UAT Test Plan for ARVR Immersive Learning Solution (Car Parts) Team KiutBois

BSCS2309531 BSCS2309535

Table of Contents

1.		Scope 3	3
a	.)	Objectives and business requirements	3
b)	Pain Point	1
c	:)	What We Are Testing.	1
d	l)	What We Are Not Testing	5
2.		Testing team6	3
3.		Milestones and deliverables	7
a	.)	Design & Wireframes	7
b)	Staging environment	3
c	()	Training)
d	l)	UAT Execution11	
e	;)	Reporting & data analysis	3
4.		Environmental requirements)
a)	Hardware requirements19)
5.		Features to be tested)
a	.)	Test Case Plan)
b))	Test Case22	2

1. Scope

a) Objectives and business requirements

Goals:

- The primary goal of this UAT is to assess the effectiveness and usability of the ARVR Immersive Learning Solution (Car Parts) (Car Parts). This entails evaluating how well the application fulfils its intended purpose of providing an Immersive and engaging Learning experience for automotive engineering students and professionals. Testers will gauge the application's ability to effectively convey complex concepts related to car engine components through interactive simulations and visual representations.
- Another crucial objective is to ensure that the application meets the educational
 needs of its target audience. This includes catering to the diverse Learning styles
 and preferences of automotive engineering students and professionals. The UAT
 will focus on verifying whether the application provides sufficient depth of
 understanding, fosters critical thinking skills, and supports practical skill
 development in the field of automotive engineering.
- Success in this UAT will be measured by the application's ability to fulfil specific criteria:
 - Facilitation of Interactive Learning Experiences: Testers will assess the
 degree to which the application engages users in interactive Learning
 experiences. This includes evaluating the interactivity of 3D models,
 animations, and other ARVR features.
 - Accurate Representation of Car Engine Components: The accuracy and fidelity of 3D models representing car engine components will be scrutinized to ensure they align with real-world counterparts.
 - Seamless Integration of 3D Models and ARVR Features: The integration between 3D models and ARVR features should be seamless, allowing users to navigate, interact with, and manipulate virtual objects effortlessly.

These goals collectively serve to ascertain the ARVR Immersive Learning Solution (Car Parts)'s efficacy in enhancing Learning outcomes, providing a valuable educational resource, and addressing the educational requirements of automotive engineering students and professionals. The UAT aims to validate the application's ability to meet these objectives and contribute positively to the field of automotive education and training.

b) Pain Point

The existing methods of learning about car engine components lack interactivity and
engagement, hindering effective comprehension and practical skill development.

Traditional educational approaches often rely on static textbooks or lectures, which
fail to provide hands-on experiences or visualizations of complex concepts. As a
result, learners may struggle to grasp key principles and apply them in real-world
scenarios.

c) What We Are Testing

- i. Functionality, Usability, and Integration Aspects: The scope of testing
 encompasses various aspects of the ARVR Immersive Learning Solution (Car Parts).
 This includes evaluating its functionality, usability, and integration capabilities to
 ensure a seamless user experience.
- ii. **Accuracy of 3D Models:** Testers will verify the accuracy and fidelity of 3D models representing car engine components. These models should closely resemble their real-world counterparts to facilitate effective Learning and comprehension.
- iii. **Effectiveness of Animations:** The effectiveness of animations depicting assembly and disassembly processes will be assessed. These animations play a crucial role in elucidating complex concepts and procedures, enhancing understanding and retention.
- iv. **Implementation of Interactive Features:** The implementation of interactive features such as drag-and-drop functionality and labelling will be evaluated. These features aim to engage users actively in the learning process, promoting exploration and experimentation.

