Rozwiązywanie układu równań liniowych Ax = b, gdzie  $A(n \times n)$  jest macierzą symetryczną dodatnio określoną

Kornel Tłaczała

8 stycznia 2024

#### Projekt nr 2

### 1 Opis probelmu

#### Cel projektu

Niech  $A \in \mathbb{R}^{n \times n}$  będzie dodatnio określoną macierzą symetryczną postaci:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix}, \quad A_{ij} \in \mathbb{R}^{p \times p} \quad \land \quad n = 2p$$

Zadaniem jest rozwiązać układ równań liniowych Ax = b korzystając z blokowego rozkładu  $UDU^T$  macierzy A ( $A = UDU^T$ ).

#### Metoda rozwiązania

#### Szukanie macierzy U i D

Jeżeli przyjmiemy, że U jest macierzą o postaci:

$$U = \begin{bmatrix} I & U_{12} \\ 0 & I \end{bmatrix}$$

oraz D jest macierzą o postaci:

$$D = \begin{bmatrix} D_{11} & 0\\ 0 & D_{22} \end{bmatrix}$$

to zgodnie ze schematem mnożenia macierzy blokowych otrzymujemy:

$$A = UDU^T$$

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix} = \begin{bmatrix} I & U_{12} \\ 0 & I \end{bmatrix} \cdot \begin{bmatrix} D_{11} & 0 \\ 0 & D_{22} \end{bmatrix} \cdot \begin{bmatrix} I & 0 \\ U_{12}^T & I \end{bmatrix} =$$

$$= \begin{bmatrix} D_{11} & U_{12} \cdot D_{22} \\ 0 & D_{22} \end{bmatrix} \cdot \begin{bmatrix} I & 0 \\ U_{12}^T & I \end{bmatrix} =$$

$$= \begin{bmatrix} D_{11} + U_{12} \cdot D_{22} \cdot U_{12}^T & U_{12} \cdot D_{22} \\ D_{22} \cdot U_{12}^T & D_{22} \end{bmatrix}$$

Na tej podstawie łatwo będzie znaleźć macierze U oraz D za pomocą następującego układu równań, wyznaczając po kolei:

$$\begin{cases}
D_{22} = A_{22} \\
D_{22} \cdot U_{12}^T = A_{12}^T, \quad U_{12} = (U_{12}^T)^T \\
D_{11} + U_{12} \cdot D_{22} \cdot U_{12}^T = A_{11}
\end{cases}$$

#### Szukanie wektora x

Jesteśmy zatem w stanie wyznaczyć macierze U oraz D. Będziemy mogli to wykorzystać aby policzyć Ax=b. Będziemy liczyli według następującego schematu:

$$DU^{T}x = b$$

$$Uz = b \implies DU^{T}x = z$$

$$Dy = z \implies U^{T}x = y$$

$$U^{T}x = y$$

Rozwiązując po kolei równania możemy wyznaczyć najpierw z(1), potem y(2) i na koniec x(3). Takie rozwiązanie upraszcza poszczególne obliczenia, ponieważ w równaniach (1) oraz (3) mamy do czynienia z macierzami górną trójkątną oraz dolną trójkątną co bardzo ułatwia, oraz przyśpiesza obliczenia. Równanie (2) natomiast można rozwiązać korzystając z następującej zależności:

$$Dy = z$$

$$\begin{bmatrix} D_{11} & 0 \\ 0 & D_{22} \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

zatem:

$$\begin{cases} D_{11} \cdot y_1 = z_1 \\ D_{22} \cdot y_2 = z_2 \end{cases}$$

Wiemy, że  $det(D_{ii}) \neq 0$ , bo w przeciwnym wypadku  $det(D) = 0 \implies det(UDU^T) = 0 \implies det(A) = 0$ . Wtedy jednak macierz A miałaby wartość własną równą 0, przez co nie mogłaby być dodatnio określona. Wiemy natomiast, że macierz A jest dodatnio określona, zatem  $det(D_{ii}) \neq 0$ .

Możemy więc rozbić macierz  $D_{ii}$  na iloczyn LU otrzymując  $L_{Dii}U_{Dii} \cdot y_i = z_i$ . To z kolei łatwo policzyć wykorzystując analogiczne podejście, tj. obliczając  $v_i$  z  $L_{Dii} \cdot v_i = z_i$ , a następnie podstawiając do  $U_{Dii} \cdot y_i = v_i$ . Na koniec oczywiście:

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

### 2 Opis programu obliczeniowego

W celu implementacji opisanej metody wykorzystałem kilka przedstawionych poniżej funkcji. Wszystkie zostały zwektoryzowane w celu zwiększenia wydajności wykonania.

#### Funkcje obliczeniowe

#### splitZ(z)

Przyjmuje wektor z, zwraca 2 mniejsze wektory  $z_1$  oraz  $z_2$ . Przydatna przy obliczaniu y.

#### splitD(D)

Przyjmuje macierz D, zwraca 2 mniejsze macierze  $D_{11}$  oraz  $D_{22}$ . Przydatna przy obliczaniu y.

#### LUdecomposition(A)

Przyjmuje macierzA,zwraca macierze LorazU,takie, że LU=A.Funkcja wykorzystuje rozkład Doolittle'a.

