INTRO TO GISc

SPATIAL JOINS

AGENDA

- 1. Follow-up
- 2. GISc & Public Policy
- 3. Modifying Strings
- 4. Projecting Data
- 5. Spatial Joins
- 6. Table Joins

1 FOLLOW-UP

2 GISc & PUBLIC POLICY

3 MODIFYING STRINGS

MODIFYING STRINGS

In order to combine data sources, we sometimes need to modify identification variables or identify coordinate data that may not map correctly.

▶ ID variables are string and need to be numeric

ID	X	Υ
01	-90.236560	38.637241
02	-90.236799	38.636550
03	-90.237290	38.636661
04	-90.238154	38.636829
05	-90.237682	38.636735
06	-90.238942	38.636996
07	-90.239924	38.637206
08	-90.241313	38.637499
09	-90.236564	38.636492
10	-90.236062	38.636354

destring oldVar, generate(newVar)

. destring ID, generate(idNum)
ID: all characters numeric;
idNum generated as byte

- ID variables are string and need to be numeric
- ID variables are numeric and need to be string

ID	X	Υ
1	-90.236560	38.637241
2	-90.236799	38.636550
3	-90.237290	38.636661
4	-90.238154	38.636829
5	-90.237682	38.636735
6	-90.238942	38.636996
7	-90.239924	38.637206
8	-90.241313	38.637499
9	-90.236564	38.636492
10	-90.236062	38.636354

generate newVar = string(oldVar)

generate ID = string(idNum, "%02.0f")

generate newVar = string(oldVar)

generate ID = string(idNum)

generate newVar = string(oldVar, fmt)

. generate ID = string(idNum, "%02.0f")

generate newVar = string(oldVar, fmt)

. generate ID = string(idNum, "%03.0f")

- ▶ ID variables are string and need to be numeric
- ID variables are numeric and need to be string
- Coordinate variables are string and need to be numeric

ID	X	Υ
1	-90.236560	38.637241
2	-90.236799	38.636550
3	-90.237290	38.636661
4	-90.238154	38.636829
5	-90.237682	38.636735
6	-90.238942	38.636996
7	-90.239924	38.637206
8	-90.241313	38.637499
9	-90.236564	38.636492
10	-90.236062	38.636354

- ID variables are string and need to be numeric
- ID variables are numeric and need to be string
- Coordinate variables are string and need to be numeric
- Incomplete coordinate data

ID	X	Υ
1	-90.236560	38.637241
2	-90.236799	38.636550
3	-90.237290	38.636661
4	-90.238154	38.636829
5	-90.237682	38.636735
6	-90	38
7	-90.239924	38.637206
8	0	0
9	-90.236564	38.636492
10	-90.236062	38.636354

generate lengthVar = strleng(refVar)

. generate xLeng = strleng(X)

X	xLeng
-90.236560	10
-90.236799	10
-90.237290	10
-90.238154	10
-90.237682	10
-90	3
-90.239924	10
0	1
-90.236564	10
-90.236062	10

generate newVar = strleng(oldVar)

generate xLeng = strLeng(X)

replace X = "" if xLeng < 10

-90.236062

-90.236062

generate newVar = strleng(oldVar)

generate xLeng = strLeng(X)

. drop if xLeng < 10</pre>

-90.236564

-90.236062

- ID variables are string and need to be numeric
- ID variables are numeric and need to be string
- Coordinate variables are string and need to be numeric
- Incomplete coordinate data

When your tabular data have x,y coordinates (decimal degrees or UTM coordinates), they can be projected into your map document.

A word of caution - ArcGIS struggles with csv files when importing data in ArcMap. You will likely need to save csv files as xlsx files using Microsoft Excel. This applies to table joins as well.

Remember that the x coordinate is longitude and the y coordinate is latitude if your data are in decimal degrees.

TRANSFORMING TABULAR DATA TO SHAPEFILES

ID	X	Υ
1	-90.236560	38.637241
2	-90.236799	38.636550
3	-90.237290	38.636661
4	-90.238154	38.636829
5	-90.237682	38.636735
6	-90.238942	38.636996
7	-90.239924	38.637206
8	-90.241313	38.637499
9	-90.236564	38.636492
10	-90.236062	38.636354

We have the locations of all private schools stored in a csv file with latitude and longitude coordinates. We want to convert them from tabular to geometric data.

DISPLAY DATA

DISPLAY DATA

CHECKING DATA

CHECK DATA

CHECKING DATA

EXPORTING DATA

EXPORTING DATA

5 SPATIAL JOINS

When the target layer consists of polygons and the reference layer consists of point data, you can get a count or average of point values within each polygon.

Target Layer

Target Layer

How many fire stations in St. Louis lie within each Census Tract?

When the target layer consists of points and the reference layer consists of polygons data, you can assign the attributes of the polygons to the points that lie within them.

Target Layer

ID	Shape	
104	Point	
105	Point	
106	Point	
105	Point	
106	Point	
107	Point	
108	Point	
109	Point	

Reference Layer

Target Layer

ID	Shape	polyID
104	Point	22
105	Point	23
106	Point	24
105	Point	23
106	Point	23
107	Point	23
108	Point	23
109	Point	24

Reference Layer

What Census Tract does each fire station lie within?

When the both layers consist of points, you can assign the attributes of one point to another based on proximity.

Target Layer

ID	Shape	
104	Point	
105	Point	
106	Point	
105	Point	
106	Point	
107	Point	
108	Point	
109	Point	

Reference Layer

ID	Shape	
3	Point	
4	Point	
5	Point	

Target Layer

ID	Shape	sID
104	Point	3
105	Point	3
106	Point	4
105	Point	3
106	Point	3
107	Point	3
108	Point	3
109	Point	5

Reference Layer

sID	Shape	
3	Point	
4	Point	
5	Point	

What is the nearest fire station to each private school?

6 TABLE JOINS

TABLE JOINS

When your tabular data have ID numbers that correspond to ID numbers in a shapefile or feature class, they can be joined to those spatial data.

COMBINING TABULAR DATA

Target Layer

ID	X	Y
1	-90.236560	38.637241
2	-90.236799	38.636550
3	-90.237290	38.636661
4	-90.238154	38.636829
5	-90.237682	38.636735
6	-90.238942	38.636996
7	-90.239924	38.637206
8	-90.241313	38.637499
9	-90.236564	38.636492
10	-90.236062	38.636354

Tabular Data

NAME	
Morrissey Hall	
Duborg Hall	
Des Peres Hall	
Beracha Hall	
Xavier Hall	
Xavier Annex	
Notre Dame Hall	
McGannon Hall	
Adorjan Hall	
Wuller Hall	

COMBINING TABULAR DATA

Joined Data

ID	X	Y	NAME
1	-90.236560	38.637241	Morrissey Hall
2	-90.236799	38.636550	Duborg Hall
3	-90.237290	38.636661	Des Peres Hall
4	-90.238154	38.636829	Beracha Hall
5	-90.237682	38.636735	Xavier Hall
6	-90.238942	38.636996	Xavier Annex
7	-90.239924	38.637206	Notre Dame Hall
8	-90.241313	38.637499	McGannon Hall
9	-90.236564	38.636492	Adorjan Hall
10	-90.236062	38.636354	Wuller Hall

TABLE JOINS

We have data on blood lead level testing results for each Census Tract in a csv file as well as a shapefile of Census Tract boundaries.

COMBINING TABULAR DATA IN ARCGIS

COMBINING TABULAR DATA IN ARCGIS

