Supporting Information

Jani and Briggs 10.1073/pnas.1412752111

SI Methods

Preparation of Libraries for Multiplexed 16S Amplicon Sequencing. Bacterial communities were analyzed by 16S amplicon pyrosequencing as follows. The V1-V2 regions of the 16S gene were amplified using primers 8f with 5' Roche FLX Amplicon Adapter B (underlined in primer sequence) and TC linker (denoted in lowercase), GCCTTGCCAGCCCGCTCAG-tc-AGR-GTTYGATYMTGGCTCAG, and 338r with 5' Roche FLX Amplicon Adapter A, an 8-bp barcode (denoted by "xxxxxxxx") (1), and CA linker, GCCTCCCTCGCGCCATCAG-xxxxxxxx-ca-TGCWGCCWCCCGTAGGWGT. For the 16S amplicon library of samples from the laboratory experiment, the 8-basepair barcode was incorporated into the forward primer. Each 25-µL PCR assay consisted of 1.25 units of DNA polymerase (5PRIME) in proprietary buffer, 200 μmol·L⁻¹ each dNTP, 2 mmol·L⁻ $MgCl_2$, 5% acetamide, 200 nmol L⁻¹ each primer, and 1 μ L of DNA template. PCR conditions were 94 °C for 120 s, followed by 35 cycles of 94 °C for 30, 58 °C for 45 s, 72 °C for 60 s, and a final extension (72 °C for 300 s). A subset of samples and all negative controls were visualized by electrophoresis in a 1% agarose gel stained with ethidium bromide and further quantified using Pico-Green fluorescence on a Qubit fluorometer (Invitrogen). All PCR products were pooled in equimolar quantities for sequencing on one-half picotiter plate on a Roche/454 GS FLX instrument using Titanium chemistry (laboratory of Stefan Schuster, Pennsylvania State University, University Park, PA). Samples generated in the experiment (168 frog swabs, 12 water samples) and field survey (99 frog swabs, seven water samples) were analyzed on separate pyrosequencing runs.

Bioinformatic Processing. The program mothur (version 1.30) (2) was used to quality-filter and align sequences, cluster into OTUs, classify OTUs, and calculate per-sample diversity measures and among-sample distance measures as follows. Pyrosequence flowgrams were first quality-filtered using PyroNoise (3). Sequence reads were then screened to remove reads with any ambiguous base call, any barcode mismatch, more than 1 primer mismatch, homopolymers greater than eight bases, or read length <200 bases. Sequences identified as chimeric PCR products were removed using Perseus (4). Sequences were aligned to a nonredundant representative subset of ~50,000 template sequences (5) of the SILVA version 111 SSU Ref 16S curated alignment database (6); sequences beginning after or ending before 95% of sequences, or with fewer than 200 bases, were considered potential sequencing artifacts and removed from the dataset. To minimize further the generation of spurious OTUs due to PCR or sequencing error, sequences differing by <1% were grouped using average-neighbor single-linkage preclustering (7). Sequences were then assigned to OTUs by average-neighbor hierarchical clustering at the 95% identity level [95% identity across the sequenced V1-V2 region of the 16S gene best approximates 97% identity across the entire 16S gene, a standard benchmark for assigning bacterial taxa (8)]. OTU relative abundances were used to calculate pairwise among-sample phylogenetic distances [weighted UniFrac (9)]. Sequences were classified using the Bayesian classifier of Wang et al. (10) with minimum 70% confidence, and each OTU was assigned consensus taxonomy from SILVA version 111. Samplebased richness and diversity measures [observed OTU richness, Chao's richness estimate (11), Shannon diversity, and Shannon evenness] were calculated after randomly subsampling to 500 sequences per sample. Eleven field and two experiment samples

had fewer than 500 sequences and were excluded from diversity analyses. Across the 106 field-collected samples, 159,126 sequences passed the quality control pipeline, with a median sequence length of 323 bp and a mean of 1,508 sequences per sample. From the 180 experimental samples analyzed here (experiment details are provided below), 393,119 sequences passed quality control, with a median sequence length of 323 bp and a mean of 2,184 sequences per sample.

Analysis of Temporal Change in OTU Relative Abundances. We conducted analyses to examine whether patterns of change in bacterial OTU relative abundances over time are consistent with Bd driving temporal change in the outbreak population; these analyses are intended to be exploratory rather than conclusive because analyses of OTU relative abundances may be sensitive to specifics of community composition, which may be particularly important when incorporating data from multiple host populations and survey dates into the analysis. Unlike the time-independent analyses (withinpopulation visit analyses and experimental study), it is critical to consider not only the direction of OTU change but also the magnitude of change in the temporal analysis. This is because a given OTU may be affected by both Bd and baseline seasonal change; in such case, it would change with time in both the epizootic population (where temporal change potentially includes effects of both Bd and seasonal variation) and reference populations (where only seasonal variation is relevant). Therefore, it is not informative simply to compare lists of OTUs that change with time in each frog population. Instead, we accounted for baseline seasonal change in the outbreak population and then conducted statistical analyses to ask if, across all OTUs that changed with time in the outbreak population, the magnitude and/or direction of change in time is predicted by patterns of Bd-OTU correlations that were calculated in the absence of temporal or geographic confounding (e.g., Fig. 2). To do this, we first used t tests (with false discovery rate correction for multiple tests as described in Methods, Statistical Analyses) to identify OTUs that had significant differences in relative abundance between the early and late sampling dates in the outbreak population. Only common OTUs were tested, with "common" defined as the 60 OTUs that were present in at least 25% of samples across the three populations, as described in Methods, Statistical Analyses. For each OTU that showed significant temporal change, we calculated an estimate of the magnitude and direction of temporal change in the outbreak population after accounting for baseline seasonal variation, which we refer to as the reference-adjusted effect of time, D_{reference-adjusted}:

$$D_{reference-adjusted} = D_{outbreak} - D_{reference},$$

where $D_{outbreak}$ is the time parameter estimate for the effect of time on relative abundance of a given OTU in the one-way ANOVA (t test) for the outbreak population and $D_{reference}$ is the mean parameter estimate for time in the two reference (enzootic) populations. Only parameters from significant t tests are considered because parameters from nonsignificant t tests are not significantly different from zero. If Bd drives temporal change in OTU relative abundances, we expect those OTUs that were correlated with Bd in the within-date analyses (Fig. 2) to exhibit greater change through time, after accounting for seasonal variation, than OTUs that were not correlated with Bd load. To test this hypothesis statistically, we categorized each OTU as positively correlated, negatively correlated, or

