FEDERAL INSTITUTE OF SCIENCE AND TECHNOLOGY $(FISAT)^{TM}$

HORMIS NAGAR, MOOKKANNOOR

ANGAMALY-683577

'FOCUS ON EXCELLENCE'

DATA SCIENCE

LABORATORY RECORD

Name: SARAH C JOJY

Branch: MASTER OF COMPUTER APPLICATION

Semester: 3 Batch: B Roll No: 41

FEDERAL INSTITUTE OF

SCIENCE AND TECHNOLOGY

 $\left(FISAT\right) ^{TM}$

HORMIS NAGAR, MOOKKANNOOR

ANGAMALY-683577

'FOCUS ON EXCELLENCE'

Name : SARAH C JOJY

Branch: MASTER OF COMPUTER APPLICATION

Semester : 3 Roll No: 41

University Exam.Reg. No:

<u>CER</u>	TIFICATE
This is to certify that this is a Bonafide r	record of the Practical work done and submi
	ial fulfillment for the award of the Master O
Computer Applications is a record of the	e original research work done by
SARAH C JOJY in the DATA SCIENCE and Technology during the academic year	E Laboratory of the Federal Institute of Sci ar 2021-2022.
Signature of Staff in Charge	Signature of H.O.D
Name:	Name:
Date:	
Date of University practical examinat	tion
Signature of	Signature of

CONTENT

SI No	Date :	Name of Experiment:	Page No:	Signature of Staff –In – Charge:
1	19/11/2021	Matrix operations (using vectorization) and transformation using python and SVD using Python	1	
2	30/11/2021	Programs using matplotlib / plotly / bokeh / seaborn for data visualisation.	4	
3	26/11/2021	Programs to handle data using pandas	15	
4	07/12/2021	Program to implement k-NN classification using any standard dataset available in the public domain and find the accuracy of the algorithm.	22	
5	14/12/2021	Program to implement Naïve Bayes Algorithm using any standard dataset available in the public domain and find the accuracy of the algorithm	28	
6	04/01/2022	Program to implement linear and multiple regression techniques using any standard dataset available in the public domain and evaluate its performance.	31	
7	14/01/2022	Program to implement text classification using Support vector machine.	34	

8	21/12/2022	Program to implement decision trees using any standard dataset available in the public domain and find the accuracy of the algorithm	38	
9	25/01/2022	Program to implement k-means clustering technique using any standard dataset available in the public domain	40	
10	28/01/2022	Programs on feedforward network to classify any standard dataset available in the public domain	45	
11	28/01/2022	Programs on convolutional neural network to classify images from any standard dataset in the public domain.	47	

<u>AIM</u>

1: Matrix operations(using vectorixation) and transformation using python and SVD

CODE:

```
a = np.arange(0,4).reshape((2,2)) b = np.eye(2)
print(np.dot(a,b)) #Matrix multiplication
```

OUTPUT:

```
[[0. 1.]
[2. 3.]]
```

CODE:

```
x = np.arange(1,10).reshape(3,3) print(x)
```

OUTPUT:

```
[[1 2 3]
[4 5 6]
[7 8 9]]
```

CODE:

#SVD image compresion

```
import matplotlib.pyplot as plt import matplotlib.image
as mpimg import numpy as np

img_eg = mpimg.imread("rose.jpg")
plt.imshow(img_eg)
print(img_eg.shape) #Operation results: (800, 1280,3)

#Converting image data into twodimensional matrix and singular value
decomposition
img_temp = img_eg.reshape(800, 1280 * 3)
U,Sigma,VT = np.linalg.svd(img_temp)

# Take the first 10 singular values sval_nums = 10
img_restruct1 = (U[:,0:sval_nums]).dot(np.diag(Sigma[0:sval_nums])).dot
(VT[0:sval_nums,:]) img_restruct1 = img_restruct1.reshape(800, 1280,3)
img_restruct1.tolist()

# Take the first 50 singular values
sval_nums = 50
```

```
img_restruct2 = (U[:,0:sval_nums]).dot(np.diag(Sigma[0:sval_nums])).dot
(VT[0:sval_nums,:])
img_restruct2 = img_restruct2.reshape(800, 1280,3)

# Take the first 100 singular values
sval_nums = 100 img_restruct3 = (U[:,0:sval_nums]).dot(np.diag(Sigma[0:sval_nums])).dot
(VT[0:sval_nums,:]) img_restruct3 = img_restruct3.reshape(800, 1280,3)

#Exhibition
fig, ax = plt.subplots(nrows=1, ncols=3)
ax[0].imshow(img_restruct1.astype(np.uint8)) ax[0].set(title =
"10") ax[1].imshow(img_restruct2.astype(np.uint8))
ax[1].set(title = "50")
ax[2].imshow(img_restruct3.astype(np.uint8)) ax[2].set(title =
"100") plt.show()
```


<u>AIM</u>

2. Programs using matplotlib / plotly / bokeh / seaborn for data visualisation. Dataset used: iris.csv

CODE:

```
import pandas as pd
iris = pd.read_csv('iris.csv')

## Plotting Using Matplotlib
import matplotlib.pyplot as plt
plt.plot(iris["sepal.length"], "r--")
plt.show
```

OUTPUT:

CODE:

```
# Scatter Plot
```

```
iris.plot(kind ="scatter",
x='sepal.length',
y='petal.length')
plt.grid()
```

