曲面曲线论笔记

魔法少女 Alkali 北京师范大学数学科学学院

2022年5月

本作品采用知识共享署名-相同方式共享 4.0 国际 (CC BY-SA 4.0) 协议进行共享. 您可以访问https://creativecommons. org/licenses/by-sa/4.0/查看该协议.

前言

还没想好写什么.

ii

目录

前言		i
第零章	准备	1
0.1	几何学是什么?	1
0.2	微分流形	2
0.3	切空间与微分映射	6
0.4	子流形	15
参考文献	iak	17

iv

0.1 几何学是什么?

现代几何学源于古希腊. 在古希腊语中, "几何学" 一词为 γεωμετρία (geōmetría), 意为测量大地. 这反映了早期几何学主要是对长度, 面积, 体积, 角度的经验性原理的收集, 主要用于满足实用性用途. 直至今日, 初步的几何学教学仍然是从对几何体的大小的直观认识开始的. 因此几何学的一个经典要件就是度量.

Euclid 所著的 *Elements* (汉语中通常称作《几何原本》) 是古希腊几何的代表. 他在 *Elements* 的开篇引入了这样的一条公理:

公理 4. 彼此能重合的物体是全等的.

然后第一个引用了这条公理的命题是

命题 4. 如果两个三角形中,一个的两边分别等于另一个的两边,而且这些线段所夹的角相等. 那么它们的底边等于底边,这样其余的角也等于相应的角,即那些等边所对应的角.

(译文引自 [5])

在这最原始的直觉中,"重合"蕴含了运动的概念,而边角的相等则蕴含了不变量的概念.因此,几何学的另一个经典要件就是变换与不变量.

古希腊的几何学主要研究直线与圆锥曲线. 到了微积分发明之后,数学家可以使用微积分的工具来研究更一般的几何体了. Leibniz 通过密切圆引入了曲线的曲率, Bernoulli 与 Euler 研究了曲面的法曲率与测地线. 对"曲"的研究正式进入了几何学之中. 1827 年, Gauss 在论文 *Disquisitiones generales circa superficies curvas* (关于曲面的一般研究)中证明了"Gauss 绝妙定理"(Theorema Egregium). 从此一种观念开始进入几何学:我们可以研究抽象的几何体,而不考虑它在欧氏空间中的实现. 进而不久非欧几何便产生了.

回到几何学的两个要件上. 有了以上基础, 1854 年 Riemann 写作了论文 Über die hypothesen welche der Geometrie zu Grunde liegen (论奠定几何学基础的假设), 正式引入了 Riemann 度量与流形的概念 (之后的笔记中我们会详细解释这两个概念). 同时, 19 世纪正在经历一个射影几何的复兴潮, 当时正在流行使用射影变换的方法研究射影几何. 于是在 1893 年 F. Klein 发表了对整个几何学的"总结性"综述 Vergleichende Betrachtungen über neuere geometrische Forschungen (关于近代几何学研究的比较考察). 文章中提到几何学的目的在于

给定一个流形和其上的变换群,发展关于这个群的不变量 理论.

([1], 自译)

自此, 经典几何学的舞台已经搭好. 但我们还有一个问题:

问题. 微分几何是什么?

接下来我们开始慢慢搭微分几何的舞台.

0.2 微分流形

由于我们要在一般的几何体上处理问题, 所以我们要先引入流形的概念. 在数学分析的课程中, 我们学习过了 \mathbb{R}^n 的 k 维子流形的概念 (例如在

0.2 微分流形 3

[3] 的第 8 章). k 维子流形的概念是一个局部长得像 \mathbb{R}^k 的空间. 这启发我们给出一般流形的定义:

定义 0.2.1. 一个 n 维**拓扑流形** M 是一个第二可数, Haussdorf 的拓扑空间, 并且 M 的每一点都有一个邻域同胚于 \mathbb{R}^n 中的一个开集.

评注 0.2.2. 拓扑流形定义中的第二可数与 Haussdorf 这两个条件目前看不出来有什么作用,但这两个条件能够保证单位分解定理这个重要的工具成立,之后遇到了我们会再讨论这一点. 此外,给出上述定义之后我们需要证明 n 维拓扑流形是良定义的,即证明 \mathbb{R}^n 与 \mathbb{R}^m 在 $m \neq n$ 时不同胚,但这需要用到代数拓扑的工具(参考 [2,定理 17.26],那里用的是 de Rham 理论). 不过证明微分流形是良定义的会相对比较简单,之后我们会处理这件事情.

