Njang/jàng Xayma

SARR Georges Mbissane

Ci wéeru ñaari junni ak ñaar fukk ak ñaar (2022)

1 Ëmb

Téek

Nañu wowee ëmb, beep saamu cër^a yu ñuy wowee ëmbeef. Amal been ëmb E, da ñuy né x ëmbeefu E la, ta ñu ko bindé $x \in E^b$, bu féké ni x ci biir E la nek/la bok.

^aélément

 b Mën na ñu ko liré "x mu ngi ci biir E"

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ ay ëmb la ñu.
- $\{a, b, c, d, ...z\}$ moy ëmb bu am ab ëmbeef a, b, c, ..., ba z
- ∅ moy mbindu ëmb bu amul tus, manam ëmb bu amul been ëmbeef.
- $\{a,b\} = \{b,a\}$

1.1 Wàllu ëmb

Téeki

Amal ëmb E ak ëmb F, E mu ngi ci biir F bu féké ni rek^a ëmbeef x yëp yu nek ci E ñu ngi ci biir F. Da ñuy wax itam E wàllu F la, di ko bindé $E \subset F$.

^asi et seulement si = bu féké ni rek ?

Nañu mandargal wàllu ëmb:

• Amal ëmb $E=\{1,2,3\}$, $F=\{1,2,3,4,5,6\}$ ak $G=\{1,2,4,5,6\}$, kon $E\subset F$, wayé E nekkoul wàllu G, ñu koy bindé $E\not\subset G$, ndaxté 3 mu ngi ci biir E, wanté 3 nekkul ci biir G.

1.2 Ëmbu ay wàllu been ëmb

Téeki

Amal been ëmb E, ëmbu wàllu E yi, mo di saamu wàllu E yëp, ñu di ko bindé $\mathcal{W}(E)$.

Nañu mandargal ëmbu ay wàllu been ëmb:

• Amal $\stackrel{.}{\text{emb}} E = \{a, b, c\}, \ \mathcal{W}(E) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$

Seetlu

- ullet Amal been \(\text{emb} E: E \subseteq E^a, \) manaam E w\(\text{wallu} E \) la
- ullet Ëmbeefu $\mathcal{W}(E)$ ay ëmb la ñu.

1.3 Sëfu Xayma ci ëmb yi

1.3.1 Selebe(yoon) ay ëmb (intersection d'ensembles)

Téeki

Amal ëmb E ak ëmb F, saamu ëmbeef x yëp yu bok ci E té bok itam ci F, ñu di ko bindé $E\cap F$ la ñuy wowee selebe wu E ak F

Nañu mandaargal¹ selebe ay ëmb.

- Amal ñaari ëmb $E=\{1,2,3\}$ ak $F=\{4,5\}$, $E\cap F=\emptyset$ (manaam E ak F bokku ñu been ëmbeef.)
- Amal $E = \emptyset = F$, $E \cap F = \emptyset$
- Amal $E = \emptyset$, $F = \{0, 1\}$, $E \cap F = \emptyset$

1.3.2 Lëkkalé/Mboole ay ëmb (union d'ensembles)

Téeki

Amal ëmb E ak ëmb F, saamu ëmbeef x yëp yu bok ci E wala bok ci F, ñu di ko bindé $E \cup F$ la ñuy wowee mboolo E ak F.

Nañu mandaargal mbollo ëmb:

• Amal ñaari ëmb $E = \{1, 2, 3, 4, 5\}$ ak $F = \{4, 5, 6, 7, 8, 9\}$, $E \cup F = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

 $^{{}^}a$ ñu di ko bindé itam $E \in \mathcal{W}(E)$

¹Exemple ?

- Amal $E = \emptyset = F$, $E \cup F = \emptyset$
- Amal $E = \emptyset$, $F = \{0, 1\}$, $E \cup F = \{0, 1\}$

1.3.3 Full carteseng ay ëmb

Téek

^acouple ^btel que

• Amal $E = \{1, 2, 3\}$ ak $F = \{4, 5\}$, kon $E \times F = \{(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)\}$

Téeki

Amal been limukaay $n \in \mathbb{N}$ bu eup 2^a . Amal itam n ëmb $E_1, E_2, ..., E_n$, fullu $E_1, E_2, ..., E_n$, ñu koy bindé $E_1 \times ... \times E_n$, mo di beep ëmbeef $x = (x_1, ..., x_n)$ bu deme ni b $x_1 \in E_1$, $x_2 \in E_2$, ..., $x_n \in E_n$

 $^{\it a}n \geq 2$ $^{\it b}{
m tel}$ que

Seetlu

Amal $\mbox{emb } E$ ak $\mbox{emb } F$;

