Polynomial semantics of probabilistic circuits

Oliver Broadrick, UCLA

May, 2024

Based on joint work with Honghua Zhang and Guy Van den Broeck

Outline

- ► Tractable probabilistic models
- ▶ Probabilistic circuits
- ▶ Several circuit semantics in the literature ...
- ▶ are equivalent! (for binary random variables)
- ► And, don't all extend to non-binary variables

Probabilistic Models

How we think about the world: models with uncertainty

- ▶ Will I make it to the SNAIL talk on time, if I leave home at 2:30pm?
- ▶ Did I pass that final exam?

AI research

- ▶ Deep learning and formal methods: "neuro-symbolic AI"
- ▶ Applications: images, language, audio, medicine, science, economics, etc.

The problem

- ► Expressive-efficient representation
- ► Tractable inference

/19

Marginal inference

If $X = Y \sqcup Z$, then what is Pr[Y = y]?

 $\Pr[\mathbf{V} = \mathbf{u}] = \sum \Pr[\mathbf{V} = \mathbf{u}, \mathbf{Z} = \mathbf{z}]$

In general:

	X_2		$\prod_{i=1}^{n} [1 - g] = \sum_{i=1}^{n} \prod_{j=1}^{n} [1 - g, Z - z]$		
0	0 1 0 1	.1	$oldsymbol{z}$		
0	1	.2	For example:		
1	0	.3	For example.		
1	1	.4	$\Pr[X_1 = 1] = \Pr[X_1 = 1, X_2 = 0] + \Pr[X_1 = 1, X_2 = 1]$		
			=0.3+0.4		
			= 0.7		

Goal: Find a model of polysize that supports marginal inference in polytime, for as large a set of probability distributions as possible.

Approaches

- ▶ Bayesian Networks (of bounded treewidth) (BNs)
- ▶ Determinantal Point Processes (DPPs)
- ▶ Probabilistic Sentential Decision Diagrams (PSDDs)
- **.** . . .
- ▶ Probabilistic Circuits!

Probabilistic Circuits

Marginal Inference: If $X_i = b$ for $b \in \{0, 1\}$, set $x_i = b$ and $\bar{x}_i = 1 - b$. If X_i is not assigned, set $x_1 = 1$ and $\bar{x}_1 = 1$.

$$\Pr[X_1 = 1]?$$

Set $x_1 = 1$, $\bar{x}_1 = 0$, $x_2 = 1$, $\bar{x}_2 = 1$

$$p(x_1, x_2, \dots, x_n, \bar{x}_1, \bar{x}_2, \dots, \bar{x}_n) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$$
 "Network polynomial"

Circuit Semantics

Polynomial	Notation	Inference	Citation
Network polynomial	$p(x_1,\ldots,x_n,\bar{x}_1,\ldots,\bar{x}_n)$	<u> </u>	Darwiche [2003]
Likelihood polynomial	$p(x_1,\ldots,x_n)$?	Roth and Samdani [2009]
Generating function	$g(x_1,\ldots,x_n)$	\checkmark	Zhang et al. [2021]
Fourier transform	$\hat{p}(x_1,\ldots,x_n)$	✓	Yu et al. [2023]

How do they relate?

 $p(x, \bar{x})$ Network polynomial p(x) Likelihood polynomial g(x) Generating function $\hat{p}(x)$ Fourier transform

Likelihood polynomials

$$\begin{array}{c|cccc} X_1 & X_2 & \Pr \\ \hline 0 & 0 & .1 \\ 0 & 1 & .2 \\ 1 & 0 & .3 \\ 1 & 1 & .4 \\ \end{array}$$

Can we do marginal inference?
Relation to network polynomial?

Transformation from network to a likelihood:

$$p(x_1, x_2, \bar{x}_1, \bar{x}_2) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$$

 $= .1(1-x_1)(1-x_2) + .2(1-x_1)x_2 + .3x_1(1-x_2) + .4x_1x_2$

 $p(x_1, x_2) = .2x_1 + .1x_2 + .1$

 $p(x_1, x_2, 1 - x_1, 1 - x_2)$

 $= .2x_1 + .1x_2 + .1$

Transformation from likelihood to network

Theorem 1. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the likelihood polynomial for Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for Pr.

Idea:
$$\left(\prod_{i=1}^{n} (x_i + \bar{x}_i)\right) p\left(\frac{x_1}{x_1 + \bar{x}_1}, \dots, \frac{x_n}{x_n + \bar{x}_n}\right)$$

Example: Starting with $p(x_1, x_2) = .2x_1 + .1x_2 + .1$, we form

$$(x_1 + \bar{x}_1)(x_2 + \bar{x}_2) \left(.2 \frac{x_1}{x_1 + \bar{x}_1} + .1 \frac{x_2}{x_2 + \bar{x}_2} + .1 \right)$$

$$= .2x_1(x_2 + \bar{x}_2) + .1x_2(x_1 + \bar{x}_1) + .1(x_1 + \bar{x}_1)(x_2 + \bar{x}_2)$$

$$= .2x_1x_2 + .2x_1\bar{x}_2 + .1x_1x_2 + .1\bar{x}_1x_2 + .1x_1x_2 + .1\bar{x}_1x_2 + .1x_1\bar{x}_2 + .1\bar{x}_1\bar{x}_2$$

$$= .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2 = p(x_1, x_2, \bar{x}_1, \bar{x}_2)$$

Divisions?

