Redes de Computadores 2

Parte 02 – camada de enlace – protocolos para acesso múltiplo

Prof. Vinicius da Cunha (Slides concedidos gentilmente pelo Prof. Kleber Vieira Cardos)

Tópicos

- Protocolos para acesso múltiplo
 - Divisão (estática) do canal
 - Particionamento aleatório (dinâmico)
 - Revezamento

Enlaces e protocolos de acesso múltiplo

Dois tipos de enlaces:

- Ponto-a-ponto:
 - Acesso discado
 - ADSL
 - Conexão entre switch
 Ethernet e host (Ethernet comutado)
- ☐ *Difusão ou broadcast* (meio compartilhado)
 - Ethernet tradicional
 - Upstream HFC
 - 802.11 (ou WiFi)
 - Bluetooth
 - Satélite

Compartilhado sem fio (por exemplo, Wi-Fi)

Satélite

Coquetel

Protocolos de acesso múltiplo

- Principais características:
 - canal de comunicação único de difusão
 - interferência: quando dois ou mais nós transmitem simultaneamente
 - colisão se um nó receber dois ou mais sinais ao mesmo tempo

Protocolo de acesso múltiplo

- Algoritmo distribuído que determina como os nós compartilham o canal, isto é, determina quando um nó pode transmitir
- Comunicação sobre o compartilhamento do canal deve usar o próprio canal!
 - não há canal fora da faixa (ou canal de controle) para coordenar a transmissão
- Também conhecido protocolo de <u>controle de acesso ao meio</u> (Media Access Control ou MAC)
- É um dos problemas mais explorados na pesquisa em redes

Protocolo ideal de acesso múltiplo

Para um canal de difusão com taxa de R bps:

- 1. Quando apenas um nó tem dados para enviar, esse nó obtém uma vazão de *R* bps
- Quando M nós têm dados para enviar, cada um desses nós poderá transmitir em média a uma taxa de R/M bps
- 3. Completamente descentralizado
 - nenhum nó especial (mestre) para coordenar as transmissões
 - nenhuma sincronização de relógios ou slots
- 4. Simples, para que sua implementação seja barata

Taxonomia dos protocolos MAC

Três categorias gerais:

- ☐ Divisão (estática) de canal
 - divide o canal em pequenos "pedaços" (slots/fatias de tempo, frequência, código)
 - aloca pedaço a um dado nó para uso exclusivo deste
- ☐ Acesso aleatório (dinâmico)
 - canal não é dividido, podem ocorrer colisões
 - realiza a "recuperação" das colisões

□ Revezamento

 nós se alternam em revezamento, mas nós que possuem mais dados a transmitir podem demorar mais quando chegar a sua vez

Protocolos MAC de divisão de canal: TDM

TDM: Acesso Múltiplo por Divisão de Tempo

- acesso ao canal em "turnos" ou ciclos
- cada estação recebe um comprimento fixo de compartimento (comprimento = tempo de Tx do pacote) em cada ciclo
- compartimentos não usados permanecem ociosos
- Exemplo: LAN com 4 estações; compartimentos 2, 3 e 4 com pacotes; compartimento 1 ocioso

Protocolos MAC de divisão de canal: FDM

FDM: Acesso Múltiplo por Divisão de Frequência

- espectro do canal dividido em bandas de frequência
- a cada estação é atribuída uma banda fixa de frequência
- tempo de transmissão não usado nas bandas permanecem ociosos

 Exemplo: LAN com 6 estações; 1,3,4 com pacotes; bandas 2,5,6 ociosas

Protocolos MAC de divisão de canal: CDM

CDM: Acesso Múltiplo por Divisão de Código

- atribui um código diferente para cada estação
- com escolha adequada de código, permite transmissão simultânea das estações
- apresenta propriedades interessantes, como boa imunidade a interferências
- Sua principal aplicação é em rede sem fio, portanto será abordado posteriormente em mais detalhes

