

# Vertical Emittance Measurements using a Vertical Undulator

K.P. Wootton, G.N. Taylor, R.P. Rassool

The University of Melbourne

M.J. Boland, B.C.C. Cowie, R. Dowd, Y.-R.E. Tan

Australian Synchrotron

Y. Papaphilippou

**CERN** 













#### **Motivation**

- Collider damping rings and Super B-factory storage rings demand  $\varepsilon_v$  = 0.5-2.0 pm rad
- Collective effects lead to growth
  - Intra-beam scattering, electron cloud
- Storage ring light sources as test accelerators
  - SLS, ATF2, CESR, ASLS, Diamond, ...
- Need measurements of vertical emittance

# Synchrotron light vertical emittance monitors

- Three main approaches:
  - Imaging
  - Interferometry
  - Projection
- Quick diagnostic of storage ring
- Typically bending magnet
  - \$\$\psi,  $\beta_y \uparrow$ ,  $\eta_x \downarrow$
- Visible light, hard x-ray





## **Undulator diagnostics**

- Focus on odd (useful!) harmonics
- Horizontal undulators
  - Imaging
  - Projection
  - Absolute spectral brilliance (pinhole flux)
- Energy spread, dispersion, 'large' emittance



Moreno JSR, 19 179-84 (2012)



Hahn JSR 4, 1-5 (1997)



## Undulator beam projection



## **Undulator projection measurements**

#### Horizontal undulator





#### Undulator 25 periods 75 mm period K = 3.85

#### **Vertical undulator**





#### Electron beam

$$\varepsilon_{x} = 10 \ nm$$
 $\varepsilon_{y} = 100 \ pm$ 
 $\sigma_{E} = 0.11\%$ 



#### Photon beam brilliance

- Horizontal undulator
  - No contrast

- Vertical undulator
  - Even harmonics





## Fitting spectra

- 'It is evident that the second-harmonic brightness is proportional to the beam emittance ...' Dattoli PRE 52(6) 6809-17 (1995)
- I add to this: ... the emittance in the direction of undulations
  - How do we measure photon beam brilliance?



FIG. 1. First-harmonic brightness vs frequency parameters

Dattoli PRE 52(6) 6809-17 (1995)



#### Pinhole flux ratio



- Electron wakefield accelerator
- Flux ratio  $F_{n-1} / F_n$

#### Flux Ratio vs. Emittance



- M. Bakeman et al., PAC 2009, WE6RFP074
- M. Bakeman, et al., PAC 2011, MOP161



## Advanced Planar Polarised Light Emitter-II Modes of operation







Sasaki, Nucl. Instrum. Methods A 347, 83 (1994)



## **Soft x-ray undulator beamline**







## Soft x-ray undulator beamline

- APPLE-II undulator
- White beam slits first optical element
- All focussing, monochromator downstream







#### **Detector**

- Measuring vertical emittance with one large pixel!
- Beamline optics
  - Grating monochromator
  - Au-coated mirrors
  - Energy-defining slit
  - Photodiode (GaAsP, Si)

B.C.C. Cowie, et al., AIP Conf. Proc. 1234, 307 (2010)

- Au-coated mirrors
  - Transmission varies with photon energy



Beamline optics reflectivity





#### Photodiode choice

- Early experiments
  - Hamamatsu GaP/Au
- Ratio of peaks
- Absorption edges
  - Silicon photodiode
- Keithley picoammeter
  - Spans many orders of magnitude in current



FIG. 2. Spectral responsivity of a Si n on p diode and a GaAsP/Au diode

Krumrey, Tegeler (1992) Rev Sci Instrum 63 (1), p. 797-801



## Measured undulator spectrum



Modelled



## **Undulator projection measurements**

#### Vertical undulator



Undulator 25 periods 75 mm period K = 3.85

## Electron beam

$$\varepsilon_{x} = 10 \ nm$$
 $\varepsilon_{y} = 100 \ pm$ 
 $\sigma_{E} = 0.11\%$ 



#### **Even harmonics**





#### **Even harmonics**





### Where to?

- Fixed pinhole diameter
- SOLEIL DiagOn (fixed energy 367.5 eV)
- SPring-8 BL45XU (vertical IVU)
- Higher undulator K



Moreno JSR, 19 179-84 (2012)



Tanaka JSR 5, 414 (1998)



## **Summary**

- Undulator measurement of emittance is an old technique
  - Usually use horizontal undulator, horizontal emittance
  - Introduce vertical undulator, vertical emittance
- Measure pinhole spectra for different emittances
  - Pinhole much smaller than  $1/\gamma$  undulator cone.
- Evaluate ratios of adjacent harmonics
  - Simulations of undulator flux
  - Knowing pinhole size, would fit for beam emittance
- New vertical emittance measurement for many electron storage rings



## Thank-you!

















k.wootton@student.unimelb.edu.au



#### References

- Åndersson, NIMA 591, 437-446 (2008)
- Bakeman, et al., PAC 2009, WE6RFP074
- Bakeman, et al., PAC 2011, MOP161
- Boogert PRSTAB 13, 122801 (2010)
- Cowie, et al., AIP Conf. Proc. 1234, 307 (2010)
- Dattoli PRE 52(6) 6809-17 (1995)
- Dowd, et al., PRSTAB 14, 012804 (2011)
- Flanagan PAC09, TH5RFP048
- Hahn JSR 4, 1-5 (1997)
- Krumrey, Tegeler Rev Sci Instrum 63 (1), 797 (1992)
- Masaki DIPAC01, PS17
- Moreno JSR, 19 179-84 (2012)
- Nakamura PAC01, TPAH307
- Sasaki, NIM:A 347, 83 (1994)
- Scheidt, DIPAC05 CTWM01
- Shintake NIM:A 311, 453-464 (1992)
- Tanaka, et al., JSR 5, 414 (1998)
- Tanaka & Kitamura, JSR 8 1221 (2001)



## **Extra slides**



#### **Indirect measurement**

- Orbit response matrix fitting
- Touschek lifetime
  - Eigen as opposed to projected emittances
- Beam ellipse tilt (bending magnet)







Dowd PRSTAB 14, 012804 (2011)



# Direct measurement Laser wire scanner

- Scanning laser waist through electron beam
  - Inverse Compton gamma rays
- Shintake monitor
  - Interference pattern narrower than laser waist



Boogert PRSTAB 13, 122801 (2010)



Shintake NIMA 311, 453-464 (1992)