

AEROSP 584 - Navigation and Guidance: From Perception to Control

Lectures start at 10:30am EST

Vasileios Tzoumas

Lecture 10 Slides by Ankit Goel

Outline

- What is filtering?
 - State estimator
- A little Probability Theory
 - Random vectors
 - Expected value
 - Covariance
- Optimal State Estimation
 - Optimal Predictor
 - Kalman Filter

Why?

- Navigation: Where are you?
- We are interested in where the vehicle is and where it is going
 - Position + Velocity

- We can measure position and velocity
 - Radar, GPS
- We know the equations of motion, we can integrate them
- We can combine the measurements with the equations of motion

State Estimation

What is State Estimation?

- ullet State estimation is the process of estimating the internal state x of the system using
 - Input u
 - Output *y*
 - Functions f and g

State Estimation - Example

$$\ddot{x} = u + w$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u + \begin{bmatrix} 0 \\ 1 \end{bmatrix} w \qquad (\star)$$

- To get x(t), integrate (*), but need to know x(0) and w
- Let the velocity be measured. Then

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + v$$

• Use y to compensate for the lack of knowledge of x(0) and the noise

Why Use a State Estimator?

- Estimates states that are not directly measured
 - We only measure *y*
 - We want x

- Reduce the variance of the measured state
 - Suppose you are only interested in the state that you measured
 - Filtering may improve the accuracy of the measured state
- Merge asynchronous measurements
 - A filter can blend various measurements

State Estimation

Consider the system

$$\begin{aligned} \mathbf{x}_{k+1} &= A\mathbf{x}_k + B\mathbf{u}_k + D_1\mathbf{w}_k \\ \mathbf{y}_k &= C\mathbf{x}_k + D_2\mathbf{v}_k \end{aligned}$$

Unknown Measured Computed

```
x_k \in \mathbb{R}^{l_x} is the state u_k \in \mathbb{R}^{l_u} is the input y_k \in \mathbb{R}^{l_y} is the measured output w_k \in \mathbb{R}^{l_w} is the process noise v_k \in \mathbb{R}^{l_w} is the measurement noise
```

• The goal of the state estimator is to construct an estimate \hat{x}_k of the state x_k that is best in some sense

Naïve State Estimation – Error Dynamics

$$\mathbf{x}_{k+1} = A\mathbf{x}_k + B\mathbf{u}_k + D_1\mathbf{w}_k$$

$$\hat{x}_{k+1} = A\hat{x}_k + Bu_k$$

• Define $e_k riangleq \hat{x}_k - x_k$. Then, $e_{k+1} = Ae_k - D_1 w_k$

$$e_k = A^k e_0 - \sum_{i=0}^k A^{k-i} D_1 w_i$$

- If A is Unstable or Marginally stable, then this method doesn't work
- If A is asymptotically stable, then this method may work
 - Decay of e_0 governed by the eigenvalues of A

Naïve State Estimation – Example

$$\begin{aligned} x_{k+1} &= x_k + u_k + w_k \\ \hat{x}_{k+1} &= \hat{x}_k + u_k \end{aligned}$$

$$e_k = e_0 - \sum_{i=0}^k w_i$$

$$x_0 = 1, \hat{x}_0 = 0$$

- Case 1 $w_k = 1$
- Case 2 $w_k \sim \mathcal{N}(0,1)$

State Estimator

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + D_1 w_k \\ y_k &= Cx_k + D_2 v_k \end{aligned}$$

$$\hat{\mathbf{x}}_{k+1} = A\hat{\mathbf{x}}_k + B\mathbf{u}_k + K(\mathbf{y}_k - C\hat{\mathbf{x}}_k)$$

- Define $e_k riangleq \hat{x}_k x_k$. Then, $e_{k+1} = (A KC)e_k + KD_2v_k D_1w_k$
- If (A, C) is observable, then the eigenvalues of A KC can be placed arbitrarily.

