

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA

LABORATORIO DE BIOMECÁNICA

PRÁCTICA 2: Diseño del marco de una bicicleta

ING. YADIRA MORENO VERA ING. ISAAC ESTRADA

Luis Alejandro Salais Meza	José Juan García Martínez	Daniel García Rodarte	Raymundo López Mata	Gerardo Antonio Contreras Sandate
1877483	1911641	1912044	1923217	1860063
IMTC	IMTC	IMTC	IMTC	IMTC

BRIGADA: 509 AGOSTO – DICIEMBRE 2022

SALÓN 12BMC VIERNES N5

OBJETIVO

El estudiante deberá presentar una propuesta de análisis de formas y la programación para la ejecución de la optimización de características de trabajo específicas.

INTRODUCCIÓN

Existen diversas herramientas del campo ingenieril que permiten realizar acciones específicas dentro del campo, desde el análisis de circuitos electrónicos, como la programación de códigos para impresión 3D o maquinado por CNC. Una de las herramientas más importantes dentro de este campo, es aquella que incluye todo lo relacionado con la generación de modelos digitales en 3D, así como la generación

Dentro de esta práctica se explica el nombre y definición de la forma geométrica, la cual es un marco de una bicicleta, el estado del arte, el procedimiento de la programación, la implementación de dicha programación adjuntando imágenes de las diferentes vistas del análisis y por último concluimos sobre la práctica.

De la misma manera que en la práctica anterior, se hace uso del software de diseño 3D SolidWorks, como una alternativa a la programación por Matlab, esto pues SolidWorks posee una interfaz intuitiva que permite importar modelos ya generados y realizar análisis de una manera muy sencilla.

MARCO TEÓRICO

Optimización topológica

La optimización topológica es una técnica que pertenece al análisis estructural, y consiste, básicamente, en analizar un componente o estructura y, en función de cómo se cargue, eliminar material ahí donde no es necesario. En el proceso se deben de tener en cuenta varios aspectos; el espacio de diseño, el o los casos de carga que va a sufrir la pieza en cuestión, el material y la tecnología con que se va a realizar su fabricación, la reducción de costes mediante la minimización de soportes y aprovechamiento de la cuba de impresión, en caso de utilizar tecnologías aditivas, y muchos más.

Pasos Optimización Topológica

- Dibujar o Importar geometría
- Simplificar la pieza y definir el espacio de diseño

- Establecer uniones, juntas y contactos
- Asignar materiales
- Definir los casos de carga
- Generar la optimización
- Refinar la geometría
- Exportar a CAD o generar STL
- Verificar el rendimiento
- Fabricar

Hace aproximadamente cuatro décadas Schmidt (1960) propuso una idea revolucionaria que dio origen a una nueva disciplina: los ingenieros, en general, tratan de diseñar objetos o sistemas de coste mínimo que durante su vida útil deben ser capaces de resistir las solicitaciones máximas que se puedan producir; por tanto, los problemas de diseño (óptimo) podrían plantearse de forma sistemática en términos de problemas de minimización con restricciones, y podrían resolverse mediante técnicas de programación no lineal utilizando ordenadores digitales de alta velocidad.

La Optimización topológica determina la distribución de masa más eficiente para cumplir exactamente con los requisitos de diseño impuestos a la pieza. Tiene en cuenta el espacio permitido, las restricciones y condiciones de carga de la pieza y las tensiones máximas admisibles en el material (o definir un factor de seguridad).

Sin embargo, desde que Bendsøe y Kikuchi desarrollaron los conceptos básicos en 1988, los problemas de optimización topológica se han planteado tradicionalmente mediante formulaciones de máxima rigidez. Con este tipo de planteamientos se pretende distribuir una cantidad predeterminada de material en

un recinto de forma que se maximice la rigidez (se minimice la energía de deformación) de la pieza resultante para un determinado estado de carga. De esta forma se evita tener que trabajar con numerosas restricciones altamente no lineales, habida cuenta del elevado número de variables de diseño que es consustancial a los problemas de optimización topológica. A cambio, no es posible contemplar múltiples estados de carga, y las formulaciones de máxima rigidez conducen —en principio— a problemas intrínsecamente mal planteados, cuyas soluciones oscilan indefinidamente al refinar la discretización.

