CS 480 Fall 2021 Written Assignment #03

Due: Wednesday, December 1st, 11:00 PM CST

Points: 90

Instructions:

1. Use this document template to report your answers. Name the complete document as follows:

LastName FirstName CS480 Written03.doc

2. Submit the final document to the Blackboard Assignments section before the due date. No late submissions will be accepted.

Objectives:

- 1. (25 points) Demonstrate your understanding of First-Order Logic syntax.
- 2. (20 points) Demonstrate your understanding of Bayes' Rule.
- 3. (20 points) Demonstrate your understanding of Bayes Networks.
- 4. (25 points) Demonstrate your understanding of Decision Networks.

Problem 1 [25 pts]:

Convert English sentences to FOL. Write each of the following English sentences using First Order Logic. Use the following predicates and constants only.

- Occupation(p, o): Predicate. Person p has occupation o. You can also read it as p is o.
- \blacksquare Customer(p1, p2): Predicate. Person p1 is a customer of person p2.
- \blacksquare Boss(p1, p2): Predicate. Person p1 is a boss of person p2.
- Doctor, Surgeon, Lawyer, Actor: Constants denoting some occupations. This list is not comprehensive. There are also other occupations not mentioned in this list.
- Mary, John: Constants denoting some people. This list is not comprehensive. There are also other people not mentioned in this list.
- a) Mary is either a lawyer or an actor [5 pts].

Your solution:		
Occupation(Mary, Lawyer) V Occupation(Mary, Actor)		

b) John is a lawyer, but he also holds another job [5 pts].

Your solution:

Occupation(John, Lawyer) ^ (Occupation(John, Doctor) V Occupation(John, Surgeon) V Occupation(John, Actor))

c) All surgeons are doctors [5 pts].

Your solution:

∀ p Occupation(p, Surgeon) => Occupation(p, Doctor)

d) John does not have a lawyer (i.e., John is not a customer of any lawyer.) [5 pts].

Your solution:

¬Customer(John, Lawyer)

e) Every surgeon has a lawyer [5 pts].

Your solution:

∀p1p2 Occupation(p1, Surgeon) => Customer(p1, p2) ^ Occupation(p2, Lawyer)

Problem 2 [20 pts]:

We are given the following joint distribution for variables A, B, and C. Please compute the requested probabilities. **Show each probability distribution as a table/vector**.

A	В	С	P(A, B, C)
Т	Т	Т	0.014
T	Т	F	0.126
Т	F	Т	0.012
Т	F	F	0.048
F	Т	T	0.392
F	Т	F	0.168
F	F	T	0.144
F	F	F	0.096

a) P(A, C) [5 pts]

Your solution:

$$P(A = T, C = T) = P(A = T, C = T, B = T) + P(A = T, C = T, B = F) = 0.014 + 0.012 = 0.026$$

 $P(A = T, C = F) = P(A = T, C = F, B = T) + P(A = T, C = F, B = F) = 0.126 + 0.048 = 0.174$

$$P(A = F, C = T) = P(A = F, C = T, B = T) + P(A = F, C = T, B = F) = 0.392 + 0.144 = 0.536$$

$$P(A = F, C = F) = P(A = F, C = F, B = T) + P(A = F, C = F, B = F) = 0.168 + 0.096 = 0.264$$

P(A, C)	C = T	C = F
A = T	0.026	0.174
A = F	0.536	0.264

b) P(C) – you can use your answer to part a to compute the answer to this question. [5 pts]

Your solution:			
P(C = T) = P(A = T, C = T) + P(A = F, C = T) = 0.026 + 0.536 = 0.562			
P(C = F) = P(A = T, C = F) + P(A = F, C = F) = 0.174 + 0.264 = 0.438			
	C = T	C = F	
	<u> </u>	<u> </u>	
P(C)	0.562	0.438	

c) P(A|C) – you can use your answers to parts a and b to compute the answer to this question. **[5 pts]**

