

Validated Solution of Initial Value Problem for Ordinary Differential Equations based on Explicit and Implicit Runge-Kutta Schemes

Julien Alexandre Dit Sandretto, Alexandre Chapoutot

▶ To cite this version:

Julien Alexandre Dit Sandretto, Alexandre Chapoutot. Validated Solution of Initial Value Problem for Ordinary Differential Equations based on Explicit and Implicit Runge-Kutta Schemes. [Research Report] ENSTA ParisTech. 2015. https://doi.org/10.1016/9.2015. https://doi.org/10.1016/9.2015. <a href="https://doi.org/10.1016/9.2015. <a href="https://doi.org/

HAL Id: hal-01107685

https://hal-ensta.archives-ouvertes.fr/hal-01107685v6

Submitted on 13 Mar 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Validated Solution of Initial Value Problem for Ordinary Differential Equations based on Explicit and Implicit Runge-Kutta Schemes¹

Julien Alexandre dit Sandretto, Alexandre Chapoutot ENSTA ParisTech, Palaiseau, France

julien.alexandre-dit-sandretto@ensta-paristech.fr
 alexandre.chapoutot@ensta-paristech.fr

March 13, 2015

¹This research benefited from the support of the "Chair Complex Systems Engineering – Ecole Polytechnique, THALES, DGA, FX, DASSAULT AVIATION, DCNS Research, ENSTA ParisTech, Télécom ParisTech, Fondation ParisTech, FDO ENSTA"

Abstract

We present in this report our tool based on Ibex library which provides an innovative and generic procedure to simulate an ordinary differential equation with any Runge-Kutta scheme (explicit or implicit). Our validated approach is based on the classical two steps integration: the Picard-Lindelöf operator to enclose all the solutions on a one step, and the computation of the approximated solution and its Local Truncation Error. This latter is computed with a generic and elegant approach using interval arithmetic and Fréchêt derivatives. We perform a strong experimentation through many numerical experiments coming from three different benchmarks and the results are shown and compared with competition.

Chapter 1

Introduction

Many scientific applications in physical fields such as mechanics, robotics, chemistry or electronics require differential equations. This kind of equations appears when only the velocity and/or the acceleration are available in the modeling of a system. In the general case, these differential equations cannot be formally integrated, i.e., closed form solution are not available, and a numerical integration scheme is used to approximate the state of the system. In this report, we focus on ordinary differential equations for which we develop a new method to solve them and validate the solution.

Notations \dot{y} denotes the time derivative of the function y, i.e., $\frac{dy}{dt}$. x denotes a real values while \mathbf{x} represents a vector of real values. [x] represents an interval values and $[\mathbf{x}]$ represents a vector of interval values.

1.1 Solving ODE with Numerical Methods

An ordinary differential equation (ODE for short) is a relation between a function $y : \mathbb{R} \to \mathbb{R}^n$ and its derivative $\dot{y} = \frac{dy}{dt}$, written as $\dot{y} = f(t,y)$. An initial value problem (IVP for short) is an ODE together with an initial condition and a final time

$$\dot{y} = f(t, y)$$
 with $y(0) = y_0, y_0 \in \mathbb{R}^n$ and $t \in [0, t_{\text{end}}]$. (1.1)

We do not address here the problem of existence of the solution and we shall always assume that $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous in t and globally Lipschitz in y, so Equation (1.1) admits a unique solution on \mathbb{R} , see [11] for more details. As the exact solution y(t) of Equation (1.1) is usually unknown, numerical methods are used to approximate y(t) on a time grid.

1.2 Classical Runge-Kutta methods

We now recall the principles of numerical integration of ordinary differential equations. Solving the IVP means finding a continuous and differentiable function y_{∞} such that $y_{\infty}(0) = y_0$ and

$$\forall t \in [0, t_{\text{end}}], \quad \dot{y}_{\infty}(t) = f(t, y_{\infty}(t)).$$

Note that, higher order differential equations can be translated into first-order ODEs by introducing additional variables for the derivatives of y. We denote the solution at time t of Equation (1.1) with initial condition y_0 at t = 0 by $y(t; y_0)$.

An exact solution of Equation (1.1) is rarely computable so that in practice, approximation algorithms are used. The goal of an approximation algorithm is to compute a sequence of n+1 time instants

$$0 = t_0 < t_1 < \dots < t_n = t_{\text{end}},$$

and a sequence of n+1 values y_0, \ldots, y_n such that

$$\forall i \in [0, n], \quad y_i \approx y_\infty(t_i; y_0)$$
.

There is a huge set of numerical methods to solve Equation (1.1). In this report, we focus on single-step methods member of the Runge-Kutta family, that is these methods only use y_i and approximations of $\dot{y}(t)$ to compute y_{i+1} .

A Runge-Kutta method, starting from an initial value y_n at time t_n and a finite time horizon h, the step-size, produces an approximation y_{n+1} at time t_{n+1} , with $t_{n+1} - t_n = h$, of the solution $y(t_{n+1}; y_n)$. Furthermore, to compute y_{n+1} , a Runge-Kutta method computes s evaluations of f at predetermined time instants. The number s is known as the number of stages of a Runge-Kutta method. More precisely, a Runge-Kutta method is defined by

$$y_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_i , \qquad (1.2)$$

with k_i defined by

$$k_i = f\left(t_0 + c_i h, y_0 + h \sum_{j=1}^s a_{ij} k_j\right)$$
 (1.3)

The coefficient c_i , a_{ij} and b_i , for $i, j = 1, 2, \dots, s$, fully characterize the Runge-Kutta methods and their are usually synthesized in a *Butcher tableau* of the form

In function of the form of the matrix A, made of the coefficients a_{ij} , a Runge-Kutta method can be

- explicit, e.g., the classical Runge-Kutta method of order 4 given in Figure 1.1(a). In other words, the computation of an intermediate k_i only depends on the previous steps k_j for j < i;
- diagonally implicit, e.g., a diagonally implicit method of order 4 given in Figure 1.1(b). In this case, the computation of an intermediate step k_i involves the value k_i and so non-linear systems in k_i must be solved;

• fully implicit, e.g., the Runge-Kutta method with a Lobatto quadrature formula of order 4 given in Figure 1.1(c). In this last case, the computation of intermediate steps involves the solution of a non-linear system of equations in all the values k_i for $i = 1, 2, \dots, s$.

Figure 1.1: Different kinds of Runge-Kutta methods

Note that in case of implicit Runge-Kutta methods the non-linear systems of n equations must be solved at each integration step. Usually, a Newton-like method is used for this purpose. Nevertheless, such implicit methods have very good stability properties, see [11, Chap. II] for more details, which make them very useful in case of stiff ODE.

1.3 Computing with Sets

To take into account numerical approximation coming from floating-point arithmetic and approximation due to numerical integration scheme, set-based computation is required. In this case, we transform an IVP into an interval initial value problem (IIVP for short) that is

$$\dot{y} = f(t, y)$$
 with $y(0) = \mathcal{Y}_0, \ \mathcal{Y}_0 \subseteq \mathbb{R}^n$ and $t \in [0, t_{\text{end}}]$. (1.4)

In Equation (1.4), the initial value is given by a set \mathcal{Y}_0 of values, i.e., we do not know exactly the initial value. In other terms, we want to compute the set of solutions $\mathcal{Y}_{\infty}(t;\mathcal{Y}_0)$ of IIVP such that

$$\mathcal{Y}_{\infty}(t;\mathcal{Y}_0) = \{ y_{\infty}(t;y_0) : \forall y_0 \in \mathcal{Y}_0 \} .$$

Note that the set \mathcal{Y}_{∞} should guarantee to contain the true solution y_{∞} . For the past decades IIVP have been solved using tools coming from interval analysis. The guaranteed solution of IIVP using interval arithmetic is mainly based on two kinds of methods:

- i) Interval Taylor series methods [16, 15, 1, 17, 12, 20, 7, 14],
- ii) Interval Runge-Kutta methods [9, 3, 2].

The former is the oldest method used in this context. Indeed, R. Moore [16] already applied this method in the sixties and until now it is the most used method to solve Equation (1.4). The latter is more recent, see in particular [3, 2], but Runge-Kutta methods have many interesting properties as strong

stability that we would like to exploit in the context of validated solution of ODEs.

We present new guaranteed numerical integration schemes based on implicit Runge-Kutta methods. This work is an extension of [3, 2] which only considered explicit Runge-Kutta methods.

1.3.1 Interval arithmetic

The simplest and most common way to represent and manipulate sets of values is interval arithmetic [16]. An interval $[x_i] = [\underline{x_i}, \overline{x_i}]$ defines the set of reels x_i such that $\underline{x_i} \leq x_i \leq \overline{x_i}$. IR denotes the set of all intervals. The size or the width of $[x_i]$ is denoted by $w([x_i]) = \overline{x_i} - \underline{x_i}$. The center of an interval is denoted by $\operatorname{Mid}([x])$ denotes the middle of [x]. A vector of intervals, or a box, $[\mathbf{x}]$ is the Cartesian product of intervals $[x_1] \times ... \times [x_i] \times ... \times [x_n]$. The width of a box is defined by $w([\mathbf{x}]) = \max_i w([x_i])$.

Interval arithmetic [16] extends to \mathbb{R} elementary functions over \mathbb{R} . For instance, the interval sum (i.e., $[x_1]+[x_2]=[\underline{x_1}+x_2,\overline{x_1}+\overline{x_2}]$) encloses the image of the sum function over its arguments, and this enclosing property basically defines what is called an *interval extension* or an *inclusion function*.

Definition 1 (Extension of a function to \mathbb{IR}). Consider a function $f : \mathbb{R}^n \to \mathbb{R}$, then $[f]: \mathbb{IR}^n \to \mathbb{IR}$ is said to be an **extension** of f to intervals if

$$\forall [x] \in \mathbb{IR}^n, \quad [f]([x]) \supseteq \{f(x), \ x \in [x]\},$$
$$\forall x \in \mathbb{R}^n, \quad f(x) = [f](x) .$$

In our context, the expression of a function f is always a composition of elementary functions. The **natural extension** $[f]_N$ is then simply a composition of the corresponding interval operators.

Definition 2 (Overestimation of a set). Consider the set $\mathcal{F} = \{f(x), x \in [x]\}$, the interval extension [f]([x]) is an overestimation of \mathcal{F} and we note

$$[f]([x]) = \square \mathcal{F}$$
.

Definition 3 (Integration). Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function and $[a] \subset \mathbb{IR}^n$, then the components of $\int_{\underline{a}}^{\overline{a}} f(s) ds$ are

$$\left\{ \int_{\underline{a}}^{\overline{a}} f(s) ds \right\}_{i} = \int_{\underline{a}}^{\overline{a}} \left\{ f(s) \right\}_{i} ds .$$

where $\{\}_i$ denotes the i-th component of a vector. Obviously, see [16],

$$\int_{a}^{\overline{a}} f(s)ds \in (\underline{a} - \overline{a})f([a]) = w([a])[f]([a]) .$$

The *interval arithmetic* is a powerful tool to deal with sets. Nevertheless, this representation usually produces too much over-approximated results, because it cannot take dependencies between variables in account: for instance, if x = [0,1], then $x-x=[-1,1] \neq 0$. More generally, it can be shown for most integration schemes that the width of the result can only grow if we interpret sets of values as intervals.

Example 1.3.1. Consider the ordinary differential equation $\dot{x}(t) = -x$ solved with the Euler's method with an initial value ranging in the interval [0,1] and with a step-size of h = 0.5. For one step of integration, we have to compute with interval arithmetic the expression $e = x + h \times (-x)$ which produces as a result the interval [-0.5,1]. Rewriting the expression e such that e' = x(1-h), we obtain the interval [0,0.5] which is the exact result. Unfortunately, we cannot in general rewrite expressions with only one occurrence of each variable. More generally, it can be shown that for most integration schemes the width of the result can only grow if we interpret sets of values as intervals [18].

1.3.2 Affine arithmetic

To avoid or limit the problem of dependency, we use an improvement over interval arithmetic named *affine arithmetic* [8] which can track linear correlations between variables.

A set of values in this domain is represented by an affine form \hat{x} , which is a formal expression of the form

$$\hat{x} = \alpha_0 + \sum_{i=1}^n \alpha_i \varepsilon_i,$$

where the coefficients α_i are real numbers, α_0 being called the *center* of the affine form, and the ε_i are formal variables ranging over the interval [-1,1] called *noise symbols*.

Obviously, an interval $a=[a_1,a_2]$ can be seen as the affine form $\hat{x}=\alpha_0+\alpha_1\varepsilon$ with $\alpha_0=(a_1+a_2)/2$ and $\alpha_1=(a_2-a_1)/2$. Moreover, affine forms encode linear dependencies between variables: if $x\in[a_1,a_2]$ and y is such that y=2x, then x will be represented by the affine form \hat{x} above and y will be represented as $\hat{y}=2\alpha_0+2\alpha_1\varepsilon$.

Usual operations on real numbers extend to affine arithmetic in the expected way. For instance, if we have two affine forms $\hat{x} = \alpha_0 + \sum_{i=1}^n \alpha_i \varepsilon_i$ and $\hat{y} = \beta_0 + \sum_{i=1}^n \beta_i \varepsilon_i$, then with $a, b, c \in \mathbb{R}$, we have

$$a\hat{x} \pm b\hat{y} \pm c = (a\alpha_0 \pm b\beta_0 \pm c) + \sum_{i=1}^{n} (a\alpha_i \pm b\beta_i)\varepsilon_i$$
.

However, unlike the affine operations, most operations create new noise symbols. Multiplication for example is defined by

$$\hat{x} \times \hat{y} = \alpha_0 \alpha_1 + \sum_{i=1}^{n} (\alpha_i \beta_0 + \alpha_0 \beta_i) \varepsilon_i + \nu \varepsilon_{n+1},$$

where

$$\nu = \left(\sum_{i=1}^{n} |\alpha_i|\right) \times \left(\sum_{i=1}^{n} |\beta_i|\right),\,$$

over-approximates the error between the linear approximation of multiplication and multiplication itself.

Other operations, as sin or exp, are evaluated using two kinds of algorithm: $min\ range$ method and Tchebychev method, see [8] for more details. Note that more recent work exists on increasing the accuracy of affine arithmetic [10, 19] but it is not mandatory to consider them in this work.

Example 1.3.2. Consider again $e = x + h \times (-x)$ with h = 0.5 and x = [0, 1] which is associated to the affine form $\hat{x} = 0.5 + 0.5\varepsilon_1$. Evaluating e with affine arithmetic without rewriting the expression, we obtain [0, 0.5] as a result.

The set-based evaluation of an expression only consists in interpreting all the mathematical operators (such as + or \sin) by their counterpart in affine arithmetic. We will denote by $\mathrm{Aff}(e)$ the evaluation of the expression e using affine arithmetic, see [4] for practical implementation details.

1.4 Scope of the report

In next chapter, we will describe the tool. After a short overview on the verified simulation process (Section 2.1), we will explain our new way to compute the truncation error in Section 2.2. Then, the algorithm used to compute the implicit Runge-Kutta schemes is described (Section 2.3). The chapter 3 gathers a large experimentation in order to compare us to the competition and validated our approach.

Chapter 2

Description of the tool

We describe in this chapter the main contribution of this article that is a new validated method to compute solution of Equation (1.1). Before presenting this new result we recall some results of the validated numerical integration based on Taylor series.

2.1 Overview on validated numerical integration

In the classical approach [15, 17] to define validated method for IVP, each step of an integration scheme consists in two steps: a priori enclosure and solution tightening. Starting from a valid enclosure $[y]_j$ at time t_j , the two following steps are applied

- **Step 1.** Compute an *a priori* enclosure $[\tilde{y}]_j$ of the solution using Banach's theorem and the Picard-Lindelöf operator. This enclosure has the three major properties:
 - $y(t, [y]_j)$ is guaranteed to exist for all $t \in [t_j, t_{j+1}]$, i.e., along the current step, and for all $y_j \in [y]_j$.
 - $y(t, [y_j]) \subseteq [\tilde{y}]_j$ for all $t \in [t_j, t_{j+1}]$.
 - the step-size $h_j = t_{j+1} t_j$ is as larger as possible in terms of accuracy and existence proof for the IVP solution.
- Step 2. Compute a tighter enclosure of $[y]_{j+1}$ such that $y(t_{j+1}, [y]_j) \subseteq [y]_{j+1}$. The main issue in this phase is how to counteract the well known wrapping effect [16, 15, 17]. This phenomenon appears when we try to enclose a set with an interval vector (geometrically a box). The arising overestimation creates a false dynamic for the next step, and, with accumulation, can lead to intervals with an unacceptably large width.

The different enclosures computed during each step are shown on Figure 2.1.

Some algorithms useful to perform these two steps are described in the following.

Figure 2.1: Enclosures appeared during one step

2.1.1 A priori solution enclosure

In order to compute the a priori enclosure, we use the Picard-Lindelöf operator. This operator is based on the following theorem.

Theorem 2.1.1 (Banach fixed-point theorem). Let (K,d) a complete metric space and let $g: K \to K$ a contraction that is for all x, y in K there exists $c \in]0,1[$ such that

$$d\left(g(x),g(y)\right) \leq c \cdot d(x,y) \ ,$$

then g has a unique fixed-point in K.

In context of IVP, we consider the space of continuously differentiable functions $C^0([t_j,t_{j+1}],\mathbb{R}^n)$ and the Picard-Lindelöf operator

$$P_f(y) = t \mapsto y_j + \int_{t_n}^t f(s, y(s)) ds$$
 (2.1)

Note that this operator is associated to the integral form of Equation (1.1). So the solution of this operator is also the solution of Equation (1.1).

The Picard-Lindelöf operator is used to check the contraction of the solution on a integration step in order to prove the existence and the uniqueness of the solution of Equation (1.1) as stated by the Banach's fixed-point theorem. Furthermore, this operator is used to compute an enclosure of the solution of IVP over a time interval $[t_i, t_{i+1}]$.

Rectangular method for a priori enclosure

Using interval analysis and with a first order integration scheme we can define a simple interval Picard-Lindelöf operator such that

$$P_f([R]) = [y]_i + [0, h] \cdot f([R]), \tag{2.2}$$

with $h = t_{j+1} - t_j$ the step-size. Theorem 2.1.1 says that if we can find [R] such that $P_f([R]) \subseteq [R]$ then the operator is contracting and Equation (1.1) has a unique solution. Furthermore,

$$\forall t \in [t_j, t_{j+1}], \quad \{y(t; y_j) : \forall y_j \in [y]_j\} \subseteq [R],$$

then [R] is the *a priori* enclosure of the solution of Equation (1.1).

Remark that the operator defined in Equation (2.2) can also define a contractor (in a sens of interval analysis [6]) on [R] after the fixed-point reached such that

$$[R] \leftarrow [R] \cap [y]_i + [0, h].f([R])$$
 (2.3)

Hence, we can reduce the width of the a priori enclosure in order to increase the accuracy of the integration.

The operator defined in Equation (2.2) and its associated contractor defined in Equation (2.3) can be defined over a more accurate integration scheme (at the condition that it is a guaranteed scheme like the interval rectangle rule). For example, the evaluation of $\int_{t}^{t} f(s)ds$ can be easily improved with a Taylor or a Runge-Kutta scheme.

A priori enclosure with Taylor series

Interval version of Taylor series for ODE integration gives

$$[y]_{j+1} \subset \sum_{k=0}^{N} f^{[k]}([y]_j) h^k + f^{[N+1]}([\tilde{y}]_j) h^{N+1}, \tag{2.4}$$

with
$$f^{[0]} = [y]_j$$
, $f^{[1]} = f([y]_j), \ldots$, $f^{[k]} = \frac{1}{k} \left(\frac{\partial f^{[k-1]}}{\partial y} f \right) ([y]_j)$.
By replacing h with interval $[0, h]$, this scheme becomes an efficient Taylor

Picard-Lindelöf operator, with a parametric order N such that

$$y_{j+1}([t_j, t_{j+1}]; [R]) = y_j + \sum_{k=0}^{N} f^{[k]}([y]_j)[0, h^k] + f^{[N+1]}([R])[0, h^{N+1}]$$
 (2.5)

In consequence, if $[R] \supseteq y_{j+1}([t_j, t_{j+1}], [R]), [R]$ then Equation (2.5) defined a contraction map and Theorem 2.1.1 can be applied.

In our tool, we use it at order 3 by default, it seems to be a good compromise between efficiency and computation quickness.

Note that the scheme defined in Equation (2.4) is usually evaluated in a centered form for a more accurate result

$$[y]_{j+1} \subset \sum_{k=0}^{N} f^{[k]}(\hat{y}_j) h^k + f^{[N+1]}([\tilde{y}]_j) h^{N+1} + \left(\sum_{k=0}^{N} J(f^{[k]}, [y]_j) h^i)([y]_j - \hat{y}_j\right),$$
(2.6)

with $\hat{y}_j \in [y]_j$ $J(f^{[k]}, [y]_j)$ is the Jacobian of $f^{[k]}$ evaluated at $[y]_j$. This scheme can also be combined with a QR-factorization to increase stability and counteract wrapping [17]. These two "tricks", with a strong computational cost, can be avoided by using the affine arithmetic.

Picard-Lindelöf operator, as defined in Equation (2.5), gives an a priori enclosure [R], using Theorem 2.1.1. Picard-Lindelöf operator is proven to be contracting on [R], we can then use this operator to contract the box [R] till a fixpoint is reached

In our tool, the default contractor uses a Taylor expansion as follow

$$[R] \cap x_j + \sum_{k=0}^{N} f^{[k]}([x]_j)[0, h^k] + f^{[N+1]}([R])[0, h^{N+1}]$$

It is very important to contract as much as possible this box [R] because the Taylor remainder is function of [R] and the step-size is function of the Taylor remainder.

2.1.2 Tighter enclosure and truncation error

Suppose that Step 1 has been done for the current step and that we dispose of the enclosure $[\tilde{y}]_i$ such that

$$y(t,t_i,[y]_i) \subseteq [\tilde{y}]_i \quad \forall t \in [t_i,t_{i+1}]$$
.

In particular, we have $y(t_{j+1},t_j,[y]_j)\subseteq [\tilde{y}]_j$. The goal of Step 2 is thus to compute the tighter enclosure $[y]_{j+1}$ such that

$$y(t_{j+1}, t_j, [y]_j) \subseteq [y]_{j+1} \subseteq [\tilde{y}]_j$$
.

One way to do that consists in computing an approximate solution $y_{j+1} \approx y(t_{j+1}, t_j, [y]_j)$ with an integration scheme $\Phi(t_{j+1}, t_j, [y]_j)$, and then the associated local truncation error $LTE_{\Phi}(t, t_j, [y]_j)$. Indeed, a guaranteed integration scheme has the property that there exists a time $\xi \in [t_j, t_{j+1}]$ such that

$$y(t_{j+1}, t_j, [y]_j) \subseteq \Phi(t_{j+1}, t_j, [y]_j) + LTE_{\Phi}(\xi, t_j, [y]_j) \subseteq [\tilde{y}]_j$$
.

So $[y]_{j+1} = \Phi(t_{j+1}, t_j, [y]_j) + LTE_{\Phi}(\xi, t_j, [y]_j)$ is an acceptable tight enclosure.

2.1.3 Wrapping effect

The problem of reducing the wrapping effect has been studied in many different ways. One of the most known and effective is the QR-factorization [15]. This method improves the stability of the Taylor series in the Vnode-LP tool [17]. An other way is to modify the geometry of the enclosing set (parallelepipeds with Eijgenram and moore, ellipsoids with Neumaier, convex polygons with Rihm and zonotopes with Stewart and chapoutot).

An efficient affine arithmetic allows us to counteract the wrapping effect as shown in Figure 2.1.3 while keeping a fast computation.

Example 2.1.1. Consider the following IVP

$$\dot{y} = \begin{pmatrix} y_2 \\ -y_1 \end{pmatrix} \tag{2.7}$$

with initial values: $[y_0] = ([-1, 1], [10, 11])$. The exact solution of Equation (2.7) is

$$y(t) = A(t)y_0$$
 with $A(t) = \begin{pmatrix} cos(t) & sin(t) \\ -sin(t) & cos(t) \end{pmatrix}$

We compute periodically at $t = \frac{\pi}{4}n$ with n = 1, ..., 4 the solution of Equation (2.7).

2.2 Validated Runge-Kutta Methods

We present in this section our main conctribution that is the way we validate all kinds of Runge-Kutta methods. The main challenge is to compute the local truncation error of each Runge-Kutta method. Moreover, based on Runge-Kutta methods we can also define a new way to compute a priori enclosure.

Figure 2.2: Wrapping effect comparison (black: initial, green: interval, blue: interval from QR, red: zonotope from affine)

2.2.1 The Local Truncation Error for Explicit Runge-Kutta Methods

The local truncation error, or LTE, is the error due to the integration scheme on one step j, i.e.,

$$y(t_j; y_{j-1}) - y_j .$$

This error can be bound on each step of integration [11]. The truncation error of a Runge-Kutta scheme $\phi(t) = x_n + (t - t_n) \sum_{i=1}^s b_i k_i(t)$ is obtained by the order condition respected by each Runge-Kutta method, and it can be defined by

$$y(t_n; y_{j-1}) - y_j = \frac{h_n^{p+1}}{(p+1)!} \left(f^{(p)}(\xi, y(\xi)) - \frac{d^{p+1}\phi}{dt^{p+1}}(\eta) \right) .$$

This error is exact for one $\xi \in]t_k, t_{k+1}[$ and one $\eta \in]t_n, t_{n+1}[$. In other terms, the LTE of Runge-Kutta methods can be expressed as the difference between the remainders of the Taylor expansion of the exact solution of Equation (1.1) and of the Taylor expansion of the numerical solution given by equations (1.2) and (1.3).

The main issues are then to bound the terms $\frac{d^{p+1}\phi}{dt^{p+1}}(\eta)$ and $f^{(p)}(\xi, x(\xi))$, without knowing ξ and η . Nevertheless, the Picard-Lindelöf operator provides to us the box $y(t,t_j,[y_j])\subseteq [\tilde{y}_j]$ for all $t\in [t_j,t_{j+1}]$, and so $x(\xi)\in [\tilde{y}_j]$. Obviously, $\eta\in]t_n,t_{n+1}[$, which is well-known.

This approach has given good results, see [2], with $\frac{d^{p+1}\phi}{dt^{p+1}}(\eta)$ computed symbolically. Unfortunately, this computation may take a long time. Moreover, in case of implicit Runge-Kutta method, it is not easy to express ϕ so this approach cannot be applied in that case. We propose an other approach for the computation of the derivatives, based on rooted trees to solve these problems.

2.2.2 Elementary Differentials

To build new Runge-Kutta methods, John Butcher in [5] expressed the Taylor expansions of the exact solution and the numerical solution from *elementary differentials*. These differentials are in fact the Fréchet derivatives of f and a combination of them composed a particular element of the Taylor expansion.

Let $z, f(z) \in \mathbb{R}^m$, the M-th Fréchet derivative of f, see [13] for more details, is defined by

$$f^{(M)}(z)(K_1, K_2, \dots, K_M) = \sum_{i=1}^m \sum_{j_1=1}^m \sum_{j_2=1}^m \dots \sum_{j_M=1}^m {}^i f_{j_1 j_2 \dots j_M} {}^{j_1} K_1 {}^{j_2} K_2 \dots {}^{j_M} K_M e_i$$

where

$${}^{i}f_{j_{1}j_{2}...j_{M}} = \frac{\partial^{M}}{\partial^{j_{1}}z\partial^{j_{2}}z \dots \partial^{j_{M}}z}$$

$$K_{k} = [{}^{1}K_{1}, {}^{2}K_{2}, \dots, {}^{M}K_{M}] \in \mathbb{R}^{m}, \text{ for } k = 1, \dots, M.$$

The notation ℓx stands for the ℓ -th component of x.

Example 2.2.1. Let m = 2 with $\dot{y} = y^{(1)} = f(y)$ and M = 1 then

$$f^{(1)}(z)(K_1) = \sum_{i=1}^{2} \sum_{j_1=1}^{2} {}^{i} f_{j_1}({}^{j_1}K_1) e_i$$
$$= \begin{bmatrix} {}^{1} f_1({}^{1}K_1) + {}^{1} f_2({}^{2}K_2) \\ {}^{2} f_1({}^{1}K_1) + {}^{2} f_2({}^{2}K_2) \end{bmatrix}$$

with ${}^if_1 = \frac{\partial^i f}{\partial^1 z}$ and ${}^if_2 = \frac{\partial^i f}{\partial^2 z}$ with i = 1, 2Replacing z by y and K_1 by f(y) we get

$$f^{(1)}(y)(f(y)) = \begin{bmatrix} {}^{1}f_{1}({}^{1}f) + {}^{1}f_{2}({}^{2}f) \\ {}^{2}f_{1}({}^{1}f) + {}^{2}f_{2}({}^{2}f) \end{bmatrix} = y^{(2)}$$

Hence the second derivative of y is the first Fréchet derivative of f operating on f.

The elementary differentials $F_s: \mathbb{R}^m \to \mathbb{R}^m$ of f and their order are defined recursively by

- 1. f is the only elementary differential of order 1
- 2. if F_s , $s=1,2,\ldots,M$ are elementary differentials of order r_s then the Fréchet derivative $f^{(M)}(F_1,F_2,\ldots,F_m)$ is an elementary differential of order $1+\sum_{s=1}^M r_s$

Example 2.2.2. Let see different Fréchet derivatives:

- Order 1: f
- Order 2: $f^{(1)}(f)$
- Order 3: $f^{(2)}(f, f) = f^{(1)}(f^{(1)}(f))$

• Order 4:
$$f^{(3)}(f, f, f) = f^{(2)}(f, f^{(1)}(f)) = f^{(1)}(f^{(2)}(f, f)) = f^{(1)}(f^{(1)}(f^{(1)}(f)))$$

In consequence, the second and third time derivative of y associated to Equation (1.1) are

$$y^{(2)} = f^{(1)}(f),$$

$$y^{(3)} = f^{(2)}(f, f) + f^{(1)}(f^{(1)}(f)).$$

The great idea of John Butcher in [5] is to connect elementary derivatives to rooted trees. Indeed, an imporant question to answer is to know to a given order n of derivatives, how many elementary differentials do we have to consider. The answer is the same that counting the number of rooted tree with a given number of nodes. Furthermore, for each tree we can associate an elementary differential that is enumerating rooted trees of given order we have formula to express associated elementary derivatives. In Table 2.1 we gives to the fourth first time derivatives of y the number and the form of rooted trees. As in high order, the number of trees of the same form can be more than one due to symmetry, it is important to characterize rooted trees, it is the purpose of Table 2.2. Note that the number of trees increases very quickly, see Example 2.2.3.

Example 2.2.3. The number of rooted trees up to order 11, from left 11 to right 0 is

1842 719 286 115 48 20 9 4 2 1 1 (total 3047)

The link between rooted trees and elementary differentials is given in Table 2.3.

Order	Trees	Number of trees
1	•	1
2	i i	1
3	√ , ≺	2
4	$ \psi, \diamond, \Upsilon, \rangle$	4

Table 2.1: Rooted trees

One of the main results in [5] is let $\dot{y} = f(y), f: \mathbb{R}^m \to \mathbb{R}^m$, then

$$y^{(q)} = \sum_{\tau(\tau)=q} \alpha(\tau) F(\tau) .$$

The second main results in [5] is let the a Runge-Kutta defined by a Butcher table then

$$\frac{d^q}{dh^q}x_n|_{h=0} = \sum_{\tau(\tau)=q} \alpha(\tau)\gamma(\tau)\psi(\tau)F(\tau)$$

Tree	Name	r(t)	$\sigma(t)$	$\gamma(t)$	$\alpha(t)$
•	au	1	1	1	1
•	[au]	2	1	2	1
\	$[au^2]$	3	2	3	1
	$[[\tau]]$	3	1	6	1
\	$[au^3]$	4	6	4	1
	$[\tau[\tau]]$	4	1	8	3
Y	$[[au^2]]$	4	2	12	1
<	[[[au]]]	4	1	24	1

Table 2.2: Rooted trees characteristics

The link between trees and coefficients of Bucther table is given in Table 2.4. Basically, a Runge-Kutta method has order p if $\psi(\tau) = \frac{1}{\gamma(\tau)}$ holds for all trees of order $r(\tau) \leq p$ and does not hold for some tree of order p+1.

2.2.3 Local truncation error

From the results presented in Section 2.2.2, we can use an unified approach to express LTE for explicit and implicit Runge-Kutta methods. More precisely, for a Runge-Kutta of order p we have

LTE
$$(t, y(\xi)) := y(t_n; y_{n-1}) - y_n =$$

$$\frac{h^{p+1}}{(p+1)!} \sum_{\tau(\tau) = p+1} \alpha(\tau) [1 - \gamma(\tau)\psi(\tau)] F(\tau)(y(\xi)) \quad \xi \in [t_n, t_{n+1}] \quad (2.8)$$

with

- τ is a rooted tree
- $F(\tau)$ is the **elementary differential** associated to τ
- $r(\tau)$ is the order of τ (number of nodes)
- $\gamma(\tau)$ is the density
- $\alpha(\tau)$ is the number of equivalent trees
- $\psi(\tau)$

Note that $y(\xi)$ is a particular solution of Equation (1.1) at a time instant ξ . This solution can be over-approximated using Picard-Lindelöf operator as for Taylor series approach.

Order	Tree	$\mid t \mid$	F(t)
1	•	au	f
2	1	[au]	$\{f\}$
3	,	$[au^2]$	$\{f^2\}$
	<u> </u>	$[2\tau]_2$	$\{2f\}_2$
4	\	$[au^3]$	$\{f^{3}\}$
		$[\tau[\tau]_2$	$\{f\{f\}_2$
	Ĭ	$[[_2\tau^2]_2$	$\{_2f^2\}_2$
		$[_3 au]_3$	${_3f}_3$

Table 2.3: Rooted trees versus elementary differentials

Tree	t	$\psi(au)$				
•	au	$\sum_i b_i$				
1	[au]	$\sum_{i} b_i c_i \text{with} c_i = \sum_{j} a_{ij}$				
X	$\begin{bmatrix} \tau^2 \\ [2\tau]_2 \end{bmatrix}$	$\sum_i b_i c_i^2 \ \sum_{ij} b_i a_{ij} c_j$				

Table 2.4: Rooted trees versus coefficients of Runge-Kutta methods

2.2.4 A priori enclosure with Runge-Kutta

A novelty of our approach is that we can define a new $a\ priori$ enclosure based on Runge-Kutta methods. We can define a new enclosure such that scheme such that

$$k_i(t, y_j) = f\left(t_j + c_i(t - t_j), y_j + (t - t_j) \sum_{n=1}^s a_{in} k_n\right),$$

$$y_{j+1}(t, \xi) = y_j + (t - t_j) \sum_{i=1}^s b_i k_i(t, y_j) + \text{LTE}(t, y(\xi)).$$

An inclusion function with $h = t_{j+1} - t_j$ is then defined with

$$y_{j+1}([t_j, t_{j+1}], [R]) = x_j + [0, h] \sum_{i=1}^s b_i k_i ([t_j, t_{j+1}], y_j) + \text{LTE}([t_j, t_{j+1}], [R])$$
.

Proving the contraction of such scheme, that is

$$[R] \supseteq x_{j+1} ([t_j, t_{j+1}], [R])$$

can prove the existence and the uniqueness of the solution of Equation (1.1) using Theorem 2.1.1. In the sequel of this chapter we present a computable formula of the LTE for any explicit or implicit Runge-Kutta formula.

Remark. A the time of writing this report, we face a complexity issue in the computation of the local truncation error of Runge-Kutta methods. Until now, this new computation of a priori enclosure is not yet used in our tool.

2.3 Validated Implicit Runge-Kutta Methods

2.3.1 Implicit Runge-Kutta methods

In our tool we implemented the following implicit Runge-Kutta methods.

Implicit Euler The backward Euler method is first order. Unconditionally stable and non-oscillatory for linear diffusion problems.

Implicit midpoint The implicit midpoint method is of second order. It is the simplest method in the class of collocation methods known as the Gauss methods. It is a symplectic integrator.

$$\begin{array}{c|c|c}
 & 1/2 & 1/2 \\
\hline
 & 1 & 1
\end{array}$$

Radau IIA Radau methods are fully implicit methods (matrix A of such methods can have any structure). Radau methods attain order 2s-1 for s stages. Radau methods are A-stable, but expensive to implement. Also they can suffer from order reduction. The first order Radau method is similar to backward Euler method.

Lobatto IIIC There are three families of Lobatto methods, called IIIA, IIIB and IIIC. These are named after Rehuel Lobatto. All are implicit methods, have order 2s-2 and they all have c1=0 and cs=1. Unlike any explicit method, it's possible for these methods to have the order greater than the number of stages. Lobatto lived before the classic fourth-order method was popularized by Runge and Kutta.

$$\begin{array}{c|ccccc}
0 & 1/6 & -1/3 & 1/6 \\
1/2 & 1/6 & 5/12 & -1/12 \\
\hline
1 & 1/6 & 2/3 & 1/6 \\
\hline
& 1/6 & 2/3 & 1/6
\end{array}$$

SDIRK4 For the so-called DIRK methods, also known as SDIRK or semi-explicit or semi-implicit methods, A has a lower triangular structure where the constant in diagonal is chosen for stability reasons. In cases in which the solution of integration in the current step is identical with the final stage, it is possible that all is equal to 0 rather than to the diagonal value, without taking away from the essential nature of a DIRK method.

2.3.2 Solving an implicit Runge-Kutta scheme

Using an implicit Runge-Kutta in an integration scheme needs to solve a system of non-linear equations (Section 1.2). In classical numerical methods, it is done with a Newton-like solving procedure which provides generally a good approximation of the k_i . While some interval Newton-like procedure exists for solving systems of non-linear interval equations [16], we propose a lighter appraach described in the following.

Naturally Contracting Form

First of all, it is interesting to note that each stages of an implicit Runge-Kutta allowing us to compute the intermediate k_i can be used as a contractor [6].

Proposition 2.3.1. Each stage of an implicit Runge-Kutta is a natural contractor for k_i , i = 1, ..., s.

Proof. We recall the form of an intermediate stage:

$$k_i = f(y_n + h \sum_{j=1}^s a_{i,j} k_j, t_n + c_i h)$$
 (2.9)

We also know that for all the Runge-Kutta methods

$$c_i = \sum_{j=1}^{s} a_{i,j} \le 1, \quad \forall i = 1, \dots, s .$$

Moreover, by the Picard-Lindelöf operator, we have $k_i \in [\tilde{y}_n]$, i = 1, ..., s, because $t_n + c_i h \le t_n + h$. Inserting this inside Equation (2.9) leads to

$$\sum_{j=1}^{s} a_{i,j} k_j \in \sum_{j=1}^{s} a_{i,j} [\tilde{y}_n] = c_i [\tilde{y}_n] .$$

Then, we can write

$$y_n + h \sum_{j=1}^s a_{i,j} k_j \in y_n + h[\tilde{y}_n] .$$

By Theorem 2.1.1 and propertie of $[\tilde{y}_n]$ obtained by Picard-Lindelöf operator, f is contracting on $y_n + h[\tilde{y}_n]$, and also on $y_n + h\sum_{j=1}^s a_{i,j}k_j$.

Algorithm

By using the previous proposition, we write the contractor scheme

$$k_i = k_i \cap f\left(t_n + c_i h, y_n + h \sum_{j=1}^s a_{i,j} k_j\right)$$
.

This contractor is used inside a fixpoint to form the following solver for the implicit Runge-Kutta:

Algorithm 1 Solving an implicit RK

```
Require: [\tilde{y}_n], a_{i,j} of an implicit RK
k_i = [\tilde{y}_n], \ \forall i = 1, \dots, s
while at least one k_i is contracted do
k_1 = k_1 \cap f(y_n + h \sum_{j=1}^s a_{1,j}k_j)
\vdots
k_s = k_s \cap f(y_n + h \sum_{j=1}^s a_{s,j}k_j)
end while
```

This algorithm is light and, according to our tests, as efficient than a Newton-like method.

2.4 Complete algorithm

Now, we gather all the previous parts in Algorithm 2 for the simulation of an ODE with Runge-Kutta schemes, explicit or implicit. In this algorithm we have:

- RKe: a non guaranteed explicit Runge-Kutta method (RK4 for example)
- RKx: a guaranteed explicit, by an affine evaluation, or implicit, with Algorithm 1, Runge-Kutta method (RK4 or LC3 for examples)
- LTE: the local truncature error associated to RKx (see Section 2.2.3)
- PL: the Picard-Lindelöf operator based on an integration scheme (rectangular, Taylor or Runge-Kutta, see Section 2.1.1)

Algorithm 2 Simulation algorithm

```
Require: f, y_0, t_{end}, h, atol, rtol
   t_n = t_0, y_n = y_0, factor = 1
   while (t_n < t_{end}) do
      h = h * factor
      h = min(h, t_{end} - t_n)
      Loop:
      Initialize \tilde{y}_0 = y_n \cup RKe(y_n, h)
      Inflate \tilde{y}_0 by 10\%
      Compute \tilde{y}_1 = PL(\tilde{y}_0)
      while (\tilde{y}_1 \not\subset \tilde{y}_0) and (iter < size(f) + 1) do
         \tilde{y}_0 = \tilde{y}_1
         Compute \tilde{y}_1 with PL(\tilde{y}_0)
      end while
      if (\tilde{y}_1 \subset \tilde{y}_0) then
         while (||\tilde{y}_1 - \tilde{y}_0|| < 1e - 18) do
            \tilde{y}_0 = \tilde{y}_1
            \tilde{y}_1 = \tilde{y}_1 \cap PL(\tilde{y}_0)
         end while
         Compute lte = LTE(\tilde{y}_1)
         test = ||lte||/(atol + ||\tilde{y}_1|| * rtol)
         if (test \le 1) or (h < h_{min}) then
            factor = min(1.8, max(0.4, 0.9 * (1/test)^{1/p}))
         else
            h = max(h_{min}, h/2)
            Goto Loop
         end if
      else
         h = max(h_{min}, h/2)
         Goto Loop
      end if
      Compute y_{n+1} = RKx(y_n, h) + lte
      t_n = t_n + h
   end while
```

Chapter 3

Experimentation

3.1 Vericomp benchmark

3.1.1 Disclaimer

This section reports the results of the solution of various problems coming from the VERICOMP benchmark¹. For each problem, different validated methods of Runge-Kutta of order 4 are applied among: the classical formula of Runge-Kutta (explicit), the Lobatto-3a formula (implicit) and the Lobatto-3c formula (implicit). Moreover, an homemade version of Taylor series, limited to order 5 and using affine arithmetic, is also applied on each problem.

For each problem, we report the following metrics:

- c5t: user time taken to simulate the problem for 1 second.
- c5w: the final diameter of the solution (infinity norm is used).
- c6t: the time to breakdown the method with a maximal limit of 10 seconds.
- c6w: the diameter of the solution a the breakdown time.

After the results listing, a discussion is done.

