DSC 40B Theoretical Foundations II

Lecture 10 | Part 1

News

Midterm 01

- Midterm 01 grades released.
- Remember: redemption exam at end of the quarter.
- Recap video with solutions/explanations will be posted soon.

DSC 40B Theoretical Foundations II

Lecture 10 | Part 2

Graphs

Data Types

- Feature vectors
 - We care about attributes of individuals.

- Graphs
 - We care about relationships between individuals.

Example: Facebook

Example: Twitter

Definition

A directed graph (or digraph) *G* is a pair (*V*, *E*) where *V* is a finite set of nodes (or vertices) and *E* is a set of ordered pairs (the edges).

Example:

$$V = \{a, b, c, d\}$$

 $E = \{(a, c), (a, b), (d, b), (b, d), (b, b)\}$

Directed Graphs (More Formally)

E is a subset of the Cartesian product, $V \times V$.

Example:

```
\{a, b, c\} \times \{1, 2\} =
```

Consequences

Because the edge set of a directed graph is allowed to be *any* subset of $V \times V$:

- the edges have directions.
 - ▶ e.g., (*a*, *b*) is "from *a* to *b*"
- can have "opposite" edges.
 - e.g., (*a*, *b*) and (*b*, *a*).
- can have "self-loops"
 - e.g., (a, a)

Definition

An undirected graph G is a pair (V, E) where V is a finite set of nodes (or vertices) and E is a set of unordered, distinct pairs (the edges).

Example:

$$V = \{a, b, c, d\}$$

 $E = \{\{a, c\}, \{a, b\}, \{d, b\}\}$

Undirected Graphs (More Formally)

An edge in an undirected graph is a set $\{u, v\}$ where $u \neq v$. This has consequences:

- the edges have no direction.
 - e.g., {a, b} is **not** "from" a "to" b.
- cannot have "opposite" edges.
 - \triangleright e.g., $\{a, b\}$ and $\{b, a\}$ are the same.
- cannot have "self-loops"
 - e.g., {a, a} is not a valid edge

Notational Note

Although edges in undirected graphs are sets, we typically write them as pairs: (u, v) instead of $\{u, v\}$.

Summary

- Edges have direction:
 - Directed: yes
 - Undirected: no
- \triangleright Self-loops, (u, u)?
 - Directed: yes
 - Undirected: no
- \triangleright Opposite edges, (u, v) and (v, u)?
 - Directed: yes
 - Undirected: no (they are the same edge)

Note

Neither directed nor undirected graphs can have duplicate edges¹

¹There are other definitions which allow duplicate edges.

Note

Graphs don't need to be "connected"²

²There are other definitions which allow duplicate edges.

Exercise

What is the greatest number edges possible in a **directed** graph?

Counting Edges

What is the greatest number edges possible in a **directed** graph?

Exercise

What is the greatest number edges possible in an **undirected** graph?

Counting Edges

What is the greatest number edges possible in an **undirected** graph?

Degree

The **degree** of a node in an undirected graph is the number of edges containing that node.

In-Degree/Out-Degree

The **in-degree** of a node in an directed graph is the number of edges **entering** that node.

The **out-degree** of a node in an directed graph is the number of edges **leaving** that node.

The **degree** of a node in a directed graph is the in-degree + out-degree.

Examples

Neighbors

Definition: in an undirected graph, the set of **neighbors** of a node *u* is the set of all nodes which share an edge with *u*.

Predecessors

Definition: in an directed graph, the set of predecessors of a node *u* is the set of all nodes which are at the **start** of an edge **entering** *u*.

Successors

Definition: in an directed graph, the set of **successors** of a node *u* is the set of all nodes which are at the **end** of an edge **leaving** *u*.

A Convention

In a directed graph, the **neighbors** of *u* are the **successors** of *u*.

DSC 40B Theoretical Foundations II

Lecture 10 | Part 3

Paths

Example

- Consider a graph of direct flights.
- Each node is an airport.
- Each edge is a direct flight.
- Should the graph be directed or undirected?

Example

Example

- Can we get from San Diego to Columbus?
- Not with a single edge.
- But with a path.

Definition

A path from u to u' in a (directed or undirected) graph G = (V, E) is a sequence of one or more nodes $u = v_0, v_1, ..., v_k = u'$ such that there is an edge between each consecutive pair of nodes in the sequence.

Path Length

Definition: The **length** of a path is the number of nodes in the sequence, minus one. Paths of length zero are possible!

Examples

Examples

Note

Paths can go through the same node more than once!

Simple Paths

Definition: A **simple path** is a path in which every node is unique.

Reachability

Definition: node v is **reachable** from node u if there is a path from u to v.

Reachability and Directedness

- ▶ If *G* is undirected, reachability is symmetric.
 - ightharpoonup If u reachable from v, then v reachable from u.
- ► If *G* is directed, reachability is **not** symmetric.
 - ► If *u* reachable from *v*, then *v* may/may not be reachable from *u*.

