Prova scritta di Logica Matematica 3 febbraio 2020

Cognome Nome Matricola

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio che eccede 6 viene sommato al risultato della seconda parte per ottenere il voto dello scritto.

Nella seconda parte per ogni esercizio è indicato il relativo punteggio.

PRIMA PARTE

Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.

	Darrate la lisposta ene l'itenete corretta. Ivon dovete glustimeare la lisposta.	•	
a.	$(p \land q \to r) \to \neg (q \lor r) \equiv (p \land \neg r) \lor \neg (\neg q \to p).$	\mathbf{V}	\mathbf{F}
b.	Se $F \wedge \neg G$ è valida allora G è insoddisfacibile.	$\overline{\mathbf{V}}$	\mathbf{F}
c.	Ogni α -formula è logicamente equivalente alla congiunzione dei suoi ridotti.	\mathbf{V}	\mathbf{F}
d.	Se un tableau per F, G è aperto allora $F \nvDash G$.	$\overline{\mathbf{V}}$	\mathbf{F}
e.	Quante delle seguenti formule sono enunciati? $\forall x p(x) \to p(a)$,		
	$\neg \forall x (r(x, a) \to p(y)), \ \forall x (r(x, y) \land \exists y \ p(y)), \ \neg \exists y \ p(y) \lor \neg \forall x \ q(f(x))$	$2 \mid 3$	4
f.	Sia I l'interpretazione con $D^I = \{0, 1, 2, 3, 4\}, f^I(0) = 2, f^I(1) = 3, f^I(2) = 1,$		
	$f^{I}(3) = 4, f^{I}(4) = 3, p^{I} = \{0, 3, 4\}, e r^{I} = \{(0, 2), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4$	<u>)}. </u>	
	Allora $I \models \forall x (p(x) \land p(f(x)) \rightarrow \forall y (\neg p(y) \rightarrow r(f(x), y))).$	\mathbf{V}	\mathbf{F}
g.	$\exists x p(x) \to F \equiv \forall x (p(x) \to F)$, qualunque sia la formula F .	\mathbf{V}	\mathbf{F}
h.	La formula $\exists z \exists u (z = u \land u \neq z)$ è soddisfacibile nella logica con uguaglianza.	\mathbf{V}	\mathbf{F}
i.	Esiste un insieme di Hintikka che contiene le formule		
	$\exists x (p(x) \land \forall y \neg r(x, y)), \neg p(a) \in r(b, a).$	\mathbf{V}	\mathbf{F}
j.	Questo albero rappresenta una deduzione naturale corretta:	\mathbf{V}	\mathbf{F}
	$r(f(z), x) \qquad \forall z (\exists y \ r(y, z) \to \neg q(z))$		
	$\exists y r(y, x)$ $\exists y r(y, x) \to \neg q(x)$		

$\frac{1}{\forall x \neg q(x)}$	
scrivete l'enunciato del teorema di correttezza pe	r i tableaux.

 $\neg q(x)$

SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il numero 2.

1. Usando l'algoritmo di Fitting mettete in forma normale congiuntiva la formula

2pt

$$(p \to q \land \neg r) \land \neg (s \to \neg t) \to u \land \neg v.$$

2. Sia $\mathcal{L} = \{c, p, a\}$ un linguaggio dove c è un simbolo di funzione unario, p è un simbolo di relazione unario e a è un simbolo di relazione binario. Interpretando c(x) come "il capolavoro di x", p(x) come "x è un pittore" e a(x, y) come "x apprezza y", traducete la frase:

3pt

ogni pittore che non apprezza il proprio capolavoro non è apprezzato da qualche pittore che apprezza quel capolavoro.

3. Usando il metodo dei tableaux stabilite se l'insieme

3pt

$$\{p \lor (\neg r \to q), \neg p \to \neg r \lor s, q \to (\neg s \to r), \neg (\neg p \to s)\}$$

è soddisfacibile. Se lo è definite una valutazione che lo testimoni.

Se riuscite, usate il minimo numero di quantificatori possibili.

4. Mettete in forma prenessa l'enunciato

2pt

$$\exists x \, \neg \exists y \, \neg r(y, f(x)) \to \exists x \, \forall y \, r(f(y), x) \vee \forall x \, \neg \forall y \, r(f(x), f(y)).$$

 $1\mathrm{pt}$

5. Dimostrate che l'insieme di enunciati

4pt

$$\{p(a), \forall x(p(x) \to \exists y(r(x,y) \land p(y))), \forall z(p(z) \to z = a), \forall u(r(u,u) \to \neg p(u))\}$$

è insoddisfacibile nella logica con uguaglianza.