OUTPUT:

CODE:

Plotting using Seaborn

 $import\ seaborn\ as\ sns.set_style("whitegrid")\ sns.FacetGrid(iris,\ hue\ ="variety",height=6).map(plt.scatter,\ 'sepal.length',\ 'petal.length').add_legend()$

Distribution Chart #Visualizing the target(class label) column

sns.countplot(x='variety', data=iris,) plt.show()

OUTPUT:

CODE:

#plotting all the column's relationships using a pairplot. It can be used for multivariate analysis. sns.pairplot(iris,hue='variety', height=2)

#Histogram for Sepal Length
plt.figure(figsize = (10, 7)) x =
iris["sepal.length"] plt.hist(x, bins =
20, color = "green") plt.title("Sepal
Length in cm")
plt.xlabel("Sepal_Length_cm")
plt.ylabel("Count")


```
#Histogram for Petal Width
plt.figure(figsize = (12, 7))
x = iris["petal.width"]

plt.hist(x, bins =20, color = "blue")
plt.title("Petal width in cm")
plt.xlabel("Petal_Width_cm")
plt.ylabel("Count")
```

OUTPUT:

CODE:

#Histograms allow seeing the distribution of data for various columns. # It can be used for uni as well as bi-variate analysis.

```
fig, axes = plt.subplots(2, 2, figsize=(10,10))

axes[0,0].set_title("Sepal Length")

axes[0,0].hist(iris['sepal.length'], bins=7)

axes[0,1].set_title("Sepal Width")

axes[0,1].hist(iris['sepal.width'], bins=5);
```

axes[1,0].set_title("Petal Length")
axes[1,0].hist(iris['petal.length'], bins=6);

axes[1,1].set_title("Petal Width")
axes[1,1].hist(iris['petal.width'], bins=6);

#Histograms with Distplot Plot

```
plot = sns.FacetGrid(iris, hue="variety") plot.map(sns.distplot,
"sepal.length").add_legend()
```

plot = sns.FacetGrid(iris, hue="variety") plot.map(sns.distplot,
"sepal.width").add_legend()

plot = sns.FacetGrid(iris, hue="variety")
plot.map(sns.distplot, "petal.width").add_legend()

plt.show()

#In the case of Sepal Length, there is a huge amount of overlapping.
#In the case of Sepal Width also, there is a huge amount of overlapping.
#In the case of Petal Length, there is a very little amount of overlapping. #In the case of Petal Width also, there is a very little amount of overlapping.

Box Plot for Iris Data

plt.figure(figsize = (10, 7)) iris.boxplot()


```
import matplotlib.gridspec as gridspec fig =
plt.figure(figsize=(9, 40)) outer = gridspec.GridSpec(4,
1, wspace=0.2, hspace=0.2) for i, col in
enumerate(iris.columns[:-1]):
  inner = gridspec.GridSpecFromSubplotSpec(2, 1,subplot_spec=outer[i], wspace=0.2,
hspace=0.4)  ax = plt.Subplot(fig, inner[1])
  _ = sns.violinplot(y="variety", x=f"{col}", data=iris, inner='quartile', ax=ax)
fig.add_subplot(ax) fig.show()
```


Make default density plot sns.kdeplot(iris['sepal.width'])

AIM

3. Programs to handle data using pandas

CODE:

```
#Pandas is a Python library.
```

#Pandas is used to analyze data.

import numpy as np

import pandas as pd

```
s = pd.Series([1, 3, 5, 6, 8]) print(s)
```

OUTPUT:

```
0 1
1 3
2 5
3 6 4 8
dtype: int64
```

CODE:

```
country capital area population 0
Brazil Brasilia 8.516 200.40

1 Russia Moscow 17.100 143.50
2 India New Dehli 3.286 1252.00
3 China Beijing 9.597 1357.00 4 South Africa Pretoria 1.221 52.98
```

b.index = ["BR", "RU", "IN", "CH", "SA"] print(b)

OUTPUT:

	(country	capit	al	area	population BR
Bra	zil	Brasilia	8.51	.6	200.	40
RU		Russia	Mos	COW	17.100	143.50
IN		India	New De	hli	3.286	1252.00
СН		China	Beij	ing	9.597	1357.00
SA	Soutl	n Africa	Preto	ria	1.221	52.98

CODE:

import pandas as pd cars =
pd.read_csv('cars1.csv')
print(cars)

	Car	Model V	olume We	eight CC	2
0	Toyoty	Ayg	0 100	0 790) 99
1					1160 95
2		Citigo			
3	Fiat	500	900	865	90
4	Mini	Cooper	1500	1140	105
5	VW	Up!	1000	929 10)5
6	Skoda	Fabia	1400	1109	90
7	Mercedes	A-Cl	ass 1	500 13	365 92
8	Ford	Fiesta	1500	1112	98
9		A1			
10		I			
11		Swif			
12	Ford	Fiesta	1000	1112	99
13	Honda	Civic	1600	1252	94
14	Hundai	I3	0 160	0 1326	97
15		Astra			
16		1	1600	1365	99
17	Mazda	3	2200	1280	104
18	Skoda				
19	Ford	Focus	2000	1328	105
20	Ford	Mondeo	1600	1584	94
21	Opel :	Insignia	2000	1428	99
22	Mercedes	C-Cl	ass 2	100 13	365 99
23	Skoda	Octavia	1600	1415	99
24	Volvo	S60	2000	1415	99
25	Mercedes		CLA 1	500 14	65 102
26	Audi	A4	2000	1490	104

