Correction du devoir surveillé 4.

Exercice 1

1°) • D'une part, comme $2x \xrightarrow[x \to 0]{} 0$:

$$1 + e^{2x} = \underset{x \to 0}{=} 1 + 1 + 2x + \frac{(2x)^2}{2} + o(x^2) = \underset{x \to 0}{=} 2 + 2x + 2x^2 + o(x^2).$$

• D'autre part : $\frac{1}{\cos x + \sin x} = \frac{1}{1 - \frac{x^2}{2} + o(x^2) + x + o(x^2)} = \frac{1}{1 + x - \frac{x^2}{2} + o(x^2)}$.

Posons $u = x - \frac{x^2}{2} + o(x^2)$. On a $u \xrightarrow[x \to 0]{} 0$ et $u \underset{x \to 0}{\sim} x$ donc un $o(u^2)$ est un $o(x^2)$.

Comme $\frac{1}{1+u} = 1 - u + u^2 + o(u^2)$:

$$\frac{1}{\cos x + \sin x} = 1 - \left(x - \frac{x^2}{2} + o(x^2)\right) + \left(x - \frac{x^2}{2} + o(x^2)\right)^2 + o(x^2)$$
$$= 1 - x + x^2 \left(\frac{1}{2} + 1\right) + x^2 + o(x^2) = 1 - x + \frac{3}{2}x^2 + o(x^2)$$

• Ainsi:

$$f(x) = \sum_{x \to 0} (2 + 2x + 2x^2 + o(x^2)) \left(1 - x + \frac{3x^2}{2} + o(x^2) \right)$$
$$= 2 - 2x + 3x^2 + 2x - 2x^2 + 2x^2 + o(x^2)$$
$$f(x) = 2 + 3x^2 + o(x^2)$$

2°) Pour
$$x > 1$$
, $f(x) = |x| \sqrt{1 - \frac{1}{x}} \exp\left(\frac{1}{x} \frac{1}{1 + \frac{1}{x}}\right) = x \sqrt{1 - \frac{1}{x}} \exp\left(\frac{1}{x} \frac{1}{1 + \frac{1}{x}}\right)$.

On développe ce qui est facteur de x avec une précision en $\underset{+\infty}{o} \left(\frac{1}{x^2}\right)$.

Comme
$$\frac{1}{x} \xrightarrow[x \to +\infty]{} 0$$
, $\sqrt{1 - \frac{1}{x}} = 1 - \frac{1}{2x} - \frac{1}{8x^2} + o\left(\frac{1}{x^2}\right)$
et $\exp\left(\frac{1}{x}\frac{1}{1 + \frac{1}{x}}\right) = \exp\left(\frac{1}{x}\left(1 - \frac{1}{x} + o\left(\frac{1}{x}\right)\right)\right)$
 $= \exp\left(\frac{1}{x} - \frac{1}{x^2} + o\left(\frac{1}{x^2}\right)\right)$

On pose $X = \frac{1}{x \to +\infty} \frac{1}{x} - \frac{1}{x^2} + o\left(\frac{1}{x^2}\right)$. On a bien : $X \xrightarrow[x \to +\infty]{} 0$.

De plus, $X \underset{x \to +\infty}{\sim} \frac{1}{x}$ donc un $o(X^2)$ est un $o(X^2)$.

$$\exp\left(\frac{1}{x}\frac{1}{1+\frac{1}{x}}\right) \underset{x \to +\infty}{=} 1 + \frac{1}{x} - \frac{1}{x^2} + \frac{1}{2}\left(\frac{1}{x} - \frac{1}{x^2}\right)^2 + o\left(\frac{1}{x^2}\right)$$

$$\underset{x \to +\infty}{=} 1 + \frac{1}{x} - \frac{1}{x^2}\frac{1}{2}\frac{1}{x^2} + o\left(\frac{1}{x^2}\right) \underset{x \to +\infty}{=} 1 + \frac{1}{x} - \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right)$$

