## Homework #2

# Build a logistic regression model to predict heart disease

### Import data and preview

```
data1 = readtable("../cleveland_data_revised.xlsx");
head(data1,5)
```

ans =  $5 \times 14$  table

|   | Age | SEX | chestPain | restingBP | cholest | highBloodSugar | ECG |
|---|-----|-----|-----------|-----------|---------|----------------|-----|
| 1 | 63  | 1   | 1         | 145       | 233     | 1              | 2   |
| 2 | 67  | 1   | 4         | 160       | 286     | 0              | 2   |
| 3 | 67  | 1   | 4         | 120       | 229     | 0              | 2   |
| 4 | 37  | 1   | 3         | 130       | 250     | 0              | 0   |
| 5 | 41  | 0   | 2         | 130       | 204     | 0              | 2   |

Build model that predicts whether individual has heart disease, and model that predicts disease severity. Evaluate using 3-fold cross validation.

```
X = data1{:,1:13};
Y = double(data1.diseaseSeverity > 0); % convert logical to double
Y2 = data1.diseaseSeverity;
```

```
indices = crossvalind('kfold', size(data1, 1), 3);
accuracy = zeros(1,3);
precision = zeros(1,3);
recall = zeros(1,3);
rank = zeros(1,3);
avg error = zeros(1,3);
accuracy2 = zeros(1,3);
for i = 1:3
    test = indices == i;
    train = ~test;
    Xtrain = X(train,:);
    Ytrain = categorical(Y(train,:));
    Ytrain2 = categorical(Y2(train,:));
    Xtest = X(test,:);
    Ytest = Y(test,:);
    Ytest2 = Y2(test,:);
```

```
% Model 1
[mdl1,~,stats1] = mnrfit(Xtrain,Ytrain);
probability = mnrval(mdl1,Xtest);
Ypred = round(probability(:,2));

accuracy(i) = sum(Ypred==Ytest)/length(Ypred);
precision(i) = sum(Ypred==1 & Ytest==1)/sum(Ypred==1);
recall(i) = sum(Ypred==1 & Ytest==1)/sum(Ytest==1);

% Model 2
[mdl2,~,stats2] = mnrfit(Xtrain,Ytrain2);
probability2 = mnrval(mdl2,Xtest);
Ypred2 = round(probability2(:,2));

rank(i) = corr(Ytest2,Ypred2,"type","Spearman","rows","complete");
avg_error(i) = nanmean(abs(Ypred2=Ytest2));
accuracy2(i) = sum(Ypred2==Ytest2)/length(Ypred2);
end
```

#### **Model 1 Performance**

```
mean(accuracy)
ans = 0.8086

mean(precision)
ans = 0.8165

mean(recall)
ans = 0.7844

confusionchart(Ytest, Ypred); % uses last cross-validation iteration
```



#### **Model 2 Performance**

```
mean(rank)
ans = 0.1006

mean(avg_error)
ans = 0.9216

mean(accuracy2)
ans = 0.5248
```

#### Compare models to distribution of 100 random guesses using a t-test

```
guess_accuracy1 = zeros(100,1);
guess_accuracy2 = zeros(100,1);
for i = 1:100
    mdl1_guess = Y(randperm(length(Ytest)));
    mdl2_guess = Y2(randperm(length(Ytest2)));

guess_accuracy1(i,1) = sum(mdl1_guess == Ytest)/length(Ytest);
    guess_accuracy2(i,1) = sum(mdl2_guess == Ytest2)/length(Ytest2);
end
```

```
mean(guess_accuracy1)
ans = 0.5190

mean(guess_accuracy2)
ans = 0.3900

[h_mdl1, p_mdl1] = ttest2(accuracy, guess_accuracy1)

h_mdl1 = 1
p_mdl1 = 6.0614e-16

[h_mdl2, p_mdl2] = ttest2(accuracy2, guess_accuracy2)

h_mdl2 = 1
p_mdl2 = 9.7590e-09
```

#### Most important features from each model, based on p-value

#### Model 1

```
% Must subtract 1 from index to account for intercept term
data1.Properties.VariableNames([12,13,4,9,8])

ans = 1×5 cell array
{'fluoroscopy'} {'thalliumTest'} {'restingBP'} {'angina'} {'maxHR'}
```

#### Model 2

```
data1.Properties.VariableNames([12,9,11,13])

ans = 1×4 cell array
{'fluoroscopy'} {'angina'} {'slopeST'} {'thalliumTest'}
```

## Brain cancer survival data set

#### Import and inspect data

```
data2 = readtable("Top 100 Genes.xlsx");
tail(data2,5)
```

ans =  $5 \times 104$  table

. . .

|   | PATIENT_ID   | SurvivalDaysOS | SurvivalDaysPF | Test | LIX1L   | NEU4    |
|---|--------------|----------------|----------------|------|---------|---------|
| 1 | 'GSM1912975' | 313            | 313            | 0    | 0.1122  | -1.5424 |
| 2 | 'GSM1912976' | 962            | 277            | 0    | 0.8193  | 0.9344  |
| 3 | 'GSM1912977' | 826            | 826            | 0    | 0.3891  | 1.7826  |
| 4 | 'GSM1912978' | 257            | 257            | 0    | -0.3570 | -1.5359 |
| 5 | 'GSM1912979' | 593            | 395            | 1    | 0.4702  | 2.6611  |

