Robustness of the neural circuit of working memory to varying stimuli using a dynamical system

Pod: Dryptosaurus Cancan Group Name: **Micropachy-cephalosaurus** Group Members:

- Ghanendra Singh
- Fatemeh Ilati
- Phuong Tran
- Truc Ngo

Why Study Working Memory?

- What is working memory?
 - Temporary
 - Limited capacity
- Experimental recordings of brain activity
 - Persistent neural activity
 - Activity remains for a short period after stimulus removed
 - Then returns to initial state
- How can we explain this activity?
 - Wilson-Cowan-based dynamical system
 - Test with stimuli of varying characteristics (strength, duration, etc.)

Dynamical System and Architecture

Wilson-Cowan based model

Excitatory and Inhibitory populations.

Three Population Model (E1, E2, I)

Ref Project Template: compneuro.neuromatch.io/ images/WorkingMemoryAttractorModels.svg

Start Simple (2 Population)

Classic Wilson-Cowan

- 1 Excitatory population
- 1 Inhibitory population

Expected Outputs Measures (Neuron Population activity)

Persistent (Tonic Activity)

- Value of activity
- Threshold

Oscillatory Activity Frequency

- Amplitude
- **Duty Cycle**

Initial Conditions

State Space

Oscillatory Phase Plane

External stimulus leading to state transition from one attractor to another attractor state.

Stimulus duration

Strong stimuli strength for short duration

Stimuli duration may influence stimuli threshold required for encoding in WM.

Inhibitory Second Stimulus

WM recovers from weak external interference whereas not from strong influence.

Oscillatory State

Dynamics oscillates for both E and I units but depends on input.

2 excitatory and 1 inhibitory population

External input resulting in state transitions.

- Dynamical system is a potential model for describing neuronal activity changes that have been observed experimentally
- Characteristics of stimuli seem to influence working memory.

Stimulus Strength

Next Steps

- Further explore the oscillatory (limit cycle) state
- Introduce stimuli to the 3-population model
- Vary other stimuli characteristics.
- Fit model to with experimental data from different organisms.

Comparison with simple model system

C. elegans can locate food in T-shaped mazes and, following that experience, learn to reach a specific maze arm. C. elegans learning inside the maze is possible after a single training session, it resembles working memory, and it prevails over conflicting environmental cues.

Ref: Caenorhabditis elegans learning in a structured maze is a multisensory behavior

Thanks

- Nadav
- Bennet