Statistical Models for Causal Analysis

Teppei Yamamoto

Keio University

Introduction to Causal Inference Spring 2016

Three Modes of Statistical Inference

- 1. Descriptive Inference: summarizing and exploring data
 - Inferring ideal points from roll-call votes
 - Inferring topics from texts and speeches
 - Inferring social networks from surveys
- 2. Predictive Inference: forecasting out-of-sample data points
 - Inferring future state failures from past failures
 - Inferring population average turnout from a sample of voters
 - Inferring individual level behavior from aggregate data
- 3. Causal Inference: predicting counterfactuals
 - Inferring the effects of ethnic minority rule on civil war onset
 - Inferring why incumbency status affects election outcomes
 - Inferring whether the lack of war among democracies can be attributed to regime types

Three Modes of Statistical Inference

- 1. Descriptive Inference: summarizing and exploring data
 - Inferring ideal points from roll-call votes
 - Inferring topics from texts and speeches
 - Inferring social networks from surveys
- 2. Predictive Inference: forecasting out-of-sample data points
 - Inferring future state failures from past failures
 - Inferring population average turnout from a sample of voters
 - Inferring individual level behavior from aggregate data
- 3. Causal Inference: predicting counterfactuals
 - Inferring the effects of ethnic minority rule on civil war onset
 - Inferring why incumbency status affects election outcomes
 - Inferring whether the lack of war among democracies can be attributed to regime types

Causal inference is the most difficult of the three.

Correlation ≠ Causation

What is Causal Inference?

Causal inference = inference about counterfactuals

What is Causal Inference?

Causal inference = inference about counterfactuals

Examples:

- Incumbency advantage:
 What would have been the election outcome if the candidate had not been an incumbent?
- Democratic peace:
 Would the two countries have fought each other if they had been both autocratic?
- Policy intervention:
 How many more disadvantaged youths would get employed under the new job training program?

What is Causal Inference?

Causal inference = inference about counterfactuals

Examples:

- Incumbency advantage:
 What would have been the election outcome if the candidate had not been an incumbent?
- Democratic peace:
 Would the two countries have fought each other if they had been both autocratic?
- Policy intervention:
 How many more disadvantaged youths would get employed under the new job training program?

We need a statistical model that can explicitly distinguish factuals and counterfactuals.

Neyman-Rubin Potential Outcomes Model

Jerzy Neyman (1894-1981)

Donald Rubin (1943-)

Neyman Urn Model

Neyman Urn Model

Definition (Treatment)

 D_i : Indicator of treatment intake for <u>unit</u> i, where i = 1, ..., N

$$D_i = \begin{cases} 1 & \text{if unit } i \text{ received the treatment} \\ 0 & \text{otherwise} \end{cases}$$

Definition (Observed Outcome)

 Y_i : Variable of interest whose value may be affected by the treatment

Definition (Potential Outcomes)

 Y_{di} : Value of the outcome that *would* be realized if unit *i* received the treatment *d*, where d = 0 or 1

$$Y_{di} = \begin{cases} Y_{1i} & \text{Potential outcome for unit } i \text{ with treatment} \\ Y_{0i} & \text{Potential outcome for unit } i \text{ without treatment} \end{cases}$$

Alternative notation: $Y_i(d)$, Y_i^d , etc.

Definition (Causal Effect, or Unit Treatment Effect)

Causal effect of the treatment on the outcome for unit i is the difference between its two potential outcomes:

$$\tau_i = Y_{1i} - Y_{0i}$$

Definition (Causal Effect, or Unit Treatment Effect)

Causal effect of the treatment on the outcome for unit i is the difference between its two potential outcomes:

$$\tau_i = Y_{1i} - Y_{0i}$$

Note that observed outcomes are realized from potential outcomes as

$$Y_i = Y_{D_i i} = D_i Y_{1i} + (1 - D_i) Y_{0i}$$
 so $Y_i = \begin{cases} Y_{1i} & \text{if } D_i = 1 \\ Y_{0i} & \text{if } D_i = 0 \end{cases}$

Definition (Causal Effect, or Unit Treatment Effect)

Causal effect of the treatment on the outcome for unit i is the difference between its two potential outcomes:

$$\tau_i = Y_{1i} - Y_{0i}$$

Note that observed outcomes are realized from potential outcomes as

$$Y_i = Y_{D_i i} = D_i Y_{1i} + (1 - D_i) Y_{0i}$$
 so $Y_i = \begin{cases} Y_{1i} & \text{if } D_i = 1 \\ Y_{0i} & \text{if } D_i = 0 \end{cases}$

Fundamental Problem of Causal Inference (Holland 1986):

We can never observe both Y_{1i} and Y_{0i} for the same i. This makes τ_i unidentifiable without further assumptions.

