שבלת גיבוב Hash Table

- ?מה נלמד?
 - מבוא
- פעולות בהן תומכת טבלת גיבוב
- דוגמאות לשימוש בטבלת גיבוב
 - גיבוב עם שרשור
 - גיבוב פתוח
 - בחירת פונקציית גיבוב טובה

מבוא

באפליקציות רבות עלינו לתחזק קבוצה *דינאמית S* לאחסון איברים, כך שנוכל לאתר אותם בעזרת מפתח *ייחודי* שמצורף לכל איבר

X

key

Satellite data

קבוצת אתרים זדוניים

המפתחות - כתובת האתר

IP Addresses	
103.236.162.56	
162.252.172.41	
180.181.68.221	
 203.134.40.41	

קבוצת המשתנים בקוד

המפתח - שם המשתנה

```
public static void insertionSort(int[] arr) {
    for (int i = 1; i < arr.length; i++) {
        int key = arr[i];
        int j = i-1;

        while (j >= 0 && arr[j] > key) {
            arr[j+1] = arr[j];
            j--;
        }
        arr[j+1] = key;
    }
}
```

קבוצת עובדים במכללה

המפתח - ת"ז של עובד

מילון

תומך בשלוש פעולות עיקריות Dictionary

x.key = k בהינתן מפתח k, הפעולה מחזירה איבר – Search(k) או NULL אם אין איבר כזה

- x הכנסת לקבוצה את איבר Insert(x)
- בהינתן איבר x, יש למחוק אותו מהקבוצה –Delete(x)

טבלת גיבוב הבטחה על זמני ריצה

1. בממוצע

2. כאשר ממומש נכון

Search(k)

Insert(x)

Delete(x)

טבלת גיבוב דוגמאות לשימוש

בהינתן מספר הטלפון, לשלוף את הכתובת (הזמנות פיצה)

בהינתן שם המשתנה, לאתר את הערך והטיפוס שלו

בהינתן כתובת IP לבדוק האם האתר נמצא ברשימה שחורה

טבלת גיבוב דוגמא לשימוש

n נתון: שתי קבוצות של מספרים שלמים S_2 ו- S_2 בגודל . $S_2 = S_1$ המטרה: לבדוק האם

פתרונות

- $O(n^2)$ נאיבי: .1
- עבור כל איבר מ- S_2 בדוק האם הוא נמצא ב- S_1 .
 - $O(n \log n)$ באמצעות מיון: .2
 - $.S_1$ מיין את •
- עבור כל איבר מ- S_2 בדוק האם הוא נמצא ב- S_1 (חיפוש בינארי)

- O(n) שימוש בטבלת גיבוב: 3
- S_1 הכנס את איברי הקבוצה S_1 לטבלת איבוב S_1 הכנס את איברי הקבוצה S_1
- עבור כל איבר מ- S_2 בדוק האם הוא \bullet נמצא ב-H

המטרה

- Search(k) •
- Insert(x) •
- Delete(x) •

 $U = \{\mathbf{0}, \mathbf{1}, ..., u\}$ הנחה: המפתחות נלקחו מתוך קבוצה אוניברסאלית

טבלת מיעון ישיר Direct address table

- נתחיל מטכניקה פשוטה שתוביל אותנו לרעיון של טבלת גיבוב
- <mark>טבלת מיעון ישיר</mark> היא טכניקה מאוד פשוטה לייצוג קבוצה דינאמית של איברים

טבלת מיעון-ישיר

- T[0 ... |U|-1] לייצוג קבוצה S נשתמש במערך
 - U-ם מפתח מ-ר מתאים מפתח T-ם לכל תא
 - $x.key = i 1 x \in S$ אם T[i] = x
 - T[i] = NULL אחרת •

טבלת מיעון-ישיר

טבלת מיעון-ישיר הבעיה

אם U גדולה, T לאחסן טבלת |U| בגודל |U| לא מעשי (או אפילו לא אפשרי)

קבוצת אתרים זדוניים

כתובת IP מורכבת $a-2^{32} \leftarrow 32$ אפשרויות

קבוצת עובדים באוניברסיטה

10⁹ אפשרויות לתעודת זהות

טבלת מיעון-ישיר הבעיה

מטרה: לתחזק קבוצה *דינאמית S* לאחסון איברים, כך שנוכל לאתר אותם בעזרת מפתח *ייחודי* שמצורף לכל איבר.