6. Dimostrate che

4pt

$$\exists y \, p(y), \forall x (p(x) \to p(g(x)) \land r(g(x), x)), \forall x \neg r(x, g(x)) \nvDash \forall y \, p(g(y)).$$

7. Sia $\mathcal{L} = \{f, p, q\}$ un linguaggio in cui f è un simbolo di funzione unario e p e q sono simboli di relazione unari. Sia I l'interpretazione per \mathcal{L} definita da

3pt

$$D^{I} = \{0, 1, 2, 3, 4, 5, 6, 7\}; p^{I} = \{0, 1, 5, 6\}; q^{I} = \{1, 6\}; f^{I}(0) = 5; f^{I}(1) = 1; f^{I}(2) = 6; f^{I}(3) = 6; f^{I}(4) = 1; f^{I}(5) = 4; f^{I}(6) = 1; f^{I}(7) = 1.$$

Definite una relazione di congruenza \sim su I che abbia quattro classi d'equivalenza, giustificando la vostra risposta. Descrivete l'interpretazione quoziente I/\sim .

8. Usando il metodo dei tableaux dimostrate che l'insieme di enunciati

4pt

$$\{ \forall x \, \forall y (q(x) \land p(y) \rightarrow r(y, x)), p(a), \forall x (q(x) \lor r(x, x)), \exists y \, \forall z \, \neg r(z, y) \}$$

è insoddisfacibile.

9. Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

5pt

$$\forall x (\neg r(x, f(x)) \lor p(f(x))), \exists y \forall z \, r(y, z) \rhd \exists u \, p(f(u)).$$

Soluzioni

- a. F come si verifica per esempio con le tavole di verità.
- **b.** V se v è un'interpretazione arbitraria si ha $v(F \land \neg G) = V$ e quindi $v(\neg G) = V$ da cui segue v(G) = F. Perciò G è falsa in qualunque interpretazione, cioè insoddisfacibile.
- c. V per il Lemma 3.14 delle dispense.
- **d.** F perché per studiare se $F \models G$ bisogna fare un tableau per $F, \neg G$.
- e. 2 nella seconda e terza formula la variabile x è libera, mentre la prima e la quarta formula sono enunciati.
- **f.** V perché per ogni $d \in D^I$ si ha $I, \sigma[x/d] \models p(x) \land p(f(x)) \rightarrow \forall y(\neg p(y) \rightarrow r(f(x), y))$: quando $d \in \{0, 1, 2\}$ si ha $I, \sigma[x/d] \nvDash p(x) \land p(f(x))$, mentre quando $d \in \{3, 4\}$ vale $I, \sigma[x/d] \models \forall y(\neg p(y) \rightarrow r(f(x), y))$.
- **g.** F se x fosse libera in F l'equivalenza logica non è garantita; ad esempio $\exists x \, p(x) \to p(x)$ non è valida, mentre $\forall x (p(x) \to p(x))$ lo è.
- **h.** F se I è un'interpretazione normale non può essere che $(d_0, d_1) \in =^I$ e $(d_1, d_0) \notin =^I$.
- i. V $\{\exists x(p(x) \land \forall y \neg r(x,y)), \neg p(a), r(b,a), p(c) \land \forall y \neg r(c,y), p(c), \forall y \neg r(c,y), \neg r(c,a), \neg r(c,b), \neg r(c,c)\}$ è un insieme di Hintikka.
- **j.** F perché la presunta applicazione della regola $(\forall i)$ non è corretta in quanto x è libera in una delle ipotesi.
- **k.** Se un tableau per F è chiuso allora F è insoddisfacibile.

