SISTEMA DE UNIDADES

INTRODUÇÃO:

Um sistema de unidades é caracterizado por um conjunto de unidades e regras que as definam. O sistema internacional de unidades (S.I) possui sete unidades de base e, todas as outras unidades são derivadas destas. O Brasil adota o sistema Internacional desde 1862, que na época era denominado Sistema métrico Francês. A partir de 1954 o país tem sido membro da convenção do metro. Após a 11^a conferência Geral de Pesos e Medidas — 1962- o Brasil adota, oficialmente, o Sistema Internacional.

A ESTRUTURA DO SISTEMA INTERNACIONAL

O S.I é formado por um conjunto de unidades, que são chamadas de: Unidades de Base, Unidades Derivadas, Unidades Suplementares e uma série de prefixos.

A tabela indica as unidades de base, bem como a grandeza associada e o respectivo símbolo.

GRANDEZA	UNIDADE	SÍMBOLO
Comprimento	metro	m
Massa	quilograma	kg
Tempo	segundo	S
Corrente Elétrica	ampère	A
Temp.Termodinâmica	kelvin	K
Quant.de matéria	mol	mol
Intens. Luminosa	candela	cd

UNIDADES DERIVADAS

Uma unidade derivada pode ser formada através da multiplicação ou divisão efetuadas com as unidades de base.

Como exemplo, podemos citar a relação entre comprimento e tempo, que estabelece a unidade para a velocidade. m/s.

UNIDADES SUPLEMEMENTARES

Esta classe pode ser classificada como unidades derivadas sem dimensão. E elas são duas, o radiano e esterradiano.

PREFIXOS

Prefixos e símbolos de múltiplo e submúltiplos decimais das unidades do S.I

FATOR	PREFIXO	SÍMBOLO
1024	yotta	Y
10 ²¹	zetta	Z
10 ¹⁸	exa	Е
1015	peta	Р
10 ¹²	tera	Т
10 ⁹	giga	G
10 ⁶	mega	М
10 ³	quilo	k
10 ²	hecto	h
10¹	deca	da
10-1	deci	d
10-2	centi	С
10 ⁻³	mili	m
10-6	micro	$\hat{\boldsymbol{\mu}}_{z}$
10-9	nano	n
10-12	pico	р
10-15	femto	f
10-18	atto	а
10-21	zepto	z
10-24	yocto	У

ANÁLISE DIMENSIONAL de uma grandeza derivada qualquer é a expressão formada pelo produto dos símbolos genéricos de grandezas de base elevados a determinadas potências.

Desta forma, por exemplo, uma que pode ser medida em unidades de massa é dita ter a dimensão de massa e, é associado um símbolo a esta dimensão. No caso, M.

A tabela indica a associação da grandeza ao seu símbolo.

GRANDEZA	UNIDADE	SÍMBOLO	Símbolo
			dimensional
Comprimento	metro	m	L
Massa	quilograma	kg	M
Tempo	segundo	S	T
Corrente Elétrica	ampère	A	I
Temp.Termodinâmica	kelvin	K	θ
Quant.de matéria	mol	mol	N
Intens. Luminosa	candela	cd	I_0

"Denomina-se fórmula dimensional a expressão matemática que indica em quantas vezes varia a unidade derivada durante determinadas variações das unidades fundamentais"

Exemplo: Determinar a fórmula dimensional da grandeza Força.

De acordo com a segunda lei do movimento: F=ma.

[F] = [m][a], em se tratando de uma análise dimensional, as grandezas deverão ser grafadas entre colchetes.

Sabemos que a dimensão de [m] = M (tabela acima) e, que a= $\Delta v/\Delta t$, $v = \Delta s/\Delta t$ ou, v = s/t, [v] = [s]/[t], $[v] = L/T = LT^{-1}$.

$$[a]=[v]/[t]$$
, $[a]=LT^{-1}/T=LT^{-2}$.

Então a dimensão de força pode ser escrita como:

$$[F]=M.LT^{-2}$$

Significa dizer que a força é diretamente proporcional ao produto massa. Comprimento e inversamente proporcional a quadrado do tempo.

Observações:

Valores puramente numéricos que figuram em algumas equações têm dimensão 1. Ou seja, são admensionais.

Valores numéricos que estabelecem proporcionalidade entre os membros de uma equação têm dimensão.

