Übungsblatt 2

Aufgabe 1 (Digitale Datenspeicher)

- 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet.
- 2. Nennen Sie zwei rotierende magnetische digitale Datenspeicher.
- 3. Nennen Sie zwei nichtrotierende magnetische digitale Datenspeicher.
- 4. Nennen Sie vier Vorteile von Datenspeicher ohne bewegliche Teile gegenüber Datenspeichern mit beweglichen Teilen.
- 5. Beschreiben Sie was wahlfreier Zugriff ist.
- 6. Nennen Sie einen nicht-persistenten Datenspeicher.
- 7. Der Speicher eines Computersystems wird in die Kategorien Primärspeicher, Sekundärspeicher und Tertiärspeicher unterschieden. Auf welche Kategorie(n) kann der Prozessor direkt zugreifen?
- 8. Nennen Sie die Kategorie(n) aus Teilaufgabe 7, auf die der Prozessor nur über einen Controller zugreifen kann.
- 9. Nennen Sie für jede Kategorie aus Teilaufgabe 7 zwei Beispiele.
- 10. Erklären Sie, warum Speicherseiten in den oberen Schichten der Speicherhierarchie ständig ersetzt werden.

Aufgabe 2 (Cache-Schreibstrategien)

- 1. Nennen Sie die beiden grundsätzlichen Cache-Schreibstrategien.
- 2. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der es zu Inkonsistenzen kommen kann.
- 3. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der die System-Geschwindigkeit geringer ist.
- 4. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der sogenannte "Dirty Bits" zum Einsatz kommen.
- 5. Beschreiben Sie die Aufgabe der "Dirty Bits".

Inhalt: Themen aus Foliensatz 2 Seite 1 von 9

Aufgabe 3 (Speicherverwaltung)

1.	Kreuzen Sie an Fragmentierung	·	onzepten der S	peicherpartitionierung interne
	☐ Statische Pa ☐ Dynamische ☐ Buddy-Algor	Partitionierung		
2.	Kreuzen Sie an Fragmentierung		onzepten der S	peicherpartitionierung externe
	☐ Statische Pa ☐ Dynamische ☐ Buddy-Algor	Partitionierung		
3.		-	_	onzept im kompletten Adress- r Anforderung passt.
	\square First Fit	□ Next Fit	\square Best fit	\square Random
4.		n, welches Spei en ersten passend	_	konzept ab dem Anfang des sucht.
	\square First Fit	\square Next Fit	\square Best fit	\square Random
5.		, welches Speiche nde des Adressra	_	zept den großen Bereich freien stückelt.
	\square First Fit	□ Next Fit	\square Best fit	\square Random
6.	Kreuzen Sie an passenden Bloc	· -	erverwaltungko:	nzept zufällig einen freien und
	\square First Fit	☐ Next Fit	\square Best fit	\square Random
7.		ot zur Speicherven n passenden freie		ab der Stelle der letzten Block-
	\square First Fit	\square Next Fit	\square Best fit	\square Random
8.		, welches Speiche langsamsten arl	_	nzept viele Minifragmente pro-
	\square First Fit	\square Next Fit	\square Best fit	\square Random
9.	-	_		Speicher mit dynamischer Par- ithmen First Fit, Next Fit und

Inhalt: Themen aus Foliensatz 2

Best Fit die Nummer der freien Partition an, die der entsprechende Algorithmus verwendet, um einen Prozess einzufügen, der 21 MB Speicher benötigt.

a) First Fit: ______ b) Next Fit: _____ c) Best Fit: _____ letzter zugewiesener Bereich \longrightarrow $\begin{bmatrix} 10\,\mathrm{MB} & 0 \\ 22\,\mathrm{MB} & 1 \\ 30\,\mathrm{MB} & 2 \\ 2\,\mathrm{MB} & 3 \\ 7\,\mathrm{MB} & 4 \\ 17\,\mathrm{MB} & 5 \\ 12\,\mathrm{MB} & 6 \\ 45\,\mathrm{MB} & 7 \\ 21\,\mathrm{MB} & 8 \\ 39\,\mathrm{MB} & 9 \end{bmatrix}$ frei belegt

