HW2: Classification

Cheng-En Lee, 110065508

due on 10/25 (Tue) 9am

Data Source

```
library(mlbench) #install package first!!
library(corrplot)
library(MASS)
library(Hmisc)
library(class)
library(nnet)
library(glmnet)
```

Problem 1: Wisconsin Breast Cancer Data

1. EDA

(1) Data preprocessing:

These data consist of 699 observations on 11 variables, one being "ID" variable, 9 being ordered or nominal variables, and 1 target class

```
data(BreastCancer)
head(BreastCancer)
```

```
Id Cl.thickness Cell.size Cell.shape Marg.adhesion Epith.c.size
##
## 1 1000025
                         5
                                    1
## 2 1002945
                         5
                                    4
                                                4
                                                              5
                                                                            7
                                                                            2
## 3 1015425
                         3
                         6
                                    8
                                               8
                                                                            3
## 4 1016277
                                                               1
                                                               3
                                                                             2
## 5 1017023
                         4
                                    1
                                                1
## 6 1017122
                         8
                                   10
                                               10
                                                               8
                                                                            7
     Bare.nuclei Bl.cromatin Normal.nucleoli Mitoses
                                                            Class
## 1
                            3
               1
                                             1
                                                           benign
## 2
               10
                            3
                                             2
                                                      1
                                                           benign
               2
                            3
                                             1
## 3
                                                           benign
## 4
                            3
                                             7
                                                           benign
## 5
               1
                            3
                                             1
                                                            benign
               10
## 6
                                                      1 malignant
```

dim(BreastCancer) ## [1] 699 11 #make variables numeric (remove variable: ID) and save the data as a dataframe object dat1 = matrix(as.numeric(as.matrix(BreastCancer[,2:10])), 699, 9) dat1 = data.frame(dat1) colnames(dat1) <- colnames(BreastCancer)[2:10]</pre> head(dat1) ## Cl.thickness Cell.size Cell.shape Marg.adhesion Epith.c.size Bare.nuclei ## 1 ## 2 ## 3 ## 4 ## 5 ## 6 Bl.cromatin Normal.nucleoli Mitoses ## 1 ## 2 ## 3 ## 4 ## 5 ## 6 dat1\$case = as.numeric(BreastCancer\$Class=="malignant")

(2) There are 16 NA's in variable Bare.nuclei. Hence, I only use the observations with complete data.

```
#remove missing data (NA)
dat1 = na.omit(dat1)
dim(dat1) #check data dimension
```

```
## [1] 683 10
```

(3) Plot the scatter plot and the histrogram of the dataset

```
pairs(dat1[,1:9], col=as.factor(dat1[,10]), pch="+")
```


These features has a integer value. Besides, some of the features Cl.thickness, Cell.size, Cell.shape, and Marg.adhesion seems to separate the two classes.

hist.data.frame(dat1[,1:9])

This shows that the features does not follows a Gaussian distribution. Some of the assumptions using in data may need to be adjust.

(3) Correlation plots

#view variable correlations: round(cor(dat1),2)

##	Cl.t	hickness (Cell.size	Cell.shape	Marg.adhesion	Epith.c.size
## Cl.thick	ness	1.00	0.64	0.65	0.49	0.52
## Cell.siz	ze	0.64	1.00	0.91	0.71	0.75
## Cell.sha	ape	0.65	0.91	1.00	0.69	0.72
## Marg.adh	nesion	0.49	0.71	0.69	1.00	0.59

##	Epith.c.size	0.52	0.75	0.72	0.59	1.00
##	Bare.nuclei	0.59	0.69	0.71	0.67	0.59
##	Bl.cromatin	0.55	0.76	0.74	0.67	0.62
##	Normal.nucleoli	0.53	0.72	0.72	0.60	0.63
##	Mitoses	0.35	0.46	0.44	0.42	0.48
##	case	0.71	0.82	0.82	0.71	0.69
##		Bare.nuclei	Bl.cromatin	Normal.nucleo	li Mitoses	case
##	Cl.thickness	0.59	0.55	0.	53 0.35	0.71
##	Cell.size	0.69	0.76	0.	72 0.46	0.82
##	Cell.shape	0.71	0.74	0.	72 0.44	0.82
##	Marg.adhesion	0.67	0.67	0.0	60 0.42	0.71
##	Epith.c.size	0.59	0.62	0.0	63 0.48	0.69
##	Bare.nuclei	1.00	0.68	0.	58 0.34	0.82
##	Bl.cromatin	0.68	1.00	0.0	67 0.35	0.76
##	${\tt Normal.nucleoli}$	0.58	0.67	1.0	00 0.43	0.72
##	Mitoses	0.34	0.35	0.4	43 1.00	0.42
##	case	0.82	0.76	0.	72 0.42	1.00

corrplot(cor(dat1))