uncorrelated with Bd based on within-date analyses (from Fig. 2) and conducted ANOVA (with Tukey HSD post hoc pairwise comparison of means) to test if the reference-adjusted time parameter ($D_{reference-adjusted}$) in the outbreak population differs across the three Bd correlation groups. For this analysis, we used the population-specific Bd correlations in Fig. 2 (i.e., Bd correlations from Marmot) because the objective is to predict change within the same population. However, we also conducted the same analysis using a less conservative definition to group OTUs into Bd correlation categories. Here, OTUs were categorized based on within-visit correlation in any population (any of the OTUs listed in Fig. 2). This did not change the qualitative outcome of the analyses.

SI Results

Overview of *R. Sierrae* Microbiome and Aquatic Bacterial Communities. We identified 5,188 bacterial OTUs (mean of 139 OTUs per sample) in the field-collected samples, representing 38 phyla and 998 phylotypes, 580 of which could be classified to the genus level. In the experiment, there were 1,162 OTUs (mean of 38 OTUs per sample), representing 26 phyla and 346 phylotypes, with 254 classified to genus. Bacterial communities differed between laboratory-reared and wild frogs. In particular, bacterial communities from laboratory-reared frogs had lower richness and diversity (observed OTU richness: P < 0.0001, Chao richness estimate: P < 0.0001, Shannon diversity: P < 0.0001, Shannon evenness: P = 0.0006). However, laboratory and field-collected microbiomes clustered together and were distinct from bacterial communities from ambient water in an ordination based on phylotypes of the combined laboratory and field data (Fig. S1), indicating that

- Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5(3): 235–237.
- Schloss PD, et al. (2009) Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7531.
- Quince C, et al. (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6(9):639–641.
- Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12(1):38.
- Nelson CE, Carlson CA, Ewart CS, Halewood ER (2014) Community differentiation and population enrichment of Sargasso Sea bacterioplankton in the euphotic zone of a mesoscale mode-water eddy. *Environ Microbiol* 16(3):871–887.
- Quast C, et al. (2013) The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):D590–D596.

community composition of laboratory-reared frogs was a reasonable representation of the *R. sierrae* microbiome.

No Effect of Life Stage on Microbiome Composition. Because our analysis included samples from both adult and subadult R. sierrae, we tested for effects of life stage on microbiome community composition. We used PERMANOVA to test for differences in the bacterial communities of adult vs. subadult frogs, based on the multivariate phylogenetic UniFrac distance and using data from the four focal surveys (i.e., visits with >10 frogs sampled; Table S1). The analyses were conducted separately for each population visit to avoid confounding with temporal or amongpopulation variation. In three of the populations, Bd loads were higher in subadults than adults (t tests conducted separately within each population; P < 0.0001 for Mono, Unicorn, and Conness); therefore, we included log₁₀(Bd load) as a covariate in the analysis. (In the Marmot population, Bd load did not differ significantly by life stage, probably because during epizootics, adult loads increase to levels similar to the levels generally seen in subadults. To ensure robust results, in Marmot, we conducted PERMANOVA tests for the effect of life stage on community composition both with and without Bd load in the model and obtained the same result: no significant effect of life stage.) Life stage had no significant effect on bacterial community composition in any of the four population visits (Marmot: $P_{\text{lifestage}} = 0.2840, P_{\text{BdLoad}} = 0.0007; \text{ Mono: } P_{\text{lifestage}} = 0.6960,$ $P_{\text{BdLoad}} = 0.0271$; Unicorn: $P_{\text{lifestage}} = 0.1034$, $P_{\text{BdLoad}} = 0.0008$; Conness: $P_{\text{lifestage}} = 0.8022$, $P_{\text{BdLoad}} = 0.0452$). This result is consistent with a previous study (12), which found that skin-associated bacterial communities did not differ between subadult and adult Rana cascadae.

- Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. *Environ Microbiol* 12(7): 1889–1898.
- Schloss PD (2010) The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies. PLOS Comput Biol 6(7):e1000844.
- Lozupone C, Knight R (2005) UniFrac: A new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235.
- Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267.
- Chao A (1984) Nonparametric estimation of the number of classes in a population. Scandanavian Journal of Statistics 11(4):265–270.
- Kueneman JG, et al. (2014) The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol 23(6):1238–1250.

Fig. S1. NMDS ordination of microbial communities from frog skin and environmental water in the laboratory and field studies. Phylotype relative abundance data from the laboratory and field were combined, and Bray–Curtis distances were calculated based on relative abundances of all phylotypes. To avoid pseudoreplication, only one sampling date from the laboratory and field are shown, although results are qualitatively the same when all data are included. Ordination stress = 0.17.

Fig. S2. OTUs classified to eight genera were associated with Bd infection in both the laboratory and field studies. Scatterplots show OTU relative abundances plotted against log₁₀(Bd load). Data for the laboratory experiment and representative data for the Marmot field population on August 30 are shown in Fig. 3. Shown here are additional OTUs (genus *Pseudomonas*) correlated with Bd load in Marmot on August 30, as well as data for the remaining three frog population visits: Conness on August 18, Mono on September 16, and Unicorn on September 13. Blue lines indicate a significant negative correlation, red lines indicate a significant positive correlation, and gray lines indicate a relationship not statistically significant.

Fig. S3. Correlations between Bd and bacterial OTUs predict temporal change during a Bd outbreak. Shown are data from Marmot during a Bd epizootic that resulted in population collapse. OTUs that were positively correlated with Bd load increased with time, whereas OTUs that were negatively correlated with BD load declined. The vertical axis shows the effect of time (parameter estimate for time) from one-way ANOVA in the outbreak population after accounting for baseline seasonal change as estimated from the two reference (enzootic) populations (details are provided in SI Methods). Only the 17 OTUs that changed significantly with time are included. OTUs are grouped based on their relationship to Bd (relative abundance positively correlated, negatively correlated, or uncorrelated with Bd load) based on analysis within a single survey date in the outbreak population, such that correlation results are not confounded with time. Groups annotated with different letters above the box plot are significantly different based on Tukey HSD post hoc comparison of means.

