2023 年高三二模参考答案

数学

本试卷 4 页,满分 150 分。考试时间 120 分钟。

- 一、选择题:本大题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 选D.
- 2. 选 C.
- 3. 选B.
- 4. 选B.
- 5. 选 A.
- 6. 选D.
- 7. 选B.
- 8. 选 C.
- 二、选择题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项符合题目要求。 全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分。
- 9. 【答案】选 BCD 10. 【答案】选 ABC 11. 【答案】选 BD 12. 【答案】选 ABD.
- 三、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分。
- 13. 【答案】 $\frac{21}{2}$ 14. 【答案】 $2\sqrt{3}$ 15. 【答案】 20 16. 【答案】 $\frac{13}{3}$.
- 四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
- 17. (10分)

已知等差数列 $\{a_n\}$ 的前n项和为 S_n ,若 $a_1=1$,且 a_1,a_2,S_3 成等比数列.

- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = \frac{1}{4S_n 1}$, 求数列 $\{b_n\}$ 的前n项和 T_n .

【解析】(1)设数列 $\{a_n\}$ 的公差为d,由 a_1,a_2,S_3 成等比数列,

得 $a_1 \cdot S_3 = a_2^2$ 即 $3 + 3d = (1+d)^2$,解得 d = 2或-1,

(2) 由 (1) 得 $S_n = n^2$ 所以 $b_n = \frac{1}{4n^2 - 1} = \frac{1}{2} \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right)$

所以
$$T_n = \frac{1}{2} \left[\left(\frac{1}{1} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \dots + \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right) \right] = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right) = \frac{n}{2n+1}.$$
 (10分)

18. (12分)

在 $\triangle ABC$ 中,角 A,B,C 所对的边分别为 a,b,c ,且 $2\overrightarrow{AB} \times \overrightarrow{AC} + 3\overrightarrow{BA} \times \overrightarrow{BC} = \overrightarrow{CA} \times \overrightarrow{CB}$.

- (1) 求 $\frac{b}{c}$;
- (2) 已知 $B = \frac{\pi}{4}$, a = 2, 求 $\triangle ABC$ 的面积.

【解析】(1) 由题设得 $2bc\cos A + 3ac\cos B = ab\cos C$,

由余弦定理, $2bc \times \frac{b^2 + c^2 - a^2}{2bc} + 3ac \times \frac{a^2 + c^2 - b^2}{2ac} = ab \times \frac{a^2 + b^2 - c^2}{2ab}$,

故
$$\triangle ABC$$
 的面积为 $\frac{1}{2}2c\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}c = \frac{\sqrt{5}-1}{2}$. (12 分)

19. (12分)

大气污染物 $PM_{2.5}$ (大气中直径小于或等于 $2.5\,\mu m$ 的颗粒物)的浓度超过一定的限度会影响人的身体健康.为了研究 $PM_{2.5}$ 的浓度是否受到汽车流量等因素的影响,研究人员选择了 24 个社会经济发展水平相近的城市,在每个城市选择一个交通点建立监测点,统计每个监测点 24h 内过往的汽车流量(单位:千辆),同时在低空相同的高度测定每个监测点空气中 $PM_{2.5}$ 的平均浓度(单位: $\mu g/m^3$),得到的数据如下表:

城市编号	汽车流量	PM _{2.5} 浓度	城市编号	汽车流量	PM _{2.5} 浓度
1	1.30	66	11	1.82	135
2	1.44	76	12	1.43	99
3	0.78	21	13	0.92	35
4	1.65	170	14	1.44	58
5	1.75	156	15	1.10	29
6	1.75	120	16	1.84	140
7	1.20	72	17	1.11	43
8	1.51	120	18	1.65	69
9	1.20	100	19	1.53	87
10	1.47	129	20	0.91	45

- (1) 根据上表,若 24 h 内过往的汽车流量大于等于 1500 辆属于车流量大, $PM_{2.5}$ 大于等于 75 $\mu g/m^3$ 属于空气污染.请结合表中的数据,依据小概率值 $\alpha=0.05$ 的独立性检验,能否认为车流量大小与空气污染有关联?
- (2)设 $PM_{2.5}$ 浓度为y,汽车流量为x.根据这些数据建立 $PM_{2.5}$ 浓度关于汽车流量的线性回归模型,并求出对应的经验回归方程(系数精确到 0.01).

