物理化学实验 实验十 磁化率的测定 2100011837 王梓涵

物理化学实验报告

题目: 实验十: 磁化率的测定

王梓涵 姓 名: 学 묵: 2100011837 别: 组 22 组 实验日期: 2023.9.21 温: 室 302.15 K 大气压强: 100.81 kPa

摘 要 本次实验以摩尔盐为标准样,在约29°C 通过 Guoy 天平分别测量了 CuSO₄·5H₂O、K₄Fe(CN)₆·3H₂O 的摩尔比磁化率以及未知样品的磁化率。通过计算得到了 CuSO₄·5H₂O、K₄Fe(CN)₆·3H₂O 的摩尔比磁化率分别为 $(1.637 \pm 0.019) \times 10^{-8}$ m³/mol, $(-0.154 \pm 0.064) \times 10^{-8}$ m³/mol,约含有 1 个和 0 个单电子。未知样的比磁化率为 $(8.828 \pm 0.026) \times 10^{-8}$ m³/kg。

关键词 磁化率; Guoy 天平; 摩尔比磁化率; 摩尔盐

物理化学实验 实验十 磁化率的测定 2100011837 王梓涵

1 引言

1.1 实验目的

本实验的实验目的主要有以下几点(1):

- 1. 了解磁化率的测定方法。
- 2. 了解 Guoy 天平的原理和使用方法。
- 3. 测量几种样品的摩尔比磁化率,了解磁化率与物质的结构的关系。

1.2 实验原理和实验方法

本实验使用 Guoy 天枰测量样品的磁化率,实验原理和实验方法在实验预习报告中如图 1 所示:

图 1 实验预习报告的实验原理部分

Fig. 1 The principle part of the experiment in the experiment preview report

特别需要说明,图 1 中绘制的 Guoy 示意图有误,因为磁铁以高度中心为界磁场方向不同,为保证样品不受影响,样品管底不得低于极缝中心。

物理化学实验 实验十 磁化率的测定 2100011837 王梓涵

2 实验部分

2.1 仪器和试剂

仪器: 磁天平 (Guoy 天平), 研钵, 试管;

试剂: 莫尔盐 (AR), CuSO₄·5H₂O、K₄Fe(CN)₆·3H₂O,未知样品;

2.2 实验内容

2.2.1 仪器预热与试剂准备

首先将天平的励磁电流调为 0,电流细调旋钮左旋至最小并打开天平预热。将实验所需用到的摩尔盐、 $CuSO_4\cdot 5H_2O$ 、 $K_4Fe(CN)_6\cdot 3H_2O$ 以及样品用研钵研细,装在广口瓶中备用(实际操作中是直接装在研钵中备用,原因是本实验中所用的试剂均不易被氧化,若为易被氧化的试剂需储存在非敞口容器中。)

2.2.2 测量空管质量

将干净的空样品管挂在天平的悬钩上,调节磁铁位置使得样品管与两极距离相等,调整悬挂样品管的铜丝使得样品管的底部恰好位于极缝中心(此处可略高,但绝对不可低于极缝)。

待天平数据不再变化,记录励磁电流为0A时的试管净重 m_0 ,调节励磁电流至3A和4A,并记录相应的重量。将电流调节至4.5A并停留至少1min,随后再将电流调小记录试管在4A、3A和0A下的质量。

2.2.3 测量摩尔盐

将摩尔盐粉末装入样品管至 5 cm 高,与测量空管相同,分别测量录励磁电流为 0 A、3 A 和 4 A 时的试管总重 m,将电流调节至 4.5 A 并停留至少 1 min,随后再将电流调小记录试管在 4 A、3 A 和 0 A 下的质量。测量完毕后,将试管倒空,按照同样的方法将样品装至 6 cm,重新测量。

2.2.4 测量 CuSO₄·5H₂O 和 K₄Fe(CN)₆·3H₂O

与将样品分别换为 $CuSO_4 \cdot 5H_2O$ 和 $K_4Fe(CN)_6 \cdot 3H_2O$,重复 2.2.3 中的操作。

2.2.5 测量未知样品

取未知样品,实验者取的未知样品2号。重复2.2.3的操作两次。

2.2.6 计算与统计数据

计算每组数据的 Δm , 并记录。

3 数据与结果

3.1 实验数据记录及处理

3.1.1 试验记录

实验测量得到的数据如表 1 所示:

表1 实验数据

Table 1	Experimental	data
---------	---------------------	------

			Table 1	Laperini	ciitai data				
励磁电	流/A		0	3	4	4.5	4	3	0
		B/mT	4.1	259.3	345.9	/	344.3	260.9	4.2
空管		m/g	8.5768	8.5754	8.5746	/	8.5748	8.5756	8.5770
		$\Delta m/g$		-0.0014	-0.0022	/	-0.0020	-0.0012	0.0002
		B/mT	3.9	253.2	335.9	/	337.0	254.6	3.7
	5 cm	m/g	10.8498	10.8981	10.9338	/	10.9343	10.8985	10.8944
摩尔盐		$\Delta m/g$		0.0483	0.0840	/	0.0845	0.0487	0.0001
/ - -/ 1 · IIII		B/mT	3.3	254.3	336.4	/	336.9	254.4	3.5
	6 cm	m/g	11.3233	11.3736	11.4102	/	11.4103	11.3736	11.3237
		$\Delta m/g$		0.0503	0.0869	/	0.0870	0.0503	0.0004
		B/mT	3.5	253.0	335.6	/	336.8	254.4	3.4
	5 cm	m/g	11.0390	11.0466	11.0522	/	11.0525	11.0468	11.0391
CuSO ₄ ·5H ₂ O		$\Delta m/g$		0.0076	0.0132	/	0.0135	0.0078	0.0001
		B/mT	3.4	252.8	335.4	/	336.2	254.4	3.4
	6 cm	m/g	11.4748	11.4826	11.4886	/	11.4888	11.4829	11.4749
		$\Delta m/g$		0.0078	0.0138	/	0.0140	0.0081	0.0001
		B/mT	3.4	252.6	335.3	/	336.7	254.2	3.6
	5 cm	m/g	10.5895	10.5879	10.5866	/	10.5863	10.5876	10.5894
$K_4Fe(CN)_6 \cdot 3H_2O$		$\Delta m/g$		-0.0016	-0.0029	/	-0.0032	-0.0019	-0.0001
4 () (2 -		B/mT	3.5	252.5	335.6	/	335.3	253.8	3.5
	6 cm	m/g	11.1490	11.1475	11.1460	/	11.1461	11.1476	11.1493
		$\Delta m/g$		-0.0015	-0.0030	/	-0.0029	-0.0014	0.0003
		B/mT	3.4	252.5	335.7	/	336.3	254.2	3.4
	5 cm	m/g	10.7155	10.7245	10.7314	/	10.7316	10.7247	10.7155
未知样品		Δ m/g		0.0090	0.0159	/	0.0161	0.0092	0.0000
		B/mT	3.4	252.9	335.4	/	336.0	254.0	3.3
	6 cm	m/g	11.1280	11.1375	11.1447	/	11.1448	11.1377	11.1281
		$\Delta m/g$		0.0095	0.0167	/	0.0168	0.0097	0.0001
		B/mT	3.3	252.6	335.6	/	336.3	253.5	3.4
	5 cm	m/g	10.8190	10.8282	10.8351	/	10.8351	10.8282	10.8190
		Δ m/g		0.0092	0.0161	/	0.0161	0.0092	0.0000
		B/mT	3.4	252.9	335.6	/	336.9	254.2	3.3
	6 cm	m/g	11.2247	11.2351	11.2429	/	11.2432	11.2356	11.2246
		Δ m/g		0.0104	0.0182	/	0.0185	0.0109	0.0001

3

3.1.2 计算 CuSO₄·5H₂O 和 K₄Fe(CN)₆·3H₂O 的摩尔比磁化率

笔者实验时间为上午十点至下午三点,其中上午温度为25.6°C,下午温度为29.8°C。考虑到主要的实验测量均在下午进行,这里采用29°C作为实验室温度,即302.15 K。由此可以根据公式(1)算出,实验条件下摩尔盐的比磁化率为:

$$X_0 = \frac{9500 \times 10^{-9}}{T+1} \times 4\pi = 3.938 \times 10^{-7} \,\mathrm{m}^3/\mathrm{kg} \tag{1}$$

根据实验原理可知,待测样的摩尔比磁化率可以由公式(2)给出。

$$X_{m,a} = X_0 M_a \frac{\Delta m_a - \Delta m_e}{\Delta m_0 - \Delta m_e} \times \frac{m_0}{m_a}$$
 (2)

将对应数值带入后计算得到的 $X_{m,a}$ 在表 (2) 中给出:

表 2 CuSO₄·5H₂O 和 K₄Fe(CN)₆·3H₂O 的摩尔比磁化率

Table 2 Molar susceptibility of copper sulfate pentahydrate and potassium ferricyanide

磁化率		$X_{3A}/10^{-8}\mathrm{m}^3/\mathrm{mol}$	$X_{4A}/10^{-8}\mathrm{m}^3/\mathrm{mol}$	$X_{4A}/10^{-8}\mathrm{m}^3/\mathrm{mol}$	$X_{3A}/10^{-8} { m m}^3/{ m mol}$
CuSO ₄ ·5H ₂ O	5 cm	1.644	1.626	1.627	1.637
	6 cm	1.658	1.673	1.675	1.636
K_4 Fe(CN) ₆ ·3H ₂ O	5 cm	-0.152	-0.152	-0.195	-0.263
	6 cm	-0.034	-0.139	-0.199	-0.069

对于计算数据取平均可知:

$$X_{m,\text{CuSO}_4\cdot 5\text{H}_2\text{O}} = 1.637 \times 10^{-8} \text{m}^3/\text{mol}$$

$$X_{m,K_4Fe(CN)_6:3H_2O} = -0.154 \times 10^{-8} \text{m}^3/\text{mol}$$

因为称量质量位于 $\frac{1}{3}$ 量程附近,因此可认为允差 e_m 为 0.7 mg。根据公式 (3)、公式 (4) 可以算出 $X_{m,a}$ 的不确定度,即标准偏差。

$$\sigma_{\Delta m} = \sqrt{2} \frac{e_m}{\sqrt{3}} = 0.6 \ mg \tag{3}$$

$$\sigma_{X_{m,a}} = \frac{\Delta m_a - \Delta m_e}{\Delta m_0 - \Delta m_e} \frac{m_0}{m_a} \times \sqrt{\left(\frac{\sigma_{m_0}}{m_0}\right)^2 + \left(\frac{\sigma_{m_a}}{m_a}\right)^2 + \left(\frac{\sigma_{\Delta m_0 - \Delta m_e}}{\Delta m_0 - \Delta m_e}\right)^2 + \left(\frac{\sigma_{\Delta m_a - \Delta m_e}}{\Delta m_a - \Delta m_e}\right)^2}$$
(4)

代入数据可知对于 $CuSO_4 \cdot 5H_2O_7X_m$ 的标准偏差为 $0.019 \times 10^{-8} \text{m}^3/\text{mol}$,对于 $K_4Fe(CN)_6 \cdot 3H_2O_7X_m$ 的标准偏差为 $0.064 \times 10^{-8} \text{m}^3/\text{mol}$ 。因此可以得到:

$$X_{m.\text{CuSO}_4\cdot 5\text{H}_2\text{O}} = (1.637 \pm 0.019) \times 10^{-8} \text{m}^3/\text{mol}$$

$$X_{m, \mathrm{K_4Fe(CN)_6 \cdot 3H_2O}} = (-0.154 \pm 0.064) \times 10^{-8} \mathrm{m}^3/\mathrm{mol}$$

3.1.3 计算 CuSO₄·5H₂O 和 K₄Fe(CN)₆·3H₂O 的成单电子数

根据公式 (5) 可以算出 $CuSO_4 \cdot 5H_2O$ 和 $K_4Fe(CN)_6 \cdot 3H_2O$ 的成单电子数。

$$n = \sqrt{797.7^2 \frac{X_{m,a}}{\text{m}^3/\text{mol}} \frac{T}{K} + 1} - 1 \tag{5}$$

因此可知:

$$n_{\text{CuSO}_4 \cdot 5\text{H}_2\text{O}} = 1.036$$

$$n_{\text{K}_4\text{Fe}(\text{CN})_6\cdot 3\text{H}_2\text{O}} = -0.161$$

在 $CuSO_4 \cdot 5H_2O$ 中,Cu(II) 的 d 电子排布为 $(b_{1g})^1(a_{1g})^2(b_{2g})^2(e_g)^4$,有 1 个单电子,与实验测得的结果是相吻合的。而测得黄血盐为抗磁性,此时不可用公式 **(5)** 来计算,得到的 $n_{K_4Fe(CN)_6 \cdot 3H_2O}$ 也没有实际意义。但其 X 趋近于零,说明黄血盐是反磁性物质,因此可认为黄血盐中的单电子数目为 0。

