

Лекция №4. Пример проекта

Толкачев Максим

m.tolkachev@metrotek.ru

План лекции

- I. Процесс создания и сборки проекта в Quartus
- II. Временные характеристики схемы
- III. Временные ограничения (Timing Constraints)
- IV. Временной анализатор в Quartus (Timing Analyzer)
- V. Настройки проекта Quartus, назначение пинов
- VI. Собираем проект игры "N-back"
 - Правила игры
 - DE0-Nano
 - Смотрим как игра работает
 - Разбираемся в проекте
 - Собираем проект в Quartus
 - о Играем
 - Добавляем отладчик

I. Процесс создания и сборки проекта в Quartus

Этапы сборки проекта в Quartus

- Проверка синтаксиса
- Отображение на ресурсы FPGA (map)
- Размещение по кристаллу (place)
- Разводка путей от элементов (route)

• Статический временной анализ

Этапы создания нового проекта в Quartus

Инструкция от Intel на YouTube: Creating a New Project with Intel® Quartus® Prime Pro Edition Software

Этапы создания нового проекта в Quartus

1. Добавить исходники

3. Добавить пины

4. Настроить проект

В текстовом редакторе пишем sdc
 Добавляем как исходник

II. Временные характеристики схемы

Временные характеристики схемы (внутри)

- На все регистры CLOCK приходит почти одновременно
- Для прохождения сигнала через LUT нужно время (и это время зависит от температуры)
- Путь между элементами тоже занимает время (и это время зависит от температуры)
- Сигнал должен прийти на вход следующего триггера чуть раньше следующего фронта CLOCK и держаться после этого немного времени

Временные характеристики схемы (внутри)

Временные характеристики схемы (внутри)

Временные характеристики схемы (внешние)

III. Временные ограничения (Timing Constraints)

Временные ограничения

Ограничения задаются на языке Synopsys Design Constraint в файле с расширением .sdc

Если проект сложнее, то есть в нем есть, например:

- Несколько тактовых сигналов
- Входной или выходной синхронный интерфейс

To нужно читать дополнительные материалы. Начать стоит с <u>TimeQuest User Guide By: Ryan Scoville</u> (будет полезен и пользователям Vivado)

IV. Временной анализатор в Quartus (Timing Analyzer)

Timing Analyzer

Раньше назывался TimeQuest теперь называется Timing Analyzer.

Основная документация: <u>Intel Quartus Prime Pro Edition User Guide: Timing Analyzer</u>

Анализ выполняется статически -- никакие "сигналы" не подаются, симуляция не проводится.

Анализатор:

- Создает список всех путей между регистрами
- Оценивается разница задержки от тактовых входов до всех регистров
- Для каждого пути рассчитывается наименьшее время прохождения сигнала (для лучшего чипа в серии при минимальной рабочей температуре)
- Для каждого пути рассчитывается **наибольшее** время прохождения сигнала (для худшего чипа в серии при максимальной рабочей температуре)

Timing Analyzer

Мультиплексор. Setup. Timing Analyzer

Результаты Timing Analyzer для мультиплексора (из лекции 3):

https://github.com/stcmtk/fpga-webinar-2020/tree/master/lecture_3/mux_demux/mux_example

Мультиплексор. Setup. Timing Analyzer

Полный путь с детализацией задержек:

P	ath Summary	Statistic	s D	ata Path	Wavef	orm Extra Fitter Inform	mation
Da	ta Arrival Path						
	Total	Incr	RF	Type	Fanout	Location	Element
1	0.000	0.000					launch edge time
2	¥ 2.181	2.181					clock path
1	0.000	0.000					source latency
2	0.000	0.000			1	PIN_R8	clk_i
3	0.000	0.000	RR	IC	1	IOIBUF_X27_Y0_N22	clk_i~input i
4	0.514	0.514	RR	CELL	1	IOIBUF_X27_Y0_N22	clk_i~input o
5	0.668	0.154	RR	IC	1	CLKCTRL_G18	clk_i~inputclkctrl inclk[0]
5	0.668	0.000	RR	CELL	25	CLKCTRL_G18	clk_i~inputclkctrl outclk
7	1.662	0.994	RR	IC	1	FF_X39_Y12_N11	data_in[0][3] clk
В	2.181	0.519	RR	CELL	1	FF_X39_Y12_N11	data_in[0][3]
3	∨ 3.170	0.989					data path
1	2.380	0.199		uTco	1	FF_X39_Y12_N11	data_in[0][3]
2	2.380	0.000	FF	CELL	1	FF_X39_Y12_N11	data_in[0][3] q
3	2.712	0.332	FF	IC	1	LCCOMB_X39_Y12_N4	mux_ins muxed_out_o[3]~3 dataa
4	3.079	0.367	FF	CELL	1	LCCOMB_X39_Y12_N4	mux_ins muxed_out_o[3]~3 combout
5	3.079	0.000	FF	IC	1	FF_X39_Y12_N5	data_out_o[3]~reg0 d
5	3,170	0.091	FF	CELL	1	FF X39 Y12 N5	data out o[3]~reg0

