Getting More from Generalized Linear Mixed Models in R

Sydney Benson and Christina Knudson, PhD
University of St. Thomas, St. Paul, Minnesota
This research was made possible in part by the UST Center for Applied Mathematics

Linear Modeling Techniques

Linear model assumptions:

- Independent responses
- Normally distributed responses
- Responses have equal variances

Generalized linear models assume independent, but not normally distributed responses. Occurs when:

- Log odds of your favorite sports team winning a game (binomial)
- Log mean number of students per class at your university (Poisson or negative binomial)

Linear mixed models assume normally distributed, but not independent responses. Occurs when:

- Repeated measurements on individuals
- Measurements on siblings, parents, relatives

Generalized Linear Mixed Models

Assumes neither independence, nor normally distributed responses. Uses fixed and random effects to account for the differences caused by a changing variable and individual or group fluctuations, respectively.

Parallel Computing in R

- 1. Decide the number of cores to use²
- 2. Make² and register³ cluster
- 3. Import necessary packages, variables and functions²
- 4. Split up calculations among cores^{4, 5}
- 5. Output results from each core
- 6. Close cluster²

Parallel Computing for glmm

The parallel computing process is completed in two separate steps:

- 1. Value of the log-likelihood approximation and gradient vector
- 2. Hessian matrix

Salamander Example

Do salamanders prefer to mate with others from the same location?

- Correlated responses
- Non-normal responses
- Independent, random effects

```
> sal <- glmm(Mate \sim 0 + Cross, random = list( \sim 0 + Female, \sim 0 + Male ), varcomps.names = c( "F" , "M" ), data = salamander, m = 10^4, family.glmm = bernoulli.glmm)
```

Fixed Effects:

	Estimate	Std. Error	z value	Pr(> z)	
CrossR/R	1.4629	0.2720	5.378	7.53e-08	***
CrossR/W	0.3781	0.2527	1.496	0.134612	
CrossW/R	-1.7398	0.3157	-5.512	3.55e-08	***
CrossW/W	1.0345	0.2683	3.857	0.000115	***

Cross	RR	WW	RW	WR
Probability of mating	0.812	0.798	0.584	0.149

Pre-parallelization (1 core): 43.33 minutes Post-parallelization (3 cores): 36.6 minutes

Selected References

- 1. Knudson C. (2015). glmm: Generalized Linear Mixed Models via Monte Carlo Likelihood Approximation. R package version 1.0.2, URL http://CRAN.R-project.org/package=glmm.
- 2. Ripley B., Tierney L., Urbanek S. (2017). *Package 'parallel'* R package version 3.3.1, URL http://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf.
- 3. Microsoft Corporation and Steve Weston (2017). *doParallel: Foreach Parallel Adaptor for the 'parallel' Package*. R package version 1.0.11, URL https://CRAN.R-project.org/package=doParallel.
- 4. Microsoft and Steve Weston (2017). *foreach: Provides Foreach Looping Construct for R*. R package version 1.4.4, URL https://cran.r-project.org/package=foreach.
- 5. Steve Weston and Hadley Wickham (2014). *itertools: Iterator Tools*. R package version 0.1.3, URL https://cran.r-project.org/package=itertools.

For a full list of references, visit

https://github.com/bensonsyd/GLMM/blob/master/Univ St Thomas/R CAM Paper.pdf.