Logika v Računalništvu: Zapiski Vaj

Blaž Sovdat* Borja Bovcon † Martin Frešer ‡

23. april 2014

Kazalo

1	$\mathbf{U}\mathbf{vod}$	
2	Predstavitev formul	
3	Prevedbe problemov na SAT	
	3.1 Barvanje grafov	
	3.2 Sudoku	
	3.3 Hadamard	
	3.4 Erdősev problem diskrepance	
4	SAT solver	

1 Uvod

V delu.

2 Predstavitev formul

V delu.

3 Prevedbe problemov na SAT

V nadaljevanju pisemo $[k] := \{1, 2, \dots, k\}$. Podpoglavja so grob opis prevedb nekaterih odlocitvenih problemov na SAT.

3.1 Barvanje grafov

Naj bo G=(V,E) graf in naj bo k>0. Graf G je k-obarvljiv, ce obstaja $c:V\to\{1,2,\ldots,k\}$, da za vse $uv\in E$ velja $c(v)\neq c(u)$. Sedaj za dan (G,k) definiramo Boolovo formulo φ , da je φ satisfiable

^{*}Email: blaz.sovdat@gmail.com.

 $^{^{\}dagger}\mathrm{Email}$: gojace@gmail.com

 $^{^{\}ddagger}\mathrm{Email}$: martin.freser@gmail.com

natanko tedaj, ko je $\chi(G) \leq k$. Pogoj, da so povezana vozlisca razlicnih barv:

$$\bigwedge_{uv \in E} \bigwedge_{i=1}^{k} \neg (c_{v,i} \wedge c_{u,i}) \tag{1}$$

Pogoj, da ima vsako vozlisce barvo:

$$\bigwedge_{v \in V} \bigvee_{i \in [k]} c_{v,i}$$

Nazadnje zagotovimo se, da je vsako vozlisce kvecjemu ene barve:

$$\bigwedge_{v \in V} \bigwedge_{(i,j) \in {[k] \choose 2}} (\neg (c_{v,i} \land c_{v,j}))$$

Celotna Boolova formula je potem

$$\left(\bigwedge_{uv\in E}\bigwedge_{i=1}^{k}\neg(c_{v,i}\wedge c_{u,i})\right)\wedge\left(\bigwedge_{v\in V}\bigvee_{i\in[k]}c_{v,i}\right)\wedge\left(\bigwedge_{v\in V}\bigwedge_{(i,j)\in\binom{[k]}{2}}\left(\neg(c_{v,i}\wedge c_{v,j})\right)\right).$$

3.2 Sudoku

Sudoku prevedmo na barvanje grafa. Naj bo s_{ij} polje v i-ti vrstici in j-tem stoplcu. Potem sestavimo $K_9[\{s_{11},\ldots,s_{91}]$, poln graf na 9 tockah $\{s_{11},\ldots,s_{91}\}$, za vsako vrstico in vsak stolpec. To pomeni $18\cdot\binom{9}{2}$ povezav. Na koncu povezemo manjkajoce povezave iz 3×3 kvadratkov, kar nam da se dodatnih $\cdot 9$ povezav.

3.3 Hadamard

V delu.

3.4 Erdősev problem diskrepance

Woo.

4 SAT solver

V delu.