

# Particle Collisions

### 1. Projectile Motion with Euler Method

Simulate a projectile (m = 1 kg) launched from (0,0) with initial velocity  $\mathbf{v}_0 = (10 \, m/s, 10 \, m/s)$  under gravitational force  $\mathbf{F}_g = -mg\hat{\mathbf{y}}$  (g = 9.81).

Implement the collision between the particle and the ground. Use different values for  $\varepsilon$  to see the different behaviors.

## 2. Particle Motion Inside a Cube with Euler Method

Simulate a particle (m = 1 kg) moving inside a cube, starting from the initial position  $\mathbf{p}_0 = (1 m, 1 m, 1 m)$  with an initial velocity  $\mathbf{v}_0 = (5 m/s, 5 m/s, 5 m/s)$ .

The cube is defined by the limits:

$$0 \le x \le 5$$
,  $0 \le y \le 5$ ,  $0 \le z \le 5$ .

Implement a simulation using the Euler method, updating the particle's position and velocity at each time step  $\Delta t = 0.01$ .

Collision Handling: - When the particle collides with one of the cube's wall, apply the reflection rule:

$$\mathbf{v} = \mathbf{v} - (1 + \varepsilon)(\mathbf{n} \cdot \mathbf{v})\mathbf{n}.$$

where **n** is the normal vector of the ground. - Use different values for  $\varepsilon$ : -  $\varepsilon = 1$  (Perfectly elastic collision) -  $\varepsilon = 0.5$  (Partially inelastic collision) -  $\varepsilon = 0$  (Perfectly inelastic collision, the particle stops moving)

#### **Extension:**

- Extend the simulation to handle collisions with all six walls of the cube.
- Observe the behavior of the particle as it bounces inside the cube

**Extension 2:** - For each wall put a different value of  $\varepsilon$ .

# 3. Particle Motion Inside a Triangle with Euler Method

Simulate a particle (m = 1 kg) moving freely inside a \*\*triangular\*\* region, starting from the initial position  $\mathbf{p}_0 = (1 m, 1 m)$  with an initial velocity  $\mathbf{v}_0 = (3 m/s, 4 m/s)$ . The particle moves with \*\*constant velocity\*\*, meaning there is no external force acting on it.

The triangular region is defined by the vertices:

$$A = (0,0), \quad B = (5,0), \quad C = (2.5,5).$$

Implement a simulation using the Euler method, updating the particle's position at each time step  $\Delta t$ . Collision Handling: - When the particle collides with one of the triangle's edges, apply the reflection rule:

$$\mathbf{v} = \mathbf{v} - (1 + \varepsilon)(\mathbf{n} \cdot \mathbf{v})\mathbf{n}.$$

where  $\mathbf{n}$  is the normal vector of the edge.

- Use different values for  $\varepsilon$ : -  $\varepsilon = 1$  (Perfectly elastic collision) -  $\varepsilon = 0.5$  (Partially inelastic collision) -  $\varepsilon = 0$  (Perfectly inelastic collision, the particle stops moving)

**Extension:** - Implement a method to detect which edge the particle collides with. - Observe how the particle's trajectory evolves as it bounces inside the triangle.

4. Verify that in a mechanical system, the following equality is satisfied

$$\Delta U = -W.$$