3.1.2 Results

 $^{^{1} \}rm http://vericomp.inf.uni-due.de$

TAYLOR4 (TP8)		Table 3.1: Simulation r	esults of Pro	blem 1		
system.1 TAYLOR4 (TPP) 0.050 5.8147 10.000 9.6379e+08 system.1 TAYLOR4 (TP11) 0.010 5.8147 10.000 9.6379e+08 system.1 TAYLOR4 (TP12) 0.160 5.8147 10.000 9.6379e+08 system.1 TAYLOR4 (TP13) 0.220 5.8147 10.000 9.6379e+08 system.1 TAYLOR4 (TP14) 0.270 5.8147 10.000 9.6379e+08 system.1 RK4 (TP8) 0.030 5.8147 10.000 9.6379e+08 system.1 RK4 (TP10) 0.040 5.8147 10.000 9.6379e+08 system.1 RK4 (TP10) 0.040 5.8147 10.000 9.6379e+08 system.1 RK4 (TP11) 0.080 5.8147 10.000 9.6379e+08 system.1 RK4 (TP13) 0.170 5.8147 10.000 9.6379e+08 system.1 RK4 (TP13) 0.170 5.8147 10.000 9.6379e+08 system.1 RK4 (TP13) 0.170 5.8147 10.000	Problems				c6t	c6w
system.1 TAYLOR4 (TP10) 0.060 5.8147 10.000 9.6379e+08 system.1 TAYLOR4 (TP12) 0.160 5.8147 10.000 9.6379e+08 system.1 TAYLOR4 (TP12) 0.160 5.8147 10.000 9.6379e+08 system.1 TAYLOR4 (TP14) 0.270 5.8147 10.000 9.6379e+08 system.1 RK4 (TP9) 0.020 5.8147 10.000 9.6379e+08 system.1 RK4 (TP10) 0.040 5.8147 10.000 9.6379e+08 system.1 RK4 (TP11) 0.080 5.8147 10.000 9.6379e+08 system.1 RK4 (TP12) 0.100 5.8147 10.000 9.6379e+08 system.1 RK4 (TP13) 0.170 5.8147 10.000 9.6379e+08 system.1 RK4 (TP13) 0.170 5.8147 10.000 9.6379e+08 system.1 LA3 (TP8) 0.020 5.8323 10.000 9.6379e+08 system.1 LA3 (TP13) 0.040 5.8253 10.000	system_1	TAYLOR4 (TP8)	0.040	5.8147	10.000	9.6379e + 08
system.1 TAYLOR4 (TP12) 0.160 5.8147 10.000 9.6379e+08 system.1 TAYLOR4 (TP13) 0.220 5.8147 10.000 9.6379e+08 system.1 TAYLOR4 (TP14) 0.270 5.8147 10.000 9.6379e+08 system.1 RK4 (TP8) 0.030 5.8147 10.000 9.6379e+08 system.1 RK4 (TP10) 0.040 5.8147 10.000 9.6379e+08 system.1 RK4 (TP10) 0.040 5.8147 10.000 9.6379e+08 system.1 RK4 (TP11) 0.080 5.8147 10.000 9.6379e+08 system.1 RK4 (TP12) 0.100 5.8147 10.000 9.6379e+08 system.1 RK4 (TP13) 0.170 5.8147 10.000 9.6379e+08 system.1 RK4 (TP14) 0.230 5.8147 10.000 9.6379e+08 system.1 LA3 (TP18) 0.020 5.8323 10.000 9.6379e+08 system.1 LA3 (TP19) 0.040 5.8253 10.000	$system_{-}1$	TAYLOR4 (TP9)	0.050	5.8147	10.000	9.6379e + 08
system.1 TAYLOR4 (TP12) 0.160 5.8147 10.000 9.6379e+08 system.1 TAYLOR4 (TP13) 0.220 5.8147 10.000 9.6379e+08 system.1 TAYLOR4 (TP14) 0.270 5.8147 10.000 9.6379e+08 system.1 RK4 (TP9) 0.020 5.8147 10.000 9.6379e+08 system.1 RK4 (TP10) 0.040 5.8147 10.000 9.6379e+08 system.1 RK4 (TP11) 0.080 5.8147 10.000 9.6379e+08 system.1 RK4 (TP12) 0.100 5.8147 10.000 9.6379e+08 system.1 RK4 (TP13) 0.170 5.8147 10.000 9.6379e+08 system.1 RK4 (TP13) 0.170 5.8147 10.000 9.6379e+08 system.1 RK4 (TP13) 0.170 5.8147 10.000 9.6379e+08 system.1 LA3 (TP13) 0.170 5.8127 10.000 9.6379e+08 system.1 LA3 (TP13) 0.050 5.8232 10.000	$system_{-}1$	TAYLOR4 (TP10)	0.060	5.8147	10.000	9.6379e + 08
system.1 TAYLOR4 (TP14) 0.220 5.8147 10.000 9.6379e+08 system.1 RK4 (TP8) 0.030 5.8147 10.000 9.6379e+08 system.1 RK4 (TP9) 0.020 5.8147 10.000 9.6379e+08 system.1 RK4 (TP10) 0.040 5.8147 10.000 9.6379e+08 system.1 RK4 (TP11) 0.080 5.8147 10.000 9.6379e+08 system.1 RK4 (TP12) 0.100 5.8147 10.000 9.6379e+08 system.1 RK4 (TP13) 0.170 5.8147 10.000 9.6379e+08 system.1 RK4 (TP14) 0.230 5.8147 10.000 9.6379e+08 system.1 LA3 (TP9) 0.040 5.8253 10.000 9.667e-08 system.1 LA3 (TP10) 0.050 5.8212 10.000 9.666e-08 system.1 LA3 (TP10) 0.070 5.8172 10.000 9.6687e-08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.6695e	$system_1$	TAYLOR4 (TP11)	0.110	5.8147	10.000	9.6379e + 08
system.1 TAYLOR4 (TP14) 0.270 5.8147 10.000 9.6379e+08 system.1 RK4 (TP8) 0.030 5.8147 10.000 9.6379e+08 system.1 RK4 (TP10) 0.040 5.8147 10.000 9.6379e+08 system.1 RK4 (TP11) 0.080 5.8147 10.000 9.6379e+08 system.1 RK4 (TP12) 0.100 5.8147 10.000 9.6379e+08 system.1 RK4 (TP13) 0.170 5.8147 10.000 9.6379e+08 system.1 RK4 (TP14) 0.230 5.8147 10.000 9.6379e+08 system.1 RK4 (TP14) 0.230 5.8147 10.000 9.6379e+08 system.1 LA3 (TP8) 0.020 5.8232 10.000 9.6379e+08 system.1 LA3 (TP10) 0.050 5.8212 10.000 9.6379e+08 system.1 LA3 (TP10) 0.050 5.8121 10.000 9.6689e+08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.65	$system_1$	TAYLOR4 (TP12)	0.160	5.8147	10.000	9.6379e + 08
system.1 RK4 (TP8) 0.030 5.8147 10.000 9.6379e+08 system.1 RK4 (TP9) 0.020 5.8147 10.000 9.6379e+08 system.1 RK4 (TP10) 0.040 5.8147 10.000 9.6379e+08 system.1 RK4 (TP11) 0.080 5.8147 10.000 9.6379e+08 system.1 RK4 (TP12) 0.100 5.8147 10.000 9.6379e+08 system.1 RK4 (TP13) 0.170 5.8147 10.000 9.6379e+08 system.1 RK4 (TP14) 0.230 5.8147 10.000 9.6379e+08 system.1 LA3 (TP94) 0.20 5.8323 10.000 9.6379e+08 system.1 LA3 (TP90) 0.040 5.8253 10.000 9.744e+08 system.1 LA3 (TP11) 0.070 5.8187 10.000 9.6695e+08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.6695e+08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.6695e+08	$system_1$	TAYLOR4 (TP13)	0.220	5.8147	10.000	9.6379e + 08
system.1 RK4 (TP9) 0.020 5.8147 10.000 9.6379e+08 system.1 RK4 (TP10) 0.040 5.8147 10.000 9.6379e+08 system.1 RK4 (TP11) 0.080 5.8147 10.000 9.6379e+08 system.1 RK4 (TP13) 0.170 5.8147 10.000 9.6379e+08 system.1 RK4 (TP14) 0.230 5.8147 10.000 9.6379e+08 system.1 LA3 (TP9) 0.040 5.8253 10.000 9.6379e+08 system.1 LA3 (TP10) 0.050 5.8212 10.000 9.774e+08 system.1 LA3 (TP10) 0.050 5.8172 10.000 9.6687e+08 system.1 LA3 (TP11) 0.070 5.8187 10.000 9.6695e+08 system.1 LA3 (TP14) 0.200 5.8157 10.000 9.657re+08 system.1 LC3 (TP14) 0.200 5.8733 10.000 9.657re+08 system.1 LC3 (TP14) 0.200 5.8521 10.000 9.6503e+0	$system_{-1}$	TAYLOR4 (TP14)	0.270	5.8147	10.000	9.6379e + 08
system.1 RK4 (TP10) 0.040 5.8147 10.000 9.6379e+08 system.1 RK4 (TP11) 0.080 5.8147 10.000 9.6379e+08 system.1 RK4 (TP12) 0.100 5.8147 10.000 9.6379e+08 system.1 RK4 (TP14) 0.230 5.8147 10.000 9.6379e+08 system.1 LA3 (TP8) 0.020 5.8323 10.000 9.6379e+08 system.1 LA3 (TP9) 0.040 5.8253 10.000 9.7205e+08 system.1 LA3 (TP10) 0.050 5.8212 10.000 9.7205e+08 system.1 LA3 (TP10) 0.070 5.8187 10.000 9.6887e+08 system.1 LA3 (TP13) 0.150 5.8187 10.000 9.6657e+08 system.1 LA3 (TP14) 0.200 5.8753 10.000 9.657e+08 system.1 LC3 (TP8) 0.020 5.8753 10.000 1.046e+09 system.1 LC3 (TP9) 0.040 5.8521 10.000 9.9387e+08 </td <td>system_1</td> <td>RK4 (TP8)</td> <td>0.030</td> <td>5.8147</td> <td>10.000</td> <td>9.6379e + 08</td>	system_1	RK4 (TP8)	0.030	5.8147	10.000	9.6379e + 08
system.1 RK4 (TP11) 0.080 5.8147 10.000 9.6379e+08 system.1 RK4 (TP12) 0.100 5.8147 10.000 9.6379e+08 system.1 RK4 (TP14) 0.230 5.8147 10.000 9.6379e+08 system.1 LA3 (TP8) 0.020 5.8323 10.000 9.6379e+08 system.1 LA3 (TP90) 0.040 5.8253 10.000 9.7205e+08 system.1 LA3 (TP10) 0.050 5.8212 10.000 9.7205e+08 system.1 LA3 (TP11) 0.070 5.8187 10.000 9.6695e+08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.6695e+08 system.1 LA3 (TP13) 0.150 5.8172 10.000 9.6695e+08 system.1 LC3 (TP14) 0.200 5.8772 10.000 9.6693e+08 system.1 LC3 (TP14) 0.200 5.8738 10.000 1.013e+09 system.1 LC3 (TP10) 0.050 5.8378 10.000 9.9379e+	$system_{-1}$	RK4 (TP9)	0.020	5.8147	10.000	9.6379e + 08
system.1 RK4 (TP12) 0.100 5.8147 10.000 9.6379e+08 system.1 RK4 (TP14) 0.230 5.8147 10.000 9.6379e+08 system.1 LA3 (TP8) 0.020 5.8323 10.000 9.8667e+08 system.1 LA3 (TP9) 0.040 5.8253 10.000 9.774e+08 system.1 LA3 (TP10) 0.050 5.8212 10.000 9.6868e+08 system.1 LA3 (TP11) 0.070 5.8172 10.000 9.6895e+08 system.1 LA3 (TP12) 0.100 5.8172 10.000 9.6695e+08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.6577e+08 system.1 LC3 (TP8) 0.020 5.8753 10.000 9.6503e+08 system.1 LC3 (TP9) 0.040 5.8521 10.000 9.6503e+08 system.1 LC3 (TP10) 0.050 5.873 10.000 9.9387e+08 system.1 LC3 (TP11) 0.080 5.8291 10.000 9.633e+08 <td>$system_1$</td> <td>RK4 (TP10)</td> <td>0.040</td> <td>5.8147</td> <td>10.000</td> <td>9.6379e + 08</td>	$system_1$	RK4 (TP10)	0.040	5.8147	10.000	9.6379e + 08
system.1 RK4 (TP14) 0.170 5.8147 10.000 9.6379e+08 system.1 RK4 (TP14) 0.230 5.8147 10.000 9.6379e+08 system.1 LA3 (TP9) 0.020 5.8323 10.000 9.674e+08 system.1 LA3 (TP10) 0.050 5.8212 10.000 9.774e+08 system.1 LA3 (TP10) 0.070 5.8187 10.000 9.688e+08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.6587e+08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.6577e+08 system.1 LA3 (TP13) 0.150 5.8157 10.000 9.6577e+08 system.1 LC3 (TP8) 0.020 5.8753 10.000 9.6577e+08 system.1 LC3 (TP9) 0.040 5.8521 10.000 1.046e+09 system.1 LC3 (TP10) 0.050 5.8378 10.000 9.938re+08 system.1 LC3 (TP11) 0.080 5.8291 10.000 9.7538e+08 <td>$system_1$</td> <td>RK4 (TP11)</td> <td>0.080</td> <td>5.8147</td> <td>10.000</td> <td>9.6379e + 08</td>	$system_1$	RK4 (TP11)	0.080	5.8147	10.000	9.6379e + 08
system.1 RK4 (TP14) 0.230 5.8147 10.000 9.6379e+08 system.1 LA3 (TP8) 0.020 5.8323 10.000 9.8667e+08 system.1 LA3 (TP10) 0.050 5.8212 10.000 9.7205e+08 system.1 LA3 (TP11) 0.070 5.8187 10.000 9.6888e+08 system.1 LA3 (TP12) 0.100 5.8172 10.000 9.6695e+08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.6595e+08 system.1 LA3 (TP14) 0.200 5.8157 10.000 9.6595e+08 system.1 LC3 (TP8) 0.020 5.8753 10.000 9.6503e+08 system.1 LC3 (TP9) 0.040 5.8521 10.000 1.013e+09 system.1 LC3 (TP10) 0.050 5.8378 10.000 9.933e+08 system.1 LC3 (TP11) 0.080 5.8291 10.000 9.7538e+08 system.1 LC3 (TP13) 0.160 5.8204 10.000 9.7538e+08<	$system_1$	RK4 (TP12)	0.100	5.8147	10.000	9.6379e + 08
system.1 RK4 (TP14) 0.230 5.8147 10.000 9.6379e+08 system.1 LA3 (TP8) 0.020 5.8323 10.000 9.8667e+08 system.1 LA3 (TP10) 0.050 5.8212 10.000 9.7205e+08 system.1 LA3 (TP11) 0.070 5.8187 10.000 9.6888e+08 system.1 LA3 (TP12) 0.100 5.8172 10.000 9.6695e+08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.6595e+08 system.1 LA3 (TP14) 0.200 5.8157 10.000 9.6595e+08 system.1 LC3 (TP8) 0.020 5.8753 10.000 9.6503e+08 system.1 LC3 (TP9) 0.040 5.8521 10.000 1.013e+09 system.1 LC3 (TP10) 0.050 5.8378 10.000 9.933e+08 system.1 LC3 (TP11) 0.080 5.8291 10.000 9.7538e+08 system.1 LC3 (TP13) 0.160 5.8204 10.000 9.7538e+08<	$system_{-1}$	RK4 (TP13)	0.170	5.8147	10.000	9.6379e + 08
system.1 LA3 (TP9) 0.040 5.8253 10.000 9.774e+08 system.1 LA3 (TP10) 0.050 5.8212 10.000 9.7205e+08 system.1 LA3 (TP11) 0.070 5.8172 10.000 9.6695e+08 system.1 LA3 (TP12) 0.100 5.8172 10.000 9.6695e+08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.6695e+08 system.1 LA3 (TP14) 0.200 5.8157 10.000 9.6577e+08 system.1 LC3 (TP8) 0.020 5.8753 10.000 1.013e+09 system.1 LC3 (TP10) 0.050 5.8378 10.000 9.9387e+08 system.1 LC3 (TP11) 0.080 5.8291 10.000 9.7538e+08 system.1 LC3 (TP11) 0.080 5.8291 10.000 9.7538e+08 system.1 LC3 (TP13) 0.160 5.824 10.000 9.7538e+08 system.1 Ric3 (D2, 1e-11) 0m1.973s 10.059 10.000 1.	-		0.230	5.8147	10.000	9.6379e + 08
system.1 LA3 (TP10) 0.050 5.8212 10.000 9.7205e+08 system.1 LA3 (TP11) 0.070 5.8187 10.000 9.6888e+08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.6695e+08 system.1 LA3 (TP14) 0.200 5.8157 10.000 9.6577e+08 system.1 LC3 (TP8) 0.020 5.8753 10.000 9.6503e+08 system.1 LC3 (TP9) 0.040 5.8521 10.000 1.046e+09 system.1 LC3 (TP10) 0.050 5.8378 10.000 9.9387e+08 system.1 LC3 (TP11) 0.080 5.8291 10.000 9.9387e+08 system.1 LC3 (TP13) 0.160 5.8247 10.000 9.7538e+08 system.1 LC3 (TP14) 0.220 5.8183 10.000 9.7105e+08 system.1 Riot (02, 1e-11) 0m1.973s 10.059 10.000 1.2112e+10 system.1 Riot (03, 1e-11) 0m2.973s 10.059 10.000	system_1	LA3 (TP8)	0.020	5.8323	10.000	9.8667e + 08
system.1 LA3 (TP11) 0.070 5.8187 10.000 9.6888e+08 system.1 LA3 (TP12) 0.100 5.8172 10.000 9.6695e+08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.6577e+08 system.1 LA3 (TP14) 0.200 5.8157 10.000 9.6503e+08 system.1 LC3 (TP9) 0.040 5.8521 10.000 1.013e+09 system.1 LC3 (TP10) 0.050 5.8378 10.000 9.9387e+08 system.1 LC3 (TP11) 0.080 5.8291 10.000 9.9387e+08 system.1 LC3 (TP12) 0.120 5.8237 10.000 9.7538e+08 system.1 LC3 (TP13) 0.160 5.8204 10.000 9.7158e+08 system.1 Riot (07, 1e-11) 0m1.973s 10.059 10.000 9.712e+10 system.1 Riot (03, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system.1 Riot (04, 1e-11) 0m2.102s 10.059 10.000	$system_{-}1$	LA3 (TP9)	0.040	5.8253	10.000	9.774e + 08
system.1 LA3 (TP12) 0.100 5.8172 10.000 9.6695e+08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.6577e+08 system.1 LA3 (TP14) 0.200 5.8157 10.000 9.6503e+08 system.1 LC3 (TP9) 0.040 5.8521 10.000 1.046e+09 system.1 LC3 (TP10) 0.050 5.8378 10.000 9.9387e+08 system.1 LC3 (TP11) 0.080 5.8291 10.000 9.7538e+08 system.1 LC3 (TP12) 0.120 5.8237 10.000 9.7538e+08 system.1 LC3 (TP13) 0.160 5.8204 10.000 9.7105e+08 system.1 Riot (02 (TP14) 0.220 5.8183 10.000 9.7105e+08 system.1 Riot (02, 1e-11) 0m1.973s 10.059 10.000 9.7115e+08 system.1 Riot (02, 1e-11) 0m2.102s 10.059 10.000 1.2111e+10 system.1 Riot (02, 1e-11) 0m2.102s 10.059	$system_1$	LA3 (TP10)	0.050	5.8212	10.000	9.7205e + 08
system.1 LA3 (TP12) 0.100 5.8172 10.000 9.6695e+08 system.1 LA3 (TP13) 0.150 5.8163 10.000 9.6577e+08 system.1 LA3 (TP14) 0.200 5.8157 10.000 9.6503e+08 system.1 LC3 (TP9) 0.020 5.8753 10.000 1.046e+09 system.1 LC3 (TP10) 0.050 5.8378 10.000 9.9387e+08 system.1 LC3 (TP11) 0.080 5.8291 10.000 9.8239e+08 system.1 LC3 (TP12) 0.120 5.8237 10.000 9.7538e+08 system.1 LC3 (TP13) 0.160 5.8204 10.000 9.7538e+08 system.1 Riot (02 (TP13) 0.160 5.8204 10.000 9.7538e+08 system.1 Riot (02, 1e-11) 0m1.973s 10.059 10.000 9.715be+08 system.1 Riot (02, 1e-11) 0m1.973s 10.059 10.000 1.2111e+10 system.1 Riot (02, 1e-11) 0m2.102s 10.059	-	LA3 (TP11)	0.070	5.8187	10.000	9.6888e + 08
system.1 LA3 (TP14) 0.150 5.8163 10.000 9.6577e+08 system.1 LA3 (TP14) 0.200 5.8157 10.000 9.6503e+08 system.1 LC3 (TP9) 0.040 5.8553 10.000 1.046e+09 system.1 LC3 (TP10) 0.050 5.8378 10.000 9.9387e+08 system.1 LC3 (TP11) 0.080 5.8291 10.000 9.7538e+08 system.1 LC3 (TP12) 0.120 5.8237 10.000 9.7538e+08 system.1 LC3 (TP13) 0.160 5.8204 10.000 9.7538e+08 system.1 Riot (02, 1e-11) 0m1.973s 10.059 10.000 9.7105e+08 system.1 Riot (03, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system.1 Riot (04, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system.1 Riot (06, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system.1 Riot (06, 1e-11) 0m2.186s 10.059	$system_1$	` ′	0.100	5.8172	10.000	9.6695e + 08
system.1 LA3 (TP14) 0.200 5.8157 10.000 9.6503e+08 system.1 LC3 (TP8) 0.020 5.8753 10.000 1.046e+09 system.1 LC3 (TP10) 0.040 5.8521 10.000 1.013e+09 system.1 LC3 (TP10) 0.080 5.8291 10.000 9.9387e+08 system.1 LC3 (TP12) 0.120 5.8237 10.000 9.7538e+08 system.1 LC3 (TP13) 0.160 5.8204 10.000 9.7105e+08 system.1 Riot (02, 1e-11) 0m1.973s 10.059 10.000 9.7105e+08 system.1 Riot (03, 1e-11) 0m2.043s 10.059 10.000 1.2112e+10 system.1 Riot (04, 1e-11) 0m2.102s 10.059 10.000 1.2111e+10 system.1 Riot (05, 1e-11) 0m2.102s 10.059 10.000 1.2111e+10 system.1 Riot (06, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system.1 Riot (07, 1e-11) 0m2.270s 10.	-	` ′	0.150	5.8163	10.000	9.6577e + 08
system_1 LC3 (TP10) 0.040 5.8521 10.000 1.013e+09 system_1 LC3 (TP10) 0.050 5.8378 10.000 9.9387e+08 system_1 LC3 (TP11) 0.080 5.8291 10.000 9.8239e+08 system_1 LC3 (TP12) 0.120 5.8237 10.000 9.7538e+08 system_1 LC3 (TP13) 0.160 5.8204 10.000 9.7105e+08 system_1 LC3 (TP14) 0.220 5.8183 10.000 9.6835e+08 system_1 Riot (02, 1e-11) 0m1.973s 10.059 10.000 1.2111e+10 system_1 Riot (03, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system_1 Riot (04, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system_1 Riot (05, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system_1 Riot (05, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system_1 Riot (07, 1e-11) 0m2.186s 1	$system_1$	` ,	0.200	5.8157	10.000	9.6503e + 08
system.1 LC3 (TP10) 0.050 5.8378 10.000 9.9387e+08 system.1 LC3 (TP11) 0.080 5.8291 10.000 9.8239e+08 system.1 LC3 (TP12) 0.120 5.8237 10.000 9.7538e+08 system.1 LC3 (TP13) 0.160 5.8204 10.000 9.7105e+08 system.1 LC3 (TP14) 0.220 5.8183 10.000 9.6835e+08 system.1 Riot (02, 1e-11) 0m1.973s 10.059 10.000 1.2112e+10 system.1 Riot (03, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system.1 Riot (04, 1e-11) 0m2.102s 10.059 10.000 1.2111e+10 system.1 Riot (05, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system.1 Riot (06, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system.1 Riot (06, 1e-11) 0m2.270s 10.059 10.000 1.2111e+10 system.1 Riot (09, 1e-11) 0m2.3421s	system_1	LC3 (TP8)	0.020	5.8753	10.000	1.046e+09
system_1 LC3 (TP12) 0.080 5.8291 10.000 9.8239e+08 system_1 LC3 (TP12) 0.120 5.8237 10.000 9.7538e+08 system_1 LC3 (TP13) 0.160 5.8204 10.000 9.7105e+08 system_1 LC3 (TP14) 0.220 5.8183 10.000 9.6835e+08 system_1 Riot (02, 1e-11) 0m1.973s 10.059 10.000 1.2112e+10 system_1 Riot (03, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system_1 Riot (04, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system_1 Riot (05, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system_1 Riot (06, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system_1 Riot (06, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system_1 Riot (07, 1e-11) 0m2.186s 10.059 10.000 1.2111e+10 system_1 Riot (10, 1e-11) 0m2.270s	$system_1$	LC3 (TP9)	0.040	5.8521	10.000	1.013e + 09
system_1 LC3 (TP12) 0.080 5.8291 10.000 9.8239e+08 system_1 LC3 (TP12) 0.120 5.8237 10.000 9.7538e+08 system_1 LC3 (TP13) 0.160 5.8204 10.000 9.7105e+08 system_1 LC3 (TP14) 0.220 5.8183 10.000 9.6835e+08 system_1 Riot (02, 1e-11) 0m1.973s 10.059 10.000 1.2112e+10 system_1 Riot (03, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system_1 Riot (04, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system_1 Riot (05, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system_1 Riot (06, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system_1 Riot (06, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system_1 Riot (07, 1e-11) 0m2.186s 10.059 10.000 1.2111e+10 system_1 Riot (10, 1e-11) 0m2.270s	$system_1$	` /	0.050	5.8378	10.000	
system_1 LC3 (TP12) 0.120 5.8237 10.000 9.7538e+08 system_1 LC3 (TP13) 0.160 5.8204 10.000 9.7105e+08 system_1 LC3 (TP14) 0.220 5.8183 10.000 9.6835e+08 system_1 Riot (02, 1e-11) 0m1.973s 10.059 10.000 1.2112e+10 system_1 Riot (03, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system_1 Riot (04, 1e-11) 0m2.102s 10.059 10.000 1.2111e+10 system_1 Riot (05, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system_1 Riot (06, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system_1 Riot (07, 1e-11) 0m2.186s 10.059 10.000 1.2111e+10 system_1 Riot (09, 1e-11) 0m2.270s 10.059 10.000 1.2111e+10 system_1 Riot (10, 1e-11) 0m2.3421s 10.059 -0.000 1.2111e+10 system_1 Riot (11, 1e-11) <t< td=""><td>-</td><td></td><td>0.080</td><td>5.8291</td><td>10.000</td><td></td></t<>	-		0.080	5.8291	10.000	
system_1 LC3 (TP13) 0.160 5.8204 10.000 9.7105e+08 system_1 Riot (02, 1e-11) 0m1.973s 10.059 10.000 1.2112e+10 system_1 Riot (03, 1e-11) 0m2.043s 10.059 10.000 1.2112e+10 system_1 Riot (04, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system_1 Riot (05, 1e-11) 0m2.102s 10.059 10.000 1.2111e+10 system_1 Riot (06, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system_1 Riot (06, 1e-11) 0m2.186s 10.059 10.000 1.2111e+10 system_1 Riot (07, 1e-11) 0m2.186s 10.059 10.000 1.2111e+10 system_1 Riot (07, 1e-11) 0m2.270s 10.059 10.000 1.2111e+10 system_1 Riot (10, 1e-11) 0m2.270s 10.059 -0.000 1.2111e+10 system_1 Riot (11, 1e-11) 0m2.524s 10.059 -0.000 1.2111e+10 system_1 Riot (15, 1e-11	-	` '	0.120	5.8237	10.000	9.7538e + 08
system.1 LC3 (TP14) 0.220 5.8183 10.000 9.6835e+08 system.1 Riot (02, 1e-11) 0m1.973s 10.059 10.000 1.2112e+10 system.1 Riot (03, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system.1 Riot (04, 1e-11) 0m2.102s 10.059 10.000 1.2111e+10 system.1 Riot (05, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system.1 Riot (06, 1e-11) 0m2.186s 10.059 10.000 1.2111e+10 system.1 Riot (07, 1e-11) 0m2.270s 10.059 10.000 1.2111e+10 system.1 Riot (09, 1e-11) 0m2.270s 10.059 10.000 1.2111e+10 system.1 Riot (10, 1e-11) 0m2.3421s 10.059 -0.000 1.2111e+10 system.1 Riot (11, 1e-11) 0m24.797s 10.059 -0.000 1.2111e+10 system.1 Riot (18, 1e-11) 0m2.874s 10.059 -0.000 1.2111e+10 system.1 Valencia-IVP	-				10.000	
system_1 Riot (03, 1e-11) 0m2.043s 10.059 10.000 1.2111e+10 system_1 Riot (04, 1e-11) 0m2.102s 10.059 10.000 1.2111e+10 system_1 Riot (05, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system_1 Riot (06, 1e-11) 0m2.186s 10.059 10.000 1.2111e+10 system_1 Riot (07, 1e-11) 0m2.270s 10.059 10.000 1.2111e+10 system_1 Riot (09, 1e-11) 0m23.421s 10.059 -0.000 1.2111e+10 system_1 Riot (10, 1e-11) 0m2.524s 10.059 -0.000 1.2111e+10 system_1 Riot (11, 1e-11) 0m24.797s 10.059 -0.000 1.2111e+10 system_1 Riot (15, 1e-11) 0m2.874s 10.059 -0.000 1.2111e+10 system_1 Riot (18, 1e-11) 0m30.750s 10.059 -0.000 1.2111e+10 system_1 Valencia-IVP (0.0025) 0m1.690s 4.6755 3.469 999.99 system_1 Val	-		0.220	5.8183	10.000	9.6835e + 08
system_1 Riot (04, 1e-11) 0m2.102s 10.059 10.000 1.2111e+10 system_1 Riot (05, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system_1 Riot (06, 1e-11) 0m2.186s 10.059 10.000 1.2111e+10 system_1 Riot (07, 1e-11) 0m2.270s 10.059 10.000 1.2111e+10 system_1 Riot (09, 1e-11) 0m2.3421s 10.059 -0.000 1.2111e+10 system_1 Riot (10, 1e-11) 0m23.421s 10.059 -0.000 1.2111e+10 system_1 Riot (11, 1e-11) 0m24.797s 10.059 -0.000 1.2111e+10 system_1 Riot (15, 1e-11) 0m2.874s 10.059 -0.000 1.2111e+10 system_1 Riot (18, 1e-11) 0m30.750s 10.059 -0.000 1.2111e+10 system_1 Valencia-IVP (0.00025) 0m1.690s 4.6755 3.469 999.98 system_1 Valencia-IVP (0.025) 0m0.0157s 4.7177 3.460 999.19 system_1 V	system_1	Riot (02, 1e-11)	0 m 1.973 s	10.059	10.000	1.2112e+10
system_1 Riot (04, 1e-11) 0m2.102s 10.059 10.000 1.2111e+10 system_1 Riot (05, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system_1 Riot (06, 1e-11) 0m2.186s 10.059 10.000 1.2111e+10 system_1 Riot (07, 1e-11) 0m2.270s 10.059 10.000 1.2111e+10 system_1 Riot (09, 1e-11) 0m2.3421s 10.059 -0.000 1.2111e+10 system_1 Riot (10, 1e-11) 0m23.421s 10.059 -0.000 1.2111e+10 system_1 Riot (11, 1e-11) 0m24.797s 10.059 -0.000 1.2111e+10 system_1 Riot (15, 1e-11) 0m2.874s 10.059 -0.000 1.2111e+10 system_1 Riot (18, 1e-11) 0m30.750s 10.059 -0.000 1.2111e+10 system_1 Valencia-IVP (0.00025) 0m1.690s 4.6755 3.469 999.98 system_1 Valencia-IVP (0.025) 0m0.0157s 4.7177 3.460 999.19 system_1 V	$system_1$		0 m 2.043 s	10.059	10.000	1.2111e + 10
system_1 Riot (05, 1e-11) 0m2.120s 10.059 10.000 1.2111e+10 system_1 Riot (06, 1e-11) 0m2.186s 10.059 10.000 1.2111e+10 system_1 Riot (07, 1e-11) 0m2.270s 10.059 10.000 1.2111e+10 system_1 Riot (09, 1e-11) 0m23.421s 10.059 -0.000 1.2111e+10 system_1 Riot (10, 1e-11) 0m2.524s 10.059 10.000 1.2111e+10 system_1 Riot (11, 1e-11) 0m24.797s 10.059 -0.000 1.2111e+10 system_1 Riot (15, 1e-11) 0m2.874s 10.059 -0.000 1.2111e+10 system_1 Riot (18, 1e-11) 0m30.750s 10.059 -0.000 1.2111e+10 system_1 Valencia-IVP (0.00025) 0m1.690s 4.6755 3.469 999.98 system_1 Valencia-IVP (0.025) 0m0.157s 4.7177 3.460 999.19 system_1 Valencia-IVP (0.025) 0m0.022s 5.1586 3.375 995.68 system_1 VNOD	-		0 m 2.102 s	10.059	10.000	1.2111e + 10
system_1 Riot (06, 1e-11) 0m2.186s 10.059 10.000 1.2111e+10 system_1 Riot (07, 1e-11) 0m2.270s 10.059 10.000 1.2111e+10 system_1 Riot (09, 1e-11) 0m23.421s 10.059 -0.000 1.2111e+10 system_1 Riot (10, 1e-11) 0m25.24s 10.059 -0.000 1.2111e+10 system_1 Riot (11, 1e-11) 0m24.797s 10.059 -0.000 1.2111e+10 system_1 Riot (15, 1e-11) 0m2.874s 10.059 -0.000 1.2111e+10 system_1 Riot (18, 1e-11) 0m30.750s 10.059 -0.000 1.2111e+10 system_1 Valencia-IVP (0.00025) 0m1.690s 4.6755 3.469 999.98 system_1 Valencia-IVP (0.0025) 0m0.157s 4.7177 3.460 999.19 system_1 Valencia-IVP (0.025) 0m0.022s 5.1586 3.375 995.68 system_1 VNODE-LP (12, 1e-1) 0m0.005s 6.2022 10.000 1.6902e+09 system_1	-		0 m 2.120 s	10.059	10.000	1.2111e + 10
system_1 Riot (07, 1e-11) 0m2.270s 10.059 10.000 1.2111e+10 system_1 Riot (09, 1e-11) 0m23.421s 10.059 -0.000 1.2111e+10 system_1 Riot (10, 1e-11) 0m25.24s 10.059 10.000 1.2111e+10 system_1 Riot (11, 1e-11) 0m24.797s 10.059 -0.000 1.2111e+10 system_1 Riot (15, 1e-11) 0m2.874s 10.059 10.000 1.2111e+10 system_1 Riot (18, 1e-11) 0m30.750s 10.059 -0.000 1.2111e+10 system_1 Valencia-IVP (0.00025) 0m1.690s 4.6755 3.469 999.98 system_1 Valencia-IVP (0.0025) 0m0.157s 4.7177 3.460 999.19 system_1 Valencia-IVP (0.025) 0m0.022s 5.1586 3.375 995.68 system_1 VNODE-LP (12, 1e-1) 0m0.005s 6.2022 10.000 1.6902e+09 system_1 VNODE-LP (13, 1e-1) 0m0.008s 6.9272 10.000 1.7303e+09 system_1 <	-		0 m 2.186 s	10.059		
system_1 Riot (09, 1e-11) 0m23.421s 10.059 -0.000 1.2111e+10 system_1 Riot (10, 1e-11) 0m2.524s 10.059 10.000 1.2111e+10 system_1 Riot (11, 1e-11) 0m24.797s 10.059 -0.000 1.2111e+10 system_1 Riot (15, 1e-11) 0m2.874s 10.059 10.000 1.2111e+10 system_1 Riot (18, 1e-11) 0m30.750s 10.059 -0.000 1.2111e+10 system_1 Valencia-IVP (0.00025) 0m1.690s 4.6755 3.469 999.98 system_1 Valencia-IVP (0.0025) 0m0.157s 4.7177 3.460 999.19 system_1 Valencia-IVP (0.025) 0m0.022s 5.1586 3.375 995.68 system_1 Valencia-IVP (0.25) 0m0.010s 14.082 2.250 516.32 system_1 VNODE-LP (12, 1e-1) 0m0.005s 6.2022 10.000 1.6902e+09 system_1 VNODE-LP (13, 1e-1) 0m0.005s 5.4997 10.000 1.0761e+09 system_1 <td< td=""><td>-</td><td></td><td>0 m 2.270 s</td><td>10.059</td><td>10.000</td><td>1.2111e + 10</td></td<>	-		0 m 2.270 s	10.059	10.000	1.2111e + 10
system_1 Riot (10, 1e-11) 0m2.524s 10.059 10.000 1.2111e+10 system_1 Riot (11, 1e-11) 0m24.797s 10.059 -0.000 1.2111e+10 system_1 Riot (15, 1e-11) 0m2.874s 10.059 10.000 1.2111e+10 system_1 Riot (18, 1e-11) 0m30.750s 10.059 -0.000 1.2111e+10 system_1 Valencia-IVP (0.00025) 0m1.690s 4.6755 3.469 999.98 system_1 Valencia-IVP (0.0025) 0m0.157s 4.7177 3.460 999.19 system_1 Valencia-IVP (0.025) 0m0.022s 5.1586 3.375 995.68 system_1 Valencia-IVP (0.25) 0m0.010s 14.082 2.250 516.32 system_1 VNODE-LP (12, 1e-1) 0m0.005s 6.2022 10.000 1.6902e+09 system_1 VNODE-LP (13, 1e-1) 0m0.008s 6.9272 10.000 1.7303e+09 system_1 VNODE-LP (15, 1e-14,1e-14) 0m0.006s 6.6718 10.000 1.2705e+09 system_1	-	,		10.059	-0.000	1.2111e + 10
system_1 Riot (11, 1e-11) 0m24.797s 10.059 -0.000 1.2111e+10 system_1 Riot (15, 1e-11) 0m2.874s 10.059 10.000 1.2111e+10 system_1 Riot (18, 1e-11) 0m30.750s 10.059 -0.000 1.2111e+10 system_1 Valencia-IVP (0.00025) 0m1.690s 4.6755 3.469 999.98 system_1 Valencia-IVP (0.0025) 0m0.157s 4.7177 3.460 999.19 system_1 Valencia-IVP (0.025) 0m0.022s 5.1586 3.375 995.68 system_1 Valencia-IVP (0.25) 0m0.010s 14.082 2.250 516.32 system_1 VNODE-LP (12, 1e-1) 0m0.005s 6.2022 10.000 1.6902e+09 system_1 VNODE-LP (13, 1e-1) 0m0.008s 6.9272 10.000 1.7303e+09 system_1 VNODE-LP (14, 1e-1) 0m0.005s 5.4997 10.000 1.0761e+09 system_1 VNODE-LP (20, 1e-14,1e-14) 0m0.006s 6.671s 10.000 1.2705e+09 system_1	-		0 m 2.524 s	10.059	10.000	1.2111e + 10
system_1 Riot (15, 1e-11) 0m2.874s 10.059 10.000 1.2111e+10 system_1 Riot (18, 1e-11) 0m30.750s 10.059 -0.000 1.2111e+10 system_1 Valencia-IVP (0.0025) 0m1.690s 4.6755 3.469 999.98 system_1 Valencia-IVP (0.0025) 0m0.157s 4.7177 3.460 999.19 system_1 Valencia-IVP (0.025) 0m0.022s 5.1586 3.375 995.68 system_1 Valencia-IVP (0.25) 0m0.010s 14.082 2.250 516.32 system_1 VNODE-LP (12, 1e-1) 0m0.005s 6.2022 10.000 1.6902e+09 system_1 VNODE-LP (13, 1e-1) 0m0.008s 6.9272 10.000 1.7303e+09 system_1 VNODE-LP (14, 1e-1) 0m0.005s 5.4997 10.000 1.0761e+09 system_1 VNODE-LP (15, 1e-14,1e-14) 0m0.006s 6.671s 10.000 1.2705e+09 system_1 VNODE-LP (20, 1e-14,1e-14) 0m0.002s 6.8406 10.000 1.9442e+09	-		0 m 24.797 s	10.059	-0.000	
system_1 Riot (18, 1e-11) 0m30.750s 10.059 -0.000 1.2111e+10 system_1 Valencia-IVP (0.0025) 0m1.690s 4.6755 3.469 999.98 system_1 Valencia-IVP (0.0025) 0m0.157s 4.7177 3.460 999.19 system_1 Valencia-IVP (0.025) 0m0.022s 5.1586 3.375 995.68 system_1 Valencia-IVP (0.25) 0m0.010s 14.082 2.250 516.32 system_1 VNODE-LP (12, 1e-1) 0m0.005s 6.2022 10.000 1.6902e+09 system_1 VNODE-LP (13, 1e-1) 0m0.008s 6.9272 10.000 1.7303e+09 system_1 VNODE-LP (14, 1e-1) 0m0.005s 5.4997 10.000 1.0761e+09 system_1 VNODE-LP (15, 1e-14,1e-14) 0m0.006s 6.671s 10.000 1.2705e+09 system_1 VNODE-LP (20, 1e-14,1e-14) 0m0.002s 6.8406 10.000 1.9442e+09						1.2111e + 10
system_1 Valencia-IVP (0.0025) 0m0.157s 4.7177 3.460 999.19 system_1 Valencia-IVP (0.025) 0m0.022s 5.1586 3.375 995.68 system_1 Valencia-IVP (0.25) 0m0.010s 14.082 2.250 516.32 system_1 VNODE-LP (12, 1e-1) 0m0.005s 6.2022 10.000 1.6902e+09 system_1 VNODE-LP (13, 1e-1) 0m0.008s 6.9272 10.000 1.7303e+09 system_1 VNODE-LP (14, 1e-1) 0m0.005s 5.4997 10.000 1.0761e+09 system_1 VNODE-LP (15, 1e-14,1e-14) 0m0.006s 6.6718 10.000 1.2705e+09 system_1 VNODE-LP (20, 1e-14,1e-14) 0m0.002s 6.8406 10.000 1.9442e+09	v					
system_1 Valencia-IVP (0.0025) 0m0.157s 4.7177 3.460 999.19 system_1 Valencia-IVP (0.025) 0m0.022s 5.1586 3.375 995.68 system_1 Valencia-IVP (0.25) 0m0.010s 14.082 2.250 516.32 system_1 VNODE-LP (12, 1e-1) 0m0.005s 6.2022 10.000 1.6902e+09 system_1 VNODE-LP (13, 1e-1) 0m0.008s 6.9272 10.000 1.7303e+09 system_1 VNODE-LP (14, 1e-1) 0m0.005s 5.4997 10.000 1.0761e+09 system_1 VNODE-LP (15, 1e-14,1e-14) 0m0.006s 6.671s 10.000 1.2705e+09 system_1 VNODE-LP (20, 1e-14,1e-14) 0m0.002s 6.8406 10.000 1.9442e+09	system_1	Valencia-IVP (0.00025)	0 m 1.690 s	4.6755	3.469	999.98
system_1 Valencia-IVP (0.025) 0m0.022s 5.1586 3.375 995.68 system_1 Valencia-IVP (0.25) 0m0.010s 14.082 2.250 516.32 system_1 VNODE-LP (12, 1e-1) 0m0.005s 6.2022 10.000 1.6902e+09 system_1 VNODE-LP (13, 1e-1) 0m0.008s 6.9272 10.000 1.7303e+09 system_1 VNODE-LP (14, 1e-1) 0m0.005s 5.4997 10.000 1.0761e+09 system_1 VNODE-LP (15, 1e-14,1e-14) 0m0.006s 6.671s 10.000 1.2705e+09 system_1 VNODE-LP (20, 1e-14,1e-14) 0m0.002s 6.8406 10.000 1.9442e+09						
system_1 Valencia-IVP (0.25) 0m0.010s 14.082 2.250 516.32 system_1 VNODE-LP (12, 1e-1) 0m0.005s 6.2022 10.000 1.6902e+09 system_1 VNODE-LP (13, 1e-1) 0m0.008s 6.9272 10.000 1.7303e+09 system_1 VNODE-LP (14, 1e-1) 0m0.005s 5.4997 10.000 1.0761e+09 system_1 VNODE-LP (15, 1e-14,1e-14) 0m0.006s 6.671s 10.000 1.2705e+09 system_1 VNODE-LP (20, 1e-14,1e-14) 0m0.002s 6.8406 10.000 1.9442e+09						
system_1 VNODE-LP (13, 1e-1) 0m0.008s 6.9272 10.000 1.7303e+09 system_1 VNODE-LP (14, 1e-1) 0m0.005s 5.4997 10.000 1.0761e+09 system_1 VNODE-LP (15, 1e-14,1e-14) 0m0.006s 6.6718 10.000 1.2705e+09 system_1 VNODE-LP (20, 1e-14,1e-14) 0m0.002s 6.8406 10.000 1.9442e+09		` ,				
system_1 VNODE-LP (13, 1e-1) 0m0.008s 6.9272 10.000 1.7303e+09 system_1 VNODE-LP (14, 1e-1) 0m0.005s 5.4997 10.000 1.0761e+09 system_1 VNODE-LP (15, 1e-14,1e-14) 0m0.006s 6.6718 10.000 1.2705e+09 system_1 VNODE-LP (20, 1e-14,1e-14) 0m0.002s 6.8406 10.000 1.9442e+09	system_1	VNODE-LP (12, 1e-1)	0 m 0.005 s	6.2022	10.000	1.6902e+09
system_1 VNODE-LP (14, 1e-1) 0m0.005s 5.4997 10.000 1.0761e+09 system_1 VNODE-LP (15, 1e-14,1e-14) 0m0.006s 6.6718 10.000 1.2705e+09 system_1 VNODE-LP (20, 1e-14,1e-14) 0m0.002s 6.8406 10.000 1.9442e+09	-					
system_1 VNODE-LP (15, 1e-14,1e-14) 0m0.006s 6.6718 10.000 1.2705e+09 system_1 VNODE-LP (20, 1e-14,1e-14) 0m0.002s 6.8406 10.000 1.9442e+09	-			5.4997		
system_1 VNODE-LP (20, 1e-14,1e-14) 0m0.002s 6.8406 10.000 1.9442e+09						
	-					
	-					

D 11	Table 3.2: Simulation r			<u> </u>	
Problems	Methods	c5t	c5w	c6t	c6w
$system_2$	TAYLOR4 (TP8)	0.840	0.23254	10.000	0.00040944
$system_2$	TAYLOR4 (TP9)	1.160	0.23254	10.000	0.00040873
$system_2$	TAYLOR4 (TP10)	1.660	0.23254	10.000	0.00040865
$system_2$	TAYLOR4 (TP11)	2.530	0.23254	10.000	0.00040861
$system_2$	TAYLOR4 (TP12)	3.930	0.23254	10.000	0.0004086
$system_2$	TAYLOR4 (TP13)	6.170	0.23254	10.000	0.0004086
system_2	TAYLOR4 (TP14)	9.770	0.23254	10.000	0.0004086
system_2	RK4 (TP8)	0.640	0.23255	10.000	0.00040939
$system_{-2}$	RK4 (TP9)	0.890	0.23254	10.000	0.00040875
$system_2$	RK4 (TP10)	1.360	0.23254	10.000	0.00040866
$system_2$	RK4 (TP11)	2.100	0.23254	10.000	0.00040861
$system_2$	RK4 (TP12)	3.240	0.23254	10.000	0.0004086
$system_{-2}$	RK4 (TP13)	5.060	0.23254	10.000	0.0004086
$system_2$	RK4 (TP14)	8.020	0.23254	10.000	0.0004086
system_2	LA3 (TP8)	0.500	0.26111	10.000	0.12375
$system_2$	LA3 (TP9)	0.730	0.25154	10.000	0.02491
$system_2$	LA3 (TP10)	1.040	0.24447	10.000	0.010686
$system_2$	LA3 (TP11)	1.600	0.24009	10.000	0.0074653
system_2	LA3 (TP12)	2.440	0.23734	10.000	0.0039061
$system_2$	LA3 (TP13)	3.850	0.23554	10.000	0.0074742
$system_2$	LA3 (TP14)	6.100	0.23442	10.000	0.002063
system_2	LC3 (TP8)	0.480	0.2641	10.000	0.14326
$system_2$	LC3 (TP9)	0.790	0.25281	10.000	0.014229
$system_2$	LC3 (TP10)	1.130	0.24513	10.000	0.0094465
$system_2$	LC3 (TP11)	1.730	0.24048	10.000	0.011631
$system_2$	LC3 (TP12)	2.700	0.23746	10.000	0.0080097
$system_2$	LC3 (TP13)	4.370	0.23561	10.000	0.0078812
$system_2$	LC3 (TP14)	6.700	0.2345	10.000	0.0017907
system_2	Riot (03, 1e-11)	35m43.710s	0.24697	0.000	0
$system_2$	Riot (05, 1e-11)	0 m 0.734 s	0.23588	10.000	3.4736e + 08
$system_2$	Riot (06, 1e-11)	0 m 0.342 s	0.2417	-0.000	0.2417
$system_2$	Riot (07, 1e-11)	0 m 9.268 s	0.2417	-0.000	0.42672
$system_{-2}$	Riot (10, 1e-11)	0 m 0.297 s	0.2417	10.000	0.43053
$system_2$	Riot (15, 1e-11)	0 m 0.438 s	0.2417	10.000	0.69667
system_2	Valencia-IVP (0.00025)	0 m 3.878 s	6.372	2.668	999.81
$system_2$	Valencia-IVP (0.0025)	0 m 0.382 s	6.4647	2.655	992.41
system_2	Valencia-IVP (0.025)	0 m 0.046 s	7.5087	2.550	986.22
system_2	VNODE-LP (13, 1e-1)	0 m 0.009 s	0.23255	10.000	0.013215
$system_2$	VNODE-LP (15, 1e-14,1e-14)	0 m 0.004 s	0.23254	10.000	0.013205
$system_2$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.003 s	0.23254	10.000	0.013205
system_2	VNODE-LP (25, 1e-14,1e-14)	0 m 0.004 s	0.23254	10.000	0.013205

	Table 3.3: Simulation results of Problem 3					
Problems	Methods	c5t	c5w	c6t	c6w	
system_3	TAYLOR4 (TP8)	0.060	0.48874	10.000	0.068846	
$system_{-3}$	TAYLOR4 (TP9)	0.100	0.48163	10.000	0.065318	
$system_{-3}$	TAYLOR4 (TP10)	0.150	0.47729	10.000	0.063275	
$system_3$	TAYLOR4 (TP11)	0.200	0.47456	10.000	0.062043	
$system_3$	TAYLOR4 (TP12)	0.280	0.47286	10.000	0.06129	
$system_{-3}$	TAYLOR4 (TP13)	0.400	0.47179	10.000	0.060825	
$system_3$	TAYLOR4 (TP14)	0.000	1	0.000	1	
system_3	RK4 (TP8)	0.020	0.47001	10.000	0.060058	
$system_3$	RK4 (TP9)	0.050	0.46999	10.000	0.060051	
$system_3$	RK4 (TP10)	0.090	0.46998	10.000	0.060047	
$system_3$	RK4 (TP11)	0.070	0.46998	10.000	0.060046	
$system_3$	RK4 (TP12)	0.160	0.46998	10.000	0.060046	
$system_{-3}$	RK4 (TP13)	0.220	0.46998	10.000	0.060046	
$system_3$	RK4 (TP14)	0.310	0.46998	10.000	0.060045	
system_3	LA3 (TP8)	0.040	0.4851	10.000	0.068211	
$system_3$	LA3 (TP9)	0.050	0.47954	10.000	0.064964	
$system_3$	LA3 (TP10)	0.070	0.476	10.000	0.063061	
$system_3$	LA3 (TP11)	0.110	0.47374	10.000	0.061905	
$system_{-3}$	LA3 (TP12)	0.150	0.47235	10.000	0.061203	
$system_3$	LA3 (TP13)	0.200	0.47147	10.000	0.060771	
$system_3$	LA3 (TP14)	0.280	0.47092	10.000	0.0605	
system_3	LC3 (TP8)	0.040	0.49094	10.000	0.071732	
$system_3$	LC3 (TP9)	0.060	0.4831	10.000	0.066956	
$system_3$	LC3 (TP10)	0.080	0.47815	10.000	0.064212	
$system_3$	LC3 (TP11)	0.100	0.4751	10.000	0.062606	
$system_{-3}$	LC3 (TP12)	0.150	0.47319	10.000	0.061632	
$system_3$	LC3 (TP13)	0.210	0.472	10.000	0.061037	
$system_3$	LC3 (TP14)	0.300	0.47125	10.000	0.060666	
system_3	Riot (05, 1e-11)	0m3.197s	0.44827	10.000	0.13094	
$system_3$	Riot (10, 1e-11)	0 m 12.763 s	0.44389	10.000	0.057421	
$system_3$	Riot (15, 1e-11)	0 m 40.607 s	0.44387	10.000	0.055362	
system_3	Valencia-IVP (0.00025)	0 m 2.780 s	2.8979	1.191	3.7768	
$system_3$	Valencia-IVP (0.0025)	0 m 0.282 s	2.9052	1.175	3.694	
$system_3$	Valencia-IVP (0.025)	0 m 0.042 s	2.9872	1.300	5.8585	
system_3	VNODE-LP (15, 1e-14,1e-14)	0 m 0.009 s	0.88761	6.361	151.77	
$system_3$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.007 s	0.98714	3.815	218.19	
$system_{-3}$	VNODE-LP (25, 1e-14,1e-14)	$0 \mathrm{m} 0.009 \mathrm{s}$	1.1388	2.597	270.43	

Problems Methods c5t c5w c6t c6w system.4 TAYLOR4 (TP9) 0.390 0.070037 9.074 85948 system.4 TAYLOR4 (TP10) 0.830 0.06993 8.853 85022 system.4 TAYLOR4 (TP11) 1.310 0.069876 7.474 67079 system.4 TAYLOR4 (TP12) 2.050 0.069834 8.542 64978 system.4 TAYLOR4 (TP13) 3.190 0.069834 8.542 64978 system.4 TAYLOR4 (TP14) 4.950 0.069829 7.852 73737 system.4 RK4 (TP8) 0.240 0.069834 8.562 64978 system.4 RK4 (TP10) 0.460 0.069801 8.962 77711 system.4 RK4 (TP11) 0.670 0.069802 9.178 81171 system.4 RK4 (TP13) 1.560 0.069819 8.626 64394 system.4 RK4 (TP13) 1.560 0.069798 8.298 82798		Table 3.4: Simulation r			_	
system.4 TAYLOR4 (TP9) 0.580 0.070009 9.320 62850 system.4 TAYLOR4 (TP10) 0.830 0.06993 8.853 85022 system.4 TAYLOR4 (TP11) 1.310 0.069876 7.474 67079 system.4 TAYLOR4 (TP12) 2.050 0.069864 8.570 70345 system.4 TAYLOR4 (TP13) 3.190 0.069829 7.852 73737 system.4 TAYLOR4 (TP14) 4.950 0.069829 7.852 73737 system.4 RK4 (TP9) 0.320 0.069787 9.617 78366 system.4 RK4 (TP10) 0.460 0.069801 8.962 77711 system.4 RK4 (TP10) 0.460 0.069802 9.178 81171 system.4 RK4 (TP11) 0.670 0.069802 9.178 81171 system.4 RK4 (TP13) 1.560 0.069819 8.626 64394 system.4 RK4 (TP13) 1.560 0.06983 8.973 65817	Problems	Methods	c5t	c5w	c6t	c6w
system.4 TAYLOR4 (TP10) 0.830 0.06993 8.853 85022 system.4 TAYLOR4 (TP11) 1.310 0.069876 7.474 67079 system.4 TAYLOR4 (TP12) 2.050 0.069864 8.570 70345 system.4 TAYLOR4 (TP13) 3.190 0.069834 8.542 64978 system.4 TAYLOR4 (TP14) 4.950 0.069829 7.852 73737 system.4 RK4 (TP9) 0.320 0.069787 9.191 62143 system.4 RK4 (TP10) 0.460 0.069802 9.178 81171 system.4 RK4 (TP11) 0.670 0.069802 9.178 81171 system.4 RK4 (TP12) 1.020 0.069818 8.062 77711 system.4 RK4 (TP13) 1.560 0.069798 8.298 82798 system.4 RK4 (TP14) 2.370 0.06983 8.973 65817 system.4 LA3 (TP8) 0.230 0.07624 5.12 83953	· ·					
system.4 TAYLOR4 (TP11) 1.310 0.069876 7.474 67079 system.4 TAYLOR4 (TP12) 2.050 0.069864 8.570 70345 system.4 TAYLOR4 (TP13) 3.190 0.069834 8.542 64978 system.4 TAYLOR4 (TP14) 4.950 0.069829 7.852 73737 system.4 RK4 (TP8) 0.240 0.069785 9.617 78366 system.4 RK4 (TP10) 0.460 0.069801 8.962 77711 system.4 RK4 (TP11) 0.670 0.069802 9.178 81171 system.4 RK4 (TP11) 0.670 0.069802 9.178 81171 system.4 RK4 (TP11) 1.560 0.069819 8.626 64394 system.4 RK4 (TP14) 2.370 0.06983 8.973 65817 system.4 LA3 (TP13) 1.560 0.069724 5.512 83953 system.4 LA3 (TP14) 0.300 0.073624 5.512 83953				0.070009	9.320	62850
system.4 TAYLOR4 (TP12) 2.050 0.069864 8.570 70345 system.4 TAYLOR4 (TP13) 3.190 0.069834 8.542 64978 system.4 TAYLOR4 (TP14) 4.950 0.069829 7.852 73737 system.4 RK4 (TP8) 0.240 0.069785 9.617 78366 system.4 RK4 (TP10) 0.460 0.069801 8.962 77711 system.4 RK4 (TP11) 0.670 0.069802 9.178 81171 system.4 RK4 (TP11) 0.670 0.069802 9.178 81171 system.4 RK4 (TP13) 1.560 0.069798 8.298 82798 system.4 RK4 (TP14) 2.370 0.06983 8.973 65817 system.4 LA3 (TP8) 0.230 0.07624 5.512 83953 system.4 LA3 (TP10) 0.390 0.072495 5.722 86373 system.4 LA3 (TP11) 0.600 0.071545 5.928 60730 <th< td=""><td>$system_4$</td><td>TAYLOR4 (TP10)</td><td>0.830</td><td>0.06993</td><td>8.853</td><td>85022</td></th<>	$system_4$	TAYLOR4 (TP10)	0.830	0.06993	8.853	85022
system.4 TAYLOR4 (TP14) 3.190 0.069834 8.542 64978 system.4 TAYLOR4 (TP14) 4.950 0.069829 7.852 73737 system.4 RK4 (TP8) 0.240 0.069878 9.617 78366 system.4 RK4 (TP10) 0.460 0.069801 8.962 77711 system.4 RK4 (TP11) 0.670 0.069802 9.178 81171 system.4 RK4 (TP13) 1.560 0.069798 8.298 82798 system.4 RK4 (TP14) 2.370 0.06983 8.973 65817 system.4 LA3 (TP94) 0.300 0.073963 8.962 8264 system.4 LA3 (TP99) 0.300 0.07624 5.512 83953 system.4 LA3 (TP10) 0.390 0.072495 5.722 86373 system.4 LA3 (TP11) 0.600 0.071545 5.928 60730 system.4 LA3 (TP13) 1.360 0.07052 6.916 79535 syst	$system_4$	TAYLOR4 (TP11)	1.310	0.069876	7.474	67079
system.4 TAYLORA (TP14) 4.950 0.069829 7.852 73737 system.4 RK4 (TP8) 0.240 0.069785 9.617 78366 system.4 RK4 (TP10) 0.460 0.069787 9.191 62143 system.4 RK4 (TP10) 0.460 0.069801 8.962 77711 system.4 RK4 (TP11) 0.670 0.069802 9.178 81171 system.4 RK4 (TP13) 1.560 0.069898 8.298 82798 system.4 RK4 (TP14) 2.370 0.06983 8.973 65817 system.4 LA3 (TP8) 0.230 0.07624 5.512 83953 system.4 LA3 (TP9) 0.300 0.073963 5.626 82664 system.4 LA3 (TP10) 0.390 0.072495 5.722 86373 system.4 LA3 (TP11) 0.600 0.071545 5.928 60730 system.4 LA3 (TP13) 1.360 0.07052 6.916 79535 system.4<	$system_4$	TAYLOR4 (TP12)	2.050	0.069864	8.570	70345
system.4 RK4 (TP8) 0.240 0.069785 9.617 78366 system.4 RK4 (TP9) 0.320 0.069787 9.191 62143 system.4 RK4 (TP10) 0.460 0.069801 8.962 77711 system.4 RK4 (TP11) 0.670 0.069802 9.178 81171 system.4 RK4 (TP12) 1.020 0.069819 8.626 64394 system.4 RK4 (TP13) 1.560 0.069819 8.626 64394 system.4 RK4 (TP14) 2.370 0.06983 8.298 82798 system.4 LA3 (TP8) 0.230 0.07624 5.512 83953 system.4 LA3 (TP9) 0.300 0.073963 5.626 8264 system.4 LA3 (TP10) 0.390 0.072495 5.722 86373 system.4 LA3 (TP11) 0.600 0.071545 5.928 60730 system.4 LA3 (TP11) 0.600 0.070525 6.969 81847 system.4	$system_4$	TAYLOR4 (TP13)	3.190	0.069834	8.542	64978
system.4 RK4 (TP9) 0.320 0.069787 9.191 62143 system.4 RK4 (TP10) 0.460 0.069801 8.962 77711 system.4 RK4 (TP11) 0.670 0.069802 9.178 81171 system.4 RK4 (TP12) 1.020 0.069819 8.626 64394 system.4 RK4 (TP13) 1.560 0.069798 8.298 82798 system.4 RK4 (TP14) 2.370 0.06983 8.973 65817 system.4 LA3 (TP9) 0.300 0.07624 5.512 83953 system.4 LA3 (TP10) 0.390 0.072495 5.722 86373 system.4 LA3 (TP10) 0.390 0.07495 5.722 86373 system.4 LA3 (TP11) 0.600 0.071545 5.928 60730 system.4 LA3 (TP12) 0.900 0.07093 5.969 81847 system.4 LA3 (TP13) 1.360 0.07052 6.916 79535 system.4	$system_4$	TAYLOR4 (TP14)	4.950	0.069829	7.852	73737
system.4 RK4 (TP10) 0.460 0.069801 8.962 77711 system.4 RK4 (TP11) 0.670 0.069802 9.178 81171 system.4 RK4 (TP12) 1.020 0.069819 8.626 64394 system.4 RK4 (TP13) 1.560 0.069798 8.298 82798 system.4 RK4 (TP14) 2.370 0.06938 8.973 65817 system.4 LA3 (TP9) 0.300 0.073963 5.626 82664 system.4 LA3 (TP10) 0.390 0.072495 5.722 86373 system.4 LA3 (TP11) 0.600 0.071545 5.928 60730 system.4 LA3 (TP12) 0.900 0.070933 5.969 81847 system.4 LA3 (TP13) 1.360 0.07052 6.916 79535 system.4 LC3 (TP8) 0.200 0.077751 5.516 8836 system.4 LC3 (TP10) 0.380 0.073062 5.658 74922 system.4 <td>system_4</td> <td>RK4 (TP8)</td> <td>0.240</td> <td>0.069785</td> <td>9.617</td> <td>78366</td>	system_4	RK4 (TP8)	0.240	0.069785	9.617	78366
system.4 RK4 (TP11) 0.670 0.069802 9.178 81171 system.4 RK4 (TP12) 1.020 0.069819 8.626 64394 system.4 RK4 (TP13) 1.560 0.069798 8.298 82798 system.4 RK4 (TP14) 2.370 0.06983 8.973 65817 system.4 LA3 (TP8) 0.230 0.07624 5.512 83953 system.4 LA3 (TP10) 0.300 0.073963 5.626 82664 system.4 LA3 (TP10) 0.390 0.072495 5.722 86373 system.4 LA3 (TP11) 0.600 0.071545 5.928 60730 system.4 LA3 (TP12) 0.900 0.070933 5.969 81847 system.4 LA3 (TP13) 1.360 0.07052 6.916 79535 system.4 LC3 (TP8) 0.200 0.077751 5.516 97508 system.4 LC3 (TP9) 0.280 0.074792 5.726 8836 system.4	$system_4$	RK4 (TP9)	0.320	0.069787	9.191	62143
system_4 RK4 (TP12) 1.020 0.069819 8.626 64394 system_4 RK4 (TP13) 1.560 0.069798 8.298 82798 system_4 RK4 (TP14) 2.370 0.06983 8.973 65817 system_4 LA3 (TP8) 0.230 0.07624 5.512 83953 system_4 LA3 (TP10) 0.390 0.073963 5.626 82664 system_4 LA3 (TP11) 0.600 0.071545 5.928 60730 system_4 LA3 (TP11) 0.600 0.071545 5.928 60730 system_4 LA3 (TP12) 0.900 0.070933 5.969 81847 system_4 LA3 (TP13) 1.360 0.07052 6.916 79535 system_4 LC3 (TP13) 1.360 0.070275 5.983 63808 system_4 LC3 (TP8) 0.200 0.077751 5.516 97508 system_4 LC3 (TP10) 0.380 0.073062 5.658 74922 system_4 <td>$system_4$</td> <td>RK4 (TP10)</td> <td>0.460</td> <td>0.069801</td> <td>8.962</td> <td>77711</td>	$system_4$	RK4 (TP10)	0.460	0.069801	8.962	77711
system.4 RK4 (TP13) 1.560 0.069798 8.298 82798 system.4 RK4 (TP14) 2.370 0.06983 8.973 65817 system.4 LA3 (TP8) 0.230 0.07624 5.512 83953 system.4 LA3 (TP9) 0.300 0.073963 5.626 82664 system.4 LA3 (TP10) 0.390 0.072495 5.722 86373 system.4 LA3 (TP11) 0.600 0.071545 5.928 60730 system.4 LA3 (TP12) 0.900 0.070933 5.969 81847 system.4 LA3 (TP13) 1.360 0.070525 6.916 79535 system.4 LA3 (TP14) 2.130 0.070275 5.983 63808 system.4 LC3 (TP8) 0.200 0.077751 5.516 97508 system.4 LC3 (TP10) 0.380 0.074792 5.726 8836 system.4 LC3 (TP11) 0.570 0.071113 6.249 82501 system.4	$system_4$	RK4 (TP11)	0.670	0.069802	9.178	81171
system.4 RK4 (TP14) 2.370 0.06983 8.973 65817 system.4 LA3 (TP8) 0.230 0.07624 5.512 83953 system.4 LA3 (TP9) 0.300 0.073963 5.626 82664 system.4 LA3 (TP10) 0.390 0.072495 5.722 86373 system.4 LA3 (TP11) 0.600 0.071545 5.928 60730 system.4 LA3 (TP12) 0.900 0.070933 5.969 81847 system.4 LA3 (TP13) 1.360 0.07052 6.916 79535 system.4 LA3 (TP14) 2.130 0.070275 5.983 63808 system.4 LC3 (TP8) 0.200 0.077751 5.516 97508 system.4 LC3 (TP9) 0.280 0.074792 5.726 88836 system.4 LC3 (TP10) 0.380 0.073062 5.658 74922 system.4 LC3 (TP11) 0.570 0.071849 5.816 95737 system.4	$system_4$	RK4 (TP12)	1.020	0.069819	8.626	64394
system.4 LA3 (TP8) 0.230 0.07624 5.512 83953 system.4 LA3 (TP9) 0.300 0.073963 5.626 82664 system.4 LA3 (TP10) 0.390 0.072495 5.722 86373 system.4 LA3 (TP11) 0.600 0.071545 5.928 60730 system.4 LA3 (TP12) 0.900 0.070933 5.969 81847 system.4 LA3 (TP13) 1.360 0.07052 6.916 79535 system.4 LA3 (TP14) 2.130 0.070275 5.983 63808 system.4 LC3 (TP8) 0.200 0.077751 5.516 97508 system.4 LC3 (TP9) 0.280 0.074792 5.726 88836 system.4 LC3 (TP10) 0.380 0.073062 5.658 74922 system.4 LC3 (TP11) 0.570 0.071849 5.816 95737 system.4 LC3 (TP13) 1.290 0.070648 6.607 67028 system.4	system_4	RK4 (TP13)	1.560	0.069798	8.298	82798
system.4 LA3 (TP9) 0.300 0.073963 5.626 82664 system.4 LA3 (TP10) 0.390 0.072495 5.722 86373 system.4 LA3 (TP11) 0.600 0.071545 5.928 60730 system.4 LA3 (TP12) 0.900 0.070933 5.969 81847 system.4 LA3 (TP13) 1.360 0.07052 6.916 79535 system.4 LA3 (TP14) 2.130 0.070275 5.983 63808 system.4 LC3 (TP8) 0.200 0.077751 5.516 97508 system.4 LC3 (TP9) 0.280 0.074792 5.726 88836 system.4 LC3 (TP10) 0.380 0.073062 5.658 74922 system.4 LC3 (TP11) 0.570 0.071849 5.816 95737 system.4 LC3 (TP12) 0.790 0.071113 6.249 82501 system.4 LC3 (TP13) 1.290 0.070648 6.607 67028 system.4 <td>$system_4$</td> <td>RK4 (TP14)</td> <td>2.370</td> <td>0.06983</td> <td>8.973</td> <td>65817</td>	$system_4$	RK4 (TP14)	2.370	0.06983	8.973	65817
system.4 LA3 (TP10) 0.390 0.072495 5.722 86373 system.4 LA3 (TP11) 0.600 0.071545 5.928 60730 system.4 LA3 (TP12) 0.900 0.070933 5.969 81847 system.4 LA3 (TP13) 1.360 0.07052 6.916 79535 system.4 LA3 (TP14) 2.130 0.070275 5.983 63808 system.4 LC3 (TP8) 0.200 0.077751 5.516 97508 system.4 LC3 (TP9) 0.280 0.074792 5.726 88836 system.4 LC3 (TP10) 0.380 0.073062 5.658 74922 system.4 LC3 (TP11) 0.570 0.071849 5.816 95737 system.4 LC3 (TP12) 0.790 0.071113 6.249 82501 system.4 LC3 (TP13) 1.290 0.070648 6.607 67028 system.4 Riot (05, 1e-11) 0m37.601s 0.06757 0.000 0 syste	system_4	LA3 (TP8)	0.230	0.07624	5.512	83953
system.4 LA3 (TP11) 0.600 0.071545 5.928 60730 system.4 LA3 (TP12) 0.900 0.070933 5.969 81847 system.4 LA3 (TP13) 1.360 0.07052 6.916 79535 system.4 LA3 (TP14) 2.130 0.070275 5.983 63808 system.4 LC3 (TP8) 0.200 0.077751 5.516 97508 system.4 LC3 (TP9) 0.280 0.074792 5.726 88836 system.4 LC3 (TP10) 0.380 0.073062 5.658 74922 system.4 LC3 (TP11) 0.570 0.071849 5.816 95737 system.4 LC3 (TP13) 1.290 0.070648 6.607 67028 system.4 LC3 (TP14) 1.980 0.070313 7.398 68298 system.4 Riot (05, 1e-11) 0m37.601s 0.06757 0.000 0 system.4 Riot (10, 1e-11) 0m3.171s 0.06757 10.000 0.3331	$system_4$	LA3 (TP9)	0.300	0.073963	5.626	82664
system_4 LA3 (TP12) 0.900 0.070933 5.969 81847 system_4 LA3 (TP13) 1.360 0.07052 6.916 79535 system_4 LA3 (TP14) 2.130 0.070275 5.983 63808 system_4 LC3 (TP8) 0.200 0.077751 5.516 97508 system_4 LC3 (TP9) 0.280 0.074792 5.726 88836 system_4 LC3 (TP10) 0.380 0.073062 5.658 74922 system_4 LC3 (TP11) 0.570 0.071849 5.816 95737 system_4 LC3 (TP12) 0.790 0.071113 6.249 82501 system_4 LC3 (TP13) 1.290 0.070648 6.607 67028 system_4 Riot (05, 1e-11) 0m37.601s 0.06757 0.000 0 system_4 Riot (10, 1e-11) 0m3.171s 0.06757 10.000 0.18331 system_4 Valencia-IVP (0.0025) 0m5.231s 10.971 1.140 910.02	$system_4$	LA3 (TP10)	0.390	0.072495	5.722	86373
system_4 LA3 (TP13) 1.360 0.07052 6.916 79535 system_4 LA3 (TP14) 2.130 0.070275 5.983 63808 system_4 LC3 (TP8) 0.200 0.077751 5.516 97508 system_4 LC3 (TP9) 0.280 0.074792 5.726 88836 system_4 LC3 (TP10) 0.380 0.073062 5.658 74922 system_4 LC3 (TP11) 0.570 0.071849 5.816 95737 system_4 LC3 (TP12) 0.790 0.071113 6.249 82501 system_4 LC3 (TP13) 1.290 0.070648 6.607 67028 system_4 Riot (05, 1e-11) 0m37.601s 0.06757 0.000 0 system_4 Riot (10, 1e-11) 0m3.171s 0.06757 10.000 0.18331 system_4 Valencia-IVP (0.00025) 0m5.231s 10.971 1.140 910.02 system_4 Valencia-IVP (0.0025) 0m0.679s 13.023 1.105 154.09 <td>$system_4$</td> <td>LA3 (TP11)</td> <td>0.600</td> <td>0.071545</td> <td>5.928</td> <td>60730</td>	$system_4$	LA3 (TP11)	0.600	0.071545	5.928	60730
system_4 LA3 (TP14) 2.130 0.070275 5.983 63808 system_4 LC3 (TP8) 0.200 0.077751 5.516 97508 system_4 LC3 (TP9) 0.280 0.074792 5.726 88836 system_4 LC3 (TP10) 0.380 0.073062 5.658 74922 system_4 LC3 (TP11) 0.570 0.071849 5.816 95737 system_4 LC3 (TP12) 0.790 0.071113 6.249 82501 system_4 LC3 (TP13) 1.290 0.070648 6.607 67028 system_4 Riot (05, 1e-11) 0m37.601s 0.06757 0.000 0 system_4 Riot (10, 1e-11) 0m3.171s 0.06757 10.000 0.18331 system_4 Riot (15, 1e-11) 0m9.102s 0.06757 10.000 0.30021 system_4 Valencia-IVP (0.00025) 0m5.231s 10.971 1.140 910.02 system_4 Valencia-IVP (0.0025) 0m0.679s 13.023 1.105 <t< td=""><td>$system_4$</td><td>LA3 (TP12)</td><td>0.900</td><td>0.070933</td><td>5.969</td><td>81847</td></t<>	$system_4$	LA3 (TP12)	0.900	0.070933	5.969	81847
system_4 LC3 (TP8) 0.200 0.077751 5.516 97508 system_4 LC3 (TP9) 0.280 0.074792 5.726 88836 system_4 LC3 (TP10) 0.380 0.073062 5.658 74922 system_4 LC3 (TP11) 0.570 0.071849 5.816 95737 system_4 LC3 (TP12) 0.790 0.071113 6.249 82501 system_4 LC3 (TP13) 1.290 0.070648 6.607 67028 system_4 Riot (3, 1e-11) 0m37.601s 0.06757 0.000 0 system_4 Riot (10, 1e-11) 0m3.171s 0.06757 10.000 0.18331 system_4 Riot (15, 1e-11) 0m9.102s 0.06757 10.000 0.30021 system_4 Valencia-IVP (0.00025) 0m5.231s 10.971 1.140 910.02 system_4 Valencia-IVP (0.0025) 0m0.679s 13.023 1.105 154.09 system_4 Valencia-IVP (0.0025) 0m0.063s 3.2425 0.600 <td>$system_4$</td> <td>LA3 (TP13)</td> <td>1.360</td> <td>0.07052</td> <td>6.916</td> <td>79535</td>	$system_4$	LA3 (TP13)	1.360	0.07052	6.916	79535
system_4 LC3 (TP9) 0.280 0.074792 5.726 88836 system_4 LC3 (TP10) 0.380 0.073062 5.658 74922 system_4 LC3 (TP11) 0.570 0.071849 5.816 95737 system_4 LC3 (TP12) 0.790 0.071113 6.249 82501 system_4 LC3 (TP13) 1.290 0.070648 6.607 67028 system_4 Riot (3, 1e-11) 0m37.601s 0.06757 0.000 0 system_4 Riot (10, 1e-11) 0m3.171s 0.06757 10.000 0.18331 system_4 Riot (15, 1e-11) 0m9.102s 0.06757 10.000 0.30021 system_4 Valencia-IVP (0.00025) 0m5.231s 10.971 1.140 910.02 system_4 Valencia-IVP (0.0025) 0m0.679s 13.023 1.105 154.09 system_4 Valencia-IVP (0.025) 0m0.063s 3.2425 0.600 3.2425 system_4 VNODE-LP (15, 1e-14,1e-14) 0m0.012s 0.073974	$system_4$	LA3 (TP14)	2.130	0.070275	5.983	63808
system_4 LC3 (TP9) 0.280 0.074792 5.726 88836 system_4 LC3 (TP10) 0.380 0.073062 5.658 74922 system_4 LC3 (TP11) 0.570 0.071849 5.816 95737 system_4 LC3 (TP12) 0.790 0.071113 6.249 82501 system_4 LC3 (TP13) 1.290 0.070648 6.607 67028 system_4 Riot (3, 1e-11) 0m37.601s 0.06757 0.000 0 system_4 Riot (10, 1e-11) 0m3.171s 0.06757 10.000 0.18331 system_4 Riot (15, 1e-11) 0m9.102s 0.06757 10.000 0.30021 system_4 Valencia-IVP (0.00025) 0m5.231s 10.971 1.140 910.02 system_4 Valencia-IVP (0.0025) 0m0.679s 13.023 1.105 154.09 system_4 Valencia-IVP (0.025) 0m0.063s 3.2425 0.600 3.2425 system_4 VNODE-LP (15, 1e-14,1e-14) 0m0.012s 0.073974	system_4	LC3 (TP8)	0.200	0.077751	5.516	97508
system_4 LC3 (TP10) 0.380 0.073062 5.658 74922 system_4 LC3 (TP11) 0.570 0.071849 5.816 95737 system_4 LC3 (TP12) 0.790 0.071113 6.249 82501 system_4 LC3 (TP13) 1.290 0.070648 6.607 67028 system_4 LC3 (TP14) 1.980 0.070313 7.398 68298 system_4 Riot (05, 1e-11) 0m37.601s 0.06757 0.000 0 system_4 Riot (10, 1e-11) 0m3.171s 0.06757 10.000 0.30021 system_4 Valencia-IVP (0.00025) 0m5.231s 10.971 1.140 910.02 system_4 Valencia-IVP (0.0025) 0m0.679s 13.023 1.105 154.09 system_4 Valencia-IVP (0.0025) 0m0.063s 3.2425 0.600 3.2425 system_4 VNODE-LP (15, 1e-14,1e-14) 0m0.012s 0.073974 5.055 10185 system_4 VNODE-LP (20, 1e-14,1e-14) 0m0.014s 0.07	$system_4$		0.280	0.074792	5.726	88836
system_4 LC3 (TP11) 0.570 0.071849 5.816 95737 system_4 LC3 (TP12) 0.790 0.071113 6.249 82501 system_4 LC3 (TP13) 1.290 0.070648 6.607 67028 system_4 LC3 (TP14) 1.980 0.070313 7.398 68298 system_4 Riot (05, 1e-11) 0m37.601s 0.06757 0.000 0 system_4 Riot (10, 1e-11) 0m3.171s 0.06757 10.000 0.30021 system_4 Valencia-IVP (0.00025) 0m5.231s 10.971 1.140 910.02 system_4 Valencia-IVP (0.0025) 0m0.679s 13.023 1.105 154.09 system_4 Valencia-IVP (0.025) 0m0.063s 3.2425 0.600 3.2425 system_4 VNODE-LP (15, 1e-14,1e-14) 0m0.012s 0.073974 5.055 10185 system_4 VNODE-LP (20, 1e-14,1e-14) 0m0.014s 0.075043 4.977 21260			0.380	0.073062	5.658	74922
system_4 LC3 (TP12) 0.790 0.071113 6.249 82501 system_4 LC3 (TP13) 1.290 0.070648 6.607 67028 system_4 LC3 (TP14) 1.980 0.070313 7.398 68298 system_4 Riot (05, 1e-11) 0m37.601s 0.06757 0.000 0 system_4 Riot (10, 1e-11) 0m3.171s 0.06757 10.000 0.18331 system_4 Riot (15, 1e-11) 0m9.102s 0.06757 10.000 0.30021 system_4 Valencia-IVP (0.00025) 0m5.231s 10.971 1.140 910.02 system_4 Valencia-IVP (0.0025) 0m0.679s 13.023 1.105 154.09 system_4 Valencia-IVP (0.025) 0m0.063s 3.2425 0.600 3.2425 system_4 VNODE-LP (15, 1e-14,1e-14) 0m0.012s 0.073974 5.055 10185 system_4 VNODE-LP (20, 1e-14,1e-14) 0m0.014s 0.075043 4.977 21260	system_4		0.570	0.071849	5.816	95737
system_4 LC3 (TP13) 1.290 0.070648 6.607 67028 system_4 LC3 (TP14) 1.980 0.070313 7.398 68298 system_4 Riot (05, 1e-11) 0m37.601s 0.06757 0.000 0 system_4 Riot (10, 1e-11) 0m3.171s 0.06757 10.000 0.18331 system_4 Valencia-IVP (0.00025) 0m5.231s 10.971 1.140 910.02 system_4 Valencia-IVP (0.0025) 0m0.679s 13.023 1.105 154.09 system_4 Valencia-IVP (0.025) 0m0.063s 3.2425 0.600 3.2425 system_4 VNODE-LP (15, 1e-14,1e-14) 0m0.012s 0.073974 5.055 10185 system_4 VNODE-LP (20, 1e-14,1e-14) 0m0.014s 0.075043 4.977 21260	system_4		0.790		6.249	82501
system_4 Riot (05, 1e-11) 0m37.601s 0.06757 0.000 0 system_4 Riot (10, 1e-11) 0m3.171s 0.06757 10.000 0.18331 system_4 Riot (15, 1e-11) 0m9.102s 0.06757 10.000 0.30021 system_4 Valencia-IVP (0.00025) 0m5.231s 10.971 1.140 910.02 system_4 Valencia-IVP (0.0025) 0m0.679s 13.023 1.105 154.09 system_4 Valencia-IVP (0.025) 0m0.063s 3.2425 0.600 3.2425 system_4 VNODE-LP (15, 1e-14,1e-14) 0m0.012s 0.073974 5.055 10185 system_4 VNODE-LP (20, 1e-14,1e-14) 0m0.014s 0.075043 4.977 21260	$system_4$	LC3 (TP13)	1.290	0.070648	6.607	67028
system_4 Riot (10, 1e-11) 0m3.171s 0.06757 10.000 0.18331 system_4 Riot (15, 1e-11) 0m9.102s 0.06757 10.000 0.30021 system_4 Valencia-IVP (0.00025) 0m5.231s 10.971 1.140 910.02 system_4 Valencia-IVP (0.0025) 0m0.679s 13.023 1.105 154.09 system_4 Valencia-IVP (0.025) 0m0.063s 3.2425 0.600 3.2425 system_4 VNODE-LP (15, 1e-14,1e-14) 0m0.012s 0.073974 5.055 10185 system_4 VNODE-LP (20, 1e-14,1e-14) 0m0.014s 0.075043 4.977 21260	$system_4$	LC3 (TP14)	1.980	0.070313	7.398	68298
system_4 Riot (15, 1e-11) 0m9.102s 0.06757 10.000 0.30021 system_4 Valencia-IVP (0.00025) 0m5.231s 10.971 1.140 910.02 system_4 Valencia-IVP (0.0025) 0m0.679s 13.023 1.105 154.09 system_4 Valencia-IVP (0.025) 0m0.063s 3.2425 0.600 3.2425 system_4 VNODE-LP (15, 1e-14,1e-14) 0m0.012s 0.073974 5.055 10185 system_4 VNODE-LP (20, 1e-14,1e-14) 0m0.014s 0.075043 4.977 21260	system_4		0m37.601s	0.06757	0.000	0
system_4 Riot (15, 1e-11) 0m9.102s 0.06757 10.000 0.30021 system_4 Valencia-IVP (0.00025) 0m5.231s 10.971 1.140 910.02 system_4 Valencia-IVP (0.0025) 0m0.679s 13.023 1.105 154.09 system_4 Valencia-IVP (0.025) 0m0.063s 3.2425 0.600 3.2425 system_4 VNODE-LP (15, 1e-14,1e-14) 0m0.012s 0.073974 5.055 10185 system_4 VNODE-LP (20, 1e-14,1e-14) 0m0.014s 0.075043 4.977 21260	$system_4$		0 m 3.171 s	0.06757	10.000	0.18331
system_4 Valencia-IVP (0.0025) 0m0.679s 13.023 1.105 154.09 system_4 Valencia-IVP (0.025) 0m0.063s 3.2425 0.600 3.2425 system_4 VNODE-LP (15, 1e-14,1e-14) 0m0.012s 0.073974 5.055 10185 system_4 VNODE-LP (20, 1e-14,1e-14) 0m0.014s 0.075043 4.977 21260	$system_4$	Riot (15, 1e-11)	0 m9.102 s	0.06757	10.000	0.30021
system_4 Valencia-IVP (0.025) 0m0.063s 3.2425 0.600 3.2425 system_4 VNODE-LP (15, 1e-14,1e-14) 0m0.012s 0.073974 5.055 10185 system_4 VNODE-LP (20, 1e-14,1e-14) 0m0.014s 0.075043 4.977 21260	system_4	Valencia-IVP (0.00025)	0 m 5.231 s	10.971	1.140	910.02
system_4 VNODE-LP (15, 1e-14,1e-14) 0m0.012s 0.073974 5.055 10185 system_4 VNODE-LP (20, 1e-14,1e-14) 0m0.014s 0.075043 4.977 21260	$system_4$	Valencia-IVP (0.0025)	0 m 0.679 s	13.023	1.105	154.09
system_4 VNODE-LP (20, 1e-14,1e-14) 0m0.014s 0.075043 4.977 21260	$system_4$	Valencia-IVP (0.025)	0 m 0.063 s	3.2425	0.600	3.2425
system_4 VNODE-LP (20, 1e-14,1e-14) 0m0.014s 0.075043 4.977 21260	system_4	VNODE-LP (15, 1e-14,1e-14)	0 m 0.012 s	0.073974	5.055	10185
				0.076265	4.913	30511

