Introduction to Linear Algebra

Notation Used in These Notes

- ∀ for all
- ∃ there exists
- ⇒ such that
- · therefore
- · · because
- □ end of proof

More Notation

$$C_1 \Longrightarrow C_2$$
 Condition C_1 implies condition C_2 .

$$C_1 \Longleftrightarrow C_2$$
 C_1 is true if and only if (iff) C_2 is true. (C_1 and C_2 are equivalent.)

 $x \in \mathcal{S}$ x is an element of the set \mathcal{S} .

More Notation

 $\mathcal{S}_1 \subset \mathcal{S}_2$ \mathcal{S}_1 is a proper subset of \mathcal{S}_2 (Every element of \mathcal{S}_1 is also in \mathcal{S}_2 , but \mathcal{S}_2 has at least one element not in \mathcal{S}_1 .)

 $\mathcal{S}_1 \subseteq \mathcal{S}_2$ \mathcal{S}_1 is a subset of \mathcal{S}_2 . (Every element in \mathcal{S}_1 is also in \mathcal{S}_2 , and the sets may be exactly the same.)

 \mathbb{R}^n Euclidean n-space

Matrix Notation

$$\bullet_{\substack{M \times n \\ m \times n}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \text{ is a matrix with } m \text{ rows and } n$$

- The entry in the i^{th} row and j^{th} column of A is a_{ij} .
- Throughout these slides, we consider the case where $a_{ij} \in \mathbb{R}$ $\forall i = 1, ..., m$ and j = 1, ..., n.

Vectors

- A matrix with one column is called a vector.
- A matrix with one row is called a row vector.

In these notes,

Matrices are represented with bold uppercase letters.

Vectors are represented with bold lowercase letters.

Some Special Vectors

- $\mathbf{0}$ (or $\mathbf{0}_n$) is a vector of (n) zeros.
- 1 (or $\mathbf{1}_n$) is a vector of (n) ones.
- For example,

$$\mathbf{0}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 and $\mathbf{1}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Square Matrices

- Matrix A is said to be square iff m = n.
- In other words, a matrix is square if and only if its number of rows is the same as its number of columns.

Special Types of Square Matrices

- A square matrix A is upper triangular if $a_{ij} = 0, \forall i > j$.
- A square matrix $A_{n \times n}$ is lower triangular if $a_{ij} = 0, \forall i < j$.
- A square matrix $A_{n \times n}$ is $\underline{\text{diagonal}}$ if $a_{ij} = 0, \forall i \neq j$.
- Write one example for each of these types of matrices.

Examples

• Upper triangular
$$\begin{bmatrix} 1 & 0 & 4 & 6 \\ 0 & 2 & -3 & 5 \\ 0 & 0 & 8 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Lower triangular $\begin{vmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 3 & 5 & 6 \end{vmatrix}$

• Diagonal $\begin{vmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 13 \end{vmatrix}$.

Identity Matrices

- We use I (or I_n or $I_{n \times n}$) to denote the $(n \times n)$ identity matrix, which is the diagonal matrix with all (n) ones on the diagonal.
- For example,

$$I_3 = I_{3 \times 3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Matrix Transpose

If
$$A_{m \times n} = [a_{ij}]$$
, the transpose of A , denoted A' , is the matrix $B_{n \times m} = [b_{ij}]$, where $b_{ij} = a_{ji}, \forall i = 1, \dots, m; \quad j = 1, \dots, n$.

That is, B = A' is the matrix whose columns are the rows of A and whose rows are the columns of A.

A Symmetric Matrix

A square matrix A is $\underline{\text{symmetric}}$ if A = A'.

Examples

• Find the transpose of

$$\begin{bmatrix} 4 & -2 \\ 3 & 7 \end{bmatrix}.$$

Provide an example of a symmetric matrix.

Examples

$$\bullet \begin{bmatrix} 4 & -2 \\ 3 & 7 \end{bmatrix}' = \begin{bmatrix} 4 & 3 \\ -2 & 7 \end{bmatrix}.$$

The matrix

$$\begin{bmatrix} 4 & 2 & -1 \\ 2 & 0 & 3 \\ -1 & 3 & 5 \end{bmatrix}$$

is symmetric.