3.1.4 计算未知样品的比磁化率

根据公式(6)可以算出未知样品的比磁化率。

$$X_a = X_0 \frac{\Delta m_a - \Delta m_e}{\Delta m_0 - \Delta m_e} \times \frac{m_0}{m_a} \tag{6}$$

将对应数值带入后计算得到的 X_a 在表 (3) 中给出:

表 3 未知样品的比磁化率

Table 3 Molar susceptibility of unknown sample

磁化图	率	$X_{3A}/10^{-8} { m m}^3/{ m kg}$	$X_{4A}/10^{-8} { m m}^3/{ m kg}$	$X_{4A}/10^{-8} { m m}^3/{ m kg}$	$X_{3A}/10^{-8} { m m}^3/{ m kg}$
未知样品	5 cm	8.758	8.788	8.809	8.723
	6 cm	8.938	8.993	8.995	8.973
. ,	5 cm	8.747	8.743	8.613	8.742
	6 cm	9.322	9.352	9.408	9.597

对于计算数据取平均可知:

$$X_{unkunown} = 8.828 \times 10^{-8} \text{m}^3/\text{kg}$$

因为称量质量位于 $\frac{1}{3}$ 量程附近,因此允差 e_m 为 0.7 mg。根据公式 (3)、公式 (4) 可以算出 $X_{m,a}$ 的不确定度,即标准偏差。 $X_{unkunown}$ 的标准偏差为 $0.026 \times 10^{-8} \text{m}^3/\text{kg}$ 。因此可以得到:

$$X_{unkunown} = (8.828 \pm 0.026) \times 10^{-8} \text{m}^3/\text{kg}$$

与摩尔盐的磁化率的比值为1:4.46。

4 讨论与结论

4.0.1 实验误差

查阅文献⁽²⁾ 得:

$$X_{m,\text{CuSO}_4\cdot 5\text{H}_2\text{O}} = 1.835 \times 10^{-8} m^3 / mol$$

$$X_{m,\text{K}_4\text{Fe}(\text{CN})_6\cdot 3\text{H}_2\text{O}} = -2.165 \times 10^{-9} m^3 / mol$$

$$E = \frac{X_{test} - X_{real}}{X_{real}}$$
(7)

根据相对误差公式(5)可计算出相对误差为:

$$E_{\text{CuSO}_4\cdot 5\text{H}_2\text{O}} = -10.8\%$$

$$E_{\text{K}_4\text{Fe}(\text{CN})_6:3\text{H}_2\text{O}} = 7.1\%$$

4.1 实验误差分析

可以看出本次实验的测量误差较大,主要原因有以下几点:

- 1. 实验中的温度并非恒定,而是在上午和下午分别测量的,因此样品受到温度影响较大。 标准样品摩尔盐的测量在上午,而其余部分的测量在下午,这会导致标样的数值参考 价值较低。
- 2. 实验要求在装样时样品紧密程度一致,但实际操作中难以做到,样品紧密程度不一,本实验对未知样品进行了一组平行测试,但可以注意到即使装柱高度相同其质量也相差 0.1g 左右,这已经足以产生较大误差。而不同样品间粉末粗细明显不同,装柱的紧实程度也无法控制,这必然导致实验数据的误差较大。
- 3. 实验中的励磁电流需要依靠人为调整,无法做到精确控制,导致记录时磁场强度不同。可以明显注意到虽然都是逼近某一特定电流,上行时的磁场偏小,下行时的磁场偏大, 这也会导致实验数据的误差较大。

个人认为其中温度与装填紧密程度为在成误差的主要因素。

4.2 实验结论

本次实验通过 Guoy 天平测量了 $CuSO_4 \cdot 5H_2O$ 、 $K_4Fe(CN)6 \cdot 3H2O$ 的摩尔比磁化率分别为 $(1.637 \pm 0.019) \times 10^{-8} \text{m}^3/\text{mol}, (-0.154 \pm 0.064) \times 10^{-8} \text{m}^3/\text{mol},$ 约含有 1 个和 0 个单电子。未知样的比磁化率为 $(8.828 \pm 0.026) \times 10^{-8} \text{m}^3/\text{kg}$ 。本次实验测量的摩尔比磁化率数据误差较大,主要原因是实验中的温度不恒定,样品紧密程度不一致,以及励磁电流无法精确控制.

参考文献

- [1] 北京大学化学与分子工程学院物理化学实验教学组. 物理化学实验. 2023.
- [2] John Aurie Dean et al. *Lange's handbook of chemistry*, volume 15. McGraw-Hill New York, 1992.