Mathematics Year 1, Calculus and Applications I, 2019

Portfolio Marks Assessment 2

Ivan Kirev CID: 01738166

1

The function f(t) is defined and is differentiable in the neighborhood of a point t = x. For h > 0 we are given the following formulas:

$$F_1(x,h) := \frac{1}{h} \left[-\frac{1}{2} f(x-h) + \frac{1}{2} f(x+h) \right],$$

$$F_2(x,h) := \frac{1}{h} \left[\frac{1}{12} f(x-2h) - \frac{2}{3} f(x-h) + \frac{2}{3} f(x+h) - \frac{1}{12} f(x+2h) \right].$$

1.1

To investigate what $F_1(x,h)$ and $F_2(x,h)$ represent, we will use the formula

$$f(x+h) = f(x) + \frac{h}{1!}f'(x) + \frac{h^2}{2!}f''(x) + \dots + \frac{h^n}{n!}f^n(x) + R_n(x,h), \quad (1)$$

where $R_n(x,h) = \frac{h^{n+1}}{(n+1)!} f^{n+1}(c)$ for some c between x and x+h. So for $F_1(x,h)$ we get

$$F_{1}(x,h) = \frac{1}{2h} \left(f(x+h) - f(x-h) \right)$$

$$= \frac{1}{2h} \left(f(x) + hf'(x) + \frac{h^{2}}{2!} f^{2}(x) + \dots + \frac{h^{n}}{n!} f^{n}(x) + R_{n}(x,h) \right)$$

$$- f(x) + hf'(x) - \frac{h^{2}}{2!} f^{2}(x) + \dots - \frac{(-h)^{n}}{n!} f^{n}(x) - R_{n}(x,-h) \right)$$

$$= \left(f'(x) + \frac{h^{2}}{3!} f^{3}(x) + \frac{h^{4}}{5!} f^{5}(x) + \dots + \frac{R_{n}(x,h) - R_{n}(x,-h)}{2h} \right).$$

To approximate $F_1(x,h)$ lets consider n=2. Then we have

$$F_1(x,h) = f'(x) + \frac{R_2(x,h) - R_2(x,-h)}{2h}$$
$$= f'(x) + h^2 \left(\frac{f^3(c_1) + f^3(c_2)}{12}\right),$$

for some c_1 and c_2 in the intervals [x, x + h] and [x - h, x], respectively. So we can say that $F_1(x, h)$ is an approximation for the derivative f'(x) with error of order h^2 :

$$F_1(x,h) = f'(x) + O(h^2).$$

For $F_2(x,h)$ we have

$$F_2(x,h) = \frac{1}{h} \left(\frac{1}{12} f(x-2h) - \frac{2}{3} f(x-h) + \frac{2}{3} f(x+h) - \frac{1}{12} f(x+2h) \right)$$
$$= \frac{1}{h} \left(\frac{1}{12} \left(f(x-2h) - f(x+2h) \right) + \frac{2}{3} \left(f(x+h) - f(x-h) \right) \right)$$

Now if we use formula (1) with n = 4 we get the following approximation for $F_2(x, h)$:

$$\begin{split} F_2(x,h) &= \frac{1}{12h} \bigg(f(x) - \frac{2h}{1!} f'(x) + \frac{4h^2}{2!} f''(x) - \frac{8h^3}{3!} f^3(x) + \frac{16h^4}{4!} f^4(x) - \frac{32h^5}{5!} f^5(c_3) \\ &- f(x) - \frac{2h}{1!} f'(x) - \frac{4h^2}{2!} f''(x) - \frac{8h^3}{3!} f^3(x) - \frac{16h^4}{4!} f^4(x) - \frac{32h^5}{5!} f^5(c_4) \bigg) \\ &+ \frac{2}{3h} \bigg(f(x) + \frac{h}{1!} f'(x) + \frac{h^2}{2!} f''(x) + \frac{h^3}{3!} f^3(x) + \frac{h^4}{4!} f^4(x) + \frac{h^5}{5!} f^5(c_5) \\ &- f(x) + \frac{h}{1!} f'(x) - \frac{h^2}{2!} f''(x) + \frac{h^3}{3!} f^3(x) - \frac{h^4}{4!} f^4(x) + \frac{h^5}{5!} f^5(c_6) \bigg) \\ &= \bigg(-\frac{1}{3} f'(x) - \frac{2h^2}{9} f^3(x) - \frac{h^4}{45} \big(f^5(c_3) + f^5(c_4) \big) + \frac{4}{3} f'(x) + \frac{2h^2}{9} f^3(x) + \frac{h^4}{180} \big(f^5(c_5) + f^5(c_6) \big) \bigg) \\ &= f'(x) + h^4 \bigg(\frac{f^5(c_5) + f^5(c_6)}{180} - \frac{f^5(c_3) + f^5(c_4)}{45} \bigg), \end{split}$$

where c_3 , c_4 , c_5 , c_6 are in the intervals [x-2h, x], [x, x+2h], [x, x+h], and [x-h, x], respectively.

