Corrigé de l'Epreuve de Physique Concours Mathématiques et Physique **Partie I : Electromagnétisme**

Q	Réponse	Barème
A-1-1	$\oint \vec{A} \cdot d\vec{l} = 2\pi rA$	I
	$\oint \vec{A} \cdot d\vec{l} = \iint_{\vec{S}} \vec{rot} \vec{A} \cdot d\vec{S} \text{ .Comme on suppose que } \vec{A} = A.\vec{u}_{\varphi} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} = A.\vec{u}_{\varphi} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} = A.\vec{u}_{\varphi} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} = A.\vec{u}_{\varphi} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} = A.\vec{u}_{\varphi} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} = A.\vec{u}_{\varphi} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} = A.\vec{u}_{\varphi} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} = A.\vec{u}_{\varphi} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} = A.\vec{u}_{\varphi} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} = A.\vec{u}_{\varphi} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} = A.\vec{u}_{\varphi} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} = A.\vec{u}_{\varphi} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} = A.\vec{u}_{\varphi} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} = A.\vec{u}_{\varphi} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} \text{ (} \vec{A} \text{ est un vrai vecteur } \vec{A} \text{)} $	
	2π	
	et possède les symétries de ses causes) On obtient : $\int_0^{\infty} Ar d\varphi = \iint_S \vec{B} \cdot d\vec{S}$	
	puisque $\vec{B} = \overrightarrow{rotA}$ comme \vec{B} est constant et aligné suivant \vec{u}_z , l'intégration est	
	triviale et on a : $2\pi rA = \pi r^2 B$ soit $\vec{A} = \pi \frac{rB}{2} \vec{u}_{\varphi}$	1
A-1-2	$\vec{u}_{\varphi}.\vec{u}_{x} = -\sin\varphi \text{ et } \vec{u}_{\varphi}.\vec{u}_{y} = \cos\varphi$	400
	$A_x = -B\frac{r}{2}\sin\varphi = -B\frac{y}{2}$	
	donc: $A_y = B \frac{r}{2} \cos \varphi = B \frac{x}{2}$	1
	$A_z = 0$	
A-2-1	On peut créer un champ magnétique constant sur une grande zone d'intérêt soit en se	
	plaçant par exemple au centre d'un solénoïde de grande taille par rapport aux dimensions du dispositif, soit entre les bobines de Helmholtz. Un champ variable est obtenu en alimentant les bobines par un courant alternatif sinusoïdal.	1
A-2-2	$\Phi = \iint_{S} \vec{B} \cdot d\vec{S} = B(t)a^{2} = a^{2}B_{0} \cos \omega t \text{ en orientant la surface dans le même}$	I
	sens que le champ magnétique. $e = -\frac{\partial \Phi}{\partial t} = \omega B_0 a^2 \sin \omega t$	1
	CI	
	- La loi de Lenz stipule que la force électromotrice <i>e</i> induite crée un courant donnant un champ magnétique opposé au champ inducteur.	1
A-2-3	$e_{max} = 6.28.10^{-4} V$	0,5
A-2-4	$\vec{E}_m = -\frac{\partial \vec{A}}{\partial t} = -\frac{\partial B}{\partial t} \frac{y}{2} \vec{u}_x - \frac{\partial B}{\partial t} \frac{x}{2} \vec{u}_y = -\frac{y}{2} \omega B_0 \sin \omega t \vec{u}_x + \frac{x}{2} \omega B_0 \sin \omega t \vec{u}_y$	1,5
	$e = \oint_C \vec{E} \cdot \vec{d\ell} = \int_{-\frac{a}{2}}^{\frac{\pi}{2}} E_{mx} \left(pris \ en \ y = \frac{a}{2} \right) dx + etc$	
	En calculant les quatre intégrales on trouve bien : $e = \omega B_0 a^2 \sin \omega t$ et le résultat précédent	1
A-2-5	$\vec{E}_m = -\frac{\partial \vec{A}}{\partial t}$ donc $\vec{rot}\vec{E}_m = -\vec{rot}\frac{\partial \vec{A}}{\partial t}$ donc $\vec{rot}\vec{E}_m = -\frac{\partial \vec{B}}{\partial t}$ On retrouve	1
A-3-1	l'équation de Maxwell-Faraday.	0,5
1	$\vec{j} = \rho \vec{V}$	0,5