27	Audi	A6	2000	1725 114
28	Volvo	V70	1600	1523 109
29	BMW	5	2000	1705 114
30	Mercedes	E-Cla	ss 21	00 1605 115
31	Volvo	XC70	2000	1746 117
32	Ford	B-Max	1600	1235 104
33	BMW	216	1600	1390 108

```
import pandas as pd cars =
pd.read_csv('cars1.csv') cars =
pd.read_csv('/cars1.csv')
print(cars)

# Print out first 4 observations print(cars[0:4])

# Print out fifth and sixth observation print(cars[4:6])

import pandas as pd
cars = pd.read_csv('cars1.csv', index_col = 0) #first column is taen as index column

print(cars.iloc[2])
```

OUTPUT:

```
Model Citigo
Volume 1000
Weight 929
CO2 95
Name: Skoda, dtype: object
```

CODE:

#Slicing dataframe

OUTPUT

```
Name Gender Age

Jay M 18

Jennifer F 17

Preity F 19

Neil M 17
```

```
Name Gender Age
2 Preity F 19
3 Neil M 17
Name Gender Age
0 Jay M 18 1
Jennifer F 17
```

CODE:

import pandas as pd import numpy as np

```
#Create a series with 4 random numbers s
= pd.Series(np.random.randn(4)) print(s)
```

print ("The actual data series is:") print(
s.values)

OUTPUT:

```
0 -1.138968
1 -1.097746
2 0.109717 3 1.159537 dtype: float64 The actual data series is:
[-1.13896826 -1.09774589 0.10971687 1.15953676]
CodeText
```

CODE:

print (s.head(2))

```
0 -1.138968
1 -
1.097746
dtype:
float64
```

print(s.tail(3))

OUTPUT:

```
1 -1.097746
2 0.109717 3
1.159537
dtype: float64
```

CODE:

```
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
# Create a DataFrame df
= pd.DataFrame(d)
print(df)
print ("The transpose of the data series is:") print(df.T)
```

```
Name Age Rating
0
   Tom 25 4.23
   James 26 3.24
Ricky 25 3.98
1
2
   Vin 23 2.56
    Steve 30 3.20
              4.60
5
         29
    Smith
   Jack 23
              3.80
6
The transpose of the data series is:
                                   5
        0
             1
                 2 3
                             4
                      Vin Steve Smith Jack
Name
       Tom James Ricky
Age
       25 26 25 23
                            30
                                  29
                                        23
Rating 4.23 3.24 3.98 2.56 3.2 4.6
                                       3.8
```

```
import pandas as pd import
numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame df
= pd.DataFrame(d)
print(df)
print ("Row axis labels and column axis labels are:") print
(df.axes)
```

OUTPUT:

```
Name Age Rating
0    Tom 25    4.23
1    James 26    3.24
2    Ricky 25    3.98
3    Vin 23    2.56
4    Steve 30    3.20
5    Smith 29    4.60
6    Jack 23    3.80
Row axis labels and column axis labels are:
[RangeIndex(start=0, stop=7, step=1), Index(['Name', 'Age', 'Rating'], dtype='object')]
```

CODE:

```
import pandas as pd import
numpy as np

#Create a Dictionary of series d =
{'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])
    }

#Create a DataFrame df
= pd.DataFrame(d)
print ("Our object is:")
print (df)
print ("The dimension of the object is:") print
(df.ndim)
```

OUTPUT:

```
Name Age Rating
0
    Tom 25 4.23
               3.24
    James 26
           25
2
    Ricky
                3.98
3
   Vin 23
               2.56
    Steve 30
               3.20
4
               4.60
    Smith 29
5
6
    Jack
          30
               3.80
Our object is:
The shape of the object is:
(7,3)
CODE:
```

print (df.size)

OUTPUT:

21

CODE:

print (df.values)

OUTPUT:

```
[['Tom' 25 4.23]

['James' 26 3.24]

['Ricky' 25 3.98]

['Vin' 23 2.56]

['Steve' 30 3.2]

['Smith' 29 4.6]

['Jack' 30 3.8]]
```

CODE:

df.isnull().sum() #sum returns the number of missing values

Name	0
Age	0
Rating	0
dtype:	int64

df = pd.DataFrame(np.arange(12).reshape(3, 4), columns=['A', 'B', 'C', 'D']) print(df)

$\underline{\mathbf{AIM}}$

4: Program to implement k-NN classification using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report import pandas as pd

```
df = pd.read_csv("iris.csv")
print(df)
```

OUTPUT:

	sepal.length	sepal.width	petal.length	petal.width	variety 0
5.1	3.5	1.4	0.2	Setosa	
1	4.9	3.0	1.4	1 0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	1 0.2	Setosa
145	6.7	3.0	5.2	2.3	Virginica
146	6.3	2.5	5.0	1.9	Virginica
147	6.5	3.0	5.2	2.0	Virginica
148	6.2	3.4	5.4	1 2.3	Virginica
	149	5.	9 3.0) 5	5.1
	1.8	Virginica			

[150 rows x 5 columns]

CODE:

df['variety'].value_counts()

