Lecture 09

카운터

개요

■ 카운터

- 입력되는 펄스의 수를 세는 논리회로
- 클록 펄스처럼 펄스의 주기가 일정할 때는 1초 동안에 입력되는 펄스의 수를 세어 해당 펄스 신호의 주파수를 알 수 있고 주기도 알 수 있음 → frequency counter라고 함
- 정밀한 클록 발생기와 카운터를 사용하면 두 시점 간의 **시간 간격**을 측정 할 수 있음

■ 카운터 종류

- 클록과의 동기 방식에 따라 비동기식 카운터(asynchronous counter)와 동 기식 카운터(synchronous counter)로 나눌 수 있음
- 수를 세는 방향에 따라 **상향 카운터**(up counter)와 **하향 카운터**(down counter)로 분류할 수 있음

개요

- 비동기식 카운터
 - 카운터에 있는 플립플롭들이 공통의 클록 펄스를 갖지 않음
 - 첫 번째 플립플롭의 클록 입력에만 클록 펄스가 입력되고, 다른 플립플롭은 각 플립플롭의 출력을 다음 플립플롭의 클록 입력으로 사용함
 - → **직렬 카운터**(sequential counter) 또는 **리플 카운터**(ripple counter)라고 함
 - JK 플립플롭 또는 T 플립플롭을 사용해 구성함
 - 고속 동작에 부적당함
- 동기식 카운터
 - 카운터에 있는 플립플롭들이 공통의 클록 펄스에 의해 동시에 트리거되어 동작함
 - 고속 동작에 적합하지만 비동기식 카운터에 비해 회로가 복잡하다는 단점 이 있음
 - → **병렬 카운터**(parallel counter)라고 함

■ 2진 상향 카운터(binary up counter)

클록 펄스	Q_D	Q_C	Q_B	Q_A	10진수
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	2
4	0	0	1	1	3
5	0	1	0	0	4
6	0	1	0	1	5
7	0	1	1	0	6
8	0	1	1	1	7
9	1	0	0	0	8
10	1	0	0	1	9
11	1	0	1	0	10
12	1	0	1	1	11
13	1	1	0	0	12
14	1	1	0	1	13
15	1	1	1	0	14
16	1	1	1	1	15

2진수 4자리 카운터

• *Q_D* : 최상위 비트

• *Q_A* : 최하위 비트

0000에서 1111까지 상태의 수가 16개이 므로 **16진(mod-16)** 카운터라고 함

- 2진 상향 카운터(binary up counter)
 - JK 플립플롭 4개를 사용하며, 모든 플립플롭의 입력은 J = K = 1(토글)임
 - 첫 번째 플립플롭의 클록 입력에 외부 클록 신호(CP)를 연결함
 - 첫 번째 플립플롭의 출력 Q_A 를 두 번째 플립플롭의 클록 입력에 연결함
 - 두 번째 플립플롭의 출력 Q_B 를 세 번째 플립플롭의 클록 입력에 연결함
 - 세 번째 플립플롭의 출력 Q_C 를 네 번째 플립플롭의 클록 입력에 연결함
 - 플립플롭 출력 단자 Q_D , Q_C , Q_B , Q_A 를 조합하면 상향 카운터가 됨

■ 2진 상향 카운터(binary up counter)

- 비동기식 카운터의 동작 속도
 - 첫 번째 플립플롭에 인가되는 클록 주파수는 다음 식을 만족해야 함

$$f_{max} \le \frac{1}{n \times t_{pd}}$$

■ *f_{max}* : 최대 클록 주파수

■ n : 플립플롭의 수

■ t_{pd} : 플립플롭 한 개당 전파 지연 시간

• 예, $t_{pd} = 20$ ns이고 플립플롭의 수가 4개인 4비트 2진 비동기식 카운터를 설계할 경우 클록 주파수는 12.5MHz 이하이어야 함

$$f_{max} \le \frac{1}{n \times t_{pd}} = \frac{1}{4 \times 20 \times 10^{-9}} = 12.5 \text{MHz}$$