There are high correlations between all input variables.

(4) There is a class unbalance, but not severe.

as.data.frame(table(dat1\$case))

```
## Var1 Freq
## 1 0 444
## 2 1 239
```

2. Performing the classification task

Do the train test split first. The splitting proportion is set to 0.7.

```
set.seed(48763)
sample <- sample(c(TRUE, FALSE), nrow(dat1), replace=TRUE, prob=c(0.7,0.3))
train <- dat1[sample, ]
test <- dat1[!sample, ]</pre>
```

(1) logistic regression

Let's consider the vanilla logistic regression with all features.

```
##
## Call:
  glm(formula = case ~ Cl.thickness + Cell.size + Cell.shape +
##
       Marg.adhesion + Epith.c.size + Bare.nuclei + Bl.cromatin +
##
       Normal.nucleoli + Mitoses, family = binomial, data = train)
##
##
  Deviance Residuals:
        Min
                         Median
                                                 Max
##
  -2.66243 -0.05857 -0.01966
                                  0.00176
                                             2.21516
##
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
##
                   -14.2036
                                2.6137
                                        -5.434 5.5e-08 ***
## (Intercept)
## Cl.thickness
                     0.8436
                                0.2453
                                         3.439 0.000584 ***
## Cell.size
                    -0.3755
                                0.3394
                                       -1.106 0.268602
## Cell.shape
                     0.2616
                                0.3217
                                         0.813 0.416182
## Marg.adhesion
                     0.5609
                                0.2320
                                         2.418 0.015607 *
## Epith.c.size
                     0.2987
                                0.2236
                                         1.336 0.181585
## Bare.nuclei
                     0.5269
                                0.1605
                                         3.283 0.001028 **
## Bl.cromatin
                                0.2719
                                         2.133 0.032948 *
                     0.5800
## Normal.nucleoli
                     0.5548
                                0.2051
                                          2.705 0.006822 **
                                         2.034 0.042001 *
## Mitoses
                     0.9428
                                0.4636
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 610.630
                               on 482
                                       degrees of freedom
## Residual deviance: 45.031
                               on 473
                                       degrees of freedom
## AIC: 65.031
## Number of Fisher Scoring iterations: 9
```