Мультиплексор. Hold. Timing Analyzer

C	ommand I	nfo Summa	ary of Paths					
	Slack	From Node	To Node	Launch Clock	Latch Clock	Relationship	Clock Skew	Data Delay
	0.417	sel_in	data_out_o[7]~reg0	clk_100	clk_100	0.000	0.061	0.635
	0.419	sel_in	data_out_o[6]~reg0	clk_100	clk_100	0.000	0.061	0.637
,	0.419	sel_in	data_out_o[5]~reg0	clk_100	clk_100	0.000	0.061	0.637

Мультиплексор. Hold. Timing Analyzer

Полный путь с детализацией задержек:

rai	th #1: Hold sla	ack 15 0.4	.,				
Path Summary		Statist	ics	Data Pati	h Wave	form Extra Fitter Inforr	nation
Da	ta Arrival Pat	h					
	Total	Incr	RF	Type	Fanout	Location	Element
2	∨ 2.098	2.098					clock path
1	0.000	0.000					source latency
2	0.000	0.000			1	PIN_R8	clk_i
3	0.000	0.000	RR	IC	1	IOIBUF_X27_Y0_N22	clk_i~input i
4	0.514	0.514	RR	CELL	1	IOIBUF_X27_Y0_N22	clk_i~input o
5	0.662	0.148	RR	IC	1	CLKCTRL_G18	clk_i~inputclkctrl inclk[0]
6	0.662	0.000	RR	CELL	25	CLKCTRL_G18	clk_i~inputclkctrl outclk
7	1.617	0.955	RR	IC	1	FF_X40_Y12_N19	sel_in clk
8	2.098	0.481	RR	CELL	1	FF_X40_Y12_N19	sel_in
3	∨ 2.733	0.635					data path
1	2.297	0.199		uTco	1	FF_X40_Y12_N19	sel_in
2	2.297	0.000	RR	CELL	8	FF_X40_Y12_N19	sel_in q
3	2.552	0.255	RR	IC	1	LCCOMB_X40_Y12_N24	mux_ins muxed_out_o[7]~7 datad
4	2.667	0.115	RF	CELL	1	LCCOMB_X40_Y12_N24	mux_ins muxed_out_o[7]~7 combout
5	2.667	0.000	FF	IC	1	FF_X40_Y12_N25	data_out_o[7]~reg0 d
6	2.733	0.066	FF	CELL	1	FF X40 Y12 N25	data out o[7]~reg0

нтц метротек Мультиплексор. Когда требования не сходятся

parameter DATA W = 512

parameter IN CNT = 16

нтц Метротек Мультиплексор. Когда требования не сходятся Setup

нтц Метротек Мультиплексор. Когда требования не сходятся Setup

Dat	ta Arrival Pat	h					
1	Total 0.000	Incr 0.000	RF	Туре	Fanout	Location	Element launch edge time
2	∨ 2.203	2.203					clock path
1	0.000	0.000					source latency
2	0.000	0.000			1	PIN R8	clk i
3	0.000	0.000	RR	IC	1	IOIBUF_X27_Y0_N22	clk_i~input i
4	0.514	0.514	RR	CELL	1	IOIBUF_X27_Y0_N22	clk_i~input o
5	0.668	0.154	RR	IC	1	CLKCTRL_G18	clk_i~inputclkctrl inclk[0]
6	0.668	0.000	RR	CELL	8708	CLKCTRL_G18	clk_i~inputclkctrl outclk
7	1.684	1.016	RR	IC	1	FF_X28_Y16_N13	sel_in[2] clk
8	2.203	0.519	RR	CELL	1	FF_X28_Y16_N13	sel_in[2]
3	∨ 6.499	4.296					data path
1	2.402	0.199		uTco	1	FF_X28_Y16_N13	sel_in[2]
2	2.402	0.000	FF	CELL	1920	FF_X28_Y16_N13	sel_in[2] q
3	4.467	2.065	FF	IC	1	LCCOMB_X45_Y22_N20	mux_ins Mux198~0 datab
4	4.752	0.285	FF	CELL	1	LCCOMB_X45_Y22_N20	mux_ins Mux198~0 combou
5	4.990	0.238	FF	IC	1	LCCOMB_X45_Y22_N16	mux_ins Mux198~1 datab
6	5.359	0.369	FF	CELL	1	LCCOMB_X45_Y22_N16	mux_ins Mux198~1 combou
7	6.041	0.682	FF	IC	1	LCCOMB_X46_Y26_N24	mux_ins Mux198~9 dataa
8	6.408	0.367	FF	CELL	1	LCCOMB_X46_Y26_N24	mux_ins Mux198~9 combou
9	6.408	0.000	FF	IC	1	FF_X46_Y26_N25	data_out_o[313]~reg0 d
10	6.499	0.091	FF	CELL	1	FF_X46_Y26_N25	data_out_o[313]~reg0

Высокий fanout (количество потребителей сигнала) обычно приводит к проблемам из-за удаленности регистров друг от друга.

