

| ใบเนื้อหา                                                | หน้าที่ 1  |
|----------------------------------------------------------|------------|
| ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 | หน่วยที่ 2 |
| d                                                        |            |

ชื่อเรื่อง พีชคณิตบูลีน และการลดรูปสมการ

# หน่วยที่ 2 พีชคณิตบูลีน และการลดรูปสมการ

# พืชคณิตบูลีน และการลดรูปสมการ

### 1. พีชคณิตบูลีน

พีชคณิตแบบบูลีน เป็นคณิตศาสตร์แบบหนึ่งที่ใช้ในการลดรูปสมการลอจิกของวงจรดิจิทัล ซึ่งพีชคณิตบูลีนจะ ใช้ตัวอักษร A,B,C หรือตัวอักษรอื่น ๆ แทนตัวแปรค่า 2 สภาวะ ได้แก่ 0 หรือ 1 โดยความสัมพันธ์ระหว่างตัวแปรแต่ ละตัวจะใช้เครื่องหมายทางเลขคณิตแทนความสัมพันธ์ระหว่างตัวแปรค่านั้น เครื่องหมายทางเลขคณิตดังกล่าวได้แก่

- เครื่องหมาย . (จุด) แทนความหมายการ AND ลอจิก
- เครื่องหมาย + (บวก) แทนความหมายการ OR ลอจิก
- เครื่องหมาย (บาร์) แทนความหมายการ NOT ลอจิก

พีชคณิตแบบบูลีน ใช้แสดงค่าของเลขฐานสองและการคำนวณทางตรรกศาสตร์ สัญลักษณ์ตัวแปรที่ใช้จะแทน ด้วยตัวอักษรเช่น A, B, x และ y เป็นต้น ค่าทางตรรกศาสตร์ที่ใช้ในการคำนวณได้แก่ AND, OR และ Complement ซึ่งจุดประสงค์ของพีชคณิตแบบบูลีน คือ ช่วยในเรื่องของการวิเคราะห์และออกแบบวงจรดิจิทัลโดยวิธีดังต่อไปนี้

- 1. แสดงในรูปแบบของตัวแปรเชิงพีชคณิตและตารางค่าความจริง (Truth Table) ระหว่างตัวแปรแต่ละตัว
- 2. แสดงในรูปแบบของตัวแปรเชิงพีชคณิต บ่งบอกความสัมพันธ์ระหว่างอินพุต-เอาต์พุต ของวงจรดิจิทัล
- 3. แสดงในรูปแบบของวงจรลดรูปสำหรับฟังก์ชันนั้น ๆ

ซึ่งพีชคณิตบูลีนมีข้อที่จะต้องนำไปพิจารณาในการใช้งานเพื่อลดรูปสมการลอจิกอยู่ด้วยกัน 2 ส่วน ได้แก่ กฎ พีชคณิตของบูลีน และข้อบังคับของพีชคณิตบูลีน ดังนี้

### 1.1 กฎของพีชคณิตบูลีน

กฎของพีชคณิตบูลีนที่สำคัญที่จะต้องนำไปใช้งานเพื่อช่วยในการลดรูปสมการลอจิกมี 3 ข้อได้แก่

1.1.1 กฎการเปลี่ยน (Commutative Law) หรืออาจเรียกว่ากฎการสลับที่ ซึ่งจะมีลักษณะการเขียน และความหมายเช่นเดียวกับกฎการสลับที่ของคณิตศาสตร์ทั่วไปดังนี้

$$A + B = B + A$$
 $A.B = B.A$  หรือ  $AB = BA$ 

1.1.2 กฎการจัดหมู่ (Associative Law) หรืออาจเรียกว่ากฎการจัดกลุ่ม ซึ่งจะมีลักษณะการเขียน และ ความหมายเช่นเดียวกับกฎการจัดหมู่ของคณิตศาสตร์ทั่วไปดังนี้



| ใบเนื้อหา                                                | หน้าที่ 2  |
|----------------------------------------------------------|------------|
| ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 | หน่วยที่ 2 |
| 1                                                        |            |

### ชื่อเรื่อง พีชคณิตบูลีน และการลดรูปสมการ

1.1.3 กฎการกระจาย (Distributive Law) หรืออาจเรียกว่ากฎการแตกตัว ซึ่งจะมีลักษณะการเขียน และ ความหมายเช่นเดียวกับกฎการกระจายของคณิตศาสตร์ทั่วไปดังนี้

$$A(B + C) = AB + AC$$
  
หรือ A.  $(B + C) = (A.B) + (A.C)$ 

#### 1.2 ข้อบังคับของพีชคณิตบูลีน

พีชคณิตบูลีน นอกจากจะมีกฎในการกำหนดค่าการเปลี่ยนแปลงรูปแบบสมการแล้ว ยังมีข้อบังคับที่ใช้ บังคับสำหรับการออร์และการแอนด์ข้อมูลของพีชคณิตบูลีน เพื่อช่วยในการแก้สมการลอจิกง่ายขึ้น ข้อบังคับของ พีชคณิตบูลีน (Rules for Boolean Algebra) ประกอบไปด้วยข้อบังคับทั้งหมด 12 ข้อ ซึ่งแสดงในตารางที่ 1.1 ข้อบังคับข้อที่ 1 ถึง 9 เป็นข้อบังคับสำหรับการยุบรวมสมการลอจิก ส่วนข้อยังคับที่ 10 ถึง 12 เป็นข้อบังคับที่เกิด จากการวิเคราะห์กฎของพีชคณิตบูลีน

