Avaliação da originalidade cromática de aplicativos

Objetivo

Desenvolver um módulo de avaliação da originalidade cromática de apps usando técnicas clássicas de visão computacional e redes neurais convolucionais.

Conjunto de dados

148 Screenshots de aplicativos criados com App Inventor

- -80% treino
- 20% validação
- formato png

- dimensões 1080 x 1920

- cor RGB

Abordagem clássica

Extração

Extrai o dicionário de frequência de cores RGB agrupando cores similares com a medida ΔΕ76.

cor	pctg
(255, 255, 255)	65.5%
(100, 149, 237)	35%
(100, 149, 80)	0.01%

Transformação

Transforma o espaço de cor RGB para CIE LAB

Truncamento

Trunca a quantidade (até 10) e porcentagem de cores (maior que 0.1%)

cor	pctg
(100, 0.0007, 0.0003)	
(61.9, 9.344, -49.293)	35%
(100, 149, 80)	0.00%
	

Otimização combinatória. Identificação de correspondência par-a-par de cores por meio do algoritmo húngaro usando a métrica ΔΕ2000.

Atribuição do valor de similaridade (query vs. comparação)

 $SIM_{query \ vs. \ comp} = \Sigma \{ [((pctg_{query} - pctg_{comp})*0.55 + \Delta E2000(cor_{query}, cor_{comp})*1.5] * pctg_{query}*0.01 \}$

Interpretação

Entrada: similaridades entre a tela guery vs. telas de comparação Saída: três classes (nada original; mais ou menos original; original)

Resultados	
Classificador	Acurácia
Random Forest	80,00%
Support Vector Classifier	76,67%
Decision Tree Classifier	70,00%
Multinomial Naive Bayes	50,00%

Abordagem com Deep Learning

Carregamento de redes pré-treinadas ResNet34 e ResNet50

Adaptações e treinamento

Adaptação das camadas de entrada e finais e treinamento com quatro épocas

Resultados sem ajuste fino	
Após quatro épocas	Acurácia
ResNet34	62,06%
ResNet50	75,87%

Descongelamento e ajuste fino

Encontra a taxa de aprendizagem ótima ResNet34 ResNet50

Treinamento da rede

Usando nova taxa de aprendizagem

Resultados com ajuste fino		
Após duas épocas	Acurácia	
ResNet34	58,62%	
ResNet50	72,42%	

Considerações

- Resultados. Técnica clássica apresentou melhores resultados (80,00% vs. 75,87%)
- **Limitações.** Originalidade é um conceito elástico e subjetivo, por isso, para o modelo clássico, optou-se por seguir a definição da literatura baseada em universo de comparação
- Trabalhos futuros. Sugere-se ajustar os pesos da atribuição do valor de similaridade na abordagem clássica e/ou trabalhar com modelos híbridos em deep learning

Código: codigos.ufsc.br/nathalia.alves/visao_computacional Apresentação: https://youtu.be/bN4kGgpUTJs