JSG Industries

Problem: Understanding and resisting drowsiness

Specifications

- Low Cost
- > Small Size
- > Accurate
- > Ergonomic
- Monitor and Alert

Fatigue factors into 13% of all workplace injuries and 20% of all crashes.

 Occupational Safety and Health Administration

WAKE

Solution: Detect signs of drowsiness and send an alert

CAD: Solidworks Design/Ideation Drawing

WAKE Concept & Solution

- Use lidar to determine that the device is put "on"
- Grab image data through Raspberry Pi
- > TensorFlow model to detect blinks
- Blink-rate-based drowsiness analysis
- Buzzer Alert

Hardware

Raspberry Pi Zero W

- Includes ribbon cable slot for a camera
- > Wireless connection
- > Pins for additional devices

Camera

- Raspberry Pi NoIR
- Monitors eye position over time to determine alertness

Time of Flight

- > Lidar
- Check if the Glasses are being worn, day or night

Glasses/Frame

Carries all electrical components

Active Buzzer

Used putty to adjust "loudness" of the buzz

Residents in America are expected to spend up to 80 hours a week in the hospital and endure single shifts that routinely last up to 28 hours—with such workdays required about four times a month, on average.

-The Atlantic

Battery Pack

Software

- Pi GND to sensor GND (black wire)
- Pi 3V3 to sensor VIN (red wire)
- Pi SDA to sensor SDA (blue wire)
- Pi SCL to sensor SCL (yellow wire)

```
>>> print('Range: {0}mm'.format(sensor.range))
Range: 16mm
>>> print('Range status: {0}'.format(sensor.range_status))
Range status: 0
>>> print('Light (1x gain): {0}lux'.format(sensor.read_lux(adafruit_vl6180x.ALS_GAIN_1)))
Light (1x gain): 1.28lux
>>>
```

Proximity Recognition

- Utilizing the VL6180X Library
 - Adafruit vl6180x time of flight micro lidar
 - <u>Documentation [Circuit Python]</u>

Internet Protocol Camera

- Mjpg-streamer + IP Camera Adapter
- Allows cv2 to recognize picamera input remotely

Tensorflow + OpenCV

 Built over TF's Object Detection API for proprietary image (blink) recognition

```
#lidar proximity detection
if sensor.range > 5:
    continue
```

```
31 # Load pipeline config and build a detection model
32 configs = config util.get configs from pipeline file(CONFIG PATH)
33 detection model = model builder.build(model config=configs['model'], is training=False)
35 # Restore checkpoint
36 ckpt = tf.compat.v2.train.Checkpoint(model=detection model)
37 ckpt.restore(os.path.join(CHECKPOINT PATH, 'ckpt-9')).expect partial()
39 @tf.function
40 def detect fn(image):
           image, shapes = detection_model.preprocess(image)
           prediction dict = detection model.predict(image, shapes)
           detections = detection model.postprocess(prediction dict, shapes)
           return detections
46 #ret: blinks per second
47 def detectBlink(blinkPerFrame, framerate):
           FRAME GAP = 120
           if len(blinkPerFrame) < FRAME GAP:
                   return 0
           else:
                   total = 0
                   for i in range(FRAME GAP):
                           total = total + blinkPerFrame(len(blinkPerFrame) - i)
                  blinkRate = (total / FRAME GAP) * framerate
                   return blinkRate
58 #@param blinks per second
59 def isTired(blinkRate):
           ABR = 0.1
          tired = blinkRate>ABR
                   print(requests.get("http://http://192.168.137.176/:5000/tired"))
           return tired
```

Scalability

Moving Forward

- Custom PCB design
- Integration with safety glasses
- Adaptations everyday workers
- > Find smaller devices and power sources

4	Α		В	С	D	E	F	G	Н
1	Item#		Cost	Description	Link		Cost	Optimized Cost	
2	1	\$	10.00	Raspberry Pi Zero W	https://w		\$ 4.99	Micro Center	https://w
3	2	\$	5.95	Raspberry Pi Zero v1.3 Camera Cable	https://w		\$ 3.00	Raspberry Pi Zero v1.3 Camera Cable (1 of 3)	https://w
4	3	\$	29.95	Raspberry Pi NoIR Camera Board v2	https://w		\$ 4.25	Raspberry Pi Camera v2 (1 of 4)	https://w
5	4	\$	13.95	VL6180 Time of Flight Distance Ranging	https://w		\$ 5.82	VL6180 Time of Flight Distance Ranging	https://w
6	5	\$	0.95	Buzzer (active)	https://w		\$ 0.57	Buzzer (active) (1 of 15)	https://w
7	6	\$	0.95	JST SH 4 pin with Female Socket	https://w		\$ 0.40	JST SH 4 pin (1 of 20)	https://w
8	7	\$	2.95	Micro USB to USB A Cable	https://w		\$ 0.07	Female Jumper Wire (1 of 80)	https://w
9	8	\$	14.95	USB Battery Pack 2200 mAh	https://w		\$ 1.07	Micro USB to USB A Cable	https://w
10							\$ 5.00	USB Battery Pack 3600 mAh	https://w
11									
12		< \$5		Sunglasses			< \$5	Sunglasses	
13									
14									
15									
16									
17		\$	84.65	Cost From Adafruit			\$ 30.17	Cost From Many Sources	
18									
19									

BOM and Optimized Cost

DEMO

jacobsen.65, zwayer.25, chong.150, sung.223@osu.edu