- 상승 에지에서 동작하는 상향 카운터
 - JK 플립플롭 4개를 사용하며, 모든 플립플롭의 입력은 J = K = 1(토글)임
 - 첫 번째 플립플롭의 클록 입력에 외부 클록 신호(CP)를 연결함
 - 첫 번째 플립플롭의 출력 \bar{Q}_A 를 두 번째 플립플롭의 클록 입력에 연결함
 - 두 번째 플립플롭의 출력 \bar{Q}_R 를 세 번째 플립플롭의 클록 입력에 연결함
 - 세 번째 플립플롭의 출력 $ar{Q}_{\mathcal{C}}$ 를 네 번째 플립플롭의 클록 입력에 연결함
 - 플립플롭 출력 단자 Q_D , Q_C , Q_B , Q_A 를 조합하면 상향 카운터가 됨

■ 상승 에지에서 동작하는 상향 카운터

■ 2진 하향 카운터(binary down counter)

클록 펄스	Q_D	Q_C	Q_B	Q_A	10진수
1	1	1	1	1	15
2	1	1	1	0	14
3	1	1	0	1	13
4	1	1	0	0	12
5	1	0	1	1	11
6	1	0	1	0	10
7	1	0	0	1	9
8	1	0	0	0	8
9	0	1	1	1	7
10	0	1	1	0	6
11	0	1	0	1	5
12	0	1	0	0	4
13	0	0	1	1	3
14	0	0	1	0	2
15	0	0	0	1	1
16	0	0	0	0	0

2진수 4자리 카운터

• *Q*_D : 최상위 비트

• Q_A : 최하위 비트

1111에서 시작하여 15번째 클록 펄스의 끝에서 0000으로 감 소함

- 2진 하향 카운터(binary down counter)
 - JK 플립플롭 4개를 사용하며, 모든 플립플롭의 입력은 J = K = 1(토글)임
 - 첫 번째 플립플롭의 클록 입력에 외부 클록 신호(CP)를 연결함
 - 첫 번째 플립플롭의 출력 \bar{Q}_A 를 두 번째 플립플롭의 클록 입력에 연결함
 - 두 번째 플립플롭의 출력 \bar{Q}_{R} 를 세 번째 플립플롭의 클록 입력에 연결함
 - 세 번째 플립플롭의 출력 $ar{Q}_{\mathcal{C}}$ 를 네 번째 플립플롭의 클록 입력에 연결함
 - 플립플롭 출력 단자 Q_D , Q_C , Q_B , Q_A 를 조합하면 하향 카운터가 됨

■ 2진 하향 카운터(binary down counter)

- 상승 에지에서 동작하는 하향 카운터
 - JK 플립플롭 4개를 사용하며, 모든 플립플롭의 입력은 J = K = 1(토글)임
 - 첫 번째 플립플롭의 클록 입력에 외부 클록 신호(CP)를 연결함
 - 첫 번째 플립플롭의 출력 Q_A 를 두 번째 플립플롭의 클록 입력에 연결함
 - 두 번째 플립플롭의 출력 Q_B 를 세 번째 플립플롭의 클록 입력에 연결함
 - 세 번째 플립플롭의 출력 Q_C 를 네 번째 플립플롭의 클록 입력에 연결함
 - 플립플롭 출력 단자 Q_D , Q_C , Q_B , Q_A 를 조합하면 하향 카운터가 됨

■ 상승 에지에서 동작하는 하향 카운터

비동기식 상향/하향 카운터

- 상향 카운터와 하향 카운터를 조합하면 상향/하향 카운터를 만들 수 있음
 - 선택 단자 S와 멀티플렉서(MUX)를 추가함
 - *S* = 0 : 상향 카운터가 됨
 - *S* = 1: 하향 카운터가 됨

비동기식 modulo-m 카운터

- n개의 플립플롭을 사용하면 $modulo-2^n$ 카운터를 설계할 수 있음
 - 예, n = 4개의 플립플롭을 사용하면 modulo-16 카운터를 설계할 수 있음
- $m \neq 2^n$ 일 경우 modulo-m 카운터도 설계할 수 있음
 - Modulo-10 카운터
 - 클리어 입력(*CLR*)을 갖는 플립플롭을 사용해야 함
 - 카운터의 출력이 10이 될 때 $Q_DQ_CQ_BQ_A = 1010$ 이 되므로 Q_D 와 Q_B 출력을 NAND 게이트로 결합하고 해당 출력을 모든 플립플롭의 \overline{CLR} 입력에 연결함

클록 펄스	Q_D	Q_C	Q_B	Q_A	10진수
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	2
4	0	0	1	1	3
5	0	1	0	0	4
6	0	1	0	1	5
7	0	1	1	0	6
8	0	1	1	1	7
9	1	0	0	0	8
10	1	0	0	1	9

비동기식 modulo-m 카운터

■ Modulo-10 카운터

비동기식 modulo-m 카운터

- n자리 10진수를 카운트하려면 modulo-10 카운터 n개를 종속으로 연결하면 됨
 - 예, 4자리 10진수인 0에서 9999까지 카운트할 수 있는 카운터를 10진 카 운터 4개로 구성함
 - 각 자리의 값이 9에서 0으로 변할 때, 즉 Q_D 가 1에서 0으로 변할 때 다음 자리의 10진 카운터가 1씩 증가하도록 구성되어 있음

비동기식 프리셋 카운터

- 프리셋 카운터는 0보다 큰 수로부터 카운트를 시작할 수 있음
 - 예, $P_D P_C P_B P_A$ (=0001~1111 사이의 수)로부터 시작될 수 있음
 - $Q_DQ_CQ_BQ_A = 0000$ 일 때 NOR 게이트의 출력, 즉 LOAD = 1이 되므로 카운터의 값이 프리셋 값 $(P_DP_CP_BP_A)$ 으로 설정됨
 - 다른 경우에는 *LOAD* = 0 이므로 카운터가 정상적 으로 동작함

- 비동기식 카운터의 단점
 - 플립플롭 n개를 종속 연결한 카운터의 전체 전파 지연은 $n \times t_{pd}$ 가 되기 때문에 고속으로 동작하는 응용 분야에는 적합하지 않음
- 동기식 카운터
 - 카운터에 있는 플립플롭들이 공통의 클록 펄스에 의해 동시에 트리거되어 고속 동작에는 적합함
 - 비동기식 카운터에 비해 회로가 복잡함
 - 설계 과정
 - ① 클록 신호에 대한 각 플립플롭의 상태 변화를 표로 작성함
 - ② 이러한 변화를 일으킬 수 있도록 플립플롭의 제어 신호(J, K)를 결정함
 - ③ 플립플롭의 제어 신호는 카르노 맵을 이용해 간소화함
 - ④ 카운터 회로를 그림

■ 4비트 동기식 2진 카운터

	현재	상태			다음	상태				į	플립플	롭 입	력		
Q_D	Q_C	Q_B	Q_A	Q_D	Q_C	Q_B	Q_A	J_D	K_D	Jc	Kc	J_B	K_B	J_A	K_A
0	0	0	0	0	0	0	1	0	Χ	0	Χ	0	Χ	1	Χ
0	0	0	1	0	0	1	0	0	Χ	0	Χ	1	Χ	Х	1
0	0	1	0	0	0	1	1	0	Χ	0	Χ	Х	0	1	Χ
0	0	1	1	0	1	0	0	0	Χ	1	Χ	Х	1	Х	1
0	1	0	0	0	1	0	1	0	Χ	X	0	0	Χ	1	Χ
0	1	0	1	0	1	1	0	0	Χ	X	0	1	Χ	Х	1
0	1	1	0	0	1	1	1	0	Χ	X	0	Х	0	1	Χ
0	1	1	1	1	0	0	0	1	Χ	X	1	Х	1	Х	1
1	0	0	0	1	0	0	1	Х	0	0	Χ	0	X	1	Χ
1	0	0	1	1	0	1	0	Х	0	0	Χ	1	Χ	Х	1
1	0	1	0	1	0	1	1	Х	0	0	Χ	Х	0	1	Χ
1	0	1	1	1	1	0	0	Х	0	1	Χ	Х	1	Х	1
1	1	0	0	1	1	0	1	Х	0	X	0	0	Χ	1	Χ
1	1	0	1	1	1	1	0	Х	0	X	0	1	Χ	Х	1
1	1	1	0	1	1	1	1	Х	0	X	0	Х	0	1	Χ
1	1	1	1	0	0	0	0	Х	1	Х	1	Х	1	Х	1

JK 플립플롭의 여기표

Q(t)	Q(t+1)	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

<mark>상태표</mark>

■ 4비트 동기식 2진 카운터

$Q_B\zeta$	Q_A								
Q_DQ_C	00	01	11	10					
00	Х	1	1	Х					
01	Х	1	1	х					
11	Х	1	1	Х					
10	Х	1	1	х					
•	$K_A = 1$								

