

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Machine learning, big data and artificial intelligence – Block 7

Måns Magnusson
Department of Statistics, Uppsala University

HT 2020

- Introuction to unsupervised learning
 Latent variables
- Latent variablesClustering
- Mixture models
- Expectation
- Maximization
- probabilistic PCA

This week's lectures

- Introduction to unsupervised learning
- k-means
- Mixture of Gaussians
- Expectation-Maximization
- Probabilistic PCA

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
- Expectation Maximization
- probabilistic PCA

Figure: The Supervised Problem

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Figure: The Unsupervised Problem

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

In supervised learning:

We have training data

$$d = \{(y_i, x_i), i = 1, ..., n\}.$$

- We train a model p(y|x) to predict y
- We only care about the loss function during training

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

In supervised learning:

We have training data

$$d = \{(y_i, x_i), i = 1, ..., n\}.$$

- We train a model p(y|x) to predict y
- We only care about the loss function during training

In unsupervised learning:

• We have training data

$$d = \{(x_i), i = 1, ..., n\}.$$

- We train a model p(x) to explain/model x
- Our loss function (or model) can be the goal

• Introuction to unsupervised learning

Latent variables

- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Unsupervised learning

Goal: Build a good (probabilistic) model p(x) for x

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Unsupervised learning

Goal: Build a good (probabilistic) model p(x) for x

Other names for p(x):

- Data model p(x) is our data generating mechanism
- Generative model
 We can generate samples from p(x).

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

Unsupervised learning

Goal: Build a good (probabilistic) model p(x) for x

Other names for p(x):

- Data model p(x) is our *data* generating mechanism
- Generative model
 We can generate samples from p(x).

Common use cases for unsupervised learning:

- Generate new observations from p(x)
- Study structure in large data
- Anomaly detection
- Create representations for downstream tasks

Introuction to unsupervised learning Latent variables

- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

The Learning Problem

- Goal: A model that can "explain" the data well
- Two main approaches:
 - Clustering: Finding similar observations (rows)
 - Dimensionality reduction: Finding similar variables (columns)

Introuction to unsupervised learning Latent variables

- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

The Learning Problem

- Goal: A model that can "explain" the data well
- Two main approaches:
 - Clustering: Finding similar observations (rows)
 - Dimensionality reduction: Finding similar variables (columns)
- Commonly, we use parametric probabilistic models $p(x|\theta)$ where θ is unknown
- Learning problem: Learn θ to explain the data as good as possible

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

Example: Autoencoder

Figure: A Neural Autoencoder (Wikipedia)

- Introuction to unsupervised learning
- Latent variables
- Clustering
 Mixture models
-
- Expectation Maximization
- probabilistic PCA

Loss functions and evaluation

 Autoencoder uses the difference between the original and reconstructed output

$$L(x) = (d(e(h|x)|h) - x)^2,$$

where d(x|h) is the decoder and e(h|x) is the encoder.

- Introuction to unsupervised learning
 Latent variables
- Latent variables
- Clustering
 Mixture models
- Mixture mode
- Expectation Maximization
- probabilistic PCA

Loss functions and evaluation

 Autoencoder uses the difference between the original and reconstructed output

$$L(x) = (d(e(h|x)|h) - x)^2,$$

where d(x|h) is the decoder and e(h|x) is the encoder.

- In probabilistic models we can use the log-likelihood (L)
 Sometimes called perplexity or surprise.
 - High \mathcal{L} : The observation is well explained by the model
 - Low \mathcal{L} : The observation is badly explained by the model
- Common approach: Evaluate log-likelihood on a held-out set

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
- Expectation Maximization
- probabilistic PCA

Example: Bivariate Gaussian model

Introuction to unsupervised learning Latent variables

- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Example: Bivariate Gaussian model

We assume a Multivariate Gaussian model and estimate μ, Σ from data.

$$\hat{\mu} = [3.19, 4.11]$$

$$\hat{\Sigma} = \begin{bmatrix} 1.95 & 2.05 \\ 2.05 & 3.36 \end{bmatrix}$$

We can now generate new data from $MVN(\hat{\mu}, \hat{\Sigma})$.

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
- Expectation Maximization
- probabilistic PCA

Example: Bivariate Gaussian model

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Latent variables

• An unobserved or hidden variable or "factor"

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Latent variables

- An unobserved or hidden variable or "factor"
- A parameter specific to some or a few observations or features

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

Latent variables

- An unobserved or hidden variable or "factor"
- A parameter specific to some or a few observations or features
- Often these latent variables can be of interest

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Example: Hidden Markov Model

Figure: A Hidden Markov Model (Wikipedia). Note that x is unobserved and y is observed.

