CMPUT463/563 Probabilistic Graphical Models

Exact Inference: Variable Elimination

Lili Mou

Dept. Computing Science, University of Alberta

lmou@ualberta.ca

Outline

- Types of probabilistic queries
- Naïve calculation is expensive
- Dynamic programming on a chain
- Variable elimination in general
 - Evidence potentials falsify incompatible assignments
 - Eliminate a variable by fully connecting its neighbors
 - Sum-product and max-product are semirings
 - Directed and undirected graphs work in a similar way
- Efficiency of VE depends on the induced-width
 - Finding the best order is NP-hard
 - Intuition helps

Inference Questions

We group the variables of a sample into three sets X, Y, Z

- X: observed; Y: variables in question
- Z: to be marginalized out

Query types

- Probabilistic queries: P(Y|X)
 - Special case $Y = \emptyset$: probability of evidence P(X)
- Max a posteriori (MAP) inference: $\operatorname{argmax} P(Y|X)$
 - Most likely values for some variables
 - Special case
 - Most probable explanation (MPE): when $Z = \emptyset$
 - Most likely values for all other variables

Inference Questions - Applications

Query types

- Probabilistic queries: P(Y|X)
 - Special case $Y = \emptyset$: probability of evidence P(X)

Application: Outlier detection; Used in parameter learning

- Max a posteriori (MAP) inference: argmax P(Y|X)
 - Most likely values for some variables
 - Special case
 - Most probable explanation (MPE): $\underset{Y,Z}{\operatorname{argmax}} P(Y,Z \mid X)$

MAP and MPE may be different for Y

Most likely values for all other variables

Applications: Image segmentation, POS tagging Text generation from continuous latent space

$$X \longrightarrow Y$$

Joint probability tells everything

• Probabilistic queries: P(Y|X)

$$P(Y|X) \propto_Y \sum_z P(Y,z|X)$$

• Max a posteriori (MAP) inference: $\operatorname{argmax} P(Y|X)$

$$\underset{Y}{\operatorname{argmax}} \sum_{z} P(Y, z \mid X)$$

• Most probable explanation (MPE): when $Z = \emptyset$

$$\underset{Y}{\operatorname{argmax}} P(Y|X)$$

Complexity of naïve computation?

Categorization of Inference Algorithms

- Exact inference
 - Variable elimination, message passing, junction tree
 - With dynamic programming, efficiency is better than enumeration, but still NP-hard (NP-complete or harder) for a general graph
 - Tree structures: linear
- Approximate inference
 - Asymptotically correct: Monte Carlo approaches
 - Deterministically wrong: variational inference

Why dynamic programming is possible?

• Consider the query P(e)

$$P(e) = \sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a)P(b|a)P(c|b)P(d|c)P(e|d)$$

$$= \sum_{d} \sum_{c} \sum_{b} \left[\left(\sum_{a} P(a)P(b \mid a) \right) P(c \mid b)P(d \mid c)P(e \mid d) \right]$$

P(b)

Variable A is eliminated

Why dynamic programming is possible?

• Consider the query P(e)

$$P(e) = \sum_{d} \sum_{c} \sum_{b} P(b)P(c \mid b)P(d \mid c)P(e \mid d)$$

$$= \sum_{d} \sum_{c} P(c)P(d \mid c)P(e \mid d)$$

$$= \sum_{d} P(d)P(e \mid d)$$

$$= \sum_{d} P(d)P(e \mid d)$$

Such DP also works for argmax

Consider the query

$$\max_{a,b,c,d} P(e)$$

Subscripts of $m(\cdot)$ indicate they're different functions

$$\max_{a,b,c,d} P(e) = \max_{d} \max_{c} \max_{b} \max_{a} P(a)P(b|a)P(b)P(c|b)P(d|c)P(e|d)$$

$$m_{B}(b)$$

- = $\max_{d} \max_{c} \max_{b} m(b)P(c \mid b)P(d \mid c)P(e \mid d)$ This is dynamic programming (DP) not a greedy algorithm
- $= \max_{d} \max_{c} m(c) P(d \mid c) P(e \mid d)$
- $= \max_{d} m(d)P(e \mid d)$

This is dynamic programming (DP), not a greedy algorithm. For example, when computing $\max_{c} P(c)P(d \mid c)$, you get a function of d without a specific c. The choice of c depends on d, so back-pointers are needed.