1. Utilizziamo l'Algoritmo 3.18 delle dispense, adottando le semplificazioni suggerite nella Nota 3.30:

$$\langle [(p \to q \land \neg r) \land \neg (s \to \neg t) \to u \land \neg v] \rangle$$

$$\langle [\neg ((p \to q \land \neg r) \land \neg (s \to \neg t)), u \land \neg v] \rangle$$

$$\langle [\neg (p \to q \land \neg r), s \to \neg t, u \land \neg v] \rangle$$

$$\langle [\neg (p \to q \land \neg r), \neg s, \neg t, u \land \neg v] \rangle$$

$$\langle [p, \neg s, \neg t, u \land \neg v], [\neg (q \land \neg r), \neg s, \neg t, u \land \neg v] \rangle$$

$$\langle [p, \neg s, \neg t, u \land \neg v], [\neg q, r, \neg s, \neg t, u \land \neg v] \rangle$$

$$\langle [p, \neg s, \neg t, u], [p, \neg s, \neg t, \neg v], [\neg q, r, \neg s, \neg t, u], [\neg q, r, \neg s, \neg t, \neg v] \rangle$$

La formula in forma normale congiuntiva ottenuta è

$$(p \vee \neg s \vee \neg t \vee u) \wedge (p \vee \neg s \vee \neg t \vee \neg v) \wedge (\neg q \vee r \vee \neg s \vee \neg t \vee u) \wedge (\neg q \vee r \vee \neg s \vee \neg t \vee \neg v).$$

- **2.** $\forall x (p(x) \land \neg a(x, c(x)) \rightarrow \exists y (p(y) \land \neg a(y, x) \land a(y, c(x)))).$
- 3. Per stabilire se l'insieme di formule è soddisfacibile applichiamo l'Algoritmo 4.39 delle dispense, etichettando la radice con l'insieme in questione. In ogni passaggio sottolineiamo la formula su cui agiamo.

Il tableau è chiuso e quindi l'insieme è insoddisfacibile.

4. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\exists x \, \neg \exists y \, \neg r(y, f(x)) \to \exists x \, \forall y \, r(f(y), x) \, \lor \, \forall x \, \neg \forall y \, r(f(x), f(y))$$

$$\exists x \, \forall y \, r(y, f(x)) \to \exists x \, \forall y \, r(f(y), x) \, \lor \, \forall x \, \exists y \, \neg r(f(x), f(y))$$

$$\exists x \, \forall y \, r(y, f(x)) \to \, \forall x \, (\exists x \, \forall y \, r(f(y), x) \, \lor \, \exists y \, \neg r(f(x), f(y)))$$

$$\exists x \, \forall y \, r(y, f(x)) \to \, \forall x \, \exists z \, (\forall y \, r(f(y), z) \, \lor \, \neg r(f(x), f(z)))$$

$$\exists x \, \forall y \, r(y, f(x)) \to \, \forall x \, \exists z \, \forall y \, (r(f(y), z) \, \lor \, \neg r(f(x), f(z)))$$

$$\forall x \, \forall v \, (\forall y \, r(y, f(x)) \to \, \exists z \, \forall y \, (r(f(y), z) \, \lor \, \neg r(f(v), f(z))))$$

$$\forall x \, \forall v \, \exists z \, (r(z, f(x)) \to \, \forall y \, (r(f(y), z) \, \lor \, \neg r(f(v), f(z))))$$

$$\forall x \, \forall v \, \exists z \, \forall y \, (r(z, f(x)) \to \, r(f(y), z) \, \lor \, \neg r(f(v), f(z)))$$

5. Supponiamo per assurdo che esista un'interpretazione normale I che soddisfa i quattro enunciati, che indichiamo con F, G, H e K.

Dato che $I \vDash G$ si ha in particolare $I, \sigma[x/a^I] \vDash p(x) \to \exists y (r(x,y) \land p(y))$ da cui, usando $I \vDash F$, segue $I, \sigma[x/a^I] \vDash \exists y (r(x,y) \land p(y))$. Perciò esiste $d_0 \in D^I$ tale che $(a^I, d_0) \in r^I$ e $d_0 \in p^I$. Da $I \vDash H$ si ha $I, \sigma[z/d_0] \vDash p(z) \to z = a$: combinando questo con l'informazione precedente si ottiene $(d_0, a^I) \in =^I$ che, per la normalità di I, significa che d_0 e a^I coincidono. Allora $(a^I, d_0) \in r^I$ può venir scritto come $(a^I, a^I) \in r^I$, che contraddice (usando nuovamente $I \vDash F$) $I, \sigma[u/a^I] \vDash r(u, u) \to \neg p(u)$, una conseguenza di $I \vDash K$.