- Bu féké E ak F ay ëmb yu wuté la ñu, ñuy binde $E \neq F$, té itam $E \neq \emptyset$ ak $F \neq \emptyset$, kon fullu E ak F wuté na ak fullu F ak E, ñuy bind $E \times F \neq F \times E$
- ullet Bu féké E=F, manaam E ak F been la ñu, mën na ñu binde $E imes F = E imes E = E^2$
- Amal ñaari tank-tank (u,v) ak (x,y) ci biir $E \times F$, da ñuy né (u,v) = (x,y) bu féké rek u=x ak v=y. Ngir leeral, $(1,2) \in \mathbb{N}^2$ ak $(1,3) \in \mathbb{N}^2$ wuté na ñu, ndaxté 2 wuté na ak 3.
- Bu féké ni limu ëmbeefu E ak limu ëmbeefu F da ñuy jex a , kon ëmbeefu $E \times F$ maat nañu lu tolu ci limu ëmbeefu E nga ful ko ak limu ëmbeefu F. Ngir leeral wax ji, amal $E = \{1,2,3\}$ ak $F = \{4,5\}$, kon E amna ñaat ëmbeef (kon limu ëmbeefu E, manam ñaat, day jex), F amna ñaari ëmbeef (kon limu ëmbeefu F, manam ñaar, day jex), limu ëmbeefu $E \times F$ mo di ñaat nga full ko ak ñaar, manaan $3 \times 2 = 6$. Leneen lu koy woné mo di: $E \times F = \left\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\right\}$ amna bu bax juròom-been (6) ëmbeef.
- ullet Amal n ëmb $E_1,E_2,...,E_n$, bu féké ni $E=E_1=E_2=...=E_n$, mên na ñu binde, $E_1 imes... imes E_n=E^n$

 ${}^{a}E$ et F sont des ensembles finis.

2 Doxalin

Téeki

Been ^adoxalin f mo di beep ñaati ëmb E, F ak \mathcal{G} . E moy ëmbef bu doxalin f di tambali, F moy ëmbef bu muy agsi. Da ñuy bindë $\mathcal{G} = \big\{ (x,y) \in E \times F, y = f(x) \big\}$. Ëmb \mathcal{G} , ñu di ko wowé graaf, moy lëkkalé beep ëmbeef $x \in E$ ak been ëmbeef $y \in F$ rek. Doxalin f ñio ngi koy bindé:

$$f: \left\{ \begin{array}{l} E \to F \\ x \mapsto f(x) \end{array} \right.$$

wala ñuy binde

$$f: E \to F$$
, ak $f(x) = ...$

wala itam

$$f: x \mapsto \dots$$
 ak $f: E \to F$

Beep ëmbeef $x \in E$ warna am been natal^b rek ci f, nataal gogu ñu di ko bindé f(x)

Nañu binde $\mathbb{R}_+=\{x\in\mathbb{R},x\geq 0\}$ manaam ëmbeefu limu \mathbb{R} yu "positif" yi walla tolo ak tus, ak $\mathbb{R}_+^*=\{x\in\mathbb{R},x>0\}$, manaam ëmbeefu limu \mathbb{R} yu "positif" yi té weesu/ëp tus.

- $\bullet \ \ \mathsf{Doxalin} \ f: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 + 1 \end{array} \right. \ \ \mathsf{ak} \ \mathsf{doxalin} \ g: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R}_+ \\ x \mapsto x^2 + 1 \end{array} \right. \ \ \mathsf{wut\acute{e}} \ \mathsf{na\~nu}, \ \mathsf{ndaxt\acute{e}} \ \mathsf{\ddot{e}mbeef} \ \mathsf{yu} \ \mathsf{\~nuy} \ \mathsf{agsi} \ \mathsf{wut\acute{e}} \ \mathsf{na\~nu}: \\ \mathbb{R} \neq \mathbb{R}_+ \end{array} \right.$
- $\bullet \ f: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R}_+^* \\ x \mapsto x^2 \end{array} \right. \ \text{nekkul doxalin, ndaxt\'e} \ 0^2 = 0 \not \in \mathbb{R}_+^*$

^aFonction ou application

^bImage par une fonction

3 Xalaat ci Xayma

3.1 Baat

Téeki

Been **baat**^a ci Xayma mo di beep kaadu gi mëna nekka dëgg^b, walla nekka lu dul dëgg^c. Dëgg (D), ak lu dëggul (L) la ñuy wowee xayma dëgg^d. Bu féké ñaari baat \mathcal{B} ak \mathcal{C} ño bok xayma dëgg, kon da ñuy né ño niro, di ko bindé: $\mathcal{B} \sim \mathcal{C}$, seeni xayma dëg bu ñu wuté wé, da ñuy bindë $\mathcal{B} \not\sim \mathcal{C}$

^aassertion, prédicat

^bvrai

^cfaux

^dvaleur de vérité

Amal $(0,1,2) \in \mathbb{N}^3$, kon baat $\mathcal{B} = "1 \geq 0"$ dëgg la, wanté, baat $\mathcal{C} = "2+1 \leq 2"$ du dëgg, kon bok $\mathcal{B} \not\sim \mathcal{C}$. Baat $\mathcal{B} = "2 = 0"$ ak baat $\mathcal{C} = "1 > 2"$ dëgguñu, kon $\mathcal{B} \sim \mathcal{C}$.

3.2 Muk/Deet

Téek

Muk been baat^a \mathcal{B} , ñu di ko bindé *muk* \mathcal{B} (wala $\neg \mathcal{B}$) baatu dëgg la, bu féké ni \mathcal{B} du dëgg. Té itam, baat bu dëggul la, bu féké ni \mathcal{B} dëgg la.