	Table 3.5: Simulation r	esults of Pr	oblem 7		
Problems	Methods	c5t	c5w	c6t	c6w
system_7	TAYLOR4 (TP8)	0.000	5.4885e-09	10.000	5.2398e-09
$system_{-7}$	TAYLOR4 (TP9)	0.000	5.6577e-10	10.000	5.4977e-10
$system_{-7}$	TAYLOR4 (TP10)	0.010	5.8386e-11	10.000	5.3574e-11
$system_{-7}$	TAYLOR4 (TP11)	0.010	5.9324e-12	10.000	5.5432e-12
$system_{-}7$	TAYLOR4 (TP12)	0.020	6.4071e-13	10.000	5.8407e-13
$system_{-7}$	TAYLOR4 (TP13)	0.030	1.3856e-13	10.000	5.8756e-14
$system_{-}7$	TAYLOR4 (TP14)	0.050	1.2923e-13	10.000	5.9005e-15
system_7	RK4 (TP8)	0.000	6.9766e-09	10.000	6.05e-09
$system_{-7}$	RK4 (TP9)	0.000	7.3286e-10	10.000	6.93e-10
system_7	RK4 (TP10)	0.000	7.5791e-11	10.000	7.3548e-11
$system_{-7}$	RK4 (TP11)	0.010	7.7225e-12	10.000	7.2765e-12
$system_{-7}$	RK4 (TP12)	0.010	7.8859e-13	10.000	7.4488e-13
$system_{-7}$	RK4 (TP13)	0.020	1.0791e-13	10.000	7.5389e-14
$system_{-}7$	RK4 (TP14)	0.030	5.6066e-14	10.000	7.6827e-15
system_7	LA3 (TP8)	0.000	5.199e-09	10.000	5.0889e-09
$system_{-7}$	LA3 (TP9)	0.000	5.4665 e-10	10.000	4.8474e-10
$system_{-7}$	LA3 (TP10)	0.000	5.792e-11	10.000	5.61e-11
$system_{-}7$	LA3 (TP11)	0.000	5.7909e-12	10.000	5.4252e-12
$system_{-7}$	LA3 (TP12)	0.010	6.0674 e-13	10.000	5.8379e-13
$system_{-7}$	LA3 (TP13)	0.020	8.2267e-14	10.000	5.7728e-14
system_7	LA3 (TP14)	0.030	4.13e-14	10.000	5.8007e-15
system_7	LC3 (TP8)	0.000	5.362e-09	10.000	5.0148e-09
$system_{-7}$	LC3 (TP9)	0.000	5.611e-10	10.000	5.5022e-10
$system_{-7}$	LC3 (TP10)	0.000	5.8373e-11	10.000	5.2443e-11
$system_{-}7$	LC3 (TP11)	0.010	5.8898e-12	10.000	5.6076e-12
$system_{-}7$	LC3 (TP12)	0.010	6.0607e-13	10.000	5.6303e-13
$system_{-7}$	LC3 (TP13)	0.020	8.4266e-14	10.000	5.7818e-14
$system_7$	LC3 (TP14)	0.040	4.4076e-14	10.000	5.8898e-15
system_7	Riot (05, 1e-11)	0 m 0.073 s	1.8582e-11	1.000	1.8582e-11
$system_{-}7$	Riot (10, 1e-11)	0 m 0.106 s	1.199e-14	10.000	1.061e-12
$system_{-7}$	Riot (15, 1e-11)	0 m 0.189 s	1.7097e-14	0.000	0
system_7	Valencia-IVP (0.00025)	0m1.491s	0.00029389	10.000	2.7571
$system_{-}7$	Valencia-IVP (0.0025)	0 m 0.132 s	0.0029465	10.000	27.915
$system_{-7}$	Valencia-IVP (0.025)	0 m 0.016 s	0.030251	10.000	316.61
system_7	VNODE-LP (15, 1e-14,1e-14)	0 m 0.005 s	1.6653e-16	10.000	4.6756e-19
$system_{-7}$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.003 s	2.7756e-16	10.000	4.0658e-19
$system_{-}7$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.007 s	1.6653e-16	10.000	2.9138e-19

Problems	Table 3.6: Simulation r Methods	esults of Pr	$ \begin{array}{c} \text{oblem 8} \\ \text{c5w} \end{array} $	c6t	c6w
system_8	TAYLOR4 (TP8)	0.630	6.2392e-08	10.000	2.6753e-07
system_8	TAYLOR4 (TP9)	0.900	6.8627e-09	10.000	7.328e-08
system_8	TAYLOR4 (TP10)	1.340	7.1243e-10	10.000	1.0083e-08
system_8	TAYLOR4 (TP11)	2.100	7.4399e-11	10.000	1.343e-09
system_8	TAYLOR4 (TP12)	3.380	7.6358e-12	10.000	1.7369e-10
system_8	TAYLOR4 (TP13)	5.260	1.0223e-12	10.000	2.2065e-11
system_8	TAYLOR4 (TP14)	8.140	5.7332e-13	10.000	3.1279e-12
system_8	RK4 (TP8)	0.510	8.0492e-08	10.000	4.8703e-07
system_8	RK4 (TP9)	0.760	8.8927e-09	10.000	9.2522 e - 08
system_8	RK4 (TP10)	1.140	9.2505 e10	10.000	1.1545e-08
$system_8$	RK4 (TP11)	1.810	9.6979e-11	10.000	1.3574 e - 09
system_8	RK4 (TP12)	2.810	9.8163e-12	10.000	1.8886e-10
system_8	RK4 (TP13)	4.420	1.0665e-12	10.000	2.5177e-11
system_8	RK4 (TP14)	6.910	2.8466e-13	10.000	3.3497e-12
system_8	LA3 (TP8)	0.410	6.3861e-08	10.000	1.9173e-06
system_8	LA3 (TP9)	0.590	6.8303e-09	10.000	2.1645e-07
system_8	LA3 (TP10)	0.870	7.1757e-10	10.000	2.0083e-08
system_8	LA3 (TP11)	1.320	7.3416e-11	10.000	1.9068e-09
system8	LA3 (TP12)	2.100	7.5049e-12	10.000	2.0342e-10
system_8	LA3 (TP13)	3.280	8.1635e-13	10.000	2.2924e-11
system8	LA3 (TP14)	5.150	2.1383e-13	10.000	2.7943e-12
system_8	LC3 (TP8)	0.430	6.3703e-08	10.000	3.2935e-06
system_8	LC3 (TP9)	0.630	6.9067e-09	10.000	2.6899e-07
system_8	LC3 (TP10)	0.950	7.17e-10	10.000	2.3447e-08
system_8	LC3 (TP11)	1.460	7.3931e-11	10.000	2.107e-09
system_8	LC3 (TP12)	2.300	7.5591e-12	10.000	2.1838e-10
system_8	LC3 (TP13)	3.630	8.2462 e-13	10.000	2.4242e-11
system8	LC3 (TP14)	5.610	$2.2604 e ext{-}13$	10.000	2.9331e-12
system_8	Riot (05, 1e-11)	0m0.296s	9.0226e-11	10.000	8.8003e-05
$system_8$	Riot (10, 1e-11)	0 m 0.207 s	1.299e-14	10.000	1.3371e-10
$system_8$	Riot (15, 1e-11)	0 m 0.253 s	1.8319e-14	10.000	8.3085 e-15
system_8	Valencia-IVP (0.00025)	0m4.114s	0.0026387	5.269	999.48
system_8	Valencia-IVP (0.0025)	0 m 0.402 s	0.026723	4.485	996.18
system_8	Valencia-IVP (0.025)	0 m 0.048 s	0.30489	3.575	963.25
system_8	VNODE-LP (15, 1e-14,1e-14)	0m0.006s	2.1094e-15	10.000	2.3327e-16
$system_8$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.005 s	1.1102e-15	10.000	1.0988e-16
system_8	VNODE-LP (25, 1e-14,1e-14)	0 m 0.003 s	8.8818e-16	10.000	8.5489e-17

Problems	Table 3.7: Simulation red Methods	$\begin{array}{c} \mathrm{sults} \ \mathrm{of} \ \mathrm{Pro} \\ \mathrm{c5t} \end{array}$	$ \begin{array}{c} \text{blem } 10 \\ \text{c5w} \end{array} $	c6t	c6w
system_10	TAYLOR4 (TP8)	0.010	2.1154e-08	10.000	2.5347e-08
system_10	TAYLOR4 (TP9)	0.020	2.2594e-09	10.000	2.6471e-09
system_10	TAYLOR4 (TP10)	0.030	2.3767e-10	10.000	2.7776e-10
system_10	TAYLOR4 (TP11)	0.050	2.4321e-11	10.000	2.8726e-11
$system_10$	TAYLOR4 (TP12)	0.090	2.5682e-12	10.000	2.9864e-12
$system_{-}10$	TAYLOR4 (TP13)	0.140	3.8791e-13	10.000	4.0901e-13
system_10	TAYLOR4 (TP14)	0.230	2.4336e-13	10.000	2.105e-13
system_10	RK4 (TP8)	0.000	4.9113e-08	10.000	6.3159e-08
system_10	RK4 (TP9)	0.010	5.258e-09	10.000	6.5608e-09
system_10	RK4 (TP10)	0.010	5.1864e-10	10.000	6.569 e-10
system_10	RK4 (TP11)	0.010	4.895e-11	10.000	6.0076e-11
$system_10$	RK4 (TP12)	0.020	4.5011e-12	10.000	5.4561e-12
$system_{-}10$	RK4 (TP13)	0.040	4.3721e-13	10.000	5.1514e-13
system_10	RK4 (TP14)	0.060	7.1054e-14	10.000	7.272e-14
system_10	LA3 (TP8)	0.000	1.9603e-08	10.000	2.3468e-08
$system_10$	LA3 (TP9)	0.010	2.1781e-09	10.000	2.5435e-09
$system_10$	LA3 (TP10)	0.010	2.278e-10	10.000	2.705e-10
$system_10$	LA3 (TP11)	0.020	2.4233e-11	10.000	2.8082e-11
$system_{-}10$	LA3 (TP12)	0.040	2.478e-12	10.000	2.9076e-12
$system_10$	LA3 (TP13)	0.060	2.7711e-13	10.000	3.1497e-13
$system_{-}10$	LA3 (TP14)	0.090	6.8168e-14	10.000	6.5503 e-14
system_10	LC3 (TP8)	0.000	2.6295e-08	10.000	3.4923e-08
$system_10$	LC3 (TP9)	0.010	3.0011e-09	10.000	3.521e-09
$system_10$	LC3 (TP10)	0.010	2.8753e-10	10.000	3.508e-10
$system_10$	LC3 (TP11)	0.020	2.8342e-11	10.000	3.4456e-11
$system_{-}10$	LC3 (TP12)	0.030	2.7964e-12	10.000	3.3326e-12
$system_10$	LC3 (TP13)	0.050	2.9554e-13	10.000	3.4062e-13
system_10	LC3 (TP14)	0.070	6.0396e-14	10.000	5.9508e-14
system_10	Riot (05, 1e-11)	0m0.148s	3.2904e-11	10.000	4.4509e-11
$system_10$	Riot (10, 1e-11)	0 m 0.154 s	2.276e-14	10.000	2.4266e-12
$system_10$	Riot (15, 1e-11)	0 m 0.235 s	2.1427e-14	10.000	2.0872e-14
system_10	Valencia-IVP (0.00025)	0 m1.280 s	0.00015473	10.000	0.0022794
system_10	Valencia-IVP (0.0025)	0 m 0.111 s	0.0015521	10.000	0.022876
$system_10$	Valencia-IVP (0.025)	0 m 0.014 s	0.016012	10.000	0.23397
system_10	VNODE-LP (15, 1e-14,1e-14)	0 m 0.007 s	1.6653e-15	10.000	1.4988e-15
$system_10$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.006 s	1.2212e-15	10.000	1.1102e-15
$system_10$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.004 s	9.992e-16	10.000	1.1102e-15

Problems	Table 3.8: Simulation red Methods	sults of Pro	$ \begin{array}{c} \text{blem } 11 \\ \text{c5w} \end{array} $	c6t	c6w
system_11	TAYLOR4 (TP8)	0.260	1.5364e-07	10.000	0.00011249
system_11	TAYLOR4 (TP9)	0.380	1.6536e-08	10.000	0.0001409
system_11	TAYLOR4 (TP10)	0.600	1.6928e-09	10.000	6.8266 e - 05
$system_11$	TAYLOR4 (TP11)	0.950	1.7436e-10	10.000	7.4563e-06
$system_11$	TAYLOR4 (TP12)	1.490	1.8469e-11	10.000	7.9824e-07
$system_{-}11$	TAYLOR4 (TP13)	2.280	2.9283e-12	10.000	1.0116e-07
$system_{-}11$	TAYLOR4 (TP14)	3.610	1.9837e-12	10.000	3.6623 e - 08
system_11	RK4 (TP8)	0.160	1.4924e-07	10.000	9.9104e-05
system_11	RK4 (TP9)	0.240	1.6173e-08	10.000	0.00010979
system_11	RK4 (TP10)	0.370	1.6512e-09	10.000	3.7122e-05
$system_11$	RK4 (TP11)	0.560	1.6831e-10	10.000	4.4121e-06
$system_11$	RK4 (TP12)	0.910	1.7229e-11	10.000	4.5013e-07
$system_{-}11$	RK4 (TP13)	1.390	2.037e-12	10.000	5.0184e-08
$system_11$	RK4 (TP14)	2.130	6.8701e-13	10.000	1.2723 e-08
system_11	LA3 (TP8)	0.150	1.3016e-07	10.000	0.00027567
system_11	LA3 (TP9)	0.210	1.3811e-08	10.000	5.0329 e-05
$system_11$	LA3 (TP10)	0.320	1.5537e-09	10.000	3.3377e-05
$system_11$	LA3 (TP11)	0.500	1.6718e-10	10.000	4.3944e-06
$system_{-}11$	LA3 (TP12)	0.790	1.5877e-11	10.000	4.2412e-07
$system_11$	LA3 (TP13)	1.240	1.8541e-12	10.000	4.6319e-08
$system_11$	LA3 (TP14)	1.890	5.9908e-13	10.000	1.1111e-08
system_11	LC3 (TP8)	0.140	1.2294e-07	10.000	0.00022257
system_11	LC3 (TP9)	0.200	1.2053e-08	10.000	5.6171e-05
$system_11$	LC3 (TP10)	0.310	1.1696e-09	10.000	4.3e-05
$system_11$	LC3 (TP11)	0.470	1.1365e-10	10.000	4.8341e-06
$system_{-}11$	LC3 (TP12)	0.740	1.1288e-11	10.000	4.7542e-07
$system_11$	LC3 (TP13)	1.160	1.3585e-12	10.000	5.0885e-08
$system_{-}11$	LC3 (TP14)	1.770	5.1648e-13	10.000	1.1353e-08
system_11	Riot (05, 1e-11)	0 m 0.593 s	3.3225 e-10	10.000	3.6967e-08
$system_11$	Riot (10, 1e-11)	0 m 0.299 s	6.505 e-12	10.000	3.2633e-09
$system_{-}11$	Riot (15, 1e-11)	0 m 0.436 s	3.5971e-14	10.000	5.0365e-10
system_11	Valencia-IVP (0.00025)	0 m 1.732 s	0.011564	4.825	986.14
$system_11$	Valencia-IVP (0.0025)	0 m 0.252 s	0.11774	2.902	1.5629
$system_11$	Valencia-IVP (0.025)	0 m 0.094 s	1.5234	1.050	1.7124
system_11	VNODE-LP (15, 1e-14,1e-14)	0 m 0.015 s	1.3101e-14	10.000	2.7778e-12
$system_11$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.013 s	9.1038e-15	10.000	1.9398e-12
$system_11$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.011 s	6.8834 e-15	10.000	2.2919e-12

Problems	Table 3.9: Simulation results of Problem 13 Problems Methods c5t c5w c6t c6w						
system_13	TAYLOR4 (TP8)	0.100	6.0623e-08	10.000	1.1392e-05		
system_13	TAYLOR4 (TP9)	0.160	6.3074e-09	10.000	6.6022e-06		
system_13	TAYLOR4 (TP10)	0.160	6.6362e-10	10.000	6.3809e-06		
system_13	TAYLOR4 (TP11)	0.200	6.9288e-11	10.000	5.969e-06		
system_13	TAYLOR4 (TP12)	0.410	8.6562e-12	10.000	5.8669e-06		
system_13	TAYLOR4 (TP13)	0.990	3.336e-12	10.000	9.4036e-06		
system_13	TAYLOR4 (TP14)	1.570	4.281e-12	10.000	2.4348e-05		
	, ,						
system_13	RK4 (TP8)	0.070	7.7716e-08	10.000	1.1601e-05		
system_13	RK4 (TP9)	0.120	8.0154e-09	10.000	2.9548e-06		
system_13	RK4 (TP10)	0.180	8.5062e-10	10.000	3.2373e-06		
system_13	RK4 (TP11)	0.290	8.8824e-11	10.000	4.3262e-06		
system_13	RK4 (TP12)	0.440	9.7406e-12	10.000	5.0541e-06		
system_13	RK4 (TP13)	0.690	1.9238e-12	10.000	4.0228e-06		
system_13	RK4 (TP14)	1.100	1.6866e-12	10.000	1.052e-05		
$system_{-}13$	LA3 (TP8)	0.060	5.6343e-08	10.000	2.5172e-05		
$system_{-}13$	LA3 (TP9)	0.090	6.0874 e-09	10.000	1.0084e-05		
$system_13$	LA3 (TP10)	0.140	6.5448e-10	10.000	5.8655e-06		
$system_13$	LA3 (TP11)	0.220	6.8319e-11	10.000	5.7753e-06		
$system_{-}13$	LA3 (TP12)	0.350	7.3896e-12	10.000	4.6608e-06		
$system_{-}13$	LA3 (TP13)	0.530	1.4424e-12	10.000	3.0252e-06		
system_13	LA3 (TP14)	0.830	1.2559e-12	10.000	3.7585e-06		
system_13	LC3 (TP8)	0.060	5.7775e-08	10.000	3.7157e-05		
$system_13$	LC3 (TP9)	0.100	6.2167e-09	10.000	1.62e-05		
$system_13$	LC3 (TP10)	0.150	6.5544 e-10	10.000	7.0966e-06		
$system_13$	LC3 (TP11)	0.250	6.8894e-11	10.000	7.2423e-06		
$system_{-}13$	LC3 (TP12)	0.390	7.4376e-12	10.000	6.7877e-06		
$system_13$	LC3 (TP13)	0.590	1.5206e-12	10.000	1.347e-05		
$system_13$	LC3 (TP14)	0.920	1.3589e-12	10.000	9.5534e-06		
system_13	Riot (05, 1e-11)	0 m 0.182 s	2.3274e-10	10.000	2.2851e-09		
$system_13$	Riot (10, 1e-11)	0 m 0.119 s	3.5083e-14	10.000	1.236e-10		
$system_13$	Riot (15, 1e-11)	0 m 0.153 s	1.1813e-13	10.000	5.4101e-12		
system_13	Valencia-IVP (0.00025)	0 m1.141 s	0.0044966	7.088	999.86		
$system_13$	Valencia-IVP (0.0025)	$0 \mathrm{m} 0.099 \mathrm{s}$	0.045269	5.923	999.03		
$system_13$	Valencia-IVP (0.025)	0 m 0.017 s	0.48459	4.650	990.84		
system_13	VNODE-LP (15, 1e-14,1e-14)	0 m 0.004 s	6.2172e-15	10.000	2.4802e-13		
$system_13$	VNODE-LP (20, 1e-14,1e-14)	$0\mathrm{m}0.005\mathrm{s}$	3.9968e-15	10.000	2.3404e-13		
$system_{-}13$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.005 s	1.7764e-15	10.000	1.1502e-13		

Table 3.10: Simulation results of Problem 14						
Problems	Methods	c5t	c5w	c6t	c6w	
system_14	TAYLOR4 (TP8)	0.180	6.7792e-07	10.000	3.6732e + 06	
$system_14$	TAYLOR4 (TP9)	0.260	6.9365 e-08	10.000	3.7168e + 05	
$system_14$	TAYLOR4 (TP10)	0.420	6.9965 e - 09	10.000	37470	
$system_{-}14$	TAYLOR4 (TP11)	0.640	7.1965e-10	10.000	3831	
$system_14$	TAYLOR4 (TP12)	1.000	9.1987e-11	10.000	487.39	
$system_14$	TAYLOR4 (TP13)	1.570	4.0941e-11	10.000	212.59	
$system_14$	TAYLOR4 (TP14)	2.460	5.42e-11	10.000	280.91	
system_14	RK4 (TP8)	0.140	8.8443e-07	10.000	4.8078e + 06	
$system_14$	RK4 (TP9)	0.210	9.0238e-08	10.000	4.8664e + 05	
$system_14$	RK4 (TP10)	0.330	9.1356e-09	10.000	49032	
$system_{-}14$	RK4 (TP11)	0.520	9.2979e-10	10.000	4954.2	
$system_14$	RK4 (TP12)	0.830	1.0077e-10	10.000	536.16	
$system_14$	RK4 (TP13)	1.250	2.2155e-11	10.000	116.14	
$system_14$	RK4 (TP14)	1.980	2.1288e-11	10.000	110.34	
system_14	LA3 (TP8)	0.110	6.5762e-07	10.000	3.6344e + 06	
system_14	LA3 (TP9)	0.160	6.8229 e - 08	10.000	3.6887e + 05	
system_14	LA3 (TP10)	0.250	6.9439e-09	10.000	37284	
system_14	LA3 (TP11)	0.390	7.0554e-10	10.000	3768.7	
$system_14$	LA3 (TP12)	0.630	7.6625e-11	10.000	407.83	
$system_14$	LA3 (TP13)	0.960	1.6641e-11	10.000	87.117	
system_14	LA3 (TP14)	1.500	1.5774e-11	10.000	81.805	
system_14	LC3 (TP8)	0.120	6.6269e-07	10.000	3.6549e + 06	
system_14	LC3 (TP9)	0.180	6.8267 e - 08	10.000	3.7023e + 05	
$system_{-}14$	LC3 (TP10)	0.280	7.0143e-09	10.000	37343	
$system_14$	LC3 (TP11)	0.440	7.0725e-10	10.000	3774.1	
$system_14$	LC3 (TP12)	0.700	7.7222e-11	10.000	410.63	
$system_14$	LC3 (TP13)	1.150	1.7465e-11	10.000	91.328	
$system_{-}14$	LC3 (TP14)	1.660	1.7025e-11	10.000	88.352	
system_14	Riot (03, 1e-11)	0m2.181s	1.0466e-05	-0.000	1.0466e-05	
$system_14$	Riot (04, 1e-11)	0 m1.239 s	2.1448e-08	-0.000	2.1448e-08	
$system_{-}14$	Riot (05, 1e-11)	0 m 0.348 s	7.1298e-09	8.208	2.2565e + 261	
$system_14$	Riot (06, 1e-11)	0 m 0.194 s	2.2129e-09	-0.000	2.2129e-09	
$system_14$	Riot (10, 1e-11)	0 m 0.126 s	4.0075e-12	1.000	4.0075e-12	
$system_14$	Riot (15, 1e-11)	0 m 0.175 s	1.2037e-11	10.000	1.5302e + 136	
system_14	Valencia-IVP (0.00025)	0m1.778s	0.090273	3.670	999.58	
$system_14$	Valencia-IVP (0.0025)	0 m 0.165 s	0.90282	2.973	998.44	
$system_{-}14$	Valencia-IVP (0.025)	0 m 0.021 s	9.1235	2.275	967.86	
system_14	VNODE-LP (15, 1e-14,1e-14)	0 m 0.008 s	1.9185e-13	10.000	1.0508	
system_14	VNODE-LP (20, 1e-14,1e-14)	0 m 0.006 s	2.2737e-13	10.000	1.25	
$system_{-}14$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.005 s	9.2371e-14	10.000	0.48828	
		1				

Table 3.11: Simulation results of Problem 15							
Problems	Methods	c5t	c5w	c6t	c6w		
system_15	TAYLOR4 (TP8)	0.110	0.9093	10.000	0.91298		
$system_{-}15$	TAYLOR4 (TP9)	0.160	0.9093	10.000	0.91296		
$system_{-}15$	TAYLOR4 (TP10)	0.250	0.9093	10.000	0.91296		
$system_{-}15$	TAYLOR4 (TP11)	0.410	0.9093	10.000	0.91295		
$system_15$	TAYLOR4 (TP12)	0.650	0.9093	10.000	0.91297		
$system_{-}15$	TAYLOR4 (TP13)	1.030	0.9093	10.000	0.91297		
$_{\rm system_15}$	TAYLOR4 (TP14)	1.590	0.9093	10.000	0.91296		
system_15	RK4 (TP8)	0.070	0.9093	10.000	0.91299		
$system_{-}15$	RK4 (TP9)	0.110	0.9093	10.000	0.91296		
$system_{-}15$	RK4 (TP10)	0.180	0.9093	10.000	0.91295		
$system_{-}15$	RK4 (TP11)	0.280	0.9093	10.000	0.91296		
$system_15$	RK4 (TP12)	0.450	0.9093	10.000	0.91295		
$system_{-}15$	RK4 (TP13)	0.710	0.9093	10.000	0.91296		
$system_15$	RK4 (TP14)	1.090	0.9093	10.000	0.91295		
system_15	LA3 (TP8)	0.060	1.004	10.000	41.485		
$system_{-}15$	LA3 (TP9)	0.090	0.96902	10.000	25.255		
$system_15$	LA3 (TP10)	0.140	0.94981	10.000	9.715		
$system_15$	LA3 (TP11)	0.220	0.93481	10.000	6.4485		
$system_{-}15$	LA3 (TP12)	0.350	0.926	10.000	3.4445		
$system_{-}15$	LA3 (TP13)	0.550	0.92025	10.000	1.6699		
$system_15$	LA3 (TP14)	0.870	0.91549	10.000	2.3746		
system_15	LC3 (TP8)	0.060	1.0058	10.000	63.011		
$system_15$	LC3 (TP9)	0.100	0.97512	10.000	22.843		
$system_15$	LC3 (TP10)	0.160	0.95246	10.000	16.319		
$system_15$	LC3 (TP11)	0.240	0.93554	10.000	8.0286		
$system_{-}15$	LC3 (TP12)	0.460	0.92607	10.000	4.1775		
$system_{-}15$	LC3 (TP13)	0.620	0.92054	10.000	1.9364		
$system_15$	LC3 (TP14)	0.970	0.91552	10.000	1.4643		
system_15	Riot (05, 1e-11)	0 m 0.360 s	0.92101	10.000	0.91295		
$system_{-}15$	Riot (10, 1e-11)	0 m 0.155 s	0.93965	10.000	0.91295		
system_15	Riot (15, 1e-11)	0 m 0.202 s	0.93965	10.000	0.91295		
system_15	Valencia-IVP (0.00025)	0 m 0.976 s	3.6323	3.799	999.63		
$system_15$	Valencia-IVP (0.0025)	0 m 0.088 s	3.6817	3.785	999.37		
system_15	Valencia-IVP (0.025)	0 m 0.014 s	4.2116	3.650	997.82		
system_15	VNODE-LP (15, 1e-14,1e-14)	0 m0.004 s	0.9093	10.000	8.3669		
$system_15$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.006 s	0.9093	10.000	8.3669		
$system_{-}15$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.003 s	0.9093	10.000	8.3669		

Table 3.12: Simulation results of Problem 16						
Problems	Methods	c5t	c5w	c6t	c6w	
system_16	TAYLOR4 (TP8)	0.190	5.0338	10.000	2.6716e+12	
$system_{-}16$	TAYLOR4 (TP9)	0.290	5.0338	10.000	2.6716e + 12	
$system_{-}16$	TAYLOR4 (TP10)	0.430	5.0338	10.000	2.6716e + 12	
$system_16$	TAYLOR4 (TP11)	0.660	5.0338	10.000	2.6716e + 12	
$system_{-}16$	TAYLOR4 (TP12)	1.040	5.0338	10.000	2.6716e + 12	
$system_{-}16$	TAYLOR4 (TP13)	1.620	5.0338	10.000	2.6716e + 12	
$system_{-}16$	TAYLOR4 (TP14)	2.530	5.0338	10.000	2.6716e + 12	
system_16	RK4 (TP8)	0.140	5.0338	10.000	2.6716e + 12	
$system_{-}16$	RK4 (TP9)	0.210	5.0338	10.000	2.6716e + 12	
$system_{-}16$	RK4 (TP10)	0.330	5.0338	10.000	2.6716e + 12	
$system_{-}16$	RK4 (TP11)	0.530	5.0338	10.000	2.6716e + 12	
$system_16$	RK4 (TP12)	0.840	5.0338	10.000	2.6716e + 12	
$system_{-}16$	RK4 (TP13)	1.270	5.0338	10.000	2.6716e + 12	
$system_{-}16$	RK4 (TP14)	1.960	5.0338	10.000	$2.6716e{+12}$	
system_16	LA3 (TP8)	0.110	5.0368	10.000	2.6879e + 12	
$system_16$	LA3 (TP9)	0.170	5.035	10.000	2.678e + 12	
system_16	LA3 (TP10)	0.250	5.0343	10.000	2.6742e + 12	
$system_16$	LA3 (TP11)	0.410	5.034	10.000	2.6726e + 12	
$system_{-}16$	LA3 (TP12)	0.670	5.0339	10.000	2.672e + 12	
system_16	LA3 (TP13)	1.030	5.0339	10.000	2.6718e + 12	
$system_16$	LA3 (TP14)	1.570	5.0338	10.000	2.6717e + 12	
system_16	LC3 (TP8)	0.120	5.0391	10.000	2.7006e+12	
system_16	LC3 (TP9)	0.190	5.0359	10.000	2.6828e + 12	
system_16	LC3 (TP10)	0.280	5.0347	10.000	2.676e + 12	
system_16	LC3 (TP11)	0.450	5.0342	10.000	2.6734e + 12	
system_16	LC3 (TP12)	0.720	5.034	10.000	2.6723e + 12	
system_16	LC3 (TP13)	1.140	5.0339	10.000	2.6719e + 12	
$system_16$	LC3 (TP14)	1.740	5.0339	10.000	2.6717e + 12	
system_16	Riot (05, 1e-11)	0 m 0.607 s	5.0338	-0.000	3.4e+150	
system_16	Riot (10, 1e-11)	0 m 0.160 s	5.0338	-0.000	3.3409e + 248	
$system_16$	Riot (15, 1e-11)	0 m 0.204 s	5.0338	-0.000	1.3096e + 136	
system_16	Valencia-IVP (0.00025)	0m1.641s	5.1241	2.748	999.74	
system_16	Valencia-IVP (0.0025)	0 m 0.155 s	5.9373	2.635	999.64	
$system_16$	Valencia-IVP (0.025)	0 m 0.022 s	14.218	2.200	938.36	
system_16	VNODE-LP (15, 1e-14,1e-14)	0 m 0.004 s	5.0338	10.000	2.6716e+12	
system_16	VNODE-LP (20, 1e-14,1e-14)	0 m 0.004 s	5.0338	10.000	2.6716e + 12	
system_16	VNODE-LP (25, 1e-14,1e-14)	0 m 0.005 s	5.0338	10.000	$2.6716e{+12}$	

Problems	Table 3.13: Simulation results of Problem 17 Methods c5t c5w c6t c6w					
system_17	TAYLOR4 (TP8)	0.020	2.5429e-08	10.000	2.3333e-08	
$system_17$	TAYLOR4 (TP9)	0.030	2.695e-09	10.000	2.4776e-09	
system_17	TAYLOR4 (TP10)	0.050	2.7876e-10	10.000	2.6014e-10	
$system_17$	TAYLOR4 (TP11)	0.080	2.859e-11	10.000	2.673e-11	
$system_17$	TAYLOR4 (TP12)	0.130	3.0154e-12	10.000	2.7828e-12	
system_17	TAYLOR4 (TP13)	0.200	4.6429e-13	10.000	3.6043e-13	
$system_{-}17$	TAYLOR4 (TP14)	0.000	0	0.000	0	
system_17	RK4 (TP8)	0.010	5.9725e-08	10.000	5.6092e-08	
system_17	RK4 (TP9)	0.010	6.7171e-09	10.000	6.2806e-09	
$system_17$	RK4 (TP10)	0.010	6.4465 e10	10.000	6.282 e-10	
$system_17$	RK4 (TP11)	0.020	5.8932e-11	10.000	5.8241e-11	
$system_17$	RK4 (TP12)	0.040	5.3604e-12	10.000	5.1803e-12	
$system_{-}17$	RK4 (TP13)	0.060	5.1581e-13	10.000	4.8617e-13	
$system_17$	RK4 (TP14)	0.090	8.5709 e-14	10.000	6.3449e-14	
system_17	LA3 (TP8)	0.010	2.395e-08	10.000	2.1498e-08	
$system_17$	LA3 (TP9)	0.010	2.5485e-09	10.000	2.4479e-09	
$system_17$	LA3 (TP10)	0.020	2.7709e-10	10.000	2.569e-10	
$system_17$	LA3 (TP11)	0.030	$2.8204e ext{-}11$	10.000	2.6542e-11	
$system_{-}17$	LA3 (TP12)	0.050	2.9106e-12	10.000	2.7096e-12	
$system_{-}17$	LA3 (TP13)	0.080	3.2618e-13	10.000	2.916e-13	
$system_17$	LA3 (TP14)	0.130	8.2823e-14	10.000	5.429e-14	
system_17	LC3 (TP8)	0.010	3.2526e-08	10.000	3.1401e-08	
$system_17$	LC3 (TP9)	0.010	3.4509 e - 09	10.000	3.3385e-09	
$system_17$	LC3 (TP10)	0.020	3.6045e-10	10.000	3.4087e-10	
$system_17$	LC3 (TP11)	0.030	3.4278e-11	10.000	3.2206 e-11	
$system_{-}17$	LC3 (TP12)	0.040	3.2934e-12	10.000	3.1542e-12	
$system_17$	LC3 (TP13)	0.070	3.4661e-13	10.000	3.1558e-13	
$system_17$	LC3 (TP14)	0.110	7.2831e-14	10.000	5.0293e-14	
system_17	Riot (05, 1e-11)	0 m 0.209 s	4.0267e-11	-0.000	4.3024e-11	
$system_17$	Riot (10, 1e-11)	0 m 0.153 s	3.8114e-13	-0.000	4.3851e-12	
$system_17$	Riot (15, 1e-11)	0 m 0.249 s	1.7208e-14	-0.000	2.2093e-14	
system_17	Valencia-IVP (0.00025)	0 m 1.248 s	0.00062591	10.000	0.012037	
$system_17$	Valencia-IVP (0.0025)	0 m 0.108 s	0.0062999	10.000	0.12039	
system_17	Valencia-IVP (0.025)	0 m 0.015 s	0.06731	9.275	1.1674	
system_17	VNODE-LP (15, 1e-14,1e-14)	0 m 0.007 s	2.1094e-15	10.000	1.0825e-15	
$system_17$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.009 s	1.1102e-15	10.000	9.1593e-16	
system_17	VNODE-LP (25, 1e-14,1e-14)	0 m 0.010 s	1.2212e-15	10.000	5.8287e-16	

