Probabilistic Context-Free Grammar

COMP90042

Natural Language Processing

Lecture 15

Ambiguity In Parsing

- Context-free grammars assign hierarchical structure to language
 - Linguistic notion of a 'syntactic constituent'
 - Formulated as generating all strings in the language; or
 - Predicting the structure(s) for a given string
- Raises problem of ambiguity, e.g., which is better?

Outline

- Probabilistic context-free grammars (PCFGs)
- Parsing using dynamic programming
- Limitations of 'context-free' assumption and some solutions:
 - parent annotation
 - head lexicalisation

Basics of Probabilistic CFGs

- As for CFGs, same symbol set:
 - ▶ Terminals: words such as book
 - Non-terminal: syntactic labels such as NP or NN
- Same productions (rules)
 - LHS non-terminal → ordered list of RHS symbols
- In addition, store a probability with each production

```
    NP → DT NN [p = 0.45]
    NN → cat [p = 0.02]
    NN → leprechaun [p = 0.00001]
```

Probabilistic CFGs

- Probability values denote conditional
 - ▶ Pr(LHS → RHS)
 - Pr(RHS | LHS)
- Consequently they:
 - must be positive values, between 0 and 1
 - must sum to one for given LHS
- E.g.,
 - ► NN \rightarrow aadvark [p = 0.0003]
 - ► NN \rightarrow cat [p = 0.02]
 - ► NN \rightarrow leprechaun [p = 0.0001]
 - $\sum_{x} \Pr(NN \to x) = 1$

	Rules	P	Rules	P
<u>s</u> –	→ VP	.05	$S \rightarrow VP$.05
VP –	Verb NP	.20	$VP \longrightarrow Verb NP NP$.10
NP –	Det Nominal	.20	NP \rightarrow Det Nominal	.20
Nominal -	Nominal Noun	.20	$NP \rightarrow Nominal$.15
Nominal -	Noun	.75	Nominal \rightarrow Noun	.75
			Nominal \rightarrow Noun	.75
Verb –	→ book	.30	$Verb \qquad \to \ book$.30
Det –	the the	.60	Det \rightarrow the	.60
Noun -	dinner dinner	.10	Noun \rightarrow dinner	.10
Noun –	flight	.40	Noun \rightarrow flight	.40

JM3 Ch14 6

Stochastic Generation with PCFGs

Almost the same as for CFG, with one twist:

- 1. Start with S, the sentence symbol
- 2. Choose a rule with S as the LHS
 - Randomly select a RHS according to Pr(RHS | LHS)
 e.g., S → VP
 - Apply this rule, e.g., substitute VP for S
- Repeat step 2 for each non-terminal in the string (here, VP)
- 4. Stop when no non-terminals remain

Gives us a tree, as before, with a sentence as the yield

How Likely is a Tree?

- Given a tree, we can compute its probability
 - Decomposes into probability of each production
- E.g., for (left) tree,

```
P(tree) =

P(S → VP) ×

P(VP → Verb NP) ×

P(Verb → Book) ×

P(NP → Det Nominal) ×

P(Det → the) ×

P(Nominal → Nominal Noun) ×

P(Nominal → Noun) ×

P(Noun → dinner) ×

P(Noun → flight)
```


How Likely is a Tree?

P(tree)

```
= P(S → VP) × P(VP → Verb NP) × P(Verb → Book) ×
P(NP → Det Nominal) × P(Det → the) × P(Nominal → Nominal Noun) ×
P(Nominal → Noun) × P(Noun → dinner) × P(Noun → flight)
```

$$= 0.05 \times 0.20 \times 0.30 \times$$

$$0.20 \times 0.60 \times 0.20 \times$$

$$0.75 \times 0.10 \times 0.40$$

$$= 2.2 \times 10-6$$

	R	ules	P
S	\rightarrow	VP	.05
VP	\rightarrow	Verb NP	.20
NP	\rightarrow	Det Nominal	.20
Nominal	\rightarrow	Nominal Noun	.20
Nominal	\rightarrow	Noun	.75
Verb	\rightarrow	book	.30
Det	\rightarrow	the	.60
Noun	\rightarrow	dinner	.10
Noun	\rightarrow	flight	.40

Resolving Parse Ambiguity

- Can select between different trees based on P(T)
- $P(T_{left}) = 2.2 \times 10^{-6}$

Parsing PCFGs

- Instead of selecting between two trees, can we select a tree from the set of all possible trees?
- Before we looked at
 - CYK
 - for unweighted grammars (CFGs)
 - finds all possible trees
- But there are often 1000s, many completely nonsensical
- Can we solve for the most probable tree?

CYK for PCFGs

- CYK finds all trees for a sentence; we want best tree
- Prob. CYK follows similar process to standard CYK
- Convert grammar to Chomsky Normal Form (CNF)

```
► E.g., VP → Verb NP NP [0.10]
```

```
becomes VP → Verb NP+NP [0.10]
NP+NP → NP NP [1.0]
```

where NP+NP is a new symbol.