Causal Inference as a Missing Data Problem

<u>Problem</u>: Causal Inference is difficult because it involves missing data. How can we calculate $\tau_i = Y_{1i} - Y_{0i}$?

Causal Inference as a Missing Data Problem

<u>Problem</u>: Causal Inference is difficult because it involves missing data. How can we calculate $\tau_i = Y_{1i} - Y_{0i}$?

• One "solution": Assume unit homogeneity

$$\tau_i = \tau$$
 for all i

- If Y_{1i} and Y_{0i} are constant across individual units, then cross-sectional comparisons will recover $\tau = \tau_i$
- If Y_{1i} and Y_{0i} are constant across time, then before-and-after comparisons will recover $\tau = \tau_i$

Causal Inference as a Missing Data Problem

<u>Problem</u>: Causal Inference is difficult because it involves missing data. How can we calculate $\tau_i = Y_{1i} - Y_{0i}$?

• One "solution": Assume unit homogeneity

$$\tau_i = \tau$$
 for all i

- If Y_{1i} and Y_{0i} are constant across individual units, then cross-sectional comparisons will recover $\tau = \tau_i$
- If Y_{1i} and Y_{0i} are constant across time, then before-and-after comparisons will recover $\tau = \tau_i$
- This may be sometimes plausible in physical sciences
- Unfortunately, rarely true in social sciences

- Recall: $Y_i = Y_{D_i i}$, or equivalently $Y_i = D_i Y_{1i} + (1 D_i) Y_{0i}$
- This notation implicitly makes the following assumption:

- Recall: $Y_i = Y_{D_i i}$, or equivalently $Y_i = D_i Y_{1i} + (1 D_i) Y_{0i}$
- This notation implicitly makes the following assumption:

Assumption (SUTVA)

$$Y_{(D_1,D_2,...,D_N)i} = Y_{(D'_1,D'_2,...,D'_N)i}$$
 if $D_i = D'_i$

- Recall: $Y_i = Y_{D_i i}$, or equivalently $Y_i = D_i Y_{1i} + (1 D_i) Y_{0i}$
- This notation implicitly makes the following assumption:

Assumption (SUTVA)

$$Y_{(D_1,D_2,...,D_N)i} = Y_{(D'_1,D'_2,...,D'_N)i}$$
 if $D_i = D'_i$

SUTVA consists of two sub-assumptions:

- No interference between units
 - Potential outcomes for a unit must not be affected by treatment for any other units
 - Violations: spill-over effects, contagion, dilution

- Recall: $Y_i = Y_{D_i i}$, or equivalently $Y_i = D_i Y_{1i} + (1 D_i) Y_{0i}$
- This notation implicitly makes the following assumption:

Assumption (SUTVA)

$$Y_{(D_1,D_2,...,D_N)i} = Y_{(D'_1,D'_2,...,D'_N)i}$$
 if $D_i = D'_i$

SUTVA consists of two sub-assumptions:

- No interference between units
 - Potential outcomes for a unit must not be affected by treatment for any other units
 - Violations: spill-over effects, contagion, dilution
- No different versions of treatment (a.k.a. stability, consistency)
 - Nominally identical treatments are in fact identical
 - Violations: variable levels of treatment, technical errors

- Recall: $Y_i = Y_{D_i i}$, or equivalently $Y_i = D_i Y_{1i} + (1 D_i) Y_{0i}$
- This notation implicitly makes the following assumption:

Assumption (SUTVA)

$$Y_{(D_1,D_2,...,D_N)i} = Y_{(D'_1,D'_2,...,D'_N)i}$$
 if $D_i = D'_i$

SUTVA consists of two sub-assumptions:

- No interference between units
 - Potential outcomes for a unit must not be affected by treatment for any other units
 - Violations: spill-over effects, contagion, dilution
- No different versions of treatment (a.k.a. stability, consistency)
 - Nominally identical treatments are in fact identical
 - Violations: variable levels of treatment, technical errors

Violation examples: Vaccination, fertilizer on plot yield, communication

Let $\mathbf{D} = (D_1, D_2)$ be a vector of binary treatments for N = 2.

How many different values can **D** possibly take?

Let $\mathbf{D} = (D_1, D_2)$ be a vector of binary treatments for N = 2.

How many different values can **D** possibly take?

$$(D_1, D_2) = (0,0) \text{ or } (1,0) \text{ or } (0,1) \text{ or } (1,1)$$

How many potential outcomes for unit 1?

Let $\mathbf{D} = (D_1, D_2)$ be a vector of binary treatments for N = 2.

