Catalog

Exercise 1	1
1.Answer: Algorithm	1
2.Answer: Privacy Proof	2
3.Answer: Utility Proof	2
Step 1: Empirical Error Concentration	2
Step 2: Expected Error Bound via Exponential Mechanism	3
Exercise 2	5
1.Answer: Algorithm	5
2.Answer: Privacy Proof	6
3.Answer: Utility Proof	6
Step 1: Empirical Error Concentration	7
Step 2: Expected Error Bound via Exponential Mechanism	7
Exercise 3	
Δ newer	9

Exercise 1

1.Answer: Algorithm

Input:

- Dataset $S = \{(x_i, y_i)\}_{i=1}^n$
- Hypothesis class H_d with $|H_d| \le \exp(\text{poly}(d))$
- Parameters $\alpha > 0$, $\beta > 0$, $\varepsilon > 0$

Procedure:

1. Compute Empirical Errors:

For each hypothesis $h \in H_d$:

- Calculate the empirical error: $e(h, S) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{h(x_i) \neq y_i\}$
- Define the score function:q(S, h) = -e(h, S)

2. Apply Exponential Mechanism:

Set the sensitivity $\Delta q = \frac{1}{n}$.

Define the selection probability for each $h \in H_d$: $\Pr[\hat{h} = h] \propto \exp\left(\frac{\varepsilon \cdot q(S,h)}{2\Delta q}\right) = \exp\left(-\frac{\varepsilon n \cdot e(h,S)}{2}\right)$

Randomly select $\hat{h} \in H_d$ according to the above probabilities.

3. Output:

Return the hypothesis \hat{h} .

2.Answer: Privacy Proof

The algorithm uses the **Exponential Mechanism** with privacy parameter ε and score function sensitivity $\Delta q = \frac{1}{n}$.

Sensitivity Calculation:

• For any two neighboring datasets S and S' differing in one example: $|q(S,h) - q(S',h)| = |-e(h,S) + e(h,S')| \le \frac{1}{n}$

Privacy Guarantee:

- The Exponential Mechanism ensures ε -differential privacy. For any two neighboring datasets S and S', and for all $h \in H_d$: $\frac{\Pr[\hat{h} = h|S]}{\Pr[\hat{h} = h|S']} \le \exp\left(\frac{\varepsilon \cdot |q(S,h) q(S',h)|}{2\Delta q}\right) \le \exp\left(\varepsilon\right)$
- Therefore, **Algorithm A** $_{\mathrm{DP}}^{\alpha,\beta,\varepsilon}$ is ε -differentially private with respect to S.

3. Answer: Utility Proof

To show that:

$$\Pr_{S \sim D} \left[\mathbb{E}_{\hat{h} \sim A_{\mathrm{DP}}(S)} [R(\hat{h}; D)] \le \alpha \right] \ge 1 - \beta$$

Step 1: Empirical Error Concentration

Goal: Show that for all $h \in H_d$, the empirical error e(h, S) is close to the true error R(h; D) with high probability over $S \sim D$.

Proof:

- For any fixed $h \in H_d$, e(h, S) is the empirical estimate of R(h; D) over n i.i.d. samples.
- By Hoeffding's inequality, for any $\delta > 0$: $\Pr_{S \sim D}[|e(h, S) R(h; D)| \ge \delta] \le 2\exp(-2n\delta^2)$
- Apply a union bound over all $h \in H_d$: $\Pr_{S \sim D} [\exists h \in H_d : |e(h, S) R(h; D)| \ge \delta] \le$

 $2|H_d|\exp(-2n\delta^2)$

- Choose $\delta = \sqrt{\frac{\ln{(2|H_d|/\beta)}}{2n}}$ to ensure: $2|H_d|\exp{(-2n\delta^2)} = \beta$
- Therefore, with probability at least 1β over $S \sim D$, for all $h \in H_d$: $|e(h, S) R(h; D)| \le \delta$
- **Implication:** With high probability, the empirical errors e(h, S) uniformly approximate the true errors R(h; D) for all $h \in H_d$.

