Dario Carolla 807547 - Assignment 1

Il problema proposto consiste nell'ottimizzazione dei guadagni dell'azienda MC Manufacturing. Per risolverlo è stato utilizzato il seguente **decision tree**, all'interno del quale le unità di produzione ed i relativi guadagni sono stati espessi in migliaia.

```
tree = yaml.load_file(input = "/Users/dario/Desktop/Università/Decision\ Models/Assignment\ 1/dtree_inp
result = dtree(yl = tree)
plot(result, final = FALSE)
```


bile osservare l'abero si divide inizialmente in due rami:

- 100 boards: corrisponde al caso in cui MC Manufacturing produca inizialmente solo 100.000 schede. Al termine di questo ramo vi è uno *Chance node* il quale si divide in due ulteriori rami:
 - DISCO Buy 100: rappresenta la possibilità che DISCO acquisti solo 100.000 schede e non si avvalga della possibilità di acquistarne altre 100.000. Questa possibilità ha una probabilità dello 0.5000 e porterebbe ad un guadagno di \$50.000 per MC Manufacturing
 - DISCO Buy 200: rappresenta la possibilità che DISCO acquisti 200.000 schede. Questa possibilità ha una probabilità dello 0.5000 e porterebbe ad un guadagno di \$100.000 per MC Manufacturing
- 200 board: corrisponde al caso in cui MC Manufacturing produca sin dall'inizio 200.000 schede. Al termine di questo ramo vi è uno *Chance node* il quale si divide in due ulteriori rami:
 - DISCO Buy 100: rappresenta la possibilità che DISCO acquisti solo 100.000 schede e non si avvalga della possibilità di acquistarne altre 100.000. Questa possibilità ha una probabilità dello 0.5000 e porterebbe ad una perdita di \$150.000 per MC Manufacturing
 - DISCO Buy 200: rappresenta la possibilità che DISCO acquisti 200.000 schede. Questa possibilità ha una probabilità dello 0.5000 e porterebbe ad un guadagno di \$350.000 per MC Manufacturing

All'interno del decision tree i costi di produzione di MC Manufacturing sono stati calcolati all'interno delle variabili utilizzate per la creazione dell'albero, senza specificare un costo fisso, dunque considerando i costi variabili. Infatti, l'azienda ha la possibilità di decidere se produrre sin dall'inizio 200.000 schede o se produrne 100.000 e, solo nel caso in cui vengano richieste, produrne successivamente altre 100.000.

Expected value

Per decidere quale alternativa selezionare in un problema decisionale si necessita di un criterio decisionale. L'ottimizzazione dell'**Expected Value** è un criterio valido per prendere una decisione che tenga conto dei possibili risultati per ogni decisione alternativa e della probabilità che ogni risultato si verifichi. L'alternativa con il massimo Expected value rappresenta il miglior percorso di scelta in base alle informazioni che si possiedono.

```
summary(result, input = FALSE, output = TRUE)
## Variable input values:
##
## Quantity1
                                 100
## Quantity2
                                 200
## Fixed Setup Cost
                                 250
## Marginal Manufacturing Cost
                                   2
## Disco pay
                                   5
## cost_100
                                 450
## cost_200
                                 650
## Revenue100
                                 500
## Revenue200
                                 1000
## Net profit1
                                  50
## Net_profit2
                                 100
## Net profit3
                                 -150
## Net_profit4
                                 350
##
##
  Initial decision tree:
##
                           Probability Payoff Cost
                                                          Type
##
    MC Manufacturing
##
     :--100 boards
                                                     decision
                               50.00 %
##
         --DISCO buy 100
                                          50.00
                                                        chance
         °--DISCO buy 200
                               50.00 %
##
                                        100.00
                                                        chance
##
     °--200 boards
                                                     decision
         |--DISCO buy 100
                               50.00 % -150.00
##
                                                        chance
##
         °--DISCO buy 200
                               50.00 % 350.00
                                                        chance
##
## Final decision tree:
##
                           Probability Payoff Cost
                                                          Type
                                         100.00
##
    MC Manufacturing
     |--100 boards
                                          75.00
                                                     decision
##
##
         |--DISCO buy 100
                               50.00 %
                                          50.00
                                                        chance
##
         °--DISCO buy 200
                               50.00 %
                                        100.00
                                                        chance
##
     °--200 boards
                                         100.00
                                                     decision
##
         --DISCO buy 100
                               50.00 % -150.00
                                                        chance
##
         °--DISCO buy 200
                               50.00 % 350.00
                                                        chance
plot(result, final = TRUE)
```


Il risultato ottenuo evidenzia che, scegliendo secondo l'Expected Value, la scelta giusta da fare per la produzione è rappresentata dal ramo 200 boards, che equivale alla produzione immediata di 200.000 schede.

