Studiengang: KST / TI Dozent: Kai.Schulz@hs-albsig.de Änderungsstand : 23.03. 2013

Kommunikations- und Softwaretechnik

Versuchsbeschreibung:

Versuch 3: Grundlagen Messtechnik

1. Ohmsches Gesetz.

$\underline{\ddot{U}bung\ 1.1}$: Bestätigen Sie den Zusammenhang R = U/ I (Ohmsche Gesetz). Schaltungsaufbau:

Bauteile:

1Widerstand R = 1kOhm, 1Widerstand R = 47 Ohm, 2W

Messmittel:

1 Multimeter Typ M2- H, 1 Multimeter Fluke 83 oder B1020.

Messaufgabe:

1.1.M1 Nehmen Sie zwei Messreihen für R = 470hm und R = 1kOhm zur Bestimmung des Zusammenhanges R = U/I mit dem Messgerät M2-H auf.

Durchführung:

Schaltung nach Abb.1.1 aufbauen. Die Spannung U durch Einstellung der Versorgungsspannung Uv in Schritten von z.B. 1V erhöhen und die Messwerte U und I protokollieren.

<u>Tab:1.1T1</u> Messtabelle zur Messaufgabe 1.1M1.

		47 Ohm		1KOhm		
	$\mathbf{U}\left(\mathbf{V}\right)$	I (mA)	U/I (V/A)	U (V)	I (mA)	U/I (V/A)
1	1	21		1	1	4600
2	2	4-1		2	2	1660
3	3	65		3	3	1000
4	4	83		4	9	1600
5	ţ	104		ţ	5	1000
6	6	125		6	۶	1000
7	7	145		7	ב	1000
8	8	165		8	8	1000
9	()	188		()	2	1000
10	10	207		10	10	1000

Auswertung: Versuch 3

1.1.A1: Stellen Sie die Messreihen für I = f (U) und R = konstant aus M1 graphisch dar. Ermitteln Sie daraus für jeweils 2 Kurvenpunkte den Proportionalitätsfaktor **m**. Geben Sie die Funktionsverläufe in der Form von I = m * U an

1.1.A2: Wie ist der Proportionalitätsfaktor zu interpretieren ?

2. Eigenschaften von Messgeräten.

Rechenaufgaben und Erklärungen von 2.0.0 bis 2.1.

2.0.0 Mit einem **Multimeter**, einem der einfachsten elektrischen Messgeräte, können i.d.R. mehrere elektrische Größen gemessen werden.

Gleichspannung (DC), Gleichstrom, Wechselspannung (AC), Wechselstrom, Widerstand

Spannungsmesser (Voltmeter)

Idealer Spannungsmesser

- Symbol
- Eigenschaften:
- Das Messgerät zeigt genau den Wert U_V an. Der Innenwiderstand des Messgeräts ist unendlich hoch, d.h. $I_V = 0$.

Realer Spannungsmesser

- Symbol
- Eigenschaften:

Das Messgerät zeigt genau den Wert U_V an. Der Innenwiderstand des Messgeräts ist R_{iV} .

Aufgabe 2.0.1 (Rechenaufgabe)

Wie groß ist der Innenwiderstand eines Voltmeters, wenn in das Voltmeter ein Strom von $I_V = 1 \mu A$ fließt und ein Wert von IV angezeigt wird?

Strommesser (Amperemeter)

Idealer Strommesser

- Symbol
- Eigenschaften:
- Das Messgerät zeigt genau den Wert I_A an. Der Innenwiderstand des Messgeräts ist t null, d.h. $U_A = 0$.

Realer Strommesser

- Symbol
- \bullet Eigenschaften: Das Messgerät zeigt genau den Wert I_A an. Der Innenwiderstand des Messgeräts ist $R_{iA}.$

Aufgabe 2.0.2 (Rechenaufgabe)

Versuch 3

Wie groß ist der Innenwiderstand eines Amperemeters, wenn über dem Amperemeter eine Spannung von $U_A = 100 \text{ mV}$ abfällt und ein Wert von 50 mA angezeigt wird?

Spannungsrichtige Messung.

Messanordnung

Messfehler

Die Spannung U_L an der Last wird mit dem Spannungsmesser korrekt gemessen und angezeigt. Dagegen zeigt der Strommesser nicht den Strom I_L in die Last an, sondern

$$I_A = I_L + I_V$$
.

Der zusätzliche Strom I_V kann aus dem angezeigten Wert U_L und aus R_{iV} bestimmt werden, womit auf den eigentlich interessierenden Strom I_L zurückgerechnet werden kann.