Your solution:			
P(A C) = P(A, C) / P(C)			
P(A, C)	A = T	F = A	
C = T	0.026 / 0.562 = 0.046	0.174 / 0.562 = 0.954	
C = F	0.536 / 0.438 = 0.397	0.264 / 0.438 = 0.603	

d) $P(A,\; B\mid C)$ – you can use your answers from previous parts if they are relevant. [5 pts]

Your solution:			
<u>P(A, B</u>	, B C) = P(A, B, C) / P(C)		
А	В	С	P(A, B C)
Т	Т	Т	0.014 / 0.562 = 0.025
т	Т	F	0.126 / 0.438 = 0.288
Т	F	Т	0.012 / 0.562 = 0.021
Т	F	F	0.048 / 0.438 = 0.11
F	Т	Т	0.392 / 0.562 = 0.698
F	Т	F	0.168 / 0.438 = 0.384
F	F	Т	0.144 / 0.562 = 0.256
F	F	F	0.096 / 0.438 = 0.219

Problem 3 [20 pts]:

We are given the following Bayesian network over $X_2,\,X_3,\,...,\,X_9.$ Note that there is no $X_1.$

What is the Bayesian network factorization of the joint probability $P(X_2, X_3, ..., X_9)$?

Your solution:

 X_5 is dependent on X_2 and X_3 , so $P(X_5 \mid X_2, X_3)$

 X_6 is dependent on X_3 and X_4 , so $P(X_6 \mid X_3, X_4)$

 X_7 is dependent on X_5 , so $P(X_7 \mid X_5)$

 X_8 is dependent on X_5 , X_3 , and X_6 , so $P(X_8 \mid X_5, X_3, X_6)$

 X_9 is dependent on X_7 , X_5 , and X_8 , so $P(X_9 \mid X_7, X_5, X_8)$

Bayesian network factorization of the joint probability $P(X_2, X_3, ..., X_9) =$

 $= P(X_2) * P(X_3) * P(X_4) * P(X_5 \mid X_2, X_3) * P(X_6 \mid X_3, X_4) * P(X_7 \mid X_5) * P(X_8 \mid X_5, X_3, X_6) * P(X_9 \mid X_7, X_5, X_8)$

Problem 4 [25 pts]:

We are given the following decision network:

$$P(X=T) = 0.4$$

Υ	Action	U(Y, Action)
Т	a	800
Т	~a	400
F	a	200
F	~a	1000

a) Which action should be taken? Justify your decision. [5 pts]

```
Your solution:
P(Y = T | X = T) = .2
P(Y = F \mid X = T) = 1 - P(Y = T \mid X = T) = 1 - .2 = .8
P(Y = T | X = T) = .7
P(Y = F \mid X = F) = 1 - P(Y = T \mid X = T) = 1 - .7 = .3
EU(Result(a \mid X = T)) =
P(Y = T \mid X = T) * U(Y = T, a) + P(Y = F \mid X = T) * U(Y = F, a) =
.2 * 800 + .8 * 200 = 320
EU(Result(a \mid X = F)) =
P(Y = T \mid X = F) * U(Y = T, a) + P(Y = F \mid X = F) * U(Y = F, a) =
.7*800 + .3*200 = 700
EU(Result(-a \mid X = T)) =
P(Y = T \mid X = T) * U(Y = T, -a) + P(Y = F \mid X = T) * U(Y = F, -a) =
.2 * 400 + .8 * 1000 = 920 \leftarrow this action should be taken (no action)
EU(Result(-a \mid X = F)) =
P(Y = T \mid X = F) * U(Y = T, -a) + P(Y = F \mid X = F) * U(Y = F, -a) =
.7 * 400 + .3 * 1000 = 580
MEU = 920
```