- 4비트 동기식 2진 카운터
 - Q_A 출력이 토글
 - Q_A 출력이 1이면 Q_B 출력이 토글
 - Q_A 출력과 Q_B 출력이 모두 1이면 Q_C 출력이 토글
 - Q_A 출력과 Q_B 출력과 Q_C 출력이 모두 1이면 Q_D 출력이 토글

■ 4비트 동기식 2진 카운터

- 일반적 동기식 2진 카운터
 - 첫 번째 플립플롭의 J와 K 입력은 모두 1에 연결함
 - 다른 플립플롭의 J와 K 입력은 하위 플립플롭들의 추력의 논리적 AND

```
첫 번째 플립플롭 : J_A = K_A = 1
```

두 번째 플립플롭 : $J_B = K_B = Q_A$

세 번째 플립플롭 : $J_C = K_C = Q_B Q_A$

네 번째 플립플롭 : $J_D = K_D = Q_C Q_B Q_A$

다섯 번째 플립플롭 : $J_E = K_E = Q_D Q_C Q_B Q_A$

여섯 번째 플립플롭 : $J_F = K_F = Q_E Q_D Q_C Q_B Q_A$

. . .

■ 동기식 카운터 동작 속도

총 지연 시간 = 플립플롭
$$t_{pd}$$
 + AND 게이트 t_{pd}

- 예, 플립플롭의 $t_{pd}=50 \mathrm{ns}$ 이고, AND 게이트의 $t_{pd}=20 \mathrm{ns}$ 일 때
 - 동기식 modulo-16 카운터의 최대 동작 속도

$$f_{max} \le \frac{1}{50 \text{ns} + 20 \text{ns}} = \frac{1}{70 \times 10^{-9}} = 14.3 \text{MHz}$$

■ 비동기식 modulo-16 카운터의 최대 동작 속도

$$f_{max} \le \frac{1}{4 \times 50 \text{ns}} = \frac{1}{200 \times 10^{-9}} = 5 \text{MHz}$$

→ 비동기식 카운터에 비해 동기식 카운터는 높은 입력 주파수를 사용하는는 응용에 적합함

■ 동기식 BCD 카운터

	현재	상태			다음	상태				ŧ	플립플	롭 입	력			출력
Q_D	Q_C	Q_B	Q_A	Q_D	Q_C	Q_B	Q_A	J_D	K_D	Jc	Kc	J_B	K _B	J_A	K_A	С
0	0	0	0	0	0	0	1	0	Х	0	Х	0	Х	1	Х	0
0	0	0	1	0	0	1	0	0	Χ	0	Χ	1	Χ	X	1	0
0	0	1	0	0	0	1	1	0	Χ	0	Χ	Х	0	1	X	0
0	0	1	1	0	1	0	0	0	Χ	1	Χ	х	1	Х	1	0
0	1	0	0	0	1	0	1	0	Χ	X	0	0	Χ	1	Χ	0
0	1	0	1	0	1	1	0	0	Χ	X	0	1	Χ	Х	1	0
0	1	1	0	0	1	1	1	0	Χ	X	0	х	0	1	Χ	0
0	1	1	1	1	0	0	0	1	Χ	X	1	Х	1	Х	1	0
1	0	0	0	1	0	0	1	Х	0	x	Χ	0	Χ	1	Χ	0
1	0	0	1	0	0	0	0	Х	1	0	Χ	0	Χ	X	1	1

JK 플립플롭의 여기표

Q(t)	Q(t+1)	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Х	1
1	1	Х	0

<mark>상태표</mark>

■ 동기식 BCD 카운터

■ 동기식 BCD 카운터

	현재	상태			다음	상태			플립플롭 입력						출력	
Q_D	Q_{C}	Q_B	Q_A	Q_D	Q_{C}	Q_B	Q_A	J_D	K_D	Jc	Kc	J_B	K_B	J_A	K_A	С
0	0	0	0	0	0	0	1	0	Х	0	Х	0	Х	1	Х	0
0	0	0	1	0	0	1	0	0	Χ	0	Χ	1	Χ	X	1	0
0	0	1	0	0	0	1	1	0	Χ	0	Χ	X	0	1	Χ	0
0	0	1	1	0	1	0	0	0	Χ	1	Χ	X	1	X	1	0
0	1	0	0	0	1	0	1	0	Χ	X	0	0	Χ	1	Χ	0
0	1	0	1	0	1	1	0	0	Χ	X	0	1	Χ	X	1	0
0	1	1	0	0	1	1	1	0	Χ	X	0	X	0	1	Χ	0
0	1	1	1	1	0	0	0	1	Χ	X	1	X	1	X	1	0
1	0	0	0	1	0	0	1	X	0	X	Χ	0	Χ	1	X	0
1	0	0	1	0	0	0	0	X	1	0	Χ	0	Χ	X	1	1

