We claim:

- 1 1. A method for reducing diffusion of dopant ions from a doped dielectric
- 2 layer into a metal layer, comprising:
- 3 (a) depositing on said metal layer, a diffusion barrier; and then
- 4 (b) depositing a layer of doped dielectric material on said diffusion
- 5 barrier.
- 1 2. The method of claim 1, wherein said diffusion barrier is a layer of metal
- 2 nitride.

In [1,1] In the limit of the li

- 1 3. The method of claim 1, wherein said diffusion barrier is a layer of metal
- 2 oxynitride.
- 1 4. The method of claim 2, wherein said layer of metal nitride has a thickness
- 2 in the range of about 10 Å to about 1000 Å.
- The method of claim 2, wherein said layer of metal nitride has a thickness
- 2 in the range of about 50 Å to about 350 Å.

į

E0089

- The method of claim 2, wherein said layer of metal nitride has a thickness 1 6.
- of about 100 Å. 2
- The method of claim 2, wherein said metal nitride is formed using a 1 7.
- 2 nitrogen rich radiofrequency (rf) plasma.
- The method of claim 7, wherein radiofrequency plasma is formed using 1 8.
- hydrogen and nitrogen gases having a ratio in the range of about 0.1:1 to about 4:1. 2
- The method of claim 7, wherein radiofrequency plasma is formed using 1 9.
- hydrogen and nitrogen gases having a ratio in the range of about 0.5:1 to about 2:1. 2
- The method of claim 7, wherein radiofrequency plasma is formed using 1 10.
- 2 hydrogen and nitrogen gases having a ratio of about 3:2.
- The method of claim 7, wherein the rf plasma power is in the range of about 1 11.
- 100 Watts per 8 inch wafer to about 1000 Watts per 8 inch diameter wafer. 2
- The method of claim 7, wherein the rf plasma power is in the range of about 1 12.
- 400 Watts per 8 inch wafer to about 800 Watts per 8 inch diameter wafer. 2

E0089

- 3 19, 11. The method of claim 5, wherein the rf plasma power is about 750 Watts per
- 4 8 inch wafer.
- 1 13. The method of claim 7, wherein the rf plasma is generated in the presence
- 2 of a noble gas.
- 1 14. The method of claim 13, wherein said noble gas is selected from the group
- 2 consisting of helium, neon, argon, krypton and xenon.
- 1 15. The method of claim 7, wherein the pressure in the plasma chamber is in the
- 2 range of about 100 milliTorr to about 50 Torr.
- 1 16. The method of claim 7, wherein the pressure in the plasma chamber is in the
- 2 range of about 1 Torr to about 10 Torr.
- 1 17. The method of claim 7, wherein the pressure in the plasma chamber is about
- 2 4 Torr.

•	\sim	0	0
H 1	116	ıx	ч

- 1 18. The method of claim 1, wherein the step of depositing a layer of doped
- dielectric material is carried out at a deposition temperature in the range of about
- 3 200° C to about 450° C.
- 1 No. The method of claim 1, wherein said doped dielectric layer is selected from
- the group consisting of fluorine doped silicate glass (FSG), phosphorous doped
- 3 silicate glass (PSG), boron doped silicate glass (BSG), and boron phosphorous
- 4 doped silicate glass (BPSG).
- 1 20. The method of claim 2, wherein said metal nitride layer comprises a metal
- 2 selected from the group consisting of aluminum, tantalum and titanium.
- 1 2\frac{1}{2}. A method for reducing diffusion of dopant ions from a dielectric layer into
- 2 a metal layer, comprising:
- 3 (a) depositing on said metal layer, a nitrogen rich metal nitride layer;
- 4 and
- 5 (b) depositing a layer of doped dielectric material on said nitrogen rich
- 6 metal nitride layer.

