p-BLOCK ELEMENTS (HALOGEN & NOBLE GASES)

CONTENTS

Particular	i		Page No.
Theory			01 – 20
Exercise -	· 1		21 – 26
Part - I	:	Subjective Questions	
Part - II	:	Only One Option Correct Type	
Part - III	:	Match the Columns	
Exercise -	- 2		26 – 31
Part - I	:	Only One Option Correct Type	
Part - II	:	Single And Double Value Integer Type	
Part - III	:	One or More Than One Options Correct Type	
Part - IV	:	Comprehensions	
Exercise -	. 3		32 – 35
Part - I	:	JEE(ADVANCED) / IIT-JEE Problems (Previous Years)	
Part - II	:	JEE(MAIN) / AIEEE Problems (Previous Years)	
Answers			36 – 41
Additiona	l Prob	lems for self practice (APSP)	42 – 49
Part - I	:	PRACTICE TEST-1 (IIT-JEE (MAIN Pattern))	
Part - II	:	NATIONAL STANDARD EXAMINATION IN CHEMISTRY (NSEC)	STAGE-I
Part - III	:	PRACTICE TEST-2 (IIT-JEE (ADVANCED Pattern))	
APSP Ans	swers		50
APSP Sol	utions	3	51 – 54

JEE(Advanced) Syllabus

Isolation/preparation and properties of the following non-metals: Halogens Preparation and properties of the following compounds:

Halogens: Hydrohalic acids, oxides and oxyacids of chlorine, bleaching powder; Xenon fluorides.

JEE(Main) Syllabus

Group-17: Preparation, properties and uses of chlorine and hydrochloric acid; Trends in the acidic nature of hydrogen halides; Structures of interhalogen compounds and oxides and oxoacids of halogens.

Group-18: Occurrence and uses of noble gases; Structures of fluorides and oxides of xenon.

© Copyright reserved.

All rights reserved. Any photocopying, publishing or reproduction of full or any part of this study material is strictly prohibited. This material belongs to enrolled student of RESONANCE only any sale/resale of this material is punishable under law, subject to Kota Jurisdiction only.

p-Block Elements (Halogen & Noble Gases)

Section (A_I): Elements: Occurence & Isolation

Introduction:

The five representative elements fluorine (F), chlorine (Cl), bromine (Br), iodine (I) and astatine (At) are members of Group 17. These are collectively known as the **halogens** (Greek halo means salt and genes means born i.e., salt producers). The halogens are highly reactive non-metallic elements. Like Groups 1 and 2, the elements of Group 17 show great similarity amongst themselves. That much similarity is not found in the elements of other groups of the periodic table.

GROUP 17 ELEMENTS: THE HALOGENS FAMILY

Occurrence:

All halogens are very reactive & do not occurs in free state.

Element	Abundance	Source		
	544 ppm	Main Source : Fluorspar (CaF ₂) or Fluorite		
F	(13 th most abundant element)	 Another Source : Fluoroapatite [3Ca₃(PO₄)₂.CaF₂] 		
	,	(Mainly source of P)		
		Cryolite : Na ₃ AIF ₆		
CI	126 ppm	Most abundant compound of CI : NaCI (Sea water)		
	(20 th most abundant element)	Carnalite: KCl.MgCl ₂ .6H ₂ O.		
Br	2.5 ppm	Bromides occurs in sea water & brine lakes		
		lodides occurs in low conc. in sea water.		
	0.46 ppm	Better source : Natural brines		
ļ '	0.46 ppm	 Impurities (NaIO₃ & NaIO₄) in Chile salt petre 		
		(NaNO ₃)		
At	Radioactive & has a short half-life	Do not occur in nature		
	$(t_{1/2} = 7.2 \text{ Hr.})$			

Allotropy:

All the elements of halogen family generally do not show allotropy.

Atomicity:

All halogens exist as diatomic (X2) molecule.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Element Preparation

Fluorine

S.No.	Method	Process	Comments
		$CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$ (Conc.)	
		$KF + HF \rightarrow K[HF_2]$	• K[HF ₂] ⇔ K+[F–H–F] ⁻
		Fluorine cell: Electrodes: Anode: Carbon Cathode: Steel Electrolyte: KHF ₂ (1 part) + HF (5 part) Temperature of the both: -24 ^o C	Anhydrous HF is only slightly ionized & is therefore a poor conductor of electricity. Thus a mixture of KF & HF in 1 : 13 mole ratio is electrolysed to increase the conductivity.
		Reaction: $K[HF_2] \longrightarrow KF + HF$ $KF \longrightarrow K^+ + F^-$	 Difficulties: HF is corrosive & also very toxic H₂O should not be present.
1.	Moisson's Method (Electrolytic)	On electrolysis : At cathode : $K^+ + e^- \rightarrow K$ $K + HF \rightarrow KF + H$ $2H \rightarrow H_2(g)$	Otherwise F_2 will oxidize H_2O to O_2 $2F_2 + 2H_2O \rightarrow 4HF + O_2$ • Graphite anodes must not be
		At Anode : $F^- \rightarrow F + e^-$ $2F \rightarrow F_2$	used, since graphite reacts with fluorine, forming a polymeric substance known as graphite fluoride.
		Modern method :	
		Electrolyte : KF : HF = 1 : 2 Temperature : 72°C	
		Note: It is not possible to prepare fluorine by	
		or KF. It is because when aqueous sol there will be following two oxidation in c	ution of KF is subjected to electrolysis,
		$H_2O \longrightarrow 1/2O_2 + 2H^+ + 2e^-$ SOP = -1.23	
		and	
		$F^- \longrightarrow 1/2F_2 + e^-$ SOP = -2.87 \ As a matter of rule that substance will be oxidis	
		gets oxidise at anode and not F	e whose SOF is higher therefore water
	Chemical	$2KMnO_4 + 2KF + 10HF + 3H_2O_2 \rightarrow$ $2K_2MnF_6 + 8H_2O + 3O_2$ $K_2[MnF_6]+2 SbF_5 \longrightarrow 2K [SbF_6] + MnF_3 + F_2$	The stronger Lewis acid SbF ₅ displaces the weaker one, MnF ₄ from its salt.
2.	Method	$\begin{cases} \text{via} \\ \text{MnF}_4 \longrightarrow \text{MnF}_3 + \frac{1}{2} \text{F}_2 \end{cases}$	 MnF₄ is unstable and readily decomposes to give MnF₃ and fluorine.

Chlorine

S.No.	Method	Process	Comments
1.	Laboratory Preparation	$H_2SO_4 + NaCl \rightarrow HCl + NaHSO_4$ $4HCl + MnO_2 \rightarrow MnO_2 + 2H_2O + Cl_2\uparrow$	HCl is purified first passed through H ₂ O then through conc. H ₂ SO ₄ to remove H ₂ O further dried by CaO & P ₄ O ₁₀
2.	Commercially:		
(i)	By electrolysis of aq. NaCl solution in the manufacture of NaOH	$2NaCl + 2H2O \xrightarrow{Electrolyte} 2NaOH + Cl2 + 2H2$ $2NaCl \xrightarrow{Electrolyte} 2Na + Cl2$	

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

(ii)	Deacon's process	4HCl + O ₂ \leftarrow CuCl ₂ Catalyst \rightarrow 2Cl ₂ + 2H ₂ O + Δ	 Air is used to oxidize HCI instead MnO₂ Reaction is reversible Conversion 65%
(iii)	Electrolysis of Brine	Reactions: At Anode: $2CI^- \rightarrow CI_2 + 2e^-$ At cathode: $Na^+ + e^- \rightarrow Na$ $2Na + 2H_2O \rightarrow 2NaOH + H_2$ Side reactions may also occur if the products mix: $2NaOH + CI_2 \rightarrow NaCI + NaOCI + H_2O$ $2OH^- + CI_2 \rightarrow 2OCI^- + H_2$ (Hypochlorite) At anode (small extent reaction): $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$	
3.	Miscellaneous Reactions	(a) [NaCl+HNO ₃ →NaNO ₃ +HCl] × 3 HNO ₃ +3HCl→NOCl+Cl ₂ +2H ₂ O 3NaCl+4HNO ₃ → 3NaNO ₃ +NOCl+Cl ₂ + 2H ₂ O (nitrosyl chloride) 2NOCl+O ₂ →2NO ₂ +Cl ₂ NO ₂ +H ₂ O→HNO ₃ (to be recycled) (b) Ca OCl + 2HCl → CaCl ₂ + Cl ₂ + H ₂ O (c) 2KMnO ₄ +16HCl→2KCl+2MnCl ₂ +5Cl ₂ +8H ₂ O (d) PbO ₂ + 4 HCl → PbCl ₂ , + Cl ₂ + 2 H ₂ O (e) When Cl ₂ is used for the chlorination of hydroehCl is catalytically oxidised into H ₂ O & Cl ₂ usin earth chlorides. 4 HCl + O ₂ Cu powder + rare earth chloride	g copper powder mixed with rare

Bromine:

S.No.	Method	Process
1.	Extracted from sea water	Cl ₂ gas passed through solution to oxidize Br⁻ to Br ₂ Cl ₂ + 2Br⁻ → 2Cl⁻ + Br ₂
2.	Common method	2 NaBr + $3H_2SO_4$ + MnO ₂ $\xrightarrow{\Delta}$ Br ₂ + MnSO ₄ + 2NaHSO ₄ + 2H ₂ O (conc.)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

lodine:

		Process	Comments
S.No. 1.	Method Source : Chile saltpetre	 Pure NaNO₃ is obtained by dissolving salt petre in H₂O & crystallizing NaNO₃ lodate residues thus accumulated & concentrate in mother liquor Concentrate → divided into 2 part 1st part reduced with NaHSO₃ 2IO₃ + 6HSO₃ → 2I⁻ + 6SO₄²⁻ + OH⁻ 2nd part is mixed 3I⁻ + IO₃ + 6H⁺ → 3I₂ + 3H₂O 	 Chile salt petre is mainly NaNO₃ Contain traces of NaIO₃ (Sodium iodate) & NaIO₄ (Sodium periodate) Purified by sublimation
2.	Source: Natural blue	$2I^- + CI_2 \rightarrow I_2 + 2CI^-$ \downarrow blown out by air	
3.	From sea-weeds:	$2NaI + MnO2 + 3H2SO4 \longrightarrow 2NaHSO4 + MnSO4 + I2 + 2H2O$	Liberated iodine is condensed in series of earthen ware known as aludels.
4.	Other Method	$CuSO_4 + 2KI \rightarrow K_2SO_4 + CuI_2$ $2CuI_2 \rightarrow Cu_2I_2 + I_2$	 This I₂ gets dissolved into KI forming KI₃, since I₃⁻ ions are yellow, therefore solution develops yellow colour.

Section (B_I+ C_I + D_I): Periodic Trends, Properties of Elements and Chemical Bonding Atomic & Physical Properties:

Atomic & Physical Properties :						
S.No.	Property	F	CI	Br	I	
1.	Atomic Number	9	17	35	53	
2.	Atomic Mass/g mol ⁻¹	19	35.45	79.90	126.90	
3.	Electronic configuration General electronic configuration=(ns² np⁵)	[He] 2s ² 2p ⁵	[Ne] 3s²3p⁵	[Ar] 3d ¹⁰ 4s ² 4p ⁵	[Kr] 4d ¹⁰ 5s ² 5p ⁵	
4.	Covalent Radius / pm (F < CI < Br < I)	64	99	114	133	
5.	Ionic Radius X^- / pm $(F < CI < Br < I)$	133	184	196	220	
	Ionization enthalpy / (kJ mol ⁻¹)	1680	1256	1142	1008	
6.	(F > Cl > Br > I)	Due to increase in atomic size, ionisation enthalp decreases down the group.				
		- 333	- 349	- 325	– 296	
7.	Electron gain enthalpy /(kJ mol ⁻¹) $(Cl > F > Br > I)$	 Maximum negative electron gain enthalpy in the corresponding period. Negative electron gain enthalpy of fluorine < chlorine: Due to small size of fluorine atom. As a result, there are strong inter-electronic repulsions in the relatively small 2p orbitals of fluorine and thus, the extra electron (incoming) does not experience much attraction. 				
8.	Distance X -X/pm $(F_2 < Cl_2 < Br_2 < I_2)$	143	199	229	266	
9.	Enthalpy of dissociation $(X_2)/kJ$ mol ⁻¹ $(Cl - Cl > Br - Br > F - F > I - I)$	 158.8 242.6 192.8 151.1 Smaller enthalpy of dissociation of F₂ is due to relatively larger electron-electron repulsion among the lone pairs in F₂ molecule. 				
10.	Electronegativity $(F > Cl > Br > I)$	4	3.2	3.0	2.7	
11.	Melting point / K $(F < Cl < Br < I)$	54.4	172	265.8	386.6	

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in
Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADV PHN - 4

1	1	.	1
-	•	١.	Н
	_	_	

12.	Boiling point / K	84.9	239.0	332.5	458.2
12.	(F < CI < Br < I) (State at room temp.)	Gas	Gas	Liquid	Solid
13.	$\Delta_{Hyd}H$ (X ⁻) / kJ mol ⁻¹	515	381	347	305
13.	(F > Cl > Br > I) • Smaller the ion, higher is the hydration energy			energy.	
	E^{Θ}/V (SRP); X_2 (g)+ $2e^- \rightarrow 2X^-$ (aq)	2.87	1.36	1.09	0.54
14.	$(F_2 > Cl_2 > Br_2 > l_2)$ (Order of oxidising power)	 More the value of the SRP, more powerful is the oxidising agent. 			powerful is the
15.	Colour (at room temp.)	Pale green	Greenish-	Reddish	Dark violet
13.	Colour (at room temp.)	yellow gas.	yellow gas	brown liquid	solid
16.	Oxidization state	_1	-1, +1, +3,	-1, +1, +3,	-1, +1, +3,

CHEMICAL PROPERTIES:

Oxidation states and trends in chemical reactivity

- (1) All the halogens exhibit –1 oxidation state. However, chlorine, bromine and iodine exhibit +1, +3, +5 and +7 oxidation states also.
- (2) The higher oxidation states of chlorine, bromine and iodine are realised mainly when the halogens are in combination with the small and highly electronegative fluorine and oxygen atoms e.g., in interhalogens, oxides and oxoacids.
- (3) The fluorine atom has no d orbitals in its valence shell and therefore cannot expand its octet. Being the most electronegative, it exhibits only –1 oxidation state.
- (4) All the halogens are highly reactive. They react with metals and non-metals to form halides. The reactivity of the halogens decreases down the group.
- (5) The ready acceptance of an electron is the reason for the strong oxidising nature of halogens. F₂ is the strongest oxidising halogen and it oxidises other halide ions in solution or even in the solid phase.
- (6) The decreasing oxidising ability of the halogens in aqueous solution down the group is evident from their standard electrode potentials.
- (7) Fluorine oxidises water to oxygen whereas chlorine and bromine react with water to form corresponding hydrohalic and hypohalous acids.
- (8) The reactions of iodine with water is non- spontaneous I⁻ can be oxidised by oxygen in acidic medium; just the reverse of the reaction observed with fluorine.

$$\begin{array}{l} 2F_2(g) + 2H_2O(\ell) \longrightarrow 4H^+ \ (aq) + 4F^- \ (aq) + O_2(g) \\ X_2(g) + H_2O(\ell) \longrightarrow HX(aq) + HOX(aq) \ ; \ (where \ X = CI \ or \ Br) \\ 4I^- \ (aq) + 4H^+ (aq) + O_2(g) \longrightarrow 2I_2(s) + 2H_2O(\ell) \end{array}$$

Standard Reduction Potential (SRP)

 $X_2 + 2e^- \longrightarrow 2X^ F_2 + 2e^- \longrightarrow 2F^ E^\circ = +2.87 \text{ V}$; $Cl_2 + 2e^- \longrightarrow 2Cl^ E^\circ = +1.36 \text{ V}$ $Br_2 + 2e^- \longrightarrow 2Br^ E^\circ = +1.09 \text{ V}$; $I_2 + 2e^- \longrightarrow 2I^ E^\circ = +0.54 \text{ V}$

More the value of the SRP, more powerful is the oxidising agent. Hence the order of oxidising power is $F_2 > Cl_2 > Br_2 > I_2$

Since SRP is the highest for F₂ (among all elements of periodic table), it is a strongest oxidising agent.

Hydration energy of X-

Smaller the ion, higher is the hydration energy.

ornalier the lon, higher is the hydration energy:					
Halide ion	F	CI-	Br-	 -	
Hydration energy (in kJ/mol)	515	381	347	305	

Anomalous behaviour of fluorine

- (1) The anomalous behaviour of fluorine is due to its small size, highest electronegativity, low F–F bond dissociation enthalpy, and non availability of d orbitals in valence shell.
- (2) Most of the reactions of fluorine are exothermic (due to the small and strong bond formed by it with other elements).
- (3) It forms only one oxoacid while other halogens form a number of oxoacids.
- (4) Hydrogen fluoride is liquid (b.p. 293 K) due to strong hydrogen bonding. Other hydrogen halides are gases.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Reactivity towards oxygen:

<u> </u>				
Oxidation State	F	CI	Br	I
-1	OF ₂ , O ₂ F ₂	_	_	_
+1		Cl ₂ O	Br ₂ O	
+4		Cl ₂ O	BrO ₂	I ₂ O ₄
+5		_	_	I ₂ O ₅
+6		Cl ₂ O ₆ , ClO ₃	_	
+7		Cl ₂ O ₇		I ₂ O ₇

- (1) Halogens form many oxides with oxygen but most of them are unstable.
- (2) Fluorine forms two oxides OF₂ and O₂F₂. However, only OF₂ is the thermally stable at 298 K.
- These oxide are essentially oxygen fluorides because of the higher electronegativity of flurorine than oxygen. Both are strong fluorinating agents.
- (4) O₂F₂ oxidises plutonium to PuF₆ and the reaction is used in removing plutonium as PuF₆ from spent nuclear fuel.
- (5) Chlorine, bromine and iodine form oxides in which the oxidation states of these halogen vary from + 1 to + 7.
- (6) A combination of kinetic and thermodynamic factors lead to the generally decreasing order of stability of oxides formed by halogens, I > CI > Br. The higher oxides of halogens tend to be more stable than the lower ones.
- (7) Chlorine oxides, Cl_2O , Cl_2O_6 and Cl_2O_7 are highly reactive oxidising agents and tend to explode. ClO_2 is used as a bleaching agent for paper pulp and textiles and in water treatment.
- (8) The bromine oxides, Br₂O, BrO₂, BrO₃ are the least stable halogen oxides and exist only at low temperature. They are very powerful oxidising agents.

(9) The iodine oxides, I₂O₄, I₂O₅, I₂O₇ are insoluble solids and decompose on heating. I₂O₅ is very good oxidising agent and is used in the estimation of carbon monoxide

	oxidising agent and is used in the estimation of carbon monoxide.					
	Reaction					
S.No.	_ with	General Reaction	Comments			
	Elements					
		ightharpoonup F ₂ + H ₂ $ ightharpoonup$ 2HF	All the halogens			
		$X_2 + H_2 \rightarrow 2HX$ $\longrightarrow Cl_2 + H_2 \rightarrow 2HCl$ $\longrightarrow Br_2 + H_2 \rightarrow 2HBr$	 Reactivity towards H₂ decrease down the group. 			
1.	H ₂		 F₂ → Violently react 			
		$\downarrow \rightarrow I_2 + H_2 \rightarrow 2HI$	 I₂ → Slow at room temp. 			
		The acidic strength of these acids increases in the σ The stability of these halides decreases down the g (H–X) dissociation enthalpy in the order : H – F > H	roup due to decrease in bond			
		P 2Na + Cl ₂ → 2NaCl				
	Metal	→ 2AI + 3CI ₂ → 2AICI ₃	Most metals form halides			
2.		$nX_2 + 2M \rightarrow 2MX_n \longrightarrow 2Fe + 3Cl_2 \rightarrow 2FeCl_3$	F the most vigorous The ionic character of halides is			
		$\longrightarrow Mg_{(s)} + Br_{2(\ell)} \longrightarrow MgBr_{2(s)}$	MF > MCl > MBr > MI.			
		ightharpoonup 2Ag + F ₂ $ ightharpoonup$ 2AgF				
			All the halogens form trihalides			
		$3X_2 + 2P \rightarrow PX_3 \rightarrow P_4 + 6Br_2 \rightarrow 4PBr_3$	As \\ Sb \\—Also form trihalides			
3.	P		ві 🗕			
		$ 5X_2 + 2P \rightarrow PX_5 \qquad \left[2P + 5CI_2 \rightarrow 2PCI_5\right] $ (Excess)	• F, Cl & Br form pentahalides AsF ₅ , SbF ₅ , BiF ₅ , SbCl ₅			
		X_2 + 2S \rightarrow S ₂ X ₂ $\left[S_8 + 4CI_2 \rightarrow 4S_2CI_2\right]$	CI and Br			
4.	S	$ \begin{array}{c} 2\text{Cl}_2 + \text{S} \rightarrow \text{SCl}_4 \\ \text{(exess)} \end{array} $	Cl only			
		$3F_2 + S \rightarrow SF_6$	F only			

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

5.	O ₂	$O_2 + F_2 \xrightarrow{\text{only in presence of}} O_2F_2$ silent electric discharge	
6.	Other non- metals	$C + 2F_2 \rightarrow CF_4$ $2B + 3F_2 \rightarrow 2BF_3$	 Wood, charcoal, phosphorous, arsenic, antimony, boron, silicon react with F₂ producing a flame.
7.	Other Halogens	$X_2 + X_2' \rightarrow 2XX'$ $X_2 + X'X \rightarrow XX'_3$	 Halogens combine amongst themselves to form a number of compounds known as interhalogen of the types XX', XX'₃, XX'₅ and XX'₇ where X is a larger size halogen and X' is smaller size halogen.