How many different values can **D** possibly take?

$$(D_1, D_2) = (0,0) \text{ or } (1,0) \text{ or } (0,1) \text{ or } (1,1)$$

How many potential outcomes for unit 1?

$$Y_{(0,0)1}, Y_{(1,0)1}, Y_{(0,1)1}, Y_{(1,1)1}.$$

How many causal effects for unit 1?

Let $\mathbf{D} = (D_1, D_2)$ be a vector of binary treatments for N = 2.

How many different values can **D** possibly take?

$$(D_1, D_2) = (0, 0) \text{ or } (1, 0) \text{ or } (0, 1) \text{ or } (1, 1)$$

How many potential outcomes for unit 1?

$$Y_{(0,0)1}, Y_{(1,0)1}, Y_{(0,1)1}, Y_{(1,1)1}.$$

How many causal effects for unit 1?

$$Y_{(1,1)1} - Y_{(0,0)1}, \quad Y_{(1,1)1} - Y_{(0,1)1}, \\ Y_{(1,0)1} - Y_{(0,0)1}, \quad Y_{(1,0)1} - Y_{(0,1)1}, \\ Y_{(1,1)1} - Y_{(1,0)1}, \quad Y_{(0,1)1} - Y_{(0,0)1}.$$

How many observed outcomes for unit 1?

Let $\mathbf{D} = (D_1, D_2)$ be a vector of binary treatments for N = 2.

How many different values can **D** possibly take?

$$(D_1, D_2) = (0, 0) \text{ or } (1, 0) \text{ or } (0, 1) \text{ or } (1, 1)$$

How many potential outcomes for unit 1?

$$Y_{(0,0)1}, Y_{(1,0)1}, Y_{(0,1)1}, Y_{(1,1)1}.$$

How many causal effects for unit 1?

$$\begin{array}{lll} Y_{(1,1)1} - Y_{(0,0)1}, & Y_{(1,1)1} - Y_{(0,1)1}, \\ Y_{(1,0)1} - Y_{(0,0)1}, & Y_{(1,0)1} - Y_{(0,1)1}, \\ Y_{(1,1)1} - Y_{(1,0)1}, & Y_{(0,1)1} - Y_{(0,0)1}. \end{array}$$

How many observed outcomes for unit 1? Only one: $Y_1 = Y_{(D_1,D_2)1}$

Let $\mathbf{D} = (D_1, D_2)$ be a vector of binary treatments for N = 2.

How many different values can **D** possibly take?

$$(D_1, D_2) = (0,0) \text{ or } (1,0) \text{ or } (0,1) \text{ or } (1,1)$$

How many potential outcomes for unit 1?

$$Y_{(0,0)1}, Y_{(1,0)1}, Y_{(0,1)1}, Y_{(1,1)1}.$$

How many causal effects for unit 1?

$$\begin{array}{lll} Y_{(1,1)1} - Y_{(0,0)1}, & Y_{(1,1)1} - Y_{(0,1)1}, \\ Y_{(1,0)1} - Y_{(0,0)1}, & Y_{(1,0)1} - Y_{(0,1)1}, \\ Y_{(1,1)1} - Y_{(1,0)1}, & Y_{(0,1)1} - Y_{(0,0)1}. \end{array}$$

How many observed outcomes for unit 1? Only one: $Y_1 = Y_{(D_1,D_2)1}$ Without SUTVA, causal inference becomes exponentially more difficult as N increases.

Back to the Neyman Urn Model

Causal Quantities of Interest, or Estimands

- Unit-level causal effects are fundamentally unobservable
- We instead focus on averages in most situations
- For now, assume we observe all units in the population of interest,
 i.e. N = size of population

Causal Quantities of Interest, or Estimands

- Unit-level causal effects are fundamentally unobservable
- We instead focus on averages in most situations
- For now, assume we observe all units in the population of interest,
 i.e. N = size of population

Definition (Average treatment effect, ATE)

$$au_{ATE} = \frac{1}{N} \sum_{i=1}^{N} \{ Y_{1i} - Y_{0i} \}$$

or equivalently

$$\tau_{ATE} = \mathbb{E}[Y_{1i} - Y_{0i}]$$

- Note that τ_{ATF} is still unidentified
- In the rest of this course, we will consider various assumptions under which \(\tau_{ATE}\) can be identified from observed information

Definition (Average treatment effect on the treated, ATT)

$$au_{ATT} = rac{1}{N_1} \sum_{i=1}^{N} D_i \{ Y_{1i} - Y_{0i} \}$$
 where $N_1 = \sum_{i=1}^{N} D_i$

or equivalently $au_{ATT} = \mathbb{E}[Y_{1i} - Y_{0i}|D_i = 1]$

● In words, N₁ equals

Definition (Average treatment effect on the treated, ATT)

$$au_{ATT} = rac{1}{N_1} \sum_{i=1}^{N} D_i \left\{ Y_{1i} - Y_{0i} \right\} \quad \text{where} \quad N_1 = \sum_{i=1}^{N} D_i$$

or equivalently $\tau_{ATT} = \mathbb{E}[Y_{1i} - Y_{0i}|D_i = 1]$

• In words, N_1 equals the number of treated units.

