

Méthodologie expérimentale

Analyse Dimensionnelle

Pierre Le Cloirec

Ecole Nationale Supérieure de Chimie de Rennes

11 Allée de Beaulieu, CS 50837 35708 Rennes cedex 07, France

Tel 33 (0) 2 23 23 80 00 e-mail Pierre.Le-Cloirec@ensc-rennes.fr

La méthodologie expérimentale

La notion de modèle

Domaines d'utilisation potentielle de l'approche expérimentale pour l'élaboration d'un modèle statistique empirique selon les connaissances disponibles

Les deux grands types de modèles scientifiques

Modèles de connaissance	Modèles de comportement
Phénoménologiques	Empiriques
Physiques	Statistiques
Théoriques	Expérimentaux
Déductifs	Inductifs
a priori	a posteriori
Analytiques	Boîte noire
Déterministes	Aléatoires (stochastiques, probabilistes)

Schéma simplifié de la création et de la validation d'un modèle du type "boite noire"

L'analyse dimensionnelle

Evolution du nombre d'essais à réaliser en fonction du nombre de variables influentes étudiés et du nombre de niveaux par variable

Nombre d'essais à réaliser

Intérêt de l'analyse dimensionnelle :

- · Réduction du nombre de paramètres
- · Changement d'échelle par notion de similitude
- · Compréhension de phénomènes physiques
- · Flexibilité dans le choix des variables

Domaines d'applications potentielles de l'analyse dimensionnelle en fonction des connaissances préalable sur le système étudié

Connaissances disponibles	1	2	3	3 4	4 5	;
Bases physiques du procédé		X	>	〈 〉	× ×	(
Liste des paramètres			>	()	×	(
Expression mathématique				>	× ×	(
Solution mathématique					×	(
		<u> </u>	1		<u> </u>	

Notions de grandeurs physiques Notions d'unités

La normalisation

ISO: International Organization for Standardization,

Genève, Suisse

AFNOR: Association Française de Normalisation,

Paris, France

IEEE : Institute of Electrical and Electronics Engineers Inc

ASTM: American Standard Testing Material

CSA: Canadian Standard Association

ACNOR: Association Canadienne de Normalisation,

Ontario, Canada

Le Système International d'Unités (SI) Exemple du mètre

4 août 1789 Abolition du privilège d'étalonnage royal

(800 unités de longueur

dans le royaume de France et de Navarre)

19 mars 1791 1 unité de longueur prise dans la nature

20 mai 1875 Convention du mètre (mètre étalon)

le bureau international des poids et mesure (BIPM)

1960 6 unités de base

m, kg, s, A, K, Cd

1971 6 + 1 unités de base

m, kg, s, A, K, Cd + mol

6 + 1 unités de base

reliées à des constantes universelles

Paramètres et unités de base dans le système international d'unités

Nom	Nom et symbole en SI	Symbole	Dimension
Longueur	mètre (m)	1	L
Masse	kilogramme (kg)	m	M
Temps	seconde (s)	t	Т
Intensité du courant	ampère (A)	I	I
Température thermodynamique	kelvin (K)	Τ	θ
Quantité de matière	mole (mol)	n	N
Intensité lumineuse	candela (cd)	I	J

Sept constantes pour construire le nouveau système

La Recherche, 2018, n° 541 p 65

Paramètres et unités complémentaires dans le système international d'unités

Nom	Symbole en SI	Symbole	Dimension	Définition
Radian	rad	a	A	Angle plat
Stéradian	sr	W	W	Angle solide