- קבוצת עובדים באוניברסיטה •
- אפשרויות לתעודת זהות 10^9
 - קבוצת אתרים זדוניים
- אפשרויות IP מורכבת מ-32 ביט וורכבת 1P מורכבת \bullet
 - אם U גדולה, לאחסן טבלת מיעון-ישיר בגודל \cdot אם \cdot גדולה, לאחסן טבלת \cdot אם \cdot גדולה, לא מעשי (או אפילו לא אפשרי)

טבלת גיבוב הרעיון

- ליצוג קבוצה S נשתמש במערך $m = \Theta(|S|)$, T[0 ... m 1]
- m-1 -לכל $x \in S$ לכל $x \in S$ לכל
 - (hashing) מיפוי כזה נקרא •
 - (hash function) פונקצית גיבוב $h: U \to \{0,1,\ldots,m-1\}$
- לתא (hashes) איבר בעל מפתח k מגובב h(k)

טבלת מיעון-ישיר הרעיון

ליצוג קבוצה S נשתמש במערך ullet

$$m = \Theta(|S|), T[0..m-1]$$

$$h(k_1)$$
 $m-1$ -לכל $x \in S$ נתאים מספר בין $x \in S$ לכל •

$$h(k_2) = h(k_5)$$
 (hash function) פונקצית גיבוב $h: U \to \{0,1,...,m-1\}$

(hashes) איבר בעל מפתח k מגובבh(k) לתא

התנגשויות (collisions)

מה יכולה להיות הבעיה?

התנגשויות

h(x) = h(y): $x,y \in U$ התנגשות: עבור מפתחות שונים

נכון או לא נכון:

טענה: לא ניתן למנוע לחלוטין את ההתנגשויות.

1. הטענה נכונה

הטענה לא נכונה 🗓

התנגשויות

h(x) = h(y): $x,y \in U$ התנגשות: עבור מפתחות שונים

פתרונות

- (open addressing) מיעון פתוח.2
- NULL רק איבר אחד בכל תא או \bullet
 - בהכנסה בוחנים בזה אחר זה תאים עד שמוצאים תא ריק
 - פונקציית גיבוב מגדירה סדרה של m אינדקסים h(k,0),h(k,1),...,h(k,m-1)

1. שיטת השרשור (chaining)

שיטת השרשור

h(x) = h(y) : $x,y \in U$ התנגשות: עבור מפתחות

- שיטת השרשור (chaining) •
- התא j מכיל מצביע לראש הרשימה של כל האיברים המאוחסנים המגובבים ל-j
- K או K_4 K_5 K_5 K_6 K_8 K_8

מימוש הפעולות

Insert(T,x)

Insert x at the head of the list T[h(x.key)]

Search(T,k)

Search for an element with key k in list T[h(k)]

Delete(T,x)

Delete x from the list T[h(x.key)]

דוגמה

m=5 יש להכניס את המפתחות 6,9,19,26,30,106,309 לטבלת גיבוב בגודל $h(k)=k \bmod 5$ באמצעות שיטת השרשור עם פונקצית גיבוב

דוגמה

m=5 יש להכניס את המפתחות 6,9,19,26,30,106,309 לטבלת גיבוב בגודל $h(k)=k \bmod 5$ באמצעות שיטת השרשור עם פונקצית גיבוב

דוגמה

m=5 יש להכניס את המפתחות 6,9,19,26,30,106,309 לטבלת גיבוב בגודל $h(k)=k \bmod 5$ באמצעות שיטת השרשור עם פונקצית גיבוב