b) What is the value of information about Z? Justify your decision. [5 pts]

```
Your solution:

P(Z = T | Y = T) = .9

P(Z = F | Y = T) = 1 - P(Z = T | Y = T) = 1 - .9 = .1

P(Z = T | Y = F) = .2

P(Z = F | Y = F) = 1 - P(Z = T | Y = F) = 1 - .2 = .8

EU(Result(a | Y = T)) =

P(Z = T | Y = T) * U(Y = T, a) + P(Z = F | Y = T) * U(Y = F, a) = .9 * 800 + .1 * 200 = 740

EU(Result(a | Y = F)) =

P(Z = T | Y = F) * U(Y = T, a) + P(Z = F | Y = F) * U(Y = F, a) = .2 * 800 + .8 * 200 = 320

EU(Result(-a | Y = T)) =

P(Z = T | Y = T) * U(Y = T, -a) + P(Z = F | Y = T) * U(Y = F, -a) = .9 * 400 + .1 * 1000 = 460
```

```
EU(Result(-a | Y = F)) =

P(Z = T | Y = F) * U(Y = T, -a) + P(Z = F | Y = F) * U(Y = F, -a) =

.2 * 400 + .8 * 1000 = 880 \leftarrow this action should be taken (no action)

MEU = 880
```

c) What is the value of information about X? Justify your decision. [5 pts]

```
Your solution:
P(X = T \mid Y = T) =
P(Y = T \mid X = T) * P(X = T) / P(Y = T) =
P(Y = T \mid X = T) * P(X = T) / [P(Y = T \mid X = T) * P(X = T) + P(Y = T \mid X = F) * P(X = T)] =
(.2 * .4) / [(.2 * .4) + (.7 * .4)] =
= 2/9
P(X = F | Y = T) = 1 - P(X = T | Y = T) = 1 - 2/9 = 7/9
P(Y = F \mid X = T) = 1 - P(Y = T \mid X = T) = 1 - .2 = .8
P(Y = F \mid X = F) = 1 - P(Y = T \mid X = T) = 1 - .7 = .3
P(X = T \mid Y = F) =
P(Y = F \mid X = T) * P(X = T) / P(Y = F) =
P(Y = F \mid X = T) * P(X = T) / [P(Y = F \mid X = T) * P(X = T) + P(Y = F \mid X = F) * P(X = T)] =
(.8 * .4) / [(.8 * .4) + (.3 * .4)] = 8/11
P(X = F | Y = F) = 1 - P(X = T | Y = F) = 1 - 8/11 = 3/11
EU(Result(a | Y = T)) =
P(X = T | Y = T) * U(Y = T, a) + P(X = F | Y = T) * U(Y = F, a) =
2/9 * 800 + 7/9 * 200 = 3000/9
EU(Result(a | Y = F)) =
P(X = T | Y = F) * U(Y = T, a) + P(X = F | Y = F) * U(Y = F, a) =
8/11 * 800 + 3/11 * 200 = 7000/11
EU(Result(-a \mid Y = T)) =
P(X = T | Y = T) * U(Y = T, -a) + P(X = F | Y = T) * U(Y = F, -a) =
2/9 * 400 + 7/9 * 1000 = 7800/9 \leftarrow this action should be taken (no action)
EU(Result(-a \mid Y = F)) =
P(X = T | Y = F) * U(Y = T, -a) + P(X = F | Y = F) * U(Y = F, -a) =
8/11 * 400 + 3/11 * 1000 = 6200/11
```

d) Given Z = T, what is the value of information of X? Justify your decision. [5 pts]

Your solution:

```
P( (X = T | Y = T) | (Z = T) ) =
P( (Z = T) | (X = T | Y = T) ) * P(X = T | Y = T) / P(Z = T) =
P( (Z = T) | (X = T | Y = T) ) * P(X = T | Y = T) / [P( (Z = T) | (X = T | Y = T) ) * P(X = T | Y = T) + P( (Z = T) | (X = T | Y = T) ) * P(X = T | Y = F) ) * P(X = T | Y = F) ) * P(X = T | Y = F) ) * P(X = T | Y = T) =
z * 2/9 / ()
```