ตารางที่ 1.1 ข้อบังคับของพีชคณิตบูลีน

| ข้อบังคับที่ | รูปแบบของข้อบังคับ     |
|--------------|------------------------|
| 1            | A + 0 = A              |
| 2            | A+1=1                  |
| 3            | $A \cdot 0 = 0$        |
| 4            | $A \cdot 1 = A$        |
| 5            | A + A = A              |
| 6            | $A + \bar{A} = 1$      |
| 7            | $A \cdot A = A$        |
| 8            | $A \cdot \bar{A} = 0$  |
| 9            | $\bar{A} = A$          |
| 10           | A + AB = A             |
| 11           | $A + \bar{A}B = A + B$ |
| 12           | (A+B)(A+C) = A+BC      |

# 2. ทฤษฎีของดีมอร์แกน

ทฤษฎีของดีมอร์แกน เป็นทฤษฎีที่นำมาช่วยในการแก้สมการลอจิกให้ง่ายขึ้น ด้วยวิธีการเปลี่ยนรูปแบบการ กระทำของลอจิกที่สมการถูกคอมพลีเมนต์อยู่ และพิสูจน์ความถูกต้องของทฤษฎีด้วยตารางความจริง ซึ่งจะมีด้วยกัน 2 รูปแบบ ดังนี้

ข้อบังคับที่ 1 
$$\overline{AB}=ar{A}+ar{B}$$
  
ข้อบังคับที่ 2  $\overline{A+B}=ar{A}\cdotar{B}$ 



| ใบเนื้อหา                                                | หน้าที่ 3  |
|----------------------------------------------------------|------------|
| ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 | หน่วยที่ 2 |
|                                                          |            |

# ชื่อเรื่อง พีชคณิตบูลีน และการลดรูปสมการ

#### 3. การแก้ปัญหาสมการลอจิกด้วยพีชคณิตบูลีนและทฤษฎีของดีมอร์แกน

การแก้ปัญหาสมการลอจิกด้วยพีชคณิตบูลีนและทฤษฎีของดีมอร์แกน เป็นการนำทฤษฎีของพีชคณิตบูลีน และทฤษฎีของดีมอร์แกนมาใช้ในการลดรูปสมการลอจิกให้สั้นลงเพื่อความประหยัดในการใช้งานลอจิกเกตรวมถึง ความเร็วในการทำงานของวงจร ซึ่งส่วนใหญ่สมการลอจิกจะมาจากปัญหาที่เกิดจากความสัมพันธ์ของสัญญาณอินพุต กับสัญญาณเอาต์พุต แล้วนำความสัมพันธ์ของสัญญาณนั้นมาสร้างเป็นตารางความจริงเพื่อให้ได้สมการลอจิกของ สัญญาณเอาต์พุตที่ต้องในสภาวะของสัญญาณอินพุตในช่วงเวลาต่าง ๆ โดยเอาต์พุตที่เราต้องการอาจจะอยู่ในรูปของ สัญญาณลอจิก '1' ซึ่งเราจะเรียกสมการลอจิกนี้ว่า ผลบวกของผลคูณ (Sum of Product) ส่วนเอาต์พุตที่เราต้องการรูปของสัญญาณลอจิก '0' เราจะเรียกสมการลอจิกนี้ว่า ผลคูณของผลบวก (Products of Sum)

**ตัวอย่างที่ 1** การแก้ปัญหาสมการลอจิกด้วยพีชคณิตบูลีนและทฤษฎีของดีมอร์แกน

Y = 
$$\overline{AB} + \overline{AC} + \overline{AB}C$$
  
=  $(\overline{AB})(\overline{AC}) + \overline{AB}C$   
=  $(\overline{A} + \overline{B})(\overline{A} + \overline{C}) + \overline{AB}C$   
=  $\overline{AA} + \overline{AC} + \overline{AB} + \overline{BC} + \overline{AB}C$   
=  $\overline{A} + \overline{AC} + \overline{AB} + \overline{BC} + \overline{AB}C$   
=  $\overline{A} + \overline{AC} + \overline{AB} + \overline{BC} + \overline{AB}C$   
=  $\overline{A}(1 + \overline{C}) + \overline{AB}(1 + C) + \overline{BC}$   
=  $\overline{A}(1) + \overline{AB}(1) + \overline{BC}$   
=  $\overline{A} + \overline{AB} + \overline{BC}$   
=  $\overline{A}(1 + \overline{B}) + \overline{BC}$   
=  $\overline{A}(1) + \overline{BC}$   
=  $\overline{A} + \overline{AB} = \overline{C}$ 



รูปที่ 1.1 แสดงวงจรลอจิกเกตที่ลดรูปด้วยพีชคณิตบูลีนและทฤษฎีของดีมอร์แกนตามตัวอย่างที่ 1



| ใบเนื้อหา                                                | หน้าที่ 4  |
|----------------------------------------------------------|------------|
| ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 | หน่วยที่ 2 |
|                                                          |            |

# ชื่อเรื่อง พีชคณิตบูลีน และการลดรูปสมการ

#### 3.1 ผลบวกของผลคูณ (Sum of Product หรือ SOP หรือ $\Sigma$ m)

ผลบวกของผลคูณ (Sum of Product หรือ SOP หรือ  $\Sigma$ m) คือสมการลอจิกที่เกิดจากความสัมพันธ์ ของสัญญาณอินพุตกับสัญญาณเอาต์พุต โดยจะเลือกเฉพาะสัญญาณเอาต์พุตที่เป็นลอจิก '1' เท่านั้นมาพิจารณา เขียนเป็นสมการลอจิกของเอาต์พุต โดยสมาการลอจิกจะประกอบด้วยนิพจน์ของสัญญาณอินพุตที่มีเอาต์พุตเป็น ลอจิก '1' ที่นำมาแอนด์กัน แล้วนำไปรวมกับนิพจน์อื่นของสัญญาณอินพุตที่มีเอาต์พุตเป็นลอจิก '1' ด้วยวิธีการออร์ กัน ซึ่งจะพิจารณาร่วมกับตารางความจริงดังตัวอย่างที่ 2

**ตัวอย่างที่ 2** การแก้ปัญหาสมการลอจิกด้วยพีชคณิตบูลีนและทฤษฎีของดีมอร์แกนแบบผลบวกของผล คูณ (Sum of Product หรือ SOP หรือ  $\Sigma$ m) ที่มีอินพุต 3 อินพุต และ 1 เอาต์พุต ดังตารางที่ 1.2

| a           |     | แสดงตารางความจริงของ f(A,B,C) = $\Sigma$ m(2,3,6,7)                                             |   |
|-------------|-----|-------------------------------------------------------------------------------------------------|---|
| M060 000    | 1 つ | $1/2$ $\alpha$ | ١ |
| ועובו בו וע | 1 / | $A \cap A \cap$                         | , |
|             |     |                                                                                                 |   |

|          | <b>—</b> 111(2,3,3,1) |        |   |   |
|----------|-----------------------|--------|---|---|
| ลำดับของ |                       | Output |   |   |
| สัญญาณ   | А                     | В      | С | Υ |
| 0        | 0                     | 0      | 0 | 0 |
| 1        | 0                     | 0      | 1 | 0 |
| 2        | 0                     | 1      | 0 | 1 |
| 3        | 0                     | 1      | 1 | 1 |
| 4        | 1                     | 0      | 0 | 0 |
| 5        | 1                     | 0      | 1 | 0 |
| 6        | 1                     | 1      | 0 | 1 |
| 7        | 1                     | 1      | 1 | 1 |

 $\Sigma$ m พิจารณาที่สภาวะของสัญญาณอินพุตลำดับที่ 2,3,6 และ 7 มีเอาต์พุตเป็นลอจิก '1' ดังนั้น

- 1. ลำดับของสัญญาณอินพุตที่ 2 จะได้สมการลอจิกเป็น  $ar{A}Bar{\mathcal{C}}$
- 2. ลำดับของสัญญาณอินพุตที่ 3 จะได้สมการลอจิกเป็น  $ar{A}BC$
- 3. ลำดับของสัญญาณอินพุตที่ 6 จะได้สมการลอจิกเป็น  $ABar{\mathcal{C}}$
- 4. ลำดับของสัญญาณอินพุตที่ 7 จะได้สมการลอจิกเป็น ABC

เพราะฉะนั้น 
$$f(A,B,C) = \sum m(2,3,6,7)$$

$$= \bar{A}B\bar{C} + \bar{A}BC + AB\bar{C} + ABC$$

$$= \bar{A}B(\bar{C} + C) + AB(\bar{C} + C)$$

$$= \bar{A}B(1) + AB(1)$$

$$= \bar{A}B + AB$$

$$= B(\bar{A} + A)$$

$$= B(1)$$

ตอบ



| ใบเนื้อหา                                                | หน้าที่ 5  |
|----------------------------------------------------------|------------|
| ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 | หน่วยที่ 2 |
| governor grander novoccorridation                        |            |

# ชื่อเรื่อง พีชคณิตบูลีน และการลดรูปสมการ

| Input                                   | Output |
|-----------------------------------------|--------|
| A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Υ      |
| C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | •      |
| 0                                       |        |

รูปที่ 1.2 แสดงวงจรลอจิกเกตที่ลดรูปด้วยพีชคณิตบูลีนและทฤษฎีของดีมอร์แกนตามตัวอย่างที่ 2

