Запутанность в марковской диссипативной динамике

Entanglement in Markovian Dissipative Dynamics

И.А.Юхновский

ноябрь 2020

Аннотация

В статье рассматриваются невзаимодействующие двухуровневые системы, погруженные в общий термостат, которые становятся взаимно запутанными, развиваясь согласно марковской, полностью положительной редуцированной динамике. Цель данной работы - развитие марковской динамики запутанных систем.

Abstract

The article deals with non-interacting two-level systems immersed in a common thermostat, which become mutually entangled, developing according to Markov, completely positive reduced dynamics. The aim of this work is to develop the Markov dynamics of entangled systems.

Содержание

1	Вве	Введение															2							
2	Запутанность															2								
	2.1	Замечание 1																						4
	2.2	Замечание 2																						F

3	Зак	лючение																							11
	2.6	Замечание 6	•											•	•	•	•	•			•		•		8
	2.5	Замечание 5																							8
	2.4	Замечание 4																							6
	2.3	Замечание 3	•	•	•	•	•	•	٠	•		•	•	•	•	•	•	•	•	•	•	•	•	•	0

1 Введение

Роль квантовой запутанности имеет первостепенное значение. важность в квантовой теории информации и вычислений. В последние годы большое количество исследований было посвящено изучению того, как запутать две системы посредством прямого взаимодействия между ними (см., Например, [1–5]). В таком контексте наличие окружающей среды, например, типичного шумного резервуара или термостата, обычно считается противодействующим созданию запутанности из-за его эффектов декогерентизации и улучшения смешивания. Тем не менее, термостат может также обеспечивать косвенное взаимодействие между полностью изолированными подсистемами и, таким образом, средством их перепутывания. Действительно, это было явно показано в простой, точно решаемой модели [6]. Там корреляции между двумя подсистемами устанавливаются во время переходной фазы, когда сокращённая динамика подсистем содержит эффекты памяти. Вместо этого в этом письме мы изучаем возможность того, что запутанность создаётся термостатом во время марковского режима посредством чисто шумного механизма.

2 Запутанность

Мы рассматриваем две невзаимодействующие двухуровневые системы, слабо связанные с общим термостатом. Затем мы начнём с полного гамильтониана вида:

$$H_{tot} = H_0^{(1)} + H_0^{(2)} + H_B + H_{int}$$
 (1)

,где $H_0^{(1)}, H_0^{(2)}, H_B$ управляют динамикой двух подсистем и термостата в отсутствие друг друга; член взаимодействия связывает каждую подсистему независимо с термостатом, и его можно принять в виде

$$H_{int} = \sum_{\alpha=1}^{3} (\sigma_{\alpha} \otimes 1) \otimes V_{\alpha} + \sum_{\alpha=4}^{6} (1 \otimes \sigma_{\alpha-3}) \otimes V_{\alpha}$$
 (2)

,где $\sigma_1, \sigma_2, \sigma_3$ - матрица Паули.

Обратите внимание, что мы позволяем подсистемам взаимодействовать с термостатом через различные операторы V, при этом исключено прямое взаимодействие между собой.

В пределе слабой связи [8, 9, 10, 11, 12, 13] приведённая динамика двух двухуровневых систем принимает марковский вид. Предполагая факторизованное начальное состояние $\rho\otimes\rho_B$, где ρ - состояние двух подсистем и ρ_B - состояние равновесия термостата, ρ эволюционирует во времени в соответствии с квантовой динамической полугруппой полностью положительных отображений с генератором формы Косаковского-Линдблада:

$$\partial_t \rho(t) = -i[H, \rho(t)] + L[\rho(t)] \tag{3}$$

Унитарный член - это коммутатор с эффективным гамильтонианом $H=H^{(1)}+H^{(2)+H^{(12)}},$ состоящий из отдельных частей системы, включая Лэмб сдвиг, вызванный ванной

$$H^{(1)} = \sum_{i=1}^{3} H_i^{(1)}(\sigma_i \otimes 1)$$

$$H^{(2)} = \sum_{i=1}^{3} H_i^{(2)}(1 \otimes \sigma_i)$$
(4)

плюс, возможно, двухсистемный терморегулятор, порождаемый ванной

$$H^{(12)} = \sum_{ij=1}^{3} H_{ij}^{(12)}(\sigma_i \otimes \sigma_j)$$
 (5)

Диссипативный вклад $L[\rho(t)]$ равен:

$$L[\rho] = \sum_{\alpha,\beta=1}^{6} \mathscr{D}_{\alpha,\beta} [\mathscr{F}_{\alpha} \rho \mathscr{F}_{\beta} - \frac{1}{2} \{\mathscr{F}_{\beta} \mathscr{F}_{\alpha}, \rho\}]$$
 (6)

с $\mathscr{F}_{\alpha}=\sigma_{\alpha}\otimes 1$ для $\alpha=1,2,3,\mathscr{F}_{\alpha}=1\otimes\sigma_{\alpha-3}$ для $\alpha=4,5,6,$ и $\mathscr{D}=\mathscr{D}^{\dagger}$ положительная матрица $6\times 6,$ которая гарантирует полную положительность эволюции.

