MACHINE LEARNING & SMART SYSTEMS

MLSS A-1 FREDY RAFAEL, MENCIA GONZALEZ, IVAN ANDRES

IMAGE SHARPENING FROM BLURRED IMAGE

- Images are an essential part of communication and information
 - A common problem is the loss of quality and sharpness
 - o motion, incorrect focus, or limitations of the camera sensor
- Blurred images can compromise effectiveness of critical activities, such as medical imaging, security surveillance, and automatic document interpretation

OUR SOLUTION

Develop a machine learning-based solution that enables users to improve the sharpness of blurred images efficiently and automatically through an easy-to-use web interface

others= simple python code that with the pixels changes the images

ours= machine learning

Technical work MACHINE LEARNING

THE DATASET WE USED

THESE ARE THE IMAGES

CODE FOR LEARNING WITH 5 IMAGES AS EXAMPLE

OUTPUT AFTER LEARNING WITH 5 IMAGES

IT WASN'T ENOUGH SO WE MADE IT LEARN WITH 200 IMAGES MORE

Technical work

WEBSITE

∨ FINALPROJECTML ∨ models **≡** machineLearningFi.. ∨ static # styles.css ∨ templates upload.html ∨ uploads image8_blurred.jpg > venv app.py verification.py

WorkFlow Diagram

Literature review table

					_
Autor	Year	Used Method	Results	comparison with other works	Aplications
Smith et al.	2020	CNN	15% improvement in image clarity	Faster than previous methods, but less accurate than the latest GAN models	Medical diagnostics, security
López y Fernández	2021	GAN	Fine detail recovery in blurred images	Superior in fine details, more computationally expensive	Art restoration, digital media
Zhang et al.	2019	ResNet	High efficiency on low resolution images	Pioneer to use ResNet for this purpose	Surveillance, automotive
Johnson & Kim	2022	MobileNet	Optimization for mobile devices	First energy-efficient mobile fitting	Mobile applications, IoT
Patel et al.	2020	Hybrid CNN-GAN	Combination of CNN and GAN for increased accuracy	Better results than using CNN or GAN separately	Professional photography, graphic design
Nguyen et al.	2021	Autoencoder	Efficient in restoring historical images	Less effective in real time compared to CNN	Historical archiving, museums
Harper and Stone	2023	Q-Learning (Reinforcement Learning)	New approach using reinforcement learning	First exploratory study of its kind	Academic research, experimental development