A-3-2	$\vec{j} = \gamma \cdot \vec{E}_m$	0,5
A-3-3	Par définition $P=\iiint \vec{F}.\vec{V}d\tau$ Ici $P=\iiint \gamma E_m^2 d\tau$ en employant la forme locale	0,5
	de la loi d'Ohm. donc $\vec{E}_m^2 = \left(\frac{\partial B}{\partial t}\right)^2 \cdot \frac{x^2 + y^2}{4}$; $\vec{E}_m^2 = \omega^2 B_0^2 \sin^2 \omega t \cdot \frac{x^2 + y^2}{4}$	
	et $P = \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{a}{2}}^{\frac{a}{2}} dx dy dz . \sigma \omega^2 B_0^2 \sin^2 \omega . t. \frac{x^2 + y^2}{4}$	
	Or $\vec{E}_m = -\frac{\partial \vec{A}}{\partial t} = \left(\frac{\partial B}{\partial t} \frac{y}{2}, -\frac{\partial B}{\partial t} \frac{x}{2}, 0\right) \text{donc} P = \gamma \ \omega^2 B_0^2 \sin^2 \omega . t \frac{a^5}{24}$	1,5
\-3-4	Par définition le courant de déplacement vaut : $\vec{j}_D = \varepsilon_0 \cdot \frac{\partial \vec{E}_m}{\partial t}$ en faisant la	
	substitution demadée. or : $\vec{E}_m = -\frac{\partial \vec{A}}{\partial t} = \left(\frac{\partial B}{\partial t} \frac{y}{2}, -\frac{\partial B}{\partial t} \frac{x}{2}, 0\right)$	
	donc : $j_D = \varepsilon_0.B_0\omega^2a$ en prenant les valeurs maxima.	1
X-3-5	$\frac{j_D}{j} \approx \frac{\varepsilon_0 . B_0 \omega^2 a}{\gamma . E}$	0,5
	$\frac{j_D}{j} \approx \frac{\varepsilon_0 . B_0 \omega^2 a}{\gamma B_0 \omega . a} \operatorname{donc} \frac{j_D}{j} \approx \frac{\varepsilon_0 . \omega}{\gamma} \operatorname{donc} \frac{j_D}{j} \approx 10^{-19} \omega$	
	le courant de déplacement est donc négligeable sauf pour les très grandes fréquences (lumière).	
	Pour $f = 50Hz$ Alors $\frac{j_D}{j} \approx 10^{-17}$	ilo mi
A-4-1	Le champ électromoteur de Newman \vec{E}_m vaut en général : $\vec{E}_m = \vec{V} \wedge \vec{B}$ où \vec{V} est la vitesse du circuit ; ici \vec{A} ne varie pas dans le temps.	0,5
A-4-2	$d\vec{F} = d\tau \ \vec{j} \wedge \vec{B}$	0,5
X-4-3	En introduisant, la forme locale de la loi d'Ohm : $d\vec{F} = d\tau \ \gamma \ \vec{E}_m \wedge \vec{B}$	0,5
	Or $\vec{E}_m = \vec{V} \wedge \vec{B}$ donc : $d\vec{F} = -d\tau \cdot \gamma \vec{V}B^2$ et en intégrant sur le cube $\vec{F} = -a^3 \cdot \gamma \vec{V}B^2$	1
A-4-4	On voit qu'en présence d'un champ magnétique même fixe, il apparait par induction une force toujours opposée au sens du mouvement. le pendule va donc s'arreter rapidement, ce principe est utilisé dans les ralentisseurs de véhicules lourds par exemple.	1

Partie I-B: Electromagnétisme

Q	Réponse	Barème
B-1-	Equations de Maxwell dans le conducteur :	
	$\operatorname{div} \vec{B} = 0, \operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}, \operatorname{div} \vec{E} = \frac{\rho}{\varepsilon_o} = 0 \text{ car, } \rho \approx 0.$	2
	Enfin: $\overrightarrow{rot} \ \overrightarrow{B} = \mu_o(\gamma \overrightarrow{E}) + \varepsilon_o \mu_o \frac{\partial \overrightarrow{E}}{\partial t}$.	
	On calcule: $\overrightarrow{rot} \left(\overrightarrow{rot} \ \vec{E} \right) = -\Delta \vec{E} + \overrightarrow{grad} \left(\overrightarrow{div} \ \vec{E} \right),$ soit: $-\Delta \vec{E} = \overrightarrow{rot} \left(-\frac{\partial \vec{B}}{\partial t} \right) = -\frac{\partial}{\partial t} \left(\overrightarrow{rot} \ \vec{B} \right) = -\frac{\partial}{\partial t} \left(\mu_o \gamma \vec{E} + \varepsilon_o \mu_o \frac{\partial \vec{E}}{\partial t} \right).$	
	$\Rightarrow \Delta \vec{E} - \varepsilon_o \mu_o \frac{\partial^2 \vec{E}}{\partial t^2} = \mu_o \gamma \frac{\partial \vec{E}}{\partial t}$ Le métal est globalement invariant par translation suivant les directions $Ox \& Oz$, ce	1
	qui se traduit mathématiquement par : $\frac{\partial}{\partial x} = \frac{\partial}{\partial z} = 0$.	
	If rester donc: $\frac{\partial^2 E_z}{\partial y^2} - \varepsilon_o \mu_o \frac{\partial^2 E_z}{\partial t^2} = \mu_o \gamma \frac{\partial E_z}{\partial t}.$	0,5
B-2-	En posant alors $E_z(y,t)=e^{i\omega t}.f(y)$, et en substituant dans l'équation d'onde, on obtient une équation différentielle déterminant la fonction $f(y)$:	
	$\frac{d^2 f}{dy^2} + \left(\omega^2 \varepsilon_o \mu_o - i\omega \mu_o \gamma\right) f(y) = 0.$	1
B-3-	On a donc $\omega << \frac{\gamma}{\varepsilon_o} = \frac{1}{\tau}$, ce qui est largement vérifié dans le domaine électromagnétique, donc on a : $\omega^2 \varepsilon_o \mu_o - i\omega \mu_o \gamma = \omega \varepsilon_o \mu_o \left(\omega - i\frac{\gamma}{\varepsilon_o}\right) \approx -i\omega \mu_o \gamma$ et	
	l'équation en f devient : $\frac{d^2 f}{dy^2} + K^2 f = 0$, posant	
	$K^2 = -i\omega\mu_o\gamma = \frac{(1-i)^2}{2}\omega\mu_o\gamma \Rightarrow K = \pm\frac{1-i}{\delta}$, avec $\delta = \sqrt{\frac{2}{\omega\mu_o\gamma}}$,	1
	d'où: $f(y) = A.e^{iKy} + B.e^{-iKy}$,	0,5
	puis: $E_z(y,t) = A.\exp i \left[\omega t + (1-i) \frac{y}{\delta} \right] + B.\exp i \left[\omega t - (1-i) \frac{y}{\delta} \right],$	

