Vertex Covers

Definition 3.12

- ightharpoonup A vertex cover of G is a set S of vertices such that every edge of G is incident with at least one element of S.
- ightharpoonup The vertices in S cover the edges of G.

Theorem 3.13 (König-Egerváry 1931)

If G is a bipartite graph, then the maximum size of a matching in G equals the minimum size of a vertex cover in G.

Easy Direction.

Since distinct vertices must be used to cover the edges of a matching, we have $|U| \geq |M|$ whenever U is a vertex cover and M is a matching. \square

Given a minimum vertex cover U, we construct a matching of size $\vert U \vert$.

Given a minimum vertex cover U, we construct a matching of size |U|. Suppose G has bipartition $\{X,Y\}$.

X Y

Given a minimum vertex cover U, we construct a matching of size |U|. Suppose G has bipartition $\{X,Y\}$. Let $R=U\cap X$ and $T=U\cap Y$.

Given a minimum vertex cover U, we construct a matching of size |U|. Suppose G has bipartition $\{X,Y\}$. Let $R=U\cap X$ and $T=U\cap Y$. Let H and H' be the subgraphs of G induced by $R\cup (Y-T)$ and $T\cup (X-R)$, respectively.

Given a minimum vertex cover U, we construct a matching of size |U|. Suppose G has bipartition $\{X,Y\}$. Let $R=U\cap X$ and $T=U\cap Y$. Let H and H' be the subgraphs of G induced by $R\cup (Y-T)$ and $T\cup (X-R)$, respectively. We use 3.6 to show H has a matching saturating R, and H' has a matching saturating T.

Given a minimum vertex cover U, we construct a matching of size |U|. Suppose G has bipartition $\{X,Y\}$. Let $R=U\cap X$ and $T=U\cap Y$. Let H and H' be the subgraphs of G induced by $R\cup (Y-T)$ and $T\cup (X-R)$, respectively. We use 3.6 to show H has a matching saturating R, and H' has a matching saturating T. Suppose $S\subseteq R$ and consider $N_H(S)\subseteq Y-T$.

Given a minimum vertex cover U, we construct a matching of size |U|. Suppose G has bipartition $\{X,Y\}$. Let $R=U\cap X$ and $T=U\cap Y$. Let H and H' be the subgraphs of G induced by $R\cup (Y-T)$ and $T\cup (X-R)$, respectively. We use 3.6 to show H has a matching saturating R, and H' has a matching saturating T. Suppose $S\subseteq R$ and consider $N_H(S)\subseteq Y-T$. If $|N_H(S)|<|S|$, then we can substitute $N_H(S)$ for S in U to obtain a smaller vertex cover, which is impossible.

Given a minimum vertex cover U, we construct a matching of size |U|. Suppose G has bipartition $\{X,Y\}$. Let $R=U\cap X$ and $T = U \cap Y$. Let H and H' be the subgraphs of G induced by $R \cup (Y - T)$ and $T \cup (X - R)$, respectively. We use 3.6 to show H has a matching saturating R, and H' has a matching saturating T. Suppose $S \subseteq R$ and consider $N_H(S) \subseteq Y - T$. If $|N_H(S)| < |S|$, then we can substitute $N_H(S)$ for S in U to obtain a smaller vertex cover, which is impossible. Hence Hsatisfies the Hall's condition and so has a matching of size |R|.

Given a minimum vertex cover U, we construct a matching of size |U|. Suppose G has bipartition $\{X,Y\}$. Let $R=U\cap X$ and $T = U \cap Y$. Let H and H' be the subgraphs of G induced by $R \cup (Y - T)$ and $T \cup (X - R)$, respectively. We use 3.6 to show H has a matching saturating R, and H' has a matching saturating T. Suppose $S \subseteq R$ and consider $N_H(S) \subseteq Y - T$. If $|N_H(S)| < |S|$, then we can substitute $N_H(S)$ for S in U to obtain a smaller vertex cover, which is impossible. Hence H satisfies the Hall's condition and so has a matching of size |R|. Likewise, H' has a matching of size |T|.

Given a minimum vertex cover U, we construct a matching of size |U|. Suppose G has bipartition $\{X,Y\}$. Let $R=U\cap X$ and $T = U \cap Y$. Let H and H' be the subgraphs of G induced by $R \cup (Y - T)$ and $T \cup (X - R)$, respectively. We use 3.6 to show H has a matching saturating R, and H' has a matching saturating T. Suppose $S \subseteq R$ and consider $N_H(S) \subseteq Y - T$. If $|N_H(S)| < |S|$, then we can substitute $N_H(S)$ for S in U to obtain a smaller vertex cover, which is impossible. Hence H satisfies the Hall's condition and so has a matching of size |R|. Likewise, H' has a matching of size |T|. The union of these two matchings is a matching of G of size |U|.