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Example: Factor Analysis

Figure: A Factor Analysis Model (Eshima, Tabata and Borroni, 2018, edited).

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

• Separate observations x_i into groups or segments

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

- Separate observations x_i into groups or segments
- What is a cluster "is" depends on the model/(dis)similarity.
- (Dis)similarity:

$$D(x_i, x_j) = \sum_{k=1}^{P} d_k(x_{i,k}, x_{j,k})$$

$$d_k(x_{i,k},x_{j,k})=(x_{i,k}-x_{j,k})^2$$

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

- Separate observations x_i into groups or segments
- What is a cluster "is" depends on the model/(dis)similarity.
- (Dis)similarity:

$$D(x_i, x_j) = \sum_{k=1}^{P} d_k(x_{i,k}, x_{j,k})$$

$$d_k(x_{i,k},x_{j,k})=(x_{i,k}-x_{j,k})^2$$

- Clustering can be divided into:
 - Hard clustering
 - Soft clustering

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

- Separate observations x_i into groups or segments
- What is a cluster "is" depends on the model/(dis)similarity.
- (Dis)similarity:

$$D(x_i, x_j) = \sum_{k=1}^{P} d_k(x_{i,k}, x_{j,k})$$

$$d_k(x_{i,k},x_{j,k})=(x_{i,k}-x_{j,k})^2$$

- Clustering can be divided into:
 - Hard clustering
 - Soft clustering
- Clustering can also be divided into:
 - Hiearchical clustering
 - Flat clustering

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

- Separate observations x_i into groups or segments
- What is a cluster "is" depends on the model/(dis)similarity.
- (Dis)similarity:

$$D(x_i, x_j) = \sum_{k=1}^{P} d_k(x_{i,k}, x_{j,k})$$

$$d_k(x_{i,k},x_{j,k})=(x_{i,k}-x_{j,k})^2$$

- Clustering can be divided into:
 - Hard clustering
 - Soft clustering
- Clustering can also be divided into:
 - Hiearchical clustering
 - Flat clustering
- There is a ton of different algorithms and methods...

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Popular in practice and a classic in unsupervised machine learning

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

- Popular in practice and a classic in unsupervised machine learning
- Hard, flat clustering
- Simple and effective

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

- Popular in practice and a classic in unsupervised machine learning
- Hard, flat clustering
- Simple and effective
- Model: x_i is close to one of $m_1, ..., m_K$ vectors
- Loss function:

$$I_{\rm m}(x)=\min_{\rm m}x-m_k)^2$$

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

- Popular in practice and a classic in unsupervised machine learning
- Hard, flat clustering
- Simple and effective
- Model: x_i is close to one of $m_1, ..., m_K$ vectors
- Loss function:

$$I_{\rm m}(x)=\min_{\rm m}x-m_k)^2$$

- Hyperparameter: *K* (the number of clusters)
- Parameters: m (a $K \times P$ matrix).

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

- Popular in practice and a classic in unsupervised machine learning
- Hard, flat clustering
- Simple and effective
- Model: x_i is close to one of $m_1, ..., m_K$ vectors
- Loss function:

$$I_{\mathsf{m}}(x) = \min_{\mathsf{m}} x - m_k)^2$$

- Hyperparameter: *K* (the number of clusters)
- Parameters: m (a $K \times P$ matrix).
- A difficult problem: K^n possibilities

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

k-means algorithm

Algorithm 10.1 K-Means Clustering

- 1. Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster assignments for the observations.
- 2. Iterate until the cluster assignments stop changing:
 - (a) For each of the K clusters, compute the cluster centroid. The kth cluster centroid is the vector of the p feature means for the observations in the kth cluster.
 - (b) Assign each observation to the cluster whose centroid is closest (where *closest* is defined using Euclidean distance).

Figure: The k-means cluster algorithm (Garreth et al, 2013, Alg. 10.1).

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

k-means clustering

Figure: The k-means cluser algorithm (Garreth et al, 2013, Fig. 10.6).

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

k-means clustering

- k-means finds local modes
- Re-run algorithm with many different starting values
- Choose the best by the best loss

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

k-means clustering

- k-means finds local modes
- Re-run algorithm with many different starting values
- Choose the best by the best loss
- There exists many developments
 - scaling to large data
 - generalized loss
 - approaches to find a good K

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

k-means clustering

Figure: The k-means cluser algorithm (Garreth et al, 2013, Fig. 10.7).

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

Problems with k-means

- Clusters might
 - overlap
 - have different forms

Figure: Two clusters with different shapes.

