Geometry of Surfaces

5CCM223A/6CCM223B

Video 4 Curvature of curves

Jürgen Berndt King's College London

What is curvature of curve $\gamma:(\alpha,\beta)\to\mathbb{R}^n$?

Intuition tells us:

- 1. lines should have curvature 0
- curvature of large circle should be smaller than curvature of small circle
- 3. curvature should not depend on parametrization

Recall: $\ddot{\gamma} = 0 \Longrightarrow \gamma \subset line$

First attempt: define curvature as $\|\ddot{\gamma}\|$

Problem: $\|\ddot{\gamma}\|$ depends on parametrization of γ

Second attempt: assume $\|\dot{\gamma}\| = 1$. The curvature of γ at $\gamma(s)$ is

$$\kappa(s) = \|\ddot{\gamma}(s)\|$$

lines should have curvature 0

$$\begin{split} \kappa &= 0 \Longleftrightarrow \|\ddot{\gamma}\| = 0 \\ &\iff \ddot{\gamma} = 0 \\ &\iff \dot{\gamma} \text{ constant} \\ &\iff \gamma \text{ (part of) straight line} \end{split}$$

curvature of large circle should be smaller than curvature of small circle

Consider circle centered at $(x_0, y_0) \in \mathbb{R}^2$ with radius r > 0

$$\begin{split} &\gamma(s) = \left(x_0 + r\cos\left(\frac{s}{r}\right), y_0 + r\sin\left(\frac{s}{r}\right)\right) \\ &\dot{\gamma}(s) = \left(-\sin\left(\frac{s}{r}\right), \cos\left(\frac{s}{r}\right)\right) \quad \text{(thus } \|\dot{\gamma}\| = 1) \\ &\ddot{\gamma}(s) = \left(-\frac{1}{r}\cos\left(\frac{s}{r}\right), -\frac{1}{r}\sin\left(\frac{s}{r}\right)\right) \\ &\kappa(s) = \|\ddot{\gamma}(s)\| = \frac{1}{r} \end{split}$$

curvature should not depend on parametrization

Consider unit speed reparametrization $\bar{\gamma}$ of γ , thus $\bar{\gamma}\circ\phi=\gamma$ with $\phi(t)=\pm s(t)+c$ (s(t) arc length, $c\in\mathbb{R}$). Then

$$\phi'(t) = \pm s'(t) = \pm ||\dot{\gamma}(t)|| = \pm 1$$

Chain Rule implies

$$\begin{split} \dot{\gamma}(t) &= \dot{\bar{\gamma}}(\phi(t))\phi'(t) = \pm \dot{\bar{\gamma}}(\phi(t)) \\ \ddot{\gamma}(t) &= \pm \ddot{\bar{\gamma}}(\phi(t))\phi'(t) = \ddot{\bar{\gamma}}(\phi(t)) \\ \|\ddot{\gamma}(t)\| &= \|\ddot{\bar{\gamma}}(\phi(t))\| \end{split}$$

Problem. For given regular curve γ , it is often not possible to find an explicit unit speed reparametrization. How to calculate the curvature of such a curve?

Proposition Let $\gamma:(\alpha,\beta)\to\mathbb{R}^n,\ t\mapsto \gamma(t)$ be a regular curve. Then

$$\frac{\|\gamma''(\gamma'\cdot\gamma')-\gamma'(\gamma'\cdot\gamma'')\|}{\|\gamma'\|^4}(t) \qquad '=\frac{d}{dt}$$

is the curvature of γ at $\gamma(t)$. For n=3 this simplifies to

$$\frac{\|\gamma'' \times \gamma'\|}{\|\gamma'\|^3}(t),$$

where \times is the cross product on \mathbb{R}^3 .

Proof. Let $\bar{\gamma}:(\bar{\alpha},\bar{\beta})\to\mathbb{R}^n,\ s\mapsto\bar{\gamma}(s)$ be a unit speed reparametrization of γ with reparametrization map $\phi:(\alpha,\beta)\to(\bar{\alpha},\bar{\beta})$. Thus $s=\phi(t)$ and $t=\phi^{-1}(s)$. $\gamma(t) = \bar{\gamma}(\phi(t))$ and $\bar{\gamma}(s) = \gamma(\phi^{-1}(s))$.

We use the conventions $=\frac{d}{dc}$ and $'=\frac{d}{dc}$.

$$\dot{\bar{\gamma}}(s) = \gamma'(\phi^{-1}(s)) \frac{1}{\phi'(\phi^{-1}(s))} = \gamma'(t) \frac{1}{\phi'(t)}$$

Taking $\|\cdot\|$ implies $|\phi'(t)| = \|\gamma'(t)\|$ and hence

$$\phi'^2 = \|\gamma'\|^2 = \gamma' \cdot \gamma' \qquad (*)$$

Differentiating this equation leads to

$$2\phi'\phi'' = 2\gamma' \cdot \gamma'' \qquad (**)$$

Differentiating $\dot{\bar{\gamma}}(s) = \gamma'(\phi^{-1}(s)) \frac{1}{\phi'(\phi^{-1}(s))}$ gives

$$\begin{split} \ddot{\bar{\gamma}}(s) &= \gamma''(\phi^{-1}(s)) \frac{1}{\phi'(\phi^{-1}(s))^2} + \gamma'(\phi^{-1}(s)) \frac{-\phi''(\phi^{-1}(s)) \frac{1}{\phi'(\phi^{-1}(s))}}{\phi'(\phi^{-1}(s))^2} \\ &= \gamma''(t) \frac{1}{\phi'(t)^2} - \gamma'(t) \frac{\phi''(t)}{\phi'(t)^3} = \left(\frac{\gamma''}{\phi'^2} - \frac{\gamma'\phi''}{\phi'^3}\right)(t) \\ &= \frac{\gamma''\phi' - \gamma'\phi''}{\phi'^3}(t) = \frac{\gamma''\phi'^2 - \gamma'\phi'\phi''}{\phi'^4}(t) \\ &= \frac{\gamma''(\gamma' \cdot \gamma') - \gamma'(\gamma' \cdot \gamma'')}{\|\gamma'\|^4}(t) \quad \text{(by $(*)$, $(**)$)} \end{split}$$

Thus

$$\kappa(s) = \|\ddot{\bar{\gamma}}(s)\| = \frac{\|\gamma''(\gamma' \cdot \gamma') - \gamma'(\gamma' \cdot \gamma'')\|}{\|\gamma'\|^4}(t)$$

n = 3: For the cross product on \mathbb{R}^3 we have

$$\gamma' \times (\gamma'' \times \gamma') = \gamma''(\gamma' \cdot \gamma') - \gamma'(\gamma' \cdot \gamma'')$$

Since $\gamma' \cdot (\gamma'' \times \gamma') = 0$, we have

$$\|\gamma' \times (\gamma'' \times \gamma')\| = \|\gamma'\| \|\gamma'' \times \gamma'\|$$

Altogether,

$$\frac{\|\gamma''(\gamma' \cdot \gamma') - \gamma'(\gamma' \cdot \gamma'')\|}{\|\gamma'\|^4} = \frac{\|\gamma' \times (\gamma'' \times \gamma')\|}{\|\gamma'\|^4}$$
$$= \frac{\|\gamma'\|\|\gamma'' \times \gamma'\|}{\|\gamma'\|^4} = \frac{\|\gamma'' \times \gamma'\|}{\|\gamma'\|^3}$$

Curvature is well-defined at regular points $(\gamma'(t)) \neq 0$) of curves !!

Example. The circular helix

$$\gamma: \mathbb{R} \to \mathbb{R}^3, \ \theta \mapsto (a\cos(\theta), a\sin(\theta), b\theta)$$

of radius a > 0 and pitch $2\pi |b| \neq 0$ has constant curvature

$$\kappa = \frac{|a|}{a^2 + b^2}$$

Geometry of Surfaces

5CCM223A/6CCM223B

Video 5 Signed curvature of plane curves

Jürgen Berndt King's College London Let γ be a unit speed curve in \mathbb{R}^2 . We define $\mathbf{t} = \dot{\gamma}$ and denote by $\mathbf{n_s}$ the unit vector obtained by rotating \mathbf{t} anti-clockwise by a right angle.

Since $\|\dot{\gamma}\|=1$, we have $\dot{\gamma}\cdot\ddot{\gamma}=0$. Thus $\ddot{\gamma}$ is perpendicular to $\dot{\gamma}$ and hence proportional to \mathbf{n}_s . Therefore,

$$\exists \kappa_s : \ddot{\gamma} = \kappa_s \mathbf{n}_s$$

 κ_s is called the signed curvature of γ

$$\kappa = \|\ddot{\gamma}\| = \|\kappa_s \mathbf{n}_s\| = |\kappa_s| \|\mathbf{n}_s\| = |\kappa_s|$$

Proposition Let γ be a unit speed curve in \mathbb{R}^2 and $a \in \mathbb{R}^2$ with $\|a\| = 1$. Denote by $\varphi(s)$ the angle through which a must be rotated anti-clockwise to bring it into coincidence with $\mathbf{t}(s)$.

Then

$$\kappa_{\rm s}=\varphi'$$

Thus, κ_s measures rotation of **t** along γ .

Proof. By definition of φ we have

$$\cos(\varphi) = \mathbf{t} \cdot \mathbf{a}$$

Differentiating this equation gives

$$-\sin(\varphi)\varphi'=\dot{\mathbf{t}}\cdot\mathbf{a}=\ddot{\gamma}\cdot\mathbf{a}=\kappa_{s}\mathbf{n}_{s}\cdot\mathbf{a}=\kappa_{s}\cos(\varphi+\tfrac{\pi}{2})=-\kappa_{s}\sin(\varphi)$$

Rigid motions of \mathbb{R}^2 . Every rigid motion of \mathbb{R}^2 is of the form

$$M = M_{a,\alpha} = T_a \circ R_{\alpha}$$

where

$$T_a: \mathbb{R}^2 \to \mathbb{R}^2 , \ v \mapsto v + a$$

is the translation by $a \in \mathbb{R}^2$ and

$$R_{\alpha}: \mathbb{R}^2 \to \mathbb{R}^2, \ v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \mapsto \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

is the rotation by angle α

Theorem. Let $k:(a,b)\to\mathbb{R}$ be smooth. Then there exists a unit speed curve $\gamma:(a,b)\to\mathbb{R}^2$ with signed curvature k. Moreover, if $\gamma_1:(a,b)\to\mathbb{R}^2$ is a unit speed curve with signed curvature k, then there exists a rigid motion M of \mathbb{R}^2 so that $\gamma_1=M\circ\gamma$.

Proof. Existence. Let $s_0 \in (a, b)$ and define

$$\varphi(s) = \int_{s_0}^{s} k(u)du$$

$$\gamma(s) = \left(\int_{s_0}^{s} \cos(\varphi(t))dt, \int_{s_0}^{s} \sin(\varphi(t))dt\right)$$

Then

$$\dot{\gamma}(s) = (\cos(\varphi(s)), \sin(\varphi(s)))$$

and hence $\|\dot{\gamma}\|=1.$ Moreover, by previous proposition,

$$\kappa_s = \varphi'(s) = k(s)$$

Uniqueness. Define $\varphi_1(s)$ by $\dot{\gamma}_1(s) = (\cos(\varphi_1(s)), \sin(\varphi_1(s)))$. Then

$$\gamma_1(s) = \left(\int_{s_0}^s \cos(\varphi_1(t))dt, \int_{s_0}^s \sin(\varphi_1(t))dt\right) + \gamma_1(s_0)$$

Since $(\varphi_1)' = k$, we have

$$\varphi_1(s) = \int_{s_0}^s k(u)du + \varphi_1(s_0) = \varphi(s) + \varphi_1(s_0)$$

Define $a=\gamma_1(s_0)$ and $\alpha=\varphi_1(s_0)$. Then

$$\gamma_{1}(s) = \left(\int_{s_{0}}^{s} \cos(\varphi(t) + \alpha) dt, \int_{s_{0}}^{s} \sin(\varphi(t) + \alpha) dt \right) + a$$

$$= R_{\alpha} \underbrace{\left(\int_{s_{0}}^{s} \cos(\varphi(t)) dt, \int_{s_{0}}^{s} \sin(\varphi(t)) dt \right)}_{=\gamma(s)} + a$$

Example. Every regular plane curve with constant curvature $\kappa>0$ is part of a circle with radius $\frac{1}{\kappa}$

Example. The curve whose signed curvature is k(s) = s is Cornu's spiral

Geometry of Surfaces

5CCM223A/6CCM223B

Video 6
Torsion of space curves

Jürgen Berndt King's College London

Consider

- 1. circle with radius 1 in $\mathbb{R}^2 \subset \mathbb{R}^3$
- 2. helix in \mathbb{R}^3 with radius $\frac{1}{2}$ and pitch π

Both are curves in \mathbb{R}^3 with curvature 1 but cannot be transformed into each other by a rigid motion of \mathbb{R}^3

Conclusion: Curvature does not suffice to characterize space curves

New concept: torsion

Torsion measures in how far a curve is not contained in a plane

Let $\gamma(s)$ be a unit speed curve in \mathbb{R}^3 , $\mathbf{t} = \dot{\gamma}$ tangent vector

If $\kappa(s) \neq 0$, define the principal normal of γ at $\gamma(s)$ by

$$\mathbf{n}(s) = \frac{1}{\kappa(s)}\dot{\mathbf{t}}(s)$$

We have

$$\|\mathbf{n}(s)\| = \left\| \frac{1}{\kappa(s)} \dot{\mathbf{t}}(s) \right\| = \frac{1}{\kappa(s)} \|\dot{\mathbf{t}}(s)\| = \frac{1}{\kappa(s)} \underbrace{\|\ddot{\gamma}(s)\|}_{=\kappa(s)} = 1$$

and

$$\mathbf{t} \cdot \mathbf{n} = \frac{1}{\kappa} \underbrace{\mathbf{t} \cdot \dot{\mathbf{t}}}_{0} = 0 \text{ since } \|\mathbf{t}\| = 1$$

Define binormal of γ at $\gamma(s)$ by

$$\mathbf{b}(s) = \mathbf{t}(s) \times \mathbf{n}(s)$$

 $\mathbf{t}, \mathbf{n}, \mathbf{b}$ is a right-handed orthonormal basis of \mathbb{R}^3

$$\mathbf{b} = \mathbf{t} \times \mathbf{n} , \ \mathbf{n} = \mathbf{b} \times \mathbf{t} , \ \mathbf{t} = \mathbf{n} \times \mathbf{b}$$

$$\mathbf{b} = \mathbf{t} \times \mathbf{n} \Longrightarrow \dot{\mathbf{b}} = \dot{\mathbf{t}} \times \mathbf{n} + \mathbf{t} \times \dot{\mathbf{n}} = \kappa \underbrace{\mathbf{n} \times \mathbf{n}}_{=0} + \mathbf{t} \times \dot{\mathbf{n}} = \mathbf{t} \times \dot{\mathbf{n}}$$

$$\Longrightarrow \dot{\mathbf{b}} \cdot \mathbf{t} = (\mathbf{t} \times \dot{\mathbf{n}}) \cdot \mathbf{t} = 0$$

$$1 = \mathbf{b} \cdot \mathbf{b} \Longrightarrow 0 = \mathbf{b} \cdot \dot{\mathbf{b}}$$

Altogether: **b** is perpendicular to **t** and **b**. Thus there exists function τ so that

$$\dot{\mathbf{b}} = - au\mathbf{n}$$

 τ is called the torsion of γ .

Note: torsion $\tau(s)$ is defined when curvature $\kappa(s)$ is non-zero

If $\gamma(t)$ is a regular curve, we define its torsion by using a unit speed reparametrization $\bar{\gamma}$. Is it well-defined? Suppose $\bar{\gamma}$ and $\tilde{\gamma}$ are two unit-speed reparametrizations of γ . Then $\tilde{\gamma}(\phi(t)) = \bar{\gamma}(t)$ with $\phi(t) = \pm s(t) + c$, s(t) arc length of $\bar{\gamma}$. Using $\phi'(t) = \pm s'(t) = \pm \|\dot{\bar{\gamma}}(t)\| = \pm 1$ we obtain

$$\begin{split} & \bar{\mathbf{t}}(t) = \tilde{\mathbf{t}}(\phi(t))\phi'(t) = \pm \tilde{\mathbf{t}}(\phi(t)) \\ & \dot{\bar{\mathbf{t}}}(t) = \pm \dot{\bar{\mathbf{t}}}(\phi(t))\phi'(t) = \dot{\bar{\mathbf{t}}}(\phi(t)) \\ & \bar{\mathbf{n}}(t) = \frac{1}{\bar{\kappa}(t)}\dot{\bar{\mathbf{t}}}(t) = \frac{1}{\tilde{\kappa}(\phi(t))}\dot{\bar{\mathbf{t}}}(\phi(t)) = \tilde{\mathbf{n}}(\phi(t)) \\ & \bar{\mathbf{b}}(t) = \bar{\mathbf{t}}(t) \times \bar{\mathbf{n}}(t) = \pm \tilde{\mathbf{t}}(\phi(t)) \times \tilde{\mathbf{n}}(\phi(t)) = \pm \tilde{\mathbf{b}}(\phi(t)) \\ & \dot{\bar{\mathbf{b}}}(t) = \pm \dot{\bar{\mathbf{b}}}(\phi(t))\phi'(t) = \dot{\bar{\mathbf{b}}}(\phi(t)) \end{split}$$

Thus

$$\bar{\tau}(t)\bar{\mathbf{n}}(t) = -\dot{\bar{\mathbf{b}}}(t) = -\dot{\bar{\mathbf{b}}}(\phi(t)) = \tilde{\tau}(\phi(t))\tilde{\mathbf{n}}(\phi(t)) = \tilde{\tau}(\phi(t))\bar{\mathbf{n}}(t)$$

It follows that

$$\bar{\tau}(t) = \tilde{\tau}(\phi(t))$$

and hence the definition of torsion is independent of the choice of unit speed reparametrization How to compute the torsion of curves in \mathbb{R}^3 ?

Proposition. Let γ be a regular curve in \mathbb{R}^3 with $\kappa \neq 0$ everywhere. Then

$$\frac{(\gamma' \times \gamma'') \cdot \gamma'''}{\|\gamma' \times \gamma''\|^2}(t) \qquad ' = \frac{d}{dt}$$

is the torsion of γ at $\gamma(t)$.

Proof. See [Pressley, Proposition 2.3.1]

Example. The circular helix

$$\gamma: \mathbb{R} \to \mathbb{R}^3, \ \theta \mapsto (a\cos(\theta), a\sin(\theta), b\theta)$$

of radius a > 0 and pitch $2\pi |b| \neq 0$ has torsion

$$\tau = \frac{b}{a^2 + b^2}$$