הוא: Insert השלימו את המשפט: זמן ריצה במקרה הגרוע של פעולת

הוא: Insert השלימו את המשפט: זמן ריצה במקרה הגרוע של פעולת

השלימו את המשפט: זמן ריצה במקרה הגרוע של פעולת Search הוא:

השלימו את המשפט: זמן ריצה במקרה הגרוע של פעולת Search הוא:

:השלימו את המשפט: זמן ריצה במקרה הגרוע של פעולת Delete הוא

השלימו את המשפט: זמן ריצה במקרה הגרוע של פעולת *Delete* הוא:

מימוש הפעולות

Insert (T, x)Insert x at the head of the list T[h(x.key)]

Search (T, k)

Search for an element with key k in list T[h(k)]

Delete(T,x)

Delete x from the list T[h(x.key)]

אם m הוא גודל טבלת הגיבוב ו-n הוא מספר האיברים בטבלה, אורך הרשימה יכול להיות כל מספר בין $\frac{n}{m}$ ל-

- הנחות
- 1. פונקציית גיבוב צריכה לקיים את הנחת הגיבוב האחיד הפשוט: ההסתברות שמפתח כלשהו יגובב לתא מסוים שווה עבור כל m התאים, ואינה תלויה בערכי הגיבוב של האיברים האחרים.
 - $\Theta(1)$ הזמן הדרוש לחישוב פונקצית גיבוב הוא 2.
 - פעולות חיפוש, הכנסה, מחיקה כוללות חישוב של פונקציית גיבוב

המספר הממוצע של איברים המאוחסנים – (load factor) נגדיר $lpha=rac{n}{m}$ מקדם העומס ברשימה מקושרת אחת

1-ט יכול להיות קטן מ-1, שווה ל-lpha • lpha

$$\alpha = \frac{7}{5} = 1.4$$

- ננתח זמן ריצה של חיפוש כושל
- זמן ריצה של חיפוש מוצלח ומחיקה חסום על ידי זמן ריצה של חיפוש כושל •

משפט: בטבלת גיבוב שבה התנגשויות נפתרות על ידי שרשור, זמן ריצה הצפוי של חיפוש כושל הוא $\Theta(1+lpha)$

- נניח מחפשים איבר x שלא נמצא בטבלת הגיבוב ullet
 - $\Theta(1)$ h(k) חישוב פונקציית גיבוב
- $\Theta(list\ length)$ T[h(k)] מעבר על הרשימה שבתא •
- lpha תחת ההנחה של גיבוב אחיד ופשוט, תוחלת אורך הרשימה שבתא היא
 - $\Theta(1+\alpha)$ מכאן, זמן ריצה של חיפוש כושל הוא •

משפט: בטבלת גיבוב שבה התנגשויות נפתרות על ידי שרשור, זמן ריצה הצפוי של חיפוש כושל הוא $\Theta(1+lpha)$

- $\Theta(1)$ אם $\alpha=\Theta(1)$ אם $\alpha=\Theta(1)$ אם
 - $\alpha = \Theta(1)$ תחת איזה תנאי •
- הוא מספר האיברים בטבלה m , $lpha=rac{n}{m}$
 - $lpha=\Theta(1)$ גקבל $n=\Theta(m)$ אם •

מימוש הפעולות

Insert (T, x)

Insert x at the head of the list T[h(x.key)]

Search(T,k)

Search for an element with key k in list T[h(k)]

Delete (T, x)

Dèlete x from the list T[h(x.key)]

אם m הוא גודל טבלת הגיבוב ו-n הוא מספר האיברים בטבלה, אורך הרשימה יכול להיות כל מספר בין $\frac{n}{m}$ ל-

מהי פונקציית גיבוב טובה?