$$x_{k+1} = x_k + u_k + w_k$$
$$y_k = x_k + v_k$$

$$\hat{x}_{k+1} = \hat{x}_k + u_k + K(y_k - \hat{y}_k)$$

$$\hat{y}_k = \hat{x}_k$$

$$e_{k+1} = (1 - K)e_k + Kv_k - w_k$$

How should we choose *K*?

$$e_{k+1} = (1 - K)e_k + Kv_k - w_k$$

$$x_0 = 1, \hat{x}_0 = 0 \Rightarrow e_0 = 1$$

$$v_k$$
, $w_k \sim \mathcal{N}(0.1)$

$$J(K) = \sum_{i=0}^{100} e_i^2$$

$$e_{k+1} = e_k - w_k$$

How should we choose *K*?

$$e_{k+1} = (1 - K)e_k + Kv_k - w_k$$

$$x_0 = 1, \hat{x}_0 = 0 \Rightarrow e_0 = 1$$

$$v_k$$
, $w_k \sim \mathcal{N}(0.1)$

$$J(K) = \sum_{i=0}^{100} e_i^2$$

$$e_{k+1} = 0.5e_k + 0.5v_k - w_k$$

How should we choose *K*?

$$e_{k+1} = (1 - K)e_k + Kv_k - w_k$$

$$x_0 = 1, \hat{x}_0 = 0 \Rightarrow e_0 = 1$$

$$v_k$$
, $w_k \sim \mathcal{N}(0,1)$

$$J(K) = \sum_{i=0}^{100} e_i^2$$

$$e_{k+1} = v_k - w_k$$

How should we choose K?

$$e_{k+1} = (1 - K)e_k + Kv_k - w_k$$

$$x_0 = 1, \hat{x}_0 = 0 \Rightarrow e_0 = 1$$

$$v_k, w_k \sim \mathcal{N}(0,1)$$

$$J(K) = \sum_{i=0}^{100} e_i^2$$

$$e_{k+1} = (1 - K)e_k + Kv_k - w_k$$

$$x_{k+1} = x_k + u_k + w_k$$
$$y_k = x_k + v_k$$

$$\hat{x}_{k+1} = \hat{x}_k + u_k + K(y_k - \hat{x}_k)$$

$$e_{k+1} = (1 - K)e_k + Kv_k - w_k$$

$$J(K) = \sum_{i=0}^{100} e_i^2$$

So far...

- Injecting the measurement can improve the estimate accuracy
- How much to inject?

• We use probability theory to optimize the gain *K*

Random Vector

A random vector is a function

$$X:\Omega\to\mathbb{R}^n$$

- Ω is the sample space
- $X(\omega) = x \in \mathbb{R}^n$ is the value of the RV associated with the event ω
- The probability density function of a random vector X is the non-negative function $f_X : \mathbb{R}^n \to \mathbb{R}$ that satisfies

$$\Pr(X(\omega) \in \mathcal{D} \subset \mathbb{R}) = \int_{\mathcal{D}} f_X(x) dx$$

Random Vector

Expected value of X

$$\mathbb{E}[X] \triangleq \int_{\mathbb{R}^n} x f_X(x) dx$$

$$\mathbb{E}[AX + b] = \int_{\mathbb{R}^n} (Ax + b) f_X(x) dx = A\mathbb{E}[X] + b$$

Covariance of X

$$\operatorname{Cov}[X] \triangleq \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\mathrm{T}}]$$

$$= \int_{\mathbb{R}^{n}} (X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\mathrm{T}} f_{X}(x) dx$$

$$\operatorname{Cov}[AX + b] = \mathbb{E}[(AX + b - \mathbb{E}[AX + b])(AX + b - \mathbb{E}[AX + b])^{\mathrm{T}}]$$

$$= \mathbb{E}[(AX - A\mathbb{E}[X])(AX - A\mathbb{E}[X])^{\mathrm{T}}]$$

$$= A\mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\mathrm{T}}]A^{\mathrm{T}}$$