附:
$$\chi^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
,
$$\frac{\alpha}{x_{\alpha}} = \frac{0.100 \quad 0.050 \quad 0.010}{3.841 \quad 6.635}$$

$$\sum_{i=1}^{20} x_i = 27.8, \quad \sum_{i=1}^{20} y_i = 1770, \quad \sum_{i=1}^{20} x_i^2 = 40.537, \quad \sum_{i=1}^{20} y_i^2 = 193694, \quad \sum_{i=1}^{20} x_i y_i = 2680.48.$$
在经验回归方程 $\hat{y} = \hat{b}x + \hat{a}$ 中,
$$\begin{cases} \hat{b} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}. \\ \hat{a} = \bar{y} - \hat{b}\bar{x} \end{cases}$$

【解析】(1) 由题知,列二联表,如下图

汽车流量大于等于 1500 辆 | 汽车流量小于 1500 辆 | 合计

PM _{2.5} 大于等于 75	7	4	11
PM _{2.5} 小于 75	1	8	9
合计	8	12	20

$$\chi^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)} = \frac{20 \times (7 \times 8 - 4 \times 1)^2}{11 \times 9 \times 8 \times 12} \approx 5.69 > 3.841,$$

依据小概率值 $\alpha = 0.05$ 的独立性检验,可以认为车流量大小与空气污染有关联. (5分)

(2) 由题知,
$$\hat{b} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{\sum_{i=1}^{20} x_i y_i - 20 \bar{x} \bar{y}}{\sum_{i=1}^{20} x_i^2 - n \bar{x}^2} = \frac{2680.48 - 20 \times \frac{27.8}{20} \times \frac{1770}{20}}{40.537 - 20 \times (\frac{27.8}{20})^2} \approx 116.19$$
,

$$\hat{a} = \bar{y} - \hat{b} \cdot \bar{x} = \frac{1770}{20} - 116.19 \times \frac{27.8}{20} \approx -73.00$$
,

故 PM_{25} 浓度关于汽车流量的经验回归方程为 $\hat{y} = 116.19x - 73.00$. (12 分)

20. (12分)

如图,已知四棱锥 P-ABCD 中,平面 PAD 上平面 ABCD ,底面 ABCD 是直角梯形, $AD/\!\!/BC$, $\angle DAB=90^\circ$, AB=BC=4 , PA=PC=5 .

- (1) 求证: $PB \perp AC$;
- (2) 若平面 $PBD \perp$ 平面 PBC ,且 $\triangle PAD$ 中, AD 边上的高为 3,求 AD 的长.

【解析】(1) 设线段 AC 中点为 E, 连接 BE, PE,

由 AB = BC 及 PA = PC 得 $BE \perp AC$ 且 $PE \perp AC$,又 $BE \cap PE = E$, 所以 $AC \perp$ 平面 PBE ,

又PB⊂平面PBE,所以 $PB \perp AC$. (5分)

(2) 过点P作PO垂直直线AD于点O,则PO=3,

因为平面 PAD 上平面 ABCD ,平面 PAD 个平面 ABCD = AD , $PO \perp AD$ 及 $PO \subset$ 平面 PAD , 所以 $PO \perp$ 平面 ABCD ,

连接OC,由PA=PC=5,PO=3,易知OA=OC=4,所以四边形ABCO是菱形,

因为 $\angle DAB = 90^{\circ}$, 所以四边形 ABCO 是正方形, 且 OA,OC,OP 两两互相垂直,

以O为空间直角坐标系原点,分别以OC,OA,OP方向为x轴正半轴,y轴正半轴,z轴正半轴,建立如图空间直角坐标系.

设 OD = a ,则 P(0,0,3) , D(0,a,0) , B(4,4,0) , C(4,0,0) ,

数学试题 第3页(共5页)

设平面 PBD 的法向量为 $\overrightarrow{m} = (x_1, y_1, z_1)$,则 $\overrightarrow{m} \cdot \overrightarrow{PD} = 0$, $\overrightarrow{m} \cdot \overrightarrow{PB} = 0$,得 $x_1 = \frac{a-4}{4}y_1$, $z_1 = \frac{a}{3}y_1$;不

妨取
$$y_1 = 1$$
 ,则 $\vec{m} = \left(\frac{a-4}{4}, 1, \frac{a}{3}\right)$,同理可得平面 PBC 的一个法向量 $\vec{n} = \left(1, 0, \frac{4}{3}\right)$,

由平面
$$PBD$$
 上平面 PBC 得 $\vec{m} \cdot \vec{n} = 0$,所以 $a = \frac{36}{25}$,即 $AD = 4 - \frac{36}{25} = \frac{64}{25}$. (12 分)

21. (12分)

已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 的焦距为 $2\sqrt{3}$, 离心率 $e = \frac{\sqrt{6}}{2}$.

