DOES NOT CIRCULATE

UNIVERSITY OF MICHIGAN MEDICAL LIBRARY

CANCER RESEARCH

SUPPLEMENT NO. 1, 1953

NEGATIVE DATA FROM EXPERIMENTAL CANCER CHEMOTHERAPY STUDIES

Edited by

C. CHESTER STOCK

THE OFFICIAL ORGAN OF THE

AMERICAN ASSOCIATION FOR CANCER RESEARCH, INC.

Published by THE UNIVERSITY OF CHICAGO PRESS

UNIVERSITY OF MICHIGAN MEDICAL LIBRARY

CANCER RESEARCH

This journal is sponsored by The American Association for Cancer Research, Inc.; The Anna Fuller Fund; The Jane Coffin Childs Memorial Fund for Medical Research; The Elsa U. Pardee Foundation; The American Cancer Society; and the National Cancer Institute, Public Health Service.

HAROLD P. RUSCH, Editor-in-Chief ELIZABETH B. POHLE, Technical Editor

Editorial Advisory Board

JOSEPH C. AUB
JOHN J. BITTNER
AUSTIN M. BRUES
DALE R. COMAN
E. V. COWDRY
HUGH J. CREECH
M. DEMEREC
F. DURAN-REYNALS
JACOB FURTH
W. U. GARDNER
ALFRED GELLHORN

SAMUEL GRAFF
HARRY S. N. GREENE
JESSE P. GREENSTEIN
THEODORE S. HAUSCHKA
ERICH HIRSCHBERG
CHARLES HUGGINS
ARTHUR KIRSCHBAUM
ALBERT L. LEHNINGER
C. C. LITTLE
BALDUIN LUCKÉ
G. BURROUGHS MIDER

James A. Miller
Ira T. Nathanson
C. P. Rhoads
A. J. Riker
Michael B. Shimkin
Paul E. Steiner
C. Chester Stock
Robert E. Stowell
Albert Tannenbaum
Shields Warren
Arnold D. Welch

NOTICE TO MEMBERS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH

Officers for 1952-53

President: Stanley P. Reimann, Lankenau Hospital Research Institute, Philadelphia 11, Pa. Vice-President: Harold P. Rusch, University of Wisconsin, Madison 6, Wis. Secretary-Treasurer: Hugh J. Creech, Institute for Cancer Research, Fox Chase, Philadelphia 11, Pa.

Changes of address of members of the American Association for Cancer Research should be sent promptly to Dr. Creech for recording in the files of the Association and also to insure receipt of the journal CANCER RESEARCH by active members of the Association.

CANCER RESEARCH is published monthly for Cancer Research, Inc., by the University of Chicago Press, 5750 Ellis Avenue, Chicago 37, Illinois. Subscriptions are by volume only and are payable in advance. The subscription price is \$12.50 per volume; the price of single issues is \$1.25. Orders for less than a full volume will be charged at the single-issue rate. Postage is prepaid by the publishers on all orders from the United States and its possessions. No extra charge is made for countries in the Pan American Postal Union. Postage is charged extra as follows: For Canada and Newfoundland, 50 cents per volume (total \$13.00), 5 cents per issue (total \$1.30); for all other countries in the Postal Union, \$1.00 per volume (total \$13.50), 10 cents per issue (total \$1.35). The following is an authorized agent:

For the British Empire, except North America and Australasia:

Cambridge University Press, Bentley House, 200 Euston Road, London, N.W. 1, England. Prices of subscriptions and of single copies may be had on application.

Business communications, remittances (in United States currency or its equivalent), and subscriptions should be addressed to The University of Chicago Press, 5750 Ellis Avenue, Chicago 37, Illinois. All other communications should be addressed to Harold P. Rusch, M.D., McArdle Memorial Laboratory, University of Wisconsin, Madison 6, Wisconsin.

Claims for missing numbers should be made within the month following the regular month of publication. The publishers expect to supply missing numbers free only when losses have been sustained in transit and when the reserve stock will permit.

No responsibility is accepted by the Editors, by Cancer Research, Inc., or by the publishers of CANCER RESEARCH for opinions expressed by contributors.

NOTICE TO SUBSCRIBERS: If you change your address, please notify us and your local postmaster immediately.

Copyright 1958 by Cancer Research, Inc.

CANCER RESEARCH

SUPPLEMENT NO. 1, 1953

NEGATIVE DATA FROM EXPERIMENTAL CANCER CHEMOTHERAPY STUDIES

Edited by

C. CHESTER STOCK

THE OFFICIAL ORGAN OF THE

AMERICAN ASSOCIATION FOR CANCER RESEARCH, INC.

Published by THE UNIVERSITY OF CHICAGO PRESS

THE PUBLICATION OF THIS SUPPLEMENT WAS MADE POSSIBLE BY A GRANT FROM THE ALFRED P. SLOAN FOUNDATION

Med Faxon 5-6-53

FOREWORD

Many investigators are now engaged in screening compounds for their effect on neoplastic growths. Since the majority of compounds tested in these programs are ineffective, the publication of such data becomes a problem. Investigators and journals hesitate to publish such negative data. Yet to stimulate research and minimize a repetition of effort, such information must have wide distribution. This need was recognized, and an effort to meet it was announced in the March, 1952, issue of CANCER RESEARCH. At that time, it was planned to publish such negative data in tabular form in CANCER RESEARCH from time to time as the need arose. The response to this announcement soon revealed that the backlog of material was so great that publication by the installment plan would be time-consuming and difficult to index. The need of a special volume became evident, but this compilation did not become a reality until Dr. C. Chester Stock consented to assume the responsibility for collecting, classifying, and editing the available data. Appreciation is due to Dr. Stock for this important service, and also to Drs. Arthur Furst and Joseph Leiter who assisted him.

Harold P. Rusch Editor-in-Chief CANCER RESEARCH

INTRODUCTION

Investigators in experimental cancer chemotherapy owe much to Dr. Helen Dyer for her compilation of published data in their field. The usefulness of the compilation created additional interest in the publication of information which, for various reasons, could not be included in her Index of Tumor Chemotherapy. Some of the data were not available, because they represented compounds inadequately tested or that were commercially confidential, and most of them were more or less buried because of the negative results. Many compounds have been tested since the Dyer compilation. In fact, the intensive effort in experimental cancer chemotherapy during the past five years has caused increasing concern that there would be a larger and larger amount of unnecessary duplication as long as the data remained unpublished.

The excellent arrangement for the simple, rapid publication of negative data initiated a year ago (CANCER RESEARCH, 12: 241-42, 1952), upon the prompting of the California research groups, may in the future provide a method for rapid publication. However, as Dr. Rusch has indicated in the foreword, this could not handle the unpublished data accumulated since 1947. This supplement number of CANCER RESEARCH is the result. If there are sufficient interest and funds available, future supplements will be published as required. These may also provide for publication of negative results from clinical trials. Material proposed for possible future supplements should be sent to C. Chester Stock, 444 East 68th Street, New York 21, N. Y. If later supplements are not feasible, the material will be considered for publication in the form of that in the March, 1952, issue of CANCER RESEARCH. It is believed that supplement numbers containing negative data will easily save more than their cost if unnecessary repetitions of tumor tests on only 100 compounds can be prevented. In addition, the negative data will provide a degree of helpful information on the toxicities of hundreds of compounds.

The material included in the present supplement is that received in response to the invitation for data, which appeared in the August, 1952, issue of CANCER RESEARCH. It is to be noted that the information is presented under the title of negative data rather than negative compounds. It should be obvious that what are being reported are negative results under the specified conditions and that the same compounds under other conditions might show useful chemotherapeutic effects. It is assumed that each investigator submitting the data has assured himself of the lack of action of the compounds against the tumors employed and that the data, with the exception of controls, have not been published previously. Any questions concerning the data should be addressed directly to the investigators furnishing the information.

As the usefulness of the material is dependent in part upon its availability and promptness of appearance, the present publication has required a compromise of several factors including usefulness and the ease and speed of publication. Therefore, no attempt has been made to convert all names of the compounds to any standard form of nomenclature, such as that of CHEMICAL ABSTRACTS. To do so would have entailed too much delay in publication. An attempt has been made to eliminate any gross errors in the names of the compounds. An empirical formula index has been provided in the hope that it would be a useful guide to the entries for any compound in the supplement. In most instances the compounds have been listed alphabetically for each laboratory. In a few cases where they have been grouped according to structure, no attempt has been made to cross-index them. Abbreviations have been defined wherever not apparent or not in accordance with those of Dr. Dyer. Errors in an operation of this type are inevitable. An attempt has been made to reduce them to a minimum. Criticism and suggestions are invited by the undersigned publication committee.

It is a pleasure to acknowledge the assistance of Dr. Ralph Barclay, Mr. George Leopold, Miss Patricia Dunkel, and Miss Virginia Fairhurst in checking technical details, and that of Mrs. Mariam Anthony for the stenography.

Dr. Arthur Furst Department of Pharmacology and Therapeutics Stanford University School of Medicine San Francisco 15, California

Dr. Joseph Leiter Laboratory of Chemical Pharmacology National Cancer Institute Bethesda 14, Maryland

Dr. C. Chester Stock Division of Experimental Chemotherapy Sloan-Kettering Institute for Cancer Research New York 21, New York

CONTENTS

John J. Biesele. Some Negative Screening Results with Miscellaneous Compounds in Tissue Cultures of Several Tumors	1
Eric Boyland and S. Sargent. Tests of Compounds against Various Tumors in Mice	7
W. C. Cutting, H. S. Dreisbach, and Arthur Furst. Data from Cutting et al.	11
John B. Field. Tests of Compounds against Sarcoma 180 and Leukemia in Mice	13
B. L. Freedlander and Arthur Furst. Chemotherapy Studies of Various Mouse Tumors and Several Myeloid Leukemias	23
Alfred Gellhorn, Alice Kells, and Erich Hirschberg. Tests of Compounds against Various Experimental Tumors	4 0a
L. H. Goodson, L. Barvick, R. Kodras, J. Palmer, J. Rowland, and R. G. Stone. Sarcoma 180 Inhibition Tests	45
D. M. Greenberg and E. M. Gal. Tests against Various Mouse Tumors	53
Hans Lettré. Tests of Compounds against the Ehrlich Mouse Ascites Tumor .	55
John B. Loefer. Studies with a Lymphosarcoma, Sarcoma 180, and Leukemia P1534 in Mice	59
Joseph Patti. Mouse Sarcoma 180 Inhibition Tests	65
Howard E. Skipper. Tests of Compounds against Mouse Leukemia and Several Solid Tumors	69
Kurt Stern. Tests against Transplanted and Spontaneous Tumors in Mice .	79
Floyd C. Turner. Studies with Various Experimental Tumors	81
C. Chester Stock, Frederick S. Philips, Alice E. Moore, Sonja M. Buckley, Donald A. Clarke, Ralph K. Barclay, and Kanematsu Sugiura. Sarcoma 180 Inhibition Screening Data	91
Index of Materials	181

SOME NEGATIVE SCREENING RESULTS WITH MISCELLANEOUS COMPOUNDS IN

TISSUE CULTURES OF SEVERAL TUMORS

John J. Biesele
Cell Growth Section
Division of Experimental Chemotherapy
The Sloan-Kettering Institute for Cancer Research
New York 21, New York

A variety of chemical agents has been tested for selective toxicity to neoplastic cells in tissue culture, as part of the comprehensive program in experimental chemotherapy of the Sloan-Kettering Institute for Cancer Research. Many of these agents have displayed no material difference in toxicity to mouse sarcoma and embryonic cells. The great majority of a group of 96 purines and 28 purine nucleosides previously reported on (1) fell into this indifferent group. An example of a compound showing a high differential toxicity is 2,6-diaminopurine (2).

It is the purpose of the present paper to present data on miscellaneous chemical agents of nondifferential toxicity in a tissue culture test. It should be obvious that the negative results with any compound reported here are valid only for the particular tumor and normal tissue used and under the conditions employed. There is no reason to assume general applicability to these results.

The procedure followed has been given in detail before (1,2) and is only summarized here. It involves an overnight testing of agents for morphological damage to cells of mouse tumors and mouse embryonic skin cultivated in the same roller tubes for 24 hours before addition of the agent to be tested. Each agent was added in a series of concentrations to the culture medium in a replacement volume of one-tenth of the one milliliter of fluid medium in each tube. The mouse tumors used have been sarcoma T241, Crocker sarcoma 180, and the Ma387 tumor. The outgrowth from explants of embryonic mouse abdominal skin ordinarily includes both fibroblastic and epithelial elements.

The vehicle employed was largely saline in every case. Some agents were preliminarily dissolved in small volumes of dilute HCl or NaOH before addition to saline. Some of the agents were added to the culture tubes as fine suspensions in saline, especially in the highest "concentrations" employed.

Because of the use throughout of embryonic mouse skin as the source of normal cells, and of saline as the vehicle, these are not entered in the table.

ACKNOWLEDGEMENT

The experiments whose results are reported here were carried out over a number of years with the able assistance of Miss Ruth Berger, Mrs. Marilyn Clarke Slautterback, Mrs. Anne Yates Wilson, and Miss Grace Cohn.

This study was aided in part by grants from the American Cancer Society and the Damon Runyon Memorial Fund for Cancer Research, and by grant C678 from the National Cancer Institute, of the National Institutes of Health, Public Health Service.

REFERENCES

- Biesele, J. J.: Berger, R. E.: and Clarke, M. Tissue Culture Screening of Purines and Purine Nucleosides for Selective Damage to Mouse Sarcoma Cells. Cancer Research, 12: 399-406, 1952.
- Biesele, J. J.: Berger, R. E.: Wilson, A. Y.: Hitchings, G. H.: and Elion, G. B. Studies on 2,6-Diaminopurine and Related Substances in Cultures of Embryonic and Sarcomatous Rodent Tissues. Cancer, 4: 186-197, 1951

ENTRY NO.	COMPOUND NAME	SOURCE	TUMOR	DOSE RANGE (mM/1)
	BENZIMIDAZOLES:			
1	Benzimidazole	BE	S180	0.16 - 10.0
2	${\tt 5,6-Dimethyl-l-\beta-d-glucopyranosyl-benzimid} azole$	AW6	\$180	0.125 - 4.0
3	$5, 6\text{-}Dimethyl-1-\beta-d-ribofuranosyl-benzimidazole} \\$	AW6	S180	0.1 - 10.0
4	1-d-Glucopyranosylbenzimidazole	AW6	S180	0.125 - 2.0
5	2, 2'-Hydroxyethyl benzimidazole	E	S180	0.25 - 4.0
6	2-Mercaptobenzimidazole	AA	S180	0.25 - 4.0
7	$1 - \beta d - \text{Ribofuranosylbenzimidazole}$	AW6	\$180	0.125 - 4.0
	PENICILLIN AND RELATED COMPOUNDS			
8	N-Acetyl-DL-penicillamine	ву	T241	0.05 - 5.0
9	a-Benzylamide of D-benzylpenicilloic acid	ВУ	T241	0.05 - 5.0
10	S-Benzylpenicillamine (L)	ВУ	T241	0.05 - 5.0
11	Benzylpenillic acid	ву	T241	0.05 - 5.0
12	Benzylpenicilloic acid from D-penicillamine	ву	S180	0.05 - 5.0
13	p-Chlorobenzyl penicillin	N	T241	3,6 - 7.2
14	Cyclopentylmethyl penicillin	N	T241	3.07 - 6.14
15	α, β-Dimethyl-D-a-benzylpenicilloate	ву	S180	0.05 - 5.0
16	Ethylmercaptomethyl penicillin	N	T241	3.1 - 6.3
17	. m-Fluorobenzyl penicillin	N	T241	2.8 - 5.7
18	o-Fluorophenylmethyl penicillin	N	T241	2.9 - 5.7
19	N-Formyl D-penicillamine	ву	S180	0.05 - 5.0
20	N-Formyl L-penicillamine	BY	S180	0.05 - 5.0
21	Isoamyloxymethyl penicillin	N	T241	0.58 - 2.9
22	Isopropylthiomethyl penicillin	N	T241	4.3 - 8.6
23	N-Methyl L-penicillamine disulfide	ву	\$180	0.05 - 5.0
24	Penicillin O potassium, crystalline	ву	T241	0.02 - 2.0
25	β-Phenoxyethylmercaptomethyl penicillin	N	T241	2.4 - 4.9
26	2-Thiophenemethyl penicillin	N	T241	2.9 - 5.9
	PTERIDINES			
27	2-Amino-4-hydroxy-6-formyl pteridine	AG1	T241;S180	0.001 - 2.0
28	2-Amino-4-hydroxypteridine-6-carboxylic acid	M	T241; Ma387	3.6 - 7.3
29	2,4-Diaminopteridine	BA	T241; Ma387	1.5 - 6.3
30	Xanthopterin	D	T241;Ma387	0.056 - 5.6

	Ю.	COMPOUND NAME	SOURCE	TUMOR	DOSE RANGE (mM/1)
		PYRIMIDINES:			
3	1	N_4(5-Amino-7-hydroxy-2v-triazolo(d)-pyrimidyl)benzoyl7 glutamic acid	BL	S180	0.1 - 10.0
3	32	2-Amino-4-methyl-5-acetylpyrimidine	M	T241;Ma387	3.6 - 14.4
3	3	2-Aminopyrimidine	Dough.	S180	0.125 - 4.0
3	14	5-Aminouracil	BE	T241;Ma387	15.8 - 31.5
3	35	l-Arabopyranosyl-5-methylcytosine	AW4	S180	0.125 - 2.0
				T241	0.5 - 4.0
3	36	8-Azaadenine (or, 7-amino-l-v-triazolo(d)-pyrimidine)	AWl	S180	0.1 - 10.0
3	37	2-Benzylthiouracil	Dough.	S180	0.125 - 4.0
. 3	38	$\hbox{$2$-p-Carbethoxyphenyl-5-amino-7-hydroxy-v-triazolo(d)-pyrimidine}$	BL	S180	0.1 - 10.0
3	39	2-p-Carboxyphenyl-5-amino-7-hydroxy-y-triazolo(d)- pyrimidine	BL	S180	0.1 - 10.0
4	10	$\hbox{$2$-p-Carboxyphenyl-5,7$-diamino-v-triazolo(d)$-pyrimidine}$	BL	S180	0.1 - 10.0
4	1	5-Chloro-7-amino-1-v-triazolopyrimidine	AW4	S180	0.125 - 4.0
4	2	2-Chloro-4,6-diamino-5-nitropyrimidine	AW6	S180	0.125 - 4.0
4	13	5-Chlorouridine	AW4	S180	0.125 - 2.0
				T241	0.5 - 4.0
4	4	Cordycepin	AW5	S180	0.1 - 10.0
4	5	5,7-Diamino-1-v-triazolo(d)-pyrimidine	AW1	S180	0.1 - 10.0
4	6	N(5,7-Diamino-2v-triazolo(d)-pyrimidyl benzoyl) $L(+)$ glutamic acid	BL	S180	0.1 - 10.0
4	7	5,7-Dihydroxy pyrimidotriazole	AW1	S180	0.1 - 10.0
4	8	2-Dimethylamino-4, 6-diaminopyrimidine	AW6	S180	0.125 - 4.0
4	9	${\tt 2,4-Dimethyl-5-bromo-6-(2',4'-dibromo-anilino)-pyrimidine}$	BE	S180	0.1 - 10.0
5	0	$1-\beta-d$ -Glucopyranosyluracil	AW6	S180;T241	0.5 - 4.0
5	1	5-Hydroxy-7-amino-1-v-triazolo(d)-pyrimidine	AW1	S180	0.1 - 10.0
5	2	5-Hydroxyuridine	AW4	S180	0.125 - 2.0
				T241	0.5 - 4.0
5	3	5-Isoamyluracil	AW7	S180;T241	0.125 - 2.0
5	4	${\small 5\hbox{Mercapto-7-amino-1-v-triazolo(d)-pyrimidine}}\\$	AW1	S180	0.1 - 10.0
5	5	6-Methylhydrouracil	Dough.	S180	0.125 - 4.0
5	6	6-Methylthiouracil	Dough,	S180	0.125 - 4.0
5	7	6-Methyluracil	Dough,	S180	0.125 - 4.0
5	8	3-Methyluridine	Visser	S180	0.125 - 4.0
				T241	0.5 - 4.0

ENTRY NO.	COMPOUND NAME	SOURCE	TUMOR	DOSE RANGE (mM/1)
59	5-Aminouracil	BE	T241;Ma387	15.8 - 31.5
60	Orotic acid	D 1	S180	0.125 - 4.0
61	$\hbox{2-Phenyl-5-amino-7-hydroxy-v-triazolo} \ (\ d\) \hbox{-pyrimidine}$	BL	S180	0.1 - 10.0
62	$\hbox{2-Phenyl-5,7-diamino-v-triazolo(d)-pyrimidine}\\$	BL	S180	0.1 - 10.0
63	Vicine	AW3	S180;T241	0.125 - 2.0
64	d-Xylopyranosyl-5-methylcytosine	AW4	S180	0.125 - 2.0
			T241	0.5 - 4.0
	STEROIDS:			
65	Acetoxypregnenolone	BT	S180	0.125 - 2.0
66	Desoxycorticosterone acetate	DG	S180	0.125 - 2.0
67	17a-Hydroxy-11-desoxycorticosterone-31-acetate	DE	S180	0.125 - 2.0
68	Pregnenolone	BT	S180	0.125 - 2.0
69	Progesterone	во	S180	0.125 - 2.0
	MISCELLANEOUS:			
70	7-Acetoxy-2-Methyl-3-phenyl chromone	D	S180	0.25 - 4.0
71	a-Allocryptopine	EI	S180	0.125 - 2.0
72	Amphenone B, or 1,2-bis(p-aminophenyl)-2-methyl-propanone-1	EE	S180	0.25 - 4.0
73	Benzotriazole	AE	S180	0.1 - 10.0
74	1-Chloro-2, 3-epoxypropane	M	S180	0.25 - 4.0
75	Corlumine	EI	S180	0.125 - 2.0
76	2-Desoxy-d-glucose	EP	S180	0.1 - 10.0
77	Diethylstilbestrol	D	S180	0.125 - 2.0
78	3,4-Epoxy-1-butene	AE	S180	0.25 - 4.0
79	Flavone	D	S180	0.25 - 4.0
80	Flavonol	D	S180	0.25 - 4.0
81	Formamide	E	S180	0.1 - 10.0
82	Δ-Guanidovaleric acid	AW5	S180	0.1 - 10.0
83	1-Hydroxy-2, 3-epoxypropane	M	S180	0.25 - 4.0
84	2-Hydroxy flavone	D	S180	0.25 - 4.0
85	7-Hydroxy-2-methyl-3-phenyl chromone	D	S180	0.25 - 4.0
86	Lyxoflavin	D_1	S180	0.125 - 4.0
87	p-(N-Methylamino) benzoic acid	M	T241;Ma387	0.66 - 1.66

ENTRY NO.	COMPOUND NAME	SOURCE	TUMOR	DOSE RANGE (mM/1)
88	Nitron	AN	T241;Ma387	0.16 - 0.64
89	Protoanemonin	AW2	T241;Ma387	0.01 - 1.04
90	Synkayvite	AJ	T241	0.0001 - 0.1
91	$\label{eq:continuous} 1,2,3,4-Tetrahydro-4-(3,4-dimethoxy-phenyl)-3-hydroxymethyl-6,7-dimethoxy-\alpha-naphthoic acid anilide$	DP	S180	0.1 - 10.0
92	1,2,3,4-Tetrahydro-4-(3,4-dimethoxyphenyl)-3- hydroxymethyl-6,7-dimethoxy-α-naphthoic acid n-propyl amide	DP	S180	0.1 - 10.0
93	4,5-Tetramethylene tropolone	AT	S180	0.1 - 10.0
94	Tropolone	AT	S180	0.008 - 0.5

The abbreviations for sources represent the following:

D	Merck and Company
Dl	Dr. Karl Folkers
\mathbf{E}	Eastman Kodak Company
M	Calco Chemical Division, American Cyanamid Company
N	Lilly Research Laboratories, Eli Lilly Company
AA	B. F. Goodrich Chemical Company
AE	National Research Council
AG1	Dr. T. H. Jukes, Lederle Laboratories
AJ	Hoffmann-La Roche, Inc.
AN	National Aniline-Allied Chemical and Dye Corporation
AT	Dr. William Doering, Hickrill Chemical Research Foundation, Inc.
AW 1	Dr. Liebe Cavalieri
AW 2	Dr. Kenneth Savard
AW3	Dr. Aaron Bendich
AW4	Dr. G. B. Brown
AW5	Dr. Ralph Barclay
AW6	Dr. John Davoll
AW7	Dr. Earl Balis
BA	Dr. C. K. Cain, McNeil Laboratories
BE	The Wellcome Research Laboratories
BL	Remington Rand, Inc.
BO	Ayerst, McKenna and Harrison
BT	Schering Corporation
BY	Upjohn Laboratories
DE	Glidden Corporation
DG	Roche-Organon
DP	William R. Warner, Inc.
EE	Dr. Roy Hertz, National Cancer Institute
DI	Dr. Wilson M. Whaley, University of Tennessee
EP	Biochemical Research Foundation, Inc.
Dough.	Dougherty Chemicals
Visser	Dr. Donald Visser

TESTS OF COMPOUNDS AGAINST VARIOUS TUMORS IN MICE

Eric Boyland and S. Sargent
The Chester Beatty Research Institute
The Royal Cancer Hospital
London, S. W. 3, England

Spontaneous tumors in mice were measured 3 times weekly for a sufficiently long period for them to grow at least 10 mm. (expressed as the sum of two diameters) in order to establish the normal growth rate. The tumors were then measured during a treatment period of 14 days and the rates of growth during control and experimental periods compared.

In experiments with grafted tumors the rate of growth of the tumors in mm. per day was compared with the average rate of growth of tumors in a group of untreated mice.

For further details see the table of negative results and the reference, "Experiments on the Chemotherapy of Cancer. VI. The Effect of Aromatic Bases." Biochemical Journal, 40, 55, 1946.

Sodium azide and d,1 Methionine represent two compounds active against spontaneous mammary carcinomas in stock mice. Both compounds dissolved in water were injected 12 times I.P. at doses of 5~mg/K/day into groups of 5~mice. The ratios of average weight change of treated and control mice were 0.59 and 0.41 respectively for the two compounds.

ROUTE OF VEHICLE ADMINIS- TRATION	Water	al Arachis oil	Water	Ε	=	:	:	:	:	=	:	=	al Arachis oil	Water	:	" bood II	:	=
NO, OF TREATMENTS ROUT OR DURATION ADM OF FEEDING TRA	12 I.P.	12 Oral		14 "	" "12	" "12	112 "	" "12	12 I.P.	12 "	4	2	12 Oral	12 "	12 "	14 Infe	2 I.P.	12 "
AV. WT. CHANGE: TRI treated/ OR controls OF	0.76	1.00	1.00	06.0	0.98	1.00	1.36	1,05	0.95	0.80	1.15	0.80	1.00	0.95	66.0	0.77	0.82	1.15
DOSE mg/kg/day OR PER CENT IN FOOD	400	40	1000	0.2%	1000	800	800	400	0.5	0.5	100	20	1000	200		0.5%	10	400
HOST SPECIES, STRAIN	Stock mice	DBA mice	E	Stock mice	DBA mice	Str. A mice	Stock mice	:	C3H mice	Stock mice	E	:	DBA mice	=	Ξ	Stock mice	:	C3H mice
NO. OF ANIMALS	7	10	10	9	10	10	4	10	10	4	4	4	10	10	10	4	4	01
AGE OF TUMOR OR DAYSAFTER TRANSPLANT		7	-		~	2 0	•	4	. 7	•			7	7	7			,
TUMOR	sp. mam. ca.	tr. sarc.	E	sp. mam. ca.	tr. sarc.	Crocker 180	sp. mam. ca.	:	lymphosarc.	вр. тат. са	:	:	tr. sarc.	:	E	вр. тат. са.	E	lymphogan
PHYSICAL CONSTANT OF SAMPLE USED		b. 150°	er		er										ier			
COM- POUND SOURCE			May & Baker	ine	May& Baker	I.C.I.		1.c.1.	Lederle						May& Baker			
COMPOUND	DL . Alanine	Allyl iso thiocyanate	2(p-Aminobenzene- sulphonamido)4-methyl- triazole	2-Amino-4:6-dimethylpyridine	p-2-Aminophenyl- sulphonamido-5-amino- pyridine	p-Aminophenylsulphonyl- ethylcyanide		p-Aminophenylsulphonyl- ethylcyanide	Aminopterin		β-Bromoethylamine hydro- bromide	Chloroethyl trimethyl- ammonium chloride	Cholesterol	Cyclohexylamine	4:4'-Diamidinostilbene	Diethanolamine	Diethylchloroethylamine hydrochloride	2.31 Dibertanamboneiding
ENTRY NO.	95	96	76	86	66	100		101	102		103	104	105	106	107	108	601	011

Doyland an	u Da	18011			res		Cui	icei	Citei	nome	чру	Duu								
VEHICLE	Water	=	:	=	Arachisoil	Water	=	=	Arachisoil	Water	=	=	=	Arachisoil	=	=	Water	=	z	=
ROUTEOF ADMINIS- TRATION	Infood	I.P.	Ξ	E	:	Oral	=	=	=	I.P.	Oral	:	Ξ	I.P.	:		Oral	=	2	2
NO. OF TREATMENTS OR DURATION OF FEEDING	14	12	2	2	9	12	12	12	12	12	12	12	12	12	12	2	12	12	12	12
AV. WT. CHANGE: treated/ controls	1.10	1.01	1.10	98.0	0.87	96.0	1.15	0.87	0.98	0.87	1.00	0.92	86.0	1.30	1.10	1.20	1.00	86.0	0.92	1.00
DOSE mg/kg/day OR PER CENT IN FOOD	0.2%	10	20	100	10	200	200	200	200	20	400	250	200	250	9	ĸ	200	200	100	100
HOST SPECIES, O STRAIN	Stock mice		=	:	E	DBA mice	Stock mice	DBA mice	Ξ	Stock mice	DBA mice	ε	£	Stock mice	=	C3H mice	DBA mice	:	Stock mice	:
NO. OF ANIMALS	4	ĸ	4	4	12	10	4	10	20	ĸ	10	10	10	4	ıń	10	10	10	10	10
AGE OF TUMOR OR DAYS AFTER TRANSPLANT	a.					7	·s.	7	7	ů.	7	7	7	a.		pho 7	7	7	rc. 7	7
TUMOR	sp. mam. ca.	:	,=	:	±	tr. sarc.	sp. mam. ca.	tr. sarc.	=	sp. mam. ca	tr. sarc.	=	Ξ,	sp. mam. ca.	:	trans. lympho sarc.	tr. sarc.	:	Crocker sarc.	tr. sarc.
PHYSICAL CONSTANT OF SAMPĹE USED																	•			
COM- POUND C		Burroughs Wellcome								Ministry of Supply						Roche				
COM POUND NAME	Dimethylaminodiphenylether	dlDimethylamino-4:4- diphenyl-heptane-5-one hydrochloride	Dimethylbromoethylamine hydrobromide	Dimethylchloroethylamine hydrochloride	2:4-Dinitrophenol	4:4'-Dipiperidyl	Dibenzpyrene sulphate		4:4'-Ditolylether	Divinyl sulphone	Furoin	Furyldioxime	Hypoxanthine	Isophorone	2:21-Methylene-bis-(3:4:6 trichlorophenol)	Menaphthone (menadione)	Methyl mercaptobenzthiazole	a-Naphthoquinoline	4-Nitroso-1-naphthol	
ENTRY NO.	111	112	113	114	115	116	117		118	119	120	121	122	123	124	125	126	121	128	

ENTRY NO.	COMPOUND	COM- POUND SOURCE	PÉYSICAL CONSTANT OF SAMPLE USED	TUMOR	AGE OF TUMORO DAYSAFT	AGE OF TUMOROR DAYSAFTER TRANSPLANT	NO, OF ANIMALS	HOST SPECIES, STRAIN	DOSE mg/kg/day OR PER CENT IN FOOD	AV. WT. CHANGE: treated/ controls	NO, OF TREATMENTS OR DURATION OF FEEDING	ROUTE OF ADMINIS- TRATION	VEHICLE
129	p-Phenylenediamine			tr. sarc.		7	10	DBA mice	40	66.0	12	Oral	Water
130	Sodium-p-aminobenzoate			вр. тат. са.	ca.		4	Stock mice	1.0%	1.05	14	pooj ul	E
131	Sodium 4-aminobenzene- sulphonyl-1-naphthyl- amine 5-sulphonate	May& Baker	ker	Crockersarc.		7	10	=	1000	76.0	12	Oral	
132	Sodium 1-amino-8-naphthol- 4:6-disulphonate			tr. sarc.	1-	7	10	DBA mice	1000	1.00	12	:	:
133	Sodium chloromalonate			вр. тат. са.	ca.		4	Stock mice	200	0.92	12	E	=
134	Sodium periodate			tr. sarc.	1-	7	20	DBA mice	200	0.94	12	ı	=
							4	:	800	1.31	12	E	=
135	Sodium tiglate	Glaxo		вр. тат. са.	ca.		4	=	800	1, 31	12	E	E
136	Sulphadimidine	I.C.I.		=			4	Stock mice	0.2%	0.70	14	pooj ul	=
137	Suramin	1.C.I.		=			4	=	30	0.95	14	I.P.	=
138	Tetrabromobenzidine sulphone			Crocker 180		2	10	Str. mice	200	0.92	12	Oral	:
139	Tetramethyldiamino- benzophenone			tr. sarc.	7	_	8	DBA mice	400	0.95	12	:	
140	Tetramethyldiaminodecane			вр. тат. са.	ca.		4	Stock mice	10	0.75	12	I.P.	=
141	Tetramethyldiaminothio- benzophenone			tr. sarc.	1-	7	20	DBA mice	400	0.92	12	Oral	E
142	p-Toluenesulphonamide		m. 135°	sp. mam. ca.	ca.		4	Stock mice	0.2%	0.81	14	In food	:
143	Triethanolamine		b. 275-278 ⁰	=			4	:	0.2%	0.86	14	:	=
141	Trypan Blue			Crocker 180	180			=	200	0.98	12	Oral	

																			_		
Diet	:	=	=	:	:	Ε	:	E	=	=	E	:	:	:	:	:	:	:	:		:
4 weeks	4-6 weeks	E	3-4 weeks	4-6 weeks	z	=	3-4 weeks	4-6 weeks	ı		4-6 weeks	=	:	E	:	3-4 weeks	4-6 weeks	3-4 weeks	4-6 weeks	=	3-4 weeks
1%	1%	1%	1%	1%	1%	1%	1%	0.2%	1%	1%	1%	1%	1%	1%	1%	0.5%	1%	0.1%	0.5%	0.5%	0.5%
2/5	4/5	6/1	11/11	1/5	4/5	4/9	11/11	4/7	1/0	3/3	7/15	5/2	4/5	1/6	9/9	11/11	1/6	11/11	9/9	8/8	33/33
9/2	2/2	6/9	11/11	9/2	2/2	6/9	11/11	1/0	1/0		13/15	9/2	4/5	4/6	1/6	11/11	9/2	11/11	9/9	1/1	33/33
Web.	C57	СЗН	Web.	Web.	C57	СЗН	Web.	Web.	Web.	С3Н	C57	Web.	C57	C3H	C57	Web.	C57	Web.	C57	С3Н	Web.
	,		.							ca. 1-2 mo.											
8180	C43	SDO	EA	S180	C43	SDO	EA	S180	S180	sp. mam.	C43	8180	C43	SDO	\$180	EA	\$180	EA	C43	SDO	EA
											2000	lio									
So. Reg.	Lab.			S.R.R.L.				DPI	Carbide & Carbon						DPI	DPI	DPI	DPI	DPI		
Aconitic acid, tripropylester				Aconitic acid, tributyl ester				Naphthylene acetonitrile	2-Ethyl-2-hexenoic acid	p-Hydroxy-cinnamic acid	m-Amino cyclohexanol , HCl	1, 3-cyclohexanediol			Coumarilic acid	Furfuraldoxime	Furoic acid	Furfuramide	Furfuryl acetate		
145				146				147	148	149	150	151			152	153	154	155	156		
	Aconitic acid, tripropylester So. Reg. S180 Web. 2/6 2/5 1% 4 weeks	Aconitic acid, tripropylester So. Reg. S180 Web. 2/6 2/5 1% 4 weeks Research C43 C57 5/5 4/5 1% 4-6 weeks	Aconitic acid, tripropylester So. Reg. S180 Web. 2/6 2/5 1% 4 weeks Research C43 C57 5/5 4/5 1% 4-6 weeks SDO C3H 5/9 7/9 1% "	Aconitic acid, tripropylester So. Reg. S180 Web. 2/6 2/5 1% 4 weeks Lab. C43 C57 5/5 4/5 1% 4-6 weeks SDO C3H 5/9 7/9 1% " EA Web. 11/11	Aconitic acid, tripropylester So. Reg. S180 Web. 2/6 2/5 1% 4 weeks Lab. C43 C57 5/5 4/5 1% 4-6 weeks SDO C3H 5/9 7/9 1% " EA Web. 11/11 11/11 11/11 3-4 weeks Aconitic acid, tributyl ester S.R.R.L. S180 Web. 2/6 1/5 1% 4-6 weeks	Aconitic acid, tripropylester So. Reg. S180 Web. 2/6 2/5 4/5 1% 4 weeks Lab. C43 C57 5/5 4/5 1% 4-6 weeks SDO C3H 5/9 7/9 1% " Aconitic acid, tributyl ester S.R.R.L. S180 Web. 11/11 11/11 1/7 4-6 weeks Aconitic acid, tributyl ester S.R.R.L. S180 Web. 2/6 1/5 1% 4-6 weeks Aconitic acid, tributyl ester S.R.R.L. S180 Web. 2/6 1/5 1% 4-6 weeks	Aconitic acid, tripropylester So. Reg. S180 Web. 2/6 2/5 1% 4 weeks Lab. C43 C57 5/5 4/5 1% 4-6 weeks SDO C3H 5/9 7/9 1% 4-6 weeks Aconitic acid, tributyl ester S.R.R.L. S180 Web. 11/11 11/11 1% 4-6 weeks C43 C43 C57 5/5 4/5 1% 4-6 weeks SDO C3H 5/9 4/5 1% 4-6 weeks	Acontity acid, triputyle ster So. Reg. Research Lab. C43 Veb. C57 2/5 4/5 1% 4 weeks SDO C3H 5/9 7/9 1% 4-6 weeks Acontity acid, tributyl ester S.R.R.L. S180 Web. 11/11 11/11 11/11 1/5 4-6 weeks Acontity acid, tributyl ester S.R.R.L. S180 Web. 2/6 1/5 1% 4-6 weeks SDO C3H 5/5 4/5 1% 1% 1 SDO C3H 5/5 4/9 1% 1 1 EA Web. 11/11 11/11 11/11 11/11 1 3-4 weeks	Acontitic acidi, tripropylester So. Reg. S180 Web. 2/6 2/5 4/5 1% 4 weeks Lab. C43 C57 5/5 4/5 1% 4-6 weeks SDO C3H 5/9 7/9 1% 4-6 weeks Acontitic acidi, tributyl ester S.R.B.L. S180 Web. 11/11 11/11 1% 4-6 weeks Acontitic acidi, tributyl ester S.R.B.L. S180 Web. 1/5 1/5 1% 4-6 weeks Acontitic acidi, tributyl ester S.R.B.L. S180 Web. 11/11 11/11 11/11 1/7 1/4	Aconitic acid, tripropylester So. Reg. S180 Web. 2/5 2/5 1% 4 weeks Lab. Lab. C43 C57 5/5 4/5 1% 4-6 weeks SDO C3H 5/9 7/9 7/9 1% 4-6 weeks Aconitic acid, tributyl ester S.R.R.L. S180 Web. 2/6 1/5 1% 4-6 weeks Aconitic acid, tributyl ester S.R.R.L. S180 Web. 1/11 11/11 11/11 1/7 1/5 1% 4-6 weeks Naphthylene acetonitrille DPI S20 C3H 5/9 4/9 1/7 1/11 11/11	Acontitic acid, tripropylester Research	Acontitic acidi, triptopylester Research Lab. C43 676 677 676 676 176 476 weeks SDO C3H	Acontity acid, tripropylester Research Lab. 643 645 675 675 675 675 675 675 675 675 675 67	Acontite acid, tripropylester Research Lab. C43 5180 Web. 2/6 2/5 1/5 1/6 4-6 weeks C51 5180 C43 5180 C51 5/5 6/5 1/6 1/6 4-6 weeks C51 5180 C51 5/5 6/5 1/6 1/6 4-6 weeks C51 5180 C51 5/5 6/5 1/6 1/6 1/6 4-6 weeks C51 5180 C51 5/5 6/5 1/6 1/6 1/6 1/6 4-6 weeks C51 5180 C51 5/5 6/5 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6	Acontitic acidi, tripropylester Research Lab. 6 45 6 2/5 6/5 6/5 6/5 6/5 6/5 6/5 6/5 6/5 6/5 6	Acontitic acidi, tripropyleeter Research Lab. 643 645 675 675 675 675 675 675 675 675 675 67	Acoutitic acidi, tripropyl ester 26, Reg. 518 2/5 5/	Acountic acid, tripropyleater So, Reg. Lab. 150 Web. 2/6 2/5 1% 1% 4 weeks Acountic acid, tributyl eater Acountic acid, tributyl eater Acount	Acouttic acidi, tripropyl ester So. Reg. Lab. 5180 Web. 2/5 4/5 1/5 4 weeks Acouttic acidi, tributyl ester S.R.R.L. Sigo C31 5/5 4/5 1/5 4.6 weeks Acouttic acidi, tributyl ester S.R.R.L. Sigo C31 5/5 4/5 1/5 1.7 4.6 weeks Acouttic acid, tributyl ester S.R.R.L. Sigo C31 5/5 4/5 1/5 1.7 <td>Acoutic acidi, tripropyl ester Rosearch Lab. C43 C43 C47 C47</td> <td>Accountic acidi, tripropyl ester So. Reg. 519 97 575 475 1% 4 weeks Research Laber Lab</td>	Acoutic acidi, tripropyl ester Rosearch Lab. C43 C43 C47 C47	Accountic acidi, tripropyl ester So. Reg. 519 97 575 475 1% 4 weeks Research Laber Lab

VEHICLE															Propylene glycol	=
ROUTEOF ADMINIS- TRATION	Diet	:	:	:	=	=			:	:	=	=	=	=	=	:
NO. OF TREATMENTS OR DURATION OF FEEDING	3-4 weeks	=	=	E	4-6 weeks	E	= ,	E	E	=	=	E	:	E	Ε	=
DOSE mg/kg/day OR PER CENT IN FOOD	0.1%	0.5%	0.5%	0.1%	0.1%	0.1%	1%	2%	1%	1%	1%	0.5%	0.5%	0.5%	250 mg/kg	250 mg/kg
ATHS/ EST LS Treated	11/11	11/11	11/11	11/11	9/2	4/5	0/3	5/2	2/5	3/5	9/2	9/2	8/11	8/8	0/3	3/3
NO, DEATHS/ NO, TEST ANIMALS Controls Treated	11/11	11/11	11/11	11/11	2/13	3/5	3/10	4/5	3/6	4/5	4/6	2/13	9/11	1/1	3/10	10/10
HOST SPECIES, STRAIN	Web.	Web.	Web.	Web.	СЗН	C57	C57	C57	Web.	C57	C3H	СЗН	C57	СЗН	C57	C57
AGEOF TUMOROR DAYSAFTER TRANSPLANT																
TUMOR	EA	EA	EA	EA	\$180	C43	8180	C43	8180	C43	SDO	8180	C43	SDO	\$180	C43
PHYSICAL CONSTANT OF SAMPLE USED																
COM- POUND SOURCE	DPI	DPI	DPI	DPI	DPI		Kelco Co.									
COM POUND NAM E	Furylacrylamide	Furylacrylic acid	Furfuralacetophenone	Furil	p-Amino-azo benzene		Mannuronic acid lactone		3-\b-hydroxy ethyl orotic acid			2-Amino pyrimidine			2,5-Dimethyl benzimidazole	
ENTRY NO.	157	158	159	160	161		162		163			164			165	

Drs. W. C. Cutting, R. H. Dreisbach and Arthur Furst Stanford University School of Medicine Department of Pharmacology and Therapeutics San Francisco 15, California

DPI = Distillation Products Industries SDO = sarcoma from Dr. K. DeOhm EA = Ehrlich Ascites tumor

TESTS OF COMPOUNDS AGAINST SARCOMA 180 AND LEUKEMIA IN MICE

John B. Field
Department of Medicine
School of Medicine
University of Southern California
Los Angeles, California

The technique employed for the study of Sarcoma 180 is the same as that outlined in the Sloan-Kettering Institute report (see Stock et al this supplement). Positive controls have included A-methopterin at 1.5 mg/K/day and TEM at 0.75 mg/K/day.

Studies have been made against AK4 leukemia in AKR mice. The compounds are injected intraperitoneally starting twenty-four hours after injection of a leukemic cell suspension. The untreated controls and animals treated without benefit survive six to ten days. A-methopterin (1.5 mg/K/day) and TEM (0.75 mg/K/day) have prolonged survival times for one to two weeks.

ENTRY NO.		COMPOUND NAME	PHYSICAL CONSTANT OF SAMPLE USED	TUMOR	HOST SPECIES, STRAIN	NO. OF ANIMALS	DOSE. mg/kg/day	VEHICLE	ы
166	1-Acenaphthenol			8180	Mouse	ro	300	Gum acacia	ıcıa
				Leukemia	AKR	9	300	:	
167	Acenaphthylene			8180	Mouse	ro	300	:	
				Leukemia	AKR	9	300	:	
168	3-Acetylamino fluoranthene		m. 250-251	8180	Mouse	r _U	200	:	
				Leukemia	AKR	9	200	:	
169	N-Acetyl-methylaniline		m.99-100	8180	Mouse	r.	32	=	
				Leukemia	AKR	9	32	=	
170	1, 2-Benzo phenazine			S180	Mouse	ĸ	300	:	
				Leukemia	AKR	9	300	:	
171	β-Benzoyl propionic acid			8180	Mouse	ĸ	200	:	
				Leukemia	AKR	9	160	=	
172	Biphenylene-a-naphthyl-carbinol		m.151-152	8180	Mouse	ĸ	300	=	
				Leukemia	AKR	9	300	:	
173	Biphenylene-phenylcarbinol		m.109-109.5	8180	Mouse	ın	300	:	
				Leukemia	AKR	9	300	=	
174	l (α-Bromo propionyl)-naphthalene		m. 88-89	\$180	Mouse	ĸ	200	=	
				Leukemia	AKR	9	200	:	
175	3-Carbomethoxy-4-methyl-4-nitro-pentanoic	-nitro-pentanoic acid		\$180	Mouse	2	200		
				Leukemia	AKR	9	200		
176	2, 5-Diacetoxybenzoic acid		m.120-122	8180	Mouse	2	300	:	
				Leukemia	AKR	9	300	:	

Above compounds obtained through the courtesy of Dr. Milton Kloetzel, USC, Dept. of Chemistry.

SPECIES, NO. OF DOSE VER STRAIN ANIMALS mg/kg/day VER Mouse 5 300 Saline AKR 6 240 sod. h Mouse 5 300 " AKR 6 300 " AKR 6 300 " Mouse 5 300 " AKR 6 500 " Mouse 5 300 " AKR 6 500 " Mouse 5 300 " AKR 6 200 " Mouse 5 300 " AKR 6 200 " Mouse 5 300 " AKR 6 240 " AKR 6 240 " AKR 6 240 " AKR 6 240 "														10									
PHYSICAL HOST HOST NO. OF 0.PDibromosauccinic acid 1.78ED	УЕНС ТЕ	Saline and	sod, bicarb.	Gum acacia																			:
c. Diphemyl anthracene Compound NAME PHYSICAL Consequence of Compound NAME HOST COMPOUND NAME COMPOUND NAME PHYSICAL COMPOUND NAME COMPOUND NAME PHYSICAL COMPOUND NAME <th< td=""><td>DOSE mg/kg/day</td><td>300</td><td>240</td><td>300</td><td>300</td><td>100</td><td>100</td><td>300</td><td>300</td><td>100</td><td>9</td><td>200</td><td>200</td><td>300</td><td>300</td><td>200</td><td>200</td><td>300</td><td>300</td><td>300</td><td>240</td><td>200</td><td>200</td></th<>	DOSE mg/kg/day	300	240	300	300	100	100	300	300	100	9	200	200	300	300	200	200	300	300	300	240	200	200
COMPOUND NAME S180	NO. OF ANIMALS	10	9	2	9	ıc	9	2	9	2	9	2	9	2	9	S.	9	ιń	9	ın	9	ĸ	9
COMPOUND NAME o, P-Dibromosuccinic acid 2, 5-Dibydroxyacetophenic acid 2, 5-Diphenyl anthracene 9, 10-Diphenyl anthracene 2, 3-Diphenyl anthracene Diphenyl cinchoninic acid Diphenyl-9-phenanthryl carbinol Ethyl 4'-aminocinchophenate Ethyl 4'-bromocinchophenate Ethyl 6, 8-dichloro-2-p-chlorophenyl cinchoninate Ethyl 2', 4'-dichlorophenyl Cinchoninate Ethyl 2', 4'-dichlorophenyl Cinchoninate Ethyl 2', 4'-dichlorophenyl Cinchoninate Ethyl 2', 4'-dichlorophenyl Cinchoninate	HOST SPECIES, STRAIN	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR
compound NAME a, p-Dibromosuccinic acid 2, 5-Dihydroxyacetophenic acid 2, 5-Dihydroxyacetophenone 9, 10-Diphenyl anthracene Diphenyl-9-phenanthryl carbinol Diphenyl-9-phenanthryl carbinol Ethyl 4'-aminocinchophenate Ethyl 4'-bromocinchophenate Ethyl 6, 8-dichloro-2-p-chlorophenyl cinchoninate Ethyl 2', 4'-dichlorocinchophenate Ethyl 2', 4'-dichlorophenyl)-cinchoninate	TUMOR	S180	Leukemia	S180	Leukemia	S180	Leukemia	S180	Leukemia	S180	Leukemia	\$180	Leukemia	S180	Leukemia	S180	Leukemia	8180	Leukemia	8180	Leukemia	8180	Leukemia
	PHYSICAL CONSTANT OF SAMPLE USED					m. 201-204		m. 244-246				m.173-175				m. 94.5-95				m.156-157			
ENTRY NO. 177 177 178 189 181 181 182 185 185 187 187 187 187 187 187 187 187 187 187	COMPOUND NAME	α , β -Dibromosuccinic acid		21,51-Dichlorocinchophenic acid		2,5-Dihydroxyacetophenone				2, 3-Diphenyl cinchoninic acid		Diphenyl-9-phenanthryl carbinol		Ethyl 4'-aminocinchophenate		Ethyl 4'-bromocinchophenate		Ethyl 6,8-dichloro-2-p-chlorophenyl cinchoninate		Ethyl 2', 4'-dichlorocinchophenate		Ethyl 243,4-dichlorophenyl)-cinchoninate	
	ENTRY NO.	171		178		179		180		181		182		183		184		185		186		187	

Above compounds obtained through the courtesy of Dr. Milton Kloetzel, USC, Dept. of Chemistry.

ENTRY NO.	COMPOUND NAME	PHYSICAL CONSTANT OF SAMPLE USED	TUMOR	HOST SPECIES, STRAIN	NO. OF ANIMALS	DOSE mg/kg/day	VEHICLE	J.E.
188	Ethyl 2-(p-tolyl)-cinchoninate	m. 52-53	S180	Mouse	25	100	Gum acacia	acia
			Leukemia	AKR	9	100	:	
189	9-Fluorenepropionic acid		S180	Mouse	īŪ	300	:	
			Leukemia	AKR	9	300	:	
190	Fluorenone	m.84-85	S180	Mouse	'n	300	:	
			Leukemia	AKR	9	300	=	
161	2-Methoxy-2-nitrodiphenylamine	m.82	S180	Mouse	2	300	:	=
			Leukemia	AKR	9	300	:	
192	Methyl-bis(2, 4-dichlorophenyl)-amine		S180	Mouse	ĸ	300	:	
			Leukemia	AKR	9	300	:	
193	4-Nethyl-4 nitro-1, 3-diphenyl-1-pentanone		8180	Mouse	ĸ	300	:	
			Leukemia	AKR	9	240	:	
194	1-Nitro-2-acetylamino-naphthalene	m.124	8180	Mouse	ıΩ	400	:	
			Leukemia	AKR	9	400		=
195	2-Nitro-diphenylamine		S180	Mouse	ıc	400	:	
			Leukemia	AKR	9	400	:	=
961	4-Nitro-1, 3-diphenyl-1-butanone	m.95-98	8180	Mouse	2	200	:	=
			Leukemia	AKR	9	200	:	
197	4-Nitro-1, 3-diphenyl-1-hexanone	m.155-156	S180	Mouse	2	300	:	
			Leukemia	AKR	9	300	:	
198	4-Nitro-1, 3-diphenyl-1-pentanone	m. 68-71	S180	Mouse	5	300	:	
			Leukemia	AKR	9	300		

Above compounds obtained through the courtesy of Dr. Milton Kloetzel, USC, Dept. of Chemistry.

Field						Λ	lega	tive	Can	cer (Chem	othe	erapy	y Da	ta							
VEHICLE	Gum acacia	:	=	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
DOSE mg/kg/day	300	300	200	300	300	300	200	200	400	320	300	300	300	300	300	300	200	400	300	240	300	240
NO, OF ANIMALS	sc.	9	2	9	2	9	ĸ	9	ĸ	9	ĸ	9	ĸ	9	ĸ	9	ıs.	9	2	9	r.	. 9
HOST SPECIES, STRAIN	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Moüse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR
TUMOR	8180	Leukemia	\$180	Leukemia	S180	Leukemia	\$180	Leukemia	8180	Leukemia	S180	Leukemia	S180	Leukemia	S180	Leukemia	S180	Leukemia	S180	Leukemia	S180	Leukemia
PHYSICAL CONSTANT OF SAMPLE USED	m.100.5-102		m. 62-64		m.96-100		m.53-55		m.69-72		m.92-93		m. 173-174		m. 231-232		m.162-164		m.53-55		m. 68	
COMPOUND NAME	4-Nitro-1, 3-diphenyl-1-pentanone		5-Nitro-5-methyl-4-phenyl-2-hexanone		5-Nitro-4-phenyl-2-pentanone		2-Nitrothiophene		1,2,3,4,5,6,7,8-Octahydryl anthracene		3-Phenanthryl-diphenylcarbinol		9-Phenanthryl-diphenylmethane		9-(9-Phenanthryl)-9-methoxyfluorene		n-Propylidene-succinic acid		Tetraethyl ethylenetetra carboxylate		Triphenylethylene	
ENTRY NO.	199		200		201		202		203		204		205		902		207		208		500	

Above compounds obtained through the courtesy of Dr. Milton Kloetzel, USC, Dept. of Chemistry.

VEHICLE	Gum acacia	:	:	=	:	:	=	=	:	:	:	:		:	:	:	:	:	:	:	:	=
DOSE mg/kg/day	200	160	300	300	200	200	32	32	200	200	150	150	200	160	300	300	300	240	64	64	200	160
NO, OF ANIMALS	r.	9	ιΩ	9	ĸ	9	ĸ	9	10	9	ın	9	2	9	2	9	2	9	5	9	ĸ	9
HOST SPECIES, STRAIN	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR
TUMOR	8180	Leukemia	S180	Leukemia	S180	Leukemia	8180	Leukemia	8180	Leukemia	S180	Leukemia	\$180	Leukemia	S180	Leukemia	8180	Leukemia	S180	Leukemia	S180	Leukemia
PHYSICAL CONSTANT OF SAMPLE USED	m. 258				m. 131-132				m. 63-65				m.158-159		m. 242-243		m. 163-165				m. 108-110	
COMPOUND NAME	Acenaphthoquinone		1-Aceto-4-benzyloxy naphthalene		2-Acetonaphthalide		etamide		2-Chloro-1-acetonaphthalene		Di-chloro ortho benzoyl benzoic acid		Trans-1, 2-diphenyl-acenaphthenediol-1, 2		1,8-Di-o-toluoyl-naphthalene		1,2-Di-O-tolylacenaphthenediol-1,2 (trans)		none		p-Hydroxy-acetophenone	
RY							Chloroacetamide												Hydroquinone			
E NTRY	210		211		212		213		214		215		216		217		218		219		220	

Above compounds obtained through the courtesy of Dr. Ronald Brown, USC, Dept. of Chemistry.

Above compounds obtained through the courtesy of Hoffmann-La Roche, Inc., Nutley, N. J.

VEHICLE	Saline & sod.	bic.	Gum acacia	=	=	:		:	:	=	:	Saline	:	Gum acacia	Saline				Gum acacia	Saline		
DOSE mg/kg/day	300	300	160	96	150	150		150	150	25	25	200	200	200	06	06	200	200	20	20	20	
NO.OF ANIMALS	2	9	ĸ	9	S.	9		5	9	2	9	2	9	2	2	9	ĸ	9	ıΩ	ın	9	
HOST SPECIES, STRAIN	Mouse	AKR	Mouse	AKR	Mouse	AKR		Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	Mouse	AKR	Mouse	AKR	Mouse	Mouse	AKR	
TUMOR	S180	Leukemia	S180	Leukemia	\$180	Leukemia		8180	Leukemia	\$180	Leukemia	8180	Leukemia	8180	8180	Leukemia	8180	Leukemia	8180	8180	Leukemia	
PHYSICAL CONSTANT OF SAMPLE USED							Dept. of Chemistry.	m.162		m. > 310		m. 272-273		m. 230-231	m. 154-155		m. 249-252		m, 330	m. 232-233		
COMPOUND NAME	2-Methyl cinchoninic acid		Naphthalic anhydride		2-Trichloromethyl-cinchoninic acid		Above compounds obtained through the courtesy of Dr. Ronald Brown, USC, Dept. of Chemistry.	2-Amino-4-diethylamino-s-triazine		7-Amino-1-v-triazolo-(d)-pyrimidine		Ammonium salt of benzoylurea-ortho-sulfonic acid		1-Biotin	1-Carbethoxymethyl-4-carbomethoxypyridinium bromide		dl-cis-3,4-Diamino-2-(w-hydroxypropyl) thiophane dihydrochloride		2, 6-Diamino-s-triazine	d-3,4-(11,31-Dibenzyl-2'-ketoimidazolido)-1,2-trimethylene-thiophanium-	d-campropare	
ENTRY NO.	221		222		223			224		225		922		227	228		523		230	231		

Above compounds obtained through the courtesy of Hoffmann-La Roche, Inc., Nutley, N. J.

F

																						_
VEHICLE	Saline	=	E	=	E	=	:	=	Gum acacia	:	=	=	=	=	:	:	=	=	=		Saline-sod.	acetate-sod carbonate
DOSE mg/kg/day	200	200	55	55	200	200	20	20	200	200	20	02	25	25	35	28	35	28	25	25	170	170
NO. OF ANIMALS	ĸ	9	2	9	2	9	S	9	S	9	5	9	ıc	9	ın	9	25	9	2	9	2	9
HOST SPECIES, STRAIN	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR	Mouse	AKR
TUMOR	8180	Leukemia	\$180	Leukemia	\$180	Leukemia	\$180	Leukemia	8180	Leukemia	8180	Leukemia	\$180	Leukemia	8180	Leukemia	\$180	Leukemia	8180	Leukemia	S180	Leukemia
PHYSICAL CONSTANT OF SAMPLE USED	d, 300		m. 102-105		m. 220-221		m. 222-223		m. 240-241		m. 274-276		m. 237-240		m. 301-303		m. 266-268		m. 305		d. 300	
COMPOUND NAME	3 (1, 4-Dihydro-3-hydroxy-4-oxonaphthylideneamino)-N- \underline{f} β -(β -hydroxy-	etiyianinio jetiyi) benzamide	3-Diphenylacetoxy-quinuclidine sulfate		dl-Homobiotin		1-Methyl-3(2,6,6-trimethyl-1-cyclohexene-1-yl)-propylamine HCl		1-Phenazinecarboxylic acid		2-Phenyl-3(or 4)-chloro-5- \sqrt{m} -(4,5-dihydro-2-imidazolyl) phenyl $\sqrt{1}$ furan hydrochloride		2-Phenyl-3-(or 4)-chloro-5-(m-guanylphenyl) furan hydrochloride		2-Phenyl-5- $/\bar{p}$ -(4, 5-dihydro-2-imidazolyl) phenyl $/\bar{p}$ furan hydrochloride		2-Phenyl-5-/m(4,5-dihydro-2-imidazolyl) phenyl / furan hydrochloride	шеліалога	Polyporic acid		Potassium salt of 5-/3-(3-hydroxy-4-oxo-1,4-dihydro-7-sulfo-1-	iapnuy tueneamina) - *- meuroxypheny iaunonamido/ - 5, 4-dimenyi- iaoxazole
E NTRY NO.	232		233		234		235		236		237		238		239		240		241		242	

ENTRY NO.	COMPOUND NAME	PHYSICAL CONSTANT OF SAMPLE USED	TUMOR	HOST SPECIES, STRAIN	NO. OF ANIMALS	DOSE mg/kg/day	VEHICLE	
243	β -Propiolactone	b, 155	S180	Mouse	2	100	Saline	
			Leukemia	AKR	9	100	:	
	Above compound obtained through the courtesy of B. F. Goodrich Chemical Co.							
244	4-Aminophenyl-2'-amino-5'-thiazylsulfone	m. 218-219	8180	Mouse	ĸ	200	Gum acacia	
			Leukemia	AKR	9	300	:	
245	4,4'-Diamino-2-acetyl-sulfamyl diphenylsulfone sodium salt		8180	Mouse	rC	400	:	
			Leukemia	AKR	9	400	:	
246	4,4'-Diaminodiphenyl-sulfone	m. 171-173	8180	Mouse	2	300	:	
			Leukemia	AKR	9	240	:	
247	4,4'-Diaminodiphenylsulfone didextrose sodium sulfonate	m. 120-125	S180	Mouse	2	200	Saline	
			Leukemia	AKR	9	200	:	
248	4,4'-Diaminophenyl-sulfone digalactose	8.134	S180	Mouse	S	200	=	
			Leukemia	AKR	9	200	:	
249	4,4'-Diaminodiphenyl-sulfone-2-sulfonamide	d. 229-237	S180	Mouse	2	400	Gum acacia	
			Leukemia	AKR	9	400	:	

Above compounds obtained through the courtesy of Parke, Davis & Co.

In each experiment seven intraperitoneal injections constituted the treatment course.

CHEMOTHERAPY STUDIES OF VARIOUS MOUSE TUMORS AND SEVERAL MYELOID LEUKEMIAS

B. L. Freedlander and Arthur Furst Research Laboratories Mount Zion Hospital San Francisco, California

Our procedure for solid tumors was to grind them in a mortar and dilute with normal saline and then inject the suspension subcutaneously. Our drugs are dissolved or suspended in aqueous solution, 3 per cent gum acacia solution or in peanut oil. In some cases the wetting agent, sorbitan monooleate, was added to aid solution. Tumors were graded in the usual manner \pm (slight inhibition), the average diameter of the treated tumors was one half to three quarters of the diameter of the control tumors; \pm (moderate inhibition), the diameter was one fourth to one half that of the control tumors; otherwise the results were reported negative.

The procedure for leukemia tumors was to grind them with normal saline and inject the suspension subcutaneously. The results were judged by the day of death relative to that of the controls.