S.No.	Reaction with	General Reaction	Comments
	Compounds		
1.	H ₂ O	$2F_2 + 2H_2O \rightarrow 4HF + O_2$	 Vigorous reaction with F.
		$X_2(g) + H_2O(\ell) \rightarrow HX(aq.) + HOX(aq.)$ X = CI or Br	Cl > Br > I (F not at all)
		$4I^{-}(aq.) + 4H^{+}(aq.) + O_2 \rightarrow 2I_2(s) + 2H_2O(\ell)$	I reaction in reverse direction
2.	Base	, , , , , , , , , , , , , , , , , , , ,	
		$\frac{\text{For } F_2}{2\text{NH}_3 + 3\text{F}_2 \rightarrow \text{N}_2 + 6\text{HF}}$ $\frac{\text{For Cl}_2 \text{ and Br}_2}{\text{NH}_3 \text{ Excess}}$	It is the distinction from other halogens.
		$3X_2 + 8NH_3 \rightarrow N_2 + 6NH_4X$ $\begin{bmatrix} 3Cl_2 + 8NH_3 \rightarrow N_2 + 6NH_4Cl \end{bmatrix}$ X_2 Excess	
(i)	NH ₃	$\begin{aligned} \text{NH}_3 + 3\text{X}_2 &\rightarrow \text{NX}_3 + 3\text{HX} \\ \left[\text{NH}_3 + 3\text{Cl}_2 &\rightarrow \text{NCl}_3 + 3\text{HCl} \right] \end{aligned}$	 NX₃ is explosive
(ii)	NaOH	For F ₂ $2F_2 + 2NaOH \rightarrow OF_2(g) + 2NaF + H_2$ $(dilute)$ $2F_2 + 4NaOH \rightarrow O_2(g) + 4NaF + 2H_2O$ $(concentrated)$	Dilute alkali forms oxygen difluoride & with concentrated alkali liberates O ₂ .
		For Cl ₂ , Br ₂ , I ₂ $2NaOH + Cl_2 \rightarrow NaCl + NaOCl + H_2O$ $(Cold \& dil.)$ $6NaOH + 3Cl_2 \rightarrow 5NaCl + NaClO_3 + 3H_2O$ $(hot \& conc.)$	These reactions are also given by Br ₂ and I ₂ .
(iii)	Ca(OH) ₂ (Dry slaked lime)	$2Ca(OH)_2 + 2CI_2 \rightarrow Ca(OCI)_2 + CaCI_2 + 2H_2O$ (Bleaching powder)	Composition of bleaching powder = Ca(OCl) ₂ .CaCl ₂ .Ca(OH) ₂ .2H ₂ O
3.	Acid	Generally no reaction is shown with acids.	
4.	H₂S	$\frac{\text{For } F_2}{\text{H}_2\text{S} + 4\text{F}_2 \rightarrow \text{SF}_6 + 2\text{HF}}$	

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

			 Cl₂, Br₂ & I₂ oxidize S²⁻ to S It show Cl has great affinity for hydrogen to form HCl
5.	SO ₂	$ \begin{array}{c} X_2 + SO_2 \rightarrow SO_2X_2 \\ \left[SO_2 + CI_2 \rightarrow SO_2CI_2 \right] \end{array} $	• F&CI
6.	СО	$ \begin{array}{c} X_2 + CO \rightarrow COX_2 \\ \left[CO + Cl_2 \rightarrow COCl_2 \right] \end{array} $	Cl and Br form carbonyl halides

Othe	er Reactions		
	For F ₂		
1.	Reaction with SO₃	$2SO_3 + F_2 \xrightarrow{180^{\circ}C} FSO_2 OOSO_2F$	
2.	Reaction with SiO ₂	$SiO_{2}(s) + 2F_{2}(g) \rightarrow SiF_{4}(g) + O_{2}(g)$	 It attacks glass at about 100°C. The reaction is slow with dry F₂.
3.	Oxidising character	 F₂ + 2NaX → 2NaF + X₂; where (X= Cl, Br, I) (a) It can oxidise all other halide ions into halogen molecules (b) It can oxidise ClO₃⁻ into ClO₄⁻ and lO₃⁻ to lO₄⁻ F₂ + ClO₃⁻ + H₂O → 2F⁻ + ClO₄⁻ + 2H⁺ (c) It can oxidise HSO₄⁻ into S₂O₈²⁻ 2HSO₄⁻ + F₂ → 2F⁻ + S₂O₈²⁻ + 2H⁺ 	It is the most powerful oxidising agent.
	For Cl ₂		
	Oxidising and bleaching properties	Chlorine dissolves in water giving HCl and HOCl. H gives nascent oxygen which is responsible for ox chlorine.	
		$ \begin{array}{c} 2\text{FeSO}_4 + \text{H}_2\text{SO}_4 + \text{Cl}_2 \rightarrow \text{Fe}_2(\text{SO}_4)_3 + 2\text{HCI} \\ \text{Na}_2\text{SO}_3 + \text{Cl}_2 + \text{H}_2\text{O} \rightarrow \text{Na}_2\text{SO}_4 + 2\text{HCI} \\ \text{SO}_2 + 2\text{H}_2\text{O} + \text{Cl}_2 \rightarrow \text{H}_2\text{SO}_4 + 2\text{HCI} \\ \text{l}_2 + 6\text{H}_2\text{O} + 5\text{Cl}_2 \rightarrow 2\text{HIO}_3 + 10\text{HCI} \\ \end{array} $	 Oxidises ferrous to ferric, sulphite to sulphate, sulphur dioxide to sulphuric acid and iodine to iodic acid. Chlorine oxidises both Br
	Bleaching action	$X^- + Cl_2 \rightarrow X_2 + 2Cl^-$ $Cl_2 + H_2O \rightarrow 2HCl + O$	 and I⁻ to Br₂ and I₂ respectively. It is a powerful bleaching agent bleaching action is due to oxidation. Coloured substance + O → Colourless substance It bleaches vegetable or organic matter in the presence of moisture. Bleaching effect of chlorine is permanent. The bleaching action of SO₂ is
		Bleaching action of SO ₂ $SO_2 + 2H_2O \rightarrow H_2 SO_4 + 2H$ $SO_3^2 + {Coloured \atop material} \rightarrow SO_4^2 + {Colourless \atop material}$	temporary because it takes place through reduction. Reduced Ozofair Colourless material Colourless material
	For Br ₂		
		(Br₂.8H₂O) ← Clathrate compound	 Reddish brown liquid, fairly soluble in water. It also forms hydrate like Cl₂

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

For I ₂			
1.	Reaction with Hypo	$S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{\ 2-} + 2I^-$ (thiosulphateions) (tetrathionate ions)	This reaction is the basis of iodometric titration, which is carried out for the estimation of iodine using starch indicator.
2.	Reaction with KCIO₃ or KBrO₃	$ 2KClO_3 + I_2 \xrightarrow{\Delta} 2KlO_3 + Cl_2; $ $2KBrO_3 + I_2 \xrightarrow{\Delta} 2KlO_3 + Br_2 $	

Section (E_I): Oxides, Hydroxides & Oxyacids

OXIDES OF CHLORINE

CHLORINE DIOXIDE (CIO₂):

Dichlorine Monoxide (Cl₂O):

OXY-ACIDS OF HALOGENS

HOX SERIES:

HYPO-FLOROUS ACID [HOF]:

HOF has been prepared by trapping F_2 and H_2O in unreactive matrix of solid N_2 at very low temperature and photolysing the gases.

$$F_2 + H_2O \xrightarrow{hv} HOF + HF$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADV PHN - 9

Recent method is by passing, F₂ over ice at 0°C and removing the product into a cold trap.

$$H_2O + F_2 \xrightarrow{-40^{\circ}C} HOF + HF$$

O HOCI, HOBr and HOI are not very stable and are known only in aqueous solution.

HYPO-CHLOROUS ACID [HCIO] : PREPARATION :

(i) The acid is known only in solution, It is obtained by shaking precipitate of HgO with chlorine water.

2HgO + 2Cl₂ + H₂O → Hg₂ OCl₂ (Oxychloride of mercury) + 2HClO

(ii) Commercially, it is obtained by passing CO₂ through suspension of bleaching powder and then distilling.

$$2CaOCl_2 + H_2O + CO_2 \longrightarrow CaCl_2 + CaCO_3 + 2HClO$$

Maximum concentration obtained is 25% as in the process of distillation, the acid decomposes into its anhydrides, Cl₂O.

$$2HOCI \longrightarrow H_2O + Cl_2O$$

PROPERTIES:

 It is a weak acid. Its concentrated solution is yellow in colour while dilute solution is colourless. It is unstable and decomposes.

(ii) It dissolves magnesium with evolution of hydrogen.

$$Mg + 2HCIO \longrightarrow Mg(CIO)_2 + H_2$$

- (iii) With alkalies, it forms salts called hypochlorites.
- (iv) It acts as a powerful oxidising and bleaching agent. This is due to release of nascent oxygen easily.

HXO₂ SERIES:

CHLOROUS ACID [HCIO2]:

PREPARATION:

It is obtained in aqueous solution when barium chlorite suspension in water is treated with H₂SO₄. The insoluble barium sulphate is filtered off.

$$Ba(CIO_2)_2 + H_2SO_4 \longrightarrow BaSO_4 + 2HCIO_2$$

PROPERTIES:

(i) The freshly prepared solution is colourless but it soon decomposes to ClO₂ which makes the solution yellow.

$$5 \text{ HCIO}_2 \longrightarrow 4 \text{ CIO}_2 + \text{HCI} + 2\text{H}_2\text{O}$$

(ii) Salts of HClO₂ are called chlorite and prepared by one of the following methods.

$$2CIO_2 + Na_2O_2 \longrightarrow 2NaCIO_2 + O_2$$

Chlorites are used as bleaching agents. They are stable in alkaline solution even when boiled, but in acid solution they disproportionate, particularly when heated.

$$5HCIO_2 \longrightarrow 4CIO_2 + HCI + 2H_2O$$
 and $4HCIO_2 \longrightarrow 2CIO_2 + HCIO_3 + HCI + H_2O$

(iii) The acid liberates iodine from KI.

$$4KI + HCIO_2 + 2H_2O \longrightarrow 4KOH + HCI + 2I_2$$

HXO₃ SERIES

CHLORIC ACID [HCIO3]:

PREPARATION:

This acid is only known in solution. The acid is prepared by the action of the dilute H₂SO₄ on barium chlorate.

Ba
$$(CIO_3)_2 + H_2SO_4 \longrightarrow BaSO_4 \downarrow + 2HCIO_3$$
.

After reaction, BaSO₄ is removed by filtration, and the filtrate is evaporated in vacuum till 40 percent solution is obtained. However, further concentration by evaporation leads to decomposition.

$$3HCIO_3 \longrightarrow HCIO_4 + CI_2 + 2O_2 + H_2O$$

HBrO₃ can be prepared by similar method using Ba(BrO₃)₂.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

PROPERTIES:

- (i) Concentrated acid is colourless and pungent smelling liquid. It decomposes in light. However, it is stable in dark.
- (ii) It acts as a strong oxidising and bleaching agent in light.
- (iii) Organic substances like paper, cotton, wool, etc., catch fire in contact with the acid.
- (iv) HClO₃ oxidises SO₂ to SO₃: HClO₃ + 3SO₂ → HCl + 3SO₃
- (v) HClO₃ when evaporates to dryness decomposes giving ClO₂.

$$4HCIO_3 \longrightarrow 4CIO_2(g) + 2H_2O(g) + O_2(g)$$

- (vi) HBrO₃ is not very stable, but is known in solution, and as salts.
- (vii) HIO₃ is formed by oxidation of I₂ with concentrated HNO₃ or O₃.

$$8H^+ + 10NO_3^- + I_2 \longrightarrow 2IO_3^- + 10NO_2 + 4H_2O$$

- (viii) IO_3^- oxidises I^- to I_2 : $IO_3^- + 5I^- + 6H^+ \longrightarrow 3I_2 + 3H_2O$
- (ix) lodic acid is reasonably stable and exists as a white solid.
- (x) $2KCIO_3 \xrightarrow{150^{\circ}C} 2KCI + 3O_2$
- (xi) $4KCIO_3 \xrightarrow{low temperature} 3KCIO_4 + KCI (in absence of catalyst)$
- (xii) $2Zn(ClO_3)_2 \xrightarrow{\Delta} 2ZnO + 2Cl_2 + 5O_2$
- (xiii) Chlorates are used in fire work.

HXO₄ SERIES

PERCHLORIC ACID [HCIO₄]:

PREPARATION:

(i) It is the most stable oxy-acid of chlorine. Anhydrous HClO₄ is obtained by doing distillation of KClO₄ (potassium perchlorate), with 96-97.5% H₂SO₄ under low pressure at 90-160°C.

$$KCIO_4 + H_2SO_4 \longrightarrow KHSO_4 + HCIO_4$$

(ii) An aqueous solution of the acid is obtained by reacting barium perchlorate with calculated quantity of dilute H₂SO₄. The insoluble barium sulphate is removed by filtration.

$$Ba(CIO_4)_2 + H_2SO_4 \longrightarrow BaSO_4 + 2HCIO_4$$

- (iii) NaClO₃ + H₂O $\xrightarrow{\text{Electrolysis}}$ ClO₄⁻ + 2H⁺ + 2e⁻
- (iv) $NH_4CIO_4 + HNO_3 \longrightarrow HCIO_4 + NH_4NO_3$
- (v) $4CIO_3^- \xrightarrow{\Delta} 3CIO_4^- + CI^-$
- (vi) HClO₄.2H₂O + 2H₂S₂O₇ → HClO₄ (obtained as anhydrous HClO₄) + 2H₂SO₄

PROPERTIES:

- (i) Anhydrous HClO₄ is a colourless liquid which turns dark on keeping. It fumes in moist air.
- (ii) It is one of the strongest acid and ionises as follows:

$$HCIO_4 \longrightarrow H^+ + CIO_4^-$$

(iii) It dissolves most of the metals.

$$Zn + 2HCIO_4 \longrightarrow Zn(CIO_4)_2 + H_2$$

(iv) Hot concentrated acid (73%) behaves as a remarkable oxidising agent :

$$4HCIO_4 \longrightarrow 2CI_2 + 7O_2 + 2H_2O$$

- (v) $2HCIO_4 + P_2O_5 \longrightarrow 2HPO_3 + CI_2O_7$
- O Mg(ClO₄)₂ is used in dry batteries and is also an effective desiccant called **anhydrone**. KClO₄ is used in fire works and flares.

Some important orders:

- (a) Acidic strength:
 - (i) HI > HBr > HCI > HF (ii) HOCI > HOBr > HOI (iii) $HCIO_4 > HCIO_3 > HCIO_2 > HCIO$
- (b) Oxidising powder
 - (i) $F_2 > Cl_2 > Br_2 > I_2$
 - (ii) $BrO_{4^{-}} > IO_{4^{-}} > CIO_{4^{-}}$ (According to electrode potential)
- (c) Order of disproportionations

$$3 \text{ XO}^- \longrightarrow 2\text{X}^- + \text{XO}_3^- \text{ (hypohalite ion)}$$
; $IO^- > BrO^- > CIO^-$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

人

Section (F_I):

HALOGEN ACIDS (HCI, HBr & HI)

- Pure anhydrous HX compounds refer as hydrogen halides.
- Their aqueous solutions as hydrohalic acids.

Preparation:

(1) By direct combination of elements:

$$H_2 + Cl_2 \longrightarrow 2HCl$$
; $H_2 + Br_2 \xrightarrow{Pt} 2HBr$; $H_2 + I_2 \xrightarrow{Pt, 450^{\circ}C} 2HI$

(2) By heating a halide with concentrated acid:

(a) NaCl + $H_2SO_4 \xrightarrow{150^{\circ}C} NaHSO_4 + HCl$

This method is called as salt cake method as it involves the formation of NaHSO₄ (salt cake).

HCl cannot be dried over
$$P_2O_5$$
 (P_4O_{10}) or quick lime since they react with gas chemically.
CaO + 2HCl \longrightarrow CaCl₂ + H₂O

$$P_4O_{10} + 3HCI \longrightarrow POCl_3 + 3HPO_3$$

HCl is, hence dried by passing through concentrated H₂SO₄.

(b) HBr (or HI) cannot be prepared by heating bromide (iodide) with concentrated H₂SO₄ because HBr and HI are strong reducing agents and reduce H₂SO₄ to SO₂ and get themselves oxidised to bromine and iodine respectively.

$$KX + H_2SO_4 \longrightarrow KHSO_4 + HX$$

$$H_2SO_4 + 2HX \longrightarrow SO_2 + X_2 + 2H_2O (X = Br or I)$$

Hence, HBr and HI are prepared by heating bromides and iodides respectively with concentrated H_3PO_4 .

$$3KBr(KI) + H_3PO_4 \longrightarrow K_3PO_4 + 3HBr(HI)$$

(3) By reaction of P₄ (Laboratory Method):

$$P_4 + 6Br_2 (6I_2) \longrightarrow 4PBr_3 (4PI_3)$$

 $PBr_3 (PI_3) + 3H_2O \longrightarrow 3HBr (HI) + H_3PO_3$

(4) By passing H_2S/SO_2 into solutions of halogens:

$$H_2S + X_2 \longrightarrow 2HX + S$$

$$SO_2 + 2H_2O + X_2 \longrightarrow 2HX + H_2SO_4$$

- (5) PROPERTIES:
- (i) These are colourless, pungent smelling gases with acidic tastes.
- (ii) These are neither combustible nor supporter of combustion.
- (iii) When perfectly dry, they have no action on litmus, but in presence of moisture, they turn blue litmus red, showing acidic nature. Among HX, HI is the strongest and HF is the weakest acid.
- (iv) These are quite soluble in water.

HCl ionises as below: $HCl(g) + H_2O(\ell) \longrightarrow H_3O^+$ (aq) + Cl^- (aq); $K_a = 10^7$

It's aqueous solution is called hydrochloric acid. High value of dissociation constant (K_a) indicates that it is a strong acid in water.

(v) When three parts of concentrated HCl and one part of concentrated HNO₃ are mixed, aqua regia is formed which is used for dissolving noble metals, e.g., gold, platinum.

Au + 4 H⁺ + NO₃⁻ + 4 Cl⁻
$$\longrightarrow$$
 [AuCl₄]⁻ + NO + 2 H₂O 3 Pt + 16 H⁺ + 4 NO₃⁻ + 18 Cl⁻ \longrightarrow 3 [PtCl₆]²⁻ + 4 NO + 8 H₂O

(6) Reducing property and stability of hydracids:

HCI: It is quite stable and hence is oxidised by strong oxidising agents like MnO₂, KMnO₄, K₂Cr₂O₇, PbO₂, Pb₃O₄.

