ព្រះរាថាណាចក្រកម្ពុថា ថាតិ សាសលា ព្រះមហាក្សត្រ

គលិតទីល្បា ស្ថិត្រាត្ត ស្ថិត្ត

រៀបរៀងដោយគរុនិស្សិតគណិតវិទ្យា ក្រុម២ ជំនាន់ទី២២

ឆ្នាំសិក្សា ២០១៦-២០១៧

សង្ខ សាមស ព្រះឧសាដិន្រ ស្រះរាស្វាយានម្រងនិស្ស

ន្ទួយទីនេះ ខ្លាំ

កិច្ចការស្រាវជ្រាវ

ងឃ្ងូងខ្លួន ខ្សាំង ខ្លាំង ខ្ងាំង ខ្លាំង ខ្លាំង ខ្លាំង ខ្លាំង ខ្លាំង ខ្លាំង ខ្លាំង ខ្លាំង ខ្លា

លម-គោត្តលម	េះ	ង្គឧទស៊ីខេង	<u> </u>
នឹ ទ សីខា	క్రణ	មេស្ងិនសន	ග නික මිඩල් ළුල0
លី លង្វិណា	1ුණි	មេស្ងិតបត	ල්ගනී වික්ල් ගම්ට
	්	មេស្ងិតសត	೫ೞೞ ಶಿಶಿಶಿ ୧៦೦
ពេស្រ សុទិសៃ	క్రణ	ពេរខ្លីសាន	0ය්ව සාදිප දෙවර
នៃ ជួនឃា	క్రణ	ឧស៊រតខេត្តតា	0 දිස් ස්සද් සටස
ឌយ ពិសី	585	ង្ខំពទ្ធខាន	୦୭୭ ମଝିଳ ମମର

អាម្មេកថា

សូស្តីមិត្តអ្នកសិក្សាទាំងអស់គ្នា!

• សៀវភៅសិក្សាដែលលោកអ្នកកំពុងកាន់នៅនឹងដៃនេះមានឈ្មោះថា **គរសិតទិន្យាសិរញ្ញូទត្ថុ** (Financial Mathematic)។ សៀវភៅនេះរួមមាន៩ ជំពូកដែលមានសិក្សាអំពី៖

9. ការប្រាក់សាមញ្ញ ៤. ការបង់ប្រាក់ប្រចាំគ្រា ៧. ភាគហ៊ុន (Stock)

២. ការប្រាក់សមាស ៥. ការសង់រំលោះបំណុល ៨. Stochastic

៣. ទ្រឹស្តីអត្រាការប្រាក់ ៦. សញ្ញាប័ណ្ណ (Bond) ៩. Black-Scholes ។

- ចំណុចសំខាន់ៗនៃមេរៀនមាន៖
 - ខ្លឹមសារនៃមេរៀននីមួយៗ ផ្ដើមចេញពីឧទាហរណ៍នៅក្នុងអាជីវកម្មផ្សេងៗ ទាក់ទង
 នឹងហិរញ្ញវត្ថុ។
 - នៅចុងបញ្ចប់នៃមេរៀននីមួយៗមាន លំហាត់សម្រាប់អនុវត្តន៍ៗ
 - បំណកស្រាយមេរៀនមានភាពច្បាស់លាស់ ស្រួលមើល និងងាយយល់។
- យើងខ្ញុំសង្ឃឹមថា សៀវភៅមួយក្បាលនេះ ជាផ្នែកមួយសម្រាប់ ការសិក្សាស្រាវជ្រាវរបស់ លោកអ្នក ជាពិសេសសម្រាប់អ្នកសិក្សាផ្នែក គណនេយ្យ ធនាគារ គ្រប់គ្រងធនាគារ...។
- តែទោះជាយ៉ាងណាក៏ដោយ នៅតែមាន ចំណុចខ្វះដោយ អចេតនាៗជាសំណូមពរមួយ របស់ យើងខ្ញុំទាំងអស់គ្នាដើម្បីអោយសៀវភៅនេះ កាន់តែល្អប្រសើរ យើងខ្ញុំរង់ចាំទទូល នូវរាល់មតិ រិះគន់ ដើម្បីធ្វើការកែលំអរពីសំណាក់អ្នកសិក្សាទាំងអស់គ្នាៗសូមអរគុណ!

គណិតវិទ្យាក្រុម២ ជំនាន់២២

សេចគ្គីខ្មែ១អំណរគុណ

យើងខ្ញុំទាំងអស់គ្នាជាគរុនិស្សិតគណិតវិទ្យាក្រុម២ ជំនាន់២២ នៃ វិទ្យាស្ថានជាតិអប់រំ។ សូមគោរពថ្លែងអំណរគុណយ៉ាងជ្រាលជ្រៅជូនចំពោះ លោកឪពុក អ្នកម្ដាយ ដែលបាន ផ្ដល់ កំណើតព្រមទាំងចិញ្ចឹមបីបាច់ថែរក្សាយើងខ្ញុំ លើសពីនេះទៅទៀតលោកបានតស៊ូពុះពារ គ្រប់ ឧបសគ្គ ដើម្បីខិតខំរកប្រាក់អោយកូនបានរៀនសូត្ររហូតទទួលបានជោគជ័យ។

សូមគោរពថ្លែងអំណរគុណចំពោះឯឧត្តមបណ្ឌិត សៀង សុវណ្ណា នាយវិទ្យាស្ថានជាតិអប់រំ ដែលបានផ្តល់ឱកាសអោយយើងខ្ញុំទាំអស់គ្នា បានសិក្សារៀនសូត្រហើយទទូលបានជោគជ័យ ជាបន្តបន្ទាប់។

សូមគោរពថ្លែងអំណរគុណដល់ បណ្ឌិត គឹម ចំរើនវុឌ្ឍី ដែលបានបង្កើតជាប្រធានបទថ្មីៗ ដើម្បីដាក់ អោយក្រុមយើង បានធ្វើការស្រាវជ្រាវ ស្វែងរក ចំណេះដឹង ថ្មីៗនិងជាបទពិសោធន៍ មួយដ៏ល្អសម្រាប់ក្រុមយើងខ្ញុំ។ លើសពីនេះទៀតលោកគ្រូ បានពន្យល់ ណែនាំពីរបៀបនៃ ការ សរសេរ និងគន្លឹះផ្សេងៗជាច្រើនទៀត។

សូមគោរពថ្លែងអំណរគុណចំពោះលោកគ្រូ ហូត សុខលឿន សាស្ត្រាចារ្យគណិតវិទ្យានៃ វិទ្យាស្ថានជាតិអប់រំនិងជាសាស្ត្រាចារ្យណែនាំ ដល់ក្រុមស្រាវជ្រាវយើងខ្ញុំ ដែលបានផ្តល់ដំបូន្មាន ល្អៗនិងឯកសារផ្សេងៗទាក់ទងនឹងប្រធានបទស្រាវជ្រាវរបស់ក្រុមយើងខ្ញុំ។

សូមគោរពថ្លែងអំណរគុណចំពោះ លោកគ្រូ ម៉ែន វាំង ,ស៊ឹម វិសុទ្ធ, បាន គនហេង , ឃី មឿយ និងសាស្ត្រាចារ្យទាំងអស់ ដែលបានបង្ហាត់បង្រៀន ពន្យល់ណែនាំ និងផ្តល់ដំបូន្មានល្អៗ ដល់ពូក យើងខ្ញុំ។

សូមគោរពថ្លែងអំណរគុណចំពោះអ៊ឺ ពូ មីង មា បង ប្អូន និងមិត្តភក្ត្រទាំងអសគ្នាដែលតែង តែ ជម្រុញនិងលើកទឹកចិត្តពួកខ្ញុំកន្លងមកនេះ ជាហេតុធ្វើអោយ ពួកខ្ញុំមានកម្លាំងចិត្តតស៊ូរៀន សូត្រ រហូតមកដល់ពេលនេះ។

សូមជូនពរអោយអ្នកទាំងអស់ខាងលើ ជួបប្រទះតែសេចក្ដីសុខ សុភមង្គល សុខភាពល្អ រកទទូល ទាន មានបាននិង ជោគជ័យគ្រប់ភារកិច្ច ។ សូមអោយទាំងអស់គ្នាជួបប្រទះពុទ្ធពរទាំង ឡាយ៤ប្រការគឺ អាយុ វណ្ណៈ សុខៈ ពលៈ កុំបីឃ្លានឃ្លាតឡើយ។

នាខេត្តិសស្ថានៃ

ក្នុងនាមជាអ្នកបន្តវេនពីរៀមច្បង និងដោយទទូលបាននូវការបណ្តុះបណ្តាលនូវ ទ្រឹស្តីនា នាពីវិទ្យាស្ថានជាតិអប់រំ នូវចំណេះដឹង ជំនាញគណិតវិទ្យា កម្រិតបរិញ្ញាបត្រ+១ ខ្ញុំបាទ នាងខ្ញុំ សូមឧទ្ទិសស្នាដៃនេះ ថ្វាយ ប្រគេន ជូន ដល់ព្រះ វិញ្ញាណក្ខ័ន្ធនៃ អតីតព្រះមហាក្សត្រខ្មែរ ព្រះវិញ្ញាណក្ខ័ន្ធនៃព្រះសង្ឃខ្មែរ វិញ្ញាណក្ខ័ន្ធនៃវីរៈបុរសខ្មែរ បុព្វបុរសខ្មែរជំនាន់មុន ដែលមានឧត្តម គតិស្រឡាញ់យុត្តិធម៌ ស្នេហាជាតិ សាសនាដ៍ពិតៗ និងដល់ជីដូនជីតាសាច់ញាតិ លោកគ្រូអ្នក គ្រូ សាស្ត្រាចារ្យ អ្នកមានគុណទាំងឡាយ ដែល បានចែកឋានទៅ កាន់បរិលោកហើយ សូមឱ្យ លោកទទូលបាននូវសេចក្តីសុខ រួចចាកទុក្ខពីលំបាកទាំងឡាយ សមតាមអ្វីដែលលោកបានប្តូរ ផ្តាច់ មិនខ្លាចនឿយហត់ក្នុងការបង្ហាត់បង្ហាញដល់ យើងខ្ញុំរហូតទទូលបាននូវផ្លែផ្កាគូរជាទីមោទ ន:នៅពេលនេះ។

ខ្ញុំស្ងមឧទ្ទិសស្នាដៃ នេះឱ្យក្លាយជាឧបករណ៍ បម្រើឱ្យ សេចក្តីត្រូវការនៃ វិសាលភាពពុទ្ធិ គ្រប់ពេលវេលា ព្រមទាំងយុវវ័យមួយចំនូនធំ ដែលមានសេចក្តីអស់សង្ឃឹមបានដុតបំផ្លាញគោល បំណងនៃការរៀនសូត្រ ពោលគឺពួកគេបង្ខំចិត្តលាសាលារៀន លាវិទ្យាល័យ លាមហាវិទ្យាល័យ ទាំងទឹកភ្នែករហេមរហាម ទាំងក្តីសោកស្តាយហ្វូសថ្លែងសម្តែងចេញ ពោលគឺប្រកបដោយភាព ឈឺចុកចាប់យ៉ាងក្រៃលែង សឹងថារកវាចាមកថ្លែងរៀបរាប់ឱ្យចំនឹងទំហំនៃការឈឺចាប់ ក្នុងជម្រៅ ចិត្តមិនបាន ដោយសារតែសេចក្តីក្រីក្រ។ សេចក្តីតោកយ៉ាកបែបនេះ ក្លាយទៅជាអនុស្សាវរីយ៍ ដ៏គ្រោតគ្រាតពេញមួយជីវិត ដែលគប្បីឱ្យយុវជន យុវតីខ្មែរស្វ័យសិក្សា ស្វែងរកពុទ្ធិទាំងឡាយ មកដាក់ក្នុងខូរក្បាលនៅពេលណាដែលខ្លួនអាច។

ជាចុងបញ្ចប់នៃពាក្យឧទ្ទិសនេះ ខ្ញុំបាទសូមឧទ្ទិសពាក្យមួយឃ្លាដែលខ្ញុំចូលចិត្តជាងគេក្នុង ពេលដែលខ្ញុំបាទកំពុងសិក្សាគណិតវិទ្យា នេះទុកជាការពិចារណាបន្តទៀតនៃអ្នកសិក្សាជំនាន់ ក្រោយៗគឺ បញ្ហា និងការចេះឈឺចាប់អាចជម្រុញឱ្យយើងបំភ្លេចខ្លួនឯងនៅពេលខ្លះ ហើយតស៊ូ សិក្សាបាន ទៅមុខទៀត ដែលវាទាំងពីរខាងដើមនេះ បើកភ្នែកមនុស្សឆ្លាតមួយ ចំនួនឱ្យមើល ឃើញពីដំណោះស្រាយ ទ្រឹស្តីបទនៃជីវិត បន្ទាប់ពីគេមានភ័ព្វសំណាងបានយល់អំពីអ្វីដែលធ្វើ ឱ្យគេចេះតស៊ូក្នុងជីវិត។

យើងខ្ញុំជា គរុនិស្សិតនៃវិទ្យាស្ថានជាតិអប់រំ ឯកទេស គណិតវិទ្យា ហើយជាអ្នក សរសេររ បាយ ការណ៍ស្រាវជ្រាវ លើប្រធានបទ គណិតវិទ្យាហិរញ្ញវត្ថុ ដើម្បី បញ្ចប់ការសិក្សា ថ្នាក់បរិញ្ញា បត្រ+១ ដែលបានសិក្សាអស់រយៈពេល១ឆ្នាំសិក្សាកន្លងមកនេះ។

យើងខ្ញុំសូមធ្វើការអះអាងថាការសិក្សា ស្រាវជ្រាវរបស់យើងខ្ញុំមានភាពពិតទាំងស្រុងទាំង ព័ត៌មានដែលប្រមូលបានមក និង សរសេរអត្ថបទ ហើយ របាយការណ៍នេះ យើងខ្ញុំបានយកជូន លោកគ្រូណែនាំត្រូតពិនិត្យ គាត់ក៏បានអនុញ្ញាតឱ្យយើងខ្ញុំ សរសេរប្រធានបទនេះឡើងមក។ យើងខ្ញុំសូម ទទួលខុសត្រូវ ចំពោះការក្លែងបន្លំ ការលួចចម្លង ពីអ្នកដទៃ។ ប្រសិន បើវិទ្យាស្ថាន ពិនិត្យឃើញមានករណីណាមួយកើតឡើងខុសពីខ្លឹមសារ នៃការអះអាងខាងលើចំពោះរបាយ ការណ៍របស់យើងខ្ញុំ នោះយើងខ្ញុំពុំមានលក្ខណៈគ្រប់គ្រាន់ដើម្បីទទួលសញ្ញាបត្រឡើយ។

សេខគ្គីឆ្កើម

ឆ្លងតាមរយៈ ការសិក្សាលើមុខវិជ្ជា គណិតវិទ្យា ជា ពិសេសមុខវិជ្ជា គណិតវិទ្យាហិរញ្ញវត្ថុ បានបង្ហាញនូវវិធីសាស្ត្រមួយចំនួន ក្នុងសេដ្ឋកិច្ច អំពីការគណនា ការប្រាក់ ប្រាក់ចំណេញ ប្រាក់ខាត...។ ដោយឃើញពីសារៈសំខាន់នេះ ទើបក្រុមយើងខ្ញុំ សម្រេចចិត្ត ជ្រើសរើស យកប្រធានបទនេះមកធ្វើការស្រាវជ្រាវ។

២. គោលចំណទ និចសារៈសំខាន់នៃការស្រាទទ្រាទ

ការសិក្សាស្រាវជ្រាវមានគោលបំណងផ្ដល់នូវឯកសារ ជំនួយក្នុងការសិក្សាលើមុខវិជ្ជា គណិតវិទ្យាហិរញ្ញវត្ថុ។

៣. ទង្គមំណទនៃអារស្រាទទ្រាទ

ដោយមើលឃើញពីសារៈសំខាន់ និងកង្វះខាតឯកសារជាខេមរភាសាទើបក្រុមយើងខ្ញុំ សម្រេចចិត្តជ្រើសរើសយកប្រធានបទ គណិតវិទ្យាហិរញ្ញវត្ថុមកធ្វើការស្រាវជ្រាវ ដោយបង្ហាញនូវចំណុចសំខាន់គឺ៖

- ការប្រាក់សាមញ្ញ
- អប្បហារសាមញ្ញ
- ការប្រាក់សមាស
- ការបង់ប្រាក់ប្រចាំគ្រា
- ការសង់រំលោះបំណុល
- សញ្ញាប័ណ្ណ (Bond)
- ភាគហ៊ុន (Stock)
- Stochastic
- Black-Scholes

ម្យ៉ាងទៀតនៅចុងបញ្ចប់នៃមេរៀននីមួយៗមានលំហាត់សម្រាប់អនុវត្តផងដែរ។

៤. ទីឆីសាស្រតូខភាស្រេទទ្រាទ ការរៀបចំ ចងក្រងឯកសារនេះ ឡើង ដំបូងយើង ខ្ញុំបាន ស្វះ ស្វែងប្រមែប្រមូល រកនូវឯកសារនានា ដែលទាក់ទង នឹង ប្រធានបទ តាមរយៈអ៊ីនធឺ ណែត សៀវភៅសិក្សានៅតាមសាកលវិទ្យាល័យ នៅតាមបណ្ណាល័យនានា។

បន្ទាប់ពីបានឯកសារហើយ យើងខ្ញុំបានវិភាគផ្ទៀងផ្ទាត់ ដើម្បីសម្រេច យកខ្លឹមសារ ដែលបានច្បាស់លាស់ធ្វើជា របាយការណ៍។

ចុងក្រោយទើបយើងខ្ញុំសម្រេចសរសេរ ខ្លឹមសារទាំងនេះ ធ្វើជា របាយការណ៍ ស្រាវ ជ្រាវ ទៅតាមប្លង់ នៃរបាយការណ៍ ស្រាវជ្រាវរបស់វិទ្យាស្ថានជាតិអប់រំ។

មាតិកា

	នំព័រ
សាទ្ឋភាថា	 . i
សេចអ្គីថ្ងៃ១អំណរគុណ	 . ii
តាខេន្ទិសស្ថាំខ	 . iii
អំណះអំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំ	 . iv
សេចគ្គីស្ពើម	 . V
ខំពុងខ្លួំ សរស្រាង់សានយ៉ឺ	9
១.១ សញ្ញាណនៃការប្រាក់សាមញ្ញ	 . 9
១.២ និយមន័យ	
១.៣ រូបមន្តការប្រាក់សាមញ្ញ	 . ២
១.៤ ក្រាបនៃការប្រាក់សាមញ្ញ	
១.៥ រយៈពេលនៃការចងការប្រាក់	 . ៤
១.៥.១ រយៈពេលចងការគិតជាខែ	 . ៤
១.៥.២ រយៈពេលចងការគិតជាថ្ងៃ	 . ៥
១.៦ ការអនុវត្តរូបមន្តគ្រឹះ និងតម្លៃប្រាក់សរុបត្រូវសង	 . ხ
១.៧ អត្រាការប្រាក់មធ្យម	 . ๗
១.៨ ការដកយកការប្រាក់មុន និងអត្រាជាក់លាក់	 . წ
ចំទាាត់អតុទត្តត៍	 . 99
ខំពុភនី២ ភារច្រាត់សមាស (ភារច្រាត់ផ្គម)	១៥
២.១ សញ្ញាណការប្រាក់សមាស	 . ១៥
២.២ និយមន័យ	 . ១៦
២.៣ រូបមន្តក្នុងការប្រាក់សមាស	
២.៣.១ និមិត្តសញ្ញា	

		2 7 · · · · · · · · · · · · · · · · · ·
		រាគ់អតុទគ្គស៍
င်	ពុភនិ	ព ទ្រឹស្តីអត្រាអារច្រាអ់ ២៩
	៣.១	និយមន័យអត្រាការប្រាក់២៩
	៣.២	អត្រាការប្រាក់ធម្មតា
	៣.៣	កត្តានៃកំណើនការប្រាក់
	៣.៤	ការប្រាក់បង្ខំ
	៣.៥	តម្លៃបច្ចុប្បន្ន
	ຓ .៦	រូបមន្ត Stoodley ចំពោះការប្រាក់បង្ខំ
	៣.៧	តម្លៃបច្ចុប្បន្ននៃលំហូរសាច់ប្រាក់
		៣.៧.១សញ្ញាណ និងនិយមន័យ
	៣.ផ	ការវាស់តម្លៃលំហ្វរសាច់ប្រាក់៨៤
	៣.៩	ប្រាក់ចំណូលជាការប្រាក់៥៥
	នំ ឡ	ក្នុងស្ទេត្តស៍
င်	ព្វភព្ធិ	ද් කෘපල්ලාස්පුණ්සු දිව
	៤.១	និយមន័យនៃការបង់ប្រាក់ប្រចាំគ្រា
		៤.១.១ និយមន័យ
		៤.១.២ ប្រភេទនៃការបង់ ប្រាក់ប្រចាំគ្រា
		៤.១.២.១ ការបង់ប្រាក់ប្រចាំគ្រាសាមញ្ញ ៥១
		៤.១.២.២ ការបង់ប្រាក់ប្រចាំគ្រាទូទៅ
		៤.១.៣ និមិត្តសញ្ញា
	៤.២	ការបង់ប្រាក់ប្រចាំគ្រាសាមញ្ញ
		๔.២.១ Ordinary Annuity
		៤.២.១.១ តម្លៃអនាគតនៃ Ordinary Annuity ៥៣
		៤.២.១.២ តម្លៃបច្ចុប្បន្ននៃ Ordinary Annuity ៥៥
		๔.២.២ Annuity Due
		໔.២.២.໑ Annuity Due
		៤.២.២.២ តម្លៃបច្ចុប្បន្ននៃ Annuities Due
		๔.๒.๓ Deferred Annuities

~ ls	d managan and a sama a har
Œ.E	.៤ ការគណនាចំនូនគ្រា និងអត្រាការប្រាក់
	៤.២.៤.១ ការគណនាចំនូនគ្រា
	៤.២.៤.២ ការគណនា រកអត្រាការប្រាក់ ៦៦
៤.៣ ការ	បង់ប្រាក់ប្រចាំគ្រាទូទៅ
៤.ព	n.១ ការបំលែង General Annuity ជា Simple Annuity ៧០
៤.ព	n.២ ការបង់ប្រាក់ប្រចាំគ្រានិរន្តរ៍ (Perpetuity) ៧២
	៤.៣.២.១និយមន័យ
	៤.៣.២.២តម្លៃបច្ចុប្បន្ននៃ Perpetuity
៤.ព	ı.៣ការបង់ប្រាក់ប្រចាំគ្រាប្រែប្រួល
	៤.៣.៣.១Annuity ដែលប្រាក់បង់ប្រចាំគ្រាជាកំណើននព្វន្ត ៧៤
	៤.៣.៣.២ការប្រាក់បង់ប្រចាំគ្រាជាកំណើនធរណីមាត្រ ៧៧
លំខាត់៖	សុទត្តស៍
សំពុភន្ល	អារស១រំលោះចំណុល ៨៩
៥.១ សព្ទ	ក្នាណនៃការរំលោះចំណុល
č. 9	.១ សញ្ញាណអំពីគណនីចរន្តវែង
	៥.១.១.១ បំណកស្រាយតាមវិធីសាស្ត្រផ្ទាល់ Direct Method ៨៩
	៥.១.១.២ បំណកស្រាយតាមវិធីសាស្ត្រ Hambourg 60
č. 9	.២ សញ្ញាណអំពីការរំលោះបំណុល
	៥.១.២.១ ការសងរំលោះបំណុលដើមបណ្ដើរៗ (តារាងរំលោះ) ៩១
	៥.១.២.២ ការសងប្រាក់ដើមតែ១លើកនៅកាលវសាន្តនៃកិច្ចសន្យាកំចី . ៩២
៥.២ ការ	់លោះកំចីជាបណ្ដើរៗ,វិធាន
៥.២	.១ វិធាននៃការសងវំលោះ
ظ. ك	.២ ការរំលោះបំណុលដោយសំណងថេរ(ច្បាប់រំលោះ) ៩៥
	៥.២.២.១ ច្បាប់នៃការរំលោះ(ការរំលោះទុន) ៩៥
	៥.២.២.២ ចំណុលដែលនៅជំពាក់
	៥.២.២.៣ការប្រាក់
	៥.២.២.៤ ចំណុលរំលោះ
ď.b	.៣ ការរំលោះដោយរំលោះទុនថេរ
៥.៣ ការ	សងរំលោះទុននៅកាលវសាន្ត

	៥.៣.១ មូលនិធិនៃការរំលោះ	១០៣
	៥.៣.២ ការប្រៀបធៀបវិធីរំលោះដោយសំណងថេរ និងមូលនិធិនៃការរំលោះ	១០៧
ಬೆ ಟ	រាត់អនុទត្តន៍	908
ខំពូនផ្ទ	ទុ ទុស្សាត្តសី និ ត្តសីរទូសាល	១១៥
ხ.9	សញ្ញាណនៃសញ្ញាប័ណ្ណ	១១៥
៦.២	និយមន័យ និងនិមិត្តសញ្ញានៃសញ្ញាប័ណ្ណ	១១៥
	៦.២.១ និយមន័យ	១១៥
	៦.២.២ និមិត្តសញ្ញា	១១៦
៦.៣	តម្លៃទិញ និង តម្លៃសញ្ញាប័ណ្ណ	១១៦
	៦.៣.១ តម្លៃទិញនៃសញ្ញាប័ណ្ណ ធៀបនឹងអត្រាទិន្នផល	១១៦
	៦.៣.២ តម្លៃសញ្ញា ប័ណ្ណក្នុងចន្លោះកាលបរិច្ឆេទ ការប្រាក់នៃសញ្ញាប័ណ្ណ	១១៩
៦.៤	អត្រាទិន្នផល	១២៥
	៦.៤.១ វិធីសាស្ត្រមធ្យម	១២៥
	៦.៤.២ The Linear Interpolation Method	១២៦
៦.៥	ប្រភេទនៃសញ្ញាប័ណ្ណ និងការសងរំលោះ	១៣៣
	៦.៥.១ សញ្ញាប័ណ្ណគ្មានកាលកំណត់	១៣៣
	៦.៥.២ សញ្ញាប័ណ្ណបុព្វលាភ និងអប្បហារ	១៣៦
	៦.៥.៣ សញ្ញាប័ណ្ណស៊េរី	១៥០
	៦.៥.៤ សញ្ញាប័ណ្ណចំរៀក	១៤៣
	៦.៥.៥ សញ្ញាប័ណ្ណនៃសំណងប្រចាំគ្រា	១៤៥
<u> </u>	ាងអនុទង្គន៍	១៤៨
ខំពូនឆ្ន	និក នាគច្ឆិន	୨ଝ୍ଜମ
៧.១	សញ្ញាណនៃភាគហ៊ុន	១៥៧
៧.២	និយមន័យនៃភាគហ៊ុន	១៥៨
៧.៣	ការទិញ និងលក់ភាគហ៊ុន	១៥៩
	៧.៣.១ឈ្មួញ និងឈ្មួញកណ្ដាល	១៥៩
	៧.៣.២ការទិញ និងលក់ភាគហ៊ុន	
	៧.៣.៣ទ្រឹស្តីបទកម្រិតឋិតថេរនៃការលក់វែង	១៦៨
	៧.៣.៤ ទ្រឹស្តីបទកម្រិតឋិតថេវនៃការលក់រយៈពេលខ្លី	១៧០

៧.៤	តម្លៃ និងហានិភ័យ
	๗.๔.១ Dow Jones Industrial Average(DJIA)
	៧.៤.២ Standard and Poor's 500 $\operatorname{Index}(S\&P500)$ ១៧៦
	៧.៤.៣អត្រានៃធនលាភភាពចំពោះភាគហ៊ុន និងសន្ទស្សន៍ភាគហ៊ុន ១៧៨
	៧.៤.៤ តម្លៃ និងហានិភ័យ
<u> </u>	ភេតអេខុទត្តខ៍
ខំពុភពិ	d ទិធីសាស្ត្រខៃជន្យតួខមេៈពេលដាខ់
៨.១	ស្វ៊ីតនៃអថេរចៃដន្យ
	៨.១.១ សញ្ញាណស្វ៊ីតនៃអថេរចៃដន្យ
	៨.១.២ និយមន័យ
៨.២	សំនុំពត៌មានដែលបានដឹងពីអតីតកាល
	៨.២.១ សំនុំព័ត៌មានដឹងពីអតីតកាលនៅក្នុងលំហប្រូបាប៊ីលីតេ ១៩២
	៨.២.១.១ និយមន័យ
	៨.២.១.២ វិធីសាស្ត្រសម្របសម្រួល និងការព្យាករណ៍១៩៣
៨.៣	សេចក្តីផ្តើមនៃវិធីសាស្ត្រចៃដន្យ
	៨.៣.១ និយមន័យ
	៨.៣.២ អនុគមន៍បង្ក
	៨.៣.២.១និយមន័យ
	៨.៣.២.២លក្ខណ:របស់អនុគមន៍បង្ក
	៨.៣.៣សង្ឃឹមគណិតមានលក្ខខណ្ឌ
ជ.៤	ម៉ាធីឯហ្កែល
៨.៥	ភាពជឿជាក់នៃល្បែង២០៦
៨.៦	ពេលវេលាបញ្ឈប់
	៨.៦.១ . សញ្ញាណនៃពេលវេលាបញ្ឈប់ ២០៩
	៨.៦.២ និយមន័យ
៨.៧	ច្រវ៉ាក់ម៉ាកូវ
	៨.៧.១ ឧទាហរណ៍ និងនិយមន័យ
	៨.៧.២. ចំណាត់ថ្នាក់នៃស្ដេត
ಜಿ ಕ	ក្នុងសុខត្តស៍

មាតិកា មាតិកា

ភារប្រាភ់សាមញ្ញ

១.១. សញ្ញាសាខែអាឡោក់សាមញ្ញ

អ្វីជាការប្រាក់សាមញ្ញ?

ឧនាមារស៍ 9.9.9. ៖ ឧបមាដើម្បីពង្រីកមុខរបររបស់គាត់លោករដ្ឋបានខ្ចីប្រាក់ពីធនាគារចំនូន \$5000 ដែលមានអត្រាការប្រាក់ 10% ក្នុងមួយឆ្នាំ។

- បើលោករដ្ឋខ្ចីរយៈពេលមួយឆ្នាំនោះគាត់ត្រូវសងប្រាក់នៅធនាគារវិញចំនួន \$5500 ដែល \$5000 ជា ប្រាក់ដើមរបស់ធនាគារពេលគាត់ខ្ចី និង \$500 ជា ការប្រាក់ដែលបង់ក្នុងរយៈ ពេលមួយឆ្នាំ។
- បើសិនគាត់ខ្ចីរយៈពេលពីរឆ្នាំវិញ នោះគាត់ត្រូវសងប្រាក់នៅ ធនាគារវិញ ទាំងដើមទាំង ការប្រាក់ ចំនូន\$6000 ដែល \$5000 ជាប្រាក់ដើមនិង \$1000 ជាការប្រាក់ត្រូវបង់ក្នុងរយៈ ពេល 2ឆ្នាំ។

គោលគំនិតនេះជាមូលដ្ឋាននៃសញ្ញាណការប្រាក់សាមញ្ញ ។

ව.ප. විසාසදීස

និយមន័យ ១.២.១. **ភារច្រាអ់សាមញ្ញ** គឺជាការប្រាក់ដែលមិនត្រូវបានបូកបន្ថែម នឹងប្រាក់ ដើម សម្រាប់គិតការប្រាក់បន្តទៅទៀត។

ប្រាក់សាមញ្ញត្រូវបានបង់ដោយអ្នកខ្ចីគេ (កូនបំណុល) ជូនអ្នកដែលឱ្យខ្ចី (ម្ចាស់បំណុល) តាម ដំណាក់កាល នៃកិច្ចសន្យា។

ដ្ទខភាអេនុខដ្ឋ

ការប្រាក់សាមញ្ញ (simple interest) ត្រូវបានប្រើប្រាស់ សម្រាប់ប្រតិបត្តិការហិរញ្ញវត្ថុក្នុង រយៈពេល ខ្លី ដែលទាក់ទង នឹង ការចងការប្រាក់។

១.៣. រួមមន្ត្តភារត្រាក់សមញ្ញ

ដើម្បីងាយស្រូលក្នុងការគណនាការប្រាក់សាមញ្ញ គេកំណត់និមិត្តសញ្ញាដូចខាងក្រោម៖

- P ប្រាក់ដើមដំបូង (Principle)
- r អត្រាការប្រាក់ (Interest rate)
- I ការប្រាក់សាមញ្ញ (Interest)
- t រយ:ពេលវិនិយោគ (times)
- v ប្រាក់សរុបនៅចុងគ្រា (Future value)
 ដោយការប្រាក់សាមញ្ញសមាមាត្រដោយផ្ទាល់ទៅនឹងប្រាក់ដើម អត្រាការប្រាក់ និង រយៈ
 ពេលវិនិយោគ គេ ទាញបានរូបមន្ត ៖

$$I = Prt \tag{9.9}$$

$$v = P + I$$
 (9.5)

$$v = P + Prt = P(1 + rt) \tag{9.m}$$

ឧនាទារស៍ ១.៣.១. ៖ លោកA បានចងការប្រាក់ចំនួន\$5000 ពីលោកB សំរាប់រយៈពេលមួយ ឆ្នាំតាមអត្រាការ ប្រាក់12% ក្នុងមួយឆ្នាំ។

តើលោកA ត្រូវសងការប្រាក់និងប្រាក់សរុបឲ្យលោកB ចំនួនប៉ុន្មាន?

ಜೀಣಾ:ಕ್ರಾಟ

រកការប្រាក់ និង ប្រាក់សរុបដែលលោកA ត្រូវសងឲ្យលោកB

តាមរូបមន្ត(១.១) ការប្រាក់សាមញ្ញ
$$I=Prt$$

$$\Longrightarrow I=5000\times 0.12\times 1$$
 $=600$ តាមរូបមន្ត(១.២) ប្រាក់សរុប $V=P+I$ $=5000+600$ $=5600$

១.៤. គ្រាមនៃភារប្រាក់សមញ្ញ

ឧនាសរស៍ 9.៤.9. សន្មតថាគេដាក់វិនិយោគប្រាក់ចំនូន\$100ក្នុងគណនីសន្សំមួយ។ ចូលសង់ តារាងមួយដើម្បី បង្ហាញអំពីចំនូនប្រាក់ សរុបចុងគ្រាដែលបានកើតឡើង ក្នុងគណនីក្រោយរយៈ ពេល 1,3,5,10&20 ឆ្នាំ ដោយ គិត តាមការប្រាក់សាមញ្ញក្នុងអត្រា 10% ក្នុងមួយឆ្នាំ។

ដំណោះស្រាយ

សង់តារាង I = Prt និង (១.២) V = P + I យើងទទួលបានប្រាក់សរុប ចុងគ្រាតាម ឆ្នាំនីមួយៗ ដែលបានបង្ហាញក្នុង តារាងខាងក្រោម៖

រយៈពេលគិតជាឆ្នាំ	អត្រាការប្រាក់ប្រចាំឆ្នាំ 10%		
រយៈអោរបអាព្យវេដ្ឋា	ការប្រាក់សាមញ្ញ	ប្រាក់សរុបចុងគ្រា	
1	10\$	110\$	
3	30\$	130\$	
5	50\$	150\$	
10	100\$	200\$	
20	200\$	300\$	

តាមតារាងខាងលើ គេបាន ក្រាបនៃការប្រាក់សាមញ្ញដូចខាងក្រោម៖

១.៥. មេះពេលនៃអារុខខភារប្រាអ់

ក្នុងការពិភាក្សារបស់យើង រហូតមកដល់ពេលនេះ យើងបានសន្មតថាt ជាចំនូនគត់(ឆ្នាំ) តែទោះ ជា យ៉ាង ណា ក្នុង ការអនុវត្តជាក់ ស្ដែង នៅក្នុងជីវភាពរស់នៅ ការវិនិយោគរឺការចង ការប្រាក់អាចមានរយៈពេលគិតជាខែឬ ជាថ្ងៃ។

១.៥.១. មេះពេលខុខភារគិតខាខែ

យើងសន្មតt ជារយៈពេលកំណត់នៃការខ្ចី ឬ ចងការប្រាក់គិតជាខែ នោះយើងបាន $\dfrac{t}{12}$ គឺ ជា រយៈពេលនៃ ការខ្ចី ឬចងការប្រាក់ធៀប ទៅនឹងរយៈពេល១ឆ្នាំ(ព្រោះក្នុង១ឆ្នាំមាន១២ខែ)។ យើងអាចទាញបានរូបមន្ត ការប្រាក់ សាមញ្ញ ដែលមាន រយៈពេល គិតជាខែគឺ

$$I = Pr \frac{t}{12} \tag{9.6}$$

ឧនាទារស៍ 9.៥.9. មីងសានខ្ចីប្រាក់ពីធនាគាមួយចំនូន១០លានរៀលតាមការប្រាក់សាមញ្ញក្នុង អត្រា១០% ក្នុង១ឆ្នាំ។

តើគាត់ត្រូវសងការប្រាក់ចំនូនប៉ុន្មានទៅឲ្យធនាគារក្នុងរយៈពេល

- ក. ៣ខែ
- ខរំ៩ .ទ
- គ. ១០ខែ

ដំណោះស្រាយ

ក. រកការប្រាក់ក្នុងរយៈពេល៣ខែ

តាមរូបមន្ត(១.៤)
$$I = Pr \frac{t}{12}$$
 គេបាន $I = 100000000 \times 0.1 \times \frac{3}{12} = 250000$

ខ. រកការប្រាក់ក្នុងរយៈពេល៦ខែ

តាមរូបមន្ត(១.៤)
$$I = Pr \frac{t}{12}$$
 គេបាន $I = 100000000 \times 0.1 \times \frac{6}{12} = 500000$

គ. រកការប្រាក់ក្នុងរយៈពេល១០ខែ

តាមរូបមន្ត(១.៤)
$$I=Pr\frac{t}{12}$$
 គេបាន $I=10000000\times 0.1\times \frac{10}{12}=833333.33$

១.៥.២. មេះពេលខេខភារគិតខាំថ្ងៃ

រយៈពេលចងការដែលគិត ជាចំនូនថ្ងៃ គឺ ជារយៈពេលក្នុងចន្លោះ កាលបរិច្ឆេទពីរ ដែលយើងអាចយករយៈ ពេលពិតប្រាកដ ក៏បានឬរយៈពេលប្រហែលក៏បាន។ ប៉ុន្តែរយៈពេលដែល គេនិយមប្រើប្រាស់ លើសាកលលោកគឺ រយៈពេលពិតប្រាកដ។ហើយការប្រាក់ដែលប្រើប្រាស់ ច្រើនជាងគេគឺការប្រាក់ពាណិជ្ជកម្មនិងការប្រាក់ស៊ីវិល។

- ការប្រាក់ពាណិជ្ជកម្មគេគិតរយៈពេលក្នុងមួយឆ្នាំមាន៣៦០ថ្ងៃ។
- ការប្រាក់ស៊ីវិលគេគិតរយៈពេលក្នុងមួយឆ្នាំមាន៣៦៥ថ្ងៃ។
- ullet បើ tជារយៈពេលចងការគិតជាថ្ងៃ នោះយើងបានរូបមន្ត

ការប្រាក់ពាណិជ្ជកម្ម
$$I = Pr \frac{t}{360}$$
 (១.៥)

ការប្រាក់ស៊ីវិល
$$I_c = \Pr \frac{t}{365}$$
 (9.៦)

សំនាល់

- ullet ការប្រាក់ស៊ីវិលត្រូវបានអនុវត្តដោយ Centralbank, FederalReserveBank
- ការប្រាក់ពាណិជ្ជកម្ម ត្រូវបាន អនុវត្ត ដោយ Commercial Bank និង ពាណិជ្ជកម្ម អន្តរ ជាតិ
- ullet តាមរូបមន្ត ខាងលើយើងសង្កេតឃើញថា ការប្រាក់ពាណិជ្ជកម្ម ខ្ពស់ជាងការប្រាក់ស៊ីវិល $I_c < I$

ឧនាមារស៍ ១.៥.២. ៖លោក <ក>បានចងការប្រាក់ចំនូន \$7500 ចាប់ពីថ្ងៃទី ១៥ ខែ ឧសភា ដល់ថ្ងៃទី ១៨ ខែ កញ្ញា ឆ្នាំ ២០១៦ ដោយ គិត ការប្រាក់សាមញ្ញតាមអត្រា 9% ក្នុងមួយឆ្នាំ ។ តើលោក <ក> ត្រូវបង់ការប្រាក់ប៉ុន្មាននៅកាលវិសាន្ត ? បើគិតតាមការប្រាក់ស៊ីវិល ??

ជំណោះស្រាយ

- ខែឧសភាមាន ១៦ថ្ងៃ ⇒ (៣១-១៥=១៦) ថ្ងៃ
- មិថុនា មាន ៣០
- កក្កដា មាន ៣១
- សីហា មាន ៣១
- កញ្ញា មាន ១៨

ដូចនេះចំនួនថ្ងៃសរុបគឺ ១២៦

គេបាននៅកាលវសាន្តលោក <ក> ត្រូវបង់ការប្រាក់ : តាមរូបមន្ត(១.៥)

$$I = pr\frac{t}{360} = 7500 \times 0.09 \times \frac{126}{360} = 236.25\$$$

-បើគិតតាមការប្រាក់ស៊ីវិលលោក <ក> ត្រូវបង់ការប្រាក់: តាមរូបមន្ត(១.៦)

$$I = pr\frac{t}{365} = 7500 \times 0.09 \times \frac{126}{365} = 233.01\$$$

១ ៦ ភាអេលុខត្តរួមមល្អគ្រឹះ សិខតម្លៃប្រាត់សមេត្រូខសខ

-រូបមន្តមូលដ្ឋាននៃការប្រាក់សាមញ្ញ(១.១) គឺ I=Prt ដែល

- I ការប្រាក់សាមញ្ញ
- P ប្រាក់ដើម
- t រយះពេលចងការ
- \bullet r ជាអត្រាការប្រាក់ប្រចាំឆ្នាំ

ដូចនេះក្នុងការគណនា គេតែងប្រាប់សមាសភាពបី ហើយត្រូវគណនារកសមាសភាពទី៤ ។ តាមរូបមន្តគ្រឹះយើងអាចទាញបានរូបមន្តសំរាប់គណនា៖

១. រយៈពេល

$$t = \frac{I}{Pr}$$
 (១.៧)

២. អត្រាការប្រាក់

$$r = \frac{I}{Pt}$$
 (9.4)

៣. ប្រាក់ដើម

$$P = \frac{I}{rt} \tag{9.8}$$

ម្យ៉ាងទៀតតម្លៃប្រាក់សរុបដែលត្រូវសងគឺN=P+I ដែលរួមមានប្រាក់ដើម P និងការប្រាក់I **ឧធរមារស៍ ១.៦.១**. នៅថ្ងៃទី ០៣ ខែ កុម្ភៈ ឆ្នាំ ១៩៩៨ លោកសម្បត្តិបានខ្ចីប្រាក់ចំនួន\$3000 ពីធនាគាមួយដើម្បី យកមកទិញសម្ភារៈ បំពាក់ក្រុមហ៊ុន របស់ខ្លួន ។ បើ ធនាគារគិតការប្រាក់ សាមញ្ញតាមអាត្រា 12% ក្នុងឆ្នាំ ។ លោក សម្បត្តិត្រូវសងប្រាក់នៅធនាគា វិញនៅថ្ងៃទី ១០ ខែ ឧសភា ឆ្នាំ ១៩៩៨ ។

តើគាត់ត្រូវសងការប្រាក់ ចំនូនប៉ុន្មានហើយ ទឹកប្រាក់សរុបត្រូវសងចំនូនប៉ុន្មាន ?

ಕ್ಷೇಚು:ಶಿಕಾಣ

រកការប្រាក់និងប្រាក់សរុប

- ខែកុម្ភ:មាន 25 ថ្ងៃ (28 3 = 25)
- ខែមីនាមាន 31 ថ្ងៃ
- ខែមេសាមាន 30 ថ្ងៃ
- ខែឧសភាមាន 10 ថ្ងៃ ដូចនេះ ចំនួនថ្ងៃសរុប 96 ថ្ងៃ

$$\Rightarrow I = pr \frac{t}{360} = 3000 \times 0.12 \times \frac{96}{360} = 96\$$$
$$\Rightarrow v = p + I = 3000 + 96 = 3096\$$$

នៅថ្ងៃទី១០ ខែឧសភា ឆ្នាំ១៩៩៨ លោកសម្បត្តិត្រូវសងធនាគារសរុប 3096\$

១.៧. អត្រាភាអូបាត់មន្យម

ឧបមា គេចឯការប្រាក់ព្រមពេលជាមួយគ្នាចំនួនn ករណីតាមលក្ខខណ្ឌដូចតទៅ៖

ប្រាក់ដើម	អត្រាការប្រាក់	រយៈពេល(ថ្ងៃ)
P_1 r_1		t_1
P_2	r_2	t_2
P_n	r_n	t_n

ដោយអត្រាការប្រាក់ និងរយៈពេលចងការទាំងអស់មិនស្មើគ្នា នាំឱ្យការប្រាក់ខុសគ្នាគឺ

$$I_1 = P_1 r_1 \frac{t_1}{360}$$
 , $I_2 = P_2 r_2 \frac{t_2}{360}$, \cdots , $I_n = P_n r_n \frac{t_n}{360}$

គេបានការប្រាក់សរុបដែលទទួលបានពីការចងការខាងលើគឺ

$$I = I_1 + I_2 + \dots + I_n$$

$$= P_1 r_1 \frac{t_1}{360} + P_2 r_2 \frac{t_2}{360} + \dots + P_n r_n \frac{t_n}{360}$$

$$I = \frac{1}{360} \sum_{i=1}^{n} P_i r_i t_i \qquad (1)$$

យើងតាងr ជាអត្រាការប្រាក់មធ្យម គឺ ជាអត្រាការប្រាក់ ដែលអនុវត្តលើការចងការ មានប្រាក់ ដើម $P_1, P_2, ..., P_n$ ក្នុងរយៈពេល $t_1, t_2, ..., t_n$ រៀងគ្នាខាងលើ ផ្តល់ការប្រាក់សរុបដូចគ្នា នឹង ការចងការតាមអត្រា ផ្សេងៗគ្នាដែរគឺ

$$I = \frac{P_1 r t_1}{360} + \frac{P_2 r t_2}{360} + \dots + \frac{P_n r t_n}{360}$$
$$I = \frac{r}{360} \sum_{i=1}^{n} P_i t_i \qquad (2)$$

តាម(1) និង(2) គេបាន៖

$$\sum_{i=1}^{n} P_{i} r_{i} t_{i} = r \sum_{i=1}^{n} P_{i} t_{i}$$

$$\Rightarrow \qquad \qquad \sum_{i=1}^{n} P_{i} r_{i} t_{i}$$

$$r = \frac{\sum_{i=1}^{n} P_{i} r_{i} t_{i}}{\sum_{i=1}^{n} P_{i} t_{i}}$$
(9.90)

ឧនាទារស៍ ១.៧.១. ចូររកអត្រាការប្រាក់មធ្យម ដែលជាលទ្ធផលនៃការចងការប្រាក់ដូចតទៅ៖

ប្រាក់ដើម	អត្រាការប្រាក់	រយៈពេលចឯការ
3800\$	7.5%	25/5ដល់ $15/7$
6420\$	8.2%	25/5ដល់31/7
780\$	8.5%	25/5ដល់31/8

ជំណោះស្រាយ

រកអត្រាការប្រាក់មធ្យម

គេបានរយៈពេលចងការ៖

- ullet $t_1=51$ ថ្ងៃ ចាប់ពីថ្ងៃទី ដល់ 25/5ដល់15/7
- ullet $t_2 = 67$ ថ្ងៃ ចាប់ពីថ្ងៃទី ដល់ 25/5ដល់31/7
- ullet $t_3 = 98$ ថ្ងៃ ចាប់ពីថ្ងៃទី ដល់ 25/5ដល់31/8

នោះ តាមរូបមន្ត(១.១០)

$$r = \frac{P_1 r_1 t_1 + P_2 r_2 t_2 + P_3 r_3 t_3}{P_1 t_1 + P_2 t_2 + P_3 t_3}$$

$$= \frac{(3800 \times 0.075 \times 51) + (6420 \times 0.082 \times 67) + (780 \times 0.085 \times 98)}{(3800 \times 51) + (6420 \times 67) + (780 \times 98)}$$

$$= \frac{56303.88}{700380}$$

$$= 0.08$$

ដូចនេះ អត្រាការប្រាក់ជាមធ្យមសម្រាប់ការចងការប្រាក់ទាំងបីករណីខាងលើគឺr=8%

១.៨. គារ៩គយគគារប្រាក់មុខ និទអត្រាខាក់លាក់

លទ្ធផល និង រូបមន្តដែលយើងឃើញកន្លងមក គឺ កើតឡើង ដោយសារ "ការបង់ការប្រាក់ នៅថ្ងៃដែល អ្នកខ្ចី សងប្រាក់ដើមវិញ"។

គេអាចធ្វើកិច្ចសន្យាខ្ចីចងការដោយព្រមព្រៀងគ្នាដកយកការប្រាក់មុន ពោលគឺនៅពេល ផ្តល់មូលនិធិសុំខ្ចី។ ការខ្ចីចងការបែប នេះ គេហៅថាអប្បហារតាមអត្រាការប្រាក់។

ការខ្ចីចងការ ឬ ការសន្សំ ដែលគេដកការប្រាក់មុន បានបង្កើតឱ្យមានអត្រាជាក់លាក់មួយ ទៀតខុសពីអត្រា ធម្មតាដែលប្រគល់ការប្រាក់នៅពេលឥណប្រតិទាន។

ឧនាទារស៍ ១.៤.១. ៖ គេចងការប្រាក់ដើម10000\$ ដោយគិតតាមការប្រាក់សាមញ្ញ តាមអត្រា 10% ក្នុងរយៈ ពេល មួយឆ្នាំ។ ដោយដក យកការប្រាក់ មុន មានន័យថា $I=Prt=10000\times 0.1\times t=1000$ \$ ត្រូវបាន ម្ចាស់ បំណុលដកយកភ្លាម រីឯអ្នកខ្ចីទទួលបាន ប្រាក់ពិតប្រាកដត្រឹម តែចំនួន 9000\$ ប៉ុណ្ណោះ។ ដល់មួយឆ្នាំក្រោយម្ចាស់ បំណុលនឹងទទួលបាន 10000\$ ដែលជា ប្រាក់ដើមវិញ ព្រោះគាត់បានដកយកការប្រាក់មុនរួចហើយ។

ដូចនេះអត្រាការប្រាក់ពិតដែលអនុវត្តមិនមែន 10%ទេគឺ r'មួយទៀតដែល៖

$$9000 \times r' \times 1 = 1000$$

 $r' = \frac{1000}{9000} = 0.1111$
 $\Rightarrow r' = 11.11\%$

ជាទូទៅបើប្រាក់ដើមP ចងការដោយដកយកការប្រាក់មុនតាមអត្រាការប្រាក់r ក្នុងរយៈពេល tឆ្នាំ គេបាន តាមរូបមន្ត(១.១) I=Prt ជាការ ប្រាក់ ដកនៅថ្ងៃខ្វី។ ប្រាក់ដើមពិតប្រាកដដែលកូនបំណុលទទួលបានគឺ

$$P - Prt = P(1 - rt)$$

យើងតាង r^\prime ជាអត្រាជាក់លាក់នោះគេបាន

$$P(1-rt) \times r' \times t = Prt$$

$$(1-rt)r' = r$$

$$\Rightarrow \qquad r' = \frac{r}{(1-rt)}$$
(9.99)

លំខាត់អន់១នីខ្

- លំសាន់ 9.9. ចូររកការប្រាក់ និង ប្រាក់ត្រូវសងដោយការចងការ ៖
 - ក. ប្រាក់ដើម \$60 000 អត្រាការប្រាក់ 12% រយៈពេល 1 ឆ្នាំ
 - ខ. ប្រាក់ដើម \$70 000 អត្រាការប្រាក់ 10% រយៈពេល 6 ខែ
 - គ. ប្រាក់ដើម \$60 000 អត្រាការប្រាក់ 11% រយៈពេល 7ខែ
 - ឃ. ប្រាក់ដើម \$45 000 អត្រាការប្រាក់ 9.5% រយ:ពេល 240ថ្ងៃ
 - ង. ប្រាក់ដើម \$87 000 អត្រាការប្រាក់ 10% រយ:ពេល 300 ថ្ងៃ
- **សំទាាន់ ១.២**. តើអត្រាការប្រាក់ប៉ុន្មាន បើ គេបាន ការប្រាក់ចំនួន \$6 500 ពី ការចងការប្រាក់ ដើម \$78 000 រយ:ពេល 10ខែ។
- **សំសាត់ ១.៣**. តើប្រាក់ដើម ចំនូនប៉ុន្មានបើគេចង ការតាម អត្រា 12% រយៈពេល 8 ខែ គេសង មកវិញ ចំនូន \$86 400 ។
- **សំសាត់ 9.៤**. តើគេត្រូវចង ការប្រាក់ដើមប៉ុន្មាន អត្រាប្រចាំឆ្នាំ10%រយ:ពេល 180ថ្ងៃ ដើម្បី អោយបាន Maturity Value \$73 500។
- **សំទារត់ 9.៥**. តើរយ:ពេលចងការប៉ុន្មានដើម្បីអោយ បាន *Maturity Value* \$130 800 ពី ការចង ការប្រាក់ដើម \$120 000 តាមអត្រា12%។

លំខាន់ ១.៦. .

- ក. ចូររកការប្រាក់ដែលបាន ពីការចងការប្រាក់ ដើម \$28 000 អត្រាការប្រាក់ 9% រយៈ ពេលពី ថ្ងៃ 13/09 នៃឆ្នាំមួយដល់ថ្ងៃ 27/02 នៃឆ្នាំបន្ទាប់។
- ខ. ប្រាក់ដើម \$7 200 អោយខ្ចីគិតតាម អត្រា 8% ពី ថ្ងៃ 08/06 បានផ្ដល់ Maturity Value ចំនូន \$7 288 ។ ចូររកឥណប្រតិទាន នៃការសងនោះ ?
- គ. ប្រាក់ដើម $\$8\,400$ បាន បង្កើត ការប្រាក់ \$231 ដោយសារ អោយ ខ្ចី ពី ថ្ងៃ 16/05 ដល់ ថ្ងៃ 25/09 ។ ចូររកអត្រាការប្រាក់ ?
- ឃ. ចូររកប្រាក់ដើម ដែលចងការតាមអត្រា 8.4% រយ:ពេល 62 ថ្ងៃ ហើយគេ ទទួលបាន $\it Maturity Value \$16,738.70$ ។

- **នំទាន់ ១.៧**. តើត្រូវប្រើរយៈពេលប៉ុន្មាន ដើម្បីអោយប្រាក់ដើមចំនួន \$1 000:
 - ក. ផលិតការប្រាក់បានចំនូន \$100 បើគេគិតតាមអត្រា 15% ?
 - ខ. ទទួលបានប្រាក់សរុប \$1200 បើសិនគេគិតការប្រាក់តាមអត្រា 13.5%?
- **សំអាត់ ១.៨**. លោកវណ្ណ: បានខ្ចីប្រាក់ ចំនួន \$10 000 ដែល ម្ចាស់បំណុលគិតការប្រាក់ តាមអត្រា 10.5% និង តាមកិច្ចសន្យាគាត់ត្រូវ សងវិញជារៀងរាល់ខែ ដែលក្នុងខែនិមួយៗ ត្រូវ សងទាំង ប្រាក់ដើម និងការប្រាក់ ចំនួន \$200 ។ តើប្រាក់ដែល ត្រូវបង់លើកទី ១ មានទឹកប្រាក់ ប៉ុន្មានជា បំណុល និង ប៉ុន្មានជាការប្រាក់ ?
- **សំសាត់ ១.៩**. នៅថ្ងៃទី ៧ ខែ មេសា ឆ្នាំ ២០០០ ស្ត្រីម្នាក់បានខ្ចីប្រាក់ចំនួន \$1 000 ដែលគិតការ ប្រាក់តាមអត្រា 8%។ គាត់បានសងបំណុលវិញ នៅថ្ងៃទី ២២ ខែ វិច្ឆិកា ឆ្នាំ ២០០០ ។ ចូរគណនាការប្រាក់ដែលគាត់ត្រូវសង ?
- **សំសាត់ 9.90**. ទឹកប្រាក់ចំនួន \$5 000 ត្រូវបានដាក់សន្សំពីថ្ងៃទី ៣ ខែ វិច្ឆិកា ឆ្នាំ ១៩៩៩ រហូត ដល់ថ្ងៃទី៨ ខែ កុម្ភ: ឆ្នាំ២០០០ ដោយទទួលបានការប្រាក់តាមអត្រា15%។ ចូរគណនាការប្រាក់ ដែលទទួលបាន និង ទឹកប្រាក់ សរុបដោយប្រើវិធីសាស្ត្រទាំងពីរ ?
- **លំសាត់ ១.១១**. គេចឯការដោយយកការប្រាក់មុនតាម អត្រា 9% ប្រាក់ដើម \$20 000 រយ:ពេល 20 ខែ ។ ចូររកអត្រាជាក់លាក់។
- **សំសាត់ ១.១២**. ចូររកតាមវិធីសាស្ត្រ (Nombre diviseur fixe) នូវការប្រាក់សរុបនៃការចងការ តាមអត្រា 9% និង ប្រាក់ដើមដូចតទៅ ៖
 - \$55,000 ពីថ្ងៃ 1/3ដល់ 31/7
 - \bullet \$26,250 ពីថ្ងៃ 1/3 ដល់ 31/8
 - \$8,700 ពីថ្ងៃ 1/3 ដល់ 30/9
- **សំខាន់ ១.១៣**. លំអៀងរវាងការប្រាក់ពាណិជ្ជកម្ម (360 ថ្ងៃ/ឆ្នាំ) និង ការប្រាក់ស៊ីវិល (365 ថ្ងៃ/ ឆ្នាំ) នៃ ប្រាក់ដើម ដែលចងការតាមអត្រា 9.5% រយ:ពេល 72 ថ្ងៃ គឺ \$1 140។ ចូររកប្រាក់ដើមនោះ ។

សំទាវត់ 9.9៤. ប្រាក់ដើម 2 ដែលខុសគ្នា $\$1\,000$ ប្រាក់ដើម $\$1(P_1)$ ចងការអត្រា $r_1=12\%$ រយ:ពេល \$ ខែ។ ប្រាក់ដើម $\$2(P_2)$ ចងការអត្រា $r_2=10\%$ រយ:ពេល \$6ខែ ។ គេសង្កេត ឃើញថាប្រាក់ដើម \$1 បានផ្ដល់ ការប្រាក់ស្មើនឹងពីរដង នៃការប្រាក់ដែលបានផ្ដល់ដោយប្រាក់ ដើម \$2 ។ ចូររកប្រាក់ដើម ទាំង \$2 និង ការប្រាក់ទាំង \$2 របស់វានោះ។

សំអាត់ 9.9៥. ប្រាក់ដើមចំនូន3 ដែលជា Suite Arithmetic Progression ត្រូវបាន គេយកទៅ ចងការរយៈពេល 2 ឆ្នាំ អត្រា 11% ។ ការប្រាក់សរុបបាន \$1 386 លំអៀង រវាងប្រាក់ដើម ទី 3 និង ទី 1 ខុសគ្នា \$2 400។ ចូររកប្រាក់ដើមទាំង 3 នោះ។

សំអាត់ ១.១៦. ប្រាក់ដើម 2 ដែលចំនួនសរុប \$168 000 ត្រូវបានគេយកទៅ ចងការរយ:ពេល 1 ឆ្នាំ តាមអត្រា 2 ដែល ខុសគ្នា 0.40% បាន ផ្ដល់ការប្រាក់សរុប \$16 512។ ប្រសិន បើ គេយក ប្រាក់ដើម ទី 1 ទៅចងការតាមអត្រារបស់ប្រាក់ដើមទី 2 ហើយប្រាក់ដើមទី 2 ទៅចង ការតាម អត្រារបស់ប្រាក់ដើមទី 2 ហើយប្រាក់ដើមទី 2 ទៅចង ការតាម អត្រារបស់ប្រាក់ដើមទី 1 នោះនឹងផ្ដល់ការប្រាក់សរុប \$16 416។ ចូររកប្រាក់ដើមទាំងពីរ និង អត្រាការប្រាក់ទាំងពីរនោះ។

សំសាត់ ១.១៧. បំណុលចំនូន \$5 000 ត្រូវសងក្នុងរយៈពេល ៦ខែ ក្រោយដោយបង់ការប្រាក់ តាមអត្រា 10% ។ គេបានសងទឹកប្រាក់ ចំនូន \$3 000 និង \$1 000 នៅក្នុងខែ ទី ២ និង ទី៤ រៀងគ្នា ។ តើ សមតុល្យបំណុល នៅឥណប្រតិទានស្មើប៉ុន្មាន ?

សំសាត់ ១.១៤. នៅថ្ងៃទី ៨ ខែ ឧសភា ឆ្នាំ ២០០០ អ្នកស្រីមាលា បានខ្ចីប្រាក់ពីធនាគារចំនូន \$1 000 ដោយគិត ការប្រាក់តាមអត្រា 18.5%។ អ្នកស្រីបានសងទឹកប្រាក់ចំនូន \$500 នៅថ្ងៃទី ១៧ ខែ កក្កដា និង \$400 នៅថ្ងៃទី២៩ ខែ កញ្ញា ។ តើសមតុល្យរបស់អ្នកស្រីនៅថ្ងៃទី ៣១ ខែ តុលា ស្នើប៉ុន្មាន ?

លំសាន់ ១.១៩. គេចឯការប្រាក់តាមអត្រា 9% នៅ រៀងរាល់ដើមខែ ចាប់ពី ថ្ងៃទី 01/01 នូវ ប្រាក់ដើមស្ដេរ " $P=\$10\ 000$ " ។ តើគេបានប្រាក់ប៉ុន្មាន (ប្រាក់ដើម + ការប្រាក់) នៅថ្ងៃទី 31/12 នៃឆ្នាំនេះ។

សំទាាត់ 9.២០. អតិថិជនម្នាក់បានបើកគណនីនៅធនាគារ មួយ ដោយមានល័ក្ខខ័ណ្ឌដូចតទៅ

- បង់ប្រាក់លើកដំបូងនៅថ្ងៃទី ០១ខែមេសា ឆ្នាំ ១៩៩២ ចំនួន \$25 000
- បង់ប្រាក់ប្រចាំត្រីមាសស្មើៗគ្នា ៖ \$2 000 នៅថ្ងៃទីមួយនៃត្រីមាស ។ ការបង់ប្រាក់លើក ទីមួយ គឺថ្ងៃទី ០១ ខែកក្កដា ឆ្នាំ ១៩៩២ និង ការបង់ប្រាក់លើក្រោយបង្អស់ គឺថ្ងៃ ទី ០១ ខែ មករា ឆ្នាំ ១៩៩៦។

• ប្រាក់ដែលដាក់ផ្ញើទាំងអស់ ធនាគារផ្តល់ ការប្រាក់អោយ 4% ក្នុងមួយឆ្នាំ រហូតដល់ថ្ងៃ ទី៣១ ខែ មិនា ឆ្នាំ ១៩៩៦ ដែលជាការិយបរិច្ឆេទបិទគណនី។

នៅកាលបរិច្ឆេទបិទនេះ ម្ចាស់គណនី បានឃើញថាធនាគារបានផ្ដល់អោយខ្លួនចំនួន ប្រាក់ មួយ ដែលស្មើនឹងចំនួនប្រាក់ដែលខ្លួនបានបង់សរុប បូកនឹង ការប្រាក់ដែលបង្កើតបាន បូកនឹង រង្វាន់លើកទឹកចិត្ត មួយទៀត ដែល ស្មើនឹងចំនួនការប្រាក់ ប៉ុន្តែរង្វាន់លើកទឹកចិត្តនោះ មិនអោយ លើសពី \$6 000។

- ក. ចូររកចំនួនប្រាក់សរុប ដែលម្ចាស់គណនីទទួលបាននៅថ្ងៃ ទី ៣១ ខែ មិនា ឆ្នាំ ១៩៩៦
- ខ. ចូររកអត្រាជាក់លាក់នៃការដាក់ផ្ញើប្រាក់ នៅធនាគារនោះ ដោយគិតទាំងប្រាក់រង្វាន់លើកទឹក ចិត្តផង។

ភារច្រាត់សមាស (ភារច្រាត់ផ្គុម)

២.១. ಹញ្ញាណភា៖ច្រាក់សមាស

ចូរពិនិត្យមើល អ្នកវិនិយោគម្នាក់ ដែល បានបើក គណនីសន្សំមួយ ក្នុង ពេលបច្ចុបន្បន្តវ ប្រាក់ ដើមដំបូង P_0 តាមអត្រាការប្រាក់សាមញ្ញ i ។

- បើគណនីសន្សំនេះបិទក្នុងរយៈពេលមួយនោះអ្នកវិនិយោគ នឹងទទួលបានប្រាក់ $P_0(1+i)$ តាមរូបមន្ត ១.១
- បើគាត់ដាក់ប្រាក់ទទួលបាននេះបន្តសន្សំនៅក្នុងគណនីថ្មីហើយ បន្ទាប់មក បិទគណនីនេះ ក្នុងពេលមួយឆ្នាំក្រោយទៀត។ នៅពេលគណនីថ្នីនេះ ត្រូវបានបិទនោះ ប្រាក់ដែលទទួល បានគឺ $[P_0(1+i)](1+i)$
 - តាមរូបមន្ត ១.១ ដូចនេះប្រាក់សរុបរបស់គាត់ ក្នុងរយ:ពេល២ឆ្នាំគឺ $P_0(1+i)^2$ ។
- ប៉ុន្តែធនាគារយល់ថាវាមិនសមរម្យ ចំពោះកិច្ចការរដ្ឋបាល ក្នុងការរង់ចាំ ពិនិត្យការបើក ឬ បិទ គណនីច្រើនដង ដដែលៗតាមលក្ខណៈ ដែល បានពិព័ណនាដូច ខាងលើ។ ប៉ុន្តែបើ ធនាគារ មិនអនុញ្ញាតអោយធ្វើ បែបនេះ នោះអតិថិជន អាចមានជម្រើស ទៅដាក់បញ្ញើ ដោយផ្លាស់ប្តូរ កន្លែងថ្មីផ្សេងទៀតដែល ជាបញ្ហាសំខាន់បំផុតរបស់ធនាគារ។

ហេតុនេះហើយ បានជាមានគោលការណ៍ នៃការប្រាក់សមាស (ការប្រាក់ផ្កូប) ត្រូវយក មកអនុវត្តន៍។

ឧនាទារស៍ ២.១.១. យើងវិនិយោគ 1000\$ នៅអត្រា 10% ក្នុងមួយឆ្នាំផ្គូបរយ:ពេល 5 ឆ្នាំ។ បន្ទាប់ពីមួយឆ្នាំយើងរកបាន ការប្រាក់ 10% នៃ 1000\$ នោះ គឺ 100\$។ យើង បញ្ចូលការប្រាក់ ជាមួយប្រាក់ដើមគណនីថ្មី 1000\$+100\$ = 1100\$ ។ នៅចុងឆ្នាំទីពីរគណនីថ្មីនេះរកបានការ ប្រាក់ 10% នោះ គឺ 110% ឱ្យគណនីថ្មីមានប្រាក់ 1100+110 = 1210\$។ បើយើងបន្តធ្វើបែប នេះរហូត ដល់ 5ឆ្នាំ នោះនៅបញ្ចប់ឆ្នាំទី 5 យើងមាន 1610.51\$ (តារាងខាងក្រោម)

តារាឯការប្រាក់សមាស(ផ្គូ	ប)
-------------------------	----

ឆ្នាំ	ប្រាក់ដើម(ឆ្នាំដំបូង)	ការប្រាក់(ឆ្នាំបញ្ចប់)	ប្រាក់សរុប
1	\$1000.00	\$100.00	\$1100.00
2	\$1100.00	\$110.00	\$1210.00
3	\$1210.00	\$121.00	\$1331.00
4	\$1331.00	\$133.10	\$1464.10
5	\$1464.10	\$146.4	\$1610.51

ដូចគ្នានឹងការប្រាក់សាមញ្ញដែរយើងយក n ចំនួនកំឡុងពេលនៃការប្រាក់សរុបដែលយើង សន្មតថាមាន m ក្នុងមួយឆ្នាំ។ សាច់ប្រាក់ ដែលយើងទទួលបាន នៅបញ្ចប់ពេល ការប្រាក់ ត្រូវ បានហៅថា តម្លៃអនាគត (Future value or Accumulated Principal) និង អត្រាការប្រាក់ក្នុងមួយ ឆ្នាំហៅថា អត្រាការប្រាក់សាមញ្ញ។

ක්ෂක්ෂ ක්ක

និយមន័យ ២.២.១. នារច្រាត់សមាស ឬនារច្រាត់ផ្លូប គឺជាការប្រាក់ដែលបង្កើតការប្រាក់ បន្ថែមទៀត។

ក្លាយ នៃឧសីដ៍ទេសវិយម្ភេសសាទ

ದ್ಬುಚಾಣಕ್ಷಣ್ಣ ಅ.ಅ.ಇ.ಇ

ដើម្បីងាយស្រូលក្នុងការកំណត់ចំណាំ គេកំណត់និមិត្តសញ្ញាដូចខាងក្រោម

• P_0 : ជាប្រាក់ដើមវិនិយោគ

• n : ជារយ:ពេលនៃការវិនិយោគ

• i អត្រាការប្រាក់សមាស

ullet P_n : ជាតម្លៃអនាគតនៃប្រាក់ដើម P_0 នៅឆ្នាំទី n

ಜಾಣ್ಣಣ್ಣಚಿತ್ರ ಬಿ.ಗಾ.ಬಿ

យើងសង្កេតមើលពេល $n=1,2,\cdots$ គេបានទម្រង់ដូចខាងក្រោម៖

- ullet n=1 គេបាននៅចុងឆ្នាំទី១ ទទួលបានការប្រាក់ចំនួន iP_0 នោះ $P_1=P_0+iP_0=P_0(1+i)$
- ullet គេបាននៅចុងឆ្នាំទី២ ទទួលបានការប្រាក់ចំនួន iP_1 នោះ $P_2=P_1+iP_1=P_1(1+i)=P_0(1+i)^2$
- n=2 គេបាននៅចុងឆ្នាំទី៣ ទទួលបានការប្រាក់ចំនួន iP_2 នោះ $P_3=P_2+iP_2=P_2(1+i)=P_0(1+i)^3$
- ullet គេបាននៅចុងឆ្នាំទីn ទទួលបានការប្រាក់ចំនួន iP_{n-1} នោះ $P_n=P_0(1+i)^n$

យើងបានរូបមន្ត

ងម្លែងខាងដខែស្វាអ់ស៊ើម P_0 នៅឆ្នាំ ទី n គឺ

$$P_n = P_0 (1+i)^n$$
 (២.១)

តាមរូបមន្ត (២.១) នេះ យើងអាចទាញបានរូបមន្តសម្រាប់គណនា

9. **ទ្រាអ់ស៊ើម** P_0 គឺ

$$P_0 = \frac{P_n}{(1+i)^n} = P_n(1+i)^{-n}$$
 (U.U)

២. **ភារប្រាភ់ផ្លួបសរុប** គឺ

$$P_n - P_0 = P_0(1+i)^n - P_0 = P_0[(1+i)^n - 1]$$
 (U.M)

៣. មេះពេលនៃគារទិតិយោគ គឺ

$$P_n = P_0(1+i)^n$$

$$(1+i)^n = \frac{P_n}{P_0}$$

$$\ln(1+i)^n = \ln(P_n) - \ln(P_0)$$

$$n = \frac{\ln P_n - \ln P_0}{\ln(1+i)}$$

ដូចនេះ

$$n = \frac{\ln P_n - \ln P_0}{\ln(1+i)} \tag{U.G}$$

ឧនាទាះស៍ ២.៣.១. បើយើងវិនិយោគ \$1000 នៅ 6% ផ្គូបប្រចាំឆ្នាំ សម្រាប់រយៈពេល 2 ឆ្នាំ។ រកប្រាក់សរុប និងការប្រាក់។

ಜೀಣಾ:ಕ್ರಾಟ

រកប្រាក់សរុប និងការប្រាក់ តាមរូបមន្ត(២.១)

$$P_n = P_0(1+i)^n$$
= 1000(1+0.06)²
= 1123.60\$

តាមរូបមន្ត(២.៣)

$$P_n - P_0 = 1123.60 - 1000$$
$$= 123.60$$
\$

តាមរយៈរូបមន្ត (២.១)

• សមីការអាច ច្រើបានចំពោះ $n\geqslant 0$ ។ តើមានអ្វីកើតឡើងចំពោះ n<0? បើ យើងបង្កើន P_0 លើកំឡុងពេល n ពីមុន នៅ អត្រា ការប្រាក់ផ្គូប iក្នុងកំឡុងពេលផ្គូប។ តើប្រាក់ប៉ុន្មានដែលយើងហៅថា P_{-n} ជាមួយ n កំឡុង ពេលកន្លងទៅ? តាមរូបមន្ត(២.១) យើងត្រូវមាន

$$P_n = P_0(1+i)^n$$

ជំនួស n ដោយ -n គេបាន

$$P_{-n} = \frac{P_0}{(1+i)^n} = P_0(1+i)^{-n}$$

ដូចនេះ

$$P_{-n} = \frac{P_0}{(1+i)^n} = P_0(1+i)^{-n}$$
 (២.៥)

• នៅពេលយើងគណនាតម្លៃនៃលុយនៅពេលអនាគត គឺ យើងគណនាតម្លៃអនាគតពីតម្លៃ បច្ចុប្បន្ន យើង និយាយពីផ្គូប។ នៅពេលយើងគណនាតម្លៃនៃចំនូនប្រាក់នៅមុនពេលនោះ គឺយើងគណនាតម្លៃបច្ចុប្បន្នពី តម្លៃអនាគត យើងនិយាយពីការបញ្ចុះតម្លៃ។

តាមឧទាហរណ៍ (២.៣.១) បើគេស្ងរសំណួរ "តើតម្លៃប៉ុន្មាន ដែលគេត្រូវ វិនិយោគចំពោះអត្រាការ ប្រាក់ផ្គូប 6% ក្នុងមួយឆ្នាំ បើយើងដាក់ 1123.60\$ ក្នុងគណនី ២ឆ្នាំ?

