Newton and Quasi-Newton Methods

Newton Method

• Consider the unconstrained optimization problem $min_{x \in R^n} f(x)$

where f is a strictly convex function.

ullet At any iterating point x^k , consider the quadratic approximation of f as

$$q(x; x^k) = f(x^k) + \nabla f(x^k)^T (x - x^k) + \frac{1}{2} (x - x^k)^T \nabla^2 f(x^k) (x - x^k)$$

• Choose next iterating point is the minimizer of $q(x; x^k)$, i.e. $x^{k+1} = argmin_{x \in R^n} q(x; x^k)$

Then

$$\nabla q(x^{k+1}; x^k) = 0$$

• This implies

$$\nabla f(x^k) + \nabla^2 f(x^k)(x^{k+1} - x^k) = 0$$
$$x^{k+1} = x^k - (\nabla^2 f(x^k))^{-1} \nabla f(x^k)$$

i.e.

• Comparing above update formula with $x^{k+1}=x^k+\alpha_k d^k$ we have $\alpha_k=1$ and $d^k=-\left(\nabla^2 f(x^k)\right)^{-1}\nabla f(x^k)$

• d^k is a descent direction since

$$d^{k^T} \nabla f(x^k) = -\nabla f(x^k)^T (\nabla^2 f(x^k))^{-1} \nabla f(x^k) < 0$$

• The last inequality holds since $\nabla^2 f(x^k)$ is positive definite (as f is strictly convex) implies $(\nabla^2 f(x^k))^{-1}$ is positive definite.

- Example: Let $f(x) = 3x_1^2 + x_2^2 3x_1x_2 + 3x_1 x_2$
- Choose $x^0 = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$
- $\nabla f(x) = \begin{pmatrix} 6x_1 3x_2 + 3 \\ -3x_1 + 2x_2 1 \end{pmatrix}, \nabla^2 f(x) = \begin{pmatrix} 6 & -3 \\ -3 & 2 \end{pmatrix}$
- $x^1 = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 6 & -3 \\ -3 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 12 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} \frac{2}{3} & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 12 \\ -4 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$
- $\nabla f(x^1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- Hence $x^1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ is the solution
- If f is a quadratic function then Newton method converges to solution in first iteration.

- Suppose $f(x) = (x_1 2)^4 + (x_1 2x_2)^2$.
- Then $\nabla f(x) = \begin{pmatrix} 4(x_1 2)^3 + 2(x_1 2x_2) \\ -4(x_1 2x_2) \end{pmatrix}$

and
$$\nabla^2 f(x) = \begin{pmatrix} 12(x_1 - 2)^2 + 2 & -4 \\ -4 & 8 \end{pmatrix}$$

• Choose $x^0 = {0 \choose 3}$. Then $f(x^0) = 25$

k	x^k	$f(x^k)$	$\nabla f(x^k)$	$\nabla^2 f(x^k)$	$\left(\nabla^2 f(x^k)\right)^{-1}$	d^k	$x^{k+1} = x^k + d^k$
K							
0	$\binom{0}{3}$	25	$\binom{-44}{6}$	$\begin{pmatrix} 56 & -4 \\ -4 & 2 \end{pmatrix}$	$\frac{1}{96} \begin{pmatrix} 2 & 4 \\ 4 & 56 \end{pmatrix}$	$\binom{2/3}{-5/3}$	$\binom{0.6667}{1.3334}$
1	$\binom{0.6667}{1.3334}$	3.1605	$\binom{-9.4806}{0}$	$\begin{pmatrix} 29.332 & -4 \\ -4 & 2 \end{pmatrix}$	$\frac{1}{42.664} \begin{pmatrix} 2 & 4 \\ 4 & 29.332 \end{pmatrix}$	$\binom{0.4444}{0.8888}$	$\binom{1.1111}{2.2222}$
2	$\binom{1.1111}{2.2222}$	0.62433	$\binom{-2.8093}{0}$	$\begin{pmatrix} 17.4815 & -4 \\ -4 & 2 \end{pmatrix}$	$\frac{1}{18.963} \begin{pmatrix} 2 & 4 \\ 4 & 17.482 \end{pmatrix}$	$\binom{0.2963}{0.5926}$	$\binom{1.4074}{2.8148}$
3	$\binom{1.4074}{2.8148}$	0.12332	$\binom{-0.8324}{0}$	$\begin{pmatrix} 12.214 & -4 \\ -4 & 2 \end{pmatrix}$	$\frac{1}{8.428} \begin{pmatrix} 2 & 4 \\ 4 & 12.214 \end{pmatrix}$	$\binom{0.1975}{0.395}$	$\binom{1.6049}{3.2098}$
4	$\binom{1.6049}{3.2098}$	0.0244	$\binom{-0.2467}{0}$	$\begin{pmatrix} 9.8732 & -4 \\ -4 & 2 \end{pmatrix}$	$\frac{1}{3.7464} \begin{pmatrix} 2 & 4 \\ 4 & 9.8732 \end{pmatrix}$	$\binom{0.1317}{0.2634}$	$\binom{1.7366}{3.4732}$
5	$\binom{1.7366}{3.4732}$	0.00481	$\begin{pmatrix} -0.0731\\0\end{pmatrix}$	$\begin{pmatrix} 8.8325 & -4 \\ -4 & 2 \end{pmatrix}$	$\frac{1}{1.665} \binom{2}{4} \frac{4}{8.8325}$	(0.0877) (0.1755)	(1.8243) 3.6487)