Utility Function and Certainty Equivalent

Utility Function

Per i decisori avversi al rischio, nelle decisioni che comportano profitti, viene utilizzata la funzione esponenziale che ha la seguente forma:

$$U(x) = 1 - e^{x/R}$$

dove U(x) rappresenta la funzione di utilità, x è la misura di valutazione, R è una costante chiamata tolleranza al rischio (che nel problema proposto corrisponde a 100.000) ed e rappresenta la funzione esponenziale. Quando x aumenta, U(x) si avvicina ad 1. La Utility Function, applicata al problema, con R = \$100.000, possiede il seguente andamento:

```
utilityFunctionExp <- function(X, R) { #funzione per Utility Function
res <- 1- exp(-X/R)
return(res)
}

x = seq(from = -150, to = 350, by = 10)
plot(x, utilityFunctionExp(x, 100), type="1", col="blue", ylab="Utility Function", xlab="Evaluation Mea</pre>
```


Certainty Equivalent

Il Certainty Equivalent per la funzione esponenziale utilizzata in questo problema è:

$$CE = -R * ln(1 - E[U])$$

```
CertEquivalent = function(EU, R){ #funzione per Certainty Equivalent
CE = -R*ln(1-EU)
return(CE)
}
branch1 <- c(50, 100)
branch2 <- c(-150, 350)
profit <- c(branch1, branch2)</pre>
#Calcolo valori della funzione di utilità
UF1 = utilityFunctionExp(branch1, 100)
UF1_A = 0.5*UF1[1]+0.5*UF1[2]
UF2 = utilityFunctionExp(branch2, 100)
UF2_A = 0.5*UF2[1]+0.5*UF2[2]
UF_value <- c(UF1_A, UF2_A)</pre>
#Certain Equivalency
CE_vett <- CertEquivalent(UF_value, 100)</pre>
print(paste0("Certain Equivalency per il primo ramo: ", CE_vett[1]))
## [1] "Certain Equivalency per il primo ramo: 71.9070196379839"
print(paste0("Certain Equivalency per il secondo ramo: ", CE_vett[2]))
```

[1] "Certain Equivalency per il secondo ramo: -81.3568167929173"

```
print(paste0("Certain Equivalency maggiore: ", max(CE_vett)))
```

[1] "Certain Equivalency maggiore: 71.9070196379839"

A differenza dei risultati conseguiti con le Expected Value, il risultato ottenuto, considerando la propensione al rischio, è migliore per il primo ramo dell'albero, che equivale alla produzione iniziale pari a sole 100.000 schede.

Modification of the process

Per la decisione del punto precedente, MC Manufacturing ha creato una nuova opzione: può condurre alcune ricerche e sviluppi nel tentativo di abbassare i fixed setup cost associati alla produzione di un lotto di schede PC. La ricerca e lo sviluppo costeranno \$25.000 con una probabilità di successo pari a 0.4. Nel caso in cui dovesse avere successo, il fixed setup cost per lotto verrà ridotto a \$50.000. Se la ricerca e lo sviluppo non dovessere avere successo, non ci sarà alcuna riduzione dei costi. Per risolvere questo nuovo problema è stato utilizzato il seguente decision tree:

```
tree = yaml.load_file(input = "/Users/dario/Desktop/Università/Decision\ Models/Assignment\ 1/dtree_mod
result_2 = dtree(y1 = tree)
plot(result_2, final = FALSE)
```


A differenza dell'albero iniziale, è stato aggiunto un secondo *Decision node* nel ramo in cui si scelglie di produrre inizialmente 100.000 schede, tramite il quale viene considerata la possibilità di svolgere o non la ricerca. Nel caso in cui ne vengano prodotte direttamente 200.000, invece, non avrebbe senso eseguire la ricerca e non viene dunque introdotta questa possibilità.

Anche in questo caso, per decidere quale alternativa selezionare, sono state utilizzare le Expected value.

```
summary(result_2, input = FALSE, output = TRUE)
```

```
## Variable input values:
##
## Quantity1 100
## Quantity2 200
## Fixed Setup Cost 250
## New FSC 50
## Marginal Manufacturing Cost 2
## Disco pay 5
## cost research 25
```

```
## cost_100
                                  450
## NewC_100
                                  250
## cost 200
                                  650
## Revenue100
                                 500
## Revenue200
                                 1000
## Net_profit1
                                  50
## Net_profit2
                                 100
## Net_profit3
                                 -150
## Net_profit4
                                  350
                                  25
## Net_profit5
## Net_profit6
                                  275
## Net_profit7
                                   25
                                   75
## Net_profit8
##
## Initial decision tree:
##
                                    Probability Payoff Cost
                                                                   Туре
   MC Manufacturing2
##
     :--100 boards
##
                                                              decision
##
         |--NO research
                                                              decision
##
              --DISCO buy 100
                                        50.00 %
                                                   50.00
                                                                 chance
##
             °--DISCO buy 200
                                        50.00 %
                                                 100.00
                                                                 chance
##
         °--Research
                                                              decision
              !--Successful
##
                                        40.00 %
                                                                 chance
                  |--DISCO buy 100
                                        50.00 %
                                                   25.00
##
                                                                 chance
                  °--DISCO buy 200
##
                                        50.00 %
                                                 275.00
                                                                chance
##
              °--Not Successful
                                        60.00 %
                                                                 chance
##
                  --DISCO buy 100
                                        50.00 %
                                                   25.00
                                                                 chance
                  °--DISCO buy 200
                                        50.00 %
##
                                                   75.00
                                                                 chance
     °--200 boards
##
                                                              decision
                                        50.00 % -150.00
##
         --DISCO buy 100
                                                                 chance
##
         °--DISCO buy 200
                                        50.00 % 350.00
                                                                 chance
##
##
   Final decision tree:
##
                                                 Payoff Cost
                                    Probability
                                                                   Туре
                                                  100.00
##
    MC Manufacturing2
     |--100 boards
##
                                                   90.00
                                                              decision
##
         |--NO research
                                                   75.00
                                                              decision
##
              --- DISCO buy 100
                                        50.00 %
                                                   50.00
                                                                chance
              °--DISCO buy 200
##
                                        50.00 % 100.00
                                                                 chance
##
         °--Research
                                                              decision
                                                   90.00
##
              |--Successful
                                        40.00 % 150.00
                                                                chance
                  ---DISCO buy 100
##
                                        50.00 %
                                                   25.00
                                                                 chance
                  °--DISCO buy 200
                                        50.00 %
##
                                                 275.00
                                                                chance
              °--Not Successful
##
                                        60.00 %
                                                   50.00
                                                                 chance
                  --DISCO buy 100
                                        50.00 %
##
                                                   25.00
                                                                chance
                  °--DISCO buy 200
##
                                        50.00 %
                                                   75.00
                                                                 chance
##
     °--200 boards
                                                  100.00
                                                              decision
##
         --DISCO buy 100
                                        50.00 % -150.00
                                                                 chance
##
         °--DISCO buy 200
                                        50.00 % 350.00
                                                                 chance
plot(result_2, final = TRUE)
```