#### Create train and tests sets X and Y

```
Xtrain = data2{data2.Test==0,5:end};
Xtest = data2{data2.Test==1,5:end};

Ytrain = data2{data2.Test==0,3};
Ytest = data2{data2.Test==1,3};
```

#### **Build lasso model**

```
[B1, Fit] = lasso(Xtrain, Ytrain, 'CV', 10);
B1_coeff = B1(:, Fit.IndexMinMSE);
B1_intercept = Fit.Intercept(Fit.IndexMinMSE)
```

B1\_intercept = 458.9062

#### **Build stepwise model**

```
[B2,~,~,inmodel,stats] = stepwisefit(Xtrain,Ytrain,"display","off" );
```

# Use models to predict survival (PFS). Calculate correlation and mean absolute error Lasso

```
Ypred_lasso = Xtest * B1_coeff + B1_intercept;
r_lasso = corr(Ypred_lasso,Ytest)

r_lasso = 0.2258

avg_error_lasso = mean(abs(Ypred_lasso-Ytest))

avg_error_lasso = 284.4510
```

#### **Stepwise**

```
Ypred_step = Xtest(:,find(stats.PVAL < 0.05))*B2(find(stats.PVAL < 0.05)) + stats.inter
r_stepwise = corr(Ypred_step,Ytest)

r_stepwise = 0.4530

avg_error_stepwise = mean(abs(Ypred_step-Ytest))

avg_error_stepwise = 275.6031</pre>
```

## Compare regression methods with linear regession

#### Build linear regression model with top 15 correlated genes

```
% Find correlation of all 100 genes and then extract data for top 15 genes
r_100 = corr(Xtrain,Ytrain);
[r_15,index_15] = maxk(abs(r_100),15);

% Create new training and test sets with top 15 genes
Xtrain_15 = Xtrain(:,index_15);
Xtest_15 = Xtest(:,index_15);
mdl = fitlm(Xtrain_15,Ytrain)
```

```
 \begin{array}{l} \text{mdl =} \\ \text{Linear regression model:} \\ \text{y} \sim 1 + \text{x1} + \text{x2} + \text{x3} + \text{x4} + \text{x5} + \text{x6} + \text{x7} + \text{x8} + \text{x9} + \text{x10} + \text{x11} + \text{x12} + \text{x13} + \text{x14} + \text{x15} \\ \end{array}
```

Estimated Coefficients:

|             | Estimate | SE     | tStat    | pValue     |
|-------------|----------|--------|----------|------------|
|             |          |        |          |            |
| (Intercept) | 457.33   | 56.354 | 8.1153   | 5.9897e-09 |
| x1          | 213.75   | 120.73 | 1.7704   | 0.087166   |
| <b>x</b> 2  | -160.74  | 114.06 | -1.4093  | 0.16939    |
| <b>x</b> 3  | -33.507  | 159.69 | -0.20982 | 0.83527    |
| x4          | 174.4    | 195.9  | 0.89022  | 0.38068    |
| <b>x</b> 5  | 31.944   | 170.59 | 0.18725  | 0.85277    |
| <b>x</b> 6  | 180.64   | 128.12 | 1.4099   | 0.1692     |
| <b>x</b> 7  | -80.843  | 193    | -0.41887 | 0.67839    |
| <b>x</b> 8  | 215.96   | 213.79 | 1.0102   | 0.32077    |
| <b>x</b> 9  | 48.88    | 44.087 | 1.1087   | 0.27666    |
| <b>x10</b>  | 8.2189   | 69.133 | 0.11888  | 0.90619    |
| x11         | -41.904  | 167.72 | -0.24985 | 0.80447    |
| x12         | 63.079   | 59.104 | 1.0673   | 0.29466    |
| x13         | -120.49  | 156.75 | -0.76867 | 0.44831    |
| x14         | 55.38    | 60.463 | 0.91593  | 0.36726    |
| x15         | -94.028  | 173.23 | -0.54279 | 0.59142    |

```
Number of observations: 45, Error degrees of freedom: 29 Root Mean Squared Error: 231 R-squared: 0.674, Adjusted R-Squared: 0.505 F-statistic vs. constant model: 3.99, p-value = 0.000688
```

### Predict survival (PFS) in test set and measure model accuracy

```
Ypred_norm = predict(mdl, Xtest_15);

r_norm = corr(Ytest, Ypred_norm)

r_norm = 0.0677

avg_error = mean(abs(Ypred_norm-Ytest))

avg_error = 279.0284
```

#### Compare correlation and number of features of 3 methods

```
% Create labels for bar graphs
x = categorical({'Normal','Lasso','Stepwise'});
x = reordercats(x,{'Normal','Lasso','Stepwise'});

% Correlation bar graph.
bar(x,[r_norm,r_lasso,r_stepwise])
xlabel("Regression Method")
ylabel("Correlation Coefficient, r")
title("Survival Days PF Correlation ")
```



```
% Find number of features in each model
size_lin_reg = size(mdl.Coefficients,1)-1 % subtract 1 for intercept term

size_lin_reg = 15

size_lasso = sum(Bl_coeff ~= 0)

size_lasso = 31

size_stepwise = length(find(stats.PVAL < 0.05))

size_stepwise = 5

% Number of features bar graph
bar(x,[size_lin_reg,size_lasso,size_stepwise])
xlabel("Regression Method")
ylabel("Number of Features")
title("Number of Features per Regression Method ")</pre>
```

