# Introduction to Operating Systems

Andre M. Maier, DHBW Ravensburg

dhbw@andre-maier.com

#### Lecture Information

- Lecture notes
  - All material is provided in the related Moodle course room
- Recommended literature
  - Andrew S. Tanenbaum: "Modern Operating Systems", 4th ed, Pearson 2014
- Lab Requirements
  - PC or Laptop
- Final exam
  - Written exam, mostly multiple choice, 90 mins, non-programmable calculator allowed
- Contact
  - dhbw@andre-maier.com



#### Remote Lectures

- Mute your microphone when you're not speaking to avoid unnecessary background noise.
- Do not multitask.
- Recording of the lecture and any other class activity are strictly prohibited. This includes both video and audio, as well as screenshots.
- Use the chat in the related Moodle course room.
- Regular breaks will be taken during each lecture.

#### Survey

- Go to the related Moodle course room.
- Take the quick survey.



#### What is an Operating System?

- "An Operating System is a set of programs that enables multiple users to concurrently use a computer system in an efficient and convenient way."
- Definition has changed over time in history
- ISO/IEC 2382:2015 (previously DIN 44300)
- Operating Systems provide two main functions: abstraction and resource management



### History of Operating Systems (1)

#### ENIAC

- Electronic Numerical Integrator And Computer
- Designed in 1945 by Eckert and Mauchly (University of Pennsylvania)
- calculated a trajectory in 30 seconds that took a human 20 hours
- 20,000 vacuum tubes7,200 crystal diodes1,500 relays
- Weighed 30 tons
- Consumed 150 kilowatts of power



ENIAC, photograph by the U.S. government, public domain

## History of Operating Systems (2)

- 1940 1955 (1st generation)
  - "The dawn of machine computing"
  - Programmers used plug boards or manually loaded their programs via card decks.
  - Programs were "written" in machine language
  - One single user, purely consecutive activities in the workflow
  - Irrelevant response time
  - "I think there is a world market for maybe five computers" (Thomas Watson, chairman of IBM, 1943)



## History of Operating Systems (3)



By Pete Birkinshaw from Manchester, UK (Used Punchcard) [CC BY 2.0 (https://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons



Stadtarchiv Kiel [CC BY-SA 3.0 de (https://creativecommons.org/licenses/by-sa/3.0/de/deed.en)], via Wikimedia Commons

## History of Operating Systems (4)

- 1955 1965 (2<sup>nd</sup> generation)
  - The era of mainframes
  - Programming languages
    - Assembler
    - FORTRAN
  - Computers are expensive
  - Need for efficient use of the hardware
  - Solution: batch systems



### History of Operating Systems (5)

Example of an early batch system





### History of Operating Systems (6)

- 1965-1980 (3<sup>rd</sup> generation)
  - IBM 360 product line, OS/360
    - First major computer line to use ICs
  - Improvement of I/O operations
    - Spooling (Simultaneous Peripheral Operation On Line)
  - Need for multiprogramming
    - Memory partitioning
  - Need for quicker response time
    - Timesharing (CTSS, MULTICS)
  - Growth of minicomputers
    - DEC PDP-1, PDP-7, PDP-11
  - UNIX



## History of Operating Systems (7)



By en:User:Toresbe [CC SA 1.0 (http://creativecommons.org/licenses/sa/1.0/)], via Wikimedia Commons



### History of Operating Systems (8)

- 1980-today (4<sup>th</sup> generation)
  - Development of Large Scale Integration circuits
  - Computers become smaller and cheaper
    - Personal Computers
    - CP/M in 1974
    - MS-DOS in 1981
  - Need for user-friendliness
    - Macintosh System 1 in 1984
    - Microsoft Windows in 1985
  - Increasing number of hardware manufacturers



## History of Operating Systems (9)



By Ruben de Rijcke - http://dendmedia.com/vintage/ [CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)], from Wikimedia Commons



Windows 3.0 Screenshot, public domain



### History of Operating Systems (10)

- 1990-today (5<sup>th</sup> generation)
  - Smaller and cheaper mobile phones
  - Nokia Communicator in mid-1990s
    - Phone + PDA
  - Integrated voice and data networks
  - Apple iPhone in 2007
  - Android in 2008

### History of Operating Systems (11)



By Oldmobil [CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons



## Placement of Modern Operating Systems



BIOS = Basic Input Output System
UEFI = Unified Extensible Firmware Interface
GUI = Graphical User Interface
CLI = Command Line Interface



#### General Characteristics of an OS

#### Purpose

Self-organization of computer systems.

#### Approach

- Abstraction from any specific hardware
  - Number of processors and cores
  - Size of main memory (RAM)
  - Connected devices (e.g. hard drives, keyboard, mouse)

#### Objective

- To utilize processing power and peripherals as efficiently as possible.
- To run programs as independently from any underlying hardware as possible.



# Components of an Operating System (1)

- Abstract processor architecture
- Process management
  - Concurrency
  - Threads
  - Scheduling
  - Interaction between processes
- Process synchronization
  - Non-blocking techniques
  - Semaphores
  - Monitors
  - Synchronization errors



# Components of an Operating System (2)

- Memory Management
  - Static memory allocation
  - Dynamic memory allocation
- Address spaces
  - Page swapping
  - Virtual addressing

# Components of an Operating System (3)

- Exception handling
  - Signals
- Input / Output
  - Abstract devices
- File management
- User management
  - Security mechanisms



#### Lab Exercise

- Download and install a hypervisor software, such as
  - Oracle VM VirtualBox (Windows + macOS)
  - VMware Workstation Player (Windows + macOS)
  - Linux QUEMU/KVM (Linux)
  - Parallels (macOS)
- Set up a virtual machine running a Ubuntu Linux
  - https://ubuntu.com/