Definition (Average treatment effect on the treated, ATT)

$$au_{ATT} = rac{1}{N_1} \sum_{i=1}^{N} D_i \left\{ Y_{1i} - Y_{0i} \right\} \quad \text{where} \quad N_1 = \sum_{i=1}^{N} D_i$$

or equivalently $\tau_{ATT} = \mathbb{E}[Y_{1i} - Y_{0i}|D_i = 1]$

- \bullet In words, N_1 equals the number of treated units.
- When would $\tau_{ATT} \neq \tau_{ATE}$?

Definition (Average treatment effect on the treated, ATT)

$$au_{ATT} = rac{1}{N_1} \sum_{i=1}^{N} D_i \left\{ Y_{1i} - Y_{0i} \right\} \quad \text{where} \quad N_1 = \sum_{i=1}^{N} D_i$$

or equivalently $\tau_{ATT} = \mathbb{E}[Y_{1i} - Y_{0i}|D_i = 1]$

- \bullet In words, N_1 equals the number of treated units.
- When would $\tau_{ATT} \neq \tau_{ATE}$? When D_i and Y_{di} are associated.
- Exercise: Define τ_{ATC} , ATE on the untreated (control) units.

Definition (Average treatment effect on the treated, ATT)

$$au_{ATT} = rac{1}{N_1} \sum_{i=1}^{N} D_i \left\{ Y_{1i} - Y_{0i} \right\} \quad ext{where} \quad N_1 = \sum_{i=1}^{N} D_i$$

or equivalently $\tau_{ATT} = \mathbb{E}[Y_{1i} - Y_{0i}|D_i = 1]$

- In words, N_1 equals the number of treated units.
- When would $\tau_{ATT} \neq \tau_{ATE}$? When D_i and Y_{di} are associated.
- Exercise: Define τ_{ATC} , ATE on the untreated (control) units.

Definition (Conditional average treatment effects)

$$au_{CATE}(x) = \mathbb{E}[Y_{1i} - Y_{0i}|X_i = x]$$

where X_i is a pre-treatment covariate for unit i

• In words, $\tau_{CATE}(x)$ is

Other Causal Estimands

Definition (Average treatment effect on the treated, ATT)

$$au_{ATT} = rac{1}{N_1} \sum_{i=1}^{N} D_i \left\{ Y_{1i} - Y_{0i} \right\} \quad ext{where} \quad N_1 = \sum_{i=1}^{N} D_i$$

or equivalently $\tau_{ATT} = \mathbb{E}[Y_{1i} - Y_{0i}|D_i = 1]$

- In words, N_1 equals the number of treated units.
- When would $\tau_{ATT} \neq \tau_{ATE}$? When D_i and Y_{di} are associated.
- Exercise: Define τ_{ATC} , ATE on the untreated (control) units.

Definition (Conditional average treatment effects)

$$au_{CATE}(x) = \mathbb{E}[Y_{1i} - Y_{0i}|X_i = x]$$

where X_i is a pre-treatment covariate for unit i

• In words, $\tau_{CATE}(x)$ is a subgroup effect, treatment effect on units who have particular characteristics x.

Suppose we observe a population of 4 units:

i	Di	Y _i
1	1	3
2	1	1
3	0	0
4	0	1

What is
$$\tau_{ATE} = \mathbb{E}[Y_{1i} - Y_{0i}]$$
?

Suppose we observe a population of 4 units:

i	Di	Y_i	
1	1	3	
2	1	1	
3	0	0	
4	0	1	
$\mathbb{E}[Y_i \mid D_i = 1]$		2	
$\mathbb{E}[Y_i \mid D_i = 0]$		0.5	
$\mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$		1.5	

What is
$$\tau_{ATE} = \mathbb{E}[Y_{1i} - Y_{0i}]$$
?

Naïve estimator:

$$\tilde{\tau} = \mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$
 (observed difference in means)
= $\frac{3+1}{2} - \frac{0+1}{2} = 1.5$ Could this be wrong?

Suppose we observe a population of 4 units:

i	D_i	Y_i	Y_{1i}	Y_{0i}	$ au_{i}$
1	1	3	3	?	?
2	1	1	1	?	?
3	0	0	?	0	?
4	0	1	?	1	?