Fr

						Ganece	11000	arciv				1.1	ccuian	uer an	u rur
RATIO WT, GAINED/ CONTROLS	+0.2	+0.6	+1.7	+0.4	-0.6	+3.1	+5.6	+4.3	40.4	+0.5	+2.1 +3.9	+2.3	40.5	+1.9	0
RATIO LIVING/ CONTROLS	9/10	10/10	10/10	9/10	10/10	9/10	1/1	1/1	10/10	10/10	10/10	10/10	6/6	9/10	1/1
NO. OF TREATMENTS OR DURATION OF FEEDING	4	7	69	4	∞	6	vs.	ın	10	9	ĸ	9	7	7	4
ROUTEOF 1 ADMINIS- TRATION	I.P.	Oral (tube)	I.P.	:	:	:	:	:	Oral (tube)	I.P.	I.P.	Oral (tube)	:	I.P.	:
VEHICLE	Oil	E	Aqueous	:	:	:	lio	:	Aqueous	:	Oil	Ε	Ε	E	Aqueous
DOSE mg/mouse	2	2	2	2	4	2.5	2	2	ю	en	2	2	1.5	e	
HOST SPECIES, STRAIN	Web.	С3Н	Web.	Web.	Web.	Web.	С3Н	С3Н	С3Н	Web.	Web.	СЗН	СЗН	Web.	Web.
TUMOR	837	C3HS	S180	S180	837	837	ВА	BA	C3HS	8180	837	Ø	СЗНЅ	837	837
PHYSICAL CONSTANT OF SAMPLE USED					m. 183-184		m. 208-210	m. 172-173			_			m.46	m, 264-265
COM- POUND SOURCE								-			Matheson		Matheson		
COMPOUND NAME	p-Acetaminodiphenyl		N-(p-Acetaminophenyl) furamide	N-(p-Acetaminophenyl) furan-acrylic acid amide	p-Acetaminophenyl sulfonhydrazide	Acetone-o-amino benzhydrazone	N-Acetyl-p-hydrazino diphenyl		$N-Acetyl-\beta-naphthylamine$	p-Amino acetanlide	o-Aminodiphenyl		p-Aminodiphenyl	3-Aminodiphenyl methane	p-Amino-o-methyl diphenyl hydrochloride
ENTRY NO.	250		251	252	253	254	255		256	. 257	258		259	560	261

									1 /						
RATIO WT, GAINED/ CONTROLS	0	0.8	+2.5	-1.7 +0.4	+3.0	+1.5	+0.7	-0.2 +2.0	<u>-0.7</u> +2.0	-0.1 +2.0	40.0+	+1.7 +2.0	+0.6	-0.4	+0.9
RATIO LIVING/ CONTROLS	1/9	8/8	8/10	10/10	10/10	10/10	9/10	6/6	9/10	10/10	10/10	10/10	10/10	9/10	10/10
NO. OF TREATMENTS OR DURATION OF FEEDING	4	6	e	∞	6	6	∞	00	6	10	7	00	7	6	7
ROUTEOF ADMINIS- TRATION	I.P.	Oral (tube)	I.P.	r.	Oral	:	I.P.	Oral		I.P.	:	Oral	I.P.	Oral	I.P.
VEHICLE	Aqueous	:	:	:	Diet	:	Aqueous	Diet	:	Oil	Aqueous	Diet	Aqueous	Diet	Oil
DOSE mg/mouse	1	ю	4	0.7	10	16	ю	20	52	e	œ	12	4	20	8
HOST SPECIES, STRAIN	Web.	С3Н	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.
TUMOR	837	C3HS	\$180	8180	8180	\$180	8180	S180	S180	837	837	S180	837	S180	837
PHYSICAL CONSTANT OF SAMPLE USED	m. 146-147		m. 123								m.192		m.94-96		
COM- POUND SOURCE				DPI											
COMPOUND NAME	p-Amino-o'-methyl diphenyl	8-Amino-7-methyl-2-phenazinol	N-{p-Aminophenyl) furamide	3-Aminoquinoline	2-Amino-5-thiol benzimidazole	N-(p-Anisyl) furamide	N-(p-Anisyl) furanacrylic acid amide	N-(Benzene sulfonyl) furamide	N-(Benzene sulfonyl) furanacrylic acid amide	Benzidine-N, N-diacetic acid	β-Benzoyl alanine	N-Benzyl furamide	Benzylidene azine	N-Benzyl quinolinimide	4-Chloro-3, 5-dimethylphenoxyethanol
ENTRY NO.	292	263	264	265	566	267	268	569	270	271	272	273	274	275	276

	COMPOUND NAME POUND SOURCE 4-Chloro-1-hydroxy-2-naphthoic acid A-Chlorophenyl] furamide a-Cyano furanacrylic acid a-Cyano furanacrylic acid 3, 3'-Diaminodiphenylsulfone N-(\beta-Diethylaminoethyl) 2-furamide N, N-Diethylaminoethyl) 2-furamide Diethylmalono-urethane	Oil	S37 S180 S180 S37 S37 S180 S180	Web. Web. Web. Web.	DOSE mg/mouse 2 20 20 15 15 16 16 16 16 16 48	VEHICLE Aqueous Aqueous Oil Aqueous	ADMINISTRATION I. P. Oral (tube) I. P. Oral I. P. I. P.	of FEEDING 6 8 8 8 9 6	LIVING/ CONTROLS 7/7 10/10 10/10 10/10 10/10	જ્
	p, p'-Dihydrazino diphenyl	m, 176–179	BA	С3Н	0.5		E	ın	1/1	
	p, p'-Dihydrazino diphenylether dihydrochloride α, β-Dihydrazino hydrocinnamic acid	m. 227 m. 160-161	BA S37	С3Н мер.	1 2	: :	: :	9 4	7/7	
	N-(1, 3-Dihydroxytertbutyl)-p-nitrobenzamide		837	Swiss	v ∞	: :	: =	10	6/6	
_	p,p'-Dihydroxydiphenyl DPI		837	Web.	2	Oil	£	6	10/10	
	4, 4'-Dihydroxy-3, 3'-dimethyldiphenyl		S37	Web.	2	:	£	80	10/10	

RATIO WT. GAINED/ CONTROLS	+0.7	+1.1	+1.6	+3.8	9.0-	-3.2	+3.8	-0.1	+0.3	+0.9	+1.5	+1.5	-0.1 +3.0	+0.8	+0.5
RATIO LIVING/ CONTROLS	10/10	1/1	10/10	10/10	10/10	10/10	9/10	10/10	10/10	10/10	8/8	2/7	10/10	. L/L	10/10
NO, OF TREATMENTS OR DURATION OF FEEDING	9	14	6	٠.	80	∞	4	∞	∞	7	S	8 x	7.8	∞	80
ROUTE OF ADMINIS- TRATION	Oral (tube)	:	I.P.	:	Oral	:	I.P.	:	=	:	:	Oral (tube)	=	:	2
VEHICLE	Aqueous	£	£	Oil	Diet	:	Oil	Aqueous	lio	Aqueous	lio	Aqueous	Oil	Aqueous	:
DOSE mg/mouse	12	00	4	ю	10	10	2	ıń	1	2	2	4	2	4	т
HOST SPECIES, STRAIN	Web.	С3Н	C3H	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	С3Н	Web.	С3Н	Web.
TUMOR	S37	C3HS	C3HS	837	S180	S180	837	837	837	837	837	Ø	837	Ø	S37
PHYSICAL CONSTANT OF SAMPLE USED	m. 242-243					Oil		m. > 250							
COM- POUND SOURCE									DPI						
COMPOUND NAME	3-N-bis(2, 3-Di-hydroxypropyl) aminoquinoline hydrochloride		o, o'-Dimethoxybenzidine	o-Dimethylaminodiphenyl	N-(p-Dimethylaminophenyl) furamide	N, N-Dimethyl-2-furamide	Di-6-Naphthyl-p-phenylenediamine	Di(n-nitrobenzoyl) hydrazine	2,4'-Dinitrodiphenyl	Diphenoxy phosohoramic acid	Diphenylben idine (N, N'-derivative)	S-Diphenylcarbazide		Diphenylformamidine	
ENTRY NO.	291		262	293	294	295	962	297	298	662	300	301		302	

						Carr	001 100	ocar cir				1	recuia	muer a	ina ru
RATIO WT, GAINED/ CONTROLS	+1.4	+1.5 +1.1	+0.9 +0.6	+1.4	-1.0	+0.2	+1.5	+1.0	-0.5	-0.1	+0.1	+0.1	-0.7	+1.7	+0.5
RATIO LIVING/ CONTROLS	10/10	9/10	10/10	10/10	9/10	8/8	8/10	10/10	10/10	10/10	10/10	9/10	10/10	10/10	9/10
NO. OF TREATMENTS OR DURATION OF FEEDING	un.	9	6	4	80	10	6	10	80	6	9	6	6	6	6
ROUTEOF ADMINIS- TRATION	I. P.	:	E	:	=	Oral (tube)	=	E	Oral	:	I.P.	Oral	:		E
VEHICLE	lio	E	E	:	Aqueous	011	Aqueous		Diet	E	Aqueous	Diet	E	:	
DOSE mg/mouse	1	1.7	0.5	0.7	2	ю	œ	œ	24	15	12	15	6	10	10
HOST SPECIES, STRAIN	Web.	Web.	С3Н	Web.	Web.	С3Н	Web.	С3Н	Web.	Web.	Web.	Web.	Web.	Web.	Web.
TUMOR	837	837	C3HS	837	837	C3HS	837	СЗНЅ	S180	S180	837	8180	S180	\$180	S180
PHYSICAL CONSTANT OF SAMPLE USED									m.127				m.184		
COM- POUND SOURCE													-01		
COMPOUND NAME	N-(o-Diphenyl) furamide	N-(n-Diphenyl) furamide		N-(n-Diphenyl) furanacrylamide	N-(n-Diphenyl) glycine	4,5-Diphenylimidarol-2-one	Dipyruvic acid, hydrazone of biphenyl dihydrazine		N-(v-Ethoxyvhenyl) furamide	N-(v-Ethoxyohenyl) furanacrylic acid amide	N-(n-Ethoxyohenyl) glyoxalamide oxime	N-(p-Ethoxyphenyl) nicotinamide	$1-\sqrt{2}^{1} \cdot (6^{1}-Ethoxy)$ quinoly $1/2-2-p$ -dimethylaminophenyl ethylene	$1-\underline{/2}^{1}, \forall 6^{\prime}-Ethoxy)quinoly\underline{17}^{-2}-hydroxy-2-p-dimethylaminophenylethane$	$1- / \overline{2}^1 \! \leftarrow \! \{6^1 \! - \! \text{Ethoxy}\} \text{quinolyl} / -2 \! - \! \text{imino-} 2 \! - \! p \! - \! \text{dimethylaminophenylethane}$
ENTRY NO.	303	304		305	306	307	308		309	310	311	312	313	314	315

PLEASE CORRECT THIS ERROR IN YOUR COPY

The data on pages 30 through 40 were obtained by B. L. Freedlander and Arthur Furst. Please paste over the material now on page 29 and insert new page 40a before page 41. Please paste the names Freedlander and Furst (herewith) over the names Gelhorn *et al.* on pages 30 through 40, and the page number 40a over 29 in the Table of Contents.

Free

RATIO WT. GAINED/ CONTROLS	11.8	+1.8	+1.6	+0.6	10.7	+0.5	+0.2 +1.8	-1.0	+0.5	+1.4 +2.3	+2.2 +1.6	+0.8	+0.1	+0.7	-0.6
RATIO LIVING/ CONTROLS	10/10	10/10	7/7	10/10	9/10	12/12	10/10	9/10	9/10	9/10	10/10	10/10	10/10	10/10	10/10
NO. OF TREATMENTS OR DURATION OF FEEDING	80	6	4	6	6	6	∞	7	6	4	ın	7	9	ĸ	4
ROUTE OF ADMINISTRATION	Oral	E	I.P.	Oral	ε	:	:	I.P.	:	:	:	E	Oral (tube)	I.P.	Oral (tube)
VEHICLE	Diet	E	Oil	Aqueous Diet	Diet	E	:	Aqueous	:	E	Oil	=	Aqueous	Oil	Aqueous
DOSE mg/mouse	8	15	1	25	ເດ	20	10	00	2.5	0.25	7.0	7.0	rv .	1	0.5
HOST SPECIES, STRAIN	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	С3Н	Web.	Web.	С3Н	Web.
TUMOR	S180	S180	837	S180	S180	S180	S180	S180	S37	S37	СЗНЅ	837	S37	ςς.	837
PHYSICAL CONSTANT OF SAMPLE USED	m.92-97			m.138					m.> 240	m.182-184				m. 127-128	m.151-153
COM- POUND SOURCE	В				DPI										
COMPOUND NAME	a-Ethylfuran acrylic acid	Ethyl p-hydroxycinnamate	p-Fluorodiphenyl	Furanacrylic acid	2-Furildioxime	2-Furylidene malonic acid	β -(2-Furyl) oximinopyruvic acid	β -(2-Furyl) thiopyruvic acid	N-(Guanidino) iminopyruvic acid	a-Hydrazino acetic acid	2-Hydrazinobenzothiazole		p-Hydrazino-p'-carboxydiphenyl	p-Hydrazinodiphenyl	a-Hydrazino ethyl acetate . HCl
ENTRY NO.	316	317	318	319	320	321	322	323	324	325	326		327	328	329

					0				T						,
RATIO WT. GAINED/ CONTROLS	+1.7 +2.3	$\frac{-0.7}{+1.3}$	-1.3	+1.2 +2.9	+3.8	+0.4	+0.8	+1.5	+0.7	+0.9	+0.9	+0.2	$\frac{-1.2}{+2.1}$	+0.8	+3.3
RATIO LIVING/ CONTROLS	1/1	8/8	8/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	9/9
NO. OF TREATMENTS OR DURATION OF FEEDING	80	6	4	80	9	80	7	7	®	7	80	15	7	œ	10
ROUTE OF ADMINIS- TRATION	Oral (tube)	I.P.	F	E	=	E	:	:	:	E	Oral (tube)	I.P.	Oral (tube)	I.P.	=
VEHICLE	Aqueous	:	:	E	Oil	Aqueous	:	=	E	lio	:	:	Aqueous	Oil	Aqueous
DOSE mg/mouse	0.07	9	1	8	2	1	9	1	∞	2	ĸ	4	20-40	80	1.5
HOST SPECIES, STRAIN	С3Н	СЗН	Web.	Web.	С3Н	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	СЗН	С3Н
TUMOR	BA	СЗНЅ	837	837	Ø	837	837	837	837	S180	8180	837	837	Ø	92
PHYSICAL CONSTANT OF SAMPLE USED	m. 40	m.196	m.181-190					m. 197-199							m.152
COM- POUND SOURCE								В						DPI	
COMPOUND NAME	Hydrazino ethyl formate	α -Hydrazino- β -phenylpropionic acid	a-Hydrazinopropionic acid	p-Hydrazino stilbene		1-Hydroxy-2-carboxydibenzofuran	3-Hydroxy-4-carboxyphenyl hydrazone of acetaldehyde	3-N-bis(2-Hydroxyethyl) amino quinoline	N-Hydroxyethyl morpholine	2-Hydroxy-3-naphthoic acid hydrazide	$2(\beta'-Hydroxy-\gamma-trichloropropyl)$ quinoline	Lauryldimethylamine	Levulinic acid	Linalool	Mesoxalic acid phenylhydrazone
ENTRY NO.	330	331	332	333		334	335	336	337	338	339	340	341	342	343

Free

COMPOUND NAME	$1-\sqrt{2}i\cdot(6^i-Methoxy)$ quinoly <u>i</u> $\sqrt{-2-p-dimethylaminophenyl ethylene}$	$1-\overline{/2}$ ' $(6$ '-Methoxy) quinoly $\overline{1}$ '-2-imino-2-p-dimethylaminophenylethane	$1-\sqrt{2}^{1}$ 46^{1} -Methoxy) quinoly <u>l</u> 7 -2-p-nitrophenylethylene		a-Methyl-benzyl diethanolamine	p-Methyldiphenyl	N-(Methyl) _x -p-hydrazinodiphenyl	p-Methyl-o'-nitro diphenyl		p-Methyl-p'-nitro diphenyl	a-Methyl-a-phenyl hydrazine	Mono(p -chlorophenyl) diphosphoramic acid	N-(β -naphthyl) furamide	a-Naphthyl hydrazine	3-Naphthyl hydrazine hydrochloride
2	4	mino- ne	-nitro-				_					ramic acid			ide
COM- POUND SOURCE															
PHYSICAL CONSTANT OF SAMPLE USED	m. 206						m, 200-257						m.153		
TUMOR	8180	S180	S37	837	837	S37	BA	S37	S37	S37	S37	S37	S37	837	S37
HOST SPECIES, STRAIN	Web.	Web.	Web.	Web.	Web.	Web.	С3Н	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.
DOSE mg/mouse	6.5	٢	4	4	1.5	1	1	1	0.8	-	2	2	٣	-	1
VEHICLE	Diet	:	lio	Aqueous	lio	ŧ	E	:	E	:	:	Aqueous	:	Oil	:
ROUTE OF ADMINIS- TRATION	Oral	=	Oral (tube)	I.P.	E	Ε	E	E	:	:	:	E	Oral	I.P.	=
NO. OF TREATMENTS OR DURATION OF FEEDING	6	6	9	6	∞	44	S	4	4	5	ro.	~	6	2	9
RATIO LIVING/ CONTROLS	10/10	10/10	10/10	10/10	9/10	10/10	٢/٢	1/1	10/10	10/10	10/10	10/10	10/10	10/10	10/10
RATIO WT. GAINED/ CONTROLS	-3.3	+0.2	-1.0 +3.0	-0.4 +2.8	+1.0	+1.0 +2.1	+4.2	0 0	+0.6	+2.2	+1.3	+2.5	+3.2	+0.2	10.7

						0				apj D						•	,
CITAG	WT. GAINED/ CONTROLS	+1.3 +1.6	+0.3	-1.0	+1.5	-1.3 +3.4	+0.7 -0.3	+0.2	+0.9 +2.7	+3.5	-0.3	+0.5	+2.3	+3.4	+1.7 +1.2	+3.3	
RATIO	LIVING/ CONTROLS	10/10	10/10	9/10	9/10	11/12	9/10	9/10	9/10	9/10	10/10	10/10	10/10	11/11	10/10	1/9	
NO. OF	-	7	80	6	6	6	6	6	4	00	4	80	00	9	2	11	
ROUTEOF	ADMINIS- TRATION	I.P.	:	Oral	=	E	:	:	I.P.	:	:	:	=	:	:	=	
	VEHICLE	Aqueous	Oil	Diet	E	E	:	:	Aqueous	:	:	:	Oil	Aqueous	Oil	Aqueous	
	DOSE mg/mouse	0,25	2	12	15	10	15	12	8	7	2	9	4	e a	1.5	6.0	
HOST	SPECIES, STRAIN	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	С3Н	
	TUMOR	837	537	S180	S180	S180	S180	S180	S180	837	S37	837	837	837	837	C3HS	
PHYSICAL	OF SAMPLE USED	m.164	m. 225		m.218									m. 260			
сом-	POUND																
	COMPOUND NAME	Nicotinic acid hydrazide	p-Nitrobenz-N-(2-quinoly1) hydrazide	5-Nitro-N-(benzyl) furanacrylic acid amide	5-Nitro-N-(p-ethoxyphenyl) furanacrylic acid amide	5-Nitro-a-ethyl furanacrylic acid	5-Nitrofuranacrylic acid	bis- <u>/</u> Z-(5-Nitro) fur <u>yl</u> /azine	5-Nitro-N-(p-nitrophenyl) furanacrylic acid amide	p-Nitrophenyl hydrazone of pyruvic acid	N-p-Nitrophenyl nicotinamide	2-Nitroterephthalic acid	Norcamphanemethanol	l-Phenyl-3-carboxy-5-pyrazolone	a-Phenyl-A(2-quinolyl) hydrazine		
	NO.	357	358	359	360	361	362	363	364	365	366	367	368	369	370		

Free

71						aunc	Ci Itco	caren					- 1.	4.11	- 411(
RATIO WT, GAINED/ CONTROLS	+4.9	+1.0	+0.4	+3.7	+1.2	-0.6 +2.9	+0.4	-1.4 +1.4	+3.0	+1.7 +2.3	+3.0	+1.6	-1.1 +3.0	-1.9	-0.2 +1.3
RATIO LIVING/ CONTROLS	1/1	10/10	10/10	10/10	8/10	10/10	10/10	10/10	10/10	01/6	10/10	8/8	10/10	6/6	4/7
NO. OF TREATMENTS OR DURATION OF FEEDING	ĸ	2	2	ιΩ	7	6	80	6	∞	00	6	9	6	6	11
ROUTE OF ADMINIS- TRATION	I.P.	÷	:	:	E	Oral (tube)	I. P.	Oral	I.P.	:	:	:	Oral	:	I.P.
VEHICLE	Oil	Aqueous	:	Oil	Aqueous	Oil	Aqueous	Diet	Aqueous	:	:	:	Diet	E	Aqueous
DOSE mg/mouse	2	12	12	2	2	9	0.5	10	4	S	2	0.75	∞	ro	2.5
HOST SPECIES, STRAIN	С3Н	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	Web.	СЗН
TUMOR	BA	837	837	837	837	837	837	\$180	837	837	837	837	\$180	S180	C3HS
PHYSICAL CONSTANT OF SAMPLE USED	m. 200					m. 197		m.255	m.296		m.180	m.142-144			
COM- POUND SOURCE				Shell											
COMPOUND NAME	Poly acetyl-p-hydrazino diphenyl	Potassium-3-nitrophthalimide	Potassium-4-nitrophthalimide	Pyranaldehyde	Pyruvic acid-2-benzothiazolyl hydrazone	Pyruvic acid-(p-diphenyl) hydrazone	3-Quinoline carboxylic acid amide	4-Quinolyl acrylic acid	N'-{3-Quinolyl}-p-aminobenzamide	N-(3-Quinoly1) benzamide	N-(3-Quinolyl) furamide	2-Quinolyl hydrazine	1-(2'-Quinoly1)-2-hydroxy-2-p-dimethyl aminophenylethane	1-(2'-Quinoly1)-2-imino-2-p-dimethyl aminophenylethane	Salicylaldehydephenylhydrazone
ENTRY NO.	371	372	373	374	375	376	377	378	379	380	381	382	. 383	384	385

ec	llander and	Furst			Ne	gativ	e Cancer Che	moth	erap	y Do	ıta						1	3	
	RATIO WT. GAINED/ CONTROLS	+1.1	+1.8 +0.8	-0.2 +3.0	+1.1 +1.1		DAYS SURVIVED/ CONTROLS	18/18	15/15	13/13	13/13	15/15	19/21	20/21	15/15	14/15	16/15	13.8/13.4	
	RATIO LIVING/ CONTROLS	10/10	10/10	10/10	10/10		NO. OF TREATMENTS OR DURATION OF FEEDING	80	9	2	2	10	80	7	9	9	12	7	
	NO. OF TREATMENTS OR DURATION OF FEEDING	00	ιn	10	2		ROUTE OF THADMINIS- OF TRATION C	I.P.	=	Ε	Ε	Oral (tube)	E	ε	I.P.	Oral (tube)	E	I.P.	
	ROUTE OF ADMINIS- TRATION	I. P.	:	Oral (tube)	I.P.		/EHICLE	Aqueous	Oil	:	=	Aqueous	:	=	E	E	:		
	VEHICLE	Aqueous		:	Oil		DOSE mg/monse	8	2	2	2	0.2	0.33	1	0.5	2	8	0.4	
	DOSE mg/mouse	0.3	4	20	1.5		HOST SPECIES, STRAIN	C57	:	:	:	:	:	:	:	:	=	:	
	HOST SPECIES, STRAIN	Web.	Web.	Web.	Web.		TUMOR	C1498	=	E	E	:	=	=	=	=	2	=	
	TUMOR SI	837	S180	837	837	tation.	PHYSICAL CONSTANT OF SAMPLE USED	m.183-184	m.206	m. 208-210	m.172-173			m. 222		m.194-197.5	m. > 350	m. 285	
	PHYSICAL CONSTANT OF SAMPLE USED		m.144		m.136	tumor implantation.	COM- POUND C	_	н	F	ь.			ь		-	-	E .	
	COM- POUND SOURCE																		
	COMPOUND NAME	Sulfazan	2-Thiopheneacrylic acid	Tolidinediformamide	Di√p-Tolyl)-phosphinic acid	In all experiments treatment was started one day after	COMPOUND NAME	p-Acetaminophenyl sulfonhydrazide	Acetylated p, p'-dihydrazinodiphenyl	N-Acetyl-p-hydrazinodiphenyl	N-Acetyl-p-hydrazinodiphenyl	Acetylphenylhydrazine	o-Aminobenzhydrazide	p-Aminobenzhydrazide	4-A minophthalimide	p-A minosal tcylic acid hydrazide	Aminothiouracil	N-(2-Benzimidazolyl) furamide	
	ENTRY NO.	386	387	388	389		ENTRY NO.	390	391	392	393	394	395	396	397	398	399	400	

COMPOUND NAME	POUND	OF SAMPLE	TUMOR	SPECIES,	DOSE	7EHICLE	ADMINIS-	OR DURATION	SURVIVED/	
	SOURCE	USED		STRAIN	mg/mouse		TRATION	OF FEEDING	CONTROLS	
p-Acetaminophenyl sulfonhydrazide		m, 183-184	C1498	C57	8	Aqueous	I.P.	80	18/18	
Acetylated p, p'-dihydrazinodiphenyl		m. 206	:	:	2	Oil	=	9	15/15	
N-Acetyl-p-hydrazinodiphenyl		m. 208-210	=	:	2	:	:	ın	13/13	
N-Acetyl-p-hydrazinodiphenyl		m.172-173	E	:	2	:	=	ĸ	13/13	
Acetylphenylhydrazine			E	E	0.2	Aqueous	Oral (tube)	10	15/15	
o-A minobenzhydrazide			:	:	0.33	=	=	80	19/21	
p-Aminobenzhydrazide		m. 222	=	:	1	:	:	7	20/21	
4-Aminophthalimide			=	:	0.5	:	I.P.	9	15/15	
p-A minosalicylic acid hydrazide		m.194-197.5	=	:	2	E	Oral (tube)	9	14/15	
Aminothiouracil		m. > 350	=	=	63	=	=	12	16/15	
N-(2-Benzimidazolyl) furamide		m. 285	=	:	0.4	:	I.P.	7	13.8/13.4	

TRY O.	COMPOUND NAME	COM- POUND SOURCE	PHYSICAL CONSTANT OF SAMPLE USED	TUMOR	HOST SPECIES, STRAIN	DOSE mg/mouse	VEHICLE	ROUTEOF ADMINIS- TRATION	NO. OF TREATMENTS OR DURATION OF FEEDING	DAYS SURVIVED/ CONTROLS
						i				
01	2, 6-Benzthiazoledifuramide		m. 243-245	C1498	C57	1.5	Aqueous	I.P.	9	13/13
02	N-(2-Benzthiazolyl) furamide		m.178	2	£	4.0	:	:	9	14.3/13.4
03	p-Bromobenzenesulfonamide			=	:	1.5	E	E	00	16/15
94	p-Bromomaleinanilic acid		m. 196-197	Ε	:	2	E	:	9	14.6/13.2
92	p-Bromophenylhydrazine hydrochloride			E	:	7.0	:	Oral (tube)	9	15/15
90	Butazolidin	Geigy		P1534	DBA	2.5	:	E	10	13.3/12
20	Carbamylguanidine sulfate	Am. Cyanamid	amid	C1498	C57	80	z	£	10	14.5/14.5
80	Carbohydrazide		m.154-156	=	£	0.4	ŧ	r	6	15/15
60	Catechol bis benzenesulfonate			Ε	÷	9	:	I.P.	6	16/17
10	2-Chloro-3-methyl-quinoxaline	,	m.79	=	:	2	:	Oral (tube)	11	15/15
11	Cinchoninic acid hydrazide			E	£	0.2	:	:	11	15/15
12	p,p'-Diaminodiphenylether		m.192-193	E	:	1	:	I.P.	6	13.8/13.5
13	Dicarbamylhydrazine			=	:	1	:	:	6	15/15
14	2,5-Dichlorophenylhydrazine				:	0.8	:	Oral (tube)	13	18/18
15	2,5-Dichlorophenylhydrazine-4-sulfonic acid			=	:	9	:	:	14	18/18
91	Dicyandiamide	Am. Cyanarid	lartid	=	:	7	:	:	11	14.5/14.5
17	p,p'-Dihydrazinobiphenyl		m.176-179	:	=	0.5	:	I.P.	7	15/15
				P1534	DBA	0.5	:	:	9	13.9/14.7
18	p,p'-Dihydrazinodiphenylether dihydrochloride		m.227	C1498	C57	1	:	:	9	13.5/13.5
				P1534	DBA	1	:	:	9	14, 3/14,7
61	a, \(\beta\)-Dihydrazinohydrocinnamic acid		m. 160-161	C1498	C57	1	E	Oral (tube)	80	16/16

			-				,					rap) L								
DAYS SURVIVED/ CONTROLS	16/16	12.7/11.9	14.7/14.7	14/14	15/15	15/15	15/15	16/16	1/1	14/14.9	15/14	13.9/14	14/13.7	14/15	15/18	18/19	14.5/14.5	15/15	15/15	1/1
NO. OF TREATMENTS OR DURATION OF FEEDING	7	9	11	ιΩ	9	10	9	9	5 x	80	9	9	9	12	12	13	7	9	ın	12
ROUTE OF ADMINIS- TRATION	I.P.	:	:	£	2	:	:	Oral (tube)	I. V.	I.P.	-2	=	Oral (tube)	E	I.P.	Oral (tube)	Oral	I. V.	:	I.P.
VEHICLE	Aqueous	:	:	E	Oil	Aqueous	Oil	=		Aqueous	:	=	*	:	:	ı	P.G.			Aqueous
DOSE mg/mouse	1	2	0.16	0.3	2	0.5	2	4	2	1	1	0.0	6	8	2	2	9.0	4.0	2	m
HOST SPECIES, STRAIN	C57	:	:	E	:	:	:	:	DBA	C57	:	:	=	E	:	E	:	£	:	DBA
TUMOR	C1498	=	=	£	:	:	:	=	P1534	C1498	:	:	=	Ξ	:	Ξ	=	:	:	P1534
PHYSICAL CONSTANT OF SAMPLE USED	m. 242-243	m. > 300	m.95	m.180-195						m.180-182		m.212-213		m. 205-207		m.81-84				m. > 240
COM- FOUND SOURCE							DPI				DPI									
COMPOUND NAME	3-N-bis(2, 3-Dihydroxypropyl) aminoquinoline hydrochloride	2, 3-Dihydroxy-quinoxaline	p, p'-Dimethylaminodiphenylether	a, a'-Dimethyl hydrazinodiphenyl dihydriodide	Di-β-naphthyl-p-phenylenediamine	2, 4-Dinitrophenyl hydrazine	N, N'-Diphenylbenzidine	5-Diphenylcarbazone		Diphenylether hydrazine hydrochloride	a, a-Diphenyl hydrazine hydrochloride	Di(trimethyldiphenylether) ammonium iodide	Ethyl diaceto succinate	Ethyl (2-hydroxy-3-quinoxalyl)acetate	$\betaFormylpropion-N-phenylhydrazide-}\\phenylhydrazone$	Furanacrylic acid hydrazide	2-Furfurylthiol	Glyoxal-carbohydrazide polymer	Glyoxal-hydrazine polymer	N-(Guanidino) iminopyruvic acid
ENTRY NO.	420	421	422	423	424	425	426	427		428	429	430	431	432	433	434	435	436	437	438

F

DAYS SURVIVED/ CONTROLS	18/18	16/16	15/16	16/16	16/15	14.6/14.7	13.7/13.7	13.9/14.7	14/15	17/16	17/17	1/9	15/15	16/16	15/18	16/17	17/18	18/21	14/14	14d/14	13.4/13.4
NO. OF TREATMENTS OR DURATION OF FEEDING	6	7	9	9	6	11	9	9	10	00	11	15	6	7	6	7	6	13	80	7	10
ROUTE OF ADMINIS- TRATION	I.P.	:	:	Oral (tube)	=	:	I.P.	=	Oral (tube)	:	I.P.	=	:	Oral (tube)	:	I.P.	=	Oral (tube)	I.P.	=	:
VEHICLE	Aqueous	E	=	£	:	*	=	:	:	=	=	:	:	:	E	:	E	:	:	=	E
DOSE mg/monse	0.5	99.0	1	0.17	0.07	0.1	1	1	2	0.5	8	8	89	1.5	8	1	1.5	0.33	2	4	2
HOST SPECIES, STRAIN	C57	:	:	=	:	DBA	C57	DBA	C57	=	:	DBA	C57	E	:	Ε	=	E	=	:	=
TUMOR	C1498	E	E	=	E	P1534	C1498	P1534	C1498	E	=	P1534	C1498	E	:	:	=	E	=	:	:
PHYSICAL CONSTANT OF SAMPLE USED				m.151-153	m.~40				m.196	m.181-190						m. 197-199	m.150-154		decomp.	m.158	m.174
COM- POUND SOURCE	DPI	DPI											Antara								
COMPOUND NAME	p-Hydrazinobenzoic acid	2-Hydrazinobenzothiazole	p-Hydrazinodiphenyl hydrochloride	a-Hydrazino-ethyl-acetate , HCl	Hydrazino-ethyl-formate		Bis(p-Hydrazinophenyl) sulfone dihydrochloride		a-Hydrazino-ß-phenyl-propionic acid	a-Hydrazinopropionic acid	p-Hydrazinostilbene		4-Hydrazino-m-toluenesulfonic acid	o-Hydroxybenzhydrazide	p-Hydroxybenzhydrazide	3-N-bis(2-Hydroxyethyl) aminoquinoline	N, N-di (2-Hydroxyethyl) biphenylamine	Isonicotinic acid hydrazide	Ita-dibromo-pyrotartaric acid	a-Ketoglutaric acid phenylhydrazone	2-Mercapto-quinoline
ENTRY NO.	439	440	441	442	443		444		445	446	447		448	449	450	451	452	453	454	455	456

						0						-								
DAYS SURVIVED/ CONTROLS	13.7/14.9	14.3/14.3	91/91	15/17	14/15	14/13	14.1/14.6	14.7/14.7	81/61	91/pL1	16/16	. 61/51	15/15	15/17	164/17	134/15	91/91	16/15	91/11	91/11
NO. OF TREATMENTS OR DURATION OF FEEDING	∞	9	10	7	6	10	11	12	15	11	80	6	9	7	12	12	11	10	12	14
ROUTE OF ADMINIS- TRATION	I. P.	E	£	Oral (tube)	:	£	I.P.	Oral (tube)	ŧ	E	I.P.	Oral (tube)	E	I.P.	=	:	Oral (tube)	I.P.	Oral (tube)	:
VEHICLE	Aqueous	:	:	E	:	:	:	E	=	:	:	:	Ξ	=	:	=	:	:	:	:
DOSE mg/mouse	1	1.5	1	7	1	0.2	2	10	2	9	0.5	4	1	1	0.4	10	0.2	1	0.2	7
HOST SPECIES, STRAIN	C57	:	:	:	:	:	=	E	:	=	£	:	:	r	:	:	:	:	:	=
TUMOR	C1498	Ξ	ε	E	:	:	:	=	:	=	E	:	z	=	ε	:	=	=	z	:
PHYSICAL CONSTANT OF SAMPLE USED	m.166	m. 200-257	m.167-171	m. 240-241					m.107		m.~115				m.164					
COM- POUND SOURCE						DPI	Dow	DPI									DPI		DPI	DPI
COMPOUND NAME	a-Methyl-β-diphenyl-ether-hydrazide hydriodide	N + (Methyl)x - p - hydrazinodiphenyl	2-Methyl-3-hydra-zinoquinoxaline	2-Methyl-3-hydroxyquinoxaline	2-Methyl-1,4-naphthohydroquinone	a-Methyl-a-phenyl-hydrazine	3-Methyl-1-phenyl-5-pyrazolone	3-Methyl-1-p-phenylsulfonic acid, p- sulfophenyl-5-pyrazolone	3-Methylpyridazinone	Mono-ethyladipate hydrazide	Mono-ethyl furmarate hydrazide	β-Naphthoic acid hydrazide	a-Naphthylhydrazine	β -Naphthylhydrazine hydrochloride	Nicotinic acid hydrazide	N-(Nicotinoyl) hydrazone of a-ketoglutaric acid	p-Nitrophenylhydrazine	Phenylaceticthioether	Phenylhydrazine	Phenylhydrazinesulfonic acid
ENTRY NO.	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476

															_		
DAYS SURVIVED/ CONTROLS	12/13	16/15	14d/17	15d/14	20/21	14/15	17/17	19/18	15/14	13.7/13.7	11/11	18/18	14/14	13,5/13,5	13/13	15d/14	14/14
NO. OF TREATMENTS OR DURATION OF FEEDING	ro.	7	6	12	13	11	7	7	10	9	10	14	12	9	9	12	12
ROUTE OF ADMINIS- TRATION	I.P.	I. V.	I.P.	E	Oral (tube)	E	I.P.	ŧ	Oral (tube)	:	I.P.	Oral (tube)	I.P.	:	=		Oral (tube)
VEHICLE	Oil		Aqueous	Ε	:		÷	=	ε	=	:	£	=	Oil	Aqueous	=	E
DOSE mg/mouse	2	0.2	0.5	99.0	2	0.4	0.22	0.5	∞	1	00	1	0.25	1	1.5	0.25	12
HOST SPECIES, STRAIN	C57	£	÷	÷	:	:	ŧ	:	=	:	:	=	:	:	:	:	:
TUMOR	C1498	£	E	t	£	E	£	:	=	E	=	E	=	ε	Ε	:	£
PHYSICAL CONSTANT OF SAMPLE USED	m. 200		m. 141-142	m. 198-199	m. 189-189.5		m. 142-145		m. 183-183.5			m. 133			m.148		liquid
COM- POUND SOURCE										DPI			Monsanto				
COMPCUND NAME	Poly-acetyl-p-hydrazino-diphenyl	Pyruvic aldehyde-hydrazine polymer	Quinaldinic acid hydrazide	3-Quinoline carboxylic acid amide	3-Quinoline carboxylic acid hydrazide	6-Quinolinic acid hydrazide	2-Quinolyl hydrazine	3-Quinolyl hydrazine	N'(3-Quinoly1)-sulfanilamide	Semicarbazide hydrochloride	Sodium aconate	Sulfanilhydrazide	Sulfazan	2, 2', 4, 4'-Tetranitrodiphenylether	N-(2-Thiazolyl) furamide	N-Trichloromethyl-thiotetrahydrophthalimide	Triethyl aconitate
ENTRY NO.	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493

In all experiments treatment was started one day after tumor implantation.

TESTS OF COMPOUNDS AGAINST VARIOUS EXPERIMENTAL TUMORS

Alfred Gellhorn, Alice Kells and Erich Hirschberg Institute of Cancer Research College of Physicians and Surgeons New York 32, New York

All the mouse tumors were carried by subcutaneous trocar implantation in the right axilla. The Brown-Pearce tumor, the only rabbit tumor employed, was carried in the anterior chamber of the eye. The following tumors have been used in these experiments:

Mammary adenocarcinoma 755
" " RC
" " E0771

Crocker Sarcoma 180

Lymphosarcoma 6C3HED

Leukemia C1498

Leukemia 9417

Brown-Pearce Squamous Cell Carcinoma

In experiments with the lymphosarcoma and the two leukemias, the carcinostatic effect was determined by the criterion of prolongation of life. In experiments with all the other tumors, the final tumor weights in the treated and untreated groups were compared.

In essentially all the experiments involving the 755 tumor, a group of animals treated with 8-azaguanine was included to confirm the usual response of the tumor to a demonstrated carcinostatic agent.

Some of these data have been presented in earlier publications from this laboratory (<u>Cancer Research</u> 10:170, 1950; 12:524, 1952; <u>Brit. J. Cancer</u> 4:103, 1950; <u>First Symp. Chem.-Biol. Correlation</u> 1950, pp. 398-401).

G

	COMPOUND NAME	COM- POUND SOURCE	TUMOR	AGE OF TUMOR DAYS	MOUSE	NO. OF NO. OF TEST ANIMALS	DOSE 'mg/kg/day	AV. WT. CHANGE: treated/ controls ⁺	NO. OF TREATMENTS	VEHICLE	REMARKS
BE	BENZIMIDAZOLES:										
5-A	5-Aminobenzimidazole .2HCl	Bahner	755	2	C57	1/10	20	0/9+	11	H_2^0	
240	5-(or 6-) Chlorobenzimidazole . HCl	:	755	2	=	2/10	20	+3/0	11-13	:	
2-(1	2-(1-Hydroxyethyl) benzimidazole		755	2	=	0/10	20	-2/0	11	:	
2-H	2-Hydroxymethylbenzimidazole	:	755	1-2	=	05/9	25-200	+2/+11	11-16	:	
			8180	1	Paris	0/10	20	-7/-10	œ	:	
			6СЗНЕD	1	С3Н		100		16	=	Life not prolonged
BEN	BENZOTRIAZOLES:										
Ben	Benzotriazole	:	755	1-2	C57	1/40	50-150	9+/9-	11-15	:	
			S180	1	Paris	07/0	90	0/+4	6	:	
9-9	6-Chlorobenzotriazole	:	755	2	C57	1/30	90	0/-3	11-15	NaOH to	
			8180	1	Paris	0/20	90	+2/+4	6	pH8	
N-9	6-Nitrobenzotriazole	:	755	2	C57	4/30	20	-6/-5	11-15	:	
			8180	-	Paris	07/20	20	+2/+4	6	:	
PYF	PYRIMIDINES:										
2-A	2-Amino-4-hydroxy-5-diazo-6-	Engelman	755	4	C57	3/10	50+25	+14/+11	16	=	
	180ntr 080methy py rimanie		8180	S	Longacre 1/10	1/10	25	-50/-9	10	:	
			6СЗНЕД	1	С3Н		25412.5		6	=	Life not prolonged
2-A	2-Amino-4-hydroxy-6-methylpyrimidine	:	755	en	C57	1/10	200	0/+4	15	Saline	
2,6-	2, 6-Diamino-4-hydroxy-5-methylpyrimidine	=	755	S	C57	0/10	20	-2/+3	6	=	
2,4	2, 4-Dihydroxy-5-diazo-6-isonitrosomethyl- pyrimidine	=	755	S	C57	1/10	90	0/+3	10	NaOH to pH8	

																				_			t at.
REMARKS		All dead in 3 days				:							Life not prolonged		Life not prolonged			Life not prolonged	:	: :		:	
VEHICLE	NaOH to	pH8	:	=	=	=		ŧ	=	:	:	:		z	:	:	:	:	:	:	10% Gum	acacia	:
NO. OF TREATMENTS	10		6	13				12	80	9	10-12	10	15	13	11	6	9-14	12	21	13	7	11	6
AV. WT. CHANGE: treated/ controls ⁺	-11/+3		-7/-12	-16/+4				-23/+1	-15/+8	-10/+4	+1/+6	-14/-9		-20/+9		-13/-12	0/0				+4/+4		+6/-12
DOSE mg/kg/day	90	50 +35 +25	35,425,420,415	100,50,35	50 ≯25	35,425		75>60>40	50≯25	40	90	20	20	150 > 100 > 75 >50 > 25	ε	:	90	90	50	90	300	400 ≯300	400 ≯300
NO. OF DEATHS/ NO. OF TEST ANIMALS	1/10		2/10 3	8/10		10/10		01/9	1/10	0/10	67/0	1/10		7/10		0/10	2/30				1/10		0/10
MOUSE	C57	C57	C57	C57	C57	C57		C57	C57	Paris	C57	Longacre 1/10	СЗН	C57	C57	C57	Paris	AKR	C3H	C57	C57	C57	C57
AGE OF TUMOR DAYS	ις.	3	1	7	8	1		1	1	1	7-8	r.	-	e	3	-	1	1	0		2	60	1
TUMOR	755	C1498	S180	755	C1498	S180		755	\$180	Eo771	755	S180	6СЗНЕD	755	C1498	S180	8180	9417	6СЗНЕD	C1498	755	C1498	8180
COM- POUND SOURCE	Engelman			E				Lederle			Engelman			:			ne-	reaerie			Engel man		
COMPOUND NAME	5-Nitro-6-methyl-2, 4-pyrimidindiol			2-Thio-4-hydroxy-5-methyl-6-amino-	ругітіаль		FUSED PYRIMIDINES:	5-Amino-7-hydroxy/3,1,2/oxadiazolo/5,4d/	руглизапе		2-Amino-6-hydroxy-7-pyrazolopyrimidine			2-Amino-6-hydroxy-9-pyrazolopyrimidine			5-Amino-7-hydroxy-1H-s-triazolo(d)pyrimidine-	(O-araguanne)			Diacetyl-8-azaguanine		
NO.	505			909				202			808			609			010				11		

													17									•	
REMARKS											Life not prolonged	:			:			•					
VEHICLE	NaOH to	рн8 11	:	E	E	=	£	:	:	:	:	:	Saline	:	=			о ² н	=		:	=	
NO, OF TREATMENTS	10-12	80	9	11-14	6	10-13	9-10	6	7	4	17	11	15	13	12	6		11	13		12	12	
AV. WT. CHANGE: treated/ controls ⁺	+1/+5	+10/+8	+4/+4	+1/+4	-6/+3	+5/+6	+3/-9	+5/+3	-8/-3	+2/+5			+6/+4	6+/5+		-2/-12		+1/0	-13/+14		-1/+8	-5/+8	
DOSE mg/kg/day	20	50	20	30	90	50-300	50-300	300	300	100	90	300	100 ≯75	200	200	200		20	25+15+10		09-09	125	
NO. OF DEATHS/ NO. OF TEST ANIMALS	0/10	0/10	0/10	1/20	1/10	0/30	0/10	0/10	1/10	9/0			2/10	0/10		0/10		2/50	7/10 25		5/10	3/10	
HOST OR MOUSE STRAIN	C57	C57	Paris	C57	C57	C57	C57	C57	DBA	Rabbit	С3Н	C57	C57	C57	C57	C57		C57	C57		C57	C57	
AGE OF TUMOR DAYS	1	1	1	1-2	2	7-8	2	1	1	8	1	1	п	en	en	1		1-2	1		60	3	
TUMOR	755	S180	Eo771	755	755	755	S180	Eo771	RC	B. P.	6СЗНЕD	C1498	755	755	C1498	8180		755	755		755	755	
COM- POUND SOURCE	Lederle			Bahner	Engelman	=							Sterling- Winthrop	Engelman				Bahner			Natil.	Council	
COMPOUND NAME	5,7-Dihydroxy/3, 1,2/oxadiazolo/4,5d/	pyrimiaine		5,7-Diaminotriazolopyrimidine	2,6-Dihydroxy-7-pyrazolopyrimidine	5,7-Dihydroxy-1H-s-triazolo(d)pyrimidine	(0-azakalitilile)						5,7-Dimethyltetrazolopyrimidine	N'-Methylsulfonic acid of 8-azaguanine			QUINOXA LINES:	6-Chloroquinoxaline	6-Chloroquinoxaline methyliodide	THEOBROMINE DERIVATIVES:	1-Allyl-	1-(2-Butenyl)-	
ENTRY NO.	512			513	514	515					2		516	517				518	519		520	521	

ENTRY NO.

522 523 524 525 526 527 528

529

530

531

TUMOR AGE OF MOUSE NO. OF DOSE OF TUMOR STRAIN TEST Mg/kg/day DAYS 3 C57 4/10 125-60 1255 3 C57 1/10 125-60 1255 3 C57 1/10 125-60 1255 3 C57 1/10 125-100 1255 3 C57 1/10 125-100 1255 3 C57 1/10 125-100 1255 1 C57 1/10 125-100 1255 1 C57 1/10 125-100 125 1 C57 1/10 125-125 1 C57 1/10 125 1 C57 1 C57 1/10 125 1 C57		COM-			HOST	NO. OF		AV. WT.				
ATIVER. Nati. 755 3 C57 4/10 125 -3/+8 12 H ₂ Ocutrols Research Council 755 3 C57 4/10 125-60 -9/+8 12 "" " 755 3 C57 1/10 125-60 -9/+8 12 "" " 755 3 C57 1/10 125-100 2-2/+8 12 "" " 755 3 C57 1/10 125-100 2-2/+8 12 "" " 755 3 C57 1/10 125-100 2-2/+8 12 "" " 755 3 C57 1/10 125-100 2-2/+8 12 "" " 755 3 C57 1/10 125-100 2-2/+8 12 "" " 755 3 C57 1/10 125-100 2-2/+8 12 "" " 755 3 C57 1/10 125-100 2-2/+8 12 "" " 756 3 C57 1/10 125-100 2-2/+8 12 "" " 8/** 1/10 125-100 1-2/+8 12 "" " 8/** 1/10 125-100 1-2/+8 12 "" " 8/** 1/10 1-2/-9 12-1-2/-9 12 "" Hoffmann 755 10-14 C57 0/30 0.2-0.4 7 " Hoffmann 755 0 C57 0/30 0.2-0.4 7/-8 16-18 Saline La Roche RC 0 DBA 0/10 125 12/-3 12 "" Hoffmann 755 0 DBA 0/10 125 12/-3 12 "" " 8/** 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1	COMPOUND NAME	POUND	TUMOR	AGE OF TUMOR	MOUSE	NO. OF TEST	DOSE mg/kg/day	CHANGE: treated/	NO. OF TREATMENTS	VEHICLE	REMARK	KS
Natl. 755 3 C57 4/10 125 C9/48 12 H ₂ Ocomentaria C56 C9/48 C15 C16 C16	THEOBROMINE DERIVATIVES:			DAYS		ANIMALS		controls				
155 3 157 1/10 125-60 -9/48 12 1. 1. 1. 1. 1. 1. 1.	1-Butyl-	Natl. Regearch	755	m	C57	4/10	125	-3/+8	12	H ₂ O		
155 3 157 1/10 125 18/48 12 1 1 1 1 1 1 1 1	1-Ethyl-	Council	755	3	C57	5/10	125-60	8+/6-	12	=		
155 3 657 1/10 125 1546 12 12 12 12 12 12 12 1	l-Isoamyl-	£	755	8	C57	1/10	125	48/+8	12	:	•	
155 3 657 7/10 125-100 -2/48 12 1 1 1 1 1 1 1 1	1-(2-Methoxyethy1)-	Ξ	755	8	C57	1/10	125	+5/+8	12	=		
155 3 C57 2/10 125 +3/+8 12	1-(2-Methylallyl)-	=	755	8	C57	7/10	125-100	-2/+8	12	:		
Sherling- 755 1 C57 0/10 50 +9/+10 8	l-Propyl-	=	755	8	C57	2/10	125	+3/+8	12	:		
Hoffman Sperime Sperime Size 1 C57 0/10 So 6 6 6 6 6 6 6 6 6	MISCELLANEOUS:		,									
Refining Unincorp. Unincorp. S180 1 Paris 0/10 50 0/46 6 " Merck Unincorp. S180 1 C57 7/20 25-12.5-5 +4/+7 7-10 30% Propylene Glycol Merck Unincorp. Unincorp. S180 1 C57 0/10 5 +3/+4 7 " Merck Unincorp. S180 1 C57 0/30 0.2-0.4 7 6-10 H2O B.P. 3 Rabbit Robit 1/30 0.3 175-125 +7/+8 16-18 Saline La Roche RC RC 0 DBA 0/10 125 +2/+3 12 " S180 1 Longacre 1/30 125 +5/+4 11 " B.P. 3 Rabbit 0/2 50 +1/0 7 "	Chloroquine diphosphate	Sterling-	755	-	C57	0/10	20	01+/6+	80	=		
Refining Unincorp. Unincorp. Unincorp. S180 1 C57 7/20 25-12.5-5 44/47 7-10 30% Propylene Glycol lene Gl		Winthrop	S180	-	Paris	0/10	20	9+/0	9	:		
Merck 755 10-14 C57 0/10 5 +3/+4 7 " tene Ciycol " B.P. 3 Rabbit 1/30 0.2-0.4	Hexestrol di-iodoacetate	Refining	755	1	C57	7/20	25-12.5-5	14/44	7-10	30% Propy-		tions
Merck 755 10-14 C57 0/30 0.2-0.4 6-10 H ₂ O " Hoffmann- 755 0 C57 0/30 175-125 47/+8 16-18 Saline La Roche RC 0 DBA 0/10 125 42/+3 12 " Eo771 1 C57 1/30 125 45/+4 11 " S180 1 Longacre 1/30 125 -5/-3 9 " B. P. 3 Rabbit 0/2 50 +1/0 7 "		Unincorp	S180	-	C57	0/10	ĸ	+3/+4	7	iene Giycol		
Hoffmann- 755 0 C57 0/30 175-125 +7/+8 16-18 La Roche RC 0 DBA 0/10 125 +2/+3 12 Eo771 1 C57 1/30 125 +5/+4 11 S180 1 Longacre 1/30 125 -5/-3 9 B.P. 3 Rabbit 0/2 50 +1/0 7	Methyl-bis(β-chloroethyl)amine	Merck	755	10-14	C57	0/30	0.2-0.4		6-10	н ₂ о		
Hoffmann- 755 0 C57 0/30 175-125 +7/+8 16-18 La Roche RC 0 DBA 0/10 125 +2/+3 12 E0771 1 C57 1/30 125 +5/+4 11 S180 1 Longacre 1/30 125 -5/-3 9 B. P. 3 Rabbit 0/2 50 +1/0 7	(Nitrogen mustard)		B. P.	8	Rabbit	1/30	0.3		7	:		
RC 0 DBA 0/10 125 +2/+3 12 Eo771 1 C57 1/30 125 +5/+4 11 S180 1 Longacre 1/30 125 -5/-3 9 B. P. 3 Rabbit 0/2 50 +1/0 7	Synkayvite	Hoffmann-	755	0	C57	0/30	175-125	8+/2+	16-18	Saline		
1 1 C57 1/30 125 +5/44 11 1 Longacre 1/30 125 -5/-3 9 3 Rabbit 0/2 50 +1/0 7		La rocne	RC	0	DBA	0/10	125	+2/+3	12	E		
1 Longacre 1/30 125 -5/-3 9 3 Rabbit 0/2 50 +1/0 7			Eo771		C57	1/30	125	+5/+4	11	:		
3 Rabbit 0/2 50 +1/0 7			S180	1	Longacre	1/30	125	-5/-3	6	E		
			B. P.	8	Rabbit	2/0	20	+1/0	7	E		

+ Percent change in weight of treated animals/percent change in weight of controls.

Bahner = Dr. C. T. Bahner, Dept. of Chemistry, Carson-Newman College, Jefferson City, Tennessee.

Engelman = Dr. M. Engelman, Francis Delafield Hospital, New York 32, N. Y.

B. P. = Brown-Pearce Tumor

All injections I, P. except the three instances listed under Remarks.

SARCOMA 180 INHIBITION TESTS

L. H. Goodson, L. Barvick, R. Kodras, J. Palmer, J. Rowland and R. G. Stone Midwest Research Institute Kansas City, Missouri

The testing of compounds for their ability to inhibit the growth of sarcoma 180 in mice is carried out in the following manner: Beginning on the third day after subcutaneous implantation of the tumor, 1/3 to 1/5 of the lethal intraperitoneal dose of the test agent is administered daily for five days. Six hours after the final injection, the tumors are removed from the control and test animals and then weighed. When the ratio of treated to control tumor weights is 0.80 or greater, the test agent is rated as inactive. When the ratio is 0.51-0.79 the compounds are rated as questionable. When the ratio is 0.50 or less the compounds are rated as active. Compounds whose activity cannot be reproduced are also considered as inactive.

A-methopterin⁽²⁾, a known inhibitor of $S-180^{(3)}$, gave the following result when tested by the procedure: At a dose of 4 mg/kg/day none of the 10 test animals died. The control animals gained 0.8 g. while the treated animals lost 2.2 g. The ratio of the treated to control tumor weights is 0.10 and therefore it is rated as active.

- (1) This investigation was supported jointly by a research grant (C-802) from the National Cancer Institute of the National Institutes of Health, U.S.P.H.S. and the Midwest Research Institute.
- (2) We wish to thank the Lederle Laboratories for the gift of this material.
- (3) Moore, A. E., Stock, C. C., Sugiura, K. and Rhoads, C. P. Inhibition of the Development of Sarcoma 180 by 4-amino-N¹⁰-methyl pteroylglutamic acid. Proc. Soc. Exper. Biol. & Med., <u>70</u>, 396 (1949).

ENTRY NO.	COMPOUND NAME	COM POUND SOURCE	PHYSICAL CONSTANT OF SAMPLE USED	MOUSE	NO. OF DEATHS/ NO. OF TEST ANIMALS	DOSE mg/kg/day	AV. WT. CHANGE treated/ controls	VEHICLE
532	N-Allyl-2-ethyl-2-hexene-1-imine	M.R.I.	b. 83-85 12 mm.	\mathtt{CAF}_1	0/10	50	-0.1 +0.2	3% Gelatin
533	N-Allyl-furamide	E	b.103 0.7 mm.	o	0/10	40	-1.5	E
534	3-Allyl-4-hydroxy-benzaldehyde-3-thiosemicarbazone	ŧ	m. 170.5-173	CAF_1	0/10	20	4.0-	E
535	p-Aminobenzoic acid hydrazide	E	m. 218-222	O	0/10	80	-0.2	=
536	2-Aminoheptoic acid	:	m. 294 dec.	CAF_1	0/10	75	-1.2	E
537	2-Amino-4-phenyl-butyric acid	E	m. 252-256 dec.	CAF_1	0/10	150	-0.6	:
538	2-Amino-5-phenyl-valeric acid	:	m. 239-241 dec.	Ö	0/10	300	4.0-	E
539	a-Anilino-desoxy-piperonyloin	U. of Va.	m. 136-137	Ö	0/10 5	500-400 ^a	-1.0	:
540	Benzalazine	M.R. I.	m. 93-95	Ö	0/10	400	+1.3	:
541	Benzaldehyde bis-(2-aminoethylthio)-acetal . HCl	=	m. 198-200	CAF_1	0/20	20	-1.1	:
542	N-Benzoyl-2-benzoyl-propionamide	U. of Va.	m. 109	O	0/10	800-400 ^a	-1.4	:
543	N-Benzoyl-deca-hydroquinoline	M. R. I.	b. 135 0. 2 mm.	CAF_1	4/10	200	-1.8	:
544	Benzoyl peroxide	Novadel Agene	m. 105 dec.	CAF_1	0/10	250	-3.5	=
545	ω –Benzylethanolamino-acetophenone	U. of Va.	m, 153, 5	CAF_1	5/15	200	-2.4	н ² 0
546	3-d-Camphoraldehyde-3-thio-semicarbazone	M. R. I.	m. 182.5- 184.5	CAF_1	0/10	40	-0.3	3% Gelatin

									1 /							
VEHICLE	3% Gelatin	=	=	=	=	£	н ² о	3% Gelatin	:	2	:	:	Ξ	5	:	
AV. WT. CHANGE treated/ controls	4.0-	-1.5	0.0	0.6	6.0	-2.6	-4.0	-0.9	+0.2	1.1	0.2	-0.7	-2.8	-1.9	-1.5	
DOSE mg/kg/day	10	80	15	100	300	300	200	100	200	1000b	100	94	20	1000	vs.	
NO. OF DEATHS/ NO. OF TEST ANIMALS	0/10	0/10	0/10	0/20	0/10	0/10	5/20	0/10	0/10	2/10	0/10	0/10	0/10	0/10	0/10	
MOUSE	Ö	O	CAF_1	CAF_1	CAF_1	O	CAF_1	\mathtt{CAF}_1	CAF_1	O	CAF_1	O	Ö	o ,	CAF_1	
PHYSICAL CONSTANT OF SAMPLE USED	m.117-118.5	m. 164.5-167	m. 122 dec.	m. 99.5-101	m.70-72	m. 198-199.5	b. 120 0.3 mm.	b. 146 0. 65 mm.	m. 114-116	m.143-145	m.138-140	m. 80-81	m.75-80	m. 188-188.5	m. 224-226	
COMPOUND	M. R. I.	:	Carson- Newman	M.R.I.	Monsanto	M.R.I.	:	=	E	ŧ	Eastman	M.R.L.	:	:	Carson- Newman	
COMPOUND NAME	2-Chlorobenzoic acid hydrazide	4-Chlorobenzoic acid hydrazide	p-Chlorophenyl-glyoxal hydrate	N-Cinnamoyl-pyrrolidine	Coumarin	3, 5-Diallyl-4-hydroxy-benzaldehyde-3-thiosemicarbazone	N', N'-DiallyInicotinamide	N-Dichloroacetyl-decahydroquinoline	$N-Dichloroacetyl-N-phenyl-l-\{2,3-di-methoxy-phenyl\}-2-phenylethylamine$	2, 2'-Dichloro-benzalazine	2, 4-Dichlorophenoxyacetic acid	a√2,4-Dichloro-phenoxy)-butyric acid	N, N-Diethyl-1-(2-allyloxy-1-naphthyl)-2-phenylethylamine . HCl	4,4'-bis-(Diethylamino)-benzalazine	2-p-Diethylamino-styryl-quinoline methiodide	
ENTRY NO.	547	548	549	550	551	552	553	554	555	929	557	558	559	260	561	

COM POUND SOURCE
Carson- Newman
phenyl-ethylamine . HCl M. R. I.
=
Purdue
M.R.I.
Carson- Newman
Carson- Newman
M.R.I.
Ξ
:
U. of Va.
=
Maltbie
Carson- Newman
M.R. I.

G	ouson et at.	-			110	gante	Cance	diei	nomen	иру Д	ш	-				•
	VEHICLE	н ² 0	3% Gelatin	:	=	=	E	:	:	$^{\rm H_2O}$	3% Gelatin	:	:	:	:	:
	AV. WT. CHANGE treated/ controls	$\frac{-2.2}{-1.3}$	-0.2	-2.3	0.6	+0.2	-1.4	-3.1	-1.6	-1.3	-1.4	-2.5	-2.8	-1.6	0.8	10.7
	DOSE mg/kg/day	75	90	150	20	50.	300	1000d	250	90	200	90	200-100a	150	150	52
	NO. OF DEATHS/ NO. OF TEST ANIMALS	0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/20	01/9	0/10	0/10	0/10
	MOUSE	\mathtt{CAF}_1	\mathtt{CAF}_1	\mathtt{CAF}_1	O	O	CAF_1	Ö	CAF_1	CAF_1	CAF_1	O	CAF_1	\mathtt{CAF}_1	CAF_1	Ö
	PHYSICAL CONSTANT OF SAMPLE USED	m. 240-241	m. 121-124	m. 107-114	m. 106-109	m. 127	m. 230. 5-233 dec.	m.160-165	m. 183-184. 5	m.183-186	m. 101-103.5	m. 166-169	m. 173-177	m. 165-167	m.161-162	m. 195-197
	COMPOUND	M. R. I.	=	£	Carson- Newman	£	M. R. I.	£	E	Ε	=	=	Ξ	Fisher Sci.	Eastman	M.R.I.
	COMPOUND NAME	N-Ethyl-1, 2-di-phenylethylamine . HCl	$N\text{-}Ethyl\text{-}N\text{-}(2\text{-}hydroxyethyl)\text{-}1,4\text{-}di\text{-}phenyl\text{-}2\text{-}aminobutane\ .\ HCl}$	N-Ethyl-N-(2-hydroxyethyl)-1,2-diphenyl-ethylamine.HCl	$p\text{-}Fluorophenacyl-}\beta,\beta\text{-}dihydroxyethyl sulfonium chloride}$	p-Fluorophenacyl-ethylmethylsulfonium bromide	a-Hydrindone semicarbazone	2,2'-bis-(2-Hydroxyethoxy)-benzalazine	4 - (2- Hydroxyethoxy) - benzaldehyde - 3-thiosemicar bazone	2-(2-Hydroxyethylamino)-camphane. HCl	N-(2-Hydroxyethyl)-cinnamamide	$N + (2-Hydroxyethyl) - 1 + (2-hydroxy-l-naphthyl) - 2-phenylethylamine \ . \ HCl$	$N + (2-Hydroxypropyl) - 1 + (4-methyl phenyl) - 2-phenylethylamine \;. \; HCl$	Indoleacetic acid	o-Iodobenzoic acid	o-Iodobenzoic acid hydrazide
	ENTRY NO.	225	578	625	280	581	582	583	584	585	989	587	588	589	266	591

_																
	VEHICLE	3% Gelatin	н ² о	3% Gelatin	=	=	E	=	=	=	=		*	90 00	=	£
	AV. WT. CHANGE treated/ controls	-0.2	-1.4	-1.9	4.0-	0.0	-1.8	-0.2 +0.8	0.6	-1.4	0.3	0.0	-2.3	40.1	-1.0	-0.7
	DOSE mg/kg/đay	10	75	200	300	20	1000	40-20a	20	200	150-100 ^a	40	20	30	20	80
	NO. OF DEATHS/ NO. OF TEST ANIMALS	0/10	1/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10	1/10	0/10	0/20	0/10	0/10	0/10
	MOUSE	O	CAF_1	O	Ö	CAF_1	υ	O	CAF_1	Ö	O	CAF_1	Ö	O	O	O
	PHYSICAL CONSTANT OF SAMPLE USED	m. 243	m. 207-208	86-88	over 265	m. 134-135	m.156.5- 158.5	m. 244 dec.	m. 207-208	m. 95-96	m. 200-201	m. 127.5 dec.	m. 120	m.161.5-164	m. 216-217	m. 217 dec.
	COMPOUND	Carson- Newman	M. R. I.	Pittsburg Coke	Naugatuck Chem.	Eastman	M.R.I.	U. of Va.	E	Purdue	U. of Va.	Carson- Newman	E	M.R.I.	Ε	ŧ
	COMPOUND NAME	2,5-bis-(1-Iodo-3-cyano-1-pyridyl) hexane	DL-180-1, 2-diphenyl-ethanolamine . HCl	Isopropylphenyl-carbamate	Maleic hydrazide	Malonic acid	Malonic acid dihydrazide	1-Mesity1-2-(N-piperidy1)-ethanol . HCl	1-p-Methoxyphenyl- 2-phenyl- 2-N-butylaminoethanol.HCl	1 (31, 4'-Methylene-dioxyphenyl)-2-nitroethanol	2-N-Morpholino-1, 2-diphenylethanone . HCl	β-Naphthacyl-diethyl sulfonium bromide	β-Naphthacyl-bis-(2-hydroxyethyl) sulfonium bromide	Nicotinic acid hydrazide	3-Nitrobenzaldehyde-3-thiosemicarbazone	p-Nitrobenzoic acid hydrazide
	ENTRY NO.	265	593	594	595	969	265	869	665	009	109	209	603	409	909	909

	COMPCUND	PHYSICAL CONSTANT OF SAMPLE USED	MOUSE	NO. OF DEATHS/ NO. OF TEST ANIMALS	DOSE mg/kg/day	AV. WT. CHANGE treated/ controls	VEHICLE
8-Cxa-9, 9-pentamethylene-10- 2 za-bicyclo- $\overline{/4}$, 4, $\overline{0}$ /-decane	M. R. I.	b.81 0.02 mm.	CAF_1	0/10	10	+0.1	3% Gelatin
N-1, 1-Pentamethylene-2-phenylethyl-N-3-amino-2-hydroxypropylamine . HCl	ne .HCl "	m. 277 dec.	CAF_1	0/10	25	10.6	=
1-(1,1-Pentamethylene-2-phenylethyl)-2-(2-hydroxyethyl)-piperidine . HCl	. HCl	m. 164-167.5 and 174	CAF_1	0/10	30	+0.8	:
4,4'-bis-(Phenacyl-hexamethylenetetraminium bromide) ether	Carson- Newman	m.146	CAF_1	0/10	100	$\frac{-1.9}{-0.7}$	E
Pentamethylene tetrazole	Bilhuber- Knol l	m, 57-58	O	0/10	15	-0.7	Ξ
N-Phenylacetyl-decahydroquinoline	M.R.I.	b.118 0.19 mm.	CAF_1	0/10	150	-0.6	=
2-Phenyl-2-(benzyl methylamino)-ethanol	U. of Va.	b.155-157 1.5 mm.	O	0/10	e000-300	40.8	ε
1-Phenyl-2-butyl-aminoethanol		m. 60-61	o	0/10	7.5-5.0a	-1.5	=
2-Phenyl-2-butyl-aminoethanol	=	b. 126.7 2 mm.	Ö	0/10	40-20a	0.3	=
N-2-Phenylethyl-4-acetoxybenzamide	M. R. I.	m, 153, 5-156	o	0/10	250	-2.5	=
N, N-bis-(2-Phenylethyl)-amine . HCl	=	269-272	O	1/20	09	-2.0	=
2-phenyl-2-ethyl-ethanolamino, acetic acid	U. of Va.	m. 182-183 dec.	Ö	0/10	800-400a	0.0	=
	Fisher	m. 123-125	၁	0/10	20	6.0-	=
2-Phenyl-2-methyl-3-(2-hydroxyethyl)-oxazolidine	M. R. I.	b.90-92 0.03 mm.	CAF_1	0/10	200	+0.3	2
1-(1-Piperidino)-1,2-diphenylethane . HCl	=	m. 158 and 207-208.5	CAF_1	2/10	200-100a	$\frac{-4.1}{-1.9}$:

NO. OF

	COMPOUND NAME	COM POUND SOURCE	PHYSICAL CONSTANT OF SAMPLE USED	MOUSE	DEATHS/ NO. OF TEST ANIMALS	DOSE mg/kg/day	AV. WT. CHANGE treated/ controls	VEHICLE
Z	a-N-Piperidyl-2, 4, 6-trimethylacetophenone . KCI	U. of Va.	m. 265-267	O	0/10	100-50a	40.8	3% Gelatin
2	Taurine	M. R. I.	m. 285 dec.	O	0/10	1000	40.4	:
T	Triallyl cyanurate	Cyanamid	b. 100 1 mm.	Ö	0/10	250	-0.1	
4	2, 4, 6-Tribromoanisole	Eastman	m. 85-87	CAF_1	0/10	300	10.7	:

a - Higher dose was given on first day and lower dose daily thereafter.

b - Only 400 mg/kg given on fourth and fifth days.

c - Cnly 500 mg/kg given on second and fifth days.

d - Only 500 mg/kg given on fifth day.

