УТВЕРЖДЕНО

Проректор по учебной работе и довузовской подготовке А. А. Воронов 30 мая 2018 года

ПРОГРАММА

по дисциплине: Общая физика: электричество и магнетизм

по направлению подготовки: 03.03.01 «Прикладные математика и физика»

физтех-школа: для всех физтех-школ

кафедра: общей физики

курс: $\underline{2}$ семестр: $\underline{3}$

Трудоёмкость:

теор. курс: базовая часть — 5 зачет. ед.; физ. практикум: базовая часть — 3 зачет. ед.;

лекции – 60 часов Экзамен – 3 семестр

практические (семинарские)

занятия – 30 часов

лабораторные занятия – 60 часов Диф. зачёт – 3 семестр

ВСЕГО АУДИТОРНЫХ ЧАСОВ – 150 Само

Самостоятельная работа: теор. курс — 105 часов физ. практикум — 75 часов

Программу и задание составили:

д.ф.-м.н., проф. Ю.Р. Аланакян д.ф.-м.н., проф. С.И. Попель д.ф.-м.н., проф. М.Г. Никулин к.ф.-м.н., проф. В.С. Булыгин к.ф.-м.н., доц. А.В. Гавриков

к.ф.-м.н., доц. П.В. Попов к.ф.-м.н., доц. Ю.Н. Филатов

Программа принята на заседании кафедры общей физики 16 мая 2018 года

Заведующий кафедрой д.ф.-м.н., профессор

А. В. Максимычев

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

- 1. Электрические заряды и электрическое поле. Закон сохранения заряда. Напряжённость электрического поля. Закон Кулона. Система единиц СГСЭ. Принцип суперпозиции. Электрическое поле диполя.
- 2. Теорема Гаусса для электрического поля в вакууме в интегральной и дифференциальной формах. Её применение для нахождения электростатических полей.
- 3. Потенциальный характер электростатического поля. Потенциал и разность потенциалов. Связь напряжённости поля с градиентом потенциала. Граничные условия на заряженной поверхности. Уравнения Пуассона и Лапласа. Единственность решения электростатической задачи. Метод «изображений».
- 4. Электрическое поле в веществе. Проводники в электрическом поле. Поляризация диэлектриков. Вектор поляризации. Свободные и связанные заряды. Теорема Гаусса при наличии диэлектриков. Вектор электрической индукции. Поляризуемость и диэлектрическая проницаемость. Граничные условия на поверхности проводника и на границе двух диэлектриков.
- 5. Электрическая ёмкость. Конденсаторы. Энергия электрического поля и её локализация в пространстве. Объёмная плотность энергии. Взаимная энергия зарядов. Энергия диполя в электрическом поле. Энергетический метод вычисления сил в электрическом поле.
- 6. Постоянный ток. Сила и плотность тока. Закон Ома в интегральной и дифференциальной формах. Электродвижущая сила. Правила Кирхгофа. Работа и мощность постоянного тока. Закон Джоуля—Ленца. Токи в объёмных средах.
- 7. Магнитное поле постоянного тока в вакууме. Вектор магнитной индукции. Сила Лоренца. Сила Ампера. Закон Био—Савара. Магнитное поле равномерно движущегося точечного заряда. Виток с током в магнитном поле. Магнитный момент тока.
- 8. Теорема о циркуляции магнитного поля в вакууме и её применение к расчету магнитных полей. Магнитное поле тороидальной катушки и соленоида. Дифференциальная форма теоремы о циркуляции.
- 9. Магнитное поле в веществе. Магнитная индукция и напряжённость поля. Вектор намагниченности. Токи проводимости и молекулярные токи. Теорема о циркуляции магнитного поля в веществе. Граничные условия на границе двух магнетиков. Применение теоремы о циркуляции для расчёта магнитных полей.
- 10. Магнитные свойства вещества. Качественные представления о механизме намагничивания пара- и диамагнетиков. Понятие о ферромагнетиках. Гистерезис. Магнитные свойства сверхпроводников І рода.