- (i) $MnO_2 + 4HCl \longrightarrow MnCl_2 + 2H_2O + Cl_2$
- (ii) $2KMnO_4 + 16HCI \longrightarrow 2KCI + 2MnCl_2 + 8H_2O + 5Cl_2$
- (iii) $K_2Cr_2O_7 + 14HCl \longrightarrow 2KCl + 2CrCl_3 + 7H_2O + 3Cl_2$
- (iv) $PbO_2 + 4HCI \longrightarrow PbCl_2 + 2H_2O + Cl_2$;
- (v) $Pb_3 O_4 + 8HCl \longrightarrow 3PbCl_2 + 4H_2O + Cl_2$

Therefore, HCl is a weak reducing agent.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

HBr: It is not very stable and hence more easily oxidised or acts as a strong reducing agents.

(i) In addition to above reducing properties of HCl, it also reduces H₂SO₄ to SO₂ which is not done by HCl.

$$H_2SO_4 + HBr \longrightarrow SO_2 + Br_2 + 2H_2O$$

(ii) Aqueous HBr on exposure to atmospheric oxygen is oxidised to bromine (yellow)

$$4HBr + O_2 \longrightarrow 2 Br_2 + 2H_2O$$

HI: It is least stable hydrogen halide. It is readily oxidised and thus acts as a powerful reducing agent. In addition to reaction shown by HCl, it shows following reactions also.

(i) $H_2SO_4 + 2HI \longrightarrow SO_2 + I_2 + H_2O$

$$H_2SO_4 + 6HI \longrightarrow S + 3I_2 + 4H_2O$$

$$H_2SO_4 + 8HI \longrightarrow H_2S + 4I_2 + 4H_2O$$

- (ii) $2HNO_3 + 2HI \longrightarrow 2NO_2 + I_2 + 2H_2O$
- (iii) $2HNO_2 + 2HI \longrightarrow 2NO + I_2 + 2H_2O$
- (iv) $HIO_3 + 5HI \longrightarrow 3I_2 + 2H_2O$
- (v) $K_2S_2O_8 + 2HI \longrightarrow K_2SO_4 + I_2 + H_2SO_4$
- (vi) $2FeCl_3 + 2HI \longrightarrow 2FeCl_2 + I_2 + 2HCI$
- (vii) Aqueous solution of acid, if exposed to O₂ is oxidised to iodine.

$$4HI + O_2 \longrightarrow 2I_2 + 2H_2O$$

(7) Detection of cation:

HCI: AgNO₃ + HCI
$$\longrightarrow$$
 AgCI \downarrow (white) + HNO₃

$$Ha(NO_3)_2 + 2HCI \longrightarrow Ha_2Cl_2 \downarrow \text{ (white)} + 2HNO_3$$

HI: AgNO₃ + HI
$$\longrightarrow$$
 AgI \downarrow (bright yellow) + HNO₃

$$HgCl_2 + 2HI \longrightarrow HgI_2 \downarrow (scarlet red) + 2HCl$$

HI reacts with CuSO₄ liberating iodine via the formation of cupric iodide (not by HCl or HBr).

$$2CuSO_4 + 4HI \longrightarrow 2CuI_2 + 2H_2SO_4$$
: $2CuI_2 \longrightarrow Cu_2I_2 + I_2$

USES:

- (i) HCl is used in preparation of Cl₂, chlorides, aqua regia, glucose (from corn starch), medicines, laboratory as reagents, cleaning metal surfaces before soldering or electroplating. It is also used for extracting glue from bones and purifying bone black.
- (ii) HBr is used as laboratory reagent for preparing bromo derivatives like sodium bromides and potassium bromide.
- (iii) HI is used as reducing agent in organic chemistry.

HYDROFLUORIC ACID [H₂F₂, HF]: PREPARATION:

H₂ and F₂ combine with each other very violently (even in dark) to form HF. So simple reaction cannot be used for its preparation, special methods are employed for its preparation.

(1) Laboratory Method: Anhydrous HF is obtained by heating dry potassium hydrogen fluoride in a copper retort connected with copper condenser.

$$KHF_2 \xrightarrow{\Delta} KF + HF$$

(2) Industrial Method: HF is prepared by heating fluorspar (CaF₂) with concentrated H₂SO₄.

$$CaF_2 + H_2SO_4 \longrightarrow CaSO_4 + 2HF$$

(3) Aqueous HF being corrosive to glass, is stored in wax lined bottles or vessel made of copper or monel. In glass or silica bottles, it attacks them as follows:

$$Na_2SiO_3 + 6HF \longrightarrow Na_2SiF_6 + 3H_2O$$
; $CaSiO_3 + 6HF \longrightarrow CaSiF_6 + 3H_2O$

$$SiO_2 + 4HF \longrightarrow SiF_4 + 2H_2O \; ; \; SiF_4 + 2HF \longrightarrow H_2 \, SiF_6$$

This action of HF on silica (silicates) is used for etching glass. The glass surface to be etched is coated with wax, the design, is scratched on glass through wax coating and this is then treated with 40% solution.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

PROPERTIES:

- (i) It is colourless, corrosive liquid with pungent smell with high boiling point due to hydrogen bonding.
- (ii) Dry HF does not attack metals under ordinary conditions (except K), but in presence of water it dissolves metals with liberation of hydrogen gas.
- (iii) It is a weak dibasic acid (due to strong HF bond) and forms two series of salt.

$$NaOH + H_2F_2 \longrightarrow NaHF_2 + H_2O$$
; $NaHF_2 + NaOH \longrightarrow 2NaF + H_2O$

(iv) HF also react reacts with CCl4 to form freons.

$$CCI_4 + HF \longrightarrow CFCI_3 + HCI$$
: $CFCI_3 + HF \longrightarrow CF_2CI_2 + HCI$.

Section (H_I): Other compounds (Inter halogens, Bleaching powder, Pseudo halides & Poly halides) BLEACHING POWDER:

Bleaching powder is also called calcium chlorohypochlorite because it is considered as a mixed salt of hydrochloric acid and hypochlorous acid.

The composition of bleaching powder is Ca(OCl)₂. CaCl₂. Ca(OH)₂. 2H₂O.

PREPARATION:

$$Ca(OH)_2 + Cl_2 \xrightarrow{40^{\circ}C} Ca(OCI)CI + H_2O$$

Properties

It is a pale yellow powder. It has a strong smell of chlorine. It is soluble in water but a clear solution is never formed due to the presence of impurities.

Bleaching action

ESTIMATION OF AVAILABLE CHLORINE:

Let the weight of sample of bleaching powder be W g.

Add into a beaker containing acetic acid solution and excess KI. A yellow brown solution is formed (I₃⁻)

$$I_2 + I^- \longrightarrow I_3^-$$

Now few drops of starch solution is added into it. An intensive blue color is observed. Now hypo is used as the titrant. Note the volume where the blue colour disappear.

Reaction involved:

$$CaOCl2 + 2CH3COOH \longrightarrow (CH3COO)2 Ca + H2O + Cl2$$

$$Cl2 + 2KI \longrightarrow 2KCl + I2$$

$$I2 + 2S2O32- \longrightarrow S4O62- + 2I-$$

$$I3 = 1 - 74$$

Calculation:
$$%CI = \frac{[M_{hypo} \times V_{hypo}] \times \frac{1}{2} \times 71}{W} \times 100$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in
Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADV PHN - 14

INTERHALOGEN COMPOUNDS:

We know that halogen atoms have different electronegativity. Due to this difference in electronegativity the halogen atoms combine with each other and give rise to the formation of binary covalent compounds, which are called interhalogen compounds. These are of four types XX', XX'₃, XX'₅ and XX'₇ where X is a larger size halogen and X' is smaller size halogen.

Some Properties of Interhalogen Compounds

Type	Formula	Physical state and colour	Structure
	CIF	Colourless gas	_
	BrF	pale brown gas	_
	IF ^a	detected spectroscopically gas	_
XX' ₁	BrCl ^b	ruby red solid (α-form)	
	ICI	brown red solid (β-form)	_
	IBr	black solid	_
	0.5		_
	CIF ₃	colourless gas	Bent T- shaped
XX' ₃	BrF₃	yellow green liquid	Bent T- shaped
XX 3	IF ₃	yellow powder	Bent T- shaped
	ICl₃	orange solid	Bent T- shaped
	IF ₅	colourless gas but solid below 77 K	Square pyramidal
XX'5	BrF₅	colourless liquid	Square pyramidal
	CIF ₅	colourless liquid	Square pyramidal
XX' ₇	IF ₇	colourless gas	Pentagonal
XX /	11 /	Colouriess gas	bipyramidal

PREPARATION:

(i) By the direct combination of halogens:

$$Cl_2 + F_2 \text{ (equal volumes)} \xrightarrow{473 \text{ K}} 2CIF ;$$
 $Cl_2 + 3F_2 \text{ (excess)} \xrightarrow{573 \text{ K}} 2CIF_3 ;$ $l_2 + Cl_2 \longrightarrow 2ICI ;$ (equimolar)

- (ii) Diluted with water : $Br_2(g) + 3F_2 \longrightarrow 2BrF_3$
- (iii) F_2 is diluted with N_2 : $I_2 + 3F_2 \xrightarrow{-78^{\circ}C} 2IF_3$
- $(iv) \qquad F_2 \text{ is taken in freon:} \qquad Br_2 + 5F_2 \text{ (excess)} {\longrightarrow} 2BrF_5$
- (v) IF₇ can not be prepared by direct combination of I₂ & F₂.
- (vi) From lower interhalogens:

CIF + F₂
$$\longrightarrow$$
 CIF₃; CIF₃ + F₂ (excess) $\xrightarrow{350^{\circ}\text{C}}$ CIF₅
BrF₃ + F₂ (excess) $\xrightarrow{200^{\circ}\text{C}}$ BrF₅: IF₅ + F₂ $\xrightarrow{270^{\circ}\text{C}}$ JF₇

This method is generally applied for the preparation of halogen fluorides.

(vii) Other methods:

$$\begin{array}{l} \textrm{6HCI} + \textrm{KIO}_3 + 2\textrm{KI} \longrightarrow 2\textrm{KCI} + 3\textrm{H}_2\textrm{O} + 3\textrm{ICI} \\ \textrm{CI}_2 + \textrm{CIF}_3 \stackrel{250-350^{\circ}\textrm{C}}{\longrightarrow} 3\textrm{CIF} \; ; \quad \textrm{KCI} + 3\textrm{F}_2 \stackrel{200^{\circ}\textrm{C}}{\longrightarrow} \textrm{KF} + \textrm{CIF}_5 \\ \textrm{3I}_2 + 5\textrm{AgF} \longrightarrow 5\textrm{AgI} + \textrm{IF}_5 \; ; \qquad 8\textrm{F}_2 + \textrm{PbI}_2 \longrightarrow \textrm{PbF}_2 + 2\textrm{IF}_7 \end{array}$$

PROPERTIES:

- (i) These compounds may be gases, liquids or solids.
 - Gases: CIF, BrF, CIF₃, IF₇; Liquids: BrF₃, BrF₅; Solids: ICI, IBr, IF₃, ICI₃.
- (ii) Interhalogens containing fluorine are colourless but inter halogens consisting of heavier halogens are coloured. The intensity of colour increases with increase in the molecular weight of the compounds.
- (iii) All interhalogens are covalent molecules and are diamagnetic in nature since all the valence electrons present as bonding or non-bonding electrons are paired.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

- (iv) The boiling points increases with the increase in the electronegativity difference between A and B atoms.
- (v) Thermal stability of AB type interhalogen compounds decreases with the decrease in electronegativity difference between A and B atoms. IF > BrF > CIF > ICI > IBr > BrCI.
 More polar is the A–B bond more is the stability of interhalogen.
- (vi) Interhalogen compounds are more reactive than the parent halogens but less reactive than F₂.

The order of reactivity of some interhalogens is as follows:

$$CIF_3 > BrF_3 > IF_7 > BrF_5 > BrF$$
.

(vii) **Hydrolysis**: All these undergo hydrolysis giving halide ion derived from the smaller halogen and a hypohalite (when AB₃), halate (when AB₅), and perhalate (when AB₇) anion derived from the larger halogen.

$$\begin{array}{lll} AB + H_2O \longrightarrow HB + HOA \\ BrCI + H_2O \longrightarrow HCI + HOBr \ ; & ICI + H_2O \longrightarrow HCI + HIO \\ ICI_3 + 2H_2O \longrightarrow 3HCI + HIO_2 \ ; & IF_5 + 3H_2O \longrightarrow 5HF + HIO_3 \\ IF_7 + 6H_2O \longrightarrow 7HF + H_5IO_6 \ ; & BrF_5 + 3H_2O \longrightarrow 5HF + HBrO_3 \end{array}$$

Oxidation state of A atom does not change during hydrolysis.

(viii) Reaction with non-metallic and metallic oxides:

$$4BrF_3 + 3SiO_2 \longrightarrow 3SiF_4 + 2Br_2 + 3O_2$$
; $4BrF_3 + 2WO_3 \longrightarrow 2WF_6 + 2Br_2 + 3O_2$

(x) Reaction with alkali metal halides:

$$IBr + NaBr \longrightarrow NaIBr_2$$
; $ICl_3 + KCl \longrightarrow KICl_4$

USES:

These compounds can be used as non aqueous solvents. Interhalogen compounds are very useful fluorinating agents. CIF₃ and BrF₃ are used for the production of UF₆ in the enrichment of 235 U.

$$U(s) + 3 CIF_3(I) \longrightarrow UF_6(g) + 3 CIF(g)$$

Pseudohalogens and Pseudohalides:

- (i) A few ions are known, consisting of two or more atoms of which at least one is N, that have properties similar to those of the halide ions. They are therefore called pseudohalide ions.
- (ii) Pseudohalide ions are univalent, and these form salts resembling the halide salts. For example, the sodium salts are soluble in water, but the silver salts are insoluble.
- (iii) The hydrogen compounds are acids like the halogen acid HX. Some of the pseudohalide ions combine to form dimers comparable with the halogen molecule X₂. These include cyanogens (CN)₂, thiocyanogen (SCN)₂ and selenocyanogen (SeCN)₂.

Anion			Acid	Dimer	
CN-	Cyanide ion	HCN	Hydrogen cyanide	(CN) ₂	Cyanogen
SCN-	Thiocyanate ion	HSCN	Thiocyanic acid	(SCN) ₂	Thiocyanogen
SeCN-	Selenocyanate ion	HOCN	Cyanic acid	(SeCN) ₂	Selenocyanogen
OCN-	Cyanate ion	H ₂ NCN	Cyanamide		
NCN ²⁻ Cyanamide ion		HN ₃	Hydrogen azide		
N ₃ -	Azide ion				

The best known pseudohalide is CN-. This resembles Cl-, Br- and I- in the following respects.

- (a) It forms an acid HCN.
- (b) It can be oxidized to form a molecule cyanogen (CN)₂.
- (c) It forms insoluble salts with Ag+, Pb2+ and Hg+
- (d) Interpseudohalogen compounds CICN, BrCN and ICN can be formed.
- (e) AgCN is insoluble in water but soluble in ammonia, as is AgCl.
- (f) It forms a large number of complexes similar to halide complexes.
 - e.g. $[Cu(CN)_4]^{2-}$ and $[CuCl_4]^{2-}$ and $[Co(CN)_6]^{3-}$ and $[CoCl_6]^{3-}$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

GROUP 18 ELEMENTS: (THE NOBLE GASES / ZERO GROUP FAMILY)

Group 18 consists of six elements: helium, neon, argon, krypton, xenon and radon. All these are gases and chemically unreactive. They form very few compounds. Because of this they are termed as noble gases.

Section (A_{II}): Elements: Occurence & Isolation

- (i) All the noble gases except radon occur in the atmosphere.
- (ii) Their atmospheric abundance in dry air is ~ 1% by volume of which argon is the major constituent. Helium and sometimes neon are found in minerals of radioactive origin e.g., pitchblende, monazite, cleveite.
- (iii) The main commercial source of helium is natural gas.
- (iv) Xenon and radon are the rarest elements of the group. Radon is obtained as a decay product of 226 Ra. $^{226}_{88}$ Ra \longrightarrow $^{222}_{86}$ Rn + $^{4}_{2}$ He
- (v) Most abundant element in air is Ar. Order of abundance in the air is Ar > Ne > Kr > He > Xe.

Section ($B_{II} + C_{II} + D_{II}$): Periodic Trends, Properties of Elements and Chemical Bonding

(1) Electronic Configuration:

All noble gases have general electronic configuration ns²np⁶ except helium which has 1s². Many of the properties of noble gases including their inactive nature are ascribed to their closed shell structures.

(2) Ionisation Enthalpy:

Due to stable electronic configuration these gases exhibit very high ionisation enthalpy. However, it decreases down the group with increases in atomic size.

(3) Atomic Radii:

Atomic radii increase down the group with increase in atomic number.

(4) Electron Gain Enthalpy:

Since noble gases have stable electronic configurations, they have no tendency to accept the electron and therefore, have larger positive values of electron gain enthalpy.

(5) Physical properties:

- (i) All the noble gases are mono-atomic.
- (ii) They are colourless, and tasteless.
- (iii) They are sparingly soluble in water.
- (iv) They have very low melting and boiling points because the only type of interatomic interaction in these elements is weak dispersion forces.
- (v) Helium has the lowest boiling point (4.2K) of any known substance. It has a unusual property of diffusing through most commonly used laboratory materials such as rubber, glass or plastics.

Table: Atomic and physical properties

Element	He	Ne	Ar	Kr	Xe
Atomic Number	2	10	18	36	54
Atomic Mass	4	20.18	39.10	83.80	131.30
Electronic configuration	1s ²	[He] 2s ² 2p ⁶	[Ne] 3s ² 3p ⁶	[Ar] 3d ¹⁰ 4s ² 4p ⁶	[Kr] 4d ¹⁰ 5s ² 5p ⁶
Atomic Radius (pm)	120	160	190	200	220
Ionization enthalpy / (kJ mol ⁻¹)	2372	2080	1520	1351	1170
Density (at STP)/g cm ⁻³	1.8 × 10 ⁻⁴	9.0 × 10 ⁻⁴	1.8 × 10 ⁻³	3.7 × 10 ⁻³	5.9 × 10 ⁻³
Melting point / K	_	24.6	83.8	115.9	161.3
Boiling point / K	4.2	27.1	87.2	119.7	165.0

(6) Chemical Properties:

In general, noble gases are least reactive. Their inertness to chemical reactivity is attributed to the following reasons:

- (i) The noble gases except helium (1s²) have completely filled ns² np6 electronic configuration in their valence shell.
- (ii) They have high ionisation enthalpy and more positive electron gain enthalpy.
- (iii) In March 1962, Neil Bartlett, prepared a red compound which is formulated as O₂+ PtF₆-. He, then realised that the first ionisation enthalpy of molecular oxygen (1175 kJ mol⁻¹) was almost identical with that xenon (1170 kJ mol⁻¹).

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

- (iv) He also prepared same type of compound with Xe⁺ PtF₆⁻ by mixing Pt F₆ and Xenon. After this discovery, a number of xenon compounds mainly with most electronegative elements like fluorine and oxygen, have been synthesised.
- (v) The compounds of krypton are fewer. Only the difluoride (KrF2) has been studied in detail.
- (vi) Compounds of radon have not been isolated but only identified (e.g., RnF₂) by radiotracer technique.
- (vii) No true compounds of Ar, Ne or He are yet known.
- (viii) If Helium is compressed and liquified it forms He(I) liquid at 4.2 K. This liquid is a normal liquid like any other liquid. But if it is further cooled then He(II) is obtained at 2.2 K, which is known as super fluid, because it is a liquid with properties of gases. It climbs through the walls of the container & comes out. It has very high thermal conductivity & very low viscosity.

(7) Clatherate compounds:

- (i) Inert gas molecules get trapped in the cages formed by the crystal structure of water.
- (ii) During the formation of ice Xe atoms will be trapped in the cavities (or cages) formed by the water molecules in the crystal structure of ice. Compounds thus obtained are called clatherate compounds.
- (iii) In this compounds there are no chemical bonds. They do not possess an exact chemical formula but approx it is 6 water molecules: 1 inert gas molecule.
- (iv) The cavity size is just smaller than the atom of the noble gas. Such compounds are also formed by the other organic liquids like dihydroxybenzene (for example quinol).
- (v) The smaller noble gases He and Ne do not form clathrate compounds because the gas atoms are small enough to escape from the cavities.
- (vi) Clathrate provides a convenient means of storing radioactive isotopes of Kr and Xe produced in nuclear reactors.

