Программный комплекс по обучению моделированию систем

Табала Татьяна Сергеевна, 522-я группа

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д. ф.-м. н., профессор Ю. А. Сушков Рецензент: младший научный сотрудник Г. С. Тамазян

Санкт-Петербург 2014г.

Цель.

Создание обучающей программы для студентов, которая помогала бы решать задачи, представленные в курсе «Моделирования систем».

Задачи.

Исходя из заданной цели, в работе решаются следующие задачи:

1) создание классификации схем систем, рассматриваемых в рамках данной работы;

Цель.

Создание обучающей программы для студентов, которая помогала бы решать задачи, представленные в курсе «Моделирования систем».

Задачи.

Исходя из заданной цели, в работе решаются следующие задачи:

- 1) создание классификации схем систем, рассматриваемых в рамках данной работы;
- описание каждой из полученных схем с помощью составления матриц переходов;

Цель.

Создание обучающей программы для студентов, которая помогала бы решать задачи, представленные в курсе «Моделирования систем».

Задачи.

Исходя из заданной цели, в работе решаются следующие задачи:

- создание классификации схем систем, рассматриваемых в рамках данной работы;
- описание каждой из полученных схем с помощью составления матриц переходов;
- 3) составление аналитических моделей полученных схем для дальнейшего использования их в программе;

Цель.

Создание обучающей программы для студентов, которая помогала бы решать задачи, представленные в курсе «Моделирования систем».

Задачи.

Исходя из заданной цели, в работе решаются следующие задачи:

- создание классификации схем систем, рассматриваемых в рамках данной работы;
- описание каждой из полученных схем с помощью составления матриц переходов;
- 3) составление аналитических моделей полученных схем для дальнейшего использования их в программе;
- 4) разработка программы, позволяющей студенту решать соответствующие задачи.

Предмет исследования

Пусть A и B — два аппарата, на которых могут выполняться операции Ω_1 или Ω_2 со средним временем τ_1 или τ_2 . Рассмотрим различные дисциплины обслуживания заявок, поступающих в систему с плотностью (интенсивностью) λ — число заявок, поступающих в систему в единицу времени.

Кроме операции Ω_1 или Ω_2 рассмотрим также операцию Ω_{12} , которая означает выполнение первой и второй операции вместе, т.е $\Omega_{12}=\Omega_1+\Omega_2$. Среднее время такой операции τ_{12} , причем $\tau_{12}\neq \tau_1+\tau_2$.

Системы рассматриваются без очереди. Время ожидания заявок для выполнения той или иной операции предположим неограниченным, т.е $\theta=\infty$.

Предмет исследования

Пусть A и B — два аппарата, на которых могут выполняться операции Ω_1 или Ω_2 со средним временем τ_1 или τ_2 . Рассмотрим различные дисциплины обслуживания заявок, поступающих в систему с плотностью (интенсивностью) λ — число заявок, поступающих в систему в единицу времени.

Кроме операции Ω_1 или Ω_2 рассмотрим также операцию Ω_{12} , которая означает выполнение первой и второй операции вместе, т.е $\Omega_{12}=\Omega_1+\Omega_2$. Среднее время такой операции τ_{12} , причем $\tau_{12}\neq \tau_1+\tau_2$.

Системы рассматриваются без очереди. Время ожидания заявок для выполнения той или иной операции предположим неограниченным, т.е $\theta=\infty$.

Ограничения по работе системы

Введем следующие ограничения на работу систем:

- ightarrow В первую очередь должен работать аппарат A, а затем B.
- \to Обе операции Ω_1 и Ω_2 обязательно должны быть выполнены. Причем, сначала Ω_1 , затем Ω_2 , $(\Omega_1 \succ \Omega_2)$.
- ightarrow Операцию (Ω_i) будем называть дополнительной для аппарата X.
- ightarrow Если операция Ω_i на X не является дополнительной, то она выполняется в первую очередь.
- ightarrow Одновременно два события произойти не могут.
- ightarrow Переход заявки с одного аппарата на другой и освобождение аппарата, считаем за одно событие.

Классификация систем

Рассмотрим основные признаки (ограничения), согласно которым была составлена классификация систем:

A) аппараты взаимодействуют между собой.

между собой.

между собой. A B аппараты не взаимодействуют

Для случая А введем более детальные различия:

- I) заявка, поступая в систему, переходит на обслуживание только на аппарат A;
- II) заявка, поступая в систему, переходит на обслуживание на аппарат А, но, в случае если он уже занят, может перейти аппарат В.

Рис.: Классификация систем.

Рис.: Классификация систем.

Классификация систем

Затем в каждой из групп выделим следующие случаи:

- заявка уходит из системы после полного обслуживания на аппарате В;
- заявка уходит из системы после полного обслуживания на аппарате A;
- 3) заявка уходит из системы после полного обслуживания либо на аппарате A, либо на аппарате B.

Рис.: Классификация систем.

Классификация систем

Рис.: Классификация систем.

