5. Filtering & Variable Selection Statistical Modelling & Machine Learning

Jaejik Kim

Department of Statistics Sungkyunkwan University

STA3036

Why Filtering / Selecting Variables?

- Prediction: Irrelevant input variables make data pattern unclear (curse of dimensionality) and overfitting occurs.
- ► Interpretation: Removing irrelevant variables ⇒ Removing unnecessary complexity of model \Rightarrow Interpretability \uparrow .
- Filtering variables:
 - Evaluating input variables before training models.
 - For very high-dimensional data, penalization methods such as lasso might not work correctly.
 - For a large p, filtering is required (both supervised and unsupervised learnings).
- Variable selection: Selection of variables in the final prediction model (supervised learning).

Variable Importance Measures

- In large p situations, filtering input variables might be required for effective predictive modelling.
- Some filtering methods are based on measures for the importance of individual variables.
- Variable importance ⇒ Ranking of variables.
- Remind the variable importance in random forests (permutation idea).

Y: Continuous; X: Continuous

- ▶ Pearson correlation coefficient: Linear association.
- Spearman's rank correlation coefficient: Nearly linear or curvelinear relationships.

$$r_S = \frac{Cov(X_R, Y_R)}{S_{X_R}S_{Y_R}},$$

- \triangleright X_R and Y_R : Rank variables converted from X and Y, respectively.
- ► S_{X_R} and S_{Y_R} : Sample standard deviation of X_R and Y_R , respectively.
- Pearson correlation coefficient between rank variables.

Y: Continuous; X: Continuous

Pseudo R²: Nonlinear relations.

Pseudo
$$R^2 = 1 - \frac{\sum_{i} (y_i - \hat{y}_i)^2}{\sum_{i} (y_i - \bar{y})^2}.$$

Fit a nonparametric smoother (e.g., local linear regression for (X,Y)) to data, and then compute Pseudo R^2 .

Y: Continuous: X: Continuous

Maximal information coefficient (MIC): Linear and nonlienar relationships (most functional types).

$$MIC(X,Y) = \frac{\hat{I}(X,Y)}{\log_2\{\min(m_X,m_Y)\}},$$

- Mutual information: $\hat{I}(X,Y) = \sum_{\tilde{x},\tilde{y}} \hat{p}(\tilde{x},\tilde{y}) \log_2 \frac{\hat{p}(\tilde{x},\tilde{y})}{\hat{\sigma}(\tilde{x})\hat{\sigma}(\tilde{y})}$ where $\hat{p}(\tilde{x}, \tilde{y})$ is the fraction of data points falling into bin (\tilde{x}, \tilde{y}) , and m_X and m_Y are the number of bins on X and Y axes, respectively.
- It has a value between 0 and 1.
- \blacktriangleright MIC(X, Y) = 0: Independence of X and Y.
- ightharpoonup MIC(X, Y) = 1: Completely noiseless relationship.

MIC

Figure: MIC values (Zhang et al., 2014; Scientific Reports, volume 4, Article number: 6662)

Y: Continuous; X: Categorical

- Binary input variables:
 - t-statistic (or p-value) from t-test (normal assumption).
 - Wilcoxon rank sum test statistic (no distributional assumption).
- Input variables with three or more categories:
 - F-statistic from one-way ANOVA (normal assumption).
 - Kruskal-Wallis one-way ANOVA (no distributional assumption).

Variable Importance in Classification

Y: Categorical; X: Continuous & Categorical

- Relief algorithm:
 - ▶ It works for a binary *Y*, but it can be extended into *Y* with multi-class by applying the algorithm to each class.
 - ▶ All continuous inputs should be transformed into [0,1] scale.
 - Categorical inputs should be encoded by 0 or 1.
 - At each iteration, it randomly select a training obs (say x_i ; $p \times 1$ vector).
 - Find the nearest training obs. in Y = 0 and Y = 1 classes to x_i .
 - Let x_H (Hit) be the nearest training obs. in the same class as the class of x_i and x_M (Miss) be the near training obs. in the other class.
 - ▶ It uses the difference of (x_i, x_H) and the difference of (x_i, x_M) .
 - Difference of (x_i, x_{i'}):

$$d(\mathbf{x}_i, \mathbf{x}_{i'}) = [(x_{i1} - x_{i'1})^2, \dots, (x_{ip} - x_{i'p})^2]^\top.$$

Variable Importance in Classification

Relief algorithm:

- 1. Initialize the $p \times 1$ score vector $\mathbf{S} = \mathbf{0}$.
- 2. For k = 1, ..., K,
 - 2-1. Randomly select a training obs. x_i from the training set.
 - 2-2. Find a hit x_H and miss x_M closest to x_i
 - 2-3. Update *S* by

$$S \leftarrow S - d(x_i, x_H) + d(x_i, x_M).$$

 \Rightarrow Output: $\mathbf{S} = (S_1, \dots, S_p)^{\top}$, where S_j is the score of X_j variable.

