Math Document Template

Bee G S Ashuwin

Abstract—This is a document explaining for a question on the concept of area of triangles.

Download all python codes from

svn co https://github.com/Ashuwin/summer 20/ trunk/linalg triangle/codes

and latex-tikz codes from

svn co https://github.com/Ashuwin/summer 20/ trunk/linalg triangle/figs

1 Problem

Find the area of triangle whose vertices are

$$a) \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$
$$b) \begin{pmatrix} -5 \\ -1 \end{pmatrix}, \begin{pmatrix} 3 \\ -5 \end{pmatrix}, \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

2 Construction

2.1. The design parameters used for construction solution See Table. 2.1.

Design Parameters	
Parameters	Value
A	$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$
В	$\begin{pmatrix} -1 \\ 0 \end{pmatrix}$
C	$\begin{pmatrix} 2 \\ -4 \end{pmatrix}$
P	$\begin{pmatrix} -5 \\ -1 \end{pmatrix}$
Q	$\begin{pmatrix} 3 \\ -5 \end{pmatrix}$
R	$\binom{5}{2}$

TABLE 2.1: Triangle ABC and Triangle PQR

2.2. Draw fig. 2.2.

Solution: The following Python code generates 3.1. The area of triangle *ABC*: Fig. 2.2

Fig. 2.2: Triangle ABC using python

codes/triangle1.py

2.3. Draw fig. 2.3.

Fig. 2.3: Triangle *PQR* using python

Solution: The following Python code generates Fig. 2.3

codes/triangle2.py

3 Solution

Solution: The area of triangle *ABC* using cross

product is obtained as:

$$\frac{1}{2} \| (\mathbf{B} - \mathbf{A}) \times (\mathbf{C} - \mathbf{A}) \|$$

and it is found in the following python code:

Area of $\triangle ABC = 10.5 units^2$

3.2. The area of triangle *PQR*:

Solution: The area of triangle PQR using Heron's formula is obtained as:

$$\frac{1}{2} \| (\mathbf{Q} - \mathbf{P}) \times (\mathbf{R} - \mathbf{P}) \|$$

and it is found in the following python code:

Area of $\triangle PQR = 32units^2$