Table S1. Field surveys conducted in the study populations, 2010-2011

Population nickname	Survey date	No. of frog swabs analyzed for Bd load: Total (adults, subadults)	No. of frog swabs analyzed for bacterial communities	Bd infection status	Bd load (log ₁₀) for adult frogs: Mean (SD)	Bd disease dynamics
Marmot	16 July 2010	30 (30, 0)		Uninfected	0.00 (0.00)	Epizootic
	8 August 2010	30 (27, 3)		Uninfected	0.06 (0.24)	
	30 August 2010	30 (22, 8)	20	Infected	3.18 (0.88)	
	14 September 2010	14 (9, 5)	10	Infected	4.58 (0.37)	
	15 September 2010	29 (27, 2)		Infected	4.38 (0.38)	
	6 September 2011	Population crashed; no frogs	encountered	Infected*	N/A	
Mono	7 July 2010	6 (6, 0)		Infected	0.63 (0.60)	Enzootic
	11 August 2010	20 (17, 3)		Infected	1.5 (0.77)	
	1 September 2010	33 (26, 7)	8	Infected	1.49 (0.85)	
	16 September 2010	40 (31, 9)	18	Infected	1.58 (0.80)	
	21July 2011	28 (27, 1)		Infected	1.58 (0.83)	
Unicorn	28 July 2010	19 (19, 0)		Infected	0.45 (0.65)	Enzootic
	29 August 2010	31 (22, 9)	7	Infected	1.74 (0.80)	
	13 September 2010	37 (24, 13)	18	Infected	1.47 (0.71)	
	5 August 2011	31 (28, 3)		Infected	1.08 (0.98)	
Conness	9 July 2010	27 (20, 7)		Infected	1.31 (0.88)	Enzootic
	18 August 2010	30 (18, 12)	18	Infected	1.85 (0.75)	
	10 September 2010	30 (19, 11)		Infected	2.08 (0.63)	
	17 July 2011	14 (13, 1)		Infected	1.58 (0.96)	

Bd infection status was determined by qPCR. Disease dynamics (enzootic, epizootic) were determined by historical data (1, 2), together with data presented here on Bd load trajectories and *R. sierrae* population stability (current table and *Results*). Population visits analyzed individually for a within-population visit association between Bd and bacterial communities are shown in bold text. N/A, not applicable (no adult frogs available for collection of Bd load data). *In the Marmot population, no postmetamorphic frogs were found in the 2011 census due to Bd-induced population crash, but the presence of Bd at the site could be determined based on swab samples of *R. sierrae* tadpoles. (Tadpoles can persist after extinction of postmetamorphic *R. sierrae* because Bd does not cause lethal disease in tadpoles of this species.)

^{1.} Briggs CJ, Knapp RA, Vredenburg VT (2010) Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc Natl Acad Sci USA 107(21):9695–9700.

^{2.} Knapp RA, Briggs CJ, Smith TC, Maurer JR (2011) Nowhere to hide: Impact of a temperature-sensitive amphibian pathogen along an elevation gradient in the temperate zone. *Ecosphere* 2(8):Article 93.

Table S2. Bacterial OTUs significantly affected by Bd infection in the laboratory experiment

		Least squares mean	
Bacterial OTU	Group with higher relative abundance	Bd ⁻	Bd ⁺
Actinobacteria-Nocardiaceae- <i>Rhodococcus</i> (E-24)	Uninfected	0.0650	0.0297
Actinobacteria-Cellulomonadaceae-uncultured (E-47)	Uninfected	0.0123	0.0052
Actinobacteria-Microbacteriaceae-Microbacterium (E-26)	Uninfected	0.0400	0.0179
Actinobacteria-Sanguibacteraceae-Sanguibacter (E-9)	Uninfected	0.1205	0.0576
Sphingobacteriia-Chitinophagaceae-Filimonas (E-55)	Uninfected	0.0202	0.0075
Alphaproteobacteria-Brucellaceae-Ochrobactrum (E-41)	Uninfected	0.0362	0.0178
Alphaproteobacteria-Rhizobiaceae-Rhizobium (E-49)	Infected	0.0153	0.0345
Gammaproteobacteria-Enterobacteriaceae-Pantoea (E-20)	Uninfected	0.0739	0.0335
Gammaproteobacteria-Pseudomonadaceae-Pseudomonas (E-2)	Uninfected	0.3078	0.1595
Gammaproteobacteria-Xanthomonadaceae-Stenotrophomonas (E-7)	Uninfected	0.1650	0.0954
Gammaproteobacteria-Xanthomonadaceae-Stenotrophomonas (E-105)	Uninfected	0.0096	0.0035
Betaproteobacteria-Methylophilaceae- <i>Methylotenera</i> (E-57)	Uninfected	0.0131	0.0071
Betaproteobacteria-Neisseriaceae-Aquitalea (E-6)	Uninfected	0.2609	0.0801
Betaproteobacteria-Comamonadaceae-Acidovorax (E-11)	Infected	0.0546	0.1980
Betaproteobacteria-Comamonadaceae-Curvibacter (E-5)	Infected	0.1701	0.3246
Betaproteobacteria-Comamonadaceae-Rhodoferax (E-25)	Infected	0.0159	0.0540
Betaproteobacteria-Comamonadaceae-Rubrivivax (E-4)	Infected	0.3203	0.4033
Betaproteobacteria-Oxalobacteraceae-Janthinobacterium (E-34)	Infected	0.0129	0.0247
Betaproteobacteria-Oxalobacteraceae- <i>Undibacterium</i> (E-1)	Infected	0.3605	0.4719

Taxonomic information listed on left, with OTU identifiers in parentheses. Experimental group (Bd-infected or uninfected) in which relative abundance of each OTU was higher is indicated. Least squares means are based on arcsine square-root-transformed data. Criteria for statistical significance: P < 0.05 and Q < 0.05.

