Hybrid Glider Progress and Future Directions

6th Biannual NRC-IOT Workshop on Underwater Vehicle Technology Halifax, NS Brian Claus, Ralf Bachmayer

Gliders

- Specialized AUV
 - ❖ Ballast
 - Wings
 - Sawtooth trajectory

Schematic defining relevant angles and forces

Motivation

 Why are you putting another propulsion device onto a Glider?

- Horizontal flight
- Higher speeds
- Underwater docking

Hybrid Glider flying potential ice profiling mission. [RB]

Test System

Slocum 200m electric glider

- ASL ice profiling sonar
- Prototype auxiliary propulsion

Glider 49 in Marine Institute Flume Tank

Integration

Mechanical

Propulsion device replaces 500g emergency

drop weight

Electrical

- Plugs into standard impulse connector
- Controlled through science computer

Hybrid Glider in Marine Institute Flume Tank with propulsion module installed

Full Scale Flume Tank Tests

- Drag and Self **Propulsion**
 - ❖Zero angle of attack

Close up of Test layout

Upstream loadcell (25N)

Full Scale Flume Tank Tests

Results

Electrical Power for Self Propulsion

Motor Duty Cycle for Self Propulsion

Horizontal Flight

Strategy

- Existing drift-at-depth behaviour
 - Depth Ballast system
 - Pitch Mass shifting
- Auxiliary propulsion system for horizontal movement

Depth Controller Tuning

To Tune

Tests in Deep Water Test Tank

Depth Controller Tuning

• ż_{in} tuning

$$\dot{z}_{in} = 0.1 \text{ m/s}$$

V_o tuning

$$❖$$
V_o = -30 cc

Open Water tests

- Depth, pitch controlled
- Heading fixed
- 30m at different speeds

Glider 49 in the OEB

Results

Top to Bottom 0.3 - 0.6 m/s

- Righting moment
 - Roll/torque measurements

$$H = \frac{\tau_m}{F_q \sin(\phi)}$$

Long Range Navigation

Problems with Inertial Systems

- Continuous power requirements
- Drift over time

Augmentation

- Surface Fix
- Acoustic solutions
- Terrain Relative Navigation
- Geomagnetic Relative Navigation

- Local Magnetic
 Fields
 - Additional
 Information for
 augmentation of map
 relative navigation

Bathymetry shown in top figure with magnetic variation shown in bottom figure²

2. Teixeira et al. "Geophysical Navigation of Autonomous Underwater Vehicles Using Geomagnetic Information," in Proc. 2nd IFAC Workshop, Navigation, Guidance and Control of Underwater Vehicles, Ireland, 2008.

- Earth Magnetic
 Field
 - Main field
 - Use field intensity and direction to locate vehicle

Diagram showing earth main field line directions and a breakdown of the main field into horizontal and vertical components¹

1. Lohmann et al. "Long Distance Navigation in Sea Turtles," Ethology Ecology & Evolution, 11: 1-23, 1999.

Bicoordinate Map

- Intensity and inclination not parallel
- Allows calculation of lat/lon
- Roughly
 - 3.3nT/km
 - 0.0066°/km

Map showing the lines of equal intensity [nT] (blue) and inclination angle [deg](red). From Geological Survey of Canada Website.

Problems

- Field variations
 - Quiet daily field time variations
 - 20-100nT
 - Solar disturbance time variations
 - 250-1000nT
- Sensing
- Model predictive accuracy

Future Work

- Stability analysis
 - Ocean trials over longer distance
- Navigational Behaviors
 - Long range low power navigation without surface access
 - Combining depth and pitch controllers
 - Updating glider ded-reckoning algorithm for level flight

Conclusions

- Hybrid glider propulsion module has been developed and integrated
- Low power requirements and small impact on existing system
- Long range navigation methods in development for use in the North Atlantic

Acknowledgements

I would like to thank my supervisor, Dr. Ralf Bachmayer, Paul Winger, George Legge and Tara Perry from the Marine Institute, Jack Foley and Craig Mitchell from Memorial University of Newfoundland (MUN), Chris Williams, Jeswin Jeyasuyra and Moqin He of the National Research Council Canada, Paul Lacroix and the Canadian Centre for Ocean Gliders for use of the glider and the Physical Oceanography Department at MUN for providing additional instrumentation and experimental support. This project is supported through funding provided by Natural Sciences and Engineering Research Council, Memorial University of Newfoundland and Suncor-Petro Canada.