Grandeur	Nom	Symbole	Expression en d'autres unités	Expression en unités SI de base
Fréquence	hertz	Hz		s ⁻¹
Force	newton	N		m kg s ⁻²
Pression	pascal	Pa	N/m²	m ⁻¹ kg s ⁻²
Energie, travail, quantité de chaleur	joule	J	N m	m² kg s-²
Puissance, flux d'énergie	watt	W	J/s	m² kg s-³
Quantité d'électricité, Charge électrique	coulomb	С		s A
Potentiel électrique, Tension électrique, Force électromotrice	volt	V	W/A	m² kg s ⁻³ A ⁻¹
Capacité électrique	farad	F	C/V	m ⁻² kg ⁻¹ s ⁴ A ²
Résistance électrique	ohm	†	V/A	m² kg s-3A-2
Conductance	siemens	5	A/V	m ⁻² kg ⁻¹ s ³ A ²
Flux d'induction magnétique	weber	Wb	V s	m² kg s-2A-1
Induction magnétique	tesla	Τ	Wb/m²	kg s ⁻² A ⁻¹
Inductance	henry	Н	Wb/A	m² kg s-2A-2
Température	degré celsius	°C		K
Flux lumineux	lumen	lm		cd sr
Eclairement lumineux	lux	lx	lm/m²	m ⁻² cd sr
Activité (rayonnement ionisants)	becquerel	Вq		s ⁻¹
Dose absorbée, énergie communiquée massique kerma, indice de dose absorbée	gray	Gy	J/kg	m² s-²
Equivalent de dose	sievert	Sv	J/kg	m ² s ⁻²

S		当队早越上往帅子阮		20
-	Facteur multiplicatif	INTL. ELITE ENGINEERING SCHOOL Préfixe	Symbole	
_	10 ²⁴	yotta	У	
	10 ²¹	zetta	Z	
	10 ¹⁸	exa	E	
	10 ¹⁵	peta	Р	
	10 ¹²	téra	Τ	
	109	giga	G	
	106	méga	M	
	10 ³	kilo	k	
	10 ²	hecto	h	
	10	déca	da	
-	1			
-	10-1	déci	d	—
	10-2	centi	c	
	10-3	milli	m	
	10-6	micro	m	
	10-9	nano	n	
	10-12	pico	p	
	10 ⁻¹⁵	femto	f	
	10-18	atto	α	
	10-21	zepto	z	
ec	10-24	yocto	y	

	Unité anglo – saxonne	Unité SI ou usuelle
Longueur	1 mil nautique	1,852 km
	1 mil (mi)	1,609 km
	1 yard (yr)	0,9144 m
	1 foot (ft)	0,3048 m
	1 inch (in)	2,54 cm
Surface	1 acre	0,4046 ha
	1 square yard (yd²)	0,8361 m²
	1 square foot (ft²)	0,0929 m²
	1 square inch (in²)	64,516 mm²
Volume	1 cubic yard (yd³)	0,7645 m ³
	1 barrel (bbl)	158, 987 L
	1 cubic foot (ft³)	$0.0283 \text{ m}^3 = 28.3 \text{ L}$
	1 UK gallon (ÜK gal)	4,546 L
	1 US gallon (US gal)	3,785 L
	1 UK fluid ounce (UK fl oz)	28,41 cm ³
	1 US fluid ounce (US fl oz)	29,57 cm ³
	1 cubic inch (in³)	16,387 cm ³
Masse	1 UK ton	1016 kg
	1 US ton	907 kg
	1 pound (lb ou lbm)	0,453 kg
	1 ounce (oz troy)	31,10 g
	1 ounce (oz av)	28,34 g
	1 gramme (gr)	64,79 mg
Température	1 degré Farenheint (°F)	$\frac{3}{6}$ (°F+32) = °C
Energie - travail	1 British thermal unit (Btu)	0;253 Wh
	1 erg	1 J
Consommation d'essence	1 mi/US gal	235,2 km/loo km 20