Observe that $\{x^k\}$ converging to $x^* = (2,4)^T$

- Limitations on Newton method:
 - d is not a descent direction if f is not strictly convex at this point.
 - Requires Hessian value at every iterating point which increases computational cost.
 - Converges locally: converges to the solution only when initial approximation is close to solution.
- Possible steps to avoid these limitations:
 - We can use positive definite approximation of Hessian two avoid Hessian computation as well as to find descent direction at iterating points where the function is not strictly convex.
 - Line search techniques (exact/inexact) can be used to develop globally convergent methods.

Note: An optimization technique is said to be a globally convergent if from any initial approximation we can find a stationary point using this technique.

- BFGS quasi-Newton method:
 - Formula for descent direction at x^{k+1} is

$$d^k := -(B^k)^{-1} \nabla f(x^k)$$

where B^k is a positive definite approximation of $\nabla^2 f(x^k)$.

- Different techniques are used to update B^{k+1} .
- We use **BFGS update formula** as

$$B^{k+1} = B^k + \frac{s^k s^{k^T}}{s^{k^T} \delta^k} - \frac{B^k \delta^k \delta^{k^T} B^k}{\delta^{k^T} B^k \delta^k}$$
(1)

where
$$\delta^k = x^{k+1} - x^k$$
, $s^k = \nabla f(x^{k+1}) - \nabla f(x^k)$

- B^{k+1} is positive definite if $s^{k^T} \delta^k > 0$.
- Note that $\delta^k = x^{k+1} x^k = \alpha_k d^k$. This implies

$$s^{k^T} \delta^k = \left(\nabla f(x^{k+1}) - \nabla f(x^k) \right)^T \alpha_k d^k$$

$$\geq \alpha_k (c_2 - 1) \nabla f(x^k)^T d^k > 0$$

Where the second inequality follows from Wolfe condition and the last inequality holds since $c_2 < 1$ and $\nabla f(x^k)^T d^k < 0$.

• Algorithm:

- Step 0: Select f, x^0 , B^0 β_1 , β_2 $(0 < \beta_1 < \beta_2 < 1)$, $r \in (0,1)$, and $\varepsilon > 0$. set $k \coloneqq 0$
- Step 1: If $\|\nabla f(x^k)\| < \varepsilon$ then stop. Otherwise go to Step 2.
- Step 2: Calculate $d^k = -(B^k)^{-1} \nabla f(x^k)$
- Step 3: Choose step length α_k as first element in the sequence $\{1, r, r^2, r^3, ...\}$ satisfying Armijo-Wolfe conditions.
- Step 4: Update $x^{k+1} := x^k + \alpha_k d^k$
- Step 5: Update B^{k+1} using (1). Set k := k+1 and go to Step 1.