Suppose

$$oldsymbol{A}_{m imes n} = [a_{il}] = egin{bmatrix} oldsymbol{a}'_{(1)} \ dots \ oldsymbol{a}'_{(m)} \end{bmatrix} = [oldsymbol{a}_1, \dots, oldsymbol{a}_n]$$

and

$$egin{aligned} m{B}_{n imes k} &= [b_{lj}] = egin{bmatrix} m{b}'_{(1)} \ dots \ m{b}'_{(n)} \end{bmatrix} = [m{b}_1, \dots, m{b}_k]. \end{aligned}$$

In other words, the i, lth element of A is denoted a_{il} , the ith row of A is denoted $a'_{(i)}$, and the lth column of A is denoted a_l (and analogously for the elements, rows, and columns of B).

Then

$$\begin{array}{rcl}
\mathbf{A}_{m \times n} & \mathbf{B}_{n \times k} &= & \mathbf{C}_{m \times k} = \left[c_{ij} = \sum_{l=1}^{n} a_{il} b_{lj} \right] = \left[c_{ij} = \mathbf{a}'_{(i)} \mathbf{b}_{j} \right] \\
&= & \left[\mathbf{A} \mathbf{b}_{1}, \dots, \mathbf{A} \mathbf{b}_{k} \right] = \begin{bmatrix} \mathbf{a}'_{(1)} \mathbf{B} \\ \vdots \\ \mathbf{a}'_{(m)} \mathbf{B} \end{bmatrix} = \sum_{l=1}^{n} \mathbf{a}_{l} \mathbf{b}'_{(l)}.$$

(Note the many equivalent ways to think about and compute a matrix product.)

Suppose

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

and

$$\mathbf{B} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}.$$

• Work out AB using $AB = \sum_{l=1}^{n} a_l b'_{(l)}$.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 5 & 6 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 7 & 8 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 6 \\ 15 & 18 \end{bmatrix} + \begin{bmatrix} 14 & 16 \\ 28 & 32 \end{bmatrix}$$
$$= \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}.$$

Transpose of a Matrix Product

•

$$(AB)' = B'A'$$

 The transpose of a product is the product of the transposes in reverse order.

Scalar Multiplication of a Matrix

If $c \in \mathbb{R}$, then c times the matrix A is the matrix whose i, j^{th} element is c times the i, j^{th} element of A; i.e.,

$$c\mathbf{A}_{m \times n} = c[a_{ij}] = [ca_{ij}] = \begin{bmatrix} ca_{11} & ca_{12} & \cdots & ca_{1n} \\ ca_{21} & ca_{22} & \cdots & ca_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{m1} & ca_{m2} & \cdots & ca_{mn} \end{bmatrix}.$$

Linear Combination

If $x_1, \ldots, x_n \in \mathbb{R}^m$ and $c_1, \ldots, c_n \in \mathbb{R}$, then

$$\sum_{i=1}^n c_i \mathbf{x}_i = c_1 \mathbf{x}_1 + \dots + c_n \mathbf{x}_n$$

is a linear combination (LC) of x_1, \ldots, x_n .

The <u>coefficients</u> of the LC are c_1, \ldots, c_n .

Linear Independence and Linear Dependence

• The vectors x_1, \ldots, x_n are linearly independent (LI) iff

$$\sum_{i=1}^n c_i \mathbf{x}_i = \mathbf{0} \Longleftrightarrow c_1 = \cdots = c_n = 0.$$

• The vectors x_1, \dots, x_n are linearly dependent (LD) iff

$$\exists c_1,\ldots,c_n \text{ not all } 0 \ni \sum_{i=1}^n c_i \mathbf{x}_i = \mathbf{0}.$$

Prove or disprove: If one or more of x_1, \ldots, x_n is the vector $\mathbf{0}$, the vectors x_1, \ldots, x_n are LD.

- Suppose $x_i = \mathbf{0}$ for some $j \in \{1, \dots, n\}$.
- If we take $c_j = 1$ and $c_k = 0$ for any $k \neq j$, then $\sum_{i=1}^n c_i \mathbf{x}_i = \mathbf{0}$ and c_1, \ldots, c_n are not all zero.
- Thus, vectors x_1, \ldots, x_n are LD if any of the vectors are 0. \square

Prove or disprove: The following vectors are LI.

$$\begin{bmatrix} 1 \\ -5 \\ 3 \end{bmatrix}, \begin{bmatrix} 7 \\ 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 \\ -6 \\ 7 \end{bmatrix}.$$

• If we take $c_1 = 2, c_2 = 1, c_3 = -1$ then

$$c_1 \begin{bmatrix} 1 \\ -5 \\ 3 \end{bmatrix} + c_2 \begin{bmatrix} 7 \\ 4 \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} 9 \\ -6 \\ 7 \end{bmatrix} = \mathbf{0}.$$

Thus, the vectors are LD. \Box

 One way to arrive at such solution is to search for a solution to the system of the equations:

$$c_1 + 7c_2 + 9c_3 = 0$$
$$-5c_1 + 4c_2 - 6c_3 = 0$$
$$3c_1 + c_2 + 7c_3 = 0.$$

Fact V1:

The nonzero vectors x_1, \ldots, x_n are LD \iff x_j is a LC of x_1, \ldots, x_{j-1} for some $j \in \{2, \ldots, n\}$.

