Logistic regression

Rafał Urbaniak, Nikodem Lewandowski (LoPSE research group, University of Gdansk)

Likelihoods so far

$$y_i \sim Normal(\mu_i, \sigma)$$

 $\mu_i = \alpha + \beta x_i$

```
# 677 no, casual, steady, engaged,
#married, cohabiting 6: convicted 14-16
data <- as.data.frame(read_xpt("crimeLife.xpt"))
small <- data[,c(6, 677)]

names(small) <- c("convicted14to16", "relationship")

cors <- cor(small, method = "spearman")
ggcorrplot(cors, lab= TRUE, lab_size = 5, tl.srt = 0) + corSize</pre>
```



```
ggplot(small, aes(x = relationship, y = convicted14to16))+
  geom_jitter() + th
```



```
small$relationship <- factor(small$relationship)
small$convicted14to16 <- factor(small$convicted14to16, level = c(1,2))</pre>
```

```
ggplot(small, aes(x = relationship, y = convicted14to16))+geom_jitter() + th
```



```
levels(small$relationship) <-</pre>
  c(NA, "no", "casual", "steady", "engaged",
    "married", "cohabiting")
nrow(small)
## [1] 411
small <- small[complete.cases(small),]</pre>
nrow(small)
## [1] 389
```

```
ggplot(small, aes(x = relationship, y = convicted14to16))+
geom_jitter(height = .05, width = .25, size = 1.2, alpha = .3)+
ggtitle("Convicted as teenager vs relationship status")+
scale_y_discrete(labels = c("No", "Yes")) + th
```

Convicted as teenager vs relationship status

Why we need link functions

This makes no sense

An oversimplification?

Throw cohabiting below engaged, treat as numeric. Never do at home!

Prep your data

```
rel <- small$relationship
levels(rel) <- c(1,2,3,5,6,4)

data <- list(
          rel = as.numeric(as.character(rel)),
          conv = as.numeric(small$convicted14to16)-1,
          relFactor = as.numeric(small$relationship)
)</pre>
```

What are link functions anyway?

In general

$$y_i \sim \mathsf{Blah}(\theta_i, \phi)$$

 $f(\theta) = \alpha + \beta(x_i - \bar{x})$

Logit link

$$\begin{aligned} y_i &\sim \mathsf{Binomial}(n, p_i) \\ \mathsf{logit}(p_i) &= \alpha + \beta(x_i - \bar{x}) \\ \mathsf{logit}(p_i) &= \mathsf{log}\left(\frac{p_i}{1 - p_i}\right) \\ \mathsf{log}\left(\frac{p_i}{1 - p_i}\right) &= \alpha + \beta(x_i - \bar{x}) \\ p_i &= \frac{\mathsf{exp}(\alpha + \beta x_i)}{1 + \mathsf{exp}(\alpha + \beta x_i)} \end{aligned}$$

Logit link

```
probs <- seq(0,1,.01)
odds <- probs/ (1-probs)
logOdds <- log(odds)</pre>
ggplot()+geom_line(aes(x = probs, y = odds))+th
          100 -
          75 -
       sppo 50 -
          25 -
           0 -
               0.00
                              0.25
                                             0.50
                                                                            1.00
                                                             0.75
                                             probs
```

Logit link

 $ggplot()+geom_line(aes(x = probs, y = logOdds))+th$

Logit link

 $ggplot()+geom_line(aes(y = probs, x = logOdds))+th$

Let's build this!

```
crimeFactorial <- ulam(
  alist(
    conv ~ dbinom( 1 , p ) ,
    logit(p) <- a + b[relFactor] ,
    a ~ dnorm( 0, 10) ,
    b[relFactor] ~ dnorm( 0 , 10 )
) , data=data, log_lik = TRUE )</pre>
```

Check your priors!

```
prior <- extract.prior( crimeFactorial , n=1e4 )

p <- sapply( 1:6 , function(k) inv_logit( prior$a + prior$b[,k] ) )

dens( p , adj=0.1, cex.axis=1.3, cex.lab=1.5 )</pre>
```


Check your priors!

```
crimeFactorialNarrow <- ulam(
    alist(
        conv ~ dbinom(1 , p ) ,
        logit(p) <- a + b[relFactor] ,
        a ~ dnorm(0, 1.1),
        b[relFactor] ~ dnorm(0 , .5 )
        ) , data=data, log_lik = TRUE )

priorN <- extract.prior( crimeFactorialNarrow , n=1e4 )

pN <- sapply(1:6 , function(k) inv_logit( priorN$a + priorN$b[,k] ) )

dens( pN, adj=0.1 )</pre>
```



```
## mean sd 5.5% 94.5% n_eff Rhat4
## a -1.234630978 0.2531478 -1.6541653 -0.8405635 257.3871 1.0017452
## b[1] -0.717296575 0.2990603 -1.1587627 -0.2187249 291.7744 0.9990760
## b[2] -0.026760902 0.3376146 -0.5708770 0.4971146 452.8202 0.9986847
## b[3] -0.009521166 0.3074331 -0.4814737 0.4810955 408.4980 1.0032418
## b[4] -0.024761448 0.3360923 -0.5416487 0.4988446 434.0371 0.9984822
## b[5] -0.029644701 0.3819540 -0.6490443 0.5898717 503.0951 0.9998532
## b[6] 0.534888415 0.4480727 -0.2041754 1.2468165 296.6330 0.9986290
```

```
post <- extract.samples(crimeFactorialNarrow)
baseline <- inv_logit(post$a)
dens (baseline, cex.axis=1.3, cex.lab=1.5)</pre>
```



```
postDF <- sapply( 1:6 , function(k) inv_logit(
   post$a + post$b[,k]))

postDFLong <- melt(postDF)
names(postDFLong) <- c("id", "girlfriend", "probability")

precDF <- precis( crimeFactorialNarrow , depth=2 )
means <- inv_logit(precDF$mean[1] + precDF$mean[2:7])
means</pre>
```