6. Dobbiamo definire un'interpretazione che soddisfi gli enunciati a sinistra del simbolo di conseguenza logica, ma non quello a destra. Due interpretazioni con queste caratteristiche sono definite da

$$D^I = \{0, 1, 2, 3\}, \quad g^I(0) = 1, \quad g^I(1) = 2, \quad g^I(2) = 0, \quad g^I(3) = 3,$$

$$p^I = \{0, 1, 2\}, \quad r^I = \{(1, 0), (2, 1), (0, 2)\};$$

$$D^J = \mathbb{N}, \quad g^J(n) = n + 2 \quad p^J = \{n \in \mathbb{N} : n \text{ è pari}\}, \quad r^J = \{(n, m) \in \mathbb{N}^2 : n > m\}.$$

7. Dobbiamo partizionare D^I in quattro insiemi in modo da rispettare la Definizione 9.20 delle dispense. Notiamo che 1 e 6 sono gli unici elementi che appartengono all'intersezione di p^I e q^I ; possono quindi essere congruenti tra loro, ma non con gli altri elementi di D^I . Similmente 0 e 5 appartengono a p^I ma non a q^I ; in questo caso però notiamo che $f^I(0) \in p^I$ mentre $f^I(5) \notin p^I$ e quindi 0 e 5 non possono essere congruenti. Infine 2, 3, 4 e 7 sono gli elementi che non appartengono né a p^I né a q^I .

Queste osservazioni ci portano a concludere che le quattro classi di congruenza non possono che essere $\{0\}$, $\{1,6\}$, $\{2,3,4,7\}$ e $\{5\}$. Inoltre \sim così definita verifica anche la condizione che riguarda f, perché $f^I(1) \sim f^I(6)$ e $f^I(2) \sim f^I(3) \sim f^I(4)$.

Si ha allora

$$\begin{split} D^I/\sim &= \{[0], [1], [2], [5]\};\\ f^{I/\sim}([0]) &= [5], \quad f^{I/\sim}([1]) = [1], \quad f^{I/\sim}([2]) = [1], \quad f^{I/\sim}([5]) = [2];\\ p^{I/\sim} &= \{[0], [1], [5]\}, \qquad q^{I/\sim} = \{[1]\}. \end{split}$$

8. Per mostrare l'insoddisfacibilità dell'insieme di enunciati dobbiamo costruire (utilizzando l'Algoritmo 10.50 e le Convenzioni 10.21 e 10.23 delle dispense) un tableau chiuso con la radice etichettata dall'insieme stesso. Indichiamo con F, G, H e K le γ -formule $\forall x \forall y (q(x) \land p(y) \rightarrow r(y,x)), \forall x (q(x) \lor r(x,x)), \forall z \neg r(z,b)$ e $\forall y (q(b) \land p(y) \rightarrow r(y,b))$. In ogni passaggio sottolineiamo le formule su cui agiamo.

$$F, p(a), G, \exists y \forall z \neg r(z, y)$$

$$| F, p(a), G, H \\
| F, p(a), G, H \\
| F, K, p(a), G, H \\
| F, K, p(a), G, H \\
| F, K, q(b) \land p(a) \rightarrow r(a, b), p(a), G, H \\
| F, K, q(b) \land p(a), Q, H \\
| F, K, q(b) \land p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F, K, r(a, b), p(a), G, H \\
| F,$$

Si noti l'importanza di scegliere in modo opportuno le istanze delle γ -formule (in particolare la γ -formula H va istanziata diversamente in differenti rami del tableau). Con altre scelte il tableau cresce rapidamente di dimensione.

9. Ecco una deduzione naturale che mostra quanto richiesto:

$$\frac{ |\forall z \, r(y,z)|^2}{r(y,f(y))} = \frac{ |\nabla z \, r(y,z)|^2}{r(y,f(y))} = \frac{ |\nabla z \, r(y,f(y))|^2}{|\nabla z \, r(y,f(y))|^1} = \frac{ |\nabla z \, r(y,f(y))|^2}{|\nabla z \, r(y,f(y))|} = \frac{ |\nabla z \, r(y,f(y))|^2}{|\nabla z \, r(y,z)|} = \frac{ |\nabla z \, r(y,f(y))|^2}{|\nabla z \, r(y,f(y))|}$$

Prova scritta di Logica Matematica 3 febbraio 2020

Cognome Nome Matricola

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio che eccede 6 viene sommato al risultato della seconda parte per ottenere il voto dello scritto.