- 11. Электромагнитная индукция в движущихся и неподвижных проводниках. Закон электромагнитной индукции. Правило Ленца. Относительный характер электрического и магнитного полей. Преобразование \overrightarrow{E} и \overrightarrow{B} (при $v \ll c$).
- 12. Коэффициенты само- и взаимоиндукции. Процесс установления тока в цепи, содержащей индуктивность. Теорема взаимности. Магнитная энергия и её локализация в пространстве. Объёмная плотность энергии. Энергетический метод вычисления сил в магнитном поле. Подъёмная сила электромагнита.
- 13. Движение заряженных частиц в электрических и магнитных полях. Определение удельного заряда электрона. Эффект Холла, влияние магнитного поля на проводящие свойства сред.
- 14. Квазистационарные процессы. Колебания в линейных системах. Колебательный контур. Свободные затухающие колебания. Коэффициент затухания, логарифмический декремент и добротность. Энергетический смысл добротности.
- 15. Комплексная форма представления колебаний. Векторные диаграммы. Комплексное сопротивление (импеданс). Правила Кирхгофа для переменных токов. Работа и мощность переменного тока.
- 16. Вынужденные колебания под действием синусоидальной силы. Амплитудная и фазовая характеристики. Резонанс. Процесс установления стационарных колебаний.
- 17. Вынужденные колебания под действием несинусоидальной силы. Амплитудная и фазовая модуляции. Понятие о спектральном разложении. Спектр одиночного прямоугольного импульса и периодической последовательности импульсов. Соотношение неопределённостей.
- 18. Спектральный анализ линейных систем. Колебательный контур как спектральный прибор. Частотная характеристика и импульсный отклик. Квадратичное детектирование модулированных сигналов.
- 19. Параметрическое возбуждение колебаний. Понятие об автоколебаниях. Обратная связь. Условие самовозбуждения. Роль нелинейности.
- 20. Электрические флуктуации. Тепловой шум, формула Найквиста. Дробовой шум, формула Шоттки. Флуктуационный предел измерения слабых сигналов.
- 21. Уравнения Максвелла в интегральной и дифференциальной форме. Граничные условия. Ток смещения. Материальные уравнения. Волновое уравнение. Электромагнитные волны в однородном диэлектрике, их поперечность и скорость распространения.
- 22. Поток энергии в электромагнитной волне. Закон сохранения энергии и теорема Пойнтинга.

- 23. Понятие о линиях передачи энергии. Двухпроводная линия. Коэффициент стоячей волны. Согласованная нагрузка.
- 24. Электромагнитные волны в прямоугольном волноводе. Дисперсионное уравнение. Критическая частота. Понятие об объёмных резонаторах.
 - 25. Скин-эффект.
- 26. Элементы физики плазмы. Дебаевский радиус экранирования. Плазменные колебания, плазменная частота. Диэлектрическая проницаемость плазмы. Электромагнитные волны в плазме.
- 27. Электромагнитная природа света. Монохроматические волны. Комплексная амплитуда. Уравнение Гельмгольца. Плоские и сферические волны Давление излучения. Электромагнитный импульс. Излучение диполя (без вывода).
- 28. Электромагнитные волны на границе раздела двух диэлектриков. Формулы Френеля. Явление Брюстера. Явление полного внутреннего отражения.

Литература

Основная литература

- 1. *Сивухин Д.В.* Общий курс физики. Т. 3. М.: Физматлит, 2004.
- Кингсеп А.С., Локшин Г.Р., Ольхов О.А. Курс общей физики. Т. 1. М.: Физматлит, 2001.
- 3. Кириченко Н.А. Электричество и магнетизм. М.: МФТИ, 2011.
- Сборник задач по общему курсу физики. Ч. 2. Электричество и магнетизм. Оптика / под ред. В.А. Овчинкина. (4-е изд., испр. и доп.) М.: Физматкнига, 2017.

Дополнительная литература

- 5. *Калашников С.Г.* Электричество. М.: Наука, 1997.
- 6. Тамм И.Е. Основы теории электричества. М.: Физматлит, 2003.
- 7. Парселл Э. Электричество и магнетизм. М.: Наука, 1983.
- Фейнман Р.П. Фейнмановские лекции по физике. Выпуски 5, 6, 7. М.: Мир, 1977.
- 9. Горелик Г.С. Колебания и волны. М.: Физматлит, 2006.
- Козел С.М., Локшин Г.Р. Модулированные колебания, спектральный анализ, линейная фильтрация. М.: МФТИ, 2009.
- 11. *Булыгин В.С.* Явление Гиббса. Учебно-методическое пособие по курсу Общая физика. М.: МФТИ, 2016. 20 с.