What is $\tau_{ATE} = \mathbb{E}[Y_{1i} - Y_{0i}]$? We need potential outcomes that we do not observe!

Suppose we observe a population of 4 units:

i	Di	Y_i	Y_{1i}	Y_{0i}	τ_{i}
1	1	3	3	0	?
2	1	1	1	1	?
3	0	0	1	0	?
4	0	1	1	1	?

Suppose hypothetically: $Y_{01} = 0$, $Y_{02} = Y_{13} = Y_{14} = 1$.

Suppose we observe a population of 4 units:

i	D_i	Y_i	Y_{1i}	Y_{0i}	$ au_{i}$
1	1	3	3	0	3
2	1	1	1	1	0
3	0	0	1	0	1
4	0	1	1	1	0
$\mathbb{E}[Y_{1i}]$			1.5		
$\mathbb{E}[Y_{0i}]$				0.5	
$\mathbb{E}[Y_{1i}-Y_{0i}]$					1

$$au_{ATE} \ = \ \mathbb{E}[Y_{1i} - Y_{0i}] \ = \ \mathbb{E}[\tau_i] \ = \ \frac{3 + 0 + 1 + 0}{4} \ = \ 1.$$

Suppose we observe a population of 4 units:

i	Di	Y_i	Y_{1i}	Y_{0i}	$ au_{i}$
1	1	3	3	0	3
2	1	1	1	1	0
3	0	0	1	0	1
4	0	1	1	1	0
$\mathbb{E}[Y_{1i}]$			1.5		
$\mathbb{E}[Y_{0i}]$				0.5	
$\mathbb{E}[Y_{1i}-Y_{0i}]$					1

$$au_{ATE} \ = \ \mathbb{E}[Y_{1i} - Y_{0i}] \ = \ \mathbb{E}[\tau_i] \ = \ \frac{3 + 0 + 1 + 0}{4} \ = \ 1.$$

Why $\tau_{ATE} \neq \tilde{\tau}$? When would they be equal?

Again suppose we observe a population of 4 units:

i	D_i	Y_i	Y_{1i}	Y_{0i}	$ au_{i}$
1	1	3	3	?	?
2	1	1	1	?	?
3	0	0	?	0	?
4	0	1	?	1	?

What is
$$\tau_{ATT} = \mathbb{E}[Y_{1i} - Y_{0i} \mid D_i = 1]$$
?

Again suppose we observe a population of 4 units:

i	Di	Y_i	Y_{1i}	Y_{0i}	$ au_{i}$
1	1	3	3	0	3
2	1	1	1	1	0
3	0	0	1	0	1
4	0	1	1	1	0

What is
$$\tau_{ATT} = \mathbb{E}[Y_{1i} - Y_{0i} \mid D_i = 1]$$
?

Again suppose we observe a population of 4 units:

i	D_i	Y_i	Y_{1i}	Y_{0i}	$ au_{i}$
1	1	3	3	0	3
2	1	1	1	1	0
3			1		1
		-1	1	1	
$\mathbb{E}[Y_{1i} \mid D_i = 1]$			2		
$\mathbb{E}[Y_{0i} \mid D_i = 1]$				0.5	
$\mathbb{E}[Y_{1i}-Y_{0i}\mid D_i=1]$					1.5

$$\tau_{ATT} = \mathbb{E}[Y_{1i} - Y_{0i} \mid D_i = 1] = \mathbb{E}[\tau_i \mid D_i = 1] = \frac{3+0}{2} = 1.5.$$

Again suppose we observe a population of 4 units:

i	D_i	Y_i	Y_{1i}	Y_{0i}	$ au_{i}$
1	1	3	3	0	3
2	1	1	1	1	0
3			1		1
		1	1	1	
$\mathbb{E}[Y_{1i} \mid D_i = 1]$			2		
$\mathbb{E}[Y_{0i} \mid D_i = 1]$				0.5	
$\mathbb{E}[Y_{1i}-Y_{0i}\mid D_i=1]$					1.5

$$\tau_{ATT} = \mathbb{E}[Y_{1i} - Y_{0i} \mid D_i = 1] = \mathbb{E}[\tau_i \mid D_i = 1] = \frac{3+0}{2} = 1.5.$$

Why does $\tau_{ATT} \neq \tau_{ATE}$?

