FUNKCIJE

Funkcija $f \subseteq A \times B$ je binarna relacija kod koje ne postoje dva različita uređena para sa jednakim prvim komponentama, tj. za koju važi

$$\forall x, y, z \ ((x, y) \in f \ \land \ (x, z) \in f \Longrightarrow y = z).$$

Uobičajeno je da se umesto $(x, y) \in f$ piše y = f(x).

Domen (oblast definisanosti) funkcije f je $\mathcal{D}(f) = \{x \mid \exists y, (x,y) \in f\}$, tj. skup svih prvih komponenti parova iz f. Elementi domena se nazivaju originali.

Kodomen (skup vrednosti) funkcije f je $\mathcal{K}(f) = \{y \mid \exists x, (x,y) \in f\}$, tj. skup svih drugih komponenti parova iz f. Elementi kodomena se nazivaju slike.

Funkcija f iz skupa A u skup B, u oznaci $f:A\longrightarrow B$, je ona funkcija kod koje je $A=\mathcal{D}(f)$, a $\mathcal{K}(f)\subseteq B$, tj. ona funkcija kod koje je skup svih prvih komponenti tačno skup A, a skup svih drugih komponenti je podskup skupa B.

Primer: Neka je $A = \{1, 2, 3\}$ i $B = \{a, b\}$.

- $f_1 = \{(1, a), (2, b), (3, b)\}$ jeste $f: A \longrightarrow B$;
- $f_2 = \{(1, a), (2, b)\}$ jeste funkcija ali nije $f: A \longrightarrow B$ jer elemenat $3 \in A$ nema sliku;
- $f_3 = \{(1, a), (1, b), (2, a), (3, b)\}$ nije funkcija jer se elemenat $1 \in A$ preslika u dve slike, u a i u b. Čim nije funkcija ne može biti ni $f: A \longrightarrow B$.

Funkcija $f:A\longrightarrow B$ je **sirjektivna, ("na"),** što se označava sa $f:A\overset{"na"}{\longrightarrow} B$, ako je $\mathcal{K}(f)=B$, tj. ako se svaki elemenat skupa B pojavljuje bar jednom kao druga komponenta u f. Dakle,

$$f:A \xrightarrow{"na"} B$$
 ako $(\forall y \in B) (\exists x \in A) y = f(x).$

FUNKCIJE 2

Napomena: Da bi se ispitivala sirjektivnost funkcije nije dovoljno da funkcija bude samo funkcija, neophodno je da bude funkcija skupa A u skup B.

Primer: Neka je $A = \{1, 2, 3\}$ i $B = \{a, b\}$.

- $f_1 = \{(1, a), (2, b), (3, b)\}$ jeste $f: A \xrightarrow{"na"} B$;
- $f_2 = \{(1, a), (2, a), (3, a)\}$ jeste $f: A \longrightarrow B$, ali nije $f: A \xrightarrow{"na"} B$ jer se nijedan elemenat skupa A ne preslika u elemenat $b \in B$;
- $f_3=\{(1,a)\,,(2,a)\}$ jeste funkcija, ali nije $f:A\longrightarrow B$, pa ne može biti ni $f:A\xrightarrow{"na"}B$.

Funkcija f je **injektivna ("1-1")** ako u f ne postoje dva različita uređena para sa jednakim drugim komponentama. Dakle,

f je injektivna funkcija ako $(\forall x, y \in \mathcal{D}(f)) (f(x) = f(y) \Longrightarrow x = y)$.

- jeste funkcija,ali nije "1-1"

Napomena: Da bi se ispitivala injektivnost funkcije dovoljno je da funkcija bude samo funkcija. Injektivnost se može ispitivati za bilo kakvu funkciju, a može i za funkciju skupa A u skup B.

Injektivna funkcija skupa Au skupB se označava se $f: A \overset{\text{$^{*}}1-1"}{\longrightarrow} B$

Primer: Neka je $A = \{1, 2\}$ i $B = \{a, b, c\}$

- $f_1 = \{(1, a), (2, b)\}$ jeste $f : A \xrightarrow{\text{``}1-1\text{''}} B$;
- $f_2 = \{(1,a),(2,a)\}$ jeste $f:A\longrightarrow B,$ ali nije $f:A\overset{\text{"}1-1"}{\longrightarrow} B$ jer se oba elemenat skupa A preslikaju u elemenat $a\in B;$
- $f_3 = \{(1,a)\}$ jeste funkcija i jeste "1-1" iako nije $f: A \longrightarrow B$.

Funkcija f je **bijektivna** ako je u isto vreme sirjektivna i injektivna. Bijektivna može biti samo funkcija skupa A u skup B i tada se ona označava se $f: A \overset{"1-1"}{\underset{"na"}{\longrightarrow}} B$.

