MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE SECRETARIAT GENERAL

DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR

SESSION 2014

DIRECTION DE L'ENSEIGNEMENT SUPERIEUR PUBLIC et PRIVE

Service d'Appui au Baccalauréat

Options : C

Code matière: 009

Epreuve de : **MATHEMATIQUES**

BACCALAUREAT DE L'ENSEIGNEMENT GENERAL

Durée 4 heures

Coefficient:

NB: L'utilisation d'une calculatrice scientifique non programmable est autorisée. L'exercice et les deux problèmes sont obligatoires.

EXERCICE (4 points) Partie A

Dans un concours de tir, la cible circulaire se divise en trois zones: A, B et C.

Chaque tir atteint nécessairement l'une des trois zones A, B, et C.

P_A P_B et P_C sont respectivement les probabilités d'atteindre les zones A, B et C.

Sachant que $P_C = \frac{1}{6}$ et P_A , P_B et P_C forment, dans cet ordre, une progression arithmétique.

1°) Calculer PA et PB. (0,5pt)

2°) On effectue quatre tirs d'une manière indépendante. Calculer la probabilité d'atteindre au moins une fois la zone C.

(0,5pt)

3°) Un joueur tire jusqu'à ce que la zone C soit atteinte. Calculer la probabilité de l'évènement E:« Le jeu s'arrête au 3^{ème} tir ». (0,5pt)

4°) Soit n∈ N*, et P_n la probabilité pour que le jeu s'arrête au n^{ième} tir.

Ecrire P_n en fonction de n. Calculer $\lim_{n\to +\infty} P_n$. (0,5pt)

Partie B

- 1- Soit x et y deux entiers naturels. Démontrer que : $(x + 6y)^2 - x^2$ est divisible par 12 et que $(x + 6y)^4 - x^4$ est divisible par 24.(1pt)
- 2- Résoudre dans $\mathbb{Z}: 3x \equiv 2 \pmod{7}$. (0,5pt)
- 3- Déterminer la base b du système de numération dans lequel : $(\overline{12})_{L} \times (\overline{22})_{L} = (\overline{314})_{L}$. (0,5pt)

1 ...

PROBLEME1 (7 points)

Les parties I et II sont indépendantes.

On considère un triangle quelconque AOB.

AOE est un triangle direct isocèle et rectangle en E

BAC est un triangle direct isocèle et rectangle en C

OBD est un triangle direct isocèle et rectangle en D

On se propose de démontrer que les droites (OC) et (ED) sont perpendiculaires et que OC = ED.

PARTIE I : Méthode 1 : Utilisation des transformations.

- S₁ la similitude plane directe de centre A qui transforme C en B.
- S₂ la similitude plane directe de centre O qui transforme B en D.
- $f = S_2 \circ S_1$.

On note:

1-a) Déterminer le rapport et l'angle de chacun des transformations S ₁ et S ₂ .	(1pt)
b) Prouver que f est une rotation dont on précisera l'angle.	(0,5pt)
2- Déterminer l'image de I par S ₁ et celle de E par S ₂ .	(0,5pt)
En déduire que I est invariant par f.	(0,25pt)
3-On appelle R la rotation de centre I et d'angle $\theta = \frac{\pi}{2}$.	

a) Déterminer R(O) et R(C)

(0,75pt)

b) En déduire que (OC) et (ED) sont perpendiculaires et que OC = ED.

(0,75pt)

PARTIE II: Méthode 2: Utilisation des nombres complexes.

Le plan complexe est rapporté à un repère orthonormé direct $(O; \vec{u}; \vec{v})$ avec $\vec{u} = \overrightarrow{OI}$. On note b l'affixe de B.

1) Calculer en fonction de b l'affixe de	C et l'affixe de D.	ที่กละการแบ้ ก็ 2:	(1pt)
2) Calculer l'affixe Z _E de E.	•		(0.5nt)

3-a) Démontrer que
$$\frac{Z_D - Z_E}{Z_C - Z_O} = i$$
. (1pt)

PROBLEME2 (9 points)

On considère la fonction numérique f définie sur \mathbb{R} par:

$$f(x) = \begin{cases} (1-x)e^x & si \ x < 1 \\ x-1+\ln\frac{2x}{x+1} & si \ x \ge 1 \end{cases}$$

On désigne par (C) sa courbe représentative dans un plan muni d'un repère orthonormé (O; \vec{i} ; \vec{j}) d'unité 1cm.

Partie I

1-Prouver que
$$f$$
 est continue en $x_0=1$. (0,5pt)

2- a) Vérifier que pour tout x>1:
$$\frac{f(x) - f(1)}{x - 1} = 1 + \frac{\ln x}{x - 1} - \frac{\ln(x + 1) - \ln 2}{x - 1}$$
 (0,25pt)

Démontrer que f est dérivable à droite en 1 et que
$$f'_d(1) = \frac{3}{2}$$
. (0,25pt)

3- Calculer
$$\lim_{x \to -\infty} f(x)$$
 et $\lim_{x \to +\infty} f(x)$. (0,5pt)

4- a) Etudier le sens de variation de
$$f$$
 sur son domaine de définition. (1pt)

5- On pose $\varphi(x) = f(x) - x + 1 - \ln 2$.

Calculer
$$\lim_{x \to +\infty} \varphi(x)$$
. Que signifie ce résultat pour la courbe (C)? (0,75pt)

6- Tracer les demi-tangentes au point d'abscisse
$$x_0 = 1$$
, l'asymptote et la courbe (C) (1pt)

Partie II

1-On considère l'équation différentielle (E): $y' - y = (-2x + 1) e^x$

Soit g une solution de (E), démontrer que toute fonction φ définie par $\varphi(x) = e^{-x} g(x)$

vérifie $\varphi'(x) = -2x + 1$. En déduire la solution de (E) qui prend la valeur 1 en x=0. (1,25pts)

2- Résoudre dans [0;
$$2\pi$$
] l'équation $\sqrt{3} \cos x + \sin x - \sqrt{2} = 0$ (0,5pt)

3- Soit la suite numérique $(I_n)_{n\in\mathbb{N}^*}$ définie par:

$$I_n = \frac{1}{n!} \int_0^1 (1 - x)^n e^x dx$$

a) Calculer
$$I_1$$
. Interpréter géométriquement ce résultat. (0,5pt)

b) Trouver une relation de récurrence entre I_{n+1} et I_n .

En déduire que pour tout
$$n \in \mathbb{N}^*$$
: $I_n = e - 1 - \sum_{k=1}^n \frac{1}{k!}$. (1pt)

c) Démontrer que pour tout
$$n \in \mathbb{N}^*$$
: $\frac{1}{(n+1)!} \le I_n \le \frac{e}{(n+1)!}$. (0,5pt)

En déduire
$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k!} \right)$$
. (0,25pt)

On donne:
$$e^{-3} \simeq 0.05$$
 ; $e^{-2} \simeq 0.14$; $e^{-1} \simeq 0.37$; $\ln 2 \simeq 0.7$ et $\ln 3 \simeq 1.1$
