МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Лабораторная работа №3

«Параметрический синтез и исследование цифровой системы управления с И-регулятором и объектом в виде апериодического звена из условия обеспечения заданного по качеству переходного процесса.»

по дисциплине Системы управления в электроприводе

Выполнил: Студент группы

R34362 Ванчукова Т. С.

Преподаватель: Ловлин С.Ю.

Содержание

адание
Код работы
Задание 1
Задание 2. Синтез системы с использованием «метода переоборудования»
Задание 3. Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового И-регулятора для случая вычислительной задержки $\varepsilon=0$
Задание 4. Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового И-регулятора для случая вычислительной задержки $\varepsilon = \text{To.} \dots 1$
Задание 5. Синтез и моделирование системы из условия обеспечения ней «биномиальной настройки»
езультаты работы
Выводы

Задание

Задание 1

Снять временные диаграммы, иллюстрирующие работу эквивалентных аналогового и цифрового П-регуляторов при постоянном и линейно нарастающем входных воздействиях на входе регулятора для случая вычислительной задержки $\varepsilon = 0$. Представить схему модели.

Задание 2. Синтез системы с использованием «метода переоборудования»

- 2.1 Построить эквивалентную модель и осуществить ее настройку на «оптимум по модулю» $T_{\mu 1} = T_1 = 1$.
- 2.2 Путем моделирования определить величину периода дискретности управления T_0 , при которой обеспечивается качество переходного процесса в исследуемой цифровой системе, близкое к процессу в эквивалентной непрерывной системе.

Снять осциллограммы переходных процессов для значений $T_0=0.1T_{\mu 1};\ T_0=T_{\mu 1}.$ Параметры переходных процессов занести в таблицу 1. Представить схему модели.

Задание 3. Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового И-регулятора для случая вычислительной задержки $\varepsilon = 0$.

- 3.1 Построить полную эквивалентную модель системы, учитывающую динамические свойства И-регулятора в виде системы, содержащей объект управления, аналоговый И-регулятор, а также находящееся в цепи обратной связи апериодическое звено первого порядка с единичным коэффициентом передачи и постоянной времени Т_{зап}.
- 3.2 Определить величину постоянной времени T_{3an} , при которой процессы в исследуемой цифровой системе и эквивалентной модели максимально приближены друг к другу. Максимальное приближение процессов имеет место при минимальном значении функционала:

$$F = \int abs(y - y_3(T_{3a\pi i}))dt$$

где y — процесс в цифровой системе, $y_9(T_{3ani})$ — процесс в эквивалентной системе при некотором значении постоянной T_{3ani} . Результаты моделирования занести в таблицу 2, построить зависимость $F = \varphi(T3ani)$.

Режим моделирования $T_0 = T_1 = 0.25$, $T_{\text{зап}} = (0.1, 0.4, 0.9) T_0$. Параметры цифрового и аналогового П-регуляторов берутся из пп.2.1 и при моделировании остаются неизменными.

- 3.3 Осуществить настройку полной эквивалентной модели системы на «оптимум по модулю» при малой некомпенсированной постоянной времени, определяемой на основании соотношения $T_{\mu} = T_1 + T_{3an}$. Снять осциллограммы переходных процессов для значений $T_0 = T_1, 2 * T_1$; параметры переходных процессов занести в таблицу 3. Представить схему модели.
- Задание 4. Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового И-регулятора для случая вычислительной задержки $\varepsilon = T_0$.
- 4.1 Снять временные диаграммы, иллюстрирующие работу эквивалентных аналогового и цифрового И-регуляторов при линейно нарастающем входном воздействии на входе регулятора для случая вычислительной задержки $\varepsilon = T_0$. Представить схему модели.
- 4.2 Построить цифровую модель системы и полную эквивалентную модель, учитывающие вычислительную задержку $\varepsilon = T_0$.
- 4.3 Осуществить настройку полной эквивалентной модели системы на «оптимум по модулю» при малой некомпенсированной постоянной времени, определяемой на основании соотношения $T_{\mu} = T_1 + T_{3an} + T_0$. Снять осциллограммы переходных процессов для значений $T_1 = 1,0.5; T_0 = 1 (T_1 постоянная времени контура тока) параметры переходных процессов занести в таблицу 4. Представить схему модели.$

Задание 5

Осуществить синтез системы из условия обеспечения в ней «биномиальной настройки» и провести моделирование согласно пп.2, 3, 4.

Ход работы

Задание 1

Рисунок 1. Графики выхода аналогового и цифровых И-регуляторов при линейно-возрастающем входном воздействии

Далее будем работать с трапециевидным сигналом, так как не запаздывает в отличие от прямоугольного.