Записав

$$\mathscr{D} = \begin{pmatrix} A & B \\ B^{\dagger} & C \end{pmatrix} \tag{7}$$

с 6×6 матрицами $A = A^\dagger, \ C = C^\dagger$ и $B, L[\rho]$ предполагает форму, более поддающуюся физической интерпретации:

$$L[\rho] = \sum_{i,j=1}^{3} (A_{ij}[(\sigma_{i} \otimes 1)\rho(\sigma_{j} \otimes 1) - \frac{1}{2}\{(\sigma_{j}\sigma_{i} \otimes 1), \rho\}])$$

$$+C_{ij}[(1 \otimes \sigma_{i})\rho(1 \otimes \sigma_{j}) - \frac{1}{2}\{(1 \otimes \sigma_{j}\sigma_{i}), \rho\}$$

$$+B_{ij}[(\sigma_{i} \otimes 1)\rho(1 \otimes \sigma_{j}) - \frac{1}{2}\{(\sigma_{i} \otimes \sigma_{j}), \rho\}]$$

$$+B_{ij}^{*}[(1 \otimes \sigma_{j})\rho(\sigma_{i} \otimes 1) - \frac{1}{2}\{(\sigma_{i} \otimes \sigma_{j}, \rho)\}])$$
(8)

Генератор такой формы применялся в квантовой оптике для описания явления коллективной резонансной флуоресценции (например, [14]). В приведённом выше выражении первые два вклада являются диссипативными членами, которые влияют на первую, соответственно, вторую систему в отсутствие другого. Напротив, последние две части представляют способ, которым шум может коррелировать две подсистемы; этот эффект присутствует, только если матрица В отличается от нуля.

2.1 Замечание 1

Из простого вывода основных уравнений Маркова [8, 9] известно, что гамильтоновы члены 4 и 5 и элементы матрицы \mathscr{D} в 6 содержат интегралы от двух точечных корреляционных функций во времени операторов ванны: $Tr[\rho_B V_\alpha V_\beta(t)]$. В частности, матрицы $[H_{ij}^{(12)}]$ в 5 и $[B_{ij}]$ в 8 не обращаются в нуль только в том случае, если состояние ванны ρ_B коррелирует операторы ванны V_{α} , относящиеся к разным подсистемам, т.е. есть, если ожидания $Tr[\rho_B V_{\alpha} V_{\beta}(t)]$ отличны от нуля при $1 \leq \alpha \leq 3$ и $4 \le \beta \le 6$. Только в этом случае возможно запутывание под действием ванны. В самом деле, если $H^{12}=0$ и B=0, две подсистемы развиваются независимо, и первоначально разделимые состояния могут стать более смешанными, но определённо не запутанными. Чтобы проверить, запутывается ли уменьшенная матрица плотности ρ двух систем во время t из-за эволюции во времени генерируется уравнением. 3 можно использовать критерий частичного транспонирования [?,?]: если $\rho(t)$, действующий с частичным транспонированием по отношению к одной из двух подсистем, имеет отрицательные собственные значения, то он запутан; в четырехмерном случае, который мы изучаем, также верно и обратное, а именно, если $\rho(t)$ запутано, то частичное транспонирование вызывает появление отрицательных собственных значений. С физической точки зрения ванна не способна создавать запутывание тогда и только тогда, когда частичная перестановка сохраняет положительность состояния $\rho(t)$ на все времена.

2.2 Замечание 2

Строго говоря, этот критерий позволяет исследовать возможность создания запутанности, начиная с разделимых начальных состояний. Когда начальное состояние уже запутано, критерий частичной перестановки не может решить вопрос; в таких случаях анализ запутывающей способности ванны может быть решен только путем изучения того, как меры запутывания меняются во времени в условиях диссипативной приведенной динамики. Эта проблема требует отдельного рассмотрения и здесь не рассматривается.