	Table 3.14: Simulation results of Problem 18						
Problems	Methods	c5t	c5w	c6t	c6w		
system_18	TAYLOR4 (TP8)	0.080	2.3166	1.247	80.315		
system_18	TAYLOR4 (TP9)	0.120	2.2033	1.271	63.866		
system_18	TAYLOR4 (TP10)	0.190	2.136	1.286	50.824		
system_18	TAYLOR4 (TP11)	0.280	2.0957	1.296	40.262		
system_18	TAYLOR4 (TP12)	0.440	2.0711	1.302	31.806		
system_18	TAYLOR4 (TP13)	0.700	2.0558	1.305	25.183		
system_18	TAYLOR4 (TP14)	0.000	1	0.000	1		
system_18	RK4 (TP8)	0.040	2.032	1.315	92.9		
system_18	RK4 (TP9)	0.060	2.031	1.315	73.775		
system_18	RK4 (TP10)	0.090	2.0305	1.315	58.317		
system_18	RK4 (TP11)	0.140	2.0303	1.315	46.315		
system_18	RK4 (TP12)	0.210	2.0303	1.314	36.66		
system_18	RK4 (TP13)	0.330	2.0302	1.313	29.062		
system_18	RK4 (TP14)	0.520	2.0302	1.312	22.972		
system_18	LA3 (TP8)	0.040	2.634	1.188	103.56		
system_18	LA3 (TP9)	0.050	2.3653	1.232	82.448		
system_18	LA3 (TP10)	0.080	2.2265	1.262	64.848		
system_18	LA3 (TP11)	0.130	2.1482	1.281	51.565		
system_18	LA3 (TP12)	0.180	2.1026	1.293	40.939		
system_18	LA3 (TP13)	0.280	2.0752	1.300	32.465		
system_18	LA3 (TP14)	0.450	2.0583	1.304	25.656		
system_18	LC3 (TP8)	0.040	3.3388	1.118	99.411		
system_18	LC3 (TP9)	0.060	2.6504	1.185	79.498		
system_18	LC3 (TP10)	0.090	2.3694	1.230	63.574		
system_18	LC3 (TP11)	0.140	2.227	1.261	50.594		
system_18	LC3 (TP12)	0.200	2.1486	1.280	39.994		
system_18	LC3 (TP13)	0.310	2.1029	1.292	31.772		
system_18	LC3 (TP14)	0.490	2.0753	1.299	25.11		
system_18	Riot (05, 1e-11)	0 m 3.154 s	0.89498	-0.000	5.6525		
system_18	Riot (10, 1e-11)	0 m 12.527 s	0.7695	-0.000	13.258		
$system_18$	Riot (15, 1e-11)	0 m 46.473 s	0.76476	-0.000	12.845		
system_18	Valencia-IVP (0.00025)	0 m 3.609 s	2.5351	1.309	62.299		
$system_18$	Valencia-IVP (0.0025)	0 m 0.385 s	2.4744	0.983	2.4744		
$system_18$	Valencia-IVP (0.025)	0 m 0.046 s	2.1873	0.875	2.1873		
system_18	VNODE-LP (15, 1e-14,1e-14)	0 m 0.008 s	1.952	1.352	106.72		
system_18	VNODE-LP (20, 1e-14,1e-14)	0 m 0.013 s	4.4163	1.079	154.57		
$system_{-}18$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.032 s	189.75	0.944	189.75		

system19 TAYLOR4 (TP8) 0.060 0.66694 10.000 0.18508 system.19 TAYLOR4 (TP9) 0.090 0.65131 10.000 0.15696 system.19 TAYLOR4 (TP10) 0.130 0.64145 10.000 0.14286 system.19 TAYLOR4 (TP11) 0.210 0.63542 10.000 0.13516 system.19 TAYLOR4 (TP12) 0.330 0.63167 10.000 0.13071 system.19 TAYLOR4 (TP14) 0.000 1 0.000 0.12803 system.19 TAYLOR4 (TP14) 0.000 1 0.000 0.12373 system.19 RK4 (TP8) 0.030 0.62552 10.000 0.12377 system.19 RK4 (TP10) 0.070 0.62534 10.000 0.12377 system.19 RK4 (TP11) 0.100 0.62534 10.000 0.12372 system.19 RK4 (TP13) 0.240 0.62533 10.000 0.12369 system.19 RK4 (TP13) 0.240 0.62533 10.000 0.1		Table 3.15: Simulation re	sults of Prol	blem 19		
system.19 TAYLOR4 (TP9) 0.090 0.65131 10.000 0.15696 system.19 TAYLOR4 (TP10) 0.130 0.64145 10.000 0.14286 system.19 TAYLOR4 (TP11) 0.210 0.63542 10.000 0.13516 system.19 TAYLOR4 (TP12) 0.330 0.63167 10.000 0.13071 system.19 TAYLOR4 (TP13) 0.520 0.62932 10.000 0.12803 system.19 TAYLOR4 (TP14) 0.000 1 0.000 1 system.19 RK4 (TP8) 0.030 0.62552 10.000 0.12377 system.19 RK4 (TP10) 0.070 0.62536 10.000 0.12377 system.19 RK4 (TP11) 0.100 0.62531 10.000 0.12377 system.19 RK4 (TP12) 0.150 0.62533 10.000 0.12369 system.19 RK4 (TP13) 0.240 0.62533 10.000 0.12369 system.19 LA3 (TP8) 0.030 0.67072 10.000 0.12369	Problems				c6t	c6w
system.19 TAYLOR4 (TP10) 0.130 0.64145 10.000 0.14286 system.19 TAYLOR4 (TP11) 0.210 0.63342 10.000 0.13516 system.19 TAYLOR4 (TP12) 0.330 0.63167 10.000 0.13071 system.19 TAYLOR4 (TP13) 0.520 0.62932 10.000 0.12803 system.19 TAYLOR4 (TP14) 0.000 1 0.000 1 system.19 RK4 (TP8) 0.030 0.62552 10.000 0.12377 system.19 RK4 (TP10) 0.070 0.62536 10.000 0.12377 system.19 RK4 (TP11) 0.100 0.62534 10.000 0.12377 system.19 RK4 (TP12) 0.150 0.62533 10.000 0.12369 system.19 RK4 (TP13) 0.240 0.62533 10.000 0.12369 system.19 RK4 (TP14) 0.380 0.62533 10.000 0.12369 system.19 LA3 (TP8) 0.030 0.67072 10.000 0.12369 <td>system_19</td> <td></td> <td>0.060</td> <td>0.66694</td> <td>10.000</td> <td>0.18508</td>	system_19		0.060	0.66694	10.000	0.18508
system.19 TAYLOR4 (TP11) 0.210 0.63542 10.000 0.13516 system.19 TAYLOR4 (TP12) 0.330 0.63167 10.000 0.13071 system.19 TAYLOR4 (TP13) 0.520 0.62932 10.000 0.12803 system.19 TAYLOR4 (TP14) 0.000 1 0.000 1 system.19 RK4 (TP8) 0.030 0.62552 10.000 0.12378 system.19 RK4 (TP90) 0.040 0.62541 10.000 0.12372 system.19 RK4 (TP11) 0.100 0.62536 10.000 0.12372 system.19 RK4 (TP12) 0.150 0.62533 10.000 0.12369 system.19 RK4 (TP13) 0.240 0.62533 10.000 0.12369 system.19 RK4 (TP14) 0.380 0.62533 10.000 0.12369 system.19 LA3 (TP8) 0.030 0.67072 10.000 0.122369 system.19 LA3 (TP10) 0.060 0.64288 10.000 0.15985	$system_{-}19$	TAYLOR4 (TP9)	0.090	0.65131	10.000	0.15696
system.19 TAYLOR4 (TP12) 0.330 0.63167 10.000 0.13071 system.19 TAYLOR4 (TP13) 0.520 0.62932 10.000 0.12803 system.19 RK4 (TP14) 0.000 1 0.000 1 system.19 RK4 (TP8) 0.030 0.62552 10.000 0.12377 system.19 RK4 (TP10) 0.070 0.62536 10.000 0.12377 system.19 RK4 (TP11) 0.100 0.62533 10.000 0.12372 system.19 RK4 (TP12) 0.150 0.62533 10.000 0.12369 system.19 RK4 (TP13) 0.240 0.62533 10.000 0.12369 system.19 RK4 (TP14) 0.380 0.62533 10.000 0.12369 system.19 LA3 (TP8) 0.030 0.67072 10.000 0.12369 system.19 LA3 (TP10) 0.040 0.65354 10.000 0.13269 system.19 LA3 (TP10) 0.060 0.64288 10.000 0.13591	$system_19$	TAYLOR4 (TP10)	0.130	0.64145	10.000	0.14286
system.19 TAYLOR4 (TP14) 0.520 0.62932 10.000 0.12803 system.19 TAYLOR4 (TP14) 0.000 1 0.000 1 system.19 RK4 (TP8) 0.030 0.62552 10.000 0.12388 system.19 RK4 (TP9) 0.040 0.62541 10.000 0.12377 system.19 RK4 (TP10) 0.070 0.62536 10.000 0.12377 system.19 RK4 (TP11) 0.100 0.62534 10.000 0.12379 system.19 RK4 (TP12) 0.150 0.62533 10.000 0.12369 system.19 RK4 (TP13) 0.240 0.62533 10.000 0.12369 system.19 RK4 (TP14) 0.380 0.62533 10.000 0.12369 system.19 LA3 (TP8) 0.030 0.67072 10.000 0.12369 system.19 LA3 (TP10) 0.060 0.64288 10.000 0.15985 system.19 LA3 (TP11) 0.090 0.63625 10.000 0.13591	$system_19$	TAYLOR4 (TP11)	0.210	0.63542	10.000	0.13516
system.19 TAYLORA (TP14) 0.000 1 0.000 1 system.19 RK4 (TP8) 0.030 0.62552 10.000 0.12388 system.19 RK4 (TP9) 0.040 0.62541 10.000 0.12377 system.19 RK4 (TP10) 0.070 0.62536 10.000 0.12372 system.19 RK4 (TP11) 0.100 0.62534 10.000 0.12379 system.19 RK4 (TP12) 0.150 0.62533 10.000 0.12369 system.19 RK4 (TP13) 0.240 0.62533 10.000 0.12369 system.19 RK4 (TP14) 0.380 0.62533 10.000 0.12369 system.19 LA3 (TP8) 0.030 0.67072 10.000 0.12269 system.19 LA3 (TP9) 0.040 0.65354 10.000 0.19253 system.19 LA3 (TP10) 0.060 0.64288 10.000 0.14432 system.19 LA3 (TP13) 0.210 0.63625 10.000 0.13112 <	$system_19$	TAYLOR4 (TP12)	0.330	0.63167	10.000	0.13071
system.19 RK4 (TP8) 0.030 0.62552 10.000 0.12388 system.19 RK4 (TP9) 0.040 0.62541 10.000 0.12377 system.19 RK4 (TP10) 0.070 0.62536 10.000 0.12372 system.19 RK4 (TP11) 0.100 0.62534 10.000 0.12373 system.19 RK4 (TP12) 0.150 0.62533 10.000 0.12369 system.19 RK4 (TP13) 0.240 0.62533 10.000 0.12369 system.19 RK4 (TP14) 0.380 0.62533 10.000 0.12369 system.19 LA3 (TP8) 0.030 0.67072 10.000 0.12369 system.19 LA3 (TP9) 0.040 0.65354 10.000 0.19253 system.19 LA3 (TP10) 0.060 0.64288 10.000 0.14432 system.19 LA3 (TP11) 0.090 0.63625 10.000 0.13591 system.19 LA3 (TP13) 0.210 0.62963 10.000 0.13227 </td <td>$system_{-}19$</td> <td>TAYLOR4 (TP13)</td> <td>0.520</td> <td>0.62932</td> <td>10.000</td> <td>0.12803</td>	$system_{-}19$	TAYLOR4 (TP13)	0.520	0.62932	10.000	0.12803
system_19 RK4 (TP9) 0.040 0.62541 10.000 0.12377 system_19 RK4 (TP10) 0.070 0.62536 10.000 0.12372 system_19 RK4 (TP11) 0.100 0.62534 10.000 0.1237 system_19 RK4 (TP12) 0.150 0.62533 10.000 0.12369 system_19 RK4 (TP13) 0.240 0.62533 10.000 0.12369 system_19 RK4 (TP14) 0.380 0.62533 10.000 0.12369 system_19 LA3 (TP8) 0.030 0.67072 10.000 0.12369 system_19 LA3 (TP9) 0.040 0.65354 10.000 0.15985 system_19 LA3 (TP10) 0.060 0.64288 10.000 0.14432 system_19 LA3 (TP11) 0.090 0.63625 10.000 0.13591 system_19 LA3 (TP12) 0.130 0.63216 10.000 0.12827 system_19 LC3 (TP13) 0.210 0.62963 10.000 0.12827 </td <td>system_19</td> <td>TAYLOR4 (TP14)</td> <td>0.000</td> <td>1</td> <td>0.000</td> <td>1</td>	system_19	TAYLOR4 (TP14)	0.000	1	0.000	1
system_19 RK4 (TP10) 0.070 0.62536 10.000 0.12372 system_19 RK4 (TP11) 0.100 0.62534 10.000 0.1237 system_19 RK4 (TP12) 0.150 0.62533 10.000 0.12369 system_19 RK4 (TP13) 0.240 0.62533 10.000 0.12369 system_19 RK4 (TP14) 0.380 0.62533 10.000 0.12369 system_19 LA3 (TP8) 0.030 0.67072 10.000 0.12369 system_19 LA3 (TP9) 0.040 0.65354 10.000 0.15985 system_19 LA3 (TP10) 0.060 0.64288 10.000 0.13985 system_19 LA3 (TP11) 0.090 0.63625 10.000 0.13591 system_19 LA3 (TP12) 0.130 0.63216 10.000 0.13112 system_19 LA3 (TP13) 0.210 0.62963 10.000 0.12827 system_19 LC3 (TP8) 0.030 0.62987 10.000 0.12654 </td <td>system_19</td> <td>RK4 (TP8)</td> <td>0.030</td> <td>0.62552</td> <td>10.000</td> <td>0.12388</td>	system_19	RK4 (TP8)	0.030	0.62552	10.000	0.12388
system_19 RK4 (TP11) 0.100 0.62534 10.000 0.1237 system_19 RK4 (TP12) 0.150 0.62533 10.000 0.12369 system_19 RK4 (TP13) 0.240 0.62533 10.000 0.12369 system_19 RK4 (TP14) 0.380 0.62533 10.000 0.12369 system_19 LA3 (TP8) 0.030 0.67072 10.000 0.12369 system_19 LA3 (TP9) 0.040 0.65354 10.000 0.15985 system_19 LA3 (TP10) 0.060 0.64288 10.000 0.13985 system_19 LA3 (TP11) 0.090 0.63625 10.000 0.13591 system_19 LA3 (TP12) 0.130 0.63216 10.000 0.13112 system_19 LA3 (TP13) 0.210 0.62963 10.000 0.12827 system_19 LC3 (TP8) 0.030 0.62803 10.000 0.12654 system_19 LC3 (TP10) 0.040 0.66627 10.000 0.1498 <td>$system_19$</td> <td>RK4 (TP9)</td> <td>0.040</td> <td>0.62541</td> <td>10.000</td> <td>0.12377</td>	$system_19$	RK4 (TP9)	0.040	0.62541	10.000	0.12377
system_19 RK4 (TP12) 0.150 0.62533 10.000 0.12369 system_19 RK4 (TP13) 0.240 0.62533 10.000 0.12369 system_19 RK4 (TP14) 0.380 0.62533 10.000 0.12369 system_19 LA3 (TP8) 0.030 0.67072 10.000 0.19253 system_19 LA3 (TP9) 0.040 0.65354 10.000 0.15985 system_19 LA3 (TP10) 0.060 0.64288 10.000 0.14432 system_19 LA3 (TP11) 0.090 0.63625 10.000 0.13591 system_19 LA3 (TP12) 0.130 0.63216 10.000 0.13112 system_19 LA3 (TP13) 0.210 0.62963 10.000 0.12827 system_19 LC3 (TP13) 0.210 0.62963 10.000 0.12654 system_19 LC3 (TP8) 0.030 0.69287 10.000 0.25335 system_19 LC3 (TP10) 0.060 0.65057 10.000 0.14186 <	$system_19$	RK4 (TP10)	0.070	0.62536	10.000	0.12372
system.19 RK4 (TP13) 0.240 0.62533 10.000 0.12369 system.19 RK4 (TP14) 0.380 0.62533 10.000 0.12369 system.19 LA3 (TP8) 0.030 0.67072 10.000 0.19253 system.19 LA3 (TP9) 0.040 0.65354 10.000 0.15985 system.19 LA3 (TP10) 0.060 0.64288 10.000 0.14432 system.19 LA3 (TP11) 0.090 0.63625 10.000 0.13591 system.19 LA3 (TP12) 0.130 0.63216 10.000 0.13112 system.19 LA3 (TP13) 0.210 0.62963 10.000 0.12827 system.19 LC3 (TP13) 0.310 0.62963 10.000 0.12827 system.19 LC3 (TP8) 0.030 0.69287 10.000 0.12654 system.19 LC3 (TP9) 0.040 0.66627 10.000 0.18198 system.19 LC3 (TP10) 0.060 0.65057 10.000 0.14156 </td <td>$system_19$</td> <td>RK4 (TP11)</td> <td>0.100</td> <td>0.62534</td> <td>10.000</td> <td>0.1237</td>	$system_19$	RK4 (TP11)	0.100	0.62534	10.000	0.1237
system_19 RK4 (TP14) 0.380 0.62533 10.000 0.12369 system_19 LA3 (TP8) 0.030 0.67072 10.000 0.19253 system_19 LA3 (TP9) 0.040 0.65354 10.000 0.15985 system_19 LA3 (TP10) 0.060 0.64288 10.000 0.14432 system_19 LA3 (TP11) 0.090 0.63625 10.000 0.13591 system_19 LA3 (TP12) 0.130 0.63216 10.000 0.13112 system_19 LA3 (TP13) 0.210 0.62963 10.000 0.12827 system_19 LA3 (TP14) 0.330 0.62803 10.000 0.12654 system_19 LC3 (TP8) 0.030 0.69287 10.000 0.12654 system_19 LC3 (TP9) 0.040 0.66627 10.000 0.18198 system_19 LC3 (TP11) 0.090 0.6409 10.000 0.14156 system_19 LC3 (TP13) 0.220 0.63142 10.000 0.13436 <td>$system_19$</td> <td>RK4 (TP12)</td> <td>0.150</td> <td>0.62533</td> <td>10.000</td> <td>0.12369</td>	$system_19$	RK4 (TP12)	0.150	0.62533	10.000	0.12369
system_19 LA3 (TP8) 0.030 0.67072 10.000 0.19253 system_19 LA3 (TP9) 0.040 0.65354 10.000 0.15985 system_19 LA3 (TP10) 0.060 0.64288 10.000 0.14432 system_19 LA3 (TP11) 0.090 0.63625 10.000 0.13591 system_19 LA3 (TP12) 0.130 0.63216 10.000 0.13112 system_19 LA3 (TP13) 0.210 0.62963 10.000 0.12827 system_19 LC3 (TP14) 0.330 0.62803 10.000 0.12654 system_19 LC3 (TP8) 0.030 0.69287 10.000 0.12654 system_19 LC3 (TP9) 0.040 0.6627 10.000 0.18198 system_19 LC3 (TP10) 0.060 0.65057 10.000 0.14156 system_19 LC3 (TP11) 0.090 0.6409 10.000 0.13436 system_19 LC3 (TP13) 0.220 0.63142 10.000 0.13021 <td>$system_{-}19$</td> <td>RK4 (TP13)</td> <td>0.240</td> <td>0.62533</td> <td>10.000</td> <td>0.12369</td>	$system_{-}19$	RK4 (TP13)	0.240	0.62533	10.000	0.12369
system_19 LA3 (TP9) 0.040 0.65354 10.000 0.15985 system_19 LA3 (TP10) 0.060 0.64288 10.000 0.14432 system_19 LA3 (TP11) 0.090 0.63625 10.000 0.13591 system_19 LA3 (TP12) 0.130 0.63216 10.000 0.13112 system_19 LA3 (TP13) 0.210 0.62963 10.000 0.12827 system_19 LA3 (TP14) 0.330 0.62803 10.000 0.12654 system_19 LC3 (TP8) 0.030 0.69287 10.000 0.12654 system_19 LC3 (TP9) 0.040 0.66627 10.000 0.18198 system_19 LC3 (TP10) 0.060 0.65057 10.000 0.15488 system_19 LC3 (TP11) 0.090 0.6409 10.000 0.14156 system_19 LC3 (TP13) 0.220 0.63142 10.000 0.13436 system_19 Riot (05, 1e-11) 0m3.192s 0.44827 -0.000 0.13094 <td>$system_19$</td> <td>RK4 (TP14)</td> <td>0.380</td> <td>0.62533</td> <td>10.000</td> <td>0.12369</td>	$system_19$	RK4 (TP14)	0.380	0.62533	10.000	0.12369
system_19 LA3 (TP10) 0.060 0.64288 10.000 0.14432 system_19 LA3 (TP11) 0.090 0.63625 10.000 0.13591 system_19 LA3 (TP12) 0.130 0.63216 10.000 0.13112 system_19 LA3 (TP13) 0.210 0.62963 10.000 0.12827 system_19 LA3 (TP14) 0.330 0.62803 10.000 0.12654 system_19 LC3 (TP8) 0.030 0.69287 10.000 0.25335 system_19 LC3 (TP9) 0.040 0.66627 10.000 0.18198 system_19 LC3 (TP10) 0.060 0.65057 10.000 0.15488 system_19 LC3 (TP11) 0.090 0.6409 10.000 0.14156 system_19 LC3 (TP13) 0.220 0.63142 10.000 0.13436 system_19 Riot (05, 1e-11) 0m3.192s 0.44827 -0.000 0.13094 system_19 Riot (05, 1e-11) 0m12.762s 0.44389 -0.000 <th< td=""><td>system_19</td><td>LA3 (TP8)</td><td>0.030</td><td>0.67072</td><td>10.000</td><td>0.19253</td></th<>	system_19	LA3 (TP8)	0.030	0.67072	10.000	0.19253
system_19 LA3 (TP11) 0.090 0.63625 10.000 0.13591 system_19 LA3 (TP12) 0.130 0.63216 10.000 0.13112 system_19 LA3 (TP13) 0.210 0.62963 10.000 0.12827 system_19 LA3 (TP14) 0.330 0.62803 10.000 0.12654 system_19 LC3 (TP8) 0.030 0.69287 10.000 0.25335 system_19 LC3 (TP9) 0.040 0.66627 10.000 0.18198 system_19 LC3 (TP10) 0.060 0.65057 10.000 0.15488 system_19 LC3 (TP11) 0.090 0.6409 10.000 0.14156 system_19 LC3 (TP12) 0.140 0.63504 10.000 0.13436 system_19 LC3 (TP13) 0.220 0.63142 10.000 0.13021 system_19 Riot (05, 1e-11) 0m3.192s 0.44827 -0.000 0.13094 system_19 Riot (10, 1e-11) 0m12.762s 0.44389 -0.000 <th< td=""><td>$system_19$</td><td>LA3 (TP9)</td><td>0.040</td><td>0.65354</td><td>10.000</td><td>0.15985</td></th<>	$system_19$	LA3 (TP9)	0.040	0.65354	10.000	0.15985
system_19 LA3 (TP12) 0.130 0.63216 10.000 0.13112 system_19 LA3 (TP13) 0.210 0.62963 10.000 0.12827 system_19 LA3 (TP14) 0.330 0.62803 10.000 0.12654 system_19 LC3 (TP8) 0.030 0.69287 10.000 0.25335 system_19 LC3 (TP9) 0.040 0.66627 10.000 0.18198 system_19 LC3 (TP10) 0.060 0.65057 10.000 0.15488 system_19 LC3 (TP11) 0.090 0.6409 10.000 0.14156 system_19 LC3 (TP12) 0.140 0.63504 10.000 0.13436 system_19 LC3 (TP13) 0.220 0.63142 10.000 0.13021 system_19 Riot (05, 1e-11) 0m3.192s 0.44827 -0.000 0.13094 system_19 Riot (10, 1e-11) 0m12.762s 0.44389 -0.000 0.057421 system_19 Valencia-IVP (0.00025) 0m2.772s 2.8979 1.191 <td>$system_19$</td> <td>LA3 (TP10)</td> <td>0.060</td> <td>0.64288</td> <td>10.000</td> <td>0.14432</td>	$system_19$	LA3 (TP10)	0.060	0.64288	10.000	0.14432
system_19 LA3 (TP13) 0.210 0.62963 10.000 0.12827 system_19 LA3 (TP14) 0.330 0.62803 10.000 0.12654 system_19 LC3 (TP8) 0.030 0.69287 10.000 0.25335 system_19 LC3 (TP9) 0.040 0.66627 10.000 0.18198 system_19 LC3 (TP10) 0.060 0.65057 10.000 0.15488 system_19 LC3 (TP11) 0.090 0.6409 10.000 0.14156 system_19 LC3 (TP12) 0.140 0.63504 10.000 0.13436 system_19 LC3 (TP13) 0.220 0.63142 10.000 0.13021 system_19 Riot (05, 1e-11) 0m3.192s 0.44827 -0.000 0.13094 system_19 Riot (10, 1e-11) 0m12.762s 0.44389 -0.000 0.057421 system_19 Valencia-IVP (0.00025) 0m2.772s 2.8979 1.191 3.7768	$system_19$	LA3 (TP11)	0.090	0.63625	10.000	0.13591
system_19 LA3 (TP14) 0.330 0.62803 10.000 0.12654 system_19 LC3 (TP8) 0.030 0.69287 10.000 0.25335 system_19 LC3 (TP9) 0.040 0.66627 10.000 0.18198 system_19 LC3 (TP10) 0.060 0.65057 10.000 0.15488 system_19 LC3 (TP11) 0.090 0.6409 10.000 0.14156 system_19 LC3 (TP12) 0.140 0.63504 10.000 0.13436 system_19 LC3 (TP13) 0.220 0.63142 10.000 0.13021 system_19 Riot (05, 1e-11) 0m3.192s 0.44827 -0.000 0.13094 system_19 Riot (10, 1e-11) 0m12.762s 0.44389 -0.000 0.057421 system_19 Valencia-IVP (0.00025) 0m2.772s 2.8979 1.191 3.7768	$system_{-}19$	LA3 (TP12)	0.130	0.63216	10.000	0.13112
system_19 LC3 (TP8) 0.030 0.69287 10.000 0.25335 system_19 LC3 (TP9) 0.040 0.66627 10.000 0.18198 system_19 LC3 (TP10) 0.060 0.65057 10.000 0.15488 system_19 LC3 (TP11) 0.090 0.6409 10.000 0.14156 system_19 LC3 (TP12) 0.140 0.63504 10.000 0.13436 system_19 LC3 (TP13) 0.220 0.63142 10.000 0.13021 system_19 Riot (05, 1e-11) 0m3.192s 0.44827 -0.000 0.13094 system_19 Riot (10, 1e-11) 0m12.762s 0.44389 -0.000 0.057421 system_19 Riot (15, 1e-11) 0m40.498s 0.44387 -0.000 0.055362 system_19 Valencia-IVP (0.00025) 0m2.772s 2.8979 1.191 3.7768	system_19	LA3 (TP13)	0.210	0.62963	10.000	0.12827
system_19 LC3 (TP9) 0.040 0.66627 10.000 0.18198 system_19 LC3 (TP10) 0.060 0.65057 10.000 0.15488 system_19 LC3 (TP11) 0.090 0.6409 10.000 0.14156 system_19 LC3 (TP12) 0.140 0.63504 10.000 0.13436 system_19 LC3 (TP13) 0.220 0.63142 10.000 0.13021 system_19 Riot (05, 1e-11) 0m3.192s 0.44827 -0.000 0.13094 system_19 Riot (10, 1e-11) 0m12.762s 0.44389 -0.000 0.057421 system_19 Riot (15, 1e-11) 0m40.498s 0.44387 -0.000 0.055362 system_19 Valencia-IVP (0.00025) 0m2.772s 2.8979 1.191 3.7768	$system_19$	LA3 (TP14)	0.330	0.62803	10.000	0.12654
system_19 LC3 (TP10) 0.060 0.65057 10.000 0.15488 system_19 LC3 (TP11) 0.090 0.6409 10.000 0.14156 system_19 LC3 (TP12) 0.140 0.63504 10.000 0.13436 system_19 LC3 (TP13) 0.220 0.63142 10.000 0.13021 system_19 Riot (05, 1e-11) 0m3.192s 0.44827 -0.000 0.13094 system_19 Riot (10, 1e-11) 0m12.762s 0.44389 -0.000 0.057421 system_19 Riot (15, 1e-11) 0m40.498s 0.44387 -0.000 0.055362 system_19 Valencia-IVP (0.00025) 0m2.772s 2.8979 1.191 3.7768	system_19	LC3 (TP8)	0.030	0.69287	10.000	0.25335
system_19 LC3 (TP10) 0.060 0.65057 10.000 0.15488 system_19 LC3 (TP11) 0.090 0.6409 10.000 0.14156 system_19 LC3 (TP12) 0.140 0.63504 10.000 0.13436 system_19 LC3 (TP13) 0.220 0.63142 10.000 0.13021 system_19 Riot (05, 1e-11) 0m3.192s 0.44827 -0.000 0.13094 system_19 Riot (10, 1e-11) 0m12.762s 0.44389 -0.000 0.057421 system_19 Riot (15, 1e-11) 0m40.498s 0.44387 -0.000 0.055362 system_19 Valencia-IVP (0.00025) 0m2.772s 2.8979 1.191 3.7768	system_19	LC3 (TP9)	0.040	0.66627	10.000	0.18198
system_19 LC3 (TP11) 0.090 0.6409 10.000 0.14156 system_19 LC3 (TP12) 0.140 0.63504 10.000 0.13436 system_19 LC3 (TP13) 0.220 0.63142 10.000 0.13021 system_19 LC3 (TP14) 0.350 0.62915 10.000 0.12771 system_19 Riot (05, 1e-11) 0m3.192s 0.44827 -0.000 0.13094 system_19 Riot (10, 1e-11) 0m12.762s 0.44389 -0.000 0.057421 system_19 Riot (15, 1e-11) 0m40.498s 0.44387 -0.000 0.055362 system_19 Valencia-IVP (0.00025) 0m2.772s 2.8979 1.191 3.7768	system_19		0.060	0.65057	10.000	0.15488
system_19 LC3 (TP13) 0.220 0.63142 10.000 0.13021 system_19 LC3 (TP14) 0.350 0.62915 10.000 0.12771 system_19 Riot (05, 1e-11) 0m3.192s 0.44827 -0.000 0.13094 system_19 Riot (10, 1e-11) 0m12.762s 0.44389 -0.000 0.057421 system_19 Valencia-IVP (0.00025) 0m2.772s 2.8979 1.191 3.7768	system_19	LC3 (TP11)	0.090	0.6409	10.000	0.14156
system_19 LC3 (TP14) 0.350 0.62915 10.000 0.12771 system_19 Riot (05, 1e-11) 0m3.192s 0.44827 -0.000 0.13094 system_19 Riot (10, 1e-11) 0m12.762s 0.44389 -0.000 0.057421 system_19 Riot (15, 1e-11) 0m40.498s 0.44387 -0.000 0.055362 system_19 Valencia-IVP (0.00025) 0m2.772s 2.8979 1.191 3.7768	system_19	LC3 (TP12)	0.140	0.63504	10.000	0.13436
system_19 Riot (05, 1e-11) 0m3.192s 0.44827 -0.000 0.13094 system_19 Riot (10, 1e-11) 0m12.762s 0.44389 -0.000 0.057421 system_19 Riot (15, 1e-11) 0m40.498s 0.44387 -0.000 0.055362 system_19 Valencia-IVP (0.00025) 0m2.772s 2.8979 1.191 3.7768	system_19	LC3 (TP13)	0.220	0.63142	10.000	0.13021
system_19 Riot (10, 1e-11) 0m12.762s 0.44389 -0.000 0.057421 system_19 Riot (15, 1e-11) 0m40.498s 0.44387 -0.000 0.055362 system_19 Valencia-IVP (0.00025) 0m2.772s 2.8979 1.191 3.7768	$system_19$	LC3 (TP14)	0.350	0.62915	10.000	0.12771
system_19 Riot (15, 1e-11) 0m40.498s 0.44387 -0.000 0.055362 system_19 Valencia-IVP (0.00025) 0m2.772s 2.8979 1.191 3.7768	system_19		0m3.192s	0.44827	-0.000	0.13094
system_19	$system_19$		0 m 12.762 s	0.44389	-0.000	0.057421
	system_19	Riot (15, 1e-11)	0 m 40.498 s	0.44387	-0.000	0.055362
10 11 1110 (0.000)	system_19	Valencia-IVP (0.00025)	0 m 2.772 s	2.8979	1.191	3.7768
system_19 Valencia-IVP (0.0025) $0m0.287s$ 2.9052 1.175 3.694	$system_19$	Valencia-IVP (0.0025)	0 m 0.287 s	2.9052	1.175	3.694
system_19 Valencia-IVP (0.025) 0m0.041s 2.9872 1.300 5.8585	system_19	Valencia-IVP (0.025)	0 m 0.041 s	2.9872	1.300	5.8585
system_19 VNODE-LP (15, 1e-14,1e-14) 0m0.008s 0.88761 6.361 151.77	system_19	VNODE-LP (15, 1e-14,1e-14)	0 m 0.008 s	0.88761	6.361	151.77
system_19 VNODE-LP (20, 1e-14,1e-14) 0m0.010s			0 m 0.010 s	0.98714		218.19
system_19 VNODE-LP (25, 1e-14,1e-14) 0m0.008s	$system_{-}19$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.008 s	1.1388	2.597	270.43

Problems	Table 3.16: Simulation re	sults of Pro	oblem 20 c5w	c6t	c6w
system_20	TAYLOR4 (TP8)	0.040	0.0052454	10.000	5.7321e-09
system_20	TAYLOR4 (TP9)	0.060	0.0052389	10.000	5.9775e-10
system_20	TAYLOR4 (TP10)	0.100	0.005235	10.000	1.3097e-10
system_20	TAYLOR4 (TP11)	0.160	0.0052325	10.000	7.6695e-11
system_20	TAYLOR4 (TP12)	0.000	0.2	0.000	0.2
system_20	TAYLOR4 (TP13)	0.000	0.2	0.000	0.2
system_20	TAYLOR4 (TP14)	0.000	0.2	0.000	0.2
system_20	RK4 (TP8)	0.010	0.0052285	10.000	9.8518e-09
system_20	RK4 (TP9)	0.020	0.0052284	10.000	1.2709e-09
system_20	RK4 (TP10)	0.040	0.0052284	10.000	1.5888e-10
system_20	RK4 (TP11)	0.060	0.0052284	10.000	8.1081e-11
system_20	RK4 (TP12)	0.100	0.0052284	10.000	6.8557e-11
system_20	RK4 (TP13)	0.000	0.2	0.000	0.2
system_20	RK4 (TP14)	0.000	0.2	0.000	0.2
system_20	LA3 (TP8)	0.010	0.0052955	10.000	2.5286e-07
system_20	LA3 (TP9)	0.030	0.0052591	10.000	8.833e-09
$system_20$	LA3 (TP10)	0.040	0.0052431	10.000	8.3868e-10
$system_20$	LA3 (TP11)	0.060	0.0052358	10.000	1.9991e-10
$system_{-}20$	LA3 (TP12)	0.100	0.0052323	10.000	1.02e-10
$system_20$	LA3 (TP13)	0.000	0.2	0.000	0.2
$system_20$	LA3 (TP14)	0.000	0.2	0.000	0.2
system_20	LC3 (TP8)	0.010	0.0053599	10.000	9.8946e-07
$system_20$	LC3 (TP9)	0.020	0.0052888	10.000	5.6014 e-08
$system_20$	LC3 (TP10)	0.030	0.005257	10.000	4.6691e-09
$system_20$	LC3 (TP11)	0.050	0.0052427	10.000	2.7076e-10
$system_{-}20$	LC3 (TP12)	0.090	0.0052359	10.000	1.1279e-10
$system_20$	LC3 (TP13)	0.140	0.0052325	10.000	8.2115e-11
$system_20$	LC3 (TP14)	0.210	0.0052308	10.000	7.2424e-11
system_20	Riot (05, 1e-11)	0 m 2.343 s	0.0051337	-0.000	6.9818e-11
$system_20$	Riot (10, 1e-11)	0 m 0.506 s	0.0051337	-0.000	6.6049 e-11
$system_20$	Riot (15, 1e-11)	0 m1.011 s	0.0051337	-0.000	6.6032e-11
system_20	Valencia-IVP (0.00025)	0 m 2.020 s	5.7609	1.371	895.46
$system_20$	Valencia-IVP (0.0025)	0 m 0.244 s	6.1709	1.123	8.035
system_20	Valencia-IVP (0.025)	0 m 0.030 s	7.1228	0.750	7.1228
system_20	VNODE-LP (15, 1e-14,1e-14)	0 m 0.003 s	0.0053622	10.000	6.9172e-11
$system_20$	VNODE-LP (20, 1e-14,1e-14)	$0 \mathrm{m} 0.005 \mathrm{s}$	0.0053887	10.000	6.957e-11
system_20	VNODE-LP (25, 1e-14,1e-14)	0 m 0.007 s	0.0054356	10.000	7.0287e-11

Problems	Table 3.17: Simulation results of Problem 21 Methods c5t c5w c6t c6w					
system_21	TAYLOR4 (TP8)	0.030	3.0733e-08	10.000	6.8721e-09	
system_21	TAYLOR4 (TP9)	0.050	3.2389e-09	10.000	1.1268e-09	
system_21	TAYLOR4 (TP10)	0.070	3.3001e-10	10.000	9.6522e-11	
system_21	TAYLOR4 (TP11)	0.110	3.3614e-11	10.000	8.5003e-12	
$system_21$	TAYLOR4 (TP12)	0.000	0	0.000	0	
$system_21$	TAYLOR4 (TP13)	0.000	0	0.000	0	
system_21	TAYLOR4 (TP14)	0.000	0	0.000	0	
system_21	RK4 (TP8)	0.010	3.3937e-08	10.000	7.4364e-09	
system_21	RK4 (TP9)	0.020	3.4224e-09	10.000	1.0865e-09	
system_21	RK4 (TP10)	0.030	3.4031e-10	10.000	7.6861e-11	
system_21	RK4 (TP11)	0.050	3.39e-11	10.000	1.1213e-11	
$system_21$	RK4 (TP12)	0.090	3.4204e-12	10.000	1.3034e-12	
system_21	RK4 (TP13)	0.000	0	0.000	0	
$system_21$	RK4 (TP14)	0.000	0	0.000	0	
system_21	LA3 (TP8)	0.010	2.6881e-08	8.634	3.8833e-08	
system_21	LA3 (TP9)	0.020	2.8558e-09	10.000	1.9854e-09	
$system_21$	LA3 (TP10)	0.030	2.9342e-10	10.000	1.4172e-10	
$system_21$	LA3 (TP11)	0.060	2.9966e-11	10.000	1.0167e-11	
$system_21$	LA3 (TP12)	0.090	3.0833e-12	10.000	8.5887e-13	
$system_21$	LA3 (TP13)	0.140	3.908e-13	10.000	9.9032e-14	
$system_21$	LA3 (TP14)	0.000	0	0.000	0	
system_21	LC3 (TP8)	0.010	3.0304e-08	10.000	5.0799e-07	
$system_21$	LC3 (TP9)	0.020	2.7984e-09	10.000	3.9342e-08	
$system_21$	LC3 (TP10)	0.030	2.6206e-10	10.000	2.426e-10	
$system_21$	LC3 (TP11)	0.050	2.5378e-11	10.000	1.213e-11	
$system_{-}21$	LC3 (TP12)	0.070	2.458e-12	10.000	1.243e-12	
$system_21$	LC3 (TP13)	0.120	3.082e-13	10.000	1.0303e-13	
$system_21$	LC3 (TP14)	0.190	1.39e-13	10.000	1.6875e-14	
system_21	Riot (05, 1e-11)	0 m 0.346 s	4.0035e-11	-0.000	2.075e-12	
$system_21$	Riot (10, 1e-11)	0 m 0.168 s	4.4511e-12	-0.000	7.0832e-14	
$system_21$	Riot (15, 1e-11)	0 m 0.211 s	2.1094e-14	-0.000	2.1094e-14	
system_21	Valencia-IVP (0.00025)	0 m 1.174 s	0.073251	3.678	900.35	
$system_21$	Valencia-IVP (0.0025)	0 m 0.095 s	0.74627	2.210	6.0933	
$system_21$	Valencia-IVP (0.025)	0 m 0.032 s	6.312	0.975	6.312	
system_21	VNODE-LP (15, 1e-14,1e-14)	0 m 0.008 s	3.9968e-15	10.000	1.1102e-15	
$system_21$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.007 s	2.8866e-15	10.000	1.1102e-15	
$system_21$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.006 s	1.9984e-15	10.000	1.1102e-15	

	Table 3.18: Simulation re	sults of Pro	oblem 22		
Problems	Methods	c5t	c5w	c6t	c6w
system_22	TAYLOR4 (TP8)	0.060	1.3818	10.000	1.3831
$system_{-}22$	TAYLOR4 (TP9)	0.080	1.3818	10.000	1.3831
$system_22$	TAYLOR4 (TP10)	0.120	1.3818	10.000	1.3831
$system_22$	TAYLOR4 (TP11)	0.170	1.3818	10.000	1.3831
$system_22$	TAYLOR4 (TP12)	0.270	1.3818	10.000	1.3831
$system_{-}22$	TAYLOR4 (TP13)	0.440	1.3818	10.000	1.3831
$system_22$	TAYLOR4 (TP14)	0.690	1.3818	10.000	1.3831
system_22	RK4 (TP8)	0.040	1.3818	10.000	1.3831
$system_22$	RK4 (TP9)	0.060	1.3818	10.000	1.3831
$system_22$	RK4 (TP10)	0.090	1.3818	10.000	1.3831
$system_22$	RK4 (TP11)	0.130	1.3818	10.000	1.3831
$system_22$	RK4 (TP12)	0.210	1.3818	10.000	1.3831
$system_22$	RK4 (TP13)	0.330	1.3818	10.000	1.3831
$system_22$	RK4 (TP14)	0.520	1.3818	10.000	1.3831
system_22	LA3 (TP8)	0.030	1.4465	10.000	5.1497
$system_22$	LA3 (TP9)	0.040	1.4248	10.000	3.046
$system_22$	LA3 (TP10)	0.070	1.4096	10.000	3.5315
$system_22$	LA3 (TP11)	0.100	1.4	10.000	2.4605
$system_{-}22$	LA3 (TP12)	0.170	1.3935	10.000	2.5072
$system_{-}22$	LA3 (TP13)	0.250	1.3891	10.000	1.8036
$system_22$	LA3 (TP14)	0.410	1.3865	10.000	1.5151
system_22	LC3 (TP8)	0.040	1.4501	10.000	4.8497
system_22	LC3 (TP9)	0.050	1.427	10.000	4.1688
$system_22$	LC3 (TP10)	0.080	1.4116	10.000	2.9464
$system_22$	LC3 (TP11)	0.110	1.4004	10.000	3.0065
$system_{-}22$	LC3 (TP12)	0.180	1.394	10.000	2.0322
$system_22$	LC3 (TP13)	0.290	1.3895	10.000	1.7565
$system_22$	LC3 (TP14)	0.450	1.3867	10.000	1.7305
system_22	Riot (05, 1e-11)	0 m 0.215 s	1.3818	-0.000	1.3831
$system_22$	Riot (10, 1e-11)	0 m 0.147 s	1.3818	-0.000	1.3831
$system_22$	Riot (15, 1e-11)	0 m 0.192 s	1.3818	-0.000	1.3831
system_22	Valencia-IVP (0.00025)	0 m 0.980 s	2.7189	6.907	999.97
$system_22$	Valencia-IVP (0.0025)	0 m 0.090 s	2.724	6.897	999.51
$system_22$	Valencia-IVP (0.025)	0 m 0.014 s	2.7767	6.800	990.15
system_22	VNODE-LP (15, 1e-14,1e-14)	0 m0.003 s	1.3818	10.000	25.373
$system_22$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.006 s	1.3818	10.000	25.373
$system_{-}22$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.005 s	1.3818	10.000	25.373

Problems	Table 3.19: Simulation results of Problem 23 Methods $ c5t c5w c6t c6w $					
system_23	TAYLOR4 (TP8)	0.050	1.5913e-08	10.000	1.6814e-06	
system_23	TAYLOR4 (TP9)	0.080	1.7046e-09	10.000	2.6103e-07	
system_23	TAYLOR4 (TP10)	0.120	1.8306e-10	10.000	1.6375e-07	
system_23	TAYLOR4 (TP11)	0.180	1.903e-11	10.000	1.6848e-07	
$system_23$	TAYLOR4 (TP12)	0.280	2.212e-12	10.000	2.0574e-08	
system_23	TAYLOR4 (TP13)	0.450	6.5636e-13	10.000	6.3359e-09	
$system_23$	TAYLOR4 (TP14)	0.710	7.6073e-13	10.000	7.5749e-09	
system_23	RK4 (TP8)	0.040	1.9834e-08	10.000	7.863e-07	
system_23	RK4 (TP9)	0.050	2.2172e-09	10.000	2.5607e-07	
system_23	RK4 (TP10)	0.080	2.3651e-10	10.000	8.9245 e - 08	
$system_23$	RK4 (TP11)	0.130	2.4555e-11	10.000	1.3865e-07	
$system_23$	RK4 (TP12)	0.200	2.6081e-12	10.000	2.2231e-08	
system_23	RK4 (TP13)	0.310	4.2721e-13	10.000	3.913e-09	
$system_23$	RK4 (TP14)	0.490	3.0509 e-13	10.000	2.9406e-09	
system_23	LA3 (TP8)	0.030	1.5086e-08	10.000	1.2796e-06	
$system_23$	LA3 (TP9)	0.040	1.6451e-09	10.000	3.7812e-07	
$system_23$	LA3 (TP10)	0.060	1.7698e-10	10.000	1.8245 e-07	
$system_23$	LA3 (TP11)	0.100	1.8517e-11	10.000	1.1868e-07	
$system_{-}23$	LA3 (TP12)	0.150	1.9926e-12	10.000	1.811e-08	
$system_23$	LA3 (TP13)	0.240	3.233e-13	10.000	3.106e-09	
$system_23$	LA3 (TP14)	0.370	2.256e-13	10.000	2.248e-09	
system_23	LC3 (TP8)	0.030	1.5774e-08	10.000	1.8135e-06	
$system_23$	LC3 (TP9)	0.050	1.7152e-09	10.000	2.948e-07	
$system_23$	LC3 (TP10)	0.070	1.7917e-10	10.000	3.0775 e-07	
$system_23$	LC3 (TP11)	0.110	1.8552e-11	10.000	1.3905e-07	
$system_{-}23$	LC3 (TP12)	0.170	1.9949e-12	10.000	1.8803e-08	
$system_23$	LC3 (TP13)	0.270	3.3529e-13	10.000	3.2553 e-09	
$system_23$	LC3 (TP14)	0.420	2.4336e-13	10.000	2.448e-09	
system_23	Riot (05, 1e-11)	0 m 0.102 s	5.6269e-11	-0.000	7.3491e-10	
$system_23$	Riot (10, 1e-11)	0 m 0.114 s	2.7978e-14	-0.000	4.2883e-11	
system_23	Riot (15, 1e-11)	0 m 0.139 s	4.1966e-14	-0.000	1.0757e-12	
system_23	Valencia-IVP (0.00025)	0 m1.130 s	0.00046233	10.000	5.0012	
$system_23$	Valencia-IVP (0.0025)	0 m 0.095 s	0.0046322	10.000	50.642	
system_23	Valencia-IVP (0.025)	0 m 0.014 s	0.047235	10.000	574.87	
system_23	VNODE-LP (15, 1e-14,1e-14)	0 m 0.003 s	1.9984e-15	10.000	8.3933e-14	
$system_23$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.004 s	9.992e-16	10.000	7.5051e-14	
$system_23$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.006 s	6.6613e-16	10.000	4.7073e-14	

	Table 3.20: Simulation re	sults of Pro	oblem 24				
Problems	Methods	c5t $c5w$ $c6t$					
system_24	TAYLOR4 (TP8)	0.060	1.9324	10.000	14317		
$system_{-}24$	TAYLOR4 (TP9)	0.080	1.9324	10.000	14317		
$system_24$	TAYLOR4 (TP10)	0.110	1.9324	10.000	14317		
$system_24$	TAYLOR4 (TP11)	0.170	1.9324	10.000	14317		
$system_24$	TAYLOR4 (TP12)	0.270	1.9324	10.000	14317		
$system_{-}24$	TAYLOR4 (TP13)	0.440	1.9324	10.000	14317		
$system_24$	TAYLOR4 (TP14)	0.670	1.9324	10.000	14317		
system_24	RK4 (TP8)	0.040	1.9324	10.000	14317		
$system_24$	RK4 (TP9)	0.060	1.9324	10.000	14317		
$system_24$	RK4 (TP10)	0.080	1.9324	10.000	14317		
$system_24$	RK4 (TP11)	0.130	1.9324	10.000	14317		
$system_24$	RK4 (TP12)	0.200	1.9324	10.000	14317		
$system_24$	RK4 (TP13)	0.330	1.9324	10.000	14317		
$system_24$	RK4 (TP14)	0.510	1.9324	10.000	14317		
system_24	LA3 (TP8)	0.030	1.9328	10.000	14347		
$system_24$	LA3 (TP9)	0.050	1.9326	10.000	14329		
$system_24$	LA3 (TP10)	0.070	1.9325	10.000	14322		
$system_24$	LA3 (TP11)	0.100	1.9325	10.000	14319		
$system_{-}24$	LA3 (TP12)	0.160	1.9324	10.000	14318		
$system_24$	LA3 (TP13)	0.250	1.9324	10.000	14318		
$system_24$	LA3 (TP14)	0.400	1.9324	10.000	14317		
system_24	LC3 (TP8)	0.040	1.9331	10.000	14371		
system_24	LC3 (TP9)	0.050	1.9327	10.000	14338		
$system_24$	LC3 (TP10)	0.070	1.9325	10.000	14325		
$system_24$	LC3 (TP11)	0.110	1.9325	10.000	14320		
$system_24$	LC3 (TP12)	0.180	1.9325	10.000	14318		
$system_24$	LC3 (TP13)	0.320	1.9324	10.000	14318		
$system_24$	LC3 (TP14)	0.470	1.9324	10.000	14317		
system_24	Riot (05, 1e-11)	0m0.222s	1.9324	-0.000	21721		
$system_24$	Riot (10, 1e-11)	0 m 0.148 s	1.9324	-0.000	21718		
$system_24$	Riot (15, 1e-11)	0 m 0.193 s	1.9324	-0.000	21703		
system_24	Valencia-IVP (0.00025)	0m1.214s	1.9329	7.337	999.94		
$system_24$	Valencia-IVP (0.0025)	0 m 0.114 s	1.9368	7.320	998.62		
system_24	Valencia-IVP (0.025)	0 m 0.014 s	1.977	7.175	998.34		
system_24	VNODE-LP (15, 1e-14,1e-14)	0 m 0.004 s	1.9324	10.000	14317		
$system_24$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.006 s	1.9324	10.000	14317		
$system_24$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.002 s	1.9324	10.000	14317		

Problems	Table 3.21: Simulation re	Table 3.21: Simulation results of Problem 25 Methods c5t c5w c6t c6w				
system_25	TAYLOR4 (TP8)	0.040	1.3772e-08	10.000	0.00016615	
$system_25$	TAYLOR4 (TP9)	0.070	1.5056e-09	10.000	1.7744e-05	
$system_25$	TAYLOR4 (TP10)	0.110	1.6064e-10	10.000	1.8561e-06	
$system_25$	TAYLOR4 (TP11)	0.160	1.6748e-11	10.000	1.9164e-07	
$system_25$	TAYLOR4 (TP12)	0.260	1.8416e-12	10.000	2.0722e-08	
$system_{-}25$	TAYLOR4 (TP13)	0.410	4.1234e-13	10.000	4.1866e-09	
$system_25$	TAYLOR4 (TP14)	0.650	4.0101e-13	10.000	3.7742e-09	
system_25	RK4 (TP8)	0.030	1.7587e-08	10.000	0.00021528	
$system_25$	RK4 (TP9)	0.050	1.9552e-09	10.000	2.3157e-05	
$system_25$	RK4 (TP10)	0.070	2.0936e-10	10.000	2.4276e-06	
$system_25$	RK4 (TP11)	0.110	2.1817e-11	10.000	2.501 e-07	
$system_25$	RK4 (TP12)	0.180	2.26e-12	10.000	2.5778e-08	
$system_25$	RK4 (TP13)	0.280	3.1397e-13	10.000	3.3969e-09	
$system_25$	RK4 (TP14)	0.450	1.6809e-13	10.000	1.6121e-09	
system_25	LA3 (TP8)	0.030	1.2714e-08	10.000	0.00016167	
$system_25$	LA3 (TP9)	0.040	1.4237e-09	10.000	1.7264 e-05	
$system_25$	LA3 (TP10)	0.060	1.537e-10	10.000	1.7994 e-06	
$system_25$	LA3 (TP11)	0.090	1.61e-11	10.000	1.8681e-07	
$system_{-}25$	LA3 (TP12)	0.140	1.714e-12	10.000	1.9526e-08	
$system_{-}25$	LA3 (TP13)	0.210	2.3848e-13	10.000	2.5806e-09	
$system_25$	LA3 (TP14)	0.340	1.2601e-13	10.000	1.2041e-09	
system_25	LC3 (TP8)	0.030	1.2989e-08	10.000	0.00016663	
$system_25$	LC3 (TP9)	0.040	1.473e-09	10.000	1.7777e-05	
$system_25$	LC3 (TP10)	0.060	1.562e-10	10.000	1.8255 e-06	
$system_25$	LC3 (TP11)	0.100	1.6272 e-11	10.000	1.878e-07	
$system_{-}25$	LC3 (TP12)	0.150	1.7181e-12	10.000	1.9601e-08	
$system_25$	LC3 (TP13)	0.240	2.4358e-13	10.000	2.6186e-09	
$system_25$	LC3 (TP14)	0.380	1.3412e-13	10.000	1.2862e-09	
system_25	Riot (05, 1e-11)	0 m 0.104 s	5.7086e-11	-0.000	0.0013639	
$system_25$	Riot (10, 1e-11)	0 m 0.109 s	3.7192e-15	-0.000	3.7192e-15	
system_25	Riot (15, 1e-11)	0 m 0.089 s	0	-0.000	5.7732e-15	
system_25	Valencia-IVP (0.00025)	0 m 1.087 s	0.00029389	10.000	2.7571	
$system_25$	Valencia-IVP (0.0025)	0 m 0.093 s	0.0029465	10.000	27.915	
$system_25$	Valencia-IVP (0.025)	0 m 0.015 s	0.030251	10.000	316.61	
system_25	VNODE-LP (15, 1e-14,1e-14)	0 m 0.004 s	9.992e-16	10.000	8.9433e-12	
$system_25$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.004 s	8.8818e-16	10.000	7.9496e-12	
$system_25$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.004 s	8.3267e-16	10.000	6.2134e-12	

Problems	Table 3.22: Simulation re	esults of Pro	oblem 26	c6t	c6w
system_26	TAYLOR4 (TP8)	0.190	1.2981	10.000	0.00023241
system_26	TAYLOR4 (TP9)	0.130	1.2981 1.2981	10.000	0.00023241 0.00022813
system_26	TAYLOR4 (TP10)	0.230	1.2981 1.2981	10.000	0.00022749
system_26	TAYLOR4 (TP11)	0.410	1.2981	10.000	0.00022743
system_26	TAYLOR4 (TP12)	0.940	1.2981	10.000	0.00022964
system_26	TAYLOR4 (TP13)	1.480	1.2981	10.000	0.00022949
system_26	TAYLOR4 (TP14)	2.360	1.2981	10.000	0.00022948
system_26	RK4 (TP8)	0.130	1.2981	10.000	0.00023297
system_26	RK4 (TP9)	0.130	1.2981 1.2981	10.000	0.00023297 0.00022751
system_26	RK4 (119) RK4 (TP10)	0.190	1.2981 1.2981	10.000	0.00022731 0.00022782
system_26	RK4 (TP11)	0.300	1.2981 1.2981	10.000	0.00022782 0.00022747
system_26	RK4 (TP12)	0.470	1.2981 1.2981	10.000	0.00022747 0.00022897
system_26	RK4 (TP13)	1.150	1.2981 1.2981	10.000	0.00022897 0.00022902
system_26	RK4 (TP14)	1.130	1.2981 1.2981	10.000	0.00022902 0.00022939
	, ,				
system_26	LA3 (TP8)	0.110	1.7614	10.000	47.327
system_26	LA3 (TP9)	0.160	1.6099	10.000	5.1636
system_26	LA3 (TP10)	0.240	1.5196	10.000	3.3388
$system_26$	LA3 (TP11)	0.380	1.4341	10.000	1.4904
$system_{-26}$	LA3 (TP12)	0.580	1.394	10.000	0.77395
system_26	LA3 (TP13)	0.910	1.3539	10.000	0.27453
system_26	LA3 (TP14)	1.440	1.3298	10.000	0.09762
$system_{-}26$	LC3 (TP8)	0.110	1.7962	10.000	57.572
$system_26$	LC3 (TP9)	0.170	1.6345	10.000	4.2967
$system_26$	LC3 (TP10)	0.260	1.544	10.000	3.6973
$system_26$	LC3 (TP11)	0.420	1.4629	10.000	3.522
$system_{-}26$	LC3 (TP12)	0.630	1.3763	10.000	0.85036
$system_26$	LC3 (TP13)	1.000	1.3639	10.000	1.2933
$system_26$	LC3 (TP14)	1.600	1.3283	10.000	0.13024
system_26	Riot (05, 1e-11)	0 m 0.592 s	1.2981	-0.000	0.00023441
$system_26$	Riot (10, 1e-11)	0 m 0.217 s	1.2981	-0.000	0.00022716
$system_{-}26$	Riot (15, 1e-11)	0 m 0.302 s	1.2981	-0.000	0.00022731
system_26	Valencia-IVP (0.00025)	0m1.817s	277.25	1.238	999.84
$system_26$	Valencia-IVP (0.0025)	0 m 0.156 s	287.15	1.230	996.77
system_26	Valencia-IVP (0.025)	0 m 0.022 s	421.64	1.125	867.43
system_26	VNODE-LP (15, 1e-14,1e-14)	0 m 0.007 s	1.2981	10.000	6.8883
$system_26$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.008 s	1.2981	10.000	6.8883
$system_26$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.007 s	1.2981	10.000	6.8883

Problems	Table 3.23: Simulation results of Problem 27 Methods c5t c5w c6t c6w				
system_27	TAYLOR4 (TP8)	0.150	9.9382e-08	10.000	9.9453e-07
$system_27$	TAYLOR4 (TP9)	0.210	1.0984e-08	10.000	2.4889e-07
system_27	TAYLOR4 (TP10)	0.320	1.1848e-09	10.000	3.0464e-07
$system_27$	TAYLOR4 (TP11)	0.500	1.2016e-10	10.000	2.585e-07
$system_27$	TAYLOR4 (TP12)	0.790	1.366e-11	10.000	2.1613e-07
$system_{-}27$	TAYLOR4 (TP13)	1.220	3.6535e-12	10.000	3.5367e-07
$system_27$	TAYLOR4 (TP14)	1.900	3.9741e-12	10.000	1.2891e-06
system_27	RK4 (TP8)	0.110	1.2932e-07	10.000	1.3248e-06
system_27	RK4 (TP9)	0.160	1.4163e-08	10.000	2.0043e-07
system_27	RK4 (TP10)	0.250	1.5098e-09	10.000	1.5059e-07
$system_27$	RK4 (TP11)	0.410	1.5404 e-10	10.000	1.5609 e-07
$system_27$	RK4 (TP12)	0.640	1.6365e-11	10.000	1.7223 e-07
$system_27$	RK4 (TP13)	0.970	2.5304 e-12	10.000	1.8389e-07
$system_27$	RK4 (TP14)	1.540	1.6289 e-12	10.000	1.7725 e-07
system_27	LA3 (TP8)	0.090	1.077e-07	10.000	0.0021861
$system_27$	LA3 (TP9)	0.130	1.1278e-08	10.000	0.00013224
$system_27$	LA3 (TP10)	0.200	1.1811e-09	10.000	3.2675 e-05
$system_27$	LA3 (TP11)	0.310	1.2139e-10	10.000	3.5598 e-06
$system_{-}27$	LA3 (TP12)	0.490	1.2736e-11	10.000	1.2922e-06
$system_27$	LA3 (TP13)	0.760	1.9278e-12	10.000	3.4537e-07
$system_27$	LA3 (TP14)	1.230	1.2119e-12	10.000	3.651e-07
system_27	LC3 (TP8)	0.100	1.1371e-07	10.000	0.0045486
system_27	LC3 (TP9)	0.150	1.1741e-08	10.000	0.0004441
$system_27$	LC3 (TP10)	0.220	1.2156e-09	10.000	4.9058e-05
$system_27$	LC3 (TP11)	0.350	1.2311e-10	10.000	4.7915e-06
$system_27$	LC3 (TP12)	0.540	1.297e-11	10.000	1.3287e-06
$system_27$	LC3 (TP13)	0.840	1.9971e-12	10.000	4.0411e-07
$system_27$	LC3 (TP14)	1.290	1.3069e-12	10.000	1.3527e-06
system_27	Riot (05, 1e-11)	0 m 0.256 s	1.8868e-10	-0.000	2.7813e+09
$system_27$	Riot (10, 1e-11)	0 m 0.164 s	1.199e-14	-0.000	3.4514e-08
$system_27$	Riot (15, 1e-11)	0 m 0.230 s	8.793e-14	-0.000	1.8045e-12
system_27	Valencia-IVP (0.00025)	0 m1.391 s	0.1407	2.649	999.19
$system_27$	Valencia-IVP (0.0025)	0 m 0.126 s	1.4595	2.205	988.39
$system_27$	Valencia-IVP (0.025)	0 m 0.021 s	21.761	1.650	925.46
system_27	VNODE-LP (15, 1e-14,1e-14)	0 m 0.006 s	9.992e-15	10.000	9.4229e-14
$system_27$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.005 s	5.9952e-15	10.000	5.4546e-14
$system_{-}27$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.004 s	5.9952 e-15	10.000	3.6599e-14

	Table 3.24: Simulation results of Problem 28					
Problems	Methods	c5t	c5w	c6t	c6w	
system_28	TAYLOR4 (TP8)	4.130	20.932	0.283	20.932	
$system_28$	TAYLOR4 (TP9)	5.960	17.968	0.282	17.968	
$system_28$	TAYLOR4 (TP10)	8.860	15.338	0.280	15.338	
$system_28$	TAYLOR4 (TP11)	12.540	13.052	0.282	13.052	
$system_28$	TAYLOR4 (TP12)	18.350	11.079	0.280	11.079	
$system_28$	TAYLOR4 (TP13)	27.080	9.385	0.277	9.385	
$system_28$	TAYLOR4 (TP14)	38.040	7.9094	0.275	7.9094	
system_28	RK4 (TP8)	4.160	23.152	0.284	23.152	
$system_28$	RK4 (TP9)	3.300	19.86	0.284	19.86	
$system_28$	RK4 (TP10)	4.790	17.013	0.285	17.013	
$system_28$	RK4 (TP11)	6.890	14.506	0.283	14.506	
$system_28$	RK4 (TP12)	9.590	12.365	0.279	12.365	
$system_28$	RK4 (TP13)	13.920	10.475	0.278	10.475	
$system_28$	RK4 (TP14)	20.070	8.8608	0.276	8.8608	
system_28	LA3 (TP8)	1.960	24.682	0.274	24.682	
$system_28$	LA3 (TP9)	2.960	21.217	0.276	21.217	
$system_28$	LA3 (TP10)	4.250	18.246	0.276	18.246	
$system_28$	LA3 (TP11)	6.350	15.618	0.278	15.618	
$system_{-}28$	LA3 (TP12)	8.760	13.281	0.278	13.281	
$system_28$	LA3 (TP13)	12.720	11.269	0.277	11.269	
$system_28$	LA3 (TP14)	18.360	9.5482	0.276	9.5482	
system_28	LC3 (TP8)	1.870	24.835	0.265	24.835	
system_28	LC3 (TP9)	2.830	21.005	0.270	21.005	
system_28	LC3 (TP10)	4.250	17.966	0.273	17.966	
$system_28$	LC3 (TP11)	6.320	15.404	0.276	15.404	
$system_{-}28$	LC3 (TP12)	8.960	13.092	0.276	13.092	
system_28	LC3 (TP13)	13.090	11.123	0.277	11.123	
$system_28$	LC3 (TP14)	19.040	9.4039	0.275	9.4039	
system_28	Riot (05, 1e-11)	0 m 29.200 s	0	-0.000	4.2446	
$system_28$	Riot (10, 1e-11)	18m44.691s	0	-0.000	4.0786	
$system_28$	Riot (15, 1e-11)	210 m 1.595 s	0	-0.000	4.5904	
system_28	Valencia-IVP (0.00025)	0 m 2.126 s	1.1713	0.162	1.1713	
$system_28$	Valencia-IVP (0.0025)	0 m 0.733 s	3.1672	0.395	3.1672	
system_28	Valencia-IVP (0.025)	0 m 0.027 s	0.95755	0.075	0.95755	
system_28	VNODE-LP (15, 1e-14,1e-14)	0 m 0.309 s	18.119	0.155	18.119	
$system_28$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.299 s	22.402	0.140	22.402	
$system_28$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.301 s	25.252	0.128	25.252	