PCFG Parsing Example

V → eat

		we	eat	sushi	with	chopsticks
		[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
			[1,2]	[1,3]	[1,4]	[1,5]
S	→ NP VP	1				
NP	→ NP PP	1/2		[2 2]	[2 4]	[2.5]
	→ we	1/4		[2,3]	[2,4]	[2,5]
	→ sushi	1/8				
	→ chopsticks	1/8				
PP	→ IN NP	1			[3,4]	[3,5]
IN	→ with	1				
VP	→ V NP	1/2				
	→ VP PP	1/4				
	→ MD V	1/4				[4,5]

	we	eat	sushi	with	chopsticks
	NP 1/4				
	[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
		V 1			
		[1,2]	[1,3]	[1,4]	[1,5]
S → NP VP	1		NP 1/8		
NP → NP PP	1/2		[2,3]	[2,4]	[2,5]
→ we	1/4		[=,0]	[-, ·]	[=, 0]
→ sushi	1/8			INI 4	
→ chopsticks	1/8			IN 1	
PP → IN NP	1			[3,4]	[3,5]
IN → with	1				
VP → V NP	1/2				NP 1/8
→ VP PP	1/4				., .
→ MD V	1/4				[4,5]

 $V \rightarrow eat$

			we	eat	sushi	with	chopsticks
			NP 1/4	Ø			
			[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
				V 1			
				[1,2]	[1,3]	[1,4]	[1,5]
S	\rightarrow	NP VP	1		NP 1/8		
NP	\rightarrow	NP PP	1/2		[2,3]	[2,4]	[2,5]
	\rightarrow	we	1/4		[=,0]	[, -]	[=,0]
	\rightarrow	sushi	1/8			INI 1	
	\rightarrow	chopsticks	1/8			IN 1	
PP	\rightarrow	IN NP	1			[3,4]	[3,5]
IN	\rightarrow	with	1				
VP	\rightarrow	V NP	1/2				NP 1/8
	\rightarrow	VP PP	1/4				
	\rightarrow	MD V	1/4				[4,5]

→ eat

	we	eat	sushi	with	chopsticks
	NP 1/4	Ø			
	[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
		V 1 ←—[1,2]	VP 1/16 (1/2 * 1 * 1/8) [1,3]	[1,4]	[1,5]
		[.,-]	[1,0]	[.,.]	[:,0]
S → NP VP	1		NP 1/8		
NP → NP PP	1/2		[2,3]	[2,4]	[2,5]
→ we	1/4		[2,0]	[2,7]	[2,0]
→ sushi	1/8			INI 4	
→ chopsticks	1/8			IN 1	
PP → IN NP	1			[3,4]	[3,5]
IN → with	1				
VP → V NP	1/2				NP 1/8
→ VP PP	1⁄4				
→ MD V	1/4				[4,5]

 $V \rightarrow eat$

			we	eat	sushi	with	chopsticks
			NP 1/4	Ø [0,2]	S 1/64 (1 * 1/4 * 1/64) [0,3]	[0,4]	[0,5]
				V 1 ←	VP 1/16		
				[1,2]	[1,3]	[1,4]	[1,5]
					↓		
S	\rightarrow	NP VP	1		NP 1/8		
NP	\rightarrow	NP PP	1/2		[2,3]	[2,4]	[2,5]
	\rightarrow	we	1/4		[2,0]	[4,7]	[2,0]
	\rightarrow	sushi	1/8			INI 4	
	\rightarrow	chopsticks	1/8			IN 1	
PP	\rightarrow	IN NP	1			[3,4]	[3,5]
IN	\rightarrow	with	1				
VP	\rightarrow	V NP	1/2				NP 1/8
	\rightarrow	VP PP	1/4				
	\rightarrow	MD V	1/4				[4,5]

→ eat

		we	eat	sushi	with	chopsticks
		NP 1/4	Ø	S 1/64	Ø	
		[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
			V 1 ←	VP 1/16	Ø	
			[1,2]	[1,3]	[1,4]	[1,5]
S	→ NP VP	1		NP 1/8	Ø	
NP	→ NP PP	1/2		[2,3]	[2,4]	[2,5]
	→ we	1/4		[=,0]	[-, 1]	[2,0]
	→ sushi	1/8			INI 4	
	→ chopstic	ks 1/8			IN 1	
PP	→ IN NP	1			[3,4]	[3,5]
IN	→ with	1				
VP	→ V NP	1/2				NP 1/8
	→ VP PP	1/4				
	→ MD V	1/4				[4,5]

 $V \rightarrow eat$

Prob CYK: Retrieving the Parses

- S in the top-right corner of parse table indicates success
- Retain back-pointer to best analysis
- To get parse(s), follow pointers back for each match
- Convert back from CNF by removing new nonterminals

