会议室场景分析报告(请勿外传)

龙良曲

1. 实验目的与方案

1.1. 实验目的

实验采用 Sensetime 最新 SDK(R103),在会议室多种环境条件下采集人脸照片数据,并完成对应维度下人脸识别的 Accuracy 分析和人脸验证的 ROC 分析。

1.2. 实验环境

◆ 901 会议室: 关门, 拉上窗帘, 采用四种灯光环境, 并且在每种灯光下分别拍摄三个角度的人脸照片(正脸图片, 小角度偏转人脸图片和大角度偏转人脸图片):

灯光一: 关上所有灯,模拟弱光环境

灯光二: 开单侧光,模拟左右非均匀光照

灯光三: 开双侧光,模拟均匀正常光照

灯光四: 关补光灯, 开头顶灯, 模拟上下非均匀光照

◆ 502 会议室: 两个摄像头分别架在不同的位置同时采集,开会议室所有灯,被拍摄人员在会议室走动和坐下,模拟正常会议室开会场景

1.3. 实验方案

1.3.1. 识别率分析

- ↓ rank n 曲线:每个维度识别前 n 个结果的正确识别率
- → distractor n 曲线: 制作人脸数据库时,增加不同数量的人脸(distractor)形成不同的数据库,然后每个维度的每个取值做 rank n 曲线(这里只做 n=0 和 9)

1.3.2. ROC 分析

ROC 曲线: 在每个维度的不同取值下,两个相同的人脸图片组成正样本对,两个不同的人脸图片组成负样本对。

 T_n : 正样本识别为正样本的数目;

 T_n : 负样本识别为负样本的数目;

 F_n : 负样本识别为正样本的数目;

 F_n : 正样本识别为负样本的数目;

$$tpr = \frac{t_p}{t_p + f_p}$$
$$fpr = \frac{f_p}{t_n + f_p}$$

1.4.人脸照片统计

本次共采集80人(62男,18女),总共4187张照片(不同维度数据量分布见附录)。

人脸照片对比度,饱和度,亮度分布

由采集到 4187 张人脸照片的对比度,饱和度和亮度的分布可以大致认为对比度(25~45),饱和度和亮度(75~175)范围内是现实场景中常见的正常情况。而人脸维度在眼睛(1 睁开),头发遮挡(1 无遮挡),嘴巴(1 闭合),角度(5 正脸)和光照(2 均匀正常光)是现实场景中常见的正常情况。

		еу	e e	ha	air	mo	uth	angle				light				
取值		1	2	1	2	1	2	1~3	4	5	6	7~9	1	2	3	4
照片数		360	24	360	33	360	172	207	286	360	677	43	163	360	86	66
「est样本对数/正样本对数		1500/1521	13/14	1500/1521	120/129	1500/1521	500/524	850/892	1000/1068	1500/1521	6000/6765	90/92	250/266	1500/1521	75/78	55/57
contrast	0~20	0.05	0	0.05	0.03	0.05	0.03	0.12	0.12	0.05	0.07	0.02	0.16	0.05	0.02	0.11
	20~30	0.51	0.46	0.51	0.06	0.51	0.46	0.5	0.52	0.51	0.32	0.19	0.47	0.51	0.12	0.33
	30~40	0.36	0.54	0.36	0.85	0.36	0.41	0.27	0.27	0.36	0.24	0.67	0.27	0.36	0.34	0.27
	40 ~ inf	0.09	0	0.09	0.06	0.09	0.09	0.12	0.1	0.09	0.37	0.11	0.1	0.09	0.52	0.29
saturation	0~25	0	0	0	0	0	0	0	0	0	0	0	0.01	0	0	0
	25~50	0.01	0	0.01	0	0.01	0.01	0.05	0.11	0.01	0.04	0.02	0.06	0.01	0	0.02
	50~75	0.03	0	0.03	0	0.03	0.04	0.08	0.13	0.03	0.18	0	0.12	0.03	0.05	0.03
	75~100	0.07	0	0.07	0.06	0.07	0.08	0.13	0.28	0.07	0.37	0.07	0.34	0.07	0.07	0.2
	100~125	0.34	0.33	0.34	0.36	0.34	0.3	0.22	0.36	0.34	0.34	0.65	0.33	0.34	0.19	0.27
	125~150	0.54	0.63	0.54	0.58	0.54	0.56	0.42	0.11	0.54	0.06	0.26	0.08	0.54	0.17	0.32
	150~175	0.02	0.04	0.02	0	0.02	0.02	0.1	0	0.02	0	0	0.05	0.02	0.31	0.17
	175~inf	0	0	0	0	0	0	0	0	0	0	0	0.01	0	0.21	0
llumination•	0~25	0	0	0	0	0	0	0	0	0	0	0	0	0	0.01	0
	25~50	0	0	0	0	0	0	0	0	0	0	0	0.05	0	0	0.05
	50~75	0.01	0	0.01	0.06	0.01	0.02	0.02	0.01	0.01	0.01	0	0.23	0.01	0.05	0.08
	75~100	0.04	0	0.04	0.09	0.04	0.04	0.08	0.14	0.04	0.12	0	0.4	0.04	0.44	0.17
	100~125	0.16	0	0.16	0.18	0.16	0.13	0.24	0.38	0.16	0.22	0.05	0.23	0.16	0.35	0.24
	125~150	0.45	0.67	0.45	0.48	0.45	0.56	0.51	0.26	0.45	0.3	0.12	0.09	0.45	0.14	0.3
	150~175	0.34	0.33	0.34	0.18	0.34	0.24	0.14	0.2	0.34	0.33	0.84	0.01	0.34	0	0.12
	175~inf	0.01	0	0.01	0	0.01	0.01	0	0.01	0.01	0.01	0	0	0.01	0.01	0.05

