Question	Scheme	Marks	
1. (a)	Width = $\frac{5}{3} \times 1.5 = 2.5$ (cm)	B1	
	Area = $6 \times 1.5 = 9 \text{ cm}^2$ has frequency = 12 so 1.5 cm ² = 2 people (o.e.) Frequency of 10 corresponds to area of 7.5 so height = 3 (cm)	M1 A1 (3	
(b)	$Q_2 = \left[2.5 + \right] \frac{(25/25.5 - 16)}{12} \times 3 = 4.75 \text{(or } 4.875 \text{ if use } n + 1\text{)} $ awrt $\underline{4.75}$	M1 A1	
(c)(i)	$[\overline{x} =] \frac{394}{50} = 7.88 (*)$ $[\sigma_x =] \sqrt{\frac{6500}{50} - \overline{x}^2} = \sqrt{67.9056}$	B1cso (2	
(ii)	1 1 2	M1A1	
	= awrt 8.24 (Accept $s =$ awrt 8.32)	A1 (4	
(d)	$\overline{x} > Q_2$	B1ft	
	So <u>positive</u> (skew)	dB1 (2	
(e) (i)	There is no effect on the mean	B1	
(ii)	The median will <u>increase</u>	B1	
(iii)	The standard deviation will <u>decrease</u>	B1 (3 [14]	
	Notes	[17]	
	$\frac{\text{or for } \frac{3h}{10} = \frac{9}{12} \text{ oe}}{\text{A1}}$ A1 for height of 3 (cm) NOTE: the common incorrect answer width = 3 and height = 2.5 scores B0M1A0		
(b)	M1 for a correct fraction $\left[\frac{9}{12} \text{ or } \frac{9.5}{12}\right] \times 3$. Ignore end point but must be +. May be seen in an equivalent expression e.g. $\frac{(x-2.5)}{5.5-2.5} = \frac{25-16}{28-16}$ Allow use of $(n+1)$ giving 4.875 NB May work down so look out for $\left[5.5\right] - \frac{28-25}{12} \times 3$, etc.	95	
(c)(i)	B1 for $\frac{394}{50}$ or for fully correct expression seen $\frac{16 \times 1.25 + 12 \times 4 + 10 \times 8 + 8 \times 15.5 + 4 \times 30.5}{50}$		
(ii)	M1 for a correct expression must have 6500, 50 and 7.88. (square root not necess 1^{st} A1 for a correct expression which must have square root 2^{nd} A1 for awrt 8.24 (use of $s = \text{awrt } 8.32$). Condone incorrect labelling if awrt 8.24 is four	sary for M1)	
(d)	1 st B1ft for a correct comparison of \overline{x} =7.88 and their Q_2 (this may be seen embed another formula i.e. 3(mean-median)/s.d.) $Q_3 - Q_2 > Q_2 - Q_1 \text{ is B0 unless } Q_1 \text{ and } Q_3 \text{ have been found. } (Q_1 = 1.95/1.99, Q_3 = 2^{\text{nd}} \text{ dB1} \text{ Dependent on the 1}^{\text{st}} \text{ B1 and for concluding "positive" skew.}$ Note: if their $Q_2 > 7.88$, then B0. Positive correlation is B0.		

Question	-	Scheme	Marks
2 (a)	5/9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 B1 B1
		3 8 B 7 13 B	(3)
(b)	$\frac{5}{9} \times \frac{4}{8} + \frac{4}{9}$	$\frac{4}{9} \times \frac{5}{8} = \frac{5}{9}$ oe	M1 A1 (2)
(c)	$\frac{5}{9} \times \frac{4}{8} \times \frac{1}{9}$	$\frac{8}{13}$ ' + $\frac{4}{9}$ × ' $\frac{3}{8}$ ' × $\frac{7}{13}$ = $\frac{61}{234}$ oe	M1 A1 (2)
(d)	$\frac{\frac{5}{9} \times \frac{4}{8} \times \frac{1}{8}}{\frac{61}{234}}$	$\frac{\frac{8}{13}}{\left[= \frac{\frac{20}{117}}{\frac{61}{234}} \right]} = \frac{40}{61} \text{ oe}$	M1 A1ft
		Notes	(3) Total 10
(a)	B1	for $\frac{5}{8} \& \frac{3}{8}$ in the correct place on the 2 nd branches Allow 0.625 & 0.375 or 62.5% &	
	B1	for $\frac{8}{13}$ & $\frac{5}{13}$ in the correct place on the 3 rd branches Allow awrt 0.615 & awrt 0.385 61.5% & awrt 38.5%	or awrt
	B1	for $\frac{7}{13}$ & $\frac{6}{13}$ in both correct places on the 3 rd branches Allow awrt 0.538 & awrt 0.40 53.8% or awrt 46.2%	62 or awrt
(b)	M1	for $\frac{5}{9} \times \frac{4}{8} + \frac{4}{9} \times \frac{5}{8}$ 'ft their tree diagram provided these are probabilities Allow $\frac{5}{9} \times \frac{4}{8} \times \frac{7}{13} + \frac{5}{9} \times \frac{4}{8} \times \frac{6}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{7}{13} + \frac{4}{9} \times \frac{5}{8} \times \frac{6}{13}$	_\(C