Wait a second...
$$\left(\prod_{i=1}^{n} (x_i + \bar{x}_i)\right) p\left(\frac{x_1}{x_1 + \bar{x}_1}, \dots, \frac{x_n}{x_n + \bar{x}_n}\right)$$

Theorem 2 (Strassen). You can remove the divisions in polynomial time!

Lemma 3. For a circuit computing f of degree d, we can obtain circuits computing $H_0[f], H_1[f], \ldots, H_d[f]$ the homogeneous parts of f, i.e. $H_i[f]$ has degree i and $f = \sum_i H_i[f]$.

Idea: Move divisions to the root using a/b + c/d = (ad + bc)/bd and a/b * c/d = ac/bd.

Then for circuit a/b computing polynomial f = a/b of degree d, assume b(0) = 1, and we have

$$H_i[f] = H_i[a(1+(1-b)+(1-b)^2+\ldots+(1-b)^d].$$

Progress update

```
p(x, \bar{x}) Network polynomial p(x) Likelihood polynomial g(x) Generating function \hat{p}(x) Fourier transform
```


Generating functions: Why?

Circuits computing network polynomials (S, D, positive)

Generating functions

$$g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$$

Can we do marginal inference? For $X_i = 1$, set $x_i = t$

For $X_i = 0$, set $x_i = 0$

For $X_i = ?$. set $x_i = 1$

For
$$X_i = ?$$
, set $x_i = 1$
 $X_1 \quad X_2 \mid \Pr$
 $0 \quad 0 \quad .1$
 $0 \quad 1 \quad .2$
 $1 \quad 0 \quad .3$
 $1 \quad 0 \quad .3$
Relation to network polynomial?

Transformation from network to a generating: $p(x_1, x_2, \bar{x}_1, \bar{x}_2) = .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$ $p(x_1, x_2, 1, 1) = .1 + .2x_2 + .3x_1 + .4x_1x_2 = q(x_1, x_2)$

15_{/19}

Transformation from generating to network

Theorem 4. Let Pr be a probability distribution on n binary random variables. Then a circuit of size s computing the probability generating function for Pr can be transformed to a circuit of size $O(sn^2)$ computing the network polynomial for Pr.

Idea:
$$\left(\prod_{i=1}^n \bar{x}_i\right) g\left(\frac{x_1}{\bar{x}_1}, \frac{x_2}{\bar{x}_2}, \dots, \frac{x_n}{\bar{x}_n}\right)$$

Example: Starting with $g(x) = .1 + .2x_2 + .3x_1 + .4x_1x_2$, we form

$$(\bar{x}_1\bar{x}_2)\left(.1 + .2\frac{x_2}{\bar{x}_2} + .3\frac{x_1}{\bar{x}_1} + .4\frac{x_1}{\bar{x}_1}\frac{x_2}{\bar{x}_2}\right)$$

$$= .1\bar{x}_1\bar{x}_2 + .2\bar{x}_1x_2 + .3x_1\bar{x}_2 + .4x_1x_2$$

$$= p(x,\bar{x})$$

Strassen to the rescue!

Progress update

 $p(x, \bar{x})$ Network polynomial p(x) Likelihood polynomial g(x) Generating function $\hat{p}(x)$ Fourier transform

Proposition 1. For binary random variables, probability generating functions g(x) and Fourier polynomials $\hat{p}(x)$ are the same function(!), on respective domains $\{-1,1\}^n$ and $\{0,1\}^n$, up to the bijection $\phi:\{0,1\} \to \{-1,1\}$ given by $\phi(b) = (-1)^b$ applied bitwise.

What have we done?

- several distinct circuit-based models are equally succinct
- distinct inference algorithms in a common framework

 $17_{/19}$

Non-binary distributions?

Let $Pr: K^n \to \mathbb{R}$ be a probability mass function with $K = \{0, 1, 2, \dots, k-1\}$. Then the probability generating polynomial of Pr is

$$g(x) = \sum_{(d_1, d_2, \dots, d_n) \in K^n} \Pr(d_1, \dots, d_n) x_1^{d_1} x_2^{d_2} \cdots x_n^{d_n}.$$
 (1)

Theorem 5. For $k \geq 4$, computing likelihoods on a circuit for g(x) is #P-hard. Proof idea: Reduce from 0, 1-permanent.

Conclusion

What we did:

- ▶ Several distinct circuit-based models are equally succinct
- ▶ Distinct inference algorithms in a common framework
- ▶ Inference is hard in circuits computing generating functions for $k \ge 4$ categories

What's next?

- ▶ Are there more succinct tractable representations? e.g., do we need multilinearity?
- ► Can we characterize *all* tractable marginal inference?
- ▶ How can theoretically more expressive models be learned/constructed in practice?