Instructions: Print your name, student ID number and recitation session in the spaces below.
Name:
Student ID:
Recitation session:

Practice Exam 2, Calculus III (Math 2551)

Question Points
1)
2)
3)
4)
5)

Problem 1(20 points). Calculations.

(a) (5 pt) Find the directional derivative of

$$f\left(x,y,z\right) = xy + yz + zx$$

- at P(1, -1, 1) in the direction of $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$.
- (b) (5 pt) Find the rate of change of $f(x,y) = xe^y + ye^{-x}$ along the curve $\vec{r}(t) = \ln t \, \mathbf{i} + t \ln t \, \mathbf{j}$.

- (c)(5 pt) Find $\partial u/\partial s$ for $u = x^2 xy$, $x = s\cos t$, $y = t\sin s$.
- (d)(5 pt) Find dy/dx if x cos(xy) + y cos x = 2.

Problem 2(20 pt) Consider the function $f(x, y, z) = \sqrt{x} + \sqrt{y} + \sqrt{z}$.

- (a) (6 points) Find the equation for the tangent plane to the level surface f=4 at the point P(1,4,1).
 - (b) (6 points) Find the equation for the normal line to f=4 at $P\left(1,4,1\right)$.
 - (c) (8 points) Use differentials to estimate f(0.9, 4.1, 1.1).

Problem 3 (20 pt) Find the area of the largest rectangle with edges parallel to the coordinate axes that can be inscribed in the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$.

Problem 4 (20 points) Find the absolute extreme values taken on $f(x,y) = -\frac{2y}{x^2+y^2+1}$ on the set $D = \{(x,y): x^2+y^2 \leq 4\}$.

Problem 5 (20 points)

- (a) (10 points) Find the area of the region enclosed by the parabolas $x=y^2$ and $x=2y-y^2$.
 - (b) (10 points) Change the Cartesian integral

$$\int_0^1 \int_x^{\sqrt{2-x^2}} \left(x + 2y\right) \, dy dx$$

into an equivalent polar integral. Then evaluate the polar integral.