Московский физико-технический институт

Отчет по лабораторной работе №5

Изучение термодинамических параметров гетерогенных реакций ионного обмена методом потенциометрии

выполнили студенты группы Б04-202 Гомзин Александр Горячев Арсений Игумнов Дмитрий

Содержание

1	Теоретические сведения	2
	1.1 Комментарии по поводу использованных в работе расчетных формул	2
2	Ход Работы 2.1 Существенные замечания	3
3	Экспериментальные данные	4
4	Обработка результатов	6
5	Заключение	8

Цель работы: определение изотерм ионного обмена между водными растворами электролитов и ионитами (катионитами на основе полисурьмяной кислоты) методом потенциометрии.

В работе используются: ионометр И-160M, магнитная мешалка, аналитические весы, микрошпатель для порошков, мерный цилиндр объемом 100 мл, стеклянный рН - чувствительный электрод, хлорсеребряный электрод сравнения, дозатор переменного объема 20-100 мкл, стеклянный стакан объемом 100 мл (3 шт), катионит - полисурьмяная кислота (порошок), растворы хлорида натрия, хлорида калия, хлорида лития (каждый 1М), деионизованная вода.

1 Теоретические сведения

На основании методички.

1.1 Комментарии по поводу использованных в работе расчетных формул

Выражение для константы равновесия для ионного обмена для случая монофункционального ионита в предположении равноценности всех связей обоих типов ионов и независимости взаимодействия ионов от степени заселенности твердой фазы:

$$K_a = \frac{\Gamma_{Me^+} \cdot a_{H^+}}{\Gamma_{H^+} \cdot a_{Me^+}}$$

Активности ионов в растворе принимаем равными концентрациям:

$$a_{Me^+} \approx C_{Me^+}, \ a_{H^+} \approx C_{H^+} = 10^{-pH} M$$

Предельная емкость катионита (в единицах кол-ва вещества):

$$\nu_0 = \Delta \nu_{init} + \Delta \nu_{titr} + \Delta \nu_{max},$$

где $\Delta\nu_{init}$ - количество ионов калия, замещающих протоны в катионите после его добавления в воду (влияние методики измерения; определяется по начальному изменению рН в течение ~ 5 мин), $\Delta\nu_{titr}$ - количество ионов натрия, замещающих протоны в результате титрования щелочью, $\Delta\nu_{max}$ - максимальное количество ионов металла, замещающих протоны в результате приливаний раствора соответствующего хлорида в течение длительного времени.

Предельная емкость катионита (в единицах кол-ва вещества, деленного на массу катионита) и емкости ионов (содержание их в катионите):

$$\Gamma_0 = \frac{\nu_0}{m_{cationite}}, \quad \Gamma_{Me^+} = \frac{\nu_{Me^+}^{(cat.)}}{m_{cationite}},$$

$$\Gamma_{H^+} = \frac{\nu_{H^+}^{(cat.)}}{m_{cationite}} = \frac{\nu_0 - \nu_{Me^+}^{(cat.)}}{m_{cationite}} = \Gamma_0 - \Gamma_{Me^+}$$

Равновесное количество ионов металла в катионите как функция номера прилитой порции раствора хлорида:

$$\begin{split} \nu_{Me^{+}}^{(cat.)}[1] &= -10^{-pH_{0}} \cdot V_{0} + 10^{-pH_{[1]}} \cdot (V_{0} + V_{[1]}), \\ \nu_{Me^{+}}^{(cat.)}[k] &= \nu_{Me^{+}}^{(cat.)}[k-1] - 10^{-pH_{[k-1]}} \cdot (V_{0} + \sum_{i=1}^{k-1} V_{i}) + 10^{-pH_{[k]}} \cdot (V_{0} + \sum_{i=1}^{k} V_{i}) \end{split}$$

Равновесное количество ионов металла в растворе как функция номера прилитой порции раствора хлорида:

$$\nu_{Me^{+}}^{(solv.)}[1] = C_{MeCl} \cdot V_{[1]} + 10^{-pH_{0}} \cdot V_{0} - 10^{-pH_{[1]}} \cdot (V_{0} + V_{[1]}),$$

$$\nu_{Me^{+}}^{(solv.)}[k] = \nu_{Me^{+}}^{(solv.)}[k-1] + C_{MeCl} \cdot V_{[k]} + 10^{-pH_{[k-1]}} \cdot (V_{0} + \sum_{i=1}^{k-1} V_{i}) - 10^{-pH_{[k]}} \cdot (V_{0} + \sum_{i=1}^{k} V_{i})$$

2 Ход Работы

На основании методички.