OUTPUT:

Setosa 50 Versicolor 50 Virginica 50

Name: variety, dtype: int64

CODE:

X = df.drop('variety', axis=1)

```
y = df['variety']# splitting to trainset and Test set in the ratio 70:30
```

 X_{train} , X_{test} , y_{train} , y_{test} = train_test_split(X, y, test_size=0.30)

print(X_train) print("
") print(X_test)

OUTPUT:

sepal.length	n sepal.widt	h petal.leng	th petal.widt	h 46
5.1	3.8	1.6	0.2	
95	5.7	3.0	4.2	1.2
67	5.8	2.7	4.1	1.0
45	4.8	3.0	1.4	0.3
143	6.8	3.2	5.9	2.3
• • •	• • •		• • •	
116	6.5	3.0	5.5	1.8
41	4.5	2.3	1.3	0.3
62	6.0	2.2	4.0	1.0
91	6.1	3.0	4.6	1.4
123	6.3	2.7	4.9	1.8

[105 rows x 4 columns]

	sepal.length	sepal.width	petal.length	petal.width
25	5.0	3.0	1.6	0.2
141	6.9	3.1	5.1	2.3
125	7.2	3.2	6.0	1.8
102	7.1	3.0	5.9	2.1
128	6.4	2.8	5.6	2.1
122	7.7	2.8	6.7	2.0
76	6.8	2.8	4.8	1.4
103	6.3	2.9	5.6	1.8
14	5.8	4.0	1.2	0.2
37	4.9	3.6	1.4	0.1
100	6.3	3.3	6.0	2.5
63	6.1	2.9	4.7	1.4
64	5.6	2.9	3.6	1.3
61	5.9	3.0	4.2	1.5
17	5.1	3.5	1.4	0.3
74	6.4	2.9	4.3	1.3
111	6.4	2.7	5.3	1.9
120	6.9	3.2	5.7	2.3
79	5.7	2.6	3.5	1.0
85	6.0	3.4	4.5	1.6
49	5.0	3.3	1.4	0.2
21	5.1	3.7	1.5	0.4
110	6.5	3.2	5.1	2.0
149	5.9	3.0	5.1	1.8
72	6.3	2.5	4.9	1.5
11	4.8	3.4	1.6	0.2
36	5.5	3.5	1.3	0.2
6	4.6	3.4	1.4	0.3

68	6.2	2.2	4.5	1.5
144	6.7	3.3	5.7	2.5
43	5.0	3.5	1.6	0.6
80	5.5	2.4	3.8	1.1
32	5.2	4.1	1.5	0.1
7	5.0	3.4	1.5	0.2
55	5.7	2.8	4.5	1.3
129	7.2	3.0	5.8	1.6
117	7.7	3.8	6.7	2.2 12
4.8	3.0	1.4	0.1	

```
print("Number transactions X_train dataset: ", X_train.shape) print("Number transactions y_train dataset: ", y_train.shape) print("Number transactions X_test dataset: ", X_test.shape) print("Number transactions y_test dataset: ", y_test.shape)
```

OUTPUT:

```
Number transactions X_train dataset: (105, 4)
Number transactions y_train dataset: (105, 4)
Number transactions X_test dataset: (45, 4)
Number transactions y_test dataset: (45, 4)
```

CODE:

```
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(X_train, y_train) y_pred
= classifier.predict(X_test)
print(y_pred)
print(' ')
print(y_test)
```

```
['Setosa' 'Virginica''Virginica''Virginica''Virginica''Versicolor''Virginica''Setosa''Setosa''Virginica' 'Versicolor''Versicolor''Setosa''Versicolor''Virginica''Virginica''Versicolor''Setosa''Setosa''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Setosa''Setosa''Versicolor''Virginica''Setosa''Setosa''Virginica''Versicolor''Virginica''Versicolor''Virginica''Virginica''Versicolor''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virgin
```

```
61 Versicolor
17 Setosa
```

```
74
       Versicolor
111
        Virginica
120
        Virginica
79
       Versicolor
85
       Versicolor
49
           Setosa
21
           Setosa
110
        Virginica
149
        Virginica
72
       Versicolor
11
           Setosa
36
           Setosa
6
           Setosa
68
       Versicolor
144
        Virginica
43
           Setosa
47
           Setosa
77
       Versicolor
80
       Versicolor
32
           Setosa
7
           Setosa
148
        Virginica
88
       Versicolor
137
        Virginica
55
       Versicolor
112
        Virginica
29
           Setosa
129
        Virginica
117
        Virginica
            Setosa
Name: variety, dtype: object
```

from sklearn.metrics import confusion_matrix print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred))

```
[[15 0 0]
[ 0 11 2]
[ 0 0 17]]
              precision
                          recall
                                   f1-score
                                              support
                  1.00
                             1.00
                                       1.00
                                                   15
      Setosa
                  1.00
                           0.85
                                      0.92
                                                   13
 Versicolor
                          1.00
                0.89
                                  0.94
                                                17 accuracy
Virginica
                                            0.95
            45 macro avg
                                  0.96
                                                      0.95
                               0.96
                                          0.95
45 weighted avg
                     0.96
                                                      45
```

```
weather=['Sunny','Sunny','Overcast','Rainy','Rainy','Rainy',
'Over cast','Sunny','Sunny',
'Rainy','Sunny','Overcast','Overcast','Rainy']

# Second Feature temp=['Hot','Hot','Hot','Mild','Cool','Cool','Cool','Mild',
'Cool'
,'Mild','Mild','Mild','Hot','Mild']

# Label or target varible

play=['No','No','Yes','Yes','Yes','No','Yes','No','Yes','Yes', 'Ye s','Yes','Yes','No']
```

from sklearn import preprocessing #creating labelEncoder le = preprocessing.LabelEncoder() # Converting string labels into numbers. weather_encoded=le.fit_transform(weather) print(weather_encoded)

