TEORÍA DE NP-COMPLETITUD

Tecnología Digital V: Diseño de Algoritmos Universidad Torcuato Di Tella

Teoría de NP-completitud

Michael Garey

David Johnson

 M. Garey y D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

Dada una instancia I del problema Π con función objetivo f:

Dada una instancia I del problema Π con función objetivo f:

 \odot Versión de optimización: Encontrar una solución óptima del problema Π para I (de valor mínimo o máximo)

Dada una instancia I del problema Π con función objetivo f:

- \circ Versión de optimización: Encontrar una solución óptima del problema Π para I (de valor mínimo o máximo)
- \odot Versión de evaluación: Determinar el valor de una solución óptima de Π para I.

Dada una instancia I del problema Π con función objetivo f:

- \odot Versión de optimización: Encontrar una solución óptima del problema Π para I (de valor mínimo o máximo)
- \circ Versión de evaluación: Determinar el valor de una solución óptima de Π para I.
- Versión de localización: Dado un número k, determinar una solución factible S de Π para I tal que $f(S) \leq k$ si el problema es de minimización (o $f(S) \geq k$ si el problema es de maximización).

Dada una instancia I del problema Π con función objetivo f:

- O Versión de optimización: Encontrar una solución óptima del problema Π para I (de valor mínimo o máximo)
- O Versión de evaluación: Determinar el valor de una solución óptima de Π para I.
- Versión de localización: Dado un número k, determinar una solución factible S de Π para I tal que $f(S) \le k$ si el problema es de minimización (o $f(S) \ge k$ si el problema es de maximización).
- Versión de decisión: Dado un número k, ¿existe una solución factible S de Π para I tal que $f(S) \le k$ si el problema es de minimización (o $f(S) \ge k$ si el problema es de maximización)?

Dado un digrafo pesado G=(N,A) con longitudes asociadas a sus arcos, y dados dos nodos $s,t\in N$:

 \bigcirc Versión de optimización: Encontrar un camino en G entre s y t de longitud mínima.

Dado un digrafo pesado G = (N, A) con longitudes asociadas a sus arcos, y dados dos nodos $s, t \in N$:

- Versión de optimización: Encontrar un camino en *G* entre *s* y *t* de longitud mínima.
- Versión de evaluación: Determinar la longitud de un camino mínimo en
 G entre s y t (es decir, determinar el valor de la solución óptima).

Dado un digrafo pesado G = (N, A) con longitudes asociadas a sus arcos, y dados dos nodos $s, t \in N$:

- \bigcirc Versión de optimización: Encontrar un camino en G entre s y t de longitud mínima.
- Versión de evaluación: Determinar la longitud de un camino mínimo en
 G entre s y t (es decir, determinar el valor de la solución óptima).
- Versión de localización: Dado un número *k*, encontrar (si existe) un camino en *G* entre *s* y *t* de longitud menor o igual a *k*.

Dado un digrafo pesado G = (N, A) con longitudes asociadas a sus arcos, y dados dos nodos $s, t \in N$:

- Versión de optimización: Encontrar un camino en *G* entre *s* y *t* de longitud mínima.
- Versión de evaluación: Determinar la longitud de un camino mínimo en
 G entre s y t (es decir, determinar el valor de la solución óptima).
- Versión de localización: Dado un número k, encontrar (si existe) un camino en G entre s y t de longitud menor o igual a k.
- Versión de decisión: Dado un número k, ¿existe un camino en G entre s y t con longitud menor o igual a k?

 Para muchos problemas de optimización combinatoria las cuatro versiones son equivalentes: si existe un algoritmo eficiente para una de ellas, entonces existe para todas.

- Para muchos problemas de optimización combinatoria las cuatro versiones son equivalentes: si existe un algoritmo eficiente para una de ellas, entonces existe para todas.
- La clasificación y el estudio se realiza sobre problemas de decisión.

- Para muchos problemas de optimización combinatoria las cuatro versiones son equivalentes: si existe un algoritmo eficiente para una de ellas, entonces existe para todas.
- O La clasificación y el estudio se realiza sobre problemas de decisión.
- O Un problema de decisión tiene respuesta Sí o No.