	A1	$\frac{5}{9}$ oe Allow awrt 0.556 or awrt 55.6%	
+	M1	for $\frac{5}{9} \times \frac{4}{8} \times \frac{8}{13} + \frac{4}{9} \times \frac{3}{8} \times \frac{7}{13}$ ft their tree diagram provided these are probabilities	*
(c)		$\frac{61}{}$ oe Allow awrt 0.261 or awrt 26.1%	
(c)	A1	234	
(c) (d)	A1 M1	for $\frac{\text{a probability}}{\text{part (c)}}$ where numerator < denominator and 0 < part (c) < 1	
		for a probability where numerator $<$ denominator and $0 <$ part (c) $<$ 1	iagram If the

Question Number	Scheme	Marks
3. (a)	$P(X=3) = F(3) - F(2) = \frac{1}{38}$	M1
	$P(X=3) = \frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2}$	M1
	$\frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2} = \frac{1}{38} \to n(n-1)(n-2) = 7980 $ (*)	M1 A1cso
	0 10	(4)
(b)	$21 \times 20 \times 19 = 7980$	B1cso
(c)	$a = F(0) = P(X = 0) = \frac{14}{21} \times \frac{13}{20} \times \frac{12}{19}$	(1) M1
(6)	21 20 19	
	$a = \frac{26}{95}$	A1
	$P(X=1) 3 \times \frac{14}{21} \times \frac{13}{20} \times \frac{7}{19} \left[= \frac{91}{190} \right] \text{ or } P(X=2) 3 \times \frac{7}{21} \times \frac{6}{20} \times \frac{14}{19} \left[= \frac{21}{95} \right]$	M1 M1
	$b = F(1) = P(X = 0) + P(X = 1) = \frac{26}{95} + \frac{91}{190} \text{ or } b = \frac{37}{38} - \frac{21}{95}$	dM1
	$b = \frac{143}{190}$	A1
		(6) [11]
	Notes	1 11
(a)	1st M1 for use of F(3) – F(2) Accept $\frac{1}{38}$	
	2^{nd} M1 product of 3 probabilities where the denominators are n , $(n-1)$ and $(n-2)$ and numerators are decreasing k , $(k-1)$ and $(k-2)$ This may be seen as a single term in a	
	expression. 3^{rd} M1 setting up equation for $P(X=3)$ = product of correct 3 probabilities without replacements and the following product of correct 3 probabilities without replacements of the following product of correct 3 probabilities without replacements of the following product of correct 3 probabilities without replacements of the following product of correct 3 probabilities without replacements of the following product of correct 3 probabilities without replacements of the following product of correct 3 probabilities without replacements of the following product of correct 3 probabilities without replacements of the following product of correct 3 probabilities without replacements of the following product of correct 3 probabilities without replacements of the following product of the following produ	acement
(b)	B1cso correctly evaluated product. Allow 21($21 - 1$)($21 - 2$) = 7980	
(c)		gement May
	be implied by $\frac{26}{95}$	
	1 st A1 $a = \frac{26}{95}$ oe must be clear this is the value for a	
	2 nd M1 product of 3 probabilities for P(X=1) or P (X=2) or $\frac{91}{190}$ or $\frac{91}{570}$ or $\frac{21}{95}$ or $\frac{7}{9}$	$\frac{7}{5}$ oe seen.
	Condone incorrect labelling. The three probabilities can be in any arrangement	
	3^{rd} M1 × 3 or adding the 3 sets of the 3 fractions or $\frac{91}{190}$ or $\frac{21}{95}$ Condone incorrect labe	lling
	4^{th} dM1 their $P(X=0)$ + their $P(X=1)$ or $F(2) - P(X=2)$ (dep on 2^{nd} M1 being scored)	
	$2^{\text{nd}} \text{ A1 } b = \frac{143}{190}$ oe must be clear this is the value for b	
	NB if $a = 0.273$ and $b = 0.7526$ implies the method marks.	