- v. **Unity Implementation:** The integration between Blender-created 3D models and ARVR features implemented in Unity will undergo testing to ensure seamless functionality and interaction.
- vi. **User Experience:** User experience aspects including navigation, interface design, and responsiveness will be scrutinized. A user-friendly interface and intuitive navigation pathways are essential for maximizing user engagement and satisfaction.

d) What We Are Not Testing

- i. Hardware Compatibility and Performance: Testing of hardware compatibility or performance limitations of VR headsets or devices falls outside the scope of this UAT. The focus remains on evaluating the application's functionality and usability rather than the underlying hardware infrastructure.
- ii. Administrative Features and Team Management Functionalities: Administrative features such as user management or team collaboration functionalities are not within the purview of this UAT. The emphasis is on assessing the core educational features and functionality of the ARVR Immersive Learning Solution (Car Parts).
- iii. **Data Overview Aspects:** Detailed data analytics or reporting features are excluded from testing in this stage. While data collection and analysis may be relevant for future iterations, they are not priorities for the current UAT phase.

By defining the scope clearly, we ensure that the UAT focuses on validating essential aspects of the ARVR Immersive Learning Solution (Car Parts) while aligning with business goals and requirements. This approach helps prioritize testing efforts and ensures that the application meets the desired objectives effectively.

2. Testing team

Name	Responsibility
Lim Hon Sheang	As the UAT Coordinator, Lim Hon Sheang plays a pivotal role in
	ensuring effective communication between end users and the Quality
	Assurance (QA) team. They serve as the central point of contact,
	facilitating discussions, gathering feedback, and conveying it to the
	QA team for action. Additionally, Lim Hon Sheang is responsible for
	setting up staging environments and developing usability test cases
	tailored to the end users' requirements. They meticulously document
	test results, analyse findings, and compile comprehensive reports
	summarizing the UAT outcomes. Their role is crucial in ensuring that
	the UAT process runs smoothly and that any issues or concerns
	raised by end users are addressed promptly and effectively.
Danny Chan Yi Xiang	Danny Chan Yi Xiang is primarily responsible for designing test
	cases that comprehensively cover the UAT objectives. Drawing upon
	their expertise in testing methodologies, Danny meticulously plans
	and structures test scenarios to validate the functionality, usability,
	and integration aspects of the ARVR Immersive Learning Solution
	(Car Parts) (Car Parts). In addition to designing test cases, Danny is
	tasked with creating test data sets that accurately represent real-world
	usage scenarios. They meticulously execute test cases, recording
	observations and findings, and collaborate with the QA team to
	ensure thorough testing coverage. Furthermore, Danny takes charge
	of writing detailed UAT reports, documenting test results, analysing
	trends, and providing actionable insights for further improvements.
	Their contributions are instrumental in ensuring the quality and
	effectiveness of the UAT process.

3. Milestones and deliverables

a) Design & Wireframes

• Link to designs:

The designs for the ARVR Immersive Learning Solution (Car Parts), including 3D models, animations, and user interface elements, will be shared through this link. These designs serve as visual references to ensure that the QA team understands the intended functionality and user experience.

• Link to wireframes:

Wireframes outlining the layout and structure of the application's screens and interactions will be provided via this link. Wireframes offer a simplified representation of the application's design, focusing on layout and content organization.

Testing Stages

1. Staging Environment Setup:

The staging environment, orchestrated by Lim Hon Sheang, will replicate the
production environment to the closest extent possible. This environment
ensures that testing occurs in a controlled setting that mirrors real-world
conditions. To achieve this, a snapshot of the production database will be
captured and utilized within the staging environment, providing testers with
access to authentic data for testing purposes.

2. Training:

Training sessions led by Danny Chan Yi Xiang will be conducted to prepare
UAT testers for their roles and responsibilities. These sessions will cover
various aspects, including an overview of the ARVR application's features,
navigation guidelines, and testing procedures. Through comprehensive
training, testers will gain the necessary knowledge and skills to effectively
execute test cases and provide valuable feedback during UAT.

