$\frac{\text{CSCI4150U: Data Mining}}{\text{Lab } 03}$

Syed Naqvi 100590852

October 22, 2024

Preprocessing:

We start by standardizing the features and visualizing their distributions.

Figure 1: Standardized Distributions

Figure 2: Flyer Miles/Year vs Ice Cream Liters/week

Figure 3: Percentage Time Gaming vs Ice Cream Liters/week

Figure 4: Flyer Miles/Year vs Percentage Time Gaming

We can also define a general cross validation helper function and store frequent performance metrics in a dictionary:

Figure 5: Utility Functions

Naive Bayes Classification (Gaussian Distribution)

Validation

Although some correlation can be observed between **Percentage Time Gaming** and **Ice Cream Liters/week**, Gaussian Naive Bayes remains a robust classification method due to the roughly normal feature distributions and week/nonexistent overall feature pair correlations.

Figure 6: Naive Bayes Cross Validation Results

K-NN Classification

Model Selection

We evaluate test accuracy for k-NN models using different values of \mathbf{k} , shuffling the dataset for each \mathbf{k} value and repeating this process over 100 epochs to determine the best hyperparameter value. Our tests help us determine the best value for \mathbf{k} should be 5.

Figure 7: Best K Hyperparameter Selection Barplot

Figure 8: Best K Hyperparameter Selection Code

Validation

Having selecting our model, we perform a 10-fold cross validation and determine the associated average performance metrics.

Figure 9: k-NN Cross Validation Results (k=5)