

Cálculo 3A – Lista 6

Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas:

a)
$$C = \{(x, y) \in \mathbb{R}^2; x = y^2, 0 \le x \le 2\}$$

b)
$$C = \{(x, y) \in \mathbb{R}^2; \ x^2 + y^2 = 4, y \ge 1\}$$

c)
$$C = \{(x, y) \in \mathbb{R}^2; \ x^2 + y^2 + x + y = 0\}$$

d)
$$C = \left\{ (x, y) \in \mathbb{R}^2; \ \frac{x^2}{4} + y^2 = 1, x \ge 0 \right\}$$

Solução:

a) O esboço de C está representado na figura a seguir.

Fazendo y=t temos que $x=t^2$. Como $0\leq x\leq 2$ então $0\leq t^2\leq 2$ donde $0\leq t\leq \sqrt{2}$. Portanto, uma parametrização de C é $\gamma(t)=(t^2,t)$, com $0\leq t\leq \sqrt{2}$.

Esta parametrização é diferenciável pois existe $\gamma'(t)=(2t,1)$ para todo t em $[0,\sqrt{2}]$. Observe que $\gamma_1(t)=\left(t,\sqrt{t}\right)$ com $0\leq t\leq 2$ é também uma parametrização de C, mas não é diferenciável pois não existe $\gamma'(0)$. Observe também que essas parametrizações percorrem C da origem (0,0) para $\left(2,\sqrt{2}\right)$.

b) Se $x^2+y^2=4$ e $y\geq 1$ então C é um arco de circunferência de extremidades $\left(\sqrt{3}\,,1\right)$ e $\left(-\sqrt{3}\,,1\right)$. Então o esboço de C está representado na figura que se segue.

Adotando o ângulo t (em radianos) como parâmetros, temos que $x=2\cos t$ e $y=2\sin t$.

Variação de t

Temos que $t_0 \le t \le t_1$.

Logo $\pi/6 \le t \le 5\pi/6$. Assim, uma parametrização diferenciável de C é $\gamma(t) = (2\cos t, 2\sin t)$, com $\pi/6 \le t \le 5\pi/6$. Observe que essa parametrização percorre C no sentido anti-horário.

c) De $x^2 + y^2 + x + y = 0$ temos:

$$x^{2} + x + \frac{1}{4} + y^{2} + y + \frac{1}{4} = \frac{2}{4}$$

ou

$$\left(x + \frac{1}{2}\right)^2 + \left(y + \frac{1}{2}\right)^2 = \frac{1}{2}.$$

Logo, C é uma circunferência de centro $\left(-\frac{1}{2}\,,-\frac{1}{2}\right)$ e raio $\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\,.$

Então, uma parametrização diferenciável de C, no sentido anti-horário é $\gamma(t)=\left(-\frac{1}{2}+\frac{\sqrt{2}}{2}\cos t,-\frac{1}{2}+\frac{\sqrt{2}}{2}\sin t\right)$, com $0\leq t\leq 2\pi$.

d) O esboço da semielipse C está representado na figura a seguir.

Uma parametrização de C (no sentido anti-horário) é $\gamma(t)=(2\cos t, \sin t)$, com $-\pi/2 \le t \le \pi/2$.

Exercício 2: Apresente uma parametrização diferenciável para as seguintes curvas no espaço:

- a) C é o segmento de reta que liga o ponto (0,1,0) ao ponto (2,3,4).
- b) C é a interseção do cilindro $x^2 + y^2 = 1$ com o plano z = y x.
- c) C é a interseção do parabolóide $z=x^2+y^2$ com o plano z=y+1.

Solução:

a) Sejam A e B pontos do espaço. Seja P=(x,y,z) pertencente ao segmento AB.

Então $\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{AP}.$ Mas \overrightarrow{AP} é um múltiplo escalar de \overrightarrow{AB} , ou seja, $\overrightarrow{AP}=t\cdot\overrightarrow{AB}$ onde $0\leq t\leq 1.$ Então

$$\gamma(t) = \overrightarrow{OP} = \overrightarrow{OA} + t\overrightarrow{AB} = (A - 0) + t(B - A) = A + t(B - A)$$

com $0 \leq t \leq 1$, é a equação vetorial do segmento.

