Aufgabe 1 Untersuchen Sie jeweils, ob eine Folge $\{a_n\}_{n\in\mathbb{N}}$ existiert, die die angekreuzten Eigenschaften besitzt und die nicht angekreuzten Eigenschaften nicht besitzt. Geben Sie im Fall der Existenz ein Beispiel

	nach oben beschränkt	nach unten beschränkt	monoton wachsend	monoton fallend	alternierend
a)	×	×	×	×	
b)	×		×	×	
c)	×		×		
d)	×			×	×
e)	×			×	
f)	×				
g)		×			×
h)		×			
i)					×
j)					

Aufgabe 2 Zeigen Sie:

- a) Ist eine Folge $\{a_n\}_{n\in\mathbb{N}}$ monoton wachsend und nach oben beschränkt, so gilt $\lim_{n\to\infty}a_n=\sup\{a_n\}_{n\in\mathbb{N}}$
- b) Ist eine Folge $\{a_n\}_{n\in\mathbb{N}}$ monoton fallend und nach unten beschränkt, so gilt $\lim_{n\to\infty}a_n=\inf\{a_n\}_{n\in\mathbb{N}}$
- c) Ist eine Folge $\{a_n\}_{n\in\mathbb{N}}$ konvergent gegen den Grenzwert -10^{-7} , so sind unendlich viele Glieder der Folge negativ.
- d) Eine Folge $\{a_n\}_{n\in\mathbb{N}}$ konvergiert genau dann gegen den Grenzwert $a\in\mathbb{R}$, wenn die Folge $\{a_n-a\}_{n\in\mathbb{N}}$ eine Nullfolge ist.
- e) Die Beschränktheit einer Folge ist nicht hinreichend für ihre Konvergenz.
- f) Ist eine Folge $\{a_n\}_{n\in\mathbb{N}}$ konvergent gegen den Grenzwert $a\in\mathbb{R}$ und gilt $a_n>0$ für unendlich viele $n \in \mathbf{N}$, so ist $a \geq 0$.
- g) Sind $\{a_n\}_{n\in\mathbb{N}}$ und $\{b_n\}_{n\in\mathbb{N}}$ zwei Folgen mit $\lim_{n\to\infty}a_n=a\in\mathbb{R}$ und $\lim_{n\to\infty}(b_n-a_n)=0$, so gilt $\lim_{n \to \infty} b_n = a.$

Aufgabe 3 Untersuchen Sie die Folgen aus Aufgabe 3 von Übungsblatt 5 jeweils auf Konvergenz. Wie lautet gegebenenfalls der Grenzwert?

Aufgabe 4 Berechnen Sie:

a)
$$\lim_{n \to \infty} \frac{n^2 + n + 2}{4n^3 + 1}$$

b)
$$\lim_{n \to \infty} \frac{(n+1)^2 - n^2}{n}$$

b)
$$\lim_{n \to \infty} \frac{(n+1)^2 - n^2}{n}$$
 c) $\lim_{n \to \infty} \frac{4n^4 - n + 2}{2n^4 + 2n^2 + n}$

d)
$$\lim_{n \to \infty} \frac{n + n^3}{1 + n + n^2 + 3n^3 + 4n^4}$$
 e) $\lim_{n \to \infty} \frac{-4n^2 + 3n^3 + 7}{2n^3 + 5n}$ f) $\lim_{n \to \infty} \frac{2n^4 - 3n^2 + 17}{1000n^3 + n^2 + n}$

e)
$$\lim_{n\to\infty} \frac{-4n^2+3n^3+7n^2}{2n^3+5n^2}$$

f)
$$\lim_{n\to\infty} \frac{2n^4 - 3n^2 + 17}{1000n^3 + n^2 + n}$$

g)
$$\lim_{n \to \infty} \frac{2n + (-1)^n}{n}$$

h)
$$\lim_{n\to\infty} \left(\frac{2-3n}{1+4n}\right)^2$$

i)
$$\lim_{n\to\infty} \frac{3^{2n}-19}{9^n+12}$$

j)
$$\lim_{n \to \infty} \frac{4(n+1)^4}{3n^4 + 3n + 5}$$

k)
$$\lim_{n \to \infty} \frac{3n^2 + 4n}{\sqrt[3]{n^6 + n^4 + 1}}$$

k)
$$\lim_{n \to \infty} \frac{3n^2 + 4n}{\sqrt[3]{n^6 + n^4 + 1}}$$
 l) $\lim_{n \to \infty} \sqrt[3]{\frac{5 + 5n + 2n^2}{16n^2 + 12n + 4}}$

Lösungen zu Aufgabe 1

- a) $a_n = 0 \quad (n \in \mathbf{N})$
- b) existiert nicht
- c) existiert nicht
- d) existiert nicht
- e) $a_n = -n \quad (n \in \mathbf{N})$
- f) $a_n = -n + (-1)^n \quad (n \in \mathbf{N})$
- g) $a_n = (-1)^n \frac{1}{1 + \frac{1}{n} (-1)^n}$ $(n \in \mathbf{N})$
- h) $a_n = n + (-1)^n \quad (n \in \mathbf{N})$
- i) $a_n = (-1)^n n \quad (n \in \mathbf{N})$
- j) $a_n = \left\{ \begin{array}{ll} -n & \text{ für } n \text{ durch 3 teilbar} \\ n & \text{ für } n \text{ nicht durch 3 teilbar} \end{array} \right\} \quad (n \in \mathbf{N})$

Lösungen zu Aufgabe 3

- a) $\lim_{n\to\infty} a_n = 0$
- b) divergent
- c) $\lim_{n\to\infty} a_n = 5$
- $d) \lim_{n \to \infty} a_n = 0$
- e) divergent, $\lim_{n\to\infty} a_n = \infty$ (∞ ist uneigentlicher Grenzwert)
- f) divergent
- $g) \lim_{n \to \infty} a_n = \frac{2}{9}$
- $h) \lim_{n \to \infty} a_n = 0$
- $i) \lim_{n \to \infty} a_n = \frac{3}{2}$
- j) divergent, $\lim_{n\to\infty} a_n = \infty$ (∞ ist uneigentlicher Grenzwert)
- k) divergent
- $\lim_{n\to\infty} a_n = 0$

Lösungen zu Aufgabe 4