Discounted Cash Flow: Decision Criteria

Michael R. Roberts

William H. Lawrence Professor of Finance

The Wharton School, University of Pennsylvania

Last Time Discounted Cash Flow (DCF)

Forecasting free cash flows

This Time Discounted Cash Flow (DCF)

Decision Criteria

Decision Criteria

1. Compute the NPV (assume discount rate of 12%)

1. Compute the NPV

$$NPV = \frac{-\$376.8}{(1+0.12)^0} + \frac{-\$133.6}{(1+0.12)^1} + \frac{\$111.6}{(1+0.12)^2} + \frac{\$505.7}{(1+0.12)^3} + \frac{\$542.1}{(1+0.12)^4} + \frac{\$725.5}{(1+0.12)^5}$$

$$= \$708.42$$

1. Compute the NPV

Firm value (i.e., debt plus equity) increases by \$708.42 million, in expectation, if the project is undertaken \rightarrow undertake the project

Lesson: The NPV Rule says accept all projects with positive NPV, reject all projects with negative NPV

The internal rate of return (IRR) of a project is the one discount rate such that the net present value of the project's free cash flows equals zero.

$$NPV = \frac{-\$376.8}{(1+IRR)^{0}} + \frac{-\$133.6}{(1+IRR)^{1}} + \frac{\$111.6}{(1+IRR)^{2}} + \frac{\$505.7}{(1+IRR)^{3}} + \frac{\$542.1}{(1+IRR)^{4}} + \frac{\$725.5}{(1+IRR)^{5}}$$

$$\Rightarrow IRR = 43.7\%$$

$$NPV = \frac{-\$376.8}{(1+IRR)^{0}} + \frac{-\$133.6}{(1+IRR)^{1}} + \frac{\$111.6}{(1+IRR)^{2}} + \frac{\$505.7}{(1+IRR)^{3}} + \frac{\$542.1}{(1+IRR)^{4}} + \frac{\$725.5}{(1+IRR)^{5}}$$

$$\Rightarrow IRR = 43.7\%$$

Typically need to solve numerically (e.g., *IRR* function in Excel), or trial and error.

The promised return on investing in the project is 43.7% > 12% (hurdle rate) → undertake the project

Lesson: The IRR Rule says accept all projects whose IRR > R, reject all projects whose IRR < R

Lesson: The IRR Rule is informative but has several shortcomings that we explore in Topic 4 (Return on Investment)

NPV vs. IRR

3. Compute payback period

The payback period, *pp*, of a project is the duration until the the cumulative free cash flows turn positive.

3. Compute payback period

Alternative Decision Criteria
Free Cash Flows
Cumulative Free Cash Flows
Payback Period

Year								
0	1	2	3	4	5			
-376.8	-133.6	111.6	505.7	542.1	725.5			
-376.8	-510.4	-398.8	106.9	649.0	1,374.5			
3								

3. Compute payback period

It takes 3 years to recover your investment. Good? Bad? Compare to some threshold payback period, pp^*

Lesson: The Payback Period Rule says accept all projects with $pp < pp^*$, reject all projects whose $pp > pp^*$

Lesson: The Payback Period Rule has several shortcomings...

Lesson: The Payback Period Rule has several shortcomings

#1: Ignores time value of money and risk of cash flows

3a. Compute discounted payback period

The discounted payback period, dpp, of a project is the duration until the the cumulative discounted free cash flows turn positive.

3a. Compute discounted payback period

Alternative Decision Criteria
Discounted Free Cash Flows
Cumulative Discounted Free Cash Flows
Discounted Payback Period

Year								
0	1	2	3	4	5			
-376.8	-119.3	88.9	359.8	344.4	411.4			
-376.8	-496.1	-407.1	-47.3	297.0	708.4			
4.0								

Lesson: The Discounted Payback Period Rule has several shortcomings

#1: Ignores cash flows after cutoff leading to myopic decision making

Lesson: The Discounted Payback Period Rule has several shortcomings

#2: Does not tell us value implications of our decision

Lesson: The Discounted Payback Period Rule has several shortcomings

#3: Does not help in choosing among projects with similar payback periods

Lessons

- Several decision criteria
 - -NPV unambiguously the best but
 - Others are informative. Understand their shortcomings and use judiciously

Coming up next

- Discounted Cash Flow (DCF)
 - Sensitivity analysis