^aLa négation d'une assertion

Amal $x \in \mathbb{R}$, $\mathcal{B}(x) = "x \le 0"$, kon $\neg \mathcal{B}(x) \sim "x > 0"$.

Tègʻ

^aProposition

Amal been baat \mathcal{B} , boba/kon $\neg(\neg \mathcal{B}) \sim \mathcal{B}$, manaam muk (muk \mathcal{B}) ak \mathcal{B} ño book xayma dëgg.

Woné: Amal been baat ${\cal B}$

\mathcal{B}	$\neg \mathcal{B}$	$\neg(\neg\mathcal{B})$
D	L	D
L	D	L

3.3 Takhalé ak tékhalé ay baat

Téekié

^aDéfinition

Takhalo^a ñaari baat \mathcal{B} ak \mathcal{C} , ñu di ko bindé $\mathcal{B} \wedge \mathcal{C}$, wala \mathcal{B} ak \mathcal{C} , baatu dëgg la bu féké ni rek \mathcal{B} dëgg la, té \mathcal{C} dëgg la itam.

Tékhalo^b ñaari baat \mathcal{B} ak \mathcal{C} , ñu di ko bindé $\mathcal{B} \vee \mathcal{C}$, wala \mathcal{B} wala \mathcal{C} , dëgg la bu féké ni rek \mathcal{B} dëgg la, wala \mathcal{C} dëgg la.

\mathcal{B}	\mathcal{C}	$\mathcal{B} \wedge \mathcal{C}$	$\mathcal{B} ee\mathcal{C}$
D	D	D	D
D	L	L	D
L	D	L	D
L	L	L	L

 ${\it ^a} Conjonction$

^bDisjonction

Tèg^a

^aProposition

Amal baat \mathcal{B} ak baat \mathcal{C} , boba/kon:

$$\neg(\mathcal{B} \land \mathcal{C}) \sim (\neg\mathcal{B}) \lor (\neg\mathcal{C})$$

$$\neg(\mathcal{B}\vee\mathcal{C})\sim(\neg\mathcal{B})\wedge(\neg\mathcal{C})$$

Woné:

Amal baat \mathcal{B} ak baat \mathcal{C} , nañu bindë këralegu/natalu² xayma dëgg baat yi.

\mathcal{B}	\mathcal{C}	$\neg \mathcal{B} \lor \neg \mathcal{C}$	$\neg(\mathcal{B} \land \mathcal{C})$	$\neg(\mathcal{B} \lor \mathcal{C})$	$(\neg \mathcal{B}) \wedge (\neg \mathcal{C})$
D	D	L	L	L	L
D	L	D	D	L	L
L	D	D	D	L	L
L	L	D	D	D	D

Mën nañu gis ci ñaatel

jeñ gi ak ñeentel gi, né $\neg (\mathcal{B} \wedge \mathcal{C}) \sim (\neg \mathcal{B}) \vee (\neg \mathcal{C})$. Juròomeel jeñ gi ak juròomeel-beeneel gi, woné nañu né $\neg (\mathcal{B} \vee \mathcal{C}) \sim (\neg \mathcal{B}) \wedge (\neg \mathcal{C})$.

Tègtal^a

^aIndication?

Ngir woné né ñaari baat ño bok xayma dëgg, mën naño jëfandikoo këralegu xayma dëgg yi.

Jéemantu

Amal ñaat baat A, B, C, wonéel ni:

$$\mathcal{B} \wedge \mathcal{B} \sim \mathcal{B}$$

$$\mathcal{B} \vee \mathcal{B} \sim \mathcal{B}$$

$$(\mathcal{B} \wedge \mathcal{C}) \wedge \mathcal{A} \sim \mathcal{B} \wedge (\mathcal{C} \wedge \mathcal{A})$$

$$(\mathcal{B} \vee \mathcal{C}) \vee \mathcal{A} \sim \mathcal{B} \vee (\mathcal{C} \vee \mathcal{A})$$

$$(\mathcal{B} \wedge \mathcal{C}) \vee \mathcal{A} \sim (\mathcal{B} \vee \mathcal{A}) \wedge (\mathcal{C} \vee \mathcal{A})$$

$$(\mathcal{B} \vee \mathcal{C}) \wedge \mathcal{A} \sim (\mathcal{B} \wedge \mathcal{A}) \vee (\mathcal{C} \wedge \mathcal{A})$$

3.4 Baat bi yobualé/andi been baat

Téeki

Amal baat \mathcal{B} ak baat \mathcal{C} . Da ñuy né \mathcal{B} da yobualé \mathcal{C}^a dëgg la, bu féké ni rek \mathcal{C} mënul bagna nek dëgg bu \mathcal{B} néké dëgg.

 \mathcal{B} da yobualé \mathcal{C} ñu di ko bindé $\mathcal{B} \implies \mathcal{C}$.

Xayma dëgg $\mathcal{B} \implies \mathcal{C}$ mu ngi ni:

²tableau ?