Compounds from the University of Virginia were supplied by Dr. Robert E. Lutz.

Compounds from the Carson-Newman College were submitted by Dr. Carl T. Bahner.

Compounds from Purdue University were submitted by Dr. G. Bryant Bachman.

The compound from Maltbie Laboratories was submitted by Dr. Lewis A. Walter.

M.R.I. - Midwest Research Institute

All tests were made against Sarcoma 180 by intraperitoneal injections started three days after tumor implantation. Five injections were made in every instance

except with numbers 557 and 585 where seven injections were made.

TESTS AGAINST VARIOUS MOUSE TUMORS

D. M. Greenberg and E. M. Gal Department of Physiological Chemistry School of Medicine University of California Berkeley, California

Solid tumors are transplanted by the trochar method. Mice employed; males, wts. 24-30 gm; females, 20-25 gm. If both sexes are employed, each test group is to have equal numbers of the two sexes. Number of animals per test group is not less then 10. Six days after transplanting, the animals are tested for palpable tumors, those without are rejected, those with are arranged so as to be as uniform in size of tumor and weights of animals as possible. The test compounds are administered daily by intraperitoneal injection, the vehicles being water, sesame oil or asymmetrical propylene glycol. The animal weights are checked every third day and caliper measurements taken every fifth day. After 2-3 weeks of treatment, the mice are weighed, sacrificed, tumors dissected out and weighted. The basis of decision is the tumor weights.

For compounds giving positive carcinostatic effects see: Gal, Fung, and Greenberg, Cancer Research, $\underline{12}$, 565, 1952.

ENTRY NO.	COMPOUND NAME	COMPOUND	TUMOR	HOST MOUSE STRAIN	NO. OF TEST ANIMALS	DOSE mg/mouse	NO. OF TREATMENTS	ROUTE OF ADMINIS- TRATION	AGE OF TUMOR	VEHICLE	REMARKS
929	$\alpha\text{-}Amino,\ \beta,\gamma\text{-}dihydroxy\text{-butyric}$ acid		837	A	10	5	00	S. Q.	6 day	Phosphate buffer	
627	p-Aminophenylalanine		M.C.	С3Н	20	0.5-2	14	I. P.	2 day	Propylene glycol	
829	Chloromycetin (Chloroamphenicol)	Parke, Davis	G. L. S.	СЗН	9	1	80	*	6 day	Water	
629	3-Cyano-4, 6-dimethyl-2-pyridone		837	V	80	1	00	ŧ	E	Phosphate buffer	
630	Desthiobiotin	Nut. Bio. Corp.	837	A	S	2	80	=	E	Water	
631	Diisopropyl fumarate		M.C.	С3Н	20	4-20	14	:	7 day	Propylene glycol	
632	Dimethyl chlorofumarate		M.C.	С3Н	20 02	075-0-1	14		:	=	
633	Ethionine	U.S. Indust. Chem.	837	A	10 1;	12.5 + 5.7 methionine	10	8. 6.	6 day	Water	Weight loss and fatty liver
			G. L. S.	СЗН	7	:	9	I.P.	:	=	:
634	o-Fluorophenylalanine-HCl- $\mathrm{H_2O}$		M.C.	С3Н	20 0.3	0.25-1.0	11	E	2 day	Propylene glycol	50% mort., no other effect
635	Fumaronitrile		M.C.	С3Н	20 0.1	0.125-0.75	14	Ξ,	7 day	ε	
636	ω-Methyl pantothenic acid	M.S. Dunn UCLA	837	V	ιΩ	ĸ	∞	E	6 day	Water	
637	Pyridine-3-sulfonic acid		Eo771	C57	15	40	2.1	:	2 day	Propylene glycol	66% mort., no other effect
638	Sodium pantoyl taurine	Nut. Bio. Corp.	837	٧	rC	98	∞	:	7 day	Water	

M.C. = Mammary Carcinoma

G.L.S. = Gardner Lymphosarcoma

Nut. Bio. Corp. = Nutritional Biochemical Corporation

TESTS OF COMPOUNDS AGAINST THE EHRLICH MOUSE ASCITES TUMOR

Hans Lettre Institut für experimentelle Krebsforschung der Universität Heidelberg, Germany

Method of test employed with the Ehrlich mouse ascites tumor:

0.2 ml of the tumor ascites are injected I.P. to a control group of 5 mice (stock mice) and an experimental group of 5 mice. The substance to be tested is given to the experimental group I.P. the first day of transplantation and the following 4 days. The effect of a substance is estimated by 1) a difference of the weight curves between the control and the experimental group and 2) a difference of the survival time of the two groups.

Typically active compounds are represented as follows:

Mean survival time in days

	Mg.	in Solutio	on .	Experimental group	Control group	
Colchicine 1)	0.01	Ringer s	olution	26	14	
N-Methyl-colchicamide 3)	0.0045	**	"	32	20	
Patulin (from penicillium patulum)	0.04	**	**	28.5	15	
Acriflavine 2)	0.125	**	"	30	14	
Aminopterin	0.006	**	**	27	18	

- H. Lettre: Einige Beobachtungen über das Wachstum des Mäuse-Ascites-Tumors und seine Beeinflussing.
 f. physiol. Chemie 268, 59 (1941); Nachtrag; ibid. 271, 190 (1941).
- H. Lettré: Zur Wirkung von Trypaflavin auf den Mäuse-Ascites-Tumor. Z. f. physiol. Chemie <u>271</u>, 192 (1941).
- 3) H. Lettré: Einige Versuche mit dem Mäuse-Ascites-Tumor. Z. f. Krebsforschung 57, 1 (1950).

Le

ENTRY NO.	* COMPOUND NAME	AMOUNT INJECTED mg/20 gm. mouse/day	VEHICLE
639	Adermine (pyridoxine .HCl)	5	Ringer solution
640	L-Alanine	1	" "
641	β-Alanine	1	" "
642	p-Aminobenzoic acid	1	" "
643	a-Amino-isobutyric acid	1	" "
644	Aneurine (Vitamin B ₁)	0.5	" "
645	L-Arginine	1	" "
646	Ascorbic acid	1	" "
647	Auramine O	0.2	n n
648	Aureomycin	0.6	
649	Avil-Hoechst (antihistaminic)	1	" "
650	4'-Azabenzpyrene	1 x 1	Saline suspension
651	8-Azaguanine	2	Ringer solution
652	Berberine	0,2	" "
653	Bulbocapnine	0.5	n ú
654	Cellobiose	2	
655	Chloromycetin	0.5	" "
656	Choline chloride	2	
657	Citronellal	3	Oil
658	Codeine	0.5	Ringer solution
659	Coelestine blue	0.5	" "
660	Compound A acetate	3 x 1	Suspension in Ringer solution
661	Compound F acetate	3 x 1	
662	Cortisone (free alcohol)	3 x 1	и и и
663	Cortisone acetate	3 x 1	
664	Creatine	1	Ringer solution
665	Creatine phosphoric acid (calcium salt)	1	11 11
666	Dehydro epi-androsterone	3 x 1	Suspension in Ringer solution
667	Desoxycorticosterone acetate	3 x 1	" " "
668	Desoxycorticosterone 21-glucoside	3 x 1	" " "
669	Diethyl-stilbestrol	3 x 1	11 11 11
670	Dihydro compound F acetate	3 x 1	" " "
671	2.4-Dinitrocresol	0.2	Ringer solution

ENTRY NO.	COMPOUND NAME	AMOUNT INJECTED mg/20 gm. mouse/day	VEHICLE
672	Dulcite	10	Ringer solution
673	Equilinglycol	0.5	11
674	Esmodil (Bayer)	0.05	и . и
675	Estrone	3 x 1	Suspension in Ringer solution
676	Eupaverine (Merck)	0.2	Ringer solution
677	Fructose	20	11 11
678	Gallocyanine	0.5	11 11
679	Giaucine	0.25	n n
680	Glucose	10	n n
681	Gluconic acid (calcium salt)	10	" "
682	Glutamic acid	5	" "
683	Glutathione	1	n n
684	Glycine	1	" "
685	Hypoxanthine	1	" "
686	β-Indolylacetic acid	1	" "
687	Inositol	5	" "
688	Isamine blue	0.5	n n
689	Laudanosine	0.5	" "
690	L-Leucine	1	n n
691	L-Leucyl-glycine	1	n n
692	Luvistin (antihistaminic)	1	11 11
693	L-Lysine	1	u u
694	Mannitol	5	11 11
695	Marfanil (sulfonamide)	10	u u
696	Melibiose	,10	" "
697	Mescaline	0.5	n n
698	Methionine	0.5	
699	Methionine-sulfoxyd	2	
700	N-Methyl-p-amino-benzoic acid	10	
701	Morphothebaine	0.5	
702	Narcotine	1	u u
703	Niacin	1	n n
704	p-Nitro-phenyl-arsenic acid	0.1	n n
705	Novocaine	0.5	n n

ENTRY NO.	COMPOUND NAME	AMOUNT INJECTED mg/20 gm. mouse/day	VEHICLE	
706	Oxymethylfurfurol	2	Ringer solution	
707	p-Oxypropiophenone	0.5	11 11	
708	Penicillin	5000 I.E.	11 11	
709	Phenylalanine	1	** ***	
710	Phlorrhizine	0.25	" "	
711	Progesterone	3 x 1	Suspension in Rin solution	ger
712	Pyronine	0.1	Ringer solution	
713	Raffinose	8	" "	
714	Rhamnose	10	11 11	
715	Rutine	1	***	
716	Ribo nucleic acid (yeast)	1	" "	
717	Sodium cyanate	0.5	" "	
718	Soventol (antihistaminic)	1	11 11	
719	Spermin hydrochloride	1	" "	
720	Strychnine	0,01	" "	
721	Streptokinase	2000 units	" "	
722	Streptomycin	1.5	" "	
723	Succinic acid	12.5	" "	
724	Terramycin	1	11 11	
725	Testosterone	3 x 1	Suspension in Rin solution	nger
726	Testosterone propionate	3 x 1	. " " "	
727	Thebaine	0.04	Ringer solution	
728	Thiosinamine	, 1	11 11	
729	Thymonucleic acid	1	11 11	
730	Triethylenimin-melamine	0.0125	11 11	
731	Tryptamine	1	11 11	
732	L-Tryptophane	1		
733	Tyrosine	1	" "	
734	L-Valine	1	" "	
735	D-Valine	2	" "	
736	Victoria blue	0.05	n n	
737	Xylocaine	0.5	n n	
738	1-Xylose	8	" "	

STUDIES WITH A LYMPHOSARCOMA, SARCOMA 180 AND LEUKEMIA P1534 IN MICE

John B. Loefer
Department of Experimental Biology
Southwest Foundation for Research and Education and Trinity University
San Antonio, Texas

Preliminary tests were made on mice to determine the maximum tolerated dose of the substance that could be administered over a 4-day period without loss of weight in mice averaging 18-20 grams. This dosage was used in the tests on leukemic and tumor-bearing mice as indicated. A similar group of controls received the carrier only. In the case of the lymphosarcoma and sarcoma 180, tumor size comparisons were made at 18-22 days, and difference in survival time was the criterion of effect-tiveness in leukemia P1534. When leukemic mice were given A-methopterin in daily doses of 1.76-3.53 mg. per Kg. body weight for a 9-day period, average survival time was 131 per cent as compared with controls; a similar increase was obtained with colchicine in I.P. doses of 0.584-0.875 mg. per Kg.

All compounds were furnished by Dr. Carl T. Bahner, Carson-Newman College. The studies reported have been supported by a grant from the Damon Runyon Memorial Fund, (DR1R-121).

60						(Cancer	Resea	rch]	Loefer
УЕНІС ІЕ	Olive oil	E	£	£	E	÷	ŧ	E	E	Water	Olive oil	:	:	=	:	Water
ROUTE OF ADMINIS- TRATION	S. Q.	:	E	I.P.	=	:	:	S. Q.	·	I.P.		s. O	:	=	E	I.P.
DOSE mg./inj.	9	9	8	9	п	m	9	1.25	1.75	0,625	9	9	9	ю	9	-
MOUSE NO. OF STRAIN ANIMALS	10	14	10	10	10	10	10	10	10	15	10	10	15	10	10	15
MOUSE	DBA	E	Swiss	DBA	:	:	:	:	:	:	:	=	E	Swiss	ABC	DBA
AGE OF TUMOR OR DAYS AFTER TRANSPLANT ⁺	3 injs. pre-(-3,-2,-1) and 2 post-tumoral (6,8)	2 injs. pre-(-2,-1) and 1 post-tumoral(4)	3 injs. post-tumoral (5,7,10)	2 injs. pre-(-2,-1) and 2 post-turnoral(1,3)	1 inj. pre- (-1) and 3 post-tumoral (1,3,5)	1 inj. pre- (-1) and 3 post-tumoral (1, 3, 5)	1 inj. pre- (-1) and 3 post-tumoral (1, 3, 5)	3 injs. post-tumoral (1,4,8)	3 injs. post-tumoral (1,4,8)	10 injs. post-tumoral (2 -11 incl)	2 injs. pre-(-2,-1) and 2 post-tumoral(1,3)	3 injs. pre-(-3,-2,-1) and 2 post-tumoral (6,8)	2 injs. pre-(-2,-1) and 1 post-tumoral(4)	3 injs. post-tumoral (5,7,10)	4 injs. post-tumoral (11, 13, 15, 17)	10 injs. post-tumoral (2 -11 inc.)
TUMOR	P1534	:	S180	P1534	:	:	:	=	:	:	:	:	:	S180	Lympho- sarcoma	P1534
PHYSICAL CONSTANT OF SAMPLE USED	m,160										m, 170-171 dec.	m,151				
COMPOUND NAME	p-Bromophenacylhexamethylene-tetraminium bromide										p-Bromophenacylhexamethylene-tetraminium iodide	p-Chlorophenacylhexamethylene-tetraminium bromide				
ENTRY NO.	739										740	741				

					0				· apj =	ava					
VEHICLE	Ol've oil	£	Water	Olive oil		Water	·	:	Olive oil	E	=	:	Water	:	Olive oil
ROUTE OF ADMINIS- TRATION	I.P.	:	:	S. Q.	=	I.P.	:	:	S. Q.	:	=	:	I.P.	:	o, S
DOSE mg./inj.	9	ю	7	2.4	2.4	0.25	7	4	en .	9	en	9	2.5	1.25	9
NO, OF ANIMALS	10	10	15	15	15	15	11	11	10	15	10	10	15	11	10
MOUSE	DBA	:	:	:	:	:	:	E	:	:	Swiss Albino	DBA	ŧ	:	:
AGE OF TUMOR OR DAYS AFTER TRANSPLANT ⁺	2 injs. pre-(-2,-1) and 2 post-tumoral(1,3)	2 injs. pre-(-2,-1) and 2 post-tumoral (1,3)	10 injs. post-tumoral (2 -11 inc.)	2 injs. pre-(-2,-1) and 1 post-tumoral (4)	2 injs. pre-(-2,-1) and 1 post-tumoral (4)	8 injs. post-tumoral (1-9 inc.)	9 injs. post-tumoral (2-10 inc.)	9 injs. post-tumoral (2-10 inc.)	3 injs. pre- (-3, -2, -1) and 2 post-tumoral (6, 8)	2 injs. pre- (-2,-1) and 1 post-tumoral (4)	3 injs, post-tumoral (5,7,10)	3 injs. post-tumoral (1,4,7)	10 injs. post-tumoral (2-11 inc.)	9 injs. post-tumoral (2-10 inc.)	2 injs. pre-(-2,-1) and 2 post-tumoral(1,3)
TUMOR	P1534	E	ε	:	E	E	:	:	:	E	\$180	P1534	:	:	:
PHYSICAL CONSTANT OF SAMPLE USED	m.172-173 dec.	m.163		m. 249-250			ride		m.131-132						m.180-181 dec.
COMPOUND NAME	p-Chlorophenacylhexamethylene-tetraminium iodide	2,4-Dichlorophenacylhexamethylenetetraminium bromide		2-p-Diethylaminostyrylpyridine methiodide	1, 6-Diemethylquinoxalinium iodide	Ethylquinoxalinium iodide	$p\text{-}Fluorophenacyl-\beta, \beta'\text{-}dihydroxy\text{-}diethylsulfonium\ chloride}$	p-Fluorophenacyldimethyl-sulfonium chloride	p-Fluorophenacylhexamethylenetetraminium bromide					2-(1-Hydroxyethyl) benzimidazole	p-Iodophenacylhexamethylene-tetraminium iodide
ENTRY NO.	742	743		744	745	746	747	748	749					750	751

ENTRY NO.

752

753

754

755

756

757

Water

I.P.

15

9 injs. post-tumoral (2-10 inc.)

6.6

759

L

52						(Cancer	Resea	rch							L
VEHICLE	Water	Olive oil	Water	Olive oil	:	Water	:	Olive oil	:	:	Water	Olive oil	:	:	:	
ROUTE OF ADMINIS- TRATION	I.P.	S. G.	I.P.	S. Q.	E	I.P.	:	s.	z	:	I.P.	S. Q.	:	:	:	
DOSE mg./inj.	1.66	2.4	2	5.6	9	1	1.25	9	9	e	1	9	9	8	9	
NO. OF ANIMALS	15	15	15	10	10	15	11	10	15	10	15	15	15	10	10	
MOUSE	DBA	:	E	E	E	z	:	:	:	Swiss	DBA	:	:	Swiss	DBA	
AGE OF TUMOR OR DAYS AFTER TRANSPLANT ⁺	8 injs. post-tumoral (1-9 inc.)	2 injs. pre-(-2,-1) and 1 post-tumoral (4)	8 injs. post-tumoral (1-9 inc.)	3 injs."post-tumoral (5,7,10)	3 injs. post-tumoral (5,7,10)	9 injs. post-tumoral (2-10 inc.)	9 injs. post-tumoral (2-10 inc.)	3 injs. pre-(-3,-2,-1) and 2 post-tumoral(6,8)	2 injs. pre-(-2,-1) and 1 post-tumoral (4)	3 injs. post-tumoral (5,7,10)	9 injs. post-tumoral (2-10 inc.)	3 injs. pre-(-3,-2,-1) and 2 post-tumoral (6,8)	2 injs. pre-(-2,-1) and 1 post-tumoral (4)	3 injs. post-tumoral (5,7,10)	3 injs. post-tumoral	
TUMOR	P1534	:	:	:	£	:	:	E	£	S180	P1534	:	:	\$180	P1534	
PHYSICAL CONSTANT OF SAMPLE USED	m.217	m.176 dec.		m.205-206 dec.	m.214	m.238	m.120	m.135-136				m.153				
COMPOUND NAME	p-Methoxyphenacylpyrazinium bromide	N-Methyl-N-p-iodophenacyltetrahydroquinolinium bromide		1-Methyl-1-phenacylmorpholinium bromide	6-Naphthacylamine hydrobromide	β-Naphthacylamine hydrochloride	β -Naphthacy1, β , β '-dihydroxy-diethylsulfonium bromide	a-Naphthacylhexamethylene-+straminium bromide				5-Naphthacylhexamethylene-tetraminium bromide				

758

ENTRY NO.	COMPOUND NAME	PHYSICAL CONSTANT OF SAMPLE USED	TUMOR	AGE OF TUMOR OR DAYS AFTER TRANSPLANT+	MOUSE	NO. OF ANIMALS	DOSE mg./inj.	ROUTE OF ADMINIS- TRATION	VEHICLE
760	β -Phenylethylpyrazinium iodide	m.182	P1534	2 injs. pre-(-2,-1) and 1 post-tumoral(4)	DBA	15	2.4	s,	Olive oil
			:	8 injs. post-tumoral (1-9 inc.)	:	15	1.25	I.P.	Water
761	p-Phenylphenacylhexamethylene-tetraminium bromide	m, 153, 5	:	3 injs. pre-(-3, -2, -1) and 2 post-tumoral (6,8)	:	10	8	8.6	Olive oil
			E	2 injs. pre- (-2,-1) and 1 post-tumoral (4)	=	15	9	:	=
			S180	3 injs. post-tumoral (5,7,10)	Swiss	10	e	:	:
762	1-Phenyl-2-(4-morpholinyl)-ethanol	m.81	P1534	2 injs. pre-(-2,-1) and 1 post-tumoral (4)	DBA	15	2.4	:	=
763	1-Phenyl-2-(1-pyrrolidinyl)-ethanol	m.58.5-59.5	E	2 injs. pre-(-2,-1) and 1 post-tumoral (4)	=	15	2.4	:	:
764	1-Phenyl-2-(2-quinolyl)-ethanol	m.131	:	2 injs. pre-(-2,-1) and 1 post-tumoral (4)	E	15	2.4	E	:
765	Salt of pyrazine with (1-bromoethyl) β -naphthylketone	m. 205	:	3 injs. post-tumoral (5,7,10)	=	10	2	E	z

+ Numbers designate days on which injections were given with reference to day 0, when tumor was transplanted.

MOUSE SARCOMA 180 INHIBITION TESTS

Joseph Patti
Laboratory for the Study of Proliferative Diseases
The Presbyterian Hospital
Newark, New Jersey

The tests for the inhibition of sarcoma 180 in mice were conducted and the results graded according to the procedures at the Sloan-Kettering Institute with the following modifications: test materials were injected once daily for seven days before evaluation and then continued for the second week.

The preparations reported herein represent aqueous extracts of residues after complete removal of alkaloid fractions from the plant materials. They were obtained through the courtesy of Mr. G. P. Nunziata, Meer Corporation, 318 West Forty-sixth Street, New York, New York.

ENTRY NO.	PLANT MATERIAL	NO. OF DEATHS/ NO. OF TEST ANIMALS	DOSE mg/kg/day	AV. WT. CHANGE: treated/ controls	NO. OF TREATMENTS (1x daily)	VEHICLE
766	Balm of Gilead buds	1/5	200	$\frac{-3.5}{-3.8}$	13	Water
767	Black haw (root and bark)	1/5	200	$\frac{-3.5}{-1.0}$	7	11
768	Blood root, N. F.	3/15	200	-5.1 -3.8	13	"
769	Burdock	0/10	200	-2.6 -1.5	7	"
770	Brówn henna	2/5	200	$\frac{-3.1}{-1.0}$	7	"
771	Chickweed	2/5	200	$\frac{-3.5}{-1.0}$	7	1 11
772	Colombo root	1/5	200	-4.9 -3.8	13	"
773	Elecapane	3/10	200	-4.6 -2.5	13	"
774	Euphrobia Piluliferia	2/5	100	$\frac{-3.3}{-1.0}$	7	"
775	Gentian root	1/10	125	-2.6 -0.6	7	"
776	Golden seal root N. F.	0/10	200	$\frac{-2.0}{-0.3}$	7	"
777	Gum Labdonum	1/5	0.8	$\frac{-4.9}{-3.8}$	13	Propylene glycol
778	Horse nettle root	0/5	200	$\frac{-5.1}{-3.8}$	13	Water
77 9	Kola nut	2/5	200	-3.5 -3.8	13	"
780	Lithosperum (Gromwell)	1/10	200	$\frac{-0.1}{+1.7}$	7	"
781	Melissa herb	1/5	200	$\frac{-2.5}{-3.8}$	13	"
782	Poke root	0/5	200	<u>-5.4</u> -5.6	13	"
783	Primrose	1/5	200	$\frac{-3.5}{-1.0}$	7	11
784	Sage brush root	0/5	200	$\frac{-5.0}{-4.3}$	13	"
785	Sage brush leaves	0/5	200	$\frac{-3.0}{-4.3}$	13	"
786	Serpentaria	3/5	200	-5.3 -1.0	. 7	"
787	Smartweed	4/10	200	<u>-6.1</u> -3.6	13	. "

ENTRY NO.	PLANT MATERIAL	NO. OF DEATHS/ NO. OF TEST ANIMALS	DOSE mg/kg/day	AV. WT. CHANGE: treated/ control s	NO. OF TREATMENTS (1 x daily)	VEHICLE
788	Smilex Honduras	1/5	200	<u>-4.3</u> -1.1	7	Water
789	Snake root	0/5	200	-2.0 +0.9	7	"
790	Southern wood	2/5	125	$\frac{-2.0}{-0.9}$	7	"
791	Tumeric	0/10	200	$\frac{-2.7}{-1.5}$	7	"
792	Yellow dock seed	0/5	125	-2.2 -0.9	7	"
793	Yerba Santa	0/5	200	$\frac{-3.8}{-1.0}$	7	"
794	Worm seed	0/5	100	-2.8 +0.8	7	11
795	Wormwood leaves	0/5	200	-4.2 -5.6	13	"
796	Wormwood herb	0/5	200	-5.9 -5.6	13	"

Host Species - Swiss A mice.

TESTS OF COMPOUNDS AGAINST MOUSE LEUKEMIA AND SEVERAL SOLID TUMORS

Howard E. Skipper Southern Research Institute Birmingham, Alabama

Mouse leukemias

The procedures employed for screening candidate compounds against transplantable leukemias are not original. Highly inbred strains of mice are inoculated intraperitoneally with a suspension of leukemic cells, placed in a large cage for randomization, and then broken into groups of ten each for experimental treatment. Generally, treatment was begun at 24 hours after leukemic inoculation and continued on an alternate day basis for 10 injections or until death. For initial screening the maximum tolerated dosage was employed. The life-span of treated versus untreated controls was compared and an effective anti-leukemic agent was always included in each experiment as an internal "treated control".

Individual animal weights were recorded at weekly intervals. Significance of results was judged on the basis of the spread and average life span of the various groups. Simple calculations of the standard deviations in life span (days) obtained with each group were calculated. A-methopterin was the control anti-leukemic agent used with Ak-4 leukemia in AKR mice and L1210 leukemia in dba mice. This agent provides for an increase in life span of mice with Ak-4 leukemia by about 100-200 per cent and for L1210 leukemia about 50-100 per cent.

Solid Tumors

Solid tumors are implanted subcutaneously by the trocar method. Treatment at the maximum tolerated dose was initiated at 24 hours after implantation and continued on an alternate day basis. Experiments with adenocarcinoma 755 or Eo771 were usually terminated at 12 days; with Sarcoma 180 experiments were terminated at 7 days. Animal weights were recorded at weekly intervals or at termination of an experiment. A "treated control" is employed in most screening experiments. 8-Azaguanine will inhibit the growth of adenocarcinoma 755 or Eo771 to about 25 per cent of the untreated controls.

Compounds which did not reduce average (10 mice) tumor weights to 60 per cent of the controls were considered negative. Compounds which reduced average tumor weights to 25-60 per cent of controls are given the rating \pm and are retested. Compounds which repeatedly reduce tumor weights to 5-25 per cent of controls are considered as active.

Experiments in which mice lose an average of as much as two grams each are considered questionable because of the well-known effect of caloric restriction on tumor growth.

_																	hh
	VEHICLE	Gumacacia	Saline	Gumacacia	=	=	=	Saline	ε,	Gumacacia	E	E	£	E	ı	E	E
	NO. OF TREATMENTS	10	10	10	10	10	10	10	10	10	10	_	10	10	10	10	10
	WT. AT ONE WEEK treated/ controls	$\frac{-3.1}{-1.8}$		-6.4	0.5	+2.1		-0.7	-1.8	+0.5	+1.0 -2.3	+0.2		-4.0	-2.2	+2.7	-4.0
	DOSE (mg/kg)	150	125	200	1000	5.5	62.5	40	37.1	62.5	200	9	31.3	7.8	62.5	125	6.3
	NO. OF DEATHS/ NO. OF ANDMALS	10/10	10/10	10/10	10/10	8/10	10/10	10/10	10/10	10/10	10/10	9/10	5/2	1/1	9/10	9/10	10/10
	AV. LIFE (days) 1 treated/	7.9/8.4	0.6/9.6	10.0/11.6	8.5/9.0	30.8/30.1	7.4/8.4	7.8/8.4	9.6/8.4	7.8/8.4	8,4/8,4	11.6/13.1	8.4/8.4	8.1/8.4	7.9/8.4	9.0/8.4	8.2/8.4
	MOUSE STRAIN to	AKR	=	. 10		*	:	:		:	=	. 11	E	£	:		±
	LEUKEMIA	Ak-4	Ak-4			1394	Ak-4			z				,	=	=	E
	COM- POUND 1				SRI						SRI		Bahner	2	=		=
	COMPOUND NAME	Adenine	6-Aminobenzimidazole dihydrochloride	2-Aminoethyl sulfuric acid	2-Amino-4-hydroxy-6,7-di (3,4-methylene dioxyphenyl) - pteridine	p-Aminosalicylic acid	5-Aminouracil	Ascorbic acid		5-Bromouracil	Carbamyl-L(+)-glutamic acid	N-Carbethoxyanthranilic acid	6-Chloro-1-(3-bromo-2-hydroxypropyl)quinolinium bromide	6-Chloro-1-decylquinolinium iodide	p-Chlorophenacylamine hydrochloride	p-Chlorophenacylhexamethylenetetraminium bromide	2-Chloro-1-phenacylpyridinium bromide
	ENTRY NO.	762	862	662	800	801	802	803		804	805	908	807	808	809	810	811

				riegai	ve du	incer a	item	ome	rapy L	ruiu						11
Gumacacia	=	Saline	Gumacacia		:		:	=	=	5% NaHCO3	Gum acacia	Propylene glycol	Gum acacia	Propylene glycol	Gum acacia	:
10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
-3,3		-2.6	-2.3	-1.4 +2.1	-0.4 +2.1	-2.2 +2.1	no data	no data	$\frac{-1.5}{-3.0}$		-2.1 -2.8		+1.0		-1.0	
15.63	7.8	125	20	25.6	0.234	20	75	20	25	20	1000	7.8	125	62.5	20	200
6/6	10/10	10/10	10/10	10/10	6/6	71/71	10/10	10/10	10/10	10/10	10/10	10/10	6/6	10/10	10/10	10/10
8.6/8.4	8.0/8.4	0.6/0.0	8.2/8.4	1.8/11.0	1.3/11.0	1.2/11.0	7.1/9.0	0.6/9.7	8.5/8.4	7.4/7.3	7.6/9.6	1.7/7.1	7.9/8.4	7.7/7.1	8.7/8.4	7.5/7.1
AKR	=	:	:	:	:	:	E	2	:	:	:	:	:	. :	:	2
Ak-4	:	:	*	2	:	=	£	:	=	=	:	:	:	:	:	:
Bahner	:		SRI	:	:		:		Bahner	SRI				SRI	Bahner	
6-Chloro-1-phenacylquinolinium bromide	6-Chloroquinoxaline methiodide	Choline chloride	$Nar{4}$ - $ar{4}ar{2}$, 4-Diamino-6-pteridy $ar{1}$ -amino $\Big\}$ -phenyl-acety $ar{1}$ / $I(+)$ -glutamic acid (Homoaminopterin)	$N/4 - \{ \sqrt{(2,4-Diamino-6-pteridyl) - methyl/-amino} \} - benzenesulfonyl/l(+)-glutamic acid, (S-aminopterin)$	$N/\bar{3} - \{ \sqrt{(2, 4-Diamino-6-pteridyl)} - methyl/-amino \} - benzoyl/-L(+)-glutamic acid, (m-Aminopterin)$		" (Na salt)		3,4-Dichlorophenacylamine hydrochloride	3,5-Diiodo-4-amino-benzoic acid	3,4-Dimethoxybenzalacetophenone	Ethanolamine	DL-Ethionine	O-Ethyl-N-(3-chlorophenyl) carbamate	$2 \not (p\text{-}Fluorophenacyl}) - 3 - methylisoquinolinium bromide$	Guanidoacetic acid
812	813	814	815	816	817				818	819	820	821	822	823	824	825
	6-Chloro-1-phenacylquinolinium bromide Bahner $Ak-4$ AKR $8.6/8.4$ $9/9$ 15.63 -3.3 10 -3.0	6-Chloro-1-phenacylquinolinium bromide Bahner Ak-4 AKR 8.6/8.4 9/9 15.63 -3.3 10 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0	6-Chloro-1-phenacylquinolinium bromide Bahner Ak-4 AKR 8.6/8.4 9/9 15.63 -3.3 10 -3.0 -3.0 -3.0 10 6-Chloroquinoxaline methiodide """" 8.0/8.4 10/10 7.8 10 Choline chloride """" 10.0/9.0 10/10 125 -2.6 -0.5	6-Chloro-1-phenacylquinolinium bromide Bahner $Ak-4$ AKR $8.6/8.4$ $9/9$ 15.63 $\frac{-3.3}{-3.0}$ 10 6 -Chloroquinoxaline methiodide " " " $8.0/8.4$ $10/10$ 7.8 10 Choline chloride Choline chloride " " " $10.0/9$,0 $10/10$ 125 $\frac{-2.6}{-0.5}$ 10 10 125 $\frac{-2.6}{-0.5}$ 10 $10/\frac{4}{2}$ $\frac{1}{2}$, 4-Diamino-6-pteridy $\overline{1}$ -amino $\frac{1}{2}$ -phenyl-acety $\overline{1}$ $\frac{1}{2}$ $\frac{1}{$	6-Chloro-1-pHenacylquinolinium bromide Bahner $Ak-4$ AKR $8.6/8.4$ $9/9$ 15.63 $\frac{-3.3}{-3.0}$ 10 Gumacacia 6-Chloro-1-pHenacylquinolinium bromide " " " 8.0/8.4 10/10 7.8 10	6-Chloro-1-phenacylquinolinium bromide $\frac{Ak-4}{a} = \frac{AKR}{a} = \frac{Ak-4}{a} = \frac{AKR}{a} = \frac{9/9}{a} = \frac{15.63}{-3.0} = \frac{-3.3}{3.0} = 10$ Gumacacia 6-Chloroquinoxaline methiodide $\frac{1}{a} = \frac{1}{a} = \frac{1}{$	6-Chloro-1-phtenacylquinolinium bromide N_4-4 AKR 8.6/8.4 9/9 15.63 -3.3 10 Gumacacia	6-Chloro-1-pitenacylquinolinium bromide bahner Ak-4 AKR 8.6/8.4 9/9 15.63 -3.3 10 Gumacacia c-Chloroquinoxaline methiodide choline chloride Choline chloride N\frac{4}{2}\{\begin{array}{c} \text{Coline} \text	6-Chloro-1-phenacylquinolinium bromide	6-Chloro-1-phenacylquinolinium bromide $\frac{1}{1}$ Ak+ AKR 8,6/8.4 9/9 15.63 $\frac{-3.3}{-3.0}$ 10 Gumacacia 6-Chloroquinoxaline methiodide $\frac{1}{1}$	6-Chloro-1-phenacylquinolinium bromide $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			$N_{1} = \frac{1}{12} - \frac{1}{12} + \frac$	$N_{1} = \frac{1}{1000000000000000000000000000000000$	$N_{2} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{2$

						- Gu	nicci	10300	i Cit						SI	Kipper
VEHICLE	Saline	:	Gum acacia	:	Propylene glycol	Gum acacia	=	:	Saline	Gum acacia	:	E	Propylene glycol	Gum acacia	Propylene glycol	Gum acacia
NO. OF TREATMENTS	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
WT.^AT ONE WEEK treated/ controls	5 u/mouse/ -2.5 day -1.5	5 u/mouse/ +0.9 day -1.3	-1.3	9.0-	4.5	4.5		0.0	+2.7 +2.1	$\frac{-1.5}{-3.0}$	-2.0	-2.5	-2.8	-3.3		-2.0
DOSE (mg/kg)	5 u/mou day	5 u/moue day	8	125	31.3	125	62.5	31.25	100	62.5	62.5	62.5	7.8	49	62.5	4
NO. OF DEATHS/ NO. OF TEST ANIMALS	10/10	10/10	10/10	10/10	10/10	01/01	10/10	10/10	9/10	6/6	10/10	10/10	10/10	10/10	10/10	9/10
AV. LIFE 1 (days) treated/controls	7.8/8.1	0.4+/2.6	9.3/8.7	11.5/10.6	8.0/7.1	7.8/7.1	7.4/7.1	7.5/8.1	21.6/21.9	8.6/8.4	8.2/8.4	8.1/8.4	10.1/9.7	9.5/9.7	7.3/7.1	9.3/9.0
MOUSE	AKR	:	:	E	E	E	=	E	E	=	E	:	=	=	E	:
LEUKEMIA	Ak-4	•		:	*	=	:	:	1394	Ak-4	=	ф. С	=	=	:	*
COM- POUND 1	Armour		SRI		SRI	=	=		Lederle	Bahner	*			SRI	:	=
COMPOUND NAME	Growth hormone		31-Iodofolic acid	Isonicotinic acid hydrazide	O-Isopropyl-N-(3-chlorophenyl) carbamate	O-Isopropyl-N-phenylcarbamate	O-Isopropyl-N-phenylthiocarbamate	Lindane	7-Methyl folic acid	β-Naphthacylamine hydrochloride	β-Naphthacylhexamethylene tetraminium bromide	5-Nitrouracil	$\mathrm{NH}_4\mathrm{Cl}$, 2-Octadecylcarbamyloxyethyl-tri-2-hydroxyethyl-	a -Phenyl- γ - $(p$ -methoxyphenyl) propylamine hydrochloride	O-Propyl-N-(3-chlorophenyl) carbamate	a-Pyridyl urethan
NTRY 10.	826		827	828	829	830	831	832	833	834	835	836	837	838	839	840

ENTRY NO.	COMPOUND NAME POUND SOURCE		LEUKEMIA	MOUSE	AV. LIFE (days) treated/ controls	NO. OF DEATHS/ NO. OF ANIMALS	DOSE (mg/kg)	WT.AT ONE WEEK treated/ controls	NO, OF TREATMENTS	VEHICLE
	Riboflavin	Ak	Ak-4	AKR	9.1/8.4	10/10	1.86	$\frac{-3.0}{-1.8}$	10	Saline
	Ricin	=		:	6.0/8.1	8/8	900.0	-2.5	10	E
	Sulfanilamide	130	1394	:	57.9/45.0	5/10	1000	+2.35	10	Gum acacia
	Thiamine	Ak	Ak-4	:	10.3/8.4	10/10	ın.	-2.0	10	Saline
	2-Thiazolyl urethan SRI	130	1394	E	35.8/24.6	10/10	20	+0.65	10	Gum acacia
	Uric acid	Ak	Ak-4	=	9.2/9.0	10/10	200	-3.2	10	:
	Vitamin K ₁	13	1394	2	23.5/23.2	8/10	10	+2.94	10	Peanut oil

SRI = Southern Research Institute Bahner = Dr. Carl T. Bahner, Carson-Newman College

All injections were made intraperitoneally.

1394 = a chloroleukemia

Δ = Weight Change

_	-						Carre	70, 100	Caren							Skipp
	NO, OF TREATMENTS VEHICLE	Gum acacia	ŧ	ŧ	ŧ	=	E	E		E	E	£	E	E	н20	:
	NO. OF TREATMEN	4	13	13	13	9	9	9	9	9	9	9	9	9	10	5
	WT. AT ONE WEEK treated/ controls	+1.8	40.6	+0.8	+1.9	+3.7	+3.7	+6.0 +6.6	+2.4	+2.1	+1.9	+3.0	+2.8	+2.7	+3.6	+4.1
	DOSE (mg/kg)	83	41.7	4.5	35.5	98	40	35	20	09	02	125	166	52	08	99
	NO. OF DEATHS/ NO. OF ANIMALS	2/10	0/10	0/10	2/10	1/10	0/10	0/10	0/10	0/10	1/10	1/10	0/10	0/10	0/10	0/10
	TUMOR AGE POST TRANSPLANT (days)	7	∞	∞		12	12	12	12	12	12	13	13	12	10	10
	MOUSE	DBA	CFW	CFW	CFW	C57b1	E	£	£	=	=	E		E	E	:
	TUMOR	L1210S	S180	S180	\$180	E0771	755	E	£ .	E	E	755	E	E0771	755	:
	PHYSICAL CONSTANT OF SAMPLE USED				m.193-194 dec.								Rf 0.86			
	COM- POUND SOURCE			Squibb	ε.							Goodrich	SRI	Dougherty	Pfizer	
	COMPOUND NAME	4-Acetamidobenzaldehyde-4'-isobutyl thiosemicarbazone		p-Acetamidobenzaldehyde thiosemicarbazone	p-Aminobenzaldehyde thiosemicarbazone							2-Aminobenzothiazole	2-Amino-4-hydroxy-6,7-diphenylpteridine	Aminouracil	Bacitracin	
	ENTRY NO.	848		849	850							851	852	853	854	

oFT					0				-17						
VEHICLE	Gum acacia	=	=	=	н ₂ о		Gum acacia	Saline	Gum acacia	=	:	Ę	E	=	=
NO, OF TREATMENTS VEHICLE	9	9	9	9	9	9	9	12 S	9	9	9	9	9	9	9
WT.AAT ONE WEEK treated/ controls	+3.8	+5.5	+2.4	-0.9	+3.4	+3.5	+3.9	+1,5	+1.3	+3.9	+1.8	+2.0	+2.0	+4.4	+0°.9
DOSE (mg/kg)	175	52	20	75	99	100	166	20/1/cc	83	166	75	300	250	100	125
NO. OF DEATHS/ NO. OF ANDMALS	0/10	0/10	0/10	2/10	0/10	0/10	0/10	2 5/0	0/10	0/10	1/10	0/10	0/10	0/10	0/10
TUMORAGE POST TRANSPLANT (days)	13	12	12	12	13	12	13	7	13	13	11	10	10	12	12
MOUSE	C57bl	:	=	=	:	E	:	CFW	C57bl			•	2	:	:
TUMOR	755	:	:	£	:	Eo771	755	\$180	755	*	:	2	9- 6-	Eo771	755
PHYSICAL CONSTANT OF SAMPLE USED	Distillation m.55-57 Products	_			m.71-72	m.54	m.119-120		Rf 0.88	Rf 0.88	,			Distillation b. 114-116 Products	
COM- POUND SOURCE	Distillation Products	Dougherty			SRI	Pfizer	SRI		SRI	SRI	Dougherty	Wellcome		Distillation Products	
COMPOUND NAME	Benzalacetophenone	Bromouracil			N-n-Butylcyanoacetamide	(-)2 -(5-Carboxypentyl)-4-thiazolidone Antibiotic No. 95	Cyanoacetamide	dl-Desthiobiotin	2,4-Diamino-6,7-dimethylpteridine	2,4-Diamino-6,7-diphenylpteridine	2,6-Diaminopurine	5-(2,4-Dichlorophenoxy)-2-thiouracil		Epichlorohydrin	
ENTRY NO.	855	928			857	858	859	098	861	862	863	864		865	

S

ENTRY NO.	COMPOUND NAME	COM- POUND SOURCE	PHYSICAL CONSTANT OF SAMPLE USED	TUMOR	MOUSE	TUMOR AGE POST TRANSPLANT (days)	NO. OF DEATHS/ NO. OF ANIMALS	DOSE (mg/kg)	WT.AAT ONE WEEK treated/ controls	NO, OF TREATMENT VEHICLE	VEHICLE
998	DL-Ethionine	Mann Fine Chemicals		755	C57bl	12	0/10	75	+1.9	9	Gum acacia
				E	:	12	1/10	100	+0.3	9	=
198	p-Ethylsulfonylbenzaldehyde	Squibb	m. 230-232 dec.	Eo771	=	12	0/10	75	+0.9	9	
898	p-Ethylsulfonyl benzaldehyde thiosemicarbazone	:		L1210S	DBA	7	0/10	166	+2.6	4	
,				\$180	CFW	œ	1/10	41.7	+1.1	13	E
698	Formamide			=	Swiss	∞	0/10	300	-2.6	7	Saline
870	Isonicotinic acid hydrazide	Squibb		L1210S	DBA	2	0/10	62.5	+3.4	4	Gum acacia
871	Malonamamidine hydrochloride	SRI	m.175-177	755	C57b1	13	0/10	166	43.8	9	E
872	2-Mercaptobenzothiazole	Goodrich		=	£	13	0/10	160	+3.4	9	:
873	Neomycin hydrochloride	Pfizer		=	:	10	0/10	09	+3.9	so.	н ₂ о
				2	=	10	0/10	20	+4.2	ın	£
874	Neopyrithiamine	Merck		=	z	12	0/10	29	+3.7	9	
				ŧ	£	12	0/10	20	+3.1	9	:
875	m -Nitrobenzalacetophenone	Distillatio Products	Distillation m. 143-144 Products	E	E	13	0/10	175	4.4.	9	Gum acacia
916	Nitrouracil			Eo771	:	12	0/10	100	+3.0	9	:
877	Oximinocyanoacetamide	SRI	m.180-182	755	:	13	0/10	100	+4.5	9	Н2О

Skipper					Neg	anve C	ancer	Cnemo	otnerap	y Date	a					
NO, OF TREATMENTS VEHICLE	Gum acacia	н ₂ о	:	:	Gum acacia	:	Н2О	£	:	£	:		Gum acacia	н20		
NO. OF TREATMEN	9	w	'n	9	9	9	50	5	10	S	5	5	4	S	ro.	
WT. AT ONE WEEK treated/ controls	+2.5	+1.3	+1.6	-1.5	+2.0	+1.9	+1.0	+1.4	+4.0	+4.2	+1.7	+2.4	+3.6	+2.1 +2.1	+2.5	
DOSE (mg/kg)	166	15	10	20	100	75	44	6	29	40	250	200	80	2	1.5	
NO. OF DEATHS/ NO. OF ANDMALS	0/10	0/10	0/10	1/10	6/0	0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10	6/0	
TUMOR AGE POST TRANSPLANT (days)	13	10	10	12	12	12	10	10	10	10	10	10	7	10	10	
MOUSE	C57b1	£	=	:	:		E	:	=	E	=	=	DBA	C57bl	=	
TUMOR	755	=	=	E	=	Eo771	755	:	=	=	=	:	L1210S	755	:	
PHYSICAL CONSTANT OF SAMPLE USED	m, 200-201				Matheson b.162-165	m.146-147.5										
COM- POUND SOURCE	SRI	Pfizer			Matheson	Squibb	Pfizer		Bahner		Pfizer		Bahner	Pfizer		
COMPOUND NAME	Phenylazomalonamamidine	Polymyxin B sulfate			3-Propiolactone	p-n-Propoxybenzaldehyde thiosemicarbazone	Rimocidin		Sodium dithioformate		Streptomycin sulfate,		5-Thiol-7-amino-1H-v-triazolo-(d)-pyrimidine hydrochloride	Thiolutine		
ENTRY NO.	878	879			880	881	882		883		884		885	988		

All injections were made intraperitoneally.

A Weight Change

TESTS AGAINST TRANSPLANTED AND SPONTANEOUS TUMORS IN MICE

Kurt Stern Mount Sinai Medical Research Foundation Chicago, Alinois

											_
VEHICLE	Physiol.		:	:	Triethan-	saline suspension	Physiol.	=	=	=	=
ROUTE OF ADMINIS- TRATION	S.C.	I.P.	I.P.	:	=	:	S.C.	=	£	2	=
NO. OF TREATMENTS OR DURATION OF FEEDING	20-50	15-20	18	28	14	90	20	œ	12	20-50	15-20
AV. WT. GHANGE: treated/ controls	1				1		1	1	1	1	
DOSE mg/kg/day	100-200		30-50		600-1200		200			400	
NO. OF DEATHS/ NO. OF ANIMALS	24/24	20/20	9/9	5/2	15/15	15/15	9/9	9/9	9/9	24/24	20/20
MOUSE	С3Н	C57b1	С3Н	DBA	С3Н	DBA	C57b1	AKR	AKR	С3Н	C57bl
AGE OF TUMOR OR DAYS AFTER TRANSPLANT	1-2 wks.	1-2 days	1-2 days	1-2 days	1-2 days	1-2 days	1 day	1 day	1 day	1-2 wks.	1-2 days
TUMOR	sp. ma. car.	tr. sar.	tr. ma. car.	tr. ma. car.	tr. ma. car.	tr. ma. car.	tr. sar.	Leuk. AK4	Leuk. 3	sp. ma. car.	tr. sar.
COM POUND SOURCE	Bios Lab &		Dewey &	Almy Chems.	Naugatuck	Chemicais	General			Bios Lab	
COMPOUND NAME	Cytosine		Daxad No. 11 (polymerized sodium	saits of alkyl naphthalene sullonic acids)	Maleic hydrazide		Polyvinylpyrrolidone (PVP)			Uracil	
ENTRY NO.	887		888		889		890			168	

STUDIES WITH VARIOUS EXPERIMENTAL TUMORS

Floyd C. Turner
Laboratory for Research on the Treatment of Cancer
Boulder Creek, California

The test animals were inbred strains of mice, each of which bore at least one spontaneous or subcutaneously transplanted malignant tumor. A preliminary study of the nature of each material to be tested was made and one or more preliminary experiments were performed on each test material to ascertain its pharmacological and toxicological actions and to determine dosages for mice. For therapy, full tolerance doses were administered. This amount varied with differing substances because of differences in rapidity of assimilation and elimination, cumulative and other effects, but usually the mice tolerated a daily dose of 60 per cent of the mean minimal lethal dose.

The usual route of administration was by intraperitoneal injections and the frequency of the doses was daily. Variations from this procedure are recorded in the tabulation. Treatments were started when the transplanted tumors were about ten millimeters in their greatest diameters. Spontaneous cancers were used in differing sizes.

Weekly measurements, in millimeters, of the greatest diameters of the tumors of the mice undergoing treatment, together with a rough outline drawing of each tumor, were recorded and this gave a visual record of the successive sizes of every tumor. Mice in which the tumors had regressed were kept for the remainders of their lifetimes to ascertain whether the tumors recurred.

Necropsies were performed and recorded on all experimental mice. Pathological specimens were examined on tumors and other tissues in instances in which it was felt that a deleterious action had been effected on the tumors.

Untreated controls of transplanted tumors were set up for groups of substances, but, if a test showed suspected tumor damaging effects, repeat tests were performed and in the final tests an untreated control mouse was set up for every test mouse. Treated controls were used for vehicles, diluents and in which more than one substance was tested.

An experiment, to be positive, must yield total and permanent disappearance of all of the tumors leaving a fairly healthy test animal. So far, there have been no positive tests.

Some of our earlier data have been included in the publication of Dr. Dyer. Other data not selected for the present publication of negative data are available in pamphlet form. For the present publication there have been included only those compounds which permit the tumors to grow to more than 50 per cent of the diameters of the controls. Mixtures and poorly defined preparations have not been included but may be found in the pamphlets from the author.

Ti

ENTRY NO.	COMPOUND NAME	COMPOUND	TUMOR	MOUSE	NO. TEST ANIMALS	DOSE mg/dose	VEHICLE	TOTAL	SURVIVAL AV. NO. DAYS treated/ controls	TUMOR GROWTH GREATEST DIAMETER (mm.) treated/controls
892	Acetaldehyde	Eastman	MCA sar.	DBA	. 01	1.1	Aqueous	314	31/29	11/16
893	Acetylacetone	=	=	=	10	25	=	351	35/37	13/16
894	3-Acetylpyridine	Farchan Lab	sp.	SWR	10	0.55	=	1010	77/101	13/13
895	Acetyl sulfanilamide with acetylamino-benzoyl chloride	Felton	Glioma	С3Н	10	15		1083	108/137	33.7/37.1
968	Acrolein	Eastman	HP mel.	Ö	10	0.05	=	979	63/37.	15/14
897	Adenosine-3-phosphoric acid	Gen. Bio.	MCA sar.	DBA	10	2.0	Aqueous suspension	400	40/43	15/15
868	Adipamide	Felton	sp.	Swiss	80	10	=	423	52.9/60.2	16.7/17.3
668	Allantoin	Gen. Bio.	MCA sar.	DBA	10	10	1% Aqueous acacia	295	62/62	13/16
006	Aluminum ethoxide (Pellets implanted subcutaneously)	Eastman (HP mel.	Ö	10	25	Cocoa butter	8	48/53	25/18
901	p-Aminoacetphenone-(p-aminophenylmethyl ketone)		MCA sar.	DBA	10	10	Dispersion	897	27/29	14/16
902	${f p}$ –A minobenzenesulfonyl chloride with adipamide	Felton	sp.	С3Н	œ	10	Aqueous suspension	452	56.5/52.6	11.4/13.7
903	p-Aminobenzenesulfonyl chloride with alloxan	:	8180	=	11	12.5	Aqueous	162	26.4/52.6	22.1/15.7
			sp.	=	00	12.5	:	469	58.6/56.2	19.9/13.7
904	p-Aminobenzenesulfonyl chloride with 1-benzothiazolyl hydrazine	2 .	sp.	:	œ	2.5	=	326	40.7/56.2	12.1/13.7
905	p-Aminobenzenesulfonyl chloride with carbazole		sp.	=	10	20	=	304	43.1/56.2	12.7/13.4
906	p-Aminobenzenesulfonyl chloride with cetyl alcohol	÷.	S180	:	11	12.5	=	314	28.5/52.6	17.1/17.3
			sp.	Swiss	7	12.5	=	286	40.9/60.2	9.0/13.7
206	p-Aminobenzenesulfonyl chloride with coumarin	:	sp.	=	7	ıcı	Emulsion	317	45.3/60.2	12.1/17.3
806	p-Aminobenzenesulfonyl chloride with ethyl formate	:	S180	С3Н	11	12.5	Aqueous	461	41.9/52.6	10.3/15.7
			sp.	=	7	12.5	:	440	61.9/56.2	12/13.7

						-						1 .									
11.1/17.3	12.7/15.7	18.0/13.7	12.6/14	10.7/17.3	10/10	15/16	16.7/16.4	11.1/17.3	8/10	8/12	18/16	12.4/14.3	15/14	12/12		25/15	16/18	11.7/14	11.8/14	11/12	10/10
62.8/60.2	28.8/52.6	48.8/56.2	38/37	45.2/60.2	24/38	58/29	30/36	45.2/60.2	46/33	67/54	33/36	40.7/43.2	62/37	55/57		25/60	49/53	30/33	92.5/37	36/37	39/38
440	288	342	376	362	240	278	562	362	463	341	326	407	619	299		554	494	962	807	364	383
Aqueous	Aqueous	suspension	Aqueous	=	=	:	=	Emulsion	Aqueous	£	ŧ	:	Emulsion	Aqueous	=	Aqueous suspension	Aqueous	:	:	Ξ	CMC
12,5	2	2	0.4	2	3,75	1,25	7.5	10	0.37	20	1.9	0.03	2	-	0.5	ın	0.62	0.75	0,035	0.2	1
7	10	7	10	00	10	10	10	œ	10	10	11	10	10	10	10	10	10	10	10	10	17
Swiss	СЗН		O	Swiss	DBA	=	=	Swiss	SWR	=	Ö	С3Н	O	SWR	DBA	O	Ö	DBA	O	DBA	:
sp.	S180	sp.	HP mel.	sp.	MCA sar.	=	=	sp.	sp.	sp.	HP mel.	sp.	HP mel.	sp.	MCA sar.	HP mel.	=	MCA sar.	HP mel.	MCA sar.	E
Felton	2		Eastman	Felton	Gen. Bio.	Eastman	U.S.P.	Eastman		Eastman		=	Felton II	Eastman	Gen. Bio.	:	Stuart Co.	Eastman	Dept. of Agric.	Sterling Win. and Baker	Gen. Bio.
p-Aminobenzenesulfonyl chloride with phosphoric acid	p-Aminobenzenesulfonyl chloride with pyrrole		p-Aminodimethyl aniline oxalate	1-Amino-2-naphthol-4-sulfonic acid	p-Aminosalicylic acid	Ammonium tetrathiocyanodiamonochromate	Amylum	Benzophenone	Benzyl chloride	Benzyl isothiourea . HCl	a-Benzyl-a-phenyl hydrazine . HCl	Bromal	Bis(Brommethoxybenzyl) sulfone	Brucine sulfate	Cadaverine	Calcium glycerate	Carboxymethyl cellulose (treated control)	Chloroacetdiethylamide	o-Chlorobenzylnicotinium thiocyanate	3-Chloro-7-methoxy-9- $\int (\beta$ -diethylaminoethylthio) propylamino \int acridine . 2HCl with glycerol	Cholic acid (3,7,12-trihydroxycholanic acid)
606	016		911	912	913	914	915	916	716	918	616	026	921	922	923	924	925	926	126	928	626
	p-Aminobenzenesulfonyl chloride with phosphoric acid Felton sp. Swiss 7 12.5 Aqueous 440 62.8/60.2	p-Aminobenzenesulfonyl chloride with phosphoric acid Felton sp. Swiss 7 12.5 Aqueous 440 62.8/60.2 p-Aminobenzenesulfonyl chloride with pyrrole "S180 C3H 10 5 Aqueous 288 28.8/52.6	p-Aminobenzenesulfonyl chloride with phosphoric acid Felton sp. Swiss 7 12.5 Aqueous 440 62.8/60.2 p-Aminobenzenesulfonyl chloride with pyrrole "S180 C3H 10 5 Aqueous 288 28.8/52.6 suspension sp. "7 5 "342 48.8/56.2	p-Aminobenzenesulfonyl chloride with phosphoric acid Felton sp. Swiss 7 12.5 Aqueous 440 62.8/60.2 p-Aminobenzenesulfonyl chloride with pyrrole " S180 C3H 10 5 Aqueous 28.8/52.6 sp. " 7 5 " 342 48.8/56.2 p-Aminodimethyl aniline oxalate Eastman HP mel. C 10 0.4 Aqueous 376 38/37	p-Aminobenzenesulfonyl chloride with phosphoric acid Felton sp. Swiss 7 12.5 Aqueous 440 62.8/60.2 p-Aminobenzenesulfonyl chloride with pyrrole " Sl80 C3H 10 5 Aqueous 28.8/52.6 sp. " 7 5 " 342 48.8/56.2 p-Aminodimethyl aniline oxalate Eastman HP mel. C 10 0.4 Aqueous 376 38/37 1-Amino-2-naphthol-4-sulfonic acid Felton sp. Swiss 8 5 " 362 45.2/60.2	p-Aminobenzenesulfonyl chloride with phosphoric acid Felton sp. Swiss 7 12.5 Aqueous 440 62.8/60.2 p-Aminobenzenesulfonyl chloride with pyrrole " \$180 C3H 10 5 Aqueous 288 28.8/52.6 sp. " 7 5 " 342 48.8/56.2 p-Aminodimethyl aniline oxalate Eastman HP mel. C 10 0.4 Aqueous 376 38/37 1-Amino-2-naphthol-4-sulfonic acid Felton sp. Swiss 8 5 " 362 45.2/60.2 p-Aminosalicylic acid Gen. Bio. MCA sar. DBA 10 3.75 " 249 24/38	p-Aminobenzenesulfonyl chloride with phosphoric acid Felton sp. Swiss 7 12.5 Aqueous 440 62.8/60.2 11.1/17.3 p-Aminobenzenesulfonyl chloride with pyrrole " S180 C3H 10 5 Aqueous suspension 28.8/52.6 12.7/15.7 p-Aminobenzenesulfonyl chloride with pyrrole Eastman HP mel. C3H 10 6.4 Aqueous 28.8/56.2 18.0/13.7 p-Aminobenzenesulfonyl charmonic acid Felton sp. Swiss 8 5 " 48.8/56.2 18.0/13.7 p-Aminosalicylic acid Felton sp. Swiss 8 5 " 36.2 45.2/60.2 10.7/17.3 p-Aminosalicylic acid Gen. Bio. MCA sar. DBA 10 3.75 " 240 24/38 10/10 Ammonium tetrathiccyanodiamonochromate Eastman " " 10 1.25 " 240 24/38 10/10	p-Aminobenzenesulfonyl chloride with phosphoric acid Felton sp. Swiss 7 12.5 Aqueous 440 62.8/60.2 11.1/17.3 p-Aminobenzenesulfonyl chloride with pyrrole " Si80 C3H 10 5 Aqueous suspension 288 28.8/52.6 12.7/15.7 p-Aminobenzenesulfonyl chloride with pyrrole Eastman HP mel. C 10 6 48.8/56.2 18.0/13.7 p-Aminobenzenesulfonyl chloride with pyrrole Eastman HP mel. C 10 0.4 Aqueous 376 48.8/56.2 18.0/13.7 p-Amino-Longathyl chloride acid Felton sp. Swiss 8 5 " 36.2 45.2/60.2 10.7/17.3 p-Aminosalicylic acid Gen. Bio. MCA sar. DBA 10 3.75 " 240 24/38 10/10 Ammonium tetrathlocyanodiamonochromate Eastman " 10 7.5 " 299 30/36 16.7/16.4	p-Aminobenzenesulfonyl chloride with phosphoric acid Felton sp. Swiss 7 12.5 Aqueous 440 62.8/60.2 11.1/17.3 p-Aminobenzenesulfonyl chloride with pyrrole " Sign C3H 10 5 Aqueous 288 28.8/52.6 12.7/15.7 p-Aminobenzenesulfonyl chloride with pyrrole Eastman HP mel. C3 10 6 48.8/56.2 12.7/15.7 p-Aminodimethyl aniline oxalate Eastman HP mel. C 10 0.4 Aqueous 376 48.8/56.2 18.0/13.7 1-Amino-2-naphthol-4-sulfonic acid Felton sp. Swiss 8 5 " 36.2 45.2/60.2 10.7/17.3 Ammonium tetrathiccyanodiamonochromate Eastman " " 10 1.25 " 240 24/38 10/10 Amylum U.S.P. " " 10 7.5 " 28/29 15/16.4 Benzophenone Eastman sp. " 10 7.5 " 24/38	p-Aminobenzenesulfonyl chloride with phosphoric acid Felton sp. Swiss 7 12.5 Aqueous 440 62.8/60.2 11.1/17.3 p-Aminobenzenesulfonyl chloride with pyrrole " S180 C3H 10 5 Aqueous 288 28.8/52.6 12.7/15.7 p-Aminobenzenesulfonyl chloride with pyrrole Eastman HP mel. C3H 10 6.4 Aqueous 376 48.8/56.2 12.7/15.7 p-Aminodimethyl aniline oxalate Falton sp. Swiss 8 5 " 48.8/56.2 18.0/13.7 1-Amino-2-naphthol-4-sulfonic acid Felton sp. Swiss 8 5 " 45.2/60.2 10.7/17.3 PAMinosalicylic acid Gen. Bio. MCA sar. DBA 10 3.75 " 249 24.38 10/10.3 Amylum U.S.P. " " 10 7.5 " 249 24.260.2 11.1/17.3 Benzyl chloride Eastman sp. swiss 8 10 7.5	p-Aminobenzenesulfonyl chloride with phosphoric acid Felton sp. Swiss 7 12.5 Aqueous 446 62.8/60.2 11.1/17.3 p-Aminobenzenesulfonyl chloride with pyrrole " \$180 C3H 10 5 " 446 62.8/60.2 11.1/17.3 p-Aminobenzenesulfonyl chloride with pyrrole Eastman HP mel. C3H 10 6 440 ecous 28.8/52.6 12.7/15.7 p-Aminodimethyl aniline oxalate Eastman HP mel. C 10 0.4 Aqueous 376 48.8/56.2 18.0/13.7 1-Amino-2-naphthol-4-sulfonic acid Gen. Bio. MCA sar. DBA 10 3.75 " 249 45.2/60.2 10.7/17.3 Amylum U.S.P. " " 10 7.5 " 249 24/38 10/10.4 Amylum U.S.P. " " 10 7.5 " 22/36.2 11.1/17.3 Benzyl chloride Benzyl sochiourea. HCl Eastman " " 10 7.5	p-Aminobenzenesulfonyl chloride with phosphoric acid Felicon sp. Swiss 7 12.5 Aqueous 440 62.8/60.2 11.1/13.3 p-Aminobenzenesulfonyl chloride with pyrrole " Sign C3H 10 5 Aqueous 288 28.8/52.6 11.1/13.7 p-Aminobenzenesulfonyl chloride with pyrrole Eastman HP mel. C 10 0.4 Aqueous 376 48.8/56.2 18.0/13.7 1-Amino-2-naphthol-4-sulfonic acid Felton Sp. Swiss 8 5 " 48.8/56.2 18.0/13.7 1-Amino-2-naphthol-4-sulfonic acid Felton Sp. N 5 " 375 " 36.7 48.2/60.2 10.7/17.3 Ammonium tetrathico-yanodiamonochromate Eastman " " 10 7.5 " 240 24/38 10/10.7 Amyolum U.S.P. " " 10 7.5 " 28/2 11.7/17.3 Benzyl chloride Eastman sp. " 10 0.37	p-Aminobenzenesulfinyl chloride with phosphoric acid Felton sp. Swiss 7 12.5 Aqueous 46 62.8/60.2 11.1/13.3 p-Aminobenzenesulfinyl chloride with pyrrole " sp. " 7 5 440 62.8/60.2 11.1/13.7 p-Aminobenzenesulfonyl chloride with pyrrole Eastman HP mel. C 10 0.4 Aqueous 38 28.8/52.6 12.7/15.7 p-Aminochronate cold Felton Felton Sp. Swiss 8 5 " 48.8/56.2 12.7/15.7 p-Aminocalicylic acid Felton Sp. Swiss 8 5 " 45.2/60.2 10.7/17.3 Ammonium tetrathicocyanodiamonochromate Eastman " " 10 1.25 " 24/3 10/10.4 Amyum C.S. P. " " " 10 1.25 " 24/3 10/10.4 Benzyl chloride Eastman Sp. Swiss 8 10 7.5 " 24/3 8/10	p-Aminobenzenesulfonyl chloride with phosphort acid Fetton sp. Swiss 7 12.5 Aqueous 440 62.8/60.2 11.1/17.3 p-Aminobenzenesulfonyl chloride with pyrrole " S180 C3H 10 5 Aqueous 288 28.8/52.6 11.1/17.3 p-Aminobenzenesulfonyl chloride with pyrrole Eastman HP mel. C 10 0.4 Aqueous 36 28.8/52.6 11.1/17.3 p-Aminochmethyl aniline oxalate Eastman HP mel. C 10 0.4 Aqueous 36 48.8/56.2 11.1/17.3 p-Aminochmethyl aniline oxalate Eastman MCA sar. DBA 10 0.4 Aqueous 36 48.756.2 11.1/17.3 Ammonium tetrathocyandiamonochromate Eastman " " 10 1.25 " 24/38 10.710.3 Amylum Benzyl chloride Eastman Sp. Swiss 8 10 2.5 12.5 11.1/17.3 Benzyl chloride Eastman Sp. Swiss	p-Aminobenzenesulfonyl chloride with phyroloe In the physophoric acid Felton SN iss 7 is 1.5.5 Aqueous 440 62.8/60.2 11.1/17.3 p-Aminobenzenesulfonyl chloride with pyrrole In the polymorphy of physophoric acid In the part of physophoric acid In the physophoric acid	P-Aminobenzenesulfonyl chloride with phosphoric acid relicable (21) (21) (21) (21) (21) (21) (21) (21)	P-Aminobenzenesalifonyl chloride with physrole at the physrole and period felton approach at the physrole and period felton approaches a size of the polymorphosphoride with physrole and period felton approaches allowed the pyrrole and period felton and period felt	P-Aminobenzenesulfonyl chloride with phosphort acid relation signed and polymortal phosphort acid relation by the phosphort acid and phosphort acid relation by the phosphort acid relatio	P-Aminobenzenesultonyl chloride with phosphoric acid [1.0] [1.0	P-Aminobeneseasulfouy't chloride with phyrophoric and felica	P-Amitophenzenesalifony! chloride with piposphoric acid Feilon is p. 6180 C3H 10 57 Aqueous 280 62.8/60.2 11.1/17.3 app-Amitophenzenesalifony! chloride with piposphoric acid and particle with piposphoric part

