UNIVERSIDAD DEL VALLE DE GUATEMALA

MM2034 - 2 SEMESTRE - 2022

LICENCIATURA EN MATEMÁTICA APLICADA

LÓGICA

Catedrático: Paulo Mejía

Estudiante: Rudik Roberto Rompich Cotzojay

Carné: 19857

Correo: rom19857@uvg.edu.gt

31 de marzo de 2023

Índice

1 Álgebra booleana

1

1. Álgebra booleana

Clase: 05/07/2022

Definición 1. Sea A un conjunto $y \operatorname{Rel}(A) \subseteq A \times A$ una relación binaria definida en A. La $\operatorname{Rel}(A)$ es de orden parcial:

- 1. Reflexiva: $(x, x) \in \text{Rel}(A), \forall x \in A$.
- 2. Antisimetría: $(x,y) \in \text{Rel}(A) \land (y,x) \in \text{Rel}(A) \implies x = y$.
- 3. Transitiva: $(x, y) \in \text{Rel}(A) \land (y, z) \in \text{Rel}(A) \implies (x, z) \in \text{Rel}(A), \forall x, y, z \in A$.

Ejemplo 1. En \mathbb{Z}^+ , se define $(a,b) \in \mathbb{Z}^+ \iff a|b$.

Solución. Propiedades:

- Reflexiva: Sea $a \in \mathbb{Z}^+$. Como $a = 1 \cdot a \implies a | a \implies (a, a) \in \operatorname{Rel}(\mathbb{Z}^+)$
- Antisimetría: Sea $a, b \in \mathbb{Z}^+$. Si $(a, b) \in \text{Rel}(A)$ y $(b, a) \in \text{Rel}(A) \implies a|b$ y $b|a \implies \exists c \text{ y } b = ca \text{ y } \exists d \in \mathbb{Z}^+ \ni a = db \implies b = (cd)b \implies cd = 1 \implies c = 1 \land d = 1 \implies b = ca = 1 \cdot a = a.$
- Transitividad: Sea $a, b, c \in \mathbb{Z}^+$. Si $(a, b) \in \text{Rel}(A)$ y $(b, c) \in \text{Rel}(A)$ \Longrightarrow $a|b \land b|c \implies \exists e \in \mathbb{Z}^+ \ni b = ea$ y $\exists f \in \mathbb{Z}^+$ y c = fb. \Longrightarrow $c = fb = f(ea) = (fe)a \implies a|c$.

NOTA. (A, \leq) . Conjunto ordenado y relación de orden.

$$a \le b \iff (a, b) \in \operatorname{Rel}(A)$$

Ejemplo 2. Sea $(P(A), \subseteq)$.

- $\bullet \ A = \{1,2\} \ y \ B = \{1,2,3\}$
- P(A) = $\{\emptyset, \{1\}, \{2\}, \{1,2\}\}$ y P(B) = $\{\emptyset, \{1\}, \{3\}\{1,2\}, \{1,3\}, \{2,3\}, \{2,3\}, \{1,2,3\}\}$. Nótese que en el potencia de B, $\{1\} \not\subseteq \{2,3\}$.

NOTA. a y b de A se dicen comparables si $a \leq b$ o $b \leq a$ (es lo mismo que $(a,b) \in \text{Rel}(A) \vee (b,a) \in \text{Rel}(A)$).