- (1) 求双曲线C的方程;
- (2) 设 P,Q 为双曲线 C 上异于点 M ($\sqrt{2}a,b$) 的两动点,记直线 MP,MQ 的斜率分别为 k, k, 若 $k_1 + k_2 = 2k_1k_2$, 求证: 直线 PQ 过定点.

【解析】(1) 由题意知
$$2c = 2\sqrt{3}$$
 , $\frac{c}{a} = \frac{\sqrt{6}}{2}$, $c^2 = a^2 + b^2$, 解得 $a = \sqrt{2}, b = 1$, 所以双曲线 C 的方程为 $\frac{x^2}{2} - y^2 = 1$. (4分)

(2) 由题意可知直线 PQ 斜率存在,设其方程为 y = kx + m ,与 $\frac{x^2}{2} - y^2 = 1$ 联立,

得
$$(1-2k^2)x^2-4kmx-2m^2-2=0$$
 , 设 $P(x_1,y_1)$, $Q(x_2,y_2)$,

$$\text{If } x_1 + x_2 = \frac{4km}{1 - 2k^2}, x_1 x_2 = \frac{-2m^2 - 2}{1 - 2k^2}, \tag{6 \%}$$

$$\exists \mathbb{I} \frac{(y_1 - 1)(x_2 - 2) + (x_1 - 2)(y_2 - 1)}{(x_1 - 2)(x_2 - 2)} = \frac{2(y_1 - 1)(y_2 - 1)}{(x_1 - 2)(x_2 - 2)} ,$$

$$\exists \mathbb{I} (kx_1 + m - 1)(x_2 - 2) + (x_1 - 2)(kx_2 + m - 1) = 2(kx_1 + m - 1)(kx_2 + m - 1) ,$$

$$\mathbb{E}[2kx_1x_2 + (m-1)(x_1+x_2) - 2k(x_1+x_2) - 4(m-1)] = 2k^2x_1x_2 + 2k(m-1)(x_1+x_2) - 2(m-1)^2,$$

将
$$x_1 + x_2 = \frac{4km}{1 - 2k^2}$$
, $x_1 x_2 = \frac{-2m^2 - 2}{1 - 2k^2}$ 代入上式并整理得 $m^2 + 2k + 2km - 1 = 0$, (9分)

即 (m+1)(m-1+2k) = 0,故 m = -1或 m = 1-2k.

当m = -1时,直线PQ方程为y = kx - 1过定点(0,-1);

当m=1-2k时,直线PO方程为y=k(x-2)+1过点M与题意矛盾.

22. (12分)

已知函数 $f(x) = \frac{1}{x} + 2\ln x$.

- (1) 求函数 g(x) = f(x) x 的零点;
- (2) 证明:对于任意的正实数 k,存在 $x_0 > 0$,当 $x \in (x_0, +\infty)$ 时,恒有 $k\sqrt{x} > f(x)$.

【解析】(1) 由题, $g(x) = \frac{1}{x} + 2\ln x - x$, 定义域为 $(0, +\infty)$,

因为
$$g'(x) = -\frac{1}{x^2} + \frac{2}{x} - 1 = -(\frac{1}{x} - 1)^2 \le 0$$
,所以函数 $g(x)$ 在区间 $(0, +\infty)$ 上单调递减. (3分)

又
$$g(1) = 0$$
 , 故函数 $g(x)$ 的零点为1. (5分)

(2) 由 (1) 可知 x > 1 时, g(x) < 0 , 即 $2 \ln x < x - \frac{1}{x}(x > 1)$,

因此
$$\ln x = 2 \ln \sqrt{x} < \sqrt{x} - \frac{1}{\sqrt{x}} < \sqrt{x}(x > 1)$$
 , 进而 $\ln x = 2 \ln \sqrt{x} < 2 \sqrt{\sqrt{x}} = 2 \sqrt[4]{x}(x > 1)$.

注意到,当
$$k > 0$$
时, $\frac{k}{2}\sqrt{x} > \frac{1}{x}$ 等价于 $x > (\frac{2}{k})^{\frac{2}{3}}$, $\frac{k}{2}\sqrt{x} > 4\sqrt[4]{x}$ 等价于 $x > (\frac{8}{k})^4$,

于是,对于任意的正实数
$$k$$
 ,取 $x_0 = \max\{(\frac{2}{k})^{\frac{2}{3}}, (\frac{4}{k})^4, 1\}$,则当 $x \in (x_0, +\infty)$ 时,有

$$k\sqrt{x} = \frac{k}{2}\sqrt{x} + \frac{k}{2}\sqrt{x} > \frac{1}{x} + 4\sqrt[4]{x} > \frac{1}{x} + 2\ln x = f(x)$$
, 即证. (12 分)