No nosso caso, temos que A=(0,1,0) e B=(2,3,4). Portanto, uma parametrização do segmento AB é:

$$\gamma(t) = (0, 1, 0) + t[(2, 3, 4) - (0, 1, 0)] = (0, 1, 0) + t(2, 2, 4) =$$
$$= (2t, 1 + 2t, 4t)$$

 $\text{com } 0 \leq t \leq 1.$

b) Seja P=(x,y,z) pertence à curva C. Logo, x e y satisfazem à equação $x^2+y^2=1$ donde $x=\cos t$ e $y=\sin t$, com $0\leq t\leq 2\pi$. Como z==y-x então $z=\sin t-\cos t$. Portanto, uma parametrização de C é $\gamma(t)=(\cos t,\sin t,\sin t-\cos t)$, com $0\leq t\leq 2\pi$.

c) De $z=x^2+y^2$ e z=y+1 temos $x^2+y^2-y=1$ ou $x^2+\left(y-\frac{1}{2}\right)^2=\frac{5}{4}$. Logo, a projeção de C no plano xy é a circunferência $x^2+\left(y-\frac{1}{2}\right)^2=\frac{5}{4}$. Assim, $x=\frac{\sqrt{5}}{2}\cos t$ e $y=\frac{1}{2}+\frac{\sqrt{5}}{2}\sin t$, com $0\leq t\leq 2\pi$. Como z=y+1 então $y=\frac{3}{2}+\frac{\sqrt{5}}{2}\sin t$. Temos então que:

$$\gamma(t) = \left(\frac{\sqrt{5}}{2}\cos t, \frac{1}{2} + \frac{\sqrt{5}}{2}\sin t, \frac{3}{2} + \frac{\sqrt{5}}{2}\sin t\right)$$

 $com 0 \le t \le 2\pi.$

Exercício 3: Calcule $\int_C (x+y) \ ds$, onde C consiste no menor arco de circunferência $x^2+y^2=1$ de (1,0) a (0,1) e o segmento de reta de (0,1) a (4,3).

Solução: O esboço de $C=C_1\cup C_2$ está representado na figura que se segue.

Por propriedade da integral temos:

$$\int_{C} (x+y) \ ds = \int_{C_1} (x+y) \ ds + \int_{C_2} (x+y) \ ds.$$

$$\underline{\textit{Cálculo de}} \int\limits_{C_1} (x+y) \ ds$$

Uma parametrização de C_1 é dada por $\gamma_1(t) = (\cos t, \sin t)$, com $0 \le t \le \pi/2$. Logo $\gamma'(t) = (-\sin t, \cos t)$ e $\|\gamma_1'(t)\| = \sqrt{(-\sin t)^2 + (\cos t)^2} = \sqrt{\sin^2 t + \cos^2 t} = 1$. Como $ds = \|\gamma_1'(t)\| \ dt$ então ds = dt. Assim:

$$\int_{C_1} (x+y) ds = \int_0^{\pi/2} (\cos t + \sin t) dt = \left[\sin t - \cos t \right]_0^{\pi/2} =$$

$$= (1-0) - (0-1) = 2.$$

Cálculo de
$$\int_{C_2} (x+y) ds$$

Sejam A=(0,1) e B=(4,3). Uma parametrização de C_2 =segmento de reta <math>AB é dada por $\gamma_2(t)=A+t(B-A)$, com $0 \le t \le 1$ ou $\gamma_2(t)=(0,1)+t\big[(4,3)-(0,1)\big]=(0,1)+t(4,2)=(4t,1+2t)$, com $0 \le t \le 1$. Logo $\gamma_2'(t)=(4,2)$ donde $\|\gamma_2'(t)\|=\sqrt{4^2+2^2}=\sqrt{20}=2\sqrt{5}$ e $ds=\|\gamma_2'(t)\|$ $dt=2\sqrt{5}$ dt. Então:

$$\int_{C_2} (x+y) ds = \int_0^1 (4t+1+2t)2\sqrt{5} dt = 2\sqrt{5} \int_0^1 (6t+1) dt =$$

$$= 2\sqrt{5} [3t^2+t]_0^1 = 8\sqrt{5}.$$

Portanto:

$$\int_{C} (x+y) \ ds = 2 + 8\sqrt{5} \,.$$

Exercício 4: Seja C parte da curva interseção das superfícies $x^2+y^2+z^2=R^2$ e $x^2+y^2=\frac{R^2}{4}$, com R>0, situada no primeiro octante. Determine o valor de R de modo que $\int\limits_C xyz\ ds=\frac{81\sqrt{3}}{2}$.

Solução: De $x^2+y^2+z^2=R^2$ e $x^2+y^2=\frac{R^2}{4}$ temos $z^2=\frac{3R^2}{\frac{4}{3}}$, donde $z=\frac{\sqrt{3}R}{2}$ pois $z\geq 0$. Isto significa que a curva C está contida no plano horizontal $z=\frac{\sqrt{3}R}{2}$.