	Table 3.25: Simulation re	esults of Pro	oblem 29		
Problems	Methods	c5t	c5w	c6t	c6w
system_29	TAYLOR4 (TP8)	0.560	3.5522 e-07	10.000	3.7763e-07
system_29	TAYLOR4 (TP9)	0.830	3.6736e-08	10.000	3.9348e-08
system_29	TAYLOR4 (TP10)	1.250	3.7576e-09	10.000	4.0256e-09
$system_29$	TAYLOR4 (TP11)	1.990	3.7343e-10	10.000	4.03e-10
$system_29$	TAYLOR4 (TP12)	3.120	3.7579e-11	10.000	4.0723e-11
$system_{-}29$	TAYLOR4 (TP13)	5.370	4.5068e-12	10.000	4.8452e-12
system_29	TAYLOR4 (TP14)	7.360	1.6607e-12	10.000	1.7164e-12
system_29	RK4 (TP8)	0.340	5.0539e-07	10.000	5.8051e-07
$system_29$	RK4 (TP9)	0.460	5.8113e-08	10.000	6.5063 e-08
$system_29$	RK4 (TP10)	0.710	5.7374e-09	10.000	6.4068e-09
$system_29$	RK4 (TP11)	1.000	6.2862 e-10	10.000	6.6449 e-10
$system_29$	RK4 (TP12)	1.540	6.1003e-11	10.000	6.3473e-11
$system_29$	RK4 (TP13)	2.420	5.9718e-12	10.000	6.1513e-12
system_29	RK4 (TP14)	3.700	8.6475e-13	10.000	8.7147e-13
system_29	LA3 (TP8)	0.340	2.3268e-07	10.000	3.1546e-07
$system_29$	LA3 (TP9)	0.470	2.4512e-08	10.000	3.3829e-08
$system_29$	LA3 (TP10)	0.710	2.3962e-09	10.000	3.3821e-09
$system_29$	LA3 (TP11)	1.060	2.281e-10	10.000	3.2909e-10
$system_{-}29$	LA3 (TP12)	1.660	2.1874e-11	10.000	3.1581e-11
$system_29$	LA3 (TP13)	2.600	2.3522e-12	10.000	3.2499e-12
system_29	LA3 (TP14)	4.030	5.4412e-13	10.000	6.1251e-13
system_29	LC3 (TP8)	0.340	2.9012e-07	10.000	4.1042e-07
system_29	LC3 (TP9)	0.460	2.9152e-08	10.000	4.3464e-08
$system_29$	LC3 (TP10)	0.680	2.7738e-09	10.000	4.2533e-09
$system_29$	LC3 (TP11)	1.000	2.5993e-10	10.000	3.9511e-10
$system_{-}29$	LC3 (TP12)	1.560	2.3858e-11	10.000	3.5866e-11
$system_29$	LC3 (TP13)	2.480	2.4346e-12	10.000	3.4715e-12
system_29	LC3 (TP14)	3.730	5.4146e-13	10.000	6.1394e-13
system_29	Riot (05, 1e-11)	0m1.818s	3.2308e-10	-0.000	5.7962e-09
$system_29$	Riot (10, 1e-11)	0 m1.333 s	6.1563e-12	-0.000	1.0335e-10
system_29	Riot (15, 1e-11)	0 m 2.386 s	9.6034e-15	-0.000	9.6034e-15
system_29	Valencia-IVP (0.00025)	0 m 3.140 s	0.001153	10.000	0.057922
$system_29$	Valencia-IVP (0.0025)	0 m 0.516 s	0.01199	6.265	0.2962
system_29	Valencia-IVP (0.025)	0 m 0.226 s	0.17131	1.200	0.2357
system_29	VNODE-LP (15, 1e-14,1e-14)	0 m 0.080 s	1.8485e-14	10.000	1.5952e-14
$system_29$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.099 s	1.199e-14	10.000	1.1606e-14
$system_{-}29$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.107 s	9.4924 e-15	10.000	8.9239e-15

Table 3.26: Simulation results of Problem 30					
Problems	Methods	c5t	c5w	c6t	c6w
system_30	TAYLOR4 (TP8)	16.140	80.278	0.297	80.278
$system_30$	TAYLOR4 (TP9)	24.390	63.718	0.298	63.718
$system_30$	TAYLOR4 (TP10)	36.140	50.476	0.299	50.476
$system_30$	TAYLOR4 (TP11)	53.200	40.071	0.299	40.071
$system_30$	TAYLOR4 (TP12)	77.710	31.765	0.299	31.765
$system_{-}30$	TAYLOR4 (TP13)	113.360	25.075	0.297	25.075
$system_30$	TAYLOR4 (TP14)	159.450	19.754	0.296	19.754
system_30	RK4 (TP8)	9.090	92.703	0.302	92.703
$system_30$	RK4 (TP9)	13.060	73.155	0.302	73.155
$system_30$	RK4 (TP10)	19.520	58.308	0.303	58.308
$system_30$	RK4 (TP11)	28.190	46.348	0.300	46.348
$system_30$	RK4 (TP12)	40.790	36.606	0.300	36.606
$system_{-}30$	RK4 (TP13)	60.340	28.938	0.299	28.938
$system_30$	RK4 (TP14)	87.210	22.85	0.298	22.85
system_30	LA3 (TP8)	7.670	103.64	0.290	103.64
$system_30$	LA3 (TP9)	11.260	81.407	0.293	81.407
$system_30$	LA3 (TP10)	16.760	65.057	0.296	65.057
$system_30$	LA3 (TP11)	24.890	51.523	0.298	51.523
$system_{-}30$	LA3 (TP12)	36.280	40.863	0.298	40.863
$system_30$	LA3 (TP13)	55.410	32.308	0.298	32.308
system_30	LA3 (TP14)	82.570	25.57	0.297	25.57
system_30	LC3 (TP8)	7.590	101.33	0.282	101.33
$system_30$	LC3 (TP9)	11.350	79.317	0.288	79.317
$system_30$	LC3 (TP10)	17.050	63.817	0.293	63.817
$system_30$	LC3 (TP11)	25.100	50.599	0.296	50.599
$system_{-}30$	LC3 (TP12)	36.770	40.033	0.296	40.033
$system_30$	LC3 (TP13)	55.480	31.626	0.297	31.626
$system_30$	LC3 (TP14)	78.840	25.014	0.297	25.014
system_30	Riot				
system_30	Valencia-IVP (0.00025)	0 m 13.555 s	57.455	0.332	57.455
$system_30$	Valencia-IVP (0.0025)	0 m 0.494 s	4.4295	0.245	4.4295
system_30	Valencia-IVP (0.025)	0 m 0.108 s	3.7929	0.200	3.7929
system_30	VNODE-LP (15, 1e-14,1e-14)	0m0.194s	105.32	0.259	105.32
$system_30$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.186 s	146.87	0.237	146.87
$system_30$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.187 s	188.72	0.220	188.72

Problems	Table 3.27: Simulation results of Problem 31 Methods c5t c5w c6t c6w				
system_31	TAYLOR4 (TP8)	2.230	1.2578e-07	10.000	5.8598e-05
system_31	TAYLOR4 (TP9)	3.470	1.3976e-08	10.000	5.2745e-05
system_31	TAYLOR4 (TP10)	5.330	1.5217e-09	10.000	1.2559e-05
system_31	TAYLOR4 (TP11)	8.330	1.5944e-10	10.000	1.4182e-06
system_31	TAYLOR4 (TP12)	13.050	1.6868e-11	10.000	1.5655e-07
$system_{-}31$	TAYLOR4 (TP13)	20.400	2.2326e-12	10.000	2.1442e-08
system_31	TAYLOR4 (TP14)	31.840	1.028e-12	10.000	1.025 e-08
system_31	RK4 (TP8)	1.290	1.0486e-07	10.000	4.4015e-05
system_31	RK4 (TP9)	1.850	1.2451e-08	10.000	4.0884e-05
system_31	RK4 (TP10)	2.940	1.3932e-09	10.000	1.3356e-05
system_31	RK4 (TP11)	4.390	1.5137e-10	10.000	1.457e-06
$system_31$	RK4 (TP12)	6.870	1.5606e-11	10.000	1.5259e-07
$system_31$	RK4 (TP13)	10.920	1.6551e-12	10.000	1.6821e-08
$system_31$	RK4 (TP14)	16.650	3.2484e-13	10.000	3.6533e-09
system_31	LA3 (TP8)	1.250	7.1058e-08	10.000	8.3149e-05
$system_31$	LA3 (TP9)	1.780	7.6279e-09	10.000	4.4857e-05
system_31	LA3 (TP10)	2.670	8.5419e-10	10.000	1.2882e-05
$system_31$	LA3 (TP11)	4.270	9.3902e-11	10.000	1.3788e-06
system_31	LA3 (TP12)	6.580	9.7906e-12	10.000	1.4299e-07
system_31	LA3 (TP13)	10.140	1.0789e-12	10.000	1.5696e-08
$system_31$	LA3 (TP14)	16.130	2.7699e-13	10.000	3.3895 e-09
system_31	LC3 (TP8)	1.090	1.7432e-07	10.000	4.6058e-05
system_31	LC3 (TP9)	1.490	1.9061e-08	10.000	4.6763 e - 05
system_31	LC3 (TP10)	2.220	1.9137e-09	10.000	1.9889e-05
$system_31$	LC3 (TP11)	3.450	1.8493e-10	10.000	1.9633e-06
system_31	LC3 (TP12)	5.250	1.7977e-11	10.000	1.9146e-07
$system_31$	LC3 (TP13)	8.310	1.821e-12	10.000	1.9509e-08
$system_31$	LC3 (TP14)	12.850	3.1761e-13	10.000	3.486e-09
system_31	Riot (05, 1e-11)	0 m 8.552 s	1.3195e-10	-0.000	3.7849e-08
$system_31$	Riot (10, 1e-11)	0 m 4.423 s	4.2645 e-12	-0.000	5.8043e-09
$system_31$	Riot (15, 1e-11)	0 m 4.983 s	1.8874e-15	-0.000	1.2535e-10
system_31	Valencia-IVP (0.00025)	0 m 55.912 s	0.0020183	4.793	1.5566
$system_31$	Valencia-IVP (0.0025)	0 m 4.192 s	0.020632	3.252	1.8903
$system_31$	Valencia-IVP (0.025)	0 m 0.399 s	0.25275	1.800	1.0445
system_31	VNODE-LP (15, 1e-14,1e-14)	0 m 0.160 s	9.26e-15	10.000	1.3792e-13
$system_31$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.181 s	4.9093e-15	10.000	9.2898e-14
$system_{-}31$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.205 s	4.0697e-15	10.000	7.63e-14

Problems	Table 3.28: Simulation results of Problem 32 Methods c5t c5w c6t c6w				
	TAYLOR4 (TP8)	0.110	1.0131e-07	10.000	1.092e-06
system_32 system_32	TAYLOR4 (TP8) TAYLOR4 (TP9)	0.110 0.150	1.0151e-07 1.1876e-08	10.000	1.092e-06 1.2968e-07
system_32	TAYLOR4 (TP10)	0.130 0.220	1.1570e-08 1.5521e-09	10.000 10.000	
	TAYLOR4 (TP10) TAYLOR4 (TP11)	0.220 0.330	1.5321e-09 1.5477e-10	10.000 10.000	1.3318e-08 1.4345e-09
system_32 system_32	TAYLOR4 (TP11) TAYLOR4 (TP12)	0.520	1.9744e-11	10.000 10.000	1.4545e-09 1.544e-10
			2.9185e-12	10.000	1.544e-10 1.8198e-11
system_32 system_32	TAYLOR4 (TP13) TAYLOR4 (TP14)	$0.900 \\ 1.280$	2.9185e-12 1.549e-12	10.000 10.000	4.4076e-12
	, ,				
$system_{-32}$	RK4 (TP8)	0.050	1.1569e-07	10.000	1.6157e-06
$system_32$	RK4 (TP9)	0.070	1.2497e-08	10.000	2.1179e-07
$system_32$	RK4 (TP10)	0.110	1.4826e-09	10.000	2.7584e-08
$system_32$	RK4 (TP11)	0.170	1.5983e-10	10.000	3.5086e-09
$system_32$	RK4 (TP12)	0.250	1.6631e-11	10.000	4.1913e-10
$system_{-}32$	RK4 (TP13)	0.400	1.9895e-12	10.000	5.1035e-11
system_32	RK4 (TP14)	0.630	4.9205e-13	10.000	6.4764e-12
$system_{-}32$	LA3 (TP8)	0.060	4.8721e-08	10.000	9.5298e-07
$system_32$	LA3 (TP9)	0.080	5.2775e-09	10.000	9.6145 e - 08
$system_32$	LA3 (TP10)	0.130	5.5251e-10	10.000	1.0333e-08
$system_32$	LA3 (TP11)	0.180	5.6823e-11	10.000	1.1945e-09
$system_{-}32$	LA3 (TP12)	0.290	5.9162e-12	10.000	1.2948e-10
$system_32$	LA3 (TP13)	0.460	8.0025e-13	10.000	1.4912e-11
$system_32$	LA3 (TP14)	0.710	4.0501e-13	10.000	2.1458e-12
system_32	LC3 (TP8)	0.060	8.8322e-08	10.000	1.0067e-06
$system_32$	LC3 (TP9)	0.080	1.0516e-08	10.000	1.0107e-07
$system_32$	LC3 (TP10)	0.110	1.3559e-09	10.000	1.2095e-08
$system_32$	LC3 (TP11)	0.180	1.5019e-10	10.000	1.3537e-09
$system_{-}32$	LC3 (TP12)	0.250	1.6706e-11	10.000	1.5879e-10
$system_32$	LC3 (TP13)	0.390	2.0792e-12	10.000	1.7959e-11
$system_32$	LC3 (TP14)	0.610	4.7784e-13	10.000	2.528e-12
system_32	Riot (05, 1e-11)	0 m 2.160 s	8.7466e-11	-0.000	2.9713e-10
$system_32$	Riot (10, 1e-11)	0 m 0.781 s	1.2124e-13	-0.000	4.0483e-11
$system_32$	Riot (15, 1e-11)	0 m 0.815 s	1.3411e-13	-0.000	1.8493e-11
system_32	Valencia-IVP (0.00025)	1 m 35.630 s	0.00026492	10.000	0.28978
$system_32$	Valencia-IVP (0.0025)	0 m 2.151 s	0.0026499	10.000	2.9143
$system_32$	Valencia-IVP (0.025)	0 m 0.272 s	0.026604	10.000	31.409
system_32	VNODE-LP (15, 1e-14,1e-14)	0 m 0.039 s	9.77e-15	10.000	6.3727e-14
$system_32$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.044 s	8.8818e-15	10.000	7.3386e-14
$system_32$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.040 s	7.9936e-15	10.000	3.586e-14

	Table 3.29: Simulation re	sults of Prol	blem 33		
Problems	Methods	c5t	c5w	c6t	c6w
system_33	TAYLOR4 (TP8)	0.110	0.81192	10.000	0.20314
$system_{-}33$	TAYLOR4 (TP9)	0.150	0.81192	10.000	0.20314
$system_{-}33$	TAYLOR4 (TP10)	0.230	0.81192	10.000	0.20314
$system_33$	TAYLOR4 (TP11)	0.360	0.81192	10.000	0.20314
$system_33$	TAYLOR4 (TP12)	0.530	0.81192	10.000	0.20314
$system_{-}33$	TAYLOR4 (TP13)	0.860	0.81192	10.000	0.20314
$system_33$	TAYLOR4 (TP14)	1.330	0.81192	10.000	0.20314
system_33	RK4 (TP8)	0.060	0.81192	10.000	0.20315
$system_33$	RK4 (TP9)	0.080	0.81192	10.000	0.20314
$system_33$	RK4 (TP10)	0.110	0.81192	10.000	0.20314
$system_33$	RK4 (TP11)	0.170	0.81192	10.000	0.20314
$system_33$	RK4 (TP12)	0.270	0.81192	10.000	0.20314
$system_{-}33$	RK4 (TP13)	0.410	0.81192	10.000	0.20314
$system_33$	RK4 (TP14)	0.640	0.81192	10.000	0.20314
system_33	LA3 (TP8)	0.060	0.81202	10.000	0.20448
$system_33$	LA3 (TP9)	0.080	0.81197	10.000	0.20373
$system_33$	LA3 (TP10)	0.130	0.81194	10.000	0.20338
$system_33$	LA3 (TP11)	0.200	0.81193	10.000	0.20324
$system_{-}33$	LA3 (TP12)	0.300	0.81193	10.000	0.20318
system_33	LA3 (TP13)	0.470	0.81192	10.000	0.20316
$system_33$	LA3 (TP14)	0.740	0.81192	10.000	0.20315
system_33	LC3 (TP8)	0.060	0.81211	10.000	0.20522
system_33	LC3 (TP9)	0.080	0.812	10.000	0.204
system_33	LC3 (TP10)	0.120	0.81196	10.000	0.20349
system_33	LC3 (TP11)	0.170	0.81194	10.000	0.20329
system_33	LC3 (TP12)	0.260	0.81193	10.000	0.2032
system_33	LC3 (TP13)	0.400	0.81192	10.000	0.20317
$system_33$	LC3 (TP14)	0.620	0.81192	10.000	0.20315
system_33	Riot (05, 1e-11)	0 m 3.466 s	0.81192	-0.000	0.20314
$system_{-}33$	Riot (10, 1e-11)	0 m 0.842 s	0.81192	-0.000	0.20314
$system_33$	Riot (15, 1e-11)	0 m 0.886 s	0.81192	-0.000	0.20314
system_33	Valencia-IVP (0.00025)	1 m 30.726 s	0.8123	10.000	243.87
$system_33$	Valencia-IVP (0.0025)	0 m 1.521 s	0.81566	10.000	249.32
$system_33$	Valencia-IVP (0.025)	0 m 0.257 s	0.85019	10.000	309.55
system_33	VNODE-LP (15, 1e-14,1e-14)	0 m 0.041 s	0.81192	10.000	0.20314
$system_33$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.042 s	0.81192	10.000	0.20314
$system_33$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.039 s	0.81192	10.000	0.20314

Problems	Table 3.30: Simulation results of Problem 34 Methods				
system_34	TAYLOR4 (TP8)	0.010	4.7235e-09	10.000	2.9591e-07
system_34	TAYLOR4 (TP9)	0.010	7.8377e-10	10.000	3.0655e-08
system_34	TAYLOR4 (TP10)	0.020	1.0829e-10	10.000	3.5486e-09
$system_34$	TAYLOR4 (TP11)	0.020	1.2753e-11	10.000	4.2103e-10
$system_34$	TAYLOR4 (TP12)	0.030	1.3936e-12	10.000	4.4459e-11
system_34	TAYLOR4 (TP13)	0.040	2.1538e-13	10.000	7.7094e-12
$system_34$	TAYLOR4 (TP14)	0.070	1.2879e-13	10.000	5.361e-12
system_34	RK4 (TP8)	0.010	1.4271e-09	10.000	7.7418e-08
$system_34$	RK4 (TP9)	0.010	2.0589e-10	10.000	8.1568e-09
$system_34$	RK4 (TP10)	0.020	2.1419e-11	10.000	8.3585e-10
$system_34$	RK4 (TP11)	0.020	2.3852e-12	10.000	8.5283e-11
$system_34$	RK4 (TP12)	0.030	2.78e-13	10.000	9.3454e-12
$system_34$	RK4 (TP13)	0.040	6.2172 e-14	10.000	1.9824e-12
$system_34$	RK4 (TP14)	0.060	5.5955e-14	10.000	1.8456e-12
system_34	LA3 (TP8)	0.010	8.073e-11	10.000	1.7684e-07
$system_34$	LA3 (TP9)	0.010	6.0024 e-11	10.000	2.3486e-08
$system_34$	LA3 (TP10)	0.010	5.8509e-12	10.000	2.36e-09
$system_34$	LA3 (TP11)	0.020	5.4801e-13	10.000	2.6067e-10
$system_{-}34$	LA3 (TP12)	0.020	7.7716e-14	10.000	2.9845e-11
$system_34$	LA3 (TP13)	0.030	3.0642e-14	10.000	4.0146e-12
$system_34$	LA3 (TP14)	0.050	3.6859 e-14	10.000	1.5241e-12
system_34	LC3 (TP8)	0.010	4.5581e-10	10.000	1.7673e-07
system_34	LC3 (TP9)	0.010	1.0584e-10	10.000	1.8314e-08
system_34	LC3 (TP10)	0.020	1.5158e-11	10.000	2.4613e-09
$system_34$	LC3 (TP11)	0.020	1.7217e-12	10.000	2.8973e-10
system_34	LC3 (TP12)	0.010	1.9762e-13	10.000	2.8706e-11
system_34	LC3 (TP13)	0.040	4.7074e-14	10.000	4.4125e-12
$system_34$	LC3 (TP14)	0.060	4.4409e-14	10.000	1.6751e-12
system_34	Riot (05, 1e-11)	0 m 0.304 s	1.3289e-12	-0.000	1.8114e-10
$system_34$	Riot (10, 1e-11)	0 m 0.241 s	5.7954e-14	-0.000	3.439e-12
$system_34$	Riot (15, 1e-11)	0 m 0.268 s	6.9944e-14	-0.000	6.0574 e-13
system_34	Valencia-IVP (0.00025)	0m42.641s	1.6439e-05	10.000	0.0004796
$system_34$	Valencia-IVP (0.0025)	0 m 1.277 s	0.00016439	10.000	0.0047963
$system_34$	Valencia-IVP (0.025)	0 m 0.165 s	0.001644	10.000	0.047992
system_34	VNODE-LP (15, 1e-14,1e-14)	0 m 0.008 s	8.8818e-16	10.000	3.5527e-14
$system_34$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.010 s	8.8818e-16	10.000	3.6415e-14
$system_{-}34$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.009 s	8.8818e-16	10.000	2.931e-14

	Table 3.31: Simulation re	esults of Prol	blem 35		
Problems	Methods	c5t	c5w	c6t	c6w
system_35	TAYLOR4 (TP8)	0.010	0.94449	10.000	4.7953
$system_{-}35$	TAYLOR4 (TP9)	0.020	0.94449	10.000	4.795
$system_{-}35$	TAYLOR4 (TP10)	0.030	0.94449	10.000	4.7949
$system_{-}35$	TAYLOR4 (TP11)	0.030	0.94449	10.000	4.7949
$system_35$	TAYLOR4 (TP12)	0.050	0.94449	10.000	4.7948
$system_{-}35$	TAYLOR4 (TP13)	0.070	0.94449	10.000	4.7948
$system_35$	TAYLOR4 (TP14)	0.090	0.94449	10.000	4.7948
system_35	RK4 (TP8)	0.010	0.94449	10.000	4.7948
$system_{-}35$	RK4 (TP9)	0.020	0.94449	10.000	4.7948
$system_{-}35$	RK4 (TP10)	0.020	0.94449	10.000	4.7948
$system_{-}35$	RK4 (TP11)	0.020	0.94449	10.000	4.7948
$system_{-}35$	RK4 (TP12)	0.040	0.94449	10.000	4.7948
$system_{-}35$	RK4 (TP13)	0.050	0.94449	10.000	4.7948
$system_35$	RK4 (TP14)	0.070	0.94449	10.000	4.7948
system_35	LA3 (TP8)	0.010	0.94461	10.000	4.8179
$system_{-}35$	LA3 (TP9)	0.010	0.9446	10.000	4.809
$system_{-}35$	LA3 (TP10)	0.010	0.94456	10.000	4.8035
$system_{-}35$	LA3 (TP11)	0.020	0.94454	10.000	4.8002
$system_{-}35$	LA3 (TP12)	0.030	0.94452	10.000	4.7982
$system_{-}35$	LA3 (TP13)	0.040	0.94451	10.000	4.7969
$system_35$	LA3 (TP14)	0.050	0.9445	10.000	4.7962
system_35	LC3 (TP8)	0.010	0.94473	10.000	4.8375
$system_35$	LC3 (TP9)	0.010	0.94466	10.000	4.8213
$system_35$	LC3 (TP10)	0.020	0.94461	10.000	4.8111
$system_35$	LC3 (TP11)	0.020	0.94457	10.000	4.805
$system_{-}35$	LC3 (TP12)	0.030	0.94454	10.000	4.8012
$system_35$	LC3 (TP13)	0.030	0.94452	10.000	4.7988
$system_35$	LC3 (TP14)	0.060	0.94451	10.000	4.7973
system_35	Riot (05, 1e-11)	0 m 26.070 s	0.93958	-0.000	4.3033
$system_35$	Riot (10, 1e-11)	0 m 21.763 s	0.93958	-0.000	4.3033
$system_35$	Riot (15, 1e-11)	0 m 1.415 s	0.93958	-0.000	4.3033
system_35	Valencia-IVP (0.00025)	0 m 46.038 s	0.93957	10.000	4.2038
$system_{-}35$	Valencia-IVP (0.0025)	0 m 1.842 s	0.93976	10.000	4.2101
system_35	Valencia-IVP (0.025)	0 m 0.161 s	0.94163	10.000	4.2741
system_35	VNODE-LP (15, 1e-14,1e-14)	0 m 0.010 s	0.94965	10.000	5.8441
$system_35$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.008 s	0.94965	10.000	5.8753
$system_35$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.011 s	0.94965	10.000	5.8753

Problems	Table 3.32: Simulation results of Problem 36 roblems C5t C5w C6t C6w					
	TAYLOR4 (TP8)	0.390	3.8302e-07	10.000	3.3818e-06	
system_36 system_36	TAYLOR4 (TP9)	0.390	5.0076e-08	10.000	3.3818e-00 4.2414e-07	
system_36	TAYLOR4 (TP10)	0.480	6.2302e-09	10.000 10.000	4.2414e-07 5.0646e-08	
system_36	TAYLOR4 (TP11)	0.860	7.2726e-10	10.000	5.7903e-09	
system_36	TAYLOR4 (TP12)	1.210	8.1487e-11	10.000	6.4198e-10	
system_36	TAYLOR4 (TP13)	1.790	2.7196e-11	10.000	1.2778e-10	
system_36	TAYLOR4 (TF14)	2.760	1.3596e-11	10.000	5.2596e-11	
	,					
system_36	RK4 (TP8)	0.300	2.8762e-07	10.000	2.7084e-06	
system_36	RK4 (TP9)	0.310	4.616e-08	10.000	3.7416e-07	
system_36	RK4 (TP10)	0.380	6.6357e-09	10.000	4.8865e-08	
system_36	RK4 (TP11)	0.480	8.5565e-10	10.000	5.9451e-09	
system_36	RK4 (TP12)	0.630	1.0328e-10	10.000	6.8487e-10	
system_36	RK4 (TP13)	0.880	1.2269e-11	10.000	7.8007e-11	
system_36	RK4 (TP14)	1.240	1.7035e-12	10.000	1.1177e-11	
$system_{-}36$	LA3 (TP8)	0.300	2.2169e-07	10.000	2.0499e-06	
$system_36$	LA3 (TP9)	0.330	3.3496e-08	10.000	2.7089e-07	
$system_36$	LA3 (TP10)	0.390	4.619e-09	10.000	3.451e-08	
$system_36$	LA3 (TP11)	0.510	5.7408e-10	10.000	4.0876e-09	
$system_{-}36$	LA3 (TP12)	0.650	6.7628e-11	10.000	4.6189e-10	
$system_36$	LA3 (TP13)	0.910	7.7591e-12	10.000	5.2355e-11	
system_36	LA3 (TP14)	1.420	1.231e-12	10.000	8.5425e-12	
system_36	LC3 (TP8)	0.290	2.2911e-07	10.000	2.0717e-06	
$system_36$	LC3 (TP9)	0.330	3.4984e-08	10.000	2.7398e-07	
$system_36$	LC3 (TP10)	0.390	4.9685e-09	10.000	3.4966e-08	
$system_36$	LC3 (TP11)	0.500	6.4688e-10	10.000	4.22e-09	
$system_36$	LC3 (TP12)	0.660	7.7153e-11	10.000	4.8028e-10	
$system_36$	LC3 (TP13)	0.890	9.0523e-12	10.000	5.493e-11	
$system_36$	LC3 (TP14)	1.320	1.3678e-12	10.000	8.8445e-12	
system_36	Riot (05, 1e-11)	0 m 1.095 s	3.8821e-11	-0.000	2.6445e-10	
$system_{-}36$	Riot (10, 1e-11)	0 m 0.857 s	2.176e-13	-0.000	4.5475e-12	
system_36	Riot (15, 1e-11)	0 m1.818 s	3.1442e-13	-0.000	1.2212e-12	
system_36	Valencia-IVP (0.00025)	1 m 34.728 s	8.8326e-05	10.000	0.00054692	
$system_36$	Valencia-IVP (0.0025)	0 m 1.368 s	0.00088326	10.000	0.0054692	
system_36	Valencia-IVP (0.025)	0 m 0.178 s	0.0088326	10.000	0.054692	
system_36	VNODE-LP (15, 1e-14,1e-14)	0 m 0.014 s	1.3323e-14	10.000	9.4147e-14	
$system_36$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.014 s	1.1546e-14	10.000	8.0824 e-14	
system_36	VNODE-LP (25, 1e-14,1e-14)	0 m 0.014 s	7.9936e-15	10.000	5.9508e-14	

	Table 3.33: Simulation re	sults of Prol	blem 37		
Problems	Methods	c5t	c5w	c6t	c6w
system_37	TAYLOR4 (TP8)	0.460	0.36452	10.000	1.0893
$system_{-}37$	TAYLOR4 (TP9)	0.570	0.3637	10.000	1.0799
$system_37$	TAYLOR4 (TP10)	0.800	0.36315	10.000	1.0739
$system_37$	TAYLOR4 (TP11)	1.140	0.36279	10.000	1.0699
$system_37$	TAYLOR4 (TP12)	1.690	0.36255	10.000	1.0674
$system_{-}37$	TAYLOR4 (TP13)	2.530	0.3624	10.000	1.0658
$system_{-}37$	TAYLOR4 (TP14)	3.930	0.3623	10.000	1.0648
system_37	RK4 (TP8)	0.290	0.36214	10.000	1.063
$system_37$	RK4 (TP9)	0.360	0.36214	10.000	1.0631
$system_37$	RK4 (TP10)	0.370	0.36214	10.000	1.0631
$system_37$	RK4 (TP11)	0.560	0.36214	10.000	1.0631
$system_37$	RK4 (TP12)	0.780	0.36214	10.000	1.0631
$system_37$	RK4 (TP13)	1.090	0.36214	10.000	1.0631
$system_37$	RK4 (TP14)	1.630	0.36214	10.000	1.0631
system_37	LA3 (TP8)	0.320	0.36125	10.000	1.0578
$system_37$	LA3 (TP9)	0.300	0.36152	10.000	1.0594
$system_37$	LA3 (TP10)	0.430	0.36172	10.000	1.0606
$system_37$	LA3 (TP11)	0.590	0.36186	10.000	1.0615
$system_{-}37$	LA3 (TP12)	0.800	0.36196	10.000	1.062
$system_37$	LA3 (TP13)	1.150	0.36202	10.000	1.0624
$system_{-}37$	LA3 (TP14)	1.740	0.36207	10.000	1.0627
system_37	LC3 (TP8)	0.310	0.36119	10.000	1.0583
system_37	LC3 (TP9)	0.360	0.36148	10.000	1.0598
$system_37$	LC3 (TP10)	0.450	0.36169	10.000	1.0609
$system_37$	LC3 (TP11)	0.590	0.36184	10.000	1.0616
system_37	LC3 (TP12)	0.780	0.36195	10.000	1.0621
system_37	LC3 (TP13)	1.200	0.36201	10.000	1.0625
$system_37$	LC3 (TP14)	1.710	0.36206	10.000	1.0627
system_37	Riot (05, 1e-11)	1m11.410s	0.25904	-0.000	0.51435
$system_37$	Riot (10, 1e-11)	0 m 5.525 s	0.25904	-0.000	0.51435
$system_37$	Riot (15, 1e-11)	0 m 20.456 s	0.25904	-0.000	0.51435
system_37	Valencia-IVP (0.00025)	1 m 26.397 s	0.25956	10.000	0.51575
$system_37$	Valencia-IVP (0.0025)	0 m 1.774 s	0.26021	10.000	0.52027
system_37	Valencia-IVP (0.025)	0 m 0.170 s	0.26796	10.000	0.56814
system_37	VNODE-LP (15, 1e-14,1e-14)	0 m 0.012 s	0.26197	10.000	0.53714
$system_37$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.014 s	0.26206	10.000	0.53773
$system_37$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.015 s	0.26225	10.000	0.53846

Problems	Table 3.34: Simulation results of Problem 38 s Methods c5t c5w c6t c6w				
system_38	TAYLOR4 (TP8)	0.170	2.7922e-08	10.000	7.4431e-08
system_38	TAYLOR4 (TP9)	0.170	3.2672e-09	10.000	7.4451e-08 7.942e-09
system_38	TAYLOR4 (TP10)	0.220	4.1428e-10	10.000	8.3748e-10
system_38	TAYLOR4 (TP10)	0.400	4.1428e-10 4.6597e-11	10.000	8.5737e-11
system_38	TAYLOR4 (TP12)	0.400	5.4421e-12	10.000	8.7429e-12
system_38	TAYLOR4 (TP13)	0.870	6.8723e-13	10.000	9.297e-13
system_38	TAYLOR4 (TP13)	1.320	0.8723e-13 2.669e-13	10.000	9.297e-13 1.6706e-13
system_38	RK4 (TP8)	0.120	2.1332e-08	10.000	4.498e-08
$system_{-}38$	RK4 (TP9)	0.160	2.19e-09	10.000	4.8124e-09
$system_38$	RK4 (TP10)	0.220	2.2353e-10	10.000	4.9613e-10
$system_38$	RK4 (TP11)	0.300	2.2414e-11	10.000	5.1359e-11
$system_38$	RK4 (TP12)	0.430	2.2782e-12	10.000	5.2231e-12
$system_{-}38$	RK4 (TP13)	0.620	2.7422e-13	10.000	5.4531e-13
system_38	RK4 (TP14)	0.930	9.8588e-14	10.000	8.3211e-14
system_38	LA3 (TP8)	0.090	2.3226e-08	10.000	5.5003e-08
$system_38$	LA3 (TP9)	0.120	2.0602e-09	10.000	5.7806e-09
$system_38$	LA3 (TP10)	0.160	1.8549e-10	10.000	5.8628e-10
$system_38$	LA3 (TP11)	0.220	1.7422e-11	10.000	6.0634 e-11
$system_{-}38$	LA3 (TP12)	0.280	1.6807e-12	10.000	6.1279 e-12
$system_38$	LA3 (TP13)	0.420	1.9051e-13	10.000	6.3527e-13
$system_38$	LA3 (TP14)	0.600	6.2839 e-14	10.000	8.3517e-14
system_38	LC3 (TP8)	0.100	3.1915e-08	10.000	3.6288e-08
system_38	LC3 (TP9)	0.080	2.9665e-09	10.000	3.5504e-09
system_38	LC3 (TP10)	0.180	3.4742e-10	10.000	3.6358e-10
system_38	LC3 (TP11)	0.240	3.4815e-11	10.000	3.6803e-11
system_38	LC3 (TP12)	0.310	3.511e-12	10.000	3.7114e-12
system_38	LC3 (TP13)	0.480	3.8325e-13	10.000	3.8405e-13
$system_38$	LC3 (TP14)	0.690	8.8596e-14	10.000	6.0923 e-14
system_38	Riot (05, 1e-11)	0m1.119s	8.3338e-11	-0.000	3.9802e-10
$system_38$	Riot (10, 1e-11)	0 m 0.599 s	3.0975e-14	-0.000	2.307e-11
$system_38$	Riot (15, 1e-11)	0 m 0.755 s	4.4409e-15	-0.000	4.7198e-14
system_38	Valencia-IVP (0.00025)	1m10.629s	0.00053855	9.927	935.08
$system_38$	Valencia-IVP (0.0025)	0 m 4.512 s	0.0054036	7.390	83.458
$system_38$	Valencia-IVP (0.025)	0 m 0.436 s	0.055881	4.675	9.5271
system_38	VNODE-LP (15, 1e-14,1e-14)	0 m 0.027 s	2.3315e-15	10.000	1.7986e-14
system_38	VNODE-LP (20, 1e-14,1e-14)	0 m 0.023 s	1.4433e-15	10.000	1.2323e-14
system_38	VNODE-LP (25, 1e-14,1e-14)	0 m 0.026 s	1.4155e-15	10.000	1.1435e-14
	. , , ,	1			

Table 3.35: Simulation results of Problem 39					
Problems	Methods	c5t	c5w	c6t	c6w
system_39	TAYLOR4 (TP8)	0.180	0.098956	10.000	0.0040241
$system_{-}39$	TAYLOR4 (TP9)	0.250	0.098918	10.000	0.0040059
$system_39$	TAYLOR4 (TP10)	0.350	0.098895	10.000	0.0039945
$system_39$	TAYLOR4 (TP11)	0.500	0.098881	10.000	0.0039875
$system_39$	TAYLOR4 (TP12)	0.760	0.098872	10.000	0.0039831
$system_{-}39$	TAYLOR4 (TP13)	1.150	0.098866	10.000	0.0039803
system_39	TAYLOR4 (TP14)	1.730	0.098863	10.000	0.0039785
system_39	RK4 (TP8)	0.110	0.098857	10.000	0.0039757
$system_39$	RK4 (TP9)	0.170	0.098857	10.000	0.0039756
$system_39$	RK4 (TP10)	0.230	0.098857	10.000	0.0039756
$system_39$	RK4 (TP11)	0.310	0.098856	10.000	0.0039756
$system_39$	RK4 (TP12)	0.480	0.098856	10.000	0.0039756
$system_39$	RK4 (TP13)	0.690	0.098856	10.000	0.0039756
$system_39$	RK4 (TP14)	1.060	0.098856	10.000	0.0039756
system_39	LA3 (TP8)	0.100	0.10458	10.000	0.0045642
$system_39$	LA3 (TP9)	0.130	0.10263	10.000	0.0043234
$system_39$	LA3 (TP10)	0.180	0.10129	10.000	0.0041864
$system_39$	LA3 (TP11)	0.240	0.1004	10.000	0.0041045
$system_{-}39$	LA3 (TP12)	0.330	0.099845	10.000	0.0040554
$system_39$	LA3 (TP13)	0.470	0.099481	10.000	0.0040253
$system_39$	LA3 (TP14)	0.690	0.09925	10.000	0.0040067
system_39	LC3 (TP8)	0.110	0.10484	10.000	0.0046338
system_39	LC3 (TP9)	0.150	0.10273	10.000	0.0043531
system_39	LC3 (TP10)	0.200	0.10128	10.000	0.0042001
$system_39$	LC3 (TP11)	0.270	0.1004	10.000	0.004112
$system_39$	LC3 (TP12)	0.380	0.099832	10.000	0.0040597
$system_39$	LC3 (TP13)	0.560	0.099472	10.000	0.0040278
$system_39$	LC3 (TP14)	0.820	0.099244	10.000	0.0040082
system_39	Riot (05, 1e-11)	0 m 3.777 s	0.09197	-0.000	1.135e-05
$system_39$	Riot (10, 1e-11)	6 m 32.012 s	0.09682	-0.000	0.24626
$system_39$	Riot (15, 1e-11)	13m4.722s	0.09682	-0.000	0.24626
system_39	Valencia-IVP (0.00025)	0 m 23.487 s	0.67999	2.515	881.5
$system_39$	Valencia-IVP (0.0025)	0 m 1.379 s	0.68374	2.303	6.9672
system_39	Valencia-IVP (0.025)	0 m 0.247 s	0.73359	2.275	9.8884
system_39	VNODE-LP (15, 1e-14,1e-14)	0 m 0.028 s	0.10211	10.000	0.29379
$system_39$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.028 s	0.10278	10.000	0.30109
$system_{-}39$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.025 s	0.10322	10.000	0.3087

Problems	Table 3.36: Simulation re	able 3.36: Simulation results of Problem 40 Methods c5t c5w c6t c6w				
system_40	TAYLOR4 (TP8)	25.590	1.5611e-06	9.522	0.62151	
system_40	TAYLOR4 (TP9)	35.300	1.886e-07	10.000	0.24996	
system_40	TAYLOR4 (TP10)	49.740	2.2374e-08	10.000	0.029197	
system_40	TAYLOR4 (TP11)	74.140	2.6015e-09	10.000	0.0094394	
system_40	TAYLOR4 (TP12)	113.610	2.9517e-10	10.000	0.0011596	
system_40	TAYLOR4 (TP13)	173.010	3.3894e-11	10.000	0.0001425	
system_40	TAYLOR4 (TP14)	266.180	5.7838e-12	10.000	2.3248e-05	
system_40	RK4 (TP8)	18.480	1.0075e-06	10.000	0.54239	
system_40	RK4 (TP9)	21.920	1.3601e-07	10.000	0.1267	
system_40	RK4 (TP10)	30.550	1.5332e-08	10.000	0.023281	
system_40	RK4 (TP11)	43.010	1.6852e-09	10.000	0.0039165	
system_40	RK4 (TP12)	64.720	1.8093e-10	10.000	0.00066257	
system_40	RK4 (TP13)	101.010	1.9397e-11	10.000	7.4275e-05	
$system_40$	RK4 (TP14)	151.690	2.5571e-12	10.000	9.829 e-06	
system_40	LA3 (TP8)	16.790	1.1266e-06	10.000	0.60409	
system_40	LA3 (TP9)	21.760	1.3529 e-07	10.000	0.15636	
$system_40$	LA3 (TP10)	29.580	1.6075 e - 08	10.000	0.026108	
$system_40$	LA3 (TP11)	41.390	1.8938e-09	10.000	0.0063105	
$system_{-}40$	LA3 (TP12)	60.530	2.1847e-10	10.000	0.00083967	
$system_{-}40$	LA3 (TP13)	91.840	2.4841e-11	10.000	0.00010056	
system_40	LA3 (TP14)	136.740	3.209e-12	10.000	1.2899e-05	
system_40	LC3 (TP8)	16.910	1.2305e-06	9.878	0.61908	
$system_40$	LC3 (TP9)	21.020	1.5037e-07	10.000	0.16173	
$system_40$	LC3 (TP10)	28.780	1.8244 e-08	10.000	0.033471	
$system_40$	LC3 (TP11)	39.800	2.1564e-09	10.000	0.0072601	
$system_{-}40$	LC3 (TP12)	58.290	2.5061e-10	10.000	0.0009416	
$system_40$	LC3 (TP13)	88.440	2.8377e-11	10.000	0.00011561	
system_40	LC3 (TP14)	133.470	3.5767e-12	10.000	1.4508e-05	
system_40	Riot (05, 1e-11)	0 m 26.087 s	1.9465e-10	0.000	0	
$system_40$	Riot (10, 1e-11)	11m50.212s	5.0149e-12	0.000	0	
system_40	Riot (15, 1e-11)	60 m 12.975 s	7.1054e-15	0.000	0	
system_40	Valencia-IVP (0.00025)	0 m 12.132 s	0.0010009	0.000	0	
$system_40$	Valencia-IVP (0.0025)	0 m 0.366 s	0.010036	0.000	0	
system_40	Valencia-IVP (0.025)	0 m 0.035 s	0.10322	0.000	0	
system_40	VNODE-LP (15, 1e-14,1e-14)	0 m 0.046 s	3.8192e-14	3.000	2.9702e-10	
$system_40$	VNODE-LP (20, 1e-14,1e-14)	0 m 3.850 s	2.7978e-14	0.000	0	
system_40	VNODE-LP (25, 1e-14,1e-14)	0 m 4.400 s	2.1316e-14	0.000	0	

	Table 3.37: Simulation re	esults of Proble	em 41		
Problems	Methods	c5t	c5w	c6t	c6w
system_41	TAYLOR4 (TP8)	38.240	0.23341	2.193	0.81586
$system_41$	TAYLOR4 (TP9)	56.240	0.23356	2.144	0.84571
$system_41$	TAYLOR4 (TP10)	82.870	0.23312	2.150	0.844
$system_41$	TAYLOR4 (TP11)	129.130	0.23292	2.133	0.86159
$system_41$	TAYLOR4 (TP12)	203.650	0.23286	2.139	0.85592
$system_41$	TAYLOR4 (TP13)	317.250	0.2329	2.131	0.85896
$system_41$	TAYLOR4 (TP14)	501.260	0.23288	2.155	0.84068
system_41	RK4 (TP8)	24.250	0.23001	2.229	0.79366
$system_41$	RK4 (TP9)	28.080	0.22991	2.223	0.79461
$system_41$	RK4 (TP10)	40.330	0.22957	2.211	0.80802
$system_41$	RK4 (TP11)	59.630	0.23089	2.190	0.8191
$system_41$	RK4 (TP12)	90.700	0.23209	2.165	0.83117
$system_41$	RK4 (TP13)	144.140	0.23228	2.156	0.83803
$system_41$	RK4 (TP14)	224.750	0.23232	2.149	0.84697
system_41	LA3 (TP8)	22.090	0.23611	2.198	0.81753
$system_41$	LA3 (TP9)	27.740	0.23533	2.193	0.81736
$system_41$	LA3 (TP10)	40.040	0.23467	2.157	0.83501
$system_41$	LA3 (TP11)	59.630	0.23386	2.143	0.84664
$system_41$	LA3 (TP12)	90.130	0.23336	2.160	0.83456
$system_41$	LA3 (TP13)	139.080	0.23337	2.149	0.84272
system_41	LA3 (TP14)	223.950	0.2331	2.150	0.84385
system_41	LC3 (TP8)	20.800	0.23786	2.181	0.821
system_41	LC3 (TP9)	29.050	0.23605	2.187	0.8203
system_41	LC3 (TP10)	40.420	0.23551	2.158	0.83568
$system_41$	LC3 (TP11)	59.040	0.23434	2.140	0.84825
system_41	LC3 (TP12)	91.580	0.23364	2.156	0.84324
system_41	LC3 (TP13)	142.150	0.23351	2.141	0.85052
$system_41$	LC3 (TP14)	220.420	0.23324	2.140	0.85526
system_41	Riot (05, 1e-11)	4 m 0.951 s	0.22004	0.000	0
$system_41$	Riot (10, 1e-11)	81 m 51.368 s	0.22004	0.000	0
$system_41$	Riot (15, 1e-11)	305 m 35.205 s	0.22004	0.000	0
system_41	Valencia-IVP (0.00025)	0 m 10.623 s	0.3966	0.000	0
$system_41$	Valencia-IVP (0.0025)	0 m 0.275 s	0.4067	0.000	0
$system_41$	Valencia-IVP (0.025)	0 m 0.029 s	0.51161	0.000	0
system_41	VNODE-LP (15, 1e-14,1e-14)	0 m 0.056 s	0.24701	2.251	1.0915
$system_41$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.061 s	0.24758	2.240	1.1135
$system_41$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.068 s	0.24797	2.231	1.1282

Problems	Table 3.38: Simulation results of Problem 42 Methods c5t c5w c6t c6w				
system_42	TAYLOR4 (TP8)	0.670	6.5182e-08	10.000	0.0001853
$system_42$	TAYLOR4 (TP9)	0.970	6.9772e-09	10.000	7.5231e-05
$system_42$	TAYLOR4 (TP10)	1.510	7.267e-10	10.000	2.3754e-05
$system_42$	TAYLOR4 (TP11)	2.340	7.4017e-11	10.000	3.93e-06
$system_42$	TAYLOR4 (TP12)	3.720	7.7236e-12	10.000	4.2675 e - 07
$system_42$	TAYLOR4 (TP13)	5.810	1.1897e-12	10.000	6.9992e-08
$system_42$	TAYLOR4 (TP14)	9.150	7.8271e-13	10.000	4.9014e-08
system_42	RK4 (TP8)	0.420	4.9849e-08	10.000	6.6443e-05
$system_42$	RK4 (TP9)	0.600	5.3644e-09	10.000	4.1734e-05
$system_42$	RK4 (TP10)	0.880	5.6878e-10	10.000	2.3717e-05
$system_42$	RK4 (TP11)	1.360	5.7543e-11	10.000	3.2772 e-06
$system_42$	RK4 (TP12)	2.140	5.9515e-12	10.000	3.4427e-07
$system_42$	RK4 (TP13)	3.380	6.9655 e-13	10.000	4.1534 e-08
$system_42$	RK4 (TP14)	5.250	2.3448e-13	10.000	1.4537e-08
system_42	LA3 (TP8)	0.380	5.4075e-08	10.000	0.00017238
$system_42$	LA3 (TP9)	0.530	5.9316e-09	10.000	4.4174 e - 05
$system_42$	LA3 (TP10)	0.800	6.3172 e-10	10.000	2.4504 e-05
$system_42$	LA3 (TP11)	1.180	6.4227e-11	10.000	3.3231e-06
$system_{-}42$	LA3 (TP12)	1.840	6.5794 e-12	10.000	3.4972 e-07
$system_42$	LA3 (TP13)	2.940	7.5517e-13	10.000	4.1783e-08
$system_42$	LA3 (TP14)	4.530	2.1938e-13	10.000	1.3757e-08
system_42	LC3 (TP8)	0.360	5.3813e-08	10.000	0.00013458
$system_42$	LC3 (TP9)	0.480	5.0378e-09	10.000	7.047e-05
$system_42$	LC3 (TP10)	0.700	4.7183e-10	10.000	2.1268e-05
$system_42$	LC3 (TP11)	1.030	4.4507e-11	10.000	2.4301e-06
$system_{-}42$	LC3 (TP12)	1.600	4.3485e-12	10.000	2.4349e-07
$system_42$	LC3 (TP13)	2.530	4.9805e-13	10.000	2.9361e-08
$system_42$	LC3 (TP14)	3.990	1.7741e-13	10.000	1.1287e-08
system_42	Riot (05, 1e-11)	0 m 0.410 s	1.4272e-10	-0.000	2.2876e-08
$system_42$	Riot (10, 1e-11)	0 m 0.197 s	4.0634e-14	-0.000	1.0613e-09
$system_42$	Riot (15, 1e-11)	0 m 0.264 s	1.8874e-15	-0.000	1.1936e-09
system_42	Valencia-IVP (0.00025)	0 m 4.192 s	0.00030347	9.119	981.67
$system_42$	Valencia-IVP (0.0025)	0 m 0.741 s	0.0030419	7.175	270.69
$system_42$	Valencia-IVP (0.025)	0 m 0.118 s	0.031193	5.000	19.406
system_42	VNODE-LP (15, 1e-14,1e-14)	0 m 0.010 s	5.5511e-15	10.000	3.5123e-12
$system_42$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.007 s	3.7748e-15	10.000	2.3554e-12
$system_42$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.010 s	3.6637e-15	10.000	2.6627e-12

	Table 3.39: Simulation re	esults of Proble	em 43		
Problems	Methods	c5t	c5w	c6t	c6w
system_43	TAYLOR4 (TP8)	0.950	0.40394	3.329	6930.6
$system_43$	TAYLOR4 (TP9)	1.460	0.40494	3.308	4411.4
$system_43$	TAYLOR4 (TP10)	2.430	0.40469	3.306	2799.3
$system_43$	TAYLOR4 (TP11)	3.590	0.4051	3.299	1762.2
$system_43$	TAYLOR4 (TP12)	5.760	0.4055	3.289	1112.5
$system_{-}43$	TAYLOR4 (TP13)	9.260	0.40555	3.287	701.1
system_43	TAYLOR4 (TP14)	14.500	0.40561	3.280	442.54
system_43	RK4 (TP8)	0.530	0.40361	3.338	8726.8
$system_43$	RK4 (TP9)	0.800	0.40434	3.333	5561.3
$system_43$	RK4 (TP10)	1.200	0.40498	3.316	3507.6
$system_43$	RK4 (TP11)	1.850	0.40521	3.301	2218.8
$system_43$	RK4 (TP12)	2.930	0.40515	3.288	1405.5
$system_43$	RK4 (TP13)	4.610	0.4055	3.282	888.14
$system_43$	RK4 (TP14)	7.290	0.40557	3.279	560.43
system_43	LA3 (TP8)	0.490	0.41849	3.263	11235
$system_43$	LA3 (TP9)	0.680	0.41437	3.282	7043.4
$system_43$	LA3 (TP10)	1.030	0.41131	3.280	4481.6
$system_43$	LA3 (TP11)	1.590	0.40936	3.277	2831.3
$system_43$	LA3 (TP12)	2.470	0.40803	3.276	1786.1
$system_43$	LA3 (TP13)	3.930	0.40718	3.283	1129.3
$_{\rm system_43}$	LA3 (TP14)	6.240	0.40664	3.276	713.89
system_43	LC3 (TP8)	0.460	0.42315	3.230	10495
system_43	LC3 (TP9)	0.660	0.41741	3.254	6704.5
$system_43$	LC3 (TP10)	0.990	0.41374	3.259	4299.6
$system_43$	LC3 (TP11)	1.500	0.41082	3.267	2691.3
$system_43$	LC3 (TP12)	2.310	0.40895	3.271	1711.2
$system_43$	LC3 (TP13)	3.680	0.40774	3.271	1079.2
$system_43$	LC3 (TP14)	5.800	0.40699	3.272	680.82
system_43	Riot (05, 1e-11)	0 m 57.400 s	0.36095	0.000	0
$system_43$	Riot (10, 1e-11)	42m34.441s	0.36736	0.000	0
$system_43$	Riot (15, 1e-11)	335 m 18.382 s	0.36736	0.000	0
system_43	Valencia-IVP (0.00025)	0 m 4.077 s	0.63512	2.885	954.65
$system_43$	Valencia-IVP (0.0025)	0 m 0.463 s	0.63944	2.860	300.15
$system_43$	Valencia-IVP (0.025)	0 m 0.116 s	0.68415	2.650	29.66
system_43	VNODE-LP (15, 1e-14,1e-14)	0 m 0.010 s	0.55406	2.715	13888
$system_43$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.011 s	0.55889	2.580	29046
$system_43$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.009 s	0.52831	2.438	43755

Problems	Table 3.40: Simulation re	esults of Prol	blem 44 c5w	c6t	c6w
system_44	TAYLOR4 (TP8)	99.250	1.6729e-08	10.000	5.1709e-07
system_44 system_44	TAYLOR4 (TP9)	147.970	1.7394e-09	10.000	7.0242e-08
system_44	TAYLOR4 (TP10)	226.180	1.7919e-10	10.000	9.4333e-09
system_44 system_44	TAYLOR4 (TP11)	350.780	1.8123e-11	10.000	1.2442e-09
system_44 system_44	TAYLOR4 (TP12)	555.550	1.82e-12	10.000	1.6044e-10
system_44 system_44	TAYLOR4 (TP13)	878.990	1.9962e-13	10.000	2.0348e-11
system_44 system_44	TAYLOR4 (TP14)	1374.220	1.9529e-13	10.000	2.0348e-11 2.7485e-12
	` '				
system_44	RK4 (TP8)	87.650	2.171e-08	10.000	6.5343e-07
$system_44$	RK4 (TP9)	130.540	2.2593e-09	10.000	8.9434e-08
$system_44$	RK4 (TP10)	200.110	2.3279e-10	10.000	1.2006e-08
$system_44$	RK4 (TP11)	312.950	2.3621e-11	10.000	1.5783e-09
$system_44$	RK4 (TP12)	493.220	2.3793e-12	10.000	2.0472e-10
$system_{-}44$	RK4 (TP13)	783.320	2.4301e-13	10.000	2.5788e-11
system_44	RK4 (TP14)	1230.930	7.9048e-14	10.000	3.2618e-12
system_44	LA3 (TP8)	71.940	1.6981e-08	10.000	5.8303e-07
$system_44$	LA3 (TP9)	98.920	1.7519e-09	10.000	6.9277e-08
$system_44$	LA3 (TP10)	149.090	1.7923e-10	10.000	8.6749 e - 09
$system_44$	LA3 (TP11)	233.660	1.8224 e-11	10.000	1.1029e-09
$system_{-}44$	LA3 (TP12)	361.000	1.8307e-12	10.000	1.3978e-10
$system_{-}44$	LA3 (TP13)	9.390	0	0.000	0
$system_44$	LA3 (TP14)	13.960	0	0.000	0
system_44	LC3 (TP8)	75.260	1.7199e-08	10.000	6.3209e-07
$system_44$	LC3 (TP9)	106.040	1.7313e-09	10.000	7.4196e-08
$system_44$	LC3 (TP10)	163.720	1.801e-10	10.000	9.1825 e-09
$system_44$	LC3 (TP11)	248.310	1.8118e-11	10.000	1.157e-09
$system_{-}44$	LC3 (TP12)	9.380	0	0.000	0
$system_44$	LC3 (TP13)	9.390	0	0.000	0
$system_44$	LC3 (TP14)	13.940	0	0.000	0
system_44	Riot				
system_44	Valencia-IVP (0.00025)	0m17.732s	0.00067987	8.555	999.95
$system_44$	Valencia-IVP (0.0025)	0 m 1.845 s	0.0068261	7.338	997.5
$system_44$	Valencia-IVP (0.025)	0 m 0.222 s	0.071092	6.000	977.47
system_44	VNODE-LP (15, 1e-14,1e-14)	0 m 0.026 s	8.3267e-16	10.000	1.0658e-14
$system_44$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.019 s	4.996e-16	10.000	5.5511e-15
system_44	VNODE-LP (25, 1e-14,1e-14)	0 m 0.014 s	1.9429e-16	10.000	3.9968e-15

