Problem Set 6

[Your Full Name Here]

MATH 100 — Introduction to Proof and Problem Solving — Summer 2023

Problem 6.1. Prove that $7 \mid (3^{4n+1} - 5^{2n-1})$ for every positive integer n.

Problem 6.2. A sequence $\{a_n\}$ is defined recursively by $a_1 = 1$, $a_2 = 4$, $a_3 = 9$ and

$$a_n = a_{n-1} - a_{n-2} + a_{n-3} + 2(2n-3)$$
, for $n \ge 4$

(a) Use the recursive relation to compute a_4 , a_5 , a_6 , a_7 .

Solution. \Box

(b) Looking at the values for a_1 , a_2 , a_3 , a_4 , a_5 , a_6 and a_7 , conjecture a formula for a_n , that is, an expression in terms of n.

Solution.

(c) Prove your conjecture using an appropriate principle of mathematical induction, using the recursive relation.

Solution.

Collaborators:

References:

• [Book(s): Title, Author]

• [Online: Link]

• [Notes: Link]

Fin.