Системы

С учетом распределения операций на аппаратах и заранее продуманного пути прохождения заявки полного обслуживания, получили следующие схемы:

- $\bullet A_{\Omega_1}B_{\Omega_2};$
- \bullet $A_{\Omega_1}B_{\Omega_2,(\Omega_1)}$;
- $\bullet \ A_{\Omega_1,(\Omega_2)}B_{\Omega_2};$
- $\bullet A_{\Omega_1,(\Omega_2)}B_{\Omega_2,(\Omega_1)};$
- $\bullet A_{\Omega_1,\Omega_2}B_{\Omega_1,\Omega_2};$
- $\bullet \ A_{\Omega_1}B_{\Omega_2,(\Omega_{12})};$
- $\bullet A_{\Omega_{12}}B_{(\Omega_{12})};$
- $\bullet A_{\Omega_{12}}B_{(\Omega_1),(\Omega_2)};$
- $\Phi A_{\Omega_1,(\Omega_2)}B_{\Omega_2,(\Omega_{12})};$

- $\bullet A_{\Omega_1,(\Omega_{12})}B_{\Omega_2};$
- $\bullet A_{\Omega_{12},(\Omega_2)}B_{\Omega_1};$
- **3** $A_{\Omega_{12},\Omega_2}B_{(\Omega_1),(\Omega_2)};$ **4** $A_{\Omega_1,(\Omega_{12})}B_{\Omega_2,(\Omega_1)};$
- $\bullet A_{\Omega_1,(\Omega_{12})}B_{\Omega_2,(\Omega_1)}, \\ \bullet A_{\Omega_1,(\Omega_{12})}B_{\Omega_2,(\Omega_{12})};$
- \bullet $A_{\Omega_{12},(\Omega_2)}B_{\Omega_1,(\Omega_{12})};$
- \bullet $A_{\Omega_1,\Omega_2,(\Omega_{12})}B_{(\Omega_1)};$
- **3** $A_{\Omega_1,\Omega_2}B_{(\Omega_{12})}$;
- $\bullet A_{\Omega_1,\Omega_2,(\Omega_{12})}B_{\Omega_{12}};$

- $\bullet A_{\Omega_1,\Omega_2,(\Omega_{12})}B_{\Omega_1,\Omega_2};$
- $all A_{\Omega_{12},(\Omega_1),(\Omega_2)}B_{\Omega_{12}};$
- $\bullet A_{\Omega_{12},(\Omega_1),(\Omega_2)}B_{\Omega_1,\Omega_2};$
- $\bullet A_{\Omega_{12},(\Omega_1),(\Omega_2)}B_{\Omega_{12},\Omega_2};$
- \bullet $A_{\Omega_{12},(\Omega_1)}B_{\Omega_{12},(\Omega_2)};$
- $\bullet A_{\Omega_1,(\Omega_2),(\Omega_{12})}B_{\Omega_2,(\Omega_{12})}$

Описание систем

При описании состояний аппаратов будем использовать следующие обозначения:

- 0 аппарат свободен;
- 1, 2, <u>12</u> аппарат занят, обрабатывает поступившую заявку;
- W аппарат занят, находится в состоянии ожидания.

Описание систем

При описании состояний аппаратов будем использовать следующие обозначения:

- 0 аппарат свободен;
- 1, 2, <u>12</u> аппарат занят, обрабатывает поступившую заявку;
- W аппарат занят, находится в состоянии ожидания.

Рис.: Схема А.І.1.1

Описание систем

При описании состояний аппаратов будем использовать следующие обозначения:

- 0 аппарат свободен;
- 1, 2, 12 аппарат занят, обрабатывает поступившую заявку;
- W аппарат занят, находится в состоянии ожидания.

Рис.: Схема А.І.1.1

Граф переходов в матричном виде:

Таблица: Матрица переходов для схемы А.І.1.1

00	02	10	12	W2		
10, λ	00, $ au_2^B$	02, $ au_{1}^{A}$	W2, $ au_1^A$	02, $ au_2^B$		
	12, λ		10, $ au_2^B$			

Метод Δt

Для реализации $\Delta\,t$ - принципа весь интервал моделирования разбивается на достаточно малые фиксированные промежутки времени $\Delta\,t$. На каждом отдельном промежутке данный метод предполагает моделирование следующих событий:

- 1) появление очередной заявки;
- 2) конец обслуживания заявки.

Для этого достаточно обратиться к датчику случайных чисел и сравнить полученное значение α с соответствующей вероятностью $P_{ au(*)}(t,\Delta t)$, где $P_{ au(*)}(t,\Delta t)$ может быть:

- ullet $P_{ au(n)}(t,\Delta t)$ вероятность того, что заявка поступит в систему;
- ullet $P_{ au(k)}(t,\Delta t)$ вероятность того, что заявка освободит канал;

Если $\alpha < P_{\tau(*)}(t,\Delta t)$, то считаем, что соответствующее событие наступило. В противном случае - нет.