Making predictions on both the training set and the testing set, and derive the confusion matrix. The performance looks good since overall training accuracy is 97.93% and the testing accuracy is 0.93%.

```
# Predicting on the training set
glm.probs <- predict(glm.fits, train, type = "response")</pre>
glm.pred <- rep(0, length(train$case))</pre>
glm.pred[glm.probs > .5] = 1
table(glm.pred, train$case)
##
## glm.pred 0
                 1
          0 320 5
##
##
          1 5 153
mean(glm.pred == train$case)
## [1] 0.9792961
# Predicting on the test set
glm.probs_test <- predict(glm.fits, test, type = "response")</pre>
glm.pred_test <- rep(0, length(test$case))</pre>
glm.pred_test[glm.probs_test > .5] = 1
table(glm.pred_test, test$case)
##
## glm.pred_test 0
                      7
##
               0 112
##
               1 7 74
mean(glm.pred_test == test$case)
## [1] 0.93
Let's use backward selection [1] to choose important features to see if further improvement can be performed.
glm.fits <- glm(</pre>
    case ~ Cl.thickness + Cell.size + Marg.adhesion +
            Epith.c.size + Bare.nuclei + Bl.cromatin + Normal.nucleoli +
    data = train,
    family = binomial
summary(glm.fits)
##
## glm(formula = case ~ Cl.thickness + Cell.size + Marg.adhesion +
       Epith.c.size + Bare.nuclei + Bl.cromatin + Normal.nucleoli +
##
       Mitoses, family = binomial, data = train)
##
## Deviance Residuals:
                         Median
        Min 1Q
                                        3Q
                                                 Max
## -2.73149 -0.05554 -0.01938 0.00167
                                             2.03042
```

```
##
## Coefficients:
##
                  Estimate Std. Error z value Pr(>|z|)
                  -14.3370 2.6032 -5.507 3.64e-08 ***
## (Intercept)
## Cl.thickness
                    0.8903
                               0.2470
                                       3.605 0.000312 ***
## Cell.size
                   -0.1855
                               0.2493 -0.744 0.456763
## Marg.adhesion
                   0.5436
                                      2.390 0.016836 *
                               0.2274
                                      1.462 0.143684
## Epith.c.size
                    0.3208
                               0.2194
                                      3.459 0.000543 ***
## Bare.nuclei
                    0.5502
                               0.1591
## Bl.cromatin
                    0.6033
                               0.2773 2.176 0.029561 *
## Normal.nucleoli 0.5517
                               0.1994 2.767 0.005658 **
                               0.4503 2.120 0.033996 *
                    0.9547
## Mitoses
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 610.630 on 482 degrees of freedom
## Residual deviance: 45.662 on 474 degrees of freedom
## AIC: 63.662
## Number of Fisher Scoring iterations: 9
glm.fits <- glm(</pre>
    case ~ Cl.thickness + Marg.adhesion +
           Epith.c.size + Bare.nuclei + Bl.cromatin + Normal.nucleoli +
           Mitoses,
   data = train,
   family = binomial
 )
summary(glm.fits)
##
## Call:
## glm(formula = case ~ Cl.thickness + Marg.adhesion + Epith.c.size +
      Bare.nuclei + Bl.cromatin + Normal.nucleoli + Mitoses, family = binomial,
##
      data = train)
## Deviance Residuals:
       Min
                  10
                        Median
                                      30
                                               Max
## -2.56306 -0.06362 -0.02208
                                 0.00236
                                           1.97717
## Coefficients:
##
                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                  -13.7423
                               2.3807 -5.773 7.81e-09 ***
## Cl.thickness
                    0.8337
                               0.2274
                                      3.667 0.000245 ***
## Marg.adhesion
                    0.4635
                               0.1947
                                       2.381 0.017275 *
## Epith.c.size
                    0.2603
                               0.1995
                                      1.305 0.191944
## Bare.nuclei
                    0.5074
                               0.1406
                                      3.608 0.000309 ***
## Bl.cromatin
                    0.5660
                               0.2696
                                      2.099 0.035809 *
## Normal.nucleoli 0.5084
                               0.1825
                                       2.787 0.005325 **
                    0.8917
## Mitoses
                               0.4604
                                      1.937 0.052786 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```

```
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 610.630 on 482 degrees of freedom
## Residual deviance: 46.206 on 475 degrees of freedom
## AIC: 62.206
## Number of Fisher Scoring iterations: 9
glm.fits <- glm(</pre>
   case ~ Cl.thickness + Marg.adhesion +
           Bare.nuclei + Bl.cromatin + Normal.nucleoli +
   data = train,
   family = binomial
summary(glm.fits)
##
## Call:
## glm(formula = case ~ Cl.thickness + Marg.adhesion + Bare.nuclei +
      Bl.cromatin + Normal.nucleoli + Mitoses, family = binomial,
##
      data = train)
##
## Deviance Residuals:
       Min
                 1Q
                        Median
                                               Max
## -2.48297 -0.06652 -0.02335
                                0.00218
## Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
                  -13.3658
                             2.2553 -5.926 3.10e-09 ***
## (Intercept)
                                       3.845 0.000121 ***
## Cl.thickness
                    0.8649
                               0.2250
## Marg.adhesion
                    0.4943
                            0.1971 2.507 0.012174 *
## Bare.nuclei
                    0.5398
                             0.1375 3.926 8.63e-05 ***
## Bl.cromatin
                               0.2602 2.410 0.015942 *
                    0.6270
                                       2.969 0.002986 **
                               0.1805
## Normal.nucleoli 0.5359
## Mitoses
                    0.8421
                               0.4687 1.797 0.072387 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 610.630 on 482 degrees of freedom
## Residual deviance: 47.774 on 476 degrees of freedom
## AIC: 61.774
## Number of Fisher Scoring iterations: 9
glm.fits <- glm(</pre>
   case ~ Cl.thickness + Marg.adhesion +
           Bare.nuclei + Bl.cromatin + Normal.nucleoli,
   data = train,
   family = binomial
```

