Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Thermal degradation of formamidinium based lead halide perovskites into *sym*-triazine and hydrogen cyanide observed by coupled thermogravimetry - mass spectrometry analysis

Emilio J. Juarez-Perez*a,b, Luis K. Onoa, Yabing Qi*,a

^aEnergy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan ^bARAID Foundation, Institute of Nanoscience of Aragon (INA), University of Zaragoza. 50018 Zaragoza, Spain

^{*}e-mail: ejjuarezperez@unizar.es; Yabing.Qi@OIST.jp

Detailed calculations for estimation of maximum release achievable per meter-square of FA based perovskite based solar cell and hydrogen cyanide instantaneous concentration observed during low temperature heating tests and.

Maximum release achievable per meter-square of FA based perovskite solar cell

The weight of one thin-film of 1 m² of surface and 500 nm thickness of FAPbI₃ or FAPbBr₃ is

$$W_{FAPbX_2/m^2} = V_{m^2} \cdot \rho_{FAPbX_3}$$

Where F^{APbX}_{3}/m^{2} is the weight of perovskite contained in the thin-film of 1 m² of surface and 500 nm thickness.

 V_{m^2} is the volume of this thin-film. $V_{m^2} = 0.5 \text{ cm}^3$ and ρ_{FAPbX_3} is the crystal density obtained from cif files reported for the α -FAPbI₃¹ or FAPbBr₃².

$$W_{FAPbI_2/m^2} = 2505 mg$$

$$W_{FAPbBr_3/m^2} = 1880 \ mg$$

Atomic weight percent of FAPbI₃ ($M_{wFAPbI3} = 632.98 \text{ mg/mmol}$)

C 1.90 %

H 0.80 %

N 4.43 %

Pb 32.73 %

I 60.15 %

Atomic weight percent of FAPbBr₃ ($M_{wFAPbBr_3} = 491.98 \text{ mg/mmol}$)

C 2.44 %

H 1.02 %

N 5.69 %

Pb 42.12 %

Br 48.72 %

 $M_{wFA+} = 45.06 \text{ mg/mmol}; M_{wHCN} = 27.02 \text{ mg/mmol}$

The maximum HCN release achievable per meter-square of FA based perovskite solar cell is,

$$W_{HCN/m^2} = W_{FAPbX_2/m^2} \cdot (\% CHN)_{FAPbX_3} \cdot M_{WHCN}/M_{WFA}$$

The maximum observed hydrogen cyanide instantaneous partial pressure during low temperature heating tests was $P_{HCN} = 1.36 \ 10^{-7}$ torr at 85 °C, see Figure S6. The equivalent HCN concentration in mg/m³ is obtained as,

$$C_{\max - HCN/m^2} = \frac{P_{HCN} M_{wHCN}}{S_{HCN} \cdot R \cdot T} \cdot \frac{W_{FAPbBr_3/m^2}}{W_{sample}}$$

Figure S1. Tandem TG-DTA/MS coupled experiments for FAI. Top panel shows a one-step type mass loss TG pattern (green line). Bottom panel shows the MS traces simultaneously recorded (1-100 amu) during the experiments. Gray dash line indicates the initial temperature (time) of the first detection of the released gases during the high-temperature thermal degradation.

Figure S2. Tandem TG-DTA/MS coupled experiments for FAac (formamidinium acetate). Top panel shows a one-step type mass loss TG pattern (green line). Bottom panel shows the MS traces simultaneously recorded (1-100 amu) during the experiments. There is a concurrent process of sublimation of FAac obscuring clear observation of released products during degradation.

Figure S3. Full MS spectra (1-200 amu) for the tandem TG-DTA/MS coupled experiments shown in Figure 1 for a) FAPbI₃ and b) FAPbBr₃.

Figure S4. Tandem TG-DTA/MS coupled experiments for FAPbBr₃ at 3 different heating rates, 5 °C/min (left), 10 °C/min (center) and 20 °C/min (right). Top panels show the archetypal two-step type mass loss TG patterns (green line) for FAPbBr₃. Bottom panels show MS traces simultaneously recorded (1-100 amu) during the experiments. Gray dash lines indicate the initial temperature (time) of the first detection of the released gases during the high-temperature thermal degradation.

Figure S5. Graphical comparisons of the theoretical fittings (solid lines) and experimental data (symbols) for TG curves during the first mass loss step of MAPbBr₃, FAPbBr₃, MAPbI₃, FAPbI₃ and the unique mass loss step of precursors FAI, FABr and FAac, and all inorganic perovskite CsPbI₃.

Figure S6. Raw m/z ratio traces (non-calibrated) recorded for NH₃ (17 amu), NH₄⁺ (18 amu), HCN (27 amu), N₂⁺ (28 amu), formamidine HCN₂H₃ (44 amu) and *sym*-triazine (54 amu) fragment.

Figure S7. a) Mass spectrometry profiles of the empty 6-ways cross chamber recorded during illumination and heating-in-the-dark pulsed experiments. The sample holder temperature is recorded during light pulses and heating on/off intervals on the empty sample holder. b) Time dependent m/z traces of selected relevant amu registered during the thermal test of the chamber under light or dark conditions.

Figure S8. Fragmentation patterns m/z peaks retrieved from the NIST MS library data (http://webbook.nist.gov/chemistry/) for a) ammonia, b) hydrogen cyanide, c) *sym*-triazine and d) hydrogen bromide.

- 1. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, *Inorg. Chem.*, 2013, **52**, 9019-9038.
- 2. S. Govinda, B. P. Kore, D. Swain, A. Hossain, C. De, T. N. Guru Row and D. Sarma, *The Journal of Physical Chemistry C*, 2018, **122**, 13758-13766.