Rocket Engines

Optimizing Regenerative Cooling

Understanding the system

The question

MUST

Metal does not melt

of tubes & flow rate are reasonable

SHOULD

Minimize mass

(↓ # of coolant tubes)(↓ coolant tube surface area)(↓ coolant flow rate)

Minimize cost

(↓ coolant flow rate)(↓ operating temperature)

BY VARYING

Coolant flow rate
of tubes

"How does the number of tubes and the total coolant flow rate affect the temperature of the engine?"

Our Model

- Simplifications
- Chamber is a hollow cylinder
- Exhaust temperature inside chamber is constant
- Tubing is straight
- Parameters
- Rate of fuel flow
- Number of cooling tubes of equal radius
- Assumptions
- Flows: radiative heating, fluid convection, air radiation
- Tubes are divided into n divisions. Measure temperature within each division

Our Model (details)

Flow	Equation
Heat from Exhaust	p.heat_flow_from_exhaust / num_fuel
Radiation	p.metal_radiative_emmisivity*SB* (p.metal_surface_area / num_fuel) * (metal_temp ^ 4 - p.air_temp^4);
Convection	p.heat_transfer_coefficient * (p. tubing_surface_area/num_fuel) * (metal_temp - fuel_temp);
Flows fuel	p.fuel_flow_rate * p.fuel_specific_heat * p.fuel_density * (fuel_temp - last_fuel_temp);

Our Model (default parameters)

Parameter	Units	Default value
air_temp	К	290
metal_specific_heat	J / (kg°C)	450
metal_initial_temp	К	290
metal_surface_area	m ²	8π
metal_density	kg/m ³	8890
metal_radiative_emmisivity	[unitless]	0.02
metal_melting_point	К	1053
number_of_tubes	[unitless]	300

Parameter	Units	Default value
tube_radius	m	0.5cm
fuel_specific_heat	J / (kg°C)	15000
fuel_cold_temp	K	91.7
fuel_density	kg/m ³	71
heat_transfer_coefficient	[unitless]	12000
heat_flow_from_exhaust	W	100000000
fuel_flow_rate	m ³ / s	0.3
num_coolant_stocks	[unitless]	15

Limiting case #1: Engine off

heat_from_exhaust = 0

Limiting case #2: Coolant disabled

coolant_flow_rate = 0

Limiting case #3: Many coolant tubes

number_of_tubes = 10⁴

...drumroll...

Results

Additional Considerations

1: 500 tubes, 0.45 flow

2: 400 tubes, 1.41 flow

3: 900 tubes, 0.21 flow

