Jorge E. S. Souza

- Quando observamos tamanhos de entrada grandes o suficiente para tornar relevante apenas a ordem de crescimento do tempo de execução, estamos estudando a eficiência assintótica dos algoritmos;
- Ou seja, estamos preocupados com a maneira como o tempo de execução de um algoritmo aumenta, à medida que o tamanho da entrada da entrada aumenta INDEFINIDAMENTE;
- Em geral, um algoritmo que é assintoticamente mais eficiente será a melhor escolha para todas as entradas, exceto as muito pequenas.

- Em 1965 Jack Edmonds introduz a idéia de Complexidade Assintótica.
 - → A função T(x) é chamada de Complexidade Local.
 - \rightarrow A Complexidade Assintótica fornece limites para T(x).

Para que serve?

Comparação entre complexidades

- → Um problema pode ter mais de um algoritmo para resolvê-lo. Qual deles escolher?
- → De maneira geral, consideremos um conjunto A de algoritmos para um dado problema.
- → Freqüentemente, interessa-nos identificar um algoritmo ótimo, ou seja, um algoritmo o, tal que aval(o) é melhor do que aval(a) para todo a ∈ A.

- ⇒ A complexidade assintótica é definida pelo crescimento da complexidade para entradas suficientemente grandes;
- → Um algoritmo assintoticamente mais eficiente é melhor para todas as entradas, exceto para entradas relativamente pequenas;
- ⇒ Esta complexidade é comumente denotada através de uma COTA;
- ⇒ As cotas são maneiras de reduzir detalhes realçando apenas os aspectos relevantes de eficiência.

Complexidades

Notações

⇒ A análise assintótica é um conjunto de notações que fornece uma maneira de formular conclusões sobre a comparação da complexidade de algoritmos;

⇒ são elas:

- 1. notação O → limite assintótico superior;
- 2. notação $\Omega \rightarrow$ limite assintótico inferior;
- 3. notação **⊙** → limite assintoticamente restrito;
- 4. notação o → limite assintoticamente superior não restrito;
- 5. notação $\omega \rightarrow$ limite assintoticamente inferior não restrito;

Notação O, limite superior

Dadas funções assintoticamente não negativas \mathbf{f} e \mathbf{g} , dizemos que \mathbf{f} está na ordem \mathbf{O} de \mathbf{g} e escrevemos \mathbf{f} = $\mathbf{O}(\mathbf{g})$ se:

ordem n², ordem n³

repare que aqui realmente é uma igualdade

 $f(n) \leq c.g(n)$

para algum **c** positivo e para todo **n** suficientemente grande.

Notação O

A medida de custo ou medida de complexidade relata o crescimento assintótico da operação considerada.

- \Rightarrow Definição: Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas **c** e \mathbf{n}_0
- ⇒ tais que, para qualquer

⇒ temos

$$f(n) <= c \cdot g(n)$$

Notação O

⇒ Limite assintótico superior

$$O(g(n)) = \{f(n): \exists c e n_0 > 0 | 0 \le f(n) \le c.g(n) \forall n \ge n_0\}$$

Formal ou informal

Escrevemos g(n) = O(f(n)) ou $g(n) \in O(f(n))$ para expressar que f(n) domina assintoticamente g(n).

Encontramos leituras nos modos:

```
g(n) é da ordem no máximo f(n); // formal
g(n) é O de f(n); // informal
g(n) é igual a O de f(n); // informal
g(n) pertence a O de f(n); // formal
```


$$g(n) = n+34$$

$$\circ$$
 g(n) ∈ O(f(n)) ???

□ ou

$$\neg f(n) = n$$

$$g(n) = n+34$$

$$g(n) \in O(f(n))$$
???

□ ou

$$n + 34 \le c.n$$
, $c = 35 e n_0 = 1$.

Testando para n = 1

$$1 + 34 <= 35 * 1 \implies 35 <= 35$$
 verdade

Daria para baixar o valor de c???

Qual é o custo disso ???

$$\neg f(n) = n$$

$$g(n) = n+34$$

$$g(n) \in O(f(n))$$
???

