Devoir surveillé n°02 : corrigé

Solution 1

1.

$$S_n + T_n = \sum_{i=1}^n \sum_{j=1}^n \frac{i+j}{i+j} = \sum_{i=1}^n \sum_{j=1}^n 1 = n^2$$

2. En échangeant les noms des indices i et j,

$$S_n = \sum_{i=1}^n \sum_{i=1}^n \frac{j}{i+j}$$

En intervertissant l'ordre de sommation, on obtient bien $S_n = T_n$. Puisque $S_n + T_n = n^2$, on a donc $S_n = T_n = \frac{n^2}{2}$.

Solution 2

1. On trouve

$$a_0 = 1$$
 $a_1 = 1$ $a_2 = 2$ $a_3 = 5$ $a_4 = 14$ $S_0 = 1$ $S_1 = 2$ $S_2 = 5$ $S_3 = 14$ $S_4 = 42$

On remarque que $S_n = a_{n+1}$ pour $n \in \{0, 1, 2, 3\}$.

2. Soit $n \in \mathbb{N}$. On effectue le changement d'indice l = n - k de sorte que

$$T_n = \sum_{l=0}^{n} (n-l)a_{n-l}a_l = \sum_{k=0}^{n} (n-k)a_k a_{n-k}$$

Ainsi

$$2T_n = \sum_{k=0}^{n} k a_k a_{n-k} + \sum_{k=0}^{n} (n-k) a_k a_{n-k} = \sum_{k=0}^{n} (k+n-k) a_k a_{n-k} = nS_n$$

3. Soit $n \in \mathbb{N}$.

$$(n+2)a_{n+1} = \binom{2n+2}{n+1} = \frac{(2n+2)!}{(n+1)!^2} = \frac{(2n+2)(2n+1)(2n)!}{(n+1)^2n!^2} = \frac{2(2n+1)(2n)!}{(n+1)n!^2} = 2(2n+1)a_n$$

4. Soit $n \in \mathbb{N}$.

$$S_{n+1} + T_{n+1} = \sum_{k=0}^{n+1} a_k a_{n+1-k} + \sum_{k=0}^{n+1} k a_k a_{n+1-k}$$

$$= \sum_{k=0}^{n+1} (k+1) a_k a_{n+1-k}$$

$$= a_0 a_{n+1} + \sum_{k=1}^{n+1} (k+1) a_k a_{n+1-k}$$

$$= a_{n+1} + \sum_{k=0}^{n} (k+2) a_{k+1} a_{n-k}$$

Or pour tout $k \in \mathbb{N}$, $(k+2)a_{k+1} = 2(2k+1)a_k$ d'après la question 3 donc

$$S_{n+1} + T_{n+1} = a_{n+1} + 2 \sum_{k=0}^{n} (2k+1)a_k a_{n-k}$$

$$= a_{n+1} + 4 \sum_{k=0}^{n} k a_k a_{n-k} + 2 \sum_{k=0}^{n} a_k a_{n-k}$$

$$= a_{n+1} + 4T_n + 2S_n$$

Or on a vu à la question 2 que $2T_n = nS_n$ donc

$$S_{n+1} + T_{n+1} = a_{n+1} + 2nS_n + 2S_n = a_{n+1} + 2(n+1)S_n$$

D'après la question 2, $2T_{n+1} = (n+1)S_{n+1}$ donc

$$S_{n+1} + T_{n+1} = S_{n+1} + \frac{n+1}{2}S_{n+1} = \frac{n+3}{2}S_{n+1}$$

On en déduit que

$$\frac{n+3}{2}S_{n+1} = a_{n+1} + 2(n+1)S_n$$

5. D'après la question **1**, $S_0 = a_1 = 1$.

Supposons maintenant que $S_n = a_{n+1}$ pour un certain $n \in \mathbb{N}$. D'après la question précédente, $\frac{n+3}{2}S_{n+1} = a_{n+1} + a_{n+1}$ $2(n+1)S_n$. Or on a supposé que $S_n=a_{n+1}$ donc

$$\frac{n+3}{2}S_{n+1} = a_{n+1} + 2(n+1)a_{n+1} = (2n+3)a_{n+1}$$

Or d'après la question 3, $(n + 3)a_{n+2} = 2(2n + 3)a_{n+1}$ donc

$$\frac{n+3}{2}S_{n+1} = \frac{n+3}{2}a_{n+2}$$

puis $S_{n+1} = a_{n+2}$ puisque $\frac{n+3}{2} \neq 0$. Par récurrence, $S_n = a_{n+1}$ pour tout $n \in \mathbb{N}$.