OUTPUT:

```
[2 2 0 1 1 1 0 2 2 1 2 0 0 1]
```

CODE:

```
temp_encoded=le.fit_transform(temp)
print(temp_encoded)
print(" ") label=le.fit_transform(play)
print(label)
```

OUTPUT:

```
[1 1 1 2 0 0 0 2 0 2 2 2 1 2]
[0 0 1 1 1 0 1 0 1 1 1 1 0]
```

CODE:

features=list(zip(weather_encoded,temp_encoded)) print(features)

OUTPUT:

```
[(2, 1), (2, 1), (0, 1), (1, 2), (1, 0), (1, 0), (0, 0), (2, 2), (2, 0), (1, 2), (2, 2), (0, 1), (1, 2)]
```

CODE:

from sklearn.neighbors import KNeighborsClassifier model =

KNeighborsClassifier(n_neighbors=3)

from sklearn.neighbors import KNeighborsClassifier model =

KNeighborsClassifier(n_neighbors=3)

Train the model using the training sets model.fit(features,label)
predicted= model.predict([[0,1]]) # 0:Overcast, 1:Hot print(predicted)

OUTPUT:

[1]

AIM

5: Program to implement Naïve Bayes Algorithm using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

Dataset used: Social_Network_Ads.csv

```
import\ pandas\ as\ pd\ dataset = pd.read\_csv("/content/Social\_Network\_Ads.csv") \\ print(dataset.describe())\ print(dataset.head()) \\ X = dataset.iloc[:, [1, 2, 3]].values\ y = dataset.iloc[:, -1].values\ from \\ sklearn.preprocessing\ import\ LabelEncoder\ le = LabelEncoder() \\ X[:,0] = le.fit\_transform(X[:,0]) \\ from\ sklearn.model\_selection\ import\ train\_test\_split\ X\_train,\ X\_test,\ y\_train,\ y\_test = \\ train\_test\_split(X,\ y,\ test\_si\ ze = 0.20,\ random\_state = 0) \\
```

OUTPUT:

			User ID		Age	Estimated	Salary	Purchase	≥d
cou	nt	4.000	000e+02	400.	000000	400.	000000	400.00000	90
mea	n	1.569	154e+07	37.	655000	69742.	500000	0.35750	90
std		7.165	832e+04	10.	482877	34096.	960282	0.47986	54
min		1.556	669e+07	18.	000000	15000.	000000	0.00000	90
25%	,	1.562	676e+07	29.	750000	43000.	000000	0.00000	90
50%	,	1.569	434e+07	37.	000000	70000.	000000	0.00000	90
75%	,	1.575	036e+07	46.	000000	88000.	000000	1.00000	90
max		1.581	524e+07	60.	000000	150000.	000000	1.00000	90
	Us	er ID	Gender	Age	Estima	tedSalary	Purcha	sed	
0	156	24510	Male	19		19000		0	
1	158	10944	Male	35		20000		0	
2	156	68575	Female	26		43000		0	
3	156	03246	Female	27		57000		0	
4	158	04002	Male	19		76000		0	

CODE:

```
\label{eq:continuous_continuous_continuous} from sklearn.preprocessing import StandardScaler sc = StandardScaler() \\ X_train = sc.fit_transform(X_train) \\ X_test = sc.transform(X_test)
```

from sklearn.naive_bayes import GaussianNB classifier = GaussianNB() classifier.fit(X_train, y_train)

OUTPUT:

GaussianNB()

CODE:

```
y_pred = classifier.predict(X_test)
y_pred
```

OUTPUT:

CODE:

```
y_pred = classifier.predict(X_test)
y_test
```

```
0, 0,

1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1,

0, 1,

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1])
```

from sklearn.metrics import confusion_matrix,accuracy_score cm = confusion_matrix(y_test, y_pred) ac = accuracy_score(y_test,y_pred) print(cm) print(ac)

OUTPUT:

[[56 2] [4 18]] 0.925

AIM

6: Program to implement linear and multiple regression techniques using any standard dataset available in the public domain and evaluate its performance.

