## Машинное обучение (Machine Learning)

Глубокое обучение: автокодеры (Deep Learning: autoencoders)

Уткин Л.В.

Санкт-Петербургский политехнический университет Петра Великого



#### Содержание

- Автокодер
- Отек автокодеров
- Модификации автокодеров
- Автокодер и word embedding

## Автокодер

## Автокодер - определение (Autoencoder)

#### Из Wikipedia:

An autoencoder is an artificial neural network and its aim is to learn a compressed representation for a set of data. This means it is being used for dimensionality reduction.

#### Автокодер

- Обучение без учителя
- ullet Выборка  $(\mathbf{x}^{(1)},\mathbf{x}^{(2)},...,)$ , где  $\mathbf{x}^{(k)}=\left(x_1^{(k)},...,x_m^{(k)}
  ight)$ , m признаков.
- **Автокодер** это нейронная сеть, которая использует алгоритм обратного распространения так, что в результате обучения получаем выход идентичный входу, т.е.  $\mathbf{y}^{(i)} = \mathbf{x}^{(i)}$ .
- Другими словами: автокодер пытается обучиться аппроксимации тождественной фунцкии.

## Автокодер (иллюстрация)



## Почему бы не сделать проще?



#### Все дело в скрытом слое L2



#### Все дело в скрытом слое L2

- Получаем сжатое представление примеров обучающей выборки
- это возможно, если
  - имеет место корреляция части признаков
  - заставить нейроны скрытого слоя быть "разреженными" при условии  $s_2 > m$  (число нейронов скрытого слоя больше, чем входного слоя)
- понижение размерности аналогично методу главных компонент

#### Сжатие автокодером

$$\mathbf{z}^{(k)} = f\left(W_1\mathbf{x}^{(k)} + b_1\right)$$
$$\widehat{\mathbf{x}}^{(k)} = f\left(W_2\mathbf{z}^{(k)} + b_2\right)$$

Целевой функционал (ошибка реконструирования):

$$R(W_1, b_1, W_2, b_2) = \sum_{k=1}^{n} (\widehat{\mathbf{x}}^{(k)} - \mathbf{x}^{(k)})^2$$

$$= \sum_{k=1}^{n} (f(W_2 \cdot f(W_1 \mathbf{x}^{(k)} + b_1) + b_2 - \mathbf{x}^{(k)}))^2 \to \min$$

### Разреженность нейронов скрытого слоя

Большинство нейронов должны быть почти неактивные, т.е. их выход близок 0.

- Как это сделать?
- Каким-то образом наложить ограничения на их уровень активации  $a_i^{(2)}$  в процессе обучения.
- $a_j^{(2)}(\mathbf{x})$  уровень активации (выход) j-го нейрона скрытого слоя  $L_2$  в зависимости от обучающего вектора  $\mathbf{x}$ .

#### Разреженность нейронов скрытого слоя

• Средний уровень активации *j*-го нейрона по всей обучающей выборке:

$$\widehat{\rho}_j = \frac{1}{n} \sum_{i=1}^n a_j^{(2)}(\mathbf{x}^{(i)})$$

- Параметр разреженности:  $\rho$  (малое число близкое к 0, например 0.05)
- ullet Цель:  $\widehat{
  ho_j}=
  ho$  (хотя бы примерно)

#### Разреженность нейронов скрытого слоя

 Штрафное слагаемое - расстояние (дивергенция)
 Кульбака — Лейблера (KL) - мера удаленности друг от друга двух вероятностных распределений

$$\sum_{j=1}^{s_2} \textit{KL}(\rho, \widehat{\rho}_j) = \sum_{j=1}^{s_2} \rho \log \frac{\rho}{\widehat{\rho}_j} + (1-\rho) \log \frac{1-\rho}{1-\widehat{\rho}_j}$$

- ullet Штрафное слагаемое равно 0, если  $\widehat{
  ho}_j=
  ho.$
- Общий функционал риска

$$R_{ extsf{paspex}}(W,b) = R(W,b) + eta \sum_{i=1}^{s_2} extsf{KL}(
ho,\widehat{
ho}_j)$$

### Почти глубокое обучение

- Исходные данные: обучающая выборка  $\mathbf{X} = (\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(n)})$
- Результат обучения автокодера (без учителя):
  - $m{\circ}$  веса всех соединений между первым и вторым слоем  $W^{(1)}=\left(w_{11}^{(1)},w_{12}^{(1)},...,w_{m,s_2}^{(1)},w_{01}^{(1)},...,w_{0,s_2}^{(1)}
    ight)$
  - ullet значения активации нейронов скрытого слоя  $a_1^{(2)}(\mathbf{x}^{(i)}),...,a_{s_2}^{(2)}(\mathbf{x}^{(i)}),~i=1,...,n$
- ullet Теперь можно заменить исходную выборку  $(\mathbf{x}^{(1)},\mathbf{x}^{(2)},...,\mathbf{x}^{(n)})$  новой выборкой  $a_1^{(2,i)},...,a_{s_2}^{(2,i)}$
- А если точнее, то

$$\left(\left(\mathbf{x}^{(1)}, y^{(1)}\right), ..., \left(\mathbf{x}^{(n)}, y^{(n)}\right)\right) \rightarrow \left(\left(a^{(2,1)}, y^{(1)}\right), ..., \left(a^{(2,n)}, y^{(n)}\right)\right)$$

# Представление данных в скрытом слое после обучения



| Input    |               | Hidden |     |     |               | Output   |
|----------|---------------|--------|-----|-----|---------------|----------|
| Values   |               |        |     |     |               |          |
| 10000000 | $\rightarrow$ | .89    | .04 | .08 | $\rightarrow$ | 10000000 |
| 01000000 | $\rightarrow$ | .01    | .11 | .88 | $\rightarrow$ | 01000000 |
| 00100000 | $\rightarrow$ | .01    | .97 | .27 | $\rightarrow$ | 00100000 |
| 00010000 | $\rightarrow$ | .99    | .97 | .71 | $\rightarrow$ | 00010000 |
| 00001000 | $\rightarrow$ | .03    | .05 | .02 | $\rightarrow$ | 00001000 |
| 00000100 | $\rightarrow$ | .22    | .99 | .99 | $\rightarrow$ | 00000100 |
| 00000010 | $\rightarrow$ | .80    | .01 | .98 | $\rightarrow$ | 00000010 |
| 00000001 | $\rightarrow$ | .60    | .94 | .01 | $\rightarrow$ | 00000001 |

© Eric Xing @ CMU, 2015

#### Еще одна иллюстрация автокодера



https://blog.keras.io/building-autoencoders-in-keras.html

#### Как посмотреть новые признаки?

#### Есть уже обученная сеть



### Задача классификации

Если необходимо решить задачу классификации, то используем сеть



Input Logistic (features) classifier

## Общий случай



## Обучение (почти глубокое) в два этапа

- Первый слой весов  $W^{(1)}$ , отображающий входные данные **x** в значения активации нейронов скрытого слоя  $a_1^{(2,i)},...,a_{s_2}^{(2,i)}$ , обучается как часть обучения автокодера.
- ② Второй слой весов  $W^{(2)}$ , отображающий значения активации нейронов скрытого слоя  $a_1^{(2,i)},...,a_{s_2}^{(2,i)}$  в выход y, обучается, используя логистическую регрессию, SVM, SoftMax регрессию и т.д.

## Обучение (третий этап)

Можно использовать всю нейронную сеть для дальнейшей модификации всех параметров модели, чтобы попытаться уменьшить ошибку обучения. В частности "тонкая настройка" (fine-tune) параметров может быть использована.

## Стек автокодеров

## Глубокие нейронные сети

- Была рассмотрена нейронная сеть с тремя слоями: входной, скрытый и выходной
- Глубокая сеть: несколько скрытых слоев для преобразования более сложных признаков на входе
- Проблема: как проще обучить такую сеть?
- Вариант решения: жадный алгоритм послойного обучения

# Жадный алгоритм послойного обучения (коротко)

Основная идея: обучать последовательно слои так, что

- 💶 первый скрытый слой обучается первым;
- после этого обучаем второй слой и т.д.;
- ullet на каждом этапе используется "старая" сеть с k-1 скрытыми слоями и к ним добавляется k-ый слой, вход которого выход уже обученных k-1 слоев.

#### Стек автокодеров

Стек автокодеров - нейронная сеть, состоящая из нескольких слоев автокодеров, в которой выход каждого слоя связан со входами следующего за ним слоя



#### Стек автокодеров

- ullet Пусть  $W^{(k,1)}, W^{(k,2)}, b^{(k,1)}, b^{(k,2)}$  параметры  $W^{(1)}, W^{(2)}, b^{(1)}, b^{(2)}$  для k-го автокодера
- Кодирование:

$$a^{(l)} = f(z^{(l)}), \quad z^{(l+1)} = W^{(l,1)}a^{(l)} + b^{(l,1)}$$

• Декодирование:

$$a^{(t+l)} = f(z^{(t+l)}), \quad z^{(t+l+1)} = W^{(t-l,2)}a^{(t+l)} + b^{(t-l,2)}$$

• Основная информация - в  $a^{(t)}$  - значения активации на самом глубоком слое



## Пример стека автокодеров (1)

Сначала обучим автокодер на входных данных  $\mathbf{x}^{(k)}$  для первичных признаков  $h^{(1)(k)}$ :



## Пример стека автокодеров (2)

Затем используем значения активации  $h^{(1)(k)}$  для каждого  $\mathbf{x}^{(k)}$  для обучения другого автокодера и получения вторичных признаков  $h^{(2)(k)}$ :



## Пример стека автокодеров (3)

Вторичные признаки совместно с  $y^{(k)}$  теперь могут использоваться для классификации:



## Пример стека автокодеров (4)

#### В итоге комбинируем все три слоя вместе:



# Стек автокодеров (еще раз жадный алгоритм обучения)

- ① Обучаем первый автокодер (I=1) со всеми  $\mathbf{x}^{(k)}$ , используя обратное распространение ошибки.
- ② Обучаем второй автокодер (I=2). Так как входной слой для I=2 первый скрытый слой, то выходной слой для I=1 удаляется из сети. Обучение начинается с фиксации входной выборки слоя I=1, которая является выходом слоя I=2. Веса I=2 модифицируются, используя обратное распространение.
- Процедура повторяется для всех слоев.

## Проблема использования автокодера

- Нет четкой связи между входом и выходом всей сети, например, при распознавании MNIST, нет возможности отобразить нейроны последнего скрытого слоя автокодера в цифры изображений.
- В этом случае, решение добавить один или два слоя к последнему (глубокому) слою. Тогда вся нейронная сеть может рассматриваться как обычный персептрон и обучаться при помощи обратного распространения (fine-tuning).

### Еще одна проблема использования автокодера

• Выходной слой:

$$z^{(3)} = W^{(2)}a^{(2)} + b^{(2)}, \quad a^{(3)} = f(z^{(3)})$$

- $\bullet$   $a^{(3)}$  приближение  $\mathbf{x} = a^{(1)}$ .
- Если  $f\left(z^{(3)}\right)$  функция активации сигмоид, то необходимо нормализовать  $\mathbf{x}$  к [0;1], так как выход сигмоида число [0;1].

### Линейный декодер

- Функция активации нейронов скрытого слоя сигмоид или  $a^{(2)} = \sigma\left(W^{(1)}\mathbf{x} + b^{(1)}\right)$ , где  $\sigma\left(\cdot\right)$  сигмоид.
- Но функция активации выхода линейная функия  $\widehat{\mathbf{x}} = a^{(3)} = W^{(2)}a + b^{(2)}$  линейный декодер.
- Можно теперь использовать любые **x** без нормализации.

## Модификации автокодеров

# Denoising Autoencoder (зашумленный или шумоподавляющий автокодер)

- Вход автокодера зашумляется (различные стратегии):  $\mathbf{x}^{(k)} \to \widetilde{\mathbf{x}}^{(k)}$ , например,  $\widetilde{\mathbf{x}} = \mathbf{x} + \varepsilon$ ,  $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$
- ullet Скрытый слой:  $\mathbf{z}^{(k)} = W_1 \widetilde{\mathbf{x}}^{(k)} + b_1$
- Выходной слой без изменений:

$$\mathbf{x}^{(k)} \approx \widehat{\mathbf{x}}^{(k)} = W_2 \mathbf{z}^{(k)} + b_2$$

• Ошибка реконструирования

$$R = \sum_{k=1}^{n} (\widehat{\mathbf{x}}^{(k)} - \mathbf{x}^{(k)})^{2}, \text{ He } \sum_{k=1}^{n} (\widehat{\mathbf{x}}^{(k)} - \widetilde{\mathbf{x}}^{(k)})^{2}!$$

• Робастность, пропущенные данные



# k-Sparse Autoencoder (k-разреженный автокодер)

- Makhzani A, Frey B. k-Sparse Autoencoders. arXiv preprint arXiv:1312.5663.
   2013 Dec 19
- Функция активации нейронов скрытого слоя является линейной, т.е.

$$\mathbf{z}^{(k)} = f(W_1\mathbf{x}^{(k)} + b_1) = W_1\mathbf{x}^{(k)} + b_1$$

- **Ho** отбираются k наибольших скрытых нейронов, а остальные обнуляются
- Это вносит нелинейность

### k-Sparse Autoencoder - интересное свойство

#### 3 нейрона в скрытом слое



### Dropout Neural Networks

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15 (2014) 1929-1958.



Standard Neural Net



After applying dropout

# Dropout Neural Networks - прямое распространение

| Стандартная сеть                                             | Dropout                                                               |
|--------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                              | $\mathbf{r}^{(k)}\sim$ Bernulli $(p)$                                 |
|                                                              | $\mathbf{\tilde{x}}^{(k)} = \mathbf{r}^{(k)} \cdot \mathbf{x}^{(k)}$  |
| $\mathbf{z}^{(k)} = f\left(W_1\mathbf{x}^{(k)} + b_1\right)$ | $\mathbf{z}^{(k)} = f\left(W_1 \mathbf{\tilde{x}}^{(k)} + b_1\right)$ |
| $\mathbf{y}^{(k)} = f\left(W_2\mathbf{z}^{(k)} + b_2\right)$ | $\mathbf{y}^{(k)} = f\left(W_2\mathbf{z}^{(k)} + b_2\right)$          |

 $\mathbf{r}^{(k)}$  - вектор, состоящий из 0 и 1, сгенерированных с распределением Бернулли так, что 1 имеет вероятность p

### Dropout Neural Networks - обучение

- Обучение такое же, как и для стандартной сети
- Отличия:
  - прямое и обратное распространение для каждого обучающего примера осуществляется с "прореженной" сетью
  - градиенты для каждого параметра усредняются по всем обучающим примерам
  - если для текущего примера параметр "выкинут", то градиент равен 0

## Dropout Neural Networks - тестирование



# Generalized autoencoder - Обобщенный автокодер (1)

- ullet Выборка  $(\mathbf{x}^{(1)},\mathbf{x}^{(2)},...,)$ , где  $\mathbf{x}^{(k)}=\left(x_1^{(k)},...,x_m^{(k)}
  ight)$ , m признаков.
- $\mathbf{x}^{(i)}$  реконструируется k ближайших элементов обучающего множества  $\Omega_i = (\mathbf{x}^{(j)}, ..., \mathbf{x}^{(k)})$
- ullet Вклад каждого элемента  $s_{ij} \| \mathbf{x}^{(i)} \mathbf{z}^{(j)} \|^2$  весовое расстояние между  $\mathbf{x}^{(i)}$  и  $\mathbf{z}^{(j)}$
- ullet  $s_{ii}$  показатель близости элементов  $\mathbf{x}^{(i)}$  и  $\mathbf{x}^{(j)}$
- Ошибка реконструкции:

$$R(W_1, b_1, W_2, b_2) = \sum_{i=1}^{n} \sum_{i \in \Omega_i} s_{ij} \|\mathbf{x}^{(i)} - \mathbf{z}^{(j)}\|^2 \to \min_{W_1, b_1, W_2, b_2}$$

# Обобщенный автокодер (2)

Wang W., Huang Y., Wang Y., Wang L. Generalized Autoencoder: A Neural Network Framework for Dimensionality Reduction // Proceedings of the CVPR 2014 Workshop, Columbus, Ohio, 2014, 490-497.



## Обобщенный автокодер - алгоритм обучения

- Вычислить веса s<sub>ij</sub> для всех i и j (как на следующем слайде), веса определяют частные случаи.
- ② Определить множество индексов ближайших соседей  $\Omega_i$
- ullet Минимизировать  $R(W_1,b_1,W_2,b_2)$ , используя градиентный метод и модифицировать  $W_1,b_1,W_2,b_2$
- Вычислить скрытое представление  $\mathbf{a}^{(i)}$  и модифицировать веса  $s_{ij}$  и множество  $\Omega_i$
- Повторить шаги 3 и 4 до сходимости

## Обобщенный автокодер - частные случаи

- ullet Стандартный автокодер  $\Omega_i=\{i\}$ :  $s_{ii}=1,\; s_{ij}=0,\; j
  eq i$
- Реконструкция данных из того же класса  $\Omega_i$  множество индексов класса, которому принадлежит  $\mathbf{x}^{(i)}$ :  $s_{ij}=1/n_{c_i}$  (число элементов класса  $c_i$ )
- ullet Реконструкция в k ближайших соседей:  $s_{ij} = \exp(-\left\|\mathbf{x}^{(i)} \mathbf{x}^{(j)} \right\|^2/t)$ , t настраиваемый параметр
- Реконструкция в  $k_1$  ближ. соседей класса  $c_i$  и  $k_2$  ближ. соседей класса  $c_j \neq c_i$ :  $s_{ij}=1$ , если  $j\in\Omega_i^{(k_1)}$  и  $s_{ij}=-1$ , если  $j\in\Omega_i^{(k_2)}$

# Contractive autoencoder (сжимающий автокодер)

- Rifai S., Vincent P., Muller X., Glorot X., Bengio Y. Contractive Auto-Encoders: Explicit Invariance During Feature Extraction // Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 833-840.
- Сжимающий автокодер получается добавлением специального штрафного слагаемого (регуляризация) к функции ошибки, которое "заставляет" промежуточное представление (в скрытом слое) становиться робастным к малым изменениям входных обучающих данных
- Робастный скрытый слой, в отличие от Denoising AE, где робастным является выход

### Contractive autoencoder

• Штрафное слагаемое - норма Фробениуса якобиана  $J_f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^m$ :

$$\|J_f(\mathbf{x})\|_F^2 = \sum_{i,j} \left(\frac{\partial h_j(\mathbf{x})}{\partial (x_i)}\right)$$

- Это частный случай p-нормы для p=2:  $\|A\|_F^2 = \sum_{i=1}^n \sum_{j=1}^m a_{ij}^2$
- Штрафное слагаемое "заставляет" отображение в пространство признаков быть сжатым (contractive) в окрестности обучающих данных

## Функции ошибки автокодеров (напоминание)

• Обычный автокодер:

$$J_{AE}( heta) = \sum_{\mathbf{x} \in S} L(\mathbf{x}, g(f(\mathbf{x}))), heta = \{W_1, b_1, W_2, b_2\},$$
например  $L(\mathbf{x}, g(f(\mathbf{x}))) = \|\mathbf{x} - \mathbf{z}\|^2$ 

• С регуляризацией:

$$J_{AE+wd}(\theta) = \sum_{\mathbf{x} \in S} L(\mathbf{x}, g(f(\mathbf{x}))) + \lambda \left( \|W_1\|^2 + \|W_2\|^2 \right)$$

• Зашумленный:

$$J_{DAE}(\theta) = \sum_{\mathbf{x} \in S} \mathbb{E}_{\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}}|\mathbf{x})} \left[ L(\mathbf{x}, g(f(\tilde{\mathbf{x}}))) \right], \quad \tilde{\mathbf{x}} = \mathbf{x} + \varepsilon$$



### Функции ошибки сжимающего автокодера

Contractive autoencoder:

$$J_{AE}(\theta) = \sum_{\mathbf{x} \in S} L(\mathbf{x}, g(f(\mathbf{x}))) + \lambda \left( \|J_f(\mathbf{x})\|_F^2 \right)$$

• Вычисление функции ошибки: если f - сигмоид, то простое выражение

$$\|J_f(\mathbf{x})\|_F^2 = \sum_{i=1}^d (h_i(1-h_i))^2 \sum_{i=1}^m (W_1^{(i,j)})^2$$

## Отличие Contractive AE от Denoising AE

- Denoising AE автокодер делает робастными реконструированные значения, т.е.  $\mathbf{z} = g(f(\mathbf{x}))$
- Contractive AE делает робастным только скрытый слой  $\mathbf{h} = f(\mathbf{x})$ , т.е. представление признаков
- ullet Это более важно, так как декодер  $g(\cdot)$  не нужен при классификации, а используется только кодер

### Еще отличия Contractive AE от Denoising AE

- Denoising AE более прост в реализации, так как он является простым расширением обычного автокодера и не требует вычисления якобиана скрытого слоя.
- Contractive AE имеет детерминированный градиент (так как нет случайного шума), что означает, что методы оптимизации второго порядка (сопряженный градиент) могут использоваться, и автокодер может быть более стабильным, чем Denoising AE.

### Split-Brain автокодер

Zhang R., Isola P., Efros A. Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction. 2016, arXiv:1611.09842v1



Split-Brain Autoencoder

# Векторные представления и автокодер (embedding)

# Проблема представления (embedding)

- Проблема возникает, когда необходимо при сокращении размерности (скрытый слой автокодера) сохранить "семантику" исходного входного множества данных большой размерности.
- Исходные данные большой размерности "вкладываются" в малую размерность с сохранением "геометрии".
- Многие алгоритмы, например, pointwise mutual information (PMI), обеспечивают локальное сохранение "геометрии", т.е. относительные расстояния между точками в пространстве большой размерности сохраняются в пространстве малой размерности.

### Примеры векторного представления слов

- "кот"  $\rightarrow$  (0.1, 1.8, -4.2, 0.36, ...)
- "собака"  $\rightarrow$  (0.13, 1.45, -4.23, 0.41, ...)
- "машина"  $\rightarrow$  (8.31, -7.29, 0.44, -5.28, ...)
- "велосипед"  $\rightarrow$  (7.2, -6.71, 0.43, -2.45, ...)
- Семантически "кот" и "собака" близки, "машина" и "велосипед" тоже близки.
- Тогда их представления также должны быть близки.

### Примеры векторного представления слов



# Примеры векторного представления изображений



### Алгоритмы вложения

- ullet Исходная выборка:  $(\mathbf{x}^{(1)},\mathbf{x}^{(2)},...,\mathbf{x}^{(n)})$ ,  $\mathbf{x}^{(i)}\in\mathbb{R}^D$
- ullet Скрытый слой:  $\mathbf{h}^{(k)} = f\left(W_1\mathbf{x}^{(k)} + b_1
  ight)$ ,  $\mathbf{h}^{(k)} \in \mathbb{R}^d$
- Задача оптимизации:

$$\sum_{1 \leq i \leq j \leq m} L(\mathbf{h}^{(i)}, \mathbf{h}^{(j)}, \varphi_{ij}) \to \min_{W_1, b_1}$$

ullet  $\varphi_{ij}$  - вес между  ${f x}^{(i)}$  и  ${f x}^{(j)}$ :

$$arphi_{ij} = \left\| \mathbf{x}^{(i)} - \mathbf{x}^{(j)} \right\|^2, \quad \varphi_{ij} = e^{-\left\| \mathbf{x}^{(i)} - \mathbf{x}^{(j)} \right\|^2/r},$$
  $arphi_{ij} = \left\{ egin{array}{ll} 1, & \left\| \mathbf{x}^{(i)} - \mathbf{x}^{(j)} \right\|^2 \leq arepsilon \\ 0, & \text{иначе} \end{array} 
ight.$ 

### Функции потерь

• Laplacian eigenmaps (LE)

$$L(\mathbf{h}^{(i)}, \mathbf{h}^{(j)}, \varphi_{ij}) = \left\| \mathbf{h}^{(i)} - \mathbf{h}^{(j)} \right\|^2 \varphi_{ij}$$

Multidimensional scaling (MDS)

$$L(\mathbf{h}^{(i)}, \mathbf{h}^{(j)}, \varphi_{ij}) = (\|\mathbf{h}^{(i)} - \mathbf{h}^{(j)}\| - \varphi_{ij})^{2}$$

ullet Margin-based Embedding (I=1)

$$L(\mathbf{h}^{(i)}, \mathbf{h}^{(j)}, \varphi_{ij}) = \begin{cases} \|\mathbf{h}^{(i)} - \mathbf{h}^{(j)}\|^2, & \varphi_{ij} = 1, \\ \max\left(0, I - \|\mathbf{h}^{(i)} - \mathbf{h}^{(j)}\|^2\right), & \varphi_{ij} = 0. \end{cases}$$

### Функционалы потерь

• Стандартный автокодер:

$$J(\theta, \mathbf{x}) = \gamma \sum_{i=1}^{n} L(\mathbf{x}_{i}, \mathbf{z}_{i}) + \beta \sum_{j=1}^{d} KL(\rho, \widehat{\rho}_{j}) + \frac{\lambda}{2} \left( \|W_{1}\|^{2} + \|W_{2}\|^{2} \right)$$

• Автокодер с учетом вложения:

$$J_{em}(\theta, \varphi, \mathbf{x}) = \sum_{1 \leq i \leq j \leq m} L(\mathbf{h}^{(i)}, \mathbf{h}^{(j)}, \varphi_{ij}) + J(\theta, \mathbf{x})$$

- ullet  $\gamma,\ eta,\ \lambda$  параметры, контролирующие баланс между штрафными слагаемыми
- W.Yu, G.Zeng, P.Luo, F.Zhuang, Q.He, Z.Shi. Embedding with Autoencoder Regularization // Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2013, 2013, pp. 208-223.

### Обучение автокодера

Необходимо найти частные производные:

$$\frac{\partial \textit{J}_{\textit{em}}(\theta, \varphi, \textbf{x})}{\partial \textit{W}_t}, \ \frac{\partial \textit{J}_{\textit{em}}(\theta, \varphi, \textbf{x})}{\partial \textit{b}_t}, \ t = 1, 2.$$

Определим  $\delta^{(1)}$  и  $\delta^{(2)}$  для скрытого и выходного слоя, соответственно, как

$$\delta^{(1)} = \left( (W_2)^{\mathrm{T}} \, \delta^{(2)} + \beta \frac{\widehat{\rho} - \rho_0}{\widehat{\rho}(1 - \rho_0)} \right) \cdot \sigma'(\mathbf{h})$$

$$\delta^{(2)} = \frac{\partial}{\partial \mathbf{z}} \frac{1}{2} \|\mathbf{h} - \mathbf{x}\|^2 = -(\mathbf{h} - \mathbf{x}) \cdot \sigma'(\mathbf{z}),$$

где  $ho_0 \in \mathbb{R}^d$  - вектор всех ho,

$$\mathbf{h} = W_1 \mathbf{x} + b_1, \ \mathbf{z} = W_2 \mathbf{h} + b_2, \ \widehat{\rho} = n^{-1} \sum_{i=1}^{n} \mathbf{h}^{(i)}$$



### Вычисление частных производных

- f O Случайно инициализируем  $heta = (W_1, W_2, b_1, b_2)$
- **②** Прямое распространение вычисляем:  $h^{(i)}$ ,  $z^{(i)}$ ,  $\delta^{(1)}$ ,  $\delta^{(2)}$
- Вычисляем частные производные:

$$\begin{split} &\frac{\partial J_{em}(\theta,\varphi,\mathbf{x})}{\partial W_2} = \gamma \delta^{(2)}\mathbf{h}^{\mathrm{T}} + \lambda W_2 \\ &\frac{\partial J_{em}(\theta,\varphi,\mathbf{x})}{\partial b_2} = \gamma \delta^{(2)} \\ &\frac{\partial J_{em}(\theta,\varphi,\mathbf{x})}{\partial W_1} = \frac{\partial}{\partial W_1} \sum_{i \leq j} L(\mathbf{h}^{(i)},\mathbf{h}^{(j)},\varphi_{ij}) + \gamma \delta^{(1)}\mathbf{x}^{\mathrm{T}} + \lambda W_1 \\ &\frac{\partial J_{em}(\theta,\varphi,\mathbf{x})}{\partial b_1} = \frac{\partial}{\partial b_1} \sum_{i \leq j} L(\mathbf{h}^{(i)},\mathbf{h}^{(j)},\varphi_{ij}) + \gamma \delta^{(1)} \end{split}$$

### Результирующий алгоритм обучения

- lacktriangle Вычисляем  $arphi_{ij}$
- Дикл до критерия остановки
  - $\Delta W_t = 0$ ,  $\Delta b_t = 0$ , t = 1, 2.
  - Вычисляем все частные производные
  - $\Delta W_t = \sum_{i=1}^n \frac{\partial J_{em}(\theta, \varphi, \mathbf{x}^{(i)})}{\partial W_t}$ ,  $\Delta b_t = \sum_{i=1}^n \frac{\partial J_{em}(\theta, \varphi, \mathbf{x}^{(i)})}{\partial b_t}$
  - Модификация:  $W_t = W_t \alpha \left( n^{-1} \Delta W_t \right)$ ,  $b_t = b_t \alpha \left( n^{-1} \Delta b_t \right)$
- Конец цикла
- lacktriangle Вычисляем результаты (представление) h

### Какие автокодеры еще есть?

- Вариационный автокодер (Variational autoencoder)
- Автокодер со значимыми весами (Importance weighted autoencoder)
- Соперничающие автокодеры (Adversarial autoencoders)

### Это все порождающие модели

### Применение автокодера

- Снижение размерности (компактное представление) данных.
- "Pretraining": обучение автокодера (без учителя) для получения весов, далее использование этой же конфигурации для глубокой сети и использование весов как исходных (это лучше, чем случайные веса).
- Одноклассовая классификация: автокодер обучается на данных и определяется порог ошибки реконструирования, далее этот порог используется для тестирования аномальных наблюдений.
- 🐠 и многое другое...

# Вопросы

?