Tu

ENTRY NO.	COMPOUND NAME	COMPOUND	TUMOR	MOUSE	NO. TEST ANIMALS	DOSE mg/dose	VEHICLE	TOTAL	SURVIVAL AV. NO. DAYS treated/ controls	TUMOR GROWTH GREATEST DIAMETER (mm.) treated/controls
930	Choline chloride	Gen. Bio.	sp.	SWR	10	1.56	Aqueous	728	73/65	10/12
931	Citramide	Felton	sp.	С3Н	10	10	E	420	60/56.2	14/13.7
932	Citric acid	Ansco Corp.	Adeno- carcinoma	DBA	4	2	=	230	89/54	34/28
933	Colchicine and hydrogen peroxide	Hartwell and Baker	MCA sar.	=	10	0.001	2	511	52/54	11/10
934	Cupferron (Ammonium nitrosophenylhydroxylamine)	Smith	HP mel.	Ö	10	0.5	E	989	85/65	25/27.2
935	Cyanogen bromide	Eastman	MCA sar.	DBA	10	0.04	E	138	14/37	2.9/19
986	$n\text{-}Cyclohexyl-\beta\text{-}alanine$	Goodrich	HP mel.	Ö	10	10	:	491	49/58	18.2/27
937	Diacetyl monoxime	Eastman	8180	С3Н	16	22	:	179	19/25	18/17.1
938	Dibenzyl ether of hydroquinone 2)	Goodrich	HP mel.	O	10	sat.	Propylene glycol	341	35/38	92/52
636	p-Diethylamino benzaldehyde	Eastman	=	O	10	1.87	10%alcohol	287	29/37	71/11
940	N, N'-Dihydroxyethyl- β -alanine	Goodrich	MCA sar.	DBA	10	10	Aqueous (hot)	293	62/62	10.1/16
941	Diisobutylene ³⁾	Eastman	sp.	SWR	10	90	Mineral oil	68	62/58	8/12
942	p-Dimethylamino benzaldehyde	E	HP mel.	O	10	2	Emulsion	412	41/53	14/14
943	3, 6-Dimethylamino thioxanthen-S-dioxide and bis(dibromhydroxybenzyl) sulfide	Felton II	:	Ö	10	1	=	403	41/58	12/27
944	Dimethyl-n-propylcarbinol	Eastman	=	O	10	1	Aqueous	524	52.4/58.3	16.4/27.2
945	N, N-Dimethyl-N' (2-pyridyl)-N' (3-thenyl) ethylene diamine . HCl	Winthrop- Stearns	MCA sar.	DBA	10	0.2	Ε	236	24/40	9/14
946	Di p-nitrobenzylnicotinium bromide	Dept. of agric.	=	=	10	0.1	:	254	25/29	10/16
947	4,4-Diphenyl semicarbazide	Eastman	sb.	SWR	10	0.8	:	269	69/54	9/12
948	Diphenyithiocarbazone 4)	:	MCA sar.	DBA	1 0	0.37	Alkaline aqueous	201	45/37	15/18
949	Di-n-propyl ketone	:	=	=	10	1	Aqueous	392	39.2/37.4	11.9/18.7

6	NO.	COMPOUND NAME	COMPOUND	TUMOR	MOUSE	NO. TEST ANDMALS	DOSE mg/dose	VEHICLE 1	TOTAL	AV. NO. DAYS treated/ controls	TUMOK GROWTH GREATEST DIAMETER (mm.) treated/controls
	971	N-Isopropyl-phenylalanine	Greenberg and Gal	MCA sar.	DBA	10	2	Dispersion 136	136	14/29	12/16
5	276	a-Ketoglutaric acid	Gen. Bio.	sp.	SWR.	10	1.56	Aqueous dest.	199	99/19	14/12
5	973	N-Phenyl leucine	Greenberg and Gal	HP mel.	υ	10	6	Emulsion	641	64/37	18/14
5	974	Magnesium perchlorate and p-aminophenyl mercuric acetate	Eastman	MCA sar.	DBA	10	0.014	Aqueous	305	30/32	13/14
6	975	Maleic hydrazide	Naugatuck	=	=	10	rc.	=	330	33/29	13.4/16
8	926	$N-Methyl-N^*$ (4-chlorobenzhydryal) piperazine . HCl	Wellcome	sp.	SWR	10	0.38	=	520	52/54	10/10
0,	776	Methy-bis-(chloroethyl) amine . HCl	Delta chem.	MCA sar.	DBA	10	0.078	:	270	27/33	10/14
0,	816	Methylergonovine tartrate	Sandoz Chem.sp.	n.sp.	C3H	11	0.02	=	701	74/77	14/13
0,	616	Methylmercaptan	Eastman	MCA sar.	DBA	10	6.0	=	319	31.9/37	13/17
0,	086	Mono-n-butylether of hydroquinone 2)	Goodrich	HP mel.	Ö	10	sat.	Propylene	975	38.5/38	15/24.2
0,	981	Mono and diheptyl-diphenylamines 1)	2	S91 mel.	DBA	4	0.1	giycol Mineral oil	16	12/97	14/9.6
				sp.	SWR.	4	10	=	80	167/54	19/12
0,	982	Monomethyl ether of hydroquinone 2)	, =	HP mel.	Ö	10	sat.	Propylene glycol	286	49/38	24/24.2
0,	983	α-Naphthylhydrazine .HCl	Eastman	MCA sar.	DBA	10	1.12	Aqueous	380	38/38	13/10
0,	984	Neotetrazolium chloride	Gen. Bio.	:	ε	10	0.13	£	302	30/29	13/16
0,	985	Neotetrazolium phosphate	=		=	10	0.18	:	312	31/29	14/10
0,	986	Nicotinic acid with chloroform	Felton	.ds	Swiss	00	Ŋ	Alcoholic KOH	507	63.4/60.2	16.9/17.3
0,	186	Nitroguanidine	Eastman	sp.	SWR.	10	9.5	Aqueous	733	74/54	10.8/12
0,	988	p-Nitrophenylhydrazine	=	HP mel.	Ö	10	0.7	:	449	45/48	91/11
	686	Nucleic acid	Gen. Bio.	:	O		6	1%кон	323	32/37	15/14

7	٦,	17	m	ρ	r

											T)									-01
9/11	15/29	7/14	19/16	5/10	23/37.1	20.7/13.7	12/18	21/14	12.3/14	10/12	7/12	16/18	22.7/13.7	22/15.7	13/9.2	8.4/9.2	6.9/9.2	11.9/9.2	21/15.7	21.5/13.7
48/49	33/63	37/37	48/48	24/38	71.7/78.3	58.7/56.2	38/37	52/37	38/37	52/54	27/36	44/37	67.4/56.2	28.1/52.6	40.2/34.9	36.7/34.9	30.8/34.9	39.6/34	30.4/52.6	61.9/56.2
477	97	374	484	243	717	409	383	210	379	522	272	247	472	311	402	367	308	396	334	433
Aqueous dest.	Aqueous	:	Aqueous suspension	Aqueous	E	:	E	:	Emulsion	Dispersion	Homogenate	Aqueous	=	=	*	:	*	<u>'</u>		=
0.5	9.0	0.37	0.75	0.37	20	20	10	0,16	9	2.5	2.1	2	6.25	6.25	7.5	10	3	3 5 1.18	25	25
10	1	10	10	10	10	7	10	4	10	10	10	10	7	11	10	10	10	10	11	7
SWR	С3Н	O	O	DBA	СЗН	=	DBA	Ö.	O	SWR.	DBA	:	СЗН	:	DBA	:	:	=	СЗН	=
sp.	sp.	HP mel.	:	MCA sar.	Glioma	sp.	MCA sar.	HP mel.	=	sp.	MCA sar.	=	sb.	S180	MCA sar.	z	=	E	8180	sp.
Maver	Boulder Creek, Calif. Pharm.	Eastman	Merck	Eastman	Felton		Naugatuck	Parke-Davis	Eastman	Greenberg and Gal	Eastman	:	E	Felton	Baker	:	:		Felton	
Papain	Pentobarbital, sodium	Phenylarsonic acid	Phenylazodiaminopyridine . HCl	m-Phenylenediamine	Phenolsulfonyl chloride with aminopyridine		Phthalanil	Podophyllum	Potassium hydrogen phthalate	N-Propyl leucine	Quinaldine	Semicarbazide , HCl	Sodium-2-naphthyl-amine-6, 8-di-sulfonate (Amino	G Salt)	Sodium phosphate primary	Sodium phosphate secondary	Sodium phosphate tertiary	Sodium phosphate, primary, secondary, and tertiary	Sodium sulfanilate	
066	166	266	666	994	968		966	266	866	666	1000	1001	1002		1003	1004	1005	1006	1001	
	Papain Maver sp. SWR 10 0.5 Aqueous 477 48/49 dest.	Papain Maver sp. SWR 10 0.5 Aqueous 477 48/49 dest. Boulder Creek, sp. C3H 1 0.6 Aqueous 26 33/63 Calif. Pharm. Calif. Pharm. C3H 1 0.6 Aqueous 26 33/63	Papain Maver sp. SWR 10 0.5 Aqueous 477 48/49 Pentobarbital, sodium Boulder Creek, sp. C3H 1 0.6 Aqueous 26 33/63 Phenylarsonic acid Eastman HP mel. C 10 0.37 " 37/4 37/37	Papain Maver sp. SWR 10 0.5 Aqueous dest. 477 48/49 Pentobarbital, sodium Boulder Creek, sp. C3H 1 0.6 Aqueous 26 33/63 Phenylarsonic acid Eastman HP mel. C 10 0.37 " 374 37/37 Phenylazodiaminopyridine .HCl Merck " C 10 0.75 Aqueous 484 48/48	Papain Maver sp. SWR 10 0.5 Aqueous dest. 477 48/49 9/11 Pentobarbital, sodium Boulder Creek, sp. C3H 1 0.6 Aqueous 26 33/63 15/29 Phenylarsonic acid Eastman HP mel. C 10 0.37 " 37/4 37/37 7/14 Phenylarsonic acid Merck " C 10 0.75 Aqueous 48/48 48/48 19/16 m-Phenylenediamine Eastman MCA sar. DBA 10 0.37 Aqueous 243 24/38 5/10	Papain Maver sp. SWR 10 0.5 dest. Aqueous 477 48/49 9/11 Pentobarbital, sodium Boulder Creek, sp. Calif. Pharm. Calif. Pharm. 1 0.6 Aqueous 26 33/63 15/29 Phenylarsonic acid Eastman HP mel. C 10 0.37 " 37/4 48/48 19/16 m-Phenylenediamine Eastman MCA sar. DBA 10 0.37 Aqueous 24/3 48/48 5/10 Phenolsulfonyl chloride with aminopyridine Felton Glioma C3H 10 20 " 717 71.778.3 23/37.1	Papain Maver sp. SWR 10 0.5 Aqueous 477 48/49 9/11 Pentobarbital, sodium Boulder Creek, sp. Calif. Pharm. Calif. Pharm. 1 0.6 Aqueous 26 33/63 15/29 Phenylarsonic acid Eastman HP mel. C 10 0.37 " 374 37/37 7/14 Phenylarsonic acid Merck " C 10 0.75 Aqueous 484 48/48 19/16 m-Phenylenediamine HClonal MCA sar. DBA 10 0.37 Aqueous 24/38 5/10 Phenolsulfonyl chloride with aminopyridine Felton Glioma C3H 10 20 " 717 71/18.3 23/37.1	Papalin Maver sp. SWR 10 0.5 Aqueous dest. 477 48/49 9/11 Pentobarbital, sodium Calif. Pharm. C	Papain Maver sp. SWR 10 0.5 Aqueous dest. 477 48/49 9/11 Pentobarbital, sodium Calif. Pharm. Calif. Pharm. C3H 1 0.6 Aqueous 26 33/63 15/29 Phenylarsonic acid Eastman HP mel. C 10 0.37 " 374 48/48 15/29 Phenylarsonic acid Merck " C 10 0.75 Aqueous and animopyridine Aqueous acid 484 48/48 19/16 Phenolaulionyl chloride with aminopyridine Eastman MCA sar. DBA 10 0.37 Aqueous acid 24/38 5/10 Phenolaulionyl chloride with aminopyridine Felton Glioma C3H 7 7 7 1/7 1/7/78.3 23/37.1 Phenolaulionyl chloride with aminopyridine Felton Glioma C3H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Papain Maver SP. SWR 10 0.5 Aqueous dest. 477 48/49 9/11 Pentobarbital, sodium Boulder Czeek, sp. C3H 1 0.6 Aqueous 26 33/63 15/29 Phenylazeonic acid Eastman HP mel. C 10 0.37 " 374 48/48 15/16 Phenylazeonic acid Merck " C 10 0.37 " 374 48/48 15/16 Phenylazeonic acid Merck " C 10 0.37 " 374 48/48 19/16 m-Phenylaceonic acid Beatman McAsar DBA 10 0.37 Aqueous 48/48 19/16 phenolsulfonyl chloride with aminopyridine Felton Glioma CBA 10 0.37 " 49/38 5/10 Phthalanil Naugatuck McAsar DBA 10 " 409 58.775c. 2 20/713.7 Podophyllum Parke-Davis HP mel	Papalin Maver sp. SWR 10 0.5 Aqueous dest. 477 48/49 9/11 Pentiobarbital, sodium Boulder Creek, sp. Calif, Pharm. C3H 1 0.6 Aqueous 26 33/63 15/29 Phenylarodiaminopyridine acid Eastman HP mel. C 10 0.75 Aqueous 484 48/48 17/14 Phenylarodiaminopyridine acid Eastman Mcrck " C 10 0.75 Aqueous 484 48/48 19/16 m-Phenylarodiamine Eastman Mcrckstr. DBA 10 0.75 Aqueous 243 24/38 17/14 Phenolisulfonyl chloride with aminopyridine Feiton Gliona C3H 10 0.7 Aqueous 243 24/38 5/10 Phthalanil Feiton Gliona C3H 10 0.7 49 58.7/56.2 20.7/13.7 Podophyllum Podophyllum C 4 0.16 10 52 11	Papalin Maver sp. SWR 10 0.5 Aqueous dest. 477 48/49 9/11 Pentybarbital, sodium Callf. Pharm. Callf. Pharm. Callf. Pharm. Callf. Pharm. C 10 0.37 " 33/63 15/29 Phenylarsonic acid Eastman HP mel. C 10 0.37 Aqueous 243 34/39 15/29 Phenylarsonic acid Eastman HP mel. C 10 0.37 Aqueous 243 48/48 15/16 m-Phenylarsonic acid Eastman MCA sar. DBA 10 0.37 Aqueous 243 48/48 15/16 m-Phenylarsonic acid Eastman MCA sar. DBA 10 0.37 Aqueous 243 48/48 15/16 Phenylarsonic acid Eastman MCA sar. DBA 10 0.37 Aqueous 243 48/48 15/16 Phenylarsonic acid Eastman MCA sar. DBA 10 0.37 Aqueous	Papalin Mayer sp. SWR 10 6.5 dast. 48/49 9/11 Pentobarbital, sodium Boulder Creek, sp. Calif. Pharm. C3H. Pharm. C3H. Pharm. C3H. Pharm. C3H. Pharm. C3H. Aqueous 26 33/63 15/29 Phenylarsonic acid Bastman HP mel. C 0.0 0.07 Aqueous 34/4 48/48 17/14 Phenylarsonic acid Bastman HP mel. C 0.0 0.07 Aqueous 34/4 48/48 17/14 Phenylarsonic acid Bastman HP mel. C 0.0 0.07 Aqueous 34/48 17/14 17/14 Phenylarsonic acid Bastman MCA sar. DBA 10 0.77 Aqueous 48/48 17/14 Phenylarsonic acid Bastman MCA sar. DBA 10 0.77 Aqueous 24/38 5/10 Phenylarsonic acid Bastman MCA sar. DBA 10 0.77 17/78 27/13/14 Phenylarsonic acid Bastman MCA sar.	Papain Maver sp. SWR 10 6.5 Aquecus 477 48/49 9/11 Pennobarbital, sodium Calif. Pharm. Calif. Califormatory califor	Pagain Maver sp. SWR 10 0.5 Aqueous 477 48/49 9/11 Pendobarbital, sodium Callff. Pharm. Callff. Pharm. C3H 1 0.5 Aqueous 25 33/63 15/29 Phenylarsonic acid Eastman HP mel. C 10 0.37 Aqueous 48/4 48/49 15/14 Phenylarsonic acid Marck " " C 10 0.37 Aqueous 48/4 48/49 15/14 Phenylarsonic acid Marck " " C 10 0.37 Aqueous 48/4 48/49 15/14 Phenylarsonic acid HC " C 10 0.37 Aqueous 24/3 5/10 Phenolaulionyl choride with aminopyridine Felton Gloss " 1 1 20 " 49/3 5/14 Phenolaulionyl choride with aminopyridine Felton GLoss MCA sar. DBA 10 0.37 Aqueous 2	Papain Maver sp. SWR 10 0.5 Aqueous 477 48/49 9/11 Pentobarbital, sodium Boulder-Ceek, sp. C3H 1 0.6 Aqueous 26 33/63 15/29 1/14 Phenylareonic acid Boulder-Ceek, sp. (23H 1 0.6 Aqueous 26 33/63 15/29 1/14 Phenylareonic acid Marck " C 10 0.7 Aqueous 24 48/48 1/14 Phenylareonic acid Marck " C 10 0.7 Aqueous 243 48/48 1/14 Phenylareonic acid Marck C 10 0.7 Aqueous 243 48/48 1/14 Phenylareonic acid Marck Gloma C 1 0 0.7 Aqueous 24/38 5/10 Phendlamil Navideous Marck Marck Marck 1 0 0 1 1 1/17 1/17 1/14 <	Papara SPARE SPARE 10 0.5 Aquecous 477 48/49 9/11 Pentobarbital, sodium Callf. Pharm. Callf. Pharm. Callf. Pharm. C 3H 10 0.37 Aquecous 26 33/63 15/29 Phenylarsonic acid Merck III. Pharm. C 0.37 Aquecous 454 48/46 19/16 Phenylarsonic acid Merck III. Pharm. C 0.37 Aquecous 45 48/46 19/16 m-Phenylarsonic acid Merck III. Pharm. C 0.37 Aquecous 43 48/46 19/16 m-Phenylarsonic acid Merck III. C 0.37 Aquecous 43 48/46 19/16 Phenolasultonyl choride with aminopyridine Pelton G 0.10 0.37 Aquecous 43 48/46 19/16 Phenolasultonyl choride with aminopyridine Magara MCA sar. DBA 10 0.37 Aquecous 43 48/46 19/16 Podophyllum Parkenbaris McA sar. MCA sar. <td>Papelin Mayer FPP FPP Admetors FPP FPP</td> <td>Physiolatin Boulder Creek, sp. 1 SWR 10 0.5 Aqueous Action 46/49 9/11 Phenobarbitial, sedium Calif. Pharm. C3H 1 0.5 Aqueous Action 23/53 15/29 Phenoparbitial sedium Bastiman HP mel. C 10 0.37 Aqueous Action 48/48 19/16 Phenoplaradianthopyridhee .HCl Bastiman MCA asr. DRA 10 0.37 Aqueous Action 48/48 19/16 Phenoplaridization acid Felton Gliona Gliona</td> <td>Popular Maver sp. SVM 10 0.5 Aquecus 477 48/49 9/11 Pentidiar/bital, modium Bondler-Caulf, Piaran. C3H 1 0.5 Aquecus 45 33/53 15/29 Phenoluriscorie acid Bastman HP mel. C 10 0.37 Aquecus 44 8/49 15/29 Phenoluriscorie acid Marck " C 10 0.37 Aquecus 44 8/49 15/16 Phenolurilosytchine acid MGC " C 10 0.37 Aquecus 44 8/49 17/14 Phenolurilosytchine by principle with aminopyridine Fellon Glora C3 0 " 717 17/17 3/10 Phenolurilosytchine by propriate principle with a minopyridine Fellon Glora C3 0 " 47 17/13 2/14 Phenolurilosytchine minopyridine Bartina MCA act DBA 0 0 0 0 17 17/13 17</td>	Papelin Mayer FPP FPP Admetors FPP FPP	Physiolatin Boulder Creek, sp. 1 SWR 10 0.5 Aqueous Action 46/49 9/11 Phenobarbitial, sedium Calif. Pharm. C3H 1 0.5 Aqueous Action 23/53 15/29 Phenoparbitial sedium Bastiman HP mel. C 10 0.37 Aqueous Action 48/48 19/16 Phenoplaradianthopyridhee .HCl Bastiman MCA asr. DRA 10 0.37 Aqueous Action 48/48 19/16 Phenoplaridization acid Felton Gliona Gliona	Popular Maver sp. SVM 10 0.5 Aquecus 477 48/49 9/11 Pentidiar/bital, modium Bondler-Caulf, Piaran. C3H 1 0.5 Aquecus 45 33/53 15/29 Phenoluriscorie acid Bastman HP mel. C 10 0.37 Aquecus 44 8/49 15/29 Phenoluriscorie acid Marck " C 10 0.37 Aquecus 44 8/49 15/16 Phenolurilosytchine acid MGC " C 10 0.37 Aquecus 44 8/49 17/14 Phenolurilosytchine by principle with aminopyridine Fellon Glora C3 0 " 717 17/17 3/10 Phenolurilosytchine by propriate principle with a minopyridine Fellon Glora C3 0 " 47 17/13 2/14 Phenolurilosytchine minopyridine Bartina MCA act DBA 0 0 0 0 17 17/13 17

ENTRY NO.	COMPOUND NAME	COMPOUND	TUMOR	MOUSE	NO. TEST ANIMALS	DOSE mg/dose	VEHICLE	TOTAL	SURVIVAL AV. NO. DAYS treated/ controls	TUMOR GROWTH GREATEST DIAMETER (mm.) treated/controls
1008	Sucrose	Grocery	HP mel.	O	10	100	Aqueous	405	40/48	18/16
1009	Sulfadiazine	Felton	S180	СЗН	11	25	Aqueous suspension	241	21.9/52.6	19/15.7
			sp.	:	7	25	=	221	31.6/56.2	11/13.7
1010	Sulfaguanidine	Ε	sp.	:	7	10	Aqueous	318	45.4/56.2	11/13.7
1011	Sulfanilamide with adipic acid chloride	=	sp.	ŧ	7	10	=	308	44/56.2	14.7/13.7
1012	Sulfanilamide with butyric acid chloride	2	sp.	Swiss	7	10	£	492	70.3/60.2	13.1/17.3
1013	Sulfanilamide with caproic acid chloride	2	sp.	E	80	10	=	200	62.5/60.5	14.6/17.3
1014	Sulfanilamide with fumaric acid chloride	£	sp.	С3Н	7	10	ŧ	466	71.3/56.2	13.3/13.7
1015	Sulfanilamide with malic acid chloride	.	.ds	СЗН	7	10	Aqueous suspension	477	68.1/56.2	24/13.7
1016	Sulfanilamide with propionic acid chloride	2	sp.	Swiss	80	10	Aqueous	840	105/60.2	18.5/17.3
1017	Sulfanilamide with succinic acid chloride	6 .	sb.	С3Н	00	10	:	345	43.1/56.2	16.8/13.7
1018	Sulfanilamide with uric acid chloride		sp.	:	œ	10	Aqueous suspension	319	39.9/56.2	14.6/13.7
1019	Terephthalic acid	Naval Res. Lab.	MCA sar.	DBA	10	9	Homogenate	370	37/37	12.6/18
1020	Tetramethyl ammonium fodide	Eastman	:	=	10	0.3	Aqueous	322	32.2/34.9	10.5/9.2
1021	Tetrasodium ethylenediamine tetraacetate	Lab. Exper. Onc.	:	E	16	0.04	:	290	29/37	15/18
1022	Tetrazole	=	HP mel.	Ö	10	0.02	=	260	56/38	21.8/26
1023	2-Thiobarbituric acid	Eastman	sp.	SWR	10	4	=	705	70/54	10.2/12
1024	Triethyleneimino-s-triazine and colchicine		sp.	SWR	10	0.008	=	786	79/58	13/13
1025	Triethyleneimino-g-triazine and pyrogallol		MCA sar.	DBA	10	0.008	:	383	38/37	14.5/12

ENTRY NO.	COMPOUND NAME	COMPOUND	TUMOR	MOUSE	NO. TEST ANIMALS	DOSE mg/dose	VEHICLE	TOTAL	SURVIVAL AV. NO. DAYS treated/ controls	TUMOR GROWTH GREATEST DIAM ETER(mm.) treated/controls
1026	Trimethylphenyl ammonium iodide		HP mel.	ပ	10	0.162	Aqueous	436	44/39	21/14
1027	Trisodiumnitro triacetic acid	Lab. Exper. Onc.	MCA sar.	DBA	16	0.5	ŧ	240	24/37	14.5/18

- 1) Subcutaneous injection.
- Compound both painted on tumor and injected I.P.
- 3) Weekly doses I. P.
- 4) Both fed and injected I. P.

Felton - Dr. Lloyd D. Felton, National Institutes of Health

Felton II - Dr. Lloyd Felton, Jr.

Gen. Bio. - General Biochemicals, Inc., Chagrin Falls, Ohio

Lab. Exper. Onc. - Laboratory of Experimental Oncology, San Francisco

Naugatuck - Naugatuck Chemical Division of U. S. Rubber Co.

Baker - J. T. Baker Company

Hartwell - Dr. J. Hartwell

Smith - G. F. Smith Chemical Co.

Greenberg and Gal - Drs. D. Greenberg and E. M. Gal

Maver - Dr. Mary Maver

MCA sarc. - means that the original sarcoma was induced by 20-methylcholanthrene in a DBA strain mouse.

HP mel. - means Harding-Passey melanoma.

Aqueous dest. - distilled water.

Emulsion - the stock emulsion contained mineral oil, USP, water, a psyllium seed demulcent and 1/2% phenol for preservative.

Dispersion - contained a trace of starch or mucilage.

Homogenate - ingredients mechanically suspended in water.

SARCOMA 180 INHIBITION SCREENING DATA 1

C. Chester Stock, Frederick S. Philips, Alice E. Moore, Sonja M. Buckley,
Donald A. Clarke, Ralph K. Barclay and Kanematsu Sugiura
Division of Experimental Chemotherapy
Sloan-Kettering Institute for Cancer Research
New York 21, New York

We have employed the following method of screening materials for ability to inhibit the growth of Sarcoma 180 in mice:

- 1. Weigh the mice. Swiss females, 18-22 gms., from the Blue Spruce, Carworth, Harpaul, Millerton Research, and Rockland Farms and Joseph E. Stocker have been used. They have been given Purina Laboratory Chow and water ad lib.
- 2. Transplant tumor pieces by trocar subcutaneously into the axillary region. The tumor fragments, approximately 1.5 mm. in any dimension, are cut from non-necrotic portions of the donor tumor and samples of each tumor cultured for detection of any possible bacterial contamination.
- $\frac{3. \ \ \, \text{Twenty-four hours later start intraperitoneal injections of compounds in maximum tolerated doses on a repeated basis. In nearly all cases the toxicities of the compounds were determined by either of two methods². The maximum tolerated doses by intraperitoneal injections repeated daily for five days have been determined or the approximate LD₅₀ for a single dose has been found. Although exceptions have been encountered, in general, one-fourth to one-third the LD₅₀ has been found to be a dose satisfactorily approximating the maximum tolerated on repeated injection.$
- $\underline{4}$. Injections are continued twice daily for seven days. In some instances single injections have been given daily.
- 5. The test is repeated at the same or different level depending upon the result of the first trial. If the first dose has been too toxic, a lower dose is tried; if the first dose appears to be well tolerated, a higher one may be tried. For each compound reported herein as negative there are additional supporting data at lower and/or higher dose levels; however many of the compounds have not been tested at dose levels higher than 500 mg/K/day.

Results of testing materials have been evaluated as follows:

- No effect, when the average diameter was 3/4 or more of the average diameter of the control tumors.
- Slight inhibition, when the average diameter was 1/4 to 3/4 of the average diameter of the control tumors.
- + Marked inhibition, when the diameter was 1/4 or less of that of the control tumors; actually, the volume of such a tumor would be 1/64 or less of the control if tumors may be considered spherical.

Over 8000 compounds and nearly an equal number of materials of natural origin have been screened for ability to inhibit Sarcoma 180. Twelve compounds have met the requirements for the grading of +. They are: 2, 4, 6-tris-Ethylenimino-s-triazine; 4-Aminopteroylglutamic acid; 4-Amino-N¹⁰-Methyl pteroyl glutamic acid; 4-Amino pteroylaspartic acid (dl); 4-Amino-9-methyl pteroyl glutamic acid; 4-Amino-pteroyl threonine; 4-Amino-9, 10-dimethyl pteroylglutamic acid; 4-Amino-pteroyl triglutamic acid; 3-bis (β -Chloroethyl) amino methyl-4-methoxy-methyl-5-hydroxy-6-methyl pyridine dihydrochloride; N, N^{*}_i-N''-Triethylene phosphoramide: Phosphoric acid, diethylamide diethylenimide; N-Pentamethylene-N^{*}, N''-diethylene phosphoramide. Most of them have already been reported. Annals of the New York Academy of Sciences 52, 1360-78 (1950); Cancer Research 11, 432-36 (1951); Proc. Soc. Exp. Biol. Med. 78, 299-305 (1951); Cancer 5, 144-52 (1952).

- 1. The screening program for anti-tumor activity has been supported since 1947 by institutional grants from the American Cancer Society.
- 2. The toxicities of most of the compounds included in this report and many other compounds were obtained by support in part by a research grant (C-415) from the National Cancer Institute of the National Institutes of Health, U. S. Public Health Service. The data are on file at the Chemical-Biological Coordination Center, National Research Council, Washington 25, D. C.

St

Approximately 200 compounds are in the \pm category. Included are urethane, HN2 and certain other nitrogen mustards, some 2,4-diaminopyrimidines and some anti-folic acids not as effective as those listed above. The rest of the \pm compounds are being studied as possible leads to more effective, related compounds. All of the other compounds we have tested against Sarcoma 180 have thus far been negative but some require retesting at higher dose levels.

In the accompanying tabulated data the solvents have been coded as follows:

Solvent Coding

- 1. saline
- 2. carboxymethyl cellulose (Cellulose gum) high viscosity Type 120 Hercules Powder Co., 0.5% in saline
- 3. gum acacia (gum arabic) 1% or 10% in saline
- 4. propylene glycol
- 5. butyl succinate
- 6. peanut oil
- 7. mineral oil

It is a pleasure to acknowledge the many sources of the compounds we have used. All of the cooperating laboratories have been most helpful in attempting to provide adequate supplies of compounds many of which would not otherwise have been available to us. The sources of the compounds have been designated in the tables as listed below:

- A University of Chicago Toxicity Laboratory
- B May and Baker
- C Parke, Davis and Company
 Compounds under entry numbers 1637, 1944, 1438, 1444, 1646 and 1897 transmitted through
 Parke, Davis and Company should also be attributed to the following sources, respectively:
 Dr. J. C. Calandra, Northwestern University; Dr. J. H. Burckhalter, University of Kansas;
 Dr. D. A. Shirley, Tulane University; Dr. P. A. Wells, Eastern Regional Research Lab-
- oratory: General Chemical Company and Dr. H. S. Mosher, Leland Stanford University.

 Dr. Max Tishler, Merck and Company
- D1 Dr. Karl Folkers,
- D2 Dr. Carl Pfister "
- E Eastman Kodak Company
- F Dr. F. E. Ray, Cancer Research Laboratory, University of Florida
- G Southern Research Institute
- H Sterling Winthrop
- I Bureau of Entomology and Plant Quarantine, U. S. Department of Agriculture
- Il Dr. Thomas D. Fontaine, U. S. Department of Agriculture
- I2 Dr. C. E. Rehberg, Eastern Regional Laboratory
- Ia Dr. H. L. Haller, U. S. Department of Agriculture
- J Smith, Kline, and French
- L Monsanto Chemical Company
- M Calco Chemical Division, American Cyanamid Company
- M1 Stamford Laboratories, American Cyanamid Company
- M2 Dr. R. O. Roblin, American Cyanamid Company
- N Lilly Research Laboratories
- N1 Dr. Ralph L. Shriner, Department of Chemistry, State University of Iowa
- P Eaton Laboratories, Inc.
- Q E. I. du Pont de Nemours and Company
- S. B. Penick and Company
 T. Dr. Alexander Haddow. Th
- T Dr. Alexander Haddow, The Chester Beatty Research Institute
- W Abbott Laboratories
- Z The William S. Merrell Company
- AA B. F. Goodrich Chemical Company
- AC Dr. William Robbins, New York Botanical Gardens
- AE National Research Council, Chemical-Biological Coordination Center
- AG Dr. J. H. Williams, Lederle Laboratories
- AG2 Dr. Herald Cox,
- AJ Hoffmann-La Roche, Inc.
- AM E. R. Squibb and Sons
- AN National Aniline Division, Allied Chemical and Dye Corporation
- AP Esso Laboratories, Standard Oil Company
- AQ Endo Products, Inc.
- AR Commercial Solvents Corporation
- AU Dr. Samuel Raymond, Columbia University Medical School

EM

ZA

Geary Chemical Corporation

Dr. H. Gilman, Iowa State University

Dr. Donald Visser

AW Sloan-Kettering Institute for Cancer Research AW2 Dr. Kenneth Savard AW4 Dr. George Brown AW5 Dr. Ralph Barclay AW6 Dr. John Davoll AW7 Dr. Earl Balis AZDr. Kenneth M. Campbell, University of Notre Dame BA Dr. C. K. Cain, McNeil Laboratories Charles Pfizer and Company, Inc. BB BC Schwarz Laboratories, Inc. Wellcome Research Laboratories BE BI Dr. J. Philip Mason, Boston University BJDr. Ernest A. F. Friedheim Remington Rand, Inc. BL BM Dr. Robert C. Elderfield, Department of Chemistry, University of Michigan BP Sharples Chemicals, Inc. BT Schering Corporation Union Carbide and Carbon Corporation BV BX **Bristol Laboratories** BY Upjohn Laboratories Dr. N. H. Cromwell, Department of Chemistry, University of Nebraska CA CB Dr. Henry A. Rutter, Biochemical Research Foundation G. D. Searle and Company CC Dr. Ray H. Anderson, General Mills CF CG Dow Chemical Company CI General Aniline and Film Corporation CJ Dr. Frank H. Dickey, Department of Chemistry, California Institute of Technology CO University of Colorado CQ Sharp and Dohme, Inc. National Drug Company CT CW Dr. Hoke S. Green, University of Cincinnati CX Dr. Robert E. Lutz, Cobb Chemical Laboratory, University of Virginia CY Dr. Carl T. Bahner, Department of Chemistry, Carson-Newman College DB Virginia-Carolina Chemical Corporation Dr. F. M. Berger, Mount Laboratories DC DI **Armour Laboratories** DJ Dr. Robert Lehman, Campbell Pharmaceutical Company DK Midwest Research Institute DN Dr. W. T. Sumerford DO Dr. L. Carroll King, Northwestern University DP William R. Warner, Inc. Dr. Irving Kaye, Brooklyn College DQ Dr. C. G. Overberger, Institute of Polymer Research, Polytechnic Institute of Brooklyn DV DW Dr. M. D. Hornedo Dr. D. Wayne Wooley, Rockefeller Institute for Medical Research DZRohm and Haas Company Dr. W. L. C. Veer, N. V. Organon EH Dr. Wilson M. Whaley, University of Tennessee EI Dr. Marvin D. Armstrong, University of Utah, College of Medicine EJ

The sarcoma 180 studies were carried on effectively through the careful work at various times since 1947 of the following in the toxicity assay program: Alicia Arnold, Rhoda Baskin, Barbara Bond, Marie Borgatta, Marie Clure, Carol Cooklin, Rachael De Blieux, Margrit Fehlmann, Beatrice Nissen Greene, Aileen Mulvey, Ruth Osato, Corinne Ross, Barbara Wheelock; and of the following in the sarcoma 180 screening program: Dolores Anderson, Barbara Averill, Marguerite Bagg, Virginia Bailey, Angela Boryczka, Francoise Costa, Joan Cozens, Marie Dunn, Isabel Lincoln Elmer, Robert Elsner, Dorothy Fong, Jacqueline Grundstein, Colinne Innes, Barbara Jones, Margaret Keeve, Margaret Lippay, Barbara MacCallum, Lois Montgomery, Annemarie Muller, Mary Helen Nisum, Sheelagh O'Connor, Jean O'Laughlin, Angeleine Pagliaro, Joseph Patti, Peggy Pentz, Frances Pepper, Matthew Rudden, Netta Sanow, Elsie Sata, Anne Snipes, Elizabeth Sprague, Louise Taichert, Anne Tracy, Robert Wallbrun, Alice Wick, Joan Wiehl; and of Mrs. S. A. Myron for numerous administrative details.

74	Cancer Research														Stock et al.	
REMARKS		50 mg/K toxic			250 mg/K toxic							750 mg/K toxic	20 mg/K toxic	250 mg/K toxic	l inj/day 10 mg/K toxic	35 mg/K toxic
VEHICLE		1	2	2	8	,	2	9	9	1	ī	2	-	4	4	4
NO. OF INJECTIONS		13	12	13	13	11	13	12	11	13	13	13	13	13	7	~
AV, WT, CHANGE IN GRAMS treated/controls		-2.0	-0.5	-1.5	-1.5	-1.0 -1.0	$\frac{-2.0}{-1.0}$	-3.0	0.0	0.0	-2.0	$\frac{-1.0}{-1.5}$	-0.5	$\frac{-1.0}{+3.5}$	-3.0	$\frac{-1.0}{+1.5}$
DOSE mg/K/day		52	750	125	125	250	300	750	250	750	750	200	10	125	S.	10
NO. OF DEATHS		0/5	2/5	1/5	9/0	2/2	1/10	9/0	2/5	9/0	1/5	1/5	5/0	1/5	5/0	9/0
PHYSICAL													m. 186			
COM- POUND SOURCE		ы	Ö	υ	90	AN	ស	AN	Ö	AA	Ö	50	Ö	Q	O	CI
COMPOUND NAME	AMINES, PRIMARY:	Acetonylacetone derivative of Girard's reagent P	p-Amino acetophenone	o-Aminobenzenethiol	p-Aminobutyrophenone	2-Amino-4-chloro toluene . HCl	2-Amino-4-chloro-3,5-xylenol	a-Aminocresol, methyl ether	p-Aminoenanthophenone	β-Aminoethyl-β ¹ -carboxyethyl sulfide	2-Amino-1-phenyl-1, 3-butanediol, dl form	o-Aminopropiophenone	Ammonium chloride, dimethyl hydroxyethylphenacyl-	Benzocaine	Benzyl (3-chloromethyl-2,4,6-trimethylbenzyl) dimethyl- ammonium chloride	N-Benzyl-N-dodecyl-N-hydroxyethyl hydroxyethoxy ethyl ammonium chloride
ENTRY NO.		1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039	1040	1041	1042

Dio	CR Cr arr					0				17							
	REMARKS			75 mg/K toxic			125 mg/K toxic in gum acacia		50 mg/K toxic	50 mg/K toxic in CMC		75 mg/K toxic in CMC	also negative fresh daily		2 mg/K toxic		
	VEHICLE	ĸ		ιn	-	-	2	7	4	ю	2	æ	1	2	4	1	
	NO. OF INJECTIONS	7	13	۲	13	13	12	13	11	12	10	12	13	12	7	13	
	AV. WT. CHANGE IN GRAMS treated/controls	-1.5	0.0	-2.0	-2.0	-3.5	+0.5	0.0	-1.0	+0.5	-2.0	-1.0	-1.0	-1.0	-1.0	$\frac{-2.0}{-1.5}$	
	DOSE mg/K/day	35	750	35	009	20	20	175	25	25	20	20	200	35	1	750	
	NO. OF DEATHS	3/10	9/0	9/0	9/0	1/5	2/5	1/5	9/0	9/0	1/5	9/0	1/5	2/5	5/0	5/0	
	PHYSICAL																
	COM- POUND SOURCE	Ö	W	Ö	ы	ធ	CB	AN	DZ	CY	CX	CY	C; E	CX	CY	CI	
	COMPOUND NAME	4-Bromobenzyhydrylamine	N-Carbazylmethylpyridinium chloride	4-Chlorobenzhydrylamine	N-(p-Chlorophenylacetyl)-N'-(pyridinium acetyl) succinic hydrazide chloride	2,3-bis(o-Chlorophenylacetyl hydrazono) butane	Cyclohexyl chloride of 2,8-dimethyl-5,11-methano dibenzo (b,f) (1,5)-diazocine (Troger's base)	Diamino benzyl chlorohydrate	p, p'-Diaminodiphenyl-2, 2-dimethyl propane	2-(2,4-Dichlorostyryl) quinoline methiodide	242,6-Dichlorostyryl) quinoline methiodide	2-(3,4-Dichlorostyryl) quinoline methiodide	β , β -Difluoroethylamine	2-(3,4-Diethoxystyryl) pyridine methiodide	2-(p-Diethylaminostyryl) quinoline methiodide	1,2-Diformylhydrazine	
	ENTRY NO.	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055	1056	1057	

Sto

ENTRY NO.	COMPOUND NAME	COM- POUND SOURCE	PHYSICAL	NO. OF DEATHS	DOSE mg/K/day	AV. WT. CHANGE IN GRAMS treated/controls	NO. OF INJECTIONS	VEHICLE	REMARKS
1058	2-(2, 3-Dimethoxystyryl) quinoline methiodide	CY		1/5	20	-2.0	10	2	
1059	4-(p-Dimethylaminostyryl)-1-methyl pyridinium iodide	O		2/5	12	-3.0	7	т	16 mg/K toxic in CMC
1060	2-(p-Dimethylaminostyryl) quinoline methiodide	CY		9/0	10	-1.5	13	m	15 mg/K toxic in CMC
1001	4-(p-Dimethylaminostyryl) quinoline methiodide	CY		5/0	т	0.0	13	ю	6 mg/K toxic in CMC
1062	Dimethyl ammonium-3,3-bis(1-propyne) bromide	EC		2/5	100	<u>-2.0</u> -1.5	10	1	
1063	3, 3-Diphenyl-5-bromomethyl-tetrahydrofuranone-2-di- ethylimmonium bromide	٦		1/5	15	-1.5 -2.5	7	4	25 mg/K toxic
1064	3, 3-Diphenyl-5-bromomethyl-tetrahydrofuranone-2-dimethylimmonium bromide			5/0	25	-2.0 +0.5	7	4	66 mg/K toxic
1065	6-Ethoxy-2-(p-dimethylaminostyryl) quinoline methiodide	CY		1/5	12	-2.5	11	8	12 mg/K toxic in CMC
1066	Ethyl 5-oxo-1-phenyl-2-pyrazoline-3-carboxylate	90		9/0	009	+1.5	13	2	
1067	Fluorene, 9-amino, -2-methylcarboxylate	Ħ	m. 95	2/5	25	+1.0	13	8	75 mg/K toxic
1068	Formyl thiosemicarbazide	AA		1/5	200	+2.0 -1.0	13	8	500 mg/K toxic in CMC
1069	d-Glucosamine . HCl			9/0	1500	+1.0	13	1	
1070	a, y-Glycerol methylammonium bromide	O	m. 253	5/0	750	-1.5 +1.0	13	1	
1011	Glycine			1/5	1000	-1.0	13	1	
1072	Hydracrylhydrazine	AA		9/0	200	0.0	13	1	

REMARKS	6 mg/K toxic	2 inj/day 6 mg/K toxic	75 mg/K toxic	2 mg/K toxic	100 mg/K toxic			4 mg/K toxic	l inj/day		15 mg/K toxic	125 mg/K toxic			
VEHICLE R	1 6	4 2	9 4	3 2	1 10	2	-	4	5 1	2	3 15	3 12	2	e	2
NO, OF INJECTIONS	13	13	13	9	13	13	13	13	7	12	10	10	13	= .	13
AV. WT. CHANGE IN GRAMS treated/controls	$\frac{-1.0}{0.0}$	-1.5	-1.5	+0.5	+0.5	-0.5	-1.0	0.0	-1.5	-1.0 -0.5	+0.5	+0.5	0.0	+1.0	0.0
DOSE mg/K/day	ю	4	35	1	63	200	200	2	250	200	10	75	200	200	750
NO. OF	5/0	9/0	5/0	2/5	5/0	1/5	5/0	5/0	2/5	1/5	2/5	1/5	2/10	3/10	1/5
PHYSICAL					m.123		m. 154								
COM- POUND SOURCE	AA	AA	υ	AG2	8	50	O	υ	AN	ш	AA	8	ы	O	ធ
COMPOUND NAME	$1-\beta-Hydroxyethyl-2-tridecyl-3-benzyl\ imidazolinium \\ chloride$	p-Isooctylphenoxy-ethoxy ethyl benzyl dimethyl ammonium pentachlorophenate	4-Methylbenzhydrylamine	$1-\overline{2}\cdot\{1^{1}-Methyl-6^{1}-dimethylaminoquinolyl\}$ \[\times\] -2"\((2^{1}\), 5"-dimethyl-1"-phenyl-3"-pyrrolyl\) ethylene chloride	3-Methyl-1-(β -hydroxy- β -phenylethyl) pyridinium iodide	3-Methyl-1-phenyl-5-pyrazolidone	Methyl-4-picolinium iodide	Methyl violet-2B	8-Naphthylamine	1-β-Naphthyl-3-methyl-5-pyrazolone	n-Octadecyltrimethyl ammonium pentachlorophenate	1-Phenacyl-6-methoxy quinolinium iodide	1-Phenyl-3-(p-anisoyl acetamino)-5-pyrazolone	1-Phenyl-5-pyrazolone-3-carboxylic acid	1,4-Phenylene di-3-(1-phenyl-5-pyrazolone)
ENTRY NO.	1073	1074	1075	9201	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087

S

ENTRY NO.	COMPOUND NAME	COM- POUND SOURCE	PHYSICAL	NO. OF DEATHS	DOSE mg/K/day	AV. WT. CHANGE IN GRAMS treated/controls	NO, OF INJECTIONS	VEHICLE	REMARKS
1088	Pyridinium, $1 + (2-hydroxybenzoylmethyl)-iodide$	O	m. 201	9/0	125	+2.5	13	1	
1089	Sanguinarine nitrate	Q		9/0	10	-2.0 +1.0	13	4	30 mg/K toxic
1090	2-Styrylquinoline methiodide	CY		5/0	25	-1.0	13	en	50 mg/K toxic
1001	Ethylene dipyridinium bromide	O	m. 276	1/5	700	-2.0	13	-	
1092	m-Tolidine	AN		1/5	125	+5.0	13	en	250 mg/K toxic
1093	a, a, a-Trifluoro-m-toluidine	O		5/0	12	-1.5	~	4	16 mg/K toxic
	AMINES, SECONDARY								
1094	3-n-Butyl aminoethylcarboxy-6-bromo coumarin . HCl	AQ		3/10	93	+4.5	13	٣	2 inj/day 62 mg/K toxic
1095	β -n-Butylamino propionitrile	M		5/2	150	+1.5	13	4	250 mg/K toxic
9601	m-Chloroanilinomethylenemalononitrile	AW5		1/5	75	0.0	=	ю	125 mg/K toxic
1097	4,4'-Diamino diphenyl amine	AN		4/10	16	-1.0	12	2	
1098	3,5-Dibenzylaminophenol . HCl	E		1/5	150	$\frac{-2.0}{-1.0}$	4	4	200 mg/K toxic
1099	N-Di-(3, 3-dichloroallyl) amine . HCl	ပ		1/5	20	-2.5	13	4	63 mg/K toxic
1100	Diethylamine, $di(\beta$ -cyano) . $HC1$	ပ		5/0	200	-1.0	13	-	300 mg/K toxic
1101	N-(3-hydroxyphenyl) laurylamine	ធ		5/0	750	+1.5	11	2	
1102	β, β-Iminodipropionic acid	O		6/0	200	0.0	13	-	

Stock et at.					regui	ive Gu	neer c	iteitt	omera	py Dui	ш					99
REMARKS		l inj/day 12 mg/K toxic			2 inj/day	250 mg/K toxic	35 mg/K toxic			l inj/day 35 mg/K toxic	l inj/day		2 inj/day 100 mg/K	l inj/day toxic	l inj/day	500 mg/K toxic
VEHICLE	4	4	1	1	9	4	4		2	4	S	æ	4	9	S	e
NO. OF INJECTIONS	7	7	13	13	6	11	2		12	7	7	13	13	13	7	=
AV, WT. CHANGE IN GRAMS treated/controls	-4.0	-4.0	0.0	$\frac{-1.0}{-1.0}$	0.0	0.0	+1.0		0.0	-3.5	-4.0 -4.0	-0.5	+3.5	+0.5	-3.0	+2.0
DOSE mg/K/day	750	4	750	700	750	175	10		200	20	200	200	62	700	200	250
NO. OF DEATHS	5/0	5/0	9/0	9/0	2/5	1/5	1/5		1/5	5/0	5/0	5/0	5/0	9/0	5/0	5/0
PHYSICAL																
COM- POUND SOURCE	υ	M	M	υ	AE	NO	CI		AE	M	υ	υ	υ	M	υ	υ
COMPOUND NAME	β , β -Iminodipropionitrile	2-Methyl-5-(4'-aminoanilino) coumarane . HCl	p-(N-Methylamino) benzoic acid	a-Methylamino-p-cresol . HCl	Di-2-Thenylamine	p-(2,2,2,2-Trichloro-1-hydroxyethyl-1-amino)acetophenone	Di (β-Phenylethyl) amine	AMINES, TERTIARY:	Acetoacetic acid, $a-\sqrt{4}$, 4'-bis (dimethylamino) benzhydry <u>l</u> /-, AE ethyl ester	o-Aminodibutylaniline . HCl	6-Bromo-4-cyclohexyl-a-diethylamino-o-cresol	5-tert-Butyl-a-diethylamino-3-homopyrocatechol	4-tert-Butyl-a-dimethylamino-6-phenyl-o-cresol . HCl	n-Butyl-N, N-diphenylglycinate	6-Chloro-a-diethylamino-5-phenyl-o-cresol	6-Chloro-α-diethylamino-4-(11,11,31,31-tetramethylbutyl)- ο-cresol monophosphate
ENTRY NO.	1103	1104	1105	1106	1107	1108	1109		1110	1111	1112	1113	1114	1115	1116	7111

St

REMARKS				35 mg/K toxic	fresh daily	250 mg/K toxic	2 inj/day		30 mg/K toxic		250 mg/K toxic	2 inj/day 65 mg/K 1 inj/day toxic	also negative in gum acacia	2 inj/day 75 mg/K	t till day toate
VEHICLE	2	2	2	-	2	9	4	1	4	2	1	4	2	4	1
NO. OF INJECTIONS	12	13	13	13	ĸ	13	12	13	13	13	13	13	13	12	13
AV, WT, CHANGE IN GRAMS treated/controls	-1.5	+1.0	-1.5	- <u>1.5</u> -2.0	-2.0 -0.5	-1.5	0.0	0.0	-2.5	0.0	0.0	$\frac{-1.5}{+1.0}$	-1.5	$\frac{-2.0}{+1.0}$	0.0
DOSE mg/K/day	200	009	200	25	25	125	32	200	20	200	125	32	200	63	512
NO. OF DEATHS	1/5	5/0	5/0	9/0	2/5	5/0	5/0	5/0	5/0	9/0	9/0	9/0	9/0	1/5	0/10
PHYSICAL															
COM- POUND SOURCE	CI	CI	CI	DV	BX	50	CI	CX	٦	C; EC	O	Ö	υ	O	O
COMPOUND NAME	Cinnamic acid, a-cyano-p-dimethylamino, butyl ester	Cinnamic acid, a-cyano-p-dimethylamino, ethyl ester	Cinnamic acid, a-cyano-p-dipropylamino, ethyl ester	Copolymer formed from methacrylic acid and 2-(N,N-diethylamino) ethyl methacrylate	N-Cyclohexyl-N- β -chloroethyl-N- β (o-benzylphenoxy) ethylamine . HCl	1,1'-Cyclohexyliminodi(2-propanol)	Cyclooctylamine, N, N-dimethyl-2-hydroxy-	Dibenzoyl (dimethylamino) ethylene	1-Dibenzylamino-2-chlorobutane . HCl	$\beta,\beta^{t} \boldsymbol{<} 3,5\text{-Dichloro-}2\text{-hydroxybenzylimino}$ dipropionitrile	2-Diethylaminomethyl-3,5-dimethylphenol . HCl	a-Diethylamino-4-(1-phenylcyclohexyl)-o-cresol . HCl	a-Diethylamino-5-phenyl-3-homopyrocatechol	2 -Diethylamino- 4 -phenyl-2,4-xylenol .HCl	3-Diethylamino-1, 1, 1-trichloro-3-methyl butane . HCl
ENTRY NO.	1118	6111	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132

Stock et at.					110841	- Cu	1		ici apj	Dana						101
REMARKS		63 mg/K toxic		fresh daily	l inj/day		250 mg/K toxic			250 mg/K toxic	16 mg/K toxic	125 mg/K toxic			300 mg/K toxic	
VEHICLE	9	ĸ	4		4	1	9	1	4	8	-	8	2		4	2
NO. OF INJECTIONS	13	12	7	2	7	13	10	13	2	13	13	13	13		10	13
AV. WT. CHANGE IN GRAMS treated/controls	-0.5	-2.0	-2.5	-1.0	0.0	+2.0	-2.0	-0.5	-2.0	+3.0	$\frac{-1.0}{-1.0}$	0.0	-2.0		-1.0	0.0
DOSE mg/K/day	750	35	9	200	09	200	100	200	75	150	00	75	63		250	009
NO. OF DEATHS	9/0	9/0	2/10	9/0	2/5	9/0	9/0	2/5	2/5	1/5	1/5	1/5	9/0		5/0	9/0
PHYSICAL												m. 105				
COM- POUND SOURCE	EC	AA	EC	A	O	M	DŐ	r	2	Ö	DK	Ĺ	T		AW5	AW5
COMPOUND NAME	5, 10-Diethyl-6, 9-dimethylamino-7-tetradecylyne	Dimethylaminoacetonitrile	1-Dimethylamino-2-butyne	Dimethylaminoethyl sulfate, inner salt	\$-Dimethylamino is opropyldiphenylace to nitrile	1,2-bis(Dimethylamino)-4-methoxybenzene .2 HCl	Dimethyl di-n-butyl amino acetal	2, 2-Diphenyl-5-dibutylamino-4-pentane lactone , HCl	2,2-Diphenyl-5-dimethylamino-4-pentanolactone .HCl	Ethylene bis iminodiacetic acid	N-Ethyl-N-(2-chloroethyl)-1,2-diphenylethylamine .HCi	Stilbene, 2-chloro-4'-dimethylamino-	Stilbene, 4-dimethylamino-2'-methyl-	AMINO ACIDS:	a-Acetaminocinnamic acid	p-Acetoxy-a-acetaminocinnamic acid
ENTRY NO.	1133	1134	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145		1146	1147

S

ENTRY NO.	COMPOUND NAME	COM- POUND PHY SOURCE CON	PHYSICAL	NO. OF DEATHS	DOSE mg/K/day	AV. WT. CHANGE IN GRAMS treated/controls	NO. OF INJECTIONS	VEHICLE	REMARKS
1148	DL-Alanine	90		9/0	1000	-2.0	13	1	
1149	D-Alloisoleucine	90		9/0	1000	0.0	13	2	
1150	3-Aminotyrosine ,2HCl	ঘ		9/0	750	-2.0	13	1	
1151	a-Amino-y-phenyl-a-butyric acid	EJ		1/5	200	0.0	13	2	
1152	S-Amyl-L-cysteine	EJ		5/0	750	11.0	13	2	
1153	S-Benzyl-L-cysteine	EJ		5/0	750	0.0	13	2	
1154	o-Bromophenylalanine	AW5		9/0	200	+1.5	13	2	
1155	p-Bromophenylalanine	AW5		3/10	200	-1.5 -2.0	13	2	
1156	S-Carboxymethyl-DL-homocysteine	EJ		9/0	750	0.0	13	2	
1157	N-p-Chloroacetylphenyl glycine	ធ		1/5	150	-1.5	12	2	
1158	o-Chlorophenylalanine	AW5		1/5	750	-1.5	13	1	
1159	m-Chlorophenylalanine	AW5		9/0	200	0.0	13	2	
1160	p-Chlorophenylalanine	AW5		9/0	2009	+1.5	13	2	
1161	β-p-Chlorophenyl serine	O		9/0	009	+0.5	13	2	
1162	a, a-Diaminoadipic acid	W		2/5	400	-1.0	12	2	
1163	N-Dichloroacetyl-DL-valine	AW5		1/5	750	-1.5	13	2	

REMARKS	750 mg/K toxic in CMC		125 mg/K toxic			125 mg/K toxic	250 mg/K toxic						100 mg/K toxic		75 mg/K toxic	63 mg/K toxic
VEHICLE	3		e .	-	1	2	ю	1		1	2	2	2	2	ю	e
NO. OF	12	13	13	13	13	13	10	13	13	13	13	13	11	13	10	13
AV. WT. CHANGE IN GRAMS treated/controls	+3.0	0.0	+3.5	-1.0	0.0	+1.0 +1.0	4.0	-2.5	-3.5	-0.5	0.0	0.0	-1.0	11.0	0.0	+1.5
DOSE mg/K/day	200	750	82	009	750	99	125	750	200	750	1000	1000	99	750	40	32
NO. OF DEATHS	9/0	5/0	9/0	5/0	9/0	9/0	2/5	9/0	2/15	9/0	9/0	5/0	1/5	9/0	1/5	5/2
PHYSICAL									m. 245 dec.							
COM- POUND SOURCE	O	M	AE	EJ	AA	AW5	AE	IQ	M	EJ	90	O	ЕН	EJ	AE	BL
COMPOUND NAME	β,β -Diphenylalanine	Disodium p-(N-methylamino) benzoylglutamate	Glycine, a, a-diphenyl-, sodium salt	a-Guanidino propionic acid	N-(β-Hydroxyethyl)-β-alanine	N-Iodoacetyl phenyl alanine	L-Leucine, N-(2-cyanoethyl)-	DL-Methionine methyl sulfonium iodide	Methoxinine (a-amino-y-methoxybutyric acid)	S-Methyl-L-cysteine	DL-Norleucine	a-Phenylalanine	2-Phenylbenzyl aminoacetic acid	S-y-Phenylpropyl-L-cysteine	L-Tyrosine, N-(2-cyanoethyl)-	Wolet cobalt (III) DL-alanine . $\mathrm{H}_2\mathrm{O}$
ENTRY NO.	1164	1165	1166	1167	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179

Sto

104							Cance	r Kese	arch						Stock	k et al.
REMARKS		l inj/day 250 mg/K toxic					75 mg/K toxic	500 mg/K toxic	32 mg/K toxic	125 mg/K toxic		250 mg/K toxic				500 mg/K toxic
VEHICLE		4	2	8	en	8	2	e	8	6	2	e	2	2	-	33
NO. OF INJECTIONS		2	13	13	13	13	13	13	13	13	13	11	13	Ξ	12	13
AV. WT. CHANGE IN GRAMS treated/controls		11.0	-1.0 +1.0	+3.0	+4.5	-1.5	-1.5	+3.0	12.5	+4.0	-1.0	+2.0	-1.5	+0.5	-1.0	$\frac{+1.0}{-1.5}$
DOSE mg/K/day		125	125	100	200	200	20	300	16	75	700	125	200	009	2000	
NO. OF DEATHS		9/0	1/5	2/5	5/2	4/10	1/5	5/0	5/0	1/5	2/5	1/5	0/10	2/5	2/5	9/0
PHYSICAL											m. 375					m. > 375
COM- POUND SOURCE		D	BL	M	BL	M	ZQ	BL	BL	BL	M	M	M	M	AG	M
COMPOUND NAME	ANTI-METABOLITES AND ANALOGS:	β-Acetylpyridine	5-Amino-7-hydroxy-2-p-sulfophenyl-v-triazolo (d) pyrimidine	4-Amino-3,5-dibromopteroylglutamic acid	N- $\underline{/4}$ (5-Amino-7-hydroxy-2-v-triazolo (d) pyrimidyl) benzoy $\underline{1}^{\prime}$ glutamic acid	4-A minopte royltryptophane	2-Azaadenine	2-p-Carbethoxyphenyl-5-amino-7-hydroxy-v-triazolo (d) pyrimidine	2-p-Carboxyphenyl-5-amino-7-hydroxy-v-triazolo (d) pyrimidine	2-p-Carboxyphenyl-5,7-diamino-v-triazolo(d)pyrimidine	2-(4-Chlorophenyl)-5-amino-7-hydroxy-2-v-triazolo (d) pyrimidine . 1 $^{\prime}2~\mathrm{H}_{2}\mathrm{O}$	Dichloropteroylglutamic acid	N ² , N ² -Dimethylpteroylglutamic acid	9, 10-Dimethylpteroylglutamic acid	Diopterin. (Pteroyl di glutamic acid)	2-(4-Methoxyphenyl)-5-amino-7-hydroxy-2-v-triazolo (d) pyrimidine
ENTRY NO.		1180	1181	1182	1183	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194

				0					T						
				250 mg/K toxic		l inj/day fresh daily			500 mg/K toxic	200 mg/K toxic		250 mg/K toxic	l inj/day 300 mg/K toxic	500 mg/K toxic	also negative in gum acacia
2		2	8	80		1	7	-	1	1	2	4	ıs	-	2
11	13	10	13	12		9	12	13	13	10	13	13	7	п	13
-3.5	+0.5	-3.5	+4.0 +2.0	+1.0		-4.0	0.0	+9.5	-2.5	-2.5	-1.0	-3.5	-3.5	-0.5	-1.0
200	200	200	750	125		250	250	750	250	175	125	150	200	300	200
2/2	9/0	2/5	2/10	2/5		1/5	2/5	5/0	1/5	1/5	3/10	1/5	9/0	9/0	9/0
				m. 300											
M	M	M	BL	M		M	ত্র	ত্র	ঘ্ৰ	ত্র	AN	AN	AR	ঘ	M
$ m N^{10}$ –Methylpteroic acid	N –Methylpteroylglutamic acid	9-Methylpteroylglutamic acid	2-Phenyl-5-amino-7-hydroxy-v-triazolo-(d)-pyrimidine	$2 \left(4 - \text{Styrylphenyl}\right) - 5 - \text{amino-7-hydroxy-2-v-triazolo}\left(d\right) \\ \text{pyrimidine}$	AZO COMPOUNDS:	N-Allyl-N(4-nitro-2-tolylazo) glycine	2-Amino-4-nitro phenol coupled with phenyl methyl pyrazolone	5-Aminotetrazol coupled with H-acid	Anthranilic acid coupled with 1,3-a-diaza-2-indanone	Anthranilic acid coupled with phenyl methyl pyrazolone	Amino azobenzene base	Amino azo toluene base	Benzene azo-2-(2-nitropropane)	Benzidine-3, 3'-disulfonic acid coupled with 1, 3a-diaza-2-indanone	(4,4'-Biphenylene bis azo) bis (5-guanylurea)
1195	1196	1197	1198	1199		1200	1201	1202	1203	1204	1205	1206	1207	1208	1209
	$ m N^{10}$ -Methylpteroic acid M 2/5 500 -3.5 11	$N^{10}\text{-Methylpteroic acid} \qquad M \qquad 2/5 500 \qquad \frac{-3.5}{-1.5} \qquad 11$ $N^{10}\text{-Methylpteroylglutamic acid} \qquad M \qquad 0/5 500 \qquad \frac{+0.5}{+2.0} \qquad 13$	N ¹⁰ -Methylpteroic acid M 2/5 500 -3.5 11 10 -1.5 500 +0.5 13 9-Methylpteroylglutamic acid M 2/5 500 -3.5 10 9-Methylpteroylglutamic acid M 2/5 500 -3.5 10	N ¹⁰ -Methylpteroic acid M 2/5 500 -3.5 11 N ¹⁰ -Methylpteroylglutamic acid M 0/5 500 +0.5 13 9-Methylpteroylglutamic acid M 2/5 500 -3.5 10 2-Phenyl-5-amino-7-hydroxy-v-triazolo-(d)-pyrimidine BL 2/10 750 +4.0 13 2-Phenyl-5-amino-7-hydroxy-v-triazolo-(d)-pyrimidine BL 2/10 750 +4.0 13	N ¹⁰ -Methylpteroic acid M 2/5 500 -3.5 11 2 N ¹⁰ -Methylpteroylglutamic acid M 0/5 500 +0.5 13 1 9-Methylpteroylglutamic acid M 2/5 500 -3.5 10 2 2-Phenyl-5-amino-7-hydroxy-v-triazolo-(d)-pyrimidine BL 2/10 750 +4.0 13 3 2-(4-Styrylphenyl)-5-amino-7-hydroxy-2-v-triazolo (d) M m.300 2/5 125 +1.0 12 3 250 mg/K toxic pyrimidine	N ¹⁰ -Methylpteroic acid M 2/5 500 -3.5 11 2 N ¹⁰ -Methylpteroylglutamic acid M 0/5 500 +0.5 13 1 9-Methylpteroylglutamic acid M 2/5 500 -3.5 10 2 2-Phenyl-5-amino-7-hydroxy-v-triazolo-(d)-pyrimidine BL 2/10 750 +4.0 13 3 2-(4-Styrylphenyl)-5-amino-7-hydroxy-2-v-triazolo (d) M m. 300 2/5 125 +1.0 12 3 250 mg/K toxic pyrintdine AZO COMPOUNDS: AZO COMPOUNDS: -3.5 -3.5 -1.5 +1.0 -3 550 mg/K toxic	N ¹⁰ -Methylpteroic acid M 2/5 500 -3.5 11 2 N ¹⁰ -Methylpteroil glutamic acid M 0/5 500 +0.5 13 1 9-Methylpteroylglutamic acid M 2/5 500 -3.5 10 2 2-Phenyl-5-amino-7-hydroxy-v-triazolo-(d)-pyrimidine BL 2/10 750 +4.0 13 3 2-(4-8yrylphenyl)-5-amino-7-hydroxy-2-v-triazolo (d) M m. 300 2/5 125 +1.0 12 3 250 mg/K toxic pyrimidine AZO COMPOUNDS: N-Allyl-N-(4-nitro-2-tolylazo) glycine M 1/5 250 -4.0 6 1 1 inj/day fresh daily	N ¹⁰ -Methylpteroic acid M 2/5 500 -3.5 11 2 N ¹⁰ -Methylpteroylgutamic acid M 0/5 500 +0.5 13 1 9-Methylpteroylgutamic acid M 2/5 500 -3.5 10 2 2-Phenyl-5-amino-7-hydroxy-v-triazolo-(d)-pyrimidine BL 2/10 750 +4.0 13 3 2-(4-Siyrylphenyl)-5-amino-7-hydroxy-v-triazolo-(d)-pyrimidine M m. 300 2/5 125 +1.0 12 3 250 mg/K toxic AZO COMPOUNDS: N-Allyl-N-(4-nitro-2-tolylazo) glycine M m. 300 2/5 125 +1.0 1 3 250 mg/K toxic 2-Amino-4-nitro phenol coupled with phenyl methyl M m. 300 2/5 250 -4.0 1 1 1 inj/day 2-Amino-4-nitro phenol coupled with phenyl methyl E 2/5 250 -4.0 1 1 1 inj/day 2-Amino-4-nitro phenol coupled with phenyl methyl E 2/5 250 -4.0 -4.0 1 1	No - Methylpteroic acid M	N ¹⁰ - Methylpteroic acid M	No Description of circle Market type of circle	No. December Dec	N¹0-Methypterodic acid M 2/5 90 -3.5 11 2 N¹0-Methypterodic acid M 0/5 90 -4.5 13 1 9-Methypterodic acid M 2/5 90 -4.5 10 2 9-Methypterodyglutamic acid BL 2/5 90 -4.5 10 2 2-Pkenyl-5-amino-7-hydroxy-v-triazolo-(d)-pyrimdine BL 2/5 125 4.0 13 3 AZO COMPOUNDS: AAZO COMPOUNDS: AZO COMPOUNDS: AZO COMPOUNDS: AZO COMPOUNDS: AZO COMPOUNDS: AZO COMPOUNDS: AAZO COMPOUNDS: AZO COMPOUNDS: AZO COMPOUNDS: AZO COMPOUNDS: AZO COMPOUNDS: AZO COMPOUNDS: AZO COMPOUNDS: AAZO COMPOUNDS: AZO COMPOUNDS: AZO COMPOUNDS: AZO COMPOUNDS: AZO COMPOUNDS: AZO COMPOUNDS: AZO COMPOUNDS: AAAAA: AAAAA AAAAAAAAAAAAAAAAAAAAAAAAA	N	No Description No No No No No No No

REMARKS	100 mg/K toxic			200 mg/K toxic				300 mg/K toxic	suspension 1 inj/day fresh	more toxic in gum acacia	l inj/day fresh daily					
VEHICLE	2	2	2	2	6	1	2	1	1	2	ю	2	2	2	2	2
NO. OF INJECTIONS	11	13	12	13	13	13	12	13	2	13	7	12	12	13	13	13
AV. WT. CHANGE IN GRAMS treated/controls	-3.0 -1.5	-1.0	0.0	0.0	+3.5	0.0	-1.0 0.0	0.0	0.0	-2.0	-3.5	0.0	0.0	-1.0 -1.0	-1.5	-3.0
DOSE mg/K/day	20	700	400	125	200	200	250	175	200	250	200	750	750	300	200	200
NO. OF DEATHS	9/0	9/0	2/5	9/0	2/5	9/0	4/10	5/0	9/0	5/0	5/0	5/0	5/0	1/5	5/0	5/0
PHYSICAL					m. 193											
COM- POUND SOURCE	ल	ঘ	BL	BL	<u>Su</u>	AN	ធ	E	M	A	M	BL	BL	ы	ធ	ij
COMPOUND NAME	p-(p-Bromoacetaminophenylazo) benzene	Dehydrothio-p-toluidine-7-sulfonic acid coupled with 1, 3a-diaza-2-indanone	2, 4-Diamino-6-hydroxy-5-p-nitrophenylazo pyrimidine	2, 4-Diamino-6-hydroxy-5-p-sulfophenylazo pyrimidine	2, 2'-Diazoaminofluorene	Diazo-1-amino-2-naphthol-4-sulfonic acid	Nickel complex of 2, 2'-dicarboxy formazyl cyanide	2, 4-Dichloroaniline-6-sulfonic acid coupled with 1, 3-diaza-2-indanone	5-(2,5-Dichloro phenylazo) guanylurea	N + (2, 5-Dichlorophenylazo) - N + (1, 2, 3, 4-tetrahydroxyvalerylmethyl) 3, 4-xylidine	3,4-Dimethylamino phenylazo quinoline	N, C-Diphenyl-N'-p-carboxyphenyl formazan	N, C-Diphenyl-N'-p-carbutoxy phenyl formazan	Disulfodehydro-thio-p-toluidine coupled with 1, 3a-diaza- 2-indanone	Ethyl formazyl carboxylate	$4 + (2-Hydroxy-5-nitrophenylazo)-3-methyl-5-pyrazolone,\\ chromium\ derivative$
ENTRY NO.	1210	1211	1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225

CHANG.

