Juicy Details

Introducción

El presente informe documenta el análisis realizado sobre los registros entregados por el equipo de TI de **Juicy Shop**, tras detectar actividad maliciosa dentro de su infraestructura. El objetivo de este análisis es identificar las técnicas utilizadas por el atacante, los endpoints comprometidos, la información exfiltrada y el impacto potencial del incidente.

Cronología del Ataque

A partir de los archivos de registro (access.log) se identificaron las siguientes fases del ataque, ejecutadas el 11 de abril de 2021 desde la dirección IP 192.168.10.5:

Sesión 1 — Reconocimiento / Escaneo (11/Apr/2021 09:08:29)

Evidencia: el primer evento registrado es un escaneo desde la IP 192.168.10.5 a las **09:08:29**; en los logs se detecta actividad típica de mapeo de puertos/servicios.

- El atacante inició un escaneo de reconocimiento empleando Nmap, con el fin de identificar servicios y puertos expuestos.
- Esta fase le permitió descubrir vectores de ataque en la superficie de exposición del sistema.

Acción recomendada inmediata:

- Revisar/aislar la IP origen si es externa; si es interna, iniciar trazado de origen y escalado a
 TI.
- Habilitar alertas de escaneo en IDS/IPS y limitar acceso a servicios administrativos desde redes no confiables.

```
| Czikuta@ zikuta| - [~/Desktop/juicy] | Cat access_log |
```

Sesión 2 — Fuzzing / Enumeración de directorios (09:08:30 – 09:15:35)

Evidencia: múltiples peticiones HTTP con user-agent Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0 y patrones de requests típicos de feroxbuster/dirbuster; duración hasta **09:15:35**.

```
Gecko/20100101 Firefox/78.0"
::ffff:192.168.10.5 - [11/Apr/2021:09:15:03 +0000] "GET /rest/products/search?q= HTTP/1.1" 304 - "http://192.168.10.4/" "Mozilla/5.0 (X11; Linux x86_64; rv 78.0) Gecko/20100101 Firefox/78.0"
::ffff:192.168.10.5 - [11/Apr/2021:09:15:03 +0000] "GET /rest/basket/6 HTTP/1.1" 200 154 "http://192.168.10.4/" "Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0"
::ffff:192.168.10.5 - [11/Apr/2021:09:15:03 +0000] "GET /api/Quantitys/ HTTP/1.1" 304 - "http://192.168.10.4/" "Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0"
::ffff:192.168.10.5 - [11/Apr/2021:09:15:06 +0000] "GET /rest/user/whoami HTTP/1.1" 304 - "http://192.168.10.4/" "Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0"
::ffff:192.168.10.5 - [11/Apr/2021:09:15:06 +0000] "GET /rest/basket/6 HTTP/1.1" 304 - "http://192.168.10.4/" "Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0"
::ffff:192.168.10.5 - [11/Apr/2021:09:15:10 +0000] "GET /rest/user/whoami HTTP/1.1" 304 - "http://192.168.10.4/" "Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0"
::ffff:192.168.10.5 - [11/Apr/2021:09:15:15 +0000] "GET /rest/admin/application-configuration HTTP/1.1" 304 - "http://192.168.10.4/" "Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0"
::ffff:192.168.10.5 - [11/Apr/2021:09:15:15 +0000] "GET /rest/continue-code HTTP/1.1" 200 79 "http://192.168.10.4/" "Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0"
::ffff:192.168.10.5 - [11/Apr/2021:09:15:35 +0000] "GET /rest/saveLoginIp HTTP/1.1" 200 358 "http://192.168.10.4/" "Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0"
::ffff:192.168.10.5 - [11/Apr/2021:09:15:35 +0000] "GET /rest/products/search?q= HTTP/1.1" 304 - "http://192.168.10.4/" "Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0"
```

Qué pasó:

- Se ejecutó un escaneo de directorios (fuzzing) para descubrir endpoints sensibles.
- Resultado relevante: descubrimiento del endpoint de autenticación /rest/user/login.

Por qué importa:

 El descubrimiento del panel de login es lo que permitió al atacante pasar a la fase de acceso directo (fuerza bruta).

Acción recomendada inmediata:

- Revisar logs de 404/403 y endpoints enumerados; colocar reglas WAF para bloquear patrones de fuzzing (cabeceras, frecuencia).
- Implementar rate limiting y CAPTCHA en endpoints de login.

Sesión 3 — Fuerza bruta contra /rest/user/login (09:16:27 – **09:16:31**; login exitoso a **09:16:31 +0000**)

Evidencia: ráfaga de **144** intentos contra /rest/user/login en ~3 segundos, herramienta identificada: **Hydra**; registro de un inicio de sesión exitoso a las **09:16:31 +0000**.