Section (G_{II}) : Compounds of Xenon

Halides & Oxyhalides:

(I) XENON FLUORIDES:

Compounds	Structures	Hybridisation	Geometry	Shape
XeF ₂	е х	sp³d	trigonal bipyramidal	linear
XeF ₄	F Xe F	sp³d²	octahedral	square planar
XeF ₆	F Xe F	sp³d³	pentagonal bipyramidal	distorted octahedron

PREPARATION:

Xenon reacts directly with fluorine when the gases are heated at $300-600^{\circ}$ C in a sealed nickel vessel and the products formed depend on the Xe / F_2 ratio.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADV PHN - 18

PROPERTIES:

These are colourless (white) solids. They can be sublimed at room temperature and can be stored indefinitely in nickel or monel (an alloy of nickel) containers.

Chemical properties:

(II) XENON-OXYGEN COMPOUNDS:

Hydrolysis of XeF₄ and XeF₆ with water gives XeO₃.

 $6 \text{ XeF}_4 + 12 \text{ H}_2\text{O} \longrightarrow 4 \text{ Xe} + 2 \text{ XeO}_3 + 24 \text{ HF} + 3 \text{ O}_2$

 $XeF_6 + 3 H_2O \longrightarrow XeO_3 + 6 HF$

Partial hydrolysis of XeF₆ gives oxyfluorides, XeOF₄ and XeO₂F₂.

 $XeF_6 + H_2O \longrightarrow XeOF_4 + 2 HF$

 $XeF_6 + 2 H_2O \longrightarrow XeO_2F_2 + 4 HF$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

XeO₃ is a colourless explosive solid and has a pyramidal molecular structure. XeOF₄ is a colourless volatile liquid and has a square pyramidal molecular structure.

USES

- (i) Helium is a non-inflammable and light gas. Hence, it is used in filling balloons for meteorological observations. It is also used in gas-cooled nuclear reactors.
- (ii) Liquid helium (b.p.4.2 K) finds use as cryogenic agent for carrying out various experiments at low temperatures.
- (iii) Helium is used to produce and sustain powerful superconducting magnets which form an essential part of modern NMR spectrometers and Magnetic Resonance Imaging (MRI) systems for clinical diagnosis.
- (iv) Helium is used as a diluent for oxygen in modern diving apparatus because of its very low solubility in blood.
- (v) Neon is used in discharge tubes and fluorescent bulbs for advertisement display purposes. Neon bulbs are used in botanical gardens and in green houses.
- (vi) Argon is used mainly to provide an inert atmosphere in high temperature metallurgical processes (arc welding of metals or alloys) and for filling electric bulbs.
- (vii) Argon is also used in the laboratory for handling substances that are air-sensitive.
- (viii) Xenon and Krypton are used in light bulbs designed for special purposes.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Exercise-1

> Marked questions are recommended for Revision.

PART - I: SUBJECTIVE QUESTIONS

Section (A_I + A_{II}): Elements: Occurence & Isolation

- **A**_I-1. Name the compound which is used to obtain fluorine gas on electrolysis. At which electrode does F₂ appears?
- **A**_I-2. Name the valuable halogen impurities present in chile salt petre (NaNO₃).
- A_{II}-3. What idea lead to the discovery of Xenon fluorides?

Section (B_I): Based on Periodic Trends

- **B**_I-1. Considering the parameters such as bond dissociation enthalpy, electron gain enthalpy and hydration enthalpy, compare the oxidizing power of F₂ and Cl₂.
- **B**_I**-2.** Write all the common oxidation states of halogens.
- B_1 -3. Write and explain the order of X–X bond energy for halogen down the group.

Section (C_I + C_{II}): Based on Chemical Bonding

- **C-1.** Draw the Lewis dot structures of the following compounds : $HCIO_3$, $XeOF_4$, XeO_2F_2 , ICI_2^- , ICI_4^- .
- **C₁-2.** Draw the Lewis dot structures of the following multicentred compounds: I_2O_5 , CI_2O_7 .
- **C_I-3.** Give the formula and describe the structure of a noble gas species which is isostructural with: (i) ICl₄ (ii) IBr₂ (iii) BrO₃
- C_{II}-4. Arrange the XeF₂, XeF₄ in decreasing order of Xe–F bond length, give reason also.

Section (D_I + D_{II}): Properties of elements

- **D**_{II}-1. Answer the following with relevant reason.
 - (i) The boiling points of noble gases increase with increase in atomic number.
 - (ii) Why helium and neon do not form clathrate compounds with guinol?
- **D**_I**-2.** Why are halogens coloured ?
- D_1 -3. Write the reactions of F_2 and Cl_2 with water.
- D₁-4. State what happens when halogens react with a cold dilute solution of NaOH?
- D_{I} -5. State what happens when halogens (X = Cl / Br / I) react with hot and conc. solution of NaOH?
- **D**_I-6. Which halogen is oxidised by conc. HNO₃? Give reaction.
- **D**_I-7. Explain the following with proper reason :
 - (i) Fluorine cannot be prepared from fluorides by chemical oxidation.
 - (ii) Fluorine does not form F₃- (polyhalide) ion.

Section (E_I): Oxides, Hydroxides & Oxyacids

- **E**_I-1. Write chemical reactions involved in preparation of HClO₃ & HClO₄ by displacement from their salts.
- **E**_I-2. When a blue litmus is dipped into a solution of hypochlorous acid, it turns red and then gets decolourised. Explain.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

- E₁-3. Explain why fluorine forms only one oxyacid, HOF.
- E_I-4. Predict the products when the following reactions are carried out:
 - (i) In acidic medium when SO₂ is passed through NaClO₃.
 - (ii) HCl + KlO₃ + Kl →
- What happen when ClO₂ dissolves in NaOH? E₁-5.

Section (F₁): Hydracids

- Arrange the following in the order of : (i) Acidic strength (ii) Reducing behaviour (HI, HBr, HCI & HF)
- F_I-2. How can you prepare Cl₂ from HCl and HCl from Cl₂? Write reactions only.
- F₁-3. HI can not be prepared by heating NaI with concentrated H₂SO₄. Give the method which is preferred for the preparation of HI.
- F₁-4. What is agua regia? Write its reaction product with gold and platinum.
- F₁-5. Explain the following with proper reason:
 - (i) Anhydrous HCl is a bad conductor of electricity while aqueous HCl is a good conductor.
 - (ii) HF is not stored in glass bottles but kept in wax lined bottles.
 - (iii) HF has a greater electronegativity difference and more ionic character than HCI, HBr and HI but it is the weakest acid.
- Fill in the blanks: F₁-6.
 - (i) Among halogen acids (hydrogen halides) is the strongest reducing agent.
 - (ii) $H_2SO_4 + HI \longrightarrow$ _____ + ____ + ___
- Predict the products when the following reactions are carried out: F₁-7.
 - (i) Red lead is boiled with concentrated HCl.
 - (ii) $SiO_2 + HF \longrightarrow$

Section (G_{II}): Halides & Oxyhalides

- **G**_{II}-1. Write the method of preparation of XeF₂, XeF₄ & XeF₆.
- **G**_{II}**-2.** How is XeOF₄ prepared ?
- G₁₁-3. Does the hydrolysis of XeF₄ lead to a redox reaction?
- Write the complete and the partial hydrolysis product of XeF₆. G₁₁-4.
- G11-5. Complete the following reactions:

(i)
$$XeF_2 + H_2 \rightarrow$$

(ii)
$$XeF_6 + SiO_2 \rightarrow$$

(iii)
$$XeF_6 + SbF_5 \rightarrow$$

Section (H_I): Other compounds (Inter halogens, Bleaching powder, Pseudo halides & Poly halides)

H_I-1. Complete the following reactions:

(a)
$$Cl_2 + F_2 \xrightarrow{473 \text{ K}}$$

(b)
$$I_2 + 3CI_2$$
 —

(b)
$$I_2 + \frac{3CI_2}{(Excess)}$$
 (c) $Br_2 + 3F_2 \longrightarrow$ (d) $Br_2 + \frac{5F_2}{(Excess)} \longrightarrow$

- H₁-2. Why ICI is more reactive than I2.
- (a) Name two interhalogens of AB₃ type. H₁-3.
 - (b) Write the hydrolysis product of ICI?
- H_I-4. Explain the following with proper reason:
 - (i) Bleaching of flowers by chlorine is permanent while after bleaching with SO₂, the colour returns.
 - (ii) lodine dissolves more in KI solution than in water.
- What happens when ? (Give balanced equations) H_I-5.
 - (i) Sodium iodate is treated with sodium bisulphite solution.
 - (ii) Chlorine is passed over slaked lime.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

人

PART - II: ONLY ONE OPTION CORRECT TYPE

Section (A_I + A_{II}): Elements: Occurence and Isolation

- A_{II} -1. Which of the following gaseous molecules is monoatomic?
 - (A) chlorine
- (B) helium
- (C) oxygen
- (D) nitrogen
- A_{II}-2. Which one of the following noble gases is not found in atmosphere?
 - (A) Rn
- (B) Kr
- (C) Ne
- (D) Ar

- A_{II}-3. The inert gas abundantly found in atmosphere is :
 - (A) Ar
- (B) Kr
- (C) He
- (D) Xe
- A_I-4. Electrolysis of aqueous solution of Brine (NaCl) will give:
 - (Δ) Cl₀
- (B) H₂
- (C) NaOH
- (D) all of these
- A_I-5. The catalyst used in the Deacon's process for the manufacture of chlorine is:
 - (A) Cu
- (B) An alloy of copper
- (C) CuCl₂
- (D) CuS

Section (B_I + B_{II}): Based on Periodic Trends

- **B**_{II}-1. Which one of the following configuration represents a noble gas ?
 - (A) $1s^2 2s^2 p^6$, $3s^2$
- (B) 1s² 2s² p⁶, 3s¹
- (C) 1s² 2s² p⁶
- (D) $1s^2 2s^2 p^6$, $3s^2 p^6$, $4s^2$
- **B**_I**-2.** Astatine is the element below iodine in the group VIIA of the periodic table. Which of the following statements is not true for a tatine?
 - (A) It is less electronegative than iodine.
 - (B) It will exhibit only -1 oxidation state.
 - (C) Intermolecular forces between the astatine molecules will be larger than that between iodine molecules.
 - (D) None of these.
- **B**_I**-3.** Which is wrong statement?
 - (A) Basic nature of X⁻ is in order F⁻ > Cl⁻ > Br⁻ > l⁻
 - (B) Electron gain enthalpy in order F > CI > Br > I.
 - (C) The ionic character of M—X bond decreases in the order M—F > M—CI > M—Br > M—I
 - (D) Among F-, Cl-, Br- and l-, F- has the highest enthalpy of hydration.

Section (C_I + C_{II}): Based on Chemical Bonding

C_I-1. Which of the following structure is correct for BrF₃?

- (D) none of these
- C_{II}-2. Among the following molecules, (i) XeO₃ (ii) XeOF₄ (iii) XeF₆

those having same number of lone pairs on Xe are:

- (A) (i) and (ii) only
- (B) (i) and (iii) only
- (C) (ii) and (iii) only
- (D) (i), (ii) and (iii)

C_{II}-3. Select the incorrect match

(A) XeF₂: linear

(B) XeF₄ : square planar (D) XeO₃: trigonal planar

(C) XeF₆: distorted octahedral

Section (D_I): Properties of elements

- **D**_I-1. Correct order of boiling point of halogens is
 - (A) $F_2 < Cl_2 < Br_2 < l_2$
- (B) $Cl_2 > F_2 > Br_2 > I_2$
- (C) $F_2 > Cl_2 > Br_2 > l_2$
- (D) $Cl_2 < F_2 < Br_2 < I_2$

- **D**_{II}**-2.** Which of the following statement is correct?
 - (A) Helium has abnormal behaviour on liquefication
 - (B) lodine is readily soluble in CS₂ and the solution is purple in colour
 - (C) Helium do not form any clathrate
 - (D) All of these

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADV PHN - 23

p-Ble	ock Elements (Halogen	& Noble Gases)		/\
D _I -3.	Chlorine gas is dried or (A) CaO	ver : (B) NaOH	(C) conc. H ₂ SO ₄	(D) dil. H ₂ SO ₄
D _I -4.	F_2 reacts with H_2O as f $F_2 + H_2O \longrightarrow$ Which of the following (A) Br_2	$H^+ + F^- + O_2$	eaction but in opposite dir	rection ? (D) All
D _I -5.	Chlorine acts as a blea (A) dry air	ching agent only in prese (B) moisture	ence of : (C) sunlight	(D) pure oxygen
Secti	on (E _I) : Oxides, Hy	droxides & Oxyacio	ds	
E _I -1.	(B) Only one oxyacid [H	tement: stronger acid than sulph HOF] is formed by fluorin y-acid of chlorine is perc	е	
E _I -2.	Cl ₂ O ₆ reacts with water (A) Only sodium chlora (C) Both sodium chlora		te	(B) Only sodium perchlorate (D) None of these
E _I -3.	On heating $KClO_3$ we g (A) $KClO_2 + O_2$	get : (B) KCl + O ₂	(C) KCl + O ₃	(D) KCl + O ₂ + O ₃
E _I -4.	The following acids have CIOH (I), (A) I > II > III	ve been arranged in orde BrOH (II), (B) II > I > III	er of decreasing acid stre IOH (III) (C) III > II > I	ngth. Identify the correct order. (D) I > III > II
E _I -5.	CIO_3^- ion leads with I_2 (A) CIO_4^-	to form (B) IO3 ⁻ and Cl2	(C) ICI and O ₂	(D) ICI and O ₃
E _I -6.	The strongest acid amo	ongst the following is: (B) HClO ₃	(C) HClO ₂	(D) HCIO
Secti	on (F _I) : Hydracids			
F _I -1.	Which of the following (A) HF	halogen hydrides will ha (B) HCl	ve the weakest conjugate (C) HBr	e base ? (D) HI
F _I -2.	Concentrated H ₂ SO ₄ can (A) reduces HBr (C) disproportionates H		e HBr from NaBr, becaus (B) oxidises HBr (D) reacts slowly with N	
F _I -3.	Hydrogen bromide is d (A) quick line (C) potassium hydroxid	ried by passing the gas t le pellet	hrough : (B) anhydrous calcium (D) con. H ₂ SO ₄	chloride
F _I -4.	Which one of the hydra (A) HF	acid does not form any pr (B) HCl	recipitate with AgNO ₃ ? (C) HBr	(D) HI
F _I -5	Which can do glass etc (A) HIO ₄	ching ? (B) HF	(C) HNO ₃	(D) SiF ₄
F _I -6.	Identify A and B in follo (A) Br_2 , SO_3	wing reaction, H ₂ SO ₄ + (B) Br ₂ , S	$HBr \longrightarrow A + B + H_2O$ (C) BrO_3^- , SO_3	(D) Br ₂ , SO ₂
F _I -7.	Which of the following (A) AuCl ₄	is obtained when gold is (B) AuCl ₃	treated with aquaregia. (C) [AuCl ₄]-	(D) [AuCl ₄]+
F _I -8.	Which of the following (A) HCl	hydrogen halide is most (B) HF	volatile. (C) HI	(D) HBr

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

F₁-9. Which of the following has maximum bond strength: (A) HI (B) HCI

(C) HF

(D) HBr

F_I**-10.** Which of the following is the strongest acid?

(A) HBr

(B) HF

(C) H₂S

(D) PH₃

Section (G_{II}): Halides and oxyhalides

The number of lone pairs on central atom in XeF₂, XeF₄ and XeF₆ are:

(A) 1,2,3

(B) 3,2,1

(C) 2,2,1

(D) 1,3,2

Of the following species, one which is non-existent: G₁₁-2.

(A) XeF₆

(B) XeF₅

(C) XeF₄

(D) XeF₂

G₁₁-3. XeF₂ on complete hydrolysis gives :

(A) Xe

(B) XeO₂

(C) XeO_2F_2

(D) XeO₄

Hydrolysis of XeF₄ and CaCN₂ gives respectively: Gπ-4.

(A) XeO₃ and CaCO₃

(B) XeO₂ and Ca(OH)₂

(C) XeOF₃ and Ca(OH)₂

(D) XeOF₂ and CaCO₃

Xenon hexafluoride undergoes hydrolysis in strong alkaline medium:

 $2 \text{ XeF}_6 + 16 \text{ OH}^- \longrightarrow 8 \text{H}_2 \text{O} + 12 \text{F}^- + \text{A} + \text{B} + \text{C}$ then reaction product may be:

(A) perxenate ion

(B) O₂

(C) Xenon

(D) All of the above

Section (H_I): Other compounds (Inter halogens, Bleaching powder, Pseudo halides & Poly halides)

H₁-1. In the inter halogen compounds of AB₃/AB₅ form which is correct:

(A) A is large size halogen

(B) B is large size halogen

(C) B is small size halogen

(D) Both (A) & (C)

H₁-2. Which one of the following is not a pseudohalide?

(A) CNO-

(B) RCOO-

(C) OCN-

(D) NNN-

H₁-3. Which of the following behaves like pseudohalogen compound:

(A) NCCN

(B) CN-

(D) I₃-

Which of the following statement is correct. H_I-4.

(A) All interhalogen compounds are gas at room temperature.

(B) Interhalogen are either gas or liquid at room temperature.

(C) Interhalogens can be solid or liquid or gas at room temperature.

(D) All interhalogen compounds are liquid at room temperature.

PART - III: MATCH THE COLUMN

1. Match the reactions listed in column-I with the product(s) listed in column-II.

		Column-I		Column-II (X = Halogen)
(A	١)	$NH_3 + F_2 \longrightarrow$	(p)	N ₂
(B	3)	NH_3 (excess.) + $CI_2 \longrightarrow$	(q)	HX
(C)	$NH_3 + Br_2 (excess.) \longrightarrow$	(r)	NH ₄ X
(C))	NH_3 (aq.) + $I_2 \longrightarrow$	(s)	Explosive

2. Match the reactions listed in column-I with the product(s) listed in column-II.

	Column - I		Column - II
(A)	$Cl_2O_6 + H_2O \rightarrow$	(p)	CIO ₂
(B)	$NaClO_4(s) + HCl(conc.) \rightarrow$	(q)	HClO₃
(C)	KClO ₃ + (COOH) ₂ →	(r)	Cl ₂ O
(D)	HgO + Cl ₂ − ^{573K} →	(s)	HCIO ₄

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

3. Match the compounds listed in column-I with characteristic(s) / type of reaction(s) listed in column-II.

	Column-I		Column-II
(A)	XeF ₂	(p)	Undergoes hydrolysis with water.
(B)	XeF ₄	(q)	Acts as oxidising agent.
(C)	XeF ₆	(r)	Undergoes addition reaction.
(D)	XeO₃	(s)	Has lone pair(s) of electrons.
		(t)	Gives disproportionation reaction with H ₂ O or OH ⁻ .

Exercise-2

Marked questions are recommended for Revision.

DADT	I · ONI V	ONE OPTION	CORRECT TYPE
-46 :			1.1.1DDC1.1 1 PC

1.	The X – X bond dissocia (A) F ₂	ation energy is minimum (B) Cl ₂	in : (C) Br ₂	(D) I ₂
2.	lodine is liberated from (A) ZnSO ₄	KI solution when treated (B) CuSO ₄	with: (C) NiSO ₄	(D) FeSO ₄
3.	Which of the following is (A) F-	s not oxidised by MnO ₂ ? (B) Cl ⁻	(C) Br ⁻	(D) I ⁻
4.	F_2 + dil NaOH \longrightarrow A + F_2 + conc. NaOH \longrightarrow A and B respectively are (A) OF ₂ and O ₂	B + NaF + H ₂ O e :	(C) Both O ₂	(D) Both OF ₂
5.	When thiosulphate ion i (A) SO ₃ ²⁻	s oxidised by iodine, the (B) SO ₄ ²⁻	new product formed is : $(C) S_4O_6^{2-}$	(D) S ₂ O ₆ ²⁻

6. NH₃(excess) + Cl₂ -----> NH₄Cl + A(gas)

 $NH_3 + Cl_2(excess) \longrightarrow B + HCI$

Incorrect statement regarding A and B.

- (A) A is highly reactive gas at room temperature.
- (B) Bond order of gas 'A' is same as C_2^{2-} .
- (C) Compound 'B' is explosive.
- (D) Bond angle of compound B is greater than bond angle of NF₃.
- 7. Which amongst the following reactions cannot be used for the respective preparation?