			500 mg/K toxic 1 inj/day	Iresh daliy	suspension		128 mg/K toxic		500 mg/K toxic		200 mg/K toxic	10 mg/K toxic		200 mg/K toxic	
1		-	ю	2	9	2	ю	1	e		4	e	2	4	9
12	13	13	7	12	13	13	13	13	13		7	11	12	-	13
$\frac{-2.0}{-1.5}$	-1.0	+1.0	0.0	-1.0 +1.5	0.0	+0.5	+2.0	-1.0	12.5		-1.5	-1.0	-2.5	-2.0	-1.5
700	009	200	250	009	750	750	49	550	300		100	ĸ	200	125	200
9/0	5/0	0/10	9/0	1/5	1/5	1/5	1/5	9/0	9/0		9/0	3/10	1/10	9/0	0/10
							dec. > 180								
ធ	ធ	M	S	CI	50	CI	AA	ធ	BL		DN	٧	ВР	DN	ВР
Naphthionic acid coupled with 1, 3a-diaza-2-indanone	2-Naphthylamine-6, 8-disulfonic acid coupled with 1, 3adiaza-2-indanone	5-(4-Nitro phenylazo) guanylurea	p-phenylazophenoxyacetic acid	5-Phenylazosaligenin	2-Phenyl-4, 6-bis (phenylazo) phenol	2,5-bis (phenylazo) pyrrole	Sodium salt of 2-(4-sulfobenzene diazomercapto) naphthalene	Sulfanilic acid coupled with 1, 3a-diaza-2-indanone	2, 4, 6-Triamino-5-p-carboxyphenylazo pyrimidine	CARBAMATES AND THIOCARBAMATES:	n-Amyl carbamate	Benzene, 1,4-bis (methylcarbamyloxy)-2-isopropyl-5-methyl-	2-Benzothiazolyl morpholinylthioformyl sulfide	Benzyl carbamate	Benzyl dibutyi dithiocarbamate
1226	1227	1228	1229	1230	1231	1232	1233	1234	1235		1236	1237	1238	1239	1240
	Naphthionic acid coupled with 1, 3a-diaza-2-indanone E 0/5 700 -2.0 -1.5	Naphthionic acid coupled with 1, 3a-diaza-2-indanone E 0/5 700 -2.0 -1.5 -1.5 2-Naphthylamine-6,8-disulfonic acid coupled with 1,3a- E 0/5 600 -1.0 diaza-2-indanone	Naphthionic acid coupled with 1, 3a-diaza-2-indanone E 0/5 700 -2.0 -1.5 2-Naphthylamine-6, 8-disulfonic acid coupled with 1, 3a- E 0/5 600 -1.0 diaza-2-indanone 5-(4-Nitro phenylazo) guanylurea M 0/10 500 -0.5 +1.0	Naphthionic acid coupled with 1, 3a-diaza-2-indanone E 0/5 700 -2.0 12 1 2-Naphthylamine-6, 8-disulfonic acid coupled with 1, 3a-diaza-2-indanone E 0/5 600 -1.0 13 1 5-(4-Nitro phenylazo) guanylurea M 0/10 500 -0.5 13 1 p-phenylazophenoxyacetic acid CG 0/5 250 0.0 7 3	Naphthionic acid coupled with 1, 3a-diaza-2-indanone E 0/5 700 -2.0 12 1 2-Naphthylamine-6, 8-disulfonic acid coupled with 1, 3a-diaza-2-indanone E 0/5 600 -1.0 13 1 5-(4-Nitro phenylazo) guanylurea M 0/10 500 -0.5 13 1 p-phenylazophenoxyacetic acid CG 0/5 250 0.0 7 3 5-Phenylazosaligenin CI 1/5 600 -1.0 0.0 7 3	Naphthionic acid coupled with 1, 3a-diaza-2-indanone E 0/5 700 -2.0 12 1 2-Naphthylamine-6, 8-disulfonic acid coupled with 1, 3a-diaza-2-indanone E 0/5 600 -1.0 13 1 5-(4-Nitro phenylazo) guanylurea M 0/10 500 -0.5 13 1 p-phenylazophenoxyacetic acid CG 0/5 250 0.0 7 3 5-Phenylazosaligenin CI 1/5 600 -1.0 0.0 7 2 2-Phenylazosaligenin CG 1/5 750 -1.0 0.0 7 3 2-Phenylazosaligenin CG 1/5 750 -1.0 0.0 7 2	Naphthionic acid coupled with 1, 3a-diaza-2-indanone E 0/5 700 -2.0 12 1 2-Naphthylamine-6, 8-disulfonic acid coupled with 1, 3a-diaza-2-indanone E 0/5 600 -1.0 13 1 5-(4-Nitro phenylazo) guanylurea M 0/10 500 -0.5 13 1 p-phenylazophenoxyacetic acid CG 0/5 250 0.0 7 3 5-Phenylazophenoxyacetic acid CI 1/5 600 -1.0 7 2 5-Phenylazophenoxyacetic acid CG 1/5 600 -1.0 7 3 2-Phenylazophenoxyacetic acid CG 1/5 600 -1.0 7 2 2-Phenylazophenoyl	2-Naphthionic acid coupled with 1, 3a-diaza-2-indanone E 0/5 600 -2.0 13 1 2-Naphthylamine-6, 8-disulfonic acid coupled with 1, 3a-diaza-2-indanone M 0/10 0/5 600 -1.0 13 1 5-(4-Nitro phenylazo) guanylurea M 0/10 0/10 500 -0.5 13 1 9-phenylazophenoxyacetic acid CG 0/5 250 0.00 7 3 2-phenylazosaligenin CI 1/5 600 -1.0 7 3 2-phenylazosaligenin CG 1/5 750 -1.0 0.0 7 3 2-phenylazosaligenin CG 1/5 750 -1.0 0.0 1 2 2 2-phenyl-4, 6-bis (phenylazo) pyrrole CI 1/5 750 -2.0 0.0 <t< td=""><td>Saphthionic acid coupled with 1, 3a-diaza-2-indanone E 0/5 700 -2.0 1.5 1 1 2-Naphthylannine-6, 8-disulfonic acid coupled with 1, 3a-diaza-2-indanone M 0/10 6/10 500 -1.0 13 1 5-(4-Nitro phenylazo) guanylurea M 0/10 500 -0.5 13 1 p-phenylazosphenoxyacetic acid CG 0/5 250 0.0 7 3 2-Phenylazosphenoxyacetic acid CI 1/5 600 -1.0 7 3 2-Phenylazosphenoxyacetic acid CI 1/5 750 -1.0 7 3 2-Phenylazosphenoxyacetic acid CG 1/5 750 -1.0 7 3 2-Phenylazosphenoxyacetic acid CG 1/5 750 -2.0 13 6 2-S-bis (phenylazo) pyrrole CI 1/5 750 -2.0 13 2 Sulfanilic acid coupled with 1, 3a-diaza-2-indanone E 6/5 550 -1.0 1 1 1 1</td></t<> <td>Naphthionic acid coupled with 1, 3a-diaza-2-indanone E 0/5 700 -2.0 12 1 2-Naphthylamine-6, 8-disulfonts acid coupled with 1, 3a-diaza-2-indanone M 0/10 600 -1.0 13 1 5-(4-Nitro phenylazo) guanylurea M 0/10 500 -0.5 13 1 5-(4-Nitro phenylazo) guanylurea CG 0/5 250 0.0 7 3 5-Phenylazoshlgenin CG 1/5 600 -1.0 12 2 2.5-bis (phenylazo) phenol CG 1/5 750 -2.0 13 6 2.5-bis (phenylazo) pyrrole CI 1/5 750 -2.0 13 5 Sodium salt of 2 (4-sulfobenzene diazomercapto) AA dec. 7 180 1/5 64 -2.0 13 5 sulfamilic acid coupled with 1, 3a-diaza-2-indanone E 0/5 550 -1.0 13 1 2,4,6-Triamino-5-p-carboxyphenylazo pyrimidine BI 0/5 300 -2.5 0.0 -1.0 0.0</td> <td> Paphthionic acid coupled with 1, 3a-diaza-2-indanone</td> <td>2-Nighthtonic acid coupled with 1, 3a-diaza-2-indanone</td> <td>2-Naphthionic acid coupled with 1, 3a-diaza-2-indanone 6, 8-distillenic acid coupled with 1, 3a-diaza-2-indanone cacid coupled with 1, 3a-diaza-2-indanone 6, 8-distillenic acid coupled with 1, 3a-diaza-2-indanone cacid cacid cacid coupled with 1, 3a-diaza-2-indanone cacid cac</td> <td> Naphthionic acid coupled with 1, 3a-diaza-2-Indanone E 0/5 700 2.20 1.5 1.5 1.5 </td> <td>Naphthionic acid coupled with 1, 3a-diaza-2-indainone </td>	Saphthionic acid coupled with 1, 3a-diaza-2-indanone E 0/5 700 -2.0 1.5 1 1 2-Naphthylannine-6, 8-disulfonic acid coupled with 1, 3a-diaza-2-indanone M 0/10 6/10 500 -1.0 13 1 5-(4-Nitro phenylazo) guanylurea M 0/10 500 -0.5 13 1 p-phenylazosphenoxyacetic acid CG 0/5 250 0.0 7 3 2-Phenylazosphenoxyacetic acid CI 1/5 600 -1.0 7 3 2-Phenylazosphenoxyacetic acid CI 1/5 750 -1.0 7 3 2-Phenylazosphenoxyacetic acid CG 1/5 750 -1.0 7 3 2-Phenylazosphenoxyacetic acid CG 1/5 750 -2.0 13 6 2-S-bis (phenylazo) pyrrole CI 1/5 750 -2.0 13 2 Sulfanilic acid coupled with 1, 3a-diaza-2-indanone E 6/5 550 -1.0 1 1 1 1	Naphthionic acid coupled with 1, 3a-diaza-2-indanone E 0/5 700 -2.0 12 1 2-Naphthylamine-6, 8-disulfonts acid coupled with 1, 3a-diaza-2-indanone M 0/10 600 -1.0 13 1 5-(4-Nitro phenylazo) guanylurea M 0/10 500 -0.5 13 1 5-(4-Nitro phenylazo) guanylurea CG 0/5 250 0.0 7 3 5-Phenylazoshlgenin CG 1/5 600 -1.0 12 2 2.5-bis (phenylazo) phenol CG 1/5 750 -2.0 13 6 2.5-bis (phenylazo) pyrrole CI 1/5 750 -2.0 13 5 Sodium salt of 2 (4-sulfobenzene diazomercapto) AA dec. 7 180 1/5 64 -2.0 13 5 sulfamilic acid coupled with 1, 3a-diaza-2-indanone E 0/5 550 -1.0 13 1 2,4,6-Triamino-5-p-carboxyphenylazo pyrimidine BI 0/5 300 -2.5 0.0 -1.0 0.0	Paphthionic acid coupled with 1, 3a-diaza-2-indanone	2-Nighthtonic acid coupled with 1, 3a-diaza-2-indanone	2-Naphthionic acid coupled with 1, 3a-diaza-2-indanone 6, 8-distillenic acid coupled with 1, 3a-diaza-2-indanone cacid coupled with 1, 3a-diaza-2-indanone 6, 8-distillenic acid coupled with 1, 3a-diaza-2-indanone cacid cacid cacid coupled with 1, 3a-diaza-2-indanone cacid cac	Naphthionic acid coupled with 1, 3a-diaza-2-Indanone E 0/5 700 2.20 1.5 1.5 1.5	Naphthionic acid coupled with 1, 3a-diaza-2-indainone

REMARKS	100 mg/K toxic					0.15 mg/K toxic	200 mg/K toxic			2 mg/K toxic						
REI	100					0.15	200 r			2 mg						
VEHICLE	ĸ	6	8	4	п	1	e	1,	1	m	2	1	1	2	-	7
NO. OF INJECTIONS	13	11	12	13	12	13	13	12	13	13	13	13	13	13	13	10
AV. WT. CHANGE IN GRAMS treated/controls	-1.0	+1.0	+2.5	-3.5	-0.5	-2.5	+2.5	-0.5	+2.5	+4.5	-1.0	-3.0	-2.0	0.0	-4.0	-1.5
DOSE mg/K/day	63	750	400	200	9	0.75	128	12	750	1	200	350	750	200	400	250
NO. OF DEATHS	9/0	2/5	2/5	1/10	1/5	9/0	9/0	2/5	1/5	1/5	9/0	2/5	9/0	2/10	1/5	1/5
PHYSICAL				m.45												
COM- POUND SOURCE	NI	Ö	Ö	L			4	. V	AE		ធ	A	BI	Ē	8	Ö
COMPOUND NAME	n-Butyl-N-a-methyl-β-phenylethyl carbamate	Carbamic acid, p-aminobenzoic acid, ethyl ester	Carbamic acid, o-aminobenzoic acid, ethyl ester	Carbamic acid, N-cyclohexyl octyl ester	Ćarbamic acid, N, N-dimethyl-p-diethylaminophenyl ester allyliodide	Carbamic acid, N, N-dimethyl-4-dimethylamino-3-iso-propylphenyl ester methochloride	Carbamic acid, N. N-dimethylphenyl ester	Carbamic acid, N-methyl-p-dimethylaminophenyl ester allyliodide	Carbamic actd, methyl ester	Carbamic acid, N-phenyl-m-(diethylamino) phenyl ester methlodide	a-Carbamyl mercapto acet semicarbazide	Ethyl Mα-carboxyethyl) carbamate	N-Carbethoxy-4-amino-1, 2, 4-triazole	N-Carbethoxy cotarnine	N-Carbethoxy-DL-alanine	N-Carbethoxyglycine, ethyl ester
ENTRY NO.	1241	1242	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256

100 mg/K toxic	300 mg/K toxic	2 inj/day 63 mg/K toxic			300 mg/K toxic	125 mg/K toxic	fresh daily					750 mg/K toxic in CMC			
4	e	4	en	2	4	ю	1	4	2	8	e	8	4	4	e
7	13	10	11	12	13	12	7	6	13	11	13	11	13	11	12
$\frac{-1.0}{-1.0}$	11.0	0.0	+2.0	+1.0	0.0	+5.0	0.0	-3.0	+4.5	+4.5	+3.0	-1.0	-2.0	-2.0	-3.5
99	250	32	750	750	250	75	750	200	750	200	009	200	125	750	009
9/0	2/5	3/10	2/5	5/0	9/0	9/0	9/0	2/5	9/0	2/5	2/5	9/0	9/0	9/0	5/0
M	Ö	Ö	Ö	W	BP	ВР	Z	ВР	W	Ö	ВР	20	Z	BP	e BP
N-Carbethoxymethionine	p-Chlorophenyl urethan	m-Chlorophenyl urethan	Dicarbamic acid, o-phenylene, ethyl ester	N, N'-Dicarbethoxyurea	Diethylammonium diethyldithiocarbamate	N, N-Diethyl-p-(t-amyl) phenyl thionocarbamate	Diethyl azamalonate	N, N-Diethyl-o-cyclohexylphenyl thionocarbamate	Diethyleneglycol-bis-(bicarbamate), diethyl ester	Diethylene glycol dicarbamate	N, N-Diethyl pentachlorophenyl thionocarbamate	2, 2-Diethyl-1, 3-propane dicarbamate	Diethyl-n-propylazamalonate	(N, N-Diethylthiocarbamyl) (morpholinylthioformyl) sulfide	Bis(N, N-Diethylthiocarbamyl) (piperazinylthioformyl) sulfide BP
1257	1258	1259	1260	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272
	N-Carbethoxymethionine W $0/5$ 66 $\frac{-1.0}{-1.0}$ 7 4	N-Carbethoxymethionine W $0/5$ 66 $\frac{-1.0}{-1.0}$ 7 4 $\frac{1}{1.0}$ p-Chlorophenyl urethan G $\frac{2}{5}$ $\frac{2}{5}$ $\frac{44.0}{1.0}$ 13 3	N-Carbethoxymethionine W 0/5 66 -1.0 7 4 p-Chlorophenyl urethan G 2/5 250 +4.0 13 3 m-Chlorophenyl urethan G 3/10 32 -0.5 10 4	N-Carbethoxymethionine W 0/5 66 -1.0 7 4 p-Chlorophenyl urethan G 2/5 2/5 250 +4.0 13 3 m-Chlorophenyl urethan G 3/10 32 -0.5 10 4 Dicarbamic acid, o-phenylene, ethyl ester G 2/5 750 +2.0 11 3	N-Carbethoxymethlonine W 0/5 66 -1.0 7 4 p-Chlorophenyl urethan G 2/5 250 +4.0 13 3 m-Chlorophenyl urethan G 3/10 32 -0.5 10 4 Dicarbamic acid, o-phenylene, ethyl ester G 2/5 750 +2.0 11 3 N, N'-Dicarbethoxyurea W 0/5 750 +1.0 12 2	N-Carbethoxymethionine W 0/5 66 -1.0 7 4 p-Chlorophenyl urethan G 2/5 250 +4.0 13 3 m-Chlorophenyl urethan G 3/10 32 -0.5 10 4 Dicarbamic acid, o-phenylene, ethyl ester G 2/5 750 +2.0 11 3 N,N-Dicarbethoxyurea W 0/5 750 +1.0 12 2 Diethylammonlum diethyldithiocarbamate BP 0/5 250 0.0 13 4	N-Carbethoxymethionine W 0/5 66 -1.0 7 4 p-Chlorophenyl urethan G 2/5 250 44.0 13 3 m-Chlorophenyl urethan G 3/10 32 0.5 10 4 Dicarbamic acid, o-phenylene, ethyl ester G 2/5 750 42.0 11 3 N, N-Dicarbethoxyurea W 0/5 750 41.0 12 2 Dicthylammonlum diethyldithiocarbamate BP 0/5 750 41.0 13 4 N, N-Diethyl-p-(t-amyl) phenyl thionocarbamate BP 0/5 75 45.0 13 4	N-Carbethoxymethionine W 0/5 66 -1.0 7 4 p-Chlorophenyl urethan G 2/5 250 44.0 13 3 m-Chlorophenyl urethan G 3/10 32 -0.5 10 4 Dicarbamic acid, o-phenylene, ethyl ester G 2/5 750 +2.0 11 3 N, N'-Dicarbethoxyurea W 0/5 750 +1.0 12 2 Diethylammonium diethyldithiocarbamate BP 0/5 250 0.0 13 4 N, N-Diethyl-p-(t-amyl) phenyl thionocarbamate BP 0/5 75 +5.0 1.0 3 Diethyl azamalonate Z 0/5 75 75 1.5 3 7	N-Carbethoxymethlonine W 0/5 66 -1.0 7 4 p-Chlorophenyl urethan G 2/5 250 44.0 13 3 m-Chlorophenyl urethan G 3/10 32 -0.5 10 4 Dicarbamic acid, o-phenylene, ethyl ester G 2/5 750 +1.0 11 3 N,N-Dicarbethoxyurea W 0/5 750 +1.0 11 3 Diethylammonlum diethyldithlocarbamate BP 0/5 750 -0.5 13 4 N.N-Diethyl-p-(t-amyl) phenyl thlonocarbamate BP 0/5 750 -0.5 13 4 Ny.N-Diethyl-o-cyclohexylphenyl thlonocarbamate BP 2/5 750 -2.5 7 1.0 3 Ny.N-Diethyl-o-cyclohexylphenyl thlonocarbamate BP 2/5 950 -2.5 7 1 1 1 1	N-Carbethoxymethlonine W 0/5 66 -1.0 7 4 p-Chlorophenyl urethan G 2/5 2/5 250 +4.0 13 3 m-Chlorophenyl urethan G 3/10 32 -0.5 10 4 Dicarbamic acid, o-phenyleme, ethyl ester G 2/5 750 +1.0 11 3 N,N-Dicarbethoxyurea W 0/5 750 +1.0 12 2 Dichtylammonlum diethyldithlocarbamate BP 0/5 750 +1.0 13 4 N.N-Dicthyl-p-(t-amyl) phenyl thlonocarbamate BP 0/5 750 -2.5 13 4 N.N-Dicthyl-p-(t-amyl) phenyl thlonocarbamate BP 0/5 750 -2.5 7 1 8 N.N-Dicthyl-p-(t-amyl) phenyl thlonocarbamate BP 2/5 750 -2.5 7 1 8 N.N-Dicthyl-o-cyclohexylphenyl thlonocarbamate), diethyl ester W 750 -2.5 9.0 -2.5 9 4 1	N-Carbethoxymethlonine W 0/5 66 -1.0 7 4 p-Chlorophenyl urethan G 2/5 250 44.0 13 3 Dicarbamic acid, o-phenylene, ethyl ester G 3/10 32 44.0 11 3 Dicarbamic acid, o-phenylene, ethyl ester G 2/5 750 41.0 11 3 N.N-Dicarbethoxyurea W 0/5 750 41.0 12 2 Diethylammonlum diethyldithlocarbamate BP 0/5 750 41.0 12 2 N.N-Diethyl-p-(t-amyl) phenyl thlonocarbamate BP 0/5 750 45.0 7 1 N.N-Diethyl-p-(t-amyl) phenyl thlonocarbamate BP 0/5 750 45.0 7 1 1 N.N-Diethyl-p-(t-amyl) phenyl thlonocarbamate BP 0/5 750 45.0 7 1 1 1 N.N-Diethyl-p-(c-amyl) phenyl thlonocarbamate BP 2/5 750 4.5 7 1 1 1 <td>N-Carbethoxymethlonine W 0/5 66 -1.0 7 4 p-Chlorophenyl urethan G 2/5 250 44.0 13 3 m-Chlorophenyl urethan G 3/10 3/5 6.5 10.5 10 4 Dicarbamic acid, o-phemylene, ethyl ester G 2/5 750 41.0 11 3 N.N'-Dicarbamic acid, o-phemylene, ethyl ester W 0/5 750 41.0 11 3 Dicthylammonium dicthyldithlocarbamate BP 0/5 750 41.5 12 5 N.N-Diethyl-p-(t-amyl) phemyl thionocarbamate BP 0/5 75 45.0 12 3 Diethyleneglycol-bis-(bicarbamate), diethyl ester W 0/5 75 25.5 75 1.5 1 1 1 Diethylene glycol dicarbamate BP 2/5 750 44.5 9 4 1 1 1 1 1 1 1 1 1 1 1 1</td> <td> N-Carbethoxymethionine C 2/5 250 21.0 7 4 </td> <td> N-Carbethoxymethionine G 2/5 520 110 7 4 </td> <td> No. Carberhooymethionine</td>	N-Carbethoxymethlonine W 0/5 66 -1.0 7 4 p-Chlorophenyl urethan G 2/5 250 44.0 13 3 m-Chlorophenyl urethan G 3/10 3/5 6.5 10.5 10 4 Dicarbamic acid, o-phemylene, ethyl ester G 2/5 750 41.0 11 3 N.N'-Dicarbamic acid, o-phemylene, ethyl ester W 0/5 750 41.0 11 3 Dicthylammonium dicthyldithlocarbamate BP 0/5 750 41.5 12 5 N.N-Diethyl-p-(t-amyl) phemyl thionocarbamate BP 0/5 75 45.0 12 3 Diethyleneglycol-bis-(bicarbamate), diethyl ester W 0/5 75 25.5 75 1.5 1 1 1 Diethylene glycol dicarbamate BP 2/5 750 44.5 9 4 1 1 1 1 1 1 1 1 1 1 1 1	N-Carbethoxymethionine C 2/5 250 21.0 7 4	N-Carbethoxymethionine G 2/5 520 110 7 4	No. Carberhooymethionine

110							Gancer	nesed	ırcn						Sto	ck et a
REMARKS			600 mg/K toxic		l inj/day	100 mg/K toxic	l inj/day 70 mg/K toxic	350 mg/K toxic	750 mg/K toxic			100 mg/K toxic				
VEHICLE	1	e	4	4	4	4	4	8	9	60	1	4	ю	1	es.	3
NO. OF INJECTIONS	11	6	12	10	7	13	7	13	13	12	13	13	12	12	13	10
AV. WT. CHANGE IN GRAMS treated/controls	+0.5	0.0	0.0	-2.0	-2.5	-1.5	-2.5	+5.0	+3.0	10.5	-2.0	-1.5	+1.0	0.0	+1.5	+1.0
DOSE mg/K/day	350	009	400	200	200	80	35	250	200	400	200	20	200	120	100	700
NO. OF DEATHS	5/2	9/0	9/0	3/10	1/15	1/5	9/0	2/5	9/0	2/5	5/0	5/0	4/15	2/5	2/5	1/5
PHYSICAL					b.138				b.89 0.7 mm.	m.111			m. 84	m. 132	m. 129	m. 87
COM- POUND SOURCE	Z	M	ВР	BI	L	W	1	Q	AA	Ö	M	BI	Ö	Ö	DI	ı
COMPOUND NAME	β-Dimethylaminoethyl phenyl thiourethane . HCl	2, 4-Dinitrophenyl urethane	Disodium-1, 3-butane, bis (dithiocarbamate)	Dodecylurethane	Ethyl N-o-biphenyl carbamate	Ethyl-N-cyclohexyl carbamate	Ethyl-N, N-dicyclohexyl carbamate	Ethyl-N, N-diphenylcarbamate	Ethyl diethyl dithlocarbamate	Ethylene diurethane	Ethyl N-(α-hydroxyisobutyroyl)-carbazate	Furfurylurethane	Hexamethylene diurethane	Hydrazodicarboxylic ester	Hydroquinone bisdimethylurethane	m-Hydroxyphenyl-N-octadecylcarbamate
ENTRY NO.	1273	1274	1275	1276	7724	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288

Diocit of a					0					17						
REMARKS	125 mg/K toxic		64 mg/K toxic	250 mg/K toxic	400 mg/K toxic		2 inj/day				300 mg/K toxic					
VEHICLE	4	4	es	4	4	. 9	4	8	3	2	2	e	e	1	e	2
NO. OF INJECTIONS	11	13	13	11	7	13	13	11	11	13	13	11	11	13	12	12
AV. WT. CHANGE IN GRAMS treated/controls	$\frac{-2.0}{-1.0}$	-2.5	40.5	$\frac{-2.0}{-1.0}$	-2.0	-1.5	-1.0	-2.0	+2.5	12.5	+1.5	+2.5	+2.5	-1.5	+1.5	+1.0
DOSE mg/K/day	63	200	32	175	200	009	200	006	700	200	150	200	750	750	250	128
NO. OF DEATHS	5/10	2/10	9/0	3/10	9/0	5/0	0/10	9/0	2/5	1/5	9/0	2/15	2/5	1/5	2/15	2/5
PHYSICAL			m.87						m. 69					m.82	m. 121	
COM- POUND SOURCE	N	N	ı	N	NO	×	Ö	8	ı	AA	AA	вР	Ö	Ö	ы	N
COMPOUND NAME	Isobutyl-N- α -methyl- β -phenylethyl carbamate	Isobutyl-N-8-phenyl ethyl carbamate	Isopropyl-N-phenyl carbamate	Isopropyl-N-β-phenylethyl carbamate	p-Methoxybenzyl-N-phenylcarbamate	Methyl N, N-dimethyl carbamate	Morpholine, N-carbethoxy-	N-Octadecyl carbamate	Octyl-N-phenyl carbamate	Bis $\underline{f(z)}$, 3-phenyl-4,5-dimethyl-4-thiazoliny \underline{l}^{\prime} thiuram disulfide	p-Phenylenediamino bis (methyldimethyldithiocarbamate)	p-Phenylene bis (N, N-diethyl thionocarbamate)	m-Phenylene diurethan	Propylene diurethane	m-Phenylene di-N-octadecylcarbamate	$\beta\sqrt{N}\text{-}\beta\text{-}Phenylisopropyl-N-methyl-amino ethyl}$ phenyl-urethane . HCl
ENTRY NO.	1289	1290	1291	1292	1293	1294	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304

								10000							Stock	et at.
REMARKS	400 mg/K toxic				350 mg/K toxic in gum acacia			150 mg/K toxic		500 mg/K toxic		l inj/day 50 mg/K toxic			500 mg/K toxic	
VEHICLE	т	9	1	1	2	8	2	4	7	4	8	4	- '	4	en	1
NO. OF INJECTIONS	13	13	13	13	11	13	13	13	13	10	10	7	10	12	10	13
AV. WT. CHANGE IN GRAMS treated/controls	+2.0	-1.5	-1.0 -2.0	-1.0	$\frac{-1.0}{-1.5}$	-1.5	11.5	-1.0	$\frac{-1.0}{-1.0}$	0.0	+3.5	-1.5	-2.0	-1.5	+0.5	$\frac{-1.5}{-2.0}$
DOSE mg/K/day	256	009	200	750	250	1000	400	108	009	400	750	32	200	750	300	750
NO. OF DEATHS	9/0	9/0	6/0	9/0	2/5	1/5	2/5	5/0	9/0	2/5	1/5	3/10	2/5	1/5	2/10	6/0
PHYSICAL																
COM- POUND SOURCE	N	N I	2	Z	BI	W	AA	BP		ВР	ВР	BP	AA	ВР	вр	ВР
COMPOUND NAME	The bis Phenylurethane of 2-methyl-2-diethylamino propane-1, 3-diol . HCl	n-Propyl-N-β-phenylethyl carbamate	Piperidino propanediol bis ethyl urethane . HCl	Piperidinopropanediol mono ethyl urethane . HCl	a-pyridylurethane	8-Quinolylphenylcarbamate	Sodium $\sqrt{3} + (\beta-chloroethyl) - 4$, 5-dimethyl - 4-thiazolinyl dithiocarbamate	Sodium dibutyl dithiocarbamate	Sodium diethyl dithiocarbamate		Sodium dimethyl dithiocarbamate	Sodium dioctyl dithiocarbamate	Sodium N, N-diphenyl dithiocarbamate	Sodium 3-hydroxy butyldithiocarbamate	Sodium methyl benzyl dithiocarbamate	Sucrose dicarbamate
ENTRY NO.	1305	1306	1307	1308	1309	1310	1311	1312	1313		1314	1315	1316	1317	1318	1319

REMARKS		250 mg/K toxic		500 mg/K toxic	l inj/day	50 mg/K toxic		2 inj/day		15 mg/K toxic				750 mg/K toxic in CMC		
VEHICLE	٣	ю	2	8	5	e		1	2	4	2	2	2	8	2	1
NO. OF INJECTIONS	Ξ	10	13	13	-	=		∞	12	7	13	13	13	11	13	13
AV. WT. CHANGE IN GRAMS treated/controls	+1.5	+1.0 -1.0	0.0	+2.5	-3.0	+3.5		-2.5	-0.5	-1.0	0.5	0.0	-0.5	0.0	-2.0 -2.0	-1.5
DOSE mg/K/day	200	175	009	350	200	52		99	750	Ŋ	009	200	125	200	750	200
NO. OF DEATHS	2/5	9/0	5/0	9/0	5/0	4/15		1/5	9/0	2/5	1/5	9/0	2/5	1/5	9/0	2/10
PHYSICAL	m.94				b. 110 2 mm.	m.138										
COM- POUND SOURCE	Ö	ВР	AA	BI	M	G		AW2	AP	EC	国	CI	CI	O	M	ঘ
COMPOUND NAME	Tetramethylene diurethan	Tetramethyl thiuram disulfide	Tetraphenyl thiuram disulfide	2,4,6-Tribromo phenyl urethane	Triethyl N-tricarboxylate	p-Xylylene diurethane	COMPOUNDS WITH CONJUGATED UNSATURATION:	β-Acetylacrylic acid	9-Acridone	Allyl-p-methoxybenzoyl acrylate	2-A mino anthraquinone coupled with β-naphthyl amine	1-Amino-2-bromoanthraquinone	2-Amino-3-chloro-1,4-naphthoquinone	2-Authraquinone carboxylic acid	Anthraquinone disulfonic acid ester	Benzal pyruvic acid,potassium salt
ENTRY NO.	1320	1321	1322	1323	1324	1325		1326	1327	1328	1329	1330	1331	1332	1333	1334

St

REMARKS	l inj/day		32 mg/K toxic			300 mg/K toxic		12 mg/K toxic					l inj/day	175 mg/K toxic	2 inj/day 8 mg/K toxic	
VEHICLE	ın	2	8	2	2	1	4	2	2	1	2	5	4	4	4	4
NO, OF INJECTIONS	z,	13	9	13	12	9	un.	NO.	13	13	13	S	7	-	13	<i>L</i> .
AV, WT, CHANGE IN GRAMS treated/controls	-2.5	10.5	+1.5	0.0	-2.0	-5.5	-1.5	-4.5	1.5	-1.0 -1.0	40.5	4.0	+1.5	$\frac{-2.0}{-1.0}$	-2.5	-3.0
DOSE mg/K/day	200	750	10	700	300	200	200	9	200	200	350	100	200	125	2	200
NO, OF DEATHS	9/0	1/5	5/0	9/0	9/0	5/0	4/10	1/5	9/0	0/10	2/5	1/5	1/10	5/0	9/0	3/10
PHYSICAL																
COM- POUND SOURCE	AP	ធ	AP	ঘ	ធ	ធ	Q	ı	១	O	ы	AP	M	EC		EC
COMPOUND NAME	Benzil	Benzil monophenylhydrazone	1,4-Benzoquinone	1-Benzoyl-2-p-dimethylaminophenyl ethylene	4,8-Bis(α -Chloro- β -hydroxypropylamino) anthrarufin-2,6-disulfonic acid, ammonium salt	1,5-bis(3-Chloro-2-hydroxy propylamino) anthrarufin disulfonic acid	N-Cinnamoyl glycine	Decachloro-m-terphenyl-x, x, xx-tetrone	Decane-3, 4, 5, 6-tetrone	Diacetyl	Diacetyl caffeic acid	Dibuty1-2, 5-diketo-3-cyclohexenylthiothionophosphate	o, o'-Dihydroxybenzalacetophenone sodium bisulfite	Diisophorone	Dimethyl chloro maleate	Dimethyl-a-methoxy-2-buten-1, 4-dioate
ENTRY NO.	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349	1350

								xic				xic		xic		
REMARKS								500 mg/K toxic				128 mg/K toxic		128 mg/K toxic		
VEHICLE	2	50	-	2	7	72	2	41	2	2	2	e	27	e.	2	-
NO. OF INJECTIONS	13	9	13	13	13	13	6	7	13	11	13	11	13	11	13	13
AV. WT. CHANGE IN GRAMS treated/controls	-2.0	+0.5	-1.5 -1.0	0.0	0.0	0.5	0.0	-2.0	0.0	0.0	-1.0	+2.0 0.0	0.0	12.0	0.5	-1.5
DOSE mg/K/day	200	20	200	750	200	200	100	350	200	200	200	49	200	49	300	009
NO. OF DEATHS	1/5	2/5	5/0	1/5	5/0	5/0	2/5	5/0	5/0	5/0	5/0	1/5	5/0	2/5	2/5	5/0
PHYSICAL																
COM- POUND SOURCE	C; EC	EC	ធ	ख	ធ	υ	ы	œ	AW5	ঘ্র	ы	AP	ធ	AP	M	ब्य
COMPOUND NAME	2,7-Dinitro xanthone	$Ethyl-\beta-ethoxy-\alpha-chloro-2-propenoate$	Fumaric acid	Furfural phenoxy acetone	1-Hydrazine anthraquinone	Hydrazo maleic acid	2-o-Hydroxycinnamenyl pyridine	N-Isopropyl-a-methylacrylamide	Maleamide	1-{3', 4'-Naphthoquinonyl}-2-{4', 4'-bis dimethylamino phenyl} ethylene	l-{m-Nitro benzoyl}-2-(m-nitrophenyl) ethylene	p-Phenylene dioxime succinate ester	a-Phenyl-o-hydroxycinnamonitrile	1,4-Quinone diimine, 2-chloro-N,N'-dihydroxy-	p-Sulfamylacrylanilide	1, 4-di-5-Sulfo ethylamino-5, 8-dihydroxyanthraquinone, potassium salt
ENTRY NO.	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366

REMARKS					35 mg/K toxic	suspension 63 mg/K toxic	fresh daily	fresh daily	90 mg/K toxic in propylene glycol		1 inj/day fresh 4 mg/K toxic	<pre>1 inj/day (suspension); 10 mg/Ktoxic(2inj)</pre>	fresh daily 250 mg/K toxic	suspension	l inj/day 2 mg/K toxic	4 mg/K toxic
VEHICLE	2	2	w		1 35	1 sur	l fre	l fre	2 90 pro	2	1 1 1 1 4 1	1 1 (su (su)	1 fre 250	us 1	5 1 i	4 4 n
NO. OF INJECTIONS	11	13	7		13	13	7	7	12	13	7	7	7	13	9	13
AV. WT. CHANGE IN GRAMS treated/controls	-2.0	$\begin{array}{c} +2.0 \\ +1.5 \end{array}$	$\frac{-1.5}{-2.0}$		$\frac{-2.5}{-1.0}$	-0.5 +3.0	-2.0	-1.5	11.0	-0.5	-1.5	-1.5	-0.5	+0.5	-2.0	-1.5
DOSE mg/K/day	009	200	150		25	30	512	10	20	200	2	∞	125	200	1	20
NO. OF DEATHS	1/5	1/5	9/0		9/0	9/0	0/10	2/5	1/5	1/5	9/0	1/5	9/0	2/10	9/0	5/0
PHYSICAL																
COM- POUND SOURCE	ы	C: E	AP		×	CA	Q	Q	M	Ö	٦	M	O	CA	M	ъ
COMPOUND NAME	l p-Tolyl-4-bromotriazol anthraquinone	3,5,5-Tribromo-2,2-dihydroxy chalcone	Trichloromethyl-5,8,9,10-tetrahydro-5,8-methano-1,4-naphthoquinone-3-sulfide	MUSTARDS, NITROGEN AND SULFUR:	$N{-}(\gamma{-}Aminopropyl){-}2,2{-}dimethyl\ ethyleneimine}$	1-Benzyl-2-phenyl-3-benzoylethylen:imine (cis)	N, N'-di-(\beta-Bromoethyl)-N, N'-di(ethylene) ethane-1, 2-dimonium bromide	n-Butyl-bis(β -fluoroethyl) amine . HCl	N-2-Chloroethyl-4-aminostilbene . HCl	bis-β-Chloroethyl cholosterylamine . HCl	N, Nr-bis(β -Chloroethyl)-N, Nr-dibenzyl-1, 3-diaminopropane . 2HCl	4-Chloro-2-ethylenei mino-6, 7-dihydroi midazo- $\sqrt{1}$, 2- \overline{a} 7-8-triazine	$bis(\beta\text{Chloroethyl})\alpha\text{naphthylmethylamine}$	1-Cyclohexyl-2-phenyl-3-benzoylethyleneimine (cis)	2-Diethylamino-4, 6-bis-ethyleneimino-s-triazine	N, N-Dihexyl-β-chloroethylamine . HCl
ENTRY NO.	1367	1368	1369		1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381

									h ion)				2			
REMARKS	fresh daily 8 mg/K toxic	fresh daily suspension	l inj/day fresh daily	fresh daily l mg/K toxic	62 mg/K toxic	6 mg/K toxic	fresh daily 16 mg/K toxic	75 mg/K toxic	l inj/day fresh daily(suspension) 2 mg/K toxic	ò			125 mg/K toxic		50 mg/K toxic	
VEHICLE	1	1	1	-	e	4	-	1	-		rc.	-	44	2	-	2
NO. OF INJECTIONS	7	9	7	7	13	13	7	13	7		. 7	13	13	11	13	13
AV. WT. CHANGE IN GRAMS treated/controls	-2.0	-2.5	-1.5	$\frac{-1.0}{-2.0}$	+1.5	+1.0 +1.0	0.0	-2.0 +1.0	-1.5		-2.5	-1.5	-2.0	-1.0	-1.5	0.0
DOSE mg/K/day	4	175	200	S	32	4	00	25			200	750	63	400	25	200
NO. OF DEATHS	2/5	2/5	9/0	9/0	5/2	1/5	9/0	9/0	5/0		1/10	9/0	9/0	1/5	5/0	5/0
PHYSICAL			m.144													
COM- POUND SOURCE	٦	z	O	M	٦	٦	٢	¥	Q		AP	Q	AP	ធ	O	O
COMPOUND NAME	3, 4-Dimethoxydibenzyl- β -chlorethylamine . HCl	$Ethylamine-\beta-chloro-di(p-chlorobenzyl)\ \ .\ HCl$	Ethylamine, \(\beta\)-chloro HCl	2-Ethyleneimino-4, 6-bis dimethylamino-s-triazine	$p\text{-}Methoxydibenzyl-}\theta\text{-}chlorethylamine \ .\ HCl$	$N(p\text{-Methoxy phenylisopropyl})\text{-}N\text{-benzyl-}\beta\text{-chlorethyl-amine}$. HCl	$N-(\beta-Phenylisopropyl)-N-ethyl-\beta-chloro-ethylamine$. HCl	Piperidine, $1-(\beta-chloroethy1)-$	N, N, N', N'- \sqrt{T} etrakis (8-chlorethyl) decamethylene diamine 7. 2 HCl	NITRILES:	Acetophenone cyanohydrin	Amygdalin	β -Chloropropionitrile	3-Cyanoacetyl diphenylene oxide	p-Cyanobenzene arsonic acid	p-Cyanobenzoic acid
ENTRY	1382	1383	1384	1385	1386	1387	1388	1389	1390		1391	1392	1393	1394	1395	1396

REMARKS		l inj/day 20 mg/K toxic	300 mg/K toxic	10 mg/K toxic		60 mg/K toxic	66 mg/K toxic		l inj/day 32 mg/K toxic				130 mg/K toxic	2 inj/day 125 mg/K toxic	500 mg/K toxic	8 mg/K toxic
VEHICLE	4	ru	ιn	4	ın	4	2	8	ī	4	4	m	7	4	4	e
NO. OF INJECTIONS	7	7	7	7	9	7	13	13	7	w	9	11	13	12	~	=
AV, WT, CHANGE IN GRAMS treated/controls	$\frac{-1.5}{-1.0}$	0.5	+0.5	-2.5	+0.5	0.0	-1.5	+1.0	- <u>1.0</u> - <u>1.5</u>	-1.0	-2.0	+4.0	+1.0	-1.5 -1.5	$\frac{-2.5}{-1.0}$	+2.0
DOSE mg/K/day	750	6	200	ĸ	200	30	8	200	16	20	200	16	75	63	300	4
NO. OF DEATHS	2/5	9/0	9/0	9/0	2/5	9/0	1/5	2/10	5/0	2/5	4/15	2/5	9/0	9/0	9/0	2/5
PHYSICAL								m. 85								
COM- POUND SOURCE	AP	AP	AP	EC	EC	AA	AA	í4	AP	Ж	œ	M	ស	AW5	М	M
COMPOUND NAME	β-Cyanoethyl isopropyl ether	2-Cyano bicyclo $\overline{/2}$, 2, $\overline{1}$ -5-heptene	9,9-di(\b-Cyanoethyl) perhydrofluorene	Bis (5-Cyano-3-pentenyl) ether	tris (1-Cyano-3,5,5-frimethyl hexyl) phosphite	4,4-Dicyanocyclohexene	2,5-Dimethylbenzylmalononitrile	Fluorene nitrile	Glutaronitrile	Lactonitrile	β-Methoxyadiponitrile	o-Methoxybenzoylacetonitrile	p-Methyl cinnamonitrile	Pentaacetyl-d-glucononitrile	β -Phenoxy propionitrile	Phenyl acetonitrile
ENTRY NO.	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412

REMARKS	l inj/day 125 mg/K toxic		20 mg/K toxic	66 mg/K toxic						l inj/day	l inj/day					
VEHICLE	ιΩ	1	1	. 2	4	2		4	2	۲۵	ς.	2	2	2	ις	٣
NO. OF INJECTIONS	7	13	13	12	9	13		7	13	7	7	13	13	13	9	13
AV. WT. CHANGE IN GRAMS treated/controls	-1.0 -2.5	0.5	-1.0 -1.5	-1.0 +0.5	-1.0	-1.5 +2.0		-4.0	0.0	-2.0	0.5	0.0	0.0	0.5	-3.0	-1.5
DOSE mg/K/day	99	200	10	20	009	200		750	200	200	200	750	009	009	200	200
NO. OF DEATHS	2/10	2/10	9/0	1/5	2/5	5/2		5/2	3/10	9/0	5/0	9/0	9/0	9/0	0/10	9/0
PHYSICAL																
COM- POUND SOURCE	AP	AWS	M1	AA	M	AA		ធ	BL	CI	CI	AN	CI	ध्य	CI	CI
COMPOUND NAME	Sebaconitrile	Sodium salt of hydroxymethylene malononitrile	Succinonitrile	2-Thenylmalononitrile	β, β-Thiodipropionitrile	2, 4, 6-Trimethylbenzylmalononitrile	NITRO COMPOUNDS:	2-Acetamido-6-chloro-1-methyl-3-nitrobenzene	5-Amino-4-carbethoxy-1-p-nitrophenyl-v-triazole	p-Anisidine, $N + \{a, a, a-trifluoro-2-nitro-p-tolyl\}$ -	o-Anisidine-N-(a, a, a-trifluoro-2-nitro-p-tolyl)-	Benzoyl-p-nitro aniline	Biphenyl, 4-bromo-4'-nitro-	5-Bromo-1-nitronaphthalene	Carbazole, 9-ethyl-3-nitro-	Carbazole, 3-nitro-
ENTRY NO.	1413	1414	1415	1416	1417	1418		1419	1420	1421	1422	1423	1424	1425	1426	1427

																crui,
REMARKS	also negative in gum acacia	e e					500 mg/K toxic	160 mg/K toxic		300 mg/K toxic			10 mg/K toxic			
VEHICLE	7	S	2	2	2	2	es.	2	9	2	2	2	9	2	1	Ν,
NO, OF INJECTIONS	10	-	13	13	12	12	13	13	13	13	13	13	13	13	13	13
AV. WT. CHANGE IN GRAMS treated/controls	-5.5	-1.0	+0.5	+1.0	5.00	-2.0	-1.5	-2.5	-1.5	0.0	+1.0	-1.5	$\frac{-2.0}{-2.0}$	+1.5	-1.5	0.0
DOSE mg/K/day	200	200	750	750	009	009	300	125	16	200	200	200	ĸ	750	200	750
NO. OF DEATHS	2/5	01/72	9/0	9/0	2/5	2/5	5/0	1/5	2/10	1/5	5/0	2/5	5/0	5/0	5/0	1/5
PHYSICAL						m. 273										
COM- POUND SOURCE	AA	Q	C; EC	50	n	M	CI	CI	CI	CI	C: EC	BL	EM	BE	E	υ
COMPOUND NAME	2-Chloro-6-nitrobenzothiazole	4-Chloro-4'-nitro diphenyl ether	bis (4-Chloro-2-nitrophenyl) disulfide	2-Chloro-4-nitrotoluene	1-Cyano-5-nitro naphthalene	2,4-Diamino-6-p-nitrocinnamoyl-s-triazine	Dibenzofuran, 3-nitro-	1,3-Dichloro-4,6-dinitrobenzene	1,3-Dichloro-4-nitrobenzene	$_{\alpha}^{1},_{\alpha}^{3}$ -Dichloro-5-nitrohemimellitene	4,4'-Dimethoxy-3,3'-dinitrobenzophenone	3, 4-Dimethyl-6-nitro aniline	O, O-Dimethyl-O-p-nitrophenyl thiophosphate	2,4-Dinitro-4'-chlorodiphenyl ether	2,4-Dinitro-6-sulfo-phenol, potassium salt	2,4-Dinitrophenyl acetic acid
ENTRY NO.	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439	1440	1441	1442	1443

Stock

REMARKS	,				250 mg/K toxic			also negative in gum acacia	also negative in saline						also negative in gum acacia	500 mg/K toxic
VEHICLE	1	2	2	2	6	ю	ю	2	ю	1	2	2		2	2	7
NO. OF	13	13	13	13	=	13	13	13	13	∞	13	13	13	13	12	6
AV. WT. CHANGE IN GRAMS treated/controls	0.0	0.0	+2.0 0.0	-1.0	+3.5	+3.0	+0.5	0.0	-1.0 -1.0	-1.5	0.5	-0.5	-1.5	+1.0	-2.0 -1.0	-2.0
DOSE mg/K/day	200	009	200	750	150	200	200	200	90	900	009	200	750	750	200	200
NO. OF DEATHS	9/0	9/0	9/0	1/5	1/5	9/0	4/10	9/0	4/15	1/5	9/0	1/5	9/0	2/5	1/5	5/2
PHYSICAL					m. 208	m. 208	m. 217									
COM- POUND SOURCE	Ö	ធ	DZ	CI	Į4	দ	ŭ,	CI	Д	O	ख	O	AP	90	50:00	AN
COMPOUND NAME	N, N'-bis (2, 4-Dinitrophenyl) cystine, L-form	4,4'-Dinitrostilbene	1,1-Diphenyl-2-nitropropane	N-Ethyl-p-nitroaniline	Fluorene, 2,5-dinitro-	Fluorene, 8-nitro-2-benzoyl-	Fluorenone, 2-nitro-	Formanilide, N-methyl-p-nitro-	Furadroxyl . 5-nitro-2-furaldehyde-2 (2'-hydroxy ethyl semicarbazone)	$4-\beta$ -Hydroxyethoxy-3-nitro-benzenearsonic acid	5-lodo-a-nitronaphthalene	bis (4-Methoxy-3-nitrophenyl) methane	2-Methyl-2-nitro propylene glycol	p-Nitroacetophenone	m-Nitroacetophenone	Nitro amino diphenyl sulfide
ENTRY NO.	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458	1459

ENTRY NO.	COMPOUND	COM- POUND SOURCE	PHYSICAL	NO. OF DEATHS	DOSE mg/K/day	AV. WT. CHANGE IN GRAMS treated/controls	NO, OF INJECTIONS	VEHICLE	REMARKS
1460	2-p-Nitroanilino ethanol	CI		9/0	009	-1.0	13	2	
1461	1-Nitro-2-p-anisyl ethene	DQ		9/0	16	$\frac{-2.0}{-2.0}$	7	ĸ	32 mg/K toxic
1462	m-Nitrobenzaldehyde thiosemicarbazone	BE		2/5	250	+1.0	13	2	
1463	4-Nitrobenzenearsonic acid, sodium salt	O		9/0	32	-2.0	11	1	50 mg/K toxic
1464	p-Nitrobenzoic acid	AN		2/5	125	+2.5	13	ю	250 mg/K toxic
1465	8-Nitro-5, 6-benzoquinaldine	AN		9/0	200	-1.0	13	2	
1466	2-(4-Nitrobenzoylamino) diphenyl	CI		9/0	009	+0.5	13	2	
1467	N-(4-Nitrobenzoyl)-L-(+)-glutamic acid	Ü		5/0	750	0.0	13	1	
1468	N-(3-Nitrobenzoyl)-L-(+)-glutamic acid	Ö		9/0	250	0.0	13	4	500 mg/K toxic
1469	m-Nitro-chlorobenzene	AN		2/5	200	-1.0	12	2	
1470	2-Nitro-2-chloro-1-butyl phosphate	AR		9/0	200	$\frac{-1.0}{+1.5}$	7	4	l inj/day
1471	2-Nitro-2-chloropropanol	AR		9/0	75	-1.5	7	4	l inj/day 150 mg/K toxic
1472	5-Nitro-6-chloroquinaldine	AN		9/0	200	-1.5	12	2	750 mg/K toxic
1473	3-Nitro-6,7-dimethoxy-9 (2-hydroxy-3-diethylamino propyl-H amino) acridine . 2HCl	H.		9/0	4	-1.5	13	e	8 mg/K toxic in gum acacia; 6 mg/K toxic in
1474	2-Nitrofluorene	<u>St</u>	m. 157	4/10	200	41.0	13	æ	CMC

REMARKS	122 mg/K toxic	500 mg/K toxic	l inj/day 12 mg/K toxic	250 mg/K toxic		250 mg/K toxic		l inj/day 10 mg/K toxic		100 mg/K toxic		200 mg/K toxic	750 mg/K toxic in CMC			
VEHICLE	3	8	S.	3	2	3	2	ro.	8	2	2	2	6	2	2	2
NO. OF INJECTIONS	13	13	2	13	13	13	13	۲	13	13	13	13	13	13	12	13
AV. WT. CHANGE IN GRAMS treated/controls	+5.0	12.0	-1.0 -1.5	+5.0	40.5	+2.5	1.5	0.0	+4.5	0.0	0.0	-1.5	0.5	-1.0	0.0	-0.5
DOSE mg/K/day	63	300	00	125	200	125	200	∞	32	09	200	100	200	200	200	200
NO. OF DEATHS	1/5	1/5	9/0	5/0	2/10	1/5	1/5	1/5	1/5	5/0	1/5	5/0	9/0	0/10	1/5	1/5
PHYSICAL																
COM- POUND SOURCE	O	Q	AR	AN	υ	Ö	Ö	M	O	D2	O	AN	O	ធ	D2	υ
COMPOUND NAME	3-Nitro-4-hydroxybenzenearsonic acid	5-Nitroindazole	1-Nitro-3-methyl-1-butene	a-Nitronaphthalene	N-(p-Nitrophenacyl) acetamide	N-(p-Nitrophenacyl) propionamide	2, 2'-bis (p-Nitrophenoxy) isopropylamine	p-Nitrophenylacetonitrile	β-(p-NitrOphenyl) alanine, DL form	1,1-bis (p-Nitrophenyl) 2-aminopropane	bis (p-Nitrophenyl) disulfide	m-Nitrophenyl hydrazine HCl	β, β^s -bis (p-Nitrophenyl) isobutyric acid	1-p-Nitrophenyl-3-methyl-5-benzoxypyrazole	1,1-bis (p-Nitrophenyl) 2-nitropropane	$1-(p-Nitrophenyl)-5-oxo-\Delta^2-1$, 2, $4-triazoline-3-carboxylic$ acid, ethyl ester
ENTRY NO.	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490

ENTRY NO.	COMPOUND NAME	COM- POUND SOURCE	PHYSICAL	NO. OF DEATHS	DOSE mg/K/day	AV. WT. CHANGE IN GRAMS treated/controls	NO. OF INJECTIONS	VEHICLE	REMARKS
1491	2-Nitro-1-phenyl-1-propene	AR		9/0	12	-2.0	7	4	1 inj/day 24 mg/K toxic
1492	o-Nitrophenyl pyruvic acid	O		9/0	9	-2.0 -1.0	-	4	100 mg/K toxic
1493	N-(o-Nitrophenyl) succinimide	AR		2/10	200	-2.0	13	2	
1494	N-(m-Nitrophenyl) succinimide	AR		2/5	009	-3.0	10	2	
1495	N-(p-Nitrophenyl) succinimide	AR		1/5	009	-1.0	13	2	
1496	m-Nitropropiophenone	90		1/5	750	+2.0	13	2	
1497	2-(p-Nitrostyryl) pyridine methiodide	CY		1/5	25	-1.5	12	2	
1498	4-(p-Nitrostyryl) quinoline	M		1/5	700	+1.0	13	2	
1499	4-Nitro-p-terphenyl	B		1/5	009	$\frac{-2.0}{+1.5}$	13	2	
1500	5-Nitro-2-thenylidene malononitrile	ı		9/0	25	-1.5	13	2	35 mg/K toxic
1501	5-Nitrotoluene-3-sulfonic acid	CI		9/0	750	-1.0 -1.5	13	1	
1502	p-Phenetidine, $N(a,a,a-trifluoro-2-nitro-p-tolyl)$ -	CI		5/0	200	-5.0	7	ıs	l inj/day
1503	o-Phenetidine, N(a, a, a-trifluoro-2-nitro-p-tolyl)-	CI		9/0	200	-3.5	7	2	l inj/day
1504	Phenol, o, o'-methylene bis (p-nitro)-	CI		9/0	200	+0.5	13	2	
1505	1-Phenoxy-3-chloro-6-nitrobenzene	ত্র		9/0	200	0.0	13	2	
1506	Piperonal, 6-nitro-	CI		9/0	200	+0.5	13	2	also negative in gum acacia

									1.							120
				2 mg/K toxic					200 mg/K toxic		300 mg/K toxic in CMC		200 mg/K toxic in CMC			
7	2	2	2	4		-	1		1		ю		en	1	8	8
13	13	13	13	7		13	13	13	12		13	13	==	12	13	13
-0.5	+1.0 +2.5	0.0	+1.0 +2.0	-3.0 -1.5		-1.0	0.0	-2.0 +1.0	+0.5		-5.0	+3.0	-1.5	0.5	+3.5	+2.0
200	200	200	750	1		009	009	200	125		300	200	100	200	009	200
9/0	9/0	9/0	1/5	9/0		5/0	5/0	9/0	1/5		1/5	1/10	1/5	0/10	1/5	2/10
CI	CI	CI	υ	DB		BY	BY	BY	AW5		W	BA	M	BA	ВА	BE
2, 3-Pyrrolidinedione, $1-(o-hydroxyphenyl)-5-(m-nitrophenyl)$	Sulfanilic acid, 2-anilino-N-4-(2-hydroxyethyl)-5-nitro-, potassium salt	Sulfanilic acid, 2-chloro-N-4-(2-hydroxyethyl)-5-nitro-, potassium salt	N, N'-(2, 2, 2-Trichloroethylidene) bis-(p-nitro aniline)	Triethyl-P'-p-nitrophenyl-P'-thionopyrophosphate	PENICILLIN DERIVATIVES:	S-Benzyl penicillamine (L)	Benzylpenillic acid	N-Methyl L - penicillamine disulfide	DL-Penicillamine	PTERIDINES:	2-Amino-4, 6-dihydroxy-7, 8-dihydropteridine	2-Amino-4-hydroxy-6,7-diphenyl pteridine	2-Amino-4-hydroxypteridine-6-carboxylic acid	2-Amino-4-hydroxy-6, 7-bis (p-sulfinomethylamino-phenyl) pteridine, disodium salt	2, 4-Diamino-6, 7-bis (4-amino phenyl) pteridine	2, 4-Diamino-6, 7-dihydroxypteridine
1507	1508	1509	1510	1511		512	513	514	515		919	517	518	519	520	1521
	2,3-Pyrrolidinedione, $1-(o-hydroxyphenyl)-5-(m-$ CI CI $0/5$ 500 -0.5 13 nitrophenyl)-	2,3-Pyrrolidinedione, 1-(o-hydroxyphenyl)-5-(m- CI 0/5 500 -0.5 -0.5 -0.5 or 13 or 12 or 13 or 14 or 14 or 14 or 14 or 14 or 14 or 15 or 1	2,3-Pyrrolidinedione, 1-(o-hydroxyphenyl)-5-(m- CI 0/5 500 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	2,3-Pyrrolidinedione, 1-(o-hydroxyphenyl)-5-{m-} CI	2,3-Pyrrolidinedione, 1{o-hydroxyphenyl}-5{m-} CI	2,3-Pyrrolidinedione, 1-(0-hydroxyphenyl)-5-(m- CI 0/5 500 -0.5 13 2 sulfanilic acid, 2-anilino-N-4-(2-hydroxyethyl)-5- CI 0/5 500 +1.0 13 2 sulfanilic acid, 2-anilino-N-4-(2-hydroxyethyl)-5- CI 0/5 500 0.0 0.0 13 2 nitro-, potassium salt sulfanilic acid, 2-chloro-N-4-(2-hydroxyethyl)-5- CI 0/5 500 0.0 0.0 13 2 nitro-, potassium salt N,N'-(2,2,2-Trichloroethylidene) bis-(p-nitro aniline) C 1/5 750 1/5 750 1/2.0 13 2 Triethyl-P'-p-nitrophenyl-P'-thionopyrophosphate DB 0/5 1 -3.0 7 4 2 mg/K toxic PENICILLIN DERIVATIVES:	2,3-Pyrrolidinedione, 1,40-hydroxyphenyl)-5,4m- 1,2,3-Pyrrolidinedione, 1,40-hydroxyphenyl)-5,4m- 1,2,3-Benzyl penicillamine (L) 8ulfanilic acid, 2-anilino-N-4-(2-hydroxyethyl)-5- 1,2,3- 1,3-	2,3-Pyrrolidinedione, 14(0-hydroxyphenyl)-54m- Sulfanilic acid, 2-anilino-N-44(2-hydroxypethyl)-5- Sulfanilic acid, 2-anilino-N-44(2-hydroxyethyl)-5- Sulfanilic acid, 2-anilino-N-44(2-hydroxyethyl)-5- CI 0/5 500 41.0 42.5 13 2 13 2 13 2 13 2 14 2 15 16 17 17 17 17 17 18 18 2 18 3 3 3 3 3 3 4 3 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4	2,3-Pyrrolidinedione, 1-(0-hydroxyphenyl)-5-(m- cl	2,3-Pyrrolidinedione, 1-(0-hydroxyphenyl)-5-(m-irophenyl)-5-(m	2,3-Pyrrolidiaedione, 1-(0-hydroxyphenyl)-5-(m-	2,3-Pytrolidinedinoe, 1-(a-bydroxyphenyl)-5-(mutrophenyl)-5-(mutrophenyl)-5-(mutrophenyl)-5-(mutrophenyl)-5-(mutrophenyl)-5-(mutrophenyl)-5-(mutro-potassium salt and 2-chlorovachyl)-5-(mutro-potassium salt and 2-chlorov	2,3—Pyrrolidinedione, 1,(o-hydroxyphenyl)-5-(m-filteredione, 1,(o-hydroxyphenyl)-5-(m-filteredione, 1,(o-hydroxyphyl)-5-(m-filteredione, 1,(o-hydroxyphyl)-5-(m-filteredione, 1,(o-hydroxyphyl)-5-(m-filteredione, 1,(o-hydroxyphyl)-5-(m-filteredione, 1, o-hydroxyphyl)-5-(m-filteredione, 1, o-hydroxyphyl)-5-(m-filteredione, 1, o-hydroxyphyl)-5-(m-filteredione) bis-(p-nitro audito acid, 2-chlorox-N-4,(2-hydroxyphyl)-5-(m-filteredione) bis-(p-nitro audito acid, 2-chlorox-N-4,(2-hydroxyphyl)-5-(m-filteredione) bis-(p-nitro audito acid, 2-chlorox-N-4,(2-hydroxyphyl)-5-(m-filteredione) bis-(p-nitro audito acid, 2-chlorox-N-4,(2-hydroxyphyl)-5-(m-filteredione) bis-(p-nitro audito acid, 2-chlorox-hydroxy-6,7,8-dhydroxperidine) 0/5 500 4.1.0 13 1 2 mg/K toxic PENICILLIN DERIVATIVES: PENICILLIN DERIVATIVES: 8 600 60.5 60.0 6.0.5 13 1 1 2 mg/K toxic PENICILLIN DERIVATIVES: 8 60 6.0.5 60 6.0.5 1	2.3-Pyrrolidinedione, 1-(0-bythoxphenyl)-5-(m-10)	2, 3 - Pytroidinations. 1 (4 c-hydroxyphenyl) - 5 (mitrophenyl). C1 0/5 500 4.10/5 13 2 Sulfamilia exid. 2-miltion-Net (2-hydroxyethyl) - 5 (mitrophenyl). C1 0/5 500 4.10/5 13 2 Sulfamilia exid. 2-miltion-Net (2-hydroxyethyl) - 5 (mitrophenyl). C1 0/5 500 4.10/5 13 2 N.N. C. 2. 2-rytelolorechylideme blas (p-uitro anilme) C 1/5 750 4.10/5 13 2 Triethyl-Pr-p-nitrophenyl-p-nitrophenyl-pridition blas (p-uitro anilme) C 1/5 750 4.10/5 13 2 PENYLLILIN DERIVATIVES: A Description blas (p-uitrophenyl) printing exid BY 0/5 600 0.05/5 11/5 13 1 Benzylpentilic acid BY 0/5 600 0.10/5 11/5 1 2 1 Di-Pentiliamine L pentiliamine (L) BY 0/5 600 0.10/5 1 1 1 2 1 Di-Pentiliamine S 60 0/5 600 0.10/5	2.3-Pyrroidinacidane, 1-(0-bydroxyplety)-5-(m. Cl 0/5 500 -10.5) 13 2 Salfanilia acid, 2-anilino-N-4-(2-bydroxyplety)-5-(m. Cl 0/5 500 -10.5) 13 2 Salfanilia acid, 2-anilino-N-4-(2-bydroxyplty)-5- Cl 0/5 500 -10.5 13 2 Salfanilia acid, 2-anilino-N-4-(2-bydroxyplty)-5- Cl 0/5 500 -10.5 13 2 Salfanilia acid, 2-dolore-N-4-(2-bydroxyplty)-5- Cl 0/5 500 -10.5 13 2 Tretchyl-10-p-nitrophenyl-10-dihonopyrophosphate DB 0/5 1/5 750 -11.5 13 2 Tretchyl-10-p-nitrophenyl-10-dihonopyrophosphate DB 0/5 1/2 500 -1.0 13 1 2 PENICILLIN DERIVATIVES. S-Bennyl penicilinanine (L) BY 0/5 600 -1.0 13 1 1 Branylpenilia acid Branylpen