- Para muchos problemas de optimización combinatoria las cuatro versiones son equivalentes: si existe un algoritmo eficiente para una de ellas, entonces existe para todas.
- O La clasificación y el estudio se realiza sobre problemas de decisión.
- O Un problema de decisión tiene respuesta Sí o No.
- Esto permite uniformizar el estudio, ya que hay problemas que no tienen versión de optimización.

O Definimos un problema dando su entrada y su salida.

O Definimos un problema dando su entrada y su salida.

- 1. Entrada: Una fórmula proposicional f.
- 2. **Salida:** ¿Existe una asignación de valores de verdad a las proposiciones de *f* que hace que *f* sea verdadera?

O Definimos un problema dando su entrada y su salida.

- 1. Entrada: Una fórmula proposicional f.
- 2. Salida: ¿Existe una asignación de valores de verdad a las proposiciones de f que hace que f sea verdadera?
- O Una instancia de un problema es una especificación de sus parámetros.

O Definimos un problema dando su entrada y su salida.

- 1. Entrada: Una fórmula proposicional f.
- 2. Salida: ¿Existe una asignación de valores de verdad a las proposiciones de f que hace que f sea verdadera?
- O Una instancia de un problema es una especificación de sus parámetros.
- \bigcirc Un problema de decisión Π tiene asociado un conjunto D_{Π} de instancias,

O Definimos un problema dando su entrada y su salida.

- 1. Entrada: Una fórmula proposicional f.
- 2. Salida: ¿Existe una asignación de valores de verdad a las proposiciones de f que hace que f sea verdadera?
- O Una instancia de un problema es una especificación de sus parámetros.
- Un problema de decisión Π tiene asociado un conjunto D_{Π} de instancias, y un subconjunto $Y_{\Pi} \subseteq D_{\Pi}$ de instancias cuya respuesta es Sí.

Las clases P y NP

Clase P

Un problema de decisión Π pertenece a la clase P (polinomial determinístico) si existe un algoritmo polinomial que lo resuelve. Esdecir, dada una instancia de Π con respuesta Sí se puede dar un cómputo de longitud polinomial que garantiza que la respuesta es Sí.

Las clases P y NP

Clase P

Un problema de decisión Π pertenece a la clase P (polinomial determinístico) si existe un algoritmo polinomial que lo resuelve. Esdecir, dada una instancia de Π con respuesta Sí se puede dar un cómputo de longitud polinomial que garantiza que la respuesta es Sí.

Clase NP

Un problema de decisión Π pertenece a la clase **NP** (polinomial no-determinístico) si dada una instancia de Π con respuesta **S**í se puede dar un certificado de longitud polinomial que garantiza que la respuesta es **S**í, y esta garantía puede ser verificada en tiempo polinomial.

La clase NP - Conjunto independiente máximo

 Un conjunto independiente en un grafo es un conjunto de vértices que no son vecinos entre sí.

Conjunto independiente máximo (MIS)

- 1. **Entrada:** Un grafo G y un número k ∈ \mathbb{Z}_+ .
- 2. Salida: ¿Existe un conjunto independiente en G de tamaño k o mayor?

La clase NP - Conjunto independiente máximo

- Dados un grafo G = (V, X) y $k \in N$, ¿G tiene un conjunto independiente de tamaño mayor o igual a k?
- Para una instancia con respuesta Sí, podemos exponer $S \subseteq V$ conjunto independiente de G tal que $|S| \ge k$.
- Es posible chequear polinomialmente que *S* cumple estas dos propiedades: ser conjunto independiente de *G* y tener cardinal mayor o igual a *k*.
- Esto demuestra que MIS \in NP.

La clase NP - SAT

- 1. Entrada: Una fórmula proposicional f en forma normal conjuntiva.
- 2. Salida: ¿Existe una asignación de valores de verdad a las proposiciones de f que hace que f sea verdadera?

La clase NP - SAT

- 1. Entrada: Una fórmula proposicional f en forma normal conjuntiva.
- **2. Salida:** ¿Existe una asignación de valores de verdad a las proposiciones de *f* que hace que *f* sea verdadera?
- El certificado que podemos mostrar es una asignación de valores de verdad a las variables que haga verdadera a la expresión f.
- Como es posible verificar en tiempo polinomial que esta expresión es verdad con esos valores de las variables, entonces SAT ∈ NP.

