

25° 10° 0° -10

认知智能技术与应用研究报告 (2023年)

华院计算技术(上海)股份有限公司 中国信息通信研究院云计算与大数据研究所 2023年7月

版权声明

本报告版权属于华院计算技术(上海)股份有限公司和中国信息 通信研究院云计算与大数据研究所,并受法律保护。转载、摘抄或利 用其他方式使用本报告文字或观点的,应注明"来源:华院计算技术 (上海)股份有限公司和中国信息通信研究院云计算与大数据研究 所"。违反上述声明者,公司和研究院保留追究其法律责任的权利。

前言

随着深度学习技术演进,语音识别、图像识别等技术准确率得到大幅提高,机器的听、看等"感知"能力已经达到甚至超越人类水平,逐渐进入应用成熟期。然而,当机器在面对思考、推荐、决策、联想等复杂"认知"问题时,仍无法完全满足应用要求。伴随全球数字化进程加快,人工智能技术与产业融合程度逐步加深,"能思考,会判断"的认知智能技术逐步应用于智能客服、智能推荐、智能营销、智能分析等诸多场景,不断释放产业应用价值。目前,认知智能正步入发展快车道,大模型应用热潮又为其注入一股新能量,进一步扩张认知智能应用潜力和价值边界。

本报告由华院计算技术(上海)股份有限公司(以下简称"华院")和中国信息通信研究院云计算与大数据研究所联合撰写,围绕认知智能发展现状、关键技术、典型应用场景和未来发展方向进行阐述,共分为四个部分。第一部分聚焦认知智能发展现状,围绕学术环境、技术创新、产业规模等维度进行阐述;第二部分聚焦认知智能关键技术,介绍知识数据融合、知识表示推理、认知规划与决策、多模态学习及情感计算五个技术方向;第三部分围绕医疗、金融、制造及教育等重点应用领域,分析典型落地场景及应用案例;第四部分围绕大模型、生成式人工智能对认知智能的推动作用进行分析,展望可解释、类脑智能等前沿技术发展前景。

由于人工智能仍处于快速发展阶段,我们对认知智能还有待进一步研究,报告如存在不足之处,敬请大家批评指正。

目录

第	[一章	人工智能	迈入"认	知智能"	新阶段		 1
	(-)	AI 核心要素	推动认知智	能发展			 1
	(_)	认知智能学习	术关注度迅	速提升			 2
	(三)	认知智能应用	目市场前景,	广阔			 4
第	二章	认知智能	核心技术	日益成熟	.		 7
	(-)	多模态学习不	有效提高信	息认知维质	度	• • • • • • • • • • • • • • • • • • • •	 7
	(_)	知识数据融行	合加强认知	基础			 8
	(三)	知识表示与打	 推理可优化	认知逻辑.			 9
	(四)	认知规划和	夬策处理复.	杂任务			 10
	(五)	情感计算优1	化智能交互	体验			 13
	(六)	生成式人工名	智能提高机	器创造力。		• • • • • • • • • •	 14
第	三章	认知智能	场景化应	用逐渐深	光		 16
	(-)	认知智能促出	进医疗服务:	再升级		• • • • • • • • • • • • • • • • • • • •	 16
	(=)	认知智能促出	进金融科技	应用创新.			 17
	(三)	认知智能加立	速工业制造	智能转型.			 19
	(四)	认知智能推立	进教育模式	创新优化.		• • • • • • • • •	 20
第	四章	认知智能	技术与应	用方向展	望		 22
	(-)	多模态大模型	型拓展认知	智能应用主	边界		 22
	(_)	可解释的认为	知智能增强	技术可信息	领度		 23
	(三)	类脑智能推动	动认知智能	向意识智能	能发展		 24
参	考文	献					 25

第一章 人工智能迈入"认知智能"新阶段

认知智能的核心是通过模仿人类认知过程,使机器具备理解、推理、解释、联想、演绎等多方面能力,涉及自然语言处理、知识计算、情感计算、类脑智能等多领域技术,可应用于智能推荐、智能营销、风险预测、智能交互等众多场景。近年来,人工智能数据、算法和算力的快速发展,支撑了认知智能技术创新和场景化应用,越来越多研究机构和学者开始关注认知智能理论研究和技术落地,认知智能产业应用前景广阔。

(一) AI 核心要素推动认知智能发展

数据要素方面,数据量飞速增长,数据质量持续优化,为认知智能思考和决策提供依据,扩展认知智能应用范围。根据 Statista 测算,到 2035年,全球数据产生量将达到 2141ZB¹,为认知智能提供充足数据资源储备。此外,多地出台相关政策措施,通过鼓励高质量基础训练数据集开放共享、建设数据训练基地、搭建数据集精细化标注众包服务平台等举措,保障训练数据的高质量供给。优质数据与知识的双重驱动,进一步提升认知能力上限。

算法要素方面,机器学习、深度学习、强化学习等算法创新迭代, 推动认知智能在推理及预测方面性能持续提升。机器学习领域,对比 学习通过比较输入样本和目标样本之间的差异来进行自监督式学习,

¹ ZB: 中文名是泽字节,外文名是 Zettabyte,是计算机术语,代表的是十万亿亿字节。

能够发现数据中的潜在结构和特征,从而更好地进行分类、识别或生成等任务;深度学习领域,元学习通过从多个任务的学习中汲取经验,进而提高模型在新任务上的泛化能;强化学习领域,人类反馈强化学习将实体识别任务转化为强化学习问题,将人类的反馈作为奖励信号,在与人类交互不断学习优化模型,从而提高实体识别的准确率和鲁棒性,推动认知智能向更高水平的理解和预测能力方向发展。此外,由ChatGPT 引发的大模型热潮为认知智能发展注入新活力,各类算法与大模型结合运用,将在提升认知理解与推理能力中发挥重要作用,进一步扩大认知智能应用范畴。

算力要素方面,算力规模持续扩大和计算环境不断创新,为认知智能算法研究及产业落地提供原动力,支撑认知智能实现产业应用。据 IDC 与浪潮信息联合发布《2022-2023 中国人工智能计算力发展评估报告》统计,我国智能算力继续保持快速增长,2023 年智能算力规模预计达到 427 百亿亿次/秒(FLOPS),较 2022 年提升 59.3%,可以更好支持认知智能在复杂场景的计算速度要求。此外,动态、异构的智能计算环境及服务,以及分布式智能计算(云、边、端融合)²,可在一定程度上响应动态感知、场景应用中数据变化,实现模型快速调整,从而提高认知精度和优化容错能力。

(二) 认知智能学术关注度迅速提升

近年来,学术界越来越重视认知智能相关技术理论和实践应用研究,涌现了一批以认知智能专题的学术期刊及国际会议,主要涵盖认