CODE:

```
import matplotlib.pyplot as plt x
= [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]
plt.scatter(x, y) plt.show()
```

OUTPUT:

CODE:

import matplotlib.pyplot as plt from scipy import stats

```
x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

+slope, intercept, r, p, std_err = stats.linregress(x, y) # r corre lation coefficiant # p probability of hypothesis

def myfunc(x): return
    slope * x + intercept
    mymodel =
    list(map(myfunc, x))

plt.scatter(x, y) plt.plot(x,
    mymodel) plt.show()
```

-0.758591524376155

import pandas import warnings
warnings.filterwarnings("ignore") df =
pandas.read_csv("cars1.csv")

X = df[['Weight', 'Volume']] y = df['CO2']

from sklearn import linear_model regr = linear_model.LinearRegression() regr.fit(X, y)

OUTPUT:

LinearRegression()

CODE:

predictedCO2 = regr.predict([[2300,1000]])
print(predictedCO2)

OUTPUT:

[104.86715554]

7. Program to implement text classification using Support vector machine.

CODE:

Dataset used: iris.csv

```
import numpy as np import matplotlib.pyplot as
plt from sklearn import svm, datasets
# import some data to play with iris =
datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
We could
 # avoid this ugly slicing by using a two-dim dataset y = iris.target
# we create an instance of SVM and fit out data. We do not scale our
# data since we want to plot the support vectors C = 1.0 \# SVM regularization
parameter svc = svm.SVC(kernel='linear', C=1,gamma='auto').fit(X, y)
# create a mesh to plot in
\#x_{\min}, x_{\max} = X[:, 0].\min() - 1, X[:, 0].\max() + 1
y_min, y_min, y_min() - 1, X[:, 1].min() - 1, X[:, 1].max() + 1
\#h = (x_max / x_min)/100
#xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
#np.arange(y_min, y_max, h
plt.subplot(1, 1, 1)
Z = \text{svc.predict(np.c\_ravel[xx.(), yy.ravel()])} Z = Z.\text{reshape(xx.shape)}
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length')
plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max())
plt.title('SVC with linear kernel') plt.show()
```


CODE:

Dataset used: True.csv, Fake.csv

#Importing Libraries import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.metrics import accuracy_score, confusion_matrix,class ification_report from sklearn.svm import LinearSVC

```
import csv
true = pd.read_csv("True.csv") fake =
pd.read_csv("Fake.csv") fake['target'] = 'fake'
true['target'] = 'true' #News dataset news = pd.concat([fake, true]).reset_index(drop = True) news.head() news.dropna()
```

	title	text	subject	date	target
0	you were wrong! 70-year-old men don t change	News	"December 31	2017"	fake
165	look at me! I m violating the U.S. flag code	News	"October 29	2017"	fake
277	particularly those where people are dying. Ob	News	"September 29	2017"	fake
294	utterly and completely misunderstanding it. T	News	"September 25	2017"	fake
379	I salute you.Featured image via David Becker/	News	"September 10	2017"	fake
		•••			
39998	rescuers pulled Maria s body from the rubble	worldnews	"September 21	2017 "	true
40742	adding she had a Spanish passport but chose t	worldnews	"September 14	2017 "	true
40788	adding the Rohingya belong in camps for displ	worldnews	"September 14	2017 "	true
40824	said Reick."	worldnews	"September 14	2017 "	true
41394	in general."	worldnews	"September 7	2017 "	true

236 rows × 5 columns

CODE:

```
#Train-test split
     x_train,x_test,y_train,y_test = train_test_split(news['text'], new
     s.target, test_size=0.2, random_state=1)
    #Term frequency(TF)=count(word)/total(words)6+ 0ZXCVBNM,./
    #TF-
    IDF: we can even reduce the weightage of more common words like (t he, is, an etc.) which occurs
     in all document.
    #This is called as TF-
    IDF i.e Term Frequency times inverse document frequency.
    #count vectorizer: involves counting the number of occurrences each word appears in a document
    pipe2 = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTran sformer()), ('model',
     LinearSVC())])
     model_svc = pipe2.fit(x_train.astype('U'), y_train.astype('U')) svc_pred =
     model_svc.predict(x_test.astype('U'))
print("Accuracy of SVM Classifier: {}%".format(round(accuracy_scor e(y_test, svc_pred)*100,2)))
     print("\nConfusion Matrix of SVM Classifier:\n") print(confusion_matrix(y_test, svc_pred))
     print("\nClassification Report of SVM Classifier:\n") print(classification_report(y_test, svc_pred))
```

Accuracy of SVM Classifier: 51.43%

Confusion Matrix of SVM Classifier:

[[4302 3] [4085 26]]

Classification Report of SVM Classifier:

	precision	recall	f1-score	support
fake	0.51	1.00	0.68	4305
true	0.90	0.01	0.01	4111
accuracy			0.51	8416
macro avg	0.70	0.50	0.35	8416
weighted avg	0.70	0.51	0.35	8416

8. Program to implement decision trees using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

Dataset used: iris

```
import numpy as np import pandas as pd import
matplotlib.pyplot as plt from sklearn.datasets import
load_iris
data=load_iris() X=data.data
    y=data.target
    print(X.shape,y.shape)
```

OUTPUT:

(150, 4) (150,)

CODE:

from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier#for checking testi ng results from sklearn.metrics import classification_report, confusion_matri x#for visualizing tree from sklearn.tree import plot_tree X_{train} , X_{test} , y_{train} , y_{test} = train_test_split(X, y, test_si ze = 25, random_state = 10)

clf=DecisionTreeClassifier() clf.fit(X_train,y_train)

OUTPUT:

DecisionTreeClassifier()

CODE:

```
\label{eq:clf.predict} $$y\_pred = clf.predict(X\_test)$ print("Classification report - \n", classification\_report(y\_test,y\_pred))
```

Classification	n report -			
	precision	recall	f1-score	support
Ø	1.00	1.00	1.00	9
1	1.00	0.90	0.95	10
2	0.86	1.00	0.92	6
accuracy			0.96	25
macro avg	0.95	0.97	0.96	25
weighted avg	0.97	0.96	0.96	25

