Задание 1. Метод моментов

ФИО	Задача
Аникеенко Яна	Найти методом моментов по выборке $x_1, x_2,, x_n$ точечные оценки неизвестных параметров p и r отрицательного биномиального распределения. Математическое ожидание и дисперсия отрицательного биномиального распределения известны: $M(X) = \frac{r(1-p)}{p}, D(X) = \frac{r(1-p)}{p^2}.$
Борисов Алексей	Найти методом моментов по выборке $x_1, x_2,, x_n$ точечные оценки неизвестных параметров α и β гамма-распределения. Математическое ожидание и дисперсия гаммараспределения известны: $M(X) = \frac{\beta}{\alpha}, D(X) = \frac{\beta}{\alpha^2}.$
Егоров Алексей	Найти методом моментов по выборке $x_1, x_2,, x_n$ точечные оценки неизвестных параметров μ и s логистического распределения. Математическое ожидание и дисперсия логистического распределения известны: $M(X) = \mu, D(X) = \frac{\pi^2}{3} s^2.$
Жиряков Виталий	Найти методом моментов по выборке $x_1, x_2,, x_n$ точечные оценки неизвестного параметра p геометрического распределения. Математическое ожидание геометрического распределения известны: $M(X) = \frac{1}{p}.$
Касастиков Вячеслав	Найти методом моментов по выборке $x_1, x_2,, x_n$ точечные оценки неизвестных параметров α и β распределения Лапласа. Математическое ожидание и дисперсия бетараспределения известны: $M(X) = \beta, D(X) = \frac{2}{\alpha^2}.$

ФИО	Задача
Колыванов Антон	Найти методом моментов по выборке $x_1, x_2,, x_n$ точечные оценки неизвестных параметров D и N гипергеометрического распределения (параметр n известен). Математическое ожидание и дисперсия гипергеометрического распределения известны: $M(X) = \frac{nD}{N}, D(X) = \frac{n\frac{D}{N}\left(1 - \frac{D}{N}\right)(N-n)}{N-1}.$
Мугашев Ростислав	Найти методом моментов по выборке $x_1, x_2,, x_n$ точечную оценку неизвестного параметра n распределения Стьюдента. Дисперсия распределения Стьюдента известна: $D(X) = \frac{n}{n-2}.$
Рандина Татьяна	Найти методом моментов по выборке $x_1, x_2,, x_n$ точечные оценки неизвестных параметров α и β гаммараспределения. Математическое ожидание и дисперсия гамма-распределения известны: $M(X) = \frac{\beta}{\alpha}, D(X) = \frac{\beta}{\alpha^2}.$
Ретунский Константин	Найти методом моментов по выборке $x_1, x_2,, x_n$ точечные оценки неизвестных параметров μ и s логистического распределения. Математическое ожидание и дисперсия логистического распределения известны: $M(X) = \mu, D(X) = \frac{\pi^2}{3} s^2.$
Самойлова Дарья	Найти методом моментов по выборке $x_1, x_2,, x_n$ точечную оценку неизвестного параметра n распределения Стьюдента. Дисперсия распределения Стьюдента известна: $D(X) = \frac{n}{n-2}.$
Сальников Данил	Найти методом моментов по выборке $x_1, x_2,, x_n$ точечные оценки неизвестных параметров α и β бета-распределения. Математическое ожидание и дисперсия бетараспределения известны: $M(X) = \frac{\alpha}{\alpha + \beta}, D(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}.$

ФИО	Задача
Тайшубаев Арман	Найти методом моментов по выборке $x_1, x_2,, x_n$ точечные оценки неизвестных параметров p и r отрицательного биномиального распределения. Математическое ожидание и дисперсия отрицательного биномиального распределения известны: $M(X) = \frac{r(1-p)}{n}, D(X) = \frac{r(1-p)}{n^2}.$
Уткин Евгений	Найти методом моментов по выборке $x_1, x_2,, x_n$ точечные оценки неизвестных параметров μ и σ логнормального распределения. Математическое ожидание и дисперсия логнормального распределения известны: $M(X) = e^{\mu + \frac{\sigma^2}{2}}, D(X) = \left(e^{\sigma^2} - 1\right)e^{2\mu + \sigma^2}.$
Школяренко Валерий	Найти методом моментов по выборке $x_1, x_2,, x_n$ точечные оценки неизвестных параметров α и β гамма-распределения. Математическое ожидание и дисперсия гаммараспределения известны: $M(X) = \frac{\beta}{\alpha}, D(X) = \frac{\beta}{\alpha^2}.$