Электронные ресурсы: http://physics.mipt.ru/S_III/

ЗАДАНИЕ ПО ФИЗИКЕ для студентов 2-го курса на осенний семестр

2018/19 учебного года

Дата	№ нед.	Тема семинарских занятий	Задачи	
			I	II
1-7 сен.	1	Электрическое поле в вакууме. Поле ди- поля. Теорема Гаусса.	1.9	1.10
			1.15	1.20
			1.19	1.16
			1.22	1.17
8-14 сен.	2	Потенциал. Проводники в электрическом поле. Метод изображений.	1.25	1.24
			2.5	2.4
			2.20	2.15
			2.22	2.34
15-21 сен.	3	Электрическое поле в веществе.	3.7	3.13
			3.26	3.19
			3.30	3.24
			3.23	3.65
22–28	4	Энергия электрического поля. Токи в неограниченных средах.	1.5	3.43
			3.61	3.50
сен.			3.67	3.63
			4.33	4.23
	5	Магнитное поле постоянного тока. Теорема о циркуляции. Магнитный момент.	5.5	5.6
29 сен. - 5 окт.			5.18	5.14
			5.21	5.16
			5.26	5.23
	6	Магнитное поле в веществе.	6.5	6.4
6–12			6.7	6.12
окт.			6.9	6.15
			6.18	6.17
13–19 окт.	7	Электромагнитная индукция. Теорема взаимности. Магнитная энергия. Силы в магнитном поле.	5.30	5.31
			5.28	8.47
			7.58	7.27
			7.64	7.31
20–26 окт.	8	Сверхпроводники в магнитном поле. Движение заряженных частиц. Эффект Холла.	6.23	6.26
			6.37	7.20
			8.34	8.30
		21001014.	8.64	8.69
27 окт.				
2	9	Контрольная работа (по группам)		
2 нояб. 3_9				
3–9 нояб.	10	Сдача 1-го задания		
поло.				

10–16 нояб.	11	Переходные процессы и свободные колебания в электрических цепях. Вынужденные гармонические колебания.	9.15 9.44 10.6 10.39	9.30 9.36 10.16 10.41	
17–23 нояб.	12	Модуляция, спектральный анализ. Параметрические колебания. Автоколебания.	11.10 11.15 11.35 11.37	11.9 11.13 11.24 11.55	
24–30 нояб.	13	Уравнения Максвелла. Вектор Пойнтинга. Электромагнитные волны, формулы Френеля.	8.51 12.3 12.8 2.2(o)	12.22 12.27 12.81 2.33(o)	
1-7 дек.	14	Двухпроводные линии передачи энергии. Волноводы. Резонаторы.	12.43 12.46 12.52 12.68	12.42 12.48 12.76 12.92	
8-14 дек.	15	Элементы физики плазмы. Скин-эффект.	12.55 12.96 12.58 T1	12.53 12.56 12.61 12.94	
15-21 дек.	Сдача 2-го задания				

Примечания

Номера задач указаны по Сборнику задач по общему курсу физики. Ч. 2. Электричество и магнетизм. Оптика / под ред. В.А. Овчинкина (4-е изд., испр. и доп.). — М.: Физматкнига, 2017.

Задачи 2.2(o) и 2.33(o) – из раздела «Оптика».

Все задачи обязательны для сдачи задания. В каждой теме семинара задачи разбиты на 3 группы:

- 3 адачи для самостоятельного решения студентами к предстоящему семинару.
 При необходимости эти задачи разбираются на семинаре.
- I задачи, рекомендованные для обсуждения на семинаре. Преподаватель на семинарах может разбирать и/или другие задачи по своему выбору.
- **II** задачи для самостоятельного решения студентами.

Решения задач 1 и 2 групп студент должен иметь в своей тетради при сдаче задания.

ЗАДАЧИ ДЛЯ ПОДГОТОВКИ К СЕМИНАРАМ (задачи группы 0)

Семинар 1

1. Вычислить отношение сил электростатического отталкивания и гравитационного притяжения двух протонов.