9

E	0089	
	1	The method of claim 21, wherein said metal nitride layer is made using a
	2	radiofrequency (rf) method using at least one variable selected from (a) a
	3	hydrogen:nitrogen ratio in the range of about 0.1:1 to about 4:1, (b) an rf power in
	4	the range of about 100 Watts per 8 inch wafer to about 1000 Watts per 8 inch
	5	diameter wafer, (c) a pressure in the plasma chamber in the range of about 100
6 milliTorr to about 50 Torr, and (d) a deposition temperature in the rang		
Total	7	200° C to about 450° C.
the team that them then that the	1	The method of claim 21, wherein the metal nitride is selected from the
		group consisting of aluminum nitride, titanium nitride, and tantalum nitride.
The state of the s	1	4. A method for reducing diffusion of dopant ions from a dielectric layer into
:	2	a metal layer, comprising:
	3	(a) providing a substrate;
	4	(b) depositing over said substrate, a metal layer from the group
	5	consisting of aluminum, titanium, tantalum and aluminum/tantalum;
	6	(c) forming a metal nitride using a nitrogen rich plasma using at least
	7	one variable selected from the group consisting of:
	8	(i) a hydrogen:nitrogen ratio in the range of about 0.1:1 to about

4:1;

providing a substrate having a layer of pad oxide thereon;

(a)

2

E0089

forming a layer of nitrogen rich nitride on said sidewalls; and

(d)

11

- (e) filling said trench with a layer of doped dielectric material.
- 1 27. The method of claim 2, wherein said barrier layer is formed using
- 2 electromagnetic radiation.
- The method of claim 2, wherein said barrier layer is formed using nitrogen
- 4 ion implantation.
- 1 29. A semiconductor device, comprising:
- 2 a gate;
- 3 a layer of dielectric material over said gate;
- and a metal via through said layer of dielectric material, said via in contact
- 5 with said gate, said via having a layer of metal nitride separating said via from said
- 6 layer of dielectric material.
- 1 30. A semiconductor device, comprising:
- 2 (a) a substrate having a source region and a drain region formed therein;
- 3 (b) a gate, having sidewall spacers, over said substrate and over at least
- 4 a portion of said source region and said drain region;

E	0089			
	5		(c)	layers of silicide over said source region, said drain region and said
	6	gate;		
	7		(d)	a layer of dielectric material over said gate;
	8		(e)	a metal via in contact with said gate, said via extending through said
	9	layer of dielectric material; and		
	10		(f)	a layer of metal nitride between said via and said layer of dielectric
	11	material.		
100 100 100 100 100 100 100 100 100 100	1	5 31.	A met	hod for determining the thickness of a layer of a deposited conductive
die se	2	materi	aterial, comprising the steps of:	
	3		(a)	selecting at least one deposition condition selected from the group
er that the them the thirth	4	consis	ting of	temperature, reactant concentration, power density, and deposition
Hart Carl	5	time;		
	6		(b)	determining the power law relationship between film thickness and
	7	sheet resistance for the deposition condition selected in step (a); and		
	8		(c)	based on the results of step (b), monitor sheet resistance during
	9	depos	ition un	til a desired sheet resistance is achieved.
	1	3 2 .	The m	nethod of claim 31, wherein the power law relationship determined in

step (b) is about -1.3.

2

	, h	
1	3§.	A method for determining the alternations in the surface roughness of the
	ł	

- 2 surface of a semiconductor film, comprising the steps of:
- (a) directing a beam of electromagnetic radiation at a surface of said
 semiconductor film;
- 5 (b) measuring the scattering of said electromagnetic radiation;
- 6 (c) carrying out a process for altering the surface roughness of said film;
- 7 and
- 8 (d) repeating steps (b) and (c) until a desired degree of scattering is
- 9 achieved.
- The method of claim 33, wherein step (c) is a process selected from the
- 2 group consisting of deposition and annealing.
- 1 35. The method of claim 33, wherein step (c) is a deposition step.
- 1 36. A method for calibrating a semiconductor heating device, comprising the
- 2 steps of:
- 3 (a) depositing onto a semiconductor substrate, a layer of an alloy having
- a phase transition temperature associated with a change in sheet resistance;

exposing said alloy to a first temperature;

E0089

5

(b)

WV

40.

lithium.

1

2

The method of claim 36, wherein said alloy is comprised of aluminum and

\mathbf{D}	000
-EU	089

- 1 41. The method of claim 36, wherein said alloy has a phase transition
- 2 temperature below about 350° C.
- 1 42. The method of claim 36, wherein the thickness of said layer of alloy is in
- 2 the range of about 100 Å to about 5 μ m.
- The method of claim 36, wherein steps (b) and (d) are carried out in an inert
- 2 gas.
- 1 44. The method of claim 36, wherein steps (b) and (d) are carried out in a gas
- 2 selected from the group consisting of nitrogen, helium, neon, argon or xenon.
- 1 45. The method of claim 36, wherein said heating device is selected from an
- 2 oven and a rapid thermal processing device.