Multivariate Calculus

Ichiro Obara

UCLA

September 13, 2019

Function of Many Variables

We introduce functions that map a point/vector in \Re^n to another point in \Re^m , and generalize the notions of the derivative etc. to such functions. For a function $f: \Re^n \to \Re^m$, we denote the ith component of function by $f_i(\mathbf{x})$ for i = 1, ..., m.

Most function used in Economics have more than one variable in them. The first such function you will see is a utility function $u: \mathbb{R}^n \to \mathbb{R}$, which represents an individual's preference over the consumption of n goods.

Here are some other functions:

- **Production Function:** F(K, L), where K is capital and L is labor.
- **Demand Function:** x(p, w), $p \in \mathbb{R}^n$ is a price vector and w is wealth.
- Cost/Expenditure Function: e(p,u) is the minimum amount of expenditure to achieve utility u when the price vector is p.

Special Functions

The following special functions are especially important.

- Linear Function: $f(\mathbf{x}) = \sum_{i=1}^{n} a_i x_i$ is a linear function, which maps a point in \Re^n to \Re .
- Quadratic Function: The function of the form $f(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_{i}x_{j}$ is called quadratic function. We can represent this using $n \times n$ matrix A as $f(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x}$, where a_{ij} is the ij element of A. This is a generalization of quadratic function with single variable: ax^{2} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

3 / 25

Sequence, Convergence and Limit

We extend some definitions regarding sequences and convergence to \Re^n and review some basic facts.

- A **sequence** of vectors $\mathbf{x}_1, \mathbf{x}_2, ... \in \Re^n$ is denoted by $\{\mathbf{x}_n\}_n$.
- A sequence $\{\mathbf{x}_n\}_n$ is **bounded** if there exists a number $K \in \Re$ such that $\|\mathbf{x}_n\| \le K$ for every n.
- A sequence $\{\mathbf{x}_n\}_n$ converges to $\mathbf{x}^* \in \mathbb{R}^n$ if, for any $\epsilon > 0$, there exists an integer N such that $\|\mathbf{x}_n \mathbf{x}^*\| < \epsilon$ for every $n \geq N$. We write this as $\lim_{n \to \infty} \mathbf{x}_n = \mathbf{x}^*$ or $\mathbf{x}_n \to \mathbf{x}^*$ and call \mathbf{x}^* the **limit** of $\{\mathbf{x}_n\}_n$.

◆ロト ◆卸ト ◆恵ト ◆恵ト ・恵 ・ 夕久(*)

Some Useful Properties

- A sequence of vectors \mathbf{x}_n converges to \mathbf{x}^* if and only if $x_{i,n}$ converges to x_i^* for every i = 1, ..., n.
- A convergent sequence has only one limit.
- A convergent sequence is bounded.
- If $\|\mathbf{x}_n\| \leq K$ for every n for a convergent sequence, then $\|\mathbf{x}^*\| \leq K$.
- Every subsequence of a convergent sequence has the same limit.
- Every bounded sequence has a convergent subsequence (Weierstrass Theorem).

Open Set and Closed Set

In \Re^n , we use open sets and closed sets instead of open/closed intervals.

- A set X in \Re^n is **open** if, for any $\mathbf{x} \in X$, there exists $\epsilon > 0$ such that $B_{\epsilon}(\mathbf{x}) \subset X$ $(B_{\epsilon}(\mathbf{x}) = \{\mathbf{x}' \in \Re^n | \|\mathbf{x}' \mathbf{x}\| < \epsilon\}$ is ϵ -ball around \mathbf{x}).
- A set X in \Re^n is **closed** if every convergent sequence $\{\mathbf{x}_n\}_n$ in X has its limit in X.
- A set in \Re^n is closed if and only if its complement is open.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Compact Set

A set $X \in \Re^n$ is **compact** if it is closed and bounded.

We will use compactness to establish the existence of maximum and minimum of continuous functions on compact sets.