#### 3.2 ผลคูณของผลบวก (Products of Sum หรือ POS หรือ $oldsymbol{\pi}$ m)

ผลคูณของผลบวก (Products of Sum หรือ POS หรือ  $\pi$ m) คือสมการลอจิกที่เกิดจากความสัมพันธ์ ของสัญญาณอินพุตกับสัญญาณเอาต์พุต โดยจะเลือกเฉพาะสัญญาณเอาต์พุตที่เป็นลอจิก '0' เท่านั้นมาพิจารณา เขียนเป็นสมการลอจิกของเอาต์พุต โดยสมาการลอจิกจะประกอบด้วยนิพจน์ของสัญญาณอินพุตที่มีเอาต์พุตเป็น ลอจิก '0' ที่นำมาออร์กัน แล้วนำไปรวมกับนิพจน์อื่นของสัญญาณอินพุตที่มีเอาต์พุตเป็นลอจิก '0' ด้วยวิธีการแอนด์ กัน ซึ่งจะพิจารณาร่วมกับตารางความจริงดังตัวอย่างที่ 3

**ตัวอย่างที่ 3** การแก้ปัญหาสมการลอจิกด้วยพีชคณิตบูลีนและทฤษฎีของดีมอร์แกนแบบผลคูณของ ผลบวก (Products of Sum หรือ POS หรือ  $\pi$ m) ที่มีอินพุต 4 อินพุต และ 1 เอาต์พุต ดังตารางที่ 1.3

ตารางที่ 1.3 แสดงตารางความจริงของ  $f(A,B,C,D)=\pi m(1,3)$ 

| ลำดับของ |   | Inp | ut     |   | Output |
|----------|---|-----|--------|---|--------|
| สัญญาณ   | А | В   | $\cup$ | D | Υ      |
| 0        | 0 | 0   | 0      | 0 | 1      |
| 1        | 0 | 0   | 0      | 1 | 0      |
| 2        | 0 | 0   | 1      | 0 | 1      |
| 3        | 0 | 0   | 1      | 1 | 0      |
| 4        | 0 | 1   | 0      | 0 | 1      |
| 5        | 0 | 1   | 0      | 1 | 1      |
| 6        | 0 | 1   | 1      | 0 | 1      |
| 7        | 0 | 1   | 1      | 1 | 1      |
| 8        | 1 | 0   | 0      | 0 | 1      |
| 9        | 1 | 0   | 0      | 1 | 1      |
| 10       | 1 | 0   | 1      | 0 | 1      |
| 11       | 1 | 0   | 1      | 1 | 1      |
| 12       | 1 | 1   | 0      | 0 | 1      |
| 13       | 1 | 1   | 0      | 1 | 1      |
| 14       | 1 | 1   | 1      | 0 | 1      |
| 15       | 1 | 1   | 1      | 1 | 1      |



| ใบเนื้อหา                                                | หน้าที่ 6  |
|----------------------------------------------------------|------------|
| ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 | หน่วยที่ 2 |
|                                                          |            |

#### ชื่อเรื่อง พีชคณิตบูลีน และการลดรูปสมการ

 $\pi$ m พิจารณาที่สภาวะของสัญญาณอินพุตลำดับที่ 1 และ 3 มีเอาต์พุตเป็นลอจิก '0' ดังนั้น

- 1. ลำดับของสัญญาณอินพุตที่ 1 จะได้สมการลอจิกเป็น  $A+B+C+\overline{D}$
- 2. ลำดับของสัญญาณอินพุตที่ 3 จะได้สมการลอจิกเป็น  $A+B+\bar{C}+\bar{D}$  เพราะฉะนั้น  $f(A,B,C,D)=\pi$ m(1,3)
  - $= (A + B + C + \overline{D}) \cdot (A + B + \overline{C} + \overline{D})$
  - $=AA+AB+A\bar{C}+A\bar{D}+AB+BB+B\bar{C}+B\bar{D}+AC+BC+C\bar{C}+C\bar{D}+A\bar{D}+B\bar{D}+\bar{C}\bar{D}+\bar{D}\bar{D}$
  - $=A+AB+A\bar{C}+A\bar{D}+AB+B+B\bar{C}+B\bar{D}+AC+BC+0+C\bar{D}+A\bar{D}+B\bar{D}+\bar{C}\bar{D}+\bar{D}$
  - $= A(1+B+\bar{C}+\bar{D}+B+C+\bar{D}) + B(1+\bar{C}+\bar{D}+C+\bar{D}) + \bar{D}(1+C+\bar{C})$
  - $= A(1) + B(1) + \overline{D}(1)$
  - $= A + B + \overline{D}$



รูปที่ 1.3 แสดงวงจรลอจิกเกตที่ลดรูปด้วยพีชคณิตบูลีนและทฤษฎีของดีมอร์แกนตามตัวอย่างที่ 3