Qué pasó:

- Ataque de fuerza bruta automatizado con credenciales/wordlist.
- Hubo un acceso exitoso (usuario/credencial válida) a las 09:16:31, lo que le otorgó al atacante una sesión autenticada en la aplicación.

Por qué importa:

 El bloqueo por intentos repetidos no estaba activo o era insuficiente. Acceso autenticado permite escalar privilegios y ejecutar acciones posteriores (como inyecciones, consultas privilegiadas, etc.).

Acción recomendada inmediata:

- Forzar la rotación de la contraseña comprometida; invalidar todas las sesiones activas.
- Implementar bloqueo de cuenta, bloqueo por IP temporal y MFA en todos los inicios de sesión.
- Buscar signos de lateral movement desde la cuenta comprometida.

Sesión 4 — Inyección SQL en /rest/products/search?q= (09:29:14 – 09:32:51)

Evidencia: peticiones con payloads de SQLi detectadas; uso de **sqlmap** y posteriormente consultas UNION SELECT automatizadas vía **curl 7.74.0** entre **09:29:58** y **09:32:51**. Se apunta a columnas de la tabla Users (id, email, password).

Qué pasó

- El atacante explotó un parámetro vulnerable (q) en el endpoint de búsqueda para ejecutar consultas SQL arbitrarias.
- Intentos de volcado (dump) de la base de datos; éxito en extraer columnas sensibles (email , password).

Por qué importa:

- Exfiltración de credenciales y correos compromete la privacidad de usuarios y posibilita más acceso (credential stuffing en otros servicios).
- Indica falta de input sanitization y/o uso de queries parametrizadas.

Acción recomendada inmediata:

- Poner el endpoint fuera de línea o aplicar regla WAF de bloqueo para patrones UNION SELECT, OR 1=1, etc.
- Auditar la base de datos por consultas inusuales y rotar credenciales de usuarios afectados.
- Habilitar monitoreo de integridad en tablas sensibles.

Sesión 5 — Automatización de extracción con cURL (09:29:58 – 09:32:51)

Se observó que el atacante automatizó el ataque mediante curl (versión 7.74.0), enviando consultas tipo UNION SELECT para intentar exfiltrar columnas de la tabla Users, incluyendo id, email y password. Las solicitudes se registraron entre las 09:29:58 y 09:32:51 del 11/Apr/2021."

Evidencia: múltiples requests con curl/7.74.0 realizando UNION SELECT y recuperando columnas; las entradas en access.log muestran respuestas con datos.

```
::ffff:192.168.10.5 - - [11/Apr/2021:09:29:58 +0000] "GET /rest/products/search?q=%27))%20UNION%20SELECT%20%27%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273%27,%20%273
```

Qué pasó:

- Tras verificar vulnerabilidad con sqlmap, el atacante usó curl para automatizar y extraer columnas específicas (id, email, password).
- Esto confirma exfiltración programada y no solo pruebas puntuales.

Por qué importa:

Uso de herramientas estándar y scripts hace que la exfiltración sea reproducible y rápida;
 más difícil de detectar si no hay alertas por patrones.

Acción recomendada inmediata:

- Capturar y preservar todas las respuestas registradas durante esas solicitudes (para evidencia).
- Notificar a cumplimiento/privacidad si datos de usuarios fueron comprometidos.

Sesión 6 — Segundo Fuzzing / Feroxbuster (posterior al SQLi)

Evidencia: nuevo ciclo de enumeración de directorios con feroxbuster; secuencia de accesos a rutas enumeradas, incluyendo /backup, /promotion, /admin.

Qué pasó:

- El atacante reanudó enumeración para encontrar archivos o endpoints con contenido interesante (correos, backups, markdowns).
- En /products/reviews se detectaron intentos de extracción de correos en distintas secciones.

Por qué importa:

 Buscar archivos y rutas con datos sensibles o backups es típico post-exploit para maximizar información exfiltrada.

Acción recomendada inmediata:

- Escanear repositorio web en busca de archivos .bak, .md, .old, .sql expuestos y eliminarlos o restringir acceso.
- Implementar reglas WAF que bloqueen patrones de búsqueda masiva.