□ ou

$$n + 34 \le c.n$$
, $c = 2 e n_0 = ?$.

Testando para n = 1

: falso para esse valor de n

Mas quando $n \rightarrow \infty$, se mantém falso?

o que acontece ??? não se mantem falso

$$\neg f(n) = n$$

$$g(n) = n+34$$

$$g(n)$$
 ∈ O(f(n)) ???

□ ou

sim

Exemplo 2

n² é O(n)?

não

$$n^2 <= c.n,$$
 $c = 1 e n_0 = 1.$

Testando para n = 1

$$1^2 <= 1 * 1 \Rightarrow 1 <= 1 \therefore$$
 verdadeiro

Mas quando $n \rightarrow \infty$, se mantém verdadeiro?

$$n^2 <= c.n,$$
 $c = 1 e n = 2.$

$$2^2 <= 1 * 2 \Rightarrow 4 <= 2$$
 ... Absurdo

Exemplo 2

Suponha: **3** c, n₀

$$\forall n >= n_0$$

$$n^2 \le c.n \Rightarrow \frac{n^2}{n} \le c \cdot \frac{n}{n}$$

 $\Rightarrow n \le c$

Absurdo, pois **c** é uma constante e n assume valores até o infinito.

$$n^2 <= c.n,$$
 $c = 1 e n_0 = 1.$

$$c = 1 e n_0 = 1.$$

Testando para n = 1

$$1^2 <= 1 * 1 \Rightarrow 1 <= 1 \therefore \text{ verdadeiro}$$

Mas quando $n \rightarrow \infty$, se mantém verdadeiro?

$$n^2 <= c.n,$$
 $c = 1 e n = 2.$

$$2^2 <= 1 * 2 \implies 4 <= 2$$
 ... Absurdo

Portanto, \nexists c, n_0

Operações básicas

$$f(n) = O(f(n))$$

$$c \times O(f(n)) = O(f(n)) \quad c = constante$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n)) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

Outras notações

Assim como a notação **O** fornece uma maneira assintótica de dizer que uma função é "menor ou igual a" outra, existem outras notação que fornecem outras conclusões sobre a complexidade de algoritmos;

⇒ são elas:

- 1. notação $\Omega \rightarrow$ limite assintótico inferior;
- 2. notação **⊙** → limite assintoticamente restrito;
- notação o → limite assintoticamente superior não restrito;
- 4. notação $\omega \rightarrow$ limite assintoticamente inferior não restrito;

Notação Ω

A notação Ω é bem parecida com a notação O;

- ⇒ O define um limite assintótico superior, e;
- $\Rightarrow \Omega$ define um limite assintótico inferior.

Exemplos: $n^4 \in \Omega(n^3)$

 $n \in \Omega(1)$

 $3.\log(n) \in \Omega(\log(n))$

 $1 \in \Omega(1)$

 $n! \in \Omega(2^n)$

Notação Ω , limite inferior

Dadas funções assintoticamente não negativas \mathbf{f} e \mathbf{g} , dizemos que \mathbf{f} está em Ω de \mathbf{g} e escrevemos $\mathbf{f} = \Omega(\mathbf{g})$ se:

$$f(n) \ge c.g(n)$$

para algum **c** positivo e para todo **n** suficientemente grande.

Notação Ω

⇒ Limite assintótico inferior

 $\Omega(g(n)) = \{f(n): \exists ce n_0 > 0 | 0 \le c.g(n) \le f(n) \forall n \ge n_0\}$

Notação Ω

Na prática a notação Ω não é vista sozinha em análises de algoritmos;

- Pelo motivo de não interessar para a análise de algoritmos;
- A notação O possui sua importância, pois o programador conclui que seu algoritmo é no máximo tão complexo a uma função.
- $^{ ext{-}}$ Mas no mínimo tão complexo, como a notação Ω descreve, não é importante para conclusões práticas sobre algoritmos.
- Ω vem na maioria das vezes acompanhada a notação Θ ;
- Como um complemento na análise...

