Interpretable Machine Learning

Conditional Feature Importance (CFI)

Figure: Bike Sharing Dataset

Learning goals

- Extrapolation and Conditional Sampling
- Conditional Feature Importance (CFI)
- Interpretation of CFI and difference to PFI

• **Permutation Feature Importance Idea:** Replace the feature of interest x_j with an independent sample from the marginal distribution $\mathbb{P}(x_i)$, e.g. by randomly permuting observations in x_i

- **Permutation Feature Importance Idea:** Replace the feature of interest x_j with an independent sample from the marginal distribution $\mathbb{P}(x_j)$, e.g. by randomly permuting observations in x_j
- Problem: Under dependent features, permutation leads to extrapolation

- **Permutation Feature Importance Idea:** Replace the feature of interest x_j with an independent sample from the marginal distribution $\mathbb{P}(x_j)$, e.g. by randomly permuting observations in x_j
- **Problem:** Under dependent features, permutation leads to extrapolation
- Conditional Feature Importance Idea: Resample x_j from the conditional distribution $\mathbb{P}(x_j|x_{-j})$, such that the joint distribution is preserved, i.e., $\mathbb{P}(x_j|x_{-j})\mathbb{P}(x_{-j}) = \mathbb{P}(x_j,x_{-j})$

- **Permutation Feature Importance Idea:** Replace the feature of interest x_j with an independent sample from the marginal distribution $\mathbb{P}(x_j)$, e.g. by randomly permuting observations in x_j
- Problem: Under dependent features, permutation leads to extrapolation
- Conditional Feature Importance Idea: Resample x_j from the conditional distribution $\mathbb{P}(x_j|x_{-j})$, such that the joint distribution is preserved, i.e., $\mathbb{P}(x_j|x_{-j})\mathbb{P}(x_{-j}) = \mathbb{P}(x_j,x_{-j})$

Example: Conditional permutation scheme Molnar et. al (2020)

- $X_2 \sim U(0,1)$ and $X_1 \sim N(0,1)$ if $X_2 < 0.5$, else $X_1 \sim N(4,4)$ (black dots)
- Left: For X₂ < 0.5, permuting X₁ (crosses) preserves marginal (but not joint) distribution
 → Bottom: Marginal density of X₁
- Right: Permuting X₁ within subgroups
 X₂ < 0.5 & X₂ ≥ 0.5 reduces extrapolation
 → Bottom: Density of X₁ conditional on groups

RECALL: EXTRAPOLATION IN PFI

Example: Let $y = x_3 + \epsilon_y$ with $\epsilon_y \sim N(0, 0.1)$ where $x_1 := \epsilon_1$, $x_2 := x_1 + \epsilon_2$ are highly correlated $(\epsilon_1 \sim N(0, 1), \epsilon_2 \sim N(0, 0.01))$ and $x_3 := \epsilon_3$, $x_4 := \epsilon_4$, with ϵ_3 , $\epsilon_4 \sim N(0, 1)$. All noise terms are independent. Fitting a LM yields $\hat{f}(\mathbf{x}) \approx 0.3x_1 - 0.3x_2 + x_3$.

Hexbin plot of x_1, x_2 before permuting x_1 (left), after permuting x_1 (center), and PFI scores (right)

- \Rightarrow x_1 and x_2 should be irrelevant for the prediction $\hat{f}(\mathbf{x})$ for $\{\mathbf{x}: \mathbb{P}(\mathbf{x}) > 0\}$ as $0.3x_1 0.3x_2 \approx 0$
- \Rightarrow PFI evaluates model on unrealistic obs. outside $\mathbb{P}(\mathbf{x}) \rightsquigarrow x_1$ and x_2 are considered relevant

CONDITIONAL FEATURE IMPORTANCE > Strobl et al. (2008) > Hooker et al. (2021)

Conditional feature importance (CFI) for features x_S using test data \mathcal{D} :

- Measure the error with unperturbed features.
- Measure the error with perturbed feature values $\tilde{x}^{S|-S}$, where $\tilde{x}_{S}^{S|-S} \sim \mathbb{P}(x_{S}|x_{-S})$
- Repeat permuting the feature (e.g., *m* times) and average the difference of both errors:

$$\widehat{\mathit{CFI}}_{\mathcal{S}} = \tfrac{1}{m} \textstyle \sum_{k=1}^m \mathcal{R}_{\mathsf{emp}}(\hat{f}, \tilde{\mathcal{D}}_{(k)}^{\mathcal{S}|-\mathcal{S}}) - \mathcal{R}_{\mathsf{emp}}(\hat{f}, \textcolor{red}{\mathcal{D}})$$

Here. $\tilde{\mathcal{D}}^{S|-S}$ denotes the dataset where features x_S where sampled conditional on the remaining features x_{-S} .