Seja $(x,y,z)\in C$. Então x e y satisfazem a equação $x^2+y^2=\frac{R^2}{4}$ donde $x=\frac{R}{2}\cos t$ e $y=\frac{R}{2}\sin t$. Como $x\geq 0$ e $y\geq 0$ então temos $0\leq t\leq \pi/2$. Como $z=\frac{\sqrt{3}R}{2}$, então uma parametrização de C é dada por $\gamma(t)=\left(\frac{R}{2}\cos t,\frac{R}{2}\sin t,\frac{\sqrt{3}R}{2}\right)$, com $0\leq t\leq \pi/2$. Logo:

$$\gamma'(t) = \left(\frac{-R}{2}\operatorname{sen} t, \frac{R}{2}\operatorname{cos} t, 0\right)$$

е

$$\|\gamma'(t)\| = \sqrt{\frac{R^2}{4} \operatorname{sen}^2 t + \frac{R^2}{4} \cos^2 t} = \frac{R}{2}.$$

Assim:

$$ds = \|\gamma'(t)\| dt = \frac{R}{2} dt.$$

Então:

$$\int_C xyz \ ds = \int_0^{\pi/2} \left(\frac{R}{2}\cos t\right) \left(\frac{R}{2}\sin t\right) \left(\frac{\sqrt{3}}{2}R\right) \frac{R}{2} \ dt =$$

$$= \frac{R^4 \sqrt{3}}{16} \int_0^{\pi/2} \cos t \sin t \ dt = \frac{R^4 \sqrt{3}}{16} \left[\frac{\sin^2 t}{2} \right]_0^{\pi/2} = \frac{R^4 \sqrt{3}}{32} .$$

Como $\int\limits_{C} xyz \ ds = \frac{81\sqrt{3}}{2}$ então

$$\frac{R^4\sqrt{3}}{32} = \frac{81\sqrt{3}}{2}$$

ou

$$R^4 = 16 \cdot 81 = 2^4 \cdot 3^4$$

donde $R = 2 \cdot 3 = 6$.

Exercício 5: Mostre que o momento de inércia de um fio homogêneo com a forma de uma circunferência de raio R em torno de um diâmetro é igual a $\frac{MR^2}{2}$ onde M é a massa do fio.

Solução: Sem perda de generalidade, podemos considerar a circunferência de raio R, centrada em (0,0).

Então a equação de C é $x^2+y^2=R^2$ e, portanto, uma parametrização é $\gamma(t)=(R\cos t,R\sin t)$, com $0\leq t\leq 2\pi$.

Como o fio é homogêneo então a densidade é constante, isto é, $\delta(x,y)=k$ para todo $(x,y)\in C$. Assim, da Física temos $M=k\times$ (comprimento de C)= $=k(2\pi R)=2k\pi R$. Considerando um diâmetro no eixo x temos

$$I_x = \int_C y^2 k \ ds = k \int_C y^2 \ ds$$

onde

$$ds = \|\gamma'(t)\| dt = \|(-R \sin t, R \cos t)\| dt = \sqrt{(-R \sin t)^2 + (R \cos t)^2} dt =$$
$$= \sqrt{R^2 \sin^2 t + R^2 \cos^2 t} dt = \sqrt{R^2} dt = R dt.$$

Então:

$$I_x = k \int_0^{2\pi} (R \operatorname{sen} t)^2 R \, dt = kR^3 \int_0^{2\pi} \operatorname{sen}^2 t \, dt = kR^3 \frac{1}{2} \left[t - \frac{\operatorname{sen} 2t}{2} \right]_0^{2\pi} =$$
$$= k\pi R^3 = 2k\pi R \cdot \frac{R^2}{2} = \frac{MR^2}{2} \, .$$

Exercício 6: Um arame tem a forma da curva obtida como interseção da semi-esfera $x^2+y^2+z^2=4$, $y\geq 0$ com o plano x+z=2. Sabendo-se que a densidade em cada ponto do arame é dada por f(x,y,z)=xy, calcule a massa total do arame.

Solução:

a) A curva ${\cal C}$ está ilustrada na figura a seguir.