人脸维度的图片属性分布

从人脸维度来说,在其他人脸维度正常的情况下:

眼睛,眼睛睁开对比度分布为86%正常,饱和度分布为96%正常,亮度分布为98%正

常;眼睛闭合对比度分布为 100%正常,饱和度分布为 100%正常,亮分布为 100%正常。即使眼睛闭合的数据比较少,但眼睛睁开和闭合在对比度,饱和度,亮的分布大致一致,故眼睛维度变化时,图片属性维度不会对识别率和 roc 曲线造成影响。同理,**头发遮挡**维度和**嘴**巴维度变化时,图片属性维度均不会造成影响。

角度,从对比度来说,俯视,小角度,正脸,仰视的弱对比度:正常对比度:强对比度 约为 1: 8: 1,但是大角度时,却有接近 4 成的照片处于强对比度;从饱和度来说,正脸和 仰视 95%以上都是正常饱和度,小角度和大角度的弱饱和度:正常饱和度约为 2: 8;从亮 度来说,所有角度的亮度 97%均处于正常。分析角度与对比度,角度与饱和度之间有一定的 相关关系,故在角度维度变化时,对比度和饱和度不能全部取正常情况。

光照,从对比度来说,均匀光照(弱光和正常光),其弱对比度:正常对比度:强对比度约为 1:8:1,而非均匀光照的强对比度所占比例很大;从饱和度来说,均匀弱光的弱饱和度相对于其他光照较多,上下非均匀光照的强饱和度相对于其他光照较多;从亮度来说,均匀弱光的弱亮度相对于其他光照较多。分析有两个原因:一是照片数量相对较少,二是光照与对比度,饱和度和亮度之间存在必然的相关关系,故在光照维度变化时,其照片属性维度不能全部取正常情况。

从图片属性维度来说,在其他图片属性取值正常的情况下:

		contrast							
I	取值	0~20 20~30		30~40	40 ∼ inf				
照	片数	131 944		980	884				
Test样本对	数/正样本对数	400/437	8000/8816	7000/7432	5500/5593				
0110	1	0.99	0.96	0.95	0.95				
eye	2	0.01	0.04	0.05	0.05				
hair	1	0.99	0.98	0.94	0.91				
Hall	2	0.01	0.02	0.06	0.09				
mouth	1	0.92	0.79	0.73	0.77				
mouth	2	0.08	0.21	0.27	0.23				
	1~3	0.15	0.14	0.08	0.03				
	4	0.31	0.22	0.21	0.22				
angle	5	0.18	0.38	0.36	0.13				
	6	0.35	0.24	0.31	0.59				
	7~9	0.01	0.02	0.04	0.02				
	1	0.34	0.2	0.15	0.1				
liabt	2	0.59	0.68	0.69	0.6				
light	3	0.02	0.02	0.04	0.2				
	4	0.06	0.09	0.12	0.1				