ಜೀಚಾ:ಕಾಡ

តាមរូបមន្ត (២.៥)

$$P_{-n} = P_0(1+i)-n$$

$$= 1123.60(1+.06)^{-2}$$

$$= 1000\$$$

នេះ គឺជាការបញ្ចុះតម្លៃ (Discounting) ដែលយើង បញ្ជាក់ថា \$1000ជាតម្លៃបញ្ចុះ (Discounted Value)នៃ\$1123.60 ដែល $(1+0.06)^{-2}$ គឺជាកត្តាបញ្ចុះថ្លៃ (Discount Factor)។

២.៤. អត្រាអាច្រោត់ផ្លួមតួទទ្វោស់ឯកត្តាពេល

ចំពោះការប្រាក់ផ្គូបគឺមានសារ:សំខាន់ខ្លាំងណាស់ នៅក្នុងការកំណត់រង្វាស់ឯកត្តាពេល ។ ឧទាហរណ៍ គេអាចគិតផ្គូបជាថ្ងៃ ជាខែ ឬជាឆ្នាំ ហើយរង្វាស់ផ្គូបជាឆ្នាំត្រូវ បានគេប្រើប្រាស់ច្រើន ជាងគេក្នុងការអនុវត្តន៍នានា។

ឧនាទារស៍ ២.៤.១. អ្នកវិនិយោគម្នាក់បានវិនិយោគ \$1000 ទៅលើ CDលើអត្រាការប្រាក់ផ្គូប 10% ក្នុងមួយឆ្នាំសម្រាប់រយ:ពេល 5ឆ្នាំ។ តើចំនូនប្រាក់ប៉ុន្មានដែលគាត់ ់មាន នៅបំណាច់5 ឆ្នាំ? បើអត្រាការប្រាក់ផ្គបខាងលើគឺសម្រាប់

- ១. គិតប្រចាំឆមាស
- ២. គិតប្រចាំត្រីមាស
- ៣. គិតប្រចាំខែ
- ៤. គិតប្រចាំថ្ងៃ

ಜೀಣಾ:ಕ್ರಾಟ

រកតម្លៃអនាគតនៃអត្រាការប្រាក់ផ្គូប

9. ក្នុងករណីគិតប្រចាំឆមាស ដោយ អត្រាការប្រាក់ផ្គូបប្រចំឆ្នាំសម្រាប់គិតប្រចាំឆមាសគឺ 10% គេបាន អត្រាការប្រាក់ផ្គូបប្រចាំឆមាសគឺ

$$\frac{i}{2} = \frac{10\%}{2}$$

នោះ ការទូទាត់សាច់ប្រាក់មានចំនូន $2 \times 5 = 10$ ដង គេបាន តម្លៃអនាគតនៃ P_0 កោយ ៥ឆ្នាំគឺ

$$P_5 = P_0 (1 + \frac{i}{2})^{2 \times 5}$$

$$= 1000 (1 + \frac{10}{2})^{10}$$

$$= 1628.89\$$$

ដូចនេះ ប្រាក់សរុបគឺ 1628.89\$

២. ក្នុងករណីគិតប្រចាំត្រីមាស ដោយ អត្រាការប្រាក់ផ្គូបប្រចំឆ្នាំសម្រាប់គិតប្រចាំត្រីមាសគឺ 10%

ជំពូកទី ២. ការប្រាក់សមាស (ការប្រាក់ផ្គូប) ២.៤. អត្រាការប្រាក់ផ្គូបក្នុងរង្វាស់ឯកត្តាពេល

គេបាន អត្រាការប្រាក់ផ្គួបប្រចាំត្រីមាសគឺ

$$\frac{i}{4} = \frac{10\%}{4}$$

នោះ ការទូទាត់សាច់ប្រាក់មានចំនូន 4 imes 5 = 20 ដង គេបាន តម្លៃអនាគតនៃ P_0 កោយ ៥ឆ្នាំគឺ

$$P_5 = P_0 (1 + \frac{i}{4})^{4 \times 5}$$
$$= 1000 (1 + \frac{10}{4})^{20}$$
$$= 1638.62\$$$

ដូចនេះ ប្រាក់សរុបគឺ 1638.62\$

៣. ក្នុងករណីគិតប្រចាំខែ ដោយ អត្រាការប្រាក់ផ្គួបប្រចំឆ្នាំសម្រាប់គិតប្រចាំខែគឺ 10% គេបាន អត្រាការប្រាក់ផ្គួបប្រចាំខែគឺ

$$\frac{i}{2} = \frac{10\%}{12}$$

នោះ ការទូទាត់សាច់ប្រាក់មានចំនួន $12 \times 5 = 60$ ដង គេបាន តម្លៃអនាគតនៃ P_0 កោយ ៥ឆ្នាំគឺ

$$P_5 = P_0 (1 + \frac{i}{12})^{12 \times 5}$$
$$= 1000 (1 + \frac{10}{12})^{60}$$
$$= 1645.31$$
\$

ដូចនេះ ប្រាក់សរុបគឺ 1645.31\$

៤. ក្នុងករណីគិតប្រចាំថ្ងៃដោយ អត្រាការប្រាក់ផ្គូបប្រចំន្នាំសម្រាប់គិតប្រចាំថ្ងៃគឺ 10%គេបាន អត្រាការប្រាក់ផ្គូបប្រចាំថ្ងៃគឺ

$$\frac{i}{2} = \frac{10\%}{365}$$

២.៤. អត្រាការប្រាក់ផ្គួបក្នុងរង្វាស់ឯកត្តាពេល ជំពូកទី ២. ការប្រាក់សមាស (ការប្រាក់ផ្គួប)

នោះ ការទូទាត់សាច់ប្រាក់មានចំនូន 365×5 ដង គេបាន តម្លៃអនាគតនៃ P_0 កោយ ៥ឆ្នាំគឺ

$$P_5 = P_0 (1 + \frac{i}{365})^{365 \times 5}$$
$$= 1000 (1 + \frac{10}{365})^{365 \times 5}$$
$$= 1648.61\$$$

ដូចនេះ ប្រាក់សរុបគឺ 1648.61\$

តាមរយៈឧទាហរណ៍ (២.៤.១) យើង សង្កេតយើញថា អត្រាការប្រាក់ មានការប្រែប្រួលទៅតាម ចំនូននៃការទូទាត់ប្រចាំឆ្នាំ គេកំណត់យក

 i^m ជាអត្រាការប្រាក់ផ្គូបប្រចាំ tឆ្នាំ សម្រាប់គិតប្រចាំ m គ្រា ក្នុង t ឆ្នាំ នោះយើងបាន

អត្រាការប្រាក់នៃគ្រានីមួយៗគឺ
$$i=rac{i^m}{m}$$
 (២.៦)

ហើយចំនួនគ្រាសរុបនៃការទូទាត់គឺ

$$n \times m$$
 (U.11)

ជាញឹកញាប់ក្នុងការអនុវត្តន៍ គឺ t=1មានន័យថា i^m ជាអត្រាការប្រាក់ផ្គួបប្រចាំឆ្នាំសម្រាប់គិតប្រចាំ m គ្រា ក្នុង 1 ឆ្នាំ យើងអាចទាញបានរូបមន្ត

• បើ P_0 គឺផ្គូប m ដងក្នុងមួយឆ្នាំនៅអត្រាការប្រាក់ដើមនៃ i^m នោះថ្លៃអនាគតនៃ P_0 បន្ទាប់ពី n ឆ្នាំគឺ

$$P_n = P_0 \left(1 + \frac{i^{(m)}}{m}\right)^{nm}$$
 (២.៨)

• បើយើងធ្វើមូលធនកម្មបន្តជាប់ៗគ្នា (Compound continuously) មានន័យថា $m \to \infty$ ខណ: អត្រាការប្រាក់ដើម(Nominal Rate) $i^{(m)}$ នោះតម្លៃអនាគតនៃ P_0

ជំពូកទី ២. ការប្រាក់សមាស (ការប្រាក់ផ្គូប) ២.៤. អត្រាការប្រាក់ផ្គូបក្នុងរង្វាស់ឯកត្តាពេល

ត្រូវបានកំណត់ដោយ P_{∞} បន្ទាប់ពីn ឆ្នាំនៅអត្រាការប្រាក់ដើមនៃ $i^{(\infty)}$ គឺ

$$P_{\infty} = P_0 \lim_{m \to +\infty} \left(1 + \frac{i^{(m)}}{m} \right)^{nm}$$
$$= P_0 e^{ni^{(\infty)}}$$

ះឧរចដ្ឋ

$$P_{\infty} = P_0 e^{ni^{(\infty)}}$$
 (២.៩)

ដូចនេះឧទាហរណ៍(២.៤.១) បើ\$1000 ត្រូវបានធ្វើ មូលធនកម្មបន្ត (Compound Continuously)10%សម្រាប់ រយៈពេល 5ឆ្នាំ នោះយើងមាន

$$P_{\infty} = 1000 \times e^{0.1 \times 5} = \$1648.72$$

បើយើងរៀបតារាងបញ្ជីលទ្ធផលមុន ទាំងនេះជាមួយនឹង $i^{\scriptscriptstyle (m)}=0.1$ នោះយើងមាន

$\mid m \mid$	តម្លៃអនាគត
1	\$1610.51
2	\$1628.89
4	\$1638.62
12	\$1645.31
365	\$1648.61
∞	\$1648.72

ពីតារាង វាបង្ហាញថា បើ អត្រាការប្រាក់ដើម គឺ ដូចគ្នាគ្រប់ m នោះ ការប្រាក់ផ្គូបច្រើន ជាងតម្លៃ អនាគត។ យើងឃើញថាត្រូវ ដូច បានបង្ហាញ។

ឧនាមារស៍ ២.៤.២. ឧបមាអត្រាការប្រាក់នៅ 91ថ្ងៃ វិនិយោគ 10000គឺ

- ១. សាមញ្ញ 6%ក្នុងមួយឆ្នាំ
- ២. Nominal 6% ក្នុងមួយឆ្នាំមូលធនកម្មជាប់រាល់ថ្ងៃ
- ៣. Nominal 6% ក្នុងមួយឆ្នាំមូលធនកម្មជាប់

រកប្រាក់ដែលទទូលបាននៅ 91ថ្ងៃក្រោយ។ ចំពោះគ្រប់ករណីទាំងបី។ សន្មតថាមួយឆ្នាំមាន365 ថ្ងៃ។

២.៤. អត្រាការប្រាក់ផ្គបក្នុងរង្វាស់ឯកត្តាពេល ជំពូកទី ២. ការប្រាក់សមាស (ការប្រាក់ផ្គប)

ಜೀಣಾ:ಕ್ಷಾಟ

១. ប្រាក់គឺ
$$\$10000\left(1+0.06 imesrac{91}{365}
ight)=\$10\ 149.59$$

២. គឺ
$$$10000 \left(1 + \frac{0.06}{365}\right)^{91} = $10\ 150.70$$

៣. យើង ដឹងថា P_0 កើនទៅ $P_0 e^{0.06}$ ក្នុងមួយឆ្នាំ ក្រោយ។ វា នឹងកើន ដល់ $P_0 e^{0.06 \times \frac{91}{365}}$ នៅ 91 ថ្ងៃក្រោយ។ វាមានតម្លៃ $\$10\ 150.71$ ។

សទ្វេមរូមមន្ត

- ullet P_n ជាតម្លៃអនាគត
- ullet A(n) ជាតម្លៃអនាគតនៃមូលធនកម្មបន្ត
- ullet P_0 ជាប្រាក់ដើមវិនិយោគ
- i ជាអត្រាការប្រាក់ប្រសិទ្ធិភាពប្រចាំឆ្នាំ
- n ជាចំនួនឆ្នាំវិនិយោគ
- ullet δ ជាអត្រាការប្រាក់បង្ខំប្រចាំឆ្នាំ

ការប្រាក់សាមញ្ញ	ការប្រាក់សមាស	មូលធនកម្មបន្ត
$P_n = P_0(1+in)$	$P_n = P_0(1+i)^n$	$A(n) = P_0 e^{n\delta}$
$P_0 = \frac{P_n}{(1+in)}$	$P_0 = \frac{P_n}{(1+i)^n} = P_n(1+i)^{-n}$	$P_0 = \frac{A(n)}{e^{n\delta}}$
	$i = \left(1 + \frac{i^{(m)}}{m}\right)^m - 1$	$i = e^{\delta} - 1$

លំខាងអនុទង្គន៍

សំទាាន់ ២.១. ចូររកចំនួនប្រាក់ដែលទទូលបានលើការដាក់សន្សំ \$100 ក្នុងរយៈពេល 5 ឆ្នាំតាម អត្រាឆ្នាំ 16% ដោយធ្វើមូលធនកម្ម ៖

ក. ប្រចាំឆ្នាំ

ឃ. ប្រចាំសប្តាហ៍

ខ. ប្រចាំឆមាស

ង. បន្ត (ជាប់)។

គ. ប្រចាំត្រីមាស

សំទាាត់ ២.២. ចូររកការប្រាក់ (សមាស) ដែលទទួលបានពីការដាក់សន្សំ ៖

ក. \$500 ក្នុងរយ:ពេល 2 ឆ្នាំ 2 ខែ តាមអត្រាឆ្នាំ $11\frac{1}{4}\%$ ធ្វើមូលធនកម្មប្រចាំខែ

2. \$1000 ក្នុងរយៈពេល 6 ឆ្នាំ តាមអត្រាឆ្នាំ 9% ធ្វើម៉ូលធនកម្មប្រចាំឆមាស

គ. \$850 ក្នុងរយ:ពេល 3 ឆ្នាំ តាមអត្រាឆ្នាំ 8,2% ធ្វើមូលធនកម្មបន្ត។

សំសាន់ ២.៣. ប្ដី-ប្រពន្ធពីរនាក់ បានដាក់ប្រាក់ចំនូន \$1 000 ក្នុងគណនីសន្សំ នៅថ្ងៃកំនើតកូន ប្រុសរបស់ខ្លូន ៗ ប្រសិនបើធនាគារផ្ដល់ការប្រាក់តាមអត្រាឆ្នាំ 6% ដោយធ្វើមូលធនកម្មប្រចាំ ខែតើប្រាក់នៅក្នុង គណនីមានចំនូន ប៉ុន្មាន នៅពេលដែលកូនប្រុសនោះមានអាយុ 18 ឆ្នាំ ?

សំទាន់ ២.៤. ក្នុងឆ្នាំ 1 492 ម្ចាស់ក្សត្រីយានី *Isabela* បានឧបត្ថម្ភប្រាក់ចំនូន \$10 000 សំរាប់ការ ធ្វើដំណើរផ្សង ព្រេងរបស់លោក *Christopher Columbus* ។ បើសិនជា ម្ចាស់ក្សត្រីដាក់មូលនិធិ ទៅក្នុង គណនី សន្សំធនាគារវិញ ដែលផ្តល់ការប្រាក់តាមអត្រាឆ្នាំ 3% ធ្វើមូលធនកម្មប្រចាំឆ្នាំ តើគណនីត្រូវមាន ប្រាក់ចំនូនប៉ុន្មានក្នុងឆ្នាំ 1992 ។

សំទាាន់ ២.៥. ចូរគណនាប្រាក់ដើម ដែលបានដាក់សន្សំពីដំបូងបើ ៖

- ក. ក្នុងរយ:ពេល ២៥ ឆ្នាំក្រោយគេទទូលបានប្រាក់ $\$100\,000$, អត្រាការប្រាក់ $J_{12}=12\%$?
- ខ. ក្នុងកំឡុងពេល ១០ឆ្នាំក្រោយគេទទូលបាន $\$2\,500$, អត្រាការប្រាក់ $J_2=9.6\%$?
- គ. ក្នុងកំឡុងពេល ៣ឆ្នាំក្រោយគេទទូលបាន \$800, អត្រាការប្រាក់ $J_{365}=12\%$?
- ឃ. ក្នុងកំឡុងពេល ១៥ខែក្រោយគេទទូលបាន \$5 000 , អត្រាការប្រាក់ ?

សំសាត់ ២.៦. នៅថ្ងៃបុណ្យគំរប់ខួបទី 20 របស់ខ្លួនស្ត្រីម្នាក់ បានទទួលប្រាក់ \$1 000 ដែលជា លទ្ធផលនៃការដាក់ សន្សំ របស់ឪពុកម្ដាយ នៅថ្ងៃ ដែលស្ត្រីនោះ បានប្រសូត្រ ។ តើទឹកប្រាក់ ប៉ុន្មាន ដែល ឪពុកម្ដាយបាន ដាក់សន្សំ បើផ្ដល់ការប្រាក់តាមអត្រាប្រចាំឆ្នាំ ?

- ក. 6% ដោយធ្វើមូលធនកម្មប្រចាំឆ្នាំ ?
- ខ. 12% ដោយធ្វើមូលធនកម្មប្រចាំត្រីមាស ?

សំសាត់ ២.៧. បុរសម្នាក់ត្រូវសងបំណុលគេ \$2 000 នៅថ្ងៃទី 31 ខែ ធ្នូ ឆ្នាំ 2 000។ តើ គាត់ ជំពាក់ គេ ប៉ុន្មាន នៅថ្ងៃទី ៣០ ខែមិថុនា ឆ្នាំ១៩៩៦ បើការប្រាក់ធ្វើមូលធនកម្មប្រចាំត្រីមាស ហើយអត្រាឆ្នាំ13 $\frac{1}{4}$ %។

សំសាត់ ២.៨. ប្រសិនបើ លោកទិញ វីឡាមួយដោយបង់ \$180 000 ដល់ដៃតែម្ដង ឬ មួយបង់ \$100 000 នៅពេល ឥឡូវនេះ \$50 000 ក្នុងរយៈពេល 1 ឆ្នាំទៀត និង \$50 000 ក្នុង រយៈពេល 2 ឆ្នាំទៀត ។ តើ ប្រភេទមួយ ដែលប្រសើរ សំរាប់អ្នកប្រសិនបើការប្រាក់ ត្រូវគិតតាមអត្រាឆ្នាំ ៖

- ក. 16% ដោយធ្វើមូលធនកម្មប្រចាំខែ
- ខ. 12% ដោយធ្វើមូលធនកម្មប្រចាំខែ

សំទារត់ ២.៩. ចូលរកចំណូលសរុប (Maturity value) ដែលបានពីការចងការប្រាក់ដើម $100\,000$ ៖ តាមអត្រាឆ្នាំ 11.5% ដោយធ្វើមូលធនកម្មការប្រាក់ប្រចាំឆ្នាំ រយ:ពេល

- ក. 7 ឆ្នាំ
- ខ. 11 ឆ្នាំ 5 ខែ (គណនាតាមវិធីទាំង 2)

សំសាត់ ២.១០. ចូររកអត្រាជាក់លាក់ប្រចាំឆ្នាំដែល សមមូលទៅនឹងអត្រា ៖

- ក. 16% ធ្វើមូលធនកម្មប្រចាំត្រីមាស ?
- ខ. 18% ធ្វើមូលធនកម្មប្រចាំខែ ?
- គ. 9.25% ធ្វើមូលធនកម្មប្រចាំថ្ងៃ ?
- ឃ. 12% ធ្វើមូលធនកម្មបន្ត ?

សំសាន់ ២.99. ចូរគណនាអត្រាប្រចាំឆ្នាំ J_m ដែលសមមូលទៅនឹងអត្រាជាក់លាក់ ប្រចាំឆ្នាំ J បើ ៖

$$\text{ \it in. } J=6\% \ , \ m=2?$$

2.
$$J = 9\%$$
, $m = 4$?

គ.
$$J = 10\%$$
 , $m = 12$?

ឃ.
$$J = 17\%$$
, $m = 365$?

ង.
$$J = 8\%$$
 , $m = 52$?

សំសាត់ ២.១២. តើអត្រាចំណូលពីគំរោងវិនិយោគមួយ ណាដែល ល្អជាងគេ ហើយមួយណា ដែលអាក្រក់ ជាងគេ

- ក. $J_{12}=15\%$, $J_{2}=15.5\%$ និង $J_{365}=14.9\%$?
- ខ. $J_{12}=16\%$, $J_{2}=16.5\%$ និង $J_{365}=15.9\%$?

សំសាត់ ២.១៣. ធនាគារមួយបានផ្ដល់ការប្រាក់ 12% ក្នុង 1ឆ្នាំ សំរាប់គណនីសន្សំរបស់ខ្លួន ។ នៅរៀងរាល់៣ឆ្នាំ ម្ដងធនាគារបានផ្ដល់រង្វាន់ចំនួន 2% នៃ សមតុល្យ គណនី ។ ចូររក អត្រាការប្រាក់ ជាក់លាក់ ដែល អ្នកវិនិយោគ ទទួលបានបើទឹកប្រាក់ ដែលបានដាក់សន្សំ នោះត្រូវដកវិញនៅ

- ក. 2 ឆ្នាំក្រោយ ?
- ខ. 3 ឆ្នាំក្រោយ ?
- គ. 4 ឆ្នាំក្រោយ ?

សំទាាន់ ២.១៤. ចូរគណនាទឹកប្រាក់ដែលទទូលបានពី ការសន្សំប្រាក់ដើមចំនូន $\$1\,500\,$ សំរាប់ រយ:ពេល 16 ខែ តាម អត្រា $J_4=18\%$ ដោយប្រើ ៖

- ក. ទ្រឹស្តីការប្រាក់សមាស ?
- ខ. ការអនុវត្តន៍ជាក់ស្តែងរបស់ធនាគារិក ?

សំសាត់ ២.១៥. នាថ្ងៃទី ៧ ខែ កក្កដា ឆ្នាំ ១៩៩៩ អ្នកស្រីកល្យាណបានខ្ចីប្រាក់គេ ចំនូន \$1 200 ដោយគិតការប្រាក់ តាមអត្រា 12% ធ្វើមូលធនកម្មប្រចាំខែ ។ តើគាត់ត្រូវសងគេវិញនាថ្ងៃទី ១៨ ខែ កញ្ញា ឆ្នាំ ២០០២ នូវ ទឹកប្រាក់ចំនូន ប៉ុន្មាន ?

សំសាត់ ២.១៦. ចូររកអត្រាការប្រាក់ *(Nominal rate)* ធ្វើ មូលធនកម្មប្រចាំ ត្រីមាស ដែល ទទួល បានពីការដាក់ សន្សំប្រាក់ដើម \$2 000 ហើយក្នុងកំឡុងពេល ៣ឆ្នាំ ៩ខែ ក្រោយ វានឹងផ្តល់ប្រាក់ ចំនួន \$3 000 ។

សំទាាន់ ២.១៧. ចូរគណនាអត្រា J_{12} ដែលប្រាក់ដើមចំនូន \$100 និង ផ្ដល់ការប្រាក់ចំនូន \$50 ក្នុងអំឡុងពេល ៤ឆ្នាំ ៧ខែក្រោយ ?

. ವಿಲ್ಲಡ ಹಣಜಿಯ

- ក. តើអត្រាការប្រាក់ ជាក់លាក់ ប្រចាំឆ្នាំ ត្រូវស្មើ ប៉ុន្មាន ដើម្បី ទទូល ប្រាក់កើនឡើងបីដង នៃប្រាក់ ដើមក្នុង អំឡុងពេល ១៥ឆ្នាំក្រោយ ?
- ខ. តើអត្រាការប្រាក់ប្រចាំឆ្នាំធ្វើ មូលធនកម្មប្រចាំ ត្រីមាស ត្រូវស្មើប៉ុន្មាន ដើម្បីអោយប្រាក់ ដែលដាក់វិនិយោគ កើនចំនួន 50% ក្នុងអំឡុងពេល ៤ឆ្នាំក្រោយ ?
- គ. តើអត្រាការប្រាក់ ដែល ត្រូវធ្វើមូលធនកម្មបន្ត ចំនូនប៉ុន្មាន ? ដើម្បី អោយប្រាក់ចំនូន \$1 000 ផលិតបាន ការប្រាក់\$250 ក្នុងរយៈពេល ៣០ខែ ?

សំខាន់ ២.១៩. នៅថ្ងៃទី ១ ខែ មករា ទឹកប្រាក់ចំនួន \$500 000 ត្រូវបានដាក់ក្នុងមូលនិធិ X និង \$50 000 ដាក់ ក្នុងមូលនិធិY។ គួរកត់ សំគាល់ថា ក្នុងមូលនិធិ ទាំងពីរនេះ គ្មាន ការដាក់ ប្រាក់ ពីមុនមកទេ ។ មូល និធិ X ទទួល ការប្រាក់សមាសតាមអត្រា i ក្នុងមួយឆ្នាំ ។ មូលនិធិ Y ទទួល ការប្រាក់សាមញ្ញ តាមអត្រា (i+0.01) ក្នុងមួយឆ្នាំ ។ នៅថ្ងៃទី ០១ ខែ មេសា គេបានដាក់ ប្រាក់បន្ថែមចំនួន \$50 000 ទៅក្នុងមូលនិធិ Y រី

សំសាត់ ២.២០. ចូររកប្រាក់ដើមដែលគេចឯការតាមអត្រាត្រីមាស 2% រយៈពេល 3 ឆ្នាំ គេបាន ប្រាក់សរុប 10 000\$។ គេប្រាប់ថា ការចងការនេះធ្វើមូលធនកម្មការប្រាក់ រៀងរាល់ត្រីមាស។

សំសាន់ ២.២១. ប្រាក់ដើម 2 ដែលមានចំនួនសរុប 10 000\$ ត្រូវបានគេយកទៅចងការ ៖

- ullet ប្រាក់ដើមទី 1 តាមការប្រាក់សាមញ្ញ អត្រាការប្រាក់ប្រចាំឆ្នាំ 10%
- ប្រាក់ដើមទី 2 តាមការប្រាក់សមាស អត្រាការប្រាក់ប្រចាំឆ្នាំ 8% ក្នុងរយៈពេល 9 ឆ្នាំការចងការទាំង 2 បានផ្ដល់ចំណូលសរុប Maturity value ស្មើគ្នា។
 - ច្ចររកប្រាក់ដើមនិម្ទយៗ
 - សុំធ្វើការផ្ទៀងផ្ទាត់ដោយរក Maturity value និមួយៗ

សំសាត់ ២.២២. ដើម្បីបានចំនួនប្រាក់ 100 000\$ នៅដំណាច់ខែ វិច្ឆិកា 1998

- គេបានដាក់ប្រាក់ផ្ញើនៅធនាគារពីដំណាក់ខែ វិច្ឆកា 1993 ចំនួនប្រាក់ 30 000\$។
- គេបានដាក់ប្រាក់ផ្ញើម្តងទៀតនៅដំណាច់ខែកុម្ភ: 1995 ចំនូនប្រាក់ 30 000\$។
- គេបានដកវិញម្តងនៅដំណាច់ខែឧសភា 1996 ចំនួន 20 000\$។
- គេបានដាក់ផ្ញើម្តងទៀតនៅដំណាច់ខែ សីហា 1997 ចំនូនប្រាក់ Xប្រតិបត្តិការ ទាំងអស់ នេះ មាន អត្រាការប្រាក់ ប្រចាំត្រីមាស 2.5% និង ដោយ ធ្វើមូល

ធនកម្មការ ប្រាក់ រៀងរាល់ត្រីមាស។ ចូររកចំនួនប្រាក់ X ដែលបានដាក់ផ្ញើលើកចុងក្រោយ។

នំទាន់ ២.២៣. ប្រាក់ដើម 2(X និង Y) ដែលចំនួនសរុប $80\,000\$$ ត្រូវបានគេយកទៅចងការ នៅថ្ងៃជា មួយគ្នា រយៈពេល 6 ឆ្នាំ ។ ប្រាក់ដើម X ចងការតាមអត្រាប្រចាំឆ្នាំ 8% ធ្វើមូលធនកម្ម ការប្រាក់ប្រចាំឆ្នាំ។ ប្រាក់ដើម Y ចងការ តាមអត្រា ប្រចាំឆមាស 3.75% ធ្វើ មូលធនកម្មការ ប្រាក់ប្រចាំ ឆមាស។ នៅពេលបញ្ចប់ 6 ឆ្នាំ គេបានកំរៃ ការប្រាក់សរុប $46\,007.32\$$ ។ ចូររកប្រាក់ដើម X និង Y ។

ទ្រឹស្តីអត្រាភារប្រាភ់

៣.១. និយមន័យអង្ក្រាអារុទ្ធាអំ

ឧនាទារស៍ ៣.១.១. ការវិនិយោគដែលមានរយៈពេលខ្លីមួយ ដែលអ្នកឱ្យខ្ចី បានវិនិយោគចំនូន 1000\$ ក្នុងរយៈពេល៦ខែ ហើយទទួលបានមកវិញនូវទឹកប្រាក់ចំនូន 1035\$។ នេះមានន័យថា ចំនូនទឹកប្រាក់ 1000\$ ត្រូវបានចាត់ទុកថាជាការបង់សងនូវ ថ្លៃដើមវិនិយោគ ហើយនិង 35\$ ការបង់ជាប្រាក់ការ ពោលគឺជារង្វាន់មួយសម្រាប់ការ ខ្ចីលុយយកទៅប្រើប្រាស់រយៈពេល៦ខែ។

និយមន័យ ៣.១.១. អត្រាអារច្រាអ់ គឺ ជាតម្លៃឬថ្លៃឈ្នូលដែលបានបង់ ដោយអ្នកខ្ចីប្រាក់ ទៅ ឱ្យអ្នកឱ្យខ្ចី សម្រាប់ការប្រើប្រាស់ប្រាក់សម្រាប់រយៈពេលមួយ ដែលបែងចែកទៅតាម ចំនួនទឹកប្រាក់ដែលបានខ្ចី។ ដូច្នេះអ្នកខ្ចីត្រូវការការប្រើប្រាស់និងបង់ប្រាក់សម្រាប់ឯកសិទ្ធិ នេះ។

အေအိ

- តាមទស្សន:របស់អ្នកផ្តល់ប្រាក់កម្រៃតម្លៃឬថ្លៃសេវាដែលបានគិតថ្លៃគឺសំណង របស់គាត់
 សម្រាប់ការពន្យារពេលការប្រើប្រាស់សម្រាប់រយ:ពេលនៃប្រាក់កម្ចី។
- រង្វាស់ឯកតាពេល អាចផ្ដួបគិតជា ខែ(ដូចជា ការផ្ដួបរយ:ពេល៦ខែ ឫម្ងួឆមាស) ឫជាឆ្នាំ។
- តាង i(m)=i ជាអត្រាការប្រាក់សម្រាប់កំឡុងពេល ពីគ្រា t ទៅគ្រា t+1 ឫ ហៅ ថា អគ្រាភារប្រាក់ទ្រសិន្ទិសាព។
- \star ពិចារណាការវិនិយោគមួយសម្រាប់រយៈពេល១ឯកតាពេល ដែលចាប់ផ្ដើម នៅខណៈពេល t ហើយសន្មតថា 1+i(t) គឺជាចំនូនដែលត្រូវសងវិញនៅ ខណៈពេល t+1 ។ ឧបមាថា អត្រាការប្រាក់ គឺ មិនអាស្រ័យទៅលើ ចំនួនបរិមាណ ដែលត្រូវវិនិយោគ នោះចំនួនប្រាក់ដែល ទទួលបានវិញនៅគ្រា t+1 ចេញពីការវិនិយោគ ចំនួន C នៅគ្រាទី t គឺ C[1+i(t)] ។

យើងបាន $C \to c \left[1+i\left(0\right)\right] \to C \left[1+i\left(0\right)\right] \left[1+i\left(1\right)\right]$ ឧបមាថា $i\left(0\right)=i\left(1\right)=\ldots=i\left(n\right)=i$ នោះប្រាក់សរុបនៅខណ:ពេល t=n គឺ ៖

$$C_n = C(1+i)^n \tag{m.9}$$

ឧនាទារស៍ ៣.១.២. អត្រាការប្រាក់ប្រសិទ្ធិភាពនៅធនាគារមួយ ចំពោះគណនីបញ្ញើមួយ គឺ $4\frac{1}{2}\%$ ក្នុងមួយឆ្នាំ។ ចូររកចំនួនប្រាក់បំណាច់សរុបក្នុងគណនីដែលកើនឡើងពីការ វិនិយោគ 5000\$ ក្រោយពេល៧ឆ្នាំ។

ជំណោះស្រាយ

រកចំនួនប្រាក់បំណាច់សរុប តាមរូបមន្ត(៣.១) ប្រាក់សរុបគឺ $C_n=C(1+i)^n$ ដោយ $C=5000\$,\ i=4\frac{1}{2}$ ផ្គួបប្រចាំឆ្នាំ, n=7 ឆ្នាំ យើងបាន៖

$$C_7 = 5000 \times (1.045) 7$$

= 6804.31\$

ដូចនេះ ចំនួនប្រាក់បំណាច់សរុបគឺ 6804.31\$

ឧនាសរស៍ ៣.១.៣. អត្រាការប្រាក់ប្រសិទ្ធិភាពក្នុងមួយឆ្នាំ ចំពោះគណនីជាក់លាក់មួយ គឺ 7% ប៉ុន្តែក្នុងរយៈពេល ២ឆ្នាំបន្តទៅមុខទៀតវានឹង ថយចុះសល់ 6%។ ចូររកចំនួនប្រាក់ ដែលកើន

ឡើងបាននៅក្នុងគណនីនេះ ក្នុងរយៈពេល៥ឆ្នាំនៃការវិនិយោគ 400\$ ។

ដំណោះស្រាយ

រកចំនូនប្រាក់ ដែលកើនឡើងបាននៅក្នុងគណនីនេះ តាមសម្មតិកម្ម

$$C_5 = 4000 \times (1.07)^2 \times (1.06)^3$$

= 5454.38\$

ដូចនេះ ចំនូនប្រាក់សរុបកើនឡើងគឺ 5454.38\$

៣.២. អត្រាភារប្រាត់នន្ទនា

និយមន័យ ៣.២.១. អគ្រាអារច្រាអ់នម្មសគឺជាអត្រាអត្រាការប្រាក់ដែលត្រូវបានរាយការណ៍ នៅលើឯកសារប្រាក់កម្វីនិងគណនីវិនិយោគ ដែលមិនត្រូវបានកែតម្រូវសម្រាប់អតិជរណា។ បន្ទាប់ពីការកែតម្រូវបែបនេះវាត្រូវបានហៅថាអត្រាការប្រាក់ ពិតប្រាកដ។

សម្គាល់៖

• យើងកំណត់ i_m ជា **អគ្រាភារទ្រាន់ខន្ទុនា** ក្នុងមួយឯកតាពេលសម្រាប់កំឡុងពេល m ដែលចាប់ផ្តើមនៅគ្រា t នោះ **អគ្រាភារទ្រាន់ទ្រសិទ្ធិភាព** សម្រាប់កំឡុងពេល ដែលមាន ទំហំ m គឺ

$$i = m \times i_m$$
 (m.b)

ullet តាមរូបមន្ត(៣.១) យើងបាន ចំនួនប្រាក់សរុបដែលទទួលបាននៅរយៈពេល t+m គឺ

$$C[1+m\times i_m] \tag{m.m}$$

ឧនាទារស៍ ៣.២.១. អត្រាការប្រាក់ដើមក្នុង១ឆ្នាំ ដែល បានដកស្រង់ចេញពី អត្ថបទ ហិរញ្ញវត្ថុ ចំពោះប្រាក់បញ្ញើជាតិក្នុងស្រុក នៅថ្ងៃជាក់លាក់មួយមានដូចខាងក្រោម៖

កំឡុងពេលនៃគ្រា .	អត្រាការប្រាក់ធម្មតា(%) .
ខ្ងាំខ	$11\frac{3}{4}$
២ថ្ងៃ	$11\frac{5}{8}$
៧ថ្ងៃ	$11\frac{1}{2}$
១ខែ	$11\frac{3}{8}$
៣ខែ	$11\frac{1}{4}$

(ការវិនិយោគចំពោះកំឡុងពេលដែលមានទំហំ ១ថ្ងៃ គឺត្រូវបានសំដៅទៅលើ ប្រាក់ពេញ មួយថ្ងៃ)។ ចូររកប្រាក់កើនឡើងពីការវិនិយោគប្រាក់ចំនួននៅពេលនេះ សម្រាប់ រយៈពេល ៖

- ១. មួយសប្តាហ៍
- ២. មួយខែ

ಜೀಣಾ: ಕ್ಷಾಟ

តាមសម្មតិកម្ម

- ullet i=11.75% ប្រចាំឆ្នាំសម្រាប់គិតជាប្រចាំថ្ងៃស្មើ $rac{11.75\%}{365}$ ផ្គួបប្រចាំថ្ងៃ
- ullet i=11.625% ប្រចាំឆ្នាំសម្រាប់គិតជាប្រចាំថ្ងៃស្មើ $rac{11.625\%}{365}$ ផ្គួបប្រចាំថ្ងៃ
- ullet i=11.50% ប្រចាំឆ្នាំសម្រាប់គិតជាប្រចាំសប្ដាហ៍ $i=rac{11.50\%}{52}$ ផ្ដួបប្រចាំសប្ដាហ៍ $i=rac{11.50\%}{365} imes 7$ ផ្ដួបប្រចាំ៧ថ្ងៃម្ដង
- ullet i=11.375% ប្រចាំឆ្នាំសម្រាប់គិតជាប្រចាំខែស្មើ $i=rac{11.375\%}{12}$ ផ្ដួបប្រចាំខែ
- ullet i=11.25% ប្រចាំឆ្នាំសម្រាប់គិតជាប្រចាំត្រីមាស $i=rac{11.25\%}{4}$ ផ្ដួបប្រចាំត្រីមាស

អេប្រាអ់សមុមអើនខែលនឹខធន្ទល់បានពេល C=1000\$

តាមរូបមន្ត(៣.៣) យើងបានប្រាក់សរុបកើនគឺ $1000(1+m imes i_m)$

$$C_1 = 1000 \times \left(1 + \frac{11.50\%}{52}\right)$$

= 1002.21\$

:ឧរខដ្ឋ

ប្រាក់សរុបកើនមួយសប្តាហ៍គឺ 1002.21\$

$$C_1 = 1000 \times \left(1 + \frac{11.375\%}{12}\right)$$

= 1009.48\$

:ឧរខដ្ឋ

ប្រាក់សរុបកើនមួយខែគឺ1009.48\$

៣.៣. អគ្គានៃអំណើនអារុទ្រាអ់

តាង t ជារយៈពេលគិតក្នុងឯកតាសមស្រប(គិតជាឆ្នាំ)

• ចំពោះ $t_1\leqslant t_2$ កំនត់បាន $A(t_1,t_2)$ ជាចំនូនប្រាក់ដែលកើនឡើងនៅត្រង់គ្រា t_2 នៃ ការវិនិយោគ មានតម្លៃមួយនៅត្រង់គ្រា t_1 ចំពោះកំឡុងពេលមួយ t_2-t_1 (ដែល $A(t_1,t_2)$ ហៅថាកត្តាកំណើនការប្រាក់)

$$\begin{array}{ccc}
1\$ & A(t_1, t_2) \\
 & & \\
t_1 & t_2
\end{array}$$

• យើងបាន **គំណើនភារច្រាគ់**

$$A\left(t,t+m\right)=1+mi_{m} \tag{m.G}$$

ullet នាំឱ្យ **អត្រាភាះច្រាអ់** Nominal គឺ

$$i_m = \frac{A(t, t+m) - 1}{m}$$
 (m.g)

ullet ច្រាត់សម្មេខៃល្ខាត់ខើមC គឺ

$$C \times A(t_1, t_2)$$
 (m.b)

• អ្វោមគោលអារណ៍ស្ថេរភាព នោះ កំណើនការប្រាក់គឺ

$$A\left(t_{0},t_{n}\right)=A\left(t_{0},t_{1}\right)\times A\left(t_{1},t_{2}\right)\times\ldots\times A\left(t_{n-1},t_{n}\right)$$
 (m.1)

ឧនាសារស៍ ៣.៣.១. តាង t រយ:ពេលគិតជាឆ្នាំ ហើយសន្មតថា ចំពោះ $t_1\leqslant t_2$ នោះ

$$A(t_1, t_2) = \exp[0.05 \times (t_2 - t_1)]$$

- 9. ចូរផ្ទៀងផ្ទាត់ថា វាគោរពតាម គោលការណ៍ស្ថេរភាព
- ២. ចូររកចំនូនដែលកើនឡើង ក្នុងរយៈពេល១៥ឆ្នាំក្រោយនៃការវិនិយោគចំនូន 600\$ នៅគ្រា ណាមួយ។

ជំនោះស្រួយ

9. ចូរផ្ទៀងផ្ទាត់ថា វាគោរពតាម គោលការណ៍ស្ថេរភាព

យើងគ្រាន់តែបង្ហាញថា $A\left(t_{0},t_{2}
ight)=A\left(t_{0},t_{1}
ight) imes A\left(t_{1},t_{2}
ight)$

ចំពោះ $t_0\leqslant t_1\leqslant t_2$

គេបាន

$$A(t_0, t_1) \times A(t_1, t_2) = e^{0.05 \times (t_1 - t_2)} \times e^{0.05 \times (t_0 - t_1)}$$
$$= e^{0.05 \times (t_2 - t_1)}$$
$$= A(t_0 - t_2)$$

២. រកប្រាក់សរុបដែលនឹងទទួលបាន

បើប្រាក់ដើម C=600\$ រយ:ពេល n=15 ឆ្នាំ

$$\Rightarrow C_{15} = C \times A(1, 16) = C \times A(0, 15) = 600 \times e^{0.05 \times (15 - 0)} = 1270.20$$
\$

:ឧរចដ្ឋ

ប្រាក់សរុបដែលនឹងទទួលបានគឺ 1270.20

៣.៤. អារច្រាអ់មខ្ទុំ

និយទន័យ ${\bf n}$.៤.9. នៅពេល m ដែលកាន់តែតូចនោះ i_m ខិតទៅរកតម្លៃលីមីតមួយ អាស្រ័យ t ។ យើង សន្មតថា $orall t, \exists \delta\left(t
ight)$ ដែលផ្ទៀងផ្ទាត់ $\lim_{m o 0^+} i_m = \delta\left(t
ight)$ ដែល $\delta\left(t
ight)$ ភារួស្វាត់ខខ្ញុំ គួខមួយឯគគាពេល ។

តាមរូបមន្ត(៣.៥) យើងបាន

$$i_{m} = \frac{A(t, t+m) - 1}{m} = \frac{A(t, t+m) - A(t, t)}{m}$$

នោះ

$$\delta\left(t\right) = \lim_{m \to 0} \frac{A\left(t, t + m\right) - A\left(t, t\right)}{m} = \left.\frac{\delta_{A}\left(t, x\right)}{\delta_{x}}\right|_{x = t}$$

ទ្រឹស្ដីមន ៣.៤.១. .

$$A\left(t_{1},t_{2}
ight)=e^{^{t_{2}}\int\limits_{t_{1}}\delta\left(t
ight)dt}$$
 ដែល $\delta\left(t
ight)=\left.rac{\partial A\left(t_{1},x
ight)}{\partial x}
ight|_{x=t}$

ಹಣ್ಣಾಣ

• ករណី $\delta\left(t\right)=\delta$ ថេរនោះ

$$A\left(t_{1},t_{2}
ight)=e^{\int\limits_{t_{1}}^{t_{2}}\delta\left(t
ight)dt}=e^{\int\limits_{t_{1}}^{t_{2}}\delta dt}=\delta t|_{t_{1}}^{t_{2}}=e^{\delta\left(t_{2}-t_{1}
ight)} \tag{m.G}$$

ullet ការណី $\delta\left(t
ight)=a+bt$ នោះ

$$A\left(t_{1},t_{2}\right)=e^{\int_{1}^{t_{2}}\left(a+bt\right)dt}=e^{\left[at+\frac{1}{2}bt^{2}\right]\Big|_{t_{1}}^{t_{2}}}=e^{a\left(t_{2}-t_{1}\right)+\frac{b}{2}\left(t_{2}^{2}-t_{1}^{2}\right)}\tag{m.6}$$

ឧនាទារស៍ ៣.៤.១. ការប្រាក់បង្ខំមួយឯកតាពេល $\delta\left(t\right)$ គិតជាឆ្នាំស្មើនឹង 0.12 ចំពោះ $\forall t$ ។ ចូររកអត្រាការប្រាក់ដើមប្រចាំឆ្នាំចំពោះប្រាក់បញ្ញើដែលមានរយៈពេល

- ១. ៧ថ្ងៃ
- ២. ១ខែ
- ៣. ៦ខែ

ಜೀಚಾ:ಕ್ರಾಟ

រកអត្រាការប្រាក់ដើមប្រចាំឆ្នាំ តាមរូបមន្ត

$$i_m = \frac{A(t, t+m) - 1}{m}$$

១. ៧ថ្ងៃm=7 ថ្ងៃស្មើ $\frac{7}{365}$ ឆ្នាំ ដោយ

$$A(t, t + m) = e^{\int_{t}^{t+m} \delta(x)dx} = e^{\int_{t}^{t+m} 0.12dx} = e^{0.12m}$$

យើងបាន $i_{\scriptscriptstyle m}=\frac{e^{\scriptscriptstyle 0.12m}-1}{m}=\frac{e^{\scriptscriptstyle 0.12\times\frac{7}{365}}-1}{\frac{7}{365}}=12.01\%$ ប្រចាំឆ្នាំគិតប្រចាំសប្ដាហ៍

ដូចនេះ អត្រាការប្រាក់គឺ $i_m=12.01\%$ ប្រចាំឆ្នាំគិតប្រចាំសប្តាហ៍

ចរិខ .២

ព. ១ខែ

$$m=6$$
 ខែស្មើ $\frac{6}{12}$ ឆ្នាំ យើងបាន
$$i_m=\frac{e^{0.12m}-1}{m}=\frac{e^{0.12\times\frac{6}{12}}-1}{\frac{6}{12}}=12.37\%$$
 ប្រចាំឆ្នាំសម្រាប់គិតជាប្រចាំឆមាស ដូចនេះ អត្រាការប្រាក់គឺ $i_m=12.37\%$ ប្រចាំឆ្នាំគិតប្រចាំឆមាស

ឧនាមារស៍ ៣.៤.២. ធនាគារមួយ បានផ្ដល់ឥទានការប្រាក់ចំពោះ ប្រាក់បញ្ញើដោយប្រើកត្ដា កំណើនការប្រាក់ដែលផ្អែកលើអថេរការប្រាក់បង្ខំ(ការប្រាក់បង្ខំប្រែប្រូល)។ នៅថ្ងៃទី១ ខែកក្កដា ឆ្នាំ ១៩៨៣ អតិថិជនម្នាក់បាន ផ្ញើរប្រាក់ចំនួន 5000\$ នៅក្នុងធនាគារ។ នៅថ្ងៃទី១ ខែកក្កដា ឆ្នាំ ១៩៨៥ ប្រាក់សន្សំរបស់គាត់ បានកើនឡើងដល់ទៅ 59102\$។ ដោយសន្មត ថា ការប្រាក់បង្ខំ ក្នុងមួយឆ្នាំគឺជាអនុគមន៍លីនេអ៊ែនៃ រយៈពេលសម្រាប់ កំឡុងពេល ចាប់ពីថ្ងៃទី១ ខែកក្កដា ឆ្នាំ ១៩៨៣ ដល់ថ្ងៃទី១ ខែកក្កដា ឆ្នាំ ១៩៨៤។

ដំណោះស្រាយ

រកការប្រាក់បង្ខំប្រចាំឆ្នាំនៅថ្ងៃទី១ ខែកក្កដា ឆ្នាំ១៩៨៤

ដោយ
$$\delta\left(t\right)=a+bt$$
 រក $\delta\left(1\right)$

យើងបាន

$$59102 = 50000 \times A(0,2) = 50000 \times e^{\int_{0}^{2} \delta(t)dt}$$

$$59102 = 50000 \times e^{\int_{0}^{2} (a+bt)dt} = 50000 \times e^{\left[at + \frac{1}{2}bt^{2}\right]} \Big|_{0}^{2}$$

$$59102 = 50000 \times e^{2a+2b} = 50000 \times e^{2(a+b)}$$

នាំឱ្យ

$$e^{2(a+b)} = \frac{59102}{50000} = 1.18204$$

$$\Rightarrow a+b = 0.0836$$

នោះ $\delta\left(1\right)=8.36\%$ បង្ខំប្រចាំឆ្នាំ

ដូចនេះ ការប្រាក់ប្រចាំឆ្នាំគឺ $\delta\left(1\right)=8.36\%$ បង្ខំប្រចាំឆ្នាំ

ឧនាទារសំ ៣.៤.៣. គេឱ្យ

$$\delta(t) = \begin{cases} 0.06 & if \ t < 5 \\ 0.05 & if \ 5 \le t < 10 \\ 0.03 & if \ t > 10 \end{cases}$$

រក $A\left(0,t
ight)$ ដែល $A\left(0,t
ight)=e^{\int\limits_{0}^{t}\delta\left(s
ight)ds}$

ullet ពេល t < 5 ឆ្នាំ យើងបាន

$$A(0,t) = e^{\int_{0}^{t} 0.06ds} = e^{0.06t}$$

ullet ពេល $5\leqslant t<10$ យើងបាន

$$A(0,t) = e^{\int_0^t \delta(s)ds} = e^{\int_0^5 \delta(s)ds + \int_5^{10} \delta(s)ds}$$

$$= e^{\int_0^5 0.06ds + \int_5^t 0.05ds}$$

$$= e^{0.06t|_0^5 + 0.05|_5^t}$$

$$= e^{0.05t + 0.05}$$

ullet ពេល $t\geqslant 10$ យើងបាន

$$A(0,t) = e^{\int_{0}^{t} \delta(s)ds} = e^{\int_{0}^{5} \delta(s)ds + \int_{5}^{10} \delta(s)ds + \int_{10}^{t} 0.05ds}$$

$$= e^{\int_{0}^{5} 0.06ds + \int_{5}^{10} 0.05ds + \int_{10}^{t} 0.03ds}$$

$$= e^{0.06 \times 5 + 0.05(10 - 5) + 0.03(t - 10)}$$

$$= e^{0.03t + 0.25}$$

៣.៥. ងង្ខែមន្ទម្បន្ថ

តាង $t_1\leqslant t_2$ នោះតាមរូបមន្តនៃកំណើនប្រាក់ $A\left(t_1,t_2
ight)$ គេបាន ការវិនិយោគចំនូន $\dfrac{C}{A\left(t_1,t_2
ight)}=C imes e^{-\int\limits_{t_1}^{t_2}\delta(t)dt}$ នៅត្រង់ t_1 និងបង្កើតបានប្រាក់ត្រឡប់មកវិញ នៅគ្រា t_2 មើលតាមគំនូសតាង៖

គេកំនត់បាន៖

ullet ប្រាក់សរុបនៃប្រាក់ដើម C តាងដោយ

$$F.V = C \times e^{\int_{t_1}^{t_2} \delta(t)dt}$$
 (m.90)

ullet ព្រាក់ដើមនៃប្រាក់សរុប C តាងដោយ

$$P.V = C \times e^{-\int_{t_1}^{t_2} \delta(t)dt}$$
 (m.99)

ហៅថា **ដង្ហែងសាសសង្ខសាស្ត(ថ្ងងម្លែងស្វស្សសូ** សង្គាល់

- $-\ V(t):$ ប្រាក់ដើមនៃប្រាក់សរុប 1\$
- $-F\left(t
 ight) =A\left(0,t
 ight) :$ ប្រាក់សរុបនៃប្រាក់ដើម 1\$
- ករណីពិសេស $\delta\left(t
 ight)=\delta$ ចំពោះ orall t នោះ $P.V=e^{-\delta}$

ឧនាទារស៍ ៣.៥.១. គេឱ្យរយៈពេលគិតជាឆ្នាំ ដែលគិតចេញពីពេលបច្ចុប្បន្នទៅ ហើយ សន្មត ថា $\delta\left(t\right)=0.06(0.9)^{t}$ ចំពោះគ្រប់ t។ ចូរគណនា V(t) និងរកតម្លៃបច្ចុប្បន្ននៃ ការវិនិយោគ 100\$ ដែលដល់ កំនត់មានរយៈពេល៣.៤ឆ្នាំ។

ಜೀಚಾ:ಕ್ರಾಟ

គណនា V(t) និងរកតម្លៃបច្ចុប្បន្ននៃ ការវិនិយោគ 100\$ ដែលដល់ កំនត់មាន រយៈពេល ៣.៤ឆ្នាំ យើងមាន $\delta\left(t\right)=0.06(0.9)^{t}$

ដោយ
$$V\left(t
ight)=e^{-\int\limits_{0}^{t}\delta\left(s
ight)ds}$$
យើងបាន

$$V(t) = e^{-\int_{0}^{t} 0.06 \times 0.9^{t} ds}$$

$$= e^{-0.06 \times \frac{0.9^{5}}{\ln(0.9)} \Big|_{0}^{t}}$$

$$= e^{-\frac{0.06}{\ln(0.9)} \left(0.9^{t} - 1\right)}$$

:ខាចដូ

$$V\left(t\right) = e^{-rac{0.06}{\ln(0.9)}\left(0.9^t - 1
ight)}$$

រកប្រាក់ដើមនៃប្រាក់សរុប រយៈពេល៣.៥ឆ្នាំ

យើងមាន V(3.5) ជាប្រាក់ដើមនៃប្រាក់សរុប 1\$ ក្នុងរយៈពេល៣.៥ឆ្នាំ $\Longrightarrow 100 \times V(3.5)$ ជាប្រាក់ដើមនៃប្រាក់សរុប 100\$ ក្នុងរយៈពេល៣.៥ឆ្នាំ យើងបាន

$$100 \times V(3.5) = 100 \times e^{-\frac{0.06}{\ln(0.9)}(0.9^{3.4} - 1)}$$
$$= 83.89\$$$

:ខាចដូ

$$V(3.5) = 83.89$$
\$

ឧនាទារស័ា ៣.៥.២. សន្មតថា
$$\delta\left(t\right)=\left\{egin{array}{l} 0.09 \ if \ 0\leqslant t<5 \\ 0.08 \ if \ 5\leqslant t<10 \\ 0.07 \ if \ t\geqslant 10 \end{array}
ight.$$

ចូររកកន្សោមនៃ V(t) ចំពោះ $t\geqslant 0$

ដំណោះស្រាយ

រកកន្សោមនៃ V(t) ចំពោះ $t\geqslant 0$

តាមរូបមន្ត
$$V\left(t
ight)=e^{-\int\limits_{0}^{t}\delta\left(s
ight)ds}$$

ពេល $0 \leqslant t < 5$ យើងបាន

$$V(t) = e^{-\int_{0}^{t} 0.09ds} = e^{-0.09t}$$

ពេល $5 \leqslant t < 10$ យើងបាន

$$V(t) = e^{-\int_{0}^{5} 0.09ds - \int_{5}^{t} 0.08ds} = e^{-0.08t - 0.05}$$

ពេល $t \geqslant 10$ យើងបាន

$$V(t) = e^{-\int_{0}^{5} 0.09ds - \int_{5}^{10} 0.08ds - \int_{10}^{t} 0.07ds} = e^{-0.09 - 0.08 \times 5 - 0.09t + 0.07 \times 10}$$

$$= e^{-0.07t - 0.15}$$

៣.៦. រួមមន្ត Stoodley ទំពោះអារុច្រាអ់មខ្ទុំ

រូបមន្ត Stoodley

ភារុទ្រាភ់មខ្ទំចំពោះរួមមន្ត Stoodley អាចសរសេរជា៖

$$\delta\left(t
ight)=p+rac{s}{1+re^{st}}$$
 (៣.១២)

ដែល p,s,r ជាតម្លៃប៉ារ៉ាម៉ែត្រ យើងបាន

$$V(t) = e^{-\int_{0}^{t} \left[p + \frac{s}{1 + re^{sx}}\right] dx}$$

$$= e^{-\int_{0}^{t} \left[p + \frac{s + rse^{sx} - rse^{sx}}{r + re^{sx}}\right] dx}$$

$$= e^{-\int_{0}^{t} \left[p + \frac{s}{1 + re^{sx}}\right] dx}$$

$$= e^{-\int_{0}^{t} \left[p + \frac{s}{1 + re^{sx}}\right] dx}$$

$$= e^{-\left[(p + s)t - \ln\left(\frac{1 + re^{st}}{1 + r}\right)\right]}$$

$$= e^{-(p + s)t} \times \frac{1}{1 + r} + \frac{1}{1 + r}re^{-pt}$$

ដូចនេះ

$$V(t) = e^{-(p+s)t} \times \frac{1}{1+r} + \frac{1}{1+r}re^{-pt}$$

ឧនាមារស៍ ៣.៦.១. ការប្រាក់បង្ខំក្នុងមួយឆ្នាំ $\delta\left(t\right)$ ផ្ទៀងផ្ទាត់តាមរូបមន្ត Stoodley ដែលមាន៖ $p=0.076961,\,r=0.5$ និង s=0.121890 ពោលគឺ៖

$$\delta(t) = 0.076961 + \frac{0.121890}{1 + 0.5 \times e^{0.121890t}}$$

ចូររករូបមន្ត V(t) និងប្រើរូបមន្តដើម្បីរកតម្លៃបច្ចុប្បន្នដែលបានកំនត់រយៈពេល១០ឆ្នាំ។

ಜೀಣಾ:ಕ್ಷಾಟ

រក្សបមន្ត V(t)

តាមរូបមន្ត

$$V(t) = e^{-(p+s)t} \times \frac{1}{1+r} + \frac{1}{1+r}re^{-pt}$$

យើងបាន

$$V(t) = \frac{2}{3}e^{[-(0.076961+0.121890)t]+\frac{1}{3}e^{(-0.076961t)}}$$
$$= \frac{2}{3}(1.22)^{-t} + \frac{1}{3}(1.08)^{-t}$$

នាំឱ្យ
$$V\left(10\right)=\frac{2}{3}(1.22)^{-10}+\frac{1}{3}(1.08)^{-10}=0.24566$$
 ដូចនេះ តម្លៃបច្ចុប្បន្នដែលកំនត់ក្នុងរយៈពេល១០ឆ្នាំគឺ $V\left(10\right)=0.24566$

៣.៧. ងម្លែមថ្មុម្បន្តនៃលំមាំងមាត់ស្រាង

m.៧.១. សញ្ញាសា និចនិយមន័យ

តម្លៃបច្ចុប្បន្ននៃលំហូរសាច់ប្រាក់មាន២ករណី ៖

• លំហុះសាច់ប្រាត់មានលត្ខណៈខាច់ៗ

រូបមន្តតម្លៃបច្ចុប្បន្ននៃការវិនិយោគដែលកំនត់នៅគ្រា $t\geqslant 0$ គឺ CV(t) នោះយើងបាន **តន្ទៃបច្ចុប្បន្ននៃស្រាភ់** $C_{t_1},C_{t_2},\ldots,C_{t_n}$ ដែលកំនត់នៅត្រង់គ្រា t_1,t_2,\ldots,t_n គឺ៖

$$PV = C_{t_1} \times V(t_1) + \ldots + C_{t_n} \times V(t_n)$$
(m.9m)

តាង p(t) ល្បឿនលំហូរសាច់ប្រាក់នៅខណៈពេល t (ជាទូទៅគិតជាប្រចាំឆ្នាំ) ដែល C_{t_1} ចែកចេញជា២៖

- 9. $C_{t_1} imes V\left(t_1
 ight)$ សំណងការប្រាក់
- ២. $C_{t_1}-C_{t_1} imes V\left(t_1
 ight)$ សំណងការប្រាក់

• លំម៉ាំ៖មាតុខាងការ ខេត្ត (ទៀលសំ មេ

សញ្ញាណនៃលំហូរសាច់ប្រាក់មានលក្ខណៈជាប់ គឺពិតជាមានសារៈសំខាន់ណាស់ ទោះបី ជាមានខ្លឹមសារល្អតាមបែបទ្រឹស្តីក៏ដោយ។ ឧទាហរណ៍ ប្រាក់ចូលនិវត្តន៍ ដែលត្រូវបានបង់ ប្រចាំសប្តាហ៍អាចចាត់ទុកជាការបង់ប្រាក់មានលក្ខណៈជាប់។

$$PV = \int_{0}^{T} \varphi(t)V(t) dt$$
 (m.១৫)

ឧនាមារស៍ ៣.៧.១. ឧបមាថា រយៈពេលគិតជាឆ្នាំហើយឧបមាថា

$$\delta(t) = \begin{cases} 0.04 & ,if \ t < 10 \\ 0.03 & ,if \ t \geqslant 10 \end{cases}$$

ចូររកV(t) ចំពោះគ្រប់ ហើយរកតម្លៃបច្ចុប្បន្ន PV នៃខ្សែលំហូរសាច់ប្រាក់ជាប់ នៅត្រង់អត្រាបង់ ប្រាក់ស្មើ១ក្នុងមួយឆ្នាំដោយចាប់ផ្តើមដោយគ្រា០។

ಪಿಣಾ:್ರಾಕಾರ್

រក V(t) ដោយ $V(t)=e^{-\int\limits_0^t\delta(s)ds}$ ពេល 0< t<10 នាំឱ្យ $V(t)=e^{-\int\limits_0^t0.04ds}=e^{-0.04|_0^t}=e^{-0.04t}$ ពេល $t\geqslant 10$ នាំឱ្យ $V(t)=e^{-\int\limits_0^10.04ds-\int\limits_{10}^t0.03ds}=e^{-0.03t-0.10}$ រកតម្លៃបច្ចុប្បន្ន PV នៃខ្សែលំហូរសាច់ប្រាក់ដាប់ គេបាន

$$PV = \int_{0}^{15} 1 \times V(t) dt$$
$$= \int_{0}^{10} e^{-0.04t} dt + \int_{10}^{15} e^{-0.03t - 0.1} dt$$
$$= 11.35\$$$

៣.៨. គារខាស់តន្លៃសំឡូរសាខ់ឡាក់

ពិនិត្យមើលគ្រា t_1 និង t_2 ដែលមិនចាំបាច់ធំជាង t_1 ។ តម្លៃនៃចំនួនប្រាក់ C នៅត្រង់ t_1 ដែលដល់ កំនត់នៅគ្រា t_2 កំនត់ដូចខាងក្រោម៖

១. បើ $t_1\leqslant t_2$ នោះនឹងជាកំណើនពីការប្រាក់នៃ C ពីគ្រា t_2 ដល់គ្រា t_1 យើងបាន៖

$$PV = Ce^{-\int\limits_{t_1}^{t_2}\delta(s)ds}$$
 (៣.១៥)

២. បើ $t_1>t_2$ នោះនឹងជាតំបាយនៃនៅគ្រា t_1 ដែលកំនត់នៅត្រង់ t_2 យើងបាន៖

$$FV = Ce^{\int\limits_{t_2}^{t_1}\delta(s)ds}$$
 (m.95)

នាំឱ្យ

$$PV = Ce^{-\int_{t_1}^{t_2} \delta(s)ds}$$

$$= Ce^{-\int_{t_1}^{0} \delta(s)ds - \int_{0}^{t_2} \delta(s)ds}$$

$$= C \times \frac{e^{-\int_{0}^{t_2} \delta(s)ds}}{e^{-\int_{0}^{t_1} \delta(s)ds}}$$

$$= C \times \frac{V(t_2)}{V(t_1)}$$

ដូចនេះ

$$PV imes V\left(t_{1}
ight)=C imes V\left(t_{2}
ight)$$
 ហៅថា សមីភារសំនឹខ (៣.១៧)

ឧនាសរស៍ ៣.៨.១. អាជីវករម្នាក់ ត្រូវបានគេជំពាក់ប្រាក់ចំនូន 100\$ នៅថ្ងៃទី១ មករា ឆ្នាំ១៩៨៦ និងប្រាក់ចំនូន 2500\$ នៅថ្ងៃទី១ មករា ឆ្នាំ១៩៨៧ ហើយនិងប្រាក់ចំនូន 3000\$ នៅថ្ងៃទី១ កក្កដា ឆ្នាំ១៩៨៧។ ដោយសន្មតថា ការប្រាក់បង្ខំថេរ 0.06 គឺក្នុងមួយឆ្នាំ ចូររកតម្លៃនៃការបង់ប្រាក់

- ១. ថ្ងៃទី១ មករា ឆ្នាំ១៩៨៤
- ២. ថ្ងៃទី១ មីនា ឆ្នាំ១៩៨៥

ជំណោះស្រាយ

រកតម្លៃនៃការបង់ប្រាក់

១. ថ្ងៃទី១ មករា ឆ្នាំ១៩៨៤

$$PV = 1000 \times e^{-\frac{1}{0}0.06dt} + 2500 \times e^{-\frac{3}{0}0.06dt} + 3000 \times e^{-\frac{3.5}{0}0.06dt}$$
$$= 1000 \times e^{-0.12} + 2500 \times e^{-0.18} + 3000 \times e^{-0.21}$$
$$= 5406.85\$$$

២. ថ្ងៃទី១ មីនា ឆ្នាំ១៩៨៥

$$5406.85\$ 1/3/85$$

$$1/1/84 t_1 = \frac{7}{6}$$

តាមសមីការលំនឹង
$$PV \times V\left(t_0\right) = PV \times V\left(t_1\right)$$
 យើងបាន $5406.85 \times V\left(0\right) = YV\left(\frac{7}{6}\right)$ $\Rightarrow \qquad y = 5798.89\$$

៣.៩. ទ្រាគ់ចំណួលខាគារទ្រាគ់

សន្មត់ថា $t>t_0$ ហើយឧបមាថា អ្នកវិនិយោគម្នាក់នោះ ចង់ដាក់ផ្ញើរប្រាក់ចំនួនC នោគ្រា t_0 ហើយគាត់នឹង ដកវិញនៅគ្រាt ។សន្មត់ថាn>1 ហើយឧបមាថាអ្នកវិនិយោគ នោះចង់ទទូល បានវិញជា ការប្រាក់ពី ប្រាក់បញ្ញើ របស់គាត់ ចំនូនn គ្រា $t_0+h,t_0+2h,\cdots,t_0+nh$ ដែល $h=\dfrac{(t-t_0)}{n}$ ។ ការប្រាក់ដែលគេបង់ឱ្យគាត់ $t_0+(j+1)h$ សម្រាប់កំឡុងពេលពី t_0+jh ទៅដល់ $t_0+(j+1)h$ នឹងមានតម្លៃ $Chi_k(t_0+jh)$

រូបមន្ត **ទ្រាអ់ទំណុលពីអារទ្រាអ់សុទេ** សម្រាប់ចន្លោះពេលពី t_0 និងt គឺ $C\sum_{i=0}^{n-1}h.i_h\left(t_0+j.h
ight)$

ដោយ ការប្រាក់សរុបដែលទទួលបាន នៅចន្លោះពេលពី $t_{
m 0}$ ទៅt រួមទៅរកតម្លៃ

$$I\left(t\right) = C \int_{t_{0}}^{t} S\left(s\right) ds$$

• បើអ្នកវិនិយោគនោះ ដកប្រាក់មូលធនវិញនៅគ្រា T នោះតាមរូបមន្ត CPV(t) និង $\int\limits_0^T P.V(t)p(t)dt$ យើងបាន តម្លៃបច្ចុប្បន្ននៃប្រាក់ចំណូល របស់គាត់ គឺ $\int\limits_0^T s\left(t\right).P.V(t)dt$ ដោយ

$$\int_{0}^{T} S(t).P.V(t)dt = \int_{0}^{T} S(t) \exp\left[-\int_{0}^{T} S(s) ds\right] dt$$
$$= \left[-\exp\left(-\int_{0}^{t} S(s) ds\right)\right]_{0}^{T}$$
$$= 1 - P.V(T)$$

នោះយើងទទួលបាន $C=C\int\limits_0^T S\left(t\right).P.V\left(t\right)dt+C.P.V(T)$ នៅក្នុងករណីដែល $T=\infty$ (ដែលករណីនេះ អ្នកវិនិយោគមិនដែលដកប្រាក់មូលធនវិញ) នោះយើងបាន $C=C\int\limits_0^\infty S\left(t\right).P.V(t)dt$ (តម្លៃបច្ចុប្បន្ននៃប្រាក់ចំណូលជាការប្រាក់)

លំខាងអនុខត្តន៍

សំទារ៖ ៣.១. ការប្រាក់ផ្គូប ដែលមានអត្រាការប្រាក់ប្រសិទ្ធភាព i ក្នុងមួយឆ្នាំ ហើយកំនើនការ ប្រាក់នៃប្រាក់វិនិយោគ ក្នុងរយៈពេល t ឆ្នាំគឺ $(1+i)^t$ ចំណែកឯ ចំពោះការប្រាក់សាមញ្ញវិញ នៅត្រឹមអត្រាដូចគ្នា នោះ កំនើនជាការប្រាក់នៃការវិនិយោគ1 ក្នុងរយៈពេល t ឆ្នាំគឺ (1+ti) ។ ចូរបង្ហាញថា ចំពោះតំលៃ i វិជ្ជមាន

- 9. តំលៃកំនើនតាមអត្រាការប្រាក់សាមញ្ញ មានតំលៃលើស តំលៃកំនើន i>0 អត្រាការប្រាក់ផ្គូប បើ 0< t<1។
- ២. មានលក្ខណ:ផ្ទុយមកវិញ ចំពោះ t>1 ។ណែនាំ ៖ តាង $f(i) = (1+i)^t (1+ti)$ ហើយកត់សម្គាល់ថា f(0) = 0 និងព្រមទាំងពិចារណាទៅលើសញ្ញានៃ f'(i) ចំពោះ i>0 ។

សំសាត់ ៣.២. ពេញមួយឆ្នាំការប្រាក់អនុភាពគឺ ជាអនុគមន៏លីនេអ៊ែរ មួយធៀបនិងរយៈពេល ដែលថយចុះពី 0.15 នៅដើមឆ្នាំរហូតដល់ 0.12 នៅចុងឆ្នាំ។ ចូររកតម្លៃ នៅដើមឆ្នាំនៃអត្រាការ ប្រាក់ធម្មតា ក្នុងមួយឆ្នាំចំពោះប្រតិបត្តិការខាងក្រោម

- ១. រយៈពេលបីខែ
- ២. មួយខែ
- ៣. មួយថ្ងៃ ។

ចូររកតម្លៃដែលស្របគ្នា ចំពោះរយៈពេលពាក់កណ្ដាលឆ្នាំ។ (ចូរកត់សម្គាល់អំពីរបៀបដែលតម្លៃ ទាំងនេះ ឈានទៅរក ការប្រាក់អនុភាព នៅរយៈពេលសមស្រប) ។

សំសាន់ ៣.៣. ធនាគារមួយ បានផ្ដល់ឥណទានការប្រាក់ ចំពោះប្រាក់បញ្ញើ ដែលប្រើតាមការប្រាក់ អានុភាពប្រែប្រូល។ នៅដើមឆ្នាំមួយ អ្នកវិនិយោគ បានផ្ញើប្រាក់ចំនួន 20000\$ ទៅក្នុងធនាគារ។ ចំនួនប្រាក់ដែលកើនបាននៅក្នុងគណនីរបស់អ្នកវិនិយោគ គឺ 20596.21\$ ពាក់កណ្ដាលឆ្នាំ និង កើនបានចំនួន 21183.70\$ នៅចុងឆ្នាំ។

ដោយរយះពេលគិតជាឆ្នាំដោយចាប់ផ្ដើមនៅដើមឆ្នាំ ហើយសន្មត់ថាពេញមួយឆ្នាំការប្រាក់ អានុភាពប្រចាំឆ្នាំគឺជាអនុគមន៍លីនេអ៊ែរ។ ទាញឲ្យចេញជា កន្សោមមួយនៃការប្រាក់ អានុភាព ប្រចាំឆ្នាំ នៅក្នុងរយៈពេល t ដែល $(0 \le t \le 1)$ ហើយរកចំនូន ប្រាក់ដែលកើនបាន ក្នុងរយៈពេល បីត្រីមាស។

សំសាន់ ៣.៤. អ្នកខ្ចីម្នាក់ មានកាតព្វកិច្ចមួយ គឺត្រូវសងធនាគារវិញចំនូន 6280\$ ក្រោយយេ:ពេល ៤ ឆ្នាំ និងចំនូន 8460\$ ក្រោយរយៈពេល ៧ឆ្នាំ ហើយនិងចំនូន 7350\$ ក្រោយរយៈពេល ១៣ឆ្នាំ ។ដោយការតាំងចិត្តសងរបស់ខ្លួនអ្នកខ្ចីនោះមានជម្រើសពីរ

- 9. ត្រូវសងបំណុលរបស់គាត់ចំនួនបី ដោយធ្វើការបង់សងប្រចាំគ្រាចំនួន ៥ឆ្នាំពីឥឡូវនេះទៅ
- ២. ត្រូវសងចំនួនសរុប ដែលបានជំពាក់ (ពោលគឺ 22090\$) ចំនួនប្រាក់ទោលណាមួយនៅ ពេលវេលាអនាគតសមស្រប។

សំសាត់ ៣.៥. ចំពោះធនាគារមួយចំនួន ដែលមានប្រាក់បញ្ញើសម្រាប់រយ:ពេលពេញមួយឆ្នាំនោះ ការប្រាក់អានុភាពប្រចាំឆ្នាំគឺ 0.15 នៅដើមឆ្នាំ ហើយ 0.10 នៅពាក់កណ្ដាលឆ្នាំ និង 0.08 នៅចុងឆ្នាំ។ ចូររកចំនួនប្រាក់ដែលកើនបាននៅ ចុងឆ្នាំសម្រាប់ការផ្ញើរប្រាក់បញ្ញើរចំនួន 5000\$ នៅដើមឆ្នាំ ដោយឧបមាថាការប្រាក់អានុភាពប្រចាំឆ្នាំគឺ៖

- ១. អនុគមន៍ដឺក្រេទី2 នៃរយៈពេលពេញមួយឆ្នាំ
- ២. អនុគមន៍លីនេអ៊ែ នៃរយៈពេល នៅពាក់កណ្ដាលឆ្នាំដំបូង(ឆមាសទី១) ហើយនិងជាអនុគមន៍ លីនេអ៊ែនៃ រយៈពេល(ឆមាសទី២ នៃឆ្នាំដដែល)។

លំសាត់ ៣.៦. ការអនុវត្តនៃរូបមន្ត Stoodley

សន្មត់ថា $\delta(t)$ ដែលជាការប្រាក់អានុភាពប្រចាំឆ្នាំនៅគ្រា t (គិតជាឆ្នាំចាប់ពីពេលបច្ចុប្បន្ន) មានរាងដូចក្នុងរូបមន្ត Stoodley $\delta\left(t\right)=p+rac{s}{1+re^{st}}$ ដែល

$$p=0.058269,\;\;s=0.037041$$
 និង $rrac{1}{3}$

១. បង្ហាញថា
$$v\left(t\right)=\frac{1}{4}{{\left(1.06 \right)}^{-t}}+\frac{3}{4}{{\left(1.1 \right)}^{-t}}$$

- ២. អ្នកវិនិយោគម្នាក់ យល់ព្រម បង់ប្រាក់សងប្រចាំឆ្នាំចំនូន ១២ដង ដែលក្នុងម្ដងៗ បង់នូវទឹក ប្រាក់ចំនូន 600\$ ហើយ ការបង់លើកទី១ ចាប់ផ្ដើមពីពេលនេះទៅ។ ជាផលត្រឡប់វិញ អ្នកវិនិយោគនិងទទូលបាន
 - (ក) ចំនូនប្រាក់ដែលកើនបាន ពីការបង់ប្រាក់ចំនូន ១២ឆ្នាំ ចាប់ពីពេលឥឡូវនេះ។
 - (ខ) ឬក៏ជា ស៊េរីនៃការបង់ប្រាក់ប្រចាំឆ្នាំ ចំនូន១២ គ្រា សម្រាប់រយៈពេល១២ ឆ្នាំ ចាប់ពី ពេលឥឡូវនេះ។

ច្ចរកេប្រាក់សរុប និងចំនួនធនលាភផ្សេងទៀតដែលផ្តល់ឲ្យទៅអ្នកវិនិយោគ។

សំទារន់ ៣.៧. ការប្រាក់អានុភាព $\delta(t)$ ក្នុងមួយឆ្នាំ នៅរយៈពេល t (គិតជាឆ្នាំពីឥឡូវនេះ) ជាអនុ គមន៍លីនេអ៊ែនៃ សម្រាប់រយៈពេល m ឆ្នាំ ហើយក្រោយមកទៀតនិងមានគម្លៃថេរ តាមតម្លៃដែល វាមានរយៈពេល m ។

- 9. ដោយពិចារណា ក្នុងករណីដាច់ដោយឡែកពីគ្នានៅពេលដែល $n\leqslant m$ និង $n\geqslant m$ រួចទាញឲ្យចេញនូវកន្សោមមួយធៀប ទៅនិង $n,m,\delta(0),\delta(m)$ ចំពោះការកើនការ នៃ ប្រាក់ចំនួន1ពីគ្រា ០ ដល់កគ្រា m ។
- ២. ដោយដឹងថា m=16 , $\delta(0)=0.08$ និង $\delta(16)=0.048$ ចូរគណនា កន្សោមដែលរក ឃើញ នៅពេលដែល(i)n=15 និង(ii) n=40 ។
- ៣. ចូររកការប្រាក់អានុភាពដែលនឹងផ្តល់នូវ កំណើនដូចគ្នា(i)លើស១៥ឆ្នាំ និង(ii)លើស៤០ឆ្នាំ។

សំទារន់ ៣.៤. ឧបមាថា $\delta(t)$ ការប្រាក់អានុភាព ប្រចាំឆ្នាំ នៅរយៈពេល (គិតជាឆ្នាំ) ផ្ដល់ឱ្យដូច ខាងក្រោម

$$\delta(t) = \begin{cases} 0.08, 0 \le t < 5 \\ 0.06, 5 \le t < 10 \\ 0.04, t \ge 10 \end{cases}$$

- ១. ចូរទាញចេញជាកន្សោម v(t) ដែលជាតម្លៃបច្ចុប្បន្ននៃ 1 ដែលដល់កំណត់នៅរយៈពេល t ។
- ២. អ្នកវិនិយោគម្នាក់ធ្វើកិច្ចសន្យាមួយដែលគាត់នឹង បង់ប្រាក់បុព្វលាភប្រចាំឆ្នាំសម្រាប់រយៈ ពេល១៥ឆ្នាំ នៅ ដើមគ្រាទៅ ក្នុងគណនេយ្យមួយ ដែលនឹងកើន តាមអត្រាការប្រាក់អានុ ភាពខាងលើ ហើយប្រាក់បុព្វលាភនីមួយៗនឹងកើនឡើងបាន ចំនួន 600\$ ហើយប្រាក់បុព្វ លាភដំបូង(ទី១) នឹងត្រូវបង់នៅគ្រា០។ ជាផលត្រឡប់វិញ អ្នកវិនិយោគនេះនឹងទទួលបាន
 - (ក) ចំនូនប្រាក់កំណើននក្នុងគណនេយ្យសម្រាប់រយៈពេល ១ឆ្នាំក្រោយពីការបង់បុព្វលាភ ចុងក្រោយ
 - (ខ) ឬក៏ធនលាភកម្រិតមួយ ដែលត្រូវបង់ប្រចាំឆ្នាំ សម្រាប់រយៈពេល ៨ឆ្នាំដែលការបង់ លើកដំបូងធ្វើឡើងនៅកំឡុងពេល១ឆ្នាំក្រោយ ពេលដែលបង់ប្រាក់បុព្វលាភចុងក្រោយ។

ចូររកប្រាក់សរុបដែលបង់នៅជម្រើសទី(ក) ហើយនិងចំនូនប្រាក់នៃធនលាភប្រចាំឆ្នាំ ចំពោះ ជម្រើស(ខ) **លំសាន់ ៣.៩**. សន្មត់ថា ការប្រាក់អានុភាពប្រចាំឆ្នាំ នៅរយះពេល t គឺ $\delta(t)=ae^{-bt}$ (1)

១. ចូរបង្ហាញថាតម្លៃបច្ចុប្បន្ននៃ (1) ដែលដល់កំណត់នៅរយះពេល t គឺ

$$v(t) = e^{\frac{a}{b}\left(e^{-bt}-1\right)}$$

- ២. (ក) ដោយសន្មត់ថា ការប្រាក់អានុភាពប្រចាំឆ្នាំគឺមាន នៅក្នុងសមីការ(1) ហើយសន្មត់ថា វានឹងធ្លាក់ចុះ 50% សម្រាប់រយះពេល១០ឆ្នាំ ពីតម្លៃ 0.10 នៅគ្រា ០ ។ ចូររកតម្លៃបច្ចុ ប្បន្ននៃស៊េរីការបង់ប្រាក់ប្រចាំឆ្នាំចំនូន៤ គ្រា ហើយក្នុងមួយគ្រាបង់ 1000\$ ដែលការ បង់លើកទី១ ធ្វើនៅគ្រាទី១
 - (ខ) តើការប្រាក់អានុភាព ប្រចាំឆ្នាំថេរមាន តម្លៃចំនូនប៉ុន្មាន?ដែលធ្វើឱ្យ ស៊េរីនៃការបង់ ប្រាក់មានតម្លៃបច្ចុប្បន្នដូចគ្នា ដូចដែលបានឃើញនៅក្នុង(ក)។

សំទារត់ ៣.90. សន្មត់ថាការប្រាក់អានុភាពប្រចាំឆ្នាំនៅរយះពេល គឺ

១. ចូរបង្ហាញថាតម្លៃបច្ចុប្បន្ននៃ ១ ដល់កំណត់នៅរយះពេល t គឺ

$$v(t) = e^{\frac{-s}{r}} \times e^{(-rt)} \times e^{\frac{s}{r}e^{-rt}}$$

- ២. (ក) ចូរបង្ហាញថាតើតម្លៃបច្ចុប្បន្ននៃធនលាភមួយ ដែលបង់បន្តបន្ទាប់ជាប់គ្នាសម្រាប់រយះ ពេល n ឆ្នាំ តាមអត្រាបង់ប្រាក់ប្រចាំឆ្នាំថេរ \$1000គឺ $\frac{1000}{s}\left[1-e^{\frac{s}{r}\left(e^{-rn}-1\right)}
 ight]$
 - (ខ) ច្ចុរគណនាកន្សោមចុងក្រោយ នៅពេល $n=50, r=\log 1.01$ និង s=0.03

នារួតទុស្សនាង

៤.១. និយមន័យនៃអារបខ់ប្រាក់ប្រទាំង្រា

ර.ඉ.ඉ. බ්සාෂන්සා

និយមន័យ ៤.១.១. **ភារមខ់ច្រាអ់ម្រស់គ្រា** (Annuity) គឺ ជាការបង់ប្រាក់ (សង ឬដាក់សន្សំ) បន្តបន្ទាប់គ្នាជាទូទៅចំនូន ប្រាក់បង់ក្នុងគ្រានីមួយៗស្មើគ្នា ធ្វើឡើង ក្នុងរយ:ពេលថេរ ។

ឧនាមារស៍ ៤.១.១. ការបង់ប្រាក់ប្រចាំគ្រាមានចំពោះដូចជា៖

- ការបង់រំលោះថ្លៃទិញផ្ទះ
- ការបង់ថ្លៃជួលផ្ទះ
- ការបង់ប្រាក់ថ្លៃធានារ៉ាប់រង ។

៤.១.២. ម្រទេននៃការបច់ ប្រាក់ប្រចាំគ្រា

គេចែកការបង់ប្រាក់ប្រចាំគ្រា ជា **ពីរម្រនោននំៗ** គឺ **គារបខ់ប្រាក់ប្រចាំគ្រាសាមញ្ញ** (Simple Annuity) និង **គារប្រាក់ប្រចាំគ្រានូះនៅ** (General Annuity) ។

៤.១.២.១. ភាមេខំប្រាគ់ម្រទាំគ្រាសាមញ្ញ

និយមន័យ ៤.១.២. អារមខ់ច្រាអ់ម្រស់គ្រាសាមញ្ញ គឺ ជា Annuity ដែលមានថេរវេលានៃ ការបង់ប្រាក់ និងថេរវេលាធ្វើមូលធនកម្មការប្រាក់ស្មើគ្នា ។

គេចែក Simple Annuity ជា ទីរុទ្ធនេះនឹ

- Ordinary Annuity គឺការបង់ប្រាក់ធ្វើឡើង នៅចុងគ្រា
- Annuity due គឺការបង់ប្រាក់ធ្វើនៅដើមគ្រា

• Deferred Annuity គឺជា Simple Annuity ដែល អវត្តមានការបង់ ប្រាក់ចំនូន ដំណាក់ ដំបូងក្រោយមកទើបចាប់ផ្ដើមបង់ជាធម្មតាតាមបែប Ordinary Annuity វិញមានដ្យាក្រាម (diagram) ដូចខាងក្រោម៖

៤.១.២.២. អាមេខំទ្រាក់ទ្រសំគ្រាន្ទនៅ

និយមន័យ ៤.១.៣. អាមេខ៍ប្រាអ់ប្រទាំគ្រានូនៅ គឺ ជា Annuity ដែល ថេរវេលា នៃការបង់ ប្រាក់ និង ថេរវេលានៃការធ្វើមូលធនកម្មការប្រាក់មិនស្មើគ្នា ។

Annuity មួយចំនូនមានថេរវេលានៃ ការបង់ប្រាក់ និងរយៈពេលធ្វើមូលធនកម្មការ ប្រាក់ ស្មើគ្នាប៉ុន្តែចំនូន ប្រាក់បង់ក្នុងគ្រានីមួយៗមិនស្មើគ្នាករណីនេះក៏គេហៅថា General Annuity ដែរ។

៤.១.៣. និមិត្តសញ្ញា

យើងតាង

- ullet p ជាចំន្ទូនប្រាក់បង់ក្នុងដំណាក់ នីមួយៗ
- n ជាចំនួនដំណាក់កាលនៃការ ធ្វើមូលធនកម្មការប្រាក់
- J_m ជាអត្រាការប្រាក់ Nominal ក្នុងមួយឆ្នាំ
- i ជាអត្រាការប្រាក់សមាមាត្រ (អត្រាការប្រាក់ក្នុងមួយចន្លោះ ពេល)
- ullet FV ជាតម្លៃសរុប ឬតម្លៃអនាគត
- PV ជាតម្លៃបច្ចុប្បន្ន ។

៤.២. គារមខ្ស់ធ្លាគ់រួមទាំគ្រាសាមញ្ញ

ය. ක. 9. Ordinary Annuity

៤.២.១.១. តន្លែអនាគានៃ Ordinary Annuity

និយទន័យ ៤.២.១. Ordinary Annuity គឺជា Annuity សាមញ្ញ ដែលការបង់ប្រាក់ធ្វើឡើង នៅចុងដំណាក់កាល នៃការបង់ប្រាក់ ។

ដ្យាក្រាមនៃការបង់ប្រាក់៖

យើងសង្កេតឃើញថា តម្លៃអនាគតនៃការបង់ប្រាក់៖

លើកទី ១
$$FV_1=p(1+i)^{n-1}$$

លើកទី ២ $FV_2=p(1+i)^{n-2}$
លើកទី ៣ $FV_3=p(1+i)^{n-3}$
លើកទី n $FV_n=p(1+i)^0$

ដោយ
$$FV = FV_1 + FV_2 + \dots + FV_n$$
 យើឯបាន
$$FV = p(1+i)^{n-1} + p(1+i)^{n-2} + p(1+i)^{n-3} + \dots + p(1+i)^0$$

$$= p\left[1 + (1+i) + (1+i)^2 + \dots + (1+i)^{n-1}\right]$$

$$= p \times \frac{(1+i)^n - 1}{(1+i) - 1}$$

$$= p \times \frac{(1+i)^n - 1}{i}$$

នាំឲ្យរូបមន្តតម្លៃអនាគតនៃ Ordinary Annuity គឺ

$$FV = p \times \frac{(1+i)^n - 1}{i} \tag{6.9}$$

តាមតារាងហិរញ្ញវត្ថុ គេតាង
$$s_{\overline{n}|i}=\frac{(1+i)^n-1}{i}$$
ដូចនេះ
$$\overline{FV=p\times s_{\overline{n}|i}} \tag{6.b}$$

ឧនាទារស៍ ៤.២.១. បុរសម្នាក់ដាក់ប្រាក់សន្សំក្នុង អត្រាការប្រាក់ 5% ក្នុងមួយឆ្នាំ ដោយបង់ \$1200 ជារៀង រាល់ ឆ្នាំរយ:ពេល 5 ឆ្នាំ ។ តើប្រាក់អនាគតសរុបរបស់គាត់នឹងទទួលបានប៉ុន្មាន ?