2.1 Существенные замечания

Цель работы - получение изотерм ионного обмена, что означает требование на постоянство температуры в течение эксперимента. Хотя в самом начале работы было открыто расположенное рядом окно, созданный в результате этого градиент температур можно считать несущественным на масштабе, соответствующем размеру сосуда с исследуемым раствором и электродами.

Достижение равновесий в эксперименте оценивалось по влиянию добавления реагентов в раствор на показания ионометра. Время ожидания установления четко не фиксировалось, но поначалу составляло в районе 1-2 минут, затем, при достаточно малых изменениях показаний достигало 5 минут.

3 Экспериментальные данные

Таблица 1. рН воды после добавления катионита (0.511 г)

рН	6.63	3.39	3.35	3.29	3.27	3.23	3.18
t, мин	0	1	2	3	4	5	6

Таблица 2. Значения pH после добавлений 1M раствора NaCl

рН	$\Delta V, \mu l$
2.8	100
2.63	200
2.51	300
2.43	400
2.37	500
2.33	600
2.30	700
2.25	800
2.23	900
2.20	1100
2.18	1300
2.17	1500
2.15	1700
2.15	1900
2.14	2100
2.13	2300
2.13	2500

Таблица 3. Титрование с помощью NaOH

pН	2.23	2.37	2.55	2.82	3.21	3.91	4.95	6.36	7.15	8.10
$\Delta V, \mu l$	200	400	600	800	1000	1200	1400	1600	1700	1800

Таблица 4. рН воды после добавления катионита (0.512 г)

рН	6.72	3.35	3.30	3.27	3.25	3.22
t, мин	0	1	2	3	4	5

Таблица 5. Значения рН после добавлений 1M раствора KCl

рН	$\Delta V, \mu l$
2.81	100
2.62	200
2.51	300
2.44	400
2.39	500
2.37	600
2.35	700
2.33	800
2.31	1000
2.30	1200
2.28	1400
2.28	1600
2.27	1800
2.27	2000

Таблица 6. рН воды после добавления катионита (0.510 г)

рН	6.63	3.33	3.31	3.25	3.23	3.21
t, мин	0	1	2	3	4	5

Таблица 7. Значения рН после добавлений 1M раствора LiCl

рН	$\Delta V, \mu l$
2.95	100
2.86	200
2.80	300
2.76	400
2.74	500
2.71	600
2.68	700
2.67	800
2.65	900
2.64	1000
2.63	1100
2.62	1200
2.60	1400
2.60	1600
2.60	1800
2.58	2000
2.57	2200
2.56	2400
2.55	2600
2.55	2800
2.54	3000

4 Обработка результатов

По виду зависимости предполагаем, что предпоследняя полученная точка ($V_{NaOH}=1.7\ ml,\ pH\approx7.15$) примерно соответствовала точке эквивалентности, дальнейший еще более быстрый рост функции объясняется сменой потенциалопределяющей реакции.

По приведенной в первом разделе формуле получаем предельную емкость катионита:

$$\Gamma_0 = (3.07 \pm 0.01) \frac{mmol}{g}$$

Расчетные константы ионного обмена (для натрия и калия рассматриваются начальные линейные участки зависимостей; неоднозначность выбора граничных точек вносит дополнительную погрешность в значения):

$$K_{Na^+} = 0.67 \pm 0.04$$

 $K_{K^+} = 0.37 \pm 0.06$
 $K_{Li^+} = 0.015 \pm 0.001$

5 Заключение

Нами были получены изотермы для процессов ионного обмена в катионите с участием ионов натрия, калия и лития, были оценены значения констант равновесия. Использованный нами катионит (полисурьмяная кислота SbSiP 8:1:1) проявляет наибольшее сродство к катионам натрия, что можно объяснить подходящими размерами.