 $^3\mathsf{Colonne} = \mathsf{ji\tilde{n}} = \mathsf{je\tilde{n}}$?

\mathcal{B}	\mathcal{C}	$\mathcal{B} \Longrightarrow \mathcal{C}$
D	D	D
D	L	L
L	D	D
L	L	D

 $^{{}^}a\mathcal{B}$ implique \mathcal{C}

Ak beep $x \in \mathbb{R}$, bo bindé $\mathcal{B}(x) = "x>= 2"$, $\mathcal{C}(x) = "x^2>= 4"$, kon $\mathcal{B}(x) \implies \mathcal{C}(x)$ dëgg la.

Téeki

Bu $\mathcal{B} \implies \mathcal{C}$ néké dëgg, kon da ñuy né

- ullet B baat bu doy ${\mathcal C}$ la, wala ${\mathcal B}$ doy na ${\mathcal C}.^a$
- B da soxla C.b

 $\mathcal{C} \Longrightarrow \mathcal{B}$ mo di *wëlbati wu ^c* baat $\mathcal{B} \Longrightarrow \mathcal{C}$.

 ${}^a\mathcal{B}$ est une condition suffisante pour \mathcal{C}

 ${}^b\mathcal{C}$ est une condition nécessaire pour \mathcal{B}

 c implication réciproque

Tègʻ

^aProposition

Amal baat \mathcal{B} ak baat \mathcal{C} , boba:

$$(\mathcal{B} \implies \mathcal{C}) \sim (\neg \mathcal{B}) \vee \mathcal{C}$$

$$(\mathcal{B} \implies \mathcal{C}) \sim ((\neg \mathcal{C}) \implies (\neg \mathcal{B}))$$

 $(\neg \mathcal{C}) \implies (\neg \mathcal{B})$ la ñuy wowee $\mathit{contaraposee^a}$ wu $\mathcal{B} \implies \mathcal{C}$

^aContraposée

Woné:

vvolic.			
\mathcal{B}	\mathcal{C}	$\mathcal{B} \implies \mathcal{C}$	$(\neg \mathcal{B}) \lor \mathcal{C}$
D	D	D	D
D	L	L	L
L	D	D	D
L	L	D	D

Mën na ñu gis né $(\mathcal{B} \Longrightarrow \mathcal{C}) \sim (\neg \mathcal{B}) \vee \mathcal{C}$ ci ñaateel jeñ ak ñeenteel gi, kon bok bu ñu wécanté \mathcal{B} ak $\neg \mathcal{C}$, té wécanté itam \mathcal{C} ak $\neg \mathcal{B}$, ñu am $\left((\neg \mathcal{C}) \Longrightarrow (\neg \mathcal{B})\right) \sim \left((\neg (\neg \mathcal{C})) \vee (\neg \mathcal{B})\right) \sim \left(\mathcal{C} \vee (\neg \mathcal{B})\right) \sim (\neg \mathcal{B}) \vee \mathcal{C} \sim (\mathcal{B} \Longrightarrow \mathcal{C})$, fi la ñuy jexalé woné gi.

Mënon nañu woné itam $(\mathcal{B} \implies \mathcal{C}) \sim ((\neg \mathcal{C}) \implies (\neg \mathcal{B}))$ ak natal xayma dëgg yi.

3.5 Baat yu yèm

Téek

Amal ñaari baat \mathcal{B} , \mathcal{C} .

 \mathcal{B} mo yèm ak \mathcal{C}^a , ñuy bindë $\mathcal{B} \iff \mathcal{C}$, mo di baat $(\mathcal{B} \implies \mathcal{C}) \wedge (\mathcal{C} \implies \mathcal{B})$, manaam

$$\mathcal{B} \iff \mathcal{C} \sim \big((\mathcal{B} \implies \mathcal{C}) \wedge (\mathcal{C} \implies \mathcal{B}) \big)$$

Natal xayma dëgg bu yèmalé ñaari baat mo ngi ni:

\mathcal{B}	С	$\mathcal{B} \implies \mathcal{C}$	$\mathcal{C} \implies \mathcal{B}$	$\mathcal{B} \iff \mathcal{C}$
D	D	D	D	D
D	L	L	D	L
L	D	D	L	L
L	L	D	D	D

^aL'équivalence de deux assertions

Seetlu

Amal ñaari baat \mathcal{B} , \mathcal{C} .