Table S3. Bacterial OTUs that changed in relative abundance between the early and late sampling points in the outbreak population

Bacterial OTU	Time parameter	Change with time	Relationship with Bd (independent of time)
Betaproteobacteria-Comamonadaceae- <i>Rubrivivax</i> (F-2)	0.1668	Increase	Positive
Flavobacteria-Flavobacteriaceae-Soonwooa (F-4)	0.2986	Increase	Positive
Actinobacteria-Microbacteriaceae-Microbacterium (F-12)	-0.0909	Decline	Negative
Actinobacteria-Microbacteriaceae-Microbacterium (F-30)	-0.0730	Decline	Negative
Actinobacteria-Nocardiaceae-Rhodococcus (F-15)	-0.0691	Decline	Negative
Actinobacteria-Sanguibacteraceae-Sanguibacter (F-11)	-0.1521	Decline	Negative
Actinobacteria-Sporichthyaceae-hgcl_clade (F-13)	-0.0285	Decline	Negative
Betaproteobacteria-Comamonadaceae-Variovorax (F-36)	-0.0376	Decline	Negative
Gammaproteobacteria-Pseudomonadaceae-Pseudomonas (F-1)	-0.1172	Decline	Negative
Gammaproteobacteria-Pseudomonadaceae-Pseudomonas (F-18)	-0.1188	Decline	Negative
Gammaproteobacteria-Pseudomonadaceae-Pseudomonas (F-5)	-0.1967	Decline	Negative
Actinobacteria-Cellulomonadaceae-uncultured (F-35)	-0.0495	Decline	No correlation
Betaproteobacteria-Burkholderiaceae-Polynucleobacter (F-6)	-0.0312	Decline	No correlation
Flavobacteria-Flavobacteriaceae-Flavobacterium (F-26)	0.0490	Increase	No correlation
Gammaproteobacteria-Aeromonadaceae-Aeromonas (F-57)	0.0308	Increase	No correlation
Gammaproteobacteria-Enterobacteriaceae-Enterobacter (F-98)	0.0022	Increase	No correlation
SubsectionIII-Pseudanabaena-unclassified <i>Pseudanabaena</i> (F-79)	0.0389	Increase	No correlation

Of 17 OTUs that changed with time, 11 were also correlated with Bd load in the same population in previous analyses (shown in Fig. 2). Taxonomic information and OTU identifiers (in parentheses) are listed (left). OTUs are grouped by relationship with Bd (independent of time), corresponding to groups in ANOVA (Fig. S3), and are sorted taxonomically within groups. "Time parameter" is the parameter estimate for the effect of time (comparing early and late time points in one-way ANOVA, where the response variable is relative abundance of a given OTU, arcsine square-root-transformed) in the outbreak population after subtracting the corresponding time effect in the reference populations (details are provided in *SI Methods*). "Change with time" denotes the qualitative direction of the time parameter. "Relationship with Bd" refers to the OTU–Bd correlations, calculated on a single sampling date to avoid confounding with time, for each OTU in the outbreak population (as shown in Fig. 2).

Table S4. National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) accession numbers and primer barcodes for 16S sequence data from the field survey

SRA accession no.	Barcode	Sample type	Population nickname	Date collected
SRR1598941	AACCGCTA	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	AACCGGAA	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	AACGCCAT	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	AACGCCTA	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	AACGCGAA	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	AAGCATCC	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	AAGCATGG	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	AAGCCGAA	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	AAGGAACC	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	AAGGAAGG	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	AATACCGC	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	AATACGCC	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	ACACAGAG	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	ACACAGTC	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	ACACTGAC	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	ACACTGTG	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	ACAGGTCT	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	ACAGGTGA	R. sierrae skin swab	Conness	18 August 2010
SRR1598941	AACCTTGG	R. sierrae skin swab	Marmot	30 August 2010
SRR1598941	AACGTAGG	R. sierrae skin swab	Marmot	30 August 2010
SRR1598941	AAGCGGTA	R. sierrae skin swab	Marmot	30 August 2010
SRR1598941	AAGGCGAT	R. sierrae skin swab	Marmot	30 August 2010
SRR1598941	AAGGCGTA	R. sierrae skin swab R. sierrae skin swab	Marmot	30 August 2010
SRR1598941	AATTCGGC	R. sierrae skin swab	Marmot	30 August 2010
SRR1598941 SRR1598941	AATTGCCG	R. sierrae skin swab	Marmot Marmot	30 August 2010
SRR1598941	ACACGACT ACACGAGA	R. sierrae skin swab	Marmot	30 August 2010 30 August 2010
SRR1598941	ACAGGAGA	R. sierrae skin swab	Marmot	30 August 2010
SRR1598941	ACAGCAGA	R. sierrae skin swab	Marmot	30 August 2010
SRR1598941	ACCAACCA	R. sierrae skin swab	Marmot	30 August 2010
SRR1598942	AACCAACC	R. sierrae skin swab	Marmot	30 August 2010
SRR1598942	AACGAACG	R. sierrae skin swab	Marmot	30 August 2010
SRR1598942	AACGTTCG	R. sierrae skin swab	Marmot	30 August 2010
SRR1598942	AAGCTACC	R. sierrae skin swab	Marmot	30 August 2010
SRR1598942	AAGGTACG	R. sierrae skin swab	Marmot	30 August 2010
SRR1598942	AATTGCGC	R. sierrae skin swab	Marmot	30 August 2010
SRR1598942	ACACGTCA	R. sierrae skin swab	Marmot	30 August 2010
SRR1598942	ACAGCTCA	R. sierrae skin swab	Marmot	30 August 2010
SRR1598942	AACCTAGC	R. sierrae skin swab	Marmot	14 September 2010
SRR1598942	AACGGCTT	R. sierrae skin swab	Marmot	14 September 2010
SRR1598942	AAGCGCTT	R. sierrae skin swab	Marmot	14 September 2010
SRR1598942	AAGGCCTT	R. sierrae skin swab	Marmot	14 September 2010
SRR1598942	AATTCCGG	R. sierrae skin swab	Marmot	14 September 2010
SRR1598942	AATTCGCG	R. sierrae skin swab	Marmot	14 September 2010
SRR1598942	ACACCTCT	R. sierrae skin swab	Marmot	14 September 2010
SRR1598942	ACACCTGA	R. sierrae skin swab	Marmot	14 September 2010
SRR1598942	ACAGAGAC	R. sierrae skin swab	Marmot	14 September 2010
SRR1598942	ACAGTGAG	R. sierrae skin swab	Marmot	14 September 2010
SRR1598942	AACCATCG	R. sierrae skin swab	Mono	1 September 2010
SRR1598942	AACGATCC	R. sierrae skin swab	Mono	1 September 2010
SRR1598942	AAGCAACG	R. sierrae skin swab	Mono	1 September 2010
SRR1598942	AAGCTTCG	R. sierrae skin swab	Mono	1 September 2010
SRR1598942	AAGGTTCC	R. sierrae skin swab	Mono	1 September 2010
SRR1598942	ACACACAC	R. sierrae skin swab	Mono	1 September 2010
SRR1598942	ACACTCAG	R. sierrae skin swab	Mono	1 September 2010
SRR1598942	ACAGGACA	R. sierrae skin swab	Mono	1 September 2010
SRR1598942	AACCTTCC	R. sierrae skin swab	Mono	16 September 2010
SRR1598942	AACCTTGG	R. sierrae skin swab	Mono	16 September 201
SRR1598942	AACGTACC	R. sierrae skin swab	Mono	16 September 2010
SRR1598942	AACGTAGG	R. sierrae skin swab	Mono	16 September 2010
SRR1598942 SRR1598942	AAGCGGAT	R. sierrae skin swab	Mono	16 September 2010
	AAGCGGTA	R. sierrae skin swab	Mono	16 September 2010

