WAKISSHA JOINT MOCK EXAMINATIONS 2015 UGANDA ADVANCED CERTIFICATE OF EDUCATION MARKING GUIDE

P525/3

CHEMISTRYPRACTICAL

PAPER 3

JULY/AUGUST 2015

Q1	Q2	Q3	TOTAL
26 ¹ / ₂	28 ¹ / ₂	15	70

1. Volume of pipette used <u>25.0</u> cm³

¹/₂marks

FBR/cm ³	23.10	46.00	32.80
IBR/cm ³	0.00	23.10	10.00
Value of GA2 used/cm ³	23.10	22.90	22.80

3marks

22.90and22.80cm³

Average.
$$\frac{22.90 + 22.80}{2} = 22.85 \text{cm}^3$$

 $2^{1}/_{2}$ marks

(a) RFN. of (NH₄)₂.SO₄.6H₂O.FeSO₄

$$56+96+(14X2)+(1X8)+32+16+4+(6X18)=392$$

392g of GA2 contain 1mole.

9.8g of GA2 contain
$$\left(\frac{1}{392} \times 9.8\right)$$
 moles.

250cm3 of GA2 contain $\frac{9.8}{392}$ moles.

250cm3 of GA2 contain
$$\left(\frac{9.8 \times 25}{392 \times 250}\right)$$
 moles.

$$5Fe^{2+} + MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} \rightarrow 5Fe_{(aq)}^{2+} + Mn_{(aq)}^{2+} + 4H_2O_{(l)}$$

But mole ratio is 5:1

Moles of Mno₄
$$\frac{1}{5} \times \frac{9.8 \times 25}{392 \times 250}$$
 that reacted.

22.85cm³ of MnO₄ contain
$$\frac{1}{5} \times \frac{9.8 \times 25}{392 \times 250}$$

1000cm3GA² contain
$$\frac{1 \times 9.8 \times 25 \times 1000}{5 \times 392 \times 250 \times 22.85}$$
$$= 0.02M$$

 $5^{1}/_{2}$ marks

PART B

Volume of pipette used 25.0 cm³

 $^{1}/_{2}$ mark

FBR/cm ³	26.00	36.10	26.00
IBR/cm ³	0.00	10.00	00.00
Value of GA2 used/cm ³	26.00	26.10	26.00

03marks

26.00, and 26.10cm³.¹/₂mark

Average.
$$\frac{26.00 + 26.10}{2} = 26.05 \text{cm}^3$$
 $2^{1/2} \text{marks}$

(c) (i). 1000cm³ of GA2 contain 0.02moles.

$$26.05$$
cm³ of GA2 contain $\left(\frac{0.02}{1000} \times 26.05\right)$ moles

 $= 5.21 \times 10^{-4} \text{moles}$

01marks

(ii)
$$2\text{MnO}_{4(aq)}^{-} 6\text{H}_{(aq)}^{+} + 5\text{H}_{2}\text{O}_{2(aq)} \rightarrow 2\text{Mn}_{(aq)}^{2+} + 5\text{O}_{2(g)} + 8\text{H}_{2}\text{O}_{(l)}$$

Moles of $\text{H}_{2}\text{O}_{2} = \frac{5}{2}\text{X}5.2\text{X}10^{-4} = 1.3\text{X}10^{-3}\text{moles}.$

25cm³ of H₂O₂ in GA4 contain 1.3x10⁻³moles.

$$1000 cm^{3} \text{ of } H_{2}O_{2} \text{ in } GA_{4} \text{ contain} \bigg(\frac{1.3 \times 10^{-3}}{25} \times 1000 \bigg) \text{moles} = 0.053 M.$$

FM of
$$H_2O_2 = (1x2) + (16x2) = 34$$

1 mole of H₂O₂ weighs 34g

0.053 moles of H₂O₂ weighs 34 X 0.053

=1.768g/1

5¹/₂marks

(d) Volume strength

$$2H_2O_{2(aq)} \rightarrow 2H_2O_{(aq)} + O_{2(g)}$$

2 moles of H_2O_2 produce 1 mole of oxygen.

1 mole of a gas at RT accusatives 22.4L

2moles of H₂O₂ produce 22.4L

1mole of
$$H_2O_2$$
 produce $\left(\frac{22.4}{2}\right)l$.

1.768g of
$$H_2O_2$$
 produce $\left(\frac{22.4}{2} \times 1.768\right)$

= 19.8 vol.

02marks

TESTS	OBSERVATION	DEDUCTIONS
a)	Colourless liquid turns	Hydrated Cpd.
	anhydron CuSO ₄ blue,	H ₂ O of crystallization.
	colourless gas turns litmus red and blue	
	water milky	CO_2 , CO_3^2 ,
	Residue is yellow hot and white when	$HCO_3^{-1}, C_2O_4^{-2},$
	cold.	ZnO.
		05marks
b)	Effervescence of a colourless gas turns	CO ₂ , CO ₃ ²⁻ , HCO ₃ ⁻
·	litmus red and leave water milky	Rej. HCO ₃
	colourless solution.	$\frac{03^{1}}{2marks}$ Ba ²⁺ , Ca ²⁺ , Mg ²⁺
c)	White ppt, insoluble/	$Ba^{2+}, Ca^{2+}, Mg^{2+}$
	white residue	
	Colourless filtrate.	Al^{3+} , Zn^{2+} , Pb^{2+} , Sn^{2+}
		$03^{1}/_{2}$ marks
d)	White ppt soluble	$\frac{03^{1}/_{2}marks}{\text{Al}^{3+}, \text{Zn}^{2+}, \text{Pb}^{2+}, \text{Sn}^{2+}}.$
(i)	Pale yellow ppt. insoluble.	I or Br
		02marks
(ii)	White ppt Brown	Iodine formed
	yellow ppt formed	
	on addition of Na ₂ S ₂ O ₃	I ion present.
		$1^{1}/_{2}$ marks
(iii)	No observable change.	Yellow ppt
		I- compound,
		1 mark
(iv)	White ppt soluble.	$Zn^{2+},Pb^{2+},$
		Al ³⁺ , Sn ²⁺ , Sn ⁴⁺
		1 mark
(v)	White ppt insoluble.	Al ³⁺ , Pb ²⁺
		1 mark
(vi)	No observable change/	Pb ²⁺ absent.
	No yellow ppt.	\therefore Al ³⁺ present.
		1 mark
(vii)	Added schops of litmus solution followed	Al^{3+}
	by dilute ammonia solution drop wise	confirmed.
	until in excess.	1 mark
e)	Soluble giving a	Ba ²⁺ , Mg ²⁺ , Ca ²⁺
	colourless solution.	$\frac{1^{1}/_{2}mark}{Ba^{2+}, Mg^{2+}, Ca^{2+}}$
(i)	White ppt insoluble	Ba ²⁺ , Mg ²⁺ ,Ca ²⁺
		1 mark
(ii)	White ppt insoluble.	Ba^{2+}, Mg^{2+}
		1 mark
(iii)	No yellow ppt.	Ba ²⁺ , absent
		Mg ²⁺ Present
		1 mark

(iv)	To the forth part added a little	White	Mg^{2+}
	of ammonium chloride solid	ppt	confirmed present.
	followed by 2 drops of	formed	_
	disodium hydrogen phosphate	slowly	
	and then excess ammonia		$1^{1}/_{2}mark$
	solution.		

 $04\frac{1}{2}$ marks.

(3)

) TEST	ODCEDYATION	DEDUCTION
TEST	OBSERVATION	DEDUCTION.
a)	Burns with a blue non-sooty flame.	Aliphatic saturated cpd.
		$1^{1}/_{2}$ mark
b)	Misable/soluble giving a colourless solution,	Probably
	neutral to litmus.	alcohol/carboxyl/ester.
		$1^{1}/_{2}mark$
(i)	No effervescence/bubble of gas.	Carboxylic acid absent.
	S	$1^{1}/_{2}mark$
(ii)	No- observable change.	Phenol absent.
()	5	$1^{1}/_{2}mark$
(iii)	No observable change.	Carbony/cpd absent.
()	5	1^{1} /2mark
(iv)	Purple acidified KNnO4 turn to colourless.	Probably/or secondary
(11)	Taiple actained in the value to coloaness.	alcohol oxidised.
		$1^{l}/_{2}$ mark
_	Yellow/orange ppt	Primary or secondary
	Telle Welange ppe	alcohol oxidised to
		carbony(cpd)
		$1^{1}/2$ mark
	Silvery mirror deposit/grey ppt.	Primary alcohol.
	Sirvery inition deposit grey ppt.	$1^{1/2}$ mark
(v)	Sweat funny smell pleasant.	Ester/esletiart alcohol
()	Sweat failing sinen pieasant.	confirmed.
		2marks
(774)	No yeallowy and	
(vi)	No yellow ppt.	CH ₃ CH- R
		OH
		absent.

ОН

(c) K is aliphatic primary alcohol. Without CH_3 CH_2- R

1 mark

15marks