```
summary(glm.fits)
##
## Call:
## glm(formula = case ~ Cl.thickness + Marg.adhesion + Bare.nuclei +
      Bl.cromatin + Normal.nucleoli, family = binomial, data = train)
## Deviance Residuals:
        Min
                   1Q
                         Median
                                       3Q
                                                Max
## -2.57146 -0.06530 -0.02017
                                  0.00438
                                            2.15464
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   -12.8565
                                2.1401 -6.007 1.89e-09 ***
## Cl.thickness
                     0.9839
                                0.2305
                                        4.268 1.97e-05 ***
                                        2.472 0.01342 *
## Marg.adhesion
                     0.4694
                                0.1898
## Bare.nuclei
                     0.5453
                                0.1387
                                        3.932 8.44e-05 ***
## Bl.cromatin
                     0.6011
                                0.2520 2.386 0.01705 *
## Normal.nucleoli 0.5544
                                0.1676 3.308 0.00094 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 610.63 on 482 degrees of freedom
## Residual deviance: 50.71 on 477 degrees of freedom
## AIC: 62.71
## Number of Fisher Scoring iterations: 9
Making predictions again.
# Predicting on the training set
glm.probs <- predict(glm.fits, train, type = "response")</pre>
glm.pred <- rep(0, length(train$case))</pre>
glm.pred[glm.probs > .5] = 1
table(glm.pred, train$case)
##
## glm.pred
##
          0 320
##
          1
             5 154
mean(glm.pred == train$case)
## [1] 0.9813665
# Predicting on the test set
glm.probs_test <- predict(glm.fits, test, type = "response")</pre>
glm.pred_test <- rep(0, length(test$case))</pre>
glm.pred_test[glm.probs_test > .5] = 1
table(glm.pred_test, test$case)
```

```
## ## glm.pred_test 0 1 ## 0 114 5 ## 1 5 76
```

```
mean(glm.pred_test == test$case)
```

[1] 0.95

The performance improved to 98.14% and 95%, respectively. Also, the gap between training and testing is reduced. This is because through the backward selection, the noise and the non-important features are filtered out, and the complexity of model has thus reduced.

(2) Linear Discriminate Analysis

```
lda.fit <- lda(case ~ Cl.thickness + Cell.size + Cell.shape +</pre>
                      Marg.adhesion + Epith.c.size + Bare.nuclei +
                      Bl.cromatin + Normal.nucleoli + Mitoses,
               data = train)
lda.fit
## Call:
## lda(case ~ Cl.thickness + Cell.size + Cell.shape + Marg.adhesion +
##
       Epith.c.size + Bare.nuclei + Bl.cromatin + Normal.nucleoli +
##
       Mitoses, data = train)
##
## Prior probabilities of groups:
##
           0
## 0.6728778 0.3271222
##
## Group means:
     Cl.thickness Cell.size Cell.shape Marg.adhesion Epith.c.size Bare.nuclei
## 0
         2.987692 1.292308
                               1.403077
                                             1.332308
                                                           2.076923
                                                                       1.298462
## 1
         7.101266
                   6.651899
                               6.575949
                                             5.753165
                                                           5.487342
                                                                       7.772152
##
     Bl.cromatin Normal.nucleoli Mitoses
## 0
        2.070769
                         1.206154 1.067692
## 1
        6.063291
                         6.044304 2.613924
## Coefficients of linear discriminants:
##
                            LD1
## Cl.thickness
                    0.18195872
## Cell.size
                    0.10178697
## Cell.shape
                    0.08259018
## Marg.adhesion
                    0.05275000
## Epith.c.size
                    0.09561850
## Bare.nuclei
                    0.29928267
## Bl.cromatin
                    0.09056005
## Normal.nucleoli 0.17649906
## Mitoses
                   -0.05675117
```


Let's see the prediction results.