#### 4. แผนผังคาร์โนห์ (Karnaugh Maps)

แผนผังคาร์โนห์ เป็นรูปแบบหนึ่งของตารางความจริง แต่เขียนเป็นแผนภาพประกอบด้วยสี่เหลี่ยมจัตุรัสหลาย ช่อง (แต่ละช่องเรียกว่า เซล (Cell)) โดยมีจำนวนช่องเท่ากับ  $2^n$  ช่อง โดย n คือจำนวนตัวแปรของอินพุตที่ใช้ใน ตารางความจริง และสี่เหลี่ยมแต่ละช่องจะแทนตารางความจริงในหนึ่งแถว ส่วนค่าที่ปรากฏในช่องสี่เหลี่ยม คือ เอาต์พุตของตารางความจริงในแถวนั้น ๆ ซึ่งแผนผังคาร์โนห์ถูกนำมาใช้เป็นเครื่องมือในการลดรูปสมาการลอจิกด้วย วิธีการจัดกลุ่มในตารางให้มีลักษณะเป็นสีเหลี่ยมผืนผ้า หรือสี่เหลี่ยมจัตุรัส โดยการจัดกลุ่มนี้ต้องพิจารณากลุ่มของ เอาต์พุตที่เป็นลอจิก '1' หรือ '0' ที่อยู่ใกล้กันเท่านั้น ถ้าเลือกการจัดกลุ่มที่ของเอาต์พุตเป็นลอจิก '1' จะพิจารณา สมการลอจิกในรูปแบบผลบวกของผลคูณ (Sum of Product หรือ SOP หรือ  $\Sigma$ m) แต่ถ้าเลือกการจัดกลุ่มที่ของ เอาต์พุตเป็นลอจิก '0' จะพิจารณาสมการลอจิกในรูปแบบผลคูณของผลบวก (Products of Sum หรือ POS หรือ  $\pi$ m) เป็นต้น เพราะฉะนั้น



| ใบเนื้อหา                                                | หน้าที่ 7  |
|----------------------------------------------------------|------------|
| ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 | หน่วยที่ 2 |
|                                                          |            |

# ชื่อเรื่อง พีชคณิตบูลีน และการลดรูปสมการ

แผนผังคาร์โนห์ 2 ตัวแปรจะมีจำนวนช่อง 2²=4 ช่อง

| A<br>B | 0 | 1 |
|--------|---|---|
| 0      | 0 | 2 |
| 1      | 1 | 3 |

รูปที่ 1.4 แสดงแผนผังคาร์โนห์ 2 ตัวแปร

แผนผังคาร์โนห์ 3 ตัวแปรจะมีจำนวนช่อง  $2^3 = 8$  ช่อง

| CAB | 00 | 01 | 11 | 10 |
|-----|----|----|----|----|
| 0   | 0  | 2  | 6  | 4  |
| 1   | 1  | 3  | 7  | 5  |

รูปที่ 1.5 แสดงแผนผังคาร์โนห์ 3 ตัวแปร

แผนผังคาร์โนห์ 4 ตัวแปรจะมีจำนวนช่อง  $2^4=16$  ช่อง

| CD | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 00 | 0  | 4  | 12 | 8  |
| 01 | 1  | 5  | 13 | 9  |
| 11 | 3  | 7  | 15 | 11 |
| 10 | 2  | 6  | 14 | 10 |

รูปที่ 1.6 แสดงแผนผังคาร์โนห์ 4 ตัวแปร



| ใบเนื้อหา                                                | หน้าที่ 8  |
|----------------------------------------------------------|------------|
| ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 | หน่วยที่ 2 |
|                                                          |            |

# ชื่อเรื่อง พีชคณิตบูลีน และการลดรูปสมการ

#### 5. การแก้ปัญหาสมการลอจิกด้วยแผนผังคาร์โนห์

การใช้แผนผังคาร์โนห์ในการลดรูปสมการบูลีนมีหลักสำคัญดังนี้

- 1. เขียนตารางของคาร์โนห์ตามจำนวนของตัวแปร
- 2. ตัดสินใจเลือกว่าจะใช้เทอมในลักษณะของ minterm (SOP) หรือ maxterm (POS)
- 3. ใส่ค่าของเอาต์พุตลงในช่องต่าง ๆ ของแผนผังคาร์โนห์
- 4. จับกลุ่มช่องที่อยู่ติดกันในลักษณะประชิด (Looping) เฉพาะช่องที่เราสนใจ โดยในแต่ละกลุ่มจะต้องมี สมาชิกในกลุ่มที่ติดกันจำนวน 2<sup>n</sup> ช่อง คือ 1 , 2 , 4 , 8 , 16 ช่อง โดยพยายามให้ในแต่ละกลุ่มมีสมาชิกมากที่สุด
- 5. ดำเนินการหาผลลัพธ์ของในแต่ละกลุ่ม โดยในแต่ละกลุ่มให้พิจารณาตัวแปรของแต่ละช่องของสมาชิกว่ามี ค่าของตัวแปรที่ซ้ำกันทุกช่องหรือไม่ ถ้าตัวแปรใดที่มีค่าซ้ำกันทุกช่องก็จะเป็นคำตอบของกลุ่มนั้น ๆ โดยกลุ่มยิ่งใหญ่ก็ จะเหลือตัวแปรน้อย ซึ่งพิจารณาจากจำนวน 2<sup>n</sup> ช่อง ตัวแปรจะถูกตัดไป n ตัว

จากหลักการแก้ปัญหาสมการลอจิกด้วยแผนผังคาร์โนห์สรุปได้ว่า การใช้แผนผังคาร์โนห์เพื่อลดรูปสมการนั้น จะถูกนำมาลดรูปสมการเพื่อหาสมการลอจิกเอาต์พุตของผลบวกของผลคูณ (Sum of Product) หรือผลคูณของ ผลบวก (Products of Sum)