Grandeza	Símbolo (expressões)	Dimensão	Unidade (por extenso)	Unidade (símbolo)
Comprimento	l, L	L	metro	m
Massa	_l m	M	quilograma	kg
Tempo	t	T	segundo	S

Unidades derivadas:

Grandeza	Símbolo (expressões)	Dimensão	Unidade (por extenso)	Unidade (símbolo)
Área	A, S	L^2	metro quadrado	m ²
Volume	V	L ³	metro cúbico	m ³
Caudal (em volume)	$q_{\rm v}$	L3 T-1	metro cúbico por	m ³ /s
Frequência	f, v	T-1	hertz	Hz
Massa volúmica	ρ	L-3 M	quilograma por	kg/m ³
Velocidade	v	L T ⁻¹	metro por	m/s
Velocidade angular	ω	[L] ⁰ T ⁻¹	radiano por	rad/s
Aceleração	a	L T ⁻²	metro por	m/s ²
Aceleração angular	α	[L] ⁰ T ⁻²	radiano por	rad/s ²
Força	F	LMT ⁻²	newton	N
Pressão	p	L-1 M T-2	pascal	Pa
Viscosidade	μ	L-1 M T-1	poiseuille (=Pa.s)	PL
Trabalho, Energia	W	L ² M T ⁻²	joule	J
Potência	P	L ² M T ⁻³	watt	W
Carga eléctrica	Q	ΤΙ	coulomb	С

Tabela de unidades do Sistema internacional, unidades derivadas, definições

	Nome	Plural	Símbolo	Definição
comprimento	metro	metros	m	Metro é o comprimento do trajeto percorrido pela luz no vácuo, durante um intervalo de tempo de 1/299 792 458 de segundo. (Unidade de Base ratificada pela 17ª CGPM - 1983.)
área	metro quadrado	metros quadrados	m²	Área de um quadrado cujo lado tem 1 metro de comprimento.
volume	metro cúbico	metros cúbicos	m³	Volume de um cubo cuja aresta tem 1 metro de comprimento.
massa	quilograma	quilogramas	kg	Massa do protótipo internacional do quilograma.(Unidade de Base ratificada pela 3ª CGPM -1901.)
massa específica	quilograma por metro cúbico	quilogramas por metro cúbico	kg/m³	Massa específica de um corpo homogêneo, em que um volume igual a 1 metro cúbico contém massa igual a 1 quilograma.
força	newton	newtons	N	Força que comunica à massa de 1 quilograma a aceleração de 1 metro por segundo, por segundo
tempo	segundo	segundos	s	Duração de 9 192 631 770 períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133. (Unidade de Base ratificada pela 13ª CGPM 1967.)
velocidade	metro por segundo	metros por segundo	m/s	Velocidade de um móvel que, em movimento uniforme percorre a distância de 1 metro em 1 segundo.
aceleração	metro por segundo, por segundo	metros por segundo, por segundo	m/s²	Aceleração de um móvel em movimento retilíneo uniformemente variado, cuja velocidade varia de 1 metro por segundo em 1 segundo.
pressão	pascal	pascals	Pa	Pressão exercida por uma força de 1 newton, uniformemente distribuída sobre uma superfície plana de 1m² de área, perpendicular à direção da força. (Pascal é também unidade de tensão mecânica.)
quantidade de matéria	mol	mols	mol	Quantidade de matéria de um sistema que contém tantas entidades elementares quantos são os átomos contidos em 0,012 quilograma de carbono 12. (Unidade de Base ratificada pela 14ª CGPM -1971.) Quando se utiliza o mol, as entidades elementares devem ser especificadas, podendo ser átomos, moléculas, íons, elétrons ou outras partículas, bem como agrupamentos especificados de tais partículas.
freqüência	hertz	hertz	Hz	Freqüência de um fenômeno periódico cujo período é de 1 segundo.
momento de uma força, Torque	newton-metro	newtons-metros	N.m	Momento de uma força de 1 newton, em relação a um ponto distante 1 metro de sua linha de ação
momento de inércia	quilograma- metro quadrado	quilogramas- metros quadrados	kg.m²	Momento de inércia, em relação a um eixo de um ponto material de massa igual a 1 quilograma, distante 1 metro do eixo.
momento linear	quilograma- metro por segundo	quilogramas- metros por segundo	kg.m/s	Momento linear de um corpo de massa igual a 1 quilograma que se desloca com velocidade de 1 metro por segundo. (Esta grandeza é também chamada quantidade de movimento linear.)
momento angular	quilograma- metro quadrado por segundo	quilogramas- metros quadrados por segundo	kg.m²/s	Momento angular em relação a um eixo, de um corpo que gira em torno desse eixo com velocidade angular uniforme de 1 radiano por segundo, e cujo momento de inércia, em relação ao mesmo eixo, é de um quilograma-metro quadrado. (Esta grandeza é também chamada quantidade de movimento angular.)
trabalho, energia, quantidade de calor	joule	joules	J	Trabalho realizado por uma força constante de 1 newton que desloca seu ponto de aplicação de 1 metro na sua direção.
potência, fluxo de energia	watt	watts	W	Potência desenvolvida quando se realiza, de maneira contínua e uniforme, o trabalho de 1 joule em 1 segundo.
Grandeza	Nome	Plural	Símbolo	Definição

corrente elétrica	ampère	ampères	Α	Corrente elétrica invariável que mantida em dois condutores retilíneos, paralelos, de comprimento infinito e de área de seção transversal desprezível e situados no vácuo a 1 metro de distância um do outro, produz entre esses condutores uma força igual a 2 x 10 ⁻⁷ newton, por metro de comprimento desses condutores. (Unidade de Base ratificada pela 9ª CGPM - 1948.) O ampère é também unidade de força magnetomotriz; nesse caso, se houver possibilidade de confusão, poderá ser chamado de ampère-espira, porém sem alterar o símbolo A.
carga elétrica (quantidade de eletricidade)	coulomb	coulombs	С	Carga elétrica que atravessa em 1 segundo, uma seção transversal de um condutor percorrido por uma corrente invariável de 1 ampère.
tensão elétrica, diferença de potencial, força eletromotriz	volt	volts	V	Tensão elétrica entre os terminais de um elemento passivo de circuito, que dissipa a potência de 1 watt quando percorrido por uma corrente invariável de 1 ampère.
temperatura termodinâmica	kelvin	kelvins	К	Fração 1/273,16 da temperatura termodinâmica do ponto tríplice da água. (Unidade de Bas e ratificada pela 13ª CGPM -1967). Kelvin e grau Celsius são ainda unidades de intervalo de temperaturas. t (°C) = T (K) 273,15
temperatura Celsius	grau Celsius	graus Celsius	ºC	Intervalo de temperatura unitário igual a 1 kelvin, numa escala de temperaturas em que o ponto 0 coincide com 273,15 kelvins. (Unidade de Base ratificada pela 13ª CGPM - 1967). Kelvin e grau Celsius são ainda unidades de intervalo de temperaturas. t (°C) = T (K) 273,15
capacidade térmica	joule por kelvin	joules por kelvin	J/K	Capacidade térmica de um sistema homogêneo e isótropo, cuja temperatura aumenta de 1 kelvin quando se lhe adiciona 1 joule de quantidade de calor.
calor específico	joule por quilograma e por kelvin	joules por quilograma e por kelvin	J/(kg.K)	Calor específico de uma substância cuja temperatura aumenta de 1 kelvin quando se lhe adiciona 1 joule de quantidade de calor por quilograma de sua massa.
condutividade térmica	watt por metro e por kelvin	watts por metro e por kelvin	W/(m.K)	Condutividade térmica de um material homogêneo e isótropo, no qual se verifica um gradiente de temperatura uniforme de 1 kelvin por metro, quando existe um fluxo de calor constante com densidade de 1 watt por metro quadrado.
intensidade luminosa	candela	candelas	cd	Intensidade luminosa, numa direção dada, de uma fonte que emite uma radiação monocromática de freqüência 540 x 10 ¹² hertz e cuja intensidade energética naquela direção é 1/683 watt por esterradiano. (Unidade de Base ratificada pela 16ª CGPM - 1979).
número de onda	1 por metro	1 por metro	m ⁻¹	Número de onda de uma radiação monocromática cujo comprimento de onda é igual a 1 metro.

Outras unidades

Nome	Plural	Símbolo	Valor em SI	Observação
angstrom	angstroms	Å	10 ⁻¹⁰ m	n/t
atmosfera*	atmosferas	atm	101 325 Pa	n/t
bar	bars	bar	10 ⁵ Pa	n/t
milímetro de mercúrio*	milímetros de mercúrio	mmHg	133,322 Pa aproximadamente	n/t
bam	bams	b	10 ⁻²⁶ m ²	n/t
caloria*	calorias	cal	4,1868 J	Este valor é o que foi adotado pela 5ºConferência Internacional sobre as Propriedades do Vapor, Londres, 1956.
quilograma-força*	quilogramas- força	kgf	9,806 65 N	n/t