```
# Predict on training set
lda.pred <- predict(lda.fit, train)
lda.class <- lda.pred$class
table(lda.class, train$case)</pre>
```

```
mean(lda.class == train$case)
## [1] 0.9710145
# Predict on testing set
lda.pred_test <- predict(lda.fit, test)</pre>
lda.class <- lda.pred_test$class</pre>
table(lda.class, test$case)
##
## lda.class
               0
                    1
##
           0 115
                   9
           1
                  72
mean(lda.class == test$case)
## [1] 0.935
Since the LDA and logistic regression are almost the same given the same features, let's consider the LDA
with features selected in (1).
lda2.fit <- lda(case ~ Cl.thickness + Marg.adhesion + Bare.nuclei +
                      Bl.cromatin + Normal.nucleoli,
               data = train)
lda2.fit
## Call:
## lda(case ~ Cl.thickness + Marg.adhesion + Bare.nuclei + Bl.cromatin +
##
       Normal.nucleoli, data = train)
##
## Prior probabilities of groups:
           0
##
## 0.6728778 0.3271222
## Group means:
##
    Cl.thickness Marg.adhesion Bare.nuclei Bl.cromatin Normal.nucleoli
         2.987692
                        1.332308
                                    1.298462
                                                2.070769
## 0
                                                           1.206154
                       5.753165
                                    7.772152
                                                6.063291
## 1
         7.101266
                                                                 6.044304
##
## Coefficients of linear discriminants:
                           LD1
## Cl.thickness
                   0.21498770
## Marg.adhesion
                   0.09926538
## Bare.nuclei
                   0.31905716
## Bl.cromatin
                   0.16075639
## Normal.nucleoli 0.21349073
plot(lda2.fit)
```



```
# Predict on training set
lda2.pred <- predict(lda2.fit, train)
lda2.class <- lda2.pred$class
table(lda2.class, train$case)

##
## lda2.class 0 1
## 0 321 12
## 1 4 146</pre>
```

mean(lda2.class == train\$case)

[1] 0.9668737

```
# Predict on testing set
lda2.pred_test <- predict(lda2.fit, test)</pre>
lda2.class <- lda2.pred test$class</pre>
table(lda2.class, test$case)
##
## lda2.class
##
            0 115 10
##
            1 4 71
mean(lda2.class == test$case)
## [1] 0.93
The performance does not improved. This may caused from the non-Gaussian distribution of the data.
 (3) Quadratic Discriminant Analysis
qda.fit <- qda(case ~ Cl.thickness + Cell.size + Cell.shape +
                      Marg.adhesion + Epith.c.size + Bare.nuclei +
                      Bl.cromatin + Normal.nucleoli + Mitoses,
               data = train)
qda.fit
## Call:
## qda(case ~ Cl.thickness + Cell.size + Cell.shape + Marg.adhesion +
       Epith.c.size + Bare.nuclei + Bl.cromatin + Normal.nucleoli +
       Mitoses, data = train)
##
##
## Prior probabilities of groups:
## 0.6728778 0.3271222
##
## Group means:
     Cl.thickness Cell.size Cell.shape Marg.adhesion Epith.c.size Bare.nuclei
## 0
         2.987692 1.292308
                               1.403077
                                              1.332308
                                                           2.076923
                                                                        1.298462
## 1
         7.101266 6.651899
                               6.575949
                                              5.753165
                                                           5.487342
                                                                        7.772152
    Bl.cromatin Normal.nucleoli Mitoses
## 0
        2.070769
                         1.206154 1.067692
        6.063291
## 1
                         6.044304 2.613924
# Predict on training set
qda.pred <- predict(qda.fit, train)</pre>
qda.class <- qda.pred$class
table(qda.class, train$case)
##
## qda.class
##
           0 310
##
           1 15 157
```