Proof of Fact V1:

 (\Longrightarrow) Suppose there exist c_1,\ldots,c_n such that $\sum_{i=1}^n c_i x_i = \mathbf{0}$. Let

$$j = \max\{i : c_i \neq 0\}.$$

Since x_1, \ldots, x_n are nonzero, j > 1. Then

$$\sum_{i=1}^{j} c_i \mathbf{x}_i = \mathbf{0} \implies \sum_{i=1}^{j-1} c_i \mathbf{x}_i = -c_j \mathbf{x}_j.$$

$$\implies \sum_{i=1}^{j-1} \frac{-c_i}{c_j} \mathbf{x}_i = \mathbf{x}_j.$$

 (\Leftarrow) Suppose $x_j = \sum_{i=1}^{j-1} c_i x_i$, then $\sum_{i=1}^n d_i x_i = \mathbf{0}$, where

$$d_i = \begin{cases} c_i & \text{if } i < j \\ -1 & \text{if } i = j \\ 0 & \text{if } i > j. \end{cases}$$

Orthogonality

 The two vectors x,y are <u>orthogonal</u> to each other if their inner product is zero, i.e.,

$$x'y = y'x = \sum_{i=1}^{n} x_i y_i = 0.$$

• The length of a vector, also known as its Euclidean norm, is

$$\|\mathbf{x}\| := \sqrt{\mathbf{x}'\mathbf{x}} = \sqrt{\sum_{i=1}^n x_i^2}.$$

• The vectors x_1, \dots, x_n are mutually orthogonal if

$$\mathbf{x}_{i}^{\prime}\mathbf{x}_{j}=0, \quad \forall i\neq j.$$

• The vectors x_1, \ldots, x_n are mutually orthonormal if

$$\mathbf{x}_{i}'\mathbf{x}_{i} = 0 \quad \forall \ i \neq j, \text{ and } \|\mathbf{x}_{i}\| = 1 \quad \forall \ i = 1, \dots, n.$$

- Write down a set of mutually orthogonal but not mutually orthonormal vectors.
- Write down a set of mutually orthonormal vectors.

- $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are mutually orthogonal but not mutually orthonormal.
- $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are mutually orthonormal.
- $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$ are mutually orthonormal.

Orthogonal Matrix

 A square matrix with mutually orthonormal columns is called an orthogonal matrix.

- Show that if Q is orthogonal, then Q'Q = I.
- Show that if Q is orthogonal and x is any vector of appropriate dimension, then ||Qx|| = ||x||.

- By orthogonality of Q, q_1, \dots, q_n are mutually orthonormal.
- Thus,

$$\mathbf{q}_i'\mathbf{q}_i = 0 \quad \forall \ i \neq j$$

and

$$\|\boldsymbol{q}_i\| = 1 \quad \forall i = 1, \ldots, n.$$

$$\therefore Q'Q = I.$$

$$||Qx|| = \sqrt{(Qx)'Qx}$$

$$= \sqrt{x'Q'Qx}$$

$$= \sqrt{x'Ix}$$

$$= \sqrt{x'x}$$

$$= ||x||.$$

An orthogonal matrix Q is sometimes called a <u>rotation matrix</u> because if a vector \mathbf{x} is premultiplied by \mathbf{Q} , the result $(\mathbf{Q}\mathbf{x})$ is the vector \mathbf{x} rotated to a new position in \mathbb{R}^n .

Vector Space in \mathbb{R}^n

A <u>vector space</u> $S \subseteq \mathbb{R}^n$ is a set of vectors that is closed under addition (i.e., if $x_1 \in S, x_2 \in S$, then $x_1 + x_2 \in S$) and closed under scalar multiplication (i.e., if $c \in \mathbb{R}, x \in S$, then $cx \in S$).

