Представления групп

Определение 1 Представление ρ группы G в линейном пространстве V — отображение групп $G \to GL(V)$, где GL(V) — группа обратимых линейных преобразований пространства V.

Определение 2 *Отображение* представлений группы G (сплетающий оператор) ρ_1 и ρ_2 в пространствах V_1 и V_2 — линейное отображение $f:V_1\to V_2$, такое что

$$f(\rho_1(g)v) = \rho_2(g)f(v)$$
 для всех $g \in G$, $v \in V_1$.

Определение 3 Пусть K — поле, G — группа. Групповая алгебра (групповое кольцо) K[G] — кольцо с единицей [e], составленное формальными линейными комбинациями вида

$$x_1[g_1] + \dots + x_k[g_k], \quad x_i \in K, \quad g_i \in G,$$

с умножением, заданным на образующих формулой $[g_1][g_2] = [g_1g_2].$

Предложение 1 Пространство любого представления G над полем K является K[G]-модулем, u, наоборот, всякий K[G]-модуль получается из представления G.

Kроме того, всякое отображение представлений G является отображением соответствующих K[G]-модулей, u, наоборот, всякое отображение K[G]-модулей является отображением соответствующих представлений G.

Доказательство: Элементы K[G] действуют на представлениях G линейными комбинациями соответствующих операторов. И наоборот, на всяком K[G]-модуле базисные элементы [g] действуют обратимыми операторами, образующими представление группы.

Условие на отображение K[G]-модулей сильнее, чем на отображение соответствующих представлений G, но его достаточно проверить на элементах вида [g].

Дальнейшие определения также параллельны определениям для модулей.

Определение 4 *Прямая сумма представлений* $\rho_1 \oplus \rho_2$ — представление в прямой сумме соответствующих пространств прямыми суммами операторов.

Определение 5 *Подпредставлением* называется подпространство, инвариантное относительно действия группы.

Другими словами, подпредставление — подпространство, само являющееся представлением.

Предложение 2 Ядро и образ сплетающих операторов — подпредставления.

Определение 6 Представление называется *неприводимым*, если у него нет нетривиальных подпредставлений.

Докажем, что для конечной группы G и поля достаточно большой характеристики всякое представление разлагается в прямую сумму неприводимых.

Определение 7 Пусть V_1 — подпространство линейного пространства V. Тогда линейное отображение $P:V\to V$ называется *проектором* на V_1 , если $P|_{V_1}=Id$, и образ P совпадает с V_1 .

Это означает, в частности, что $V=V_1\oplus\ker P$. При этом $P^2=P$, и всякий оператор с таким свойством является проектором на свой образ.

Теорема 1 (Машке) Пусть группа G — конечна u |G| не делится на характеристику поля. Тогда всякое конечномерное представление G изоморфно прямой сумме неприводимых.

Доказательство: Построим инвариантный проектор на подпредставление. Пусть V_1 — подпредставление V, P—некоторый проектор на V_1 . Положим

$$P_{inv} = \frac{1}{|G|} \sum_{g \in G} \rho(g)^{-1} \circ P \circ \rho(g).$$

Заметим, что P_{inv} — проектор на V_1 . Действительно, образ каждого слагаемого принадлежит V_1 , и на элементах V_1 оператор тождественен. Кроме того, P_{inv} — сплетающий оператор:

$$P_{inv} \circ \rho(h) = \frac{1}{|G|} \sum_{g \in G} \rho(g)^{-1} \circ P \circ \rho(gh) = \frac{1}{|G|} \sum_{u \in G} \rho(u(h^{-1}))^{-1} \circ P \circ \rho(u) = \rho(h) \circ P_{inv}$$

для всех $h \in G$.

Значит, V изоморфно прямой сумме подпредставлений V_1 и $\ker f$. Индукция по размерности завершает доказательство.

Пример. Двумерное представление группы \mathbb{Z} , в котором элемент $n \in \mathbb{Z}$ действует матрицей $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ не распадается в прямую сумму подпредставлений так как содержит единственное одномерное подпредставление — первый базисный вектор. Этот же пример работает для $\mathbb{Z}/n\mathbb{Z}$ при n делящимся на характеристику поля.

Предложение 3 Пусть V_1 , V_2 — неприводимые представления G. Тогда если $\dim \operatorname{Hom}_G(V_1,V_2) \neq 0$, то $V_1 \cong V_2$.

Доказательство: Пусть $f: V_1 \to V_2$ — ненулевой сплетающий оператор. Тогда $\ker f \neq V_1$ и $\operatorname{Im} f \neq 0$. В силу неприводимости V_1 и V_2 это означает, что $\ker f = 0$, $\operatorname{Im} f = V_2$, а значит f — изоморфизм.