3. **UAT Execution:**

• During the UAT execution phase, testers will execute predefined test cases to evaluate the application's performance and functionality. Test cases will encompass scenarios related to 3D model accuracy, animation functionality, interactive features, and user experience. Testers will meticulously document their observations, noting any discrepancies, bugs, or usability issues encountered during testing. The execution of test cases will adhere to a structured approach, ensuring thorough coverage of all relevant aspects of the ARVR application.

4. Reporting:

• Following the completion of UAT execution, a comprehensive data analysis will be conducted to review the test results. This analysis involves bug triage, where identified issues are prioritized based on severity and impact on the application's usability and functionality. A collaborative meeting will be convened to discuss the outcomes of the UAT, review the bug triage results, and strategize on necessary actions to address identified issues. The UAT report, compiled by Lim Hon Sheang, will document the findings, recommendations, and action plans derived from the UAT process.

b) Staging environment

The staging environment for the ARVR Immersive Learning Solution (Car Parts) will be designed to closely replicate the production environment while providing a controlled setting for UAT testing. The following requirements outline the setup and accessibility of the staging environment:

Data Replication: To simulate real-world conditions, a copy of the production
database will be utilized within the staging environment. This ensures that testers
have access to authentic data sets and can perform testing activities with realistic
scenarios. The process of copying the production database to the staging environment

will be overseen by the system administrator or designated personnel to maintain data integrity and security.

- User Onboarding: Testers will be onboarded to the staging environment using our existing user profiles or credentials. This approach ensures consistency and familiarity for testers, allowing them to access the staging environment with the same user permissions and privileges as in the production environment.
- **Precautionary Measures:** Clear guidelines will be provided to testers to prevent accidental modifications or disruptions to live production systems. Additionally, measures will be in place to monitor and mitigate any potential risks or issues that may arise during UAT testing to safeguard the integrity of production systems.

By adhering to these requirements, the staging environment will serve as a reliable and secure platform for conducting UAT testing of the ARVR Immersive Learning Solution (Car Parts). Testers will have access to realistic data model and scenarios, allowing them to evaluate the application's functionality, usability, and performance effectively.

c) Training

For the training of beta testers participating in the User Acceptance Testing (UAT) of the ARVR Immersive Learning Solution (Car Parts), a structured approach will be adopted to ensure testers are equipped with the necessary knowledge and skills to effectively carry out their testing responsibilities. The training sessions will be conducted over a series of meetings held during the UAT period. The following outline delineates the training schedule and content:

Training Schedule

1. First Meeting (Week 1):

• Duration: 30 minutes

• Agenda:

Presentation of New Feature & Business Objectives:

- An overview of the ARVR Immersive Learning Solution (Car Parts) will be presented, highlighting its key features, functionalities, and intended objectives.
- The business objectives driving the development of the ARVR Solution will be discussed to provide context for testers.

2. Second Meeting (Week 2):

• Duration: 1 hour

• Agenda:

Logging into Staging Environment:

- Detailed instructions will be provided on how to access the staging environment for UAT testing.
- Enabling and Best Practices on the New Feature:
- Testers will be guided on how to enable the ARVR feature within the staging environment and navigate through its functionalities.
- Best practices for utilizing the ARVR Immersive Learning Solution (Car Parts) effectively will be shared, including tips for optimal user experience and engagement.

3. Third Meeting (Week 3):

• Duration: 1 hour

• Agenda:

Reporting on Test Cases:

- Testers will be trained on how to report their findings, observations, and test results using predefined test cases or reporting templates.
- Guidelines on documenting issues, bugs, or usability concerns encountered during testing will be provided.

Q&A Session:

 An opportunity for testers to ask questions, seek clarification on any aspects of the ARVR Solution or testing process, and discuss any challenges or concerns.

Training Facilitator:

- Danny Chan Yi Xiang will oversee the organization and facilitation of the training sessions.
- As the designated UAT Coordinator, Lim Hon Sheang will ensure that testers receive comprehensive training and support throughout the UAT process.

