AGRÉGATION DES SCIENCES MATHÉMATIQUES

Composition de mathématiques générales. 1977

PREMIÈRE PARTIE

6165. Soit K un corps commutatif de caractéristique différente de 2. On appelle espace quadratique tout couple (E, Q), où E est un espace vectoriel de dimension finie sur le corps K et Q une forme quadratique non dégénérée sur E. On notera P la forme polaire de Q. Par abus de langage, on écrira souvent E pour (E, Q).

 $1.-1^{\circ}$ Soit (E, Q) et (E', Q') deux espaces quadratiques. On pose $E'' = E \times E'$ et on désigne par Q'' l'application

 $Q'': E'' \to K \quad (x, x') \longmapsto Q(x) + Q'(x')$

(relation abrégée en Q'' = Q + Q'). Montrer que le couple (E'', Q'') est un espace quadratique que l'on appellera somme directe de E et E'.

I. -2° Soit π la projection canonique de E" sur E, A un sous-espace de E". A toute partie X de E, on associe $\overline{X} = X \times \{0\}$. On munit E de la forme quadratique \overline{Q} , telle que $\overline{Q}(x,0) = Q(x)$. On note par les signes \bot , \circ et \bullet les orthogonalités dans les espaces E", E et \overline{E} . Calculer \overline{X}^{\perp} en fonction de X° . Comparer $\pi(A^{\perp})$ et $\pi[(A \cap \overline{E})^{\bullet}]$. Déterminer l'orthogonal dans E" du produit d'un sous-espace de E par un sous-espace de E'.

1.-3° Désinir à l'aide de Q une notion naturelle d'isomorphisme quadratique entre deux espaces quadratiques de façon que toute décomposition de E en somme directe de sous-espaces orthogonaux rende E isomorphe à la somme directe (au sens du 1°) de ces sous-espaces munis de formes convenables.

 $I.-4^{\circ}$ (E, Q) étant un espace quadratique, on note (abusivement) E^{-} le couple (E, - Q). Déterminer un sous-espace L de $E \times E^{-}$ égal à son orthogonal L^{\perp} .

I.-5° Un espace quadratique est dit hyperbolique si, et seulement si, il admet un lagrangien, c'est-à-dire un sous-espace égal à son orthogonal.

Soient (E, Q) un espace quadratique hyperbolique et L un lagrangien de cet espace. Que peut-on dire de la dimension de E?

On considère un supplémentaire L_0 de L, une base (e_1, \ldots, e_n) de L et une base (f_1, \ldots, f_n) de L_0 . A tout vecteur $v \in E$ on associe les matrices-colonnes X et Y dont les éléments sont respectivement les n premières et les n dernières coordonnées de v dans la base (e_1, \ldots, f_n) de E. Montrer qu'il existe deux matrices carrées d'ordre n, A et B, telles que, pour tout $v \in E$

$$Q(v) = {}^{t}XAY + {}^{t}YBY.$$

Montrer que la matrice A est inversible.

 $L-6^{\circ}$ Montrer que l'on peut choisir L_0 et les bases (e_1, \ldots, e_n) , (f_1, \ldots, f_n) de façon que, pour tout $v \in E$, $Q(v) = {}^{t}XY$. En déduire que, L^* désignant le dual de L, (E, Q) est quadratiquement isomorphe à (H(L), R), où H(L) désigne $L \times L^*$ et où R est déterminé par

$$R(x, \varphi) = \varphi(x).$$

- I. -7° On remplace maintenant l'hypothèse $L^{\perp} = L$ par l'inclusion $L \subset L^{\perp}$. Soit Λ un supplémentaire de L dans L^{\perp} . Déduire de la question précédente que l'on peut munir l'espace quotient L^{\perp}/L d'une forme quadratique telle que E soit quadratiquement isomorphe à la somme directe $(L^{\perp}/L) \times H(L)$, (H(L) est défini comme au 6° ; on pourra rechercher un lagrangien de Λ^{\perp}).
- I.—8° Soit E et E' deux espaces quadratiques tels que les espaces E' et E \times E' admettent des lagrangiens notés respectivement U et T. Posant $\overline{\overline{U}} = \{0\} \times U$, montrer (avec les notations du 2°) que $\pi[(T + \overline{\overline{U}}) \cap \overline{E}]$ est un lagrangien de E,
- I. -9° On dira que deux espaces quadratiques E et E' sont équivalents si E \times (E') est hyperbolique. Justifier l'emploi de l'adjectif « équivalent ». Admettant que les classes d'équivalence définies par cette relation forment un ensemble, munir cet ensemble d'une addition de façon à obtenir un groupe abélien qui sera noté W(K).