 $C = Q_D Q_A$

■ 동기식 BCD 카운터

- 동기식 BCD 카운터
 - 동기식 BCD 카운터를 여러 개 종속으로 연결하면 여러 자리 카운터를 쉽게 구성할 수 있음

■ 3비트 동기식 2진 상향/하향 카운터

■ $0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow 7$ 과 같이 증가하거나 $7 \rightarrow 6 \rightarrow 5 \rightarrow \cdots \rightarrow 0$ 과 같이 감소하는 카운터

호	면재 상	태	입력	С	 음 상	·태		킅	들립플	·롭 입i	력	
Q_{C}	Q_B	Q_A	x	Q_{C}	Q_B	Q_A	Jc	$K_{\mathcal{C}}$	J_B	K_B	J_A	K_A
0	0	0	0	0	0	1	0	Χ	0	Χ	1	Χ
0	0	0	1	1	1	1	1	Χ	1	Χ	1	Χ
0	0	1	0	0	1	0	0	Χ	1	Χ	X	1
0	0	1	1	0	0	0	0	Χ	0	Χ	X	1
0	1	0	0	0	1	1	0	Χ	X	0	1	Χ
0	1	0	1	0	0	1	0	Χ	X	1	1	Χ
0	1	1	0	1	0	0	1	Χ	X	1	Х	1
0	1	1	1	0	1	0	0	Χ	X	0	Х	1
1	0	0	0	1	0	1	X	0	0	Χ	1	Χ
1	0	0	1	0	1	1	X	1	1	Χ	1	Χ
1	0	1	0	1	1	0	X	0	1	Χ	Х	1
1	0	1	1	1	0	0	X	0	0	Χ	Х	1
1	1	0	0	1	1	1	X	0	X	0	1	Χ
1	1	0	1	1	0	1	Х	0	Х	1	1	Χ
1	1	1	0	0	0	0	Х	1	Х	1	Х	1
1	1	1	1	1	1	0	X	0	X	0	Х	1

Q(t)	Q(t+1)	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

상태표

■ 3비트 동기식 2진 상향/하향 카운터

■ 3비트 동기식 2진 상향/하향 카운터

- 불규칙한 순서를 갖는 카운터
 - 카운터의 상태가 순차적으로 변하지 않고 불규칙하게 변할 수 있음

햔	년재 상	태	С	남음 상	EH		ŧ	립플	롭 입	력	
Q_C	Q_B	Q_A	Q_C	Q_B	Q_A	Jc	Kc	J_B	K_B	J_A	K_A
0	0	0	0	0	1	0	Χ	0	Χ	1	Χ
0	0	1	0	1	1	0	Χ	1	Χ	X	0
0	1	0	1	1	0	1	Χ	X	0	0	Χ
0	1	1	0	1	0	0	Χ	X	0	X	1
1	0	0	0	0	0	x	1	0	Χ	0	Χ
1	0	1	1	0	0	X	0	0	X	X	1
1	1	0	1	1	1	X	0	X	0	1	X
1	1	1	1	0	1	x	0	X	1	x	0

JK 플립플롭의 여기표

Q(t)	Q(t+1)	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

<mark>상태표</mark>

|식 카운터

00 01 11 10

 $K_B = Q_C Q_A$

 $Q_B Q_A$

0

■ 불규칙한 순서를 갖는 카운터

$$K_A = Q_C \bar{Q}_B + \bar{Q}_C Q_B$$
$$= Q_C \oplus Q_B$$

동기식 카운터

■ 불규칙한 순서를 갖는 카운터

동기식 카운터

- 주파수 분할
 - T 플립플롭에서 출력은 입력 주파수의 1/2이 되므로 T 플립플롭 4개를 종속으로 연결한 구조에서 입력 주파수의 1/2, 1/4, 1/8, 1/16인 주파수를 얻을수 있음
 - Modulo-m 카운터의 최상위 비트 출력을 modulo-n 카운터의 입력에 연결 함으로써 \div $(m \times n)$ 의 주파수 분할을 할 수 있음