Aufgabe 2.0.3 (Rechenaufgabe)

Das Netzteil hat einen Innenwiderstand $R_i = 1\Omega$. Die Innenwiderstände der Messgeräte sind $R_{iA} = 100\Omega$ und $R_{iV} = 1 M\Omega$.

Die angezeigten Messwerte sind $U_L = 4.95 \text{ V}$ und $I_A = 500 \mu A$.

Berechnen Sie I_L , R_L und U_0 .

Stromrichtige Messung

Messanordnung

Messfehler Versuch 3

Der Strom I_L durch die Last wird mit dem Strommesser korrekt gemessen und angezeigt. Dagegen zeigt der Spannungsmesser nicht die korrekte Spannung U_L an der Last an, sondern

$$U_V = U_L + U_A$$
.

Die zusätzliche Spannung U_A kann aus dem angezeigten Wert I_L und aus R_{iA} bestimmt werden, womit die eigentlich interessierende Spannung U_L berechnet werden kann.

Aufgabe 2.0.4 (Rechenaufgabe)

Das Netzteil hat einen Innenwiderstand $R_i = 1\Omega$. Die Innenwiderstände der Messgeräte sind $R_{iA} = 1\Omega$ und $R_{iV} = 1$ $M\Omega$.

Die angezeigten Messwerte sind $U_V = 4.8 \text{ V}$ und $I_L = 100 \text{ mA}$.

Berechnen Sie U_L , R_L und U_0 .

Die Rechenaufgaben sind durchzuführen!

<u>Übung 2.1</u>: Spannungsrichtiges Messen bei gleichzeitiger Strom- Spannungs- Messung.

Bauteile:

- 1 Widerstand R1= 47 Ohm, 2W
- 1 Widerstand R2= 100 Ohm, 2W

Meßmittel:

1 Strommesser, Typ M2-H

1 Spannungsmesser, Typ Fluke 83 oder B1020.

Messaufgabe:

2.1.M1: Messen und protokollieren Sie die Spannungswerte Ux_1 und Ux_2 , sowie die Stromwerte Ix_1 und Ix_2 bei Spannungsmessung an den Messpunkten x_1 und x_2 .

Durchführung:

Schaltung Abb. 2.1 aufbauen. Betriebsspannung Uv = 6V einstellen.

<u>Tab: 2.1.T1</u> Messwertetabelle zur Messaufgabe 2.1.M1.

Ux1 [V]	4,09
Ux2 [V]	7,32
Ix1 [mA]	39,5
Ix2 [mA]	33,2

Auswertung: Versuch 3

2.1.A1: An welchem Messpunkt wird bezogen auf den Widerstand R2 **spannungsrichtig** gemessen (Begründung) ? Abb. 2.1.

2.1.A2: Berechnen Sie den Innenwiderstand Rii des Multimeters **M2- H** im Strommessbereich 60mA anhand der Messwerte.

<u>Übung 2.2</u>: Stromrichtiges Messen bei gleichzeitiger Strom- Spannungs- Messung. Schaltungsaufbau:

Bauteile:
1 Widerstand R1 = 10kOhm
1 Widerstand R2 = 33kOhm

Messmittel:

1 Spannungsmesser, Typ **M2-H** 1 Strommesser, Typ **Fluke 83 oder B1020.**

Messaufgabe:

2.2.M1: Messen und protokollieren Sie die Spannungswerte Ux_1 und Ux_2 , sowie die Stromwerte Ix_1 und Ix_2 bei Spannungsmessung an den Messpunkten x_1 und x_2 .

Durchführung:

Schaltung Abb.2.2 aufbauen. Betriebsspannung Uv = 6V einstellen

<u>Tab: 2.2.T1</u> Messwertetabelle zur Messaufgabe 2.2M1.

Ux1 [V]	4,4
Ux2 [V]	4, 4
Ix1 [mA]	0,16
Ix2 [mA]	0,16

Auswertung:

2.2.A1: An welchem Messpunkt wird bezogen auf den Widerstand R2 stromrichtig gemessen (Begründung)? Abb. 2.2.

Berechnen Sie den Innenwiderstand Rui des Spannungsmessers M 2- H anhand der

2.2.A2: Messwerte.

Ux =V, $Ix_1 =$ $Ix_2 =$ mA mA,

Übung 2.3: Einfluss des Messgeräte- Innenwiderstandes auf die Messgenauigkeit.

Schaltungsaufbau:

Messaufgabe:

2.3.M1: Zeichnen Sie eine Messschaltung nach Abb.2.3. zur Spannungsmessung an R2. Stellen Sie den Spannungsmesser in seinem Ersatzschaltbild dar. Verwenden Sie dazu die Werte aus Übung 2.2. für das Messgerät M2- H. Messen Sie die C1=1,9 V Spannung an R2.