IMPLICATIONS OF CFI Noning et al. (2020)

Interpretation: Due to the conditional sampling w.r.t. all other features, CFI quantifies a feature's unique contribution to the model performance.

IMPLICATIONS OF CFI Noning et al. (2020)

Interpretation: Due to the conditional sampling w.r.t. all other features, CFI quantifies a feature's unique contribution to the model performance.

Entanglement with data:

- If feature x_S does not contribute unique information about y, i.e., $x_S \perp y | x_{-S} \Rightarrow CFI = 0$
- Why? Under the conditional independence $\mathbb{P}(\tilde{x}^{S|-S},y) = \mathbb{P}(x,y)$ \leadsto no prediction-relevant information is destroyed by permutation of x_S conditional on x_{-S}

IMPLICATIONS OF CFI Noning et al. (2020)

Interpretation: Due to the conditional sampling w.r.t. all other features, CFI quantifies a feature's unique contribution to the model performance.

Entanglement with data:

- If feature x_S does not contribute unique information about y, i.e., $x_S \perp y | x_{-S} \Rightarrow CFI = 0$
- Why? Under the conditional independence $\mathbb{P}(\tilde{x}^{S|-S},y) = \mathbb{P}(x,y)$ \rightarrow no prediction-relevant information is destroyed by permutation of x_S conditional on x_{-S}

Entanglement with model:

- If the model does not use a feature \Rightarrow CFI = 0
- Why? Then the prediction is not affected by any perturbation of the feature
 → model performance does not change after conditional permutation

IMPLICATIONS OF CFI

Can we gain insight into whether ...

- the feature x_i is causal for the prediction?
 - $CFI_i \neq 0 \Rightarrow$ model relies on x_i (converse does not hold, see next slide)

IMPLICATIONS OF CFI

Can we gain insight into whether ...

- the feature x_i is causal for the prediction?
 - $CFI_i \neq 0 \Rightarrow$ model relies on x_i (converse does not hold, see next slide)
- \bullet the variable x_i contains prediction-relevant information?
 - If $x_j \not\perp y$ but $x_j \perp y | x_{-j}$ (e.g., x_j and x_{-j} share information) $\Rightarrow CFI_j = 0$
 - x_j is not exploited by model (regardless of whether it is useful for y or not) $\Rightarrow CFI_j = 0$

IMPLICATIONS OF CFI

Can we gain insight into whether ...

- the feature x_j is causal for the prediction?
 - $CFI_j \neq 0 \Rightarrow$ model relies on x_j (converse does not hold, see next slide)
- \bullet the variable x_i contains prediction-relevant information?
 - If $x_j \not\perp y$ but $x_j \perp y | x_{-j}$ (e.g., x_j and x_{-j} share information) $\Rightarrow CFI_j = 0$
 - x_i is not exploited by model (regardless of whether it is useful for y or not) $\Rightarrow CFI_i = 0$
- **3** Does the model require access to x_j to achieve its prediction performance?
 - $\mathit{CFI}_j \neq 0 \Rightarrow x_j$ contributes unique information (meaning $x_j \not\perp y | x_{-j}$)
 - Only uncovers the relationships that were exploited by the model

COMPARISON: PFI AND CFI

Example: Let $y = x_3 + \epsilon_y$ with $\epsilon_Y \sim N(0,0.1)$ where $x_1 := \epsilon_1$, $x_2 := x_1 + \epsilon_2$ are highly correlated $(\epsilon_1 \sim N(0,1), \epsilon_2 \sim N(0,0.01))$ and $x_3 := \epsilon_3$, $x_4 := \epsilon_4$, with ϵ_3 , $\epsilon_4 \sim N(0,1)$. All noise terms are independent. Fitting a LM yields $\hat{f}(\mathbf{x}) \approx 0.3x_1 - 0.3x_2 + x_3$.

Figure: Density plot for x_1, x_2 before permuting x_1 (left). PFI and CFI (right).

- $\Rightarrow x_1$ and x_2 are irrelevant for the prediction $\hat{f}(\mathbf{x})$ for $\{\mathbf{x} : \mathbb{P}(\mathbf{x}) > 0\}$ as $0.3x_1 0.3x_2 \approx 0$
- \Rightarrow PFI evaluates model on unrealistic obs. outside $\mathbb{P}(\mathbf{x}) \rightsquigarrow x_1, x_2$ are considered relevant (PFI > 0)
- \Rightarrow Since x_1 can be reconstructed from x_2 and vice versa, CFI considers x_1 and x_2 to be irrelevant