- Example: Consider $f(x) = (x_1 1)^2 + (x_2 x_1^2)^2$
- Then $\nabla f(x) = \begin{pmatrix} 2(x_1-1)-4x_1(x_2-x_1^2)\\ 2(x_2-x_1^2) \end{pmatrix}$ and $\nabla^2 f(x) = \begin{pmatrix} 2+4(3x_1^2-x_2) & -4x_1\\ -4x_1 & 2 \end{pmatrix}$
- Choose $x^0 = (0,3)^T$. Then $\nabla^2 f(x^0) = \begin{pmatrix} -10 & 0 \\ 0 & 2 \end{pmatrix}$
- Observe that $\nabla^2 f(x^0)$ is not positive definite. So we can not use Newton method to solve this problem

k	χ^k	$f(x^k)$	$\nabla f(x^k)$	B^k	d^k	α_k	x^{k+1}	B^{k+1}
0	$\binom{0}{3}$	10.0	$\binom{-2}{6}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\binom{2}{-6}$	0.5	$\binom{1}{0}$	$\begin{pmatrix} 2.1 & -1.3 \\ -1.3 & 2.2333 \end{pmatrix}$
1	$\binom{1}{0}$	1.0	$\binom{4}{-2}$	$\begin{pmatrix} 2.1 & -1.3 \\ -1.3 & 2.2333 \end{pmatrix}$	$\begin{pmatrix} -2.1112 \\ -0.3334 \end{pmatrix}$	0.25	$\binom{0.4722}{-0.08335}$	$\begin{pmatrix} 8.9618 & -3.0353 \\ -3.0353 & 2.5755 \end{pmatrix}$
2	$\binom{0.4722}{-0.08335}$	0.3724	$\binom{-0.477}{-0.6126}$	$\begin{pmatrix} 8.9618 & -3.0353 \\ -3.0353 & 2.5755 \end{pmatrix}$	1 (1.0	$\binom{0.6949}{0.41695}$	$\begin{pmatrix} 8.42 & -3.6479 \\ -3.6479 & 2.5848 \end{pmatrix}$
3	$\binom{0.6949}{0.41695}$	0.0974	$\begin{pmatrix} -0.4269 \\ -0.1319 \end{pmatrix}$	$\begin{pmatrix} 8.42 & -3.6479 \\ -3.6479 & 2.5848 \end{pmatrix}$) (1.0	$\binom{0.8823}{0.73235}$	$\begin{pmatrix} 8.5087 & -3.9324 \\ -3.9324 & 2.4623 \end{pmatrix}$
4	$\binom{0.8823}{0.73235}$	0.01598	$\begin{pmatrix} -0.0727 \\ -0.0922 \end{pmatrix}$	$\begin{pmatrix} 8.5087 & -3.9324 \\ -3.9324 & 2.4623 \end{pmatrix}$	1 1 (1.0	$\binom{0.981}{0.9274}$	$\begin{pmatrix} 9.6864 & -4.0203 \\ -4.0203 & 2.1487 \end{pmatrix}$
5	$\binom{0.981}{0.9274}$	0.0016	$\binom{0.1004}{-0.0705}$	$\begin{pmatrix} 9.6864 & -4.0203 \\ -4.0203 & 2.1487 \end{pmatrix}$) (1.0	$\binom{0.9956}{0.9872}$	$\begin{pmatrix} 9.6859 & -3.903 \\ -3.903 & 1.9878 \end{pmatrix}$

Observe that $\{x^k\}$ converging to $x^* = (1,1)^T$. Using stopping criteria $\|\nabla f(x^k)\| < 10^{-3}$ the final solution is obtained as $x^7 = (0.99982, 0.99955)^T \cong (1,1)^T$.

DFP- Method:

- Calculating $B^{k^{-1}}$ increases number of computations in BFGS method
- To avoid calculating matrix inverse, in DFP method we generate a sequence of positive definitive matrices $\{H^k\}$, where H^k is an approximation of $(\nabla^2 f(x))^{-1}$.
- In this method d^k is calculated as $d^k = -H^k \nabla f(x^k)$
- H^k is updates using

$$H^{k+1} = H^k + \frac{\delta^k \delta^{kT}}{s^{kT} \delta^k} - \frac{H^k s^k s^{kT} H^k}{s^{kT} H^k s^k}$$
(2)

where $\delta^k = x^{k+1} - x^k$, $s^k = \nabla f(x^{k+1}) - \nabla f(x^k)$.