CODE:

cm = confusion_matrix(y_test, y_pred) print(cm) from sklearn import tree fig,axes = plt.subplots(nrows=1,ncols=1,figsize =(3,3),dpi=200) tree.plot_tree(clf,feature_names=data.feature_names,class_names=data.target_names,filled=True)

plt.show()

fig.savefig("/content/iris_tree.png")

OUTPUT:

[[9 0 0] [0 9 1] [0 0 6]]

9. Program to implement k-means clustering technique using any standard dataset available in the public domain.

CODE:

Dataset used: GENERAL.csv

importing the libraries import numpy as np import pandas as pd %matplotlib inline import matplotlib.pyplot as plt dataset= pd.read_csv('./CC GENERAL.csv')

checking the presence of null values print(dataset.isnull().sum())

#CREDIT_LIMIT 1

#MINIMUM_PAYMENTS 313

OUTPUT:

CUST_ID	0
BALANCE	0
BALANCE_FREQUENCY	0
PURCHASES	0
ONEOFF_PURCHASES	0
INSTALLMENTS_PURCHASES	0
CASH_ADVANCE	0
PURCHASES_FREQUENCY	0
ONEOFF_PURCHASES_FREQUENCY	0
PURCHASES_INSTALLMENTS_FREQUENCY	0
CASH_ADVANCE_FREQUENCY	0
CASH_ADVANCE_TRX	0
PURCHASES_TRX	0
CREDIT_LIMIT	1
PAYMENTS	0
MINIMUM_PAYMENTS	313
PRC_FULL_PAYMENT	0
TENURE	0
dtype: int64	

CODE:

 $dataset['CREDIT_LIMIT'].fillna(dataset.CREDIT_LIMIT.mean(), inplac\ e = True)\\ dataset['MINIMUM_PAYMENTS'].fillna(dataset.MINIMUM_PAYMENTS.mean())\\$

, inplace = True) # unfilled vaues replaced using mean

print(dataset.isnull().sum()) print(dataset.describe())

OUTPUT:

CUST_ID	0
BALANCE	0
BALANCE_FREQUENCY	0
PURCHASES	0
ONEOFF PURCHASES	0
INSTALLMENTS PURCHASES	0
CASH ADVANCE	0
PURCHASES_FREQUENCY	0
ONEOFF_PURCHASES_FREQUENCY	0
PURCHASES_INSTALLMENTS_FREQUENCY	0
CASH_ADVANCE_FREQUENCY	0
CASH_ADVANCE_TRX	0
PURCHASES_TRX	0
CREDIT_LIMIT	0
PAYMENTS	0
MINIMUM_PAYMENTS	0
PRC_FULL_PAYMENT	0
TENURE	0
dtype: int64	
DALANCE DALANCE EDECIL	ENCV

	BALANCE	BALANCE_FREQUENCY		PRC_FULL_PAYMENT	TENURE
count	8950.000000	8950.000000		8950.000000	8950.000000
mean	1564.474828	0.877271		0.153715	11.517318
std	2081.531879	0.236904		0.292499	1.338331
min	0.000000	0.000000		0.000000	6.000000
25%	128.281915	0.888889		0.000000	12.000000
50%	873.385231	1.000000		0.000000	12.000000
75%	2054.140036	1.000000		0.142857	12.000000
max	19043.138560	1.000000	***	1.000000	12.000000

CODE:

dataset.drop(['CUST_ID'], axis= 1, inplace = True) #no relevance f or custid

No Categorical Values found X = dataset.iloc[:,:].values

 ${\it \# Using \ standard \ scaler \ from \ sklearn.preprocessing \ import}$

StandardScaler standardscaler= StandardScaler()

 $X = standardscaler.fit_transform(X) #scaling the values print(X)$

```
[[-0.73198937 -0.24943448 -0.42489974 ... -0.31096755 -0.52555097 0.36067954]
[ 0.78696085   0.13432467 -0.46955188 ...   0.08931021   0.2342269   0.36067954]
[ 0.44713513   0.51808382 -0.10766823 ... -0.10166318 -0.52555097   0.36067954]
...
[ -0.7403981   -0.18547673 -0.40196519 ... -0.33546549   0.32919999   -4.12276757]
[ -0.74517423 -0.18547673 -0.46955188 ... -0.34690648   0.32919999   -4.12276757]
[ -0.57257511 -0.88903307   0.04214581 ... -0.33294642 -0.52555097   -4.12276757]]
```

CODE:

```
"""K MEANS CLUSTERING """ #Inertia, or the within- cluster sum of squares criterion, can be recognized as a measure of how internally coherent clusters are from sklearn.cluster import KMeans wss= [] for i in range(1, 11): kmeans= KMeans(n_clusters = i, init = 'k- means++', random_state = 0) kmeans.fit(X) wss.append(kmeans.inertia_) plt.plot(range(1,11), wss) # selecting 4
```

OUTPUT:

CODE:

wss_mean=np.array(wss).mean() print(wss) print(wss_mean)
print([abs(wss_mean-x) for x in wss])
k=np.argmin([abs(wss_mean-x) for x in wss])+1

