Álgebra Lineal Computacional - Primer Parcial

Primer cuatrimestre de 2021 (21/5/2020)

Nombre y Apellido	1	2	3	Nota

Justificar todas las respuestas y escribir prolijo. Duración 4 horas.

- 1. Sean $g: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal dada por: g(x,y,z) = (x-y,2x+y+3z,x+z) y $S = \{(x,y,z): x-y-z=0\}.$
 - (a) Calcular $N\acute{\mathbf{u}}(g)$ e $\mathrm{Im}(g)$
 - (b) Definir, si es posible, una transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $f(S) \subset \text{Im}(g)$, f(Im(g)) = Nú(g).
 - (c) Para la f hallada en (b), calcular Nú(f) y decidir si f es epi, mono o iso.
- 2. Sea $g: \mathbb{R}^4 \to \mathbb{R}^4$ la transformación lineal dada por la matriz:

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ -1 & 0 & -2 & 0 \\ 0 & 1 & 1 & \alpha \\ 3 & 1 & 2 & -1 \end{pmatrix}.$$

- (a) Hallar el valor de α para que dim(Nú(g)) = 1.
- (b) Probar que $Cond_{\infty}(\mathbf{A}) \to \infty$ cuando α se aproxima al valor hallado.
- (c) Para el valor de α hallado, calcular la descomposición LU de la matriz.
- (d) Para el valor de α hallado dar las matrices de los proyectores ortogonales sobre $N\acute{\mathbf{u}}(g)$ y sobre $N\acute{\mathbf{u}}(g)^{\perp}$.
- 3. Dada la matriz

$$\mathbf{A} = \begin{pmatrix} -3 & 4 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

- (a) determinar los autovalores y autovectores de \boldsymbol{A} y determinar si la matriz es diagonalizable.
- (b) para el vector inicial $\mathbf{v}^{(0)} = (2, 1, 4)$, determinar si la iteración

$$\begin{cases} \boldsymbol{v}^{(k)} = \frac{\boldsymbol{A}\boldsymbol{v}^{(k-1)}}{\|\boldsymbol{A}\boldsymbol{v}^{(k-1)}\|}, & \text{para } k \geq 1 \\ r_k = \frac{(\boldsymbol{v}^{(k)})^t \boldsymbol{A}\boldsymbol{v}^{(k)}}{(\boldsymbol{v}^{(k)})^t \boldsymbol{v}^{(k)}} \end{cases}$$

da como resultado una sucesión r_k convergente, y en tal caso calcular dicho límite. ¿Converge también $\mathbf{v}^{(k)}$? ¿A qué vector? Explicar por qué.

(c) si en cambio tomamos $\mathbf{v}^{(0)} = (1, 1, 4)$, determinar si la iteración

$$oldsymbol{v}^{(k)} = rac{oldsymbol{A} oldsymbol{v}^{(k-1)}}{\|oldsymbol{A} oldsymbol{v}^{(k-1)}\|}, \quad ext{para } k \geq 1$$

da como resultado una sucesión $v^{(k)}$ convergente, y en tal caso calcular dicho límite.

1