-3x}$$

throughout \mathbb{R}^2

(ii) Along characteristic curves

$$\frac{\mathrm{d}x}{\mathrm{d}s} = y \quad \frac{\mathrm{d}y}{\mathrm{d}s} = x$$

$$\Rightarrow \frac{\mathrm{d}^2 x}{\mathrm{d}s^2} = x$$

$$x = A\sinh s + B\cosh s$$

Cauchy data is $B(t) = \{(x = 0, y = t)\}$, intersect at s = 0 gives B = 0, thus

$$x = t \sinh s$$
 $y = t \cosh s$

Then $\frac{\partial u}{\partial s}\Big|_t = 0 \Rightarrow u = \text{cst.}$ along these characteristics, and Cauchy data fixes $u(s,t) = e^{-t^2}$, and have that

$$t^{2} = (t \cosh s)^{2} - (t \sinh s)^{2} = y^{2} - x^{2}$$

therefore solution is

$$u(x,y) = e^{x^2 - y^2}$$

which is uniquely defined only in the upper quadrant of the plane $\{(x,y)\subset R^2: x\geq 0, y\geq 0\}$

(iii) PDE is $u_x + u_y = e^{x+2y} - u$.

Along characteristic curves

$$\frac{\mathrm{d}x}{\mathrm{d}s} = 1 \quad \frac{\mathrm{d}y}{\mathrm{d}s} = 1$$

$$x = s + c$$
 $y = s + d$

Cauchy data is $B(t) = \{(x = t, y = 0)\}$, intersect at s = 0, thus

$$x = s + t$$
 $y = s$

Then $\frac{\partial u}{\partial s}\Big|_t=e^{2x+y}-u=e^{3s+t}-u$ along these characteristics, this is an ODE in s so multiplying by the integrating factor e^s gives

$$e^s \frac{\mathrm{d}u}{\mathrm{d}s} + e^s u = e^{4s+t}$$

$$\Rightarrow e^s u = \frac{1}{4}e^{4s+t} + \text{cst.}$$

Cauchy data u(t,0)=0 fixes $\operatorname{cst}=-\frac{1}{4}e^t,$ and have that

$$u(s,t) = \frac{1}{4}e^{t+3s} - \frac{1}{4}e^{t-s}$$

inverting the relations

$$s = y$$
 $t = x - y$

the solution is

$$u(x,y) = \frac{1}{4}e^{x+2y} - \frac{1}{4}e^{x-2y}$$
$$= \frac{1}{2}e^x \sinh 2y$$

Separation of variables $\Rightarrow u(x,t) = X(x)T(t)$, thus

$$X''T + X\dot{T} = 0$$

$$\Rightarrow \frac{X''}{X} = -\frac{\dot{T}}{T}$$

LHS independent of x, RHS independent of t, so both sides constant. Setting $\lambda = \dot{T}/T$ we have

$$X'' + \lambda X = 0$$

$$X(x) = A\cos\sqrt{\lambda}x + B\sin\sqrt{\lambda}x$$

Boundary conditions $X(0) = X(\pi) = 0$ imply that A = 0, $\lambda = n^2$. Then solving $\dot{T} = \lambda T$ with condition T(0) = U(x) gives

$$T(t) = U(x)e^{n^2t}$$

Thus the unnormalised eigenfunctions of our problem are

$$u(x,t) = U(x)e^{n^2t}\sin nx$$

For large n the solution then has oscillations with higher and higher wavenumber and larger (indeed arbitrarily large) amplitude $U(x)e^{n^2t}$, and so this problem is ill-posed.

(i) The principal part of the symbol of the differential operator is $\mathbf{k}^T \mathbf{A} \mathbf{k}$, where

$$A = \begin{pmatrix} 1 & 0 \\ 0 & x \end{pmatrix}$$

 $\det A$ is product of eigenvalues, therefore we have

elliptic
$$x > 0$$

parabolic $x = 0$
hyperbolic $x < 0$

In the hyperbolic region the negative eigenvector points in the y direction. Thus, if f(x,y) = cst. is to be a characteristic surface, we need $\partial_y f = \pm \sqrt{\partial_x f A_{xx} \partial_x f/x} = \pm \sqrt{x} \partial_x f$. Letting $p = 2x^{1/2}$, this is $(\partial_y \pm \partial_p) f = 0$, so the characteristic surfaces are the two curves of constant $y \pm p$, that is

$$u = y + x^{1/2}$$
$$v = y - x^{1/2}$$

for u constant and v constant.

