

Calculo Multivariado

Sebastian Maldonado

Ejercicios:

- 26) e 26) f 30)

26.(e):
$$f(x, y) = 2x^4 + y^2 - x^2 - 2y$$

Las primeras derivadas parciales son:

$$\frac{\partial f}{\partial x} = 8x^3 - 2x$$

$$\frac{\partial f}{\partial y} = 2y - 2$$

Localizamos los puntos criticos:

$f_x = 8x^3 - 2x = 0$	$f_y = 2y - 2 = 0$
$8x^{3} - 2x = 0$ $2x(2x+1)(2x-1) = 0$ $x = 0, \ x = \frac{1}{2}, \ x = -\frac{1}{2}$	$2y - 2 = 0$ $2y = 2$ $y = \frac{2}{2}$ $y = 1$

Puntos criticos:

$$x = 0, \ x = \frac{1}{2}, \ x = -\frac{1}{2}, \ y = 1$$

$$P_1(0, 1)$$

$$P_2(\frac{1}{2}, 1)$$

$$P_3(-\frac{1}{2}, 1)$$

Las segundas derivadas parciales son:

$$\frac{\partial^2 f}{\partial x^2} = 24x^2 - 2$$

$$\frac{\partial^2 f}{\partial y^2} = 2$$

$$\frac{\partial f}{\partial y \partial x} = 0$$

$$\frac{\partial f}{\partial y \partial x} = 0$$

Prueba de las segundas derivadas parciales:

$$D(x,y) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y \partial x} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{vmatrix} = \begin{vmatrix} 24x^2 - 2 & 0 \\ 0 & 2 \end{vmatrix} = \begin{bmatrix} (24x^2 - 2) \cdot 2 \end{bmatrix} - [0 \cdot 0] = 48x^2 - 4$$

Para el punto critico $P_1(0, 1)$ tenemos que:

$$D(0,1) = 48 \cdot (0)^2 - 4 = -4$$

$$D(0,1) < 0$$

Entonces:

Tenemos que D(0,1) < 0, por lo tanto (0,1,f(0,1)) no es un extremo relativo, es un **punto silla**.

Para el punto critico $P_2\left(\frac{1}{2},1\right)$ tenemos que:

$$D\left(\frac{1}{2}, 1\right) = 48 \cdot \left(\frac{1}{2}\right)^2 - 4 = 8$$

$$D\left(\frac{1}{2}, 1\right) > 0$$

$$f_{xx}\left(\frac{1}{2}, 1\right) = 24 \cdot \left(\frac{1}{2}\right)^2 - 2 = 4$$

$$f_{xx}\left(\frac{1}{2}, 1\right) > 0$$

Entonces:

Tenemos que
$$D\left(\frac{1}{2},1\right)>0$$
 y $f_{xx}\left(\frac{1}{2},1\right)>0$, por lo tanto $f\left(\frac{1}{2},1\right)$ es un **minimo relativo**.

Para el punto critico $P_3\left(-\frac{1}{2},1\right)$ tenemos que:

$$D\left(-\frac{1}{2},1\right) = 48 \cdot \left(-\frac{1}{2}\right)^2 - 4 = 8$$

$$D\left(-\frac{1}{2},1\right) > 0$$

$$f_{xx}\left(-\frac{1}{2},1\right) = 24 \cdot \left(-\frac{1}{2}\right)^2 - 2 = 4$$

$$f_{xx}\left(-\frac{1}{2},1\right) > 0$$

Entonces:

Tenemos que $D\left(-\frac{1}{2},1\right) > 0$ y $f_{xx}\left(-\frac{1}{2},1\right) > 0$, por lo tanto $f\left(-\frac{1}{2},1\right)$ es un **minimo relativo.**

26.(f):
$$z = xy + \frac{50}{x} + \frac{20}{y}$$
 si $y > 0, x > 0$

Las primeras derivadas parciales son:

$$\frac{\partial z}{\partial x} = y - \frac{50}{x^2}$$

$$\frac{\partial z}{\partial y} = x - \frac{20}{y^2}$$

Localizamos los puntos criticos:

From Exercises Funds Criticos:
$$f_x = y - \frac{50}{x^2} = 0$$

$$y = \frac{50}{x^2} = 0$$

$$y = \frac{50}{x^2} = 0$$

$$x = \frac{20}{y^2} = 0$$

$$x = \frac{20}{y^2} = 0$$
Remplazo (1) en (2):
$$x = \frac{20}{y^2}$$

$$x = \frac{20}{(\frac{50}{x^2})^2}$$

$$x = \frac{20}{x^2}$$

Las segundas derivadas parciales son:

x = 5, en x = 0 la funcion no esta definida.

$\frac{\partial^2 z}{\partial x^2} = \frac{100}{x^3}$	$\frac{\partial^2 z}{\partial y^2} = \frac{40}{x^3}$
$\frac{\partial^2 z}{\partial x \partial y} = 1$	$\frac{\partial^2 z}{\partial y \partial x} = 1$

Prueba de las segundas derivadas:

$$D(x,y) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y \partial x} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{vmatrix} = \begin{vmatrix} \frac{100}{x^3} & 1 \\ 1 & \frac{40}{x^3} \end{vmatrix} = \left(\frac{100}{x^3} \cdot \frac{40}{x^3} \right) - (1 \cdot 1) = \frac{4000}{x^6} - 1$$

Para el punto critico $P_1(5,2)$ tenemos que:

$D(5,2) = \frac{4000}{(5)^6} - 1 = \frac{16}{625} \approx 0.025$	D(5,2) > 0
$f_{xx}(5,2) = \frac{100}{(5)^3} = \frac{4}{5}$	$f_{xx} > 0$

Entonces:

Tenemos que D(5,2) > 0 y $f_{xx}(5,2) > 0$, por lo tanto f(5,2) es un **minimo relativo**.

29.(d): u = x - 2y + 2z sujeto a $x^2 + y^2 + z^2 = 1$

$$\frac{\partial u}{\partial x} = 1$$

$$\frac{\partial u}{\partial y} = -2$$

$$\frac{\partial u}{\partial z} = 2$$

$$g(x, y, z) = x^2 + y^2 + z^2$$

$$\frac{\partial g}{\partial x} = 2x$$

$$\frac{\partial g}{\partial y} = 2y$$

$$\frac{\partial g}{\partial z} = 2z$$

$u_x(x,y,z) = \lambda g_x(x,y,z)$	$u_y(x,y,z) = \lambda g_y(x,y,z)$	$u_z(x,y,z) = \lambda g_z(x,y,z)$
$1 = \lambda 2x$	$-2 = \lambda 2y$	$2 = \lambda 2z$
$\frac{1}{2x} = \lambda$	$-\frac{1}{y} = \lambda$	$\frac{1}{z} = \lambda$

$$x = \frac{1}{2\lambda}$$

$$y = -\frac{1}{\lambda}$$

$$z = \frac{1}{\lambda}$$

$$x^{2} + y^{2} + z^{2} - 1 = 0$$

Remplazamos la ultima ecuación para encontrar λ :

$$x^{2} + y^{2} + z^{2} - 1 = 0$$

$$\left(\frac{1}{2\lambda}\right)^{2} + \left(-\frac{1}{\lambda}\right)^{2} + \left(\frac{1}{\lambda}\right)^{2} - 1 = 0$$

$$\frac{1}{4\lambda^{2}} + \frac{1}{\lambda^{2}} + \frac{1}{\lambda^{2}} - 1 = 0$$

$$\frac{1}{\lambda^{2}} \left(\frac{1}{4} + 1 + 1\right) = 1$$

$$\frac{1}{\lambda^{2}} = \frac{4}{9}$$

$$(\lambda^{2}) \frac{1}{\lambda^{2}} = (\lambda^{2}) \frac{4}{9}$$

$$1 = \frac{4\lambda^{2}}{9}$$

$$9 = 4\lambda^{2}$$

$$\frac{9}{4} = \lambda^{2}$$

$$\lambda_{1} = \frac{3}{2}, \ \lambda_{2} = -\frac{3}{2}$$

Remplazamos λ_1 para encontrar x_1, y_1, z_1 :