Questions

Implementation

Design Constraints

- Provide sprint mode
- Meet or exceed upon the propulsive efficiency of buoyancy driven glider at typical speeds
- Minimal impact on normal glider operations
- High reliability

Design

Motor

- 4W Geared brushed DC motor
- Driven directly from rail voltages of 3.3V and 15V
- Motor operational range estimated using OpenPVL propeller scripting

Design

Coupling and Bearings

- Magnetic coupling minimizes losses due to mechanical shaft sealing
- Ceramic bearings are low friction and corrosion resistant

Design

- Propeller
 - Folds out of the way when not in use

Open Water Propulsion Tests

Estimating Efficiency

- Developed thrust required for calculation
- Thrust from the previously mentioned propeller curves matched with tow tank data

Estimated transport efficiency and of Hybrid Glider during tow tank tests

Ballast Pump Power Monitoring

An Indiana Control of the Indiana Control of

Power Monitoring Board

Ballast Pump Mechanical Power

Positive Volumetric Rate

$$P_{bpm} = p(z)Q$$

Negative Volumetric Rate
$$Q = \frac{d}{dt}V \qquad \qquad p = p_o + \rho gz$$

Ballast Pump Electrical Power

$$P_{bpi} = P_0 z + P_1$$

P_0	0.3 W/m
P_1	8.2 W

$$E_{bpe} = (P_0 z + P_1) \frac{V_B}{Q^+} + P_1 \frac{V_B}{Q^-}$$

$$t_{bp} = \frac{\dot{z}}{z}$$

$$P_{bpe} = \frac{E_{bpe}}{t_{bp}}$$

$$V_B = 4.50E - 4m^3$$
 $\dot{z} = 0.1922$ m/s

Instantaneous Ballast Pump Power at Depth

Power and Efficiency

Glider 48 transport efficiency results

$$P_{hyd} = F_D v_A$$

$$v_A = \frac{\dot{z}}{\sin(\xi)}$$

$$F_D = \frac{1}{2} \rho A C_D(\alpha) v_A^2$$

$$C_D = c_2 + c_3 \alpha^2 \frac{1}{c_3} \frac{c_2}{32.3}$$

$$\eta_{bph} = \frac{P_{hyd}}{P_{bpe}}$$

$$\eta_{bpm} = \frac{P_{bpm}}{P_{bpe}}$$

1. Graver et al. "Underwater Glider Model Parameter Identification," UUST, 2003.

Propulsion Module Design

Initial Propeller Design

OpenProp Matlab codes

♦
$$F_T$$
 = 0.4 N

$$v_{\Delta} = 0.35 \text{ m/s}$$

$$\Omega_p = 100 \text{ RPM}$$

Small blade area ratio propeller

Output

$$K_T = 0.0051$$

$$\eta_p$$

Propeller Efficiency from OpenProp

$$\tau_p = K_\tau \rho (\frac{\Omega_p}{60})^2 d_p^5$$

Motor/Gearbox Selection

Propeller outputs into motor

model

$$\eta_m = \frac{\tau_m \Omega_m}{iu} \frac{2\pi}{60}$$

$$\tau_m = k_1(i - i_o)$$

$$\Omega_m = uk_2 - k_3\tau_m$$

$$\Omega_m = uk_2 - k_3k_1(i - i_o)$$

Motor and propeller efficiency matching

Propeller Selection

University Flume Tank Tests

- ❖ Measure v_A, i, u, F_T
- Characterize small blade area series of propellers

University flume tank experimental setup

$$\hat{\eta}_{sys} = \frac{F_T v_A}{iu}$$

$$\eta_p = \frac{F_T v_A}{\tau_m \Omega_m} \frac{60}{2\pi}$$

Propeller Selection

Test results

Predicted vehicle drag overlaid

Propeller Selection

Selected Propeller

- ❖ Diameter = 0.2 m
- ❖ Pitch = 0.15 m

Self Propulsion Tests

University Tow Tank

- Glider driven along guide wire
- ❖ V_A, i and v recorded

Hybrid Glider driving down tow tank on guide wire

Self Propulsion Tests

Results

Hybrid Glider propulsion device power during self propulsion tests

Tail section of Hybrid Glider showing the 'Standard Configuration'

Full Scale Flume Tank Tests

Results

Range Estimates

- Buoyancy Driven Glider
 - ***~1000 km**
 - ***~**30 days
- How does the hybrid compare

Range Estimates

Buoyancy driven	$R_{bp} = \frac{E\dot{x}}{P_{bpe} + P_h + P_l}$
Propeller driven	$R_{prop} = \frac{Ev_A}{P_{prop} + P_h + P_l}$
Propeller/buoyancy driven	$R_{hybrid} = \frac{E(\dot{x}\Delta_{bp} + v_A\Delta_{prop})}{P_{bpe}\Delta_{bp} + P_{prop}\Delta_{prop} + P_h + P_l}$
	$\Delta_{prop} = \frac{t_{prop}}{2t_{bp} + t_{prop}} \qquad \Delta_{bp} = \frac{2t_{bp}}{2t_{bp} + t_{prop}}$
	$t_{prop} = \frac{d_{prop}}{v_A} \qquad t_{bp} = \frac{\dot{z}}{z}$

Range Estimates

Assume

- $d_{prop} = 2.5 \text{ km}$
- Depth
 - z = 200 m top
 - z = 10 m bottom

0.5

0.45

Advance Velocity v, [m/s]

0.55

Range Comparisons

0.3

0.35

0.25

0.7

0.65

Pitch Controller

- Pitch control with mass shifting at zero velocity
 - Oscillations potential issue for vehicle at speed due to lift

- Pitch oscillations still present
- Tests not long enough

Roll results

Increase from top to bottom due to increase in applied torque

Top to Bottom 0.3 - 0.6 m/s