Ответ: 1,24 · 10³⁶.

2. Используя формулу для напряжённости поля точечного диполя с дипольным моментом \vec{p} , найдите напряжённость поля на оси диполя ($\alpha=0$) и в перпендикулярном направлении ($\alpha=\pi/2$).

Otbet:
$$\vec{E}_1 = \frac{2\vec{p}}{r^3}$$
, $\vec{E}_1 = -\frac{\vec{p}}{r^3}$.

3. Найдите напряжённость поля равномерно заряженной тонкой пластины и равномерно заряженной сферы. Постройте графики E(r).

Семинар 2

1. Незаряженный проводящий шар вносится в электрическое поле с известным распределением потенциала $\varphi(\vec{r})$. Каким будет потенциал шара?

Ответ: $\varphi(\vec{r}_0)$, где \vec{r}_0 — радиус-вектор центра шара.

2. В опытах Резерфорда золотая фольга бомбардировалась α -частицами $_4^2$ He с кинетической энергией W=5 МэВ. На какое минимальное расстояние может приблизиться α -частица к ядру золота $_{197}^{79}$ Au? (Заряд электрона $e=4.8\cdot 10^{-10}$ ед. СГС; 1 эВ $=1.6\cdot 10^{-12}$ эрг.)

$$\underline{\text{OTBET:}} \ r_{\min} = 2 \cdot 79 \cdot \frac{e^2}{W} \left(1 + \frac{4}{197} \right) = 4.6 \cdot 10^{-12} \text{ cm}.$$

3. Напряжённость электрического поля Земли $E_0=130~{\rm B/m}$, причём вектор $\vec{E}_0\uparrow\uparrow\vec{g}$. Какой заряд приобретёт горизонтально расположенный короткозамкнутый плоский конденсатор с площадью пластин $S=1~{\rm m}^2$?

Ответ:
$$0 = 3.4$$
 ед. СГСЭ.

Семинар 3

1. Найдите плотность поляризационных зарядов на торцах однородно поляризованного параллелепипеда.

<u>Ответ:</u> $\sigma_{\text{пол}} = P \cos \alpha$.

2. Залача 3.1.

3. Проводящий шар радиусом R_0 несёт заряд q и окружён шаровым слоем диэлектрика с проницаемостью ε , вплотную прилегающим к поверхности шара. Внешний радиус равен R. Определить потенциал проводящего шара.

Other:
$$\varphi = \frac{q}{R} \left(1 + \frac{R - R_0}{\varepsilon R_0} \right)$$
.

Семинар 4

1. Поверхностная плотность заряда на пластинах плоского конденсатора, заполненного диэлектриком с проницаемостью ε , равна σ . Определите объёмную плотность w_3 электрической энергии в конденсаторе.

$$\underline{\text{Otbet:}} \ w_{\mathfrak{I}} = \frac{2\pi\sigma^2}{\varepsilon}.$$

2. Плоский конденсатор заряжен до напряжения V. Расстояние между обкладками конденсатора равно h. Определить силу, действующую на единицу площади обкладок.

$$\underline{\text{Otbet:}} f = \frac{V^2}{8\pi h^2}.$$

3. Конденсатор ёмкостью C=20 см заполнен однородной слабопроводящей средой, имеющей малую проводимость $\lambda=10^{-6}~\rm Om^{-1}\cdot cm^{-1}$ и диэлектрическую проницаемость $\varepsilon=2$. Определить электрическое сопротивление между обкладками.

<u>Ответ:</u> $R \approx 8$ кОм.

Семинар 5

1. Определите индукцию магнитного поля в центре крайнего витка длинного соленоида с плотностью намотки n витков/см. По виткам соленоида протекает постоянный ток I.

$$\underline{\text{Otbet:}} \ B = \frac{2\pi nI}{c}.$$

2. Проводящий контур, по которому течёт постоянный ток I, состоит из отрезков дуг и радиусов (см. рисунок). Определите индукцию магнитного поля в точке O.

$$\underline{\text{OTBET:}} B = \frac{\pi l}{2c} \left(\frac{1}{r_1} - \frac{1}{r_2} \right).$$

