Insurance Company

A. Model Creation and Principal Component in SAS Enterprise Miner

Figure 1. Shows Logistic Regression models in SAS

Principal Components:

A principal component analysis is a weighted linear combination of variables in which the weights are set to account for the greatest degree of variance in the data.

The DMNEURL Procedure					The DMNEURL Procedure				
Variable	Level	Mean	Std Dev	Eigenvalues of Correlation Matrix					
Driving_License	0	0.00189	0.04345		Eigenvalue	Difference	Proportion	Cumulative	
Driving_License	1	0.99811	0.04345						
Gender	FEMALE	0.46199	0.49855	1	2.35533290	0.36433822	0.2617	0.2617	
Gender	MALE	0.53801	0.49855	2	1.99099469	0.17944950	0.2212	0.4829	
Vehicle Damage	NO	0.51943	0.49962	3	1.81154519	0.79591093	0.2013	0.6842	
Vehicle Damage	YES	0.48057	0.49962	4	1.01563426	0.01565245	0.1128	0.7971	
Age		38.54569	15.22690	5	0.99998181	0.17347065	0.1111	0.9082	
Annual Premium		30711	17062	6	0.82651116	0.82651116	0.0918	1.0000	
Vintage		154.18943	83.73511	7	0.00000000	0.00000000	0.0000	1.0000	
U1000.000.000				8	0.00000000	0.00000000	0.0000	1.0000	
				9	0.00000000		0.0000	1.0000	

Figure 2. Shows PCA: Summary and Eigen Values of Correlation Matrix

In the right side of the figure for Eigen Value for the first Principal Component, it says that 0.2617 Cumulative. The number of variables that were taken into account is the sum of Eigen value. If the

Eigen value of the Principal Components is above 1, they are included in the analysis for further study. In this case, the first four Eigen Values are considered for analysis.

Analysing the Logistic Regression Model with 8 Variables

Type 3 Analysis of Effects

		Wald	
Effect	DF	Chi-Square	Pr > ChiSq
Age	1	3346.8946	<.0001
Annual_Premium	1	240.6588	<.0001
Driving_License	1	50.5083	<.0001
Gender	1	53.1079	<.0001
Previously_Insured	1	1816.9058	<.0001
Vehicle_Age	2	7690.5139	<.0001
Vehicle_Damage	1	3470.8326	<.0001
Vintage	1	0.0076	0.9305

Figure 3. Shows Chi-Square test for Logistic Regression model with 8 variables

From the figure 3 it can be seen that Age, Annual_Premium, Driving_License, Gender, Previously_Insured, Vehicle_Age and Vehicle_Damage are significant as the value is less than 0.05. But Vintage is not significant as the value is 0.9305 which is above 0.05. It means that Vintage does not offer any explanation or dependency towards the target variable whether customer is interested in vehicle insurance or not.

Analvsis	of	Maximum	Likelihood	Estimates
.m.dr.loro		TT-UCT THE	Binciii.	DD OIM GOLD

					Standard	Wald		Standardized	
Parameter		Response	DF	Estimate	Error	Chi-Square	Pr > ChiSq	Estimate	Exp(Est)
Intercept		1	1	-3.5387	0.1100	1035.02	<.0001		0.029
Age		1	1	-0.0336	0.000581	3346.89	<.0001	-0.2822	0.967
Annual_Premium		1	1	4.894E-6	3.154E-7	240.66	<.0001	0.0462	1.000
Driving_License	0	1	1	-0.6644	0.0935	50.51	<.0001		0.515
Gender	Female	1	1	-0.0427	0.00586	53.11	<.0001		0.958
Previously_Insure	d 0	1	1	2.1212	0.0498	1816.91	<.0001		8.341
Vehicle_Age	1-2 Year	1	1	0.5024	0.00942	2845.29	<.0001		1.653
Vehicle_Age	< 1 Year	1	1	-1.2547	0.0152	6851.91	<.0001		0.285
Vehicle_Damage	No	1	1	-1.2448	0.0211	3470.83	<.0001		0.288
Vintage		1	1	-5.94E-6	0.000068	0.01	0.9305	-0.00027	1.000

Figure 4. Shows Maximum Likelihood estimates for Logistic regression with 8 variables

If the variable are classification Yes/No or 1/0 then these values are calculated by taking Yes or 1 as the base value.

Odds Ratio Estimates

Effect		Response	Point Estimate
Age		1	0.967
Annual_Premium		1	1.000
Driving_License	0 vs 1	1	0.265
Gender	Female vs Male	1	0.918
Previously_Insured	0 vs 1	1	69.569
Vehicle_Age	1-2 Year vs > 2 Years	1	0.779
Vehicle_Age	< 1 Year vs > 2 Years	1	0.134
Vehicle_Damage	No vs Yes	1	0.083
Vintage		1	1.000

Figure 5. Shows the Odds ratio estimates

From figure 5 it can be seen that the odds for customer's interest in vehicle insurance will increase at 0.083, if the Vehicle_Damage = No. It means that customers with Vehicle damage are more likely to get vehicle insurance. Similarly, for Previously_Insured, Driving_licence and Vehicle_Age above 2 years too.

B. Model Comparison

Figure 6. Shows Receiver Operating Characteristic curve

A ROC curve is made by comparing the true positive rate to the false positive rate. This is done by putting the two numbers together. It is the percentage of positive observations that were predicted to be positive that were correct.

Fit Statistics
Model Selection based on Train: Misclassification Rate (_MISC_)

Selected Model	Model Node	Model Description	Train: Misclassification Rate	Train: Average Squared Error	Train: Roc Index	Train: Gini Coefficient
Y	Reg4	Logistic	0.16133	0.09527	0.889	0.777
	Tree	Decision Tree	0.16381	0.13698	0.500	0.000
	Reg	4 Variables	0.16383	0.13516	0.640	0.279
	Reg5	2 Variables	0.16383	0.13555	0.645	0.290
	Reg3	8 Variables	0.16519	0.10033	0.871	0.743
	Reg2	6 Variables	0.16989	0.10033	0.872	0.745

Figure 7. Shows Fit Statistics indicating the best selected model

The best model is been selected on the basis of least misclassification rate. In this case model name 'Logistic' is selected because it has the lowest misclassification rate.

Event Classification Table Model Selection based on Train: Misclassification Rate (_MISC_)

Model Node	Model Description	Data Role	Target	Target Label	False Negative	True Negative	False Positive	True Positive
Reg	4 Variables	TRAIN	Response		50079	255635	6	1
Reg2	6 Variables	TRAIN	Response		45196	248897	6744	4884
Reg3	8 Variables	TRAIN	Response		44895	250034	5607	5185
Reg4	Logistic	TRAIN	Response		36974	243292	12349	13106
Reg5	2 Variables	TRAIN	Response		50080	255634	7	0
Tree	Decision Tree	TRAIN	Response		50080	255641	0	0

Figure 8. Shows Misclassification Rate for all the selected Models

From figure 8. It can be observed that the maximum True Positive values (13106) are for Reg4 (Logistic) model. Misclassification rate is used to figure out how many observations were wrongly predicted by some kind of classification model. It tells us how many of those observations were misclassified.

C. Conclusion

The best model selected to predict whether a customer is interested in to subscribe a vehicle insurance or not is the Logistic regression model consisting all the variables given in dataset except ID variable. The main group of customers to be targeted are the people who do not have vehicle insurance at present. It can also predicted that customers who do not have a driving licence might not have a car and they wouldn't be needing any insurance. So, customers with driving licence must only be considered. Vehicle age above 2 years customer are more likely to get there vehicle insured.