名古屋市瑞穂区高辻町14番18号

⑲ 日本 詾 特 許 庁 (JP)

⑫特 許 公 報(B2)

昭62-15493

@Int_CI_4	識別記号	庁内整理番号	❷❷公告 昭和62年(1987)4月8日
C 03 C 8/02 // C 03 C 3/085 3/091 3/095		6674-4G 6674-4G 6674-4G 6674-4G	発明の数 1 (全5頁)

❷発明の名称 グレーズ組成物

> 创特 頤 昭57-117115

路 昭59-8638 ❸公

多出 頤 昭57(1982)7月6日 ❷昭59(1984)1月17日

和夫 近 藤 砂発, 明. 者 @発 明.. 者 寒 山 雅 彦 日本特殊陶業株式会社 の出 関 人 弁理士 今 井 審査官 音、田 一敏 明

名古屋市瑞穂区高辻町14番18号 日本特殊陶菜株式会社内 名古屋市瑞穂区高辻町14番18号 日本特殊陶菜株式会社内

の特許請求の範囲

からなりその合量が0.1~10%の第1の副成分 不満があることを見出した。 ⇒と、4%以下のY₂O₂、同じく4%以下L≥₂O₃、6 .%以下のZrOz、同じく6%以下のTiOz、3%以 ず、平滑性、耐熱性および低熱伝導率を保ち、し 下のZnOから撰ばれた1種以上からなりその合量 が0.1~7%の第2の副成分とからなり、全量が 10 たグレーズ組成物を提供するもので、SiO₂56~ 100%であることを特徴とするセラミツクス表面 71%、BaO15.5~28%、Al₂O₂6~16%からなり主 のグレーズ組成物。

2 特許請求の範囲第1項記載のセラミツクス が、アルミナまたはベリリア磁器であることを特し 徴とするグレーズ組成物。

発明の詳細な説明

本発明は、特に薄肉または厚膜抵抗素子、高精 密膜回路を利用する集積回路、あるいは感熱記録 **装置のサーマルヘツド等電子部品として使用され** るアルミナあるいはベリリア磁器を基盤とするグ 20 幅成分として 4 %以下のY₂O₂、同じく 4 %以下 レーズドセラミツクスのグレーズ組成物に関する ものである。

これら電子部品のグレーズドセラミツクス、特 にサーマルヘッドに使用されるグレーズにはPbO およびアルカリ成分を含まず、表面の平滑性、耐 25 る。 熱性と共に養熱層として機能する低い熱伝導率が 要望される。

本出願人は、これらの要望を満たしたグレーズ 1 モル比でSiO₂56~71%、BaO15.5~28%、 の開発に成功し、先にグレーズドセラミツクス基 Al₂O₂6~16%からなり合量83~99.8%の主成分 板として提案(特願昭56~166780号(特開昭58~ と、10%以下のSrO、8%以下のB₂O₃、10%以下 67091号)) したが、配線の実装時においてグレー のCaO、3%以下のMgOから撰ばれた1種以上、5.ズ変面が曝されるHF+HNOaに対する耐食性に

本発明は、上記のPbO、アルカリ成分を含ま からHF+HNO。に対する耐食性を顕著に改善し 成分と、10%以下のSrO、8%以下のB₂O₃、10% 以下のCaO、3%以下のMgOから撰ばれた1種 以上からなりその副成分とからなる上記特願昭56 15 - 166780号のグレーズドセラミック基板のグレー ズ組成に対し、上記SiOo、BaO、AloOoからなる 主成分を合量83~99.8%、SrO、B₂O₃、CaO、 MgOから撰ばれた副成分を第1の副成分として その合量を0.1~10%に設定すると共に、第2の のLa₂O₃、6%以下のZnO、同じく6%以下の TiO₂、3%以下のZrO₂から撥ばれた1種以上を 撰び、全組成物として100%になるように0.1~7 %の範囲内で配合したことを特徴とするものであ