$$= A\operatorname{Cov}[X]A^{\mathrm{T}}$$
₁₉

Random Vector – Cross-covariance

Cross-covariance of X and Y

$$Cov[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])^{T}]$$

$$= \mathbb{E}[(XY^{T} + \mathbb{E}[X]\mathbb{E}[Y]^{T} - \mathbb{E}[X]Y^{T} - X\mathbb{E}[Y]^{T})]$$

$$= \mathbb{E}[XY^{T}] - \mathbb{E}[X]\mathbb{E}[Y]^{T}$$

$$Cov[X,Y] = \int_{\mathbb{R}^n \times \mathbb{R}^n} (X - \mathbb{E}[X])(Y - \mathbb{E}[Y])^{\mathrm{T}} f_{X,Y}(x,y) dx dy$$

$$Cov[X] = Cov[X, X]$$

Gaussian Random Vector

A Gaussian random vector is random vector with pdf

$$f_X(x) = \frac{1}{\sqrt{2\pi \det \Sigma}} \exp \frac{-(x-\mu)^T \Sigma^{-1} (x-\mu)}{2}$$

- Expected value of $X = \mu$
- Covariance of $X = \Sigma > 0$

$$w \sim \mathcal{N}(\mu, \Sigma)$$

Next ...

• Optimize the gain *K* in

$$\hat{x}_{k+1} = A\hat{x}_k + Bu_k + K(y_k - C\hat{x}_k)$$

using the dynamics and the noise properties

A Convenient Reformulation

$$\begin{aligned} \mathbf{x}_{k+1} &= A\mathbf{x}_k + B\mathbf{u}_k + D_1\mathbf{w}_k \\ \mathbf{y}_k &= C\mathbf{x}_k + D_2\mathbf{v}_k \end{aligned}$$

$$x_{k+1} = Ax_k + Bu_k + [D_1 \quad 0] \begin{bmatrix} w_k \\ v_k \end{bmatrix}$$
$$y_k = Cx_k + [0 \quad D_2] \begin{bmatrix} w_k \\ v_k \end{bmatrix}$$

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + \overline{D}_1 \overline{w}_k \\ y_k &= Cx_k + \overline{D}_2 \overline{w}_k \end{aligned}$$

Process noise ≠ Measurement noise

$$\begin{aligned} \mathbf{x}_{k+1} &= A\mathbf{x}_k + B\mathbf{u}_k + D_1\mathbf{w}_k \\ \mathbf{y}_k &= C\mathbf{x}_k + D_2\mathbf{w}_k \end{aligned}$$

Assumptions

- A, B, C, D_1, D_2 known
- u_k known
- $w_k \sim \mathcal{N}(0, I)$, $\mathbb{E}[x_0] = \bar{x}$
- $Cov[x_0, w_k] = 0$

Observations

- Since w_k is a RV, x_k and y_k are random vectors
- Since w_k does not affect x_k , $Cov[x_k, w_k] = 0$

$$\begin{aligned} \mathbf{x}_{k+1} &= A\mathbf{x}_k + B\mathbf{u}_k + D_1\mathbf{w}_k \\ \mathbf{y}_k &= C\mathbf{x}_k + D_2\mathbf{w}_k \end{aligned}$$

Consider the estimator

$$\hat{\mathbf{x}}_{k+1} = A\hat{\mathbf{x}}_k + B\mathbf{u}_k + K(\mathbf{y}_k - C\hat{\mathbf{x}}_k)$$

- Since y_k is an RV, \hat{x}_k is an RV
- The state error $e_k \triangleq \hat{x}_k x_k$ is also an RV with covariance $P_k = \text{Cov}[e_k]$
- Optimal State Estimator chooses K that minimizes the covariance of the state error

$$K_k = \min_{\widehat{K} \in \mathbb{R}^{l_x \times l_y}} \operatorname{trace} P_{k+1}$$

$$P_k = \operatorname{Cov}[e_k] = \mathbb{E}[(e_k - \mathbb{E}[e_k])(e_k - \mathbb{E}[e_k])^{\mathrm{T}}]$$

