Homework 3: Backdoor Attack

助教: 张吉哲

邮箱: jizhe.zhang@stu.pku.edu.cn

CONTENTS

01/ Brief Introduction

Brief Introduction:

Points

- Backdoor Attacks(15 points: 12+3)
- Adversarial Neuron Pruning (10 points: 6+4)

Requirements

- Word/pdf/markdown is ok.
- Write a report (at most 8 pages).
- Send your report and code to trustworthy_ai@163.com

Theme: Homework3-name-ID

• In Chinese/ English

Due: 5/29 23:59

Language and wheel

- Python
- PyTorch

Contents included by the *.zip

- All python file
- Log
- report

CONTENTS

01/ Brief Introduction

02/ Backdoor Attack

02

Backdoor Attack

Main files:

- train_backdoor.py
- data/poison_cifar.py
- generate_clb_attack.py

Objectives:

Generate BadNets, Blend, Clean-Label Attacks and Train a ResNet 18 with 0.1 Poison Rate. The expected results for each attack:

	Final_epoch ASR	ACC
BadNets	100%	>91%
Blend	100%	>91%
Clean-Label	>80%	>91%

Backdoor Attack (train backdoor)

Import package

Hyper-Parameters

```
import os
                                             # Parameters you cannot change
import time
                                             parser.add argument('--poison-target', type=int, default=0, help='target class of backdoor attack')
import argparse
                                             parser.add argument('--trigger-alpha', type=float, default=1.0, help='the transparency of the trigger pattern.')
import logging
                                             ## (1-alpha)*ori img+alpha
import numpy as np
                                             # Basic model parameters. You can change
import torch
                                             parser.add_argument('--batch-size', type=int, default=128, help='the batch size for dataloader')
from torch.utils.data import DataLoader
                                             # backdoor parameters. You can change
from torchvision.datasets import CIFAR10
                                             parser.add_argument('--clb-dir', type=str, default='data/clean-label/0.1/')
import torchvision.transforms as transforms
                                             parser.add argument('--poison-type', type=str, default='badnets', choices=['badnets', 'blend', 'clean-label',
                                             'benign'], help='type of backdoor attacks used during training')
import models
                                             args = parser.parse args()
import data.poison cifar as poison
                                             os.makedirs('output', exist_ok=True)
                                             device = 'cuda' if torch.cuda.is available() else 'cpu'
```

Load Data

```
MEAN_CIFAR10 = (0.4914, 0.4822, 0.4465)
STD CIFAR10 = (0.2023, 0.1994, 0.2010)
transform train = transforms.Compose([
   transforms.RandomCrop(32, padding=4),
   transforms.RandomHorizontalFlip(),
   transforms.ToTensor(),
   transforms.Normalize(MEAN CIFAR10, STD CIFAR10)
transform test = transforms.Compose([
   transforms.ToTensor(),
   transforms.Normalize(MEAN CIFAR10, STD CIFAR10)
```

Backdoor Attack (train backdoor)

Generate Backdoor Images

else:

```
# Step 1: create poisoned / clean dataset
orig train = CIFAR10(root='data', train=True, download=True, transform=transform train)
'''Split original Training set into to parts:
1. clean train: In attack, we use it to generate.
2. clean defense: In defense stage, we use it to generate backdoor triggers.
clean_train, clean_defense = poison.split_dataset(dataset=orig_train, val_frac=0.1,
                                              perm=np.loadtxt('./data/cifar shuffle.txt', dtype=int))
clean_test = CIFAR10(root='data', train=False, download=True, transform=transform_test)
triggers = { 'badnets': 'checkerboard 1corner',
            'clean-label': 'checkerboard_4corner',
            'blend': 'gaussian noise',
            'benign': None}
                                                                                                        Need to complete the code in
trigger type = triggers[args.poison type]
                                                                                                        "data/poison cifar.py"
if args.poison type in ['badnets', 'blend']:
    poison train, trigger info = \
        poison.add_trigger_cifar(data_set=clean_train, trigger_type=trigger_type, poison_rate=0.05,
                                 poison target=args.poison target, trigger alpha=args.trigger alpha)
   poison_test = poison.add_predefined_trigger_cifar(data_set=clean_test, trigger_info=trigger_info)
elif args.poison type == 'clean-label':
   ## Clean-Label Attack
    poison train = poison.CIFAR10CLB(root=args.clb dir, transform=transform train)
    pattern, mask = poison.generate trigger(trigger type=triggers['clean-label'])
                                                                                                                Need to complete the code in
    trigger_info = {'trigger_pattern': pattern[np.newaxis, :, :, :], 'trigger_mask': mask[np.newaxis, :, :, :],
                                                                                                                "generate clb attack.py" to generate
                    'trigger alpha': args.trigger alpha, 'poison target': np.array([args.poison target])}
                                                                                                                backdoor training data(data.npy) first.
    poison_test = poison.add_predefined_trigger_cifar(data_set=clean_test, trigger_info=trigger_info)
elif args.poison_type == 'benign':
    ## Natural Training
    poison train = clean train
    poison test = clean test
    trigger_info = None
```

