A low-cost Raman microscope for detecting microplastics in the ocean

Maxence Dominjon, Armelle Bouhali Supervisor : Alan Bowman

Sommaire

Maxence, Aı

- 1. Introduction
- 2. Revue de littérature
- 3. Choix du design
- 4. Avancement actuel
- 5. Etapes à venir

1. Introduction Motivation du projet

1. Introduction La spectroscopie de

Réseau de diffraction Détecteur

Filtre notch

Microscope optique
Échantillon

SAILOWTECH présentation finale

2. Revue de littérature

Aydogan, O., & Tasal, E. (2018). Designing and building a 3D printed low cost modular Raman spectrometer. CERN IdeaSquare Journal of Experimental Innovation, 2(2), 3–14. https://doi.org/10.23726/cij.2017.799

Jitao Lu, Qingsheng Xue, Haoxuan Bai, and Nan Wang, "Design of a confocal micro-Raman spectroscopy system and research on microplastics detection," Appl. Opt. 60, 8375-8383 (2021)

SAII OMTECH présentation finale

3. Choix du design

640nm Hard Coated Bandpass Interference Filter: 10nm FWHM
OD >4.0 Coating Performance
FOR REFERENCE ONLY

Edmund optics: CWL 640nm - 10nm FWHM

3. Choix du design

Edmund optics (Zeiss): 40X A-plan objective Narrow bandpass filter Mirror Laser Beamsplitter Dichroic Objective

mirror

OpenFlexure Block Stage

Narrow bandpass

Edmund optics: Dichroic miror 600nm

Thorlabs: 50/50 beam splitter

Narrow bandpass

3. Choix du design

Edmund optics: 1200 Traits Narrow bandpass filter Mirror _ Laser Grating Concave mirror Focusing Long pass Beamsplitter lens filter Camera SAILOWTECH présentation finale Microscope Dichroic LED ring Objective Sample on a mirror 3 axis stage

EPFL

4. Avancement actuel Premiers résultats

☐ Le signal "propre" n'est pas assez réduit

SAILOWTECH présentation finale

4. Avancement actuel Premiers résultats

- ☐ Ajout d'un 636nm bandpass filter utilisé en plus du 640nm bandpass filter
- ☐ Avec ces 2 filtres, on obtient une reduction de la force du signal d'environ 10⁻¹⁰

4. Avancement actuel Premiers résultats

Mesure du signal de Raman pendant 30s sur un miroir en argent et sur du polypropylene

- Il y a toujours un peu de signal résiduel dû au laser
- Mais on est quand même capable de voir les pics pour le polypropylene

EPFL

4. Avancement actuel Premiers résultats

Après conversion de la longueur d'onde en nombre d'onde □ le signal mesuré est en accord avec la litérature

SAILOWTECH présentation finale

5. Etapes à venir

- Finir la programmation du Rasberry Pi
- Impression 3D des supports optiques
- Impression 3D de la « block stage »
- Construire le microscope de Raman!

