Salt

1. Create a public key (e, n)

n = p*q, where p and q are two prime numbers e must be relatively prime to (p-1)*(q-1); gcd(e, (p-1)*(q-1)) = 1 \sim just pick an e that works

```
p=43, q=59

n=p*q=2537

e=gcd(e, (p-1)*(q-1))=gcd(e, 42*58)=1

e=13

private key (e, n)=13, 2537
```

2. Create a private key (d, n)

d is the inverse of e mod (p-1)*(q-1)~use the extended Euclidean algorithm to solve for d

```
What is the inverse of 13 mod 42*58?

42*58 = 2436
Using the extended Euclidean algorithm we find that d = 937.

private key (937, 2537)
```

3. Receives the message and decodes

 $M = C^d \mod n$, where C is the encoded message and d and n are from the private key

 \sim use fast modular exponentiation to solve for M

```
2081^{937} \mod 2537 = 1819
2182^{937} \mod 2537 = 1415
M = 18, 19, 14, 15 = STOP
```

Pepper

1. Receives a public key (e, n)

private key
$$(e, n) = 13,2537$$

2. Encodes a message

 $C = M^e \mod n$, where M is the message, and e and n are from the public key \sim use fast modular exponentiation (FME) to solve for C

$$s=18, t=19, o=14, p=15$$

Because $2525 < 2537 < 252525$ we must group the these numbers into blocks of four digits, leaving us with 1819 and 1415 $1819^{13} \mod 2537 = 2081$ $1415^{13} \mod 2537 = 2182$ $C = [2081, 2182]$

Alphabet conversion table