Seminární práce č. 2

Zadání:

- 1) Proveďte interpolaci povrchového teplotního ostrova města Prahy třemi typy krigování: Simple, Universal a Ordinary. Zvolené parametry jednotlivých interpolací, včetně komentáře, uveďte do textu a nastavení podpořte argumenty. Součástí textu budou výsledky všech interpolací (minimálně 3 obrázky) a jejich komentář.
- 2) Stručně popiště rozdíly mezi jednotlivými typy krigingu. Přiložte i screenshoty nastavení vašich semivariogramů a uveďte, jak jste při jeho tvorbě postupovali (opět stačí stručně, nemusíte popisovat každý parametr).
- 3) Proveď te validaci výsledků pomocí nezávislého datasetu. Tyto výsledky okomentujte a vytvořte k nim jednoduchou vizualizaci.
- 4) Výsledky srovnejte s výstupy první seminární práce, buď graficky anebo tabelárně. Diskutujte vhodnost použitých metod v obou seminárních pracích a doporučte nejvhodnější metodu pro interpolaci teplotního ostrova města.
- 5) Při interpretaci výsledků interpolací a validací vycházejte z dostupných znalostí které máte o území, nebojte se využívat i dalších zdrojů, například podkladové mapy.

Vypracování:

1. Průzkumová analýza datového souboru

Veškeré analýzy v této seminární práci budou prováděny na stejných datech jako v první seminární práci. Před samotnými interpolacemi metodami krigingu je na místě připomenout si vstupní data. Jejich průzkumová analýza, ze které se bude vycházet, je vypracována v minulém protokolu.

Tab. 1: Popis vstupních dat

Metadata		
Název souboru	LST_AST_Praha.shp	
Téma	povrchová teplota	
Zdroj	družice Terra ASTER	
Datum pořízení	30.08.2015	
Čas pořízení	20:55:16.5 UTC	
Reprezentace dat	Vektorová: body	
Rozsah	Praha a okolí	
Souřadnicový systém	S-JTSK (EPSG:5514)	
Zájmový atribut	LST	

Z tab. 1 je patrné, že data, která jsou k dispozici pro zpracování této seminární práce, nesou informace o povrchové teplotě v Praze a jsou stará čtyři a půl roku. Z původní rastrové reprezentace byla převedena do bodové kvůli možnosti selekce dat do základního souboru. Kvůli velkému objemu dat bylo do této analýzy vybráno jen 10 % všech původních dat.

Tab. 2: Základní popisné statistiky souboru LST_AST_Praha.shp

Základní popisné statistiky		
Počet	9996	
Průměr [C°]	22,07	
Medián [C°]	21,95	
Modus [C°]	21,25	
Min [C°]	(9,55) 15,85	
Max [C°]	28,45	
Sm. odchylka	1,8	
Koef. šikmosti	0,23	
Koef. špičatostii	2,8	

Rozdělení četností hodnot je takřka normální – souzeno dle histogramu, dle blízkosti průměru a mediánu (tab. 2) a také podle Q-Q grafu. Nicméně data jsou lehce asymetrická v kladném směru (úklon pyramidy doleva). Data jsou izotropní, tedy gradient naměřených hodnot teplot není významně závislý na směru. Trend je takový, že teplota odstředivě klesá. Minimální hodnota (9,55°C) byla naměřena pouze jednou a druhá nejnižší hodnota je 15,85°C. Navíc v sousedství minima se nachází v průměru hodnoty 23°C. Nejnižší hodnota je tedy tak odlehlá, že ji lze považovat za chybu (tzv. outlier), a proto byla stejně jako v první seminární práci odstraněna.