Nella seconda parte per ogni esercizio è indicato il relativo punteggio.

PRIMA PARTE

Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta

	Darrate la lisposta che litenete corretta. Non dovete giustificare la lisposta	•	
a.	Quante delle seguenti formule sono enunciati? $\exists x (r(x, y) \land \forall y p(y)),$		
	$\neg \forall y p(y) \vee \neg \exists x q(f(x)), \exists x p(x) \to p(a), \neg \exists x (r(x,a) \to p(y))$	2 3	4
b.	Se $F \vee \neg G$ è insoddisfacibile allora G è valida.	\mathbf{V}	\mathbf{F}
c.	Ogni α -formula è logicamente equivalente alla disgiunzione dei suoi ridotti.	\mathbf{V}	\mathbf{F}
$\mathbf{d}.$	$(p \land q \to \neg r) \to \neg (q \lor \neg r) \equiv (p \land r) \lor \neg (\neg p \to q).$	\mathbf{V}	\mathbf{F}
e.	Sia I l'interpretazione con $D^I = \{0, 1, 2, 3, 4\}, f^I(0) = 2, f^I(1) = 2, f^I(2) = 0,$		
	$f^{I}(3) = 4, f^{I}(4) = 1, p^{I} = \{0, 2, 3\}, e r^{I} = \{(0, 1), (0, 4), (2, 1), (2, 4), (3, 4), (4, 1), (4$)	
	Allora $I \models \forall x (p(x) \land p(f(x)) \rightarrow \forall y (\neg p(y) \rightarrow r(f(x), y))).$	\mathbf{V}	\mathbf{F}
f.	$\forall x p(x) \to F \equiv \exists x (p(x) \to F)$, qualunque sia la formula F .	\mathbf{V}	\mathbf{F}
g.	La formula $\exists x \exists y (x = y \land y \neq x)$ è soddisfacibile nella logica con uguaglianza.	\mathbf{V}	\mathbf{F}
h.	a. Esiste un insieme di Hintikka che contiene le formule		
	$\exists x (\forall y r(x, y) \land \neg p(x)), p(a) \in \neg r(b, a).$	\mathbf{V}	\mathbf{F}
i.	Se un tableau per F, G è chiuso allora $F \vDash G$.	\mathbf{V}	\mathbf{F}
j.	Questo albero rappresenta una deduzione naturale corretta:	\mathbf{V}	\mathbf{F}
	$r(x, f(z))$ $\forall u(\exists y r(u, y) \to p(u))$		

r(x, f(z))	$\forall u(\exists y r(u, y) \to p(u))$
$\exists y r(x,y)$	$\exists y r(x,y) \to p(x)$
	p(x)
	$\overline{\forall x p(x)}$

k.	Nel riquadro scrivete l'enunciato del teorema di completezza per i tableaux.

SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il numero 2.

1. Usando l'algoritmo di Fitting mettete in forma normale congiuntiva la formula

2pt

$$(p \to \neg q \land r) \land \neg (\neg s \to t) \to \neg u \land v.$$

2. Sia $\mathcal{L} = \{s, c, a\}$ un linguaggio dove s è un simbolo di funzione unario, c è un simbolo di relazione unario e a è un simbolo di relazione binario. Interpretando s(x) come "il grande successo di x", c(x) come "x è un cantante" e a(x, y) come "x apprezza y", traducete la frase:

3pt

ogni cantante che non apprezza il proprio grande successo non è apprezzato da qualche cantante che apprezza quel grande successo.

3. Usando il metodo dei tableaux stabilite se l'insieme

3pt

$$\{\neg p \lor (\neg q \to r), p \to \neg q \lor \neg s, r \to (s \to q), \neg (p \to \neg s)\}$$

è soddisfacibile. Se lo è definite una valutazione che lo testimoni.

4. Mettete in forma prenessa l'enunciato

2pt

$$\exists x \, \neg \exists y \, \neg r(f(x), y) \to \forall x \, \neg \forall y \, r(x, f(y)) \lor \exists x \, \forall y \, r(f(x), f(y)).$$

Se riuscite, usate il minimo numero di quantificatori possibili.