Notação O

Conhecida também como "limite firme" ou "limite assintoticamente restrito".

- A notação O, apesar de fornecer informações sobre a complexidade do algoritmo, nem sempre nos revela algo importante;
- Não faz sentido, para algum algoritmo ordem n, dizer que suas complexidade é por exemplo O(n!). Ou faz?

$$\Rightarrow$$
 Exemplos da falta de precisão de O: $n \in O(n^2)$

$$n \in O(n^5)$$

$$n \in O(2^n)$$

$$n \in O(n^n)$$

Notação O

Conhecida também como "limite firme" ou "limite assintoticamente restrito".

- A notação O, apesar de fornecer informações sobre a complexidade do algoritmo, nem sempre nos revela algo importante;
- Não faz sentido, para algum algoritmo ordem n, dizer que suas complexidade é por exemplo O(n!). Ou faz?

$$\Rightarrow$$
 Exemplos da falta de precisão de O: $n \in O(n^2)$

$$n \in O(n^5)$$

$$n \in O(2^n)$$

$$n \in O(n^n)$$

Verdadeiras e imprecisas

Notação O, limite firme

Dizemos que as funções f e g estão na mesma ordem e escrevemos $f = \Theta(g)$ se f = O(g) e $f = \Omega(g)$.

Em outras palavras, $\mathbf{f} = \mathbf{\Theta}(\mathbf{g})$ significa que existe números positivos $\mathbf{c_1}$ e $\mathbf{c_2}$ tais que:

$$c1.g(n) \le f(n) \le c2.g(n)$$

para todo n suficientemente grande.

Notação O

⇒ Limite assintótico firme

 $\Theta(g(n)) = \{f(n): \exists c_1, c_2 \in n_0 > 0 \mid 0 \le c_1.g(n) \le f(n) \le c_2.g(n) \forall n \ge n_0 \}$

Exemplo:

Prove que:
$$\frac{n^2}{2} - 3n \in \Theta(n^2)$$

 \Rightarrow Para isso, devemos definir constantes c_1 , c_2 e n_0 tais que:

$$c_1 n^2 \le 1/2n^2 - 3n \le c_2 n^2$$

⇒ Encontre constantes que satisfaça as duas desigualdades...

Exemplo:

Dividindo por n²:

$$\frac{c_1 n^2}{n^2} \le \frac{1/2n^2}{n^2} - \frac{3n}{n^2} \le \frac{c_2 n^2}{n^2}$$

$$= c_1 \le 1/2 - 3/n \le c_2$$

é fácil achar

$$\Rightarrow$$
 c₁ = 1/14, c₂ = 1/2 e n₀ = 7

Portanto, se existem tais constantes:

$$\frac{n^2}{2} - 3n \in \Theta\left(n^2\right)$$

é Verdadeiro

Observação:

$$f(x) \in \Theta(g(x))$$

sse

 $f(x) \in O(g(x))$

e

 $f(x) \in \Omega(g(x))$

Notação o

⇒ Limite assintoticamente superior não restrito;

Todas as funções de **O** (ó-zão) que não definem um limite assintoticamente restrito pertencem a "o" (ó-zinho).

se
$$f(n) \in O(g(n))$$
 e $f(n) \notin \Omega(g(n))$ então $f(n) \in o(g(n))$

_		
Exem	nl	OC'
	PΙ	03

Assintoticamente restrito:	$2n^2 \in O(n^2)$	(ó-zão)
Assintoticamente não restrito:	$2n \in O(n^2)$	(ó-zão) e (ó-zinho)
O O O O O	$log(n) \subseteq O(c^n)$	(ó-zão) e (ó-zinho)

Comparativo: notação O x notação o

Definição:
$$O(g(n)) = \{f(n): \exists cen_0 > 0 \mid 0 \le f(n) \le c.g(n) \forall n \ge n_0\}$$

Definição:
$$o(g(n)) = \{f(n): \exists c e n_0 > 0 \mid 0 \le f(n) < c.g(n) \forall n \ge n_0\}$$

 $f(n) \in O(g(n))$, o limite $0 \le f(n) \le c.g(n)$ se mantém válido para alguma constante c > 0.