Задание 2. Синтез системы с использованием «метода переоборудования»

Передаточная функция электрической части привода постоянного тока

$$W_{ob} = \frac{1}{Ls + R}$$

Передаточная функция разомкнутой системы, настроенной на технический оптиум.

$$T_{\mu} = \frac{L}{R}$$

$$W_{ol} = \frac{1}{2T_{\mu}s(T_{\mu}s + 1)}$$

$$W_{reg} = \frac{W_{ol}}{W_{ob}} = \frac{R^2}{2Ls}$$

Рисунок 2. Схема моделирования

Моделирование работы системы, настроенной на технический оптиум

Рисунок 3. График моделирование работы, настроенный на технический оптиум ($T_o=0.1\cdot T_\mu$)

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 4 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 6.5 \cdot T_{\mu}$$

 t_0 — время начала переходного процесса t_{p1} — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \geq D, D = 0.05 \cdot |y_0 - y_{ss}|$$

 t_{p2} — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \le D, D = 0.05 \cdot |y_0 - y_{ss}|$$

$$\Delta y = \frac{|\sup (y) - y_{ss}|}{|y_0 - y_{ss}|} = 5.2 \cdot T_{\mu}$$

Рисунок 4. График моделирование работы, настроенный на технический оптиум ($T_o=1\cdot T_\mu$)

$$t_{p1} = t_1 - t_0 = 3.3 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 8 \cdot T_{\mu}$$

Вычислим перерегулирование Δy :

$$\Delta y = 17 \cdot T_{\mu}$$

Задание 3. Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового И-регулятора для случая вычислительной задержки $\varepsilon=0$

Рисунок 5. График функционала системы

Рисунок 6. Схема моделирования

Перенастройка с помощью метода переоборудования

Рисунок 7. График моделирование работы $T_o = T_t = 0.0042$ Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 3.4 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 3.4 \cdot T_{\mu}$$

Рисунок 8. График моделирование работы $T_o = 2T_t = 0.01$

$$t_{p1} = t_1 - t_0 = 3 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 5.8 \cdot T_{\mu}$$

Вычислим перерегулирование: $\Delta y = 7.6 \cdot T_{\mu}$

Задание 4. Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового И-регулятора для случая вычислительной задержки $\varepsilon = T_o$.

Рисунок 9. График функционала системы

Рисунок 10. Схема моделирования

Перенастройка с помощью метода переоборудования

$$t_{p1} = t_1 - t_0 = 3.3 \cdot T_{\mu}$$

 $t_{p2} = t_{end} - t_0 = 5.6 \cdot T_{\mu}$

Вычислим перерегулирование Δу:

$$\Delta y = 6.1 \cdot T_{\mu}$$
1.2
1.3
0.8
0.4
0.2
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Рисунок 12. График моделирование работы
$$T_o = 2T_t = 0.0042$$
 Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 3.1 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 5.7 \cdot T_{\mu}$$

$$\Delta y = 8.4 \cdot T_{\mu}$$

Задание 5. Синтез и моделирование системы из условия обеспечения в ней «биномиальной настройки»

Передаточная функция электрической части привода постоянного тока

$$W_{ob} = \frac{1}{Ls + R}$$

Передаточная функция разомкнутой системы, настроенной на технический оптиум.

$$T_{\mu} = \frac{L}{R}$$

$$W_{ol} = \frac{1}{3T_{\mu}s(T_{\mu}s + 1)}$$

$$W_{reg} = \frac{W_{ol}}{W_{ob}} = \frac{R^2}{3Ls}$$

Моделирование работы системы, настроенной на биномиальный оптиум

Рисунок 13. График моделирование работы, настроенный на биномиальный оптиум ($T_o = 0.1 \cdot T_{\mu}$)

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 6.4 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 6.4 \cdot T_{\mu}$$

 t_0 – время начала переходного процесса

 t_{p1} — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \geq D, D = 0.05 \cdot |y_0 - y_{ss}|$$

 t_{p2} — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \le D, D = 0.05 \cdot |y_0 - y_{ss}|$$

Вычислим перерегулирование Δу:

$$\Delta y = \frac{|\sup(y) - y_{ss}|}{|y_0 - y_{ss}|} = 0.4 \cdot T_{\mu}$$

Рисунок 14. График моделирование работы, настроенный на биномиальный оптиум ($T_o=1\cdot T_\mu$)

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 5.1 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 8.8 \cdot T_{\mu}$$

$$\Delta y = 5.8 \cdot T_{\mu}$$

Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового И-регулятора для случая вычислительной задержки $\varepsilon=0$

Рисунок 15. График функционала системы

Перенастройка с помощью метода переоборудования

Рисунок 16. График моделирование работы $T_o = T_t = 0.0021$

$$t_{p1} = t_1 - t_0 = 6.1 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 6 \cdot T_{\mu}$$

Вычислим перерегулирование Δу:

Рисунок 17. График моделирование работы $T_o = 2T_t = 0.0042$

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 5.4 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 5.4 \cdot T_{\mu}$$

$$\Delta y = 0 \cdot T_{\mu}$$

Синтез системы с использованием эквивалентной модели системы, учитывающей динамические свойства цифрового И-регулятора для случая вычислительной задержки $\varepsilon = T_{\rm o}$

Рисунок 18. График функционала системы

Перенастройка с помощью метода переоборудования

Рисунок 19. График моделирование работы $T_o = T_t = 0.0021$

$$t_{p1} = t_1 - t_0 = 5.7 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 5.7 \cdot T_{\mu}$$

Вычислим перерегулирование Δу:

$$\Delta y = 0 \cdot T_{\mu}$$

Рисунок 20. График моделирование работы $T_o=2T_t=0.0042$ Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 5.4 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 5.3 \cdot T_{\mu}$$

$$\Delta y = 0 \cdot T_{\mu}$$

Результаты работы

Технический оптиум Таблица 1

T_0	t_{p1} , c	t_{p2} , c	Δy, %
$T_0 = 0.1 \cdot T_{\mu}$	$4\cdot T_{\mu}$	$6.5 \cdot T_{\mu}$	$5.2 \cdot T_{\mu}$
$T_0 = T_{\mu}$	$3.3 \cdot T_{\mu}$	$8 \cdot T_{\mu}$	$17 \cdot T_{\mu}$

Таблица 2

$T_{ m 3an}$	$0.1 \cdot T_0$	$0.4 \cdot T_0$	$0.9 \cdot T_0$
F	0.001	0.0006	0.0014

Таблица 3

T_1	T_{μ}	t_{p1} , c	t_{p2} , c	Δy, %
$T_1 = 1$	0.0033	$3.4 \cdot T_{\mu}$	$3.4 \cdot T_{\mu}$	$4.2 \cdot T_{\mu}$
$T_1 = 0.5$	0.0044	$3 \cdot T_{\mu}$	5.8 · Τ _μ	7.6 · Τ _μ

Таблица 4

T_1	T_{μ}	t_{p1} , c	t_{p2} , c	Δy, %
$T_1 = 1$	0.0033	$3.3 \cdot T_{\mu}$	5.6 · Τ _μ	$6.1 \cdot T_{\mu}$
$T_1 = 0.5$	0.0044	$3.1 \cdot T_{\mu}$	5.7 · Τ _μ	$8.4 \cdot T_{\mu}$

Биномиальный оптиум Таблица 5

T_0	t_{p1} , c	t_{p2} , c	Δy , %
$T_0 = 0.1 \cdot T_{\mu}$	6.4 · Τ _μ	6.4 · Τ _μ	$0.4 \cdot T_{\mu}$
$T_0 = T_{\mu}$	5.1 · Τ _μ	$8.8 \cdot T_{\mu}$	5.8 · Τ _μ

Таблица 6

$T_{ m 3an}$	$0.1 \cdot T_0$	$0.4 \cdot T_0$	$0.9 \cdot T_0$
F	0.001	0.0004	0.00088

Таблица 7

T_1	T_{μ}	t_{p1} , c	t_{p2} , c	Δy, %
$T_1 = 1$	0.0033	$6.1 \cdot T_{\mu}$	$6 \cdot T_{\mu}$	$0 \cdot T_{\mu}$
$T_1 = 0.5$	0.0044	$5.4 \cdot T_{\mu}$	5.4 · Τ _μ	$0 \cdot T_{\mu}$

Таблица 8

T_1	T_{μ}	t_{p1} , c	t_{p2} , c	Δy, %
$T_1 = 1$	0.0033	$5.7 \cdot T_{\mu}$	5.7 · Τ _μ	$0 \cdot T_{\mu}$
$T_1 = 0.5$	0.0044	5.4 · Τ _μ	$5.3 \cdot T_{\mu}$	$0 \cdot T_{\mu}$

Выводы

В процессе выполнения работы исследовали систему управления с И-регулятором и объектом в виде апериодического звена.

В ходе проведенного исследования было определено, что при величине периода дискретности управления $T_0=0.6$ обеспечивается качество переходного процесса в исследуемой цифровой системе, близкое к процессу в эквивалентной непрерывной системе.

Также при увеличении величины периода дискретности время окончания переходного процесса и перерегулирование увеличиваются (Технический оптиум

Таблица *1*).

При вводе задержки уменьшается перерегулирование. Также при задержке величина периода дискретности управления $T_0=1.3$ обеспечивается качество переходного процесса, близкое к процессу в эквивалентной непрерывной системе.

При настройке системы на биномиальный оптиума увеличилось время переходного процесса, перерегулирование уменьшилось. При вводе задержки значение перерегулирование равно 0.