In other words,

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 \in \mathcal{S} \quad \forall c_1, c_2 \in \mathbb{R}; \ \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{S}.$$

- Is $\{x \in \mathbb{R}^n : ||x|| = 1\}$ a vector space?
- Is $\{x \in \mathbb{R}^n : \mathbf{1}'x = 0\}$ a vector space?
- Is $\{A_{n \times m} x : x \in \mathbb{R}^m\}$ a vector space?

• Suppose $y \in \mathbb{R}^n, c \in \mathbb{R}$ and ||y|| = 1, then

$$||c\mathbf{y}|| = \sqrt{(c\mathbf{y})'c\mathbf{y}}$$
$$= \sqrt{c^2\mathbf{y}'\mathbf{y}}$$
$$= |c|||\mathbf{y}|| = |c|.$$

• Thus $y \in \{x \in \mathbb{R}^n : ||x|| = 1\}$ does not imply that $cy \in \{x \in \mathbb{R}^n : ||x|| = 1\}$. Therefore, this set is not a vector space.

Let

$$\mathcal{S} = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{1}'\mathbf{x} = 0 \}.$$

• Suppose $c_1, c_2 \in \mathbb{R}$ and $x_1, x_2 \in \mathcal{S}$, then

$$\mathbf{1}'(c_1x_1 + c_2x_2) = c_1\mathbf{1}'x_1 + c_2\mathbf{1}'x_2 = 0.$$

• Thus $c_1x_1 + c_2x_2 \in S$ and it follows that S is a vector space.

Let

$$\mathcal{S} = \left\{ \underset{\scriptscriptstyle n \times m}{\mathbf{A}} \mathbf{x} : \mathbf{x} \in \mathbb{R}^m \right\}.$$

- Suppose $c_1, c_2 \in \mathbb{R}$ and $y_1, y_2 \in \mathcal{S}$.
- $y_1, y_2 \in \mathcal{S} \Longrightarrow \exists x_1, x_2 \in \mathbb{R}^m \ni$

$$y_1 = Ax_1 \text{ and } y_2 = Ax_2.$$

Thus,

$$c_1 \mathbf{y}_1 + c_2 \mathbf{y}_2 = c_1 A \mathbf{x}_1 + c_2 A \mathbf{x}_2 = A(c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2).$$

 $\therefore c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 \in \mathbb{R}^m, c_1 \mathbf{y}_1 + c_2 \mathbf{y}_2 \in \mathcal{S}$. It follows that \mathcal{S} is a vector space.

Generators of a Vector Space

A vector space S is said to be generated by a set of vectors x_1, \ldots, x_n if

$$x \in \mathcal{S} \Longrightarrow x = \sum_{i=1}^n c_i x_i \text{ for some } c_1, \dots, c_n \in \mathbb{R}.$$

Span of Vectors x_1, \ldots, x_n

• The span of vectors x_1, \ldots, x_n is the set of all LC of x_1, \ldots, x_n , i.e.,

$$span\{x_1,\ldots,x_n\} = \left\{\sum_{i=1}^n c_ix_i:c_1,\ldots,c_n\in\mathbb{R}\right\}.$$

• $span\{x_1, \ldots, x_n\}$ is the vector space generated by x_1, \ldots, x_n .

Find a set of vectors that generates the space

$$\{x \in \mathbb{R}^3 : \mathbf{1}'x = 0\};$$

i.e., find a set of vectors whose span is

$$\mathcal{S} = \{ \boldsymbol{x} \in \mathbb{R}^3 : \mathbf{1}'\boldsymbol{x} = 0 \}.$$

• Let
$$x_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$. Note that $\mathbf{1}'x_1 = 0$ and $\mathbf{1}'x_2 = 0$. Thus, $x_1, x_2 \in \mathcal{S}$ so that $span\{x_1, x_2\} \subseteq \mathcal{S}$.

• Now suppose
$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \in \mathcal{S}$$
.

Then $0 = \mathbf{1}'\mathbf{y} = y_1 + y_2 + y_3 \Longrightarrow y_3 = -y_1 - y_2$ so that

$$y_1 \mathbf{x}_1 + y_2 \mathbf{x}_2 = \begin{bmatrix} y_1 \\ 0 \\ -y_1 \end{bmatrix} + \begin{bmatrix} 0 \\ y_2 \\ -y_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ -y_1 - y_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \mathbf{y}.$$

 $\therefore S \subseteq span\{x_1, x_2\}$, and $S = span\{x_1, x_2\}$.

Basis of a Vector Space

If a vector space S is generated by LI vectors x_1, \ldots, x_n , then x_1, \ldots, x_n form a basis for S.