Qu		Marks
4(a)	$S_{tw} = 2304.53 - \frac{297.8 \times 114.8}{15}$ or $S_{ww} = 6089.12 - \frac{297.8^2}{15}$	M1
	$S_{tw} = 25.367$ awrt 25.4	A1
	$S_{ww} = 176.797$ awrt 177	A1 (3)
(b)	r =	M1
	$r = \frac{25.567}{\sqrt{5.3173} \times "176.797"}$ = 0.82735 awrt 0.827 or 0.828	A1
		(2)
(c)	$b = \frac{"25.367"}{5.3173} [= 4.77065]$	M1
	$a = \frac{297.8}{15} - \frac{"25.367"}{5.3173} \times \frac{114.8}{15} [= -16.658]$	M1
	b = 4.771 or better or $a = -16.66$ or better seen and $w = -16.7 + 4.77t$ *	A1*cso
		(3)
(d)	[On average,] for each cm/1 cm of tail length/t the weight/w increases by 4.77 g/grams	B1
		(1)
(e)	$w = -16.7 + 4.77 \times 2[= -7.16]$ or $4.77 \times 2[= 9.54]$ or $[t =]\frac{16.7}{4.77}[= 3.5]$ or sd = awrt 0.6	M1
	[w=]-7.16 or $9.54 < 16.7$ or $2 < 3.5$ which is negative/weight cannot be negative or for sd extrapolation since a 2 cm tail is (approx 9 sd)/(more than 3 sd) from the mean	A1
1	or for second polation since a 2 cm tail is (approx) sel/(more than 3 sel) from the filedif	(2)
(f)	0.827	B1ft
		(1)
(g)	2y+10=-16.7+4.77(x+6) oe	B1ft
		(1)
, .	Notes	Total 13
(a)	M1 for a correct expression for S_{nw} or S_{ww}	
	A1 awrt 25.4	
<u>(1.)</u>	A1 awrt 177	
(b)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10
	A1 (M2 on epen) awrt 0.827 or awrt 0.828	4
(c)		
	2^{nd} M1 ft their b. For a correct method to find a. Minimum shown $a = \text{awrt } 19.9 - \text{"their } b \times \text{awrt } 7.65 \ [= -16.658]$	
	A1* Both method marks must be awarded, equation stated (no fractions) and sight of (4.771 or (-16.66 or better)	or better)
(d)	B1 For a suitable contextual comment that implies that as length increases by 1 cm weight inc 4.77g. Allow multiples eg each 10 cm increase in tail length weight increases by 47.7g Allow	
(e)	of t and w M1 for a correct method to calculate the value of w (condone if written as a fraction) or $4.77 \times 2[=9.54]$ or correct method to find tail length when $w = 0$ or $sd = awrt 0.6$	
	A1 Method mark must be awarded. For -7.16 or $9.54 < 16.7$ or $2 < 3.5$ with a relevant explan stating that weight is negative. If $sd = awrt 0.6$ is given allow extrapolation since a 2 cm tail is $9 sd$ /(more than 3 sd) from the mean.	
(f)	B1ft follow through their answer to (b)	
(g)		t
	simplified equation is $y = 2.385x + 0.96$ allow awrt 2.39 and $0.96 - 0.98$	

Question Number	Scheme	Marks
5. (a)	[D = distance achieved] $P(D > 4.3) = P\left(Z > \frac{4.3 - 3.8}{0.9}\right)$ or $P(Z > 0.555)$	M1
	(0.9) = 1 – 0.7123 (tables)	M1
	= 0.2877 (tables) or 0.289257 (calc) awrt 0.288 or awrt 0.289	A1
(b)	$\frac{d-3.8}{0.9} = -0.8416 \text{(calc} -0.84162123)$	(3) M1 . D1
(b)	d = 3.0425 awrt 3.04	M1; B1 A1
		(3)
(c)	$P(D > g \mid D > 4.3) = \frac{P(D > g)}{P(D > 4.3) \text{ or (a)}} \left[= \frac{1}{3} \right] \text{ (o.e.)}$	M1
	$\therefore P(D > g) = \frac{1}{3}(a) = 0.096419$	A1ft (o.e)
	$\frac{g-3.8}{0.9} = 1.302228$	dM1
	so $g = 4.97200$ awrt <u>4.97</u> or awrt <u>4.98</u>	A1 (4)
(d)	P(no gold medals) = $\left(\frac{2}{3}\right)^3$	M1
	P(at least one gold) = $1 - \left(\frac{2}{3}\right)^3$	M1
	$=\frac{19}{27}$	A1
		[13]
(a)	Notes 1st M1 for standardising 4.3 with 3.8 and 0.9 (allow ±)	
	$2^{\text{nd}} \text{ M1 for } 1 - p \text{ (where } 0.7$	
	A1 for awrt 0.288 or 0.289 (calc. 0.289257) (correct answer only 3/3)	
(b)	M1 for standardising with d, 3.8 and 0.9 and setting equal to a z value $0.8 < z < 0.9$ B1 for $z = \pm 0.8416$ or better used	
Ama ambu	A1 for awrt 3.04 (condone $d \ge$)	
Ans only		
(c)	1 st M1 for either expression for the conditional prob. [or sight of $\frac{1}{3}$ (a)] (ft their answer 1 st A1ft for P(D > g) = 0.096 or better (0.289 gives 0.09633 calc 0.096419)	er to (a) to 2 sf)
	The $P(D > g)$ may be clearly shown on a diagram.	
