ECS 171: Machine Learning

Summer 2023 Edwin Solares

easolares@ucdavis.edu

Logistic Regression & Neural Network Introduction

Waymo: Autonomous Driving using NN Classification

Visualizing the Math

 $m \times n * n \times 1$ matrix multiplication creates an $m \times 1$ vector

$$w_0 + x \qquad w = \hat{y}$$

$$w_0 + \begin{bmatrix} x_{1,1} & \dots & x_{1,n} \\ x_{2,1} & \dots & x_{2,n} \\ \dots & \dots & \dots \\ x_{m,1} & \dots & x_{m,n} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \dots \\ w_n \end{bmatrix} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \dots \\ \hat{y}_m \end{bmatrix}$$

Visualizing the Math

Simple Linear Regression Function

$$\begin{array}{ccc}
x & w & = & \hat{y} \\
\begin{bmatrix}
1 & x_{1,1} \\
1 & x_{2,1} \\
\dots & \dots \\
1 & x_{m,1}
\end{bmatrix}
\begin{bmatrix}
w_0 \\
w_1
\end{bmatrix} = \begin{bmatrix}
\hat{y_1} \\
\hat{y_2} \\
\dots \\
\hat{y_m}
\end{bmatrix}$$

1st Order Simple Polynomial Regression

2nd Order Polynomial Regression

$$\begin{bmatrix} 1 & x_{1,1} & (x_{1,1})^2 \\ 1 & x_{2,1} & (x_{2,1})^2 \\ \dots & \dots & \vdots \\ 1 & x_{m,1} & (x_{m,1})^2 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \dots \\ \hat{y_m} \end{bmatrix}$$

mth Order Polynomial Regression

		X			W	=	ŷ
「1 1	$x_{1,1}^{1}$ $x_{2,1}^{1}$	$x_{1,2}^2$ $x_{2,2}^2$	•••	$\begin{bmatrix} x_{1,n}^n \\ x_{2,n}^n \end{bmatrix}$	$\begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$	_	$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \end{bmatrix}$
 1	$x_{m,1}^{1}$	$x_{m,2}^{2}$		•••	W_n		 _ŷm

Standard Logistic Growth Function

$$f(x)=rac{L}{1+e^{-k(x-x_0)}}$$

f(x) = output of the function

L = the curve's maximum value

k = logistic growth rate or steepness of the curve

 x_0 = the x value of the sigmoid midpoint

x = real number

$$L = 1$$
, $k = 1$, $x_0 = 0.5$

Logistic Regression

$$p_k = \begin{cases} 0 \text{ ; predicted value } < \text{thresold} \\ 1 \text{ ; predicted value } \ge \text{threshold} \end{cases}$$

Logistic Regression

$$\hat{y} = \frac{1}{1 + e^{-\frac{1}{s}(x-\mu)}}$$

Substitute
$$\hat{y} = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

where $w_0 = -\mu/s$ and $w_1 = 1/s$: we can solve for μ and s

 $\mu = -w_0/w_1$ and $s=1/w_1$

Logistic Regression

Where we have Bernoulli observations And p_k is the probability of $y_k=1$ and $1-p_k$ is the probability $y_k=0$

The log loss for the *k*-th point is:

$$egin{cases} -\ln p_k & ext{if } y_k = 1, \ -\ln (1-p_k) & ext{if } y_k = 0. \end{cases}$$

Cross Entropy

For the observed distribution of $(y_k, 1 - y_k)$ and the predicted distribution of $(p_k, 1 - p_k)$, we get a probability distribution:

distribution of
$$(p_k, 1 - p_k)$$
, we get a probability distribution:

$$-y_k \ln p_k - (1-y_k) \ln(1-p_k)$$

log-likelihood
$$\ell = \sum_{K}^{K} \left(y_k \ln(p_k) + (1-y_k) \ln(1-p_k)
ight)$$

Derivate Flashback

$$f(x) = rac{1}{1 + e^{-x}} = rac{e^x}{1 + e^x},$$

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \frac{e^x \cdot (1 + e^x) - e^x \cdot e^x}{(1 + e^x)^2} = \frac{e^x}{(1 + e^x)^2} = f(x)(1 - f(x))$$

Logistic Regression: Parameter Estimation

$$0 = \frac{\delta I}{\delta w_0} = \sum_{k=1}^m (y_k - p_k)$$

$$0 = \frac{\delta I}{\delta w_1} = \sum_{k=1}^m (y_k - p_k) x_k$$

Optimization of weights

Gradient Descent!!!

Perceptron

Perceptron

Activation Functions

Polynomial

Logistic

Gaussian

Sigmoid

ReLU (Rectified Linear Unit)

SoftMax

https://cs231n.github.io/neural-networks-1/

https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html#elu

Artificial Neuron History

1st Generation Neuron (McCulloch-Pitts)

https://www.slideshare.net/hitechpro/introduction-to-spiking-neural-networksfrom-a-computational-neuroscience-perspective/30

Artificial Neuron History

2nd Generation Neuron

https://www.slideshare.net/hitechpro/introduction-to-spiking-neural-networksfrom-a-computational-neuroscience-perspective/30

3rd Generation Neuron (Spiking Neurons)

https://www.slideshare.net/hitechpro/introduction-to-spiking-neural-networksfrom-a-computational-neuroscience-perspective/30

Simple Neural Net: 2 Hidden Layers

hidden layer 1 hidden layer 2

Deep Neural Net: Several Hidden Layers

In Depth Relatable NN Example

https://www.youtube.com/watch?v=CqOfi41LfDw

Try running NN's on sample data:

BCC Data:

https://www.youtube.com/watch?v= VTtrSDHPwU

California Housing Data:

https://colab.research.google.com/github/google/eng-edu/blob/main/ml/cc/exercises/intro_to_neural_nets.ipynb

Jupyter Notebooks Time!

http://playground.tensorflow.org/