

Introductory Computer Science

Ryan Emberling Educational Goals, Instruction, and Assessment

BIG IDEAS

Participation & Making:

Ground abstract concepts in students' experience of making programs that use these tools to create simple animation effects.

Observation

& Worked Examples:

Show students both how to implement the tools learned in the course, and when they can be useful by demonstrating common, simple use-cases.

Authenticity & Motivation:

Empower students to make things that interest them by using programming tools to solve real problems in the context of their own projects.

Belonging & Norms:

Encourage inquisitiveness and welcome failure by having students reflect at the end of each class, and by modeling how to deal with failure and challenge.

Triangulation & Validity

Give multiple opportunities for students to practice and demonstrate competence in all knowledge and skills.

CONTACT

Ryan Emberling
Carnegie Mellon METALS
Email: remberli@andrew.cmu.edu
Website: emberling.education

OVERVIEW AND CONTEXT

Domain – Introductory Computer Science

Importance – CS is difficult and off-putting ...but also creative and empowering

Learners – Suburban 10-12th Graders

Timing – 5 Days over the summer

Setting – Private tutoring facility with ten students in each class

Developmental Levels

- Computer use, algebraic literacy (Alg 1), seminar skills
 Dispositions
- Course is opt-in → Most should be interested
 Learner Differences
- Varied visualization and abstraction skills
- Varied Grit
- Varied Metacognition

ASSESSMENT DESIGN

Spiral Review/Practice

Worked example of everything so far, then students implement their own variation

Isolated Implementation

Worked example of new concept, then students implement their own variation

Integrated Implementation

Develop computer game throughout week, Add new feature with today's concept

Surveys

Assessing Dispositions and Metacognition: Self-Identify challenges, interest, opportunities for improvement, attitude towards failure; defining good code

GOAL SPECIFICATION

Fundamental Purpose

Foster interest in Computer Science

All other goals are secondary & serve this purpose

Cognitive Knowledge & Skills

Programming tools & techniques: What, When, How

Metacognition

Students will understand their own capabilities, what challenges them, and how to evaluate & improve their work. Students will seek to improve themselves and learn from their mistakes.

Cognitive Goals

Knowledge	Skills	Dispositions	
Variables	Drawing Shapes	Interest	
Conditionals	Positioning with Variables	Curiosity	
User Input		Grit	
Lists	Conditionals in Animation		
Loops	User Input		
Functions &	Drawing with		
Classes	For-Loops		
(advanced only)			
	Defining Classes		
	and Functions		
	(advanced only)		

Metacognitive Goals

Knowledge	Skills	Dispositions
Awareness of	Self-Assessing	Self-
Own Abilities	Work Quality	Improvement
Recognizing Challenges	Feature Design	Dispositional Awareness
	Refactoring	

INSTRUCTIONAL DESIGN

Structure of Each Class

Spiral Review & Practice of all previous material

Conceptual Overview of New Concept

Isolated Implementation of New Concept

Integrated Implementation:

Incorporate new concept into project with new feature

End of Class Survey:

What is [today's topic] and how is it useful? What was hard today? What was cool? What do you want to make? How could your program be refactored?

Course Schedule

Day 1	Day 2	Day 3	Day 4	Day 5
Drawing	Variables	Conditionals		Lists & Loops

EVALUATION RESEARCH

Evaluating Impact

Worked examples vs participatory practice. In the Spiral Review and Practice as well as Isolated Implementation, half the students will see a worked example demonstrating how and why to implement the relevant tools, and will then practice by creating their own variation. The other half of students will receive an additional worked example. This will facilitate evaluation of the efficacy of practice vs observation.

Evaluating Implementation

Has every student been assessed on all three performance tasks for each day's topic? Is every point assigned justified with a simple note of what the student did to deserve the mark?

REFERENCES

- 1. Schwartz, D. L., Tsang, J. M., & Blair, K. P. (2016). The ABCs of how we learn: 26 scientifically proven approaches, how they work, and when to use them. New York, NY: W.W. Norton & Company.
- 2. Wiggins, G. P., & McTighe, J. (2008). Understanding by design. Alexandria, VA: Association for Supervision and Curriculum Development.

© Poster Template by Genigraphics® 1.800.790.4001 www.genigraphics