1pt

5. Dimostrate che l'insieme di enunciati

4pt

$$\{\neg q(a), \forall x(\neg q(x) \to \exists y(r(y,x) \land \neg q(y))), \forall z(z \neq a \to q(z)), \forall v(r(v,v) \to q(v))\}$$

è insoddisfacibile nella logica con uguaglianza.

6. Dimostrate che

4pt

$$\exists y \, p(y), \forall x (p(x) \to p(f(x)) \land r(x, f(x))), \forall x \neg r(f(x), x) \nvDash \forall y \, p(f(y)).$$

7. Sia $\mathcal{L} = \{f, p, q\}$ un linguaggio in cui f è un simbolo di funzione unario e p e q sono simboli di relazione unari. Sia I l'interpretazione per \mathcal{L} definita da

3pt

$$D^{I} = \{0, 1, 2, 3, 4, 5, 6, 7\}; p^{I} = \{3, 6\}; q^{I} = \{1, 3, 5, 6\}; f^{I}(0) = 3; f^{I}(1) = 0;$$
$$f^{I}(2) = 6; f^{I}(3) = 3; f^{I}(4) = 3; f^{I}(5) = 1; f^{I}(6) = 3; f^{I}(7) = 6.$$

Definite una relazione di congruenza \sim su I che abbia quattro classi d'equivalenza, giustificando la vostra risposta. Descrivete l'interpretazione quoziente I/\sim .

8. Usando il metodo dei tableaux dimostrate che l'insieme di enunciati

4pt

$$\{\forall x (p(x) \lor r(x,x)), \exists y \forall z \neg r(y,z), \neg q(c), \forall x \forall y (p(x) \land \neg q(y) \rightarrow r(x,y))\}$$

è insoddisfacibile.

9. Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

5pt

$$\exists x \, \forall z \, \neg r(x, z), \forall z (r(z, g(z)) \vee q(g(z))) \rhd \exists v \, q(g(v)).$$

Soluzioni

- **a. 2** nella prima e quarta formula la variabile x è libera, mentre la seconda e la terza formula sono enunciati.
- **b.** V se v è un'interpretazione arbitraria si ha $v(F \land \neg G) = \mathbf{F}$ e quindi $v(\neg G) = \mathbf{F}$ da cui segue $v(G) = \mathbf{V}$. Perciò G è vera in qualunque interpretazione, cioè valida.
- c. F il Lemma 3.14 delle dispense afferma che questa è una proprietà delle β -formule.
- d. F come si verifica per esempio con le tavole di verità.
- **e. V** perché per ogni $d \in D^I$ si ha $I, \sigma[x/d] \models p(x) \land p(f(x)) \rightarrow \forall y(\neg p(y) \rightarrow r(f(x), y))$: quando $d \in \{1, 3, 4\}$ si ha $I, \sigma[x/d] \nvDash p(x) \land p(f(x))$, mentre quando $d \in \{0, 2\}$ vale $I, \sigma[x/d] \models \forall y(\neg p(y) \rightarrow r(f(x), y))$.
- **f. F** se x fosse libera in F l'equivalenza logica non è garantita; ad esempio $\forall x \, p(x) \rightarrow \neg p(x)$ è insoddisfacibile, mentre $\exists x (p(x) \rightarrow \neg p(x))$ non lo è.
- **g.** F se I è un'interpretazione normale non può essere che $(d_0, d_1) \in =^I$ e $(d_1, d_0) \notin =^I$.
- **h.** V $\{\exists x(\forall y \, r(x,y) \land \neg p(x)), p(a), \neg r(b,a), \forall y \, r(c,y) \land \neg p(c), \forall y \, r(c,y), \neg p(c), r(c,a), r(c,b), r(c,c)\}$ è un insieme di Hintikka.
- i. F perché per studiare se $F \vDash G$ bisogna fare un tableau per $F, \neg G$.
- **j.** F perché la presunta applicazione della regola $(\forall i)$ non è corretta in quanto x è libera in una delle ipotesi.
- **k.** Se un tableau per F è aperto allora F è soddisfacibile.

