

Soluciones Tarea Obligatoria II Métodos Matemáticos Física II

¹ Vicente Herrera, ² Marcelo Órdenes, ³ Felipe Ortiz, ⁴ Fabián Trigo.

^{1,2,3,4} Estudiantes de 3er. año de la Licenciatura en Física

Universidad de Valparaíso, Facultad de Ciencias, CHILE.

10 de junio de 2020

Problema III: Integraciones varias

A)

B)

C) . Evaluar la siguiente integral de indice 1: $J = \int_0^\infty exp(-\alpha x)cos(\beta x)dx$ " para experimentar un poco y probar los brackets, podemos representar el $cos(\beta x) = Re[exp(ix\beta)]$

Luego la integral J pasaria a ser Re[J']: $J' = \int_0^\infty exp(-\alpha x)exp(ix\beta)dx$

$$J' = \int_0^\infty exp((-\alpha + i\beta)x)dx$$

$$z = -\alpha + i\beta$$

Expansion a la exponencial: $exp(zx) = \sum_{n=0}^{\infty} \Phi_n(-z)^n(x)^n$

Aplicando la integral en x y convirtiendolo en un bracket:

$$J' = \sum_{n=0}^{\infty} \Phi_n(-z)^n < n+1 >$$

$$J' = (\alpha - i\beta)^n \Gamma(-n)|_{n=-1}$$

Multiplicamos por 1, en forma del conjugado

$$J' = \frac{1}{\alpha - i\beta} \frac{\alpha + i\beta}{\alpha + i\beta}$$

$$J' = \frac{\alpha + i\beta}{\alpha^2 + \beta^2}$$

$$J = Re[J'] = \frac{\alpha}{\alpha^2 + \beta^2}$$