The lasso, persistence, and cross-validation

Darren Homrighausen[†] Daniel J. McDonald[‡]

†Department of Statistics, Colorado State University, Fort Collins †Department of Statistics, Indiana University, Bloomington

Suppose we have data

$$\mathcal{D}_n = \{(Y_1, X_1^{\top},), \dots, (Y_n, X_n^{\top})\}$$

 $X_i = (X_{i1}, \dots, X_{ip})^{\top} \in \mathbb{R}^p$ are the features

 $Y_i \in \mathbb{R}$ are the responses

Use \mathcal{D}_n to choose a function \widehat{f} that can predict Y from X

The regression function is the best predictor

$$m(X) = \mathbb{E}[Y|X] = \underset{f}{\operatorname{argmin}} \, \mathbb{E}\left[(Y - f(X))^2\right]$$

Idea: Start with linear approximation of m(X).

Choose $\beta \in \mathbb{R}^{p+1}$, form

$$\widehat{f}(X) = X_1 \beta_1 + \ldots + X_p \beta_p = X^{\top} \beta$$

Important: This does not assume that m is linear in X!

We need to find a good estimator of β .

ℓ_1 -regularized regression

Called lasso or basis pursuit

The estimator satisfies

$$\widehat{\beta}_t = \underset{\beta}{\operatorname{argmin}} ||\mathbb{Y} - \mathbb{X}\beta||_2^2 \text{ subject to } ||\beta||_1 \le t$$

Alternatively:

$$\widehat{\beta}_{\lambda} = \underset{\beta}{\operatorname{argmin}} || \mathbb{Y} - \mathbb{X}\beta ||_{2}^{2} + \lambda ||\beta||_{1}$$

Properties

Suppose $m(X) = X^{\top}\beta$:

- If $\lambda = o(n)$, then $\widehat{\beta}_{\lambda} \stackrel{\text{a.s.}}{\to} \beta$
- If $\frac{\lambda}{n} \to a \in (0, \infty)$, then $\widehat{\beta}_{\lambda} \not\to \beta$ in general
- If $\frac{\lambda}{n} \to \infty$, then $\widehat{\beta}_{\lambda} \stackrel{\text{a.s.}}{\to} 0$

What if m(X) not linear? What if $p \gg n$?

Define $Z^{\top} = (Y, X^{\top})$ to be a new observation (same distribution)

(Predictive) risk

$$R(\beta) = \mathbb{E}_Z \left[(Y - X^{\mathsf{T}} \beta)^2 \right]$$

Oracle estimator

$$\beta_t^* = \underset{\{\beta: ||\beta||_1 \le t\}}{\operatorname{argmin}} R(\beta)$$

Excess risk

$$\mathcal{E}(\widehat{\beta}_t, \beta_t^*) = R(\widehat{\beta}_t) - R(\beta_t^*)$$

A procedure is persistent if

$$\mathcal{E}(\widehat{\beta}_t, \beta_t^*) \xrightarrow{P} 0$$

The best (oracle) linear model

If
$$t^4 = o\left(\frac{n}{\log n}\right)$$
, then $\widehat{\beta}_t$ is persistent relative to β_t^*

 $\widehat{\beta}_t$ is not necessarily persistent if $t^4 \notin o\left(\frac{n}{\log n}\right)$

What if choose $t = \hat{t}$ using \mathcal{D}_n ?