	Table 3.41: Simulation re	esults of Pro	blem 45		
Problems	Methods	c5t	c5w	c6t	c6w
system_45	TAYLOR4 (TP8)	109.900	0.36788	10.000	0.1126
$system_45$	TAYLOR4 (TP9)	162.030	0.36788	10.000	0.1126
$system_45$	TAYLOR4 (TP10)	247.300	0.36788	10.000	0.1126
$system_45$	TAYLOR4 (TP11)	385.000	0.36788	10.000	0.1126
$system_45$	TAYLOR4 (TP12)	610.920	0.36788	10.000	0.1126
$system_{-}45$	TAYLOR4 (TP13)	978.780	0.36788	10.000	0.1126
$_{\rm system_45}$	TAYLOR4 (TP14)	1538.830	0.36788	10.000	0.1126
system_45	RK4 (TP8)	95.190	0.36788	10.000	0.1126
$system_45$	RK4 (TP9)	141.530	0.36788	10.000	0.1126
$system_45$	RK4 (TP10)	218.660	0.36788	10.000	0.1126
$system_{-}45$	RK4 (TP11)	338.220	0.36788	10.000	0.1126
$system_45$	RK4 (TP12)	538.980	0.36788	10.000	0.1126
$system_{-}45$	RK4 (TP13)	853.390	0.36788	10.000	0.1126
system_45	RK4 (TP14)	1335.820	0.36788	10.000	0.1126
system_45	LA3 (TP8)	75.870	0.38756	10.000	0.18747
$system_45$	LA3 (TP9)	106.810	0.38077	10.000	0.15599
$system_45$	LA3 (TP10)	164.780	0.37601	10.000	0.13858
$system_{-}45$	LA3 (TP11)	253.600	0.37304	10.000	0.12843
$system_{-}45$	LA3 (TP12)	392.330	0.37115	10.000	0.12237
$system_{-}45$	LA3 (TP13)	628.270	0.36994	10.000	0.11868
system_45	LA3 (TP14)	990.970	0.36917	10.000	0.1164
system_45	LC3 (TP8)	79.310	0.38884	10.000	0.192
$system_45$	LC3 (TP9)	114.090	0.38141	10.000	0.15824
$system_45$	LC3 (TP10)	175.810	0.37636	10.000	0.13975
$system_{-}45$	LC3 (TP11)	272.780	0.37326	10.000	0.1291
$system_{-}45$	LC3 (TP12)	431.510	0.37127	10.000	0.12276
$system_{-}45$	LC3 (TP13)	676.980	0.37001	10.000	0.11892
$system_45$	LC3 (TP14)	1073.260	0.36923	10.000	0.11655
system_45	Riot				
system_45	Valencia-IVP (0.00025)	0 m 17.383 s	2.72	4.274	999.57
$system_45$	Valencia-IVP (0.0025)	0 m 1.838 s	2.7353	4.263	997.63
$system_45$	Valencia-IVP (0.025)	0 m 0.222 s	2.8947	4.150	973.41
system_45	VNODE-LP (15, 1e-14,1e-14)	0 m 0.024 s	0.36788	10.000	0.66718
$system_45$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.020 s	0.36788	10.000	0.66718
system_45	VNODE-LP (25, 1e-14,1e-14)	0 m 0.013 s	0.36788	10.000	0.66718

Problems	Table 3.42: Simulation re	esults of Prol	$ \begin{array}{c} \text{blem } 46 \\ \text{c5w} \end{array} $	c6t	c6w
system_46	TAYLOR4 (TP8)	206.640	2.8129e-07	10.000	4.6794e-08
$system_{-}46$	TAYLOR4 (TP9)	295.550	3.9758e-08	10.000	6.1744e-09
system_46	TAYLOR4 (TP10)	442.500	5.6043e-09	10.000	9.4693e-10
system_46	TAYLOR4 (TP11)	659.730	7.9915e-10	10.000	1.3713e-10
$system_46$	TAYLOR4 (TP12)	1006.260	1.1174e-10	10.000	2.0165e-11
system_46	TAYLOR4 (TP13)	1520.690	1.557e-11	10.000	2.9375e-12
$system_46$	TAYLOR4 (TP14)	2311.850	2.162e-12	10.000	4.3671e-13
system_46	RK4 (TP8)	181.660	3.5581e-07	10.000	6.0115e-08
system_46	RK4 (TP9)	266.450	5.0501 e-08	10.000	8.4781e-09
system_46	RK4 (TP10)	398.290	7.1016e-09	10.000	1.1435e-09
$system_46$	RK4 (TP11)	595.700	9.957e-10	10.000	1.7022e-10
$system_46$	RK4 (TP12)	900.870	1.3983e-10	10.000	2.492e-11
$system_{-}46$	RK4 (TP13)	1372.050	1.9572e-11	10.000	3.7196e-12
$system_46$	RK4 (TP14)	2083.170	2.7271e-12	10.000	5.4328e-13
system_46	LA3 (TP8)	142.750	3.029e-07	10.000	8.59e-08
$system_46$	LA3 (TP9)	204.050	3.6926 e - 08	10.000	7.3781e-09
$system_{-}46$	LA3 (TP10)	301.230	4.8977e-09	10.000	9.0584 e-10
$system_46$	LA3 (TP11)	455.320	6.5218 e-10	10.000	1.2048e-10
$system_{-}46$	LA3 (TP12)	683.080	9.0125e-11	10.000	1.6853e-11
$system_{-}46$	LA3 (TP13)	1035.690	1.2352e-11	10.000	2.3525 e-12
$system_46$	LA3 (TP14)	18.270	0	0.000	0
system_46	LC3 (TP8)	149.890	3.2956e-07	10.000	1.0752e-07
$system_46$	LC3 (TP9)	219.390	4.0029 e - 08	10.000	8.8952e-09
$system_46$	LC3 (TP10)	323.850	5.1723e-09	10.000	1.0649e-09
$system_46$	LC3 (TP11)	490.370	6.9923e-10	10.000	1.2867e-10
$system_{-}46$	LC3 (TP12)	737.050	9.5419e-11	10.000	1.7671e-11
$system_{-}46$	LC3 (TP13)	1110.750	1.3104e-11	10.000	2.5332e-12
$system_46$	LC3 (TP14)	18.420	0	0.000	0
system_46	Riot				
system_46	Valencia-IVP (0.00025)	0 m 19.620 s	0.90083	1.613	998.27
system_46	Valencia-IVP (0.0025)	0 m 2.097 s	10.696	1.383	994.33
$system_{-}46$	Valencia-IVP (0.025)	0 m 0.280 s	717.1	1.000	717.1
system_46	VNODE-LP (15, 1e-14,1e-14)	0m0.112s	2.9109e-15	10.000	8.7708e-14
system_46	VNODE-LP (20, 1e-14,1e-14)	0 m 0.064 s	1.5613e-15	10.000	3.9968e-14
$system_46$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.040 s	8.3267e-16	10.000	2.4092e-14

Problems	Table 3.43: Simulation re	esults of Pro	blem 47 c5w	c6t	c6w
system_47	TAYLOR4 (TP8)	251.600	0.073576	10.000	9.138e-06
system_47	TAYLOR4 (TP9)	370.930	0.073576	10.000	9.0857e-06
system_47	TAYLOR4 (TP10)	574.250	0.073576	10.000	9.08e-06
system_47	TAYLOR4 (TP11)	896.240	0.073576	10.000	9.08e-06
system_47	TAYLOR4 (TP12)	1411.760	0.073576	10.000	9.08e-06
$system_47$	TAYLOR4 (TP13)	2235.520	0.073576	10.000	9.08e-06
system_47	TAYLOR4 (TP14)	3574.470	0.073576	10.000	9.08e-06
$system_47$	RK4 (TP8)	214.830	0.073576	10.000	9.1474e-06
$system_47$	RK4 (TP9)	329.930	0.073576	10.000	9.0882e-06
$system_47$	RK4 (TP10)	514.490	0.073576	10.000	9.08e-06
$system_47$	RK4 (TP11)	804.210	0.073576	10.000	9.08e-06
$system_47$	RK4 (TP12)	1261.520	0.073576	10.000	9.08e-06
$system_47$	RK4 (TP13)	1985.340	0.073576	10.000	9.08e-06
$system_47$	RK4 (TP14)	3126.690	0.073576	10.000	9.08e-06
system_47	LA3 (TP8)	172.260	0.073587	10.000	5.1859e-05
$system_47$	LA3 (TP9)	253.280	0.073581	10.000	2.9554e-05
$system_47$	LA3 (TP10)	387.100	0.073578	10.000	1.9645 e - 05
$system_47$	LA3 (TP11)	606.460	0.073577	10.000	1.4898e-05
$system_47$	LA3 (TP12)	939.230	0.073576	10.000	1.2458 e-05
$system_47$	LA3 (TP13)	1476.800	0.073576	10.000	1.1107e-05
$system_47$	LA3 (TP14)	2318.910	0.073576	10.000	1.0316 e-05
system_47	LC3 (TP8)	183.610	0.073588	10.000	5.7105e-05
$system_47$	LC3 (TP9)	275.560	0.073581	10.000	3.2142 e-05
$system_47$	LC3 (TP10)	417.670	0.073578	10.000	2.056e-05
$system_47$	LC3 (TP11)	655.720	0.073577	10.000	1.5314 e-05
$system_47$	LC3 (TP12)	1024.290	0.073576	10.000	1.2655 e - 05
$system_47$	LC3 (TP13)	1599.140	0.073576	10.000	1.1206 e-05
$system_47$	LC3 (TP14)	2513.770	0.073576	10.000	1.0371 e-05
system_47	Riot				
system_47	Valencia-IVP (0.00025)	0m19.696s	43.149	1.244	998.7
$system_47$	Valencia-IVP (0.0025)	0 m 2.122 s	62.436	1.215	989.09
system_47	Valencia-IVP (0.025)	0 m 0.270 s	832.17	0.975	832.17
system_47	VNODE-LP (15, 1e-14,1e-14)	0m0.112s	0.073576	10.000	0.19992
$system_47$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.063 s	0.073576	10.000	0.19992
$system_47$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.038 s	0.073576	10.000	0.19992

Problems	Table 3.44: Simulation re			- C+	c6w
	Methods	c5t	c5w	c6t	
system_48	TAYLOR4 (TP8)	270.510	3.5098e-08	10.000	7.1884e-07
$system_48$	TAYLOR4 (TP9)	411.140	3.7378e-09	10.000	1.0437e-07
$system_48$	TAYLOR4 (TP10)	636.760	3.9037e-10	10.000	1.5031e-08
$system_48$	TAYLOR4 (TP11)	1003.860	3.9284e-11	10.000	2.1706e-09
$system_48$	TAYLOR4 (TP12)	1586.020	4.0629e-12	10.000	3.1246e-10
$system_48$	TAYLOR4 (TP13)	2484.510	4.9355e-13	10.000	4.4848e-11
system_48	TAYLOR4 (TP14)	3908.730	1.9457e-13	10.000	6.4941e-12
system_48	RK4 (TP8)	244.580	4.4892e-08	10.000	9.0045e-07
$system_48$	RK4 (TP9)	372.300	4.8038e-09	10.000	1.306e-07
$system_48$	RK4 (TP10)	583.480	5.112e-10	10.000	1.8909e-08
$system_48$	RK4 (TP11)	921.360	5.1871e-11	10.000	2.7231e-09
$system_48$	RK4 (TP12)	1449.170	5.2396e-12	10.000	3.9235e-10
$system_48$	RK4 (TP13)	2274.660	5.6177e-13	10.000	5.6309e-11
system_48	RK4 (TP14)	3598.580	1.0719e-13	10.000	8.1017e-12
system_48	LA3 (TP8)	192.150	3.5165e-08	10.000	5.7435e-06
$system_48$	LA3 (TP9)	282.410	3.6459 e-09	10.000	3.0749e-07
system_48	LA3 (TP10)	432.900	3.8153e-10	10.000	2.5881e-08
system_48	LA3 (TP11)	688.310	3.9668e-11	10.000	2.7242e-09
$system_48$	LA3 (TP12)	1069.590	4.036e-12	10.000	3.2499e-10
system_48	LA3 (TP13)	24.680	0	0.000	0
system_48	LA3 (TP14)	32.600	0	0.000	0
system_48	LC3 (TP8)	206.350	3.7145e-08	10.000	9.4115e-06
system_48	LC3 (TP9)	303.850	3.7256e-09	10.000	3.9047e-07
system_48	LC3 (TP10)	468.430	3.9032e-10	10.000	2.9785e-08
system_48	LC3 (TP11)	738.850	3.9451e-11	10.000	3.0202e-09
system_48	LC3 (TP12)	1151.230	4.015e-12	10.000	3.5442e-10
system_48	LC3 (TP13)	24.670	0	0.000	0
system_48	LC3 (TP14)	32.170	0	0.000	0
system_48	Riot				
system_48	Valencia-IVP (0.00025)	0m24.122s	0.004682	4.352	999.44
system_48	Valencia-IVP (0.0025)	0 m 2.676 s	0.047669	3.725	994.41
$system_48$	Valencia-IVP (0.025)	0 m 0.311 s	0.57528	2.950	913.46
system_48	VNODE-LP (15, 1e-14,1e-14)	0 m 0.041 s	8.0491e-16	10.000	9.194e-16
system_48	VNODE-LP (20, 1e-14,1e-14)	0 m 0.029 s	7.2164e-16	10.000	3.4001e-16
$system_48$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.023 s	3.0531e-16	10.000	2.498e-16

	Table 3.45: Simulation re		blem 49		
Problems	Methods	c5t	c5w	c6t	c6w
system_49	TAYLOR4 (TP8)	309.470	0.10763	10.000	0.011897
$system_49$	TAYLOR4 (TP9)	471.270	0.10763	10.000	0.011895
$system_49$	TAYLOR4 (TP10)	733.000	0.10763	10.000	0.011895
$system_49$	TAYLOR4 (TP11)	1166.480	0.10763	10.000	0.011895
$system_49$	TAYLOR4 (TP12)	1859.450	0.10763	10.000	0.011895
$system_49$	TAYLOR4 (TP13)	2949.570	0.10763	10.000	0.011895
system_49	TAYLOR4 (TP14)	4695.330	0.10763	10.000	0.011895
system_49	RK4 (TP8)	272.790	0.10763	10.000	0.011897
$system_49$	RK4 (TP9)	422.230	0.10763	10.000	0.011895
$system_49$	RK4 (TP10)	655.010	0.10763	10.000	0.011895
$system_49$	RK4 (TP11)	1042.530	0.10763	10.000	0.011895
$system_49$	RK4 (TP12)	1639.250	0.10763	10.000	0.011895
$system_49$	RK4 (TP13)	2579.950	0.10763	10.000	0.011895
$system_49$	RK4 (TP14)	4085.610	0.10763	10.000	0.011895
system_49	LA3 (TP8)	212.960	0.11444	10.000	0.059049
$system_49$	LA3 (TP9)	317.320	0.11195	10.000	0.033987
$system_49$	LA3 (TP10)	489.220	0.11035	10.000	0.02343
$system_49$	LA3 (TP11)	773.440	0.10933	10.000	0.018369
$system_49$	LA3 (TP12)	1212.350	0.1087	10.000	0.015688
$system_49$	LA3 (TP13)	1913.060	0.1083	10.000	0.01418
system_49	LA3 (TP14)	3027.240	0.10805	10.000	0.013295
system_49	LC3 (TP8)	227.850	0.11525	10.000	0.063765
$system_49$	LC3 (TP9)	339.800	0.11229	10.000	0.035622
$system_49$	LC3 (TP10)	526.690	0.11049	10.000	0.024098
$system_49$	LC3 (TP11)	839.800	0.10941	10.000	0.018691
$system_49$	LC3 (TP12)	1309.320	0.10874	10.000	0.015859
$system_49$	LC3 (TP13)	2073.580	0.10833	10.000	0.014276
system_49	LC3 (TP14)	3273.800	0.10807	10.000	0.013352
system_49	Riot				
system_49	Valencia-IVP (0.00025)	0 m 24.032 s	5.8874	2.488	999.56
system_49	Valencia-IVP (0.0025)	0 m 2.571 s	5.9852	2.475	998.38
system_49	Valencia-IVP (0.025)	0 m 0.314 s	7.1174	2.350	997.96
system_49	VNODE-LP (15, 1e-14,1e-14)	0 m 0.044 s	0.10763	10.000	0.011895
$system_49$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.030 s	0.10763	10.000	0.011895
system_49	VNODE-LP (25, 1e-14,1e-14)	0 m 0.021 s	0.10763	10.000	0.011895

Problems Methods c5t c5w c6t c6w system.56 TAYLOR4 (TP8) 1.210 1.2465e-05 10.000 8.3213e-05 system.56 TAYLOR4 (TP10) 2.060 2.875e-06 10.000 3.0631e-05 system.56 TAYLOR4 (TP11) 2.980 9.1925e-07 10.000 3.1768e-05 system.56 TAYLOR4 (TP12) 4.320 2.9164e-07 10.000 0.00013262 system.56 TAYLOR4 (TP13) 6.340 8.4087e-08 10.000 0.00013804 system.56 TAYLOR4 (TP14) 9.610 1.159e-08 10.000 0.00010804 system.56 RK4 (TP8) 0.590 2.9768e-07 10.000 3.6874e-05 system.56 RK4 (TP9) 0.800 4.3149e-08 10.000 1.6874e-05 system.56 RK4 (TP10) 1.040 6.4105e-09 10.000 8.784e-06 system.56 RK4 (TP13) 3.410 1.572e-11 10.000 2.2891e-06 system.56 RK4 (TP13) 3.410 1.57
system_56 TAYLOR4 (TP9) 1.470 4.9579e-06 10.000 4.0366e-05 system_56 TAYLOR4 (TP10) 2.060 2.875e-06 10.000 3.0631e-05 system_56 TAYLOR4 (TP11) 2.980 9.1925e-07 10.000 3.1768e-05 system_56 TAYLOR4 (TP12) 4.320 2.9164e-07 10.000 0.00013262 system_56 TAYLOR4 (TP13) 6.340 8.4087e-08 10.000 0.0001804 system_56 TAYLOR4 (TP14) 9.610 1.159e-08 10.000 3.8782e-05 system_56 TAYLOR4 (TP14) 9.610 1.159e-08 10.000 3.8782e-05 system_56 RK4 (TP8) 0.590 2.9768e-07 10.000 1.6874e-05 system_56 RK4 (TP10) 1.040 6.4105e-09 10.000 8.784e-06 system_56 RK4 (TP11) 1.550 8.693e-10 10.000 2.2891e-06 system_56 RK4 (TP13) 3.410 1.572e-11 10.000 4.871le-08 system_56 RK4 (TP14) 5.
system_56 TAYLOR4 (TP10) 2.060 2.875e-06 10.000 3.0631e-05 system_56 TAYLOR4 (TP11) 2.980 9.1925e-07 10.000 3.1768e-05 system_56 TAYLOR4 (TP12) 4.320 2.9164e-07 10.000 0.00013262 system_56 TAYLOR4 (TP13) 6.340 8.4087e-08 10.000 0.00010804 system_56 TAYLOR4 (TP14) 9.610 1.159e-08 10.000 3.8782e-05 system_56 RK4 (TP18) 0.590 2.9768e-07 10.000 1.6874e-05 system_56 RK4 (TP9) 0.800 4.3149e-08 10.000 1.0541e-05 system_56 RK4 (TP10) 1.040 6.4105e-09 10.000 8.784e-06 system_56 RK4 (TP11) 1.550 8.693e-10 10.000 2.2891e-06 system_56 RK4 (TP13) 3.410 1.572e-11 10.000 3.4672e-07 system_56 RK4 (TP14) 5.200 2.0466e-12 10.000 2.6021e-05 system_56 LA3 (TP9) 0.790
system_56 TAYLOR4 (TP11) 2.980 9.1925e-07 10.000 3.1768e-05 system_56 TAYLOR4 (TP12) 4.320 2.9164e-07 10.000 0.00013262 system_56 TAYLOR4 (TP13) 6.340 8.4087e-08 10.000 0.00010804 system_56 TAYLOR4 (TP14) 9.610 1.159e-08 10.000 3.8782e-05 system_56 RK4 (TP8) 0.590 2.9768e-07 10.000 1.6874e-05 system_56 RK4 (TP9) 0.800 4.3149e-08 10.000 1.0541e-05 system_56 RK4 (TP10) 1.040 6.4105e-09 10.000 8.784e-06 system_56 RK4 (TP11) 1.550 8.693e-10 10.000 2.2891e-06 system_56 RK4 (TP12) 2.300 1.1902e-10 10.000 3.4672e-07 system_56 RK4 (TP13) 3.410 1.572e-11 10.000 4.8711e-08 system_56 LA3 (TP8) 0.590 2.3105e-07 10.000 2.6021e-05 system_56 LA3 (TP10) 1.090
system_56 TAYLOR4 (TP12) 4.320 2.9164e-07 10.000 0.00013262 system_56 TAYLOR4 (TP13) 6.340 8.4087e-08 10.000 0.00010804 system_56 TAYLOR4 (TP14) 9.610 1.159e-08 10.000 3.8782e-05 system_56 RK4 (TP8) 0.590 2.9768e-07 10.000 1.6874e-05 system_56 RK4 (TP9) 0.800 4.3149e-08 10.000 1.0541e-05 system_56 RK4 (TP10) 1.040 6.4105e-09 10.000 8.784e-06 system_56 RK4 (TP11) 1.550 8.693e-10 10.000 2.2891e-06 system_56 RK4 (TP12) 2.300 1.1902e-10 10.000 3.4672e-07 system_56 RK4 (TP13) 3.410 1.572e-11 10.000 4.8711e-08 system_56 RK4 (TP14) 5.200 2.0466e-12 10.000 4.605e-09 system_56 LA3 (TP8) 0.590 2.3105e-07 10.000 2.6021e-05 system_56 LA3 (TP10) 1.090
system_56 TAYLOR4 (TP13) 6.340 8.4087e-08 10.000 0.00010804 system_56 RK4 (TP14) 9.610 1.159e-08 10.000 3.8782e-05 system_56 RK4 (TP8) 0.590 2.9768e-07 10.000 1.6874e-05 system_56 RK4 (TP9) 0.800 4.3149e-08 10.000 1.0541e-05 system_56 RK4 (TP10) 1.040 6.4105e-09 10.000 8.784e-06 system_56 RK4 (TP11) 1.550 8.693e-10 10.000 2.2891e-06 system_56 RK4 (TP12) 2.300 1.1902e-10 10.000 3.4672e-07 system_56 RK4 (TP13) 3.410 1.572e-11 10.000 4.8711e-08 system_56 RK4 (TP14) 5.200 2.0466e-12 10.000 4.8711e-08 system_56 LA3 (TP8) 0.590 2.3105e-07 10.000 2.6021e-05 system_56 LA3 (TP19) 1.090 3.7592e-08 10.000 1.2067e-05 system_56 LA3 (TP11) 1.520 8
system_56 TAYLOR4 (TP14) 9.610 1.159e-08 10.000 3.8782e-05 system_56 RK4 (TP8) 0.590 2.9768e-07 10.000 1.6874e-05 system_56 RK4 (TP9) 0.800 4.3149e-08 10.000 1.0541e-05 system_56 RK4 (TP10) 1.040 6.4105e-09 10.000 8.784e-06 system_56 RK4 (TP11) 1.550 8.693e-10 10.000 2.2891e-06 system_56 RK4 (TP12) 2.300 1.1902e-10 10.000 3.4672e-07 system_56 RK4 (TP13) 3.410 1.572e-11 10.000 4.8711e-08 system_56 RK4 (TP14) 5.200 2.0466e-12 10.000 6.8005e-09 system_56 LA3 (TP8) 0.590 2.3105e-07 10.000 2.6021e-05 system_56 LA3 (TP9) 0.790 3.7592e-08 10.000 1.2067e-05 system_56 LA3 (TP10) 1.090 5.8336e-09 10.000 2.7425e-06 system_56 LA3 (TP13) 3.110 1.
system_56 RK4 (TP8) 0.590 2.9768e-07 10.000 1.6874e-05 system_56 RK4 (TP9) 0.800 4.3149e-08 10.000 1.0541e-05 system_56 RK4 (TP10) 1.040 6.4105e-09 10.000 8.784e-06 system_56 RK4 (TP11) 1.550 8.693e-10 10.000 2.2891e-06 system_56 RK4 (TP12) 2.300 1.1902e-10 10.000 3.4672e-07 system_56 RK4 (TP13) 3.410 1.572e-11 10.000 4.8711e-08 system_56 RK4 (TP14) 5.200 2.0466e-12 10.000 6.8005e-09 system_56 LA3 (TP8) 0.590 2.3105e-07 10.000 2.6021e-05 system_56 LA3 (TP9) 0.790 3.7592e-08 10.000 1.2067e-05 system_56 LA3 (TP10) 1.090 5.8336e-09 10.000 9.2705e-06 system_56 LA3 (TP11) 1.520 8.9354e-10 10.000 2.7425e-06 system_56 LA3 (TP13) 3.110 1.949
system_56 RK4 (TP9) 0.800 4.3149e-08 10.000 1.0541e-05 system_56 RK4 (TP10) 1.040 6.4105e-09 10.000 8.784e-06 system_56 RK4 (TP11) 1.550 8.693e-10 10.000 2.2891e-06 system_56 RK4 (TP12) 2.300 1.1902e-10 10.000 3.4672e-07 system_56 RK4 (TP13) 3.410 1.572e-11 10.000 4.8711e-08 system_56 RK4 (TP14) 5.200 2.0466e-12 10.000 6.8005e-09 system_56 LA3 (TP8) 0.590 2.3105e-07 10.000 2.6021e-05 system_56 LA3 (TP9) 0.790 3.7592e-08 10.000 1.2067e-05 system_56 LA3 (TP10) 1.090 5.8336e-09 10.000 2.7425e-06 system_56 LA3 (TP11) 1.520 8.9354e-10 10.000 2.7425e-06 system_56 LA3 (TP13) 3.110 1.9496e-11 10.000 4.3035e-07 system_56 LA3 (TP14) 4.550 2.82
system_56 RK4 (TP10) 1.040 6.4105e-09 10.000 8.784e-06 system_56 RK4 (TP11) 1.550 8.693e-10 10.000 2.2891e-06 system_56 RK4 (TP12) 2.300 1.1902e-10 10.000 3.4672e-07 system_56 RK4 (TP13) 3.410 1.572e-11 10.000 4.8711e-08 system_56 RK4 (TP14) 5.200 2.0466e-12 10.000 6.8005e-09 system_56 LA3 (TP8) 0.590 2.3105e-07 10.000 2.6021e-05 system_56 LA3 (TP9) 0.790 3.7592e-08 10.000 1.2067e-05 system_56 LA3 (TP10) 1.090 5.8336e-09 10.000 9.2705e-06 system_56 LA3 (TP11) 1.520 8.9354e-10 10.000 2.7425e-06 system_56 LA3 (TP12) 2.210 1.3327e-10 10.000 4.3035e-07 system_56 LA3 (TP13) 3.110 1.9496e-11 10.000 6.3061e-08 system_56 LC3 (TP8) 0.600 2.27
system_56 RK4 (TP11) 1.550 8.693e-10 10.000 2.2891e-06 system_56 RK4 (TP12) 2.300 1.1902e-10 10.000 3.4672e-07 system_56 RK4 (TP13) 3.410 1.572e-11 10.000 4.8711e-08 system_56 RK4 (TP14) 5.200 2.0466e-12 10.000 6.8005e-09 system_56 LA3 (TP8) 0.590 2.3105e-07 10.000 2.6021e-05 system_56 LA3 (TP9) 0.790 3.7592e-08 10.000 1.2067e-05 system_56 LA3 (TP10) 1.090 5.8336e-09 10.000 9.2705e-06 system_56 LA3 (TP11) 1.520 8.9354e-10 10.000 2.7425e-06 system_56 LA3 (TP12) 2.210 1.3327e-10 10.000 4.3035e-07 system_56 LA3 (TP13) 3.110 1.9496e-11 10.000 4.3035e-07 system_56 LC3 (TP8) 0.600 2.2727e-07 10.000 2.0461e-05 system_56 LC3 (TP9) 0.780 3.64
system_56 RK4 (TP12) 2.300 1.1902e-10 10.000 3.4672e-07 system_56 RK4 (TP13) 3.410 1.572e-11 10.000 4.8711e-08 system_56 RK4 (TP14) 5.200 2.0466e-12 10.000 6.8005e-09 system_56 LA3 (TP8) 0.590 2.3105e-07 10.000 2.6021e-05 system_56 LA3 (TP9) 0.790 3.7592e-08 10.000 1.2067e-05 system_56 LA3 (TP10) 1.090 5.8336e-09 10.000 9.2705e-06 system_56 LA3 (TP11) 1.520 8.9354e-10 10.000 2.7425e-06 system_56 LA3 (TP12) 2.210 1.3327e-10 10.000 4.3035e-07 system_56 LA3 (TP13) 3.110 1.9496e-11 10.000 6.3061e-08 system_56 LC3 (TP8) 0.600 2.2727e-07 10.000 2.0461e-05 system_56 LC3 (TP9) 0.780 3.6407e-08 10.000 1.6216e-05 system_56 LC3 (TP10) 1.090 5.4
system_56 RK4 (TP13) 3.410 1.572e-11 10.000 4.8711e-08 system_56 RK4 (TP14) 5.200 2.0466e-12 10.000 6.8005e-09 system_56 LA3 (TP8) 0.590 2.3105e-07 10.000 2.6021e-05 system_56 LA3 (TP9) 0.790 3.7592e-08 10.000 1.2067e-05 system_56 LA3 (TP10) 1.090 5.8336e-09 10.000 9.2705e-06 system_56 LA3 (TP11) 1.520 8.9354e-10 10.000 2.7425e-06 system_56 LA3 (TP12) 2.210 1.3327e-10 10.000 4.3035e-07 system_56 LA3 (TP13) 3.110 1.9496e-11 10.000 6.3061e-08 system_56 LA3 (TP14) 4.550 2.8287e-12 10.000 9.2639e-09 system_56 LC3 (TP8) 0.600 2.2727e-07 10.000 2.0461e-05 system_56 LC3 (TP10) 1.090 5.4528e-09 10.000 9.3004e-06 system_56 LC3 (TP11) 1.570 7.
system_56 RK4 (TP14) 5.200 2.0466e-12 10.000 6.8005e-09 system_56 LA3 (TP8) 0.590 2.3105e-07 10.000 2.6021e-05 system_56 LA3 (TP9) 0.790 3.7592e-08 10.000 1.2067e-05 system_56 LA3 (TP10) 1.090 5.8336e-09 10.000 9.2705e-06 system_56 LA3 (TP11) 1.520 8.9354e-10 10.000 2.7425e-06 system_56 LA3 (TP12) 2.210 1.3327e-10 10.000 4.3035e-07 system_56 LA3 (TP13) 3.110 1.9496e-11 10.000 6.3061e-08 system_56 LA3 (TP14) 4.550 2.8287e-12 10.000 9.2639e-09 system_56 LC3 (TP8) 0.600 2.2727e-07 10.000 2.0461e-05 system_56 LC3 (TP9) 0.780 3.6407e-08 10.000 1.6216e-05 system_56 LC3 (TP10) 1.090 5.4528e-09 10.000 9.3004e-06 system_56 LC3 (TP11) 1.570 7.
system_56 LA3 (TP8) 0.590 2.3105e-07 10.000 2.6021e-05 system_56 LA3 (TP9) 0.790 3.7592e-08 10.000 1.2067e-05 system_56 LA3 (TP10) 1.090 5.8336e-09 10.000 9.2705e-06 system_56 LA3 (TP11) 1.520 8.9354e-10 10.000 2.7425e-06 system_56 LA3 (TP12) 2.210 1.3327e-10 10.000 4.3035e-07 system_56 LA3 (TP13) 3.110 1.9496e-11 10.000 6.3061e-08 system_56 LA3 (TP14) 4.550 2.8287e-12 10.000 9.2639e-09 system_56 LC3 (TP8) 0.600 2.2727e-07 10.000 2.0461e-05 system_56 LC3 (TP9) 0.780 3.6407e-08 10.000 1.6216e-05 system_56 LC3 (TP10) 1.090 5.4528e-09 10.000 9.3004e-06 system_56 LC3 (TP11) 1.570 7.8127e-10 10.000 2.411e-06 system_56 LC3 (TP13) 3.370 1.3
system_56 LA3 (TP9) 0.790 3.7592e-08 10.000 1.2067e-05 system_56 LA3 (TP10) 1.090 5.8336e-09 10.000 9.2705e-06 system_56 LA3 (TP11) 1.520 8.9354e-10 10.000 2.7425e-06 system_56 LA3 (TP12) 2.210 1.3327e-10 10.000 4.3035e-07 system_56 LA3 (TP13) 3.110 1.9496e-11 10.000 6.3061e-08 system_56 LA3 (TP14) 4.550 2.8287e-12 10.000 9.2639e-09 system_56 LC3 (TP8) 0.600 2.2727e-07 10.000 2.0461e-05 system_56 LC3 (TP9) 0.780 3.6407e-08 10.000 1.6216e-05 system_56 LC3 (TP10) 1.090 5.4528e-09 10.000 9.3004e-06 system_56 LC3 (TP11) 1.570 7.8127e-10 10.000 2.411e-06 system_56 LC3 (TP12) 2.350 1.062e-10 10.000 3.3882e-07 system_56 LC3 (TP13) 3.370 1.3
system.56 LA3 (TP10) 1.090 5.8336e-09 10.000 9.2705e-06 system.56 LA3 (TP11) 1.520 8.9354e-10 10.000 2.7425e-06 system.56 LA3 (TP12) 2.210 1.3327e-10 10.000 4.3035e-07 system.56 LA3 (TP13) 3.110 1.9496e-11 10.000 6.3061e-08 system.56 LA3 (TP14) 4.550 2.8287e-12 10.000 9.2639e-09 system.56 LC3 (TP8) 0.600 2.2727e-07 10.000 2.0461e-05 system.56 LC3 (TP9) 0.780 3.6407e-08 10.000 1.6216e-05 system.56 LC3 (TP10) 1.090 5.4528e-09 10.000 9.3004e-06 system.56 LC3 (TP11) 1.570 7.8127e-10 10.000 2.411e-06 system.56 LC3 (TP12) 2.350 1.062e-10 10.000 3.3882e-07 system.56 LC3 (TP13) 3.370 1.3902e-11 10.000 4.5448e-08
system.56 LA3 (TP11) 1.520 8.9354e-10 10.000 2.7425e-06 system.56 LA3 (TP12) 2.210 1.3327e-10 10.000 4.3035e-07 system.56 LA3 (TP13) 3.110 1.9496e-11 10.000 6.3061e-08 system.56 LA3 (TP14) 4.550 2.8287e-12 10.000 9.2639e-09 system.56 LC3 (TP8) 0.600 2.2727e-07 10.000 2.0461e-05 system.56 LC3 (TP9) 0.780 3.6407e-08 10.000 1.6216e-05 system.56 LC3 (TP10) 1.090 5.4528e-09 10.000 9.3004e-06 system.56 LC3 (TP11) 1.570 7.8127e-10 10.000 2.411e-06 system.56 LC3 (TP12) 2.350 1.062e-10 10.000 3.3882e-07 system.56 LC3 (TP13) 3.370 1.3902e-11 10.000 4.5448e-08
system_56 LA3 (TP12) 2.210 1.3327e-10 10.000 4.3035e-07 system_56 LA3 (TP13) 3.110 1.9496e-11 10.000 6.3061e-08 system_56 LA3 (TP14) 4.550 2.8287e-12 10.000 9.2639e-09 system_56 LC3 (TP8) 0.600 2.2727e-07 10.000 2.0461e-05 system_56 LC3 (TP9) 0.780 3.6407e-08 10.000 1.6216e-05 system_56 LC3 (TP10) 1.090 5.4528e-09 10.000 9.3004e-06 system_56 LC3 (TP11) 1.570 7.8127e-10 10.000 2.411e-06 system_56 LC3 (TP12) 2.350 1.062e-10 10.000 3.3882e-07 system_56 LC3 (TP13) 3.370 1.3902e-11 10.000 4.5448e-08
system_56 LA3 (TP13) 3.110 1.9496e-11 10.000 6.3061e-08 system_56 LA3 (TP14) 4.550 2.8287e-12 10.000 9.2639e-09 system_56 LC3 (TP8) 0.600 2.2727e-07 10.000 2.0461e-05 system_56 LC3 (TP9) 0.780 3.6407e-08 10.000 1.6216e-05 system_56 LC3 (TP10) 1.090 5.4528e-09 10.000 9.3004e-06 system_56 LC3 (TP11) 1.570 7.8127e-10 10.000 2.411e-06 system_56 LC3 (TP12) 2.350 1.062e-10 10.000 3.3882e-07 system_56 LC3 (TP13) 3.370 1.3902e-11 10.000 4.5448e-08
system_56 LA3 (TP14) 4.550 2.8287e-12 10.000 9.2639e-09 system_56 LC3 (TP8) 0.600 2.2727e-07 10.000 2.0461e-05 system_56 LC3 (TP9) 0.780 3.6407e-08 10.000 1.6216e-05 system_56 LC3 (TP10) 1.090 5.4528e-09 10.000 9.3004e-06 system_56 LC3 (TP11) 1.570 7.8127e-10 10.000 2.411e-06 system_56 LC3 (TP12) 2.350 1.062e-10 10.000 3.3882e-07 system_56 LC3 (TP13) 3.370 1.3902e-11 10.000 4.5448e-08
system_56 LC3 (TP8) 0.600 2.2727e-07 10.000 2.0461e-05 system_56 LC3 (TP9) 0.780 3.6407e-08 10.000 1.6216e-05 system_56 LC3 (TP10) 1.090 5.4528e-09 10.000 9.3004e-06 system_56 LC3 (TP11) 1.570 7.8127e-10 10.000 2.411e-06 system_56 LC3 (TP12) 2.350 1.062e-10 10.000 3.3882e-07 system_56 LC3 (TP13) 3.370 1.3902e-11 10.000 4.5448e-08
system_56 LC3 (TP9) 0.780 3.6407e-08 10.000 1.6216e-05 system_56 LC3 (TP10) 1.090 5.4528e-09 10.000 9.3004e-06 system_56 LC3 (TP11) 1.570 7.8127e-10 10.000 2.411e-06 system_56 LC3 (TP12) 2.350 1.062e-10 10.000 3.3882e-07 system_56 LC3 (TP13) 3.370 1.3902e-11 10.000 4.5448e-08
system_56 LC3 (TP10) 1.090 5.4528e-09 10.000 9.3004e-06 system_56 LC3 (TP11) 1.570 7.8127e-10 10.000 2.411e-06 system_56 LC3 (TP12) 2.350 1.062e-10 10.000 3.3882e-07 system_56 LC3 (TP13) 3.370 1.3902e-11 10.000 4.5448e-08
system_56 LC3 (TP11) 1.570 7.8127e-10 10.000 2.411e-06 system_56 LC3 (TP12) 2.350 1.062e-10 10.000 3.3882e-07 system_56 LC3 (TP13) 3.370 1.3902e-11 10.000 4.5448e-08
system_56 LC3 (TP12) 2.350 1.062e-10 10.000 3.3882e-07 system_56 LC3 (TP13) 3.370 1.3902e-11 10.000 4.5448e-08
system_56 LC3 (TP13) 3.370 1.3902e-11 10.000 4.5448e-08
system 56 LC3 (TP14) 5 080 1 8026e-12 10 000 6 1851e-00
5,50000 1.00200-12 10.000 0.10016-09
system_56 Riot (02, 1e-11) 0m2.480s 2.643e-07 -0.000 0.001449
system_56 Riot (05, 1e-11) 0m0.300s 6.8263e-11 -0.000 2.0833e-07
system_56 Riot (10, 1e-11) 0m0.259s 1.0353e-12 -0.000 1.1906e-09
system_56 Riot (15, 1e-11) 0m0.375s 4.563e-14 -0.000 6.2571e-12
system_56 Valencia-IVP (0.00025) 0m1.982s
system_56 Valencia-IVP (0.0025) 0m0.184s 0.0019484 10.000 48.755
system_56 Valencia-IVP (0.025) 0m0.026s 0.020834 10.000 582.16
system_56 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 4.6629e-15 10.000 6.9611e-14
system_56 VNODE-LP (20, 1e-14,1e-14) 0m0.017s
system_56 VNODE-LP (25, 1e-14,1e-14) 0m0.019s 2.7756e-15 10.000 3.9801e-14