Задание 2. Метод максимального правдоподобия

ФИО	Задача
Аникеенко Яна	Генеральная совокупность образована случайной величиной X , подчинённой распределению с функцией плотности
	$f(x) = \frac{ke^k}{x^{k+1}}, k > 0, x \ge e.$
	Найти методом максимального правдоподобия по выборке $x_1, x_2,, x_n$ оценку неизвестного параметра k .
Борисов Алексей	Генеральная совокупность образована случайной величиной X , подчинённой распределению с функцией вероятности $P(X=k) = C_5^k p^k (1-p)^{5-k}, 0$
	Найти методом максимального правдоподобия по выборке $x_1, x_2,, x_n$ оценку неизвестного параметра p .
Егоров Алексей	Генеральная совокупность образована случайной величиной X , подчинённой распределению с функцией вероятности $\alpha^k e^{-\alpha}$
	$P(X=k)=\frac{\alpha^k e^{-\alpha}}{k!}, \alpha>0, k\in\mathbb{N}_0$ Найти методом максимального правдоподобия по выборке
	x_1, x_2, \dots, x_n оценку неизвестного параметра a .
Жиряков Виталий	Генеральная совокупность образована случайной величиной X , подчинённой распределению с функцией плотности
	$f(x) = \frac{2x}{\theta}e^{-\frac{x}{\theta}}, \theta > 0, x \ge 0.$
	Найти методом максимального правдоподобия по выборке $x_1, x_2,, x_n$ оценку неизвестного параметра θ .
Касастиков Вячеслав	Генеральная совокупность образована случайной величиной X , подчинённой распределению с функцией вероятности
	$P(X = k) = (1 - p)^{k-1} \cdot p, 0$
	Найти методом максимального правдоподобия по выборке $x_1, x_2,, x_n$ оценку неизвестного параметра p .

ФИО	Задача
Колыванов Антон	Генеральная совокупность образована случайной величиной X , подчинённой распределению с функцией плотности $f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, x > 0.$
	Найти методом максимального правдоподобия по выборке $x_1, x_2,, x_n$ оценку неизвестного параметра μ , если $\sigma = 1,5$.
Мугашев Ростислав	Генеральная совокупность образована случайной величиной X , подчинённой распределению с функцией плотности $f(x) = \frac{x^{\alpha}e^{-\frac{x}{\beta}}}{\beta^{\alpha+1}\Gamma(\alpha+1)}, \beta>0, x\geq 0.$
	Найти методом максимального правдоподобия по выборке $x_1, x_2,, x_n$ оценку неизвестного параметра β , если $\alpha = 1,12$.
Рандина Татьяна	Генеральная совокупность образована случайной величиной X , подчинённой распределению с функцией вероятности $P(X=k)=C_6^kp^k(1-p)^{6-k}, 0< p<1, k=0,1,,6.$ Найти методом максимального правдоподобия по выборке $x_1,x_2,,x_n$ оценку неизвестного параметра p .
Ретунский Константин	Генеральная совокупность образована случайной величиной X , подчинённой распределению с функцией вероятности $P(X=k) = \frac{\alpha^k e^{-\alpha}}{k!}, \alpha>0, k\in\mathbb{N}_0$ Найти методом максимального правдоподобия по выборке x_1,x_2,\dots,x_n оценку неизвестного параметра a .
Самойлова Дарья	Генеральная совокупность образована случайной величиной X , подчинённой распределению с функцией вероятности $P(X=k)=p(1-p)^k, 0< p<1, k\in\mathbb{N}_0.$ Найти методом максимального правдоподобия по выборке x_1,x_2,\dots,x_n оценку неизвестного параметра p .

ФИО	Задача
Сальников Данил	Генеральная совокупность образована случайной величиной X , подчинённой распределению с функцией плотности
	$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, x > 0.$
	Найти методом максимального правдоподобия по выборке $x_1, x_2,, x_n$ оценку неизвестного параметра σ , если $\mu = 2$.
Тайшубаев Арман	Генеральная совокупность образована случайной величиной X , подчинённой распределению с функцией плотности $f(x) = \frac{x^{k-1}e^{-\frac{x}{\theta}}}{\theta^k g(k)}, \theta>0, x\geq 0.$ Найти методом максимального правдоподобия по выборке x_1, x_2, \dots, x_n оценку неизвестного параметра θ , если $k=1,1$.
Уткин Евгений	Генеральная совокупность образована случайной величиной X , подчинённой распределению с функцией вероятности $P(X=k) = C_7^k p^k (1-p)^{7-k}, 0 Найти методом максимального правдоподобия по выборке x_1, x_2,, x_n оценку неизвестного параметра p.$