By conducting structured training sessions, testers will gain a thorough understanding of the ARVR Immersive Learning Solution (Car Parts), its features, and functionalities. This enables testers to execute their testing tasks effectively, provide valuable feedback, and contribute to the success of the UAT initiative.

d) UAT Execution

The UAT execution for the ARVR Immersive Learning Solution (Car Parts) will span over a designated period to allow testers to thoroughly evaluate the application's functionality, usability, and performance.

Timeline:

• UAT Execution Period: [1/4/2024] to [3/4/2024]

• Deadline for UAT Execution: [5/4/2024]

Steps:

1. **Onboarding:**

- Each UAT tester will be individually onboarded to the staging environment.
- Assistance will be provided to help testers access the ARVR Immersive Learning Solution (Car Parts).

• Testers will be briefed on the testing objectives, expectations, and guidelines, which were also covered during the training sessions.

2. Test Case Execution:

- Testers will be assigned specific test cases tailored to evaluate different aspects of the ARVR Solution.
- Testers will execute the assigned test cases, interacting with the application's features and functionalities as per the defined scenarios.
- Testers will report any bugs, issues, or feedback encountered during test case execution using the designated reporting mechanism (feedback form).

3. Feedback Collection:

- Upon completion of test case execution, a quick meeting will be scheduled with each tester to gather feedback on their overall experience.
- Testers will have the opportunity to provide insights, suggestions, and comments regarding the application's usability, effectiveness, and any areas for improvement.
- Feedback collected during these sessions will be documented and compiled for further analysis and review.

4. Deadline for UAT Execution:

 The UAT execution must be completed by the specified deadline to ensure timely evaluation and subsequent actions based on the feedback received.

Reporting and Analysis:

- Testers' feedback, bug reports, and test case results will be compiled and analysed to identify patterns, trends, and areas requiring attention.
- A comprehensive UAT report will be prepared, summarizing the findings,
 observations, and recommendations gathered during the testing phase.
- The UAT report will serve as a valuable resource for informing decision-making, prioritizing enhancements, and driving improvements to the ARVR Immersive Learning Solution (Car Parts).

By following these steps and adhering to the designated timeline, the UAT execution will proceed systematically, enabling testers to provide valuable insights and feedback essential for refining and optimizing the ARVR Solution before its final deployment.

e) Reporting & data analysis

Test Case TC-001

During the execution of Test Case TC-001, testers found the eye-tracking sensor to be highly responsive and accurate in detecting the user's eye movements. The sensor effectively tracked the user's gaze as they interacted with the ARVR interface, reflecting the movement of their eyes in real-time within the virtual environment. This seamless integration of eye-tracking technology with the ARVR interface contributed to a smooth and intuitive user experience.

- Testers reported no difficulties or issues encountered while performing the test
 cases, indicating the reliable functionality of the eye-tracking sensor. Users
 expressed satisfaction with the ease of use and precision of the eye-tracking
 feature, highlighting its effectiveness in enhancing user interaction within the
 ARVR environment.
- Feedback from testers was overwhelmingly positive, emphasizing the added value brought by the eye-tracking sensor to the overall ARVR experience. The accurate detection of eye movements and seamless integration with the interface were noted as particularly impressive features.
- No significant areas of improvement were identified during the testing process, indicating that the eye-tracking sensor met or exceeded expectations in terms of performance and usability.

Overall, the successful execution of Test Case TC-001 demonstrates the effectiveness and reliability of the eye-tracking technology integrated into the ARVR solution.

Test Case TC-002

During the execution of Test Case TC-002, the functionality of the stylus pen for drag and drop actions and button clicks was thoroughly evaluated to ensure its effectiveness in facilitating user interaction within the ARVR interface.