La clase NP - Circuito hamiltoniano

Circuito hamiltoniano

- **1. Entrada:** Un grafo G = (V, E).
- 2. **Salida:** ¿Existe una secuencia i_1, \ldots, i_n de vértices tal que $i_j i_{j+1} \in E$ para $j = 1, \ldots, n-1$, y además $i_n i_1 \in E$?

La clase NP - Circuito hamiltoniano

Circuito hamiltoniano

- **1. Entrada:** Un grafo G = (V, E).
- 2. **Salida:** ¿Existe una secuencia i_1, \ldots, i_n de vértices tal que $i_j i_{j+1} \in E$ para $j = 1, \ldots, n-1$, y además $i_n i_1 \in E$?
- La evidencia que soporta una respuesta positiva es un ciclo hamiltoniano de G.
- Dada un lista de vértices, se puede chequear polinomialmente si define un ciclo hamiltoniano.

La clase NP - TSP

Problema del viajante de comercio (TSP)

- 1. **Entrada:** Un grafo G = (V, E), una función $d : E \to \mathbb{R}$ y $k \in \mathbb{R}$.
- **2. Salida:** ¿Existe un camino hamiltoniano en *G* con distancia menor o igual a *k*?

La clase NP - TSP

Problema del viajante de comercio (TSP)

- **1. Entrada:** Un grafo G = (V, E), una función $d : E \to \mathbb{R}$ y $k \in \mathbb{R}$.
- 2. **Salida:** ¿Existe un camino hamiltoniano en *G* con distancia menor o igual a *k*?
- La evidencia que soporta una respuesta positiva es un ciclo hamiltoniano de G con distancia menor o igual a k.
- Dada una lista de vértices, se puede chequear polinomialmente si define un ciclo hamiltoniano y que la suma de las distancias de las aristas respectivas es menor o igual a k.

P vs NP

Observación

 $P\subseteq NP.$

P vs NP

Observación

 $P \subseteq NP$.

Problema abierto.

Observación

 $P \subseteq NP$.

Problema abierto.

 La pregunta por P = NP apunta a distinguir si computar una solución a un problema es polinomialmente equivalente a verificar la solución de un problema.

Observación

 $P \subseteq NP$.

Problema abierto.

- La pregunta por P = NP apunta a distinguir si computar una solución a un problema es polinomialmente equivalente a verificar la solución de un problema.
- No se sabe si P = NP o si $P \neq NP$. Mientras tanto, se estudian clases de complejidad relativa, comparando la dificultad entre problemas.

Transformaciones polinomiales

O Una transformación o reducción polinomial de un problema de decisión Π' a uno Π es una función polinomial que transforma una instancia I' de Π' en una instancia I de Π tal que I' tiene respuesta Sí para Π' si, y sólo si, I tiene respuesta Sí para Π :

$$I' \in Y_{\Pi'} \iff f(I') \in Y_{\Pi}$$

○ El problema de decisión Π' se reduce polinomialmente a otro problema de decisión Π, Π' ≤ $_p$ Π, si existe una transformación polinomial de Π' a Π.

Transformaciones polinomiales

O Una transformación o reducción polinomial de un problema de decisión Π' a uno Π es una función polinomial que transforma una instancia I' de Π' en una instancia I de Π tal que I' tiene respuesta Sí para Π' si, y sólo si, I tiene respuesta Sí para Π :

$$I' \in Y_{\Pi'} \iff f(I') \in Y_{\Pi}$$

○ El problema de decisión Π' se reduce polinomialmente a otro problema de decisión Π, Π' \leq_p Π, si existe una transformación polinomial de Π' a Π.

Proposición.

Las reducciones polinomiales son transitivas:

si
$$\Pi_1 \leq_p \Pi_2$$
 y $\Pi_2 \leq_p \Pi_3$ entonces $\Pi_1 \leq_p \Pi_3$.

La clase NP-completo

Clase NP-completo

Un problema de decisión Π es **NP-completo** si:

- **1.** Π ∈ NP
- 2. $\forall \bar{\Pi} \in NP, \bar{\Pi} \leq_p \Pi$

La clase NP-completo

Clase NP-completo

Un problema de decisión Π es **NP-completo** si:

- **1.** Π ∈ NP
- 2. $\forall \bar{\Pi} \in NP, \bar{\Pi} \leq_p \Pi$

Si un problema Π verifica la condición 2, decimos que Π es NP-difícil (es al menos tandifícil como todos los problemas de NP).