On revient à f(x):

$$\begin{split} f(x) &\underset{x \to +\infty}{=} x \left(1 - \frac{1}{2x} - \frac{1}{8x^2} + o\left(\frac{1}{x^2}\right) \right) \left(1 + \frac{1}{x} - \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right) \right) \\ &\underset{x \to +\infty}{=} x \left(1 + \frac{1}{x} \left(1 - \frac{1}{2} \right) + \frac{1}{x^2} \left(-\frac{1}{2} - \frac{1}{2} - \frac{1}{8} \right) + o\left(\frac{1}{x^2}\right) \right) \\ &\underset{x \to +\infty}{=} x \left(x + \frac{1}{2x} - \frac{9}{8x^2} + o\left(\frac{1}{x^2}\right) \right) \\ f(x) &\underset{x \to +\infty}{=} x + \frac{1}{2} - \frac{9}{8x} + o\left(\frac{1}{x}\right) \end{split}$$

On en déduit que : $\underbrace{f(x) - \left(x + \frac{1}{2}\right)}_{\text{noté }\Delta(x)} \stackrel{=}{\underset{x \to +\infty}{=}} -\frac{9}{8x} + o\left(\frac{1}{x}\right)$. Donc $\Delta(x) \underset{x \to +\infty}{\sim} -\frac{9}{8x}$.

On en tire que:

- $\Delta(x) \xrightarrow[x \to +\infty]{} 0$, donc la droite \mathcal{D} d'équation $y = x + \frac{1}{2}$ est asymptote à la courbe \mathcal{C} de f en $+\infty$.
- $\Delta(x) < 0$ au voisinage de $+\infty$, donc, localement, \mathcal{C} est en-dessous de \mathcal{D} .

Exercice 2

- 1°) a) Soit $n \geq 1$. g_n est dérivable sur \mathbb{R}_+^* comme combinaison linéaire de fonctions dérivables et, pour tout x > 0, $g'_n(x) = e^x + \frac{1}{nx^2} > 0$. g_n est continue et est strictement croissante sur l'intervalle \mathbb{R}_+^* . Donc, g_n réalise une bijection de \mathbb{R}_+^* dans $\lim_{x \to 0} g_n(x)$, $\lim_{x \to +\infty} g_n(x)$ i.e. de \mathbb{R}_+^* dans \mathbb{R} . 0 est un réel donc 0 admet un unique antécédent u_n dans \mathbb{R}_+^* . Ainsi, \mathbb{R}_+^* l'équation \mathbb{R}_+^* admet une unique solution \mathbb{R}_+^* le solution
 - **b)** Soit $n \ge 1$. $g_n(u_n) = 0$ donc $e^{u_n} = \frac{1}{nu_n}$ soit encore, $nu_n = e^{-u_n}$.
- **2°) a)** Soit $n \ge 1$. $g_{n+1}(u_n) = e^{u_n} \frac{1}{(n+1)u_n} = \frac{1}{nu_n} \frac{1}{(n+1)u_n}$ par définition de la suite u Donc $g_{n+1}(u_n) = \frac{n+1-n}{n(n+1)u_n} = \frac{1}{n(n+1)u_n}$. Puisque $u_n > 0$, il vient : $g_{n+1}(u_n) > 0$.
 - **b)** Soit $n \ge 1$. Puisque $g_{n+1}(u_{n+1}) = 0$, il vient $g_{n+1}(u_n) > g_{n+1}(u_{n+1})$. Comme g_{n+1} est croissante sur $]0, +\infty[$, on en déduit que : $u_n > u_{n+1}$. Ainsi, [la suite (u_n) est strictement décroissante].
 - c) La suite (u_n) est décroissante et minorée par 0 donc la suite (u_n) converge vers un réel ℓ .
 - d) Par l'absurde, on suppose que $\ell \neq 0$. Comme la suite (u_n) est positive, on a nécessairement $\ell \geq 0$. Ainsi, $\ell > 0$. Pour tout $n \geq 1$, $nu_n = e^{-u_n}$ par 1.b.

