ChangJae Lee

☑ cl52396@eid.utexas.edu • • • hunter3789 • in changjae-lee

Click here to download this CV (PDF)

Education

Yonsei University Korea

- B.S. Atmospheric Science

Fall 2014

Coursework: Atmospheric Dynamics, Atmospheric Physics, Atmospheric Analysis, Statistical Analysis in Meteorology, Calculus

University of Texas at Austin

USA

- M.S. Data Science

Expected Fall 2025

Coursework: Machine Learning, Deep Learning, Reinforcement Learning, Natural Language Processing, Deep Generative Models, Optimization, Data Structures & Algorithms

Research Experience

Center for Analysis and Prediction of Storms (CAPS)

University of Oklahoma

- Visiting Scientist

Aug 2022 – Feb 2024

- Co-authored a peer-reviewed paper on Spatial Aligned Mean (SAM), an ensemble consensus technique for quantitative precipitation forecasting (Weather and Forecasting).
- Delivered two oral presentations at the AMS 28th Conference on Numerical Weather Prediction and the 104th AMS Annual Meeting.
- O Participated in the **2023 NOAA Hazardous Weather Testbed** (Week 1, 1–5 May, 2023).
- Contributed ensemble post-processing results (Spatial Aligned Mean) for operational evaluation to the 2023 NOAA
 Flash Flood and Intense Rainfall Experiment.
- Highlighted by 2024 FFaIR participants and facilitators for improved ensemble focus and realism, with a recommendation that Spatial Aligned Mean methods be transitioned into NWS operational use.
 [2024 FFaIR Final Report]

Korea Meteorological Administration (KMA)

Korea

- Data Scientist

Mar 2024 - Present

- O Co-authored two preprints:
 - 1. Deep-Learning-based Quantitative Precipitation Forecasting (U-Net, GANs).
 - 2. Multimodal Reasoning for Skew-T Log-P Diagrams using Vision-Language Models.
- Released fully documented code and reproducible inference pipelines on GitHub.

Publications & Preprints

Peer-Reviewed: Lee, C., K. A. Brewster, N. Snook, P. Spencer, and J. Park, 2024: Spatial Aligned Mean: A Method to Improve Consensus Forecasts of Precipitation from Convection-Allowing Model Ensembles. *Wea. Forecasting*, 39, 1545–1558. doi:10.1175/WAF-D-23-0229.1

Preprint: Lee, C., H. Yang, and B. Kim, 2025: Improving Post-Processing for Quantitative Precipitation Forecasting Using Deep Learning. *arXiv*. doi:10.48550/arXiv.2506.03842

Preprint: Lee, C., H. Yang, and J. Choi, 2025: Exploring Multimodal AI Reasoning for Meteorological Forecasting from Skew-T Diagrams. *arXiv*.

Conference Presentations

AMS 2023: Spatial alignment of CAM ensemble members to improve ensemble consensus precipitation. Oral presentation at the 28th Conference on Numerical Weather Prediction, Madison, WI.

AMS 2024: Spatial Aligned Mean Ensemble Consensus Method Applied to CAM Precipitation Forecasts in the 2023 FFaIR Experiment. Oral presentation at the 104th AMS Annual Meeting, Baltimore, MD.

Professional Experience

Korea Meteorological Administration (KMA)

- Data Scientist / Software Engineer
- 2016 Present (concurrent with Weather Forecaster role)
- Developed post-processing and visualization tools for forecast systems.
- Led AI/ML integration into operational workflows.
- Conducted verification and statistical evaluation of NWP models.
- Performed in-depth statistical analysis using observational datasets and NWP outputs.

Korea Meteorological Administration (KMA)

- Weather Forecaster

2016 - Present

- Analyzed and interpreted NWP output, radar, and satellite imagery to support high-impact weather forecasting and risk communication.
- Delivered weather briefings to the public and media, including live broadcasts and interviews for upcoming weather events.

Republic of Korea Air Force

- Weather Observer

2011 - 2013

Collected, coded, and quality-controlled METAR and synoptic surface observations.

Technical Skills

Languages: Python, C, JavaScript, R, PHP, Bash **Tools**: Git, Docker, Linux, VSCode, Google Colab

Frameworks: PyTorch, Scikit-learn, D3.js, Leaflet (GIS), LaTeX

Selected Projects

Deep-Learning QPF: Developed a U-Net and GAN-based post-processing model trained on high-resolution precipitation observations to improve NWP Quantitative Precipitation Forecasting (QPF) performance. (https://github.com/hunter3789/Deep-Learning-QPF)

Vision–Language Skew-T: Fine-tuned a lightweight Vision–Language Model (VLM) for atmospheric sounding diagnosis and precipitation classification using synthetic prompting and curriculum learning. (https://github.com/hunter3789/VLM-Skew-T)

SLR Observational Study: Conducted a statistical analysis of the relationship between surface observations and Snow-to-Liquid Ratio (SLR).

(https://github.com/hunter3789/SLR-study)

Lightning Forecasting and Climatological Analysis: Developed a post-processing model for lightning prediction based on NWP and observed lightning data. Performed statistical analysis on lightning event characteristics and forecasting potential.