Selection Bias

 Comparisons of observed outcomes for the treated and the untreated do not usually give the right answer:

$$\tilde{\tau} = \mathbb{E}[Y_{i}|D_{i} = 1] - \mathbb{E}[Y_{i}|D_{i} = 0]
= \mathbb{E}[Y_{1i}|D_{i} = 1] - \mathbb{E}[Y_{0i}|D_{i} = 0]
= \mathbb{E}[Y_{1i} - Y_{0i}|D_{i} = 1] + \mathbb{E}[Y_{0i}|D_{i} = 1] - \mathbb{E}[Y_{0i}|D_{i} = 0]
\xrightarrow{\tau_{ATT}} Bias$$

 Bias term ≠ 0 if selection into treatment is associated with potential outcomes

Selection Bias

 Comparisons of observed outcomes for the treated and the untreated do not usually give the right answer:

$$\tilde{\tau} = \mathbb{E}[Y_{i}|D_{i} = 1] - \mathbb{E}[Y_{i}|D_{i} = 0]
= \mathbb{E}[Y_{1i}|D_{i} = 1] - \mathbb{E}[Y_{0i}|D_{i} = 0]
= \mathbb{E}[Y_{1i} - Y_{0i}|D_{i} = 1] + \mathbb{E}[Y_{0i}|D_{i} = 1] - \mathbb{E}[Y_{0i}|D_{i} = 0]
\xrightarrow{\tau_{ATT}} Bias$$

 Bias term ≠ 0 if selection into treatment is associated with potential outcomes

Example: Church attendance and turnout

- churchgoers differ from individuals who do not attend church in many ways (e.g. civic duty)
- turnout for churchgoers would be higher than for non-churchgoers even if churchgoers never attended church $(E[Y_{0i}|D_i=1]-E[Y_{0i}|D_i=0]>0)$

Selection Bias

 Comparisons of observed outcomes for the treated and the untreated do not usually give the right answer:

$$\tilde{\tau} = \mathbb{E}[Y_{i}|D_{i} = 1] - \mathbb{E}[Y_{i}|D_{i} = 0]
= \mathbb{E}[Y_{1i}|D_{i} = 1] - \mathbb{E}[Y_{0i}|D_{i} = 0]
= \mathbb{E}[Y_{1i} - Y_{0i}|D_{i} = 1] + \mathbb{E}[Y_{0i}|D_{i} = 1] - \mathbb{E}[Y_{0i}|D_{i} = 0]
\xrightarrow{\tau_{ATT}} Bias$$

 Bias term ≠ 0 if selection into treatment is associated with potential outcomes

Example: Job training program for the disadvantaged

- participants are self-selected from a subpopulation of individuals in difficult labor situations
- post-training period earnings for participants would be lower than those for nonparticipants in the absence of the program $(E[Y_{0i}|D_i=1]-E[Y_{0i}|D_i=0]<0)$

- Causal inference requires good identification strategy
- Treatment assignment mechanism determines whether average causal effects are identifiable

- Causal inference requires good identification strategy
- Treatment assignment mechanism determines whether average causal effects are identifiable
- Treatment is randomized by the researcher ②②②
 - Laboratory experiments
 - Survey experiments
 - Field experiments

- Causal inference requires good identification strategy
- Treatment assignment mechanism determines whether average causal effects are identifiable
- Treatment is randomized by the researcher ⊕ ⊕ ⊕
 - Laboratory experiments
 - Survey experiments
 - Field experiments
- ② Treatment is haphazard (natural experiment) ☺☺
 - Birthdays
 - Weather
 - Close elections
 - Arbitrary administrative rules

- Causal inference requires good identification strategy
- Treatment assignment mechanism determines whether average causal effects are identifiable
- Treatment is randomized by the researcher <a>⊕ <a>⊕
 - Laboratory experiments
 - Survey experiments
 - Field experiments
- ② Treatment is haphazard (natural experiment) ☺☺
 - Birthdays
 - Weather
 - Close elections
 - Arbitrary administrative rules
- Treatment is "as-if" random after statistical control ©
 - Regression
 - Matching

- Causal inference requires good identification strategy
- Treatment assignment mechanism determines whether average causal effects are identifiable
- Treatment is randomized by the researcher ②②②
 - Laboratory experiments
 - Survey experiments
 - Field experiments
- 2 Treatment is haphazard (natural experiment) © ©
 - Birthdays
 - Weather
 - Close elections
 - Arbitrary administrative rules
- Treatment is "as-if" random after statistical control ©
 - Regression
 - Matching
- Treatment is self-selected and no plausible control is available 😊

Did social scientists not do causal inference before Rubin?

Did social scientists not do causal inference before Rubin? No!

