Show the proposed algorithm has the claimed running time by making all the computer verification explicit

Yinan Yang
Unicersity of Bristol
Bristol, UK
ff19085@bristol.ac.uk

John Lapinskas
Unicersity of Bristol
Bristol, UK
john.lapinskas@bristol.ac.uk

ABSTRACT

This project will focus on the #2SAT area and will design a complete computer validation of that thesis for a specific thesis. Since papers in this field rarely explain the reasoning process in detail, it is even more difficult to share codes that reproduce it. That's why it's essential to produce a complete computer verification. This project will replicate the recursive logic in the thesis by simulating the workflow of an oracle machine through computer code, thus verifying the correctness of the thesis results.

ACM Classification Keywords

H.5.m. Information Interfaces and Presentation (e.g. HCI): Miscellaneous; See http://acm.org/about/class/1998/ for the full list of ACM classifiers. This section is required.

Author Keywords

#SAT; #2SAT; graph theory; complexity theory

INTRODUCTION

First, the project will design a computer validation process of Magnus Wahlström's work in 2004.[3] This project will focus on the #2-SAT area of the algorithm domain, which will be covered in detail later in this introduction.

Most algorithm designs are algorithm designs for decision problems. For example, to find a solution that makes a Boolean formula satisfying. By finding a satisfying answer to a Boolean expression, we mean that given an arbitrary Boolean expression, such as $A \vee B$, one of the solutions that can make its result to be true if A is true, and B is true. This is the SAT question in the algorithmic field. SAT is the first issue that was demonstrated to be NP-complete.[1] As we all know, P-class is a fundamental complexity class that is verifiable by a deterministic Turing machine. However, NP is a generalization of P, which the lesson of choice problems decidable by a non-deterministic Turing machine that runs in polynomial time. A decisive question that is NP-complete means that it

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

CHI'16, May 07-12, 2016, San Jose, CA, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM. ISBN 123-4567-24-567/08/06...\$15.00

DOI: http://dx.doi.org/10.475/123_4

is complete for NP, which means that any question that is NP can be reduced to it in polynomial time.

Let us go back to the SAT problem. Going further, we will not only be content to find out if we can satisfy a particular Boolean expression, but we are trying to find out exactly how many solutions can satisfy that expression. This is the #SAT question, brought up by Valiant in 1979.[4] Valiant, meanwhile, raised the issue that this is a #P-complete.

To find the final solution to a complete Boolean expression, we split out each of the propositional variables. Each propositional variable can contain either true or false. We define a literal to denote both a propositional variable x and its negation $\neg x$. A disjunction of literals is defined as a clause. And a conjunctive nurmal form, short for CNF, is a conjunction of clauses.

So we can represent some special case SAT questions, such as if each clause contains at most 2 literals, then we call this formula a 2-SAT formula. A more general representation is that if each clause contains at most no more than k literals in a hypothetical CNF, then we call it a kSAT formula (k>0). The #2-SAT question of concern for this project can then be expressed as: how many possible solutions are there to make the formula satisfy a maximum of 2 liters per clause in any given proposed formula. Take for example the following.

$$(x_0 \lor x_1) \land (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_4)$$

Since we cannot give specific conclusions for all Boolean expressions, and indeed it is impossible, in this research area, we usually design a computational model to calculate the time complexity O of this model method. The time complexity usually describes the running time of an algorithm in a worst-case scenario. Computational models get different results in many branches, and we usually verify the worst time complexity to determine the time complexity of this algorithm.

In this project, the #2SAT algorithm is explored from the initial upper bound of $O(2^n)$, as proposed by Dubois, Zhang, Littman, and Dahllöf[2] et al. The scheme is continuously optimized to propose $O(1.3247^n)$, until this paper we forced uses the computer-verified work of Magnus Wahlström, who accelerated the algorithmic model of #2SAT to $O(1.2561^n)$ in 2004[3].

However, research in this field is purely theoretical, and the literature and papers are full of mathematical expressions and model reasoning. Papers in this field do not usually provide a specific computer code reproduction process for the given model, a process that is often hidden in the deductions of formulas, and it is difficult for later readers to rely solely on this paper to reproduce the full process of deductions. Moreover, as the theoretical research progresses, the inability to replicate the work of previously distinguished practitioners will have a very significant impact on subsequent research.

So an experimental replication of the reasoning process in this area of research will be very necessary. This is not only an experimental corroboration of the important theories of previous distinguished contributors but also an important reference for future continuing researchers in the field.