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Problems with k-means

- Clusters might
 - overlap
 - have different forms

Figure: Two clusters with different shapes.

We can solve these problems using probabilistic models

- Introuction to unsupervised learning
 Latent variables
- Latent variables
- Clustering
 Mixture models
- Expectation
 Maximization
- probabilistic PCA

$$y_i = \sum_{k=1}^K \pi_k \phi_k(\theta_k),$$

- The parts of a (finite) mixture model:
 - The number of components: *K*

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

$$y_i = \sum_{k=1}^K \pi_k \phi_k(\theta_k),$$

- The parts of a (finite) mixture model:
 - The number of components: K
 - The proportions of observation from component k: π_k

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

$$y_i = \sum_{k=1}^K \pi_k \phi_k(\theta_k),$$

- The parts of a (finite) mixture model:
 - The number of components: K
 - The proportions of observation from component k: π_k
 - The density of component k: ϕ_k

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

$$y_i = \sum_{k=1}^K \pi_k \phi_k(\theta_k),$$

- The parts of a (finite) mixture model:
 - The number of components: K
 - The proportions of observation from component k: π_k
 - The density of component k: ϕ_k
 - The parameters of component k: θ_k

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

- Usually, we
 - set K, and
 - use the same density for all k.

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

- Usually, we
 - set K, and
 - use the same density for all k.
- We can simulate data from the model as compund probability distribution:
 - 1. Simulate cluster assignments for all i:

$$z_i \sim \mathsf{Categorical}(\pi)$$

2. Generate y_i conditioned on z_i :

$$y_i \sim \phi_{z_i}(\theta_{z_i})$$

• Cluster assignments z_i are the latent variables

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Gaussian Mixture Models (GMM)

• The (finite) Gaussian mixture model:

$$y_i = \sum_{k=1}^K \pi_k \mathcal{N}(\mu_k, \Sigma_k),$$

where μ_k and Σ_k depend on the dimensionality of y_i .

Introuction to unsupervised learning Latent variables

- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Gaussian Mixture Models (GMM)

• The (finite) Gaussian mixture model:

$$y_i = \sum_{k=1}^K \pi_k \mathcal{N}(\mu_k, \Sigma_k),$$

where μ_k and Σ_k depend on the dimensionality of y_i .

• GMM is a universial approximator of densities

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Example: Simulate data from a GMM

1. Generate cluster assignments:

$$z_i \sim \mathsf{Categorical}(\pi = [0.4, 0.6])$$

2. Generate observation conditioned on cluster assignment:

$$y_i \sim \mathcal{N}(\mu_k, \Sigma_k)$$
,

where

$$\mu_1 = [2, 2], \mu_2 = [1, 1]$$
 and

$$\Sigma_1 = \begin{bmatrix} 3 & -2.7 \\ -2.7 & 3 \end{bmatrix}, \Sigma_2 = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.2 \end{bmatrix}$$

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Simulated data from a GMM

Figure: Simulated mixture data with the latent variable z.

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Mixtures of Multinomial distributions

What distribution (ϕ) should I use?

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

Mixtures of Multinomial distributions

What distribution (ϕ) should I use?

Depends on your data (y).

- Introuction to unsupervised learning
 Latent variables
- Clustering
 Mixture models
- Expectation
 Maximization
- probabilistic PCA

Mixtures of Multinomial distributions

What distribution (ϕ) should I use?

Depends on your data(y).

$$y_i = \sum_{k=1}^K \pi_k \mathsf{Multinomial}(\mathsf{p}_k)$$

Figure: Mixture of Multinomials.

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

Estimating Mixtures Models

• We are interested in estimating θ_k and π_k for the model

$$y_i = \sum_{k=1}^K \pi_k \phi(\theta_k),$$

• Hence we want to maximize the log-likelihood

$$\mathcal{L}(\pi, \theta) = \sum_{i=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k \phi(y_i | \theta_k) \right)$$

• This is difficult, although if we only knew z...

- Introuction to unsupervised learning
 Latent variables
- Clustering
 Mixture models
- Expectation
- Expectation
 Maximization
- probabilistic PCA

Estimating Mixtures Models

• We are interested in estimating θ_k and π_k for the model

$$y_i = \sum_{k=1}^K \pi_k \phi(\theta_k),$$

Hence we want to maximize the log-likelihood

$$\mathcal{L}(\pi, \theta) = \sum_{i=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k \phi(y_i | \theta_k) \right)$$

• This is difficult, although if we only knew z...

$$\mathcal{L}_{\text{full}}(\pi, \theta, \mathbf{z}) = \sum_{i=1}^{N} \log \left(\sum_{k=1}^{K} I(z_i = k) \phi(y_i | \theta_k) \right) + \log(\pi_k^I(z_i = k))$$

$$=\sum_{i=1}^{N}\sum_{k=1}^{K}I(z_{i}=k)\log\phi(y_{i}|\theta_{k})+I(z_{i}=k)\log(\pi_{k})$$

• So if we knew z it is essentially just maximizing $\mathcal L$ for each cluster separately.