Aufgabe 4 (Buddy-Verfahren)

Das Buddy-Verfahren zur Zuweisung von Speicher an Prozesse soll für einen $1024\,\mathrm{kB}$ großen Speicher verwendet werden. Führen Sie die angegeben Aktionen durch und geben Sie den Belegungszustand des Speichers nach jeder Anforderung oder Freigabe an.

	0	128	256	384	512	640	768	896	1024
Anfangszustand					1024 KB				
65 KB Anforderung => A									
30 KB Anforderung => B									
90 KB Anforderung => C									
34 KB Anforderung => D									
130 KB Anforderung => E									
Freigabe C									
Freigabe B									
275 KB Anforderung => F									
145 KB Anforderung => G									
Freigabe D									
Freigabe A									
Freigabe G									
Freigabe E									

Inhalt: Themen aus Foliensatz 2

Aufgabe 5 (Real Mode und Protected Mode)

- 1. Beschreiben Sie wie der Real Mode arbeitet.
- 2. Beschreiben Sie warum der Real Mode für Mehrprogrammbetrieb (Multitasking) ungeeignet ist.
- 3. Beschreiben Sie wie der Protected Mode arbeitet.
- 4. Beschreiben Sie was virtueller Speicher ist.
- 5. Erklären Sie, warum mit virtuellem Speicher der Hauptspeicher besser ausgenutzt wird.
- 6. Beschreiben Sie was Mapping ist.
- 7. Beschreiben Sie was Swapping ist.
- 8. Nennen Sie die Komponente der CPU, die virtuellen Speicher ermöglicht.
- 9. Beschreiben Sie die Aufgabe der Komponente aus Teilaufgabe 8.
- 10. Beschreiben Sie das Konzept des virtuellen Speichers mit dem Namen Paging.
- 11. Beschreiben Sie wo beim Paging interne Fragmentierung entsteht.
- 12. Geben Sie die maximale Anzahl von Speicheradressen an, die mit einem 16-Bit-Computersystem adressiert werden können.
- 13. Geben Sie die maximale Anzahl von Speicheradressen an, die mit einem 32-Bit-Computersystem adressiert werden können.
- 14. Erklären Sie, warum in 32-Bit- und 64-Bit-Systemen mehrstufiges Paging und nicht einstufiges Paging verwendet wird.

Inhalt: Themen aus Foliensatz 2 Seite 4 von 9

15. Berechnen Sie die physische 16-Bit-Speicheradresse unter Verwendung der Adressumrechnung mit einstufigem Paging. Ergänzen Sie die einzelnen Bits in der physischen 16-Bit-Adresse.

Virtuelle (logische) 16 Bit Adresse

0	0	0	1	()	1	1	1	0	1 1	L	1	1	()	1	0	1
							Sei	ten	tab	ell	e							
	•	•																
000110			Р	D	R	R Weitere Steuerbits			1	0) ()	1	C)	1		
000101		Р	D	R		tere erbits		1	1	. [0	1	_ [0			
•	•	•																
0 0	0 0	1 0		Р	D	R		tere erbits	(0	0) [L	0	1	- '	1	
0 0	0 0	0 1		Р	D	R		tere erbits		0	1		L	0	1	-	1	
0 0	0 0	0 0		Р	D	R		tere erbits	(0	1	. [1	C) [$\overline{1}$	

Physische 16 Bit Adresse

			ı					
			ı					
			ı					
			ı					

- 16. Beschreiben Sie den Zweck des Page-Table Base Register (PTBR).
- 17. Beschreiben Sie wie eine Page Fault Ausnahme (Exception) entsteht.
- 18. Beschreiben Sie wie das Betriebssystem auf eine Page Fault Ausnahme (Exception) reagiert.
- 19. Beschreiben Sie wie eine Access Violation Ausnahme (Exception) oder General Protection Fault Ausnahme (Exception) entsteht.
- 20. Beschreiben Sie die Auswirkung einer Access Violation Ausnahme (Exception) oder General Protection Fault Ausnahme (Exception).