B-4-	soit aussi la solution physiquement acceptable:	
	$E_z(y,t) = B.\exp\left(-\frac{y}{\delta}\right)\exp i\left[\omega t - \frac{y}{\delta}\right]$	1
	Comme on néglige l'onde réfléchie par la surface du métal, il en résulte, par applica-	
	tion de la relation de continuité sur le champ tangentiel, que $B=E_{\scriptscriptstyle O},$ d'où :	
	$\underline{E_z}(y,t) = E_o \exp\left(-\frac{y}{\delta}\right) \cdot \exp\left(-\frac{y}{\delta}\right), \text{d'où, en notation réelle}:$	
	$E_z(y,t) = E_o e^{-y/\delta} \cdot \cos\left(\omega t - \frac{y}{\delta}\right).$	
	$v_{\varphi} = \frac{\omega}{k} = \frac{\omega}{\frac{1}{s}} = \omega \delta = \sqrt{\frac{2\omega}{\mu_{o}\gamma}}$	0,5
	Amplitude du champ électrique : $E_o e^{-y/\delta}$	0,5
B-5-	La vitesse de phase met en évidence le phénomène de dispersion de l'onde dans le	0,5
	conducteur. L'amplitude de cette onde met en évidence le phénomène d'absorption de cette onde par le conducteur	0,5
В-6-	Puissance Joule volumique : $\frac{dP}{d\tau} = \vec{J}.\vec{E}$, soit :	
	$\frac{dP}{d\tau} = \gamma < \vec{E}^2 >$. Si on utilise les notations complexes (cf puissance complexe):	
	$\frac{dP}{d\tau} = \frac{1}{2} \gamma \vec{E} \cdot \vec{E}^*, \text{ ce qui donne}:$	
	$\frac{dP}{d\tau} = \frac{1}{2} \gamma E_o \exp\left(-\frac{y}{\delta}\right) \cdot \exp\left$	
	$= \frac{\gamma E_o^2}{2} \exp\left(-2\frac{y}{\delta}\right)$	
	Sur le tuyau : $d\tau = ab.dy$ donc :	
	$P = \int_{0}^{\infty} dP = \frac{\gamma E_{o}^{2}}{2} \int_{0}^{\infty} exp\left(-2\frac{y}{\delta}\right) abdy = \frac{\gamma E_{o}^{2}}{2} \frac{ab\delta}{2} \left[-exp\left(-2\frac{y}{\delta}\right)\right]_{0}^{\infty},$	1,5
	soit aussi:	
	$P = \frac{\gamma E_o^2}{2} \frac{\delta ab}{2}$	