Поэтому мы принимаем разделяемые состояния в качестве начальных состояний: как мы увидим, это на самом деле не ограничение для целей обсуждения возможности создания запутанности, вызванной ванной. Далее, мы можем ограничить наше исследование чистыми состояниями; действительно, если ванна не может запутать их, она определенно не запутает их смеси. В связи с этим будем рассматривать начальные состояния вида

$$\rho(0) = |a_1\rangle\langle a_1| \otimes |b_1\rangle\langle b_1| \tag{9}$$

,где $\{|a_i\rangle\},\{|b_i\rangle\},i=1,2$ являются ортонормированными базисами в двумерных гильбертовых пространствах двух подсистем.

Для определённости оперируем частичным транспонированием второго множителя по базису $\{|b_1\rangle, |b_2\rangle\}$

Можно действовать с частичным транспонированием по обе стороны уравнения 3 и преобразовать результат как

$$\partial_t \tilde{\rho}(t) = -i[\tilde{H}, \tilde{\rho}(t)] + \tilde{L}[\tilde{\rho}(t)] \tag{10}$$

,где $\tilde{\rho}(t)$ обозначает частично транспонированную матрицу $\rho(t)$, \tilde{H} новый гамильтониан, в который вносят вклад как унитарный, так и диссипативный член в 3 вносят вклад

$$\tilde{H} = \sum_{i=1}^{3} H_i^{(1)}(\sigma_i \otimes 1) + \sum_{ij=1}^{3} Im(B \cdot S)_{ij}(\sigma_i \otimes \sigma_j)$$
(11)

,где S диагональная 3×3 матрица задана S=diag(-1,1,-1) Дополнительный кусок $\tilde{L}[\cdot]$ имеет вид 6, но с новой матрицей $\mathscr{D}\to S\cdot \tilde{\mathscr{D}}\cdot S$, где

$$\tilde{\mathscr{D}} = \begin{pmatrix} A & Re(B) + iH^{(12)} \\ Re(B^T) - iH^{(12)T} & C^T \end{pmatrix}$$
 (12)

$$S = \begin{pmatrix} 1_3 & 0 \\ 0 & S \end{pmatrix} \tag{13}$$

а верхний индекс T обозначает полное транспонирование, а $H^{(12)}$ - матрица коэффициентов в $\ 5.$

2.3 Замечание 3

Хотя $\tilde{\rho}(t)$ эволюционирует согласно главному уравнению формально в форме Косаковски-Линдблада, новая матрица коэффициентов \tilde{D} не обязательно должна быть положительной. Как следствие, эволюция во времени, порождённая 10, может быть ни полностью положительной, ни положительной, и, следовательно, может не сохранять положительность начального состояния $\tilde{\rho}(0) \equiv \rho(0)$.

Обратите внимание, что и гамильтониан, и диссипативный условия исходного главного уравнения 3 вносят вклад в часть $\tilde{L}[\cdot]$ в 10, единственный член в 10, который может давать отрицательные собственные значения. В частности, это делает более прозрачным физический механизм, согласно которому прямая гамильтонова связь $H^{(12)}$ между двумя системами может вызывать запутанность: на $\tilde{\rho}(t), H^{(12)}$ «действует» как диссипативный вклад, который в целом не сохраняет положительность. Сила сцепления чисто гамильтоновых взаимодействий широко изучалась в недавней литературе [2, 3, 4, 5, 6]. Вместо этого в дальнейшем мы сосредоточим наше внимание на том, может ли запутывание быть произведено чисто диссипативным действием термостата; в дальнейшем мы не будем учитывать вклад матрицы $H^{(12)}$ в $\tilde{\mathscr{D}}$. Другими словами, мы будем учитывать только термостаты, для которых индуцированная двухсистемная гамильтонова связь в 5 исчезающе мала.

2.4 Замечание 4

Если $\tilde{\mathcal{D}}$ положительно, то эволюция во времени, порождённая 10, полностью положительна; следовательно, $\tilde{\rho}(t)$ всегда положительный, и запутывание не создаётся. Экземпляры термостатов, для которых это происходит, легко могут быть при условии:

- (i) B=0: в таком случае $\tilde{\mathscr{D}}$ положительно, поскольку таковы A и C^T в силу положительности $\tilde{\mathscr{D}}$; это соответствует термостату, который не коррелирует динамически с двумя подсистемы;
- (ii) Re(B)=0: как прежде, $\tilde{\mathscr{D}}$ блочно-диагональный и, следовательно, положительный;
- (iii) Im(B)=0 и $C^T=C$ или $A^T=A$: в первом случае $\tilde{\mathscr{D}}=\mathscr{D},$ а во втором: $\tilde{\mathscr{D}}=\mathscr{D}^T;$
- (iv) $A^T=A$ и $C^T=C$: в этом случае, $\tilde{\mathscr{D}}=(\mathscr{D}+\mathscr{D}^T)/2$

В последних трёх случаях, несмотря на тот факт, что две подсистемы теперь динамически коррелируются с помощью термостата, эффекта недостаточно для образования сцепления. Кроме того, обратите внимание, что перепутывание не создается также в термостатах, для которых соответствующая матрица $\mathcal D$ коэффициентов может быть записана как выпуклая комбинация матриц, удовлетворяющих предыдущим условиям.

Чтобы проверить наличие отрицательных собственных значений в $\tilde{\rho}(t)$, вместо изучения полного уравнения 10 находим удобным изучать величину:

$$\mathscr{E} = \langle \psi | \tilde{\rho}(t) | \psi \rangle \tag{14}$$

, где ψ - любой четырехмерный вектор. Предположим, что исходное сепарабельное состояние $\tilde{\rho}$ действительно развило отрицательное собственное значение в момент времени t, но не раньше. Тогда существует векторное состояние $\psi\rangle$ и время $t^* < t$ такие, что $\mathscr{E}(t^*) = 0, \mathscr{E}(t) > 0$ для $t < t^*$ и Е $\mathscr{E} < 0$ для $t > t^*$. Таким образом, знак создания запутанности может быть задан отрицательной первой производной $\mathscr{E}(t)$ в $t = t^*$. Более того, по предположению состояние $\rho(t^*)$ сепарабельно. Без ограничения общности можно положить $t^* = 0$ и, как уже отмечалось, ограничить внимание факторизованными чистыми начальными состояниями

Другими словами, две подсистемы, изначально подготовленные в состоянии $\rho(0) = \tilde{\rho}(0)$, как в 9, будут запутаны зашумленной динамикой, вызванной их независимым взаимодействием с термостатом, если $1 \mathcal{E}(0) = 0$ и $2 \partial_t \mathcal{E}(0) < 0$, для подходящего вектора $|\psi\rangle$,

$$|\psi\rangle = \sum_{i,j=1}^{2} \psi_{ij} |a_i\rangle \otimes |b_i\rangle \tag{15}$$

2.5 Замечание 5

Обратите внимание, что создание запутанности не может быть обнаружено, глядя на знак первой производной $\mathscr{E}(t)$, если тестовый вектор $\psi\rangle$ не запутан сам.

В самом деле, $\mathscr{E}(t)$ никогда не бывает отрицательным для сепарабельного ψ . Таким образом, оба компонента ψ_{12} и ψ_{21} в 15 должны быть отличными от нуля, поскольку в противном случае ψ становится разделимым.

2.6 Замечание 6

Когда $\partial_t \mathscr{E}(0) > 0$ для всех вариантов начального состояния $\rho(0)$ и пробного вектора $|\psi\rangle$, термостат не может перепутать две системы, поскольку $\tilde{\rho}$ остаётся положительным. Обработка случая $\partial_t \mathscr{E}(0) = 0$ требует особой осторожности: для проверки создания запутанности необходимо исследовать производные \mathscr{E} более высокого порядка, возможно, с зависящим от времени $|\psi\rangle$.

Чтобы доказать, что действительно существуют термостаты, для которых $\mathscr{E}(0)=0$ и $\partial_t\mathscr{E}(0)$ отрицательно, сначала сделаем выбор $|a_1\rangle=|b_1\rangle=|+\rangle$ и $|a_2\rangle=|b_2\rangle=|-\rangle$, где $|\pm\rangle$ собственные состояния σ_3 ; общий случай рассмотрен ниже. Для $|\psi\rangle=(|+\rangle\otimes|-\rangle+|-\rangle\otimes|+\rangle)/\sqrt{2}$ можно найти

$$\partial_t \mathcal{E}(0) = Tr[\mathcal{D}\mathcal{R}] \tag{16}$$

,где \mathscr{D} как в 7, а

$$\mathcal{R} = \begin{pmatrix} P & Q \\ Q & P \end{pmatrix}, P = \frac{1}{2} \begin{pmatrix} 1 & i & 0 \\ -i & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (17)

и Q = diag(-1/2,1/2,0). Хотя P - проектор, $(2Q)^2 = diag(1,1,0)$, и, как следствие $\mathscr R$ имеет одно отрицательное собственное значение $(1-\sqrt{2})/2$ кратности два. Любой термостат, для которого матрица коэффициентов Косаковского $\mathscr D$ имеет поддержку только в отрицательном собственном подпространстве $\mathscr R$, будет генерировать отрицательное $\partial_t \mathscr E(0)$ и, следовательно, запутать первоначально разделенное состояние $\rho(0) = |+\rangle\langle+|\otimes|+\rangle\langle+|$.