#### 5.1 ผลบวกของผลคูณ (Sum of Product)

การใช้แผนผังคาร์โนห์เพื่อลดรูปสมการลอจิกของผลบวกของผลคูณ (Sum of Product) เราจะ พิจารณาเฉพาะช่องที่ใส่ค่าเอาต์พุตของตารางความจริงที่มีค่าข้อมูลของเอาต์พุตเป็นลอจิก '1' ดังตัวอย่างที่ 4

**ตัวอย่างที่ 4** การแก้ปัญหาสมการลอจิกด้วยแผนผังคาร์โนห์แบบผลบวกของผลคูณ (Sum of Product หรือ SOP หรือ  $\Sigma$ m) ที่มีอินพุต 3 อินพุต และ 1 เอาต์พุต ดังตารางที่ 1.4

ตารางที่ 1.4 แสดงตารางความจริงของ f(A,B,C) =  $\Sigma$ m(2,3,6,7)

|          |   |       | ( ) , , , | ( )- )- ) / |  |  |
|----------|---|-------|-----------|-------------|--|--|
| ลำดับของ |   | Input |           |             |  |  |
| สัญญาณ   | А | В     | C         | Υ           |  |  |
| 0        | 0 | 0     | 0         | 0           |  |  |
| 1        | 0 | 0     | 1         | 0           |  |  |
| 2        | 0 | 1     | 0         | 1           |  |  |
| 3        | 0 | 1     | 1         | 1           |  |  |
| 4        | 1 | 0     | 0         | 0           |  |  |
| 5        | 1 | 0     | 1         | 0           |  |  |
| 6        | 1 | 1     | 0         | 1           |  |  |
| 7        | 1 | 1     | 1         | 1           |  |  |



| ใบเนื้อหา                                                | หน้าที่ 9  |
|----------------------------------------------------------|------------|
| ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 | หน่วยที่ 2 |
|                                                          |            |

# ชื่อเรื่อง พีชคณิตบูลีน และการลดรูปสมการ

จากตารางความจริงดังตารางที่ 1.4 นำมาเขียนเป็นแผนผังคาร์โนห์และจัดกลุ่มแบบ SOP เพื่อทำการลด รูปสมการลอจิกได้ดังรูปที่ 1.7

| ∖ AB | }   |        |    |       |  |
|------|-----|--------|----|-------|--|
| C    | 00  | 01     | 11 | 10    |  |
|      | 0   | 2      |    | 6 4   |  |
| 0    | 0   | 1      | 1  | 0     |  |
| 1    | 0 1 | 3<br>1 | 1  | 7 0 5 |  |
|      |     |        |    |       |  |
|      |     | •      |    |       |  |

รูปที่ 1.7 แสดงการใช้งานแผนผังคาร์โนห์ 3 ตัวแปรเพื่อลดรูปสมการลอจิกตามตารางที่ 1.4 จากรูปที่ 1.7 ใช้งานแผนผังคาร์โนห์ 3 ตัวแปรเพื่อลดรูปสมการลอจิกตามตารางที่ 1.4 จะได้เอาต์ของ ฟังชั่น  $f(A,B,C) = \sum m(2,3,6,7)$  คือ

$$f(A,B,C) = \sum m(2,3,6,7)$$
  
= B ตอบ

**ตัวอย่างที่ 5** การแก้ปัญหาสมการลอจิกด้วยแผนผังคาร์โนห์แบบผลบวกของผลคูณ (Sum of Product หรือ SOP หรือ  $\Sigma$ m) ที่มีอินพุต 3 อินพุต และ 1 เอาต์พุต ดังตารางที่ 1.5

ตารางที่ 1.5 แสดงตารางความจริงของ  $f(A,B,C) = \sum m(0,2,4,5,6)$ 

| ลำดับของ |   | Input |   | Output |
|----------|---|-------|---|--------|
| สัญญาณ   | А | В     | С | Υ      |
| 0        | 0 | 0     | 0 | 1      |
| 1        | 0 | 0     | 1 | 0      |
| 2        | 0 | 1     | 0 | 1      |
| 3        | 0 | 1     | 1 | 0      |
| 4        | 1 | 0     | 0 | 1      |
| 5        | 1 | 0     | 1 | 1      |
| 6        | 1 | 1     | 0 | 1      |
| 7        | 1 | 1     | 1 | 0      |



| ใบเนื้อหา                                                | หน้าที่ 10 |
|----------------------------------------------------------|------------|
| ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 | หน่วยที่ 2 |
|                                                          |            |

# ชื่อเรื่อง พีชคณิตบูลีน และการลดรูปสมการ

จากตารางความจริงดังตารางที่ 1.5 นำมาเขียนเป็นแผนผังคาร์โนห์และจัดกลุ่มแบบ SOP เพื่อทำการลด รูปสมการลอจิกได้ดังรูปที่ 1.8



