## ML 2019 Hw4 Report

學號:b05705042 系級:資管四 姓名:皇甫立翔

- 1. 請使用不同的 autoencoder model,以及不同的降維方式(降到不同維度),討論其 reconstruction loss & public / private accuracy。
- (1) Autoencoder (CNN :  $3 \rightarrow 8 \rightarrow 16 \rightarrow 32$ , Linear :  $512 \rightarrow 256 \rightarrow 128$ ) + tSNE(2維)

reconstruction loss:

public accuracy: 0.82703 private accuracy: 0.82126

(2) Autoencoder (CNN:  $3 \rightarrow 8 \rightarrow 16 \rightarrow 32 \rightarrow 64$ , Linear:  $512 \rightarrow 128$ ) + tSNE(2維)

reconstruction loss: 0.09422 public accuracy: 0.78238 private accuracy: 0.79333

(3) Autoencoder (CNN:  $3 \rightarrow 8 \rightarrow 16 \rightarrow 32$ , Linear:  $512 \rightarrow 256 \rightarrow 128$ ) + PCA(32維)

reconstruction loss: 0.12726 public accuracy: 0.51222 private accuracy: 0.52174

(4) Autoencoder (CNN:  $3 \rightarrow 8 \rightarrow 16 \rightarrow 32 \rightarrow 64$ , Linear:  $512 \rightarrow 128$ ) + PCA(32維)

reconstruction loss: 0.09422 public accuracy: 0.52814 private accuracy: 0.51968

從結果來看,tSNE 表現跟 PCA 差了不只一個次元,然後 reconstruction loss 越小不一定越好。

2. 從 dataset 選出2張圖,並貼上原圖以及經過 autoencoder 後 reconstruct 的圖片。

圖片一(原圖)



圖片一(reconstruct)



圖片二(原圖)



圖片二(reconstruct)



## 3. 請在二維平面上視覺化 label 的分佈。



(4. math problem 在下面。)

## 4. Refer to math problem •

1. (av(X) = 
$$\frac{1}{10}\sum_{i=1}^{10}(X_i - M_i X_i - M_i)^T$$
.  $M = [5:4]$  8 4:8]

$$= [12:0] \cdot 0.5 \cdot 3.18 \cdot 0.5 \cdot 0.51 \cdot 0.52 \cdot 0.52 \cdot 0.52 \cdot 0.53 \cdot 0.65 \cdot 0.6$$

(1) Symmetric =

1 for AAT: (AAT)T: (AT)TAT = AAT, by definition of symmetry, AATIS symmetric

 $\emptyset$  for  $A^TA : (A^TA)^T : A^T(A^T)^T = A^TA$ , by definition of symmetry,  $A^TA$  is symmetric

(>) positive semi-definite:
云嬴所有非蹇賞係數同意, ∈ ₽<sup>m</sup> or R<sup>n</sup>

 $\Phi$  for  $AA^T$ :  $Z^TAA^TZ = \frac{(A^TZ)^TA^TZ}{Square} = \frac{(A^TZ)^TA}{Square} =$ 

O for ATA = 2TATAZ = (AB)TAZ = || AZ|| >0

Square of inner product of AIZ, thus must >0.

⇒ AfAT and ATA are both positive semi-definite matrix.

(3) Share same non-zero eigenvalue=

 $\Phi$  for  $AA^T : AA^T x = Ax$ , if  $A \neq 0$ ,  $A^T A(A^T x) = A(A^T x)$ .  $A = A^T A = ||A||^2$ 

@ for ATA = ATAX = AX, if Ato, AATAX) = A(AX), A = AAT = ||A||2

=> AAT and ATA share the same non-zero eigenvalue.

(b) Let  $x=(x_1,x_2...x_n) \in \mathbb{R}^m$  By definition, covariance matrix of  $x=E[(x-u)(x-u)^T]$ . If  $y=u=E[x]=\prod_{i=1}^n x_i$ 

> (ov(n)= E[(x-u)(x-u)] = | ! ! (xi-u) xi-u)

⇒ let M= (X-U)(X-U)<sup>T</sup> and M is thus a symmetric positive semi-definite matrix.
for all 非運賃係数何量 V、 VMV >0、

> VTHV 70

⇒ EL VTHV] 30

ラ VTECH] V >0 , 其中 モCH] = E[(モル)(スール)\*] = 片岩 (いール)(スール)\* = と

> VTEV 70

⇒ 由此可能, Z is a symmetric positive semi-definite matrix 得證.

Let  $X = (X_1, X_2, ..., X_N)$   $S:t : Z = \frac{1}{N} X X^T = U A U^T$ , then Trace  $(\phi^T Z \phi) = \frac{1}{N} Trace (\phi^T X X^T \phi)$   $= \frac{1}{N} \| \phi^T X \|_F^2$   $= \frac{1}{N} \| \phi^T X \|_F^2$   $= \frac{1}{N} \| \phi^T X \|_F^2$  $= \frac{1}{N} \| \phi^T X \|_F^2$ 

 $\Rightarrow 0 \leq \frac{1}{N} \sum_{i=1}^{N} \|\hat{\chi}_{i}^{(S)}\|^{2} \leq \frac{1}{N} \sum_{i=1}^{N} \|\hat{\chi}_{i}^{(Ra)}\|^{2}$ 

3. objective: find  $g_{TH}^{k}(x) \cdot \forall k \in lvk$ .

Hamilite Loss ( $g_{T}^{k}, g_{T}^{2}, \dots g_{T}^{k}$ )

( $g_{TH}^{k}(x) = g_{T}^{k}(x) - n \frac{\partial L(g)}{\partial g_{T}^{k}(x)}$  same direction  $g_{TH}^{k}(x) = g_{T}^{k}(x) + d_{TH}^{k} f_{TH}(x) \perp$   $g_{TH}^{k}(x) = g_{T}^{k}(x) + g_{TH}^{k} f_{TH}(x) \perp$   $g_{TH}^{k}(x) = g_{T}^{k}(x) + g_{TH}^{k$