Auswertung:

2.3.A1: Erläutern Sie die Ergebnisse aus Messaufgabe 2.3.M1. Berechnen Sie daraus den Innenwiderstand des Multimeters **M2- H** im verwendeten Messbereich.

Wie beeinflusst der Innenwiderstand des Spannung- Messgerätes das 2.3.A2: Messergebnis?

- **2.3.A3** Zeichnen Sie eine Messschaltung nach Abb.2.1. zur Strommessung des Stromes durch R2 (ohne Spannungsmessung). Stellen Sie den Strommesser in seinem Ersatzschaltbild dar. Verwenden Sie dazu die Werte aus Übung 2.1. für das Messgerät **M2- H.**
- **2.3.A4** Wie beeinflusst der Innenwiderstand des Strom- Messgerätes die Messung?

Übung 2.4: Kurvenformfehler bei Messgeräten.

(Nur immer ein Messgerät anschließen!)

Bauteile:

1 Widerstand R = 1kOhm

Messmittel:

1 Analog-Multimeter, **Typ M2-H** 1 Digital-Multimeter, **Typ Fluke 83 oder B1020.** 1 Oszillograph, 1 Frequenzgenerator

Messaufgabe:

2.4.M1: Messen Sie die unten angegebenen Spannungssignale U(t) mit einem analogen und digitalen Messgerät jeweils im Gleich- und Wechselspannungsmessbereich.

Durchführung:

Schaltung Abb. 2.4. aufbauen. Versorgungsspannung **U** (t) mit dem **Netzteil** (Kurve 1) bzw. dem **Frequenzgenerator** (Kurve 2 bis 4) einstellen. Messwerte in Tabelle 2.4.T1. eintragen.

Beachte:

Nur immer mit einem Messgerät gleichzeitig messen.

Kurvenformen für U(t):

Kurve 1: Gleichspannung: (**vom Netzteil nehmen**) U = Umax = 6VKurve 2: Sinus- Wechselspannung; $U_{ss} = 8V, T = 5ms$ Kurve 3: Dreieck- Wechselspannung; symm.; $U_{ss} = 8V, T = 5ms$ Kurve 4: Rechteck- Wechselspannung; symm.; $U_{ss} = 8V, T = 5ms$

 $(U_{ss}, U_{pp} = U \text{ Spitze/Spitze oder } 2 * \hat{U})$

Messgerät	Messwerk- prinzip	Messbe- reich	1 Kurve =	2 Kurve	3 Kurve /\/\	4 Kurve _☐☐
М2-Н	Drehspul	6V=	5,9	0	\bigcirc	0
М2-Н	Drehspul	6V~	0	2,7	2,1	9,3
Fluke 83 oder B 1020	Digital	6V=	5,3	0	0	0
Fluke 83 oder B 1020	Digital	6V~	0	2,74	2/15	4,3

Auswertung:

2.4.A1: Wie kommt der Formfaktor **F** für Sinusgrößen zustande (math. Herleitung) ?

2.4.A2: Was messen Sie mit den Multimetern im Gleichspannungsbereich, was im

Wechselspannungsbereich? Warum?

2.4.A3: Wie kommen die Anzeigewerte für Dreieck- und Rechteckspannung zustande?

(Rechnung).

2.4.A4: Berechnen Sie aus den Anzeigewerten die tatsächlichen Effektivwerte für die

obige Dreieck- und Rechteckspannung. Geben Sie die Umrechnungsfaktoren an.

3. Kennwerte harmonischer Wechselgrößen.

Aufgabe 3.0: Rechenaufgabe

Eine sinusförmige Spannung U(t) mit f_1 = 50Hz hat den Scheitelwert Û 10V. a) Beschreiben Sie die Funktion U(t), b) Wie groß ist U(t) bei t_1 = 2ms nach dem Nulldurchgang? c) Skizzieren Sie das einseitige Spektrum U(f), d)Wie groß wäre die Phase φ , wenn der Nulldurchgang bei t_2 = 5ms ist, wie lautet dann U(t)?

<u>Übung 3.1</u>: Speisung eines **ohmschen** Verbrauchers mit einer **Sinusspannung**.

Durchführung:

Schaltung aufbauen. Die Speisespannung U(t) am Frequenzgenerator einstellen: Spannung $U_{ss} = 8V$, Periodendauer T = 10 ms

3.1.M1:

Messen Sie mit dem **Multimeter**

$$U \sim = 2.2 V$$

$$I \sim = 2.7 V \sim 2.7 V$$

$$Um \sim = 6.24 V$$

Fluke 83 oder B1020.