Changement de système d'unités

$$\mathbf{g}_2 = \mathbf{g}_1 \left(\frac{\mathbf{U}_1}{\mathbf{U}_2} \right) = \mathbf{k} \; \mathbf{g}_1$$

$$L_2 = k_L L_1$$

$$M_2 = k_M M_1$$

$$T_2 = k_T T_1$$

$$\mathbf{k} = \mathbf{k}_{\mathbf{L}}^{\alpha} \; \mathbf{k}_{\mathbf{M}}^{\beta} \; \mathbf{k}_{\mathbf{T}}^{\gamma}$$

$$[G] = [L^{\alpha}M^{\beta}T^{\gamma}...]$$

Grandeur	Symbole	Dimensions	Unités SI
Mécanique			
longueur	1	L	m
masse	m	М	kg
temps	t	Т	s
vitesse	v	LT ⁻¹	m s ⁻¹
accélération	a	LT ⁻²	m s ⁻²
vitesse angulaire	ω	αT-1	rd s⁻¹
accélération angulaire	α	αT-2	rd s ⁻²
fréguence	ν	T⁻¹	s ⁻¹
période	Τ	T	s
force	F	MLT ⁻²	kg m s⁻²
masse volumique	ρ	ML ⁻³	kg m⁻³
énergie	E	ML ² T ⁻²	kg m² s ⁻²
travail	\bar{w}	ML ² T ⁻²	kg m² s⁻²
puissance	P	ML²T-³	kg m² s ⁻³
moment d'une force	М	ML ² T ⁻²	kg m² s ⁻²
moment d'inertie de masse	\overline{i}	ML ²	kg m²
quantité de mouvement	p	MLT ⁻¹	kg m s ⁻¹
moment cinétique	Ι ί	ML ² T ⁻¹	kg m² s ⁻¹
pression	p	ML ⁻¹ T ⁻²	kg m ¹s ² (Pa
module d'élasticité	E	ML-1T-2	kg m ⁻¹ s ⁻²
viscosité dynamique	μ	ML-1T-1	kg m ⁻¹ s ⁻¹ (Pl
viscosité cinématique	v	L ² T ⁻¹	m² s ⁻¹
tension superficielle	σ	MT ⁻²	kg s ⁻²
débit massique	\check{Q}_m	MT-1	kg s ⁻¹
débit volumique	Q_{ν}^{m}	L ³ T ⁻¹	m³ s⁻¹
angle	α	ά	rd
dilatation linéique relative	$\stackrel{\alpha}{\varepsilon}$	<u> </u>	'-
dilatation volumique relative	θ	_	_
coefficient de Poisson	μ	_	_
aire	A A	L²	m²
volume	l 7		m³
	•		111
ermodynamique	_		
température thermodynamique	T	θ	K
quantité de chaleur, entropie, enthalpie	Q, <u>s</u> , H	ML ² T ⁻²	kg m² s-² (J)
capacité thermique massique	С	$L^{2}T^{-2}\theta^{-1}$	J kg ⁻¹ K ⁻¹
coefficient de dilatation	α	θ^{-1}	K⁻¹
conductivité thermique	λ	LMT ⁻³ θ ⁻¹	W m ⁻¹ K ⁻¹
coefficient de convection thermique	h_{c}	MT ⁻³ θ ⁻¹	W m ⁻² K ⁻¹
flux thermique	Φ	ML ⁻² T ⁻³	J s ⁻¹
coefficient de rayonnement thermique	h,	MT ⁻³ θ ⁻¹	W m ⁻² K ⁻¹
densité de flux thermique	φ	MT ⁻³	W m ⁻²
constante molaire des gaz	R	ML ² T ⁻² θ ⁻¹	J mol⁻¹K⁻¹