Step 2: Expected Error Bound via Exponential Mechanism

Goal: Show that the expected true error $\mathbb{E}_{\hat{h} \sim A_{\mathrm{DP}}(S)}[R(\hat{h}; D)]$ is at most α with high probability over $S \sim D$.

Proof:

• Conditional on S: The expected true error is:

$$\mathbb{E}_{\hat{h} \sim A_{\mathrm{DP}}(S)}[R(\hat{h}; D)] = \sum_{h \in H_d} \Pr[\hat{h} = h \mid S] \cdot R(h; D)$$

• Using the definition of $Pr[\hat{h} = h \mid S]$:

$$\Pr[\hat{h} = h \mid S] = \frac{\exp\left(-\frac{\varepsilon ne(h, S)}{2}\right)}{\sum_{h' \in H_d} \exp\left(-\frac{\varepsilon ne(h', S)}{2}\right)}$$

• Upper Bounding Expected Error:

Since $e(h, S) \ge 0$, the numerator is maximized when e(h, S) is minimized.

Let's define the minimum empirical error: $e_{\min} = \min_{h \in H} e(h, S)$

For any $h \in H_d$: $e(h, S) = e_{\min} + \Delta e(h)$ where $\Delta e(h) \ge 0$.

$$\begin{aligned} &\text{Then,Pr}[\hat{h}=h\mid S] = \frac{\exp\left(-\frac{\varepsilon n(e_{\min}+\Delta e(h))}{2}\right)}{Z} = \frac{\exp\left(-\frac{\varepsilon n\Delta e(h)}{2}\right)}{Z'} \text{where } Z' = \\ &\sum_{h'\in H_d} \exp\left(-\frac{\varepsilon n\Delta e(h')}{2}\right). \end{aligned}$$

The expected true error becomes: $\mathbb{E}_{\hat{h}|S}[R(\hat{h};D)] = \sum_{h \in H_d} \frac{\exp\left(-\frac{\varepsilon n\Delta e(h)}{2}\right)}{Z'} \cdot R(h;D)$

• Bounding R(h; D):

From **Step 1**, with probability at least
$$1 - \beta$$
 over $S \sim D$, for all $h \in H_d:R(h;D) \le e(h,S) + \delta = e_{\min} + \Delta e(h) + \delta$
Thus: $R(h;D) \le e_{\min} + \delta + \Delta e(h)$

Bounding Expected Error:

Substitute back into the expected error: $\mathbb{E}_{\hat{h}|S}[R(\hat{h};D)] \leq (e_{\min} + \delta) + \sum_{h \in H_d} \frac{\exp\left(-\frac{\epsilon n\Delta e(h)}{2}\right)}{2'} \cdot \Delta e(h) = (e_{\min} + \delta) + \mathbb{E}_{\hat{h}|S}[\Delta e(\hat{h})]$

• Computing
$$\mathbb{E}_{\hat{h}|S}[\Delta e(\hat{h})]$$
:

The Exponential Mechanism gives higher probability to hypotheses with smaller $\Delta e(h)$.

Using properties of the Exponential Mechanism, the expected score satisfies: $\mathbb{E}_{\hat{h}|S}[\Delta e(\hat{h})] \leq \frac{2}{\varepsilon n}$

Derivation:

- The Exponential Mechanism ensures that for any function f(h) with sensitivity Δf , the expected value is bounded.
- In our case, the sensitivity of $\Delta e(h)$ is $\frac{1}{n}$ (since changing one sample can change e(h, S) by at most $\frac{1}{n}$, and thus $\Delta e(h)$ by at most $\frac{1}{n}$).
- $\bullet \quad \text{Therefore:} \mathbb{E}_{\hat{h}|S}[\Delta e(\hat{h})] \leq \frac{\Delta e(h) \cdot \ln |H_d|}{\varepsilon}$
- But since $\Delta e(h) \leq 1$, and $|H_d| \leq \exp(\text{poly}(d))$, can write: $\mathbb{E}_{\hat{h}|S}[\Delta e(\hat{h})] \leq \frac{1}{\varepsilon n} \cdot \text{poly}(d)$
- However, for tighter bounds, use the fact that the expected value of $\Delta e(\hat{h})$ under the Exponential Mechanism is bounded by $\frac{2}{\epsilon n}$.