本発明のグレーズ組成物において、主成分とし てSiO2、BaOおよびAl2Ooの3巻を撰んだ理由

符公 昭 62-15493

は、主として低熱伝導性および高耐熱性および変 面の平滑性を得るためであるが、SiO。は56%に 満たないときは熱膨張係数が高くなつてアルミナ 磁器等からなる基盤との密着性が不充分となり、 71%を超えると溶融し難くなり、BaOは15.5%以 5 実施例 下では低い熱伝導率および表面の平滑性が得られ ず、28%以上では熱膨張係数が大きくなつて蒸盤 との密着性が悪くなり、またAlaOaは6%未満で は安定したガラスが得られず、16%以上では融点 配合割合が設定され、該主成分は低い熱伝導率お よび平滑性を得るためBaOを、結晶化の防止と耐 熱性を向上するためAl2O3と共に多量含有させた ものであるが、合量として83~99.9%に設定す

次に第1の副成分として換んだB₂O₃はガラス 化を助長し溶融を促進させグレーズの平滑性もよ くなるが8%を超えると耐熱性を著しく低下さ せ、SrO、CaOも同様ガラス化を助長するが共に - 10%を超えると失透し易くなり、またMgOは泡 20 アルミナ磁器を基板として上記ペースト状フリ を抜け易く微量の配合によって効果を奏するが、 多量に加えると失透傾向が増すため3%が限度 で、これら第1の副成分はいずれか1種の配合に よつて効果を奏し、2種以上を併用する場合も10 %が上限で2種以上併用した方が失透抵抗が強く 25 なる。 in the state of the

また、第2の副成分として配合するY₂O₃、 La₂O₃、ZnO、TiO₂およびZrO₂は、いずれも敬量 の配合によってHF+HNO。に対する耐食性を高 め、同時に耐熱性を更に改善し、かつ硬度を上昇 30 (3) ビッカース硬さ させる均等的効果を奏するものであるから第1の 副成分と同様にいずれか1種でもよいがY₂O₂お よびLa₂O₃は4%を超えると失透の傾向があり、 ZnOは6%を超えると却つてHFーHNO。に対する 耐食性を低下させ、TiO2は同じく 6 %を超える 35 と失透傾向を生ずると共に耐熱性をも低下させ、

ZrO2は3%を超えると気泡が残り易く平坦な表 面が難しくなるから、これら第2の副成分はそれ ぞれ上記の範囲内に限定せられ、2種以上を併用 する場合も7%が上限である。

第1表のモル光組成のガラスが得られるよう E, SiO₂, Al (OH)₃, BaCO₃, H₂BO₂, CaCO₃ 、SrCO₃ 、MgCO₃ 、Y₂O₃ 、La₂O₃ 、 ZnO、TiO₂およびZrO₂を秤量し、常法に従って が上昇して溶融し難いため、上記のモル比による 10 ライカイ機にて混合、アルミナルツボによって最 適温度にて溶融し、これを水中に流し込んで急冷 した後アルミナのボールミルによつて微粉砕して フリツトとし、有機質粘結剤を加えて混練してベ ースト状フリットを得た。

> このペースト状フリットをアルミナ基板上に登 布、焼成したグレーズ基板その他について諸特性 を測定した結果を同接に示す。但し、

(1) 耐HF+HNOs性

アルミナ含有率97%で50mm×50mm×1 mm tの ツトをスクリーン印刷によって塗布、乾燥後表 中のグレージングにて焼成してグレーズの厚さ 50±10μmのグレーズ基板とし、HF:HNO。 = 1:1の溶液中に15秒間浸液してグレーズ面 の浸食された厚さを表面粗さ計によって測定。

(2) 屈伏点

5 ໝ φ×20m 礼の円柱状クレーズを(1)と同様 グレージング温度によつて製作し、熱膨張を測 定して膨張曲線の頂点を計測。

(1)のグレーズ基板を用い、荷重200%によつ て測定。

(4) 熱伝導率

9 mm φ × 1 mm t の円板状グレーズを(2)と同様 に製作し、レーザーパルス法によって測定。

(3)

1 ·

特公 昭 62-15493

5

第

麦

•				7	•	V						X			
試料	. 18				成			(モル%)							
No.	主 成 分					第1の副成分			第2の副成分						
	SiO ₂	BaO	Al _z O ₃	小計	B ₂ O ₃	Ca0	Sr0	MgO	小計	Y ₂ Q ₃	La ₂ O ₂	2n0	TiO ₂	Zr0	小計
1	60	20	10	90 ·	1	2	2	ı	6	0,5	0,5	1	1.5	0.5	4
2	"	"	"	"	"	"	"	nj.	- 11	4	_	-		-	"
3	. 11	"	. 11	"	-	6	-	-	"	_	4	-	-	-	"
4	"	"	. "	11	_	-	6.	-	-//	_	_	4	_	-	"
5	n	11	,11	11	3	_	-	3	. #	-	_	-	4	-	"
6	11	11	. 11	11		3	3	-	· //	1	_	_	-	3	1/
7	71	15,5	6	92.5	1	1.5	ı	1	.4,5	1,4	0.5	0.5	0.5	0.1	3
8	56	28	. 6	90	2 :	2	2	1	7	0.5	0.5	0.5	1	0.5	3
9	56	15.5	16	87.5	2	2	1,5	1	6,5	1	1	1.5	1.5	1	6
10	58	17.5	7.5	83	2	3	4	1	10	1.5	1.5	1.5	1.5	1	7
11	"	"	11	11	"	//	IĮ.	n	n	4	· -	3	· ,	_	"
12	; #	"	, n	11	· 11	11	11.	11			4	-	3	-	"
13	"	· #	//	"	. 17	"	n,	"	. 11	**		6	1	_	"
14	· #	"	- //	"	: #	17	#.	#	·#	_		1	6 .	-	"
15	. 11	"	n	. #	. 11	TI .	11	11	"	4		-	_	3	#
16	63.9	22	13.9	99,8	0.1	_			0.1	0.1	~ .	-		_	0.1
17	· //	"	1)	"		0.1	_		"		0.1				11
18	n	"	. 11	#			0,1	-	"	-		0, 1	~	_	"
19	"	"	. #	"	_		1	0.1	"		_		0.1	_	"
20	"	<i>II</i>	"	"	0.05	_	_	0,05	"	-	_	_		0.1	"
21	66	23	11	100	_		_	_	0	_	_	-	_		0
22	57	16.5	6.5	80	2	3	4	i	10	2	2	2	2	2	10
23	61	21	1.1	93	2	2	2	1	7			_		-	0
24	63	23	11	97	-				0	1	0.5	0.5	0.5	0.5	3
25	59	18	8	85	3	3	4	2	12	1	0.5	0.5	0.5	0.5	3
26	59	18	8	85	1	2	1	1	5	2	2	2	2	2	10
参考	57.2 4.2 3.2 64.6 16.1 5.6 - 1.0 22.7 Pb08.1 Na ₂ 03.8 K ₂ 00.8														

(4)

特公 昭 62-15493

試料 ングで No.	Pr 1		符 性						
	グレージ ング温度 ℃	耐HF+ HNOo性 µm	屈伏点	ビッカー ス硬さ	熱伝導率 Cal·cm·deg ⁻¹ sec ⁻³	熱膨張係数 30~400℃	表面抵抗 200℃Ω/□ ×10 ¹⁴	備考	
1	1270	7	800	580	1.7	6.7	1	本発明品	
2	"	7	830	590	1.7	6.6	1	n	
3	11	8	820	580	1,7	6.7	1	п	
4	#	9	790	540	1,7	7.0	1	n	
5	1250	. 9	770	540	1.7	6.2	2	п	
6	1270	9 .	800	570	1,7	6.9	I	"	
. 7	"	7	800	580	1.8	5,7	i	"	
8	"	10	790	560	1.6	7.5	1	"	
9	η	7	830	580	1.7	6.6	1	"	
10	'n	8	790	590	1.7	6,6	1	11	
1.11	11	7	800	610	1.7	5.2	1	,,	
12	. "	8	790	590	1.7	6,6	1	n	
13	. ,,	9	780	570	1.7	6.6	1	"	
.14	1250	9	770	570	1.7	6.6	1	"	
15	1270	8	790.	580	1.7	6.7	1	//	
16	"	9	780	540	1.7	6.5	1 .	11	
17	1250	9	760	540	1.7	6.4	1	"	
18	11	10	780	540	1.7	6.6	I	11	
19	11	10	780	540	1,7	6.7	1	"	
20	JI .	10	780	540	1.7	6.5	1	"	
21	11	14	770	520	1,7	6.5	1	範囲外	
22	_		-	失		遊		11	
23	1230	13	740	520	1.7	6.7	1 .	"	
24	-			失		遊		"	
25	1230	11	720	500	1,8	7.9	1 .	"	
26	-			失		透	·	"	
参考	1100	6.	660	480	3.3	5,5	2×10 ¹²	従来品	

第1 変によつて明らかにされる通り、モル比で SiO₂56~71%、BaO15.5~28%、Al₂O₃6~16%か らなる主成分83~99.8%と、8%以下のB₂O₃、10 %以下のCaO、同じく10%以下のSrO、3%以下

のMgOの1種以上からなる第1の副成分0.1~10 %と、4%以下のY₂O₃、同じく4%以下の La₂O₂、6%以下のZnO、同じく6%以下の TiO₂、3%以下のZrO₂の1種以上からなる第2

(5)

特公 昭 62-15493

の副成分0.1~7%とからなり、それらの合量が 100%とした本発明のグレーズ組成物、すなわち

- (1) 主成分の小計および構成成分をいずれも略々 中間値に固定し、第1および第2の副成分の小 料14.1~6。
- (2) 主成分の小計を略々中間値とし、構成成分の それぞれを上限および下限に設定すると共に第一 1 および第2の副成分を試料%.1に準じて増減 した試料私7~9。
- (3) 主成分の構成成分を下限付近、それらの小計 を下限、第1および第2の副成分の小計を共に 上限とし、第1の副成分を試料ぬ1に対応、増 大して固定すると共に第2の副成分を2種以上 併用した試料№10~15。
- (4) 主成分の構成成分を中間値付近、それらの小 計を上限に固定し、残部を第1および第2の副 成分に等分した試料No.16~20。

は、いずれも

のみとし、構成成分をそれぞれ略々中間の SiO₂66%、BaO23%、Al₂O₂11%とした試験 No.21.

(Ⅱ) 第2の副成分を含まず、主成分および第 1の副成分のみを共にそれらの小計並びに構 成成分を中間値付近とした試料№23。

10

;81355613956

針および構成成分をも略々中間値に設定した試 5 に比し、他の諸特性に悪影響を与えることなく格 段と対HF+HNOa性を改善することに成功し

> 以上の通り、本発明は主成分に対して第1およ び第2の副成分の配合によつて著効を奏するもの 10 であるが、第1および第2の副成分が過多の試料 No.22、上記試料No.23と逆に第1の副成分を含まず 主成分および第2の副成分のみとした試料M24、 第1の副成分を略々中間値としても第2の副成分 が過多の試料No.26はいずれも失透をもたらし、ま 15 た該試料№26と逆に第2の副成分が中間値にあっ ても第1の副成分が過多の試料No.25は失透を起さ ず、耐HF+HNO。を改善するが他の諮特性にお いて不満がある。

なお、参考として挙げた従来のアルカリを含む (I) 第1 および第2の副成分を含まず主成分 20 硼珪酸鉛系ガラスは耐HF+HNOs性に高い値を 示すが基盤となる屈伏点、熱伝導率を初め表面抵 抗等他の諸特性において大きな不満がある。