Exercises

- **1** Is \Re^n an open set? Is it a closed set?
- ② Let $\{\mathbf{x}_n\}_n$ be a convergent sequence in \Re^n with the limit \mathbf{x}^* . Is $\{\mathbf{x}_n\}_n$ a compact set? How about if \mathbf{x}^* is added to $\{\mathbf{x}_n\}_n$?

Continuous Function

Given all the generalized definitions about convergence, the definition of continuity is the same.

Continuous Function

Function $f: X \to \mathbb{R}^m$ is continuous at $\mathbf{x} \in X \subset \mathbb{R}^n$ if, for any sequence $\{\mathbf{x}_n\}_n$ in X that converges to $\mathbf{x} \in \mathbb{R}^n$, $f(\mathbf{x}_n)$ converges to $f(\mathbf{x}) \in \mathbb{R}^m$. f is continuous if it is continuous at every x in its domain X.

9 / 25

Monotonic Function

Let's also define monotonicity in \Re^n .

Monotonic Function

Function $f: X \to \Re^m$ is increasing (strictly increasing) if $f(x') \ge (>)f(x)$ for any $x' \ge (>)x$, decreasing (strictly decreasing) if $f(x') \le (<)f(x)$ for any x' > (>)x.

10 / 25

Partial Derivative

Let f be a function from \Re^n to \Re . Fix \mathbf{x} except for x_j and regard it as a function of x_j , which we denote by $f(x_j, \mathbf{x}_{-j})$. Since it is a function of single variable, we can define the derivative with respect to x_j given \mathbf{x}_{-j} as usual.

This derivative, which is the limit of $\frac{f(x_j+\Delta x_j,\mathbf{x}_{-j})-f(x_j,\mathbf{x}_{-j})}{\Delta x_j}$ as $\Delta x_j \to 0$, is called the **partial derivative** of f with respect to x_j at $\mathbf{x} \in \Re^n$ and denoted by $D_j f$. We denote the row vector of partial derivatives $(D_1 f, ..., D_n f)$ by Df.

For function from \Re^n to \Re^m , let $D_j f_i$ be the partial derivative of the *i*th component function f_i with respect to x_j . DF is the $m \times n$ matrix of partial derivatives, where the *i*th row is given by the row vector Df_i .

4D > 4A > 4B > 4B > B 990

Higher Derivatives

We say that $f: \Re^n \to \Re^m$ is a \mathcal{C}_1 function if $D_j f_i$ exists and continuous for every i, j.

f is a C_2 function if $D_j f_i$ is C_1 function for every i, j. More generally, f is a C_k function if $D_j f_i$ is C_{k-1} function for every i, j

The important special case is C_2 function with m=1. For such functions, there are $n \times n$ second order partial derivatives. Let D^2f be the $n \times n$ matrix whose ij element is D_jD_if . For this class of functions, $D_iD_jf = D_jD_if$ holds for any i,j (Young's Theorem). Hence D^2f is a symmetric matrix.

Examples

- Linear Function: $f(\mathbf{x}) = \sum_{i=1}^{n} a_i x_i$.
 - ▶ $Df = (a_1, ..., a_n)$ and D^2f is a $n \times n$ matrix with all elements = 0.
- Quadratic Function: $f(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j = \mathbf{x}^{\top} A \mathbf{x}$.
 - ▶ $Df(\mathbf{x}) = \sum_{i=1}^{n} a_{ij} x_j$ and $D^2 f(\mathbf{x}) = A$.

Total Derivative

Remember that the derivative of a single variable function is the slope of its linear approximation. Here we generalize this idea to define **total derivative** for functions from \Re^n to \Re^m .

First consider a function f with m=1 as a special case. We use a linear function to approximate f, so the linear approximation around point $\mathbf{x}^0 \in \Re^n$ would look like $f(\mathbf{x}^0) + \sum_{j=1}^n a_j(x_j - x_j^0) = A(\mathbf{x} - \mathbf{x}^0)$. We say that a row vector $A = (a_1, ..., a_n)$ is the **total derivative** of f at \mathbf{x}^0 if $\frac{|f(\mathbf{x}^0 + \Delta \mathbf{x}) - f(\mathbf{x}^0) - A\Delta \mathbf{x}|}{\|\mathbf{x}\|}$ converges to 0 as $\Delta \mathbf{x} \to 0$.