- Did social scientists not do causal inference before Rubin? No!
- The old paradigm: structural equation modeling (SEM) and path analysis
 - Postulate a causal mechanism and draw a corresponding path diagram

- Did social scientists not do causal inference before Rubin? No!
- The old paradigm: structural equation modeling (SEM) and path analysis
 - Postulate a causal mechanism and draw a corresponding path diagram

Translate it into a (typically linear) system of equations:

$$Y = \alpha_0 + \alpha_1 X + \alpha_2 Z + \varepsilon_{\alpha}$$

$$X = \beta_0 + \beta_1 Z + \beta_2 W + \beta_3 V + \varepsilon_{\beta} \cdots$$

3 Estimate α , β , etc. typically assuming normality and exogeneity

- Did social scientists not do causal inference before Rubin? No!
- The old paradigm: structural equation modeling (SEM) and path analysis
 - Postulate a causal mechanism and draw a corresponding path diagram

2 Translate it into a (typically linear) system of equations:

$$Y = \alpha_0 + \alpha_1 X + \alpha_2 Z + \varepsilon_{\alpha}$$

$$X = \beta_0 + \beta_1 Z + \beta_2 W + \beta_3 V + \varepsilon_{\beta} \cdots$$

- **3** Estimate α , β , etc. typically assuming normality and exogeneity
- Went out of fashion:
 - Strong distributional/functional form assumptions
 - No language to distinguish causation from association

Pearl's Attack

Judea Pearl (1936–) proposed a new causal inference framework based on nonparametric structural equation modeling (NPSEM)

- Originally a computer scientist
- Previous important work on artificial intelligence
- Causality (2000, Cambridge UP)
- Won the Turing Award in 2011 for his causal work

Pearl's Attack

Judea Pearl (1936–) proposed a new causal inference framework based on nonparametric structural equation modeling (NPSEM)

- Originally a computer scientist
- Previous important work on artificial intelligence
- Causality (2000, Cambridge UP)
- Won the Turing Award in 2011 for his causal work

Pearl's framework builds on SEMs and revives it as a formal language of causality.

Causal Diagram

- A causal diagram is a directed acyclic graph (DAG) composed of:
 - Nodes (representing variables in the causal model)
 - Directed edges or arrows (representing possible causal effect)
 - Bidirected arcs (representing possible existence of confounding)

Causal Diagram

- A causal diagram is a directed acyclic graph (DAG) composed of:
 - Nodes (representing variables in the causal model)
 - Directed edges or arrows (representing possible causal effect)
 - Bidirected arcs (representing *possible* existence of confounding)
- Relationships involving unobserved variables are often represented by dashed/dotted lines
- Exogenous variables that is not explicitly modelled ("errors") can be omitted from a graph

Causal Diagram

- A causal diagram is a directed acyclic graph (DAG) composed of:
 - Nodes (representing variables in the causal model)
 - Directed edges or arrows (representing possible causal effect)
 - Bidirected arcs (representing *possible* existence of confounding)
- Relationships involving unobserved variables are often represented by dashed/dotted lines
- Exogenous variables that is not explicitly modelled ("errors") can be omitted from a graph
- Note that it is missing edges that encode causal assumptions
 - Missing arrows encode exclusion restrictions
 - Missing dashed arcs encode independencies between error terms

NPSEM and Treatments

• A causal DAG has a one-to-one relationship with an NPSEM:

$$z = f_Z(u_Z), \quad x = f_X(z, u_X), \quad y = f_Y(x, u_Y)$$

NPSEM and Treatments

• A causal DAG has a one-to-one relationship with an NPSEM:

$$z = f_Z(u_Z), \quad x = f_X(z, u_X), \quad y = f_Y(x, u_Y)$$

 These are structural equations (as opposed to algebraic) and represent causation — the equal signs are thus directional (i.e. no moving around)

NPSEM and Treatments

• A causal DAG has a one-to-one relationship with an NPSEM:

$$z = f_Z(u_Z), \quad x = f_X(z, u_X), \quad y = f_Y(x, u_Y)$$

- These are structural equations (as opposed to algebraic) and represent causation — the equal signs are thus directional (i.e. no moving around)
- Treatments (interventions) are represented by the do() operator
- For example, $do(x_0)$ holds X at x_0 exogenously and thus replaces the structural equation for X with this value:

$$z = f_Z(u_Z), \quad x = x_0, \quad y = f_Y(x, u_Y)$$

• The pre-intervention distribution: P(x, y, z)

- The pre-intervention distribution: P(x, y, z)
- The post-intervention distribution: $P(y, z \mid do(x_0))$

- The pre-intervention distribution: P(x, y, z)
- The post-intervention distribution: $P(y, z \mid do(x_0))$
- The ATE of X on Y can be defined as the average difference in Y between two intervention regimes, i.e.,

$$\mathbb{E}[Y \mid do(x_1)] - \mathbb{E}[Y \mid do(x_0)]$$

- The pre-intervention distribution: P(x, y, z)
- The post-intervention distribution: $P(y, z \mid do(x_0))$
- The ATE of X on Y can be defined as the average difference in Y between two intervention regimes, i.e.,

$$\mathbb{E}[Y \mid do(x_1)] - \mathbb{E}[Y \mid do(x_0)]$$

• Identification: Can $P(y \mid do(x))$ be estimated from data governed by the pre-intervention distribution P(x, y, z)?