Это утверждение можно усилить для алгебраически замкнутого поля.

Лемма 1 (Лемма Шура) Пусть поле алгебраически замкнуто, V_1 , V_2 — неприводимые представления G. Тогда размерность пространства сплетающих операторов

$$\dim \operatorname{Hom}_G(V_1,V_2) = \left\{ \begin{array}{ll} 1 & V_1 \cong V_2 \\ 0 & \textit{uhave} \end{array} \right.$$

Доказательство: Вычислим $\dim \mathrm{Hom}_G(V,V)$ для неприводимого представления V. Пространство $\mathrm{Hom}_G(V,V)$ содержит одномерное подпространство скаляров $\{\lambda Id\}$. Пусть f — произвольный сплетающий оператор, тогда операторы $f - \lambda Id$ — тоже сплетающие. Но в силу алгебраической замкнутости для некоторого λ имеем $\ker(f - \lambda Id) \neq 0$. Значит, поскольку любой ненулевой сплетающий оператор — изоморфизм, $f = \lambda Id$.

Определение 8 *Лево-регулярное* представление конечной группы. Пусть $G = \{g_1, \dots, g_n\}$. Рассмотрим |G|—мерное пространство R с базисом $\{e_{g_i}\}$ и действием $\rho_L(g)e_h = e_{gh}, g, h \in G$.

Определение 9 *Право-регулярное* представление конечной группы. Аналогично рассмотрим пространство R' с базисом $\{e'_{g_i}\}$ и действием $\rho_R(g)e'_h=e'_{h(g^{-1})},\ g,h\in G.$

Предложение 4 $\mathit{Omoбражениe}\;e_g o e_{g^{-1}}$ задаёт изоморфизм представлений ρ_R и $\rho_L.$

Лемма 2 Пусть ρ — конечномерное представление группы G в пространстве V . Тогда $\dim \operatorname{Hom}_G(\rho_L, \rho) = \dim \operatorname{Hom}_G(\rho_R, \rho) = \dim V$.

Доказательство: Вектор e_e или e'_e можно перевести в произвольный вектор $v \in V$, при этом образ базисного вектора $e_g = \rho_L(g)e_e$ однозначно задастся как $\rho(g)v$, а образ $e_g = \rho_R(g^{-1})e_e$ однозначно задастся как $\rho(g^{-1})v$. Легко проверить, что это будет отображение представлений.

Теорема 2 В условиях Теоремы Машке всякое неприводимое представление ρ в пространстве V входит в регулярное c кратностью $\dim V/\dim \operatorname{Hom}_G(\rho,\rho)$.

Доказательство: Действительно, если $\rho_L \cong \rho^{\oplus n} \oplus \dots$, то dim $\operatorname{Hom}_G(\rho_L, \rho) = n \operatorname{dim} \operatorname{Hom}_G(\rho, \rho)$, откуда по Лемме 2 получается требуемая формула.

Следствие 1 $\Pi y cm \circ Irrep_K(G)$ — множество неприводимых представлений G над полем K c точностью до изоморфизма. Тогда имеет место равенство

$$||G| = \sum_{(\rho, V) \in Irrep_K(G)} (\dim V)^2 / \dim \operatorname{Hom}_G(\rho, \rho),$$

в частности для алгебраически замкнутого поля |G| равно сумме квадратов размерностей неприводимых представлений.

Определение 10 Двойственное представление ρ^* — представление в двойственном пространстве, такое что $\rho^*(g) = \rho(g^{-1})^*$.

Определение 11 *Тензорное произведение* представлений $\rho_1 \otimes \rho_2$ — представление в тензорном произведении соответствующих пространств посредством тензорного произведения операторов.

Определение 12 Пусть ρ — представление группы G в пространстве V. Тогда nodnpocmpancmso инвариантов $\rho^G \subset V$ — множество векторов $v \in V$, таких что $\rho(g)v = v$ для всех $v \in V$.

Предложение 5 Пусть ρ_1 , ρ_2 — конечномерные представления группы G. Имеет место изоморфизм векторных пространств $\operatorname{Hom}_G(\rho_1,\rho_2)\cong \left(\rho_1^*\otimes \rho_2\right)^G$.

Доказательство: Изоморфизм строится так: элемент $\sum \phi_i \otimes v_i \in V_1^* \otimes V_2$ соответствует отображению, переводящему $u \in V_1$ в $\sum \phi_i(u)v_i \in V_2$. Прямая проверка показывает, что это — отображение представлений.