Fact V2:

Suppose a_1, \ldots, a_n form a basis for a vector space S. If b_1, \ldots, b_k are LI vectors in S, then $k \le n$.

Proof of Fact V2:

- Because a_1, \ldots, a_n form a basis for S and $b_1 \in S$, $b_1 = \sum_{i=1}^n c_i a_i$ for some $c_1, \ldots, c_n \in \mathbb{R}$. Thus, a_1, \ldots, a_n, b_1 are LD by Fact V1.
- Again, using V1, we have a_j a LC of $b_1, a_1, \ldots, a_{j-1}$ for some $j \in \{1, 2, \ldots, n\}$.

- Thus, $b_1, a_1, \ldots, a_{j-1}, a_{j+1}, \ldots, a_n$ generate S. It follows that $b_1, a_1, \ldots, a_{j-1}, a_{j+1}, \ldots, a_n, b_2$ is a LD set of vectors by V1.
- Again by V1, one of the vectors $b_1, b_2, a_1, \dots, a_{j-1}, a_{j+1}, \dots, a_n$ is a LC of the preceding vectors. It is not $b_2 : b_1, \dots, b_k$ are LI.

- Thus b_1, b_2 and n-2 of a_1, \ldots, a_n generate S.
- If k > n, we can continue adding b vectors and deleting a vectors to get b_1, \ldots, b_n generates S. However, then V1 would imply b_1, \ldots, b_{n+1} are LD. This contradicts LI of $b_1, \ldots, b_k : k \le n$.

Fact V3:

If $\{a_1, \ldots, a_n\}$ and $\{b_1, \ldots, b_k\}$ each provide a basis for a vector space S, then n = k.

Proof: By V2, we have $k \le n$ and $n \le k$. $\therefore k = n$.

Dimension of a Vector Space

A basis for a vector space is not unique, but the number of vectors in the basis, known as dimension of the vector space, is unique. Find dim(S), the dimension of vector space S, for

$$\mathcal{S} = \{ \boldsymbol{x} \in \mathbb{R}^3 : \mathbf{1}'\boldsymbol{x} = 0 \}.$$

As demonstrated previously,

$$span\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\} = \mathcal{S}.$$

- Because $\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}$ is a LI set of vectors, $\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}$ forms a basis for \mathcal{S} .
- Thus,

dim(S) = 2 (even though dimension of vectors in S is 3).

Consider the set $\{\mathbf{0}_{n\times 1}\}$. Is this a vector space? If so, what is its dimension?

• {0} is a vector space because

$$c_1 x_1 + c_2 x_2 = 0 \in \{0\} \quad \forall \ c_1, c_2 \in \mathbb{R} \ \text{and} \ \forall \ x_1, x_2 \in \{0\}.$$

The vector 0 generates the vector space {0}. However, 0 is not a
LI list of vectors and thus not a basis. By convention, we say
 dim({0}) = 0.

Fact V4:

Suppose a_1, \ldots, a_n are LI vectors in a vector space S with dimension n.

Then a_1, \ldots, a_n form a basis for S.

Proof of Fact V4:

- It suffices to show that a_1, \ldots, a_n generate S.
- Let a denote an arbitrary vector in S.
- By V2, a_1, \ldots, a_n, a are LD. By V1, $a = \sum_{i=1}^n c_i a_i$ for some $c_1, \ldots, c_n \in \mathbb{R}$.
- Thus

$$S = \left\{ \sum_{i=1}^{n} c_i \mathbf{x}_i : c_1, \dots, c_n \in \mathbb{R} \right\},\,$$

and the result follows.

Fact V5:

If a_1, \ldots, a_k are LI vectors in an n-dimensional vector space S, then there exists a basis for S that contains a_1, \ldots, a_k .

Proof of Fact V5:

- k < n by V2.
- If k = n, the result follows from V4.
- Suppose k < n. Then, there exist $a_{k+1} \in \mathcal{S}$ such that a_1, \ldots, a_{k+1} are LI. Because if not, a_1, \ldots, a_k would generate \mathcal{S} (by V1), and thus be a basis of dimension k < n, which is impossible by V3. Similarly, we can continue to add vectors to $\{a_1, \ldots, a_{k+1}\}$ until we have a_1, \ldots, a_n LI vectors. The result follows from V4.

Fact V6:

If a_1, \ldots, a_k are LI and orthonormal vectors in \mathbb{R}^n , then there exist a_{k+1}, \ldots, a_n such that a_1, \ldots, a_n are LI and orthornormal.

Proof: Try to come up with it on your own.