ដំណោះស្រាយ

រកប្រាក់អនាគតសរុបរបស់គាត់នឹងទទួលបាន

េយីឯមាន
$$FV=\$1\,200$$
 , $n=5$, $i=0.05$ តាមរូបមន្ត (៤.២)
$$FV=p\times\frac{(1+i)^n-1}{i}$$
 យើងបាន
$$FV=\$1\,200\times\frac{(1+0.05)^5-1}{0.05}=\$6\,631$$

ដូចនេះ $oxedsymbol{0}$ ប្រាក់អនាគតសរុបរបស់គាត់នឹងទទួលបានគឺ FV=\$6631 ។

ឧនាទារស៍ ៤.២.២. ម្ចាស់សហគ្រាសបានធ្វើការវាយតម្លៃថា រោងចក្រនឹងត្រូវផ្លាស់ប្តូរ គ្រឿង បន្លាស់ ដែលមានតម្លៃ \$80000 ក្នុងរយៈពេល 10 ឆ្នាំទៀតគិតពី ឥឡូវនេះទៅ ៗ តើគេត្រូវដាក់ សន្សំជារៀងរាល់ ឆ្នាំនូវទឹក ប្រាក់ចំនួន ប៉ុន្មាន បើធនាគារផ្តល់ការប្រាក់តាម អត្រា 8% ធ្វើមូល ធនកម្មប្រចាំឆ្នាំ ?

ಜೀಣು:ಹಿರಿಕಾ

រកចំនួនប្រាក់ដែលម្ចាស់សហគ្រាសត្រូវដាក់ សន្សំរៀងរាល់ឆ្នាំ យើងមាន $FV=\$80\,000$, n=10 , i=0.08 តាមរូបមន្ត(៤.២) $FV=p imes rac{(1+i)^n-1}{i}$

យើងបាន

$$p = \frac{FV \times i}{(1+i)^n - 1} = \frac{\$80\,000 \times 0.08}{(1+0.08)^{10} - 1} = \$5\,522.36$$

ដូចនេះ ម្ចាស់សហគ្រាសត្រូវដាក់ សន្សំរៀងរាល់ឆ្នាំនូវទឹកប្រាក់ \$5 522.36 ។

៤.២.១.២. ឝម្លែមឡូម្បត្តនៃ Ordinary Annuity

និយមន័យ ៤.២.២. តម្លៃបច្ចុប្បន្ននៃ Ordinary Annuity គឺជាផលបូកតម្លៃបច្ចុប្បន្ន នៃប្រាក់ បង់ក្នុងដំណាក់នីមួយៗ ទាំងអស់។

ដ្យាក្រាមនៃការបង់ប្រាក់៖

យើងសង្កេតឃើញថា តម្លៃបច្ចុប្បន្ននៃការបង់ប្រាក់៖

លើកទី ១
$$PV_1 = p(1+i)^{-1}$$

លើកទី ២ $PV_2 = p(1+i)^{-2}$
លើកទី ៣ $PV_3 = p(1+i)^{-3}$

លើកទី៣ $PV_n = p(1+i)^{-n}$

នាំឲ្យរូបមន្តតម្លៃបច្ចុប្បន្ននៃ Ordinary Annuity គឺ

$$PV = p \times \frac{1 - (1+i)^{-n}}{i} \tag{G.m}$$

តាមតារាងហិរញ្ញវត្ថុ គេតាង $a_{\,\overline{n}|\,i}=rac{1-\left(1+i
ight)^{-n}}{i}$ ដូចនេះ

$$PV = p \times a_{\overline{n}|i}$$
 (៥.៥)

ឧនាមារស៍ ៤.២.៣. ចូររកតម្លៃបច្ចុប្បន្ននៃការដាក់ សន្សំទឹកប្រាក់ចំនួន \$380 ថេរនៅរៀងរាល់ ចុងខែសម្រាប់រយៈពេល 3 ឆ្នាំ អត្រាការប្រាក់ប្រចាំឆ្នាំ 12% ធ្វើមូលធនកម្មប្រចាំខែ ។

ជំនោះស្រួយ

យើងមាន
$$p=\$380$$
 , $i=\frac{0.12}{12}=0.01$, $n=3\times 12=36$ តាមរូបមន្ត(៤.៥) $PV=p\times \frac{1-(1+i)^{-n}}{i}$ យើងបាន

$$PV = $380 \times \frac{1 - (1 + 0.01)^{-36}}{0.01} = $11440.85$$

ដូចនេះ PV = \$11440.85 ។

ឧនាទារស៍ ៤.២.៤. ទូរទស្សន៍ពណ៌ 36 inches មួយគ្រឿងមានតម្លៃ \$780 ត្រូវបានទិញដោយ អតិថិជនម្នាក់ ដោយបង់ប្រាក់ដល់ដៃចំនូន \$80 និង បង់ប្រចាំខែនូវ ទឹកប្រាក់ថេរ សម្រាប់រយៈ ពេល 2 ឆ្នាំ ។ ចូររកចំនូនប្រាក់ដែល ត្រូវបង់ ប្រចាំខែនីមួយៗ បើអ្នកលក់គិតការប្រាក់ 15% ក្នុងមួយឆ្នាំ ធ្វើ មូលធន កម្ម ប្រចាំខែ ហើយការបង់ប្រាក់ លើកទី 1 ធ្វើឡើងនៅមួយខែក្រោយ បន្ទាប់ពីថ្ងៃបង់លុយដល់ដៃ ។

ಜೀಣಾ:ಕ್ರಾಟ

រកចំនូនប្រាក់ដែលអតិថិជន ត្រូវបង់ក្នុងខែនីមួយៗ

យើងមាន
$$PV=\$780-\$80=\$700$$
 , $i=\frac{0.15}{12}=0.0125$, $n=2\times 12=24$ តាមរូបមន្ត(៤.៥) $PV=p\times\frac{1-(1+i)^{-n}}{i}$ យើងបាន

$$p = \frac{PV \times i}{1 - (1 + i)^{-n}} = \frac{\$700 \times 0.0125}{1 - (1 + 0.0125)^{-24}} = \$33.94$$

ដូចនេះ ចំនួនប្រាក់ដែលអតិថិជន ត្រូវបង់ក្នុងខែនីមួយៗគឺ \$33.94

ය. ය. Annuity Due

ය. ය. ව. Annuity Due

និយទន័យ ៤.២.៣. Annuity due គឺជា Annuity សាមញ្ញ ដែលការបង់ប្រាក់ធ្វើនៅខាងដើម ដំណាក់កាលនៃការបង់ ប្រាក់ ។

ដ្យាក្រាមនៃការបង់ប្រាក់៖

យើងសង្កេតឃើញថា តម្លៃអនាគតនៃការបង់ប្រាក់៖

លើកទី ១
$$FV_1=p(1+i)^n$$

លើកទី ២ $FV_2=p(1+i)^{n-1}$
លើកទី ៣ $FV_3=p(1+i)^{n-2}$
.....

ដូចនេះ រូបមន្តតម្លៃអនាគតនៃ Annuity Due គឺ

$$FV = p\left[\frac{(1+i)^{n+1} - 1}{i} - 1\right]$$
 (៥.៦)

$$\underline{\mathbf{y}} \qquad FV = p \times s_{\overline{n}|i} \times (1+i) \tag{G.N}$$

ឧនាទារស៍ ៤.២.៥. លោកសម្បត្តិ បានដាក់ប្រាក់ ក្នុង គណនីសន្សំ ចំនូន \$200 នៅ រៀងរាល់ ដើមខែ សម្រាប់ រយៈពេល 5 ឆ្នាំ ។ តើក្នុងគណនីនោះមានប្រាក់ ចំនូនប៉ុន្មាននៅដំណាច់ឆ្នាំ ទី 5 ? បើអត្រាការប្រាក់ប្រចាំ ឆ្នាំ 10.5% ធ្វើមូលធនកម្មប្រចាំខែ ។

ដំណោះស្រាយ

រកចំនួនទឹកប្រាក់ក្នុងគណនីលោកសម្បត្តិនៅដំណាច់ឆ្នាំទី 5

យើងមាន
$$p=\$200,\ i=rac{0.105}{12}=0.00875$$
 តាមរូបមន្ត(៤.៦) $FV=p\left[rac{(1+i)^{n+1}-1}{i}-1
ight]$ យើងបាន

 $FV = \$200 \times \left[\frac{(1 + 0.00875)^{60+1} - 1}{0.00875} - 1 \right]$

= \$15831.10

ដូចនេះ នៅដំណាច់ឆ្នាំទី 5 ក្នុងគណនីលោកសម្បត្តិ មានប្រាក់ចំនួន\$15831.10 ។

ឧនាទរស៍ ៤.២.៦. គូស្វាមីភរិយាមានគម្រោង ទិញរថយន្តមួយដែលមានតម្លៃ \$10000 នៅថ្ងៃទី31 ខែធ្នូ ឆ្នាំ 1999។ ដើម្បីសម្រេចនូវគម្រោងការណ៍នេះ អ្នកទាំងពីរដាក់ប្រាក់ស្មើគ្នាជារៀង រាល់ឆ្នាំក្នុងគណនី របស់ខ្លួន ដោយ ចាប់អនុវត្ត ពីថ្ងៃទី 1 ខែមករា ឆ្នាំ 1990 ។ បើអត្រាការប្រាក់ ប្រចាំឆ្នាំ 12% ធ្វើមូលធនកម្មប្រចាំឆ្នាំ តើចំនួនប្រាក់ដែល បង់ក្នុង មួយឆ្នាំៗមានប៉ុន្មាន ?

ಜೀಣಾ: ಕ್ಷಾಣ

រកប្រាក់ដែលត្រូវបង់ក្នុងមួយ ឆ្នាំៗ

យើងមាន
$$FV = \$10000 \; , \; \; i = 0.12 \; , \; \; n = 10$$

តាមរូបមន្ត(៤.៦)
$$FV = p \times s_{\overline{n}|i} \times (1+i)$$

យើងបាន

$$p = \frac{FV}{s_{\,\overline{n}|\,i} \times (1+i)} = \frac{\$10\,000}{s_{\,\overline{10}\,|\,0.12} \times (1+0.12)}$$

ជំពូកទី ៤. ការបង់ប្រាក់ប្រចាំគ្រា ៤.២. ការបង់ប្រាក់ប្រចាំគ្រាសាមញ្ញ ដោយ
$$s_{\overline{10}\mid 0.12} = \frac{(1+0.12)^{10}-1}{0.12} = 17.5487$$

នាំឱ្យ
$$p = \frac{\$10\,000}{17.5487\times 1.12} = \$508.79$$

ប្រាក់ដែលត្រូវបង់ក្នុងមួយ ឆ្នាំៗគឺ \$508.79 :ឧរបដ្ឋ ៗ

៤.២.២.២. នម្លែមថ្ងូម្បត្តទិន Annuities Due

និយទន័យ ៤.២.៤. តម្លៃចច្ចុច្បន្ននៃ Annuity គឺជាផលបូកតម្លៃបច្ចុប្បន្ន នៃចំនួនប្រាក់ក្នុង ដំណាក់កាល នីមួយៗ ទាំងអស់ ។

តាមដ្យាក្រាមនៅក្នុងចំណុច "២.១" យើងសង្កេតឃើញថា តម្លៃបច្ចុប្បន្ននៃការបង់ប្រាក់៖

លើកទី ១
$$PV_1 = p(1+i)^0$$

លើកទី ២ $PV_2 = p(1+i)^{-1}$
លើកទី ៣ $PV_3 = p(1+i)^{-2}$

លើកទី n
$$PV_n = p(1+i)^{-n+1}$$

ដោយ
$$PV = PV_1 + PV_2 + PV_3 + \dots + PV_n$$
 ឃើងបាន
$$PV = p(1+i)^0 + p(1+i)^{-1} + p(1+i)^{-2} + \dots + p(1+i)^{-n+1}$$

$$= p \times (1+i)^{-n+1} \left[1 + (1+i) + (1+i)^2 + \dots + (1+i)^{n-1} \right]$$

$$= p \times (1+i)^{-n+1} \times \frac{(1+i)^n - 1}{(1+i) - 1}$$

$$= p \times \left[1 + \frac{1 - (1+i)^{-n+1}}{i} \right]$$

ដូចនេះ រូបមន្តតម្លៃអនាគតនៃ Annuity Due គឺ

$$PV = p \times \left[1 + \frac{1 - \left(1 + i\right)^{-n+1}}{i}\right]$$
 (៥.ជ)

ឬ
$$PV = p \times a_{\overline{n}|i} \times (1+i)$$
 (៤.៩)

ឧនាមារស៍ ៤.២.៧. តើទឹកប្រាក់ចំនូនប៉ុន្មាន ដែលត្រូវដាក់សន្សំនៅពេល ឥឡូវនេះតាមអត្រា ឆ្នាំ 12% ធ្វើមូលធនកម្មប្រចាំត្រីមាស ដើម្បីឱ្យយើងអាចដក \$1000 នៅ រៀងរាល់ដើម ត្រីមាស សម្រាប់រយៈពេល 2 ឆ្នាំ ។

ដំណោះស្រាយ

រកចំនួនទឹកប្រាក់ដែលត្រូវដាក់ សន្សំនាពេលឥឡូវនេះ

យើងមាន
$$p=\$1000,~i=\frac{0.12}{4}=0.03,~n=2\times 4=8$$
 តាមរូបមន្ត(៤.៨)

$$PV = p \times \left[1 + \frac{1 - (1 + i)^{-n+1}}{i}\right]$$

យើងបាន

$$PV = \$1\,000 \times \left[1 + \frac{1 - (1 + 0.03)^{-8+1}}{0.03}\right] = \$7\,230.28$$

ដូចនេះ ទឹកប្រាក់ដែលត្រូវដាក់ សន្សំនាពេលឥឡូវនេះគឺ \$7230.28 ។

ឧនាទារស៍ ៤.២.៤. ថេយន្តមួយគ្រឿង លក់តម្លៃ \$9550 ។ លោកសាន បានទិញវាដោយបង់ ប្រចាំខែ ចំនូន 18 លើកស្មើៗគ្នា លើកទី 1 គឺចាប់ផ្ដើមបង់នៅថ្ងៃទិញ ។ បើអត្រាការប្រាក់ 18% ក្នុងមួយឆ្នាំធ្វើមូលធនកម្ម ប្រចាំខែ តើចំនួនប្រាក់ដែលបង់ក្នុងមួយខែៗមានប៉ុន្មាន ?

ជំណោះស្រួយ

រកប្រាក់ដែលបង់ក្នុងមួយខែៗ

យើងមាន
$$PV=\$9550,~i=rac{0.18}{12}=0.015,~n=18$$
 តាមរូបមន្ត(៤.៨) $PV=p imes a_{\overline{n}|i} imes (1+i)$ យើងបាន

$$p = \frac{PV}{a_{\,\overline{n}|\,i} \times (1+i)} = \frac{\$9\,550}{a_{\,\overline{18}|\,0.015} \times (1+0.015)}$$

ដោយ
$$a_{\overline{18}|0.015} = \frac{1-\left(1+0.015\right)^{-18}}{0.015} = 15.6726$$
 នាំឱ្យ
$$p = \frac{\$9\,550}{15.6726\times 1.015} = \$600.34$$
 ដូចនេះ ប្រាក់ដែលបង់ក្នុងមួយខែ១គឺ $\$600.34$ ។

ය. ය. Deferred Annuities

និយមន័យ ៤.២.៥. $Deferred\ Annuity$ គឺជា $Ordinary\ Annuity$ ដែលមានចំនូន k ដំណាក់ ដំបូងទំនេរគ្មានការបង់ ប្រាក់ ហើយចាប់ផ្ដើមបង់ប្រាក់ពីគ្រាទីk+1 ទៅ ។

យើងតាង $Simple\ deferred\ annuity$ ដោយដ្យាក្រាមខាងក្រោម ៖

តាមដ្យាក្រាមនេះ យើងទាញបានរូបមន្តតម្លៃ បច្ចុប្បន្ននៃ $deferred\ Annuity$ គឺ

$$PV = p \left[\frac{1 - (1+i)^{-n}}{i} \right] (1+i)^{-k}$$
 (6.90)

ឬ
$$PV = p \times a_{\overline{n}|i} \times (1+i)^{-k}$$
 (៤.១១)

ឧនាសរស៍ ៤.២.៩. ចូររកតម្លៃ Annuity នៅថ្ងៃទី 10 ខែមករា ឆ្នាំ1995 នៃការបង់ប្រាក់ \$100 ប្រចាំត្រីមាស សម្រាប់ រយៈពេល 10 ឆ្នាំ ។ បើការបង់ប្រាក់លើកទី 1 ធ្វើនៅថ្ងៃទី 01 ខែមករា ឆ្នាំ 1997 អត្រាការប្រាក់ប្រចាំឆ្នាំ 7% ធ្វើមូលធន កម្មប្រចាំត្រីមាស ។

ដំណោះស្រួយ

ដើម្បីងាយស្រួលយើងគូស ដ្យាក្រាមនៃការបង់ប្រាក់ ដូចខាងក្រោម ៖

តាមដ្យាក្រាមយើងមាន p=\$100 , $i=\frac{0.07}{4}=0.0175,\ n=40,\ k=7$ តាមរូបមន្ត (៤.១០)

$$PV = p \left[\frac{1 - (1+i)^{-n}}{i} \right] (1+i)^{-k}$$

យើងបាន

$$PV = \$100 \times \left[\frac{1 - (1 + 0.0175)^{-40}}{0.0175} \right] \times (1 + 0.0175)^{-7} = \$2532.43$$

ដូចនេះ តម្លៃបច្ចុប្បន្ននៃ Deferred Annuity នេះគឺ\$2532.43 ។

ឧនាមារស៍ ៤.២.១០. ទឹកប្រាក់ចំនូន \$2500 ត្រូវបានខ្ចីដោយបុរសម្នាក់ហើយតាមកិច្ចសន្យា គាត់ត្រូវសងគេវិញ ជារៀងរាល់ខែ នូវទឹកប្រាក់ស្មើៗគ្នាចំនូន 12 លើក ។ ការសងលើកទី 1 ចាប់ផ្ដើម នៅ 3 ខែក្រោយ បន្ទាប់ ពីថ្ងៃខ្ចី ។ បើគេគិតការប្រាក់តាមអត្រា ប្រចាំឆ្នាំ 15% ធ្វើមូល ធនកម្មប្រចាំខែ ។ ចូររកទឹកប្រាក់ដែលត្រូវសង ក្នុងខែ នីមួយៗ ។

ជំណោះស្រាយ

រកប្រាក់ដែលត្រូវសងក្នុងខែ នីមួយៗ

យើងមាន
$$p=\$2500,\ i=rac{0.15}{12}=0.0125,\ n=12,\ k=2$$
តាមរូបមន្ត (៤.១០)

$$PV = p \left[\frac{1 - (1+i)^{-n}}{i} \right] (1+i)^{-k}$$

យើងបាន

$$p = \frac{PV \times (1+i)^k}{\frac{1 - (1+i)^{-n}}{i}} = \frac{\$2500 \times (1 + 0.0125)^2}{\frac{1 - (1 + 0.0125)^{-12}}{0.0125}} = \$231.32$$

:ឧរខាដ្ឋ

ប្រាក់ដែលត្រូវសងក្នុងខែ នីមួយៗគឺ \$231.32

៤.២.៤. អារុឌលានាទំនួនគ្រា និទអគ្រាអារុច្រាអ់

៤.២.៤.១. ಹಾಣದಾಣಕ್ಕಾಣ್ಯಕ್ಷಾಣ

យោងតាមរូបមន្ត(៤.២) $FV=p imes rac{(1+i)^n-1}{i}$ និង(៤.៥) $PV=p imes rac{1-(1+i)^{-n}}{i}$ យើងអាចទាញរកចំនួនគ្រា n ដោយប្រើ logarithms ។

ជាធម្មតាគេឱ្យ FV (ឬ PV) ,p និង i ហើយយើងត្រូវរក n ដែលក្នុងករណីខ្លះ n មិនមែន ជាចំនូនគត់ ។ វិធីសាស្ត្រដែលយើងតែង តែប្រើប្រាស់ក្នុងការអនុវត្ត ជាក់ស្តែងសម្រាប់ករណី n មិនមែនជាចំនូនគត់គឺ៖

- ក. ប្រាក់បង់ចុងក្រោយបង្អស់ ត្រូវបូកបន្ថែមនូវទឹកប្រាក់ មួយចំនួន ដែលធ្វើឱ្យការបង់ ប្រាក់ នោះសមមូលទៅនឹង FV (ឬPV) ដែលបានកំណត់ឱ្យ ។
- ខ. ចំនូនប្រាក់ ដែលត្រូវបង់បន្ថែម ដើម្បី ឱ្យទឹកប្រាក់ ដែលបាន បង់ សមមូល នឹង FV (ឬ PV) ត្រូវបង់នៅ ដំណាក់កាល មួយបន្ទាប់ពីបង់ពេញចុង ក្រោយ ។

ឧនាទាះស៍ ៤.២.១១. មូលនិធិចំនួន \$8000ទទួលបានពីការដាក់សន្សំចំនួន \$200 ប្រចាំឆមាស។ បើមូលនិធិ នេះទទួលការប្រាក់ តាមអត្រា $J_2=12\%$ ចូររកចំនួនគ្រា ដែលត្រូវបង់ ពេញ និង រកចំនួនប្រាក់ដែលបង់ បន្ថែម ចុងក្រោយ។

ಜೀಚಾ:ಕ್ರಾಟ

យើងមាន
$$FV=\$8000,\ p=\$200,\ i=\frac{J_2}{2}=\frac{0.12}{2}=0.06$$
 តាមរូបមន្ត(៤.២) $FV=p imes\frac{(1+i)^n-1}{i}$ នោះ $(1+i)^n=\frac{FV imes i}{p}+1$ នាំឱ្យ $n=\frac{\ln\left(\frac{PV imes i}{p}+1\right)}{\ln\left(1+i\right)}$ យើងបាន

$$n = \frac{\ln\left(\frac{\$8\,000 \times 0.06}{\$200} + 1\right)}{\ln\left(1 + 0.06\right)} = 21.00220291$$

n=21.00220291 បានន័យថាការដាក់សន្សំពេញតម្លៃ \$200 មានចំនួន 21 លើក ។ ប៉ុន្តែទឹក ប្រាក់សរុបនេះ ពុំសមមូលទៅនឹង Maturity Value \$8000 ឡើយ ពោលគឺ គេត្រូវបូកបន្ថែម នូវ ទឹកប្រាក់មួយចំនួនទៀត ដើម្បីឱ្យ តម្លៃអនាគតរបស់វា ស្មើនឹង \$8000។ វិធីសាស្ត្រក្នុងការបូក បន្ថែមគឺយើងត្រូវអនុវត្តតាមវិធីទាំង ពីរខាងលើ ។

• ទិធាននី១៖

ទឹកប្រាក់បន្ថែម Y យើងបង់នៅចុងគ្រាទី 21ដូចបង្ហាញក្នុងដ្យាក្រាម

យើងបាន
$$\$200 \times s_{\overline{21}_{0.06}} + X = \$8\,000$$
 នាំឱ្យ

$$X = \$8\,000 - \$200 \times s_{\boxed{21}|0.06} = \$8\,000 - \$200 \times \frac{\left(1 + 0.06\right)^{21} - 1}{0.06} = \$1.45$$

ដូចនេះ

ប្រាក់ដែលត្រូវបង់បន្ថែមនៅ ដំណាក់កាលទី 21 ជាមួយគ្នានឹងការបង់ពេញ \$200 គឺ \$1.45

මෙනාවේක මෙ

ទឹកប្រាក់បន្ថែម Y យើងបង់នៅចុងគ្រាទី 22 ដូចបង្ហាញក្នុងដ្យាក្រាម

យើងបាន \$200 × $s_{\overline{21}|_{0.06}}$ × (1+0.06)+Y= \$8 000 នាំឱ្យ

$$Y = \$8\,000 - \$200 \times \frac{(1+0.06)^{21} - 1}{0.06} \times (1+0.06) = -\$478.46 < 0$$

ដោយ Y < 0 បញ្ជាក់ឱ្យឃើញថា មិនត្រូវការបង់ប្រាក់បន្ថែម នៅចុងគ្រាទី 22 ទេ ព្រោះ គ្រាន់តែការប្រាក់សម្រាប់ មួយគ្រាចុងក្រោយនេះត្រូវលើសបាល \$478.46 ទៅហើយ ។

ឧនាទារសំ ៤.២.១២. បំណុល \$4000 គិត ការប្រាក់ តាមអត្រា $J_2=12\%$ ។ តាមកិច្ច សន្យាត្រូវសងវិញ ប្រចាំឆមាសនូវទឹកប្រាក់ \$400 ចូររកចំនួនគ្រា ដែលត្រូវបង់ ប្រាក់ពេញ និង រកចំនួនប្រាក់ ដែលត្រូវបង់ ក្រោយបង្អស់ ។

ជំណោះស្រាយ

$$(1+i)^{-n} = 1 - \frac{PV \times i}{p}$$

នាំឱ្យ

$$n = -\frac{\ln\left(1 - \frac{PV \times i}{p}\right)}{\ln\left(1 + i\right)}$$

យើងបាន

$$n = -\frac{\ln\left(1 - \frac{\$4000 \times 0.06}{\$400}\right)}{\ln\left(1 + 0.06\right)} = 15.72520854$$

ដូចនេះ ប្រាក់បង់ពេញ \$400 ក្នុងមួយគ្រា មានចំនួន 15 លើក ហើយចំនួនប្រាក់ដែលត្រូវ បង់នៅ គ្រាចុងក្រោយ យើងអនុវត្តតាមវិធានទី២ គឺត្រូវបង់ បន្ថែម Y នៅគ្រាទី 16 ទៀត ដូច បង្ហាញតាម ដ្យាក្រាមខាងក្រោម៖

យើងបាន
$$\$400 imes a_{\overline{15}|_{0.06}} + Y imes (1+0.06)^{-16} = \$4\,000$$
 នាំឱ្យ

$$Y = (1 + 0.06)^{16} \times \left(\$4000 - \$400 \times a_{\overline{15}|0.06}\right)$$
$$= (1.06)^{16} \times \left[\$4000 - \$400 \times \frac{1 - (1.06)^{-15}}{0.06}\right]$$
$$= \$292.39$$

សង្កេត៖ យោងតាមឧទាហរណ៍(៤.២.១១) និង (៤.២.១២) យើងគូរកត់សំគាល់ថា បើចំនូន ខាងក្រោយក្បៀស មានទំហំតូចគប្បីអនុវត្តតាមវិធានទី១ តែបើមានទំហំធំគប្បីប្រើវិធាន ទី២។

ಕ್ಷಣ್ಣ ಚಟ್ಟ ಕಟ್ಟು ಕಟ್ಟಟ್ಟು ಕಟ್ಟಟ್ಟು ಕಟ್ಟು ಕಟ್ಟು

យើងគូរសំគាល់ថា ករណី n ថេរ $s_{\overline{n}|i}$ កើនកាលណា i កើន ហើយ $a_{\overline{n}|i}$ ចុះកាលណា i កើន ។ យើងសន្មត យកការអនុវត្ត Interpolation រវាង Nominal rate ពីរ ដែលមានគំលាត 1% និងប្រើកត្តា $a_{\overline{n}|i}$ ឬ $a_{\overline{n}|i}$ ដោយសន្មត យកខាងក្រោយ ចុចក្បៀសចំនូន4 ខ្ទង់យ៉ាងតិច ។

នៅក្នុង វិស័យ Business ជាច្រើន អត្រាជាក់លាក់ (True interest rate) លាក់កំបាំង ដោយ បង្ហាញ នូវ លក្ខខណ្ឌ ផ្សេងៗ ។ ដើម្បីសម្រេចទៅលើសំណើ ផ្សេងៗ (ការវិនិយោគ) គឺយើងចាំ បាច់ត្រូវដឹង អំពីអត្រាការប្រាក់ ពិតប្រាកដរបស់វានីមួយៗ ។

នៅពេលដែលគេប្រាប់ លក្ខខណ្ឌផ្សេងៗ ហើយសូររក i ឬ J_m យើងអាចគណនារកតម្លៃ ប្រហែលតាម Linear Interpolation វិធីនេះមានលក្ខណៈ សុក្រឹតគ្រប់គ្រាន់សម្រាប់ ការអនុវត្ត ជាក់ស្តែង ។

រូបមន្ត $FV=p imes rac{(1+i)^n-1}{i}$ និង $PV=p imes rac{1-(1+i)^{-n}}{i}$ គឺជារូបមន្តដែលអនុវត្ត ញឹកញាប់ជាង គេក្នុងការគណនា រកអត្រាការប្រាក់ ។

ដើម្បីទទួលបានតម្លៃចាប់ផ្ដើម ឬអត្រាតេស្ដ (a Starting Value) សម្រាប់ដោះស្រាយ

 $s_{\overline{n}|i}=k$ តាម Linear Interpolation យើងអាចប្រើរូបមន្ត $i=rac{\left(rac{k}{n}
ight)^2-1}{k}$ ។

ដើម្បីឱ្យបានតម្លៃចាប់ផ្ដើម (a Starting Value) សម្រាប់ដោះស្រាយ $a_{\overline{n}|i}=k$ តាម linear interpolation យើងអាចប្រើរូបមន្ត $i=\frac{1-\left(\frac{k}{n}\right)^2}{k}$ ។

ឧនាមារស៍ ៤.២.១៣. ចូរ រកអត្រាការប្រាក់ J_2 នៃ Annuity ដែល មានការបង់ប្រាក់ \$500 ប្រចាំ ឆមាសហើយទទួលបានតម្លៃអនាគត \$6000 ក្នុងរយ:ពេល 5 ឆ្នាំទៀត ។

ជុំឈោះស្រាល

រកអត្រាចំណូលនៃការបង់ប្រាក់

យើងមាន $FV=\$6000,\ p=\$500,\ n=10$ នោះ

$$500 \times s_{\,\overline{10}|\,i} = \$6\,000, \ \ s_{\,\overline{10}|\,i} = 12$$

យើងត្រូវឱ្យ i_1 ដែល $s_{\overline{10}|i_1}>12$ និង i_2 ដែល $s_{\overline{10}|i_2}<12$ ដើម្បីដោះស្រាយតាមតារាង interpolation យើងត្រូវរកតម្លៃចាប់ផ្ដើម

$$i = \frac{\left(\frac{12}{10}\right)^2 - 1}{12} = 0.0366667$$

$$sn: J_2 = 2i = 7.33\%$$

បើ
$$J_2=7\%$$
 នោះ $s_{\overline{10}\mid\,0.035}=11.7314$

បើ
$$J_2 = 8\%$$
 នោះ $s_{\overline{10}|_{0.04}} = 12.0061$

	$S_{\overline{10} i}$	J_2	
0.274	$7 \left\{ \begin{array}{c} 0.2686 \left\{ \begin{array}{c} 11.7314 \\ 12.0000 \end{array} \right. \\ 12.0061 \end{array} \right.$	$ \left.\begin{array}{c} 7\% \\ J_2\% \\ 8\% \end{array}\right\} x $ $ \left.\begin{array}{c} 1\% \\ 1\% \\ \end{array}\right\} $	

$$\frac{x}{1\%} = \frac{0.2686}{0.2747}$$
 នោះ $x = 0.98\%$

$$J_2 = 7\% + x = 7\% + 0.98\% = 7.98\%$$

ដូចនេះ អត្រាចំណូលនៃការបង់ ប្រាក់ខាងលើគឺ $J_2=7.98\%$ ជាទូទៅបើយើងមានរូបមន្ត

$$FV = p \times s_{\overline{n}|i} \quad (\underline{\mathfrak{V}} \ PV = p \times a_{\overline{n}|i})$$

$$FV = p \times \frac{(1+i)^n - 1}{i} \quad (\underline{\mathfrak{V}} \ PV = p \times \frac{1 - (1+i)^{-n}}{i})$$

$$FV - p \times \frac{(1+i)^n - 1}{i} = 0 \quad (\underline{\mathfrak{V}} \ PV - p \times \frac{1 - (1+i)^{-n}}{i} = 0)$$

យើងតាង

$$f(i) = FV - p \times \frac{(1+i)^n - 1}{i} = 0$$
 ($y f(i) = PV - p \times \frac{1 - (1+i)^{-n}}{i} = 0$)

មុននឹងឱ្យតម្លៃ i_1 និង i_2 យើងត្រូវគណនារកតម្លៃចាប់ ផ្ដើម ឬអត្រាតេស្តតាមរូបមន្ត $i=rac{\left(rac{k}{n}
ight)^2-1}{k}$ ឬ $i=rac{1-\left(rac{k}{n}
ight)^2}{k}$ សិន ។

ឧនាទារស៍ ៤.២.១៤. បើអត្រាចាប់ផ្ដើម i=7.3332% យើងត្រូវយក $i_1=7\%,\ i_2=8\%$ (ជូនកាល $i_2=6\%$) ដោយលៃយ៉ាងណាឱ្យ $f\left(i_1\right)<0$ (ឬ $f\left(i_1\right)>0$) និង $f\left(i_2\right)>0$ (ឬ $f\left(i_2\right)<0$) ។

បើយើងឱ្យ i_1 ដែល $f\left(i_1\right)>0$ និង i_2 ដែល $f\left(i_2\right)<0$ តារាង Interpolation

$$f(i) \qquad J_m, \quad \left(i = \frac{j_m}{m}\right)$$

$$f(i_2) - f(i_1) \left\{ \begin{array}{cc} -f(i_1) \left\{ \begin{array}{cc} f(i_1) & J_m^{(1)} \\ 0 & J_m \end{array} \right\} J_m - J_m^{(1)} \\ J_m^{(2)} & J_m^{(2)} \end{array} \right\} J_m^{(2)} - J_m^{(1)}$$

តាមវិធានសមាមាត្រ គេអាចទាញបាន $rac{J_m-J_m^{(1)}}{J_m^{(2)}-J_m^{(1)}}=-rac{f\left(i_1
ight)}{f\left(i_2
ight)-f\left(i_1
ight)}$ នោះ

$$J_{m}=J_{m}^{(1)}-f\left(i_{1}
ight) imesrac{J_{m}^{(2)}-J_{m}^{(1)}}{f\left(i_{2}
ight)-f\left(i_{1}
ight)}$$
 (6.90)

ឧនាទារស៍ ៤.២.១៥. ឧបមាថាធនាគារបានឱ្យ លោកធីខ្ចីប្រាក់ \$10000 ដោយមិនបានសង ប្រាក់អ្វីទាំងអស់ក្នុងរយៈពេល 6 ខែដំបូង ហើយបន្ទាប់មកសង \$600 ក្នុងមួយខែ សម្រាប់ រយៈ ពេល 1 ឆ្នាំ និង \$500 ក្នុងមួយខែសម្រាប់រយៈពេល 1 ឆ្នាំ បន្ទាប់ ។ តើអត្រាការប្រាក់សមមូលប្រចាំ ឆ្នាំដែលគិត លើកម្វីនេះស្មើប៉ុន្មាន ?

င်းအား္ပနာဗာ

យើងអាចតាងលំហូរសាច់ ប្រាក់នៃកម្ចីនេះ ដោយដ្យាក្រាមខាងក្រោម៖

យើងសង្កេតឃើញថាការបង់ប្រាក់ប្រចាំគ្រានេះផ្សំឡើងពី Deferred Annuity ពីរដែលមាន ទឹក ប្រាក់ត្រូវបង់ ខុស គ្នា និងចន្លោះអវត្តមាននៃការបង់ ប្រាក់ខុសគ្នា ។ យើងអាចសរសេរសង្ខេបបាន ដូចខាងក្រោម៖

$$PV = \$600 \times \frac{1 - (1+i)^{-12}}{i} \times (1+i)^{-6} + \$500 \times \frac{1 - (1+i)^{-12}}{i} \times (1+i)^{-18}$$

ឬ

$$f(i) = \$10000 - \$600 \times \frac{1 - (1+i)^{-12}}{i} \times (1+i)^{-6} + \$500 \times \frac{1 - (1+i)^{-12}}{i} \times (1+i)^{-18} = 0$$

ក្រោយពីធ្វើតេស្តដើម្បីរក តម្លៃចាប់ផ្តើម i រួចហើយយើងបាន៖

$$\begin{split} J_{12}^{(1)} &= 19\% \ , \ \left(i = \frac{0.19}{12}\right) & \text{ is: } \quad f\left(\frac{0.19}{12}\right) = -14.2340 < 0 \\ J_{12}^{(2)} &= 20\% \ , \ \left(i_2 = \frac{0.2}{12}\right) & \text{ is: } \quad f\left(\frac{0.2}{12}\right) = 125.9671 > 0 \end{split}$$

តាមរូបមន្ត(៤.១២)
$$J_{m}=J_{m}^{\left(1
ight)}-f\left(i_{1}
ight) imesrac{J_{m}^{\left(2
ight)}-J_{m}^{\left(1
ight)}}{f\left(i_{2}
ight)-f\left(i_{1}
ight)}$$

7

យើងបាន

$$J_{12} = J_{12}^{(1)} - f(i_1) \times \frac{J_{12}^{(2)} - J_{12}^{(1)}}{f(i_2) - f(i_1)}$$

$$= 0.19 - (-14.2340) \times \frac{0.2 - 0.19}{125.9671 + 14.2340}$$

$$= 0.1910$$

តាមនិយមន័យអត្រា សមមូលយើងបាន $1+J_1=\left(1+rac{J_{12}}{12}
ight)^{12}$

នាំឱ្យ

$$J_1 = \left(1 + \frac{0.1910}{12}\right)^{12} - 1 = 0.2086$$

ះឧរខេដ្ត

អត្រាជាក់លាក់ (Annual effective rate) គឺ 20.86%

៤.៣. គារមខ់ច្រាត់ម្រចាំគ្រានូនៅ

ការសិក្សា Annuity កន្លងមកយើងសន្មតយកថ្ងៃនៃ ការបង់ប្រាក់របស់វាធ្វើនៅពេលជាមួយ គ្នានឹងពេលធ្វើ មូលធនកម្មការប្រាក់ ។ តែនៅខណៈនេះយើងលើក យក General Annuity ដែល រយៈពេលនៃការបង់ប្រាក់និងរយៈពេលធ្វើមូលធនកម្មការ ប្រាក់មិនស្មើគ្នា ឬធ្វើនៅពេលផ្សេងគ្នា។

៤.៣.១. នារុទ្ធនៃ General Annuity ខា Simple Annuity

General Annuity អាចបំលែងទៅជា Simple Annuity សមមូលតាមវិធីពីរយ៉ាងគឺ៖

- ក. ដោយប្តូរអត្រាការប្រាក់ដែល គេឱ្យទៅជាអត្រាសមមូលដែល រយៈពេល ធ្វើមូលធន កម្ម របស់វាស្មើនឹងរយៈពេលនៃការបង់ប្រាក់ ។
- ខ. ដោយជំនួសចំនួនប្រាក់ត្រូវបង់ G (គេឱ្យ) ដោយចំនួនប្រាក់សមមូល P ដែលត្រូវ បង់នៅ ចុងនៃដំណាក់កាលចំពេលធ្វើមូលធនកម្មការប្រាក់ ។ ដើម្បីងាយស្រួល បកស្រាយ យើង គូសដ្យាក្រាមនៃការបង់ប្រាក់ សំរាប់រយ:ពេលមួយឆ្នាំ រួចធ្វើការ ប្រៀបធៀប៖

- \bullet G: given payment
- \bullet i: given interest rate per period
- p : ទឹកប្រាក់សមមូលដែលត្រូវរក
- ullet i' : អត្រាសមម្ទូលនឹង i ដែលត្រូវរក

តាមដ្យាក្រាម និងតាមនិយមន័យនៃអត្រា សមមូល យើងបាន $(1+i)^n = (1+i')^m$ តម្លៃអនាគតនៃ Annuity ទាំងពីរនៅចុងឆ្នាំ (1 ឆ្នាំ) ត្រូវតែស្មើគ្នាគឺ

$$p \times s_{\overline{n}|i} = G \times s_{\overline{m}|i'} \underbrace{\mathfrak{V}}_{p} p \times \frac{(1+i)^{n}-1}{i}$$
$$= G \times \frac{(1+i')^{m}-1}{i'}(**)$$

តាម (*) និង (**) យើងទាញ បាន

$$\frac{p}{i} = \frac{G}{i'} នោះ p = G \times \frac{i}{i'} = G \times \frac{i}{(1+i)^{\frac{n}{m}}-1} = \frac{G}{s_{\frac{\overline{n}}{m}\mid i}}$$

ឧនាមារស៍ ៤.៣.១. ចូរបំលែង Annuity នៃការបង់ប្រាក់ប្រចាំឆមាស ចំនួន \$500 ជា Annuity សមមូលដោយមាន ការបង់ ប្រាក់ប្រចាំឆ្នាំតាមអត្រាឆ្នាំ 8% ធ្វើមូលធនកម្មប្រចាំឆ្នាំ ។

ಜೀಚಾ:ಕ್ರಾಟ

យើងមាន
$$G=\$500$$
 , $m=2$, $n=1$, $i=0.08$ តាមរូបមន្ត $p=\frac{G}{s_{\,\overline{m}\,|\,i}}$

យើងបាន

$$p = \frac{\$500}{s_{\frac{1}{2}|i}} = \frac{\$500}{0.49038} = \$1019.62$$

ដូចនេះ យើងបាន

Simple Annuity សមមូល មានប្រាក់បង់ប្រចាំគ្រា $p=\$1\,019.62$ និងអត្រាការប្រាក់ប្រចាំគ្រា 8% ។

៤.៣.២. នារមខំប្រាន់ម្រស់គ្រាសិន្តេរ៍ (Perpetuity)

සායි සිසි දෙ. ස්. ස්. ව

និយទន័យ ៤.៣.១. ភារមខ់ត្រាន់ម្រស់គ្រានិះខ្ពស់ (Perpetuity) គឺ ជា Annuity ដែល ការបង់ប្រាក់ចាប់ផ្ដើម នៅកាលបរិច្ឆេទ មួយ ជាក់លាក់ ហើយបន្តរហូតគ្មានទីបញ្ជាប់ ។

នៅទីនេះយើងលើកយក Ordinary Perpetuity ដែលការបង់ប្រាក់ថេរគ្មាន ទីបញ្ចប់ ហើយ ធ្វើនៅចុងដំណាក់ កាលនៃការធ្វើមូលធនកម្មការប្រាក់មកសិក្សា ។

យើងសន្មតយក i ជា អត្រាការប្រាក់ប្រចាំគ្រា និង p ជា ចំនួនប្រាក់ដែលបង់ 1 លើកៗ ដូចបង្ហាញ តាម ដ្យាក្រាម ខាងក្រោម៖

៤.៣.២.២. ឥម្លែមឡូម្បត្តនៃ Perpetuity

តាមដ្យាក្រាមនៃ Perpetuity យើងសង្កេតឃើញថា៖

$$PV = p(1+i)^{-1} + p(1+i)^{-2} + p(1+i)^{-3} + \dots + p(1+i)^{-n} + \dots$$
 (*)

សមភាព(*)ជាស៊េរីដែលតំលៃ(ផលបូក)ស្មើនឹងលីមីតនៃផ្នែកស៊េរី កាលណា $n \to +\infty$ ផ្នែកនៃស៊េរី (*) យើងតាងដោយ

$$PV_n = p(1+i)^{-1} + p(1+i)^{-2} + p(1+i)^{-3} + \dots + p(1+i)^{-n} + \dots$$
$$= p \times \frac{1 - (1+i)^{-n}}{i}$$

យើងបាន

$$PV = \lim_{n \to +\infty} PV_n = \lim_{n \to +\infty} \left[p \times \frac{1 - (1+i)^{-n}}{i} \right] = \frac{p}{i}$$

ដូចនេះ យើងបានរូបមន្តតម្លៃ បច្ចុប្បន្ន Perpetuity គឺ

$$PV = rac{p}{i}$$
 (៨.១៣)

ចំណាំ៖ ចំពោះតម្លៃអនាគតនៃ Perpetuity យើងមិនអាចកំណត់បានទេ ព្រោះ ការបង់ធ្វើ ឡើងជាបន្តបន្ទាប់ គ្មានទីបញ្ចាប់ ។

ឧនាមារស៍ ៤.៣.២. តើត្រូវការថវិកាចាំបាច់ចំនូន ប៉ុន្មាន ដើម្បីបង្កើតមូលនិធិ អាហារូបករណ៍ (លាភី) ដែលត្រូវ ឧបត្ថម្ភ\$10000 រៀងរាល់ឆ្នាំ បើ មូលនិធិនេះ នឹងទទូលបានការប្រាក់តាមអត្រា ឆ្នាំ 7% ធ្វើមូលធនកម្មប្រចាំឆ្នាំ ហើយការឧបត្ថម្ភលើកដំបូង នៅចុងឆ្នាំ ទី1 បន្ទាប់ពីថ្ងៃបង្កើតមូល និធិ។

ಜೀಣಾ:ಟಾಟ

រកចំនួនថវិកាដើម្បីបង្កើតមូលនិធិ យើងមាន $p=\$10\,000$, i=7%=0.07 តាម្យបមន្ត $PV=\frac{p}{i}$ យើងបាន $PV=\frac{\$10\,000}{0.07}=\$142\,857.14$ ដូចនេះ ដើម្បីបង្កើតមូលនិធិយើង ត្រូវការថវិការចំនួន $\$142\,857.14$ ។

៤.៣.៣. គារមខ់ប្រាគ់ម្រទាំគ្រាម្រែប្រួល

កន្លងមកយើង លើកយក Annuity ដែលការបង់ប្រាក់ថេរ ។ ប៉ុន្តែ ក្នុងជីវភាពជាក់ស្តែងការ ដាក់សន្សំ ឬការ រំលោះបំណុលពុំប្រព្រឹត្ត ទៅ តាមបែបនេះ ជារៀងរហូតទេ ។ នៅចំណុចនេះ យើងលើកយក ការបង់ប្រាក់ ជាកំណើន នព្វន្ត ឬកំណើនធរណីមាត្រអនុវត្ត ក្នុង ថេរវេលាថេរ មកសិក្សា ។

៤.៣.៣.១. Annuity ខែសច្រាត់មខ់ម្រស់គ្រាសាត់ណើនឧព្ធន្ត

ឧបមាថា ការដាក់សន្សំមួយត្រូវ បានបង់ប្រាក់ប្រចាំគ្រាជា កំណើននព្វន្ត ដែល ត្រូវតាង ដោយដ្យាក្រាមខាងក្រោម

ក. តម្លៃបច្ចុប្បន្ន (Present Value)

តាមដ្យាក្រាម និងនិយមន័យតម្លៃបច្ចុប្បន្ននៃ Annuity យើងបាន៖

$$PV = p(1+i)^{-1} + 2p(1+i)^{-2} + 3p(1+i)^{-3} + \dots + np(1+i)^{-n}$$
 (1)

យក (1) គុណនឹង (1+i) យើងបាន

$$(1+i) PV = p + 2p(1+i)^{-1} + 3p(1+i)^{-2} + \dots + np(1+i)^{-(n-1)}$$
 (2)

យក (2) ដក (1) យើងបាន

$$i \cdot PV = p \left[1 + (1+i)^{-1} + (1+i)^{-2} + \dots + (1+i)^{-(n-1)} \right] - np(1+i)^{-n}$$

$$= p \left[\frac{1 - (1+i)^{-n}}{1 - (1+i)^{-1}} \right] - np(1+i)^{-n}$$

$$= p \left[\frac{1 - (1+i)^{-n}}{i} \times (1+i) \right] - np(1+i)^{-n}$$

ដូចនេះ

$$PV = \frac{p}{i} \left[(1+i) a_{\overline{n}|i} - n(1+i)^{-n} \right]$$
 (6.96)

ឬ
$$PV = \frac{p}{i} \left(\ddot{a}_{\overline{n}|i} - nX^n \right)$$
 (៥.១៥)

ដែល
$$\ddot{a}_{\overline{n}|i} = (1+i) \, a_{\overline{n}|i}, \ X = (1+i)^{-1}$$

2. តម្លៃអនាគត (Accumulated value)

ដូចនេះ

$$FV = \frac{p}{i} \left[(1+i) s_{\overline{n}|i} - n \right]$$
 (៥.១៦)

ឬ
$$FV = \frac{p}{i} \left(\ddot{s}_{\overline{n}|i} - n \right)$$
 (៨.១៧)

ដែល $\ddot{s}_{\,\overline{n}|\,i} = (1+i)\,s_{\,\overline{n}|\,i}$

ឧនាមរស៍ ៤.៣.៣. លោកសំធ្វើវិនិយោគក្នុងមូល និធិវិនិយោគមួយនូវ ទឹកប្រាក់ \$1000 ជា វៀងរាល់ចុងឆ្នាំ សម្រាប់ រយៈពេល 10ឆ្នាំ ដែលទទួលបានការប្រាក់តាម អត្រាឆ្នាំ 13% ធ្វើមូល ធនកម្មប្រចាំឆ្នាំ ។ មូលនិធិនេះបាន បង់ការប្រាក់ នៅរៀងរាល់ចុងឆ្នាំ និងមិនអនុញ្ញាតិឱ្យ វិនិយោគ តិចជាង \$1000 ឡើយ ។ លោកសំ បាន យកការ ប្រាក់ ប្រចាំឆ្នាំ របស់ខ្លួនទៅដាក់ក្នុង គណនី សន្សំនៃធនាគារមួយ ដែលផ្ដល់ការប្រាក់តាមអត្រាឆ្នាំ 10% ធ្វើមូលធន កម្មប្រចាំឆ្នាំ ។ តើនៅចុង ឆ្នាំទី 10 គាត់មានប្រាក់ប៉ុន្មានទាំង ក្នុងមូលនិធិ និងគណនីសន្សំ ?

ដំណោះស្រាយ

នៅចុងឆ្នាំទី 10 ក្នុងមូលនិធិវិនិយោគ លោកសំមានប្រាក់តែ\$10000 គត់ ព្រោះ ការប្រាក់ ត្រូវបាន មូលនិធិ ផ្តល់ឱ្យគាត់រួចហើយ ។ ការប្រាក់នេះគាត់យកដាក់ ក្នុងគណនីសន្សំរបស់ខ្លូន នៅចុងឆ្នាំ នីមួយៗដែលចាប់ផ្តើម ពី ចុងឆ្នាំទី 2 ទៅ ដូចបង្ហាញតាមដ្យាក្រាម ខាងក្រោម៖

ការប្រាក់ដែលផ្តល់ដោយ មូលនិធិលើកដំបូងគឺ $I=\$1\,000 imes0.13=\130

តាមដ្យាក្រាមយើងមាន $i=0.1\;,\;n=9\;,\;p=\$130\;,\;(p=I)$ តាមរូបមន្ត $FV=rac{p}{i}\left[(1+i)\,s_{\,\overline{n}|\,i}-n
ight]$ យើងបាន

$$FV = \frac{\$130}{0.1} \left[(1+0.1) \, s_{\overline{9}|0.1} - 9 \right] = \$7718.65$$

ដូចនេះ នៅចុងឆ្នាំទី 10 លោកសំមានប្រាក់\$7718.65 + \$10000 = \$17718.65

ឧនាទារស៍ ៤.៣.៤. ចូររកចំនូនប្រាក់នៅពេល បច្ចុប្បន្នរបស់មូលនិធិមួយ ដែល ត្រូវឧបត្ថម្ភដល់ វិស័យអប់រំ និង សុខាភិបាល ។ មូលនិធិចាប់ផ្ដើមឧបត្ថម្ភនូវ ទឹកប្រាក់ចំនូន\$18000 នាចុងឆ្នាំទីមួយ និងចុងឆ្នាំបន្តបន្ទាប់បង្កើន ការ ឧបត្ថម្ភដោយថែម \$2000 ជារៀងរហូត (គ្មាន ទីបញ្ហាប់) មូលនិធិ នេះទទួលការប្រាក់ តាមអត្រាឆ្នាំ 10% ធ្វើមូលធន កម្មប្រចាំឆ្នាំ ។

ಜೀಚಾ:ಕಿ ಕಾ

តាមសម្មតិកម្មយើងអាចតាង ការបង់ប្រាក់នេះដោយ ដ្យាក្រាម៖

តាមនិយមន័យនៃតម្លៃ បច្ចុប្បន្នរបស់ Perpetuity

$$PV = \$18\,000(1+0.1)^{-1} + \$20\,000(1+0.1)^{-2} + \$22\,000(1+0.1)^{-3} + \cdots$$
$$= \$18\,000(1.1)^{-1} + \$20\,000(1.1)^{-2} + \$22\,000(1.1)^{-3} + \cdots \qquad (\star)$$

យក (\star) គុណនឹង 1+i=1.1 យើងបាន

$$0.1PV = \$18\,000 + \$2\,000\left[(1.1)^{-1} + (1.1)^{-2} + (1.1)^{-3} + \cdots \right] \qquad (\star\star)$$

យក (**) ដក (*) យើងបាន

$$0.1PV = \$18\,000 + \$2\,000\left[(1.1)^{-1} + (1.1)^{-2} + (1.1)^{-3} + \cdots \right]$$

យើងតាងផ្នែកនៃស៊េរី

$$S_n = (1.1)^{-1} + (1.1)^{-2} + (1.1)^{-3} + \dots + (1.1)^{-n}$$

$$= (1.1)^{-1} \times \frac{1 - (1.1)^{-n}}{1 - (1.1)^{-1}}$$

$$= \frac{1 - (1.1)^{-n}}{0.1}$$

$$= 10 \quad \text{mum} \quad n \to +\infty$$

យើងអាចសរសេរ $0.1PV = \$18\,000 + \$2\,000\,(10) = \$38\,000$ យើងបាន

$$PV = \frac{\$38\,000}{0.1} = \$380\,000$$

ដូចនេះ ចំនួនទឹកប្រាក់ចាំបាច់ សម្រាប់បង្កើតមូលធននេះគឺ \$380 000 ។

ര്.ന.ന.യ. കാലിച്ചു വിത്രം വിതരം വിത്രം വിതരം വിതരം

ឧបមាថាការដាក់សន្សំមួយ ដែលត្រូវបង់ប្រាក់ប្រចាំគ្រា ជាកំណើនធរណីមាត្រ ដែលមាន ស្រុង (1+r) ដែល r ជាអត្រាកំណើន ហើយមានi ជាអត្រាការប្រាក់ប្រចាំគ្រា ដូចបង្ហាញតាម ដ្យាក្រាមខាងក្រោម៖

ក. តម្លៃបច្ចុប្បន្ន

តាមនិយមន័យ និងដ្យាក្រាមខាងលើយើងបាន៖

$$PV = \frac{p}{1+i} + \frac{p(1+r)}{(1+i)^2} + \dots + \frac{p(1+r)^{n-1}}{(1+i)^n}$$
$$= p \left[\frac{1}{1+i} + \frac{1+r}{(1+i)^2} + \dots + \frac{(1+r)^{n-1}}{(1+i)^n} \right]$$

$$= p \left[\frac{1}{1+i} \times \frac{1 - \left(\frac{1+r}{1+i}\right)^n}{1 - \left(\frac{1+r}{1+i}\right)} \right]$$
$$= p \times \frac{1 - \left(\frac{1+r}{1+i}\right)^n}{i - r}$$

ដូចនេះ រូបមន្តតម្លៃបច្ចុប្បន្ននៃ Annuity នេះគឺ

$$PV = p \times \frac{1 - \left(\frac{1+r}{1+i}\right)^n}{i-r}$$
 (6.94)

្នាំ កំណត់ចំណាំ៖ រូបមន្ត $PV=p imes \dfrac{1-\left(\dfrac{1+r}{1+i}\right)^n}{i-r}$ មិនអាចអនុវត្តបានក្នុងករណី អត្រាកំណើនស្មើនឹង អត្រាការប្រាក់នោះទេ ។ ប៉ុន្តែ ដើម្បីគណនារកតម្លៃ បច្ចុប្បន្ននៃ Annuity ក្នុងករណីនេះ យើងត្រូវត្រឡប់ ទៅរក មូលដ្ឋានគ្រឹះវិញ ។

$$PV = \frac{p}{1+i} + \frac{p(1+r)}{(1+i)^2} + \dots + \frac{p(1+r)^{n-1}}{(1+i)^n}$$

$$= \frac{p}{1+i} + \frac{p(1+i)}{(1+i)^2} + \dots + \frac{p(1+i)^{n-1}}{(1+i)^n} , i = r$$

$$= \frac{p}{1+i} + \frac{p}{1+i} + \dots + \frac{p}{1+i}$$

$$= \frac{np}{1+i}$$

ដូចនេះ ក្នុងករណី i=r យើងបានរូបមន្ត

$$\boxed{ = \frac{np}{1+i} } \tag{6.96}$$

2. តម្លៃអនាគត (Accumulated Value)

យើងដឹងថា

$$FV = PV(1+i)^{n}$$

$$= p \times \frac{1 - \left(\frac{1+r}{1+i}\right)^{n}}{i-r} \times (1+i)^{n}$$

$$= p \times \frac{(1+i)^{n} - (1+r)^{n}}{i-r}$$

ដូចនេះ រូបមន្តតម្លៃអនាគតតនៃ Annuity នេះគឺ

$$FV = p \times \frac{(1+i)^n - (1+r)^n}{i-r}$$
 (ជ.២០)

ឧនាទរស៍ ៤.៣.៥. ចៅក្រមម្នាក់កំពុងតែព្យាយាម គណនាតម្លៃបច្ចុប្បន្ន (Discounted Value) នៃផលចំណេញ អនាគត របស់បុរសម្នាក់ដែលមាន គ្រោះថ្នាក់ចរាចរ ។ នៅ ពេលដែល គាត់មាន គ្រោះថ្នាក់នោះ គាត់ទទួលផល ចំណេញបាន \$45000 ក្នុងមួយឆ្នាំ និង គាត់គ្រោងទទួលប្រាក់ ចំណេញ ក្នុងកំណើន 4% ក្នុង មួយឆ្នាំ។ ឥឡូវនេះ គាត់នៅ ត្រូវមានអាយុ 30 ឆ្នាំទៀត ទើបដល់ អាយុចូល និវត្តន៍ ។ បើ តម្លៃមូលធន លើទីផ្សារ $J_1=5\%$ តើតម្លៃ បច្ចុប្បន្ននៃផលចំណេញ អនាគត របស់គាត់មានប៉ុន្មាន ? (យើង សន្មតថាប្រាក់ចំណេញទទួលបាននៅចុងឆ្នាំនីមួយៗ)។

ಜೀಚಾ:ಕ್ರಾಟ

តាមសម្មតិកម្មយើងមាន $p=\$45\,000\;,\;n=30\;,\;r=4\%=0.04\;,\;i=5\%$ ហើយលំហូរសាច់ប្រាក់ទាំងនេះ យើងកំណត់តាងដោយដ្យា ក្រាមខាងក្រោម៖

តាមរូបមន្ត

$$PV = p \times \frac{1 - \left(\frac{1+r}{1+i}\right)^n}{i - r}$$

យើងបាន

$$PV = \$45\,000 \times \frac{1 - \left(\frac{1 + 0.04}{1 + 0.05}\right)^{30}}{0.05 - 0.04} = \$1\,122\,979.32$$

ះឧរខារ្ហ

តម្លៃបច្ចុប្បន្នរបស់បុរសនោះគឺ \$1 122 979.32

លំខាត់អនុទត្តន៍

លំសាត់ ៤.១. ចូររកតំលៃអនាគតនៃការដាក់សន្សំ ៖

- ក. \$500/ខែ សំរាប់រយៈពេល៤ឆ្នាំ ៣ខែ ដោយទទូលការប្រាក់ 10% ធ្វើមូលធនកម្មប្រចាំខែ?
- ខ. \$800/ត្រីមាស សំរាប់រយ:ពេល ៦ឆ្នាំ ៣ខែ ទទូលការប្រាក់ 14.25% ធ្វើមូលធនកម្ម ប្រចាំ ត្រីមាស ?
- គ. \$1 000 /ឆមាស សំរាប់រយៈពេល ១០ឆ្នាំ ទទួលការប្រាក់ 12.23% ធ្វើមូលធនកម្មប្រចាំ ឆមាស ?

សំសាន់ ៤.២. លោកសម្បត្តិបានដាក់ក្នុងគណនីសន្សំរបស់ខ្លួននូវទឹកប្រាក់ថេរចំនួន \$500 រៀង រាល់ចុងឆមាស សំរាប់ រយៈពេល 5 ឆ្នាំ និង ក្រោយមក ដាក់ \$800 សំរាប់ រយៈពេល 3 ឆ្នាំបន្ទាប់ ។ ចូររក តំលៃ អនាគត ដែលគាត់ ទទួលបាន បើបានទទួលការប្រាក់ពីធនាគារតាម អត្រាឆ្នាំ 11% ធ្វើមូលធនកម្ម ប្រចាំឆមាស។

សំទាាន់ ៤.៣. ចូររកតំលៃអនាគតនៃការដាក់សន្សំ \$300 រៀងរាល់ចុងត្រីមាសសំរាប់រយ:ពេល 8 ឆ្នាំ បើធនាគារ ផ្ដល់ ការប្រាក់ប្រចាំឆ្នាំ 10% ធ្វើមូលធនកម្ម ប្រចាំត្រីមាស សំរាប់រយ:ពេល 5 ឆ្នាំដំបូង និង 12% ធ្វើ មូលធនកម្ម ប្រចាំត្រីមាសសំរាប់រយ:ពេល នៅសល់ ។

សំសាត់ ៤.៤. ចាប់ពីថ្ងៃទី ៣០ ខែ មិថុនា ឆ្នាំ ១៩៩២ និងរៀងរាល់ ៣ ខែម្តង រហ្វូតដល់ថ្ងៃទី ៣១ ខែ ធ្នូ ឆ្នាំ ១៩៩៦ អ្នកស្រី សាន្ត បានដាក់ \$300 ក្នុងគណនី សន្សំរបស់ខ្លួន ។ ចាប់ផ្តើមពីថ្ងៃទី៣០ ខែកញ្ញា ឆ្នាំ១៩៩៧ អ្នកស្រីបាន ដកជាប្រចាំ រៀងរាល់ត្រីមាស នូវទឹកប្រាក់ចំនួន \$500 ។ ចូររក សមតុល្យក្នុងគណនី របស់គាត់បន្ទាប់ពីដកនៅថ្ងៃទី ៣០ ខែ មិថុនា ឆ្នាំ ១៩៩៩ បើគណនីទទួល ការប្រាក់តាមអត្រាប្រចាំ ឆ្នាំ 8% ធ្វើ មូនធនកម្ម ប្រចាំត្រីមាស រហូតដល់ ថ្ងៃទី ៣១ ខែ មិនា ឆ្នាំ ១៩៩៥ និង 6% ធ្វើមូលធន កម្មប្រចាំត្រីមាសសំរាប់រយៈពេល នៅសល់។

សំសាត់ ៤.៥. បុរសម្នាក់ចង់ទទូលបានប្រាក់ \$200 000 សំរាប់មូនិធិចូលនិវត្តន៍ផ្ទាល់ខ្លូន។ គាត់ គំរោងដាក់សន្សំ លើកទី ១ នៅថ្ងៃទី១ ខែមិនា ឆ្នាំ១៩៨៤ និង ចុងក្រោយបង្អស់ គឺនៅថ្ងៃទី១ ខែកញ្ញា ឆ្នាំ២០០៥។ ចូររក ចំនួន ប្រាក់ ដែល គាត់បានដាក់ មួយលើកៗ បើគាត់ដាក់ ៖

- ក. ប្រចាំឆមាសហើយមូលនិធិផ្តល់ ការប្រាក់តាមអត្រាឆ្នាំ 12.5% ធ្វើមូលធនកម្មប្រចាំឆមាស
- ខ. ប្រចាំខែក្នុងមូលនិធិដែលផ្តល់ ការប្រាក់តាមអត្រាឆ្នាំ 12.5% ធ្វើមូនធនកម្មប្រចាំខែ

សំខាន់ ៤.៦. ក្រុមហ៊ុនរុករកប្រេងកាតត្រូវការ ម៉ាស៊ីន ខូងមួយ ហើយកំពុងធ្វើការពិចារណាថា តើត្រូវទិញ ម៉ាស៊ីនបែបនេះដែលមានតំលៃ \$1 000 000 ឬមួយត្រូវជួលវាតាមតំលៃ \$240 000 បង់នៅ រៀងរាល់ចុងឆមាស ។ តំលៃ ដែលរំលោះបាន មកវិញ គឺ \$100 000 នៅចុង ឆ្នាំទី ៦ ជាអាយុកាលនៃម៉ាស៊ីន ។ តំលៃជូសជុល \$10 000 ក្នុងរយៈពេល ៦ខែ ប៉ុន្តែត្រូវបង់ដោយម្ចាស់ របស់វាបើ ម៉ាស៊ីនត្រូវគេជួល ។ បើក្រុមហ៊ុនអាចទទួលបានកំរៃតាមអត្រា ឆ្នាំ 10% លើ មូលធន របស់ខ្លួន ដោយ ធ្វើ មូលធនកម្ម ប្រចាំឆមាស ។ ចូរអ្នក អោយ ដំបូន្មាន ដល់ ក្រុមហ៊ុនថា តើត្រូវ ជួលឬ ត្រូវ ទិញម៉ាស៊ីននោះ?

សំទាាត់ ៤.៧. គ្រូសារមួយត្រូវការខ្ចីថវិកាចំនួន \$5 000 សំរាប់ជួសជុលផ្ទះ។ កំចីនេះត្រូវសងវិញ ប្រចាំខែសំរាប់ រយៈពេល 5 ឆ្នាំ។

- ក. បើគេទៅខ្ចី ពីក្រុមហ៊ុនផ្តល់ ឥណទាន នោះអត្រាការប្រាក់ប្រចាំឆ្នាំ 21% ធ្វើមូលធនកម្ម ប្រចាំខែ។
- ខ. បើគេប្រើបណ្ណ័ឥណទាន (Credit Card) របស់ខ្លូននោះអត្រាការប្រាក់មាន 18% ធ្វើមូលធន កម្មប្រចាំខែ។
- គ. បើគេទៅខ្ចីប្រាក់ពីធនាគារ នោះអត្រាការប្រាក់នឹងត្រូវជា 15% ធ្វើមូលធនកម្ម ប្រចាំខែ ។ ចូររកចំនូនប្រាក់ដែលត្រូវបង់ក្នុងខែ និមួយៗនិងចំនូនប្រាក់សរុបដែលត្រូវបង់ ក្នុងកំចី និមួយ ៗ រៀងគ្នា។

សំទារត់ ៤.៤. គោលនយោបាយ នៃ ការបង់ប្រាក់ថ្លៃ ធានា រ៉ាប់រងជីវិតមាន ពីរបៀប ៖ TI1 អាចត្រូវបង់ ជារៀង រាល់ឆ្នាំជាមុន ឬTI2 អាចត្រូវ បានបង់ ជារៀងរាល់ខែជាមុន ។ តើ ការបង់ ប្រាក់ប្រចាំខែ ដែល នឹង ត្រូវសមមូល នឹងការបង់ប្រាក់ចំនួន \$120/1ឆ្នាំ មានប៉ុន្មានបើក្រុមហ៊ុន ផ្តល់ការប្រាក់ តាមអត្រា ឆ្នាំ 11% ធ្វើមូលធនកម្មប្រចាំខែ។

នំទាន់ ៤.៩. ប្រាក់ឈ្នួលប្រចាំខែសំរាប់ផ្ទះល្វែងមួយក្នុងទីក្រុងគឺ \$520 ត្រូវបង់នៅរៀងរាល់ ដើមខែ ។ បើមូលធនលើទីផ្សារតំលៃ $J_{12}=9\%$

- ក. តើផ្ទះនេះមានថ្លៃឈ្នួលប៉ុន្មាន បើសិនជាគេបង់ប្រាក់មុនសំរាប់រយៈពេល ១ឆ្នាំ ?
- ខ. តើផ្ទះនេះ មានថ្លៃឈ្នួលប៉ុន្មាន បើគេបង់ប្រាក់មុនសំរាប់រយៈពេល ៥ឆ្នាំ ?

សំសាត់ ៤.១០. បំណុលចំនួន \$1 000 ដែលមានការប្រាក់ $J_{12}=18\%$ ត្រូវសងអោយអស់ក្នុង ${\rm sw}$:ពេល ១៨ខែ ដោយបង់ប្រាក់ប្រចាំខែស្មើគ្នានឹង ការសងលើទី ១ គឺត្រូវធ្វើនៅថ្ងៃនេះ ។ ចូររកប្រាក់សំរាប់បង់ ប្រចាំខែនិមួយៗ ?

សំសាត់ ៤.១១. ចូរគណនាបំណុលដែលបានខ្ចីដោយ បុរសម្នាក់ បើតាមកិច្ចសន្យា គាត់ត្រូវសង រៀងរាល់ឆមាសនូវទឹកប្រាក់ \$500 សំរាប់រយៈពេល 7 ឆ្នាំហើយការសងលើទី១ចាប់ផ្ដើមនៅចុង ឆ្នាំទី ៤ បន្ទាប់ពីថ្ងៃ ខ្ចី ។ បំណុលនេះ គិតការប្រាក់ ៖

ñ.
$$J_2 = 17\%$$
?

2.
$$J_2 = 7\%$$
?

សំសាត់ ៤.១២. នៅថ្ងៃទី ០១ ខែ កក្កដា ឆ្នាំ ១៩៩៦ បុរសម្នាក់បានខ្ចីប្រាក់ពីធនាគារដោយសន្យា សងវិញរៀងរាល់ ឆមាសន្ទវទឹកប្រាក់ \$500 សំរាប់រយៈពេល ៦ឆ្នាំ ហើយចាប់អនុវត្តសងពីថ្ងៃទី ០១ ខែ មករា ឆ្នាំ ២០០០ ទៅ ។ ចូរគណនាទឹកប្រាក់ ដែលគាត់បានខ្ចី បើធនាគារគិតការប្រាក់ តាមអត្រា ៖

$$\bar{n}. J_2 = 11.25\%$$
?

2.
$$J_2 = 9\%$$
?

សំទារត់ ៤.១៣. កុមារអាយុ 8 ឆ្នាំម្នាក់បានទទួលមរតកចំនួន \$1 000 000 ។ ច្បាប់តំរូវអោយ តំកល់ប្រាក់នេះ នៅ ក្នុងមូលនិធិមួយរហូតដល់កុមារមានអាយុ 18 ឆ្នាំ ។ មាតា បិតារបស់ កុមារ នេះបានសំរេចអោយមូលនិធិបង់ប្រាក់ស្មើៗគ្នាជារៀងរាល់ឆ្នាំចំនួន ២០លើកដល់កូនរបស់គាត់ ដោយចាប់អនុវត្តនៅពេលដែលកូននេះ មានអាយុ 18 ឆ្នាំ។ ចូរគណនាប្រាក់បង់ប្រចាំឆ្នាំ បើមូលនិធិជ្គល់ការប្រាក់ $J_1 = 10\%$?

សំទាវត់ ៤.១៤. លោករតន:បានទិញរថយន្តមួយគ្រឿង នៅថ្ងៃទី 1 ខែ កញ្ញា ដោយបង់ \$2 000 និងដោយយល់ ព្រមបង់ចំនូន 36 ដងជារៀងរាល់ ខែនូវទឹកប្រាក់ \$350 ការបង់ លើកទី 1 គឺនៅ ថ្ងៃទី 1 ខែ ធ្នូ ។ បើ គេគិត ការប្រាក់ តាមអត្រាឆ្នាំ 18% ដោយធ្វើមូលធនកម្មប្រចាំខែចូររកតំលៃ សមមូលនៃ រថយន្តនោះនៅថ្ងៃទិញ

សំសាត់ ៤.១៥. ដាក់ប្រាក់ចំនូន \$100 ក្នុងមួយខែសំរាប់រយៈពេល 3 ឆ្នាំ គ្មានធ្វើការដាក់ ឬ ដកអ្វីសោះអស់រយៈពេល 2 ឆ្នាំ និងដាក់ \$200 រៀងរាល់ខែសំរាប់រយៈពេល 3 ឆ្នាំបន្ទាប់ ។ ការប្រាក់ដំបូងគឺ 8% ធ្វើមូលធន កម្មប្រចាំខែ និង ក្រោយមក ធ្លាក់មកត្រឹម 6% ធ្វើមូលធនកម្ម ប្រចាំខែចាប់តាំងពីថ្ងៃ នៃការបង់ \$200 ដំបូង ។ ចូររកតំលៃអនាគតនៅពេលដែលដាក់ \$200 ចុងក្រោយគេបង្អស់ ។

សំទាាត់៤.១៦. ក្រុមហ៊ុនមួយទិញគ្រឿងចក្រមួយតំលៃ \$30 000 ដោយបង់ \$5 000 ដល់ដៃនិង \$5 000 នៅ រាល់ចុងឆ្នាំនិមួយៗ ។ បើគេគិតការប្រាក់តាមអត្រាឆ្នាំ 10% ធ្វើមូលធនកម្មប្រចាំឆ្នាំ ក. តើការបង់ពេញមានប៉ុន្មានលើក?

