

程序那些事 www.flydean.com

	HotSpot JVM可用GC类型	
年轻代回收算法	老年代回收算法	GC启用参数
Serial(DefNew))	Serial Mark Sweep Compact(PSOldGen)	-XX:+UseSerialGC
Parallel scavenge(PSYoungGen)	Serial Mark Sweep Compact(PSOldGen)	-XX:+UseParallelGC(默认)
Parallel scavenge(PSYoungGen))	Parallel Mark Sweep Compact(ParOldGen)	-XX:+UseParallelOldGC(随- XX:+UseParallelGC开启)
Parallel(ParNew))	Serial Mark Sweep Compactt(PSOldGen)	-XX:+UseParNewGC(随- XX:+UseConcMarkSweepGC开启)
Serial(DefNew))	Concurrent Mark Sweep	-XX:-UseParNewGC - XX:+UseConcMarkSweepGC
Parallel(ParNew))	Concurrent Mark Sweep	-XX:+UseParNewGC - XX:+UseConcMarkSweepGC
G1(Garbage First)		-XX:+UseG1GC

GC日志ì	洋情
VM参数	
-verbose:gc -XX:+PrintGCPrint	打印基本的GC信息
-XX:+PrintGCDetails	
-XX:+PrintGCTimeStamps	打印GC事件的timestamps
-XX:+PrintGCDateStamps	以date stamps的形式打印GC事件
-XX:+PrintReferenceGC	STW阶段打印reference processing
-XX:+PrintGCCause	添加 GC 的原因
-XX:+PrintAdaptiveSizePolicy	 输出自适应的分代大儿
-XX:+PrintPromotionFailure	输出promotion失败的信息
-XX:+PrintGCApplicationStoppedTime	显示应用程序在安全点停止的时间
-XX:+PrintGCApplicationConcurrentTime	是应用程序在不停止的情况下工作的时间,即 两个连续安全点之间的时间

GC日元	
VM参数	说明
-Xloggc:filename	将GC日志输出到文件
-XX:ErrorFile=filename	GC错误日志重定向
-XX:LogFile=path	JVM日志重定向
-XX:+UseGCLogFileRotation	开启滚动的GC日志
-XX:GCLogFileSize=512m	GC日志文件的最大值
-XX:NumberOfGCLogFiles=5	GC日志文件的个数
其他GCE	∃志信息
-XX:+PrintTLAB	输出TLAB信息
-XX:+PrintPLAB	输出PLAB信息
-XX:+PrintOldPLAB	输出old space的PLAB信息
-XX:+PrintGCTaskTimeStamps	输出GC work thread task的timestamps
-XX:+PrintHeapAtGC	GC的heap信息
-XX:+PrintHeapAtSIGBREAK	接收到signal的时候的heap信息
-XX:+PrintClassHistogramAfterFullGC	full GC后的class直方图信息
-XX:+PrintClassHistogramBeforeFullGC	full GC之前的class直方图信息

th /=	.1. 2円 車が
	小响 <u>整</u> 说明
VIVI参数	况叨
-Xmnsize	young gen的初始化和最大值
-XX:NewSize	young gen的初始化大小
-XX:MaxNewSize	young gen的最大值
-Xmssize -XX:InitialHeapSize=size	heap的初始值
-Xmxsize -XX:MaxHeapSize	heap的最大值
-Xsssize -XX:ThreadStackSize	Thread stack siz
-XX:MaxDirectMemorySize=size	设置NIO的最大direct-buffer siz
-XX:ConcGCThreads=threads	concurrent GC的线程个数
-XX:+DisableExplicitGC	禁止显式调用System.gc
-XX:InitialSurvivorRatio=ratio	survivor space相对Eden的比例
-XX:MaxMetaspaceSize=size	元数据区域的最大大/
-XX:MetaspaceSize=size	首次触发GC的class元数据区域大小
-XX:NewRatio=ratio	young和old区域的大小比率
-XX:SurvivorRatio=ratio	eden和survivor大小的比率
-XX:+UseAdaptiveSizePolicy	使用自适应的分代大小策略
-XX:CompressedClassSpaceSize=1g	compressed class space大/
-XX:InitialCodeCacheSize=256m	codeCache的初始化大/
-XX:ReservedCodeCacheSize=512m	codeCache的最大大小
-XX:MaxDirectMemorySize=2g	NIO direct buffer的最大值
, , , , , , , , , , , , , , , , , , ,	2

	Thread配置	
VM参数	说明	
-XX:TLABSize=size		TLAB的初始大小
-XX:+UseTLAB		开启TLAB
-XX:+ResizeTLAB		允许JVM对TLAB进行调整
-XX:MinTLABSize=64k		最小TLAB大小