Rank of a Matrix

It can be shown that

- the (maximum) number of LI rows of a matrix A is the same as the (maximum) number of LI columns of A.
- This number of LI rows or columns is known as the $\underline{\operatorname{rank}}$ of \underline{A} and is denoted $\operatorname{rank}(\underline{A})$ or $r(\underline{A})$.

- If r(A) = m, A is said to have <u>full row rank</u>.
- If $r(A_{m \times n}) = n$, $A_{m \times n}$ is said to have <u>full column rank</u>.

Inverse of a Matrix

- If r(A) = n, there exists a matrix B such that A B = I.
- Such a matrix **B** is called the inverse of **A** and is denoted A^{-1} .

- Prove that $r(A) = n \iff \exists B \ni A B = I$.
- Prove that $A B = I \Longrightarrow_{n \times n} A = I \Longrightarrow_{n \times n} A = I \Longrightarrow_{n \times n} A = I$
- Thus $AA^{-1} = A^{-1}A = I$.

Proof:

(⇒):

- The columns of A form a basis for \mathbb{R}^n by V4. Thus, there exists a LC of columns of A that equals e_i for all $i = 1, \ldots, n$, where e_i is the i^{th} column of the identity matrix I.
- Let b_i denote the coefficients of the LC of the columns of A that yields e_i . Then, with $B = [b_1, \ldots, b_n]$, we have $AB = [Ab_1, \ldots, Ab_n] = [e_1, \ldots, e_n] = I$.

(⇐=):

- If $\exists \mathbf{B} \ni \mathbf{A} \underset{n \times n}{\mathbf{B}} = \mathbf{I}$, then the columns of \mathbf{A} generate \mathbb{R}^n $\because \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{A}\mathbf{B}\mathbf{x} = \mathbf{I}\mathbf{x} = \mathbf{x}.$
- If the columns of A were LD, then a subset of the columns of A would be LI and also generate \mathbb{R}^n .

- However, such a subset would be a basis for \mathbb{R}^n and thus must have n elements.
- \bullet Thus, the columns of A must be LI. Hence, $r(\underset{\scriptscriptstyle{n\times n}}{A})=n.$

$$A B = I \implies \text{Columns of } A \text{ are LI}$$

$$\Rightarrow \text{Rows of } A \text{ are LI}$$

$$\Rightarrow \text{Rows of } A \text{ are a basis for } \mathbb{R}^n$$

$$\Rightarrow \exists C \ni C A = I.$$

Thus,

$$AB = I \implies CAB = CI$$

$$\implies IB = C$$

$$\implies B = C.$$

•
$$AA^{-1} = A^{-1}A = I$$

Singular / Nonsingular Matrix

- If r(A) = n, A is said to be nonsingular.
- If $r(A_n) < n$, A_n is said to be singular.

Inverse of a Nonsingular 2×2 Matrix

•
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is singular if $ad - bc = 0$.

Column Space of a Matrix

The <u>column space</u> of a matrix $A_{m \times n}$, denoted by C(A), is the vector space generated by the columns of $A_{m \times n}$; i.e.,

$$C(\mathbf{A}) = {\mathbf{A}\mathbf{x} : \mathbf{x} \in \mathbb{R}^n}.$$

 $\dim(\mathcal{C}(A)) = r(\underset{\scriptscriptstyle{m \times n}}{A}) \text{ because the largest possible subset of LI columns of } \underset{\scriptscriptstyle{m \times n}}{A} \text{ is a basis for } \mathcal{C}(A).$

Let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 4 \\ 4 & 2 & 8 \end{bmatrix}.$$

- Find r(A).
- Give a basis for C(A).
- Characterize C(A).

$$3\begin{bmatrix}1\\2\\4\end{bmatrix}-2\begin{bmatrix}0\\1\\2\end{bmatrix}=\begin{bmatrix}3\\4\\8\end{bmatrix}.$$

• Thus, the columns of A are LD and r(A) < 3.

$$\begin{vmatrix} 1 \\ 2 \\ 4 \end{vmatrix} + c_2 \begin{vmatrix} 0 \\ 1 \\ 2 \end{vmatrix} = \begin{vmatrix} c_1 \\ 2c_1 + c_2 \\ 4c_1 + 2c_2 \end{vmatrix} = \mathbf{0} \Longrightarrow c_1 = c_2 = 0. : r(\mathbf{A}) = 2.$$

• A basis for C(A) is given by $\left\{ \begin{array}{c|c} 1 \\ 2 \\ 4 \end{array}, \begin{array}{c} 0 \\ 1 \\ 2 \end{array} \right\}$.