- We would like $\mathbb{E}[e_k] = 0$.
 - The state error satisfies

$$\begin{aligned}
\mathbf{e}_{k+1} &= (A - KC)\mathbf{e}_k + (KD_2 - D_1)\mathbf{w}_k \\
\mathbb{E}[\mathbf{e}_{k+1}] &= \mathbb{E}[(A - KC)\mathbf{e}_k] = (A - KC)\mathbb{E}[\mathbf{e}_k]
\end{aligned}$$

- If $\mathbb{E}[e_k] = 0$, then $\mathbb{E}[e_{k+1}] = 0$.
- If $\mathbb{E}[e_0]=0$, then, $\mathbb{E}[e_1]=\mathbb{E}[e_2]=\cdots=0$.

$$\mathbb{E}[e_0] = \mathbb{E}[\hat{x}_0 - x_0] = \mathbb{E}[\hat{x}_0] - \mathbb{E}[x_0] = \mathbb{E}[\hat{x}_0] - \bar{x}$$

• If $\mathbb{E}[\widehat{x}_0] = \bar{x}$. Then, $\mathbb{E}[e_k] = 0$.

• With $\mathbb{E}[e_k] = 0$,

$$P_k = \mathbb{E}[e_k e_k^{\mathrm{T}}]$$

$$P_{k+1} = \mathbb{E} \left[e_{k+1} e_{k+1}^{T} \right]$$

$$= \mathbb{E} \left[(A - KC)e_k + (KD_2 - D_1)w_k)((A - KC)e_k + (KD_2 - D_1)w_k)^{T} \right]$$

$$= \mathbb{E} \left[(A - KC)e_k e_k^{T}(A - KC)^{T} + (KD_2 - D_1)w_k w_k^{T}(KD_2 - D_1)^{T} \right]$$

$$= (A - KC)P_k(A - KC)^{T} + (KD_2 - D_1)(KD_2 - D_1)^{T}$$

$$= AP_k A^{T} - KCP_k A^{T} - AP_k C^{T} K^{T} + KCP_k C^{T} K^{T}$$

$$+ KRK^{T} - SK^{T} - KS^{T} + Q$$

where
$$Q = D_1 D_1^{\rm T}$$
, $R = D_2 D_2^{\rm T}$, $S = D_1 D_2^{\rm T}$

$$P_{k+1} = AP_{k}A^{T} - KCP_{k}A^{T} - AP_{k}C^{T}K^{T} + KCP_{k}C^{T}K^{T} + KRK^{T} - SK^{T} - KS^{T} + Q$$

$$= AP_{k}A^{T} + Q - K(AP_{k}C^{T} + S)^{T} - (AP_{k}C^{T} + S)K^{T} + K(CP_{k}C^{T} + R)K^{T}$$

$$K_k = \min_{\widehat{K} \in \mathbb{R}^{l_x \times l_y}} \operatorname{trace} P_{k+1}$$

$$\frac{d}{dX}\operatorname{tr}(XA) = A^{\mathrm{T}}$$

$$\frac{d}{dX}\operatorname{tr}(XAX^{\mathrm{T}}) = XA^{\mathrm{T}} + XA$$

$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$

$$\frac{\mathrm{d}}{\mathrm{d}K}\operatorname{trace} P_{k+1} = -(AP_kC^{\mathrm{T}} + S) + K(CP_kC^{\mathrm{T}} + R)$$

$$K_k = (AP_kC^{\mathrm{T}} + S)(CP_kC^{\mathrm{T}} + R)^{-1}$$

$$\hat{x}_{k+1} = A\hat{x}_k + Bu_k + K_k(y_k - C\hat{x}_k)$$
$$K_k = (AP_kC^T + S)(CP_kC^T + R)^{-1}$$