D'une part, $nu_n \xrightarrow[n \to +\infty]{} +\infty$ car $\ell > 0$. D'autre part, $e^{-u_n} \xrightarrow[n \to +\infty]{} e^{-\ell}$ par continuité de exp.

Ceci est absurde par unicité de la limite. Ainsi, $\ell=0$.

Autre méthode (très rapide): $\forall n \geq 1, u_n = \frac{e^{-u_n}}{n}$. Or $e^{-u_n} \xrightarrow[n \to +\infty]{} e^{-\ell}$ et $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$ donc $u_n \xrightarrow[n \to +\infty]{} 0$.

3°) a) Soit $n \ge 1$. Par 1.b, $nu_n = e^{-u_n}$.

Comme (u_n) converge vers 0 et $e^x \xrightarrow[x\to 0]{} 1$, il vient $nu_n \xrightarrow[n\to +\infty]{} 1$.

D'où $nu_n = 1 + o(1)$ soit encore $u_n = \frac{1}{n} + o\left(\frac{1}{n}\right)$.

b) Soit $n \ge 1$. $nu_n = \exp(-u_n) = \exp\left(-\frac{1}{n} + o\left(\frac{1}{n}\right)\right)$.

Posons $X = -\frac{1}{n} + o\left(\frac{1}{n}\right), X \xrightarrow[x \to 0]{} 0$ et $X \sim -\frac{1}{n}$ donc un o(X) est un $o\left(\frac{1}{n}\right)$.

 $e^X = 1 + X + o(X)$. Donc, $nu_n = 1 - \frac{1}{n} + o\left(\frac{1}{n}\right)$.

Finalement, $u_n = \frac{1}{n} - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$. Ainsi, $ext{le r\'eel } \alpha = -1 \text{ convient}$.

4°) a) φ est dérivable sur \mathbb{R}_+ et, pour tout $x \in \mathbb{R}_+, \varphi'(x) = e^x + xe^x = (x+1)e^x > 0$.

Donc, φ est strictement croissante sur \mathbb{R}_+ .

De plus, φ est continue sur l'intervalle \mathbb{R}_+ .

Donc, φ réalise une bijection de l'intervalle \mathbb{R}_+ dans $[\varphi(0), \lim_{x \to +\infty} \varphi(x)]$.

Donc, φ réalise une bijection de l'intervalle \mathbb{R}_+ dans \mathbb{R}_+

b) Soit $x \in \mathbb{R}_+$. $\varphi(x) = x(1+x+o(x))$. Donc $\varphi(x) = x+x^2+o(x^2)$.

c) $\varphi^{-1}(x) \xrightarrow[x\to 0]{} a$ et, par continuité de φ^{-1} en 0, on a aussi : $\varphi^{-1}(x) \xrightarrow[x\to 0]{} \varphi^{-1}(0)$.

Donc, par unicité de la limite, $\varphi^{-1}(0) = a$.

Or, $\varphi(0) = 0$ donc $\varphi^{-1}(0) = 0$. Ainsi, a = 0.

d) $\varphi^{-1}(\varphi(x)) = \varphi^{-1}(x + x^2 + o(x^2)).$

On pose $X = x + x^2 + o(x^2)$. $X \xrightarrow[x \to 0]{} 0$ et $X \sim x$ donc un $o(X^2)$ est un $o(x^2)$.

Avec le résultat de la question b, $\varphi^{-1}(\varphi(x)) = b(x + x^2 + o(x^2)) + c(x + x^2 + o(x^2))^2 + o(x^2)$,

i.e. $\varphi^{-1}(\varphi(x)) = bx + x^2(b+c) + o(x^2)$.

Or, $\forall x \in \mathbb{R}_+, \varphi^{-1}(\varphi(x)) = x \text{ donc } x = bx + x^2(b+c) + o(x^2).$

Ce qui peut s'écrire : $0 + 0.x + 0.x^2 + o(x^2) = bx + x^2(b+c) + o(x^2)$.