The project will be conducted based on the reading and validation of the thesis, which involves the validation of the different branches of Wahlström's work. (See Gantt chart). The initial design will be organized into a brief thesis validation report in the form of an algorithmic code design ensemble and proof draft, followed by specific code writing and validation.

As for the software required, python and related computing packages will be selected for this project because of the simplicity and ease of writing python. Due to the special nature of this project, the project does not require the operational efficiency of a complete project, only the verification of results, and therefore python has the advantage over c and java. The latest version of 3.8.2 will be chosen because the project will provide as much as possible a reasonable interpretation of previous outstanding work for future researchers in the field, so choosing the latest version of python will avoid creating a gap for future readers. As for the hardware part, since this project is a reproduction of a theoretical research example, there are no special hardware equipment requirements, just a computer that can run python.

PAGE SIZE AND COLUMNS

On each page your material should fit within a rectangle of 7×9.15 inches (18×23.2 cm), centered on a US Letter page (8.5×11 inches), beginning 0.85 inches (1.9 cm) from the top of the page, with a 0.3 inches (0.85 cm) space between two 3.35 inches (8.4 cm) columns. Right margins should be justified, not ragged. Please be sure your document and PDF are US letter and not A4.

TYPESET TEXT

The styles contained in this document have been modified from the default styles to reflect ACM formatting conventions. For example, content paragraphs like this one are formatted using the Normal style.

LATEX sometimes will create overfull lines that extend into columns. To attempt to combat this, the .cls file has a command, \sloppy, that essentially asks LATEX to prefer underfull lines with extra whitespace. For more details on this, and info on how to control it more finely, check out http://www.economics.utoronto.ca/osborne/latex/PMAKEUP.HTM.

Figure 1. Insert a caption below each figure. Do not alter the Caption style. One-line captions should be centered; multi-line should be justified.

Title and Authors

Your paper's title, authors and affiliations should run across the full width of the page in a single column 17.8 cm (7 in.) wide. The title should be in Helvetica or Arial 18-point bold. Authors' names should be in Times New Roman or Times Roman 12-point bold, and affiliations in 12-point regular.

See \author section of this template for instructions on how to format the authors. For more than three authors, you may have to place some address information in a footnote, or in a named section at the end of your paper. Names may optionally be placed in a single centered row instead of at the top of each column. Leave one 10-point line of white space below the last line of affiliations.

Abstract and Keywords

Every submission should begin with an abstract of about 150 words, followed by a set of Author Keywords and ACM Classification Keywords. The abstract and keywords should be placed in the left column of the first page under the left half of the title. The abstract should be a concise statement of the problem, approach, and conclusions of the work described. It should clearly state the paper's contribution to the field of HCI

Normal or Body Text

Please use a 10-point Times New Roman or Times Roman font or, if this is unavailable, another proportional font with serifs, as close as possible in appearance to Times Roman 10-point. Other than Helvetica or Arial headings, please use sans-serif or non-proportional fonts only for special purposes, such as source code text.

First Page Copyright Notice

This template include a sample ACM copyright notice at the bottom of page 1, column 1. Upon acceptance, you will be provided with the appropriate copyright statement and unique DOI string for publication. Accepted papers will be distributed in the conference publications. They will also be placed in the ACM Digital Library, where they will remain accessible to thousands of researchers and practitioners worldwide. See http://acm.org/publications/policies/copyright_policy for the ACM's copyright and permissions policy.

Subsequent Pages

On pages beyond the first, start at the top of the page and continue in double-column format. The two columns on the last page should be of equal length.

		Test Conditions	
Name	First	Second	Final
Marsden	223.0	44	432,321
Nass	22.2	16	234,333
Borriello	22.9	11	93,123
Karat	34.9	2200	103,322

Table 1. Table captions should be placed below the table. We recommend table lines be 1 point, 25% black. Minimize use of table grid lines.

References and Citations

Use a numbered list of references at the end of the article, ordered alphabetically by last name of first author, and referenced by numbers in brackets [?, ?, ?]. Your references should be published materials accessible to the public. Internal technical reports may be cited only if they are easily accessible (i.e., you provide the address for obtaining the report within your citation) and may be obtained by any reader for a nominal fee. Proprietary information may not be cited. Private communications should be acknowledged in the main text, not referenced (e.g., "[Borriello, personal communication]").

References should be in ACM citation format: http://acm.org/publications/submissions/latex_style. This includes citations to internet resources [?, ?, ?, ?] according to ACM format, although it is often appropriate to include URLs directly in the text, as above.