- 1. ביצועים טובים
- פונקציית גיבוב צריכה לקיים את הנחת הגיבוב האחיד הפשוט: ההסתברות שמפתח כלשהו יגובב לתא מסוים שווה עבור כל m התאים.
 - $\Theta(1)$ חישוב מהיר $\Omega(1)$
 - פעולות חיפוש, הכנסה, מחיקה כוללות חישוב של פונקציית גיבוב

פונקציות גיבוב גרועות

דוגמא 1

- מפתחות: מספרי טלפון (הזמנת פיצה ביישוב קטן)
 - $|U| = 10^{10}$,מספר נייד מכיל 10 ספרות,
 - m = 1000 •
 - פונקציית גיבוב מאוד גרוע:

 $h(k) = first \ 3 \ digits \ of \ k$

פונקציות גיבוב גרועות

IP Addresses	
103.236.162.56	
162.252.172.41	
180.181.68.221	
203.134.40.41	

דוגמא 2

- מפתחות: כתובות IP (רשימה שחורה של אתרים)
 - $|U| = 2^{32}$, כתובת IP מורכבת מ-32 ביטים
 - פונקציית גיבוב גרוע:

h(k) = last segment of the address (last 8 bits)

$$h(103.256.162.56) = 56$$

- m = 256 •
- החלק האחרון של כתובת IP בדרף כלל מייצגת מספר קטן (חד או דו-ספרתי)

פונקציות גיבוב גרועות

דוגמא 3

- היא קבוצת מספרים שלמים S
 - m = 1000 •
- $h(k) = |k| \mod 1000$ פונקציית גיבוב גרוע: •
- מובטח שתאים בעלי אינדקס אי-זוגי יהיו ריקים •

22444

שיטת החילוק (Division method)

$$h(k) = k \mod m$$
 גודל הטבלה - m

דוגמה

$$S = \{6,9,19,26,30,106,309\}$$
 •

$$h(k) = k \mod 5$$

שיטת החילוק (Division method)

$$h(k) = k \mod m$$
גודל הטבלה – m

- פשוט
- מהיר
- m להיזהר" מערכים מסוימים של *
 - לבחור את m לבחור את \bullet

שיטת הכפל (Multiplication method)

```
egin{aligned} h(k) &= \lfloor m(kA\ mod\ 1) 
floor \ &= \kappa \ &= m \ \end{pmatrix}גודל הטבלה 0 < A < 1
```

 $13456.09 \mod 1 = 0.09$ $57.891 \mod 1 = 0.891$

שיטת הכפל (Multiplication method)

$$h(k) = \lfloor m(kA \ mod \ 1) \rfloor$$
 הטבלה - m $0 < A < 1$

דוגמה

$$h(123456) = [16384(123456 \cdot 0.618 \mod 1)] =$$

= $[16384(76295.808 \mod 1)] =$
= $[16384 \cdot 0.808] =$
= $[13238.272] = 13238$

$$k = 123456$$

 $m = 2^{14} = 16384$
 $A = (\sqrt{5} - 1)/2 \approx 0.618$

התנגשויות

h(x) = h(y): $x,y \in U$ התנגשות: עבור מפתחות שונים

פתרונות

(open addressing) מיעון פתוח.2

 $\alpha \leq 1$ מקדם העומס

- NULLרק איבר אחד בכל תא או
- m פונקציית גיבוב מגדירה סדרה של $h(k,0),h(k,1),\dots,h(k,m-1)$ אינדקסים בהכנסה בוחנים בזה אחר זה תאים עד שמוצאים תא ריק

(chaining) שיטת השרשור.

