Profesor: Felipe Osorio Ayudante: Nicolás Alfaro

Contacto: nicolas.alfaro@sansano.usm.cl Semestre: 2021-2 (Primavera 2021)

Ayudantía 9

2 de Diciembre, 2021

PROBLEMAS

 $\boxed{\mathbf{P1}}$ Una práctica desmedida que sucede ocasionalmente en estadística es la de escoger el nivel de significancia α **después** de observar el resultado del test para así forzar el rechazo (o aceptación) de la hipótesis nula. En base a esto responda las siguientes preguntas

- (a) Calcule la probabilidad de cometer un error tipo I y II si se escoge α para rechazar.
- (b) Calcule la probabilidad de cometer un error tipo I y II si se escoge α para aceptar.

 $\fbox{ P2}$ Una desigualdad bastante popular es la llamada desigualdad $\hbox{MA-MG-MH}$ la cual establece que si

$$MA = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}, \; ; \; MG = (\prod_{i=1}^{n} x_i)^{\frac{1}{n}} \; ; \; MH = (\frac{\sum_{i=1}^{n} x_i^{-1}}{n})^{-1}$$

Entonces se tiene que $MA \geq MG \geq MH$. La idea de este ejercicio es poder dar una demostración a esta desigualdad utilizando herramientas de la inferencia estadística, particularmente las propiedades del test de razón de verosimilitudes. Para esto suponga que $\{Y_i\}_i^n$ son variables aleatorias independientes donde $Y_i \sim \text{Exp}(\lambda_i)$ y se quiere contrastar las hipótesis

$$H_0: \lambda_1 = \lambda_2 = \cdots = \lambda_n \quad V.S \quad H_1: \lambda_i \neq \lambda_j$$
 para algún par de i,j

- (a) Muestre que el estadístico asociado al test LRT viene dado por $(\bar{Y})^{-n}/(\prod_i^n Y_i)^{-1}$ y deduzca la primera desigualdad.
- (b) Sea la transformación $X_i = \frac{1}{Y_i}$, muestre que el estadístico asociado al test LRT. Considerando las observaciones $\{X_i\}$ viene dado por $[n/\sum_{i=1}^n (X_i)^{-1}]^n/\prod_i^n X_i$ y deduzca la desigualdad restante.

 $\boxed{\mathbf{P3}}$ Sea X_1, X_2 variables aleatorias IID, donde $X_i \sim \mathrm{U}(\theta, \theta + 1)$. Considere que para contrastar las hipótesis

$$H_0: \theta = 0$$
 V.S $H_1: \theta > 0$

se tienen los siguientes tests.

$$\delta_1(X_1)$$
: Rechazar H_0 si $X_1 > 0.95$
 $\delta_2(X_1, X_2)$: Rechazar H_0 si $X_1 + X_2 > C$

En base a lo anterior responda las siguientes preguntas:

- (a) Encuentre C tal que el error de tipo I sea idéntico entre ambos tests.
- (b) Calcule la función de potencia de cada test.
- (c) Determine si δ_2 es más potente que δ_1
- (d) Muestre una forma de encontrar un test de igual tamaño que δ_2 pero más potente que el.

 $[\mathbf{P4}]$ Suponga que X_1, \ldots, X_n es una muestra aleatoria IID proveniente de una distribución $\operatorname{Beta}(\mu, 1)$ y de forma equivalente Y_1, \ldots, Y_m es una muestra aleatoria IID proveniente de una distribución $\operatorname{Beta}(\theta, 1)$ donde ambas muestras son independientes entre si.

- (a) Encuentre el test LRT asociado al contraste $H_0: \theta = \mu$ v.s $H_1: \theta \neq \mu$.
- (b) Demuestre que el test anterior se puede basar en el estadístico de contraste

$$T = \frac{\sum_{i}^{n} \log(X_i)}{\sum_{i}^{n} \log(X_i) + \sum_{i}^{m} \log(Y_i)}$$

(c) Encuentre la distribución de T cuando la hipótesis nula es cierta y concluya encontrando un test de tamaño $\alpha=0.1$