카운터 출력 표시

■ 7-segment LED를 사용하는 방법

카운터 내용	숫자	Active high 7-segment LED							
$Q_D Q_C Q_B Q_A$	ズ ベ 	DP	G	F	Е	D	С	В	A
0000	0	0	0	1	1	1	1	1	1
0001	1	0	0	0	0	0	1	1	0
0010	2	0	1	0	1	1	0	1	1
0011	3	0	1	0	0	1	1	1	1
0100	4	0	1	1	0	0	1	1	0
0101	5	0	1	1	0	1	1	0	1
0110	6	0	1	1	1	1	1	0	1
0111	7	0	0	1	0	0	1	1	1
1000	8	0	1	1	1	1	1	1	1
1001	9	0	1	1	0	0	1	1	1

|식 카운터

■ 동기식 BCD 카운터

$$B = \bar{Q}_C + \bar{Q}_B \bar{Q}_A + Q_B Q_A$$

$$D = \bar{Q}_C \bar{Q}_A + \bar{Q}_C Q_B$$
$$Q_B \bar{Q}_A + Q_C \bar{Q}_B Q_A$$

$$F = Q_D + Q_C + \bar{Q}_B \bar{Q}_A$$

$$G = Q_D + Q_C \bar{Q}_B + Q_B \bar{Q}_A + \bar{Q}_C Q_B$$

- 링 카운터
 - 임의의 시간에 한 플립플롭만 논리 1이 되고 나머지 플립플롭은 논리 0이 되는 카운터
 - 논리 1은 입력 펄스에 따라 그 위치가 한쪽 방향으로 순환함

현재 상태			다음 상태			플립플롭 입력					
Q_A	Q_B	Q_C	Q_D	Q_A	Q_B	Q_C	Q_D	D_A	D_B	Dc	D_D
1	0	0	0	0	1	0	0	0	1	0	0
0	1	0	0	0	0	1	0	0	0	1	0
0	0	1	0	0	0	0	1	0	0	0	1
0	0	0	1	1	0	0	0	1	0	0	0

D 플립플롭의 여기표

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

<mark>상태표</mark>

■ 링 카운터

Q_C	Q_D						
$Q_A Q_B$	00	01	11	10			
00	Х		Х	1			
01		Х	Х	Х			
11	Х	Х	Х	Х			
10		Х	×	х			
	$D_D = Q_C$						

- 링 카운터
 - 처음에 INIT = 0으로 하면 첫 번째 플립플롭의 출력 Q_A 는 1로 세트되고, 나머지 플립플롭의 출력은 $Q_BQ_CQ_D = 000$ 이 됨. 다음에 INIT = 1로 하면 링 카운터의 최초 출력은 $Q_AQ_BQ_CQ_D = 1000$ 이 됨
 - 이후부터 클록 펄스가 입력될 때마다 클록 펄스의 상승 에지에서 오른쪽 으로 한 자리씩 이동함

■ 링 카운터

- 링 카운터
 - 어떤 일련의 동작을 제어하는 데 매우 유용함

- 존슨(Johnson) 카운터
 - 플립플롭 n개로 구성된 링 카운터는 n가지 상태를 출력함
 - 존슨 카운터는 링 카운터와 달리 출력 상태의 수는 두 배로 늘어남
 - 맨 오른쪽 D 플립플롭의 \bar{Q} 출력을 맨 왼쪽 D 플립플롭의 D 입력에 연결함
 - 트위스티드 링 카운터(twisted ring counter)라고도 함

■ 링 카운터

■ 존슨(Johnson) 카운터

클록 펄스	Q_A	Q_B	Q_C	Q_D	10진수	디코딩 게이트 입력
1	1	0	0	0	8	$Q_A ar{Q}_B$
2	1	1	0	0	12	$Q_B ar{Q}_C$
3	1	1	1	0	14	$Q_C ar{Q}_D$
4	1	1	1	1	15	Q_AQ_D
5	0	1	1	1	7	$ar{Q}_A Q_B$
6	0	0	1	1	3	$ar{Q}_B Q_C$
7	0	0	0	1	1	$ar{Q}_C Q_D$
8	0	0	0	0	0	$ar{Q}_Aar{Q}_D$