Sesión 7 — Acceso FTP anónimo y exfiltración de archivos (11/Apr/2021 09:34:33 – 09:34:52)

Evidencia: conexiones FTP desde 192.168.10.5 usando usuario anonymous; transferencia (GET) de dos archivos: www-data.bak y coupons_2013.md.bak.

```
Sun Apr 11 09:08:34 2021 [pid 8015] CONNECT: Client "::ffff:192.168.10.5"
Sun Apr 11 09:08:34 2021 [pid 8017] CONNECT: Client "::ffff:192.168.10.5"
Sun Apr 11 09:08:34 2021 [pid 8018] CONNECT: Client "::ffff:192.168.10.5"
Sun Apr 11 09:08:34 2021 [pid 8018] CONNECT: Client "::ffff:192.168.10.5"
Sun Apr 11 09:08:34 2021 [pid 8021] CONNECT: Client "::ffff:192.168.10.5"
Sun Apr 11 09:08:34 2021 [pid 8020] [ftp] OK LOGIN: Client "::ffff:192.168.10.5", anon password "IEUser@"
Sun Apr 11 09:08:35 2021 [pid 8014] [ftp] OK LOGIN: Client "::ffff:192.168.10.5", anon password "IEUser@"
Sun Apr 11 09:08:35 2021 [pid 8013] [ftp] OK LOGIN: Client "::ffff:192.168.10.5", anon password "IEUser@"
Sun Apr 11 09:08:35 2021 [pid 8048] CONNECT: Client "::ffff:192.168.10.5"
Sun Apr 11 09:08:35 2021 [pid 8050] CONNECT: Client "::ffff:192.168.10.5"
Sun Apr 11 09:08:35 2021 [pid 8052] CONNECT: Client "::ffff:192.168.10.5"
Sun Apr 11 09:35:37 2021 [pid 8153] CONNECT: Client "::ffff:192.168.10.5"
Sun Apr 11 09:35:37 2021 [pid 8152] [ftp] OK LOGIN: Client "::ffff:192.168.10.5", anon password "?"
Sun Apr 11 09:35:37 2021 [pid 8152] [ftp] OK LOGIN: Client "::ffff:192.168.10.5", "/www-data.bak", 2602 b tes, 544.81Kbyte/sec
Sun Apr 11 09:36:08 2021 [pid 8154] [ftp] OK DOWNLOAD: Client "::ffff:192.168.10.5", "/coupons_2013.md.bak", 131 bytes, 3.01Kbyte/sec
```

Qué pasó:

- El atacante aprovechó FTP anónimo para descargar copias de seguridad y archivos con datos potencialmente sensibles.
- Los archivos descargados contienen probables configuraciones/credenciales o cupones (posible información comercial).

Por qué importa:

- FTP anónimo habilita exfiltración fácil; backups con credenciales son un vector directo de escalada.
- La presencia de www-data.bak sugiere backup de archivos de servidor que pueden contener claves o configuraciones.

Acción recomendada inmediata:

- Deshabilitar accesos FTP anónimos y auditar el servidor FTP.
- Recuperar y analizar los archivos descargados (si hay copia en servidor) para evaluar la sensibilidad.

Cambiar credenciales encontradas en esos backups.

Sesión 8 — Acceso SSH como www-data y shell persistente (posterior)

Evidencia: logs indican conexión SSH con usuario www-data y obtención de shell por parte del atacante; secuencia posterior consistente con comandos interactivos.

```
Apr 11 09:41:32 thun sshd[8494]: Accepted password for www-data rom 192.168.10.5 port 40114 ssh2
Apr 11 09:41:32 thun sshd[8494]: pam_unlx*terministion; cortion opened for user www-data by (uid=0)
Apr 11 09:41:32 thunt systemd-logind[737] New session 14 of user www-data by (uid=0)
Apr 11 09:41:44 thunt sshd[8579]: Received disconnect from 192.168.10.5 port 40114:11: disconnected by user
Apr 11 09:41:44 thunt sshd[8579]: Disconnected from user www-data 192.168.10.5 port 40114
Apr 11 09:41:44 thunt systemd-logind[737]: Session 14 logged out. Waiting for processes to exit.
Apr 11 09:41:44 thunt systemd-logind[737]: Removed session 14.
Apr 11 09:41:46 thunt dbus-daemon[718]: [system] Failed to activate service 'org.bluez': timed out (service_start_timeout=25000ms)
Apr 11 09:42:01 thunt sudo: pam_unix(sudo:session): session closed for user root
Apr 11 09:42:57 thunt su: pam_unix(su:session): session closed for user thunt
Apr 11 09:43:35 thunt sudo: pam_unix(sudo:auth): Couldn't open /etc/securetty: No such file or directory
Apr 11 09:43:37 thunt sudo: pam_unix(sudo:auth): Couldn't open /etc/securetty: No such file or directory
```

Qué pasó:

- El atacante, con credenciales recuperadas (posiblemente desde backups o SQLi), consiguió acceso a una cuenta del sistema (www-data) vía SSH y obtuvo shell.
- Desde esa shell pudo moverse, crear persistencia, y preparar exfiltración adicional.