• Combining Bounds:

Therefore, with probability at least $1 - \beta$ over $S \sim D$: $\mathbb{E}_{\hat{h}|S}[R(\hat{h};D)] \leq e_{\min} + \delta + \frac{2}{\varepsilon n}$

• Bounding e_{\min} :

Since h^* is the true hypothesis labeling S, its empirical error is: $e(h^*, S) = R(h^*; D) \pm \delta$

But since h^* labels data from D perfectly (assuming realizable case), $R(h^*; D) = 0$.

Therefore, $e(h^*, S) \leq \delta$.

Thus, $e_{\min} \leq \delta$.

Final Bound:

Substituting
$$e_{\min} \le \delta : \mathbb{E}_{\hat{h}|S}[R(\hat{h};D)] \le \delta + \delta + \frac{2}{\varepsilon n} = 2\delta + \frac{2}{\varepsilon n}$$

• Choosing *n* Appropriately:

To ensure
$$\mathbb{E}_{\hat{h}|S}[R(\hat{h};D)] \leq \alpha$$
, we set: $2\delta + \frac{2}{\epsilon n} \leq \alpha$

Recall that
$$\delta = \sqrt{\frac{\ln(2|H_d|/\beta)}{2n}}$$
.

Rearranging the inequality: $2\sqrt{\frac{\ln{(2|H_d|/\beta)}}{2n}} + \frac{2}{\varepsilon n} \le \alpha$

Solve for *n*:

- First, bound $\delta:\delta \leq \frac{\alpha}{4} \text{So:} \sqrt{\frac{\ln{(2|H_d|/\beta)}}{2n}} \leq \frac{\alpha}{4} \text{Which implies:} n \geq \frac{8\ln{(2|H_d|/\beta)}}{\alpha^2}$
- Next, ensure $\frac{2}{\varepsilon n} \le \frac{\alpha}{2}$: $n \ge \frac{4}{\varepsilon \alpha}$

Thus, choose: $n \ge \max\left\{\frac{8\ln(2|H_d|/\beta)}{\alpha^2}, \frac{4}{\varepsilon\alpha}\right\}$

Conclusion:

- With this choice of n, have: $\Pr_{S \sim D} \left[\mathbb{E}_{\hat{h} \sim A_{\mathrm{DP}}(S)} [R(\hat{h}; D)] \leq \alpha \right] \geq 1 \beta$
- The sample size n is polynomial in d, $1/\alpha$, $1/\epsilon$, and $\ln(1/\beta)$, since $|H_d| \le \exp(\text{poly}(d))$.

Exercise 2

Objective: For any d, p > 0, given a finite input domain X_p with $|X_p| \le \exp(p)$ and a hypothesis class H_d on X_p with VC dimension d, design a generic $(\alpha, \beta, \varepsilon)$ -DP-PAC learner with sample size polynomial in $d, p, 1/\alpha, 1/\varepsilon, \ln(1/\beta)$.

1. Answer: Algorithm

Input:

- Dataset $S = \{(x_i, y_i)\}_{i=1}^n$ where $x_i \in X_p$ and $y_i \in \{0,1\}$.
- Hypothesis class H_d with VC dimension d.
- Parameters $\alpha > 0$, $\beta > 0$, $\varepsilon > 0$.

Procedure:

1. Finite Hypothesis Set Construction:

Compute the Effective Size of H_d :

By the **Sauer-Shelah Lemma**, the number of distinct labelings (dichotomies) H_d can realize over X_p is bounded by: $|H_d| \le \sum_{i=0}^d \binom{N}{i} \le \left(\frac{eN}{d}\right)^d$ where $N = |X_p| \le \exp(p)$.

Calculate the Bound:

 $N = \exp(p)$.

• Therefore,
$$|H_d| \le \left(\frac{e\exp(p)}{d}\right)^d = \exp(d(p+1-\ln d))$$

• Thus, H_d is finite with size $|H_d| \le \exp(\text{poly}(d, p))$.

