Data Structures and Algorithms

Prof. Ganesh Ramakrishnan, Prof. Ajit Diwan, Prof. D.B. Phatak

Department of Computer Science and Engineering IIT Bombay

Session: Order of Running Time of an Algorithm Big-oh(\mathcal{O}), Small-oh(o), Omega(Ω), Theta(Θ)

Formalizing Definitions

- $T(N) = \mathcal{O}(f(N))$ if there are positive constants c and n_0 such that $T(N) \leq cf(N)$ when $N \geq n_0$
- This is also pronounced as T(N) is Big-Oh f(N)
- This means T(N) is of the order of f(N) if you can find a point n_0 after which T(N) is (asymptotically) smaller than a linearly scaled version of f(N).
- Rougly speaking
 - ▶ The point n_0 helps ignore the additive constants
 - ▶ The factor c helps ignore the multiplicative constants
 - lacktriangle Focus is only on the dominating N term

Understanding Big-Oh

Other Definitions

- $T(N) = \Omega(f(N))$ if there are positive constants c and n_0 such that $T(N) \ge cf(N)$ whenever $N \ge n_0$
 - Growth rate of T(N) is asymptotically more than of g(N)
- $\blacksquare \ T(N) = \Theta(f(N)) \text{ if } T(N) = O(f(N)) \text{ and } T(N) = \Omega(f(N))$
 - Growth rate of T(N) and f(N) are the same
- T(N) = o(f(N)) if for all positive constants c there is an n_0 such that $T(N) < c \ f(N)$ when N > n
 - Growth rate of T(N) is strictly less than of f(N)

More Definitions

- $\blacksquare T(N) = \Omega(f(N))$
 - f(N) is $\mathcal{O}(T(N))$
- $\blacksquare T(N) = \Theta(f(N))$
 - Tighter (slightly advanced) analysis
- T(N) = o(f(N)): What is the real difference from big-Oh?
 - ▶ If T(N) is $\mathcal{O}(f(N))$, it may still be $\Theta(f(N))$
 - ▶ But, if T(N) is o(f(N)), it will **Not** be $\Theta(f(N))$

Examples (of functions)

- \blacksquare 2N + 3 is $\mathcal{O}(N)$
 - T(N) = 2N + 3, f(N) = N
 - ▶ For c = 6, $n_0 = 1$, T(N) < c f(N) for $n \ge n_0$
- Note that 2N+3 is also $\mathcal{O}(N^2)$, $\mathcal{O}(N^3)$ etc., but by convention we always state the (tightest) lowest order
- f(N) is also $\mathcal{O}(T(N))$ $(c=1,n_0=1)$
- \blacksquare So, T(N) is $\Theta(f(N))$

Examples

- $\blacksquare \ 4N^2+N+5$ is conventionally described as $\mathcal{O}(N^2),$ although it is also $\mathcal{O}(N^2+N)$
 - Lower order terms usually not mentioned
- We don't formally prove finding of c and n_0 , just write the order intuitively, based on dominating term

Exercise: Analyse Interpolation Search

- Interpolate call for 'mid' element with call for 'next' element in binary search
- For an interpolation search to be practical, two assumptions must be satisfied:
 - ► Each access must be very expensive compared to a typical instruction
 - E.g. The array might be on a disk instead of in memory, and each comparison requires a disk access.
 - ▶ The data must not only be sorted, it must also be **fairly uniformly distributed**.
 - ▶ E.g. A phone book is fairly uniformly distributed. If the input items are {1, 2, 4, 8, 16, }, the distribution is not uniform

Introduction to Master Theorem

- Several algorithms (such as divide and conquer) are recursive in nature and can be solved using recurrence relations
- It is enough to give asymptotic characterization for associating the cost of an algorithm
- Master Theorem is a tool for solving recurrence relations in the asymptotic case
- Provides a method for solving recurrences specifically of the form
 - $T(n) = aT(\frac{n}{b}) + f(n)$
 - where $a \ge 1, b > 1$ are constants and f(n) is a function
- Ref: Section 4.5 of the Third Edition of CLRS

