Activity Patterns in Social Network Communities: a study on scale invariance

Matteo Garbellini

Università degli Studi di Milano matteo.garbellini@studenti.unimi.it

23 Luglio 2019

Overview

- Introduction
 - question
 - dataset
- Theoretical Aspects
 - community detection
 - resolution parameter
 - intertime and spike trains
- Computational Aspects
 - tools
 - process
- Results
 - normalized activity
 - intertime
 - node activity
- Conclusions and Further Developments

Introduction

Question

Do differently sized communities have different patterns of activity, or are these patterns scale invariant

 Dataset: Twitter Activity before/after the announcement of the discovery of the Higgs Boson

Dataset

Twitter activity before/during/after the announcement of the discovery of the Higgs Boson on July 12th 2012

- higgs-social-network.edges: directed graph of following/followers twitter users
 - 450000 nodes (users)
 - 14 million edges (friendships)
- higgs-activity-time: timestamped interactions between users, based on type of interaction Retweet(RT), Mention (MT), and Replies (RE)
 - Time frame: July 11th 0.00am to July 12th 11.59pm
 - 500000 events (interactions)
 - Format: UserA UserB timestamp interaction

Community Detection

Choosing the right community detection algorithm is an important step in the dataset analysis. For large networks **modularity** based algorithms perform the best. A first analysis was done using the Louvain Algorithm, while the final results were obtained using the CPM Algorithm

- Louvain Modularity Algorithm¹
 - fast for large graph
 - small communities tend to be merged
- Constant Potts Model²
 - efficient Louvain alternative
 - almost Resolution Limit Free
 - able to discover small sub-communities

¹Blondel, V. D., Guillaume, J., Lefebvre, E. (2008). Fast unfolding of communities in large networks, 112.

²Traag, V. A., Dooren, P. Van, Nesterov, Y. (2011). Narrow scope for resolution-limit-free community detection.

Community Detection: Constant Potts Model

The Constant Potts Model compares the network to a constant parameter γ instead of a null-model like the Louvain algorithm. It works by minimizing

$$\mathcal{H} = -\sum_{i,j} (A_{ij}\omega_{ij} - \gamma)\delta(\sigma_i, \sigma_j)$$

where γ is the so-called **resolution parameter**. Follows the inequality

$$n_c > \sqrt{\frac{1}{\gamma}}$$

where n_c is the cluster size lower bound.

Community Detection: Choosing the Resolution Parameter

Choosing the resolution parameter is a delicate step of community detection

- resolution profile
- stable partitions
- research-oriented lower bound size
- (my case) cross-reference with Surprise Partition Algorithm³

¹Aldecoa, R., Marn, I. (2011). Deciphering network community structure by surprise

Community Detection: size distribution CPM vs Surprise Partition

Size

Activity Classification: Activity Index and Activation Index

Two parameters are proposed: the **activity index** and the **activation index**, defined as follows:

Activity Index Λ

$$\Lambda = \frac{\textit{Events}}{\textit{ActiveNodes}}$$

■ Activation Index ↑

$$\Upsilon = \frac{Activations}{ActiveNodes}$$

Activity Classification: Events Intertime

Activity Classification: Spike Trains and Local Variation

To uncover the dynamics of communications spikes (bursts), **local** variation L_{ν} is applied, providing a local temporal measurment usually defined to characterize non-stationary neuron spike trains ⁴

$$L_{v} = \frac{3}{N-2} \sum_{i=2}^{N-1} \left(\frac{(\tau_{i+1} - \tau_{i}) - (\tau_{i} - \tau_{i-1})}{(\tau_{i+1} - \tau_{i}) + (\tau_{i} - \tau_{i-1})} \right)^{2}$$

where \emph{N} is the number of spikes and $\Delta \tau$ is the backward and forward delay.

⁴Sanli, C., Lambiotte, R. (2015). Temporal pattern of online communication spike trains in spreading a scientific rumor: how often , who interacts with whom?

Computational Aspects: tools

- Tools Used
 - Community Detection: igraph w/ Python using leidenalg algorithm (Traag)
 - Community Analysis: C++ , awk and bash scripts
 - Graphs and fits: gnuplot

Computational Aspects: process

- higgs-community-detection.py: outputs detected communities
- higgs-preprocess-analysis.sh: performes basics parsing and file reformat
- higgs-analysis.cpp: builds all necessary information on the network and outputs all graph data

RESULTS: Community detection

Insert figure here: cluster-size vs cluster-frequency

RESULTS: bin-size Definition

Communities sizes are classified following this general rule

■ Very Small : < 25 not considered in analysis

■ Small: 25 - 100

■ Medium: 100 - 1000

■ Large: 1000 — 5000

■ Very Large: > 5000

The actual analysis is done considering log-sized bin averages. Each class has 10 sub-classes (10,20..100,200..1000,2000..)

RESULTS OVERVIEW

- Activity by cluster size
 - ingoing / outgoing / within cluster
 - retweet / mention / reply
 - ingoing / outgoing / within by type (rt, re, mt)
- Average node activity by cluster size
- Average node intertime by cluster size

RESULTS: Cluster Activity

RESULTS: Cluster Activity (ingoing/outgoing/within)

RESULTS: Cluster Activity by type

RESULTS: Activity Within Cluster by type

RESULTS: Node Activation