2. Interpolace teplotního ostrova města Prahy pomocí krigování

Interpolace slouží ke zhuštění vstupních dat; tedy k přiřazení hodnot i do lokalit, kde nebylo měření provedeno. Interpolační metody vypočítávají nové hodnoty z hodnot již existujících. Kriging spadá do stochastických metod interpolace, je v něm tedy zahrnut i prvek náhody. Tyto metody nepoužívají váhy pouze podle vzdálenosti, ale i podle distribuce měřených bodů v okolí nové hodnoty. Parametr h (*Lag Size*) je krok vzdálenosti, tedy velikost výpočetního okna. Optimální hodnota *Lag Size* se zpravidla volí jako průměrná vzdálenost mezi body. Pro její zjištění byl testován nástroj *Average Nearest Neighbor* v ArcMap, nicméně program opakovaně hlásil chybu. Proto byla ideální hodnota nalezena testováním s ohledem na co nejnižší chybu MPE a RMS. Jako *Lag Size* se nejvíce osvědčila hodnota 358,5 a jako *Number of Lags* hodnota 6.

Ordinary (základní) Kriging

Tento typ krigigu je vhodný pro operace s neznámým průměrem hodnot. Hodnota Nugget (zbytkový rozptyl – c0) byla ponechána na 0. Po prvotním odhadu izotropie ukázalo opakované testování krigingu s rozdílnými parametry, že jsou hodnoty mírně anizotropní. Pro finální interpolaci byl tedy parametr *Anisotrophy* nastaven na *True*. Automaticky byla odhalen azimut hlavní poloosy elipsy výpočetního okna na 82,79°, to znamená, že globálně si jsou hodnoty ve východo-západním směru podobnější než hodnoty ve směru severo-jižním. Pro interpolaci bylo použito vždy 2-5 bodů (viz obr. 2). Decentrický trend nastavení neumožňovalo, a tak bylo počítáno s tím, že vrstva trend nemá.

Obr. 1: Nastavení parametrů semivariogramu interpolace Ordinary kriging

Dataset	#0 [LST_AST_Praha - LST]	
Search Neighborhood		
Neighborhood type	Standard	
Maximum neighbors	5	
Minimum neighbors	2	
Sector type	⊗ 4 Sectors with 45° offset	
Copy from Variogram	True	
Angle	82,79297	
Major semiaxis	1940,004	
Minor semiaxis	1370,231	
Anisotropy factor	1,415823	
Predicted Value		
X	462293,1	
Υ	5545440	
Value	24,9139	
Weights (20 neighbors)		

Obr. 2: Nastavení parametrů procházecího okna interpolace Ordinary kriging

Obr. 3: Výsledek interpolace teplotních bodů pomocí metody Ordinary Kriging

Simple (jednoduchý) Kriging

Tento typ krigingu je vhodný pro data se známým konstantním trendem. Ten se většinou nastavuje jako průměr hodnot. V tomto případě byla tedy odečtena zaokrouhlená hodnota průměru (22). Před výpočtem byla použita transformace pro normální rozdělení. Pro možnost porovnání byly pro tuto metodu ponechány parametry stejné jako u Ordinary Kriging. Jen směr anizotropie byl pootočen zhruba o 7 stupňů v kladném směru.

Obr. 4: Nastavení parametrů semivariogramu interpolace Simple kriging

⊟ Method	Kriging Simple
	Prediction
	1
	Const
	Normal Score Transformation
	DensitySkew
	1
BaseDistribution	Empirical
☐ Trend removal ☐	Local Polynomial Interpolation
Power	
Bandwidth	3,228.799651662595
	Exponential
Output type	Prediction
	er threshold 30
Exploratory trend surfa	ace analysis 22
□ Searching neighbor	orhood Standard
	1,000
Include at least	10
Sector type	Full
Major semiaxis	4,035.999564578244
Minor semiaxis	4,035.999564578244
Angle	0
■ Searching neighborl	hood Standard
Neighbors to include	5
Titolada de ledas	2
	Four and 45 degree
	1,155.680976753484
	793.759039732589
	89.12109375
	Semivariogram
	6
	358
	0.054869905485
	100
Model type	
	1.05078125
	1,155.680976753484
Anisotropy	Yes
	793.759039732589
Direction	0,1,1,1,0,0,0
Partial sill	0.948488180224

Obr. 5: Nastavení parametrů interpolace Simple Kriging

Obr. 6: Výsledek interpolace teplotních bodů pomocí metody Simple Kriging

Universal Kriging

Universal Kriging počítá se známým trendem (s průměrem) dat. Tato metoda ale nemá stacionaritu. Trend představuje deterministická funkce daná polynomy prvního až třetího řádu. Veškeré parametry byly ponechány jako u předchozích typů krigingu, aby bylo možné vhodnější porovnání. V tomto případě byl testován izotropní přístup k datasetu. Výsledky dokazují, že anizotropie dat je marginální, a proto nemá na finální RMSE i na výslednou vizualizaci interpolace téměř žádný vliv.

