International Rectifier

IRS2001(S)PbF

HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +200 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout
- 3.3 V, 5 V, and 15 V logic input compatible
- Matched propagation delay for both channels
- Outputs in phase with inputs
- RoHS compliant

Description

The IRS2001 is a high voltage, high speed power MOSFET and IGBT driver with independent high-side and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 200 V.

Product Summary

Voffset	200 V max.
I _O +/-	200 mA/420 mA
Vout	10 V - 20 V
t _{on/off} (typ.)	160 ns/150 ns
Delay Matching	50 ns

Packages

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units		
V _B	High-side floating supply voltage		-0.3	225		
Vs	High-side floating supply offset voltage		V _B - 25	V _B + 0.3		
V _{HO}	High-side floating output voltage		V _S - 0.3	V _B + 0.3	V	
V _{CC}	Low-side and logic fixed supply voltage		-0.3	25	, v	
V _{LO}	Low-side output voltage		-0.3	V _{CC} + 0.3		
V _{IN}	Logic input voltage (HIN & LIN)		-0.3	V _{CC} + 0.3		
dV _S /dt	Allowable offset supply voltage transient		_	50	V/ns	
D.	Package power dissipation @ T _A ≤ +25 °C (8 lead PDIP) (8 lead SOIC)		_	1.0	144	
P_{D}			_	0.625	W	
Dth	Thermal registance in notion to embient	(8 lead PDIP)	_	125	°C/W	
Rth _{JA}	Thermal resistance, junction to ambient	(8 lead SOIC)	_	200	C/VV	
TJ	Junction temperature		_	150		
T _S	Storage temperature		-55	150	°C	
TL	Lead temperature (soldering, 10 seconds)		_	300		

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at a 15 V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High-side floating supply offset voltage	200		
V _{HO}	High-side floating output voltage	Vs	V _B	V
Vcc	Low-side and logic fixed supply voltage	10	20	
V_{LO}	Low-side output voltage	0	Vcc	
V _{IN}	Logic input voltage (HIN & LIN)	0	Vcc	
T _A	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 V to +200 V. Logic state held for V_S of -5 V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15 V, C_L = 1000 pF and T_A = 25 °C unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	160	220		V _S = 0 V
toff	Turn-off propagation delay	_	150	220		V _S = 200 V
t _r	Turn-on rise time	_	70	100	ns	
tf	Turn-off fall time	_	35	60		
MT	Delay matching, HS & LS turn-on/off	_	_	50		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V and T_A = 25 °C unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage	2.5	_	_		V _{CC} = 10 V to 20 V
V _{IL}	Logic "0" input voltage	_	_	0.8	V	VCC = 10 V to 20 V
Voн	High level output voltage, V _{BIAS} - V _O	_	0.05	0.1		I _O = 2 mA
V _{OL}	Low level output voltage, VO	-	0.02	0.05		.0
ILK	Offset supply leakage current	_	_	50		V _B = V _S = 200 V
I _{QBS}	Quiescent V _{BS} supply current	_	30	55		V _{IN} = 0 V or 5 V
lacc	Quiescent V _{CC} supply current	_	150	270	μA	
I _{IN+}	Logic "1" input bias current	_	3	10		V _{IN} = 5 V
I _{IN-}	Logic "0" input bias current	_	_	5		V _{IN} = 0 V
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	8	8.9	9.8		
Vccuv-	V _{CC} supply undervoltage negative going threshold	7.4	8.2	9	V	
						V _O = 0 V
I _{O+}	Output high short circuit pulsed current	200	290	_	mA	V _{IN} =Logic "1"
						PW ≤ 10 μs
I _{O-}	Output low short circuit pulsed current		600	_		V _O = 15 V
		420				V _{IN} = Logic "0"
						PW ≤ 10 μs

Functional Block Diagram

Lead Definitions

Symbol	Description
HIN	Logic input for high-side gate driver output (HO), in phase
LIN	Logic input for low-side gate driver output (LO), in phase
VB	High-side floating supply
НО	High-side gate drive output
Vs	High-side floating supply return
Vcc	Low-side and logic fixed supply
LO	Low-side gate drive output
СОМ	Low-side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Delay Matching Waveform Definitions

Figure 6A. Turn-On Time vs. Temperature

Figure 6B. Turn-On Time vs. Supply Voltage

Figure 6C. Turn-On Time vs. Input Voltage

Figure 7A. Turn-Off Time vs. Temperature

Figure 7B. Turn-Off Time vs. Supply Voltage

Figure 7C. Turn-Off Time vs. Input Voltage

International **TOR** Rectifier

IRS2001(S)PbF

Figure 9A. Turn-On Rise Time vs. Temperature

Figure 9B. Turn-On Rise Time vs. Voltage

Figure 10A. Turn-Off Fall Time vs. Temperature

Figure 10B. Turn-Off Fall Time vs. Voltage

Figure 12A. Logic "1" Input Voltage vs. Temperature

Figure 12B. Logic "1" Input Voltage vs. Voltage

International TOR Rectifier

IRS2001(S)PbF

Figure 13A. Logic "0" Input Voltage vs. Temperature

Figure 13B. Logic "0" Input Voltage vs. Supply Voltage

Figure 14A. High Level Output Voltage vs. Temperature

Figure 14B. High Level Output vs. Supply Voltage

Figure 15A. Low Level Output Voltage vs. Temperature

Figure 15B. Low level Output vs.Supply Voltage

International **IOR** Rectifier

IRS2001(S)PbF

Figure 16A. Offset Supply Current vs. Temperature

Figure 16B. Offset Supply Current vs. Voltage

Figure 17A. V_{BS} Supply Current vs. Temperature

Figure 17B. V_{BS} Supply Current vs. Voltage

Figure 18A. V_{CC} Supply Current vs. Temperature

Figure 18B. V_{CC} Supply Current vs. Voltage

International TOR Rectifier

IRS2001(S)PbF

Figure 19A. Logic"1" Input Current vs. Temperature

Figure 20A. Logic "0" Input Bias Current vs. Temperature

Figure 21A. V_{CC} Undervoltage Threshold(+) vs. Temperature

Figure 19B. Logic"1" Input Current vs. Voltage

Figure 20B. Logic "0" Input Bias Current vs. Voltage

Figure 21B. V_{CC} Undervoltage Threshold(-) vs. Temperature

Figure 22A. Output Source Current vs. Temperature

Figure 23A. Output Sink Current vs. Temperature

Figure 22B. Output Source Current vs. Supply Voltage

Figure 23B. Output Sink Current vs. Supply Voltage

Case Outlines

Tape & Reel 8-lead SOIC

CARRIER TAPE DIMENSION FOR 8SOICN
Metric Imp Min Min 0.311 7.90 0.318 8.10 3.90 4.10 0.153 0.161 11.70 12.30 0.46 0.484 5.45 5.55 0.214 0.218 6.30 6.50 0.248 0.255 5.30 0.200 0.208 1.50 0.059 n/a 1.60 n/a 0.062

REEL DIMENSIONS FOR 8SOICN

	M e	tric	lm p erial		
Code	Min	Max	Min	Max	
Α	329.60	330.25	12.976	13.001	
В	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E	98.00	102.00	3.858	4.015	
F	n/a	18.40	n/a	0.724	
G	14.50	17.10	0.570	0.673	
Н	12.40	14.40	0.488	0.566	

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

8-Lead PDIPIRS2001PbF 8-Lead SOIC IRS2001SPbF 8-Lead SOIC Tape & Reel IRS2001STRPbF

International ICR Rectifier

The SOIC-8 is MSL2 qualified.

This product has been designed and qualified for the industrial level.

Qualification standards can be found at www.irf.com

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 8/18/2008