Funkcja	NR analitycznie	NR	Metoda	Metoda	Metoda
		numerycznie	siecznych	fałszywej	bisekcji
				Linii	
$x^3 + x^2 - 3x - 3 = 0$	-1.73206	-1.73205	-1.73207	-1.73201	-1.73206
	-1	-1	-0.999995	-1.00002	-1
	1.73205	1.73205	1.732	1.73205	1.73206
$x^2 - 2 = 0$	-1.41421	-1.41421	-1.41423	-1.4142	-1.41418
	1.41421	1.41421	1.41421	1.4142	1.41418
$\sin(x^2)-x^2=0$	-0.00743059	0.000485822			
$\sin(x^2)-x^2+\frac{1}{2}=0$	-1.22364	-1.22364	-1.22364	-1.22361	-1.22363
, 2	1.22364	1.22364	1.22365	1.2236	1.22363

Tabelaryczna reprezentacja wyników szukanych miejsc zerowych dla każdej z metod.

Przybliżenia kolejnych miejsc zerowych są stosunkowo dokładne, problem pojawił się w przypadku funkcji $\sin(x^2)$ - x^2 =0 ,ponieważ nie da się dobrać przedziału tak aby wartości na krańcach były z jednej strony dodatnie a z drugiej ujemne. Najlepiej poradziła sobie z tym metoda Newtona-Rhapsona, której ten problem nie dotyczy . Dla metody siecznych , falsi oraz bisekcji nie można wyznaczyć miejsca zerowego w funkcji 3, ponieważ funkcje nie spełnia warunków algorytmu.

Wydruk:

```
Metoda NR caka liczona numerycznie
Punkt startowy: -2
Newton-Rhapson f1 pierwsze miejsce zerowe -1.73206
Punkt startowy: 0
Newton-Rhapson f1 drugie miejsce zerowe -1
Punkt startowy: 1
Newton-Rhapson f1 trzecie miejsce zerowe 1.73205
Punkt startowy: -1
Newton-Rhapson f2 pierwsze miejsce zerowe -1.41421
Punkt startowy: 1
Newton-Rhapson f2 drugie miejsce zerowe 1.41421
Punkt startowy: 5
Newton-Rhapson f3 miejsce zerowe -0.00743059
Punkt startowy: -5
Newton-Rhapson f4 pierwsze miejsce zerowe -1.22364
Punkt startowy: 5
Newton-Rhapson f4 drugie miejsce zerowe 1.22364
  Metoda NR ca ka liczona analitycznie
Punkt startowy: -2
Newton-Rhapson f1 pierwsze miejsce zerowe -1.73205
Punkt startowy: 0
Newton-Rhapson f1 drugie miejsce zerowe -1
Punkt startowy: 1
Newton-Rhapson f1 trzecie miejsce zerowe 1.73205
Punkt startowy: -1
Newton-Rhapson f2 pierwsze miejsce zerowe -1.41421
Punkt startowy: 1
Newton-Rhapson f2 drugie miejsce zerowe 1.41421
Punkt startowy: 5
Newton-Rhapson f3 miejsce zerowe 0.000485822
Punkt startowy: -5
Newton-Rhapson f4 pierwsze miejsce zerowe -1.22364
Punkt startowy: 5
Newton-Rhapson f4 drugie miejsce zerowe 1.22364
```

```
Metoda siecznych
Przedzial, : poczatek -2 koniec -1.5
Secant f1 pierwsze miejsce zerowe -1.73207
Przedzial, : poczatek -1.5 koniec -0.5
Secant f1 drugie miejsce zerowe -0.999995
Przedzial, : poczatek 1 koniec 2
Secant f1 trzecie miejsce zerowe 1.732
Przedzial, : poczatek -2.5 koniec -0.5
Secant f2 pierwsze miejsce zerowe -1.41423
Przedzial, : poczatek 0.5 koniec 2.5
Secant f2 drugie miejsce zerowe 1.41421
Przedzial, : poczatek -3 koniec 0.5
Bledny przedzial funkcja na koncach musi miec rozne znaki
Secant f3 miejse zerowe -nan(ind)
Przedzial, : poczatek -2 koniec -1
Secant f4 pierwsze miejsce zerowe -1.22364
Przedzial, : poczatek 1 koniec 2
Secant f4 drugie miejsce zerowe 1.22365
              Regula Falsi
Przedzial, : poczatek 1 koniec 2
Falsi f1 pierwsze miejsce zerowe 1.73205
Przedzial, : poczatek -1.5 koniec -0.5
Falsi f1 drugie miejsce zerowe -1.00002
Przedzial, : poczatek -2 koniec -1.5
Falsi f1 trzecie miejsce zerowe -1.73201
Przedzial, : poczatek -2.5 koniec -0.5
Falsi f2 pierwsze miejsce zerowe -1.4142
Przedzial, : poczatek 0.5 koniec 2.5
Falsi f2 drugie miejsce zerowe 1.4142
Przedzial, : poczatek -3 koniec 0.5
Bledny przedzial funkcja na koncach musi miec rozne znaki
Falsi f3 miejsce zerowe -nan(ind)
Przedzial, : poczatek -2 koniec 1
Falsi f4 pierwsze miejsce zerowe -1.22361
Przedzial, : poczatek 1 koniec 2
Falsi f4 drugie miejsce zerowe 1.2236
```

Metoda Bisekcji Przedzial, : poczatek -2 koniec -1.5 Bisection f1 pierwsze miejsce zerowe -1.73206 Przedzial, : poczatek -1.5 koniec 0.5 Bisection f1 drugie miejsce zerowe -1 Przedzial, : poczatek 1 koniec 2 Bisection f1 trzecie miejsce zerowe 1.73206 Przedzial, : poczatek -2.5 koniec -0.5 Bisection f2 pierwsze miejsce zerowe -1.41418 Przedzial, : poczatek 0.5 koniec 2.5 Bisection f2 drugie miejsce zerowe 1.41418 Przedzial, : poczatek -3 koniec 0.5 Bledny przedzial funkcja na koncach musi miec rozne znaki Bisection f3 miejsce zerowe -nan(ind) Przedzial, : poczatek -2 koniec -1 Bisection pierwsze miejsce zerowe -1.22363 Przedzial, : poczatek 1 koniec 2 Bisection drugie miejsce zerowe 1.22363 Press any key to continue \dots

Graficzna reprezentacja wyników.

Funkcja
$$x^3 + x^2 - 3x - 3 = 0$$

NR analitycznie

NR numerycznie

Metoda siecznych.

Metoda fałszywej lini

Metoda bisekcji

Funkcja $x^2 - 2 = 0$

NR analitycznie oraz numerycznie

Metoda siecznych

Metoda fałszywej linii

Metoda bisekcji

Funkcja $sin(x^2)-x^2=0$

NR analitycznie

NR numerycznie

Funkcja $\sin(x^2)-x^2+1/2=0$

NR analitycznie oraz NR numerycznie takie same wyniki

Metoda siecznych

Metoda fałszywej linii

Metoda bisekcji