בזמן ההכנסה, בוחנים בזה אחר זה תאים עד שמוצאים תא ריק

בדיקה מספר 3

שיטת המיעון הפתוח

$$h: U \times \{0,1,\dots,m-1\} \to \{0,1,\dots,m-1\}$$
Universe מספר הבדיקה index (probe number)

- תא שנגיע אליו בבדיקה ה-i-ית (בהנחה שבבדיקות הקודמות הגענו לתאים h(k,i) תפוסים)
- אנו דורשים שסדרת התאים הנבדקים $h(k,0),h(k,1),\dots,h(k,m-1)$ תהיה תמורה של $\{0,1,\dots,m-1\}$

הכנסה וחיפוש בשיטת המיעון הפתוח

Insert(T, x)

- 1 $i \leftarrow 0$
- while (i < m)
- $j \leftarrow h(x.key,i)$
- $\mathbf{if} \ T[j] = NULL$
- $T[j] \leftarrow x$
- return j
- else $i \leftarrow i + 1$
- 8 error "hash table overflow"

Search(T, k)

- $1 \quad i \leftarrow 0$
- $j \leftarrow h(k,i)$
- while $(i < m \text{ AND } T[j] \neq NULL)$
- $\mathbf{if} T[j].key = k$
- return T[j]
- $i \leftarrow i + 1$
- $j \leftarrow h(k, i)$
- 8 return NULL

מחיקות בשיטת המיון הפתוח

- NULL לא ניתן פשוט לסמן את התא כתא ריק על ידי הצבת •
- אם נעשה זאת לא נוכל לשלוף מפתח אשר במהלך הכנסתו נבדק תא זה ונמצא תפוס
 - פתרון אפשרי: לסמן את התא על-ידי הצבת הערך המיוחד DELETED
 - בהכנסה להתייחס לתא כזה כאל תא ריק
 - בחיפוש לעבור על התא מבלי לעצור •
 - lpha חסרון: זמני ריצה אינם תלויים עוד במקדם העומס
 - כאשר יש למחוק איברים, בוחרים בדרך כלל בשיטת השרשור •

מיעון פתוח – איך מחפשים תא פנוי?

- (linear probing) בדיקה לינארית
 - (double hashing) גיבוב כפול •

שיטת המיעון הפתוח

$$h: U \times \{0,1,\dots,m-1\} \to \{0,1,\dots,m-1\}$$
Universe מספר הבדיקה index (probe number)

- תא שנגיע אליו בבדיקה ה-i-ית (בהנחה שבבדיקות הקודמות הגענו לתאים h(k,i) תפוסים)
- אנו דורשים שסדרת התאים הנבדקים $h(k,0),h(k,1),\dots,h(k,m-1)$ תהיה תמורה של $\{0,1,\dots,m-1\}$
 - $\alpha \leq 1$ מקדם העומס •

Linear Probing בדיקה לינארית

בזמן ההכנסה, אם התא תפוס נבדוק האם התא הבא בטבלה ריק וכך נמשיך עד למציאת מקום ריק.

Linear Probing בדיקה לינארית

בזמן ההכנסה, אם התא תפוס נבדוק האם התא הבא בטבלה ריק וכך נמשיך עד למציאת מקום ריק.

$$h(k,i) = (h'(k) + i) \mod m$$

פונקצית גיבוב רגילה – $h'(k)$

- אינדקס של התא הראשון שנבדק h'(k)
- התאים נבדקים לפי סדר לינארי של אינדקסים (באופן מעגלי)

$$h'(k), h'(k) + 1, h'(k) + 2, ...$$

דוגמה:

דוגמה:

דוגמה:

דוגמה:

דוגמה:

יש להכניס את המפתחות 18,41,22,44,59,32,31,73,19 לטבלת הכניס את המפתחות m=13 גיבוב בגודל m=13 פונקצית גיבוב $h'(k)=k \bmod 13$

דוגמה:

דוגמה:

יש להכניס את המפתחות 18,41,22,44,59,32,31,73,19 לטבלת את המפתחות m=13 גיבוב בגודל m=13 באמצעות שיטת הבדיקה הלינארית עם פונקצית גיבוב $h'(k)=k \bmod 13$

Search(31)

בדיקה לינארית

- **קל לממש**
- (primary clustering) סובלת מהצטברות ראשונית•
- נוצרים רצפים ארוכים של תאים תפוסים, המאריכים את זמן החיפוש