1. Utilizziamo l'Algoritmo 3.18 delle dispense, adottando le semplificazioni suggerite nella Nota 3.30:

$$\langle [(p \to \neg q \land r) \land \neg (\neg s \to t) \to \neg u \land v] \rangle$$

$$\langle [\neg ((p \to \neg q \land r) \land \neg (\neg s \to t)), \neg u \land v] \rangle$$

$$\langle [\neg (p \to \neg q \land r), \neg s \to t, \neg u \land v] \rangle$$

$$\langle [\neg (p \to \neg q \land r), s, t, \neg u \land v] \rangle$$

$$\langle [p, s, t, \neg u \land v], [\neg (\neg q \land r), s, t, \neg u \land v] \rangle$$

$$\langle [p, s, t, \neg u \land v], [q, \neg r, s, t, \neg u \land v] \rangle$$

$$\langle [p, s, t, \neg u], [p, s, t, v], [q, \neg r, s, t, \neg u], [q, \neg r, s, t, v] \rangle$$

La formula in forma normale congiuntiva ottenuta è

$$(p \lor s \lor t \lor \neg u) \land (p \lor s \lor t \lor v) \land (q \lor \neg r \lor s \lor t \lor \neg u) \land (q \lor \neg r \lor s \lor t \lor v).$$

- **2.** $\forall x(c(x) \land \neg a(x, s(x)) \rightarrow \exists y(c(y) \land \neg a(y, x) \land a(y, s(x)))).$
- 3. Per stabilire se l'insieme di formule è soddisfacibile applichiamo l'Algoritmo 4.39 delle dispense, etichettando la radice con l'insieme in questione. In ogni passaggio sottolineiamo la formula su cui agiamo.

Il tableau è chiuso e quindi l'insieme è insoddisfacibile.

4. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\exists x \, \neg \exists y \, \neg r(f(x), y) \to \forall x \, \neg \forall y \, r(x, f(y)) \lor \exists x \, \forall y \, r(f(x), f(y))$$

$$\exists x \, \forall y \, r(f(x), y) \to \forall x \, \exists y \, \neg r(x, f(y)) \lor \exists x \, \forall y \, r(f(x), f(y))$$

$$\exists x \, \forall y \, r(f(x), y) \to \forall x \, (\exists y \, \neg r(x, f(y)) \lor \exists x \, \forall y \, r(f(x), f(y)))$$

$$\exists x \, \forall y \, r(f(x), y) \to \forall x \, \exists z \, (\neg r(x, f(z)) \lor \forall y \, r(f(z), f(y)))$$

$$\exists x \, \forall y \, r(f(x), y) \to \forall x \, \exists z \, \forall y \, (\neg r(x, f(z)) \lor r(f(z), f(y)))$$

$$\forall x \, \forall v \, (\forall y \, r(f(x), y) \to \exists z \, \forall y \, (\neg r(v, f(z)) \lor r(f(z), f(y))))$$

$$\forall x \, \forall v \, \exists z \, (r(f(x), z) \to \forall y \, (\neg r(v, f(z)) \lor r(f(z), f(y))))$$

$$\forall x \, \forall v \, \exists z \, \forall y \, (r(f(x), z) \to \neg r(v, f(z)) \lor r(f(z), f(y)))$$

5. Supponiamo per assurdo che esista un'interpretazione normale I che soddisfa i quattro enunciati, che indichiamo con F, G, H e K.

Dato che $I \vDash G$ si ha in particolare $I, \sigma[x/a^I] \vDash \neg q(x) \to \exists y(r(x,y) \land \neg q(y))$ da cui, usando $I \vDash F$, segue $I, \sigma[x/a^I] \vDash \exists y(r(x,y) \land \neg q(y))$. Perciò esiste $d_0 \in D^I$ tale che $(a^I, d_0) \in r^I$ e $d_0 \notin q^I$. Da $I \vDash H$ si ha $I, \sigma[z/d_0] \vDash z \neq a \to q(z)$: combinando questo con l'informazione precedente si ottiene $I, \sigma[z/d_0] \nvDash z \neq a$ e quindi $(d_0, a^I) \in =^I$ che, per la normalità di I, significa che d_0 e a^I coincidono. Allora $(a^I, d_0) \in r^I$ può venir scritto come $(a^I, a^I) \in r^I$, che contraddice (usando nuovamente $I \vDash F$) $I, \sigma[v/a^I] \vDash r(v, v) \to q(v)$, una conseguenza di $I \vDash K$.

