Wednesday, May 20, 2020 7:44 AM

chapter 6

ELLIPSE

Cartesian equation of an ellipse with centre (h, k): $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$.

If a > b the ellipse has vertices $(h \pm a, k)$, foci $(h \pm c, k)$ and eccentricity $e = \frac{c}{a}$, where

$$c = \sqrt{a^2 - b^2}.$$

If b>a the ellipse has vertices $(h,k\pm b)$, foci $(h,k\pm c)$ and eccentricity $e=\frac{c}{b}$, where

$$c = \sqrt{b^2 - a^2}.$$

HYPERBOLA

Cartesian equation of a hyperbola with centre (h, k) is either

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \text{ with vertices } (h \pm a, k), \text{ foci } (h \pm c, k),$$

asymptotes
$$(y-k) = \pm \left(\frac{b}{a}\right)(x-h)$$
,

or

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1 \text{ with vertices } (h, k \pm a), \text{ foci } (h, k \pm c),$$

asymptotes
$$(y-k) = \pm \left(\frac{a}{b}\right)(x-h)$$
.

In both cases
$$c = \sqrt{a^2 + b^2}$$
.

	Horizontal Orientation	Vertical Orientation	Notes
Ellipse	a > b	b > a	a^2 is in the denominator of the x^2 term.
Hyperbola	x ² term has a positive coefficient	y ² term has a positive coefficient	a^2 is in the denominator of the term with the positive coefficient.

horizontal line; "Vertical Orientation" means that important points lie on a vertical line.

Note: c measures the distance between centre and focus in all cases. This is particularly useful for questions 6 and 7 in the tutorial.

Important: When you sketch a hyperbola take care to ensure that the branches of the hyperbola *approach* the asymptotes.

2 of 2 1/2/21, 12:26 PM