6. Tout d'abord $a_0 = 1$ est un entier naturel. Supposons qu'il existe $n \in \mathbb{N}$ tels que $a_0, a_1, ..., a_n$ soient des entiers naturels. Alors S_n est également un entier naturel en tant que somme de produits de ces derniers entiers naturels. Puisque $a_{n+1} = S_n$, a_{n+1} est également un entier naturel. Par récurrence forte, a_n est donc un entier naturel pour

Solution 3

1. C'est une application de directe de la formule du binôme de Newton.

$$\sum_{j=0}^{q} {q \choose j} = \sum_{j=0}^{q} {q \choose j} 1^{j} 1^{q-j} = (1+1)^{q} = 2^{q}$$

2. Après simplifications des différentes factorielles, on obtient :

$$\frac{\binom{n}{k}\binom{k}{p}}{\binom{n}{n}} = \frac{(n-p)!}{(n-k)!(k-p)!} = \binom{n-p}{k-p}$$

3. D'après la question précédente

$$\sum_{k=p}^{n} \binom{n}{k} \binom{k}{p} = \binom{n}{p} \sum_{k=p}^{n} \binom{n-p}{k-p}$$

On effectue le changement d'indice j = k - p (la contrainte $p \le k \le n$ se transforme en $0 \le j \le n - p$), et on conclut en utilisant la première question avec q = n - p:

$$\sum_{k=p}^{n} \binom{n}{k} \binom{k}{p} = \binom{n}{p} \sum_{j=0}^{n-p} \binom{n-p}{j} = 2^{n-p} \binom{n}{p}$$

Solution 4

1. Supposons qu'il existe $k \in \mathbb{N}^*$ tel que $\frac{\alpha}{2^k} \equiv \frac{\pi}{2} [\pi]$. Alors $\alpha \equiv 2^{k-1} \pi [2^k \pi]$. Il existerait donc $m \in \mathbb{Z}$ tel que

$$\alpha = 2^{k-1}\pi + 2^k m\pi = (2^{k-1} + 2^k m)\pi$$

Comme $k \in \mathbb{N}^*$, $2^{k-1} + 2^k m$ est entier. Ainsi on aurait donc $\alpha \in \pi \mathbb{Z}$ et a fortiori $\alpha \in \frac{\pi}{2} \mathbb{Z}$, ce qui n'est pas. La somme S_n est donc bien définie.

2. On sait que

$$\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$$

On en déduit que

$$\frac{2}{\tan(2x)} = \frac{1 - \tan^2 x}{\tan x} = \frac{1}{\tan x} - \tan x$$

et donc que

$$\frac{1}{\tan(x)} - \frac{2}{\tan(2x)} = \tan(x)$$

Les membres de cette égalité sont définis si

$$x \neq 0[\pi]$$
 $2x \neq 0[\pi]$ $x \neq \frac{\pi}{2}[\pi]$ $2x \neq \frac{\pi}{2}[\pi]$

c'est-à-dire si

$$x \not\equiv 0[\pi]$$
 $x \not\equiv 0[\pi/2]$ $x \not\equiv \frac{\pi}{2}[\pi]$ $x \not\equiv \frac{\pi}{4}[\pi/2]$

ou, plus simplement, si $x \not\equiv 0[\pi/4]$.

3. On veut évidemment appliquer l'égalité précédente à $x = \alpha/2^k$. Il faut donc vérifier que pour $k \in \mathbb{N}^*$, $\alpha/2^k \not\equiv 0[\pi/4]$. Supposons que $\alpha/2^k \equiv 0[\pi/4]$. Alors $\alpha \equiv 0[2^{k-2}\pi]$. Comme $k \geq 1$, on aurait donc a fortiori $\alpha \equiv 0[\pi/2]$, ce qui n'est pas. On est donc en droit d'appliquer l'égalité précédente :

$$S_n = \sum_{k=1}^n \frac{\tan(\alpha/2^k)}{2^k} = \sum_{k=1}^n \frac{1}{2^k \tan(\alpha/2^k)} - \frac{2}{2^k \tan(2\alpha/2^k)}$$
$$= \sum_{k=1}^n \frac{1}{2^k \tan(\alpha/2^k)} - \frac{1}{2^{k-1} \tan(\alpha/2^{k-1})}$$
$$= \frac{1}{2^n \tan(\alpha/2^n)} - \frac{1}{\tan(\alpha)}$$

4. On sait que $\lim_{x\to 0} \cos(x) = 1$ et que $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Or $\frac{\tan x}{x} = \frac{\sin x}{x \cos x}$ donc $\lim_{x\to 0} \frac{\tan x}{x} = 1$. Or $\lim_{n\to +\infty} \frac{\alpha}{2^n} = 0$ donc

$$\lim_{n \to +\infty} \frac{\tan(\alpha/2^n)}{\alpha/2^n} = 1$$

ou encore

$$\lim_{n\to+\infty}2^n\tan(\alpha/2^n)=\alpha$$

Comme $\alpha \neq 0$,

$$\lim_{n \to +\infty} \frac{1}{2^n \tan(\alpha/2^n)} = \frac{1}{\alpha}$$

et donc

$$\lim_{n \to +\infty} S_n = \frac{1}{\alpha} - \frac{1}{\tan \alpha}$$

Solution 5

1. On utilise une formule de factorisation.

$$s = \cos\left(\frac{2\pi}{5}\right) + \cos\left(\frac{4\pi}{5}\right) = 2\cos\left(\frac{\frac{2\pi}{5} + \frac{4\pi}{5}}{2}\right)\cos\left(\frac{\frac{4\pi}{5} - \frac{2\pi}{5}}{2}\right) = 2\cos\left(\frac{3\pi}{5}\right)\cos\left(\frac{\pi}{5}\right)$$

