Álgebra Linear: Gabarito de Vetores

Prof: Felipe Figueiredo

http://sites.google.com/site/proffelipefigueiredo

- 1. (a) 1
 - (b) 2
 - (c) $\sqrt{5}$
 - (d) $\sqrt{13}$
 - (e) 2
 - (f) 1
 - (g) 0 (Obs: vetor nulo = comprimento 0)
 - (h) $\sqrt{2}$
 - (i) $\frac{\sqrt{21}}{2}$
- 2. (a) 1
 - (b) 0 (Obs: vetores ortogonais)
 - (c) 8
 - (d) 8 (Obs: o produto escalar é comutativo, i.e., $u \cdot v = v \cdot u$
 - (e) 4 (Obs: norma ao quadrado)
 - (f) $2\sqrt{6} + 1$
 - (g) 0 (Obs: o produto pelo vetor nulo sempre dá 0)
 - (h) -2
 - (i) $\sqrt{3} \sqrt{2}$
- 3. (a) $P_{OX}^u = (1,0)$
 - (b) $P_{OY}^u = (0,3)$
 - (c) $P_v^u = (1,1)$
 - (d) $P_u^v = (0,0)$ (Obs: vetores ortogonais)
 - (e) $P_v^u = (2,5)$ (Obs: vetores colineares)
 - (f) $P_u^v = (\frac{2\sqrt{2}+3\sqrt{3}}{5}) \cdot v = (\frac{4\sqrt{2}+6\sqrt{3}}{5}, \frac{-6\sqrt{2}-9\sqrt{3}}{5})$
 - (g) $P_v^u = (0, \frac{4}{5}, -\frac{8}{5})$
 - (h) $P_u^v = (-\frac{2}{3}, -\frac{4}{3}, \frac{2}{3})$