Por qué importa:

 Acceso directo al sistema operativo permite ejecutar ataques fuera del contexto Web (escalada a root, lateral movement, instalación de backdoors).

Acción recomendada inmediata:

- Terminar todas las sesiones SSH sospechosas; cambiar claves/credenciales en el host.
- Buscar binarios/cronjobs/keys colocados por el atacante para persistencia.
- Aislar la máquina comprometida y tomar imagen forense antes de limpiarla.

Resumen ejecutivo

El atacante siguió una campaña clásica: reconocimiento \rightarrow fuzzing \rightarrow fuerza bruta (login exitoso) \rightarrow inyección SQL (exfiltración de credenciales) \rightarrow búsqueda de archivos sensibles \rightarrow exfiltración via FTP \rightarrow SSH para shell persistente. Los puntos críticos fueron la existencia de FTP anónimo, falta de mitigaciones contra fuerza bruta y la vulnerabilidad SQL en el endpoint de búsqueda.

Siguientes pasos (prioridad inmediata)

1. **Contención:** bloquear IPs sospechosas, aislar host comprometido.

- 2. **Erradicación:** deshabilitar FTP anónimo, aplicar parches/parametrización SQL, forzar cambios de contraseña y MFA.
- 3. Recuperación: restaurar desde backups limpios, revisar integridad del sistema.
- 4. **Forense:** capturar imágenes, conservar logs y respuestas de las solicitudes SQL para evidencia.
- 5. **Notificación:** activar protocolos legales/privacidad si datos de usuarios fueron comprometidos.

Indicadores de Compromiso (IOCs)

Tipo	IOC (valor)	Timestamp(s) (UTC)	Evidencia (extracto / línea de log)
IP origen	192.168.10.5	11/Apr/2021 09:08:29 — 11/Apr/2021 09:34:52	Múltiples entradas en access.log registran solicitudes originadas desde 192.168.10.5 durante todo el incidente (reconocimiento, fuzzing, fuerza bruta, SQLi, FTP). Timestamps registrados en el PDF: 09:08:29, 09:16:27–09:16:31, 09:29:14–09:32:51, 09:34:33–09:34:52.
User-Agent (fuzzing)	Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0	11/Apr/2021 09:08:30 – 09:15:35	El PDF muestra numerosas peticiones con ese User-Agent durante la fase de enumeración de directorios (patrón típico de feroxbuster), incluyendo descubrimiento de /rest/user/login.
User-Agent (exfiltración HTTP)	curl/7.74.0	11/Apr/2021 09:29:58 – 09:32:51	Registros que muestran curl/7.74.0 realizando peticiones con payloads UNION SELECT entre 09:29:58 y 09:32:51; respuestas contienen columnas id, email, password.

Tipo	IOC (valor)	Timestamp(s) (UTC)	Evidencia (extracto / línea de log)
Herramienta (fuerza bruta)	hydra (patrón de requests)	11/Apr/2021 09:16:27 – 09:16:31	El access.log indica 144 intentos rápidos contra /rest/user/login en ~3s, patrón consistente con Hydra; el PDF declara explícitamente uso de hydra y login exitoso a las 09:16:31 +0000.
Herramienta (automatización SQL)	sqlmap (seguido de curl)	11/Apr/2021 09:29:14 – 09:32:51	El PDF registra ejecución de sqlmap iniciada a las 09:29:14 y posteriormente peticiones curl entre 09:29:58 y 09:32:51 con UNION SELECT dirigidas a /rest/products/search? q=; evidencia de volcado de la tabla Users.
Endpoint (login)	/rest/user/login	Descubierto 09:15:xx; ataques 09:16:27 – 09:16:31; login exitoso 11/Apr/2021 09:16:31 +0000	El PDF indica descubrimiento del endpoint durante el fuzzing y registra 144 intentos de fuerza bruta seguidos de un inicio de sesión exitoso a las 09:16:31 +0000 en access.log.
Endpoint (vulnerable a SQLi)	/rest/products/search? q=	11/Apr/2021 09:29:14 – 09:32:51	Entradas en logs muestran payloads SQLi dirigidos al parámetro q desde 09:29:14; el PDF documenta extracción de id, email, password vía UNION SELECT.
Endpoint (recolección datos)	/products/reviews	~09:32:xx – 09:34:xx (posterior al SQLi)	El PDF muestra intentos posteriores de raspar secciones como /products/reviews en búsqueda de correos y datos visibles tras el volcado.