Corrigé de l'Epreuve de Physique Concours Mathématiques et Physique

Partie	I-C:	Electrom	agnétisme

Q	Réponse	Barème
C-1-1	$\Delta \vec{\underline{E}} = -\left(k^2 + \frac{\pi^2}{a^2}\right) \vec{\underline{E}} : \frac{\partial^2}{\partial t^2} \vec{\underline{E}} = -\frac{\omega^2}{c^2} \vec{\underline{E}}$ L'équation d'onde : $\frac{\omega^2}{c^2} = k^2 + \frac{\pi^2}{a^2}$ Donc $k^2 = \frac{\omega^2}{c^2} - \frac{\pi^2}{a^2}$	1,5
	Latines engineers in the contraction	
C-1-2	Pour qu'il y ait propagation, il faut que k soit réel soit $k^2 > 0$ qui impose :	0,5
	$\omega > \omega_c = \frac{\pi c}{a}$, La fréquence de coupure : $f_c = \frac{c}{2a}$.	0,5
C-2-	$v_{\varphi} = \frac{\omega}{k} = \frac{\omega}{\sqrt{\frac{\omega^2}{c^2 - \frac{\pi^2}{a^2}}}} = \frac{c}{\sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}}$	0,5
	$v_{\varphi} > c$	0,5
	$v_{arphi}=v_{arphi}(\omega)$, le système est dispersif.	0,5
C-3-		0,5
	$V_g = \frac{d\omega}{dk}$ $V_g = c\sqrt{1 - \frac{\omega_c^2}{\omega^2}}$	
	$V_g < c$	0,5
	$V_{\mathcal{G}}$ est la vitesse de propagation de l'énergie de l'onde qui doit être inférieure à c.	0,5
C-4-	$\overrightarrow{rotE} = -\frac{\partial \overrightarrow{B}}{\partial t}$ donc	
	$ \left \left(\frac{\partial}{\partial x} \right) \wedge \left(\frac{\partial}{\partial z} \right) \wedge \left(\frac{E}{E} \right) \right = \left[-\frac{\partial \underline{E}}{\partial z} \right] = \left[-ikE_0 \sin \frac{\pi x}{a} \exp i(kz - \omega t) \right] = i\omega \vec{B} $	
	$\left \begin{array}{c c} \partial \\ \hline \partial \end{array} \right \wedge \left \begin{array}{c c} E \\ \hline \end{array} \right = \left \begin{array}{c c} 0 \\ \hline \end{array} \right = i\omega \vec{B}$	
	$\begin{vmatrix} \partial y \\ \partial z \end{vmatrix} = 0 \partial E = \pi \pi \pi \pi \pi$	
	$\begin{bmatrix} \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix} \wedge \begin{bmatrix} \frac{E}{\sigma} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -\frac{\partial E}{\partial x} \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{\pi}{a} E_0 \cos \frac{\pi x}{a} \exp i(kz - \omega t) \end{bmatrix} = i\omega \vec{B}$	
	$\begin{bmatrix} B_x & -\frac{k}{\omega} E_0 \sin \frac{\pi x}{a} \exp i(kz - \omega t) \end{bmatrix}$	
	$\vec{p} = p$	
	$\vec{B} = \begin{bmatrix} x \\ B_y = \\ 0 \\ B_z \end{bmatrix} \begin{bmatrix} a & b_0 \sin a & \exp(i(ab - \omega t)) \\ -i \frac{\pi}{a\omega} E_0 \cos \frac{\pi x}{a} \exp(i(kz - \omega t)) \end{bmatrix}$	2
	π π	+
	$\begin{bmatrix} B_z & -i - \frac{1}{a\omega} E_0 \cos - \exp i(kz - \omega t) \end{bmatrix}$	0,5
	- Ca - A - T-2	0.5
	All the second s	

	$\vec{B} = \left[-\frac{kE_0}{\omega} \sin \frac{\pi x}{a} \cos(kz - \omega t) \vec{u}_x \right] + \left[\frac{\pi E_0}{a\omega} \cos \frac{\pi x}{a} \sin(kz - \omega t) \vec{u}_z \right]$	
79-27	$\vec{k} = k\vec{u}_z$ $\vec{k} \cdot \vec{B} \neq 0$ L'onde n'est pas transverse L'onde associée n'est pas plane car son amplitude n'est pas constante pour z = cste,	
	elle dépend de x.	
	En notation réelle : $\vec{E} = E_o \sin \frac{\pi x}{a} \cos(kz - \omega t) \vec{u}_y$	
C-5-	$\vec{R} = \frac{1}{\mu_0} \vec{E} \wedge \vec{B}$ (En notations réelles)	
	$\vec{R} = \frac{kE_0^2}{\mu_0 \omega} \sin^2 \frac{\pi x}{a} \cos^2 (kz - \omega t) \vec{u}_z$	1
	$+\frac{E_0^2\pi}{\mu_0 a\omega}\sin\frac{\pi x}{a}\cos\frac{\pi x}{a}\cos(kz-\omega t)\sin(kz-\omega t)\vec{u}_x$	
	La valeur moyenne dans le temps du deuxième terme est nulle donc :	
	$\langle \vec{R} \rangle_{temp} = \frac{k}{2\mu_0 \omega} E_0^2 \sin^2 \left(\frac{\pi x}{a}\right) \vec{u}_z$	0,5
C-6-1-	$d\vec{F} = \frac{1}{2} \left(\sigma \vec{E} + \vec{j}_s \wedge \vec{B} \right) ds ,$	
	1	
	La présence du facteur $\frac{1}{2}$:	
	Les champs, électrique et magnétique en un point M voisin d'un conducteur chargé et parcouru par un courant sont composés de deux termes égaux l'un créé par l'élément de surface <i>ds</i> entourant M et l'autre par le reste du conducteur.	
	Comme ds ne peut exercer une force sur lui-même on doit soustraire des expressions de \vec{E} et de \vec{B} la moitié créé par l'élément ds .	0,5
C-6-2	Les conditions aux limites s'écrivent :	
	$\vec{E}_2 - \vec{E}_I = \frac{\sigma}{\varepsilon_0} \vec{n}_{I2}$ et	1,5
	$\vec{B}_2 - \vec{B}_1 = \mu_0 \vec{j}_s \wedge \vec{n}_{12}$ Où \vec{n}_{12} est dirigée du milieu 1 vers le milieu 2.	1,5
	Sur le conducteur en $x=0$ et $x=a$ les composantes normales de \bar{E} sont nulles alors $\sigma=0$ et $\sigma'=0$	0,5+0,5
C-6-3	\vec{p} \vec{p} \vec{r} \vec{p}	
	$\vec{B}_2 - \vec{B}_1 = \mu_0 \vec{j}_s \wedge \vec{n}_{12} = \vec{B}(0)$ en $x = 0$ car $\vec{B}_1(x = 0) = 0$ dans le métal et on a $\vec{n}_{12} = \vec{u}_x$	
	D'où $\vec{j}_s = \frac{\vec{u}_x}{\mu_0} \wedge \vec{B}_2(x=0) = \frac{\vec{u}_x}{\mu_0} \wedge \left(\frac{E_0 \pi}{a \omega} \sin(kz - \omega t) \vec{u}_z\right)$ $\uparrow \vec{n}_{12} = \vec{u}_x$	
	$\vec{j}_s = -\frac{E_0 \pi}{a \omega \mu_0} \sin(kz - \omega t) \vec{u}_y \qquad (2) : \text{Vide}$	1+1
	Maintenant en $x = a$ (1): métal	

