COMP 256: Discrete Structures Logic, Part 1

Adam Clark

California State University, Northridge

August 24, 2020

Propositions

Propositions are statements that are either true or false.

p = "The weather is lovely."

q = "I will go running."

r = "Where's the beef?"

s = "Order me a hamburger."

p and q are propositions, r and s are not.

Compound Statements

Propostions may be joined by logical connectors to form *compound* statements.

```
p = "The weather is lovely."

q = "I will go running."

r = "I will go swimming."
```

```
\neg p = "The weather is not lovely." p \land q = "The weather is lovely and I will go running." p \lor r = "The weather is lovely or I will go swimming." q \oplus r = "I will go running or I will go swimming."
```

Truth Tables

If things get confusing, use a *truth table* to figure out the value of a statement.

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \oplus q$
F	F	Т	F	F	F
F	Т	Т	F	Т	T
Τ	F	F	F	Т	Т
Т	Т	F	Т	Т	F

Example: What are the possible values for $\neg(p \oplus q) \lor (p \land q)$?

p	q	$p \oplus q$	$\neg(p\oplus q)$	$p \wedge q$	$\neg (p \oplus q) \lor (p \land q)$
F	F	F	Т	F	Т
F	T	Т	F	F	F
Т	F	Т	F	F	F
Τ	Т	F	Т	Т	Т Т

Conditional Statements

p = "The weather is lovely."

q = "I will go running."

p
ightarrow q = "If the weather is lovely, then I will go running."

Here, p is known as the *hypothesis*, and q the *conclusion*.

p	q	p o q
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

If the weather is not lovely (that is, $\neg p$), we say that $p \rightarrow q$ is vacuously true.

Converse, Inverse, Contrapositive

There are some common statements relating to the conditional $p \rightarrow q$:

p	q	p o q	q o p	$ \neg p ightarrow \neg q $	$\neg q ightarrow eg p$
F	F	Т	Т	Т	Т
F	Т	Т	F	F	Т
Т	F	F	Т	Т	F
Т	Т	Т	Т	Т	Т

Biconditional

The *biconditional* is a conjunction of a conditional, and its converse:

"I will go running iff the weather is lovely."

Tautology/Contradiction

A tautology is a logical statement that is always true:

$$p \lor \neg p$$

A contradition is a logical statement that is always false:

$$p \land \neg p$$

Logical Equivalence

Two expressions may be said to be *logically equivalent* if their truth values are the same for every combination of propositional values:

$$\neg(p \oplus q) \equiv \neg(p \oplus q) \lor (p \land q)$$

p	q	$p \oplus q$	$\neg(p\oplus q)$	$p \wedge q$	$ \neg (p \oplus q) \lor (p \land q)$
F	F	F	Т	F	T
F	Т	Т	F	F	F
Т	F	Т	F	F	F
Т	Т	F	Т	Т	T

De Morgan's Laws

Two of the most famous logical equivalences are *De Morgan's Laws*:

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

 $\neg(p \lor q) \equiv \neg p \land \neg q$

p	q	$\neg(p \land q)$	$\neg(p\lor q)$	$\neg p \lor \neg q$	$\neg p \wedge \neg q$
F	F	Т	Т	Т	Т
F	Т	Т	F	Т	F
Т	F	Т	F	Т	F
Т	Т	F	F	F	F

Idempotency

Another basic law if logical equivalence, *idempotency* states that a proposition does not change its value when involved in a conjunction:

$$p \wedge p \equiv p$$

$$p \lor p \equiv p$$

Associativity

Much like + and \times , \vee and \wedge obey associativity laws:

$$p \lor (q \lor r) \equiv (p \lor q) \lor r$$
$$p \land (q \land r) \equiv (p \land q) \land r$$

Commutativity

Again, like + and \times , \vee and \wedge obey commutativity laws:

$$p \lor q \equiv q \lor p$$
$$p \land q \equiv q \land p$$

Distributivity

Both \vee and \wedge distribute over parenthesis:

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

Identity

Much like 0 for +, and 1 for \times , *false* is an identity value for \vee , and *true* for \wedge :

$$p \lor \mathsf{F} \equiv p$$
$$p \land \mathsf{T} \equiv p$$

Domination

We can draw conclusions about certain logical statements without ever knowing the value of some propositions:

$$p \lor \mathsf{T} \equiv \mathsf{T}$$
$$p \land \mathsf{F} \equiv \mathsf{F}$$

Conditional Identities

Reconsider the idea of vacuous truth for a conditional. From this, we can conclude that if the hypothesis is *false*, a conditional statement is *true*. Otherwise, that conditional is dependent on the conclusion (takes its value):

$$p \to q \equiv \neg p \lor q$$

Similarly, we may derive (from many of the rules previously stated):

$$p \leftrightarrow q \equiv p \rightarrow q \land q \rightarrow p$$

$$\equiv (\neg p \lor q) \land (\neg q \lor p)$$

$$\equiv (\neg q \land (\neg p \lor q)) \lor (p \land (\neg p \lor q))$$

$$\equiv ((\neg q \land \neg p) \lor (\neg q \land q)) \lor ((p \land \neg p) \lor (p \land q))$$

$$\equiv ((\neg q \land \neg p) \lor F) \lor (F \lor (p \land q))$$

$$\equiv (p \land q) \lor (\neg p \land \neg q)$$

Do you want to learn TEX this semester?

- ▶ Time during labs will be devoted to introducing typesetting.
- All homeworks to be turned in as PDF, formatted using TEX.