Create set of validation sets $V_n = \{v_1, \dots, v_{K_n}\}$

 $\widehat{\beta}_t^{(v)}$ lasso estimator ignoring observations in $v \subset \{1, \ldots, n\}$

The cross-validation estimator of the risk is

$$\widehat{R}_{V_n}(t) = \widehat{R}_{V_n}\left(\widehat{\beta}_t^{(v_1)}, \dots, \widehat{\beta}_t^{(v_{K_n})}\right) := \frac{1}{K_n} \sum_{v \in V_n} \frac{1}{|v|} \sum_{r \in v} \left(Y_r - X_r^{\top} \widehat{\beta}_t^{(v)}\right)^2$$

Define

$$\widehat{t} := \underset{t \in T_n}{\operatorname{argmin}} \, \widehat{R}_{V_n}(t)$$

In practice, need to specify $T_n = [0, t_{\text{max}}]$

If t_{max} is too small, we may exclude good solutions

By definition, $\widehat{\beta}_t \in \{\beta : ||\beta||_1 \le t\}$

This constraint is only binding if

$$t < \min_{\eta \in \mathcal{K}} ||\widehat{\beta}^0 + \eta||_1 =: t_0,$$

where

 $\widehat{\beta}^0 := (\mathbb{X}^\top \mathbb{X})^\dagger \mathbb{X}^\top \mathbb{Y}$ is a least squares solution

 $\mathcal{K} := \{a : \mathbb{X}a = 0\}$ is the null space of \mathbb{X}

Define $t_{\text{max}} := ||\widehat{\beta}^0||_1$

Conditions

C1. $\mathbb{E}\left[||\widehat{\beta}^0||_1^4\right] = o(t_n^4)$

C2. For any cross-validation procedure V_n , there exists a constant c_n such that for all $v \neq v' \in V_n$

- $|v| \ge c_n$
- $v \cap v' = \emptyset$

C3. Let $Z^{\top} = (Y, X^{\top}) \sim F_n$. Then, $(F_n)_{n \geq 1}$ is such that $\exists C < \infty$ for all n where $\mathbb{E}_{F_n} \left[\max_{0 \leq i,k \leq n} (Z_j Z_k - \mathbb{E}_{F_n} Z_j Z_k)^2 \right] \leq C$

Results

THEOREM: Suppose C1–C3 and that $p_n = n^{\alpha}$, $\alpha > 0$. Then, for any $\delta > 0$,

$$P(\mathcal{E}(\widehat{\beta}_{\widehat{t}}, \beta_{t_n}^*) > \delta) = o\left(t_n^2 \sqrt{\frac{\log n}{c_n}}\right).$$

- $c_n \approx n$ for K-fold cross-validation
- leave-one-out cross-validation has $c_n = 1$

Properties of t_n

The faster $t_n \to \infty \dots$

- the less restrictive condition C1 becomes
- $\blacksquare R_n(\beta_{t_n}^*)$ shrinks faster
- But if $t_n^4 = \Omega(n/\log n)$, $\widehat{\beta}_{t_n}$ may not be persistent, let alone $\widehat{\beta}_{\widehat{t}}$

Can
$$\mathbb{E}\left[||\widehat{\beta}^0||_1^4\right] = o(t_n^4)$$
 if $t_n^4 = o\left(\frac{n}{\log n}\right)$?

EXAMPLES:

Suppose $Y = m(X) + \epsilon$, m(X) bounded, $\mathbb{E}[\epsilon^4] < \infty$

- $X_i \in \mathbb{R}^p$ are i.i.d sub-Gaussian with independent components
- Fixed design, kernel regression satisfying $h^{-1}\phi(1/h) \to 0$ as $h \to \infty$
- Orthogonal basis regression

Future work: Similar results for lasso-type estimators

- $\blacksquare G$ a partition of $\{1,\ldots,p\}$

THEOREM: Suppose

- $\blacksquare \mathbb{E}\left[\left(\sum_{g \in G} ||\widehat{\beta}_g^0||_2\right)^4\right] = o(u_n^4)$
- $p_n = n^{\alpha}$ for some $\alpha > 0$
- Conditions C2 and C3

Then, for any $\delta > 0$,

$$P_{F_n}\left(\mathcal{E}\left(\widehat{\beta}_{\widehat{u}},\beta_{u_n}^*\right)>\delta\right)=o\left(a_nu_n^2\sqrt{\frac{\log n}{c_n}}\right).$$