Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 192.1 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E 658.60 658.59 658.58 Bølgelengde (nm) 658.57 658.56 658.55 658.54 658.53 10 50 60 70 0 20 30 40 80 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 5.50, tilsynelatende blå størrelseklass $m_B = 7.41$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 5.50, tilsynelatende blå størrelseklass $m_B = 8.41$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=12.14,$ tilsynelatende

blå størrelseklass m_B = 14.05

Stjerna D: Tilsynelatende visuell størrelseklasse m_V = 12.14, tilsynelatende blå størrelseklass $m_B = 15.05$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.95 og store halvakse a=27.22 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.95 og store halvakse a=5.74 AU.

Filen 1F.txt

Ved bølgelengden 624.08 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 4.60 4.50 Tilsynelatende størrelsklasse m_V 4.40 4.30 4.20 4.10 4.00 15 20 25 Ó 5 10 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 16.40 solmasser, temperatur på 50.10 Kelvin og tetthet 8.66e-21 kg per kubikkmeter

Gass-sky B har masse på 13.40 solmasser, temperatur på 52.20 Kelvin og tetthet 3.75e-21 kg per kubikkmeter

Gass-sky C har masse på 8.40 solmasser, temperatur på 79.50 Kelvin og

tetthet 1.29e-21 kg per kubikkmeter

Gass-sky D har masse på 14.50 solmasser, temperatur på 17.40 Kelvin og tetthet 1.02e-20 kg per kubikkmeter

Gass-sky E har masse på 8.80 solmasser, temperatur på 87.20 Kelvin og tetthet 8.32e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjerna har et degenerert heliumskall

STJERNE B) stjernas energi kommer hovedsaklig fra heliumfusjon i sentrum

STJERNE C) kjernen består av karbon og oksygen og er degenerert

STJERNE D) hele stjerna er elektrondegenerert

STJERNE E) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

Filen 1L.txt

Stjerne A har spektralklasse K2 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 10.00

Stjerne B har spektralklasse G6 og visuell tilsynelatende størrelseklasse m_V = 9.79

Stjerne C har spektralklasse K7 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 2.17

Stjerne D har spektralklasse G3 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}$ = 4.20

Stjerne E har spektralklasse M1 og visuell tilsynelatende størrelseklasse m_V = 4.91

Filen 1P.txt

Halvparten av partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\rm m/s$ mot deg eller fra deg (like mange i hver retning) og den andre halvparten har ingen bevegelse langs synsretningen

$Filen~2A/Oppgave 2A_Figur 1.png$

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

Figur 2

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen $2B/Oppgave2B_Figur$ 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 i ż ġ ż 5 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.865999999999999200639 AU.

Tangensiell hastighet er 36974.432628592323453631 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=3.668 AU.

Kometens avstand fra jorda i punkt 2 er r2=6.780 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=18.271.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9328 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00040 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=120.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9927 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 486.60 nm.

Filen 4A.txt

Stjernas masse er 6.24 solmasser.

Stjernas radius er 0.85 solradier.

Filen 4C.png

Figur 4C 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -400 -200 200 -600 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 26.78 millioner K

Filen 4G.txt

Massen til det sorte hullet er 4.50 solmasser.

r-koordinaten til det innerste romskipet er
r $=13.65~\mathrm{km}.$

r-koordinaten til det innerste romskipet er r $=23.84~\mathrm{km}.$