Table S4. Cont.

rubic 5 ii Coiiti				
SRA accession no.	Barcode	Sample type	Population nickname	Date collected
SRR1598942	AAGGCGAT	R. sierrae skin swab	Mono	16 September 2010
SRR1598942	AAGGCGTA	R. sierrae skin swab	Mono	16 September 2010
SRR1598942	AATTCGGC	R. sierrae skin swab	Mono	16 September 2010
SRR1598942	AATTGCCG	R. sierrae skin swab	Mono	16 September 2010
SRR1598942	ACACGACT	R. sierrae skin swab	Mono	16 September 2010
SRR1598942	ACACGAGA	R. sierrae skin swab	Mono	16 September 2010
SRR1598942	ACAGAGTG	R. sierrae skin swab	Mono	16 September 2010
SRR1598942	ACAGCACT	R. sierrae skin swab	Mono	16 September 2010
SRR1598942	ACAGCAGA	R. sierrae skin swab	Mono	16 September 2010
SRR1598942	ACAGTGTC	R. sierrae skin swab	Mono	16 September 2010
SRR1598942	ACCAACCA	R. sierrae skin swab	Mono	16 September 2010
SRR1598942	ACCAACGT	R. sierrae skin swab	Mono	16 September 2010
SRR1598941	AACCTTCC	R. sierrae skin swab	Unicorn	29 August 2010
SRR1598941	AAGCGGAT	R. sierrae skin swab	Unicorn	29 August 2010
SRR1598941	AAGGCCTT	R. sierrae skin swab	Unicorn	29 August 2010
SRR1598941	AATTCGCG	R. sierrae skin swab	Unicorn	29 August 2010
SRR1598941	ACACCTGA	R. sierrae skin swab	Unicorn	29 August 2010
SRR1598941	ACAGAGTG	R. sierrae skin swab	Unicorn	29 August 2010
SRR1598941	ACAGTGTC	R. sierrae skin swab	Unicorn	29 August 2010
SRR1598942	AACCGGTT	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	AACCTACG	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	AACGCGTT	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	AACGGCAA	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	AAGCCGAA	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	AAGCCGTT	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	AAGCGCAA	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	AAGGATCG	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	AAGGATGC	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	AAGGCCAA	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	AATAGCGG	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	AATAGGCG	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	ACACCACA	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	ACACCAGT	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	ACAGACAG	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	ACAGACTC	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	ACAGTCAC	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598942	ACAGTCTG	R. sierrae skin swab	Unicorn	13 September 2010
SRR1598941	AACGTTCG	Water sample	Conness	18 August 2010
SRR1598941	ACAGCTCA	Water sample	Marmot	30 August 2010
SRR1598941	ACACGTGT	Water sample	Marmot	14 September 2010
SRR1598941	AACGAAGC	Water sample	Mono	1 September 2010
SRR1598941	ACAGCTGT	Water sample	Mono	16 September 2010
SRR1598941	ACACGTCA	Water sample	Unicorn	29 August 2010
SRR1598941	AATTGGCC	Water sample	Unicorn	13 September 2010

Detailed sampling design and sequencing and bioinformatics protocols are provided in Methods and SI Methods.

Table S5. NCBI SRA accession numbers and primer barcodes for 16S sequence data from the laboratory experiment

