Napredni algoritmi i strukture podataka – zimski ispitni rok

16. srpnja 2019.

Ovaj ispit donosi ukupno **50 bodova** (prag 35), a vrijednosti pojedinih (pod)zadataka su u zagradi na početku teksta svakog (pod)zadatka. Boduju se isključivo rješenja napisana na dodatnim papirima, dakle oznake i rješenja na ovom obrascu se ne uzimaju u obzir.

- 1. (10) U inicijalno prazno crveno-crno stablo
 - a) (6) Unesite redom sljedeće elemente:

b) (4) Obrišite redom sljedeće elemente:

- 2. (10) Zadana je potpuno povezana, unaprijedna (*feedforward*) troslojna neuronska mreža strukture 2x5x3. Aktivacijska funkcija svih neurona u mreži je opći sigmoid.
 - a) (1) Skicirati tu mrežu.
 - b) (8) Provedite prvi korak uvježbavanja te mreže (jednom osvježiti sve parametare) algoritmom koračnog uvježbavanja (*on-line learning*) ako se podatci za uvježbavanje uzimaju redom iz sljedeće tablice:

ulaz 1	ulaz 2	izlaz 1	izlaz 2	izlaz 3	
-2	1	1.35	6.51	0	
7	1	4	-3	0	
-1	-4	-2.5	-1.5	1	
6	4	5	-1	1	

Početne vrijednosti svih parametara mreže postavite na **jedan**, a zatrebaju li Vam još neke veličine, pridijelite im vrijednosti po vlastitom nahođenju, samo jasno navedite svoj izbor i kratko naznačite što ta veličina predstavlja.

c) (1) Objasniti nastavak postupka, tj. kako bi započeo sljedeći korak uvježbavanja mreže. Uputa: dovoljna je i samo jedna dobro sročena rečenica. Naravno, svako podrobnije objašnjenje je dobrodošlo i smanjit će mogućnost zabune prilikom ocjenjivanja.

3. (10) Usmjereni graf je zadan matricom udaljenosti (slova u tablici su oznake vrhova).

		Odredište						
		Α	В	С	D	E	F	
rvolz	Α		12	11				
	В				9		7	
	C					12		
	D		4	9			17	
	Ε				6		5	
	F							

- a) (6) Pronađite maksimalni tok između A i F.
- b) (4) Modelirajte zadani problem maksimalnog toka kao linearni program.
- 4. (10) Riješite simpleks metodom sljedeći linearni program:

$$\label{eq:maxz} \begin{array}{ll} \text{max z} &= -3x_1 + 7x_2 - 2x_3 + 4x_4 \\ \text{uz} & 7x_1 - 2x_2 + 3x_3 - 3x_4 \geq 0.5 \\ & 6x_1 - 5x_2 - x_3 + x_4 \leq 3 \\ & x_4 \leq 6 \\ x_1, x_2, x_3 x_4 \geq 0 \end{array}$$

5. (10) Pronađite minimalno razapinjuće stablo Dijkstrinim algoritmom na neusmjerenom grafu zadanom sljedećom matricom udaljenosti (slova u tablici su oznake vrhova, dane samo vrijednosti u gornjoj trokutastoj matrici, kako je matrica simetrična).

	Α	В	С	D	Ε	F	G	н
Α		6	10			3	6	
В						-2	-1	
С				7			1	
D					3		5	4
E								4
F							-3	
G								3
Н								