$$\bullet \ \, \boldsymbol{x} \in \mathcal{C}(\boldsymbol{A}) \Longrightarrow \boldsymbol{x} = c_1 \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \text{ for some } c_1, c_2 \in \mathbb{R}^n.$$

Note

$$\left\{ \boldsymbol{x} = \begin{bmatrix} c_1 \\ 2c_1 + c_2 \\ 4c_1 + 2c_2 \end{bmatrix} : c_1, c_2 \in \mathbb{R} \right\} = \mathcal{C}(\boldsymbol{A})$$

is the set of vectors in \mathbb{R}^3 where the first two components are arbitrary and the third component is twice the second component, i.e.,

$$\{\boldsymbol{x}\in\mathbb{R}^3:2x_2=x_3\}.$$

Result A.1:

$$rank(AB) \le \min\{rank(A), rank(B)\}$$

Proof of Result A.1:

- Let b_1, \ldots, b_n denote the columns of B so that $B = [b_1, \ldots, b_n]$.
- Then $AB = [Ab_1, \dots, Ab_n]$. This implies that the columns of AB are in C(A).

- dim(C(A)) is rank(A).
- There does not exist a list of LI vectors in C(A) with more than rank(A) vectors by Fact V2.
- It follows that $rank(AB) \leq rank(A)$.

It remains to show that

$$rank(AB) \leq rank(B)$$
.

- Note that rank(AB) is the same as rank((AB)') = rank(B'A').
- Our previous argument shows that

$$rank(\mathbf{B}'\mathbf{A}') \leq rank(\mathbf{B}') = rank(\mathbf{B}).$$

Provide an example where

$$rank(AB) < \min\{rank(A), rank(B)\}.$$

•

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Then

$$AB = 0$$
.

Therefore,

$$rank(\mathbf{AB}) = 0$$
, $rank(\mathbf{A}) = 1$, $rank(\mathbf{B}) = 1$.

Result A.2:

- (a) If A = BC, then $C(A) \subseteq C(B)$.
- (b) If $C(A) \subseteq C(B)$, then there exist C such that A = BC.

Proof of A.2(a):

- Suppose $x \in C(A)$. Then $\exists y \ni x = Ay$.
- Now $A = BC \Longrightarrow x = BCv$.
- Thus, $\exists z \ni x = Bz$ (namely, z = Cy). $\therefore x \in C(B)$.
- We have shown $x \in C(A) \Longrightarrow x \in C(B)$. $\therefore C(A) \subseteq C(B)$.

Proof of A.2(b):

• Let a_1, \ldots, a_n denote the columns of A.

$$C(\mathbf{A}) \subseteq C(\mathbf{B}) \Longrightarrow \mathbf{a}_1, \dots, \mathbf{a}_n \in C(\mathbf{B}).$$

- Let c_i be such that $Bc_i = a_i \ \forall \ i = 1, \dots, n$. Then denote $C = [c_1, \dots, c_n]$.
- It follows that

$$BC = B[c_1, \dots, c_n]$$

$$= [Bc_1, \dots, Bc_n]$$

$$= [a_1, \dots, a_n] = A.$$

Null Space of a Matrix

• The null space of a matrix A, denoted $\mathcal{N}(A)$ is defined as

$$\mathcal{N}(A) = \{y : Ay = 0\}.$$

• Note that $\mathcal{N}(A)$ is the set of vectors orthogonal to every row of A.

A vector in $\mathcal{N}(A)$ can also be seen as a vector of coefficients corresponding to a LC of the columns of A that is $\mathbf{0}$.

Note that if A has dimension $m \times n$, then the vectors in C(A) have dimension m and the vectors in N(A) have dimension n.

Is the null space of a matrix A a vector space?

- Yes.
- Suppose $x \in \mathcal{N}(A)$. Then $\forall c \in \mathbb{R}, A(cx) = cAx = c\mathbf{0} = \mathbf{0}$. Thus $x \in \mathcal{N}(A) \Longrightarrow cx \in \mathcal{N}(A) \quad \forall c \in \mathbb{R}$.
- Suppose $x_1, x_2 \in \mathcal{N}(A)$. Then $A(x_1 + x_2) = Ax_1 + Ax_2 = \mathbf{0} + \mathbf{0} = \mathbf{0}$. Thus, $x_1, x_2 \in \mathcal{N}(A) \Longrightarrow x_1 + x_2 \in \mathcal{N}(A)$.