Obr. 7: Nastavení parametrů semivariogramu interpolace Universal Kriging

■ Method	Kriging
Type	Universal
Output type	Prediction
□ Dataset #	1
Trend type	Const
☐ Trend removal	Local Polynomial Interpolation
Power	0
	3,228.799651662595
Kernel function	Exponential
Output type	Prediction
Spatial condition number	er threshold 30
	ice analysis22
■ Searching neighbor	rhood Standard
	1,000
	10
Sector type	Full
Major semiaxis	4,035.999564578244
Minor semiaxis	4,035.999564578244
	0
□ Searching neighborh	nood Standard
	5
	2
Sector type	Four and 45 degree
Major semiaxis	922.46181219232
Minor semiaxis	922.46181219232
Angle	0
□ Variogram	Semivariogram
	6
Lag size	358
Nugget	0.035724749949
Measurement error %	100
Model type	
	1.019140625
Range	922.46181219232
Anisotropy	
Partial sill	1.808123472281

Obr. 8: Nastavení parametrů interpolace Universal Kriging

Obr. 9: Výsledek interpolace teplotních bodů pomocí metody Simple Kriging

3. Validace

Výsledky krigování byly porovnány dvěma metodami; jednak podle predikce RMSE chyby a Mean Prediction Error (předpoklad nestrannosti výsledku), ale také podle validačního souboru dat.

Střední kvadratická odchylka (RMSE) se v bezchybném případě rovná jedné. Nejnižší RMSE byla tedy zaznamenána u metody Simple Kriging: 1,0212 (tab. 3). Nicméně ve srovnání s Ordinary a Universal krigingy jsou rozdíly v odchylce minimální. Z interpolací ze seminární práce 1, dosáhla podobně úspěšných výsledků pouze metoda Radial Basis Functions.

Průměrná chyba odhadu neboli Mean Prediction Error (MPE) by měl v ideálním případě být roven nule. Jeho hodnoty u všech srovnávaných interpolací jsou záporné, tudíž lze předpokládat, že všechny metody mírně podhodnocují. Nejblíže nule byla hodnota MPE opět u metody Simple kriging.

Tab. 3: Porovnání chybovosti krigingu a interpolací provedených v seminární práci 1

Typ krigingu:	RMSE	MPE
Ordinary	1,0221	-0,0014
Simple	1,0212	-0,0005
Universal	1,0237	-0,0015
Typ interpolace:	RMSE	MPE
, .	I	1V11 L
IDW	1,0530	-0,0013

Při porovnání vizualizací krigingu (obr. 3, 6 a 9) nelze na první pohled odhalit jediný rozdíl, nicméně díky překryvu v SW ArcMap lze zaznamenat, že se jednotlivé vizualizace liší v nepatrných detailech. Například lze vyčíst hladší průběh tvarů u Universal a Ordinary krigingu na rozdíl od hrubších a ostřejších kontur polygonů Simple krigingu.

Vástupem byly bodové vrstvy se stěžejním polem Error, jehož záznamy znamenaly, o kolik se lišila hodnota vypočtená z interpolace od skutečně naměřené hodnoty ve stejném místě. Kvůli přílišné hustotě bodů byla pro vizualizaci validace zvolena jejich další interpolace. Ta byla vyjádřena bipolárně grafickou proměnnou sytosti červené (záporné chyby) a zelené (kladné chyby) viz obr. 10. V šedých plochách se vypočtený interpolační povrch přimykal povrchu skutečně naměřených hodnot. Mezi chybami nalezenými validací není mezi třemi metodami krigingu téměř žádný rozdíl. Clustery záporných i kladných chyb si na všech vizualizacích odpovídají. Extrémy chyb jsou stejně jako u interpolací IDW, RBF, a LPI kolem 5 v kladném i záporném směru, nicméně takových hodnot je velmi málo a jejich distribuce je náhodná.

