

Introduction to

IPSO Smart Objects

Jaime Jiménez, Ericsson Research, IPSO Smart Objects co-chair. jaime.jimenez@ericsson.com

Carra alida a sua franza Miaba al Kantan ADM IDCO Con

Some slides are from Michael Koster ARM, IPSO Smart Objects Chair.

michael.koster@arm.com

June 17th, 2015

The Web

- Narrow Waist
 - Innovation happening on endpoints.
- > Stateless Interaction
 - REST APIs
 - HTTP client/server model and a request/response communication model.
 - HTTP stateless methods to indicate the server what to do. (GET, POST, PUT, HEAD, DELETE, TRACE).
- > Focus on Resources and Content
 - Support of extensive representation formats (e.g. HTML, JSON, XML etc.)
 - Web content can be anything (HTML files, images, video...) each piece of information is a resource.
- > Uniform Addressing
 - Resources are identified URIs, either by location or by name.
 - Hyperlinks pointing to resources.
 - IP addressing and global DNS.

Constrained Application Protocol (CoAP)

- > It is a RESTful protocol for constrained devices and networks. Similar to HTTP:
 - Client/server & Request/Response
 - GET, POST, PUT and DELETE Methods
 - Same key concepts (Media types, URL, URN...)
- > The well-known URI

```
coap://[2001:db8::2:1]/.well-known/core
```

> Resource discovery via the Resource Directory (RD)

```
Request coap://HOST_ADDRESS:PORT_NUMBER/PATH?QUERY
Response coap://ericsson.com:5683/rd/jorvas/room/541/temperature/
```

- > IPv6 oriented (using 6LowPAN)
- > UDP preferred instead of TCP, SMS also possible
 - Reliability is ensured by using with different message types:
 - Confirmable (CON), non-confirmable (NON), acknowledgement (ACK) and reset (RST).
- › Observe/Notify, adding an "observe" flag in the CoAP GET Request
 - Introduces a Publish/Subscribe model for constrained devices.

Web Linking for Constrained Devices

- > RFC6690 Constrained RESTful Environments (CoRE) Link Format.
 - -Reuses Web Linking RFC5988 for IoT.
 - Defines semantic link serialization and M2M content types.
 - -GET ./well-known/core?optional_query_string.
 - -Enables query string parameters for discovery by attribute and relation (rt, if, sz). The response looks like:

- Links are discovered using GET with content type "application/link-format"
- -JSON representation using GET with content type "application/link-format +json"

Discovery for Constrained Devices

- CoRE Link defines
 - -Link format
 - Device to device discovery.
- > Resource Directory draft adds
 - -Sleepy node support.
 - No multicast needed.
 - Remote lookup, hierarchical and federated distribution.
- Core Link is also used in RD
 - –EP POST (register) resource links to RD.
 - -EP PUT (refresh) to RD.
 - -EP DELETE (remove) their RD entry.

```
RD
|
| ----- GET /.well-known/core?rt=core.rd* -----> |
|
| <---- 2.05 Content "</rd>; rt="core.rd" ------ |
```

OMA Lightweight M2M (LWM2M)

- > Based on CoAP (runs on top) and used for management and control of constrained devices
- > Provides a set of interfaces for managing of constrained devices.
 - Bootstrap
 - Registration
 - Information Reporting
 - Device Management
 - Service Enablement
- Also allows for operations on objects (RWX, Access Control, Observation, Notification)
- Offers a simple and reusable object based model.

- Developed by IP for Smart Objects (IPSO) Alliance in the Smart Objects Working Group.
- Work exclusively on semantic Interoperability across IoT devices and applications.
- > Based on LWM2M Object Model.
- > Reusable Object IDs and Resource IDs.
- > Transport Protocol Independent (CoAP, LWM2M, MQTT, HTTP...) if support addressing, content formats and data types.
- > Encoding Independent (JSON, TLV, SenML...)
- > Basic Objects represent simple sensors and actuators.
- > Basic Starter Pack published on 2014 (Expansion Pack upcoming).
- > Tested over CoAP and LWM2M during IPSO Interoperability test on May 2015 (ARM, Ericsson, Intel, SICS, Yanzi, TUT ...).