Montrer que W(C) et W(R) sont respectivement isomorphes aux groupes $\mathbb{Z}/2\mathbb{Z}$ et \mathbb{Z} .

DEUXIÈME PARTIE

- II. -1° Soit \mathbf{F}_q un corps fini commutatif de cardinal q et de caractéristique différente de 2, et (a, b) un couple d'éléments non nuls de \mathbf{F}_q . Dénombrer les éléments de \mathbf{F}_q de la forme $1 by^2$ et montrer que l'équation $ax^2 + by^2 = 1$ a au moins une solution $(x, y) \in \mathbf{F}_q^2$.
- II. 2° Soit (E, Q) un espace quadratique sur F_q . Montrer l'existence d'une base (e_1, \ldots, e_n) de E orthogonale relativement à Q, telle que, pour $i \ge 2$, $Q(e_i)$ soit égal à 1. Montrer que, pour que l'on puisse imposer la condition supplémentaire $Q(e_1) = 1$, il faut, et il suffit, que le déterminant de Q relatif à une base quelconque soit un carré dans F_q .
 - II. 3° En écrivant l'identité polynomiale

$$X^{q-1} - 1 = (X^r - 1)(X^r + 1), \quad \text{où} \quad r = \frac{q-1}{2},$$

montrer que, pour tout $a \in \mathbb{F}_q$, la condition a' = 1 équivaut à l'existence d'un élément non nul $b \in \mathbb{F}_q$ tel que $a = b^2$. On examinera les cas

$$q = 4m + 1$$
 et $q = 4m + 3$.

II. – 4° Montrer que, selon que q = 4m + 1 ou q = 4m + 3, $W(F_q)$ est isomorphe à $(\mathbb{Z}/2\mathbb{Z})^2$ ou à $\mathbb{Z}/4\mathbb{Z}$ (on pourra introduire un élément $\omega \in F_q$ qui n'est pas un carré et considérer (F_q, \mathbb{Q}) , où $\mathbb{Q}(x)$ désigne x^2 ou ωx^2).

TROISIÈME PARTIE

III. – 1° Soit G un groupe abélien fini noté additivement. On sait qu'il existe k nombres premiers (distincts ou non) p_1, \ldots, p_k et k entiers non nuls n_1, \ldots, n_k tels que, si l'on pose $q_i = p_i^{n_i} (1 \le i \le k)$, G soit isomorphe au produit direct

$$(\mathbb{Z}/q_1\mathbb{Z}) \times (\mathbb{Z}/q_2\mathbb{Z}) \times \ldots \times (\mathbb{Z}/q_k\mathbb{Z}),$$

la famille (q_1, \ldots, q_k) étant unique à l'ordre près.

Soit $G = \text{Hom } (G, \mathbb{Q}/\mathbb{Z})$ le groupe des homomorphismes de G dans le groupe-quotient du groupe additif de \mathbb{Q} par le sous-groupe \mathbb{Z} .

Montrer que G et \widehat{G} ont même cardinal.

III. -2° Soit χ l'application de G dans $\widehat{\widehat{G}}$ définie par les relations :

$$\chi: G \to \widehat{G}, \qquad \chi(x): \widehat{G} \to \mathbb{Q}/\mathbb{Z}, \qquad \chi(x)(\varphi) = \varphi(x).$$

Montrer que x est un isomorphisme de groupes.

III. – 3° Soit h une application de $G \times G$ dans Q/Z supposée symétrique (c'est-à-dire telle que h(x, y) = h(y, x) pour tout couple (x, y)) et en outre bilinéaire (c'est-à-dire telle que h(x + x', y) = h(x, y) + h(x', y) pour tout triplet (x, x', y)). On note \tilde{h} l'homomorphisme défini par les relations

$$\vec{h}: G \to \widehat{G}, \qquad \vec{h}(x): G \to Q/Z, \qquad \vec{h}(x)(y) = h(x, y).$$

Montrer que \tilde{h} est un isomorphisme si, et seulement si, h est non dégénérée (c'est-à-dire si, à tout $x \neq 0$, correspond au moins un y tel que $h(x, y) \neq 0$). On dira alors que (G, h) est un groupe bilinéaire. Par abus de langage, on écrira souvent G pour (G, h).

