Задача 10-1. Вода из воздуха

В воздухе, окружающем нас, всегда содержится некоторое количество водяного пара. При некоторых условиях этот пар конденсируется, то есть превращается в воду. В природе такой эффект мы можем наблюдать в виде капель на листьях растений (росы) при том, что дождя перед этим не было. Отношение количества водяного пара в воздухе к предельному, когда он начнет конденсироваться, называют относительной влажностью воздуха, или просто влажностью (φ).

В данной задаче на примере работы юного экспериментатора Феди вам предлагается рассмотреть возможность получения некоторого количества воды из воздуха при помощи различных физических процессов. Водяной пар и воздух в решении можете считать идеальными газами.

Наконец, напомним вам некоторые физические постоянные (никто не гарантирует, что все из них вам понадобятся):

Универсальная газовая постоянная $R = 8,31 \, \text{Дж/(К·моль)}$

Постоянная Авогадро $N_{\rm A} = 6.02 \cdot 10^{23} \, {\rm моль}^{-1}$

Постоянная Больцмана $k_{\rm B} = 1.38 \cdot 10^{-23}$ Дж/К

Молярная масса воды $M = 1,8 \cdot 10^{-2}$ кг/моль

Удельная теплоемкость воды c_B = 4200 Дж/(кг·°С)

Нормальное атмосферное давление $p_{\text{атм}} = 1.01 \cdot 10^5 \text{ Па}$

Температура кипения воды (при $p_{\text{атм}}$) $T_{\text{кип}} = 100 \, ^{\circ}\text{C} = 373 \, \text{K}$

Ускорение свободного падения считайте равным $g = 10 \text{ м/c}^2$

Молодой, но талантливый экспериментатор Федя, захотев получить воду прямо из воздуха, провел физический опыт. Федина установка представляет собой цилиндрический герметичный сосуд (рис. 1) с поршнем малой массы, способным двигаться практически без трения. Стенки сосуда и поршень хорошо проводят тепло. В начальном положении в сосуд через отверстие поступает воздух из комнаты.

Температура воздуха в комнате $t_1 = 20$ °C, (давление насыщенного водяного пара при этой температуре равно $p_{\text{нас}} = 2,35$ кПа) его относительная влажность $\varphi = 77\%$. Начальный объем сосуда с поршнем $V_1 = 5,0$ л.

Федя медленно уменьшает объем газа, оказывая давление на поршень. При этом успевает полностью проходить процесс теплообмена через стенки с окружающей средой. Максимальное избыточное давление, которое Федя может оказать на поршень при помощи своего оборудования, составляет $0.5p_{\text{атм}}$. Федя рассчитал, что в процессе сжатия после некоторого положения поршня на стенках сосуда и на поршне начнут появляться мелкие капли влаги.

1.1 Определите, при каком объеме воздуха водяной пар в сосуде начнет конденсироваться.

Для получения максимально возможного количества воды Федя сжимал газ в сосуде до наименьшего объема, которого он мог достичь.

1.2 Определите, до какого минимального объема Федя может сжать воздух в сосуде.

В расчетах объем воды, образующейся в процессе конденсации, можете считать пренебрежимо малым по сравнению с объемом сосуда.

А3. Рассчитайте массу воды, образовавшейся в результате такого сжатия.

Предположим, что Федя разработал некоторый механизм, позволяющий собирать влагу из сосуда, не открывая его и не влияя на давление, объем или температуру газов.

- **1.4** Определите, за сколько таких «сжатий» можно будет собрать один стакан воды $(m_c = 200 \ \Gamma)$.
- 1.5 Оцените количество работы, которую совершил Федя при сжатии.

Для повторения всего процесса Федя организовал работу по следующему циклу. После описанного сжатия и сбора образовавшейся влаги Федя медленно увеличивает размер сосуда до первоначального объема. При достижении объема V_1 открывается отверстие для доступа воздуха, окружающего сосуд. Выждав достаточное время, Федя снова начинает сжатие.

- **1.6** Схематически (без точных числовых значений) изобразите p-V диаграмму для водяного пара в описанном циклическом процессе. Укажите направление процесса на диаграмме.
- 1.7 Оцените полное количество работы, совершаемое Федей за один цикл.

Для определения «трудоемкости» процесса получения воды из воздуха Федя придумал следующую характеристику — удельную работу конденсации (Θ) , — равную работе, затраченной на образование 1 килограмма воды.

1.8 Оцените удельную работу конденсации для описанного цикла.

Задача 10- 2. Слоистые резисторы

Современные нанотехнологии позволяют создавать синтетические материалы с заданными физическими свойствами. Рассмотрим слоистый резистор в форме цилиндра длиной $l=20\,\mathrm{cm}$ и радиусом $a=2,0\,\mathrm{cm}$, удельное сопротивление ρ материала которого изменяется от слоя к слою. Электрический ток пропускается между торцами цилиндра при помощи хорошо проводящих контактов, подключенных к источнику постоянного напряжения $U=1,5\,\mathrm{B}$. Будем считать, что при нагревании проводника его удельное сопротивление остается постоянным. Порядок напыления слоёв может быть различным.

Примечание: согласно уравнению Фурье количество теплоты ΔQ , переносимое в некоторой среде вдоль оси Ox через площадку S за промежуток времени Δt равно $\Delta Q = -\gamma \frac{\Delta T}{\Delta x} S \Delta t$, где $\gamma = 6.7 \cdot 10^{-3} \, \mathrm{BT/(^{\circ}C \cdot m)}$ — теплопроводность рассматриваемого материала (считайте ее постоянной во всех слоях), ΔT — изменение температуры на участке Δx .

1. **«Трубчатая структура»** В этом варианте напыления слои следуют друг за другом от оси цилиндра, подобно системе тонкостенных трубок, вложенных одна в одну (см. рис). Радиусы слоев при этом постепенно

увеличиваются. Напыляемый материал подбирается так, что удельное сопротивление $\rho(r)$ резистора увеличивается прямо пропорционально расстоянию r от данного слоя до оси цилиндра $\rho(r) = \alpha \cdot r$, где $\alpha = 6,4\,\mathrm{Om}$ – постоянная размерная величина.

1.1. Вычислите сопротивление R_1 такого резистора.