Grandeur	Symbole	Dimensions	Unités SI
Électricité			
courant électrique	<i>,</i>	1	Α
densité de courant	J	L ⁻² t	A m ⁻²
charge électrique	Q	Ti Ti	Cb
potentiel	l v	ML ² T-3I-1	Ινν̈́
champ électrique	E	MLT ⁻³ I ⁻¹	V m⁻¹
résistance	R	ML ² T ⁻³ l ⁻²	Ω
conductance électrique	Ġ	M ⁻¹ L ⁻² T ³ l ²	S
capacité électrique	Č	M ⁻¹ L ⁻² T ⁴ l ²	F
puissance électrique	P	ML ² T-3	l w
induction électrique	D	L ⁻² TI	Cb m ⁻²
moment du dipôle électrique		LTI	Cb m
résistivité	p	ML ³ T ⁻³ l ⁻²	Ω m
conductivité	ρ	WIL I I M ⁻¹ L ⁻³ T ³ I ²	Ω^{-1} m ⁻¹
conductivite	γ	MI LL 1-1-	22 M
Magnétisme			
flux magnétique	Φ	ML ² T-2I-1	Wb
induction magnétique	В	MT ⁻² 1 ⁻¹	T
champ magnétique	\tilde{H}	L-11	A m⁻¹
différence de potentiel magnétique	\tilde{U}_m	-;'	^;;;
perméabilité magnétique	μ	MLT ⁻² I ⁻²	H m ⁻¹
inductance propre	""	ML ² T ⁻² l ⁻²	''H'
moment magnétique	<u></u>	ML ³ T ⁻² l ⁻¹	Nm² A-1 ou Wb
polarisation magnétique	B,	MT ⁻² l ⁻¹	T
Optique	-,		
flux lumineux	Φ	Ω	Lm Lm
intensité lumineuse	1]	cd
éclairement lumineux	'i		l ix
existence lumineuse	ĺм́		cd m ²
luminance			cd m ⁻²
vergence des systèmes optiques	L L	L-1	CO m
		_	1
quantité de lumière	Q	TJ	cd s
Physique corpusculaire - Radioactivité			
charge élémentaire	e	TI	Cb (eV)
énergie de désintégration	Q	ML ² T ⁻²) '
activité	À	T-1	S ⁻¹
densité de courant de particule	-i	L-2T-1	A m ⁻²

L'analyse dimensionnelle

- √ Obtention de lois physiques
- √ Génération de nombres sans dimension

Générations de lois physiques Méthode de Rayleigh

$$G = k a^{\alpha} b^{\beta} c^{\gamma} d^{\delta} \dots$$

$$G = k \prod_{i=1}^{n} a_i^{\alpha_i}$$

Exemple : le tube en U

Variable	Symbole	Dimension
Amplitude de la colonne de liquide	1	L
Masse volumique du fluide	ρ	ML-3
Accélération de la pesanteur	g	LT-2
Période d'oscillation	т	Т

$$G = k \prod_{i=1}^{n} a_i^{\alpha_i}$$

$$T = kl^{\alpha}g^{\beta}\rho^{\gamma}$$

$$T = kL^{\alpha}L^{\beta}T^{-2\beta}M^{\gamma}L^{-3\gamma}$$

$$0 = \alpha + \beta - 3\gamma$$
$$0 = \gamma$$
$$1 = -2\beta$$

Exemple : le tube en U

Variable	Symbole	Dimension
Amplitude de la colonne de liquide	I	L
Masse volumique du fluide	ρ	ML ⁻³
Accélération de la pesanteur	g	LT-2
Période d'oscillation	Т	Т

$$\begin{aligned}
0 &= \alpha + \beta - 3\gamma \\
0 &= \gamma \\
1 &= -2\beta
\end{aligned}
\qquad$$

$$\left(\alpha = \frac{1}{2} \quad \beta = -\frac{1}{2} \quad \gamma = 0\right)$$