Primer: Neka je, $A = \{1, 2, 3\}$ i $B = \{a, b, c\}$.

•
$$f_1 = \{(1, a), (2, b), (3, c)\}$$
 jeste $f: A \prod_{n=0}^{\infty} B$;

FUNKCIJE 3

- $f_2 = \{(1, a), (2, a), (3, b)\}$ jeste $f: A \longrightarrow B$, ali nije $f: A \overset{\text{``}1-1\text{''}}{\underset{na\text{''}}{\longrightarrow}} B$. jer nije injektivna pošto se elementi 1 i 2 preslikaju u isti elemenat a:
- $f_3 = \{(1, a)\}$ jeste funkcija ali nije bijekcija jer nije $f: A \longrightarrow B$.

Identička funkcija $i_A:A\longrightarrow A$ je definisana sa $i_A(x)=x$.

Primer: Dati su skupovi $A = \{1, 2, 3, 4, 5\}$ i $B = \{a, b, c\}$. Proveriti koje od sledećih relacija su funkcije skupa A u skup B, i ispitati sirjektivnost i injektivnost.

```
f_{1} = \{(1, a), (2, b), (3, c), (4, a), (5, c)\};
f_{2} = \{(1, a), (2, b), (3, c), (4, a), (5, c), (1, c)\};
f_{3} = \{(1, a), (2, a), (3, a), (4, a), (5, a)\};
f_{4} = \{(1, c), (2, b), (3, b), (4, c), (5, a)\};
f_{5} = \{(1, a), (2, b), (4, c)\}.
```

Ako je inverzna relacija f^{-1} funkcije f takođe funkcija onda je f^{-1} inverzna funkcija funkcije f.

Napomena: Inverzna funkcija se definiše za bilo koju funkciju, ne mora biti funkcija skupa A u skup B.

Primer: Neka je $A = \{1, 2, 3\}$, a $B = \{x, y, z\}$.

- Za funkciju $f_1 = \{(1, x), (2, y), (3, z)\}$ inverzna funkcija je $f^{-1} = \{(x, 1), (y, 2), (z, 3)\}$.
- Funkcija $f_2 = \{(1, x), (2, x), (3, x)\}$ nema inverznu funkciju jer inverzna relacije ove funkcije nije funkcija.

Inverzna funkcija funkcija f postoji akko je funkcija f injektivna. Za funkciju $f:A\longrightarrow B$ postoji inverzna funkcija $f:B\longrightarrow A$ akko je funkcija f bijektivna.

Neka su A, B i C neprazni skupovi i neka su $f: A \longrightarrow B$ i $g: B \longrightarrow C$ date funkcije. Funkcija $g \circ f: A \longrightarrow C$ definisana sa $(\forall x \in A) (g \circ f) (x) = g (f (x))$ zove se **kompozicija** funkcija f i g.

Kompozicija injektivnih funkcija je injektivna funkcija.

Kompozicija sirjektivnih funkcija $f:A\longrightarrow B$ i $g:B\longrightarrow C$ je sirjektivna funkcija .

Kompozicija bijektivnih funkcija je bijektivna funkcija.

Neka je funkcija $f:A\longrightarrow B$ bijektivna i neka je f^{-1} njena inverzna funkcija, tada je $(\forall x\in A) f^{-1}(f(x))=x$.

Kompozicija funkcija koje preslikavaju skup A u samog sebe je asocijativna operacija.

Načini zadavanja funkcija: Neka je na primer $A = \{1, 2, 3, 4, 5\}$ i $B = \mathbb{N}$. Jedna ista funkcija $f : A \longrightarrow B$ može biti zadata na više načina:

- nabrajanjem elemenata $f = \{(1,1), (2,4), (3,9), (4,16), (5,25)\},\$
- opisno pomoću drugih poznatih relacija i/ili operacija $f = \{(x, x^2) \mid x \in A\}$, tj. $f(x) = x^2$, $x \in A$,
- $\bullet \ f = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 9 & 16 & 25 \end{array} \right),$
- grafički.

Relacija koja je zadata grafički je funkcija akko svaka prava paralelna sa y-osom seče dati grafik u najviše jednoj tački.

Funkcija $f: \mathbb{R} \longrightarrow \mathbb{R}$ je injektivna akko svaka prava paralelna sa x-osom ima najviše jedan presek sa grafikom funkcije.

Funkcija $f:\mathbb{R}\longrightarrow\mathbb{R}$ je sirjektivna akko svaka prava paralelna sa x-osom ima bar jedan presek sa grafikom funkcije.

Funkcija $f: \mathbb{R} \longrightarrow \mathbb{R}$ je bijektivna akko svaka prava paralelna sa x-osom ima tačno jedan presek sa grafikom funkcije.