SECTIONS

The heading of a section should be in Helvetica or Arial 9-point bold, all in capitals. Sections should *not* be numbered.

Subsections

Headings of subsections should be in Helvetica or Arial 9-point bold with initial letters capitalized. For sub-sections and sub-subsections, a word like *the* or *of* is not capitalized unless it is the first word of the heading.

Sub-subsections

Headings for sub-subsections should be in Helvetica or Arial 9-point italic with initial letters capitalized. Standard \section, \subsection, and \subsubsection commands will work fine in this template.

FIGURES/CAPTIONS

Place figures and tables at the top or bottom of the appropriate column or columns, on the same page as the relevant text (see Figure 1). A figure or table may extend across both columns to a maximum width of 17.78 cm (7 in.).

Captions should be Times New Roman or Times Roman 9-point bold. They should be numbered (e.g., "Table 1" or "Figure 1"), centered and placed beneath the figure or table. Please note that the words "Figure" and "Table" should be spelled out (e.g., "Figure" rather than "Fig.") wherever they occur. Figures, like Figure 2, may span columns and all figures should also include alt text for improved accessibility. Papers and notes may use color figures, which are included in the page limit; the figures must be usable when printed in black-and-white in the proceedings.

The paper may be accompanied by a short video figure up to five minutes in length. However, the paper should stand on its own without the video figure, as the video may not be available to everyone who reads the paper.

Inserting Images

When possible, include a vector formatted graphic (i.e. PDF or EPS). When including bitmaps, use an image editing tool to resize the image at the appropriate printing resolution (usually 300 dpi).

QUOTATIONS

Quotations may be italicized when "placed inline" (Anab, 23F).

Longer quotes, when placed in their own paragraph, need not be italicized or in quotation marks when indented (Ramon, 39M).

LANGUAGE, STYLE, AND CONTENT

The written and spoken language of SIGCHI is English. Spelling and punctuation may use any dialect of English (e.g., British, Canadian, US, etc.) provided this is done consistently. Hyphenation is optional. To ensure suitability for an international audience, please pay attention to the following:

- Write in a straightforward style.
- Try to avoid long or complex sentence structures.
- Briefly define or explain all technical terms that may be unfamiliar to readers.
- Explain all acronyms the first time they are used in your text—e.g., "Digital Signal Processing (DSP)".
- Explain local references (e.g., not everyone knows all city names in a particular country).
- Explain "insider" comments. Ensure that your whole audience understands any reference whose meaning you do not describe (e.g., do not assume that everyone has used a Macintosh or a particular application).
- Explain colloquial language and puns. Understanding phrases like "red herring" may require a local knowledge of English. Humor and irony are difficult to translate.
- Use unambiguous forms for culturally localized concepts, such as times, dates, currencies, and numbers (e.g., "1–5–97" or "5/1/97" may mean 5 January or 1 May, and "seven o'clock" may mean 7:00 am or 19:00). For currencies, indicate equivalences: "Participants were paid ₩ 25,000, or roughly US \$22."
- Be careful with the use of gender-specific pronouns (he, she) and other gendered words (chairman, manpower, manmonths). Use inclusive language that is gender-neutral (e.g., she or he, they, s/he, chair, staff, staff-hours, person-years). See the *Guidelines for Bias-Free Writing* for further advice and examples regarding gender and other personal attributes [?]. Be particularly aware of considerations around writing about people with disabilities.

Figure 2. In this image, the map maximizes use of space. You can make figures as wide as you need, up to a maximum of the full width of both columns. Note that LATEX tends to render large figures on a dedicated page. Image: (a) ayman on Flickr.

 If possible, use the full (extended) alphabetic character set for names of persons, institutions, and places (e.g., Grønbæk, Lafreniére, Sánchez, Nguyễn, Universität, Weißenbach, Züllighoven, Århus, etc.). These characters are already included in most versions and variants of Times, Helvetica, and Arial fonts.

ACCESSIBILITY

The Executive Council of SIGCHI has committed to making SIGCHI conferences more inclusive for researchers, practitioners, and educators with disabilities. As a part of this goal, the all authors are asked to work on improving the accessibility of their submissions. Specifically, we encourage authors to carry out the following five steps:

- 1. Add alternative text to all figures
- 2. Mark table headings
- 3. Add tags to the PDF
- 4. Verify the default language
- 5. Set the tab order to "Use Document Structure"

For more information and links to instructions and resources, please see: http://chi2016.acm.org/accessibility. The \hyperref package allows you to create well tagged PDF files, please see the preamble of this template for an example.