- Testers confirmed that the stylus pen was detected and ready for use, indicating
 that the device was properly recognized by the system. This initial observation
 reassured testers that the stylus pen was available for interaction within the ARVR
 environment, setting the stage for further testing.
- Users successfully performed drag and drop actions using the stylus pen,
 demonstrating its capability to interact with components within the ARVR
 interface. This functionality enables users to manipulate virtual objects
 effectively, allowing them to engage with the learning content in a hands-on
 manner. The successful execution of drag and drop actions signifies the
 responsiveness and accuracy of the stylus pen, essential for an immersive learning
 experience.
- Testers verified that the stylus pen accurately clicked on buttons within the ARVR interface, prompting the expected actions. This precise control and responsiveness enable users to navigate through the interface seamlessly, accessing various features and functionalities with ease. The ability to trigger actions through stylus pen clicks enhances user interaction and facilitates intuitive exploration of the ARVR environment.

Overall, the successful execution of Test Case TC-002 demonstrates that the stylus pen functionality for drag and drop actions and button clicks aligns with the specified requirements. The stylus pen serves as an effective tool for user interaction within the ARVR environment, contributing to an immersive and engaging learning experience for users.

Test Case TC-003

During the execution of Test Case TC-003, the functionality of the overview button within the ARVR interface was thoroughly evaluated to ensure its effectiveness in providing users with an overview of the model.

- Testers successfully navigated to the overview section within the ARVR interface, indicating that the navigation system was intuitive and user-friendly.
 This seamless navigation experience ensures that users can easily access relevant sections of the interface without encountering any obstacles or confusion.
- Upon clicking the overview button using the stylus pen, testers observed that the overview of the model was promptly displayed as expected. This functionality allows users to gain a quick understanding of the model's layout and main components, providing valuable context for further exploration and learning. The clear and concise presentation of the model overview enhances users' comprehension and facilitates their engagement with the learning content.

Overall, Test Case TC-003 yielded a pass result, indicating that the functionality of the overview button successfully met the specified requirements. The ability to access and display the model overview enhances the ARVR learning experience by providing users with essential information in a convenient and accessible manner.

Test Case TC-004

In the analysis of Test Case TC-004, the focus was on evaluating the effectiveness of the car engine button within the ARVR interface and its associated functionalities.

- The initial step involved testers navigating to the car engine section within the ARVR interface. The successful completion of this step indicates that the interface's navigation system is intuitive and user-friendly. This aspect is crucial for ensuring that users can seamlessly access different sections of the application without encountering any obstacles or confusion.
- Upon clicking the car engine button using the stylus pen, testers confirmed that the car engine model appeared promptly on the screen. This observation verifies that the button's functionality to display the corresponding model works as intended. The prompt display of the car engine model is essential for providing

- users with immediate visual feedback and engaging them in the learning process effectively.
- Testers verified that the dissect button, which allows users to initiate the
 dissection animation for the car engine model, was correctly displayed. This
 verification ensures that users have access to all relevant functionalities within the
 ARVR interface. The presence of the dissect button enhances the application's
 interactive nature, enabling users to explore the internal components of the car
 engine in-depth.
- Upon clicking the dissect button, testers confirmed that the dissection animation
 commenced without any issues. This observation indicates that the animation
 feature is seamlessly integrated into the application and responds promptly to user
 interactions. The initiation of the dissection animation enhances the educational
 experience by providing users with a dynamic visualization of the car engine's
 internal structure and operation.

In summary, the analysis of Test Case TC-004 demonstrates that the car engine button's functionality within the ARVR interface meets the specified requirements effectively. The successful display of the car engine model and initiation of the dissection animation contribute to an immersive and informative learning experience for users. These observations affirm the application's capability to engage users and facilitate their understanding of complex concepts in automotive engineering.

Test Case TC-005

During Test Case TC-005, it demonstrates the car battery model and the button's functionality within the ARVR interface.

• The initial step involves the user navigating to the car battery section within the ARVR interface. This step aims to verify the ease and effectiveness of the interface's navigation system in accessing specific sections. Upon execution, the user successfully reaches the car battery section without encountering any navigational issues. This confirms that the navigation within the interface is intuitive and user-friendly, ensuring seamless exploration of different components.

