

тинистерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» (УрФУ) Институт радиоэлектроники и информационных технологий - РТФ

ОТЧЕТ

о проектной работе

по теме: Симулятор разбора техники

по дисциплине: Проектный практикум

Команда: ППА1 ИРИТ-РТФ.СРТ П, АТ-03

Екатеринбург 2021

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
КОМАНДА	4
ЦЕЛЕВАЯ АУДИТОРИЯ	5
КАЛЕНДАРНЫЙ ПЛАН ПРОЕКТА	6
ОПРЕДЕЛЕНИЕ ПРОБЛЕМЫ И ПОДХОДОВ К ЕЕ РЕШЕНИЮ	8
АНАЛИЗ АНАЛОГОВ	9
ТРЕБОВАНИЯ К ПРОДУКТУ И К МVР	11
ПЛАТФОРМА И СТЕК ДЛЯ РАЗРАБОТКИ	12
ПРОТОТИПИРОВАНИЕ	13
РАЗРАБОТКА СИСТЕМЫ	17
ЗАКЛЮЧЕНИЕ	19
СПИСОК ИСТОЧНИКОВ ДАННЫХ	20

ВВЕДЕНИЕ

На проектном практикуме в этом полугодии стояла задача создать симулятор разбора техники. Такая программа очень полезна людям, желающим самостоятельно разобраться в строении технического устройства, устранить какую-либо неполадку, но, как будет показано в дальнейших исследованиях, её на данный момент не существует.

Цель нашего проекта: разработать приложение для предоставления пользователю сведений по строению технических устройств. Устройства будут представлены в виде виртуальных 3D-моделей, с возможностью выделять детали и получать информацию о них, показаны процедуры сборки/разборки.

Для достижения цели мы поставили перед собой следующие задачи:

- спроектировать архитектуру системы;
- разработать сценарий использования системы;
- создать прототипы интерфейса;
- создать дизайн-макеты;
- написать код;
- протестировать приложение;
- оформить и внедрить MVP.

Задачами нашего приложения является:

- Обеспечение пользователя необходимыми знаниями о конструкции технического устройства для последующей работы с ним;
- визуализация процесса сборки/разборки технических устройств;
- обеспечение пользователя реалистичным опытом работы с техническим устройством в безопасной виртуальной среде.

КОМАНДА

- Абдыев Рафаэль Искендерович, РИ-100013, дизайнер, программист;
- Гусев Никита Романович, РИ-100013, тимлид, программист;
- Дунайчук Даниил Александрович, РИ-100013, дизайнер;
- Нюкина Надежда Андреевна, РИ-100013, аналитик;
- Петрова Елизавета Андреевна, РИ-100013, аналитик.

ЦЕЛЕВАЯ АУДИТОРИЯ

Определение целевой аудитории было произведено по методике «5W» Марка Шеррингтона:

- а) Потребительской группе предлагается приложение для предоставления сведений по строению технических устройств;
- b) потребителями могут быть люди любого пола и возраста;
- с) данное приложение помогает клиенту решить некоторые проблемы, возникающие при эксплуатации технических устройств;
- d) потребителям понадобится данное приложение, если при поломке двигателя их знаний о конструкции технического устройства будет недостаточно, чтобы самостоятельно устранить неполадку;
- е) приложение будет размещено в интернете.

КАЛЕНДАРНЫЙ ПЛАН ПРОЕКТА

Название проекта: Симулятор разбора техники

Руководитель проекта: Обвинцев О.А.

N	0	Название задачи	Ответ- ствен- ный	Дли- тель- ность	Дата начала	Временные рамки проекта, недели							
	зада					1	2	3	4	5	6	8	7
Аналитика													
1.1	Определение проблемы		Нюкина	1 неделя	05.04								
1.2	Выявление целевой аудитории		Нюкина	1 неделя	05.04								
1.3	Конкретизац ия проблемы		Нюкина	1 неделя	05.04								
1.4	Подходы к решению проблемы		Нюкина	1 неделя	05.04								
1.5	Анализ аналогов		Нюкина	1 неделя	05.04								
1.6	Определение платформы и стека для продукта		Нюкина	1 неделя	05.04								
1.7	Формулиров ание требований к МVР продукта		Петрова	1 неделя	12.04								
1.8	Определение платформы и стека для MVP		Петрова	1 неделя	12.04								
1.9	Формулиров ка цели		Петрова	1 неделя	12.04								

