MATH 416H HW 11

James Liu

Due: Dec 4 Edit: December 4, 2024

Note that A_j^i, A_{ij} all means that the ith row and jth collumn of the matrix A

1. Consider the base: $\left\{\frac{1}{0!}x^0, \frac{1}{1!}x^1, \frac{1}{2!}x^2 \cdots, \frac{1}{n!}x^n\right\},$ $Then, A = [T]_{\mathcal{BB}} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$

Which is in jordan normal form

2. Notice that $\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$ is diagonalizable. Therefore, $USDS^{-1}U^{-1}$ is a diagonal matrix. Then, diagonalize $\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$. There is $\lambda_1 = 4, \lambda_2 = -2$ and $v_1 = (s, -s)^T, v_2 = (s, s)^T$ Then the equation becomes:

$$U\begin{bmatrix} s & s \\ s & -s \end{bmatrix}\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}\begin{bmatrix} \frac{1}{2s} & \frac{1}{2s} \\ \frac{1}{2s} & -\frac{1}{2s} \end{bmatrix}U^*$$

Consider the specific case where $US=I, U^*S^{-1}=I$ while setting the imaginary part to zero, we have $UU=I, US=I, US^{-1}=I$, then $S=S^{-1}$, we have $\begin{bmatrix} \frac{1}{2s} & \frac{1}{2s} \\ \frac{1}{2s} & -\frac{1}{2s} \end{bmatrix} = \begin{bmatrix} s & s \\ s & -s \end{bmatrix}$, then $s=\frac{\sqrt{2}}{2}$, then $U=S^{-1}=\begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix} = U^*$.

3. a) Since the standard basis of \mathbb{C}^n is orthornomal, $\langle e_i, e_j \rangle = \delta^i_j$ and $\varphi e_i = b_i$, then We have $\langle \varphi(e_i), \varphi(e_j) \rangle = \langle b_i, b_j \rangle = \delta^i_j = \langle e_i, e_j \rangle$. Thus the map is unitary.

1

b) The transformation that sents $\{e_1, e_2, \cdots, e_n\}$ into \mathcal{B}' is Unitary with similar prof done in a). And for a Unitary map we can write out a matrix, note $\varphi = [\varphi] = \mathcal{T}$ that $[\varphi] = \mathcal{T}$ is the matrix representation.

Then its inverse would be \mathcal{T}^* which is also unitary as: $\mathcal{T}^* (\mathcal{T}^*)^* = \mathcal{T}^* \mathcal{T} = I$. Then consider $\varphi' \circ \varphi \ (\varphi' = \mathcal{T}')$:

$$\varphi' \circ \varphi = \mathcal{T}'\mathcal{T} = T$$

$$TT^* = \mathcal{T}'\mathcal{T}(\mathcal{T}'\mathcal{T})^*$$

$$= \mathcal{T}'\mathcal{T}\mathcal{T}^*\mathcal{T}'^*$$

$$= I$$

Therefore, $\varphi' \circ \varphi$ is unitary. And such transformation transforms from \mathcal{B} to \mathcal{B}' . Which is $[\mathrm{id}_V]_{\mathcal{B},\mathcal{B}'}$

4.

Forward: For any Hermitian matrix A that is positive definite, for all $v \in V$ $\langle v, Av \rangle > 0$ then for all eigenvectors v_i There is:

$$Av_i = \lambda_i v_i$$

$$\langle v_i, Av_i \rangle = \langle v_i, \lambda_i v_i \rangle$$

$$= \overline{\lambda_i} \langle v_i, v_i \rangle$$

$$= \overline{\lambda_i} ||v_i||^2$$

For any non-zero vector v_i , $||v_i||^2 > 0$, then for $\langle v_i, Av_i \rangle > 0$, $\overline{\lambda_i}||v_i||^2 > 0$ Thus $\lambda_i > 0$ also as it is a hermitian matrix, all of its eigenvalues are real.

Backward: Assume tha $\forall \lambda_i > 0$. According to the spectral theorem, $\forall A, \exists U$ that is unitary that $UAU^* = D$ which is the diagonal matrix with all of A's eigenvalues on its main diagonal. Then we have:

$$\begin{split} \langle v, Av \rangle &= \langle Uv, UAv \rangle \\ &= \langle UU^*v, UAU^*v \rangle \\ &= \langle Iv, Dv \rangle \end{split}$$

Consider a set of orthornomal basis of V, $\{b_1, \dots, b_n\}$. $v = \sum \mu_i b_i$,

$$\mu_i \in \mathbb{C}$$
, then $Dv = \sum_{i=1}^n \lambda_i \mu_i b_i$, Thus:

$$\langle v, Dv \rangle = \sum_{i=1}^{n} \mu_i \overline{\lambda_i \mu_i} ||b_i||^2$$
$$= \sum_{i=1}^{n} \lambda_i ||\mu_i||^2 ||b_i||^2$$

since $||\mu_i||^2 > 0$, $||b_i||^2 > 0$ and $\forall \lambda_i > 0$ (and real as it is from a hermitian matrix), $\sum_{i=1}^n \lambda_i ||\mu_i||^2 ||b_i||^2 > 0$ Therefore the matrix is positive definite.

