Reinforcement Learning Seminar

Boyeon Kim

Department of Mathematics, School of Mathematics and Computing Mathematics Yonsei University

 $May\ 12,\ 2023$

SEIAR Optimal control

- ▶ Previous experiments have shown that for one control, we can find optimal control using reinforcement learning.
- ▶ By introducing a new problem that is one control, we will try to do optimal control in the following two ways.
- ► Goal1 : DQN
- ► Goal2 : PPO

Mathematical models

- ► The influenza model: SEIAR model
- ▶ J.Kim et.al., Constrained optimal control applied to vaccination for influenza, 2016

$$S'(t) = -\beta S(t)\Lambda(t) - \psi \nu(t)S(t)$$

$$E'(t) = \beta S(t)\Lambda(t) - \kappa E(t)$$

$$I'(t) = p\kappa E(t) - \alpha I(t) - \tau I(t)$$

$$A'(t) = (1 - p)\kappa E(t) - \eta A(t)$$

$$R'(t) = f\alpha I(t) + \tau I(t) + \eta A(t) + \psi \nu(t)S(t)$$

Fig. 1. Flow chart for the SEIAR model.

SEIAR model parameters

Parameter	Description	value
ϵ	Infectivity reduction factor for the exposed	0
q	Contact reduction by isolation	0.5
δ	Infectivity reduction factor for the asymptomatic	0.5
p	Fraction of developing symptoms	0.667
κ	Transition rate for the exposed	0.7143 / day
f	Complement to fatality rate (1 - fatality rate)	0.999
α	Recovery rate for the (symptomatic) infective	$0.1667 / \mathrm{day}$
η	Recovery rate for the asymptomatic	0.1667 / day
au	Antiviral treatment rate	0 / day
ψ	Efficacy of vaccination	70%
β	Transmission rate	6.3346e-08
R_0	Basic Reproduction number	1.9

$$ightharpoonup S0 = 5e07, \quad E0 = 0, \quad I0 = 1, \quad A0 = 0, \quad R0 = 0$$

Goal in paper

- ▶ The goal is to minimize the number of people who become infected at a minimal efforts of vaccination.
- ▶ The objective functional is given by

$$J(\nu) = \int_0^T PI(t) + Q\nu^2(t)dt$$

with inequality constraints $0 \le \nu(t) \le 1$, $\nu(t)S(t) \le \nu_{max}$, $z(t) = \int_0^T \nu(t)S(t) \le \nu_{total}$

- $\triangleright \nu_{max}$: The maximum daily vaccination
- $\triangleright \nu_{total}$: Vaccine coverage
- $ightharpoonup z'(t) = \nu(t)S(t)$ z(0) = 0 $z(T) \le \nu_{total}$ $z'(t) \le \nu_{max}$

penalty method

- ightharpoonup The constrained optimal control \rightarrow into unconstrained optimization problems.
- ► The objective penalty function

$$J_{p}(\nu) = \int_{0}^{T} PI(t) + Q\nu^{2}(t) + \mu_{1}(\nu(t)S(t) - \nu_{max})^{2} H_{1}(\nu(t)S(t) - \nu_{max}) + \mu_{2}(z(t) - \nu_{total})^{2} H_{2}(z(t) - \nu_{total}) dt$$

with Heaviside step function

$$H_1(\nu(t)S(t) - \nu_{max}) = \begin{cases} 0 & if \quad \nu(t)S(t) \le \nu_{max} \\ 1 & if \quad \nu(t)S(t) > \nu_{max} \end{cases}$$
$$H_2(z(t) - \nu_{total}) = \begin{cases} 0 & if \quad z(t) \le \nu_{total} \\ 1 & if \quad z(t) > \nu_{total} \end{cases}$$

with
$$z(t) = \int_0^T \nu(t)S(t)dt$$

$$ightharpoonup z'(t) = \nu(t)S(t) \quad z(0) = 0 \quad 0 \le \nu(t) \le 1$$

Reinforcement Learning

Set the environment for DQN

- $\nu_{max} = 5e05(0.01 * S0)$
- $\nu_{total} = 5e06(0.1 * S0)$
- ▶ Observation space : 5 (S, E, I, A, R)
- ► Action space : 2 (0 or 1)
- ► Action
 - \triangleright ν : the number of vaccinated people
 - ightharpoonup action = $0 \rightarrow \nu = 0$
 - ightharpoonup action = 1 $\rightarrow \nu = \nu_{max}$
 - ν (ratio) = ν/ν_{max}
- ► Reward design
 - case1)
 - I ν
 - if sum(ν) > ν_{total} , penalty reward: 10000
 - case2) Similar to the paper
 - ightharpoonup -PI $Q\nu(ratio)^2$
 - if $\nu(ratio) * S(t) > \nu_{max}$, penalty reward: -10000
 - if sum(ν) > ν_{total} , penalty reward: -10000
 - P, Q : proper weight

Gaol1:DQN

SELAR optimal: DQN

► Error

@ (epi) boyeon@gimboyeon-ui-MacBookAir Boyeon % /opt/anaconda3/envs/epi/bin/python /Users/boyeon/research/ezlab-rl/seiar_ppo.py
10% — 49,935/500,000 [0:00:31 < 0:04:39 , 1,615 it/s]
2sh: segmentation fault /opt/anaconda3/envs/epi/bin/python
/opt/anaconda3/envs/epi/Lib/python3.10/multiprocessing/resource_tracker.py:224: UserWarning: resource_tracker: There appear to be 1 leaked semaphore objects to clean up at shutdown
warnings-warning-warning-tracker: There appear to be %d '</pre>

Next

- ▶ Google colab 연동(환경 맞추기)
- ▶ 500,000step까지 작동 확인
- ▶ Reward Design : Case1, Case2 Check!