																- or un
REMARKS	also negative in gum acacia		greater toxicity in gum acacia					500 mg/K toxic in gum acacia	125 mg/K toxic	40 mg/K toxic				35 mg/K toxic	500 mg/K toxic	500 mg/K toxic
VEHICLE	2	m	2	6	1	2	2	2	2	2		2	6	2	-	6
NO. OF INJECTIONS	10	13	13	13	13	12	12	13	12	13		13	13	13	13	11
AV, WT, CHANGE IN GRAMS treated/controls	-1.5	+4.5	-4.0	-3.0	-1.0	-1.5 +1.0	-2.0	-0.5	0.0	-1.5		-2.0	+1.0	-0.5	0.0	+2.0
DOSE mg/K/day	90	512	250	200	1000	75	200	300	80	50		200	350	20	250	250
NO, OF DEATHS	2/5	1/10	9/0	3/10	5/0	2/5	1/5	2/10	2/5	5/0		1/5	5/10	2/5	9/0	2/5
PHYSICAL												m. 272				
COM- POUND SOURCE	BA	υ	M	BA	BA	BE	BA	ВА	ВА	Q		AQ	BC	AW6		BE
COMPOUND NAME	2, 4-Diamino-6, 7-dimethyl pteridine	2, 4-Diamino-6, 7-diphenyl pteridine	2, 4-Diamino-6-methylpteridine	2, 4-Diaminophenanthro- $\sqrt{9}$, 10 -e $$ pteridine	2, 4-Diamino-6, 7-bis (p-sulfinomethylaminophenyl) pteridine, sodium salt	Dihydro-2, 4-diamino-7-hydroxy-pteridine-6-carboxylic acid . H O	2-Mercapto-4-amino-6, 7-dimethylpteridine	2-Methylamino-4-amino-6,7-diphenylpteridine	2-Methylamino-4-hydroxy-6, 7-dimethyl pteridine	10-Phenyl-isoalloxazine	PURINES:	$7-\sqrt{a}$ -Acetic acid theophylline	Adenine	$\alpha \not (A denine - 9) - \alpha' - hydroxymethyldiglycollicdialdehyde$	Adenosine-5-phosphoric acid	2-Amino-6-chloro-8-(2',4'-dichlorophenyl) purine
ENTRY NO.	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531		1532	1533	1534	1535	1536

				11084		meer e		nerup)	Dan						121
		1 inj/day 150 mg/K toxic		100 mg/K toxic in CMC	200 mg/K toxic			400 mg/K toxic	125 mg/K toxic		also negative in gum acacia	heated	500 mg/K toxic	150 mg/K toxic	63 mg/K toxic
2	2	4	es	es	e	ю	2	2	ю	m	2	1	1	ю	e
13	13	7	12	13	13	13	13	13	13	13	13	13	12	10	13
-3.0	11.5	-2.5	-2.0	-2.5	+6.0	+1.5	40.5	-0.5	+3.5	+1.5	0.0	-1.0 -1.0	-1.5	12.5	+3.5
200	200	75	125	20	128	200	750	200	63	200	200	200	250	125	98
9/0	9/0	1/10	5/2	9/0	9/0	3/10	9/0	1/5	1/5	3/10	5/0	0/10	1/5	2/10	2/2
												m.198			
BE	BE	ı	BE	BE	C	BE	BE	BE	38	ЭЕ	AW6	AQ	AQ	BE	BE
2-Amino-6, 8-Dihydroxypurine	2-Benzylthio- 6 -aminopurine . H_2O	1,2-Butenyl theobromine	6-Butylaminopurine	2-Chloro-6-amino-8-hydroxypurine	8-Chloro caffeine	2-Chloro-6-hydroxy-7-methylpurine	2-Chloro-6-mercapto-7-methylpurine	6-Decyl aminopurine	2, 6-Diamino-8-p-methylcarboxy phenyl purine $$. HCl $$. H $_2$ O	2,6-Diamino-8-p-nitrophenylpurine	2, 6-Diamino-9- β -d – ribofuranosylpurine	7-/a-(Dibenzylaminoethyl acetate)/ theophylline . HCl	7-Dibenzylaminoethyl theophylline .2 HCl	2, 6-Dichloro-8-hydroxypurine	2, 6-Dichloro-7-methylpurine
1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552
	2-Amino-6,8-Dihydroxypurine BE 0/5 500 -3.0 13 2 0 0.0	2-Amino-6, 8-Dihydroxypurine 2-Amino-6, 8-Dihydroxypurine 3	2-Amino-6, 8-Dihydroxypurine 2-Benzylthio-6-aminopurine . H ₂ O 1, 2-Butenyl theobromine L 1/10 75 500 -3.0 0.0 13 2 11/10 1/10 75 -2.5 1/10	2-Amino-6, 8-Dihydroxypurine 2-Benzylthio-6-aminopurine 3-3.0 6-Butylaminopurine 9/5 500 1, 2-Butylaminopurine 1, 2-Butylaminopurine 9E 9/5 500 1/10 75 1/10 75 1/20 1/10 75 1/20 1/20 1/20 3 1/20	2-Amino-6, 8-Dihydroxypurine 2-Benzylthio-6-aminopurline .H ₂ O BE 0/5 6-Butylaminopurline 12-1-5 13-3 100 mg/k toxic in CMC	2-Amino-6, 8-Dihydroxypurine BE 0/5 500 -3.0 13 2 2-Benzylthio-6-aminopurine H ₂ O BE 0/5 500 +1.5 0.0 13 2 1, 2-Butenyl theobromine L 1/10 75 -2.5 7 4 1 in/Jday 6-Butylaminopurine BE 2/5 125 -2.0 12 3 2-Chloro-6-amino-8-hydroxypurine BE 0/5 50 -2.5 13 3 100 mg/K toxic 8-Chloro caffeine C 0/5 128 +6.0 13 3 200 mg/K toxic	2-Amino-6, 8-Dihydroxypurine BE 0/5 500 -3.0 13 2 2-Benzylthio-6-aminopurine H ₂ 0/5 500 +1.5 13 2 1, 2-Butenyl theobromine L 1/10 75 -2.5 7 4 1 inJ/day 6-Butylaminopurine BE 2/5 125 -2.0 7 4 1 inJ/day 2-Chloro-6-amino-8-hydroxypurine BE 0/5 50 -2.5 13 3 100 mg/k toxic 8-Chloro-dehydroxy-7-methylpurine C 0/5 128 +6.0 13 3 200 mg/k toxic 2-Chloro-6-hydroxy-7-methylpurine BE 3/10 500 +1.5 13 3 200 mg/k toxic	2-Amino-6, 8-Dihydroxypurine BE 0/5 500 -3.0 13 2 2-Benzytkilo-6-aminopurine BE 0/5 500 +1.5 13 2 1,2-Butenyl theobromline L 1,10 75 -2.5 7 4 1 inj/day 6-Butylaminopurine BE 2/5 125 -2.0 7 4 1 inj/day 2-Chloro-6-amino-8-hydroxypurine BE 0/5 12 -2.0 13 3 100 mg/K toxic 8-Chloro-6-hydroxy-7-methylpurine BE 3/10 46.0 13 3 100 mg/K toxic 2-Chloro-6-mercapto-7-methylpurine BE 9/5 750 4.5 13 3 200 mg/K toxic 2-Chloro-6-mercapto-7-methylpurine BE 9/5 750 4.5 3 3 200 mg/K toxic	2-Benylthio-6-aminopurine . H ₂ O BE 0/5 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6	2-Banythtio-é-aminopurine . H ₂ O BE 0/5 0/5 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6	2-Bernythtio-6-antinopartine . H ₂ O BE 0/5 500 41.5 13 2 2 11.1 1/10 12-Buthantinopartine . H ₂ O BE 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/1	2-Betraytikio-6-aminopurine . H ₂ O BE 0/5 500 51.5 13 2 1,2-Buteraytikio-6-aminopurine . H ₂ O BE 1,2-Buteraytikio-6-aminopurine . H ₂ O BE 1,2-Buteraytikio-6-aminopurine . H ₂ O BE 2,0-Buteraytikio-6-aminopurine . H ₂ O BE 2,0-Buteraytik	2-Benythtio-6, a-Dihydroxypurthe BE	2-Benythtino-6, 8-Dihydroxypurine BE 1/1 1/10 1/2 1	2-Amino-6, 6-Dihydroxypurine BE 0/5 500 41.5 13 2 2-Bereylythio-6-aminopurine L 1/10 75 -2.5 7 4 11n/day 6-Burylaminopurine BE 2/5 125 -2.5 12 5 15/0 2-Chloro-6-amino-8-hydroxypurine BE 2/5 125 -2.5 13 3 10 mg/K toxic 8-Chloro-6-amino-8-hydroxypurine BE 0/5 128 -6.0 13 3 10 mg/K toxic 9-Chloro-6-bydroxy-7-methylpurine BE 0/5 128 -6.0 13 3 10 mg/K toxic 4-Decyl aminopurine BE 1/5 20 -0.5 13 2 400 mg/K toxic 2-Chlorox-6-hydroxy-7-methylpurine BE 1/5 20 -0.5 13 3 12 mg/K toxic 4-Chlorox-6-hydroxy-7-methylpurine BE 1/5 20 -0.5 13 3 12 mg/K toxic 2-C-Dlamino-8-p-uitrophenylpurine BE 3/10 50 </td

ENTRY NO.	COMPOUND NAME	COM- POUND SOURCE	PHYSICAL	NO. OF DEATHS	DOSE mg/K/day	AV. WT. CHANGE IN GRAMS treated/controls	NO. OF INJECTIONS	VEHICLE	REMARKS
1553	$7-\sqrt{a}$ -(Diethyl acetamide) theophylline	AQ	m.186	9/0	009	-2.5	13	-	
1554	$7-\sqrt{a}-($ Diethylaminoethyl acetate $)/$ theophylline hydrochloride	AQ	b. 182	9/0	009	0.0	13	-	
1555	$7-\sqrt{\alpha}-\sqrt{(Diethyl\ aminopropyl\ acetate)^{-1}}$ theophylline hydrochloride	AQ	m. 198	2/2	200	0.0	12	1	
1556	2, 6-Dimercaptopurine	BE		0/2	750	0.0	6	2	
1557	6-Dimethyl aminopurine	BE		1/15	20	-2.0 -1.5	13	-	100 mg/K toxic
1558	Dithiohydroxy purine	BE		9/0	750	-1.5	13	2	
1559	$7-\sqrt{a}-(p-Ethoxy \ acetanilide]/$ the ophylline	AQ		2/10	200	-1.0	6	2	
1560	1-Ethyltheobromine	ı		3/10	100	-2.0	7	4	l inj/day 300 mg/K toxic
1561	Mercurophylline	DJ		0/2	175	-2.0	13	-	300 mg/K toxic
1562	8-Methyl xanthine	BE		9/0	150	0.0	13	ю	250 mg/K toxic
1563	$7-\sqrt{a}-3-0$ xapentamethylene acetamide $\overline{}$ theophylline	AQ	m. 188	9/0	009	-2.5	. 13	1	
1564	7-/a-Pentamethylene acetamide/ theophylline	AQ	m. 183	9/0	200	0.0	12	1	
1565	$7-\sqrt{\beta}$ -Propionic aci $d/$ theophylline	AQ	m. 105	9/0	200	-0.5	13	2	
1566	2, 6, 8-Triaminopurine	BE		1/5	99	$\frac{+1.0}{-2.0}$	13	٣	125 mg/K toxic
1567	Xanthine	ВС		1/10	200	+2.5	7	2	

										1.						
REMARKS			75 mg/K toxic				16 mg/K toxic		200 mg/K toxic		also negative in gum acacia			500 mg/K toxic		10 mg/K toxic
VEHICLE		2	1	2	7	8	1	1	es	1	2	m	60	en .	. 2	9
NO. OF INJECTIONS		13	13	13	13	13	= ,	10	12	13	13	13	13	13	13	13
AV. WT. CHANGE IN GRAMS treated/controls		41.0	+0.5	+1.0	0.0	0.0	+1.0	-2.0	+1.0	0.0	-1.0	+4.5	+3.5	+6.5	0.0	+1.0
DOSE mg/K/day		750	63	750	200	35	∞	150	125	750	200	009	750	250	750	00
NO. OF DEATHS		9/0	2/5	1/5	1/10	3/10	0/10	5/2	1/5	9/0	1/5	5/0	1/5	1/5	9/0	2/5
PHYSICAL													m. 211			b. 205 5 mm.
COM- POUND SOURCE		BE	O	BE	BE	BE	Ö	BE	AA	M	00	AM	Ö	AM	BE	AE
COMPOUND NAME	PYRIMIDINES:	2-Amino-4-anilino-5-bromo-6-methyl pyrimidine	2-Amino-4-anilino pyrimidine . HCl	2-Amino-4-p-bromoanilino-5-bromo-6-methyl pyrimidine	4-Amino-5-p-chlorophenylpyrimidine	2-Amino-4-m-cyanoanilino-6-methyl pyrimidine	2-Amino-4-(4'-dichloroarsenosoanilino)-pyrimidine. HCl	2-Amino-4-o-mercaptoanilino-6-methyl pyrimidine	3-Amino-2-mercapto-4, 6, 6-trimethylpyrimidine	2-Amino-4-methylpyrimidine	Arabinopyranosylcytosine	Barbituric acid	2-Benzalimino pyrimidine	2-Benzyl-4, 6-dimethylpyrimidine	2-p-Bromoanilino-4, 6-dimethyl-5-bromopyrimidine	1-Butyl-2-hendecyl-1,4,5,6-tetrahydro pyrimidine
ENTRY NO.		1568	1569	1570	1571	1572	1573	1574	1575	1576	1577	1578	1579	1580	1581	1582

Sto

																ix ce ue.
REMARKS							500 mg/K toxic		4			500 mg/K toxic	500 mg/K toxic	700 mg/K toxic in CMC	300 mg/K toxic	2 inj/day 250 mg/K toxic
УЕНІСІЕ	10,	-	2	7	2	2	2	2	2	1	2	2	2	2	-	4
NO, OF INJECTIONS	13	13	11	13	12	13	13	13	13	13	10	10	11 6	13	13	13
AV. WT. CHANGE IN GRAMS treated/controls	0.0	-1.5	-0.5	0.5	0.0	-1.0 -1.0	0.0	-1.0	0.5	-1.0	+1.0	-3.0	-1.5	+0.5	-2.5	0.0
DOSE mg/K/day	200	200	140	700	350	300	375	100	200	200	200	400	400	200	150	150
NO. OF DEATHS	9/0	1/10	2/5	9/0	1/5	1/5	5/0	5/0	5/0	6/0	1/5	2/5	9/0	2/10	5/0	1/5
PHYSICAL																
COM- POUND SOURCE			BE	BE	BE	BE	BE	BE	BE	BE	BE	BE	BE	BE	BE	SS
COMPOUND NAME	Cytidine	Desoxyribonucleic acid	2, 4-Diamino-5-p-chlorobenzyl-6-amyl pyrimidine hydrochloride	2, 4-Diamino-5-p-chlorophenyl-6-n-amyl pyrimidine	2, 4-Diamino-5-p-chlorophenoxy-6-ethyl pyrimidine	2,4-Diamino-5-(2',4'-dichlorobenzyl)-6-methyl pyrimidine BE	2, 4-Diamino-5-(3', 4'-dichlorobenzyl)-6-methyl pyrimidine	2, 4-Diamino-5-(3', 4'-dichlorophenyl)-6-methoxymethyl pyrimidine	2, 4-Diamino-5-(3', 4'-dichlorophenyl)-6-phenyl pyrimidine	5,7-Diamino-1,2-dihydrofurano(2,3-d) pyrimidine	2,4-Diamino-5-(3',4'-dimethoxy benzyl) pyrimidine	2,4-Diamino-5-8-hydroxyethyl-6-hydroxy pyrimidine	2,4-Diamino-5-lauryloxypyrimidine . HCl	2,4-Diamino-5-p-nitrophenoxy-6-methyl pyrimidine	2,4-Diamino-6-phenyl pyrimidine	1, 3-Dibutyl-2, 6-diketo-4-amino pyrimidine
ENTRY NO.	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594	1595	1596	1597	1598

Slock et at.					,				P) Da						10.
REMARKS			fresh daily (suspension) 400 mg/K toxic	l inj/day 15 mg/K toxic 2 inj/day				400 mg/K toxic		500 mg/K toxic	2 inj/day 350 mg/K toxic	50 mg/K toxic			500 mg/K toxic
VEHICLE	2	2	-	'n	2	2	2	2	1	es	4	4	1	,	2
NO, OF	13	13	~	~	12	10	12	13	13	13	13	11	13	13	13
AV. WT. CHANGE IN GRAMS treated/controls	0.0	0.0	-1.5	-1.5	-1.0 +1.0	-1.0	-1.0	+1.0	-1.5	+7.5	-3.0 -1.5	-2.0	0.0	0.0	11.0
DOSE mg/K/day	750	200	250	ĸ	750	140	009	200	200	250	250	32	750	009	250
NO. OF DEATHS	1/5	1/10	5/0	5/0	2/5	9/0	9/0	9/0	1/10	1/5	5/0	1/5	5/0	9/0	9/0
PHYSICAL															
COM- POUND SOURCE	ធ	BE	AW7	AW7	ВЕ	ВЕ	BE	BE	AA	AM	AW7	AW7	00	BE	E
COMPOUND NAME	2, 6-Dichloro-4-N-methylanilinopyrimidine	5-(3', 4'-Dichlorophenyl) thiouracil	2,4-Dichloro pyrimidine	2,4-Di (diethylamino) pyrimidine	2,4-Dimethoxy-6-chloropyrimidine	2,4-Dimethyl-6-anilinopyrimidine	2,4-Dimethyl-6-p-bromoanilino pyrimidine	2,4-Dimethyl-5-bromo-6-chloropyrimidine	4,5-Dimethylthiazolino $\sqrt{2}$,3-b $\sqrt{-6}$ -keto-tetrahydro- Δ^1 -pyrimidine	2, 6-Dimethyl-4-thioureido pyrimidine	2,4-Dimorpholinyl pyrimidine	2,4-Dipiperidylpyrimidine	Galactopyranosylcytosine . HCl	5-Glucosidamino uracil	4-Hydroxy-5-ethyl-6-methyl-1, 3, 3A, 7-tetra aza indene
ENTRY NO.	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613

_									cocurc							Stock	et al.
	REMARKS				2 inj/day 250 mg/K toxic		500 mg/K toxic		fresh daily			250 mg/K toxic					
	VEHICLE	м	2	2	8	7	e	2	2	8	8	м	1	1		3	1
	NO. OF INJECTIONS	13	12	13	13	13	13	12	13	13	13	13	13	13		12	13
	AV. WT. CHANGE IN GRAMS treated/controls	+2.5	-1.0	0.0	+3.0	-1.5	+4.0	-1.0	1.0	+3.0	+3.5	+4.0	0.5	-2.5		0.0	+1.0
	DOSE mg/K/day	200	400	200	125	009	400	400	200	200	1000	175	750	750		200	200
	NO. OF DEATHS	2/5	2/5	0/2	9/0	5/0	1/5	2/5	0/10	5/0	1/5	2/5	9/0	5/0		2/10	1/10
	PHYSICAL												p				
	COM- POUND SOURCE	≽	AA	BE	BA	ZA	AR	DI	BE	AE	Q	8	Purchased	00		CW	Ö
	COMPOUND NAME	2-Imino-4, 6-diketo-5-ethylcarboxyaminoacetylamino pyrimidine . 1/2 $\mathrm{H}_2\mathrm{O}$	2-Mercapto-4, 6, 6-trimethyl dihydropyrimidine	5-Methyl dithiouracil	2-Methylmercapto-4, 6-diaminopyrimidine	3-Methyl uridine	5-Nitro-1, 3-dibenzyl-5-ethyl hexahydropyrimidine	Orotic acid	Polymer from 2,4-bis ethyleneimino-6-chloropyrimidine	Propionic acid, $\beta (4-amino-6-oxo-2-pyrimidyl)$ mercapto-	2-Thiothymine	2, 4, 6-Triketo-5-aminopyrimidine	Uridine	Xylopyranosylcytosine	SULFONES AND SULFONAMIDES:	$3-(N^4-Acetylsulfanilamido)$ dibenzothiophene	N-4-Aminobenzenesulfonyl-L-(+)-glutamic acid
	ENTRY NO.	1614	1615	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626		1627	1628

					-				1	*						
REMARKS		2 inj/day 100 mg/K toxic				also negative in gum acacia	l inj/day 600 mg/K toxic				also freshdaily					
VEHICLE	2	4	2	23	8	2	ĸ	м	1	m	1	2	4	2	1	5
NO. OF INJECTIONS	13	13	13	13	12	13	7	10	13	13	13	13	13	13	13	2
AV. WT. CHANGE IN GRAMS treated/controls	+1.0	-0.5	-1.5	0.0	+1.5	-1.0	-3.0	0.0	$\frac{-1.0}{-1.0}$	+0.5	1.5	0.0	-1.0	-1.0	-2.5	0.5
DOSE mg/K/day	750	63	200	009	750	200	200	009	750	750	512	200	200	200	200	400
NO. OF DEATHS	5/0	9/0	9/0	5/0	1/5	9/0	5/0	2/5	1/5	9/0	5/0	5/0	2/10	1/10	9/0	1/5
PHYSICAL										m. 204						
COM- POUND SOURCE	AN	CI	CI	ធ	Ö	M	AP	Q	O	AA	Q	CI	Ö	AM	M	M
COMPOUND NAME	2-Amino-1-phenol-4-sulfonamide	Benzenesulfonamide, 3,4-di chloro-N-methyl-	Benzenesulfonamide, 2, 4, 5-trichloro-	4-Benzoylacetamido methane sulfonanilide	Carbamic acid, benzenesulfonamide, ethyl ester	N-Carbethoxysulfanilamide	bis (p-Carboxylmethoxyphenyl) sulfone	N, N'-di-p-Chlorobenzene-sulfonyl-p-phenylenediamine	$N^4(3-\text{Chloro}F,4-\text{dihydro}I,4-\text{dioxo}2-\text{naphthyl})-N^1-2-thiazolylsulfanilamide, monosodium salt}$	4-Chloro-2, 5-dihydroxy diphenyl sulfone	$N-\{\beta-Chloroethyl\}-p-toluene sulfonamide$	$\rm N^1$ - $\rm N^1$ -bis (2-Cyanoethyl) metanilamide	N, N-bis (2-Cyanoethyl)-2'-nitro-4-biphenyl sulfonamide	Cyanoethyl sulfone	N^1 (2-Diethylaminophenyl) sulfanilamide	N'-(2'-Dimethylaminophenyl) sulfanilamide
ENTRY NO.	1629	1630	1631	1632	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	1643	1644

Stoc

																000,
REMARKS	500 mg/K toxic	500 mg/K toxic	also negative in gum acacia	250 mg/K toxic						l inj/day 200 mg/K toxic				also negative in gum acacia	also negative in gum acacia	250 mg/K toxic
VEHICLE	en	60	2	4	4	7	2	2	2	4	2	2	ю	2	2	e
NO, OF	6	12	13	13	7	13	13	13	13	7	13	13	13	13	13	11
AV. WT. CHANGE IN GRAMS treated/controls	+1.0	+3.5	+2.5 -0.5	$\frac{-1.0}{-2.0}$	$\frac{-1.0}{-1.0}$	+1.0	-1.5	0.0	10.5	-1.0 +1.0	-1.5	-1.5	+1.5	6.0	0.0	+1.0
DOSE mg/K/day	250	250	900	125	750	009	200	700	750	100	750	200	1000	200	200	125
NO. OF DEATHS	9/0	1/5	6/0	9/0	9/0	0/5	1/5	9/0	9/0	9/0	9/0	1/5	2/5	9/0	5/0	1/5
PHYSICAL																m. 300
COM- POUND SOURCE	C;ZB	O	M	O	M	C:ZB	M2	Ē	M	AN	ធ	M	M	AW5	AW5	M
COMPOUND NAME	p- $/4$ -Dimethylamino-2-(triphenylsilyl)-phenazo/benzene sulfonamide	2,7-Disulfanilamidoxanthone	N^2 -Ethyl- N^2 , N^5 -bis-sulfanilyl-2, 5-diamino toluene	N-Ethyl-N-(phenyl-sulfonyl)-β-alanine	$ m N^1, N^1$ -bis-2-Hydroxyethyl- $ m N^4$ -sulfanilylsulfanilamide	$p-\overline{/2}-Hydroxy-6-(tri-phenylsilyl)-1-naphthylazo_/\ benzenesulfonamide$	Metachloridine	p-(Methane sulfonamide) acetanilide	N-Methyl disulfanilamide	Mixture of ortho and para xylene sulfonamides	$N-\sqrt{\beta}-(4-Nitrophenyl)$ ethyl $\sqrt{-p-toluene}$ sulfonamide	o-Nitrophenyl-p-tolylsulfone	Phenosulfazole tablets	N ¹ -Phenyl-N ⁴ -acetylsulfanilamide	N ¹ -Phenylsulfanilamide	N-(2-Pyrimidyl)-4-(5-amino-7-hydroxy-2-v-triazolo (d) pyrimid-2-yl)-benzene-sulfonamide H ₂ O
ENTRY NO.	1645	1646	1647	1648	1649	1650	1651	1652	1653	1654	1655	1656	1657	1658	1659	1660

REMARKS	also negative in gum acacia						also negative in gum acacia			500 mg/K toxic		500 mg/K toxic	also negative in gum acacia	also negative in gum acacia		also negative in gum acacia
VEHICLE	2	4	2	2	1	2	2	2	2	8	2	en '	2	2	2	2
NO, OF INJECTIONS	13	2	13	13	13	13	13	12	13	12	13	13	13	13	12	13
AV. WT. CHANGE IN GRAMS treated/controls	+2.5 -0.5	+1.5	-1.5	-1.5	+3.0	0.5	+1.5	-2.0	+3.5	+2.0	40.5	+2.0	0.5	-1.5	-2.5	+0.5
DOSE mg/K/day	200	200	750	750	200	750	200	200	700	250	200	350	900	200	200	200
NO. OF DEATHS	5/0	5/0	9/0	2/5	1/5	1/5	9/0	1/5	9/0	5/0	1/5	1/5	1/5	1/5	2/5	5/0
PHYSICAL										m. 230					m. 258	m. 243
COM- POUND SOURCE	M	M	M	D2	M	80	ල්ර	M	M	M	M	M	ලීට	රීට	M	M
COMPOUND NAME	N ¹ -Sodium disulfanilamide	Sodium 2, 5-bis-sulfanilamido benzene sulfonate	Sodium N ⁴ -sulfanilyl naphthionate	3-Sulfanilamido-1, 2, 4-benzotriazine	6-Sulfanilamidocinchophen	2-Sulfanilamido-4, 6-dimethyl-5-bromopyrimidine	2-Sulfanilamido-4, 6-dimethyl-5-chloropyrimidine	4, 4°-bis-Sulfanilamidodiphenyl methane	2-Sulfanilamidopyridine	3-Sulfanilamido-2, 5-dimethyl pyrazine	2-Sulfanilamido-4, 6-dimethyl pyrimidine	2-Sulfanilamido-4-hydroxypteridine	2-Sulfanilamido-6-methylbenzothiazole	2-Sulfanilamido-4-methyl-5-bromopyrimidine	2-Sulfanilamido-6-methyl pyrazine	2-Sulfanilamido-4-methyl thiazole
ENTRY NO.	1991	1662	1663	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675	1676

11	W.	toxic				toxic				xic					oxic	oxic
REMARKS		500 mg/K toxic in gum acacia				500 mg/K toxic in gum acacia				50 mg/K toxic					250 mg/K toxic	125 mg/i. toxic
VEHICLE	2	ю	ຕໍ	2	2	8	2	ю	8	e	2	2	2		4	4
NO, OF INJECTIONS	13	12	12	13	13	13	13	13	==	7	12	13	13		7	13
AV. WT. CHANGE IN GRAMS treated/controls	0.5	+3.5	12.5	6.0	-0.5	+3.5	-1.5	0.0	+2.0 -1.0	+2.0 -1.0	0.0	-1.0 +2.5	-0.5		0.0	-0.5
DOSE mg/K/day	750	250	200	750	200	250	200	009	2	20	009	009	200		125	. 63
NO. OF DEATHS	1/5	1/5	0/10	9/0	9/0	9/0	9/0	9/0	1/5	1/5	9/0	9/0	9/0		9/0	9/0
PHYSICAL		m. 256			m. 223			m. 146	m. 127	m.112						
COM- POUND SOURCE	00	M	M	ලී	M	M	CI				O	υ	A W5		M	M
COMPOUND NAME	2-Sulfanilamido-4-piperidinomethylthiazole	2-Sulfanilamido pyrazine	2-Sulfanilamido pyrimidine	2-Sulfanilamido-4, 5, 6, 7-tetrahydrobenzothiazole	2-Sulfanilamido-1, 3, 4-thiadiazole	2-Sulfanilamido thiazole	Sulfone, 4-anilino-3-nitrophenyl methyl-	Sulfone, benzyl phenyl-	Sulfone, 2-chloroethyl-p-nitrophenyl-	Sulfone, phenyl-p-tolyl-	1,11(Sulfonyldi-p-phenylene)-bis(2,5-dimethyl-3-pyrrolecarboxylic acid), diethyl ester	 1,1'{Sulfonyldi-p-phenylene}-bis{2,5-dimethyl-3,4-pyroledicarboxylic acid}, tetraethyl ester 	4-(p-Toluenesulfonylamino) benzoylacetanilide	THIOUREAS:	S-Allylisothiourea	N-Amyl thiuronium chloride of diethylene glycol
ENTRY NO.	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688	1689		1690	1691

					-				1	1						10.
REMARKS	500 mg/K toxic	250 mg/K toxic		2 inj/day 300 mg/K toxic	l inj/day 300 mg/K toxic		l test toxic at same level		l inj/day 100 mg/K toxic	500 mg/K toxic		500 mg/K toxic	50 mg/K toxic	200 mg/K toxic	200 mg/K toxic	l inj/day
VEHICLE	4	2	en	w	4	2	8	2	4	4		4	4	4	4	4
NO. OF INJECTIONS	7	13	11	11	9	=	13	12	2	13	10	13	7	7	7	7
AV. WT. CHANGE IN GRAMS treated/controls	+5.0	0.0	0.0	-1.0 -1.5	-2.0	-2.0	-1.5	+2.0 -1.0	0.0	-1.0	-2.5	0.0	-1.5	-1.0	-1.0	-3.0
DOSE mg/K/day	250	150	200	250	150	175	.200	200	40	250	200	250	32	125	150	200
NO. OF DEATHS	2/5	9/0	3/10	1/5	2/5	2/5	5/0	5/0	1/5	5/0	1/10	9/0	1/5	3/10	5/0	9/0
PHYSICAL								m. 233								
COM- POUND SOURCE	M	EC	ВР	ВР	М	M	M	9	M	M	M	M	M	E	M	M
COMPOUND NAME	Dibutyl thiourea	S-(3,4-Dichlorobenzyl) thiuronium stearate	N, N-Diethyl, N'-p-anilinophenyl, N'-phenyl thiourea	N, N-Diethyl-N'-bis (ethoxyethyl) thiourea	Diheptylthiourea	Di (o-tolyl) thiourea	N, N'-Diphenylthiourea	Cholestene-3 (S - thiuronium-p-toluene sulfonate)	N-n-Dodecyl thiuronium bromide of polyethylene glycol 200	N-n-Dodecyl thiuronium bromide of polyethylene glycol 6000	Ethyl isothiourea sulfate	N-Ethyl thiuronium chloride of diethylene glycol	MonophenyIthiourea	N, N'-Phenyl ethyl thiourea	Thiuronium bromide of polyethylene glycol 300	Thiuronium bromide of polyethylene glycol 1000
ENTRY NO.	1692	1693	1694	1695	1696	1691	1698	1699	1700	1701	1702	1703	1704	1705	1706	1707

Stoc

REMARKS	l inj/day	l inj/day			400 mg/K toxic		150 mg/K toxic	suspension	suspension		suspension	400 mg/K toxic	500 mg/K toxic		l inj/day 35 mg/K toxic		500 mg/K toxic in CMC
VEHICLE	4	4	1		9	1	4	1	1	1	1	4	8	2	4		ю
NO. OF INJECTIONS	7	7	13		13	13	7	13	13	13	13	13	12	12	7		13
AV. WT. CHANGE IN GRAMS treated/controls	$\frac{-1.5}{-1.5}$	-2.5	0.0		-1.5	-2.0	-3.5	-1.5	-1.5	-2.5	-1.0	0.5	+3.5	-1.5	-1.0		+0.5
DOSE mg/K/day	009	009	200		200	009	125	200	200	200	200	250	350	300	10		300
NO, OF DEATHS	9/0	9/0	0/10		9/0	9/0	2/5	5/0	3/10	9/0	1/10	5/0	1/5	2/5	9/0		5/0
PHYSICAL																	
COM- POUND SOURCE	M	M	M		M	M	EC	M	M	CI	M	DN	DN	EC	M		ы
COMPOUND NAME	Thiuronium bromide of polyethylene glycol 4000	Thiuronium bromide of polyethylene glycol 6000	N, N, N'-Trimethyl thiourea	UREAS AND ISOUREAS:	1,4-bis (Diethylcarbamyl)-2,5-dimethyl-piperazine	Dimethoxymethyl urea	bis 2,4(1,1-Dimethyl ethylene imino carbamyl) toluene	Dimethylol urea	Hexamethylene di-(N-ethanol urea)	1-Methyl-1-phenylurea	Toluene-2, 4-di-(N-ethanol urea)	(2, 2, 2-Trichloro-1-hydroxyethyl) urea	1, 3-bis (2, 2, 2-Trichloro-1-hydroxyethyl) urea	4-Ureido-6-methyl hexahydropyrimid-2-one	N-Vinyl-N-ethyl-O-ethylisourea	MISCELLANEOUS:	2-Acetacetamino benzothiazole
ENTRY NO.	1708	1709	1710		1111	1712	1713	1714	1715	1716	7171	1718	1719	1720	1721		1722

ock et at.							uncer c		inc. ap	y Du						10
REMARKS				l inj/day 25 mg/K toxic	400 mg/K toxic		l inj/day						125 mg/K toxic			
VEHICLE	8	1	es	5	2	2	50	44	8	1	4	2	4	2	2	1
NO. OF INJECTIONS	13	13	. 13	LO.	12	13	7	9	13	13	7	13	13	13	13	13
AV. WT. CHANGE IN GRAMS treated/controls	+0.5	-3.5	+2.0	-3.0 -2.5	0.0	0.0	-3.0	0.0	+2.0 0.0	+1.0	-2.5	-2.0 0.0	+3.0	+2.5	0.0	41.0
DOSE mg/K/day	200	200	512	10	200	750	009	200	750	750	200	700	90	750	009	750
NO. OF DEATHS	2/10	5/0	1/10	9/0	9/0	1/5	9/0	3/10	1/5	5/0	1/10	2/5	5/0	2/5	9/0	9/0
PHYSICAL			т. 97													
COM- POUND SOURCE	M	W	AE	AE	ធ	ធ	ВУ	M	υ	υ	AP	ВГ	Q	C :	ធ	M
COMPOUND NAME	2-Acetamido-4, 6-diamino-s-triazine	3-Acetamino-3-carbethoxy-2-piperidone	Acetic acid, 2, 4-dichlorophenoxy-, inosityl hexaester	Acetic acid, trifluoro-	2-Acetoacetamino-4-(1-coumaronyl) thiazole	2-Acetoacetamino-4-phenyl thiazole	Acetonyl acetone	2-Acetyl aminobiphenyl	3-Acetylamino-4-hydroxybenzenearsonic acid	" (sodium salt)	a-Acetyl-β-butyrolactone	1-Acetyl-5, 6-dimethylbenzotriazole	Acetylene diol I	N-Acetyl-N-methyl anthranilic acid	4-Acetyl-o-terphenyl	Acrolein di (sodium bisulfite)
ENTRY NO.	1723	1724	1725	1726	7271	1728	1729	1730	1731		1732	1733	1734	1735	1736	1737

Stoc

-																	- w,
	REMARKS	l inj/day 63 mg/K toxic			500 mg/K toxic	16 mg/K toxic		l inj/day 250 mg/K toxic		2 inj/day 150 mg/K toxic	l inj/day		2 inj/day	32 mg/K toxic	į	250 mg/K toxic	
	VEHICLE	ĸ	4	2	e	4	2	S	ın	4	1	2	4	8	2	8	2
	NO. OF INJECTIONS	ın	9	13	13	13	9	2	9	13	13	13	11	13	21	12	13
	AV. WT. CHANGE IN GRAMS treated/controls	-2.5	-2.5	+1.0	+2.0	-2.5	$\frac{-1.5}{-2.0}$	-3.0	-2.5 -3.0	-2.5	+2.0	+0.5	-1.0	+2.0	-2.0	+0.5	0.0
	DOSE mg/K/day	32	125	700	250	00	300	125	150	100	200	200	200	20	750	125	300
	NO. OF DEATHS	1/5	2/10	1/5	1/5	9/0	1/5	5/0	2/15	5/0	1/10	5/0	1/10	9/0	5/0	1/5	1/5
	PHYSICAL	b. 105 5. 5 mm.				b. 43 65 mm.								m.166			
	COM- POUND SOURCE	AE	O	W	Ö	AA	90	90	21	AP	M			AQ	M	υ	ធ
	COMPOUND NAME	Acrylic acid, 2,3-dibromopropyl ester	Alantolactone, helenin	Aleuritic acid	2-Allylamino-4-diallylamino-6-chloro-s-triazine	Allyl chlorocarbonate	1 (2-Ally14-cyclohexylphenoxy)-2 (2-chloro-ethoxy) ethane	2-(2-Allyl-4-cyclohexylphenoxy) ethanol	o-Allyl phenyl acrylate	N-Allyl-1, 2, 3, 6-tetrahydrophthalimide	Aluminum G salt	Aluminium oxide	Aluminum schaeffer salt	9-Aminoacridine levulinate	4-Amino-N-amyl-naphthalimide	2-Amino-4-butylamino-6-chloro-8-triazine	2-Amino-4-(1-coumaronyl) thiazole
	ENTRY NO.	1738	1739	1740	1741	1742	1743	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753

									1 /						
REMARKS	250 mg/K toxic	200 mg/K toxic	500 mg/K toxic		250 mg/K toxic	200 mg/K toxic	512 mg/K toxic in gum acacia; also negative in saline	also negative in gum acacia			500 mg/K toxic	suspension			
VEHICLE	ю	60	60	2	en .	7	٣	2	1	2	8	1	2	2	m
NO, OF INJECTIONS	13	12	13	00	13	13	13	13	13	13	13	11	12	11	13
AV. WT. CHANGE IN GRAMS treated/controls	+4.0	+2.5	+2.5	-1.5	0.0	-0.5	+4.0	$\frac{-1.0}{-1.0}$	$\frac{-1.0}{-1.0}$	0.0	+3.5	-1.0	+1.5	0.0	0.0
DOSE mg/K/day	125	100	250	750	125	100	256	200	200	750	300	750	009	700	200
NO. OF DEATHS	1/5	1/5	9/0	9/0	9/0	1/5	2/10	9/0	9/0	9/0	1/5	1/5	5/0	1/5	0/10
PHYSICAL															
COM- POUND SOURCE	O	DQ	O	ম	C: E	ធ	AE	AA	EJ	CI	ပ	ធ	Ö	BL	O
COMPOUND NAME	2-Amino-4-cyclohexylamino-6-chloro-s-triazine	2-A mino-6- $\sqrt[]{N}$, N-dibenzyl- β -amino) ethy <u>l</u> $)$ carboxy benzothiazole . HCl	2-Amino-4-dimethallylamino-6-chloro-s-triazine	2-A mino-4-p-diphenyl thiazole	2,4-bis (2-Aminoethyl-amino)-6-chloro-s-triazine	2-Amino-4-methyl-5-carbethoxy thiazole	$\rm N^2, N^2, N^4, N^6$ -tetrakis (Aminomethyl)-melamine	6-Amino-2-mercaptobenzothiazole	Aminomethane sulfonic acid	N-(5-Amino-2-methylbenzyl) pyrrolidone	2-A mino-4-morpholino-6-chloro-s-triazine	2-Amino-5-oxalaminobenzene sulfonic acid	1-(p-A minophenyl)-5-oxo- Δ^2 , 1, 2, 4-triazoline-3-carboxylic acid, ethyl ester	5-Amino-1-phenyl tetrazole	2-Amino-4-piperidino-6-chloro-s-triazine
ENTRY NO.	1754	1755	1756	1757	1758	1759	1760	1761	1762	1763	1764	1765	1766	1767	1768

_																Side	k et at
	REMARKS	l inj/day 250 mg/K toxic	500 mg/K toxic	also negative in gum acacia					125 mg/K toxic		250 mg/K toxic	32 mg/K toxic	l inj/day	`	400 mg/K toxic	32 mg/K toxic	
	VEHICLE	4	8	2	2	2	8	1	1	1	4	4	15	2	1	ю	-
	NO. OF INJECTIONS	7	10	13	11	12	11	13	13	13	13	7	9	11	6	11	13
	AV. WT. CHANGE IN GRAMS treated/controls	$\frac{-2.0}{-1.0}$	-1.0	-1.0	$\frac{-2.0}{-1.0}$	-2.0	11.5	-0.5	0.0	+2.5	0.0	-1.0	-2.0	+1.0	-1.5	+2.5	0.0
	DOSE mg/K/day	125	300	200	90	90	256	750	99	200	125	16	200	200	200	24	750
	NO. OF DEATHS	9/0	2/5	9/0	1/5	2/5	3/10	6/0	5/0	2/10	0/5	9/0	1/5	4/10	1/5	2/5	9/0
	PHYSICAL																
	COM- POUND SOURCE	Ü	υ	BL	B	8	M	Ø	AE	AR	AR	M	AA	ធ	AN	O	υ
	COMPOUND NAME	2-A mino-4-N-propylamino-6-chloro-s-triazine	p-(2-Amino-4-pyrimidylamino) dithiobenzene arsonous acid, bis (carboxymethyl) ester, disodium salt	5-Amino tetrazole	5-Aminotetrazol, silver salt	Ammelide . HCl	Ammeline	Ammoniated glycyrrhizin	Ammino compound, succinic acid, a-alkenyl-, copper (II) mono salt	2-Amyl-4, 4-bis (hydroxymethyl)-2-oxazoline	2-Amyl-4-methyl-4-hydroxymethyl-2-oxazoline	o-Amylphenol	Anilinobenzothiazole	3-(Anilinomethylene) acetyl acetone	Isamine blue	p-Arsonobenzenesulfonic acid	4-Arsonophenoxyacetamide-N-methanol, sodium salt
	ENTRY NO.	1769	1770	1771	1772	1773	1774	1775	1776	7771	1778	1779	1780	1781	1782	1783	1784

Diocit of					0				1 /							
REMARKS	125 mg/K toxic	125 mg/K toxic	62 mg/K toxic	35 mg/K toxic		400 mg/K toxic	l inj/day	2 inj/day 500 mg/K toxic	750 mg/K toxic in CMC			also negative in gum acacia				
VEHICLE	1	4	ю	ĸ	2	e	4	4	м	2	2	2	2	2	ĸ	1
NO. OF INJECTIONS	13	13	11	9	13	13	2	13	=	13	13	13	13	13	-	13
AV, WT, CHANGE IN GRAMS treated/controls	+1.0	-1.5	+1.5	-2.0 -2.5	-0.5	+4.0	0.0	0.5	+1.0	-1.0	0.0	0.0	0.0	-1.0	-2.0	-0.5
DOSE mg/K/day	29	63	20	15	750	300	9	300	200	750	200	200	200	009	300	200
NO. OF DEATHS	1/5	9/0	5/0	1/10	5/0	2/5	9/0	1/5	5/0	1/5	1/5	1/5	1/10	1/5	2/10	1/10
PHYSICAL																
COM- POUND SOURCE	AE	AA		AP	BE	Ö	AN	AE	AA	AA	ы	AW5	BL	DN	90	O
COMPOUND NAME	Bismarsen. (bis muth arsphenamine sulfonate)	Sorbic acid maleic anhydride adduct	Aurine tricarboxylic acid (chrome violet GY)	Barium octadecylene decyl thionothiophosphate	Benzaldehyde semicarbazone	N- $/44$ (2-BenzimidazolyI)-methy]]/-aminobenzoic acid	Benzofuroxan	Benzoic acid, 2,4,6-trihydroxy-	2(3) Benzothiažolethione, 3-(N-phenylaminomethyl)-	bis (Benzothiazolylthiomethyl)cyclohexylamine	4'-{Benzoyl acetamido}-3'-methoxy-3-amino-benzanilide	ω-Benzoylacetanilide	1-Benzoyl-5, 6-dimethylbenzotriazole	Benzylidene-4-hydroxyaniline	1-Benzyloxy-2-(2-chloroethoxy) ethane	a-Benzylsuccinic acid
ENTRY NO.	1785	1786	1787	1788	1789	1790	1791	1792	1793	1794	1795	1796	1797	1798	1799	1800

REMARKS	l inj/day	16 mg/K toxic	2 inj/day 125 mg/K toxic	400 mg/K toxic		25 mg/K toxic							500 mg/K toxic			
VEHICLE	2	1	ю	1	e	4	9	2	7	4	9	ın	60	9	2	4
NO. OF INJECTIONS	2	13	13	13	12	-	13	13	13	2	13	7	13	13	13	9
AV. WT. CHANGE IN GRAMS treated/controls	-3.5	0.0	+3.0	-1.5	+1.0	-2.0	+1.0	40.5	-2.0	0.0	40.5	-2.0	0.5	0.5	+1.0	-2.0
DOSE mg/K/day	200	00	99	250	200	15	009	750	200	24	750	700	250	059	009	32
NO. OF DEATHS	9/0	2/5	9/0	9/0	3/10	2/5	9/0	9/0	1/5	2/5	9/0	9/0	9/0	5/0	1/5	5/2
PHYSICAL													m. 142			m.134
COM- POUND SOURCE	0:00	O	50:00	ď	AQ	Ö	90	CI	Ö	C: ZD	90	90	AA	90	50	CY
COMPOUND NAME	p-Bromoacetophenone	4-Bromobenzenearsonic acid	p-Bromo-benzoic acid	a-Bromocaproic acid	6-Bromo-3-(N, N-diethyl carbamyl) coumarin	a-Bromoenanthic acid	(2-Bromoethyl) cyclohexane	5-Bromo-2-hydroxy-a, a'-m-xylenediol	5-Bromoisatin	a-Bromo-p-methoxy- β -l-piperidyl propiophenone . HBr	2-Bromopentane	1, 2-bis (p -Bromophenoxy) ethane	β-(p-Bromophenoxy) propionic acid	p-Bromophenyl-3-bromopropyl ether	p-Bromophenyl-3-chloropropyl ether	p-Bromophenyl glyoxal . H ₂ O
ENTRY NO.	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829	1830	1831	1832

															ch et ut
		125 mg/K toxic	250 mg/ľ toxic		also negative in gum acacia	50 mg/K toxic	25 mg/K toxic			15 mg/K toxic		l inj/day	500 mg/K toxic		2 inj/day 500 mg/K toxic
2	9	60	4	2	2	4	4	S	9	4	1	S	9	\$	so.
13	13	13	13	13	13	9	7	7	12	7	13	9	13	7	13
0.0	0.0	+1.0	-1.0	40.5	-1.5	-3.0	0.0	-0.5	+1.0	-1.5 -1.0	+0.5	-5.0 -1.0	-2.0 +4.0	-3.5	$\frac{-1.5}{-1.0}$
24	200	62	150	200	200	16	10	700	750	10	200	200	250	200	250
2/5	9/0	2/5	5/0	2/5	1/5	1/5	5/0	5/0	9/0	9/0	9/0	3/10	9/0	9/0	5/0
		<i>:</i>													
M	S	Ü		CA	CA	EC	50	90	90	SS	CJ	90	90	90	99
3-p-Bromophenyl-2-Imino-5-methyloxazolidine	m-Bromopropiophenone	$N-\alpha$ -Bromopropylphthalimide	Butane phosphonic acid, 1-hydroxy-	2-Butanone, 4-(3, 4-dihydro-2 (1H)-isoquinolyl)-4-phenyl-, oxime	2-Butanone, 4-(3,4-dihydro-1 (2H)-quinolyl)-3-(4-morpholinyl)-4-phenyl-	bis 3,5-(Butoxymethyl)-4-oxo-tetrahydro-1,3,5-oxadiazine	a-sec-Butyl caproic acid	1, 2-bis (4-tert-Butyl-2-chlorophenoxy) ethane	4-tert-Butyl-2-chlorophenyl-2-chloroallyl ether	a-Butyl cyclohexane acetic acid	tert-Butyl hydroperoxide	$2-(4-tert\text{-Butyl2},6\text{-bis}\ (\alpha\text{-methyl-benzyl})$ phenoxy) ethanol	2,4-di-tert-Butyl phenol	1,2-bis-(p-tert-Butylphenoxy) ethane	2-(p-tert-Butylphenoxy) ethyl acetate
1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847	1848
	3-p-Bromophenyl-2-imino-5-methyloxazolidine M $2/5$ 24 $+0.5$ 13 0.0	3-p-Bromophenyl-2-imino-5-methyloxazolidine M 2/5 24 +0.5 13 m-Bromopropiophenone CG 0/5 500 0.0 13	3-p-Bromophenyl-2-imino-5-methyloxazolidine M $2/5$ 24 $+0.5 \over 0.0$ 13 2 m-Bromopropiophenone CG $0/5$ 500 $0.0 \over 0.0$ 13 6 N- α -Bromopropylphthalimide C $2/5$ 62 $+1.0 \over +2.5$ 13 3	3-p-Bromophenyl-2-imino-5-methyloxazolidine M 2/5 24 +0.5 13 2 m-Bromopropiophenone CG 0/5 500 0.0 13 6 N-a-Bromopropylphthalimide C 2/5 62 +1.0 13 3 Butane phosphonic acid, 1-hydroxy- 0/5 150 -1.0 13 4	3-p-Bromophenyl-2-imino-5-methyloxazolidine M 2/5 24 +0.5 13 2 m-Bromopropiophenone CG 0/5 500 0.0 13 6 N-a-Bromopropylphthalimide C 2/5 62 +1.0 13 3 Butane phosphonic acid, 1-hydroxy- C 0/5 150 -1.0 13 4 2-Butanone, 4-(3, 4-dihydro-2 (1H)-isoquinolyl)-4-phenyl-, CA 2/5 500 -0.5 13 2	3-p-Bromophenyl-2-Imino-5-methyloxazolidine M	3-p-Bromophenyl-2-imino-5-methyloxazolidine M	3-p-Bromophenyl2-imino-5-methyloxazolidine M 2/5 24 +0.5 13 2 m-Bromopropiophenone CG 0/5 500 0.0 0.0 13 6 N-a-Bromopropylphthallimide C 2/5 62 +1.0 13 6 Butane phosphonic acid, 1-hydroxy- A 0/5 150 -1.0 13 4 2-Butanone, 4-(3, 4-dihydro-2 (1H)-isoquinolyl)-4-phenyl-, CA 2/5 500 -0.5 13 2 2-Butanone, 4-(3, 4-dihydro-1 (2H)-quinolyl)-3-(4- CA 1/5 500 -0.5 13 2 bis 3,5-(Butoxymethyl)-4-phenyl- CA 1/5 500 -1.5 13 2 bis 3,5-(Butoxymethyl)-4-cxoc-tetrahydro-1, 3,5-oxadiazine EC 1/5 16 -3.0 6 4 a-sec-Butyl caproic acid CG 0/5 10 0/5 7 4	3-p-Bromophenyl-2-Imino-5-methyloxazolidine M 2/5 24 40.5 0.0 13 2 m-Bromoproplophenone CG 0/5 500 0.0 13 6 N-a-Bromoproplophenone C 2/5 62 41.0 13 6 Butane phosphonic acid, 1-hydroxy- C 2/5 50 -1.0 13 4 2-Butanone, 4(3,4-dihydro-1 (2H)-quinolyl)-4-phenyl- CA 2/5 500 -0.5 13 4 2-Butanone, 4(3,4-dihydro-1 (2H)-quinolyl)-3-(4- CA 1/5 500 -0.5 13 2 bis 3,5-{Butanone, 4(3,4-dihydro-1 (2H)-quinolyl)-3-(4- CA 1/5 500 -1.5 13 2 bis 3,5-{Butanone, 4(3,4-dihydro-1 (2H)-quinolyl)-4-phenyl- CA 1/5 500 -1.5 13 2 bis 3,5-{Butanone, 4(3,4-dihydro-1 (2H)-quinolyl)-4-phenyl- CA 1/5 50 -1.5 4 4 bis 3,5-{Butanone, 4(3,4-dihydro-1 (2H)-quinolyl)-4-phenyl- CG 0/5 10 -0.5 4	a.b. Bromophenyl-2-imilno-5-methyloxazolidine M 2/5 24 40.5 13 2 m-Bromoproplophenone CG 0/5 500 0.00 13 6 N-a-Bromoproplyphthalimide C 2/5 62 +1.00 13 6 Butane phosphonic acid, 1-hydroxy- A 2/5 50 -1.00 13 4 2-Butanone, 4-(3,4-dihydro-2 (1H)-isoquinolyl)-4-phenyl-, CA CA 1/5 500 -0.5 13 2 2-Butanone, 4-(3,4-dihydro-1 (2H)-quinolyl)-3-(4+ CA 1/5 500 -0.5 13 2 bis 3,5-(Butoxymethyl)-4-phenyl- CA 1/5 500 -1.5 13 2 bis 3,5-(Butoxymethyl)-4-oxo-tetrahydro-1,3,5-oxadiazine CG 1/5 10 -3.0 6 4 1,2-bis (4-terr-Butyl-2-chlorophenyl-	aBromophenyl-2-Imino-5-methyloxazolidine M 2/5 24 +0.5 0.0	3-p-Bromophenyl-2-Imitio-5-methyloxazolidine M 2/5 24 40.5 13 2 m-Bromopropiophenome CG 0/5 500 0.00 13 6 N-a-Bromopropylphthallmide C 2/5 62 41.00 13 6 Butiane phosphondt acid, 1-hydroxy-coxylphthallmide C 2/5 62 41.00 13 4 2-Butianone, 4(3,4-dihydro-2 (1H)-isoquinolyl)-4-phenyl CA 2/5 500 -11.5 13 2 2-Butianone, 4(3,4-dihydro-2 (1H)-isoquinolyl)-4-phenyl CA 1/5 500 -11.5 13 2 bis 3,5-{Butioxymethyl}-4-oxo-tertrahydro-1,3,5-oxadiazine EC 1/5 500 -11.5 6 4 bis 3,5-{Butioxymethyl}-4-oxo-tertrahydro-1,3,5-oxadiazine CG 0/5 70 -0.5 7 4 1,2-bis (4-tert-Butyl-2-chlorophenoxy) ethane CG 0/5 70 -0.5 7 4	3-p-Bromophenotherone CG C C C C C C C	Paper Pape	### Percomposeroptic perconent

Dies					0					17						
REMARKS			2 inj/day 175 mg/K toxic		-	100 mg/K toxic	1 mg/K toxic			l inj/day						8/13 inj
VEHICLE	9	9	4	7	. 7	50	8	2	1	2	9	ю	-	2	2	2
NO. OF INJECTIONS	13	13	13	13	13	9	13	11	13	7	13	13	13	12	12	00
AV. WT. CHANGE IN GRAMS treated/controls	0.0	0.0	+0.5	-1.5	40.5	-2.5	+2.0 +1.6	-1.5	0.5	-3.0	-2.0	-1.0	0.0	-1.0	-1.0	-1.5
DOSE mg/K/day	750	200	125	009	200	20	0.5	200	009	200	700	200	200	200	200	200
NO. OF DEATHS	9/0	9/0	1/5	9/0	1/10	9/0	9/0	2/5	9/0	9/0	5/0	0/10	0/10	5/0	2/5	1/5
PHYSICAL					m. 195		m. 215								m. 252	
COM- POUND SOURCE	CG	SO	O	ធ	CF		Ø	BL	ne E	50:0	M	AW5	υ	0:00	AA	EC
COMPOUND NAME	p-tert-Butyl phenyl-2-chloroallyl ether	p-tert-Butylphenyl-2-methylallyl ether	5-tert-Butyl-2-thiophene carboxylic acid	4-Butyryl-o-terphenyl	Caffeic acid	Calcium di (p-hexadecylphenyl) thionothiophosphate	Cantharidin	1-Carbethoxy-5, 6-dimethyl benzotriazole	1-Carboxy-3-(2'-hydroxyphenyl)-8-sulfo-4-azaphenanthrene E	o-Chloroacetophenone	2-Chloro-4-tert-amyl phenol ethyl ether	β-(m-Chloroanilino)-α-cyano N-furfurylacrylamide	o-Chloro benzoic acid	p-Chlorobenzoic acid	p-(p-Chlorobenzoyl)-benzoic acid	5-(o-Chlorobenzylidene)-3-trichloromethylthio-2,4-thiazolidinedione
ENTRY NO.	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864

				-		,		-								
REMARKS	500 mg/K toxic				135 mg/K toxic					also negative in gum acacia						
VEHICLE	9	9	9	9	2	2	9	9	9	2	4	1	9	9	2	S.
NO. OF INJECTIONS	13	13	13	13	13	11	13	13	13	13	7	1.1	13	13	9	2
AV. WT. CHANGE IN GRAMS treated/controls	0.0	$\frac{-1.0}{0.0}$	0.0	0.0	+1.0	0.0	0.0	0.0	0.0	$\frac{-2.0}{-1.0}$	-1.5	-2.0	+1.0	0.0	-5.0	-1.0
DOSE mg/K/day	250	750	750	750	99	350	750	750	750	200	50	35	750	750	175	2009
NO. OF DEATHS	9/0	9/0	9/0	6/0	1/5	2/5	9/0	1/5	9/0	2/5	9/0	9/0	9/0	9/0	2/5	9/0
PHYSICAL																
COM- POUND SOURCE	90	50	90	50	C; EC	AP	90	90	50	AA	CI	M	90	90	EC	50
COMPOUND NAME	4-Chloro-2-biphenylyl-2-methyl allyl ether	p-Chlorocapriphenone	p-Chlorocaprophenone	p-Chlorocaprylophenone	a-Chloro-2, 5-cresotic acid	2-Chloro-1, 4-di-nitrosobenzene	1-(2-Chloroethoxy)-2-(p-cyclohexylphenoxy) ethane	p-Chloroenanthophenone	p-Chloroisobutyrophenone	6-Chloro-2-mercaptobenzothiazole	4-(Chloromethyl)-1,3-dioxolane	2-Chloromethylimidazoline . HCl	3-Chloro-2-methylpropylphenyl ether	p-Chloropelargonophenone	bis (5-Chloro-3-pentenyl) ether	1, 2 - bis $\sqrt{2}$ -(p-Chlorophenoxy) ethoxy $$ ethane
ENTRY NO.	1865	1866	1867	1868	1869	1870	1871	1872	1873	1874	1875	1876	1877	1878	1879	1880

OCK et at.									P.	Data						-	
REMARKS	l inj/day	500 mg/K toxic					250 mg/K toxic	100 mg/K toxic				l inj/day	125 mg/K toxic 1 test fresh daily	175 mg/K toxic		l inj/day 100 mg/K toxic	
VEHICLE	ru.	т	4	60	2	2	4	4	2	rU.	2	5	6	4	4	2	
NO. OF INJECTIONS	7	13	7	11	13	13	13	13	11	7	13	7	13	13	9	7	
AV. WT. CHANGE IN GRAMS treated/controls	0.0	0.0	-1.5	12.5	+2.0	+1.0	0.0	-2.5	-1.5	-3.0	-1.5	-2.5	+1.5	10.5	-2.5	-2.5	
DOSE mg/K/day	200	300	32	49	750	200	125	20	200	009	700	200	63	125	100	20	
NO. OF DEATHS	9/0	1/5	2/10	2/5	5/0	1/5	5/0	9/0	3/10	1/5	1/5	0/10	2/10	9/0	2/5	9/0	
PHYSICAL		m.132		m. 164			b.80 0.3 mm.										
COM- POUND SOURCE	90	AA	Ö	I	M	AA	AA	AA	AR	AR	AR	AR	AR	, O	υ	DO	
COMPOUND NAME	bis $\sqrt{2} + (p-Chlorophenoxy)$ ethyl ether	β-(p-Chlorophenoxy) propionic acid	a-Chloro-8-phenoxy-valeric acid	bis (p-Chlorophenyl) acetic acid	5-(4'-Chlorophenylamino)-9-dimethylaminobenzo (a) phenoxazonium chloride	N-(3-p-Chlorophenyl-4, 5-dimethylthiazolinyl)-4, 5-dimethylthiazolo-2-sulfenimide	o-Chlorophenyl hydracrylate	p-Chlorophenyl hydracrylate	N√m-Chlorophenyl) phthalimide	N-(o-Chlorophenyl) phthalimide	N-(p-Chlorophenyl) phthalimide	N-(o-Chlorophenyl) succinimide	N-(p-Chlorophenyl) succinimide	3-Chloro-1, 2-propanediol-diacetate ester	N-Chlorosuccinimide	2-(5-Chloro-2-thenyl) amino lepidine	
ENTRY NO.	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	

																K et ut.
REMARKS	l inj/day, fresh 125 mg/K toxic	l inj/day, fresh 125 mg/K toxic					also negative in gum acacia	2 tests 250 mg/K toxic	and non-toxic	500 mg/K toxic	500 mg/K toxic		75 mg/K toxic		500 mg/K toxic	
VEHICLE	1	1	2	1	2	1	2	9	1	e	8	1	S	1	8	2
NO. OF INJECTIONS	2	7	13	13	13	13	11	11	13	13	13	13	7	13	13	13
AV. WT. CHANGE IN GRAMS treated/controls	0.0	0.0	0.0	0.5	0.5	0.5	0.0	0.0	-1.5	+5.0	+3.5	-3.0	-3.5	-0.5	+4.5	0.0
DOSE mg/K/day	63	63	200	009	200	750	900	150	200	250	400	200	30	750	250	750
NO. OF DEATHS	1/5	0/5	9/0	9/0	0/5	6/0	0/5	6/0	0/5	9/0	2/5	1/5	5/0	1/5	1/5	9/0
PHYSICAL																
COM- POUND SOURCE	C; ZH	O	CI	M	CI	Ö	н		M	D	CF	EC	AP		Ö	EC
COMPOUND NAME	4,4'-(2-Chlorotrimethylene) dimorpholine .2HCl	1,17-(2-Chlorotrimethylene) dipiperidine .2HCl	Cinnamamide, a-cyano-p-dimethylamino-	Cinnamaldehyde (sodium bisulfite)	Cinnamic acid, p-acetamido-a-cyano-, ethyl ester	Cinnamic acid, 2-(4-morpholinyl) ethyl ester . HCl	Cinnamylideneacenaphthenone	Citral geranialdehyde	Citral di (sodium bisulfite)	Cochineal	Coffee tannin / Potassium chlorogenate + 1 molecule caffeine /	$2(2-Crotonylthio)-\Delta^1-imidazoline$. HCl	Cupric dioctyl thionothiophosphate	Cyanoacetamide	o-Cyanobenzamide	2,4-bis \sqrt{b} is $(\beta$ -Cyanoethyl) amino $\overline{}$ -6-phenyl-s-triazine
ENTRY NO.	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912