גיבוב כפול Double Hashing

$$h(k,i) = (h_1(k) + ih_2(k)) \mod m$$
 $h(k,i) = (h_1(k) + ih_2(k)) \mod m$
פונקצית עזר לגיבוב – $h_1(k), h_2(k)$

- אינדקס של התא הראשון שנבדק $h_1(k)$ •
- $h_2(k)$ לאחר מכן נבדקים תאים שמיקומיהם רחוקים זה מזה במרחק של
 - k גם מיקום הבדיקה הראשונה וגם מרחק בין התאים תלויים במפתח

דוגמה:

11

12

דוגמה:

יש להכניס את המפתחות 18,41,22,44,59,32,31,73,19 לטבלת

גיבוב בגודל m=13 באמצעות שיטת הגיבוב הכפול עם

$$h_1(k) = k \mod 13$$
 פונקציות גיבוב $h_2(k) = 1 + k \mod 11$

דוגמה:

יש להכניס את המפתחות 18,41,22,44,59,32,31,73,19 **לטבלת**

גיבוב בגודל m=13 באמצעות שיטת הגיבוב הכפול עם

$$h_1(k) = k \mod 13$$
 פונקציות גיבוב $h_2(k) = 1 + k \mod 11$

דוגמה:

יש להכניס את המפתחות 18,41,22,44,59,32,31,73,19 לטבלת

גיבוב בגודל m=13 באמצעות שיטת הגיבוב הכפול עם

$$h_1(k) = k \mod 13$$
 פונקציות גיבוב $h_2(k) = 1 + k \mod 11$

דוגמה:

יש להכניס את המפתחות 18,41,22,44,59,32,31,73,19 לטבלת

גיבוב בגודל m=13 באמצעות שיטת הגיבוב הכפול עם

$$h_1(k) = k \mod 13$$
 פונקציות גיבוב $h_2(k) = 1 + k \mod 11$

1

2 41

3

4 32

5 | 18

6 44

7 | 59

8 73

9 22

10

11 | 19

12 | 31

$$h_1(k) = 1$$

$$h_2(k) = 2$$

- עבור שני מפתחות שמתחילים בדיקה מאותו תא, הצעד יכול להיות שונה
 - יש להבטיח שחיפוש יסרוק את טבלת הגיבוב כולה
 - m חייב להיות זר לגודל הטבלה של $h_2(k)$
 - ולבנות את h_2 כך שתמיד תפיק מספר אי-זוגי $m=2^p$
- ראשוני ולבנות את h_2 כך שתמיד תפיק מספר שלם חיובי m- קטן מm-

ניתוח של שיטת הגיבוב הפתוח

- (uniform hashing) הנחה: גיבוב אחיד
- $\{0,1,...,m-1\}$ בהינתן מפתח כלשהו k, ההסתברות של כל אחת מ-m! התמורות של $\frac{1}{m!}$ היא k-להיות סדרת הבדיקות ל-k היא k-להיות סדרת הבדיקות ל-
 - בדיקה לינארית, בדיקה ריבועית $\Theta(m)$ סדרות שונות
 - גיבוב כפול $\Theta(m^2)$ סדרות שונות •

ניתוח של שיטת הגיבוב הפתוח

משפט: תוחלת מספר הבדיקות הנערכות בעת הכנסת איבר היא $\frac{1}{1-lpha}$, בהנחת הגיבוב האחיד.

(טבלת הגיבוב חצי מלאה),
$$\alpha = \frac{1}{1-\alpha} = 2$$
 (טבלת הגיבוב חצי מלאה) ($\alpha = \frac{1}{2}$

(טבלת הגיבוב 90% מלאה), 10 (טבלת הגיבוב
$$\alpha=0.9$$
 מלאה) $\alpha=0.9$

אם lpha מתקרב ל-1, מספר הבדיקות שואף לאינסוף lpha

ניתוח של שיטת הגיבוב הפתוח

משפט: תוחלת מספר הבדיקות הנערכות בעת הכנסת איבר היא $\frac{1}{1-lpha}$, בהנחת הגיבוב האחיד.