```
mean(qda.class == train$case)
## [1] 0.9668737
# Predict on testing set
qda.pred_test <- predict(qda.fit, test)</pre>
qda.class <- qda.pred_test$class</pre>
table(qda.class, test$case)
##
## qda.class
##
            0 109
                    3
##
            1 10 78
mean(qda.class == test$case)
## [1] 0.935
QDA performs as LDA. No significant difference.
 (4) KNN
Let's use a hieuristic KNN with 1 neighbors.
knn.pred <- knn(train, test, train$case, k = 1)
table(knn.pred, test$case)
##
## knn.pred
##
          0 115
                   3
##
           1
               4 78
mean(knn.pred == test$case)
## [1] 0.965
Now, consider the case K=1\sim 10. Plot the accuracy along with the value of K.
accuracy = c()
K = c(1:50)
for(k in K)
{
  knn.pred <- knn(train, test, train$case, k = k)</pre>
  acc <- mean(knn.pred == test$case)</pre>
  accuracy <- c(accuracy, acc)</pre>
plot(K, accuracy, type = "l", ylim = c(0.9, 1))
```


Hence the case K=1 is the most simple model with the best accuracy 96.5%.

3. Report the performance of your classifiers

Beside the discussions of the classifiers, we sum up the performance (testing accuracy) of each classifiers in the following:

(1) Logistic regression: 95%

(2) LDA: 93%

(3) QDA: 93.5%

(4) KNN: 96.5%

As a final remark, though KNN achieves the highest score; however, there is still a chance that logistic regression outperforms it. The data has high correlation, some dimension reduction methods may help.

4. Make your conclusions on data contents

To inspect whether one has a breast cancer, we may consider the features Cl.thickness, Marg.adhesion , Bare.nuclei, Bl.cromatin and Normal.nucleoli.

Problem 2: Glass Data

1. EDA

summary(Glass)

Median :0.00000

3rd Qu.:0.10000

:0.05701

:0.51000

##

##

##

##

Mean

Max.

These data consist of 214 examples of the chemical analysis of 6 different types of glass (the target class to be predicted). There are 9 chemical variables for glass classification.

```
data(Glass)
head(Glass)
##
          RI
                Na
                           Al
                                 Si
                                       K
                                           Ca Ba
                                                    Fe Type
                     Mg
## 1 1.52101 13.64 4.49 1.10 71.78 0.06 8.75
                                               0 0.00
## 2 1.51761 13.89 3.60 1.36 72.73 0.48 7.83
                                               0 0.00
## 3 1.51618 13.53 3.55 1.54 72.99 0.39 7.78
                                               0 0.00
                                                          1
## 4 1.51766 13.21 3.69 1.29 72.61 0.57 8.22
                                               0 0.00
                                                          1
## 5 1.51742 13.27 3.62 1.24 73.08 0.55 8.07
                                                          1
                                               0 0.00
## 6 1.51596 12.79 3.61 1.62 72.97 0.64 8.07
                                               0 0.26
#View(Glass)
```

```
##
           RI
                            Na
                                              Mg
                                                               Al
##
    Min.
            :1.511
                     Min.
                             :10.73
                                       Min.
                                               :0.000
                                                         Min.
                                                                 :0.290
##
    1st Qu.:1.517
                     1st Qu.:12.91
                                       1st Qu.:2.115
                                                         1st Qu.:1.190
##
    Median :1.518
                     Median :13.30
                                       Median :3.480
                                                         Median :1.360
##
    Mean
            :1.518
                     Mean
                             :13.41
                                       Mean
                                               :2.685
                                                         Mean
                                                                 :1.445
##
    3rd Qu.:1.519
                     3rd Qu.:13.82
                                       3rd Qu.:3.600
                                                         3rd Qu.:1.630
            :1.534
##
    Max.
                     Max.
                             :17.38
                                       Max.
                                               :4.490
                                                         Max.
                                                                 :3.500
##
           Si
                            K
                                               Ca
                                                                  Ba
##
    Min.
            :69.81
                     Min.
                             :0.0000
                                                : 5.430
                                                           Min.
                                                                   :0.000
                                        Min.
##
    1st Qu.:72.28
                     1st Qu.:0.1225
                                        1st Qu.: 8.240
                                                           1st Qu.:0.000
##
    Median :72.79
                     Median :0.5550
                                        Median: 8.600
                                                           Median : 0.000
##
    Mean
            :72.65
                             :0.4971
                                                : 8.957
                                                           Mean
                                                                   :0.175
                     Mean
                                        Mean
##
    3rd Qu.:73.09
                     3rd Qu.:0.6100
                                        3rd Qu.: 9.172
                                                           3rd Qu.:0.000
##
    Max.
            :75.41
                     Max.
                             :6.2100
                                        Max.
                                                :16.190
                                                           Max.
                                                                   :3.150
##
          Fe
                        Туре
##
    Min.
            :0.00000
                        1:70
                        2:76
##
    1st Qu.:0.00000
```

(1) Plot the scatter plot and the histrogram of the dataset

3:17

5:13

6: 9

7:29

In this figure, different colors means a different class of glass. Some features are shown to be have a structure, such as ${\tt Al,Si}$, and ${\tt Na}$.