	$\vec{B}_2(x=a^-) - \vec{B}_I(x=a^+) = \vec{B}_2(x=a) = -\frac{E_0\pi}{a\omega} \sin(kz - \omega t) \vec{u}_z$ Car dans le métal $\vec{B}_I(x=a^+) = \vec{0}$	
	$\vec{j}'_{s} = \frac{-\vec{u}_{x}}{\mu_{0}} \wedge \left(-\frac{E_{0}\pi}{a\omega} \sin(kz - \omega t) \vec{u}_{z} \right)$ $\vec{j}'_{s} = -\frac{E_{0}\pi}{a\omega\mu_{0}} \sin(kz - \omega t) \vec{u}_{y} \qquad x = a$ $(1) : \text{métal}$ $(2) : \text{Vide}$	
	On trouve $\vec{j}'_s = \vec{j}_s$	$=-\vec{u}_x$
C-6-4	$d\vec{F} = \frac{1}{2} (\vec{j}_s \wedge \vec{B}(0)) ds$ sur la face $x = 0$ et $d\vec{F}' = \frac{1}{2} (\vec{j}'_s \wedge \vec{B}(a)) ds$ sur la face $x = a$ Sur la face $x = 0$ on a :	
	$d\vec{F} = \frac{1}{2} \left(-\frac{E_0 \pi}{a \omega \mu_0} \sin(kz - \omega t) \vec{u}_y \right) \wedge \left(\frac{E_0 \pi}{a \omega} \sin(kz - \omega t) \vec{u}_z \right) ds$	0,5
	$d\vec{F} = \frac{1}{2} \left(-\frac{E_0^2 \pi^2}{a^2 \omega^2 \mu_0} sin^2 (kz - \omega t) \vec{u}_x \right) ds$ Sur la face $x = a$ on trouve:	
	$d\vec{F}' = \frac{1}{2} \left(\frac{E_0^2 \pi^2}{a^2 \omega^2 \mu_0} \sin^2(kz - \omega t) \vec{u}_x \right) ds$	0,5
	C'est bien une force de pression la force est dirigée vers la surface	0,5
C-6-5	$p = \frac{dF}{ds} = \frac{1}{2} \left(\frac{E_0^2 \pi^2}{a^2 \omega^2 \mu_0} sin^2 (kz - \omega t) \right)$	1

Partie II : Interférences lumineuses

Q	Partie II : Interférences lumineuses Réponse	Barème
A-1	z S d α Z A	2
A-2	$\delta = \frac{xd}{f}$	1
A-3	On observe le phénomène d'interférence. Les franges sont rectilignes et parallèles à Oy. La frange brillante d'ordre p (p entier) correspond à δ = $p\lambda_0$ et est située à	1
	l'abscisse $x=p\frac{f\lambda_0}{d}$. L'interfrange est la distance qui sépare la frange d'ordre p + 1 de la frange d'ordre p.	1
	C'est donc : $i = \frac{f\lambda_0}{d} = 0.17368mm$ qui ne dépend pas de p : l'interfrange est constant.	1
A-4	Le déphasage des deux ondes qui interférent au point M est : $\varphi = \frac{2\pi\delta}{\lambda_0} = \frac{2\pi xd}{f\lambda_0} = \frac{2\pi x}{i}$ L'intensité au point M est donnée par :	0,5
	$I = 2I_0 \left(1 + \cos \frac{2\pi x}{i} \right) = 4I_0 \cos^2 \left(\frac{\pi x}{i} \right)$	1
A-5	$i' = \frac{f\lambda_0'}{d} = 0.17302mm$	0,5
A-6-1	 Les ordres d'interférence p et p' sont égaux pour x = x₀ = 0, c'est-à-dire pour la frange centrale d'ordres d'interférence p = p' = 0 (l'axe y'Oy). 	1
	- On a $p'-p = \pm \frac{1}{2}$ pour $x = pi = (p \pm 1/2).i'$ d'où $p(i - i') = \pm i'/2$ et	1
	$x = x_{\pm 1/2} = \pm \frac{ii'}{2(i - i')} = \pm 2,277cm$ Ce sont les deux franges d'ordres d'interférence p = p _{±1/2} = ±131,11	0,5
	Et $p' = p'_{\pm 1/2} = \pm 131,61$. On a $p' - p = \pm 1$ pour $x = pi = (p \pm 1)i'$ d'où $p(i - i') = \pm i'$ et $p = p \pm 1 = \pm 262,23$ et $p' = p'_{\pm 1} = \pm 263,23$	0,5
	$- x = x_{\pm 1} = \pm \frac{ii'}{(i - i')} = \pm 4,554cm$	0,5 0,5

	$=\frac{I_{max}}{2}\left(1+\cos\pi\left[\left(\frac{1}{i'}+\frac{1}{i}\right)x\right]\cos\left[\pi\left(\frac{1}{i'}-\frac{1}{i}\right)x\right]\right)$	-
	L'intensité en fonction de x est la somme d'une constante et de deux sinusoïdes de périodes spatiales voisines i et i'. Il présente donc le phénomène des battements.	
		I
-16	x x -1 x -1/2 Q x 1/2 x 1	0,5
	L'interfrange (la distance entre deux franges brillantes voisines) est compris entre les valeurs i et i' et varie très légèrement d'une frange à l'autre.	
A-6-3	Au voisinage des points de l'écran où les ordres d'interférence p et p' diffèrent de $\frac{1}{2}$	1,5
164	(autour de $x = x_{1/2}$ et $x = x_{-1/2}$) les franges brillantes d'une composante monochro-	
	matique sont les franges noires de l'autre. Les franges se brouillent et le contraste des franges est pratiquement nul. Au voisinage des points de l'écran où les ordres d'interférence p et p' diffèrent de 1	
	(autour de $x = x_1$ et $x = x_{-1}$) les franges brillantes des deux composantes monochromatiques se superposent. Le contraste des franges est maximum comme autour de l'origine.	1,5
B-1	$I_1 = 2I_0 \left[1 + \cos \frac{2\pi d x}{f \lambda_0} \right]$	0,5
	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	
	$I_2 = 2I_0 \left[1 + \cos \frac{2\pi d(x - f\alpha)}{f\lambda_0} \right]$	1,5
	$I_t = 2I_0 \left[2 + \cos \frac{2\pi d x}{f \lambda_0} + \cos \frac{2\pi d (x - f\alpha)}{f \lambda_0} \right]$	
17	Ou bien	0,5
	$I_{t} = 2I_{0} \left[2 + \cos \left(\frac{2d\pi \left(x - f \frac{\alpha}{2} \right)}{f \lambda_{0}} \right) \cos \left(\frac{2\pi d\alpha}{\lambda_{0}} \right) \right]$	
	$I_t = 2I_0$ $2 + \cos \left(\frac{1}{f\lambda_0} \right) \cos \left(\frac{1}{\lambda_0} \right)$	
B-2	Cette somme devient indépendante de x lorsque les sinusoïdes sont en opposition de	
	phase, c'est-à-dire lorsque $\frac{2\pi d \alpha}{\lambda_0} = (2k+1)\pi$ avec k entier. L'intensité est donc	2
	uniforme pour $d = \frac{(2k+1)\lambda_0}{2\alpha}$, k entier positif ou nul.	
B-3	La plus petite de ces valeurs est : $d_1 = \frac{\lambda_0}{2 \alpha}$	0,5
	Application Numérique : $\alpha = \frac{\lambda_0}{2d_I} = 0.0906''$	0,5