V. Настройки проекта Quartus, назначение пинов

Настройки проекта

Category:	Device/Board
General Files Files Ubraries □ IP Settings □ P Catalog Search Locations Design Templates □ Operating Settings and Conditions Voltage Temperature □ Compilation Process Settings □ Incremental Compilation □ EDA Tool Settings □ Design Entry/Synthesis □ Simulation □ Board-Level □ Compiler Settings □ VHDL Input □ Verliog HDL Input □ Defaut Parameters □ TimeQuest Timing Analyzer - Assembler □ Design Assistant □ Signal Tap Logic Analyzer - Logic Analyzer Interface - Power Analyzer Settings □ SSN Analyzer	Specify Compilation Process options. Parallel compilation Use global parallel compilation setting from Options dialog box - Use all available processors Use all available processors Maximum processors allowed: Y Preserve fewer node names to save disk space Run Assembler during compilation Run Netlist Viewers preprocessing during compilation Run Netlist Viewers preprocessing during compilation Export version-compatible database Export directory: Save project output files in specified directory Directory name: output_files More Settings Description:
	₩ Buy Software OK Cancel Apply Help

Увеличения количества используемых процессоров не сильно ускорит сборку проекта.

Режим оптимизации: максимальная частота, минимальное потребление, минимальное количество ресурсов.

Настройки пинов

"Виртуальный" пин -- сигналы, действующие на пин не оптимизируются, но привязки к реальному пину нет. Полезно при сборке отдельных модулей (для оценки ресурсов и частоты).

Двойной клик -- пишем имя сигнала.

Двойной клик -- и не пугаемся (список огромный). Основные варианты, которые нужны:

- Virtual Pin -- объявляем сигнал виртуальным.
- Location -- задаем пин. В Value указываем имя пина.

Тактовый сигнал лучше всегда назначать на реальный пин.

VI. Собираем проект игры "N-back"

Правила игры

Нужно нажать на кнопку, когда показывается число, которое было 3 символа назад.

Отладочная плата DEO-Nano

- Altera Cyclone IV EP4CE22F17C6N FPGA
- 8 x LEDs
- 2 кнопки
- 4 переключателя
- G-Sensor ADI ADXL345
- Clock 50 МГц

Решение проблемы с драйвером USB Blaster на Windows 10: <u>Altera USB Blaster Driver Installation</u> <u>Instructions</u>

Проект nback

https://github.com/stcmtk/fpga-webinar-2020/tree/master/project

Защелкивание асинхронных сигналов

Understanding Metastability in FPGAs

Фильтр дребезга (debouncer)

Проект на github: https://github.com/stcmtk/fpga-webinar-2020/tree/master/lecture 3/debouncer

Не синхронный с тактовой частотой и **с помехами** сигнал.

Синхронизация с тактовой частотой. 2 триггера: Первый может попасть в метастабильное состояние (не 0 и не 1) и это состояние может попасть дальше в схему.

Синхронный с тактовой частотой, но все еще с помехами.

Сигнал должен не изменятся в течении заданного времени -- тогда считаем что значение стабильное.

Синхронный с тактовой частотой и чистый сигнал.

```
// Полином: x^9 + x^5 + 1
parameter WIDTH = 9;
parameter TAP1 = WIDTH-1;
parameter TAP2 = 4;
logic [WIDTH-1:0] prbs_state;
always_ff @( posedge clk_i )
  if( s_rst_i )
    prbs_state <= (WIDTH)'(1);</pre>
  else
    begin
      if( ack_i )
        begin
        end
    end
assign prbs_o = prbs_state[0];
```

До сброса prbs_state = 0 Последовательности не будет. После прошивки нужен сброс.

Генератор ПСП. LFSR

Параметры nback_logic

Параметр	Комментарий	Значение в проекте
N	n в " n -back"	3
SYMBOL_W	Разрядность одного символа.	8
SYMBOL_DURATION_HW_TICKS	Длительность показа символа в тактах клока	200000000 (4 секунды при частоте 50 МГц)
PAUSE_DURATINON_HW_TICKS	Длительность паузы между символами в тактах клока	200000000 (4 секунды при частоте 50 МГц)

Логический анализатор SignalTap

Отладчик позволяет смотреть на сигналы внутри работающей схемы.

Добавляем сигналы, на которые хотим смотреть. Чем больше сигналов, тем больше будет занято ресурсов.

Задаем тактовый сигнал. Все сигналы, которые мы добавили слева должны быть синхронны с этим сигналом.

Задаем размер выборки. Сколько тактов подряд сможем смотреть.