SRA accession no.	Barcode	Sample type	Time point	Bd treatment	Frog population source	Water sourc
SRR1598944	CCTTGCTA	R. sierrae skin swab	Preinfection	Bd challenge	Α	А
RR1598944	AAGCCGTT	R. sierrae skin swab	Preinfection	Bd challenge	Α	Α
RR1598944	CCTTGGAA	R. sierrae skin swab	Preinfection	Bd challenge	Α	Α
RR1598944	TTGGAAGG	R. sierrae skin swab	Preinfection	Bd challenge	В	Α
RR1598944	ATCCGGAT	R. sierrae skin swab	Preinfection	Bd challenge	В	Α
RR1598944	GCTTGGAT	R. sierrae skin swab	Preinfection	Bd challenge	В	Α
RR1598944	CCATGGAT	R. sierrae skin swab	Preinfection	Bd challenge	Α	В
RR1598944	GCGCATAT	R. sierrae skin swab	Preinfection	Bd challenge	Α	В
RR1598944	CGTTGCAA	R. sierrae skin swab	Preinfection	Bd challenge	Α	В
RR1598944	CGAAGGTA	R. sierrae skin swab	Preinfection	Bd challenge	В	В
RR1598944	ATGCATGC	R. sierrae skin swab	Preinfection	Bd challenge	В	В
RR1598944	TACCATGG	R. sierrae skin swab	Preinfection	Bd challenge	В	В
RR1598944	TTCGCGTT	R. sierrae skin swab	Preinfection	Bd challenge	A	C
RR1598944	TAGGCCAT	R. sierrae skin swab	Preinfection	Bd challenge	A	C
RR1598944	AAGGCGTA	R. sierrae skin swab	Preinfection	Bd challenge	A	C
RR1598944	GCATCCTT	R. sierrae skin swab	Preinfection	Bd challenge	В	C
RR1598944	CGAAGGAT	R. sierrae skin swab	Preinfection	Bd challenge	В	C
RR1598944	GCATCGTA	R. sierrae skin swab	Preinfection	Bd challenge	В	C
RR1598944	TATAGCCG	R. sierrae skin swab	Preinfection	Bd challenge	A	D
RR1598944	ATGCCGTA	R. sierrae skin swab	Preinfection	Bd challenge	A	D
RR1598944	CGTACCAA	R. sierrae skin swab	Preinfection	Bd challenge	A	D
RR1598944	ATCCTAGG	R. sierrae skin swab	Preinfection	Bd challenge	В	D
RR1598944	AACCATCG	R. sierrae skin swab	Preinfection	Bd challenge	В	D
RR1598944	ATATCGCG	R. sierrae skin swab	Preinfection	Bd challenge	В	D
RR1598944	GCGGAATA	R. sierrae skin swab	Preinfection	Bd challenge	A	E
RR1598944	TTGCAACG	R. sierrae skin swab	Preinfection	Bd challenge	A	E
RR1598944	TACGATGC	R. sierrae skin swab	Preinfection	Bd challenge	A	E
RR1598944	TAGCATCG	R. sierrae skin swab	Preinfection	Bd challenge	В	E
RR1598944	CGTAATGC	R. sierrae skin swab	Preinfection	Bd challenge	В	E
RR1598944	CGCCTTAT	R. sierrae skin swab	Preinfection	Bd challenge	В	E
RR1598944	CGTTAACG	R. sierrae skin swab	Preinfection	Bd challenge	A	F
RR1598944	TATACGCG	R. sierrae skin swab	Preinfection	Bd challenge	A	F
RR1598944	TACGTACG	R. sierrae skin swab	Preinfection	Bd challenge	Α	F
RR1598944	CCTTCGAT	R. sierrae skin swab	Preinfection	Bd challenge	В	F -
RR1598944	TTGCGCAA	R. sierrae skin swab	Preinfection	Bd challenge	В	F
RR1598944	GCTTAAGC	R. sierrae skin swab	Preinfection	Bd challenge	В	F
RR1598944	CGATTAGC	R. sierrae skin swab	Preinfection	Bd challenge	A	G
RR1598944	TTGGCCTT	R. sierrae skin swab	Preinfection	Bd challenge	A	G
RR1598944	TAGGCGAA	R. sierrae skin swab	Preinfection	Bd challenge	A	G
RR1598944	AACGCGTT	R. sierrae skin swab	Preinfection	Bd challenge	В	G
RR1598944	CCAAGGTT	R. sierrae skin swab	Preinfection	Bd challenge	В	G
RR1598944	TAGGATGG	R. sierrae skin swab	Preinfection	Bd challenge	В	G
RR1598944	GCAATAGG	R. sierrae skin swab	Preinfection	No Bd (control)	A	A
RR1598944	TACCAACG	R. sierrae skin swab	Preinfection	No Bd (control)	A	Α
RR1598944	ATCCTTGC	R. sierrae skin swab	Preinfection	No Bd (control)	A	A
RR1598944	CGAAGCTT	R. sierrae skin swab	Preinfection	No Bd (control)	В	A
RR1598944	CCAAGCAT	R. sierrae skin swab	Preinfection	No Bd (control)	В	A
RR1598944	AAGGATCG	R. sierrae skin swab	Preinfection	No Bd (control)	В	A
RR1598944	TAGCATGC	R. sierrae skin swab	Preinfection	No Bd (control)	A	В
RR1598944	CGAACCTA	R. sierrae skin swab	Preinfection	No Bd (control)	A	В
RR1598944	TACGCCAA	R. sierrae skin swab	Preinfection	No Bd (control)	A	В
RR1598944	AACGTTCG	R. sierrae skin swab	Preinfection	No Bd (control)	В	В
RR1598944	GCTTCGAA	R. sierrae skin swab	Preinfection	No Bd (control)	В	В
RR1598944	ATCGCCTT	R. sierrae skin swab	Preinfection	No Bd (control)	В	В
RR1598944	GCAACGAA	R. sierrae skin swab	Preinfection	No Bd (control)	A	C
RR1598944	TACCGGAT	R. sierrae skin swab	Preinfection	No Bd (control)	A	C
RR1598944	ATATCCGG	R. sierrae skin swab	Preinfection	No Bd (control)	A	C
RR1598944	TTCGCGAA	R. sierrae skin swab	Preinfection	No Bd (control)	В	C
RR1598944	ATCGTAGC	R. sierrae skin swab	Preinfection	No Bd (control)	В	C
RR1598944	ATGCCGAT	R. sierrae skin swab	Preinfection	No Bd (control)	В	C
SRR1598944	ATCGGCAT	R. sierrae skin swab	Preinfection	No Bd (control)	A	D
RR1598944	GCATCCAA	R. sierrae skin swab	Preinfection	No Bd (control)	A	D
RR1598944	ATCGCCAA	<i>R. sierrae</i> skin swab	Preinfection	No Bd (control)	Α	D

Table S5. Cont.