OUTPUT:

```
[152149.99999999983, 127784.92103208725, 111986.41162208859, 99073.93826774803, 91502.98328256077, 84851.13240432573, 79532.40237691796, 75568.97609993909, 69954.91393943134, 67546.56302862825] 95995.22420537268 [56154.775794627145, 31789.69682671457, 15991.187416715911, 3078.714062375351, 4492.240922811907, 11144.091801046947, 16462.82182845472, 20426.248105433595, 26040.31026594134, 28448.661176744426]
```

CODE:

```
kmeans = KMeans(n_clusters = k, init= 'k- means++', random_state = 0) kmeans.fit(X)
```

Y_pred_K= kmeans.predict(X) print(Y_pred_K)

#showing the clusters of first 100 persons plt.figure(figsize=(16,4)) plt.plot(range(1,100+1),Y_pred_K[:100],'ro')

OUTPUT:

10: Programs on feedforward network to classify any standard dataset available in the public domain.

Dataset used: HR_comma_sep.csv

CODE:

```
import numpy as np
import pandas as pd

# Load data
data=pd.read_csv('HR_comma_sep.csv')
data.head()
```

OUTPUT:

Si	atisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	Work_accident	left	promotion_last_5years	sales	salary
0	0.38	0.53	2	157	3	0	1	0	sales	lov
1	0.80	0.86	5	262	6	0	1	0	sales	mediu
2	0.11	0.88	7	272	4	0	1	0	sales	mediu
3	0.72	0.87	5	223	5	0	1	0	sales	lo
4	0.37	0.52	2	159	3	0	1	0	sales	lo

CODE:

from sklearn import preprocessing #

Creating labelEncoder le =

preprocessing.LabelEncoder() #

Converting string labels into numbers.

data['salary']=le.fit_transform(data['salary']

```
) data['sales']=le.fit_transform(data['sales'])
     X=data[['satisfaction_level',
     'last_evaluation', 'number_project',
     'average_montly_hour s',
     'time_spend_company', 'Work_accident',
     'promotion_last_5years', 'sales', 'salary']]
     y=data['left']
     # Import train_test_split function from
     sklearn.model_selection import train_test_split
     # Split dataset into training set and test set
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42
     ) # 70% training and 30% test
     from sklearn.neural_network import MLPClassifier
     # Create model object
     clf = MLPClassifier(hidden_layer_sizes=(6,5),
                 random_state=5,
                 verbose=False,
                 learning_rate_init=0.01)
     # Fit data onto the model
clf.fit(X_train,y_train)
     OUTPUT:
        MLPClassifier(hidden_layer_sizes=(6, 5), learning_rate_init=0.01,
                        random state=5)
```

CODE:

ypred=clf.predict(X_test) # Import
accuracy score from sklearn.metrics import
accuracy_score
Calcuate accuracy
accuracy_score(y_test,ypred)

OUTPUT:

0.938666666666666

AIM:

11: Programs on convolutional neural network to classify images from any standard dataset in the public domain.

CODE:

import numpy as np import pandas as pd

Load data data=pd.read_csv('HR_comma_sep.csv')

data.head()

OUTPUT:

satisfac last_ev numbe average_ time_spe Work_ l promotio sa sal tion_le aluati r_proje montly_h nd_comp accide e n_last_5ye le ar vel on ct ours any nt ft ars s y

	0.20	0.50		4.55	2	0		0				sa lo	(
0	0.38	0.53	2	157	3	0	1	0	le				W
												S	vv
1	0.80	0.86	5	262	6	0	1	0	le	diu s	m	sa	me
2	0.11	0.88	7	272	4	0	1	0	le	diu	i	sa s	me m
3	0.72	0.87	5	223	5	0	1	0	le		i	sa lo	
4	0.37	0.52	2	159	3	0	1	0	le		i	sa lo	w

CODE:

```
from sklearn import preprocessing
# Creating labelEncoder le =
preprocessing.LabelEncoder()
# Converting string labels into numbers. data['salary']=le.fit_transform(data['salary'])
data['sales']=le.fit_transform(data['sales']) X=data[['satisfaction_level',
'last_evaluation', 'number_project', 'average_montly_hours', 'time_spend_company',
'Work_accident', 'promotion_last_5years', 'sales', 'salary']] y=data['left']
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) #
70% training and 30% test
from sklearn.neural_network import MLPClassifier
# Create model object
clf = MLPClassifier(hidden_layer_sizes=(6,5),
                             verbose=False,
random_state=5,
            learning_rate_init=0.01)
# Fit data onto the model
clf.fit(X_train,y_train)
ypred=clf.predict(X_test)
OUTPUT:
MLPClassifier(hidden layer sizes=(6, 5), learning rate init=0.01,
random state=5)
```

CODE:

Import accuracy score from sklearn.metrics import accuracy_score # Calcuate accuracy print ("Accuracy:",accuracy_score(y_test,ypred))

CODE:

from sklearn.metrics import classification_report, confusion_matrix print(confusion_matrix(y_test, ypred)) print(classification_report(y_test, ypred))

OUTPUT:

```
[[3248 180]
[ 96 976]]
          precision recall f1-score support
                    0.96
0
      0.97
             0.95
                             3428
             0.91
      0.84
                    0.88
                             1072
                              0.94
   accuracy
4500
    macro avg 0.91
                        0.93
                                0.92
4500
weighted avg 0.94 0.94 0.94 4500
```