Come è possibile osservare dagli Expected value ottenuti, l'opzione migliore rimane la precedente, ovvero produrre 200.000 unità di merce immediatamente, pertanto il processo di ricerca e sviluppo non viene preso in considerazione.

Value of Information

Nell'ultimo caso viene considerata la situazione in cui venga pagato un esperto per conoscere l'esito del processo di ricerca e sviluppo. Per calcolare il valore della **Perfect Information** è stato utilizzato il seguente decision tree:

```
tree = yaml.load_file(input = "/Users/dario/Desktop/Università/Decision\ Models/Assignment\ 1/dtree_PF_result_3 = dtree(yl = tree)
plot(result_3, final = FALSE)

DISCO buy 100: 0.5000— $25.00

Successful - Initially manufacture 100: 0.4000

DISCO buy 200: 0.5000— $275.00

Not Successful - Initially manufacture 200: 0.6000

DISCO buy 200: 0.5000— $-150.00
```

All'interno di questo albero si considera solo il caso in cui la ricerca venga effettuata e si suppone che l'esito di quest'ultima sia conosciuto. Anche in quest'ultimo caso, per decidere quale alternativa selezionare, sono state utilizzare le Expected value.

```
summary(result_3, input = FALSE, output = TRUE)

## Variable input values:
##
## Quantity1 100
## Quantity2 200
```

```
250
## Fixed Setup Cost
## New FSC
                                  50
## Marginal Manufacturing Cost
                                   2
## Disco pay
                                   5
## cost research
                                  25
## cost 100
                                 450
## NewC 100
                                 250
## cost_200
                                 650
## Revenue100
                                 500
## Revenue200
                                1000
## Net_profit1
                                -150
## Net_profit2
                                 350
## Net_profit3
                                 25
## Net_profit4
                                 275
##
## Initial decision tree:
##
                                                         Probability Payoff
##
   MC Manufacturing2
##
     °--Research
         |--Successful - Initially manufacture 100
                                                             40.00 %
##
##
            |--DISCO buy 100
                                                             50.00 %
                                                                       25.00
##
             °--DISCO buy 200
                                                             50.00 % 275.00
         °--Not Successful - Initially manufacture 200
##
                                                             60.00 %
                                                             50.00 % -150.00
##
             |--DISCO buy 100
             °--DISCO buy 200
                                                             50.00 % 350.00
##
##
   Cost
             Type
##
##
         decision
##
           chance
##
           chance
##
           chance
##
           chance
##
           chance
##
           chance
## Final decision tree:
##
                                                         Probability Payoff
## MC Manufacturing2
                                                                      120.00
##
    °--Research
                                                                      120.00
         |--Successful - Initially manufacture 100
##
                                                             40.00 % 150.00
##
            |--DISCO buy 100
                                                             50.00 %
                                                                      25.00
                                                             50.00 % 275.00
##
             °--DISCO buy 200
##
         °--Not Successful - Initially manufacture 200
                                                             60.00 % 100.00
##
             --DISCO buy 100
                                                             50.00 % -150.00
             °--DISCO buy 200
                                                             50.00 % 350.00
  Cost
##
             Type
##
##
         decision
##
           chance
##
           chance
##
           chance
##
           chance
##
           chance
##
           chance
```


Il risultato offerto evidenzia come la conoscenza del fattore analizzato influisca sul risultato in modo significativo, facendo passare l'EV dai precedenti \$100.000 alla cifra di \$120.000. Pertanto il valore dell'informazione perfetta è di \$20.000.