Notes Pixels $C_i = (R_i, G_i, B_i)$ $i = 0, ..., N_x * N_y - 1$

Brightners (Gain) b = brightners $C_{i} \leftarrow C_{i} * b$ Rie Rixb G; 2 G; * b B; Z B; * b

b) 1 -> brighter 0 4 b < 1 -> dar ker

Bias ($\beta_R, \beta_B, \beta_B$) $R_i = R_i + \beta_B$ $G_i = G_i + \beta_B$ $B_i = B_i + \beta_B$

Gamma powerozo < 00

Compliment

Ci 1-Ci

Ri 2 1-Ri

Gi 2 1-Gi

Bi 2 1-Bi

Quantize

N= # Step of color

Rie Rien N E J= integer part G; Z [G; *N]/N B; Z [B; *N]/N

R = 0.532 N = 5 R = 0.532 R = 0.66 R = 2.66 R = 2.66

$$9 + ay Scale$$
 $9 = 0.2126R$ Sum = 1

 $+ 0.71526$
 $+ 0.07228$
 $C = (9.9.9)$
 $C = (2.2.9)$
 $G = 9$

Color Space Hue Saturation Value 1-15V C=(R,G,B) Cmax = max (R, G, B) Cmin = Min (R,G,B) $N = C_{Max} - C_{min}$ Saturation = () (max) Value = Cmax

CMYK cyan mag-inta yellow black

$$K = 1 - \frac{Max(R, G, B)}{(1-R)}$$
 $C = \frac{(1-R-K)/(1-K)}{(1-K)}$
 $M = \frac{(1-G-K)/(1-K)}{(1-K)}$

$$V = \frac{(1-18-14)}{(1-14)}$$

$$R = \frac{(1-14)(1-14)}{(1-14)}$$

$$R = \frac{(1-14)(1-14)}{(1-14)}$$

$$R = \frac{(1-14)(1-14)}{(1-14)}$$

$$I - C = \frac{R}{1-1K}$$
 $I - M = \frac{G}{1-1K}$
 $I - M = \frac{G}{1-1K}$
 $I - K = \frac{G}{1-1K}$

= 1-14 - 1

International
Commission on
Illumination

CIE

ACAdemy Color Academy Color Encoding System Open Color IO RMS (6nt rast units Mean, Standard deviation

 $\frac{Mexn}{R} = \left(\frac{Z^{\dagger}R_{i}}{R_{i}}\right) / N_{x}N_{y}$ $\frac{G}{G} = \left(\frac{Z^{\dagger}R_{i}}{R_{i}}\right) / N_{x}N_{y}$

 $\frac{1}{2} = \left(\frac{1}{2} R_i^2\right) / \mu_x \mu_y - R^2$

$$G_{R} = \sqrt{G_{R}^{2}} / N_{X}N_{Y} - G_{X}^{2}$$

$$G_{G}^{2} = \left(\frac{Z_{G_{1}}}{G_{1}}\right) / N_{X}N_{Y} - G_{X}^{2}$$

$$G_{R}^{2} = \left(\frac{Z_{G_{1}}}{G_{1}}\right) / N_{X}N_{Y} + G_{X}^{2}$$

$$G_{R}^{2} = \left(\frac{Z_{G_{1}}}{G_{R}}\right) / N_{X}$$