4□ > 4□ > 4 = > 4 = > = 90

Total Derivative

Now define the total derivative for f with $m \ge 1$.

Differentiable Function and Derivative

A function $f: \Re^n \to \Re^m$ is **differentiable** at $\mathbf{x}^0 \in \Re^n$ if there exists a $m \times n$ matrix A such that $\frac{|f(\mathbf{x}^0 + \Delta \mathbf{x}) - f(\mathbf{x}^0) - A\Delta \mathbf{x}|}{\|\Delta \mathbf{x}\|}$ converges to 0 as as $\Delta \mathbf{x} \in \Re^n$ converges to 0. A is the **derivative** of f at \mathbf{x} . f is differentiable if it is differentiable at every \mathbf{x} .

4□ > 4□ > 4 = > 4 = > = 90

Remark on Total Derivative and Partial Derivative:

- If the total derivative of f exists, then all the partial derivatives exist. However, even if all the partial derivatives exist, the total derivative may not exist.
- If all the partial derivatives exist and continuous (i.e. f is a C_1 function), then the total derivative of f exists and is actually given by Df.
- If $f: \mathbb{R}^n \to \mathbb{R}$ is a \mathcal{C}_2 function, then there exist the second total derivative and it is given by $n \times n$ matrix $D^2 f$.

Some Useful Rules

Chain Rule: For two functions $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^k$, let $h: \mathbb{R}^n \to \mathbb{R}^k$ by $h(\mathbf{x}) = g(f(\mathbf{x}))$ be their **composite function**. If f and g are C_1 functions, h is a \mathcal{C}_1 function as well and its derivative at x is given by the $k \times n$ matrix $Dg(f(\mathbf{x}))Df(\mathbf{x}).$

Product Rule: Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^k$ be \mathcal{C}_1 functions. Then $h = f \cdot g = f^{\top}g$ is a \mathcal{C}_1 function from \Re^n to \Re^1 (regard the value of f and g as column vectors). Its derivative is given by $Dh = g^{\top}Df + f^{\top}Dg$.

First/Second Order Approximation

Here we provide a version of Taylor's theorem that evaluates the first/second order approximation for functions with many variables.

Take any C_1 single variable function f and pick some point x_0 and $x > x_0$. Since $f(x) = f(x_0) + f'(t)(x - x_0)$ for some $t \in (x_0, x)$ by the mean value theorem, the difference between f(x) and the first order Taylor polynomial is $(f'(t) - f'(x_0))(x - x_0)$. This term converges to 0 faster than $x - x_0$ as

 $f'(t) \to f'(x_0)$ as $x \to x_0$. This means $f(x_0 + \Delta x) = f(x_0) + f'(x_0)\Delta x + o(\Delta x)$

Similarly, let f be a \mathcal{C}_2 single variable function. Then the difference between f(x) and the second order Taylor polynomial is $\frac{f''(t)-f''(x_0)}{2}(x-x_0)^2$. So we have $f(x_0+\Delta x)=f(x_0)+f'(x_0)\Delta x+\frac{f''(x_0)}{2}(\Delta x)^2+o((\Delta x)^2)$.

These approximation results generalize to functions of many variables. Let f be a function from \Re^n to \Re^m .

- If f is a C_1 function, then $f(\mathbf{x}^0 + \Delta \mathbf{x}) = f(\mathbf{x}^0) + Df(\mathbf{x}^0)\Delta \mathbf{x} + o(\|\Delta \mathbf{x}\|)$ at any $\mathbf{x}^0 \in \Re^n$.
- If f is a C_2 function, then $f(\mathbf{x}^0 + \Delta \mathbf{x}) = f(\mathbf{x}^0) + Df(\mathbf{x}^0) \Delta \mathbf{x} + \frac{(\Delta \mathbf{x})^\top D^2 f(\mathbf{x}^0) \Delta \mathbf{x}}{2} + o(\|\Delta \mathbf{x}\|^2) \text{ at any } \mathbf{x}^0 \in \Re^n.$

where $o(\mathbf{h}) \to 0$ as $\mathbf{h} \to \mathbf{0}$ in \Re^n .