№)	Название задачи	Ответ- ствен- ный	Дли- тель- ность	Дата начала	Временные рамки проекта, недели							
						1	2	3	4	5	6	8	7
1.10	Формулиров ание требований к продукту		Петрова	1 неделя	12.04								
1.11	Определение задач		Петрова	1 неделя	12.04								
Проектирование													
2.1	2.1 Архитектур а системы (компонент ы, модули системы)		Абдыев	2 недели	19.04								
2.2	2 Разработка сценариев использования я системы		Дунайчук	2 недели	19.04								
2.3	Дизайн- макеты		Дунайчук	2 недели	19.04								
2.4	4 Прототипы интерфейсо в		Абдыев	2 недели	19.04								
Разра	аботка	ı				•	•	•					
3.1	Написание кода		Гусев	3 недели	03.05								
3.2	Тестировани е приложения		Гусев	3 недели	03.05								
Внедрение													
4.1	Написание отчета		Нюкина	1 неделя	24.05								
4.2	Оформление презентации		Петрова	1 неделя	24.05								
	Защита проекта				07.06 - 15.06								

ОПРЕДЕЛЕНИЕ ПРОБЛЕМЫ И ПОДХОДОВ К ЕЕ РЕПЕНИЮ

В ходе проведенного опроса было установлено, что при эксплуатации и ремонте различных технических устройств люди нередко сталкиваются со многими проблемами. Для правильного разрешения возникающих затруднений очень важна информация о конструкции этих устройств, их составляющих и самом процессе сборки или разборки устройства.

Необходимо обеспечить пользователя сведениями для возможности самостоятельного разбора или ремонта какого-либо устройства:

- предоставить сведения о его конструкции;
- предоставить виртуальную модель устройства и возможность работы с ней;
- предоставить описание известных «узких мест» и наиболее вероятных неполадок.

Это позволит пользователю лучше понять ситуацию и поможет определить, в каком направлении следует двигаться.

Такую информацию можно представить по-разному, но наглядность, возможность виртуальной работы с объектом всегда окажется полезнее просто инструкции с подробным описанием возможных неисправностей.

Для решения данной проблемы предлагается создать приложение, которое детально моделирует внутреннюю конструкцию какого-либо устройства. Также в нем будет содержаться описание деталей устройства, список типовых проблем и алгоритм сборки/разборки, показанный в виде анимационного ролика. Детали устройства можно будет выделять на экране и получать сведения по ним.

АНАЛИЗ АНАЛОГОВ

Анализ аналогов должен помочь выявить достоинства и недостатки конкурентных программ, чтобы создаваемое приложение имело преимущества и привлекло внимание потребителей.

Критерии анализа:

- наличие визуализации сборки и разборки различной техники;
- наличие описаний деталей устройства и типовых проблем, алгоритмы сборки/разборки устройства и т.п.;
- уровень детализации до мелких деталей, видимых невооруженным глазом;
- приложение не для игры, а для помощи при работе с различными техническими устройствами.

Выявленные приложения, похожие на проектируемое:

- *Car Mechanic Simulator* игра-симулятор, в которой игрок выполняет роль механика, ремонтирующего или собирающего различные автомобили;
- *Disassembly 3D* игра-симулятор, позволяющая собирать и разбирать различные по типу и величине предметы от тумбочки и настольной лампы до самолета или автомобиля;
- *ElectriX* игра-симулятор ремонта электронного оборудования с сюжетом заговора. В ней можно чинить компьютеры, мобильные телефоны, консоли и другие устройства.

Соответствие данных приложений сформированным критериям анализа:

Критерий	Car Mechanic	Disassembly	ElectriX		
	Simulator	3D			
визуализация	присутствует	присутствует	присутствует		
описания	отсутствуют	отсутствуют	отсутствуют		
деталей	отсутствуют	отсутствуют	отсутствуют		
устройства,					
алгоритмы					
сборки/разборки					
и т.п.;					
уровень	подробный,	подробный,	подробный и		
детализации	НО	НО	достоверный		
	недостаточно	недостаточно			
	достоверный	достоверный			
приложение	нет	нет	нет		
для помощи при					
работе с					
техническими					
устройствами					

Вывод: все эти приложения являются лишь косвенными аналогами нашего проекта.

ТРЕБОВАНИЯ К ПРОДУКТУ И К MVP

Требования к MVP продукта

В MVP продукта должны быть представлены две модели технических устройств для разборки. Также пользователю будет доступна текстовая инструкцию к ним.

Платформа и стек для MVP

Для создания объёмных моделей технических устройств и дизайна используется 3ds Max и Компас 3D, для создания прототипа приложения — среда разработки Unity.

