Prenošenje stila glazbe korištenjem difuzijskih modela

PROJEKT IZ KOLEGIJA DUBOKO UČENJE 2

FILIP PANKRETIĆ, FILIP PERKOVIĆ, FRAN VUČKOVIĆ, LUKA GLAVINIĆ, VELIMIR KOVAČIĆ, DOMINIK JAMBROVIĆ

FER 2024./2025.

Sadržaj

- 1. Uvod
- 2. Skup podataka Pixabay
- 3. Arhitektura, učenje i prijenos stila
- 4. Mjere dobrote
- 5. Eksperimentalni rezultati
- 6. Usporedba s prijašnjim radovima
- 7. Zaključak

Opis problema i motivacija

- Ulaz:
 - Zvučni zapis(i) stila
 - Zvučni zapis sadržaja
- Izlaz:
 - Stilizirani zvučni zapis
- Mogućnost automatiziranog generiranja stiliziranih pjesama bez potrebe za detaljnim tekstualnim opisima stila

Postojeća rješenja

- Riffusion, MUSICGEN, SS VQ-VAE, ...
- Većina dosadašnjih rješenja može izvrsno provesti prijenos stila, ali samo za stilove koje je model vidio tijekom učenja
- Dodatno, često neuspješan prijenos stilova zvukova prirode ili umjetno generiranih zvuka
- Modeli često kao ulaz očekuju detaljan tekstualni opis stila

Skup podataka Pixabay

253 zvučna zapisa .wav formata (pretvorba u mel-spektrogram)

- Podjela:
 - Sadržaj:
 - 179 zapisa
 - 13 kategorija
 - Stil
 - ∘ 74 zapisa
 - 18 kategorija

Arhitektura

- Okosnica Riffusion
- Koder teksta iz CLIP-a
- Modul TVE

Arhitektura, modul TVE

- Cilj: asocirati vremenski korak t i ugrađivanje znaka "*" sa stilom tijekom učenja
- Uče se isključivo parametri ovog modula

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{z,y,\epsilon_t,t} \left[\|\epsilon_t - \epsilon_{\phi}(z_t, t, e_{\theta}(y, t))\|_2^2 \right]$$

Nakon učenja, modul vodi proces prijenosa stila

Prijenos stila

Hiperparametri: broj koraka prijenosa, scale, strength

$$\hat{\epsilon}_t = \hat{\epsilon}_{t,uncod} + scale \cdot (\hat{\epsilon}_{t,text} - \hat{\epsilon}_{t,uncod})$$

Mjere dobrote

Mjera CLAP

$$CLAPscore(x, y) = ReLU\left(\frac{E(x) \cdot E(y)}{||E(x)|| \cdot ||E(y)||}\right)$$

Očuvanje sadržaja

$$CP(x_0, \hat{x}_0) = CLAPscore(x_0, \hat{x}_0)$$

Podudaranje stila

$$SF(\hat{x}_0, Y) = ReLU\left(\frac{E(\hat{x}_0) \cdot \frac{1}{N} \sum_{i=1}^{N} E(y_i)}{||E(\hat{x}_0)|| \cdot ||\frac{1}{N} \sum_{i=1}^{N} E(y_i)||}\right)$$

Eksperimenti

Eksperimentalne postavke

• 1 stil = 1 model, 3 odabrana stila: bird, accordion, chime

Optimizator Adam:

∘ Početni LR: 0.0001

β1: 0.9, β2: 0.999

3000 epoha, mini-grupe veličine 1

Eksperimentalni rezultati

Stil	Scale	Strength	CP	SF
Accordion	4.5	0.6	0.40	0.49
Bird	3.5	0.45	0.35	0.40
Chime	3.5	0.45	0.49	0.41
Prosjek	-	_	0.41	0.43

Eksperimentalni rezultati

Najbolji prijenos stila (0.79), twinkle2.png Sadržaj

Stilizirani sadržaj

Eksperimentalni rezultati - demonstracija

Originalni zvučni zapisi

Stilizirani zvučni zapisi

Accordion

Bird

Heartbeat

Usporedba s prijašnjim radovima

Model	CP	SF
R+TI [11] [13]	0.35	0.27
SS VQ-VAE [14]	0.24	0.28
MUSICGEN [15]	0.28	0.24
Originalni model [3]	0.46	0.28
Naš model	0.41	0.43

Zaključak

- Pristup temeljen na korištenju latentnog difuzijskog modela uz koder teksta iz CLIP-a i modul TVE predstavlja obećavajuć smjer rada u području prijenosa stila glazbe
- Model ne očekuje tekstualni opis stila, već je dovoljno prikupiti nekoliko kratkih zvučnih zapisa
- Učenje modela moguće provoditi u razumnom vremenu na osobnom računalu

Hvala na pozornosti!