Domácí úkol na 23.3.2022

Lineární urychlovač

Urychlovače v jaderné a částicové fyzice slouží k urychlování nabitých částic, například elektronů, protonů, ale i iontů těžších prvků. Nejjednodušší lineární urychlovač sestává z periodicky se střídajících válců s dvěma rozdílnými potenciály φ_+ a φ_- :

My se pro jednoduchost omezíme na dvourozměrný model:

Pokud do urychlovače vpustíme nabitou částici s dostatečnou rychlostí přibližně na ose mezi horní a dolní elektrodou, její rychlost ve směru x se bude postupně zvyšovat. Zařízení bude zároveň svazek udržovat v okolí své osy.

- 1. Modifikujte kód ze cvičení pro řešení dvourozměrné Poissonovy rovnice a implementujte periodickou okrajovou podmínku ve směru osy x.
- 2. S periodickou okrajovou podmínkou spočítejte elektrostatický potenciál pro jeden segment urychlovače zobrazený na obrázku šedivým čárkovaným obdélníkem. Periodická okrajová podmínka v tomto případě simuluje nekonečně dlouhý urychlovač.
- 3. Spočítejte intenzitu elektrického pole $\boldsymbol{E} = -\nabla \varphi$ v každém bodě mříže.
- 4. Spočítejte trajektorii nabité částice, kterou do zařízení vystřelíte s počáteční rychlostí $\mathbf{v}_0 = (v_{0x}, v_{0y})$. Využijte znalost numerického řešení obyčejných diferenciálních rovnic z prvních dvou cvičení.
- 5. Zakreslete závislost longitudinální rychlosti částice na čase $v_x(t)$.

Uvažujte jednotky $\epsilon_0=1, e=1$. Vzdálenost desek volte 20 jednotek, délku desek 50 jednotek. Mezi deskami s kladným potenciálem $\varphi_+=+1$ a záporným potenciálem $\varphi_+=-1$ jsou 2 jednotky mezera. Počáteční poloha elektronu v čase $t_0=0$ je na začátku první desky 2 jednotky od osy zařízení, počáteční rychlost je $v_{x0}=20, v_{y0}=0$. Spočítejte trajektorii do času t=200.

Více informací o urychlování nabitých částic najdete například v prezentaci doc. Jiřího Dolejšího. Vypracovaný úkol odešlete na e-mailovou adresu pcfyzika@pavelstransky.cz. Před odesláním se přesvědčte, že program neobsahuje žádné syntaktické chyby a že je z kódu pochopitelné, jak ho spustit, aby vrátil hledaný výsledek.