- הסבר אינטואיטיבי:
- מספר הבדיקות עד לתא הפנוי הראשון pprox התפלגות גיאומטרית עם הסתברות 1-lpha
 - $\frac{1}{1-\alpha}$ תוחלת מספר הבדיקות היא •

ניתוח זמני ריצה של טבלת גיבוב

- (load factor) מקדם העומס $lpha=rac{n}{m}$ •
- הוא תנאי הכרחי לביצוע פועולות בזמן קבוע lpha = O(1)
 - $n = \Theta(m)$
 - פיזור אחיד •
- לבחור פונקציית גיבוב כך שעבור <mark>כל</mark> קבוצה של נתונים הפיזור יהיה אחיד
 - **בעייה:** לא קיימת פונקציית גיבוב שמקיימת תנאי זה
- לפי $\frac{|\mathcal{U}|}{m}$ לפי $\frac{|\mathcal{U}|}{m}$ לפי $\frac{|\mathcal{U}|}{m}$ מפתחות מתוך \mathcal{U} יגובבו לתא i לכל פונקציית גיבוב h.

בעיה

- לפי עקרון שובך היונים קיים אינדקס i כך שלפחות $\frac{|\mathcal{U}|}{m}$ מפתחות מתוך \mathcal{U} יגובבו לתא i לכל פונקציית גיבוב h.
 - אם קבוצת המפתחות נבחרה מתוך $\frac{|U|}{m}$ מפתחות אלו, הם כולם ייכנסו לאותו תא ullet
 - $\Theta(n)$ זמני ריצה
 - מסקנה: יריב זדוני יכול לחבל בביצועים של המערכת

גיבוב אוניברסלי רעיון

- בחירת פונקציית גיבוב באופן אקראי, בדרך שאינה תלויה במפתחות שיאוחסנו בטבלת הגיבוב
 - הרעיון: לבחור פונקצית גיבוב באופן אקראי מתוך מחלקה ${\mathcal H}$ של פונקציות שתוכננה מראש.
- הבחירה האקראית מבטיחה שלא קיים קלט יחיד שעבורו התנהגות האלגוריתם היא תמיד הגרועה ביותר

גיבוב אוניברסלי הגדרה

 $\{0,1,...,m-1\}$ קבוצה סופית של פונקציות גיבוב מ-U אל התחום

 $x,y \in U$ תיקרא קבוצה אוניברסלית אם ורק אם עבור כל זוג מפתחות שונים \mathcal{H}

$$\Pr(h(x) = h(y)) \le \frac{1}{m}$$

מכאן, ניתן לראות את בעייה הבחירת של פונקציה גיבוב טובה כבחירת קבוצה ${f \cdot}$ אוניברסלית ${f \mathcal H}$ של פונקציות גיבוב.

דוגמא לקבוצה אוניברסלית של פונקצית גיבוב גיבוב כתובת IP

- כתובת IP מורכבת מ-32
- 255-ט פיתן לראות כתובת IP כרביעיה (x_1, x_2, x_3, x_4) פיתן לראות כתובת יין סל-155 פיתן לראות כתובת יין סל-255.
 - נבחר m להיות ראשוניullet
- $\{0,1,...,m-1\}$ סדרה של מקדמים שנבחרו באופן אקראי מתוך $a=(a_1,a_2,a_3,a_4)$ תהי
 - $h_a = (a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4)$ נגדיר פונקציית גיבוב •
 - היא קבוצה אוניברסלית \mathcal{H} = $\{h_a|a_1,a_2,a_3,a_4\in\{0,1,\dots,m-1\}\}$
 - פונקציות שונות m^4
 - O(1) סיבוכיות חישוב של פונקציית גיבוב
 - סיבוכיות מקום (1)

בלת גיבוב Hash Table