$$x_{1} = \frac{1}{2\lambda}
x_{1} = \frac{1}{2\left(\frac{3}{2}\right)}
x_{1} = \frac{1}{2\left(\frac{3}{2}\right)}
x_{1} = \frac{1}{3}$$

$$y_{1} = -\frac{1}{\left(\frac{3}{2}\right)}
y_{1} = -\frac{2}{3}$$

$$z_{1} = \frac{1}{\lambda}
z_{1} = \frac{1}{\left(\frac{3}{2}\right)}
z_{1} = \frac{2}{3}$$

Entonces $x_1 = \frac{1}{3}$, $y_2 = -\frac{2}{3}$, $z_2 = \frac{2}{3}$. De tal manera, un extremo con restricciones es: $u\left(\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right) = 3$

Remplazamos λ_2 para encontrar x_2, y_2, z_2 :

$$x_{2} = \frac{1}{2\lambda}
x_{2} = \frac{1}{2\left(-\frac{3}{2}\right)}
x_{2} = -\frac{1}{\left(-\frac{3}{2}\right)}
x_{2} = -\frac{1}{3}$$

$$y_{2} = -\frac{1}{\left(-\frac{3}{2}\right)}
y_{2} = \frac{2}{3}$$

$$z_{2} = \frac{1}{\lambda}
z_{2} = \frac{1}{\left(-\frac{3}{2}\right)}
z_{2} = -\frac{2}{3}$$

Entonces $x_2 = -\frac{1}{3}$, $y_2 = \frac{2}{3}$, $z_2 = -\frac{2}{3}$. De tal manera, un extremo con restricciones es: $u\left(-\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}\right) = -3$

30. Hallar el valor maximo de $f(x, y) = 9 - x^2 - y^2$ sobre la recta x + 3y = 12.

$$\frac{\partial f}{\partial x} = -2x$$

$$\frac{\partial f}{\partial y} = -2y$$

$$g(x,y) = x + 3y - 12$$

$$\frac{\partial g}{\partial x} = 1$$

$$\frac{\partial g}{\partial y} = 3$$

$f_x(x,y) = \lambda g_x(x,y)$	$f_y(x,y) = \lambda g_y(x,y)$
$-2x = \lambda 1$	$-2y = \lambda 3$
$-2x = \lambda$	$-\frac{2y}{3} = \lambda$

$$x = -\lambda \frac{1}{2}$$
$$y = -\lambda \frac{3}{2}$$
$$x + 3y - 12 = 0$$

Remplazamos la ultima ecuacion para encontrar λ :

$$(-\lambda \frac{1}{2}) + 3(-\lambda \frac{3}{2}) - 12 = 0$$

$$-\lambda \frac{1}{2} - \lambda \frac{9}{2} - 12 = 0$$

$$-\lambda \frac{1}{2} - \lambda \frac{9}{2} = 12$$

$$\lambda \left(-\frac{1}{2} - \frac{9}{2}\right) = 12$$

$$\lambda (-5) = 12$$

$$\lambda = -\frac{12}{5}$$

$$x = -\lambda \frac{1}{2}$$

$$x = -\left(-\frac{12}{5}\right) \frac{1}{2}$$

$$x = \frac{6}{5}$$

$$y = -\lambda \frac{3}{2}$$
$$y = -\left(-\frac{12}{5}\right)\frac{3}{2}$$
$$y = \frac{18}{5}$$

Entonces $x = \frac{6}{5}$, $y = \frac{18}{5}$. De tal manera, un extremo con restricciones es: $f\left(\frac{6}{5}, \frac{18}{5}\right) = -\frac{27}{5}$