รูปที่ 1.8 แสดงการใช้งานแผนผังคาร์โนห์ 3 ตัวแปรเพื่อลดรูปสมการลอจิกตามตารางที่ 1.5 จากรูปที่ 1.8 ใช้งานแผนผังคาร์โนห์ 3 ตัวแปรเพื่อลดรูปสมการลอจิกตามตารางที่ 1.5 จะได้เอาต์ของ ฟังชั่น  $f(A,B,C) = \sum m(0,2,4,5,6)$  คือ

$$f(A,B,C) = \sum m(0,2,4,5,6)$$

$$= A\overline{B} + \overline{C}$$
 ตอบ

#### 5.2 ผลคูณของผลบวก (Products of Sum)

การใช้แผนผังคาร์โนห์เพื่อลดรูปสมการลอจิกของผลคูณของผลบวก (Product of Sum) เราจะ พิจารณาเฉพาะช่องที่ใส่ค่าเอาต์พุตของตารางความจริงที่มีค่าข้อมูลของเอาต์พุตเป็นลอจิก '0' ดังตัวอย่างที่ 6

**ตัวอย่างที่ 6** การแก้ปัญหาสมการลอจิกด้วยแผนผังคาร์โนห์แบบผลบวกของผลคูณ (Product of Sum หรือ POS หรือ  $\pi$ m) ที่มีอินพุต 4 อินพุต และ 1 เอาต์พุต ดังตารางที่ 1.6



| ใบเนื้อหา                                                | หน้าที่ 11 |
|----------------------------------------------------------|------------|
| ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 | หน่วยที่ 2 |
|                                                          |            |

# ชื่อเรื่อง พีชคณิตบูลีน และการลดรูปสมการ

ตารางที่ 1.6 แสดงตารางความจริงของ f(A,B,C,D) =  $oldsymbol{\pi}$ m(1,3)

| 71181171 1:0 |   | 0 1 11 10 101 |    | . ( ., - , - , - | 3) <b>(</b> (1,3) |
|--------------|---|---------------|----|------------------|-------------------|
| ลำดับของ     |   | Inp           | ut |                  | Output            |
| สัญญาณ       | Α | В             | С  | D                | Υ                 |
| 0            | 0 | 0             | 0  | 0                | 1                 |
| 1            | 0 | 0             | 0  | 1                | 0                 |
| 2            | 0 | 0             | 1  | 0                | 1                 |
| 3            | 0 | 0             | 1  | 1                | 0                 |
| 4            | 0 | 1             | 0  | 0                | 1                 |
| 5            | 0 | 1             | 0  | 1                | 1                 |
| 6            | 0 | 1             | 1  | 0                | 1                 |
| 7            | 0 | 1             | 1  | 1                | 1                 |
| 8            | 1 | 0             | 0  | 0                | 1                 |
| 9            | 1 | 0             | 0  | 1                | 1                 |
| 10           | 1 | 0             | 1  | 0                | 1                 |
| 11           | 1 | 0             | 1  | 1                | 1                 |
| 12           | 1 | 1             | 0  | 0                | 1                 |
| 13           | 1 | 1             | 0  | 1                | 1                 |
| 14           | 1 | 1             | 1  | 0                | 1                 |
| 15           | 1 | 1             | 1  | 1                | 1                 |

จากตารางความจริงดังตารางที่ 1.6 นำมาเขียนเป็นแผนผังคาร์โนห์และจัดกลุ่มแบบ POS เพื่อทำการลด รูปสมการลอจิกได้ดังรูปที่ 1.9

รูปที่ 1.9 แสดงการใช้งานแผนผังคาร์โนห์ 4 ตัวแปรเพื่อลดรูปสมการลอจิกตามตารางที่ 1.6



| ใบเนื้อหา                                                | หน้าที่ 12 |
|----------------------------------------------------------|------------|
| ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 | หน่วยที่ 2 |
|                                                          |            |

# ชื่อเรื่อง พีชคณิตบูลีน และการลดรูปสมการ

จากรูปที่ 1.9 ใช้งานแผนผังคาร์โนห์ 4 ตัวแปรเพื่อลดรูปสมการลอจิกตามตารางที่ 1.6 จะได้เอาต์ของ ฟังชั่น f(A,B,C,D) =  $\pi$ m(1,3) คือ

$$f(A,B,C,D) = \pi m(1,3)$$

$$= A + B + \overline{D}$$
 ตอบ

**ตัวอย่างที่ 7** การแก้ปัญหาสมการลอจิกด้วยแผนผังคาร์โนห์แบบผลบวกของผลคูณ (Product of Sum หรือ POS หรือ  $\pi$ m) ที่มีอินพุต 4 อินพุต และ 1 เอาต์พุต ดังตารางที่ 1.7

ตารางที่ 1.7 แสดงตารางความจริงของ  $f(A,B,C,D) = \pi m(1,3,5,7,8,9,10,11)$ 

| ลำดับของ | Input |   |   | Output |   |
|----------|-------|---|---|--------|---|
| สัญญาณ   | Α     | В | C | D      | Υ |
| 0        | 0     | 0 | 0 | 0      | 1 |
| 1        | 0     | 0 | 0 | 1      | 0 |
| 2        | 0     | 0 | 1 | 0      | 1 |
| 3        | 0     | 0 | 1 | 1      | 0 |
| 4        | 0     | 1 | 0 | 0      | 1 |
| 5        | 0     | 1 | 0 | 1      | 0 |
| 6        | 0     | 1 | 1 | 0      | 1 |
| 7        | 0     | 1 | 1 | 1      | 0 |
| 8        | 1     | 0 | 0 | 0      | 0 |
| 9        | 1     | 0 | 0 | 1      | 0 |
| 10       | 1     | 0 | 1 | 0      | 0 |
| 11       | 1     | 0 | 1 | 1      | 0 |
| 12       | 1     | 1 | 0 | 0      | 1 |
| 13       | 1     | 1 | 0 | 1      | 1 |
| 14       | 1     | 1 | 1 | 0      | 1 |
| 15       | 1     | 1 | 1 | 1      | 1 |

