Definition 1 — Chart.

An *n*-dimensional chart (\mathcal{U}, x) on a set M consists of a subset $\mathcal{U} \subseteq \mathcal{M}$ and an injective map $x : \mathcal{U} \longrightarrow \mathbb{R}^n$ whose image $x(\mathcal{U}) \subseteq \mathbb{R}^n$ is an open set.

Definition 2 — Transition Maps.

Any two charts (\mathcal{U}, x) and (\mathcal{V}, y) determine a pair of transition maps

$$x(\mathcal{U} \cap \mathcal{V}) \xrightarrow{y \circ x^{-1}} y(\mathcal{U} \cap \mathcal{V})$$
 (1)

$$y(\mathcal{U} \cap \mathcal{V}) \xrightarrow{x \circ y^{-1}} x(\mathcal{U} \cap \mathcal{V})$$
 (2)

which are inverse to each other, and are thus bijections between subset of \mathbb{R}^n .

Definition 3 — C^k -compatible.

We say that the two charts are C^k -compatible for some $k \in \mathbb{N} \cup \{0, \infty\}$ if the sets $x(\mathcal{U} \cap \mathcal{V})$ and $y(\mathcal{U} \cap \mathcal{V})$ are both open and the transition maps $y \circ x^{-1}$ and $x \circ y^{-1}$ are both of class C^k . If $k = \infty$, we say the charts are smoothly compatible.

Definition 4 — Atlas.

An atlas of class C^k for the set M (or smooth atlas in the case $k = \infty$) is a collection of charts $\mathcal{A} = \{(\mathcal{U}_{\alpha}, x_{\alpha})\}_{\alpha \in I}$ that are all C^k -compatible with each other, such that $\bigcup_{\alpha \in I} \mathcal{U} = M$.

Definition 5 —

For a set M with an atlas \mathcal{A} of class C^k and $r \in \mathbb{N} \cup \{0, \infty\}$ with $r \leq k$, a function $f : M \longrightarrow \mathbb{R}$ is said to be of class C^k if and only if the function

$$f \circ x^{-1} : x(\mathcal{U}) \longrightarrow \mathbb{R}$$
 (3)

is of class C^r for every chart $(\mathcal{U}, x) \in \mathcal{A}$.

Definition 6 — .

For $k \in \mathbb{N} \cap \{\infty\}$, a C^k -structure or differentiable structure of class C^k on a set M is a maximal atlas \mathcal{A} of class C^k on M. In the case $k = \infty$, we also call this a smooth structure on M. If M has been endowed with a C^k -structure \mathcal{A} , then a chart (\mathcal{U}, x) on M will be referred to as a C^k -chart if it belongs to the maximal atlas \mathcal{A} .

Definition 7 — Topology.

A topology on a set X is a collection \mathcal{T} of subsets of X satisfying the following axioms:

- 1. $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$.
- 2. For every subcollection $I \subseteq \mathcal{T}$ it is $\bigcup_{\mathcal{U} \in I} \mathcal{U} \in \mathcal{T}$.
- 3. For every pair $\mathcal{U}_1, \mathcal{U}_2 \in \mathcal{T}$ it is $\mathcal{U}_1 \cap \mathcal{U}_2 \in \mathcal{T}$.

The pair (X, \mathcal{T}) is then called a topological space, and we call the sets $\mathcal{U} \in \mathcal{T}$ the open subsets in (X, \mathcal{T}) .

Definition 8 — Metrizable.

Definition 9 — .

Assume $k \in \mathbb{N} \cup \{\infty\}$. A differentiable manifold of class C^k or C^k -manifold is a set M endowed with a C^k -structure such that the induced topology on M is metrizable and separable. In the case $k = \infty$, we also call M are smooth manifold.

We say that M is n-dimensional and refer to M as an n-manifold, written dim M = n, if every chart in its differentiable structure is n-dimensional.

Exercise 1 —

Let $S^2 \in \mathbb{R}^3$ be the three dimensional unit sphere and set $p_{\pm} := (0,0,\pm 1) \in S^2$. Find two subsets $\mathcal{U}_1,\mathcal{U}_2 \subset S^2$ with $\mathcal{U}_1 \cup \mathcal{U}_2 = S^2 \setminus \{p_+,p_-\}$ such that for i=1,2,

- a) there are 2-dimensional charts of the form $(\mathcal{U}_i, \alpha_i)$ with $\alpha_i = (\theta_i, \phi_i)$, where the coordinate functions $\theta_i, \phi_i : \mathcal{U}_i \longrightarrow \mathbb{R}$ are
 - i) continuous
 - ii) and satisfy the spherical coordinate relations,
- b) and have images

$$\alpha_1(\mathcal{U}_1) = (0, 2\pi) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \subset \mathbb{R}^3 \quad \text{and} \quad \alpha_2(\mathcal{U}_2) = (-\pi, \pi) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \subset \mathbb{R}^3. \tag{4}$$