(ii) The PDE is hyperbolic in the y < 0 region. Here

$$\mathbf{A} = \operatorname{diag}(1, y)$$

and **m** points in the y-direction, with $\mathbf{Am} = y\mathbf{m}$. Thus, if f(x,y) = cst. is to be a characteristic surface, we need $\partial_y f = \pm \sqrt{\partial_x f A_{xx} \partial_x f/y} = \pm \sqrt{y} \partial_x f$. Letting $\xi = x, \nu = 2y^{1/2}$, this is $(\partial_\xi \pm \partial_p) f = 0$, so the characteristic surfaces are the two curves of constant $y \pm p$, that is

Green's second identity is

$$\int_{\Omega} \phi \nabla^2 \psi - \psi \nabla^2 \phi \, dV = \int_{\delta \Omega} \phi(\mathbf{n} \cdot \nabla \psi) - \psi(\mathbf{n} \cdot \nabla \phi) dS$$

where $\Omega \subset \mathbb{R}^n$ is a compact set, and $\phi, \psi : \Omega \to \mathbb{R}$ are a pair of functions on Ω regular throughout Ω .

 $u(\mathbf{x})$ is harmonic and therefore satisfies $\nabla^2 \mathbf{u} = 0$. Consider a Dirichlet Green's function for the Laplace operator on D; we have

$$\nabla^2 G(\mathbf{r}; \mathbf{r}_0)$$

It can be shown that

$$G(\mathbf{x}; \mathbf{x}_0) = \frac{1}{2\pi} \log |\mathbf{x} - \mathbf{x}_0|$$

Using Green's second identity with \mathbf{u} and G we have

$$\int_{\Omega} u \nabla^2 G - G \nabla^2 u \, dV = \int_{\delta \Omega} G(\mathbf{n} \cdot \nabla u) - u(\mathbf{n} \cdot \nabla G) dS$$

For some reason, $\mathbf{n} \cdot \nabla u = \frac{\partial u}{\partial n}$. Also, since G only depends on the outward normal, we have $\mathbf{n} \cdot \nabla G = \frac{\partial G}{\partial n}$.

Thus the equation becomes

$$\int_{\Omega} u \nabla^2 G - G \nabla^2 u \, dV = \int_{\delta\Omega} G(\mathbf{n} \cdot \nabla u) - u(\mathbf{n} \cdot \nabla G) dS$$

Let $\Omega = \{(x,y) \in \mathbb{R}^2 : y \geq 0\}$ and suppose $\psi : \Omega \to \mathbb{R}$ solves Laplace's equation $\nabla^2 \psi = 0$ inside Ω , subject to

$$\psi(x,0) = f(x)$$
 and $\lim_{|\mathbf{x}| \to \infty} \psi = 0$

(i) We must construct a Green's function that vanishes on $\delta\Omega$. As well as vanishing on the x-axis, we also require G vanishes as $|\mathbf{x}| \to \infty$. We'll set $\mathbf{x} = (x, y)$ and $\mathbf{y} := \mathbf{x}_0^+ = (x_0, y_0)$ in terms of Cartesian coordinates, with $y_0 > 0$. We know that the free-space Green's function

$$G_2(\mathbf{x}, \mathbf{x}_0^+) = \frac{1}{2\pi} \log |\mathbf{x} - \mathbf{x}_0^+| + c_2$$

satisfies all conditions except that

$$G_2(\mathbf{x}, \mathbf{x}_0^+)|_{y=0} = \frac{1}{2\pi} \log |[(x-x_0)^2 + y_0^2]^{1/2}| + c_2 \neq 0$$

We need to cancel the nonzero boundary value of G_2 by adding on some function.

Let $\mathbf{x_0}^-$ be the point $(x_0, -y_0)$. The location $\mathbf{x_0}^- \notin \Omega$, so the Green's function $G_2(\mathbf{x}, \mathbf{x_0}^-)$ is regular everywhere within Ω , and so obeys Laplace's equation everywhere in the upper half-space. Also,

$$G_2(\mathbf{x}, \mathbf{x}_0^-|_{y=0} = \frac{1}{2\pi} \log |[(x-x_0)^2 + y_0^2]^{1/2}| + c_2'$$