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

The Expectation

• But, we dont know z.

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

The Expectation

- But, we dont know z.
- Although, we could compute the expected cluster assignment

$$\gamma_i = E_{z_i}(\mathcal{L}_{\mathsf{full}}|\theta, y_i)$$
.

- γ_i can be seen as observation is weights for each cluster
- γ_i is sometimes referred to as the responsibility.

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

The Maximization

• Now, given γ we can (hopefully) easier maximize θ .

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

The Maximization

- Now, given γ we can (hopefully) easier maximize θ .
- We maximize $\mathcal{L}_{\mathsf{full}}$ given γ and y.

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

The Maximization

- Now, given γ we can (hopefully) easier maximize θ .
- We maximize $\mathcal{L}_{\mathsf{full}}$ given γ and y.
- \bullet We usually choose ψ so the maximization
 - is a nice analytical expression.
 - end up with a weighted MLE.

UPPSALA UNIVERSITET

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

Example: EM for a Gaussian Mixture

Algorithm 8.1 EM Algorithm for Two-component Gaussian Mixture.

- 1. Take initial guesses for the parameters $\hat{\mu}_1, \hat{\sigma}_1^2, \hat{\mu}_2, \hat{\sigma}_2^2, \hat{\pi}$ (see text).
- 2. Expectation Step: compute the responsibilities

$$\hat{\gamma}_i = \frac{\hat{\pi}\phi_{\hat{\theta}_2}(y_i)}{(1-\hat{\pi})\phi_{\hat{\theta}_1}(y_i) + \hat{\pi}\phi_{\hat{\theta}_2}(y_i)}, \ i = 1, 2, \dots, N.$$
 (8.42)

3. Maximization Step: compute the weighted means and variances:

$$\hat{\mu}_{1} = \frac{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i}) y_{i}}{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i})}, \qquad \hat{\sigma}_{1}^{2} = \frac{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i}) (y_{i} - \hat{\mu}_{1})^{2}}{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i})},$$

$$\hat{\mu}_{2} = \frac{\sum_{i=1}^{N} \hat{\gamma}_{i} y_{i}}{\sum_{i=1}^{N} \hat{\gamma}_{i}}, \qquad \hat{\sigma}_{2}^{2} = \frac{\sum_{i=1}^{N} \hat{\gamma}_{i} (y_{i} - \hat{\mu}_{2})^{2}}{\sum_{i=1}^{N} \hat{\gamma}_{i}},$$

and the mixing probability $\hat{\pi} = \sum_{i=1}^{N} \hat{\gamma}_i / N$.

4. Iterate steps 2 and 3 until convergence.

Figure: The EM algorithm for a two component Gaussian mixture (Hastie et al 2008, Alg. 10.1)

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

The EM algorithm

- Properties of the EM algorithm:
 - The EM-algorithm will converge to a local mode

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

The EM algorithm

- Properties of the EM algorithm:
 - The EM-algorithm will converge to a local mode
 - Each iteration will always increase the likelihood
 - Can be proven straight-forward using Jensens inequality

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

The EM algorithm

- Properties of the EM algorithm:
 - The EM-algorithm will converge to a local mode
 - Each iteration will always increase the likelihood
 - Can be proven straight-forward using Jensens inequality
 - We can interpret the final γ_i as the expected cluster Hence, the EM algorithm is a soft clustering approach.
- Expanding the likelihood with latent variables (z) is called data augmentation.

Note! Not the same as data augmentation in CNNs.

Introuction to unsupervised learning Latent variables

- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Connections to other approaches

• If we set $z_i = \operatorname{argmax}(\gamma_i)$: k-means

Introuction to unsupervised learning Latent variables

- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

Connections to other approaches

- If we set $z_i = \operatorname{argmax}(\gamma_i)$: k-means
- If we sample z_i according to γ : stochastic EM

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Dimensionality reduction

- So far focus has been on (clustering) observations
- Now, we will address the other large area of UL: dimensionality reduction

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

Dimensionality reduction

- So far focus has been on (clustering) observations
- Now, we will address the other large area of UL: dimensionality reduction
- The starting point is Principal Component Analysis (PCA)
- PCA can be used for
 - Reduce the dimensionality of our data
 - Produce lower-dimensional features in a prediction model
 - Discover underlying latent variables (factors)

Introuction to unsupervised learning Latent variables

- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

Dimensionality reduction

- So far focus has been on (clustering) observations
- Now, we will address the other large area of UL: dimensionality reduction
- The starting point is Principal Component Analysis (PCA)
- PCA can be used for
 - Reduce the dimensionality of our data
 - Produce lower-dimensional features in a prediction model
 - Discover underlying latent variables (factors)
- More details in the multivariate course.