- ullet Bu $\mathcal{B}\iff \mathcal{C}$ néké dëgg, kon $\mathcal{B}\sim \mathcal{C}.$
- ullet Bu féké $\mathcal{B} \iff \mathcal{C}$ dëggul, kon $\mathcal{B} \not\sim \mathcal{C}$

Seetlu yi muj, woné nañu né **yémalé ay baat ak nirolé lèn been lañu**. Manam wax $\mathcal{B} \iff \mathcal{C}$ been la ak wax $\mathcal{B} \sim \mathcal{C}$, manaam:

$$\begin{split} & (\mathcal{B} \iff \mathcal{C}) \sim \left(\mathcal{B} \sim \mathcal{C}\right) \\ & (\mathcal{B} \iff \mathcal{C}) \iff \left(\mathcal{B} \sim \mathcal{C}\right) \end{split}$$

Tègʻ

^aProposition

Amal baat \mathcal{B} ak baat \mathcal{C} , boba:

$$(\mathcal{B} \iff \mathcal{C}) \sim ((\neg \mathcal{C}) \iff (\neg \mathcal{B}))$$

Jéemantu: Woneel tèg bi muj

Téeki

Bu $\mathcal{B} \iff \mathcal{C}$ néké dëgg, kon da ñuy né

• B baat bu soxla té doy C la, a

3.6 Natakat baat

Téeki

Amal been ëmb E. Ak beep $x\in E$, amal been baat $\mathcal{B}(x)$ bu nék surgau x^a . Da ñuy wax ak beep $x\in E$, $\mathcal{B}(x)$ degg la, té di binde

$$\forall x \in E, \mathcal{B}(x)$$

bu féké ni rek $\mathcal{B}(x)$ dëgg la ak beep ëmbeef x bu nék ci biir E.

Da ñuy wax ak been $x \in E$, $\mathcal{B}(x)$ dëgg la, té di bindë

$$\exists x \in E, \mathcal{B}(x)$$

 $^{{}^}a{\cal B}$ est une condition nécessaire et suffisante pour ${\cal C}$

bu féké ni rek $\mathcal{B}(x)$ dëgg la ak lu mu tuti tuti been ëmbeef x bu nék ci biir E.

Da ñuy wax ak been $x \in E$ rek, $\mathcal{B}(x)$ dëgg la, té di bindë

$$\exists ! x \in E, \mathcal{B}(x)$$

bu féké ni rek $\mathcal{B}(x)$ dëgg la ak been ëmbeef x dong bu nék ci biir E.

 ${}^a\mathrm{Une}$ assertion qui dépend de x

Mën nañu né $\forall x \in \mathbb{R}, \exp(x) > 0$, ak $\forall x \in \mathbb{R}, \exists ! n \in \mathbb{Z}, n \leq x < n+1$

Amal been doxalin f bi jogé ci \mathbb{R} té agsi ci \mathbb{R} , kon bok: Da ñuy wax f moy doxalinu dara/tus ⁴ bu féké ni rek

$$\forall x \in \mathbb{R}, f(x) = 0$$

Da \tilde{n} uy wax f di na agsi ci tus 5 bu féké ni rek

$$\exists x \in \mathbb{R}, f(x) = 0$$

Da ñuy wax f di na agsi been yoon ci tus bu féké ni rek $^{\rm 6}$

$$\exists ! x \in \mathbb{R}, f(x) = 0$$

Da ñuy wax f ci \mathbb{R}_+ rek la mëna tolo ak tus 7 bu féké ni rek

$$\forall x \in \mathbb{R}, f(x) = 0 \implies x \in \mathbb{R}_+$$

wala itam

$$\forall x \in \mathbb{R}, x \notin \mathbb{R}_+ \implies f(x) \neq 0$$

Tègé

^aProposition

$$\neg(\forall x \in E, \mathcal{B}(x)) \sim \exists x \in E, \neg(\mathcal{B}(x))$$
$$\neg(\exists x \in E, \mathcal{B}(x)) \sim \forall x \in E, \neg(\mathcal{B}(x))$$

Jéemantu: Woneel tèg yi muj

Waxanté⁶

^aConvention

Beep baat buy tambalé ak $\exists x \in \emptyset$ dëggul, kon beep baat buy tambalé ak $\forall x \in \emptyset$ dëgg la.

Jéemantu bu am solo ci xam-xam ci koompuutar⁸ Amal been doxalin f bi jogé ci been full carteseng ëmb xayma dëgg yi $\{0,1\}^n$, té di agsi ci ëmbu xayma dëgg yi, 0 di téeki lu dëggul (L), 1 di téeki dëgg (D), ñuy bindë

$$f: \{0,1\}^n \to \{0,1\}$$

mën nañu woné né f mën nañu ko bindé ak sëfu xayma dëgg takhalo (manaam \land) ak sëfu xayma dëgg deet (manaam \neg). Manam bo jëlé $b=(b_1,b_2,...b_n)\in\{0,1\}^n$, kon f(b) mën nañu kon bindé ak $b_1,b_2,...b_n$ ak \land ak \neg dong. Tégtal: ngir woné tèg bi muj

 $^{^4}$ La fonction f est la fonction nulle.

 $^{^5}$ La fonction f s'annule

 $^{^6}$ La fonction f s'annule une seule fois

⁷La fonction f ne s'annule que sur \mathbb{R}_+

⁸Exercice important en informatique

• Mën nañ woné ni amna been $0 \le k \le 2^n$ ak f_1 , ..., f_k ay doxalin yuy jogé ci $\{0,1\}^n$ té agsi ci $\{0,1\}$, yu mel ni

$$f(b) = f^{(1)}(b) \vee f^{(2)}(b) \vee \dots \vee f^{(k)}(b)$$

ullet Fatéliku itam né \lor mën nañu ko bindë ak \land ak \lnot

3.7 Kadum sago

Ngir wax né been baat, baatu dëgg la ci Xayma, war na ñu ko firndeel/woral ak been woné, manaam ci Xayma, woné rek moy dëggal been baat. Baatu dëgg bu nék, **tèg**⁹ la tud. Ci tèg yi, amna yu ci gëna am solo, ñu len di wowée **téorèm**¹⁰. Wanté amna ay baat yu ñu dul woné té nangu né ay baati dëgg la ñu, ñu léen di wowée **ñalém**, wala **baatu dëga yu wor**¹¹. Baat yoyu lé, mën na ñu lèna jappé ay sart¹² yuy lal xalaat ci Xayma.