Par unicité du développement limité à l'ordre 2 en 0, il vient : $\begin{cases} b=1 \\ b+c=0 \end{cases}$ d'où b=1, c=-1.

e) Soit $n \ge 1$. $nu_n = e^{-u_n}$ donc $u_n e^{u_n} = \frac{1}{n}$. Ainsi, $\varphi(u_n) = \frac{1}{n}$. Ce qui donne : $u_n = \varphi^{-1}\left(\frac{1}{n}\right)$.

 $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$ et par 4d, $\varphi^{-1}(x) = x - x^2 + o(x^2)$.

On en déduit que $u_n = \frac{1}{n} - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$.

Exercice 3

Partie 1

- 1°) $\forall n \in \mathbb{N}, u_{n+1} u_n = -u_n^2 \leq 0$. Ainsi, la suite (u_n) est décroissante.
- **2°)** a) f est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, f'(x) = 1 2x.

Justification des limites : $\forall x \in \mathbb{R}, f(x) = x - x^2 = x(1-x)$ puis on conclut par produit.

b) f est croissante sur $\left[0, \frac{1}{2}\right]$ donc, pour tout $x \in \left[0, \frac{1}{2}\right]$, $f(0) \le f(x) \le f\left(\frac{1}{2}\right)$ ie $0 \le f(x) \le \frac{1}{4}$ donc $0 \le f(x) \le 1$.

De même, on démontre que : $\forall x \in \left[\frac{1}{2}, 1\right], 0 \le f(x) \le 1$.

Ainsi, pour tout $x \in [0, 1], 0 \le f(x) \le 1$.

Remarque: On dit que l'intervalle [0,1] est stable par f.

c) On suppose que la suite (u_n) converge vers un réel β .

 $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

D'une part, $u_{n+1} \xrightarrow[n \to +\infty]{} \beta$.

D'autre part, $f(u_n) \underset{n \to +\infty}{\longrightarrow} f(\beta)$ par continuité de f en β .

Ainsi, par unicité de la limite, $f(\beta)=\beta$ donc $\beta-\beta^2=\beta$. D'où $\beta=0$.

Si (u_n) converge vers un réel β alors $\beta = 0$.

3°) a) $\overline{(u_n)}$ est décroissante par 1 donc, par le théorème de la limite monotone, (u_n) converge ou $u_n \underset{n \to +\infty}{\longrightarrow} -\infty$.

Par l'absurde, supposons que (u_n) converge vers un réel. Alors, par 2c, (u_n) converge vers 0. Par décroissance de (u_n) alors : $\forall n \in \mathbb{N}, 0 \leq u_n$. En particulier $0 \leq u_0$. Exclu puisque $u_0 = a < 0$.

Ainsi, a la suite (u_n) diverge vers $-\infty$.

b) Comme a > 1, $u_1 = f(u_0) = f(a) = a - a^2 = a(1 - a) < 0$.

On se ramène alors au cas précédent : $(u_n)_{n\geq 1}$ est décroissante. Si elle converge alors c'est vers 0. On a alors $0\leq u_1$: exclu.

Ainsi, la suite (u_n) diverge vers $-\infty$.

- c) On pose, pour $n \in \mathbb{N}, H_n : 0 \le u_n \le 1$.
 - \star H_0 est vraie.
 - ★ Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie. Alors $0 \le u_n \le 1$. Par 2b, $0 \le f(u_n) \le 1$ ie $0 \le u_{n+1} \le 1$. Donc, H_{n+1} est vraie.
 - ★ On a montré par récurrence que : $\forall n \in \mathbb{N}, 0 \leq u_n \leq 1$.

Par 1, (u_n) est décroissante. Comme (u_n) est minorée par 0, on en déduit, par le théorème de la limite monotone que (u_n) converge. Par 2c, la suite (u_n) converge vers 0.