Problemas NP-completos

Stephen Cook (1939–)

Leonid Levin (1948–)

Teorema (Cook, 1971 – Levin, 1973)

SAT es NP-completo.

 Usando la transitividad de las reducciones polinomiales, a partir de este primer resultado podemos probar que otros problemas son NP-completos.

- Usando la transitividad de las reducciones polinomiales, a partir de este primer resultado podemos probar que otros problemas son NP-completos.
- Si Π es un problema de decisión, podemos probar que Π ∈ NP-completo encontrando otro problema Π_1 que ya sabemos que es NP-completo y demostrando que:

- Usando la transitividad de las reducciones polinomiales, a partir de este primer resultado podemos probar que otros problemas son NP-completos.
- \bigcirc Si Π es un problema de decisión, podemos probar que Π \in NP-completo encontrando otro problema Π_1 que ya sabemos que es NP-completo y demostrando que:
 - 1. $\Pi \in NP$

- Usando la transitividad de las reducciones polinomiales, a partir de este primer resultado podemos probar que otros problemas son NP-completos.
- Si Π es un problema de decisión, podemos probar que Π ∈ NP-completo encontrando otro problema Π_1 que ya sabemos que es NP-completo y demostrando que:
 - 1. $\Pi \in NP$
 - 2. $\Pi_1 \leq_p \Pi$

- Usando la transitividad de las reducciones polinomiales, a partir de este primer resultado podemos probar que otros problemas son NP-completos.
- \bigcirc Si Π es un problema de decisión, podemos probar que Π \in NP-completo encontrando otro problema Π_1 que ya sabemos que es NP-completo y demostrando que:
 - 1. $\Pi \in NP$
 - 2. $\Pi_1 \leq_p \Pi$
- La segunda condición en la definición de problema NP-completo se deriva de la transitividad.

Problemas NP-completos

Richard Karp

- A partir del Teorema de Cook-Levin, Karp demostró en 1972 que otros 21 problemas son NP-completos.
- O Actualmente se conocen más de 3.000 problemas NP-completos!

Problemas NP-completos

3-SAT

Satisfactibilidad (SAT)

- 1. Entrada: Una fórmula proposicional f.
- **2. Salida:** ¿Existe una asignación de valores de verdad a las proposiciones de *f* que hace que *f* sea verdadera?

Satisfactibilidad (SAT)

- 1. Entrada: Una fórmula proposicional f.
- **2. Salida:** ¿Existe una asignación de valores de verdad a las proposiciones de *f* que hace que *f* sea verdadera?

SAT con tres literales por cláusula (3-SAT)

- 1. **Entrada:** Una fórmula proposicional f en forma normal conjuntiva en la que cada cláusula tiene exactamente tres literales.
- 2. **Salida:** ¿Existe una asignación de valores de verdad a las proposiciones de *f* que hace que *f* sea verdadera?

Satisfactibilidad (SAT)

- 1. Entrada: Una fórmula proposicional f.
- **2. Salida:** ¿Existe una asignación de valores de verdad a las proposiciones de *f* que hace que *f* sea verdadera?

SAT con tres literales por cláusula (3-SAT)

- 1. **Entrada:** Una fórmula proposicional f en forma normal conjuntiva en la que cada cláusula tiene exactamente tres literales.
- 2. **Salida:** ¿Existe una asignación de valores de verdad a las proposiciones de *f* que hace que *f* sea verdadera?

Teorema

3-SAT es NP-completo.

Conjunto independiente máximo

Conjunto independiente máximo (MIS)

- **1. Entrada:** Un grafo G y un número $k \in \mathbb{Z}_+$.
- 2. Salida: ¿Existe un conjunto independiente en G de tamaño k o mayor?

Conjunto independiente máximo

Conjunto independiente máximo (MIS)

- **1**. **Entrada:** Un grafo G y un número $k \in \mathbb{Z}_+$.
- 2. **Salida:** ¿Existe un conjunto independiente en *G* de tamaño *k* o mayor?

Teorema

MIS es NP-completo.

Conjunto independiente de peso máximo (MWIS)

- 1. **Entrada:** Un grafo G, pesos $w:V\to\mathbb{R}$ y un número $k\in\mathbb{Z}_+$.
- 2. **Salida:** ¿Existe un conjunto independiente I en G de peso $\sum_{i \in I} w_i$ mayor o igual a k?

