Anmeldung eines Themas für ein/e

Forschungsseminar x
Methodenseminar x
Masterarbeit x (bitte eines oder mehrere ankreuzen)

Thema Datum	Analyse des Lebenszyklus von Gewittern mittels geostationärer Satellitenbeobachtungen
Betreuer (mit Kontaktdaten)	Prof. Dr. Andreas Macke Leibniz-Insitut für Troposphärenforschung Permoser Str. 15, 04318 Leipzig Tel: 0341-2717-7060, E-Mail: andreas.macke@tropos.de
Ggfs. weitere Kontaktperson	Hartwig Deneke Leibniz-Insitut für Troposphärenforschung Permoser Str. 15, 04318 Leipzig Tel: 0341-2717-7168, E-Mail: deneke@tropos.de
Zweitgutachter	Prof. Dr. Johannes Quaas (?)
Kurzbeschreibung	Sem. Forschung: * Anwendung von bestehenden Methoden zum Wolkentracking mittels geostationärer Satellitenbeobachtungen * Vergleich der Genauigkeit / Eignung der Methoden für unterschiedliche synoptische Situationen * Ableitung von Zeitserien von charakteristischen Wolkeneigenschaften mittels objektbasierter Methoden Sem. Methoden: * Methoden: * Methoden zum Tracking von hochreichenden konvektiven Wolken und Gewittern in geostationären Satellitendaten * Objekt-basierte Methoden zur Charakterisierung des Lebenszyklus von hochreichenden konvektiven Wolken und Unwettern
	Masterarbeit: * Erstellen einer Falldatenbank von Gewittersituationen * Beschreibung des Lebenszyklus von Gewittern anhand von verschiedenen Objekteigenschaften und ggfs. weiteren Daten (Niederschlagsradar, Blitzdaten) * Potenzial für Nowcasting: Welche Objekteigenschaften sind Anzeichen für ein hohes Gefahrenpotenzial eines Unwetters? Gibt es hier Frühindikatoren für die zukünftige Entwicklung?

Literatur:	Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., van den Heever, S. C., and Stier, P.: tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets, Geosci. Model Dev., 12, 4551–4570, https://doi.org/10.5194/gmd-12-4551-2019, 2019. Rempel, M., Senf, F., & Deneke, H. (2017). Object-based metrics for forecast verification of
	convective development with geostationary satellite data. <i>Monthly Weather Review</i> , 145(8), 3161-3178. Senf, F., & Deneke, H. (2017). Satellite-based characterization of convective growth and glaciation and its relationship to precipitation formation over central Europe. <i>Journal of Applied Meteorology and Climatology</i> , 56(7), 1827-1845.
	Bonelli, P., & Marcacci, P. (2008). Thunderstorm nowcasting by means of lightning and radar data: algorithms and applications in northern Italy. <i>Natural Hazards and Earth System Sciences</i> , 8(5), 1187-1198.

2021-08-03: Besprechung Masterarbeit – Deep Convection

I.) Zeitlicher Ablauf der Seminare/Masterarbeit

- **Start**: Mitte Oktober 2021
- Mitte Oktober einschl. Januar
 - o Methodenseminar
 - o Forschungsseminar
 - → Präsentation Anfang Februar 2022
- Februar 2022 Juni/Juli 2022
 - Masterarbeit

II.) Thematische Aufteilung Seminare/Masterarbeit

PART 1

- Methodenseminar ("Literaturarbeit"):
 - o Methoden zum Tracking hochreichender konvektiver Wolken
 - Welche Methoden gibt es?
 - Fabian Senf, meteoblue, weitere Literatur (siehe oben)
 - Wie unterscheiden sie sich? Wie funktionieren sie?
 - Objekt-basierte Methoden zur Charakterisierung des Lebenszyklus
- Forschungsseminar:
 - Anwendung der Methoden zum Wolkentracking
 - Technische Vorarbeit für Masterarbeit
 - Vergleich der Methoden
 - In welchem Bereich ist welche Methode genauer?
 - Differenzierung zwischen verschiedenen synoptischen Situationen
 - O Ableiten von Zeitserien charakteristischer Wolkeneigenschaften
 - Objekt-basierte Methoden

PART 2

- Masterarbeit:
 - o Falldatenbank verschiedener Gewittersituationen
 - Wann gab es wo Gewitter, die zur Untersuchung dienen
 - o Lebenszyklus von Gewittern
 - Objekt-basierter Methoden (Satellitendaten)

- Radardaten (Radarkomposit)
- Blitzdaten
- Nowcasting
 - Abschätzen des Gefahrenpotenzials und der Lebensdauer von Gewittern
 - Entwicklung von Frühindikatoren für zukünftige Entwicklungen

Daten

- Geostationäre Satellitendaten
- Radardaten (Niederschlagsradar, Radarkomposit)
- Blitzdaten

Motion tracking methoden

Feature tracking Ungarische methode

Featuretracker

- Featuretracking methoden um WOlken zu erkennen
- Features klassifizieren
- Dann Bewegung betrachten und anhand von Features erkennen ob sie kleiner oder größer wird
- Versuchen die Features herauszufinden
- Featuretracker benutzen

Lukas canade methode

1. Features detektieren

Farnebek

Zeitraum: 2021, aufgrund gutter GEwittersituation

Daten:

Blitzdaten: Richard, VaisalaSatellitendaten: Eumetsat

- 1. Schritt: Zellendetektion
- Verlässliche Zellendetektion bei der Betrachtung konvektiver Prozesse besonders wichtig
- Wolken/Zellen anhand verschiedener Features detektieren
 - o Features definieren, welche eine konvektive Wolke beschreiben.
 - Evtl. mit Blitzdaten kombinieren
 - o Erstellen eines binären Gitters (1/0; Wolke/keine Wolke)
- Es gibt einige Paper, die etwas in diese Richtung gemacht haben:
 - o https://www.sciencedirect.com/science/article/pii/S0187623617300358#fig0010
 - https://journals.ametsoc.org/view/journals/atot/30/3/jtech-d-12-00114_1.xml
- 2. Schritt: Zellentracking
- Die zeitliche Verlagerung der Zelle betrachten
- Anhand der Features kann untersucht werden, ob die Zelle weiterhin wächst oder schon kleiner wird, je nach Anzahl der Pixel, die den Features entsprechen
- 3. Schritt: Lebenszyklus der Gewitter
- Gewitterzellen können anhand Schritt 1 und 2 detektiert und getrackt werden
- Es kann der Lebenszyklus untersucht werden
- Daraus können Frühindikatoren entwickelt werden, die Auskunft über zukünftige Entwicklungen des Gewitters geben

Daten:

- Blitzdaten: Richard fragt bei Vaisala an bzgl. Datenbereitstellung Satellitendaten: Eumetsat
- Radardaten

Untersuchungszeitraum:

2021 bietet sich aufgrund der häufiger konvektiver Ereignisse an