 - (A) $2KBr + H_2SO_4$ (conc.) $\longrightarrow K_2SO_4 + 2HBr$ (B) $NaCl + H_2SO_4$ (conc.) $\longrightarrow NaHSO_4 + HCl$
 - (C) NaHSO₄ + NaCl → Na₂SO₄ + HCl
- (D) $CaF_2 + H_2SO_4(conc.) \longrightarrow CaSO_4 + 2HF$
- 8. ΔH_{vaporisation} (KJ/mol) are given for the hydrides of halogens in the following graph. The hydride HF will correspond to

- 9. Alkali metal hydrogen fluorides have a formula M[HF2]. They are found to contain a linear symmetrical anion having an overall F-H-F distance of 2.26 Å which may be compared with the H-F bond length of 0.92 Å in the moment. Which of the following is false for the anion?
 - (A) Hydrogen bonding plays a significant role in the existence of the anion
 - (B) Average bond length (H-F) is 1.13 Å in the anion HF₂-
 - (C) The stretching of the H-F bond in the anion is 0.21 Å
 - (D) H-atom is bonded to two F-atoms through two T bonds in the anion.

p-Block Elements (Halogen & Noble Gases)

10. A certain hypohalite on treating with hot and conc. NaOH forms anions P and Q. More stable anion among P and Q can be obtained by neutralizing its conjugate acid X.

Upon heating X to very high temperature, a compound Y is formed, which is used in estimation of a toxic gas which have 300 times stronger affinity for haemoglobin than dioxygen. Then which of the following statements are true.

- (A) X is HI.
- (B) Y is Cl₂O₅
- (C) Final product Y, has total no. of bonds 5.
- (D) Y on reacting with toxic gas produces a gas which is used in fire extinguisher.
- **11.** When F₂ is passed into a solution of mineral acid X, a greenish yellow gas Y is formed. Which on treating with slaked lime forms "Z". When Red litmus is kept in contact with Z, it changes into
 - (A) Blue colour

(B) No change in colour

(C) White in colour

- (D) None of these
- **12.** Which statement regarding iodine trichloride is incorrect.
 - (A) It forms dimer in gaseous state.
 - (B) In dimer I₂CI₆, the bridge bonds are longer than the terminal bonds.
 - (C) In solid state, it exist as planar molecule.
 - (D) On hydrolysis, it gives a mixture of iodous acid and hydrochloric acid.
- 13. The order of solubility of noble gases in water is
 - (A) He > Ar > Kr > Ne > Xe

(B) He > Ne > Ar > Kr > Xe

(C) Xe > Ar > Kr > He > Ne

- (D) Xe > Kr > Ar > Ne > He
- **14.** Consider following properties of the noble gases.
 - I: They readily form compounds which are colourless.
 - II: They generally do not form ionic compounds.
 - III : Xenon has variable oxidation states in its compounds.
 - IV: the smaller He and Ne do not form clathrate compounds.

Select correct properties.

(A) I, II, III

(B) II, III, IV

(C) I, III, IV

(D) All

- **15.** The formation of $O_{2^+}[PtF_6]^-$ is the basis for the formation of xenon fluorides. This is because :
 - (A) O₂ and Xe have comparable sizes.
 - (B) both O₂ and Xe are gases.
 - (C) O₂ and Xe have comparable ionisation energies.
 - (D) O₂ and Xe have comparable electronegativities.
- **16.** $[HXeO_4]^- + OH^- \longrightarrow [X] + [Y] + O_2 + H_2O$

The products [X] and [Y] in unbalanced reaction are:

(A) $[XeO_6]^{4-}$ & Xe

(B) [XeO₆]⁴- & XeO₃

(C) XeO₃ & Xe

(D) H₂XeO₄ & Xe

PART - II : SINGLE AND DOUBLE VALUE INTEGER TYPE

- 1. The total number of electrons present in 4th shell of Astatatine (85At) are:
- 2. How many of the following properties of halogen increases with increase in atomic number.

(a) Number of valence electron

(b) Metallic nature

(c) Boiling points(f) Inoisation enthalpies

(d) Atomic radii (g) Electronegativities (e) Density (h) Reactivity

(i) Oxidising nature.

- (j) $\Delta_{eq}H$ (magnitude wise)
- 3. A gas P is obtained at anode during the electrolysis of brine. The gas P when treated with excess of NH_3 released a diatomic gas Q. Find the value of (x y) where x & y are the molar mass of P and Q.
- **4.** How many orders are correct :
 - (a) H-F < H-Cl < H-Br < H-I (Bond length)
 - (b) H-F < H-I < H-Br < H-I (Acidic strength)
 - (c) H-I < H-Br < H-CI < H-F (Bond strength)
 - (d) H-F > H-Cl > H-Br > H-I (Thermodynamic stability)
 - (e) H–F < H–Cl < H–Br < H–I (Reducing power)
 - (f) H-F > H-I > H-Br > H-CI (Boiling point)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADV PHN - 27

HCI + HNO₃ - (Conc.) 5.

In this reaction change in oxidation number of N is

- How many of the following reactions would have HCl as one of the products? 6.
 - (a) $CH_4 + Cl_2 \longrightarrow$

(b) FeSO₄ + H₂SO₄ + Cl₂ \longrightarrow

(c) $I_2 + CI_2 + H_2O -$

(d) $Cl_2 + H_2O \longrightarrow$

(e) $H_2O + SO_2 + Cl_2 \longrightarrow$

(f) $SO_3 + Cl_2 \longrightarrow$

(g) NaCl(aq) — Electrolysis →

(h) $Cl_2O_7 + H_2O \longrightarrow$

- (i) Cl₂ + NaOH(conc.) →
- 7. The number of mixed anhydride among the following are

Cl₂O; Cl_{O₂; Cl₂O₆; Cl₂O₇; N₂O₅; NO₂; N₂O}

 $Br_2 + F_2 \text{ (excess)} \longrightarrow A \xrightarrow{Hydrolysis} B + C$ 8.

The summation of atomicities of compound A, B and C is:

- The number of lone pairs of electrons present in central atom of CIF3 is: 9.
- 10. Which of the following interhalogens exist at room temperature and have central atom hybridization sp3d2
 - (a) CIF₃
- (b) CIF₅
- (c) BrCl₃
- (d) IF₃

- (e) IF₅
- (f) BrF₅
- (g) IF₇
- (h) ICI₅

(i) IBr₅

11.

- (j) BrF₃
- (k) CIBr₅
- How many of the following properties of noble gases would increase from Helium to Radon? Boiling point, First Ionisation enthalpy, Atomic volume, Abundance in atmosphere, Density at STP,
- 12. The number of compounds/elements oxidised by XeF2 among following is: HF, HBr, HCl, HI, NH₃, CrF₂, Pt, S₈
- The oxidation state of xenon in perxenate ion is +n. Give the value of 'n'. 13.
- 14.

Valence electrons, Critical temperature.

The summation of total no. of lone pairs and σ bonds in in species (A, B and C) is.

15. How many of the given compounds can produce XeO3. XeF₆, XeF₄, XeO₂F₂, XeOF₄

PART - III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

- 1. Which of the following salts will evolve halogen on treatment with conc. H₂SO₄?
 - (A) NaCl
- (B) KI
- (C) NaBr
- (D) none of these

- 2. Which of the following reactions are correct?
 - (A) $NaIO_3 + 5NaI + 6H_2SO_4 \longrightarrow 6NaHSO_4 3H_2O + I_2$
 - (B) $2KBr + MnO_2 + 3H_2SO_4 \longrightarrow 2KHSO_4 + MnSO_4 + 2H_2O + Br_2 \uparrow$
 - (C) $K_2Cr_2O_7 + 14HCl \longrightarrow 2 KCl + 2CrCl_3 + 7H_2O + 3Cl_2$
 - (D) $2K_2MnF_6 + 4SbF_5 \longrightarrow 4KSbF_6 + MnF_3 + F_2$
- Which of the following will not displace the halogen from the solution of the halide? 3.
 - (A) Br₂ added to Nal
- (B) Br₂ added to NaCl (C) F₂ added to KCl
- (D) Cl₂ added to NaF

- lodine reacts with hypo to give: 4.
 - (A) Nal
- (B) Na₂SO₃
- (C) Na₂S₄O₆
- (D) Na₂SO₄

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

- 5. $Cl_2 + NH_3(excess) \longrightarrow A + B$ 6. (A) F_2 + Hot water \longrightarrow products 7.
 - (A) One of the product is also obtained by decomposition of (NH₄)₂Cr₂O₇.
 - (B) Bond order in one of the product is 3
 - (C) Both products contain chlorine.
 - (D) If Br2 is used instead of Cl2, one of product remain same
- In which of the following case disproportionation reaction take place.
- (B) $Cl_2 + Cold$ and dilute NaOH \longrightarrow products
- (C) Cl_2 + Hot and conc. NaOH \longrightarrow products
- (D) $Cl_2 + NH_3(excess) \longrightarrow products$
- In which following statement are correct.
 - (a) Anhydrous hydrogen fluroide is a liquid at ordianry temperature while other halogen acid are gases.
 - (b) Lead acetate does not form any precipitate with HF acid but other halogen acid from precipitates.
 - (c) HF is heated with a mixture of MnO₂ and H₂SO₄, no gas is evloyed but in case of HCl. HBr and HI acids evolved gases.
 - (d) HF is not oxidised by strong oxidising agent but other halogen acid are oxidised.
 - (A) a
- (B) b
- (C) c
- A pungent smelling gas X after being dried by concentrated H₂SO₄ was dissolved in water to give 8. strongly acidic solution. The gas also gives dense white fumes with NH₃. X is also a constituent of agua-regia. Which of the following is/are true for X?
 - (A) X is HCI
 - (B) X is Cl₂
 - (C) X is the most volatile among the hydrides of halogens
 - (D) Solution of X in water can liberate CO₂ from the solution of sodium hydrogencarbonates.
- Among the following which reactions are possible 9.
 - (A) $F_2 + H_2O \longrightarrow HF + O_2$

- (B) $Cl_2 + H_2O \longrightarrow HCI + HCIO$
- (C) Br₂ + H₂O \longrightarrow HBr + HBrO
- (D) $I_2 + H_2O \longrightarrow HI + HIO$
- 10. Which of the following statements are true:
 - (A) Strength of oxyacids: HClO₄ > HClO₃ > HClO₂ > HClO
 - (B) Strength of oxyacids: HClO₄ > HBrO₄ > HIO₄
 - (C) Number of $p\pi$ - $p\pi$ bonds : $HCIO_4 > HCIO_3 > HCIO_2 > HCIO$
 - (D) Percentage s-character of central atom: HClO₄ > HClO₃ > HClO₂ > HClO.
- 11. Which of the following interhalogen compounds is/are possible:
 - (A) CIF₃
- (B) IF₅
- (C) FCI₃
- (D) BrF₅
- Which of the following statement are true regarding interhalogens: 12.
 - (A) Thermal stability order IF > BrF > CIF
 - (B) Hydrolysis of IF₇ produces H₅IO₆ and HF as products.
 - (C) Interhalogen compounds are diamagnetic in nature.
 - (D) IF7 have pentagonal bipyramidal structure.
- 13. Which of the following inert gas(es) form(s) clathrate compoud(s) with quinol?
 - (A) Helium
- (B) Xenon
- (C) Krypton
- (D) Neon

Consider the following reactions 14.

$$Xe + F_2 \xrightarrow{Ni} A$$

2:1

 $Xe + F_2 \longrightarrow B$

1:20

 $Xe + F_2 \longrightarrow C$

1:5

Select incorrect statements:

- (A) A, B and C all are non-polar and planner molecule
- (B) B has no lone pair of electrons
- (C) The order of Xe-F bond length is A > C > B
- (D) A, B and C are act as lewis base.
- 15. Which of the following statements(s) is /are true for XeF₆?
 - (A) Its partial hydrolysis gives XeOF₄.
- (B) Its reaction with silica gives XeOF₄
- (C) It is prepared by the reaction of XeF4 and O2F2
- (D) Its reaction with XeO₃ gives XeOF₄.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

PART - IV : COMPREHENSION

Read the following passage carefully and answer the questions.

Comprehension # 1

A red liquid (A) when treated with sodium carbonate gives a mixture of two salts (B) and (C) in the solution in which (C) contains oxygen. The mixture then on acidification with sulphuric acid and distillation produces the red liquid (A) again.

- **1.** Select the correct statement for the liquid (A).
 - (A) It acts as an oxidising agent,
 - (B) It is sparingly soluble in water
 - (C) It converts the yellow-dye stuff fluorescein (I) into red colour compound
 - (D) All of these
- 2. Which of the following statement is false for salt (B)?
 - (A) Its solution in water gives pale yellow precipitate with silver nitrate solution
 - (B) Its solution in water gives white precipitate with lead nitrate solution
 - (C) Its acidified solution (with conc. H₂SO₄) liberates a coloured gas which produces orange red spots on starch paper
 - (D) None
- **3.** Which of the following statement is correct?
 - (A) Liquid (A) undergoes disproportionation reaction in aqueous solution of sodium carbonate
 - (B) The anion of compound (C) has sp³ hybridisation and is trigonal pyramidal in shape
 - (C) (A) and (B) both
 - (D) None of these

Comprehension # 2

Pseudo halides are anions having resemblance with halide ions. Group I metals can form salts with pseudo halides. Pseudo halogens can acts as ligands and form coordinate complexes. Their hydrides are weakly acidic and can be prepared in analogous way as halogen hydrides are prepared. Azides, cyanides, selonocyanides are example of pseudo halides.

- **4.** Cyanide, CN- is a pseudo halide. When cyanogen is heated with alkali solution, the products are :
 - (A) HCN, H₂O
- (B) NH₃, (NH₄)₂CO₃
- (C) NaCN, NaOCN
- (D) HCOONa, NH₃

- **5.** When NaCN reacts with H₂SO₄, the products are :
 - (A) HCN and Na₂SO₄

(B) HCN and NaHSO₄

(C) (CN)₂ and Na₂SO₄.H₂O

- (D) None of these
- **6.** When sodium pseudo halides are dissolved in water, it resembles with :
 - (A) NaCl
- (B) NaBr
- (C) NaF
- (D) Nal

- 7. (CN)₂ when react with Na metal, the product is:
 - (A) NaCN
- (B) Na₂C₂ and N₂
- (C) NaN₃ and C black
- (D) Na(CN)2-

Comprehension #3

The ionisation energy of dioxygen (O_2) is very close to that of Xenon. Also F and O have the highest electronegativity and consequently can oxidise Xe among rare gases. So Xe forms a large number of compounds with F and O. Xe and F_2 are mixed and reacted at different temperatures to give XeF_2 , XeF_4 and XeF_6 . Xe also forms an unstable gaseous XeO_4 and solid XeO_3 which is a very powerful explosive at higher temperatures. Some of the rare gases form clathrates or cage compounds by being entrapped in the cages of cystals laiitice of water, phenol of quinols. Helium can form intersitial compounds with transition metals. Bigger members of rare gases do not form such compounds because of their large size.

- **8.** Xenon forms the larges number of compounds only with oxygen and fluorine because:
 - (i) oxygen and fluorine have very high electronegativity.
 - (ii) ionisation energy of Xe is the largest among rare gases.
 - (iii) ionisation energy of Xe is low compared to those of other rare gases.
 - (iv) low dissociation energy of fluorine molecule compared to those of Cl2 and Br2
 - (A) (i), (ii), (iii)
- (B) (i), (iii), (iv)
- (C) (iii), (iv)
- (D) (i), (iv)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

9. XeF_6 cannot be prepared by the method :

(A)
$$Xe + 3F_2 \xrightarrow{475-532 \text{ K}} XeF_6$$

(B)
$$XeF_2 + 2F_2 \xrightarrow{500 \text{ K}} XeF_6$$

(C)
$$XeF_4 + F_2 \xrightarrow{475 \text{ K}} XeF_6$$

(D)
$$XeO_3 + 6HF \xrightarrow{475 \text{ K}} XeF_6 + 3H_2O$$

- **10.** He and Ne do not form any clathrates because :
 - (A) He and Ne are very large in size.
 - (B) being neutral they cannot form any polar bonds with the host molecules.
 - (C) being too small, they cannot be entrapped in the cages of water, phenol or guinol.
 - (D) clathrated with He and Ne are highly explosive.

Comprehension # 4

Answer Q.11, Q.12 and Q.13 by appropriately matching the information given in the three columns of the following table.

Observe the three columns in which column-1 represents Oxy acid, column-2 represents Oxidation State of CI while column-3 represents facts.

	State	Of CI WITHE	Colum	ni-s represents racts	•	
Column-1 (Oxy acid)		Column-2 (Oxidation State of CI)		Column-3		
	(I)	HCIO ₂	(P) + 1		(i)	Chlorine has highest electron affinity
	(II)	HClO₃	(Q)	+ 3	(ii)	Fluorine never exhibit oxidation state > 0
	(III)	HCIO ₄	(R)	+ 5	(iii)	HI is strong hydra acid
	(IV)	HCIO	(S)	+ 7	(iv)	The decreasing order of thermal stability is IF > BrF > CIF

11. Which of the following set of combination is correct?

(A)
$$I_{-}(s)_{-}(i)$$

12. Which of the following set of combination is incorrect?

$$(A) (I)-Q-(iv)$$

13. Which of the following set of combination is correct?

Comprehension # 5

Answer Q.14, Q.15 and Q.16 by appropriately matching the information given in the three columns of the following table.

Obser	Observe the three columns in which column-1 represents Compounds, column-2 represents							
Hybric	Hybridisation while column-3 represents facts.							
Column-1 Column-2 (Compounds) (Hybridisation)			Column-3					
(I)	XeF ₄	(P)	sp³d³	(i)	Neon is used in fluorescent bulbs.			
(II)	XeF ₂	(Q)	sp³d²	(ii)	Helium do not form clatharate compounds			
(III)	XeF ₆	(R)	sp³d	(iii)	XeOF ₄ has square pyramidal structure			
(IV)	XeO₃	(S)	sp ³	(iv)	Reacts with H₂ produces Xe & HF.			

14. Which of the following set of combination is correct?

$$(A) (I)-(S)-(iv)$$

(D)
$$(IV)-(P)-(i)$$

15. Which of the following set of combination is incorrect?

$$(A) (IV) - (S) - (i)$$

(D) (I)
$$-$$
(S) $-$ (iv)

16. Which of the following set of combination is correct?

$$(C)$$
 (IV) – (S) – (iv)

(D)
$$(I)-(P)-(i)$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Exercise-3

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

Section (A): Group 17th

Give an example of oxidation of one halide by another halogen. Explain the feasibility of reaction.

[JEE 2000 (M), 2/100]

2. The set with correct order of acidity is: [JEE 2001 (S), 3/35]

(A) HCIO < HCIO₂ < HCIO₃ < HCIO₄

(B) HCIO₄ < HCIO₃ < HCIO₂ < HCIO

(C) HCIO < HCIO₄ < HCIO₃ < HCIO₂

(D) HCIO₄ < HCIO₂ < HCIO₃ < HCIO

The reaction, $3CIO^{-}(aq) \rightarrow CIO_{3}^{-}(aq) + 2CI^{-}(aq)$ is an example of : 3.

[JEE 2001 (S), 3/35]

(A) oxidation reaction

(B) reduction reaction

(C) disproportionation reaction

(D) decomposition reaction

A gas 'X' is passed through water to form a saturated solution. The agueous solution on treatment with 4. silver nitrate gives a white precipitate. The saturated aqueous solution also dissolves magnesium ribbon with evolution of a colourless gas 'Y'. Identify 'X' and 'Y'. [JEE 2002 (S), 3/90]

(A) $X = CO_2$, $Y = CI_2$

(B) $X = Cl_2$, $Y = CO_2$

(C) $X = Cl_2$, $Y = H_2$

(D) $X = H_2$, $Y = Cl_2$

Section (B): Group 18th

Paragraph for Question Nos. 5 to 7

The noble gases have closed-shell electronic configuration and are monoatomic gases under normal conditions. The low boiling points of the lighter noble gases are due to weak dispersion forces between the atoms and the absence of other interatomic interactions.

The direct reaction of xenon with fluorine leads to a series of compounds with oxidation numbers +2, +4 and +6. XeF4 reacts violently with water to give XeO3. The compounds of xenon exhibit rich stereochemistry and their geometries can be deduced considering the total number of electron pairs in the valence shell.

5. Argon is used in arc welding because of its: [JEE 2007 (P-I), 4/81]

(A) low reactivity with metal

(B) ability to lower the melting point of metal

(C) flammability

(D) high calorific value

The structure of XeO3 is: 6.