对比度的人脸维度分布

对比度,眼睛,头发遮挡比例接近于 19: 1,嘴巴比例接近于 3: 1,此三人脸维度分布比较一致。对于角度来说,正脸和小角度在对比度 20~40 较多,但弱对比度和强对比度时,大角度却更多,说明对比度和角度有一定的相关关系;而光照在对比度的不同取值情况下,分布比较一致,这里不能表现对比度和光照之间的相关关系。

		saturation							
E	取值	0~25	25 ~ 50	50~75	75 ~ 100	100 ~ 125	125 ~ 150	150 ~ 175	175 ~ inf
照	片数	3	105	234	499	812	616	88	28
Test样本对数/正样本对数		0/0	250/290	500/567	1900/1937	5000/5142	4000/4632	100/117	8//9
eye	1	1	1	0.95	0.98	0.95	0.94	0.94	0.82
	2	0	0	0.05	0.02	0.05	0.06	0.06	0.18
hair	1	1	0.97	0.92	0.97	0.96	0.92	0.99	0.93
	2	0	0.03	0.08	0.03	0.04	0.08	0.01	0.07
mouth	1	1	0.95	0.86	0.82	0.75	0.68	0.88	0.82
	2	0	0.05	0.14	0.18	0.25	0.32	0.12	0.18
	1~3	0.33	0.07	0.03	0.04	0.06	0.13	0.15	0
	4	0	0.28	0.21	0.25	0.21	0.15	0.16	0.18
angle	5	0.67	0.03	0.09	0.13	0.31	0.49	0.51	0.71
	6	0	0.63	0.67	0.56	0.38	0.19	0.17	0.07
	7~9	0	0	0	0.02	0.05	0.03	0.01	0.04
light	1	0	0.63	0.65	0.33	0.14	0.04	0.07	0.21
	2	1	0.33	0.29	0.53	0.73	0.81	0.28	0
	3	0	0.04	0.02	0.02	0.02	0.06	0.41	0.79
	4	0	0	0.04	0.12	0.11	0.08	0.24	0

饱和度的人脸属性分布

饱和度,眼睛,头发遮挡比例接近于 19: 1,嘴巴比例接近于 8: 2,此三个人脸维度分布比较一致。对于角度来说,饱和度在 125 一下大角度的比较多,饱和度在 125 以上正脸较多,说明饱和度和角度有一定的相关关系;而光照在饱和度小于 75 的情况下,均匀弱光照比较多,在饱和度 75~150,均匀正常光比较多,在饱和度 150 以上,却是上下非均匀光比较多,这里说明饱和度和光照有一定的相关关系。

		illumination							
取值 照片数 Test样本对数/正样本对数		0 ~ 25	25 ~ 50	50~75	75 ~ 100	100 ~ 125	125 ~ 150	150 ~ 175	175 ~ inf
		0	3	71	319	379	732	585	26
		0/0	0/0	80/87	750/780	1000/1182	5000/5192	5000/5573	10//14
eye	1	0	1	0.96	0.96	0.94	0.95	0.97	0.96
	2	0	0	0.04	0.04	0.06	0.05	0.03	0.04
hair	1	0	0.67	0.86	0.97	0.92	0.94	0.97	1
	2	0	0.33	0.14	0.03	0.08	0.06	0.03	0
mouth	1	0	1	0.79	0.83	0.81	0.68	0.75	0.85
mouth	2	0	0	0.21	0.17	0.19	0.32	0.25	0.15
	1~3	0	0	0.04	0.05	0.09	0.12	0.05	0
	4	0	0.67	0.24	0.26	0.27	0.17	0.16	0.19
angle	5	0	0	0.54	0.37	0.31	0.39	0.24	0.19
Ū	6	0	0.33	0.17	0.31	0.32	0.3	0.48	0.62
	7~9	0	1	0.01	0.01	0.02	0.02	0.08	0
	1	0	0	0.58	0.51	0.25	0.06	0.02	0.04
light	2	0	0	0.1	0.3	0.46	0.8	0.89	0.65
	3	0	0	0.2	0.15	0.12	0.02	0	0.04
	4	0	0	0.13	0.03	0.17	0.12	0.09	0.27

亮度的人脸属性分布

亮度,0~50 的照片比较少,不予考虑。眼睛比例接近于 19:1,头发遮挡比例接近于 9:1,嘴巴比例接近于 3:1,此三个人脸维度分布比较一致。对于角度来说,亮度在 50~150,角度分布约为 1:2:3:3:1,亮度 150 以上,反而是大角度比较多一些。对于光照来说,亮度小于 100 的均匀弱光较多,亮度大于 100 的均匀正常光比较多,说明亮度与光照有必然的相关关系。

数据分布结论:眼睛,头发遮挡,嘴巴与对比度,饱和度,亮度之间无明显的相关关系,

并且分布比较一致,故相互之间不会对识别率和 ROC 曲线造成影响;角度,光照与对比度,饱和度,亮度之间有比较明显的相关关系,故在某一维度变化的时候,另一方面维度不能取正常情况。综合上述关系和数据量的综合考虑,在做 rank-n 识别率和 ROC 分析时,人脸维度某一维度变化时,仅控制其他人脸维度正常,图片属性某一维度变化时,也仅控制其他图片属性正常。