Partie 2

4°) a) Soit
$$n \in \mathbb{N}$$
. $f\left(\frac{1}{n+1}\right) = \frac{1}{n+1} - \frac{1}{(n+1)^2} = \frac{n+1-1}{(n+1)^2} = \frac{n}{(n+1)^2}$.
$$\frac{n}{(n+1)^2} \le \frac{1}{n+2} \iff n(n+2) \le (n+1)^2 \qquad \text{car } (n+1)^2 > 0 \text{ et } n+2 > 0$$

$$\iff n^2 + 2n \le n^2 + 2n + 1$$

$$\iff 0 \le 1$$

$$0 \le 1 \text{ donc } \frac{n}{(n+1)^2} \le \frac{1}{n+2}$$
. Ainsi, $f\left(\frac{1}{n+1}\right) \le \frac{1}{n+2}$.

- **b)** On pose, pour $n \in \mathbb{N}^*$, $H_n : 0 < u_n \le \frac{1}{n+1}$.
 - $\star u_1 = f(u_0) = f(a).$

Or d'après le tableau de variation de f, f a pour maximum $\frac{1}{4}$. On a donc $f(a) \leq \frac{1}{4} < \frac{1}{2}$. Par ailleurs, f(a) = a(1-a) > 0 puisque $a \in]0,1[$.

Donc $0 < u_1 \le \frac{1}{2}$.

Ainsi, H_1 est vraie.

 \star Soit $n \in \mathbb{N}^*$ fixé. On suppose que H_n est vraie. Montrons que H_{n+1} est vraie.

On a alors : $0 < u_n \le \frac{1}{n+1}$.

 $n+1 \ge 2 > 0$ donc $\frac{1}{n+1} \le \frac{1}{2}$.

D'où, par stricte croissance de f sur $\left[0,\frac{1}{2}\right], f(0) < f(u_n) \le f\left(\frac{1}{n+1}\right)$.

Par ce qui précède, $f\left(\frac{1}{n+1}\right) \le \frac{1}{n+2}$ donc, puisque f(0) = 0, $0 < u_{n+1} \le \frac{1}{n+2}$.

Ainsi, H_{n+1} est vraie.

- **\star** On a montré par récurrence que : $\forall n \in \mathbb{N}^*, 0 < u_n \leq \frac{1}{n+1}$
- 5°) a) Soit $n \in \mathbb{N}^*$.

$$v_{n+1} - v_n = (n+1)u_{n+1} - nu_n$$

$$= (n+1)(u_n - u_n^2) - nu_n$$

$$= (n+1)u_n - (n+1)u_n^2 - nu_n$$

$$= u_n - (n+1)u_n^2$$

$$= u_n(1 - (n+1)u_n)$$

Par 4b, on a: $u_n > 0$ et $u_n \le \frac{1}{n+1}$. Puisque n+1 > 0, $(n+1)u_n \le 1$. Ainsi, $v_{n+1} - v_n \ge 0$. La suite $(v_n)_{n\in\mathbb{N}^*}$ est croissante.

b) $\forall n \in \mathbb{N}^*, u_n \leq \frac{1}{n+1}$ donc, puisque $n \geq 0$, $nu_n \leq \frac{n}{n+1}$ d'où $v_n \leq 1$.

La suite (v_n) est croissante et majorée par 1.

Donc, par le théorème de la limite monotone, (v_n) converge vers un réel ℓ .

Pour tout $n \in \mathbb{N}^*$, $0 < v_n \le 1$ donc, par passage à la limite $0 \le \ell \le 1$.

Ainsi, $\ell \in [0,1]$

6°) a) Soit
$$k \in \mathbb{N}^*$$
. La suite (v_n) est croissante donc $v_k \ge v_1$ ie $ku_k \ge u_1$. Comme $k > 0$, $u_k \ge \frac{u_1}{k}$

b) Soit $n \in \mathbb{N}^*$.

$$S_{2n} - S_n = \sum_{k=1}^{2n} u_k - \sum_{k=1}^n u_k = \sum_{k=n+1}^{2n} u_k.$$

Pour tout $k \in \{n+1,\ldots,2n\}$, $0 < k \le 2n$ donc $\frac{1}{k} \ge \frac{1}{2n}$; comme $u_1 \ge 0$, $\frac{u_1}{k} \ge \frac{u_1}{2n}$, et grâce à la question précédente, $u_k \ge \frac{u_1}{2n}$.