Conjunto independiente de peso máximo (MWIS)

- 1. **Entrada:** Un grafo G, pesos $w:V\to\mathbb{R}$ y un número $k\in\mathbb{Z}_+$.
- 2. **Salida:** ¿Existe un conjunto independiente I en G de peso $\sum_{i \in I} w_i$ mayor o igual a k?

Teorema

MWIS es NP-completo.

Conjunto independiente de peso máximo (MWIS)

- 1. **Entrada:** Un grafo G, pesos $w:V\to\mathbb{R}$ y un número $k\in\mathbb{Z}_+$.
- 2. **Salida:** ¿Existe un conjunto independiente I en G de peso $\sum_{i \in I} w_i$ mayor o igual a k?

Teorema

MWIS es NP-completo.

Clique máxima (CLIQUE)

- **1. Entrada:** Un grafo G y un número $k \in \mathbb{Z}_+$.
- **2. Salida:** ¿Existe una clique en *G* de tamaño *k* o mayor?

Conjunto independiente de peso máximo (MWIS)

- 1. **Entrada:** Un grafo G, pesos $w:V\to\mathbb{R}$ y un número $k\in\mathbb{Z}_+$.
- 2. **Salida:** ¿Existe un conjunto independiente I en G de peso $\sum_{i \in I} w_i$ mayor o igual a k?

Teorema

MWIS es NP-completo.

Clique máxima (CLIQUE)

- **1. Entrada:** Un grafo G y un número $k \in \mathbb{Z}_+$.
- **2. Salida:** ¿Existe una clique en *G* de tamaño *k* o mayor?

Teorema

CLIQUE es NP-completo.

Otros problemas NP-completos

Número cromático

- **1. Entrada:** Un grafo G y un número $k \in \mathbb{Z}_+$.
- **2. Salida:** ¿Se puede colorear G con k colores?

Otros problemas NP-completos

Número cromático

- **1. Entrada:** Un grafo G y un número $k \in \mathbb{Z}_+$.
- **2**. **Salida:** ¿Se puede colorear *G* con *k* colores?

Set-partitioning

- 1. Entrada: Un conjunto finito A y una función $s:A\to\mathbb{Z}_+$.
- **2. Salida:** ¿Existe un subconjunto $A' \subseteq A$ tal que $\sum_{a \in A'} s(a) = \sum_{a \in A \setminus A'} s(a)$?

Otros problemas NP-completos

Número cromático

- 1. **Entrada:** Un grafo *G* y un número $k ∈ \mathbb{Z}_+$.
- **2**. **Salida:** ¿Se puede colorear *G* con *k* colores?

Set-partitioning

- **1. Entrada:** Un conjunto finito A y una función $s: A \to \mathbb{Z}_+$.
- 2. **Salida:** ¿Existe un subconjunto $A' \subseteq A$ tal que $\sum_{a \in A'} s(a) = \sum_{a \in A \setminus A'} s(a)$?

Matching 3D

- **1.** Entrada: Un conjunto $M \subseteq A \times B \times C$, donde $|A| = |B| = |C| = q \in \mathbb{Z}$.
- 2. **Salida:** ¿Existe un subconjunto $M' \subseteq M$ tal que |M'| = q y no hay dos elementos de M' que coincidan en alguna coordenada?

- Hasta el momento no se conoce ningún problema en NP-completo ∩ P.
- \bigcirc Tampoco se ha demostrado que exista algún problema en NP\P. En ese caso se probaría que P \neq NP.

- Determinar si P=NP o P≠NP es uno de los problemas del milenio.
- Se trata de uno de los problemas abiertos más importantes de la computación.

 \bigcirc El problema Π es una restricción de un problema $\bar{\Pi}$ si el dominio de Π está incluido en el dominio de $\bar{\Pi}$.

- \bigcirc El problema Π es una restricción de un problema $\bar{\Pi}$ si el dominio de Π está incluido en el dominio de $\bar{\Pi}$.
- \bigcirc Si Π es una restricción de Π , se dice que Π es una extensión o generalización de Π .

