Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Qroo. 18 de Noviembre de 2009	MC David Flores Granados Ing. Mónica René Larrosa MC Juan Felipe Pérez Vázquez	Actualización del Plan de la carrera de Ingeniería Industrial.

Relación con otras asignaturas

Anteriores	Posteriores
	Asignatura(s) a) Laboratorio de circuitos eléctricos
No aplica	Tema(s) a) Electricidad

Nombre de la asignatura	Departamento o Licenciatura

Electricidad y magnetismo Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
2 - 2	II0215	8	Profesional Asociado y Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	нт	HP	TH	HI
Seminario	48	16	64	64

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Explicar la teoría que sustenta la descripción de los fenómenos eléctricos y magnéticos para la comprensión de los conceptos básicos.

Objetivo procedimental

Usar los instrumentos y elementos básicos que sirven para la medición y el control de fuerzas eléctricas y/ o magnéticas para la solución de prácticas de ingeniería.

Objetivo actitudinal

Fomentar el trabajo colaborativo y la responsabilidad para la resolución de problemas de ingeniería.

Unidades y temas

Unidad I. ELECTRICIDAD

Explicar la relación existente entre los conceptos de la teoría eléctrica y el manejo de instrumentos y elementos básicos para la resolución de circuitos eléctricos con elementos pasivos

- 1) Propiedades de las cargas eléctricas.
 - a) Propiedades de las cargas eléctricas (fundamentos)
 - b) Dieléctricos
 - c) Conductores y superconductores
- 2) Fuerza eléctrica. Ley de Coulomb
- 3) El campo Eléctrico
 - a) Flujo Eléctrico
 - b) Ley de Gauss
 - c) Cálculo y Aplicaciones de la ley de Gauss
- 4) Potencial eléctrico
 - a) Potencial y Diferencia de potencial

b) Determinación de Campo Eléctrico a partir del Potencial Eléctrico
c) Superficies Equipotenciales
d) Relación con las líneas de Campo Eléctrico.
5) Capacitancia y Dieléctricos
a) Definición
b) Tipos de capacitores
c) Asociación de capacitores (serie, paralelo y mixto)
d) Energía almacenada
e) Capacitores con dieléctricos.
6) Corriente y resistencia
a) Definición (conceptos básicos)
b) Densidad de corriente
c) Corriente eléctrica
d) Resistencia y Temperatura
e) Ley de Ohm
f) Potencia eléctrica
g) Efecto Joule
h) Leyes de Kirchoff
i) Asociación de Resistores

j) Fuerza electromotriz

Unidad II. MAGNETÍSMO

Usar la relación existente entre los conceptos de la teoría magnética y el manejo de instrumentos y elementos básicos para la verificación de sus leyes.

1) El campo magnético
a) Antecedentes
b) Experimento de Oersted
c) Propiedades del campo magnético
2) Flujo magnético
3) Leyes que gobiernan al campo Magnético
a) Fuerza de Lorentez
b) Ley de Biot¿Savart
c) Ley de Ampere
d) Ley de Gauss (flujo del campo magnético generado por cargas magnéticas, nulo)
e) Problemas de aplicación
4) Inductancia
a) Ley de inducción de Faraday y ley de Lenz
b) Concepto de inductancia
c) Autoinductancia
d) Circuitos R¿L

e) Energía en un Campo Magnético

f) Inductancia Mutua

5) Principio de funcionamiento

a) Transformador

b) Motor eléctrico

c) Generador

6) Propiedades magnéticas de la materia

a) Materiales diamagnéticos, paramagnéticos y ferromagnéticos

b) Ciclo de histérisis para materiales ferromagnéticos

Actividades que promueven el aprendizaje

Docente

Exposición teórica Lluvia de ideas Dinámica de grupo Diseño de evaluación oral y escrita	Participación individual en lluvia de ideas. Trabajo en equipo en el aula para presentar el tema asignado por el docente eligiendo su forma de presentación. Evaluación oral y escrita
---	--

Estudiante

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7812

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Exámenes	30
Prácticas	20
Trabajos escritos	30
Proyecto	20
Total	100

Fuentes de referencia básica

Bibliográficas

Cheng, D. Fundamentos de Electromagnetismo para ingeniería. Addison¿Wesley. ISBN 9684443277

Duffin, Electricidad y Magnetismo. Mc Graw Hill. ISBN 8431402741

Serway, R. Electricidad y Magnetismo. Mc Graw Hill. ISBN 9701025636

VV.AA. (2006). ELECTRICIDAD Y MAGNETISMO (1ED.). GARCIA MAROTO EDITORES. ISBN 8493478571
(2006). ELECTRICIDAD Y MAGNETISMO. THOMSON PARANINFO. ISBN 9706865381

Web gráficas

No aplica

Fuentes de referencia complementaria

Bibliográficas

Hayt, A. Teoría Electromagnética. Mc Graw Hill. ISBN 9684229666 Halliday, D. y Resnick, R. Física II. CECSA. ISBN 9702401763

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con licenciatura en Ingeniería Electrónica o afines así como demostrar experiencia y reconocimiento de al menos tres años en el área.

Docentes

Tener experiencia docente en asignaturas de electricidad y magnetismo por lo menos de tres años a nivel superior.

Profesionales

Tener experiencia en puestos que apliquen los componentes de electricidad y magnetismo para el ámbito de la Ingeniería Electrónica.