- III. -4° On appliquera désormais aux groupes bilinéaires langage et notations des espaces quadratiques : on dira par exemple que les parties X et Y du groupe bilinéaire G sont orthogonales si, pour tout $(x, y) \in X \times Y$, h(x, y) = 0; on notera n le cardinal de G, et, pour tout nombre premier i, G_i le sous-groupe des $x \in G$ tels que $i^n x = 0$. Montrer qu'il existe un nombre premier p tel que G soit bilinéairement isomorphe au produit direct de sous-groupes $G_2 \times G_3 \times G_5 \times \ldots \times G_p$, chaque partie G_i $(i \le p)$ étant orthogonale aux autres.
- III. -5° Let L'étant deux sous-groupes de G, on notera L + L' le sous-groupe de G engendré par $L \cup L'$. Montrer que l'orthogonal de L est un sous-groupe L^{\perp} de G. Montrer que tout homomorphisme $\lambda \in \widehat{L}$ peut être prolongé en un homomorphisme $\widehat{\lambda} \in \widehat{G}$. Vérisier les égalités

$$\text{card } L^{\perp} = \frac{\text{card } G}{\text{card } L}, \qquad L^{\perp \perp} = L, \qquad (L + L')^{\perp} = L^{\perp} \cap L'^{\perp}, \qquad L^{\perp} + L'^{\perp} = (L \cap L')^{\perp}.$$

- $HL = 6^{\circ}$ Si la restriction de h à L est non dégénérée, montrer que G est bilinéairement isomorphe au produit direct $L \times L^{\perp}$.
- III. 7° On note encore (abusivement) G^- le couple (G, -h). En supposant $L \subset L^{\perp}$, munir L^{\perp}/L d'une forme bilinéaire, symétrique, non dégénérée, naturellement liée à h, telle que le groupe bilinéaire $(L^{\perp}/L) \times G^-$ qui s'en déduit admette un sous-groupe Γ égal à son orthogonal (on pourra considérer la surjection canonique τ de L^{\perp} sur L^{\perp}/L et l'ensemble des couples $(\tau(x), x)$ où $x \in L^{\perp}$).
- III. 8° On dira que deux groupes bilinéaires G et G' sont équivalents si $G \times (G')^-$ admet un sous-groupe égal à son orthogonal. Montrer, en s'inspirant du I, 9°, que l'on peut définir un groupe abélien \mathcal{W} analogue aux différents W(K).
- III. -9° Si p est un nombre premier, on appelle groupe p-primaire un groupe additif G tel que $G = G_p$ (avec la notation du III. -4°). Montrer que les classes d'équivalence des groupes bilinéaires p-primaires définissent un sousgroupe \mathcal{W}_p de \mathcal{W} . Montrer que \mathcal{W} est isomorphe au sous-groupe de $\mathcal{W}_2 \times \mathcal{W}_3 \times \mathcal{W}_5 \times \ldots \times \mathcal{W}_p \times \ldots$ constitué par les suites (x_i) , (i premier; $x_i \in \mathcal{W}_i)$, qui n'ont qu'un nombre fini de termes non nuls.
- III. 10° Montrer que W_p est isomorphe à $\mathbb{Z}/2\mathbb{Z}$ si p=2, et isomorphe à $\mathbb{W}(\mathbb{F}_p)$ si $p\geqslant 3$ (on pourra montrer que si G est bilinéaire et s'il existe $m\geqslant 2$ tel que $p^mx=0$ pour tout $x\in G$, alors il existe un groupe bilinéaire équivalent à G, et un entier m'< m tel que $p^{m'}y=0$ pour tout $x\in G'$).

OUATRIÈME PARTIE.

Un groupe additif abélien est dit *libre de type fini s*'il existe un entier n tel que le groupe soit isomorphe à \mathbb{Z}^n . Soit H un tel groupe. Nous admettrons que les sous-groupes de H sont également libres de type fini; nous noterons $H^* = \text{Hom}(H, \mathbb{Z})$ le groupe des homomorphismes de H dans le groupe \mathbb{Z} .

- IV.-1° Montrer que H et H* sont isomorphes.
- IV. -2° Soit E et F deux groupes abéliens libres de type fini et $\alpha : E \to F$ un homomorphisme. On appelle transposé de α l'homomorphisme $\alpha : F^* \to E^*$ défini par $\alpha : F^* \to F$ un homomorphisme. On appelle transposé de α le groupe-quotient

 $G = \operatorname{Coker} \alpha = F/\alpha(E)$; on suppose que le conoyau de α est fini. Comme au III, on note $\widehat{G} = \operatorname{Hom}(G, \mathbb{Q}/\mathbb{Z})$. Montrer que ' α est injectif.

