

实验五 负反馈放大电路

实验目的

- 1. 加深理解负反馈放大器的工作原理及对放大器性能(如电压放大倍数、输入和输出电阻、频率响应等)的影响。
- 2. 掌握负反馈放大电路性能指标的测试方法。

电压串联负反馈放大电路

实验内容和线路

1.静态工作点的测量

接通+12V电源V_{cc},放大电路的输入端u_s短接,短路R_s,连接电路中D、F两点。调节R_w,用万用表直流电压挡测量E1和地两端电压,使

 $U_{C1}=2.4V$,测量 T_1 、 T_2 管的静态工作点,记录实验数据并计算相关

的电压、电流。

	测量值			计算值	
	$V_B(V)$	$\mathbf{V}_{\mathbf{C}}(\mathbf{V})$	$V_{E}(V)$	I _C (mA)	$\mathbf{U}_{\mathbf{CE}}(\mathbf{V})$
T_1					4
T_2					

2.测定基本放大电路的性能

放大电路输入端us接入1KHz、20mV的正弦交流信号。且在以下测试中保持不变。

1)测定基本放大电路的放大倍数Au

短路 $\mathbf{R}_{\mathbf{S}}$,负载 $\mathbf{R}_{\mathbf{L}}$ 不接(开路),测量此时放大电路输出电压 U_o ,并记录,计算放大倍数 $\mathbf{A}_{\mathbf{U}}$ 。

2)测定基本放大电路的输出电阻 R_a

短路 R_s ,接入负载 R_L =300 Ω ,测量此时放大电路输出电压 U_o'' ,并记录实验数据,计算 R_o 。

3) 测定基本放大电路的输入电阻 R_i

接入 R_s =470 Ω ,负载 R_L 不接(开路),测量此时放大电路输出电压 U_a'

2.测定反馈放大电路的性能

放大电路输入端us接入1KHz、20mV的正弦交流信号,且在以下测试中保持不变。连接A、B两点,即加入负反馈。用示波器观察输出电压,调节R_{F1},使负反馈电路达到最深负反馈状态,即此时输出电压达到最小值(R_{F1} 在以下测试中保持不变)。

1)测定反馈放大电路的放大倍数A_{uf}

短路 R_s ,负载 R_L 不接(开路),测量此时反馈放大电路输出电压 U_{of} ,并记录,计算放大倍数 A_{lif} 。

$$oldsymbol{A}_{uf} = rac{oldsymbol{U}_{of}}{oldsymbol{U}_{s}}$$

2)测定反馈放大电路的输出电阻 R_{of}

短路 \mathbf{R}_{S} ,接入负载 \mathbf{R}_{L} =300 Ω ,测量此时放大电路输出电压 U''_{of} ,并记录实验数据,计算 \mathbf{R}_{of} 。

3) 测定反馈放大电路的输入电阻 R_{if} 接入 R_s =470 Ω ,加大信号发生器电压,使 U_l =20mV,测量此时放大电路输入电压 U_s 并记录实验数据,计算 R_{if} 。

4、计算反馈深度

用毫伏表测A端和接地端的电压 U_F , $F=U_F/U_O$

反馈深度=
$$1 + AF = \frac{A_u}{A_{uf}}$$

比较测量得到的
$$A_{vf}$$
和 $A_{vf} = \frac{A}{1 + AF}$ 计算的误差