$$\mathbf{T} = \mathbf{k} \sqrt{\frac{\mathbf{l}}{\mathbf{g}}}$$

Par expérience on obtient $k = \pi$

$$\mathbf{T} = \pi \sqrt{\frac{2\mathbf{l}}{\mathbf{g}}}$$

Générations de lois physiques La méthode de Rayleight

Critique de la méthode

L'analyse dimensionnelle

Génération de nombres sans dimension

Théorème Π de Vaschy - Buckingham

$$F(\Pi_1,\Pi_2,...,\Pi_{n-p}) = 0$$

- Faire l'inventaire des paramètres indépendants influant sur le phénomène étudié (n).
- 2. Ecrire les dimensions de cet ensemble de variables.
- 3. Définir un nombre p de grandeurs primaires, p correspond au nombre de grandeurs fondamentales
- 4. Calculer le nombre de groupements sans dimension : n-p.
- 5. Combiner une variable indépendante en relation adimensionnelle d'un produit avec les p grandeurs primaires sous la forme suivante :

$$\Pi_{\mathbf{i}} = \frac{\mathbf{X}_{\mathbf{i}}}{\prod_{\mathbf{j}=1}^{\mathbf{p}} \mathbf{a}_{\mathbf{j}}^{\alpha_{\mathbf{j}}}} \quad \mathbf{i} \in [1,p] \, \text{et} \, \mathbf{j} \in \left[p,n-p\right] \quad \begin{array}{c} \mathbf{a} \text{vec} \\ \Pi_{\mathbf{i}} : \\ \mathbf{x}_{\mathbf{i}} : \\ \mathbf{a}_{\mathbf{j}} : \\ \mathbf{a}_{\mathbf{i}} : \\ \mathbf{a}_{\mathbf{i}} : \end{array} \quad \begin{array}{c} \text{nombre adimensionnel variable indépendante} \\ \mathbf{a}_{\mathbf{j}} : \\ \mathbf{a}_{\mathbf{i}} : \\ \mathbf{e} \times \mathbf{posant} \end{array}$$

- 6. Résoudre l'équation précédente et déterminer les différents ai.
- 7. Présenter explicitement chaque nombre sans dimension.

Théorème Π de Vaschy - Buckingham

$$F(\Pi_1,\Pi_2,...,\Pi_{n-p})=0$$

$$\Pi_{i} = \frac{X_{i}}{\prod_{j=1}^{p} a_{j}^{\alpha_{j}}}$$

Exemple : un corps dans un écoulement permanent Fluide réel

Exemple : un corps dans un écoulement permanent

Variable	Symbole	Dimension
Longueur du corps	1	L
Vitesse de l'écoulement	U	LT-1
Masse volumique du fluide	ρ	ML-3
Viscosité dynamique	μ	ML-1T-1
Accélération de la pesanteur	9	LT-2
Vitesse locale du son dans le fluide	C	LT-1
Angle incident (angle entre la composante de la vitesse et l'axe du corps)	α	-
Traînée du corps	R_{x}	MLT-2

Exemple : un corps dans un écoulement permanent

$$\Pi_{i} = \frac{X_{i}}{\prod_{j=1}^{p} a_{j}^{\alpha_{j}}}$$

$$\Pi_{i} = \frac{X_{i}}{l^{\alpha} \rho^{\beta} U^{\gamma}}$$

Exemple : un corps dans un écoulement permanent

$$\Pi_{i} = \frac{X_{i}}{l^{\alpha} \rho^{\beta} U^{\gamma}}$$

$$\Pi_1 = \frac{\mu}{l\rho U} = \frac{1}{Re}$$

Re: nombre de Reynolds

$$\Pi_2 = \frac{\mathbf{lg}}{\mathbf{U}^2} = \frac{1}{\mathbf{Fr}^2}$$

Fr: nombre de Froude

$$\Pi_3 = \frac{\mathbf{c}}{\mathbf{U}} = \frac{1}{\mathbf{M}}$$

M: nombre de Mach

$$\Pi_4 = \alpha$$

$$\Pi_5 = \frac{R_x}{l^2 \rho U^2} = C_x$$
 C_x : coefficient de traînée

Exemple : un corps dans un écoulement permanent

$$\mathbf{R}_{x} = k \rho l^{2} U^{2} \left(\frac{lu\rho}{\mu}\right)^{-x} \left(\frac{U^{2}}{lg}\right)^{-y} \left(\frac{U}{c}\right)^{-z} \alpha$$

