FÍSICA 1 RELATÓRIO PRÁTICA 4 EXPERIMENTO:

LANÇAMENTO HORIZONTAL E OBLÍQUO DE UM PROJÉTIL

UERJ – UNIVERSIDADE ESTADUAL DO RIO DE JANEIRO

Professor: Daniel Barci.

Data: 15/09/2022.

Alunos: Alexandre Maia Martins Filho.

Kaylan Rocha Freitas Rosa.

Luiz Vitor Gomes Fortunato.

Sumário

Objetivo:	3
Material:	
Introdução Teórica:	
Experimento – Lançamento Horizontal e Oblíquo de um Projétil:	
Procedimento Experimental:	4
Medidas:	4
Cálculos:	4
Marcações:	5
Conclusão:	6

Objetivo:

Prever o alcance de uma bola lançada obliquamente com um lançador de projéteis. A velocidade inicial da bola é determinada atirando-a horizontalmente e medindo o alcance da bola e a altura do lancador.

Material:

- Lançador de Projéteis.
- Bola de Metal.
- Prumo.
- Morsa de fixação.
- Papel Carbono.
- Papel Branco.
- Trena, metro ou régua.
- Fita adesiva.

Introdução Teórica:

Para prever onde uma bola cairá no chão quando for arremessada do lançador em algum ângulo acima da horizontal, primeiro é necessário determinar a velocidade inicial (velocidade de saída) da bola. Isso pode ser determinado atirando a bola horizontalmente a partir do lançador e medindo as distâncias vertical e horizontal que a bola percorre. A velocidade inicial pode ser usada para calcular onde a bola cairá quando a bola for lançada em um ângulo acima da horizontal.

Velocidade de Lançamento Horizontal

Para uma bola lançada horizontalmente com (módulo de) velocidade inicial v0, a distância horizontal percorrida pela bola é dada por $x=v_0.t$, onde t é o tempo que a bola está no ar. (Desprezamos o atrito do ar). A distância vertical da bola é a distância que ela desce no tempo t dada por $y=\frac{g.t^2}{2}$. A velocidade inicial pode ser determinada medindo x e y. O tempo de voo, t, da bola pode ser encontrado usando $t=\sqrt{\frac{2y}{g}}$ e a velocidade horizontal inicial pode ser encontrada usando $v_0=\frac{x}{t}$.

Lançamento Oblíquo

Para prever o alcance horizontal, x, de uma bola lançada com uma velocidade inicial de módulo v_0 , em um ângulo, θ , acima da horizontal, primeiro preveja o tempo de voo a partir da equação para o movimento vertical:

$$y = y_0 + v_0 . sen(\theta).t - \frac{g.t^2}{2}$$

onde y_0 é a altura inicial da bola e y é a posição da bola quando ela atinge o chão. Em outras palavras, resolva a equação quadrática para t e então use $x=v_0.\cos(\theta)$, onde $v_0.\cos(\theta)$ é a componente horizontal da velocidade inicial.

Experimento – Lançamento Horizontal e Oblíquo de um Projétil:

Procedimento Experimental:

O processo laboratorial consiste em utilizar-se de um disparador em nível de potência 1 para na primeira amostragem executar 10 disparos no ângulo paralelo ao horizonte e assim atingir um pedaço de papel carbono a uma distância prevista e a partir destes 10 registros de distâncias, calcular a velocidade de lançamento média.

Utilizando-se da velocidade média de lançamento, conseguimos construir um modelo de previsão de alcance para a bola mesmo com uma variação de ângulo, em nosso caso o ângulo escolhido foi 45 graus. Logo com essa previsão somada aos dados medidos experimentalmente posteriormente conseguimos mensurar um índice de acurácia para nossas estimativas.

Medidas:

Experimento 4		Experimento 4	
Lançamento Horizont	al de um Projétil	Lançamento Oblíquo de um Projétil	
Posição Inicial Folha	Distância(cm)	Posição Inicial Folha	Distância(cm)
53cm	70,5	100 cm	115,3
	70,4		115,7
	69		115,9
	71,3		116,5
	74,8		116,7
	75,3		117,3
	71,4		116,4
	73,8		117,4
	71,4		118,5
	73,9		117,3

Cálculos:

Médias dos experimentos:

$$\langle M_1 \rangle = 72,18 cm$$

 $\langle M_2 \rangle = 116,70 cm$

Incerteza medições:

$$\delta M = 0.05cm$$

Desvio padrão do segundo experimento:

$$\sigma_{M2} = 0.9$$

Utilizando a fórmula citada acima para obter o tempo do primeiro experimento:

$$< t_1 > = 2,28s$$

Com esse tempo determinamos a velocidade do disparo:

$$\langle V_1 \rangle = \langle V_2 \rangle = \langle V \rangle = 31,65 \text{ cm/s}$$

Em seguida, através da velocidade que é a mesma para os dois experimentos, determinamos o tempo para segundo experimento:

$$< t_2 > = 5,43s$$

Com esse tempo prevemos o alcance para o segundo experimento:

$$< D_2 > = 121,52cm$$

Valores Experimentais:

$$\begin{split} M_{1exp} &= (72,18\,\pm 0,05)\,cm\\ M_{2exp} &= (116,70\pm 0,05)\,cm\\ D_{2exp} &= (121,52cm\pm 0,05)\,cm \end{split}$$

Análise dos dados:

$$< M_2 > + \sigma_{M2} = 117,6$$

 $< M_2 > - \sigma_{M2} = 115,8$

Dos 10 lançamentos do segundo experimento, seis estão pertencem ao intervalo.

Erro percentual:

$$\frac{\mid M_{2exp} - \mid D_{exp} \mid}{D_{exp}}$$
 . 100 = 3,96%

Marcações:

Conclusão:

Com os dados óbitos através de nossos cálculos estipulamos em média um alcance de 121,52cm, em contrapartida os dados mensurados empiricamente se traduziram em 116,70cm o que nos revelou um erro percentual de 3,96. Durante nossas medições, nós nos atentamos a manter os instrumentos quase perfeitamente calibrados, fazendo desde fixar o disparador à mesa através de uma morsa a verificar o ângulo de disparo a cada disparo feito utilizando tanto o plumo do disparar quanto um nível eletrônico. Logo consideramos as medidas consistentes. Contudo nossa principal hipótese levantada para o erro, foi possivelmente o atrito com o ar, que foi desconsiderado em nossa determinação calculada.