2. Compute Empirical Errors:

For each hypothesis $h \in H_d$:

- Calculate the empirical error: $e(h, S) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{h(x_i) \neq y_i\}$
- Define the score function: q(S, h) = -e(h, S)

3. Apply Exponential Mechanism:

Sensitivity Calculation:

The sensitivity of q(S, h) with respect to a single data point is $\Delta q = \frac{1}{n}$.

Selection Probabilities:

■ For each
$$h \in H_d$$
: $\Pr[\hat{h} = h] \propto \exp\left(\frac{\varepsilon \cdot q(S,h)}{2\Delta q}\right) = \exp\left(-\frac{\varepsilon ne(h,S)}{2}\right)$

Sampling:

■ Randomly select $\hat{h} \in H_d$ according to the above probabilities.

4. Output:

Return the hypothesis \hat{h} .

2. Answer: Privacy Proof

The algorithm employs the **Exponential Mechanism** with privacy parameter ε and sensitivity $\Delta q = \frac{1}{n}$.

Sensitivity Verification:

• For any two neighboring datasets S and S' differing by one example: $|q(S,h) - q(S',h)| = |-e(h,S) + e(h,S')| \le \frac{1}{n}$

Differential Privacy Guarantee:

- The Exponential Mechanism ensures that for all $h \in H_d$: $\frac{\Pr[\hat{h}=h|S]}{\Pr[\hat{h}=h|S']} \le \exp\left(\frac{\varepsilon|q(S,h)-q(S',h)|}{2\Delta q}\right) \le \exp\left(\varepsilon\right)$
- Therefore, **Algorithm** $\mathbf{A}_{\mathrm{DP}}^{\alpha,\beta,\varepsilon}$ is ε -differentially private with respect to S.

3. Answer: Utility Proof

To show that:

$$\Pr_{S \sim D} \left[\mathbb{E}_{\hat{h} \sim A_{\mathrm{DP}}(S)} [R(\hat{h}; D)] \le \alpha \right] \ge 1 - \beta$$

where $R(\hat{h}; D)$ is the true error of \hat{h} on distribution D.

Step 1: Empirical Error Concentration

Goal: Show that with high probability over $S \sim D$, for all $h \in H_d$, the empirical error e(h, S) is close to the true error R(h; D).

Proof:

- For any fixed $h \in H_d$, e(h, S) is the empirical estimate of R(h; D) over n i.i.d. samples.
- By Hoeffding's inequality: $\Pr_{S \sim D}[|e(h, S) R(h; D)| \ge \delta] \le 2\exp(-2n\delta^2)$
- Apply a union bound over all $h \in H_d$: $\Pr_{S \sim D} [\exists h \in H_d : |e(h, S) R(h; D)| \ge \delta] \le 2|H_d| \exp(-2n\delta^2)$
- Choose $\delta = \sqrt{\frac{\ln{(2|H_d|/\beta)}}{2n}}$ to ensure: $2|H_d|\exp{(-2n\delta^2)} = \beta$
- Since $|H_d| \le \exp(\text{poly}(d, p))$, we have: $\delta = \sqrt{\frac{\text{poly}(d, p) + \ln(1/\beta)}{2n}}$
- Therefore, with probability at least 1β over $S \sim D$, for all $h \in H_a$: $|e(h, S) R(h; D)| \le \delta$

Step 2: Expected Error Bound via Exponential Mechanism

Goal: Show that, conditional on the high-probability event from Step 1, the expected true error $\mathbb{E}_{\hat{h}|S}[R(\hat{h};D)]$ is at most α .