Требования к продукту

Пользовательские требования:

Продукт должен помочь пользователю разобраться в общем устройстве объекта, научить выявлять основные неисправности устройства для последующей самостоятельной сборки/разборки или ремонта.

Функциональные требования:

- 1) возможность рассмотреть устройство с разных сторон, вращать его;
- 2) выделение детали объекта и отсоединения её от устройства, обзор детали с разных сторон (вращение);
- 3) режимы работы программы: сборка/разборка;
- 4) наличие инструкции по сборке/разборке устройства в виде текста/схемы/анимационного ролика;
- 5) возможность оставить обратную связь, сообщение об ошибке, написав на почту разработчиков.

ПЛАТФОРМА И СТЕК ДЛЯ РАЗРАБОТКИ

Необходимые нам программы:

- для создания прототипа приложения:

Unity – межплатформенная среда разработки компьютерных игр. Unity достаточно проста в освоении, поэтому удобна для быстрого создания прототипа программы, для проверки различных гипотез и общего дизайна. Кроме того, скрипты в Unity пишутся на языке С#, которым владеют разработчики. Будет использована на этапе проектирования.

- для дизайна:
- 1) $Компас\ 3D$ универсальная система автоматизированного проектирования, составляющая ассоциативные виды трёхмерных моделей. Будет использоваться для создания объемных моделей технических устройств для импорта в Unity;
- 2) Autodesk 3ds Max профессиональное программное обеспечение для 3D моделирования, анимации и визуализации при создании игр и проектировании. Необходима нам при создании 3D-моделей технических устройств для импорта в Unity, создания анимаций.

ПРОТОТИПИРОВАНИЕ

Начальные варианты интерфейса приложения (рисунки 1-5):

Рисунок 1. Основной экран приложения

Рисунок 2. Основной экран приложения

Рисунок 3. Основной экран приложения

Рисунок 4. Стартовое меню

Рисунок 5. Выбор уровня

Скриншоты текущего варианта реализации (рисунки 6-7):

Рисунок 6. Стартовое меню

Рисунок 7. Модель поверхностного насоса QB60P

РАЗРАБОТКА СИСТЕМЫ

- 1. Концептирование. Разработка идеи проекта;
- 2. Продумывание игровых механик и способов их реализации. Разработка сценария приложения.

При запуске приложения пользователь попадает в меню, где расположены кнопки Start и Exit. При нажатии на кнопку Exit пользователь выходит из приложения.

При нажатии на кнопку Start появляется окно выбора уровня (на каждом уровне разные двигатели). После выбора уровня появляется окно, в котором можно разбирать устройство.

3. Прорисовка и создание 3D моделей инженерных объектов с помощью программ Kompas 3D и Autodesk 3Ds Max (рисунки8 – 9);

Рисунок 8

Рисунок 9

- 4. Перенос инженерных объектов на game engine(Unity);
- 5. Реализация сборки-разборки инженерного объекта с помощью программы Unity. Добавление справочной информации.

ЗАКЛЮЧЕНИЕ

В течение проекта командой разработчиков была выполнено немало работы в областях аналитики и обработки данных, проектирования и разработки продукта. В итоге было создано минимально работоспособное приложение, позволяющее наглядно продемонстрировать разборку технических устройств и предоставляющее информацию для их ремонта.

В ходе работы над проектом были выполнены следующие задачи:

- составлен календарный план проекта;
- проведена аналитика: поставлены цель и задачи проекта, определена проблема и подходы к ее решению, определена целевая аудитория, подобраны платформа и стек для разработки, проанализированы аналоги, поставлены требования к продукту и к MVP;
- разработан сценарий использования системы;
- созданы прототипы интерфейса;
- создано и протестировано MVP.

СПИСОК ИСТОЧНИКОВ ДАННЫХ

- 1. Википедия [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/, свободный. Дата обращения: 21.05.2021.
- 2. Записки начинающего веб-мастера [Электронный ресурс]. Режим доступа: http://blog.contra.lv/category/joomla/creating-own-mvc-component/, свободный. Дата обращения: 18.04.2021.
- 3. UpLab [Электронный ресурс]. Что такое MVP? Режим доступа: https://www.uplab.ru/blog/minimum-viable-product, свободный. Дата обращения: 01.05.2021.
- 4. CodeNet [Электронный ресурс]. Режим доступа: http://www.codenet.ru, свободный. Дата обращения: 12.04.2021