ESTADO DEL ARTE

La geometría de un cuadro ha ido asociada hasta hace bien poco al concepto de antropometría, o lo que es lo mismo: no pasábamos de buscar una adaptación del cuadro a las medidas corporales del ciclista. Y esto se completaría después con una adaptación a nivel biomecánico, normalmente a manos de un especialista, donde se jugaría con las variables de altura y posición de sillín, largo de bielas, altura y posición de manillar, ancho de manillar.

	FRAME SIZE	S	М	ι	XL
A	Longitud tubo sillín	395mm	430mm	470mm	520mm
В	Longitud tubo superior	590mm	610mm	630mm	650mm
С	Caída eje pedalier	-65mm	-65mm	-65mm	-65mm
D	Altura eje pedalier	305mm	305mm	305mm	305mm
E	Longitud vainas	430mm	430mm	430mm	430mm
F	Ángulo tubo sillín real	72°	72°	72°	72°
6	Ángulo tubo sillín efectivo	73.5°	73.5°	73.5°	73.5°
н	Ángulo dirección	70°	70°	70°	70°
ı	Fork Offset	46mm	46mm	46mm	46mm
J	Distancia entre ejes	1081mm	1101mm	1122mm	1143mm
K	Longitud pipa	85mm	90mm	100mm	115mm
L	Reach	411mm	430mm	447mm	463mm
И	Stack	605mm	610mm	619mm	632mm

La geometría de la bici es algo así como el ADN de esta. Un error de medidas y el mejor de los modelos puede fallar estrepitosamente.

La geometría de una bicicleta MTB mide las longitudes de los tubos que la conforman, así como los ángulos que forman dichos tubos en la dirección y en el tubo de sillín principalmente. Los tubos se miden desde centro a centro y evidentemente no es necesario que la forma de los tubos sea convencional para medirlos. Lo que se mide es la longitud; no importa si el cuadro está realizado en algún tipo de monocasco o con tubería convencional. De este modo, además de la talla, que es el primer parámetro por el que elegimos una bici a nivel de medidas,

la geometría es básica para que la bicicleta se comporte de una manera u otra dependiendo del conjunto de medidas y ángulos.

Las medidas de los tubos se han ido afinando tanto, que los milímetros son ya fundamentales para que la geometría de la bici se encuentre bien equilibrada. De nada te vale una bici con un tubo superior largo y una potencia corta, si las vainas son muy largas y es muy perezosa a la hora de pedalear en subida. Lo mismo pasa con la altura del eje de pedalier. Si es baja, como pasa en modelos de descenso y enduro, la posibilidad de dar con los pedales en el suelo es más probable, pero si es alta, la bici se vuelve más inestable y menos efectiva del cara al pedaleo subiendo el centro de gravedad y el reparto de pesos.

El primer parámetro para considerar es la talla. Se elige la talla siguiendo las recomendaciones de medidas del fabricante, ya que cada uno tiene sus propias sugerencias. Además, en los últimos años con la mejora de las geometrías al incorporar nuevos estudios a las ruedas de 29", 27,5"+ y 27,5", es que los cuadros parecen haber crecido, algo que es cierto. La tendencia actual es rebajar el ángulo de la dirección (lo que lanza aún más la rueda delantera) y hacer más largo el tubo superior para que el tubo diagonal pueda ir más bajo (bajando el centro de gravedad de la bici) para dotarle de mayor manejabilidad y dejar más espacio entre la rueda y el cuadro.

PROPUESTA DE DISEÑO DE LA GEOMETRÍA

Como lo pide la práctica se propuso el marco de una bicicleta para el análisis de la geometría. Para esto se realizará en el programa de SolidWorks. A continuación, se muestra una propuesta de diseño, la cual variará en el diseño final.

La ilustración 4 muestra una propuesta de diseño, en la cual al diseño original se le aplicó una optimización topológica del 50 % reduciendo su masa. Al aplicarle dicha optimización se puede observar el reparto de tensiones de Von Mises me mega pascales (MPa). Con esto se ahorra material y dinero.

