数理逻辑第四次作业

姓名	谢宇航	班级	5 班	学号	200110505
第1题					
总分					
备注	1. 作业提交邮箱: hitsz_logic_2022@163.com。作业提交截止时间: 2022-06-20-24:00,超过提交截止时间的作业视为无效。 2. 确因网络等特殊原因无法及时提交作业的学生,应至少提前 1 小时与助教联系沟通(徐联燃,QQ: 1319282215,电话: 13713994811 许天骁,QQ: 1140931320,电话: 18800415868)。 3. 作业文件名命名方式: 第 x 次-学号-姓名-x 班(例: 第 4 次-180110504-张三-5 班.pdf);邮件主题为: 第 x 次-学号-姓名-x 班(例: 第 4 次-180110504-张三-5 班)。缺少这些信息的作业将被酌情扣分。注意作业次数以阿拉伯数字命名。 4. 可手写拍照转为 PDF 格式。				

1. 在 ND 中证明:

(1)
$$\vdash_{ND} (\neg A \to A) \to A$$

(3)
$$\vdash_{ND} ((A \lor B) \to C) \leftrightarrow (A \to C) \land (B \to C)$$

(5)
$$\vdash_{ND} \neg (A \rightarrow B) \leftrightarrow A \land \neg B$$

$$(7) \quad \vdash_{ND} (A \land B) \leftrightarrow A \land (\neg A \lor B)$$

(1)

$$\vdash_{ND} (\neg A \to A) \to A$$

证明:

1.
$$\neg A \rightarrow A$$
, $\neg A \vdash \neg A$ (\in)

2.
$$\neg A \rightarrow A$$
, $\neg A \vdash \neg A \rightarrow A$ (\in)

3.
$$\neg A \rightarrow A$$
, $\neg A \vdash A$ (1)(2) ($\rightarrow -$)

4.
$$\neg A \rightarrow A, A \vdash A$$
 (\in)

5.
$$\neg A \to A \vdash A$$
 (3)(4) (-)

(3)

先证明
$$\vdash_{ND} ((A \lor B) \to C) \to (A \to C) \land (B \to C)$$

1.
$$(A \lor B) \to C, A \vdash A$$
 (\in)

2.
$$(A \lor B) \rightarrow C, A \vdash A \lor B$$
 (1) $(\lor +)$

3.
$$(A \lor B) \to C, A \vdash (A \lor B) \to C$$

4.
$$(A \lor B) \to C, A \vdash C$$
 (2)(3) $(\to -)$

5.
$$(A \lor B) \rightarrow C \vdash A \rightarrow C$$
 (4) $(\rightarrow +)$

6.
$$(A \lor B) \rightarrow C, B \vdash B$$
 (\in)

7.
$$(A \lor B) \rightarrow C, B \vdash A \lor B$$
 (6) $(\lor +)$

8.
$$(A \lor B) \rightarrow C, B \vdash (A \lor B) \rightarrow C$$
 (\in)

9.
$$(A \lor B) \rightarrow C, B \vdash C$$
 $(7)(8) (\rightarrow -)$

10.
$$(A \lor B) \rightarrow C \vdash B \rightarrow C$$
 (9) $(\rightarrow +)$

11.
$$(A \lor B) \rightarrow C \vdash (A \rightarrow C) \land (B \rightarrow C)$$
 (5)(10) $(\land +)$

12.
$$\vdash ((A \lor B) \to C) \to (A \to C) \land (B \to C)$$
 (\in)

再证明 $\vdash_{ND} (A \to C) \land (B \to C) \to ((A \lor B) \to C)$

1.
$$(A \rightarrow C) \land (B \rightarrow C), A \lor B, A \vdash A$$
 (\in)

2.
$$(A \rightarrow C) \land (B \rightarrow C), A \lor B, A \vdash (A \rightarrow C) \land (B \rightarrow C)$$
 (\in)

3.
$$(A \rightarrow C) \land (B \rightarrow C), A \lor B, A \vdash A \rightarrow C$$
 (2) $(\land -)$

4.
$$(A \rightarrow C) \land (B \rightarrow C), A \lor B, A \vdash C$$
 (1)(3) $(\rightarrow -)$

5.
$$(A \rightarrow C) \land (B \rightarrow C), A \lor B, B \vdash B$$

6.
$$(A \rightarrow C) \land (B \rightarrow C), A \lor B, B \vdash (A \rightarrow C) \land (B \rightarrow C)$$

7.
$$(A \rightarrow C) \land (B \rightarrow C), A \lor B, B \vdash B \rightarrow C$$
 (6) (\in)

8.
$$(A \rightarrow C) \land (B \rightarrow C), A \lor B, B \vdash C$$
 (5)(7) $(\rightarrow -)$

9.
$$(A \rightarrow C) \land (B \rightarrow C), A \lor B \vdash A \lor B$$

10.
$$(A \to C) \land (B \to C), A \lor B \vdash C$$
 (4)(8)(9) $(\lor -)$

11.
$$(A \rightarrow C) \land (B \rightarrow C) \vdash (A \lor B) \rightarrow C$$
 $(\rightarrow +)$