En sommant de k = n + 1 à k = 2n:

$$\sum_{k=n+1}^{2n} u_k \ge \sum_{k=n+1}^{2n} \frac{u_1}{2n}$$

$$\ge ((2n - (n+1) + 1) \frac{u_1}{2n})$$

$$S_{2n} - S_n \ge \frac{u_1}{2}$$

c) $\forall n \in \mathbb{N}^*, S_{n+1} - S_n = u_{n+1} \ge 0 \text{ par 4b.}$

La suite (S_n) est donc croissante.

Ainsi, par le théorème de la limite monotone, (S_n) converge ou (S_n) diverge vers $+\infty$.

Par l'absurde, supposons que (S_n) converge vers un réel ℓ .

La suite (S_{2n}) est une suite extraite de (S_n) donc elle converge aussi vers ℓ .

Ainsi, par différence, $S_{2n} - S_n \xrightarrow[n \to +\infty]{} 0$.

Or, par la question précédente, pour tout $n \in \mathbb{N}^*$, $S_{2n} - S_n \ge \frac{u_1}{2}$.

Par passage à la limite, on obtient $0 \ge \frac{u_1}{2}$: exclu car $u_1 > 0$ par 4b.

On en déduit que la suite (S_n) diverge vers $+\infty$

 7°) a) Soit $k \in \mathbb{N}^*$.

En reprenant le calcul effectué dans 5a : $v_{k+1} - v_k = u_k(1 - (k+1)u_k) = u_k(1 - ku_k - u_k)$.

Ainsi, $v_{k+1} - v_k = u_k(1 - v_k - u_k)$.

La suite (v_n) est croissante et converge vers ℓ donc $v_k \leq \ell$.

Ainsi, $-v_k \ge -\ell$ puis $1 - v_k - u_k \ge 1 - \ell - u_k$.

Comme, par 4b, $u_k \ge 0$, il vient : $u_k(1 - v_k - u_k) \ge u_k((1 - \ell) - u_k)$.

Finalement, $v_{k+1} - v_k \ge u_k ((1 - \ell) - u_k)$.

b) Soit $n \in \mathbb{N}^*$. $\sum_{k=1}^n u_k^2 = \sum_{k=1}^n (u_k - u_{k+1})$ par définition de la suite u.

Ainsi, par téléscopage, $\sum_{k=1}^{n} u_k^2 = u_1 - u_{n+1}.$

c) Soit $n \in \mathbb{N}^*$. Soit $k \in \mathbb{N}^*$.

Par 7a, $v_{k+1} - v_k \ge u_k ((1 - \ell) - u_k)$.

En sommant de k = 1 à k = n: $\sum_{k=1}^{n} (v_{k+1} - v_k) \ge \sum_{k=1}^{n} u_k ((1 - \ell) - u_k)$.

D'une part, par téléscopage, $\sum_{k=1}^{n} (v_{k+1} - v_k) = v_{n+1} - v_1.$

D'autre part,
$$\sum_{k=1}^{n} u_k ((1-\ell) - u_k) = (1-\ell) \sum_{k=1}^{n} u_k - \sum_{k=1}^{n} u_k^2 = (1-\ell) S_n + u_{n+1} - u_1.$$

Ainsi,
$$v_{n+1} - v_1 \ge (1 - \ell)S_n + u_{n+1} - u_1$$
.
Finalement, $v_{n+1} \ge (1 - \ell)S_n + u_{n+1}$ car $v_1 = u_1$.

d) Par l'absurde, supposons $\ell \neq 1$. Comme $\ell \in [0,1]$ par 5b, on a donc : $\ell < 1$.

$$S_n \xrightarrow[n \to +\infty]{} +\infty$$
 et $1 - \ell > 0$ donc $(1 - \ell)S_n \xrightarrow[n \to +\infty]{} +\infty$.