G1调优参数

说明

设置预留空闲内存百分比,以降低内存溢出的风险

一个混合收集周期中包含多少次混合收集

heap区域的大小

停止使用对象指针压缩

打印allocated objects的信息

VM参数

-XX:G1HeapRegionSize=32m

-XX:G1MixedGCCountTarget=8

-XX:G1ReservePercent=10

-XX:-UseCompressedOops

-XX:G1HeapWa	stePercent=10	设置浪费的堆内存百分比,	当可回收百分比小于浪费百分比时,JVM就不会启动混合垃圾收
-XX:MaxGCPau	seMillis=500		GC的最大暂停时间
		VM通用参数	
	VM参数		说明
-XX:ObjectAlignr	mentInBytes=alignment	t	Java对象的对其字节大小
-XX:-UseBiasedL	ocking.		禁止使用偏向锁

通用GC参数	
VM参数	说明
-Xnoclassgc	禁用classes的GC
-XX:ActiveProcessorCount=x	
-XX:+AggressiveHeap	开启java heap优化
-XX:+AlwaysPreTouch	在main方法执行之前将所有的page都加载到heap中
-XX:InitiatingHeapOccupancyPercent=percent	触发GC的heap使用比例
-XX:MaxGCPauseMillis=time	最大的GC暂停时间
-XX:MaxHeapFreeRatio=percent	GC之后最大的Heap释放比例
-XX:MinHeapFreeRatio=percent	GC之后最小的Heap释放比例
-XX:TargetSurvivorRatio=percent	young GC之后Survivor的目标比例
-XX:+ScavengeBeforeFullGC	在fullGC之前运行youngGC
-XX:StringDeduplicationAgeThreshold=threshold	字符串去重的最小Age数
-XX:+UseStringDeduplication	———————————————————— 开启字符串去重

GC并编	发线程控制
VM参数	说明
-XX:ParallelGCThreads=threads	设置STW的垃圾收集线程数
-XX:+ParallelRefProcEnabled	开启并发reference processing
-XX:+UseGCOverheadLimit	OutOfMemoryError之前JVM在GC上使用 的时间比例
-XX:ConcGCThreads = n	设置并行标记线程的数量
Young s	pace tenuring
-XX:InitialTenuringThreshold=8	设置保有年龄阀值,就是一个对象多少age 之后会被升级到old space
-XX:MaxTenuringThreshold=15	最大的保有年龄阈值
-XX:PretenureSizeThreshold=2m	超出该阈值,对象将会被直接分配到old space
-XX:+AlwaysTenure	将young space中的survivor对象直接提升 到old space

	MS初始化参数
VM参数	说明
-XX:+UseCMSInitiatingOccupancyOnly	只是用设定的回收阈值,如果不指定,JVM仅在第一次使用设 定值,后续则自动调整.
-XX:CMSInitiatingOccupancyFraction=70	设定CMS在对内存占用率达到70%的时候开始GC
-XX:CMSBootstrapOccupancy=50	用于触发CMS收集bootstrap统计信息的比率
-XX:CMSTriggerRatio=70	触发CMS的最小的Heap free比率
-XX:CMSTriggerInterval=60000	定期触发CMS收集
CMS	Stop the world调优
-XX:CMSWaitDuration=30000	CMS被触发后,等待下一次年轻代执行标记的时间
-XX:+CMSScavengeBeforeRemark	在CMS GC前启动一次ygc,目的在于减少old gen对ygc gen 的引用
-XX:+CMSScheduleRemarkEdenSizeThreshold	Eden使用比率小于该值,则不会触发remark
-XX:CMSScheduleRemarkEdenPenetration=20	触发remark的Eden使用比率

CMS并发参数		
VM参数	说明	
-XX:+CMSParallelInitialMarkEnabled	是否开启parallel initial mark	
-XX:+CMSParallelRemarkEnabled	是否开启parallel rmark	
-XX:+CMSParallelSurvivorRemarkEnabled	是否开启Survivor的parallel remark	
-XX:+CMSConcurrentMTEnabled	并发阶段是否使用多线程	
ON 102円 14 分	\ \(\subset \text{\text{\$\subset\$}}\)	

CMS	调试参数
VM参数	说明
-XX:PrintCMSStatistics=1	输出CMS的统计信息
-XX:+PrintCMSInitiationStatistics	输出CMS初始化信息
-XX:+CMSDumpAtPromotionFailure	promotion失败后,dump old generation的 状态
-XX:+CMSPrintChunksInDump	打印free chunks的信息

-XX:+CMSPrintObjectsInDump