- After reaching the car battery section, the user proceeds to click the car battery button using the stylus pen. The expected outcome is the display of the car battery model on the screen. Upon execution, the car battery model is promptly displayed, indicating that the button's functionality to showcase the corresponding model operates as intended. This ensures that users can visually inspect and explore the car battery component within the ARVR environment.
- Following the display of the car battery model, the user verifies the presence of
 the dissect button associated with the car battery. This step aims to ensure that
 users have access to additional functionalities, such as initiating dissection
 animations, for further exploration. Upon verification, the dissect button is visible
 and correctly displayed for the car battery model, confirming that users can
 engage in detailed examinations of the component's internal structure.
- In the final step, the user clicks the dissect button to trigger the dissection animation for the car battery model. The expected outcome is the seamless initiation of the animation, allowing users to explore the internal components of the battery. Upon execution, the dissection animation starts as expected, indicating successful integration and functionality of the animation feature within the ARVR interface. This enables users to gain insights into the intricate details of the car battery's construction and operation.

In summary, Test Case TC-005 verifies the functionality of the car battery button within the ARVR interface, including the display of the corresponding model and the initiation of dissection animations. The successful execution of each step ensures a comprehensive and engaging learning experience for users, facilitating their understanding of car battery components and functionalities.

Test Case TC-006

During Test Case TC-006, the user successfully navigated to the designated fuel section within the ARVR interface without encountering any issues. This initial step ensured that the user could access the specific area intended for exploring the fuel component.

- Upon reaching the fuel section, the user utilized the stylus pen to interact with the interface, specifically clicking on the fuel button. This action triggered the display of the 3D model representing the fuel system, allowing the user to visually examine the component's details and structure. The successful rendering of the fuel model indicated that the interface responded appropriately to the user's input, ensuring a seamless transition to the fuel exploration mode.
- Following the display of the fuel model, the user proceeded to verify the presence
 of the start button, which is essential for initiating the flow animation. Confirming
 the visibility of the start button ensured that users could easily access the
 functionality required to commence the animation sequence.
- Once satisfied with the verification, the user clicked on the start button using the stylus pen. This action initiated the flow animation, simulating the process of fuel moving from the fuel tank to the engine within the ARVR environment. The animation sequence played smoothly, providing users with a realistic representation of the fuel flow dynamics.

Throughout the test case execution, the ARVR interface exhibited robust functionality, accurately responding to user interactions and effectively delivering the intended learning experience. The successful completion of Test Case TC-006 confirms the proper functionality of the fuel button and flow animation feature, contributing to the overall effectiveness of the ARVR immersive learning solution for car parts.

4. Environmental requirements

a) Hardware requirements

The ARVR immersive learning solution for car parts may have specific hardware requirements to ensure optimal performance and user experience. These requirements should be verified by the QA team to ensure compatibility with testers' machines. The following outlines the minimal and recommended hardware specifications that we will be using:

- **CPU**: 11th Gen Intel® CoreTM i5-11400H processor
- **GPU**: NVIDIA® GeForce RTXTM 3060 with 6GB GDDR6 VRAM
- **Memory**: Dual-channel 16GB DDR4 SDRAM
- Additional Requirements:
 - Stylus Pen: A compatible stylus pen for interaction with the ARVR interface.

Meeting the recommended specifications will enhance performance and overall user experience.