2. 测试结果分析

2.1.人脸角度

2.1.1. 编号约定

- ↓ [1-3): 人脸俯视一定角度
- 4: 人脸向左/右侧小角度(约 30 度)
- ♣ 5: 人脸正视
- ▲ 6: 人脸向左/右侧大角度(约60度)
- ♣ [7-8): 人脸仰视一定

2.1.2. Rank n 曲线

本次采集的人脸数据共 80 类,我们针对每种维度下的识别情况绘制了前 rank n 的曲线如上图。

- → 正面的人脸识别率非常高,在 rank 0 就取得了最高的识别率,并且随着 rank n 的增大 并没有显示提升
- ◆ 仰视的人脸照片在前 rank 3 识别率并没有小角度高,但随着 rank n 的增大,识别率显著提升,甚至在 rank 21 左右接近于 1

↓ 俯视的人脸照片识别率不高,大角度的识别率最低

2.1.3. Distractor n 曲线

针对每种维度,我们采用了添加 distractor 的方法进行识别测试,一共测试了 distractor 为 0, 10, 100, 1000, 10000 的情况,当 distractor 数据源不足时,我们从其它数据集(如 MegaFace)上抽取了部分照片,并绘制如下曲线。

上图上左边为 rank0 下不同的 distractor 的识别率曲线,右边为 rank10 下不同的 distractor 识别率曲线。

- ♣ 随着 distractor 的增加,正面角度影响并不明显,其它维度明显下降
- ♣ Rank 10 的 accuracy 普遍好于 rank 0

2.1.4. ROC 曲线

我们从数据集中抽取了一定数量的正样本对与负样本对,根据不同的 threshold 来分类识别结果,并绘制对应的 ROC 网线。

- → 正面和小角度的 precision 与 sensitivity 均较好,并且差别不大
- ♣ 仰视识别情况要好于俯视,大角度的识别情况最差

2.2. 环境灯光

2.2.1. 编号约定

♣ 1: 弱光

♣ 2: 正常光照

♣ 3: 单侧光

♣ 4: 顶光

2.2.2. Rank n 曲线

- ♣ 正常光照在 rank0 时识别较高,但弱光在 rank20 左右反超正常光照
- → 顶光在这次测试中 accuracy 达到 1,可能是由于样本数量的问题(样本分布为: 163, 360, 86, 66)
- 单侧光在 rank0 时识别率最低,在 rank5 左右接近于 1

2.2.3. Distractor n 曲线

- ↓ 正常光照识别率一直保持较高
- ➡ 弱光识别情况与正常光基本一致,识别率略低
- ▲ 单侧光照识别率较低
- → 顶光在 distractor 为 10 之后开始急速下降,说明 distractor=0 时可能包含了大量的噪声

2.2.4. ROC 曲线

↓ 正常光照识别最差(可能是由于数据分布不理想)

2.3. 头发遮挡

2.3.1. 编号约定

♣ 1: 无遮挡

♣ 2: 有遮挡

2.3.2. Rank n 曲线

- ▲ 由于其它维度均正常,遮挡对识别率的影响不大
- ↓ 样本分布为(360,33), 因此出现遮挡 accuracy=1 的情况

2.3.3. Distractor n 曲线

2.3.4. ROC 曲线

2.4. 眼睛张开与闭合

2.4.1. 编号约定

- ▲ 1: 眼睛张开
- ♣ 2: 眼睛闭合

2.4.2. Rank n 曲线

▲ 在其它维度正常的情况下,眼睛张开与闭合对识别影响不大

♣ 样本分布为(360,24), 因此出现眼睛闭合时 accuracy=1

2.4.3. Distractor n 曲线

◆ 眼睛张开识别情况整体优于眼睛闭合

2.4.4. ROC 曲线

2.5.嘴巴张开与闭合

2.5.1. 编号约定

4 1: 嘴巴闭合

♣ 2: 嘴巴张开

2.5.2. Rank n 曲线

- ▲ 相对于遮挡、眼睛维度,嘴巴维度的影响更大一些
- ▲ 嘴巴闭合时识别率均优于嘴巴张开
- → 数据分布为(360,172),相对于遮挡、眼睛维度,此维度分析结果更具有可信度

2.5.3. Distractor n 曲线

2.5.4. ROC 曲线

➡ 嘴巴闭合识别较差,与 rank n/distractor n 反而不一致(可能是由于数据分布不理想)