Prob. CYK

```
function PROBABILISTIC-CKY(words,grammar) returns most probable parse and its probability for j \leftarrow from 1 to LENGTH(words) do for all \{A \mid A \rightarrow words[j] \in grammar\} table[j-1,j,A] \leftarrow P(A \rightarrow words[j]) for i \leftarrow from j-2 downto 0 do for k \leftarrow i+1 to j-1 do for all \{A \mid A \rightarrow BC \in grammar, and table[i,k,B] > 0 and table[k,j,C] > 0\} if (table[i,j,A] < P(A \rightarrow BC) \times table[i,k,B] \times table[k,j,C]) then table[i,j,A] \leftarrow P(A \rightarrow BC) \times table[i,k,B] \times table[k,j,C] back[i,j,A] \leftarrow \{k,B,C\} return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]
```

Source: JM3 Ch 14

 $table[i,j] \leftarrow table[i,j] \cup A$

for $j \leftarrow$ from 1 to LENGTH(words) do for all $\{A \mid A \rightarrow words[j] \in grammar\}$ $-table[j-1,j] \leftarrow table[j-1,j] \cup A$ for $i \leftarrow$ from j-2 downto 0 do for $k \leftarrow i + 1$ to j - 1 do

NP [4,5]

CYK can be thought of as storing all events with probability = 1

The CKY algorithm. Figure 12.5

validity test now looks to see that the child chart cells have non-zero probability

for all $\{A \mid A \rightarrow BC \in grammar \text{ and } B \in table[i,k] \text{ and } C \in table[k,j]\}$

```
function PROB BILISTIC-CKY(words, grammar) returns most probable parse
                                            and its probability
```

```
for j \leftarrow from 1 to LENGTH(words) do
   for all \{A \mid A \rightarrow words[j] \in grammar\}
       table[j-1,j,A] \leftarrow P(A \rightarrow words[j])
   for i \leftarrow from j-2 downto 0 do
        for k \leftarrow i+1 to j-1 do
                for all \{A \mid A \rightarrow BC \in grammar,
                                  and table[i,k,B] > 0 and table[k,j,C] > 0
                       if (table[i,j,A] < P(A \rightarrow BC) \times table[i,k,B] \times table[k,j,C]) then
                            table[i,j,A] \leftarrow P(A \rightarrow BC) \times table[i,k,B] \times table[k,j,C]
                            back[i,j,A] \leftarrow \{k,B,C\}
```

return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

Instead of storing set of symbols, store the probability of best scoring tree fragment covering span [i,j] with root symbol A

Overwrite lower scoring analysis if this one is better, and record the best production

chart now stores probabilities for each span and symbol

Complexity of CYK

- What's the space and time complexity of this algorithm?
 - ▶ in terms of *n* the length of the input sentence

Issues with PCFG

PCFG Problem 1: Poor Independence Assumptions

- Rewrite decisions made independently, whereas interdependence is often needed to capture global structure.
 - NP → Det N
 - Probability of this rule independent of rest of tree

	Pronoun	Non-Pronoun
Subject	91%	9%
Subject Object	34%	66%

NP statistics in the Switchboard corpus

 No way to represent this contextual differences in PCFG probabilities

Poor Independence Assumptions

		Non-Pronoun
Subject	91%	9%
Subject Object	34%	66%

$$NP \rightarrow DT NN$$
 .28
 $NP \rightarrow PRP$.25

NP statistics in the Switchboard corpus

PCFG probabilities based on Switchboard corpus

- No way to capture the fact that in subject position,
 NP → PRP should go up to 0.91
- While in object position NP → DT NN should go up to 0.66
- Solution: add a condition to denote whether NP is a subject or object

Solution: Parent Conditioning

 Make non-terminals more explicit by incorporating parent symbol into each symbol

- NP^S represents subject position (left)
- NP^VP denotes object position (right)

PCFG Problem 2: Lack of Lexical Conditioning

- Lack of sensitivity to words in tree
- Prepositional phrase (PP) attachment ambiguity
 - Worker dumped sacks into a bin

PP Attachment Ambiguity

sacks to be dumped are the ones which are already "into a bin"

Coordination Ambiguity

dogs in houses and cats

 dogs is semantically a better conjunct for cats than houses (dogs can't fit into houses!)

Solution: Head Lexicalisation

- Record head word with parent symbols
 - the most salient child of a constituent, usually the noun in a NP, verb in a VP etc

VP(dumped) → VBD(dumped) NP(sacks) PP(into)

Head Lexicalisation

- Incorporate head words into productions, such that the most important links between words is captured
 - rule captures correlations between head tokens of phrases
 - VP(dumped) / NP(sacks) for PP(into)
- Grammar symbol inventory expands massively!
 - Many of the productions much too specific, seen very rarely
 - Learning more involved to avoid sparsity problems (e.g., zero probabilities)

A Final Word

- PCFGs widely used, and there are efficient parsers available.
 - Collins parser, Berkeley parser, Stanford parser
 - all use some form of lexicalisation
- But there are other grammar formalisms
 - Lexical function grammar
 - Head-driven phrase structure grammar
 - Next lecture: dependency grammar

Required Reading

• J&M3 Ch. 14 – 14.6 (skip 14.6.1)