- ខ. តើការបង់ចុងក្រោយ បង្អស់មាន ទឹកប្រាក់ ចាំបាច់ចំនូនប៉ុន្មាន?(មួយឆ្នាំក្រោយ ពីការបង់ ពេញចុងក្រោយបង្អស់)
- **សំទាាន់ ៤.១៧**. ចាប់ពីថ្ងៃទី ០១ ខែ កក្កដា ឆ្នាំ ១៩៨៦ រហូតដល់ថ្ងៃទី ០១ ខែ មករា ឆ្នាំ ១៩៩១ គ្រូសារមួយបាន ដាក់ប្រាក់ចំនូន $$500\,\mathrm{dn}$ រៀងរាល់ឆមាសទៅក្នុងគណនីសន្សំពិសេស ដែលបង់ ការប្រាក់ $J_2=11\%$ ។ ចាប់ផ្ដើមពីថ្ងៃទី ០១ ខែ កក្កដា ឆ្នាំ ១៩៩៥ ពួកគេបានដកប្រាក់ចំនួន $$800\,\mathrm{dn}$ រៀងរាល់ ឆមាសវិញ ។
 - ក. តើការដកប្រាក់ពេញ គេអាចធ្វើបានប៉ុន្មានដង ?
 - ខ. ចូរគណនាទឹកប្រាក់ដែលត្រូវដកបង្ហើយចុងក្រោយ និង កាលបរិច្ឆេទរបស់វា ?
- **សំទាាត់ ៤.១៤**. កំចីសំរាប់ទិញរថយន្តចំនូន $\$10\,000$ គិតការប្រាក់ $J_{12}=12\%$ ត្រូវសងរំលោះ អោយអស់ចំនូន n លើក ។ ការសងចំនូន (n-1) លើកដំបូងមានទឹកប្រាក់ \$263.34/ ខែ និង ទឹកប្រាក់ដែលសងនៅ ខែចុងក្រោយបង្អស់គឺ \$263.24 ។ ចូរគណនា n ?
- **សំទាាត់ ៤.១៩**. កំចីចំនួន \$20 000 ត្រូវសងវិញេ ដោយ រំលោះជារៀងរាល់ ឆ្នាំនូវ ទឹកប្រាក់ \$4 000/ឆ្នាំសំរាប់រយៈពេល 5 ឆ្នាំដំបូង និង \$4 500/ឆ្នាំ សំរាប់ រយៈពេលបន្ត មកទៀតរហូត ដល់អស់បំណុល។ ចូរគណនា ចំនួនគ្រានៃការបង់ប្រាក់ពេញទាំងអស់ និង ចំនួនប្រាក់ដែលត្រូវ សងបង្គ្រប់នៅមួយ ឆ្នាំក្រោយបន្ទាប់ការបង់ពេញចុងក្រោយ ? សន្មតថា កំចីនេះគេគិតការប្រាក់ $J_1=18\%$?
- **សំទារន់ ៤.២០**. នៅថ្ងៃទី ១០ ខែ វិច្ឆិកា ឆ្នាំ ១៩៩៨ លោក កល្បាណ បានទទួលប្រាក់កំច្ចីចំនួន $\$4\,000\,$ គិតការប្រាក់ $J_{12}=10\%\,$ ។ លោកកល្បាណនឹងត្រូវសងវិញដោយបង់ប្រាក់ប្រចាំខែចំនួន $\$250\,$ ដែល ចាប់ផ្ដើមពីថ្ងៃទី ១០ ខែ ធ្នូ ឆ្នាំ ១៩៩៩ ។ ចូរគណនាចំនួនគ្រាដែលបង់ប្រាក់ពេញ កាលបរិច្ឆេទ និង ចំនួនប្រាក់ដែលត្រូវបង់បង្គ្រប់ចុងក្រោយបង្អស់ ?
- **សំទាាត់ ៤.២១**. ក្រុមហ៊ុនហិរញ្ញវត្ថុ មួយបានកំណត់យក ការប្រាក់ 15% ជាមុន និង អនុញ្ញាតិ អោយអតិថិជនរបស់ ខ្លួនសងបំណុលប្រចាំខែស្មើៗគ្នាចំនួន 12 លើក ។ ទឹកប្រាក់បង់ប្រចាំខែ ទទួលបាន ដោយចែកប្រាក់ ដើម និង ការប្រាក់សរុប នឹង 12 ។ ចូរគណនា J_{12} និង អត្រាជាក់ លាក់ប្រចាំឆ្នាំ ?
- **សំសាត់ ៤.២២**. នៅថ្ងៃទី ០១ ខែ កុម្ភៈ ឆ្នាំ ១៩៨៥ លោក ភក្ដី បានធ្វើការដាក់ប្រាក់លើកទី ១ នៃការដាក់ប្រាក់ ជាស៊េរីប្រចាំឆ្នាំរបស់ខ្លួន ចំនួន \$1 000 ទៅក្នុងគណនីសន្សំ។ ការដាក់ប្រាក់ ចុងក្រោយរបស់គាត់គឺ ធ្វើនៅថ្ងៃទី ០១ ខែ កុម្ភៈ ឆ្នាំ ២០០១ ។ បើគណនីនោះទទួលការប្រាក់

 $J_1=10.5\%$ នោះ សមតុល្យបន្ទាប់ការដាក់ប្រាក់ចុង ក្រោយមាន $\$42\,472.13$ ហើយគណនី នឹងមានប្រាក់ចំនូន $\$44\,500.84$ បើទទួលការប្រាក់ $J_1=11\%$ ។ ប៉ុន្តែ ជាក់ស្តែងគណនីមាន ប្រាក់ $\$43\,500$ តើអត្រាការប្រាក់ជាក់លាក់ដែលគណនី ទទួលបានស្មើប៉ុន្មាន ?

នំទាន់ ៤.២៣. រថយន្តមួយគ្រឿងលក់ក្នុងតំលៃ \$600 ប៉ុន្តែម្ចាស់របស់វាបាន ព្រមព្រៀងលក់ អោយបុរសម្នាក់ ដោយបង់ \$100 ដល់ដៃ នឹងបង់ \$90 ប្រចាំខែសំរាប់រយៈពេល 6 ខែ។ ចូររកអត្រា J_{12} ?

សំទារត់ ៤.២៤. លោកសម្បត្តិ បានខ្ចីប្រាក់ចំនួន \$1~600 ពីក្រុមហ៊ុនមួយ និង យល់ព្រមបង់ \$160/1ខែ សំរាប់រយៈ ពេល 12 ខែ។ ចូររក J_{12} និង អត្រាជាក់លាក់ប្រចាំឆ្នាំ ?

សំសាន់ ៤.២៥. ហាងនាឡិកាមួយ បាន ប្រកាសលក់ នាឡិកា 1គ្រឿង ក្នុងតំលៃ \$55 ឬមួយ ដោយបង់ \$5 ប្រចាំ ខែសំរាប់រយៈពេល 12 ខែ ។ តើអត្រាប្រចាំឆ្នាំពិតប្រាកដ ដែលហាងនាឡិកា នោះគិតមានប៉ុន្មាន សំរាប់អ្នកទិញដែលបង់ប្រចាំខែ បើអ្នកទិញបង់ប្រាក់លើកទី 1 នៅថ្ងៃទិញ?

សំទារន់ ៤.២៦. ថ្មីៗនេះ ក្រុមហ៊ុនអភិវឌ្ឍន៍ ABC បានប្ដឹងក្រុមហ៊ុន XYZ ។ ក្រុមហ៊ុន ABC បានខ្ចីប្រាក់ \$8.2 លាន ពីក្រុមហ៊ុន XYZ ដោយគិតការប្រាក់ "13%" ។ កំចីត្រូវសង អោយអស់ ក្នុងរយៈពេល 3 ឆ្នាំ ដោយបង់ប្រាក់រំលោះប្រចាំខែ ។ ក្រុមហ៊ុន ABC បានគិតថា អត្រាការប្រាក់ ព្រមព្រៀងគ្នាគឺ $J_1=13\%$ ប៉ុន្តែក្រុមហ៊ុន XYZ បានប្រើ $J_{365}=13\%$ ។ ចៅក្រមបានសំរេចអោយ ABC ឈ្នះក្ដី និង សងជំងឺចិត្តដល់ក្រុមហ៊ុន ABC នូវទឹកប្រាក់គំលាតសរុប (គ្មានការប្រាក់) ។ ចូររកចំនូនទឹក ប្រាក់សំរាប់ជំងឺចិត្តនេះ ?

នំទាន់ ៤.២៧. គូស្វាមី ភរិយាមួយគូ ត្រូវការកំចីចំនួន $\$60\,000$ គិតការប្រាក់ $J_2=10.25\%$ សំរាប់ទិញផ្ទះថ្មី ។ ចូរគណនាទឹកប្រាក់សំរាប់សងរំលោះ ប្រចាំខែ ក្នុងអឡុងពេល ៖

- ១. 30 ឆ្នាំ ?
- ២. 20 ឆ្នាំ ?
- ៣. 10 ឆ្នាំ ?
- ថ. បើ ប្តី-ប្រពន្ធនោះអាចបង់ \$950/ខែ តើការបង់ពេញមានប៉ុន្មានលើក ? ហើយទឹកប្រាក់បង់ បង្គ្រប់ស្មើប៉ុន្មាន ?

សំសាត់ ៤.២៨. រថយន្តមួយគ្រឿងមានតំលៃ \$2 500 ត្រូវបានលក់ដោយបង់ \$500 ដល់ដៃ និង \$200/ខែ សំរាប់រយៈពេល ១២ ខែ ។ ចូរគណនាអត្រាសមមូល (ជាក់លាក់) ប្រចាំឆ្នាំ ដែល ម្ចាស់បានកំណត់ ? **សំទាាត់ ៤.២៩**. គោលនយោបាយក្រុមហ៊ុនធានារ៉ាប់រង មួយតំរូវអោយបង់ប្រាក់ \$15 នៅរៀង រាល់ដើមខែសំរាប់ រយៈពេល ២០ឆ្នាំ ។ ចូរគណនាតំលៃបច្ចុប្បន្ននៃ Annuity នេះ បើការប្រាក់ $J_4=11\%$?

សំទារត់ ៤.៣០. រថយន្តជជុះមួយគ្រឿងអាចត្រូវបានទិញ ក្នុងតំលៃ \$7 600 ឬ ក៏បង់ \$600 ដល់ដៃ និង \$400/ខែ សំរាប់ ២០លើក ហើយការបង់លើកទី ១ ត្រូវធ្វើនៅ ៦ខែក្រោយ ។ តើអត្រាការប្រាក់ជាក់លាក់ ប្រចាំឆ្នាំសំរាប់គំរោងបង់ប្រាក់ជាដំណាក់ៗ ស្មើគ្នាប៉ុន្មាន ?

នំទារន់ ៤.៣១. ដើម្បីថែរក្សាប្រព័ន្ធទ្វារឆ្លងកាត់ក្រុមហ៊ុន ផ្លូវដែកបានចំណាយ \$500 រៀងរាល់ ចុងខែនិមួយៗ ។ តើក្រុមហ៊ុន ត្រូវចំណាយ ថវិការចំនួនប៉ុន្មាន សំរាប់បង្កើត គណនីមួយដើម្បី ធានាការចំណាយលើ ប្រព័ន្ធឆ្លងកាត់នេះ បើមូលធនមានតំលៃ $J_{12}=15\%$?

សំសាន់ ៤.៣២. មហាវិទ្យាល័យមួយ បានធ្វើការប៉ាន់ស្មាន ថា អាគារធំមួយ នឹងត្រូវការថវិការ ចំនួន \$3 000 សំរាប់ ជួសជុល នៅចុងឆ្នាំ និមួយៗ ក្នុងរយ:ពេល 5 ឆ្នាំបន្ទាប់ និង \$5 000 នៅ រៀងរាល់ចុងឆ្នាំសំរាប់ឆ្នាំជាបន្តបន្ទាប់ទៀតនាពេលអនាគត ។ បើអត្រាការប្រាក់ជាក់លាក់ប្រចាំ ឆ្នាំ 12% តើមហាវិទ្យាល័យ ត្រូវការថវិការចាំបាច់ចំនួនប៉ុន្មានសំរាប់ថែរអាគារនោះ ?

សំទាាត់ ៤.៣៣. ទឹកប្រាក់ចំនូន \$20 000 ត្រូវបាន វិនិយោគក្នុង មូលនិធិមួយដែល ផ្ដល់ប្រាក់ ចំណូលតាមអត្រាឆ្នាំ 8% ធ្វើមូលធនកម្មប្រចាំឆមាស ។ តើប្រាក់ប៉ុន្មានដែលមូលនិធិនេះត្រូវ ប្រគល់ជូន (ដោយគ្មាន កាលបញ្ហាប់)។

- ក. នៅរៀងរាល់ចុងខែ ?
- ខ. នៅរៀងរាល់ដើមឆ្នាំ ?

នំទារត់ ៤.៣៤. សកលវិទ្យាល័យ មួយបានទទួល ទឹកប្រាក់ ដែលជា អំណោយ និង ប្រាក់ វិនិយោគមួយចំនួន ដែលត្រូវ ទទួលការប្រាក់ $J_1=8\%$ ។ មូលនិធិនេះ អាចប្រើប្រាស់សំរាប់ បង់អោយសាស្ត្រាចារ្យឧទ្ទេសនាម ម្នាក់ចំនួន $\$60\,000$ នៅរៀងរាល់ចុងឆ្នាំជារៀងរហូតឬ អាច ប្រើប្រាស់សំរាប់សាងសង់អាគារថ្មី។ អាគារនឹងត្រូវបង់ប្រចាំឆ្នាំចំនួន $25\,$ លើកដែលការបង់ លើក ទី១ធ្វើឡើង ៤ឆ្នាំក្រោយបន្ទាប់ពេល ឥល្វវនេះ គឺនៅពេលដែលអាគារត្រូវបានប្រើប្រាស់។ ចូរគណនាចំនួនប្រាក់ដែលបង់សំរាប់អាគារ ក្នុងគ្រានិមួយ។ ?

សំទារត់ ៤.៣៥. ចូររកតំលៃបច្ចុប្បន្ន នៃការបង់ប្រាក់ជា ស៊េរីចំនូន 15 លើក ដែលធ្វើឡើងនៅ រៀងរាល់ចុងឆ្នាំ បើទឹក ប្រាក់បង់លើកទី១ មាន \$300 លើកទី២ \$600 លើកទី៣ \$900 និង កំណើនចំនូន \$300 ជារៀង រហូតដល់គ្រាចុងក្រោយ ។ ការប្រាក់លើទីផ្សារ $J_1=6\%$ ។

សំទាវត់ ៤.៣៦. នៅរៀងរាល់ដើមឆ្នាំនិមួយៗ អ្នកវិនិយោគម្នាក់ បានដាក់ប្រាក់ចំនួន \$1~000 ទៅក្នុងមូលនិធិមួយ ដែលបង់ការប្រាក់ $J_1=10\%$ ។ បន្ទាប់មកការប្រាក់ដែលទទូលបាន គាត់ យកទៅដាក់ក្នុងគណនីនៃ ធនាគារមួយដែលផ្ដល់ការប្រាក់ $J_1=6\%$ ។ តើប្រាក់របស់គាត់មានចំនួនប៉ុន្មាន នៅចុងឆ្នាំទី៦ ?

សំទារត់ ៤.៣៧. អាគារមួយបានផ្ដល់ចំណូលពីថ្លៃជូលចំនួន $$5\,000/$ ឆ្នាំ ដែលត្រូវបង់នៅរៀង រាល់ដើមឆ្នាំ ។ គេ សង្ឃឹមថា ថ្លៃជូលនឹងកើនជារៀងរហូតចំនួន 6% ក្នុងមួយឆ្នាំ ។ ចូរគណនាតំលៃបច្ចុប្បន្ននៃថ្លៃ ឈ្នួលអាគារគិតតាមអត្រា $J_1=10\%$?

សំសាន់ ៤.៣៨. អ្នកស្រីសាន់ដ្រា បានវិនិយោគ \$10~000 ក្នុងផ្សារហ៊ុនមួយដែលទទូលបាន ភាគលាភ (Dividend) តាមអត្រា 12% (គឺបានន័យថាទទូលបាន \$1~200 នៅរៀងរាល់ចុងឆ្នាំ) ។ អ្នកស្រីបានវិនិយោគ ភាគលាភរបស់ខ្លួនក្នុងគណនីធនាគារដែលបង់ការប្រាក់ប្រចាំឆ្នាំ $J_1=10\%$ ។

នំមាន់ ៤.៣៩. ប្រាក់ដើមនៃកំចីចំនូន \$5 000 ត្រូវបានសងរំលោះទុនថេរប្រចាំឆ្នាំចំនួន \$1 000 នៅរៀងរាល់ចុង ឆ្នាំសំរាប់រយៈពេល ៥ឆ្នាំបន្ទាប់ ។ ការប្រាក់ត្រូវបង់នៅរៀងរាល់ចុងគ្រាតាមអត្រា $J_1=4,5\%$ នៃ បំណុលដែលនៅជំពាក់ជាមួយនឹងប្រាក់ដើម \$1 000។ ចូររកតំលៃលក់នៃកំច្ចី នេះ ដែលផ្ដល់ ទិន្នផល $J_1=5\%$?

នំមាន់ ៤.៤០. នៅរៀងរាល់ដើមឆ្នាំបុរសម្នាក់បាន ដាក់ប្រាក់ចំនួន \$100 ទៅក្នុងមូលនិធិមួយ ដែលបង់ការប្រាក់ $J_1=6\%$ លើប្រាក់ដើមដែលមាននៅក្នុងមូលនិធិ ។ នៅរៀងរាល់ចុងឆ្នាំនិមួយៗ គាត់បានយកការ ប្រាក់នេះ ទៅដាក់ក្នុងមូលនិធិទី២ ដែលបង់ការប្រាក់ $J_1=4\%$ ។ តើនៅចុង ឆ្នាំទីប៉ុន្មាន ទើបមូល និធិទី២ មានប្រាក់ច្រើនជាងមូលនិធិទី១ ?

•

អាសទំំលោះចំណុស

៥.១. មញ្ញាណលែកាះំឈោះ ខ.៦

៥.១.១. សញ្ញាណអំពីគណនីចន្លេទែខ

នៅក្នុងជំពូក៤ យើងបានសិក្សាខ្លួៗអំពីការសង រំលោះបំណុល ជាបណ្ដើរៗ ជាមួយគ្នានេះដែរ យើងនឹងសិក្សាពី បញ្ហានេះបន្តទៀតដោយ លើកចំណោទមកបកស្រាយ។

នណោរទំ

នៅថ្ងៃទី 01/01/2013~A អោយ B ខ្លី \$3000 នៅថ្ងៃទី 01/01/2016~A ទទួលពី B \$1000 នៅថ្ងៃទី 01/01/2017~A ទទួលពី B \$2000

ចំនួនប្រាក់ ដែលបានផ្ទេរដោយភាគីទាំងពីរនេះ ត្រូវបាន គិតតាមការប្រាក់សមាស តាមអត្រា i=10% ធ្វើមូល ធនកម្ម ប្រចាំឆ្នាំ។ ចូររកបំណុលរបស់B នៅថ្ងៃទី 01/01/2018 ។

៥.9.9.9. ចំណតម្រាយតាមទិធីស្យុស្គូស្គាល់ Direct Method

គណនីចរន្តរបស់ ${\cal B}$

	VI				
កាលបរិច្ឆេទ	ឥណពន្ធ Debit	ឥណទាន Credit			
01/01/2013	\$3000				
01/01/2016		\$1000			
01/01/2017		\$2000			

ចំពោះ ឥណពន្ធ Debit តំលៃអនាគត $S=3000(1+0.10)^{5}=4831.53$

ចំពោះ ឥណទាន Credit តំលៃអនាគិត $S' = 1000(1.1)^2 + 2000(1.1)^1 = 3410$

ដោយ $S-S^{\prime}=4831.53-3410=1421.53$

៥.១.១.២. មំណតម្រោយតាមទិធីសាស្ត្រ Hambourg

គោលវិធីនេះ គឺ គណនាសមតុល្យរបស់គណនីជាដំណាក់ៗរហូតដល់បិទ គណនី ហើយ គេនឹងឃើញ សមតុល្យ គណនី ចុងក្រោយ ដែលជាបំណុលនៅជំពាក់ៗ គេអនុវត្តន៍ដូចតទៅ

- ullet សមតុល្យ នៅថ្ងៃទី01/01/2013 គឺ $S_1=\$3000$
- ullet សមតុល្យ ក្រោយការសងប្រាក់នៅថ្ងៃទី 01/01/2016 គឺ

$$S_2 = S_1(1.1)^3 - 1000$$
$$= 3000(1.1)^3 - 1000$$

ullet សមតុល្យ ក្រោយការសងប្រាក់នៅថ្ងៃទី 01/01/2017 គឺ

$$S_3 = S_2(1.1) - 2000$$

= $3000(1.1)^4 - 1000(1.1) - 2000$

• សមតុល្យ នៅថ្ងៃទី 01/01/2018 គឺ

$$S_4 = S_3(1.1)$$
= 3000(1.1)⁵ - 1000(1.1)² - 2000(1.1)
= 1421.53

ដូចនេះ

សមតុល្យ នៅថ្ងៃទី01/01/2018 ស្មើនឹង 1421.53 ជាសាច់ប្រាក់ដែលនៅជំពាក់ A ។

ខាស្ថាន ខេត្ត ខេត្ត ខេត្ត ខេត្ត ខេត្ត ខេត្ត ខេត្ត

វិធីសាស្ត្រក្នុងការរំលោះបំណុលមានច្រើនបែបដូចជា៖

- ការសងបំណុលដោយសំណងថេរ(ចំនូនប្រាក់ក្នុងគ្រានីមួយៗថេរ)
- ការសងបំណុលដោយសំណងថេរតែអាក់ខានមិនបានសងមួយរយៈកាលដំបូង (សងបែប Deferred Annuity)
- សងរំលោះដោយប្រាក់សំណងជាកំណើននព្វន្ត ឬ ធរណីមាត្រ
- និង ការសងដោយរំលោះទុនថេរ ។ល។
 ប៉ុន្តែយើងធ្វើចំណាត់ថ្នាក់ជាពីរបែប គឺ

- សងរំលោះបំណុលជាបណ្ដើរៗ(រំលោះដើមទុន)
- និង សងបំណុលដើមទាំងអស់ នៅកាលវសាន្តនៃកិច្ចសន្យាសុំខ្ចី (Sinking-Fund Method)។

នៅក្នុងជំពូកនេះយើងកំណត់តាង

- ullet A ចំនួនប្រាក់អោយខ្ចី $A=D_0$
- n ជាចំនូនដំណាក់កាល នៃការសងរំលោះ
- i អត្រាការប្រាក់ប្រចាំ ដំណាក់កាលនីមួយៗ
- ullet D_k បំណុលនៅកាលបរិច្ឆេទ $k=\overline{1,r}$
- ullet R $_k$ ចំនួនទឹកប្រាក់សងនៅ ដំណាក់កាលទី k $k=\overline{1,n}$

៥.១.២.១. គារសទរំលោះទំណុលដើមមណ្ដើរៗ (គារាទរំលោះ)

វិធីនេះត្រូវបានអនុវត្ត ទូលំទូលាយបំផុត លើសកលលោក ហើយនីតិវិធីនៃការរំលោះគេ អនុវត្តដូចតទៅ៖

នៅដំណាត់តាលនី១ ៖

កូនបំណុលត្រូវសងន្ទវ ទឹកប្រាក់ R_1 ដែលធំជាង Ai គឺមានន័យថាកូនបំណុលមិនគ្រាន់តែ សងន្ទវ ការប្រាក់តែប៉ុណ្ណោះទេ គឺថែមទាំងប្រាក់ដើមមួយចំណែកទៀត។ ដូចនេះ៖ គេអាចសរសេរ៖

$$R_1 = Ai + m_1$$

ដែល m_1 ជាចំនូនបំណុលរំលោះលើកទី១ ក្រោយពីបានសងលើកទី១នូវ R_1 បំណុលនៅសល់គឺ

$$D_1 = A - m_1$$

នៅនំណាក់កាលនឹងទេរ

ក្ងួនបំណុលត្រូវសងន្ទវទឹកប្រាក់៖

$$R_2 = D_1 i + m_2$$

<u> បំណុលនៅសល់៖</u>

$$D_2 = D_1 - m_2$$

គេបន្តធ្វើរបៀបនេះរហូតដល់ដំណាច់នៃដំណាក់កាលចុងក្រោយនៃ កិច្ចសន្យារំលោះហើយនៅ ដំណាត់កាលចុងក្រោយនៃ កិច្ចសន្យារំលោះហើយនៅ ដំណាត់កាលចុងក្រោយ ក្លែនបំណុលសង ប្រាក់ R_n ដែល

$$R_n = D_{n-1}i + m_n$$

 $(m_n$ ជាចំនួនបំណុលរំលោះលើកចុងក្រោយ ដែលធ្វើឲ្យ បំណុល D_{n-1}) រលត់។ ខាងក្រោមនេះជាដ្យាក្រាមលំហូរសាច់ប្រាក់

តារាងរំលោះ ដំណាក់កាល បំណុលដើមនៅជំពាក់ ការប្រាក់ត្រូវបង់ បំណុលបានរំលោះ ប្រាក់ បង់ប្រចាំគ្រា

ដំណាក់	បំណុលដើមនៅជំពាក <u>់</u>	ការប្រាក់ត្រូវបង់	បំណុល	ប្រាក់បង់ប្រចាំគ្រា
កាល			បានរំលោះ	
0	$D_0 = A$			
1	$D_1 = D_0 - m_1$	$D_0 i$	m_1	$R_1 = D_0 i - m_1$
2	$D_2 = D_1 - m_2$	D_1i	m_2	$R_2 = D_1 i - m_2$
	• • •			• • •
n	$D_n = D_{n-1} - m_n$	$D_{n-1}i$	m_n	$R_n = D_{n-1}i - m_n$
សរុប		$i\sum_{k=0}^{n} D_k = I$	$D_0 = A$	$S = D_0 + I$

៥.១.២.២. គារសខច្រាអ់ដើមដែ១លើកនៅភាលខសាន្តនៃកិច្ចសន្យាក់ថី

ក្នុងករណីនេះ កូនបំណុល បង់ការប្រាក់ចំនូន Ai ឬ D_0i រៀងរាល់ ដំណាច់នៃ ដំណាក់ កាលនីមួយៗ គឺចាប់អនុវត្តពីចុងដំណាក់កាលទី 1 ដល់ទី n-1 បានន័យថា កូនបំណុលមិនបាន

សងនូវចំណែកនៃ ទឹកប្រាក់ដើមទេ ហើយបំណុល នេះក៏មិន កើនឡើងដែរ។នៅកាលវសាន្ត (ដំណាក់កាលទី)ទើបកូនបំណុលសងប្រាក់ដើម A និង ការប្រាក់Ai ដើម្បី បញ្ចប់ កិច្ចសន្យា ដែលមានដ្យាក្រាមដូចខាងក្រោម៖

៥.២. គារអំលេះគំទីខាមស្គើរៗ , ទិធាន

៥.២.១. ទីធាននៃការសទំណែះ

ទឹកប្រាក់ Aឬ D_0 ដែលត្រូវជូនទៅអ្នកខ្ចី នៅកាលបរិច្ឆទ0 និង សំណងរៀងរាល់ដំណាក់ កាល R_1,R_2,\cdots,R_n

នៅ ដំណាក់កាល ទី $1,2,\cdots,n$ រៀងគ្នា ដែល ត្រូវបង់ដោយ អ្នកខ្ចី ជូនម្ចាស់បំណុល (សំណងដែលមានការប្រាក់ និង បំណុល) ជា ប្រតិបត្តិការអាច ធ្វើជា កម្មវត្ថុ នៃការចុះបញ្ជីក្នុង គណនីចរន្ត។

គណនីចរន្ត

កាលបរិច្ឆេទ	ឥណពន្ធ Debit	ឥណទាន Credit		
0	A			
1		R_1		
2		R_2		
n		R_n		

ខិធាននី១៖

ចំនួនប្រាក់ត្រូវសង នៃបំណុលមួយនៅកាលបរិច្ឆេទn ត្រូវ ស្មើនឹង តម្លៃអនាគតនៃប្រាក់ សំណងប្រចាំគ្រា ទាំងអស់ នៅដំណាក់កាល n ។

យើងដឹងថាកាលបរិច្ឆេទទី n សំណង R_n មានប្រាក់រំលោះ m_n ចុងក្រោយដែលត្រូវអស់

ដូចនេះ យើងអាចសរសេរបាន៖

$$A(1+i)^n = R_1(1+i)^{n-1} + R_2(1+i)^{n-2} + \dots + R_n$$
 \mathfrak{U}

$$A(1+i)^n = \sum_{k=1}^n R_k (1+i)^{n-k}$$
 (8.9)

සෙක්ක්

បំណុល(ប្រាក់ដើម)ត្រូវស្មើនឹង តម្លៃបច្ចុប្បន្ន នៃប្រាក់សំណងប្រចំគ្រា ទាំងអស់នៅ កាល បរិច្ឆេទ n ។

បើយើងគុណអង្គទាំងពីរនៃសមីការ (៥.១) នឹង $(1+i)^{-n}$ យើងបាន

$$A = \sum_{k=1}^{n} R_k (1+i)^{-k}$$
 (8.5)

<u>ទិធាននី៣៖</u>

ចំនូនបំណុល ដែលសល់ក្រោយពីបានបង់ R_k គឺស្មើនឹងតម្លៃអនាគត នៃបំណុលបានខ្ចីនៅ កាលបរិច្ឆេទ kដកតម្លៃអនាគត នៃសំណង ប្រចាំគ្រា នៅដំណាក់កាលk ដែរ។

$$S_k = A(1+i)^k - \left[R_1(1+i)^{k-1} + R_2(1+i)^{k-2} + \dots + R_{k-1}(1+i) + R_k\right]$$
(8.m)

ទិធាននី៤៖

បំណុលដែលនៅសល់ D_k (បំណុលមិនទាន់បានរំលោះ) ក្រោយពី ការសង ប្រាក់ប្រចាំគ្រា លើកទីk ស្មើ នឹង តម្លៃបច្ចុប្បន្នសរុបគិតនៅ កាលបរិច្ឆេទ k នៃn-k ប្រាក់សំណង ដែលនឹងត្រូវ បង់។

$$D_k = R_{k+1}(1+i)^{-1} + R_{k+2}(1+i)^2 + \dots + R_n(1+i)^{k-n}$$
 (c.c.)

(ಇ.ಜಿ.ಅ. ಕಾಣಿಣಾಣಿಕ್ಕಾಣ ಚಾಲಕಿಕಾ ಕಾಣಿಣಾಣ (ಪ್ರತಿಕಿಣಾಣ)

ជាទូទៅគេនិយម ប្រើវិធីរំលោះបំណុលតាមរបៀបរំលោះដោយសំណងថេរ (Ordinary Annuities) ព្រោះវាមានការ ធានាច្បាស់លាស់ជាងវិធីដទៃទៀត។ គេតាង៖

- ullet ខំនួនប្រាក់បង់សងតាមដំណាក់នីមួយៗ $(R=R_k,\;\;k=\overline{1,n})$
- n ចំនួនគ្រានៃការសងរំលោះ
- i អត្រាការប្រាក់ប្រចាំគ្រា
- A ចំនូនប្រាក់ដែលបានអោយខ្ចី នៅកាលបរិច្ឆេទ ដ្យាក្រាមនៃការបង់រំលោះ៖

ಜಿ.ಅ.ಅ.១. ឡាម់នៃគាររំលោះ(គាររំលោះឧុន)

យោងតាមតារាងរំលោះ (Amortization schedule) ខាងដើម យើងសង្កេតយើញថា៖

$$R_k = D_{k-1}.i + m_k(*) \Rightarrow R_{k+1} = D_k.i + m_{k+1}(**)$$

 $D_k = D_{k-1} - m_k \Rightarrow D_{k-1} = D_k + m_k(***)$

យក (***)ជំនូសក្នុង (*) យើងបាន $R_k = D_k i + m_k \, (1+i)$ តែការរំលោះរបស់យើង គឺរំលោះតាមសំណងថេរ ដូចនេះ៖

$$R_k = R_{k+1}$$

$$D_k.i + m_k (1+i) = D_k.i + m_{k+1}$$

$$\Rightarrow m_{k+1} = m_k (1+i) , k = \overline{1,n}$$

សឆ្ជិដ្ឋាន៖

ប្រាក់រំលោះ m_k , $k=\overline{1,n}$ នៃសំណងថេរ គឺជាកំណើនធរណីមាត្រ ដែលមានរេសុងស្មើនឹង (1+i) ។

ម្យ៉ាងទៀតដោយ៖
$$A=\sum_{k=1}^n m_k=m_1rac{(1+i)^n-1}{i}$$
ដូចនេះ

$$A = m_1 S_{\overline{n}|i}$$
 , $A = Ra_{\overline{n}|i}$ (៥.៥)

ಕಣತಿಣಾಚಾಚಾಚಾಚಿ . ಜಿ.ಜಿ.ಜಿ.ಜಿ

ដ្យាក្រាមនៃការបង់រំលោះ ្

មាន **ទីនីសាស្ត្រពីម៉ោទ** ក្នុងការគណនារក ប្រាក់បំណុល ដែលនៅសល់នៅចុងដំណាក់ កាលទីk នៃប្រាក់កំចី A ដែល ត្រូវរំលោះ ដោយសំណងថេរR សំរាប់ nលើក តាម អត្រាការប្រាក់ i ។

ទិនីសាស្ត្រនី9៖ (Retrospective Method)

យោង តាមដ្យាក្រាម ខាងលើ និង វិធានទី 3 ចំនូនបំណុល ដែលនៅ សល់ក្រោយ ពីបង់ សំណងថេរ R លើកទីk ហើយ គឺស្មើផលដករវាង តំលៃអនាគតនៃបំណុល(ប្រាក់ដើម)និង តំលៃ អនាគតនៃសំណងថេរគិត នៅកាលបរិច្ឆេទ ទី k ។

គេអាចទាញបាន ៖

$$D_k = A(1+i)^k - RS_{\overline{k}|i}$$
 (៥.៦)

ទិធីសាស្ត្រនី២៖ (Prospective Method)

យើងគិតពីទី k ដល់ទី n យោងតាមដ្យាក្រាមខាងលើនិងវិធានទី 4 បំណុលដែលនៅ សល់

 D_k បន្ទាប់ ពីបង់រំលោះ លើកទីk ដោយសំណងថេរ R គឺស្មើនឹងតំលៃបច្ចុប្បន្ននៃn-k សំណងថេរ ដែលនឹង ត្រូវបង់។ យើងទាញបាន ៖

$$D_k = Ra_{\overline{n-k}|_i} \tag{6.1}$$

ಜಿ.ಅ.ಅ.៣. ಹಾಸ್ತವಾಣೆ

នៅពេលសងបំណុលលើកទី k ដោយសំណងថេរ R គេត្រូវបង់ការប្រាក់ I_k ៖

$$I_k = D_{k-1}.i$$
 ពីល $D_{k-1} = Ra_{\overline{n-k+1}|i}$

$$\Rightarrow I_k = iRa_{\overline{n-k+1}|i}$$

$$= iR\left[\frac{1-\left(1+i\right)^{-(n-k+1)}}{i}\right]$$

$$= R\left[1-\left(1+i\right)^{-(n-k+1)}\right]$$

ដូចនេះ ការប្រាក់សម្រាប់បង់នៅដំណាក់កាលទី k គឺ៖

$$I_k = R \left[1 - \left(1 + i\right)^{-(n-k+1)}
ight]$$
 (៥.ជ)

:ಡಾಚಿಚ್ಯಾಡಿ ಹಿ.ಜಿ.ಜಿ.ಜಿ

តាមតារាងរំលោះបំណុលដែលត្រូវរំលោះនៅលើកទី k គឺ ៖

$$m_k = R - I_k$$

= $R - R \left[1 - (1+i)^{-(n-k+1)} \right]$
 $\Rightarrow m_k = R(1+i)^{-(n-k+1)}$

ឧនាសរស៍ ៥.២.១. កំចីចំនូន \$6000ត្រូវបានចុះកិច្ចសន្យាសងប្រចាំឆមាសនូវទឹកប្រាក់ថេរ Rសំរាប់រយ:ពេល ឆ្នាំ3 តាមអត្រាការប្រាក់ 16% ធ្វើមូលធនកម្មប្រចាំឆមាសៗ ចូររក ទឹកប្រាក់ ដែលបង់ ក្នុង ឆមាស និមួយៗ និង សង់តារាងរំលោះសំរាប់កំចីនេះ ។

ដំណោះស្រួយ

ការសងប្រាក់ទាំង6លើកនេះមានទំរង់ជា Ordinary Annuity ដែលមាន

$$PV = A = \$6\ 000, \quad n = 6, \quad i = 0.08$$

ដូចនេះទឹកប្រាក់ដែលត្រូវបង់ប្រចាំគ្រា គឺ

$$R = \frac{A}{a_{\overline{n}|i}}$$

$$= \frac{6,000}{a_{\overline{6}|0.08}}$$

$$= \frac{6,000}{4.62287966} = 1,297.8923$$

ក្នុងការអនុវត្តន៍ដើម្បីងាយស្រូលដល់ការទូទាត់គេសន្មតយកការរំលោះ លើកដំបូងស្មើនឹង 1298 ហើយកំណត់ចំនូនប្រាក់ សំរាប់ ការរំលោះចុងក្រោយ(គ្រាទី៦)ដែលតាងដោយ X យើង គូសដ្យាក្រាមនៃការបង់ប្រាក់ដូចខាងក្រោម ៖

ដោយតំលៃអនាគតនៅកាលបរិច្ឆេទ នៃបំណុល និងចំនូនប្រាក់ដែលសងជា ដំណាក់ៗស្មើគ្នានោះ គេបាន ៖

$$X + 1,298 (1.08) \times S_{\overline{5}|0.08} = 6,000 (1 + 0.08)^{6}$$

$$X + 8,224.04 = 9,521.25$$

$$\Rightarrow X = \$1,297.21$$

ដូចនេះ ៖ ទឹកប្រាក់សងចុងក្រោយ (ដំណាក់កាលទី៦) គឺ \$1,297.21។

តារាងរំលោះ (Amortization schedule)

Payment	Outstanding Principle	Interest at 8%	Principle Repaid	Periodic Payment
Number				
	6,000.00	_	_	_
1	5,182.00	480.00	818.00	1,298.00
2	4,298.56	414.56	883.44	1,298.00
3	3,344.44	343.88	954.12	1,298.00
4	2,314.00	267.56	1,030.44	1,298.00
5	1,201.12	185.12	112.88	1,298.00
6	0	96.09	1,201.12	1, 297.21
Total		1,787.21	6000	7787.21

ឧនាមារស៍ ៥.២.២. កសិករម្នាក់បានខ្ចីប្រាក់ពីធនាគារចំនូន 8000ដើម្បីយកទៅពង្រីកកសិដ្ឋាន របស់ខ្លួន។តាមកិច្ចសន្យាគាត់ត្រូវ សង រំលោះដោយសំណងថេរ រៀងរាល់ចុង ឆ្នាំ រយៈពេល ៥ឆ្នាំ។ កំចីនេះ គិតការប្រាក់តាមអត្រា 12% ធ្វើមូលធនកម្មប្រចាំឆ្នាំ។

- ក. ចូរគណនាប្រាក់រំលោះ និង បំណុលនៅជំពាក់នៅចុងឆ្នាំទី ៣?
- ខ. ចូរសង់តារាងរំលោះសំរាប់កំចីនេះ ។

ដំណោះស្រាយ

ក. ប្រាក់រំលោះ និង បំណុលនៅជំពាក់នៅចុងឆ្នាំទី ៣ ដោយសំណងនេះ ជាសំណង ថេរ ដូចនេះយើងទាញបាន ៖

$$R = \frac{A \cdot i}{1 - (1 + i)^{-n}}$$
 ដែល $A = \$8,000; \quad i = 0.12; \quad n = 5$
$$\Rightarrow R = \frac{8,000 \times 0.12}{1 - (1 + 0.12)^{-5}} = \$2,219.28$$

ករណី សងរំលោះ ដោយ សំណងថេរនេះ ប្រាក់រំលោះ (Principle Repaid) ជា កំណើន ចរណីមាត្រ ដែលមានរេសុង (1+i) និង មានរូបមន្ត៖

$$m_k = R(1+i)^{-(n-k+1)}; k = 3$$

 $\Rightarrow m_k = 2,219.28(1+0.12)^{-(5-3+1)} = \$1,579.64$

ហើយបំណុលដែលនៅជំពាក់គឺ ៖

$$D_k = Ra_{\overline{n-k}|i}; k = 3, a_{\overline{n-k}|i} = \frac{1 - (1+i)^{-(n-k)}}{i}$$

$$\Rightarrow D_3 = \$2, 219.28 \cdot \frac{1 - (1+0.12)^{-(5-3)}}{0.12}$$

$$= \$3, 750.69$$

ដូចនេះ

នៅចុងឆ្នាំទី ៣ ប្រាក់រំលោះ $m_3=\$1,579.64$ និង បំណុលនៅជំពាក់ $D_3=\$3,750.70$

ខ. តារាងរំលោះ

Payment	Outstanding	Interest at 12%	Principle Repaid	Periodic Payment
Number	Principle			
0	8,000.00	_	_	_
1	6,740.72	960.00	1,259.28	2,219.28
2	5,330.33	808.89	1,410.39	2,219.28
3	3,750.69	639.64	1,579.64	2,219.28
4	1,981.49	450.08	1,769.20	2,219.28
5	0.01	237.78	1,981.50	2,219.28
Total		3,096.39	8,000.01	11,096.40

ಕಾಣಕೀಯಾಣಿಕಾಣ ಭಾರತಿ ಇದ್ದು ಇದ್ದಿ

ករណីខ្លះ កូនចំណុល និង ម្ចាស់ចំណុល ព្រមព្រៀងគ្នា សងរំលោះចំណុល ដោយរំលោះ ទុនថេរ ពោលគឺ នៅក្នុង ដំណាក់កាល និមួយៗ កូនចំណុលត្រូវសងការប្រាក់ប្រចាំគ្រា និង ប្រាក់ ដើមថេរ ដែល មានចំនួន $\frac{A}{n}$ ។

បើយើងពិនិត្យមើលតារាងរំលោះ នូវ ទឹកប្រាក់ត្រូវបង់នៅដំណាក់កាល ៖

ទី
$$k:$$
 $R_k=D_{k-1}.i+rac{A}{n}$ ទី $k+1:$ $R_{k+1}=D_k.i+rac{A}{n}$, ប៉ុន្តែ $D_k=D_{k-1}-rac{A}{n}$

$$\Rightarrow R_{k+1} = \left(D_{k-1} - \frac{A}{n}\right)i + \frac{A}{n}$$
$$= D_{k-1}.i + \frac{A}{n} - \frac{A}{n}i$$
$$\Rightarrow R_{k+1} = R_k - \frac{A}{n}i(*)$$

សស្តិដ្ឋាន៖

ចំនួនប្រាក់ ដែលត្រូវសង ក្នុងដំណាក់ និមួយៗ នៃការសងរំលោះទុនថេរ គឺ ជាកំណើន នព្វន្ត ដែលមាន រ៉េសុងស្មើ នឹង $-\frac{A}{n}i$ ហើយតូទី1ស្មើនឹង $Ai+rac{A}{n}$ ។

ឧនាទារស៍ ៥.២.៣. កំចីចំនួន \$10000 ត្រូវបានចុះកិច្ចសន្យាសងរំលោះប្រចាំឆ្នាំ ដោយរំលោះ ទុនថេរ សំរាប់ រយៈពេល5 ឆ្នាំ ។

ចូររកទឹកប្រាក់ត្រូវរំលោះប្រាក់ដើមក្នុងគ្រានិមួយៗ និង សង់ តារាងរំលោះ នៃកំច្ចីនេះ បើគេ គិតការប្រាក់តាមអត្រា 10%ធ្វើមូល ធនកម្មប្រចាំឆ្នាំ ?

င္မီးအားဌနာဗာ

ដោយការរំលោះនេះជារំលោះទុនថេរ ដូចនេះទុនដែលត្រូវរំលោះគឺ

$$m = \frac{A}{n} = \frac{\$10,000}{5} = \$2,000$$

Payment	Outstanding	Interest at 10%	Principle Repaid	Periodic Payment
Number	Principle			
0	10,000.00	_	_	_
1	8,000.00	1,000.00	2,000.00	3,000.00
2	6,000.00	800.00	2,000.00	2,800.00
3	4,000.00	600.00	2,000.00	2,600.00
4	200.00	400.00	2,000.00	2,400.00
5	0.00	200.00	2,000.00	2,200.00
Total		3,000.00	10,000.00	13,000.00

ឧនាមារណ៍ ៥.២.៤. លោកសម្បត្តិ មានគំរោង ពង្រីកសាខាក្រុមហ៊ុនរបស់ខ្លួន នៅតាមខេត្ត នានា។ ដើម្បីសំរេចគោលបំណងនេះ គាត់បានខ្ចីប្រាក់ពីធនាគារកាណាឌីយ៉ាចំនូន \$60,000 ។ តាមកិច្ច សន្យា គាត់ត្រូវ សងទៅ ធនាគារ វិញដោយ រំលោះទុនថេរ រៀង រាល់ចុងឆមាស ក្នុង រយៈពេល ៥ឆ្នាំ ដោយ ចាប់អនុវត្ត មួយឆមាស ក្រោយ បន្ទាប់ពីថ្ងៃខ្ចី កំចីនេះគិតការប្រាក់តាម អត្រា 16% ធ្វើមូលធនកម្មប្រចាំ ឆមាស។

- ក. ចូរគណនាទឹកប្រាក់ដែលត្រូវបង់ (Periodic Payment) នៅចុងឆ្នាំទី៣?
- ខ. ចូរសង់តារាងរំលោះ សំរាប់កំចីនេះ ?

ជំនោះស្រួយ

ក. ទឹកប្រាក់ដែលត្រូវបង់ប្រចាំគ្រា (Periodic Payment) : ដោយសំណងនេះ ជា សំណង រំលោះទុនថេរ នោះសំណងប្រចាំគ្រា ជាកំណើននព្វន្ត ដែលមាន តូទី១ ស្មើ នឹង $Ai+rac{A}{n}$ ហើយស្រុងស្មើ $-rac{A}{n}i$ ម៉្យាងទៀត

$$A = \$60,000; i = \frac{0.16}{2} = 0.08; n = 2 \times 5 = 10$$

យើងបាន ៖

$$R_1 = Ai + \frac{A}{n}$$

$$= 60,000 \times 0.08 + \frac{60.000}{10} = 10,800.00$$

ប្រាក់សំណងប្រចាំគ្រានៅចុងឆ្នាំទី៣ ត្រូវជាប្រាក់សំណងប្រចាំគ្រាទី៦ យើងបាន ៖

$$R_6 = R_1 + (6 - 1) \left(-\frac{A}{n}i \right)$$

$$= R_1 - 5\frac{A}{n}i$$

$$= 10,800 - 5 \times \frac{60,000}{10} \times 0.08$$

$$= 8,400.00$$

ដូចនេះ ប្រាក់សំណងប្រចាំគ្រាទី ៦ គឺ $R_{\rm 6}=\$8,400$ ។

ខ. តារាងរំលោះ (Amortisation Schedule) ដោយ ៖

$$m = \frac{A}{n}$$
$$= \frac{60,000}{10} = \$6,000$$

យើងបាន ៖

Payment	Outstanding Principle	Interest at	Principle Repaid	Periodic Pay-
Number				ment (Annu-
				ity)
0	60,000.00	_	_	_
1	54,000.00	4,800.00	6,000.00	10,800.00
2	48,000.00	4,320.00	6,000.00	10,320.00
3	42,000.00	3,840.00	6,000.00	9,840.00
4	36,000.00	3,360.00	6,000.00	9,360.00
5	30,000.00	2,880.00	6,000.00	8,880.00
6	24,000.00	2,400.00	6,000.00	8,400.00
7	18,000.00	1,920.00	6,000.00	7,920.00
8	12,000.00	1,440.00	6,000.00	7,440.00
9	6,000.00	960.00	6,000.00	6,960.00
10	0.00	480.00	6,000.00	6,480.00
Total		2,640.00	60,000.00	86,000.00

៥.៣. អាមេទាំលោះខុននៅអាលទសាន្ត

៥.៣.១. មូលសិធិសៃអា៖ំលោះ

នៅចុងដំណាក់កាលនិមួយៗពីដំណាក់កាលទី1ដល់ ទី n-1កូនបំណុល បានបង្វែរការ ប្រាក់ (លើប្រាក់ដើម) ទៅអោយម្ចាស់ បំណុល ហើយនៅចុងដំណាក់កាលទី n ទើប កូនបំណុល សងការប្រាក់ Ai សំរាប់ ដំណាក់កាល ចុងក្រោយ និង ប្រាក់ដើម A ទៅអោយ ម្ចាស់បំណុល ទាំងអស់ ។ ប៉ុន្តែបំណុល A ដែលគាត់សងនោះ គឺបានមកពី មូលនិធិ នៃ រំលោះមួយ (Sinking Fund) ដែលគាត់បង្កើត ដោយនៅ រៀងរាល់ចុងដំណាក់កាល (ពីទី 1ដល់ទី n) គាត់បានដាក់

សន្សំនូវទឹកប្រាក់ថេរចំនួនm តាមអត្រា ការប្រាក់ប្រចាំគ្រា j ហើយចុងដំណាក់កាលទី n មូល និធិនេះ នឹងបង្កើនបានទឹកប្រាក់ស្មើនឹង A ។

លំហូរ សាច់ប្រាក់របស់មូលនិធិនៃរំលោះនេះ យើងអាចតាងដោយដ្យាក្រាមខាងក្រោម

ទឹកប្រាក់សរុប (Accumulated Value) ក្នុងមូលនិធិនៅចុងគ្រាទី គឺស្មើនឹង ៖

$$A = m \frac{(1+j)^n - 1}{j} \Rightarrow m = \frac{Aj}{(1+j)^n - 1}$$

$$\Rightarrow m = \frac{A}{S_{\overline{n}|j}}$$
(4.90)

រំលោះតាមវិធីនេះអ្នកខ្ចី ត្រូវរ៉ាប់រងន្ទវចំនាយថេរ ក្នុងដំណាក់កាលនិមួយៗ ដែលមួយចំណែកជា ប្រាក់លើបំណុលAi និង មួយ ចំណែកទៀត គឺជាប្រាក់សន្សំក្នុងមូលនិធិ ពោលគឺ បើយើងតាង ជាចំណាយថេរប្រចាំគ្រានោះគេបាន៖

$$E = m + Ai \tag{6.99}$$

$$E = Ai + \frac{A}{S_{\overline{n}|i}} \tag{6.95}$$

ឧនាមរស់ ៥.៣.១. ៖ដើម្បីពង្រីក បរិវេណក្រុមហ៊ុន នៅពេលឥល្ងវនេះ ក្រុមហ៊ុនបាន ខ្ចីប្រាក់ ពី ស្ថាប័ន ហិរញ្ញាវត្ថុ ចំនួន\$100,000 សំរាប់ រយៈពេល5 ឆ្នាំ។ តាមកិច្ចសន្យាក្រុមហ៊ុន ត្រូវសង ការប្រាក់ នៅរៀងរាល់ចុងឆ្នាំ ហើយសង ប្រាក់ដើម ផ្ដាច់នៅកាលវសាន្ត។ក្រុមហ៊ុនបានបង្កើត មូលនិធិរំលោះសំរាប់កំចីនេះដោយដាក់ប្រាក់ រៀងរាល់ចុងឆ្នាំ ទៅក្នុងមូលនិធិរំលោះមួយដែល ផ្ដល់ការប្រាក់ តាម អត្រាឆ្នាំ6% ធ្វើមូលធនកម្មប្រចាំឆ្នាំ។

ចូររកចំនួនប្រាក់ដែលដាក់ក្នុងមូលនិធិរំលោះរៀងរាល់ចុងឆ្នាំ និង សង់តារាង មូលនិធិនៃ ការរំលោះ?

ಪ್ಷೇಚಾ: ಕಿಶಾಣ

តាមវិធីសាស្ត្រមូលនិធិនៃការរំលោះ យើងបាន ៖

$$m = \frac{A}{S_{\overline{n}|i}}, \qquad A = \$100,000, \qquad n = 5; \qquad i = 0.06$$

$$\Rightarrow m = \frac{100,000}{S_{\overline{5}|0.06}} = \$17739.64$$

Deposit	Deposit	Interest On Fund At 6%	Increase in Fund	Amount in
Number				Fund at End
				of Period
1	17739.64	0	17739.64	17739.64
2	17739.64	1064.38	18804.02	36543.66
3	17739.64	2192.62	19932.26	56475.92
4	17739.64	3388.56	21128.20	77604.12
5	17739.64	4656.25	22395.89	100,000.01

ឧនាទារស៍ ៥.៣.២. ៖ អាជ្ញា ក្រុង ត្រូវការ ប្រាក់ចំនូន \$200, 000 ក្នុងអំឡុង 5 ឆ្នាំ ទៀតដើម្បីយក ទៅ ទូទាត់ បំណុល ដែលបានខ្ចីពី សាធារណជនតាមរយៈការបោះផ្សាយសញ្ញាប័ណ្ណ ។

- ក. តើ ក្នុង ឆ្នាំ និមួយៗ ត្រូវយកប្រាក់ ចំនួនប៉ុន្មាន ទៅដាក់ នៅក្នុង មូលនិធិ ប្រសិនបើ មូលនិធិ ទទួលការប្រាក់ តាមអត្រា $j_\infty=12\frac{1}{2}\%$?
- ខ. ចូរសង់តារាងមូលនិធិរំលោះ ដោយគ្រាន់តែសង់ ៣ឆ្នាំដំបូង និង៣ឆ្នាំចុងក្រោយបង្អស់?

ដំណោះស្រួយ

ក. ប្រាក់បង់ប្រចាំគ្រាក្នុងមូលនិធិរំលោះ

យើងសង្កេតឃើញថា ក្រុងបង់ប្រាក់ប្រចាំឆ្នាំ តែការ ប្រាក់ធ្វើមូលធនកម្មបន្ត ដូចនេះ ការ បង់ប្រាក់ ប្រចាំគ្រានេះ ជា General Annuity យើងត្រូវបំលែងវា អោយទៅជា Ordinary Annuity សិន

តាមនិយមន័យយើងទាញបាន ៖

$$\begin{aligned} 1+i &= e^{0.125} = 1.13314845 \Rightarrow i = 0.133148453 \\ A &= \$200,000; n = 15; \\ \Rightarrow R &= \frac{A}{S_{\overline{n}|i}} \\ &= \frac{200,000}{S_{\overline{15}|0.133148453}} \\ &= 4823.50 \end{aligned}$$

ដូចនេះ ក្រុងត្រូវដាក់សន្សំជារៀងរាល់ឆ្នាំនូវទឹកប្រាក់ចំនួន \$4823.50 ។

ខ. តារាង មូលនិធិរំលោះ (៣ឆ្នាំដំបូង និង ៣ឆ្នាំចុងក្រោយបង្អស់) ដើ:ម្បី បំពេញ បីជួរដេក ក្រោយ បង្អស់ នៃតារាង ដោយមិន ចាំបាច់បំពេញតារាងទាំង មូលយើង ត្រូវកំណត់ ទឹក ប្រាក់ក្នុងមូលនិធិ រំលោះ នៅចុងឆ្នាំ ១២៖

$$4823.50\ S_{\overline{12}\mid_{0.133148453}} = \$126129.35$$

Deposit	Deposit	Interest On	Increase in Fund	Amount in
Number		Fund At 6%		Fund at End
				of Period
1	4823.50	0	4823.50	4823.50
2	4823.50	642.24	5465.74	10289.24
3	4823.50	1370.00	6193.50	16482.74
12	_	_	_	126129.35
13	4823.50	16793.93	21617.43	147746.78
14	4823.50	19672.26	24495.76	172242.54
15	4823.50	22933.83	27757.33	199999.87

ចំណាំ ៖ សមតុល្យគណនីនៃមូលនិធិចុងក្រោយ គឺ \$199,999.87 នៅខ្វះ \$0.13 ទៀតទើប គ្រប់ \$200,000 ។ លំអៀងនេះ បណ្ដាលមកពីការកាត់ខ្ទង់របស់យើង ។

៥.៣.២. អារម្រៀមទៀមទិនីរំលោះដោយសំណ១ទេវ សិ១មូលសិនិវិនអាររំលោះ

យើងអាចធ្វើ ការប្រៀបធៀបរវាង Amortization Method និង Sinking Fund Method ដោយ ប្រៀបធៀបចំណាយក្នុង ដំណាក់កាល និមួយៗ។ ឧបមាថា

- i ជាអត្រាការប្រាក់ប្រចាំគ្រានៃកំចីសំរាប់វិធីសាស្ត្រទាំងពីរ
- j ជា អត្រាការប្រាក់ សំរាប់ មូលនិធិរំលោះ ក្នុង ដំណាក់កាល ដូចគ្នា រយៈពេល (ឬចំនួន ដំណក់កាល) គឺ n ហើយAប្រាក់ ដើមនៃកំចីនេះ

យើងបាន

ullet E_1 ចំណាយប្រចាំគ្រានិមួយៗនៃវិធីសាស្ត្ររំលោះដោយសំណងថេរ

$$E_1 = \frac{A}{a_{\overline{n}|i}} = Ai + \frac{A}{S_{\overline{n}|i}}$$
 (៥.១៣)

ullet E_2 ចំណាយប្រចាំគ្រានិមួយៗនៃវិធីសាស្ត្រមូលនិធិនៃការរំលោះ ៖

$$E_2 = Ai + rac{A}{S_{\,\overline{n}|\,j}}$$
 (៥.១៤)

ជាទូទៅ៖

- ullet បើ $i>j\Rightarrow S_{\overline{n}|i}>S_{\overline{n}|j}\Rightarrow E_1< E_2$ គឺបានន័យថា Amortization Method ចំណោញជាង (Preferable)
- បើ $i=j\Rightarrow S_{\overline{n}|i}=S_{\overline{n}|j}\Rightarrow E_1=E_2$ បានន័យថាវិធីសាស្ត្រខាងលើសមមូល Equivalent
- បើ $i < j \Rightarrow S_{\overline{n}|i} < S_{\overline{n}|j} \Rightarrow E_1 > E_2$ បានន័យថា វិធីសាស្ត្រមូលនិធិរំលោះប្រសើរ ជាឯ (Sinking-Fund Method is preferable)

៖ នំណង់សំគាល់ ៖

ក្នុងករណីអត្រាការប្រាក់នៃកំចីអនុវត្តលើបំណុល នៃវិធីសាស្ត្ររំលោះដោយ សំណងថេរ និង មូលនិធិនៃការរំលោះ ខុសគ្នានោះ សេចក្តីសន្ធិដ្ឋានខាងលើមិនត្រឹម ត្រូវទេ ។ យើងត្រូវអនុ វត្តដោយគណនាតាមជាក់ស្តែងហើយ ធ្វើការ ប្រៀបធៀប ។ **ឧនាសរសំ ៥.៣.៣**. ៖ក្រុមហ៊ុនបានខ្ចីប្រាក់ពីធនាគារចំនូន \$200,000 សំរាប់រយៈពេល ១៥ឆ្នាំ។ តាម កិច្ចសន្យា ក្រុមហ៊ុននោះ អាច សង រំលោះដោយ សំណងថេរ តាមអត្រា $j_1=11\%$ ឬ សង ការប្រាក់ លើប្រាក់កំចីតាម អត្រា $j_1=10\%$ និង បង្កើតមូលនិធិ រំលោះដែលទទូលបាន ការប្រាក់តាមអត្រា $j_1=7.5\%$ ទើបទូទាត់បំណុល នៅចុងឆ្នាំទី១៥។ តើវិធីណាមួយដែលប្រសើរសំរាប់ក្រុមហ៊ុននោះ ហើយវិធីនោះផ្ដល់ផលចំណេញ ចំនួន ប៉ុន្មាន ក្នុងមួយឆ្នាំ ?

ដំណោះស្រួយ

តាម Amortization Method ឃើងបាន ៖

$$E_1 = \frac{A}{a_{\overline{n}|i}}$$

$$= \frac{200,000}{a_{\overline{15}|0.11}}$$

$$= $27813.05$$

តាម Sinking-Fund Method យើងបាន

$$E_2 = Ai + \frac{A}{S_{\overline{n}|i}}$$

$$= 200,000 (0.105) + \frac{200,000}{S_{\overline{15}|0.075}}$$

$$= \$21,000 + \$7,657.45$$

$$= \$28,657.45$$

ដូចនេះ

ការសង រំលោះ ដោយសំណងថេរ វាប្រសើរជាង ការសងដោយ មូលនិធិ រំលោះ ដែល ក្នុងឆ្នាំ និមួយៗ ចំណេញ (ប្រសើរជាង) \$844.40។

លំខាត់អនុទត្តន៍

នំទាន់ ៥.១. បំណុលចំនួន \$4000 ត្រូវសងរំលោះដោយសំណងថេរនៅរៀងរាល់ត្រីមាសសំរាប់ រយ:ពេល 2 ឆ្នាំ។ បើការប្រាក់ $J_4=10\%$?

- ក. ចូរគណនាប្រាក់សំណងប្រចាំគ្រា ?
- ខ. សង់តារាងរំលោះសំរាប់កំចីនេះ ?

សំអាត់ ៥.២. ប្រាក់កំចីមួយត្រូវបានសងរំលោះ ដោយសំណងថេរប្រចាំឆ្នាំចំនួន 10 លើក ។ ប្រាក់សំណងសំរាប់ ឆ្នាំទី 7 មានប្រាក់រំលោះចំនួន \$110.25 និង ការប្រាក់ \$39.75 ។ តើអត្រាការប្រាក់ជាក់លាក់ ប្រចាំឆ្នាំសំរាប់កំចីនេះស្មើប៉ុន្មាន ?

នំទាះគំ ៥.៣. កំចីមួយត្រូវបានសងរំលោះ ប្រចាំត្រីមាសចំនួន 16 លើកគឺ ៖ \$50; \$100; \$150; \cdots ; \$800 រៀងគ្នាហើយការសងលើកទី 1 អនុវត្ត 3 ខែក្រោយបន្ទាប់ពីថ្ងៃ ខ្ទី។ ការប្រាក់ $J_4=8\%$ ។ ចូរគណនាការប្រាក់សរុបដែលបានបង់ ជូនទាំងអស់ ?

សំទាាត់ ៥.៤. ថ្ងៃទី ១ ខែ កក្កដា ឆ្នាំ ១៩៩៩ លោក សុខ បានខ្ចីប្រាក់ចំនួន \$30 000 ពីធនាគារ ហើយសងវិញ ដោយសំណងថេរប្រចាំខែសំរាប់រយៈពេល 3 ឆ្នាំៗធនាគារគិតការប្រាក់ $J_{12}=8\%$ (សងលើកទី ១ ធ្វើនៅថ្ងៃទី ១ ខែ សីហា ឆ្នាំ ១៩៩៩)។ តើចំណុលចំនួនប៉ុន្មាន ដែល ត្រូវបានរំលោះ ក្នុងឆ្នាំ ១៩៩៩? ហើយ ការប្រាក់ ចំនួនប៉ុន្មាន ដែលបានបង់ ?

សំទាាត់ ៥.៥. បំណុលចំនូន \$15 000 ត្រូវសងរំលោះដោយសំណងថេរប្រចាំខែ ចំនូន \$350 រៀងរាល់ចុងខែ រហូត ដល់អស់បំណុល ព្រមទាំងបូកបន្ថែម ប្រាក់សងបង្គ្រប់ ចុងក្រោយ ។ បើការប្រាក់ $J_4=10\%$ ចូរគណនាបំណុល ដែលនៅជំពាក់នៅចុងឆ្នាំទី ២ ?

សំអាត់ ៥.៦. បំណុលមួយគិតការប្រាក់តាមអត្រា $J_4=10\%$ ត្រូវសងរំលោះ ដោយសំណង ថេរចំនួន \$300 ប្រចាំ ត្រីមាស។ បើបន្ទាប់ពីសងរំលោះ លើកទី k រួចបំណុលនៅជំពាក់មានចំនួន \$2853.17 ។

តើបំណុលនេះត្រូវ ស្នើប៉ុន្មាន នៅពេលដែលសងរំលោះលើកទី (k) រួចមក ?

នំទាន់ ៥.៧. លោកអ្នកបានខ្ចីប្រាក់ចំនួន \$ $1\,600\,$ ពីក្រុមហ៊ុនមួយ និង យល់ព្រមបង់ \$ $160/1\,$ ខែ សំរាប់រយ:ពេល 12 ខែ ។ ចូររក J_{12} ?

សំទាន់ ៥.៤. ហាងនាឡិកាមួយបានប្រកាសលក់នាឡិកា 1 គ្រឿង ក្នុងតំលៃ \$55 ឬមួយដោយ បង់ \$5 ប្រចាំខែ សំរាប់រយៈពេល 12 ខែ។ តើអត្រាប្រចាំ ឆ្នាំពិតប្រាក ដដែលហាង នាឡិកានោះ គិតមានប៉ុន្មានសំរាប់អ្នក ទិញដែល បង់ប្រចាំខែ ? បើអ្នកទិញបង់ប្រាក់លើកទី 1 នៅថ្ងៃទិញ។

សំទារត់ ៥.៩. លោក Anderson បានខ្ចី ប្រាក់ចំនូន $\$8\,000$ ពី ស្ថាប័ន ហិរញ្ញវត្ថុ ហើយតាមកិច្ច សន្យាគាត់ត្រូវសង វិញប្រចាំខែដោយសំណងថេរសំរាប់ រយៈពេល 4 ឆ្នាំតាមអត្រា $J_{12}=13.5\%$ ។ ចូររកការប្រាក់ សរុបដែលគាត់បានសងទាំង 4 ឆ្នាំនេះ។

សំសាត់ ៥.90. បំណុលចំនួន \$1 000 គិត ការប្រាក់ តាមអត្រា $J_{12}=13.5\%$ និង ត្រូវបាន ចុះ កិច្ចសន្យា សងដោយ សំណងថេរ ប្រចាំខែ នូវទឹកប្រាក់ ចំនួន \$200 ក្នុងមួយខែ រហូតដល់អស់ បំណុល។

ចូរសង់តារាងរំលោះសំរាប់កំចីនេះ ?

នំទារ៖ ៥.99. រថយន្ត Bus មួយគ្រឿង ត្រូវបានគេទិញ ក្នុងតំលៃ \$46 000 ដោយ បង់ដល់ដៃ ចំនួន \$6 000 និង បង់ប្រចាំខែស្មើៗគ្នាសំរាប់រយ:ពេល 15 ឆ្នាំ។ បើការប្រាក់ $J_2=10\%$ ។

- ក. ចូររកប្រាក់ដែលត្រូវបង់ប្រចាំខែ ?
- ខ. ចូរបំពេញតារាងរំលោះអោយបាន ប្រាំមួយជួរដំបូង ?

នំទាាន់ ៥.១២. ធនាគារ ABC បានអភិវឌ្ឍន៍គំរោងពិសេសមួយ ដើម្បីជួយដល់ អតិថិជនរបស់ ខ្លូនក្នុងការសង រំលោះបំណុល អោយបាន ឆាប់រហ័ស។ ជំនួសអោយ ការបង់ ប្រាក់ចំនួន \$X ក្នុងមួយខែ កូនបំណុល បានស្នើសុំ បង់ប្រាក់ \$X/4 ក្នុង មួយ សប្តាហ៍ (52 ដងក្នុង មួយឆ្នាំ)។ លោក សម្បត្តិ ទិញ ផ្ទះមួយខ្នង ត្រូវការខ្ទី ប្រាក់ចំនួន \$95 000 គិតការប្រាក់ $J_{12}=9\%$ ។ ចូរកំណត់ ៖

- ក. ប្រាក់សំណងប្រចាំខែ ដើម្បីរំលោះបំណុលអោយអស់ក្នុង រយៈពេល ២៥ឆ្នាំ ?
- ខ. ប្រាក់សំណងប្រចាំសប្តាហ៍ដូចគំរោង ដែលគេផ្តល់អោយ?
- គ. ចំនួនសប្តាហ៍ដែលត្រូវការដើម្បីរំលោះ បំណុលអោយអស់ (ករណីសងរំលោះប្រចាំសប្តាហ៍)?
- ឃ. ការប្រាក់ដែលសន្សំបានក្នុងករណី រំលោះប្រចាំសប្តាហ៍ ?

សំសាត់ ៥.១៣. កសិករម្នាក់បានខ្ចីប្រាក់ពីធនាគារ ដោយសន្យាសងវិញចំនូន 200\$ រៀងរាល់ ខែតាមអត្រា $J_{12}=12\%$ ក្នុងអំឡុងពេល 1 ឆ្នាំ ។ ការសងលើកទី 1 ចាប់អនុវត្តនៅ 7 ខែក្រោយ បន្ទាប់ពីថ្ងៃខ្ទី។

- ក. តើទឹកប្រាក់ដែលកសិករនោះបានខ្ចីមានចំនួនប៉ុន្មាន ?
- ខ. ចូរសង់តារាងរំលោះនៃកំចីនេះ ?

សំទារត់ ៥.១៤. បំណុលចំនួន \$6 000 ត្រូវបានចុះ កិច្ចសន្យាសង រៀងរាល់ ឆមាសដោយ រំលោះ ទុនថេរសំរាប់ រយៈពេល 3 ឆ្នាំ តាមអត្រា $J_2=12\%$ ។ ច្ចុរគណនាប្រាក់រំលោះប្រចាំគ្រា និងសង់តារាងរំលោះនៃកំចីនេះ ?

នំទាាន់ ៥.១៥. ធនាគារពាណិជ្ជកម្មមួយ បានយល់ព្រមអោយបុរសម្នាក់ខ្ចីប្រាក់ចំនួន \$10000 ដោយសងរំលោះ ទុនថេរចំនួន $\$2\ 000/$ ឆ្នាំ ។កំចីនេះគិតការប្រាក់ $J_1=13\%$ ។

- ក. ចូរគណនារយៈពេលចាំបាច់សំរាប់ សងរំលោះនេះ ?
- 2. សង់តារាងរំលោះនៃកំចីនេះ ?

នំទារន់ ៥.១៦. ប្ដីប្រពន្ធមួយគូរ បានដាក់ប្រាក់សន្សំសំរាប់បង់ថ្លៃផ្ទះ របស់ខ្លូន ។ អ្នកទាំងពីរចង់ ទទួលបានប្រាក់ $$15\,000$ នៅចុងឆ្នាំទី 4 ពីគណនីសន្សំនោះដែលផ្ដល់ការប្រាក់ តាមអត្រា $J_1=6\%$ ។

- ក. តើអ្នកទាំងពីរនាក់នោះ ដាក់ប្រាក់ចំនូនប៉ុន្មាន នៅរៀងរាល់ចុងឆ្នាំ ?
- ខ. ចូរសង់តារាងនៃមូលនិធិរំលោះនោះ ?

នំទំនាន់ ៥.១៧. កូនបំណុលម្នាក់ បាន ខ្ចីប្រាក់ ចំនូន \$5000 ហើយ យល់ព្រម សងការប្រាក់រៀង រាល់ ឆមាសតាម អត្រា $J_2=10\%$ នៃបំណុលនិងបង្កើតមូលនិធិនៃរំលោះ ដែលត្រូវសងបំណុល នៅ ចុងឆ្នាំទី 5 ។

ប្រសិនបើ មូលនិធិនោះ ទទួលបាន ការប្រាក់តាម អត្រា $J_2=7\%$ ។

- ក. ច្ចររកប្រាក់ចំណាយសរុបប្រចាំឆមាសរបស់គាត់ ?
- ខ. តើនៅចុងឆ្នាំទី 4 ក្នុងមូលនិធិនៃរំលោះមានទឹកប្រាក់ប៉ុន្មាន ?

សំទាាត់ ៥.១៨. មូលនិធិរំលោះមួយទទូលការប្រាក់ = 13% ហើយឥលូវនេះក្នុងមូលនិធិមាន ប្រាក់ \$2 000 ។

- 9. តើចំនូនប្រាក់បង់ ប្រចាំត្រីមាស ស្មើប៉ុន្មាន ដើម្បីអោយមូលនិធិបង្កើនបានប្រាក់ \$10 000 ក្នុង រយៈពេល 3ឆ្នាំខាងមុខ ?
- ២. តើរយ:ពេល 2 ឆ្នាំទៀត មូលនិធិមានប្រាក់ចំនួនប៉ុន្មាន ?

សំសាត់ ៥.១៩. ដើម្បីជួសជុលកែលំអ ម្ចាស់អាគារបានសំរេចចិត្ត បង្កើត មូលនិធិរំលោះមួយ ដែលត្រូវទទួលបាន ប្រាក់ \$50 000 នៅចុងឆ្នាំទី ៣ ។

- ក. តើទឹកប្រាក់បង់ប្រចាំខែត្រូវស្មើប៉ន្មាន បើមូលនិធិទទូលបានការប្រាក់ $J_{365}=5\%$?
- ខ. ចូរសង់តាងមូលនិធិរំលោះ ៣ជូរដំបូង និង ២ជូរក្រោយបង្អស់ ?

នំទាន់ ៥.២០. អាជ្ញាធរក្រុងបានខ្ចីប្រាក់ចំនួន $$250\,000$ ដោយបង់ការប្រាក់តាមអត្រា $J_1=9,5\%$ ។ ក្រុងបាន រៀបចំ ដាក់ប្រាក់ប្រចាំឆ្នាំ ទៅក្នុងមូលនិធិរំលោះ ដែលទទូល ការប្រាក់ $J_1=6\%$ ដើម្បីទូទាត់ បំណុលទាំង អស់នៅ ចុងឆ្នាំទី ១៥ ។ តើចំណាយសរុបប្រចាំឆ្នាំរបស់ក្រុង ស្មើប៉ុន្មាន ?

សំអាត់ ៥.២១. ការប្រាក់ $J_4=12\%$ លើកំចីចំនួន $\$3\,000$ ត្រូវបង់រៀងរាល់ឆមាសរហូតដល់ កាលវសាន្ត ។ មូលនិធិ រំលោះមួយទទួល ការប្រាក់តាមអត្រា $J_4=8\%$ ត្រូវបានបង្កើតឡើង ដើម្បីអោយ កូនបំណុលអាចសង ប្រាក់កំចីនៅ ចុងឆ្នាំទី ៤ ។

- ក. ចូរគណនាប្រាក់ ដាក់សន្សំប្រចាំឆមាស ក្នុងមូលនិធិរំលោះ និង ដោយ ផ្នែកលើ ការដាក់ ប្រាក់ប្រចាំឆមាស ចូរសង់តារាងមូលនិធិរំលោះសំរាប់ពីរជួរចុងក្រោយ ?
- ខ. ចូរគណនាចំណាយសរុបប្រចាំឆមាសសំរាប់កំចីនេះ ?
- គ. តើបំណុលនៅជំពាក់នៅចុងឆ្នាំទី ២ ស្មើប៉ុន្មាន ?

សំទាវត់ ៥.២២. នៅថ្ងៃទី ០១ ខែ សីហា ឆ្នាំ ១៩៩៨ លោកភក្តីបានខ្ចីប្រាក់ \$20 000 សំរាប់រយៈ ពេល ១០ឆ្នាំ ។ ការប្រាក់ 10% ក្នុង១ឆ្នាំអាច បំលែងជាការប្រាក់ប្រចាំឆមាសដែល ត្រូវបង់រហូត ដល់កាលវសាន្ត ។ ដើម្បីធានា សុវត្ថិភាពក្នុង ការទូទាត់បំណុល លោក ភក្តី បានដាក់ប្រាក់ក្នុង មូលនិធិរំលោះ នៅថ្ងៃទី ០១ ខែ កុម្ភៈ និង ថ្ងៃទី ០១ ខែ សីហា ឆ្នាំ ១៩៩៩ រហូតដល់ឆ្នាំ ២០០៨ ។ មូលនិធិនេះទទូល ការប្រាក់ $J_1=7\%$ ក្នុងឆ្នាំ ១៩៩៩ រហូតដល់ថ្ងៃទី ៣១ ខែ ធ្នូ ឆ្នាំ ២០០៣ និង $J_1=6\%$ ចាប់ពីថ្ងៃទី ០១ ខែ មករា ឆ្នាំ ២០០៤ រហូតដល់ ២០០៨ ។

- ក. ចូររកចំណាយសរុបប្រចាំឆមាស សំរាប់កំចីនេះ ?
- ខ. តើមូលនិធិរំលោះមានប្រាក់ប៉ុន្មាន បន្ទាប់ពីដាក់ប្រាក់ថ្ងៃទី ១ ខែ សីហា ឆ្នាំ ២០០៧ ?
- គ. ចូរសង់តារាងមូលនិធិរំលោះសំរាប់ថ្ងៃទី ១ ខែ កុម្ភ: ឆ្នាំ ២០០៨ និង ថ្ងៃទី ០១ ខែ សីហា ឆ្នាំ២០០៨ ?

សំសាត់ ៥.២៣. ក្រុមហ៊ុនមួយបានខ្ចីប្រាក់ \$50 000 ហើយត្រូវសងវិញដោយសំណងថេ រនៅ រៀងរាល់ចុងឆ្នាំសំរាប់រយៈពេល ១០ឆ្នាំ ចូរគណនាចំណាយសរុបប្រចាំឆ្នាំ សំរាប់កំចីក្នុងលក្ខខ័ណ្ឌ

- ក. បំណុលត្រូវសងរំលោះដោយ សំណងថេរតាមអត្រា $J_1=9\%$?
- ខ. សងការប្រាក់ 9% លើកំចី និង បង្កើតមូលនិធិរំលោះដែលទទួលបានការប្រាក់ $J_1=9\%$?
- គ. សឯការប្រាក់ 9% លើប្រាក់កំចី និង បង្កើតមូលនិធិរំលោះដែលទទូលបានការប្រាក់ $J_1=6\%$?

នំសាត់ ៥.២៤. ក្រុមហ៊ុនអាចខ្ចីប្រាក់ចំនួន $\$180\,000$ ហើយត្រូវសងវិញក្នុងរយ:ពេល ១៥ឆ្នាំ ។ គេអាចសងរំលោះបំណុលដោយសំណងថេរតាមអត្រាការប្រាក់ $J_1=10\%$ ឬ សងការប្រាក់ តាមអត្រា $J_1=9\%$ និង បង្កើតមូលនិធិ រំលោះ ដែលទទូលការប្រាក់ $J_1=7\%$ ។ តើគំរោងណាមួយថោកជាង ? ហើយចំណេញចំនួនប៉ុន្មានក្នុងមួយឆ្នាំ ?

សំទាាត់ ៥.២៥. ក្រុមហ៊ុនខ្ចីប្រាក់ចំនូន $\$60\,000$ ហើយត្រូវសង វិញរយ:ពេល ៥ឆ្នាំ ។ ប្រភពទី ១ នឹងអោយខ្ចី ដោយ គិតការប្រាក់ $J_2=10\%$ ប្រសិនបើ សងរំលោះដោយ សំណងថេរ ប្រចាំ ឆមាស ។ ប្រភពទី ២ និងអោយខ្ចី ដោយគិតការប្រាក់ $J_2=9.5\%$ ប្រសិនបើនៅរៀងរាល់ឆមាស សង តែការប្រាក់ និងសង ប្រាក់បំណុលនៅចុងឆ្នាំទី ៥ ។ តើប្រភពមួយណាដែលថោកជាងគេ និង ប្រាក់ចំណេញប្រចាំឆមាស ចំនួនប៉ុន្មាន បើមូលនិធិទទួលការប្រាក់ $J_2=8\%$?

សំអាត់ ៥.២៦. ក្រុមហ៊ុនអាចខ្ចីប្រាក់ $$200\,000$ មានការប្រាក់ $J_1 = 9\%$ និង សងរំលោះ ដោយ សំណង ថេរសំរាប់ រយៈពេល ១០ឆ្នាំ ។ រីឯ ប្រភពទី ២ ប្រាក់កំចី នេះអាចខ្ចី ដោយ គិតការប្រាក់ $J_1 = 8.5\%$ ប្រសិនបើ សង ការប្រាក់ រៀងរាល់ឆ្នាំ និង សងប្រាក់ដើម នៅចុងឆ្នាំទី ១០ ។ តើមូលនិធិរំលោះ ត្រូវទទូល ការប្រាក់ J_1 ប៉ុន្មាន ដើម្បីអោយ ចំណាយសរុបប្រចាំឆ្នាំនៃ ប្រភព ទាំងពីរនេះ ស្មើគ្នា ?

នំទារត់ ៥.២៧. ក្រុមហ៊ុន ត្រូវការខ្ចីប្រាក់ $$200\,000$ សំរាប់ រយៈពេល ៦ឆ្នាំ ។ ប្រភពទី ១ អាច អោយខ្ចីដោយគិត ការប្រាក់ $J_2=10\%$ ប្រសិនបើសងរំលោះដោយសំណងថេរប្រចាំខែ។ ប្រភពទី ២ នឹងអោយខ្ចីដោយ គិតការប្រាក់ $J_4=9\%$ បើសិនសង តែការប្រាក់រៀងរាល់ខែ និង សងប្រាក់ដើម នៅ ចុងឆ្នាំទី ៦ ។ ក្រុមហ៊ុន អាចទទួល ការប្រាក់ $J_{365}=6\%$ ក្នុងមូលនិធិរំលោះ។ តើប្រភពណាដែលក្រុមហ៊ុនគប្បីសុំខ្ចី? និង ប្រាក់ចំនួនប៉ុន្មានត្រូវបានសន្សំក្នុងមួយខែ ?