SRA accession no.	Barcode	Sample type	Time point	Bd treatment	Frog population source	Water source
SRR1598944	TTCCGCAT	R. sierrae skin swab	Preinfection	No Bd (control)	В	D
SRR1598944	ATCCTTCG	R. sierrae skin swab	Preinfection	No Bd (control)	В	D
SRR1598944	CGTAGGTT	R. sierrae skin swab	Preinfection	No Bd (control)	В	D
SRR1598944	TAATGCGC	R. sierrae skin swab	Preinfection	No Bd (control)	Α	E
SRR1598944	AAGCATGG	R. sierrae skin swab	Preinfection	No Bd (control)	Α	E
SRR1598944	GCATTACG	R. sierrae skin swab	Preinfection	No Bd (control)	Α	E
SRR1598944	ATGCGCAT	R. sierrae skin swab	Preinfection	No Bd (control)	В	E
SRR1598944	ATGCAAGG	R. sierrae skin swab	Preinfection	No Bd (control)	В	E
SRR1598944	CCGCATAA	<i>R. sierrae</i> skin swab	Preinfection	No Bd (control)	В	E
SRR1598944	CGAATTCG	R. sierrae skin swab	Preinfection	No Bd (control)	Α	F
SRR1598944	AATTCCGG	R. sierrae skin swab	Preinfection	No Bd (control)	Α	F
SRR1598944	GCTATTGG	<i>R. sierrae</i> skin swab	Preinfection	No Bd (control)	Α	F
SRR1598944	CCGGTTAA	<i>R. sierrae</i> skin swab	Preinfection	No Bd (control)	В	F
SRR1598944	CGTAGCTA	R. sierrae skin swab	Preinfection	No Bd (control)	В	F
SRR1598944	TTCGTAGG	<i>R. sierrae</i> skin swab	Preinfection	No Bd (control)	В	F
SRR1598944	TATTGCGG	R. sierrae skin swab	Preinfection	No Bd (control)	Α	G
SRR1598944	CGCCATAA	<i>R. sierrae</i> skin swab	Preinfection	No Bd (control)	Α	G
SRR1598944	ATATGCGC	R. sierrae skin swab	Preinfection	No Bd (control)	В	G
SRR1598944	ATCGTACG	R. sierrae skin swab	Preinfection	No Bd (control)	В	G
SRR1598944	AACGCCTA	R. sierrae skin swab	Preinfection	No Bd (control)	В	G
SRR1598944	ATCGGCTA	R. sierrae skin swab	Postinfection	Bd challenge	Α	Α
SRR1598944	TTGCGCTT	R. sierrae skin swab	Postinfection	Bd challenge	Α	Α
SRR1598944	GCTTATGG	R. sierrae skin swab	Postinfection	Bd challenge	Α	Α
SRR1598944	CCAAGCTA	R. sierrae skin swab	Postinfection	Bd challenge	В	Α
SRR1598944	ATTAGCGC	R. sierrae skin swab	Postinfection	Bd challenge	В	Α
SRR1598944	TTAACGGC	R. sierrae skin swab	Postinfection	Bd challenge	В	Α
SRR1598944	GCAACCAT	R. sierrae skin swab	Postinfection	Bd challenge	Α	В
SRR1598944	TATACGGC	<i>R. sierrae</i> skin swab	Postinfection	Bd challenge	Α	В
SRR1598944	CCATAAGC	R. sierrae skin swab	Postinfection	Bd challenge	Α	В
SRR1598944	TACGCCTT	R. sierrae skin swab	Postinfection	Bd challenge	В	В
SRR1598944	TACCTTCG	R. sierrae skin swab	Postinfection	Bd challenge	В	В
SRR1598944	CCATCCTA	R. sierrae skin swab	Postinfection	Bd challenge	В	В
SRR1598944	ATGGAAGC	R. sierrae skin swab	Postinfection	Bd challenge	Α	C
SRR1598944	TAGGCGTT	R. sierrae skin swab	Postinfection	Bd challenge	Α	C
SRR1598944	TACGGCAT	R. sierrae skin swab	Postinfection	Bd challenge	Α	C
SRR1598944	ATATGCCG	R. sierrae skin swab	Postinfection	Bd challenge	В	C
SRR1598944	TTAACCGG	R. sierrae skin swab	Postinfection	Bd challenge	В	C
SRR1598944	GCATGGAA	R. sierrae skin swab	Postinfection	Bd challenge	В	C
SRR1598944	CCATCGAA	<i>R. sierrae</i> skin swab	Postinfection	Bd challenge	Α	D
SRR1598944	GCTTGCAA	R. sierrae skin swab	Postinfection	Bd challenge	Α	D
SRR1598944	CGGCATTA	R. sierrae skin swab	Postinfection	Bd challenge	Α	D
SRR1598944	TTGGCGTA	R. sierrae skin swab	Postinfection	Bd challenge	В	D
SRR1598944	GCCGTTAA	R. sierrae skin swab	Postinfection	Bd challenge	В	D
SRR1598944	CCATTAGG	R. sierrae skin swab	Postinfection	Bd challenge	В	D
SRR1598944	ATCGATGC	R. sierrae skin swab	Postinfection	Bd challenge	Α	E
SRR1598944	CCGGATAT	R. sierrae skin swab	Postinfection	Bd challenge	A	E
SRR1598944	CGTTGGAT	R. sierrae skin swab	Postinfection	Bd challenge	Α	E
SRR1598944	AAGCGGTA	R. sierrae skin swab	Postinfection	Bd challenge	В	E
SRR1598944	TTCCGGTT	R. sierrae skin swab	Postinfection	Bd challenge	В	E
SRR1598944	AACCATGC	R. sierrae skin swab	Postinfection	Bd challenge	В	E
SRR1598944	ATCCGGTA	R. sierrae skin swab	Postinfection	Bd challenge	A	F
SRR1598944	TATACCGG	R. sierrae skin swab	Postinfection	Bd challenge	A	F
SRR1598944	CCGCTTAT	R. sierrae skin swab	Postinfection	Bd challenge	A	F
SRR1598944	TAGCCGAT	R. sierrae skin swab	Postinfection	Bd challenge	В	F
SRR1598944	TTGCCGAA	R. sierrae skin swab	Postinfection	Bd challenge	В	F -
SRR1598944	GCTACGAT	R. sierrae skin swab	Postinfection	Bd challenge	В	F
SRR1598944	AACCTTGG	R. sierrae skin swab	Postinfection	Bd challenge	Α	G
SRR1598944	GCTAATGC	R. sierrae skin swab	Postinfection	Bd challenge	Α	G
SRR1598944	CGTAGCAT	R. sierrae skin swab	Postinfection	Bd challenge	Α	G
SRR1598944	CCATAACG	R. sierrae skin swab	Postinfection	Bd challenge	В	G
SRR1598944	TTCCATGC	R. sierrae skin swab	Postinfection	Bd challenge	В	G
SRR1598944	GCTAGGAA	R. sierrae skin swab	Postinfection	Bd challenge	В	G

Table S5. Cont.