[JEE 2007 (P-I), 4/81]

(A) linear

(B) planar

(C) pyramidal

(D) T-shaped

XeF₄ and XeF₆ are expected to be: 7.

(C) unreactive

[JEE 2007 (P-I), 4 /81] (D) strongly basic

(A) oxidizing (B) reducing

All the compounds listed in Column I react with water. Match the result of the respective reactions with 8. the appropriate options listed in Column II. [JEE 2010, (P-II) 8/79]

Column I

Column II (A) (CH₃)₂SiCl₂

(B) XeF₄

(C) Cl₂

(D) VCI₅

(p) Hydrogen halide formation

(q) Redox reaction

(r) Reacts with glass

(s) Polymerization

(t) O₂ formation

Paragraph for Questions 9 to 10

The reactions of Cl₂ gas with cold-dilute and hot-concentrated NaOH in water give sodium salts to two (different) oxoacids of chlorine, **P** and **Q**, respectively. The Cl₂ gas reacts with SO₂ gas, in presence of charcoal, to give a product R. R reacts with white phosphours to give a compound S. On hydrolysis, S gives an oxoacid of phosphours T.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADV PHN - 32

^{*} Marked Questions may have more than one correct option.

9. P and **Q**, respectively, are the sodium salts of :

[JEE(Advanced) 2013, 3/120]

- (A) hypochlorus and chloric acids
- (B) hypochlorus and chlorus acids
- (C) chloric and perchloric acids
- (D) chloric and hypochlorus acids

List-I

10. R, S and T, respectively, are:

[JEE(Advanced) 2013, 3/120]

(A) SO₂Cl₂, PCl₅ and H₃PO₄

(B) SO₂Cl₂, PCl₃ and H₃PO₃

List-II

(C) SOCI₂, PCI₃ and H₃PO₂

- (D) SOCl₂, PCl₅ and H₃PO₄
- 11. The unbalanced chemical reactions given in List I show missing reagent or condition (?) which are provided in List II. Match List I with List II and select the correct answer using the code given below the lists:

 [JEE(Advanced) 2013. 3/120]

P. $PbO_2 + H_2SO_4 \xrightarrow{?} PbSO_4 + O_2 + other product$								1. NO		
Q. Na ₂ S ₂ O ₃ + H ₂ O [?] NaHSO ₄ + other product							2. l ₂	2. l ₂		
R. $N_2H_4 \xrightarrow{?} N_2$ + other product						3. W	3. Warm			
S. $XeF_2 \xrightarrow{?} Xe + other product$						4. Cl	4. Cl ₂			
Code	s:									
	Р	Q	R	S		Р	Q	R	S	
(A)	4	2	3	1	(B)	3	2	1	4	
(C)	1	4	2	3	(D)	3	4	2	1	

12. Under ambient conditions, the total number of gases released as products in the final step of the reaction scheme shown below is : [JEE(Advanced) 2014, 3/120]

PART - II : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

JEE(MAIN) OFFLINE PROBLEMS

- 1. In case of nitrogen, NCl₃ is possible but no NCl₅ while in case of phosphorus, PCl₃ as well as PCl₅ are possible. It is due to: [AIEEE-2002, 3/225]
 - (1) availability of vacant d-orbital in P but not in N.
 - (2) lower electronegativity of P then N.
 - (3) lower tendency of H bond formation in P than N.
 - (4) occurrence of P in solid while N in gaseous state at room temperature.
- 2. Concentrated hydrochloric acid when kept in open air sometimes produces a cloud of white fumes. This is due to : [AIEEE-2003, 3/225]
 - (1) strong affinity of HCl gas for moisture in air results in forming of droplets of liquid solution which appears like a cloudy smoke.
 - (2) strong affinity for water, conc. HCl pulls moisture of air towards self. The moisture forms droplets of water and hence the cloud.
 - (3) conc. HCl emits strongly smelling HCl gas all the time.
 - (4) oxygen in air reacts with emitted HCl gas to form a cloud of chlorine gas.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

p-Block Elements ((Halogen	& Noble	Gases)

3.	The substance used in (1) CaC ₂ + Ca ₃ P ₂	holmes singnals of the s (2) $Ca_3(PO_4)_2 + Pb_3O_4$		(4) NH ₃	[AIEEE-2003, 3/225] + HOCl
4.	What would happen wacid? (1) Cr ³⁺ and Cr ₂ O ₇ ²⁻ are (3) CrO ₄ ²⁻ is reduced to		sium chromate is treated (2) Cr ₂ O ₇ ² - and H ₂ O are (4) CrO ₄ ² - is oxidized to	e formed	[AIEEE-2003, 3/225]
5.	Which one of the follow (1) It is used to produce (2) It is used as a cryog	ving statements regarding e and sustain powerful su genic agent for carrying o balloons instead of hydro	g helium is incorrect? uperconducting magnets out experiments at low te	mperatur	[AIEEE-2004, 3/225]
6.	Which among the follohalogen? (1) Hydration enthalpy (3) Electron affinity	owing factors is the mo	st important in making (2) Ionization enthalpy (4) Bond dissociation e		the strongest oxidizing [AIEEE-2004, 3/225]
7.	The correct order of the (1) HI > HBr > HCl > H (3) HCl < HF < HBr < H		rogen halides (H–X) is : (2) HF > HCl > HBr > H (4) HI > HCl < HF < HE		[AIEEE-2005, 3/225]
8.	Which of the following: (1) H ₃ PO ₃ is a stronger (3) HClO ₄ is a weaker	acid than H₂SO₃	(2) In aqueous medium (4) HNO ₃ is a stronger		
9.	What products are exp	ected from the dispropor	tionation reaction of hype	ochlorous	
	(1) HClO ₃ and Cl ₂ O	(2) HClO ₂ and HClO ₄	(3) HCl and Cl ₂ O	(4) HCI	[AIEEE 2006, 3/165] and HClO ₃
10.	(1) Cl₂ reacts with exce(2) Br₂ reacts with hot a(3) Ozone reacts with S	atement among the followers of NH $_3$ to give N $_2$ and and strong NaOH solution SO $_2$ to given SO $_3$. NaOH $_{(aq)}$ in the presence	HČl. n to give NaBr, NaBrO₄ a		[AIEEE 2007, 3/120]
11		XeF ₇]	•	e ?	[AIEEE 2009, 4/144]
12.	Which among the follow (1) Cl ₂	wing is the most reactive (2) Br ₂	? (3) I ₂	[J (4) ICl	EE(Main) 2015, 4/120]
13.	The products obtained (1) CIO_2^- and CIO_3^-	when chlorine gas reacts (2) Cl- and ClO-	s with cold and dilute aquage (3) Cl-and ClO ₂	[JEI	OH are : E(Main) 2017, 4/120] D- and ClO ₃
		JEE(MAIN) ONL	INE PROBLEMS		
1.	Shapes of certain inter	halogen compounds are		e of them	is not correctly stated?
	(1) IF ₇ : pentagonal bip (3) BrF ₃ : planar T-shap	yramid		014 Onlir amid	ne (11-04-14), 4/120]
2.	Which of the following	xenon-OXO compounds			
	(1) XeO ₂ F ₂	(2) XeOF ₄	[JEE(Main) 3 (3) XeO ₃	(4) XeC	ine (12-04-14), 4/120]

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

p-Block Elements (Halogen & Noble Gases)

3.	The least number of oxy (1) Nitrogen	vacids are formed by: (2) Fluorine	(3) Chlorin		2015 Online ((4) Sulphur	(10-04-15), 4/12	20]
4.	Chlorine water on stand (1) HCl only	ing loses its colour and f (2) HCl and HClO ₂					20]
5.	The non-metal that does	s not exhibit positive oxid	lation state		2016 Online ((09-04-16), 4/12	20]
	(1) Fluorine	(2) Oxygen	(3) Chlorin	ne	(4) lodine		
6.	The following statement	s concern elements in th	e periodic			g is true? (10-04-16), 4 /12	20]
	corresponding periods.			•		•	Э
7.		rsis with water produces silica. The compound 'X' (2) XeF4					
8.	Xenon hexafluoride on the oxidation state of Xe (1) XeOF ₄ (+6) and XeO (3) XeOF ₄ (+6) and XeO	O ₃ (+6)	(2) XeO ₂ (2018 Online (D ₃ (+6)	ds 'X' and 'Y' a (15-04-18), 4/12	
9.	Among the following reactions of hydrogen with halogens, the one that requires a catalyst is: [JEE(Main) 2019 Online (10-01-19), 4/1						
	$(1) H_2 + F_2 \rightarrow 2HF$	$(2) H_2 + Cl_2 \rightarrow 2HCl$	$(3) H_2 + I_2$	\rightarrow 2HI	$(4) H_2 + Br_2$	→ 2HBr	
10.	Chlorine on reaction wit	h hot and concentrated s	odium hyd			(12-01-19), 4/12	20]
	(1) ClO_3^- and ClO_2^-	(2) Cl ⁻ and ClO ⁻	(3) CI ⁻ and	d ClO₃-			

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Answers

EXERCISE - 1

PART - I

A_I-1. A solution of potassium hydrogen fluoride (KHF₂) in anhydrous HF.

$$KF + HF \longrightarrow K [HF_2] \xrightarrow{electrolysis} H_2 + F_2$$

On Electrolysis:

Anode: $HF_2^- \longrightarrow F_2 + H^+ + 2e^-$

Cathode: $2HF + H^+ + 2e^- \longrightarrow H_2 + HF_2^-$

- **A**_I-2. It contains trace amounts of NaIO₃ and NaIO₄. An important property of chile salt petre is that it is soluble in water while its impurities are not.
- **A**_{II}-3. Neil Bartlett obtained an orange yellow solid from the reaction of xenon with PtF₆to have Xe⁺[PtF₆]⁻. He noticed earlier that O₂ with PtF₆ reacts to give O₂⁺[PtF₆]⁻ and since ionisation enthalpies of O₂ and Xe were close to each other (Xe = 1170, O₂ = 1175 kJ mol⁻¹), he could succeed to prepare Xe⁺[PtF₆]⁻ from Xe and PtF₆.
- **B**₁-1. The electrode potential of F_2 (+2.87 V) is much higher than that of Cl_2 (+1.36 V).

$$\Delta H = \frac{1}{2} E_{x-x} - |E.A| - |\Delta H^{\circ}_{Hy}|$$

	F ₂	Cl ₂	Order
Bond dissociation enthalpy/kJmol-1	158.8	242.6	F ₂ < Cl ₂
Magnitude of E.A/kJmol ⁻¹	333	349	F ₂ < Cl ₂
Magnitude of ∆H°Hyd./kJmol ⁻¹	515	381	F ₂ > Cl ₂
Oxidizing power			F ₂ > Cl ₂

Therefore F₂ is much stronger oxidising agent than Cl₂.

B_I**-2.** F:-1,0

CI: -1, 0, +3, +5, +7

Br: -1, 0, +3, +5, +7

I : -1, 0, +3, +5, +7

B_I**-3.** Enthalpy of dissociation (x-x)/kJ mol⁻¹

CI-CI > Br-Br > F-F > I-I, Smaller enthalpy of dissociation of F_2 is due to relatively large electrons-electrons repulsion among the lone pairs in F_2 molecule.

C-1.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

C_I-3. (i) Structure of ICl₄

No. of electrons in the valence shell of the central I atom = 7. No. of electrons provided by four Cl atoms = $4 \times 1 = 4$

Charge on the central atom = 1

 \therefore Total no. of electrons around the central atom = 7 + 4 + 1 = 12 Total no. of electron pairs around the central atom = 12 /2 = 6

But the no. of bond pairs = 4 (: there are four I-Cl bonds)

 \therefore No. of lone pairs = 6 - 4 = 2

Thus, I in ICl_4^- has 4 bond pairs and 2 lone pairs. Therefore, according to VSEPR theory, it should be square planar.

Square planar

Now a noble gas compound having 12 electrons in the valence shell of the central atom is XeF_4 (8 + 1 × 4 = 12). Like ICl_4^- , it also has 4 bond pairs and 2 lone pairs. Therefore, like, XeF_4 is also square planar.

(ii) Structure of IBr₂.

No. of electrons in the valence shell of the central I atom = 7 No. of electrons provided by two Br atoms = $2 \times 1 = 2$ Charge on the central I atom is = 1

 \therefore Total no. of electrons around the central I atom = 7 + 2 + 1 = 1 But the no. of bond pairs = 2 (\because there are two I – Br bonds)

 \therefore No. of lone pairs = 5 - 2 = 3

Thus, I in IBr_2^- has two bond pairs and three lone pairs, Therefore, according to VSEPR theory, it should be linear.

Now a noble gas compound having 10 electrons in the valence shell of the central atom is XeF_2 (8 + 1 \times 2 =10). Like IBr⁻, it also has 2 bond pairs and 3 lone pairs.

(iii) Structure of BrO₃.

In BrO₃, since O is more electronegative than Br, therefore, –ve charge stays on the O atom.

PYRAMIDAL

Therefore, in BrO_3^- , there are two Br = O bonds and one bond $Br - O^-$ bond.

Now according to VSEPR theory, double bonds do not contribute any electron while single bonds contribute one electron towards the total number of the central atom. However, both double and single bonds contribute one bond pair. Thus, total number of electrons is the valence shell of the central Br atom = $7 + 2 \times 0 + 1 \times 1 = 8$

 \therefore No. of electron pairs around Br atom = 8/2 = 4

But total number of bond pairs = 2×1 (Br = 0) + 1×1 (Br - O⁻) = 3 and lone pairs = 4 - 3 = 1.

Thus, BrO_3^- has 3 bond pairs and one lone pair. Therefore, according to VSEPR theory, it should be pyramidal.

Now a noble gas compound having 8 electrons in the valence shell of the central atom is XeO_3 (8 × 1 + 3 × 0 = 8). Like BrO_3^- , it also has 3 bond pairs and one lone pair. Therefore, like BrO_3^- , XeO_3 is also pyramidal.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

 C_{II} -4. $XeF_2 > XeF_4$

2.00 Å 1.94 Å (Order of Xe-F bond length)

XeF₂: sp³d, axial bonds are long & weak

XeF₄: sp³d² square planar: all bonds identical.

- **D**_{II}-1. (i) Van der Waal's forces of attraction among molecules increase with the increase of atomic masses. Thus, higher energy is required to separate these molecules as to get gaseous state. Hence, the boiling points increase with increase of atomic masses.
 - (ii) The size of cavities formed during crystallisation of quinol is more than the size of helium and neon atoms.
- **D**_I-2. All the halogens are coloured. The colour is due to the allowed $\pi \to \sigma^*$ molecular orbital transitions. The colour of halogen is actually the colour of transmitted light.

D₁-3. F₂ being a strong oxidizing agent H₂O to O₂ or O₃.

$$2F_2(g) + 2H_2O(I) \longrightarrow 4H^+(ag.) + 4F^-(ag.) + O_2(g)$$

$$3F_2(g) + 3H_2O(1) \longrightarrow 6 H^+(aq.) + 6F^-(aq.) + O_3(g)$$

 Cl_2 , on the other hand, reacts with H_2O to form hydrochloric acid and hypochlorous acid to a small extent.

$$CI_2(g) + H_2O(I) \rightleftharpoons HCI(aq.) + HOCI (aq.)$$
Hydrochloric acid Hydrochlorous acid

 D_1 -4. $2F_2 + 2NaOH \longrightarrow OF_2 + 2NaF + H_2O$

Other halogens (X = CI / Br / I) disproportionate : $X_2 + 2NaOH \xrightarrow{Cold} NaX + NaOX + H_2O$

- **D_I-5.** $X_2 + 2NaOH \xrightarrow{Hot} NaX + NaXO_3 + H_2O$
- **D_I-6.** I₂, I₂ + HNO₃ (conc.) \longrightarrow HIO₃ + NO₂ + H₂O
- **D**_I-7. (i) The standard reduction potential of fluorine is maximum.

Thus, it cannot be oxidised by any other reagent. F- ion is very stable due to small size and high electronegativity of fluorine atom.

- (ii) F-does not have empty d-orbital liked other halogen. The formation of X_3^- ions involves sp³d-hybridizaion.
- **E_I-1.** Ba $(CIO_3)_2 + H_2SO_4 \longrightarrow BaSO_4 \downarrow + 2HCIO_3$ $KCIO_4 + H_2SO_4 \longrightarrow KHSO_4 + HCIO_4$
- **E**_I-2. HOCl acts as an acid, HOCl \longrightarrow H⁺ + OCl⁻, and thus turns blue litmus to red. It also work as bleaching agent, HOCl \longrightarrow HCl + [O], and the red litmus is decolorized by nascent oxygen.
- E_I-3. Chlorine, bromine and iodine form four series of oxyacids of the general formula HOX, HOXO, HOXO₂ and HOXO₃ in which the oxidation states of halogen (X = Cl, Br or I) is + 1, + 3, and + 5 and + 7 respectively. However, due to high electronegativity, small size and absence of d-orbitals, F cannot act as central atom in higher oxacids such as HOFO. HOFO₂ and HOFO₃ In which the oxidation state of F would be + 3, + 5 and + 7. It just forms one oxoacid. i.e., HOF in which the oxidation state of F is −1 and oxygen is in +1.
- **E_I-4.** (i) $2NaClO_3 + SO_2 + H_2SO_4 \longrightarrow 2NaHSO_4 + 2ClO_2$ (ii) $5I^- + IO_3^- + 6H^+ \longrightarrow 3I_2 + 3H_2O$
- **E_I-5.** CIO₂ (s) is a mixed anhydride of HCIO₂ and HCIO₃ because on dissolving in water it gives a mixture of these two acids.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

- F_{I} -1. (i) HI > HBr > HCI > HF; Due to decrease in bond energy
 - (ii) HI is the strongest reducing agent.
- **F₁-2.** Conc. HCl can be oxidized to Cl_2 by heating with a number of oxidizing agents such as MnO_2 , $KMnO_4$, $K_2Cr_2O_7$, etc.

$$MnO_2 + 4 HCl \longrightarrow MnCl_2 + Cl_2 + 2 H_2O$$

Cl₂ can reduced to HCl by its reaction with H₂ in presence of diffused sunlight.

$$H_2 + Cl_2 \xrightarrow{\text{Diffused sunlight}} 2 HCl$$

F₁-3. HI is a strong reducing agent and, therefore, reduces H₂SO₄ to SO₂ and itself get oxidised to I₂.

$$3NaI + conc. H_3PO_4 \xrightarrow{\Delta} K_3PO_4 + HI$$

F₁**-4.** Agua regia is three parts of concentrated HCl and one part of concentrated HNO₃.

$$2Au + 11HCI + 3HNO_3 \longrightarrow 2H[AuCl_4] + 3NOCI + 6H_2O$$

$$8HCI + 2HNO_3 + Pt \longrightarrow H_2[PtCl_6] + 2NOCI + 4H_2O$$

F_I-5. (i) In anhydrous state, HCl is a covalent molecule. In aqueous solution, HCl combines with water molecule to form H₃O⁺ and Cl[−] ions.

$$HCI(g) + H_2O(\ell) \longrightarrow H_3O^+(aq) + CI^-(aq)$$

- (ii) HF attacks glass bottles. The sodium and potassium silicates are converted into flurosilicates $Na_2 SiO_3 + 6HF \longrightarrow Na_2 SiF_6 + 3H_2O$
- (iii) The weakest acidic nature of HF is due to:
- High bond dissociation enthalpy of HF bond.
- HF has conjugate base F⁻. Small size and concentrated charge make F⁻ a Lewis base. Hence, it can accept back H⁺.
- **F**_I**-6.** (i) HI (hydrogen iodide)

(ii)
$$I_2 + SO_2 + H_2O$$

 F_1 -7. (i) Pb₃O₄ + 8HCl \longrightarrow 3PbCl₂ + 4H₂O + Cl₂

(ii)
$$3 [SiO_2 + 4HF \longrightarrow SiF_4 + 2H_2O]$$

$$3SiF_4 + 3H_2O \longrightarrow 2H_2SiF_6 + H_2SiO_3$$

Overall :
$$3SiO_2 + 12HF \longrightarrow \underbrace{2H_2SiF_6 + H_2SiO_3}_{White waxy \atop deposit} +3H_2O$$

(Xenon in excess)

$$Xe(g) + 2F_2(g) \xrightarrow{873 \text{ K}, 7 \text{ bar}} XeF_4(s)$$

(1:5 ratio)

$$Xe(g) + 3F_2(g) \xrightarrow{573 \text{ K, } 60-70 \text{ bar}} XeF_6(s)$$

(1:20 ratio)

G_{II}**-2.** Partial hydrolysis of XeF₆ gives XeOF₄.

$$XeF_6 + H_2O \longrightarrow XeOF_4 + 2 HF$$

G_{II}**-3.** Yes, hydrolysis of XeF₄ leads to a redox reaction(disproportination)

$$6XeF_4 + 12 H_2O \longrightarrow 4 Xe + 2XeO_3 + 24 HF + 3O_2$$

G_{II}-4. $XeF_6 + 3 H_2O \longrightarrow XeO_3 + 6 HF$

$$XeF_6 + H_2O \longrightarrow XeOF_4 + 2 HF$$

$$XeF_6 + 2H_2O \longrightarrow XeO_2F_2 + 4HF$$

- **G**_{II}**-5.** (i) $XeF_2 + H_2 \rightarrow Xe + 2HF$
 - (ii) $2XeF_6 + SiO_2 \rightarrow 2XeOF_4 + SiF_4$;

$$2XeOF_4 + SiO_2 \rightarrow 2XeO_2F_2 + SiF_4$$

- $2XeO_2F_2 + SiO_2 \rightarrow 2XeO_3$ (Explosive) + SiF₄
- (iii) $XeF_6 + SbF_5 \rightarrow [XeF_5]^+ [SbF_6]^- [Addition ionic product is formed]$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

$$H_{I}$$
-1. (a) $Cl_2 + F_2 \xrightarrow{473 \text{ K}} 2CIF$

(b)
$$I_2 + \frac{3CI_2}{(Excess)} \longrightarrow 2ICI_3$$

(c)
$$Br_2 + 3F_2 \longrightarrow 2BrF_3$$

(d)
$$Br_2 + 5F_2 \longrightarrow 2BrF_5$$

- **H**_I-2. ICl is more reactive than I₂ because I-Cl bond is weaker than I-I bond. Consequently, ICl breaks easily to form halogen atoms which readily bring about the reactions.
- H_I-3. (a) Chlorine trifluoride (CIF₃); iodine trichloride (ICl₃ or I₂Cl₆)
 - (b) $ICI + H_2O \longrightarrow HCI + HOI$
- **H**_I-4. (i) Chlorine bleaching action is due to oxidation while that of sulphur dioxide is due to reduction. Hence, the substance bleached by SO₂ is reoxidised by the oxygen of the air to its original state.

