东南大学机械学院

实验报告

专 业:	实验名称:	凸轮机构凸轮轮廓检测与	从动件运动规律分析	<u>斤</u>
姓 名: 学号: 成绩:	专 业:			
	姓 名:			

1. 实验内容

实验 2: 凸轮机构凸轮轮廓检测与从动件运动规律分析实验报告

凸轮编	i	偏足	距 e=	mm	滚子	半径 r _t :	= r	nm	轮廓量	最小:	半 径	r _{min} =
号									mm			
	凸轮轴	专角和	从动作	‡位置	数据记	录(凸	轮转	句:)	
φ(°)												
s (mm)												
φ(°)												
s (mm)												
φ(°)												
s (mm)												
φ(°)												
s (mm)												

凸 轮 编 号		偏距 e=	mm	滚 mm	子 半	径	r _T =	轮 廓 卣 mm	最小 =	半 径	r _{min} =
	 凸轮	上 :转角和从5	力件位置	数据	记录(凸轮轴	转向:)		
φ(°)											
s (mm)											
φ(°)											
s (mm)											
φ(°)											
s (mm)											
φ(°)											
s (mm)											

(1)根据测量数据手工绘制从动件位移线图,确定推程运动角、远休止角、回程运动角和近休止角,并分析是否存在刚性或柔性冲击;

(2) 绘制凸轮理论轮廓图和实际轮廓图,在其上标出推程运动角、远休止角、回程运动角和近休止角; (附纸完成)
2.思考题 (1) 如何通过观察凸轮转角和从动件位置测量数据确定凸轮机构推程开始位置?
(2) 凸轮不同转向时测得的从动件位移规律是否相同?
(3)测量凸轮轮廓时,凸轮不同转向是否会影响所得凸轮轮廓形状?
(4) 试设计一个工业用凸轮轮廓检测实验台,要求画出原理框图,并附简单的工作原理说明。(附纸)
3. 实验心得和建议