Quelques nombres sans dimension

Nom	Symbole	Définition	Signification	Domaine d'utilisation	Origine du nom
Archimède	Ar	$\frac{gL^3\rho(\rho_p-\rho)}{\pi^2}$	Force d'inertie-force d'Archimède (Force visqueuse)²	Sédimentation	Archimède de Syracuse (287-212 av JC)
Arrhenius	_	E _a RT	Énergie d'activation Énergie potentielle du fluide	Vitesse de réaction	Svante August Arrhenius (Suédois, 1859-1927)
Bingham	Bm	$\frac{\tau L}{\mu_{\omega} U}$	Contrainte seuil Contrainte visqueuse	Rhéologie	
Bingham Reynolds	Re,	$rac{LU_{ ho}}{\mu_{_{\infty}}}$	Force d'inertie Force visqueuse	Rhéologie	
Biot (transfert de chaleur) (voir Nusselt)	Bi _h	<u>hL</u> k	Contrainte seuil Contrainte visqueuse	Transfert de chaleur instationnaire	Jean-Baptiste Biot (Français, 1774-1862)
Biot (transfert de masse)	Bi _m	$\frac{k_{c}L}{D_{int}}$	Résistance interne thermique Résistance de surface de film	Transfert de masse fluide-solide	
Blake	В	$\frac{U_{\rho}}{\mu(1-\epsilon)S}$	Force d'inertie Force visqueuse	Lits de solides	
Bond	Во	$\frac{gL^2(\rho_L - \rho_G)}{\sigma}$	Force de gravitation Tension de surface	Atomisation Bulles, gouttes	
Boussinesq (voir aussi Froude)	В	<u>U</u> (2gRe) ^{1/2}	Force d'inertie (Force gravitationnelle) ^{1/2}	Écoulement dans un chenal	Joseph Boussinesq (Français, 1842-1929)
Capillarité	Са	$\frac{\mu U}{\sigma}$	Force visqueuse Tension de surface	Écoulement de surface ou de 2 phases fluides	
Carnot	Са	$\frac{T_2-T_1}{T_2}$	Rendement théorique de cycles de Carnot opérant entre T, et T ₂		Nicolas Léonard Sadi Carnot (Français, 1796-1832)
Cauchy (voir aussi Hook)	C	$rac{ ho U^2}{E_b}$	Force d'inertie Force de compressibilité	Fluide compressible	Augustin Louis Cauchy (Français, 1789-1851)
Cavitation	σ	$\frac{P - P_{v}}{\rho \frac{U^{2}}{2}}$	Écart de pression Charge dynamique	Cavitation	