12.
$$\vdash (A \rightarrow C) \land (B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)$$
 $(\rightarrow +)$

(5)

先证明
$$\vdash_{ND} \neg (A \rightarrow B) \rightarrow A \land \neg B$$

1.
$$\neg (A \rightarrow B), \neg A \vdash \neg (A \rightarrow B)$$
 (\in)

2.
$$\neg (A \rightarrow B), \neg A \vdash \neg A$$
 (\in)

3.
$$\neg (A \rightarrow B), \neg A \vdash \neg A \lor B$$
 (2) $(\lor +)$

4.
$$\neg A \lor B \vdash A \rightarrow B$$
 ND 定理 5

$$5. \vdash (\neg A \lor B) \to (A \to B) \tag{4} (\to +)$$

6.
$$\neg (A \rightarrow B), \neg A \vdash (\neg A \lor B) \rightarrow (A \rightarrow B)$$
 (+)

7.
$$\neg (A \rightarrow B), \neg A \vdash A \rightarrow B$$
 (1)(6) $(\rightarrow -)$

8.
$$\neg (A \rightarrow B) \vdash \neg \neg A$$
 (1)(7) $(\neg +)$

9.
$$\neg (A \rightarrow B) \vdash A$$

 $(8) (\neg \neg -)$

10.
$$\neg (A \rightarrow B), B \vdash \neg (A \rightarrow B)$$

(€)

11.
$$\neg (A \rightarrow B), B \vdash B$$

(∈)

12.
$$\vdash B \rightarrow (A \rightarrow B)$$

ND 定理 7

13.
$$\neg (A \rightarrow B), B \vdash B \rightarrow (A \rightarrow B)$$

(+)

14.
$$\neg (A \rightarrow B), B \vdash A \rightarrow B$$

 $(11)(13) (\rightarrow -)$

15.
$$\neg (A \rightarrow B) \vdash \neg B$$

 $(10)(14) (\neg +)$

16.
$$\neg (A \rightarrow B) \vdash A \land \neg B$$

 $(9)(15) (\Lambda +)$

再证明 $\vdash_{ND} A \land \neg B \rightarrow \neg (A \rightarrow B)$

1.
$$A \wedge \neg B$$
, $A \rightarrow B \vdash A \wedge \neg B$

(€)

2.
$$A \wedge \neg B, A \rightarrow B \vdash A$$

 $(1) (\Lambda -)$

3.
$$A \wedge \neg B$$
, $A \rightarrow B \vdash \neg B$

(1) $(\Lambda -)$

4.
$$A \land \neg B, A \rightarrow B \vdash A \rightarrow B$$

(€)

5.
$$A \wedge \neg B, A \rightarrow B \vdash B$$

 $(2)(4) (\rightarrow -)$

6.
$$A \land \neg B \vdash \neg (A \rightarrow B)$$

(3)(5) (¬+)

7.
$$\vdash A \land \neg B \rightarrow \neg (A \rightarrow B)$$

 $(\rightarrow +)$

(7)

先证明: $\vdash_{ND} (A \land B) \rightarrow A \land (\neg A \lor B)$

1.
$$A \wedge B \vdash A \wedge B$$

(∈)

2.
$$A \wedge B \vdash A$$

3.
$$A \wedge B \vdash B$$

4.
$$A \wedge B \vdash \neg A \vee B$$

5.
$$A \wedge B \vdash A \wedge (\neg A \vee B)$$

6.
$$\vdash (A \land B) \rightarrow A \land (\neg A \lor B)$$

$$(1) (\Lambda -)$$

$$(1)$$
 $(\Lambda -)$

$$(V +)$$

$$(2)(4) (\Lambda +)$$

$$(\rightarrow +)$$

再证明:
$$\vdash_{ND} A \land (\neg A \lor B) \rightarrow (A \land B)$$

1.
$$A \wedge (\neg A \vee B) \vdash A \wedge (\neg A \vee B)$$

2.
$$A \wedge (\neg A \vee B) \vdash A$$

3.
$$A \wedge (\neg A \vee B) \vdash \neg A \vee B$$

4.
$$\neg A \lor B \vdash A \rightarrow B$$

5.
$$\vdash (\neg A \lor B) \rightarrow (A \rightarrow B)$$

6.
$$A \land (\neg A \lor B) \vdash (\neg A \lor B) \rightarrow (A \rightarrow B)$$

7.
$$A \wedge (\neg A \vee B) \vdash A \rightarrow B$$

8.
$$A \wedge (\neg A \vee B) \vdash B$$

9.
$$A \wedge (\neg A \vee B) \vdash A \wedge B$$

$$(1) (\Lambda -)$$

$$(1) (\Lambda -)$$

$$(\rightarrow +)$$

(+)

$$(3)(6) (\rightarrow -)$$

$$(2)(7) (\rightarrow -)$$

$$(2)(8) (\Lambda +)$$