IV. -3° On considère en outre un élément $w \in \widehat{G}$. On désigne par $\beta : \mathbb{Z} \to \mathbb{Q}$, $\gamma : \mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$, $\delta : \mathbb{F} \to \mathbb{G}$ les homomorphismes canoniques. Montrer qu'il existe des homomorphismes $v : \mathbb{F} \to \mathbb{Q}$, $u : \mathbb{E} \to \mathbb{Z}$ tels que le diagramme

$$\begin{array}{c|c}
E & \xrightarrow{\alpha} F & \xrightarrow{\delta} G \\
\downarrow \downarrow & \downarrow \downarrow & \downarrow \downarrow \\
Z & \xrightarrow{\beta} Q & \xrightarrow{\gamma} Q/Z
\end{array}$$

soit commutatif.

IV. -4° Soit réciproquement $u \in E^{*}$. Supposant de plus α injectif, montrer qu'il existe v et w tels que le diagramme cidessus soit commutatif, et qu'ils sont uniques. Montrer que la correspondance définie par $u \mapsto w$ induit un homomorphisme surjectif de E^{*} sur \widehat{G} , de noyau ${}^{t}\alpha(F^{*})$, et que Coker ${}^{t}\alpha$ est isomorphe à \widehat{G} .

IV. – 5° Soit $A = (a_{ij})$ une matrice symétrique à coefficients dans \mathbb{Z} , de déterminant det $A \neq 0$; soient $\alpha : \mathbb{Z}^n \to \mathbb{Z}^n$ et $\alpha' : \mathbb{Q}^n \to \mathbb{Q}^n$ les homomorphismes représentés par A dans les bases canoniques respectives. Pour tout couple $(a,b) \in (\mathbb{Q}^n)^2$, où $a = (a_1,\ldots,a_n)$, $b = (b_1,\ldots,b_n)$, on pose $a \bullet b = \sum_{i=1}^n a_i b_i$. Si δ est l'homomorphisme canonique de \mathbb{Z}_n sur $G = \operatorname{Coker} \alpha = \mathbb{Z}^n/\alpha(\mathbb{Z}^n)$, on définit une application bilinéaire symétrique h de $G \times G$ dans \mathbb{Q}/\mathbb{Z} par l'égalité

$$h(\delta(x), \quad \delta(y)) = \gamma(\alpha'^{-1}(x) \bullet y).$$

Montrer que (G, h) est un groupe bilinéaire.

IV. -6° Soit L un sous-groupe de G. Montrer que $\Phi = \delta^{-1}(L)$ contient $\alpha(\mathbf{Z}^n)$ et que, si $j : \Phi \to \mathbf{Z}^n$, $k : L \to G$ sont les homomorphismes canoniques, il existe des homomorphismes $s : \mathbf{Z}^n \to \Phi$, $\varepsilon : \Phi \to L$ tels que le diagramme

soit commutatif.

IV. -7° On suppose que $L \subset L^{\perp}$ et on note $\rho : \Phi \to \Phi^*$ l'homomorphisme défini par $\rho(x)(y) = \alpha'^{-1}(x) \bullet y$; montrer que, si e est l'isomorphisme de \mathbb{Z}^n sur $(\mathbb{Z}^n)^*$ déduit de la forme bilinéaire $(a, b) \mapsto a \bullet b$, le transposé de s est tel que

$${}^{\iota}s \circ \rho = e \circ j.$$

IV. -8° On suppose $L = L^{\perp}$; montrer que ρ est un isomorphisme. Si (f_1, \ldots, f_n) engendre Φ et si B est la matrice de la forme bilinéaire $(x, y) \mapsto \alpha^{r-1}(x) \bullet y$ dans cette base de Φ , montrer que $|\det B| = 1$.

IV. -9° Montrer que, si n=2, A=2I, L étant engendré par la classe modulo $\alpha(\mathbb{Z}^2)$ du vecteur (1, 1), on se trouve dans la situation du IV. -8° , et déterminer alors Φ , ρ , s et ε .

IV. -10° On suppose que p_1, \ldots, p_q sont q nombres premiers deux à deux distincts, de la forme (4k + 1), et que

$$\det A = 2^{r_0} p_1^{r_1} \dots p_q^{r_q}$$

Montrer qu'il existe des matrices S et C à coefficients dans Z et d'ordre 2n telles que l'on ait les égalités

$$\det C = 1, \quad {}^{t}SCS = \begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}.$$