COMP 3721

Tutorial 10

Definition

The class P consists of all decision problems (languages) that are solvable in polynomial time. That is, there exists an algorithm that decides in polynomial time if any given input is a yes-input or a no-input.

Theorem

P is closed under complement, union, intersection, concatenation, and Kleene star.

NP

Definition

A nondeterministic TM runs in polynomial time if for any input x, the number of steps of any computation path is $O(n^c)$, where c is a constant and n = |x| is the input size. The class **NP** consists of all decision problems that can be decided by a nondeterministic TM in polynomial time.

Remark: **NP** stands for "nondeterministic polynomial time", not "non-polynomial"!

Theorem

NP is closed under union, intersection, concatenation and Kleene star.

NP

Theorem

A decision problem belongs to **NP** iff for each yes-input, there exists a certificate which allows one to verify in polynomial time that the input is indeed a yes-input.

1) Show that regular languages are in **P**.

1) Show that regular languages are in P.

P is the class of languages that can be **decided** by a **deterministic** Turing machine in **polynomial** time.

Idea:

- DFA can be regarded as a special kind of Turing machine.
- For any given input, after reading a symbol, the reading head moves one square to the right, the finite control enters a new state, which is deterministically dependent on the current state and current input symbol.
- After reading the entire input string, the finite control decides whether the input string is accepted or not.

2) Prove that **P** is closed under Kleene star.

Hints: Use Dynamic Programming.

2) Prove that **P** is closed under Kleene star.

Proof:

Let L be any language in P. Let A be the polynomial time algorithm decides L, then $A \in P$. Assume $A = O(n^k)$. We want to show $A^* \in P$, where A^* is the algorithm that decides L^* .

Let the input string $w=w_1\dots w_n$. $w\in L^*$ if and only if at least one of the following conditions is true.

- w=e
- $w \in L$
- $\exists u, v : w = uv \ and \ u \in L^* \ and \ v \in L^*$

2) Prove that **P** is closed under Kleene star.

Proof:

Subproblems:

For each $1 \le i \le j \le n$, we use f(i, j) to indicate whether the substring $w_{i,j} = w_i ... w_j$ is in L^* . If $w_{i,j}$ is in L^* , f(i, j) = 1; otherwise f(i, j) = 0.

Our goal is to compute f(1, n).

Prove that **P** is closed under Kleene star. On input $w=w_1...w_n$ if w=e, then accept else: for $l \leftarrow 1$ to n: for $i \leftarrow 1$ to n-(l-1): $j \leftarrow i + l - 1$ Run A on $w_{i,i}$ if A accepts $w_{i,j}$, then $f(i,j) \leftarrow 1$ else: for $k \leftarrow i$ to j-1: if f(i,k)=1 and f(k+1,j)=1

then $f(i,j) \leftarrow 1$

if f(1,n)=1, then accept; else reject.

2) Prove that **P** is closed under Kleene star.

Proof:

Analyze the time complexity of the decider:

There are 3 nested loops in the algorithm, each of which can be traversed at most O(n) time.

In the second loop we run A on an input of length at most n.

The total time is at most $O(n) \cdot \left(O(n^k) + O(n)\right) \cdot O(n) = O(n^{2+\max(k,1)})$. So $A^* \in P$.

3) Prove that graph isomorphism problem is in **NP**. The graph isomorphism problem determining whether two finite graphs, G and H, are isomorphic.

In graph theory, an isomorphism of graphs G and H is a bijection between the vertex sets of G and H such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H.

3) Prove that graph isomorphism problem is in **NP**.

https://commons.wikimedia.org/wiki/File:Graph_isomorphism_a.svg#/media/File:Graph_isomorphism_a.svg

3) Prove that graph isomorphism problem is in **NP**. The graph isomorphism problem determining whether two finite graphs, G and H, are isomorphic.

Theorem

A decision problem belongs to **NP** iff for each yes-input, there exists a certificate which allows one to verify in polynomial time that the input is indeed a yes-input.

- 1. Find the certificate.
- 2. Prove that it can be verified in polynomial time.

3) Prove that graph isomorphism problem is in **NP**.

Proof: Input: two graphs G and H.

Certificate: a map $f: V_G \to V_H$.

Verify:

- 1. Check if f is a bijection, that is, if $f(V_G)$ is a permutation of V_H . If no, return false; else continue.
- 2. Permute V_G as given by $f(V_G)$. Verify that the permuted G is identical to H.

Step 1 takes at most $O(n^2)$ where n=#vertices. Step 2 runs in O(n+e) where e=#edges. The algorithm runs in $O(n^2)$. So $graph\ isomorphism\ problem \in NP$.