3. Плоский конденсатор с обкладками в виде круглых дисков радиусом R заполнен немагнитной слабо проводящей средой. Через конденсатор протекает постоянный ток I. Найдите индукцию магнитного поля на расстоянии $r \leq R$ от оси конденсатора.

$$\underline{\text{Otbet:}} B = \frac{2I}{c} \cdot \frac{r}{R^2}.$$

Семинар 6

1. Длинный соленоид с плотностью намотки n витков/см заполнен диамагнитной средой с магнитной восприимчивостью $\chi < 0$. По виткам соленоида протекает ток I. Определите индукцию магнитного поля $B_{\text{мол}}$, создаваемую молекулярными токами. Как направлен $\vec{B}_{\text{мол}}$ относительно вектора магнитной индукции $\vec{B}_{\text{пров}}$, создаваемой токами проводимости?

Ответ:
$$B_{\text{мол}} = \frac{16\pi^2}{c} n \chi I$$
, $\vec{B}_{\text{мол}} \uparrow \downarrow \vec{B}_{\text{пров}}$.

2. Постоянный магнит длиной L с однородной намагниченностью I согнут в кольцо так, что между полюсами остался маленький зазор $\ell \ll L$. Определите магнитную индукцию в зазоре.

$$\underline{\text{OTBET:}} B = 4\pi I \frac{L}{L+\ell} \approx 4\pi I.$$

3. Подкова электромагнита из мягкого железа с магнитной проницаемостью $\mu_1\gg 1$ имеет сечение S_1 . Подкова замкнута перемычкой, имеющей сечение S_2 и выполненной из магнитного материала с проницаемостью $\mu_2\gg 1$. Пренебрегая рассеянием магнитного потока, определите отношения магнитных индукций B_1/B_2 и напряжённостей магнитного поля H_1/H_2 в подкове и перемычке.

$$\underbrace{\text{Otbet:}}_{B_2} \frac{B_1}{B_2} = \frac{S_2}{S_1} \cdot \frac{H_1}{H_2} = \frac{\mu_2 S_2}{\mu_1 S_1}.$$

Семинар 7

1. Тонкое кольцо радиусом r, имеющее электрическое сопротивление R, помещено в перпендикулярное ему однородное внешнее магнитное поле, убывающее по закону: $B(t) = B_0 e^{-t/\tau}$. Пренебрегая самоиндукцией, найти ток в кольце I(t) и тепло Q, которое выделится в кольце за большое время.

OTBET:
$$I(t) = \frac{\pi r^2}{cR\tau} B(t)$$
, $Q = \frac{I^2(0)}{2R} \tau$.

- 2. Задача 7.1.
- **3.** Найти объёмную плотность энергии магнитного поля внутри длинного соленоида с плотностью намотки n, по которому течёт постоянный ток I.

$$\underline{\text{Otbet:}} \ w_M = \frac{2\pi n^2 I^2}{c^2}.$$

Семинар 8

1. Задача 6.34.

2. Протон влетает в область поперечного магнитного поля B=5 Тл со скоростью $v=2,4\cdot 10^{10}$ см/с. Толщина области, занятой полем, d=50 см (см. рисунок). Найти угол отклонения протона α от первоначального направления движения. Излучением пренебречь.

<u>Otbet:</u> $\alpha \approx \arcsin \frac{3}{5} \approx 37^\circ$.

3. Задача 8.9.

Семинар 11

- 1. Задача 9.4.
- **2.** Найти зависимость тока в цепи I(t) от времени в схеме на рисунке, если после замыкания ключа в момент t=0 напряжение источника меняется по закону $\mathcal{E}(t)=At$. Рассмотреть случай $t\ll L/R$.

$$\underline{\text{Ответ:}} I(t) \approx \frac{At^2}{2L}.$$

3. Некоторый двухполюсник, имеющий импеданс $Z=3+i\sqrt{3}$ [Ом], подключён к идеальному источнику переменной ЭДС с амплитудой $\mathcal{E}_0=2$ В. Найдите среднюю мощность, потребляемую двухполюсником.

<u>Ответ:</u> P = 0.5 Вт.

