Statistical Learning

Juan C. Laria

2018/11/14

... with **R**

Getting Started with k Nearest Neighbors

How does it work?

Euclidean distance

$$d(\mathbf{x}_1,\mathbf{x}_2) = ((\mathbf{x}_1 - \mathbf{x}_2)'(\mathbf{x}_1 - \mathbf{x}_2))^{1/2} = \sqrt{\sum_{j=1}^p (x_{1j} - x_{2j})^2}.$$

k = 5

Practice time!

thttps://jlaria.github.io/SUsl/knn

https://raw.githubusercontent.com/jlaria/SUsl/master/source/knn_script.R

Lunch time!

Logistic Regression

We can think of the action of buying the product as a random variable defined as,

$$Y = \left\{ egin{aligned} 0, ext{ Not buying} \ 1, ext{ buying} \end{aligned}
ight.$$

We can think of the action of buying the product as a random variable defined as,

$$Y = \left\{ egin{aligned} 0, & ext{Not buying} \ 1, & ext{buying} \end{aligned}
ight.$$

Conditioning Y on the value of X, we can model the following probabilities.

$$P(Y=1|X=x)=p(x),$$

$$P(Y = 0|X = x) = 1 - p(x).$$

We can think of the action of buying the product as a random variable defined as,

$$Y = \left\{ egin{aligned} 0, & ext{Not buying} \ 1, & ext{buying} \end{aligned}
ight.$$

Conditioning Y on the value of X, we can model the following probabilities.

$$P(Y = 1 | X = x) = p(x),$$
 $P(Y = 0 | X = x) = 1 - p(x).$

This means that Y|X=x follows a Bernoulli distribution with probability of success p(x). Instead of modelling the response Y, we model p(x).

• If we wanted to work with linear functions, say $\beta_0 + \beta X$, it shouldn't be p(x) the function to be approximated. Notice that,

$$\circ$$
 $0 \le p \le 1$

• If we wanted to work with linear functions, say $\beta_0 + \beta X$, it shouldn't be p(x) the function to be approximated. Notice that,

$$\circ$$
 $0 \le p \le 1$

• Then, the *odds*, defined as p/(1-p) are such that,

$$\circ \ 0 \leq p/(1-p) \leq +\infty$$

• If we wanted to work with linear functions, say $\beta_0 + \beta X$, it shouldn't be p(x) the function to be approximated. Notice that,

$$\circ$$
 $0 \le p \le 1$

• Then, the *odds*, defined as p/(1-p) are such that,

$$0 \le p/(1-p) \le +\infty$$

• The odds can be approximated better by a linear function, but notice that, for p=0.5, p/(1-p)=1. This means that for x such that p(x)<0.5, the odds are between 0 and 1, and for x such that p(x)>0.5, the odds are between 1 and ∞ .

• If we wanted to work with linear functions, say $\beta_0 + \beta X$, it shouldn't be p(x) the function to be approximated. Notice that,

$$\circ$$
 $0 \le p \le 1$

• Then, the *odds*, defined as p/(1-p) are such that,

$$0 \le p/(1-p) \le +\infty$$

- The odds can be approximated better by a linear function, but notice that, for p=0.5, p/(1-p)=1. This means that for x such that p(x)<0.5, the odds are between 0 and 1, and for x such that p(x)>0.5, the odds are between 1 and ∞ .
- To tackle this unbalance, we can take logarithms.

$$\circ \ -\infty \leq \log(p/(1-p)) \leq +\infty$$

• The *log-odds* may be the perfect candidates for a linear approximation.

$$\log\!\left(rac{p}{1-p}
ight)=eta_0+eta X$$

• Taking *p* out,

$$p=\left[1+\exp(-eta_0-eta X)
ight]^{-1}$$

How does it work?

Let $y_1, y_2, \dots y_N$ be the responses, and $p_1, p_2, \dots p_N$ the underlying probabilities that generated them from the Bernoulli model. Then, the likelihood is,

$$L(y_1 \dots y_N | p_1 \dots p_N) = \prod_{i=1}^N p_i^{y_i} (1-p_i)^{(1-y_i)} = \prod_{i=1}^N \left(rac{p_i}{1-p_i}
ight)^{y_i} (1-p_i)$$

Then, the log-likelihood becomes,

$$l(y_1 \dots y_N | p_1 \dots p_N) = \sum_{i=1}^N \left\{ y_i \log igg(rac{p_i}{1-p_i}igg) + \log(1-p_i)
ight\}$$

Let $\eta_i = \mathbf{x}_i^T \beta$, and notice that the odds can be written in terms of η_i as

$$rac{p_i}{1-p_i}=\exp(\eta_i)$$

How does it work?