Protocolos de acesso aleatório

- Quando nó tem um pacote para transmitir
 - transmite na taxa máxima R
 - nenhuma coordenação a priori entre os nós
- Se dois ou mais nós transmitem → "colisão"
- O protocolo MAC de acesso aleatório especifica:
 - como detectar colisões
 - como se recuperar delas (por exemplo, através de retransmissões aleatoriamente adiadas)
- Exemplos de protocolos MAC de acesso aleatório:
 - ALOHA, Slotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

<u>Hipóteses</u>

- todos os quadros têm o mesmo tamanho (L bits)
- tempo é dividido em slots de tamanho igual, tempo para transmitir 1 quadro (L/R seg)
- nós começam a transmitir quadros apenas no início dos intervalos (slots)
- nós são sincronizados
- se 2 ou mais nós transmitirem num slot, todos os nós detectam a colisão

<u>Operação</u>

- quando o nó obtém um novo quadro, ele espera até o início do próximo slot e transmite o quadro inteiro
- Se não houver colisão, nó poderá enviar um novo quadro no próximo slot
- caso haja uma colisão (detectada antes do final do intervalo), nó retransmite o quadro em cada intervalo subsequente com probabilidade p até obter sucesso

Slotted ALOHA

Vantagens

- único nó ativo pode transmitir continuamente na taxa máxima do canal
- Altamente descentralizado: apenas slots nos nós precisam estar sincronizados
- simples

<u>Desvantagens</u>

- colisões: slots desperdiçados
- slots ociosos (desperdício)
- nós podem ser capazes de detectar colisões num tempo inferior ao da transmissão do pacote
- sincronização dos relógios

Eficiência do Slotted ALOHA

Eficiência é a fração de longo prazo de *slots* bem sucedidos quando há muitos nós cada um com muitos quadros para transmitir

- Assuma N nós com muitos quadros para enviar, cada um transmite num slot com probabilidade p
- probabilidade que nó 1 tenha sucesso em um $slot = p(1-p)^{N-1}$
- probabilidade que qualquer nó tenha sucesso = Np(1-p)^{N-1}

- Para eficiência máxima com N nós, encontre p* que maximiza Np(1-p)^{N-1}
- Assumindo muitos nós, calcule Np*(1p*)^{N-1} com N tendendo a infinito, o que resulta em 1/e = 0,37

Melhor caso: canal usado para transmissões úteis em 37% do tempo!

ALOHA Puro (sem slots)

- ALOHA puro (sem slots): mais simples, sem sincronização
- Ao chegar um quadro no nó
 - transmite imediatamente
- Probabilidade de colisão aumenta:
 - quadro enviado em t₀ colide com outros quadros enviados em [t₀-1,t₀+1]

Eficiência do ALOHA puro

P(sucesso de um dado nó) = P(nó transmita) x

P(nenhum outro nó transmita em [t₀-1,t₀] x

P(nenhum outro nó transmita em [t₀,t₀+1]

$$= p \times (1-p)^{N-1} \times (1-p)^{N-1}$$

$$= p \times (1-p)^{2(N-1)}$$

... escolhendo o valor ótimo de p e deixando n → infinito ...

$$= 1/(2e) = 0.18$$

Ainda pior que o Slotted ALOHA!

CSMA (acesso múltiplo com detecção de portadora)

CSMA (Carrier Sense Multiple Access):

Escuta antes de transmitir (detecção de portadora):

- Se o canal estiver livre, transmite todo o quadro
- Se o canal estiver ocupado, adia a transmissão (por um tempo aleatório)

Colisões no CSMA

colisões ainda *podem* acontecer?

Sim, pois devido ao atraso de propagação, dois nós podem não ouvir a transmissão do outro

colisão:

todo o tempo de transmissão é desperdiçado

nota:

distância e atraso de propagação influenciam a probabilidade de colisão

Disposição espacial dos nós

CSMA/CD (detecção de colisões)

CSMA/CD: detecção da portadora, adia a transmissão como no CSMA

- As colisões são detectadas em pouco tempo
- Transmissões que sofreram colisões são abortadas, reduzindo o desperdício do canal
- Detecção de colisões:
 - Fácil em LANs cabeadas: mede a potência do sinal, compara o sinal recebido com o transmitido
 - Difícil em LANs sem fio: não há garantia de detecção da colisão na interface que está transmitindo; comumente, as interfaces são halfduplex

Detecção de colisões em CSMA/CD

CSMA/CD – operação em uma NIC

- 1. A interface obtém um pacote da camada de rede, prepara o quadro correspondente e o coloca no *buffer* de transmissão
- Se a interface observa o meio livre (não há energia no canal), tenta transmitir. Se o meio está ocupado, aguarda ficar livre e então tenta transmitir
- 3. Enquanto transmite, a interface verifica se há sinal (energia) de outras interfaces no meio
- 4. Se ao transmitir todo o quadro, não observa sinal de outras interfaces (ou seja, colisão), então quadro foi transmitido com sucesso e é removido do *buffer*. Se ao transmitir, observa colisão, então aborta transmissão
- 5. Após abortar a transmissão, a interface aguarda um tempo aleatório e então retorna ao passo 2

CSMA/CD – backoff exponencial binário

- Qual o melhor valor para a espera aleatória?
 - Um valor pequeno é adequado quando há poucas estações competindo
 - Um valor grande é adequado quando há muitas estações competindo
 - Solução: usar um valor que começa pequeno e aumenta caso as colisões se repitam
- Backoff exponencial binário
 - Após n colisões, a espera aleatória é um valor K sorteado no intervalo entre {0, 1, 2, ... 2ⁿ – 1}
 - Exemplo: Ethernet, a espera aleatória é igual K x (tempo para transmitir 512 bits) e o n é no máximo 10
 - Importante: para cada novo quadro, backoff é reiniciado

CSMA/CD – eficiência

- Quando apenas uma estação transmite, toda capacidade da rede é utilizada
- Quando há múltiplas estações tentando transmitir, colisões reduzem a eficiência, ou seja, as transmissões com sucesso
- Qual a eficiência com muitas estações tentando transmitir e com grande número de pacotes para transmitir?
 - Uma aproximação é dada pela seguinte expressão:

$$Eficiencia = \frac{1}{1 + 5d_{prop}/d_{trans}}$$

- Onde:
 - d_{prop} tempo máximo para a energia do sinal se propagar entre quaisquer duas NICs
 - Quanto mais próximo de zero, mais rápida a colisão é detectada
 - d_{trans} tempo para transmitir um quadro de tamanho máximo
 - Quanto maior, mais tempo o canal realiza trabalho útil

Protocolos MAC de "revezamento"

Protocolos MAC de divisão de canal:

- Compartilha o canal eficientemente e de forma justa em altas cargas
- Ineficiente em baixas cargas: atraso no canal de acesso, alocação de 1/N da largura de banda mesmo com apenas 1 nó ativo!

Protocolos MAC de acesso aleatório:

- Eficiente em baixas cargas: um único nó pode utilizar completamente o canal
- Altas cargas: sobrecarga com colisões

Protocolos de revezamento:

Procura oferecer o melhor das duas abordagens!

Protocolos MAC de "revezamento"

Seleção (Polling):

- Nó mestre "convida" nós escravos a transmitir em revezamento
- Cada nó escravo pode transmitir até um número máximo de quadros
- Preocupações:
 - Sobrecarga com as consultas (polling), pois mesmos nós inativos são consultados
 - Ponto único de falha (mestre)
- Exemplo: Bluetooth

escravos

Protocolos MAC de "revezamento"

Passagem de permissão (token):

- Controla permissão passada de um nó para o próximo de forma sequencial
 - Nó que tem dados a transmitir, transmite os dados e depois o token
 - Nó que não tem dados a transmitir, retransmite imediatamente o token
- Preocupações:
 - Sobrecarga com a passagem de permissão
 - Perda do token, por falha do nó, ou retenção do token por falha ou intencionalmente