- \bigcirc El problema Π es una restricción de un problema $\bar{\Pi}$ si el dominio de Π está incluido en el dominio de $\bar{\Pi}$.
- \bigcirc Si Π es una restricción de $\bar{\Pi}$, se dice que $\bar{\Pi}$ es una extensión o generalización de Π .
- Es intuitivo pensar que cuanto más general es el problema, más difícil es de resolver.

- \bigcirc El problema Π es una restricción de un problema $\bar{\Pi}$ si el dominio de Π está incluido en el dominio de $\bar{\Pi}$.
- \bigcirc Si Π es una restricción de $\bar{\Pi}$, se dice que $\bar{\Pi}$ es una extensión o generalización de Π .
- Es intuitivo pensar que cuanto más general es el problema, más difícil es de resolver.
- Es habitual que un caso particular (restricción) de un problema NP-completo esté en P, pero no se puede dar la situación recíproca, salvo que P=NP.

O 3-SAT es una restricción de SAT. Ambos son problemas NP-completos.

- O 3-SAT es una restricción de SAT. Ambos son problemas NP-completos.
- 2-SAT es una restricción de SAT. 2-SAT es polinomial, mientras que SAT es NP-completo.

- 3-SAT es una restricción de SAT. Ambos son problemas NP-completos.
- 2-SAT es una restricción de SAT. 2-SAT es polinomial, mientras que SAT es NP-completo.
- Coloreo de grafos bipartitos es una restricción de Coloreo. Colorear un grafo bipartito es un problema polinomial, mientras que Coloreo es NP-completo.

- 3-SAT es una restricción de SAT. Ambos son problemas NP-completos.
- 2-SAT es una restricción de SAT. 2-SAT es polinomial, mientras que SAT es NP-completo.
- Coloreo de grafos bipartitos es una restricción de Coloreo. Colorear un grafo bipartito es un problema polinomial, mientras que Coloreo es NP-completo.
- O CLIQUE DE GRAFOS PLANARES es una restricción de CLIQUE. Encontrar una clique máxima de un grafo planar es un problema polinomial (no puede tener a K_5 como subgrafo), mientras que CLIQUE es NP-completo.

Si Π es una restricción de $\bar{\Pi}$, podemos deducir que:

Si Π es una restricción de $\bar{\Pi}$, podemos deducir que:

 \bigcirc Si $\bar{\Pi} \in \mathbf{P}$, entonces $\Pi \in \mathbf{P}$.

Si Π es una restricción de $\bar{\Pi}$, podemos deducir que:

- Si $\bar{\Pi} \in \mathbf{P}$, entonces $\Pi \in \mathbf{P}$.
- Si $\bar{\Pi} \in \mathbf{NP}$, entonces $\Pi \in \mathbf{NP}$.

Si Π es una restricción de $\bar{\Pi}$, podemos deducir que:

- Si $\bar{\Pi} \in \mathbf{P}$, entonces $\Pi \in \mathbf{P}$.
- Si $\bar{\Pi} \in NP$, entonces $\Pi \in NP$.
- \bigcirc Si $\Pi \in NP$ -completo, entonces $\bar{\Pi} \in NP$ -difícil.

 Vimos que circuito hamiltoninano está en la clase NP. Pero consideremos ahora su versión inversa:

- **1. Entrada:** Un grafo G = (V, E).
- **2. Salida:** ¿Es *G* no hamiltoniano?

 Vimos que circuito hamiltoninano está en la clase NP. Pero consideremos ahora su versión inversa:

- **1.** Entrada: Un grafo G = (V, E).
- **2**. **Salida:** ¿Es *G* no hamiltoniano?
- ¿Estará este problema también en NP? No sabemos la respuesta.

 Vimos que circuito hamiltoninano está en la clase NP. Pero consideremos ahora su versión inversa:

- Entrada: Un grafo G = (V, E).
 Salida: ¿Es G no hamiltoniano?
- ¿Estará este problema también en NP? No sabemos la respuesta.
- Hasta el momento, la forma de verificar que un grafo general no tiene un circuito hamiltoniano es listar todas las permutaciones de sus vértices y verificar que ninguna define un circuito.