PAGE NUMBERING, HEADERS AND FOOTERS

Your final submission should not contain footer or header information at the top or bottom of each page. Specifically, your final submission should not include page numbers. Initial submissions may include page numbers, but these must be removed for camera-ready. Page numbers will be added to the PDF when the proceedings are assembled.

PRODUCING AND TESTING PDF FILES

We recommend that you produce a PDF version of your submission well before the final deadline. Your PDF file must be ACM DL Compliant. The requirements for an ACM Compliant PDF are available at: http://www.sheridanprinting.com/typedept/ACM-distilling-settings.htm.

Test your PDF file by viewing or printing it with the same software we will use when we receive it, Adobe Acrobat Reader Version 10. This is widely available at no cost. Note that most reviewers will use a North American/European version of Acrobat reader, so please check your PDF accordingly.

When creating your PDF from Word, ensure that you generate a tagged PDF from improved accessibility. This can be done by using the Adobe PDF add-in, also called PDFMaker. Select Acrobat | Preferences from the ribbon and ensure that "Enable Accessibility and Reflow with tagged Adobe PDF" is selected. You can then generate a tagged PDF by selecting "Create PDF" from the Acrobat ribbon.

CONCLUSION

It is important that you write for the SIGCHI audience. Please read previous years' proceedings to understand the writing style and conventions that successful authors have used. It is particularly important that you state clearly what you have done, not merely what you plan to do, and explain how your work is different from previously published work, i.e., the unique contribution that your work makes to the field. Please consider what the reader will learn from your submission, and how they will find your work useful. If you write with these questions in mind, your work is more likely to be successful, both in being accepted into the conference, and in influencing the work of our field.

ACKNOWLEDGMENTS

Sample text: We thank all the volunteers, and all publications support and staff, who wrote and provided helpful comments

on previous versions of this document. Authors 1, 2, and 3 gratefully acknowledge the grant from NSF (#1234–2012–ABC). This whole paragraph is just an example.

REFERENCES FORMAT

Your references should be published materials accessible to the public. Internal technical reports may be cited only if they are easily accessible and may be obtained by any reader for a nominal fee. Proprietary information may not be cited. Private communications should be acknowledged in the main text, not referenced (e.g., [Golovchinsky, personal communication]). References must be the same font size as other body text. References should be in alphabetical order by last name of first author. Use a numbered list of references at the end of the article, ordered alphabetically by last name of first author, and referenced by numbers in brackets. For papers from conference proceedings, include the title of the paper and the name of the conference. Do not include the location of the conference or the exact date; do include the page numbers if available.

References should be in ACM citation format: http://www.acm.org/publications/submissions/latex_style. This includes citations to Internet resources [?, ?, ?] according to ACM format, although it is often appropriate to include URLs directly in the text, as above. Example reference formatting for individual journal articles [?], articles in conference proceedings [?], books [?], theses [?], book chapters [?], an entire journal issue [?], websites [?, ?], tweets [?], patents [?], games [?],

and online videos [?] is given here. See the examples of citations at the end of this document and in the accompanying BibTeX document. This formatting is a edited version of the format automatically generated by the ACM Digital Library (http://dl.acm.org) as "ACM Ref." DOI and/or URL links are optional but encouraged as are full first names. Note that the Hyperlink style used throughout this document uses blue links; however, URLs in the references section may optionally appear in black.

REFERENCES

- Stephen A Cook. 1971. The complexity of theorem-proving procedures. (1971), 151–158. DOI: http://dx.doi.org/10.1145/800157.805047
- Vilhelm Dahllöf, Peter Jonsson, and Magnus Wahlström. 2002. Lecture Notes in Computer Science. (2002), 535–543. DOI:
 - http://dx.doi.org/10.1007/3-540-45655-4_57
- 3. Vilhelm Dahllöf, Peter Jonsson, and Magnus Wahlström. 2005. Counting models for 2SAT and 3SAT formulae. *Theoretical Computer Science* 332, 1-3 (2005), 265–291. DOI:http://dx.doi.org/10.1016/j.tcs.2004.10.037
- 4. L G Valiant. 1979. The complexity of computing the permanent. *Theoretical Computer Science* 8, 2 (1979), 189–201. DOI:

http://dx.doi.org/10.1016/0304-3975(79)90044-6