#### linsolveForUpper(U, B)

Przyjmuje macierz górną trójkątnąU oraz macierz lub wektor B, zwraca wektor lub macierz X taki, że UX=B. Wykorzystuje charakterystykę macierzy górnej trójkątnej, by przyśpieszyć rozwiązywanie układu równań.

#### linsolveForLower(L, B)

Przyjmuje macierz dolną trójkątnąL oraz macierz lub wektor B, zwraca wektor lub macierz X taki, że LX=B. Wykorzystuje charakterystykę macierzy dolnej trójkątnej, by przyśpieszyć rozwiązywanie układu równań.

#### linsolveLU(A, B)

Przyjmuje macierzA oraz macierz lub wektor B, zwraca wektor lub macierzX taki, że AX = B. Wykorzystuje LUdecomposition aby otrzymać potrzebne macierze L oraz U a następnie wykorzystuje linsolveForLower() oraz linsolveForUpper() by policzyć X.

#### UDUTdecomposition(A)

Przyjmuje macierzA, zwraca macierze U oraz D takie, że  $UDU^T=A$ . Wykorzystuje linsolveLU() aby otrzymać potrzebną macierz  $U_{12}$ .

#### linsolveUDUT(A, b)

Przyjmuje macierz A oraz wektor b, zwraca wektor x, takie, że Ax = b. Wykorzystuje UDUTdecomposition(), linsolveForUpper(), linsolveForLower(), splitZ(), splitD() oraz linsolveLU().

#### Funkcje testujące

#### getMatrix(p, variance)

Przyjmuje wartości p, oraz variance. Tworzy macierz  $(2 * p \times 2 * p)$  wykorzystując funkcję randn(). Mnoży tą macierz przez variance i ją zwraca.

#### testfor(p, variance)

Przyjmuje wartości p, oraz variance. Tworzy macierz  $A(2*p\times2*p)$  wykorzystując funkcję getMatrix(). Tworzy wektor b(2\*p). Liczy Ax=b wykorzystując funkcję linsolveUDUT() oraz wbudowaną funcję linsolve(). Porównuje wyniki i czas wykonania. Rezultaty wypisuje w konsoli.

# 3 Przykłady obliczeniowe

# Przykład 1

| 0 = 2                                  |                 |                      |                          |                          |
|----------------------------------------|-----------------|----------------------|--------------------------|--------------------------|
| variance =                             | 1               |                      |                          |                          |
| natrix =                               |                 |                      |                          |                          |
| 9.8160                                 | 0.3566          | 2.0805               | -2.6352                  |                          |
| 0.3566                                 | 3.4551          | -0.9534              | 0.2301                   |                          |
| 2.0805                                 | -0.9534         | 3.2923               | -0.5416                  |                          |
| -2.6352                                | 0.2301          | -0.5416              | 4.0670                   |                          |
| vector =                               |                 |                      |                          |                          |
| -133.3678                              |                 |                      |                          |                          |
| 112.7492                               |                 |                      |                          |                          |
| 35.0179                                |                 |                      |                          |                          |
| -29.9066                               |                 |                      |                          |                          |
| 00011+ 0000                            |                 | first 5 in           | ndices:<br>AbsoluteErro  | r RelativeErro           |
|                                        | . macra         | DREBUIC              | ADSCIUCEETTO.            | relativeEllor            |
| myResult                               |                 |                      |                          |                          |
|                                        | -30             | .344                 | 3.5527e-15               | 1.1708e-16               |
| myResult                               |                 | .344                 | 3.5527e-15<br>7.1054e-15 |                          |
| -30.344                                | 48              |                      |                          |                          |
| -30.344<br>48.375                      | 48              | .375<br>.798         | 7.1054e-15               | 1.4688e-16               |
| -30.344<br>48.375<br>39.798<br>-24.452 | 48<br>39<br>-24 | .375<br>.798<br>.452 | 7.1054e-15<br>7.1054e-15 | 1.4688e-16<br>1.7854e-16 |





(b) Caption for the second figure

Rysunek 1:  $A1 \cdot x = b$ 







Rysunek 2:  $A1 \cdot x = b$ 





(a) Caption for the first figure

Rysunek 3:  $A1 \cdot x = b$ 





(a) Caption for the first figure

Rysunek 4:  $A1 \cdot x = b$ 





(a) Caption for the first figure

(b) Caption for the second figure

Rysunek 5:  $A1 \cdot x = b$ 

| Testing for:     |                   |               |               |
|------------------|-------------------|---------------|---------------|
| p = 100          | 00                |               |               |
| variance =       | 1                 |               |               |
| Result compari:  | son for first 5 i | ndices:       |               |
| myResult         | matlabResult      | AbsoluteError | RelativeError |
|                  |                   |               | •             |
| 0.013146         | 0.013146          | 3.4694e-18    | 2.6392e-16    |
| -0.014667        | -0.014667         | 1.5613e-17    | 1.0644e-15    |
| 0.012978         | 0.012978          | 7.6328e-17    | 5.8811e-15    |
| -0.047198        | -0.047198         | 1.7347e-16    | 3.6755e-15    |
| 0.0013669        | 0.0013669         | 9.541e-18     | 6.9802e-15    |
| My time (over    | l repetition):    | 6.2192        |               |
| BuiltIn function | on time (over 1 r | epetition): 0 | .0659         |



(a) Caption for the first figure

Rysunek 6:  $A1 \cdot x = b$ 





(a) Caption for the first figure

Rysunek 7:  $A1 \cdot x = b$