CSC485B Machine Learning for Robotics - Spring 2023

CSC485B Machine Learning for Robotics Spring 2023

Instructor: Dr. Ned Lecky **Office**: Beaumont 207A

Email: nleck001@plattsburgh.edu **Phone**: (518) 564-2778 office

Class: TR 12:30 – 13:45 **Location**: Beaumont 314

Office Hours: W 13:00 - 16:00 or by request

Catalog Description

This is an introductory special topics course on current computing trends in robotic applications, including basic Machine Learning (ML), the use of PyTorch, embedded ML for control applications, and the use of Deep Learning (DL) for control.

Tentative References

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow 3rd Edition

by Aurélien Géron ISBN-13: 978-1-098-12597-4

Machine Learning with PyTorch and Scikit-Learn by Sebastian Raschka et al ISBN-13: 978-1-80181-931-2

Intro to ML for Robotics Applications by Adrian Rosebrock www.pyimagesearch.com/start-here/

Deep Learning for Robotics, Intel

www.intel.com/content/www/us/en/developer/learn/course-deep-learning-robotics.html

Objectives

- 1. To expand Python skills in the machine learning and robotics disciplines.
- To develop machine learning and deep learning understanding with respect to robotic applications.
- 3. To develop techniques for applying and simulating ML and DL systems in the robotic applications space.

Your Responsibilities

Reading Assignments

Reading assignments will be assigned for each class.

Programming Assignments

There will be weekly programming assignments.

Quizzes

There will be occasional short in-class quizzes.

Projects

There will be midterm and final projects in lieu of in-class exams.

Grading

Grades will be computed as follows:

Programming Assignments 35%	Assigned regularly, due in 1-2 weeks
Quizzes 15%	In class from time to time
Midterm Exam 25%	Exam covering in-class topics and coding
Final Project 25%	Student-proposed ML- heavy project

Final grades will be converted to letters as follows:

Average	Letter
93 - 100	A
90 - 92.99	A-
87 – 89.99	B+
83 - 86.99	В
80 - 82.99	B-
77 – 79.99	C+
73 – 76.99	С
70 – 72.99	C-
67 - 69.99	D+
60 - 66.99	D
< 60	F

Academic Integrity

Always give credit to your sources. If you have any doubts ask the instructor before you submit your work, it is too late after it has been submitted. Each instance of academic dishonesty will result in both a zero for the assignment and a full letter grade reduction in the course grade.

It is expected that all students enrolled in this class will support the letter and the spirit of the Academic Honesty Policy as stated in the college catalog.

Accommodations

It is the policy of the College that any student requiring accommodations of any kind to fully access this course must be registered for accommodations with the Student Support Services office located in the Angell College Center.

If you need any accommodation for this course, please contact Student Support Services at (518) 564-2810.

CSC485B Machine Learning for Robotics - Spring 2023

Daily Schedule

The tentative class schedule is as follows. Check for up-to-date information on Moodle.

Week	Class	Date	Topic
1	1	T 1/31	Overview and Discussion
	2	R 2/2	Colab, Anaconda, NumPy, and Pandas
2	3	T 2/7	Some Unusual ML Examples
	4	R 2/9	Neural Networks and Linear Regression
3	5	T 2/14	Getting Started with Universal Robots Programming
	6	R 2/16	Working with the Universal Robots UR-5e
4	7	T 2/21	Getting Started with Vision
	8	R 2/23	Working on The Pythagorean Theorem in ML
5	9	T 2/28	Regression Wrap-up
	10	R 3/2	Introduction to Classifiers
6	11	T 3/7	More on Classifiers and Clustering
	12	R 3/9	More Techniques and Examples
7	BREAK	T 3/14	
	BREAK	R 3/16	
8	13	T 3/21	Embedding AI and ML into Our Code
	14	R 3/23	Intro to Intel's Data Learning for Robotics Course (IDLR)
9	15	T 3/28	Running the IDLR Week 1 Code
	16	R 3/30	IDLR Week 2
10	17	T 4/4	Special Topics
	18	R 4/6	Agent-based Modeling and ChatGPT
11	19	T 4/11	Intro to Reinforcement Learning
	20	R 4/13	More on Reinforcement Learning
12	21	T 4/18	Generative AI and ML
	22	R 4/20	Deep Learning- What's It All About?
13	23	T 4/25	Deep Computer Vision
	24	R 4/27	Deep Computer Vision continued
14	25	T 5/2	Embedded Machine Learning
	26	R 5/4	Final Project Discussion and Planning
15	27	T 5/9	Final Project Presentations and Special Topics
	28	R 5/11	Final Project Presentations and Special Topics
Final Week		R 5/18	Final Project Presentations