1. Encontre o volume do prisma cuja base é o triângulo no plano X Y limitado pelo eixo X e pelas retas Y = X e

$$x = 2$$
 e cujo topo está no plano $z = f(x, y) = 4 - x - y$.

- 2. Calcule a integral usando o método das frações parciais: $\int \frac{2x-1}{x^2+2x-3} dx$.
- 3. Calcule a integral pelo método da substituição: $\int_{\sqrt[3]{2}x^4-3}^{5x^3} dx.$

4. Calcule a integral por partes:
$$\int_{0}^{\frac{\pi}{5}} X \cos 5 x \, dx.$$

5. Calcule a área da região limita pela reta
$$y = x$$
 e a curva $y = 8x - x^2$.

6. Calcule o volume do sólido com a base no plano X Y, como mostra a figura, superiormente delimitado pelo plano Z = 3 + X e lateralmente por geratrizes que contornam a região da sua base.

$$R = \begin{cases} -1 \le x \le 3 \\ x + 1 \le y \le 4 + 3x - x^2. \\ 0 \le z \le 3 + x \end{cases}$$

7. Calcule a integral pelo méodo das frações parciais:
$$\int \frac{3x+5}{(x-1)(x^2+1)} dx.$$

8. Calcule a área da região limitada pelas curvas
$$y = x^2$$
 e $y = -\frac{7}{2}x + 11$ e o eixo y , no primeiro quadrante.

9. Calcule o volume do sólido determinado acima pelo gráfico de $z=9-x^2$, abaixo pelo plano z=0 e lateralmente pelos planos y=0 e y=5.