Partie III : Principes de base de l'Holographie

Réponse	Barème
-La source est ponctuelle et placée au foyer objet de la lentille convergente. L'onde en sortie est	1
	0,5+1
70	0.5
Les deux ondes sont en phase au point O.	0,5
Comme le point O est au centre du miroir M_2 initialement au contact optique avec M_1 , le chemin optique (SO) est le même pour les rayons passant par M_1 ou M_2 . Les deux ondes sont en phase au point O . Comme le point O est au centre du miroir M_2 initialement au contact optique avec M_1 , le chemin optique (SO) est le même pour les rayons passant par M_1 ou M_2 . Les deux ondes sont en phase au point O . On a donc : $\Delta \phi_1(O) = \phi_2(O) - \phi_1(O) = O$ Au point M , on a alors $\Delta \phi(M) = \phi_2(M) - \phi_1(M) = \frac{2\pi}{\lambda_0} \left(-\sin(2\alpha)\vec{u}_x + (1-\cos(2\alpha))\vec{u}_z \right) \left(x\vec{u}_x + y\vec{u}_y + z\vec{u}_z \right)$	2
Soit: $\Delta \phi = \frac{2\pi}{\lambda_0} \left(-\sin(2\alpha)x + (1 - \cos(2\alpha))z \right)$	
$I(x) = 2I_0[1 + \cos(\Delta\phi)]$	
soit, en un point de coordonnée $z = D$,	l ii
$I(x) = 2I_0 \left[1 + \cos\left(\frac{2\pi}{\lambda_0} \left(\left(-\sin(2\alpha)\right)x + \left(1 - \cos(2\alpha)\right)D\right) \right) \right]$	1
La source matérielle étant ponctuelle, elle ne pose pas de problème de cohérence spatiale donc, les interférences sont non localisées.	1
L'Intensité dépend de x mais pas de y donc les franges observées sont rectilignes, parallèles à Oy. L'interfrance est la période spatiale de l'éclairement que l'on peut écrire :	1
	0,5
A.N. $i = 18,1 \mu m$	0,5
$\Delta\phi_e = \frac{2\pi}{\lambda_0} 2(n-1)e \; ;$	1
Le déphasage $\Delta \phi = \phi_2(M) - \phi_1(M)$ augmente donc (le retard de l'onde 1 par rapport à l'onde 2 est plus grand en présence de la lame).	1
$\underline{A}(M) = \varepsilon A_0 e^{i(\overline{k_i} \cdot \overline{OM} + \Delta \phi_e)} + A_0 e^{i\overline{k_2} \cdot \overline{OM}}$	1
L'éclairement en M est par définition $I(M) = k \underline{A}(M) \underline{A}^*(M)$ $I(M) = \left(\varepsilon A_0 e^{i(\overline{k_i} \overrightarrow{OM} + \Delta \phi_e)} + A_0 e^{i\overline{k_2} \overrightarrow{OM}} \right) \left(\varepsilon A_0 e^{-i(\overline{k_i} \overrightarrow{OM} + \Delta \phi_e)} + A_0 e^{-i\overline{k_2} \overrightarrow{OM}} \right)$	1,5
	-La source est ponctuelle et placée au foyer objet de la lentille convergente. L'onde en sortie est plane $ \vec{k}_1 = \frac{2\pi}{\lambda_0} \vec{u}_z \; ; \; \vec{k}_2 = \frac{2\pi}{\lambda_0} (sin(2\alpha)\vec{u}_x + cos(2\alpha)\vec{u}_z) $ Les deux ondes sont en phase au point O . En un point M quelconque du champ d'interférences, on peut écrire les phases des ondes $\omega t - \vec{k}_1 \overline{OM} + \phi_1(O)$ et $\omega t - \vec{k}_2 \overline{OM} + \phi_2(O)$ Comme le point O est au centre du miroir M_2 initialement au contact optique avec M_1 , le chemin optique (SO) est le même pour les rayons passant par M_1 ou M_2 . Les deux ondes sont en phase au point O . Comme le point O est au centre du miroir M_2 initialement au contact optique avec M_1 , le chemin optique (SO) est le même pour les rayons passant par M_1 ou M_2 . Les deux ondes sont en phase au point O . On a donc : $\Delta \phi_1(O) = \phi_2(O) - \phi_1(O) = 0$ Au point M_1 on a dons $\Delta \phi(M) = \phi_2(M) - \phi_1(M) = \frac{2\pi}{\lambda_0} \left(- sin(2\alpha)\vec{u}_x + (1 - cos(2\alpha))\vec{u}_z \right) \left(x\vec{u}_x + y\vec{u}_y + z\vec{u}_z \right)$ Soit : $\Delta \phi = \frac{2\pi}{\lambda_0} \left(- sin(2\alpha)x + (1 - cos(2\alpha))z \right)$ $I(x) = 2I_0 \left[1 + \cos\left(\frac{2\pi}{\lambda_0} ((-\sin(2\alpha))x + (1 - \cos(2\alpha))D) \right]$ La source matérielle étant ponctuelle, elle ne pose pas de problème de cohérence spatiale done, les interférences sont non localisées. L'Intensité dépend de x mais pas de y donc les franges observées sont rectilignes, parallèles à Oy . L'interfrange est la période spatiale de l'éclairement que l'on peut écrire : $I(x) = 2I_0 \left[\frac{2\pi}{i} x + \phi \right] \text{En comparant avec l'expression précédente, il vient : } i = \frac{\lambda_0}{sin(2\alpha)};$ A.N. $i = 18.1 \mu m$ $\Delta \phi_e = \frac{2\pi}{\lambda_0} 2(n-1)e ;$ Le déphasage $\Delta \phi = \phi_2(M) - \phi_1(M)$ augmente donc (le retard de l'onde 1 par rapport à l'onde 2 est plus grand en présence de la lame). $\underline{\Delta(M)} = \omega A_0 e^{i\vec{k}_1 \overline{OM}} + \Delta_0 e^{i\vec{k}_1 \overline{OM}} + \Delta_0 e^{i\vec{k}_1 \overline{OM}}$ L'éclairement en M est par définition $I(M) = k\underline{\Delta(M)}\underline{\Delta^*}(M)$

	$= \left(\varepsilon^2 A_0^2 + \varepsilon A_0^2 e^{i\left(\vec{k}_2 \overrightarrow{OM} - \vec{k}_1 \overrightarrow{OM} - \Delta \phi_e\right)} + \varepsilon A_0^2 e^{i\left(\vec{k}_1 \overrightarrow{OM} + \Delta \phi_e - \vec{k}_2 \overrightarrow{OM}\right)} + A_0^2\right)$	
	$=A_0^2\left(1+2\varepsilon\cos\left(\vec{k}_2\overrightarrow{OM}-\vec{k}_1\overrightarrow{OM}-\Delta\phi_e\right)\right)$	
	en ne gardant que le terme d'ordre 1 en ε.	
	On peut noter $I_0(M) = A_0^2$ d'où:	
	$I(M) = I_0 \left(1 + 2\varepsilon \cos \left(\frac{2\pi}{\lambda_0} \left(\sin(2\alpha)x + \left((\cos(2\alpha) - 1)D - 2(n - 1)e \right) \right) \right) \right)$	
A-9	Le coefficient multiplicateur de x n'a pas changé donc l'interfrange n'a pas changé. Par contre, l'ordre d'interférence au point $M: p(M) = \frac{\Delta \phi(M)}{2\Delta_0}$ a été modifié. Une frange	0,5
	/ = 1.0	1
	initialement brillante ne l'est plus forcément. Il y a eu une translation le long de <i>OX</i> de la figure d'interférences (ou décalage des franges).	
A-10	On a $N = L/i$ soit numériquement $N = 2 \cdot 10^{-2}/18, 1 \cdot 10^{-6} = 1103$ franges.	0,5

