```
from google.colab import files
uploaded = files.upload()
```

Browse... No files selected. Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving HousePricePrediction vlsv to HousePricePrediction (1) vlsv

import pandas as pd

df = pd.read_excel('HousePricePrediction.xlsx')

df.head()

→		Id	MSSubClass	MSZoning	LotArea	LotConfig	BldgType	OverallCond	YearB
	0	0	60	RL	8450	Inside	1Fam	5	
	1	1	20	RL	9600	FR2	1Fam	8	
	2	2	60	RL	11250	Inside	1Fam	5	
	3	3	70	RL	9550	Corner	1Fam	5	
	4	4	60	RL	14260	FR2	1Fam	5	

Step 1: Importing Libraries and Dataset

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

dataset = pd.read_excel("HousePricePrediction.xlsx")

print(dataset.head(5))

Output:

→	0 1 2 3 4	Id 0 1 2 3 4	MSSubClass 60 20 60 70 60	RL RL RL	LotArea 8450 9600 11250 9550 14260	LotConfig Inside FR2 Inside Corner FR2	BldgType 1Fam 1Fam 1Fam 1Fam 1Fam	1 1 1 1	ond \ 5 8 5 5 5
	7	-							
		Yea	rBuilt Yea	rkemodAdd	Exteriori	lst BsmtF:	instz id	talBsmtSF	SalePrice
	0		2003	2003	Vinyl	.Sd	0.0	856.0	208500.0
	1		1976	1976	Metal	.Sd	0.0	1262.0	181500.0
	2		2001	2002	Vinyl	.Sd	0.0	920.0	223500.0
	3		1915	1970	Wd Sc	dng	0.0	756.0	140000.0
	4		2000	2000	Vinyl	.Sd	0.0	1145.0	250000.0

Step 2:Data Preprocessing

```
obj = (dataset.dtypes == 'object')
object_cols = list(obj[obj].index)
print("Categorical variables:",len(object_cols))

int_ = (dataset.dtypes == 'int')
num_cols = list(int_[int_].index)
print("Integer variables:",len(num_cols))

fl = (dataset.dtypes == 'float')
fl_cols = list(fl[fl].index)
print("Float variables:",len(fl_cols))

**Categorical variables: 4
    Integer variables: 6
    Float variables: 3
```

Step 3:Exploratory Data Analysis (EDA)

Output:

<Axes: >

Step 4:Data Cleaning

```
dataset.drop(['Id'],
             axis=1,
             inplace=True)
dataset['SalePrice'] = dataset['SalePrice'].fillna(
  dataset['SalePrice'].mean())
new_dataset = dataset.dropna()
new_dataset.isnull().sum()
```

Output:

	0
MSSubClass	0
MSZoning	0
LotArea	0
LotConfig	0
BldgType	0
OverallCond	0
YearBuilt	0
YearRemodAdd	0
Exterior1st	0
BsmtFinSF2	0
TotalBsmtSF	0
SalePrice	0

_____ ..._ /

5/2/25, 20:05 3 of 6

ατγρε: ιπτο4

Step 5:OneHotEncoder - For Label categorical

```
from sklearn.preprocessing import OneHotEncoder
s = (new_dataset.dtypes == 'object')
object cols = list(s[s].index)
print("Categorical variables:")
print(object cols)
print('No. of. categorical features: ',
      len(object_cols))
Output:
    Categorical variables:
    ['MSZoning', 'LotConfig', 'BldgType', 'Exterior1st']
    No. of. categorical features: 4
OH encoder = OneHotEncoder(sparse output=False, handle unknown='ignore')
OH_cols = pd.DataFrame(OH_encoder.fit_transform(new_dataset[object_cols]))
OH cols.index = new dataset.index
OH cols.columns = OH encoder.get feature names out()
df final = new dataset.drop(object cols, axis=1)
df_final = pd.concat([df_final, OH_cols], axis=1)
```

Step 6:Splitting Dataset into Training and Testing

```
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split

X = df_final.drop(['SalePrice'], axis=1)
Y = df_final['SalePrice']

X_train, X_valid, Y_train, Y_valid = train_test_split(
    X, Y, train size=0.8, test size=0.2, random state=0)
```

Step 7: Model Training and Accuracy

1. SVM – Support vector Machine

```
from sklearn import svm
from sklearn.svm import SVC
from sklearn.metrics import mean_absolute_percentage_error
model_SVR = svm.SVR()
model_SVR.fit(X_train,Y_train)
Y pred = model SVR.predict(X valid)
```

print(mean_absolute_percentage_error(Y_valid, Y_pred))
Output:
 0.1870512931870423

2. Random Forest Regression

```
from sklearn.ensemble import RandomForestRegressor
model_RFR = RandomForestRegressor(n_estimators=10)
model_RFR.fit(X_train, Y_train)
Y_pred = model_RFR.predict(X_valid)
mean_absolute_percentage_error(Y_valid, Y_pred)
Output:
    0.19360674296562172
```

```
TT B I \leftrightarrow \bigoplus \square 99 \sqsubseteq \boxminus - \Psi \bigcirc \square
```

3. Linear Regression

0.1874168384159986

3. Linear Regression

```
from sklearn.linear_model import LinearRegression

model_LR = LinearRegression()
model_LR.fit(X_train, Y_train)
Y_pred = model_LR.predict(X_valid)

print(mean_absolute_percentage_error(Y_valid, Y_pred))

Output:
```