:

5. Features to be tested

a) Test Case Plan

Test Case ID	Description	Test Priority	Pre-Requisite	Post-Requisite
TC-001	Track user's eyes	High	Laptop setup	Successful
	in the laptop		with eye-	detection of
			tracking sensor	user's eyes by
				sensor
TC-002	Verify stylus pen	High	Stylus pen	Stylus pen
	functionality for		available	successfully
	drag and drop			drags and drops
				components
TC-003	Verify	High	ARVR interface	Overview of the
	functionality of		loaded with	model is
	overview button		overview model	displayed upon
				clicking the
				button
TC-004	Verify	High	ARVR interface	Car engine
	functionality of		loaded with car	model is
	car engine		engine model	displayed upon
	button			clicking the
				button
				Dissect button is
				displayed for car
				engine
TC-005	Verify	High	ARVR interface	Car battery
	functionality of		loaded with car	model is
	car battery		battery model	displayed upon
	button			clicking the
				button

Team KiutBois – BSCS2309531, BSCS2309535

				Dissect button is
				displayed for car
				battery
TC-006	Verify	High	ARVR interface	Fuel model is
	functionality of		loaded with fuel	displayed upon
	fuel button		model	clicking the
				button
				Start button is
				displayed for
				fuel model

b) Test Case

i. Eye tracking sensor

Test TS-		TS-001		Test Case ID		TC-001
Scenario ID						
Desci	ription	User int	eraction with	Test Priority		High
		eye-trac	king sensor			
Pre-		Laptop	setup with	Post-Requisite		Successful
Requ	isite	eye-trac	king sensor			detection of user's
						eyes by sensor
		l	Te	st Execution Steps		
Step	Action		Inputs	Output	Test Result	Test Comments
1	User si	ts in	None	Proper visualization	Pass	User's presence is
	front o	f the		of ARVR interface		detected by the
	laptop					eye-tracking
						sensor.
2	User m	noves	None	Movement of eyes	Pass	Eye-tracking
	eyes w	hile		reflected in the		sensor accurately
	looking	g at the		ARVR interface		tracks user's eye
	screen					movements.
3	User lo	ooks	None	Pause or stop in eye	Pass	Eye-tracking
	away from the			movement		sensor pauses
	screen	briefly		detection		detection when
						user looks away.

ii. Stylus pen functionality

Test TS-001			Test Case ID		TC-002	
Scenario ID						
Description		Verify s	tylus pen	Test Priority		High
		function	ality for			
		drag and	drop and			
		click				
Pre-		Stylus p	en available	Post-Requisite		Stylus pen
Requ	isite					successfully
						drags and drops
						components and
						clicks buttons
		<u> </u>	T	est Execution Steps		
Step	Action		Inputs	Output	Test Result	Test Comments
1	User pi	icks up	None	Proper	Pass	Stylus pen is
	the sty	lus pen		functionality of		detected and
				stylus pen		ready for use.
				observed		
2	User at	tempts	Stylus pen	Component is	Pass	Stylus pen
	to drag	and		successfully		successfully
	drop a			dragged and		performs drag and
	compo	nent in		dropped		drop action
	the AR	VR				
	interfac	ce				
3	User at	tempts	Stylus pen	Button is clicked	Pass	Stylus pen
	to click	c on a		and action is		successfully
	button using			triggered		clicks buttons in
	the styl	lus pen				the ARVR
						interface.

iii. Overview model

Test TS-001			Test Case ID		TC-003	
Scenario ID						
Descr	iption	Verify for	unctionality	Test Priority		High
		of overv	iew button			
Pre-		ARVR i	nterface	Post-Requisite		Overview of the
Requi	site	loaded v	vith			model is
		overviev	v model			displayed upon
						clicking the
						button
Test Execution Steps						'
Step	Action		Inputs	Output	Test Result	Test Comments
1	User na	avigates	None	User navigates to	Pass	User reaches the
	to the			the overview		overview section
	overvi	ew		section in the		without issues.
	section	in the		ARVR interface		
	ARVR	-				
	interfa	ce				
2	User lo	ocates	Stylus pen	Overview of the	Pass	Overview of the
	and clicks the			model is		model is
	overview			displayed		successfully
	button using					displayed upon
	the sty	lus pen				clicking the
						button.