raise ValueError('Please use valid backdoor attacks: [badnets | blend | clean-label]')

Generate Patterns

BadNets: Add 3x3 patches at right bottom corner of the image: $(\alpha = 1)$

Pattern Backdoor

Blend: Add 32x32 patches at image with: $(\alpha = 0.2)$ $(1 - \alpha) * Image + \alpha * Pattern$

Clean-label: Add 3x3 patches at four corners of the image: $(\alpha = 1)$ $(1 - mask) * Image + mask((1 - \alpha) * Image + \alpha * Pattern$

Generate Poison Train

Clean Label: Generate Adversarial Examples first

```
def attack pgd(model, X, y, epsilon, alpha, max attack iters, restarts):
    : model: target model for the adversarial attack
    : X: input images
    : y: input labels
    : epsilon: maximum perturbation budget
    : alpha: step size for each pgd iteration
    : max_attack_iters: maximum pgd iteration for each input images
    : restarts: you need to run (restarts+1) times pgd attacks to get the worst pertubation for each images
   y = y.unsqueeze(dim=0)
   max loss = torch.zeros(y.shape[0]).cuda()
    max delta = torch.zeros like(X).cuda()
   for _ in range(restarts+1):
       delta = torch.zeros like(X).cuda()
       delta.uniform (-epsilon, epsilon) #restart with random initialized delta
       # max_delta = torch.zeros_like(X).cuda()
       ######## Using PGD Attack with restarthere to generate hard examples ####
       # Additional Requirements: Update perturb images only if they cannot be correctly classified.
       # For example, if image x[1]+delta[1] can be corretly calssified while image x[2]+delta[2] cannot, only update delta[1].
       # Restart: regenerate delta and only use delta with the maximum loss
       # Return max delta (worst pertubation with the maximum loss for each input images after multiple restarts)
        # Please your code here
        # 2 Points
    return max delta
```

Generate Poison Train

Add Trigger for selected data(Train Data):

```
def add trigger cifar(data set, trigger type, poison rate, poison target, trigger alpha=1.0):
    A simple implementation for backdoor attacks which only supports Badnets and Blend.
    :param clean_set: The original clean data.
    :param poison type: Please choose on from [checkerboard 1corner | checkerboard 4corner | gaussian noise].
    :param poison rate: The injection rate of backdoor attacks.
    :param poison_target: The target label for backdoor attacks.
    :param trigger alpha: The transparency of the backdoor trigger.
    :return: A poisoned dataset, and a dict that contains the trigger information.
    pattern, mask = generate trigger(trigger type=trigger type)
   poison cand = [i for i in range(len(data set.targets)) if data set.targets[i] != poison target]
    poison set = deepcopy(data set)
   poison_num = int(poison_rate * len(poison_cand))
    choices = np.random.choice(poison cand, poison num, replace=False)
    for idx in choices:
        #### Add triggers to selected clean images to produce backdoor images (modify poison set.data for selected sample)
       #### Modify poison images' labels (modify poison set.targets for selected sample)
        #### write your code here
       #### Return a modified poison_set
        #### 2points
        ***********************************
    trigger_info = {'trigger_pattern': pattern[np.newaxis, :, :, :], 'trigger_mask': mask[np.newaxis, :, :, :],
                    'trigger alpha': trigger alpha, 'poison target': np.array([poison target]),
                    'data index': choices}
    return poison set, trigger info
```