```
dat2 = data.frame(Glass)
hist.data.frame(dat2[,1:9])
```


Now the distribution looks more likely a bell-shaped. Also, since the correlation between features are smaller than that in problem 1 (see below), I expect the classifications would be easier than problem 1.

(2) Plot the correlation matrix of the dataset

round(cor(dat2[,1:9]),2) #only for numeric variables

```
##
                                        K
                                                         Fe
         RI
               Na
                     Mg
                           Al
                                 Si
                                             Ca
                                                   Вa
## RI
      1.00 -0.19 -0.12 -0.41 -0.54 -0.29
                                           0.81
                                                 0.00
                                                       0.14
           1.00 -0.27
                         0.16 -0.07 -0.27 -0.28
                                                 0.33 - 0.24
## Mg -0.12 -0.27 1.00 -0.48 -0.17
                                     0.01 -0.44 -0.49
## Al -0.41 0.16 -0.48 1.00 -0.01 0.33 -0.26
## Si -0.54 -0.07 -0.17 -0.01 1.00 -0.19 -0.21 -0.10 -0.09
```

```
## K -0.29 -0.27 0.01 0.33 -0.19 1.00 -0.32 -0.04 -0.01 ## Ca 0.81 -0.28 -0.44 -0.26 -0.21 -0.32 1.00 -0.11 0.12 ## Ba 0.00 0.33 -0.49 0.48 -0.10 -0.04 -0.11 1.00 -0.06 ## Fe 0.14 -0.24 0.08 -0.07 -0.09 -0.01 0.12 -0.06 1.00
```

corrplot(cor(dat2[,1:9]))

The correlation between features are mostly weak besides $\tt Ca CO_3$ during manufacturing. This may cause the refractive index increases if more are added.

(3) Boxplot

boxplot(Glass)

This figure shows that glass are mostly made of silicon, then Na and Ca. Other elements contains a small proportion.

2. Performing the classification task

Do the train test split first. The splitting proportion is set to 0.7.

```
set.seed(48763)
sample <- sample(c(TRUE, FALSE), nrow(dat2), replace=TRUE, prob=c(0.7,0.3))
train <- dat2[sample, ]
test <- dat2[!sample, ]
train.x <- as.matrix(train[1:9])
train.y <- as.matrix(train[10])</pre>
```

```
test.x <- as.matrix(test[1:9])
test.y <- as.matrix(test[10])</pre>
```

(1) Logistic Regression

```
# fitting via glmnet
mod.glmnet <- glmnet::glmnet(
    x = train.x,
    y = train.y,
    family = "multinomial"
)</pre>
```

[1] 0.7091946

[1] 0.5958462

Na

Since this is a logistic regression of multiple class, we cannot use backward selection [3]. All we can do is putting all the features in. then we found that the performance is poor with a 59% test accuracy.

(2) LDA

Si

K

Ca

Al

1 1.518871 13.23708 3.5777083 1.157292 72.60771 0.4495833 8.798958 0.0162500 ## 2 1.518581 13.09709 2.9950909 1.420364 72.59164 0.5347273 9.065818 0.0600000 ## 3 1.517848 13.38462 3.5246154 1.210769 72.42923 0.4300000 8.786154 0.00000000 ## 5 1.518782 13.22333 0.7150000 2.223333 71.79500 1.6133333 9.800000 0.4066667

Mg