 Vimos que circuito hamiltoninano está en la clase NP. Pero consideremos ahora su versión inversa:

- Entrada: Un grafo G = (V, E).
 Salida: ¿Es G no hamiltoniano?
- ¿Estará este problema también en NP? No sabemos la respuesta.
- Hasta el momento, la forma de verificar que un grafo general no tiene un circuito hamiltoniano es listar todas las permutaciones de sus vértices y verificar que ninguna define un circuito.
- Este certificado obviamente no es polinomial, por lo tanto no permite mostrar que el problema está en NP.

- \bigcirc Es decir Π^c es el problema de decisión tal que:
 - 1. $D_{\Pi^c} = D_{\Pi}$ y
 - 2. $Y_{\Pi^c} = D_{\Pi} \setminus Y_{\Pi}$

- \bigcirc Es decir Π^c es el problema de decisión tal que:
 - 1. $D_{\Pi^c} = D_{\Pi}$ y
 - 2. $Y_{\Pi^c} = D_{\Pi} \setminus Y_{\Pi}$
- $\bigcirc\,$ ¿Qué otros pares de problemas complementarios se pueden mencionar?

Proposición

Si $\Pi \in P$, entonces $\Pi^c \in P$.

Proposición

Si $\Pi \in P$, entonces $\Pi^c \in P$.

O Este argumento no aplica para la clase NP:

Proposición

Si $\Pi \in P$, entonces $\Pi^c \in P$.

- O Este argumento no aplica para la clase NP:
 - 1. Si un problema Π está en NP no sirve este argumento para demostrar que Π^c está en NP.
 - 2. Más aún, no se sabe si esto es cierto en general.

Proposición

Si $\Pi \in P$, entonces $\Pi^c \in P$.

- O Este argumento no aplica para la clase NP:
 - 1. Si un problema Π está en NP no sirve este argumento para demostrar que Π^c está en NP.
 - 2. Más aún, no se sabe si esto es cierto en general.
- Un problema de decisión pertenece a la clase Co-NP si dada una instancia de No y evidencia polinomial de la misma, puede ser verificada en tiempo polinomial.

Proposición

Si $\Pi \in P$, entonces $\Pi^c \in P$.

- O Este argumento no aplica para la clase NP:
 - 1. Si un problema Π está en NP no sirve este argumento para demostrar que Π^c está en NP.
 - 2. Más aún, no se sabe si esto es cierto en general.
- Un problema de decisión pertenece a la clase Co-NP si dada una instancia de No y evidencia polinomial de la misma, puede ser verificada en tiempo polinomial.

Proposición

Si $\Pi \in NP$, entonces $\Pi^c \in Co-NP$.

Problemas abiertos

Con estas nuevas definiciones tenemos los siguientes problemas abiertos:

- ¿Es P=NP?
- ¿Es Co-NP=NP?
- ¿Es $P=Co-NP \cap NP$?

Las incógnitas...

Dos mapas posibles para las clases de complejidad

Las incógnitas...

Situación si se probara que $P \neq NP, NP \neq Co - NP, P \neq Co - NP \cap NP$

Dado un problema de decisión en NP, tenemos tres posibilidades:

Dado un problema de decisión en NP, tenemos tres posibilidades:

1. Existe un algoritmo polinomial para el problema (y se demuestra encontrando un algoritmo polinomial que lo resuelve).

Dado un problema de decisión en NP, tenemos tres posibilidades:

- 1. Existe un algoritmo polinomial para el problema (y se demuestra encontrando un algoritmo polinomial que lo resuelve).
- El problema es NP-completo (y se demuestra a través de una transformación polinomial desde otro problema NP-completo).

Dado un problema de decisión en NP, tenemos tres posibilidades:

- 1. Existe un algoritmo polinomial para el problema (y se demuestra encontrando un algoritmo polinomial que lo resuelve).
- El problema es NP-completo (y se demuestra a través de una transformación polinomial desde otro problema NP-completo).
- 3. Es un problema abierto!

Dado un problema de decisión en NP, tenemos tres posibilidades:

- 1. Existe un algoritmo polinomial para el problema (y se demuestra encontrando un algoritmo polinomial que lo resuelve).
- El problema es NP-completo (y se demuestra a través de una transformación polinomial desde otro problema NP-completo).
- 3. Es un problema abierto!

¿Qué importancia tiene saber si un problema está en NP-completo desde el punto de vista **teórico**?

 $\bigcirc\,$ Со
Loreo es NP-completo para grafos generales, y también para ...