Cl₂ bleaches coloured material by oxidation and thus bleaching is permanent.

$$Cl_2 + H_2O \longrightarrow 2HCI + [O]$$

Coloured material + $[O] \longrightarrow Colourless$

On the other hand beaching by SO₂ is by reduction and thus temporary because colourless articles are further oxidised by air.

$$SO_2 + 2H_2O \longrightarrow 2H_2SO_4 + 2[H]$$

Coloured material + [H] \longrightarrow Colourless $\xrightarrow{[O]}$ coloured

(ii) I_2 is a covalent molecule. Thus, its solubility is less in polar solvent, i.e., water. Potassium iodide combines with iodine and forms a polyhalide which is an ionic compound. Being ionic, KI_3 is more soluble.

$$KI + I_2 \longrightarrow KI_3 (K^+ I_3^-)$$
 brown solution

$$H_1$$
-5. (i) 2NaIO₃ + 5NaHSO₃ \longrightarrow 3 NaHSO₄ + 2Na₂SO₄ + H₂O + I₂

(ii)
$$Ca(OH)_2 + Cl_2 \longrightarrow Ca(OCI)CI + H_2O$$

PART - II

A _{II} -1.	(B)	A _{II} -2.	(A)	A ₁₁ -3.	(A)	A _I -4.	(D)	A _I -5.	(C)
B _{II} -1.	(C)	B ₁ -2.	(B)	B ₁ -3.	(B)	C _I -1.	(C)	C ₁₁ -2.	(D)
Cп-3.	(D)	D _I -1.	(A)	D ₁₁ -2.	(D)	D ₁ -3.	(C)	D _I -4.	(C)
D ₁ -5.	(B)	E _I -1.	(D)	E _I -2.	(C)	E _I -3.	(B)	E _I -4.	(A)
E _I -5.	(B)	E ₁ -6.	(A)	F _I -1.	(D)	F _I -2.	(B)	F ₁ -3.	(B)
F _I -4.	(A)	F _I -5	(B)	F _I -6.	(D)	F _I -7.	(C)	F _I -8.	(A)
F _I -9.	(C)	F _I -10.	(A)	G ₁₁ -1.	(B)	G ₁₁ -2.	(B)	G ₁₁ -3.	(A)
G _{II} -4.	(A)	G ₁₁ -5.	(D)	H _I -1.	(D)	H _I -2.	(B)	H _I -3.	(A)
H _I -4.	(C)								

PART - III

- 1. (A p,q); (B p,r); (C q,s); (D p,q,r,s) 2. (A q,s); (B s); (C p); (D r)
- 3. (A p,q,r,s); (B p,q,r,s,t); (C p,q,r,s); (D q,s,t)

EXERCISE - 2

PART - I

- 1. (D) 2. (B) 3. (A) (A) 5. (C) 6. (A) 7. 8. 9. 10. (A) (A) (D) (D) 12. (A) 13. 14. (B) 15. (C) 11. (C) (D)
- **16.** (A)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

2

3

4

$D\Lambda$	DT	• _	Ш

1. 32 2. 4 3. 43 4. 6 5. 2 6. 5 7. 3 8. 13 9. 10. 11. 4 12. 13. 14. 20 15. 8

PART - III

- 1. (BC) 2. (ABCD) 3. (BD) 4. (AC) 5. (ABD) 6. (BC) 7. (ACD) 8. (ACD) 9. (ABC) 10. (ABC)
- 11. (ABD) 12. (ABCD) 13. (BC) 14. (AB) 15. (ABCD)

PART - IV

- 1. (D) 2. (D) 3. (C) 4. (C) 5. (A) 7. 6. (C) (A) 8. 9. 10. (C) (B) (D)
- **11.** (B) **12.** (C) **13.** (B) **14.** (B) **15.** (D)
- **16.** (C)

EXERCISE - 3

PART - I

1. $2KI(aq.) + Cl_2 \longrightarrow 2KCl(aq.) + I_2$

In the reaction Cl_2 oxidises iodide ion (-1 oxidation state) to I_2 (0 oxidation state). Cl_2 has higher oxidation potential than I_2 and thus oxidises iodide to iodine getting itself reduced to chloride ion. Similarly,

$$2I^{-}$$
 (aq.) $\longrightarrow I_2$ (s) + $2e^{-}$ CI_2 (g) + $2e^{-}$ $\longrightarrow 2CI^{-}$ (aq)

$$2I^{-}$$
 (aq) + Cl_2 (g) \longrightarrow I_2 (s) + $2Cl^{-}$ (aq).

- 2. (A) 3. (C) 4. (C) 5. (A) 6. (C)
- **7.** (A) **8.** (A p, s); (B p, q, r, t); (C p, q); (D p) **9.** (A)
- **10**. (A) **11**. (D) **12**. (C)

PART - II

JEE(MAIN) OFFLINE PROBLEMS

- 1. (1) 2. (4) 3. (1) 4. (2) 5. (3)
- **6.** (1) **7.** (2) **8.** (4) **9.** (4) **10.** (2)
- **11** (4) **12**. (4) **13**. (2)

JEE(MAIN) ONLINE PROBLEMS

- **1.** (2) **2.** (4) **3.** (2) **4.** (3) **5.** (1)
- **6.** (3) **7.** (4) **8.** (3) **9.** (3) **10.** (3)

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

PART - I: PRACTICE TEST-1 (IIT-JEE (MAIN Pattern))

Max. Time : 1 Hr.	Max. Marks : 120

Important Instructions

- The test is of 1 hour duration.

2. 3. 4. 5.	The Test Booklet consists of 30 questions. The maximum marks are 120 . Each question is allotted 4 (four) marks for correct response. Candidates will be awarded marks as stated above in Instructions No. 3 for correct response of each question. 1/4 (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 4 above.								
1.	The manufacture of fluorine is done by: (1) heating anhydrous HF and MnO ₂ . (2) electrolysis of aqueous HF. (3) electrolysis of anhydrous HF mixed with KHF ₂ . (4) heating a mixture of KF, MnO ₂ and conc. H ₂ SO ₄ .								
2.	The catalyst used in Do (1) CuCl ₂	econs process is : (2) Cu	(3) CuSO ₄	(4) CuS					
3.	Which electrolyte is use (1) KHF ₂ solution in an (3) pure dry molten KH	hydrous HF	r the preparation of fluorine ? (2) molten cryolite (4) none of these						
4.	Chlorine is liberated when (1) KMnO ₄ + NaCl	nen we heat : (2) K ₂ Cr ₂ O ₇ + MnO ₂	(3) Pb(NO ₃) ₂ + MnO ₂	(4) K ₂ Cr ₂ O ₇ + HCl					
5.		ng Cl_2 gas in the laboratod concentrated H_2SO_4 . $KMnO_4$.	ory is : (2) by heating NaCl and (4) by passing F ₂ throu						
6.	When chlorine reacts v (1) carbon	vith turpentine oil, the pro (2) carbon and HCl	duct formed is : (3) turpentine chloride	(4) none of these					
7.	Which of the following (1) Na ₂ SO ₃	does not decolourise iodi (2) Na ₂ S ₂ O ₃	ne ? (3) NaCl	(4) NaOH					
8.		$6CO + 3H_2O_3^{2-} \longrightarrow 5Br$ and carbonate is reduced and water is oxidised							
9.	, ,	hes. The gas and halate	•	alate which can be used in fire (4) none					
10.		g about bleaching of flow lation of dye. X and Y are (2) Cl ₂ , SO ₂		cing the colouring matter. While (4) None of these					
11.	Which of the following (1) HCl	gases can be dried by co (2) HBr	ncentrated H ₂ SO ₄ ? (3) HI	(4) H ₂ S					

Reg. & Corp. / Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

- 12. H₂SO₄ cannot be used for obtaining HBr from KBr because:
 - (1) HBr oxidises H₂SO₄.

(2) HBr reduces H₂SO₄.

(3) HBr undergoes disproportionation.

(4) KBr reacts very slowly.

- 13. Which of the following is weakest acid?
 - (1) HF
- (2) HCI
- (3) HBr

(4) HI

- 14. Among the following which reaction is not correct:
 - (1) $NaAlO_2 + HCI + H_2O \longrightarrow NaCI + Al(OH)_3$
 - (2) $Ca_3N_2 + HCI \longrightarrow CaCl_2 + NH_3$
 - (3) Au + H+ NO₃⁻ + Cl⁻ \longrightarrow AuCl₃⁻ + NO + H₂O (4) Pt + H⁺ + NO₃⁻ + Cl⁻ \longrightarrow PtCl₆²⁻ + NO + H₂O
- 15. Order of boiling point is:
 - (1) HF > HI > HBr > HCl

(2) HF > HBr > HI > HCI

(3) HCI > HBr > HI > HF

(4) HCl > HI > HBr > HF

- 16. Euchlorine is:
 - (1) obtained by heating perchlorate with conc. HCl.

(2) a chloride of europium

(3) a mixture of Cl₂ and Cl₂O₇

(4) a mixture of Cl₂ and Cl₂O₂

- 17. Consider the oxy acids HCIOn series here value of n is 1 to 4, then incorrect statement regarding these oxvacids is:
 - (1) Acidic chloride of oxy acids increases with increasis n.
 - (2) Oxidising power of oxy acids increases with decreasis n.
 - (3) Thermal stability oxy acids decreases with increasis n.
 - (4) CI-O bond order decreases with decreasis n.
- 18. How many of the following are correctly match:
 - (1) Cl₂O (a) yellow-brown gas (b.p. 10°C).
 - (2) ClO₂ (b) React with O₃ gives Cl₂O₆ (dark red) it is a mixed anhydride of HClO₃ and HClO₄.
 - (3) Cl₂O₇ (c) It is anhydride of HClO₄ (only).
 - (4) Cl₂O₇ (d) Oily explosive colourless liquid.
 - (5) Cl₂O₇ (e) has 2 type of O-Cl bond length.
 - (6) I₂O₅ (f) Obtained by reaction between I₂ and CO.
 - (1) (1) (a); (2) (b); (3) (c); (4) (d)

(2) (3) - (b); (4) - (e); (5) - (d); (6) - (f)

(3) (1) - (b); (2) - (a); (3) - (c); (4) - (d)

(4) (2) - (c); (3) - (b); (4) - (d); (5) - (e)

- 19. The strongest acid amongst the following is:
 - (1) HCIO₄
- (2) HCIO₃
- (3) HClO₂

(4) HCIO

- 20. Which of the following is not the characteristic of interhalogen compounds?
 - (1) They are more reactive than halogens.
 - (2) They are quite unstable but none of them is explosive.
 - (3) They are covalent in nature.
 - (4) They have low boiling points and are highly volatile.
- 21. Which of the following statement is correct.
 - (1) All interhalogen compounds are gaseous at room temperature.
 - (2) Interhalogen are either gaseous or liquid at room temperature.
 - (3) Interhalogens can solid or liquid or gaseous at room temperature.
 - (4) Interhalogen compounds are liquid at room temperature.
- 22. In which following statement is incorrect:
 - (1) Pseudohalogen ions are not spherical
 - (2) Pseudohalides are generally less electronegative than the lighter halide (F-, Cl-)
 - (3) OCN-, NNN- pseudohalide are bidentate ligands
 - (4) Pseudohalogens form dimers and form molecular compound with non metal and lonic compounds with alkali metal.

Reg. & Corp. / Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

23. Ionisation energy values are given for Xenon (Xe) and Radon (Rn)

> Element IE(KJ/mol) Xe 1169 1036 Rn

Predict a suitable reason for the fact that the chemistry of Rn has not been studied significantly while that of Xe has been extensively studied.

(1) Rn appears to be more reactive (3) Rn isotopes have shorter lifetimes (2) Xe is less reactive than Rn

(4) Rn is heavior than Xe.

24. In the clathrates of xenon with water, the nature of bonding between xenon and water molecule is:

(1) covalent

(2) hydrogen bonding

(3) co-ordinate

(4) dipole-induced dipole interaction

25. Among noble gases (from He to Xe) only xenon reacts with fluorine to form stable fluorides because xenon:

(1) has the largest size.

(2) has the lowest ionization enthalpy.

(3) has the highest heat of vaporization.

(4) is the most readily available noble gas.

What are the products formed in the reaction of xenon hexafluoride with silicon dioxide? 26.

(1) XeSiO₄ + HF

(2) XeF₂ + SiF₄

 $(3) XeOF_4 + SiF_4$

(4) XeO₃ + SiF₂

27. Which of the following are partial hydrolysis gives XeOF₂.

(1) XeF₂

(2) XeF₄

(3) XeF₆

(4) XeOF₄

The ratio of total number of lonepairs in XeF2 and XeF4 are: 28.

(1) 3 : 2

(2)9:14

(3) 14:19

(4)9:19

29. Xenon reacts with P + F₆ to form

(1) XeF₂

(2) $Xe^{+}[P + F_{6}]^{-}$

(3) Xe⁻[Pt F₆]⁺

(4) XeF₄

Which among the following statement is incorrect. 30.

(1) XeF₄ and SbF₅ combine to form salt.

(2) XeF₆ on complete hydrolysis gives XeO₃.

(3) XeF₆ react with H₂ produce XeF₂ and HF.

(4) Xenon hexaflouride react with silica to form a Xenon compound and this Xenon compound have oxidation of Xenon is +6.

Practice Test-1 (IIT-JEE (Main Pattern)) **OBJECTIVE RESPONSE SHEET (ORS)**

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

PART-II: NATIONAL STANDARD EXAMINATION IN CHEMISTRY (NSEC) STAGE-I

1. Acid used for making permanent markings on the glass surface is: [NSEC 2001]

(A) HNO₃

(B) HF

(C) HIO₃

(D) H₂SO₄

2. One gas bleaches the colour of flowers by reduction while the other by oxidation. The gases are

[NSEC 2002]

(A) SO₂, Cl₂

(B) CO, CI₂

(C) H₂S, Br₂

(D) NH₃, SO₃

Reg. & Corp. / Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

3.	Fluorine has -1 oxidation due to	-1, +1, +3, +5	and +7. This is [NSEC 2002]			
	(A) fluorine being a gas(C) non-availability of d-	orbitals in iodine	(B) availability of d-orbitals in iodine(D) none of the above			
4.	Which pseudo-halogen (A) cyanogen	does not have dimeric n (B) azide	ature (C) thio	gene	(D) selenothige	[NSEC 2002] n.
5.	The correct sequence of (A) $Cl^- > Br^- > I^-$	f reducing power of halic (B) $Br^- > I^- > Cl^-$		re Br ⁻ > CI ⁻	(D) Cl ⁻ > I ⁻ > B	[NSEC 2002]
6.		basicity in the four halid (B) $Cl^- > Br^- > I^- > F^-$			(D) Cl ⁻ > F ⁻ > E	[NSEC 2002] Br- > I-
7.	Which group of periodic (A) Alkali metal	table have large negative (B) Zero group		y of activation? ogen family	(D) Alkaline ear	[NSEC 2002] th metal.
8.	The compound that can (A) XeO ₃	not be formed by xenon (B) XeF ₄	is (C) XeC	Cl4	(D) XeOF ₄	[NSEC 2003]
9.		and acidic MnO ₂ oxidisc te that represents the co	rrect orde (B) acid		oxiding ability is	
10.	Hydrogen fluoride is a li (A) dimerisation (C) association	quid at room temperatur	(B) diss	ociation followed merisation	d by aggregation	[NSEC 2005]
11.	Which of the following is (A) (HF + SbF ₅) in SO ₂ (C) (HNO $_3$ + BF $_3$) in SO	•	(B) $(H_2SO_4 + SO_3)$ in SO_2 (D) $(H_3PO_4 + PF_5)$ in SO_2			[NSEC 2008]
12.	The noble gas was first (A) Cavendish	time discovered by (B) Willian Ramsay	(C) Ray	leigh	(D) Frankland	[NSEC 2008]
13.	the liquid state. The rea (A) BrF ₃ has higher mol			than BrF ₃ , but B (B) CIF ₃ is volat (D) CIF ₃ is mos	ile	conductance in [NSEC 2011]
14.	Radioactive inert gas is (A) technetium	: (B) radon	(C) xen	on	(D) curium	[NSEC 2011]
15.	The gas which liberates (A) Cl ₂	bromine from a solution (B) I ₂	of KBr is (C) SO ₂		(D) HI	[NSEC 2013]
16.	Bleaching powder conta (A) Cl ₂ O	ains a salt of an oxoacid (B) Cl ₂ O ₇	as one o (C) ClO		s. The anhydride (D) Cl ₂ O ₆	of that acid is [NSEC 2014]
17.	Which of the following solution? (I) HCI (A) (III), (I), (II)	hydrogen halides react v (II) HF (B) (I), (III), (IV)	with AgN (III) HI (C) (IV)		ecipitate that dis (IV) HBr (D) (II), (IV), (III	[NSEC 2014]
18.	(I) The bond dissociatio (II) The only oxidation s (III) The amount of en progressively as we mo	ergy required for the every from F to I cies in their aqueous sol	are in the	order: $I_2 < F_2 > 0$ of electrons to $(1 - 1)^2 = 0$		[NSEC 2015] tate decreases

Reg. & Corp. / Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in
Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

- 19. Consider a compound CsXY₂ where X and Y are halogens. Which of the following statement/s is/are correct? [NSEC 2016]
 - (i) X and Y have different oxidation states.
 - (ii) For Y with lower atomic number than X, X can assume oxidation states higher than normal.
 - (iii) Such compounds exist because Cs+ has a high charge to size ratio.
 - (A) Only (i)
- (B) (i) and (ii)
- (C) Only (ii)
- (D) (i) and (iii)
- **20.** Iodine is a solid and sublimes at ordinary temperature. This is because of :

[NSEC 2017]

(A) weak I-I bonds

- (B) strong I-I bonds
- (C) lone pair-bond pair repulsions
- (D) weak van der Waals forces between I2 molecules
- 21. A 500 mL glass flask is filled at 298 K and 1 atm, pressure with three diatomic gases X, Y and Z. The initial volume ratio of the gases before mixing was 5 : 3 : 1. The density of the heaviest gas in the mixture is not more than 25 times that of the lightest gas. When the mixture was heated, vigorous reactions take place between X and Y and X and Z in which all the three gases were completely used up. The gases X, Y, Z respectively are

 [NSEC 2017]
 - (A) H₂, O₂, N₂
- (B) H₂, O₂, Cl₂
- (C) H₂, F₂, O₂
- (D) O₂, H₂, F₂

PART - III: PRACTICE TEST-2 (IIT-JEE (ADVANCED Pattern))

Max. Time: 1 Hr. Max. Marks: 66

Important Instructions

A. General:

- 1. The test is of 1 hour duration.
- 2. The Test Booklet consists of 22 questions. The maximum marks are 66.
- B. Question Paper Format
- 3. Each part consists of five sections.
- 4. Section-1 contains 7 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE is correct.
- 5. Section-2 contains 5 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE OR MORE THAN ONE are correct.
- 6. Section 3 contains 6 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9 (both inclusive).
- 7. Section 4 contains 1 paragraphs each describing theory, experiment and data etc. 3 questions relate to paragraph. Each question pertaining to a partcular passage should have only one correct answer among the four given choices (A), (B), (C) and (D).
- 8. Section 5 contains 1 multiple choice questions. Question has two lists (list-1: P, Q, R and S; List-2: 1, 2, 3 and 4). The options for the correct match are provided as (A), (B), (C) and (D) out of which ONLY ONE is correct.
- C. Marking Scheme:
- 9. For each question in Section 1, 4 and 5 you will be awarded 3 marks if you darken the bubble corresponding to the correct answer and zero mark if no bubble is darkened. In all other cases, minus one (-1) mark will be awarded.
- 10. For each question in Section 2, you will be awarded 3 marks. If you darken all the bubble(s) corresponding to the correct answer(s) and zero mark. If no bubbles are darkened. No negative marks will be answered for incorrect answer in this section.
- 11. For each question in Section 3, you will be awarded 3 marks if you darken only the bubble corresponding to the correct answer and zero mark if no bubble is darkened. No negative marks will be awarded for incorrect answer in this section.