Nañu lim woné yu ñuy tama jëfandiko ngir woral ay baat.

3.7.1 Woné ab contaraposee

Téeki

Mën na ñu woné been baat $\mathcal{B} \implies \mathcal{C}$ dëgg la, bu ñu woné $(\neg \mathcal{C}) \implies (\neg \mathcal{B})$ dëgg la. Woné gi la ñuy wowée woné contaraposee^a

^aDémonstration par contraposition

⁹Proposition

¹⁰Théorème

 $^{^{11}\}mathrm{Axiomes}$

¹² Règles

3.7.2 Tofal

Téeki

Mën na $\tilde{n}u$ woné been baat \mathcal{C} dëgg la, bu $\tilde{n}u$ tambali wé ci béneen baat \mathcal{B} bu nek dëgg té woné ni $\mathcal{B} \Longrightarrow \mathcal{C}$ dëgg la. Woné gi la $\tilde{n}uy$ wowée **tofal**^a.

^aTirer une conséquence.

Nañu woné

$$\forall x \in \mathbb{R}, x^2 + 1 > 0$$

ak tofal.

Amal $x \in \mathbb{R}$. Xam na ñu $x^2 \ge 0$ ak 1 > 0 wanté xamna ñu itam sa su jëlé a ak b ay ëmbeefu \mathbb{R} ,

$$(a \ge 0)$$
 ak $b > 0 \implies a + b > 0$

kon itam $x^2 + 1 > 0$ (bu ñu jëlé $a = x^2$ ak b = 1).

3.7.3 Tofal ak tékhalé ay baat / ak nékin yëp yu wuté

Téeki

Mën nañu woné $\mathcal C$ dëgg la, bu ñu tambali wé ak béneen baat $\mathcal B$, té woné $\mathcal B \Longrightarrow \mathcal C$ ak $(\neg \mathcal B) \Longrightarrow \mathcal C$ dëgg la. Woné gi mo tud **tofal ak tékhalé ay baat**^a

^aDisjonction des cas

Nañu woné

$$\forall n \in \mathbb{N}, \frac{n(n+1)}{2} \in \mathbb{N}$$

di jëfandiko tofal ak tékhalé ay baat.

Amal $n \in \mathbb{N}$, xam na ñu amna been $k \in \mathbb{N}$ bu mel ni n = 2k, wala n = 2k + 1.

Bu féké n=2k, kon

$$\frac{n(n+1)}{2} = \frac{2k(2k+1)}{2} = k(2k+1) \in \mathbb{N}$$

Bu féké itam n=2k+1, kon

$$\frac{n(n+1)}{2} = \frac{(2k+1)(2k+2)}{2} = (2k+1)(k+1) \in \mathbb{N}$$

fi la woné gi jexé.

3.7.4 Wédi

Téeki

Mën nañu woné $\mathcal B$ dëgg la, bu ñu woné ni amna béneen baat $\mathcal C$ bu dëggul, té woné itam $(\neg \mathcal B) \implies \mathcal C$ dëgg la.

Nañu woné ni amul been $N \in \mathbb{N}$, bu gën ëp¹³ beep $n \in \mathbb{N}$ di ko bindé itam

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, N > n$$

dëggul. Nañu ko wédi, manaan né amna been $N\in\mathbb{N}$, bu gën ëp beep $n\in\mathbb{N}$, kon N gogu mo gën ëp N+1, ndaxté $N+1\in\mathbb{N}$, kon dé

$$1 = (N+1) - N < 0$$

Li mënul nék, ndaxté xam na
ñu 1>0 ci biir $\mathbb N$

3.7.5 Topalanté ay baat

¹³Strictement supérieur

Téek

Amal $n_0 \in \mathbb{N}$ ak ay baat $\mathcal{B}(n)$, $n \in \mathbb{N}$, $n \geq n_0$. Bu féké $\mathcal{B}(n_0)$ dëgg la, té itam

$$\forall n \geq n_0, \ \mathcal{B}(n) \implies \mathcal{B}(n+1)$$

kon

$$\forall n \geq n_0, \ \mathcal{B}(n)$$

Nañu woné

$$\forall n \in \mathbb{N}^*, 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

ak topalanté ay baat.

Amal n=1, kon 1+2+3+...+n=1, té itam $\frac{n(n+1)}{2}=1$, kon dëgg la ak n=1. Amal been $n\in\mathbb{N}^*$. Bu féké ni $1+2+3+...+n=\frac{n(n+1)}{2}$, kon

$$1+2+3+\ldots+(n+1)=(1+2+3+\ldots+n)+(n+1)=\frac{n(n+1)}{2}+n+1=\frac{(n+1)\big((n+1)+1\big)}{2}$$

fi la woné gi jexé.