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

Principal Component Analysis

- Basic idea: We can summarize our data using K principal components (PC)
- The PCA "model" can be expressed as

$$X \approx b + WH^T$$
,

where $H \in \mathbb{R}^{n \times k}$, $W \in \mathbb{R}^{k \times p}$, $b \in \mathbb{R}^p$ and $X \in \mathbb{R}^{n \times p}$.

- H can be seen as a latent factors
- W can be seen as a factor loadings
- We assume that W is orthogonal: $W^TW = I$

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Principal Component Analysis

• The PCA model

$$X \approx b + WH^T$$
.

• The loss function, also called reconstruction error:

$$J(b, W, H) = \sum_{i=1}^{N} ||x_i - b + Wh_i^T||^2$$

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Principal Component Analysis

• The PCA model

$$X \approx b + WH^T$$
,

• The loss function, also called reconstruction error:

$$J(b, W, H) = \sum_{i}^{N} ||x_{i} - b + Wh_{i}^{T}||^{2}$$

• This can be minmized using Singular Value Decomposition

- Introuction to unsupervised learning
 - Latent variables
- Clustering
- Mixture models
- Expectation Maximization
- probabilistic PCA

PCA: Conceptual depiction

$$\left[\begin{array}{c} X \\ (n \times p) \end{array}\right] \approx \left[\begin{array}{c} W \\ (p \times k) \end{array}\right] \times \left[\begin{array}{c} H^T \\ (k \times n) \end{array}\right]$$

Figure: Conceptual depiction of PCA.

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

probabilistic PCA (pPCA)

• PCA is not a probabilistic model

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

probabilistic PCA (pPCA)

- PCA is not a probabilistic model
- probabilistic PCA

$$x_i = b + Wh_i^T + \epsilon_i$$

where $\epsilon \sim N(0, \Psi)$

- In pPCA, we assume $\Psi = \sigma I$
- We also assume that $h_i \sim N(0, I)$

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

probabilistic PCA (pPCA)

- PCA is not a probabilistic model
- probabilistic PCA

$$x_i = b + Wh_i^T + \epsilon_i$$

where $\epsilon \sim N(0, \Psi)$

- In pPCA, we assume $\Psi = \sigma I$
- We also assume that $h_i \sim N(0, I)$
- We can integrate out H and get the model

$$x_i \sim N(b, WW^T + \Psi)$$

- Introuction to unsupervised learning
 Latent variables
- Latent variables
- ClusteringMixture models
- Expectation
- Maximization

 probabilistic PCA

Figure: Data from a pPCA model with $W = (-1,3)^T$, b = (0.5,2) and $\sigma^2 = 1$

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

probabilistic PCA

$$x_i = b + Wh_i^T + \epsilon_i$$

- Introuction to unsupervised learning
 Latent variables
- Clustering
 Mixture models
- Mixture mode
- Expectation
 Maximization
- probabilistic PCA

probabilistic PCA

$$x_i = b + Wh_i^T + \epsilon_i$$

- We can now estimate our parameters using EM (or Bayesian methods)
- Enables us to combine with other models (e.g. mixture of pPCA)

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

probabilistic PCA

$$x_i = b + Wh_i^T + \epsilon_i$$

- We can now estimate our parameters using EM (or Bayesian methods)
- Enables us to combine with other models (e.g. mixture of pPCA)
- And as we will see next week, is the basic building block for many high-dimensional problems

- Introuction to unsupervised learning
 Latent variables
- Clustering
- Mixture models
- Expectation
 Maximization
- probabilistic PCA

Connections to PCA and Factor Analysis

probabilistic PCA

$$x_i = b + Wh_i^T + \epsilon_i$$

where $\epsilon \sim N(0, \Psi)$

- pPCA is closely connected to PCA and Factor Analysis:
 - $\sigma I \rightarrow 0$: pPCA \rightarrow PCA
 - $\Psi = \mathsf{diag}(\sigma_1, ..., \sigma_p, ..., \sigma_P)$: pPCA \rightarrow Factor Analysis