

Exploration des Auto-assemblages de nanoparticules et polymères : une recherche bibliographique

Introduction

Introduction

État de l'art

Développement

<u>Image I:</u> Nanoparticules de Platine, (LPCNO, Toulouse, 2022)

- Les images proviennent du laboratoire de physique et chimie des Nano-Objets, Toulouse
- ➤ Abréviation du mot nanoparticules : NPs

Nanoparticules

1.1 Propriétés et intérêts

Introduction

État de l'art

Développement

Conclusion

Variation des propriétés physico-chimiques selon l'échelle :

- Propriétés optiques
- Propriétés mécaniques
- > Réactivité chimique

Représentation schématique d'une NPs d'Or et de ses propriétés remarquables

Illustration d'un matériau massif d'Or

Echelle macroscopique:

- ➤ Interaction simple avec la lumière
- > Présence de défauts structurels
- > Pas de réactivité remarquable

Echelle nanométrique :

- > Résonance plasmonique de surface : interaction spécifique du nuage d'électron avec la lumière (Métaux nobles)
- ➤ Homogénéité structurelle
- Grande surface spécifique => améliore la réactivité

Anissa DEMIRSOY Soutenance: 07/01/2025

Nanoparticules

Introduction

État de l'art

Développement

- Technique Bottom Up : meilleur contrôle des dimensions
- > Exemple: réduction d'un sel métallique
- Intervention de trois phénomènes physico-chimiques : la nucléation, la croissance et la coalescence

Image II: NPs d'Or

Auto-assemblages

Définition et interactions

Introduction

État de l'art

Développement

Conclusion

➤ Auto-assemblage: Processus spontané, unités s'organisent en structures ordonnées, grâce aux forces d'interactions non covalentes.

➤ Influence de facteurs externes, comme la température et le pH.

Type d'interaction	Illustration	Force relative
Forces de Van Der Waals	Poly(styrène) x CH ₃ CH ₃	Faible (1-10 kJ/mol)
Interactions hydrophobes	Poly(styrène) H ₃ C x CNTs CH ₃ CH ₃	Moyenne (20-40 kJ/mol)
Liaisons hydrogène	PMMA H(0) OH	Moyenne (20-50 kJ/mol)
Liaisons ioniques	PDDA H ₃ C CH ₃ PDDA H ₃ C CH ₃ PDDA H ₃ C CH ₃	Très forte (200-400 kJ/mol)
Coordination (complexation)	PBLG Pt HC NH	Moyenne à forte (variable)

Anissa DEMIRSOY Soutenance: 07/01/2025

Recherche et développement

3.1 Auto-assemblages de nanobatônnets d'Or fonctionnalisés et de Polyéthylène Oxide

Objectif: obtenir un meilleur contrôle des auto-assemblages

Introduction

État de l'art

Développement

Image IV : Schémas des interactions de déplétions et de répulsions sphériques entre les NPs [Ryan Poling-Skutvik]

- Utilisation du même type de polymère (monomères : éthylène oxide) avec longueurs de chaînes différentes.
- ➢ Polymères greffés aux NPs d'Or, évite le phénomène de coalescence grâce à la répulsion sphérique.
- Polymères libres dans la solution conduit au phénomène de déplétion, et permet au NPs de se regrouper.

Conclusion et perspectives

Introduction

État de l'art

Développement

- Diversité des nanoparticules inorganiques et des polymères, combinée à des facteurs multiples permet une large diversité d'édifices possibles.
- Ouvre la voie à de nombreuses applications, comme en médecine et en électronique.
- Sujet d'actualité, capable de révolutionner la conception des matériaux et leurs usages futurs.

Image V: Différents assemblages de NPs de platine avec différents polymères.