Files d'attente

Plan du cours :

- Chapitre 1 : Introduction
 - > Chapitre 2 : Rappels mathématiques
 - Chapitre 3 : Les chaînes de Markov
 - > Chapitre 4 : Files d'attente
 - > Chapitre 5 : Réseau de files d'attente

Marion Gilson-Bagrel

1

Plan

Plan du chapitre 1 :

- > Introduction
- > Systèmes à événements discrets
- > Evaluation des performances :
 - pourquoi ?
 - comment ?

Introduction

Objectifs du cours :

- Modéliser et évaluer les performances d'un système à événements discrets
 - Connaître ce qu'est un système à événements discrets
 - En quoi consiste l'évaluation des performances
 - Comment s'y prendre ?
 - Dans quel but ?
 - •
- > S'intéresser essentiellement à l'application de la théorie des files d'attente pour l'étude des réseaux informatiques.

3

Plan

Plan du chapitre 1 :

- > Introduction
- > Systèmes à événements discrets
- > Evaluation des performances :
 - pourquoi ?
 - comment ?

Systèmes à événements discrets

Définition:

- Systèmes décrits par des variables d'état discrètes
 - Changements d'état = occurrence d'un ensemble d'événements
 - Événement = modification des variables d'état

- Occurrence des événements = façon continue dans le temps
 - → "Systèmes à changements d'états discrets"

Exemple:

- Guichet de la Poste
 - État du système = variable entière décrivant le nombre de clients dans la file d'attente à un instant donné
 - → Exemple: 2 ou 4 clients mais pas 3,2!
 - Événements possibles =
 - → Arrivée d'un client (taille de la file augmentée de 1)
 - → Fin de service d'un client (taille de la file diminuée de 1)
 - Occurrence des événements = instant quelconque (temps continu), mais les changements sont immédiats et quantifiés (discrets).

Systèmes à événements discrets

Exemple:

- > Systèmes informatiques
 - État du système = variable d'état à un instant donné, comme :
 - → Nombre de processus en cours de traitement
 - → État de ces processus (actif, en attente, prêt ...)
 - → État des ressources partagées ...
 - Événements associés =
 - → Début et fin de traitement d'un processus
 - → Demande d'accès ou libération d'une ressource
 - Occurrence des événements =
 - → Temps continu mais changement discret des variables d'état
- > Système de production
 - Nombre de pièces en attente, traitées, état des machines ...
- > Réseau de communication
 - Variables d'état = nombre de message/paquets en attente/émission
 - Événements associés = début/fin d'émission, de réception ...

Plan

Plan du chapitre 1 :

- > Introduction
- > Systèmes à événements discrets
- > Evaluation des performances :
 - pourquoi ?
 - comment ?

7

Evaluation des performances

Critères d'évaluation des performances :

- > Paramètres de différents ordres suivant objectifs visés
- > Réseaux de communication :
 - Temps de réponse (délai d'acheminement) de bout en bout
 - → Dépend du découpage du message, du temps d'attente, de transmission ...
- > Systèmes de production :
 - Débit en produits finis ou
 - taux d'utilisation des machines
- > Guichet de la Poste :
 - Temps d'attente pour l'usager
 - Nombre de client dans la file pour la Direction (et implication : place)

Critères d'évaluation des performances :

- > 4 paramètres de performance importants :
 - Débit (X)
 - Temps de réponse (W)
 - Nombre de clients (Q)
 - Taux d'utilisation (U)
- > Techniques d'évaluation des performances :
 - Valeurs moyennes de ces paramètres X, W, Q, U
 - Intérêt statistique MAIS insuffisant
 - \rightarrow Exemple : usager de la Poste qui attend 20 min pourtant $\overline{W} = 5$ min
 - Nécessité de disposer des moments d'ordre supérieur des variables aléatoires
 - → Variance : dispersion de la variable par rapport à sa moyenne
 - → Ex. : note des élèves ou usager de la Poste (surprises + ou -)

0

Evaluation des performances

Pourquoi évaluer les performances d'un système ?

- Car inconnues!
- > Car impossibilité de les mesurer !
- > En conception
 - Pour préparer la création d'un système
 - Prévoir le dimensionnement d'un réseau, les performances d'une machine ... pour répondre au cahier des charges (ni trop, ni pas assez ...)
- > En exploitation
 - En vue de faire évoluer un système
 - Évaluation des impacts de changement de machine ...
 - Tester les machines en conditions anormales de fonctionnement (panne ou surcharge)

Evaluation des performances

Comment évaluer les performances d'un système ?

- > Utilisation d'un modèle
 - Réseaux de file d'attente, réseaux de Petri, automates stochastiques ...
 - Évaluation des performances : sur le modèle !

Analyse des résultats

11

Evaluation des performances

Comment évaluer les performances d'un système ?

- > Analyse
 - Analyse qualitative : propriétés comportementales du système (absence de blocage, stabilité, ...)
 - → Ex.: 2 processus utilisent une même ressource (2 utilisateurs et une imprimante : propriété d'invariance : Imp_libre+ Imp_utilisée_par1+ Imp_utilisée_par2 = 1)
 - Analyse quantitative :
 - → Calcul des paramètres de performance du système
 - → Par simulation (très utilisée car générale MAIS gourmande en temps de calcul)
 - Par une méthode analytique
 - ✓ Calculs mathématiques (à choisir en premier)
 - ✓ Problème : limité aux classes de modèles connues (restrictif)
 - ✓ Alternative : technique analytique approximative
- Modélisation
 - "Usine à gaz" (nécessite bcp d'informations) ou modèle simple ?
 - → Compromis entre adéquation du modèle / système et facilité d'analyse
 - → Très important!

Evaluation des performances

Comment évaluer les performances d'un système ?

- > Analyse des résultats
 - Difficulté relative à la complexité de la modélisation
 - Objectif : répondre à la question
 - → La configuration du système répond-elle aux objectifs (exigences) du cahier des charges ?
 - → Ex. : le temps de réponse du réseau est-il dans plus de 95% des cas inférieur à 1 s ?
 - → Souvent : réponse négative ...!

- ✓ analyse des résultats de l'étude de performances
- ✓ nouvelle configuration de modèle
- √ bouclage

13

Evaluation des performances

Comment évaluer les performances d'un système ?

- > Caractérisation stochastique des systèmes
 - Tous les systèmes sont déterministes
 - > Prévision certaine de leur comportement
 - → Pas aussi simple!

- Exemple du dé : connu exactement pourtant résultat du jet inconnu a priori
- Remplacement des informations inconnues par une caractérisation stochastique (probabiliste)
 - → Exemple du dé : élimination des informations inconnues pour les remplacer par une probabilité de 1/6 pour chaque face.
 - → Exemple d'un réseau de communication : remplacement du routage déterministe par un routage probabiliste au niveau du modèle
 - → Exemple du guichet de la Poste : arrivée des clients et temps de service représentés sous forme stochastique

