ACM 100b

Intro to series solutions for ODE's

Dan Meiron

Caltech

January 13, 2014

Series solution of ODE's

- In treating systems of constant coefficient ODE's we have already introduced the idea of series expansions
- Here we will focus on second order scalar ODE's and discuss the use of series to get solutions.
- Everything we say can be applied to systems as well.
- In most cases we cannot provide analytical solutions to second order initial value problems for linear ODE's of the form

$$y'' + p(x)y' + q(x)y = 0$$
 $y(x_0) = y_0$ $y'(x_0) = y_1$.

• One way to make progress is to write the solution as a power series expansion about the point $x = x_0$.

Series solutions of ODE's

We assume that for the ODE

$$y'' + p(x)y' + q(x)y = 0$$

the coefficients p(x) and q(x) are sufficiently smooth in some neighborhood of x_0 so that we can take as many derivatives of p(x) and q(x) as necessary.

We then assume a solution of the form

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

- To get a solution we have to determine the coefficients a_n so that the ODE is satisfied
- It turns out that to get the coefficients uniquely we need to make use of the initial conditions

Series solutions for ODE's

Given this series form of the solution

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

it is straightforward to compute as many derivatives as we need:

• For example the first two derivatives of y(x) are

$$y'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1}$$
$$y''(x) = \sum_{n=0}^{\infty} n(n-1) a_n (x - x_0)^{n-2}$$

The best way to see how this works is to first do an example.

An example - the Airy ODE

Consider the Airy equation

$$y'' = xy$$
 $y(0) = y_0$ $y'(0) = y_1$.

- The Airy function is important in microscopy and astronomy.
- It describes the pattern, due to diffraction and interference, produced by a point source of light that is smaller than the resolution limit of a microscope or telescope.
- Actually the original ODE due to Airy is

$$y'' = -xy$$

but this is immaterial to the discussion.

• For the initial point we take $x_0 = 0$.

 Before we start in we note that the series expression for the first derivative

$$y'(x) = \sum_{n=0}^{\infty} na_n(x - x_0)^{n-1}$$

is equivalent to the expression

$$y'(x) = \sum_{n=0}^{\infty} (n+1)a_{n+1}(x-x_0)^n$$

And the expression for the second derivative

$$y''(x) = \sum_{n=0}^{\infty} n(n-1)a_n(x-x_0)^{n-2}$$

is equivalent to the expression

$$y''(x) = \sum_{n=0}^{\infty} (n+1)(n+2)a_{n+2}(x-x_0)^n.$$

These expressions

$$y'(x) = \sum_{n=0}^{\infty} (n+1)a_{n+1}(x-x_0)^n$$

$$y''(x) = \sum_{n=0}^{\infty} (n+1)(n+2)a_{n+2}(x-x_0)^n.$$

are more convenient to work with.

- What we want to do is substitute these expressions into the ODE and develop series solutions by matching like powers of $(x x_0)^n$
- When we do this we will get relations for the coefficients a_n that we can then solve.

 Using the formulas for the derivatives above and substituting into our ODE

$$y'' = xy$$

we get

$$\sum_{n=0}^{\infty} (n+1)(n+2)a_{n+2}x^{n} = x \sum_{n=0}^{\infty} a_{n}x^{n}$$

$$= \sum_{n=0}^{\infty} a_{n}x^{n+1}$$

$$= \sum_{n=1}^{\infty} a_{n-1}x^{n}.$$

 Now we can equate the coefficients of like powers of x. We get the following equations:

$$x^{0}$$
: $2a_{2} = 0$
 x^{1} : $6a_{3} = a_{0}$
 x^{2} : $12a_{4} = a_{1}$
 x^{3} : $20a_{5} = a_{2}$
 \vdots
 x^{n} : $(n+1)(n+2)a_{n+2} = a_{n-1}$.

- Note these equations give no information about a_0 or a_1 .
- a_0 and a_1 come from the initial value problem.
- Once these are known the relations above can be used to get all the rest of the coefficients.

• In a series expansion about x = 0 we have

$$y(x) = \sum_{n=0}^{\infty} a_n x^n,$$

- So a_0 and a_1 are respectively y(0) and y'(0)
- These are given as part of the initial value problem.
- Once these values are given to us we can then get all the coefficients from the recursion relation

$$a_{n+3} = \frac{a_n}{(n+2)(n+3)}$$
 $n > 0$.

 Now look at the values of a₂, a₃ etc. gotten from the recursion relation

$$a_{n+3} = \frac{a_n}{(n+2)(n+3)}$$
 $n > 0$.

- We assume a_0 and a_1 are known.
- We can eventually spot a pattern and write down the coefficients a_n :

$$a_{3n} = \frac{a_0}{(3n)(3n-1)(3n-3)(3n-4)\cdots 3\cdot 2}$$

$$a_{3n+1} = \frac{a_1}{(3n+1)(3n)(3n-2)(3n-3)\cdots 4\cdot 3}$$

$$a_{3n+2} = 0.$$

where n = 1, 2, ... and $a_2 = 0$.

We can then see there is a general solution of the form

$$y(x) = a_0 \left[1 + \sum_{n=1}^{\infty} a_{3n} x^{3n} \right] + a_1 \left[x + \sum_{n=1}^{\infty} a_{3n+1} x^{3n+1} \right],$$

• And the coefficients a_0 and a_1 are given by

$$a_0 = y_0$$
 $a_1 = y_1$.

- The solution is in the form of a linear superposition of two series.
- Both series satisfy the ODE and are linearly independent.
- This can easily be checked by computing their Wronskian.
- A series solution, however is only useful if it converges for some values of x.
- An application of the ratio test for series reveals that in fact both series converge of all values of x.
- In fact they converge for all complex values of x and each define entire functions.