Problems Methods c5t c5w c6t c6w system.57 TAYLOR4 (TP8) 1.060 0.0067999 10.000 0.0034968 system.57 TAYLOR4 (TP10) 2.050 0.0067966 10.000 0.003375 system.57 TAYLOR4 (TP11) 2.970 0.0067957 10.000 0.003375 system.57 TAYLOR4 (TP11) 2.970 0.0067956 10.000 0.0033756 system.57 TAYLOR4 (TP11) 6.310 0.0067956 10.000 0.0034279 system.57 TAYLOR4 (TP14) 9.570 0.0067956 10.000 0.0033881 system.57 RK4 (TP8) 0.580 0.0067956 10.000 0.0033643 system.57 RK4 (TP10) 1.060 0.0067956 10.000 0.0033584 system.57 RK4 (TP10) 1.530 0.0067956 10.000 0.0033523 system.57 RK4 (TP11) 1.530 0.0067956 10.000 0.0033524 system.57 RK4 (TP14) 5.180 0.0067956		Table 3.47: Simulation re			_	_
system.57 TAYLOR4 (TP9) 1.420 0.0067971 10.000 0.0033828 system.57 TAYLOR4 (TP10) 2.050 0.0067958 10.000 0.003375 system.57 TAYLOR4 (TP11) 2.970 0.0067958 10.000 0.003375 system.57 TAYLOR4 (TP12) 4.230 0.0067957 10.000 0.033427 system.57 TAYLOR4 (TP14) 9.570 0.0067956 10.000 0.033483 system.57 RK4 (TP8) 0.580 0.0067956 10.000 0.0033643 system.57 RK4 (TP9) 0.780 0.0067956 10.000 0.0033621 system.57 RK4 (TP10) 1.060 0.0067956 10.000 0.0033524 system.57 RK4 (TP11) 1.530 0.0067956 10.000 0.0033523 system.57 RK4 (TP13) 3.320 0.0067956 10.000 0.0033503 system.57 RK4 (TP14) 5.180 0.066956 10.000 0.0033503 system.57 LA3 (TP2) 0.580 0.0669956						
system.57 TAYLOR4 (TP10) 2.050 0.0067968 10.000 0.003375 system.57 TAYLOR4 (TP11) 2.970 0.0067958 10.000 0.0033756 system.57 TAYLOR4 (TP12) 4.230 0.0067956 10.000 0.0034279 system.57 TAYLOR4 (TP14) 9.570 0.0067956 10.000 0.0033881 system.57 RK4 (TP8) 0.580 0.0067956 10.000 0.0033621 system.57 RK4 (TP9) 0.780 0.0067956 10.000 0.0033523 system.57 RK4 (TP10) 1.060 0.0067956 10.000 0.0033523 system.57 RK4 (TP11) 1.530 0.0067956 10.000 0.0033523 system.57 RK4 (TP12) 2.410 0.0067956 10.000 0.0033524 system.57 RK4 (TP13) 3.320 0.0067956 10.000 0.003352 system.57 RK4 (TP14) 5.180 0.0069796 10.000 0.03352 system.57 LA3 (TP19 0.770 0.0069339 </td <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td>						
system_57 TAYLOR4 (TP11) 2.970 0.0067958 10.000 0.0033756 system_57 TAYLOR4 (TP12) 4.230 0.0067957 10.000 0.0034279 system_57 TAYLOR4 (TP13) 6.310 0.0067956 10.000 0.0034369 system_57 TAYLOR4 (TP14) 9.570 0.0067956 10.000 0.0033881 system_57 RK4 (TP8) 0.580 0.0067956 10.000 0.0033643 system_57 RK4 (TP10) 1.060 0.0067956 10.000 0.0033524 system_57 RK4 (TP11) 1.530 0.0067956 10.000 0.0033523 system_57 RK4 (TP12) 2.410 0.0067956 10.000 0.0033524 system_57 RK4 (TP13) 3.320 0.0067956 10.000 0.0033504 system_57 RK4 (TP14) 5.180 0.0067956 10.000 0.0033501 system_57 RK3 (TP13) 3.320 0.0067956 10.000 0.03350 system_57 LA3 (TP19) 0.770 0.00693			1.420			
system_57 TAYLOR4 (TP12) 4.230 0.0067957 10.000 0.034279 system_57 TAYLOR4 (TP13) 6.310 0.0067956 10.000 0.0334369 system_57 TAYLOR4 (TP14) 9.570 0.0067956 10.000 0.0033881 system_57 RK4 (TP8) 0.580 0.0067958 10.000 0.0033621 system_57 RK4 (TP10) 1.060 0.0067956 10.000 0.0033621 system_57 RK4 (TP11) 1.530 0.0067956 10.000 0.0033584 system_57 RK4 (TP11) 1.530 0.0067956 10.000 0.0033523 system_57 RK4 (TP13) 3.320 0.0067956 10.000 0.0033501 system_57 RK4 (TP14) 5.180 0.0067956 10.000 0.0033501 system_57 RK4 (TP14) 5.180 0.0067956 10.000 0.0033501 system_57 LA3 (TP93) 0.580 0.0069796 10.000 0.00355 system_57 LA3 (TP10) 1.060 0.0068985 <td>$system_{-}57$</td> <td></td> <td></td> <td>0.0067966</td> <td></td> <td></td>	$system_{-}57$			0.0067966		
system_57 TAYLOR4 (TP14) 9.570 0.0067956 10.000 0.034369 system_57 RK4 (TP8) 9.570 0.0067956 10.000 0.033881 system_57 RK4 (TP8) 0.580 0.0067956 10.000 0.033621 system_57 RK4 (TP10) 1.060 0.0067956 10.000 0.0033584 system_57 RK4 (TP11) 1.530 0.0067956 10.000 0.0033523 system_57 RK4 (TP12) 2.410 0.0067956 10.000 0.0033504 system_57 RK4 (TP13) 3.320 0.0067956 10.000 0.0033501 system_57 RK4 (TP14) 5.180 0.0067956 10.000 0.003350 system_57 RK4 (TP14) 5.180 0.0067956 10.000 0.003350 system_57 LA3 (TP9) 0.770 0.0069396 10.000 0.003350 system_57 LA3 (TP10) 1.060 0.0068985 10.000 0.0086057 system_57 LA3 (TP11) 1.480 0.0068461 <t< td=""><td></td><td></td><td>2.970</td><td>0.0067958</td><td>10.000</td><td>0.0033756</td></t<>			2.970	0.0067958	10.000	0.0033756
system_57 TAYLOR4 (TP14) 9.570 0.0067956 10.000 0.0033881 system_57 RK4 (TP9) 0.580 0.0067958 10.000 0.0033643 system_57 RK4 (TP9) 0.780 0.0067956 10.000 0.0033621 system_57 RK4 (TP10) 1.060 0.0067956 10.000 0.0033584 system_57 RK4 (TP11) 1.530 0.0067956 10.000 0.0033523 system_57 RK4 (TP13) 3.320 0.0067956 10.000 0.0033501 system_57 RK4 (TP14) 5.180 0.0067956 10.000 0.0033501 system_57 RK4 (TP14) 5.180 0.0067956 10.000 0.0033501 system_57 LA3 (TP8) 0.580 0.0069796 10.000 0.00335 system_57 LA3 (TP10) 1.060 0.0068985 10.000 0.0086576 system_57 LA3 (TP11) 1.480 0.0068688 10.000 0.0066924 system_57 LA3 (TP13) 3.030 0.0068461	$system_{-}57$	TAYLOR4 (TP12)	4.230	0.0067957	10.000	0.0034279
system_57 RK4 (TP8) 0.580 0.0067958 10.000 0.0033643 system_57 RK4 (TP9) 0.780 0.0067956 10.000 0.0033621 system_57 RK4 (TP10) 1.060 0.0067956 10.000 0.0033584 system_57 RK4 (TP11) 1.530 0.0067956 10.000 0.0033523 system_57 RK4 (TP12) 2.410 0.0067956 10.000 0.0033504 system_57 RK4 (TP13) 3.320 0.0067956 10.000 0.0033504 system_57 RK4 (TP14) 5.180 0.0067956 10.000 0.0033504 system_57 RK3 (TP8) 0.580 0.0069796 10.000 0.00335 system_57 LA3 (TP9) 0.770 0.0069399 10.000 0.008359 system_57 LA3 (TP10) 1.480 0.0068888 10.000 0.0086924 system_57 LA3 (TP11) 1.480 0.0068888 10.000 0.006924 system_57 LA3 (TP13) 3.030 0.0068461 1	$system_{-}57$			0.0067956	10.000	0.0034369
system_57 RK4 (TP9) 0.780 0.0667956 10.000 0.0033621 system_57 RK4 (TP10) 1.060 0.0067956 10.000 0.0033584 system_57 RK4 (TP11) 1.530 0.0067956 10.000 0.0033524 system_57 RK4 (TP12) 2.410 0.0067956 10.000 0.0033501 system_57 RK4 (TP14) 5.180 0.0067956 10.000 0.0033501 system_57 RK4 (TP14) 5.180 0.0067956 10.000 0.0033501 system_57 LA3 (TP8) 0.580 0.0069796 10.000 0.003350 system_57 LA3 (TP9) 0.770 0.0069339 10.000 0.0083059 system_57 LA3 (TP10) 1.060 0.0068985 10.000 0.0086576 system_57 LA3 (TP11) 1.480 0.0068688 10.000 0.006924 system_57 LA3 (TP12) 2.160 0.0068461 10.000 0.0045981 system_57 LA3 (TP13) 3.030 0.0068194 <t< td=""><td>$_{ m system_57}$</td><td>TAYLOR4 (TP14)</td><td>9.570</td><td>0.0067956</td><td>10.000</td><td>0.0033881</td></t<>	$_{ m system_57}$	TAYLOR4 (TP14)	9.570	0.0067956	10.000	0.0033881
system_57 RK4 (TP10) 1.060 0.0067956 10.000 0.0033584 system_57 RK4 (TP11) 1.530 0.0067956 10.000 0.0033523 system_57 RK4 (TP12) 2.410 0.0067956 10.000 0.0033504 system_57 RK4 (TP13) 3.320 0.0067956 10.000 0.00335 system_57 RK4 (TP14) 5.180 0.0067956 10.000 0.00335 system_57 LA3 (TP8) 0.580 0.0069796 10.000 0.00335 system_57 LA3 (TP90) 0.770 0.0069339 10.000 0.003359 system_57 LA3 (TP10) 1.060 0.0068985 10.000 0.0086576 system_57 LA3 (TP11) 1.480 0.006888 10.000 0.006924 system_57 LA3 (TP13) 3.030 0.0068461 10.000 0.0045981 system_57 LA3 (TP14) 4.490 0.0068194 10.000 0.0044981 system_57 LC3 (TP8) 0.590 0.007117 10.00	system_57	RK4 (TP8)	0.580	0.0067958	10.000	0.0033643
system_57 RK4 (TP11) 1.530 0.0067956 10.000 0.0033523 system_57 RK4 (TP12) 2.410 0.0067956 10.000 0.0033504 system_57 RK4 (TP13) 3.320 0.0067956 10.000 0.0033501 system_57 RK4 (TP14) 5.180 0.0067956 10.000 0.0033501 system_57 LA3 (TP8) 0.580 0.0069796 10.000 0.013207 system_57 LA3 (TP10) 1.060 0.0069339 10.000 0.0083059 system_57 LA3 (TP10) 1.480 0.0068885 10.000 0.0086576 system_57 LA3 (TP11) 1.480 0.0068885 10.000 0.006924 system_57 LA3 (TP13) 3.030 0.006888 10.000 0.0045981 system_57 LA3 (TP13) 3.030 0.0068304 10.000 0.0045981 system_57 LC3 (TP8) 0.590 0.0070117 10.000 0.014465 system_57 LC3 (TP10) 1.070 0.0069121 <th< td=""><td>$system_{-}57$</td><td>RK4 (TP9)</td><td>0.780</td><td>0.0067956</td><td>10.000</td><td>0.0033621</td></th<>	$system_{-}57$	RK4 (TP9)	0.780	0.0067956	10.000	0.0033621
system_57 RK4 (TP12) 2.410 0.0067956 10.000 0.0033504 system_57 RK4 (TP13) 3.320 0.0067956 10.000 0.0033501 system_57 RK4 (TP14) 5.180 0.0067956 10.000 0.00335 system_57 LA3 (TP8) 0.580 0.0069796 10.000 0.013207 system_57 LA3 (TP10) 1.060 0.0068985 10.000 0.0083059 system_57 LA3 (TP11) 1.480 0.0068868 10.000 0.0064237 system_57 LA3 (TP11) 1.480 0.0068461 10.000 0.0054237 system_57 LA3 (TP13) 3.030 0.0068461 10.000 0.0045981 system_57 LA3 (TP13) 3.030 0.0068304 10.000 0.0045981 system_57 LA3 (TP14) 4.490 0.0068194 10.000 0.00446 system_57 LC3 (TP8) 0.590 0.0070117 10.000 0.014465 system_57 LC3 (TP10) 1.070 0.0068748 1	$system_{-}57$	RK4 (TP10)	1.060	0.0067956	10.000	0.0033584
system_57 RK4 (TP14) 3.320 0.0067956 10.000 0.0033501 system_57 RK4 (TP14) 5.180 0.0667956 10.000 0.00335 system_57 LA3 (TP8) 0.580 0.0069796 10.000 0.013207 system_57 LA3 (TP9) 0.770 0.0069339 10.000 0.0083059 system_57 LA3 (TP10) 1.060 0.0068985 10.000 0.0086576 system_57 LA3 (TP11) 1.480 0.0068488 10.000 0.006924 system_57 LA3 (TP12) 2.160 0.0068461 10.000 0.0045981 system_57 LA3 (TP13) 3.030 0.0068194 10.000 0.0045981 system_57 LA3 (TP14) 4.490 0.0068194 10.000 0.004406 system_57 LC3 (TP8) 0.590 0.007011 10.000 0.014465 system_57 LC3 (TP10) 1.070 0.0069595 10.000 0.014465 system_57 LC3 (TP11) 1.520 0.0068748 10.0	$system_{-}57$	RK4 (TP11)	1.530	0.0067956	10.000	0.0033523
system_57 RK4 (TP14) 5.180 0.0067956 10.000 0.00335 system_57 LA3 (TP8) 0.580 0.0069796 10.000 0.013207 system_57 LA3 (TP9) 0.770 0.0069339 10.000 0.0083059 system_57 LA3 (TP10) 1.060 0.0068985 10.000 0.0086576 system_57 LA3 (TP11) 1.480 0.0068688 10.000 0.006924 system_57 LA3 (TP12) 2.160 0.0068461 10.000 0.0045981 system_57 LA3 (TP13) 3.030 0.0068304 10.000 0.0045981 system_57 LA3 (TP14) 4.490 0.0068194 10.000 0.0045981 system_57 LC3 (TP8) 0.590 0.0070117 10.000 0.004465 system_57 LC3 (TP9) 0.770 0.0069555 10.000 0.0095625 system_57 LC3 (TP11) 1.520 0.0068748 10.000 0.0056805 system_57 LC3 (TP13) 3.300 0.0068492 10	$system_{-}57$	RK4 (TP12)	2.410	0.0067956	10.000	0.0033504
system_57 LA3 (TP8) 0.580 0.0069796 10.000 0.013207 system_57 LA3 (TP9) 0.770 0.069339 10.000 0.0083059 system_57 LA3 (TP10) 1.060 0.0068985 10.000 0.0086576 system_57 LA3 (TP11) 1.480 0.0068688 10.000 0.0060924 system_57 LA3 (TP12) 2.160 0.0068461 10.000 0.0054237 system_57 LA3 (TP13) 3.030 0.0068304 10.000 0.0045981 system_57 LA3 (TP14) 4.490 0.0068194 10.000 0.0045981 system_57 LC3 (TP8) 0.590 0.0070117 10.000 0.004465 system_57 LC3 (TP9) 0.770 0.0069595 10.000 0.0095625 system_57 LC3 (TP10) 1.070 0.0069121 10.000 0.01461 system_57 LC3 (TP11) 1.520 0.0068748 10.000 0.0056602 system_57 LC3 (TP13) 3.300 0.0068311 10	$system_{-}57$	RK4 (TP13)	3.320	0.0067956	10.000	0.0033501
system_57 LA3 (TP9) 0.770 0.0069339 10.000 0.0083059 system_57 LA3 (TP10) 1.060 0.0068985 10.000 0.0086576 system_57 LA3 (TP11) 1.480 0.0068688 10.000 0.0060924 system_57 LA3 (TP12) 2.160 0.0068461 10.000 0.0054237 system_57 LA3 (TP13) 3.030 0.0068304 10.000 0.0045981 system_57 LA3 (TP14) 4.490 0.0068194 10.000 0.0045981 system_57 LC3 (TP8) 0.590 0.0070117 10.000 0.004465 system_57 LC3 (TP9) 0.770 0.0069595 10.000 0.004461 system_57 LC3 (TP10) 1.070 0.0069121 10.000 0.0065855 system_57 LC3 (TP11) 1.520 0.0068748 10.000 0.0056602 system_57 LC3 (TP13) 3.300 0.0068492 10.000 0.0047481 system_57 LC3 (TP14) 5.050 0.0068188 <t< td=""><td>$_{\rm system_57}$</td><td>RK4 (TP14)</td><td>5.180</td><td>0.0067956</td><td>10.000</td><td>0.00335</td></t<>	$_{\rm system_57}$	RK4 (TP14)	5.180	0.0067956	10.000	0.00335
system_57 LA3 (TP10) 1.060 0.0068985 10.000 0.0086576 system_57 LA3 (TP11) 1.480 0.0068688 10.000 0.0060924 system_57 LA3 (TP12) 2.160 0.0068461 10.000 0.0054237 system_57 LA3 (TP13) 3.030 0.0068304 10.000 0.0045981 system_57 LA3 (TP14) 4.490 0.0068194 10.000 0.004466 system_57 LC3 (TP8) 0.590 0.0070117 10.000 0.014465 system_57 LC3 (TP9) 0.770 0.0069595 10.000 0.0095625 system_57 LC3 (TP10) 1.070 0.0069121 10.000 0.014461 system_57 LC3 (TP11) 1.520 0.0068748 10.000 0.0065855 system_57 LC3 (TP12) 2.280 0.0068492 10.000 0.0056602 system_57 LC3 (TP13) 3.300 0.0068188 10.000 0.0047481 system_57 Riot (05, 1e-11) 0m0.342s 0.013481	system_57	LA3 (TP8)	0.580	0.0069796	10.000	0.013207
system_57 LA3 (TP11) 1.480 0.0068688 10.000 0.0060924 system_57 LA3 (TP12) 2.160 0.0068461 10.000 0.0054237 system_57 LA3 (TP13) 3.030 0.0068304 10.000 0.0045981 system_57 LA3 (TP14) 4.490 0.0068194 10.000 0.004046 system_57 LC3 (TP8) 0.590 0.0070117 10.000 0.004465 system_57 LC3 (TP9) 0.770 0.0069595 10.000 0.0095625 system_57 LC3 (TP10) 1.070 0.0069121 10.000 0.010461 system_57 LC3 (TP11) 1.520 0.0068748 10.000 0.0056602 system_57 LC3 (TP12) 2.280 0.0068492 10.000 0.0047481 system_57 LC3 (TP13) 3.300 0.0068188 10.000 0.0047481 system_57 Riot (05, 1e-11) 0m0.342s 0.013481 -0.000 33.434 system_57 Riot (10, 1e-11) 0m0.342s 0.013481 <td>$system_57$</td> <td>LA3 (TP9)</td> <td>0.770</td> <td>0.0069339</td> <td>10.000</td> <td>0.0083059</td>	$system_57$	LA3 (TP9)	0.770	0.0069339	10.000	0.0083059
system_57 LA3 (TP12) 2.160 0.0068461 10.000 0.0054237 system_57 LA3 (TP13) 3.030 0.0068304 10.000 0.0045981 system_57 LA3 (TP14) 4.490 0.0068194 10.000 0.004046 system_57 LC3 (TP8) 0.590 0.0070117 10.000 0.014465 system_57 LC3 (TP9) 0.770 0.0069595 10.000 0.01461 system_57 LC3 (TP10) 1.070 0.0068748 10.000 0.010461 system_57 LC3 (TP11) 1.520 0.0068748 10.000 0.0056855 system_57 LC3 (TP12) 2.280 0.0068492 10.000 0.0056602 system_57 LC3 (TP13) 3.300 0.0068188 10.000 0.0047481 system_57 Riot (05, 1e-11) 0m0.342s 0.013481 -0.000 33.434 system_57 Riot (10, 1e-11) 0m0.308s 0.012937 -0.000 4.2549 system_57 Valencia-IVP (0.00025) 0m1.863s 0.	$system_57$	LA3 (TP10)	1.060	0.0068985	10.000	0.0086576
system_57 LA3 (TP13) 3.030 0.0068304 10.000 0.0045981 system_57 LA3 (TP14) 4.490 0.0068194 10.000 0.004046 system_57 LC3 (TP8) 0.590 0.0070117 10.000 0.014465 system_57 LC3 (TP9) 0.770 0.0069595 10.000 0.0095625 system_57 LC3 (TP10) 1.070 0.0069121 10.000 0.010461 system_57 LC3 (TP11) 1.520 0.0068748 10.000 0.0065855 system_57 LC3 (TP12) 2.280 0.0068492 10.000 0.0056602 system_57 LC3 (TP13) 3.300 0.0068188 10.000 0.0047481 system_57 Riot (05, 1e-11) 0m0.342s 0.013481 -0.000 33.434 system_57 Riot (10, 1e-11) 0m0.342s 0.012937 -0.000 4.2549 system_57 Valencia-IVP (0.00025) 0m1.863s 0.012937 -0.000 4.2549 system_57 Valencia-IVP (0.0025) 0m0.18os	$system_57$	LA3 (TP11)	1.480	0.0068688	10.000	0.0060924
system_57 LA3 (TP14) 4.490 0.0068194 10.000 0.004046 system_57 LC3 (TP8) 0.590 0.0070117 10.000 0.014465 system_57 LC3 (TP9) 0.770 0.0069595 10.000 0.0095625 system_57 LC3 (TP10) 1.070 0.0068748 10.000 0.010461 system_57 LC3 (TP11) 1.520 0.0068748 10.000 0.0065855 system_57 LC3 (TP12) 2.280 0.0068492 10.000 0.0056602 system_57 LC3 (TP13) 3.300 0.0068111 10.000 0.0047481 system_57 Riot (05, 1e-11) 0m0.342s 0.013481 -0.000 0.004001 system_57 Riot (10, 1e-11) 0m0.308s 0.012937 -0.000 4.2549 system_57 Riot (15, 1e-11) 0m0.517s 0.012937 -0.000 1.078 system_57 Valencia-IVP (0.0025) 0m1.863s 0.015962 10.000 337.44 system_57 Valencia-IVP (0.0025) 0m0.180s <td>$system_{-}57$</td> <td>LA3 (TP12)</td> <td>2.160</td> <td>0.0068461</td> <td>10.000</td> <td>0.0054237</td>	$system_{-}57$	LA3 (TP12)	2.160	0.0068461	10.000	0.0054237
system_57 LC3 (TP8) 0.590 0.0070117 10.000 0.014465 system_57 LC3 (TP9) 0.770 0.0069595 10.000 0.0095625 system_57 LC3 (TP10) 1.070 0.0069121 10.000 0.010461 system_57 LC3 (TP11) 1.520 0.0068748 10.000 0.0065855 system_57 LC3 (TP12) 2.280 0.0068492 10.000 0.0056602 system_57 LC3 (TP13) 3.300 0.0068111 10.000 0.0047481 system_57 LC3 (TP14) 5.050 0.0068188 10.000 0.004001 system_57 Riot (05, 1e-11) 0m0.342s 0.013481 -0.000 33.434 system_57 Riot (10, 1e-11) 0m0.308s 0.012937 -0.000 4.2549 system_57 Riot (15, 1e-11) 0m0.517s 0.012937 -0.000 1.078 system_57 Valencia-IVP (0.0025) 0m1.863s 0.015962 10.000 337.44 system_57 Valencia-IVP (0.0025) 0m0.180s	$system_{-}57$	LA3 (TP13)	3.030	0.0068304	10.000	0.0045981
system_57 LC3 (TP9) 0.770 0.0069595 10.000 0.0095625 system_57 LC3 (TP10) 1.070 0.0069121 10.000 0.010461 system_57 LC3 (TP11) 1.520 0.0068748 10.000 0.0065855 system_57 LC3 (TP12) 2.280 0.0068492 10.000 0.0056602 system_57 LC3 (TP13) 3.300 0.0068311 10.000 0.0047481 system_57 Riot (05, 1e-11) 0m0.342s 0.013481 -0.000 33.434 system_57 Riot (10, 1e-11) 0m0.308s 0.012937 -0.000 4.2549 system_57 Valencia-IVP (0.00025) 0m1.863s 0.012937 -0.000 1.078 system_57 Valencia-IVP (0.0025) 0m0.180s 0.017692 10.000 337.44 system_57 Valencia-IVP (0.025) 0m0.024s 0.035905 10.000 921.84 system_57 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 0.0067956 10.000 0.054773 system_57 VNODE-LP (20, 1e	$_{\rm system_57}$	LA3 (TP14)	4.490	0.0068194	10.000	0.004046
system_57 LC3 (TP10) 1.070 0.0069121 10.000 0.010461 system_57 LC3 (TP11) 1.520 0.0068748 10.000 0.0065855 system_57 LC3 (TP12) 2.280 0.0068492 10.000 0.0056602 system_57 LC3 (TP13) 3.300 0.0068311 10.000 0.0047481 system_57 Riot (05, 1e-11) 0m0.342s 0.013481 -0.000 33.434 system_57 Riot (10, 1e-11) 0m0.308s 0.012937 -0.000 4.2549 system_57 Valencia-IVP (0.00025) 0m1.863s 0.015962 10.000 288.91 system_57 Valencia-IVP (0.0025) 0m0.180s 0.017692 10.000 337.44 system_57 Valencia-IVP (0.025) 0m0.024s 0.035905 10.000 921.84 system_57 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 0.0067956 10.000 0.054773 system_57 VNODE-LP (20, 1e-14,1e-14) 0m0.018s 0.0067956 10.000 0.054773	system_57	LC3 (TP8)	0.590	0.0070117	10.000	0.014465
system_57 LC3 (TP10) 1.070 0.0069121 10.000 0.010461 system_57 LC3 (TP11) 1.520 0.0068748 10.000 0.0065855 system_57 LC3 (TP12) 2.280 0.0068492 10.000 0.0056602 system_57 LC3 (TP13) 3.300 0.0068311 10.000 0.0047481 system_57 Riot (05, 1e-11) 0m0.342s 0.013481 -0.000 33.434 system_57 Riot (10, 1e-11) 0m0.308s 0.012937 -0.000 4.2549 system_57 Valencia-IVP (0.00025) 0m1.863s 0.015962 10.000 288.91 system_57 Valencia-IVP (0.0025) 0m0.180s 0.017692 10.000 337.44 system_57 Valencia-IVP (0.025) 0m0.024s 0.035905 10.000 921.84 system_57 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 0.0067956 10.000 0.054773 system_57 VNODE-LP (20, 1e-14,1e-14) 0m0.018s 0.0067956 10.000 0.054773	system_57	LC3 (TP9)	0.770	0.0069595	10.000	0.0095625
system_57 LC3 (TP11) 1.520 0.0068748 10.000 0.0065855 system_57 LC3 (TP12) 2.280 0.0068492 10.000 0.0056602 system_57 LC3 (TP13) 3.300 0.0068311 10.000 0.0047481 system_57 Riot (05, 1e-11) 0m0.342s 0.013481 -0.000 33.434 system_57 Riot (10, 1e-11) 0m0.308s 0.012937 -0.000 4.2549 system_57 Riot (15, 1e-11) 0m0.517s 0.012937 -0.000 1.078 system_57 Valencia-IVP (0.00025) 0m1.863s 0.015962 10.000 288.91 system_57 Valencia-IVP (0.0025) 0m0.180s 0.017692 10.000 337.44 system_57 Valencia-IVP (0.025) 0m0.024s 0.035905 10.000 921.84 system_57 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 0.0067956 10.000 0.054773 system_57 VNODE-LP (20, 1e-14,1e-14) 0m0.018s 0.0067956 10.000 0.054773	system_57		1.070	0.0069121	10.000	0.010461
system_57 LC3 (TP13) 3.300 0.0068311 10.000 0.0047481 system_57 LC3 (TP14) 5.050 0.0068188 10.000 0.004001 system_57 Riot (05, 1e-11) 0m0.342s 0.013481 -0.000 33.434 system_57 Riot (10, 1e-11) 0m0.308s 0.012937 -0.000 4.2549 system_57 Valencia-IVP (0.00025) 0m1.863s 0.015962 10.000 288.91 system_57 Valencia-IVP (0.0025) 0m0.180s 0.017692 10.000 337.44 system_57 Valencia-IVP (0.025) 0m0.024s 0.035905 10.000 921.84 system_57 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 0.0067956 10.000 0.054773 system_57 VNODE-LP (20, 1e-14,1e-14) 0m0.018s 0.0067956 10.000 0.054773	$system_57$	LC3 (TP11)	1.520	0.0068748	10.000	0.0065855
system_57 LC3 (TP14) 5.050 0.0068188 10.000 0.004001 system_57 Riot (05, 1e-11) 0m0.342s 0.013481 -0.000 33.434 system_57 Riot (10, 1e-11) 0m0.308s 0.012937 -0.000 4.2549 system_57 Riot (15, 1e-11) 0m0.517s 0.012937 -0.000 1.078 system_57 Valencia-IVP (0.00025) 0m1.863s 0.015962 10.000 288.91 system_57 Valencia-IVP (0.0025) 0m0.180s 0.017692 10.000 337.44 system_57 Valencia-IVP (0.025) 0m0.024s 0.035905 10.000 921.84 system_57 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 0.0067956 10.000 0.054773 system_57 VNODE-LP (20, 1e-14,1e-14) 0m0.018s 0.0067956 10.000 0.054773	$system_{-}57$	LC3 (TP12)	2.280	0.0068492	10.000	0.0056602
system_57 Riot (05, 1e-11) 0m0.342s 0.013481 -0.000 33.434 system_57 Riot (10, 1e-11) 0m0.308s 0.012937 -0.000 4.2549 system_57 Riot (15, 1e-11) 0m0.517s 0.012937 -0.000 1.078 system_57 Valencia-IVP (0.00025) 0m1.863s 0.015962 10.000 288.91 system_57 Valencia-IVP (0.0025) 0m0.180s 0.017692 10.000 337.44 system_57 Valencia-IVP (0.025) 0m0.024s 0.035905 10.000 921.84 system_57 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 0.0067956 10.000 0.054773 system_57 VNODE-LP (20, 1e-14,1e-14) 0m0.018s 0.0067956 10.000 0.054773	$system_57$	LC3 (TP13)	3.300	0.0068311	10.000	0.0047481
system_57 Riot (10, 1e-11) 0m0.308s 0.012937 -0.000 4.2549 system_57 Riot (15, 1e-11) 0m0.517s 0.012937 -0.000 1.078 system_57 Valencia-IVP (0.00025) 0m1.863s 0.015962 10.000 288.91 system_57 Valencia-IVP (0.0025) 0m0.180s 0.017692 10.000 337.44 system_57 Valencia-IVP (0.025) 0m0.024s 0.035905 10.000 921.84 system_57 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 0.0067956 10.000 0.054773 system_57 VNODE-LP (20, 1e-14,1e-14) 0m0.018s 0.0067956 10.000 0.054773	$system_{-}57$	LC3 (TP14)	5.050	0.0068188	10.000	0.004001
system_57 Riot (15, 1e-11) 0m0.517s 0.012937 -0.000 1.078 system_57 Valencia-IVP (0.00025) 0m1.863s 0.015962 10.000 288.91 system_57 Valencia-IVP (0.0025) 0m0.180s 0.017692 10.000 337.44 system_57 Valencia-IVP (0.025) 0m0.024s 0.035905 10.000 921.84 system_57 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 0.0067956 10.000 0.054773 system_57 VNODE-LP (20, 1e-14,1e-14) 0m0.018s 0.0067956 10.000 0.054773	system_57		0 m 0.342 s	0.013481	-0.000	33.434
system_57 Valencia-IVP (0.00025) 0m1.863s 0.015962 10.000 288.91 system_57 Valencia-IVP (0.0025) 0m0.180s 0.017692 10.000 337.44 system_57 Valencia-IVP (0.025) 0m0.024s 0.035905 10.000 921.84 system_57 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 0.0067956 10.000 0.054773 system_57 VNODE-LP (20, 1e-14,1e-14) 0m0.018s 0.0067956 10.000 0.054773	$system_{-}57$	Riot (10, 1e-11)	0 m 0.308 s	0.012937	-0.000	4.2549
system_57 Valencia-IVP (0.0025) 0m0.180s 0.017692 10.000 337.44 system_57 Valencia-IVP (0.025) 0m0.024s 0.035905 10.000 921.84 system_57 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 0.0067956 10.000 0.054773 system_57 VNODE-LP (20, 1e-14,1e-14) 0m0.018s 0.0067956 10.000 0.054773	$system_57$	Riot (15, 1e-11)	0 m 0.517 s	0.012937	-0.000	1.078
system_57 Valencia-IVP (0.025) 0m0.024s 0.035905 10.000 921.84 system_57 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 0.0067956 10.000 0.054773 system_57 VNODE-LP (20, 1e-14,1e-14) 0m0.018s 0.0067956 10.000 0.054773	system_57	Valencia-IVP (0.00025)	0 m1.863 s	0.015962	10.000	288.91
system_57 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 0.0067956 10.000 0.054773 system_57 VNODE-LP (20, 1e-14,1e-14) 0m0.018s 0.0067956 10.000 0.054773	$system_57$	Valencia-IVP (0.0025)	0 m 0.180 s	0.017692	10.000	337.44
system_57 VNODE-LP (20, 1e-14,1e-14) 0m0.018s	-		0 m 0.024 s	0.035905	10.000	921.84
system_57 VNODE-LP (20, 1e-14,1e-14) 0m0.018s	system_57	VNODE-LP (15, 1e-14,1e-14)	0 m 0.015 s	0.0067956	10.000	0.054773
		\ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	0 m 0.018 s	0.0067956	10.000	0.054773

	Table 3.48: Simulation re	sults of Pro	oblem 58		
Problems	Methods	c5t	c5w	c6t	c6w
system_58	TAYLOR4 (TP8)	0.180	7.7141e-08	10.000	3.4549e-05
$system_{-}58$	TAYLOR4 (TP9)	0.260	8.0285 e-09	10.000	2.1271e-05
$system_{-}58$	TAYLOR4 (TP10)	0.410	8.2963e-10	10.000	9.8007e-06
$system_{-}58$	TAYLOR4 (TP11)	0.640	8.5321e-11	10.000	3.2405 e06
$system_{-}58$	TAYLOR4 (TP12)	1.000	8.848e-12	10.000	3.459 e-07
$system_{-}58$	TAYLOR4 (TP13)	1.550	1.6449e-12	10.000	5.4546e-08
system_58	TAYLOR4 (TP14)	2.730	1.3616e-12	10.000	3.6384e-08
system_58	RK4 (TP8)	0.130	1.1435e-07	10.000	3.0612e-05
$system_{-}58$	RK4 (TP9)	0.190	1.5557e-08	10.000	1.7471e-05
$system_{-}58$	RK4 (TP10)	0.280	1.8288e-09	10.000	8.2663 e-06
$system_{-}58$	RK4 (TP11)	0.440	1.9948e-10	10.000	4.5881 e- 06
$system_58$	RK4 (TP12)	0.680	2.3118e-11	10.000	5.8802e-07
$system_{-}58$	RK4 (TP13)	1.030	2.7485e-12	10.000	7.0181e-08
system_58	RK4 (TP14)	1.600	6.4215e-13	10.000	1.6374e-08
system_58	LA3 (TP8)	0.100	7.7582e-08	10.000	3.862e-05
$system_{-}58$	LA3 (TP9)	0.150	8.4071e-09	10.000	1.8014 e-05
$system_{-}58$	LA3 (TP10)	0.230	1e-09	10.000	5.9569 e - 06
$system_{-}58$	LA3 (TP11)	0.350	1.1954e-10	10.000	4.7884e-06
$system_{-}58$	LA3 (TP12)	0.550	1.4015e-11	10.000	5.7684 e-07
$system_{-}58$	LA3 (TP13)	0.840	1.6018e-12	10.000	6.6192 e-08
$system_58$	LA3 (TP14)	1.300	4.8228e-13	10.000	1.4357e-08
system_58	LC3 (TP8)	0.110	7.6055e-08	10.000	3.2019e-05
system_58	LC3 (TP9)	0.160	7.0379e-09	10.000	1.7252 e-05
$system_58$	LC3 (TP10)	0.240	7.073e-10	10.000	8.826e-06
$system_58$	LC3 (TP11)	0.370	6.9519 e-11	10.000	2.7407e-06
$system_{-}58$	LC3 (TP12)	0.570	7.0854e-12	10.000	2.6685e-07
$system_{-}58$	LC3 (TP13)	0.880	9.0639e-13	10.000	3.0817e-08
$system_58$	LC3 (TP14)	1.360	4.0279e-13	10.000	1.0658e-08
system_58	Riot (05, 1e-11)	0 m 0.386 s	6.7986e-11	-0.000	1.8892e-06
$system_{-}58$	Riot (10, 1e-11)	0 m 0.225 s	7.1609e-13	-0.000	3.3649 e - 08
$system_58$	Riot (15, 1e-11)	0 m 0.310 s	2.1094e-14	-0.000	7.9267e-07
system_58	Valencia-IVP (0.00025)	0 m1.907 s	0.0032029	4.129	968.02
$system_{-}58$	Valencia-IVP (0.0025)	0 m 0.289 s	0.032453	3.468	825.8
$system_58$	Valencia-IVP (0.025)	0 m 0.063 s	0.36874	2.325	2.7348
system_58	VNODE-LP (15, 1e-14,1e-14)	0 m 0.007 s	9.992e-15	10.000	5.2854e-13
$system_{-}58$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.007 s	5.9952e-15	10.000	3.5797e-13
system_58	VNODE-LP (25, 1e-14,1e-14)	0 m 0.008 s	5.107e-15	10.000	2.6821e-13

	Table 3.49: Simulation re	sults of Prob	lem 59		
Problems	Methods	c5t	c5w	c6t	c6w
system_59	TAYLOR4 (TP8)	0.320	0.61888	2.332	409.62
$system_{-}59$	TAYLOR4 (TP9)	0.500	0.61763	2.342	627.45
$system_{-}59$	TAYLOR4 (TP10)	0.780	0.62016	2.343	947.95
$system_{-}59$	TAYLOR4 (TP11)	1.220	0.61634	2.353	1393.3
$system_{-}59$	TAYLOR4 (TP12)	1.960	0.61604	2.356	2026.9
$system_{-}59$	TAYLOR4 (TP13)	3.070	0.61584	2.358	2938.4
system_59	TAYLOR4 (TP14)	4.880	0.61601	2.356	1820.2
system_59	RK4 (TP8)	0.190	0.61554	2.340	309.16
$system_{-}59$	RK4 (TP9)	0.290	0.61552	2.346	482.14
$system_{-}59$	RK4 (TP10)	0.460	0.61552	2.351	729.25
$system_{-}59$	RK4 (TP11)	0.700	0.61571	2.354	1074.3
$system_{-}59$	RK4 (TP12)	1.150	0.61887	2.351	1577.8
$system_{-}59$	RK4 (TP13)	1.740	0.61551	2.358	2300
$system_{-}59$	RK4 (TP14)	2.740	0.61551	2.359	2656.2
system_59	LA3 (TP8)	0.170	0.62868	2.301	256.97
$system_{-}59$	LA3 (TP9)	0.240	0.6239	2.322	405.24
$system_{-}59$	LA3 (TP10)	0.370	0.62081	2.335	610.27
$system_{-}59$	LA3 (TP11)	0.580	0.61885	2.344	914.53
$system_{-}59$	LA3 (TP12)	0.890	0.61796	2.350	1348.2
$system_{-}59$	LA3 (TP13)	1.410	0.61684	2.354	1965
$system_{-}59$	LA3 (TP14)	2.230	0.61635	2.357	2848.1
system_59	LC3 (TP8)	0.170	0.63191	2.285	262.91
$system_{-}59$	LC3 (TP9)	0.260	0.6259	2.312	421.05
$system_{-}59$	LC3 (TP10)	0.390	0.62194	2.329	642.8
$system_{-}59$	LC3 (TP11)	0.610	0.61954	2.341	952.94
$system_{-}59$	LC3 (TP12)	1.050	0.62126	2.343	1402.2
$system_{-}59$	LC3 (TP13)	1.490	0.61753	2.352	2043.1
$system_{-}59$	LC3 (TP14)	2.350	0.61652	2.356	2965.4
system_59	Riot (05, 1e-11)	0 m 7.354 s	0	0.000	0
$system_{-}59$	Riot (10, 1e-11)	6m33.869s	0.58244	0.000	0
system_59	Riot (15, 1e-11)	53m34.326s	0.58244	0.000	0
system_59	Valencia-IVP (0.00025)	0 m 3.563 s	1.4356	1.733	990.17
$system_{-}59$	Valencia-IVP (0.0025)	0 m 0.469 s	1.5086	1.698	818.5
system_59	Valencia-IVP (0.025)	0 m 0.100 s	3.003	1.300	23.135
system_59	VNODE-LP (15, 1e-14,1e-14)	0 m 0.013 s	1.4378	1.641	3.7929e + 05
$system_59$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.013 s	1.8859	1.527	1.176e + 06
$system_{-}59$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.011 s	2.2062	1.455	1.9992e+06

Problems	Table 3.50: Simulation results of Problem 60 ems Methods c5t c5w c6t c6w						
system_60	TAYLOR4 (TP8)	0.980	3.6313e-08	10.000	2.0172e-05		
system_60	TAYLOR4 (TP9)	1.510	3.91e-09	10.000	1.0452e-05		
system_60	TAYLOR4 (TP10)	2.370	4.1545e-10	10.000	2.449e-06		
system_60	TAYLOR4 (TP11)	3.760	4.1545e-10 4.2142e-11	10.000	2.5501e-07		
system_60	TAYLOR4 (TP12)	5.900	4.5062e-12	10.000	2.7482e-08		
system_60	TAYLOR4 (TP13)	9.510	4.6002c-12 8.6153e-13	10.000	4.9282e-09		
system_60	TAYLOR4 (TP14)	15.000	7.2609e-13	10.000	3.8885e-09		
system_60	RK4 (TP8)	0.560	5.1365e-08	10.000	1.0619e-05		
system_60	RK4 (TP9)	0.850	5.3363e-09	10.000	6.8093e-06		
system_60	RK4 (TP10)	1.280	5.4613e-10	10.000	3.8676e-06		
system_60	RK4 (TP11)	2.460	5.5102e-11	10.000	4.6275e-07		
system_60	RK4 (TP12)	3.240	5.5893e-12	10.000	4.885e-08		
system_60	RK4 (TP13)	5.110	6.1329e-13	10.000	5.556e-09		
system_60	RK4 (TP14)	7.970	2.0783e-13	10.000	1.3849e-09		
$system_{-}60$	LA3 (TP8)	0.550	5.2924e-08	10.000	1.3089e-05		
$system_60$	LA3 (TP9)	0.840	5.5683e-09	10.000	1.2154e-05		
$system_60$	LA3 (TP10)	1.230	5.7092e-10	10.000	2.8252e-06		
$system_{-}60$	LA3 (TP11)	2.120	5.8239e-11	10.000	3.2878e-07		
$system_{-}60$	LA3 (TP12)	3.040	5.9095e-12	10.000	3.4149e-08		
$system_{-}60$	LA3 (TP13)	4.770	6.4371e-13	10.000	4.0022e-09		
system_60	LA3 (TP14)	7.540	1.9762e-13	10.000	1.2146e-09		
system_60	LC3 (TP8)	0.580	3.2515e-08	10.000	1.2785e-05		
$system_60$	LC3 (TP9)	0.850	3.4269 e-09	10.000	1.1738e-05		
$system_60$	LC3 (TP10)	1.330	3.5506e-10	10.000	2.5568e-06		
$system_60$	LC3 (TP11)	2.090	3.6346e-11	10.000	2.6495 e - 07		
$system_{-}60$	LC3 (TP12)	3.310	3.6904e-12	10.000	2.7388e-08		
$system_60$	LC3 (TP13)	5.160	4.6496e-13	10.000	3.3249 e - 09		
$system_60$	LC3 (TP14)	8.120	2.0606e-13	10.000	1.1795e-09		
system_60	Riot (05, 1e-11)	0m0.401s	1.0846e-10	-0.000	4.1356e-07		
$system_{-}60$	Riot (10, 1e-11)	0 m 0.208 s	1.3138e-12	-0.000	1.4383e-08		
$system_60$	Riot (15, 1e-11)	0 m 0.293 s	2.3981e-14	-0.000	1.4009e-09		
system_60	Valencia-IVP (0.00025)	0 m2.208 s	0.0012113	10.000	21.282		
$system_60$	Valencia-IVP (0.0025)	0 m 0.282 s	0.012152	8.033	944.65		
system_60	Valencia-IVP (0.025)	0 m 0.049 s	0.12493	5.225	615.14		
system_60	VNODE-LP (15, 1e-14,1e-14)	0 m 0.015 s	6.3283e-15	10.000	1.8436e-12		
$system_60$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.013 s	5.9952 e- 15	10.000	2.2619e-12		
$system_{-}60$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.013 s	3.9968e-15	10.000	1.127e-12		

Table 3.51: Simulation results of Problem 61						
Problems	Methods	c5t	c5w	c6t	c6w	
system_61	TAYLOR4 (TP8)	1.180	0.0054407	10.000	8.3228	
$system_{-}61$	TAYLOR4 (TP9)	1.830	0.0053657	10.000	15.453	
$system_61$	TAYLOR4 (TP10)	2.860	0.0054044	10.000	14.813	
$system_61$	TAYLOR4 (TP11)	4.600	0.0054132	10.000	320.66	
$system_61$	TAYLOR4 (TP12)	7.210	0.0054145	10.000	11.811	
$system_{-}61$	TAYLOR4 (TP13)	11.320	0.0053453	10.000	313.11	
system_61	TAYLOR4 (TP14)	18.070	0.0054383	10.000	725.35	
system_61	RK4 (TP8)	0.620	0.0052643	10.000	3.3273	
$system_{-}61$	RK4 (TP9)	0.920	0.0052883	10.000	12.87	
$system_61$	RK4 (TP10)	1.420	0.0054387	10.000	8.7345	
$system_61$	RK4 (TP11)	2.330	0.0053817	10.000	14.179	
$system_61$	RK4 (TP12)	3.520	0.0053906	10.000	90.053	
$system_{-}61$	RK4 (TP13)	5.520	0.0054731	10.000	40.322	
system_61	RK4 (TP14)	8.640	0.0054604	10.000	52.883	
system_61	LA3 (TP8)	0.600	0.0053293	10.000	11.103	
$system_61$	LA3 (TP9)	0.890	0.0053306	10.000	15.398	
$system_61$	LA3 (TP10)	1.340	0.0053562	10.000	10.597	
$system_61$	LA3 (TP11)	2.080	0.0054059	10.000	24.382	
$system_{-}61$	LA3 (TP12)	3.320	0.0054158	10.000	22.094	
$system_61$	LA3 (TP13)	5.200	0.0054598	9.972	75209	
system_61	LA3 (TP14)	8.110	0.0054368	10.000	84.479	
system_61	LC3 (TP8)	0.620	0.0053219	10.000	15.264	
$system_61$	LC3 (TP9)	0.930	0.0053593	10.000	13.911	
$system_61$	LC3 (TP10)	1.430	0.005359	10.000	12.418	
$system_61$	LC3 (TP11)	2.270	0.0054463	10.000	63.773	
$system_{-}61$	LC3 (TP12)	3.630	0.0054206	10.000	26.739	
$system_61$	LC3 (TP13)	5.640	0.0054502	9.731	81583	
system_61	LC3 (TP14)	8.820	0.0054423	10.000	44.156	
system_61	Riot (05, 1e-11)	0m29.113s	0.016523	0.000	0	
$system_61$	Riot (10, 1e-11)	2m2.447s	0.016523	0.000	0	
system_61	Riot (15, 1e-11)	9m16.121s	0.016523	0.000	0	
system_61	Valencia-IVP (0.00025)	0 m 2.193 s	0.0070886	7.850	995.84	
$system_61$	Valencia-IVP (0.0025)	0 m 0.314 s	0.018078	7.098	938.56	
system_61	Valencia-IVP (0.025)	0 m 0.049 s	0.13117	5.150	535.8	
system_61	VNODE-LP (15, 1e-14,1e-14)	0 m 0.015 s	0.0064256	9.464	1.0425e + 08	
$system_61$	VNODE-LP (20, 1e-14,1e-14)	$0 \mathrm{m} 0.011 \mathrm{s}$	0.007766	9.213	4.7889e + 08	
$system_61$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.012 s	0.0087521	9.173	1.0624e + 09	

Problems	Table 3.52: Simulation results of Problem 62 Methods c5t c5w c6t c6w					
	TAYLOR4 (TP8)	0.020	1.2802e-09	10.000	1.0457e-06	
system_62 system_62	TAYLOR4 (TP8)	0.020	1.2802e-09 1.2802e-09	10.000	1.0457e-00 1.4972e-07	
system_62	TAYLOR4 (TP10)	0.020	9.382e-10	10.000	1.4972e-07 1.6447e-08	
		!				
system_62	TAYLOR4 (TP11)	0.030	1.4039e-10	10.000	1.7013e-09	
system_62	TAYLOR4 (TP12)	0.030	1.5092e-11	10.000	1.7605e-10	
system_62	TAYLOR4 (TP13)	0.050	2.1814e-12	10.000	2.251e-11	
system_62	TAYLOR4 (TP14)	0.070	9.8055e-13	10.000	9.5852e-12	
$system_{-}62$	RK4 (TP8)	0.020	7.5438e-11	10.000	6.0009e-07	
$system_{-}62$	RK4 (TP9)	0.020	7.5438e-11	10.000	2.0981e-07	
$system_62$	RK4 (TP10)	0.020	7.5438e-11	10.000	2.6419e-08	
$system_{-}62$	RK4 (TP11)	0.020	7.5438e-11	10.000	2.6952e-09	
$system_62$	RK4 (TP12)	0.020	1.1987e-11	10.000	2.6037e-10	
$system_{-}62$	RK4 (TP13)	0.020	1.7266e-12	10.000	2.6858e-11	
$system_62$	RK4 (TP14)	0.040	4.0501e-13	10.000	4.7393e-12	
system_62	LA3 (TP8)	0.020	2.0744e-10	10.000	3.7513e-07	
$system_62$	LA3 (TP9)	0.020	2.0744e-10	10.000	6.8085 e-08	
$system_62$	LA3 (TP10)	0.020	2.0744e-10	10.000	8.2075 e-09	
$system_62$	LA3 (TP11)	0.020	8.3048e-11	10.000	9.0913e-10	
$system_{-}62$	LA3 (TP12)	0.020	2.4023e-11	10.000	1.1102e-10	
$system_{-}62$	LA3 (TP13)	0.030	3.3396e-12	10.000	1.3493e-11	
$system_62$	LA3 (TP14)	0.040	6.0396e-13	10.000	3.4959e-12	
system_62	LC3 (TP8)	0.020	8.3944e-11	10.000	2.7272e-07	
system_62	LC3 (TP9)	0.020	8.3944e-11	10.000	1.0016e-07	
$system_62$	LC3 (TP10)	0.020	8.3944e-11	10.000	1.1054e-08	
system_62	LC3 (TP11)	0.020	7.875e-11	10.000	1.1258e-09	
$system_{-}62$	LC3 (TP12)	0.020	1.1283e-11	10.000	1.1067e-10	
$system_62$	LC3 (TP13)	0.030	1.5774e-12	10.000	1.2335e-11	
$system_62$	LC3 (TP14)	0.040	3.8369e-13	10.000	3.304 e-12	
system_62	Riot (05, 1e-11)	0 m 0.096 s	7.887e-13	-0.000	3.9957e-11	
$system_62$	Riot (10, 1e-11)	0 m 0.116 s	7.9226e-13	-0.000	2.2027e-13	
$system_62$	Riot (15, 1e-11)	0 m 0.139 s	9.3081e-13	-0.000	5.0093e-13	
system_62	Valencia-IVP (0.00025)	0 m1.501 s	8e-06	10.000	9.0701e-05	
$system_62$	Valencia-IVP (0.0025)	0 m 0.135 s	8.0004 e-05	10.000	0.00090724	
system_62	Valencia-IVP (0.025)	0 m 0.017 s	0.00080027	10.000	0.0090954	
system_62	VNODE-LP (15, 1e-14,1e-14)	0 m 0.006 s	1.0658e-14	10.000	1.0303e-13	
$system_62$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.006 s	1.0658e-14	10.000	1.1013e-13	
$system_{-}62$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.005 s	1.0658e-14	10.000	1.1013e-13	

Problems	Table 3.53: Simulation results of Problem 63 Problems Methods c5t c5w c6t c6w						
	TAYLOR4 (TP8)						
system_63 system_63	TAYLOR4 (TP8)	0.050 0.060	0.91819 0.91498	10.000 10.000	4.9513 4.7543		
system_63	TAYLOR4 (TP10)	0.000	0.91498 0.9127	10.000 10.000	4.7343 4.6373		
		l .					
system_63 system_63	TAYLOR4 (TP11) TAYLOR4 (TP12)	0.130 0.200	0.9111 0.91002	10.000 10.000	4.5661 4.5221		
system_63		0.200	0.91002 0.90932	10.000	4.3221 4.4947		
system_63	TAYLOR4 (TP13) TAYLOR4 (TP14)	0.520	0.90952 0.90886	10.000 10.000	4.4947 4.4776		
$system_{-63}$	RK4 (TP8)	0.030	0.90814	10.000	4.452		
$system_{-63}$	RK4 (TP9)	0.030	0.9081	10.000	4.4501		
$system_63$	RK4 (TP10)	0.050	0.90808	10.000	4.4493		
$system_63$	RK4 (TP11)	0.070	0.90808	10.000	4.449		
$system_63$	RK4 (TP12)	0.110	0.90807	10.000	4.4489		
$system_{-}63$	RK4 (TP13)	0.160	0.90807	10.000	4.4488		
system_63	RK4 (TP14)	0.250	0.90807	10.000	4.4488		
system_63	LA3 (TP8)	0.030	0.94854	10.000	5.196		
$system_{-}63$	LA3 (TP9)	0.030	0.93622	10.000	4.9019		
$system_63$	LA3 (TP10)	0.040	0.927	10.000	4.7292		
$system_63$	LA3 (TP11)	0.060	0.9205	10.000	4.6236		
$system_{-}63$	LA3 (TP12)	0.090	0.91616	10.000	4.5583		
$system_{-}63$	LA3 (TP13)	0.140	0.91325	10.000	4.5176		
$system_63$	LA3 (TP14)	0.220	0.91136	10.000	4.492		
system_63	LC3 (TP8)	0.030	0.95645	10.000	5.5166		
$system_63$	LC3 (TP9)	0.030	0.94129	10.000	5.0708		
$system_63$	LC3 (TP10)	0.050	0.9303	10.000	4.8246		
$system_63$	LC3 (TP11)	0.060	0.92279	10.000	4.6803		
$system_{-}63$	LC3 (TP12)	0.100	0.91757	10.000	4.5928		
$system_63$	LC3 (TP13)	0.140	0.91414	10.000	4.5388		
$system_63$	LC3 (TP14)	0.230	0.91192	10.000	4.5052		
system_63	Riot (05, 1e-11)	0 m 0.226 s	6.1391e-12	-0.000	2.1793e-10		
$system_63$	Riot (10, 1e-11)	0 m 0.219 s	6.1391e-12	-0.000	8.3134e-13		
$system_63$	Riot (15, 1e-11)	0 m 0.222 s	3.6238e-13	-0.000	3.979e-13		
system_63	Valencia-IVP (0.00025)	0 m 3.804 s	1.4207	4.983	939.4		
$system_63$	Valencia-IVP (0.0025)	0 m 0.416 s	1.4208	4.960	184.88		
system_63	Valencia-IVP (0.025)	0 m 0.067 s	1.4224	3.675	6.8657		
system_63	VNODE-LP (15, 1e-14,1e-14)	0 m 0.006 s	1.1898	5.765	12397		
$system_63$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.006 s	1.1582	4.716	24367		
$system_{-}63$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.004 s	1.161	4.394	39403		

Problems	Table 3.54: Simulation results of Problem 64 Methods c5t c5w c6t c6w					
system_64	TAYLOR4 (TP8)	0.390	1.4114e-06	10.000	0.00068375	
system_64	TAYLOR4 (TP9)	0.390	1.2487e-06	10.000	0.00015597	
system_64	TAYLOR4 (TP10)	0.430	4.3621e-07	10.000	4.6461e-05	
system_64	TAYLOR4 (TP11)	0.560	1.2507e-07	10.000	1.1767e-05	
$system_64$	TAYLOR4 (TP12)	0.730	3.3494e-08	10.000	2.9977e-06	
$system_{-}64$	TAYLOR4 (TP13)	0.980	8.5987e-09	10.000	7.7019e-07	
$system_64$	TAYLOR4 (TP14)	1.400	2.3403e-09	10.000	1.9712e-07	
system_64	RK4 (TP8)	0.330	4.21e-11	10.000	4.7828e-07	
system_64	RK4 (TP9)	0.330	4.21e-11	10.000	4.7336e-08	
system_64	RK4 (TP10)	0.330	3.0917e-11	10.000	4.8889e-09	
system_64	RK4 (TP11)	0.400	4.2763e-12	10.000	5.0111e-10	
$system_64$	RK4 (TP12)	0.470	4.4072e-13	10.000	5.0163e-11	
system_64	RK4 (TP13)	0.610	4.842e-14	10.000	5.218e-12	
$system_64$	RK4 (TP14)	0.840	5.6413e-15	10.000	7.4518e-13	
system_64	LA3 (TP8)	0.330	4.4317e-11	10.000	3.2208e-07	
system_64	LA3 (TP9)	0.330	4.4317e-11	10.000	3.4219e-08	
system_64	LA3 (TP10)	0.360	2.6981e-11	10.000	3.3887e-09	
$system_64$	LA3 (TP11)	0.400	3.1899e-12	10.000	3.4486e-10	
$system_{-}64$	LA3 (TP12)	0.470	3.5908e-13	10.000	3.4774e-11	
$system_64$	LA3 (TP13)	0.640	3.9885e-14	10.000	3.6753e-12	
$system_{-}64$	LA3 (TP14)	0.890	4.7254 e-15	10.000	6.1373e-13	
system_64	LC3 (TP8)	0.330	4.1986e-11	10.000	3.5873e-07	
system_64	LC3 (TP9)	0.330	4.1986e-11	10.000	3.7852e-08	
system_64	LC3 (TP10)	0.370	2.5936e-11	10.000	3.8917e-09	
$system_64$	LC3 (TP11)	0.400	3.0693e-12	10.000	3.9943e-10	
system_64	LC3 (TP12)	0.470	3.4297e-13	10.000	4.0659e-11	
system_64	LC3 (TP13)	0.650	3.849e-14	10.000	4.2375e-12	
$system_64$	LC3 (TP14)	0.880	4.5519e-15	10.000	6.6169 e-13	
system_64	Riot (05, 1e-11)	0m0.136s	3.194e-14	-0.000	1.1558e-10	
$system_{-}64$	Riot (10, 1e-11)	0 m 0.253 s	5.4123e-16	-0.000	1.35e-13	
$system_64$	Riot (15, 1e-11)	0 m 0.252 s	5.4123e-16	-0.000	6.9278e-14	
system_64	Valencia-IVP (0.00025)	0m1.721s	1.0417e-05	10.000	0.00016797	
$system_64$	Valencia-IVP (0.0025)	0 m 0.165 s	0.00010417	10.000	0.0016797	
system_64	Valencia-IVP (0.025)	0 m 0.019 s	0.0010417	10.000	0.016797	
system_64	VNODE-LP (15, 1e-14,1e-14)	0 m 0.004 s	6.245e-17	10.000	9.77e-15	
$system_64$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.005 s	6.9389e-17	10.000	1.199e-14	
system_64	VNODE-LP (25, 1e-14,1e-14)	0 m 0.004 s	6.9389e-17	10.000	1.0658e-14	

	Table 3.55: Simulation re	sults of Pro	oblem 65		
Problems	Methods	c5t	c5w	c6t	c6w
system_65	TAYLOR4 (TP8)	0.410	0.25212	10.000	2.7137
$system_{-}65$	TAYLOR4 (TP9)	0.410	0.25212	10.000	2.7126
$system_{-}65$	TAYLOR4 (TP10)	0.500	0.25212	10.000	2.7121
$system_{-}65$	TAYLOR4 (TP11)	0.590	0.25211	10.000	2.7118
$system_{-}65$	TAYLOR4 (TP12)	0.760	0.25211	10.000	2.7116
$system_{-}65$	TAYLOR4 (TP13)	1.070	0.25211	10.000	2.7115
$system_65$	TAYLOR4 (TP14)	1.570	0.25211	10.000	2.7114
system_65	RK4 (TP8)	0.340	0.25211	10.000	2.7113
$system_{-}65$	RK4 (TP9)	0.330	0.25211	10.000	2.7113
$system_65$	RK4 (TP10)	0.370	0.25211	10.000	2.7113
$system_65$	RK4 (TP11)	0.400	0.25211	10.000	2.7113
$system_65$	RK4 (TP12)	0.470	0.25211	10.000	2.7113
$system_{-}65$	RK4 (TP13)	0.650	0.25211	10.000	2.7113
$system_65$	RK4 (TP14)	0.860	0.25211	10.000	2.7113
system_65	LA3 (TP8)	0.330	0.25211	10.000	2.7134
$system_{-}65$	LA3 (TP9)	0.330	0.25211	10.000	2.7127
$system_65$	LA3 (TP10)	0.370	0.25211	10.000	2.7122
$system_{-}65$	LA3 (TP11)	0.400	0.25211	10.000	2.7119
$system_{-}65$	LA3 (TP12)	0.500	0.25211	10.000	2.7117
$system_{-}65$	LA3 (TP13)	0.690	0.25211	10.000	2.7115
$system_65$	LA3 (TP14)	0.940	0.25211	10.000	2.7115
system_65	LC3 (TP8)	0.330	0.25211	10.000	2.7145
$system_65$	LC3 (TP9)	0.330	0.25211	10.000	2.7133
$system_65$	LC3 (TP10)	0.370	0.25211	10.000	2.7126
$system_65$	LC3 (TP11)	0.400	0.25211	10.000	2.7121
$system_{-}65$	LC3 (TP12)	0.500	0.25211	10.000	2.7118
$system_{-}65$	LC3 (TP13)	0.650	0.25211	10.000	2.7117
$system_65$	LC3 (TP14)	0.900	0.25211	10.000	2.7115
system_65	Riot (05, 1e-11)	0 m 5.669 s	0.25147	-0.000	2.6697
$system_65$	Riot (10, 1e-11)	0 m1.551 s	0.25147	-0.000	2.6698
$system_65$	Riot (15, 1e-11)	0 m 5.042 s	0.25147	-0.000	2.6698
system_65	Valencia-IVP (0.00025)	0 m1.576 s	0.25147	10.000	2.6699
$system_{-}65$	Valencia-IVP (0.0025)	0 m 0.146 s	0.25147	10.000	2.6716
system_65	Valencia-IVP (0.025)	0 m 0.021 s	0.25177	10.000	2.6883
system_65	VNODE-LP (15, 1e-14,1e-14)	0 m 0.006 s	0.25278	10.000	2.7636
$system_65$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.006 s	0.25278	10.000	2.7636
$system_{-}65$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.005 s	0.25278	10.000	2.7636

Table 3.56: Simulation results of Problem 71						
Problems	Methods	c5t	c5w	c6t	c6w	
system_71	TAYLOR4 (TP8)	0.410	0.34183	0.723	0.34183	
$system_{-}71$	TAYLOR4 (TP9)	0.610	0.34398	0.723	0.34398	
$system_{-}71$	TAYLOR4 (TP10)	0.930	0.34513	0.723	0.34513	
$system_{-}71$	TAYLOR4 (TP11)	1.530	0.34637	0.723	0.34637	
$system_{-}71$	TAYLOR4 (TP12)	2.420	0.34685	0.723	0.34685	
$system_{-}71$	TAYLOR4 (TP13)	3.600	0.34733	0.723	0.34733	
$_{\rm system_71}$	TAYLOR4 (TP14)	5.500	0.34747	0.723	0.34747	
system_71	RK4 (TP8)	0.410	0.34107	0.710	0.34107	
$system_{-}71$	RK4 (TP9)	0.800	0.34517	0.718	0.34517	
$system_{-}71$	RK4 (TP10)	0.970	0.34595	0.719	0.34595	
$system_{-}71$	RK4 (TP11)	0.610	0.34721	0.721	0.34721	
$system_{-}71$	RK4 (TP12)	0.940	0.34711	0.721	0.34711	
$system_{-}71$	RK4 (TP13)	1.510	0.34743	0.722	0.34743	
$_{\rm system_71}$	RK4 (TP14)	2.290	0.34757	0.722	0.34757	
system_71	LA3 (TP8)	0.320	0.34419	0.714	0.34419	
$system_{-}71$	LA3 (TP9)	0.270	0.34689	0.720	0.34689	
$system_{-}71$	LA3 (TP10)	0.390	0.34737	0.721	0.34737	
$system_{-}71$	LA3 (TP11)	0.570	0.34704	0.721	0.34704	
$system_{-}71$	LA3 (TP12)	0.900	0.34744	0.722	0.34744	
$system_{-}71$	LA3 (TP13)	1.440	0.34753	0.722	0.34753	
$system_71$	LA3 (TP14)	2.220	0.34779	0.722	0.34779	
system_71	LC3 (TP8)	0.310	0.34572	0.715	0.34572	
$system_{-}71$	LC3 (TP9)	0.270	0.34545	0.715	0.34545	
$system_{-}71$	LC3 (TP10)	0.400	0.34696	0.719	0.34696	
$system_{-}71$	LC3 (TP11)	0.600	0.3477	0.721	0.3477	
$system_{-}71$	LC3 (TP12)	0.940	0.34745	0.721	0.34745	
$system_{-}71$	LC3 (TP13)	1.490	0.34765	0.722	0.34765	
$system_{-}71$	LC3 (TP14)	2.300	0.34772	0.722	0.34772	
system_71	Riot					
system_71	Valencia-IVP (0.00025)	0 m 9.028 s	0	0.000	0	
$system_{-}71$	Valencia-IVP (0.0025)	0 m 0.112 s	0	0.000	0	
$system_71$	Valencia-IVP (0.025)	0 m 0.007 s	0	0.000	0	
system_71	VNODE-LP (15, 1e-14,1e-14)	0 m 0.028 s	0.093606	1.088	0.078438	
$system_{-}71$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.035 s	0.094651	1.085	0.080607	
$system_71$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.034 s	0.095228	1.083	0.081672	

Problems	Table 3.57: Simulation results of Problem 72 Methods c5t c5w c6t c6w					
system_72	TAYLOR4 (TP8)	0.110	1.888e-08	10.000	1.5233e-07	
system_72	TAYLOR4 (TP9)	0.160	1.991e-09	10.000	8.6791e-08	
system_72	TAYLOR4 (TP10)	0.250	2.0536e-10	10.000	9.4023e-08	
system_72	TAYLOR4 (TP11)	0.410	2.076e-11	10.000	1.1399e-08	
system_72	TAYLOR4 (TP12)	0.640	2.1992e-12	10.000	1.6071e-09	
$system_{-}72$	TAYLOR4 (TP13)	0.990	3.4417e-13	10.000	2.5738e-10	
$system_{-}72$	TAYLOR4 (TP14)	1.550	2.3176e-13	10.000	6.5053e-11	
system_72	RK4 (TP8)	0.090	2.476e-08	10.000	1.6617e-07	
system_72	RK4 (TP9)	0.140	2.538e-09	10.000	4.0938e-08	
$system_{-}72$	RK4 (TP10)	0.200	2.6417e-10	10.000	5.5074e-08	
$system_{-}72$	RK4 (TP11)	0.330	2.6895e-11	10.000	3.9127e-09	
$system_72$	RK4 (TP12)	0.520	2.7741e-12	10.000	7.941e-10	
$system_{-}72$	RK4 (TP13)	0.800	3.2496e-13	10.000	1.5842e-10	
$system_{-}72$	RK4 (TP14)	1.230	1.0836e-13	10.000	3.334e-11	
system_72	LA3 (TP8)	0.070	1.8797e-08	10.000	1.0346e-06	
$system_{-}72$	LA3 (TP9)	0.110	1.9786e-09	10.000	1.3939e-07	
$system_{-}72$	LA3 (TP10)	0.160	2.0676e-10	10.000	9.6798e-08	
$system_{-}72$	LA3 (TP11)	0.250	2.1116e-11	10.000	1.2856e-08	
$system_{-}72$	LA3 (TP12)	0.750	2.126e-12	10.000	1.7966e-09	
$system_{-}72$	LA3 (TP13)	0.620	2.4913e-13	10.000	2.5436e-10	
$system_{-}72$	LA3 (TP14)	0.950	8.1712e-14	10.000	4.3266e-11	
system_72	LC3 (TP8)	0.080	1.9008e-08	10.000	3.6404e-06	
$system_{-}72$	LC3 (TP9)	0.120	2.0101e-09	10.000	2.7038e-07	
$system_{-}72$	LC3 (TP10)	0.180	2.0895e-10	10.000	1.3971e-07	
$system_{-}72$	LC3 (TP11)	0.280	2.1388e-11	10.000	2.2361e-08	
$system_{-}72$	LC3 (TP12)	0.430	2.1335e-12	10.000	2.1033e-09	
$system_{-}72$	LC3 (TP13)	0.690	2.5269e-13	10.000	2.8453e-10	
$system_{-}72$	LC3 (TP14)	1.040	8.632e-14	10.000	4.7709e-11	
system_72	Riot (05, 1e-11)	0 m 1.648 s	6.8875e-11	-0.000	0.0018269	
$system_{-}72$	Riot (10, 1e-11)	0 m 1.461 s	4.1078e-15	-0.000	7.1333e-13	
$system_{-}72$	Riot (15, 1e-11)	0 m 1.542 s	1.4155e-15	-0.000	9.9245e-15	
system_72	Valencia-IVP (0.00025)	1m10.076s	0.011379	4.194	999.68	
$system_{-}72$	Valencia-IVP (0.0025)	0 m 0.692 s	0.11581	3.530	992.01	
system_72	Valencia-IVP (0.025)	0 m 0.061 s	1.3941	2.750	956.94	
system_72	VNODE-LP (15, 1e-14,1e-14)	0 m 0.014 s	9.1593e-16	10.000	1.9629e-16	
$system_{-}72$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.010 s	9.1593e-16	10.000	1.4984e-16	
$system_{-}72$	VNODE-LP (25, 1e-14,1e-14)	$0 \mathrm{m} 0.010 \mathrm{s}$	3.8858e-16	10.000	7.7839e-17	

	Table 3.58: Simulation re	esults of Pro	oblem 73		
Problems	Methods	c5t	c5w	c6t	c6w
system_73	TAYLOR4 (TP8)	0.200	0.64903	10.000	0.00011543
$system_{-}73$	TAYLOR4 (TP9)	0.280	0.64903	10.000	0.00011391
$system_{-}73$	TAYLOR4 (TP10)	0.410	0.64903	10.000	0.00011378
$system_{-}73$	TAYLOR4 (TP11)	0.620	0.64903	10.000	0.00011407
$system_{-}73$	TAYLOR4 (TP12)	1.730	0.64903	10.000	0.00011593
$system_{-}73$	TAYLOR4 (TP13)	1.560	0.64903	10.000	0.00011625
$system_{-}73$	TAYLOR4 (TP14)	2.420	0.64903	10.000	0.00011618
system_73	RK4 (TP8)	0.130	0.64903	10.000	0.00011568
system_73	RK4 (TP9)	0.200	0.64903	10.000	0.0001142
system_73	RK4 (TP10)	0.310	0.64903	10.000	0.00011396
$system_{-}73$	RK4 (TP11)	0.480	0.64903	10.000	0.00011377
$system_{-}73$	RK4 (TP12)	0.760	0.64903	10.000	0.00011457
$system_{-}73$	RK4 (TP13)	1.200	0.64903	10.000	0.00011523
$system_{-}73$	RK4 (TP14)	1.850	0.64903	10.000	0.00011523
system_73	LA3 (TP8)	0.110	0.90804	10.000	44.669
system_73	LA3 (TP9)	0.160	0.84683	10.000	11.972
system_73	LA3 (TP10)	0.240	0.74939	10.000	1.4182
$system_{-}73$	LA3 (TP11)	0.380	0.72469	10.000	2.9375
$system_{-}73$	LA3 (TP12)	0.600	0.6851	10.000	0.3029
$system_{-}73$	LA3 (TP13)	0.980	0.67844	10.000	0.28271
$system_{-}73$	LA3 (TP14)	1.500	0.66826	10.000	0.1337
system_73	LC3 (TP8)	0.120	0.95006	10.000	41.555
system_73	LC3 (TP9)	0.170	0.85351	10.000	4.46
$system_{-}73$	LC3 (TP10)	0.270	0.78623	10.000	3.7844
$system_{-}73$	LC3 (TP11)	0.420	0.72942	10.000	1.3191
$system_{-}73$	LC3 (TP12)	0.660	0.69002	10.000	0.35275
$system_{-}73$	LC3 (TP13)	1.060	0.67725	10.000	0.3206
$system_{-}73$	LC3 (TP14)	1.660	0.66841	10.000	0.061096
system_73	Riot (05, 1e-11)	0m1.815s	0.64903	-0.000	0.00011995
$system_{-}73$	Riot (10, 1e-11)	0 m 2.136 s	0.64903	-0.000	0.0001136
$system_{-}73$	Riot (15, 1e-11)	0 m 3.216 s	0.64903	-0.000	0.00011366
system_73	Valencia-IVP (0.00025)	1m1.164s	138.84	1.367	999.11
$system_{-}73$	Valencia-IVP (0.0025)	0 m 0.278 s	145.77	1.355	994.94
$system_{-73}$	Valencia-IVP (0.025)	0 m 0.029 s	243.46	1.225	891.88
system_73	VNODE-LP (15, 1e-14,1e-14)	0 m 0.024 s	0.64903	10.000	3.4442
$system_{-}73$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.015 s	0.64903	10.000	3.4442
$system_{-}73$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.016 s	0.64903	10.000	3.4442

Table 3.59: Simulation results of Problem 74						
Problems	Methods	c5t	c5w	c6t	c6w	
system_74	TAYLOR4 (TP8)	0.250	430.91	0.785	430.91	
$system_{-}74$	TAYLOR4 (TP9)	0.350	652.41	0.785	652.41	
$system_{-}74$	TAYLOR4 (TP10)	0.490	283.48	0.785	283.48	
$system_{-}74$	TAYLOR4 (TP11)	0.670	559.65	0.785	559.65	
$system_{-}74$	TAYLOR4 (TP12)	0.890	576.25	0.785	576.25	
$system_{-}74$	TAYLOR4 (TP13)	1.290	234.53	0.785	234.53	
$system_{-}74$	TAYLOR4 (TP14)	0.000	0	0.000	0	
system_74	RK4 (TP8)	0.130	624.24	0.785	624.24	
system_74	RK4 (TP9)	0.160	57.925	0.785	57.925	
$system_{-}74$	RK4 (TP10)	0.220	330.01	0.785	330.01	
$system_{-}74$	RK4 (TP11)	0.310	268.64	0.785	268.64	
$system_{-}74$	RK4 (TP12)	0.440	44.208	0.785	44.208	
$system_{-}74$	RK4 (TP13)	0.620	267.16	0.785	267.16	
$system_{-}74$	RK4 (TP14)	0.860	74.118	0.785	74.118	
system_74	LA3 (TP8)	0.130	76.095	0.785	76.095	
$system_{-}74$	LA3 (TP9)	0.190	45.448	0.785	45.448	
$system_{-}74$	LA3 (TP10)	0.260	62.95	0.785	62.95	
$system_{-}74$	LA3 (TP11)	0.370	64.448	0.785	64.448	
$system_{-}74$	LA3 (TP12)	0.530	527.45	0.785	527.45	
system_74	LA3 (TP13)	0.730	21.878	0.785	21.878	
$system_74$	LA3 (TP14)	1.040	266.61	0.785	266.61	
system_74	LC3 (TP8)	0.100	90.528	0.785	90.528	
system_74	LC3 (TP9)	0.130	61.895	0.785	61.895	
system_74	LC3 (TP10)	0.170	79.971	0.785	79.971	
system_74	LC3 (TP11)	0.240	104.2	0.785	104.2	
system_74	LC3 (TP12)	0.320	8.7342	0.785	8.7342	
system_74	LC3 (TP13)	0.450	205.63	0.785	205.63	
$system_{-}74$	LC3 (TP14)	0.640	258.77	0.785	258.77	
system_74	Riot (05, 1e-11)	0m0.791s	0	0.000	0	
$system_{-}74$	Riot (10, 1e-11)	0 m 0.430 s	0	0.000	0	
system_74	Riot (15, 1e-11)	0 m 0.613 s	0	0.000	0	
system_74	Valencia-IVP (0.00025)	0m9.104s	668.07	0.783	668.07	
$system_{-}74$	Valencia-IVP (0.0025)	0 m 0.165 s	60.454	0.765	60.454	
system_74	Valencia-IVP (0.025)	0 m 0.014 s	5.325	0.650	5.325	
system_74	VNODE-LP (15, 1e-14,1e-14)	0 m 0.014 s	4992.7	0.015	4992.7	
$system_{-}74$	VNODE-LP (20, 1e-14,1e-14)	0 m 0.023 s	2.2247e-07	0.785	2.2247e-07	
$system_{-}74$	VNODE-LP (25, 1e-14,1e-14)	0 m 0.010 s	16182	0.001	16182	

3.1.3 Discussion

Firstly, we count the number of problem for which each method (for each order and each precision) is first in term of solution diameter, second or last. This account is done for the simulation at 1 second and at 10 seconds. The results are summarized in the table 3.60. Of course, we are aware that the results are biased by the number of methods we have. Nevertheless, this table allows us to consider that Valencia and Riot are not valid competitors.

