Analysis of a Complex Kind Week 4

Lecture 3: Möbius transformations, Part 1

Petra Bonfert-Taylor

Möbius Transformations

Definition

A Möbius transformation (also called fractional linear transformation) is a function of the form

$$f(z)=\frac{az+b}{cz+d},$$

where $a, b, c, d \in \mathbb{C}$ such that $ad - bc \neq 0$.

Notes:

- As $z \to \infty$, $f(z) \to \frac{a}{c}$ if $c \neq 0$ and $f(z) \to \infty$ if c = 0. We thus allow $z = \infty$ and define $f(\infty) = \frac{a}{c}$ if $c \neq 0$ and $f(\infty) = \infty$ if c = 0.
- Similarly, $f\left(-\frac{d}{c}\right)=\infty$, if $c\neq 0$.
- We thus regard f as a mapping from the extended complex plane $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ to the extended plane $\hat{\mathbb{C}}$.

Properties of
$$f(z) = \frac{az+b}{cz+d}$$
, $a, b, c, d \in \mathbb{C}$, $ad-bc \neq 0$.

- $f'(z) = \frac{(cz+d)a (az+b)c}{(cz+d)^2} = \frac{ad-bc}{(cz+d)^2}$. The condition $ad-bc \neq 0$ thus simply guarantees that f is non-constant.
- If we multiply each parameter a, b, c, d by a constant $k \neq 0$, we obtain the same mapping, so a given mapping does not uniquely determine a, b, c, d.
- A Möbius transformation is one-to-one and onto from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$. To prove this, pick $w \in \hat{\mathbb{C}}$ and observe

$$f(z) = w \iff az + b = w(cz + d)$$

 $\iff z(a - wc) = wd - b$
 $\iff z = \frac{wd - b}{-wc + a}$.

For each $w \in \hat{\mathbb{C}}$ there is one and only one $z \in \hat{\mathbb{C}}$ such that f(z) = w.

Conformality of $f(z) = \frac{az+b}{cz+d}$, $a, b, c, d \in \mathbb{C}$, $ad-bc \neq 0$.

Möbius transformations are thus conformal mappings from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$. In fact, Möbius transformations are the only conformal mappings from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$. Examples:

- c=0, d=1: Then f(z)=az+b ($a\neq 0$). These are also called affine transformations. They map ∞ to ∞ and therefore map $\mathbb C$ to $\mathbb C$. They are hence conformal mappings from $\mathbb C$ to $\mathbb C$ (and in fact, these are the only conformal mappings from $\mathbb C$ to $\mathbb C$).
 - f(z) = az (i.e. b = 0) is a rotation & dilation.
 - f(z) = z + b (i.e. a = 1) is a translation.

More Examples

•
$$a = 0, b = 1, c = 1, d = 0$$
: Then $f(z) = \frac{1}{z}$. This is an inversion.

• If
$$z = re^{i\theta}$$
 then $\frac{1}{z} = \frac{1}{r}e^{-i\theta}$.

• f interchanges outside and inside of the unit circle.

 A circle, centered at 0, is clearly mapped to a circle, centered at 0, of reciprocal radius.

How about other circles?

The Inversion f(z) = 1/z

What are images of circles under f?

• Let $K = \{z : |z - 3| = 1\}$ be the circle of radius 1, centered at 3. What is its image f(K)?

$$w \in f(K) \iff \frac{1}{w} \in K \iff \left| \frac{1}{w} - 3 \right| = 1$$

$$\iff |1 - 3w|^2 = |w|^2$$

$$\iff 1 - 3w - 3\overline{w} + 9|w|^2 = |w|^2$$

$$\iff 8|w|^2 - 3w - 3\overline{w} = -1$$

$$\iff \left(w - \frac{3}{8}\right) \left(\overline{w} - \frac{3}{8}\right) = \frac{9}{64} - \frac{1}{8}$$

$$\iff \left|w - \frac{3}{8}\right| = \frac{1}{8}.$$

The Inversion f(z) = 1/z

Thus the image of the circle $K = \{z : |z - 3| = 1\}$ under $f(z) = \frac{1}{z}$ is another circle, namely the circle of radius $\frac{1}{8}$, centered at $\frac{3}{8}$.

Images of Circles under f(z) = 1/z

Let now $K = \{z : |z - 1| = 1\}$ be the circle of radius 1, centered at 1. What is f(K)?

$$w \in f(K) \iff \frac{1}{w} \in K \iff \left| \frac{1}{w} - 1 \right| = 1$$

$$\iff |1 - w|^2 = |w|^2$$

$$\iff 1 - w - \overline{w} + |w|^2 = |w|^2$$

$$\iff w + \overline{w} = 1$$

$$\iff \text{Re } w = \frac{1}{2}.$$

Images of Circles under f(z) = 1/z

Thus the image of the circle $K = \{z : |z - 1| = 1\}$ is the vertical line $f(K) = \{w : \text{Re } w = \frac{1}{2}\}.$

More Images under f(z) = 1/z

- Since $f(f(z)) = f(\frac{1}{z}) = z$, we also find:
 - f maps the line $\{z: \operatorname{Re} z = \frac{1}{2}\}$ to the circle $\{z: |z-1| = 1\}$.
 - *f* maps the circle $\{z: |z-\frac{3}{8}| = \frac{1}{8} \text{ to the circle } \{z: |z-3| = 1\}.$
- Let now *L* be the line $\{z : z = t + it, -\infty < t < \infty\}$. If z = t + it, then

$$f(z) = \frac{1}{z} = \frac{\overline{z}}{|z|^2} = \frac{t - it}{2t^2} = \frac{1}{2t} - i\frac{1}{2t} = s - is.$$

Images of Lines Through the Origin

Thus the image of the line $\{t + it : t \in \mathbb{R}\}$ is the line $\{s - is : s \in \mathbb{R}\}$.

Images of lines and circles seem to be lines or circles!

Facts About Möbius Transformations

Fact

Every Möbis transformation maps circles and lines to circles or lines.

Note: A line could be viewed as a "circle through infinity".

Fact

Given three distinct points $z_1, z_2, z_3 \in \hat{\mathbb{C}}$, there exists a unique Möbius transformation f such that $f(z_1) = 0$, $f(z_2) = 1$, and $f(z_3) = \infty$.

You can actually write this Möbius transformation down:

$$f(z) = \frac{z-z_1}{z-z_3} \cdot \frac{z_2-z_3}{z_2-z_1}.$$

Next up: Constructing examples.