Commutative Algebra

Alec Zabel-Mena

June 21, 2023

Contents

1	Rings and Ideals		
	1.1	Definitions and Examples	5
	1.2	Polynomail Rings	7
	1.3	Ring Homomorphisms and Factor Rings	8
	1.4	Properties of Ideals	10
	1.5	Extension and Contraction of Rings	13

4 CONTENTS

Chapter 1

Rings and Ideals

1.1 Definitions and Examples.

Definition. A **commutative ring** A is a set together with two binary operations +: $(a,b) \rightarrow a + b$ and \cdot : $(a,b) \rightarrow ab$ called **additon** and **multiplication** such that:

- (1) A is an Abelian group over +, where we denote the identity element as 0 and the inverse of each $a \in A$ as -a.
- (2) For any $a, b \in A$, $ab \in A$ and a(bc) = (ab)c. That is, A is closed under multiplication, and multiplication is associative.
- (3) a(b+c) = ab + ac and (a+b)c = ac + bc.
- (4) ab = ba for all $a, b \in A$.

If there exists an element $1 \in A$ such that a1 = 1a = A, then we call A a ring with **identity**. If 1 = 0, we call A the **zero ring** and write A = 0.

Definition. A commutative ring k with identity $1 \neq 0$ is called a **field** if for all $a \in k$, where $a \neq 0$, there exists a $b \in A$ such that ab = 1.

Lemma 1.1.1. Let A be a commutative ring with identity. Then the following are true for all $a, b \in A$.

- (1) 0a = a0 = 0.
- (2) (-a)b = a(-b) = -(ab).
- (3) (-a)(-b) = ab
- (4) $1 \neq 0$, then 1 is unique and -a = (-1)a.

Proof. (1) Notice 0a = (0+0)a = 0a + 0a, so that 0a = 0. Likewise, a0 = 0 by the same reasoning.

(2) Notice that b - b = 0, so a(b - b) = ab + a(-b) = 0, so that a(-b) = -(ab). The same argument with (a - a)b gives (-a)b = -(ab).

- (3) By the inverse laws of addition in A, we have -(a(-b)) = -(-(ab)), so that (-a)(-b) = ab.
- (4) Suppose A has identity $1 \neq 0$, and suppose there is an element $2 \in A$ for which 2a = a2 = a for all $a \in A$. Then we have that $1 \cdot 2 = 1$ and $1 \cdot 2 = 2$, making 1 = 2; so 1 is unique. Now, we have that a + (-a) = 0, so that 1(a + (-a)) = 1a + 1(-a) = 1a + (-a) = 0 So (-a) = -(1a) = (-1)a by (2).

Definition. Let A be a ring. We call an element $a \in A$ a **zero divisor** if $a \neq 0$ and there exists an element $b \neq 0$ such that ab = 0. Similarly, we call $a \in A$ a **unit** if there is a $b \in A$ for which ab = ba = 1. We call an element a **nilpotent** if there exists some $n \in \mathbb{Z}^+$ for which $x^n = 0$.

Definition. Let A be a ring. We call the set of all units in A the **group of units** and denote it $\mathcal{U}(A)$, or A^* .

Lemma 1.1.2. Let A be a commutative ring with identity $1 \neq 0$. Then the group of units $\mathcal{U}(A)$ forms an Abelian group under multiplication.

Proof. Let $a, b \in A$ be units in A. Then there are $c, d \in A$ for which ac = ca = 1 and bd = db = 1. Consider then ab. Then ab(dc) = a(bd)c = ac = 1 and (dc)ab = d(ca)b = db = 1 so that ab is also a unit in A. Moreover $\mathcal{U}(A)$ inherits the associativity of \cdot and 1 serves as the identity element of A^* . Lastly, if $a \in A^*$ is a unit there is a $b \in A$ for which ab = ba = 1. This also makes b a unit in A, and the inverse of a. Now, since A is a commutative ring, the multiplication in $\mathcal{U}(A)$ is commutative, making $\mathcal{U}(A)$ Abelian.

Corollary. a is a zero divisor if, and only if it is not a unit.

