

5.3.a.

Medida y evaluación
de vibraciones mecánicas

Ref: Bruel&Kjaer. 2003

Dominio temporal

Visión temporal del fenómeno

Fuente: AV Enginyers Joan Cardona 2009

Visión temporal de la señal: duración

Estacionarias

No Estacionarias

Transitorias

Señales temporales LARGAS

Señales espectrales CORTAS

Señales temporales CORTAS

Señales espectrales LARGAS

Patologías en Ascensores

Actualizado: 13/09/2011 RAFA

Paso de metro en una vivienda

Figura 5. Perfil temporal amb 3 passos de metro

Movimiento Armónico Simple "MAS

$$X(t) = A sen \omega t$$

Presencia de armónicos !!!

Ref: Bruel & Kjaer. Paco-pulse 2008

Ref: Bruel&Kjaer. 2003

d=*A*·sin*ωt*

$$d=A$$

$$v=d=A\omega \cdot \cos \omega t=>$$

 $v=A\omega \cdot A\sin(\omega t+\pi/2)$

$$v = A\omega$$

$$\mathbf{a} = \mathbf{d} = \mathbf{v} = -\mathbf{A}\boldsymbol{\omega} \mathbf{12} \cdot \sin \boldsymbol{\omega} t$$

$$a=/A\omega 12$$

Rafael Torres del Castillo (9ºEd.:06-2016) Profesor externo de la Salle URL. Codirector del MAAM.

Parámetros de media

Una onda senoidal de frecuencia angular (ω) de 1000rad/s y amplitud A=10⁻¹²m

$$\varpi = 2\pi f \Rightarrow f = \frac{1000}{2\pi} = 159.23 Hz$$

$$d_{0} = A_{MAX} = 10^{-12} [m]$$

$$v_0 = A \varpi = 10^{-12} 10^3 = 10^{-9} [m/s]$$

$$a_0 = A \varpi^2 = 10^{-12} (10^3)^2 = 10^{-6} [m/s^2]$$

TRANSDUCTOR ACELEROMETRO

$$a = A$$

$$V = \int a \, dt = -\frac{a}{\omega} \cos \omega t$$

$$V = \frac{a}{\omega} = \frac{a}{2\pi f}$$

d=
$$\iint$$
 a dt dt = - $\frac{a}{\omega^2}$ sen ωt

$$d = \frac{a}{\omega^2} = \frac{a}{4\pi^2 f^2}$$

SENSIBILIDAD: cantidad de señal eléctrica generada por unidad de aceleración de la vibración que actúa sobre él.

- Un acelerómetro piezoeléctrico puede ser descrito como una fuente de carga o una fuente de tensión (con impedancia muy alta):
 - Sensibilidad de tensión → [mV/g] o [mV/ms⁻²]
 - Sensibilidad de carga → [pC/g] o [pC/ms⁻²]
- Cuanto mayor es la masa sísmica (peso) mayor es su sensibilidad

Menor	Sensibilidad del acelerómetro recomendable	Utilización
	10mV/g	En carcasa de Motores
Mayor	100mV/g	Base de maquinaria: Evalución vib. cuerpo humano
	500mV/g	Semi sismico: Metro; residual.
	10V/g	Sísmico: Vibraciones de muy baja amplitud. (<10 ⁻¹⁶)

$$m < \frac{1}{10}M$$

Acelerómetro sísmico 10v/g

m=750gr

M>7,5 Kg

Fijos

Contacto

¿pero qué valor tiene la aceleración?

Los acelerómeteros: Registran aceleración instantánea a+,a-

Funciones más utilizadas

- Valor eficaz de la aceleración (rms)
- Aceleración continua equivalente
- Valor pico máximo de la aceleración
- Factor de cresta

Los acelerómetros: realizan lecturas en aceleración instantánea (a+ y a-)

0.15 0.1 0.05

-0.05 -0.1

a_{inst}
.

0.15
0.1
0.05
0
-0.05
-0.1

0.15

0.1

-0.1

(suma lineal)

0.02 0.03 0.04

¿pero qué valor global de aceleración tengo dentro del tiempo de medida realizado?

Los acelerómeteros: realizan lecturas en aceleración instantánea (a + y a-)

Suma de aceleraciones instantáneas

$$a_{Total} = a_1(t) + a_2(t) + \dots + a_n(t)$$

¿pero qué valor global de aceleración tengo dentro del tiempo de medida realizado?

Los acelerómeteros: realizan lecturas en aceleración instantánea pero se procesa en valores cuadráticos (a²)

Suma de valores cuadráticos) (ejemplo: valor rms)

$$a_{rmsTotal}^2 = a_{rms1}^2(t) + a_{rms2}^2 + a_{rmsn}^2$$

$$a_{rmsTotal} = \sqrt{a_{rms1}^2(t) + a_{rms2}^2 \dots + a_{rmsn}^2}$$

Detectores de la Amplitud de vibración

$$a_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} a^{2}(t) dt}$$

root mean square

Aceleración rms promediada exponencialmente

$$a_{rms,\tau}(t_0) = \sqrt{\frac{1}{\tau} \int_0^{t_0} a^2(t) e^{\frac{t-t_0}{\tau}} dt} \quad \begin{array}{l} \tau = 1s \ (slow) \\ \tau = 125ms \ (fast) \end{array}$$

Aceleración continua equivalente promediada linealmente

$$a_{eq}(T) = \sqrt{\frac{1}{T} \int_{0}^{T} a^{2}(t) dt} \begin{cases} T = 1s \text{ (slow)} \\ T = 125ms \text{ (fast)} \end{cases}$$

Aceleración rms promediada exponencialmente

Aceleración continua equivalente promediada linealmente

(running rm method)

$$a_{rms,\tau}(t_0) = \sqrt{\frac{1}{\tau} \int_{0}^{t_0} a^2(t) e^{\frac{t-t_0}{\tau}} dt} \quad \begin{array}{l} \tau = 1s \ (slow) \\ \tau = 125ms \ (fast) \end{array}$$

$$a_{eq}(T) = \sqrt{\frac{1}{T} \int_{0}^{T} a^{2}(t) dt} \begin{cases} T = 1s \text{ (slow)} \\ T = 125ms \text{ (fast)} \end{cases}$$

Slow: Sucesos vibratorios largos o contínuo)

Fast: Sucesos vibratorios cortos o aleatorios

Promediadores temporales de la amplitud Exponencial Lineal Tiempo Tiempo **2s 2s**

Ref: Montserrat Polo (Analista) AV. Enginyers

