Music 424 / EE 367D

Signal Processing Techniques for Digital Audio Effects

Jonathan S. Abel David P. Berners

TA: Jorge Herrera

Music 424, Spring 2011, Digital Audio Effects

Introduction

- Music is typically produced in four steps: tracking, mixing, mastering and encoding.
- This class is about how to build digital versions of the mainline effects used in mixing and mastering.
- Dynamic range control
- Reverberation and room acoustics
- Equalization and filter design
- Distortion and delay effects

Mixing and Mastering Effects

Lecture Outline

- Handouts
- Course Information
- Course Overview
- Prerequisite Questionnaire
- Class e-mail list
- Course Information
- Course Overview and Demo

Dynamic Range Control

detector

gain

feed forward compressor

computer

detector

gain

feedback compressor

computer

output, c(t)

Equalization

Delay Effects

Distortion Processing

$$r(t) = \sum_k g(t) * \left(\beta(\omega_k) \sin \int_0^t \omega_k(\tau) d\tau \right) \; \omega_k(t) = k \times \omega(t)$$

Room Acoustics and Reverberation