																	_
REMARKS			60 mg/K toxic	1 inj/day 50 mg/K toxic		75 mg/K toxic	50 mg/K toxic		l inj/day			512 mg/K toxic			60 mg/K toxic	64 mg/K toxic	
VEHICLE	2	2	4	4	9	4	4	-	4	4	7	8	9	2	4	1	
NO. OF INJECTIONS	13	13	7	2	13	7	9	13	7	ıs	13	==	13	13	13	13	
AV. WT. CHANGE IN GRAMS treated/controls	0.0	-0.5	-2.5	+1.0	0.0	-3.5	-2.5	-1.5	-2.5	-2.5	0.5	+6.0	+1.5	0.5	+2.5	-1.0	
DOSE mg/K/day	750	200	20	25	200	9	25	200	20	100	750	256	750	700	98	32	
NO. OF DEATHS	9/0	9/0	1/5	9/0	3/10	1/5	2/5	9/0	3/10	2/5	5/0	1/5	9/0	5/0	5/0	5/0	
PHYSICAL																	
COM- POUND SOURCE	AM	AA	90	Ö	AE	90	S	M	AA	S	50	AP	CI	M	υ	В	
COMPOUND NAME	bis (2-Cyanoethyl) sulfoxide	3-Cyanoglutari mide	Cyclohexane caproic acid	1, 2-Cyclohexanedicarboximide	Cyclohexane, -△-1,2,3,4,5,6-hexachloro-	Cyclohexane propionic acid	Cyclohexanevaleric acid	Cyclohexanone sodium bisulfite	Cyclohexene-4-carboxylic acid	3-Cyclohexeh-1-yl methyl ketone	p-Cyclohexyl anisole	N-Cyclohexyl-1, 4-methylene-tetrahydrophthalimide	Cyclooctanecarboxylic acid, methyl ester	Cyclopentanone sodium bisulfite	Desoxycholic acid	4, 4'-Diamidino diphenoxy pentane	
ENTRY NO.	1913	1914	1915	9161	1917	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	

Ste

						-										
REMARKS	l inj/day		250 mg/K toxic		30 mg/K toxic	25 mg/K toxic		500 mg/K toxic		300 mg/K toxic in gum acacia	250 mg/K toxic			2 inj/day 250 mg/K toxic	100 mg/K toxic	
VEHICLE	м	m	8	2	1	1	1	8	2	2	ın	ю	હ	4	2	2
NO. OF INJECTIONS	4	10	13	13	13	13	13	11	13	12	12	10	12	12	13	12
AV, WT, CHANGE DOSE IN GRAMS mg/K/day treated/controls	+5.0 +0.5	+1.0	+6.0	+0.5	0.0	-2.5	-0.5	10.5	-1.5	-2.5	-1.0	+0.5	+1.0 -1.0	-1.0	0.5	-1.5
DOSE mg/K/day	250	24	125	009	15	15	750	250	200	150	125	009	009	125	20	24
NO. OF DEATHS	2/5	2/5	9/0	9/0	9/0	0/10	5/0	1/5	2/5	2/10	5/0	9/0	1/5	9/0	9/0	2/5
PHYSICAL			m. > 255	m. 204												
COM- POUND SOURCE	ВЈ	O	ı	M	D	В	O	W	O	22	cx	AQ	AQ	O	90	O
COMPOUND NAME	2,4-Diamino-6-(p-aminophenyl) amino-s-triazine	2, 4-Diamino-6-(5-arsono-21-hydroxyanilino)-s-triazine . HC1	2, 4-Diamino-6-benzyl-s-triazine	2, 4-Diamino-6-di-(\beta-hydroxyethyl) amino-s-triazine	4,4'-Diamidinodiphenoxy propane . 2HCl	4,4'-Diamidinodiphenyl ether diisethionate	2,5-Diamino-1,3,4-thiadiazole. HCl	2-(4,6-Diaminotriazine)-m-phenyl sulfonic acid	a√4, 6-Diamino-2-s-triazinyl mercapt¢ acetamide	2, 6-Dibenzoylamino-s-triazine	Dibenzoylethylene methylimine	6,8-Dibromo-3-(N, N-di-n-butyl carbamyl) coumarin	6,8-Dibromo-3-(N, N-diethyl carbamyl) coumarin	3,5-Dibromo-4-hydroxyphenyl acetic acid	2,4-Dibromophenol	$p\text{-}\alpha\text{-}Dibromo\text{-}\beta\text{-}l\text{-}piperidyl}$ propiophenone . HBr
ENTRY NO.	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941	1942	1943	1944

REMARKS	250 mg/K toxic	l inj/day 12 mg/K toxic	l inj/day 250 mg/K toxic	16 mg/K toxic		250 mg/K toxic	125 mg/K toxic	l inj/day	500 mg/K toxic	125 mg/K toxic	175 mg/K toxic		fresh daily	150 mg/K toxic		
VEHICLE	8	rs.	r.	4	4	1	4	ro ~	r.	4	4	1	S	4	2	2
NO. OF INJECTIONS	11	7	7	7	13	13	13	7	13	7	7	13	2	7	13	13
AV. WT. CHANGE IN GRAMS treated/controls	+1.0 -1.5	-4.0	-2.5	-3.0	-2.0 +1.0	+0.5	-2.0	-2.5	0.0	-3.0	-2.5	-2.0	-2.0	-1.0	0.0	0.0
DOSE mg/K/day	125	9	125	10	250	125	75	200	250	100	125	90	512	75	200	200
NO. OF DEATHS	1/5	2/5	5/0	1/10	2/5	9/0	9/0	1/5	1/5	1/5	1/5	5/0	9/0	9/0	9/0	1/5
PHYSICAL													m. 120		m. 138	m. 156
COM- POUND SOURCE		DB	DB	50	AP	Ö	υ	90	AE	ı	ı	Ö	AA	ď	CY	CY
COMPOUND NAME	a, β-Dibromosuccinic acid	Dibutyl chlorophosphate	Dibutyl hydrogen phosphite	x,x-Di sec-butyl phenol	4,5-Dicarboximide cyclohexene	4-Dicarboxymethylene thioarsenoso-2-aminophenol, glucose bisulfite addition compound, trisodium salt	2,4-Dichlorobenzaldehyde	3,5-Dichloro-2-biphenylyl acetate	1,1-Dichloro-2,2-bis(p-bromophenyl) ethylene	Di-(2-chloroethyl)-2-chloroethane phosphonate	Di-(2-chloroethyl) ethylene phosphonate	2,6-Dichloroindophenol, monosodium salt	Dichloro bis phenol-A diacrylate	dl-(2,4-Dichlorophenoxy) succinic acid	1-(2,4-Dichlorophenyl)-2-(2-quinolyl) ethanol	1-(2, 6-Dichlorophenyl)-2-(2-quinolyl) ethanol
ENTRY NO.	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960

S

															~ ~ ~ ~	cir ci ui
REMARKS				750 mg/K toxic				512 mg/K toxic	25 mg/K toxic		60 mg/K toxic	125 mg/K toxic	2 inj/day 63 mg/K toxic	500 mg/K toxic		2 inj/day 125 mg/K toxic
VEHICLE	2	ю	2	e	2	2	7	8	8	2	4	ro.	ĸ	2	1	4
NO. OF INJECTIONS	12	13	13	13	13	13	13	13	13	12	13	13	13	13	13	13
AV. WT. CHANGE IN GRAMS treated/controls	-1.0	+5.0	0.0	0.5	0.0	+1.5	1.5	0.0	11.5	+1.5	-1.5	0.0	0.0	+2.0	<u>-2.0</u> -1.5	0.0
DOSE mg/K/day	350	63	200	200	750	200	200	256	15	750	9	100	32	400	200	75
NO. OF DEATHS	2/5	3/10	2/10	9/0	1/5	1/5	5/0	2/5	2/5	2/5	9/0	1/5	5/0	9/0	9/0	5/0
PHYSICAL	m. 154															
COM- POUND SOURCE	CY	BA	M	AP	ធ	AP	M	Ö	Q	O	2	M	M	A	DB	ı
COMPOUND NAME	1 (3, 4-Dichlorophenyl)-2 (2-quinolyl) ethanol	2, 3-Dichloroquinoxaline	3,5-Dichlorosalicylicaldehyde	$\alpha_{\text{b}}\alpha\text{-Dicyano-}\beta,\beta\text{-dimethyl glutarimide}$	$Di-\{\alpha-cyano-o-hydroxy\ benzal\}-p-phenylenediamine$	N, N-Dicyclohexyl-a-thiocyanoacetamide	3, 4-Diethoxybenzaldehyde sodium bisulfite	3, 4-Diethoxybenzoic acid	p-Diethylamino benzaldehyde thiosemicarbazone	N-(Diethylaminomethyl) benzamide . HCl	2-(2-Diethylaminoethylthio)-4,5-diphenylthiazole . HCl	O, O'-Diethyl chloro thiophosphate	Diethyl cyanamide	Diethyl-a, a'-dibromoadipate	Diethyl butanephosphonate	Diethyl N, N-diethylamidophosphate
ENTRY NO.	1961	1962	1963	1964	1965	1966	1961	1968	1969	1970	1761	1972	1973	1974	1975	1976

REMARKS	75 mg/K toxic				24 mg/K toxic	l inj/day		l inj/day 32 mg/K toxic	10 mg/K toxic	2 inj/day 500 mg/K toxic		256 mg/K toxic	250 mg/K toxic	256 mg/K toxic	1000 mg/K toxic in CMC	
VEHICLE	4	-	e	2	1	ĸ	8	5	4	4	1	3	4	8	۳,	2
NO. OF INJECTIONS	12	13	13	13	13	7	13	7	2	11	13	11	13	11	11	13
AV. WT. CHANGE IN GRAMS treated/controls	-3.0 -1.0	-2.0	-2.5	+1.0	-1.5	-3.0	+4.5	-2.5	0.0	+2.0	-1.5	+6.0	0.0	+1.5	0.0	10.5
DOSE mg/K/day	62	200	009	200	12	100	009	16	en	250	1000	128	125	128	200	200
NO. OF DEATHS	9/0	0/10	9/0	9/0	9/0	2/5	9/0	9/0	9/0	9/0	1/5	1/5	5/0	1/5	1/5	9/0
PHYSICAL																
COM- POUND SOURCE	M	DB	DC	AA	C; ZB	DB	ВР	DB	M	O	BB	Ö	AP		AW7	œ
COMPOUND NAME	O, O'-Diethyl dithio phosphoric acid	Diethyl ethanephosphonate	a, a-Diethylhydracrylic acid	Diethylthiocarbamyl chloride	Diethylmethyl- $\sqrt{3}$ -{triphenylplumbyl}-propy <u>l</u> ammonium methyl sulfate	Diethyl phenylmethanephosphonate	10-Diethyl thiocarbamyl phenothiazine	Diethyl trichloroacetyl phosphate	Diheptyl dicyandiamide	Dihydro quercetin	Dihydro streptomycin sulfate	3, 4-Dihydroxybenzaldehyde	2, 2'-Dihydroxy-5,5'-diamylphenyl sulfide	2, 2'-Dihydroxy-5, 5'-di tert-amylphenylsulfide mono phosphate	2, 4-Di-(β -hydroxyethylamino) -5-methyl pyrimidine	γ -(1,1-Dihydroxyethyl) γ -methylpimelic acid, dilactone
ENTRY NO.	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992

REMARKS						75 mg/K toxic suspension	12 mg/K toxic	250 mg/K toxic		63 mg/K toxic		10 mg/K toxic		l inj/day 25 mg/K toxic	l inj/day	100 mg/K toxic
VEHICLE	2	1	en	2	2	9	ın	1	8	ĸ	8	4	4	4	4	4
NO. OF INJECTIONS	13	13	13	13	13	13	7	13	13	10	13	7	2	1	9	
AV. WT. CHANGE IN GRAMS treated/controls	+1.0	-3.0	40.5	0.0	0.0	-2.5	-3.5	+0.5	+3.5	+1.0	+3.5	-1.5	-3.5	$\frac{-1.0}{-1.0}$	0.0	$\frac{-1.0}{-1.0}$
DOSE mg/K/day	009	750	750	200	750	20	9	125	200	32	200	ĸ	35	15	99	20
NO. OF DEATHS	9/0	5/0	1/5	5/0	5/0	2/5	1/5	5/0	2/5	1/5	0/10	5/0	2/5	5/0	2/5	5/0
PHYSICAL																
COM- POUND SOURCE	8	BE	υ	W	IA	BE	. AE	2	2	15	M	EC	DC	DQ	υ	œ
COMPOUND NAME	$N \!$	3, 5-Dihydroxy-6-methyl-1, 2, 4-triazine	2, 4-Dihydroxy-5-thiazole acetic acid	2, 5-Diketo-6-carbethoxypiperazine	Dimer of indalone	1, 4-Dimethane sulphonyl oxybutane	1, 4, 5, 8-Dimethanonaphthalene, 1, 2, 3, 4, 10, 10-hexachloro- AE 6, 7-epoxy-1, 4, 4a, 5, 6, 7, 8, 8a-octahydro-	Dimethylaminoethoxy methyl benzyl pyridine succinate	2-(2-Dimethylaminoethylthio)-4,5-diphenylthiazole . HCl	2-Dimethylamino-4, 6-bismethylamino-s-triazine	2-(4-Dimethylaminostyryl) quinoline	2, 2-Dimethylaziridine	1-(3,5-Dimethyl-4-chlorophenoxy) 3-propanol	N, N-Dimethyl-N' $(3,4$ -Dimethoxybenzyl)-N'-lepidyl ethylene diamine	N-Dimethyl diphenyl acetamide	$\gamma_{\nu}\gamma$ -Dimethylglutaraldehydic acid
ENTRY NO.	1993	1994	1995	9661	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008

l inj/day suspension	125 mg/K toxic			256 mg/K toxic					also negative in gum acacia	2 inj/day also negative				suspension	
1	4	1	1	e	2	7	4	2	2	S	2	1	1	-	-
2	12	13	13	13	13	12	7	12	13	7	13	13	13	11	13
-3.0 -1.5	+0.5	-0.5	0.0	+2.0	+1.5	-0.5	-3.0 -3.0	-2.0	-1.5	-2.0	-1.5	0.5	0.0	-2.5	+1.0
009	100	100	200	128	200	200	99	400	200	200	009	200	700	700	200
0/5	9/0	5/0	9/0	1/5	9/0	0/10	3/10	2/5	9/0	9/0	5/0	5/0	5/0	5/0	1/10
M	DO	AA	AA	AP	υ	A W5	٦	AP	ď	œ	ы	M	M	M	M
Dimethylol melamine	Dimethyl piperidyl acetal	β -(4,5-Dimethyl-2-thiazolyl) mercaptopropionic acid	4,5-Dimethyl-2-thiono-4-thiazoline-3-acetic acid	2, 4-Dimethyl-6-thio-1, 3, 5-thiadiazane	Diphenylacetic acid	Diphenyl bis (p-azomalononitrile)	2, 2-Diphenyl-5-(N-piperidino)-4-pentanolactone. HCl	N, N'-Diphthalimido sulfide	N, N'-Disalicylidene-1, 2-diamino ethane	N, N'-Disalicylidene-1, 2-diaminopropane	Disalycylal-m-phenylene diamine	Disodium 1, 2-dihydroxyethane-1, 2-disulfonate	Disodium-2-sulfolactate	Disulfuric ester of 1-chloroanthraquinone, di potassium salt	Disulfuric ester of 2, 5-ditert-butylhydroquinone, disodium salt
2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	20 20	2021	2022	2023	2024
	Dimethylol melamine $M = 0/5 600 \frac{-3.0}{-1.5}$ 7 1	Dimethylol melamine M 0/5 600 -3.0 7 1 Dimethyl piperidyl acetal DQ 0/5 100 +0.5 12 4	Dimethylol melamine M $0/5$ 600 $\frac{-3.0}{-1.5}$ 7 1 Dimethylor piperidyl acetal DQ $0/5$ 100 $\frac{+0.5}{-1.5}$ 12 4 $9/4,5$ -Dimethyl-2-thiazolyl) mercaptopropionic acid AA $0/5$ $0/5$ 100 $\frac{-0.5}{+0.5}$ 13 1	Dimethylol melamine M 0/5 600 -3.0 7 1 Dimethylol melayl acetal DQ 0/5 100 +0.5 12 4 β-(4,5-Dimethyl-2-thiazolyl) mercaptopropionic acid AA 0/5 700 -0.5 13 1 4,5-Dimethyl-2-thiono-4-thiazoline-3-acetic acid AA 0/5 500 -0.5 13 1	Dimethylol melamine M 0/5 600 -3.0 7 1 Dimethylol melamine Dimethylol melamine DQ 0/5 100 +0.5 12 4 p-(4,5-Dimethyl-2-thiazolyl) mercaptopropionic acid AA 0/5 700 -0.5 13 1 4,5-Dimethyl-2-thiono-4-thiazoline-3-acetic acid AA 0/5 500 -0.5 13 1 2,4-Dimethyl-6-thio-1,3,5-thiadiazane AP 1/5 128 +2.0 13 3	Dimethylol melamine M 0/5 600 $\frac{-3.0}{-1.5}$ 7 1 Dimethyl piperidyl acetal DQ 0/5 100 $\frac{+0.5}{-1.5}$ 12 4 $\beta(4,5-\text{Dimethyl-2-thiazolyl})$ mercaptopropionic acid AA 0/5 700 $\frac{-0.5}{+0.5}$ 13 1 4,5-Dimethyl-2-thiazoline-3-acetic acid AA 0/5 500 $\frac{-0.5}{0.0}$ 13 1 2,4-Dimethyl-6-thio-1,3,5-thiadiazane AP 1/5 128 $\frac{+2.0}{0.0}$ 13 3 Diphenylacetic acid C 0/5 500 $\frac{+1.5}{0.0}$ 13 2	Dimethylol melamine M 0/5 600 -3.0 7 1 Dimethyl piperidyl acetal DQ 0/5 100 +0.5 12 4 β-(4,5-Dimethyl-2-thiazolyl) mercaptopropionic acid AA 0/5 700 -0.5 13 1 4,5-Dimethyl-2-thiazolylne-3-acetic acid AA 0/5 500 -0.5 13 1 2,4-Dimethyl-6-thio-1,3,5-thiadiazane AP 1/5 128 +2.0 13 3 Diphenylacetic acid C 0/5 500 +1.5 13 3 Diphenyl bis (p-azomalomonitrile) AW5 0/10 500 -0.5 13 2	Dimethylol melamine M 0/5 600 -3.0 7 1 Dimethylol melamine DQ 0/5 100 40.5 12 4 P(4,5-Dimethyl-2-thiazolyl) mercaptopropionic acid AA 0/5 700 -0.5 13 1 4,5-Dimethyl-2-thiono-4-thiazoline-3-acetic acid AA 0/5 500 -0.5 13 1 2,4-Dimethyl-6-thio-1,3,5-thiadiazane AP 1/5 128 +2.0 13 3 Diphenylacetic acid C 0/5 500 +1.5 13 3 Diphenyl bis (p-azomalononitrile) AW5 0/10 500 -0.5 1.5 12 2 2,2-Diphenyl-5-(N-piperidino)-4-pentanolactone .HCl J 3/10 65 -3.0 -0.5 2 7 4	Dimethylol melamine M 0/5 600 -3.0 7 1 Dimethyl piperidyl acetal AA 0/5 100 40.5 12 4 P(4,5-Dimethyl-2-thiazolyl) mercaptopropionic acid AA 0/5 700 -0.5 13 1 4,5-Dimethyl-2-thiazolyl) mercaptopropionic acid AA 0/5 700 -0.5 13 1 2,4-Dimethyl-2-thiono-4-thiazoline-3-acetic acid AA 0/5 500 -0.5 13 1 Diphenylacetic acid AP 1/5 128 +2.0 13 3 Diphenylacetic acid C 0/5 500 -0.5 13 3 Diphenyl bis (p-azomalononitrile) AW5 0/10 500 -0.5 11 5 2,2-Diphenyl-5-(N-piperidino)-4-pentanolactone .HCl AP 2/5 400 -2.0 -2.0 4 N,N-Diphthalimido sulfide AP 2/5 400 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0	Dimethylol melamine M 0/5 600 -3.0 7 1 Dimethyl piperidyl acetal DQ 0/5 100 +0.5 12 4 \$\(\delta\xi\).\$-Dimethyl piperidyl mercaptopropionic acid AA 0/5 700 -0.5 13 1 \$\(\delta\xi\).\$-Dimethyl-2-thiazoline-3-acetic acid AA 0/5 500 -0.5 13 1 \$\(\delta\xi\).\$-Dimethyl-2-thiazoline-3-acetic acid AP 1/5 128 +2.0 13 1 Diphenylacetic acid AP 1/5 500 +1.5 13 2 Diphenyl bis (p-azomalonontrile) AW5 0/10 500 +1.5 13 2 2,2-Diphenyl -5-(N-piperidino) -4-pentanolactone . HCl J 3/10 65 -2.0 -2.0 -2.0 2 2 N.N-Diphthalimido sulfide AP 2/5 400 -2.0 7 4 N.N-Diphthalimido sulfide AP 2/5 40 -2.0 2 2 2 N.N-	Dimethylol melamine M 0/5 600 -3.0 7 1 Dimethyl piperidyl acetal DA 0/5 100 -40.5 12 4 6-(4.5-Dimethyl-2-thiazolyl) mercaptopropionic acid AA 0/5 700 -0.5 13 1 4,5-Dimethyl-2-thiazolyl) mercaptopropionic acid AA 0/5 500 -0.5 13 1 2,4-Dimethyl-2-thiazoline-3-acetic acid AA 0/5 500 -0.5 13 1 Diphenyl-6-thio-1,3,5-thiadiazane AP 1/5 128 +2.0 13 3 Diphenylacetty e-thio-1,3,5-thiadiazane AP 0/5 500 -41.5 13 2 Diphenylacetty bis (P-azomalomonitrile) AW5 0/10 50 -2.0 12.5 13 2 2,2-Diphenyl-5-(N-piperidino)-4-pentanolactone . HCl J AP 2/5 400 -2.0 1.5 1 4 N, N-Disalicylidene-1, 2-diamino ethane Q Q/5 500 -1.5 1	Dimetty/of melantine M 0/5 600 ±3.0 7 1 Dimetty/ piperidy1 acetal Daq 0/5 100 ±0.5 12 4 6/4,5-Dimetty1-2-thiazolyt) mercaptopropionic acid AA 0/5 700 ±0.5 13 1 4,5-Dimetty1-2-thiazolyt) mercaptopropionic acid AA 0/5 700 ±0.5 13 1 2,4-Dimetty1-2-thiazolyt) mercaptopropionic acid AA 0/5 500 ±0.5 13 1 2,4-Dimetty1-2-thiacol.d-thiazoline-3-acetic acid AP 1/5 128 ±2.0 13 3 Diphenyl acetid col.d AP 0/10 500 ±0.5 13 2 L,2-Diphenyl-5-(N-piperidino) -t-pentanolactone .HCl J AP 2/5 500 ±0.5 12 4 N.N-Diphthalinido sulfide AP 2/5 40 ±2.5 13 2 N.N-Dipathalicylidene-1, 2-diamino ethane Q 0/5 500 ±1.5 7 5 Disalycylal-m-phenylene dia	Dimethylol melamine M 0/5 600 -3.0 7 1 Dimethylol melamine DQ 0/5 100 -0.5 12 4 4,5-Dimethyl-2-thiazolym) mercaptopropropionic acid AA 0/5 700 -0.5 13 1 4,5-Dimethyl-2-thiazolym -4-thiazoline-3-acetic acid AA 0/5 500 -0.5 13 1 Diphemylacetic acid AP 1/5 128 -2.0 13 3 Diphemylacetic acid AP 0/5 500 -0.5 13 3 Diphemylacetic acid AP 0/5 500 -1.5 13 2 Diphemylacetic acid AP 3/10 65 -2.0 13 2 2,2-Diphemylacetic acid AP 2/5 400 -2.5 12 2 2,2-Diphemylacetic acid AP 2/5 400 -2.5 1 2 3,N.N-Diphthalimido aulide AP 2/5 400 -2.5 1 4	Dimethylol melamine M 0/5 600 ±3.6 7 1 Dimethylol melamine DQ 0/5 100 ±0.5 12 4 0+(4,5-Dimethyl-2-thiazoly) mercaptoproplosic acid AA 0/5 700 ±0.5 13 1 2,4-Dimethyl-2-thiazoly) mercaptoproplosic acid AA 0/5 500 ±0.5 13 1 2,4-Dimethyl-2-thiazoly) mercaptoproplosic acid AAP 0/5 500 ±0.5 13 1 2,4-Dimethyl-2-thic-1,3,5-thiadiazane AP 1/5 128 ±2.0 13 3 Diphenyl acetic acid C 0/5 500 ±0.5 13 2 Diphenyl acetic acid AWS 0/10 500 ±0.5 11 2 N.NDiphthalimido aulide AP 2/5 400 ±0.5 11 4 N.NDisalicylidene-1,2-diamino ethane Q 0/5 500 ±0.5 1 2 Disedium 1,2-dihydroxyethane-1,2-diaminore R Q 500 </td <td> Dimethylol melamine M</td>	Dimethylol melamine M

S

REMARKS	150 mg/K toxic		250 mg/K toxic			2 inj/day 250 mg/K toxic	l inj/day 2 inj/day also	negative				l inj/day				l inj/day	
VEHICLE	e	1	m	2	2	т	ın	ĸ	ĸ		2	2	m	2	9	S.	
NO, OF INJECTIONS	13	12	13	13	13	10	7	9		13	13	7	12	13	13	7	
AV. WT. CHANGE IN GRAMS treated/controls	+3.0	-0.5	+4.0	+1.0	0.0	11.0	-3.0	4.0	-3.0	$\frac{-2.0}{-1.5}$	0.0	$\frac{-1.5}{-2.0}$	+3.0	+0.5	4.0	-3.0	
DOSE mg/K/day	100	750	125	750	750	125	200	300	200	750	200	200	200	200	200	200	
NO. OF DEATHS	1/5	2/5	9/0	1/5	9/0	2/5	5/0	2/5	1/10	5/0	5/0	1/10	1/10	9/0	1/5	9/0	
PHYSICAL																	
COM- POUND SOURCE	ВР	AP	M	υ	0	ı	90	C; ZB	EC	M	υ	90	Q	DN	M		
COMPOUND NAME	Dithiobluret	1, 4-Dithiocyano-2-butene	Dithioammelide	Di-p-tolyl mercury	1, 3-Di (p-toloxy)-2-propanol	2-Dodecyl imidazole	Dowanol 122. 2,2'-isopropylidene bis (p-phenyleneoxy) diethanol	1,2-Epoxy-1,1-diphenyl ethane	tris-(9, 10-Epoxy) glyceryl tristearoate	o-Ethoxybenzaldehyde sodium bisulfite dihydrate	p-Ethoxybenzoic acid	a-(Ethoxymethyl) benzyl acetate	5-(Ethoxymethyl)-2-methyl-4-pyrimidol	2, 2-bis (p-Ethoxyphenyl)-1, 1, 1-trichloroethane	2-(o-Ethoxystyryl) quinoline . HCl	Ethyl acetoacetate	
NO.	2025	2026	2027	2028	5029	2030	2031	2032	2033	2034	2035	2036	2037	2038	5039	2040	

ENTRY NO.	2041 E	2042 y	2043 N	2044 3,	2045 E	2046 N	2047 E	2048 E	2049 E	2050 1,	2051 E	2052 N	2053 X	2054 2-	2055 3-	2056 F
COMPOUND NAME	Ethyl borate	γ-Ethyl-γ-n-butyl-Δ ^{α,β} -butenolide	N-(3-Ethyl-4,5-dimethylthiazolinyl)-4,5-dimethyl thiazolo-2-sulfenimide	3, 3'-Ethylene bis $\sqrt{5}$ (o-acetoxybenzylidene) $\overline{/}$ rhodanine	Ethylene, 2-chloro-1,1-bis-(p-chlorophenyl)-	N, N'-Ethylenebisformamide	Ethylene glycol dichlorocarbonate	Ethylene oxide, 1-benzoyl-2-phenyl-	Ethyl ethoxy methylene malonate	1, 1, 6, 6-tetrakis (Ethyl formate)-3-hexyne	Ethylidene di (3-hydroxyphenyl) ether	N-ethylmorpholine sulfite	X-Ethyl-2-phenyl phenol	2-Ethyl-3-propyl acrolein	3-Ethynyl-1, 1, 2, 2-tetrafluorocyclobutane	Fastusol turquoise blue LGLA
COM- POUND SOURCE		AZ	AA	EC	CI	CI	AA	Ö	E	EC	ធ	M	SS	ви	ଙ	M
PHYSICAL							b. 123 35 mm.	m.91								
NO. OF DEATHS	9/0	2/10	5/0	2/10	5/0	9/0	9/0	2/5	5/0	9/0	9/0	9/0	2/5	1/10	1/5	9/0
DOSE mg/K/day	700	200	125	200	009	750	30	200	165	700	200	200	200	200	90	125
AV. WT. CHANGE IN GRAMS treated/controls	-3.0	-2.5	-1.5	-1.5	-2.0	-1.5	0.0	+ <u>1.0</u> - <u>1.0</u>	-2.0	-0.5	-1.5	0.0	-3.5	-2.5	-3.5	+1.5
NO. OF INJECTIONS	7	9	13	13	13	13	13	13	7	13	. 13	13	9	7	2	13
VEHICLE	S	2	2	2	2	-	4	es	4.	9	2	1	ıc	S.	ĸ	-
REMARKS			250 mg/K toxic				63 mg/K toxic	also negative fresh daily in saline suspension	250 mg/K toxic					l inj/day	125 mg/K toxic	250 mg/K toxic

ENTRY NO.	COMPOUND NAME	COM- POUND SOURCE	PHYSICAL	NO. OF DEATHS	DOSE mg/K/day	AV. WT. CHANGE IN GRAMS treated/controls	NO. OF INJECTIONS	VEHICLE	REMARKS
2057	2-Fluorene, 4-(2'-acetylamino thiazolyl)-	Œ	m. 302	0/10	200	+2.0	11	e	
2058	Fluorene, 2-acetyl-7-bromo-	দৈ		2/10	200	-1.0		8	
2059	Fluorene, 2-benzoyl-	দৈ	m. 122	1/10	200	+1.5	11	m	
2060	Fluorenehydantoin	Ţ4	Sinters > 280	1/5	1000	+2.0	13	ю	
2061	9-Fluorenol-2-carboxylic acid	ĮZ4	m. 240	3/10	250	+3.0	11	8	
2062	Fluorenone	<u>[24</u>	m. 83	3/10	250	+2.0	13	е .	
2063	Fluorenone, 2-acetyl-	দৈ	m. 154	3/10	300	+1.5	11	e	
2064	Fluorenone, 2-benzoyl-	<u> </u>	m. 175	9/0	200	+1.0	=	ю	
2065	Fluorenone oxime	M	m. 195	5/0	250	0.0	11	, m	300 mg/K toxic
2066	2-Fluorenephenylcarbinol	[24	m.115	1/10	200	+2.0	=	ю	
2067	Fluorene, 2-thiocyano-	C		1/5	150	+2.0	13	ю	250 mg/K toxic
2068	3-Fluoroanisaldehyde sodium bisulfite	AW5		1/5	009	-1.5	13	2	
5069	Formanilide	M		9/0	200	-1.5 +1.0	13	1	
2070	o-Formotoluide	CI		9/0	125	$\frac{-2.0}{-2.0}$	2	4	l inj/day 250 mg/K toxic
2071	4-Formyl-1-phenol-2-sulfonic acid, sodium salt	O		9/0	200	-1.0 +1.0	13	1	
2072	2-Furoic acid butyl ester	Q		9/0	125	+3.0	13	4	250 mg/K toxic

REMARKS						l inj/day 250 mg/K toxic					250 mg/K toxic		10 mg/K toxic		50 mg/K toxic	l inj/day
VEHICLE	2	1	4	1	2	ın	8	1	2	2	4	-	4	9	ın	4
NO. OF INJECTIONS	11	13	7	13	13	7	13	13	13	13	13	13	9	13	9	7
AV, WT, CHANGE IN GRAMS treated/controls	-1.0 0.0	+1.0	-1.5	+1.5	$\frac{-2.0}{-1.0}$	0.0	+1.5	+1.5	-1.0	0.5	0.0	0.5	$\frac{-2.0}{-2.0}$	$\frac{-2.0}{-1.0}$	-3.0	$\frac{-2.0}{-1.0}$
DOSE mg/K/day	175	1000	200	200	200	100	200	2000	009	750	125	750	4	2500	25	750
NO. OF DEATHS	2/5	9/0	9/0	9/0	1/5	9/0	2/2	2/10	9/0	9/0	1/5	1/5	2/2	9/0	2/10	9/0
PHYSICAL														b. 60		
COM- POUND SOURCE	EI	AR	M	M	Z	AE	2		AR	AR	AR	C: ES	н	œ	AP	00
COMPOUND NAME	d-Glaucine	Glucuronolactone	dl-Glyceraldehyde acetal	Glycimide of disulfo-4-amino naphthalic anhydride	Glycouril	Guaiacol, 6-allyl-	Guanazoguanazole	Gum acacia	2-Heptadecyl-4, 4-bis (hydroxymethyl)-2-oxazoline	2-Heptadecyl-4, 4-bis (stearoxymethyl) oxazoline	2-Heptadecyl-4-methyl-4-hydroxymethyl-2-oxazoline	2, 2, 3, 3, 4, 4, 4-Heptafluoro-1, 1-butanediol	Hexadecylguanidine . HBr	1, 1, 2, 2, 3, 4-Hexafluoro-3, 4-dichlorocyclobutane	Hexahexyltetraphosphate	Hexahydro-1, 3, 5-tris acetyl-s-triazine
ENTRY NO.	2073	2074	2075	2076	2077	2078	5079	2080	2081	2082	2083	2084	2085	2086	2087	2088

															~~	ca co
REMARKS	l inj/day fresh suspension	also negative in saline		suspension	l inj/day					200 mg/K toxic in CMC				500 mg/K toxic		
VEHICLE	7	8	2	1	S	2	4	1	2	ю	2	2	2	1	2	2
NO. OF INJECTIONS	7	13	13	13	9	6	7	13	Ξ	12	12	13	13	13	12	13
AV. WT. CHANGE IN GRAMS treated/controls	0.0	10.5	-2.0	-3.0	-4.5	0.0	$\frac{-3.0}{-1.0}$	0.0	<u>-1.5</u> -2.0	0.0	-3.5	40.5	+0.5	-1.5	0.0	0.0
DOSE mg/K/day	4	200	200	009	200	32	18	750	750	150	12	750	750	300	200	200
NO. OF DEATHS	9/0	2/10	0/10	9/0	2/5	5/2	4/10	5/0	1/5	9/0	9/0	1/5	5/0	5/0	3/10	5/0
PHYSICAL																
COM- POUND SOURCE	AA	8	ď	M	AP	В	90	ő	O	ঘ	Q	90	BE	O	ध	DN
COMPOUND NAME	Hexahydro-1,3,5-tris acrylyl-s-triazine	Hexahydro-5-methyl-s-triazine-2-one	$\alpha_{\bullet}\alpha 4$ Hexamethylenedinitrilo) di-o-cresol, copper (II) complex	Hexamethoxymethyl melamine	2, 4, 6-Hexamethyl-s-trithiane	Hexane, 4,4'-diamidinodiphenoxy, .2HCl	x (x-Hexyl) phenol	6-Hydrazino-1-naphthol-3-sulfonic acid	7-Hydrazino-1-naphthalens sulfonic acid	Hydrazodicarbamide	Hydroquinone derivative	p-Hydroxyacetophenone	o-Hydroxybenzaldehyde thiosemicarbazone	4-Hydroxybenzene arsonic acid, sodium salt	4-Hydroxyben ophenone	2-Hydroxybenzylideneaniline
ENTRY NO.	5089	2090	2091	2092	2093	2094	2095	9602	2097	8602	5099	2100	2101	2102	2103	2104

ENTRY NO.	RY	COMPOUND NAME	COM- POUND SOURCE	PHYSICAL	NO. OF DEATHS	DOSE mg/K/day	AV. WT. CHANGE IN GRAMS treated/controls	NO. OF INJECTIONS	VEHICLE	REMARKS
2105		1-Hydroxybenzylidene-4-ethoxyaniline	DN		9/0	500.	$\frac{-1.0}{-1.0}$	13	7	
2106	90	2-Hydroxy-5-chlorobenzaldehyde thiosemicarbazone	BE		9/0	750	0.0	13	2	
2107		$\gamma\textsubscript{-}\mathrm{Hydroxy}\textsubscript{-}\gamma,\gamma\textsubscript{-}\mathrm{diphenyl}$ butyric acid, $\gamma\textsubscript{-}\mathrm{lactone}$	O		9/0	200	+1.5	13	2	
2108	8	4-Hydroxy-3, 4-diphenyl-2-cyclopenten-1-one	CI		2/5	750	+0.5	13	2	
2109	60	4-β-Hydroxyethoxy-2-hydroxybenzenearsonic acid	ပ		5/2	175	-1.0	S	4	l inj/day
2110	01	N-(2-Hydroxyethyl) acetamide	SS		9/0	750	-1.5	2	4	
2111	=	a-(2-Hydroxyethyl) acetoacetic acid, y-lactone	O		1/5	200	-3.0	7	4	
2112	2	4-(\(\begin{align*} \end{align*} \) 4-(\(\begin{align*} align	M		1/5	100	+3.5	13	e	125 mg/K toxic
2113		N- $/4$, 6-bis (2-Hydroxyethylamino)-s-triazin-2-yl $/$ arsanilic acid, monosodium salt	υ		6/0	009	-1.5	13	-	
2114	4	N-(2-Hydroxyethyl) formamide	90		5/0	750	-1.5	7	4	
2115		$1-\beta-Hy droxy ethyl-2-hepta decylim idazoline$	AA		9/0	. 15	0.0	7	4	l inj/day 25 mg/K toxic
2116		(4-Hydroxy-5-isopropyl-2-methyl phenyl) trimethyl ammonium chloride 1-piperidine carboxylate	11		9/0	0.3	-2.5	13	1	0,5 mg/K toxic
2117		1, 3, 4, 6-tetrakis (Hydroxymethyl)-2, 5-diketoimidaz $\int d \overline{J}$ imidazolidine	EC		1/10	200	-2.0	13	1	
2118		4-Hydroxy-4-methyl-2-pentanone, oxime	υ		0/2	750	-1.5	13	1	
2119		2-Hydroxy-3-methyl quinoxaline	ធ		2/2	200	-1.0	12	2	
2120		Hydroxymethyl tert-butyl peroxide	ca		5/0	750	-0.5	13	-	

REMARKS	2 inj/day 60 mg/K toxic	50 mg/K toxic		also negative in gum acacia		750 mg/K toxic				125 mg/K toxic	125 mg/K toxic		16 mg/K toxic			
VEHICLE	4	4	4	2	2	2	ю	ĸ	-	6	4	2	4	60	1	8
NO. OF INJECTIONS	13	13	7	13	13	11	13	13	13	13	13	12	13	11	13	6
IN GRAMS treated/controls	-2.5	0.0	0.0	+4.5	0.0	-1.0	-0.5	-1.5	1.5	+1.5	-1.0	$\frac{-1.0}{-2.0}$	+3.5	+3.0	+0.5	-3.5
DOSE mg/K/day	8	32	750	200	009	200	200	200	200	63	63	200	œ	200	1500	125
NO. OF DEATHS	9/0	5/0	9/0	9/0	1/5	9/0	0/2	1/10	0/15	1/5	6/0	2/5	9/0	1/5	5/0	2/5
PHYSICAL														m. 175	m. 225	
COM- POUND SOURCE	O		M	AW5	AW5	90		o [°]	EC	Q	M	AA	M	O	AE	AE
COMPOUND NAME	3-Hydroxy-2-naphthoic acid	γ{o'-Hydroxyphenyl}-o-hydroxy propiophenone	2-(o-Hydroxyphenyl) pyridine	3-Hydroxy-2-phenylquinoline	3-Hydroxy-2-phenylquinoline-4, 8-dicarboxylic acid	m-Hydroxypropiophenone	p-Hydroxypropiophenone	α-Hydroxy-y-valero-lactone	2-Imidazolidone	2-Imino-3-anilino-10-phenylphenazine	2-Imino-5,5'-dimethyl-3-phenyloxazolidine	2-Imino-3-phenyl-5, 6-dimethyl- Δ^4 (1, 3, 4)-thiadiazine	2-Imino-3-phenyloxazolidine	Indole, 2-phenyl-	Inositol (meso)	Iodonium chloride, bis (2-bromo-4-chlorophenyl)-
ENTRY NO.	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132	2133	2134	2135	2136

										17						
REMARKS	100 mg/K toxic in gum acacia	100 mg/K toxic	50 mg/K toxic	suspension			125 mg/K toxic		500 mg/K toxic		50 mg/K toxic		2 inj/day 63 mg/K toxic	75 mg/K toxic	65 mg/K toxic	
VEHICLE	2	м	2	1	1	2	4	2	6	4	4	2	4	9	4	1
NO. OF INJECTIONS	6	13	13	13	13	13	7	13	13	13	9	13	13	13	7	13
AV, WT, CHANGE IN GRAMS treated/controls	-1.0 +1.5	-2.5	-0.5	+0.5	0.5	0.0	-1.0	-1.0	+1.0	+1.0	-2.0	0.0	-2.0	+2.5	-3.0	-1.0
DOSE mg/K/day	20	20	52	002	200	200	63	400	300	125	25	200	98	63	35	750
NO. OF DEATHS	1/5	1/5	9/0	9/0	0/10	1/10	9/0	9/0	5/0	5/0	2/5	9/0	5/0	1/5	2/5	9/0
PHYSICAL																
COM- POUND SOURCE	AE	AE	AE	M	BE	Q	Q	Q	Q	AZ	50	50	50	M	50	CI
COMPOUND NAME	Iodonium chloride, bis (2, 4-dichlorophenyl)-	Iodonium iodide, diphenyl-	Iodonium sulfate, bis (p-bromophenyl)-	Isatin-sodium bisulfite	Isobarbituric acid	Isonitrosoacetophenone (a-methylphenyl) hydrazone	a-Isonitrosopropiophenone	a-Isonitrosopropiophenone (a-methylphenyl) hydrazone	Isonitrosopropiophenone thiosemisarbazone	γ -Isopropyl- Δ^{α_s} β - butenolide	a-Isopropylcaproic acid	4,4'-Isopropylidene bis (2-chlorophenol) diacetate	4, 4'-Isopropylidene bis (2-phenylphenol)	Isopropenyl phenyl isocyanate	x -Isopropyl-2-phenyl phenol	2-Keto-2, 3-dihydroimidazo-(1, 2a) pyridine . HCl
ENTRY NO.	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149	2150	2151	2152

ENTRY NO.	COMPOUND NAME	COM- POUND SOURCE	PHYSICAL	NO. OF DEATHS	DOSE mg/K/day	AV. WT. CHANGE IN GRAMS treated/controls	NO. OF INJECTIONS	VEHICLE	REMARKS
2153	Ketone, trans-1-cyclohexyl-3-phenyl-2-aziridyl-p-tolyl-	CA		1/10	200	-3.0	7	5	
2154	Khellin	O		9/0	49	+2,0	13	m	128 mg/K toxic
2155	Kojic acid	AE	m. 152	9/0	200	$\frac{-2.0}{-1.0}$	13	1	
2156	Koussein	Q		1/5	125	-2.0	13	4	175 mg/K toxic
2157	Fluorene pinacol	ĔĿ	m. 184	5/2	250	+1.0	13		
2158	Maleic acid anhydride	AP		0.5	20	-1.5	13	4	
2159	Malonamide			1/5	750	-1.5	13	2	
2160	Malonamidoamidine . HCl	AW7		9/2	750	-1.5	13	1	
2161	Malonylbenzylamide	ធ		5/0	750	0.0	13	2	
2162	Mandelic acid	Ö		9/0	93	+0.5	13	8	2 inj/day 36 mg/K toxic
2163	2-Mercapto benzothiazole	M	m. 177	2/5	128	+0.5	11	٣	256 mg/K toxic
2164	3-Mercapto-5-hydroxy-6-phenyl-1, 2, 4-triazine	BE		1/5	200	-1.0	12	2	600 mg/K toxic
2165	2-Mercaptoimidazoline	AA		5/0	200	0.0	13	1	
2166	2-Mercapto-4-methyl benzothiazole	AA		1/5	200	-1.0	13	2	also negative in gum acacia
2167	Mercaptosuccinic acid	Ö		2/5	200	-1.5	13	1	
2168	1-Methallyl-4-methyl-2-piperidone	ı		1/10	85	$\frac{-2.0}{-1.0}$	7	ĸ	

Stock et at.					1108		idirect	ancine.		P) Du						1	_
REMARKS	500 mg/K toxic						350 mg/K toxic in CMC		l inj/day			200 mg/K toxic		4.5 mg/K toxic	500 mg/K toxic		
VEHICLE	7	1	1	2	4	2	, en	1	4	2	9	2	4	2	4	2	
NO. OF INJECTIONS	13	13	13	12	2	13	13	13	7	13	13	13	7	13	7	12	
AV, WT, CHANGE IN GRAMS treated/controls	0.0	0.0	-1.5	0.0	-3.0	-1.5	1.5	$\frac{-1.0}{-1.0}$	-2.5	-1.5	-2.5	+1.0	-1.5	11.0	-0.5	-1.5	
DOSE mg/K/day	250	32	52	750	200	750	250	009	20	200	200	100	25	2	300	750	
NO. OF DEATHS	5/0	5/0	2/5	2/2	2/10	1/5	5/0	9/0	1/5	2/10	9/0	9/0	1/10	1/5	5/0	1/5	
PHYSICAL																	
COM- POUND SOURCE	50	ВМ	BM	υ	50	EC	Ö	EJ	20	ធ	90	90	90	EC	υ	M	
COMPOUND NAME	4, 4'-Methylene bis (2-bromoacetanilide)	6-Methoxy-8-(5-isopropylaminoamylamino) quinoline	6-Methoxy-8-(4-isopropylamino-1-methylbutylamino) quinoline	6-Methoxy-4-methylcarbostyril	p-Methoxypropiophenone	$2-\sqrt{b}$ is (2-Methylallyl) amino $^{-7}$ 4, 6-diamino-s-triazine	2-Methylamino-4-dimethylamino-6-chloro-s-triazine	Methylaminomethanesulfonic acid	2-Methyl-2-n-amyl-4-hydroxymethyl-1, 3-dioxolane	9-Methyl anthracene	bis (a-Methylbenzyl) ether	x-(a-Methylbenzyl) phenol	x-a-Methylbenzyl)-2-phenylphenol	1-Methyl-2, 5-diketopyrrole	5-Methyl-2, 3-diphenyl indole	Methyl ester of 2-benzothiazolyloxyacetic acid	
ENTRY NO.	2169	2170	2171	2172	2173	2174	2175	2176	2177	2178	2179	2180	2181	2182	2183	2184	

REMARKS				250 mg/K toxic	100 mg/K toxic			also negative in gum acacia			175 mg/K toxic		500 mg/K toxic			fresh daily
VEHICLE	1	2	2	60	1	1	1	2	2	2	4	ю	м	2	2	1
NO. OF INJECTIONS	13	п.	13	12	11	13	13	13	13	13	13	11	12	12	12	13
AV. WT. CHANGE IN GRAMS treated/controls	-0.5	-1.5	+1.5	+2.5	44.0	-3.5	-2.5	0.0	-0.5	-0.5	-2.5	+4.0	+3.5	0.0	-2.0	-2.0 -1.5
DOSE mg/K/day	750	400	200	125	20	300	200	200	750	700	125	60	300	200	700	200
NO, OF DEATHS	9/0	5/2	1/5	2/5	1/5	1/10	2/10	9/0	5/0	5/0	5/0	2/5	1/5	2/10	5/0	2/5
PHYSICAL					m. 63							b.119				
COM- POUND SOURCE	M	ĐO	O		AU	O	AJ	M	SO	50	O	AE	AA	D	छ	ВЈ
COMPOUND NAME	Methyl ethyl ketone-sodium bisulfite	Methyl gentisate	2-Methyl-4-hydroxy-5-isopropylbenzenesulfonic acid	4-Methyl-2-hydroxyquinoline	Methyl 4-keto-penten-2-oate	2-Methylmercapto-2-imidazoline . HI	2-Methyl-1,4-naphthohydroquinone diphosphoric ester tetrasodium salt (Synkayvite)	5-Methyl-5-naphthyl hydantoin	6-Methyl-3-(α -phenylethylimino) 1, 2H-pyran-2, 4 (3H) dione	6-Methyl-1, 2H-pyran-2, 4 (3H) dione	N-Methylquinolone	Methyl silicate	6-Carbomethoxy-3-methyl-1, 2, 3, 6-tetrahydrophthalic anhydride	Methylvanillin thiosemicarbazone	Methyl-2, 3, 5-triiodobenzoate	Monochlorodiamino-s-triazine
ENTRY NO.	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200

										10						_
REMARKS	500 mg/K toxic				750 mg/K toxic	750 mg/K toxic in CMC			32 mg/K toxic	700 mg/K toxic	also negative in gum acacia	125 mg/K toxic		15 mg/K toxic		
VEHICLE	4	4	1	4	4	8	2	1	1	-	2	m	2	4	2	1
NO. OF INJECTIONS	7	7	13	7	7	11	10	13	13	13	13	13	11	9	12	13
AV. WT. CHANGE IN GRAMS treated/controls	0.0	-2.0	+1.0	-1.5	-1.5	0.0	-3.5	-2.5	-1.5	5.0-	0.0	0.0	0.0	-1.5	-1.0	-1.0
DOSE mg/K/day	250	200	200	200	200	200	200	200	16	200	200	99	200	ro.	200	750
NO. OF DEATHS	1/5	3/10	9/0	1/10	9/0	5/0	1/5	5/0	5/0	5/0	2/5	5/0	5/0	2/5	2/10	5/0
PHYSICAL								m. 176								
COM- POUND SOURCE	M	M	М	EC	EC	C; BV	O	AC		M	M	M	AP	н	12	M
COMPOUND NAME	Mono- $\beta \mathcal{A}(\beta\text{-hydroxyethoxy})$ ethyl sulfate, trisethylamine salt	Monosulfuric ester of polyethylene glycol 300, triethylamine salt	Monosulfuric ester of polyethylene glycol 1000, triethylamine salt	1,4-bis (N,N'-Morpholino) 2-pentyne	Morpholinylacetone	3-(4-Morpholinylmethyl)-2-thiazolidinethione	Naphthalic anhydride	Narcotine	Nickel chloride	Nicotinonitrile		Nile blue A chloride	2-Octadecyl cyclopentanone semicarbazone	Octadecyl guanidine . HBr	N-(n-Octadecyl) oleamide	Octanal-sodium bisulfite
ENTRY NO.	2201	2202	2203	2204	2205	2206	2207	2208	2209	2210		2211	2212	2213	2214	2215

_																	
	REMARKS			2 mg/K toxic	64 mg/K toxic					250 mg/K toxic		32 mg/K toxic			128 mg/K toxic	l inj/day 500 mg/K toxic	500 mg/K toxic
	VEHICLE	2	4	4	1	1	-	-	2	8	2	8	2	2	ю	ĸ	es
	NO. OF INJECTIONS	11	7	7	13	13	13	13	13	13	13	13	13	6	11	4	13
	AV. WT. CHANGE IN GRAMS treated/controls	0.0	-1.0	-2.0	0.0	+1.0	+1.0	-1.0 -1.5	40.5	+3.5	+1.0	10.5	+1.5 +2.0	-3.0	+3.0	-2.0	+3.5
	DOSE mg/K/day	009	32	1	32	200	200	750	200	125	009	20	200	6	64	250	250
	NO. OF DEATHS	9/0	1/5	9/0	9/0	9/0	9/0	5/0	1/5	2/5	1/5	6/0	5/0	1/5	1/5	1/5	5/0
	PHYSICAL																
	COM- POUND SOURCE	M	M	EM	C ::	O	AA	CI	AW5	AA	AA	В	ធ	DW	ပ	S	O
	COMPOUND NAME	Octanone-2-sodium bisulfite	p-Octanoylphenol	Organic phosphate systemic insecticide	9-0xo-4-fluorene arsonic acid monosodium salt	2-Oxonipecotamide	4-Oxo-2-thionothiazolidine-5-acetic acid	2,2'-Oxybisethane sulfonic acid, sodium salt	Penta acetyl gluconamide	Pentachloro phenyl acetate	Pentachlorotoluene	Pentane, 2, 2'-dibromo-4, 4'-diamidinodiphenoxy . 2HCl	Phenacylbenzoate	Phenarsazine chloride	Phenol, p-methoxy-	Phenyl acetate	p-Phenylacetophenone
	ENTRY NO.	2216	2217	2218	2219	2220	2221	2222	2223	2224	2225	2226	2227	2228	2229	2230	2231

				200 mg/K toxic	l inj/day	also negative in gum acacia		2 inj/day 125 mg/K toxic	256 mg/K toxic	4 mg/K toxic					
2	2	2	2	4	w	2	2	4	8	en.	2	2		4	2
12	13	13	11	13	7	13	13	13	13	=	12	. 21	13	9	13
+0.5	-2.0	0.0	+1.0	-3.0 -1.0	-2.5	0.5	+1.0	+1.0	+3.0	+3.0	-2.0	-2.5	0.5	-3.0	+1.0
250	200	750	200	100	200	200	200	63	128	2	200	200	200	175	750
2/5	0/10	9/0	2/5	9/0	9/0	9/0	1/15	5/0	9/0	1/5	2/5	1/10	5/0	2/5	5/0
									m. 168					m.81	
ធ	œ	AA	AA	AA	AP	M	O	Ö	AA	Z	EI	O	O	CY	AA
1-Phenyl-3 (2-benzoxazolylamino)-5-pyrazolone	2, 2'-p-Phenylenebis $\sqrt{4}$, 4-dimethyl-5-(4H) oxazolone $\overline{}$	14-Phenyl-dibenz (a, j) acridan	N-(3-Phenyl-4,5-dimethyl thiazolinyl)-4,5-dimethyl-thiazolo-2-sulfenimide	4-Phenyl-1, 3-dioxane	a-Phenylethyl trichloroacetate	Phenyl hydrazine p-sulfonic acid	1, 2-bis (Phenyl mercapto) ethane	β-(Phenyl mercapto) propionic acid	4-Phenyl-2-mercaptothiazole	Phenylmercuric nitrate	1-Phenyl-6-methoxy-7-benzyloxy-3, 4-dihydroisoquinoline	a-Phenyl-a-methyl succinic acid	a-Phenyl-β-methyl succinic acid	a-Phenyl-β-(4-morpholinyl) ethanol	β-Phenyl propiophenone
2232	2233	2234	2235	2236	2237	2238	2239	2240	2241	2242	2243	2244	2245	2246	2247
	1-Phenyl-3 (2-benzoxazolylamino)-5-pyrazolone E	1-Phenyl-3 (2-benzoxazolylamino)-5-pyrazolone E 2/5 250 +0.5 -1.0 -1.0 -1.0 -1.0 -2.0 -2.0 -2.0 13	1-Phenyl-3 (2-benzoxazolylamino)-5-pyrazolone E 2/5 250 +0.5 12 2,2'-p-Phenylenebis 4,4-dimethyl-5,4H) oxazolone 9 3,2'-p-Phenylenebis 4,4-dimethyl-5,4H) oxazolone 9 14-Phenyl-dibenz (a, j) acridan AA 0/5 750 0.0 13 14-Phenyl-dibenz (a, j) acridan 13	1-Phenyl-3(2-benzoxazolylamino)-5-pyrazolone	1-Phenyl-3 (2-benzoxazolylamino)-5-pyrazolone	1-Phenyl-3 (2-benzoxazolylamino)-5-pyrazolone E 2/5 250 +0.5 12 2 2, 2'-p-Phenylenebis /4, 4-dimethyl-5-(4H) oxazolone Q 0/10 500 -2.0 13 2 14-Phenyl-dibenz (a, j) acridan AA 0/5 750 0.0 13 2 N-(3-Phenyl-4, 5-dimethyl thiazolinyl) -4, 5-dimethyl AA 2/5 700 +1.0 11 2 4-Phenyl-1, 3-dioxane AA 0/5 100 -3.0 13 4 a-Phenylethyl trichloroacetate AP 0/5 500 -2.5 7 5	1-Phenyl-3 (2-benzoxazolylamino)-5-pyrazolone	1-Phenyl-3(2-benzoxazolylamino)-5-pyrazolone E	1-Phenyl-3 (2-benzoxazolylamino)-5-pyrazolone	1-Phenyl-3 (2-henzoxazolylamino)-5-pyrazolone	1-Phenyl-3 (2-bentzoxazolylamino)-5-pyrazolone	1-Phenyl-3 (2-benzoxazolone)	1-Phenyl-3(2-benzoxazolylamino)-5-pyrazolone	1-Phenyl-3 (2-benrocazolylamino)-5-pyrazolone E	1-Phenyl-3 (2-benzozzolylamino) -5-pyrazolones

St

REMARKS	750 mg/K toxic in CMC				6 mg/K toxic		also negative in gum acacia		16 mg/K toxic					l inj/day	50 mg/K toxic	500 mg/K toxic
VEHICLE	3 7.	2	2	1	4 6	2	2 al	2	3 16	2	1	1	1	4	3 50	2 50
NO, OF INJECTIONS	13	13	11	13	7	13	13	13	13	10	13	13	13	7	13	11
AV. WT. CHANGE IN GRAMS treated/controls	0.0	-1.5	0.0	0.0	-3.5	-2.0	+1.0 +2.5	-0.5	+2.0 +1.0	0.0	0.0	0.5	-1.5 +1.0	-1.5 0.0	+1.0	-2.5
DOSE mg/K/day	200	009	750	750	en	009	200	200	00	700	750	200	750	125	32	300
NO. OF DEATHS	9/0	1/5	2/5	9/0	9/0	9/0	6/0	9/0	9/0	2/5	5/0	9/0	9/0	2/5	2/5	1/5
PHYSICAL	m. 131						m. 212	1								
COM- POUND SOURCE	CY	ঘ	EH	CT	W	CI	O	AR	AP	O	CA	Ö	O	O	M	EC
COMPOUND NAME	1-Phenyl-2, 2-quinolyl ethanol	1-Phenyl-2-sulfo-1, 3, 4, 5-tetrazole, potassium salt	2-Phenyl-3, 4, 5, 6-tetrahydrobenzoic acid	Phosphorylated hesperidin	Phthalaldehyde	Phthalimide, $N-\sqrt{p}$ (chloromethyl) phenyl/-	a-Phthalimido-3, 4-dimethoxypropiophenone	2-Phthalimidoethyl benzoate	Phthaloyl acetone	a-Phthaloyl quinaldine	1-Piperidinelactic acid, β-phenyl-	2-1 iperidinecarboxylic acid	Pyridine-2, 3-dicarboxylic acid	N-Piperidinomethylmandelamide	1-{\b-Piperidylethyl}-3, 5-diamino-s-triazine	5-Piperonylidene-3-trichloromethylthio-2, 4-thiazolidinedione
ENTRY NO.	2248	2249	2250	2251	2252	2253	2254	2255	2256	2257	2258	2259	2260	2261	2262	2263

REMARKS	32 mg/K toxic	l inj/day									50 mg/K toxic					125 mg/K toxic
VEHICLE	٠,	4	4	1	2	2	2	9	7	4	4	4	2	60	S	ю
NO. OF INJECTIONS	13	7	7	13	13	13	12	13	13		11	9	13	13	13	13
AV. WT. CHANGE IN GRAMS treated/controls	+1.0	-1.5	0.5	-1.0	0.0	+1.0	+1.0	-2.0	-1.0	-1.5	0.0	-1.5	+1.5	+0.5	-2.5	+0.5
DOSE mg/K/day	16	52	35	200	200	200	200	512	200	200	8	200	009	200	100	75
NO, OF DEATHS	9/0	5/2	9/0	9/0	9/0	2/5	1/5	0/10	1/10	1/10	9/0	2/5	5/0	0/10	9/0	1/5
PHYSICAL																
COM- POUND SOURCE		В	AE	AR	CA	CA	CA	Ø	5 C	O	වර	82	90	AE	AE	O
COMPOUND NAME	Potassium arsenite	Propane, 2-bromo-4, 4-diamidinodiphenoxy. 2HC1	2-Propene-1,1-diol, 2-methyl-, diacetate	Propionhydroxamic acid	Propiophenone, a-hydroxy- β -phenyl- β -1-piperidyl-, acetate	Propiophenone, a-hydroxy- β -phenyl- β (1, 2, 3, 4-tetrahydro-2-isoquinolyl)-acetate	Propiophenone, a-iodo- β -methoxy- β -phenyl-	n-Propyl isome	3-Pyridol	2-Pyrolidone	$N-(2-\text{PyridyI})-N-\sqrt{2}-di \text{ methylamino}) \text{ ethyl} -1,2-di \text{ phenylethyl amine}$	Quercitrin	2,44(1H,3H) Quinazoline dione	Quinoline, $2-\sqrt{2}$, 2 -bis (p-dimethylaminophenyl) ethy <u>l</u> '-	Quinoline, 1,2,3,4-tetrahydro-6-methoxy-	Resatophenone
ENTRY NO.	2264	2265	5266	2267	2268	2269	2270	2271	2272	2273	2274	2275	2276	2277	2278	2279

																00 0
REMARKS			50 mg/K toxic	suspension 60 mg/K toxic	l inj/day	75 mg/K toxic									125 mg/K toxic	
VEHICLE	1	2	4	1	S	4		1	1	1	1	9	-	9,	4	2
NO. OF INJECTIONS	13	11	6	2	7	2	13	13	13	13	13	10	13	13	13	12
AV. WT. CHANGE IN GRAMS treated/controls	-2.0 -1.0	-1.0	-1.5	$\frac{-2.0}{-1.0}$	-3.0	-1.5	-2.0	0.0	0.0	-0.5	0.0	-2.5	0.0	-1.0	-1.5	+1.0
DOSE mg/K/day	200	39	32	25	200	31	1000	700	750	009	009	700	750	200	64	200
NO. OF DEATHS	1/5	1/5	1/5	1/5	3/10	9/0	9/0	5/0	9/0	9/0	9/0	5/2	9/0	5/0	5/0	3/10
PHYSICAL																
COM- POUND SOURCE		BB	CI	Q	AW5	AN		M		M	M	M	ВТ	ធ	M	M
COMPOUND NAME	Riboflavin	Rimocidin	Salicylic acid, 3-propenyl-	Saponin	Sodium anilino-N-methylene sulfoxylate	Sodium benzenoneindo-3'-methyl-6'-iso-propylphenol	Sodium chloride	Sodium 3-cyanoguanidino methyl sulfonate	Sodium formaldehyde sulfoxylate	Sodium 2-hydroxy-3-carbethoxy-propane-2-sulfonate	Sodium hydroxy-p-methoxyphenyl methane sulfonate	Sodium 1-hydroxytetradecane-1-sulfonate	Sodium thioglucose	bis Stearyl thio ethane	2-Styrylpyridine	2-Styrylquinoline
ENTRY NO.	2280	2281	2282	2283	2284	2285	2286	2287	2288	5289	2290	2291	2532	2293	2294	2295

ENTRY NO.	COMPOUND NAME	COM- POUND SOURCE	PHYSICAL	NO. OF DEATHS	DOSE mg/K/day	AV. WT. CHANGE IN GRAMS treated/controls	NO. OF INJECTIONS	VEHICLE	REMARKS
9622	4-Styrylquinoline	M		2/5	750	-1.5	7	4	
2297	Succinyl chloride	AE		1/5	10	-3.5	7	5	
2298	Sulfuric acid dimorpholide	M		9/0	200	+1.0	2	4	l inj/day
5299	Taurine	AE		5/0	200	-1.0 -1.0	13	8	
2300	4-o-Terphenamide	घ		5/0	009	+3.0	13	7	
2301	o-Terphenyl disulfonic acid, potassium salt	ы		9/0	200	0.0	13	7	
2302	o-Terphenyltrisulfonic acid, potassium salt	E		5/0	009	0.5	13	1	
2303	4-o-Terphenylyl isocyanate	ы		5/0	009	+1.5	13	2	
2304	Tetrabutyl hexamethylene diphosphonate	DB		9/0	40	-1.0 -2.0	7	ıcı	l inj/day 75 mg/K toxic
2305	3, 4, 5, 6-Tetrachloro-N(1-methylheptane) phthalimide			1/5	256	13.5	11	ю	512 mg/K toxic
2306	Tetradecyl succinic acid	ঘ		5/0	99	-1.5	7	4	100 mg/K toxic
2307	Tetra (2-ethylbutyl) trimethylene diphosphonate	DB		1/5	12	-2.5	un ,	ıs	l inj/day 25 mg/K toxic
2308	Δ^3 -Tetrahydrobenzaldehyde-sodium bisulfite	M		6/0	200	+2.0	13	7	
2309	1, 2, 3, 4-Tetrahydro-4-(3, 4-dimethoxyphenyl) 3- (hydroxymethyl-6, 7-dimethoxy) 2-naphthoic acid morpholide	DP		0/5	200	+1.0	13	2	also negative in gum acacia
2310	Tetrahydrofurfuryl alcohol, p-toluene sulfonate	C: E		9/0	750	$\frac{-2.0}{-1.0}$	7	ις	l inj/day
2311	1, 2, 3, 6-Tetrahydro trans-3-methyl-cis-phthalic acid	AA		1/5	200	+3.5	10	e	

10.5																		
	REMARKS			2 mg/K toxic	l inj/day	l inj/day suspension	16 mg/K toxic		125 mg/K toxic	35 mg/K toxic		l inj/day 500 mg/K toxic	128 mg/K toxic	also negative in peanut oil			100 mg/K toxic	
	VEHICLE	9	2	4	r _U	-	1	so.	4	4	4	4	8	4	2		9	
	NO, OF INJECTIONS	13	13	7	7	9	13	7	2	7	۲	7	13	13	12	10	13	
	AV. WT. CHANGE IN GRAMS treated/controls	+3.5	-1.0	-3.5	-2.0	-1.0	-0.5	$\frac{-2.0}{-1.5}$	$\frac{-3.0}{-1.0}$	-3.0	-3.0	-1.5	+7.0	0.0	+0.5	+1.0	+1.5	
	DOSE mg/K/day	200	200	1.5	200	009	so.	700	8	15	25	250	64	500	200	750	99	
	NO. OF DEATHS	9/0	0/10	9/0	9/0	1/5	5/0	9/0	1/5	1/5	1/10.	1/10	1/5	1/25	1/5	9/0	0/10	
	PHYSICAL											m. 29						
	COM- POUND SOURCE	S	œ	Q	DB	M		Q	DQ	DQ	ď	AA	AA	BG	Q	AE	AE	
	COMPOUND NAME	bis \sqrt{p} -(1,1,3,3-Tetramethylbutyl) pheny <u>l</u> ether	2, 2'-Tetramethylene bis $\sqrt{4}$, 4-dimethyl-5-(4H)-oxazolone $\sqrt{2}$	Tetraphenyl arsonium bromide	Tetra (3, 5, 5-trimethylhexyl) trimethylene diphosphonate	Tetramethylol phenylmelamine	Thallium nitrate	2-Thenoic acid amyl ester	$\beta - / \bar{N} + (2 - Thiazoly!) \text{ N-benzyl } / \text{ aminoethyl morpholine}$	N-(2-Thiazolyl)-N-benzyl-N', N'-diethyl ethylenediamine	N-(2-Thiazoly)-N-(α , β -diphenyl) ethyl-N', N'-dimethyl ethylenediamine	Thiochromanone	Thio-\beta-naphthol	Thiophene	2-Thiophenealdehyde thiosemicarbazone	2-Thiophenecarboxylic acid	Thiophene, 2, 3, 4, 5-tetrachloro-	
	ENTRY NO.	2312	2313	2314	2315	2316	2317	2318	2319	2320	2321	2322	2323	2324	2325	2326	2327	

REMARKS	125 mg/K toxic	750 mg/K toxic	l inj/day fresh daily	130 mg/K toxic				l inj/day 50 mg/K toxic						300 mg/K toxic		
VEHICLE	3	9	e .	2	2	2	1	4	e	2	1	8	2	4		-
NO, OF INJECTIONS	10	13	9	13	13	13	13	7	6	12	12	12	13	6	13	13
AV. WT. CHANGE IN GRAMS treated/controls	+0.5	-1.5	+2.5	+2.0	+0.5	0.0	-1.0 +1.0	-2.5	+5.0	$\frac{-1.0}{-1.0}$	-2.5	0.0	0.0	-2.5	10.5	-2.5
DOSE mg/K/day	100	200	16	65	750	200	750	52	250	200	125	350	009	200	009	99
NO. OF DEATHS	0/2	1/10	1/5	9/0	5/0	1/5	5/0	5/0	5/0	5/0	5/2	1/5	9/0	5/2	5/0	1/10
PHYSICAL														m. 29		
COM- POUND SOURCE	AE	AE	œ	BE	BE	BE	Ö	Ö	O	E I	AN	NO	ঘ	M	M	BL
COMPOUND NAME	Thiophene, tetra-4-pyridyl-	Thiophene trimer	Thiosemicarbazide	Thiosemicarbazone of cinnamaldehyde	Thiosemicarbazone of ethyl benzoyl formate	Thiosemicarbazone of pyruvic acid	1-Thiosorbitol	Thymatic acid	p-Toluic acid	4-p-Toluidino-6-(3', 5'-disulfobenzoylamino)-1, 3- diazabenzanthrone	Toluylene red, neutral red	2, 2-bis (p-Tolyl) 1, 1, 1-trichloroethane	1, 3, 5-Triacetyl benzene	2, 4, 6-Triallyloxy-s-triazine	N, N', N''-Triaminoguanidine . HCl	v-Triazole-4, 5-dicarboxylic acid
ENTRY NO.	2328	2329	2330	2331	2332	2333	2334	2335	2336	2337	2338	2339	2340	2341	2342	2343

																ch et u
REMARKS	256 mg/K toxic	2 inj/day 65 mg/K toxic	175 mg/K toxic	l inj/day		2 inj/day	2 inj/day	l inj/day 200 mg/K toxic				also negative in gum acacia	1000 mg/K toxic		700 mg/K toxic	l inj/day 125 mg/K toxic
VEHICLE	e	4	9	S.	4	4	4	so.	2	2	9	2	1	5	4	10
NO. OF INJECTIONS	13	13	13	7	9	11	10	4	13	13	13	13	13	9	13	2
AV. WT. CHANGE IN GRAMS treated/controls	+8.0	0.0	-1.5 -1.0	-2.5	$\frac{-2.0}{-1.5}$	-3.0	-2.0	-2.5	0.0	+1.0	-1.0	+1.0	+2.0	-2.0	0.0	-3.5
DOSE mg/K/day	128	8	125	750	35	250	250	100	200	750	200	200	200	200	200	920
NO, OF DEATHS	9/0	9/0	0/10	9/0	2/5	2/5	2/5	9/0	1/5	9/0	9/0	1/5	9/0	1/10	5/0	5/0
PHYSICAL			b.213								b. 48					
COM- POUND SOURCE	AP	O	AE	SO	AP	DN	DN	90	50	CG	œ	CI	W	AP	υ	υ
COMPOUND NAME	Tri (2-benzthiazole) trithiophosphorous acid	o-Trichloroacetylaminophemil	1, 2, 4-Trichloro benzene	3, 5, x -Trichloro-2-biphenylyl acetate	di ($\beta,\beta,\beta\text{-Trichloroisobutyl})$ thionothiophosphate	2-Trichloromethyl-1,3-dioxane	2-Trichloromethyl-4, 5-dimethyl-1, 3-dioxolane	2-(2,4,5-Trichlorophenoxy) ethanol	bis $ar{\it L}$ (2, 4, 6-Trichlorophenoxy) ethy $ar{\it V}$ ether	x, 2, 4-Trichloro-6-phenyl phenol	1,1,2-Trichloro-1,2,2-trifluoroethane	Tricyclo $/4.2.2.0^2.5_{-2}$ 3, 9-decadiene-7, 8-dicarboxylic acid, dimethyl ester	Tridione	Tridodecyl phosphate	Triethylphosphonoacetate	a, a, a-Trifluoroacetophenone
ENTRY NO.	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354	2355	2356	2357	2358	2359

_																
	REMARKS	fresh daily				l inj/day		65 mg/K toxic	64 mg/K toxic		750 mg/K toxic		,		200 mg/K toxic	
	VEHICLE	1	9	e	7	4	2	e	ю	7	4	2	т	-	-	4
	NO. OF INJECTIONS	13	13	11	13	2	13	13	13	13	13	10	11	13	11	7
	AV. WT. CHANGE IN GRAMS treated/controls	-0.5	-1.5	+3.5	0.5	-2.5	+1.5	+3.5	+4.5	-0.5	0.0	+1.5	+1.5	6.5	0.0	-2.0
	DOSE mg/K/day	200	750	512	200	200	009	32	32	200	200	200	512	200	125	125
	NO. OF DEATHS	0/10	9/0	2/10	9/0	1/5	9/0	9/0	9/0	9/0	9/0	2/5	9/0	01/0	5/0	2/5
	PHYSICAL			m, 165				*,				A				
	COM- POUND SOURCE	М	М	ы		AA	ធ	AN	AN	υ	AR	ធ	AE	M	C ::	CI
	COMPOUND NAME	N- \underline{I} ri (hydroxymethyl) methy $\underline{I}^{ar{I}}$ eta -dichloroacetamide	2, 4, 6-Tri /iso-amyloxy/-s-triazine	3, 4,5-Trimethoxybenzolc acid	a-Trimethyl isopatulin	Tri (n-octyl) phosphate	Triphenyl guanidine salt of o-terphenyl-4-sulfonic acid	Trypan blue	Trypan red	9-Undecylenic acid	2-Undecyl-4-methyl-4-hydroxymethyl-2-oxazoline	p-Urazine	Urea, propionyl-	Vanillin-sodium bisulfite	6,61-Vinylene bis (N-benzoylmetanilic acid)	1-Vinyl-2-pyrrolidone
	ENTRY NO.	2360	2361	2362	2363	2364	2365	2366	2367	2368	2369	2370	2371	2372	2373	2374

EMPIRICAL FORMULA INDEX OF COMPOUNDS

(Name Index for Other Materials)

The decision against a standardized nomenclature for the compounds included in this supplement has increased the need for an index. As various individuals are familiar with different systems of nomenclature, and some with none, it has been decided to use an empirical formula index as probably the most useful one. In the index the compounds have been listed as the parent acid or base. For economy of space and time for preparation of the manuscript, the subscripts for the numbers of atoms have been typed on the same line with the symbols for the elements. Thus, sodium acetate would be listed as C2 H4 O2 (Na) rather than C2H3O2Na. After the organic compounds, the inorganic compounds and then the alphabetical list of materials without formulas are presented.