6. Dobbiamo definire un'interpretazione che soddisfi gli enunciati a sinistra del simbolo di conseguenza logica, ma non quello a destra. Due interpretazioni con queste caratteristiche sono definite da

$$\begin{split} D^I &= \{0,1,2,3\}, \quad f^I(0) = 1, \quad f^I(1) = 2, \quad f^I(2) = 0, \quad f^I(3) = 3, \\ p^I &= \{0,1,2\}, \quad r^I = \{(0,1),(1,2),(2,0)\}; \\ D^J &= \mathbb{N}, \quad f^J(n) = n+2 \quad p^J = \{n \in \mathbb{N} : n \text{ è pari}\}, \quad r^J = \left\{\,(n,m) \in \mathbb{N}^2 : \, n < m \,\right\}. \end{split}$$

7. Dobbiamo partizionare D^I in quattro insiemi in modo da rispettare la Definizione 9.20 delle dispense. Notiamo che 3 e 6 sono gli unici elementi che appartengono all'intersezione di p^I e q^I ; possono quindi essere congruenti tra loro, ma non con gli altri elementi di D^I . Similmente 1 e 5 appartengono a q^I ma non a p^I ; in questo caso però notiamo che $f^I(1) \notin q^I$ mentre $f^I(5) \in q^I$ e quindi 1 e 5 non possono essere congruenti. Infine 0, 2, 4 e 7 sono gli elementi che non appartengono né a p^I né a q^I .

Queste osservazioni ci portano a concludere che le quattro classi di congruenza non possono che essere $\{0, 2, 4, 7\}$, $\{1\}$, $\{3, 6\}$ e $\{5\}$. Inoltre \sim così definita verifica anche la condizione che riguarda f, perché $f^I(0) \sim f^I(2) \sim f^I(4)$ e $f^I(3) \sim f^I(6)$.

Si ha allora

$$\begin{split} D^I/\!\!\sim &= \{[0], [1], [3], [5]\};\\ f^{I/\!\!\sim}([0]) = [3], \quad f^{I/\!\!\sim}([1]) = [0], \quad f^{I/\!\!\sim}([3]) = [3], \quad f^{I/\!\!\sim}([5]) = [1];\\ p^{I/\!\!\sim} &= \{[3]\}, \qquad q^{I/\!\!\sim} = \{[1], [3], [5]\}. \end{split}$$

8. Per mostrare l'insoddisfacibilità dell'insieme di enunciati dobbiamo costruire (utilizzando l'Algoritmo 10.50 e le Convenzioni 10.21 e 10.23 delle dispense) un tableau chiuso con la radice etichettata dall'insieme stesso. Indichiamo con F, G, H e K le γ -formule $\forall x(p(x) \lor r(x,x))$, $\forall x \forall y(p(x) \land \neg q(y) \to r(x,y))$, $\forall z \neg r(a,z)$ e $\forall y(p(a) \land \neg q(y) \to r(a,y))$. In ogni passaggio sottolineiamo le formule su cui agiamo.

$$F, \exists y \forall z \neg r(y, z), \neg q(c), G$$

$$| F, H, \neg q(c), G |$$

$$F, H, \neg q(c), G, K |$$

$$F, H, \neg q(c), G, K, p(a) \land \neg q(c) \rightarrow r(a, c)$$

$$F, H, \neg q(c), G, K, \neg p(a) \land \neg q(c) \land \neg p(c) \land p(c) \land \neg p(c) \land \neg p(c) \land \neg p(c) \land p(c) \land p(c) \land \neg p(c) \land \neg p(c) \land p(c) \land \neg p(c) \land$$

Si noti l'importanza di scegliere in modo opportuno le istanze delle γ -formule (in particolare la γ -formula H va istanziata diversamente in differenti rami del tableau). Con altre scelte il tableau cresce rapidamente di dimensione.

9. Ecco una deduzione naturale che mostra quanto richiesto:

$$\exists x \, \forall z \, \neg r(x,z) = \frac{ [\forall z \, \neg r(x,z)]^2}{\neg r(x,g(x))} \\ \exists x \, \forall z \, \neg r(x,z) = \frac{ [\forall z \, \neg r(x,z)]^2}{\neg r(x,g(x))} \\ \exists x \, \forall z \, \neg r(x,z) = \frac{ \exists v \, q(g(v))}{\exists v \, q(g(v))} \\ \exists x \, \forall z \, \neg r(x,z) = \frac{ \exists v \, q(g(v))}{\exists v \, q(g(v))}$$