iv. Car engine

Test	Test TS-001			Test Case ID		TC-004
Scenario ID						
Description		Verify functionality		Test Priority		High
		of car en	igine button			
Pre-		ARVR i	nterface	Post-Requisite		Car engine model
Requi	isite	loaded v	vith car			is displayed upon
		engine n	nodel			clicking the
						button, and the
						dissect button is
						displayed for car
						engine
			To	est Execution Steps	S	
Step	Action		Inputs	Output	Test Result	Test Comments
1	User na	avigates	None		Pass	User reaches the
	to the	ear		Navigation to		car engine
	engine	section		the car engine		section without
	in the A	ARVR		section		issues.
	interfac	ce		successful		
2	User lo	ocates	Stylus pen	Car engine	Pass	Car engine
	and cli	cks the		model is		model is
	car eng	gine		displayed		successfully
	button using					displayed upon
	the stylus pen					clicking the
						button.
3	User verifies Stylus po		Stylus pen	Dissect button	Pass	Dissect button is
	the dis	sect		is visible		correctly
	button	is				displayed for the

	displayed for				car engine
	car engine				model.
4	User clicks the	Stylus pen	Dissection	Pass	Dissection
	dissect button		animation starts		animation starts
					as expected upon
					clicking the
					dissect button.

v. Car battery

v. Car battery								
Test	t TS-001			Test Case ID		TC-005		
Scenario ID								
Descr	ription	Verify f	unctionality	Test Priority		High		
		of car ba	attery button					
Pre-		ARVR i	nterface	Post-Requisite		Car battery model		
Requi	isite	loaded v	vith car			is displayed upon		
		battery r	nodel			clicking the		
						button, and the		
						dissect button is		
						displayed for the		
						car battery		
			To	est Execution Ste	eps	I		
Step	Action		Inputs	Output	Test Result	Test Comments		
1	User na	avigates	None	Navigation to	Pass	User reaches the		
	to the	car		the car battery		car battery		
	battery	section		section		section without		
	in the ARVR			successful		issues.		
	interface							
2	User locates Stylus		Stylus pen	Car battery	Pass	Car battery		
	and cli	cks the		model is		model is		
	car bat	tery		displayed		successfully		
	I		I	1	i e	i		

Team KiutBois – BSCS2309531, BSCS2309535

	button using				displayed upon
	the stylus pen				clicking the
					button.
3	User verifies	Stylus pen	Dissect button	Pass	Dissect button is
	the dissect		is visible		correctly
	button is				displayed for the
	displayed for				car battery
	car battery				model.
	model				
4	User clicks the	Stylus pen	Dissection	Pass	Dissection
	dissect button		animation		animation starts
			starts		as expected upon
					clicking the
					dissect button.

vi. Car fuel

Test	t TS-001			Test Case ID		TC-006
Scenario ID						
Description		Verify f	unctionality	Test Priority		High
		of fuel b	outton and			
		flow ani	mation			
Pre-		ARVR i	nterface	Post-Requisite		Animation for
Requi	isite	loaded v	vith fuel			fuel flow from
		model a	nd start			fuel tank to
		button v	isible			engine starts
						upon clicking the
						start button
		ı	To	est Execution Step	os	
Step	Action		Inputs	Output	Test Result	Test Comments
1	User n	avigates	None	Navigation to	Pass	User reaches the
	to the f	fuel		the fuel section		fuel section
	section	in the		successful		without issues.
	ARVR					
	interfa	ce				
2	User lo	ocates	Stylus pen	Fuel model is	Pass	Fuel model is
	and cli	cks the		displayed.		successfully
	fuel bu	itton				displayed upon
	using t	he				clicking the
	stylus pen					button.
3	User v	erifies	Stylus pen	Start button is	Pass	Start button is
	the start button			visible.		correctly
	is visit	ole for				displayed for the
	the fue	l model				fuel model.

Team KiutBois – BSCS2309531, BSCS2309535

4	User clicks the	Stylus pen	Flow	Pass	Flow animation
	start button		animation		starts as expected
			starts		upon clicking the
					start button.