Find the null space of

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \\ 3 & 6 \end{bmatrix}.$$

$$\mathbf{A}\mathbf{y} = \mathbf{0} \Longrightarrow \begin{cases} y_1 + 2y_2 = 0 \\ 2y_1 + 4y_2 = 0 \\ -y_1 - 2y_2 = 0 \\ 3y_1 + 6y_2 = 0 \end{cases}$$
$$\Longrightarrow y_1 = -2y_2 \Longrightarrow \mathcal{N}(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^2 : y_1 = -2y_2 \}.$$

Result A.3:

$$rank(\mathbf{A}_{m \times n}) = n \iff \mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}.$$

Proof of Result A.3:

• Let $[a_1,\ldots,a_n]=A$. Then

$$\mathbf{A}\mathbf{y} = \begin{bmatrix} \mathbf{a}_1, \dots, \mathbf{a}_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
$$= y_1 \mathbf{a}_1 + \dots + y_n \mathbf{a}_n.$$

•

$$r(\underbrace{A}_{\scriptscriptstyle{m imes n}}) = n \iff a_1, \dots, a_n \quad ext{are LI}$$
 $\iff Ay = \mathbf{0} \text{ only if } y = \mathbf{0}$ $\iff \mathcal{N}(A) = \{\mathbf{0}\}. \quad \Box$

Theorem A.1:

If the matrix A is $m \times n$ with rank r, then

$$dim(\mathcal{N}(\mathbf{A})) = n - r,$$

or more elegantly,

$$dim(\mathcal{N}(\underset{m \times n}{A})) + dim(\mathcal{C}(\underset{m \times n}{A})) = n.$$

Proof of Theorem A.1:

- Let $k = dim(\mathcal{N}(A))$. Results A.3 covers the case where k = 0. Suppose now that k > 0.
- Let u_1, \ldots, u_k form a basis for $\mathcal{N}(A)$. Then

$$\mathbf{A}\mathbf{u}_i = \mathbf{0} \quad \forall \ i = 1, \dots, k.$$

• By Fact V5, there exist u_{k+1}, \ldots, u_n such that u_1, \ldots, u_n form a basis for \mathbb{R}^n .

- We will now argue that the n-k vectors Au_{k+1}, \ldots, Au_n form a basis for C(A).
- If so, then

$$dim(\mathcal{N}(\mathbf{A})) + dim(\mathcal{C}(\mathbf{A})) = k + n - k = n,$$

i.e.,

$$dim(\mathcal{N}(\mathbf{A})) = n - dim(\mathcal{C}(\mathbf{A})) = n - r.$$

- First note that $Au_i \in C(A) \quad \forall i = k+1, \ldots, n$.
- Now note that

$$c_{k+1}Au_{k+1} + \cdots + c_nAu_n = \mathbf{0}$$

$$\Rightarrow A(c_{k+1}u_{k+1} + \cdots + c_nu_n) = \mathbf{0}$$

$$\Rightarrow c_{k+1}u_{k+1} + \cdots + c_nu_n \in \mathcal{N}(A)$$

$$\Rightarrow \exists c_1, \dots, c_k \in \mathbb{R} \ni c_1u_1 + \cdots + c_ku_k = \sum_{j=k+1}^n c_ju_j$$

$$\Rightarrow c_1u_1 + \cdots + c_ku_k - c_{k+1}u_{k+1} - \cdots - c_nu_n = \mathbf{0}$$

$$\Rightarrow c_1 = \cdots = c_n = 0 \text{ by LI of } u_1, \dots, u_n.$$

- Therefore, Au_{k+1}, \ldots, Au_n are LI.
- Now let $U = [u_1, ..., u_n]$.
- Because u_1, \ldots, u_n are LI and a basis for \mathbb{R}^n , $\exists U^{-1} \ni UU^{-1} = I$.
- Let $x \in \mathbb{R}^n$ be arbitrary and define $z = U^{-1}x$.

Then

$$Ax = AUU^{-1}x = AUz$$

$$= [Au_1, \dots, Au_k, Au_{k+1}, \dots, Au_n]z$$

$$= [0, \dots, 0, Au_{k+1}, \dots, Au_n]z$$

$$= z_{k+1}Au_{k+1} + \dots + z_nAu_n.$$

• Therefore, any vector in C(A) can be written as a LC of Au_{k+1}, \ldots, Au_n .

It follows that

$$Au_{k+1}, \ldots, Au_n$$
 is a basis for $C(A)$.

$$n-k=r$$
 and $k+r=n$.