Метод узловых точек (УТ-принцип)

При использовании УТ-принципа моделирование случайных величин производится только в узловых точках (тот ближайший момент времени, когда происходит очередное интересующее нас событие). Алгоритм моделирования методом узловых точек можно описать следующим образом:

- В начальном состоянии система пуста. Генерируем случайную величну $\xi \in p.p.[0,1]$, решаем уравнение $F_{ au_n}(au_n^1) = \xi$. Получаем время прихода первой заявки $t_n^1 = au_n^1$.
- Затем моделируем время появление двух событий: время поступление второй заявки t_n^2 и время конца обслуживания первой заявки t_k^1 . Генерируем ξ_1, ξ_2 и нахожим:

$$\begin{aligned} \tau_n^2 &= F_{\tau_n}^{-1}(\xi_1), & \tau_k^1 &= F_{\tau_n}^{-1}(\xi_2), \\ t_n^2 &= t_n^1 + \tau_n^2, & t_k^1 &= t_n^1 + \tau_k^1. \end{aligned}$$

Следующая узловая точка определяется по формуле:

$$t_2^* = \min(t_k^1, t_n^2). (1)$$

Аналитические модели

Найдем дифференциальное уравнение для вероятности $P_i(t)$ промежуточного состояния S_i . Дадим t малое приращение Δt и найдем вероятность того, что в момент $t+\Delta t$ система будет находиться в состоянии S_i .

- Вероятность того, что в момент t система была в состоянии S_i и за время Δt не перешла ни в состояние S_{i-1} , ни в состояние S_{i+1} равна

$$P_i(t) \cdot (1 - \lambda_{i,i-1} \Delta t - \lambda_{i,i+1} \Delta t); \tag{2}$$

- Вероятность того, что в момент t система была в состоянии S_{i-1} и за время Δt перешла в состояние S_i равна

$$P_{i-1}(t) \cdot \lambda_{i-1,i} \Delta t; \tag{3}$$

- Вероятность того, что в момент t система была в состоянии S_{i+1} и за время Δt перешла в состояние S_i равна

$$P_{i+1}(t) \cdot \lambda_{i+1,i} \Delta t. \tag{4}$$

Аналитические модели

Плотностью вероятностей перехода из состояния S_i в состояние S_j называется величина

$$\lambda = \lim_{\Delta t \to 0} \frac{P_{ij}(\Delta t)}{\Delta t},\tag{5}$$

где $P_{ij}(\Delta t)$ — вероятность того, что система, находящаяся в момент времени t в состоянии S_i , за время Δt перейдет в состояние S_j . С точностью до бесконечно малых высшего порядка $P_{ij}(\Delta t) = \lambda_{ij}\Delta t$.

Аналитические модели

Плотностью вероятностей перехода из состояния S_i в состояние S_j называется величина

$$\lambda = \lim_{\Delta t \to 0} \frac{P_{ij}(\Delta t)}{\Delta t},\tag{5}$$

где $P_{ij}(\Delta t)$ — вероятность того, что система, находящаяся в момент времени t в состоянии S_i , за время Δt перейдет в состояние S_j . С точностью до бесконечно малых высшего порядка $P_{ij}(\Delta t) = \lambda_{ij}\Delta t$.

Система линейных дифференциальных уравнений Колмогорова:

$$\frac{dP_i(t)}{dt} = P_{i-1}(t)\lambda_{i-1,i} + P_{i+1}(t)\lambda_{i+1,i} - (\lambda_{i,i-1} + \lambda_{i,i+1}) \cdot P_i(t), \quad (6)$$

где $i=1,2,\ldots,n$.

Решая полученную систему, при определенных начальных условиях находим функцию $P_i(t)$, т.е можем определить показатели эффективности системы.

Описание системы и задание таблицы переходов

Описание системы и задание таблицы переходов

Рис.: Исходные данные

Описание системы и задание таблицы переходов

DOC COCTOMINION.	00-02-10-12-42									Проверить резуль		
Заполнять все	постлания сл	enver cr	noro e f	EKCNKO	-FPAm/s	ECKOM-	nnanke				Выход	
Заполнять все								eqon MC	дке в ст	олбце		
Состояния:	-										1	
Гереходные — состояния:												
Гереходные — состояния:												
Справка по зап		тояний:										
0 - аппарат сво												
1 - аппарат вы 2 - аппарат вы												
3 - аппарат вы												
			- o_xc	,								

Рис.: Матрица переходов

Рис.: Исходные данные

Моделирование системы

Рис.: Выбор данных для моделирования

Моделирование системы

Рис.: Выбор данных для моделирования

Результаты моделирования системы

Рис.: Статистический метод моделирования

Результаты моделирования системы

Рис.: Аналитические модели

Рис.: Статистический метод моделирования

Результаты

- Произведен анализ системы с двумя аппаратами, которые могут выполнять две операции.
- Составлена классификация основных, типовых, схем рассматриваемой системы обслуживания.
- Были составлены матрицы переходов в возможные состояния системы для всех схем из полученного списка.
- Составлены дифференциальные системы для всех схем, для дальнейшего использования их при составлении аналитических моделей.
- Создана программа, которая позволяет:
 - проверить результат своей работы при решении задач по курсу «Моделирование систем»;
 - проверить правильность построения графа переходов;
 - выбрать метод моделирования системы, с помощью которого можно подсчитать показатели эффективности ситемы.

Спасибо за внимание!