Important Trivia

In any graph, any node is **reachable** from **itself**.

DSC 40B Theoretical Foundations II

Lecture 10 | Part 4

Connected Components

Connectedness

A graph is **connected** if every node *u* is reachable from every other node *v*. Otherwise, it is **disconnected**.

Equivalent: there is a path between every pair of nodes.

Connected Components

A **connected component** is a maximally-connected set of nodes.

I.e., if G = (V, E) is an undirected graph, a connected component is a set $C \subset V$ such that

- ▶ any pair $u, u' \in C$ are reachable from one another; and
- if $u \in C$ and $z \notin C$ then u and z are not reachable from one another.

Exercise

What are the connected components?

$$V = \{0, 1, 2, 3, 4, 5, 6\}$$

$$E = \{(0, 2), (1, 5), (3, 1), (2, 4), (0, 4), (5, 3)\}$$

What are the connected components?

$$V = \{0, 1, 2, 3, 4, 5, 6\}$$

$$E = \{(0, 2), (1, 5), (3, 1), (2, 4), (0, 4), (5, 3)\}$$

DSC 40B Theoretical Foundations II

Lecture 10 | Part 5

Adjacency Matrices

Representations

- How do we store a graph in a computer's memory?
- Three approaches:
 - 1. Adjacency matrices.

 - Adjacency lists.
 "Dictionary of sets"

Adjacency Matrices

- ► Assume nodes are numbered 0, 1, ..., |V| 1
- ► Allocate a |V| × |V| (Numpy) array
- Fill array as follows:

 - arr[i,j] = 1 if (i,j) ∈ E arr[i,j] = 0 if (i,j) \notin E

Observations

▶ If *G* is undirected, matrix is symmetric.

▶ If *G* is directed, matrix may not be symmetric.

Time Complexity

degree(i) np.sum(adj[i,:]) $\Theta(|V|)$

time

 $\Theta(1)$

		•	
operation	codo		
operation	code		

edge query adj[i,j] == 1

Space Requirements

- ▶ Uses $|V|^2$ bits, even if there are very few edges.
- But most real-world graphs are sparse.
 - They contain many fewer edges than possible.

Example: Facebook

Facebook has 2 billion users.

```
(2 \times 10^9)^2 = 4 \times 10^{18} bits
= 500 petabits
\approx 6500 years of video at 1080p
\approx 60 copies of the internet as it was in 2000
```

Adjacency Matrices and Math

- Adjacency matrices are useful mathematically.
- Example: (i, j) entry of A^2 gives number of hops of length 2 between i and j.

DSC 40B Theoretical Foundation II

Lecture 10 | Part 6

Adjacency Lists

What's Wrong with Adjacency Matrices?

- Requires $Θ(|V|^2)$ storage.
- Even if the graph has no edges.
- Idea: only store the edges that exist.

Adjacency Lists

- Create a list adj containing |V| lists.
- adg[i] is list containing the neighbors of node i.

Observations

- ► If *G* is undirected, each edge appears twice.
- ▶ If *G* is directed, each edge appears once.

Time Complexity

operation	cc	ode		time
edge query	j		adj[i]	Θ(degree(i))

degree(i) $len(adj[i]) \Theta(1)$

Space Requirements

- ▶ Need $\Theta(|V|)$ space for outer list.
- ▶ Plus $\Theta(|E|)$ space for inner lists.
- ► In total: $\Theta(|V| + |E|)$ space.

Example: Facebook

- Facebook has 2 billion users, 400 billion friendships.
- If each edge requires 32 bits:

```
(2 \text{ bits} \times 200 \times (2 \text{ billion}))
```

- $= 64 \times 400 \times 10^9$ bits
- = 3.2 terabytes
- = 0.04 years of HD video

DSC 40B Theoretical Foundation II

Lecture 10 | Part 7

Dictionary of Sets

Tradeoffs

- Adjacency matrix: fast edge query, lots of space.
- Adjacency list: slower edge query, space efficient.
- Can we have the best of both?

Idea

Use hash tables.

- Replace inner edge lists by sets.
- Replace outer list with dict.
 - Doesn't speed things up, but allows nodes to have arbitrary labels.

Time Complexity

degree(i) len(adj[i]) $\Theta(1)$ average

operation	code	time
edge query	j in adj[i]	Θ(1) average

Space Requirements

- ightharpoonup Requires only $\Theta(E)$.
- But there is overhead to using hash tables.

Dict-of-sets implementation

- ► Install with pip install dsc4ograph
- Import with import dsc40graph
- Docs: https://eldridgejm.github.io/dsc40graph/
- Source code: https://github.com/eldridgejm/dsc40graph
- Will be used in HW coding problems.