Homework 1–CSC 320 Spring 2020

Mark Kaiser V00884677

1. (20 MARKS) Let L_1 be the set of strings over $\{a,b\}^*$ that contain at least two a's and L_2 be the set of strings over $\{a,b\}^*$ that contain at most two a's.

(b) $L_2 = \{ w \in \{a, b\}^* \mid |a| \ge 2 \}$

(c)

2. (20 Marks) Use the construction given in class to convert the following NFA to a DFA. Give a transition table *and* a transition diagram for the resulting DFA.

3. (20 Marks) Use the procedure given in class to convert the following regular expression to an NFA

$$(((00)^*(11)) \cup 01)^*$$

$$R = (00)^*$$

$$R = (00)^*(11)$$

$$R = ((00)^*(11)) \cup 01$$

$$R = (((00)^*(11)) \cup 01)^*$$

4. (20 Marks) Use the procedure given in class to convert the following DFA to a regular expression

5. Assume the languages A and B are regular. Take the interleave of A with B, $A \wr B$. We want to show that $A \wr B$ is regular.

The interleave of A and B $A \wr B$ gives:

$$w = a_1b_1a_2b_2 \dots a_kb_k$$
 where $a_1 \dots a_k \in A, b_1 \dots b_k \in B$ and $a_i \in \Sigma^a, b_i \in \Sigma^b, 1 \le i \le k$

We construct the interleave of $A \wr B$ by concatenating $k \geq 1$ (not necessarily distinct) sets of strings, a_i , b_i , where $1 \leq i \leq k$. a_i and b_i are constructed by machines M_a and M_b respectively. We can form the interleave by concatenating a_i with b_i for k times. Since we can construct a machine that accepts the interleave of A and B, given that A and B are both regular, then $A \wr B$ is also regular.