•

៦.១. សញ្ញារណ៍នៃសញ្ញាម័ណ្ណ

ក្រុមហ៊ុន និង សហគ្រាសរដ្ឋ ឬ ឯកជនដែល ត្រូវការទុន អាចស្វែងរក ពីប្រភពផ្សេងៗ ក្រៅពី ស្ថាប័ន ហិរញ្ញ វត្ថុ ឬធនាគារ ពោល គឺ អាចខ្ចីធុនពីសាធារណៈជន ដោយបោះផ្សាយ ឬលក់សញ្ញាប័ណ្ណ។ ការសុំខ្ចីដោយបោះ ផ្សាយ សញ្ញាប័ណ្ណ គឺជាការសុំខ្ចីរយៈ ពេល វែង និង ជាកម្ចី ដែល សងរំលោះ ប្រាក់ដើម នៅកាលវសាន្ត មានន័យថា អ្នកខ្ចី(Issuer) និង ត្រូវបង់ការ ប្រាក់នៅរៀងរាល់គ្រា ដែលមានចែង ក្នុង សញ្ញាប័ណ្ណ រហូតដល់ កាលបរិច្ឆេទចុង ក្រោយ នៃ ការសង់បំណុលទើបសងប្រាក់ ដើមទៅម្ចាស់បំណុល (Bond holder)។

ව.ක.ව. පුණක්ණ

និយមន័យ ៦.២.១. សញ្ញាច័ណ្ណ គឺ ជាកិច្ចសន្យាលាយលក្ខណ៍អក្សររវាង អ្នកបោះផ្សាយ ឬ អ្នកខ្ចី (Issuer) និង អ្នកវិនិយោគ (Investor) ដែលបញ្ជាក់ អំពី៖

- តម្លៃចារឹក (The Face value)
- កាលបរិច្ឆេទកំណត់សង ឬឥណប្រតិទាន (The Redemption date or Maturity date)
- អត្រាចារឹក (The Bond rate or Coupon rate)
- តម្លៃត្រូវសង (The Redemption Value)

ច្ចុះសំគាល់ថា៖

- អុទ្រា**ទារី៖ (Bond rate or Coupon rate)** ៖ គឺ ជាអត្រាដែលសញ្ញាប័ណ្ណបង់ការប្រាក់ជារៀង រាល់គ្រាគិតលើ តម្លៃចារឹក របស់វា រហូតដល់ថ្ងៃកំណត់សង។
- **ន**ើម្ហា**ន្ទេស១** (Redemption value) ៖ គឺ ជាទឹកប្រាក់ដែលបានសន្យាសង នៅកាលបរិច្ឆេទ ចុងក្រោយនៃកិច្ច សន្យា។ ស្ទើរតែ គ្រប់ករណីទាំងអស់ តម្លៃត្រូវសងនេះស្មើនឹងតម្លៃចារឹក

ហើយគេថាសញ្ញាប័ណ្ណ ត្រូវបាន សងតាមតម្លៃចារឹក (Bond is redeemed at par)។

សញ្ញាប័ណ្ណ អាចត្រូវបានទិញ ឬ លក់ជាច្រើនដងមុនពេលដល់ ឥណប្រតិទាន។ ចំពោះ ចំណូលជាក់លាក់របស់ អ្នកទិញសញ្ញាប័ណ្ណ មួយគឺត្រូវបាន កំណត់ដោយអត្រាទិន្នផល (Yield rate) 1

ಚ್ಚಾಚಕ್ಷಣಿತಿ .ಜಿ.ಜಿ.ರ

ក្នុងជំពូកនេះ យើងប្រើប្រាស់និមិត្តសញ្ញាមួយចំនួន ដែលកំណត់តាងដូចតទៅ៖

- ullet F: តម្លៃចារឹករបស់សញ្ញាប័ណ្ណ (Face value or Par value of the bond)
- ullet C : តម្លៃត្រូវសងនៃសញ្ញាប័ណ្ណ (Redemption value of the bond)
- r: អត្រាចារឹក (Bond rate or Coupon rate)
- ullet i : អត្រាទិន្នផលប្រចាំគ្រារបស់អ្នកទិញសញ្ញាប័ណ្ណ (Yield rate per interest period)
- ullet n: ឈើ:ពេលនៃកិម្តី (The number of interest periods until the redemption period)
- ullet P :តម្លៃទិញឬតម្លៃលក់នៃសញ្ញាប័ណ្ណធៀបនឹង i(Purchase price of the bond to yield rate
- \bullet Fr: ការប្រាក់នៃសញ្ញាប័ណ្ណដែលត្រូវបង់ (Bond interest payment or Coupon)

៦.៣. តន្លៃនិញ្ញា និច តន្លែងញ្ញាម័ណ្ណ

៦.៣.១. **ន**្តៃនិញ្ញានៃសញ្ញាម័ណ្ណ ឆ្នៀមនឹទអត្រានិទូនល

អ្នកវិនិយោគ តែងតែចង់ដឹង អត្រា ជាក់លាក់មួយ សម្រាប់ខ្លួនមុន នឹងធ្វើការសម្រេចចិត្ត ដាក់វិនិយោគ លើ គម្រោង អ្វី មួយ។ ស្រដៀងគ្នានេះដែរមុននឹងវិនិយោគ គិនទិញសញ្ញាប័ណ្ណ គេត្រូវដឹងអត្រា បំណុល (Rate of return) ទើប គេកំណត់ថ្លៃ ដែល ត្រូវទិញនោះ ចុងក្រោយ។ យើងដឹងថាសញ្ញាប័ណ្ណ គឺជាកម្ចីInterest-only loan បានន័យថានៅរៀងរាល់គ្រា គេសងការប្រាក់ ដោយគិតតាមអត្រាចារឹកលើតម្លៃ និងសងប្រាក់ដើមនៅកាលវសាន្ត។

តម្លៃសញ្ញាប័ណ្ណនៅថ្ងៃដែលត្រូវទិញនោះ គឺស្មើផលបូកតម្លៃបច្ចុប្បន្ននៃការប្រាក់ដែលបង់ ប្រចាំគ្រា និង តម្លៃត្រូវសង យើងអាចតាងលំហូរសាច់ប្រាក់ដោយ ដ្យាក្រាមខាងក្រោម៖

យោងតាមដ្យាក្រាមនេះ យើងបាន៖
$$P=Fra_{\overline{n}|_i}+C(1+i)^{-n}$$
 (៦.9) ដោយ $a_{\overline{n}|_i}=rac{1-(1+i)^{-n}}{i}$ $1+(1+i)^{-n}=ia_{\overline{n}|_i}$ $(1+i)^{-n}=1-ia_{\overline{n}|_i}$ (*)

យើងជំនួស (\star) ក្នុងសមីការ(៦.១) ទាញបាន៖

$$P=Fra_{\overline{n}|_i}+C(1+i)^{-n}$$

$$=Fra_{\overline{n}|_i}+C(1-ia_{\overline{n}|_i})$$

$$=C+(Fr-Ci)a_{\overline{n}|_i}$$
 (៦.២)

នៅខាងលើយើងដឹងរួចមកហើយថា ស្ទើរតែគ្រប់ករណីទាំងអស់ ប្រាក់សំណងនៃសញ្ញា ប័ណ្ណស្មើនឹង តម្លៃ ចារឹក ហើយករណីនេះយើងទាញបាន រូបមន្តថ្មីមួយទៀតដែលហៅថា រូបមន្ត Makeham's purchase price ។

បើ C=F នោះគេបាន៖

$$\begin{split} P &= Fra_{\,\overline{n}|_i} + C(1+i)^{-n} \\ &= Fr\frac{1-(1+i)^{-n}}{i} + F(1+i)^{-n} \\ &= F(1+i)^{-n} + \frac{r}{i}[F-F(1+i)^{-n}] \end{split}$$

$$\begin{split} \mathbb{P} &= F(1+i)^{-n} + \frac{r}{i}[F-F(1+i)^{-n}] \end{split} \tag{b.m} \end{split}$$

រូបមន្ត(៦.៣) ខាងលើហៅថា Makeham's purchase price formula

ឧនាទារស៍ ៦.៣.១. សញ្ញាប័ណ្ណ មួយ មានតម្លៃចារឹក 1000\$ ដែល បង់ការប្រាក់តាមអត្រាចារឹក $J_2=12\%$ និងតម្លៃសងនៃសញ្ញាប័ណ្ណ គឺស្មើនឹង តម្លៃ ចារឹកដែលត្រូវសងនៅចុង ឆ្នាំទី 10។ ១. ចូររកតម្លៃទិញនៃសញ្ញាប័ណ្ណ ធៀបនឹងអត្រាចំណូល 10% ធ្វើមូលធនកម្មប្រចាំឆមាស?

២. ចូររកតម្លៃទិញនៃសញ្ញាប័ណ្ណធៀប នឹងអត្រាទិន្នផល $J_2=15\%$?

ជំណោះស្រាយ

១. នៅរៀងរាល់ឆមាសសញ្ញាប័ណ្ណ ត្រូវបង់ការប្រាក់ចំនួន៖

$$Fr = \$1000 \left(\frac{0.12}{2}\right) = \$60$$

និង សងប្រាក់ C=F=\$1000 នៅចុងឆ្នាំទី 10 ដូចបង្ហាញតាមដ្យាក្រាមខាងក្រោម៖

តាមលំហូរសាច់ប្រាក់ខាងលើយើងបាន៖

$$P = 60a_{\overline{20}|0.05} + 1000(1 + 0.05)^{-20}$$
$$= 747.73 + 376.89$$
$$= $1124.62$$

២. តាមរូបមន្ត(៦.១)៖ $P = Fra_{\overline{n}|i} + C(1+i)^{-n}$

$$n=20; i=\frac{J_2}{2}=\frac{0.12}{2}=0.075; C=F=\$1000; \ r=\frac{J_2}{2}=\frac{0.12}{2}=0.06$$
 តម្លៃទិញ៖

$$P = 1000(0.06)a_{\overline{20}|0.075} + 1000(1 + 0.075)^{-20}$$
$$= 611.67 + 235.41$$
$$= $847.08$$

:ឧរបដ្ឋ

អត្រាទិន្នផលលើទីផ្សារ $J_2=15\%$ នោះសញ្ញាប័ណ្ណត្រូវលក់ក្នុងតម្លៃ P=\$847.08

ឧនាមរស់ ៦.៣.២. ក្រុមហ៊ុន សាជីវកម្មមួយបាន បោះផ្សាយសញ្ញាប័ណ្ណ ដែល មានកាល បរិច្ឆេទកំណត់ សង ក្នុងរយៈពេល១៥ ឆ្នាំ ទៀត តម្លៃចារឹក \$10000និង តម្លៃសង ស្មើនឹង តម្លៃ ចារឹក10% សញ្ញាប័ណ្ណនេះផ្ដល់ការប្រាក់ តាមអត្រាចារឹក ធ្វើមូលធនកម្ម ប្រចាំ ឆមាស។

ចូរគណនាតម្លៃសញ្ញាប័ណ្ណធៀប នឹងអត្រាទិន្នដល9% ធ្វើមូលធនកម្មប្រចាំខែ?

ដំណោះស្រាយ

ការបង់ប្រាក់ធ្វើនៅរៀងរាល់ឆមាស ហើយទិន្នផល9% ធ្វើមូលធនកម្មប្រចាំខែ ដូចនេះយើង ត្រូវរកអត្រា ទិន្នផល ប្រចាំឆមាស សមមូល និងអត្រាប្រចាំខែជាមុន។ តាមរូបមន្ត៖ $(1+i)^n=(1+i)^m$ ដែល

$$n = 2; m = 12; i' = \frac{0.09}{12}$$
$$(1+i)^2 = \left(1 + \frac{0.09}{12}\right)^{12}$$
$$i = (1.0075)^6 - 1 = 0.045852235$$

ម្យ៉ាងទៀតតាមរូបមន្ត(៦.២) យើងទាញបាន៖

$$P = C + (Fr - Ci)a_{\pi|i}$$

$$= 10000 + (10000 \times \frac{0.1}{2} - 10000 \times 0.0458522)a_{\overline{30}|0.0458522}$$

$$= \$10000 + 668.90$$

$$= \$10668.90$$

ះឧរខាដ្ឋ

សញ្ញាប័ណ្ណលក់ក្នុងតម្លៃ P=\$10668.90 ។

ឧបមាថា សញ្ញាប័ណ្ណមួយ ត្រូវបានទិញ ដោយ អ្នកវិនិយោគ ក្នុងចន្លោះ កាលបរិច្ឆេទ ការ ប្រាក់របស់វា តាម អត្រាទិន្នផល i ។ ហើយ នៅ ទីនេះ យើងកំណត់តាង៖

- ullet $P_0=$ តម្លៃសញ្ញាប័ណ្ណនា កាលបរិច្ឆេទបន្ថែមដំបូង ដែលទើបនឹងបង់ការប្រាក់រួច
- ullet k= ផ្នែកប្រភាគនៃរយៈពេល គិតការប្រាក់ (0 < K < 1)
- ullet P= តម្លៃទិញសញ្ញាកាលបរិច្ឆេទ ពិតប្រាកដដែលហៅថា តម្លៃសរុប (Flat price)

បើយើង អនុវត្ត តាមទ្រឹស្តី (Theorical Method) តម្លៃទិញ នៃសញ្ញាប័ណ្ណគឺ ត្រូវគណនា តាម បែបការប្រាក់សមាស ពោលគឺ៖

$$P = P_0(1+i)^k \tag{5.6}$$

ការអនុវត្តជាក់ស្តែងគេច្រើនច្រើ Practical Method ដែលគេគិតតាមបែប ការប្រាក់សាមញ្ញ នៃរយៈពេលផ្នែក ប្រភាគគឺ គេ ត្រូវ កំណត់៖

$$P = P_0(1+ki) \tag{5.৫}$$

តាមពិត ការអនុវត្ត តាម Practical Method វាមាន ទិន្នផល ច្រើនជាង ការតាមវិធីទ្រឹស្ដី (Theorical Method) បន្ដិច។

យើងអាចចាត់ទុកតម្លៃទិញ P ផ្សំឡើង ដោយពីរផ្នែក គឺ **តខ្លែនីថ្សា**រ (Market Price) ដែល ជានិច្ចកាលស្មើនឹង តម្លៃគណៈនេយ្យ (Book Value) និង **ភារច្រាអ់សញ្ញាម័ណ្ណចាន គិតមខ្ថែម** I (Accrued bond interest)នាកាលបរិច្ឆេទ ទិញនោះ។

យើងកំណត់យក៖

 $P_1 = តម្លៃសញ្ញាប័ណ្ណនា កាលបរិច្ឆេទការប្រាក់ (ក្រោយពីបង់ការប្រាក់រួច) យើងទាញបាន៖$

$$P_1 = (1+i)P_0 - Fr \tag{5.5}$$

តម្លៃទីផ្សារ(ប្រើ Method Linear Interpolation រវាង P_0 និង P_1):

$$Q = P_0 + k(P_1 - P_0) \tag{5.1}$$

ហើយការប្រាក់សញ្ញាប័ណ្ណគិតបន្ថែម (Accrued bond interest) :

$$I = kFr$$
 (5.6)

ដូចនេះ ជាលទ្ធផលចុងក្រោយយើងបាន៖

$$P = Q + I$$
 (៦.៩)

សំគាល់ រូបមន្ត(៦.៥) និង(៦.៩) សមមូលនឹងគ្នា។ ដ្យាក្រាមខាងក្រោមបង្ហាញអំពីលំហូរសាច់ប្រាក់ដែល បានបកស្រាយក្នុងរូបមន្តខាងលើ៖

ឧនាសរសំ ៦.៣.៣. សញ្ញាប័ណ្ណមួយមានតម្លៃចារឹក \$2000 អត្រាចារឹក $r_2=10\%$ និងសង តាមតម្លៃចារឹក នា ថ្ងៃទី០១ ខែតុលា ឆ្នាំ២០០២។ ចូរគណនាតម្លៃទិញនៃសញ្ញាប័ណ្ណ នាថ្ងៃទី១៦ ខែមិថុនា ឆ្នាំ២០០០ បើអត្រាទិន្នផល $i_2=9\%$ ។

- ១. ប្រើទ្រឹស្តី (Theorical Method)
- ២. ប្រើវិធីអនុវត្តជាក់ស្តែង (Practical Method)

ಜೀಚಾ:ಕ್ರಾಟ

គណនាតម្លៃទិញនៃសញ្ញាប័ណ្ណ អត្រាទិន្នផលក្នុងមួយឆមាស គឺ $i=\frac{i_2}{2}=0.045~~;F=\$2000;~C=\$2000$

កាលបរិច្ឆេទការប្រាក់បន្ថែមគឺថ្ងៃទី០១ ខែមេសា ឆ្នាំ២០០០ រយៈពេល ពិតប្រាកដចន្លោះ ថ្ងៃទី០១ ខែមេសា ឆ្នាំ២០០០ និង ថ្ងៃ ទី១៦ ខែមិថុនា ឆ្នាំ២០០០ គឺ៧៦ថ្ងៃ។ រយៈពេលជាក់លាក់ ចន្លោះថ្ងៃទី០១ ខែមេសា ឆ្នាំ២០០០ និង ថ្ងៃទី០១ ខែតុលា ឆ្នាំ២០០០ គឺ១៨៣ ថ្ងៃ។ ដូចនេះ

$$k = \frac{76}{183}$$
 (183ថ្ងៃគឺ1ឆមាស)

យើងបាន
$$Fr=2000 imes rac{0.1}{2}=\$100; Ci=\$2000 imes rac{0.9}{2}=\$90$$
 តាមរូបមន្ត(៦.២)

$$P_0 = C + (Fr - Ci)a_{\overline{n}|i}$$

$$= 2000 + (100 - 90)a_{\overline{5}|0.045}$$

$$= $2043.90$$

Theorical Method
 តាមរូបមន្ត (៦.៤)

$$P = P_0(1+i)^k$$

$$= 2043.90(1+0.045)^{\frac{76}{183}}$$

$$= $2081.61$$

ះខាចដូ

តម្លៃទិញសញ្ញាប័ណ្ណគឺ \$2081.61

 U. Practical Method

តាមរូបមន្ត (៦.៥)

$$P = P_0(1 + ki)$$

$$= 2043.90(1 + \frac{76}{183} \times 0.045)$$

$$= $2082.10$$

:ឧរខាដូ

តម្លៃទិញសញ្ញាប័ណ្ណគឺ \$2082.10

បើសិនជាតម្លៃទិញពិតប្រាកដ P ត្រូវបានបញ្ជាក់នោះនឹងមានភាព ដាច់ (Discontinuity) នៃ តម្លៃដ៏ធំមូយ នៅ កាលបរិច្ឆេទការប្រាក់ នីមួយៗ នៃសញ្ញាប័ណ្ណ គឺ នៅពេលនោះការប្រាក់នៃ សញ្ញាប័ណ្ណ បានគិតបន្ថែម នឹង ប្តូរភ្លាមៗ ពី Fr ទៅស្ងន្យ។ អាស្រ័យហេតុ នេះ តម្លៃ ដែល ប្រកាសនោះ គឺជា**នម្លៃនី៩ភូ៖** Q ពោលគឺជាតម្លៃទីផ្សារនៃ \$100 តម្លៃចារឹករបស់សញ្ញាប័ណ្ណ។ គេកំណត់ហៅ តម្លៃនេះ ថា **នម្លៃម្ខាសាស** q (Market Quotation) ដែលគេប្រកាសលក់។

ឧនាទារស៍ ៦.៣.៤. សញ្ញាប័ណ្ណមួយមានតម្លៃចារឹក $\$100\,$ អត្រាចារឹក $J_2=9\%$ ហើយសងវិញ តាមតម្លៃចារឹក នាថ្ងៃទី០១ ខែតុលា ឆ្នាំ២០០២។ ចូររកតម្លៃទិញ នៃ សញ្ញាប័ណ្ណនា ថ្ងៃទី ០៧ ខែ សីហា ឆ្នាំ២០០០ ធៀប នឹងអត្រា ទិន្នផល 10% ធ្វើមូល ធនកម្ម ប្រចាំ ឆមាស និងកំណត់តម្លៃ ទីផ្សារ (Market Price) ការប្រាក់សញ្ញាប័ណ្ណបានគិត បន្ថែម (Accrued bond interest) និង Market

quotation នាថ្ងៃទី០៧ ខែសីហា ឆ្នាំ២០០០?

ಜೀಣಾ:ಕ್ಷಾಟ

យើងពិនិត្យ Cash Flow នៃសញ្ញាប័ណ្ណខាងលើដូចតទៅ៖

តម្លៃទិញនៃសញ្ញាប័ណ្ណនាថ្ងៃទី០១ ខែមេសា ឆ្នាំ២០០០

$$P_0 = C + (Fr - Ci)a_{\overline{n}|i}$$

$$= 1000 + \left(1000 \times \frac{0.09}{2} - 1000 \times \frac{0.10}{2}\right)a_{\overline{5}|0.05}$$

$$= \$978.35$$

តម្លៃទិញនៃសញ្ញាប័ណ្ណនៅថ្ងៃទី០៧ ខែមេសា ឆ្នាំ២០០០

$$P = P_0(1 + ki)$$

$$= \$978.35(1 + \frac{128}{183} \times 0.05)$$

$$= \$1012.57$$

តម្លៃទិញសញ្ញាប័ណ្ណនាថ្ងៃទី០១ ខែតុលា ឆ្នាំ២០០០

$$P = P_0(1+i) - Fr$$

$$= \$978.35(1+0.05) - 1000 \times 0.045$$

$$= \$982.27$$

តម្លៃទីផ្សារនៃសញ្ញាប័ណ្ណនាថ្ងៃទី០៧ ខែសីហា ឆ្នាំ២០០០

$$Q = P_0 + k(P_1 - P_0)$$

$$= \$978.35 + \frac{128}{183}(\$982.27 - \$978.35)$$

$$= \$981.09$$

Market quotation: គេគិតតម្លៃទីផ្សារនៃ \$100 តម្លៃចារឹករបស់សញ្ញាប័ណ្ណនោះ។ យើងដឹង ហើយថា តម្លៃចារឹក \$1000 ថ្លៃ \$981.09 នោះ តម្លៃចារឹក \$100 គេលក់ថ្លៃ

$$q = \frac{\$981.09 \times 100}{1000}$$

$$= \frac{\$981.09}{10} = 98.11 \approx 98\frac{1}{8}$$
 Martquotation

ការប្រាក់សញ្ញាប័ណ្ណបានគិតបន្ថែម (Accrued bond interest)

$$I = k.Fr$$

$$= \frac{128}{183} \times \$1000 \times 0.045$$

$$= \$31.48$$

ផ្ទៀងផ្ទាត់

$$P = Q + I$$

= \$981.09 + \$31.48
= \$1012.57

ក្រាភិច ខាងក្រោម គឺបង្ហាញ អំពីទំនាក់ទំនងរវាងតម្លៃទិញ P តម្លៃទីផ្សារ Q និង ការប្រាក់ សញ្ញា ប័ណ្ណបាន គិត បន្ថែម I។

៦.៤. អង្គ្រានិត្តនល

ក្នុងវិស័យជំនួញ ឬវិនិយោគផ្សេងៗ អ្នកវិនិយោគ តែងតែចង់ ដឹងនូវចំណូល របស់ខ្លួនដោយ ប្រៀបធៀប ទៅនឹងតម្លៃមូលធន លើ ទីផ្សារ ក្នុងករណីបែបនេះ គេច្រើនតែ គណនា អត្រា ចំណូល ជាក់លាក់ របស់ខ្លួន។ យើង លើកយកវិធីសាស្ត្រក្នុងការ គណនារក អត្រា ទិន្នផលពីរគឺ **ទិនីសាស្ត្រ ទន្សម** (Method of Average or Bond Saleman's Method) និង **ទិនីសាស្ត្រ** Interpolation(Linear Interpolation Method)។

៦៤១ ទិធីសាស្ត្រមធ្យម

អត្រាទិន្នផលប្រចាំគ្រា(ជូនកាល គេហៅថា Yield to Maturity) ត្រូវបានគណនាតាមរូបមន្តតម្លៃ ប្រហែល

$$i \approx \frac{Average income per per iod}{Average amount invested} = \frac{(nFr + C - P)_{/n}}{(C + P)_{/2}}$$
 (5.90)

ឧនាមារណ៍ ៦.៤.១. សញ្ញាប័ណ្ណ មួយ មាន តម្លៃចារឹក \$2000 សន្យាបង់ ការប្រាក់ រៀងរាល់

ឆមាសមអត្រា $9\frac{1}{2}\%$ ហើយសងវិញតាមតម្លៃចារឹក (Redemable at par) នៅថ្ងៃទី២០ ខែកក្កដា ឆ្នាំ២០១៤។ នៅ ថ្ងៃទី ២០ ខែ កក្កដា ឆ្នាំ២០០០ សញ្ញាប័ណ្ណនេះ លក់ក្នុងតម្លៃប្រកាស $96\frac{1}{2}$ (បានន័យ ថាតម្លៃចារឹក \$100 លក់តម្លៃ $\$96\frac{1}{2}$)។ ចូរគណនាអត្រាទិន្នដល i_2 តាមវិធីសាស្ត្រមធ្យម?

ជំណោះស្រួយ

តម្លៃលក់នៃសញ្ញាប័ណ្ណនេះ គឺ $96\frac{1}{2}$ បានន័យថា ក្នុង តម្លៃចារឹក \$100 លក់ក្នុងតម្លៃ \$96.5 ឬនិយាយម្យ៉ាង ទៀត ថាតម្លៃ ចារឹក \$1 លក់ក្នុងតម្លៃ \$0.965 ដូចនេះយើងទាញបាន

$$P = \$2000 \times 0.965 = \$1930$$

ចំនូនគ្រានៃ ការបង់ប្រាក់ គឺ (ចាប់ពី ថ្ងៃ២០ ខែកក្កដា ឆ្នាំ២០០០ ដល់ ថ្ងៃទី២០ ខែកក្កដា ឆ្នាំ ២០១៤) មាន ២៨ ឆមាស (គ្រា)។ តាមរូបមន្តតម្លៃប្រហែល(៦.១០)

$$i = \frac{(nFr + C - P)_{/n}}{(C + P)_{/2}}$$

$$= \frac{(28 \times 2000 \times 0.0475 + 2000 - 1930)_{/28}}{(2000 + 1930)_{/2}}$$

$$= \frac{97.50}{1965}$$

$$= 0.0496$$

ដូចនេះ អត្រាទិន្នផលនៃសញ្ញាប័ណ្ណគឺ $i_2=9.92\%$ ។

5. డి. ២. The Linear Interpolation Method

ទិនីសាស្ត្រ Interpolation ជាវិធីមួយដែលមាន ភាពសុក្រឹត ជាង Bond Saleman's Method ហើយ វិធីនេះ តម្រូវឱ្យ កំណត់ តម្លៃ ទីផ្សារ (Market price) នៃសញ្ញាប័ណ្ណធៀបនឹងអត្រាការប្រាក់ ពីរដែលផ្ដល់ តម្លៃមួយតូចជាង និងមួយទៀត ធំជាង តម្លៃដែល កំណត់ដោយ(តម្លៃលក់)។

ខាងក្រោមនេះ យើងនឹងបកស្រាយអំពី Linear Interpolation Method ។ តម្លៃទិញនៃសញ្ញាប័ណ្ណ

$$P = Fra_{\overline{n}|i} + C(1+i)^{-n}$$

$$P - [Fra_{\overline{n}|i} + C(1+i)^{-n}] = 0$$

យើងកំណត់តាងf(i) ដែល

$$f(i) = P - [Fra_{\overline{n}|i} + C(1+i)^{-n}] = 0$$

កំណត់

តារាង Interpolation

$$\frac{f(i) \qquad J_m(J_m = m.i)}{f(i_2) - f(i_1) \left\{ \begin{array}{cc} -f(i_1) \left\{ \begin{array}{cc} f(i_1) & J_m^{(1)} \\ 0 & J_m \end{array} \right\} J_m - J_m^{(1)} \\ f(i_2) & J_m^{(2)} \end{array} \right\} J_m^{(2)} - J_m^{(1)}$$

តាមវិធានត្រីដ្ឋាន យើងបាន

$$\begin{split} \frac{J_m - J_m^{(1)}}{J_m^{(2)} - J_m^{(1)}} &= \frac{-f(i_1)}{f(i_2) - f(i_1)} \\ J_m - J_m^{(1)} &= \frac{-J_m^{(2)} - J_m^{(1)}}{f(i_2) - f(i_1)} f(i_1) \\ J_m &= J_m^{(1)} - \frac{-J_m^{(2)} - J_m^{(1)}}{f(i_2) - f(i_1)} f(i_1) \end{split}$$

ដូចនេះ យើងបាន Linear Interpolation Formula

$$J_m = J_m^{(1)} - rac{-J_m^{(2)} - J_m^{(1)}}{f(i_2) - f(i_1)} f(i_1)$$
 (5.99)

សំនាល់៖

ក្នុងការកំណត់ $J_m^{(1)}$ និង $J_m^{(2)}$ (ឬ i_1 និង i_2) គឺ គេត្រូវកំណត់ យ៉ាងណា ដើម្បីឱ្យ គម្លាតរបស់វាស្មើ

1% ពោល គឺ $J_m^{(1)}-J_m^{(2)}=1\%$ ។ ហើយ ដើម្បីងាយស្រួល ក្នុងការ កំណត់ $J_m^{(1)}$ និង $J_m^{(2)}$ យើង អាចប្រើ Bond Saleman's Method ជាពន្លឺ។

ឧនាមារស៍ ៦.៤.២. សញ្ញាប័ណ្ណមួយមានតម្លៃចារឹក\$1000ដែលផ្ដល់ការប្រាក់រៀងរាល់ឆមាស តាមអត្រាចារឹក 12% ហើយ សន្យាសងវិញនូវតម្លៃ ស្មើ នឹង តម្លៃចារឹក នៅ ថ្ងៃទី០១ ខែ មិថុនា ឆ្នាំ ២០១០។ នៅ ថ្ងៃទី០៣ ខែកុម្ភ: ឆ្នាំ២០០០ សញ្ញាប័ណ្ណ នេះ ត្រូវបាន លក់ ក្នុងតម្លៃ ប្រកាស $94\frac{7}{\varsigma}$ ។

- ១. ចូរគណនាអត្រាទិន្នផលតាម Method of Average?
- ២. ចូរគណនាអត្រាទិន្នដលតាម Method of Interpolation?

ಜೀನಾ:;ಕ್ಷಾಆ

១. កេអត្រាទិន្នផល (Method of Average)

ដោយហេតុថា យើង គណនារក ចម្លើយប្រហែល ហេតុនេះ យើងអាច សន្មត់ថា សញ្ញាប័ណ្ណ ត្រូវបាន លក់នៅ ចំថ្ងៃ ដែល គេគិត ការប្រាក់ គឺ ថ្ងៃទី០១ ខែធ្នូ ឆ្នាំ១៩៩៩ ជំនួសឱ្យថ្ងៃទី០៣ ខែកុម្ភៈ ឆ្នាំ២០០០។ ចំនួនគ្រាដែល ត្រូវបង់ការប្រាក់ គឺមាន២១លើក។ តាមរូបមន្ត(៦.១០)

$$i = \frac{(nFr + C - P)_{/n}}{(C + P)_{/2}}$$

ដែល

$$C = F = \$1000; r = \frac{0.12}{2} = 0.06; n = 21$$

តម្លៃប្រកាសលក់គឺ $94\frac{7}{8}$ មានន័យថា តម្លៃចារឹក100\$លក់ក្នុងតម្លៃ $94\frac{7}{8}$ គេបាន តម្លៃចារឹក1000\$លក់ក្នុងតម្លៃ

$$P = \$10 \times \$94\frac{7}{8} = \$948.75$$

$$i \approx \frac{(21 \times 1000 \times 0.06 + 100 - 948.75)/21}{(1000 + 948.75)/2} = \frac{62.44}{974.36} = 0.0641$$

ដូចនេះ ipprox 6.41% ឬ $J_2pprox 12.82\%$

២. គណនាអត្រាទិន្នផល (Method of Interpolation) យើងជ្រើសរើសយកអត្រាទិន្នផល សាកពីរ គឺ $J_m^{(1)}=12\%$ និង $J_m^{(2)}=13\%$ រូចគណនា តម្លៃទីផ្សារនៃ សញ្ញាប័ណ្ណ នាថ្ងៃទី០៣ ខែកុម្ភៈ ឆ្នាំ២០០០ ដោយ ប្រើដ្យាក្រាម ខាងក្រោម៖

បើ
$$J_2^{(1)}=12\%$$
 (ឬ $i_1=0.06$) ដោយ $i_1=r$ និង $F=C$
$$\Rightarrow P'=Fr\frac{1-\left(1+i_1\right)^{-n}}{i_1}+C(1+i_1)^{-n}$$

$$=F[1-(1+r)^{-n}]+F(1+r)^{-n}$$

$$=F-F(1+r)^{-n}+F(1+r)^{-n}$$

$$=F=\$1000$$

ហើយ

$$f(i_1) = P - [Fra_{\overline{n}|i} + C(1+i)^{-n}]$$

$$= P - P'$$

$$= \$948.75 - 1000 = -51.25 < 0$$

បើ
$$J_m^{(2)}=13\%$$
 $(i_2=0.065)$ គេបាន
$$P_0=1000+(60-65)a_{\overline{21}\big|0.065}=\$943.58$$

$$P_1=1000+(60-65)a_{\overline{20}\big|0.065}=\$944.91$$

$$Q = \$943.58 + \frac{64}{182}(944.91 - 943.58) = \$944.05$$

$$\Rightarrow f(i_2) = P - Q$$

$$= \$948.75 - \$944.05$$

$$= 4.70 > 0$$

តាមរូបមន្ត(៦.១១) យើងបាន

$$i = i_1 - \frac{i_2 - i_1}{f(i_2) - f(i_2)} f(i_1)$$

$$= 0.06 - \frac{0.065 - 0.06}{4.7 + 51.52} (-51.25)$$

$$= 0.06458$$

$$J_2 = 2i = 2(0.06458) = 0.1292$$

ដូចនេះ $oxedsymbol{3}$ អត្រាប្រចាំឆ្នាំ $J_2=12.92\%$ ។

ឧនាមារស៍ ៦.៤.៣. សញ្ញាប័ណ្ណមួយ មានតម្លៃចារឹក \$1000 សងវិញតាមតម្លៃចារឹកក្នុងរយៈពេល ២០ឆ្នាំខាងមុខ និងសន្យាផ្ដល់ ការប្រាក់ រៀងរាល់ ឆមាសតាមអត្រាចារឹក 11%។ សញ្ញា ប័ណ្ណនេះអាច ត្រូវបានឱ្យ សងមុនឥណ ប្រតិទានក្នុងតម្លៃ \$1050 នៅចុង ឆ្នាំទី 15 ។ បើសិនជា តម្លៃប្រកាសលក់នៃ សញ្ញាប័ណ្ណនេះស្មើ 96 ចូរគណនាអត្រា ទិន្នផល J_2 ដោយប្រើ Method Interpolation ក្នុងករណី៖

- 9. សញ្ញាប័ណ្ណត្រូវបានសងមុនឥណប្រតិទាន (Callable)?
- ២. សញ្ញាប័ណ្ណត្រូវបានសងនៅឥណប្រតិទាន?

ជំនោះស្រួយ

តម្លៃប្រកាសលក់គឺ 96 មានន័យថា តម្លៃចារឹក 100\$ លក់ក្នុងតម្លៃ 96\$ គេបាន តម្លៃចារឹក 1\$ លក់ក្នុងតម្លៃ 0.96\$ នោះ

តម្លៃលក់នៃសញ្ញាប័ណ្ណគឺ

$$P = \$1000 \times 0.96 = \$960$$

១. បើសញ្ញប័ណ្ណត្រូវបានសងមុន ឥណប្រតិទាននៅចុងឆ្នាំទី១៥ (n=15 imes 2=30) នោះគេបាន ៖

$$960 = 1050 + \left(1000 \times \frac{0.11}{2} + 1050 \times i\right) a_{30|i}$$

ឬ

$$f(i) = 960 - 1050 + \left(1000 \times \frac{0.11}{2} + 1050i\right) a_{30|i} = 0$$

ក្រោយពីធ្វើការសាកល្បង ហើយយើងទទួលបាន៖

លើ
$$J_2^{(1)}=11\%$$
 $(i_1=0.055)$
$$\Longrightarrow Q_1=1050+(55-1050\times 0.055)\,a_{\overline{30}|0.055}$$

$$=\$1.01003$$

$$\Longrightarrow f(i_1)=P-Q_1$$

$$=960-1010.03$$

$$=-50.03<0$$

បើ
$$J_2^{(2)} = 12\%$$
 $(i_2 = 0.06)$

$$\implies Q_2 = 1050 + (55 - 1050 \times 0.06) a_{30|0.06}$$

$$= $939.88$$

$$\implies f(i_2) = P - Q_2$$

$$= 960 - 939.88$$

$$= 20.12 > 0$$

តាមរូបមន្ត(៦.១១)

$$J_{2} = J_{2}^{(1)} - \frac{J_{2}^{(2)} - J_{2}^{(1)}}{f(i_{2}) - f(i_{1})} f(i_{1})$$

$$= 0.11 - \frac{0.12 - 0.11}{20.12 + 50.03} (-50.03)$$

$$= 0.1171$$

ដូចនេះ អត្រាទិន្នផល $J_2=11.71\%$ ។

២. បើសញ្ញាប័ណ្ណត្រូវបានសងនៅ ឥណប្រតិទាននោះយើងបាន៖

$$n = 2 \times 20 = 40, \quad J_2 = 2i$$

ដែលតម្លៃលក់៖

$$960=1000+(55-1000i)\,a_{\overline{40}|i}$$
 ឬ
$$f\left(i\right)=960-1000+(1000i)\,a_{\overline{40}|i}=0$$

ម៉្យាងទៀត

បើ $J_2^{(1)}=11\%~(i_1=0.055~\mathrm{Hfm}$ ទិន្នផល = អត្រាចារឹក) នោះតម្លៃទិញស្មើតម្លៃចារឹក Q_1 \$ $1000~\mathrm{T}$ ដូចនេះ

$$f(i_1) = P - Q_1$$

= $960 - 1000$
= $-40 < 0$

បើ
$${J_2}^{(2)}=12\%\,(i_2=0.06)$$
គេបាន ៖
$$Q_2=1000+(55-1000\times 0.06)\,a_{\overline{40}|_{0.06}}$$

$$= \$924.77$$

$$f(i_1) = P - Q_2$$

$$= 960 - 924.77$$

តាមរូបមន្ត (៦.១១)
$$J_2=J_2^{(1)}-\frac{J_2^{(2)}-J_1^{(1)}}{f\left(i_2\right)-f\left(i_1\right)}f\left(i_1\right)$$

$$=0.11-\frac{0.12-0.11}{35.23+40}\left(-40\right)$$

$$=0.1153$$

=35.23 > 0

ដូចនេះ អត្រាទិន្នផលរបស់អ្នកវិនិយោគ $J_2=11.53\%$ ។

៦.៥. ទ្រនេះនៃសញ្ញាម័ណ្ណ និទអាសេទលោះ

៦.៥.១. សញ្ញាម័ណ្ណខ្មានអាលអំណង់

និយមន័យ ៦.៥.១. សញ្ញាច័ណ្ណ្អូត្តានអាលអំណត់ (Callable Bonds) គឺ ជា សញ្ញាច័ណ្ណ ដែល អនុញ្ញាតអោយ អ្នកបោះផ្សាយ Issuer សងប្រាក់កំចី Readeem the bond នៅ កាលបរិច្ឆេទមួយ មុនឥណ ប្រតិទាន។

គេកំណត់ កាលបរិច្ឆេទណាត់(Callable date) ដោយ ធៀប ទៅនឹង ការគណនា តម្លៃ ទិញ (Calculation of the Purchase Price) ពីព្រោះរយៈពេលសងនៃ សញ្ញា ប័ណ្ណមិនជាក់លាក់។ អ្នកវិនិយោគនឹងទិញ សញ្ញាប័ណ្ណ ក្នុងតម្លៃ ដែលធានា ដល់ខ្លួននូវ ទិន្នផល (Yield) ដែល គាត់ ចង់បានដោយ យោងតាមកាលបរិច្ឆេទ ណាត់ Calldate របស់វា។ ការកំណត់តម្លៃ សញ្ញាប័ណ្ណ អ្នក វិនិយោគ ត្រូវ សន្មតថា អ្នកបោះផ្សាយ សញ្ញាប័ណ្ណ The Issure of the bonds នឹង អនុវត្តន៍ នូវការណាត់របស់ខ្លួន ដែល ផ្ទុយពីប្រយោជន៍របស់អ្នក វិនិយោគ។ ជាទូទៅ យើងអាចសង្ខេបន័យដូច ខាងក្រោម៖

- ullet ចំពោះសញ្ញាប័ណ្ណដែលសង តាមតម្លៃចារឹក (Callable at par C = F):
 - បើសិនជាអត្រាទិន្នផលខ្ពស់ជាងអត្រាចារឹក នោះអ្នកវិនិយោគ ត្រូវគណនាតម្លៃទិញ ដោយប្រើកាលបរិច្ឆេទ ណាត់ក្រោយគេបង្អស់ (The latest possible call date) (យើង បង្ហាញនៅក្នុងឧទាហរណ៍ ខាងក្រោម)។
 - បើអត្រាទិន្នផល ទាបជាឯអត្រា ចារឹក អ្នកវិនិយោគ ត្រូវគណនា តម្លៃទិញដោយប្រើ កាលបរិច្ឆេទណាត់ឆាប់បំផុត (មើលឧទាបារណ៍(៦.៥.២))។
- ចំពោះ សញ្ញាប័ណ្ណ ដែលការសង មុនឥណប្រតិទាន ទោះជាតម្លៃសង មិនស្មើតម្លៃចារឹក $(C \neq F)$ ក៏ដោយអ្នកវិនិយោគ អាចកំណត់តម្លៃទិញទាំងអស់ដែលសមស្របតាមអត្រា ទិន្នផលរបស់ខ្លួន ហើយបន្ទាប់មកត្រូវទិញសញ្ញាប័ណ្ណដែលមានតម្លៃទាបជាងគេ (មើលឧទាហរណ៍(៦.៥.៣))។

ឧនាសរស៍ ៦.៥.១. ក្រុមហ៊ុនសាជីវកម្ម មួយបានបោះផ្សាយសញ្ញាប័ណ្ណ ដែលមាន អាយុកាល ២០ឆ្នាំ តម្លៃចារឹក \$1000 និងអត្រាចារឹក $J_2=12\%$ ។ សញ្ញាប័ណ្ណនេះអាចណាត់សងតាមតម្លៃ ចារឹក បន្ទាប់ឆ្នាំទី១៥។

ចូរគណនាតម្លៃទិញ ធៀបអត្រាទិន្នដល 13% ធ្វើមូលធនកម្មប្រចាំឆមាស?

ដំណោះស្រួយ

យើងចង់គណនាតម្លៃទិញនៃ សញ្ញាប័ណ្ណដែលទាក់ទងទៅ នឹងកាលបរិច្ឆេទណាត់សងពីរគឺ ៖ បើសញ្ញាប័ណ្ណត្រូវណាត់សង នៅចុងឆ្នាំទី១៥

$$n = 15 \times 2 = 30; \ i = \frac{0.13}{2} = 0.065; \ Fr = 1000 \times 0.060 = 60$$

 $Ci = 1000 \times 0.065 = 65$

គេបាន ៖

$$P_n = 1000 + (60 - 65) a_{\overline{30}|0.065}$$
$$= 1000 - 65.29$$
$$= \$934.71$$

បើសញ្ញាប័ណ្ណត្រូវសងនៅឆ្នាំទី២០ គេបាន៖

$$P_m = 1000 + (60 - 65) a_{\overline{40}|0.065}$$
$$= 1000 - 70.73$$
$$= \$929.27$$

ប្រៀបធៀបតម្លៃទិញទាំងពីរខាងលើ យើង សង្កេតឃើញថា តម្លៃទិញ ដែលធានាផ្ដល់ ទិន្នផល $J_2=13\%$ ហើយ ទាបជាង គេ គឺ\$929.27 ។ ដូច្នេះ អ្នកវិនិយោគទិញសញ្ញាប័ណ្ណក្នុង តម្លៃនេះ យ៉ាងហោចណាស់ ក៏ ទទួលបានផល កំរៃ $J_2=13\%$ ដោយ មិន បាច់បារម្ភអ្វីទាំងអស់។ **ឧនាខារស៍ ៦.៥.២**. ចូរធ្វើឧទាហរណ៍(៦.៥.១)ឡើងវិញបើសិនជាអត្រាទិន្នផល $J_2=11\%$ ។

ಜೀಚಾ:ಕ್ರಾಟ

យើងគណនាឡើងវិញករណី $i=\frac{0.11}{2}=0.055$ បើសញ្ហាប័ណ្ណត្រូវបានណាត់សង នៅចុងឆ្នាំទី១៥ (n=30)

$$P_n = 1000 + (60 - 55) a_{\overline{30}|0.055}$$
$$= 1000 + 72.67$$
$$= \$1072.67$$

ជំពូកទី ៦. សញ្ញាប័ណ្ណ ឬ ប័ណ្ណបំណុល ៦.៥. ប្រភេទនៃសញ្ញាប័ណ្ណ និងការសងរំលោះ បើសញ្ញាប័ណ្ណត្រូវបានសង់នៅ ឥណប្រតិទាន (MuturityDate)

$$P_m = 1000 + (60 - 55) a_{\overline{40}|0.055}$$
$$= 1000 + 80.23$$
$$= $1080.23$$

ដូចនេះ តម្លៃទិញដែលធានាផ្តល់ទិន្នផល $J_2=11\%$ គឺ\$1072.667 ។

ឧនាទារស៍ ៦.៥.៣. សញ្ញាប័ណ្ណមួយដែល មានតម្លៃចារឹក \$5000 មាន អត្រាចារឹក $9\frac{1}{2}\%$ និង សង វិញតាម តម្លៃចារឹកក្នុង រយៈពេល២០ឆ្នាំទៀត។ សញ្ញាប័ណ្ណនេះ អាចត្រូវបានណាត់សង បន្ទាប់ពីឆ្នាំទី១០ ទៅក្នុងតម្លៃ \$5200 ។

ចូរគណនាតម្លៃសញ្ញាប័ណ្ណធៀប និងអត្រាទិន្នផល $i_2=8rac{1}{2}\%$ ។

ಜೀಚಾ:ಕ್ರಾಟ

បើសញ្ញាប័ណ្ណត្រូវបានណាត់សង បន្ទាប់ពីឆ្នាំទី១០ $(n=2\times 10=20)$ តាមរូបមន្ត(៦.២) យើងបាន ៖

$$\begin{split} P_n &= C + (Fr - Ci) \, a_{\overline{n}|i} \\ &= 5200 + \left(5000 \times \frac{0.095}{2} - 5200 \times \frac{0.085}{2} \right) a_{\overline{20}|\underline{0.085}} \\ &= 5200 + (237.50 - 221) \, a_{\overline{20}|0.0425} \\ &= \$5419.36 \end{split}$$

បើសញ្ញាប័ណ្ណត្រូវបានណាត់សងបន្ទាប់ពីឆ្នាំទី១៥យើងបាន ៖

$$\begin{split} P_c &= C + (Fr - Ci) \, a_{\overline{n}|i} \\ &= 5200 + \left(5000 \times \frac{0.095}{2} - 5200 \times \frac{0.085}{2} \right) a_{\overline{30}|\underline{0.085}} \\ &= 5200 + (237.50 - 221) \, a_{\overline{30}|0.0425} \\ &= \$5476.85 \end{split}$$

បើសញ្ញាប័ណ្ណត្រូវបានតាមឥណ ប្រតិទានយើងបាន ៖

$$P_{m} = C + (Fr - Ci) a_{\overline{n}|i}$$

$$= 5000 + \left(5000 \times \frac{0.095}{2} - 5000 \times \frac{0.085}{2}\right) a_{\overline{40}|0.0425}$$

$$= 5200 + (237.50 - 212.50) a_{\overline{40}|0.0425}$$

$$= $5476.93$$

ដូចនេះ តម្លៃសញ្ញាប័ណ្ណដែលធានផ្ដល់ ចំណូលយ៉ាងតិច $J_2=8\frac{1}{2}\%$ រហូតដល់ឥណប្រតិ

៦.៥.២. សញ្ញាម័ណ្ណមុព្វលាន និទអម្បទារ

නිසාදෙස් ස්වූ වැදී වැ. .

បើសញ្ញាប័ណ្ណមួយត្រូវបានទិញ ក្នុងតម្លៃខ្ពស់ជាងតម្លៃត្រូវសងនោះ គេហៅ សញ្ញាប័ណ្ណថា **សញ្ញាច័ណ្ណចុច្ចាសាន** (PremiumBond) ដែល

$$Premium = P - C = (Fr - Ci) a_{\overline{n}|i}$$

បើសញ្ញាប័ណ្ណមួយត្រូវបានទិញក្នុងតម្លៃទាបជាងតម្លៃត្រូវសងនោះ គេហៅសញ្ញាប័ណ្ណថា សញ្ញាច័ណ្ណអម្បទារ (DiscountBond) ហើយ ៖

$$Discount = C - P = (Ci - Fr) a_{\overline{n}|i}$$

ចំពោះ តម្លៃគណនេយ្យ (BookValue) នៃសញ្ញាប័ណ្ណ ក្នុងពេលកំណត់ មួយ គឺជាចំនួន ទឹកប្រាក់កំណត់ ដែលត្រូវ បាន ដាក់ វិនិយោគ ក្នុងសញ្ញាប័ណ្ណនា ពេលនោះ។ តម្លៃគណនេយ្យ នៃសញ្ញាប័ណ្ណនាកាល បរិច្ឆេទទិញ ដែលកើតឡើងនៅព្រមគ្នា នឹងកាលបរិច្ឆេទនៃការបង់ប្រាក់ គឺជាតម្លៃទិញនៃសញ្ញាប័ណ្ណ (Book Value = Purchase Price)។

តម្លៃគណនេយ្យ នាកាលបរិច្ឆេទ ត្រូវសង គឺ ជា តម្លៃត្រូវសងនៃសញ្ញាប័ណ្ណ (Book Value = Remeption Value)។

បើសញ្ញាប័ណ្ណត្រូវបានទិញក្នុងតម្លៃPremium(P>C) តម្លៃគណនេយ្យនៃសញ្ញាប័ណ្ណ នឹងត្រូវសរសេរចុះ Decreased នៅ តាមដំណាក់កាល និមួយៗ នៃកាលបរិច្ឆេទ បង់ការប្រាក់ ហេតុនេះទើបនៅពេលសង បំណុល តម្លៃគណនេយ្យ នឹងស្មើនឹង តម្លៃត្រូវសង។ សកម្មទាំងនេះ គេហៅថា **ទំនោះ ឬ អារសេរសេរចុះ** (Amortisation of the Premium or Writing down) ។

ការបង់ប្រាក់ក្នុងកំឡុងពេល នៃអាយុកាលសញ្ញាប័ណ្ណអាចអនុវត្ត ដូចការបង់ប្រាក់រំលោះ ដែលធ្វើឡើងដោយអ្នកខ្ចី Bondissuer ដើម្បីសងកំចីស្មើនឹងតម្លៃទិញនៃសញ្ញាប័ណ្ណទៅអោយ អ្នកវិនិយោគ Bondholder ។ តម្លៃទិញនៃសញ្ញាប័ណ្ណអាចគណនាដោយគិតដូចជា តម្លៃបច្ចុប្បន្ន នៃការបង់ប្រាក់ ទាំងអស់ នោះ(ការប្រាក់ និង តម្លៃត្រូវសង) ធៀបនឹង អត្រាទិន្នផលជាក់ លាក់មួយ។ អាស្រ័យហេតុនេះ ការសង់រំលោះ របស់ សញ្ញាប័ណ្ណ អាច អនុវត្តដូច ការសងរំលោះ កំចីហើយតារាង រំលោះនៃសញ្ញាប័ណ្ណអាច ត្រូវសង ដូចជា តារាងរំលោះ កំចីទូទៅ ក្នុង ជំពូក៥ ដែរ (មើលឧទាហរណ៍ខាងក្រោម)។

ឧនាមារស៍ ៦.៥.៤. សញ្ញាប័ណ្ណមួយមាន តម្លៃចារឹក $\$1000\,$ អត្រាចារឹក $J_2=9\%\,$ និងសងវិញ តាមតម្លៃចារឹក នាថ្ងៃទី១ ខែធ្នូ ឆ្នាំ២០០២។ សញ្ញាប័ណ្ណ ត្រូវបានទិញនាថ្ងៃទី១ ខែមិថុនា ឆ្នាំ២០០០។

- ក. ចូរគណនាតម្លៃទិញ និងសង់តារាងរំលោះសញ្ញាប័ណ្ណBondSchedule បើអត្រាទិន្នផល J_2 ?
- ខ. ចូរឆ្លើយសំណូរ"ក" ម្តងទៀតបើអត្រាទិន្នផល $J_{\scriptscriptstyle 2}=10\%$
- គ. ចូរសង់តារាងរំលោះ (AmortisationSchedule) សម្រាប់កំចីនៃសំនូរ "ក" និង "ខ"?

នំឈោះស្រាយ

ក. តម្លៃទិញនៃសញ្ញាប័ណ្ណនាថ្ងៃទី១ ខែមិថុនា ឆ្នាំ២០០០ តាមរូបមន្ត (៦.២) យើងបាន

$$P = C + (Fr - Ci) a_{\overline{n}|i}$$

$$= 1000 + \left(1000 \times \frac{0.09}{2} - 1000 \times \frac{0.08}{2}\right) a_{\overline{5}|0.04}$$

$$= \$1022.26$$

ដូចនេះ សញ្ញាប័ណ្ណត្រូវបានទិញតាមតម្លៃ Premium ចំនួន\$22.26

តារាងខាងក្រោមគឺជាតារាងរំលោះ សញ្ញាប័ណ្ណ (BondAmortisationSchedule)

កាលបរិច្ឆេទ	ការប្រាក់សញ្ញាប័ណ្ណ	Interest on Book Value at Yield rate	Principle Adjustment	Book Value
June 1, 2000	0	0	0	1022.26
Dec 1, 2000	45.00	40.89	4.11	1018.15
June 1, 2001	45.00	40.73	4.27	1013.88
Dec 1, 2001	45.00	40.56	4.44	1009.44
June 1, 2002	45.00	40.38	4.62	1004.82
Dec 1, 2002	45.00	40.19	4.81	1000.01
Totals:	225.00	202.76	22.25	

ខ. បើចំណូលជាក់លាក់របស់អ្នកវិនិយោគ $J_2=10\% \quad (i=0.05)$ នោះគេបាន៖

$$\begin{split} P &= C + (Fr - Ci) \, a_{\,\overline{n}|i} \\ &= 1000 + \left(1000 \times \frac{0.09}{2} - 1000 \times 0.05\right) a_{\,\overline{5}|0.05} \\ &= \$978.35 \end{split}$$

ហេតុនេះ សញ្ញាប័ណ្ណត្រូវបានទិញក្នុងតម្លៃដែលមានអប្បហារចំនូន 21.65\$

ខាងក្រោមនេះ គឺជាតារាងសមាច័យនៃសញ្ញាប័ណ្ណ (Accumulation Schedule):

កាលបរិច្ឆេទ	ការប្រាក់សញ្ញាប័ណ្ណ	Interest on Book Value at Yield rate	Principle Adjustment	Book Value
June 1, 2000	0	0	0	978.35
Dec 1, 2000	45.00	48.92	-3.92	982.27
June 1, 2001	45.00	49.11	-4.11	986.38
Dec 1, 2001	45.00	49.32	-4.32	990.70
June 1, 2002	45.00	49.54	-4.54	995.24
Dec 1, 2002	45.00	49.76	-4.76	1000.00
Totals:	225.00	246.65	-21.65	

គ. តារាងរំលោះនៃកំចីសំនូរ "ក*"*

កាលបរិច្ឆេទ	ការប្រាក់សញ្ញាប័ណ្ណ	Interest on Book Value at Yield rate	Principle Adjustment	Book Value
June 1, 2000	0	0	0	1022.26
Dec 1, 2000	45.00	40.89	4.11	1018.15
June 1, 2001	45.00	40.73	4.27	1013.88
Dec 1, 2001	45.00	40.56	4.44	1009.44
June 1, 2002	45.00	40.38	4.62	1004.82
Dec 1, 2002	1045.00	40.19	1004.81	0.01
Totals:	1225.00	202.76	1022.25	

សម្គាល់ លំអៀង ដោយសារយើងកាត់ខ្ទង់។

កាលបរិច្ឆេទ	ការប្រាក់សញ្ញាប័ណ្ណ	Interest on Book Value at Yield rate	Principle Adjustment	Book Value
June 1, 2000	0	0	0	978.35
Dec 1, 2000	45.00	48.92	-3.92	982.27
June 1, 2001	45.00	49.11	-4.11	986.38
Dec 1, 2001	45.00	49.32	-4.32	990.70
June 1, 2002	45.00	49.54	-4.54	995.24
Dec 1, 2002	1045.00	49.76	995.24	0.00
Totals:	1225.00	246.65	978.35	

៦.៥.៣. សញ្ញាទ័ន្ន្នេះស៊ីទី

និយមន័យ ៦.៥.៣. ដើម្បីខ្ចីប្រាក់ពី សាធារណៈជន ក្រុមមួយ ចំនូនបានបោះផ្សាយ សញ្ញាប័ណ្ណ ជាស៊េរី ដែល មាន កាលបរិច្ឆេទ ត្រូវសងផ្សេងៗគ្នា។ សញ្ញាប័ណ្ណប្រភេទនេះ គេហៅថា **សញ្ញាច័ណ្ណស៊េរី** (Serial Bonds)។

Serial Bonds មួយចំនួនអាចត្រូវបានទិញ យ៉ាងងាយក្រោម កិច្ចសន្យាសញ្ញាប័ណ្ណផ្សេងៗ គ្នា។ ការកំណត់តម្លៃនៃសញ្ញាប័ណ្ណណាមួយ ត្រូវបានគណនាដូច សញ្ញាប័ណ្ណធម្មតាដែរ ហើយ **គេខ្លែសញ្ញាច័ណ្ណនាំ១អស់** គឺ ជាផលបូកនៃតម្លៃសញ្ញាប័ណ្ណនីមួយៗ។

ឧនាសរស៍ ៦.៥.៥. នៅថ្ងៃទី១ ខែកញ្ញា ឆ្នាំ២០០០ នាយកក្រុមហ៊ុនមួយ បានអនុញ្ញាត បោះ ផ្សាយ Serial Bonds ដែលមានទឹកប្រាក់សរុប \$30 000 000។ តាម កិច្ចសន្យាការប្រាក់ នឹង ត្រូវ សងនៅរៀងរាល់ឆ្នាំ នា ថ្ងៃទី១ ខែកញ្ញា តាមអត្រា 9% ។ ក្នុងកិច្ចសន្យានេះចែងថា ៖

- 9. ប្រាក់ដើមចំនូន \$5 000 000 នៃសញ្ញាប័ណ្ណបោះផ្សាយនឹងត្រូវសងនៅថ្ងៃទី១ ខែកញ្ញា ឆ្នាំ ២០០៥។
- ២. កំចី 10 000 000 នៃការបោះផ្សាយនឹងត្រូវសងនៅថ្ងៃទី១ ខែកញ្ញា ឆ្នាំ២០១០។
- ៣. កំចីចំនូន $\$15\,000\,000$ នៃសញ្ញាប័ណ្ណបោះផ្សាយនៅថ្ងៃទី១ ខែកញ្ញា ឆ្នាំ២០១៥។ ចូរគណនាតម្លៃទិញនៃសញ្ញាប័ណ្ណទាំងអស់នាថ្ងៃទី១ ខែកញ្ញា ឆ្នាំ២០០០ បើអ្នកទិញចង់ បានអត្រា ទិន្នផល $J_1=8\%$?

ដំណោះស្រាយ

យើងពិនិត្យឃើញថាការបោះផ្សាយសញ្ញាប័ណ្ណនេះ គឺផ្សំឡើងពីការបោះផ្សាយ ដូចបង្ហាញតាម រូបខាងក្រោម

ការបោះផ្សាយទី១៖

ការបោះផ្សាយទី២ ៖

ការបោះផ្សាយទី៣ ៖

$$Fr = 1\ 350\ 000 \\ Fr = 1\ 350\ 000 \\ \hline \\ 0 \qquad 1 \\ Sept\ 1,2000 \ Sept\ 1,2001 \\ Sept\ 1,2010 \\ \hline$$

តម្លៃនៃសញ្ញាប័ណ្ណទាំងអស់ នាថ្ងៃទី១ ខែកញ្ញា ឆ្នាំ២០០០គឺជាជលបូកនៃតម្លៃទិញ នៃការ បោះផ្សាយទាំងបី $P^{(1)}, P^{(2)}, P^{(3)}$ តាមរូបមន្ត(៦.២)

$$\begin{split} P^{(1)} &= C_1 + (Fr_1 - C_1i) \, a_{\,\overline{n_1}|i} \\ &= 5\,\,000\,\,000 + (5\,\,000\,\,000\,\times\,0.09 - 5\,\,000\,\,000\,\times\,0.08) \, a_{\,\overline{5}\,|_{0.08}} \\ &= \$5\,\,199\,\,635.50 \\ P^{(2)} &= C_2 + (Fr_2 - C_2i) \, a_{\,\overline{n_2}|i} \\ &= 10\,\,000\,\,000 + (10\,\,000\,\,000\,\times\,0.09 - 10\,\,000\,\,000\,\times\,0.08) \\ &= \$10\,\,671\,\,008.14 \\ P^{(3)} &= C_3 + (Fr_3 - C_3i) \, a_{\,\overline{n_3}|i} \\ &= 15\,\,000\,\,000 + (15\,\,000\,\,000\,\times\,0.09 - 15\,\,000\,\,000\,\times\,0.08) \, a_{\,\overline{15}\,|_{0.08}} \\ &= \$16\,\,283\,\,921.70 \\ \text{Times} P &= P^{(1)} + P^{(2)} + P^{(3)} \\ &= \$5\,\,199\,\,635.50 + \$10\,\,671\,\,008.14 + \$16\,\,283\,\,921.70 \\ &= \$32\,\,154\,\,565.34 \end{split}$$

ចំពោះរូបមន្ត (៦.៣) នៃមេរៀននេះ យើងទាញវិបាកសម្រាប់ការបោះផ្សាយ ជាស៊េរីមួយ ដែលត្រូវសង វិញតាម តម្លៃចារឹក ដូចតទៅ ៖

$$P = \sum_{k} F_k (1+i)^{t_k} + \frac{r}{i} \left[\sum_{k} F_k - \sum_{k} F_k (1+i)^{-t_k} \right]$$
 (៦.១២)

ដែល

- ullet P= ជាតម្លៃទិញនៃការបោះផ្សាយទាំងអស់
- ullet $F_k{(1+i)}^{^{-t_k}}=$ តម្លៃបច្ចុប្បន្ននៃការសងទី k
- ullet $F_k=$ តម្លៃចារឹកនៃការបោះផ្សាយទី k

ឧនាទារស៍ ៦.៥.៦. ៖ ចូរផ្ទៀងផ្ទាត់ឧទាហរណ៍(៦.៥.៥) ឡើងវិញ ដោយប្រើរូបមន្ត(៦.១២) ?

ಜೀಚಾ:ಕ್ರಾಟ

យើងមាន

$$i = 0.08; r = 0.09; F_1 = 5000000; t_1 = 5$$

 $F_2 = 10000000; t_2 = 10; F_3 = 15000000, t_3 = 15$

នោះគេទាញបាន ៖

$$P = 5000000(1 + 0.08)^{-5} + 10000000(1 + 0.08)^{-10} + 15000000(1 + 0.08)^{-15}$$

$$+ \frac{0.09}{0.08} [5000000 + 10000000 + 150000000 - 5000000(1 + 0.08)^{-5}$$

$$- 10000000(1 + 0.08)^{-10} - 15000000(1 + 0.08)^{-15}]$$

$$= 12763476 + \frac{9}{8} (300000000 - 12763476)$$

$$= $32154565$$

៦.៥.៤. សញ្ញាម័ណ្ណទំរៀត

វិនិយោគ មានមូលហេតុ ជាច្រើនក្នុង ការសម្រេចចិត្ត ជ្រើសរើស គម្រោងផ្សេងៗ ។ គេ អាចពិនិត្យ មើលលំហូរសាច់ប្រាក់ដែលកំណត់ ពេលវេលា ជាក់លាក់សម្រាប់ខ្លួន។ វិនិយោគខ្លះ យកចិត្ត ទុកដាក់ លើការប្រាក់នៃ សញ្ញាប័ណ្ណ ជាលំហូរសាច់ប្រាក់ដែលខ្លួនត្រូវការ តួយ៉ាងក្រុម ហ៊ុនសាជីវកម្ម ដែលទទួល ខុសត្រូវក្នុងការបង់បៀរ៍ ចូលនិវត្តន៍របស់ កម្មករ។ សម្រាប់ អ្នកវិនិ យោគមួយចំនួនចាត់ទុកតម្លៃត្រូវសងនៃសញ្ញាប័ណ្ណ (Redemption value) នៃសញ្ញាប័ណ្ណ ហើយ អាចចុះកិច្ចសន្យាទិញសញ្ញាប័ណ្ណ "Strip" ដោយញែកយក Coupon ពីសញ្ញាប័ណ្ណ និងលក់ទ្រព្យ ដែលនៅសល់ (Redemption value)។

និយៈទន័យ ៦.៥.៤. សញ្ញាប័ណ្ណដែលមានតែតម្លៃត្រូវសង(Redemption value only bond) ហៅថា **សញ្ញាច័ណ្ណទំរៀន** (Strip bond) ។ អ្នកទិញដំបូងបំផុតក៏អាចលក់ Coupon ផ្សេងពីតម្លៃត្រូវសងដែរជូចដែលអនុវត្ត ចំពោះតម្លៃត្រូវសងដែរ។

ឧនាទារស៍ ៦.៥.៧. សញ្ញាប័ណ្ណសាជីវកម្មមួយមានតម្លៃចារឹក \$1000 អត្រាចារឹក $J_2=9\%$ នឹងត្រូវសងវិញតាមតម្លៃចារឹកក្នុងរយៈពេល 20 ឆ្នាំទៀត។ អ្នកវិនិយោគ "A" ទិញសញ្ញាប័ណ្ណនេះ ដើម្បីទទួលចំណូលតាមអត្រា ។ អ្នកវិនិយោគ "A"បានច្រៀកយក Coupon ពី សញ្ញាប័ណ្ណ និង

៦.៥. ប្រភេទនៃសញ្ញាប័ណ្ណ និងការសងរំលោះ ជំពូកទី ៦. សញ្ញាប័ណ្ណ ឬ ប័ណ្ណបំណុល លក់ចំរៀក ដែលនៅសល់ទៅអោយវិនិយោគិន "B" ដែលជាអ្នកប្រាថ្នាចង់បានចំណូល $J_2=9\%$ ។

ច្ចរគណនា៖

- ១. តម្លៃដែលអ្នកវិនិយោគB បង់លើ Stripbond ?
- ២. អត្រាទិន្នផលជាក់លាក់ដែលទទួលបាន ដោយអ្នកវិនិយោគ A ?

ಜೀಮಾ:ಕ್ಷಾಟ

9. វិនិយោគ B នឹងបង់ប្រាក់លើ Stribbond ក្នុង តម្លៃបច្ចុប្បន្ន នៃ \$1000 ដែល ត្រូវបង់ក្នុង \$ រយ:ពេល 20 ឆ្នាំទៀត តាមអត្រា $J_2=9\%$ ឫ $i=0.0075; n=20\times 12=240$ ពោលគឺ

$$P_B = 1000(1 + 0.0075)^{-240}$$
$$= $166.41$$

២. ដំបូងយើងគណនាតម្លៃទិញរបស់វិនិយោគA ៖

ដោយ
$$F=C=\$1000; r=0.0425; i=0.0425; n=40$$
 នោះគេទាញបាន

$$P_A = \$1000 + (1000 \times 0.045 - 1000 \times 0.0425) a_{\overline{40}|0.045}$$
$$= \$1047.69$$

សម្រាប់ ការដាក់ វិនិយោគ \$1047.69 គាត់ ទទួលបាន ចំណូល មកវិញ គឺ ការប្រាក់ \$45 ចំនួន 40 ដងក្នុង រយៈពេល 20 ឆ្នាំ និង 166.41 ទទួលបានភ្លាមៗពីអ្នកវិនិយោគ B ។ យើងចង់គណនា i ដែលជាអត្រាប្រចាំឆមាសដើម្បីអោយ

$$1047.69 = 166.44 + 45a_{\overline{40}|}a_{\overline{40i}|} = 19.5840$$

យើងតំរៀបតារាង Interpolation ដូចខាងក្រោម

តាមវិធានត្រៃដ្ឋានយើងបាន៖

$$\frac{x}{1\%} = \frac{0.2088}{1.3912}$$
$$x = 0.15\%$$

ដូចនេះ
$$J_2 = 8\% + x = 8.15\%$$
 ។

ឧនាសារស៍ ៦.៥.៤. យោងតាម ឧទាហរណ៍(៦.៥.៧) ចូរគណនាតម្លៃទិញដែល អ្នកវិនិយោគC ត្រូវបង់បើសិនអ្នកវិនិយោគ A លក់Coupon ទៅអោយគាត់ដែលត្រូវទទួលទិន្ន ដលតាមអត្រា $J_{12}=7.5\%$?

ಜೀಣಾಚಿಕಾಡಾ

អ្នកវិនិយោគ C នឹងបង់ប្រាក់ស្មើនឹងតម្លៃបច្ចុប្បន្ន នៃការបង់ប្រាក់ \$45 ប្រចាំគ្រា 40 លើក តាមអត្រា ប្រចាំគ្រា សមមូល $i=\left(1+\frac{0.075}{12}\right)^6-1=0.038091$ ដូចនេះ តាមរូបមន្តតម្លៃបច្ចុប្បន្ននៃ Ordinary Annuity:

$$P_c = 45a_{\overline{40}|0.038091} = \$916.55$$

៦.៥.៥. សញ្ញាម័ណ្ណទៃសំណ១ម្រចាំគ្រា

និយមន័យ ៦.៥.៥. សញ្ញាច័ណ្ណនៃសំណ១ប្រទាំគ្រា (AnnuityBonds) ដែលមានតម្លៃ ចារឹកF គឺ ជាកិច្ចសន្យា ដែលសន្យា សងរំលោះកំចី ដោយ សំណងថេរ តាម អត្រាចារឹក នៃសញ្ញាប័ណ្ណ ដែល មានប្រាក់កំចី ស្មើនឹង តម្លៃចារឹក។

កាលណា តម្លៃចារឹក F និងអត្រាចារឹក r មាន អត្តិភាព(គេអោយ) នោះសំណងប្រចាំគ្រា R

៦.៥. ប្រភេទនៃសញ្ញាប័ណ្ណ និងការសងរំលោះ ជំពូកទី ៦. សញ្ញាប័ណ្ណ ឬ ប័ណ្ណបំណុល ត្រូវកំណត់តាមរូបមន្ត

$$R = \frac{F}{a_{\overline{n}|r}} \tag{5.9m}$$

បើយើងចង់គណនាតម្លៃនៃសញ្ញាប័ណ្ណ នៅកាលបរិច្ឆេទណាមួយ យើងអាចកំណត់ដូចជាតម្លៃ បច្ចុប្បន្ននៃការបង់ប្រាក់ ប្រចាំគ្រា ពេលអនាគត របស់សញ្ញាប័ណ្ណ តាមអត្រា ចំណូល ជាក់លាក់ របស់ អ្នកវិនិយោគ ពោល គឺត្រូវ ប្រើរូបមន្ត

$$P = R \frac{1 - (1+i)^{-n}}{i} = Ra_{\overline{n}|i}$$
 (៦.១៤)

ដែល i = Investor's interest rate (yield rate) ។

ឧនាទារស៍ ៦.៥.៩. ៖សញ្ញាប័ណ្ណ សងប្រចាំគ្រា មួយ (Annuity Bond) សន្យាសង ប្រាក់ដើម \$50000 តាមអត្រាចារឹក $J_2=12\%$ ដោយរំលោះស្មើៗគ្នានៅរៀងរាល់ចុងឆមាសសម្រាប់រយៈ ពេល10 ឆ្នាំ។

- ១. តើវិនិយោគិនព្រមទិញ សញ្ញាប័ណ្ណ នេះ ក្នុងតម្លៃប៉ុន្មាន បើគាត់ចង់បាន ចំណូលតាមអត្រា $J_2=13\%$?
- ២. ចូរគណនាតម្លៃទិញនៃសញ្ញាប័ណ្ណ នៅឆ្នាំទី៥ បើអ្នកវិនិយោគចង់បាន ចំណូលតាមអត្រា $J_{365}=10\%$?

ដំណោះស្រាយ

9. តម្លៃទិញនៃសញ្ញាប័ណ្ណ ដំបូងយើងត្រូវគណនារកប្រាក់សំណងឆមាស ដោយ $F=50~000;~~n=10\times 2=20;~~r=rac{0.12}{2}=0.06$ តាមរូបមន្ត (៦.១៣)

$$R = \frac{F}{a_{\overline{n}|r}}$$

$$= \frac{50\ 000}{a_{\overline{20}|0.06}}$$

$$= $4359.23$$

ជំពូកទី ៦. សញ្ញាប័ណ្ណ ឬ ប័ណ្ណបំណុល ៦.៥. ប្រភេទនៃសញ្ញាប័ណ្ណ និងការសងរំលោះ

ម៉្យាងទៀតដោយអត្រាទិន្នផល $J_2=13\%$ ឫ i=0.065 តាមរូបមន្ត (៦.១៤)

$$P = Ra_{\overline{n}|i}$$
= \$4359.23 $a_{\overline{20}|0.065}$
= \$4803.221

ដូចនេះ អ្នកវិនិយោគព្រមទិញសញ្ញាប័ណ្ណក្នុងតម្លៃ P=\$48032.21

២. តម្លៃទិញនៃសញ្ញាប័ណ្ណនៅចុងឆ្នាំទី៥

ដោយ $n=(10-5)\times 2=10; \quad i'=\frac{j_{365}}{365}=\frac{0.1}{365}$ ហើយតាមអត្រាសមមូល i ជាអត្រាប្រចាំឆមាស

$$(1+i)^{2} = (1+i)^{365}$$

$$i = \left(1 + \frac{0.1}{365}\right)^{\frac{365}{2}} - 1$$

$$= 0.051263897$$

យើងបាន

$$\begin{split} P &= Ra_{\,\overline{n}|i} \\ &= \$4359.23a_{\,\overline{10}|0.051263897} \\ &= \$33455.17 \end{split}$$

:ឧរខរូជ

នៅចុងឆ្នាំទី៥ អ្នកវិនិយោគទិញសញ្ញាប័ណ្ណក្នុងតម្លៃ P=\$33455.17

ៗ

លំខាងអនុទង្គន៍

សំទាន់ ៦.១. ក្រុមហ៊ុនសាជីវកម្មACME ត្រូវការសង់គំរោងថ្មីមួយ ។ ក្រុមហ៊ុនបានបោះផ្សាយ សញ្ញាប័ណ្ណ ដែល មានទឹកប្រាក់សរុប \$500 000 មានអាយុកាល ២០ឆ្នាំ ហើយ ផ្ដល់ការប្រាក់ តាមអត្រា $J_2=11\%$ ។ សញ្ញាប័ណ្ណ ទាំងនេះ ត្រូវសងតាមតំលៃ 105 (Quoted Redemption)។ សញ្ញាប័ណ្ណ ទាំងអស់ត្រូវ បានទិញដោយក្រុមហ៊ុនធានា វ៉ាប់រងមួយ ដែលចង់បានចំណូល $J_2=14\%$ ។

- ក. ចូរគណនាត់លៃទិញនៃសញ្ញាប័ណ្ណ ?
- ខ. ចូរឆ្លើយសំនូរ "ក" ម្ដងទៀតប្រសិនបើសញ្ញាប័ណ្ណ ទាំងអស់ត្រូវបានសងតាមតំលៃចារឹក (Redemption at par) ?

್ತುರೆ ಕ್ಷಚಾಭಿ

ក. លោកសម្បត្តិទិញសញ្ញាប័ណ្ណមួយ ដែលមាន តំលៃចារឹក \$2~000 អត្រាចារឹក $J_2=10$ និង សងវិញ តាម តំលៃ ចារឹក ក្នុង រយៈពេល ២០ឆ្នាំទៀត គាត់ប្រាថ្នាចង់បាន ចំណូល $J_4=12\%$ ។ ចូរគណនាតំលៃទិញ ?

ខ. បន្ទាប់ពី ៥ឆ្នាំកន្លងផុត គាត់បាន លក់ សញ្ញាប័ណ្ណនេះ ទៅអោយ អ្នកវិនិយោគ ម្នាក់ទៀត ដែលចង់ បាន ចំណូល $J_{\scriptscriptstyle 1}=9$ ។

ចូររកតំលៃលក់នៃសញ្ញាប័ណ្ណ ?

នំទារន់ ៦.៣. ក្រុមហ៊ុន Royal Groups ត្រូវការ បង្កើត មូលនិធិខ្លះ ដើម្បី ទិញឧបករណ៍ថ្មី ។ គេបាន បោះផ្សាយសញ្ញាប័ណ្ណដែលមានអាយុកាល ២០ឆ្នាំ ដែលមានតំលៃសរុប $$1\ 000\ 000$ ហើយ សន្យាបង់ការ ប្រាក់តាមអត្រាចារឹក $J_2=12\%$ ។ សញ្ញាប័ណ្ណទាំងអស់ត្រូវសងវិញតាម តំលៃ 105។ នៅខណ: ពេលបោះផ្សាយអត្រាការប្រាក់ លើទីផ្សារ គឺ $J_{12}=10.5\%$ ។ តើថវិកា ចំនូនប៉ុន្មាន ដែលក្រុមហ៊ុន ប្រមូលបាន?

សំទារត់ ៦.៤. សាជីវកម្មមួយ បានបោះផ្សាយ សញ្ញាប័ណ្ណ ដែល មាន អាយុកាល ១២ឆ្នាំ តំលៃ សរុប $\$600\,000$ ហើយ ផ្ដល់ការប្រាក់តាមអត្រាចារឹក $J_2=10\%$ ។ សញ្ញាប័ណ្ណ ទាំងនេះ មាន តំលៃធៀបនឹងទិន្នផល $J_2=9\%$ ។ ចូរកំណត់តំលៃបោះផ្សាយក្នុង \$100 ឯកតា ?