Variable Importance in Classification

- ▶ If the hit is far from x_i in X_i space, then S_i decreases. But, if the miss is far away, S_i increases.
- \triangleright S_i measures the separability of Y=0 and 1 classes in terms of X_i .
- If Y has K classes and K > 2, run the Relief algorithm for the kth class and the other K-1 classes, and then sum all S_i values over K runs of Relief algorithm.
- ReliefF algorithm:
 - \triangleright Every training obs. becomes x_i (n iterations).
 - At every iteration, it finds k nearest hits and misses.
 - For multi-class, it finds k nearest misses from each class, and then take the average of their contributions for updating \boldsymbol{S} .

Limitation of Variable Importance

- Variable importance evaluates each input variable without considering the others.
- Problem 1:
 - If two inputs are highly correlated with Y and with each other. then they will be identified as important variables.
 - In that case, some predictive models will be negatively impacted by this redundant information (e.g., multicollinearity).
- ▶ Problem 2.
 - It will miss groups of input variables that together have a strong relationship with Y.
 - No marginal relationship, but strong joint relationship.
- Problem 3: No threshold for variable importance.

Variable Selection

- For better prediction and interpretation, it is important to remove redundant variables and non-informative variables. ⇒ Variable selection (feature selection).
- Models robust to non-informative variables: Tree model. random forests (more trees are required).
- However, most models are negatively impacted by non-informative input variables.
- Variable selection: Methods to find the optimal subset of input variables that maximizes model performance.
 - Regularization methods: Lasso, Elastic net, SCAD, MCP, etc.
 - Subset selection approaches: Best subset selection, Forward stepwise selection, Backward stepwise selection, hybrid approach.

Subset selection: Simulated Annealing

- Subset selection can be considered as an optimization problem ⇒ Finding the optimal subset minimizing test error.
- Simulated annealing: A probabilistic technique for approximating the global optimum in a large search space of an objective function.
 - Heuristic algorithm and finite discrete search space.
 - It picks a random move instead of picking the best move.
 - If the randomly selected move improves the optimization, then it is always accepted.
 - Otherwise, it accepts the move with a probability that decreases exponentially with the 'badness' of the move.

14/24

Subset selection: Simulated Annealing

Algorithm:

- 1. Generate an initial random subset of X_1, \ldots, X_p .
- 2. For k = 1, ..., K.
 - 2-1. Randomly perturb the current best subset $\mathcal{M}_{best} \Rightarrow \mathcal{M}$ (randomly perturbed subset).
 - 2-2. Train the model with the current subset.
 - 2-3. Compute the performance measure E_k (e.g., AIC, BIC, or LOOCV, etc.).
 - 2-4. If $E_k < E_{best}$, accept the current subset \mathcal{M} and set $E_{best} = E_k$ and $\mathcal{M}_{hest} = \mathcal{M}$.

Subset selection: Simulated Annealing

- ► Algorithm (Continued):
 - 2-5. Otherwise, Compute the probability of accepting the current subset \mathcal{M} by $p_k = \exp\{(E_{best} - E_k)/T\}$, where T changes over iterations. At higher values of T, uphill moves are more likely to occur. In a typical simulated annealing, T starts high and is gradually decreased according to an 'annealing schedule'.
 - 2-5-1. Generate a uniform (0,1) random number U.
 - 2-5-2. If $p_k \geq U$, accept the current subset \mathcal{M} and set $E_{best} = E_k$ and $\mathcal{M}_{best} = \mathcal{M}$.
 - 2-5-3. Otherwise, keep the current \mathcal{M}_{hest}
- 3. Find the subset with the smallest E_k across all iterations.

16/24

Selection Bias

- Selection bias: Bias introduced by selecting variables.
- Situations that selection bias increases:
 - Small size of data.
 - The number of predictors is large. For large p situations, the prob. of non-informative inputs being falsely declared to be important increases.
 - The complex models are more likely to overfit the data.
 - No independent test set is available.
- For proper evaluation of predictive models with filtering or variable selection, CV or bootstrap procedure should include such steps.

Variable Selection When $p \gg n$

- ▶ When $p \gg n$, selection bias is very severe.
- ▶ When $p \gg n$, linear models (simple models) have better prediction than nonlinear models (complex models).
- ► For variable selection in linear models, regularization methods such as lasso, SCAD, or MCP, etc. can be considered.
- ▶ However, when $p \gg n$, they might not perform well due to statistical accuracy and algorithmic stability.
- In usual, a single regularization method identifies many irrelevant variables as important variables.

18/24

ISIS (Iterative Sure Independence Screening)

- ► ISIS (Fan et al., 2011): Extension of SIS (Sure Independence Screening).
- SIS and ISIS works for all generalized linear models (e.g., linear regression, logistic regression, Cox regression, etc.).
- SIS consists of two steps:
 - ▶ By the size of the marginal MLE (MMLE) $|\hat{\beta}_i^M|$, select d input variables. Typical choice of $d = \lfloor n/\log n \rfloor$.
 - Apply a regularization method to the model with selected d input variables.
- SIS fails in the following situations:
 - Inputs are marginally unrelated, but jointly related with $Y \Rightarrow$ They should be included in the final model.
 - Inputs are jointly uncorrelated with Y, but have higher marginal correlation than some important inputs. \Rightarrow They should be excluded from the final model.