Quelques nombres sans dimension

Nom	Symbole	Définition	Signification	Domaine d'utilisation	Origine du nom
Clausius	CI	$\frac{U^3L_{\rho}}{k\Delta T}$		Conduction de chaleur dans un écoulement forcé	Rudolph Julius Clausius (Allemand, 1822-1888)
Damköler (groupe I)	Da I	<u>τL</u> U	Vitesse de réaction chimique Vitesse du flux	Réaction chimique transferts	
Damköler (groupe II)	Da II	$\frac{\tau L^2}{D}$	Vitesse de réaction chimique Diffusion moléculaire	Réaction chimique transferts	
Damköler (groupe III)	Da III	$\frac{q\tau L}{C_{\rho}\rho Ut}$	Chaleur libérée Chaleur transportée	Réaction chimique transferts	
Damköler (groupe IV)	Da IV	qUL² kt	Chaleur libérée Transfert de chaleur conductif	Réaction chimique transferts	
Dean	D_e	$\frac{Re}{\left(\frac{D_{c}}{D_{D}}\right)^{1/2}}$	Reynolds Force d'inertie Force centrifuge	Écoulement dans des canaux curvilignes	
Deborah	De	$\frac{\theta_{r}}{\theta}$	Temps de relaxation du fluide Temps d'écoulement	Fluide viscoélastique	
Coefficient de traînée	C _x	$rac{\Delta ho L g}{ ho U^2}$	Force de gravité Force d'inertie	Écoulement autour d'objets, décantation	
Élasticité	El	$\frac{\lambda\mu}{\rho L^2}$	Force d'élasticité Force d'inertie	Fluide viscoélastique	
Euler	Eu	$\frac{\Delta P}{\rho U^2}$	Perte de charge par friction Pression dynamique	Friction de fluide dans une conduite	Leonhard Euler (Suisse, 1707-1783)
Facteur de friction	f	<u>DΔP</u> 2ρU²L	Contrainte de paroi Pression dynamique	Friction de fluide dans une conduite	
Froude (voir Boussinesq)	Fr	$\frac{U^2}{gL}$ ou $\frac{U}{\sqrt{gL}}$	Force d'inertie Force gravitationnelle	Écoulement en système ouvert	
Galilée	Ga	$\frac{L^3g\rho^2}{\mu^2}$	Reynolds . Force de gravité Force d'inertie	Circulation de fluide visqueux	Galileo Galilei (Italien, 1564-1642)

Quelques nombres sans dimension

Nom	Symbole	Définition	Signification	Domaine d'utilisation	Origine du nom
Grashof	Gr	$L^3g\rho^2\beta\Delta T$	Reynolds . Force d'archimède	le Convection libre	
		μ²	Force visqueuse		
Hedstrom	He	Bm Re₃	Bingham x Bingham Reynolds	Rhéologie	
Hodgson	Н		Constante de temps du système	Écoulement de gaz pulsé	
		qΡ	Temps de pulsation		
Knudsen	Kn	Kn $\frac{\lambda}{L}$	Libre parcours moyen	Écoulement	
		L	Dimension caractéristique	Sous vide	
Mach	М	M <u>U</u>	Vitesse du fluide	Écoulement de fluide compressible	
			Vitesse du son		
Newton	Ne	Fr	Force de résistance	Friction dans un écoulement	
		$\rho U^2 L^2$	Force d'inertie	de fluide	
Nusselt	Nu	hL	Résistance interne thermique	Convection forcée	Ernst Kraft Nusselt
(voir aussi Bingham)		Nu <u>hL</u> k	Résistance de surface de film		(Allemand, 1882-1957
Ohnesorge	Z	$\frac{\mu}{(\rho L \sigma)^{(1/2}}$	Force visqueuse	Atomisation	
3,,,,c,3,,gc	_		(force d'inertie.tension de surface) ^{1/2}		
Peclet	Pe	<u>LU</u> D	Transport convectif	Transfert de masse,	
		D	Transport diffusif	chaleur, mélange	
Puissance	Po	P	Force de traînée	Agitation	
		$\overline{\rho N^3 L^5}$	Force d'inertie		
Prandtl	Pr $\frac{C_p u}{k}$	$C_{p}\mu$	Diffusivité du moment	Convection libre et forcée	
		k	Diffusivité thermique		
Reynolds	Re	Re $\frac{LU\rho}{\mu}$	Force d'inertie	Régime de turbulence dans un écoulement	Osborne Reynolds
			Force visqueuse		(Anglais, 1842-1912
Schmidt	Sc	Sc <u> </u>	Viscosité cinématique	Transfert de masse	
Scrimac		$\dot{\overline{ ho}D}$	Diffusivité	Transfert de masse	
Sherwood	Sh	Sh <u>kL</u> D	Diffusivité massique	Transfert de masse	Thomas K. Sherwood (Américain)
			Diffusivité moléculaire		
Weber	We	$\frac{\rho U^2 L}{\sigma}$	Force d'inertie	Formation de bulles,	
		σ	Tension de surface	agitation	

Similitude Changement d'échelle

Similitude géométrique

$$\frac{\mathbf{D_{i1}}}{\mathbf{D_{i2}}} = \mathbf{constante}$$

$$\frac{\mathbf{d}_1}{\mathbf{d}_2} = \frac{\mathbf{L}_1}{\mathbf{L}_2} = \mathbf{constante}$$

Similitude - Exemple

Paramètre	Maquette	Prototype
L _i (m)	0,3	3
d _i (m)	0,05	0,5
U (m/s)	-	2
DP (Pa)	$0.2 \cdot 10^{5}$?