Простой явный пример, в котором это происходит, даётся следующей двухпараметрической матрицей $\mathcal D$ с

$$A = C = \begin{pmatrix} 1 & -ia & 0 \\ ia & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, B = \frac{1}{2} \begin{pmatrix} b & 0 & 0 \\ 0 & -b & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (18)

где a и b - действительные постоянные. Положительность \mathcal{D} , необходимая для полной положительности марковской динамики подсистемы 3, гарантируется $a^2+b^2 \le 1$. Внутри этого единичного круга область, для которой $\partial_t \mathscr{E}(0)$ отрицательна и характеризуется условием a+b>1. Фактически, изменяя начальное состояние $\rho(0)$ и пробный вектор $|\psi\rangle$, можно показать, что сцепление создаётся во всех четырёх участках диска вне вложенного квадрата $|a \pm b| \le 1$ положительно. Обратите внимание, что внутри этого квадрата \mathcal{D} , где временная эволюция частично транспонированной матрицы плотности $\tilde{\rho}(t)$, порождённой 10, также полностью положительна: в этом случае запутанность не может быть создана ни при каком выборе начальной состояние $\rho(0)$ и вектора $|\psi\rangle$. Теперь, когда мы показали, что марковская динамика действительно может запутывать две подсистемы посредством чисто зашумленного механизма: давайте обсудим более подробно условие создания запутанности. Хотя в общем случае базисные векторы $|a_i\rangle, |b_i\rangle$, введённые в 9, не являются собственными состояниями σ_3 , их всегда можно унитарно повернуть к базису $|\pm\rangle$:

$$|a_{1}\rangle = U|+\rangle$$

$$|a_{2}\rangle = U|-\rangle$$

$$|b_{1}\rangle = V|+\rangle$$

$$|b_{2}\rangle = V|-\rangle$$
(19)

Унитарные преобразования U и V индуцируют ортогональные преобразования $\mathscr U$ и $\mathscr V$ соответственно на матрицах Паули:

$$U^{\dagger} \sigma_i U = \sum_{j=1}^3 \mathscr{U}_{ij} \sigma_j$$

$$V^{\dagger} \sigma_i V = \sum_{j=1}^3 \mathscr{V}_{ij} \sigma_j$$
(20)

С этими определениями для общего разделяемого начального состояния 9 и произвольного вектора $|\psi\rangle$, такого что $\mathscr{E}(0)=0$, условие

 $\partial_t \mathscr{E}(0) < 0$ для образования зацепления может быть выражено как следующее математическое ожидание по продукту из 6×6 матриц:

$$\vec{w}^{\dagger} \cdot [\psi^{\dagger} \mathcal{W}^T \tilde{\mathcal{D}} \mathcal{W} \Psi] \cdot \vec{w} < 0 \tag{21}$$

, где $\tilde{\mathcal{D}}$ как в 12 (с $H^{(12)}$, установленным в ноль, как объяснялось ранее), а остальные матрицы задаются

$$\mathcal{W} = \begin{pmatrix} \mathcal{U} & 0 \\ 0 & \mathcal{V} \end{pmatrix}, \Psi = \begin{pmatrix} \psi_{21} 1_3 & 0 \\ 0 & -\psi_{12} 1_3 \end{pmatrix}$$
 (22)

а компоненты 6-вектора \vec{w} матричными элементами Паули:

$$w_i = \langle +|\sigma_i|-\rangle, w_{i+3} = w_i^*, i = 1, 2, 3$$
 (23)

Более управляемое условие для проверки образования сцепленности может быть получено, если заметить, что 21 квадратично по компонентам ψ_{12} и ψ_{21} . Путём соответствующей перестановки выражения в 21 можно затем показать, что запутанность возникает, если выполняется следующее неравенство, не зависящее от пробного вектора $|\psi\rangle$:

$$\langle u|A|u\rangle\langle v|C^T|v\rangle < |\langle u|Re(B)|v\rangle|^2$$
 (24)

