IN THE CLAIMS:

Please CANCEL claims 2 and 7, and AMEND claims 1, 6 and 8 in accordance with the following:

1. (CURRENTLY AMENDED) A WDM (Wavelength Division Multiplex) terminal device located in a WDM network, said WDM terminal device comprising:

a first compensator that collectively optically compensates dispersion of each wavelength of a first plurality of wavelength division multiplexed optical client signals;

a transmission amplifier that collectively adjusts levels of said first plurality of wavelength division multiplexed optical client signals; and

a multiplexing unit that receives the first plurality of wavelength division multiplexed optical client signals as a WDM signal, and individually receives at least one other optical client signal provided to the multiplexing unit through at least one transponder, and that wavelength division multiplexes together the received WDM signal and the individually received at least one other optical client signal, to thereby output a wavelength division multiplexed light which comprises the first plurality of optical client signals and the individually received at least one other optical client signal;

a second compensator that receives a wavelength division multiplexed signal comprising a second plurality of optical client signals and a third plurality of optical client signals, and collectively compensates dispersion of the second plurality of optical client signals and the third plurality of optical client signals in the wavelength division multiplexed signal;

a reception amplifier that collectively adjusts levels of the second plurality of optical client signals and the third plurality of optical client signals in the wavelength division multiplexed signal; and

a separating unit that receives the wavelength division multiplexed signal comprising the second plurality of optical client signals and the third plurality of optical client signals, separates the second plurality of optical client signals from the third plurality of optical client signals, while keeping wavelengths of the second plurality of optical client signals multiplexed together.

wherein the separating unit transmits the separated second plurality of optical client signals to a place which is different from where the third plurality of optical client signals is transmitted, while keeping the wavelengths of the second plurality of optical client signals multiplexed.

- 2. (CANCELED)
- 3. (CANCELED)
- 4. (CANCELED)
- 5. (CANCELED)
- 6. (CURRENTLY AMENDED) A WDM-ADM device located in a WDM network, said WDM-ADM device comprising:

a first compensator that collectively optically compensates dispersion of each wavelength of a first plurality of wavelength division multiplexed optical client signals;

a transmission amplifier that collectively adjusts levels of said first plurality of wavelength division multiplexed optical client signals; and

an adding unit that receives the first plurality of wavelength division multiplexed optical client signals as a WDM signal, and individually receives at least one other optical client signal provided to the adding unit through at least one transponder, and that adds together the received WDM signal and the individually received at least one other optical client signal;

a second compensator that receives a wavelength division multiplexed signal comprising a second plurality of optical client signals and a third plurality of optical client signals, and collectively compensates dispersion of the second plurality of optical client signals and the third plurality of optical client signals in the wavelength division multiplexed signal;

a reception amplifier that collectively adjusts levels of the second plurality of optical client signals and the third plurality of optical client signals in the wavelength division multiplexed signal; and

a dropping unit that receives the wavelength division multiplexed signal comprising the second plurality of optical client signals and the third plurality of optical client signals, drops the second plurality of optical client signals from the third plurality of optical client signals, keeping wavelengths of the second plurality of optical client signals multiplexed together.

wherein the dropping unit transmits the dropped second plurality of optical client signals to a place which is different from where the third plurality of optical client signals is transmitted, while keeping the wavelengths of the second plurality of optical client signals multiplexed.

- 7. (CANCELED)
- 8. (CURRENTLY AMENDED) An apparatus comprising:

a multiplexing unit that receives a <u>first</u> plurality of wavelength division multiplexed optical client signals as a WDM signal, and individually receives at least one other optical client signal provided to the multiplexing unit through at least one transponder, and wavelength division multiplexes together the received WDM signal and the individually received at least one other optical client signal, to thereby output a wavelength division multiplexed light which comprises the <u>first</u> plurality of <u>wavelength</u> division multiplexed optical client signals and the individually received at least one other optical client signal; <u>and</u>

a separating unit that receives a wavelength division multiplexed signal comprising a second plurality of optical client signals and a third plurality of optical client signals, separates the second plurality of optical client signals from the third plurality of optical client signals, while keeping wavelengths of the second plurality of optical client signals multiplexed together,

wherein the separating unit transmits the separated second plurality of optical client signals to a place which is different from where the third plurality of optical client signals is transmitted, while keeping the wavelengths of the second plurality of optical client signals multiplexed.

- 9. (PREVIOUSLY PRESENTED) An apparatus as in claim 8, further comprising: an amplifier collectively optically amplifying the plurality of wavelength division multiplexed optical client signals as the WDM signal, before the WDM signal is received by the multiplexing unit.
- 10. (PREVIOUSLY PRESENTED) An apparatus as in claim 8, further comprising: a dispersion compensator collectively compensating for dispersion of the plurality of wavelength division multiplexed optical client signals as the WDM signal, before the WDM signal is received by the multiplexing unit.
- 11. (PREVIOUSLY PRESENTED) An apparatus as in claim 9, further comprising: a dispersion compensator collectively compensating for dispersion of the plurality of wavelength division multiplexed optical client signals as the WDM signal, before the WDM signal is received by the multiplexing unit.