- The pre-intervention distribution: P(x, y, z)
- The post-intervention distribution: $P(y, z \mid do(x_0))$
- The ATE of X on Y can be defined as the average difference in Y between two intervention regimes, i.e.,

$$\mathbb{E}[Y \mid do(x_1)] - \mathbb{E}[Y \mid do(x_0)]$$

- Identification: Can $P(y \mid do(x))$ be estimated from data governed by the pre-intervention distribution P(x, y, z)?
- Example:

$$\mathbb{E}[Y \mid X = x_0] =$$

- The pre-intervention distribution: P(x, y, z)
- The post-intervention distribution: $P(y, z \mid do(x_0))$
- The ATE of X on Y can be defined as the average difference in Y between two intervention regimes, i.e.,

$$\mathbb{E}[Y \mid do(x_1)] - \mathbb{E}[Y \mid do(x_0)]$$

- Identification: Can $P(y \mid do(x))$ be estimated from data governed by the pre-intervention distribution P(x, y, z)?
- Example:

$$\mathbb{E}[Y \mid X = x_0] = \mathbb{E}[f_Y(x, u_Y) \mid X = x_0] = \mathbb{E}[f_Y(x_0, u_Y)] =$$

- The pre-intervention distribution: P(x, y, z)
- The post-intervention distribution: $P(y, z \mid do(x_0))$
- The ATE of X on Y can be defined as the average difference in Y between two intervention regimes, i.e.,

$$\mathbb{E}[Y \mid do(x_1)] - \mathbb{E}[Y \mid do(x_0)]$$

- Identification: Can $P(y \mid do(x))$ be estimated from data governed by the pre-intervention distribution P(x, y, z)?
- Example:

$$\mathbb{E}[Y \mid X = x_0] = \mathbb{E}[f_Y(X, u_Y) \mid X = x_0] = \mathbb{E}[f_Y(x_0, u_Y)] = \mathbb{E}[Y \mid do(x_0)]$$

 A causal model represented as a graph can be translated into potential outcomes.

- A causal model represented as a graph can be translated into potential outcomes.
- First, write it down in NPSEM:

$$z = f_Z(u_Z), \quad x = f_X(z, u_X), \quad y = f_Y(x, u_Y)$$

- A causal model represented as a graph can be translated into potential outcomes.
- First, write it down in NPSEM:

$$z = f_Z(u_Z), \quad x = f_X(z, u_X), \quad y = f_Y(x, u_Y)$$

• This directly corresponds to potential outcomes:

$$Z_i, X_{zi}, Y_{xi}$$

- A causal model represented as a graph can be translated into potential outcomes.
- First, write it down in NPSEM:

$$z = f_Z(u_Z), \quad x = f_X(z, u_X), \quad y = f_Y(x, u_Y)$$

• This directly corresponds to potential outcomes:

$$Z_i$$
, X_{zi} , Y_{xi}

- Because of this fundamental equivalence, we will mostly work with potential outcomes, currently the standard framework in social sciences.
- Graphs are useful for expressing and visualizing a causal model in empirical research.

Aside: Modern Schools of Statistical Causal Inference

- Potential Outcomes (Rubin, Rosenbaum, Imbens)
 - Most widely used in applied sciences, especially economics and political science
 - Causal inference as missing data problem
- NPSEM (Pearl)
 - Uses mathematical theory of graphs
 - Borrows concepts from Bayes net and neural networks
- 3 Sufficient Component Causes (Rothman, VanderWeele)
 - Originates in epidemiology; "causal pies"
 - Resembles the qualitative comparative analysis (QCA)
- Decision-theoretic causality (Dawid)
 - Does not assume existence of counterfactuals
 - Causal inference as an independent field of science: Journal of Causal Inference

Summing Up

- Potential outcomes framework (Neyman-Rubin model) as a dominant framework for causal inference
- Causal quantities are defined by potential outcomes (counterfactuals), not by realized (observed) outcomes
- No assumption of unit homogeneity; causal effects allowed to vary unit by unit
- Observed association is neither necessary nor sufficient for causality
- Estimation of causal effects often starts with studying the treatment assignment mechanism