- 5. Since A is hermitian, then $\exists U, D$ that $A = UDU^*$ where U is unitary and D is diagonal with entries equaling to eigenvalues. Therefore, as A is positive definite, all entries of D would be positive real numbers. then write the matrix as $D_{ij} = \delta_{ij}\lambda_i$, then $\exists D'$ that $D'_{ij} = \delta_{ij}\sqrt{\lambda_i}$, then $D'D' = \Gamma$, and $\Gamma_{ij} = \sum_{k=1}^{n} \delta_{ik}\sqrt{\lambda_k}\delta_{kj}\sqrt{\lambda_k} = \delta_{ij}\lambda_i = D$, Therefore: $A = UD'D'U^*$ As D' only have real positive entries in its main diagonal, $D'^* = D'$, then take $S = D'U^*$, then $S^* = (D'U^*)^* = UD'^* = UD'$, Thus, $S^*S = UD'D'U^* = A$
- 6. a)

Forward:

$$A^* = -A$$

$$-A^* = A$$

$$-\sqrt{-1}A^* = \sqrt{-1}A$$

$$-iA^* = iA$$

$$(iA)^* = -iA^*$$

Therefore, if A is skew-Hermitian then $A^* = -A$ Backward: If $\sqrt{-1}A$ is Hermitian, then:

$$(iA)^* = iA$$
$$iA = -iA^*$$
$$A = -A^*$$

- b) For any Hermitian matrix H, for all eigenvalues λ_i of H, $\lambda_i \in \mathbb{R}$. As iA is Hermitian, $\exists U, \ iA = U\Lambda U^*$ where Λ only have real diagonal entries. Then $A = U(\frac{1}{i}\Lambda)U^*$. $\forall r \in \mathbb{R}, \frac{r}{i} = -ri$ which is purely imaginary (if include r=0) therefore $(\frac{1}{i}\Lambda)$ have only pure imaginary (including zero) diagonal entries. Also, as U is unitary and $UU^* = I$, $A = U(\frac{1}{i}\Lambda)U^{-1}$ which means that $(\frac{1}{i}\Lambda)$ is the matrix containing all of its eigenvalues which means that they are all purely imaginary.
- c) Using lemma 31.4 profed in class, as iA is herimitan, then $iA = U\Lambda U^*$ and $A = U\left(\frac{1}{i}\Lambda\right)U^*$ which is unitary equavalent to the diagonal matrix $-i\Lambda$ meaning that it includes all eigenvectors of A.
- 7. a)

$$[B, A] = AB - BA$$
$$= -(BA - AB)$$
$$= -[A, B]$$

b)

$$-[A, B] = [B, A]$$

$$= BA - AB$$

$$= (-B)(-A) - (-A)(-B)$$

$$= B^*A^* - A^*B^*$$

$$[A, B]^* = (AB - BA)^*$$

$$= (AB)^* - (BA)^*$$

$$= B^*A^* - A^*B^*$$

$$= -[A, B]$$

Therefore it is also skew-hermitian.

c)

$$[A, B] = AB - BA$$

$$= A^*B^* - B^*A^*$$

$$= A^*B^* - (AB)^*$$

$$[A, B]^* = B^*A^* - A^*B^*$$

$$= (AB)^* - A^*B^*$$

$$= -[A, B]$$

Therefore, in general [A,B] is not hermitian. And is when $(AB)^* = A^*B^*$

8. a) Since A is Hermitian, note $[T]_{\mathcal{E}\mathcal{E}} = A$, then $A = U\Lambda U^*$ where $U \in U(n)$ and thus $U^* = U^{-1}$, since $Av_i = \lambda_i$, As Λ is the diagonal matrix with eigenvalues entries. Then on eigenvector basis \mathcal{B} , $\Lambda v_i = \lambda_i v_i$. Thus, $[T]_{\mathcal{B}\mathcal{B}} = \Lambda$. $A = [\mathrm{id}]_{\mathcal{E}\mathcal{B}}[T]_{\mathcal{B}\mathcal{B}}[\mathrm{id}]_{\mathcal{B}\mathcal{E}} = U\Lambda U^{-1}$ Therefore, $U = [v_1, v_2, \cdots, v_n]$ (collumns would be the eigenvectors of A). Claim that $\sum v_j v_j^* = UU^* = I$. Note the k's entry of v_i as $v_i(k)$

$$(UU^*)_{ij} = \sum_{k=1}^{n} U_k^i U_j^{*k}$$

$$= \sum_{k=1}^{n} v_k(i) v_k^*(j)$$

$$= \sum_{j=1}^{n} v_j v_j^*$$

b) As stated above, we have $A=U\Lambda U^*$

$$(\Lambda U^*)_{ij} = \sum_{k=1}^n \Lambda_k^i U_j^{*k}$$

$$= \sum_{k=1}^n \delta_k^i \lambda_i U_j^{*k}$$

$$(U(\Lambda U^*))_{ij} = \sum_{\ell=1}^n U_\ell^i (\Lambda U^*)_j^\ell$$

$$= \sum_{\ell=1}^n \left(U_\ell^i \sum_{k=1}^n \delta_k^\ell \lambda_\ell U_j^{*k} \right)$$

$$= \sum_{\ell=1}^n \left(U_\ell^i \lambda_\ell U_j^{*\ell} \right)$$

$$= A$$

Therefore, $A = \sum_{j=1}^{n} \lambda_j v_j v_j^*$