# Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

### Análise de Componentes Principais

Prof. Tiago A. Almeida

Motivação

- Aplicação para compressão de dados
  - Redução de espaço
    - economia de espaço para armazenamento
    - redução de tempo para transmissão
    - redução da influência de ruídos ou outliers
    - visualização dos dados (3D, 2D)
    - aceleração do aprendizado dos algoritmos de AM

# Compressão de dados - Exemplo - Redundância nos dados - Muito comum na prática - Dados coletados de diferentes fontes (ex: Internet) - Elevado número de atributos - Difícil detecção manual























Visualização de dados

Aplicações reais normalmente trabalham com bases de dados com muitas amostras formadas por muitos atributos. Ex:  $X\in\Re^{100}$ 

É impossível visualizar os dados no formato original

 Muitas vezes a visualização dos dados auxilia na escolha dos métodos e na detecção de outliers

Deseja-se reduzir as dimensões para plotar

Visualização de dados

ullet Mapeamento de  $X\in \Re^{100} o Z\in \Re^2$ 



Δ Almoida

# Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

Análise de Componentes Principais
Método

# Análise de componentes principais: Ideia

Seja a base de dados X = [x<sub>1</sub>,x<sub>2</sub>]

Deseja-se reduzir de 2D → 1D





# Análise de componentes principais: Ideia



• Reduzir de 2D  $\rightarrow$  1D: encontrar direção (vetor  $u^{(1)} \in \Re^2$ ) para criar projeção que minimize o erro de projeção

# Análise de componentes principais: Ideia



■ Reduzir de 2D  $\rightarrow$  1D: encontrar direção (vetor  $u^{(1)} \in \Re^2$ ) para criar projeção que minimize o erro de projeção

# Análise de componentes principais: Ideia



• Reduzir de 2D  $\rightarrow$  1D: encontrar direção (vetor  $u^{(1)} \in \Re^2$ ) para criar projeção que minimize o erro de projeção

## Análise de componentes principais: Ideia



Reduzir de 2D  $\rightarrow$  1D: encontrar direção (vetor  $u^{(1)} \in \Re^2$ ) para criar projeção que minimize o erro de projeção

# Análise de componentes principais: Ideia



■ Reduzir de 2D  $\rightarrow$  1D: encontrar direção (vetor  $u^{(1)} \in \Re^2$ ) para criar projeção que minimize o erro de projeção

Análise de componentes principais: Ideia

#### Ideia geral

■ Reduzir de  $\mathbf{n}$ D  $\rightarrow \mathbf{k}$ D: encontrar  $\mathbf{k}$  vetores  $u^{(1)}, u^{(2)}, \dots, u^{(k)}$  para criar projeção que minimize o erro de projeção

Análise de componentes principais: Ideia

#### Ideia geral

■ Reduzir de  $\mathbf{n}$ D  $\rightarrow \mathbf{k}$ D: encontrar  $\mathbf{k}$  vetores  $u^{(1)}, u^{(2)}, \dots, u^{(k)}$  para criar projeção que minimize o erro de projeção

Exemplo



Análise de componentes principais: Ideia

#### Ideia geral

• Reduzir de  $\mathbf{n} D \to \mathbf{k} D$ : encontrar  $\mathbf{k}$  vetores  $u^{(1)}, u^{(2)}, \dots, u^{(k)}$  para criar projeção que minimize o erro de projeção



Análise de componentes principais: Ideia

#### Ideia geral

■ Reduzir de  $\mathbf{n}$ D  $\rightarrow \mathbf{k}$ D: encontrar  $\mathbf{k}$  vetores  $u^{(1)}, u^{(2)}, \dots, u^{(k)}$  para criar projeção que minimize o erro de projeção



Análise de componentes principais: Etapa 1

#### Pré-processamento dos dados

- Seja a base de treinamento:  $x^{(1)}, x^{(2)}, \ldots, x^{(m)}$
- Aplicar normalização por padronização:

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)} \quad \sigma_j = \sqrt{\frac{1}{m-1} \sum_{i=1}^m (x_i - \mu_j)^2}$$

lacksquare Substituir cada  $x_j^{(i)}$  por  $x_j^{(i)} = rac{x_j^{(i)} - \mu_j}{\sigma_j}$ 

Análise de componentes principais: Algoritmo

- Reduzir dimensionalidade de n para k
  - Computar matriz de covariância ∑:

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)}) (x^{(i)})^{T}$$

• Computar autovetores de  $\Sigma \in \Re^{nxn}$ :

$$[U, S, V] = \text{svd}(Sigma);$$
 $U, S, V \in \Re^{n \times n}$ 

Análise de componentes principais: Algoritmo

[U, S, V] = svd(Sigma):

$$U = \begin{bmatrix} | & | & | \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ | & | & | \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Direções

Análise de componentes principais: Algoritmo

• [U, S, V] = svd(Sigma):