Q	Réponse Réponse	Barème
B-1	$t(x) = a + bI_0 + 2bI_0 \varepsilon \cos\left(\frac{2\pi}{\lambda_0} \left(\sin(2\alpha)x + \left((\cos(2\alpha) - 1)D - 2(n - 1)e\right)\right)\right)$	-1
B-2	D'après le principe de Huygens Fresnel, toute surface élémentaire entourant un point atteint par une onde lumineuse se comporte à son tour comme une source ponctuelle qui émet une onde sphérique en phase avec l'onde qui est arrivée en ce point, proportionnelle à l'amplitude de l'onde incidente et à l'élément de surface considéré. Toutes les ondes ainsi émises sont cohérentes.	1,5
B-3	L'ouverture diffractante a, dans la direction Oy , une dimension h très grande devant la largeur L donc les rayons lumineux ne sont pratiquement déviés que dans le plan Oxz	1
B-4	D'après le principe de Huygens-Fresnel, l'amplitude émise par la surface dS centrée en P s'écrit alors : $d\underline{A}_p(\theta) = t(x)A_0(\theta)e^{-i\frac{2\pi}{\lambda_0}x\sin\theta}dS$ et l'amplitude totale :	
	$\underline{A}(\theta) = hA_0(\theta) \iint t(x) e^{-i\frac{2\pi}{\lambda_0} x \sin \theta} dx dy$	
	Comme on a $h >> L$, l'intégration sur la variable y conduit à h et il reste : $\underline{A}(\theta) = hA_0(\theta) \int_{-L/2}^{L/2} t(x)e^{-i\frac{2\pi}{\lambda_0}x\sin\theta} dx$	1
B-5	en utilisant $\cos\left(\frac{2\pi}{\lambda_0}\sin(2\alpha)x + \Delta\phi(\alpha)\right) = \frac{e^{i\left(\frac{2\pi}{\lambda_0}\sin(2\alpha)x + \Delta\phi(\alpha)\right)} + e^{-i\left(\frac{2\pi}{\lambda_0}\sin(2\alpha)x + \Delta\phi(\alpha)\right)}}{2}$	
	$\underline{A}_{0}(\theta) = h(a + bI_{0})A_{0}(\theta)\sin c\left(\frac{\pi L}{\lambda_{0}}\sin(\theta)\right)$	1
	Cette amplitude est maximale dans la direction $\theta_0 = 0$	1+1

	$\underline{A}_{l}(\theta) = bI_{0} \varepsilon h L A_{0}(\theta) \exp(i(\Delta \phi(\alpha))) \sin c \left(\frac{2\pi}{\lambda_{0}} \left(\sin(2\alpha) - \sin(\theta)\right) \frac{L}{2}\right)\right)$ Cette amplitude est maximale dans la direction telle que l'argument de la fonction sinus cardinal est nul soit $\theta_{1} = 2\alpha \left(\cos - \pi/2 < \theta < \pi/2\right)$. $\underline{A}_{-l}(\theta) = bI_{0} \varepsilon h L A_{0}(\theta) \exp(i(\Delta \phi(\alpha))) \sin c \left(\frac{2\pi}{\lambda_{0}} \left(\sin(2\alpha) + \sin(\theta)\right) \frac{L}{2}\right)\right)$ Cette amplitude est maximale dans la direction $\theta_{-1} = -2\alpha$.	
B-6	Par exemple, l'amplitude $A_1(\theta)$ s'annule pour θ_{P0} tel que $\frac{2\pi}{\lambda_0} \left(sin(2\alpha) - sin(\theta_{P0}) \right) \frac{L}{2} \right) = \pi \text{soit} \left(sin(2\alpha) - sin(\theta_{P0}) \right) = \frac{\lambda_0}{L}$. Cet angle celui du maximum de \underline{A}_0 si $\theta_{P0} = 0$. La séparation donc est réalisée si $\sin(2\alpha)$ est au moins égal à λ_0/L . On peut donc prendre comme critère $\sin(2\alpha) > \frac{\lambda_0}{L}$	1
B-7	L'onde initiale réfléchie par M_1 et traversant la lame de verre possède une amplitude complexe proportionnelle à $exp\left(-i\left(\frac{2\pi}{\lambda_0}2(n-1)e\right)\right)$. On trouve ce terme dans l'amplitude complexe $\underline{A}_1(\theta)$, de direction principale $\theta_1=2\alpha$. À un coefficient multiplicatif près, cette onde reconstitue donc l'onde initiale.	0,5
B-8	L'onde « jumelle » a pour direction principale –2α, symétrique de la précédente ; elle possède la même amplitude et le même terme de déphasage relatif à la lame, au signe prés.	0,5