Today's Content

-> % operative

-> modular arithmetics

-> 1 Hard problem (Google).

Range int
$$x = -\frac{2 \times 10^9}{9 \times 10^{18}} = -\frac{9 \times 10^9}{10^{18}} = -\frac{9 \times 10^$$

Basics

$$0\% a = Remainder when n is divided by a greatest multiple of $4 <= (0)$
 $10\% 4 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$
 $10\% 6 = 2$$$

$$10^{\circ}/_{6}4 = 2$$
 $13^{\circ}/_{6}5 = 3$
 $13 - 10$
 $13 - 10$

greatest multiple of divisor L= dividend

-
$$40 - (greatest multiple of 7 (= -40)$$

- $35 <= -40 \times$
- $42 <= -40$

Conceptually, remainders can't be -ve

Why % operator? - Limits the input data to a given range 501
839 10 = [9, 7, 1, 6]Value range: [0 9] 10 = [0, 7, 1, 6] 10 = [0, 7, 1, 6] 10 = [0, 7, 1, 6] 10 = [0, 7, 1, 6]- 00 9] + 00

WHY USEFUL?

Ly Hashing & Coming DSA }

Consistent Hashing & LLD, HLD?

Modular arithmetics

Different arithmetic operators &+, -, *, 1, % }

Different an inmetiz operations
$$Z$$

(a°(.p + 6°/.p)°/op

(a (a+6)°/op = (a°(.p + 6°/.p)°/op

$$(8+6)^{6}/00$$

$$= 8+6$$

$$= (14)^{6}/00$$

$$= 4$$

(a%p+ b%p)%p

$$\frac{a}{8} = \frac{b}{6} = \frac{6}{10}$$
 $(8 \times 6)\% = 6$
 $= \frac{48\%}{8}$

On: (1) (a'bp) %
$$p = a'bp$$

$$(5) p = a'bp$$

$$(6) p = a'bp$$

$$(6) p = a'bp$$

$$(6) p = a'bp$$

$$(7) p = a'bp$$

$$(8) p = a'bp$$

$$(9) p$$

Divisibility Rules

1/3 3 -> Sum of digits should be divisible by 3

1/6 9 -> Sum of digits should be divisible by 9

1/6 4 -> Last 2 digits should be divisible by 4

1/6 8 -> HW/ToDo

Proof % 3:
$$(2475)\% 3$$

Ly $(2x10^3 + 4x10^2 + 7x10^1 + 5x10^1)\% 3$

(a + b + c + d) % 3

(b) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(c) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3 + (5x10^1)\% 3$

(d) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3 + (5x10^1)\% 3$

(e) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3 + (5x10^1)\% 3$

(f) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3 + (5x10^1)\% 3$

(g) $(2x10^3 + 4x10^2 + 7x10^1 + 5x10^1)\% 3$

(g) $(2x10^3 + 4x10^2 + 7x10^1 + 5x10^1)\% 3$

(g) $(2x10^3 + 4x10^2 + 7x10^1 + 5x10^1)\% 3$

(g) $(2x10^3 + 4x10^2 + 7x10^1 + 5x10^1)\% 3$

(g) $(2x10^3 + 4x10^2 + 7x10^1 + 5x10^1)\% 3$

(g) $(2x10^3 + 4x10^2 + 7x10^1 + 5x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^1)\% 3$

(g) $(2x10^3)\% 3 + (4x10^2)\% 3 + (7x10^2)\% 3$

(g) $(2x10^3)\% 3 + (2x10^3)\% 3 + (2x10^3)\% 3$

(g) $(2x10^3)\% 3 + (2x10^3)\% 3 + (2x10^3)\% 3$

(g) $(2x10^3)\% 3 + (2x10^$

Bn: Given
$$a, n, p$$
: Calc (a) lop who any in-built functions

Constraints: $1 < = a < = 10^{9}$
 $2 < = p < = 10^{9}$
 $1 < = n < = 10^{5}$

Eq: $a = 3$, $n = 4$, $p = 7$

Ly 3^{9} , $7 = 81^{9}$, $7 = 4$

A $\leq cn = a + 2$

Powered (int a_1 int a_2 int a_3 int a_4 i

 $a = a \times a = a^4 \times a^4 = a^8$

3

4

 $a = a \times a = a^8 \times a^8 = a^{16}$

Surface - Lome with

On: Given 1 number in a [] format Colc a [] % p

Ly Each a [:] represent a single digit

Constraints $1 < = N < = 10^{5}$ 0 < = ae < = 9 $2 < = p < = 10^{9}$

$$N=5$$
 $a[5]: [6]2|3|4|3$
 $p=49$
 $= (62343)7.49$
 $= 15$

$$N=4$$
 $a[4]=$
 $2|4|3|7$
 $p=16$
 $(2437)\%16$
 $=5$

ideas

(1) Convert
$$a[] \rightarrow \text{number} \ 2 \text{ teke % p}$$
 $N = 2$
 $999 = 10^{2} - 1$
 $N = 3$
 $999 = 10^{4} - 1$
 $N = 4$
 $N = 4$
 $N = 6$
 $N = 6$

Not possible to store in int (large)

2 Divisibility rules X

Ly add all furple boxes

long armod (int al], int N, intp) } long int som = 0 long int t=1 for(i=n-1; ()=0; i--) { sum= (sum + ali]* t)%p t = (t × 10) % ρ

Σο ρ-13 × 10 ≈ 10 ρ b = 10×103 return sum : Use long $Sum = \left(Sum + a \frac{1}{3} * t\right) % p$ $\int_{0}^{\infty} p - \int_{0}^{\infty} g \left(Sum + a \frac{1}{3} * t\right) % p$ 22 p + 3p = 10f = 100 - 3 over thow

Doubt: long an = 0long pow = 1for $(i = 0; i \le n; i \ne 1)$ $an = a = (i) \ne pow)$ pow = (pow x = 0)% p an = (pow x = 0)% p

Python V/S C++13ava/c#

Rem = Dividend - Buotient x Divisor

(a/b): integer division

 $100^{0}(67 =) 100 - 7* (100/7)$ 100 - 7* 14 = 2 $-90^{0} - 5$ $-40^{0} - 7* (-40/7)$ = -40 - (-35) = [-5]

 $\frac{0}{0} \text{ in python?} = \frac{0}{0} \text{ in python.} = \frac{0}{0} \text{ in pyth$

 $= -40 - 7 \times (-6)$ = -40 + 42 = 2 = 2 = 2

Repeat + Missing

[I... N] (R)

Sum N terms! N(N+i) - M+R N(N+i) - M+R