Table 3.60: Number of times a method produced the sharpest enclosure or the second sharpest enclosure.

corra criar post or	cropert.					
Method	c5w	c5w	c5w	c6w	c6w	c6w
	(1st)	(2nd)	(last)	(1st)	(2nd)	(last)
RK	103	35	8	58	39	8
Vnode-LP	70	28	9	44	27	8
Riot	36	11	0	24	12	2
Valencia	3	3	49	3	2	49

After this reduction of competitors, only the best results for our three order-4 Runge-Kutta methods, and for Vnode are kept for comparison. We present in the spider graph 3.1, respectively 3.2, the normalized results (divided by the median and multiplied by 10) for each problem for a simulation at 1 second, respectively at 10 seconds. The median used to normalize the results is computed with all the methods: Taylor4, RK4, LA3, LC3 Riot, Valencia and Vnode (for all precision and all order).

Remark: for the graph 3.1, we truncate the results at 25 for the clarity. It leads to the truncation of LC3 result for problem 44, initially at 178, the result is set at 25. In the same manner, the results are also truncated at 50 for the graph 3.2, fifteen times for Vnode, one time for LC3 and one time for RK4.

We can easily see on spider graph 3.1 that the Runge-Kutta methods are more stable, by describing a circle while Vnode results are more in a star shape. Moreover, the implicit methods (LA3 and LC3) provide better results than the explicit RK4 in a majority of problems. This fact is even more clear on the graph 3.2. On this latter graph, we can also see that Vnode fails many times while at least one of our Runge-Kutta methods performs a good simulation for all the considered problems. Finally, if Vnode are the best on many problems, by our stability and our better results for some problems, we can conclude that our tool is a good competitor for Vnode. The last remark but not the least, it is important to remember that we have currently only methods of order 4, when Vnode can use a Taylor at order 25!

Figure 3.1: Results gathered in spider graph for a simulation of 1 second, for the methods: RK4, LC3, LA3 and Vnode

Figure 3.2: Results gathered in spider graph for a simulation of 10 seconds, for the methods: RK4, LC3, LA3 and Vnode

3.2 Detest benchmark

3.2.1 Disclaimer

This section reports the results of the solution of various problems coming from the DETEST benchmark. For each problem, different validated methods of Runge-Kutta of order 4 are applied among: the classical formula of Runge-Kutta (explicit), the Lobatto-3a formula (implicit) and the Lobatto-3c formula (implicit). Moreover, an homemade version of Taylor series, limited to order 5 and using affine arithmetic, is also applied on each problem.

For each problem, we report the following metrics:

- c5t: user time taken to simulate the problem for 1 second.
- c5w: the final diameter of the solution (infinity norm is used).
- c6t: the time to breakdown the method with a maximal limit of 10 seconds.
- c6w: the diameter of the solution a the breakdown time.

3.2.2 Results

Table 3.61: Simulation results of Problem ns_A1							
Problems	Methods	c5t	c5w	c6t	c6w		
ns_A1	TAYLOR4 (TP4)	0.030	9.146e-06	10.000	6.3861e-06		
ns_A1	TAYLOR4 (TP6)	0.030	5.0222e-07	2.000	9.7332e-07		
ns_A1	TAYLOR4 (TP8)	0.060	6.0636e-09	2.000	5.7233e-08		
ns_A1	TAYLOR4 (TP10)	0.120	6.3146e-11	2.000	6.7023 e-10		
ns_A1	TAYLOR4 (TP12)	0.300	7.1687e-13	10.000	5.5133e-12		
ns_A1	TAYLOR4 (TP14)	0.020	9.146e-06	10.000	6.3861e-06		
ns_A1	RK4 (TP4)	0.010	9.146e-06	10.000	6.2632e-06		
nsA1	RK4 (TP6)	0.020	7.1338e-07	2.000	1.236e-06		
ns_A1	RK4 (TP8)	0.030	7.4993e-09	2.000	4.3775e-08		
ns_A1	RK4 (TP10)	0.060	8.4251e-11	2.000	6.7118e-10		
ns_A1	RK4 (TP12)	0.160	8.8185e-13	10.000	7.5966e-12		
ns_A1	RK4 (TP14)	0.010	9.146e-06	10.000	6.2632e-06		
ns_A1	LA3 (TP4)	0.010	1.531e-06	10.000	7.6554e-06		
ns_A1	LA3 (TP6)	0.020	4.0741e-07	2.000	8.1525 e-07		
ns_A1	LA3 (TP8)	0.020	5.4981e-09	2.000	4.1256 e - 08		
ns_A1	LA3 (TP10)	0.050	6.1542e-11	2.000	5.8395e-10		
ns_A1	LA3 (TP12)	0.130	6.7724e-13	10.000	5.3249e-12		
ns_A1	LA3 (TP14)	0.010	1.531e-06	10.000	7.6554e-06		
ns_A1	LC3 (TP4)	0.010	2.3003e-06	10.000	7.8708e-05		
ns_A1	LC3 (TP6)	0.020	3.8815e-07	2.000	1.1053 e-06		
ns_A1	LC3 (TP8)	0.030	5.8283e-09	2.000	4.7752e-08		
ns_A1	LC3 (TP10)	0.060	6.1916e-11	2.000	6.2382 e-10		
ns_A1	LC3 (TP12)	0.140	6.7468e-13	10.000	5.3717e-12		
ns_A1	LC3 (TP14)	0.020	2.3003e-06	10.000	7.8708e-05		

Table 3.62: Simulation results of Problem ns_A2					
Problems	Methods	c5t	c5w	c6t	c6w
ns_A2	TAYLOR4 (TP4)	0.040	8.4667e-05	10.000	8.3982e-05
ns_A2	TAYLOR4 (TP6)	0.050	1.5064 e-06	2.000	3.1707e-06
ns_A2	TAYLOR4 (TP8)	0.080	2.1535e-08	2.000	1.4215 e-07
ns_A2	TAYLOR4 (TP10)	0.180	2.4119e-10	2.000	1.6527e-09
ns_A2	TAYLOR4 (TP12)	0.440	2.6019e-12	10.000	1.3628e-11
ns_A2	TAYLOR4 (TP14)	0.040	8.4667e-05	10.000	8.3982e-05
ns_A2	RK4 (TP4)	0.020	1.6376e-05	10.000	4.3081e-05
nsA2	RK4 (TP6)	0.030	2.3535e-06	2.000	4.883e-06
ns_A2	RK4 (TP8)	0.040	4.9213e-08	2.000	2.9883e-07
ns_A2	RK4 (TP10)	0.060	5.2365e-10	2.000	3.509e-09
ns_A2	RK4 (TP12)	0.140	4.6034e-12	10.000	2.7551e-11
ns_A2	RK4 (TP14)	0.020	1.6376e-05	10.000	4.3081e-05
ns_A2	LA3 (TP4)	0.020	9.2675e-06	10.000	2.3649e-05
ns_A2	LA3 (TP6)	0.030	1.1342e-06	2.000	3.1789e-06
ns_A2	LA3 (TP8)	0.040	1.9817e-08	2.000	1.116e-07
ns_A2	LA3 (TP10)	0.080	2.3168e-10	2.000	1.5203 e-09
ns_A2	LA3 (TP12)	0.200	2.5466e-12	10.000	1.3165e-11
ns_A2	LA3 (TP14)	0.020	9.2675 e-06	10.000	2.3649e-05
ns_A2	LC3 (TP4)	0.020	7.5652e-06	10.000	2.6357e-05
ns_A2	LC3 (TP6)	0.030	1.4833e-06	2.000	3.5055e-06
ns_A2	LC3 (TP8)	0.040	2.6328e-08	2.000	1.5975 e-07
ns_A2	LC3 (TP10)	0.070	2.9172e-10	2.000	1.9148e-09
ns_A2	LC3 (TP12)	0.150	2.828e-12	10.000	1.5799e-11
ns_A2	LC3 (TP14)	0.020	7.5652e-06	10.000	2.6357e-05

Table 3.63: Simulation results of Problem ns_A3					
Problems	Methods	c5t	c5w	c6t	c6w
ns_A3	TAYLOR4 (TP4)	0.050	0.00043573	10.000	0.0041836
ns_A3	TAYLOR4 (TP6)	0.060	8.3465 e-06	2.000	1.6766e-05
ns_A3	TAYLOR4 (TP8)	0.110	1.0131e-07	2.000	2.4257e-07
ns_A3	TAYLOR4 (TP10)	0.220	1.5521e-09	2.000	3.3297e-09
ns_A3	TAYLOR4 (TP12)	0.550	1.9743e-11	10.000	1.544e-10
ns_A3	TAYLOR4 (TP14)	0.050	0.00043573	10.000	0.0041836
ns_A3	RK4 (TP4)	0.030	0.00014736	10.000	0.004336
ns_A3	RK4 (TP6)	0.040	8.2963e-06	2.000	2.5968e-05
ns_A3	RK4 (TP8)	0.050	1.1569e-07	2.000	5.2775 e-07
ns_A3	RK4 (TP10)	0.120	1.4826e-09	2.000	1.0182e-08
ns_A3	RK4 (TP12)	0.260	1.6631e-11	10.000	4.1913e-10
ns_A3	RK4 (TP14)	0.030	0.00014736	10.000	0.004336
ns_A3	LA3 (TP4)	0.030	7.0869e-05	10.000	0.0049959
ns_A3	LA3 (TP6)	0.040	4.0701e-06	2.000	9.8443e-06
ns_A3	LA3 (TP8)	0.060	4.8721e-08	2.000	1.7833e-07
ns_A3	LA3 (TP10)	0.130	5.5251 e-10	2.000	2.0766e-09
ns_A3	LA3 (TP12)	0.310	5.917e-12	10.000	1.2948e-10
ns_A3	LA3 (TP14)	0.030	7.0869e-05	10.000	0.0049959
ns_A3	LC3 (TP4)	0.030	8.4934e-05	10.000	0.0056809
ns_A3	LC3 (TP6)	0.030	8.2958e-06	2.000	1.9432 e-05
ns_A3	LC3 (TP8)	0.060	8.8322e-08	2.000	2.3749e-07
ns_A3	LC3 (TP10)	0.110	1.3559e-09	2.000	3.5262 e-09
ns_A3	LC3 (TP12)	0.250	1.6706e-11	10.000	1.5879e-10
ns_A3	LC3 (TP14)	0.030	8.4934e-05	10.000	0.0056809

Table 3.64: Simulation results of Problem ns_A4					
Problems	Methods	c5t	c5w	c6t	c6w
ns_A4	TAYLOR4 (TP4)	0.030	4.7235e-09	10.000	5.5164e-05
ns_A4	TAYLOR4 (TP6)	0.030	4.7235e-09	10.000	2.3393e-05
ns_A4	TAYLOR4 (TP8)	0.030	4.7235e-09	10.000	3.347e-07
ns_A4	TAYLOR4 (TP10)	0.040	1.0831e-10	10.000	4.3438e-09
ns_A4	TAYLOR4 (TP12)	0.080	1.394e-12	10.000	5.5834e-11
ns_A4	TAYLOR4 (TP14)	0.030	4.7235e-09	10.000	5.5164e-05
ns_A4	RK4 (TP4)	0.020	1.9557e-09	10.000	9.2536e-06
ns_A4	RK4 (TP6)	0.020	1.9557e-09	10.000	7.5759e-06
ns_A4	RK4 (TP8)	0.020	1.4271e-09	10.000	1.0095e-07
ns_A4	RK4 (TP10)	0.030	2.1419e-11	10.000	1.0543e-09
ns_A4	RK4 (TP12)	0.060	2.9976e-13	10.000	1.1743e-11
ns_A4	RK4 (TP14)	0.020	1.9557e-09	10.000	9.2536e-06
ns_A4	LA3 (TP4)	0.020	8.073e-11	10.000	3.1954e-06
ns_A4	LA3 (TP6)	0.020	8.073e-11	10.000	3.1954 e-06
ns_A4	LA3 (TP8)	0.020	8.073e-11	10.000	2.7486e-07
ns_A4	LA3 (TP10)	0.020	5.8513e-12	10.000	3.7748e-09
ns_A4	LA3 (TP12)	0.040	7.7716e-14	10.000	4.1114e-11
ns_A4	LA3 (TP14)	0.020	8.073e-11	10.000	3.1954e-06
ns_A4	LC3 (TP4)	0.020	4.5581e-10	10.000	4.0216e-06
ns_A4	LC3 (TP6)	0.020	4.5581e-10	10.000	4.0216 e - 06
ns_A4	LC3 (TP8)	0.020	4.5581e-10	10.000	2.0247e-07
ns_A4	LC3 (TP10)	0.030	1.517e-11	10.000	3.328e-09
ns_A4	LC3 (TP12)	0.050	2.0917e-13	10.000	4.2366e-11
ns_A4	LC3 (TP14)	0.020	4.5581e-10	10.000	4.0216e-06

Table 3.65: Simulation results of Problem ns_A5					
Problems	Methods	c5t	c5w	c6t	c6w
ns_A5	TAYLOR4 (TP4)	0.070	3.7194e-05	10.000	0.0019729
ns_A5	TAYLOR4 (TP6)	0.070	3.7194 e-05	10.000	0.00023788
ns_A5	TAYLOR4 (TP8)	0.090	3.5949 e-05	10.000	0.00011626
ns_A5	TAYLOR4 (TP10)	0.140	3.5909 e-05	10.000	0.00011476
ns_A5	TAYLOR4 (TP12)	0.310	3.5909 e-05	10.000	0.00011475
ns_A5	TAYLOR4 (TP14)	0.070	3.7194e-05	10.000	0.0019729
ns_A5	RK4 (TP4)	0.060	1.9565e-05	10.000	0.00017718
nsA5	RK4 (TP6)	0.050	1.9565 e - 05	10.000	0.00013889
ns_A5	RK4 (TP8)	0.060	1.9565 e - 05	10.000	6.419 e - 05
ns_A5	RK4 (TP10)	0.070	1.9502 e-05	10.000	6.2343 e - 05
ns_A5	RK4 (TP12)	0.120	1.9501 e-05	10.000	6.2318e-05
ns_A5	RK4 (TP14)	0.060	1.9565 e - 05	10.000	0.00017718
ns_A5	LA3 (TP4)	0.060	1.2266e-05	10.000	0.0001074
ns_A5	LA3 (TP6)	0.060	1.2266 e-05	10.000	8.3944 e-05
ns_A5	LA3 (TP8)	0.060	1.2241e-05	10.000	4.0144e-05
ns_A5	LA3 (TP10)	0.080	1.2208e-05	10.000	3.9021 e-05
ns_A5	LA3 (TP12)	0.150	1.2208e-05	10.000	3.9011e-05
ns_A5	LA3 (TP14)	0.060	1.2266 e - 05	10.000	0.0001074
ns_A5	LC3 (TP4)	0.060	3.0021e-06	10.000	8.1197e-05
ns_A5	LC3 (TP6)	0.060	3.0021e-06	10.000	5.8567e-05
ns_A5	LC3 (TP8)	0.060	2.9819e-06	10.000	1.0499e-05
ns_A5	LC3 (TP10)	0.080	2.9478e-06	10.000	9.4283 e-06
ns_A5	LC3 (TP12)	0.140	2.9474e-06	10.000	9.4188e-06
ns_A5	LC3 (TP14)	0.060	3.0021e-06	10.000	8.1197e-05

Table 3.66: Simulation results of Problem ns_B1					
Problems	Methods	c5t	c5w	c6t	c6w
ns_B1	TAYLOR4 (TP4)	0.120	0.00041929	10.000	0.16516
ns_B1	TAYLOR4 (TP6)	0.180	5.8337e-06	2.000	8.016e-05
ns_B1	TAYLOR4 (TP8)	0.270	1.5364 e - 07	2.000	3.7536 e- 05
ns_B1	TAYLOR4 (TP10)	0.610	1.6928e-09	2.000	1.2351e-05
ns_B1	TAYLOR4 (TP12)	1.500	1.847e-11	10.000	7.9824e-07
ns_B1	TAYLOR4 (TP14)	0.120	0.00041929	10.000	0.16516
ns_B1	RK4 (TP4)	0.060	0.00054791	10.000	0.093055
ns_B1	RK4 (TP6)	0.090	7.7186e-06	2.000	7.0418e-05
ns_B1	RK4 (TP8)	0.160	1.4924 e - 07	2.000	8.8254 e-06
ns_B1	RK4 (TP10)	0.370	1.6512e-09	2.000	3.6011e-06
ns_B1	RK4 (TP12)	1.260	1.7231e-11	10.000	4.5013e-07
ns_B1	RK4 (TP14)	0.070	0.00054791	10.000	0.093055
ns_B1	LA3 (TP4)	0.060	0.00052296	10.000	0.7639
ns_B1	LA3 (TP6)	0.090	5.981e-06	2.000	6.7454 e-05
ns_B1	LA3 (TP8)	0.150	1.3016e-07	2.000	3.6223 e-05
ns_B1	LA3 (TP10)	0.380	1.5537e-09	2.000	1.2472 e-05
ns_B1	LA3 (TP12)	0.820	1.5877e-11	10.000	4.2412e-07
ns_B1	LA3 (TP14)	0.060	0.00052296	10.000	0.7639
ns_B1	LC3 (TP4)	0.070	0.00074279	10.000	7.958
ns_B1	LC3 (TP6)	0.080	8.5157e-06	2.000	0.00010335
ns_B1	LC3 (TP8)	0.160	1.2294e-07	2.000	3.5055e-05
ns_B1	LC3 (TP10)	0.330	1.1696e-09	2.000	5.7342e-06
ns_B1	LC3 (TP12)	0.770	1.1289e-11	10.000	4.7543e-07
ns_B1	LC3 (TP14)	0.070	0.00074279	10.000	7.958

Table 3.67: Simulation results of Problem ns_B2					
Problems	Methods	c5t	c5w	c6t	c6w
ns_B2	TAYLOR4 (TP4)	0.310	8.7614e-05	10.000	0.00010474
ns_B2	TAYLOR4 (TP6)	0.540	1.0578e-06	2.000	7.0248e-06
ns_B2	TAYLOR4 (TP8)	1.030	2.3614 e-08	2.000	4.1597e-06
ns_B2	TAYLOR4 (TP10)	2.470	2.5418e-10	2.000	4.92e-08
ns_B2	TAYLOR4 (TP12)	6.170	2.8764e-12	10.000	2.2351e-10
ns_B2	TAYLOR4 (TP14)	0.330	8.7614e-05	10.000	0.00010474
ns_B2	RK4 (TP4)	0.200	9.85e-05	10.000	0.00014666
nsB2	RK4 (TP6)	0.320	1.4878e-06	2.000	5.1326 e-06
ns_B2	RK4 (TP8)	0.630	2.8479e-08	2.000	2.8268e-06
ns_B2	RK4 (TP10)	1.510	3.244e-10	2.000	5.9749 e - 08
ns_B2	RK4 (TP12)	3.710	3.4948e-12	10.000	1.4806e-10
ns_B2	RK4 (TP14)	0.200	9.85e-05	10.000	0.00014666
ns_B2	LA3 (TP4)	0.210	0.00011841	10.000	0.049815
ns_B2	LA3 (TP6)	0.270	1.0755e-06	2.000	8.8929 e-06
nsB2	LA3 (TP8)	0.490	2.1817e-08	2.000	3.4971e-06
ns_B2	LA3 (TP10)	1.110	2.4909e-10	2.000	4.7146e-08
ns_B2	LA3 (TP12)	2.830	2.6863e-12	10.000	1.7301e-10
ns_B2	LA3 (TP14)	0.200	0.00011841	10.000	0.049815
ns_B2	LC3 (TP4)	0.210	0.00011385	10.000	0.11981
ns_B2	LC3 (TP6)	0.290	1.2619 e-06	2.000	1.129 e-05
ns_B2	LC3 (TP8)	0.540	2.2956e-08	2.000	4.0489e-06
ns_B2	LC3 (TP10)	1.240	2.5586e-10	2.000	4.9842e-08
ns_B2	LC3 (TP12)	3.060	2.7098e-12	10.000	2.22e-10
ns_B2	LC3 (TP14)	0.200	0.00011385	10.000	0.11981

Table 3.68: Simulation results of Problem ns_B3					
Problems	Methods	c5t	c5w	c6t	c6w
ns_B3	TAYLOR4 (TP4)	0.240	0.00012496	10.000	0.00010291
ns_B3	TAYLOR4 (TP6)	0.330	2.3385e-06	2.000	5.5216 e-06
ns_B3	TAYLOR4 (TP8)	0.640	2.7922e-08	2.000	2.5563e-07
ns_B3	TAYLOR4 (TP10)	1.400	4.1428e-10	2.000	4.1314e-09
ns_B3	TAYLOR4 (TP12)	3.370	5.4439e-12	10.000	8.7434e-12
ns_B3	TAYLOR4 (TP14)	0.230	0.00012496	10.000	0.00010291
ns_B3	RK4 (TP4)	0.140	0.00015668	10.000	3.2946e-05
ns_B3	RK4 (TP6)	0.200	1.8062e-06	2.000	3.3727e-06
ns_B3	RK4 (TP8)	0.380	2.132e-08	2.000	1.8169e-07
ns_B3	RK4 (TP10)	0.830	2.2347e-10	2.000	1.9818e-09
ns_B3	RK4 (TP12)	2.050	2.2799e-12	10.000	5.204e-12
ns_B3	RK4 (TP14)	0.140	0.00015668	10.000	3.2946e-05
ns_B3	LA3 (TP4)	0.140	4.8032e-05	10.000	4.5514e-05
ns_B3	LA3 (TP6)	0.170	2.1365e-06	2.000	4.9673e-06
ns_B3	LA3 (TP8)	0.260	2.3226e-08	2.000	2.0047e-07
ns_B3	LA3 (TP10)	0.540	1.8545e-10	2.000	1.8394e-09
ns_B3	LA3 (TP12)	1.220	1.6824e-12	10.000	6.1119e-12
ns_B3	LA3 (TP14)	0.150	4.8032e-05	10.000	4.5514e-05
ns_B3	LC3 (TP4)	0.150	7.7124e-05	10.000	8.204e-05
ns_B3	LC3 (TP6)	0.210	1.6073e-06	2.000	3.8007e-06
ns_B3	LC3 (TP8)	0.290	3.1901e-08	2.000	2.6442e-07
ns_B3	LC3 (TP10)	0.590	3.4737e-10	2.000	3.3251e-09
ns_B3	LC3 (TP12)	1.410	3.5121e-12	10.000	3.7007e-12
ns_B3	LC3 (TP14)	0.140	7.7124e-05	10.000	8.204e-05

Table 3.69: Simulation results of Problem ns_B4					
Problems	Methods	c5t	c5w	c6t	c6w
ns_B4	TAYLOR4 (TP4)	17.290	0.0016863	4.340	0.90148
ns_B4	TAYLOR4 (TP6)	19.640	8.0895 e-05	7.751	1.2422
ns_B4	TAYLOR4 (TP8)	27.690	1.5611e-06	9.522	0.62151
ns_B4	TAYLOR4 (TP10)	54.410	2.2374e-08	10.000	0.029197
ns_B4	TAYLOR4 (TP12)	123.820	2.9517e-10	10.000	0.0011596
ns_B4	TAYLOR4 (TP14)	17.280	0.0016863	4.340	0.90148
ns_B4	RK4 (TP4)	16.010	0.00053691	5.537	1.439
ns_B4	RK4 (TP6)	17.720	2.7416e-05	8.560	0.69971
ns_B4	RK4 (TP8)	19.930	1.0075e-06	10.000	0.54239
ns_B4	RK4 (TP10)	33.190	1.5332 e-08	10.000	0.023281
ns_B4	RK4 (TP12)	70.370	1.8093e-10	10.000	0.00066257
ns_B4	RK4 (TP14)	16.010	0.00053691	5.537	1.439
ns_B4	LA3 (TP4)	15.970	0.00044803	3.505	0.031706
ns_B4	LA3 (TP6)	17.740	2.2201 e-05	8.281	0.86537
ns_B4	LA3 (TP8)	17.980	1.1266e-06	10.000	0.60409
ns_B4	LA3 (TP10)	31.530	1.6075 e - 08	10.000	0.026108
ns_B4	LA3 (TP12)	65.940	2.1847e-10	10.000	0.00083967
ns_B4	LA3 (TP14)	15.940	0.00044803	3.505	0.031706
ns_B4	LC3 (TP4)	14.510	0.00097031	4.842	1.322
ns_B4	LC3 (TP6)	17.500	2.2588e-05	8.261	0.88373
ns_B4	LC3 (TP8)	18.120	1.2305 e-06	9.878	0.61908
ns_B4	LC3 (TP10)	31.120	1.8244e-08	10.000	0.033471
ns_B4	LC3 (TP12)	63.970	2.5061e-10	10.000	0.0009416
ns_B4	LC3 (TP14)	14.450	0.00097031	4.842	1.322

Table 3.70: Simulation results of Problem ns_B5					
Problems	Methods	c5t	c5w	c6t	c6w
ns_B5	TAYLOR4 (TP4)	0.340	0.00024281	10.000	0.023851
ns_B5	TAYLOR4 (TP6)	0.420	4.2469 e - 06	10.000	0.00038581
ns_B5	TAYLOR4 (TP8)	0.730	6.5182 e-08	10.000	0.00039017
ns_B5	TAYLOR4 (TP10)	1.880	7.267e-10	10.000	2.2839 e-05
ns_B5	TAYLOR4 (TP12)	4.040	7.7236e-12	10.000	4.2675 e-07
ns_B5	TAYLOR4 (TP14)	0.340	0.00024281	10.000	0.023851
ns_B5	RK4 (TP4)	0.230	0.00012717	10.000	0.018828
nsB5	RK4 (TP6)	0.280	3.3117e-06	10.000	0.00050419
ns_B5	RK4 (TP8)	0.710	4.9849e-08	10.000	0.00028774
ns_B5	RK4 (TP10)	0.960	5.6878e-10	10.000	2.2317e-05
ns_B5	RK4 (TP12)	2.320	5.9515e-12	10.000	3.4427e-07
ns_B5	RK4 (TP14)	0.230	0.00012717	10.000	0.018828
ns_B5	LA3 (TP4)	0.230	4.6884e-05	10.000	0.085944
ns_B5	LA3 (TP6)	0.250	3.5205 e06	10.000	0.00074212
ns_B5	LA3 (TP8)	0.410	5.4075 e - 08	10.000	0.00049104
ns_B5	LA3 (TP10)	0.860	6.3172 e-10	10.000	2.4014e-05
ns_B5	LA3 (TP12)	1.930	6.5794 e-12	10.000	3.4972e-07
ns_B5	LA3 (TP14)	0.230	4.6884 e - 05	10.000	0.085944
ns_B5	LC3 (TP4)	0.230	4.1633e-05	10.000	0.099077
ns_B5	LC3 (TP6)	0.260	3.8362e-06	10.000	0.0014268
ns_B5	LC3 (TP8)	0.390	5.3813e-08	10.000	0.00028027
ns_B5	LC3 (TP10)	0.770	4.7183e-10	10.000	2.0975 e-05
ns_B5	LC3 (TP12)	1.730	4.3485e-12	10.000	2.4349e-07
ns_B5	LC3 (TP14)	0.230	4.1633e-05	10.000	0.099077

	Table 3.71: Simula	tion resul	ts of Problem	ns_D1	
Problems	Methods	c5t	c5w	c6t	c6w
ns_D1	TAYLOR4 (TP4)	25.810	0.006207	5.396	2.925
ns_D1	TAYLOR4 (TP6)	34.860	0.0034041	9.153	1.8021
ns_D1	TAYLOR4 (TP8)	53.420	0.0033342	10.000	1.3536
ns_D1	TAYLOR4 (TP10)	99.050	0.0033352	8.847	2.0949
ns_D1	TAYLOR4 (TP12)	188.630	0.0016658	8.083	2.7048
ns_D1	TAYLOR4 (TP14)	25.820	0.006207	5.396	2.925
ns_D1	RK4 (TP4)	20.920	0.0028112	6.395	1.7957
ns_D1	RK4 (TP6)	31.130	0.0016874	10.000	0.38124
ns_D1	RK4 (TP8)	44.450	0.0016637	10.000	0.30351
ns_D1	RK4 (TP10)	46.830	0.0016633	10.000	0.21176
ns_D1	RK4 (TP12)	90.540	0.00083237	9.009	1.8083
ns_D1	RK4 (TP14)	20.910	0.0028112	6.395	1.7957
ns_D1	LA3 (TP4)	18.400	0.0022911	3.265	0.023256
ns_D1	LA3 (TP6)	24.620	0.00073054	9.243	1.7605
ns_D1	LA3 (TP8)	32.510	0.0006961	10.000	0.5364
ns_D1	LA3 (TP10)	48.120	0.00069491	10.000	0.532
ns_D1	LA3 (TP12)	91.680	0.0006949	8.836	1.8679
ns_D1	LA3 (TP14)	18.470	0.0022911	3.265	0.023256
ns_D1	LC3 (TP4)	18.290	0.0019492	3.291	0.023226
ns_D1	LC3 (TP6)	24.570	0.00026326	9.563	1.9057
ns_D1	LC3 (TP8)	30.500	0.00022948	10.000	0.19742
ns_D1	LC3 (TP10)	48.300	0.00022838	10.000	0.72164
ns_D1	LC3 (TP12)	95.330	9.4802 e-05	9.079	1.8038
ns_D1	LC3 (TP14)	18.230	0.0019492	3.291	0.023226

Table 3.72: Simulation results of Problem ns_E1					
Problems	Methods	c5t	c5w	c6t	c6w
ns_E1	TAYLOR4 (TP4)	0.570	1.4351	2.719	18.977
ns_E1	TAYLOR4 (TP6)	0.930	0.42517	2.000	0.00010071
ns_E1	TAYLOR4 (TP8)	1.450	0.20741	2.000	8.381e-06
ns_E1	TAYLOR4 (TP10)	3.080	0.13387	2.000	1.0032e-07
ns_E1	TAYLOR4 (TP12)	7.210	0.050696	10.000	22.567
ns_E1	TAYLOR4 (TP14)	0.570	1.4351	2.719	18.977
ns_E1	RK4 (TP4)	0.420	0.012668	10.000	1.2214
$ns_{-}E1$	RK4 (TP6)	0.500	0.017561	2.000	6.1085 e-05
ns_E1	RK4 (TP8)	0.700	0.031314	2.000	5.143e-06
ns_E1	RK4 (TP10)	1.140	0.030614	2.000	6.6196e-08
ns_E1	RK4 (TP12)	2.540	0.031647	10.000	0.91288
ns_E1	RK4 (TP14)	0.410	0.012668	10.000	1.2214
ns_E1	LA3 (TP4)	0.410	0.013204	10.000	0.34595
ns_E1	LA3 (TP6)	0.500	0.010426	2.000	8.1548e-05
ns_E1	LA3 (TP8)	0.690	0.013066	2.000	3.5913e-06
ns_E1	LA3 (TP10)	1.110	0.015096	2.000	5.1198e-08
ns_E1	LA3 (TP12)	2.420	0.011244	10.000	0.33604
ns_E1	LA3 (TP14)	0.420	0.013204	10.000	0.34595
ns_E1	LC3 (TP4)	0.410	0.0095702	10.000	0.26912
ns_E1	LC3 (TP6)	0.500	0.01023	2.000	8.7855e-05
ns_E1	LC3 (TP8)	0.720	0.010676	2.000	3.8404 e-06
ns_E1	LC3 (TP10)	1.080	0.0095686	2.000	4.2571 e-08
ns_E1	LC3 (TP12)	2.050	0.0091033	10.000	0.22942
ns_E1	LC3 (TP14)	0.410	0.0095702	10.000	0.26912

Table 3.73: Simulation results of Problem ns_E2					
Problems	Methods	c5t	c5w	c6t	c6w
ns_E2	TAYLOR4 (TP4)	0.080	0.00040596	10.000	0.015868
ns_E2	TAYLOR4 (TP6)	0.120	5.6232 e-06	2.000	0.00010071
ns_E2	TAYLOR4 (TP8)	0.180	7.7141e-08	2.000	8.381e-06
ns_E2	TAYLOR4 (TP10)	0.410	8.2963e-10	2.000	1.0032e-07
ns_E2	TAYLOR4 (TP12)	1.010	8.848e-12	10.000	3.459 e - 07
ns_E2	TAYLOR4 (TP14)	0.080	0.00040596	10.000	0.015868
ns_E2	RK4 (TP4)	0.050	0.0003214	10.000	0.015258
ns_E2	RK4 (TP6)	0.070	7.4223e-06	2.000	6.1085 e-05
ns_E2	RK4 (TP8)	0.130	1.1435e-07	2.000	5.143e-06
ns_E2	RK4 (TP10)	0.280	1.8288e-09	2.000	6.6196 e-08
ns_E2	RK4 (TP12)	0.670	2.3118e-11	10.000	5.8802e-07
ns_E2	RK4 (TP14)	0.050	0.0003214	10.000	0.015258
ns_E2	LA3 (TP4)	0.050	0.00025275	10.000	0.066185
ns_E2	LA3 (TP6)	0.060	3.8427e-06	2.000	8.1548 e-05
ns_E2	LA3 (TP8)	0.100	7.7582e-08	2.000	3.5913 e-06
ns_E2	LA3 (TP10)	0.230	1e-09	2.000	5.1198e-08
ns_E2	LA3 (TP12)	0.550	1.4015e-11	10.000	5.7683e-07
ns_E2	LA3 (TP14)	0.050	0.00025275	10.000	0.066185
ns_E2	LC3 (TP4)	0.050	0.00027974	10.000	0.10799
ns_E2	LC3 (TP6)	0.060	3.9986e-06	2.000	8.7855e-05
ns_E2	LC3 (TP8)	0.110	7.6055e-08	2.000	3.8404 e-06
ns_E2	LC3 (TP10)	0.230	7.073e-10	2.000	4.2571 e-08
ns_E2	LC3 (TP12)	0.580	7.085e-12	10.000	2.6685e-07
ns_E2	LC3 (TP14)	0.060	0.00027974	10.000	0.10799

Table 3.74: Simulation results of Problem ns_E3							
Problems	Methods	c5t	c5w	c6t	c6w		
ns_E3	TAYLOR4 (TP4)	0.300	0.0001603	10.000	0.015971		
ns_E3	TAYLOR4 (TP6)	0.500	2.0937e-06	2.000	9.0741e-06		
ns_E3	TAYLOR4 (TP8)	0.990	3.6313e-08	2.000	2.1037e-07		
ns_E3	TAYLOR4 (TP10)	2.430	4.1545e-10	2.000	2.2064 e-09		
ns_E3	TAYLOR4 (TP12)	5.990	4.5057e-12	10.000	2.7482e-08		
ns_E3	TAYLOR4 (TP14)	0.300	0.0001603	10.000	0.015971		
ns_E3	RK4 (TP4)	0.230	0.00012793	10.000	0.020574		
ns_E3	RK4 (TP6)	0.320	2.9744e-06	2.000	1.12e-05		
ns_E3	RK4 (TP8)	0.570	5.1365e-08	2.000	3.5177e-07		
ns_E3	RK4 (TP10)	1.270	5.4612e-10	2.000	4.1754 e - 09		
ns_E3	RK4 (TP12)	3.160	5.5893e-12	10.000	4.885e-08		
ns_E3	RK4 (TP14)	0.240	0.00012793	10.000	0.020574		
ns_E3	LA3 (TP4)	0.190	0.00026818	10.000	0.036244		
ns_E3	LA3 (TP6)	0.340	2.8738e-06	2.000	1.0633 e - 05		
ns_E3	LA3 (TP8)	0.540	5.2924e-08	2.000	2.7291e-07		
ns_E3	LA3 (TP10)	1.230	5.7092e-10	2.000	2.9675 e - 09		
ns_E3	LA3 (TP12)	3.000	5.9095e-12	10.000	3.4149e-08		
ns_E3	LA3 (TP14)	0.190	0.00026818	10.000	0.036244		
ns_E3	LC3 (TP4)	0.210	0.00014667	10.000	0.047597		
ns_E3	LC3 (TP6)	0.300	1.9905e-06	2.000	9.1701e-06		
ns_E3	LC3 (TP8)	0.560	3.2515 e-08	2.000	2.1352e-07		
ns_E3	LC3 (TP10)	1.300	3.5506e-10	2.000	2.2933e-09		
ns_E3	LC3 (TP12)	3.230	3.6904e-12	10.000	2.7388e-08		
ns_E3	LC3 (TP14)	0.210	0.00014667	10.000	0.047597		

Table 3.75: Simulation results of Problem ns.E4							
Problems	Methods	c5t	c5w	c6t	c6w		
ns_E4	TAYLOR4 (TP4)	0.040	1.2137e-09	10.000	3.702e-06		
ns_E4	TAYLOR4 (TP6)	0.040	1.2137e-09	2.000	7.75e-08		
ns_E4	TAYLOR4 (TP8)	0.040	1.2137e-09	2.000	7.75e-08		
ns_E4	TAYLOR4 (TP10)	0.040	9.0002e-10	2.000	2.5812e-09		
ns_E4	TAYLOR4 (TP12)	0.060	1.4914e-11	10.000	1.7366e-10		
ns_E4	TAYLOR4 (TP14)	0.040	1.2137e-09	10.000	3.702e-06		
ns_E4	RK4 (TP4)	0.020	7.5673e-11	10.000	7.2614e-07		
nsE4	RK4 (TP6)	0.020	7.5673e-11	2.000	3.0567e-09		
ns_E4	RK4 (TP8)	0.020	7.5673e-11	2.000	3.0567e-09		
ns_E4	RK4 (TP10)	0.020	7.5673e-11	2.000	1.7044e-09		
ns_E4	RK4 (TP12)	0.030	1.1987e-11	10.000	2.519e-10		
ns_E4	RK4 (TP14)	0.020	7.5673e-11	10.000	7.2614e-07		
ns_E4	LA3 (TP4)	0.020	2.0709e-10	10.000	3.5712e-07		
ns_E4	LA3 (TP6)	0.020	2.0709e-10	2.000	1.1984e-08		
$ns_{-}E4$	LA3 (TP8)	0.020	2.0709e-10	2.000	1.1984e-08		
ns_E4	LA3 (TP10)	0.020	2.0709e-10	2.000	2.0098e-09		
ns_E4	LA3 (TP12)	0.030	2.4286e-11	10.000	1.1126e-10		
ns_E4	LA3 (TP14)	0.020	2.0709e-10	10.000	3.5712e-07		
ns_E4	LC3 (TP4)	0.020	8.4192e-11	10.000	3.6162e-07		
ns_E4	LC3 (TP6)	0.020	8.4192e-11	2.000	6.1039 e-09		
ns_E4	LC3 (TP8)	0.020	8.4192e-11	2.000	6.1039 e-09		
ns_E4	LC3 (TP10)	0.020	8.4192e-11	2.000	2.083e-09		
ns_E4	LC3 (TP12)	0.030	1.1283e-11	10.000	1.1097e-10		
ns_E4	LC3 (TP14)	0.020	8.4192e-11	10.000	3.6162e-07		

3.2.3 Discussion

In the past tables the methods are highlighted in blue for the best one and in grey for the second one, at one second and at ten seconds of simulation. We can easily conclude from these results that the Runge-Kutta methods are more efficient than the Taylor approach, and moreover, that the implicit ones are often better than the explicit RK4 method.

3.3 Other problems

In this section, we present few well-known problems. For each one, the results provided by the logger and an image obtained with our 3D-plotter are given. These results are listed in order to prove that our tool is able to simulate some difficult problems.

3.3.1 Affine-uncertain

```
The problem is the following:
```

```
Initial states: y_0 = ([0.8, 1.2]; [0.8, 1.2]; [0.8, 1.2]; [0.8, 1.2]; [0.8, 1.2])
                        a1 = [-1.1, -0.9]
                        a2 = [-4.1, -3.9]
  Some interval parameters: a3 = [-3.1, -2.9]
  Solution at t=2.000000:
([-2.39334, 2.05433]; [-2.19454, 2.48459]; [-0.0626994, 0.0651442];
[-0.0672006, 0.0606297]; [-0.0418624, 0.0784937])
Diameter: (4.44767; 4.67913; 0.127844; 0.12783; 0.120356)
Rejected picard :2
Accepted picard: 673
```

Step min :0.00174779 Step max :0.00313099

Truncature error max :2.06329e-12

Figure 3.3: Simulation of the affine uncertain system

3.3.2 circle

The problem is the following:

Initial states: $y_0 = ([0,0.1];[0.95,1.05])$ The differential system: $\dot{y} = \begin{cases} -y[1] \\ y[0] \end{cases}$ Solution at t=100.000000 : ([0.476077, 0.622885] ; [0.763549, 0.910451]) Diameter : (0.146808 ; 0.146902) Rejected picard :0 Accepted picard :1400

Step min :0.01 Step max :0.0730046

Truncature error max :1.60132e-08

Figure 3.4: Simulation of the circle system

3.3.3 Lambert: linear problem (p213)

Solution at t=10.000000 : $([-0.544487, -0.543374] \; ; \; [-0.839843, -0.838119] \; ; \; [10, \, 10])$

Diameter: (0.00111361; 0.00172438; 0)

Rejected picard :3 Accepted picard :26873 Step min :0.000204486 Step max :0.00040387

Truncature error max :7.99348e-06

3.3.4 Lambert: non linear and stiff problem (p223)

The problem is the following:

Figure 3.5: Simulation of the Lambert linear system

Initial states: $y_0 = (1, e^{-1}, 1)$ The differential system: $\dot{y} = \begin{cases} 1/y[0] - y[1] * exp(y[2] * y[2])/(y[2] * y[2]) - y[2] \\ 1/y[1] - exp(y[2] * y[2]) - 2 * y[2] * exp(-y[2] * y[2]) \end{cases}$

Solution at t=1.500000:

([0.399984, 0.400016]; [0.00193044, 0.00193047]; [2.5, 2.5])

Diameter: (3.26431e-05; 3.27931e-08; 9.19886e-12)

Rejected picard :1 Accepted picard :21060 Step min :4.79902e-06 Step max :0.0152239

Truncature error max :2.70897e-08

Figure 3.6: Simulation of the Lambert stiff system

3.3.5 Lorentz

The problem is the following: Initial states: $y_0 = (15, 15, 36)$

$$Some \ parameters: \begin{vmatrix} sigma = 10 \\ rho = 15 \\ beta = 8/3 \end{vmatrix}$$
 The differential system:
$$\dot{y} = \begin{cases} sigma*(y[1] - y[0]) \\ y[0]*(rho - y[2]) - y[1] \\ y[0]*y[1] - beta*y[2] \end{cases}$$
 Solution at t=4.000000 : ([-4.89107, -4.60361] ; [-0.207979, 0.199418] ; [28.8958, 29.2391]) Diameter : (0.287467 ; 0.407397 ; 0.343226) Rejected picard :5 Accepted picard :7419 Step min :0.0003125 Step max :0.000924129 Truncature error max :2.52501e-13

Figure 3.7: Simulation of the Lorentz system

3.3.6 oil-reservoir

```
The problem is the following: Initial states: y_0 = (10,0) One parameter: \left| stiffness = 0.001 \ or \ 0.0001 \right| The differential system: \dot{y} = \begin{cases} y[1] * y[1] - 3.0/(stiffness + y[0] * y[0]) \end{cases} Solution at t=50.000000 : ([-8.27752, -8.27751] ; [-0.224547, -0.224547]) Diameter : (6.2308e-06 ; 1.56923e-07) Rejected picard :3 Accepted picard :71076 Step min :1e-06 Step max :0.016677 Truncature error max :6.57475e-11
```


Figure 3.8: Simulation of the oil-reservoir system (stiffness=1e - 03)

Solution at t=50.000000:

([-8.56149, -8.56146]; [-0.216578, -0.216577])

Diameter: (2.91622e-05; 6.85792e-07)

Rejected picard :2 Accepted picard :73200

Step min :1e-06 Step max :0.0166808

Truncature error max :2.2382e-08

Figure 3.9: Simulation of the oil-reservoir system (stiffness=1e-04)

3.3.7 vanderpol

The problem is the following:

Initial states: $y_0 = (2,0)$

One parameter: |mu = 1.0 or 2.0

The differential system: $\dot{y} = \begin{cases} y[1] \\ mu * (1.0 - y[0] * y[0]) * y[1] - y[0] \end{cases}$

Solution at t=50.000000:

([-2.03535, -1.97923]; [0.0419892, 0.0988844])

Diameter: (0.0561216; 0.0568952)

Rejected picard :1 Accepted picard :6789 Step min :0.00140294 Step max :0.012461

Truncature error max :2.53534e-12

Figure 3.10: Simulation of the vanderpol system $(\mu = 1)$

Solution at t=40.000000:

([1.0493, 1.49018]; [-0.879307, -0.404504])

Diameter: (0.440879; 0.474803)

Rejected picard :2 Accepted picard :7163 Step min :0.00217604 Step max :0.0106292

Truncature error max :3.89696e-12

Figure 3.11: Simulation of the vanderpol system $(\mu=2)$

3.3.8 volterra

The problem is the following:

Initial states: $y_0 = (1.0; 3.0)$, with a potentially added uncertainty [-0.01, 0.01].

The differential system: $\dot{y} = \begin{cases} 2.0 * y[0] * (1.0 - y[1]) \\ -y[1] * (1.0 - y[0]) \end{cases}$

Solution at t=5.488138:

([1, 1]; [3, 3])

Diameter: (2.25385e-10; 3.90135e-10)

Rejected picard :3 Accepted picard :1642 Step min :0.00115543 Step max :0.00830212

Truncature error max :3.11242e-14

Figure 3.12: Simulation of the volterra system

Solution at t=5.488138:

([0.919632, 1.08037]; [2.92806, 3.07194])

Diameter : (0.160737 ; 0.14388)

Rejected picard :3 Accepted picard :1702 Step min :0.000912773 Step max :0.00819498

Truncature error max :3.13532e-14

3.3.9 orbit

The problem is the following:

Initial states: $y_0 = (0.994; 0; 0; -2.00158510637908252240537862224)$

Some parameters: mu = 0.012277471 $mu_h = 1.0 - mu$

The differential system:

Figure 3.13: Simulation of the volterra system with uncertainties

```
\dot{y}[2] \\ y[3] \\ y[0] + 2.0 * y[3] - mu_h * (y[0] + mu) / (sqrt((y[0] + mu) * (y[0] + mu) + (y[1]) * (y[1])) * ((y[0] - mu_h) * (y[0] - mu_h) + (y[1]) * (y[1])) * (y[0] - mu_h) / (sqrt((y[0] - mu_h) * (y[0] - mu_h) + (y[1]) * (y[1])) * ((y[0] - mu_h) * (y[0] - mu_h) + (y[1]) * (y[1])) * (y[1] * y[1])) * ((y[0] + mu) * (y[0] + mu) * (y[0] + mu) + (y[1] * y[1]))) * (y[1] * y[1])) * ((y[0] + mu) * (y[0] + mu) + (y[1] * y[1]))) * (y[1] * y[1])) * ((y[0] - mu_h) * (y[0] - mu_h) + (y[1] * y[1]))) * (y[1] * y[1])) * ((y[0] - mu_h) * (y[0] - mu_h) + (y[1] * y[1]))) * (y[0] - mu_h) * (y[0] - mu_h) + (y[1] * y[1]))) * (y[0] - mu_h) * (y[0] - mu_h) + (y[1] * y[1]))) * (y[0] - mu_h) * (y[0] - mu_h) * (y[0] - mu_h) + (y[1] * y[1]))) * (y[0] - mu_h) *
```


Figure 3.14: Simulation of the orbit system

3.3.10Rossler

The problem is the following:

Initial states:
$$y_0 = (0; -10.3; 0.03)$$

Some parameters: $\begin{vmatrix} a = 0.2 \\ b = 0.2 \\ c = 5.7 \end{vmatrix}$

Some parameters:
$$\begin{vmatrix} a=0.2\\b=0.2\\c=5.7 \end{vmatrix}$$
 The differential system:
$$\dot{y}=\begin{cases} -(y[1]+y[2])\\y[0]+a*y[1]\\b+y[2]*(y[0]-c) \end{vmatrix}$$

Solution at t=50.000000:

([10.1496, 11.4172]; [-7.78271, -5.69522]; [0.0544862, 0.0971181])

Diameter: (1.26763; 2.08749; 0.0426319)

Rejected picard :6 Accepted picard:7123 Step min : 0.001

Step max :0.0132739

Truncature error max :1.3313e-11

Figure 3.15: Simulation of the Rossler system

3.3.11 Discussion

In this section, we perform some testes on other problems, coming from the literature. It is not provided to compare with the other tools, but just to prove that we can model and perform some classical problems.

Chapter 4

Conclusion

To conclude, we present in this report our tool for the validated simulation of ordinary differential equations. It is based on the Runge-Kutta methods, in explicit and implicit form. By using the affine arithmetic, it is able to counteract the wrapping effect with a more simple approach than other approach, such as QR factorization for example. The results presented in this report prove that our tool is equivalent to the best software currently available (Vnode). It is important to notice that our tool is really steady, providing good results for all the benchmark with at least one of its Runge-Kutta method. And last but not the least, we present in this report only the methods at order four, when Vnode can use Taylor series at order twenty-five. Our approach is then validated and is strongly promising by using higher order.

Bibliography

- [1] Martin Berz and Kyoko Makino. Verified integration of odes and flows using differential algebraic methods on high-order taylor models. *Reliable Computing*, 4(4):361–369, 1998.
- [2] Olivier Bouissou, Alexandre Chapoutot, and Adel Djoudi. Enclosing temporal evolution of dynamical systems using numerical methods. In *NASA Formal Methods*, number 7871 in LNCS, pages 108–123. Springer, 2013.
- [3] Olivier Bouissou and Matthieu Martel. GRKLib: a Guaranteed Runge Kutta Library. In *Scientific Computing*, Computer Arithmetic and Validated Numerics, 2006.
- [4] Olivier Bouissou, Samuel Mimram, and Alexandre Chapoutot. HySon: Setbased simulation of hybrid systems. In *Rapid System Prototyping*. IEEE, 2012.
- [5] John C. Butcher. Coefficients for the study of Runge-Kutta integration processes. *Journal of the Australian Mathematical Society*, 3:185–201, 5 1963
- [6] Gilles Chabert and Luc Jaulin. Contractor programming. Artificial Intelligence, 173(11):1079–1100, 2009.
- [7] Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. Taylor model flowpipe construction for non-linear hybrid systems. In *IEEE 33rd Real-Time Systems Symposium*, pages 183–192. IEEE Computer Society, 2012.
- [8] L. H. de Figueiredo and J. Stolfi. Self-Validated Numerical Methods and Applications. Brazilian Mathematics Colloquium monographs. IMPA/CNPq, 1997.
- [9] Karol Gajda, Małgorzata Jankowska, Andrzej Marciniak, and Barbara Szyszka. A survey of interval runge-kutta and multistep methods for solving the initial value problem. In *Parallel Processing and Applied Mathematics*, volume 4967 of *LNCS*, pages 1361–1371. Springer Berlin Heidelberg, 2008.
- [10] Eric Goubault and Sylvie Putot. Static analysis of finite precision computations. In *Verification*, *Model Checking*, and *Abstract Interpretation*, volume 6538 of *LNCS*, pages 232–247. Springer Berlin Heidelberg, 2011.

- [11] Ernst Hairer, Syvert Paul Norsett, and Grehard Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-Verlag, 2nd edition, 2009.
- [12] Tomas Kapela and Piotr Zgliczyński. A lohner-type algorithm for control systems and ordinary differential inclusions. Discrete and continuous dynamical systems series B, 11(2):365–385, 2009.
- [13] J. D. Lambert. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. John Wiley & Sons, Inc., New York, NY, USA, 1991.
- [14] Youdong Lin and Mark A. Stadtherr. Validated solutions of initial value problems for parametric odes. Appl. Numer. Math., 57(10):1145–1162, 2007.
- [15] Rudolf J. Lohner. Enclosing the solutions of ordinary initial and boundary value problems. *Computer Arithmetic*, pages 255–286, 1987.
- [16] Ramon Moore. Interval Analysis. Prentice Hall, 1966.
- [17] Ned Nedialkov, K. Jackson, and Georges Corliss. Validated solutions of initial value problems for ordinary differential equations. Appl. Math. and Comp., 105(1):21 – 68, 1999.
- [18] Arnold Neumaier. The wrapping effect, ellipsoid arithmetic, stability and confidence regions. In *Validation Numerics*, volume 9 of *Computing Sup*plementum, pages 175–190. Springer Vienna, 1993.
- [19] Siegfried M. Rump and Masahide Kashiwagi. Implementation and improvements of affine arithmetic. Technical report, Under submission, 2014.
- [20] Daniel Wilczak and Piotr Zgliczyński. Cr-lohner algorithm. Schedae Informaticae, 20:9–46, 2011.