Or

$$\cos\left(\frac{3\pi}{5}\right) = \cos\left(\pi - \frac{2\pi}{5}\right) = -\cos\left(\frac{2\pi}{5}\right) \qquad \text{et} \qquad \cos\left(\frac{\pi}{5}\right) = \cos\left(\pi - \frac{4\pi}{5}\right) = -\cos\left(\frac{4\pi}{5}\right)$$

et on a donc bien s = 2p.

REMARQUE. On peut également procéder dans «l'autre sens». En effet,

$$p = \cos\left(\frac{2\pi}{5}\right)\cos\left(\frac{4\pi}{5}\right) = \frac{1}{2}\left[\cos\left(\frac{4\pi}{5} - \frac{2\pi}{5}\right) + \cos\left(\frac{4\pi}{5} + \frac{2\pi}{5}\right)\right] = \frac{1}{2}\left[\cos\left(\frac{2\pi}{5}\right) + \cos\left(\frac{6\pi}{5}\right)\right]$$

Or $\frac{6\pi}{5} = 2\pi - \frac{4\pi}{5}$, ce qui permet d'obtenir le résultat escompté.

2. En utilisant la formule de duplication du sinus,

$$p\sin\left(\frac{2\pi}{5}\right) = \sin\left(\frac{2\pi}{5}\right)\cos\left(\frac{2\pi}{5}\right)\cos\left(\frac{4\pi}{5}\right) = \frac{1}{2}\sin\left(\frac{4\pi}{5}\right)\cos\left(\frac{4\pi}{5}\right) = \frac{1}{4}\sin\left(\frac{8\pi}{5}\right)$$

Or

$$\sin\left(\frac{8\pi}{5}\right) = \sin\left(2\pi - \frac{2\pi}{5}\right) = -\sin\left(\frac{2\pi}{5}\right)$$

Ainsi

$$p\sin\left(\frac{2\pi}{5}\right) = -\frac{1}{4}\sin\left(\frac{2\pi}{5}\right)$$

Or $\frac{2\pi}{5}$ n'est pas un multiple entier de π donc $\sin\left(\frac{2\pi}{5}\right) \neq 0$, ce qui permet d'affirmer que $p = -\frac{1}{4}$ et donc $s = -\frac{1}{2}$.

3. Puisque $\cos\left(\frac{2\pi}{5}\right)$ et $\cos\left(\frac{4\pi}{5}\right)$ ont pour somme $s=-\frac{1}{2}$ et pour produit $p=-\frac{1}{4}$, ils sont racines du trinôme $X^2+\frac{1}{2}X-\frac{1}{4}$. Ces racines sont $\frac{-1+\sqrt{5}}{4}$ et $\frac{-1-\sqrt{5}}{4}$. Comme $\frac{2\pi}{5} \in \left[0,\frac{\pi}{2}\right]$, $\cos\left(\frac{2\pi}{5}\right) > 0$ et donc

$$\cos\left(\frac{2\pi}{5}\right) = \frac{-1+\sqrt{5}}{4} \qquad \text{et} \qquad \cos\left(\frac{4\pi}{5}\right) = \frac{-1-\sqrt{5}}{4}$$

REMARQUE. On aurait aussi pu remarquer que

$$\cos\left(\frac{4\pi}{5}\right) = \cos\left(2 \times \frac{2\pi}{5}\right) = 2\cos^2\left(\frac{2\pi}{5}\right) - 1$$

Ainsi

$$\cos\left(\frac{2\pi}{5}\right) + 2\cos^{2}\left(\frac{2\pi}{5}\right) - 1 = s = -\frac{1}{2}$$

ou encore

$$2\cos^2\left(\frac{2\pi}{5}\right) + \cos\left(\frac{2\pi}{5}\right) - \frac{1}{2} = 0$$

Ainsi $\cos\left(\frac{2\pi}{5}\right)$ est racine du trinôme $2X^2+X-\frac{1}{2}$. Ces racines sont à nouveau $\frac{-1+\sqrt{5}}{4}$ et $\frac{-1-\sqrt{5}}{4}$. Comme précédemment, on invoque que $\cos\left(\frac{2\pi}{5}\right)>0$ pour en déduire que

$$\cos\left(\frac{2\pi}{5}\right) = \frac{-1 + \sqrt{5}}{4}$$

Puis

$$\cos\left(\frac{4\pi}{5}\right) = s - \cos\left(\frac{2\pi}{5}\right) = -\frac{1}{2} - \frac{-1 + \sqrt{5}}{4} = \frac{-1 - \sqrt{5}}{4}$$