Roll No. 412039

AIM: Getting Intoduced to Data Analytics Libraries in Python.

Code & Output;

```
In [1]:
```

```
import pandas as pd
import numpy as np
```

In [3]:

```
# Reading a dataset
df = pd.read_csv("Downloads/iris.csv")
```

In [4]:

```
df.head()
```

Out[4]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object
<pre>dtypes: float64(4),</pre>		int64(1), objec	t(1)

memory usage: 7.2+ KB

In [7]:

Calculating all required statistical measure df.describe()

Out[7]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

In [9]:

Calculating variance df.var()

C:\Users\user\AppData\Local\Temp\ipykernel_4616\1568254755.py:1: FutureWar
ning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_
only=None') is deprecated; in a future version this will raise TypeError.
Select only valid columns before calling the reduction.
 df.var()

Out[9]:

Id	1887.500000
SepalLengthCm	0.685694
SepalWidthCm	0.188004
PetalLengthCm	3.113179
PetalWidthCm	0.582414
dtype: float64	

In [10]:

df.median()

C:\Users\user\AppData\Local\Temp\ipykernel_4616\530051474.py:1: FutureWarn
ing: Dropping of nuisance columns in DataFrame reductions (with 'numeric_o
nly=None') is deprecated; in a future version this will raise TypeError.
Select only valid columns before calling the reduction.
 df.median()

Out[10]:

Id	75.50
SepalLengthCm	5.80
SepalWidthCm	3.00
PetalLengthCm	4.35
PetalWidthCm	1.30
dtype: float64	

```
In [16]:
import statistics
statistics.mode(df['PetalLengthCm'])
Out[16]:
1.5
```

Conclusion : Thus, we have seen how statistical measures such as mean, median, standard deviation, variance are calculated in Data Analytics using Python.