Seja $(x,y,z)\in C$. Então $x^2+y^2+z^2=4$, $y\geq 0$ e x+z=2 donde $x^2+y^2+(2-x)^2=4$, $y\geq 0$ ou $2x^2-4x+y^2=0$, $y\geq 0$ ou $2(x-1)^2+y^2=2$, $y\geq 0$ ou $(x-1)^2+\frac{y^2}{2}=1$, $y\geq 0$. Logo, a projeção de C no plano xy é a semi-elipse $(x-1)^2+\frac{y^2}{2}=1$, $y\geq 0$. Então

$$\begin{cases} x = 1 + \cos t \\ y = \sqrt{2} \sin t \\ z = 2 - (1 + \cos t) = 1 - \cos t. \end{cases}$$

Como $y \geq 0$, então $\sqrt{2} \operatorname{sen} t \geq 0$ donde $0 \leq t \leq \pi$. Logo, uma parametrização para C é dada por

$$\sigma(t) = (1 + \cos t, \sqrt{2} \sin t, 1 - \cos t), 0 \le t \le \pi.$$

Temos

$$\sigma'(t) = (-\sin t, \sqrt{2}\cos t, \sin t)$$

donde

$$ds = \|\sigma'(t)\| dt = \sqrt{\sin^2 t + 2\cos^2 t + \sin^2 t} dt = \sqrt{2} dt.$$

Como
$$M = \int\limits_C f(x,y,z) \ ds = \int\limits_C xy \ ds$$
, então

$$M = \int_0^{\pi} (1 + \cos t) \cdot \sqrt{2} \cdot \sin t \cdot \sqrt{2} \, dt = 2 \int_0^{\pi} (\sin t + \sin t \cos t) \, dt =$$

$$= 2 \left[-\cos t + \frac{\sin^2 t}{2} \right]_0^{\pi} = 4 \text{ u.m.}$$

Exercício 7: Achar a massa da elipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$, situada no primeiro quadrante se a densidade em cada ponto é igual ao produto das coordenadas do ponto.

Solução: A densidade $\delta(x,y)$ é dada por $\delta(x,y)=xy$. Logo, a massa M é dada por

$$M = \int_{C} \delta(x, y) \ ds = \int_{C} xy \ ds$$

onde C é parametrizada por:

$$\begin{split} \gamma(t) &= (3\cos t \,,\, 2\sin t) \,, \quad 0 \le t \le \pi/2 \\ \gamma'(t) &= (-3\sin t \,,\, 2\cos t) \\ \|\gamma'(t)\| &= \sqrt{9\sin^2 t + 4\cos^2 t} \end{split}$$

Então:

$$M = \int_C xy \ ds = \int_0^{\pi/2} 6\cos t \sin t \sqrt{9\sin^2 t + 4\cos^2 t} \ dt.$$

Fazendo $u = 9 \operatorname{sen}^2 t + 4 \cos^2 t$, tem-se:

$$du = (18 \operatorname{sen} t \cos t - 8 \cos t \operatorname{sen} t) dt = 10 \cos t \operatorname{sen} t dt$$
.

Se t=0 e $t=\pi/2$, tem-se u=4 e u=9, respectivamente. Então:

$$M = 6 \int_{4}^{9} u^{1/2} \frac{du}{10} = \frac{3}{5} \cdot \frac{2}{3} \cdot \left[u^{3/2} \right]_{4}^{9} = \frac{2}{5} (3^{3} - 2^{3}) = \frac{38}{5} \quad u.m.$$

Exercício 8: Deseja-se construir uma peça de zinco que tem a forma da superfície do cilindro $x^2+y^2=4$, compreendida entre os planos z=0 e x+y+z=2, com $z\geq 0$. Se o metro quadrado do zinco custa M reais, calcule o preço total da peça. Faça um esboço da peça.

Solução:

Seja S a superfície lateral de base C contida no plano xy e altura f(x,y)==2-x-y em cada $(x,y)\in C$. Então

$$A(S) = \int_{C} f(x, y) \ ds = \int_{C} (2 - x - y) \ ds$$

UFF

onde C é parametrizada por $\sigma(t)=(2\cos t,\ 2\sin t),\ \pi/2\leq\pi\leq 2\pi.$

Logo, $\sigma'(t) = (-2 \operatorname{sen} t, \ 2 \operatorname{cos} t)$ donde $ds = \|\sigma'(t)\| dt = 2 \ dt$. Então:

$$A(S) = \int_{\pi/2}^{2\pi} (2 - 2\cos t - 2\sin t) 2 \, dt = 4 \left[t - \sin t + \cos t \right]_{\pi/2}^{2\pi} = 4 \left[(2\pi - 0 + 1) - \left(\frac{\pi}{2} - 1 + 0 \right) \right] = 4 \left(\frac{3\pi}{2} + 2 \right) = 6\pi + 8 \text{ u.a.}$$

Logo, o preço da peça é igual a $(6\pi + 8)M$ reais.

