$$\underline{E\times 1}: f(x) = x-2 - \frac{1}{x} \qquad I = ]0; +\infty[$$

1) 
$$\lim_{x\to 0} f(x) = 0 - 2 - \frac{1}{0} = -2 - (+\infty)$$
 $\lim_{x\to 0} f(x) = 0 - 2 - \frac{1}{0} = -2 - \infty = -\infty$ 



$$f - D = x - 2 - \frac{1}{x} - (x - 2) =$$

$$= x - 2 - \frac{1}{x} - x + 2 = -\frac{1}{x}$$

$$\lim_{x\to +\infty} \left(-\frac{1}{x}\right) = -\frac{1}{+\infty} = 0$$

Donc la draite D est asymptote à le



$$f-D=-\frac{\ell}{x}$$

| 1 ×   | ( 0 | +00 |
|-------|-----|-----|
| - 1/x |     | -   |



$$E_{\times} 2$$
:  $f(x) = \frac{x^2}{x-1}$   $I = JL', +\infty[$ 

1) 
$$\lim_{x \to 1} f(x) = \frac{1}{1-1} = \frac{1}{0} = +\infty$$
  
 $x > 1$ 

2) 
$$f(x) = x + 1 + \frac{1}{x-1} = \frac{(x+i)(x-1)+1}{x-1} = \frac{x^2-1+1}{x-1} = \frac{x^2}{x-1} = x + 1 + \frac{1}{x-1} = x + 1 + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 = x + 1 =$$

$$f-D = x+1 + \frac{1}{x-1} - (x+1) = \frac{1}{x-1}$$

$$\lim_{X\to +\infty} (f-D) = \frac{1}{+\infty} = 0$$

3) Étude de signe de 
$$f-D = \frac{1}{x-1}$$

| ×        | 1 |   | TOO |
|----------|---|---|-----|
| 1<br>k-1 |   | + |     |

f-D>0 -> f>D