Organic Compounds

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
C 1		C 2	
C H C13 (C6 H5 NO2)	935 986	C2 H6 O4 S (C14 H14 N4 O) . C2 H6 O8 S2 (2Na)	2021
C H I N4	970	C2 H7 N O	623, 2299,2176
C H2 N4	1022	C2 H7 N O4 S	
C H2 N4 (H Cl)	984	C2 H9 N5 (H2 S O4)	
C H3 NO		C 3	
C H3 N5	1771	C3 H3 Cl O4 (2Na)	133
C H4 N4 O2		C3 H4 Cl N	
C H4 S	979	C3 H4 N2 O	1910, 859
C H5 N O3 S		C3 H4 N2 O4	1773
C H5 N3 S		C3 H4 N4 S2	
C H6 N4 O	408	C3 H4 O2	
		С3 Н5 С1 О	865, 74
C2		C3 H5 C1 O (C6 H8 N2 O2 S).	1718
C2 C13 F3	2354	C3 H5 N O	
C2 H Br3 O		C3 H5 N3 O	
C2 H2 O4 (C16 H24 N4)	911	C3 H6 C1 N O3	1471
C2 H4 Cl N O	213	C3 H6 N2 O2	2159
C2 H4 N4	416	C3 H6 N2 S	2165
C2 H4 N4 S (HCl)	1935	C3 H6 N5	
C2 H5 F2 N	1054	C3 H6 O2	83
C2 H5 N O		C3 H7 N O2	640, 641, 1148
C2 H5 N3 O S	1068	C3 H7 N S2 (Na)	2267, 2114, 95
C2 H6 Br N (HBr)		C3 H7 N3 O (HCl)	871, 2160
C2 H6 N2 O2	325	C3 H8 N2 O2 330, 332,	443, 446, 1072
C2 H6 N4 O (H2 S O4)		C3 H8 N2 O3	

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
C 3		C 4	
C3 H8 N4 O2	597	C4 H7 N O2	937
C3 H8 O3 (C23 H30 C1 N3 C		C4 H7 N3	
C3 H8 O7 S2 (2Na)	1737	C4 H7 N3 O2 S	
		C4 H8 C1 N2 (HC1) .	
C 4		C4 H8 N2	1134
64 613 7/	2001	C4 H8 N2 O2	
C4 Cl2 F6		C4 H8 N2 S	
C4 Cl4 S		C4 H8 N2 S (HI)	
C4 H2 C12 O2 (C6 H8 N2 O2		C4 H8 N3 O5 P (Ca)(4)	
C4 H4 N2 O (Na)		C4 H8 N4 O3 S	
C4 H2 N2 O4 (C6 H6 C1 N C		C4 H8 O (Na H S O3)	
C4 H2 N4 O3		C4 H9 N	
C4 H2 O4		C4 H9 N O2	626, 2110, 643
C4 H3 Br N2 O2			1294
C4 H3 C1 N6			1173
C4 H3 N O2 S			1456
C4 H3 N O8 (3Na)		C4 H9 N3 O C4 H9 N3 O2	
C4 H3 N3 O4		C4 H10 Br N(HBr) .	
C4 H3 N5 O2	507, 515, 47	C4 H10 C1 N (HC1)	
C4 H4 Br2 O4		C4 H10 C1 O2 PS	
C4 H4 C1 N O2		C4 H10 N2 O2 (HC1) .	
C4 H4 Cl N5 O2		C4 H10 N2 S	
C4 H4 C12 O2 (C6 H8 N2 O2		C4 H10 O2	
C4 H4 C12 O3 (C6 H8 N2 O2		C4 H10 O6 S (C6 H15 N C4 H10 O7 S2 (2 Na).	,
C4 H4 C12 O4		C4 H11 N O2	
C4 H4 N2	1415	C4 H11 N O4 S	
C4 H4 N2 (C13 H11 Br O) .		C4 H11 O2 P S2	
C4 H4 N2 O2		C4 H11 O4 P	
C4 H4 N2 O2 S	891, 975 1023	C4 H12 N (C5 H11 N S2	
C4 H4 N2 O3		C4 H12 N+ I	1020
C4 H4 N6		Crime Orbi T	
C4 H4 N6 O	651, 510,51	C	5
C4 H4 N6 O (C H4 O3 S).			
C4 H4 N6 S (HCI)		C5 H Br2 O4	454
C4 H4 O		C5 H2 C12 N4 O	
C4 H4 S		C5 H2 C12 N4 O (C6 H8	
C4 H5 C1 O2	1742		635
C4 H5 N (C6 H6 C1 N O2)		C5 H4 N2 O4	
C4 H5 N S			685, 122
C4 H5 N3		C5 H4 N4 O2	
C4 H5 N3 O		C5 H4 N4 O3	846
C4 H5 N3 O S			1556
C4 H5 N3 O3			1558
C4 H5 N7		C5 H4 N5 O3	
C4 H6 N2 O2		C5 H4 O2	89
C4 H6 N4 O2	2077		154
C4 H6 N4 O3		C5 H4 O4 (Na)	
C4 H6 N8		C5 H5 NO	
C4 H6 O			2182, 153
C4 H6 O2 C		C5 H5 N O3 S	
C4 H6 O2 S		C5 H5 N O3 S2	
C4 H4 O4 (C17 H22 N2 O)		C5 H5 N O4 S	
C4 H6 O4 S		C5 H5 N5	
C4 H6 O6 /(C20 H25 N3 O2)			508, 509
C4 H7 Cl O (C6 H8 N2 O2 S	1012		1537
C4 H7 C1 O2		C5 H5 N6 O2	
C4 H7 N O	2273	C5 H6 C16 O3	1719

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
C 5		C6	
CE HE NO S	1/22	G6 W4 T4	2055
C5 H6 N O S		C6 H4 F4	
C5 H6 N2		C6 H4 N2	
		C6 H4 N2 O2	
C5 H6 N2 O		C6 H4 N2 O5	
C5 H6 N2 O2		C6 H4 N4 O3	
C5 H6 N2 S2		C6 H4 N4 O2	
C5 H6 N6		C6 H4 O2	
C5 H6 O S			
С5 Н6 О2		C6 H5 Cl N4 O	
C5 H6 O3		C6 H5 C1 O3 S (C5 H6 N2)	
C5 H6 O5		C6 H5 F	
C5 H7 C13 O2		C6 H5 N O2	
C5 H7 N3 O		C6 H5 N O2 (CHC13)	
C5 H7 N3 O S		C6 H5 N3	
C5 H7 N7		C6 H5 N5 O2	
C5 H8 N2 O2		C6 H6 As Br O3	
C5 H8 N4 O		C6 H6 As N O5 (Na)	
C5 H8 N4 O2		C6 H6 As N O6	
C5 H8 N4 S		C6 H6 Br Cl N2	
C5 H8 N6 O		C6 H6 Br N O2 S	
C5 H8 N6 O S		C6 H6 C1 N O2 S (H3 PO4)	909
C5 H8 O (NaHSO3)		C6 H6 C1 N O2 S (C3 H6 O2	
С5 Н8 О2		C6 H6 C1 N O2 S (C4 H2 N2	
C5 H8 O2 (Na)	135	C6 H6 C1 N O2 S (C4 H5 N)	
С5 Н8 ОЗ		C6 H6 C1 N O2 S (C6 H12 N	
С5 Н8 О4		C6 H6 C1 N O2 S (C7 H7 N3	S) 904
C5 H9 N O2	1477	C6 H6 C1 N O2 S (C9 H6 O2) 907
C5 H9 N O4	682	C6 H6 C1 N O2 S (C12 H9 N) 905
C5 H9 N3 (2H3 PO4)	968	C6 H6 C1 N O2 S (C16 H34	0) 906
C5 H10 C1 N S	1980	C6 H6 C1 N5	1970
C5 H10 N2	1973	C6 H6 C12 N2	414
C5 H10 N2 S2	2013	C6 H6 C12 N2 O3 S	415
C5 H10 N6 O2	2009	C6 H6 C12 O4	632
C5 H10 O5	738	С6 Н6 С16	1917, 832
C5 H11 Br	1827	C6 H6 N2 O2	1914
C5 H11 Cl2 N		C6 H6 N2 O2 (NH4)	934
C5 H11 C12 N (HC1)	977	C6 H6 N2 S2	
C5 H11 N O S2 (Na)		C6 H6 N4 O2	
C5 H11 N O2		C6 H6 N4 O4	
C5 H11 N O2 S		С6 Н6 N6	
C5 H11 N O3		C6 H6 N6 O2	
C5 H11 N O3 S		C6 H6 O2	
C5 H11 N S2 (C4 H12 N) .		C6 H6 O3 (C9 H12 N6)	
C5 H11 N S2 (Na)		С6 Н6 О4	
C5 H12 N2 O3		C6 H7 As O3	
C5 H12 O3		C6 H7 As O4 (Na)	
	104	C6 H7 As O6 S	
C5 H14 N O ⁺ Cl ⁻		C6 H7 Br N2 (HCl)	
C5 H14 N2	923	C6 H7 C1 N2 O2	
0,4		C6 H7 Cl O4	
C 6		C6 H7 C14 N (HC1)	
C6 C13 C3	3250	C6 H7 N O3 S (Na) (2H2O)	
C6 C13 O2		C6 H7 N3	
C6 H2 C12 N2 O4		C6 H7 N3 O 60	
	1870	C6 H7 N3 O3	828, 870
C6 H3 C12 N O2		C6 H7 N3 O2	
C6 H3 C13		C6 H7 N3 O2 (HCl)	
C6 H4 Br2 O		C6 H7 N3 S2	
C6 H4 C1 N O2		C6 H7 N5 O2	
C6 H4 Cl N3		C6 H8 Br2 O2	
C6 H4 C12 N4		C6 H8 N2	
OF IN OLD IN OLD	1031	Co Ho Hui	110, //1, 167

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
C 6		C 6	
	449, 450	C6 H12 O5 S (Na)	2292
C6 H8 N2 O S		C6 H12 O6	677, 2135, 680
C6 H8 N2 O2 S		C6 H12 O6 (2H2O)	687
C6 H8 N2 O2 S (C3 H5 C)	10) 1016	C6 H12 O6 S (Na)	2289
C6 H8 N2 O2 S (C4 H2 C	12 O2) 1014	C6 H12 O7 (1/2 Ca)	681
C6 H8 N2 O2 S (C4 H4 C	12 O2) 1017	C6 H13 N O (H2 S O3) .	2052
C6 H8 N2 O2 S (C4 H4 C)	12 03) 1015	C6 H13 NO (HCI)	150
C6 H8 N2 O2 S (C4 H7 C	10) 1012	C6 H13 N O2 1149	, 1174, 1236, 2118
C6 H8 N2 O2 S (C5 H2 C	12 N4 O) 1018		337, 690
C6 H8 N2 O2 S (C6 H8 C	12 02) 1011	C6 H13 N O2 S	
C6 H8 N2 O2 S (C6 H11 C	Cl O) 1013	C6 H13 N O5 (HC1)	
C6 H8 N2 O3 S		C6 H13 N3 O2	
C6 H8 N2 O4		C6 H14 C1 N'(HC1)	
C6 H8 N2 S		C6 H14 N O2 S+ 1	
C6 H8 N4 O		C6 H14 N2 O2	
C6 H8 N5		-/	645
С6 Н8 ОЗ		C6 H14 O	
С6 Н8 О6		C6 H14 O5 S	
C6 H8 O7 (H2 O)	932	C6 H14 O6	
C6 H9 C1 N2 O5 P2		C6 H14 O6 S2	
C6 H9 NO		C6 H15 A1 O3	
	2356	C6 H15 B O3	2041
C6 H9 N3		C6 H15 N (C4 H10 O6 S)	
C6 H9 N3 (HC1)		C6 H15 N O3	
C6 H9 N3 O		C6 H15 O3 P	
C6 H9 N3 O2 S		C6 H16 N2	
C6 H10 C1 N5			
C6 H10 C13 O5 P		C7	
-1	2220	-	
C6 H10 N2 O3	467	C7 H3 C1 N2 O2 S	1428
C6 H10 N2 O5	805	С7 Н3 С15	2225
C6 H10 N2 S4 (2 Na)	1275	C7 H4 Cl N S2	1874
C6 H10 N4		C7 H4 C12 O	
C6 H10 N4 O2			1963
C6 H10 O2	1729, 374	C7 H5 Br O2	1819
С6 Н10 ОЗ	2040	C7 H5 Br3 O	
C6 H10 O8 (Ca) (2H2O) .	924	C7 H5 C1 N2 (HC1)	495
C6 H11 Br O2	1820	C7 H5 C1 O2	1861, 1862
C6 H11 C1 O (C6 H8 N2 C	02 S) 1013	C7 H5 I O2	590
C6 H11 C12 N O3	1993	C7 H5 I2 N O2	819
C6 H11 C12 N O4		C7 H5 N O3	362
C6 H11 C12 O3 P		C7 H5 N O4	1464, 2260
C6 H11 N		C7 H5 N S2	2163, 872
C6 H11 NO		C7 H5 N3 O2	
C6 H11 N O2		C7 H5 N5 O2	
C6 H11 N O3 S	19, 20	C7 H5 N5 O3	1518, 28
C6 H11 N O4 12		C7 H6 As N O3	
C6 H11 N O4 S		C7 H6 C1 N O2	
C6 H11 N3 O4		C7 H6 F3 N	1093
C6 H11 N5	48	C7 H6 N2	
C6 H12 C1 NO		C7 H6 N2 O (HC1)	
	1954	C7 H6 N2 O5	
C6 H12 N2 O2	898	C7 H6 N2 S	
C6 H12 N2 O2 (C6 H6 C1		C7 H6 N2 S2	
C6 H12 N2 O4		C7 H6 N4 O3 (K)	
	1267	С7 Н6 О2	
	1321	C7 H6 O2 S	
C6 H12 N4 O2			158, 319, 1988
C6 H12 O (Na H S O3) .	1920	C7 H6 O3 S	
C6 H12 O2	151		
C6 H12 O4 (C13 H10 O2)	1750	C7 H6 O5 S (Na)	
C6 H12 O5	714, 76	C7 H7 Cl	917

FORMULAS	ENTRY NOS.	FORMULAS ENTRY	NOS.
C7		C7	
C7 H7 C1 N2 O	547	C7 H13 N O	1358
C7 H7 C1 N2 O	548	C7 H13 N O2	2205
C7 H7 C12 N O2 S		C7 H13 N O3 S	8
C7 H7 I N2 O	591	C7 H13 N O4	1256
C7 H7 NO	2069, 1180, 894	C7 H13 N3 S	1575
C7 H7 N O2		C7 H14 C1 N	1389
C7 H7 N O2 (Na)		C7 H14 C1 N7	1758
C7 H7 N O3		C7 H14 N2	1095
C7 H7 N O4		C7 H14 N2 O	1721
C7 H7 N O5 S		C7 H14 N5	224
C7 H7 N3 O3		C7 H14 N6	1932
C7 H7 N3 S			9, 964
C7 H7 N3 S (C6 H6 C1 N O2 S)		C7 H14 O2	1979
C7 H7 N5			6, 957
C7 H8 C1 (HC1)		C7 H15 N O2	536
C7 H8 C1 N5		C7 H15 N O4	940
C7 H8 N2 O	257	C7 H15 N S2	1281
C7 H8 N2 O2		C7 H15 N2 O4	1283
C7 H8 N2 O5		C7 H16 Br NO	674
C7 H8 N2 S		C7 H16 N2	1370
C7 H8 N4 O2 (C13 H17 Hg N O	* * *	C7 H16 N2 O S (2 HCl)	229
C7 H8 N6		C7 H16 N2 O2 S (HCl)	1703 2075
C7 H8 O2		C7 H18 N10	1760
C7 H8 O3		or mo dio	1100
C7 H9 N O2		C 8	
C7 H9 N O2 S		C8 H3 C15 O2	2224
C7 H9 N O2 S (Na)		C8 H3 N3 O2 S	1500
C7 H9 N O2 S2	2012	C8 H4 Br N O2	1825
C7 H9 N O3	1295	C8 H4 C12 N2	1962
C7 H9 N2		: * .	2, 373
C7 H9 N3 O		C8 H5 Br O2 (H2 O)	1832
C7 H9 N3 O2		C8 H5 C1 N2	518
C7 H9 N3 O3 S		C8 H5 F3 O	2359
C7 H9 N5	4 .	C8 H5 N O2	2199 1 3 96
C7 H10 N ⁺ I ⁻		C8 H5 N O2 (Na HSO3)	2140
C7 H10 N2		C8 H5 N O3	279
C7 H10 N2 O		C8 H5 N O5	1506
C7 H10 N2 O S (HCl)	1908	C8 H5 N O6	367
C7 H10 N2 O2 S	1759	C8 H6 Br2 O3	1942
C7 H10 N2 O2 S (HCl)		C8 H6 C12 O3	557
C7 H10 N2 O3 S		C8 H6 C13 N O2	2345
C7 H10 N2 O4	3044	C8 H6 N2 O	1911
C7 H10 N3 O ⁺ C1 ⁻		C8 H6 N2 O2 1482, 2276, 397	491
C7 H10 N4 S		C8 H6 N2 O6	1443
C7 H10 N6 O		C8 H6 N2 S	1416
C7 H10 O (Na HSO3)		C8 H6 N12 S	54
C7 H10 O2		С8 Н6 О2	2252
C7 H10 O4		С8 Н6 О4	1019
С7 Н10 О5	1350	C8 H6 O4 (K)	998
C7 H11 C1 O3	1352	C8 H7 Br O	1817
C7 H11 Cl O4		C8 H7 Cl O	1858
C7 H11 C12 N O3			1869
C7 H12 C1 N5		C8 H7 C12 N O (HC1)	818
C7 H12 N2 O		C8 H7 C13 O2	2351
C7 H12 N2 C5		C8 H7 N	1412
C7 H12 N2 S		C8 H7 N S2 126,	
C7 H12 O3		C8 H8 C1 N O (HCl)	809
C7 H13 Br O2		C8 H8 C1 N O4 S	1685

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
C 8		C 8	
C8 H8 C1 N3 O S		C8 H14 N2 O S2	
C8 H8 C12 N6 O	1218 1402	C8 H14 O	368, 2054
C8 H8 N2 O		C8 H15 Br	1823
C8 H8 N2 O5 S (NH4)	226	C8 H16 N O6 S (Na)	638
C8 H8 N2 O6 S		C8 H16 N2 O3	
C8 H8 N4 O2 S2		C8 H16 N2 S2	
C8 H8 O2 220, 21	00, 2230, 2336	C8 H17 N O2	952, 955
C8 H8 O3 (NaHSO3)	79, 2162, 2279	C8 H17 N O2 S	
C8 H8 O4		C8 H18 C1 O3 P	
C8 H9 C1 N2 O6 K	1509	C8 H18 O (Na H S O3)	2216
(C8 H9 Cl N4)n		C8 H18 O4 S (Na)	
C8 H9 F O5 S (Na) C8 H9 Hg N O2 /Mg (ClO4)27	2068	C8 H20 N O3 P	
C8 H9 N			
C8 H9 N O2 87,	01, 1029, 2070 , 533, 619, 700	С9	
C8 H9 N3 O	1105, 12 3 9 1789	C9 H6 O2	
C8 H9 N3 O S		C9 H6 O3	
C8 H9 N7 O3	1228	C9 H7 N O5	1492
C8 H9 O2		C9 H7 N S	
C8 H10 As N O7		C9 H7 N3 O S	
C8 H10 N O5 P S	1440	C9 H8 C1 N O2 (C8 H10 N2 C	03 S) 895
C8 H10 N2 O S	1607	C9 H8 C1 N2+ I	
C8 H10 N2 O2 840, 13 C8 H10 N2 O3		C9 H8 N2	
C8 H10 N2 O3 S (C9 H8 C1 N O2 C8 H10 N2 S (HC1)		C9 H8 N2 O3 S2	
C8 H10 N4 O2 /C16 H18 O9 (K)	7 1907	С9 Н8 О В	2322
C8 H10 N4 O5		C9 H8 O3	149
C8 H10 N6	8.61, 1522	C9 H9 Br O	
C8 H11 As O6	2109	C9 H9 C1 N2 O3	1419
C8 H11 NO	1034	C9 H9 C1 O3	1437
C8 H11 N O (HCl)		C9 H9 N O	
C8 H11 N O2 S2		C9 H9 N O3	
C8 H11 N O3 (HC1)	639	С9 Н9 N3	382, 483, 484
C8 H11 N3 O3 S	1062	C9 H9 N3 O2	
C8 H12 C1 N5		C9 H9 N3 O4	
C8 H12 N2 O4 S2	1654	C9 H9 N5 O3 S	1936
C8 H12 O4	2266	C9 H10 Br Cl O	1831
C8 H13 C1 N2 S3 (Na)		C9 H10 Br N O2	1154, 1155
C8 H13 N O6	175	C9 H10 C1 N O2 823,	
Comit	711		1230, 1237

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
C 9	* .	С9	
C9 H10 N2 O 5, 496, C9 H10 N2 O2 S C9 H10 N2 O3 C9 H10 N2 O3 S C9 H10 N2 O4 C9 H10 N4 C9 H10 N4 O4 C9 H10 O2 C9 H10 O2 (Na H S O3)(2 H2 O) C9 H10 O2 S	634 165 497, 750, 2133 101 335 1365 1483 459 1532 2126, 2127 2034 2240	C9 H17 N O2	1270 1132 1179 1269, 1302 2147 2093 999, 2010 1312 1692
C9 H10 O3		C10 H6 C1 N O2	1096 1600 864 1454 363
C9 H11 N5 O		C10 H7 C1 N2 O2	1472 1189 128, 1478 1404 1892, 1893 1571 1958 377, 480
	1634 1625 52 1705 523, 1560	C10 H8 N6 O	1494, 1495 61, 1198 1181 1334 120
C9 H12 N6	1025 1024 1851 2072 2311 283	C10 H8 S	2323 1573 1651 2237 1000, 1081, 1409 2150, 2188, 2195
C9 H13 N5	. 1583, 1626 1540 1806 1614 1754	C10 H9 N O3 S	2184 912 132 411, 479, 481, 482 375 1225
C9 H14 N ⁺ I ⁻ C9 H14 N2 O2 C9 H14 N3 O5 C9 H14 N4 O2 C9 H14 O C9 H15 N O6 C9 H15 N3 O3 C9 H16 N2 O2	53 1577 287, 419 123 1324 2088	C10 H9 N7	
C9 H16 N2 O2	1991 1385	C10 H10 N2 (HC1)	

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
C 10		C 10	
C10 H10 N2 O4	1.470	C10 H14 N2 C8 (4 No)	1021
	1479	C10 H16 N2 O8 (4 Na) C10 H16 N4 O7	63
C10 H10 N4		C10 H16 O	1904
C10 H10 N4 (HCl)	/-	C10 H16 O2	2042
C10 H10 N4 O2 S	1009, 1678, 1679	C10 H16 O4	631
C10 H10 N6 O4 S	1213	C10 H16 O4 S (C41 H44 N4 C	02 S) 231
C10 H10 O3		C10 H16 O5	2049
C10 H10 O5	1000	C10 H17 N O	2168
C10 H11 Br N2 O		C10 H17 N O6	100 010
C10 H11 N O3		C10 H17 N3 O6 S	
	806, 1242, 1243		630, 860
C10 H11 N S2	1107	C10 H18 N6	22/2
C10 H11 N2+ I	745, 746	C10 H18 O	342, 657
C10 H11 N3 O		C10 H18 O2	
C10 H11 N3 O2 S2		C10 H19 N O2	1778
C10 H11 N3 S		C10 H19 N O3	1777
C10 H11 N5	1931	C10 H19 N O4	1372
C10 H12 C1 N O2	000 000	C10 H20 N2	116
C10 H12 F O S+ C1	m 40	C10 H20 N2 O4	1320
C10 H12 N O S	849	C10 H20 O2	1840
C10 H12 N2	731	C10 H20 O3	
C10 H12 N2 O	1078	C10 H20 O8 S2 (2 Na)	1905
C10 H12 N2 O3	311	C10 H21 N O	
C10 H12 N4 O S	2145	C10 H22 N2 O2 S (HCl) C10 H26 N4 (HCl)	1691
C10 H12 N4 O2	15/5	Cro libo N4 (lici)	
	2078, 2173, 2236	C 11	
C10 H12 O4	1855		
C10 H12 O5	2362	C11 H5 C14 N O2 S2	1864
C10 H13 C1 O	1877	C11 H5 N3 O S	
C10 H13 C1 O2		C11 H6 C13 N O2	223
C10 H13 N O	021	C11 H6 C13 N5	1536
C10 H13 N O S	831 , 594, 830, 1151	C11 H6 N2 O2	277
C10 H13 N O2 S		C11 H8 C1 N O2	278
C10 H13 N O5	565	C11 H8 N2 O S	1753
C10 H13 N3 O2 S	584, 2198	C11 H8 N6 O3	39, 1187
C10 H13 N3 O2 S2	868	C11 H8 O2	125
C10 H13 N5	1802	C11 H8 O3	2121, 2256
C10 H13 N5 O3	** ***	C11 H9 C12 N3	1599
C10 H14 N2 O7	50	C11 H9 N O2	221
C10 H14 N3 O7 P	1535	C11 H9 N O4 S	269
C10 H14 N4 O2	527	C11 H9 N3	1579
C10 H14 N4 O3		C11 H9 N7 O2	40, 1547, 1188
C10 H14 N5 O7 P		C11 H9 N7 O7 S2	
C10 H14 N6 O4		C11 H10 Br N O2	
C10 H14 O2		C11 H10 Br 2 N4	4 -
	2318	C11 H10 C15 N O S C11 H10 N2 O	1268
C10 H14 O4 S		C11 H10 N2 O S	
C10 H15 N O2		C11 H10 N2 O2	
C10 H15 N O4		C11 H10 N2 O2 S	
C10 H15 N3 O6	35, 64	C11 H10 N4 O5	
	1611	C11 H10 N6 O2	
C10 H15 N3 O7		C11 H10 O2	
C10 H16 C12 O		C11 H10 O6	
C10 H16 N2		C11 H11 Br N4	
C10 H16 N2 O2 S			1146, 1341
C10 H16 N2 O8		C11 H11 N O4	

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
C 11		C12	
C11 H11 N2 O5 C11 H11 N3 O2 S C11 H11 N5 (HCI) C11 H11 N5 O3	1669	C12 H6 O3	1441
C11 H11 N5 O4	1420 1235 628, 655 1169	C12 H7 N O3	1434 2139 1424 1429, 1505
C11 H12 N2 O4 C11 H12 N4 O2 S C11 H12 N4 O3 C11 H12 N4 S	455, 1480 99, 1675 1766 1574	C12 H8 C16 O	1427 402 298 1485
C11 H12 O4	317 . 1800, 2244, 2245 2197 90, 531, 2191	C12 H9 As C1 N	1638 1369 318
C11 H13 C1 O3	586, 1746 201 534	C12 H9 N (C6 H6 C1 N O2 S C12 H9 N O2	8) 905 378 400 366
C11 H13 N3 O2 S C11 H13 N3 S	2332 2132 581 228	C12 H10 C1 N O C12 H10 C13 N O C12 H10 F O S ⁺ C1 ⁻ C12 H10 I ⁺ I ⁻	214 339 747 2138
C11 H14 N2 O5	288 1628 521, 526, 1539 2335	C12 H10 N2 O2	1459 194 2172 1433
C11 H14 O3 (Na H S O3) . C11 H14 O4 C11 H15 C1 O2 C11 H15 N O2 C11 H15 N O4 S	1968 1799, 2005 538, 951 1648	_	166 210, 289 1581 2242
C11 H16 C1 N5	1273 522 1779 554	C12 H11 N	212, 256
C11 H18 N2 O (2 HCl) C11 H18 N2 O2	1982 939 1138 282	C12 H11 N O3	161, 1205 1572 1538
C11 H18 NZ O3 (Na) C11 H18 NZ O3 S C11 H18 NZ SZ (HCl) C11 H18 N6 C11 H19 N		C12 H12 Br N3	1588, 1589 1590 299
C11 H20 O2	1919, 2368	C12 H12 N2 (HCl) C12 H12 N2 O C12 H12 N2 O (HCl) C12 H12 N2 O S3 C12 H12 N2 O2	429, 441 412 428 1238 110
C12 H6 Br2 C12 I ⁺ C1 ⁻ . C12 H6 C12 N2 O4 S2 . C12 H6 C13 N O4 S2 C12 H6 C14 I ⁺ C1 ⁻ C12 H6 N4 O9	2263	C12 H12 N2 O2 S	432, 1066 1467, 1468 1745 2340

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
C 12			C 13
C12 H13 C1 N4 O	1507	G12 W/ G1/ G2	
C12 H13 C1 N4 O2 S		C13 H6 C16 O2 C13 H6 N2 O6	
C12 H13 N O2		C13 H7 N O3	1351
C12 H13 N2 ⁺ I ⁻		C13 H8 C12 N4 O4 S	
	1097, 1604	C13 H8 N2 O2	
C12 H13 N3 O			1448
C12 H13 N3 O4 S2			190, 2062
C12 H13 N3 O4 S2 (Na)	1661	C13 H8 O4	
C12 H13 N5 O3 S 1	808, 1809, 1811		2219
	1810	C13 H9 C14 N	192
C12 H14 N2 ⁺⁺ (2 Br ⁻)		C13 H9 N	127
C12 H14 N2 O			1327, 2065
C12 H14 N2 O3		C13 H9 N O2	
C12 H14 N2 O4		C13 H9 N3 O6	
C12 H14 N4		C13 H10 N2 (C6 H12	
C12 H14 N4 O2		C13 H10 N2 O3 C13 H10 N2 O6	
C12 H14 N4 O2 S			1780
C12 H14 N4 O2 S (2 HCl)		C13 H10 N4 O4 S .	
C12 H14 N4 O4		C13 H10 O	
C12 H15 C1 O			159, 2103
C12 H15 N3 O3	624, 2089, 2341		174
C12 H16 C1 N5	1741	C13 H11 Br O (C4 H4	1 N2) 765
C12 H16 F O Se ⁺ Br ⁻		C13 H11 C1 N O+ Br	811
C12 H16 F O3 S+ C1	580	C13 H11 N	
C12 H16 N2 O	1400, 1763		1357, 1798, 2104
	260, 1287, 1301		
C12 H16 O3			270, 1656
	2310	C13 H11 N S2 (Na) .	
C12 H17 N O2620, 762,		C13 H11 N5 O2 S .	
	6, 2246	C13 H12	
	10, 1177, 1512		1043
C12 H17 N O3	618	C13 H12 C1 N	1045
C12 H17 N3 S3	2043	C13 H12 N O2+ I	1088
C12 H17 N4 O S+ C1		C13 H12 N2	
C12 H18 N O ⁺ C1 ⁻			385
C12 H18 N2 O (HCl)			1728
C12 H18 N2 O4 S2		C13 H12 N2 O3	
C12 H18 N4 O2	524, 1609	C13 H12 N2 O4 S .	1683
C12 H18 O			427
C12 H18 O6		@10 m10 m1	948
C12 H19 NO		C13 H12 N6 O2 (H2 C	
C12 H19 N O2		C13 H12 N6 O3	
C12 H19 N O8 P2 S	1511	C13 H12 O2 S	1684, 1686
C12 H19 N3 O S	546	C13 H12 O6	1345
C12 H21 C13 N3 O10 P		C13 H13 C12 N3 O.	1127
C12 H21 N3 O2		C13 H13 N	
C12 H22 N4			261
C12 H22 N4 O9			309
C12 H22 O2			1147
C12 H22 O11		C13 H13 N2 O2+ Br-	
C12 H24 N2 O4		C13 H13 N3 C13 H13 N3 O	947
	23, 1514		1418, 1580
C12 H25 N O2		C13 H14 N2 (HC1) .	
C12 H26 N4 O4		C13 H14 N2 O (H1)	
C12 H26 O10 S (C6 H15 N)		C13 H14 N2 O3	
C12 H27 N O2	1139	C13 H14 N4 O	301

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
C 13		C 14	
C13 H14 O2	550	C14 H11 N	1660
C13 H15 N3 O2 S2	1653	C14 H12 Br2 O2	274, 540
C13 H16 C12 O	336, 451	C14 H12 N2 O	1426, 2192
C13 H16 N2 O5 (2 Na)	1165	C14 H12 N2 O4	359
C13 H17 N O3	200	C14 H12 N4 O3	
C13 H17 Hg N O6 (Na)(C7 H8 Na C13 H17 N5 O4	1563	C14 H12 O2	1354
C13 H18 N6 O4	2316	C14 H12 O5	
C13 H19 As N6 O5 (Na) C13 H19 Cl O	2113	C14 H13 N O	250, 1730
C13 H19 N O	1290	C14 H13 N O3	268, 2193, 2200
C13 H19 N2 O2 ⁺ I ⁻	1553	C14 H13 N2 O2 ⁺ I ⁻ C14 H13 N3 O2 S2 C14 H14 Br N O3	
C13 H20 N2 O2 (HCl) C13 H20 N2 O4 S2	705	C14 H14 C1 N (HCl)	569
C13 H20 N4 O4	981	C14 H14 N2	355, 392, 393
C13 H21 N O (HCl)	2204	C14 H14 N2 O2 C14 H14 N2 O3	1901
C13 H25 C1 N2 O (2 HCl)	1898	C14 H14 N4 O (C2 H6 O4 S)	1934
C13 H26 N2 O4		C14 H14 O2	1328, 2051
C 14		C14 H14 S2 C14 H15 As N4 O4 S2 (2 Na) C14 H15 N	1770
C14 H8 Br N O2 C14 H8 Br2 C12		C14 H15 N O	111
C14 H8 C1 N O2 18 C14 H8 C12 O3	215	C14 H15 N3 O5 S2 (Na) C14 H15 N3 O6 S (K)	1508
C14 H9 C1 O3	2023	C14 H15 O P	1077
C14 H9 C13 O2	2347 1404	C14 H16 N2 O	422
C14 H9 N O2	2067	C14 H16 N2 O2 S C14 H16 N2 O4 S2	26
C14 H10 C12 N2		C14 H16 O4	1944
C14 H10 N2 O2 275, 3 C14 H10 N2 O4	1445	C14 H17 N3 O2 S C14 H18	203
C14 H10 N2 O10 S2 C14 H10 N4 O3	1203		741 810
C14 H10 N4 O8	1335		742
C14 H10 O4	1333	C14 H18 I N4 O ⁺ I ⁻ C14 H18 N2 O4	751
C14 H11 C13 N4 O4 C14 H11 F3 N2 O3		C14 H18 N4 (2 H1)	

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
C14		C 15	
C14 H19 N O3	2258	C15 H12 N2 O4	1400
C14 H19 N2 O4		C15 H13 N3 O6	
C14 H19 N3 S		C15 H14 N2 O2	
C14 H19 N4 O+ Br (HBr)		C15 H14 N2 O3	
C14 H19 N5 O3		C15 H14 N2 O5	
C14 H20 N2 O2		C15 H14 N2 O6	
C14 H20 N2 O4		C15 H14 N6 (HCI)	1812
C14 H20 N4 O S	848	C15 H14 N6 O3	1195
C14 H20 O		C15 H14 O	
C14 H20 O2		C15 H14 O3	
C14 H20 O3		C15 H15 N O2	. 1164, 1176, 1277
C14 H20 O8		CIE WIE N O2	1280, 2105, 1446
C14 H21 N O2			310, 1293
C14 H22 N4		C15 H15 N3 O4	2142
C14 H22 N4 S4		C15 H15 N3 O6	
C14 H22 O		C15 H16 N2 O (HC1)	
C14 H22 O8 (2Na)		C15 H16 N2 O4 S	
C14 H23 O4 P S2	1346	C15 H16 N2 S	
C14 H24 N2 (HCl)		C15 H16 O	2151
C14 H24 O13 N2	1319	C15 H17 C1 N4	2338
(C14 H25 N O4) _x	1121	C15 H17 C12 N (HCI)	
C14 H27 N3 O4 (HC1)	1307	C15 H18 N6	
C14 H30 C1 N (HC1) C14 H30 O4 S (Na)		C15 H19 C1 N4	
C14 H31 N		C15 H19 N O2 C15 H19 N O3 (HCl)	
C14 H32 N2		C15 H19 N O6	
		C15 H20 Br N O2 (HBr)	1826
C 15		C15 H20 N2 O4 (HC1) .	
		C15 H20 N2 O5	
С15 Н8 О4		C15 H20 N4 O2 S2	1677
C15 H9 Br3 O3		C15 H20 O2	
C15 H9 N O2		C15 H21 C1 O	
C15 H10 C1 N O2		C15 H22 N2 O4 S	
C15 H10 N2 O		C15 H23 N O2	
C15 H10 N2 O2		C15 H23 N5 O4 (HCl) . C15 H24 N2 O S	
C15 H10 O2		C15 H24 O6	
C15 H10 O3		C15 H25 N O2	
C15 H11 Br O		C15 H25 N2 O2+ C1	1246
C15 H11 NO	1363, 2124	C15 H25 N5	1545
C15 H11 N O2	354	C15 H27 N O2	
C15 H11 N O3		C15 H28 N2	
C15 H12		C15 H29 N O2	
C15 H12 C1 N3 O2		C15 H30 N6 O6	
C15 H12 N2 O3	155	C15 H31 N O2 C15 H32 N2 S	1276
C15 H12 N2 O5		C15 H52 N2 S	1696
C15 H12 N2 O7		C 16	
C15 H12 N2 S		0.0	
C15 H12 O		C16 H8 N2 O4 S	2017
C15 H12 O2		C16 H9 C12 N O2	
C15 H12 O3		C16 H9 N5 O4 (Ni)	1216
C15 H12 O3 (Na HSO3)		C16 H10 N2	
C15 H12 O7		C16-H10 N4 O2	
C15 H13 C1 NO		C16 H12 C12 N4	
C15 H13 C1 N2 S		C16 H12 C16 O3	
C15 H13 F3 N2 O3		C16 H12 N2 O	
C15 H13 N O2		C16 H12 N2 O2	
C15 H13 N3		C16 H12 N2 O3 S2 (Na) C16 H12 N2 O5	
C15 H13 N3 O		C16 H12 N2 O5	
C15 H13 N3 O2 S		C16 H12 O3	

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
C 16		C 16	
C16 H13 N		C16 H21 N3 O S	
C16 H13 N3 O4 S		C16 H21 N3 O2 S C16 H23 C1 O	
C16 H13 N5		C16 H23 C1 O2	1871
C16 H13 N5 O4		C16 H23 N O (HCl)	622
C16 H14 N2 O5 S2 (Na)		C16 H23 N O11	2223
C16 H14 N2 O6 S2 (Na)	131	C16 H23 N3 S	
23/ XXX 4 22	2107	C16 H24 N2 O2 S2	
C16 H14 O2 S	474	C16 H24 N4 (C2 H2 O4)	
C16 H14 O8 S		C16 H25 N O (HCI)	598
C16 H15 C1 O		C16 H25 N O S	1263
C16 H15 I O2		C16 H25 N S2	1240
C16 H15 N O3			1555
C16 H15 N7 O6	31, 1183	C16 H26 N2 O (2 HCl)	608
C16 H15 O2		C16 H28 N4 S6	
C16 H16 Br2 O4 S		C16 H30 N4 O (HCl)	
C16 H16 C1 N (HCl)		C16 H31 N O2	
C16 H16 C1 N3 S3		C16 H32 N4 O2	
C16 H16 C12 O3	1881	C16 H32 O5	
C16 H16 C13 N (HCI)		C16 H34 O (C6 H6 C1 N O2 S) 906
C16 H16 N2 O2		C16 H35 O2 P S2 (1/2 Cu) .	1909
C16 H16 N2 O4	71, 1632, 2233	C 17	
C16 H16 N4 O2		017	
C16 H16 N8 O5		C17 H11 N O5	2125
C16 H16 O2	1815	C17 H11 N3 O4 S	401
C16 H17 C1 N2 O4 S		C17 H12 N2 O2	
C16 H17 C1 O2		C17 H12 N4 O4 S	
C16 H17 C14 N O2		C17 H12 N4 O7 S2 C17 H13 C1 N O ⁺ Br ⁻	1227
C16 H17 NO			238
C16 H17 NO (HCI)		C17 H13 C12 NO 1	
C16 H17 N O2 (Na)		C17 H13 N	
C16 H17 N2 O4 S (Na)		C17 H13 N O2	
C16 H17 N3 O		C17 H13 N O4	
	1094	C17 H13 N5 O2	
C16 H18 N2 O		C17 H14 N4 O3	
C16 H18 N2 O4 S		C17 H14 O2	
C16 H18 N4 O		C17 H15 NO	
C16 H18 N4 O2		C17 H15 N O2	
C16 H18 O	2150	C17 H16 Br2 N2 O2	
C16 H18 O9 (K)(C8 H10 N4 O2)		C17 H16 N4	
C16 H19 N	281, 1109	C17 H16 O3	820
C16 H19 N (HCl)		C17 H17 N O	
C16 H19 N O			.198, 199, 616
C16 H19 N O2		C17 H18 N2 O2	
C16 H19 N2 ⁺ I ⁻		C17 H19 Br N4 O2 (2 HCl) .	
C16 H19 N5 O	1804	C17 H19 N	
C16 H19 O S ⁺ Br ⁻	602	C17 H19 N O2	
C16 H19 O3 S ⁺ Br ⁻		C17 H19 N5 O4	
C16 H20 N2 O		C17 H20 C1 N O	1116
C16 H20 N2 O5 S		C17 H20 C1 N2 SC N C17 H20 N2 O2 S (C14 H10 B	
C16 H20 N2 S		C17 H20 N4 O2 (2 HCl)	
C16 H21 C1 N4 (HC1)		C17 H20 N4 O6	
C16 H21 NO'		C17 H20 O3	
C16 H21 N O10	1410	C17 H21 N O2	1130

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
C 17		C 18	
C17 H21 N2+ I		C18 H22 C1 N (HC1)	1126, 1143
C17 H22 N2	1050	C18 H22 C1 N O2 (HC1)	1386
C17 H22 N2 O (C4 H6 O4)			1055
C17 H23 NO		C18 H22 N4	566
C17 H24 N4 O2		C18 H22 O2	675
C17 H24 O2		C18 H22 O4	673
C17 H25 N O S			579, 588, 1131
C17 H26 Br NO		C18 H23 N2 ⁺ I ⁻	744
C17 H35 N S2 (Na)		C18 H23 N2 O2+ I	1250
C17 H37 N3 (HBr)	2085	C18 H23 N2 O5 S2	
C 18		C18 H24 N2 O2	
		C18 H24 N2 O5 S	
C18 C110 O4			528
C18 H10 N8		C18 H26 N2	718
C18 H12 C13 N O2		C18 H26 O8	
C18 H12 N6		C18 H28 O2	
C18 H13 C12 N O2		C18 H30 O6	
C18 H13 N O2		C18 H31 NO	
C18 H13 N O3		C18 H32 O16 (5 H2 O)	713
C18 H13 N5 O	852 1517	C18 H33 N3 O3	
C18 H13 O3 S (C19 H18 N3)	2365	C18 H36 C14 N2 (2 HC1)	
C18 H14 Br N O2	184	C18 H36 O2 (C8 H8 C12 N2 S)	1693
C18 H14 C12 N+ I 105	51, 1052, 1053		
C18 H14 C12 N2 O4 S2	1636	C 19	
C18 H14 N2 O S			
C18 H14 N2 O3			650
C18 H14 N6		C19 H12 C1 N3 O4 S2 (Na) .	
C18 H14 N6 O		C19 H13 C12 N O2	
C18 H14 O2		C19 H13 N O	
C18 H14 O4	70	C19 H14 N2 O3	
C18 H14 O6 S2	409	C19 H15 C1 N2 O (HC1)	237
C18 H14 O9 S3 (3K)	2301	C19 H15 NO	
C18 H15 F N O ⁺ Br ⁻		C19 H15 N O2	
C18 H15 N5 O7 S2		C19 H15 N O4 (HC1)(H2 O) .	
C18 H16 N ⁺ I ⁻		C19 H16 N2 O (HCl)	
C18 H16 NO2+ I	1084	C19 H16 N2 O (HCI)(CH3 OH)	
C18 H16 N2 O2		C19 H16 N6	1529
C18 H16 N4 O4 S	1641	C19 H16 O2	211
C18 H16 N6 O12 S2		C19 H17 C12 N7 O6	
C18 H16 N8		C19 H17 N O (HCl)	
C18 H17 N O2		C19 H17 N O2	
C18 H17 N3 O3		C19 H17 N O5	
C18 H18 N2 O10 S2 (K) C18 H18 N4 O4	1366	C19 H18 Br2 N8 O5	
C18 H18 N4 O7 S3 (Na)	308	C19 H18 C12 O4	
C18 H19 C13 O2	1662	C19 H18 N2	
C18 H19 I N O+ Br	753	C19 H18 N3 (C18 H13 O3 S).	
C18 H19 N O2 (HCl)		C19 H19 N O4	
C18 H19 N O3		C19 H19 N3	
C18 H20 C1 N O2 (HC1)		C19 H20 N2 O	
C18 H20 C12 O4		C19 H20 N2 O2	
C18 H20 N2 O3	2112	C19 H20 N2 S2 (HC1)	
C18 H20 N2 O4	583	C19 H20 N8 O5	102, 817
C18 H20 N4 ⁺ 2I ⁻	592		1064
C18 H20 N8 O6 S	816	C19 H21 C1 N5 O4+ C1	
C18 H20 O2	669	C19 H21 N O2 (HC1)	
C18 H21 Br2 N O3		C19 H21 N O3	
C18 H21 C1 N2 Q (HC1)		C19 H22 Br2 N4 O2 (2 HCl) .	
C18 H21 N O2		C19 H22 N2	
C18 H21 N4 O+ B+		C19 H22 N2 O	
O HE IN O DI	130, 137, 033	01/ HES IT (HO1)	

FORMULAS	ENTRY	NOS.	FORMULAS	ENTRY NOS.
C 19				C 21
C19 H24 Cl N O (HCl)		1387	C21 H12 N3 P S6 .	2344
C19 H24 N2 (HCl)		692	C21 H13 N O6 S	
C19 H24 N2 O2 (HC1)			C21 H14 O	
C19 H24 O4		2031	C21 H15 N O2	
C19 H25 N O (HCl)		1114	C21 H15 N5 O4 S2 .	
		599	C21 H15 N5 O7 S3 .	
C19 H27 C1 N+ I		808	C21 H17 N	
C19 H27 C1 O2		1743	C21 H17 N O (HC1)	
C19 H28 N2		1399	C21 H18 C12 O4	
C19 H28 N4 O2		1928	C21 H21 N3 O4	232
C19 H28 O2	666	6, 725	C21 H21 N9	
C19 H31 N2 O2+ C1		2116	C21 H22 N2 O	
C19 H32 Cl N O (H3 P O4)		1117	C21 H22 N2 O2	720
C19 H38 N2		1582	C21 H23 NO	1379
C19 H39 N O2		1296	C21 H23 N O2 (H2 S	
C19 H41 N3 (HBr)		2213	C21 H23 N O5	
			C21 H23 N3 O	
C 20			C21 H23 N7 O6	
C20 H12 O2		20/4	C21 H23 N7 O6 (H2 C	
		2064	C21 H24 As3 Bi2 N3	
C20 H13 N O3		1449 800	C21 H24 N2 O2	
C20 H14 N O4+ N O3		1089	C21 H24 N2 S2 (HCl)	
C20 H14 O		2059	C21 H24 N4 O4 S2 . C21 H24 O10	
С20 Н16		209	C21 H25 Br N O ⁺ Br	
C20 H16 Br N3 O		1210		679, 2073
C20 H16 N2 O2		2020		2321
C20 H16 N2 O3 S2		1627		689
C20 H16 N4		88	C21 H28 C12 N2 (2 H	
C20 H16 N4 O2		1441	C21 H28 O5	
С20 Н16 О		2066	C21 H30 O2	69, 711
C20 H18 O		2181	C21 H30 O5	661
C20 H19 N O5		652	C21 H32 O2	68
C20 H19 N7 O5 S2 (Na)		1519	С21 Н36 О5	660
C20 H20 C12 N2 O12 S2		1340		722
C20 H20 C12 N2 O12 S2 (NH4)		1339	C21 H39 N7 O12 (2/3	
C20 H20 C12 N4 O2		1047	C21 H41 N7 O12 (H2	SO4) 1987
C20 H20 N O2 ⁺ I ⁻		575 1058		C 22
C20 H20 N2 O		344		C 22
C20 H20 N2 O (HC1)		1098	C22 H14 N4 O2	1965
C20 H20 N3 O+ C1		2211	C22 H14 O9	
C20 H20 N8 O4 S2 (2 Na)		1526	C22 H17 N O5	
C20 H21 I N2+ I		1061	C22 H17 N3 O4 S .	
C20 H21 N O2 (HC1)		587	C22 H19 NO	
C20 H21 N2 ⁺ I		1060	C22 H19 N3 O9 S2 (H	
C20 H21 N3 O		345	C22 H20 N2 O4 S .	1689
C20 H21 N7 O6 8	333, 1196,	1197	C22 H20 O	
C20 H22 N8 O5		815	C22 H23 C1 N2 O8 (H	
C20 H23 C12 N3 O5		1219	C22 H23 NO	
C20 H23 N4 O ⁺ Br ⁻		761		702, 2208
C20 H24 Cu N2 O2		2091	C22 H23 N3 S4	
C20 H25 N3 O2		1619	C22 H24 I2 O4	
(C20 H25 N3 O2) ₂ (C4 H6 O6)		978	C22 H24 N2 O9	
C20 H26 N6 O2++ 2 C1		1028	C22 H25 N O	
C20 H26 O6		2271	C22 H25 N O2 (HCl)	
C20 H27 C1 N C1		1041 578	C22 H25 N O3 C22 H25 N O6 (C9 H	
C20 H27 N O(HCI)		564	C22 H25 N O6 (C9 H	
C20 H27 N O11 (3 H2 O)		1392		
C20 H30 N4 O2 (2 HCl)		2094	C22 H25 N2 O+ I .	
C20 H31 N O (HCl)		609	C22 H26 N3 O5 (2 H	
,,			,	

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
C 22		C 25	
C22 H28 C12 O2 C22 H29 O4 P S C22 H30 N2 O5 S C22 H30 O2 C22 H30 O2 C22 H30 O2 S C22 H32 O3 C22 H33 N O3 (HCl) C22 H43 N O2 C22 H43 N O3 C22 H44 N2 O	1990 21 560 1847 1989 726 563 2083 2081 2115	C25 H19 N3	1646 1184 1668 1549 559 1140 92 1288 1073
C22 H48 O6 P2		C 26	
C 23			190
C 23 C23 H14 Br N3 O2 C23 H21 N O2 C23 H21 N O2 C23 H21 N3 O4 C23 H23 N O C23 H25 N3 S C23 H25 N3 S C23 H27 N3 O4 S C23 H27 N3 O4 S C23 H28 N2 O2 C23 H29 N2+C1- C23 H29 N3 O2 C23 H30 C1 N O (HC1) C23 H30 N2 O3 C23 H30 N6 C1 C23 H30 N6 C23 H30 O6 C23 H31 N0 (HC1) C23 H30 O6 C23 H32 O3 C23 H32 O3 C23 H32 O4 C23 H32 O5 C23 H34 O6		C26 H18	
C 24			837
C24 H15 N3 O2 C24 H16 N4 S C24 H18 Br4 N4 O2 S C24 H18 N4 C24 H18 N4 O C24 H18 N4 O C24 H18 N4 O2 C24 H18 O2 C24 H19 C12 N3 O C24 H20 As Br C24 H20 N2 C24 H23 C12 N O3 C24 H24 N4 O2 C24 H24 N4 O2 C24 H24 N4 O2 C24 H26 N4 O4++ 2 Br- C24 H26 N8 O9		C 28 C28 H18 (H2 S O4)	206 2373 1360 91 1845 610 2312 1699
C24 H28 N3 ⁺ C1 ⁻	1080 77 1927 929 2212	C 30 C30 H32 N O2 ⁺ I ⁻	430

FORMULAS	ENTRY NOS.	FORMULAS	ENTRY NOS.
		10111101110	EMINI NOS,
C 31		C 4	1
C31 H46 O2	847	C41 H44 N4 O2 S (C10 H	116 O4 S) 231
C31 H53 C12 N (HCl)	1375		
C 32		C 42	2
0 32		C42 H86 O25 S (C6 H15	N) 2203
C32 H16 Cu N8 O6 S2 (2 Na)		0.000 0 (00 0.00	14
C32 H24 N6 O15 S5 (5 Na)	2367	C 4	4
C32 H30 N4 O2 S Si	1645	C44 H80 N2 O4	1303
C 33		C44 H86 O4	
C33 H32 N3		C 4	6
033 1111 013 11 03	1014	C46 H52 N4 O8 (H2 SO4)	(7 H2 O) 922
C 34		(32 20 4)	(1.11.0)
G24 W27 W2 G2 G G	1/50	C 5	1
C34 H27 N3 O3 S Si		C51 H40 N6 O23 S6 (6 N	a) 137
C34 H38 N6 O14 S4 (4 Na)		C31 N40 N0 O23 S0 (0 N	a) 137
		C 54	1
C 36		GE 4 1124 G112 G10	1705
C36 H40 N2 O10 S	1688	C54 H36 C112 O18	1725
C36 H71 NO	2214	C 5	7
C36 H75 O4 P			
C36 H78 O10 P4	2087	C57 H104 O9	
C 38		C 58	8
C38 H78 S2	2293	C58 H115 N O3	2082
C 39			
C39 H82 O6 P2	2315		
,			
	Inorganic Con	npounds	
H I O4 (Na)		Na2 H P O4 (7H2 O)/Na	H2 P O4 (H2 O)7
H2 O2		/Na3 P O4 (12 H2 O) Na3 P O4 (12 H2 O)	1006
A12 O3	1748	Na3 P O4 (12 H2 O) /Na	H2 P O4 (H2 O)7
K As O2		/Na2 H P O4 (7 H2 (
Mg (Cl O4), (C8 H9 Hg N O2) .	974	Na Cl	
Na H2 P O4 (H2 O)	1003	N H4 $/$ Cr (NH3) ₂ (SCN) ₄	_/ H2 O 914
Na H2 P O4 (H2 O)/Na2 H P O4(Ni C12 (6 H2 O)	2209
/Na3 P O4 (12 H2 O)/.	1006	Tl N O3	2317
Na2 H P O4 (7 H2 O)	1004		

Materials Without Empirical Formulas

NAME OF PREPARATION		E	IN	RY	NOS.
Ammino compound, succinic acid, a-alkenyl-, copper (II) mono salt .					1776
Ammoniated glycyrrhizin					1775
Amylum					915
Auramine O					647
Avil-Hoechst (antihistaminic)	•		•	•	649
Bacitracin				•	854
Balm of Gilead buds				•	766
Black haw (root and bark)	•		•	•	767
					768
Blood root, N. F	•		•	•	770
Brown henna			•	•	769
Burdock	•		•	•	925
Carboxymethyl cellulose	•		•	•	771
Chickweed			•	•	
Cochineal			•		1906
Coelestine blue					659
Colombo root					772
Corlumine					75
Daxad No. 11 (polymerized sodium salts of alkyl naphthalene sulfonic					888
Desoxyribonucleic acid					1584
4,4'-Diaminodiphenylsulfone didextrose sodium sulfonate					247
4,4'-Diaminophenyl-sulfone digalactose					248
Dimer of Indalone					1997
N-n-Dodecyl thiuronium bromide of polyethylene glycol 200					1700
N-n-Dodecyl thiuronium bromide of polyethylene glycol 6000					1701
Elecapane					773
Euphrobia Piluliferia					774
Gentian root					775
Glyoxal-carbohydrazide polymer					436
Glyoxal-hydrazine polymer					437
Golden seal root N. F					776
Growth hormone					826
Gum acacia					2080
Gum Labdonum					777
Heparin, sodium					963
Horse nettle root					778
Hydroquinone derivative					2099
Isamine blue			-	688.	1782
Kola nut					779
Koussein					2156
Lithosperum (Gromwell)					780
Melissa herb					781
N-(Methyl),-p-hydrazinodiphenyl	•		٠	340	
Neomycin .HCl					873
Nucleic neid			•	•	989
Nucleic acid				•	990
Papain	•				
Penicillin O potassium, crystalline					24
Podophyllum					997
Poke root	•				782
Poly acetyl-p-hydrazino diphenyl					
Polymyxin B sulfate					879
Polyporic acid					241
Polyvinylpyrrolidone (PVP)					890
Primrose					783
Pyruvic aldehyde-hydrazine polymer					478
Quercitrin					2275

NAME OF PREPARATION ENTRY NOS.	
Ribo nucleic acid (yeast)	
Ricin	
Rimocidin	
Sage brush leaves	
Sage brush root	
Saponin	
Serpentaria	
Smartweed	
Smilex Honduras	
Snake root	
Southern wood	
Streptokinase	
Sulphadimidine	
Thiolutine	
Thiophene, trimer	
Thiuronium bromide of polyethylene glycol 300	
Thiuronium bromide of polyethylene glycol 1000	
Thiuronium bromide of polyethylene glycol 4000	
Thiuronium bromide of polyethylene glycol 6000	
Thymonucleic acid	
a-Trimethyl isopatulin (isoclavacin)	
Tumeric	
Yellow dock seed	
Yerba Santa	
Worm seed	
Wormwood leaves	
Wormwood herb	

days become wwws

Think back to the time when you were completely dependent on manual methods for histologic processing. Tissue preparation that frequently took days to do then is now done in a matter of hours. Everybody's time is saved . . . technician's, pathologist's, surgeon's, patient's,

and hospital's. Tissues come through faster and better — diagnosis is prompter. The working day becomes more productive.

This is why thousands of hospitals all over the world depend, with justified confidence, on their Autotechnicons for unfailing, day-in, day-out service.

THE TECHNICON CO. 215 E. 149TH ST. NEW YORK 51, N. Y.

Autotechnicon

automatic histologic preparation

