SC4000/CZ4041/CE4041: Machine Learning

Lesson 6b: K-NN Classifiers

Kelly KE

School of Computer Science and Engineering, NTU, Singapore

Acknowledgements: some figures are adapted from the lecture notes of the book "Introduction to Data Mining" (Chap. 5)

 $y_N = 1$ 0 1 0

Some classification algorithm

Test data

	F1	F2	F3	F4	F5	F6	• • •	
?	1	1	0	0	1	0	• • •	$\mathbf{J} \boldsymbol{x}^*$

()

Inductive Learning

Lazy Learning

Instance Based Classifiers

- K-Nearest Neighbors classifier
 - Uses *K* "closest" points (nearest neighbors) for performing classification

Nearest-Neighbor Classifiers

Unknown instance

- Requires three things
 - The set of <u>stored labeled</u> instances
 - <u>Distance metric</u> to compute distance between instances
 - The <u>value of K</u>, the number of nearest neighbors to retrieve
- □ To classify an unknown instance:
 - Compute distance to all the training instances
 - Identify K nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of the unknown instance (e.g., by taking majority vote)

Definition of Nearest Neighbors

K-nearest neighbors of an instance x are data points that have the K smallest distance to x

Distance Metric

• Compute distance between two data points in a *d*-dimensional space:

$oldsymbol{x}_i$								
x_{i1}	x_{i2}	•••	x_{id}					

 $\begin{bmatrix} x_j & x_{j2} & \dots & x_{jd} \end{bmatrix}$

• Euclidean distance

Inner product between
$$x_i$$
 and x_j :
 $x_i \cdot x_i = \sum_{k=1}^d x_{ik} x_{ik}$

$$d(x_{i}, x_{j}) = \sum_{k=1}^{d} (x_{ik} - x_{jk})^{2} = \sqrt{(x_{i} - x_{j}) \cdot (x_{i} - x_{j})}$$

$$= \|(x_{i} - x_{j})\|_{2}$$

$$L_{2} \text{ norm distance}$$

$$L_{2} \text{ norm distance}$$

$$L_{2} \text{ norm of } x_{i} : \|x_{i}\|_{2} = \sqrt{\sum_{k=1}^{d} x_{ik}^{2}}$$

Value of K

- Choosing the value of *K*:
 - If *K* is too small, sensitive to noise points
 - If *K* is too large, neighborhood may include points from other classes

Determine Class Label

- Determine the class from nearest neighbor list
 - Take the majority vote of class labels among the *K*-nearest neighbors

 Indicator function that
- Given test data x^* , majority voting:

returns 1 if its input is true, otherwise 0

$$y^* = \arg\max_{c} \sum_{(x_i, y_i) \in \mathcal{N}_{x^*}} \boxed{(c = y_i)}$$

Nearest neighbors of the test instance x^*

- Every neighbor has the same impact on the classification
- This indeed makes the algorithm sensitive to the choice of *K*

Revised Voting Scheme

- Solution: distance-weighted voting
 - Weight the influence of each nearest neighbor x_i according to its distance to the test instance x^* :

$$w_i = \frac{1}{d(\boldsymbol{x}^*, \boldsymbol{x}_i)^2}$$

$$y^* = \arg\max_{c} \sum_{(x_i, y_i) \in \mathcal{N}_{x^*}} w_i \times I(c = y_i)$$

Example

Consider a binary classification problem, and a 5-NN classifier

Training record	Class label	Distance to test instance
1	+	3
2	+	3.5
3	+	4
4	-	1.5
5	-	2

• Majority voting:

• Distance-weighted voting:

Tutorial

Other Issues

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{\sum_{k=1}^d (x_{ik} - x_{jk})^2}$$

- Scaling issues
 - Feature may need to be scaled to prevent distance from being dominated by some features
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 40kg to 200kg
 - income of a person may vary from \$10K to \$1M
 - Solution: normalization on features of different scales

Normalization

- Min-max normalization: to $[min_{new}, max_{new}]$
 - Example: To normalize income ranging from \$12,000 to \$98,000 to [0.0, 1.0], what is the value for \$73,600 after normalization?

$$v_{new} = \frac{v_{old} - min_{old}}{max_{old} - min_{old}} (max_{new} - min_{new}) + min_{new}$$

73,600
$$\frac{73600 - 12000}{98000 - 12000} (1.0 - 0) + 0 = 0.716$$

Normalization (cont.)

Standardization (z-score normalization) (μ: mean,
 σ: standard deviation):

$$v_{new} = \frac{v_{old} - \mu_{old}}{\sigma_{old}}$$
 \longrightarrow $\mu_{new} = 0$, and $\sigma_{new} = 1$

• Example: Let $\mu = 54,000$, $\sigma = 16,000$. What is the value for \$73,600 after standardization?

$$\frac{73600 - 54000}{16000} = 1.225$$

Summary of NN Classifier

- The *K*-NN classifier is a <u>lazy learner</u>
 - It does not build models explicitly.
 - "Training" is very efficient.
 - Classifying unknown test instances is relatively expensive.

Implementation

>>> from sklearn.neighbors import KNeighborsClassifier

• • •

set number of neighbors

```
>>> knnC = KNeighborsClassifier(n_neighbors=3)
>>> knnC.fit(X, y)
>>> pred= knnC.predict(X)

Build indices s.t. it is more efficient
when making predictions on test data
```

Thank you!