នំទាន់ ៦.៥. សញ្ញាប័ណ្ណមួយមានតំលៃចារឹក $\$1\,000\,$ បង់ការប្រាក់តាមអត្រាចារឹក $J_2=12\%$ ហើយត្រូវសងវិញ តាមតំលៃចារឹកក្នុងរយៈពេល ២០ឆ្នាំទៀត ។ ចូរគណនាតំលៃទិញបើអ្នកវិនិយោគចង់បាន ចំណូល ៖

- ñ. $J_2 = 14\%$?
- 2. $J_2 = 12\%$?
- គ. $J_2 = 10\%$?

សំទាន់ ៦.៦. សញ្ញាប័ណ្ណមួយមានតំលៃចារឹក \$X ត្រូវបានកំណត់សងតាមតំលៃប្រកាស 105 ក្នុងរយៈពេល 10 ឆ្នាំ ទៀត។ សញ្ញាប័ណ្ណនេះ ត្រូវបាន ទិញដោយ អ្នកវិនិយោគ ម្នាក់ ដែល ចង់បាន ចំណូល $J_2=10\%$ ។ ប្រសិនបើសញ្ញាប័ណ្ណដូចគ្នានេះ ត្រូវបានកំណត់សងតាមតំលៃ ចារឹកហើយ តំលៃទិញពិតប្រាកដស្មើ នឹង $\$113\,07$ តិចជាង តំលៃទិញសញ្ញាប័ណ្ណខាងលើ ។ ចូរកំណត់តំលៃចារឹក X ?

នំមាន់ ៦.៧. សញ្ញាប័ណ្ណមួយមានតំលៃចារឹក \$1~000 អត្រាចារឹក $J_2=12\%$ និង សងវិញ នៅ ចុងឆ្នាំទី n ក្នុង តំលៃ \$1~050 ។ សញ្ញាប័ណ្ណ នេះ ត្រូវបាន លក់ ក្នុងតំលៃ \$930 ធៀប នឹង អត្រាចំណូល $J_2=15\%$ ។ ចូរគណនា តំលៃ សញ្ញាប័ណ្ណ ដែលមាន តំលៃចារឹក \$1~000 អត្រាចារឹក $J_2=10\%$ ហើយសងវិញនៅ ចុងឆ្នាំទី 2n ក្នុងតំលៃ \$1~040 ធៀបនឹងអត្រាទិន្នផល លើទីផ្សារ $J_2=15\%$?

នំទាន់ ៦.៤. ក្រុមហ៊ុនសាជីវកម្មមួយូបានបោះផ្សាយ សញ្ញាប័ណ្ណ ដែលមានអត្រាចារឹក $J_1=10\%$ សងវិញក្នុងរយៈពេល៥ឆ្នាំទៀតតាមតំលៃចារឹក។ អត្រាការប្រាក់លើទីផ្សារ $J_1=12\%$ ។

- ក. តើសញ្ញាប័ណ្ណដែលមានតំលៃចារឹក \$1 000 លក់ក្នុងតំលៃប៉ុន្មាន ?
- ខ. ឧបមាថា ជំនួសការបោះផ្សាយសញ្ញាប័ណ្ណនេះ ដោយការបោះផ្សាយ សញ្ញាប័ណ្ណ ដែល ផ្ដល់ការប្រាក់តាមអត្រាចារឹក $J_1=11\%$ ។ តើអាយុកាលនៃសញ្ញាប័ណ្ណថ្មីនេះមានប៉ុន្មាន ឆ្នាំ ដើម្បីអោយអ្នកទិញ (Bondholders) នៅតែទទួលបានទិន្នផល $J_1=12\%$ ដដែល? (ចំលើយយកត្រឹមឆ្នាំ)។

នំទាះគ ៦.៩. សញ្ញាប័ណ្ណមួយមានតំលៃចារឹក $\$5\,000$ អត្រាចារឹក $J_2=11\%$ និងត្រូវសងវិញ តាមតំលៃចារឹកក្នុងរយ:ពេល២០ឆ្នាំទៀត ។ សញ្ញាប័ណ្ណនេះអាចណាត់សងតាមតំលៃចារឹកនៅ ចុងឆ្នាំទី ១៥ ។ ចូរគណនាតំលៃ សញ្ញាប័ណ្ណដែលធានា ផ្ដល់ទិន្នផល ៖

ñ.
$$J_2 = 13\%$$
 ?

2.
$$J_2 = 9\%$$
 ?

នំទាន់ ៦.១០. សញ្ញាប័ណ្ណមួយមាន តំលៃចារឹក $\$2\,000\,$ អត្រាចារឹក $J_2=10\%\,$ ហើយសន្យា សងវិញតាមតំលៃ ចារឹកក្នុងរយៈពេល ២០ឆ្នាំទៀត ឬ អាចណាត់សង តាមតំលៃចារឹកក្នុង រយៈពេល ១៥ឆ្នាំខាងមុខ ។

ច្ងរ រកតំលៃសញ្ញាប័ណ្ណដែលធានាដល់ អ្នកទិញទទូលបាននូវចំណូល ៖

$$\tilde{n}$$
. $J_2 = 8\%$?

2.
$$J_2 = 12\%$$
 ?

នំទាន់ ៦.១១. សញ្ញាប័ណ្ណមួយមានតំលៃចារឹក \$1~000 ផ្ដល់ការប្រាក់តាមអត្រាចារឹក $J_2=13\%$ ហើយសងវិញ តាមតំលៃចារឹកក្នុងរយៈពេល ២០ឆ្នាំខាងមុខ ឬ អាចណាត់សងតាមតំលៃ 105 ក្នុងអំឡុងពេល ១៥ឆ្នាំ ក្រោយ ។ ចូរគណនាតំលៃដែលធានាដល់អ្នក វិនិយោគទទូលបាននូវចំណូល ៖

ñ.
$$J_2 = 15\%$$
 ?

2.
$$J_2 = 11\%$$
?

នំទារន់ ៦.១២. សញ្ញាប័ណ្ណមួយមាន តំលៃចារឹក $\$2\,000\,$ អត្រាចារឹក $J_2=12\%\,$ នឹងត្រូវសង វិញតាមតំលៃចារឹក ក្នុងរយៈពេល ២០ឆ្នាំខាងមុខ ។ សញ្ញាប័ណ្ណនេះ អាចណាត់សងបន្ទាប់ពីឆ្នាំទី ១០ តាមតំលៃ $110\,$ និង បន្ទាប់ពីឆ្នាំទី ១៥ តាមតំលៃ $105\,$ ។ ចូរគណនាតំលៃសញ្ញាប័ណ្ណដើម្បី ធានាដល់អ្នកវិនិយោគ ទទួលបាន នូវទិន្នផលតាមអត្រា ?

នំទាន់ ៦.១៣. សញ្ញាប័ណ្ណមួយ មានតំលៃចារឹក \$1~000 តំលៃត្រូវសងស្មើ តំលៃចារឹកដោយ សន្យាផ្ដល់ការប្រាក់ តាមអត្រា $J_2=12\%$ នៅរៀងរាល់ថ្ងៃទី ១ ខែ មិនា និង ថ្ងៃទី ១ ខែ កញ្ញា ហើយមានតំលៃ គណៈនេយ្យចំនួន \$1~075 នាថ្ងៃទី ១ ខែ មិនា ឆ្នាំ ១៩៩៩ អត្រាទិន្នផលនៅអំឡុង ពេលនេះ គឺ $J_2=10\%$ ។

ចូរ គណនា ចំនូនទឹកប្រាក់ សំរាប់រំលោះ Premium នា ថ្ងៃទី ១ ខែ កញ្ញា ឆ្នាំ ១៩៩៩ និង តំលៃ គណនេយ្យថ្មីក្នុង រយៈពេលនេះ ?

សំទារត់ ៦.១៤. សញ្ញាប័ណ្ណមួយមានតំលៃចារឹក $\$1\,000\,$ តំលៃត្រូវសងស្មើតំលៃចារឹក $\$1\,84.34\,$ ។ ប្រសិនបើ Write-down in book value ស្មើ $\$1\,1.57\,$ នៅចុង ឆ្នាំទី ១ តើ Write-down នៅចុងឆ្នាំទី ៥ ស្មើប៉ុន្នាន ?

នំទាន់ ៦.១៦. សញ្ញាប័ណ្ណមួយមានតំលៃចារឹក $\$1\,000$ ត្រូវសងវិញក្នុងតំលៃ $\$1\,050$ នាថ្ងៃទី ១ ខែធ្នូ ឆ្នាំ២០០២ និង អត្រាចារឹក $J_2=13\%$ ។ សញ្ញាប័ណ្ណនេះ ត្រូវបានគេទិញនាថ្ងៃទី ១ ខែ មិថុនា ឆ្នាំ ២០០០ ។

ចូរគណនាតំលៃសញ្ញាប័ណ្ណ និងសង់តារាងនៃសញ្ញាប័ណ្ណបើអត្រាចំណូលជាក់លាក់របស់អ្នកទិញ

- $\bar{n}. \ J_12 = 12\%$?
- 2. $J_1 = 11\%$?

សំទាន់ ៦.១៧. សញ្ញាប័ណ្ណមានតំលៃចារឹក \$1~000 បង់ការប្រាក់តាមអត្រាចារឹក $J_2=14\%$ នាថ្ងៃទី ១ ខែ មករា និង ថ្ងៃទី ១ ខែ កក្កដា និង តំលៃត្រូវសងស្មើតំលៃចារឹក ដែលត្រូវបង់នៅថ្ងៃទី ១ ខែ កក្កដា ឆ្នាំ ២០០៨។ បើសញ្ញា ប័ណ្ណត្រូវបានគេទិញនៅថ្ងៃទី ១ ខែ មករា ឆ្នាំ ២០០០ ដោយ ទទួលបានចំណូលតាមអត្រា $J_2=12\%$

ចូរគណនាការប្រាក់លើ Book Value នាថ្ងៃទី ១ ខែ មករា ឆ្នាំ ២០០៤?

សំទារត់ ៦.១៨. សញ្ញាប័ណ្ណមួយមានតំលៃចារឹក \$2 000 ត្រូវសងតាមតំលៃចារឹកក្នុងរយៈពេល ៥ឆ្នាំខាងមុខ និង ផ្តល់ការប្រាក់រៀងរាល់ឆ្នាំ ។ ការប្រាក់ដែលបង់លើកទី ១ \$400 ហើយការប្រាក់ ដែល បង់ក្នុងឆ្នាំ បន្ត បន្ទាប់គឺ ត្រូវបន្ថយ 25% នៃ *Coupon* ដែលបានបង់ឆ្នាំមុនបន្ទាប់ ។

- ក. ចូរគណនាតំលៃសញ្ញាប័ណ្ណដែល ត្រូវផ្ដល់ទិន្នផល $J_{\scriptscriptstyle 1}=10\%$?
- ខ. សង់តារាងនៃសញ្ញាប័ណ្ណ ?

នំទារន់ ៦.១៩. សញ្ញាប័ណ្ណ មួយមាន អាយុកាល ១០ឆ្នាំ តំលៃត្រូវសង ស្មើ \$2~000~ និង ផ្ដល់ Coupon រៀងរាល់ឆ្នាំ។ ការប្រាក់នៅចុងឆ្នាំទី១ស្មើ \$100~ ហើយឆ្នាំបន្ដបន្ទាប់កើន 10%~ នៃឆ្នាំមុន បន្ទាប់ ។ សញ្ញាប័ណ្ណ ត្រូវលក់ក្នុងតំលៃ ដែលផ្ដល់ចំណូលដល់ អ្នកវិនិយោគ $J_1=9\%~$ ។ ចូរគណនាតំលៃសញ្ញាប័ណ្ណ និង សង់តារាងនៃសញ្ញាប័ណ្ណ ?

នំទាន់ ៦.២០. សញ្ញាប័ណ្ណមួយមាន តំលៃចារឹក $\$1\,000\,$ អត្រាចារឹក $J_2=10\%\,$ និង សងវិញ តាមតំលៃចារឹក នាថ្ងៃទី ១ ខែ គុលា ឆ្នាំ ២០០២ ។ ចូរកេ តំលៃទិញ នៅថ្ងៃទី ៧ ខែសីហា ឆ្នាំ ២០០០ បើអ្នកទិញ ប្រាថ្នា ចំណូលតាម អត្រា $J_2=13\%$ ។ គូសដ្យាក្រាមដែលផ្ដល់ភាពងាយ ស្រួលក្នុងការគណនា ។

សំសាត់ ៦.២១. សញ្ញាប័ណ្ណដែលបោះផ្សាយរតនាគារជាតិមួយមានតំលៃចារឹក $\$1\,000$ ត្រូវសង វិញនៅថ្ងៃទី ១ ខែ ធ្នូ ឆ្នាំ ២០១១ តំលៃចារឹក ។ ការប្រាក់ត្រូវបង់តាមអត្រាចារឹក $J_2=12\%$ នៅថ្ងៃទី ១ ខែមិថុនា និង ថ្ងៃទី ១ ខែ ធ្នូ រៀងរាល់ឆ្នាំ។ សញ្ញាប័ណ្ណនេះ អាចត្រូវណាត់សងតាមតំលៃ

 $104~{\rm sn}$ ថ្ងៃទី ១ ខែធ្នូ ២០០៥។ ចូរគណនា តំលៃសរុប (Flat price = Purchase price) និង តំលៃ ទីផ្សារនៃ សញ្ញាប័ណ្ណ នាថ្ងៃទី ៨ ខែ សីហា ឆ្នាំ ២០០០ ប្រសិនបើអត្រា ទិន្នផល $J_2=10,5\%$

- ក. សន្មតថា សញ្ញាប័ណ្ណត្រូវបានណាត់សងនៅថ្ងៃទី ១ ខែ ធ្នូ ឆ្នាំ ២០០៥ ?
- ខ. សន្មតថា សញ្ញាប័ណ្ណសងតាមតំលៃចារឹកនៅថ្ងៃទី ១ ខែ ធ្នូ ឆ្នាំ ២០១១ ?

- ក. សញ្ញាប័ណ្ណមួយមានតំលៃចារឹក $\$1\,000\,$ អត្រាចារឹក $J_2=10\%\,$ និង សងវិញ ស្មើតំលៃចារឹក នាថ្ងៃទី ១ ខែ កញ្ញា ឆ្នាំ ២០២០ ។ ចូរគណនា តំលៃសញ្ញាប័ណ្ណ នាថ្ងៃ បោះផ្សាយគឺថ្ងៃទី ១ ខែ កញ្ញា ឆ្នាំ ២០០០ បើអត្រា ការប្រាក់ក្នុងទីផ្សារ $J_2=12\%$?
- ខ. ចូរគណនាតំលៃគណនេយ្យនៃសញ្ញាប័ណ្ណនាថ្ងៃទី ១ ខែ កញ្ញា ឆ្នាំ ២០០២ (បន្ទាប់ពីបង់ការ ប្រាក់រួច) ?
- គ. ចូររក តំលៃលក់ នៃ សញ្ញាប័ណ្ណនេះ នាថ្ងៃទី ១ ខែ កញ្ញា ឆ្នាំ ២០០២ បើ អ្នកទិញ ចង់បាន ចំណូល ៖ $J_2=9\%$?; $J_2=15\%$?
- ឃ. តើ $\mathit{Market\ quotation}$ នៃ សញ្ញាប័ណ្ណនេះ នាថ្ងៃទី ៨ ខែ តុលា ឆ្នាំ ២០០២ ស្មើប៉ុន្នាន បើអ្នក ទិញប្រាថ្នា ចំណូល $J_2=11\%$?

នំទារត់ ៦.២៣. សញ្ញាប័ណ្ណរបស់ក្រុមហ៊ុនសាជីវកម្មABC មួយសន្លឹកមានតំលៃចារឹក $\$5\,000$ អត្រាចារឹក $J_2=11\%$ ហើយសងវិញស្មើតំលៃចារឹកនាថ្ងៃទី ១ ខែ តុលា ឆ្នាំ ២០១២ ។

- ក. តើអ្នកទិញបានចំណាយប្រាក់ប៉ុន្មាន សំរាប់សញ្ញាប័ណ្ណនេះ បើវាត្រូវបានលក់នៅថ្ងៃទី ២៨ ខែ កក្កដា ឆ្នាំ ២០០០ តាម Market quotation 89 ?
- ខ. តើ $\it Market\ quotation$ នៃ សញ្ញាប័ណ្ណនេះ នាថ្ងៃទី ២៨ ខែកក្កដា ឆ្នាំ ២០០២ ស្មើប៉ុន្មាន បើអ្នកទិញ ចង់បាន ចំណូល $\it J_12=9\%$?
- គ. តើ $Market\ quotation$ នៃសញ្ញាប័ណ្ណនេះ នាថ្ងៃទី ១៣ ខែ ធ្នូ ឆ្នាំ ២០០២ ស្មើប៉ុន្មាន បើ អត្រាចំណូលជាក់លាក់ របស់អ្នកទិញ គឺ $J_1=12\%$?

សំទារត់ ៦.២៤. ក្រុមហ៊ុនសាជីវកម្ម ABC មានសញ្ញាប័ណ្ណមួយដែលមានតំលៃចារឹក \$1~000 និង អត្រាចារឹក $J_2=12\%$ ។ សញ្ញាប័ណ្ណនេះ មានតំលៃសងស្មើតំលៃចារឹកនាថ្ងៃទី ១ ខែ កញ្ញា ឆ្នាំ ២០០៨ ។ នៅថ្ងៃ ទី ១ ខែកញ្ញា ឆ្នាំ ១៩៩២ អ្នកវិនិយោគម្នាក់បានទិញសញ្ញាប័ណ្ណនេះ ក្នុងតំលៃប្រកាស 96 ហើយនៅ ថ្ងៃទី ១ ខែ កញ្ញា ឆ្នាំ ២០០០ គាត់បានលក់ សញ្ញាប័ណ្ណនេះ ទៅវិញ ក្នុងតំលៃប្រកាស 106។

ចូរគណនា អត្រាទិន្នផល របស់អ្នកវិនិយោគនោះ បើគាត់ចង់បាន

ñ. $J_2=$?

2.
$$J_1 = ?$$

សំទាាន់ ៦.២៥. ក្រុមហ៊ុនសាជីវកម្ម XYZ បោះផ្សាយសញ្ញាប័ណ្ណមួយដែល មានតំលៃចារឹក $\$1\,000$ អត្រាចារឹក $J_2=11\%$ និង តំលៃសងស្មើតំលៃចារឹកក្នុងរយៈពេល ២០ឆ្នាំខាងមុខ ឬ អាចណាត់ សងតាមតំលៃ ចារឹកបន្ទាប់ពី ឆ្នាំទី ១៥។ លោករតនៈបាន ទិញសញ្ញាប័ណ្ណនេះ ដែល ធានាផ្ដល់ ទិន្នផល $J_{12}=12\%$ ។

- ក. ចូរគណនាតំលៃទិញ ?
- ខ. បន្ទាប់ពី ១៥ឆ្នាំ ក្រុមហ៊ុន XYZ បានណាត់សងប្រាក់ \$1~000 ទៅអោយលោករតន: ។ ចូរគណនាទិន្នផលរបស់គាត់ទាំងអស់ គិតជាអត្រា J_{12} ?

សំខាន់ ៦.២៦. លោក សំណាង បានទិញសញ្ញាប័ណ្ណមួយ ដែលមាន តំលៃចារឹក $\$1\,000\,$ អត្រា ចារឹក $J_2=12\%$ និង តំលៃសងស្មើតំលៃចារឹក ដែលត្រូវសងនៅ អំឡុងពេល ២០ឆ្នាំ ខាងមុខ ។ តំលៃសញ្ញាប័ណ្ណ ដែល គាត់ទិញនឹង ធានាផ្ដល់ ទិន្នផលតាម អត្រា $J_4=16\%$ បើសិន ជាគាត់រក្សាទុក រហូតដល់ឥណ ប្រតិទាន ។ បន្ទាប់ពីឆ្នាំទី៥ លោកសំណាងលក់សញ្ញាប័ណ្ណ នេះ ទៅអោយអ្នកស្រី ដានី ដែលជាអ្នកចង់បាន ចំណូលតាមអត្រា $J_1=11\%$ លើការវិនិយោគរបស់ ខ្លួន ។

- ក. តើលោកសំណាងទិញសញ្ញាប័ណ្ណ ក្នុងតំលៃប៉ុន្មាន ?
- ខ. តើអ្នកស្រី ដានី ទិញសញ្ញាប័ណ្ណក្នុងតំលៃប៉ុន្មាន ?
- គ. តើអត្រា J_4 ពិតប្រាកដ ដែលលោក សំណាង ទទួលបានស្មើប៉ុន្មាន ?

នំទាន់ ៦.២៧. សញ្ញាប័ណ្ណស៊េរីមួយមានតំលៃចារឹក $\$10\,000\,\$$ ង ត្រូវសងវិញដោយសំណង ថេរ $\$2\,000\,$ នៅចុង ឆ្នាំនិមួយៗនៃឆ្នាំទី ២១ ដល់ទី ២៥ គិតពីកាលបរិច្ឆេទបោះផ្សាយមក ។ សញ្ញាប័ណ្ណនេះ បង់ការ ប្រាក់តាមអត្រា $J_2=11\%$ ។ តើសញ្ញាប័ណ្ណមានតំលៃប៉ុន្មានធៀបនឹង អត្រាទិន្នផល $J_2=9\%$?

សំសាត់ ៦.២៤. ដើម្បីផ្គត់ផ្គង់ហិរញ្ញវត្ថុលើគំរោង ពង្រីកសមត្ថភាពផលិតកម្ម នៅថ្ងៃទី ១៥ ខែ មិនា ឆ្នាំ ១៩៩៩ ក្រុមហ៊ុន Mini Corp Ltd. បានបោះផ្សាយ Serial bonds ដែលមានទឹកប្រាក់សរុប \$30 000 000 ការប្រាក់ គិតតាម អត្រា 13% ក្នុងមួយឆ្នាំ ហើយត្រូវបង់រៀងរាល់ឆមាសនៅថ្ងៃទី ១៥ ខែ មិនា និង ថ្ងៃទី ១៥ ខែ កញ្ញា ។

កិច្ចសន្យាចែងអំពីការសងមានដូចតទៅ ៖

- តំលៃ \$10 000 000 នៃការបោះផ្សាយត្រូវសងនៅថ្ងៃទី ១៥ ខែ មិនា ឆ្នាំ ២០០៤
- តំលៃ \$10 000 000 នៃការបោះផ្សាយត្រូវសងនៅថ្ងៃទី ១៥ ខែ មិនា ឆ្នាំ ២០០៩

• តំលៃ $\$10\,000\,000$ នៃការបោះផ្សាយត្រូវសងនៅថ្ងៃទី ១៥ ខែ មិនា ឆ្នាំ ២០១៤ ចូរគណនាតំលៃទិញនៃសញ្ញាប័ណ្ណស៊េរី ដែលផ្ដល់ទិន្នផលតាមអត្រា $J_1=12\%$ ចំពោះសញ្ញាប័ណ្ណដែលត្រូវសង នៅអំឡុងពេល ៥ឆ្នាំខាងមុខ និង $J_1=14\%$ ចំពោះសញ្ញាប័ណ្ណដែលបាន បោះផ្សាយ ដទៃទៀត ?

នំទារន់ ៦.២៩. ក្រុមហ៊ុនសាជីវកម្មមួយបោះផ្សាយ សញ្ញាប័ណ្ណដែលមានតំលៃចារឹក \$1~000 កាលបរិច្ឆេទត្រូវសង រយៈពេល ២០ឆ្នាំ និង អត្រាចារឹក $J_2=10\%$ ។ សញ្ញាប័ណ្ណ នេះ ត្រូវបាន ទិញ ដោយវិនិយោគិន A ដែល ប្រាថ្នាចង់ បានចំណូល $J_2=9.5\%$ ។ អ្នកវិនិយោគនេះ រក្សា Coupon ទុក ហើយលក់ ចំរៀកនៃសញ្ញា ប័ណ្ណ នៅសល់ (តំលៃត្រូវសង) ទៅអោយវិនិយោគិន ម្នាក់ទៀត ដែលចង់បាន ចំណូល $J_2=10.5\%$ ។ ចូរគណនាអត្រាចំណូលសរុបរបស់ អ្នកវិនិយោគ A ?

សំទារត់ ៦.៣០. ក្រុមហ៊ុនសាជីវកម្មមួយ បានបោះផ្សាយ សញ្ញាប័ណ្ណ ដែលមាន តំលៃចារឹក \$1~000 កាលបរិច្ឆេទ ត្រូវ សងរយៈពេល ១៥ឆ្នាំ អត្រាចារឹក $J_2=9.5\%$ និង តំលៃត្រូវសង គឺ 105 ។ សញ្ញាប័ណ្ណនេះ ត្រូវបាន ទិញដោយ អ្នកវិនិយោគ A ដែលចង់បាន ចំណូល $J_2=10\%$ ។ វិនិយោគិន A លក់ Coupon ទៅអោយ វិនិយោគិន B ដែលជា អ្នកចង់បានចំណូល $J_{12}=10.5\%$ ហើយរក្សាតំលៃ ត្រូវសង (Keeps~the~strip~bond) សំរាប់ខ្លួន ។ ចូរអត្រាចំណូលជាក់លាក់សរុប J_2 របស់វិនិយោគិន A ?

សំទារត់ ៦.៣១. Annuity Bond មួយសន្យាសងប្រាក់ដើម \$ $50\,000$ ដែលគិតការប្រាក់តាមអត្រា $J_2=9\%$ និង បង់ប្រាក់ប្រចាំឆមាសចំនូន ២០លើក លើកទី១ ធ្វើនៅ ៣ឆ្នាំ ក្រោយបន្ទាប់ ពីថ្ងៃខ្ចី ។ តើអ្នកវិនិយោគ ម្នាក់ ដែលចង់ បានចំណូល $J_1=8\%$ ត្រូវទិញសញ្ញាប័ណ្ណនេះ ក្នុងតំលៃប៉ុន្មាន ? បើ ៖

- ក. ទិញឥឡូវនេះ ?
- ខ. រយៈពេល ២ឆ្នាំទៀតទើបទិញ ?
- គ. រយៈពេល ៥ឆ្នាំទៀតទើបទិញ ?

នាគម៌ា្

៧.១. សញ្ញាណនៃនាកម៌ា្

សាជីវកម្មក្នុងតម្រូវការដើមទុនអាចបញ្ចេញហ៊ុនទៅ វិនិយោគិនឯកជន។ វិនិយោគិនបង់ ភាគហ៊ុនក្នុងក្រុមហ៊ុន។ វិនិយោគិនទាំងនេះ នឹងទទូលបានប្រាក់ចំណេញ(ភាគលាភ) ឬប្រាក់ ខាតអាស្រ័យលើការកើនឡើង ឬចុះរបស់តម្លៃភាគហ៊ុន។

ឧនាទារស៍ ៧.១.១. បើលោកសារ៉ាត់ទិញភាគហ៊ុនចំនួន 500 ហ៊ុន ហើយភាគហ៊ុននីមួយៗថ្លៃ \$20 នោះនាងបង់ \$10 000 ទៅក្រុមហ៊ុនវិនិយោគ។ ប្រសិនបើតម្លៃភាគហ៊ុនកើនឡើងដល់ \$30 ក្នុង មួយហ៊ុន នោះលោកលក់ភាគហ៊ុនតាម ក្រុមហ៊ុនវិនិយោគលោកទទួលបាន \$15 000 ។ ដូចនេះលោកសារ៉ាត់បង្កើតប្រាក់ ចំណេញ \$5000 ។

វិនិយោគិនដែលទិញភាគហ៊ុនអាចទទួលភាគលាភទៀងទាត់ (ជាប្រចាំត្រីមាស)។ ដូចនេះវិនិយោគិនអាចចំណេញក្នុង**ទះឆ្យាខាយពី៖** គឺ៖

- តាមការកើនឡើងនៃថ្លៃភាគហ៊ុន
- និង តាមវិក័យបត្រភាគលាភ។

ពេលខ្លះសាជីវកម្មពុះភាគហ៊ុន ដើម្បីបង្កើតភាគហ៊ុនកាន់តែច្រើននៅតម្លៃទាបបើធៀបនឹង ថ្លៃហ៊ុនចាស់។ ឧទាហរណ៍៖ ប្រសិនបើក្រុមហ៊ុនមួយបានប្រកាសពុះភាគហ៊ុនមួយជាពីរចំណែក នោះម្ចាស់ភាគហ៊ុននីមួយៗទទួលភាគហ៊ុនថ្មីចំនួនពីរក្នុងភាគហ៊ុនចាស់ចំនួនមួយ។ ចំណែកឯ ថ្លៃភាគហ៊ុនថ្មីគឺពាក់កណ្ដាលនៃថ្លៃភាគហ៊ុនចាស់។ ក្រុមហ៊ុន អាចធ្វើបែបនេះ ដើម្បីទាក់ទាញ ស្ថាប័នវិនិយោគិនដែលមានតម្រូវការថ្លៃហ៊ុនអប្បបរមា។

ច្ចស្នានាអស៊ុនមានច្រើនព្រះងន ជុំចខា

- ប័ណ្ណភាគហ៊ុនបរិមា (Preferred stocks)
- ប័ណ្ណភាគហ៊ុនធម្មតា(Common stock)
- និងប័ណ្ណភាគហ៊ុនផ្សេងៗទៀត (Blue chip stocks)
- ប័ណ្ណភាគហ៊ុនមានកំណើន (Growth stock)
- ប័ណ្ណហ៊ុនមានចំណូល (Income Stocks)

- ប័ណ្ណហ៊ុនប្រែប្រូល (Cyclical stocks)
- ប័ណ្ណហ៊ុនមិនប្រែប្រូល (Defensive stocks)
- ប័ណ្ណហ៊ុនបរិកប្ប (Speculative Stocks)។ មានប្រភេទ ហ៊ុនខុសៗគ្នា ជាច្រើន ដូចបានរៀបរាប់ ខាងលើ ប៉ុន្តែក្នុង មេរៀននេះយើង សិក្សាតែពីភាគហ៊ុនធម្មតា(Common Stocks) តែប៉ុណ្ណោះ។

• នីផ្សាះឡ៊ុន

ទីផ្សារហ៊ុនមានដើមកំណើតដំបូង នៅទីក្រុង Philadelphia នៅសហរដ្ឋអាមេរិច ក្នុង ឆ្នាំ១៧៩០។ វាត្រូវបាន គេស្គាល់ ថាជា ទីក្រុង Philadelphia ហ៊ុនប្តូរប្រាក់។ លើស ពីនេះ មាន ផ្សារភាគហ៊ុនញូវយ៉ក(NYSE) បានបង្កើតឡើង ក្នុងឆ្នាំ១៧៩២ ដែលជាការជួញដូរ ភាគហ៊ុនធំជាងគេបំផុត នៅលើពិភពលោក។ ការជួញដូរនៅ លើទីផ្សារនេះបានបង្កើតឱ្យ មានការដេញថ្លៃកើតឡើង។ ភាគហ៊ុន ត្រូវបានលក់ ទៅឱ្យអ្នកដេញថ្លៃខ្ពស់បំផុត និងបាន ទិញក្នុងការវេប្រាក់ទាបបំផុត។

• ស្រែងេខអ៊ុនស្និន៖

- ក្រុមហ៊ុនធំ (Large caps or Big caps) ជាក្រុមហ៊ុនដែលមានមូលធនខ្ពស់បំផុតលើស ពីដប់ពាន់លានដុល្លា(\$10 000 លាន)។
- ក្រុមហ៊ុនមធ្យម (Mid cap) ៖ ជាក្រុមហ៊ុន ដែលមានមូលធន ប្រមាណ 1.5 ៣ន់លាន ដុល្លា ទៅ 10 ពាន់លានដុល្លា។
- ក្រុមហ៊ុនតូច (Small cap)៖ ជាក្រុមហ៊ុនមានមូលធនតិចជាង 1.5 ពាន់លានដុល្លា។

៧.២. និយមន័យនៃគាន់ឡឹន

និយទន័យ ៧.២.១. នាអស៊ុន គឺជាសញ្ញានៃទំនាក់ទំនងនៃម្ចាស់អាជីវកម្ម។ អ្នកដែលជាម្ចាស់ភាគ ហ៊ុនម្នាក់ដែលមានសិទ្ធិបោះ ជ្រើសរើសសមាសភាព ក្រុមប្រឹក្សា ភិបាលរបស់ក្រុម ហ៊ុនបាន។ ប័ណ្ណភាគហ៊ុនគ្មានកាលអវសានទេ។

ឧនាមារស៍ ៧.២.១. ឧបមាថា អ្នកមានប័ណ្ណភាគហ៊ុនចំនូន 3 000 សន្លឹកនៅក្នុងក្រុមហ៊ុនមួយ ដែលក្រុមហ៊ុននោះបានបោះផ្សាយ និងលក់ប័ណ្ណភាគហ៊ុនសរុបមានចំនូន 100 000 សន្លឹកនោះ មានន័យថា អ្នកមានចំណែកកម្មសិទ្ធិចំនួន 3%(3 000/100 000) នៅក្នុងក្រុមហ៊ុននោះ។

៧.៣. អារនិញ និខលអំនាងឡីន

៧.៣.១. ឈ្មួញ និខឈ្មួញគណ្ពាល

ឈ្មួញអណ្តេល(Broker)៖ ជាអន្តរការី (អ្នកកណ្តាល) ដែលរៀបចំការជួញដូរសម្រាប់អតិថិ ជនរបស់គាត់ដោយ ជួយពួកគេរកបានដៃគូជំនួញ ដែលសក្តិសម។ សំណងរបស់ពួកគាត់ គឺជា ការប្រាក់កម្រៃជើងសារត្រូវបានបង់ ដោយអតិថិជន។ ឈ្មួញកណ្តាលមិនធ្វើ ហិរញ្ញប្បទានការ លក់ដូរទេ ហើយ ពួកគេមិនកាន់បញ្ជីសារពើភ័ណ្ឌ នៃទ្រព្យ ដែលបានរកៗពួកគេជាអ្នកសម្រប សម្រូលការជួញដូរដែលទទួលបាន តម្លៃឈ្នួលដំណើរការសម្រាប់សេវាត្រឡប់មកវិញ(សងវិញ)។ ឈ្មួញកណ្តាលតែងតែមាន នៅក្នុងទីផ្សារអចលនទ្រព្យ។បើយើងសង្កេត ដោយយកចិត្តទុកដាក់ ក្នុងការទិញផ្ទះ យើង និងឈានទៅដល់អ្នកលក់ដូរផ្ទះៗគេនឹងមានបញ្ជី នៃលក្ខណះដែលម្ចាស់ បង្ហាញឲ្យឃើញ នូវចំណាប់អារម្មណ៍ក្នុងការលក់ៗអ្នករកស៊ីលក់ដូរផ្ទះ មិនមានទ្រព្យសម្បត្តិនៃ ផ្ទះដែលគាត់បានផ្តល់ហិរញ្ញប្បទាននោះទេ។

ឈ្មួញ គឺទីផ្សារអន្តរការី ដែលកាន់កាប់ បញ្ជីសារពើភ័ណ្ឌនៃ ទ្រព្យសម្បត្តិក្នុងការបង្កើតទី ផ្សារៗផ្ទុយពី ឈ្មួញកណ្ដាល ឈ្មួញមានប្រាក់ទុន ក្នុងទ្រព្យទាំងនោះ។បើអតិថិជនកំពុងតែចង់ លក់ឈ្មួញ នឹងទិញវាពីអតិថិជន ដោយប៉ាន់ស្មានទុកមុនអាចលក់វាទៅវិញក្នុងតម្លៃខ្ពស់ជាង។ ស្រដៀងគ្នានេះដែរ នៅពេល អតិថិជន រំពឹងថាទិញ asset ឈ្មួញនឹងលក់ asset ពីបញ្ជីសារពើ ភ័ណ្ឌដោយសង្ឃឹមថា អាចបំពេញស្ដុករបស់ពួកគេ នៅតម្លៃទាបនៅពេលក្រោយ។ដើម្បីអះអាង ប្រាក់ចំនេញពីសកម្មភាពជំនូញរបស់ពួកគេ ឈ្មួញត្រូវតែជាអ្នកជំនាញក្នុងសិល្បះជំនួញ។

៧.៣.២. អារនិញ្ញុ និខលអំនាងឡិន

មានមធ្យោបាយខុសៗគ្នាដើម្បីទិញ និងលក់ហ៊ុន។

ឧនាទរស៍ ៧.៣.១. ឧបមាថា សុខា និង ធីតាទិញភាគហ៊ុន ដូចគ្នានៅលើ មូលដ្ឋានប្រចាំខែ ធម្មតាដោយប្រើវិធីសាស្ត្រផ្សេងគ្នា។ សុខាទិញភាគហ៊ុនចំនួន 10 ជារៀងរាល់ខែ ខណ:ពេល ដែលធីតាទិញភាគហ៊ុនថ្លៃ \$100 ដូចគ្នា ដោយមិនគិតពី ចំនួនហ៊ុនដែលត្រូវបានទិញសម្រាប់ ចំនួនទឹកប្រាក់នេះ។ វិធីសាស្ត្រដែលធីតាប្រើ ត្រូវបានគេហៅថាជា **ទន្សទតខ្លែស្នា** ។

ಜೀಣಾ:ಕ್ರಾಟ

យក S(t) ជាតម្លៃហ៊ុននៅពេល t បើយើងទិញចំនួនភាគហ៊ុន N នៅខណៈពេល t=1, t=2

នោះយើងបង់ NS(1)+NS(2) ចំពោះចំនូនភាគហ៊ុនសរុប 2Nដូចនេះតម្លៃមធ្យមក្នុងភាគហ៊ុនគឺ

$$\frac{NS(1) + NS(2)}{2N} = \frac{S(1) + S(2)}{2} = \frac{1}{2} \sum_{t=1}^{2} S(t)$$

បើយើងទិញភាគហ៊ុនចំនូនដូចគ្នានៅ ខណ:ពេល $t=1,2,\cdots,n$ នោះតម្លៃមធ្យមនៃភាគហ៊ុន មួយគឺ

$$\frac{1}{n} \sum_{t=1}^{n} S(t) \tag{(1.9)}$$

បើយើងប្រើមធ្យមតម្លៃប្រាក់ដុល្លា (Dollar Cost Averaging) និងចំណាយ ដុល្លា ដើម្បីទិញ ភាគ ហ៊ុននៅខណៈពេល t=1 និង t=2

នោះយើងបង់ 2D ចំពោះចំនូនសរុបនៃ ${}^D\!/_{\!S(1)}+{}^D\!/_{\!S(2)}$ ចំណែកភាគហ៊ុន ដូច្នេះតម្លៃមធ្យមនៃចំណែកភាគហ៊ុនគឺ

$$\frac{2D}{\frac{D}{S(1)} + \frac{D}{S(2)}} = \frac{2}{\frac{1}{S(1)} + \frac{1}{S(2)}} = \frac{2}{\sum_{t=1}^{2} \frac{1}{S(t)}}$$

បើយើងចំណាយ D ដុល្លា ដើម្បីទិញ ចំណែកភាគហ៊ុន នៅ ខណៈពេល t=1,2,...,n នោះ **តន្លែមធ្យមគូខមួយចំណែតគឺ**

$$\frac{n}{\sum\limits_{t=1}^{n} \frac{1}{S(t)}}$$
 (៧.២)

សំណូរយើងចង់ឆ្លើយ គឺ "តើទ្រឹស្តីណាមួយ ឱ្យតម្លៃមធ្យមទាប ក្នុងមួយចំណែកហ៊ុន"។ ជាដំបូង យើងយកចិត្តទុកដាក់លើ n=2 ។

បើយើងក្រឡេកទៅផលដករវាងតម្លៃមធ្យមក្នុងមួយភាគហ៊ុន នោះយើងឃើញថា (៧.១)– (៧.២)

$$\frac{S(1) + S(2)}{2} - \frac{2}{\frac{1}{S(1)} + \frac{1}{S(2)}} = \frac{S(1) + S(2)}{2} - \frac{2S(1)S(2)}{S(1) + S(2)}$$

$$= \frac{(S(1) + S(2))^{2} - 4S(1)S(2)}{2(S(1) + S(2))}$$

$$= \frac{(S(1) + S(2))^{2}}{2(S(1) + S(2))}$$

ផលដកគឺវិជ្ជមានលើកលែងតែ S(1)=S(2) ក្នុងករណីនេះវាគឺសូន្យ។ ដូច្នេះលើកលែងតែ S(1)=S(2) មធ្យមតម្លៃនៃប្រាក់ដុល្លាផ្ដល់ឱ្យតម្លៃចំណែកមធ្យមទាប បើ n=2 ។ បើ S(1)=S(2) នោះទ្រឹស្ដីបទទាំងពីរឱ្យតម្លៃមធ្យមដូចគ្នាក្នុងមួយភាគហ៊ុន។ នេះអាចសិក្សាជាទូទៅជា n ចន្លោះពេលដោយពិចារណាទៅ លើសញ្ញានៃបរិមាណ

$$\frac{1}{n} \sum_{t=1}^{n} S(t) - \frac{n}{\sum_{t=1}^{n} \frac{1}{S(t)}} = \frac{1}{n \sum_{t=1}^{n} \frac{1}{t}} \left(\left(\sum_{t=1}^{n} S(t) \right) \left(\sum_{t=1}^{n} \frac{1}{S(t)} \right) - n^{2} \right)$$

ឥឡូវ វិសមភាព Cauchy-Schwarz

$$\left(\sum_{t=1}^{n} a_t b_t\right)^2 \leqslant \left(\sum_{t=1}^{n} a_t^2\right) \left(\sum_{t=1}^{n} b_t^2\right)$$

សមភាពកើតឡើងលុះត្រាតែ

$$a_t = \lambda b_t$$
 $(t = 1, 2, 3, ..., n)$

ចំពោះចំនួនថេរ λ ឬ $b_t=0$ $\qquad (t=1,2,3,...,n)$ ។ តាង

$$a_t = \sqrt{S(t)}$$
 & $b_t = \frac{1}{\sqrt{S(t)}}$

យើងឃើញថា

$$n^2 \leqslant \left(\sum_{t=1}^n S(t)\right) \left(\sum_{t=1}^n \frac{1}{S(t)}\right)$$

សមភាពកើតឡើងលុះត្រាតែ $\sqrt{S(t)}={}^\lambda\!/_{\!S(t)}$ នោះ $S(1)=S(2)=\ldots=S(n)=\lambda$ ។

ដូចនេះ លុះត្រាតែ $S(1)=S(2)=\ldots=S(n)$ នោះទើបមធ្យមតម្លៃប្រាក់ដុល្លាឱ្យតម្លៃហ៊ុន ជាមធ្យមទាប។

បើ $S(1)=S(2)=\ldots=S(n)$ នោះទ្រឹស្តីទាំងពីរនាំឱ្យតម្លៃមធ្យមដូចគ្នានៃហ៊ុន។

ន្រឹស្តីមន ៧.៣.១. ន្រឹស្តីមនតម្លៃមធ្យមខែដុល្លា (Dollar Cost Averaging)

បើយើងកំពុងទិញហ៊ុន នោះតម្លៃមធ្យមដុល្លាឱ្យ តម្លៃមធ្យម នៃហ៊ុនទាបជាងការទិញ ចំនូនហ៊ុនដែលថេរលើមូលដ្ឋានទៀងទាត់។ បើយើងកំពុងលក់ហ៊ុន នោះការលក់ចំនូន ហ៊ុននៅថេរលើមូលដ្ឋានទៀងទាត់ឱ្យតម្លៃមធ្យមនៃហ៊ុនខ្ពស់ជាងតម្លៃ

មធ្យោបាយផ្សេងទៀត ដើម្បីទិញហ៊ុនគឺការទិញលើ Margin(BUYING ON MARGIN)។ នៅពេលដែលវិនិយោគិនមិនមាន ទឹកប្រាក់គ្រប់គ្រាន់ ដើម្បីបង់ជាប្រាក់សុទ្ធ សម្រាប់ការបញ្ហា ទិញទាំងអស់ ឥណទានត្រូវបានគេរៀបចំក្នុងការបញ្ហា ទិញលើ Margin។ មុននឹងការលក់ដូរ Margin កើតឡើង គណនេយ្យពិសេសត្រូវបានគេបើកនៅផ្ទះឈ្មូញកណ្ដាល ឬការិយាល័យឈ្មួញ។ ជាការពិតណាស់ គណនេយ្យនេះអាចធ្វើទៅបានដោយវិនិយោគិនដាក់ពាក្យ សុំសម្រាប់បន្ទាត់ នៃឥណទាន លើកលែងតែទឹកប្រាក់ត្រូវបានប្រើដើម្បី ទិញភាគហ៊ុនដែលមានកម្មសិទ្ធិពិសេស។ គេបានបង្កើតច្បាប់មួយហៅថា 50% Margin។ នៅពេលភាគហ៊ុនត្រូវបានទិញក្នុង Margin សាច់ ប្រាក់ក្នុងបរិមាណនៃ 50% នៃថ្លៃទិញ សរុបត្រូវតែ ធ្វើឥណទាន ក្នុងគណនេយ្យ របស់ឈ្មួញ កណ្ដាលរួចរាល់។

ឧធាមារស៍ ៧.៣.២. ឧបមាថាអ្នកចង់ទិញភាគហ៊ុនចំនួន 100 នៃ Xerox ដែលតម្លៃបច្ចុប្បន្ន នៃភាគហ៊ុននីមួយៗគឺ 45\$។ គេបានថ្លៃនៃភាគហ៊ុនសរុបគឺ \$4500 (មិនគិតពីកម្រៃជើងសារ)។ បើអ្នកទិញភាគហ៊ុនទាំងនេះនៅលើMargin អ្នកនឹងជំពាក់ \$2250 ឬពាក់កណ្ដាលតម្លៃសរុប។ ចំនួនទឹកប្រាក់នេះគឺស្ថិតនៅក្នុងគណនេយ្យ ឬបានកក់ជាមួយនឹងឈ្មួញកណ្ដាលរបស់អ្នកដែល ជាដៃគូរួម។ ឈ្មួញកណ្ដាល បង់សម្រាប់ ការជួញដូរ ដែលនៅសល់(\$2250) ហើយនឹងបញ្ចូល ការប្រាក់ជាការបង់ប្រចាំខែលើ Outstanding Balance។ ការប្រាក់ អាចខ្ពស់ជាង អត្រាការប្រាក់ របស់ធនាគារ ព្រោះតែក្រុមហ៊ុនឈ្មួញកណ្ដាល ត្រូវខ្ចីលុយពីធនាគារដើម្បីឱ្យអ្នកខ្ចី។

ប្រជាជនទិញភាគហ៊ុនលើ Margin ដើម្បីដាក់ប្រាក់ក្នុងចំនូនតិច ក្នុងគោលបំណង គឺធ្វើឱ្យ ប្រាក់នោះកើនឡើង។ ជាការពិត ប្រាក់តិចតូចនេះត្រូវបានប្រើដើម្បីទ្រទ្រង់ចំនួនទឹកប្រាក់ច្រើន ជាងនៃមូលដ្ឋានរបស់តម្លៃមូលធន។ នៅពេល វិនិយោគិន ទិញភាគហ៊ុនលើ Margin ធនលាភ ភាពប្រសិទ្ធិភាព (Potential Return) គឺច្រើនជាងបើថ្លៃភាគហ៊ុនកើនឡើង ព្រោះឈ្មូញកណ្ដាល ត្រូវបានបង់ត្រឹមតែពាក់កណ្ដាលនៃថ្លៃទិញដើម។ ឧនាទារស៍ ៧.៣.៣. ឧបមាអ្នកបានទិញ 100 ភាគហ៊ុននៃXeroxដែលមួយ ចំណែកមានតម្លៃ \$45 ។ បើថ្លៃកើនឡើងដល់ \$60 ចំណេញបាន \$15 ក្នុងភាគហ៊ុនមួយចំណែក។ ប៉ុន្តែដោយសារ តែអ្នកបង់ ត្រឹមតែពាក់កណ្ដាលនៃ \$45 ក្នុងមួយភាគហ៊ុន អត្រាពិតធនលាភភាពគឺប្រហែល 67 ភាគរយ(\$15 ចំណេញបានចែកដោយ ការបង់ភាគហ៊ុនដំបូង \$22.50)។ ទោះជាអត្រានេះ មិន បញ្ចូលការប្រាក់បានបង់លើគណនេយ្យ Margin ឬកម្រៃជើងសាររបស់ឈ្មួញកណ្ដាលក៏ដោយ អ្នកនៅតែបានប្រាក់ចំណេញ ខ្ពស់ជាងពេលដែលអ្នកបង់ ទឹកប្រាក់ \$4500 ពេញពីដំបូងមក។

ទន្ទឹមនឹងនេះ អ្នកកុំភ្លេចថា ប្រសិនបើ ថ្លៃហ៊ុនធ្លាក់ចុះ នោះលទ្ធផលគឺផ្ទុយហើយ។ បើវា កើតឡើងដូចនោះ ឈ្មួញកណ្ដាលអាចសូរអ្នកដាក់ប្រាក់បន្ថែមដែលប្រយោជន៍ ឱ្យរក្សា Margin Requirement អប្បបរមា។ ស្ថានភាពនេះត្រូវបាន ចែកជា Margin call។ ទឹកប្រាក់កម្ទីរបស់ ឈ្មួញកណ្ដាល ក្នុងគណនេយ្យ របស់អ្នកមិនធ្លាក់ជាមួយនឹងថ្លៃហ៊ុនទេ ត្រឹមតែទឹកប្រាក់ដែល អ្នកបានវិនិយោគទេដែលបានបាត់បង់តម្លៃ។ លើសពីនេះ ឈ្មួញកណ្ដាល មិនចូលរួមក្នុងហានិ ភ័យទីផ្សារជាមួយអ្នកទេ។ យើងត្រឡប់ទៅឧទាហរណ៍ខាងដើមរបស់យើង។

- ឧបមាថាតម្លៃទីផ្សារនៃ Xerox របស់អ្នកធ្លាក់ចុះពីថ្លៃទិញដំបូង \$4500 ទៅ \$3200
- Equity ក្នុងគណនេយ្យរបស់អ្នកធ្លាក់ទៅ \$3200 \$2250 = \$950
- បើMargin Requirement គឺ 35% នៃតម្លៃទីផ្សារបច្ចុប្បន្ន នោះ $\$1120(\$3200 \times 0.35)$

អ្នកត្រូវតែបន្ថែម \$170 ទៅលើ Equity របស់អ្នកនៅ ផ្ទះរបស់ ឈ្មូញកណ្ដាល (\$1120 — \$950)។ តាមរយ:ច្បាប់ អ្នកត្រូវតែយកគណនេយ្យ Margin របស់អ្នកត្រឡប់ទៅជា តម្លៃអប្បបរមា។

Margin Call ផ្តល់ ជម្រើសពីរដល់ វិនិយោគិន ទាំងប្រាក់កក់ ឬតម្លៃមូលធនសមមូល ឬ ការលក់ចេញតូនាទីទាំងមូល និងដាក់គណនេយ្យជាមួយនឹងឈ្មួញទាំងអស់។

ឧនាទារស៍ ៧.៣.៤. បើអ្នកលក់ ភាគហ៊ុនដើម ចំនូន 100 នៃ Xerox នៅតម្លៃ \$3200 បន្ទាប់ពីវា បានធ្លាក់ចុះ អ្នកជំពាក់ឈ្មួញកណ្ដាល \$2250 (ប្រាក់ខ្ចីពីខាងដើម)បូកជាមួយនឹងការប្រាក់លើ គណនេយ្យ Margin និងកម្រៃជើងសារលក់។ មានន័យថាការខាតបង់ ពិតប្រាកដរបស់អ្នកគឺ \$1300(\$2250 – \$950) ។ • Equity: ទ្រព្យរបស់វិនិយោគិន

• Margin Requirement: កម្រិតតម្រូវការ

• Margin Equity: កម្រិតមូលធនរបស់ម្ចាស់ភាគហ៊ុននៅក្នុង Margin account

• Debit Balance: ប្រាក់កម្ចីពីឈ្មួញកណ្ដាលដើម្បីទិញភាគហ៊ុន

• Required (maintenance) equity: តម្រូវការមូលធនរបស់ម្ចាស់ភាគហ៊ុន

• Maintenance level: កម្រិតនៃការរក្សាទុកទ្រព្យរបស់ម្ចាស់

• Maintenance requirement: តម្រូវការនៃ ការរក្សាទុកប្រាក់ក្នុងគណនេយ្យ។ ប្រាក់ត្រូវ កំណត់ទុកក្នុងគណនេយ្យរហូត មិនអាចដកចេញឲ្យគណនេយ្យទំនេរបានទេ។

• Outstanding Balance: សមតុល្យបានគិតចំណូលចំណាយរួចហើយជាក់ស្តែង

ឧធាមារស៍ ៧.៣.៥. វិនិយោគិនបើក Margin Account ជាមួយនឹងប្រាក់កក់ \$20 ហើយ ខ្វី \$5000 ពីឈ្មួញកណ្ដាល ដូចនេះ ប្រាក់ឥណពន្ធ គឺ \$5000 ។ វិនិយោគិន ប្រើ \$10000 ដើម្បីទិញភាគ ហ៊ុនចំនួន 500 ដែលក្នុងមួយភាគហ៊ុនថ្លៃ \$20 ។ ក្នុងចំណុចនេះវិនិយោគិន មានប្រាក់សរុបក្នុង Equity \$10000 - \$5000 = \$5000 ។ Maintenance Requirement គឺ 25% នៃតម្លៃទីផ្សារ ក្នុងមួយភាគហ៊ុនក្នុងគណនេយ្យ។ មានន័យថា ភាគហ៊ុន ក្នុងគណនេយ្យ ត្រូវតែយ៉ាងតិច នៃ តម្លៃទីផ្សាររបស់ភាគហ៊ុននីមួយៗ។ Required Equity គឺ $0.25 \times $10000 = 2500 ដែលតិច ជាងភាគហ៊ុន នៃ \$5000 នោះ វិនិយោគិន ផ្ទៀងផ្ទាត់ Maintenance Requirement។ វាត្រូវបាន បង្ហាញក្នុងតារាងខាងក្រោម ដែល m ជាកម្រិត Maintenance (បង្ហាញជាទសភាគ)។

_	✍
នាទេញម	លី Margin
~	\mathcal{L}

ប្លរាំ	ចំនូន ភាគហ៊ុន	តម្លៃ ទីផ្សារ	Debit balance	Equity	Required Equity	Margin Equity
S	N	V = SN	D	E = V - D	mV	0.5V
20\$	500	10000\$	5000\$	5000\$	2500\$	5000\$

យើងពិចារណាទៅបីលក្ខណ:៖

- ១. តម្លៃភាគហ៊ុនកើនឡើងដល់ ក្នុងមួយភាគហ៊ុន។
 - (ក) បើវិនិយោគិនលក់ភាគហ៊ុន ទាំងអស់នោះវិនិយោគិន បង្កើតប្រាក់ចំណេញ

$$500 \times (\$30 - \$20) = \$5000$$

កម្រៃជើងសារតិច និងអត្រាការប្រាក់បានបញ្ចូលសម្រាប់កម្វី។

(ខ) បើវិនិយោគិនមិនលក់ភាគហ៊ុន នោះដោយសារតែ តម្លៃទីផ្សារនៃភាគហ៊ុនគឺ

$$V = SN = 500 \times \$30 = \$15000$$

ប្រាក់ឥណពន្ធ (Debit Balance) គឺ D=\$5000

Equity គឺ E = V - D = \$15000 - \$5000 = \$10000

Required Equity គឺ $mV = 0.25 \times \$15000 = \3750

នោះ Maintenance Requirement ត្រូវបានផ្ទៀងផ្ទាត់។

Margin Equity គឺ $0.5V=0.5\times\$15000=\7500

ដូចនេះ មានភាគហ៊ុននៅសល់ក្នុង Margin account គឺ \$10000 - \$7500 = \$2500ភាគហ៊ុននៅសល់នេះអាចត្រូវបានប្រើដើម្បីខ្ចីបន្ថែម

- ullet $\$2500/_{0.5} = \5000 ទៅទិញ $\$5000/_{\$30} = 166.67$ ភាគហ៊ុនបន្ថែម។
- ullet តម្លៃទីផ្សារនៃភាគហ៊ុនគឺ V=666.67 imes \$30=\$20000
- ullet វិនិយោគិនមានប្រាក់ឥណពន្ធ D=\$5000+\$5000=\$10000 ។
- Equity គឺ E = V D = \$20000 \$10000 = \$10000
- Required Equity គឺ $0.25V = 0.25 \times \$20000 = \5000
- Margin Equity คื $0.5V = 0.5 \times \$20000 = \10000 ป

ដរាបណាតម្លៃហ៊ុនកើនឡើង វិនិយោគិនអាច ទិញភាគហ៊ុនបន្ថែម ដោយខ្ទីលុយពី ឈ្មួញកណ្ដាលដោយគ្មានវិនិយោគប្រាក់ទៀតទេ។

តារាងខាងក្រោមនេះ ជាឧទាហរណ៍ តម្លៃហ៊ុនកើនឡើងពី ទៅ ក្នុងភាគហ៊ុនសន្មតថា Excess Equity តែងតែប្រើដើម្បីទិញហ៊ុនបន្ថែមក្នុង Margin។

ឥន្ទិពលខែថ្ងៃកើនឡើខ នៅពេលនាក់ហ៊ុនគ្រូចបាននិញ លើ Margin

ប្លៃរំ	ចំនូន ភាគហ៊ុន	តម្លៃ ទីផ្សារ	Debit balance	Equity	Required Equity	Margin Equity	
20\$	500	625\$	5000\$	5000\$	25000\$	5000\$	
30\$	500	15000\$	5000\$	10000\$	3750\$	7500\$	
25000\$	666.67	20000\$	10000\$	10000\$	5000\$	1000\$	
40\$	666.67	26666.67\$	10000\$	16666.67\$	6666.67\$	13333.33\$	
40\$	833.33	33333.33\$	16666.67\$	16666.67\$	8333.33\$	16666.67\$	
50\$	833.33	41666.67\$	16666.67\$	25000\$	10416.67\$	20833.33\$	
50\$	1000	50000\$	25000\$	25000\$	12500\$	25000\$	

នៅដំណាក់នេះ វិនិយោគជាម្ចាស់ \$100 ភាគហ៊ុនជាមួយនឹងតម្លៃទីផ្សារ \$50000 និង Equity ចំនួន \$25000។ តម្លៃនៃដំណែង របស់វិនិយោគិន ក្នុងភាគហ៊ុន ត្រូវបានមួយ ទ្វេជា 5 ។ វាគឺសំខាន់ទៅលើការកត់សំគាល់ វាវិនិយោគិនបង់ កម្រៃជើងសារលើកា រទិញនីមួយៗ និងបង់ ការប្រាក់លើកម្វី។

២. ថ្លៃភាគហ៊ុនធ្លាក់ចុះទៅ \$15 ក្នុងមួយភាគហ៊ុន។ នៅចំណុច Required Equity គឺ

$$mV = mNS = 0.25 \times 500 \times \$15 = \$1875$$

និង Equity គឺ

$$E = V - D = 500 \times \$15 - \$5000 = \$2500$$

ះឧរខារូ

Maintenance Requirement ត្រូវបានផ្ទៀងផ្ទាត់

ការគណនាទាំងនេះត្រូវបាន សង្ខេបក្នុងតារាងខាងក្រោម៖

ឥន្ទិពលខៃខ្មែឆ្លាក់ខ្ទះ ទៅពេលតាក់ឡិនត្រូខបាននិញ លើ Margin

	ຍ ຍ	3		, <i>C</i>	~	
ប្លរ៍	ចំនូន ភាគហ៊ន	តម្លៃ ទីផ្សារ	Debit balance	Equity	Required Equity	Margin Equity
	111710110	• "ታ"	Guidiice		Equity	Equity
20\$	500	10000\$	5000\$	5000\$	2500\$	5000\$
15\$	500	10000\$	5000\$	2500\$	1875\$	3750\$

តម្លៃនៃភាគហ៊ុនធ្លាក់ចុះដល់ \$10 ក្នុងមួយភាគហ៊ុន។ គេបាន Required Equity គឺ

$$mV = 0.25 \times 500 \times \$10 = \$1250$$

Equity គឺ

$$E = V - D = 500 \times \$10 - \$5000 = \$0$$

បើតម្លៃបន្ត ធ្លាក់ចុះនោះ វិនិយោគិន ត្រូវបានតម្រូវ ឱ្យកក់ប្រាក់បន្ថែម។ ប្រាក់ខាត របស់ វិនិយោគិន ត្រូវបាន កំណត់តម្លៃដើម នៃភាគហ៊ុន បូករួមជាមួយ កម្រៃជើងសារ បូកជា មួយការ ប្រាក់លើកម្វី។

ឧនាទារស៍ ៧.៣.៦. តម្លៃភាគហ៊ុនថយចុះពី 20\$ ទៅ 5\$ ក្នុងមួយភាគហ៊ុន។

	•	, ,,		, 0,	~ ~	•
ប្លរំ	ចំនូន ភាគហ៊ុន	តម្លៃ ទីផ្សារ	Debit balance	Equity	Required Equity	Margin Equity
20\$	500	10000\$	5000\$	5000\$	2500\$	5000\$
15\$	500	7500\$	5000\$	2500\$	1875\$	3750\$
10\$	500	5000\$	5000\$	0\$	1250\$	2500\$
10\$	500	5000\$	3750\$	1250\$	1250\$	2500\$
5\$	500	2500\$	3750\$	-1250\$	625\$	1250\$
5\$	500	2500\$	1875\$	625\$	625\$	1250\$

ឥន្ទិពលខែតម្លៃឆ្លាត់ចុះនៅ ពេលតាកម្មិនត្រូចបាននិញតូខ Margin

តាមតារាងខាងលើឃើញថា នៅកន្លែងខ្លះចន្លោះ តម្លៃចំណែកភាគហ៊ុនមួយ \$15 និងតម្លៃ ចំណែក \$10 ត្រូវតែមាន តម្លៃមួយ ដែលនៅ Required Equity ស្មើនឹង Equity ដែលនៅ ក្រោម Maintenance call ត្រូវបានចែកឱ្យ។

ករណីនេះកើតឡើងនៅពេល $0.25 \times 500S = 500S - 5000$ ដែលទទួលបាន \$13.33 ។

សំណូរសាមញ្ញ បានសូរថា "នៅកម្រិតណា ដែលអាចឱ្យ តម្លៃភាគហ៊ុន ធ្លាក់ចុះមុន Maintenance Call ត្រូវបានចែកឱ្យ"? ចម្លើយគឺនៅក្នុងទ្រឹស្តីបទខាងក្រោម៖

៧.៣.៣. ទ្រឹស្តីមនអម្រិតមិតទេវិសសាលគំខែខ

ន្រឹស្តីមន ៧.៣.២. ន្រឹស្តីមនអង្រឹងមិតថេ នៃអារល់គំខែ១

(The long sale maintenance level theorem)

បើភាគហ៊ុនត្រូវបានបង់ នៅក្នុង Margin បើតម្លៃទីផ្សារដើមនៃភាគហ៊ុន បានបង់គឺ V_0 បើ $original\ equity$ គឺ E_0 ហើយបើ $maintenance\ level$ គឺ m នោះតម្លៃទីផ្សារទាបបំផុត V ចំពោះ equity តាងដោយ គឺស្មើ ឬច្រើនជាង $required\ Equity$ (ដូចនេះមិនបង្ក $maintenance\ call$) គឺ៖

$$V^* = \frac{1}{1 - m} (V_0 - E_0)$$

សរិសិតឧស័យ

យើង កំណត់ថា $D=(V_0-E_0)$ ជា Debit Balance ដែល ជាប្រាក់បាន ខ្ចីពី ឈ្មួញកណ្ដាល សម្រាប់ការទិញភាគហ៊ុន។

V ជាតម្លៃទីផ្សារបច្ចុប្បន្ននៃចំណែកភាគហ៊ុន

E គឺជាCurrent equity

នោះ V-E គឺជាប្រាក់បានខ្ចីពីឈ្មួញកណ្ដាលសម្រាប់ការទិញភាគហ៊ុនដែរ (ហេតុអ្វី?)

ដូចនេះ $V-E=V_0-E_0$ នៅពេលតម្លៃទីផ្សារអប្បបរមា Vst

យើងមាន $E^*=mV^*$ នោះ $V^*-mV^*=V_0-E_0$ នោះ

$$V^* = \frac{V_0 - E_0}{1 - m}$$

ឥឡូវយើងបង្ហាញថា $rac{V_0-E_0}{1-m}$ គឺជាតម្លៃទីផ្សារអប្បបរមា។

ថើ $V^*<\frac{V_0-E_0}{1-m}$ នោះតម្លៃទីផ្សារបច្ចុប្បន្នគឺតិចជាង $\frac{1}{1-m}$ គុណនឹងប្រាក់បានខ្ចីពីឈ្មួញ កណ្ដាលសម្រាប់ការទិញភាគហ៊ុន។

មានន័យថា $V < \frac{V-E}{1-m}$ នាំឱ្យ maintenance call , E < mV ។

ឧនាទារសំ ៧.៣.៧. ដើម្បីចៀសវាង maintenance call ដែល ជាកម្រិតអប្បបរមាតម្លៃទីផ្សារនៃ ភាគហ៊ុនអាចធ្លាក់ចុះក្នុង Margin Account ផ្ទុក 500 ភាគហ៊ុន បើតម្លៃទីផ្សារដើមគឺ \$10000 បើ original equity គឺ \$5000 និងបើ maintenance level (កម្រិតតុល្យភាព)គឺ 0.25 ? តើភាគហ៊ុននីមួយៗមានតម្លៃប៉ុន្មាន?

ជំណោះស្រាយ

 $V_0 = 10000, E_0 = 5000, m = 0.25$

ដូចនេះ តម្លៃទីផ្សារអប្បបរមានៃភាគហ៊ុនគឺ

$$\frac{1}{0.75} \times (\$10000 - \$5000) = \$6666.67$$

Required Equityគឺ $0.25 \times \$6666.67 = \1666.67 Equity គឺ \$6666.67 - \$5000 = \$1666.67នៅកម្រិតតម្លៃនៃភាគហ៊ុនគឺ

$$\frac{\$6666.67}{500} = \$13.33$$

បើ វិនិយោគិនម្នាក់ ជឿថាភាគហ៊ុន នឹងធ្លាក់ចុះ តម្លៃ នោះ វិនិយោគិន អាចខ្ចីភាគហ៊ុនពី ឈ្មួញកណ្ដាល ហើយបន្ទាប់មកលក់ភាគហ៊ុន។ នេះត្រូវបានហៅថា **អារសអ់មេៈពេសខ្លី** ។

បើភាគហ៊ុនធ្លាក់តម្លៃ បន្ទាប់មកវិនិយោគិនអាចទិញចំនូនភាគហ៊ុនសមមូលនឹងតម្លៃទាប ជាង និងប្រើភាគហ៊ុន ទាំងនោះទៅបង់កម្វីឡើងវិញ។ តាមឧទាហរណ៍ បានបង្ហាញថា វិនិយោ គិនសង្ឃឹមការលក់ រយៈពេលខ្លី 100 ភាគហ៊ុនដែលការលក់បច្ចុប្បន្នគឺ \$50 ក្នុងមួយហ៊ុន។ តម្លៃ ទីផ្សារបច្ចុប្បន្ននៃភាគហ៊ុនគឺ $100 \times $50 = 5000 ។ Margin requirement គឺ 50% នៃតម្លៃទីផ្សារ នៃ ភាគហ៊ុននោះ វិនិយោគិន កក់ប្រាក់ $0.50 \times $5000 = 2500 ក្នុង Margin account ហើយ ឈ្មួញកណ្ដាល ខ្លីភាគហ៊ុន 100 ពីវិនិយោគិន។ បន្ទាប់មកវិនិយោគិនលក់ ភាគហ៊ុនតម្លៃ \$50 ក្នុងមួយភាគហ៊ុន និងទទួលបាន $100 \times $50 = 5000 (កម្រៃជើងសារតិច)។ ដូចនេះ វិនិយោគិនមាន Credit Balance នៃ \$2500 + \$5000 = \$7500 (ផលបូកនៃ ចំណូលពី ការលក់ និងប្រាក់កក់ដើម (Initial Deposit)។

ដោយសារតែវិនិយោគិនត្រូវតែសងកម្វីហ៊ុនទៅឈ្មួញកណ្ដាល មានការកើនឡើងនូវតម្លៃ នោះវិនិយោគិនបាត់បង់លុយក្នុងភាគហ៊ុន ហើយក្រុមហ៊ុនវិនិយោគទទូលរងវិបត្តិ។ ដូចនេះមាន Maintenance Requirement គឺ 30% ដែលក្នុងឧទាហរណ៍នេះគឺ

$$0.3 \times \$5000 = \$15000$$

នេះមានន័យថា Equity នៅក្នុង គណនេយ្យត្រូវតែមានយ៉ាងហោច ណាស់ 30% នៃតម្លៃចំណែក ភាគហ៊ុននៅ គ្រប់ពេលទាំងអស់។

Equity ជាផលដករវាង Credit balance និងតម្លៃទីផ្សារបច្ចុប្បន្ននៃភាគហ៊ុន

ដូចនេះក្នុងឧទាហរណ៍នេះ Equity គឺ

$$\$7500 - \$5000 = \$2500$$

ហើយ Maintenance Requirement ត្រូវបានផ្ទៀងផ្ទាត់។

៧.៣.៤. ទ្រឹស្តីមនអម្រិតមិតថេរនៃអារលអ់រយៈពេលខ្លី

ឧនាមារស៍ ៧.៣.៤. គេមានតារាងដូចខាងក្រោម ដែល m ជាកម្រិតឋិតថេរ(ជាទសភាគ)

Credit balance	តម្លៃក្នុង មួយភាគហ៊ុន	ចំនូន ភាគហ៊ុន	តម្លៃ ទីផ្សារ	Equity	Required Equity
C	S	N	V = NS	E = C - V	mV
\$7500	\$50	100	\$5000	\$2500	\$1500

យើងពិចារណាករណី២

- ១. បើតម្លៃភាគហ៊ុនធ្លាក់ចុះពី ទៅ ក្នុងមួយភាគហ៊ុន
 - (ក) វិនិយោគិន ទិញភាគហ៊ុន នៅតម្លៃ \$40 ក្នុងមួយភាគហ៊ុន និងសងភាគហ៊ុនទៅក្រុម ហ៊ុនវិញ បន្ទាប់មកវិនិយោគិនបង្កើតប្រាក់ចំណូល

$$100 \times (\$50 - \$40) = \$1000$$

កម្រៃជើងសារតិចលើការលក់ និងទិញហ៊ុន និងការប្រាក់ លើកម្ចីនៃភាគហ៊ុនរបស់ ឈ្មួញកណ្តាល។

(ខ) បើវិនិយោគិនមិនទិញហ៊ុនក្នុងពេលនេះ

តម្លៃទីផ្សារភាគហ៊ុនគឺ $\$40 \times 100 = \4000

Required Equity គឺ 30% នៃ \$4000 នោះ $0.3 \times \$4000 = \1200

Equity គឺ \$7500 - \$4000 = \$3500

ះឧរខង្ហ

បើតម្លៃធ្លាក់ចុះ នោះ Equity គឺប្រសើរជាង Required equity

ហើយ Maintenance Requirement ត្រូវបានផ្ទៀងផ្ទាត់។

ជាការពិត Equity មួយនៅសល់ 50% នៃតម្លៃបច្ចុប្បន្ន អាចត្រូវបាន ប្រើសម្រាប់ការជួយ

ជ្រោមជ្រែងការលក់រយៈពេលខ្លី។ ក្នុងករណីនេះ $0.50 \times \$4000 = \2000 នោះមាន \$1500 ក្នុង Equity ដែលនៅសល់ (Excess equity)។ វិនិយោគិនអាចប្រើវាដើម្បីខ្ចី និងលក់ គេបានតម្លៃនៃភាគហ៊ុនគឺ $\frac{\$1500}{0.50} = \3000 ។ គេសរសេរសង្ខេបក្នុងតារាងខាងក្រោម៖

ឌន្ទឹពលខែងន្រៃខាងដល់ខេត្ត ពេលខាងស្ថិនធ្លិនបានលង់ អូចនោះពេលទី

Credit balance	តម្លៃក្នុង មួយភាគហ៊ុន	ចំនូន ភាគហ៊ុន	តម្លៃ ទីផ្សារ	Equity	Required Equity
\$7500	\$50	100	\$5000	\$2500	\$1500
\$7500	\$40	100	\$4000	\$3500	\$1200

២. តម្លៃភាគហ៊ុនកើនឡើង ក្នុងមួយភាគហ៊ុន។ ក្នុងករណីនេះ Required Equity គឺ

$$0.30 \times \$6000 = \$1500$$

ដូចនេះ វិនិយោគិនបង់ក្រៅ \$300(\$1800 — \$1500) ទៅបំពេញ Maintenance Requirement។ បើតម្លៃហ៊ុនកើនឡើងលឿន នោះវិនិយោគិនអាចបាត់បង់ចំនួនទឹកប្រាក់មិនកំណត់ ដោយហេតុព្រោះ តែប្រាក់ចំណូលរបស់វិនិយោគិន ត្រូវបានកំណត់ជាថ្លៃចំណេញតិចនៃ ការលក់ (កម្រៃជើងសារ និង ការប្រាក់លើកម្វីនៃភាគហ៊ុន)។ នេះបង្កើតឱ្យ ការលក់រយៈ ពេលខ្លីពិតជាមានហានិភ័យ។ តារាងខាងក្រោមនេះបង្ហាញអំពីវា។ សំគាល់ថា Maintenance Fee បានបង់នៅពេលតម្លៃនៃហ៊ុនកើនឡើងគឺជាផលដករវាង Required Equity និង Equity មុនថ្លៃឈ្នួលត្រូវបានកក់។

. ~ 5	5	a a		•	~
- ಇಲ್ಲಿ ಅನ್ನೀ	021551	# Respondence	ខាំពេលនាក់ហ៊ុនគ្រូចបា	್ಷಾನ್ ಜ್ಞಾನ್ ಕ್ಷಾನ್ (ಕ್ಷಾನ್ ಕ್ಷ್ಮಾನ್ (ಕ್ಷ್ಮಾನ್ (ಕ್ಷ್ಮಾನ್ (ಕ್ಷ್ಮಾನ್ (ಕ್ಷ್ಮಾನ್ (ಕ್ಷ್ಮಾನ್ (ಕ್ಷ್ಮಾನ್ (ಕ್ಷ್ಮಾನ್ (ಕ್	ເຕດເອ
645646		346000100	00000000000000000000000000000000000000	1000111101W.V	
ತು	ಲ	ಬ		a ~	ಲ

Credit balance	តម្លៃក្នុង មួយភាគហ៊ុន	ចំនូន ភាគហ៊ុន	តម្លៃ ទីផ្សារ	Equity	Required Equity
\$7500	\$50	100	\$5000	\$2500	\$1500
\$7500	\$60	100	\$6000	\$1500	\$1800
\$7800	\$60	100	\$6000	\$1800	\$1800
\$7800	\$70	100	\$7000	\$800	\$2100
\$9100	\$80	100	\$7000	\$2100	\$2100
\$9100	\$80	100	\$8000	\$1100	\$2400
\$10400	\$80	100	\$8000	\$2400	\$2400
\$10400	\$90	100	\$9000	\$1400	\$2700
\$11700	\$90	100	\$9000	\$2700	\$2700
\$11700	\$100	100	\$10000	\$1700	\$3000
\$13000	\$100	100	\$10000	\$3000	\$3000

ក្នុងឧទាហរណ៍នេះ វិនិយោគិន ជាដំបូងកក់លុយ \$2500 នៅក្នុង Margin Account ដើម្បី លក់ភាគហ៊ុនរយៈពេលខ្លី។ នៅពេលតម្លៃដល់ ក្នុងមួយភាគហ៊ុន វិនិយោគិនត្រូវបង់ប្រាក់បន្ថែម \$5500 ក្នុង Maintenance fee។ ការលក់រយៈពេលខ្លីមិនខិតជិតចំនូនប្រាក់ដែលអាចបាត់បង់។ នៅក្នុងឧទាហរណ៍ តម្លៃមួយដងនៃភាគហ៊ុនកើនដល់ \$60 ក្នុងមួយភាគហ៊ុនចំពោះគ្រប់ \$1000 កើនឡើងក្នុងតម្លៃទីផ្សារភាគហ៊ុន វិនិយោគិនត្រូវតែកក់ប្រាក់បន្ថែម \$1300 ដើម្បីផ្ទៀងផ្ទាត់ Maintenance Requirement។

សំគាល់ពីតារាងខាងលើថា ចំណុចខ្លះរវាងតម្លៃហ៊ុន \$50 និងតម្លៃហ៊ុន \$60 ត្រូវតែមានតម្លៃ S ដែលនៅពេល Required Equity ស្មើនឹង Equity ខាងលើដែល Maintenance call ត្រូវបានចែកឱ្យ។ ក្នុងករណីនេះវានឹងកើតឡើងនៅពេល

$$7500 - 100S = 0.3 \times 100S \Rightarrow S = \$57.69$$

សំណូរសូរថា"តើកម្រិតណាដែលតម្លៃហ៊ុនកើនឡើងមុនពេល Maintenance call ត្រូវបាន បង្កើតឡើង?"

សំណូរនេះនឹងត្រូវបានឆ្លើយក្នុងទ្រឹស្តីបទខាងក្រោម៖

ន្ទ្រឹស្តីមន ៧.៣.៣. ន្ទ្រឹស្តីមនអង្រឹងមិងទេះអារលង់មេះពេលខ្លី

បើវិនិយោគិនលក់ហ៊ុនក្នុងរយៈពេលខ្លី និងមានប្រាក់ឥណទានដំបូង C_0 ហើយ $Maintenance\ level$ គឺ m នោះ $Maximum\ level$ តាងដោយ V^* ដែលតម្លៃទីផ្សារ ភាគហ៊ុនអាចកើនឡើង និងមិនបង្ក $Maintenance\ call$ គឺ

$$V^* = \frac{1}{1+m}C_0$$

ទេស ខេត្ត ខេត្

បើភាគហ៊ុនត្រូវបានទិញក្នុងMargin

 V_0 ជាតម្លៃទីផ្សារដើមនៃភាគហ៊ុនបានទិញ

 $E_{\scriptscriptstyle 0}$ ជាOriginal equity នោះ $C_{\scriptscriptstyle 0}=V_{\scriptscriptstyle 0}+E_{\scriptscriptstyle 0}$

V ជាតម្លៃទីផ្សារភាគហ៊ុនបច្ចុប្បន្ន

E ជាCurrent equity នោះយើងបាន $C_{
m 0}=V+E$

ដរាបណាequityត្រូវបានផ្ទុកយ៉ាងហោចណាស់ធំស្មើRequired Equity។(ហេតុអ្វី?)

នៅកម្រិតខ្ពស់បំផុត V^* យើងបាន $C_0=V^*+E^*, \quad E^*=mV^*$

ដែលត្រូវដោះស្រាយចំពោះ V^st គេបាន

$$V^* = \frac{C_0}{1+m}$$
 or $V^* = \frac{V_0 + E_0}{1+m}$

ដើម្បីបង្ហាញថា $\frac{V_0+E_0}{1+m}$ នៅកម្រិតខ្ពស់បំផុត សន្មតថា $V>\frac{V_0+E_0}{1+m}$ នោះ Equity គឺ

$$C_0 - V = (V_0 - E_0) - V$$

$$< (V_0 - E_0) - \frac{V_0 + E_0}{1 + m}$$

$$= \frac{m}{1 + m} (V_0 + E_0)$$

តែ Required Equity គឺ

$$mV > \frac{m}{1+m}(V_0 + E_0)$$

ដូចនេះ $E = C_0 - V < mV$, Maintenance call

ឧនាមារស៍ ៧.៣.៩. ដើម្បីចៀសវាង Maintenance call តើកម្រិតខ្ពស់ បំផុតប៉ុន្មាន ដែលតម្លៃ ហ៊ុនអាចកើតឡើង ក្នុងគណនេយ្យ Margin ផ្ទុក 100 ភាគហ៊ុន និងប្រាក់ឥណទានដំបូង \$7500 បើកម្រិតឋិតថេរ (Maintenance level) គឺ 0.3 ? តើតម្លៃភាគហ៊ុនប៉ុន្មានកើតឡើង?