2.6.对比度

2.6.1. 编号约定

♣ 0-20: 对比度为 0-20

▲ 20-30: 对比度为 20-30

→ 30-40: 对比度为 30-40

♣ 40-inf: 对比度为40以上

2.6.2. Rank n 曲线

- ➡ 对比度在 30-40 时 rank0 取得了最好的 accuracy, 0-20 时最差
- ↓ 随着 n 的增加 20-40 之间 accuracy 基本一致,40 以上的对比度照片 accuracy 增加不少

2.6.3. Distractor n 曲线

♣ 30-40 对比度优于 20-30,优于 40+, 0-20 最差

2.6.4. ROC 曲线

▲ rank n/distractor n 显示 30-40 对比度识别较好,但 ROC 曲线中并没有明显差别

2.7. 照片亮度

2.7.1. 编号约定

- ♣ 25-50: 亮度为 25-50
- ♣ 50-75: 亮度为 50-75
- ♣ 75-100: 亮度为 75-100
- ♣ 100-125: 亮度为 100-125
- ▲ 125-150: 亮度为 125-150
- ▲ 150-175: 亮度为 150-715
- ♣ 175-inf: 亮度为 175 以上

2.7.2. Rank n 曲线

- 175 以上的亮度在 rank0 时识别情况最好, 25-50 最差, 但 25-50 在 rank3 时突然 accracy=1, 而 175 以上的亮度在 rank6 时 accuracy=1
- → 亮度整体识别情况: (175+)>(50-75)>(125-150)>(100-125)>(150-175)>(75-100)>(25-50)
- ◆ 25-50 的样本数量为 3,50-75 样本数量为 71,175+样本数量为 26

2.7.3. Distractor n 曲线

2.7.4. ROC 曲线

- ▲ 175+与 50-75 的识别非常理想
- ↓ 100-125 与 125-150 之间的识别情况比较接近
- ◆ 75-100 与 150-175 之间识别情况比较接近

2.8. 饱和度

2.8.1. 编号约定

- ▲ 25-50: 饱和度为 25-50
- ♣ 50-75: 饱和度为 50-75
- ♣ 75-100: 饱和度为 75-100
- ▲ 100-125: 饱和度为 100-125
- ▲ 125-150: 饱和度为 125-150
- ▲ 150-175: 饱和度为 150-175
- **↓** 175-inf: 饱和度为 175 以上

2.8.2. Rank n 曲线

→ 175 以上饱和度识别率最高,在 rank10 之前的整体识别情况为: 175+>(150-175)>(125-150)>(100-125)>(75-100)>(50-75)>(25-50),可以看出,饱和度越大,识别率越高

2.8.3. Distractor n 曲线

2.8.4. ROC 曲线

- ↓ 175 以上的样本对为 8: 8, 因此出现了 tpr=1, fpr=1 的理想情况
- ▲ 饱和度越高,识别情况越好,规律非常理想

3. 小结

场景因素的分析是一个十分难以精确掌控的过程,为了分析单一因素对算法识别情况的 影响,需要采集大量其它因素正常、被分析的维度分布多样化的数据集。数据集的获取是一 个十分困难的过程,很难得到理想且数据量丰富的照片资源。

我们尽可能地构建了一个单一维度变化的分析环境,通过参考标准的 MegaFace 数据集分析方法,我们选取了 rank n、distractor n 和 ROC 曲线来分析维度对识别结果的影响。Rank n 和 distractor n 曲线仅作为一个参考曲线,ROC 曲线比较全面反映了算法的识别性能。通过计算 ROC 曲线的面积 AUC 与最佳工作点 Distance 可以有效的衡量算法在数据集上的性能。

分析结果总体来讲与我们的直观感觉基本吻合,例如侧脸大角度时识别率急速下降,正常光照时识别情况最好。但是通过客观的分析,我们得出了一些不那么好理解的结论,如弱光对识别的影响并不大,睁开眼睛也并不会提升多大识别率,这些结论也许不会有多大的意义,但至少可以让我们更理性地认识整个系统。

下面列出了一些不那么直观的结论:

- 1. 侧脸小角度识别情况非常接近正面,仰视识别率要高于俯视,大角度的识别率最差
- 2. 弱光对识别影响并不大,顶光对识别是有提升的
- 3. 头发遮挡、眼睛张开与闭合对识别结果的影响存在,但并不明显
- 4. 嘴巴闭合时识别情况要更好
- 5. 对比度在 30-40 时识别情况最好,但影响并不大
- 6. 亮度在 175+与 50-75 时识别最好
- 7. 饱和度越大,识别情况越好

另外,我们也发现了三个矛盾的结论,在灯光、嘴巴张开情况与对比度分析中,ROC 曲线的结论反而与前面的结论不一致,有可能是数据集不理想导致。