 $f(n) \in o(g(n))$, o limite $0 \le f(n) \le c.g(n)$ se mantém válido para todas as constantes c > 0.

Facilitando o entendimento...

Se
$$f(n) \in o(g(n))$$
 então

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

Notação ω

⇒ Limite assintoticamente inferior não restrito;

Todas as funções de Ω (ômega-zão) que não definem um limite assintoticamente restrito pertencem a " ω " (ômega-zinho).

se
$$f(n) \notin O(g(n))$$
 e $f(n) \subseteq \Omega(g(n))$ então $f(n) \subseteq \omega(g(n))$

Exemplos:

Assintoticamente restrito:	$2n^2 \in \Omega(n^2)$	(ômega-zão)
Assintoticamente não restrito:	$2n^2 \in \Omega(n)$	(ômega-zão) e (ômega-zinho)
	$c^n \in \Omega(\log(n))$	(ômega-zão) e (ômega-zinho)

Comparativo: notação Ω x notação ω

Definição:
$$\Omega(g(n)) = \{f(n): \exists cen_0 > 0 \mid 0 \le c.g(n) \le f(n) \forall n \ge n_0\}$$

Definição:
$$\omega(g(n)) = \{f(n): \exists cen_0 > 0 \mid 0 \le c.g(n) < f(n) \forall n \ge n_0\}$$

Facilitando o entendimento...

Se
$$f(n) \in \omega(g(n))$$
 então

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

Limites para comparar ordens de grandeza

O limite da razão das funções em questão pode levar a três casos:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} := \begin{cases} 0, & f(n) \text{ tem ordem de grandeza menor que } g(n) \\ c > 0, & f(n) \text{ tem mesma ordem de grandeza que } g(n) \\ \infty, & f(n) \text{ tem ordem de grandeza maior que } g(n) \end{cases}$$

Caso tenhamos uma indeterminação da forma $\frac{\infty}{\infty}$, usamos a regra de L'Hôpital:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}:=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$$

Comparação de funções

Muitas das propriedades relacionais de números reais também se aplicam a comparações assintóticas. No caso das propriedades seguintes, suponha f(n) e g(n) sejam assintoticamente positivas.

Transitividade:

```
f(n) = \Theta(g(n)) e g(n) = \Theta(b(n)) implicam f(n) = \Theta(b(n)), f(n) = O(g(n)) e g(n) = O(b(n)) implicam f(n) = O(b(n)), f(n) = \Omega(g(n)) e g(n) = \Omega(b(n)) implicam f(n) = \Omega(b(n)), f(n) = o(g(n)) e g(n) = o(b(n)) implicam f(n) = o(b(n)), f(n) = \omega(g(n)) e g(n) = \omega(b(n)) implicam f(n) = \omega(b(n)).
```

Reflexividade:

$$f(n) = \Theta(f(n))$$

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

Simetria:

$$f(n) = \Theta(g(n))$$
 se e somente se $g(n) = \Theta(f(n))$

Simetria de transposição:

$$f(n) = O(g(n))$$
 se e somente se $g(n) = \Omega(f(n))$
 $f(n) = o(g(n))$ se e somente se $g(n) = \omega(f(n))$

Sabor

Pelo fato dessas propriedades se manterem para notações assintóticas, é possivel traçar uma analogia entre a comparação assintótica de duas funções \mathbf{f} e \mathbf{g} e a comparação de dois números reais \mathbf{a} e \mathbf{b} :

$$f(n) = O(g(n))$$
 \approx $a \le b$,
 $f(n) = \Omega(g(n))$ \approx $a \ge b$,
 $f(n) = \Theta(g(n))$ \approx $a = b$,
 $f(n) = o(g(n))$ \approx $a < b$,
 $f(n) = \omega(g(n))$ \approx $a > b$.

Obrigado

jorge@imd.ufrn.br