SRA accession no.	Barcode	Sample type	Time point	Bd treatment	Frog population source	Water source
SRR1598944	TAATCCGG	R. sierrae skin swab	Postinfection	No Bd (control)	А	А
SRR1598944	TAGCTTGG	R. sierrae skin swab	Postinfection	No Bd (control)	Α	Α
SRR1598944	TAGCGGAA	R. sierrae skin swab	Postinfection	No Bd (control)	Α	Α
SRR1598944	TTGGCCAA	R. sierrae skin swab	Postinfection	No Bd (control)	В	Α
SRR1598944	GCTACGTA	R. sierrae skin swab	Postinfection	No Bd (control)	В	Α
SRR1598944	GCAATTCG	R. sierrae skin swab	Postinfection	No Bd (control)	В	Α
SRR1598944	GCTTCGTT	R. sierrae skin swab	Postinfection	No Bd (control)	Α	В
SRR1598944	TAATGCCG	R. sierrae skin swab	Postinfection	No Bd (control)	Α	В
SRR1598944	CGTATACG	R. sierrae skin swab	Postinfection	No Bd (control)	Α	В
SRR1598944	GCGGTATT	R. sierrae skin swab	Postinfection	No Bd (control)	В	В
SRR1598944	CCATGCAA	R. sierrae skin swab	Postinfection	No Bd (control)	В	В
SRR1598944	CCTACCAT	R. sierrae skin swab	Postinfection	No Bd (control)	В	В
SRR1598944	AACGCCAT	R. sierrae skin swab	Postinfection	No Bd (control)	Α	C
SRR1598944	GCAAGGAT	R. sierrae skin swab	Postinfection	No Bd (control)	Α	C
SRR1598944	CCAATTGG	R. sierrae skin swab	Postinfection	No Bd (control)	Α	С
SRR1598944	CCGCAATA	R. sierrae skin swab	Postinfection	No Bd (control)	В	С
SRR1598944	CGATGCAT	R. sierrae skin swab	Postinfection	No Bd (control)	В	C
SRR1598944	TTCGCCAT	R. sierrae skin swab	Postinfection	No Bd (control)	В	C
SRR1598944	TTCGAAGC	R. sierrae skin swab	Postinfection	No Bd (control)	Ā	D
SRR1598944	CGATCCTT	R. sierrae skin swab	Postinfection	No Bd (control)	A	D
SRR1598944	TTAAGCGC	R. sierrae skin swab	Postinfection	No Bd (control)	A	D
SRR1598944	AACGTTGC	R. sierrae skin swab	Postinfection	No Bd (control)	В	D
SRR1598944	CCAATACG	R. sierrae skin swab	Postinfection	No Bd (control)	В	D
SRR1598944	TACCGCTT	R. sierrae skin swab	Postinfection	No Bd (control)	В	D
SRR1598944	CGCGTTAA	R. sierrae skin swab	Postinfection	No Bd (control)	A	E
SRR1598944	ATGCTTGG	R. sierrae skin swab	Postinfection	No Bd (control)	Ä	E
SRR1598944	ATGCGGAA	R. sierrae skin swab	Postinfection	No Bd (control)	A	E
SRR1598944	CGTACCTT	R. sierrae skin swab	Postinfection	No Bd (control)	В	E
SRR1598944	TTAAGCCG	R. sierrae skin swab	Postinfection	No Bd (control)	В	E
SRR1598944	GCGCAATT	R. sierrae skin swab	Postinfection	No Bd (control)	В	E
SRR1598944	GCTATAGC	R. sierrae skin swab	Postinfection	No Bd (control)	A	- F
SRR1598944	AACGCGAA	R. sierrae skin swab	Postinfection	No Bd (control)	A	F
SRR1598944	GCGCATTA	R. sierrae skin swab	Postinfection	No Bd (control)	Ä	F
SRR1598944	CGCGATAT	R. sierrae skin swab	Postinfection	No Bd (control)	В	F
SRR1598944	TTATGCGG	R. sierrae skin swab	Postinfection	No Bd (control)	В	F
SRR1598944	GCTTAACG	R. sierrae skin swab	Postinfection	No Bd (control)	В	F
SRR1598944	TACGAAGG	R. sierrae skin swab	Postinfection	No Bd (control)	A	G
SRR1598944	TTCCTTGG	R. sierrae skin swab	Postinfection	No Bd (control)	Ä	G
SRR1598944	TATAGCGC	R. sierrae skin swab	Postinfection	No Bd (control)	В	G
SRR1598944	ATTAGCCG	R. sierrae skin swab	Postinfection	No Bd (control)	В	G
SRR1598944	CGTATAGC	R. sierrae skin swab	Postinfection	No Bd (control)	В	G
SRR1598944	GCTACCAA	Water sample	Preinfection	N/A	N/A	A
SRR1598944	AAGGCCTT	Water sample	Preinfection	N/A	N/A	В
SRR1598944		Water sample	Preinfection	N/A	N/A	C
SRR1598944	AACCTACG	Water sample	Preinfection	N/A N/A	N/A	D
SRR1598944	GCAAGCTT	Water sample	Preinfection	N/A N/A	N/A N/A	E
SRR1598944	CGCGAATT	Water sample Water sample	Preinfection	N/A N/A	N/A N/A	F
SRR1598944	CCGCTATT	Water sample	Postinfection	N/A N/A	N/A N/A	
SRR1598944	ATCCAAGC	Water sample Water sample	Postinfection	N/A N/A	N/A N/A	A B
	ATGCTACG	•	Postinfection			C
SRR1598944	GCCCTATA	Water sample		N/A	N/A N/A	D
SRR1598944	CCGGTATA	Water sample	Postinfection	N/A	N/A	
SRR1598944	CGTTCCAT	Water sample	Postinfection	N/A	N/A	E
SRR1598944	CCTACGAA	Water sample	Postinfection	N/A	N/A	F

[&]quot;Time point" is in reference to the timing of experimental inoculations, and all samples are labeled according to this scheme for the purpose of grouping together samples collected before and after the inoculation event, although Bd inoculation was not applied to frogs in the "No Bd (control)" treatment group or to water samples. Detailed experimental design and sequencing and bioinformatics protocols are provided in *Methods* and *SI Methods*.