2013학년도 2학기 (중간고사)		학 과		감!	독교수확인
과 목 명	일반수학 2	학 번			
출제교수명	용	교수명	분 반		
시 험 일 시	2013년 10월 23일 (오전 10:00-11:40)	성 명		점 수	

이과정은 쓸 필요 없고 답만 쓰면 됩니다.

1. 직선 $x = \sqrt{3}y$ 와 극방정식으로 주어진 곡선 $r = 1 - 2\cos^2(2\theta)$ 의 모든 교점을 극좌표로 나타내어라.

1번 - 10번은 단답형 문제(각 5점 만점)입니다. 풀 3. 극좌표에서 $heta=\pi$ 일 때, 곡선 $r=rac{1}{a}$ 의 접선을 직교 좌표 방정식으로 나타내어라.

답:

 $w = f(x,y,z) = xy^2 + xz + yz^2$ 의 도함수를 구하여라.

답:

2. 점 P(3,2,1)에서 점 Q(2,4,3)로의 방향에 대한 $oxed{4}$. 벡터 $oldsymbol{a}=<-1,3,-7>$ 가 벡터 $oldsymbol{b}=<1,-2,3>$ 에 평행한 벡터 c 와 그 c 에 수직인 벡터 d 의 합으로 표시된다고 하자. 이때 벡터 a와 d 를 두 변으로 하는 평행사변형의 넓이를 구하여라.

답:

답:

2013학년도 2학기 (중간고사)		학 과		감!	독교수확인
과 목 명	일반수학 2	학 번			
출제교수명	용	교수명	분 반		
시 혐 일 시	2013년 10월 23일 (오전 10:00-11:40)	성 명		점 수	

5. 구면좌표에서의 두 곡면 $\rho=3$ 과 $\phi=\frac{\pi}{3}$ 의 교선을 07. 방정식 $x^2+y^2+z^2-e^{xyz}=0$ 에서 z가 독립변수 x,y직교좌표 방정식으로 나타내어라.

에 관한 음함수일 때 $\frac{\partial z}{\partial x}$ 를 구하여라.

T-1.	
53	
	-

6. 함수 f(x,y)는 x와 y에 관한 미분 가능한 함수이고 8. 주어진 두 직선 $\frac{x-1}{2} = y+1 = \frac{z-3}{3}$ 과 $g(u,v)=f(e^u+\sin v,e^u+\cos v)$ 라 하자. 다음 표를 이 용해서 $g_u(0,0)$ 와 $g_v(0,0)$ 을 각각 구하여라.

	f(x,y)	$f_x(x,y)$	$f_y(x,y)$
(1, 2)	6	2	5

답:

 $x+2=rac{y}{-2}=rac{z+2}{2}$ 의 교점을 P라고 하자. 이때 점 P, Q(1,1,1), R(2,3,-1)을 꼭짓점으로 하는 삼각형의 넓이 를 구하여라.

답:

답:

2013학년도 2학기 (중간고사)		학 과		감!	독교수확인
과 목 명	일반수학 2	학 번			
출제교수명	공	교수명	분 반		
시 혐 일 시	2013년 10월 23일 (오전 10:00-11:40)	성 명		점 수	

9.	평면	α 는 x 축	을 포함하고	점 (1,2,3)을	지난다고	할	11번~15번	은 서술형	문제(각	10점	만점)입니다.	3
때,	, 점	(2,1,1)에서	너 평면 $lpha$ 에	이르는 거리를	구하여라.		이과정을 모	<u>1</u> 두 서술하	하여야 합	니다.		

11.
$$f(x,y) = \begin{cases} \frac{xy^3 - x^3y}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

편도함수의 정의를 이용하여 $f_x(0,y), f_y(x,0), f_{xy}(0,0),$ 과 $f_{yx}(0,0)$ 을 모두 구하여라.

다	•
H	٠

10. 극좌표로 표현된 곡선 r=1 의 내부와 곡선 $r=1-\cos heta$ 의 외부로 이루어진 영역의 둘레의 길이를 구하여라.

답:

2013학년도 2학기 (중간고사)		학 과		감	독교수확인
과 목 명	일반수학 2	학 번			
출제교수명	용	교수명	분 반		
시 험 일 시	2013년 10월 23일 (오전 10:00-11:40)	성 명		점 수	

(10.00	11.407	
12. 주어진 두 직선 l_i : $x=y=z$ 와	$l_0: x+1=\frac{y}{z}=\frac{z}{z}$	[13. 함수 $f(x,y,z) = x^3 + y^3 + z^3 - 9xyz$ 와 임의의 변수
	$\frac{2}{2}$ $\frac{2}{3}$	13. 함수 $f(x,y,z) = x^3 + y^3 + z^3 - 9xyz$ 와 임의의 변수에 대하여, 등식 $f(tx,ty,tz) = t^3 f(x,y,z)$ 이 성립함을 보
사이의 거리를 구하시오.		여라. 또한 위 등식과 연쇄법칙을 이용하여
		$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} = 3f(x,y,z)$ 이 성립함을 보여라.

2013학년도 2학기 (중간고사)		학 과		감	독교수확인
과 목 명	일반수학 2	학 번			
출제교수명	공 동	교수명	분 반		
시 험 일 시	2013년 10월 23일 (오전 10:00-11:40)	성 명		점 수	

14 . 극좌표로 표현된 곡선 $r=2+\sqrt{3}\cos heta$ 의 내부와 곡	15 . 곡면 $xyz=4$ 위의 한 점 $P(x_0,y_0,z_0)$ 에서 곡면에
선 $r=3-\sin\theta$ 의 외부에 놓인 영역의 넓이를 구하여라.	 접하는 접평면과 <i>xu</i> 평면, <i>uz</i> 평면, <i>xz</i> 평면으로 둘러싸인
	사면체의 부피를 구하여라. (단, $x_0, y_0, z_0 > 0$ 이다.)
	$[(0, y_0, y_0, z_0)] $