Комплексные неприводимые представления

Для комплексного векторного пространства тоже есть аналог положительно определённого скалярного произведения, но для этого придётся отказаться от билинейности.

Определение 13 Эрмитова форма на комплексном векторном пространстве V — отображение $V \times V \to \mathbb{C}$, такое что

- 1) $(x_1u_1 + x_2u_2, v) = x_1(u_1, v) + x_2(u_2, v)$ для $u_1, u_2, v \in V, x_1, x_2 \in \mathbb{C}$;
- 2) $(u,v) = \overline{(v,u)}$, в частности $(v,v) \in \mathbb{R}$,
- 3) $(v,v) \ge 0$, причём (v,v) = 0 только для v = 0.

При этом из 1) и 2) следует, что $(u, x_1v_1 + x_2v_2) = \overline{x_1}(u, v_1) + \overline{x_2}(u, v_2)$.

Определение 14 Оператор называется *унитарным*, если он сохраняет эрмитово скалярное произведение: (Av, Au) = (v, u). Группа унитарных операторов на пространстве V обозначается U(V), а также U_n , если $\dim V = n$.

Определение 15 Вещественное/комплексное представление называется *ортогонализуемым/унитаризуемым*, если на нём существует скалярное произведение, такое что группа действует ортогональными/унитарными операторами.

Пемма 3 Всякое вещественное/комплексное представление конечной группы ортогонализуемо/унитаризуемо.

Доказательство: Инвариантное скалярное произведение строится так. Пусть (,) — некоторое скалярное произведение. Тогда положим

$$(v_1, v_2)_{inv} = \sum_{g \in G} (\rho(g)v_1, \rho(g)v_2).$$

Легко проверить, что $(,)_{inv}$ инвариантно и положительно определено.

Предложение 6 Всякое ортогонализуемое/унитаризуемое конечномерное представление группы (не обязательно конечной) изоморфно прямой сумме неприводимых.

Доказательство: Для всякого подпредставления $V_1 \subset V$ имеет место изоморфизм представлений $V \cong V_1 \oplus V_1^{\perp}$, где V_1^{\perp} — ортогональное дополнение к V_1 относительно инвариантного скалярного произведения. Индукция по размерности завершает доказательство.

Пусть ρ — комплексное представление конечной группы G в пространстве V. Зафиксируем эрмитово скалярное произведление на V, после чего выберем ортонормированный базис в пространстве V и обозначим $\rho^{ij}(g)$ матрицу оператора $\rho(g)$ в этом базисе. Полученный набор функций на группе ρ^{ij} назовем матричными элементами представления. В матричном виде унитарность запишется так: $\rho^{ij}(g^{-1}) = \overline{\rho^{ji}}$.

Введём эрмитову форму на функциях на G так:

$$\langle f_1, f_2 \rangle = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}.$$

Теорема 3 Пусть ρ_1 , ρ_2 — неизоморфные неприводимые представления конечной группы G в пространствах V_1, V_2 . Тогда для их матричных элементов выполнено $\left< \rho_1^{i_1 j_1}, \rho_2^{i_2 j_2} \right> = 0, \left< \rho_{\alpha}^{i_1 j_1}, \rho_{\alpha}^{i_2 j_2} \right> = \frac{1}{\dim V_{\alpha}} \delta_{i_1 i_2} \delta_{j_1 j_2}$.

Доказательство: Пусть $F: V_1 \to V_2$ — произвольное отображение. Тогда, аналогично (1),

$$F_{inv} = \frac{1}{|G|} \sum_{g \in G} \rho_2(g^{-1}) \circ F \circ \rho_1(g)$$

сплетающий оператор.

Пусть $F = E_{j_1j_2}$ — матричная единица $((E_{ab})^{ij} = 1$ при i = a, j = b и нулю в остальных случаях). Тогда

$$(E_{j_1j_2})_{inv}^{i_1i_2} = \frac{1}{|G|} \sum_{g \in G} \rho_2^{j_2i_2}(g^{-1}) \rho_1^{i_1j_1}(g) = \frac{1}{|G|} \sum_{g \in G} \rho_2^{i_2j_2}(g) \rho_1^{i_1j_1}(g) = \left\langle \rho_1^{i_1j_1}, \rho_2^{i_2j_2} \right\rangle.$$