Seetlu

Amal \mathcal{B} ak \mathcal{C} , natal xayma dëgg yi noy dëggal woné yi jal.

natal gi njëk:

\mathcal{B}	С	$\mathcal{B} \Longrightarrow \mathcal{C}$
D	D	D
D	L	L
L	D	D
L	L	D

ñaareel natal gi:

\mathcal{B}	\mathcal{C}	$ eg \mathcal{B} \implies \mathcal{C}$
D	D	D
D	L	D
L	D	D
L	L	L

- Tofal: liña bu njëk ci natal bu njëk bi moy woral woné ak tofal.
- **Tofal ak tékhalé ay baat**: liñ bu njëk ak ñaateel liñu ñaari natal yi, ñoy woral woné ak *tofal ak tékhalé ay baat*.
- Wédi: ñaareel liñ ñu ñaareel lu natal gi moy woral woné ak wédi
- Topalanté ay baat: amal $n_0 \in \mathbb{N}$ ak ay baat $\mathcal{B}(n)$, $n \in \mathbb{N}, n \geq n_0$. Bu féké $\mathcal{B}(n_0)$ dëgg la, té itam

$$\forall n \geq n_0, \ \mathcal{B}(n) \implies \mathcal{B}(n+1)$$

kon, ndaxté $\mathcal{B}(n_0)$ dëgg la, té $\mathcal{B}(n_0) \implies \mathcal{B}(n_0+1)$ dëgg la, woné ak *tofal* dëggal na $\mathcal{B}(n_0+1)$, *tofal* moy woral woné ak *topalanté ay baat*

^aLigne

4 Xayma ci ëmb yi

4.1 Wàllu

Téeki

Amal ëmb E ak F, E wàllu F la, ñuy bindë $E \subset F$ bu féké ni, ak beep $x \in E$, $x \in F$ itam:

$$E \subset F \iff \forall x \in E, x \in F$$

kon E **nekul wàllu** F, ñuy bindë $E \not\subset F$ bu féké ni amna been $x \in E$ té $x \not\in F$

$$E \not\subset F \iff \exists x \in E, x \not\in F$$

Seetli

Amal been $\mbox{ëmb }E$ ak F, kon

- $\emptyset \subset F$ ndaxté $\forall x \in \emptyset, x \in F$ (ndaxté beep baat bu di tambali ak $\forall x \in \emptyset$ dëgg la)
- $E \subset E$, ndaxté $\forall x \in E, x \in E$ lu leer la

Tègé

 ${}^a\mathsf{Proposition}$

Amal $\mbox{emb}\ E$ ak F, kon

$$E = F \iff (E \subset F \text{ ak } F \subset E)$$

Woné:

Amal ëmb E ak F. Ngir woné $E=F\iff E\subset F$ ak $F\subset E$, mën nañu woné $\mathcal{B}="(E=F\implies E\subset F \text{ ak } F\subset E)"$ dëgg la, té woné itam $\mathcal{C}="(E\subset F \text{ ak } F\subset E)\implies E=F"$ dëgg la.

Nañu woné \mathcal{B} . Xam nañu $E \subset E$ (seetlu bi muj mo ko wax). Bu féké E = F, kon $E \subset F$ (bu ñu wecé ñaareel E bi ak F ci diganté gi $E \subset E$). Nonu la ñuy woné itam $F \subset E$ bu féké E = F, kon \mathcal{B} dëgg la.

Nañu woné $\mathcal C$ dëgg la ak contaraposee wam manaam $E \neq F \implies \neg(E \subset F \text{ ak } F \subset E)$. Bu féké $E \neq F$ (manaam E wuté na ak F, kon $\exists x \in E, x \not\in F \text{ mba/wala } \exists y \in F, y \not\in E$, manaam $deet(\forall x \in E, x \in F \text{ ak } \forall y \in F, x \in E)$, manaam $\neg(E \subset F \text{ ak } F \subset E)$. Fi la woné gi jexé.

Tèga

 ${}^a\mathsf{Proposition}$

Amal $\mbox{emb}\ E,\ F,\ G$ kon

$$E \subset F$$
 ak $F \subset G \implies E \subset G$

Jéemantu: Woneel tèg bi muj.

Téeki

Amal ëmb E, $\mathcal{W}(E)$ mo di mbidu ëmb bi bolé rek wàllu E yëp, manaam amal been ëmb A

$$A \in \mathcal{W}(E) \iff A \subset E$$

Amal ëmb E, kon $\emptyset \in \mathcal{W}(E)$, $E \in \mathcal{W}(E)$, $\emptyset \subset \mathcal{W}(E)$, wanté nañu woytu¹⁴ $E \subset \mathcal{W}(E)$ mën na baña nek dëgg.