Aufgabe 6 (Speicherverwaltung)

Kreuzen Sie bei jeder Aussage zur Speicherverwaltung an, ob die Aussage wahr oder falsch ist.

1.	Real Mode ist	für Multitasking-Systeme geeignet.
	\square Wahr	\square Falsch
2.		d Mode läuft jeder Prozess in seiner eigenen, von anderen Protetteten Kopie des physischen Adressraums.
	\square Wahr	\square Falsch

3.	Bei statischer l	Partitionierung entsteht interne Fragmentierung.
	\square Wahr	☐ Falsch
4.	Bei dynamisch	er Partitionierung ist externe Fragmentierung unmöglich.
	\square Wahr	☐ Falsch
5.	Beim Paging h	aben alle Seiten die gleiche Länge.
	\square Wahr	☐ Falsch
6.	Ein Vorteil lan	ger Seiten beim Paging ist geringe interne Fragmentierung.
	\square Wahr	☐ Falsch
7.	Ein Nachteil k werden kann.	urzer Seiten beim Paging ist, dass die Seitentabelle sehr groß
	\square Wahr	☐ Falsch
8.	Die MMU über belle in physiso	rsetzt beim Paging logische Speicheradressen mit der Seitentache Adressen.
	\square Wahr	☐ Falsch
9.	Moderne Betri den Paging.	ebssysteme (für x86) arbeiten im Protected Mode und verwen-
	\square Wahr	☐ Falsch

Aufgabe 7 (Seiten-Ersetzungsstrategien)

- 1. Die beste Seitenersetzungsstrategie ist die optimale Strategie. Beschreiben Sie, wie sie funktioniert.
- 2. Begründen Sie warum die optimale Ersetzungsstrategie OPT nicht implementiert werden kann.
- 3. Beschreiben Sie ein Szenario, in dem die optimale Strategie in der Praxis hilfreich ist.
- 4. Führen Sie die gegebene Zugriffsfolge mit den Ersetzungsstrategien Optimal, LRU, LFU und FIFO einmal mit einem Datencache mit einer Kapazität von 4 Seiten und einmal mit 5 Seiten durch. Berechnen Sie auch die Hitrate und die Missrate für alle Szenarien.

Inhalt: Themen aus Foliensatz 2

Optimale Ersetzungsstrategie (OPT):

Hitrate: Missrate: Ersetzungsstrategie Least Frequently Used (LFU):

Hitrate: Missrate:

Hitrate: Missrate:

Ersetzungsstrategie FIFO:

Hitrate: Missrate:

Anfragen: 1 3 5 4 2 4 3 2 1 0 5 3 5 0 4 3 5 4 3 2 1 3 4 5

Seite 1: Seite 2: Seite 3: Seite 4: Seite 5:

Hitrate: Missrate:

- 5. Beschreiben Sie die Kernaussage der Anomalie von Laszlo Belady.
- 6. Zeigen Sie Belady's Anomalie, indem sie die gegebene Zugriffsfolge mit der Ersetzungsstrategie FIFO einmal mit einem Datencache mit einer Kapazität von 3 Seiten und einmal mit 4 Seiten durchführen. Berechnen Sie auch die Hitrate und die Missrate für beide Szenarien.

Anfragen: 3 2 1 0 3 2 4 3 2 1 0 4

Seite 1: Seite 2: Seite 3:

Hitrate:

Missrate:

Anfragen: 3 2 1 0 3 2 4 3 2 1 0 4

Hitrate:

Seite 4:

Missrate: