Assessment Schedule – 2021

Calculus: Apply the algebra of complex numbers in solving problems (91577)

Evidence Statement

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
ONE (a)	$(d+5i)(3-4i) = 38-9i$ $3d-4di+15i-20i^2 = 38-9i$ $3d+20+(15-4d)i = 38-9i$ $d=6$	Correct solution.		
(b)	$z = \frac{26(2-3i)}{(2+3i)(2-3i)}$ $= \frac{26(2-3i)}{13}$ $= 4-6i$ $= 4$	Correct solution correctly plotted on Argand diagram.		
(c)	f(-1) = f(2) $-1+3-a+b=8+12+2a+b$ $2-20=2a+a$ $a = -6$ $f(-2) = 0$ $-8+12-2a+b=0$ $16+b=0$ $b=-16$	Correct value for a OR b.	Correct values for <i>a</i> AND <i>b</i> .	
(d)	$\arg\left(\frac{1+3i-1}{1+3i-2i}\right) = \arg\left(\frac{3i}{1+i}\right)$ $= \arg\left(\frac{3i(1-i)}{(1+i)(1-i)}\right)$ $= \arg\left(\frac{3i-3i^2}{1-i^2}\right)$ $= \arg\left(\frac{3+3i}{2}\right)$ $= \arg\left(\frac{3}{2} + \frac{3i}{2}\right)$ $= \frac{\pi}{4}$	Correct simplification to $\left(\frac{3i}{1+i}\right)$.	Correct solution.	

(e)	$\frac{z-2i}{z-4} = \frac{x+yi-2i}{x+yi-4}$	Line 3.	Line 5.	Correct solution.
	$= \frac{x + (y - 2)i}{(x - 4) + yi}$			
	$= \frac{(x + (y - 2)i)((x - 4) - yi)}{((x - 4) + yi)((x - 4) - yi)}$			
	$= \frac{x(x-4)-xyi+(y-2)(x-4)i-y(y-2)i^2}{(x-4)^2-y^2i^2}$			
	$= \frac{x(x-4) - xyi + (y-2)(x-4)i + y(y-2)}{(x-4)^2 + y^2}$			
	Real part = 0			
	$\Rightarrow x(x-4) + y(y-2) = 0$			
	$x^2 - 4x + y^2 - 2y = 0$			
	$(x-2)^2 - 4 + (y-1)^2 - 1 = 0$			
	$(x-2)^2 + (y-1)^2 = 5$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	lr	2r	1t with minor error(s).	1t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
TWO (a)	$u = 2\operatorname{cis}\left(\frac{\pi}{2}\right)$ $z = \frac{u}{w} = \frac{2\operatorname{cis}\frac{\pi}{2}}{2\operatorname{cis}\frac{2\pi}{3}}$ $= \operatorname{cis}\left(\frac{\pi}{2} - \frac{2\pi}{3}\right)$ $= \operatorname{cis}\left(-\frac{\pi}{6}\right)$ $= \cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)$ $= \frac{\sqrt{3}}{2} - 0.5i \text{ or } 0.866 - 0.5i$	Correct solution. Accept answer in rectangular or polar form.		
(b)	$x^{2}-12qx+20q^{2} = 0$ $(x-6q)^{2}-36q^{2}+20q^{2} = 0$ $(x-6q)^{2} = 16q^{2}$ $x-6q = \pm 4q$ $x = 6q \pm 4q$ $x = 10q \text{ or } 2q$	Correct solution.		
(c)	$\frac{(a+bi)(b+ai)}{(b-ai)(b+ai)}$ $= \frac{ab+a^2i+b^2i+abi^2}{b^2+abi-abi-a^2i^2}$ $= \frac{ab+(a^2+b^2)i-ab}{b^2+a^2}$ $= \frac{(a^2+b^2)i}{b^2+a^2}$ $= i$	Correct 2nd line.	Correct solution.	
(d)	$z^{3} = k^{6} + k^{6}i$ $= \sqrt{2} k^{6} cis \left(\frac{\pi}{4}\right)$ $z_{1} = \left(\sqrt{2}\right)^{\frac{1}{3}} k^{2} cis \left(\frac{\pi}{12}\right) = 2^{\frac{1}{6}} k^{2} cis \left(\frac{\pi}{12}\right)$ $z_{2} = \left(\sqrt{2}\right)^{\frac{1}{3}} k^{2} cis \left(\frac{3\pi}{4}\right) = 2^{\frac{1}{6}} k^{2} cis \left(\frac{3\pi}{4}\right)$ $z_{3} = \left(\sqrt{2}\right)^{\frac{1}{3}} k^{2} cis \left(\frac{-7\pi}{12}\right) = 2^{\frac{1}{6}} k^{2} cis \left(\frac{-7\pi}{12}\right)$	One correct solution. $2^{\frac{1}{6}} = 1.122$	Three correct solutions. Accept $\frac{17\pi}{12}$.	

(e)	x + iy + 16 = 4 x + iy + 1	3rd line.	5th line.	Correct
	(x+16)+iy = 4 (x+1)+iy			solution.
	$\sqrt{x^2 + 32x + 256 + y^2} = 4\sqrt{x^2 + 2x + 1 + y^2}$			
	$x^{2} + 32x + 256 + y^{2} = 16(x^{2} + 2x + 1 + y^{2})$			
	$x^2 + 32x + 256 + y^2 = 16x^2 + 32x + 16 + 16y^2$			
	$240 = 15x^2 + 15y^2$			
	$16 = x^2 + y^2$			
	$4 = \sqrt{x^2 + y^2}$			
	$ \therefore z = 4$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	1t with minor error(s).	1t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
THREE (a)	$\sqrt{11}$	Correct solution.		
(b)	$\frac{18}{\left(4 - 2\sqrt{3}\right)} \times \frac{\left(4 + 2\sqrt{3}\right)}{\left(4 + 2\sqrt{3}\right)} = \frac{72 + 36\sqrt{3}}{16 - 12}$ $= 18 + 9\sqrt{3}$	Correct solution.		
(c)	$z_{1} = 2 + 5i$ $z_{2} = 2 - 5i$ $(z - 2 - 5i)(z - 2 + 5i) = z^{2} - 2z + 5zi - 2z + 4 - 10i - 5iz + 10i - 25i^{2}$ $= z^{2} - 4z + 4 + 25$ $= z^{2} - 4z + 29$	The other two solutions found.	The other two solutions found.	
	$f(z) = (z^2 - 4z + 29)(pz + q)$ $p = 4$	OR	AND	
	Coeff of z^2 : $(z^2 - 4z + 29)(4z + q) = -19$ q - 16 = -19 q = -3 $f(z) = (z^2 - 4z + 29)(4z - 3)$	A found.	A found.	
	$z_3 = \frac{3}{4}$ $A = -87$			
(d)	$6\sqrt{2x} - 5 = 6\sqrt{2x + m}$ $(6\sqrt{2x} - 5)^2 = (6\sqrt{2x + m})^2$ $36 \times 2x - 60\sqrt{2x} + 25 = 36(2x + m)$ $72x - 60\sqrt{2x} + 25 = 72x + 36m$ $-60\sqrt{2x} = 36m - 25$ $\sqrt{2x} = \frac{25 - 36m}{60}$ $2x = \left(\frac{25 - 36m}{60}\right)^2$ $x = \frac{(25 - 36m)^2}{7200}$	Correct 3rd line.	Correct solution.	

(e)	$z^2 = i\left(\left z\right ^2 - 4\right)$	Finding $x^2 = y^2$.	Identifying $x = -y$ is	Correct solution.
	$(x+iy)^2 = i(x^2+y^2-4)$, , , , , , , , , , , , , , , , , , ,	only	
	$x^{2} + 2xyi + y^{2}i^{2} = (x^{2} + y^{2} - 4)i$		possibility.	
	$x^{2} - y^{2} + 2xyi = (x^{2} + y^{2} - 4)i$			
	Real component:			
	$x^2 - y^2 = 0$			
	$x^2 = y^2$			
	x = y or x = -y			
	Imaginary component:			
	$x^2 + y^2 - 4 = 2xy$			
	If $x = y$, then $2x^2 - 4 = 2x^2$ impossible			
	If $x = -y$, then $2x^2 - 4 = -2x^2$			
	$4x^2 = 4$			
	$x = \pm 1$			
	$x = 1 \Rightarrow y = -1 \Rightarrow z = 1 - i$			
	$x = -1 \Rightarrow y = 1 \Rightarrow z = -1 + i$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	1t with minor error(s).	1t

Cut Scores

Not Achieved	Not Achieved Achievement		Achievement with Excellence	
0 – 7	8 – 14	15 – 19	20 – 24	