Семинар 12

- 1. Задача 11.1.
- **2.** Задача 11.3(а, б).
- **3.** Спектр сигнала f(t) равен $F(\omega)$. Найти спектр сигнала:

$$g(t) = f(t) \cdot \sin \omega_0 t.$$

$$\underline{\text{Othet:}} \frac{1}{2} (F(\omega + \omega_0) - F(\omega - \omega_0)).$$

Семинар 13

1. Напряжение в плоском конденсаторе меняется по гармоническому закону $U=U_0\sin\omega t$. Пластины имеют форму дисков радиусом R, расстояние между которыми $h\ll R$, а между пластин — среда с проницаемостью ε . Пренебрегая краевыми эффектами, найти магнитное поле на расстоянии r от оси конденсатора. Частоту считать малой: $\omega\ll c/R$.

$$\underline{\text{OTBET:}} \ B \approx \frac{\omega r}{2c} \cdot \frac{\varepsilon U_0}{h} \cos \omega t.$$

2. Используя выражение для вектора Пойнтинга, в условиях предыдущей задачи найти полный поток $\frac{dW}{dt}$ электромагнитной энергии из конденсатора.

$$\underline{\text{Ответ:}} \frac{dW}{dt} = \frac{cU_0^2}{2} \sin 2\omega t, \text{ где } C = \frac{\varepsilon \pi R^2}{h}.$$

3. Задача 2.1 из раздела «Оптика».

Семинар 14

- **1.** Плоская электромагнитная волна бежит в однородной среде в направлении оси z и имеет компоненты поля $E_x(z,t)$ и $B_y(z,t)$. Фазовая скорость волны равна v. Показать, что в любой момент времени $E_x = \frac{v}{c}B_y$.
- **2.** При какой длине кабеля его нельзя при расчётах заменить эквивалентным точечным сопротивлением, если частота в цепи $\nu = 50 \, \text{Гц}$?

Ответ: $\ell \gtrsim 6 \cdot 10^3$ км.

3. Найти минимальную частоту электромагнитных колебаний в объёмном прямоугольном резонаторе со сторонами $1 \times 2 \times 3$ см, выполненном из идеального проводника.

Ответ: 9 ГГц.

Семинар 15

1. Температура электронов в плазме тлеющего разряда $T_e \sim 10^4$ K, концентрация $n_e \sim 10^9$ см $^{-3}$. При каком радиусе трубки разряд можно считать квазинейтральным?

<u>Ответ:</u> $r \gg 0.02$ см.

2. В условиях предыдущей задачи оцените кулоновскую энергию взаимодействия электронов между собой (в расчёте на одну частицу). Можно ли считать такую плазму идеальным газом?

 $\underline{\text{Ответ:}} \ w_{\text{кул}} \sim 10^{-4} \ \text{эВ;} \ \text{да, можно} \ (w_{\text{кул}} \ll kT \sim 1 \ \text{эВ}).$

3. Радиосигнал с частотой $\nu=4$ МГц посылается вертикально вверх и отражается от ионосферы на некоторой высоте. Определить концентрацию электронов в точке отражения.

Ответ:
$$n_e = 2 \cdot 10^5 \text{ см}^{-3}$$
.

4. Оценить сопротивление медного цилиндрического проводника длиной L=5 м, радиусом a=0.5 мм для частот $\nu_1=50$ Гц и $\nu_2=5$ МГц. Удельная проводимость меди $\lambda=5.8\cdot 10^7$ Ом $^{-1}\cdot$ м $^{-1}$.

Ответ:
$$R_1 = 0,1 \text{ Ом}, R_2 \approx 1 \text{ Ом}.$$

Текстовые задачи

Т1. Длинный медный цилиндр радиусом a=1 см помещён в переменное однородное магнитное поле, параллельное его оси. Амплитуда колебаний поля $B_0=100$ Гс, частота $\nu=50$ кГц. Определить тепловую мощность, выделяющуюся в цилиндре на единицу его длины. Проводимость меди $\lambda=5.2\cdot 10^{17}~{\rm c}^{-1}$, магнитная проницаемость $\mu\approx 1$.

Otbet:
$$Q \approx \frac{cB_0^2 a}{8} \sqrt{\frac{v}{\lambda}} \approx 1.2 \cdot 10^7 \frac{\text{ppr}}{\text{c·cm}} = 1.2 \cdot 10^2 \frac{\text{Bt}}{\text{m}}.$$