Reg. & Corp. / Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} www.resonance.ac.in \mid \textbf{E-mail:} contact@resonance.ac.in$

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

SECTION-1: (Only One option correct Type)

This section contains 7 multiple choice questions. Each questions has four choices (A), (B), (C) and (D) out of which Only ONE option is correct.

1. Which graph correctly describes a trend found in the halogen group?

- 2. (i) (r) + (p) \longrightarrow NaClO₂ + O₂
 - (ii) $IO_{3^{-}} + I^{-} \xrightarrow{H^{+}}$ (a)
 - (iii) Acidic solution of $ClO_2^- \longrightarrow (s) + (r)$.

(disproportionation reaction)

- (p) used as air purifier and CO₂ absorber.
- (q) estimated by hypo and it forms voilet colour vapour (it self).
- (r) is yellow colour gas
- (s) gives chromylchloride test.

Which option is correct.

(A) (p) = Na_2O_2 , (q) = I_2

(B) (q) = I_2O_5 , (r) = CI^-

(C) (p) = Na_2O , (r) = Cl_2O

- (D) (r) = CI_2 , (s) = CI_2O_3
- 3. $[HXeO_4]^- + OH^- \longrightarrow [X] + [Y] + O_2 + H_2O$

The products [X] and [Y] in unbalanced reaction are :

- (A) [XeO₆]⁴- & Xe
- (B) [XeO₆]⁴- & XeO₃
- (C) XeO₃ & Xe
- (D) H₂XeO₄ & Xe

- **4.** Consider following properties of the noble gases.
 - I: They readily form compounds which are colourless.
 - II: They generally do not form ionic compounds.
 - III: Xenon has variable oxidation states in its compounds.
 - IV: the smaller He and Ne do not form clathrate compounds.

Select correct properties.

- (A) I, II, III
- (B) II, III, IV
- (C) I, III, IV
- (D) All

- 5. Which behave like pseudohalide in following
 - (A) $(CN)_2$
- (B) (SCN)₂
- (C) N₃-
- (D) I₃-

6. $Cl_2(g) + Ba(OH)_2 \longrightarrow X(aq) + BaCl_2 + H_2O$

$$X + H_2SO_4 \longrightarrow Y + BaSO_4$$

$$Y \xrightarrow{\Delta} Z + H_2O + O_2$$

Y and Z, are respectively:

- (A) HCIO₄, CIO₂
- (B) HClO₃, ClO₂
- (C) HCIO₃, CIO₆
- (D) HCIO₄, Cl₂O₇
- 7. Which of the following on treatment with XeF₆ gives Xe?
 - (A) H₂
- (B) HCI
- (C) OH- (conc)
- (D) All of these

Section-2: (One or More than one options correct Type)

This section contains 5 multipole choice questions. Each questions has four choices (A), (B), (C) and (D) out of which ONE or MORE THAN ONE are correct.

- **8.** Which of the following have melting points less than 298 K.
 - (A) Fluorine
- (B) Bromine
- (C) lodine
- (D) Chlorine

Reg. & Corp. / Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

9. Aq. solution of salt $\xrightarrow{\text{Halogen}} A \xrightarrow{\text{excess}} \text{soluble}$

Yellow precipitate

The halogen acid (X) is

- (A) HF
- (B) HCI
- (C) HI
- (D) Cl₂ (aq.)

- **10.** Select the correct statement(s).
 - (A) Cl₂O and ClO₂ are used as bleaching agents and as germicides.
 - (B) I_2O_5 is used in the quantitative estimation of CO.
 - (C) CIO2 is the anhydride of HCIO2 and HCIO3.
 - (D) Cl₂O is a colouless oily liquid.
- **11.** Which of the following are Pseudo halid.
 - (A) CN-
- (B) N₃-
- (C) OCN-
- (D) NO₃-
- 12. Which of the following can be obtained by hydrolysis of XeF₆
 - (A) XeO₃
- (B) HF
- (C) XeO₂F₂
- (D) Xe

Section-3: (One Integer Value Correct Type.)

This section contains 6 questions. Each question, when worked out will result in one integer from 0 to 9 (both inclusive)

- **13.** What is the sum of group number and period number (according to IUPAC system) of the non-metal which exist in liquid state at room temperature.
- **14.** How many of the following compounds form HCl on hydrolysis as one of the products (major or minor)
 - (i) BCl₃ (vi) CrO₂Cl₂
- (ii) BiCl₃ (vii) CH₃Cl
- (iii) SO₂Cl₂ (viii) NaCl
- (iv) NCl₃ (ix) ZnCl₂

(v) PCI₅

15. $NH_4CIO_4 + NHO_3 \longrightarrow (A) + (B) \stackrel{\triangle}{\longrightarrow} (C)$

 $NH_4CIO_4 + NHO_3 \longrightarrow (A) + (B) \stackrel{\Delta}{\longrightarrow} (C)$ (neutral oxide) The summation of number of lone pairs and atomicities of compound B and C is.

- **16.** The oxidation state of iodine in compound which is obtained by heating HIO₃ at 170°C is +n. Give value of n.
- 17. Hydrolysis of compound A, two acids P and Q forms, P is used in etching of glass, Q on strongly heating gives a oxide R. R is used in estimation of carbon monoxide. Calculate total number of lone pairs on compound A.
- **18.** The simplest ratio x : y of xenon and fluorine when passes through Ni-tube (400°C) at high pressure gives XeF_6 . Here x + y is :

SECTION-4: Comprehension Type (Only One options correct)

This section contains 1 paragraphs, each describing theory, experiments, data etc. 3 questions relate to the paragraph. Each question has only one correct answer among the four given options (A), (B), (C) and (D)

Paragraph for Questions 19 to 21

White crystalline solid (A) reacts with H_2 to form a highly associated liquid (B) and a monoatomic, colorless gas (C). The liquid (B) is used for etching glass. Compound (A) undergoes hydrolysis slowly to form (C), (B) and a diatomic gas (D) whose IE is almost similar to that of (C). (B) forms an addition compound with KF to form (E) which is electrolysed in the molten state to form a most reactive gas (F) which combines with (C) in 2:1 ratio to produce (A).

- 19. According to Molecular Orbital Theory, which of the following is correct about the molecule D?
 - (A) its bond order is 2.0

- (B) it has two unpaired electrons in π -bonding M.O.
- (C) both the above are correct
- (D) none of these is correct

Reg. & Corp. / Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

- 20. Which of the following is correct for the white crystalline solid (A)?
 - (A) It oxidises F- to F₂
 - (B) It on hydrolysis with alkali under goes disproportionation.
 - (C) It is obtained by the reaction of (C) with O₂F₂ at 118°C.
 - (D) None of these.
- 21. The compound 'A' reacts with sulphur to form a compound in which hybridisation state of sulphur atom is:
 - (A) sp³d
- (B) sp^3d^2
- (C) sp³
- (D) sp^3d^3

SECTION-5: Matching List Type (Only One options correct)

This section contains 1 questions, each having two matching lists. Choices for the correct combination of elements from List-I and List-II are given as options (A), (B), (C) and (D) out of which one is correct

22. Match the reaction products listed in column-I with the particulars listed in column-II

	Column-I		Column-II
(A)	$XeF_2 + H_2O \longrightarrow$	(p)	Redox reaction
(B)	$XeF_4 + H_2O \longrightarrow$	(q)	Disproportionation
(C)	$XeF_6 + H_2O \longrightarrow$	(r)	O ₂ formation
(D)	XeO ₃ + NaOH →	(s)	Xe formation
		(t)	Etching glass

Practice Test-2 (IIT-JEE (ADVANCED Pattern))

OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	21 22								
Ans.		(A)		(B)		(C)		(D)		

Reg. & Corp. / Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

APSP Answers

	PART - I								
1.	(3)	2.	(1)	3.	(1)	4.	(4)	5.	(3)
6.	(2)	7.	(3)	8.	(2)	9.	(2)	10.	(1)
11.	(1)	12.	(2)	13.	(1)	14.	(3)	15.	(1)
16.	(4)	17.	(3)	18.	(1)	19.	(1)	20.	(4)
21.	(3)	22.	(3)	23.	(3)	24.	(4)	25.	(2)
26.	(3)	27.	(2)	28.	(2)	29.	(2	30.	(3)
				PAF	RT - II				
1.	(B)	2.	(A)	3.	(B)	4.	(B)	5.	(C)
6.	(C)	7.	(C)	8.	(C)	9.	(D)	10.	(C)
11.	(A)	12.	(B)	13.	(C)	14.	(B)	15.	(A)
16.	(A)	17.	(B)	18.	(D)	19.	(B)	20.	(D)
21.	(C)								
				PAF	RT - III				
1.	(B)	2.	(A)	3.	(A)	4.	(B)	5.	(C)
6.	(B)	7.	(D)	8.	(ABD)	9.	(BC)	10.	(ABC)
11.	(ABC)	12.	(ABC)	13.	21	14.	5	15.	24
16.	5	17.	16	18.	21	19.	(A)	20.	(C)
21.	(B)	22.	(A) – (p,q,r	,s,t) ; (B) –	(p,q,r,s,t) ; (C	c) – (t) ; (D) -	– (p,q,r,s)		

APSP Solutions

PART - I

1. Moissan method

- 2. $4HCI + O_2 \xrightarrow{CuCl_2} 2CI_2 + 2H_2O$
- **3.** KHF₂ solution in anhydrous HF.
- 4. Only $K_2Cr_2O_7$ and HCl will give Cl_2 $K_2Cr_2O_7 + 8 HCl \longrightarrow 2KCl + 2$

$$K_2Cr_2O_7 + 8 HCI \longrightarrow 2KCI + 2CrCl_3 + 4H_2O + 3O$$

 $2HCI + O \longrightarrow H_2O + Cl_2 \times 3$
 $K_2Cr_2O_7 + 14 HCI \longrightarrow 2KCI + 2CrCl_3 + 7H_2O + 3Cl_2$

- 5. $2KMnO_4 + 16HCI \rightarrow 2KCI + 2MnCl_2 + 8H_2O + 3Cl_2$
- 6. $C_{10}H_{16}$ + $8CI_2 \longrightarrow 10C + 16HCI$ Terpentine oil
- 7. NaCl has no reaction with iodine.
- 8. $3Br_2 + 6CO_3^{2-} + 3H_2O \longrightarrow 5Br^- + BrO_3^- + 6HCO_3^-$ (disproportionation reaction) In this reaction O.S. of Br changes from 0 (in Br₂) to -1 (in Br⁻) and +5 (in BrO $_3^-$). Thus, in this reaction bromine is both oxidised (increase in O.S.) and reduced (decrease in O.S.) –disproportionation reaction.
- 11. HCl is dried over conc. H₂SO₄. Because HBr, HI and H₂S are oxidised by H₂SO₄.
- 12. The HBr so formed reduces H_2SO_4 and itself gets oxidised to evolve Br_2 .

$$2HBr + H_2SO_4 \longrightarrow 2H_2O + SO_2 + Br_2$$

- **13.** Acid strength order : HI > HBr > HCl > HF
 Amongs these HI, HBr, HCl are strong acids whereas HF is a weak acid.
- **14.** Au + H⁺ + NO₃⁻ + Cl⁻ \longrightarrow AuCl₄⁻ + NO + H₂O
- **15.** BP↑ with increase in atomic mass of the hologes. HF has highest BP due to association of HF molecule through H-bonding.
- **16.** When KClO₃ is heated with conc. HCl, a mix. of Cl₂ and ClO₂ is formeed known as euchlorine.

$$2KCIO_3 + 4HCI \longrightarrow 2KCI + \underbrace{2CIO_2 + C}_{euchlorine}^2 + 2H_2O$$

- 17. (1) Acidic chloride: HOCl < HClO₂ < HClO₃ < HClO₄
 - (2) Oxidising power: HOCl > HClO₂ > HClO₃ > HClO₄
 - (3) Thermal stability: HOCI < HCIO₂ < HCIO₃ < HCIO₄
 - (4) CI-O bond order: HOCI < HCIO₂ < HCIO₃ < HCIO₄

Reg. & Corp. / Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

18.
$$ClO_2 + O_3 \xrightarrow{0^{\circ}C} Cl_2O_6 \text{ (dark red)}$$

 $Cl_2O_6 + H_2O \xrightarrow{} HClO_3 + HClO_4$

$$2HClO_4 \xrightarrow{-H_2O} Cl_2O_7$$

$$Cl_2O_7 \equiv O Cl O Cl O$$

6 :
$$O = AI$$
 bond

 $I_2O_5 + 5CO \longrightarrow I_2 + CO_2$ (this I_2 titrated by hopo solution).

- **19.** CIO₄⁻ , conjugate base is most stable as charge is dispersed over four oxygen atom and so HCIO₄ is the strongest acid.
- 20. Interhalogen compounds are mostly liquid or solid at room temperature and are not highly volatile.
- 21. It is a fact
- **22.** OCN⁻, NNN⁻ are ambidentate and monodentate ligends both denate only one lone pair. So both are monodentate ligand.
- 23. Due to short life-times, Rn has not been studied.
- 24. In clathrates the bonding between noble gas atom and water is dipole-induced dipole interaction.
- **25.** Out of He, Ne, Ar, Kr and Xe, Xe has the lowest ionisation energy as ionisation energies decreases down a group.
- 26. $2XeF_6 + SiO_2 \longrightarrow SiF_4 + 2XeOF_4$
- 27. (1) $XeF_2 + H_2O \longrightarrow Xe + 2HF + \frac{1}{2}O_2$
- (2) $XeF_4 + H_2O \longrightarrow XeOF_2 + 2HF$
- (3) $XeF_6 + H_2O \longrightarrow XeOF_4 + 2HF$
- (4) $XeOF_4 + H_2O \longrightarrow XeO_2F_2 + 2HF$

28. :—Xe

30.

:F Xe

Total number of lone pair = 14

Total number of lone pair = 9

Ratio = 9:14

(1) $XeF_4 + SbF_5 \longrightarrow [XeF_3]^+ [SbF_5]^-$

- (2) $XeF_6 + H_2O \longrightarrow XeO_3 + HF$
- (3) $XeF_6 + H_2 \longrightarrow Xe + HF$
- (4) $SiO_2 + XeF_6 \longrightarrow XeOF_4 + [SbF_5]^-$

PART - III

- 1. With increasing number of electrons in the molecule and hence increasing molecular size and increase in van der Waal's forces.
- 2. $CIO_2 + Na_2O_2 \longrightarrow NaCIO_2 + O_2$

$$IO_3^- + I^- \longrightarrow I_2 + H_2O$$

$$5CIO_2^- \xrightarrow{H^+} 4CIO_2 + CI^- + H_2O$$

$$A = Na_2O_2$$
; $B = I_2$; $C = CIO_2$; CI^-

3. $2[HXeO_4]^- + 2OH^- \longrightarrow [XeO_6]^{4-} + Xe + O_2 + 2H_2O$

Reg. & Corp. / Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

4. (I) They do not form compounds readily as they are chemically inert on account of stable electron configuration.

(II), (III) & (IV) are correct statement.

5. N_3^- is pseudohalide. $(CN)_2$ and $(SCN)_2$ behave like pseudohalogen. I_3^- is polyhalide.

6.
$$6Cl_{2}(g) + Ba(OH)_{2} \longrightarrow Ba(ClO_{3})_{2}(X) + 5BaCl_{2} + 6H_{2}O$$

$$\downarrow H_{2}SO_{4}$$

$$2CIO_2 + H_2O + \frac{1}{2}O_2 \leftarrow^{\Delta} 2HCIO_3 (Y) + BaSO_4$$

- 7. $XeF_6 + 3H_2 \longrightarrow Xe + 6HF$ $XeF_6 + 6HCI \longrightarrow Xe + 6HF + 3CI_2$
- 8. At room temperature; (298 K = 25° C)

$$F_2$$
 (g)
$$Cl_2(g)$$
 These have M.P.s < 25°C
$$Br_2(\ell)$$

$$l_2(s)$$

- 10. $2CIO_2 + H_2O \longrightarrow HCIO_2 + HCIO_3$ $I_2O_5 + 5CO \longrightarrow I_2 + 5CO_2$ CI_2O is brownish yellow gas which condenses to an orange coloured liquid in a freezing mixture (b.pt. = $2^{\circ}C$).
- 12. $XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$ Complete hydrolysis $XeF_6 + 2H_2O \longrightarrow XeO_2F_2 + 4HF$ (Partical hydrolysis)
- 13. Bromine is the only non-metal which exist as liquid at room temperature.

- **14.** (i), (ii), (iii), (v), (vi), (ix)
- 16. $HIO_3 \xrightarrow{\Delta} I_2O_5$
- 17. $IF_5 + H_2O \longrightarrow HF \longrightarrow + HIO_3$ HF is used in etching of glass

$$\begin{array}{c} \text{HIO}_{3} & \xrightarrow{\text{Strong heating}} I_{2}O_{5} \\ I_{2}O_{5} & + \text{CO} \longrightarrow I_{2} + \text{CO}_{2} \end{array}$$

Total number of lone pair in A = 16.

18. 1:20 mixture of Xe and F₂ will give XeF₆.

$$\therefore$$
 $x + y = 1 + 20 = 21$

$$Xe + 3F_2 \xrightarrow{Ni/400^{\circ}C} XeF_6$$

- 19. Compound (D) is O_2 and therefore, its bond order = $\frac{10-6}{2}$ = 2.
- 20. Compound (A) is XeF_2 ; so, $Xe + O_2F_2 \xrightarrow{118^{\circ}C} XeF_2 + O_2$
- 21. $XeF_2 + H_2 \rightarrow Xe(g) + 2HF(\ell)$

$$2XeF_2 + 2H_2O \rightarrow 2Xe(g) + 4HF + O_2(g)$$

$$HF + KF \rightarrow KHF_2 \ (E) \xrightarrow{\quad Electrolysis \quad} F_2(F)$$

$$Xe+F_2 \rightarrow XeF_2; \hspace{1cm} S_8+24 \hspace{1cm} XeF_2 \rightarrow 8 \hspace{1cm} SF_6+24 \hspace{1cm} Xe$$

22. (A) $2XeF_2 + 2H_2O \longrightarrow 2Xe + 4HF + O_2$

(C)
$$XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$$

(D)
$$XeO_3 + NaOH \longrightarrow Na^+ [HXeO_4]^-$$

$$2[HXeO_4]^- + 2OH^- \longrightarrow [XeO_6]^{4-} + Xe + O_2 + H_2O$$