Tab. 4 ukazuje výsledky validace ukazatelem Error. V ideálním případě by měl být roven nule, proto podle validace vyšla o necelé 2 tisíciny lépe metoda Ordinary kriging. Nicméně odlišnosti chybovosti všech tří metod krigingu jsou zanedbatelné.

Obr. 10: Chybné hodnoty krigingu (zleva Ordinary, Simple, Universal) nalezené po validaci nezávislým souborem dat

(kladná chyba – zeleně, záporná chyba – červeně, správné hodnoty – šedě)

Tab. 4: Validace dat po provedení krigingu

1 1	
Typ krigingu:	Error
Ordinary	0,0220
Simple	0,0238
Universal	0,0243

Závěr:

Smyslem cvičení bylo porozumět rozdílům v interpolačních metodách krigingu. Prvním krokem při analýze prostorových dat je průzkumová analýza (ESDA), jež v tomto případě ukázala základní vlastnosti teplotních hodnot, což přišlo vhod při rozhodování při nastavení parametrů jednotlivých metod. Průzkumová analýza také odhalila extrémní minimální hodnotu, která byla označena za chybu, a proto byla z analýzy odstraněna.

Jako nejvhodnější metoda krigování tepelného ostrova města se podle predikovaných chyb RMSE a MPE ukázala interpolace Simple Kriging. Podle hodnoty Error po samotné validaci se však jevila jako nejúspěšnější metoda Ordinary Kriging. Rozdíly chybovosti však byly nepatrné, a i výsledné rastry vypadají vizuálně téměř totožně. Všechny metody krigingu dosáhly lepších výsledků než nejúspěšnější interpolace z minulé seminární práce (RBF).

Obr. 11 zobrazuje metodu interpolace s všeobecně nejlepšími výsledky nad satelitním snímkem pro usnadnění interpretace tepelného ostrovu města. Potvrzuje se předpoklad, že teplejší hodnoty většinou korelují s místy husté zástavby, nicméně lze si všimnout i několika výjimek. Teplý Michelský a Kunratický les na jižním okraji Prahy nebo les východně od Říčan, který vyzařoval dokonce více tepla než zástavba Říčan. Z vizualizace je patrné, že ostrov se decentricky roztahuje podél linií dálnic, což pravděpodobně souvisí s hustou dopravou, ale také s vazbou průmyslových podniků na periferii podél významných komunikací. Markantní je i průmyslová zóna v Horních Počernicích na východním okraji Prahy a stejně tak logistický park u Úvalů. Přesto, že představují gigantickou zastavěnou plochu, nezvyšují svému okolí teplotu. To je patrně způsobeno převažující bílou barvou střech zvyšující albedo. Kromě obrysů Prahy je z vizualizací dobře čitelné i Letiště Václava Havla nebo Boleslav v severovýchodním rohu. Stejně jako u interpolací v první seminární práci se nejrozsáhlejší shluk nejvyšších teplot nachází na téměř nezastavěném severním okraji Prahy. Jedná se totiž o kopec Ládví, resp. jeho příkrý jižní svah; právě kvůli orientaci svahu a skalnatému terénu.

Obr. 11: Satelitní snímek Prahy a okolí překrytý výsledným rastrem Simple Krigingu Zdroj: Esri, DigitalGlobe

Zdroje:

DOBROVOLNÝ, P. (2017): Studijní materiály předmětu Z6101, https://is.muni.cz/auth/el/1431/jaro2020/Z6101/um/39007348/

DIGITAL GLOBE, ESRI (2020): World Imagery Basemap. Dostupné z www: http://goto.arcgisonline.com/maps/World_Imagery