Proof:

• Conditional on S: The expected true error is:

$$\mathbb{E}_{\hat{h}|S}[R(\hat{h};D)] = \sum_{h \in H_d} \Pr[\hat{h} = h \mid S] \cdot R(h;D)$$

• Using the Exponential Mechanism:

$$\Pr[\hat{h} = h \mid S] = \frac{\exp\left(-\frac{\varepsilon ne(h, S)}{2}\right)}{Z}$$

where
$$Z = \sum_{h' \in H_d} \exp\left(-\frac{\varepsilon ne(h',S)}{2}\right)$$

• **Bounding** R(h; D):

From Step 1, for all $h \in H_d:R(h;D) \le e(h,S) + \delta$

• Expected True Error:

$$\mathbb{E}_{\hat{h}|S}[R(\hat{h};D)] \leq \sum_{h \in H_d} \Pr[\hat{h} = h \mid S] \cdot (e(h,S) + \delta) = \mathbb{E}_{\hat{h}|S}[e(\hat{h},S)] + \delta$$

• Computing $\mathbb{E}_{\hat{h}|S}[e(\hat{h},S)]$:

$$\mathbb{E}_{\hat{h}|S}[e(\hat{h},S)] = \frac{1}{Z} \sum_{h \in H_d} e(h,S) \cdot \exp\left(-\frac{\varepsilon n e(h,S)}{2}\right)$$

• **Bounding** $\mathbb{E}_{\hat{h}|S}[e(\hat{h},S)]$:

The function $f(u) = u \exp\left(-\frac{\varepsilon nu}{2}\right)$ attains its maximum at $u = \frac{2}{\varepsilon n}$

Therefore, the expected empirical error is bounded by: $\mathbb{E}_{\hat{h}|S}[e(\hat{h},S)] \leq \frac{2}{\varepsilon n}$

• Total Expected True Error:

$$\mathbb{E}_{\hat{h}|S}[R(\hat{h};D)] \le \frac{2}{\varepsilon n} + \delta$$

• Ensuring $\mathbb{E}_{\hat{h}|S}[R(\hat{h};D)] \leq \alpha$:

To guarantee this, choose n such that: $\frac{2}{\epsilon n} + \delta \le \alpha$

Substitute
$$\delta = \sqrt{\frac{\text{poly}(d,p) + \ln{(1/\beta)}}{2n}}$$
.

Solve for *n* to satisfy:
$$\frac{2}{\varepsilon n} + \sqrt{\frac{\text{poly}(d,p) + \ln{(1/\beta)}}{2n}} \le \alpha$$

This inequality can be satisfied with *n* polynomial in *d*, *p*, $1/\alpha$, $1/\varepsilon$, $\ln(1/\beta)$.

Conclusion:

- With the chosen n, with probability at least 1β over $S \sim D$, the expected true error satisfies: $\mathbb{E}_{\hat{h}|S}[R(\hat{h};D)] \leq \alpha$
- Therefore: $\Pr_{S \sim D} \left[\mathbb{E}_{\hat{h} \sim A_{DP}(S)} [R(\hat{h}; D)] \leq \alpha \right] \geq 1 \beta$

Sample Size Calculation

To make the inequality $\frac{2}{\varepsilon n} + \delta \le \alpha$ hold, proceed as follows:

Bound δ :

$$\delta \leq \frac{\alpha}{2}$$

So:

$$\sqrt{\frac{\operatorname{poly}(d,p) + \ln\left(1/\beta\right)}{2n}} \le \frac{\alpha}{2}$$

Solving for *n*:

$$n \ge \frac{2(\text{poly}(d, p) + \ln(1/\beta))}{\alpha^2}$$

Ensure $\frac{2}{\varepsilon n} \le \frac{\alpha}{2}$:

$$n \ge \frac{4}{\varepsilon \alpha}$$

Combined Sample Size n:

$$n \ge \max\left\{\frac{2(\text{poly}(d, p) + \ln(1/\beta))}{\alpha^2}, \frac{4}{\varepsilon \alpha}\right\}$$

Since poly(d, p) denotes polynomial functions of d and p, n is polynomial in d, p, $1/\alpha$, $1/\varepsilon$, $\ln(1/\beta)$.

Exercise 3

Answer

Differentially private PAC learning requires more data than non-private PAC learning because the sample complexity increases with $1/\varepsilon$, the privacy parameter, adding to the dependence on VC dimension and accuracy parameters. Computationally, private learners are often less efficient; the algorithms designed for differential privacy are not necessarily computationally practical, whereas non-private PAC learners typically use efficient algorithms like empirical risk minimization. Thus, privacy introduces both statistical overhead—increased sample size—and computational challenges—less efficient algorithms.