3-векторы $|u\rangle$ и $|v\rangle$ не являются полностью произвольными: они содержат информацию о начальном факторизованном состоянии 9, а их компоненты могут быть выражены как

$$u_{i} = \sum_{j=1}^{3} \mathcal{U}_{ij} w_{j}, v_{i} = \sum_{j=1}^{3} \mathcal{Y}_{ij} w_{j}^{*},$$
(25)

Следовательно, данный термостат сможет запутать две подсистемы, развивающиеся с помощью марковской динамики, порождённой 3 и характеризуемой матрицей Косаковского 7, если существует начальное состояние $|a_1\rangle\langle a_1|\otimes |b_1\rangle\langle b_1|$, или, что то же самое, ортогональные преобразования $\mathscr U$ и $\mathscr V$, для которых выполняется неравенство 24.

Таким образом, условие 24 может использоваться для проверки запутывающей способности конкретных марковских временных эволюций. В качестве примера рассмотрим термостат, ведущую к матрице Косаковского 7, для которой A=B=C; этот выбор соответствует частному случаю коллективной резонансной флуоресценции [14, ?]. Если эрмитова матрица A несимметрична, легко доказать, что существуют начальные состояния вида 9 с $|a_1\rangle = |b_1\rangle$, которые будут запутаны зашумленной динамикой. Действительно, в этом случае условие 24 сводится к

$$|\langle u|Im(A)|u\rangle|^2 > 0 \tag{26}$$

что очевидно выполняется для любого $|u\rangle$ вне собственного нулевого подпространства Im(A). Однако, когда A действительно, 26 нарушается, и запутанность не создаётся, поскольку частичное транспонированное состояние $\tilde{\rho}(t)$ развивается во времени с полностью положительной динамикой.

Представленные здесь методы могут быть применены к другим физическим условиям; многообещающей является модель Джейнса-Каммингса для двух двухуровневых систем [14, 18, 19], где они могут быть использованы для аналитического исследования возможного присутствия «коллапсов» и «возрождений» в поведении запутанности.

3 Заключение

Дальнейшее развитие проблематики в [20, 21, 22, 23]

Список литературы

- [1] Benatti, F., Floreanini, R., & Piani, M. (2003). Environment Induced Entanglement in Markovian Dissipative Dynamics. Physical Review Letters, 91(7). doi:10.1103/physrevlett.91.070402
- [2] P. Zanardi, C. Zalka, and L. Faoro, Phys. Rev. A 62, 030301 (2000); P. Zanardi, ibid. 63, 040304 (2001).
- [3] J. I. Cirac, W. Dür, B. Kraus, and M. Lewenstein, Phys. Rev. Lett. 86, 544 (2001).
- [4] W. Dür, G. Vidal, J. I. Cirac, N. Linden, and S. Popescu, Phys. Rev. Lett. 87, 137901 (2001).
- [5] B. Kraus and J. I. Cirac, Phys. Rev. A 63, 062309 (2001).
- [6] K. Życkowski, P. Horodecki, M. Horodecki, and R. Horodecki, Phys. Rev. A 65, 012101 (2001).
- [7] D. Braun, Phys. Rev. Lett. 89, 277901 (2002).
- [8] E. B. Davies, Commun. Math. Phys. 39, 91 (1974); Math. Ann. 219, 147 (1976).

- [9] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. (N.Y.) 17, 821 (1976); V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. G. C. Sudarshan, Rep. Math. Phys. 13, 149 (1978).
- [10] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
- [11] H. Spohn, Rev. Mod. Phys. 52, 569 (1980).
- [12] R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics Vol. 286 (Springer-Verlag, Berlin, 1987).
- [13] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).
- [14] R. R. Puri, Mathematical Methods of Quantum Optics (Springer, Berlin, 2001).
- [15] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
- [16] M. Horodecki, P. Horodecki, and R. Horodecki, Phys.Lett. A 223, 1 (1996).
- [17] G. S. Agarwal, A. C. Brown, L. M. Narducci, and G. Vetri, Phys. Rev. A 15, 1613 (1977).
- [18] W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973).
- [19] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).
- [20] M. S. Kim et al., Phys. Rev. A 65, 040101(R) (2002).
- [21] S. Schneider and G. J. Milburn, Phys. Rev. A 65, 042107 (2002).
- [22] A. M. Basharov, J. Exp. Theor. Phys. 94, 1070 (2002).
- [23] L. Jakóbczyk, J. Phys. A 35, 6383 (2002)