5 Hauptsätze der Funktionalanalysis

- 62. Explizite Fortsetzung eines Funktionals.
 - (i) Auf dem Teilraum

$$W := \{(x, y, z) \mid x + 2y = 0, z = 0\}$$

des Banachraums (\mathbb{R}^3 , $\| \ \|_1$) sei das stetige lineare Funktional f durch f((x,y,z)) := x definiert. Gib mindestens zwei verschiedene Erweiterungen von f auf \mathbb{R}^3 mit gleicher Norm wie f an.

- (ii) Wie sieht die Situation von (i) aus, wenn $\| \|_1$ durch $\| \|_2$ ersetzt und damit \mathbb{R}^3 zum Hilbertraum gemacht wird?
- 63. Dualbasis.

Zeige: Sind x_1, \ldots, x_n linear unabhängig in einem normierten Raum E, so existieren $f_1, \ldots, f_n \in E'$ mit $f_i(x_j) = \delta_{ij}$.

- 64. Existenz von Projektionen auf endlichdimensionale Unterräume.
 - (i) Sei E ein normierter Raum und M ein endlichdimensionaler Teilraum von E. Zeige, dass dann ein stetiger linearer Projektionsoperator P_M von E auf $M \subseteq E$) existiert (das heißt $M = \operatorname{im} P_M$, $P_M^2 = P_M$). (Tipp: Aufgabe 63!)
 - (ii) Wie erhält man ein derartiges P_M im Spezialfall eines Hilbertraumes E am einfachsten?
- 65. L^p für 0 .

Sei $L^p[0,1]$ (0 < p < 1) der metrische Vektorraum

$$\{f:[0,1] o \mathbb{K}: \ f \text{ L-meßbar}, \ \int\limits_0^1 |f(t)|^p \, dt < \infty \}$$

mit $d(f,g) := \int_0^1 |f(t) - g(t)|^p dt$ (strenggenommen besteht L^p aus den bekannten Äquivalenzklassen).

Zeige: $(L^p)' = \{0\}$, das heißt, außer dem Nullfunktional gibt es auf L^p $(0 keine stetigen linearen Funktionale. Nach dem Satz von Hahn-Banach ist <math>L^p$ damit nicht normierbar.

(*Hintergrundinformation:* Schuld an $(L^p)' = \{0\}$ ist, dass L^p nicht einmal eine Nullumgebungsbasis aus konvexen Mengen besitzt, also kein sogenannter *lokalkonvexer* Vektorraum ist. Für solche gilt nämlich ebenfalls der Satz von Hahn-Banach, der die Existenz "vieler" stetiger linearer Funktionale garantiert.)

Anleitung: Zum Beweis betrachte ein lineares Funktional $\varphi \neq 0$ auf L^p ; für $f \in L^p$ mit $\int |f|^p = 1$, $\varphi(f) = \alpha > 0$ sei $F(t) := \int\limits_0^t |f(s)|^p \, ds$. Nach dem Satz über die dominierte Konvergenz ist F stetig und nimmt daher jeden Wert zwischen F(0) und F(1) an — speziell alle Werte $\frac{k}{n}$, etwa an den Stellen s_k $(k=0,\ldots,n)$. Nun sei $g_r := f \cdot c_{[s_{r-1},s_r]}$. Dann ist $\int |g_r|^p = \frac{1}{n}$; für mindestens ein F(n) muß gelten: $|\varphi(g_r)| \geq \frac{\alpha}{n}$. Wenn du nun die Funktionenfolge $f_n := n \cdot g_{r(n)}$ betrachtest, ergibt sich die Unstetigkeit von φ .

66. Punktweise Limiten von Operatorfolgen—Ein Variante.

Zeige folgende Variante zu Kor. 5.43 aus der Vorlesung: Seien E, F Banachräume, $T_n \in L(E,F)$ $(n \in \mathbb{N})$. Existiert $\lim_n T_n x$ für alle x aus einer dichten Teilmenge A von E und ist $\sup_n T_n x$ für alle x aus E beschränkt, dann existiert $\lim_n T_n x$ für alle $x \in E$ und der Grenzoperator ist in L(E,F).

67. Projektionen in Banachräumen.

Als Anwendung des Satzes von der offenen Abbildung (es reicht Kor. 5.52) beweise Satz 3.7. Genauer zeige im Banachraum E: Ist U abgeschlossener Teilraum von E und es existiert ein abgeschlossener Teilraum V, der zu U im algebraischen Sinne komplementär ist (d.h. $E \simeq U \oplus V$ algebraisch), dann gilt

- (i) $E \simeq U \oplus V$ als Banachraum,
- (ii) Es existiert eine stetige Projektion von E auf U.

68. Ein abgeschlossener Operator. Führe die Details von Bsp. 5.59(i) genauer aus: Sei $T:(\mathbf{C}^1[0,1],\|\ \|_{\infty}) \to (\mathbf{C}[0,1],\|\ \|_{\infty})$ definiert durch Tf:=f'. Zeige: T ist nicht stetig aber abgeschlossen.