ជំណោះស្រួយ

គេមាន
$$C_0=\$7500$$
 , $m=0.3$ ដូចនេះ តម្លៃទីផ្សារអតិបរមា
$$V^*=\frac{10}{13}C_0=\frac{10}{13}\times\$7500=\$5769.23$$

 $required\ equity\ : 0.3 \times \$5769.23 = \$1730.77$

និង equity គឺ

$$\$7500 - \$5769.23 = \$1730.77$$

នៅកម្រិតនេះ តម្លៃភាគហ៊ុនគឺ $\frac{\$5769.23}{100} = \57.69 ត្រូវជាមួយនឹងលទ្ធផលខាងលើ។

៧.៤. តម្លៃ និទទារនិត្តថ

മി. d. 9. Dow Jones Industrial Average(DJIA)

មធ្យម Dow Jones ដើមគឺ ជាមធ្យមទម្ងន់ស្មើ នៃតម្លៃភាគហ៊ុន ដែលធ្វើឱ្យ មានមធ្យម។ ទោះបីជាយ៉ាងណា ដោយសារតែចម្រៀកភាគហ៊ុន ប្រាក់ចំណេញដែលកូនហ៊ុនទទួលបាន និង ផលបូក និងផលដកភាគហ៊ុនពីសន្ទស្សន៍ ការគណនានៃ DJIA ឥឡូវកាន់តែស្មុគស្មាញ។ ឧធាមារស៍ ៧.៤.១. ឧបមាថាយើងប្រើវិធី DJIA ដើម្បី គណនាមធ្យមចំពោះភាគហ៊ុន S, T, U, V ដែលជាតម្លៃភាគហ៊ុនបច្ចុប្បន្នគឺ \$15, \$20, \$20, \$25 ។ នោះសន្ទស្សន៍នៅថ្ងៃទីមួយគឺ

$$\frac{15 + 20 + 20 + 25}{4} = 20$$

ឥឡូវ ឧបមាថា នៅថ្ងៃទីពីរ ក្រុមហ៊ុន T ច្រៀក ភាគហ៊ុន មួយជាពីរ។ ក្នុងករណី នេះម្ចាស់ ភាគហ៊ុន នីមួយៗទទួលពីរភាគហ៊ុនថ្មី សម្រាប់ភាគហ៊ុនចាស់នីមួយៗ និងតម្លៃនៃភាគហ៊ុនថ្មី នី

មួយៗ គឺថ្លៃពាក់កណ្ដាលនៃភាគហ៊ុនចាស់ $rac{\$20}{2}=\10 ។

DJIA កែតម្រូវចំពោះការច្រៀក ភាគហ៊ុនដោយផ្លាស់ប្តូរតូចែក 4 ដោយ DJIA មិនប្រែប្រួលខណៈ ដែលភាគយកគឺជាផលបូកនៃតម្លៃភាគហ៊ុនដែលបានច្រៀករួចហើយ។

គេបាន
$$\dfrac{15+20+20+25}{d}=20$$
 ដែល ជាគូចែកថ្មី

គេបាន $\cfrac{15+20+20+25}{d}=20$ ដែល ជាតូចែកថ្មី ការដោះស្រាយរក d គឺ d=3.5 ។ តូចែកថ្មីនេះមានឥទ្ធិពលរហូតដល់ មានភាគហ៊ុនផ្សេងទៀត ដែលច្រៀកបាន ប្រាក់ចំណេញដែលកូនហ៊ុន ទទូល បានពីភាគហ៊ុន 10% ឬច្រើនដោយមួយនៃ ក្រុមហ៊ុនច្រើន ឬការជំនួសនៃក្រុមហ៊ុនដែលមានដោយក្រុមហ៊ុនថ្មីមួយ។

ឧនាទារស៍ ៧.៤.២. តារាងបង្ហាញតម្លៃភាគហ៊ុនជាប់ ចំពោះក្រុមហ៊ុន S,T,U,V នៅថ្ងៃទី 1 o 5 ដែលថ្ងៃទី 2 ក្រុមហ៊ុន T ច្រៀកភាគហ៊ុនជាពីរ។ បំពេញតារាងសម្រាប់ថ្ងៃទី 3 o 5សន្មតថាមិនមានការច្រៀកភាគហ៊ុនទៀតទេ ហើយមិនមានប្រាក់ចំណេញដែលកូនហ៊ុនទទូល បាន និងគ្មានក្រុមហ៊ុនត្រូវបានផ្លាស់ប្តូរ។

បូរ៍		តាំ	ម្លែ	ត្ចូវែចក	DJLA	
	S	T	U	V		
1	15	20	20	25	4.0	20.00
2	15	10	20	25	3.5	20.00
3	16	11	21	26		
4	15	10	20	25		
5	16	10	19	26		

င်းအားဌနာဇာ

ដោយសារមិនមានការច្រៀកភាគហ៊ុនបន្តទៀត និងមិនមានប្រាក់ចំណេញ ដែលកូនហ៊ុនទទូល បាន តូចែកនៅ 3.5 សម្រាប់ថ្ងៃទី $3 \rightarrow 5$ ។ មធ្យមនៅថ្ងៃទាំងនេះគឺ

$$\frac{16+11+21+26}{3.5} = 21.14$$

$$\frac{15+10+20+25}{3.5} = 20.00$$

$$\frac{16+10+19+26}{3.5} = 20.29$$

ឥឡូវយើង ពិភាក្សាឥទ្ធិពល នៃ ការច្រៀកភាគហ៊ុន និង ប្រាក់ចំណេញ ដែល កូនហ៊ុន ទទួលបាន នៅលើ DJIA និង មូលហេតុ ដែល ពួកគេអាចនាំមក downward bias (តម្លៃតិចជាង ការរំពឹងទុក) ក្នុង DJIA។ ឧបមាថា ក្រោយមក ការច្រៀកភាគហ៊ុន(តូចែកគឺ) តម្លៃភាគហ៊ុនក្រុម ហ៊ុន T កើន ឡើង 10% ពី \$10 ទៅ \$11 ។ នោះមធ្យមថ្មីគឺ

$$\frac{15+11+20+25}{3.5} = 20.29$$

ម៉្យាងវិញទៀត បើតម្លៃភាគហ៊ុន របស់ក្រុមហ៊ុន កើនឡើង 10% ពី \$20 ទៅ \$22 ខណ:ពេល តម្លៃភាគហ៊ុនផ្សេងៗទៀតមិនប្រែប្រូល នោះមធ្យមថ្មីគឺ

$$\frac{15 + 10 + 22 + 25}{3.5} = 20.57$$

វាឱ្យន័យថាផលប៉ះពាល់នៃភាគហ៊ុនដែលច្រៀក គឺតិចជាងភាគហ៊ុនដែលមិនបានច្រៀក ក្នុងមធ្យមគណនា។

ឥឡូវយើង ពិចារណាឥទ្ធិពល នៃការមិន កែតម្រូវ នៃប្រាក់ចំណេញ ដែលកូនហ៊ុនទទូល បានពីភាគហ៊ុនតិចជាង 10% ។ ឧបមាថាតម្លៃនៃភាគហ៊ុន 4 របស់យើងគឺ \$15, \$10, \$20, \$25 និង d=3.5 តម្លៃភាគហ៊ុន និងតូចែកតាមចម្រៀកភាគហ៊ុន នៃក្រុមហ៊ុនT ។ បើក្រុមហ៊ុន បែងចែកប្រាក់ចំណេញដែល កូនហ៊ុនទទួលបានពីភាគហ៊ុន 5% (\$1 ក្នុងមួយចំណែកហ៊ុន) នោះលទ្ធផលតម្លៃភាគហ៊ុនគឺ $\frac{\$20}{1.05}=\19.05 ដែលមធ្យមទាបមិនពិត។ (សំគាល់ថា តូចែកមិនផ្លាស់ប្តូរក្នុងករណីនេះ)

വി.പ്.**ച**. Standard and Poor's 500 Index(S&P500)

S&P500 ថ្លឹងភាគហ៊ុនទាំងអស់ក្នុងសន្ទស្សន៍ជា ទំហំសមាមាត្រទៅជាផលបូកនៃទីផ្សារ មូលធនកម្មរបស់ពួកគេ។ គេបានរូបមន្តគឺ

$$S\&P \ 500(t) = 10 \frac{\sum_{i=1}^{500} S_i(t) N_i(t)}{\sum_{i=1}^{500} S_i(1) N_i(1)}$$

- ullet $S_i(1)$ ជាតម្លៃក្នុងមួយចំណែកហ៊ុននៃ $i^{ ext{th}}$ ភាគហ៊ុននៅរយ:ពេលដើម។
- ullet S&P~500 វាជាមធ្យមនៃតម្លៃរបស់ i^{th} ភាគហ៊ុន

បរិមាណ $S_i(t)$ ជាតម្លៃក្នុងមួយចំណែកហ៊ុននៃ i^{th} ភាគហ៊ុននៅរយៈពេល t

ullet $N_i(t)$ ជាចំនួនចំណែកភាគហ៊ុន ដែលបានចែកនៃ i^{th} ភាគហ៊ុនក្នុងរយ:ពេល t

ត្រឡប់ទៅឧទាហរណ៍១ បើយើង គណនាមធ្យមនេះនៅថ្ងៃទី1 សន្មតថា 100 ចំណែកហ៊ុនត្រូវ បានចែកចំពោះក្រុមហ៊ុននីមួយៗ នោះយើងបាន

$$\sum_{i=1}^{4} S_i(1)N_i(1) = 15(100) + 20(100) + 20(100) + 25(100) = \$8000$$

នៅថ្ងៃទី 1 ភាគយកនេះផងដែរ នោះសន្ទស្សន៍ដើមគឺ

$$S\&P \ 500(1) = 10 \times \frac{8000}{8000} = 10$$

នៅថ្ងៃទី 2 ក្រោយពីការច្រៀកភាគហ៊ុនយើងបាន៖

$$\sum_{i=1}^{4} S_i(2)N_i(2) = 15(100) + 10(200) + 20(100) + 25(100) = \$8000$$

ដូចនេះ ចម្រៀកភាគហ៊ុនមិនផ្លាស់ប្តូរផលចែក។ សន្ទស្សន៍គឺទៅតាមចម្រៀក ភាគហ៊ុន

$$S\&P \ 500(2) = 10 \times \frac{8000}{8000} = 10$$

ជាមួយគ្នានេះ សន្ទស្សន៍ចម្រៀកភាគហ៊ុន និង ប្រាក់ចំណេញពី ភាគហ៊ុនត្រូវបានគិតនៅ ក្នុងភាគយក។ ភាគបែងផ្លាស់ប្តូរ បើភាគហ៊ុនថ្មី ត្រូវបានបង្ហាញ ក្នុងសន្ទស្សន៍ ជំនួស ភាគហ៊ុន ផ្សេងទៀត។ ក្នុងករណី នេះ ភាគយក ប្រើប្រាស់ ទីផ្សារមូលធន កម្មសរុប នៃ 500 ភាគហ៊ុន ក្រោយពីការជំនួស និងភាគបែងត្រូវបានកែតម្រូវ ប្រយោជន៍ឱ្យមធ្យមថ្មីគឺដូចជាមធ្យមចាស់។ **ឧនាមារស៍ ៧.៤.៣**. តារាងបង្ហាញតម្លៃភាគហ៊ុន ចំពោះក្រុមហ៊ុន S,T,U,V នៅថ្ងៃទី១ដល់ ទី៥ ដែលថ្ងៃទី២ ក្រុមហ៊ុន T បានច្រៀកភាគហ៊ុនមួយ ជាពីរភាគហ៊ុន។ ចំពេញតារាងចំពោះថ្ងៃ ទី៣ដល់ទី៥។ សន្មតថាមិនមានការច្រៀកភាគហ៊ុនបន្ត និងមិនមានប្រាក់ចំណេញបន្ថែម។

ប្រាំ		ត	S&P 500		
	S	T	U	V	
1	15	20	20	25	10.00
2	15	10	20	25	10.00
3	16	11	21	26	
4	15	10	20	25	
5	16	10	19	26	

ដោយមិនមានការច្រៀកភាគហ៊ុនបន្ត និងមិនមានប្រាក់ចំណេញបន្ថែម មានតែ 100 ចំណែកភាគហ៊ុនត្រូវបាន ចែកសម្រាប់ក្រុមហ៊ុន S,U,Vនិង 200 ចំណែកភាគហ៊ុនសម្រាប់ក្រុមហ៊ុនT ។ សន្ទស្សន៍នៅថ្ងៃទាំងនោះគឺ

$$10\left(\frac{16(100)+11(200)+21(100)+26(100)}{8000}\right)=10.63(ថ្ងៃទី៣)$$

$$10\left(\frac{15(100)+10(200)+20(100)+25(100)}{8000}\right)=10.00 (ថ្ងៃទី៨)$$

$$10\left(\frac{16(100)+10(200)+19(100)+26(100)}{8000}\right)=10.13(ថ្ងៃទី៥)$$

៧.៤.៣. អគ្រានៃជនលាអភាពជំពោះភាគហ៊ុន និខសត្ថស្សន៍ភាគហ៊ុន

ប៊

- ullet S(0) ជាតម្លៃនៃភាគហ៊ុនដើមគ្រា
- ullet S(1) ជាតម្លៃនៃភាគហ៊ុនចុងគ្រា
- D ជាសាច់ប្រាក់ចំណេញដែលកូនហ៊ុនទទូលបាន

នោះ
$$R = \frac{S(1) - S(0) + D}{S(0)}$$
 យើងឃើញថា

$$1 + R = \frac{S(1) + D}{S(0)} > 0$$
 $\cos S(0) > 0$, $S(1) > 0$ & $D \ge 0$

ឧនាមារស៍ ៧.៤.៤. ភាគហ៊ុនកំពុងតែជូញដូរនៅតម្លៃ \$50 ក្នុងមួយភាគហ៊ុននៅថ្ងៃ 31/12/2004 ។ ខាងក្រោមនេះជាបញ្ជីនៃតម្លៃភាគហ៊ុន និងប្រាក់ចំណេញបានបង់ពីថ្ងៃ

1/1/2005 → 31/12/2005 នៅថ្ងៃចុងក្រោយនៃត្រីមាសនីមួយៗ។ តើអ្វីទៅជាអត្រាធនលាភភាពចំពោះត្រីមាសនីមួយៗ?

កាលបរិច្ឆេទ	31/3/2005	30/6/2005	30/09/2005	31/12/2005
្ត្រ	\$52	\$54	\$35	\$56
ប្រាក់ចំណេញ	\$0.50	\$0.50	\$0.50	\$0.50

ជំណោះស្រាយ

អត្រាសងត្រឡប់ចំពោះ៤ត្រីមាសគឺ

$$\frac{(52-50)+0.50}{50} = 0.05 = 5\%$$

$$\frac{(54-52)+0.50}{52} = 0.0481 = 4.81\%$$

$$\frac{(53-54)+0.50}{54} = -0.0093 = -0.93\%$$

$$\frac{(56-53)+0.50}{53} = 0.066 = 6.6\%$$

• បើយើងប្រើការប្រាក់សាមញ្ញ នោះតម្លៃចុងឆ្នាំនៃការវិនិយោគ \$1 គឺ

$$1 + R_1 + R_2 + R_3 + R_4$$

និងយើងចង់បានវាស្មើ 1+4R គេបាន

$$1 + 4R = 1 + R_1 + R_2 + R_3 + R_4$$

គេបាន មធ្យមពិជគណិតធនលាភភាពប្រចាំត្រីមាស $R_{\!\scriptscriptstyle A} = \frac{R_{\!\scriptscriptstyle 1} + R_{\!\scriptscriptstyle 2} + R_{\!\scriptscriptstyle 3} + R_{\!\scriptscriptstyle 4}}{4}$

• បើយើងប្រើការប្រាក់សមាសនោះ តម្លៃចុងឆ្នាំនៃការវិនិយោគ \$1 គឺ

$$(1+R_1)(1+R_2)(1+R_3)(1+R_4)$$

ហើយយើងចង់បានវាស្នើ $\left(1+R\right)^4$ គេបាន

$$(1+R)^4 = (1+R_1)(1+R_2)(1+R_3)(1+R_4)$$

គេបាន មធ្យមធរណីមាត្រនៃធនលាភភាពប្រចាំត្រីមាស

$$R_G = \left[(1 + R_1) (1 + R_2) (1 + R_3) (1 + R_4) \right]^{\frac{1}{4}} - 1$$

គ្រប់ផលគុណសុទ្ធតែវិជ្ជមាន នោះ R_G តែងតែរកបាន។

ឧនាមារស៍ ៧.៤.៥. ចំពោះភាគហ៊ុន នៅឧទាហរណ៍(៧.៤.៤) ចូរគណនាមធ្យមពិជគណិត នៃធន លាភភាព និងមធ្យមធរណីមាត្រនៃធនលាភភាពប្រចាំត្រីមាស។

ដំណោះស្រួយ

មធ្យមពិជគណិតធនលាភភាពប្រចាំត្រីមាសគឺ

$$\frac{0.05 + 0.0481 + (-0.0093) + 0.066}{4} = 0.0387 = 3.87\%$$

មធ្យមធរណីមាត្រធនលាភភាពប្រចាំត្រីមាសគឺ

$$[(1.05)(1.0481)(0.9907)(1.066)]^{\frac{1}{4}} - 1 = 0.0383 = 3.83\%$$

សំគាល់៖

មធ្យមធរណីមាត្រធនលាភភាពជាត្រីមាសគឺតិចជាឯមធ្យមពិជគណិតធនលាភភាពជាត្រីមាស។

ទ្រឹស្តីមន ៧.៤.១. ទ្រឹស្តីបទមធ្យមធនលាភភាព ជាត្រីមាស $R_G\leqslant R_A$

ស្រាតាឧយាង

តាម $Arithmetic-Geometric\ Mean\ Inequity$

បើ $a_1,a_2,a_3,...,a_n$ មិនអវិជ្ជមាន និងមិនស្វន្យ នោះ

$$(a_1 a_2 a_3 \dots a_n)^{\frac{1}{n}} \leqslant \frac{a_1 + a_2 + a_3 + \dots + a_n}{n}$$

សមភាពមានលុះត្រាតែ $a_1 = a_2 = a_3 = ... = a_n$

បើ
$$n=4 \Rightarrow a_i=1+R_i>0 \;, \forall i=1,2,3,4$$

គេបានវិសមភាព៖

$$\left[\left(1 + R_1 \right) \left(1 + R_2 \right) \left(1 + R_3 \right) \left(1 + R_4 \right) \right]^{\frac{1}{4}} \leqslant \frac{\left(1 + R_1 \right) + \left(1 + R_2 \right) + \left(1 + R_3 \right) + \left(1 + R_4 \right)}{4}$$

សមភាពកើតឡើងលុះត្រាតែ $R_1=R_2=R_3=...=R_n$ ។

នេះបង្ហាញថាមធ្យមធរណីមាត្រធនលាភភាពជាត្រីមាស គឺតិចជាងមធ្យមពិជគណិតធន លាភភាពជាត្រីមាស លើកលែងតែធនលាភភាពជាត្រីមាសស្មើគ្នាក្នុងករណីមធ្យមដូចគ្នា។ **សំនាល់៖**

- សន្មតថាប្រាក់ចំណេញត្រូវបានបង់នៅថ្ងៃចុងក្រោយនៃត្រីមាសនីមួយៗ។ បើនេះមិនមែន ជាករណីនោះ ការគណនាគឺរួចរាល់ជាប្រចាំថ្ងៃ។
- សន្មតថាប្រាក់ចំណេញមិនត្រូវបានវិនិយោគឡើងវិញក្នុងភាគហ៊ុន
- យើងមិនអាចគណនារូបមន្ត នៃធនលាភភាពនេះ បានទេ បើយើងមិនដឹងពីបរិមាណទឹក ប្រាក់ និងពេលវេលានៃការបង់ប្រាក់ចំណេញ។

៧.៤.៤. នម្លៃ សិខមាសិន័យ

យក

- ullet S(0) ជាថ្លៃបច្ចុប្បន្នក្នុងមួយភាគហ៊ុន
- ullet D_t ជាប្រាក់ចំណេញដែលសង្ឃឹម បាននៅខណៈពេល t ជាត្រីមាស
- ullet T ជារយៈពេលដែលកាន់កាប់ជាត្រីមាស
- k ជាអត្រាធនលាភភាពជាត្រីមាស(គិតជាទសភាគ)

សន្មតថាប្រាក់ចំណេញ ត្រូវបានបង់ជាត្រីមាស និង ថ្លៃហ៊ុន នោះត្រូវបានកំណត់ភ្លាមៗ តាមរយៈការបង់ប្រាក់ចំណេញ។

វិនិយោគិនសង្ឃឹមថាទទួលបាន ប្រាក់ចំណេញក្នុងចំនូនទឹកប្រាក់ D_1 នៅចុងត្រីមាសទី១ D_2 នៅចុងត្រីមាសទី២ និងបន្តបន្ទាប់ទៀត។ វិនិយោគិនសុខចិត្តបង់ S(0) ចំពោះភាគហ៊ុនសព្វថ្ងៃ។ លំហូរសាច់ប្រាក់ទាំងនេះត្រូវបានតាងដោយដ្យាក្រាមខាងក្រោម៖

ន្សាអ្រាមពេលទេលានៃអាអោទទ្រែដេនងាងហ៊ុនថារៀចរហូង

ថ្លៃដែលវិនិយោគិនសុខចិត្តបង់សម្រាប់ភាគហ៊ុនថ្ងៃនេះ ត្រូវបានឱ្យតម្លៃបច្ចុប្បន្ន នៃប្រាក់ ចំណេញ អប្បហារសង្ឃឹមអនាគតនៅអត្រាធនលាភភាពដែលតម្រូវសមរម្យ។ ឧបមាថា អត្រាធនលាភភាពដែលតម្រូវ សមរម្យជាត្រីមាសគឺ k គេបានរូបមន្តទូទៅសម្រាប់ថ្លៃ នៃភាគហ៊ុនថ្ងៃនេះគឺ

$$S(0) = \frac{D_1}{(1+k)^1} + \frac{D_2}{(1+k)^2} + \dots$$

ឬ
$$S(0) = \sum_{t=1}^{\infty} \frac{D_t}{(1+k)^t}$$
 (៧.៣)

រូបមន្តបញ្ច្រាសសម្រាប់ថ្លៃភាគហ៊ុនថ្ងៃនេះ

$$S(0) = \frac{D_1}{(1+k)^1} + \frac{D_2}{(1+k)^2} + \dots + \frac{D_{T-1}}{(1+k)^{T-1}} + \frac{D_T + S(T)}{(1+k)^T}$$

ឬ
$$S(0) = \sum_{t=1}^{T} \frac{D_t}{(1+k)^t} + \frac{S(T)}{(1+k)^T}$$
 (៧.៤)

ទ្រឹស្តី ២ឧ ៧.៤.២. ទ្រឹស្តី ២ឧភាគហ៊ុន ២ ១៩ ១ បើតម្លៃនៃ ចំណែកភាគហ៊ុននៃភាគហ៊ុន ធម្មតា (៧.៣) នោះថ្លៃអាចសរសេរជា (៧.៤)

ឧធាមារណ៍ ៧.៤.៦. Helen Kendrick សង្ឃឹមទទួលបានប្រាក់ចំណេញ \$1.50 ក្នុងទឹកប្រាក់នៅ ចុងបញ្ចប់នៃ៤ត្រីមាស នីមួយៗបន្ទាប់និង \$1.75 នៅចុងនៃ៤ត្រីមាសនីមួយៗ។ លើសពីនេះ នាងរំពឹងថា អាចលក់ភាគហ៊ុននោះ ក្នុងតម្លៃ \$94.50 នៅចុងឆ្នាំទី២។ បើអត្រា ធនលាភភាព ដែលត្រូវការគឺ 0.025 តើថ្លៃប៉ុន្មានដែលនាងបង់សម្រាប់ភាគហ៊ុន?

ដំណោះស្រាយ

$$T = 8, D_1 = D_2 = D_3 = D_4 = 1.5$$

 $D_5 = D_6 = D_7 = D_8 = 1.75$
 $k = 0.025$ & $S(T) = 94.50

ជំនូសក្នុងសមីការ (៧.៤) គេបាន

$$S(0) = \sum_{t=1}^{4} \frac{1.5}{(1.025)^{t}} + \sum_{t=5}^{8} \frac{1.75}{(1.025)^{t}} + \frac{94.5}{(1.025)^{8}} = 89.168$$

ះខាចដូ

Helen គួរតែបង់\$89.17 សម្រាប់ភាគហ៊ុន

ទ្រឹស្តីមន ៧.៤.៣. អាអេីខនេ៍្បីខន្ទមទំនួនថេរ

បើប្រាក់ចំណេញកើនឡើង អាស្រ័យលើ $D_n = D_0 (1+g)^n$ ដែល g ជា អត្រាប្រាក់ចំណេញ កើនឡើង ជាត្រីមាស(គិតជាទសភាគ)

គេមាន

$$S(0) = \sum_{t=1}^{\infty} \frac{D_0 (1+g)^t}{(1+k)^t}$$

$$= D_0 \left(\frac{1+g}{1+k}\right)^t = D_0 \left(\frac{1+g}{1+k}\right) \sum_{t=0}^{\infty} \left(\frac{1+g}{1+k}\right)^t \qquad$$
ជាស្តីតធរណីមាត្រ

ព្រោះ
$$k>g\Rightarrow\left(\frac{1+g}{1+k}\right)<1$$
 នោះស៊េរីរួម
$$\Rightarrow S(0)=D_0\left(\frac{1+g}{1+k}\right)\frac{1}{1-\left(\frac{1+g}{1+k}\right)}=D_0\left(\frac{1+g}{k-g}\right)$$

ឧនាសរស៍ ៧.៤.៧. ក្រុមហ៊ុនមួយទើបតែ បានបង់ប្រាក់ចំណេញ \$2.25 និង ប្រាក់ចំណេញ អនាគតត្រូវបាន រំពឹងថាកើនឡើងនៅអត្រា 1% ជាត្រីមាស។ បើអត្រាធនលាភភាពជាត្រីមាស លើភាគហ៊ុនរបស់ក្រុមហ៊ុនគឺ 2% នោះតើថ្លៃប៉ុន្មានដែលវិនិយោគិនគូរបង់សម្រាប់ភាគហ៊ុន?

ಜೀಚಾ:ಕ್ರಾಟ

$$D_0 = 2.25$$
 , $g = 0.01$, $k = 0.02$

នោះ
$$k>g \ \Rightarrow S(0)=D_0\left(\frac{1+g}{k-g}\right)=2.25\left(\frac{1.01}{0.01}\right)=\$227.25$$
 ដូចនេះ វិនិយោគិនគួរតែបង់ $\$227.25$

* មាននឹងថា

- តើយើងវាស់ហានិភ័យរបស់ភាគហ៊ុនដោយរបៀបណា?
- តើយើងប្រើការវាស់ហានិភ័យដើម្បីគណនាអត្រាអប្បហារត្រឹមត្រូវដោយរបៀបណា? ហានិភ័យអាចត្រូវបានប៉ាន់ ប្រមាណបានដោយការប្រើចំនួន នៃការវាស់ស្ទង់ដូចជា រ៉ង់ (Range) គម្លាតមធ្យមដាច់ខាត (Mean absolute deviation) ប្រូបាបនៃធនលាភភាពអវិជ្ជមាន (Probability of negative return) ពាក់កណ្ដាលវ៉ារ្យង់ (Semi variance) និងគម្លាតស្ដង់ដា (standard deviation) នៃធនលាភភាពលើភាគហ៊ុន។ តាង
 - ullet R_s ជាធនលាភភាព
 - ullet S ជាតម្លៃដែលអាចទៅរួចលើភាគហ៊ុន $\Rightarrow 1 < s < S$
 - ullet P_s ជាប្រូប្នាបនៃ R_s គឺ $R_1,R_2,...,R_s$
 - R ជាអថេរចៃដន្យដែលផ្តល់ធនលាភភាពនៃភាគហ៊ុន នោះតម្លៃដែលអាចទៅរួចលើភាគហ៊ុន R គឺ R_1,R_2,\cdots,R_s
 - ullet ធនលាភភាពសង្ឃឹមលើភាគហ៊ុនគឺ $E(R) = \sum_{s=1}^S P_s R_s$
 - ullet ដំង $range = \max_{s \in S} R_s \min_{s \in S} \ R_s$
 - ullet គម្លាតមធ្យមដាច់ខាត $MAD = \sum_{s=1}^S P_s \left| R_s E(R)
 ight|$
 - ullet ប្រូបាបនៃធនលាភភាពអវិជ្ជមាន $=\sum_{s=1}^S P_s 1_{R_s < 0}$
 - ullet ពាក់កណ្ដាលវ៉ាប្រង់ semi $ext{var} = \sum_{s=1}^S P_s [R_s E(R)]^2 \mathbb{1}_{R_s < E(R)}$
 - ullet គម្លាត់ស្តង់ដា $\sigma = \sqrt{\sum_{s=1}^S P_s [R_s E(R)]^2} \quad , \sigma^2$ ជាវ៉ារ្យង់នៃ R

សំគាល់ បើ X ជាអថេវចៃដន្យ ហើយ $X \subset A$ ជាព្រឹត្តិការណ៍នោះ Indicator Variable $1_{x \subset A}$ ត្រូវបានកំណត់ដោយ

$$1_{X \subset A} = \left\{ \begin{array}{ll} 1 & , X \subset A \\ \\ 0 & , X \not \in A \end{array} \right.$$

ឧនាទារស៍ ៧.៤.៤. ឧបមាថាការវិនិយោគមួយ មានអត្រាធនលាភភាពអាច ទៅរួចប្រចាំឆ្នាំ ធន លាភភាពនៃ 0.10 ជាមួយនឹងប្រូបាប 0.50 0.15 នៃធនលាភភាពជាមួយនឹងប្រូបាប 0.30 និងធនលាភភាពនៃ -0.05 (ខាត 5%)ជាមួយនឹងប្រូប្បាប 0.20 ។ បើយើងយក R ជាអត្រាធន លាភភាពប្រចាំឆ្នាំនោះ P(R=0.10)=0.50, P(R=0.15)=0.30, P(R=-0.05)=0.20 ។ ចូររករ៉ង់ ធនលាភភាពសង្ឃឹម គម្លាតមធ្យមដាច់ខាត ប្រូប្បាបនៃធនលាភភាពអវិជ្ជមាន ពាក់កណ្ដាលវ៉ារ្យង់ និងគម្លាតស្លង់ដា។

ដំណោះស្រាយ

$$range = 0.15 - (-0.05) = 0.20$$

$$expected\ return:\ E(R) = 0.5(0.10) + 0.3(0.15) + 0.2(0.05) = 0.085$$

$$MAD = 0.5|0.10 - 0.085| + 0.3|0.15 - 0.085| + 0.2| - 0.05 - 0.085| = 0.054$$

$$The\ probability\ of\ a\ negative\ return\ is\ 0.2$$

$$semiva = 0.2(-0.05 - 0.085)^2 = 0.0036$$

$$\sigma = \sqrt{0.5(0.10 - 0.085)^2 + 0.3(0.15 - 0.085)^2 + 0.2(-0.05 - 0.085)^2} = 0.0709$$

ទារទំនុំជាខែងខេងស្វា ប្រវត្តិនេះ

- **ទារនិត័យខាម្រព័ន្ធ** (Systematic Risk)ជាហានិភ័យដែលមានឥទ្ធិពលនាំឱ្យមានហានិភ័យ លើភាគហ៊ុនទាំងអស់។
- **ទារនិត័យមិនខាម្រព័ន្ធ** (Unsystematic Risk) ជាហានិភ័យដែលកើតឡើងតែមួយគត់លើ ក្រុមហ៊ុនមួយ។ ហានិភ័យនេះមានដូចជាប្រភេទ បណ្ដឹង កូដកម្ម ការប្រកួតប្រជែង និងការ ប្ដូរអតិថិជនសំខាន់។

មេនុសាអូវិឌ្យាស្យខ(Correlation Coefficient)

- ullet R_{is} $\&R_{js}$ ជាធនលាភភាពលើភាគហ៊ុន i &j
- ullet S ជាតម្លៃដែលអាចទៅរួច $\Rightarrow 1 < s < S$
- ullet P_s ជាប្រូបាបនៃ R_{is} & R_{js}
- ullet $E(R_i)\&E(R_j)$ ជាធនលាភភាពសង្ឃឹមលើភាគហ៊ុន i&j
- ullet σ_i,σ_j ជាគម្លាតស្តង់ដានៃធនលាភភាពលើ ភាគហ៊ុន i&j

$$\rho_{ij} = \frac{\sum_{s=1}^{S} P_s \left[R_{is} - E(R_i) \right] \left[R_{js} - E(R_j) \right]}{\sigma_i \sigma_j}$$

ឧនាមារស៍ ៧.៤.៩. បន្ថែមលើ ឧទាហរណ៍(៧.៤.៨) ឧបមាថា មានការវិនិយោគលើកទី២ នៅ អត្រាធនលាភភាពប្រចាំឆ្នាំ U មានទំនាក់ទំនងជាមួយ R ដែល

$$P(R = 0.10 , U = 0.15) = 0.50, P(R = 0.15 , U = 0.20) = 0.30,$$

 $P(R = -0.05 , U = -0.10) = 0.20$

រកមេគុណកូវីឡាស្យុង $ho_{\scriptscriptstyle RU}$

ಜೀಚಾ:ಕ್ರಾಟ

$$E(U) = 0.5(0.15) + 0.3(0.20) + 0.2(-0.10) = 0.115$$

$$\sigma = \sqrt{0.5(0.15 - 0.115)^2 + 0.30(0.20 - 0.115)^2 + 0.2(-0.10 - 0.115)^2}$$

$$= 0.1097$$

$$\rho_{RU} = \frac{1}{0.0709(0.1097)} [0.5(0.10 - 0.085)(0.15 - 0.115)$$

$$+ 0.3(0.15 - 0.085)(0.20 - 0.115)$$

$$+ 0.2(-0.05 - 0.085)(-0.10 - 0.115)]$$

$$= 0.993$$

ដូចនេះ $ho_{RU}=0.993$

- បើមេគុណកូរីឡាស្យុងរវាងធនលាភភាព របស់ភាគហ៊ុនពីរស្មើ -1 នោះហានិភ័យអាច ត្រូវបានបំបាត់តាមរយៈការធ្វើវាឱ្យដាច់គ្នា។
- បើមេគុណកូរីឡាស្យុងរវាងធនលាភភាព របស់ភាគហ៊ុនពីរស្មើ 1 នោះហានិភ័យមិនអាច ត្រូវបានបំបាត់តាមរយៈការធ្វើវាឱ្យដាច់គ្នាបានទេ។

លំខាត់អនុទត្តន៍

លំសាត់ ៧.១. ប្រើInternetដើម្បីរកពត៌មាន Microsoft ខាងក្រោម៖

- 9. តើថ្ងៃដំបូងភាគហ៊ុនរបស់ Microsoft ត្រូវបានធ្វើជំនួញជាសាធារណ:យ៉ាងដូចម្ដេច?
- ២. តើថ្លៃ Microsoft ខ្ពស់បំផុត ប៉ុន្មានពីកាលបរិច្ឆេទក្នុង ១) រហូតដល់ឥឡូវ? (សំគាល់ថា មានការបែងចែកភាគហ៊ុនមួយចំនូនក្នុងកំឡុងពេលនេះ។ តើ"ថ្លៃខ្ពស់បំផុត"មានន័យដូចម្ដេចក្នុងបរិបទនេះ?)

នំទារន់ ៧.២. Helen Kendrick ទិញភាគហ៊ុនចំនូន 10 ក្នុងមួយដងរយៈពេល 1 ខែសម្រាប់រយៈពេល 4 ខែ។ Hugh Kendrick ទិញភាគហ៊ុនក្នុងតម្លៃ 100\$ ក្នុងខែនីមួយៗនៅ រយៈពេលដូចគ្នា ដូចគ្នា នឹង Helen Kendrick។ តើអ្នកណាគូរតែមានតម្លៃភាគហ៊ុនទាបជាង បើថ្លៃភាគហ៊ុនប្តូរនៅ ក្នុងកំឡុងពេល 4 ខែ? បញ្ជាក់បើថ្លៃភាគហ៊ុន 20\$, 21\$, 22\$, 23\$ ក្នុងរយៈពេល 4 ខែ។

សំសាត់ ៧.៣. នៅពេលណា ដែលធ្វើឱ្យ ការលក់ភាគហ៊ុន នូវចំនូនថេរលើគោល ទៀងទាត់ ប្រសើរជាងការប្រើមធ្យមតម្លៃ ប្រាក់ដុល្លាបើមនុស្សម្នាក់គឺកំពុងលក់ ភាគហ៊ុន? Helen Kendrick ទិញភាគហ៊ុនចំនូន 100 លើ margin។ បើ margin requirement គឺ 50% បើ maintenance requirement គឺ 25% និងបើភាគហ៊ុនកំពុងលក់តម្លៃ 30\$ ក្នុងមួយហ៊ុន នោះនាងនឹងទទួល maintenance call នៅថ្លៃប៉ុន្មាន? បង្កើតតារាងស្រដៀងគ្នានឹងតារាង ខាងក្រោមជាមួយនឹងថ្លៃភាគ ហ៊ុនគឺ 30\$, 25\$, 15\$, 10\$ ៖

ប្លៃ	ចំនូន ភាគហ៊ុន	តម្លៃ ទីផ្សារ	Debit balance	Equity	Required Equity	Margin Equity
20\$	500	10000\$	5000\$	5000\$	2500\$	5000\$
15\$	500	7500\$	5000\$	2500\$	1875\$	3750\$
10\$	500	5000\$	5000\$	0\$	1250\$	2500\$

សំសាត់ ៧.៤. តាមលំហាត់ទី Hugh Kendrick ជឿថាថ្លៃភាគហ៊ុននឹងធ្លាក់ចុះលក់ រយៈពេលខ្លី 100 ភាគហ៊ុន។ បើ maintenance requirement សម្រាប់ការលក់រយៈពេលខ្លីគឺ នោះតើ Hugh នឹងទទួល maintenance call នៅថ្លៃប៉ុន្មាន? បង្កើតតារាងស្រដៀងនឹងតារាង ខាងក្រោមជាមួយ នឹងថ្លៃហ៊ុន 30\$, 35\$, 40\$, 45\$, 50\$ ៖

Credit balance	តម្លៃក្នុង មួយភាគហ៊ុន	ចំនូន ភាគហ៊ុន	តម្លៃ ទីផ្សារ	Equity	Required Equity
\$7500	\$50	100	\$5000	\$2500	\$1500
\$7500	\$60	100	\$6000	\$1500	\$1800
\$7800	\$60	100	\$6000	\$1800	\$1800

សំខាន់ ៧.៥. យក S(t) ជាថ្លៃនៃ XYZ នៅរយ:ពេល t ក្នុងមួយខែ។ ឧបមាថា S(1)=10, S(2)=15, S(3)=18, S(4)=20&S(5)=24 ។ Wendy និង Tom Kendrick លក់ 100 ភាគហ៊ុនដូចគ្នានៅរយ:ពេល t=1 ។ បង្ហាញថា Tom មានប្រាក់ចំណេញ នៅរយ:ពេល t=5 ច្រើនជាង Wendy ដែល ប្រើមធ្យមតម្លៃប្រាក់ដុល្លាជា រៀងរាល់ខែ បើគាត់ទិញ 100 ភាគ ហ៊ុននៅពេលវេលានីមួយៗ t=1,2,3,4,5 ។

តើនេះផ្ទុយពីមធ្យមតម្លៃដុល្លាត្រូវបានពិភាក្សាដូចម្ដេច? ចូរពន្យល់។

សំទារត់ ៧.៦. Hugh Kendrick លក់រយៈពេលខ្លី 100 ភាគហ៊ុនលើ margin។ បើ margin requirement គឺ 50% maintenance requirement សម្រាប់ការលក់រយៈពេលខ្លីគឺ 30% ហើយ បើ ភាគហ៊ុនត្រូវបានលក់ 60\$ នៅក្នុងមួយភាគហ៊ុន នោះភាគហ៊ុនបន្ថែមប៉ុន្មានដែល Hugh លក់ រយៈពេលខ្លី បើថ្លៃហ៊ុនធ្លាក់ដល់ 55\$ ក្នុងមួយភាគហ៊ុន? ចូរបង្កើតតារាងត្រឹមត្រូវមួយជាមួយ នឹងថ្លៃភាគហ៊ុន \$60, \$55, \$50, \$45&\$40 ។

សំសាត់ ៧.៧. តារាងខាងក្រោមផ្ទុកទិន្នន័យលើភាគហ៊ុនបី

	31/12/98	31/3/99	30/6/99	30/9/99	31/12/99
ថ្លៃ S	25	27	28	28	28
T	30	32	33	35	33
U	40	42	43	45	43
ភាគហ៊ុន S	100	200	200	200	200
បានចេញ <i>T</i>	500	500	500	500	500
U	300	450	450	550	550

- ប្រើវិធីសាស្ត្រ DJIA ដើម្បីគណនា ថ្លៃសន្ទស្សន៍សម្រាប់ភាគហ៊ុន ទាំងបីចំពោះពេល វេលានីមួយៗ។
- ullet គណនាថ្លៃសន្ទស្សន៍ជាគម្រូក្រោយ S&P500

គណនាមធ្យមធនលាភភាព ពិជគណិត និង ធរណីមាត្រ ជាត្រីមាសចំពោះ ស៊េរីធនលាភ
 ភាពនីមួយៗ។

នំទាន់ ៧.៤. បើ $x_i>0$ ចំពោះ $i=1,2,\cdots,n$ នោះចំពោះ $n\geqslant 2$ មធ្យមពិជគណិតរបស់វា គឺ $\overline{x}=\frac{1}{n}\sum_{i=1}^n x_i$

9. ចំពោះតម្លៃ
$$d$$
 ប៉ុន្មានដែល $\frac{1}{d}(x_i+...+x_{j-1}+\frac{1}{2}x_j+x_{j+1}+...+x_n)=\overline{x}$

២. យក
$$a,b$$
& d_1 ជាចំនួនវិជ្ជមាន ហើយយក d_2 នោះ $\dfrac{a+b}{d_1}=\dfrac{a+\dfrac{1}{2}b}{d_2}$

(ក) សរសេរ $d_{\scriptscriptstyle 2}$ ជាអនុគមន៍នៃ $a,b\&d_{\scriptscriptstyle 1}$

(ខ) បង្ហាញថា
$$\frac{1}{2}d_1 < d_2 < d_1$$

៣. តើលទ្ធផលពីផ្នែក១)និង២)មាន ទំនាក់ទំនងនឹងការគណនា DJIA ដូចម្ដេចខ្លះ?

សំខារត់ ៧.៩. គណនាភាគរយការកើនឡើងក្នុង DJIA, S&P500, NASDAQ សន្ទស្សន៍ សមាសធាតុពី $1980 \rightarrow 2005$ ។

.

ន្នន្នមារិស្តិនេស្សដំនេះ ខេត្ត នេះ

៨.១. ស្ទឹងនៃអនេះខែជន្យ

៨.១.១. សញ្ញារណស្ទឹងនៃអទេវខែ៩ស្យ

ស្វីតមួយនៃអថេរចៃដន្យត្រូវបានគេប្រើធម្មតាជាគម្រូគណិតវិទ្យានៃលទ្ធផលដែលជាស៊េរី នៃព្រឹត្តិការណ៍ចៃដន្យដូចជាការបោះកាក់ ឫថ្លៃហ៊ុន FTSE ទាំងអស់ ចែករំលែក នៅទីក្រុងឡុង នៅផ្សារហ៊ុននៅថ្ងៃជាប់គ្នា។ អថេរចៃដន្យដូចជា ស្វីតមួយ ត្រូវជាក់បញ្ចូល ដោយលេខទាំងអស់ ដែលត្រូវបានហៅថារយៈពេលដាច់ពីគ្នា $Discrete\,time\,i.e.\ n=1,\,2,\,\cdots$ ។ វាជាការសំខាន់ ក្នុងការយល់ថាលេខទាំងនេះ មិនត្រូវបាន ទាក់ទងនឹង រយៈពេលជាក់ស្ដែង នៅពេលដែលព្រឹត្តិ ការណ៍ នេះយកគម្រូតាមស្វីត ដែល កើតមានឡើង។ **ខេះពេលជាក់**ស្ដែង ត្រូវបានប្រើដើម្បីរក្សា លំដាប់នៃព្រឹត្តការណ៍ដែលអាច ឫមិនអាច ជាលំហំរាប់ស្មើ នៅខណៈ ពេលជាក់ស្ដែង។

ឧនាទារស៍ ៨.១.១. សន្ទស្សន៍ភាគហ៊ុន ត្រូវបានកត់ត្រានៅតែថ្ងៃធ្វើការប៉ុណ្ណោះ ប៉ុន្តែមិនមែន នៅថ្ងៃសៅរ៍ អាទិត្យ ឬថ្ងៃឈប់សម្រាកផ្សេងទៀត ទេក៏ដូចជា ការបោះកាក់ម្តងហើយម្តងទៀត យើង ក៏អាចបោះ កាក់ផងដែរនៅរយៈពេលតែមួយ និង រាប់លទ្ធផល ដែល ទទួលបាន។

ය.ඉ.හ. කිපානස්පා

និយទន័យ ៤.១.១. ស្ទឹតនៃចំនួនមួយ $\xi_1\left(w
ight), \xi_2\left(w
ight), \cdots$ សម្រាប់ថេរណាមួយ $w\in\Omega$ ត្រូវបានហៅថាគន្លងគម្រូ។

- គន្លងគម្រូមួយសម្រាប់លំដាប់ស្ទីតនៃការបោះកាក់មួយ ត្រូវបានបង្ហាញនៅក្នុង រូបភាព (៨.១) (+1 តំណាងឱ្យមុខ និង –1 តំណាងឱ្យខ្នង)។
- រូបភាព (៨.២) បង្ហាញពីគន្លងគម្រូនៃ ភាគហ៊ុន FTSE ទាំងអស់ ដែលមានសន្ទស្សន៍ ឡើងដល់ ១៩៩៧។

៨.២. សំនុំពត៌មានដែលបានដឹងពីអតីតកាលដំពូកទី ៨. វិធីសាស្ត្រចៃដន្យក្នុងរយៈពេលដាច់

្វបភាពដែលបានបង្ហាញគួរ តែមានចំនុចដែលតំណាងឱ្យតម្លៃ $\xi_1\left(w\right),\xi_2\left(w\right),\cdots$ ប៉ុន្តែ វាជាទម្លាប់ដើម្បីភ្ជាប់ពួកគេ ដោយ បន្ទាត់ដាច់ក្នុងគោលបំណងពន្យល់ឱ្យកាន់តែច្បាស់លាស់។

រួម ៨.១. គន្លងគម្រូស្វ៊ីតនៃការបោះកាក់

រួម ៤.២. គន្លងគម្រូតំណាងអោយភាគហ៊ុន FTSE ទាំងអស់ដែលមានសន្ទស្សន៍ឡើងដល់ 1997

៨.២. សំនុំពត៌មានខែលចានដ៏១ពីអតីតកាល

៨.២.១. សំតុំព័ត៍មានដឹទពីអតីតអាលនៅតួ១លំសម្រូជាទីលីតេ

ය.හ.ඉ.ඉ. බිසා ඉස්

នៅពេល ដែលរយៈពេលកើនឡើងនោះ ជាព័ត៌មាន របស់យើង ពីអ្វី ដែលបានកើតឡើង នៅក្នុងអតីត កាល។ ជំពូកទី ៨. វិធីសាស្ត្រចៃជន្យក្នុងរយៈពេលដាច់ ៨.២. សំនុំពត៌មានដែលបានដឹងពីអតីតកាល នេះត្រូវបានយកជាគម្រូដោយ "**សំនុំពន៌មានខែលចានដ៏១ពីអតីតអាល** (Filtrations)" ដូចដែលបានកំណត់ដូចខាងក្រោម៖

និយមន័យ ៨.២.១. ស្ទឹតមួយនៃកាយ $\sigma: F_1, F_2, \cdots$ នៅលើសំណុំ Ω ដែល $F_1 \subset F_2 \cdots \subset F$ ត្រូវបានហៅថា Filtrations ។

ដែល F_n តំណាងឱ្យពត៌មានរបស់យើងនៅរយៈពេល n ដែលផ្ទុកគ្រប់ព្រឹត្តិការណ៍ A ទាំងអស់ ដូចនេះ នៅរយៈពេល n វាអាចសម្រេចចិត្តបានថាតើ A បានកើតឡើងឫអត់ ។ (អ្នករស់នៅបានយូរប៉ុណ្ណានោះពត៌មានដែលអ្នកទទួលបាន ប៉ុណ្ណោះដែរ)

ឧនាទារសំ ៤.២.១. សម្រាប់ស្ទីតមួយនៃការបោះកាក់ ξ_1,ξ_2,\cdots យើងយក F_n ជាកាយ σ បន្សំដោយ $\xi_1,\xi_2,...\xi_n$, $_n=\sigma\left(\xi_1,\xi_2,...\xi_n\right)$

គេឱ្យ A = ការបោះកាក់ 5 ដងដំបូង ទទួលបានលទ្ធ ផលយ៉ាងហោចណាស់ខាងមុខចំនូន 2 លើក

- នៅរយៈពេលដាច់ n=5 មានន័យថាពេលដែលកាក់ត្រូវបានបោះ 5 ដង នោះវានឹង អាចសម្រេចចិត្ត ថាតើ A បាន កើតឡើង ឬអត់។ នេះមានន័យថា $A \in F_5$ ។ នេះមិនមាន ន័យថា នៅខណៈពេល n=4 វាមិនតែងតែ អាចបកស្រាយថា A អាច កើតឡើង ឬ មិន បានកើតឡើង ទេ។ ប្រសិនបើជាលទ្ធផល នៃការបោះកាក់ ចំនូន 4 ដង ដំបូងចេញលទ្ធផលជា ខ្នង ខ្នង មុខ ខ្នង នោះ ព្រឹត្តិការណ៍ A នេះមិនទាន់មានការសម្រេចចិត្តទេ។ យើងនឹងធ្វើការបោះកាក់ម្តងទៀតជាថ្មីដើម្បី មើលថាមានអ្វីកើតឡើងនោះគឺ $A \notin F_4$ ។
- ឧទាហរណ៍ (៨.២.១) នេះបង្ហាញពី បញ្ហាដែលពាក់ព័ទ្ធ ផ្សេងទៀត។ ឧបមាថា លទ្ធផល នៃការបោះ កាក់ 4 ដងដំបូងគឺ ខ្នង មុខ ខ្នង មុខ។ ក្នុងករណីនេះ វាអាចប្រាប់ថាព្រឹត្តិការណ៍ បានកើតឡើង រួចទៅហើយនៅខណៈពេល n=4 តែយ៉ាងណា ក៏ដោយ លទ្ធផលនៃការ បោះកាក់លើកទី 5 នឹង អាចកើតមាន។ វាមិនមានន័យថា មួយជារបស់ព្រឹត្តិការណ៍ $A \in F_4$ ។ ចំនុចនោះគឺ ដើម្បីឱ្យ $A \in F_4$ ត្រូវតែអាចប្រាប់ថាតើ A បានកើតឡើង ឬមិនបានកើតឡើង បន្ទាប់ពីការបោះកាក់ 4 ដងដំបូងមិនថា លទ្ធផលនៃការបោះកាក់ 4 ដងដំបូង នោះយ៉ាងមិចទេ។ នេះជាការបញ្ជាក់យ៉ាង ច្បាស់ពីឧទាហរណ៍។

ಡೆ.២.១.២. ខិនីសាស្ត្រសម្រមសម្រួល និខភា៖ព្យាភារណ៍

ullet ព័ត៌មានដែលបានមកពីវិធីសាស្ត្រចៃដន្យX មួយគឺជាកើនឡើងនៃរយៈពេល ហើយយើង ត្រូវការនូវ អត្ថន័យ ឱ្យច្បាស់ពី " កុំបំភ្លេច ពីអ្នកតំណាង ខាងជំនួញ" និង "X(t) មិនមែន

- ៨.២. សំនុំពត៌មានដែលបានដឹងពីអតីតកាល ជំពូកទី ៨. វិធីសាស្ត្រចៃដន្យក្នុងរយៈពេលដាច់ អថេរចៃដន្យបន្ទាប់ពីថ្ងៃ t" ។ យើងធ្វើការពិចារណា ពីថ្លៃហ៊ុនអនាគត របស់ IBM ដែល ជាវិធីសាស្ត្រចៃដន្យ នោះគឺជាស្វ៊ីតនៃ អថេរចៃដន្យ។ នៅថ្ងៃដែល អ្នកវិនិយោគ ធ្វើការសង្កេត អំពីថ្លៃហ៊ុន X(t) ហើយ X(t) នឹងមិនផ្លាស់ ប្តូរនៅថ្ងៃ t+1 (វា នឹងក្លាយជា X(t+1) សម្រាប់ ថ្ងៃអនាគត)។ វា មានន័យថា X(t) គឺជា អថេរចៃដន្យ កើននៅថ្ងៃ t ហើយនឹងក្លាយ ជាចំនូនថេរ (ឬជាអថេរចៃដន្យ ស្ដេចដន្យ ស្ដេចដន្យ សេ
 - បើ $F=\{F_1,F_2,\cdots,F_T\}$ បកស្រាយអំពីការវិវត្តន៍នៃព័ត៌មានលើសម៉ោង នោះ F_t គឺជា បញ្ជីនៃព្រឹត្តិការណ៍នៅ ថ្ងៃ T ដែលអ្នកដឹងថាវាត្រូវ ឬខុស។ $X_t\leqslant 100$ ពិត ឬមិនពិត ដែល X_t គឺជាថ្លៃហ៊ុន IBM ។ វាមានន័យថា គឺជារង្វាស់ ធៀបទៅនឹង F_t (វាផ្ទៀងផ្ទាត់ទៅគ្រប់ថ្ងៃ t)

និយមន័យ ៤.២.២. យើងថាស្ទឹតនៃអថេរចៃដន្យមួយ ξ_1,ξ_2,\cdots ត្រូវបានផ្លាស់ប្តូរស្រប ជាទម្រង់ F_1,F_2,\cdots បើ ξ_n ជារង្វាស់ F_n $(F_n-measurable)$ សម្រាប់ F_1,F_2,\cdots ។

ឧនាមារណ៍ ៤.២.២. បើ $F_n=\sigma\left(\xi_1,\xi_2,\cdots,\xi_n\right)$ ជាកាយ σ បន្សំដោយ ξ_1,ξ_2,\cdots,ξ_n នោះ ξ_1,ξ_2,\cdots,ξ_n ត្រូវបានប្តូរទៅដា F_1,F_2,\cdots ។

និយមន័យ ៤.២.៣. វិធីចៃដន្យមួយ $X = \{X_1, X_2, \cdots, X_T\}$ គឺ ការជាព្យាករណ៍បើ $\forall t \geqslant 1, \ X_t$ គឺ ជារង្វាស់ F_{t-1} ។

ឧនាមារស៍ ៨.២.៣. វិធីសាស្ត្រចៃដន្យផ្សេងទៀត ដែលជាចំនូនគឺ ជាធម្មជាតិនៃការព្យាករណ៍ ដែល ពិចារណាទៅលើ ទីផ្សារដែលវាអាចធ្វើការវិនិយោគនៅថ្ងៃនិមួយៗ និង សម្រាប់ កំឡុង ពេល ប្រាក់កើនទ្វេដង (ការសន្សំប្រាក់ក្នុងគណនី)។

- តាង r_t ជាអត្រារបស់ធនលាភភាពជាសាច់ប្រាក់ ក្នុងគណនីនេះ សម្រាប់កំឡុងពេល [t;t+1]
- និង B_t ជាចំនូនដែលផ្ទុកនៅថ្ងៃ ដោយធ្វើការវិនិយោគ 1\$ នៃប្រាក់ នៅក្នុងគណនីសន្សំ ប្រាក់ចាប់ពីថ្ងៃ 0 ។

ដោយ r_t គឺត្រូវបានដឹងនៅថ្ងៃ t ហើយដំណើរការ r គឺត្រូវការប្ដូរ ទៅតាម សំនុំ ព័ត៌មាន F ដែលមានការ ពន្យល់ពីការបញ្ជាក់ " កំណើនទ្វេដងតាមតំបន់ " (មានតែកំឡុងពេលមួយនៃ កំណើនទ្វេដង)។ បន្ទាប់មក ដំណើរការ B គឺជាការព្យាករណ៍។

ជាការពិត វាអាចសរសេរ

$$B_t = \prod_{s=0}^{t-1} (1 + r_s) \tag{(6.9)}$$

ដែល B_t ត្រូវបានដឹងនៅថ្ងៃ t-1 នោះគឺជារង្វាស់ F_{t-1}

៨.៣. សេចគ្គីស្នើមនៃទិធីសាស្ត្រថៃឧន្យ

៤.៣.១. និយមន័យ

វិធីសាស្ត្រចៃដន្យមួយដាច់នៅក្នុងលំហទាំងពីរ ហើយរយ:ពេលគឺជាស្ទីតនៃ អថេរចៃដន្យ នោះកំនត់លើលំហគម្រូដូចគ្នា (គឺពួកគេជាបំណែងចែករួមគ្នា) $\{X_0,X_1,\cdots\}$ ដែលតម្លៃសរុប នៃ X_t ទាំងអស់បន្សំ ជាទម្រង់សំនុំដាច់។

តម្លៃខុសៗគ្នានៃ X(t) ទាំងអស់ហៅថា **ស្ដេងខែទិឆីសាស្ដ្រទៃជន្យ**ៗ

និយមន័យ ៤.៣.១. ខិនីសស្ត្រខែជន្យមួយអូខមេះពេលជាចំ គឺ ជាសំណុំគ្រួសារនៃអថេរ ថៃដន្យ X(t) កំនត់សរសេរដោយ $\{X(t), t \in T\}$ ត្រូវបានកំណត់លើលំហគម្រូ Ω ដែល $D_T \subseteq R(N,\ N_0,\ Z,\ [0,+\infty))$ ដោយ $t \in T$ (t ជារយ:ពេលដាច់ $t=0,1,2,\cdots$)។

- យើងបានកំនត់សម្គាល់ថា $\forall \omega$ នៅក្នុងលំហគម្រូ Ω នោះត្រូវបានកំណត់ហៅថា អនុគមន៍ គម្រូ $T\left(.\,,\omega\right):T\to R$ លើដែនកំណត់ប៉ារ៉ាម៉ែត្រ T
- នៅក្នុងការបកស្រាយ វិធីសាស្ត្រចៃដន្យដែលយើង ត្រូវតែយល់ដឹងពីបំនែងចែកអនុគមន៍ នៃវិធីសាស្ត្រចៃដន្យមានន័យថា

$$P\left\{X\left(t_{1}\right) \leqslant x_{1} \land X\left(t_{2}\right) \leqslant x_{2} \land \ldots \land X\left(t_{n}\right) \leqslant x_{n}\right\}$$

ដែល
$$orall t_1, t_2, \cdots, t_n \ \in T$$
 និង $orall x_1, x_2, \cdots, x_n \ \in R, \ n \in N$

 \star ករណីពិសេសសំខាន់ខ្លាំងណាស់ បានកើតឡើងនៅពេលអថេរចៃដន្យ X(t) មានតម្លៃ ដាច់ ទាំងអស់នៅក្នុង N_0 ។ នៅក្នុងករណីបើ X(t) នោះគេនិយាយថាវិធីសាស្ត្រនៅខណ:ពេល t គឺជាស្តេត $E_{\bf k}$ ។

យើងត្រូវបានចាប់អារម្មណ៍នៅក្នុងការយល់ដឹង អំពីបន្លាស់ប្តូរនៃវិធីសាស្ត្រនេះ។ វិធីមួយ ដើម្បីបកស្រាយពីវត្ថុអ្វីមួយ គឺត្រូវធ្វើដើម្បីគិតថាតើ X(t) អាស្រ័យលើ X_0,X_1,\cdots,X_{t-1} ឫទេ?

ឧនាមារស៍ ៤.៣.១. គេឱ្យ W_t ជាជំហានចៃដន្យ នៅខណៈពេល $t_0,\ W_0=0$ ហើយនៅខណៈពេលនិមួយៗនោះ ជំហានចៃដន្យមានប្រូបាប៊ីលីគេ p នៃជំហានខាងឆ្វេង និង 1-p នៃជំហានខាងស្កាំ។ ដូចនេះ បើ នៅខណៈពេល $t,\ W(t)=k$ មានប្រូបាប៊ីលីគេ p នៃខណៈ k-1 និងប្រូបាប៊ីលីគេ 1-p នៃខណៈ k-1 ពេល t+1 ដែរ។ យើងអាចសរសេរជា៖

$$P\left(W\left(t+1\right)=j/W\left(t\right)=k\right)=\left\{ \begin{array}{ll} p & \mbox{ if } & j=k-1\\ 1-p & \mbox{ if } & j=k-1\\ 0 & \mbox{ if } & j\neq k-1 \end{array} \right.$$

ខាន្នៅ សម្រាប់វិធីសាស្ត្រចៃដន្យ X(t) យើងអាចបញ្ជាក់ថា

$$(X(t+1) = j/X_t = k_t, X_{t-1} = k_{t-1}, \dots, X_0 = k_0)$$

បើដូចជានៅក្នុងករណីជំហានចៃដន្យ

$$P(X_{t+1} = j/X_t = k_t, X_{t-1} = k_{t-1}, \dots, X_0 = k_0) = P(X_{t+1} = j/X_t = k_t)$$
(G.b)

ទំនាក់ទំនងនេះហៅថា **ទទ្ធាគ់ម៉ាគូទ** ។ យើងអាចសរសេរ៖

$$P_{jk} = P\left(X_{t+1} = k/X_t = j\right) \tag{g.m}$$

ដោយចំនួន P_{jk} ជាទម្រង់ម៉ាទ្រីស(ម៉ាទ្រីសមិនកំនត់ បើអថេរចៃដន្យ X(t) មិនកំនត់) ត្រូវបាន ហៅថា **ម្ចូធាម៊ីសី គេខែទ័រទ្រីសន្លះ** កាលណាវាបំពេញលក្ខណៈ ៖

9.
$$P_{jk} \leq 0$$

$$\forall i. \ \sum_k P_{jk} = 1, \ \forall j$$

ដែលម៉ាទ្រីស P_{jk} ដូចជាអ្វីដែលយើងធ្លាប់បានកំណត់មកវាប្រាប់យើងអំពី ថាតើ ប្រូបាប៊ី លីតេនៃជំហានដែល ផ្លាស់ពីលើកទីt ទៅលើកទី t+1 ស្មើប៉ុន្មាន។ ដូចនេះមានន័យថា P_{jk} ដំបូងអាស្រ័យលើ t។

មើនាមិនអាស្រ័យនោះ ទិនីសាស្ត្រនេះអោយឈ្មោះថា ទិនីសាស្ត្រ Markov។ ដោយធ្វើវាម្តងទៀត P_{jk} តាងឱ្យប្រូបាប៊ីលីតេ(ពីស្តេត $j \to k$) នៅជំហានមួយ។

នូវច្ចេះ បើ X_n គឺជាវិធីសាស្ត្រម៉ាកូវ នោះ P_{jk} ជាព័ត៌មានតែមួយគត់ដែលបានដឹងនោះ គឺ P_{jk} ជាបំនែងចែកប្រូបាប៊ីលីតេដើមនៃ X_0 ដែល $P_0(k)=P(X_0=k)$ ។ សំណូរងាយគឺគេឱ្យ P_0 និង P_{jk} តើបំនែងចែកប្រូបាប៊ីលីតេ នៃ X_n ស្មើប៉ុន្មាន? ចុងបញ្ចប់ យើងណែនាំពី "ភាពស៊ី ជម្រៅនៃប្រូបាប៊ីលីតេឆ្លុះ" ដែល $P_{jk}^{(t)}=P\left(X_t=k/X_0=j\right)$ កៀកទៅស្មើនឹង $P\left(X_{t+m}=k/X_m=j\right)$ ជាប្រូបាប៊ីលីតេពី $j\to k$ ក្នុង t ជំហាន។ យើងបាន

សំណើ ៨.៣.១. $P_{jk}^{(t)} = \sum_h P_{jh}^{(t-1)} P_{hk}$

ලූපශීෂඝශූඝ .ඦ.ආ.៦

සුසුසු ල් යා ග්

មុនពេលដល់ឧទាហរណ៍ យើងចង់ណែនាំពីតិចនិចសម្រាប់ធ្វើការ គណនាជាមួយអថេរ ចៃដន្យ។ គេឱ្យ X ជាអថេរ ចៃដន្យដាច់ដែល ស្ដេត State ជា ចំនួនគត់់ឺឡាទីប j ហើយមាន បំនែងចែក p(k)។

យើងបាន

និយមន័យ ៨.៣.២. អនុគមន៍មខ្ល គឺ

$$F_{X}\left(t
ight)=\sum_{k}p\left(k
ight)t^{k}$$
 (a.G)

នៅចំនុចនេះ យើងមិនបានគិតគូរល្អិតល្អន់ទៅនឹង ភាពរួមនៃ F_x តែយើងនឹងធ្វើការរៀប ចំធម្មតា នឹង F_x ដូច្នេះ ហើយ

 F_x ត្រូវបាន ហៅថា **ស៊េរីស្វ័យគុណ** (ឫស៊េរីឡូរ៉ង់ព្រោះវាមានស្វ័យគុណអវិជ្ជមាននៃ t)។

ತ್ತಚಿತಿ ಆ ಕ್ಷಮ ಕ್ಷಮ ಕ್ಷಮ ಪ್ರದ್ಯಾಣ ಕ್ಷಮ ಪ್ರಕ್ರಿಸಿ ಕ್ಷಮ ಪ್ರತಿಸಿ ಕ್ಷಮ ಪ್ರಕ್ರಿಸಿ ಕ್ಷಮ ಪ್ರಕ್ತಿಸಿ ಕ್ಷಮ ಪ್ರಕ್ರಿಸಿ ಕ್ಷಮ ಪ್ರಕ್ತಿಸಿ ಕ್ಷಮ ಪ್ರಕ್ರಿಸಿ ಕ್ಷವ ಪ್ರಕ್ರಿಸಿ ಕ್ಷಮ ಪ್ರಕ್ರಿಸಿ ಕ್ಷಿಸಿ ಕ

លក្ខណៈទូទៅនៃអនុគមន៍បង្កនៃ X គឺ ៖

១. $F_X(1)=1$ ព្រោះផលបូកនៃប្រូបាច៊ីលីតេស្មើ១

២.
$$E\left(X\right)=F_{X}^{\prime}\left(1\right)$$
 ដោយ $F_{X}^{\prime}\left(t\right)=\sum_{k}kp\left(k\right)t^{k-1}$

$$\mathfrak{m}.\ Var\left(X\right)=F"_{X}\left(1\right)+F"_{X}\left(1\right)-\left(F'_{X}\left(1\right)\right)^{2}$$

ថ. បើ $X,\ Y$ ជាអថេរចៃដន្យមិនអាស្រ័យ នោះ $F_{X+Y}(t)=F_X(t)\ F_Y(t)$

ឧនាមារស៍ ៤.៣.២. គេឱ្យ X ជាអថេរចៃដន្យតំណាងឱ្យពិសោធន៍ប៊ែរនូលី នោះ

$$P\left(X=-1
ight)=p\,,\;\;P\left(X=1
ight)=1-p\,\;\;\;$$
 និង $P\left(X=k
ight)=0$

ដូច្នេះ $F_X = pt^{-1} + (1-p)\,t$ ពេលនេះ ជំហានចៃដន្យអាចបកស្រាយ ដោយ

$$W_n = X_1 + X_2 + \cdots + X_n$$

ដែល X_k និមួយៗមិនអាស្រ័យ X_k តាងឱ្យជំហានខាងឆ្វេង និងទៅខាងស្ដាំនៅពេលជំហានលើកទី k ដោយ X_k ជាអថេរមិនអាស្រ័យ យើងមាន

$$FW_n = F_{X_1} F_{X_2} \cdots F_{X_n}$$

$$= (FX)^n$$

$$= (pt^{-1} + (1-p)t)^n$$

$$= \sum_{j=0}^n (j)^n (pt^{-1})^j ((1-p)t)^{n-1}$$

$$= \sum_{j=0}^n (j)^n p^j (1-p)^{n-j} t^{n-2j}$$

យើងបានបំនែងចែកសម្រាប់ ជំហានចៃដន្យ W_n អាចជាមេគុណនៃអនុគមន៍បង្ក ។ ដូច្នេះ

$$P(W_n = n - 2j) = (j)^n p^j (1 - p)^{n-j}, j = 0, 1, \dots, n$$

ទំណះ នេះជាលើកទី៣ក្នុងការគណនាបំនែងចែកនេះ ដែលគណនាវានៅខណ: n ។ ជាមួយគ្នា ផងដែរ ការគណនាវានៅខណ: n ។ សង្កេតមើលបទពិសោធន៍ខាងក្រោមនេះ

សំឈើ ៤.៣.២. គេឱ្យ X ជាបន្សំនៃអថេរចៃដន្យពីរ N និង Y នោះ

$$F_X(t) = F_N(F_Y(t)) = F_N o F_Y$$

ស្សស្វាយមញ្ញាផ្ទ

យើងមាន
$$P\left(X=K\right)=\sum_{n=0}^{\infty}P\left(N=n\right)P\left(\sum_{j=1}^{n}Y_{j}=K\right)$$
 តែ
$$F_{\sum\limits_{j=1}^{n}Y_{j}}=\left(F_{Y}\left(t\right)\right)^{n}\;,\;Y_{j}\;$$
 ជាពហុអថេរមិនអាស្រ័យ ដូចនេះ

$$F_{X}=\sum_{n=1}^{\infty}P\left(N=n
ight)\left(F_{Y}\left(t
ight)
ight)^{n}=F_{N}\left(F_{Y}\left(t
ight)
ight)$$
 (ជ.៥)

៨.៣.៣. សឡឹមគណិតមានលក្ខខណ្ឌ

ឥល្វវនេះ យើងណែនាំអំពីល្បិច ដែលមានគំនិតដ៏សំខាន់ សម្រាប់យើងនោះ គឺ សង្ឃឹម គណិតមានលក្ខខណ្ឌ។ យើងចាប់ផ្ដើមកំនត់វា ដោយ មានភាពងាយបំផុត នៃ អថេរ ចៃដន្យក្នុង សង្ឃឹមគណិតមានលក្ខខណ្ឌ នៅក្នុង ហេតុការណ៍មួយ។ គេឱ្យព្រឹត្តិការណ៍ A កំណត់ជាអថេរ ចៃដន្យ

$$1_{A} = \begin{cases} 1 & \text{iff} \quad \omega \in A \\ 0 & \text{iff} \quad \omega \notin A \end{cases}$$

កំណត់ដោយ

$$E(X/A) = \frac{E(X.1_A)}{P(A)}$$

នៅក្នុង

$$ullet$$
 ករណីដាច់ $E\left(X/A
ight) = \sum_{X} x \, P\left(X = x/A
ight)$ (ជ.៦)

$$ullet$$
 ករណីជាប់ $E\left(X/A
ight) =\int X\,P\left(X/A
ight) dx$ (៨.៧)

សំណើ ៨.៣.៣. លក្ខណៈនៃសង្ឃឹមគណិតមានលក្ខខណ្ឌរួមមាន

9.
$$E(X + Y/A) = E(X/A) + E(Y/A)$$

២. បើ
$$X=c$$
 ថេរលើ A នោះ $E\left(XY/A\right) =cE\left(Y/A\right)$

៣. បើ
$$B=\prod_{i=1}^n A_i$$
 នោះ $E\left(X/B\right)=\sum_{i=1}^n E\left(X/A_i\right) \, \frac{P\left(A_i\right)}{P\left(B\right)}$

(ទិសមភាព Jensen)

អនុគមន៍ f មួយប៉ោង បើ $\forall t \in [0,1]$, x < y នោះ f ផ្ទៀងផ្ទាត់វិសមភាព ៖

$$f\left(\left(1-t\right)x+ty\right)\leqslant\left(1-t\right)f\left(x\right)+tf\left(y\right)\tag{G.G}$$

យើងបាន f ប៉ោង ដែល $E\left(f\left(x\right)\right)\geqslant f\left(E\left(x\right)\right)$ និង $E\left(f\left(X/A\right)\right)\geqslant f\left(E\left(X/A\right)\right)$

បើ X និង Y ជាអថេរចៃជន្យពីរ កំនត់លើលំហគម្រូដូចគ្នានោះយើងអាចនិយាយពីប្រភេទពិសេសនៃព្រឹត្តិការណ៍ $\{y=j\}$ ។

ដូច្នេះ វាអាចធ្វើឱ្យយល់ដើម្បីធ្វើការជជែកអំពី $E\left(X/Y=j\right)$ ។ វាគ្មានអ្វីដែលថ្មីនៅទីនេះទេ ប៉ុន្តែ វិធី ដែលមានអត្ថប្រយោជន៍ ដើម្បីគិតពី សង្ឃឹមមានលក្ខខណ្ឌនៃ X ដែលមានលក្ខខណ្ឌ លើ Y គឺ ដូចជាអថេរចៃដន្យមួយ។ J វត់លើតម្លៃនៃអថេរ Y ដែល $E\left(E/Y=j\right)$ មានតម្លៃ ខុសគ្នាទៅតាម j ដែល មានតម្លៃថ្មីមួយនៃអថេរចៃដន្យ។ ដូចនេះ យើងធ្វើវាតាមលំដាប់។

និយមន័យ ៤.៣.៣. X,Y ជាពីរអថេរចៃដន្យកំណត់ លើលំហគម្រូដូចគ្នា។ ការកំណត់អថេរចៃដន្យមួយគឺ E(X/Y) ហើយអានថា " សង្ឃឹមនៃអថេរចៃដន្យX ផ្ដល់ដោយលក្ខខណ្ឌY "។ តម្លៃនៃអថេរចៃដន្យនេះគឺ $E\left(X/Y=j\right)$ ដែល j រត់លើតម្លៃនៃ Y ។ យើងបាន

$$P[E(X/Y) = e] = \sum_{\{j/E(X/Y=j)=e\}} P[Y = j]$$

ខាន្នេះ ប្រសិនបើ Y_0,Y_1,\cdots,Y_n មានការប្រមូលផ្ដុំ នៃអថេរចៃដន្យនោះ យើងអាចកំណត់ $E\left(X/Y_0=y_0\,,Y_1=y_1\,,\ldots,Y_n=y_n\right)$ និង $E\left(X/Y_0\,,Y_1\,,\ldots,Y_n\right)$ លក្ខណ: ទូទៅ មួយ ចំនួននៃអថេរចៃដន្យ E(X/Y) ត្រូវបានរាយទៅតាមសំណើ។

សំណើ ៤.៣.៤. X,Y ជាពីរអថេរចៃដន្យកំនត់លើលំហគម្រូដូចគ្នា នោះ

- ១. (លក្ខណ: Tower) $E\left(E\left(X/Y\right)\right)=E\left(X\right)$
- ២. បើ X, Y ជាអថេរមិនអាស្រ័យនោះ $E\left(X/Y\right) = E\left(X\right)$
- ៣. តាង $Z=f(Y_0,Y_1,\cdots,Y_n)$ នោះ $E\left(ZX/Y
 ight)=Z\,E\left(X/Y
 ight)$

សំណើ ៨.៣.៥. X , Y_0 , Y_1 , \dots , Y_n ជាអថេរចៃដន្យកំនត់លើលំហគម្រូដូចគ្នា នោះ

- ១. (លក្ខណ: Tower) E(E(X/Y)) = E(X)
- ២. បើ X មិនអាស្រ័យ Y_0,Y_1,\cdots,Y_n នោះ $E\left(X/Y_0\,,Y_1\,,\ldots,Y_n
 ight)=E\left(X
 ight)$
- ៣. តាង $Z=f\left(Y_0\,,Y_1\,,\ldots,Y_n
 ight)$ នោះ $E\left(ZX/Y_0\,,Y_1\,,\ldots,Y_n
 ight)=ZE\left(X/Y_0\,,Y_1\,,\ldots,Y_n
 ight)$

៤.៤. មានិទស្វេល

គំនិតនៃម៉ាធីឯហ្កែល (Martingales) នេះមានប្រភពដើមរបស់វាមកពីការលេង ល្បែង ពោលគឺ **ឱភាសនៃការប្រអូតស័ត្រឹមត្រូទ** ដែលនឹងពិភាក្សាយ៉ាងល្អិតល្អន់នៅ ក្នុងផ្នែកបន្ទាប់ទៀត។ ស្រដៀងគ្នាដែរ សញ្ញាណនៃ Submartingale និង Supermartingale បានកំណត់ដូចខាង ក្រោមត្រូវបានទាក់ទងទៅនឹង **ឱភាសនៃការលេខខែល្ប១ ខោតខ័យ និចមានខ័យ** ។ ទិដ្ឋភាពមួយ ចំនូននៃការលេងល្បែងដែលមាននៅក្នុងគណិតវិទ្យាហិរញ្ញវត្ថុ ជាពិសេស គឺទ្រឹស្តីដេរីវេនៅក្នុង ហិរញ្ញវត្ថុដូចជាជម្រើសដែលបានកំណត់ ។ មិនមានអ្វីគូរឱ្យប្លែកទេ **ទាំនីខខ្មែរស** ដើរតូនាទីយ៉ាង សំខាន់នៅទីនេះ ។ ជាការពិតណាស់ **ទាំនីខខ្មែរស** បានឈាន ដល់ទ្រឹស្តីនៃការលេងល្បែង និង ការកើតឡើងក្នុងការប្រកូតនានានៃប្រូបាប៊ីលីតេ និង Stochastic វិភាគ ជាពិសេសនៅក្នុងទ្រឹស្តី ផ្សព្វផ្សាយ ។ សរុបមកយើងនឹងណែនាំអំពី ម៉ាធីងហ្កែលដែលនឹងនិយាយពី និយមន័យជាមូល ដ្ឋាន និងលក្ខណៈ ក្នុងករណី រយៈពេល ដាច់ពីគ្នា $(i.e \ t=0\,,1\,,2\,,\ldots)$ ។

និយមន័យ ៤.៤.១. ស្ទឹតមួយនៃអថេរចៃដន្យ $\xi_1,\xi_2,...$ ដែលត្រូវបានហៅថា **ម៉ានីខខ្សែន** ធៀបនឹងសំណុំព័ត៌មានរៀងគ្នា F_1,F_2,\cdots បើ

- 9. ξ_n មានអាំងតេក្រាលដែល $n=1,2,\cdots$
- ២. ξ_1,ξ_2,\cdots ត្រូវបានផ្លាស់ប្តូរជា F_1,F_2,\cdots
- $\mathfrak{m}.\,\,E\left(\xi_{n+1}/_{n}
 ight)=\xi_{n}$ ដែល $n=1,2,\cdots$

ឧនាទារស៍ ៤.៤.១. គេឱ្យជាស្វ៊ីតនៃអថេរចៃដន្យ $\eta_1\,,\,\eta_2\,,\,\dots$ មិនអាស្រ័យអាំងតេក្រាលដែល

$$E(\eta_n) = 0 , \forall n = 1, 2, 3, ...$$

យើងអាចសរសេរ

$$\xi_n = \eta_1 + \eta_2 + \dots + \eta_n$$

$$F_n = \sigma\left(\eta_1\,,\,\eta_2,\cdot,\eta_n\right)$$

នោះ ξ_n ត្រូវបានផ្លាស់ប្តូរទៅជាសំណុំព័ត៌មាន F_n ហើយវាមានអាំងតេក្រាលដែល

$$E(|\xi_n|) = E(|\eta_1 + \eta_2 + \dots + \eta_n|)$$

$$\leq E|\eta_1| + E|\eta_2| + \dots + E|\eta_n|$$

$$< \infty$$

$$E(\xi_{n+1}/F_n) = E(\eta_{n+1}/F_n) + E(\xi_n/F_n)$$

$$= E(\eta_{n+1}) + \xi_n$$

$$= \xi_n$$

ដូចនេះ

ស្វ៊ីតនៃអថេរចៃដន្យ η_1,η_2,\cdots ជាម៉ាធីឯហ្កែលធៀបនឹងសំណុំពត៌មានរៀងគ្នា F_1,F_2,\cdots ម្យ៉ាង

ដោយ η_{n+1} ជាសំណុំព័ត៌មានមិនអាស្រ័យ F_n (លក្ខណៈមិនអាស្រ័យ) ហើយ ξ_n ជារង្វាស់ $F_n\left(F_n - measurable\right)$ (យកអ្វីដែលធ្លាប់បានដឹងរួចមកហើយ) មានន័យថា ξ_n ជា ម៉ាធីងហ្កែល រៀងៗគ្នានៃ F_n ។

ឧនាមារស៍ ៤.៤.២. គេឱ្យ ξ មានអាំងតេក្រាលនៃអថេរចៃដន្យនិង F_1, F_2, \cdot ជាសំណុំព័ត៌មាន។ យើងអាចសរសេរ

$$\xi_n = E(\xi/F_n)$$
 ដែល $n = 1, 2, 3, ...$

នោះ ξ_n ជារង្វាស់ F_n ដែល $|\xi_n|=|E\left(\xi/F_n
ight)|\leqslant E\left(|\xi|\,/_n
ight)$ នាំឲ្យ

$$E(|\xi_n|) \leq E(E(|\xi|/F_n)) = E(|\xi|) < \infty$$

ហើយ

$$E(\xi_{n+1}/_n) = E(E(\xi/F_{n+1})/F_n)$$
$$= E(\xi/F_n)$$
$$= \xi_n$$

ដោយ $F_n \subset F_{n-1}$ (តាមលក្ខណ: សង្ឃឹមគណិតមានលក្ខខណ្ឌ)

ដូចនេះ $igg arepsilon_n$ ជាម៉ាធឹងហ្កែលរៀងគ្នានៃ F_n ។

និយទន័យ ៤.៤.២. ស្វីតមួយ ξ_1,ξ_2,\cdots នៃអថេរចៃដន្យដែលត្រូវបានហៅថា Super martingale (Submartigale) ជាមួយសំណុំព័ត៌មានរៀងគ្នា F_1,F_2,\cdots បើ

- 9. ξ_n មានអាំងតេក្រាលដែល $n=1,2,\cdots$
- ២. ξ_1, ξ_2, \cdots ត្រូវបានផ្លាស់ប្តូរជា F_1, F_2, \cdots
- ៣. $E\left(\xi_{n+1}/F_n\right)\leqslant \xi_n$ (រៀងគ្នា) $E\left(\xi_{n+1}/F_n\right)\geqslant \xi_n$ គ្រប់ ។

សំលើ ៤.៤.១. គេឱ្យ (X,Y) ជាអថេរចៃដន្យពីរនៅក្នុង $L^2(\Omega,A,P)$ ហើយ B,B' ជាសំណុំ រងពីរនៃ A ដែលបំពេញ $B\subset B'$ ៖

- ១. បើ Z មានអថេរ $c \in R$, $E\left(Z|B\right) = c$
- $\forall (a, b) \in \mathbb{R}^2, E(aZ + bY|B) = aE(Z|B) + bE(Y|B)$
- \mathfrak{m} . បើ $Z \leqslant Y$, $E\left(Z|B\right) \leqslant E\left(Y|B\right)$
- ថ. $E\left(E\left(Z|B'\right)|B\right)=E\left(Z|B\right)$ (ច្បាប់នៃសង្ឃឹមគណិត)
- ៥. បើ Z ជារង្វាស់ $B:E\left(ZY|B\right)=ZE\left(Y|B\right)$
- ៦. បើ Z ជាសំណុំ B មិនអាស្រ័យ $E\left(Z|B\right)=E\left(Z\right)$

ឥឡូវនេះយើងអាចកំណត់ពីវិធីសាស្ត្រចៃដន្យ Stochastis processes ដូចទៅនឹងម៉ាធីងហ្កែល (Martingale) ។

ಶಿಆಕಾತ್ ಡೆ.ಡೆ.೧೧.