Proof. Suppose that $a \neq 0$ is a zero divisor. Then there is a $b \in A$ such that $b \neq 0$ and ab = 0. Then for any $v \in A$, v(ab) = (va)b = 0 so that a cannot be a unit. On the other hand let a be a unit, and ab = 0 for some $b \neq 0$. Then there is a $v \in A$ for which v(ab) = (va)b = 1b = b = 0. Then b = 0 which is a contradiction.

Corollary. If k is a field, then it has no zero divisors.

Proof. Notice by definition of a field, every element is a unit, except for 0.

Definition. A commutative ring with identity $1 \neq 0$ is called an **integral domain** if it has no zero divisors.

Lemma 1.1.3. Any finite integral domain is a field.

Proof. Let A be a finite integral domain and consider the map on A, by $x \to ax$. By above, this map is 1–1, moreover since A is finite, it is also onto. So there is a $b \in A$ for which ab = 1, making a unit. Since a is abitrarily chosen, this makes A a field.

Corollary. If k is a field it is a (not necessarily finite) integral domain.

Definition. A subring of a ring A is a subgroup of A closed under multiplication.

1.2 Polynomail Rings

Theorem 1.2.1. Let A be a commutative ring with identity, and define $A[x] = \{f(x) = a_0 + a_1x + \cdots + a_nx^n : a_0, \ldots a_n \in A\}$. Define the operations + and \cdot on A[x] for $f(x) = a_0 + a_1x + \cdots + a_nx^n$ and $g(x) = b_0 + b_1x + \cdots + b_nx^n$ by:

$$f + g = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

$$fg = c_0 + c_1x + \dots + c_kx^k \text{ where } c_j = \sum_{i=0}^j a_i b_{j-i} \text{ and } k = n + m$$

Then A[x] is a commutative ring with identity.

Definition. Let A be a commutative ring with identity. We call the ring A[x] the **ring of polynomials** in x with **coefficients** in A whose elements of the form

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

where $n \ge 0$ are called **polynomails**. If $a_n \ne 0$, then the **degree** of f is denoted deg f = n, and f is called **monic** if $a_n = 1$. We call + and \cdot the **addition** and **multiplication** of polynomials.

- **Example 1.1.** (1) Take A any commutative ring with identity and form A[x]. One can verify that the polynomial $0(x) = 0 + 0x + \cdots + 0x^n + \cdots = 0$, in this case we call 0 the **zero polynomial**. Similarly, the additive inverse of $f(x) = a_0 + a_1x^1 + \cdots + a_nx^n$ is the polynomial $-f(x) = -a_0 a_1x^1 \cdots a_nx^n$. Now, since A[x] has identity, the **identity** polynomial is $1(x) = 1 + 0x + \cdots = 1$, that is, it is the identity in A. Lastly, we call a polynomial f with deg f = 0 a **constant polynomial**. Notice that 0 and 1 are constant polynomials.
 - (2) $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{A}[x]$ and $\mathbb{C}[x]$ are the polynomial rings in x with coefficients in \mathbb{Z} , \mathbb{Q} , \mathbb{A} , and \mathbb{C} respectively.
 - (3) Notice that the rings $\mathbb{Z}[\omega]$ and $\mathbb{Z}[i]$ are polynomial rings in ω and i, respectively, with coefficients in \mathbb{Z} , and where $\omega = \sqrt{D}$ if $D \not\equiv 1 \mod 4$ or $\omega = \frac{1+\sqrt{D}}{2}$ otherwise, and $i^2 = -1$. Notice that the highest degree a polynomial in $\mathbb{Z}[i]$ can achieve is deg = 1; however, one may be able to form polynomial rings in other variables with coefficients in $\mathbb{Z}[i]$, i.e. take $\mathbb{Z}[x]$, where $\mathbb{Z} = \mathbb{Z}[i]$.
 - (4) $\mathbb{Z}_{3\mathbb{Z}}[x]$ is the polynomial ring with coefficients in $\mathbb{Z}_{3\mathbb{Z}}$.

Theorem 1.2.2. Let A be an integral domain, and let $p, q \neq 0$ be polynomials in A[x]. Then the following are true:

- (1) $\deg pq = \deg p + \deg q$.
- (2) The units of A[x] are precisely the units of A

(3) A[x] is an integral domain.

Proof. Consider the leading terms $a_n x^n$ and $b_m x^m$ of p and q respectively. Then $a_n b_m x^{m+n}$ is the leading term of pq; moreover we require $a_n b_m \neq 0$. Now, if $\deg pq < m+n$, then ab=0, making a and b zero divisors of A; impossable. Therefore $ab \neq 0$. It also follows that since no term of p is a zero divisor, then p cannot be a zero divisor of A[x]. Lastly, if pq=1, then $\deg p + \deg q = 0$, so that pq is a constant polynomial. Noticing that constant polynomials are simply just elements of A, then p and q are units.

1.3 Ring Homomorphisms and Factor Rings.

Definition. Let A and B be commutative rings with identity. We call a map $\phi: A \to B$ a ring homomorphism if

- (1) ϕ is a group homomorphism with respect to addition.
- (2) $\phi(ab) = \phi(a)\phi(b)$ for any $a, b \in A$.
- (3) $\phi(1_A) = 1_B$.

We denote the **kernel** of ϕ to be the kernel of ϕ as a group homomorphism. That is

$$\ker \phi = \{ r \in A : \phi(r) = 0 \}$$

Moreover, if ϕ is 1–1 and onto, we call ϕ an **isomorphism** and say that A and B are **isomorphic**, and write $A \simeq B$.

Lemma 1.3.1. Let A and B be commutative rings with identity, and $\phi: A \to B$ a ring homomorphism. Then

- (1) $\phi(A)$ is a subring of B.
- (2) $\ker \phi$ is a subring of A.

Proof. Let $s_1, s_2 \in \phi(A)$. Then $s_1 = \phi(r_1)$ and $s_2 = \phi(r_2)$ for some $r_1, r_2 \in A$. Then $s_1s_2 = \phi(r_1)\phi(r_2) = \phi(r_1r_2) \in \phi(B)$. Additionally, $s^{-1} = \phi^{-1}(r) = \phi(r^{-1})$ for some $s \in B$, $r \in A$. This is sufficient to make B a subring of B.

By similar reasoning, if $r_1, r_2 \in \ker \phi$, then $\phi(r_1)\phi(r_2) = \phi(r_1r_2) = 0$ so that $r_1r_2 \in \ker \phi$, and $\phi(r^{-1}) = \phi^{-1}(r) = 0$ so $\phi^{-1} \in \ker \phi$.

Corollary. For any $r \in A$ and $a \in \ker \phi$, then $ar \in \ker \phi$ and $ra \in \ker \phi$.

Proof. We have $\phi(ar) = \phi(a)\phi(r) = \phi(a)0 = 0$ so $ar \in \ker \phi$. The same happens for ra.

Definition. Let A be a comutative ring with identity. We call a subset \mathfrak{a} of A an **ideal** of A if it is a subgroup under +, and for any $r \in A$, and $a \in \mathfrak{a}$, $ra \in \mathfrak{a}$.

Theorem 1.3.2. Let A be a commutative ring with identity, and Ia an ideal in A. Let $^{A}/_{\mathfrak{a}}$ be the set of all $a + \mathfrak{a}$ with $a \in A$. Define operations + and \cdot by

$$(a + \mathfrak{a}) + (b + \mathfrak{a}) = (a + b) + \mathfrak{a}$$
$$(a + \mathfrak{a})(b + \mathfrak{a}) = ab + \mathfrak{a}$$

Then $A_{\mathfrak{a}}$ forms a commutative ring with identity under + and \cdot .

Proof. Notice that $(a+\mathfrak{a})+(b+\mathfrak{a})=(a+b)+(\mathfrak{a}+\mathfrak{a})=(a+b)+2\mathfrak{a}=(a+b)+\mathfrak{a}$. Moreover, $A_{\mathfrak{a}}$ inherits associativity in + from addition in A. Now, take $0+\mathfrak{a}=\mathfrak{a}$ as the additive identity and -a+I as the inverse of $a+\mathfrak{a}$ for each \mathfrak{a} .

Now, notice, that $(a + \mathfrak{a})(b + \mathfrak{a}) = ab + a\mathfrak{a} + b\mathfrak{a} + \mathfrak{a}^2 = ab + (\mathfrak{a} + \mathfrak{a} + \mathfrak{a}) = ab + \mathfrak{a}$ by distribution of multiplication over addition in A. Moreover, A/\mathfrak{a} also inherits associativity and commutativity in \cdot from multiplication in A. Now, notice then

$$(a+\mathfrak{a})((b+\mathfrak{a})+c+\mathfrak{a})=(a+\mathfrak{a})((b+c)+\mathfrak{a})=a(b+c)+\mathfrak{a}=(ab+ac)+\mathfrak{a}=(ac+\mathfrak{a})+(bc+a)$$

Observe also that if 1 is the identity of A, then $1 + \mathfrak{a}$ is the identity of A/\mathfrak{a} as a+. Since $(a+\mathfrak{a})(1+\mathfrak{a}) = a+\mathfrak{a}$.

Lastly, notice that $a + \mathfrak{a}$ is just the left coset of a by \mathfrak{a} in A as a group under addition. So that + and \cdot are coset addition and multiplication, which are well defined.

Definition. Let A be a commutative ring with idenity and \mathfrak{a} an ideal in A. We call the ring $A_{\mathfrak{a}}$ under addition and multiplication of cosets the **factor ring** (or **quotient ring**) of A over \mathfrak{a} .

Theorem 1.3.3 (The First Isomorphism Theorem). If $\phi : A \to B$ is a ring homomorphism from rings A into B, then ker ϕ is an ideal of A and

Proof. By the first isomorphism theorem for groups, ϕ is a group isomorphism. Now, let $K = \ker \phi$ and consider the map $\pi : A \to A/\mathfrak{a}$ by $a \xrightarrow{\pi} a + K$. Define the map $\overline{\phi} : A/K \to \phi(A)$ such that $\overline{\phi} \circ \pi = \phi$, then $\overline{\phi}$ defines the ring isomorphism.

Proof. The map $\pi: A \to A_{\mathfrak{a}}$ defined by $a \to a + \mathfrak{a}$, for any ideal \mathfrak{a} , is onto, with ker $\pi = \mathfrak{a}$.

Theorem 1.3.4 (The Second Isomorphism Theorem). Let $\mathfrak{a} \subseteq A$ a subring of A, and let \mathfrak{b} an ideal in A. Define $\mathfrak{a} + \mathfrak{b} = \{a + b : a \in \mathfrak{a} \text{ and } b \in \mathfrak{b}\}$. Then $\mathfrak{a} + \mathfrak{b}A$ is a subring and $\mathfrak{a} \cap \mathfrak{b}$ is an ideal in A. Then

$$\mathfrak{ab}/\mathfrak{b} \simeq \mathfrak{a}/\mathfrak{a} \cap \mathfrak{b}$$

Theorem 1.3.5 (The Third Isomorphism Theorem). Let \mathfrak{a} and \mathfrak{b} be ideals in a ring A, with $\mathfrak{a} \subseteq \mathfrak{b}$. Then $\mathfrak{b}_{\mathfrak{a}}$ is an ideal of $A_{\mathfrak{a}}$ and

$$A_{\mathfrak{b}} = \frac{(A_{\mathfrak{a}})}{(\mathfrak{b}_{\mathfrak{a}})}$$

Theorem 1.3.6 (The Fourth Isomorphism Theorem). Let \mathfrak{a} an ideal in a ring A, then the correspondence between A and $A_{\mathfrak{a}}$, for any subring of A is an inclusion preserving bijection between subrings of A containing \mathfrak{a} and $A_{\mathfrak{a}}$. Moreover, A is an ideal if, and only if $A_{\mathfrak{a}}$ is an ideal.

Lemma 1.3.7. Let A be a ring with ideals \mathfrak{a} and \mathfrak{b} . Then $\mathfrak{a} + \mathfrak{b}$, \mathfrak{ab} and \mathfrak{a}^n , for any $n \geq 0$ are ideals of A and we have the lattice

1.4 Properties of Ideals

Definition. Let A be a commutative ring with identity. We call the smallest ideal containing a nonempty subset S in A the **ideal generated** by S, and we write (S). We call an ideal **principle** if it is generated by a single element of A, i.e. $\mathfrak{a} = (a)$ for some $a \in \mathfrak{a}$. We say that the ideal (S) is **finitely generated** if |S| is finite, and if $S = \{a_1, \ldots, a_n\}$, then we denote $(S) = (a_1, \ldots, a_n)$.

Example 1.2. (1) In any commutative ring with identity, the trivial ideal and A are the ideals generated by 0 and 1, respectively, so we write them as (0) and A = (1).

(2) In \mathbb{Z} , we can write the ideals $n\mathbb{Z} = (n) = (-n)$. Notice that every ideal in \mathbb{Z} is a principle ideal. Moreover, for $m, n \in \mathbb{Z}$, n|m if, and only if $n\mathbb{Z} \subseteq n\mathbb{Z}$. Notice that $m\mathbb{Z} + n\mathbb{Z} = d\mathbb{Z}$ is the ideal generated by n and n, where d = (m, n) is the greatest

common divisor of m and n. Indeed, by definition, d|m, n so that $d\mathbb{Z} \subseteq m\mathbb{Z} + n\mathbb{Z}$, and if c|m, n, then c|d, making $m\mathbb{Z} + n\mathbb{Z} \subseteq d\mathbb{Z}$. Then $m\mathbb{Z} + n\mathbb{Z} = d\mathbb{Z}$ is the ideal generated by the greatest common divisor (m, n) and consists of all diophantine equations of the form

$$mx + ny = (m, n)$$

In general, we can define the **greatest common divisor** for integers n_1, n_2, \ldots, n_m to be the smallest such integer d generating the ideal $n_1\mathbb{Z} + \cdots + n_m\mathbb{Z} = d\mathbb{Z}$. We then write $d = (n_1, \ldots, n_m)$.

(3) Consider the ideal (2, x) of $\mathbb{Z}[x]$. (2, x) is not a principle ideal. We have that $(2, x) = \{2p_xq : p, q \in \mathbb{Z}[x]\}$, and that $(2, x) \neq \mathbb{Z}[x]$. Suppose that (2, x) = (a) for some polynomial $a \in \mathbb{Z}[x]$, then $2 \in (a)$, so that 2 = p(x)a(x), of degree deg $p + \deg a$. This makes p and a constant polynomials in $\mathbb{Z}[x]$. Now, since 2 is prime in \mathbb{Z} , then only values for p and q are $p = \pm 1$ and $a = \pm 2$. If $a(x) = \pm 1$, then every polynomial in $\mathbb{Z}[x]$ can be written as a polynomial in (a), so that $(a) = \mathbb{Z}[x]$, impossible. If $a(x) = \pm 2$, then since $x \in (a)$, we get x = 2q(x) where $q \in \mathbb{Z}[x]$. This cannot happen, so that $(a) \neq (2, x)$.

Lemma 1.4.1. Let a an ideal in ring A with identity. Then

- (1) $\mathfrak{a} = (1)$ if, and only if \mathfrak{a} contains a unit.
- (2) If A is commutative, then A is a field if, and only if its only ideals are (0) and (1).

Proof. Recall that A = (1). Now, if $\mathfrak{a} = (1)$, then $1 \in \mathfrak{a}$, and 1 is a unit. Conversly, suppose that $u \in \mathfrak{a}$ with u a unit. By definition, we have that $r = r \cdot 1 = r(uv) = r(vu) = (rv)u$, so that $1 \in \mathfrak{a}$. This makes $\mathfrak{a} = (1)$.

Now, if A is a field, then it is a commutative ring, moreover every $r \neq 0$ is a unit in A, which makes $r \in \mathfrak{a}$ for some ideal $\mathfrak{a} \neq (0)$. This makes every $\mathfrak{a} \neq (0)$ equal to (1). Conversly, if (0) and (1) are the only ideals of the commutative ring A, then every $r \neq 0 \in (1)$, which makes them units. Hence all nonzero r is a unit in A. This makes A into a field.

Corollary. If k is a field, then any nonzero ring homomorphism ϕ defined on k is 1–1.

Proof. If k is a field, then either $\ker \phi = (0)$ or $\ker \phi = (1)$. Now, since $\ker \phi \neq A$, we must have $\ker \phi = (0)$.

Definition. For any ideal \mathfrak{m} in a ring A, we call \mathfrak{m} maximal if $\mathfrak{m} \neq A$, and if \mathfrak{a} is an ideal with $\mathfrak{m} \subseteq \mathfrak{a} \subseteq A$, then either $\mathfrak{m} = \mathfrak{a}$ or $\mathfrak{a} = A$.

Lemma 1.4.2. If A is a commutative ring with identity, every proper ideal is contained in a maximal ideal.

Proof. Let \mathfrak{a} a proper ideal of A. Let $S = \{N : N \neq (1) \text{ is a proper ideal, and } \mathfrak{a} \subseteq N\}$. Then $S \neq \emptyset$, as $\mathfrak{a} \in S$, and the relation \subseteq partially orders S. Let C be a chain in S and define

$$J=\bigcup_{\mathfrak{a}\in\mathcal{C}}\mathfrak{a}$$

We have that $J \neq \emptyset$ since $(0) \in J$. Now, let $a, b \in J$, then we have that either $(a) \subseteq (b)$ or $(b) \subseteq (a)$, but not both. In either case, we have $a - b \in J$ so that J is closed under additive inverse. Moreover, since $\mathfrak{a} \in \mathcal{C}$ is an ideal, by definition, J is closed with respect to absorbption. This makes J an ideal.

Now, if $1 \in J$, then J = (1) and J is not proper, and $\mathfrak{a} = (1)$ by definition of J. This is a contradiction as \mathfrak{a} must be proper. Thereofre J must also be a proper ideal. Therefore, \mathcal{C} has an upperbound in \mathcal{S} , therefore, by Zorn's lemma, \mathcal{S} has a maximal element \mathfrak{m} , i.e. it has a maximal ideal \mathfrak{m} with $\mathfrak{a} \subseteq \mathfrak{m}$.

Lemma 1.4.3. Let A be a commutative ring with identity. An ideal \mathfrak{m} is maximal if, and only if $A_{\mathfrak{m}}$ is a field.

Proof. If \mathfrak{m} is maximal, then ther is no ideal $I \neq (1)$ for which $\mathfrak{m} \subseteq \mathfrak{a} \subseteq A$ By the fourth isomorphism theorem, the ideals of A containing \mathfrak{a} are in 1–1 correspondence with the those of $A_{\mathfrak{m}}$. Therefore \mathfrak{m} is maximal if, and only if the only ideals of $A_{\mathfrak{m}}$ are (\mathfrak{m}) and $(1+\mathfrak{m})$.

- **Example 1.3.** (1) Let $n \ge 0$ an integer. The ideal $n\mathbb{Z}$ is maximal in \mathbb{Z} if and only if $\mathbb{Z}/_{n\mathbb{Z}}$ is a field. Therefore $n\mathbb{Z}$ is maximal if, and only if n = p a prime in \mathbb{Z} . So the maximal ideals of \mathbb{Z} are those $p\mathbb{Z}$ where p is prime.
 - (2) (2, x) is not principle in $\mathbb{Z}[x]$, but it is maximal in $\mathbb{Z}[x]$, as $\mathbb{Z}[x]/(2, x) \simeq \mathbb{Z}/2\mathbb{Z}$ which is a field.
 - (3) The ideal (x) is not maximal in $\mathbb{Z}_{n\mathbb{Z}}$, since $\mathbb{Z}_{(x)} \simeq \mathbb{Z}$, which is not a field. Moreover, $(x) \subseteq (2,x) \subseteq \mathbb{Z}[x]$. We construct this isomorphism by identifying x=0, then all polynomials of $\mathbb{Z}[x]_{(x)}$ only have constant term in \mathbb{Z} .

Definition. We call an ideal \mathfrak{p} in a commutative ring A with identity **prime** if $\mathfrak{p} \neq (1)$ and if $ab \in \mathfrak{p}$ then either $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$. Alternatively, if $(ab) \subseteq \mathfrak{p}$ then $(a) \subseteq \mathfrak{p}$ or $(b) \subseteq \mathfrak{p}$.

Example 1.4. The prime ideals of \mathbb{Z} are $p\mathbb{Z}$ with p prime together with (0).

Lemma 1.4.4. An ideal \mathfrak{p} in a commutative ring with identity, A, is prime if, and only if $A_{\mathfrak{p}}$ is an integral domain.

Proof. Suppose that \mathfrak{p} is prime, and let $(a+\mathfrak{p})(b+\mathfrak{p})=ab+\mathfrak{p}=\mathfrak{p}$. This gives us that $ab\in\mathfrak{p}$ and hence $a\in\mathfrak{p}$ or $b\in\mathfrak{p}$. Then either $a+\mathfrak{p}=\mathfrak{p}$ or $b+\mathfrak{p}=\mathfrak{p}$ in $a\in\mathfrak{p}$ in $a\in\mathfrak{p}$. Conversly, if $a\in\mathfrak{p}$ is an integral domain, then for any $a+\mathfrak{p},b+\mathfrak{p}$ ab $a\in\mathfrak{p}$ implies that either $a+\mathfrak{p}=\mathfrak{p}$ or $a\in\mathfrak{p}$ or $a\in\mathfrak{p}$

Corollary. Every maximal ideal is a prime ideal.

- **Example 1.5.** (1) The prime ideals of \mathbb{Z} are $p\mathbb{Z}$, where p is prime, which are the maximal ideals of \mathbb{Z} .
 - (2) The ideal (x) in $\mathbb{Z}[x]$ is a prime ideal, but it is not maximal as $(x) \subseteq (2, x) \subseteq \mathbb{Z}[x]$.

Definition. Let A be a commutative ring with identity. We call A a **local ring** if it has one, and only one maximal ideal. We define the **residue field** of A to be the field $k = \frac{A}{\mathfrak{m}}$. We call a commutative ring with identity a **semi-local ring** if it has only finitely many maximal ideals.

Example 1.6. The tring \mathbb{Z} is not a local ring, it is not even semi-local, since every prime ideal (p) of \mathbb{Z} , where $p \in \mathbb{Z}^+$ is prime, is also maximal.

Lemma 1.4.5. Let A be a commutative ring with identity. Then the following are true.

- (1) If $\mathfrak{m} \neq (1)$ is an ideal of A such that every element of $A \backslash \mathfrak{m}$ is a unit, then A is a local ring having \mathfrak{m} as its maximal ideal.
- (2) If \mathfrak{m} is a maximal ideal of A such that every element of $1 + \mathfrak{m}$ is a unit, then A is a local ring.

Proof. Suppose that $\mathfrak{m} \neq (1)$. We have by lemma 1.4.2 that \mathfrak{m} is contained in a maximal ideal. Moreover, \mathfrak{m} contains no units by lemma 1.4.1. Since $x \in A \setminus \mathfrak{m}$ is a unit, we get (x) = (1), which makes \mathfrak{m} the only maximal ideal of A and A is a local ring.

Now, suppose that \mathfrak{m} is maximal, and take $x \in A \backslash \mathfrak{m}$. Then the ideal $(x, \mathfrak{m}) = (1)$, so that there exists a $y \in A$, and $t \in \mathfrak{m}$ for which xy - t = 1; i.e. xy = 1 - t, which makes x a unit. By above, this makes A a local ring.

Bibliography

- [1] D. Dummit, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- [2] I. N. Herstein, Topics in algebra. New York: Wiley, 1975.