Prática C - Planilia de um Rolamento

È fácil ver que $Xp = rcos(\theta)$, assim como $Yp = rsen(\theta)$. Entretanto, devemos levar em conta que com o disco translada com uma velocidade "v" no eixo "x", logo devemos adicionar esta parcela à equação. Do movimento retilíneo uniforme sabemos que s = so + voT, logo basta agrupar os termos para obter

Eixo X
$$Xp = rcos(\theta) + vT$$
 Equação 1
Eixo Y $Xp = rsen(\theta)$ Equação 2

O único problema é que ambas expressões possuem a incógnita θ . A equação horária nos diz que $\theta = \omega T$ onde " ω " é a velocidade angular do disco. Se o disco translada com velocidade "v" podemos dizer que um ponto em sua periferia tem mesma velocidade, utilizando a expressão $\omega = v/R$ onde "R" é o raio do disco, podemos reescrever as equações acima da seguinte maneira.

Eixo X
$$Xp = rcos(vT/R) + vT$$
 Equação 3
Eixo Y $Xp = rsen(vT/R)$ Equação 4