02 -

Add Triggers

For all data(Poison Test Data):

```
def add predefined trigger cifar(data set, trigger info):
   Poisoning dataset using a predefined trigger. (Use to generate a poisoned test dataset)
   This can be easily extended to various attacks as long as they provide trigger information for every sample.
    :param data_set: The original clean dataset.
    :param trigger_info: The information for predefined trigger.
    :param exclude target: Whether to exclude samples that belongs to the target label.
    :return: A poisoned dataset
    if trigger info is None:
       return data set
    poison set = deepcopy(data set)
    pattern = trigger info['trigger pattern']
   mask = trigger info['trigger mask']
    alpha = trigger info['trigger alpha']
    poison target = trigger info['poison target']
    #### Add triggers to all clean images to produce backdoor images (modify poison set.data for all sample)
    #### Modify poison images' labels (modify poison set.targets for all sample)
    #### write your code here
    #### Remove the samples whose original labels equal to the target label
    #### Return a modified poison set
    #### 2points
    *********************************
    return poison set
```

Train with poison data

Prepare DataLoader

```
poison_train_loader = DataLoader(poison_train, batch_size=args.batch_size, shuffle=True, num_workers=0)
poison_test_loader = DataLoader(poison_test, batch_size=args.batch_size, num_workers=0)
clean test loader = DataLoader(clean test, batch size=args.batch size, num workers=0)
```

Train and Validate

```
# Step 2: prepare model, criterion, optimizer, and learning rate scheduler.
 net = getattr(models, 'resnet18')(num classes=10).to(device)
 criterion = torch.nn.CrossEntropyLoss().to(device)
 optimizer = torch.optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight decay=5e-4)
 scheduler = torch.optim.lr scheduler.MultiStepLR(optimizer, milestones=[30,40], gamma=0.1)
# Step 3: train backdoored models
logger.info('Epoch \t lr \t Time \t TrainLoss \t TrainACC \t PoisonLoss \t PoisonACC \t CleanLoss \t CleanACC')
torch.save(net.state_dict(), os.path.join('output', 'model_init.th'))
if trigger info is not None:
         torch.save(trigger info, os.path.join('output', 'trigger info.th'))
for epoch in range(1, 50):
         start = time.time()
         lr = optimizer.param_groups[0]['lr']
         train loss, train acc = train(model=net, criterion=criterion, optimizer=optimizer,
                                                                                data loader=poison train loader)
         cl test loss, cl test_acc = test(model=net, criterion=criterion, data_loader=clean_test_loader)
         po test loss, po test acc = test(model=net, criterion=criterion, data loader=poison test loader)
         scheduler.step()
          end = time.time()
         logger.info(
                   '%d \t %.3f \t %.1f \t %.4f \t
                   epoch, lr, end - start, train loss, train acc, po test loss, po test acc,
                  cl_test_loss, cl_test_acc)
torch.save(net.state_dict(), os.path.join('output', str(args.poison_type)+'model_last.th'))
```

02 Results

- Report: Tell how your code works: 3 points
- Correctness of Code: 12 points(2*6)
- Besides the report, you should also hand in your code and training log.
- You don't need to hand in your checkpoint.

CONTENTS

01/ Brief Introduction

02/ Backdoor Attack

03/ Backdoor Defense

03

Backdoor Defense with ANP

Main files:

- generate_mask.py
- prune_network.py
- badnetsmodel_foranp.th: The poisoned model
- trigger_info_foranp.th: Trigger Information for testing

Objectives:

Use ANP to purify a poisoned model.

The Proposed Method – Neuron Perturbations

The Formulation of Neuron Perturbations

$$f(\mathbf{x}; (1+\boldsymbol{\delta}) \odot \mathbf{w}, (1+\boldsymbol{\xi}) \odot \mathbf{b})$$

