II장 | 라틴방격법

SAS를 이용한 실험 계획과 분산 분석 (자유아카데미)

서론

- block 을 결정하는 요인 수 = 2개
- 동서방향 비옥토/ 남북방향 비옥토
- 작물의 종류(Treat)따른 수확량 비교
- row*treat, col*treat 상호작용 무시
- treat의 효과에 관심
- 적은 실험횟수가 요구되는 경우
- row 방향의 RCBD
- column 방향의 RCBD

라틴방격법

- row 수 = column 수 = 처리조합 수
- 행방향:모든 처리조합이 I회씩 출현
- 열방향: 모든 처리조합이 I회씩 출현
- 라틴문자(A, B, C, D,)
- 서로 다른 3 x 3 라틴방격의 수 = 12개
- 서로 다른 4 x 4 라틴방격의 수 = 576개

A	В	С	D
В	U	D	A
С	D	Α	В
D	Α	В	С

라틴방격법

- 라틴방격법의 랜덤화 (as possible)
 - I.여러 개의 라틴방격 중에 랜덤하게 선택
 - 2.행방향 블록인자 랜덤배치
 - 3. 열방향 블록인자 랜덤배치
 - 4.A, B, C, D ... 문자에 처리조합을 랜덤배치
 - 5.필요하다면 실험순서도 랜덤

Α	В	D	С
В	C	Α	D
С	D	В	Α
D	Α	С	В

Α	В	С	D
В	U	D	Α
С	D	Α	В
D	Α	В	С

라틴방격법의 모형식

$$y_{ijk} = \mu + \alpha_i + \beta_j + \tau_k + \epsilon_{ijk}$$
 $i = 1, 2, p$ $j = 1, 2, \cdots, p$ $k = 1, 2, \cdots, p$

- 상호작용 무시
- 라틴방격을 이용한 3원 배치법 (요인I은 row, 요인2는 column, 요인3은 treatment 에 배치함) >>>> p x p x p 요인배치법
- row = 비료의 종류, column=농약의 종류, treat=벼의 종류

라틴방격법의 제곱합에 대한 간편한 공식

$$SST = \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{k}^{p} y_{ijk}^{2} - CT, \qquad CT = \frac{y_{...}^{2}}{p^{2}}$$

$$SSrow = \sum_{i=1}^{p} \frac{y_{i..}^{2}}{p} - CT,$$

$$SScolumn = \sum_{j=1}^{p} \frac{y_{.j.}^{2}}{p} - CT,$$

$$SStreat = \sum_{k=1}^{p} \frac{y_{..k}^{2}}{p} - CT,$$

라틴 방격법 ANOVA

Source	d.f.	SS	MS	F_0
Row	p-1	SSrow	MSrow	
Column	p-1	SScolumn	MScolumn	
Treat.	p-1	SStreat	MStreat	MStreat MSE
Error	$p^2 - 3p + 2$	SSE	MSE	
Total	$p^2 - 1$	SST		

- 전체 p³ 개의 실험조건이 아닌 p² 개의 실험조건
- p=3 이면 Error 자유도=2 밖에 안됨
- 상호작용 존재하는 상황에선 사용금지

라틴방격법 예

Example 다이너마이트를 제조하는 방법(A, B, C, D, E)에 따라 폭발력이 다른 지를 알아보고자 한다. 재료회사와 기술자의 영향을 고려한 라틴방격법 자료는 표 11.3과 같다.

	기술자1	기술자2	기술자3	기술자4	기술자5
재료회사1	A (24)	B (20)	C (19)	D (24)	E (24)
재료회사2	B (17)	C(24)	D (30)	E(27)	A (36)
재료회사3	C (18)	D (38)	E(26)	A (27)	B (21)
재료회사4	D (26)	E (31)	A(26)	B (23)	C(22)
재료회사5	E (22)	A (30)	B (20)	C(29)	D (31)

표 11.3: 다이너마이트 제조방법에 따른 폭발력 자료(괄호 안은 폭발력)

라틴방격법 예

$$CT = \frac{1}{25}(24 + 20 + 19 + \dots + 29 + 31)^{2} = 16129$$

$$SST = \sum_{i=1}^{5} \sum_{j=1}^{5} \sum_{k=1}^{5} y_{ijk}^{2} - CT$$

$$= (24^{2} + 20^{2} + \dots + 29^{2} + 31^{2}) - 16129 = 676$$

$$SSrow = \sum_{i=1}^{5} \frac{y_{i..}^{2}}{5} - CT$$

$$= \frac{1}{5} \left\{ (24 + 20 + \dots + 24)^{2} + \dots + (22 + 30 + \dots + 31)^{2} \right\} - 16129 = 68$$

$$SScolumn = \sum_{j=1}^{5} \frac{y_{.j}^{2}}{5} - CT$$

$$= \frac{1}{5} \left\{ (24 + 17 + \dots + 22)^{2} + \dots + (24 + 36 + \dots + 31)^{2} \right\} - 16129 = 150$$

$$SStreat = \sum_{i=1}^{5} \frac{y_{..k}^{2}}{5} - CT$$

$$= \frac{1}{5} \left\{ (24 + 30 + \dots + 36)^{2} + \dots + (22 + 31 + \dots + 24)^{2} \right\} - 16129 = 330$$

$$SSE = SST - SSrow - SScolumn - SStreat = 128$$

$$(11.14)$$

라틴방격법 예

Source	df	SS	MS	Fo
재료회사	4	68	17.0	
기술자	4	150	37.5	
제조방법	4	330	82.5	7.73
Error	12	128	10.67	
Total	24	676		

표 11.4: 라틴방격법의 분산분석표

분산분석표의 검정통계량을 보면

$$F_0 = 7.73 > 3.259 = F_{0.05, 4, 12}$$

가 되어서 제조방법에 따라 폭발력이 다르다고 할 수 있다.