	1^{st} M1A1 can be awarded for $P(D > g) = \frac{1}{3}$ (a) or for $P(D < g) = 1 - \frac{1}{3}$ (a) [ft their 2^{nd} dM1 (dep on 1^{st} M1) for standardising with g , 3.8 and 0.9 and put equal to a z value	
	2 nd A1 for awrt 4.97 or 4.98 (Correct answer with no incorrect working seen 4/4) (cond	done $g \geqslant$)
SC	(Medals v Certificates) 1 st B1 for $[P(D > g) =]\frac{1}{3} \times 0.8 = \frac{4}{15}$ or 0.267 (score as 1 st MC 2 nd B1 for $g = \text{awrt } 4.36$ (4.358 tables, 4.3606calc) (score as 2	
(d)	1 st M1 for a correct probability of no gold medals or 2 of: $3(\frac{2}{3})^2 \times \frac{1}{3}$ or $3(\frac{1}{3})^2 \times \frac{2}{3}$	or $\left(\frac{1}{3}\right)^3$
	$2^{\text{nd}} \text{ M1 for } 1-p^3 \text{ or } 3(p)^2 (1-p) + 3p(1-p)^2 + (1-p)^3 \text{ where } 0$	
	A1 for $\frac{19}{27}$ (or exact equivalent) only e.g. 0.703	

Question Number		Scheme		
6(a)	$\int E(x)$	R^2) = $2^2 \times 0.25 + 3^2 \times 0.3 + 4^2 \times 0.15 + 5^2 \times 0.1 + 6^2 \times 0.2 $ (= 15.8*)	B1cso*	
	L -	/ J	(1)	
(b)	sd	$(R) = \sqrt{15.8 - 3.7^2}$	M1	
		$=\sqrt{2.11}$		
	Stanc	$-\sqrt{2.11}$ dard deviation = 1.4525 awrt 1.45	A1	
	Dun	Iditi deviation = 1.7323	(2)	
(c)	d = 1		B1	
			(1)	
(d)		+0.2+0.1+a+b=1 oe	M1	
		$0.1 + 3 \times 0.2 + 4 \times 0.1 + 5a + 6b = 4.55$ oe	M1	
	5(0.	$(6-b)+6b=3.35$ or $5a+6(0.6-a)=3.35 \implies a=0.25$ or $b=0.35$	M1	
		0.4 + 0.25 or $c = 1 - 0.35$	M1	
		0.65 oe	A1	
		0.02 00	(5)	
(e)	0.9×	×0.75×0.1	M1	
, Y		= 0.0675	A1	
			(2)	
(f)		dentifying that if Jessie scores 2, Pabel has no spin oe may be implied	M1	
	[0.10	$0 \times 0 +]0.2 \times 0.3 + 0.1 \times 0.15 + "0.25" \times 0.1 + "0.35" \times 0.2$	M1	
		= 0.17	A1	
			(3)	
	7.704	Notes Correct coloulation with all products seen (allow 1 + 2.7 + 2.4 + 2.5 + 7.2)	Total 14	
(a)	B1	Correct calculation with all products seen (allow $1 + 2.7 + 2.4 + 2.5 + 7.2$) Figures may be seen in table before part (a). Condone missing addition signs if products s	in table	
(b)	M1	Use of formula including the square root	een m taore.	
(0)	A1	awrt 1.45 (correct answer with no working scores M1A1)		
(c)	B1	For 1		
(d)	M1	Allow equivalents eg $a+b=0.6$		
× .	M1	Allow equivalents eg $5a + 6b = 3.35$		
	+	Correct method to eliminate a or b (implied by a correct value for a or b)		
	M1	This mark can still be scored even if the method leads to a value of a or b which is not a p	robability.	
		May see $a = c - 0.4$ to eliminate a or $b = 1 - c$ used to eliminate b		
	M1	A complete method for finding the value of c (condone using any value of a and b for the condone using any value of a and a and b for the condone using any value of a and a a	his mark)	
· \	A1 M1	0.65 oe		
(e)	M1	For the product of 3 probabilities	-/-	
	A1	0.0675 or exact equivalent fraction eg $\frac{27}{400}$		
(f)	M1	Identifying that if Jessie scores 2, there is only one spin or the 4 correct possibilities on	nlv	
	M1	At least 3 correct non-zero probability products ft their a and b (an answer of 0.195 scores		
	A1	0.17		
	_1			
		. (2)		