Información de modelo

Sólidos

Nombre de documento y referencia	Tratado como	Propiedades volumétricas
Fillet4		Masa:5.32736 kg Volumen:0.000678644 m^3
	Sólido	Densidad:7,850 kg/m^3 Peso:52.2081 N

Propiedades de estudio

Nombre de estudio	Scenario Riding 1
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Prop	piedades
	Nombre: Tipo de modelo:	AISI 4130 Steel, normalized at 870C Isotrópico elástico lineal
	Criterio de error predeterminado:	Desconocido
*	Límite elástico:	4.6e+08 N/m^2
	Límite de tracción:	7.31e+08 N/m^2
<u>.</u>	Módulo elástico:	2.05e+11 N/m^2
	Coeficiente de Poisson:	0.285
	Densidad:	7,850 kg/m^3
	Módulo cortante:	8e+10 N/m^2

Cargas y sujeciones

Nombre de carga	Cargar imagen	Detalles d	e carga
Gravedad-1		Referencia: Valores: Unidades:	Top Plane 0 0 -9.81 m/s^2
Baleros-1		Entidades: Sistema de coordenadas: Fuerza Valores:	1 cara(s) Coordinate System2 0 -60 0 kgf
Carga remota 1 (Direct transfer)-1		Entidades: Tipo de conexión: Factor de peso: Sistema de coordenadas: Componentes traslacionales: Componentes rotacionales: Coordenadas de referencia:	1 cara(s) Distribuida Predeterminado (constante) Coordenadas cartesianas globales,-10 kgf, 400 580 200 mm
Carga remota 2 (Direct transfer)-2		Entidades: Tipo de conexión: Factor de peso: Sistema de coordenadas:	1 cara(s) Distribuida Predeterminado (constante) Coordenadas cartesianas globales

Componentes traslacionales:	,-10 kgf,
Componentes rotacionales:	,
Coordenadas de referencia:	400 580 -200 mm

Definiciones de conector

Nombre de conector	Detalles del conector		Imagen del conector
Elastic Support-1	Entidades: Tipo: Valor de rigidez normal: Valor de rigidez de corte: Unidades:	1,000	Elastic Support-1

Conector de pasador/perno/rodamiento

Referencia de modelo	Detalles del conector	Detalles de resistencia
Bearing Support-1	Entidades: 1 cara(s) Tipo: Rodamiento	No hay datos
Fuerzas del conector		

Tipo	Componente X	Componente Y	Componente Z	Resultante
Fuerza axial (N)	0	0	-17.067	17.067
Fuerza cortante (N)	57.626	193	0	201.42
Momento flector (N.m)	0	0	0	0

Entidades: 1 cara(s)

Tipo: Rodamiento

No hay datos

Bearing Support-2

Fuerzas del conector

Tipo	Componente X	Componente Y	Componente Z	Resultante
Fuerza axial (N)	0	0	17.068	17.068
Fuerza cortante (N)	57.632	193	0	201.42
Momento flector (N.m)	0	0	0	0

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos para malla de alta calidad	4 Puntos
Tamaño de elementos	5 mm
Tolerancia	0.25 mm
Calidad de malla	Elementos cuadráticos de alto orden

Información de malla - Detalles

Número total de nodos	142463
Número total de elementos	71813
Cociente máximo de aspecto	47.894
% de elementos cuyo cociente de aspecto es < 3	95.4
El porcentaje de elementos cuyo cociente de aspecto es > 10	0.0919
Porcentaje de elementos distorsionados	0
Tiempo para completar la malla (hh;mm;ss):	00:00:28
Nombre de computadora:	

Fuerzas resultantes

Fuerzas de reacción

Conjunto de seleccione s	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	-115.258	450.817	0.00051397 5	465.317

Momentos de reacción

Conjunto de seleccione s	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0

Fuerzas de cuerpo libre

Conjunto de seleccione s	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	0.000111122	35.1972	-2.82739e- 05	35.1972

Momentos de cuerpo libre

Conjunto de seleccione s	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	1e-33

Resultados del estudio

Nombre	Tipo	Mín.	Máx.
Stress1	VON: Tensión de von Mises	133.6N/m^2	19,339,040.0N/m^2
	VOIT MISCS	Nodo: 39941	Nodo: 137482
Nombre del modelo: MARCO BICICLETA Nombre de estudio: Scenario Riding 1(-Defau Tipo de resultado: Análisis estático tensión no			
			von Mises (N/m^2)
			19,339,040.0
			_ 17,727,464.0
			. 16,115,889.0
		1	_ 14,504,314.0
			_ 12,892,738.0
			_ 11,281,162.0
			. 9,669,587.0
			. 8,058,011.0
			_ 6,446,435.5
		MIT.	_ 4,834,860.0
			3,223,284.5
*			. 1,611,709.1
z ×			133.6
			—▶ Límite elástico: 460,000,000.0
N	ARCO BICICLETA-Scenar	io Riding 1-Tensiones-S	

