Weather quality monitoring kit with Arduino:

Team Members: G. Vishal Sai

B. Simhadri

Course : Indroduction to Mechatronics

Guided By: Prof.Vivekanandhan Sir

Date : 19-04-2025

Introduction:

- •Weather monitoring is essential for various applications such as agriculture, forecasting, and home automation.
- •The system described in this project uses Arduino to monitor and display weather data like temperature, humidity, and light intensity.
- •The system integrates multiple sensors like DHT11 (for temperature and humidity) and LDR (for light intensity) to create a comprehensive weather monitoring system.

Problem Statement:

- •Weather changes affect various aspects of life, including agriculture, construction, and energy usage.
- •There is a need for a simple, cost-effective, and easily accessible system that monitors environmental factors such as temperature, humidity, and light intensity.
- •This system aims to provide real-time weather data using a microcontroller (Arduino) to help users track weather conditions in their surroundings.

Components Used:

•Arduino UNO: The microcontroller that processes the data from sensors and displays it.

•LCD Display (16x2): Used to display real-time

weather data.

•DHT11 Sensor: Measures temperature and humidity levels in the environment.

LDR Sensor (Light Dependent Resistor): Detects the light intensity (brightness) in the environment.

 Breadboard: For connecting the sensors and components.

 Jumper Wires: Used for making connections between components.

System Architecture:

•Sensors:

DHT11 Sensor: Measures temperature and humidity.

LDR Sensor: Measures light intensity.

Arduino UNO:

Processes data from sensors.

Controls data flow to LCD display.

•LCD Display:

Displays temperature, humidity, and light intensity readings.

•Power Supply:

Powered by USB or 9V battery

Data Flow:

Sensors → Arduino UNO → LCD Display

Working Principle

- •Sensors (DHT11 and LDR) collect temperature, humidity, and light intensity data.
- •Arduino UNO processes the data from the sensors.
- •The processed data is converted into readable values (°C, %).
- •LCD Display shows the real-time weather data (Temperature, Humidity, and Light).
- •Power Supply is provided via USB or a 9V battery for portability.

Circuit Diagram:

1. DHT11 Sensor

VCC \rightarrow 5V on Arduino

Data → Digital Pin 2 on Arduino

GND → GND on Arduino

2. LDR Sensor

One end \rightarrow 5V on Arduino

Other end → Analog Pin A0 on Arduino

GND → GND on Arduino

10k\Omega Resistor \rightarrow Between LDR and GND

3. 16x2 LCD

 $VCC \rightarrow 5V$ on Arduino

GND → GND on Arduino

Arduino Code Snippet:

? Required Libraries

Before uploading the code, ensure you have the following libraries installed in your Arduino IDE:

- •DHT sensor library by Adafruit
- Adafruit Unified Sensor library
- •LiquidCrystal_I2C library

You can install these libraries via the Arduino Library Manager:

- 1.Go to Sketch > Include Library > Manage Libraries...
- 2.In the Library Manager, search for each library by name and click "Install."

Access Full Code:

https://docs.google.com/document/d/1S1hj7rEOC8Nvv3gha5OUgqtkjCdMMHMt-qpgIfiOypM/edit?usp=drivesdk

Applications

- •Home Environment Monitoring: Ensures comfortable living conditions.
- •Educational Projects: Demonstrates sensor integration and data processing.
- •Agricultural Use: Monitors greenhouse conditions for optimal plant growth.

Future Enhancements

- •Additional Sensors: Integrate gas sensors like MQ135 for detecting pollutants.
- •Data Logging: Use SD card module to store data for analysis.
- •Wireless Communication: Implement Wi-Fi or Bluetooth for remote monitoring

Cost Analysis:

Component	Estimated Price
Arduino Uno (Compatible)	₹450
DHT11 Temperature & Humidity Sensor	From Lab
LDR (Light Dependent Resistor)	₹20
16x2 LCD Display with I2C Module	From Lab
Breadboard	₹125
Jumper Wires (Male-to-Male)	₹75
Total	₹670/-

Conclusion:

Project Summary:

Successfully built a basic environmental monitoring system using Arduino.

Learning Outcomes:

Gained insights into sensor integration, data acquisition, and environmental monitoring.

•Next Steps:

Explore advanced features and broader applications.