Then, the log-likelihood can be written

$$l(y_1 \dots y_N | p_1 \dots p_N) = \sum_{i=1}^N \left\{ y_i \eta_i + \log([1 + \exp(\eta_i)]^{-1})
ight\}$$

$$l(y_1\dots y_N|p_1\dots p_N) = \sum_{i=1}^N \left\{y_i\eta_i - \log(1+e^{\eta_i})
ight\}$$

Therefore, the objective of logistic regression is to minimize with respect to β the function

$$R(eta) = \sum_{i=1}^N \logig(1 + \exp(\mathbf{x}_i^Teta)ig) - \sum_{i=1}^N y_i\mathbf{x}_i^Teta$$

Practice time!

thttps://jlaria.github.io/SUsl/logit

https://raw.githubusercontent.com/jlaria/SUsl/master/source/logit_script.R

Unsupervised statistical learning

k-means clustering

Hierarchical clustering

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

The magic math behind k-means

Within-cluster scatter

- Let K be the number of clusters (fixed). A clustering of points $x_1, x_2 \dots x_n$ is a function C that assigns each observation x_i to a group $k \in \{1 \dots K\}$.
 - Notation
- C(i) = k means that x_i is assigned to group k.
- n_k is the number of points in group k.
 - Definition
- The within-cluster scatter is defined as

$$W = \sum_{k=1}^K rac{1}{n_k} \sum_{C(i)=k, top C(i')=k} D(x_i, x_{i'}).$$

Finding the best group assignments

- Smaller *W* the better assignments.
- Why don't we just find the clustering *C* that minimizes *W*?

Finding the best group assignments

- Smaller *W* the better assignments.
- Why don't we just find the clustering C that minimizes W?
- Trying all possible assignments of n points into K groups requires a number of operations of order

$$A(n,K) = rac{1}{K!} \sum_{k=1}^K (-1)^{K-k} \left(rac{K}{k}
ight) k^n pprox K^n.$$

- Notice that A(10,4) = 34105 and $A(25,4) \approx 5 \cdot 10^{13}$.
- BigData problems are clearly bigger than n = 25, K = 4.
- We will have to look for an approximate optimal solution.

k means

K-means algorithm is intended for situations in which,

- all variables are of *quantitative* type,
- squared Euclidean distance

$$D(x_i, x_{i'}) = \sum_{j=1}^p (x_{ij} - x_{i'j})^2 = \|x_i - x_{i'}\|_2^2$$

is chosen as the dissimilarity measure.

K-means minimization problem

• In K-means algorithm, we want to minimize over clusterings *C* the withincluster scatter

$$\sum_{k=1}^K rac{1}{n_k} \sum_{C(i)=k, top C(i')=k} \|x_i - x_{i'}\|_2^2.$$

• It is equivalent to minimizing over *C* the within-cluster variation

$$W = \sum_{k=1}^K \sum_{C(i)=k} \|x_i - ar{x}_k\|_2^2,$$

where

$$ar{x}_k = rac{1}{n_k} \sum_{C(i)=k} x_i.$$

Rewriting the minimization

• We want to choose *C* to minimize,

$$\sum_{k=1}^K \sum_{C(i)=k} \|x_i - ar{x}_k\|_2^2.$$

- For any $z_1, \ldots z_m \in R^p$, the quantity $\sum_{i=1}^m \|z_i c\|_2^2$ is minimized by taking $c = \bar{z}$.
- So our problem is the same as minimizing the enlarged criterion

$$\sum_{k=1}^K \sum_{C(i)=k} \|x_i - c_k\|_2^2,$$

over both clusterings C and $c_1, \ldots c_K \in R^p$.

• The K-means clustering algorithm approximately minimizes the enlarged criterion by alternately minimizing over C and $c_1, \ldots c_K$.

Practice time!

- thttps://jlaria.github.io/SUsl/kmeans
 - thttps://jlaria.github.io/SUsl/hclust

k-means properties

- Within-cluster variation *decreases* with each iteration of the algorithm.
- It always *converges*, no matter the initial cluster centers (it takes less than K^n iterations)
- The solution depends on the initial (random) cluster assignments.
- *K*-means algorithm finds a *local* rather than a global optimum. For this reason, it is important to run the algorithm multiple times from different initial configurations. Then, one selects the *best* solution (in terms of within-cluster variation).

Thanks!

Slides created via the R package xaringan.

remark.js, knitr, and R Markdown.