Поскольку V_1 не изоморфно V_2 , по лемме Шура $(E_{j_1j_2})_{inv}=0$, откуда следует первое утверждение теоремы. Пусть теперь $V_1=V_2=V$. Тогда по лемме Шура всякий сплетающий оператор — скаляр. Чтобы вычислить скаляр $(E_{j_1j_2})_{inv}$ заметим, что

$$\operatorname{tr} F_{inv} = \frac{1}{|G|} \sum_{g \in G} \operatorname{tr} \left(\rho(g)^{-1} \circ F \circ \rho(g) \right) = \frac{1}{|G|} \sum_{g \in G} \operatorname{tr} F = \operatorname{tr} F,$$

а значит, tr $(E_{j_1j_2})_{inv} = \delta_{j_1j_2}$ и $(E_{j_1j_2})_{inv} = \frac{1}{\dim V} \delta_{j_1j_2}$. Отсюда следует второе утверждение теоремы.

Недостаток матричных элементов — зависимость от базиса.

Определение 16 Характером представления ρ группы G называется функция $\chi_{\rho}: G \to \mathbb{C}$, сопоставляющая элементу $g \in G$ число $\operatorname{tr} \rho(g)$.

Следствие 2 Характеры неприводимых представлений конечной группы ортонормированы относительно скалярного произведения \langle , \rangle .

Предложение 7 Для комплексных представлений группы G имеют место равенства:

$$\chi_{\rho_1 \oplus \rho_2} = \chi_{\rho_1} + \chi_{\rho_2}, \qquad \chi_{\rho_1 \otimes \rho_2} = \chi_{\rho_1} \chi_{\rho_2}, \qquad \chi_{\rho^*} = \overline{\chi_{\rho}}.$$

Доказательство: Первые два равенства следуют из того, что $\operatorname{tr}(A \oplus B) = \operatorname{tr}(A) + \operatorname{tr}(B), \operatorname{tr}(A \otimes B) = \operatorname{tr}(A) \cdot \operatorname{tr}(B).$ Третье равенство следует из того, что в ортогональном базисе для матрицы унитарного оператора выполнено $A^{-1} = \overline{A^T}.$

Вычислим другим способом количество неприводимых комплексных представлений конечной группы. Определение 17 Функция $f: G \to \mathbb{C}$ называется *центральной*, если f(ab) = f(ba) для $a, b \in G$.

Предложение 8 Функция на группе центральна если и только если она постоянна на классах сопряженности группы G (то есть $f(ghg^{-1}) = f(h)$).

Доказательство: Достаточно положить $a = gh, b = g^{-1}$.

Так как след зависит только от класса сопряженности матрицы, характеры представлений — центральные функции. Докажем, что характеры неприводимых представлений образуют базис в пространстве центральных функций.

Лемма 4 Пусть f — центральная функция, ρ —неприводимое представление в пространстве V. Тогда оператор

$$\rho(f) = \sum_{g \in G} f(g)\rho(g) -$$

скаляр $\frac{|G|}{\dim V} \langle f, \chi_{\rho} \rangle$.

Доказательство: Во первых, этот оператор — сплетающий:

$$\rho(h)^{-1}\rho(f)\rho(h) = \sum_{g \in G} f(g)\rho(h^{-1}gh) = \sum_{u \in G} f(huh^{-1})\rho(u) = \rho(f),$$

то есть $\rho(f)\rho(h)=\rho(h)\rho(f)$. Значит, по лемме Шура $\rho(f)$ — скаляр. Вычислим его.

$$\operatorname{tr} \rho(f) = \sum_{g \in G} f(g) \operatorname{tr} \rho(g) = |G| \langle f, \chi_{\rho} \rangle,$$

a $\rho(f) = \frac{\operatorname{tr} \rho(f)}{\dim V}$.

Теорема 4 Характеры образуют ортонормированный базис в пространстве центральных функций.

Доказательство: Во-первых, характеры неприводимых представлений линейно независимы так как они ортонормированы (если $v = \sum x_i v_i = 0$, то $x_i = (v, v_i) = 0$).

Предположим теперь, что характеры неприводимых представлений не порождают пространство центральных функций. Значит найдется ненулевая центральная функция f, ортогональная всем таким характерам. Тогда $\rho(f)=0$ для любого неприводимого представления, а значит, в силу теоремы Машке, для любого представления.

Но в регулярном представлении

$$(\rho_R(f))(e_h) = \sum_{g \in G} f(g)e_{gh},$$

что равно нулю только если f(g) = 0 для всех $g \in G$.

Следствие 3 Количество неприводимых комплексных представлений конечной группы G равно количеству классов сопряжённости G.

 $\begin{subarray}{ll} \emph{Доказательство}: \ \mbox{Размерность пространства центральных функций равно количеству классов сопряжённости <math>C$