Comme (u_n) converge vers 0, $S_n(1-\ell) + u_{n+1} \xrightarrow[n \to +\infty]{} +\infty$.

Or, par la question précédente, pour tout $n \in \mathbb{N}^*, v_{n+1} \ge (1 - \ell)S_n + u_{n+1}$.

On en déduit que $v_{n+1} \xrightarrow[n \to +\infty]{} +\infty$. Exclu puisque la suite (v_n) converge.

Ainsi, $\ell = 1$.

8°) La suite (v_n) converge vers 1 donc $v_n = 1 + o(1)$.

Ainsi,
$$nu_n = 1 + o(1)$$
 puis $u_n = \frac{1 + o(1)}{n}$. Ainsi, $u_n = \frac{1}{n} + o\left(\frac{1}{n}\right)$.

Exercice 4

Partie 1: Notion d'involution

1°) Soit $\varphi : \mathbb{R} \to \mathbb{R}$ ie $\varphi = -\operatorname{id}_{\mathbb{R}}$. Alors, pour tout $x \in \mathbb{R}, \varphi(\varphi(x)) = \varphi(-x) = x$.

Ainsi, $\varphi \circ \varphi = \mathrm{id}_{\mathbb{R}} \text{ donc } \varphi$ est une involution de \mathbb{R} .

- **2°)** Soit $\varphi : \mathbb{R}_+^* \to \mathbb{R}_+^*$. Alors, $\varphi \circ \varphi = \mathrm{id}_{\mathbb{R}_+^*} : \varphi$ est une involution de \mathbb{R}_+^* . $x \mapsto \frac{1}{x}$
- **3°)** Soit φ une involution de I. Alors, $\varphi \circ \varphi = \mathrm{id}_I$.

En posant $\psi = \varphi$, on a les égalités : $\varphi \circ \psi = \psi \circ \varphi = \mathrm{id}_I$.

Ainsi, φ est bijective et $\varphi^{-1} = \psi = \varphi$.

Partie 2 : Quelques propriétés des fonctions de ${\mathcal E}$

 $\mathbf{4}^{\circ}$) Soit deux réels y_1 et y_2 strictement positifs tels que $f(y_1) = f(y_2)$. Montrons que $y_1 = y_2$.

En utilisant (a) avec 1 et $y_1 : f(1f(y_1)) = y_1 f(1)$ ie $f(f(y_1)) = y_1 f(1)$.

De même, $f(1f(y_2)) = y_2 f(1)$ donc $f(f(y_2)) = y_2 f(1)$.

 $f(y_1) = f(y_2)$ donc $f(f(y_1)) = f(f(y_2))$. Ainsi, $y_1 f(1) = y_2 f(1)$, ce qui s'écrit : $f(1)(y_1 - y_2) = 0$.

Or f est à valeurs dans \mathbb{R}_+^* donc $f(1) \neq 0$. Ainsi, $y_1 = y_2$.

f est donc injective.

- 5°) En utilisant (a) avec x = y = 1: f(1f(1)) = 1f(1) = f(1). On a donc f(f(1)) = f(1). Comme f est injective, il vient f(1) = 1.
- 6°) Soit x > 0. En utilisant (a) avec 1 et x : f(1f(x)) = xf(1). Puisque f(1) = 1, il vient : f(f(x)) = x.

Ainsi, $f \circ f = \mathrm{id}_{\mathbb{R}_+^*} : f$ est une involution de $]0, +\infty[$.

 7°) Soit x et y deux réels strictement positifs.

En utilisant (a) avec x et f(y): f(xf(f(y))) = f(y)f(x).