Optimizing neuron perturbations by maximizing the loss on clean data

$$\mathcal{L}_{\mathcal{D}_{\mathcal{V}}}((\mathbf{1} + \boldsymbol{\delta}) \odot \mathbf{w}, (\mathbf{1} + \boldsymbol{\xi}) \odot \mathbf{b}) = \underset{\mathbf{x}, y \sim \mathcal{D}_{\mathcal{V}}}{\mathbb{E}} \ell(f(\mathbf{x}; (\mathbf{1} + \boldsymbol{\delta}) \odot \mathbf{w}, (\mathbf{1} + \boldsymbol{\xi}) \odot \mathbf{b}), y) = \underset{\boldsymbol{\delta}, \boldsymbol{\xi} \in [-\epsilon, \epsilon]^n}{\max} \mathcal{L}_{\mathcal{D}_{\mathcal{V}}}((1 + \boldsymbol{\delta}) \odot \mathbf{w}, (1 + \boldsymbol{\xi}) \odot \mathbf{b}).$$

Backdoored models are more vulnerable to neuron perturbations

The majority of misclassified samples are predicted as the target label

(b) Prediction Proportion

03

Backdoor Defense with ANP

Adversarial Neuron Pruning (The SOTA defense method)
 Step 1: Optimizing masks under neuron perturbations

thod)
$$\left(m_i^{(l)} + \delta_i^{(l)}\right) w_i^{(l)}, \left(1 + \xi_i^{(l)}\right) b_i^{(l)}$$

$$\mathbf{h}^{(l-1)} \longrightarrow \mathbb{R} \operatorname{eLU}(\cdot)$$

$$\min_{\mathbf{m} \in [0,1]^n} \left[\alpha \mathcal{L}_{\mathcal{D}_{\mathcal{V}}}(\mathbf{m} \odot \mathbf{w}, \mathbf{b}) + (1 - \alpha) \max_{\boldsymbol{\delta}, \boldsymbol{\xi} \in [-\epsilon, \epsilon]^n} \mathcal{L}_{\mathcal{D}_{\mathcal{V}}}((\mathbf{m} + \boldsymbol{\delta}) \odot \mathbf{w}, (1 + \boldsymbol{\xi}) \odot \mathbf{b}) \right]$$

$$\mathbf{generate_mask.py}$$

Step 2: Pruning neurons by their mask values

generate_mask.py

Load Dataset

```
# Step 1: create dataset - clean val set, poisoned test set, and clean test set.
trigger_info = torch.load('./trigger_info_foranp.th', map_location=device)
orig train = CIFAR10(root=args.data dir, train=True, download=True, transform=transform train)
_, clean_val = poison.split_dataset(dataset=orig_train, val_frac=args.val_frac,
                                   perm=np.loadtxt('./data/cifar shuffle.txt', dtype=int))
clean test = CIFAR10(root=args.data dir, train=False, download=True, transform=transform test)
poison test = poison.add predefined trigger cifar(data set=clean test, trigger info=trigger info)
random sampler = RandomSampler(data source=clean val, replacement=True,
                              num samples=args.print every * args.batch size)
clean val loader = DataLoader(clean val, batch size=args.batch size,
                             shuffle=False, sampler=random sampler, num workers=0)
poison_test_loader = DataLoader(poison_test, batch_size=args.batch_size, num_workers=0)
clean test loader = DataLoader(clean test, batch size=args.batch size, num workers=0)
# Step 2: load model checkpoints and trigger info
checkpoint = "./badnetsmodel last.th"
state dict = torch.load(checkpoint, map location=device)
net = getattr(models, 'resnet18')(num classes=10, norm layer=models.NoisyBatchNorm2d)
load state dict(net, orig state dict=state dict)
net = net.to(device)
criterion = torch.nn.CrossEntropyLoss().to(device)
parameters = list(net.named_parameters())
mask_params = [v for n, v in parameters if "neuron mask" in n]
mask optimizer = torch.optim.SGD(mask params, lr=args.lr, momentum=0.9)
noise_params = [v for n, v in parameters if "neuron_noise" in n]
noise optimizer = torch.optim.SGD(noise params, lr=args.anp eps / args.anp steps)
```

Load Model and prepare mask parameter

```
# Step 2: load model checkpoints and trigger info
checkpoint = "./badnetsmodel_last.th"
state_dict = torch.load(checkpoint, map_location=device)
net = getattr(models, 'resnet18')(num_classes=10, norm_layer=models.NoisyBatchNorm2d)
load_state_dict(net, orig_state_dict=state_dict)
net = net.to(device)
criterion = torch.nn.CrossEntropyLoss().to(device)

parameters = list(net.named_parameters())
mask_params = [v for n, v in parameters if "neuron_mask" in n]
mask_optimizer = torch.optim.SGD(mask_params, lr=args.lr, momentum=0.9)
noise_params = [v for n, v in parameters if "neuron_noise" in n]
noise_optimizer = torch.optim.SGD(noise_params, lr=args.anp_eps / args.anp_steps)
```

Adversarial Neuron Pruning (The SOTA defense method)
 Step 1: Optimizing masks under neuron perturbations

$$\min_{\mathbf{m} \in [0,1]^n} \left[\alpha \mathcal{L}_{\mathcal{D}_{\mathcal{V}}}(\mathbf{m} \odot \mathbf{w}, \mathbf{b}) + (1 - \alpha) \max_{\boldsymbol{\delta}, \boldsymbol{\xi} \in [-\epsilon, \epsilon]^n} \mathcal{L}_{\mathcal{D}_{\mathcal{V}}}((\mathbf{m} + \boldsymbol{\delta}) \odot \mathbf{w}, (1 + \boldsymbol{\xi}) \odot \mathbf{b}) \right]$$

Train Mask

- Report: 3 point (Tell me how your code works)
- The correctness of the code: 3 point

```
def mask train(model, criterion, mask opt, noise opt, data loader):
    model: input model
    criterion: loss function
    mask opt: optimizer to optimize mask
    noise opt: optimzier to optimize noise
    data loader: dataloader for a subset of clean images
    args.anp alpha: hyperparameter to balancing the natural loss and perturbed loss, see PPT
    args.anp eps : maximum pertubation budget for noise
    args.anp steps: iteration numbers for searching noise (inner maximization)
    model.train()
    total correct = 0
    total loss = 0.0
                                                                    You can use our pre-
    nb samples = 0
                                                                    defined operators
    for i, (images, labels) in enumerate(data loader):
       images, labels = images.to(device), labels.to(device)
       nb samples += images.size(0)
       ### Write your code here to optimize mask
       # step 1: calculate the adversarial perturbation for neurons
       # step 2: calculate noise loss
       # step 3: calculate clean loss
       # step 4: ANP loss and update mask
    loss = total loss / len(data loader)
    acc = float(total correct) / nb samples
                                                                                               19
    return loss, acc
```

Step 2: Pruning neurons by their mask values

prune_network.py: prune by threshold

```
def pruning(net, neuron):
           state_dict = net.state_dict()
           weight_name = '{}.{}'.format(neuron[0], 'weight')
           state_dict[weight_name][int(neuron[1])] = 0.0
           net.load state dict(state dict)
def evaluate_by_threshold(model, mask_values, criterion, clean_loader, poison_loader):
           results = []
           start = 0
           idx = start
           for idx in range(start, len(mask values)):
                      if float(mask values[idx][2]) <= args.threshold:</pre>
                                 pruning(model, mask_values[idx])
                      else:
           layer_name, neuron_idx, value = mask_values[idx][0], mask_values[idx][1], mask_values[idx][2]
           cl loss, cl acc = test(model=model, criterion=criterion, data loader=clean loader)
           po loss, po acc = test(model=model, criterion=criterion, data loader=poison loader)
           print('{:.2f} \t {} \t {} \t {} \t {:.4f} \t {:.4f} \t {:.4f} \t {:.4f} \t {:.4f} \t ..4f} \t ..4
                     start, layer_name, neuron_idx, args.threshold, po_loss, po_acc, cl_loss, cl_acc))
           results.append('{:.2f} \t {} \t {} \t {} \t {:.4f} \t {:.4f} \t {:.4f} \n'.format(
                     start, layer name, neuron idx, args.threshold, po loss, po acc, cl loss, cl acc))
           return results
```

Step 2: Pruning neurons by their mask values

prune_network.py: prune by threshold

- Report(4 point):
 - Tune anp_alpha and threshold(0-1) to make the pruned models ASR <5% and ACC>92% (2 point)
 - Tell me anp_alpha's influence on ASR and ACC (1 point)
 - Tell me threshold's influence on ASR and ACC (1 point)

论文列表

- [1] BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
- [2] Clean-Label Backdoor Attacks
- [3] Targeted backdoor attacks on deep learning systems using data poisoning
- [4] Adversarial Neuron Pruning Purifies Backdoored Deep Models

Q&A

Thanks