Monitoring of the AUTOSAR Timing Extensions with TeSSLa

Hendrik Streichhahn

February 17, 2021

Motivation - Timing

- ► Timing fundamental for
 - Reliability
 - Availability
 - Safety and security

Motivation - Timing

- ► Timing fundamental for
 - Reliability
 - Availability
 - Safety and security
- ► Timing problems
 - ▶ Difficult to identify, debug and solve
 - Especially in Cyber-Physical Systems

- ► Event Triggering Constraints
 - Periodic-, Sporadic-, ConcretePattern-, BurstPattern-, ArbitraryEventTriggering

- EventTriggeringConstraints
 - Periodic-, Sporadic-, ConcretePattern-, BurstPattern-, ArbitraryEventTriggering
- ► Latency Timing Constraint
 - ► Time distance between *stimulus* and *response* events

- EventTriggeringConstraints
 - Periodic-, Sporadic-, ConcretePattern-, BurstPattern-, ArbitraryEventTriggering
- ► LatencyTimingConstraint
 - Time distance between stimulus and response events
- AgeConstraint
 - Minimum and maximum age of received data

- EventTriggeringConstraints
 - Periodic-, Sporadic-, ConcretePattern-, BurstPattern-, ArbitraryEventTriggering
- ► LatencyTimingConstraint
 - Time distance between stimulus and response events
- AgeConstraint
 - Minimum and maximum age of received data
- SynchronizationTimingConstraint
 - Synchronized event occurrences

- EventTriggeringConstraints
 - Periodic-, Sporadic-, ConcretePattern-, BurstPattern-, ArbitraryEventTriggering
- Latency Timing Constraint
 - Time distance between stimulus and response events
- AgeConstraint
 - Minimum and maximum age of received data
- SynchronizationTimingConstraint
 - Synchronized event occurrences
- SynchronizationPointConstraint
 - Source events must occur before target events

- EventTriggeringConstraints
 - Periodic-, Sporadic-, ConcretePattern-, BurstPattern-, ArbitraryEventTriggering
- ► LatencyTimingConstraint
 - Time distance between stimulus and response events
- AgeConstraint
 - Minimum and maximum age of received data
- SynchronizationTimingConstraint
 - Synchronized event occurrences
- SynchronizationPointConstraint
 - Source events must occur before target events
- OffsetTimingConstraint
 - Minimal and maximal time distance between events

- EventTriggeringConstraints
 - Periodic-, Sporadic-, ConcretePattern-, BurstPattern-, ArbitraryEventTriggering
- Latency Timing Constraint
 - ► Time distance between *stimulus* and *response* events
- AgeConstraint
 - Minimum and maximum age of received data
- SynchronizationTimingConstraint
 - Synchronized event occurrences
- SynchronizationPointConstraint
 - Source events must occur before target events
- OffsetTimingConstraint
 - Minimal and maximal time distance between events
- ExecutionOrderConstraint
 - Order relation between events

- EventTriggeringConstraints
 - Periodic-, Sporadic-, ConcretePattern-, BurstPattern-, ArbitraryEventTriggering
- Latency Timing Constraint
 - Time distance between stimulus and response events
- AgeConstraint
 - Minimum and maximum age of received data
- ► SynchronizationTimingConstraint
 - Synchronized event occurrences
- SynchronizationPointConstraint
 - Source events must occur before target events
- OffsetTimingConstraint
 - Minimal and maximal time distance between events
- ExecutionOrderConstraint
 - Order relation between events
- Execution TimeConstraint
 - Minimal and maximal runtime of an executable (e.g. functions)

AUTOSAR TIMEX Constraints - Informal Definition

- Problem: Informal definitions, only textual often
 - Different interpretations possible
 - Unsuitable for automated monitoring

AUTOSAR TIMEX Constraints - Informal Definition

- Problem: Informal definitions, only textual often
 - Different interpretations possible
 - Unsuitable for automated monitoring
- Example BurstPatternEventTriggering
 - Parameter patternPeriod (time value)
 - "The optional parameter "PatternPeriod" specifies the time distance between the beginnings of subsequent repetitions of the given burst pattern" [AUT18b]
 - Parameter patternJitter (time value)
 "The optional parameter "PatternJitter" specifies the deviation
 of the time interval's starting point from the beginning of the
 given period. This parameter is only applicable in conjunction
 with the parameter "Pattern Period"" [AUT18b]

BurstPatternEventTriggering

TADL2

► European ITEA2 Project TIMMO2USE (Timing Model, 2010-2012)[Blo+12]

TADL2

- ► European ITEA2 Project TIMMO2USE (Timing Model, 2010-2012)[Blo+12]
- ► Timing Augmented Description Language v. 2(TADL2)
 - ▶ Timing Extension for Electronics Architecture and Software Technology-Architecture Description Language (EAST-ADL)

TADL2

- ► European ITEA2 Project TIMMO2USE (Timing Model, 2010-2012)[Blo+12]
- ► Timing Augmented Description Language v. 2(TADL2)
 - Timing Extension for Electronics Architecture and Software
 Technology-Architecture Description Language (EAST-ADL)
- Constraints are strictly formally defined
 - ▶ TiCL (**Ti**ming **C**onstraint **L**ogic)

- ▶ Delay-, StrongDelay-, Reaction- and AgeConstraint
 - Events occur as "response" to each other

- ▶ Delay-, StrongDelay-, Reaction- and AgeConstraint
 - ► Events occur as "response" to each other
- ► Repeat-, Repetition-, Sporadic-, Periodic-, Pattern-, Burstand ArbitraryConstraint
 - ► Time distances between event occurrences

- Delay-, StrongDelay-, Reaction- and AgeConstraint
 - Events occur as "response" to each other
- Repeat-, Repetition-, Sporadic-, Periodic-, Pattern-, Burstand ArbitraryConstraint
 - ► Time distances between event occurrences
- Synchronization-, StrongSynchronization-, InputSynchronization- and OutputSynchronizationConstraint
 - Synchronized occurrences of events

- Delay-, StrongDelay-, Reaction- and AgeConstraint
 - Events occur as "response" to each other
- Repeat-, Repetition-, Sporadic-, Periodic-, Pattern-, Burstand ArbitraryConstraint
 - ► Time distances between event occurrences
- Synchronization-, StrongSynchronization-, InputSynchronization- and OutputSynchronizationConstraint
 - Synchronized occurrences of events
- Execution Time Constraint
 - Runtime of executables (e.g. functions)

- Delay-, StrongDelay-, Reaction- and AgeConstraint
 - Events occur as "response" to each other
- Repeat-, Repetition-, Sporadic-, Periodic-, Pattern-, Burstand ArbitraryConstraint
 - ► Time distances between event occurrences
- Synchronization-, StrongSynchronization-, InputSynchronization- and OutputSynchronizationConstraint
 - Synchronized occurrences of events
- Execution Time Constraint
 - Runtime of executables (e.g. functions)
- ComparisonConstraint
 - Comparison between timestamps

- ▶ Delay-, StrongDelay-, Reaction- and AgeConstraint
 - Events occur as "response" to each other
- Repeat-, Repetition-, Sporadic-, Periodic-, Pattern-, Burstand ArbitraryConstraint
 - ► Time distances between event occurrences
- Synchronization-, StrongSynchronization-, InputSynchronization- and OutputSynchronizationConstraint
 - Synchronized occurrences of events
- Execution Time Constraint
 - Runtime of executables (e.g. functions)
- ComparisonConstraint
 - Comparison between timestamps
- OrderConstraint
 - nth source event must occur before nth target event

AUTOSAR TIMEX 4.4.0 ⇔ TADL2

► Most AUTOSAR TIMEX Constraints can be expressed in

TADL2 Constraints:

AUTOSAR TIMEX	TADL2 Constraint	Complete Coverage
PeriodicEventTriggering	PeriodicConstraint	√
SporadicEventTriggering	SporadicConstraint	
ConcretePatternEventTriggering	PatternConstraint	Minor differences
BurstPatternEventTriggering	BurstConstraint	Large differences
ArbitraryEventTriggering	ArbitraryConstraint	Minor differences
LatencyTimingConstraint	ReactionConstraint	Minor differences
	AgeConstraint	
AgeConstraint	AgeConstraint	Minor differences
SynchronizationTimingConstraint	SynchronizationConstraint	√
	StrongSynchronizationConstraint	
	OutputSynchronizationConstraint	
	InputSynchronizationConstraint	
SynchronizationPointConstraint	_	-
OffsetTimingConstraint	DelayConstraint	$\sqrt{}$
ExecutionOrderConstraint	multiple use of	✓
	OrderConstraint	
ExecutionTimeConstraint	ExecutionTimeConstraint	Minor differences

- Not every property can be infinitely monitored on infinite streams
 - ► Limited Resources (memory, time)

- Not every property can be infinitely monitored on infinite streams
 - ► Limited Resources (memory, time)
- Classification
 - Simple Monitorable
 - Worst case memory and runtime per event bounded independent of trace
 - No new timestamps required (timestamp conservative)

- Not every property can be infinitely monitored on infinite streams
 - Limited Resources (memory, time)
- Classification
 - Simple Monitorable
 - Worst case memory and runtime per event bounded independent of trace
 - ▶ No new timestamps required (timestamp conservative)
 - Simple Monitorable with Delay
 - Extension to Simple Monitorable
 - Exactly one new timestamp may be introduced

- Not every property can be infinitely monitored on infinite streams
 - Limited Resources (memory, time)
- Classification
 - Simple Monitorable
 - Worst case memory and runtime per event bounded independent of trace
 - ▶ No new timestamps required (timestamp conservative)
 - Simple Monitorable with Delay
 - Extension to Simple Monitorable
 - Exactly one new timestamp may be introduced
 - ► Not Simple Monitorable
 - Worst case memory or runtime per event cannot be bounded independently from trace

Timestamps

- ▶ Infinite traces \Rightarrow infinite large timestamps
 - Cannot be used in simple monitorable setting

¹for example, a 64-bit unsigned integer variable is enough, to cover nanoseconds for 584.55 years ◆□ > ◆圖 > ◆園 > ◆園 > □ ■

Timestamps

- ▶ Infinite traces ⇒ infinite large timestamps
 - Cannot be used in simple monitorable setting
- Restriction of Timestamps
 - ightharpoonup Timestamps start at $t_0 = 0$
 - All used timestamps must be smaller than t_{max}. t_{max} must be big enough, so it is not reached in practical use ¹
 - Minimal distance between two subsequent time values is predetermined
 - Number of possible timestamps is significantly larger than the number of events

¹for example, a 64-bit unsigned integer variable is enough, to cover nanoseconds for 584.55 years

Simple Monitorability

 $\mathbb{D}_1 \times \mathbb{T}, ..., \mathbb{D}_n \times \mathbb{T}$ $\top^p, \perp^p, \perp\} \times \mathbb{T}$ Non-Synchronized Input streams

- State transition function, worst case runtime independent from input streams
- State stream, worst case memory independent from input streams
- Evaluation Function, worst case runtime independent from input streams
- Output stream
- For given constraint parameters, a monitor can be build, which monitors the constraint infinitely with fixed resources

Simple Monitorability with Delay

 $\{\top, \top^p, \bot^p, \bot\} \times \mathbb{T}$

For given constraint parameters, a monitor can be build, which monitors the constraint on infinitely with fixed resources

Output stream

streams

Simple Monitorable with Delay - Example RepeatConstraint

▶ RepeatConstraint(event, lower, upper, span) ⇔ $\forall X \leq event : |X| = span + 1 \Rightarrow lower \leq \lambda([X]) \leq upper$ Event upper upper upper lower lower lower upper upper lower lower

Figure: Example RepeatConstraint - lower = 4, upper = 5, span = 2

Not Simple Monitorable - Example DelayConstraint

▶ DelayConstraint(source, target) \Leftrightarrow $\forall x \in source : \exists y \in target : lower <math>\leq y - x \leq upper$

Figure: Example DelayConstraint - lower = 2, upper = 3

Not Simple Monitorable - Example DelayConstraint

▶ DelayConstraint(source, target) ⇔ $\forall x \in source : \exists y \in target : lower \leq y - x \leq upper$ source |||||||||||||| lower=upper

Figure: DelayConstraint with lower = upper = 5

target

Worst case memory consumption is not bounded independently from input stream ⇒ Not simple monitorable

Monitorability Analysis Results for the 18 TADL2 Constraints

BurstConstraint

Figure: Simple Monitorable

Monitorability Analysis Results for the 18 TADL2 Constraints

ExecutionTimeConstraint

Figure: Simple Monitorable, Simple Monitorable With Delay

Monitorability Analysis Results for the 18 TADL2 Constraints

Figure: Simple Monitorable, Simple Monitorable With Delay, Not simple Monitorable