SAS CODE & OUTPUT

```
proc glm data=a;
  class company worker;
  model power = company worker method;
run;
```

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	548.0000000	45.6666667	4.28	0.0089
Error	12	128.0000000	10.6666667		
Corrected Total	24	676.0000000			

Source	DF	Type III SS	Mean Square	F Value	Pr > F
company	4	68.0000000	17.0000000	1.59	0.2391
worker	4	150.0000000	37.5000000	3.52	0.0404
method	4	330.0000000	82.5000000	7.73	0.0025

SAS CODE & OUTPUT

라틴방격법의 단점과 보완책

- 오차의 자유도를 증가시킬 필요성 (p=3 ...df=2)
- I. 행과 열을 유지하면서 같은 라틴방격을 반복
- 2. 행을 그대로 유지하면서 반복 때마다 열을 랜덤배치함
- 3. 열을 그대로 유지하면서 반복 때마다 행을 랜덤배치함
- 4. 매 시행마다 행과 열을 다시 배치함

행과 열을 유지하면서 같은 라틴방격을 반복

	C1	C2	C3	C4	C5
R1	A(24)	B(20)	C(19)	D(24)	E(24)
R2	B(17)	C(24)	D(30)	E(27)	A(36)
R3	C(18)	D(38)	E(26)	A(27)	B(21)
R4	D(26)	E(31)	A(26)	B(23)	C(22)
R5	E(22)	A(30)	B(20)	C(29)	D(31)

	C1	C2	C3	C4	C5
R1	A(21)	B(19)	C(24)	D(20)	E(23)
R2	B(15)	C(23)	D(30)	E(26)	A(34)
R3	C(17)	D(32)	E(28)	A(26)	B(20)
R4	D(25)	E(32)	A(29)	B(22)	C(20)
R5	E(24)	A(32)	B(22)	C(31)	D(32)

```
proc glm data=a;
class Rep BRAND WORKER RATIO;
model Y=Rep BRAND WORKER RATIO;
run;
```

행을 유지하면서 반복 때마다 열을 랜덤배치

	C1	C2	C3	C4	C5
R1	A(24)	B(20)	C(19)	D(24)	E(24)
R2	B(17)	C(24)	D(30)	E(27)	A(36)
R3	C(18)	D(38)	E(26)	A(27)	B(21)
R4	D(26)	E(31)	A(26)	B(23)	C(22)
R5	E(22)	A(30)	B(20)	C(29)	D(31)

run:

	C4	C1	C2	C3	C5
R1	A(21)	B(19)	C(24)	D(20)	E(23)
R2	B(15)	C(23)	D(30)	E(26)	A(34)
R3	C(17)	D(32)	E(28)	A(26)	B(20)
R4	D(25)	E(32)	A(29)	B(22)	C(20)
R5	E(24)	A(32)	B(22)	C(31)	D(32)

```
proc glm data=a;
class Rep BRAND WORKER RATIO;
model Y=Rep BRAND WORKER(Rep) RATIO;
```

열을 유지하면서 반복 때마다 행을 랜덤배치

	C1	C2	C3	C4	C5
R1	A(24)	B(20)	C(19)	D(24)	E(24)
R2	B(17)	C(24)	D(30)	E(27)	A(36)
R3	C(18)	D(38)	E(26)	A(27)	B(21)
R4	D(26)	E(31)	A(26)	B(23)	C(22)
R5	E(22)	A(30)	B(20)	C(29)	D(31)

	C1	C2	C3	C4	C5
R3	A(21)	B(19)	C(24)	D(20)	E(23)
R5	B(15)	C(23)	D(30)	E(26)	A(34)
R2	C(17)	D(32)	E(28)	A(26)	B(20)
R1	D(25)	E(32)	A(29)	B(22)	C(20)
R4	E(24)	A(32)	B(22)	C(31)	D(32)

```
proc glm data=a;
class Rep BRAND WORKER RATIO;
model Y=Rep BRAND(Rep) WORKER RATIO;
run:
```

행과 열을 반복 때마다 랜덤배치

		C1	C2	C3	C4	C5
R1		A(24)	B(20)	C(19)	D(24)	E(24)
R2	-	B(17)	C(24)	D(30)	E(27)	A(36)
R3	3	C(18)	D(38)	E(26)	A(27)	B(21)
R4	ŀ	D(26)	E(31)	A(26)	B(23)	C(22)
R5	,	E(22)	A(30)	B(20)	C(29)	D(31)

	C5	C2	C4	C1	C3
R3	A(21)	B(19)	C(24)	D(20)	E(23)
R5	B(15)	C(23)	D(30)	E(26)	A(34)
R2	C(17)	D(32)	E(28)	A(26)	B(20)
R1	D(25)	E(32)	A(29)	B(22)	C(20)
R4	E(24)	A(32)	B(22)	C(31)	D(32)

```
proc glm data=a;
class Rep BRAND WORKER RATIO;
model Y=Rep BRAND(Rep) WORKER(Rep) RATIO;
run;
```