So we can say that $F_2(x,h)$ is an approximation for the derivative f'(x) with error of order h^4 :

$$F_2(x,h) = f'(x) + O(h^4).$$

1.2

Since F_1 is an approximation with error of order h^2 and F_2 with error of order h^4 we expect that F_2 is a better approximation for the derivative f'(x) when h is small.

When $f(x) = x^4$, then we have:

$$F_1(1,0.1) = \frac{1}{0.1} \left(-\frac{(1-0.1)^4}{2} + \frac{(1+0.1)^4}{2} \right)$$

$$= 4.04.$$

$$F_2(1,0.1) = \frac{1}{0.1} \left(\frac{(1-0.2)^4}{12} - \frac{2}{3} (1-0.1)^4 + \frac{2}{3} (1+0.1)^4 - \frac{(1+0.2)^4}{12} \right)$$

The derivative of f(x) is $4x^3$ so f'(1) = 4. F_1 gives the approximation 4.04 with error 0.04 while F_2 gives the exact value. This is because the error of F_2 depends on the fifth derivative of f(x), which in this case is 0. So the error becomes 0 as well and we get the exact value of the derivative.

1.3

We are given the formula

$$F_3(x,h) := \frac{1}{h} \left[-\frac{1}{60} f(x-3h) + \frac{3}{20} f(x-2h) - \frac{3}{4} f(x-h) + \frac{3}{4} f(x+h) - \frac{1}{20} f(x+2h) + \frac{1}{60} f(x+3h) \right].$$

For $f_n(t) = t^n$ we have

$$F_3^n(x,h) = \frac{1}{h} \left[-\frac{1}{60}(x-3h)^n + \frac{3}{20}(x-2h)^n - \frac{3}{4}(x-h)^n + \frac{3}{4}(x+h)^n - \frac{1}{20}(x+2h)^n + \frac{1}{60}(x+3h)^n \right].$$

The following table represents the values of $F_3^n(1,h)$ for n=1,2,...,6 and $h=\frac{1}{2},\frac{1}{4},\frac{1}{8}.$

h	$F_3^1(1,h)$	$F_3^2(1,h)$	$F_3^3(1,h)$	$F_3^4(1,h)$	$F_3^5(1,h)$	$F_3^6(1,h)$
1/2	1	2	3	4	5	6
1/4	1	2	3	4	5	6
1/8	1	2	3	4	5	6

We know that

$$\frac{df_n(t)}{dt} = \frac{dt^n}{dt} = nt^{n-1},$$

$$\frac{df_n(1)}{dt} = n.$$

For n=1,2,...,6 and $h=\frac{1}{2},\frac{1}{4},\frac{1}{8}$ we see that $F_3^n(1,h)$ gives the exact result of the derivative of $f_n(1)$.

If we consider n>6 the values of $F_3^n(1,h)$ don't give us the exact values of $\frac{df_n(1)}{dt}=n$, but instead an approximation with an error. The following is a table representing the values of $F_3^n(1,h)$ for n=7,8,..12 and $h=\frac{1}{2},\frac{1}{4},\frac{1}{8}$:

h	$F_3^7(1,h)$	$F_3^8(1,h)$	$F_3^9(1,h)$	$F_3^{10}(1,h)$	$F_3^{11}(1,h)$	$F_3^{12}(1,h)$
1/2	7.5625	12.5	31.21875	97.1875	310.0742	952.6406
1/4	7.0088	8.0703	9.3241	11.1316	14.3284	20.7134
1/8	7.000137	8.0011	9.00497	10.01678	11.04698	12.11543

Here we get an approximation of the derivative at x=1 which gets more accurate as h gets smaller.

Therefore, it appears that $F_3(x,h)$ is an approximation of the derivative of f(x), similar to F_1 and F_2 . The values of F_3^n equal the exact values of the derivative of $f_n(t) = t^n$ for n = 1, 2, ...6 because the error of the approximation depends on the seventh derivative of $f_n(t)$. (i.e we should get that $F_3(x,h)$ is an approximation of f'(x) with error of order h^6 ($F_3(x,h) = f'(x) + O(h^6)$) if we expand $F_3(x,h)$ using formula (1) until we get a remainder that contains the seventh derivative of $f(c_i)$ for some constants c_i .)