Comme f est une involution, f(f(y)) = y donc |f(xy)| = f(x)f(y)

Partie 3 : Détermination de l'ensemble \mathcal{E}

- **8°)** a) $f(1) = 1 \text{ donc } 1 \in F. \text{ Ainsi}, |F \neq \emptyset|$
 - b) Soit x > 0. En utilisant (a) avec x et y = x: f(xf(x)) = xf(x). Donc, $|xf(x)| \in F$
 - c) Soit x et y des éléments de F. Alors, f(x) = x et f(y) = y. En utilisant la question 7, on obtient que f(xy) = f(x)f(y) = xy. Donc, $|xy \in F|$

En utilisant à nouveau la question 7 avec x et $\frac{1}{x}$, on obtient que $f\left(x\frac{1}{x}\right) = f(x)f\left(\frac{1}{x}\right)$, i.e.

 $1 = xf\left(\frac{1}{x}\right)$ puisque 1 et x sont dans F. Ainsi, $f\left(\frac{1}{x}\right) = \frac{1}{x}$. Donc, $\left|\frac{1}{x} \in F\right|$.

d) Soit $x \in F$ ie f(x) = x.

On pose, pour $n \in \mathbb{N}$, $H_n : x^n \in F$.

- ★ Pour n = 0: $x^0 = 1$ et $1 \in F$ donc H_0 est vraie.
- \star On suppose que H_n est vraie pour un rang n fixé dans \mathbb{N} . Alors $x^n \in F$ par H_n et $x \in F$, donc par la question précédente, $x^n x = x^{n+1} \in F$. H_{n+1} est vraie.
- ★ On a montré par récurrence que : $\forall n \in \mathbb{N}, x^n \in F$. e) Soit $x \in F$. Par l'absurde, supposons x > 1. Alors, $x^n \xrightarrow[n \to +\infty]{} +\infty$.

Par (b), il existe un réel A tel que, pour tout u > 1, $f(u) \leq A$.

Pour tout $n \in \mathbb{N}, x^n > 1$ donc $f(x^n) \leq A$.

Or $x \in F$ donc, pour tout $n \in \mathbb{N}$, $x^n \in F$ par 8d. Ainsi, $f(x^n) = x^n$ donc $x^n \leq A$.

Ainsi, (x^n) est une suite majorée par A. Ceci est exclu puisque $x^n \longrightarrow +\infty$.

On en déduit que $|x \le 1|$

- f) On procède par double inclusion.
 - \star On sait déjà que $1 \in F$.
 - \star Réciproquement, soit $x \in F$. Montrons que x = 1.

Par la question précédente, $x \leq 1$.

D'autre part, $x \in F$ donc, par 8c, $\frac{1}{x} \in F$.

Ainsi, par la question précédente, $\frac{1}{x} \leq 1$. Comme x > 0, il vient $x \geq 1$. On en déduit que x = 1.

Finalement $F = \{1\}$

- g) Soit x > 0. Par 8b, $xf(x) \in F$. Or $F = \{1\}$ donc xf(x) = 1. Ainsi, $f(x) = \frac{1}{x}$. f est la fonction $x \mapsto \frac{1}{x}$.
- 9°) \star Soit $f \in \mathcal{E}$. Alors, par ce qui précède, f est la fonction $\mathbb{R}_+^* \to \mathbb{R}_+^*$. $x \mapsto \frac{1}{x}$.
 - \bigstar Réciproquement, soit f la fonction $\mathbb{R}_+^* \to \mathbb{R}_+^*$. Montrons que $f \in \mathcal{E}$. $x \mapsto \frac{1}{x}$

f va de \mathbb{R}_+^* dans \mathbb{R}_+^* . Vérifions (a) et (b).

Soit x et y deux réels strictement positifs. $f(xf(y)) = f\left(\frac{x}{y}\right) = \frac{y}{x} = yf(x)$.

Donc (a) est vraie.

 $\forall x > 1, f(x) = \frac{1}{x} \le 1$: ainsi, f est majorée sur $]1, +\infty[$. Donc (b) est vraie.