Master Theorem

- Applies to recurrence relations of the form $T(n) = aT(\frac{n}{b}) + f(n)$, with $\frac{n}{b}$ replaced by either $\lfloor \frac{n}{b} \rfloor$ or $\lceil \frac{n}{b} \rceil$
- The Master theorem defines the following asymptotic bounds for T(n)

Case 1: If
$$f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$$
 for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$

Case 2: If
$$f(n) = \mathcal{O}(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \log n)$

Case 3: If
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 for some constant $\epsilon > 0$, and if $af(\frac{n}{b}) \leq cf(n)$ for some constant, $c < 1$, and all sufficiently large n , then $T(n) = \Theta(f(n))$

Master Theorem

- Applies to recurrence relations of the form $T(n) = aT(\frac{n}{b}) + f(n)$, with $\frac{n}{b}$ replaced by either $\lfloor \frac{n}{b} \rfloor$ or $\lceil \frac{n}{b} \rceil$
- The Master theorem defines the following asymptotic bounds for T(n)

Case 1: If
$$f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$$
 for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$

Case 2: If
$$f(n) = \mathcal{O}(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \log n)$

- Case 3: If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(\frac{n}{b}) \leq cf(n)$ for some constant, c < 1, and all sufficiently large n, then $T(n) = \Theta(f(n))$
- Intuition: Compare function f(n) with $n^{\log_b a}$. Larger of the two determines the solution

Master Theorem (Cases Elaborated)

- Case 1: If the function $n^{\log_b a}$ is larger than f(n), the solution is $T(n) = \Theta(n^{\log_b a})$
- Case 2: If the functions f(n) and $n^{\log_b a}$ are of the same size, we multiply by a logarithmic factor, and the solution is $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: If the function f(n) is larger, then the solution is $T(n) = \Theta(f(n))$

Example 1

$$T(n) = 9T(\frac{n}{3}) + n$$

$$a = 9, b = 3, f(n) = n$$

We have
$$n^{\log_b a} = n^{\log_3 9 - \epsilon} = \Theta(n^2)$$

Since
$$f(n) = \mathcal{O}(n^{\log_3 9})$$
, where $\epsilon = 1$,

We can apply Case 1:
$$T(n) = \Theta(n^2)$$

Example 2

$$T(n) = T(\frac{5n}{3}) + 1$$

$$a = 1, b = \frac{5}{3}, f(n) = 1$$

We have
$$n^{\log_b a} = n^{\log_{\frac{5}{3}} 1} = n^0 = 1$$

Since
$$f(n) = \Theta(n^{\log_{\frac{5}{3}}1}) = \Theta(1)$$

We can apply Case 2: $T(n) = \Theta(\log n)$

Example 3

$$T(n) = 3T(\frac{n}{4}) + n \log n$$

$$a = 3, b = 4, f(n) = n \log n$$

We have
$$n^{\log_b a} = n^{\log_4 3} = \mathcal{O}(n^{0.793})$$

Since
$$f(n) = \Omega(n^{\log_4 3 + \epsilon})$$
, where $\epsilon > 0$,

$$af(\frac{n}{b}) = 3(\frac{n}{4})\log(\frac{n}{4}) \le (\frac{3}{4})n \log n = cf(n)$$
 for $c = (\frac{3}{4})$

We can apply Case 3: $T(n) = \Theta(n \log n)$

Examples 4 (Cannot use Master Theorem)

- T(n) = cos(n)
 - ightharpoonup T(n) is not Monotone
- $T(n) = 3T(\frac{n}{3}) + 3^n$
 - ightharpoonup f(n) is not Polynomial
- $T(n) = \sqrt{n^2 + 3}$
 - ▶ b is not constant
- $T(n) = 2^n T(\frac{n}{2}) + n^n$
 - ightharpoonup a is not constant
- - ightharpoonup f(n) is not positive

Thank you