

Department of Computer Science & Engineering

Brain Tumor Prediction Using Deep Learning Network

Yukta N Shettigar (1DS19CS197) Bhargavi S (1DS19CS198) Keerthana K (1DS19CS721) K R Divyashree (1DS19CS722)

Guide: Prof. S Keerthi

Problem Statement

ANDAS AGAB

Brain tumor prediction on MR images with semantic segmentation by using deep learning network.

Abstract

Detection as well as segmentation of brain tumor is important in the healthcare domain. Since brain tumor can possibly lead to cancer, it is a crucial task to detect it early through Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). These images obtained from the MRI makes it hard to locate the exact position of the tumor and hence it is a challenging task. Thus, computer-aided methods (segmentation, detection classification processes) with better accuracy are required for early tumor diagnosis. The sematic segmentation method is applied to brain tumors which are automatically segmented with the aid of deep learning techniques (CNN, RNN, GAN, etc)

Expected Outcome

In the expected outcome, the brain tumors will be detected precisely which will be beneficial for both patients and doctors and tumor will be classified into respective categories. This model will be integrated with the web application, that makes it user friendly and displays the results for the user.

Literature Survey

St.	No.	ALCORPTEM	CLASSIFIERS	METRICS	RESULT
	111	Betheley Waseler Transferances (BWT)	SVM Classifies.	Sensitivity, Assumery, Specificity, DNC.	The results are: 94.2% - specified; 66.51% - second; 97.72% - second; 97.72% - seconds to 6.82 - 38C
1	(2)	5D special fluxy comment (SDSpFCM) algorithm against on two-stage fluxy and is objective framework (249Mail)	×	Time Segmentation Accuracy (TSA), Segmentation Accuracy (SA), Clause Validity Fountains	The time samplecity shinked from the 245 MeV antisector in appreciates (1) (1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
*	DI.	DONN	Support Varior Machine (SVM) Classifier	Disc sale (DE), Makind Hundred Donne	Perferences of CNN is better than other ratificals.
¥.	[12]	FCNN (densely-connected) along with the Skip Connections	DonoNet for classification took	DOC, 588D (Modified Houseleff Distance), ASD Champe_Serface_Distance)	The disc contact; condicion (DSC) 00.37+1.38%, -WM, 92.27 = 0.81% - GM, 95.79 = 0.34% - CBF
3	(10)	Novel Patrit-Drives Level fel method	×	Discreto	Accesses of 0.91%-0.000 - WM, 0.981-0.003 - GM
	[14]	Automated method for 3D deep regressiation	Randon Forest (RF)	Disa Overlag	For predicting survival 1886, the overall assesses on 4974 - test distance 5274 - validation distance
1	tiel	DL technique, CNN	×	Mean Dise value	Mean Door rather observed: 0.9015 - EACH ADNI DusP dataset E.EXXS - MICEAL dataset
100	trid	DL technique, CNN	1*	Moss Dire value	

OUTPUT IMAGE SEGMENTED BASIC

Flow Chart

Conclusion

In comparison to other methods, our research demonstrates that the CNN algorithm achieved the highest accuracy and precision rate, which was approximately 99.74%. Hence, applying CNN model is observed to provide more accurate results in tumor detection. It was additionally brought to our observation that deep learning techniques have gained interest so as to enhance the accuracy and transparency of tumor prediction. Hence, the implementation will be carried forward with CNN technique.