Nombre	Tipo	Mín.	Máx.
Displacement1	URES: Desplazamientos resultantes	1.301e-05mm	1.858e-01mm
		Nodo: 137481	Nodo: 6869

CONCLUSIONES

Luis Alejandro Salais Meza 1877483

Al igual que con la práctica anterior, con este ejercicio se pudo hacer uso de las herramientas que brinda la tecnología para el análisis de esfuerzo y deformación en elementos complejos. Si bien es cierto que mientras más elementos contenga una pieza, más compleja se hace, la capacidad de simulación de herramientas como Solidworks hacen que el trabajo sea realmente sencillo al momento de analizar una estructura. Al importar el modelo, únicamente es necesario aplicar los parámetros necesarios como sujeciones, mallado, cargas, conectores, etc. para conseguir resultados que brindan una idea muy adecuada de cómo el modelo se comportaría en un escenario real, dando la oportunidad de mejorar la estructura del mismo y adecuarla según las necesidades que se tengan.

Raymundo López Mata 1923217

En esta segunda práctica se realizó el mismo procedimiento que la práctica anterior; se utilizaron las herramientas de simulación como el SolidWorks para la creación de una pieza, en este caso se requirió el marco de una bicicleta, la cual se le aplicaron unos esfuerzos para poder observar la deformación del marco mediante la simulación dentro del programa. Con esto se podría realizar una optimización tipológica modificando su estructura, reduciendo su masa y observando el comportamiento con la nueva forma y masa. Con esto se ahorraría material y dinero, por lo cual se puede notar la ventaja de la optimización topológica utilizando un programa de simulación como el SolidWorks.

José Juan García Martínez 191641

En esta práctica, se realizó la simulación de un cuadro de bicicleta el cual estaba diseñado para un bue funcionamiento, se realizó las debidas restricciones de carga las cuales simulan los esfuerzos donde se encuentran las cargas en una bicicleta, como el manubrio, el asiento y los pedales. Los diferentes sistemas de malla, material fueron propuestos para un buen sistema de simulación. Lo que se

pretendía encontrar en la simulación era ver la deformación que tenía para ver algún riesgo de falla al modelo. Los resultados son positivos y buenos para el modelado.

Gerardo Antonio Contreras Sandate 1860063

En esta segunda practica de laboratorio se volvió a realizar el análisis de una pieza mediante simulaciones, en este caso, una parte importante de una bicicleta como lo es el marco. Para esta ocasión se realizaron pasos similares a la primera práctica, como lo es el diseño en CAD y sus simulaciones. Estas simulaciones dieron como resultado sus valores de fuerzas resultantes y los resultados de estudio. Gracias a que se especificó el material del que estaba hecho, los resultados pueden ser más específicos para lo que se buscaba. Con esto podemos ver como se ahorraría el tiempo y presupuesto para la realización en físico de un marco de bicicleta que sea resistente y eficiente.

Daniel García Rodarte 1912044

En conclusión, durante esta práctica se desarrolló la propuesta de un marco de bicicleta que aparte de cumplir con su propósito original de ser una pieza clave a la hora de estructurar una bicicleta también se tomó en cuenta mejorar la calidad de esta y desarrollar nuevas ventajas para la optimización del mecanismo de la bicicleta, para esto realizamos un modelo en SolidWorks y simulamos las cargas que normalmente soporta el marco de la bicicleta para demostrar todas los esfuerzos y deformaciones que sufre durante la simulación y comparar con otras propuestas.

REFERENCIAS BIBLIOGRÁFICAS

- eita. (s. f.). ¿Qué es la Optimización Topológica? Estudio de Ingeniería y Tecnología Avanzada S.L. Recuperado 12 de septiembre de 2022, de https://eitaingenieros.com/optimizacion/
- Álvarez, A. (s. f.-b). Geometría de la bici de MTB: medidas, ángulos y lo que significan. Recuperado 16 de septiembre de 2022, de https://www.mtbpro.es/afondo/geometria-de-la-bici-de-mtb-medidas-angulos-y-lo-que-significan
- ➤ Pedrero, J. C. (2019, 17 enero). GEOMETRÍA DE UN CUADRO DE BICICLETA. Escuela La Bicicleta. Recuperado 17 de septiembre de 2022, de https://labicicleta.net/escuela/geometria-de-un-cuadro-de-bicicleta/