```
## 6 1.517456 14.64667 1.3055556 1.366667 73.20667 0.0000000 9.356667 0.0000000
## 7 1.517247 14.40333 0.2872222 2.169444 73.15278 0.2244444 8.775556 0.9172222
##
## 1 0.05625000
## 2 0.09309091
## 3 0.04307692
## 5 0.08500000
## 6 0.00000000
## 7 0.01333333
##
## Coefficients of linear discriminants:
##
             LD1
                        LD2
                                   LD3
                                             LD4
## RI 472.5360967 256.8870860 -574.417048 -45.072073 -574.65961782
       2.1477840 2.7789936 -2.231762 -6.671682 -0.51984843
## Na
       0.2482462 2.7550637 -3.119289 -6.299058
                                                   -0.06321988
## Mg
## Al
       3.2130826
                 2.0584626
                              -4.194733 -5.511973
                                                    -1.63530524
## Si
       2.5154400 3.4531127 -3.784534 -6.083498
                                                   -1.41911446
## K
       1.3465866 1.5408546 -3.212913 -7.649210
                                                  -0.54324535
                                                  0.32545877
## Ca
       0.4293742 2.0538852 -1.981286 -6.375390
       1.6794961 2.7805954 -3.626655 -6.114056
## Ba
                                                    1.99972525
## Fe -0.1697290 -0.9283842 -1.737946 0.807552 -3.71968408
## Proportion of trace:
## LD1
          LD2
                LD3
                               LD5
                         LD4
## 0.8307 0.0925 0.0487 0.0180 0.0101
```



```
# Predict on training set
lda.pred <- predict(lda.fit, train)
lda.class <- lda.pred$class
table(lda.class, train$Type)</pre>
```

```
##
## lda.class 1 2
##
           1 37 11
##
##
                             0
           5
##
                             0
##
                       2
                          7
                             0
##
mean(lda.class == train$Type)
```

[1] 0.7181208

```
# Predict on testing set
lda.pred_test <- predict(lda.fit, test)
lda.class <- lda.pred_test$class
table(lda.class, test$Type)</pre>
```

```
##
## lda.class 1 2 3 5
        1 13 4
                2
                  0
##
                     0
##
        2 7 16 1
                  4
                    0
                       1
        3 2 0 1
##
##
        5 0 0 0 1 0 1
        6 0 1 0 2
##
        7 0 0 0 0 0 8
##
```

```
mean(lda.class == test$Type)
```

```
## [1] 0.6
```

LDA also performs badly, as expected. Besides, QDA cannot be performed because I encounter the error [4]. This seems like the problem for the dataset itself.

(3) KNN

```
knn.pred <- knn(train, test, train$Type, k = 1)
table(knn.pred, test$Type)</pre>
```

```
##
## knn.pred 1 2 3 5
                   6
       1 22 1
##
              0
                 0
                   0
##
       2 0 20 0 0 0 0
##
       3 0 0 4 0 0 0
       5 0 0 0
                 7 0 1
##
##
       6 0 0 0 0 0 1
##
       7 0 0 0 0 0 9
```

```
mean(knn.pred == test$Type)
```

[1] 0.9538462

Tuning K such that KNN has the best performance.

```
accuracy = c()
K = c(1:50)
for(k in K)
{
    knn.pred <- knn(train, test, train$Type, k = k)
    acc <- mean(knn.pred == test$Type)
    accuracy <- c(accuracy, acc)
}
plot(K, accuracy, type = "l", ylim = c(0.7, 1))</pre>
```


Hence the case K=1 is the best model.

3. Report the performance of your classifiers

In this case, the logistic regression and LDA shows a low performance compared to KNN.

(1) Logistic regression: 59.58%

(2) LDA: 60%

(3) QDA: Cannot perform

(4) KNN: 95.38%

4. Make your conclusions on data contents

Since KNN gives the best performance, we may consider that the same class of glass tends to share similar proportion of ingredients.

Reference

- [1] Stepwise regression, https://en.wikipedia.org/wiki/Stepwise_regression
- [3] When using glmnet how to report p-value significance to claim significance of predictors? https://stats.stackexchange.com/questions/45449/when-using-glmnet-how-to-report-p-value-significance-to-claim-significance-of-pr
- $[4] \ R \ Error: some group is too small for `qda', https://stackoverflow.com/questions/20481772/r-error-some-group-is-too-small-for-qda$