Messen Sie mit dem Oszillograph:

Phasenwinkel $\phi(u, i)$ für:

10 Augenblickswerte für u(t) und i(t) = um(t)/R

Verwenden Sie zunächst folgende Geräteeinstellungen:

Oszillograph:

Kanal Y1: 1V/Teil, Signal u (t), 10: 1 Probe Kanal Y2: 10mV/Teil, Signal um(t), **1: 1** Probe

Time basis ms

Frequenzgenerator:

Kurvenform: Sinus DC-Offset

<u>Tab.: 3.1.T1</u> Messwertetabelle zu 3.1.M1

t [ms]	u(t) [V]	um(t) [mV]	$i(t) = \frac{um(t)}{Rm}$ [mA]	p(t) [mW]
0	961	300		
2	3,28	350		
Cf	-0,65	-22		
6	- 3,85	-255		
9	-1,88	-54		
16	2,61	305		
12	3,30	-25		
19	-0,675	-255		
16	-3,85	-72,5		
18	-1,6	235		

Auswertung:

- **3.1.A1:** Berechnen Sie zu den einzelnen Punkten die Momentan Leistung p(t) = u(t)*i(t)
- **3.1.A2:** Stellen Sie u(t), i(t) und p(t) graphisch dar.(In einer Zeichnung, verschieden farbig)
- 3.1.A3: Was messen Sie mit den Strom- und Spannungsmessern im Wechselstrombereich? Welche Leistung können Sie daraus berechnen. (Multimeter benutzen)
- **3.1.A4:** Erläutern Sie die Begriffe **Schein-**, **Blind-** und **Wirk**leistung. P=?; Q=?; S=?

Übung 3.2: Speisung eines kapazitiven Verbrauchers mit einer Sinusspannung.

Messaufgabe:

Durchführung:

Schaltung aufbauen. Die Speisespannung U(t) am Frequenzgenerator einstellen: U_{ss} (Spitze/Spitze) = 8V, Periodendauer T= 0,5 ms.

3.2.M1: Messen Sie mit dem Multimeter:

= 2,9V U = 3/2 I = 3/2 Um = 0/365Werte eintragen. UC = 2/3 Fluke 83 oder B1020

Bestimmen Sie mit dem Oszillograph:

Stromamplitude imax : Phasenwinkel φ (u, i) für:

10 Augenblickswerte für u(t) und i(t) = um(t)/Rm. innerhalb einer Periode

Tab.: 3.2.T1 Messwertetabelle zu 3.2M1

t [ms]	u (t) [V]	ur(t) [mV]	$i(t) = \frac{ur(t)}{Rm}$	φ in Grad	p(t) [mW]
_		Um	[mA]		
0	1,31	677			
0,05	3,48	284			
0,10	3,55	0			
0 15	2,15	-265			
920	-00	- 422			
0,28	-2,45	-406			
0/30	- 4	-223			
0,35	- 4,05	20			
0,60	-2,3	346			
0,45	-0,6	502			

Auswertung: Versuch 3

3.2.A1: Berechnen Sie zu den Messwerten aus Tabelle 3.2.T1 die Momentan Leistung p(t) = u(t)*i(t).

- **3.2.A2:** Stellen Sie u(t), i(t) und p(t) graphisch dar. (**In einer Zeichnung, farbig**)
- **3.2.A3:** Ermitteln Sie die mittlere Leistung P mitt aus der Leistungskurve p(t) zeichnerisch. (resultierenden Flächeninhalt der Leistungskurve bilden).

Übung 3.3: Bestimmen der Größe eines Kondensators anhand der Auf- bzw. Entladekurve Bauteile:

Messaufgaben:

Durchführung:

Schaltung aufbauen. Die Speisespannung u(t) am Frequenzgenerator einstellen: Uss (Spitze/Spitze) = 4V

Periodendauer T = ?

3.3.M1: Bestimmen Sie die Ihrer Meinung nach beste Art (Sinus, Dreieck, Rechteck) und Größe der Frequenz (Hz, kHz, MHz), um eine gut sichtbare Auf- bzw. Entladekurve darzustellen und somit die Größe des Kondensators berechnen zu können. Geben Sie die gewählte Art an.

Tab.: 3.3.T1 Messwertetabelle zu 3.3M1

Art (?)	f (?)	t (?) Aufladung	t (?) Entladung
	400H2	25	25 ms
		2	2

Auswertung:

3.3.A1: Auf- und Entladekurve graphisch darstellen. Berechnen Sie aus den Messwerten die Größe des Kondensators. Mathematische Darstellung der Berechnung.

Ende Versuch 3