

eP-ALM: Efficient Perceptual Augmentation of Language Models

Mustafa Shukor, Corentin Dancette, Matthieu Cord
Sorbonne University

*Towards Generalist Multimodal Models

Assumption: very powerful unimodal models (e.g. LLMs)

- Objective: how to build powerful Multimodal Models?
 - **Hypothesis 1**: large-scale multimodal training
 - **Hypothesis 2**: Efficient Adaptation of pretrained unimodal models

*TL;DR

<u>Summary of the work</u>: we efficiently (<0.06% train. param./No pretraining) adapt frozen, pretrained, unimodal models (e.g OPT and ViT) to solve multimodal tasks (VQA, Captioning) across image, video and audio modalities

3 main takeaways:

- Parameter-Efficiency: Training only a linear projection
- 2. Late cross-modal interaction mechanism
- Data-Efficiency: without multimodal pretraining, few-shot learning

Our Recipe:

Model:

- Language Model: e.g. OPT
- Unimodal Encoders: ViT-Base (ImageNet),
 TimeSformer-B (kinetics), AST-B (audioset)
- Adaptation parametres:
 - Cross-Modal Connection: linear projection that projects the visual/audio [CLS] tokens extracted from the encoders' last layers and inject them in the OPT's last layers
 - Soft Prompt: 10 learnable tokens prepended to the text input
- Data: target datasets (e.g. COCO, VQAv2, AudioCaps, MSR-VTT)
- Training: training only adaptation parameters on target dataset

COCO

			Val	Test	Val	Test	B@4	CIDEr
		PromptFuse [†] [55]	34.1 [†]	-	-	-	-	-
Last layer's visual tokens fed to input OPT layer	Lin. proj.	B_{LimBEr}	34.1	33.5	30.81	29.4	1-1	_
	Prompt Tuning (PT)+Lin. proj.	$B_{PromptFuse}$	40.4	39.5	33.74	31.51	15.05	48.26
		B_{MAGMA}	32.2	31.8	30.98	28.93	-	_
Late cross interaction mechanism	PT+Shared Lin. proj.	eP-ALM _{pt}	48.8	47.8	43.8	40.3	27.52	91.92
	PT+Multiple Lin. proj.	eP-ALM	50.7/53.3 [†]	50.2	45.0	40.4	29.47	97.22
	PT+Shared Lin proj.	eP-ALM _{pt} -L*	54.58/54.47 [†]	54.47	46.86	42.7	31.24	107.0

VQA v2

GQA

- Consistently better than other baselines that prepend visual tokens to the input layer and use adapters or prompt tuning
- Better data-efficiency and zero-shot generalization (details in the paper)

Method

Dataset (Metric)	SoTA (ZS)	eP-ALM (FT)	SoTA (FT)
AudioCaps (CIDEr)	_	63.6	66.7 (Liu et al. [59])
MSRVTT-QA (Acc)	17.4 (Flamingo80B [2])	<u>36.7</u>	44.1 (OmniVL [88])
MSR-VTT (CIDEr)		50.7	60 (MV-GPT [73])
COCO (CIDEr)	84.3 (Flamingo80B [2])	<u>107.0</u>	145.3 (OFA [89])
VQAv2 (Acc)	56.3 (Flamingo80B [2])	53.3	84.3 (PaLI [14])
GQA (Acc)	29.3 (FewVLM [43])	<u>42.7</u>	60.8 (VL-T5 [17])

 Comparison with SoTA, trained with large number of parameters, and most often include large-scale pretraining

Direct Finetuning (eP-ALM)

- Efficient to train
- Generally better performance
- Easy to adapt to new tasks/datasets
- Efficient to adapt to new LLMs
- Task-specific finetuning

Pretrain-Zeroshot (e.g. LimBEr, Flamingo)

- Costly pretraining
- Limited performance, saturation with FS ICL
- Finetuning is needed for "new" datasets/tasks
- Pretraining is needed for a new LLM
- One training for many tasks

Future directions:

- **Constraint relaxation**: beyond linear projection, more trainable parameters, better zero-shot capabilities, efficient Multimodal pretraining, better/larger LLMs
- Better cross-modal interaction mechanisms

Code

https://github.com/mshukor/eP-ALM