- 9. គេឱ្យ (Ω,A,\mathbb{F},P) ក្នុងលំហប្រូបាប៊ីលីគេ និងវិធីសាស្ត្រចៃដន្យ (Stochastic process) ដែល $X=(X_0,X_1,...,X_T)$ ជាសំណុំម៉ាធីងហ្កែល (\mathbb{F},P) បើ
 - (ក) X ត្រូវបានប្តូរជា ${\mathbb F}$
 - (2) $\forall t \in J, X_t \in L^1(\Omega, A, P)$
 - (គ) $\forall t \in J^*, X_{t-1} = E\left[X_t/\mathbb{F}_{t-1}\right]$
- ២. X ជា Super martingale នៅលើលំហ (\mathbb{F},P) បើ $X_{t-1}\geqslant E[X_t/\mathbb{F}_{t-1}]$
- ៣. X ជា Submartingale នៅលើលំហ (\mathbb{F},P) បើ $X_{t-1}\leqslant E[X_t/\mathbb{F}_{t-1}]$

ಱಽೣೱೲ

ការប្រើប្រាស់ច្បាប់នៃសង្ឃឹមគណិត វាច្បាស់ណាស់ ដើម្បីមើលឃើញថា ប្រសិនបើ X

ជាម៉ាធីងហ្កែល Martingale~(Supermartingale, Submartingale~) មួយសម្រាប់គ្ (s,t) ដែល

$$s\leqslant t\,:\,E\left[X_t/\mathbb{F}_s\right]=\left(\leqslant,\geqslant\right)X_s$$
 (a.6)

ទំនាក់ទំនងនេះអាចត្រូវបានប្រើនៅចំនុច (គ) នៃនិយមន័យ(៨.៤.៣) សង្កេតមើល $E[X_{t+1}/\mathbb{F}-1]$ តាមនិយមន័យ(៨.៤.៣) យើងមាន

$$X_{t-1} = E[X_t/\mathbb{F}_{t-1}]$$
 និង $X_t = E[X_{t-1}/\mathbb{F}_t]$

នាំឱ្យ

$$X_{t-1} = E[E[X_{t+1}]/\mathbb{F}_{t+1}]$$

តាមសំនើ(៨.៤.១) (ចំនុច៤) នាំឱ្យ

$$X_{t-1} = E[X_{t+1}/\mathbb{F}_{t-1}]$$
 ដែល $\mathbb{F}_{t-1} \subset \mathbb{F}_{t+1}$

និយមន័យ ៨.៤.៤. ជំហានចៃដន្យមួយគឺ ជាវិធីសាស្ត្រចៃដន្យ X ដែល $X_0=c,\ c\in\mathbb{R}$ ហើយ $X_t=X_{t-1}+Y_t$ ដែល Y_t ជាអថេរមិនអាស្រ័យ

ឧនាមារស៍ ៤.៤.៣. អ្នកលេងល្បែងមួយបានចាប់ផ្ដើម ការប្រកួតនៅថ្ងៃ០ ជាមួយប្រាក់ X_0 និង ប្រាក់ X_t របស់គាត់នៅថ្ងៃ t ត្រូវបានកំណត់ដោយ $X_t = X_{t-1} + Y_t$ ដែល Y_t ជាតម្លៃនៃការកើន ឡើង ឫបាត់បង់នៃការចាប់ឆ្នោតលើកទី t ។ Y_s មិនអាស្រ័យ និង Zeromean (ធានាភាពត្រឹម ត្រូវនៃការប្រកួតនេះ) នៃអថេរចៃដន្យ។ ជាមួយគ្នាដែរ ប្រាក់នៅថ្ងៃ អាចសរសេរជា

$$X_t = X_0 + \sum_{s=1}^t Y_s$$
 (6.90)

សន្មតថា $\mathbb F$ ជាដំណើរការនៃសំណុំព័ត៌មានពីធម្មជាតិ Y នោះគឺ $\mathbb F_t$ ជាសំណុំបន្សំដោយ Y_u ដែល $u\leqslant s$ ។ដូចដែល Y_s ជាលទ្ធផលនៃ ការលេងនេះនៅ លើកទី៥ និង X_s ជាប្រាក់ របស់អ្នកលេង

ល្បែង បន្ទាប់ពីការលេងលើកទី៥នោះ X ជា $\mathbb{F}-adapted$ ហើយយើងបាន៖

$$E[X_t/\mathbb{F}_{t-1}] = E[X_{t-1} + Y_t/\mathbb{F}_{t-1}]$$
 (6.99)

$$= E[X_{t-1}/\mathbb{F}_{t-1}] + E[Y_t/\mathbb{F}_{t-1}]$$
 (6.9b)

យើងបាន

$$E[Y_t/\mathbb{F}_{t-1}] = E[Y_t] = 0$$

$$\Longrightarrow E[X_t/\mathbb{F}_{t-1}] = X_{t-1}$$

នោះ X ជាម៉ាធីឯហ្គែល

ឧនាទាះស៍ ៤.៤.៤ យើងពិចារណាទៅលើកោដ្ឋ ដែលផ្ទុកចំនួនគូនៃប៉ាល់ T ដែលពាក់កណ្ដាល ជាពណ៌ស និងពាក់កណ្ដាលជាពណ៌ខ្មៅ។ នៅកាលបរិច្ឆេទនិមួយៗ $t\leqslant T$ បាល់មួយគ្រាប់ ត្រូវបានបោះដោយចៃដន្យ ដោយគ្មានជំនួស។ គេឱ្យ Y (ឬ Z) ជាវិធីសាស្ត្រចៃដន្យ នៃការ រាប់ចំនួនបាល់ពណ៌ស (ឬខ្មៅ)ដែលត្រូវបានលេង។ សំណុំព័ត៌មាន ដែលពាក់ព័ទ្ធ ជាសំណុំព័ត៌ មានធម្មជាតិនៃ Y(Z) ។

គេតាង $X_t = Y_t - Z_t$ ជាផលដករវាងចំនូនគ្រាប់បាល់ពណ៌ស និងពណ៌ខ្មៅ បន្ទាប់ពីចាប់ យកដោយចៃដន្យលើកទី t ។ វិធីសាស្ត្រចៃដន្យ Stochastic Process ផ្ទៀងផ្ទាត់ចំពោះ $X_0 = 0$ ហើយយើងអាចសរសេរ៖

$$X_t = X_{t-1} + S_t$$

- ullet បើបាល់សលើកទី t នោះ $S_t=1$
- ullet ចើបាល់ខ្មៅលើកទី t នោះ $S_t=-1$

រេកបាន

$$E[X_t/\mathbb{F}_{t-1}] = X_{t-1} + E[S_t/\mathbb{F}_{t-1}]$$

ផលដករវាងវិធីសាស្ត្រនេះ និងជំហានចៃដន្យ S_t (មិនអាស្រ័យ \mathbb{F}_{t-1} ទៀតទេ)។ ជាក់ស្តែង សន្មតយក $Y_t=s\;,\;\;Z_t=t-s$ នាំឱ្យ

$$P(S_{t+1} = 1/Y_t = s) = \frac{\frac{T}{2} - s}{T - t}$$

ហើយ
$$P\left(S_{t+1}=1/Y_t=s
ight)
eq rac{1}{2}$$
 នៅពេល $S
eq rac{1}{2}$ យើងបាន $E[S_{t+1}/Y_t=s]
eq 0$

នេះវាបង្ហាញថា X មិនមែនជាម៉ាធីឯហ្កែល ផ្ទុយទៅវិញ

$$orall t\,,E\left(Y_{t}
ight)=E\left(Z_{t}
ight)=rac{t}{2}$$
 is: $E[X_{t}]=0$

បន្ទាប់មក X គឺជាឧទាហរណ៍ នៃ វិធីសាស្ត្រចៃដន្យ Stochastic Process មធ្យមថេរដែលមិន មែនជាម៉ាធីងហ្កែល ។ ជាក់ស្តែង លក្ខណៈពិសេសនេះបានមកពី "ដោយគ្មានការជំនូស" លក្ខណៈ នៃការបោះដោយចៃដន្យ។ បន្ទាប់ពី ការបោះបាល់និមួយៗនោះ ប្រូបាប៊ីលីតេនៃការបោះបាល់ ពណ៌ស ឬខ្មៅនៅក្នុងការបោះបាល់បន្ទាប់ទៀតគឺ ត្រូវបានផ្លាស់ប្តូរ។ ប៉ុន្តែ ចាប់ផ្តើមពីថ្ងៃ០ នោះ វាជាការប្រកួតដ៏ត្រឹមត្រូវពេលដែល មធ្យមនៃចំនូនបាល់ពណ៌ស (ខ្មៅ) ដែលបានបោះនៅចន្លោះ ពេល ០និង t ស្មើ $\frac{t}{2}$ ។

វាគឺជាការចាំបាច់សម្រាប់ ធ្វើការកត់ សម្គាល់ថា "បញ្ហា" ដែល បានកើតឡើងពីភាពពិត ជាក់ស្តែង ដោយ តម្លៃចុងក្រោយនៃ Y និង Z ត្រូវបានស្គាល់នៅថ្ងៃ០។ ជាការពិតណាស់ មុន ពេលការបោះបាល់ជាលើកដំបូង តម្លៃមួយបានដឹងថា $Y_T=Z_T=\frac{T}{2}$ នាំឱ្យ $X_T=0$ ។ នៅក្នុងទម្រង់ជាវិទ្យាសាស្ត្រ អថេរចំនួន៣ ជារង្វាស់ \mathbb{F}_0 ($\mathbb{F}_0-measurable$)

៨.៥. នាពឡើខាអ់នៃឈ្មែខ

ឧបមាថា អ្នកចូលរួមក្នុងការលេងល្បែងដូចជា roulette តាង η_1,η_2,\ldots ជាស្វ៊ីតនៃអាំង តេក្រាលអថេរចៃដន្យ ដែល η_n ជា(ការឈ្នះ ឫ ការចាញ់) សម្រាប់ មួយ ភាគហ៊ុនក្នុងការប្រកួត n ។ បើមានភាគហ៊ុន របស់អ្នកនៅ ក្នុងការលេងល្បែង និមួយៗ ឈ្នះម្ដងនោះ ការទទួលជ័យជំនះ សរុបរបស់អ្នកនឹង ទទួលបាន

$$\xi_n = \eta_1 + \eta_2 + \ldots + \eta_n$$
 (ជ.១៣)

យើងបាន សំនុំពត៌មាន

$$\mathbb{F}_n = \sigma\left(\eta_1, \eta_2, \ldots, \eta_n\right)$$

ហើយយក $\xi_0=0$ និង $\mathbb{F}_0=\{\varnothing,\Omega\}$ សម្រាប់ភាពសាមញ្ញនៃសញ្ញា បើនៅជុំ n-1 នៃល្បែងដែលបានលេងល្បែងយ៉ាងយូរ នោះពត៌មាន កើនរបស់អ្នកនឹង ត្រូវបាន តំណាងដោយ កាយ $\sigma\mathbb{F}_{n-1}$ ។

• ភារម្រភ្នុនខោយសុទ្រិនទើ

$$E\left(\xi_n/\mathbb{F}n-1\right)=\xi_{n-1}$$
 (ជ.១៤)

នោះគឺ អ្នកបានរំពឹងថា សំណាងរបស់ អ្នកនៅជំហាន n នឹងក្លាយជាមធ្យមនៅជំហានដូច n-1 ដែរ។

• ភារម្រងួននេះ អំណោយផល មើ

$$E\left(\xi_{n}/\mathbb{F}n-1\right)=\geqslant\xi_{n-1}$$
 (ជ.១៥)

• ខិច ទិនអំណោយផលនៅ អាន់អូអមើ

$$E\left(\xi_{n}/\mathbb{F}n-1\right)\leqslant\xi_{n-1}\,,\,\forall n=1\,,2\,,\dots$$
 (ជ.១៦)

ចម្លើយនេះទាក់ទងទៅនឹង ξ_n រៀងគ្នា

 $(Martingale\,,\,Submartingale\,\&\,Supermartingale)$ ដោយ ធៀប ទៅនឹង \mathbb{F}_n ចូរមើលនិយមន័យ(៨.៤.១) និង(៨.៤.២)។

ឧបមាថា អ្នកអាចបែងចែកភាគហ៊ុនទៅជា α_n នៅក្នុងការប្រកួត n ដង (ពិសេស α_n អាច ស្មើ 0 បើអ្នកជៀសវាងពីការលេងល្បែងលើកទី n វាអាចអវិជ្ជមាន បើអ្នកជា ម្ចាស់ កាស៊ីណ្វ ហើយអាចទទួលយកការភ្នាល់របស់មនុស្សផ្សេងទៀត)។ នៅពេលដែល ពេលវេលា បានមក ដល់ដើម្បីសម្រេចភាគហ៊ុន α_n របស់អ្នកនោះ អ្នកនឹងដឹង លទ្ធផល ជាលើកដំបូងនៃការលេង ល្បែង n-1 ប្រកួត។ ដូច្នោះ វាជាការសមហេតុផលដើម្បីសន្មតថា α_n គឺជារង្វាស់ \mathbb{F}_{n-1} ដែល \mathbb{F}_{n-1} តំណាងឱ្យពត៍មានដែលបានបង្កកើនឡើង និងរួមបញ្ចូលការលេង ល្បែង n-1 ប្រកួត។ ជាពិសេស ចាប់តាំងពីគ្មានអ្វីដែលត្រូវបានគេស្គាល់មុនពេលដែលការប្រកួតដំបូង នោះគេយក $\mathbb{F}_0 = \{\varnothing,\Omega\}$ ។

និយទន័យ ៤.៥.១. យុទ្ធសាស្ត្រការលេងល្បែងមួយ α_1,α_2,\cdots (ធៀបនឹងសំនុំព័ត៌មាន $\mathbb{F}_1,\mathbb{F}_2,\cdots$) គឺជាលំដាប់នៃអថេរចៃដន្យមួយ α_n ជារង្វាស់ $\mathbb{F}_{n-1},\ \forall n=1,2,\cdots$ ដែល $\mathbb{F}_0=\{\varnothing,\Omega\}$ ។(ខាងក្រៅបរិបទនៃការលេងល្បែង ដូចជាលំដាប់នៃអថេរចៃដន្យ α_n ហៅថា ការព្យាករណ៍(Previsible))បើអ្នកអនុវត្តតាមយុទ្ធិសាស្ត្រ α_1,α_2,\cdots នោះ ការឈ្នះសរុបរបស់អ្នកបន្ទាប់ពីការប្រកួត n ដង ដែល

$$\varsigma_n = \alpha_1 \eta_1 + \alpha_2 \eta_2 + \alpha_n \eta_n$$

= $\alpha_1 (\xi_1 - \xi_n) + \dots + \alpha_n (\xi_n - \xi_{n-1})$

យើងយក $\varsigma=0$ សម្រាប់ភាពងាយស្រួល

តាមរយៈសំណើនេះមានវិបាកដ៏មាន សារៈសំខាន់សម្រាប់ការលេងល្បែង។ វាមានន័យថា ការប្រកួតដ៏សុក្រិត និងជាធម្មតាបានត្រឡប់ភាពសុក្រិតម្ដង មិនថាយុទ្ធសាស្ត្រនៃការលេងល្បែង មួយណាដែលត្រូវបានប្រើទេ។ បើ គ្មាននរណាម្នាក់ ធ្វើការ ភ្នាល់នូវប្រាក់អវិជ្ជមានសរុប(ដើម្បីរត់ ការបើកកាស៊ីណូមួយ) នោះវានឹងមិនអាចប្រែក្លាយពី ការប្រកួតមួយដែលមិនអំណោយផលទៅ ជាការប្រកួត អំណោយផល ឬក៏ផ្ទុយមកវិញ។ អ្នកមិនអាចផ្គូលប្រព័ន្ធនេះដាច់ខាត **ភាពន៍សនៃ ស្វ៊ីន** α_n មានន័យថា មូលធន ដែល អាច កើតមានរបស់អ្នកគឺទ័ល និង ជាឥណទានកំនត់របស់ អ្នកដែរ។

សំលើ ៤.៥.១. គេឱ្យ α_1,α_2,\cdots ជាយុទ្ធសាស្ត្រនៃការលេងល្បែង

- 9. បើ α_1,α_2,\cdots ជាស្វីតទាល់ និង ξ_0,ξ_1,\cdots ជាម៉ាធីងហ្កែល នោះ $\varsigma_0,\varsigma_1,\ldots$ ជា ម៉ាធីង ហ្កែល(ការប្រកួតសុក្រិតកើតឡើងម្តងមិនថាអ្នកលេងយ៉ាងម៉េចក៏ដោយ)
- ២. បើ α_1,α_2,\cdots ជាស្តីតទាល់មិនអវិជ្ជមាន និង ξ_0,ξ_1,\cdots ជា Supermarting ale នោះ $\varsigma_0\,,\varsigma_1\,,\ldots$ ជា Supermarting ale (ការប្រកួតមិនអំណោយផលទៅជាអំណោផល)
- ៣. បើ α_1,α_2,\cdots ជា ស្ទីតទាល់ មិនអវិជ្ជមាន និង ξ_0,ξ_1,\cdots ជា Submartingale នោះ $\varsigma_0\,,\varsigma_1\,,\ldots$ ជា Submartingale (ការប្រកួតអំណោយផលទៅជាមិនអំណោយផល)

៨.៦. ពេលទេលាមញ្ជាម

មុំប្រឹង្ធ នេះ មាន ខ្មែរ មាន ខ្មែរ ខ្មែរ

ឪកាសមួយនៅក្នុងការលេងល្បែងរ៉ូឡែត និងល្បែងដទៃទៀត ជាធម្មតាមានជម្រើសដើម្បី ចេញបានគ្រប់ពេល។ ចំនូនជុំនៃការប្រកួតនៅមុនពេលចាកចេញពីការប្រកួតនឹងត្រូវបានកំនត់ ដោយ T ។ ខែវ (T=10) បើនរណាម្នាក់ សម្រេចចិត្ត ដំខ្ពស់ដើម្បីបញ្ឈប់ការលេងបន្ទាប់ ពីបាន 10 ជុំ នោះ មិនថាមានអ្វីកើតឡើងទេ ត្រូវតែ បញ្ឈប់។ ប៉ុន្តែ ជាទូទៅការសម្រេចចិត្តថាតើ ត្រូវឈប់ ឫ បន្តនឹងត្រូវធ្វើឡើង បន្ទាប់ពីជុំនិមួយ។ អាស្រ័យលើពត៍មាន ដែល បង្កើនរួចមក ហើយ ដូច្នេះ ត្រូវបាន សន្មតថាជា អថេរចៃដន្យជាមួយសំណុំតម្លៃ $\{1,2,\ldots\} \cup \{\infty\}$ ។ ភាព មិនកំណត់ ត្រូវបានបញ្ចូល ដើម្បី គ្របន្ទវលទ្ធផលជាទ្រឹស្ដី (ក៏ដូចជាក្ដីសុបិនសេណាវ័យ្យនៃកាស៊ី ណូមួយចំនួន) ដែលការប្រកួត នេះមិនដែលបញ្ចប់។ នៅជំហាន និមួយ។ គួរតែមាន ម្នាក់ដើម្បី អាចធ្វើការសម្រេចចិត្ត ថាតើត្រូវបញ្ឈប់ ឫបន្ដការប្រកួតនេះ? មានន័យថា ទោះបីបញ្ឈប់ ឫបន្ដ T=n។ ដូច្នេះ ព្រឹត្តិការណ៍ T=n គួរតែនៅក្នុងកាយ σ ដែល \mathbb{F}_n តំណាង ឱ្យពត៍មានរបស់ យើងនៅខណៈពេល n។ នេះបានផ្ដល់នូវការកើនឡើងជានិយមន័យជាលំដាប់។

අශ්ය ක්රීම් අද

និយមន័យ ៨.៦.១. អថេរចៃដន្យ T ជាមួយសំនុំតម្លៃ $\{1\,,2\,,\ldots\}\,\cup\,\{\infty\}$ ត្រូវបានឱ្យ ឈ្មោះថា Stopping Time (ធៀបនឹងសំនុំព័ត៌មាន \mathbb{F}_n) បើ $\forall n=1,2,\cdots$ ដែល

$$\{T=n\}\in\mathbb{F}_n$$

ឧនាមារស៍ ៨.៦.១. (ការវាយលុកជាលើកដំបូង)

ឧបមាថា កាក់មួយត្រូវបានបោះម្ដងហើយម្ដងទៀត ហើយអ្នកឈ្នះ ឫចាញ់ 1\$ អាស្រ័យ លើវិធីដែលប្រើៗ ឧបមាថា អ្នកចាប់ផ្ដើមប្រកួតជាមួយលុយ 5\$ នៅ ក្នុង ហោបៅ របស់អ្នក ហើយ អ្នកសម្រេចចិត្តក្នុងការលេងរហូតដល់អ្នកមាន 10\$ ឫ អ្នក ត្រូវ ចាញ់ អស់ លុយទាំងអស់ៗ បើ ξ_n ជាចំនួន ទឹកប្រាក់ដែលអ្នកមាន នូវជំហាន នោះខណៈពេល ដែល អ្នកបញ្ឈប់ការប្រកួតគឺ $T=\min\{n:\xi_n=10\ or\ 0\}$ ហៅថា ការវាយលុកដំបូង ($10\ y\ 0$ ដោយ ស្វ៊ីតនៃអថេរ \mathbb{F}_n) ដែល $\mathbb{F}_n=\sigma$ (ξ_1,ξ_2,\ldots,ξ_n) ព្រោះ

$${T = n} = {0 < \xi_1 < 10} \cap {0 < \xi_{n-1} < 10} \cap {\xi_n = 10, or 0}$$

ឥលូវនេះ សំនុំនិមួយៗនៃផ្នែកខាងស្ដាំដៃជារបស់ \mathbb{F}_n នោះ ប្រសព្វរបស់វាក៏ជារបស់ \mathbb{F}_n ដែរ។ នេះវាបង្ហាញថា

$$\{T=n\} \in \mathbb{F}_n, \ \forall n$$

ះប្តូរដ្ឋ

T គឺជាពេលវេលាបញ្ឈប់ Stopping Time

និយទន័យ ៤.៦.២. យើងហៅ $\xi_{T\wedge n}$ ជាស្ទឹតពេលវេលាបញ្ឈប់Stopping Time នៅពេលT។ វាកំនត់ដោយ ξ_n^T ។ ដូចនេះ

$$\forall w \in \Omega, \xi_n^T(w) = \xi_T(w) \land n(w)$$

សំណើ ${f d}.{f d}.{f d}.{f g}$. គេឱ្យ T ជាពេលវេលាបញ្ឈប់ ${\it Stopping\ Time}$

- ១. បើ ξ_n ជាម៉ាធីឯហ្គែល នោះ $\xi_{T \wedge n}$ ជា martingel
- ២. ថើ ξ_n ជា Supermartingel នោះ $\xi_{T\wedge n}$ ជា Supermartingel
- ៣. បើ ξ_n ជា Submartingel នោះ $\xi_{T\wedge n}$ ជា Submartingel

ឧនាសរស៍ ៤.៦.២. (អ្នកអាចព្យាយាមដើម្បីផ្គូលប្រព័ន្ធបើអ្នកមានមូលធន និងពេលវេលា មិន កំនត់) ការអនុវត្តន៍ តាមយុទ្ធសាស្ត្រ លេងល្បែង ត្រូវបាន ហៅថា "**ម៉ាឆីខស្អែល**"(ស្ងមកុំច្រលំ ការហៅនេះទៅនឹងនិយមន័យទូទៅនៃម៉ាធីងហ្កែលនៅផ្នែកមុន)។

ឧបមាថា កាក់មួយត្រូវបានបោះម្តងហើយម្តងទៀត។ យើងកំនត់លទ្ធផលដោយ η_1,η_2,\ldots ដែលអាចយកតម្លៃ +1 (មុខ) ឫ -1 (ខ្នង)។ អ្នកភ្នាល់ 1\$ នៅខាងមុខ។ បើ អ្នកឈ្នះ នោះ អ្នក ឈប់លេង តែបើអ្នកចាញ់ អ្នកត្រូវដាក់លុយថែម២ដងនៃការភ្នាល់ ហើយ លេង ម្តងទៀត។ បើអ្នកឈ្នះនៅជុំនេះ នោះអ្នកឈប់លេង។ ផ្ទុយទៅវិញ បើអ្នកថែមលុយ ឫ ភាគហ៊ុនរបស់អ្នក ម្តងហើយ បន្ថែមតទៅទៀត ដូចនេះ យុទ្ធសាស្ត្រលេងល្បែងរបស់អ្នកគឺ

$$\alpha_n = \begin{cases}
2^{n-1} & \text{t\"{u}} & \eta_1 = \eta_2 = \dots = \eta_n = trail \\
0 & \text{t\"{u}} & other
\end{cases}$$

យើងបាន

$$\varsigma_n = \eta_1 + 2\eta_2 + \dots + 2^{n-1}\eta_n$$
(G.9 II)

ហើយគិតគូដល់ពេលវេលាបញ្ឈប់ នោះ $T=\min\{n:\eta_n=$ មុខ $\}$ នោះ $\varsigma_{T\wedge n}$ និងជាការឈ្នះ របស់អ្នកបន្ទាប់ពីការប្រកួត n ជុំ វាជាម៉ាធីងហ្កែល(ពិនិត្យវា)។

វាអាចបញ្ជាក់ថា $P\left\{T<\infty\right\}=1$ (ទីបំផុតវានឹងលេចចេញមុខនៅក្នុងស្វឹត η_1,η_2,\ldots ជាមួយ P=1)។ ដូច្នេះ វាត្រូវតែគិតដល់ ς_T ។ នេះគូរតែអាចជាការឈ្នះសរុបរបស់អ្នក បើអ្នក អាចបន្តដើម្បី លេងល្បែងមិនថា ការលេចឡើង នៅមុខ ជាដំបូង យូរប៉ុណ្ណា។ វាអាចត្រូវពេល វេលាមិនកំនត់ រួមជាមួយមូលធន(លុយ) បើអ្នកអាចទ្រាំទ្រទាំងនេះបាន អ្នកនឹងឈ្នះជាមិនខាន ទោះបី ς_T ដែល

$$\boxed{-1 - 2 - \dots - 2^{n-1} + 2^n = 1, \ \forall n}$$
 (4.94)

ය්.ෆ්. දුප්තාස්ක්සුප

៤.៧.១. ឧនាមារស៍ និទនិយមន័យ

ឧនាមារស៍ ៤.៧.១. នៅក្នុងផ្ទះមួយ ចំនួននៃការប្រើប្រាស់ទូរស័ព្ទនេះ អាចក្លាយជាបញ្ហាដែល គួរតែគិត។ ឧបមាថា បើទូរស័ព្ទនេះទំនេរក្នុងអំឡុងពេលវេលាណាមួយ បានន័យថាការនិយាយ នូវនាទីទី n ជាមួយនឹងប្រូបាប៊ីលីតេ p ដែល 0 នោះវានឹងត្រូវបានរវល់ក្នុង អំឡុងពេល នាទីបន្ទាប់ <math>n+1។ តែបើទូរស័ព្ទបានរវល់នៅក្នុងអំឡុងពេលនាទីទី n នោះ វានឹង ទំនេរនៅក្នុងអំឡុងពេលនាទីបន្ទាប់ n+1 ជាមួយប្រូបាប៊ីលីតេ q ដែល 0 < q < 1។ សន្មតថា ទូរស័ព្ទ ទំនេរនៅនាទី ទី n យើងនឹងបង្ហាញចម្លើយទៅតាមពីរសំណូរដូចខាងក្រោម

- ១. តើប្រូប្បាប៊ីលីតេ x_n ស្មើប៉ុន្មានពេលដែលទូរស័ព្ទនឹងទំនេរនៅនាទីទី n ?
- ២. តើ $\lim_{n \to +\infty} x_n$ ស្មើប៉ុន្មាន?(បើមាន)

ជុំឈោះស្រាយ

តាង

- ullet A_n ជាព្រឹត្តិការណ៍ដែលទូរស័ព្ទទំនេរក្នុងអំឡុងពេលនាទីទី n
- $B_n = \Omega/A_n$ ជាបំពេញនៃព្រឹត្តិការណ៍ ដែលទូរស័ព្ទរវល់ កំឡុងពេលនាទីទី n (ថ្នាក់នៃធាតុទាំងអស់មិនមែនជាធាតុនៃសំនុំដែលគេឱ្យ)

$$P\left(B_{n+1}/A_n\right) = p\left(1\right) \tag{6.96}$$

$$P\left(A_{n+1}/B_n\right) = q \tag{(i.10)}$$

យើងយក $P(A_0)=1 \ i.e. \ x_0=1$

តាមការកំនត់ យើងមាន $X_n = P\left(A_n
ight)$ នោះរូបមន្តប្រូបាប៊ីលីតេសរុប យើងយក

$$P(B_{n+1}/A_n) - P(A_{n+1}/B_n) = p - q$$

$$x_{n+1} = P(A_{n+1})$$

$$= P(A_{n+1}/A_n) P(A_n) + P(A_{n+1}/B_n) P(B_n)$$

$$= (1 - p) x_n + q(1 - x_n)$$

$$= q + (1 - p - q) x_n$$

$$x_{n+1} = q + (1 - p - q) x_n$$
 (6.09)

វាជារឿងពិបាកបន្តិចក្នុងការស្វែងរក្សបមន្តជាក់លាក់ សម្រាប់ x_n ។ ដើម្បីរកជាដំបូងយើងឧបមាថាស្វ៊ីត $\{x_n\}$ រួមនោះ

$$\lim_{n \to \infty} x_n = x \tag{G.២២}$$

លក្ខណៈងាយនៃលីមីត និងសមីការ i.e. $x_{n+1}=q+\left(1-p-q\right)x_n$ យើងបាន

$$x = q + (1 - p - q)x$$
 (៨.២៣)

ដំណោះស្រាយដែលខុសគ្នាទៅកាន់សមីការចុងក្រោយគឺ

$$x = \frac{q}{q+p}$$
 (ជ.២៤)

យក $x=rac{q}{q+p}$ ជំនួសក្នុង (៨.២៣) យើងបាន

$$\frac{q}{q+p} = q + (1-p-q) \times \frac{q}{q+p} \tag{ជ.២៥)}$$

ធ្វើផលដករវាង (៨.២.១)&(៨.២៥) យើងបាន

$$x_{n+1} - \frac{q}{q+p} = (1-p-q)\left(x_n - \frac{q}{q+p}\right)$$
 (ជ.២៦)

ដូចនេះ $\left\{x_n-\frac{q}{q+p}\right\}$ ជាស្វីតធរណីមាត្រ ដូច្នេះ

$$\forall n \in , x_n - \frac{q}{q+p} = (1-p-q)^n \times \left(x_0 - \frac{q}{q+p}\right)$$

តែ
$$x_0=1$$
 យើងបាន $x_n=\frac{q}{q+p}+\left(1-\frac{q}{q+p}\right)(1-p-q)^n$
$$\Longrightarrow x_n=\frac{q}{q+p}+\frac{p}{p+q}(1-p-q)^n \tag{G.២៧}$$

ទោះបីជា យើង បានប្រើនូវការសន្មត់(៨.២២) ដើម្បី ទាញរក (៨.២៦) តែការស្រាយ បញ្ជាក់នៅ ពេលក្រោយគឺ ត្រូវបានស្រាយជារួចរាល់។ ជាការពិត ការស្រាយបញ្ជាក់ (៨.២៧) យើងអាចបង្ហាញ ថាការសន្មត់ (៨.២២) គឺពិតត្រឹមត្រូវ។ នេះគឺ ដោយសារតែលក្ខខណ្ឌ 0 < p, q < 1 ផ្ទៀងផ្ទាត់ (1-p-q) < 1 នោះ $(1-p-q)^n \to 0$ ពេល $n \to \infty$

ដូចនេះ (៨.២២) នៅមិនទាន់បកស្រាយ តែវាបានបែងចែកចម្លើយទៅជាផ្នែកទី២ នៃ ឧទាហរណ៍ យើងបាន $\lim_{n\to\infty} x_n = \frac{q}{q+p}$

ទំរភាំ រូបមន្ត (៨.២១) និង (៨.២២) អាចសរសេរផ្គុំដោយទម្រង់កុំប៉ាក់ ដែលប្រើប្រាស់ វ៉ិចទ័រ និងម៉ាទ្រីស

ដោយ
$$x_n + y_n = 1$$

យើងបាន

$$x_{n+1} = (1-p)x_n + qy_n$$

$$y_{n+1} = px_n + (1 - q) y_n$$

យើងអាចសរសេរជាទម្រង់ម៉ាទ្រីស

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} 1-p & q \\ p & 1-q \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix}$$

នេះជាការបកស្រាយ ពីឧទាហរណ៍(៨.៧.១) ដែល សាមញ្ញណាស់ជាញឹកញាប់ប្រូប្បាប៊ីលី តេ នៃព្រឹត្តិការណ៍ជាក់លាក់នៅខណ:ពេល n+1 អាស្រ័យត្រឹមតែពីអ្វីដែលកើតឡើងនៅខណ:ពេល n តែវាមិនមាននៅក្នុងអតីតកាល។ ឧទាហរណ៍(៨.៧.១) បែងចែក ឱ្យយើង ជាមួយករណី ធម្មតា នៃច្រវ៉ាក់ម៉ាកូវ។ ចូរមើលពីនិយមន័យ និងលំហាត់ក្រោយៗទៀត។

និយទន័យ ៤.៧.១. ឧបមាថា S ជាសំនុំកំនត់ឫសំនុំរាប់បាន។ និង ឧបមាថាលំហប្រូបា ប៊ីលីតេ ត្រូវបានស្គាល់ (Ω, \mathbb{F}, P) ។ ស្ទឹតនៃអថេរចៃដន្យត្រូវបានហៅថា **ទ្រទាំអំទាំអូទ** S-Valued ឫ **ទ្រទាំអំទាំអូទនៅលើសំនុំ** S បើ

$$\forall n \in \mathbb{N} \,, \forall s \in S \,:\, P\left(\xi_{n+1} = s/\xi_0 \,, \xi_1 \,, \dots, \xi_n\right) = P\left(\xi_{n+1} = s/\xi_n\right) \quad \text{(ជ.២ជ)}$$

ដែល $P\left(\xi_{n+1}=s/\xi_n\right)$ ជាប្រូបាប៊ីលីតេមានលក្ខខណ្ឌ នៃព្រឹត្តិការណ៍ $\{\xi_{n+1}=s\}$ រៀងគ្នានៃអថេរចៃដន្យ ξ_n ឫអាចស្មើគ្នាជាមួយ $\sigma-field\sigma\left(\xi_n\right)$ បន្សំដោយ ។ ជាមួយគ្នាដែរ $P\left(\xi_{n+1}=s/\xi_0\,,\xi_1\,,\ldots,\xi_n\right)$ ជាប្រូបាប៊ីលីតេមានលក្ខខណ្ឌនៃ $\{\xi_{n+1}=s\}$ ធៀបជាមួយ $\sigma-field\sigma\left(\xi_0\,,\xi_1\,,\ldots,\xi_n\right)$ បន្សំ ដោយអថេរចៃដន្យ $\xi_0\,,\xi_1\,,\ldots,\xi_n$

លក្ខណៈ (៨.២៨) បញ្ហាក់ដូចជា លក្ខណៈម៉ាកូវនៃច្រវ៉ាក់ម៉ាកូវ $\xi_n, n \in \mathbb{N}$ ។ សំនុំ S ហៅថា លំហស្ដេត ហើយធាតុនៃ S ហៅថាស្ដេត។

និយទេន័យ ៨.៧.២. S-Valued នៃច្រវ៉ាក់ម៉ាកូវ $\xi_n,\ n\in\mathbb{N}$ ហៅថា time-homogeneous ឬអ៉ូម៉ូសែន បើ $\forall n\in\mathbb{N}\,, \forall i\,,j\in\mathbb{S}$ គេបាន

$$P(\xi_{n+1} = j/\xi_n = i) = P(\xi_1 = j/\xi_0 = i)$$
 (៨.២៩)

ចំនួន $P\left(\xi_1=j/\xi_0=i\right)$ ត្រូវកំណត់ដោយ P(j/i) ហើយហៅថាប្រូបាប៊ីលីតេឆ្លងពីស្ដេត i ទៅ j ។ ម៉ាទ្រីស $P[P\left(j/i\right)]_{j,i\in\mathbb{S}}$ ហៅថា ម៉ាទ្រីសឆ្លងនៃច្រវ៉ាក់ ξ_n ។

និយទន័យ ៨.៧.៣. $A=\left[a_{ji}
ight]_{i,j\in}$ ហៅថាម៉ាំទ្រីសថៃជន្យ $(a\;stochastic\;matrix)$ បើ

9. $a_{ji} \geqslant 0, \forall i, j \in \mathbb{S}$

២. $\sum_{j\in\mathbb{S}}a_{ji}=1\,, orall i\in\mathbb{S}$ i.e. A ជាម៉ាទ្រីសចៃដន្យឧុប បើ A&A' ជាម៉ាទ្រីសចៃដន្យ

សំលើ ៤.៧.១. បង្ហាញថា ម៉ាទ្រីសចៃដន្យ ជាម៉ាទ្រីសចៃដន្យឌុប ប្រសិនបើផលបូកចំនួនជូរ ដេកស្មើ១

$$i.e \sum_{i \in \mathbb{S}} a_{ji} = 1 \ \forall j \in \mathbb{S}$$

សុរិសិតឧស័យង

យើងមាន $A^t = [b_{ij}]$ នោះ

តាមរូបមន្ត ម៉ាទ្រីសត្រង់ស្ប៉ $\qquad b_{ij}=a_{ji}$

ះខ្នារូរ

$$A^t$$
 ជាម៉ាទ្រីសចៃដន្យ ប្រសិនបើ $\sum_i a_{ji} = \sum_i b_{ij} = 1$

និយទន័យ ៤.៧.៤. ម៉ាទ្រីសឆ្លងលំដាប់ n នៃច្រវ៉ាក់ម៉ាកូវ ξ_n ជាមួយប្រូបាប៊ីលីតេឆ្លុះ P(j/i) ដែល $i,j\in\mathbb{S}$ ជាម៉ាទ្រីស

$$P_n: P_n(j/i) = P(\xi_n = j/\xi_0 = i)$$

ឧនាសារស៍ ៤.៧.២. តាង ជាម៉ាទ្រីសថៃដន្យសម្រាប់ច្រវ៉ាក់ម៉ាកូវនៃស្ដេត ξ_1,ξ_2,\ldots,ξ_m បង្ហាញថា៖

$$9. \ P_{ij}^{\ (n_1+n_2+n_3)} \geqslant P_{ik}^{(n_1)}.P_{kk}^{(n_2)}.P_{kj}^{(n_3)} \ , \forall 1 \leqslant i \,, j \,, k \leqslant m \,, \ n_1 \,, n_2 \,, n_3 \, \in \mathbb{N}_0$$

២. បើច្រវ៉ាក់ម៉ាកូវមិនអាចសម្រួលបាន និង $P_{ii}>0$ សម្រាប់(មិនទាំងអស់)នោះច្រវ៉ាក់ម៉ាកូវ គឺគ្រប់លក្ខខណ្ឌទាំងអស់ គ្រប់ i

ដំណោះស្រួយ

១. ដោយ $P^{n_1+n_2+n}=P^{n_1}P^{n_2}P^{n_3}$ និងគ្រប់ធាតុនៃម៉ាទ្រីសទាំងអស់ $\geqslant 0$ យើងបាន

$$P_{ij}^{(n_1+n_2+n_3)} = \sum_{k=1}^{m} \sum_{l=1}^{m} P_{ik}^{(n_1)} . P_{kl}^{(n_2)} . P_{lj}^{(n_3)} \geqslant P_{ik}^{(n_1)} . P_{kk}^{(n_2)} . P_{kj}^{(n_3)}$$

២. សន្មតថា ច្រវ៉ាក់ម៉ាកូវមិនអាចសម្រួលបាន និង $\exists i \ , \ P_{ii}>0$ ដោយ $P_{ii}^{(n)}\geqslant (P_{ii})^n<0$ ដែលយើងត្រូវតែមាន $P_{ii}^{(n)}>0 \ , \forall n\in {}_0$ យើងបាន

P មិនអាចសម្រួលបាន

ដូច្នេះ $\forall j$, $\exists n_1$ ដែល $P_{ji}^{(n_1)}>0$ និង $\forall k$, $\exists n_2$ ដែល $P_{ik}^{(n_2)}>0$ បន្ទាប់មក ធ្វើតាមលក្ខណៈនេះគ្រប់គ្ (j,k) បើយើងជ្រើសយក N_1 ជាចំនួនដែលធំបំផុត ដែលអាចមាន n_1 និង N_2 ជាចំនួនដែល ធំ បំផុត ដែលអាចមាន n_2 នោះវាយកតាមសំនូរទី១ ដែល

$$P_{jk}^{(N_1+N_2)} \geqslant P_{ji}^{(n_1)} P_{ik}^{(n_2)} P_{ii}^{(N_1-n_1+N_2-n_2)} > 0 , n_1 = n_1(j) \& n_2 = n_2(k)$$

អាស្រ័យលើ j&k រៀងគ្នា

ដូច្នោះ គ្រប់ធាតុនៃ $P^{N_1+N_2}>0$ នោះម៉ាទ្រីសចៃដន្យ P និយ័ត

សំណើ ៨.៧.២. (សមីការ Chapman-Kolmogorov)

ឧបមាថា $\xi_n, n \in \mathbb{N}$ ជាច្រវ៉ាក់ម៉ាកូវ S-Valued ជាមួយនឹងប្រូបាប៊ីលីតេឆ្លុះលំដាប់ $nP_n(j/i)$ នោះ $\forall k, n \in \mathbb{N}$ ដែល

$$P_{n+k}\left(j/i
ight) = \sum_{s\in\mathbb{S}} P_n\left(j/S
ight) P_k\left(S/i
ight)$$
 និង $i,j\in\mathbb{S}$

សំណើ ៨.៧.៣. $\forall p \in (0,1)$: $P\left(\xi_n = i/\xi_0 = i\right) \to 0$ ពេល $n \to \infty$

សំលើ ៤.៧.៤. ប្រូប្បចិ៍លីតេនៃជំហានថៃដន្យ ξ_n គឺចាប់ផ្ដើមកៀកទៅកេចំនុច 1-|p-q| **ឧនាទារស៍ ៤.៧.៣**. គេឱ្យច្រវ៉ាក់ម៉ាក្ងវនិយ័តនៃស្ដេត ξ_1,ξ_2,\ldots,ξ_m និងជាមួយម៉ាទ្រីសថៃដន្យ P នោះ $\lim_{n\to\infty}p_{ij}^{(n)}=g_i$ ដែល $g=(g_1,g_2,\ldots,g_m)$ គឺជាដេទៃមីណង់ មិនប្រែប្រួលតែមួយគត់ នៃប្រូប្បចិ៍លីតេនៃវ៉ិចទ័រ P ។ បង្ហាញថាមានថេរ k>0 និងថេរ $a\in]0,1[$ ដែល $|p_{ij}^{(n)}-g_j|\leqslant Ka^n$ សម្រាប់ $i,j=1,2,\ldots,m$ & $n\in\mathbb{N}$

ជុំឈោះស្រាតា

បង្ហាញថា $\exists k>0, a\in]0,1[$ ដែល $|P^n_{ij}-g_j|\leqslant ka^n,\ i,j=1,2,\cdots,m$ & $n\in \mathbb{N}$ បើ P និយ័ត នោះ $\exists n_0$ ដែល $p^{(n)}_{ij}>0$, $\forall n\geqslant n_0$ និង $\forall i\,,j=1\,,2\,,\ldots,m$ តាង Q_t ជាវ៉ិចទ័រជួរឈរដែលមាន១នៅក្នុងជួរដេកj និង 0 សម្រាប់ផ្សេងទៀត។ នោះគឺ

$$P^nQ_j = \left(p_{1j}^{(n)},\,p_{2j}^{(n)}\,,\,\dots,\,p_{mj}^{(n)}
ight)^T$$
 tf $0 $\left[clearly<rac{1}{2}
ight]$$

ហើយ $m_n^j = \min_i p_{ij}^{(n)}$ និង $M_n^j = \max_i p_{ij}^{(n)}$ នោះ

$$M_n^j - m_n^j \leqslant \left(1 - 2\varepsilon\right)^n = a^n \; \forall j$$
 ហើយ $m_n^j \leqslant \left\{ egin{array}{l} q_j \\ p_{ij}^{(n)} \end{array}
ight\} M_n^j \; \forall n \geqslant n_0$

ដូច្នេះ $\left|p_{ij}^{(n)}-g_j\right|\leqslant M_n^j-m_n^j\leqslant a^n$ សម្រាប់ $\forall i,j$ និង $\forall n\geqslant n_0$ យើងបាន

$$\left| p_{ij}^{(n)} - g_j \right| \leqslant 1, \quad \forall n \in \mathbb{N}$$

សម្រាប់ ដូច្នោះ យើងទទួលបានវិសមភាពទូទៅ បើយើងយក

$$K = \left(1 - 2\varepsilon\right)^{-n_0} = \left(\frac{1}{a}\right)^{n_0}$$

ចំនាំថា ដោយ $0<\varepsilon<\frac{1}{2}$ យើងមាន $a=1-2\varepsilon\in]0,1[$

សំឈើ ៤.៧.៥. ប្រូបាប៊ីលីតេនៃលំហាត់៥.១២ ផ្នែក២ស្មើ ០ បើ $\lambda\geqslant 1\,,1-\stackrel{k}{\Upsilon}$ បើ $\lambda>1$ ដែល k ជាកំណើន Vugiel ដំបូងនិង $\Upsilon\in(0,1)$ ជាចម្លើយ $r=e^{(r-1)\lambda}$

အော်

វិធីសាស្ត្រ ដែលបានបង្ហាញ នៅក្នុងដំណោះស្រាយចុងក្រោយ ដែលធ្វើសម្រាប់ បំនែងចែកនៃ អថេរ X_t ណាមួយ។ វាប្រែចេញ តម្លៃមធ្យម λ នៃ X_t បានដើរតូនាទី ដូចខាង លើ។ មួយអាច បង្ហាញថា បើ $\lambda \leqslant 1$ នោះកំណើននឹងមានប្រូបាប៊ីលីតេស្មើ១ ខណៈពេល $\lambda > 1$ នោះ $0 \leqslant P_0 < 1$ ដែល P_n ជាប្រូបាប៊ីលីតេនៃ Extinction

៨.៧.២. . ចំណាត់ថ្នាក់នៃសេន្តត

ដូចអ្វីនៅខាងក្រោមនេះ យើងយក $S_V alued$ នៃច្រវ៉ាក់ម៉ាកូវមួយជាមួយម៉ាទ្រីសឆ្លុះ

$$P = \left[p \left(j/i \right) \right]_{j,i \in \mathbb{S}}$$

ដែល $\mathbb S$ ជាសំនុំមិនទទេ និងជាសំនុំរាប់បាន។

និយមន័យ ៨.៧.៥. ស្ដេត i មួយហៅថា recurrent បើ ξ_n កៀកទៅកេ i i.e $P\left(\xi_n=i\,,\exists n\geqslant 1/\xi_0=i\right)=1 \ (5.36)$ ដែលបានផ្ដល់ឱ្យដែលវាចាប់ផ្ដើមនៅពេល បើលក្ខខណ្ឌ (5.36) មិនបំពេញនោះ ស្ដេត ហៅថា transient

សំណើ ៤.៧.៦. បង្ហាញថា ជំហានចៃដន្យលើ ជាមួយប៉ារ៉ាម៉ែត្រ $p\in(0,1)$ ដែលស្ដេត ជា ប្រសិនបើ $p=\frac{1}{2}$ ។ បង្ហាញថា ដូចគ្នានេះដែរ បើ 0 ត្រូវបាន ជំនួស ដោយគ្រប់ ស្ដេត i ផ្សេងទៀត $i\in\mathbb{Z}$ ។

សរិសិតខេយ់រង

យើងស្គាល់ពី (5.25) ដែល

$$P(\xi_n = i, \exists n \ge 1/\xi_0 = i) = 1 - |p - q| \ \forall i \in \mathbb{Z}$$

និយមន័យ ៨.៧.៦. យើងថាស្ដេត i មួយមានទំនាក់ទំនងជាមួយស្ដេត j បើប្រូបាប៊ីលីតេវិជ្ជមាន នោះច្រវ៉ាក់ $:P\left(\xi_{n}=j\;,\exists n\geqslant0/\xi_{0}=i\right)>0$

បើ i មានទាក់ទងនឹង j នោះយើងនឹងសរសេរ $i \to j$ យើងថាស្ដេត i ទាក់ទងនឹងស្ដេត j ដែលអាចសរសេរ $i \leftrightarrow j$ បើ $i \to j$ និង $j \to i$ ។

ឧនាទារសំ ៤.៧.៤. ពិចារណាម៉ាទ្រីសខាងក្រោម π

$$\pi = \begin{bmatrix} 0.6 & 0.4 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.7 & 0.3 \end{bmatrix}$$

វាត្រូវបានសង្កេតឃើញថានៅពេលដែលដំណើរការនេះ ចាប់ផ្ដើមនៅស្ដេត i=1 ឫស្ដេត $j=2,\;i=3$ និង j=4 មិនអាចឈានបានសម្រេច។

យើងអាចថា i=1 និង j=2 ទាក់ទងគ្នា។ វាពិតចំពោះ i=3 និង j=4 ។ ខណ:ពេលដែលចាប់ផ្ដើមពីមួយក្នុងចំណោម ស្ដេតពីរគឺ i=1 ឫ j=2 មិនត្រូវបានដល់។ ជាការពិត សម្រាប់ច្រវ៉ាក់ពិតជាក់លាក់នេះ វាមានពីរថ្នាក់បិទគឺ $\{i=1,j=2\}$ និង $\{i=3,j=4\}$

ន្រឹស្តីមន ៤.៧.១. ស្តេត j មួយដែល $j \in \mathbb{S}$

- ullet ជា recurrent ប្រសិនបើ $P\left(\xi_n=j
 ight.$ សម្រាប់ n ច្រើនមិនកំណត់ $n/\xi_0=j
 ight)=1$
- ហើយវាជា transient ប្រសិនបើ $P\left(\xi_n=j\right.$ សម្រាប់ n ច្រើនមិនកំណត់ $n/\xi_0=j$

និយមន័យ ៨.៧.៧. សម្រាប់ច្រវ៉ាក់ម៉ាកូវ $S-Valued\ \xi_n/n\in\mathbb{N}$ ដែលស្ដេត $i\in\mathbb{S}$ ត្រូវបានហៅថា recurrent សូន្យបើវាជា recurrent ហើយ $m_i\ (mean\ recurrence\ time)$ កំនត់ដោយ

$$m_i = \sum_{n=0}^{\infty} n f_n \left(i/i \right) \quad (5.44)$$

 m_i ស្មើ ∞ ។ ស្ដេតមួយ $i\in\mathbb{S}$ ហៅថា recurrent វិជ្ជមានបើវាជា recurrent ហើយ m_i កំនត់។

အော့

យើងអាចបង្ហាញថា ស្ដេតផ្ទូន គឺជាផ្ទូនសូន្យ ប្រសិនបើ $P_n\left(i/i\right) \to 0$ យើងបានដឹងហើយថា ជំហានចៃដន្យលើ $\mathbb Z$ ស្ដេត 0 គឺផ្ទូន ប្រសិនបើ $p=\frac{1}{2},\ i.e.$ លុះត្រាតែ ជំហានចៃដន្យគឺឆ្លុះ។ លំហាត់ខាងក្រោមនេះ យើងគូរតែព្យាយាមរកចម្លើយ បើ 0 ជាផ្ទូនសូន្យ ឫស្ដេតផ្ទូនវិជ្ជមាន(ពេល $p=\frac{1}{2}$)។

និយមន័យ ៤.៧.៤. ឧបមាថា $\xi_n, n \in \mathbb{N}$ ជាច្រវ៉ាក់ម៉ាកូវលើលំហស្ដេតS ។ គេឱ្យ $i \in S$ យើងថា i ជាស្ដេតខួបលុះត្រាតែ តូចែករួមធំបំផុត នៃ $\forall n \in \mathbb{N}^*$ ដោយ $\mathbb{N}^* = \{1,2,3,\ldots\}$ ដែល $P_n(i/i)>0$ គឺ $i\geqslant 2$ ផ្ទុយពីនេះ ស្ដេត i ហៅថា aperiodic។ នៅក្នុងករណីទាំងពីរនេះ gcd ត្រូវ កំណត់សរសេរដោយ d(i) ហើយ d(i) ហៅថាស្ដេតខួប i ដូច្នោះ i គឺជាខួបលុះត្រាតែ $d(i)\geqslant 2$ ។ ស្ដេត i មួយដែលផ្ទូនវិជ្ជមាន និង aperiodic ហៅថា ergodic។

សានយិតនាព Periodicity

ពិចារណាលើ គម្រូទ្វេធាសម្រាប់បវិវត្តនៃ តម្លៃភាគហ៊ុន S កំនត់ ដោយគ្រប់ថ្ងៃ $t\!+\!1$ ដោយ

$$S_{t+1} = \begin{cases} uS_t & with \quad p \\ dS_t & with \quad 1-p \end{cases}$$

ការក្រិតធម្មតាសម្រាប់គម្រនេះ គឺដើម្បីសន្ទត់ $d=rac{1}{-}$ ។នៅក្នុងករណីនេះ បើតម្លៃដើម S_0 គឺ 100\$ នោះអ្នកប្រាកដថាតម្លៃមិនអាច ត្រឡប់ទៅជា $d\stackrel{u}{=} \frac{1}{u}$ ទេនៅ ក្នុងកំឡុងពេលមិន តិចជាពីរ។

សំ នេះ ៤.៧.៧. ឧបមាថា $i,j\in\mathbb{S}$ និង $i\leftrightarrow j$ បង្ហាញថា

- $9. \ i \ \mathrm{th} \ transient$ លុះត្រាតែ j ក៏ជា transient ដែរ
- ២. i ជា recurrent លុះត្រាតែ j ក៏ជា recurrent ដែរ
- ៣. i ជា recurrent សូន្យលុះត្រាតែ j ក៏ជា recurrent សូន្យដែរ
- ៤. i ជា recurrent វិជ្ជមានលុះត្រាតែ j ក៏ជា recurrent វិជ្ជមានដែរ
- ៥. i ជាខូបលុះត្រាតែ j ខូបដែល d(i)=d(j)
- ៦. i ជា ergodic លុះត្រាតែ j ជា ergodic

និយទន័យ ៨.៧.៩. ឧបមាថា $\xi_n\,,n\in\mathbb{N}$ ជាច្រវ៉ាក់ម៉ាកូវលើលំហស្ដេត រាប់បាន $\mathbb S$

១. សំនុំ $C \subset S$ ហៅថាបិទ បើច្រវ៉ាក់មួយបានចូលក្នុង C ម្ដង នោះវា

$$P(\xi_n \ S \backslash c, \exists k \geqslant n/\xi_n \in C) = 0 \quad (5.45)$$

២. សំនុំ $C \subset S$ ហៅថាមិនអាចសម្រួលបាន បើគ្រប់ពីរធាតុ i,j នៃ C ទាក់ទងគ្នាទៅវិញទៅមក មានន័យថា $\forall i\,,j\in C,\exists n\in\mathbb{N}$ ដែល $P_n(j/i)>0$

លំខាងអនុទង្គន៍

នំទាន់ ៤.១. គេឱ្យ ξ_1,ξ_2,\cdots ជាស្វ៊ីត នៃការបោះកាក់ និង \mathbb{F}_n ជាកាយ σ $(\sigma-field)$ បន្សំ ដោយ ξ_1,ξ_2,\cdots,ξ_n ។ សម្រាប់ព្រឹត្តិការណ៍បន្តបន្ទាប់និមួយៗ ចូររកតម្លៃ n តូចបំផុតដែល $n\in\mathbb{F}_n$

- A=" ព្រឹត្តិការណ៍កើតឡើងដំបូងនៃមុខ ដែលត្រូវបាននាំមុខ ដោយ មិនលើសពី ការចេញ ខ្នងចំនូន 10 ដង"
- ullet B= " ព្រឹត្តិការណ៍ដែល យ៉ាងហោចណាស់បោះបានមុខម្តងនៅក្នុងស្ទីត ξ_1,ξ_2,\cdots "
- ullet C= "ព្រឹត្តិការណ៍ដែលបោះកាក់ 100 ដងដំបូងទទួលបានលទ្ធផលដូចគ្នា"
- D=" ព្រឹត្តិការណ៍ដែលបោះកាក់បានយ៉ាងច្រើនមុខ 2 និងខ្នង 2 ក្នុងពេលបោះកាក់ចំនូន 5 ដងដំបូង"

សំសាត់ ៤.២. បង្ហាញថា $\mathbb{F}_n=\sigma\left(\xi_1\,,\,\xi_2\,,\,\ldots,\,\xi_n\right)$ ជាសំនុំព័ត៌មានដែល បានដឹងដ៍តូចបំផុត ដែលក្នុងនោះ ស្វ៊ីត $\xi_1\,,\,\xi_2\,,\,\ldots,\,\xi_n$ ត្រូវបានប្តូរស្របទៅជា $\mathbb{F}_1,\mathbb{F}_2$ ។ ដូចនោះ បើ $\zeta_1\,,\,\zeta_2\,,\,\ldots$ ជាសំនុំព័ត៌មាន ផ្សេងទៀតដែល $\xi_1\,,\,\xi_2\,,\,\ldots$ ត្រូវបានប្តូរស្របទៅជា $\zeta_1\,,\,\zeta_2\,,\,\ldots$ នោះ $\mathbb{F}_n\subset\zeta_n\,,\,\forall\,n$

នៃភេនាំ៖ បើ $\sigma\left(\xi_{1}\,,\,\xi_{2}\,,\,\ldots,\,\xi_{n}\right)\subseteq\zeta_{n}$ នោះអ្នកត្រូវបង្ហាញថា $\xi_{1}\,,\,\xi_{2}\,,\,\ldots,\,\xi_{n}$ ជារង្វាស់ ζ_{n} **សំអាត់ ៤.៣**. គេឱ្យ W_{n} តំណាងឱ្យជំហានចៃដន្យឆ្លុះចាប់ផ្ដើមនៅថ្ងៃ 0 នោះគឺ $p=\frac{1}{2}$ និង $W_{0}=0$ ។ តាង X តំណាងឱ្យ ចំន្ទូនជំហាន ទៅខាងស្ដាំ នៃអ្នកដើរ ដោយចៃដន្យ ដែលបាន 6 ជំហានដំបូង។ គណនា៖

9.
$$E(X/W_1 = -1)$$

$$U. E(X/W_1 = 1)$$

$$\mathfrak{m}. \ E(X/W_1 = 1, W_2 = -1)$$

$$E(X/W_1 = 1, W_2 = -1, W_3 = -1)$$

សំសាត់ ៤.៤. បង្ហាញថា ξ_n បើជាម៉ាធីឯហ្កែលរៀងគ្នាទៅ \mathbb{F}_n នោះ $E\left(\xi_1\right)=E\left(\xi_2\right)=\dots$ សែរសាំ តាម $\zeta_n\subset\mathbb{F}_n$ និងប្រើលក្ខណៈ Tower នៃសង្ឃឹមមានលក្ខខណ្ឌ

នំទាន់ ៤.៥. គេឱ្យ ξ_n ជាជំហានថៃដន្យស៊ីមេទ្រីឆ្លុះនោះ $\xi_n=\eta_1+\ldots+\eta_n$ ដែល $\eta_1\,,\,\ldots,\,\eta_n$ ជា ស្វ៊ីតនៃបំនែងចែកអថេរថៃដន្យ មិនអាស្រ័យគឺ $P\left\{\eta_1=1\right\}=P\left\{\eta_n=-1\right\}=\frac{1}{2}$ (ស្វ៊ីតមួយនៃការបោះកាក់ ជាឧទាហរណ៍)។ បង្ហាញថា $\xi_n{}^2-n$ ជា ម៉ាធីងហ្កែល ធៀបនឹង សំនុំ ព័ត៌មាន $_n=\sigma\left(\eta_1,\,\ldots,\eta_n\right)$

សែរសំ អ្នកប្តូរទៅជា $E\left(\xi_{n+1}{}^2-\left(n+1\right)/_n\right)$ ទៅជា ${\xi_n}^2-n$ យើងបាន

$$\xi_{n+1}^{2} = (\xi_{n} + \eta_{n+1})^{2}$$
$$= \eta_{n+1}^{2} + 2 \times \eta_{n+1} \times \xi_{n} + \xi_{n}^{2}$$

និងសន្មតយក ξ_n ជារង្វាស់ \mathbb{F}_n ខណ:ដែល η_{n-1} មិនអាស្រ័យ \mathbb{F}_n

ដើម្បីប្តូរសង្ឃឹមគណិតមានលក្ខខណ្ឌ អ្នកអាចប្រើនៅអ្វីដែលអ្នកបានដឹងហើយប្រើប្រាស់ នូវភាពពិតដែល ដកចេញនូវលក្ខខណ្ឌឯករាជ្យ តែកុំភ្លេច បញ្ជាក់ថា ${\xi_n}^2-n$ មាន អាំងតេក្រាល ហើយប្តូរស្របនឹង \mathbb{F}_n ។

សំសាត់ ៤.៦. គេឱ្យ ξ_n ជាជំហានចៃដន្យ និង \mathbb{F}_n ជាសំនុំព័ត៌មានដែលបានកំនត់នៅក្នុង លំហាត់ (៨.៥) ចូរបង្ហាញថា $\varsigma_n = (-1)^n \cos{(\pi \xi_n)}$ ជាម៉ាធីងហ្កែលធៀបនឹង \mathbb{F}_n ។ **សែរសំ** អ្នកប្តូរ $E\left((-1)^{n+1}\cos{(\pi \xi_{n+1}/\mathbb{F}_n)}\right)$ ទៅជា $(-1)^n\cos{(\pi \xi_n)}$ ។ ប្រើនៅ ដំណោះស្រាយ ដូចលំហាត់(៨.៥)។ តែដំបូង ត្រូវប្រាកដថា ς_n មាន អាំងគេក្រាល និងប្តូរស្របទៅនឹង \mathbb{F}_n ។

សំសាន់ ៤.៧. គេឱ្យ ξ_n ជាស្វ៊ីតនៃអថេរចៃដន្យដែលមានអាំងតេក្រាលឌុប។ បង្ហាញថា បើ ξ_n ជា ម៉ាធីឯហ្កែលធៀបទៅនឹងសំនុំព័ត៌មាន \mathbb{F}_n នោះ ξ_n^2 ជា Supermartingale ធៀបទៅនឹង \mathbb{F}_n ។

ំណេសំ ប្រើវិសមភាព Jensen ជាអនុគមន៍ $convex \; arphi \left(x
ight) = x^2$

សំសាត់ ៤.៤. បង្ហាញថា លក្ខខណ្ឌខាងក្រោមនេះគឺសមភាព៖

9.
$$\{\tau \leqslant n\} \in \mathbb{F}_n, \forall n = 1, 2, \dots$$

$$\forall . \{\tau = n\} \in \mathbb{F}_n, \forall n = 1, 2, \dots$$

នៃភេទាំ តើអ្នកអាចបញ្ជាក់ $\{ au\leqslant n\}$ ជាទម្រង់នៃព្រឹត្តិការណ៍ $\{ au=k\}\,, k=1\,,2\,,\ldots,n$ ឫទេ? និងតើអ្នកអាចបញ្ជាក់ $\{ au=n\}$ ជាទម្រង់នៃព្រឹត្តិការណ៍ $\{ au\leqslant k\}\,, k=1\,,2\,,\ldots,n$ ឫទេ?

នំទាន់ ៤.៩. គេឱ្យ ξ_n ជាស្វ៊ីតនៃអថេរចៃដន្យដែលប្រែប្រួលទៅតាម \mathbb{F}_n និង $B \subset \mathbb{R}$ ជាសំនុំ Borel ។ បង្ហាញថា ពេលវេលានៃការចូលដំបូងនៃ ξ_n ទៅក្នុង B

 $T = \min \{ n : \xi_n \in B \}$ ជាពេលវេលាបញ្ឈប់

នៃភនាំ មើលឧទាហរណ៍(៨.៥) ក្នុងករណីពេល $B=(-\infty,0]\cup[10,+\infty)$ ពង្រីក នូវបញ្ហា ដើម្បីជាសំនុំ $Borel\ B$ ណាមួយ។ ដោយតាង ξ_n ជា ស្វ៊ីតនៃ អថេរចៃដន្យ ប្រែប្រួល ទៅតាម សំនុំព័ត៌មាន \mathbb{F}_n និង τ ជាពេលវេលាបញ្ឈប់(ធៀបទៅនឹងសំនុំព័ត៌ដូចគ្នា)។ ឧបមាថា ξ_n តំណាង ឱ្យការឈ្នះ(ឫចាញ់)បន្ទាបពីការប្រកួត n ជុំ។

បើអ្នកសម្រេចចិត្តឈប់លេងបន្ទាប់ពី au ជុំ នោះការឈ្នះសរុបរបស់អ្នកគឺ $\xi_{ au}$ ។ នៅក្នុងករណីនេះ ការឈ្នះរបស់អ្នកបន្ទាប់ពី n ជុំ នោះអ្នកនឹងឈ្នះបាន $\xi_{ au \wedge n}$ ។ នេះ $a \wedge b$ តំណាងឱ្យ ចំនួនលេខ ដែលតូចជាងគេ a និង b គឺ $a \wedge b = \min{(a,b)}$

សំទាាន់ ៤.១០. បង្ហាញថា បើ ξ_n ជាស្ទឹតនៃអថេរចៃដន្យប្រែប្រួលទៅតាម សំនុំព័ត៌មាន \mathbb{F}_n នោះ \mathbb{F}_n គឺជាស្វីតនៃ $\xi_{\tau \wedge n}$ ។

ំណេខាំ គ្រប់សំនុំ $Borel\ B$ បញ្ហាក់ $\{\xi_{\tau\wedge n}\in B\}$ នៅក្នុងទម្រង់នៃព្រឹត្តិការណ៍ $\{\xi_k\in B\}$ និង $\{\tau=k\}$ ដែល $k=1\,,2\,,\ldots,n$ ។

សំទាាន់ ៤.១១. បង្ហាញថា បើអ្នកលេងល្បែងប្រកួត ម៉ាធីងហ្កែល ការសង្ឃឹមទុករបស់អ្នកនឹងបាត់ បន្ទាប់មុនពេលការឈ្នះដែលគ្មានដែនកំណត់ គឺមិនកំនត់ នោះគឺ $E\left(\varsigma_{\tau-1}\right)=-\infty$ **សែរទាំ** តើប្រូបាប៊ីលីតេស្មើប៉ុន្មានបើល្បែងនឹងបញ្ចប់នៅ ជំហាន n មានន័យថា $\tau=n$? បើ $\tau=n$ តើ $\varsigma_{\tau-1}$ ស្មើប៉ុន្មាន? នេះនឹងឱ្យអ្នកគ្រប់តម្លៃ ដែលអាចមាននៃ $\tau=n$ និងប្រូបាប៊ីលីតេ របស់វា។ ឥលូវ ចូរគណនាសង្ឃឹមនៃ $\varsigma_{\tau-1}$

សំសាត់ ៤.១២. បង្ហាញថា បើ ξ_n គឺជា Supermartigale មិនអវិជ្ជមាន នោះវារួម ទៅជា អាំងតេក្រាលនៃអថេរចៃដន្យមួយ

ំណេះ ដើម្បីយកទ្រឹស្តីបទនៃ Doob មកស្រាយបញ្ជាក់ពីស្វ៊ីត ξ_n គឺទាល់នៅក្នុង L^1 មានន័យ ថា supremum នៃ $E\left(|\xi_n|\right)$ គឺតូចជាង ∞

សំសាត់ ៤.១៣. នៅក្នុងទម្រង់ឧទាហរណ៍៥.១ y_n តំណាងឱ្យប្រូបាប៊ីលីតេដែលទូរស័ព្ទជាប់រវល់ នៅនាទីទី n ។ ឧបមាថា $y_0=1$ ចូររក្សបមន្តអាំភ្លីស៊ីត y_n ហើយបើមាន រក $\lim_{n\to\infty} y_n$ ំណែសំ លំហាត់នេះអាចត្រូវបានដោះស្រាយផ្ទាល់ ដោយបញ្ហាខាងលើម្តងទៀត ឫមិនផ្ទាល់ ដោយប្រើប្រាស់លទ្ធផលមួយចំនួននៅក្នុងឧទាហរណ៍។

គឺស៊េីនឹង១។ បង្ហាញថា វាពិតជាទូទៅ។

ណែទាំ ថាំថា $P\left(\Omega/A\right)=1$, $\forall A$

សំអាត់ ៤.១៥. បង្ហាញថា $P=[p_{ji}]_{j,i\in S}$ បើជាម៉ាទ្រីសថៃដន្យ នោះគ្រប់ចំនួន ស្វ័យគុណ ធម្មជាតិ P_n នៃ P គឺជាម៉ាទ្រីសថៃដន្យ។ តើមានលទ្ធផលពិតទេសម្រាប់ម៉ាទ្រីសថៃដន្យឌុប? **សែរសំ** បង្ហាញថា បើ A និង B ជាម៉ាទ្រីសថៃដន្យពីរ នោះគឺ BA ។ សម្រាប់បញ្ហាទី២ យក $(BA)^t=A^tB^t$ ។

សំខាត់ ៨.១៦. គេឱ្យ
$$P=\begin{bmatrix}1-p&q\\p&1-q\end{bmatrix}$$
 បង្ហាញថា $P^2=\begin{bmatrix}1+p^2-2p+pq&2q-pq-q^2\\2p-pq-p^2&1+q^2-2q+pq\end{bmatrix}$

សំសាន់ ៤.១៧. បង្ហាញថា $P_n=P^n$ សម្រាប់ $\forall n\in\mathbb{N}$ ដែល P^n ជាម៉ាទ្រីសស្វ័យគុណនៃ P។

នំទាន់ ៤.១៤. សម្រាប់ច្រវ៉ាក់ម៉ាកូវ ξ_n ជាមួយម៉ាទ្រីសឆ្លង $P=\begin{bmatrix} 1-p & q \\ p & 1-q \end{bmatrix}$ បង្ហាញថាស្ដេតទាំងពីរជា recurrent ។

នំទារ៖ ៤.១៩. បង្ហាញថា បើ ξ_n គឺជាច្រវ៉ាក់ម៉ាកូវជាមួយនឹងលំហស្ដេតកំនត់ S នោះ មានយ៉ាង តិចណាស់មួយជាស្ដេត $recurrent\ i\in S$ ។

សំទាាត់ ៤.២០. ឧបមាថា $a\geqslant 1$ គឺជាចំនួនពិតធម្មជាតិ។ ពិចារណាទៅលើជំហានចៃដន្យនៅលើ $S=\{0\,,1\,,2\,,\,\ldots,\,a\}$ ជាមួយនឹងការរារាំងនៅខណៈ 0 និង a ហើយជាមួយ ប្រូបាប៊ីលីតេ p នៃ ការផ្លាស់ប្តូរទៅខាងស្តាំ និងប្រូបាប៊ីលីតេ q=1-p នៃការផ្លាស់ប្តូរទៅខាងឆ្វេងពីគ្រប់ស្តេត $1\,,\,2\,,\,\ldots,a-1$ ដូច្នោះ ជំហានចៃដន្យរបស់យើង គឺជាច្រវ៉ាក់ម៉ាកូវជាមួយនឹងប្រូបាប៊ីលីតេឆ្លង

$$p\left(j/i\right) = \begin{cases} p & \text{if } 1 \leqslant i \leqslant a-1 \,, j=i+1 \\ q & \text{if } 1 \leqslant i \leqslant a-1 \,, j=i-1 \\ 1 & \text{if } i=j=0 \quad \text{y} \quad i=j=a \\ 0 & otherwise \end{cases}$$

ចូររក៖

- ១. គ្រប់រង្វាស់មិនប្រែប្រូល(ប្រហែលមានត្រឹមតែមួយ)
- ២. ប្រូបាប៊ីលីតេនៃការប្រថុយនូវការរារាំងខាងស្ដាំដៃមុនពេលទៅកាន់ខាងឆ្វេងដៃ។

ಶಚಿಳುಣಚಾ

- [1] Patrick Roger, Stochastic Processes for Finance, Strasbourg University,Em Strasbourg Business School, June 2010
- [2] CLARENCE H. RICHARDSON, PH.D., ISAIAH LESLIE MILLER, Finance Mathematics, NEW YORK D. VAN NOSTRAND COMPANY, INC. 250 FOURTH AVENUE, 1946
- [3] Ahmad Nazi Wahidudin,Ph.D, Ventus Publishing Aps,Interest Rates in Financial Analysis and Valuation,2011
- [4] Dennis Cox and Michael Cox, The Mathematics of Banking and Finance ,England , 2006
- [5] Marek Capinski, Tomasz ZastaWniak, Mathematics for Finance: An Introduction to Financial Engineering, Springer, January 2003
- [6] David LoveLock, Marilou Mendel, A Lerry Wright, An Introduction to the Mathematics of Money Saving and Investing, Springer, 2007
- |7| Steven Roman, Introduction to the Mathematics of Finance, Springer, 2012
- 8 Leif Mejlbro, Stochastic Processes 1, 2009
- [9] Patrick Roger, Stochastic Processes for Finance, Strasbourg University, Em Strasbourg Business School, 2010
- [10] J.J. McCUTCHEON and W.F. SCOTT, An Introduction to the Mathematics of Finance
- [11] Basic Stochastic Processes (Zdzislaw Brzezniak and Tomasz Zastawniak)
- |12| Jonathan Block, Stochastic Processes and the mathematics of Finance, 2008
- [13] Patrick Roger, Probability for Finance, Strasbourg University, Em Strasbourg Business School, 2010
- [14] Clarence H.Richardson, PH.D , Isaiah Leslie Miller, Financial Mathematics , New York, D.VAN NOSTRAND COMPANY 250 Fourth Avenue , 1946