

MC60 Hardware Design

GSM/GPRS/GNSS Module Series

Rev. MC60_Hardware_Design_V1.3

Date: 2016-09-23

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local office. For more information, please visit:

http://www.quectel.com/support/salesupport.aspx

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/techsupport.aspx

Or email to: Support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2016. All rights reserved.

About the Document

History

Revision	Date	Author	Description
1.0	2016-07-05	Tiger CHENG	Initial
1.1	2016-08-02	Tiger CHENG	 Added the description of QuectelFastFix Online function (Chapter 3.15) Added the description of 1PPS function (Chapter 3.17) Updated Figure 27 (recommend using a switch for connection between Auxiliary and GNSS UART ports in stand-alone solution)
1.2	2016-8-17	Tiger CHENG	Optimized the ESD performance parameter in Table 38
1.3	2016-09-23	Tiger CHENG	 Added the description of Periodic Mode (Chapter 3.4.2.4) Added the description of AlwaysLocateTM mode (Chapter 3.4.2.5) Added the description of GLP Mode (Chapter 3.4.2.6) Added the description of PCM interface (Chapter 3.9) Added the description of LOCUS (Chapter 3.18) Added the current consumption data of BT function (Table 44)

Contents

Ab	out the	Docu	ıment		2
Со	ntents				3
Tal	ble Inde	x			6
Fig	jure Inde	ех			8
1	Introdu	uctio	n		10
	1.1.	Safe	ety Infori	mation	10
2	Produ	ct Co	ncept		12
	2.1.	Gen	eral Des	scription	12
	2.2.	Key	Feature	95	13
	2.3.	Fun	ctional E	Diagram	16
	2.4.	Eval	uation E	3oard	17
3	Applic	ation	Functi	ons	18
	3.1.	Pin	of Modu	le	19
	3.	1.1.		ssignment	
	3.	1.2.		escription	
	3.2.	App	lication	Modes Introduction	25
	3.3.			oly	
	3.3	3.1.	Power	r Features	
			3.1.1.	Power Features of GSM Part	
		3.3	3.1.2.	Power Features of GNSS Part	
	3.3	3.2.	Decre	ase Supply Voltage Drop	
			3.2.1.	Decrease Supply Voltage Drop for GSM Part	
		3.3	3.2.2.	Decrease Supply Voltage Drop for GNSS Part	
	3.3	3.3.	Refere	ence Design for Power Supply	
		3.3	3.3.1.	Reference Design for Power Supply of GSM Part	30
		3.3	3.3.2.	Reference Design for Power Supply of GNSS Part in All-in-one Solution	31
		3.3	3.3.3.	Reference Design for Power Supply of GNSS Part in Stand-alone Solution.	31
	3.3	3.4.	Monito	or Power Supply	32
	3.3	3.5.	Backu	p Domain of GNSS	32
		3.3	3.5.1.	Use VBAT as the Backup Power Source of GNSS	32
		3.3	3.5.2.	Use VRTC as Backup Power of GNSS	33
	3.4.	Ope	rating M	lodes	34
	3.4	4.1.	Opera	iting Modes of GSM Part	34
		3.4	.1.1.	Minimum Functionality Mode	35
		3.4	.1.2.	SLEEP Mode	36
		3.4	.1.3.	Wake up GSM Part from SLEEP Mode	36
	3.4	4.2.	Opera	ting Modes of GNSS Part	37
		3.4	.2.1.	Full on Mode	37
		3.4	.2.2.	Standby Mode	38
		3.4	.2.3.	Backup Mode	38

	3.4.	.2.4. Periodic Mode	39
	3.4.	.2.5. AlwaysLocate TM Mode	41
	3.4.	.2.6. GLP Mode	42
	3.4.3.	Summary of GSM and GNSS Parts' State in All-in-one Solution	43
	3.4.4.	Summary of GSM and GNSS Parts' State in Stand-alone Solution	า 43
	3.4.5.	BT Function	44
3.5.	Powe	er on and down Scenarios in All-in-one Solution	44
	3.5.1.	Power on	44
	3.5.2.	Power down	46
	3.5.	.2.1. Power down Module Using the PWRKEY Pin	46
	3.5.	.2.2. Power down Module Using AT Command	48
	3.5.	.2.3. Power down GNSS Part Alone Using AT Command	48
	3.5.	.2.4. Under-voltage Automatic Shutdown	49
3.6.	Powe	er on and down Scenarios in Stand-alone Solution	49
	3.6.1.	Power on GSM Part	49
	3.6.2.	Power down GSM Part	51
	3.6.	2.1. Power down GSM Part Using the PWRKEY Pin	51
	3.6	2.2.2. Power down GSM Part using Command	52
3.7.	Seria	al Interfaces	53
	3.7.1.	UART Port	55
	3.7.	1.1.1. Features of UART Port	55
	3.7.	7.1.2. The Connection of UART	56
	3.7.	7.1.3. Firmware Upgrade	57
	3.7.2.	Debug Port	58
	3.7.3.	Auxiliary UART Port and GNSS UART Port	59
	3.7.	3.1. Connection in All-in-one Solution	59
	3.7.	3.2. Connection in Stand-alone Solution	59
	3.7.4.	UART Application	60
3.8.	Audi	io Interfaces	61
	3.8.1.	Decrease TDD Noise and Other Noises	63
	3.8.2.	Microphone Interfaces Design	63
	3.8.3.	Receiver and Speaker Interface Design	64
	3.8.4.	Earphone Interface Design	65
	3.8.5.	Loud Speaker Interface Design	65
	3.8.6.	Audio Characteristics	66
3.9.	PCM	1 Interface	66
	3.9.1.	Parameter Configuration	67
	3.9.2.	Timing Diagram	68
	3.9.3.	Reference Design	68
	3.9.4.	AT Command	69
3.10	O. SIM	Card Interface	70
3.11	1. ADC	>	73
3.12	2. Beha	aviors of the RI	73
3.13	3. Netw	vork Status Indication	75

	3.14. EA	ASY Autonomous AGPS Technology	75
	3.15. EP	PO Offline AGPS Technology	76
	3.16. Qu	uecFastFix Online Technology	77
	3.17. Mu	ulti-tone AIC	77
	3.18. LO	OCUS	77
	3.19. PP	PS VS. NMEA	78
4	Antenna li	nterface	79
	4.1. GS	SM Antenna Interface	79
	4.1.1.	Reference Design	79
	4.1.2.	RF Output Power	80
	4.1.3.	RF Receiving Sensitivity	81
	4.1.4.	Operating Frequencies	81
	4.1.5.	RF Cable Soldering	82
	4.2. GN	NSS Antenna Interface	82
	4.2.1.	Antenna Specifications	82
	4.2.2.	Active Antenna	83
	4.2.3.	Passive Antenna	84
	4.3. Blu	uetooth Antenna Interface	84
5	Electrical,	, Reliability and Radio Characteristics	86
	5.1. Ab:	solute Maximum Ratings	86
	5.2. Op	perating Temperature	87
		ower Supply Ratings	
	5.4. Cu	urrent Consumption	89
	5.5. Ele	ectrostatic Discharge	92
6	Mechanica	al Dimensions	93
	6.1. Me	echanical Dimensions of Module	93
		ecommended Footprint	
	6.3. Top	p and Bottom View of the Module	96
7	Storage a	nd Manufacturing	97
	7.1. Sto	orage	97
	7.2. So	oldering	97
	7.3. Pa	ackaging	98
	7.3.1.	Tape and Reel Packaging	99
8	Appendix	A References	100
9	Appendix	B GPRS Coding Schemes	106
10	Appendix	C GPRS Multi-slot Classes	108

Table Index

TABLE 1: KEY FEATURES (GMS/GPRS PART OF MC60)	13
TABLE 2: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTERFACE	15
TABLE 3: KEY FEATURES (GNSS PART OF MC60)	15
TABLE 4: PROTOCOLS SUPPORTED BY THE MODULE	16
TABLE 5: I/O PARAMETERS DEFINITION	20
TABLE 6: PIN DESCRIPTION	20
TABLE 7: MULTIPLEXED FUNCTIONS	
TABLE 8: COMPARISON BETWEEN ALL-IN-ONE AND STAND-ALONE SOLUTION	
TABLE 9: OPERATING MODES OVERVIEW OF GSM PART	34
TABLE 10: DEFAULT CONFIGURATION OF FULL ON MODE (GNSS PART)	37
TABLE 11: FORMAT OF THE PMTK COMMAND ENABLING PERIODIC MODE	
TABLE 12: AVERAGE CURRENT CONSUMPTION IN GLP MODE AND NORMAL MODE	
TABLE 13: COMBINATION STATES OF GSM AND GNSS PARTS IN ALL-IN-ONE SOLUTION	
TABLE 14: COMBINATION STATES OF GSM AND GNSS PARTS IN STAND-ALONE SOLUTION	43
TABLE 15: LOGIC LEVELS OF THE UART INTERFACE	54
TABLE 16: PIN DEFINITION OF THE UART INTERFACES	54
TABLE 17: PIN DEFINITION OF AUDIO INTERFACE	
TABLE 18: AOUT2 OUTPUT CHARACTERISTICS	62
TABLE 19: TYPICAL ELECTRET MICROPHONE CHARACTERISTICS	66
TABLE 20: TYPICAL SPEAKER CHARACTERISTICS	66
TABLE 21: PIN DEFINITION OF PCM INTERFACE	
TABLE 22: PCM PARAMETER CONFIGURATION	67
TABLE 23: AT+QPCMON COMMAND PARAMETER CONFIGURATION	69
TABLE 24: AT+QPCMVOL COMMAND PARAMETER CONFIGURATION	70
TABLE 25: PIN DEFINITION OF THE SIM INTERFACE	
TABLE 26: PIN DEFINITION OF THE ADC	
TABLE 27: CHARACTERISTICS OF THE ADC	
TABLE 28: BEHAVIORS OF THE RI	73
TABLE 29: WORKING STATE OF THE NETLIGHT	
TABLE 30: PIN DEFINITION OF THE RF_ANT	79
TABLE 31: ANTENNA CABLE REQUIREMENTS	
TABLE 32: ANTENNA REQUIREMENTS	
TABLE 33: RF OUTPUT POWER	
TABLE 34: RF RECEIVING SENSITIVITY	
TABLE 35: OPERATING FREQUENCIES	
TABLE 36: RECOMMENDED ANTENNA SPECIFICATIONS	
TABLE 37: PIN DEFINITION OF THE BT_ANT	84
TABLE 38: ABSOLUTE MAXIMUM RATINGS	
TABLE 39: OPERATING TEMPERATURE	
TABLE 40: POWER SUPPLY RATINGS OF GSM PART (GNSS IS POWERED OFF)	
TABLE 41: POWER SUPPLY RATINGS OF GNSS PART	88

TABLE 42: CURRENT CONSUMPTION OF GSM PART (GNSS IS POWERED OFF)	89
TABLE 43: CURRENT CONSUMPTION OF THE GNSS PART	91
TABLE 44: CURRENT CONSUMPTION OF BT	91
TABLE 45: ESD PERFORMANCE PARAMETER (TEMPERATURE: 25°C, HUMIDITY: 45%)	92
TABLE 46: REEL PACKAGING	99
TABLE 47: RELATED DOCUMENTS	100
TABLE 48: TERMS AND ABBREVIATIONS	101
TABLE 49: DESCRIPTION OF DIFFERENT CODING SCHEMES	106
TABLE 50: GPRS MULTI-SLOT CLASSES	108

Figure Index

FIGURE 1: MODULE FUNCTIONAL DIAGRAM	17
FIGURE 2: PIN ASSIGNMENT	19
FIGURE 3: ALL-IN-ONE SOLUTION SCHEMATIC DIAGRAM	26
FIGURE 4: STAND-ALONE SOLUTION SCHEMATIC DIAGRAM	26
FIGURE 5: VOLTAGE RIPPLE DURING TRANSMITTING (GSM PART)	28
FIGURE 6: REFERENCE CIRCUIT FOR THE VBAT INPUT (GSM PART)	29
FIGURE 7: REFERENCE CIRCUIT FOR THE GNSS_VCC INPUT	29
FIGURE 8: REFERENCE CIRCUIT FOR POWER SUPPLY OF THE GSM PART	30
FIGURE 9: REFERENCE CIRCUIT DESIGN FOR GNSS PART IN ALL-IN-ONE SOLUTION	31
FIGURE 10: REFERENCE CIRCUIT DESIGN FOR GNSS PART IN STAND-ALONE SOLUTION	32
FIGURE 11: INTERNAL GNSS'S BACKUP DOMAIN POWER CONSTRUCTION	33
FIGURE 12: VRTC IS POWERED BY A RECHARGEABLE BATTERY	33
FIGURE 13: VRTC IS POWERED BY A CAPACITOR	
FIGURE 14: OPERATION MECHANISM OF PERIODIC MODE	
FIGURE 15: POWER CONSUMPTION IN DIFFERENT SCENARIOS (ALWAYSLOCATE TM MODE)	41
FIGURE 16: TURN ON THE MODULE WITH AN OPEN-COLLECTOR DRIVER	44
FIGURE 17: TURN ON THE MODULE WITH A BUTTON	45
FIGURE 18: TURN-ON TIMING	
FIGURE 19: TURN-OFF TIMING BY USING THE PWRKEY PIN	
FIGURE 20: TURN-OFF TIMING OF GNSS PART BY USING AT COMMAND	48
FIGURE 21: TURN-ON TIMING OF GSM PART	50
FIGURE 22: TURN-OFF TIMING OF GSM PART BY USING THE PWRKEY PIN	
FIGURE 23: REFERENCE DESIGN FOR FULL-FUNCTION UART	
FIGURE 24: REFERENCE DESIGN FOR UART PORT (THREE LINE CONNECTION)	57
FIGURE 25: REFERENCE DESIGN FOR UART PORT WITH HARDWARE FLOW CONTROL	57
FIGURE 26: REFERENCE DESIGN FOR FIRMWARE UPGRADE	
FIGURE 27: REFERENCE DESIGN FOR DEBUG PORT	58
FIGURE 28: AUXILIARY AND GNSS UART PORT CONNECTION IN ALL-IN-ONE SOLUTION	59
FIGURE 29: AUXILIARY AND GNSS UART PORT CONNECTION IN STAND-ALONE SOLUTION	60
FIGURE 30: LEVEL MATCH DESIGN FOR 3.3V SYSTEM	60
FIGURE 31: SKETCH MAP FOR RS-232 INTERFACE MATCH	
FIGURE 32: REFERENCE DESIGN FOR AIN	
FIGURE 33: HANDSET INTERFACE DESIGN FOR AOUT1	64
FIGURE 34: SPEAKER INTERFACE DESIGN WITH AN AMPLIFIER FOR AOUT1	64
FIGURE 35: EARPHONE INTERFACE DESIGN	65
FIGURE 36: LOUD SPEAKER INTERFACE DESIGN	65
FIGURE 37: TIMING DIAGRAM FOR LONG FRAME SYNCHRONIZATION	68
FIGURE 38: TIMING DIAGRAM FOR SHORT FRAME SYNCHRONIZATION	68
FIGURE 39: REFERENCE DESIGN FOR PCM	
FIGURE 40: REFERENCE CIRCUIT FOR SIM1 INTERFACE WITH AN 8-PIN SIM CARD HOLDER	71
FIGURE 41: REFERENCE CIRCUIT FOR SIM1 INTERFACE WITH A 6-PIN SIM CARD HOLDER	71

FIGURE 42: REFERENCE CIRCUIT FOR SIM2 INTERFACE WITH A 6-PIN SIM CARD HOLDER	72
FIGURE 43: RI BEHAVIOR AS A RECEIVER WHEN VOICE CALLING	74
FIGURE 44: RI BEHAVIOR AS A CALLER	74
FIGURE 45: RI BEHAVIOR WHEN URC OR SMS RECEIVED	74
FIGURE 46: REFERENCE DESIGN FOR NETLIGHT	75
FIGURE 47: PPS VS. NMEA TIMING	78
FIGURE 48: REFERENCE DESIGN FOR GSM ANTENNA	79
FIGURE 49: RF SOLDERING SAMPLE	82
FIGURE 50: REFERENCE DESIGN WITH ACTIVE ANTENNA	83
FIGURE 51: REFERENCE DESIGN WITH PASSIVE ANTENNA	84
FIGURE 52: REFERENCE DESIGN FOR BLUETOOTH ANTENNA	85
FIGURE 53: MC60 TOP AND SIDE DIMENSIONS (UNIT: MM)	
FIGURE 54: MC60 BOTTOM DIMENSIONS (UNIT: MM)	94
FIGURE 55: RECOMMENDED FOOTPRINT (UNIT: MM)	
FIGURE 56: TOP VIEW OF THE MODULE	96
FIGURE 57: BOTTOM VIEW OF THE MODULE	96
FIGURE 58: REFLOW SOLDERING THERMAL PROFILE	98
FIGURE 59: TAPE DIMENSIONS	99
FIGURE 60: REEL DIMENSIONS	99
FIGURE 61: RADIO BLOCK STRUCTURE OF CS-1, CS-2 AND CS-3	106
FIGURE 62: RADIO BLOCK STRUCTURE OF CS-4	107

1 Introduction

This document defines the MC60 module and describes its hardware interface which is connected with the customer application as well as its air interface.

The document can help you quickly understand module interface specifications, as well as the electrical and mechanical details. Associated with application note and user guide, you can use MC60 module to design and set up mobile applications easily.

1.1. Safety Information

The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating MC60 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for the customer's failure to comply with these precautions.

Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers a Airplane Mode which must be enabled prior to boarding an aircraft.

Switch off your wireless device when in hospitals, clinics or other health care facilities. These requests are desinged to prevent possible interference with sensitive medical equipment.

Cellular terminals or mobiles operating over radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Your cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.

In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.

2 Product Concept

2.1. General Description

MC60 is a multi-purpose module which integrates a high performance GNSS engine and a quad-band GSM/GPRS engine. It can work as **all-in-one** solution or **stand-alone** solution according to customers' application demands. For detailed introduction on **all-in-one** solution and **stand-alone** solution, please refer to **Chapter 3.2**.

The quad-band GSM/GPRS engine can work at frequencies of GSM850MHz, EGSM900MHz, DCS1800MHz and PCS1900MHz. MC60 features GPRS multi-slot class 12 and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4. For more details about GPRS multi-slot classes and coding schemes, please refer to the *Appendix B & C*.

The GNSS engine is a single receiver integrating GPS and GLONASS systems. It supports multiple positioning and navigation systems including autonomous GPS, GLONASS, SBAS (including WAAS, EGNOS, MSAS and GAGAN), and QZSS. It is able to achieve the industry's highest level of sensitivity, accuracy and TTFF with the lowest power consumption. The embedded flash memory provides capacity for storing user-specific configurations and allows for future updates.

MC60 is an SMD type module with 54 LCC pads and 14 LGA pads which can be easily embedded into applications. With a compact profile of 18.7mm × 16.0mm × 2.1mm, the module can meet almost all the requirements for M2M applications, including vehicle and personal tracking, wearable devices, security systems, wireless POS, industrial PDA, smart metering, remote maintenance & control, etc.

Designed with power saving technique, the current consumption of MC60's GSM part is as low as 1.2mA in SLEEP mode when DRX is 5 and the GNSS part is powered off. The GNSS engine also has many advanced power saving modes including standby and backup modes which can fit the requirement of low-power consumption in different scenes.

GSM part of MC60 is integrated with Internet service protocols such as TCP, UDP, PPP, HTTP and FTP. Extended AT commands have been developed for you to use these Internet service protocols easily.

EASY technology as a key feature of GNSS part of MC60 module is one kind of AGPS. Capable of collecting and processing all internal aiding information like GNSS time, ephemeris, last position, etc., the GNSS part will have a fast TTFF in either Hot or Warm start.

The module fully complies with the RoHS directive of the European Union.

2.2. Key Features

The following table describes the detailed features of MC60 module.

Table 1: Key Features (GMS/GPRS Part of MC60)

Features	Implementation
Davier Cumply	Single supply voltage: 3.3V ~ 4.6V
Power Supply	Typical supply voltage: 4V
	Typical power consumption in SLEEP mode (GNSS is powered off):
Power Saving	1.2mA @DRX=5
	0.8mA @DRX=9
	 Quad-band: GSM850, EGSM900, DCS1800, PCS1900.
Frequency Bands	 The module can search these frequency bands automatically.
requericy barids	 The frequency bands can be set by AT commands.
	Compliant to GSM Phase 2/2+
GSM Class	Small MS
T	 Class 4 (2W) at GSM850 and EGSM900
Transmitting Power	 Class 1 (1W) at DCS1800 and PCS1900
	GPRS multi-slot class 12 (default)
GPRS Connectivity	 GPRS multi-slot class 1~12 (configurable)
	 GPRS mobile station class B
	 GPRS data downlink transfer: max. 85.6kbps
	 GPRS data uplink transfer: max. 85.6kbps
	 Coding scheme: CS-1, CS-2, CS-3 and CS-4
DATA GPRS	Support the protocols PAP (Password Authentication Protocol)
	usually used for PPP connections.
	Internet service protocols TCP/UDP, FTP, PPP, HTTP, NTP, PING Support Packet Procedures Control Channel (PRCCLI)
	Support Undervious Supplementary Service Data (USSD)
	 Support Unstructured Supplementary Service Data (USSD) Operation temperature range: -35°C ~ +75°C ¹⁾
Temperature Range	 Operation temperature range: -35°C ~ +75°C Extended temperature range: -40°C ~ +85°C
	·
SMS	Text and PDU mode SMS storage: SIM cord
	SMS storage: SIM card Support SIM card: 4.9V, 2.9V
SIM Interface	Support SIM card: 1.8V, 3.0VSupport Dual SIM Single Standby
Audio Features	Speech codec modes:
	Half Rate (ETS 06.20)

	Full Rate (ETS 06.10)		
	 Enhanced Full Rate (ETS 06.50/06.60/06.80) 		
	 Adaptive Multi-Rate (AMR) 		
	Echo Suppression		
	Noise Reduction		
	 Embedded one amplifier of class AB with maximum driving power up to 800mW 		
	UART Port:		
	 Seven lines on UART port interface 		
	 Used for AT command and GPRS data 		
	 Used for PMTK command and NMEA output in all-in-one solution 		
	Multiplexing function		
LIADT Interferen	 Support autobauding from 4800bps to 115200bps 		
UART Interfaces	Debug Port:		
	 Two lines on debug port interface DBG_TXD and DBG_RXD 		
	 Debug port only used for firmware debugging 		
	Auxiliary Port:		
	 Two lines on auxiliary port interface: TXD_AUX and RXD_AUX 		
	 Used for communication with the GNSS Part in all-in-one solution 		
Phonebook Management	Support phonebook types: SM, ME, ON, MC, RC, DC, LD, LA		
SIM Application Toolkit	Support SAT class 3, GSM 11.14 Release 99		
Physical Characteristics	Size: (18.7±0.15) × (16±0.15) × (2.1±0.2)mm		
Physical Characteristics	Weight: Approx. 1.3g		
Firmware Upgrade	Firmware upgrade via UART port		
Antenna Interface Connected to antenna pad with 50 ohm impedance control			

NOTES

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP compliant again.

Table 2: Coding Schemes and Maximum Net Data Rates over Air Interface

Coding Scheme	1 Timeslot	2 Timeslot	4 Timeslot
CS-1	9.05kbps	18.1kbps	36.2kbps
CS-2	13.4kbps	26.8kbps	53.6kbps
CS-3	15.6kbps	31.2kbps	62.4kbps
CS-4	21.4kbps	42.8kbps	85.6kbps

Table 3: Key Features (GNSS Part of MC60)

Features	Implementation		
GNSS	GPS+GLONASS		
Power Supply	Supply voltage: 2.8V~4.3V Typical: 3.3V		
 Acquisition: 25mA @-130dBm (GPS) Tracking: 19mA @-130dBm (GPS) Acquisition: 29mA @-130dBm (GPS+GLONASS) Tracking: 22mA @-130dBm (GPS+GLONASS) Standby: 300uA @VCC=3.3V Backup: 14uA @V_BCKP=3.3V 			
Receiver Type	GPS L1 1575.42MHz C/A Code GLONASS L1 1598.0625~1605.375MHz C/A Code		
Sensitivity GPS+GLONASS	 Acquisition: -149dBm Reacquisition: -161dBm Tracking: -167dBm 		
 Cold Start: <15s average @-130dBm Warm Start: <5s average @-130dBm Hot Start: 1s @-130dBm 			
 Cold Start (Autonomous): <35s average @-130dBm Warm Start (Autonomous): <30s average @-130dBm Hot Start (Autonomous): 1s @-130dBm 			
Horizontal Position Accuracy (Autonomous)	<2.5 m CFP @-130dBm		
Update Rate	 Up to 10Hz, 1Hz by default 		
Accuracy of 1PPS Signal	Typical accuracy <10nsTime pulse width: 100ms		
Velocity Accuracy	Without aid: 0.1m/s		

Without aid: 0.1m/s²
Maximum Altitude: 18,000m
Maximum Velocity: 515m/s
Acceleration: 4G
GNSS UART port: GNSS_TXD and GNSS_ RXD
• Support baud rate from 4800bps to 115200bps; 115200bps by
default
 Used for communication with the GSM Part in all-in-one solution
 Used for communication with peripherals in stand-alone solution

NOTE

Table 4: Protocols Supported by the Module

Protocol	Туре
NMEA	Input/output, ASCII, 0183, 3.01
PMTK	Input, MTK proprietary protocol

NOTE

Please refer to document [2] for details of NMEA standard protocol and MTK proprietary protocol.

2.3. Functional Diagram

The following figure shows a block diagram of MC60 and illustrates the major functional parts.

- Radio frequency part
- Power management
- Peripheral interfaces
 - —Power supply
 - -Turn-on/off interface
 - —UART interface
 - -Audio interface
 - -SIM interface

¹⁾ In this mode, GNSS part's backup domain should be valid.

- -ADC interface
- -RF interface
- -PCM interface
- —BT interface
- -SD interface

Figure 1: Module Functional Diagram

2.4. Evaluation Board

In order to help you develop applications with MC60, Quectel supplies an evaluation board (EVB),TE-A board, RS-232 to USB cable, power adapter, earphone, GSM antenna ,GNSS antenna and other peripherals to control or test the module. For details, please refer to *document [11]*.

3 Application Functions

MC60 is an SMD type module with 54 LCC pads and 14 LGA pads. The following chapters provide detailed descriptions about these pins.

- Pin of module
- Power supply
- Operating modes
- Power on/down
- Power saving
- Backup domain of GNSS
- Serial interfaces
- Audio interfaces
- SIM card interface
- ADC
- Behaviors of the RI
- Network status indication
- RF transmitting signal indication
- EASY autonomous AGPS technology
- EPO offline AGPS technology
- QuecFastFix Online technology
- Multi-tone AIC
- PPS VS. NMEA

3.1. Pin of Module

3.1.1. Pin Assignment

Figure 2: Pin Assignment

NOTE

Please keep all reserved pins open.

3.1.2. Pin Description

Table 5: I/O Parameters Definition

Туре	Description
IO	Bidirectional input/output
DI	Digital input
DO	Digital output
PI	Power input
PO	Power output
Al	Analog input
AO	Analog output

Table 6: Pin Description

Power Supply						
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comm	ent
VBAT	50, 51	ΡI	Power supply of GSM/GPRS part: VBAT=3.3V~4.6V	V _I max=4.6V V _I min=3.3V V _I norm=4.0V	provide current	be able to sufficient up to 1.6A nsmitting
GNSS_ VCC	26	PI	Power supply of GNSS part: GNSS_VCC=2.8V~4.3V	V _I max=4.3V V _I min=2.8V V _I norm=3.3V	Assure no less 150mA	
			Power supply for GNSS's backup domain	VImax=3.3V VImin=1.5V VInorm=2.8V		
VRTC	52	Ю	Charging for backup battery or golden capacitor when the VBAT is applied.	VOmax=2.8V VOmin=2.1V VOnorm=2.6V IOmax=2mA Iin≈14uA	Refer to 3.3.5	o Chapter
VDD_ EXT	43	P O	Supply 2.8V voltage for external circuit.	V_{O} max=2.9V V_{O} min=2.7V V_{O} norm=2.8V I_{O} max=20mA	thi 2. Re	unused, keep s pin open. ecommend ding a

GND	14, 27, 31, 40, 42, 44, 45, 48, 49		Ground		2.2~4.7uF bypass capacitor, when using this pin for power supply.
Turn on/off PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
PWRKEY	5	DI	Power on/off key. PWRKEY should be pulled down for a moment to turn on or turn off the system.	V _{IL} max= 0.1×VBAT V _{IH} min= 0.6×VBAT V _{IH} max=3.1V	Comment
Audio Interfa	ace		·		
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
MICP MICN SPKP SPKN	1, 2	AO	Positive and negative voice input Channel 1 positive and negative voice output	_	If unused, keep these pins open. 1. If unused, keep these pins open. 2. Support both voice and ringtone output.
LOUD SPKP LOUD SPKN	54 53	AO	Channel 2 positive and negative voice output	Refer to <i>Chapter 3.8.6</i>	 If unused, keep these pins open. Integrate a Class-AB amplifier internally. Support both
					voice and ringtone output.

PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
riiv ivailie	FIN NO.	1/0	Description		Comment
NETLIGHT	47	DO	Network status indication	V_{OH} min= $0.85 \times VDD_{EXT}$ V_{OL} max= $0.15 \times VDD_{EXT}$	If unused, keep this pin open.
UART Port					
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
TXD	33	DO	Transmit data	V _{IL} min=0V	
RXD	34	DI	Receive data	− V _{IL} max= 0.25×VDD_EXT	If only TXD, RXD
DTR	37	DI	Data terminal ready	V _{IH} min= 0.75×VDD_EXT	and GND are used
RI	35	DO	Ring indication	V _{IH} max=	for communication it is recommended
DCD	36	DO	Data carrier detection	VDD_EXT+0.2 _ V _{OH} min=	to keep all other
CTS	38	DO	Clear to send	0.85×VDD_EXT	pins open.
RTS	39	DI	Request to send	V _{OL} max= 0.15×VDD_EXT	
Debug Port					
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
DBG_ TXD	29	DO	Transmit data	The same as UART	If unused, keep
DBG_ RXD	30	DI	Receive data	port	these pins open.
Auxiliary UA	ART Port				
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
TXD_ AUX	25	DO	Transmit data	The same as UART	Refer to <i>Chapter</i>
RXD_ AUX	24	DI	Receive data	port	3.2
GNSS UART	Γ Port				
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
GNSS_ TXD	22	DO	Transmit data	V _{OL} max=0.42V V _{OH} min=2.4V	
GNSS_ RXD	23	DI	Receive data	V_{OH} nom=2.8V V_{IL} min=-0.3V V_{IL} max=0.7V V_{IH} min=2.1V	Refer to <i>Chapter</i> 3.2

V	_{IH} max=	3.	1	V

SIM Interface					
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
SIM1_ VDD SIM2_ VDD	18 13	РО	Power supply for SIM card	The voltage can be selected by software automatically. Either 1.8V or 3.0V.	
SIM1_ CLK SIM2_ CLK	19 10	DO	SIM clock	V _{OL} max= 0.15×SIM_VDD V _{OH} min= 0.85×SIM_VDD	All signals of SIM interface should be protected against — ESD with a TVS
SIM1_ DATA SIM2_ DATA	21 11	Ю	SIM data	$V_{IL}max = \\ 0.25 \times SIM_{VDD}$ $V_{IH}min = \\ 0.75 \times SIM_{VDD}$ $V_{OL}max = \\ 0.15 \times SIM_{VDD}$ $V_{OH}min = \\ 0.85 \times SIM_{VDD}$	diode array. Maximum trace length is 200mm from the module pad to SIM card holder.
SIM1_RST SIM2_RST	20 12	DO	SIM reset	V_{OL} max= 0.15 \times SIM_VDD V_{OH} min= 0.85 \times SIM_VDD	
SIM_ GND	16		SIM ground		
SIM1_ PRESENCE	37	DI	SIM1 card detection	V_{IL} min =0V V_{IL} max = 0.25 xVDD_EXT V_{IH} min = 0.75 xVDD_EXT V_{IH} max = V DD_EXT+0.2	
ADC					
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
ADC	6	Al	General purpose analog to digital converter.	Voltage range: 0V to 2.8V	If unused, keep this pin open.
Digital Audio	Interface	(PCM)			
PCM_CLK	59	DO	PCM clock	V _{IL} min= 0V - V _{IL} max=	If unused, keep
PCM_OUT	60	DO	PCM data output	0.25×VDD_EXT	these pins open.

PCM_SYNC	61	DO	PCM frame synchronization	V _{IH} min= 0.75×VDD_EXT	
PCM_IN	62	DI	PCM data input	V_{IH} max= $VDD_EXT+0.2$ V_{OH} min= $0.85 \times VDD_EXT$ V_{OL} max= $0.15 \times VDD_EXT$	
SD Card Inte	erface				
SD_CMD	7	DO	SD Command line		
SD_CLK	8	DO	SD clock		If unused, keep these pins open.
SD_DATA	9	Ю	SD data line		11.000 p0 opo
Antenna Inte	erface				
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
RF_ ANT	41	Ю	GSM antenna pad	Impedance of 50Ω	
BT_ ANT	32	Ю	BT antenna pad	Impedance of 50Ω	If unused, keep this pin open.
GNSS_ ANT	15	Al	GNSS signal input	Impedance of 50Ω	
Other Interfa	ice				
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
GNSS_ VCC_EN	28	DO	GNSS power enabled	V _{OH} min= 0.85×VDD_EXT V _{OL} max= 0.15×VDD_EXT	 Refer to Chapter 3.3.3.2 in all-in-one solution. Keep this pin open in stand-alone solution.
1PPS	17	DO	One pulse per second	V _{OL} max=0.42V V _{OH} min=2.4V V _{OH} nom=2.8V	 Synchronized at rising edge and the pulse width is 100ms. If unused, keep this pin open.

	46, 55,			
	56, 57,			
DESERVED	58, 63,	Keep	these	pins
RESERVED	64, 65,	open		
	66, 67,			
	68			

Table 7: Multiplexed Functions

PIN Name	PIN No.	Function After Reset	Alternate Function
DTR/SIM1_PRESENCE	37	DTR	SIM1_PRESENCE

3.2. Application Modes Introduction

MC60 module integrates both GSM and GNSS engines which can work as a whole (**all-in-one** solution) unit or work independently (**stand-alone** solution) according to customer demands.

In **all-in-one** solution, the MC60 works as a whole unit. The GNSS Part can be regarded as a peripheral of the GSM Part. This allows for convenient communication between GSM and GNSS Parts, such as AT command sending for GNSS control, GNSS part firmware upgrading, and EPO data download.

In **stand-alone** solution, GSM and GNSS Parts work independently, and thus have to be controlled separately.

All-in-one solution and stand-alone solution schematic diagrams are shown below.

Figure 3: All-in-one Solution Schematic Diagram

Figure 4: Stand-alone Solution Schematic Diagram

Table 8: Comparison between All-in-one and Stand-alone Solution

	All-in-one	Stand-alone	Remarks
Firmware upgrade	Firmware upgrade via UART Port (GSM and GNSS Parts share the same firmware package)	Firmware upgrade via UART Port (GSM and GNSS Parts share the same firmware package)	Refer to <i>Chapter</i> 3.7.1.3 for details
Data transmission	Both GSM and GNSS data are transmitted through the GSM UART Port	GSM data is transmitted through the GSM UART Port. GNSS data is transmitted through the GNSS UART Port.	
GNSS TURN ON/OFF	By AT command through GSM UART Port	Through the external switch of MCU	Refer to <i>Chapter</i> 3.5 and 3.6 for details
GNSS wake up GSM	GNSS can wake up GSM by interrupts	N/A	
GNSS's EPO data download	EPO data is downloaded directly through the GSM part.		Refer to <i>Chapter</i> 3.15 for details

3.3. Power Supply

3.3.1. Power Features

3.3.1.1. Power Features of GSM Part

The power supply of the GSM part is one of the key issues in MC60 module design. Due to the 577us radio burst in GSM part every 4.615ms, the power supply must be able to deliver high current peaks in a burst period. During these peaks, drops on the supply voltage must not exceed the minimum working voltage of the GSM part.

The maximum current consumption of GSM part could reach 1.6A during a burst transmission. It will cause a large voltage drop on the VBAT. In order to ensure stable operation of the part, it is recommended that the maximum voltage drop during the burst transmission does not exceed 400mV.

Figure 5: Voltage Ripple during Transmitting (GSM Part)

3.3.1.2. Power Features of GNSS Part

In **all-in-one** solution, the power supply of GNSS part is controlled by the GSM part through the GNSS_VCC_EN pin. In **stand-alone** solution, the power supply of GNSS part is controlled independently via an external switch of MCU.

3.3.2. Decrease Supply Voltage Drop

3.3.2.1. Decrease Supply Voltage Drop for GSM Part

Power supply range of the GSM part is from 3.3V to 4.6V. Make sure that the input voltage will never drop below 3.3V even in a burst transmission. If the power voltage drops below 3.3V, the module will be turned off automatically. For better power performance, it is recommended to place a 100uF tantalum capacitor with low ESR (ESR=0.7 Ω) and ceramic capacitors 100nF, 33pF and 10pF near the VBAT pin. A reference circuit is illustrated in the following figure.

The VBAT trace should be wide enough to ensure that there is not too much voltage drop during burst transmission. The width of trace should be no less than 2mm; and in principle, the longer the VBAT trace, the wider it will be.

Figure 6: Reference Circuit for the VBAT Input (GSM Part)

3.3.2.2. Decrease Supply Voltage Drop for GNSS Part

Power supply range of GNSS part is from 2.8 to 4.3V. GNSS_VCC's maximum average current is 40mA during GNSS acquisition after power up. So it is important to supply sufficient current and make the power clean and stable. The decouple combination of 10uF and 100nF capacitor is recommended nearby GNSS_VCC pin. A reference circuit is illustrated in the following figure.

Figure 7: Reference Circuit for the GNSS_VCC Input

3.3.3. Reference Design for Power Supply

3.3.3.1. Reference Design for Power Supply of GSM Part

In **all-in-one** solution, the GSM part controls the power supply of the GNSS part. Therefore, the GSM part share the same power circuit design in both **all-in-one** and **stand-alone** solutions.

The power supply of GSM part is capable of providing sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested to use a LDO as the GSM part's power supply. If there is a big voltage difference between the input source and the desired output (VBAT), a switcher power converter is recommended to be used as the power supply.

The following figure shows a reference design for +5V input power source for GSM part. The designed output for the power supply is 4.0V and the maximum load current is 3A. In addition, in order to get a stable output voltage, a zener diode is placed close to the pins of VBAT. As to the zener diode, it is suggested to use a zener diode whose reverse zener voltage is 5.1V and dissipation power is more than 1 Watt.

Figure 8: Reference Circuit for Power Supply of the GSM Part

NOTE

It is suggested to control the module's main power supply (VBAT) via LDO enable pin to restart the module when the module becomes abnormal. Power switch circuit like P-channel MOSFET switch circuit can also be used to control VBAT.

3.3.3.2. Reference Design for Power Supply of GNSS Part in All-in-one Solution

In **all-in-one** solution, the power supply of GNSS part is controlled by the GSM part through the GNSS_VCC_EN pin. A reference circuit for the GNSS part power supply is given below. Please pay attention to the electrical characteristics of GNSS_VCC_EN to match LDO's EN pin. Please refer to **document [1]** for details about the AT commands for GNSS control.

Figure 9: Reference Circuit Design for GNSS Part in All-in-one Solution

3.3.3.3. Reference Design for Power Supply of GNSS Part in Stand-alone Solution

In **stand-alone** solution, GNSS is independent to the GSM part, and the power supply of the GNSS part is controlled by MCU. A reference circuit for the power supply of GNSS part is given below.

Figure 10: Reference Circuit Design for GNSS Part in Stand-alone Solution

3.3.4. Monitor Power Supply

The command **AT+CBC** can be used to monitor the supply voltage of the GSM part. The unit of the displayed voltage is mV.

For details, please refer to document [1].

3.3.5. Backup Domain of GNSS

The GNSS part of MC60 module features a backup domain which contains all the necessary GNSS information for quick start-up and a small amount of user configuration variables. In GNSS's backup mode, the backup domain is still alive. As long as the backup domain is alive, EASY technology will be available.

3.3.5.1. Use VBAT as the Backup Power Source of GNSS

In either **all-in-one** or **stand-alone** solution, GNSS's backup mode will be active as long as the main power supply (VBAT) is remained, even when the module is turned off and GNSS_VCC is powered off; as the GNSS's backup domain is powered by VBAT. In this case, the VRTC pin can be kept floating, and the current consumption is only about 220uA.

When powered by VBAT, the reference schematic diagrams in **all-in-one** and **stand-alone** solutions are shown below.

Figure 11: Internal GNSS's Backup Domain Power Construction

3.3.5.2. Use VRTC as Backup Power of GNSS

In either **all-in-one** or **stand-alone** solution, when the main power supply (VBAT) is removed after the module is turned off, and GNSS_VCC is also powered off, a backup supply such as a coin-cell battery (rechargeable or non-chargeable) or a super capacitor can be used to power the VRTC pin to keep GNSS in backup mode. In this case, the current consumption is as low as 14uA approximately.

When powered by VRTC, the reference schematic diagrams in **all-in-one** and **stand-alone** solutions are shown below.

Figure 12: VRTC is Powered by a Rechargeable Battery

Figure 13: VRTC is Powered by a Capacitor

A rechargeable or non-chargeable coin-cell battery can also be used here. For more information, please visit http://www.sii.co.jp/en.

As SYSTEM_3.3V is used for battery charging, it is recommended to keep it powered for the longest time in all system power supplies.

3.4. Operating Modes

3.4.1. Operating Modes of GSM Part

The table below briefly summarizes the various operating modes of GSM part mentioned in the following chapters.

Table 9: Operating Modes Overview of GSM Part

Modes	Function	
GSM Normal Operation	GSM/GPRS Sleep	After enabling sleep mode by AT+QSCLK=1, the GSM part will automatically enter into Sleep Mode if DTR is set to high level and there is no interrupt (such as GPIO interrupt or data on UART port). In this case, the current consumption of the GSM part will reduce to the minimal level.

	During Sleep Mode, the GSM part can still receive paging message and SMS from the system normally.
GSM IDLE	Software is active. The GSM part has registered on GSM network, and it is ready to send and receive GSM data.
GSM TALK	GSM connection is ongoing. In this mode, the power consumption is decided by the configuration of Power Control Level (PCL), dynamic DTX control and the working RF band.
GPRS IDLE	The GSM part is not registered on GPRS network. It is not reachable through GPRS channel.
GPRS STANDBY	The GSM part is registered on GPRS network, but no GPRS PDP context is active. The SGSN knows the Routing Area where the module is located at.
GPRS READY	The PDP context is active, but no data transfer is ongoing. The GSM part is ready to receive or send GPRS data. The SGSN knows the cell where the module is located at.
GPRS DATA	There is GPRS data in transfer. In this mode, power consumption is decided by the PCL, working RF band and GPRS multi-slot configuration.
Normal shutdown by sending the AT+QPOWD=1 command or using the PWRKEY pin. The power management ASIC disconnects the power supply from the base band part of the GSM part. Software is not active. The UART interfaces are not accessible. Operating voltage (connected to VBAT) remains applied.	
AT+CFUN command can set the GSM part to a minimum functionality mode without removing the power supply. In this case, the RF part of the GSM part will not work or the SIM card will not be accessible, or both RF part and SIM card will be disabled; but the UART port is still accessible. The power consumption in this case is very low.	
	GSM TALK GPRS IDLE GPRS STANDBY GPRS READY GPRS DATA Normal shutdow PWRKEY pin. To the base band pare not accessible AT+CFUN community without removing not work or the Sible disabled; but

Based on system requirements, there are several actions to drive the GSM part to enter into low current consumption status. For example, **AT+CFUN** can be used to set the part into minimum functionality mode, and DTR hardware interface signal can be used to lead the system to Sleep Mode.

3.4.1.1. Minimum Functionality Mode

Minimum functionality mode reduces the functionality of the GSM part to a minimum level. The consumption of the current can be minimized when the slow clocking mode is activated at the same time. The mode is set via the AT+CFUN=<fun> command which provides the choice of the functionality levels.

- AT+CFUN=0: minimum functionality
- AT+CFUN=1: full functionality (default)
- AT+CFUN=4: disable from both transmitting and receiving RF signals

If the GSM part is set to minimum functionality by **AT+CFUN=0**, the RF function and SIM card function would be disabled. In this case, the UART port is still accessible, but all AT commands related with RF function or SIM card function will be unavailable.

If the GSM part is set by the command **AT+CFUN=4**, the RF function will be disabled, but the UART port is still active. In this case, all AT commands related with RF function will be unavailable.

After the GSM part is set by AT+CFUN=0 or AT+CFUN=4, it can return to full functionality mode by AT+CFUN=1.

For detailed information about AT+CFUN, please refer to document [1].

3.4.1.2. SLEEP Mode

SLEEP mode is disabled by default. It can be enabled by AT+QSCLK=1 and the premise is that the GNSS is powered off. The default setting is AT+QSCLK=0, and in this mode, the GSM part cannot enter SLEEP mode.

When the GSM part is set by the command AT+QSCLK=1, you can control the part to enter into or exit from the SLEEP mode through pin DTR. When DTR is set to high level, and there is no on-air or hardware interrupt such as GPIO interrupt or data on UART port, the GSM part will enter into SLEEP mode automatically. In this mode, the GSM part can still receive voice, SMS or GPRS paging from network, but the UART port does not work.

3.4.1.3. Wake up GSM Part from SLEEP Mode

When the GSM part is in the SLEEP mode, it can be woken up through the following methods:

- If the DTR Pin is set low, it would wake up the GSM part from the SLEEP mode. The UART port will be active within 20ms after DTR is changed to low level.
- Receiving a voice or data call from network wakes up the GSM part.
- Receiving an SMS from network wakes up the GSM part.

NOTE

DTR pin should be held at low level during communication between the GSM part and the DTE.

3.4.2. Operating Modes of GNSS Part

3.4.2.1. Full on Mode

Full on mode includes tracking mode and acquisition mode. Acquisition mode is defined as that the GNSS part starts to search satellites, and to determine the visible satellites, coarse carrier frequency & code phase of satellite signals. When the acquisition is completed, it switches to tracking mode automatically. Tracking mode is defined as that the GNSS part tracks satellites and demodulates the navigation data from specific satellites.

When the GNSS_VCC is valid, the GNSS part will enter into full on mode automatically. The following table describes the default configuration of full on mode.

Table 10: Default Configuration of Full on Mode (GNSS Part)

Item	Configuration	Comment
Baud Rate	115200bps	
Protocol	NMEA	RMC, VTG, GGA, GSA, GSV and GLL
Update Rate	1Hz	
SBAS	Enable	
AIC	Enable	
LOCUS	Disable	
EASY Technology	Enable	EASY will be disabled automatically when update rate exceeds 1Hz.
GNSS	GPS+GLONASS	

In full on mode, the consumption complies with the following regulations:

When the GNSS part is powered on, the average current will rush to 40mA and last for a few seconds; then the consumption will be decreased to the acquisition current marked in *table 3* and we defined this state as acquisition state, and also it will last for several minutes until it switches to tracking state automatically. The consumption in tracking state is less than that in acquisition state. The value is also listed in *table 3*.

Sending PMTK commands allows for switching among multiple positioning systems:

- \$PMTK353,0,1,0,0,0*2A: search GLONASS satellites only
- \$PMTK353,1,0,0,0,0*2A: search GPS satellites only
- \$PMTK353,1,1*37: search GLONASS and GPS satellites

NOTE

In all-in-one solution, make sure the GNSS part is powered on before sending these PMTK commands.

3.4.2.2. Standby Mode

Standby mode is a low-power consumption mode. In standby mode, the internal core and I/O power domain are still active; but RF and TCXO are powered off, and the GNSS part stops satellites search and navigation. The way to enter into standby mode is using PMTK commands.

When the GNSS part exits from standby mode, it will use all internal aiding information like GNSS time, ephemeris, last position, etc., to ensure the fastest possible TTFF in either Hot or Warm start. The typical current consumption is about 300uA @GNSS_VCC=3.3V in standby mode.

Sending the following PMTK command can make GNSS part enter into standby mode:

• \$PMTK161,0*28: make sure the GNSS part is powered on before sending the command in all-in-one solution.

The following methods will make GNSS part exit from standby mode:

- Sending any data via UART will make GNSS part exit from standby mode in all-in-one solution.
- Sending any data via GNSS_UART will make GNSS part exit from standby mode in stand-alone solution.

3.4.2.3. Backup Mode

Backup mode requires lower power consumption than standby mode. In this mode, the GNSS part stops acquiring and tracking satellites, but the backed-up memory in backup domain which contains all the necessary GNSS information for quick start-up and a small amount of user configuration variables is alive. Due to the backed-up memory, EASY technology is available. The current consumption in this mode is about 14uA.

The following methods will make GNSS part enter into backup mode:

 Cutting off GNSS_VCC and keeping VBAT/VRTC powered will make GNSS part enter into back mode from full on mode.

The following method will make GNSS part exit from backup mode:

 As long as the GNSS_VCC is powered, the GNSS part will exit from backup mode and enter full on mode immediately.

3.4.2.4. Periodic Mode

Periodic mode can control the full on mode and standby/backup mode periodically to reduce power consumption. It contains periodic standby mode and periodic backup mode.

The format of the command, which enables the module to enter into periodic mode, is shown below:

Table 11: Format of the PMTK Command Enabling Periodic Mode

Format: \$PMTK225, <type: CR><lf></lf></type: 	>, <run_time>,<\$</run_time>	Sleep_time>,<2nd_run_time>,<2nd_sle	ep_time>* <checksum><</checksum>
Parameter	Format	Description	Range (ms)
Туре	Decimal	Type=1: Periodic backup mode Type=2: Periodic standby mode	/
Run_time	Decimal	Run_time=Full on mode period (ms)	1000~518400000
Sleep_time	Decimal	Sleep_time=Standby/Backup mode period (ms)	1000~518400000
2nd_run_time	Decimal	<pre>2nd_run_time=Full on mode period (ms) for extended acquisition in case module's acquisition fails during the Run_time</pre>	0 or 1000~518400000
2nd_sleep_time	Decimal	2nd_sleep_time=Standby/Backup mode period (ms) for extended sleep in case module's acquisition fails during the Run_time	0 or 1000~518400000
Checksum	Hexadecimal	Hexadecimal checksum	

Example

\$PMTK225,2,3000,12000,18000,72000*15<CR><LF>
\$PMTK225,1,3000,12000,18000,72000*16<CR><LF>

In periodic standby mode, sending "\$PMTK225,0*2B" in any time can make the module enter into full on mode.

In periodic backup mode, sending "\$PMTK225,0*2B" during the **Run_time** or **2nd_run_time** period can also make the module enter into full on mode. But this is hard to operate and thus is not recommended.

The following figure has shown the operation mechanism of periodic mode. When you send PMTK command, the module will be in full on mode first. Several minutes later, the module will enter into periodic mode according to the parameters set. When the module fails to fix the position during **Run_time**, the module will switch to **2nd_run_time** and **2nd_sleep_time** automatically. As long as the module fixes the position again successfully, the module will return to **Run_time** and **Sleep_time**.

Before entering into periodic mode, please make sure the module is in tracking mode; otherwise the module may have a risk of failure in satellite tracking. If module is located in weak signal areas, it is better to set a longer **2nd_run_time** to ensure the success of reacquisition.

Figure 14: Operation Mechanism of Periodic Mode

The average current consumption in periodic mode can be calculated based on the following formula:

I periodic= (I tracking *T1+I standby/backup *T2)/(T1+T2) T1: Run_time, T2: Sleep_time

Example

PMTK225,2,3000,12000,18000,72000*15 for periodic mode means 3s in tracking mode and 12s in standby mode based on GPS&GLONASS. The average current consumption is calculated below: $I_{periodic} = (I_{tracking} *T1 + I_{standby} *T2)/(T1 + T2) = (22mA*3s + 0.5mA*12s)/(3s + 12s) \approx 4.8(mA)$

PMTK225,1,3000,12000,18000,72000*15 for periodic mode means 3s in tracking mode and 12s in backup mode based on GPS&GLONASS. The average current consumption is calculated below: $I_{periodic} = (I_{tracking} *T1 + I_{backup} *T2)/(T1 + T2) = (22mA*3s + 0.007mA*12s)/(3s + 12s) \approx 4.4(mA)$

3.4.2.5. AlwaysLocate[™] Mode

AlwaysLocateTM is an intelligent power saving mode. It contains AlwaysLocateTM backup mode and AlwaysLocateTM standby mode.

AlwaysLocateTM standby mode allows the module to switch automatically between full on mode and standby mode. According to the environmental and motion conditions, the module can adaptively adjust the full on time and standby time to achieve the balance between positioning accuracy and power consumption. Sending "\$PMTK225,8*23" and the module returning "\$PMTK001,225,3*35" mean that the module has entered AlwaysLocateTM standby mode successfully, which greatly saves power consumption. Sending "\$PMTK225,0*2B" in any time will make the module back to full on mode.

AlwaysLocateTM backup mode is similar to AlwaysLocateTM standby mode. The difference is that the AlwaysLocateTM backup mode allows the module to switch automatically between full on mode and backup mode. Sending "\$PMTK225,9*22" command will make the module enter into AlwaysLocateTM backup mode. During the "Full on mode" period in AlwaysLocateTM backup mode, sending "\$PMTK225,0*2B" will make the module back to full on mode.

The positioning accuracy in AlwaysLocateTM mode may be decreased, especially in high speed movement. The following figure shows the power consumption of module in different scenarios.

Figure 15: Power Consumption in Different Scenarios (AlwaysLocate[™] Mode)

When located in outdoors in static and equipped with an active antenna, the module has an average current consumption of approx. 2.7mA after tracking satellites in AlwaysLocateTM standby mode and 2.6mA in AlwaysLocateTM backup mode based on GPS&GLONASS.

3.4.2.6. GLP Mode

GLP (GNSS low power) mode is an optimized solution for wearable fitness and tracking devices. It can reduce power consumption by closing high accuracy positioning.

In GLP mode, the module can also provide good positioning performance in walking and running scenarios, and supports automatic dynamic duty operation switch for balance on performance and power consumption. It will come back to normal mode in difficult environments to keep good accuracy, thus realizing maximum performance with the lowest power consumption.

The average current consumption in GLP mode is down to 8.9mA in static scenario, which is only 40% of that in normal mode. It may increase a little bit in dynamic scenario. The average current consumption in different outdoor scenarios in GLP mode and normal mode is shown in the table below.

Table 12: Average Current Consumption in GLP Mode and Normal Mode

Scenario	In GLP Mode (mA)	In Normal Mode (mA)
Static	8.9	22
Walking	11.2	22
Running	11.5	22
Driving	21.5	22

You can use the following commands to make the module enter into or exit from the GLP mode:

- \$PQGLP,W,1,1*21: The command is used to set the module into GLP mode. When "\$PQGLP,W,OK*09" is returned, it means the module has entered into GLP mode successfully.
- \$PQGLP,W,0,1*20: The command is used to make the module exit from GLP mode. When "\$PQGLP,W,OK*09" is returned, it means the module has exited from GLP mode successfully.

NOTES

- 1. It is recommended to set all the necessary commands before the module enters into GLP mode. If you need to send commands, please exit from GLP mode first.
- 2. When the module enters into GLP mode, 1PPS function will be disabled.
- 3. When the GLP mode is enabled, the SBAS will be affected.
- 4. In high dynamic scenario, the module will have slightly decreased positioning accuracy in GLP mode.
- 5. The module supports 4800bps~115200bps baud rates and 1Hz~10Hz frequency. It is recommended that 115200bps baud rate and 1Hz frequency are set before the module enters into GLP mode in

stand-alone solution.

6. The modules will automatically come back to the normal mode in complex environments to keep good positioning accuracy.

3.4.3. Summary of GSM and GNSS Parts' State in All-in-one Solution

Table 13: Combination States of GSM and GNSS Parts in All-in-one Solution

GSM Part Modes	GNSS Part Modes			
	Full on	Standby	Backup	
Normal	✓	✓	✓	
Sleep	✓	✓	✓	
Minimum Functionality	✓	✓	✓	

3.4.4. Summary of GSM and GNSS Parts' State in Stand-alone Solution

Table 14: Combination States of GSM and GNSS Parts in Stand-alone Solution

GSM Part Modes	GNSS Part Modes				
	Full on	Standby	Backup		
Normal	√	√	✓		
Sleep	✓	√	✓		
Minimum Functionality	√	✓	✓		

NOTES

- 1. The mark ✓ means that the Part supports this mode.
- 2. In **all-in-one** solution, all PMTK commands used for the GNSS part should be sent through the GSM UART after the GNSS part is powered on. Make sure the GSM UART Port is accessible.
- 3. In **all-in-one** solution, when the GSM part is in sleep mode, the GNSS part can work in either standby or full on mode. However, if NMEA GPS data is needed, the GSM part should be woken up first and then send the corresponding AT command to get. For detailed AT command information, please refer to **document [1]**.
- 4. In **stand-alone** solution, all PMTK commands used for the GNSS part can be sent through GNSS UART in any mode of GSM part.

3.4.5. BT Function

MC60 supports Bluetooth function. Bluetooth is a wireless technology that allows devices to communicate, or transmit data/voice, wirelessly over a short distance. It is described as a short-range communication technology intended to replace the cables connecting portable and/or fixed devices while maintaining a high level of security. Bluetooth is standardized as IEEE802.15 and operates in the 2.4 GHz range using RF technology. Its data rate is up to 3Mbps.

MC60 is fully compliant with Bluetooth specification 3.0, and supports profiles including SPP and HFP-AG. For more details, please refer to *document [14]*.

3.5. Power on and down Scenarios in All-in-one Solution

In all-in-one solution, GNSS function is turned on or off by the AT command sent from GSM part.

3.5.1. Power on

The module can be turned on by driving the pin PWRKEY to a low level voltage. An open collector driver circuit is suggested to control the PWRKEY. A simple reference circuit is illustrated as below.

Figure 16: Turn on the Module with an Open-collector Driver

NOTES

1. MC60 module is set to autobauding mode (AT+IPR=0) by default. In autobauding mode, URC RDY is not reported to the host controller after the module is powered on. When the module is powered on after a delay of 4 or 5 seconds, it can receive AT commands. Host controller should first send an AT string in order that the module can detect baud rate of host controller, and it should continue to send the next AT string until receiving OK string from the module. Then enter AT+IPR=x;&W to set a fixed

- baud rate for the module and save the configuration to flash memory of the module. After these configurations, the URC RDY would be received from the UART Port of the module every time when the module is powered on. For more details, refer to the section AT+IPR in *document* [1].
- 2. When AT command is responded, it indicates the module is turned on successfully; or else the module fails to be turned on.

The other way to control the PWRKEY is through a button directly. While pressing the key, electrostatic strike may generate from the finger, and thus, a TVS component is indispensable to be placed nearby the button for ESD protection. For the best performance, the TVS component must be placed nearby the button. A reference circuit is shown in the following figure.

Figure 17: Turn on the Module with a Button

Command AT+QGNSSC=1 should be sent to enable the GNSS power supply after the GSM part is running. When the GNSS_VCC is valid, the GNSS will enter into full on mode automatically. The turn-on timing is illustrated in the following figure.

Figure 18: Turn-on Timing

NOTE

Make sure that VBAT is stable before pulling down PWRKEY pin. The time of T_1 is recommended to be 100ms.

3.5.2. Power down

The following procedures can be used to turn off the module:

- Normal power down procedure: Turn off module using the PWRKEY pin
- Normal power down procedure: Turn off module using command AT+QPOWD
- Under-voltage automatic shutdown: Take effect when under-voltage is detected.

3.5.2.1. Power down Module Using the PWRKEY Pin

It is a safe way to turn off the module by driving the PWRKEY to a low level voltage for a certain time. The power down scenario is illustrated in the following figure.

The power down procedure causes the module to log off from the network and allows the firmware to save important data before completely disconnecting the power supply.

Before the completion of the power down procedure, the module sends out the result code shown below:

NORMAL POWER DOWN

NOTES

- 1. When unsolicited result codes do not appear when autobauding is active and DTE & DCE are not correctly synchronized after start-up, the module is recommended to be set to a fixed baud rate.
- 2. As network logout time is related to the local mobile network, it is recommended to delay about 12 seconds before disconnecting the power supply or restarting the module.

After that moment, no further AT commands can be executed. Then the module enters the power down mode.

Figure 19: Turn-off Timing by Using the PWRKEY Pin

3.5.2.2. Power down Module Using AT Command

It is also a safe way to turn off the module via AT command AT+QPOWD=1. This command will let the module log off from the network and allow the firmware to save important data before completely disconnecting the power supply.

Before the completion of the power down procedure, the module sends out the result code shown below:

NORMAL POWER DOWN

After that moment, no further AT commands can be executed. And then the module enters into the power down mode.

Please refer to **document** [1] for details about the AT command AT+QPOWD.

3.5.2.3. Power down GNSS Part Alone Using AT Command

It is a safe way to turn off the GNSS part alone via AT command **AT+QGNSSC=0**. The power down scenario for GNSS part is illustrated in the following figure.

Figure 20: Turn-off Timing of GNSS Part by Using AT Command

3.5.2.4. Under-voltage Automatic Shutdown

The module will constantly monitor the voltage applied on the VBAT. If the voltage is ≤3.5V, the following URC will be presented:

UNDER VOLTAGE WARNING

The normal input voltage range is from 3.3V to 4.6V. If the voltage is <3.3V, the module will automatically shut down.

If the voltage is <3.3V, the following URC will be presented:

UNDER_VOLTAGE POWER DOWN

After that moment, no further AT commands can be executed. The module logs off from network and enters into power down mode.

NOTE

When unsolicited result codes do not appear when autobauding is active and DTE & DCE are not correctly synchronized after start-up, the module is recommended to be set to a fixed baud rate.

3.6. Power on and down Scenarios in Stand-alone Solution

In **stand-alone** solution, GSM and GNSS parts are controlled separately, and thus the power on and down control of them are independent from each other as well. The GSM part can be turned on/off or restarted via PWRKEY pin control, which is the same as that in **all-in-one** solution. The GNSS part is turned on/off via an external switch of MCU.

3.6.1. Power on GSM Part

The GSM part can be turned on by driving the pin PWRKEY to a low level voltage. An open collector driver circuit is suggested to control the PWRKEY. A simple reference circuit is illustrated in *figure 16*.

NOTES

 The GSM module is set to autobauding mode (AT+IPR=0) by default. In the autobauding mode, URC RDY is not reported to the host controller after the module is powered on. When the GSM module is powered on after a delay of 4 or 5 seconds, it can receive AT command. Host controller should first

send an **AT** string in order that the GSM module can detect baud rate of host controller, and it should continue to send the next **AT** string until receiving **OK** string from the module. Then enter **AT+IPR=x;&W** to set a fixed baud rate for the module and save the configuration to flash memory of the module. After these configurations, the URC **RDY** would be received from the UART Port of the GSM module every time when the module is powered on. For more details, refer to the section **AT+IPR** in **document [1]**.

2. When AT command is responded, it indicates the GSM module is turned on successfully; or else the module fails to be turned on.

The other way to control the PWRKEY is through a button directly. While pressing the key, electrostatic strike may generate from the finger, and thus, a TVS component is indispensable to be placed nearby the button for ESD protection. For the best performance, the TVS component must be placed nearby the button. A reference circuit is shown in *figure17*.

The turn-on timing is illustrated in the following figure.

Figure 21: Turn-on Timing of GSM Part

NOTE

Make sure that VBAT is stable before pulling down PWRKEY pin. The time of T_1 is recommended to be 100ms.

3.6.2. Power down GSM Part

The following procedures can be used to turn off the GSM part:

- Normal power down procedure: Turn off GSM part using the PWRKEY pin
- Normal power down procedure: Turn off GSM part using command AT+QPOWD
- Under-voltage automatic shutdown: Take effect when under-voltage is detected.

3.6.2.1. Power down GSM Part Using the PWRKEY Pin

It is a safe way to turn off the GSM part by driving the PWRKEY to a low level voltage for a certain time. The power down scenario is illustrated as the following figure.

The power down procedure causes the GSM module to log off from the network and allows the firmware to save important data before completely disconnecting the power supply.

Before the completion of the power down procedure, the GSM module sends out the result code shown below:

NORMAL POWER DOWN

NOTES

- 1. When unsolicited result codes do not appear when autobauding is active and DTE & DCE are not correctly synchronized after start-up, the GSM module is recommended to be set to a fixed baud rate.
- 2. As logout network time is related to the local mobile network, it is recommended to delay about 12 seconds before disconnecting the power supply or restarting the module.

After that moment, no further AT commands can be executed. Then the GSM module enters the power down mode.

Figure 22: Turn-off Timing of GSM Part by Using the PWRKEY Pin

3.6.2.2. Power down GSM Part using Command

It is also a safe way to turn off the GSM module via AT command **AT+QPOWD=1**. This command will let the GSM module log off from the network and allow the firmware to save important data before completely disconnecting the power supply.

Before the completion of the power down procedure, the GSM module sends out the result code shown below:

NORMAL POWER DOWN

After that moment, no further AT commands can be executed. And then the GSM module enters into the power down mode.

Please refer to *document* [1] for details about the AT command AT+QPOWD.

3.7. Serial Interfaces

The module provides four serial ports: UART Port, Debug Port, Auxiliary UART Port and GNSS UART Port. The module is designed as DCE (Data Communication Equipment), following the traditional DCE-DTE (Data Terminal Equipment) connection. Autobauding function supports baud rate from 4800bps to 115200bps.

The UART Port:

- TXD: Send data to RXD of DTE.
- RXD: Receive data from TXD of DTE.
- RTS: Request to send.
- CTS: Clear to send.
- DTR: DTE is ready and inform DCE (this pin can wake the module up).
- RI: Ring indicator (when there is a call, SMS or URC output, the module will inform DTE with the RI pin).
- DCD: Data carrier detection (the validity of this pin demonstrates successful set-up of the communication link).

The Debug Port:

- DBG_TXD: Send data to the COM port of peripheral.
- DBG_RXD: Receive data from the COM port of peripheral.

The Auxiliary UART Port:

• In **all-in-one** solution:

TXD_AUX: Send data to the GNSS part.

RXD_AUX: Receive data from the GNSS part.

In stand-alone solution:

TXD_AUX: Keep open RXD_AUX: Keep open

The GNSS UART Port

• In **all-in-one** solution:

GNSS_TXD: Send data to the GSM part.

GNSS_RXD: Receive data from the GSM part.

• In **stand-alone** solution:

GNSS_TXD: Send GNSS data to the COM port of peripheral.

GNSS_RXD: Receive GNSS data from the COM port of peripheral.

The logic levels are described in the following table.

Table 15: Logic Levels of the UART Interface

Parameter	Min.	Max.	Unit
V _{IL}	0	0.25×VDD_EXT	V
V _{IH}	0.75×VDD_EXT	VDD_EXT +0.2	V
V _{OL}	0	0.15×VDD_EXT	V
V _{OH}	0.85×VDD_EXT	VDD_EXT	V

Table 16: Pin Definition of the UART Interfaces

Interface	Pin Name	Pin No.	Description
	TXD	33	Transmit data
	RXD	34	Receive data
	DTR	37	Data terminal ready
UART Port	RI	35	Ring indication
	DCD	36	Data carrier detection
	CTS	38	Clear to send
	RTS	39	Request to send
Debug Port	DBG_RXD	30	Receive data
Debug Port	DBG_TXD	29	Transmit data
Auxilian/ HART Part 1)	RXD_AUX 1)	24	Receive data
Auxiliary UART Port 1)	TXD_AUX 1)	25	Transmit data
ONICO HART David	GNSS_RXD	23	Receive data
GNSS UART Port	GNSS_TXD	22	Transmit data

NOTE

1) It is recommended to keep these pins open in **stand-alone** solution.

3.7.1. **UART Port**

3.7.1.1. Features of UART Port

- Seven lines on UART interface
- Contain data lines TXD and RXD, hardware flow control lines RTS and CTS, as well as other control
 lines DTR, DCD and RI.
- Used for AT command, GPRS data, etc. Multiplexing function is supported on the UART Port. NMEA output and PMTK command can be supported in all-in-one solution.
- Support the following communication baud rates:
 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200bps.
- The default setting is autobauding mode. Support the following baud rates for autobauding function: 4800, 9600, 19200, 38400, 57600, 115200bps.
- Hardware flow control is disabled by default. When hardware flow control is required, RTS and CTS should be connected to the host. AT command AT+IFC=2,2 is used to enable hardware flow control. AT command AT+IFC=0,0 is used to disable the hardware flow control. For more details, please refer to document [1].

After setting a fixed baud rate or autobauding, please send "AT" string at that rate. The UART port is ready when it responds "OK".

Autobauding allows the module to detect the baud rate by receiving the string "AT" or "at" from the host or PC automatically, which gives module flexibility without considering which baud rate is used by the host controller. Autobauding is enabled by default. To take advantage of the autobauding mode, special attention should be paid according to the following requirements:

Synchronization between DTE and DCE:

When DCE (the module) is powered on with autobauding enabled, it is recommended to wait 2 to 3 seconds before sending the first AT character. After receiving the "OK" response, DTE and DCE are correctly synchronized.

If the host controller needs URC in the mode of autobauding, it must be synchronized firstly. Otherwise the URC will be discarded.

Restrictions on autobauding operation:

- The UART port has to be operated at 8 data bits, no parity and 1 stop bit (factory setting).
- The "At" and "aT" commands cannot be used.
- Only the strings "AT" or "at" can be detected (neither "At" nor "aT").
- The Unsolicited Result Codes like RDY, +CFUN: 1 and +CPIN: READY will not be indicated when the module is turned on with autobauding enabled and not be synchronized.
- Any other Unsolicited Result Codes will be sent at the previous baud rate before the module detects
 the new baud rate by receiving the first "AT" or "at" string. The DTE may receive unknown characters
 after switching to a new baud rate.
- It is not recommended to switch to autobauding from a fixed baud rate.
- If autobauding is active it is not recommended to switch to multiplex mode.

NOTE

To assure reliable communication and avoid any problems caused by undetermined baud rate between DCE and DTE, it is strongly recommended to configure a fixed baud rate and save it instead of using autobauding after start-up. For more details, please refer to the Section AT+IPR in *document* [1].

3.7.1.2. The Connection of UART

The connection between module and host using UART Port is very flexible. Three connection styles are illustrated as below.

A reference design for Full-Function UART connection is shown as below when it is applied in modulation-demodulation.

Figure 23: Reference Design for Full-Function UART

Three-line connection is shown as below.

Figure 24: Reference Design for UART Port (Three Line Connection)

A reference design for UART Port with hardware flow control is shown as below. The connection will enhance the reliability of the mass data communication.

Figure 25: Reference Design for UART Port with Hardware Flow Control

3.7.1.3. Firmware Upgrade

TXD and RXD can be used for firmware upgrade in both **all-in-one** solution and **stand-alone** solution. The PWRKEY pin must be pulled down before firmware upgrade. A reference circuit is shown as below:

Figure 26: Reference Design for Firmware Upgrade

NOTES

- 1. In **stand-alone** solution, make sure the Auxiliary UART Port is connected to the GNSS UART Port during firmware upgrade. Please refer to *Chapter 3.7.3.2* for details.
- 2. The firmware of module might need to be upgraded due to a certain reasons. It is thus recommended to reserve these pins in the host board for firmware upgrade..

3.7.2. Debug Port

- Two lines: DBG_TXD and DBG_RXD.
- The port outputs log information automatically.
- Debug Port is only used for firmware debugging and its baud rate must be configured as 460800bps.

Figure 27: Reference Design for Debug Port

3.7.3. Auxiliary UART Port and GNSS UART Port

3.7.3.1. Connection in All-in-one Solution

In **all-in-one** solution, the Auxiliary UART Port and GNSS UART Port should be connected together, thus allowing for communication between GSM and GNSS parts. A reference design is shown below.

Figure 28: Auxiliary and GNSS UART Port Connection in All-in-one Solution

NOTE

As the GNSS part of MC60 module outputs more data than a single GNSS system, the default output NMEA types running in 4800bps baud rate and 1Hz update rate will lose some data. The solution to avoid losing data in 4800bps baud rate and 1Hz update rate is to decrease the output NMEA types. 115200bps baud rate is enough to transmit GNSS NMEA in default settings and it is thus recommended.

3.7.3.2. Connection in Stand-alone Solution

In **stand-alone** solution, the GNSS UART Port is connected to the COM port of peripheral. During firmware upgrade, switch S1 should be kept closed. Otherwise, it should be kept open. A reference design is shown below.

Figure 29: Auxiliary and GNSS UART Port Connection in Stand-alone Solution

3.7.4. UART Application

A reference design of 3.3V level match is shown as below. If the host is a 3V system, please change the 5.6K resistors to 10K ones.

Figure 30: Level Match Design for 3.3V System

NOTE

It is highly recommended to add the resistor divider circuit on the UART signal lines when the host's level is 3V or 3.3V. For a higher voltage level system, a level shifter IC could be used between the host and the module. For more details about UART circuit design, please refer to **document [13]**.

The following figure shows a sketch map between the module and the standard RS-232 interface. As the electrical level of module is 2.8V, a RS-232 level shifter must be used. Note that you should assure the I/O voltage of level shifter which connects to module is 2.8V.

Figure 31: Sketch Map for RS-232 Interface Match

Please visit vendors' websites to select a suitable IC, such as: http://www.maximintegrated.com and http://www.exar.com.

3.8. Audio Interfaces

The module provides one analog input channel and two analog output channels.

Table 17: Pin Definition of Audio Interface

Interface	Pin Name	Pin No.	Description	
AINI/AOLITA	MICP	1	Microphone positive input	
AIN/AOUT1	MICN	2	Microphone negative input	

	SPKP	3	Channel 1 Audio positive output
	SPKN	4	Channel 1 Audio negative output
	MICP	1	Microphone positive input
AIN/AOLIT2	MICN	2	Microphone negative input
AIN/AOUT2	LOUDSPKP	54	Channel 2 Audio positive output
	LOUDSPKN	53	Channel 2 Audio negative output

AIN can be used for input of microphone and line. An electret microphone is usually used. AIN are differential input channels.

AOUT1 is used for output of receiver. The channel is typically used for building a receiver into a handset. AOUT1 channel is a differential channel.

AOUT2 is used for loudspeaker output as it is embedded with an amplifier of class AB whose maximum drive power is 800mW. AOUT2 is a differential channel.

AOUT2 also can be used for output of earphone, and can be used as a single-ended channel.

All these audio channels support voice and ringtone output, and so on, and can be switched by **AT+QAUDCH** command. For more details, please refer to **document [1]**.

Use AT command AT+QAUDCH to select audio channel:

- AT+QAUDCH=0: AIN/AOUT1, the default value is 0.
- AT+QAUDCH=1: AIN/AOUT2, this channel is always used for earphone.
- AT+QAUDCH=2: AIN/AOUT2, this channel is always used for loudspeaker.

For each channel, you can use **AT+QMIC** to adjust the input gain level of microphone. You can also use **AT+CLVL** to adjust the output gain level of receiver and speaker. **AT+QSIDET** is used to set the side-tone gain level. For more details, please refer to **document** [1].

Table 18: AOUT2 Output Characteristics

Item	Condition	Min.	Тур.	Max.	Unit
	8 ohm load				
RMS Power	VBAT=3.7v		800		mW
	THD+N=1%				

3.8.1. Decrease TDD Noise and Other Noises

The 33pF capacitor is applied for filtering out 900MHz RF interference when the module is transmitting at EGSM900MHz. Without placing this capacitor, TDD noise could be heard. Moreover, the 10pF capacitor here is used for filtering out 1800MHz RF interference. However, the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, customers would have to discuss with their capacitor vendors to choose the most suitable capacitor for filtering out GSM850MHz, EGSM900MHz, DCS1800MHz and PCS1900MHz separately.

The severity degree of the RF interference in the voice channel during GSM transmitting period largely depends on the application design. In some cases, EGSM900 TDD noise is more severe; while in other cases, DCS1800 TDD noise is more obvious. Therefore, you can have a choice based on test results. Sometimes, even no RF filtering capacitor is required.

The capacitor which is used for filtering out RF noise should be close to the audio interface. Audio alignment should be as short as possible.

In order to decrease radio or other signal interference, the position of RF antenna should be kept away from audio interface and audio alignment. Power alignment and audio alignment should not be parallel, and power alignment should be far away from audio alignment.

The differential audio traces must be routed according to the differential signal layout rule.

3.8.2. Microphone Interfaces Design

AIN channels come with internal bias supply for external electret microphone. A reference circuit is shown in the following figure.

Figure 32: Reference Design for AIN

3.8.3. Receiver and Speaker Interface Design

Figure 33: Handset Interface Design for AOUT1

Figure 34: Speaker Interface Design with an Amplifier for AOUT1

A suitable differential audio amplifier can be chosen from the Texas Instrument's website (http://www.ti.com). There are also other excellent audio amplifier vendors in the market.

3.8.4. Earphone Interface Design

Figure 35: Earphone Interface Design

3.8.5. Loud Speaker Interface Design

Figure 36: Loud Speaker Interface Design

3.8.6. Audio Characteristics

Table 19: Typical Electret Microphone Characteristics

Parameter	Min.	Тур.	Max.	Unit
Working Voltage	1.2	1.5	2.0	V
Working Current	200		500	uA
External Microphone Load Resistance		2.2		K Ohm

Table 20: Typical Speaker Characteristics

Parameter			Min.	Тур.	Max.	Unit
		Load resistance		32		Ohm
AOUT1	Single-ended	Reference level	0		2.4	Vpp
Output	Differential	Load resistance		32		Ohm
		Reference level	0		4.8	Vpp
	D''' '' '	Load resistance		8		Ohm
AOUT2	Differential	Reference level	0		2×VBAT	Vpp
Output	Single-ended	Load resistance		8		Ohm
		Reference level	0		VBAT	Vpp

3.9. PCM Interface

MC60 provides a PCM interface. It is used for digital audio transmission between the module and the device. This interface is composed of PCM_CLK, PCM_SYNC, PCM_IN and PCM_OUT signal lines.

Pulse Code Modulation (PCM) is a converter that changes the consecutive analog audio signals to discrete digital signals. The whole process of Pulse Code Modulation includes sampling, quantizing and encoding.

Table 21: Pin Definition of PCM Interface

Pin Name	Pin No.	I/O	Description	Comment	
PCM_OUT	60	DO	PCM data output	-	
PCM_IN	62	DI	PCM data input		
PCM_CLK	59	DO	PCM clock output	2.8V power domain	
PCM_SYNC	61	DO	PCM frame synchronization output		

3.9.1. Parameter Configuration

MC60 module supports 16-bit linear code PCM format through software configuration. The sample rate is 8KHz and the clock source rate is 256KHz. The module can only act in master mode. The PCM interface supports both long and short frame synchronization, and it only supports MSB first. For more detailed information, please refer to the table below.

Table 22: PCM Parameter Configuration

Parameter	Description	
Interface Format	Linear	
Data Length	Linear: 16 bits	
Sample Rate	8KHz	
PCM Clock/Synchronization Source	Module acts in master mode: clock and synchronization sources are generated by module	
PCM Synchronization Rate	8KHz	
PCM Clock Rate	Module acts in master mode: 256KHz (linear)	
PCM Synchronization Format	Long/short frame synchronization	
PCM Data Ordering	MSB first	
Zero Padding	Not supported	
Sign Extension	Not supported	

3.9.2. Timing Diagram

The sample rate of the PCM interface is 8KHz and the clock source rate is 256KHz. Every frame contains 32-bit data. The left 16 bits are valid, and the data of the left 16 bits and the right 16 bits are the same. The following are the timing diagrams of different frame synchronization formats.

Figure 37: Timing Diagram for Long Frame Synchronization

Figure 38: Timing Diagram for Short Frame Synchronization

3.9.3. Reference Design

MC60 can only work as a master, providing clock and synchronization source for PCM bus. A reference design for PCM is shown below.

Figure 39: Reference Design for PCM

3.9.4. AT Command

There are two AT commands for the configuration of PCM: **AT+QPCMON** and **AT+QPCMVOL**. Details are illustrated below.

• AT+QPCMON is used to configure the operating mode of PCM

Command format: AT+QPCMON=mode, Sync_Type, Sync_Length, SignExtension, MSBFirst

Table 23: AT+QPCMON Command Parameter Configuration

Parameter	Value Range	Description
Mode	0, 2	0: Close PCM 2: Open PCM when audio talk is set up
Sync_Type	0~1	Short frame synchronization Long frame synchronization
Sync_Length	1~8	Programmable from 1 bit to 8 bits via software configuration in long frame synchronization format
Sign Extension	0~1	Not supported
MSB First	0~1	0: MSB first 1: Not supported

• AT+QPCMVOL is used to configure the input and output volume of PCM.

Command format: AT+QPCMVOL=vol_pcm_in, vol_pcm_out

Table 24: AT+QPCMVOL Command Parameter Configuration

Parameter	Value Range	Description
vol_pcm_in	0~32767	Set the input volume
vol_pcm_out	0~32767	Set the output volume The voice may be distorted when this value exceeds 16384.

3.10. SIM Card Interface

The SIM interface supports the functionality of the GSM Phase 1 specification and also the functionality of the new GSM Phase 2+ specification for FAST 64 kbps SIM card (intended for use with a SIM application tool-kit).

The SIM interface is powered by an internal regulator in the module. Both 1.8V and 3.0V SIM cards are supported, and Dual SIM Single Standby function is supported.

Table 25: Pin Definition of the SIM Interface

Pin Name	Pin No.	Description	Alternate Function ¹⁾
SIM1_VDD	18	Supply power for SIM card. Automatic detection of SIM1 card voltage. 3.0V±5% and 1.8V±5%. Maximum supply current is around 10mA.	
SIM1_CLK	19	SIM1 card clock.	
SIM1_DATA	21	SIM1 card data I/O.	
SIM1_RST	20	SIM1 card reset.	
SIM1_PRESENCE	37	SIM1 card detection.	DTR
SIM_GND	16	SIM card ground.	
SIM2_VDD	13	Supply power for SIM card. Automatic detection of SIM2 card voltage. 3.0V±5% and 1.8V±5%. Maximum supply current is around 10mA.	
SIM2_CLK	10	SIM2 card clock.	
SIM2_DATA	11	SIM2 card data I/O.	
SIM2_RST	12	SIM2 card reset.	

NOTE

¹⁾ If several interfaces share the same I/O pin, to avoid conflict between these alternate functions, only one peripheral should be enabled at a time.

The following figure is a reference design for SIM1 interface with an 8-pin SIM card holder.

Figure 40: Reference Circuit for SIM1 Interface with an 8-pin SIM Card Holder

If SIM1 card detection function is not used, keep SIM1_PRESENCE pin open. A reference circuit for SIM1 interface with a 6-pin SIM card holder is shown in the following figure.

Figure 41: Reference Circuit for SIM1 Interface with a 6-pin SIM Card Holder

The following is a reference design for SIM2 interface with a 6-pin SIM card holder.

Figure 42: Reference Circuit for SIM2 Interface with a 6-pin SIM Card Holder

For more information of SIM card holder, you can visit http://www.amphenol.com and <a href="ht

In order to enhance the reliability and availability of the SIM card in application, please conform to the following criteria in the SIM circuit design:

- Keep layout of SIM card as close to the module as possible. Keep the trace length as less than 200mm as possible.
- Keep SIM card signal away from RF and VBAT traces.
- Assure the ground between module and SIM card holder short and wide. Keep the width of ground
 no less than 0.5mm to maintain the same electric potential. The decouple capacitor of SIM_VDD is
 less than 1uF and must be near to SIM card holder.
- To avoid cross talk between SIM_DATA and SIM_CLK, keep them away from each other and shield them with surrounded ground.
- In order to offer good ESD protection, it is recommended to add a TVS diode array. For more information of TVS diode, please visit http://www.onsemi.com. The most important rule is to place the ESD protection device close to the SIM card holder and make sure the SIM card interface signal lines being protected will go through the ESD protection device first and then lead to the module. The 22Ω resistors should be connected in series between the module and the SIM card so as to suppress EMI spurious transmission and enhance ESD protection. Please note that the SIM peripheral circuit should be close to the SIM card holder.
- Place the RF bypass capacitors (33pF) close to the SIM card on all signals lines to improve EMI suppression performance.

3.11. ADC

The module provides an ADC channel to measure the value of voltage. Please give priority to the use of ADC channel. Command **AT+QADC** can read the voltage value applied on ADC pin. For details of this AT command, please refer to **document [1]**. In order to improve the accuracy of ADC, the layout of ADC should be surrounded by ground.

Table 26: Pin Definition of the ADC

Pin Name	Pin No.	Description
ADC	6	Analog to digital converter.

Table 27: Characteristics of the ADC

Item	Min.	Тур.	Max.	Unit
Voltage Range	0		2.8	V
ADC Resolution		10		bits
ADC Accuracy		2.7		mV

3.12. Behaviors of the RI

Table 28: Behaviors of the RI

State	RI Response
Standby	HIGH
Voice Call	 Change to LOW, and then: Change to HIGH when call is established. Change to HIGH when use ATH to hang up the call. Change to HIGH first when calling part hangs up and then change to LOW for 120ms indicating "NO CARRIER" as an URC. After that, RI changes to HIGH again. Change to HIGH when SMS is received.

SMS	When a new SMS comes, the RI changes to LOW and holds low level for about 120ms, and then changes to HIGH.
LIDO	Certain URCs can trigger 120ms low level on RI. For more details, please refer to
URC	document [1].

If the module is used as a caller, the RI would maintain high except when the URC or SMS is received. When it is used as a receiver, the timing of RI is shown below.

Figure 43: RI Behavior as a Receiver When Voice Calling

Figure 44: RI Behavior as a Caller

Figure 45: RI Behavior When URC or SMS Received

3.13. Network Status Indication

The NETLIGHT signal can be used to drive a network status indicator LED. The working state of this pin is listed in the following table.

Table 29: Working State of the NETLIGHT

State	Module Function
Off	The module is not running.
64ms On/800ms Off	The module is not synchronized with network.
64ms On/2000ms Off	The module is synchronized with network.
64ms On/600ms Off	GPRS data transmission after dialing the PPP connection.

A reference circuit is shown as below.

Figure 46: Reference Design for NETLIGHT

3.14. EASY Autonomous AGPS Technology

Supplying aiding information like ephemeris, almanac, rough last position, time and satellite status, can help improve the acquisition sensitivity and the TTFF for a module. This is called as EASY technology and MC60's GNSS part supports it.

EASY technology works as embedded software which can accelerate TTFF by predicting satellite navigation messages from received ephemeris. The GNSS part will calculate and predict orbit information automatically up to 3 days after first receiving the broadcast ephemeris, and save the predicted information into the internal memory. GNSS part of MC60 will use the information for positioning if no enough information from satellites, so the function is helpful for positioning and TTFF improvement.

The EASY function can reduce TTFF to 5s in warm start. In this case, GNSS's backup domain should be valid. In order to gain enough broadcast ephemeris information from GNSS satellites, the GNSS part should receive the information for at least 5 minutes in good signal conditions after it fixes the position.

EASY function is enabled by default. Command "\$PMTK869,1,0*34" can be used to disable EASY function. For more details, please refer to **document [2]**.

NOTE

In all-in-one solution, make sure the GNSS part is powered on before sending the PMTK command.

3.15. EPO Offline AGPS Technology

MC60 module features a function called EPO (Extended Prediction Orbit) which is a world leading technology. When MC60 module is powered on, EPO function can be enabled via AT command AT+QGNSSEPO=1. When the GSM part detected that the EPO data has expired, the EPO data will be automatically downloaded to the GSM part's FS from MTK server via GSM/GPRS network; and the GNSS part will get the EPO data via build-in GNSS command from GSM's FS when it detected that the local EPO data has expired. When there is no local EPO data or when the data has expired, MC60 module will download the data (4KB) for 6 hours' orbit predictions in order to achieve cold start in the shortest time, and then continue to download the EPO data (96KB) for 6 days (3 days+ 3 days). The technology allows the module to realize fast positioning. Command AT+QGNSSEPO=0 can be used to turn off the EPO function. For more details, please refer to *document* [14].

NOTE

Make sure the EPO function is enabled if you need to download the EPO data.

3.16. QuecFastFix Online Technology

QuecFastFix Online function can be used in combination with EPO technology to further improve TTFF and acquisition sensitivity in cold start. Based on the latest EPO data, QuecFastFix Online additionally offers adding information such as reference-location and NITZ/NTP time, which shortens TTFF to only several seconds (approx. 4.5s) in cold start. The function makes the cold start TTFF comparable to that in hot start. For more details, please refer to **document [14]**.

3.17. Multi-tone AIC

MC60 module has a function called multi-tone AIC (Active Interference Cancellation) to decease harmonic of RF noise from Wi-Fi, GSM, 3G and 4G.

Up to 12 multi-tone AIC embedded in the module can provide effective narrow-band interference and jamming elimination. The GNSS signal could be demodulated from the jammed signal, which can ensure better navigation quality. AIC function is enabled by default. Enabling AIC function will increase current consumption by about 1mA @VCC=3.3V. The following commands can be used to set AIC function.

Enable AIC function: \$PMTK 286,1*23 Disable AIC function: \$PMTK 286,0*22

NOTE

In all-in-one solution, make sure the GNSS part is powered on before sending these PMTK commands.

3.18. LOCUS

MC60 module supports the embedded logger function called LOCUS. When enabled by PMTK command "\$PMTK185, 0*22", the function allows the module to log GNSS data to internal flash memory automatically without the need to wake up host, and thus, the module can enter into sleep mode to save power consumption, and does not need to receive NMEA information all the time. MC60 provides a log capacity of more than 16 hours.

The detail procedures of this function are illustrated below:

- The module has fixed the position (only effective in 3D_fixed scenario).
- Sending PMTK command "\$PMTK184,1*22" to erase internal flash.
- Sending PMTK command "\$PMTK185,0*22" to start logging.

- The module logs the basic information (UTC time, latitude, longitude and height) every 15 seconds to internal flash memory.
- Stop logging the information by sending PMTK command "\$PMTK185,1*23".
- MCU can get the data by sending PMTK command "\$PMTK622,1*29" to the module.

PMTK Command "\$PMTK183*38" can be used to query the state of LOCUS.

The raw data which MCU gets has to be parsed via LOCUS parser code provided by Quectel. For more details, please contact Quectel technical supports.

3.19. PPS VS. NMEA

Pulse per Second (PPS) VS. NMEA can be used for time service. The latency range of the beginning of UART Tx is between 465ms and 485ms, and after the rising edge of PPS.

Figure 47: PPS VS. NMEA Timing

The feature only supports 1Hz NMEA output and baud rate at 14400~115200bps. When the baud rate is 9600 or 4800bps, it only supports RMC NMEA sentence output. Because at low baud rates, per second transmission may exceed one second if there are many NMEA sentences output. You can enable this function by sending "\$PMTK255,1*2D", and disable the function by sending "\$PMTK255,0*2C".

In all-in-one solution, the GNSS UART port has a fixed baud rate, and it is 115200bps by default.

4 Antenna Interface

MC60 has three antenna interfaces which are used for GSM antenna, GNSS antenna and BT antenna, respectively. The Pin 41 is the GSM antenna pad; the Pin 15 is the GNSS antenna pad; and Pin 32 is the BT antenna pad. The RF interface of the three antenna pads has an impedance of 50Ω .

4.1. GSM Antenna Interface

There is a GSM antenna pad named RF_ANT for MC60.

Table 30: Pin Definition of the RF_ANT

Pin Name	Pin No.	Description	
GND	40	Ground	
RF_ANT	41	GSM antenna pad	
GND	42	Ground	

4.1.1. Reference Design

The external antenna must be matched properly to achieve the best performance; so the matching circuit is necessary. A reference design for GSM antenna is shown below.

Figure 48: Reference Design for GSM Antenna

MC60 provides an RF antenna pad for antenna connection. The RF trace in host PCB connected to the module's RF antenna pad should be coplanar waveguide line or microstrip line, whose characteristic impedance should be close to 50Ω . MC60 comes with grounding pads which are next to the antenna pad in order to give a better grounding. Besides, a π type matching circuit is suggested to be used to adjust the RF performance.

To minimize the loss on RF trace and RF cable, please pay attention to the design. The following table shows the requirement on GSM antenna.

Table 31: Antenna Cable Requirements

Туре	Requirements
GSM850/EGSM900	Cable insertion loss <1dB
DCS1800/PCS1900	Cable insertion loss <1.5dB

Table 32: Antenna Requirements

Туре	Requirements	
Frequency Range	Depend on the frequency band(s) provided by the network operator.	
VSWR	≤ 2	
Gain (dBi)	1	
Max. Input Power (W)	50	
Input Impedance (Ω)	50	
Polarization Type	Vertical	

4.1.2. RF Output Power

Table 33: RF Output Power

Frequency	Max.	Min.
GSM850	33dBm±2dB	5dBm±5dB
EGSM900	33dBm±2dB	5dBm±5dB

DCS1800	30dBm±2dB	0dBm±5dB
PCS1900	30dBm±2dB	0dBm±5dB

NOTE

In GPRS 4 slots TX mode, the maximum output power is reduced by 2.5dB. This design conforms to the GSM specification as described in *Chapter 13.16* of *3GPP TS 51.010-1*.

4.1.3. RF Receiving Sensitivity

Table 34: RF Receiving Sensitivity

Frequency	Receive Sensitivity
GSM850	< -110dBm
EGSM900	< -110dBm
DCS1800	< -110dBm
PCS1900	< -110dBm

4.1.4. Operating Frequencies

Table 35: Operating Frequencies

Frequency	Receive	Transmit	ARFCH
GSM850	869~894MHz	824~849MHz	128~251
EGSM900	925~960MHz	880~915MHz	0~124, 975~1023
DCS1800	1805~1880MHz	1710~1785MHz	512~885
PCS1900	1930~1990MHz	1850~1910MHz	512~810

4.1.5. RF Cable Soldering

Soldering the RF cable to RF pad of module correctly will reduce the loss on the path of RF, please refer to the following example of RF soldering.

Figure 49: RF Soldering Sample

4.2. GNSS Antenna Interface

The GNSS part of MC60 module supports both GPS and GLONASS systems. The RF signal is obtained from the GNSS_ANT pin. The impedance of RF trace should be controlled as 50 ohm, and the trace length should be kept as short as possible.

4.2.1. Antenna Specifications

The module can be connected to a dedicated GPS/GLONASS passive or active antenna to receive GPS/GLONASS satellite signals. The recommended antenna specifications are given in the following table.

Table 36: Recommended Antenna Specifications

Antenna Type	Specification
	GPS frequency: 1575.42±2MHz
Passive Antenna	GLONASS frequency: 1602±4MHz
Passive Antenna	VSWR: <2 (Typ.)
	Polarization: RHCP or Linear

	Gain: >0dBi
	GPS frequency: 1575.42±2MHz
	GLONASS frequency:1602±4MHz
	VSWR: <2 (Typ.)
A - 4 : A - 4	Polarization: RHCP or Linear
Active Antenna	Noise figure: <1.5dB
	Gain (antenna): >-2dBi
	Gain (embedded LNA): 20dB (Typ.)
	Total gain: >18dBi (Typ.)

4.2.2. Active Antenna

The following figure is a typical reference design with active antenna. In this mode, the antenna is powered by GNSS_VCC.

Figure 50: Reference Design with Active Antenna

C1, R1 and C2 are reserved matching circuit for antenna impedance modification. By default, C1 and C2 are not mounted; R1 is 0 ohm.

The external active antenna is powered by GNSS_VCC. The voltage ranges from 2.8V to 4.3V, and the typical value is 3.3V. If the voltage does not meet the requirements for powering the active antenna, an external LDO should be used.

The inductor L1 is used to prevent the RF signal from leaking into the GNSS_VCC pin and route the bias supply to the active antenna, and the recommended value of L1 is no less than 47nH. R2 can protect the whole circuit in case the active antenna is shorted to ground.

NOTE

In **all-in-one** solution, please note that the power supply of GNSS_VCC is controlled by the GSM part through AT command.

4.2.3. Passive Antenna

Figure 51: Reference Design with Passive Antenna

The above figure is a typical reference design with passive antenna.

C1, R1 and C2 are reserved matching circuit for antenna impedance modification. C1 and C2 are not mounted by default; R1 is 0 ohm. Impedance of RF trace should be controlled as 50 ohm and the trace length should be kept as short as possible.

4.3. Bluetooth Antenna Interface

The module provides a Bluetooth antenna pad named BT_ANT, and the pin definition is listed below.

Table 37: Pin Definition of the BT_ANT

Pin Name	Pin No.	Description
BT_ANT	32	BT antenna pad
GND	31	Ground

The external antenna must be matched properly to achieve the best performance, so the matching circuit is necessary. The connection is recommended as in the following figure:

Figure 52: Reference Design for Bluetooth Antenna

There are some suggestions for component placement and RF trace layout for Bluetooth RF traces:

- Antenna matching circuit should be closed to the antenna;
- The impedance of RF trace should be controlled as 50Ω;
- The RF traces should be kept far away from the high frequency signals and strong disturbing source.

5 Electrical, Reliability and Radio Characteristics

5.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table:

Table 38: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT	-0.3	+4.73	V
GNSS_VCC	-0.3	+4.5	V
Peak Current of Power Supply (VBAT)	0	2	А
RMS Current of Power Supply (VBAT, during one TDMA-frame)	0	0.7	А
Voltage at Digital Pins	-0.3	3.08	V
Voltage at Analog Pins	-0.3	3.08	V
Voltage at Digital/analog Pins in Power Down Mode	-0.25	0.25	V

5.2. Operating Temperature

The operating temperature is listed in the following table:

Table 39: Operating Temperature

Parameter	Min.	Тур.	Max.	Unit
Operation temperature range 1)	-35	+25	+75	$^{\circ}$ C
Extended temperature range ²⁾	-40		+85	$^{\circ}$ C

NOTES

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP compliant again.

5.3. Power Supply Ratings

Table 40: Power Supply Ratings of GSM Part (GNSS is Powered off)

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
	Supply voltage	Voltage must stay within the min/max values, including voltage drop, ripple, and spikes.	3.3	4.0	4.6	V
VBAT	Voltage drop during transmitting burst	Maximum power control level on GSM850 and EGSM900.			400	mV
		Power down mode		220		uA
I _{VBAT}	Average supply current	SLEEP mode @DRX=5 Minimum functionality mode AT+CFUN=0		1.2		mA
		IDLE mode		13		mA

		SLEEP mode	0.68		mA
		AT+CFUN=4			
		IDLE mode	13		mA
		SLEEP mode	0.73		mA
		TALK mode			
		GSM850/EGSM900 1)	208/209		mA
		DCS1800/PCS1900 ²⁾	142/146		mA
		DATA mode, GPRS (3Rx, 2Tx)			
		GSM850/EGSM900 1)	359/360		mA
		DCS1800/PCS1900 ²⁾	232/250		mA
		DATA mode, GPRS (2 Rx, 3Tx)			
		GSM850/EGSM900 1)	431/413		mA
		DCS1800/PCS1900 ²⁾	311/339		mA
		DATA mode, GPRS (4 Rx, 1Tx)			
		GSM850/EGSM900 1)	215/153		mA
		DCS1800/PCS1900 ²⁾	153/162		mA
		DATA mode, GPRS (1Rx, 4Tx)			
		GSM850/EGSM900 1)	499/469 ³⁾		mA
		DCS1800/PCS1900 ²⁾	392/427		mA
_	Peak supply				
	current (during	Maximum power control level	4.0		Δ.
	transmission	on GSM850 and EGSM900.	1.6	2	Α
	slot)				

NOTES

- 1. 1) Power control level PCL 5.
- 2. 2) Power control level PCL 0.
- 3. ³⁾ Under the GSM850 and EGSM900 spectrum, the power of 1Rx and 4Tx is reduced.

Table 41: Power Supply Ratings of GNSS Part

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
GNSS_ VCC	Supply voltage	Voltage must stay within the min/max values, including voltage drop, ripple, and spikes.	2.8	3.3	4.3	V
I _{VCCP} 1)	Peak supply current	VCC=3.3V			150	mA
VRTC	Backup domain voltage supply		1.5	2.8	3.3	V

NOTE

5.4. Current Consumption

Table 42: Current Consumption of GSM Part (GNSS is Powered off)

Condition	Current Consumption	
Voice Call		
	@power level #5 <300mA, Typical 174mA	
GSM850	@power level #12, Typical 83mA	
	@power level #19, Typical 62mA	
	@power level #5 <300mA, Typical 175mA	
EGSM900	@power level #12, Typical 83mA	
	@power level #19, Typical 63mA	
	@power level #0 <250mA, Typical 153mA	
DCS1800	@power level #7, Typical 73mA	
	@power level #15, Typical 60mA	
	@power level #0 <250mA, Typical 151mA	
PCS1900	@power level #7, Typical 76mA	
	@power level #15, Typical 61mA	
GPRS Data		
DATA Mode, GPRS (3 Rx, 2Tx) CLASS 12		
	11/1/ 01/100 12	
	@power level #5 <550mA, Typical 363mA	
GSM850	<i>'</i>	
GSM850	@power level #5 <550mA, Typical 363mA	
GSM850	@power level #5 <550mA, Typical 363mA @power level #12, Typical 131mA	
GSM850 EGSM900	@power level #5 <550mA, Typical 363mA @power level #12, Typical 131mA @power level #19, Typical 91mA	
	<pre>@power level #5 <550mA, Typical 363mA @power level #12, Typical 131mA @power level #19, Typical 91mA @power level #5 <550mA, Typical 356mA</pre>	
	@power level #5 <550mA, Typical 363mA @power level #12, Typical 131mA @power level #19, Typical 91mA @power level #5 <550mA, Typical 356mA @power level #12, Typical 132mA	
	 @power level #5 <550mA, Typical 363mA @power level #12, Typical 131mA @power level #19, Typical 91mA @power level #5 <550mA, Typical 356mA @power level #12, Typical 132mA @power level #19, Typical 92mA 	
EGSM900	@power level #5 <550mA, Typical 363mA @power level #12, Typical 131mA @power level #19, Typical 91mA @power level #5 <550mA, Typical 356mA @power level #12, Typical 132mA @power level #19, Typical 92mA @power level #0 <450mA, Typical 234mA	
EGSM900	<pre>@power level #5 <550mA, Typical 363mA @power level #12, Typical 131mA @power level #19, Typical 91mA @power level #5 <550mA, Typical 356mA @power level #12, Typical 132mA @power level #19, Typical 92mA @power level #0 <450mA, Typical 234mA @power level #7, Typical 112mA</pre>	
EGSM900	@power level #5 <550mA, Typical 363mA @power level #12, Typical 131mA @power level #19, Typical 91mA @power level #5 <550mA, Typical 356mA @power level #12, Typical 132mA @power level #19, Typical 92mA @power level #0 <450mA, Typical 234mA @power level #7, Typical 112mA @power level #15, Typical 88mA	

¹⁾ This figure can be used to determine the maximum current capability of power supply.

DATA Mode, GPRS ((2 Rx, 3Tx) CLASS 12	
	@power level #5 <640mA, Typical 496mA	
GSM850	@power level #12, Typical 159mA	
	@power level #19, Typical 99mA	
	@power level #5 <600mA, Typical 487mA	
EGSM900	@power level #12, Typical 160mA	
	@power level #19, Typical 101mA	
	@power level #0 <490mA, Typical 305mA	
DCS1800	@power level #7, Typical 131mA	
	@power level #15, Typical 93mA	
	@power level #0 <480mA, Typical 348mA	
PCS1900	@power level #7, Typical 138mA	
	@power level #15, Typical 94mA	
DATA Mode, GPRS ((4 Rx,1Tx) CLASS 12	
	@power level #5 <350mA, Typical 216mA	
GSM850	@power level #12, Typical 103mA	
	@power level #19, Typical 83mA	
	@power level #5 <350mA, Typical 222mA	
EGSM900	@power level #12, Typical 104mA	
	@power level #19, Typical 84mA	
	@power level #0 <300mA, Typical 171mA	
DCS1800	@power level #7, Typical 96mA	
	@power level #15, Typical 82mA	
	@power level #0 <300mA, Typical 169mA	
PCS1900	@power level #7, Typical 98mA	
	@power level #15, Typical 83mA	
DATA Mode, GPRS ((1 Rx, 4Tx) CLASS 12	
	@power level #5 <600mA, Typical 470mA	
GSM850	@power level #12, Typical 182mA	
	@power level #19, Typical 106mA	
	@power level #5 <600mA, Typical 471mA	
EGSM900	@power level #12, Typical 187mA	
	@power level #19, Typical 109mA	
	@power level #0 <500mA, Typical 377mA	
DCS1800	@power level #7, Typical 149mA	
	@power level #15, Typical 97mA	
	@power level #0 <500mA, Typical 439mA	
PCS1900	@power level #7, Typical 159mA	
	@power level #15, Typical 99mA	

NOTE

GPRS Class 12 is the default setting. The GSM module can be configured from GPRS Class 1 to Class 12. Setting to lower GPRS class would make it easier to design the power supply for the GSM module.

Table 43: Current Consumption of the GNSS Part

Parameter	Conditions	Тур.	Unit
I _{VCC} @Acquisition	@VCC=3.3V (GPS)	25	mA
I _{VCC} @Tracking	@VCC=3.3V (GPS)	19	mA
I _{VCC} @Acquisition	@VCC=3.3V (GPS+GLONASS)	29	mA
I _{VCC} @Tracking	@VCC=3.3V (GPS+GLONASS)	22	mA
I _{VCC} @Standby	@VCC=3.3V	0.3	mA
I _{BCKP} @backup	@V_BCKP=3.3V	14	uA

NOTE

The tracking current is tested in following condition:

- For Cold Start, 10 minutes after First Fix.
- For Hot Start, 15 seconds after First Fix.

Table 44: Current Consumption of BT

State	Current Consumption
Idle	13 mA
Scanning	32 mA
Connected to SPP	19 mA

5.5. Electrostatic Discharge

Although the module is generally protected against Electrostatic Discharge (ESD), ESD protection precautions should still be emphasized. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any applications using the module.

The measured ESD values of the module are shown in the following table.

Table 45: ESD Performance Parameter (Temperature: 25°C, Humidity: 45%)

Test Point	Contact Discharge	Air Discharge
VBAT, GND	±5KV	±10KV
RF_ANT	±5KV	±10KV
TXD, RXD	±2KV	±4KV
GNSS_TXD GNSS_RXD	±2KV	±4KV
Others	±0.5KV	±1KV

6 Mechanical Dimensions

This chapter describes the mechanical dimensions of the module.

6.1. Mechanical Dimensions of Module

Figure 53: MC60 Top and Side Dimensions (Unit: mm)

Figure 54: MC60 Bottom Dimensions (Unit: mm)

6.2. Recommended Footprint

Figure 55: Recommended Footprint (Unit: mm)

NOTES

- 1. For convenient maintenance, the module should be kept about 3mm away from the other components in the host PCB.
- 2. The circular test points with a radius of 1.75mm in the above recommended footprint should be treated as keepout areas ("keepout" means do not pour copper on the mother board).

6.3. Top and Bottom View of the Module

Figure 56: Top View of the Module

Figure 57: Bottom View of the Module

NOTE

These are design effect drawings of MC60 module. For more accurate pictures, please refer to the module that you get from Quectel.

7 Storage and Manufacturing

7.1. Storage

MC60 module is stored in a vacuum-sealed bag. The storage restrictions are shown as below.

- 1. Shelf life in the vacuum-sealed bag: 12 months at <40°C and <90%RH.
- 2. After the vacuum-sealed bag is opened, devices that need to be mounted directly must be:
- Mounted within 72 hours at the factory environment of ≤30°C and <60% RH.
- Stored at <10% RH.
- 3. Devices require baking before mounting, if any circumstance below occurs.
- When the ambient temperature is 23°C±5°C and the humidity indication card shows the humidity is >10% before opening the vacuum-sealed bag.
- Device mounting cannot be finished within 72 hours when the ambient temperature is <30°C and the humidity is <60%.
- Stored at >10% RH.
- 4. If baking is required, devices should be baked for 48 hours at 125°C±5°C.

NOTE

As the plastic package cannot be subjected to high temperature, it should be removed from devices before high temperature (125°C) baking. If shorter baking time is desired, please refer to *IPC/JEDECJ-STD-033* for baking procedure.

7.2. Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the

thickness of stencil at the hole of the module pads should be 0.2 mm for MC60. For more details, please refer to **document [12]**.

It is suggested that the peak reflow temperature is from 235°C to 245°C (for SnAg3.0Cu0.5 alloy). The absolute maximum reflow temperature is 260°C. To avoid damage to the module caused by repeated heating, it is suggested that the module should be mounted after reflow soldering for the other side of PCB has been completed. Recommended reflow soldering thermal profile is shown below:

Figure 58: Reflow Soldering Thermal Profile

7.3. Packaging

The modules are stored in a vacuum-sealed bag which is ESD protected. It should not be opened until the devices are ready to be soldered onto the application.

7.3.1. Tape and Reel Packaging

Figure 59: Tape Dimensions

Figure 60: Reel Dimensions

Table 46: Reel Packaging

Model Name	MOQ for MP	Minimum Package:250pcs	Minimum Packagex4=1000pcs
		Size:	Size:
MC60	250pcs	370mm×350mm×56mm	380mm×250mm×365mm
		N.W: 0.32kg	N.W: 1.28kg
		G.W: 1.08kg	G.W: 4.8kg

8 Appendix A References

Table 47: Related Documents

SN	Document Name	Remark
[1]	Quectel_MC60_AT_Commands_Manual	MC60 AT commands manual
[2]	ITU-T Draft new recommendation V.25ter	Serial asynchronous automatic dialing and control
[3]	GSM 07.07	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)
[4]	GSM 07.10	Support GSM 07.10 multiplexing protocol
[5]	GSM 07.05	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
[6]	GSM 11.14	Digital cellular telecommunications (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity module – Mobile Equipment (SIM – ME) interface
[7]	GSM 11.11	Digital cellular telecommunications (Phase 2+); Specification of the Subscriber Identity module – Mobile Equipment (SIM – ME) interface
[8]	GSM 03.38	Digital cellular telecommunications (Phase 2+); Alphabets and language-specific information
[9]	GSM 11.10	Digital cellular telecommunications (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification

[10] GSM_UART_Application_Note	UART port application note
[11] GSM_EVB_User_Guide	GSM EVB user guide
[12] Module_Secondary_SMT_User_Guide	Module secondary SMT user guide
[13] Quectel_GSM_Module_Digital_IO_Application_Note	GSM Module Digital IO application note
[14] Quectel_MC60_GNSS_AGPS_Application_Note	MC60 GNSS AGPS application note
[15] GSM_BT_Application_Note	GSM BT application note

Table 48: Terms and Abbreviations

AGPS Ass AIC Act	alog-to-Digital Converter sisted GPS tive Interference Cancellation
AIC Act	
	tive Interference Cancellation
AMR Ada	
	aptive Multi-Rate
ARP Ant	tenna Reference Point
ASIC App	plication Specific Integrated Circuit
BER Bit	Error Rate
BOM Bill	of Material
BT Blu	uetooth
BTS Bas	se Transceiver Station
CHAP Cha	allenge Handshake Authentication Protocol
CS Coo	ding Scheme
CSD Circ	cuit Switched Data
CTS Cle	ear to Send
DAC Dig	gital-to-Analog Converter
DGPS Diff	ferential GPS

DRX	Discontinuous Reception
DSP	Digital Signal Processor
DCE	Data Communications Equipment (typically module)
DTE	Data Terminal Equipment (typically computer, external controller)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EASY	Embedded Assist System
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMC	Electromagnetic Compatibility
EPO	Extended Prediction Orbit
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
FCC	Federal Communications Commission (U.S.)
FDMA	Frequency Division Multiple Access
FR	Full Rate
FS	File System
GGA	GPS Fix Data
GLONASS	Global Navigation Satellite System
GLP	GNSS Low Power
GMSK	Gaussian Minimum Shift Keying
GNSS	Global Navigation Satellite System
GPRS	General Packet Radio Service
GPS	Global Positioning System
GSA	GNSS DOP and Active Satellites

GSM	Global System for Mobile Communications
G.W	Gross Weight
HR	Half Rate
I/O	Input/Output
IC	Integrated Circuit
IMEI	International Mobile Equipment Identity
I _o max	Maximum Output Load Current
kbps	Kilo Bits Per Second
LED	Light Emitting Diode
Li-lon	Lithium-Ion
MO	Mobile Originated
MOQ	Minimum Order Quantity
MP	Manufacture Product
MS	Mobile Station (GSM engine)
MT	Mobile Terminated
NMEA	National Marine Electronics Association
N.W	Net Weight
PAP	Password Authentication Protocol
PBCCH	Packet Switched Broadcast Control Channel
PCB	Printed Circuit Board
PCM	Pulse Code Modulation
PDU	Protocol Data Unit
PMTK	MTK Proprietary Protocol
PPP	Point-to-Point Protocol
PPS	Pulse per Second

RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
RX	Receive Direction
SBAS	Satellite-based Augmentation System
SIM	Subscriber Identification Module
SMS	Short Message Service
TDMA	Time Division Multiple Access
TE	Terminal Equipment
TTFF	Time to First Fix
TX	Transmitting Direction
UART	Universal Asynchronous Receiver & Transmitter
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
VSWR	Voltage Standing Wave Ratio
V _O max	Maximum Output Voltage Value
V _O norm	Normal Output Voltage Value
V _O min	Minimum Output Voltage Value
V _{IH} max	Maximum Input High Level Voltage Value
V _{IH} min	Minimum Input High Level Voltage Value
V _{IL} max	Maximum Input Low Level Voltage Value
V _{IL} min	Minimum Input Low Level Voltage Value
V _I max	Absolute Maximum Input Voltage Value
V _I norm	Absolute Normal Input Voltage Value
V _I min	Absolute Minimum Input Voltage Value

V _{OH} max	Maximum Output High Level Voltage Value		
V _{OH} min	Minimum Output High Level Voltage Value		
V _{OL} max	Maximum Output Low Level Voltage Value		
V _{OL} min	Minimum Output Low Level Voltage Value		
Phonebook Abbreviations			
LD	SIM Last Dialing phonebook (list of numbers most recently dialed)		
MC	Mobile Equipment list of unanswered MT Calls (missed calls)		
ON	SIM (or ME) Own Numbers (MSISDNs) list		
RC	Mobile Equipment list of Received Calls		
SM	SIM phonebook		

9 Appendix B GPRS Coding Schemes

Four coding schemes are used in GPRS protocol. The differences between them are shown in the following table.

Table 49: Description of Different Coding Schemes

Scheme	Code Rate	USF	Pre-coded USF	Radio Block excl.USF and BCS	BCS	Tail	Coded Bits	Punctured Bits	Data Rate Kb/s
CS-1	1/2	3	3	181	40	4	456	0	9.05
CS-2	2/3	3	6	268	16	4	588	132	13.4
CS-3	3/4	3	6	312	16	4	676	220	15.6
CS-4	1	3	12	428	16	-	456	-	21.4

Radio block structure of CS-1, CS-2 and CS-3 is shown as the figure below.

Figure 61: Radio Block Structure of CS-1, CS-2 and CS-3

Radio block structure of CS-4 is shown as the following figure.

Figure 62: Radio Block Structure of CS-4

10 Appendix C GPRS Multi-slot Classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications. The description of different multi-slot classes is shown in the following table.

Table 50: GPRS Multi-slot Classes

Multislot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5