Exercício 9: Calcule a massa de um arame cuja forma é dada pela curva interseção da porção da esfera $x^2 + y^2 + z^2 = 2y$, situada no primeiro octante com o plano z = y, supondo que a densidade em um ponto P é proporcional ao quadrado da distância de P à origem.

Solução: De $x^2 + y^2 + z^2 = 2y$ e z = y, $x \ge 0$, $y \ge 0$, $z \ge 0$, temos $x^2 + y^2 - 2y = 0$, $x \ge 0$ e $y \ge 0$ se, e somente se

$$x^{2} + 2\left(y - \frac{1}{2}\right)^{2} = \frac{1}{2} \iff \frac{x^{2}}{\frac{1}{2}} + \frac{\left(y - \frac{1}{2}\right)^{2}}{\frac{1}{4}} = 1$$

com $x \ge 0$ e $y \ge 0$.

Logo, a projeção do arame C no plano xy é um quarto da elipse

$$\frac{x^2}{\frac{1}{2}} + \frac{\left(y - \frac{1}{2}\right)^2}{\frac{1}{4}} = 1,$$

com $x \geq 0$ e $y \geq 0$, cuja parametrização é dada por $x(t) = \frac{\sqrt{2}}{2}\cos t$ e $y = \frac{1}{2} + \frac{1}{2}\sin t$, com $t \in [-\pi/2, \pi/2]$, pois $x \geq 0$. Para encontrar uma parametrização de C, utilizamos a equação do plano z = y.

Temos então que

$$C: \gamma(t) = \left(\frac{\sqrt{2}}{2}\cos t, \frac{1}{2} + \frac{1}{2}\sin t, \frac{1}{2} + \frac{1}{2}\sin t\right)$$

com $t \in [-\pi/2, \pi/2]$.

Temos

$$\gamma'(t) = \left(-\frac{\sqrt{2}}{2}\operatorname{sen} t, \frac{1}{2}\cos t, \frac{1}{2}\cos t\right)$$

donde

$$\|\gamma'(t)\| = \sqrt{\frac{1}{2}\operatorname{sen}^2 t + \frac{1}{4}\cos^2 t + \frac{1}{4}\cos^2 t} = \frac{\sqrt{2}}{2}.$$

Logo:

$$ds = \|\gamma'(t)\|dt = \frac{\sqrt{2}}{2} dt.$$

A densidade em P = (x, y, z) é dada por

$$\delta(x, y, z) = k \left(\sqrt{x^2 + y^2 + z^2} \right)^2 = k \left(x^2 + y^2 + z^2 \right) ,$$

onde k>0. Como $M=\int\limits_{C}\delta(x,y,z)\;ds$ então:

$$\begin{split} M &= k \int\limits_C \left(x^2 + y^2 + z^2 \right) ds = 2k \int\limits_C y \ ds = \\ &= 2k \int_{-\pi/2}^{\pi/2} \left(\frac{1}{2} + \frac{1}{2} \operatorname{sen} t \right) \frac{\sqrt{2}}{2} \ dt = \frac{\sqrt{2}}{2} k \Big[t - \cos t \Big]_{-\pi/2}^{\pi/2} = \frac{\sqrt{2}}{2} k \pi \ \textit{u.m.} \end{split}$$

Exercício 10: Calcule a primeira coordenada do centro de massa de um fio homogêneo que está ao longo de uma curva $\gamma(t)=t\overrightarrow{\mathbf{i}}+\frac{2\sqrt{2}}{5}t^{5/2}\overrightarrow{\mathbf{j}}+\frac{t^4}{4}\overrightarrow{\mathbf{k}}$, $0\leq t\leq 2$, se a densidade for $\delta(x,y,z)=10x$.

$$\overline{x} = \frac{\int x \, ds}{L}$$

onde L é o comprimento de C, isto é,

$$L = \int_{a}^{b} \|\gamma'(t)\| dt = \int_{0}^{2} (1+t^{3}) dt = \left[t + \frac{t^{4}}{4}\right]_{0}^{2} = 6.$$

Por outro lado,

$$\int_{C} x \, ds = \int_{0}^{2} t \left(1 + t^{3} \right) \, dt = \int_{0}^{2} \left(t + t^{4} \right) \, dt = \left[\frac{t^{2}}{2} + \frac{t^{5}}{5} \right]_{0}^{2} = 2 + \frac{32}{5} = \frac{42}{5} \, .$$

Logo:

$$\overline{x} = \frac{\frac{42}{5}}{6} = \frac{7}{5}$$
.