[1] 0.1243433 0.2207344 0.2237141 0.2210785 0.2202387 0.3318693

[1] 0.1468745 1.2074520

```
crimeContinuous <- ulam(</pre>
 alist(
   conv ~ dbinom( 1 , p ) ,
   logit(p) \leftarrow a + b * rel,
   a ~ dnorm( 0, 1.1),
   b ~ dnorm( 0 , .5 )
 ) , data=data, log_lik = TRUE )
precis(crimeContinuous)
          mean sd 5.5% 94.5% n eff Rhat4
##
## a -1.9181769 0.25878472 -2.32716535 -1.5070056 117.3896 1.004339
## b 0.1885123 0.08830667 0.04364142 0.3272134 135.7982 1.000016
```

```
inv_logit(-1.96)
## [1] 0.123467
exp(precis(crimeContinuous)$mean)
```

```
fake <- seq(1,6, by = .1)
estimates <- link(crimeContinuous, data.frame(rel = fake))
meanEstimates <- apply(estimates, 2, mean)
hpdiEstimates <- data.frame(t(apply(
    estimates, 2, HPDI, prob = .89)))
names(hpdiEstimates) <- c("meanLow", "meanHigh")
predsDF <- cbind(meanEstimates, hpdiEstimates)</pre>
```


$\verb|compare(crimeContinuous, crimeFactorialNarrow, crimeFactorial)|\\$

UC Berkeley admission

```
data(UCBadmit)
d <- UCBadmit
d</pre>
```

##		dept	${\tt applicant.gender}$	admit	reject	${\tt applications}$
##	1	Α	male	512	313	825
##	2	Α	female	89	19	108
##	3	В	male	353	207	560
##	4	В	female	17	8	25
##	5	C	male	120	205	325
##	6	C	female	202	391	593
##	7	D	male	138	279	417
##	8	D	female	131	244	375
##	9	E	male	53	138	191
##	10	E	female	94	299	393
##	11	F	male	22	351	373
##	12	F	female	24	317	341

UC Berkeley admission

```
dat_list <- list(
  admit = d$admit,
  applications = d$applications,
  gid = ifelse( d$applicant.gender=="male" , 1 , 2 )
)</pre>
```

UC Berkeley admission

```
ucbModelSimple <- ulam(
   alist(
admit ~ dbinom( applications , p ) ,
logit(p) <- a[gid] ,
a[gid] ~ dnorm( 0 , 1.5 )
) , data=dat_list , chains=4 )</pre>
```

```
precis( ucbModelSimple , depth=2 )
```

```
## mean sd 5.5% 94.5% n_eff Rhat4
## a[1] -0.2213142 0.04128791 -0.2888276 -0.1556763 1447.886 1.0018329
## a[2] -0.8287490 0.04896605 -0.9079320 -0.7516819 1318.184 0.9993704
```

UC Berkeley admissions

```
post <- extract.samples(ucbModelSimple)
diff_p <- inv_logit(post$a[,1]) - inv_logit(post$a[,2])
dens(diff_p, cex.axis=1.3, cex.lab=1.5)</pre>
```


UC Berkeley admissions

postcheck(ucbModelSimple, cex.axis=1.3, cex.lab=1.5)

UC Berkeley admissions


```
dat_list$dept_id <- rep(1:6,each=2)

ucbModelWithin <- ulam(
   alist(
     admit ~ dbinom( applications , p ) ,
     logit(p) <- a[gid] + delta[dept_id] ,
     a[gid] ~ dnorm( 0 , 1.5 ) ,
     delta[dept_id] ~ dnorm( 0 , 1.5 )
) , data=dat_list , chains=4 , iter=4000 )</pre>
```

```
precis(ucbModelWithin , depth = 2 )
```

```
##
                 mean
                             sd
                                     5.5%
                                               94.5%
                                                       n eff
                                                                Rhat4
## a[1]
           -0.5224407 0.5239205 -1.3403938 0.3187166 585.2709 1.004598
## a[2]
           -0.4234901 0.5273469 -1.2518935 0.4375151 585.1799 1.004341
## delta[1] 1.1016874 0.5274853 0.2440103 1.9264046 590.2360 1.004519
## delta[2] 1.0582925 0.5301608 0.2037090 1.8962324 598.7096 1.004363
## delta[3] -0.1580576 0.5281081 -1.0274138 0.6735273 595.9356 1.004377
## delta[4] -0.1896556 0.5287345 -1.0496564 0.6469719 591.5600 1.004547
## delta[5] -0.6336240 0.5312767 -1.5067861 0.2051101 593.2036 1.004229
## delta[6] -2.1929551 0.5402724 -3.0750511 -1.3558785 631.5289 1.003866
```

```
post <- extract.samples(ucbModelWithin)
diff_p <- inv_logit(post$a[,1]) - inv_logit(post$a[,2])
dens(diff_p, cex.axis=1.3, cex.lab=1.5)</pre>
```



```
ucbDAG <- dagitty(
   "dag{
   G -> D; G -> A; D -> A
   }"
)
drawdag(ucbDAG, goodarrow = TRUE, cex = 2, radius = 3)
```



```
## { D }
```

```
ucbDAG2 <- dagitty(
  "dag{
  U [unobserved]
  G -> D; G -> A; D -> A
  A <- U -> D
  }"
)
drawdag(ucbDAG2, goodarrow = TRUE, cex = 2, radius = 8)
```


NONE!