1 \mathbf{a}

Suppose an accelerator delivers a luminosity of $100 fb^{-1}$ over the past year. In that year, they saw 2500 events which produced and X particle.

Luminosity is defined as:

$$dN = L \times d\sigma \tag{1}$$

The total number of events is given by $\int dN$. Therefore, the total crosssection is:

$$\sigma=\int d\sigma=\int \frac{dN}{L}=\frac{2500}{100fb^{-1}}=25fb$$

For reference, a femptobarn is $1 \times 10^{-43} m^2$.

b $\mathbf{2}$

How do we know that $\delta^{(4)}(\sum p_i^{\mu} - \sum p_j^{\mu})$ is lorentz- invariant? Consider an arbitrary lorentz transformation Λ^{ν}_{μ} . Suppose we shift to a different frame, transforming all of the variables in the above expression.

$$\begin{split} \delta^{(4)}(\sum p_i^\mu - \sum p_j^\mu) &\to \delta^{(4)} \left(\sum \Lambda_\mu^\nu p_i^\mu - \sum \Lambda_\mu^\nu p_j^\mu \right) \\ &\to \delta^{(4)} \left(\Lambda_\mu^\nu \left(\sum p_i^\mu - \sum p_j^\mu \right) \right) \end{split}$$

Since the matrix Λ^{ν}_{μ} is a lorentz transformation, it is invertible. Therefore $\Lambda^{\nu}_{\mu}(\sum p_{i}^{\mu}-\sum p_{j}^{\mu})=0$ implies $\sum p_{i}^{\mu}-\sum p_{j}^{\mu}=0$, since Λ^{ν}_{μ} has no kernel. Similarly, $\Lambda^{\nu}_{\mu}(\sum p_{i}^{\mu}-\sum p_{j}^{\mu})\neq 0$ implies $\sum p_{i}^{\mu}-\sum p_{j}^{\mu}\neq 0$. The functions agree pointwise. Therefore, since for all lorentz transformations Λ^{ν}_{μ} ,

$$\delta^{(4)}(\sum p_i^{\mu} - \sum p_j^{\mu}) = \delta^{(4)}(\Lambda_{\mu}^{\nu}(\sum p_i^{\mu} - \sum p_j^{\mu}))$$

 $\delta^{(4)}(\sum p_i^{\mu} - \sum p_j^{\mu})$ is lorentz-invariant.

3 \mathbf{c}

The differential cross section for $2 \to n$ particle scattering is given by (Schwartz 5.22):

$$d\sigma = \frac{1}{(2E_1)(2E_2) \mid \vec{v_1} - \vec{v_2} \mid} \mid \mathcal{M} \mid^2 d\Pi_{\text{LIPS}}$$

where $d\Pi_{\text{LIPS}}$ is given by:

$$d\Pi_{LIPS} := (2\pi)^4 \delta^{(4)}(\Sigma p) \Pi_j \frac{d^3 p_j}{(2\pi)^3} \frac{1}{2E_j}$$

I'm trying to answer the question, what are the units of $|\mathcal{M}|$? The units of $d\sigma$ should be area, or -2. The units of $\frac{1}{(2E_1)(2E_2)|\vec{v_1}-\vec{v_2}|}$ are -2, since the velocity has energy dimension 0. Therefore, we expect the energy dimension of $|\mathcal{M}|^2$ to cancel out the energy dimension of $d\Pi_{\text{LIPS}}$.

 $|\mathcal{M}|^2$ to cancel out the energy dimension of $d\Pi_{\text{LIPS}}$. Using the relation $\delta^4(0) = \frac{TV}{(2\pi)^4}$, we can see that the deltafunction has energy dimension -4. The energy dimension of momentum and energy are both 1, so the energy dimension of $d\Pi_{\text{LIPS}}$ is 2n-4, since an energy dimension of 2 is added for each particle in the product.

Therefore, the energy dimension of $|\mathcal{M}|^2$ is 4-2n. For 2 particles scattering to 2 particles, the scattering amplitude is unitless.