5.3. Смяна на ортонормирани координатни системи. Нека К= Оётё е ортонормирана координатна система и определената от нея посока е приета за полонителна. Спрямо к произволен единисен вектор \vec{a} - $|\vec{a}|$ = 1 има координати \vec{a} (соѕч, соѕч, соѕч, където соѕч; і=1,2 еа директорните косинчи на посоката, определена от вектора \vec{a} , т.е. 4= 丰克司 4= 丰克司. Нека 4 е ориентирания 6261 - +(E, a). Тогава à (cos4, sin4) => P1=P, a P2= 11-P, um P= P1-1/2 1. Heka 0 < 4 < TT => cos4, = cos4, a cos42 = sin4. => 41=211-4 => cos 4, = cos 4. 2. Hera JI < 4 < 2TT 3a 42 UMAME 42 = 311 - 41 = 4- 11 unu 42 = 1/2 + 41. U6 HOOGA CAYTORS COS42 = SIN4 cos (4- 11) = sin4 cos 42 = - sin 4, = - sin (211-4) = sin (4-211) = sin4

Примери K = 0 \vec{e}_1 \vec{e}_2 K' = 0 \vec{e}_1' \vec{e}_2' са ортонормирани координатние 5.12 системи.

1. $\vec{e}_1'(\frac{1}{2}, \frac{13}{3})$, $\vec{e}_2'(-\frac{13}{2}, \frac{1}{2}) \Rightarrow C = \begin{pmatrix} \frac{1}{2} & -\frac{13}{2} \\ \frac{13}{3} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} us_1^{\frac{11}{3}} & -sin_1^{\frac{11}{3}} \\ sin_1^{\frac{11}{3}} & cos_1^{\frac{11}{3}} \end{pmatrix}$ 7. $\vec{e}_1'(us_1^{\frac{11}{3}}, sin_1^{\frac{11}{3}})$, $\vec{e}_2'(-sin_1^{\frac{11}{3}}, cos_1^{\frac{11}{3}})$ $detC = \frac{1}{2}$ $\frac{1}{2}$ $-\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}$