 $P_{k+1} = AP_kA^{\mathrm{T}} + Q - K_k(AP_kC^{\mathrm{T}} + S)^{\mathrm{T}}$

Optimal State Estimator - Simple Example

$$x_{k+1} = x_k + u_k + [1 \quad 0]w_k$$
$$y_k = x_k + [0 \quad 1]w_k$$

$$\hat{x}_{k+1} = \hat{x}_k + u_k + K_k (y_k - \hat{x}_k)$$

$$K_k = \frac{P_k}{P_\nu + 1}, \qquad P_{k+1} = \frac{2P_k + 1}{P_\nu + 1}$$

Does OSE Improve Accuracy?

$$\begin{aligned} x_{k+1} &= ax_k + bu_k + [\sqrt{q} \quad 0]w_k, \text{ where } a < 1\\ y_k &= x_k + [0 \quad \sqrt{r}]w_k \end{aligned}$$

$$\hat{x}_{k+1} = a\hat{x}_k + bu_k + K_k(y_k - \hat{x}_k)$$

$$K_k = \frac{aP_k}{P_k + r}$$

$$P_{k+1} = a^2 P_k + q - K_k a P_k$$

Does OSE Improve Accuracy?

If
$$P_k$$
 converges to P_∞ , then $P_\infty=\frac{a^2rP_\infty}{P_\infty+r}+q$
$$P_\infty=\frac{1}{2}\Big(q-(1-a^2)r+\sqrt{(q-(1-a^2)r)^2+4qr}\Big)$$

Case	P_{∞}	Observation
q = 0	0	If the model is good, no matter how bad the sensor is, the estimator state converges to the true state IF $a \le 1$
r = 0	q	Even if the sensor is perfect, state estimate accuracy is bounded by the model uncertainty

Does OSE Improve Accuracy?

- If q > r, then $P_{\infty} > q > r$
- If r > q, then $r > P_{\infty} > q$

What if the Noise has a Bias?

$$\begin{aligned} \mathbf{x}_{k+1} &= A\mathbf{x}_k + B\mathbf{u}_k + D_1\mathbf{w}_k \\ \mathbf{y}_k &= C\mathbf{x}_k + D_2\mathbf{w}_k \end{aligned}$$

- Let $w_k = \overline{w} + \widetilde{w}_k$
- Idea: Estimate \overline{w} with the state!!

• Let
$$X_k = \begin{bmatrix} x_k \\ \overline{w} \end{bmatrix}$$
. Then, $X_{k+1} = \begin{bmatrix} x_{k+1} \\ \overline{w} \end{bmatrix} = \begin{bmatrix} Ax_k + Bu_k + D_1\overline{w} + D_1\widetilde{w}_k \\ \overline{w} \end{bmatrix}$
$$= \begin{bmatrix} A & D_1 \\ 0 & I \end{bmatrix} \begin{bmatrix} x_k \\ \overline{w} \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u_k + \begin{bmatrix} D_1 \\ 0 \end{bmatrix} \widetilde{w}_k$$

$$= A_a X_k + B_a u_k + D_{1a} \widetilde{w}_k$$

What if the Noise has a Bias?

$$\begin{aligned} \mathbf{x}_{k+1} &= A\mathbf{x}_k + B\mathbf{u}_k + D_1\mathbf{w}_k \\ \mathbf{y}_k &= C\mathbf{x}_k + D_2\mathbf{w}_k \end{aligned}$$

$$y_k = Cx_k + D_2\overline{w} + D_2\widetilde{w}_k$$
$$= [C \quad D_2] \begin{bmatrix} x_k \\ \overline{w} \end{bmatrix} + D_2\widetilde{w}_k$$
$$= C_aX_k + D_2\widetilde{v}_k$$

$$X_{k+1} = A_a X_k + B_a u_k + D_{1a} \widetilde{w}_k$$
$$y_k = C_a X_k + D_2 \widetilde{w}_k$$

This is how we will deal with the gyro bias!!

State Estimators

Predictors

Filters

State Estimators

Predictors

Filters

Summary

 Using measurements, state estimators provide an estimate of the unmeasured states

- In the next lecture,
 - We will derive the equations for the Kalman Filter