La perte de charge dans le diffuseur est fonction de 4 paramètres soit :

$$f(\Delta P, d, \rho, \mu, U) = 0$$

En utilisant le théorème P, on obtient :

$$\frac{\Delta P}{\rho U^2} = f \left(\frac{dU\rho}{\mu} \right)$$

La similitude entre la maquette et le prototype être assurée en gardant la même valeur pour le nombre de Reynolds soit :

$$\frac{d_1U_1\rho_1}{\mu_1} = \frac{d_2U_2\rho_2}{\mu_2}$$

En supposant que l'on utilise le même fluide dans les deux installations, on doit faire fonctionner la maquette à une vitesse donnée par la relation :

$$\mathbf{U}_2 = \frac{\mathbf{d}_1}{\mathbf{d}_2} \mathbf{U}_1$$

Sachant que la vitesse nominale dans le prototype est de U_1 = 2 m/s, la vitesse dans la maquette est de U_2 = 20 m/s. Les coefficients de pression dans les deux systèmes étant identiques on a :

$$\frac{\Delta P_1}{\rho_1 U_1^2} = \frac{\Delta P_2}{\rho_2 U_2^2}$$

Cette relation permet d'accéder à la perte de charge dans le diffuseur échelle 1 soit :

$$\Delta P_1 = \left(\frac{U_1}{U_2}\right)^2 \Delta P_2$$
 L'application numérique donne $\Delta P_1 = 0.002.10^5 \text{ Pa}$

Limites de la similitude

- Similitude géométrique : exemple rugosité...
- $\Pi_1 = \prod_{i=2}^n \pi_i^{\alpha}$

· Difficultés à avoir la similitude entre tous les nombres sans dimension

$$\Pi_1 = \prod_{i=2}^n \Pi_i^{\alpha_i}$$

Exemples:

Echange de chaleur Détermination du coefficient d'échange par convection

$$Nu = 0.023 Re^{0.83} Pr^{0.3}$$

avec 4000 < Re < 60 000 et 0,6 < Pr < 3 000

$$Nu = \frac{hD}{K}$$
 $Re = \frac{DU\rho}{\mu}$ $Pr = \frac{C_p \mu}{K}$

Exemples : Echangeur de matières

$$Sh = k Re^a Sc^b$$

pour
$$Re_{min} \le Re \le Re_{Max}$$
 et $Sc_{min} \le Sc \le Sc_{Max}$

$$Sh = \frac{kL}{D}$$

$$Re = \frac{LU\rho}{\mu}$$

$$Sc = \frac{\mu}{D\rho}$$

Walking (1)

Velocity
Lenght of leg
Weight
Gravity
Stride

U LT L M M g LT-2 f

5 parameters
3 dimensions

$$N - p = 2$$

2 dimensionless numbers

Walking (2)

Velocity
Length of leg
Weight
Gravity
Stride

9

U LT L M M LT-2

L

$$\Pi_1 = f/I$$

$$\Pi_2 = U^2/lg$$

Nombre de Froude

William Froude 1810 - 1869

$$\Pi_1 = f/I$$
 $\Pi_2 = U^2/Ig$

R. McNeill Alexander, Walking and Running, The mathematical gazette, 80 (1996) 262

$$\sqrt{\Pi_2} = \sqrt{\frac{\upsilon^2}{lg}}$$

Walking(4)

Pierre Le Cloirec