จากตารางความจริงดังตารางที่ 1.7 นำมาเขียนเป็นแผนผังคาร์โนห์และจัดกลุ่มแบบ POS เพื่อทำการลด รูปสมการลอจิกได้ดังรูปที่ 1.10



| ใบเนื้อหา                                                | หน้าที่ 13 |
|----------------------------------------------------------|------------|
| ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 | หน่วยที่ 2 |
|                                                          |            |

# ชื่อเรื่อง พีชคณิตบูลีน และการลดรูปสมการ



รูปที่ 1.10 แสดงการใช้งานแผนผังคาร์โนห์ 4 ตัวแปรเพื่อลดรูปสมการลอจิกตามตารางที่ 1.7

จากรูปที่ 1.10 ใช้งานแผนผังคาร์โนห์ 4 ตัวแปรเพื่อลดรูปสมการลอจิกตามตารางที่ 1.7 จะได้เอาต์ของ ฟังชั่น  $f(A,B,C,D)=\pi m(1,3,5,7,8,9,10,11)$  คือ

$$f(A,B,C,D) = \pi m(1,3,5,7,8,9,10,11)$$
  
=  $(A + \overline{D}) \cdot (\overline{A} + B)$  ตอบ



# แบบฝึกหัด หน้าที่ 1 ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 หน่วยที่ 2

| FOLKATION CO                             | ชื่อหน่วย พีชคณิตบูลีน และการลดรูปสมการ                                                                       |  |  |  |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ชื่อเรื่อง พีชคณิตบูลีน และการลดรูปสมการ |                                                                                                               |  |  |  |  |
| <u>คำสั่ง</u> จงตอบคำถามต่อไเ            |                                                                                                               |  |  |  |  |
| 1. ข้อบังคับของพีชคณิตบูล็               | ลืนมีกี่ข้ออะไรบ้าง                                                                                           |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |
| 2. กฎของพีชคณิตบูลีนมีกี่                | ข้ออะไรบ้าง                                                                                                   |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |
| 3. ข้อบังคับของทฤษฎีดีมอ                 | วร์แกนมีกี่ข้ออะไรบ้าง                                                                                        |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |
| 4. การใช้แผนผังคาร์โนห์ใน                | มการลดรูปสมการบูลีนมีหลักการอย่างไร                                                                           |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |
| <br>  5. จงลดรูปสมการ Y = (Ā             | $\overline{B}+\overline{AC}$ ) + $ar{AB}C$ พร้อมทั้งเขียนวงจรลอจิกของสมการเอาต์พุตที่ลดรูป                    |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |
| 6.  จงลดรูปสมการ $Y = A$                 | $\overline{+Aar{C}+BD}$ พร้อมทั้งเขียนวงจรลอจิกของสมการเอาต์พุตที่ลดรูป                                       |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |
| $7$ . จงลดรูปสมการ Y = $ar{A}ar{B}$      | $ar{B}ar{D}ar{C}+ar{A}ar{B}Car{D}+ar{A}Bar{C}ar{D}+ar{A}Bar{C}D$ พร้อมทั้งเขียนวงจรลอจิกของสมการเอาต์พุตที่ลด |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |
|                                          |                                                                                                               |  |  |  |  |



# หน้าที่ 2 แบบฝึกหัด

| S CO WAND WEST              |                                                                           |                  |  |  |  |  |  |
|-----------------------------|---------------------------------------------------------------------------|------------------|--|--|--|--|--|
|                             | ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004                  | หน่วยที่ 2       |  |  |  |  |  |
| TOTAL EDUCATION COM         | ชื่อหน่วย พีชคณิตบูลีน และการลดรูปสมการ                                   |                  |  |  |  |  |  |
| ชื่อเรื่อง พีชคณิตบูลีน และ | ะการลดรูปสมการ                                                            |                  |  |  |  |  |  |
| 8. จงเขียนตารางความจริงจ    | ของฟังก์ชัน f(A,B,C,D) = $\Sigma$ m(1,3,5,7,8,9,10,11)                    |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
|                             | อลดรูปของฟังก์ชัน f(A,B,C,D) = $\Sigma$ m(1,3,5,7,8,9,10,11) พร้อมทั้งเขิ | เียนวงจรลอจิกของ |  |  |  |  |  |
| สมการเอาต์พุตที่ลดรูป       |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
| 10. จงใช้แผนผังคาร์โนห์เท็  |                                                                           | ขียนวงจรลอจิกของ |  |  |  |  |  |
| สมการเอาต์พุตที่ลดรูป       |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |
|                             |                                                                           |                  |  |  |  |  |  |