- Consider $f(x) = (x_1 1)^2 + (x_2 x_1^2)^2$ and $x^0 = (0,3)^T$
- Similar to BFGS method, detail computations are provided in the next table.

k	χ^k	$f(x^k)$	$\nabla f(x^k)$	B^k	d^k	α_k	x^{k+1}	B^{k+1}
0	$\binom{0}{3}$	10.0	$\binom{-2}{6}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\binom{2}{-6}$	0.5	$\binom{1}{0}$	$\begin{pmatrix} 0.6733 & 0.38 \\ 0.38 & 0.66 \end{pmatrix}$
1	$\binom{1}{0}$	1.0	$\binom{4}{-2}$	$\begin{pmatrix} 0.6733 & 0.38 \\ 0.38 & 0.66 \end{pmatrix}$	$\begin{pmatrix} -1.933 \\ -0.20 \end{pmatrix}$	0.5	$\binom{0.0335}{-0.1}$	$\begin{pmatrix} 0.2235 & 0.1984 \\ 0.1984 & 0.5977 \end{pmatrix}$
2	$\binom{0.0335}{-0.1}$	0.9443	$\begin{pmatrix} -1.9194 \\ -0.2022 \end{pmatrix}$	$\begin{pmatrix} 0.2235 & 0.1984 \\ 0.1984 & 0.5977 \end{pmatrix}$	$\binom{0.4691}{0.5017}$	1	$\binom{0.5026}{0.4017}$	$\begin{pmatrix} 0.4697 & 0.3508 \\ 0.3508 & 0.5644 \end{pmatrix}$
3	$\binom{0.5026}{0.4017}$	0.2696	$\binom{-1.2945}{0.2982}$	$\begin{pmatrix} 0.4697 & 0.3508 \\ 0.3508 & 0.5644 \end{pmatrix}$	$\binom{0.5034}{0.2858}$	1	$\binom{1.006}{0.6875}$	$\begin{pmatrix} 0.3071 & 0.3156 \\ 0.3156 & 0.5688 \end{pmatrix}$
4	(1.006) (0.6875)	0.1054	$\binom{1.318}{-0.6491}$	$\begin{pmatrix} 0.3071 & 0.3156 \\ 0.3156 & 0.5688 \end{pmatrix}$	$\begin{pmatrix} -0.1999 \\ -0.0468 \end{pmatrix}$	1	(0.8061) (0.6407)	$\begin{pmatrix} 0.2016 & 0.2188 \\ 0.2188 & 0.5073 \end{pmatrix}$
5	$\binom{0.8061}{0.6407}$	0.0376	$\begin{pmatrix} -0.3584 \\ -0.0182 \end{pmatrix}$	$\begin{pmatrix} 0.2016 & 0.2188 \\ 0.2188 & 0.5073 \end{pmatrix}$	$\binom{0.0762}{0.0876}$	1	$\binom{0.8823}{0.7283}$	$\begin{pmatrix} 0.4045 & 0.5501 \\ 0.5501 & 0.9435 \end{pmatrix}$

Observe that $\{x^k\}$ converging to $x^* = (1,1)^T$. Using stopping criteria $\|\nabla f(x^k)\| < 10^{-3}$ the final solution is obtained as $x^{11} = (1.00025, 1.0006)^T \cong (1,1)^T$.

- Advantages of quasi-Newton methods:
 - Does not require Hessian computations
 - Converges globally
 - Order of convergence is superlinear.

Definition: A sequence $\{x^k\}$ is said to converge with order $q \ge 1$ to x^* if $\lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|^q} < M$ for some M > 0.

- q = 1 is called *linear convergence* (M < 1).
- q = 2 is called quadratic convergence.
- $\{x^k\}$ is said to converge superlinearly if $\lim_{k\to\infty} \frac{\|x^{k+1}-x^*\|}{\|x^k-x^*\|} = 0$.

For example

- $\{x^k\} = \{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots, \frac{1}{2^k}, \dots\}$ converges linearly to 0. $\{x^k\} = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \frac{1}{256}, \dots, \frac{1}{2^{2^k}}, \dots\}$ converges quadratically to 0.
- $\{x^k\} = \{1, \frac{1}{4}, \frac{1}{27}, \frac{1}{64}, \dots, \left(\frac{1}{k}\right)^k, \dots\}$ converges superlinearly to 0.
- In line search techniques:
 - Steepest descent method converges linearly.
 - Newton method converges quadratically.
 - Quasi-Newton method converges superlinearly.