Big planets, little stars: Directly imaged companions to young M-stars

Henry Ngo (@AstroDino)

Plaskett Fellow at NRC-Herzberg DAO, Victoria, BC, Canada

with D. Mawet, G. Ruane, W. Xuan, B. Bowler, E. Choquet, T. Cook, Z. Zawol

Imaging giant planets < 10 AU

Are these the biggest planets or smallest stars?

Imaging giant planets < 10 AU

Are these the biggest planets or smallest stars?

Search for the "missing link" of giant planet formation

Data from NASA Exoplanet Archive

Imaging planets is really hard

- Need the right equipment instrumentation
- Need smart slope target selection

Cannot block out bright starlight when it's smeared out by atmosphere

Solution: Use an adaptive optics system to "fix" the messy image

Finding planets with a coronagraph

Keck/NIRC2 L-band vector vortex coronagraph

Target Selection (200 stars)

Choose smaller stars

to improve star/planet contrast

Choose younger stars

to catch planets still hot and bright

Choose closer stars

to probe closer projected separations

Young Moving Group stars are ideal

Bowler (2016)

Angular differential imaging

Self-subtraction issue for ADI at low rotation & close-in separations

Planet overlaps with previous position

Planet sensitivity reduced by self-subtraction

Reference star differential imaging

Use library of science targets to create a reference PSF

A reference PSF is constructed for each science target

Challenge: Need an automatic pipeline + database to choose best reference stars

Wenhao Jerry Xuan

Pomona College Applying to grad programs!

NIRC2 Vortex: RDI vs ADI

Xuan

Pomona College Applying to grad programs!

~40 candidates to follow up

Delta-L ~ 5 mag Sep: 0.16 arcsec (< 10 AU) Likely a brown dwarf

orbitize!

for imaging astrometry orbit fitting

learn more / contribute at:

GitHub.com/sblunt/orbitize

(version 1.0 in August 2018)

Sarah Blunt Caltech->CfA

Jason Wang Berkeley->Caltech

Rob de Rosa Berkeley

Devin Cody Caltech

Isabel Angelo Berkeley->UCLA

Logan Pearce
UT Austin

.... and you?

Blunt et al. (2017)

NEW HORIZONS IN PLANETARY SYSTEMS

13-17 MAY 2019 VICTORIA, BC PRE-REGISTER @ GO.NRAO.EDU/NEWHORIZONS

Invited speakers:

- **Diana Dragomir**: first results from TESS mission
- **Brett Gladman**: theory of planet formation
- **Grant Kennedy**: debris disk constraints on planet formation
- **Heather Knutson**: exoplanet atmospheric composition **Emmanuel Lellouch**: mm observations of solar system objects
- Karin Öberg: protoplanetary disk composition and chemistry
- **John Spencer**: New Horizons KBO flyby: first results
- **Zhaohuan Zhu**: protoplanetary disk structure and theory

Finding the missing link planets at 1-10 AU

Using the L-band vortex coronagraph on NIRC2

Target 200 young nearby M-stars

Automatic Pipeline by Wenhao Jerry Xuan

Reference stars provide better sensitivity

Stay tuned for more! henry@planetngo.ca @AstroDino

EXTRA SLIDES

Reference off-centre