Monitorability Analysis Results for the 18 TADL2 Constraints

Figure: Simple Monitorable, Simple Monitorable With Delay, Not simple Monitorable, Not applicable

Implementation

- According to the scheme presented in Simple Monitorability (with Delay)
 - State transition function
 - State stream
 - use of delay, if needed
 - Evaluation function

Implementation

- According to the scheme presented in Simple Monitorability (with Delay)
 - State transition function
 - State stream
 - use of *delay*, if needed
 - Evaluation function
- If possible, implementations were reused. E.g.:
 - BurstConstraint(event, length, maxOccurences, minimum) ⇔ RepeatConstraint(event, length, ∞, maxOccurrences)
 A PenestConstraint(event, minimum, ∞, 1)
 - \land RepeatConstraint(event, minimum, ∞ , 1)
 - ComparisonConstraint
 Comparison of timestamps already implemented in TeSSLa

Experimental Evaluation

► The implementations were tested on large Traces (10.000 Events), which were generated with different constraint parameters

Experimental Evaluation

- ► The implementations were tested on large Traces (10.000 Events), which were generated with different constraint parameters
- Edge cases tested seperately

Experimental Evaluation

- ► The implementations were tested on large Traces (10.000 Events), which were generated with different constraint parameters
- Edge cases tested seperately
- Runtime per input timestamp were measured
 - ► TeSSLa 1.2.2
 - Windows 10.0.19041.0
 - ► Intel i5-6600k, 4.3 GHz

Runtime - Constant Runtime

► Average Runtime per input timestamp

Constraint	Dependencies	Measured Time
ExecutionTimeConstraint	$\mathcal{O}(1)$	0.18-0.23ms
OrderConstraint	$\mathcal{O}(1)$	0.14-0.32ms
SporadicConstraint	$\mathcal{O}(1)$	0.36-0.42ms
PeridicConstraint	$\mathcal{O}(1)$	0.34-0.42ms
PatternConstraint	$\mathcal{O}(1)$	0.59-0.71ms
StrongDelayConstraint	$\mathcal{O}(1)$	0.21-0.38ms
RepeatConstraint	$\mathcal{O}(1)$	0.22-0.29ms
RepetitionConstraint	$\mathcal{O}(1)$	0.23-0.31ms
BurstConstraint	$\mathcal{O}(1)$	0.34-0.41ms

Runtime - Runtime Bounded by Parameters

► Average Runtime per input timestamp

Constraint	Dependencies	measured Time
DelayConstraint	$\mathcal{O}(\mathit{upper})$	0.25-0.43ms
Synchronization	$\mathcal{O}(\mathit{event} *$	0.82-8.55ms
Constraint	tolerance)	
StrongSynchronization	$\mathcal{O}(\mathit{event} *$	0.34-2.33ms
Constraint	tolerance)	
ArbitraryConstraint	$\mathcal{O}(minimum)$	0.2ms-8.26ms
AgeConstraint	O(maximum)	0.28-15.18ms
ReactionConstraint	O(maximum)	0.28-26.66ms
OutputSynchronization	O(tolerance	0.46-3.28ms
Constraint	$ response ^2$)	
InputSynchronization	$\mathcal{O}(stimulus ^2)$	0.33-143.76ms
Constraint		

Summary

- ► TADL2 as formal alternative to the AUTOSAR TIMEX constraints
- Monitorability of the TADL2 constraints
- Implementation of a monitor for each TADL2 constraint
 - experimental evaluation

References

AUTOSAR Basic Approach. https:

//web.archive.org/web/20170707082404/https:
//www.autosar.org/fileadmin/images/media_
pictures/AUTOSAR_Basic_Approach.jpg.
Accessed: 2020-12-06, archive from:2017-07-07.

AUTOSAR. Recommended Methods and Practices for Timing Analysis and Design within the AUTOSAR Development Process. Tech. rep. 4.4.0. AUTOSAR, 2018.

AUTOSAR. *Specification of Timing Extensions*. Tech. rep. 4.0. AUTOSAR, 2018.

Jean Berstel. *Transductions and Context-Free Languages* -. Wiesbaden: Vieweg+Teubner Verlag, 1979. ISBN: 978-3-519-02340-1.

Hans Blom et al. TIMMO2USE Language syntax, semantics, metamodel V2. Tech. rep. 1.2. ITEA2, 2012.