

1 Le moteur à courant continu

Soient les équations différentielles du moteur à courant continu suivantes :

$$u(t) = R.i(t) + L \cdot \frac{di(t)}{dt} + e(t)$$
 (1)

$$e(t) = \mathsf{K}_e \cdot \omega(t) \tag{2}$$

$$C_m(t) = K_c \cdot i(t) \tag{3}$$

$$C_m(t) = J \cdot \frac{d\omega(t)}{dt} \tag{4}$$

Avec:

— R en $\Omega \equiv V \cdot A^{-1}$,

— L en H \equiv V · A⁻¹ · s,

— K_e en $V \cdot rad^{-1} \cdot s$,

— K_c en $N \cdot m \cdot A^{-1}$,

— J en $kg \cdot m^2$,

Question 1 : Écrire ces équations dans le domaine de Laplace.

Question 2 : Écrire une équation liant $\Omega(p)$ et U(p) avec les constantes des équations précédentes.

Question 3 : Écrire la fonction de transfert $H(p) = \frac{\Omega(p)}{U(p)}$ sous la forme canonique, donner son ordre et sa classe.

On donne les formes classiques des fonctions de transfert du premier et du second ordre :

$$H(p) = \frac{K}{1 + \tau \cdot p} \text{ et } H(p) = \frac{K}{1 + \frac{2 \cdot \xi}{\omega_0} \cdot p + \frac{p^2}{\omega_0^2}}$$

Question 4 : Déterminer (K,τ) ou (K,ξ,ω_0) en fonction du modèle qui paraît le plus adapté et des constantes du système d'équation.

Question 5 : Déterminer et justifier les unités de ces valeurs caractéristiques à partir de celles des constantes du système d'équation.

FIN

Question 1:

Question 2:

Question 3:

Question 4:

NOM Prénom:	
-------------	--

Question 5:

