Modellbildung mechatronischer Systeme (MMS)

Kopplung elektrisch - magnetisch

mag. Kapazität

geometrische Parameter und Materialparameter

$$\Theta = I \cdot N \Big| C_m$$

Außendurchmesser

 $D_A = 30 \ mm$

Innendurchmesser

 $D_I\!\coloneqq\!20~\pmb{mm}$

Kerndicke

 $d_k \coloneqq 5 \ \boldsymbol{mm}$

Material Ferrit

 $\mu_{Fe} \coloneqq 400$

Windungsanzahl

 $N_W = 500$

Spulenstrom

 $I_S = 0.5 A$

Berechnungen Variante 1

Kernbreite

 $b_k \coloneqq \frac{D_A - D_I}{2} = 5$ mm

Kernfläche

 $A_k \coloneqq b_k \cdot d_k = \left(2.5 \cdot 10^{-5}\right) \, \boldsymbol{m}^2$

mittlerer Kernradius

 $R_k = \frac{D_I}{2} + \frac{b_k}{2} = 12.5 \ mm$

Ringspule ohne Luftspalt (Variante 1)

Permeabilität $\mu_r \coloneqq \mu_0 \cdot \mu_{Fe}$

mittlere Länge im Ferrit $l_{Fe} \coloneqq 2 \cdot \pi \cdot R_k = 78.54 \; mm$

mag. Kapazität $C_m\!\coloneqq\!\mu_r\!\cdot\!\frac{A_k}{2\cdot\pmb{\pi}\cdot R_k}\!=\!\left(160\cdot 10^{-6}\right)\,\pmb{mH}$

mag. Spannung (Durchflutung) $\Theta \coloneqq I_S \cdot N_W = 250 \ A$

Co-Energie $E_T \coloneqq \frac{C_m}{2} \cdot \Theta^2 = \left(5 \cdot 10^{-3}\right) \boldsymbol{J}$

magnetischer Fluss $\Phi \coloneqq \Theta \cdot C_m = \left(40 \cdot 10^{-6}\right) \; Wb$

Flussdichte $B_{Fe}\!\coloneqq\!rac{arPhi}{A_{h}}\!=\!1.6~m{T}$

Feldstärke im Eisen $H_{Fe} \coloneqq \frac{B_{Fe}}{\mu_r} = \left(3.183 \cdot 10^3\right) \frac{A}{m}$

magnetische Spannung $U_m\!\coloneqq\!H_{Fe}\!\cdot\!l_{Fe}\!=\!250~{\it A}$

Energie $E_P \coloneqq \frac{1}{2 \cdot C_m} \cdot \varPhi^2 = \left(5 \cdot 10^{-3} \right) \, \boldsymbol{J}$

elektrische Induktivität $L_R\!\coloneqq\! C_m\!\cdot\! N_W^{\ 2} =\! 40~$ mH

Co-Energie $E_T = \frac{L_R}{2} \cdot I_S^2 = \left(5 \cdot 10^{-3}\right) \textbf{\textit{J}}$