## Limaçon (3 tipos)

Equação polar:  $r = a \pm b \cos(\theta)$ , ou  $r = a \pm b \sin(\theta)$ ;  $a \in eb \in ...$ 

A primeira equação é de uma curva simétrica em relação ao eixo polar (cos( - B)) e a segunda (sen( B)), uma curva simétrica em relação ao eixo a 90°.

1º caso – Limaçon com um laço ([a] < b)

1.1) 
$$r = 1 - 2\cos(\theta)$$



$$1.2) r = 1 + 2\cos(\theta)$$



1.3)  $r = 1 + 2sen(\theta)$ 



1.4)  $r = 1 - 2 sen(\theta)$ 



2º caso - Cardióide (|a| = b)

2.1) 
$$r = 2 - 2\cos(\theta)$$



2.2) 
$$r = 2 + 2\cos(\theta)$$



2.3) 
$$r = 2 + 2sen(\theta)$$



2.4) 
$$r = 2 - 2 sen(\theta)$$



3º caso - Limaçon sem laço (|a) > b)

$$3.1) r = 4 + 3\cos(\theta)$$



$$3.2) r = 4 - 3\cos(\theta)$$



 $3.3) r = 4 + 3sen(\theta)$ 





Obs: Para um traçado rápido do limaçon deve-se identificar o tipo e calcular as intersecções com os eixos a 90º e polar.

- P/ eixo polar faz-se θ = 0° e θ = 180°;
  - P/ eixo a 90° faz-se θ = 90° e θ = 270°.

Se necessário, usar mais arcos côngruos.

### Rosácea

Equação polar:  $r = acos(n \theta)$ ,  $r = asen(n \theta)$ ;  $a \neq 0$  e  $n \in \mathbb{Z}^*$ ,  $com |n| \neq 1$ .

- Se n é par a rosácea tem 2n pétalas;
- Se n é impar a rosácea tem n pétalas.
  O espaçamento entre os eixos das pétalas é dado por 360° - p , onde p é o número de pétalas.

#### 4.1) $r = 2\cos(2\theta)$



4.2) r = 2sen(2 9)



 $4.3) r = 4\cos(3\theta)$ 



4.4) r = 4sen(3 8)



Obs: é importante determinar a extensão de r, bem como os pontos que são as pontas das pétalas.

## Lemniscata

Equação polar:

 $r^2 = a\cos(2\theta)$ , ou  $r^2 = a\sin(2\theta)$ ;  $a \neq 0$ .

Observar a extensão de  $\theta$ , se a > 0, então  $\cos(2\theta)$  ou  $\sin(2\theta)$  devem ser > 0 e se a < 0 então  $\cos(2\theta)$  ou  $\sin(2\theta)$  devem ser < 0 (observe a variação de  $\theta$ ).

 $5.1) r^2 = 9\cos(2\theta)$ 



 $5.2) r^2 = 9 sen(2\theta)$ 



5.3)  $r^2 = -4\cos(2\theta)$ 



5.4)  $r^2 = -4 sen(2\theta)$ 



# Espiral de Arquimedes

Equação polar:

 $r = a^{18}$ ;  $\theta \ge 0$  (sentido anti-horário) ou  $r = a^{18}$ ;  $\theta \le 0$  (sentido horário) e  $a \ne 0$ .

6.1) r = 9 (sentido anti-horário, 9 ≥ 0)



6.2) r = 28 (sentido anti-horário, 8 ≥ 0)



Obs: O esboço da espiral faz-se atribuindo valores a  $\theta$  e marcando o gráfico ponto a ponto.