Exercises

- Find the partial derivative of the following functions with respect to Χ.
 - $f(x,y) = \left(x^{\frac{1}{\rho}} + y^{\frac{1}{\rho}}\right)^{\rho} (\rho \neq 0).$
 - $f(x, y) = x^{\alpha} g(x, y)^{(1-\alpha)}.$
- 2 Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a C_2 function.
 - Write down the first order approximation of f at \mathbf{x}^0 .
 - ▶ We can use the above approximation to do a high dimensional version of Newton's method. Show why the updating formula is given by $\mathbf{x}_{t+1} = \mathbf{x}_t - (D_2 f(\mathbf{x}_t))^{-1} Df(\mathbf{x}_t).$
- **3** Let $f(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x}$ be a quadratic function. Suppose that $Df(\mathbf{x}^*) = \mathbf{0}$ at \mathbf{x}^* and A is negative definite. Explain why \mathbf{x}^* achieves a maximum

Obara (UCLA) September 13, 2019 20 / 25

Implicit Function Theorem

Consider a circle in \Re^2 defined by $f(x,a)=x^2+a^2=1$ and the point $\left(1/\sqrt{2},1/\sqrt{2}\right)$ on the circle. x is a function of a in the neighborhood of $\left(1/\sqrt{2},1/\sqrt{2}\right)$. Denote this function by x(a). What is Dx(a) at $a=1/\sqrt{2}$?

One way to obtain this value is to derive x(a) explicitly and compute the derivative. But this is not always an easy thing to do.

21 / 25

- Implicit function theorem allows us to compute this value without deriving x(a) explicitly.
- For this example, just differentiate f(x(a), a) = 0 with respect to a. Then you get $x'(a) = -\frac{D_a f(x, a)}{D_x f(x, a)}$ by the chain rule. Hence

$$Dx(a)|_{a=1/\sqrt{2}} = -\frac{\sqrt{2}}{\sqrt{2}} = -1.$$

• This would not work if $D_x f(x, a) = 0$ (at (a, x) = (1, 0) for example).

< ロ ト ← 個 ト ← 重 ト ← 重 ・ 夕 Q (~)

Implicit Function Theorem

• This result generalizes. Let $F: \Re^n \times \Re^m \to \Re^n$ be a \mathcal{C}^1 function.

Implicit Function Theorem

If $Rank\ D_x F(\mathbf{x}', \mathbf{a}') = n$ at $(\mathbf{x}', \mathbf{a}') \in \Re^n \times \Re^m$, then there exist open neighborhoods $V \subset \Re^n$ of \mathbf{x}' , $U \subset \Re^m$ of \mathbf{a}' , and a C^1 function $f: U \to V$ such that

- \bullet x = f(a) if and only if F(x, a) = 0 on $V \times U$, and
 - 2 $Df(\mathbf{a}') = -D_x F(\mathbf{x}', \mathbf{a}')^{-1} D_a F(\mathbf{x}', \mathbf{a}').$

4□ > 4□ > 4≡ > 4≡ > □ 900

Exercises

- Consider a consumer with a utility function u(x, y) for two goods. This consumer's **indifference curve** is implicitly defined by $u(x, y) = \underline{u}$, where \underline{u} is the level of utility.
 - Apply the implicit function theorem to find the marginal rate of **substitution** between x and y $(\frac{dy}{dx})$.
 - Find the linear approximation of the indifference curve at (x_0, y_0) and show that it can be expressed by the hyperplane $D_x u(x_0, y_0)(x - x_0) + D_y u(x_0, y_0)(y_0) = 0.$
 - Find the marginal rate of substitution at (x_0, y_0) for $u(x,y) = \left(x^{\frac{1}{2}} + y^{\frac{1}{2}}\right)^2$. What is the **elasticity of substitution**: $\frac{x}{y} \frac{dy}{dx}$?

September 13, 2019