Semiring

Compared with a ring, semiring does not require inverse of addition

- Algebraic structure: (\bigoplus, \odot) on a set R is a semiring if
 - ⊕ is associative and commutative with identity 0
 - $0 \oplus a = a \oplus 0 = a$
 - $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - $a \oplus b = b \oplus a$
 - o is associative with zero 0 and identity 1
 - $0 \odot a = a \odot 0 = 0$, $1 \odot a = a \odot 1 = a$
 - $(a \odot b) \odot c = a \odot (b \odot c)$
 - O distributive wrt ⊕

$$a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$$

$$(b \oplus c) \odot a = (b \odot a) \oplus (c \odot a)$$

Semiring

- Both (+, ·) and (max, ·) are semirings
- The above DP algorithms only involve the operations defined in a semiring
- Thus, the two algorithms are almost identical.

$$P(e) = \sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a)P(b \mid a)P(c \mid b)P(d \mid c)P(e \mid d)$$

$$\max_{a,b,c,d} P(e) = \max_{d} \max_{c} \max_{b} \max_{a} P(a)P(b|a)P(b)P(c|b)P(d|c)P(e|d)$$

To obtain argmax, we need back-pointers

Such DP also works for undirected graphs

$$P(e) = \sum_{d} \sum_{c} \sum_{b} \sum_{a} \frac{1}{Z} \phi_{1}(a, b) \phi_{2}(b, c) \phi_{3}(c, d) \phi_{4}(d, e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \sum_{b} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \sum_{b} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \sum_{b} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \sum_{b} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \sum_{b} \sum_{a} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \sum_{b} \sum_{c} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{3}(c,d) \phi_{4}(d,e)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{a} \sum_{b} \sum_{c} \phi_{1}(a,b) \phi_{2}(b,c) \phi_{2}(c,d)$$

$$= \frac{1}{Z} \sum_{d} \sum_{c} \sum_{b} \sum_{c} \sum_{b} \sum_{c} \sum_{d} \sum_{c} \sum_{d} \sum_{c} \sum_{d} \sum_{d} \sum_{c} \sum_{d} \sum_{$$

How about Z?

- Sum-product: marginalize out E
- Max-product: can be ignored because Z is a constant

Beyond a chain structure

From now on, we consider undirected graphs

For BNs, a conditional probability P(X | Par(X)) can immediately be interpreted as $\phi(X, Par(X))$

Suppose our query is P(Y|x) and we need to eliminate Z

$$p(Y|X) \propto p(Y,X) = \sum_{z} p(Y,z,X)$$

$$\propto \sum_{z \in Supe} (z) \phi \prod_{y:z_0 \notin Supe} (y) \gamma$$

$$\varphi \text{ with supe} \quad U \text{ suppe} (v) \setminus \{z_0\}$$

$$\varphi:z_0 \in Supe(v)$$

Eliminate a Variable

To eliminate a variable Z_0 :

- Consider all factors involving Z_0
- Eliminate Z_0 by summing all the values of Z_0
- Obtain a factor φ with a scope of Z_0 ' neighbors (fully connects the neighbor)
- Put φ back to the graphical model

Handling Evidence

 $P(Y|x) \propto P(Y,x)$, i.e., we only considers assignments compatible to evidence.

This can be handled by introducing an evidence potential

$$\delta_i = \left\{ \begin{array}{l} \text{1, if } X_i = x_i \\ \text{0, if } X_i = x_i \end{array} \right.$$

Multiply every potential containing X_i with δ_i

X_i	•••	φ
0	0	2
0	1	0.1
1	0	0.2
1	1	10

X_i	•••	$\phi \delta_i$	
0	0		<u> </u> —о
0	1	0.1	 — о
1	0	0.2	
1	1	10	

Variable Elimination

Input: Variables Y, Z, X = x, set of factors Φ

Elimination order (assuming Z_1, Z_2, \dots, Z_k wlog)

- 1. $\Phi \leftarrow \Phi$ with evidence potentials
- 2. For $i = 1, \dots, k$
- 2.1 $\Phi' \leftarrow \{ \phi \in \Phi' : Z_i \in \text{scope}(\phi) \}$
- 2.2. $\varphi \leftarrow \sum_{z_i} \prod_{\phi \in \Phi'} \phi$
- 2.3 $\Phi = \Phi \setminus \Phi' \cup \{\varphi\}$

Return $\prod_{\phi \in \Phi} \phi$ as a factor on Y given X

Some graphs don't have efficient elimination anyway

Certain graphs can be eliminated efficiently

Chordal

Example

In fact, you may eliminate either direction in this example. However, the eliminator order matters a lot

Example

Query: $P(X_k | X_0)$

Eliminate X_0, \dots, X_{k-1}, Z : linear complexity

Eliminate Z first: exponential wrt k

The *induced-width* is a size of the largest scope during variable elimination given an induction order. The *tree-width* is the minimum induced width.

Unfortunately, TreeWidth≤ M is NP-complete. Finding the smallest tree-width is NP-hard. Intuition helps.

Summary

- Types of probabilistic queries
- Naïve calculation is expensive
- Dynamic programming on a chain
- Variable elimination in general
 - Evidence potentials falsify incompatible assignments
 - Eliminate a variable by fully connecting its neighbors
 - Sum-product and max-product are semirings
 - Directed and undirected graphs work in a similar way
- Efficiency of VE depends on the induced-width
 - Finding the best order is NP-hard
 - Intuition helps