- Coloreo es NP-completo para grafos generales, y también para ...
 - 1. grafos arco-circulares,
 - 2. grafos que no contienen P_5 como subgrafo inducido,
 - 3. grafos planares (incluso 4-regulares),
 - 4. grafos sin triángulos (incluso para k = 3),
 - 5. etc.

- O Coloreo es NP-completo para grafos generales, y también para ...
 - 1. grafos arco-circulares,
 - 2. grafos que no contienen P_5 como subgrafo inducido,
 - 3. grafos planares (incluso 4-regulares),
 - 4. grafos sin triángulos (incluso para k = 3),
 - 5. etc.
- Coloreo es polinomial para ...
 - 1. grafos arco-circulares propios,
 - 2. cografos (grafos sin P₄ inducidos),
 - 3. grafos de intervalos,
 - 4. grafos cordales,
 - 5. grafos perfectos,
 - 6. grafos sin $K_{1,3}$ inducidos,
 - 7. etc.

Class	coloring	PrExt	μ-col.	(γ, μ) -col.	list-col.
Complete bipartite	P	Р	P	P	NP-c [20]
BIPARTITE	P	NP-c [17]	NP-c [4]	NP-c	NP-c [22]
Cographs	P [13]	P [18]	P [4]	?	NP-c [20]
DISTANCE-HEREDITARY	P [13]	NP-c	NP-c	NP-c	NP-c [20]
Interval	P [13]	NP-c [3]	NP-c	NP-c	NP-c
Unit interval	P	NP-c [23]	?	NP-c	NP-c
SPLIT	P	P [18]	NP-c	NP-c	NP-c
Complete split	P	Р	P	P	NP-c [20]
Trivially perfect	P	Р	P	?	NP-c
THRESHOLD	P	Р	P	?	NP-c
Line of $K_{n,n}$	P [21]	NP-c [8]	NP-c	NP-c	NP-c
Complement of bipartite	P [13]	P [18]	?	?	NP-c [19]
Line of K_n	P [21]	NP-c	NP-c	NP-c	NP-c [22]

¿Qué hacemos si tenemos que resolver **en la práctica** un problema NP-completo?

 Estudiar si no estamos ante una restricción del problema que se pueda resolver en forma eficiente.

- Estudiar si no estamos ante una restricción del problema que se pueda resolver en forma eficiente.
- 2. Analizar si el problema admite un algoritmo pseudopolinomial.

- Estudiar si no estamos ante una restricción del problema que se pueda resolver en forma eficiente.
- 2. Analizar si el problema admite un algoritmo pseudopolinomial.
- Analizar si se puede reducir a un problema NP-completo que tenga solvers eficientes en la práctica, aunque con peor caso exponencial (como SAT o programación lineal entera).

- Estudiar si no estamos ante una restricción del problema que se pueda resolver en forma eficiente.
- 2. Analizar si el problema admite un algoritmo pseudopolinomial.
- Analizar si se puede reducir a un problema NP-completo que tenga solvers eficientes en la práctica, aunque con peor caso exponencial (como SAT o programación lineal entera).
- 4. Analizar si el tamaño de las instancias a resolver permite un enfoque basado en fuerza bruta o backtracking.

- Estudiar si no estamos ante una restricción del problema que se pueda resolver en forma eficiente.
- 2. Analizar si el problema admite un algoritmo pseudopolinomial.
- Analizar si se puede reducir a un problema NP-completo que tenga solvers eficientes en la práctica, aunque con peor caso exponencial (como SAT o programación lineal entera).
- 4. Analizar si el tamaño de las instancias a resolver permite un enfoque basado en fuerza bruta o backtracking.
- 5. Diseñar heurísticas para el problema, tratando de aprovechar su estructura particular.

- Estudiar si no estamos ante una restricción del problema que se pueda resolver en forma eficiente.
- 2. Analizar si el problema admite un algoritmo pseudopolinomial.
- Analizar si se puede reducir a un problema NP-completo que tenga solvers eficientes en la práctica, aunque con peor caso exponencial (como SAT o programación lineal entera).
- 4. Analizar si el tamaño de las instancias a resolver permite un enfoque basado en fuerza bruta o backtracking.
- Diseñar heurísticas para el problema, tratando de aprovechar su estructura particular.
- 6. Analizar si existen algoritmos aproximados para el problema.