Jaejik Kim

Algorithm: Vanilla ISIS

- 1. Set initial screening model size d, the type of penalty $p_{\lambda}(\cdot)$, and the maximum iteration number I_{max} .
- 2. For j = 1, ..., p, compute the MMLE $\hat{\beta}_i^M$ from the GLM for Y and X_i . Then, select the $k_1 = \lfloor 2d/3 \rfloor$ top ranked inputs to form the index set \hat{A}_1 by the size of $\hat{\beta}_i^M$.
- 3. Apply the penalized ML estimation on the set \hat{A}_1 to obtain a subset of indices $\hat{\mathcal{M}}_1$.

Algorithm: Vanilla ISIS (Continued)

- 4. Set l=2 and iterate until $|\hat{\mathcal{M}}_l|=d$, $\hat{\mathcal{M}}_l=\hat{\mathcal{M}}_{l-r}$, or $I = I_{max}$:
 - 4-1. For every $j \in \hat{\mathcal{M}}_{l-1}^{\mathcal{C}}$, compute the conditional marginal MLE (CMMLE) $\hat{\beta}_i^{CM}$ from the GLM for Y and X's with indices $\{\hat{M}_{i-1}, i\}.$
 - 4-2. Select the $k_l=d-|\hat{\mathcal{M}}_{l-1}|$ top ranked inputs to form the index set $\hat{\mathcal{A}}_l$ by the size of $\hat{\beta}_i^{CM}$, $j \in \hat{\mathcal{M}}_{l-1}^C$.
 - 4-3. Apply the penalized ML estimation on $\hat{\mathcal{M}}_{l-1} \cup \hat{\mathcal{A}}_l$ to obtain a new index set $\hat{\mathcal{M}}_{I}$.
- Output: Final index set $\hat{\mathcal{M}}_I$.

Algorithm: Permutation-based ISIS

- 1. Set initial screening model size d, the type of penalty $p_{\lambda}(\cdot)$, quantile q, and the maximum iteration number l_{max} .
- 2. For j = 1, ..., p, compute the MMLE $\hat{\beta}_i^M$ from the GLM for Y and X_i .
- 3. Generate a randomly permuted dataset on (x_i, y_i) and obtain the MMLE $\hat{\beta}_i^{M*}$ from the permuted data.
- 4. Let w_q be the qth quantile of $\{|\hat{\beta}_i^{M*}|; j=1,\ldots,p\}$. Then, Form the index set $\hat{\mathcal{M}}_1 = \{1 \leq j \leq p; |\hat{\beta}_i^M| \geq w_q\}.$
- 5. Apply the penalized ML estimation on the set \hat{A}_1 to obtain a subset of indices $\hat{\mathcal{M}}_1$.

ISIS

Algorithm: Permutation-based ISIS (Continued)

- 6. Set l=2 and iterate until $|\hat{\mathcal{M}}_l|=d$, $\hat{\mathcal{M}}_l=\hat{\mathcal{M}}_{l-r}$. or $I = I_{max}$:
 - 6-1. For every $j \in \hat{\mathcal{M}}_{l-1}^{\mathcal{C}}$, compute the CMMLE $\hat{\beta}_i^{\mathcal{C}M}$ from the GLM for Y and X's with indices $\{\hat{\mathcal{M}}_{l-1}, j\}$.
 - 6-2. Generate a randomly permuted dataset on only the variables in $\hat{\mathcal{M}}_{l-1}^{C}$ and obtain the CMMLE $\hat{\beta}_{i}^{CM*}$ from the permuted dataset.
 - 6-3. Let w_q be the qth quantile of $\{|\hat{\beta}_i^{CM*}|; j \in \hat{\mathcal{M}}_{l-1}^C\}$. Then, Form the index set $\hat{\mathcal{A}}_l = \{j \in \hat{\mathcal{M}}_{l-1}^C; |\hat{\beta}_i^{CM}| \ge w_q\}.$
 - 6-4. Apply the penalized ML estimation on $\hat{\mathcal{M}}_{l-1} \cup \hat{\mathcal{A}}_l$ to obtain a new index set $\hat{\mathcal{M}}_{I}$.
- \Rightarrow Output: Final index set $\hat{\mathcal{M}}_I$.

Jaeiik Kim

Implementation of ISIS

- Other choices of $d: \lfloor n/(2 \log n) \rfloor$ or $\lfloor n/(4 \log n) \rfloor$.
- ▶ Variable selection when p < n:
 - ISIS can be used.
 - ightharpoonup Set d=p.
 - Instead of the penalization methods, AIC, BIC, or C_n can be used in ISIS.
- To reduce the number of false positive, set the quantile parameter q=1 (the maximum size of coefficient form permuted data).

24/24