Part-of-Speech Tagging: Hidden Markov Models

Katharina Kann — CSCI/LING5832

Word Classes: Parts of Speech

- Traditional parts of speech:
 - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc.
 - Lots of names for this notion: Part of speech, lexical category, word class, lexical tag...
 - Lots of debate within linguistics about the number, nature, and universality of these categories

Word Classes: Parts of Speech

- Sources of evidence:
 - Morphological evidence
 - walk, walking, walked, walks
 - probably a verb

Word Classes: Parts of Speech

- Sources of evidence:
 - Morphological evidence
 - walk, walking, walked, walks
 - probably a verb
 - Distributional evidence
 - The crash, A crash, Two crashes,
 The big crash...
 - probably a noun

Penn Treebank POS Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%,&
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	44	left quote	or "
POS	possessive ending	's	,,	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ; – -
RP	particle	up, off			

- The process of assigning a part of speech or lexical class marker to each word in a text.
- Often a useful first step in an NLP pipeline.
- Fast and accurate taggers are widely available for many languages.
 - (Now we will learn how to make one!)

- The process of assigning a part of speech or lexical class marker to each word in a text.
- This is our first example of a sequence labeling task:
 - Assigning a category label to each element of a sequence.

WORD

tag

the

koala

put

the

keys

on

the

table

DET

N

V

DET

N

P

DET

N

- Many words have more than one part of speech: back
 - The back door = JJ
 - On my back = NN
 - Win the voters back = RB
 - Promised to back the bill = VB

- Many words have more than one part of speech: back
 - The back door = JJ
 - On my back = NN
 - Win the voters back = RB
 - Promised to back the bill = VB
- The POS tagging problem is to determine the tag for a particular instance of a word in context.
 - The context is usually a sentence.

- Note this is distinct from the task of word sense disambiguation.
 - "...backed the car into a pole"
 - "...backed the wrong candidate"

Measuring Ambiguity

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous	(1 tag)	44,019		38,857	
Ambiguous (2–7 tags)		5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round,
					open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

Methods for POS Tagging

- Rule-based tagging
- Probabilistic sequence models
 - HMM (hidden Markov model) tagging
 - RNNs (recurrent neural networks)
 - [Transformers]

Methods for POS Tagging

- Rule-based tagging
- Probabilistic sequence models
 - HMM (hidden Markov model) tagging
 - RNNs (recurrent neural networks)
 - [Transformers]

Trivial baselines can often do well, too

POS Tagging as Sequence Labeling

- We are given a sentence (an "observation" or "sequence of observations").
 - I should book the flight
- What is the best sequence of tags that corresponds to this sequence of observations?
- Probabilistic view:
 - Consider all possible sequences of tags and assign a probability to each
 - Out of this universe of sequences, choose the tag sequence that is most probable given the observation sequence of our n words.

Probabilistic Approach

 We want out of all sequences of n tags t₁...t_n the single tag sequence such that P(t₁...t_n|w₁...w_n) is highest.

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

Probabilistic Approach

 We want out of all sequences of n tags t₁...t_n the single tag sequence such that P(t₁...t_n|w₁...w_n) is highest.

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- A model that tells us something about the probabilities of sequences of random variables (states).
- Each of those variables can take on values from a predefined set.

J&M, Ch. 8

J&M, Ch. 8

 Markov assumption: only the last state matters!

$$P(q_{1}, \dots q_{T}) = P(q_{T} | q_{1}, \dots, q_{T-1})$$

$$* P(q_{T-1} | q_{1}, \dots, q_{T-2})$$

$$* \dots$$

$$* P(q_{1})$$

Markov assumption:

$$P(q_T | q_1, \dots, q_{T-1}) = P(q_T | q_{T-1})$$

$$P(q_1, \dots, q_T) = P(q_T | q_1, \dots, q_{T-1})$$
 $*P(q_{T-1} | q_1, \dots, q_{T-2})$
 $*\dots$
 $*P(q_1)$
 $?$

Markov assumption:

$$P(q_T | q_1, \dots, q_{T-1}) = P(q_T | q_{T-1})$$

- We further have an initial probability distribution over states.
 - The probability that each state is the first state!

- We further have an initial probability distribution over states.
 - The probability that each state is the first state!
- For example: $\pi = [0.1, 0.7, 0.2]$ for the states *hot*, *warm*, and *cold*

In-Class Exercise

• $\pi = [0.1, 0.7, 0.2]$ for the states *hot*, *warm*,

and cold

- Compute the probability of:
 - 1. Warm, hot, warm
 - 2. cold, hot, cold, hot

Formal Definition: Markov Chain

$$Q = q_1 q_2 \dots q_N$$
 a set of N states
$$A = a_{11} a_{12} \dots a_{n1} \dots a_{nn}$$
 a **transition probability matrix** A , each a_{ij} representing the probability of moving from state i to state j , s.t.
$$\sum_{i=1}^{n} a_{ij} = 1 \quad \forall i$$

$$\pi = \pi_1, \pi_2, ..., \pi_N$$
 an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state i . Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

J&M, Ch. 8

- Markov chains can compute a probability for a sequence of observable events.
- However, we often don't observe the events we are interested in.
 - Hidden Markov models!

- Markov chains can compute a probability for a sequence of observable events.
- However, we often don't observe the events we are interested in.
 - Hidden Markov models!
- Example: part-of-speech tagging!

Swimming

Movie

COLD₂ WARM HOT₁ Movie

Movie

Swimming

Swimming

a set of N states

 $Q = a_1 a_2 \quad a_N$

$\mathcal{Q} = q_1 q_2 \dots q_N$	a set of ty states
$A=a_{11}\ldots a_{ij}\ldots a_{NN}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{N} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V = v_1, v_2,, v_V$
$B = b_i(o_t)$	a sequence of observation likelihoods , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state q_i
$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the probability that the Markov chain will start in state i . Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

J&M, Ch. 8

 A first-order Markov model makes 2 simplifying assumptions:

- A first-order Markov model makes 2 simplifying assumptions:
 - Markov assumption:

$$P(q_i | q_1, \dots, q_{i-1}) = P(q_i | q_{i-1})$$

- A first-order Markov model makes 2 simplifying assumptions:
 - Markov assumption:

$$P(q_i | q_1, \dots, q_{i-1}) = P(q_i | q_{i-1})$$

Output independence:

$$P(o_i | q_1, \dots, q_T, o_1, \dots, o_T) = P(o_i | q_i)$$

- Given:
 - $\pi = [0.1, 0.7, 0.2]$ for hot, warm, and cold
- Compute the probability of: [cold, warm, Movie, Movie]

- Given:
 - $\pi = [0.1, 0.7, 0.2]$ for hot, warm, and cold
- Compute the probability of: [cold, warm, Movie, Movie]

$$P(c, w, M, M) = P(cold) * P(Movie | cold) *$$

$$P(warm | cold) * P(Movie | warm)$$

- Given:
 - $\pi = [0.1, 0.7, 0.2]$ for hot, warm, and cold
- Compute the probability of: [cold, warm, Movie, Movie]

$$P(c, w, M, M) = P(cold) * P(Movie | cold) *$$

$$P(warm | cold) * P(Movie | warm)$$

$$= 0.2 * 0.8 *$$

$$0.1 * 0.7$$

- Given:
 - $\pi = [0.1, 0.7, 0.2]$ for hot, warm, and cold
- Compute the probability of: [cold, warm, Movie, Movie]

$$P(c, w, M, M) = P(cold) * P(Movie | cold) *$$
 $P(warm | cold) * P(Movie | warm)$
 $= 0.2 * 0.8 *$
 $0.1 * 0.7$
 $= 0.0112$

In-Class Exercise 2

- Given: $\pi = [0.1, 0.7, 0.2]$ for the states *hot*, *warm*, and *cold*
- Compute the probability of:
 - 1. [warm, cold, cold, Swimming, Movie, Movie]
 - 2. [cold, hot, warm, Swimming, Movie, Movie]
 - 3. [hot, cold, warm, Swimming, Movie, Movie]

- Tag transition probabilities p(t_i|t_{i-1})
 - Determiners likely to precede adjs and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect P(NN|DT) and P(JJ|DT) to be high
- Compute P(NN|DT) by counting in a labeled corpus: $P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$

- Tag transition probabilities p(t_i|t_{i-1})
 - Determiners likely to precede adjs and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect P(NN|DT) and P(JJ|DT) to be high
- Compute P(NN|DT) by counting in a labeled corpus: $P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$

$$P(NN|DT) = \frac{C(DT,NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

- Word likelihood probabilities p(w_i|t_i)
 - VBZ (3sg Pres Verb) likely to be "is"
 - Compute P(is|VBZ) by counting in a labeled corpus: $P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$

- Word likelihood probabilities p(w_i|t_i)
 - VBZ (3sg Pres Verb) likely to be "is"
 - Compute P(is|VBZ) by counting in a labeled corpus: $P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

- Given this framework there are 3 problems that we can pose to an HMM:
 - Given an observation sequence and a model, what is the probability of that sequence?
 - Given an observation sequence and a model, what is the most likely state sequence?
 - Given an observation sequence, what are the best model parameters?

- Given this framework there are 3 problems that we can pose to an HMM:
 - Given an observation sequence and a model, what is the probability of that sequence?
 - Given an observation sequence and a model, what is the most likely state sequence?
 - Given an observation sequence, what are the best model parameters?

We did a small part of this in the in-class exercise! (Why?)

Question

- If there are 30 or so tags in the Penn set...
- ...and the average sentence is around 20 words...
- ...how many tag sequences do we have to enumerate to argmax over?

Question

- If there are 30 or so tags in the Penn set...
- ...and the average sentence is around 20 words...
- ...how many tag sequences do we have to enumerate to argmax over?

The probability of a sequence given a model...

Computing Likelihood: Given an HMM $\lambda = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\lambda)$.

- Used in sequence classification tasks
 - Word spotting in ASR, language identification, speaker identification, author identification, etc.

The probability of a sequence given a model...

Computing Likelihood: Given an HMM $\lambda = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\lambda)$.

- Used in sequence classification tasks
 - Word spotting in ASR, language identification, speaker identification, author identification, etc.
 - Train one model per class
 - Given an observation, pass it to each model and compute P(seq|model)
 - Argmax over models gives you the class

 Most probable state sequence given a model and an observation sequence

Decoding: Given as input an HMM $\lambda = (A,B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1q_2q_3...q_T$.

 Most probable state sequence given a model and an observation sequence

Decoding: Given as input an HMM $\lambda = (A,B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1q_2q_3...q_T$.

- Typically used in sequence labeling problems,
 where the labels correspond to hidden states
 - As we'll see almost any problem can be cast as a sequence labeling problem

- Infer the best model parameters, given a model and an observation sequence...
 - That is, fill in the A and B tables with the right numbers...
 - The numbers that make the observation sequence most likely.

- Infer the best model parameters, given a model and an observation sequence...
 - That is, fill in the A and B tables with the right numbers...
 - The numbers that make the observation sequence most likely.
 - Useful for getting an HMM without supervision/annotators!

Solutions

- Problem 1: Forward
- Problem 2: Viterbi
- Problem 3: Forward-Backward
 - An instance of Expectation Maximization (EM)

Wrapping up

- Discussed today:
 - Part-of-speech tagging
 - Markov chains
 - Hidden Markov models

 On Wednesday: The Viterbi algorithm (guest lecture by Abhidip)