# ODM2: Developing a Community Information Model and Supporting Software to Extend Interoperability of Sensor and Sample Based Earth Observations

Jeffery S. Horsburgh

Anthony Aufdenkampe, Kerstin Lehnert, Emilio Mayorga, David Tarboton, Ilya Zaslavsky



#### The ODM2 Team

- Utah State University
  - Jeff Horsburgh, David Tarboton
- Columbia U., Lamont-Doherty Earth Observatory and IEDA
  - Kerstin Lehnert
- Stroud Water Research Center
  - Anthony Aufdenkampe
- University of Washington, Applied Physics Laboratory
  - Emilio Mayorga
- San Diego Supercomputer Center
  - Ilya Zaslavsky, David Valentine



#### What is an "Information Model?"

- Representation of concepts, relationships, constraints, rules, and operations that specify the semantics of data for a domain of discourse
  - Defines the domain's entity types and their attributes, relationships, and allowed operations on the entities
  - In a relational database implementation, entities become tables and their attributes become table columns
- Sharable, stable, and organized structure of information requirements for a domain context
  - Without constraining how that description is mapped to an actual implementation in software
  - There may be many physical implementations e.g., relational database,
     XML schema, etc.
- Critically important to the effectiveness and interoperability of the cyberinfrastructure

#### **Example Information Model**



- An organization operates a network of monitoring sites
- At each monitoring site a number of variables are measured
- For each variable there is a time series of data values
- Each data series is made up of individual, time-indexed values that are each characterized by location (where the observation was collected), time (when the observation was collected), and variable (what the observation represents)

#### Example Physical Implementation: ODM 1.1.1



#### Some Limitations of ODM 1.1.1

- ODM supports only point-based observations
- ODM doesn't support sample-based data well
- Not all of the structure of ODM is required for each type of data
- Versioning and provenance of data can be difficult in ODM
- The central DataValues table doesn't support every functional use case (e.g., metadata catalog)

#### ODM 1.1.1: Sample Based Data



#### **Another Example Information Model**



Xianzeng Niu, Jennifer Z. Williams, Doug Miller, Kerstin Lehnert, Brian Bills, Susan L. Brantley, (2013), An Ontology Driven Relational Geochemical Database for the Earth's Critical Zone: CZchemDB, Submitted to *Journal of Environmental Informatics*.

# ODM 1.1.1: Linking Observations to the Geo-Environment



### ODM 1.1.1: Linking Observations to the Geo-Environment



#### Linking Observations to the Geo-Environment



#### Overarching Goals for ODM2 Project

- Create an *information model* that is integrative and extensible
  - Accommodating a wide range of observational data
  - Aimed at achieving interoperability across multiple disciplines and systems that support publication of earth observations
- Allow a diverse range of geoscience observations to be consistently shared, discovered, accessed, and interpreted

#### **Project Objectives**

- Development of a community information model for spatially discrete, feature based earth observations
- 2. Engagement of geoscience communities in the design of the information model
- Physical implementation of the information model in schemas for data storage, archival, transfer, and for cataloging metadata
- 4. Deployment of data publication prototypes using data from CZOData, CUAHSI HIS, EarthChem, and IOOS

#### **ODM2** Project Status

- August 1, 2012 July 31, 2014
- Defined data use cases
  - Horsburgh Hydrology/Water Quality Little Bear River (CUAHSI HIS)
  - Aufdenkampe Christina River CZO
  - Lehnert EarthChem ocean vent data
  - Mayorga IOOS marine/coastal observations
- Reviewing existing information models and preliminary design work
- First community design workshop March 2013

#### Implications of ODM2

- Better support for sample based data in CUAHSI HIS and related tools
- Support for and integration of sensor and sample-based data in the Critical Zone Observatory Integrated Data Management System (CZOData)
- Potential adoption of ODM within EarthChem
- Providing context and guidance for future WaterML 2.0 development (water quality samples)

#### Approach: ODM2 Information Model



Domain Cyberinfrastructures

#### ODM2 - Core Series centric But series may **SpatialReferences** be more than QualityControlLevels (M) SpatialReferenceID {PK} (M) QualityControlLevelID {PK} (M) SRSID (M) QualityControlLevelCode (M) SRSName time series (O) Definition 0..\* (M) SiteID {PK} (O) Notes (O) Explanation (M) SiteCode (M) SiteName Bare essential (M) Latitude (M) Longitude annotations to (M) LatLongDatumID (FK) (O) Elevation m (O) VerticalDatum [CV] unambiguously (M) SiteType [CV] describe a Made on geospatial **FeatureSites** data series (M) FeatureID (FK) features that may be **DataSeries** (M) SiteID (FK) (M) SeriesID (PK) 0..\* (M) SeriesCode points, lines or polygons (M) SiteID {FK} 0..\* Units M) VariableID (FK) (M) UnitsID {PK} (M) SeriesCreationMethodID (FK) (M) SourceID (FK) (M) UnitsName 0..\* (M) QualityControlLevelID (FK) (M) UnitsType (M) BeginDateTime (M) UnitsAbbreviation **Features** M) BeginDateTimeUTCOffset (M) VariableID (PK) (M) FeatureID {PK} (M) EndDateTime (M) VariableCode 0..\* (M) MethodID {PK} (M) FeatureCode (M) EndDateTimeUTCOffset (M) VariableName [CV] (M) MethodType [CV] (M) Speciation [CV] (M) FeatureName (M) ValueCount (M) MethodCode (M) FeatureDescription 0..\* (M) CreationDateTime 0..\* (M) VariableUnitsID (FK) (M) MethodName (M) FeatureType [CV] (M) SampleMedium [CV] M) CreationDateTimeUTCOffset (O) MethodDescription (M) ValueType [CV] (M) FeatureGeometry (O) LastUpdateDateTime (O) OrganizationID (FK) (M) IsRegular (O) LastUpdateDateTimeUTCOffset (O) MethodLink (M) IsCategorical (M) IsFinal (M) TimeSupport (M) MetadataID (FK) (O) TimeSpacing 0..\* (M) TimeUnitsID (FK) (M) DataType [CV] (M) GeneralCategory [CV] (M) NoDataValue People (M) PersonID {PK} (M) FirstName (M) LastName (O) Phone (M) Email (O) Address (O) City 0..\* (O) State **Organizations** (O) ZipCode IsContactFor ▶ **DataValues** (M) OrganizationID {PK} (M) MetadataID (PK) (O) PersonLink (M) ValueID {PK} (M) OrganizationCode (M) TopicCategory [CV] (M) SeriesID (FK) (M) OrganizationName (M) Title (M) DataValue (O) OrganizationDescription (M) Abstract 1 (M) OrganizationType (M) ValueDateTime (M) ProfileVersion (M) ValueDateTimeUTCOffset (O) OrganizationLink (O) MetadataLink (M) CensorCode [CV]

(M) Citation

(M) OrganizationContactID (FK)

OrganizationPeople

(M) OrganizationID (FK) (M) PersonID (FK)

1..\*

## ODM2 Sensor Extension to support field sensor deployments and *in situ* observations



#### **ODM2 Sensors Extension**



- Track physical infrastructure:
  - sensors
  - data loggers
  - batteries
- Track events:
  - deployments
  - calibrations
  - site visits
  - factory service



# ODM2 Samples Extension to handle field samples and ex situ analyses

- Attributes of individual samples
- Relationships between samples and parents
- Attributes of a sample analysis
- Attributes of analytical instruments used in sample analysis

#### **ODM2 Data Series Provenance Extension**





#### **ODM2** General Extensibility



#### **ODM2 Functional Use Cases**



# ODM2 Archival Encoding Requirements

- Must be self contained (no external pointers)
- File format must not become obsolete
- Non-proprietary
- Widely used
- Files opened and shared without special software or hardware
- Time series + other observational data (e.g., samples)

#### MyDB as an Archival Format?

- ✓ Must be self contained (no external pointers)
- ✓ Format must not become obsolete
- ✓ Non-proprietary
- ✓ Widely used
- ✓ Opened and shared without special software or hardware
- √ Time series + other observational data (e.g., samples)
  - MyDB and ODM 1.1.1 share the same information model (almost)
  - But, would need MyDB2 for ODM2
  - CSV may not easily capture ODM2 extensibility mechanisms

#### WaterML 1.1 as an Archive Format?

- ✓ Must be self contained (no external pointers)
- ✓ Format must not become obsolete
- ✓ Non-proprietary
- ✓ Widely used
- ✓ Opened and shared without special software or hardware
- √ Time series + other observational data (e.g., samples)

- WaterML 1.1 and ODM 1.1.1 share the same information model (almost)
- But, would need WaterML for ODM2

#### WaterML 2 as an Archive Format?

- Must be self contained (no external pointers)
- ✓ Format must not become obsolete
- ✓ Non-proprietary
- ✓ Widely used
- ✓ Opened and shared without special software or hardware
- Time series + other observational data (e.g., samples)

- WaterML 2 is an exchange format, not an archival format
  - These are different functional use cases.
- Future work: specification of an ex-situ profile
  - WaterML 2 currently focuses only on in-situ time series

#### **ODM2 Archival Format**

- XML likely a more appropriate encoding because of planned extensibility
  - Annotations
  - Provenance
  - General attribute extensibility
  - ODM2 extensions not all data stored in ODM2
     will be time series

#### Proposal

- Initially accept MyDB OR WaterML 1.1 as the archival format for time series data
  - Accept both as input, but internally convert to one or the other so all data are stored consistently inside HydroShare
- When the ODM2 archival format becomes available – use it as the internal archival format for HydroShare
- Use the ODM2 archival specification to extend HydroShare archival support for sample-based data