# Análise de componentes principais: Algoritmo

Tem-se que:

$$x \in \Re^{n \times 1}$$

$$Ur \in \Re^{n \times k}$$

Cada amostra do conjunto de treinamento

Deseja-se:

$$x \in \Re^{n \times 1} \to z \in \Re^{k \times 1}$$

# Análise de componentes principais: Algoritmo

Tem-se que:

$$x \in \Re^{n \times 1}$$

$$Ur \in \Re^{n \times k} -$$

k direções selecionadas

Deseja-se:

$$x \in \Re^{n \times 1} \to z \in \Re^{k \times 1}$$

# Análise de componentes principais: Algoritmo

Projeções de x em *Ur* 

Projeções de x em Ur

Tem-se que:

$$x \in \Re^{n \times 1}$$

 $Ur \in \Re^{n \times k}$ 

Deseia-se:

$$x \in \Re^{n \times 1} \to z \in \Re^{k \times 1}$$

# Análise de componentes principais: Algoritmo

Tem-se que:

$$x \in \Re^{n \times 1}$$

$$Ur \in \Re^{n \times k}$$

Deseja-se:

$$x \in \Re^{n \times 1} \to z \in \Re^{k \times 1}$$

$$z = Ur^Tx$$

Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

Análise de Componentes Principais Reconstrução











Deseja-se: 
$$z\in\Re\to x\in\Re^2$$

#### Como:

$$Ur \in \Re^{n \times k}$$
$$z \in \Re^{k \times 1}$$

#### $z = Ur^Tx$



#### Então:

$$x_{approx} = Ur.z$$

# Análise de componentes principais: Reconstrução do dado





$$z = Ur^T x$$



 $x_{approx} = Ur.z$ 

# Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

# Análise de Componentes Principais Parâmetros

## Análise de componentes principais: Escolha de k

- k = número de dimensões de cada amostra (em PCA: quantidade de componentes principais)
- Como escolher um bom valor para k?

Análise de componentes principais: Escolha de k

• EQM da projeção: 
$$\frac{1}{m}\sum_{i=1}^{m}||x^{(i)}-x_{approx}^{(i)}||^2$$

- Variância total dos dados:  $\frac{1}{m}\sum_{i=1}^{m}||x^{(i)}||^2$
- Normalmente, k escolhido é o menor valor para

$$\frac{\frac{1}{m}\sum_{i=1}^{m}\|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m}\sum_{i=1}^{m}\|x^{(i)}\|^2} \le 0.01$$
 (1%)

99% da variância é mantida

Tiago A. Almeio

## Análise de componentes principais: Escolha de k

- Procedimento para escolha de k:
  - Início
  - Executar PCA com k = 1
  - Computar  $U_r$ ,  $z^{(1)}$ ,  $z^{(2)}$ , ...,  $z^{(m)}$ ,  $x_{approx}^{(1)}$ , ...  $x_{approx}^{(m)}$
  - Checar se

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01$$

Caso contrário, k = k + 1 e volta para início

Hago A. Air

## Análise de componentes principais: Escolha de k - SVD

- [U, S, V] = svd(Sigma)
- S: matriz diagonal n x n com autovalores (S<sub>11</sub>, S<sub>22</sub>, S<sub>nn</sub>)

$$\frac{\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - x_{approx}^{(i)}||^2}{\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^2} = 1 - \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{n} S_{ii}} \le 0.01$$

Tiago A. Almeid

## Análise de componentes principais: Escolha de k - SVD

- [U, S, V] = svd(Sigma)
- S: matriz diagonal n x n com autovalores (S<sub>11</sub>, S<sub>22</sub>, S<sub>nn</sub>)
- Escolher menor k de tal forma que:

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{n} S_{ii}} \ge 0.99$$

Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

Análise de Componentes Principais

Aplicação

# Análise de componentes principais: Aplicando PCA

• Seja o conjunto de treinamento  $X \in \Re^{10.000}$   $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$ 

# Análise de componentes principais: Aplicando PCA

- Seja o conjunto de treinamento  $X \in \Re^{10.000}$ 

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

Supor que *k* =1000 preserva 95% da variância dos dados

# Análise de componentes principais: Aplicando PCA

ullet Seja o conjunto de treinamento  $X\in\Re^{10.000}$ 

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

Extrair apenas os atributos:

$$x^{(1)}, x^{(2)}, \dots, x^{(m)} \in \mathbb{R}^{10000}$$

Tiago A. Aln

# Análise de componentes principais: Aplicando PCA

- Seja o conjunto de treinamento  $X \in \Re^{10.000}$ 

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

Extrair apenas os atributos:

$$x^{(1)}, x^{(2)}, \dots, x^{(m)} \in \mathbb{R}^{10000}$$

 $\downarrow PCA$ 

$$z^{(1)}, z^{(2)}, \dots, z^{(m)} \in \mathbb{R}^{1000}$$

Tinna A Almai

# Análise de componentes principais: Aplicando PCA

• Novo conjunto de treinamento  $Z\in\Re^{1000}$ 

$$(z^{(1)}, y^{(1)}), (z^{(2)}, y^{(2)}), \dots, (z^{(m)}, y^{(m)})$$

# Análise de componentes principais: Aplicando PCA

- Novo conjunto de treinamento  $Z\in\Re^{1000}$ 

$$(z^{(1)}, y^{(1)}), (z^{(2)}, y^{(2)}), \dots, (z^{(m)}, y^{(m)})$$

Mapear amostras de teste x<sup>(i)</sup> → z<sup>(i)</sup> usando os parâmetros (U<sub>r</sub>) encontrados na base de treinamento (z = U<sub>r</sub><sup>T</sup>.x) e computar h(z)