Tipo	IOC (valor)	Timestamp(s) (UTC)	Evidencia (extracto / línea de log)
FTP — acceso anónimo	Login anonymous	11/Apr/2021 09:34:33 – 09:34:52	Registros de FTP indican conexión anónima desde 192.168.10.5 y transferencias GET entre 09:34:33 y 09:34:52; PDF lista los archivos descargados.
Archivos exfiltrados	www-data.bak, coupons_2013.md.bak	Transferencias 11/Apr/2021 09:34:33 – 09:34:52	El PDF reporta la descarga de www-data.bak y coupons_2013.md.bak vía FTP anónimo en la ventana 09:34:33—09:34:52; potencial contenido sensible en backups.
Acceso SSH	SSH como www-data (shell interactivo)	Posterior a 09:34:52 (actividad post- exfiltración)	Logs indicativos en el PDF muestran conexión SSH con usuario www- data y comandos de shell posteriores; se reporta obtención de shell para persistencia.
Técnica de reconocimiento	Escaneo activo (posible Nmap)	11/Apr/2021 09:08:29	El PDF documenta un escaneo inicial a las 09:08:29 que coincide con patrones de Nmap / scanning en access.log.

Técnicas MITRE ATT&CK

Técnica (ATT&CK)	ID	Descripción (resumida)	Evidencia en logs
Active Scanning / Reconocimiento activo (escaneo de puertos/servicios)	T1595. (Active Scanning) (MITRE ATT&CK)	Escaneo inicial para identificar puertos/servicios expuestos (p. ej. Nmap o escaneo similar).	Escaneo inicial desde 192.168.10.5 a las 09:08:29 .

Técnica (ATT&CK)	ID	Descripción (resumida)	Evidencia en logs
Vulnerability / Directory discovery (fuzzing de endpoints) – sub- actividad de escaneo	T1595.002 (Vulnerability Scanning / reconocimiento activo) (center- for-threat- informed- defense.github.io)	Enumeración de directorios/webpaths (feroxbuster / dirb) para descubrir endpoints como /rest/user/login.	Peticiones con useragent Firefox/78.0 y secuencia típica de feroxbuster (09:08:30–09:15:35).
Brute Force (ataque de fuerza bruta contra autenticación web)	T1110 (Brute Force) (MITRE ATT&CK)	Intentos automatizados de adivinar credenciales (Hydra).	144 intentos contra /rest/user/login entre 09:16:27 y 09:16:31, login exitoso 09:16:31 +0000.
Valid Accounts (uso de credenciales válidas)	T1078 (Valid Accounts) (MITRE ATT&CK)	Uso de credenciales válidas para autenticarse y moverse (p. ej. sesión obtenida en la app y SSH con www-data).	Login exitoso web 09:16:31; acceso SSH como www-data posteriormente.
Exploit Public- Facing Application (explotación de aplicación pública — SQLi)	T1190 (Exploit Public-Facing Application) (MITRE ATT&CK)	Explotación de una vulnerabilidad en una aplicación pública (SQLi contra /rest/products/search? q= para ejecutar UNION SELECT).	Inyección SQL registrada 09:29:14 – 09:32:51, uso de sqlmap y UNION SELECT.
Exfiltration Over Alternative Protocol (exfiltración vía FTP / protocolos alternativos)	T1048 (Exfiltration Over Alternative Protocol) — FTP/HTTP etc. (MITRE ATT&CK, cisa.gov)	Exfiltración de archivos usando un protocolo distinto al C2 principal (ej. FTP anónimo, HTTP curl).	Descarga FTP anónimo de www-data.bak y coupons_2013.md.bak 09:34:33—09:34:52; uso de curl para extraer datos vía HTTP.
Remote Services: SSH (uso de servicios remotos para acceso interactivo)	T1021.004 (SSH) (<u>MITRE</u> <u>ATT&CK</u>)	Uso de SSH/servicios remotos para autenticarse y obtener shell interactivo.	Acceso SSH con usuario www-data y obtención de shell (post-explotación).
Exfiltration over C2 / Exfiltration	T1041 (Exfiltration Over	Categoría general de exfiltración — en este	Respuestas con datos extraídos tras UNION

Técnica (ATT&CK)	ID	Descripción (resumida)	Evidencia en logs
(general)	(contextual)	caso combinada: extracción via HTTP/FTP/CURL.	SELECT y transferencias FTP; evidencia en logs de transferencias/respuesta: