<u>Contraste de hipótesis</u>: Procedimiento estadístico mediante el cual se investiga la veracidad de una hipótesis sobre una característica desconocida de una población o conjunto de poblaciones

<u>Contraste Paramétrico:</u> Conocida una variable aleatoria y su función de probabilidad, se establecen hipótesis sobre los parámetros de esta variable (media, varianza, proporción, diferencia de medias, cociente de varianzas o diferencia de proporciones)

<u>Contraste No paramétrico:</u> Las afirmaciones a contrastar no se hacen en base a la distribución de probabilidad, la cual es desconocida.

Hipótesis

En todos los contrastes se establecen:

- Hipótesis nula H_0 : Hipótesis que se plantea en un problema de contraste
- Hipótesis alternativa H₁: Hipótesis contraria a la hipótesis nula

Errores asociados al contraste

	Decisión	
Hipótesis nula (H ₀)	Rechazo	No rechazo
Verdadera	Error tipo I (α)	Decisión correcta
Falsa	Decisión correcta	Error tipo II (β)

Estadístico del test

- Llamamos Estadístico del Test o Estadístico de Contraste a una variable aleatoria con distribución de probabilidad conocida cuyos valores nos permiten tomar la decisión de aceptar o rechazar la hipótesis nula.
- Al valor concreto que toma el estadístico del test para la muestra escogida se llama Valor Experimental del Estadístico de Contraste

Región de Rechazo

- Región de Rechazo o Región Crítica: La formada por el conjunto de los valores del estadístico de contraste que nos llevan a rechazar la hipótesis nula H₀, se llama región crítica (los puntos que delimitan la región crítica se llaman puntos críticos)
- Región de Aceptación o Región de No Rechazo: Es la formada por el conjunto de los valores del estadístico de contraste que nos lleva a aceptar la hipótesis nula H0

p-valor asociado a un contraste

• **p-valor o nivel de significación observado**: Es el valor de α más pequeño que hace que la muestra observada nos indique que se debe rechazar H_0 . Elegido un nivel de significación α , se rechazará H_0 si p $\leq \alpha$

PASOS PARA LA REALIZACIÓN DE UN CONTRASTE:

- Fijar las hipótesis Nula H₀ y Alternativa H₁.
- 2. Buscar el **estadístico del test** que bajo la hipótesis nula tenga un comportamiento conocido
- 3. Determinar la región crítica
- 4. Seleccionar una **muestra de tamaño n**, para la cual el estadístico de contraste tome un valor numérico (**valor experimental del estadístico de contraste**)
- 5. Adoptar la decisión sobre el rechazo o no de la hipótesis nula

CONTRASTES PARAMÉTRICOS

Contraste para la media de una población normal

$$T = \frac{\overline{X} - \mu_0}{\sqrt[S]{\sqrt{n}}} \longrightarrow t_{n-1}$$

contraste	Región de rechazo
$H_0: \mu = \mu_0$	$T_{\exp} \le -t_{n-1;1-\alpha/2}$
$H_1: \mu \neq \mu_0$	$T_{\exp} \ge t_{n-1;1-\alpha/2}$
$H_0: \mu \leq \mu_0$	T > t
$H_1: \mu > \mu_0$	$T_{\exp} \ge t_{n-1;1-\alpha}$
$H_0: \mu \geq \mu_0$	T < t
$H_1: \mu < \mu_0$	$T_{\text{exp}} \le t_{n-1;\alpha}$

Contraste para la varianza

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \longrightarrow \chi_{n-1}^2$$

contraste	Región de rechazo
$H_0: \boldsymbol{\sigma}^2 = \boldsymbol{\sigma}_0^2$	$\chi^2_{\exp} \leq \chi^2_{n-1;\alpha/2}$
$H_1: \sigma^2 \neq \sigma_0^2$	$\chi^{2}_{\exp} \geq \chi^{2}_{n-1;1-\alpha/2}$
$H_0: \sigma^2 \leq \sigma_0^2$	$\chi^2_{\rm exp} \ge \chi^2_{n-1;1-\alpha}$
$H_1: \sigma^2 > \sigma_0^2$	$\chi \exp \leq \chi n-1;1-\alpha$
$H_0: \sigma^2 \geq \sigma_0^2$	$\alpha^2 \leq \alpha^2$.
$H_{\bullet}: \sigma^2 < \sigma_0^2$	$\chi^2 \exp \leq \chi^2_{n-1;\alpha}$

Contraste para la proporción

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \to N(0; 1)$$

contraste	Región de rechazo
$H_0: p = p_0$	$Z_{\rm exp} \leq Z_{\alpha/2}$
$H_1: p \neq p_0$	$Z_{\text{exp}} \ge Z_{1-\alpha/2}$
$H_0: p \leq p_0$	$Z_{\rm exp} \ge Z_{1-\alpha}$
$H_1: p > p_0$	$\mathbf{Z}_{\text{exp}} = \mathbf{Z}_{1-\alpha}$
$H_0: p \ge p_0$	$Z_{\rm exp} \le Z_{\alpha}$
$H_1: p < p_0$	$\mathbf{Z}_{\text{exp}} = \mathbf{Z}_{\alpha}$

Contraste para la diferencia de medias de dos poblaciones normales

Varianzas desconocidas pero iguales

$$T = \frac{\left(\overline{X} - \overline{Y}\right) - \mu_0}{S_p \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}} \longrightarrow t_{n_X + n_Y - 2}$$

contraste	Región de rechazo
$H_0: \mu_x - \mu_y = \mu_0$	$T_{\mathrm{exp}} \leq -t_{n_x + n_y - 2; 1 - \alpha/2}$
$H_1: \mu_x - \mu_y \neq \mu_0$	$T_{\exp} \ge t_{n_x + n_y - 2; 1 - \alpha/2}$
$H_0: \mu_x - \mu_y \le \mu_0$	T > t
$H_1: \mu_x - \mu_y > \mu_0$	$T_{\exp} \ge t_{n_x + n_y - 2; 1 - \alpha}$
$H_0: \mu_x - \mu_y \ge \mu_0$	T < t
$H_1: \mu_x - \mu_y < \mu_0$	$T_{\exp} \le t_{n_x + n_y - 2; \alpha}$

Varianzas desconocidas, tamaños muestrales grandes (n_x≥30, n_v≥30)

$$Z = \frac{\left(\overline{X} - \overline{Y}\right) - \mu_0}{\sqrt{\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}}} \longrightarrow N(0; 1)$$

contraste	Región de rechazo
$H_0: \mu_x - \mu_y = \mu_0$	$Z_{\text{exp}} \leq Z_{\alpha/2}$
$H_1: \mu_x - \mu_y \neq \mu_0$	$Z_{\text{exp}} \ge Z_{1-\alpha/2}$
$H_0: \mu_x - \mu_y \le \mu_0$	7 > 7
$H_1: \mu_x - \mu_y > \mu_0$	$Z_{\rm exp} \ge Z_{1-\alpha}$
$H_0: \mu_x - \mu_y \ge \mu_0$	7 < 7
$H_1: \mu_x - \mu_y < \mu_0$	$Z_{\rm exp} \le Z_{\alpha}$

Contraste para el cociente de varianzas

$$F = \frac{S_X^2}{S_Y^2} \rightarrow F_{n_X - 1; n_Y - 1}$$

contraste	Región de rechazo
$H_0: \sigma_x^2 = \sigma_y^2$	$F_{\text{exp}} \le \frac{1}{F_{n_y-1,n_x-1;1-\alpha_2/2}}$
$H_1: \sigma_x^2 \neq \sigma_y^2$	$F_{\text{exp}} \ge F_{n_x - 1, n_y - 1; 1 - \alpha/2}$
$H_0: \sigma_x^2 \leq \sigma_y^2$	F > F
$H_1: \sigma_x^2 > \sigma_y^2$	$F_{\exp} \ge F_{n_x - 1, n_y - 1; 1 - \alpha}$
$H_0: \sigma_x^2 \ge \sigma_y^2$	$F \leq \frac{1}{2}$
$H_1: \sigma_x^2 < \sigma_y^2$	$F_{\exp} \le \frac{1}{F_{n_y-1,n_x-1;1-\alpha}}$

Contraste para la diferencia de proporciones

$$Z = \frac{(\hat{p}_{x} - \hat{p}_{y}) - p_{0}}{\sqrt{\frac{\hat{p}_{x}(1 - \hat{p}_{x})}{n_{x}} + \frac{\hat{p}_{y}(1 - \hat{p}_{y})}{n_{y}}}} \to N(0;1)$$

contraste	Región de rechazo
$H_0: p_x - p_y = p_0$ $H_1: p_x - p_y \neq p_0$	$Z_{\exp} \le Z_{\alpha/2}$ $Z_{\exp} \ge Z_{1-\alpha/2}$
$H_0: p_x - p_y \le p_0$ $H_1: p_x - p_y > p_0$	$Z_{\rm exp} \ge Z_{1-\alpha}$
$H_0: p_x - p_y \ge p_0$ $H_1: p_x - p_y < p_0$	$Z_{\rm exp} \le Z_{\alpha}$

CONTRASTES NO PARAMÉTRICOS

Contraste χ^2 de independencia

 H_0 : A y B son independientes H_1 : A y B no son independientes

Contraste de bondad de ajuste

H₀: *X* sigue una distribución de probabilidad *F* H₁: *X* no sigue esa distribución de probabilidad