4.2 Selebe(yoon) ak Mbolo ay ëmb

Téeki

Amal ëmb A, B ay wàllu been ëmb E, $A \cap B$ mo di selebe(yoon) A ak B di saamu ëmbeef $x \in E$ yëp yu bok ci A te bok itam ci B, manaan

$$A \cap B = \{ x \in E / x \in A \text{ ak } x \in B \}$$

Téeki

Amal ëmb A, B ay wàllu been ëmb E, $A \cup B$ **mo di mbolo** A **ak** B di saamu ëmbeef $x \in E$ yëp yu bok ci A walla bok ci B, manaan

$$A \cup B = \big\{ x \in E / x \in A \text{ walla } x \in B \big\}$$

Seetlu

Amal ëmb A ak B ay wàllu ëmb E, kon

- $\bullet \ A\cap B\subset A \text{ ak } A\subset A\cup B$
- $A \cap B \subset B$, ak $B \subset A \cup B$
- \bullet $A \cap A = A$, $A \cup A = A$
- $A \cup E = E$, $A \cap E = A$
- $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$

Tègtal^a

^aIndication?

Amal ëmb A ak B, ay wàllu been ëmb E, ngir woné A=B been lañu mën nañu woné ni: ak beep ëmbeef $x\in E,\,x\in A\iff x\in B.$ Manaam woné $A\subset B$ ak $B\subset A$

Tèg

 ${}^a\mathsf{Proposition}$

Amal $\stackrel{.}{\text{emb}} E$, F,

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

Jéemantu: Woneel tèg bi muj.

¹⁴faire attention

Seetli

Amal $\mbox{ëmb }A,\ B\ \mbox{ak }C,\ \mbox{kon}$

- $(A \cup B) \cup C = A \cup (B \cup C)$ la ñuy bindë $A \cup B \cup C$
- $(A \cap B) \cap C = A \cap (B \cap C)$ la ñuy bindë $A \cap B \cap C$
- \bullet Wanté ken du bindë $A\cap B\cup C$ walla $A\cup B\cap C$ ndaxté léru ñu

Tèg^a

 $^a Proposition$

Amal ëmb A, B ak C, kon

$$A \subset C \text{ ak } B \subset C \implies A \cup B \subset C$$

$$C \subset A \text{ ak } C \subset B \implies C \subset A \cap B$$

Woné:

Amal ëmb A, B ak C. Nañu woné $A\subset C$ ak $B\subset C \implies A\cup B\subset C$ Bu féké $A\subset C$ ak $B\subset C$. Amal $x\in A\cup B$, manaam $x\in A$ walla $x\in B$:

- ullet Bu féké $x\in A$, kon, ndaxté $A\subset C$, $x\in C$ tamit
- ullet Bu féké $x\in B$, kon, ndaxté $B\subset C$, $x\in C$ tamit

Woné na nu $A\subset C$ ak $B\subset C\implies A\cup B\subset C$ ci beep nékin.

Ak xeetu woné ji muj, mën nañu woné $C\subset A$ ak $C\subset B\implies C\subset A\cap B$

4.3 Motali been ëmb ci biir been ëmb

Téeki

Amal ëmb A wàllu been ëmb E, **ëmb bi di motali** A **ci biir** E, ñu di ko bindë

$$\mathcal{M}_E A = \{ x \in E, \text{ té } x \notin A \}$$

mo di saamu ëmb yëp yu nék ci E té nekku ñu ci A

Seetlu

Amal ëmb A ab wàllu ëmb E. Bu féké ëmb bi di motali A ci biir E lu lér la, manaam munu \tilde{n} u ko jaxasé ak leenen, kon mën na \tilde{n} u bindë \bar{A} ngir wax ëmb bi motali ci biir E.

- $\mathcal{M}_E A \cap A = \emptyset$, $\mathcal{M}_E(\mathcal{M}_E A) = A$
- $\mathcal{M}_E E = \emptyset$, $\mathcal{M}_E \emptyset = E$

Tèg^a

^aProposition

Amal ëmb A, B ay wàllu ëmb E, kon

$$\mathcal{M}_{E}(A \cup B) = (\mathcal{M}_{E}A) \cap (\mathcal{M}_{E}B)$$

$$\mathcal{M}_{E}(A \cap B) = (\mathcal{M}_{E}A) \cup (\mathcal{M}_{E}B)$$

$$A \subset B \iff (\mathcal{M}_{E}B) \subset (\mathcal{M}_{E}A)$$

4.4 Wañi ëmb ci ëmb

Téeki

Amal ëmb A ak B ay wàllu been ëmb E, **ëmb bi di motali** A **ci biir** E, ñu di ko bindë

$$A - B = \{ x \in E, \text{ té } x \in A \text{ ak } x \notin B \}$$

mo di saamu ëmbeef yëp yu nék ci A té nekku ñu ci B. Yèna say ñu bindé ko $A \backslash B$

Seetlu

Amal $\operatorname{\ddot{e}mb} A$ ak B ay wàllu been $\operatorname{\ddot{e}mb} E$, boba

• $A \backslash B = \mathcal{M}_A(A \cap B) = A \cap \mathcal{M}_E(B)$

Rëd fi been natal bu di mandargal kaadu yi muj.