Spring25 CS598YP

19.2: Orca

Yongjoo Park

University of Illinois Urbana-Champaign

Outline

- Attention inside Transformer
- Static batching vs *continuous batching*
- *Selective batching* for continuous batching

Decoding-only task

Attention: Captures dependency

Mut-mul to capture relationship (w/ key, query, value vectors)

Attention: Captures dependency

Mut-mul to capture relationship (w/ key, query, value vectors)

Naïve Approach 1: similarity vector

pairwise similarity calculations

We can calculate similarities in this way, but How can we express the meaning of each token?

Naïve Approach 2: similarity vector + value vector

multiply respective values

pairwise similarity calculations

Our naïve approach

What are the dimensions?

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^T}{\sqrt{d_k}}
ight)V$$

For y_0

$$Q = [1H] K = [1H] V = [1H]$$

For y_1

$$Q = [2H] K = [2H] V = [2H]$$

For y_N

$$Q = [N H] K = [N H] V = [N H]$$

Orca

slide credits:

https://cseweb.ucsd.edu/~yiying/cse291-winter24/reading/llm-serving.pdf

https://cs231n.stanford.edu/slides/2022/lecture_11_ruohan.pdf

LLM inference basics

How does text generation work?

Iterative: each forward pass generates a single token

Autoregressive: generation consumes prompt tokens + previously generated tokens

Completion potentially decided by model: A generated token can be the end-of-sequence token

Legend:

- Yellow: prompt token
- Blue: generated token
- Red: end-of-sequence token

Static batching

- Batching multiple sequences on GPU, aka "static batching"
- Problem: GPU utilization drops as sequences complete

T_{i}	Tz	T3	Ty	Ts	T6	To	Tg
Si	Si	Si	SALL				
Sz	Sı	SX					
Sz	S	Si	S				
Sy	Sy	Sy	Sy	Sy			

T_{i}	Tz	T3	Ty	Ts	16	To	Tg
Sil	Si	Si	SALL	S	end	,	
Sa	Sa	SA	SX	\$2/1	SH	SAL	END
Si	Si	S	S	END			
Sy	Sy	Sy	Sy	Sy	Sy	END	

Legend:

- Yellow: prompt token
- Blue: generated token
- Red: end-of-sequence token

Continuous batching

Top: static batching Bottom: continuous batching

Legend:

Yellow: prompt tokenBlue: generated token

Red: end-of-sequence token

T,	Tz	T3	Ty	Ts	T6	To	TB
Sil	Si	Si	SNI				
Si	Sz	SX					
S_3	S	S	S				
Sy	Sy	Sy	Sy	Sy			
T,	Tz	T3	Ty	Ts	T6	To	Tg

T,	Tz	T3	Ty	Ts	76	To	Tg
Sil	Si	Si	SNI	S,	EN		
Sa	Sz	SXI	Sz	81	83	SA	END
Sz	Si	S	S	END			
Sy	Sy	Sy	Sy	Sy	Sy	ENI	
T,	Tz	T_3	Ty	Ts	76	To	Tg
Si	Si	Si	\$///	\$///	END	56	Sb
Sa	Sa	5/4/	Sal	\$4/1	8/	Shu	END
Si	Si	S	S	END	Ss	55	85/1
						. 44 . 10 10 40	

^{*} maximum batch size = 3

^{*} maximum batch size = 3

^{*} maximum batch size = 3

AND AND AND THE

^{*} maximum batch size = 3

----- O--- OOD! 0000 T-!!-

^{*} maximum batch size = 3

COLUMN OWAN OCOL 2022 Tally

^{*} maximum batch size = 3

Feed-forward is independent, given attention

Incompatible scheduling: Attention sizes are different

- Two prefills of different lengths (x3 and x4)
- Two decoding at different indexes (x1 and x2)
- Prefill and decoding (x1 and x3)

Mismatch in attention sizes

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^T}{\sqrt{d_k}}
ight)V$$

Non-trivial to merge in matrices

prompt 1:
$$Q = \begin{bmatrix} n1*d \\ \end{bmatrix} \quad K^{T} = \begin{bmatrix} d*n1 \\ \end{bmatrix}$$
prompt 2:
$$Q = \begin{bmatrix} n2*d \\ \end{bmatrix} \quad K^{T} = \begin{bmatrix} d*n2 \\ \end{bmatrix}$$

Selective batching: separate Attention computing

Summary

- **Attention** inside Transformer: is a fundamental mechanism for capturing semantic relatedness
- Continuous batching: allows efficient GPU resource utilization
- Selective batching: merged feed-forward + separate attention computations

Questions?