- > Reusable Data Model for Constrained Devices
 - Across domains
- > Reusable resource and object IDs
 - Common definitions for concepts
 - Map to semantic terms e.g. temperature, currentValue
 - IDs are registered with the OMNA
- Usable in different transport protocols that support
 - URI Addressing
 - (.../home/weather/3303/0/5700)
 - Data Types
 - Content Formats
 - RWX Operations

Example 1: IPSO Humidity Sensor

Object	Object ID	Object URN	Multiple Instances?	Description
IPSO Humidity	3304	urn:oma:lwm2m:ext:3304	Yes	Relative humidity sensor, example units = %

Resource Name	Resource ID	Access Type	Multiple Instances?	Mandatory	Туре	Range or Enumeration	Units	Descriptions
Sensor Value	5700	R	No	Mandatory	Float			Last or Current Measured Value from the Sensor
Units	5701	R	No	Optional	String			Measurement Units Definition e.g. "Cel" for Temperature in Celsius.
Min Measured Value	5601	R	No	Optional	Float	Same as Measured Value	Same as Measured Value	The minimum value measured by the sensor since power ON or reset
Max Measured Value	5602	R	No	Optional	Float	Same as Measured Value	Same as Measured Value	The maximum value measured by the sensor since power ON or reset
Min Range Value	5603	R	No	Optional	Float	Same as Measured Value	Same as Measured Value	The minimum value that can be measured by the sensor
Max Range Value	5604	R	No	Optional	Float	Same as Measured Value	Same as Measured Value	The maximum value that can be measured by the sensor
Reset Min and Max Measured Values	5605	Е	No	Optional	Opaque			Reset the Min and Max Measured Values to Current Value

Object	Object ID	Object URN	Multiple Instances?	Description
Company Humidity	n	urn:company:ext:1	Yes	Relative humidity sensor, example units = %

Resource Name	Resource ID	Access Type	Multiple Instances?	Mandatory	Туре	Range or Enumeration	Units	Descriptions
Sensor Value	5700	R	No	Mandatory	Float			Last or Current Measured Value from the Sensor
Units	5701	RW	No	Optional	String			Measurement Units Definition e.g. "Cel" for Temperature in Celsius.
Reset Units	12000	E	No	Optional	Opaque			Reset the Min and Max Measured Values to Current Value
On/Off	5850	R, W		Mandatory	Boolean			This resource represents an on/off actuator, which can be controlled, the setting of which is a Boolean value (1,0) where 1 is on and 0 is off.

Example 3: Composite Object

IPSO Object Linking

- New LWM2M data type: Object Link
- Composite objects can be built using by referring to other objects instead of explicitly adding resources.
- Similar to the web-like pattern, following links.
- Linked objects are serialized inline using SenML.

Input Link (7100)	3303/0
Setpoint Link (7101)	3308/0
Output Link (7102)	3306/0
Application Type (5750)	Thermostat

8300 - IPSO Thermostat

e *		
3303/0- IPSO Temperature	3303/0- IPSO Setpoint	3303/0- IPSO Actuation

☐ UPnP harmonization – from SOAP to REST. ☐ Schema.org for registration of instances and schemas ☐ BLE/ZigBee harmonization. ✓ Draft Smart Object Data Model Design Guide @done (15-03-30) ✓ Draft Smart Object Expansion Pack for Basic Objects @done (15-04-30) ✓ Set up test servers for IPSO objects (LWM2M + TLV payload) @done (15-06-15) ☐ Draft Domain Specific Objects reference designs @due (mid 2015) ☐ Publish Smart Object Data Model Design Guided @due(15-07-31) ☐ Publish Smart Object Expansion Pack for Basic objects @due(15-07-31) ☐ Publish Smart Object Expansion Pack for Composite Objects @due(15-07-31) ☐ Publish Smart Object Expansion Pack for Reference Devices @due(15-07-31) \square IETF 93 – Bits and Bites @due(15-09-1)

