INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Licenciatura em Engenharia de Eletrónica e Telecomunicações e de Computadores

e

Licenciatura em Engenharia Informática e de Computadores

3.º Trabalho Prático de Arquitetura de Computadores

Memória e Portos

1. Objetivos

Este trabalho tem como principal objetivo o estudo dos mecanismos de endereçamento usados pelos processadores no acesso aos dispositivos de memória e aos periféricos. Tomando como exemplo sistemas baseados no processador P16, aborda-se a utilização dos respetivos sinais de controlo e a geração dos sinais de seleção de endereços atribuídos aos dispositivos envolvidos, com destaque para a sua representação nos mapas de endereçamento, também chamados mapas de memória.

2. Trabalho a realizar

Considere o diagrama apresentado na figura, que descreve um exemplo de descodificação de endereços em torno de um processador P16, com alguns problemas no mapeamento em memória dos dispositivos.

- 2.1 Indique os tipos e as dimensões dos dispositivos #1 a #3, individualmente tomados, e as capacidades (em *bytes*) dos grupos que formam.
- 2.2 Desenhe o mapa de endereçamento do conjunto, indicando os tipos, as dimensões e os endereços de início e de fim do espaço atribuído a cada grupo de dispositivos, inscrevendo igualmente, se for o caso, a ocorrência de subaproveitamento ou de *fold-back* e a localização de eventuais zonas livres e de zonas interditas (também designadas por "conflito").
- 2.3 Seguindo o exemplo apresentado na tabela, registe a atividade dos barramentos e dos sinais em referência, quando observados passo-a-passo (*single step*), para a execução do seguinte troço de código sobre o sistema apresentado e considerando os seguintes valores iniciais: r0 = 0x5070; r1 = 0x1040; r2 = 0x0204; r3 = 0xFEDC; r4 = 0x2030; pc = 0x1234.

CTRL			ADDR	DATA	instruction	
nWRH	nWRL	nRD	A15 A0	D15 D0		
Н	Н	L	1234	1110	ldr	r0, [r1, r2]
Н	Н	L	1244	7062		
Н	Н	L	1236	B003	mov	r3, r0
			1238			

Tabela 1 – Atividade dos barramentos para observação passo-a-passo.

Nota – genericamente, no barramento de dados pode ocorrer: um valor concreto; alta impedância – ZH; ou conflito – conf.

- 2.4 Sabendo que se pretende redesenhar o sistema apresentado para passar a ser funcional, desenhe o novo mapa de endereçamento e apresente as novas expressões lógicas dos sinais de *chip select*, cumprindo os seguintes critérios:
 - Manter o mapeamento da memória ROM;
 - Acrescentar 8 KB de memória do tipo RAM;
 - Acrescentar um porto de entrada e um porto de saída, ambos a 16 bits e com acesso *word-wise* e *byte-wise*;
 - Garantir que a dimensão do espaço atribuído a cada memória é coincidente com a sua capacidade;
 - Assegurar que os módulos de memória do mesmo tipo ficam em endereços contíguos entre si;
 - Impedir a existência de zonas interditas (de "conflito").
- 2.5 Desenhe o diagrama correspondente à instalação da nova memória, conforme a solução realizada no ponto anterior, escolhendo os dispositivos RAM que considerar mais adequados, de entre os seguintes: 4 K * 8 | 8 K * 8 | 8 K * 16 | 16 K * 8 | 16 K * 16 | 32 K * 8 | 32 K * 16.
- 2.6 Desenhe o diagrama relativo aos portos a acrescentar, conforme a solução realizada no ponto 2.4, recorrendo aos circuitos que considerar mais adequados: registos do tipo *edge-triggered* ou *latch*, com 8 bits e 16 bits, e *tri-state buffers*, também com 8 bits e 16 bits.

3. Avaliação

O trabalho é realizado em grupo, conta para o processo de avaliação da unidade curricular e tem a duração de duas semanas.

A apresentação da solução proposta por cada grupo decorre em sessão de laboratório, em data a combinar com o docente responsável pela lecionação das aulas da respetiva turma.

Após esta apresentação, cada grupo deverá entregar o relatório do trabalho ao docente, no qual deve constar:

- A descrição sucinta dos raciocínios e dos cálculos efetuados;
- Os mapas de endereçamento projetados e os esquemas dos circuitos resultantes.