Nerd Box

Group 11

Charles Nasser, Cesar Ordaz-Coronel, Anthony Bruno

Background

The issue addressed:

- Portable Gaming + Open Source Hardware + Game Creation = One Solution
- Values of a Solution: Educational, Creativity, Enjoyment

Today's Solutions

- High-end solutions = \$\$\$ for individual, Discontinued, moves quickly
- Low-end solutions = Discontinued, sold out, Outdated, other

ArduBoy - Too small form factor

Steam Deck Retail: \$400 starting

Meggy Jr RGB - Outdated HW

Our Approach

Concept of Operations:

- User Input: device buttons, QWIIC (I2C) sensors
- Microcontroller: translates inputs to programmed outputs
- MVP Device Output: Display game animations/graphics
- Device programmed using Arduino IDE or Scratch programming
- USB for charging the battery

<u>Objective:</u> Deliver an open source hardware handheld, programmable gaming console to the video game console market that enables game development/creation and game hardware modification.

Requirements (Approach continued....)

MUSTS:

- Be Handheld, Portable
- Battery Powered
- User Interface (UI)
- Display Response to inputs
- Menu/Navigation
- Programmable for games

SHOULDS:

- Non-button/switch input (motion, CV, etc.)
- 3D Printed Enclosure
- Other non-display outputs (sound, rumble)
- Battery charging

MAYS:

- Memory device for storage of user settings, more memory-heavy games
- Battery Level LED indicators
- Use another monitor to display games on larger displays

Design Overview - L0

Design Overview Continued.... L1

Implementation

- Look at <u>Design Schematics</u>
- Look at Design Board
- Look at <u>Code</u>
- Tools: Arduino IDE, Fusion 360, kiCAD

Look at <u>BOM - Bill of Materials</u>

IP License & Existing Work

License Chosen: <u>Creative Commons Zero V1.0 Universal</u>

Other IP used:

- Based on Arduino Leonardo, Lilypad, Andrew Greenberg's Example schematic (ATmega32U4 μC interface) - For Hardware
- Adafruit library documentation For code
- Based on <u>example game</u> coded in processing Example code reference

Testing

- In Design/Pre-test setup
 - Placement of Test Points (TP), ~ 16 TP
 - Code simple test software (Serial monitor printing, button presses, etc.)
- Assembly Testing
 - Solder [section] + Run with either Bench supply or Battery + measure TPs OR software testing
 - Section Order:
 - device power supply, LiPo charger, Microcontroller, USB, Display/buttons
 - Take video of tests
- Running the Test Plans → <u>Show in the GDrive</u>

Results (for the PROJECT)

What **Worked** for us

• The output of the regulator showed +3V3

Device display showing programmed graphics

• Device PASSED written test plans

What didn't Work well for us

- Bootloader failure → switched to +5V from +3V3
- Display wasn't functioning properly →
 Solder/close some pads on the 2.8" TFT
 display board to use SPI mode

Problem accessing pins in software →
 Fixed pin naming in Arduino IDE

Results (for the TEAM)

What worked for us

 Group communication messaging system (Discord)

 Regular scheduled meetings that fits with our schedules

Checking each other's work

What didn't work so well for us

• Group of 3 (4 is better)

 Working on deliverable assignments day-before due date

Extra meetings, difficult to schedule

Contributions

Lessons Learned

- Communication in a project with a short development time is CRITICAL
- Help check each other's work to verify
- Prototype early, Prototype with better parts

Time Machine - done differently.....

- Add more memory w/ a different microcontroller
- Add more output features such as sound
- Add a battery indicator to the LCD
- Easier interface for users to add their code

Alright..... Let's Demo Demo Video if necessary

Let's look at the Collaboration site <u>Link Here</u>