由于我们不太需要关心流形的拓扑, 所以以上定义对微分几何来说其实并不是特别重要¹. 对流形而言, 重要的是它上面的微分结构.

定义 0.2.3. 设 M 是 n 维拓扑流形. 设 $\{U_{\alpha}\}_{\alpha\in A}$ 是 M 的一族开覆盖,满足其中每个开集都同胚于 \mathbb{R}^n 中的开集. 每个开集对应的同胚映射 $\varphi_{\alpha}:U_{\alpha}\to\mathbb{R}^n$ 被称为**坐标卡**. 如果两个坐标卡 $\varphi_{\alpha},\varphi_{\beta}$ 满足 $\varphi_{\alpha}\circ\varphi_{\beta}^{-1},\varphi_{\beta}\circ\varphi_{\alpha}^{-1}$ 在其定义域上是 C^{∞} 的,那么称这两个坐标卡相容. 如果这一族开覆盖的任意两个坐标卡相容,那么这一族开覆盖 $\{U_{\alpha}\}_{\alpha\in A}$ 便称为 M 的一个**图册**. 如果 M 的一个图册中无法再加入新的相容的坐标卡,那么称这个图册是**极大**的. 极大的图册构成 M 的一个**微分结构**. 拥有微分结构的拓扑流形被称为**微分流形**.

有时我们会将 $\varphi_{\beta}\circ\varphi_{\alpha}^{-1}$ 称为**转移函数**. 我们有一张图可以用来直观地理解转移函数:

例 0.2.4. 我们举几个微分流形的例子.

¹也就是你不懂的话也不必深究的意思.

图 1: 转移函数

- (1) \mathbb{R}^n , 以恒等映射 $1_{\mathbb{R}^n}$ 为坐标卡. 我们指出一点, 证明一个流形具有微分结构只需要找出一组图册就可以了, 这组图册对应的微分结构就是所有与图册相容的坐标卡的集合. 一般将恒等映射所在的图册称为 \mathbb{R}^n 的标准微分结构.
- (2) \mathbb{R} , 以 $\varphi: u \mapsto u^3$ 为坐标卡. 注意到 φ 是 \mathbb{R} 到自身的同胚, 从而决定了一个微分结构. 但是 $1_{\mathbb{R}} \circ \varphi^{-1}$ 在 u=0 处不可导, 因此这个微分结构与标准微分结构不相容. 这说明了一个微分流形上的微分结构可以有不止一个.
- (3) 单位球面 \mathbb{S}^n , 南北两极的球极投影. 两个球极投影 p_N, p_S 分别满足

$$\begin{split} p_N(x_1, x_2, \cdots, x_{n+1}) &= \frac{1}{1 - x_{n+1}} (x_1, x_2, \cdots, x_n) \\ p_S(x_1, x_2, \cdots, x_{n+1}) &= \frac{1}{1 + x_{n+1}} (x_1, x_2, \cdots, x_n) \end{split}$$

在截面上用简单的平面几何可以推出转移函数为 $1_{\mathbb{R}^n}/|1_{\mathbb{R}^n}|^2$, 是光滑函数.

由于我们主要关心曲线曲面论, 所以我们不在这里再举其他奇怪(但

0.2 微分流形 5

是有趣)的流形的例子了. 而作为流形的曲线与曲面, 我们将在后面子流形的部分讨论它们.

微分结构的一个很重要的作用是可以定义光滑函数.

定义 0.2.5. 设 M 是微分流形, 函数 $f: M \to \mathbb{R}$ 被称为是**光滑**的是指对任 意 $p \in M$, 都存在一个包含 p 的坐标卡 (U, φ) 使得 $f \circ \varphi$ 是 C^{∞} 的.

记号 0.2.6. 我们用 $C^{\infty}(M)$ 来表示 M 上全体光滑函数的集合, 在逐点定义的加法与乘法下, 这是一个 \mathbb{R} -代数 (同时是交换环与 \mathbb{R} -向量空间).

在这一节的最后我们引入流形的定向的概念. 我们用 $\mathrm{d}f$ 来表示一个可微映射 f 的微分, 即最佳近似线性映射.

定义 0.2.7. 设 M 是微分流形, 如果它拥有一组图册满足任意转移函数的 Jacobi 行列式 $\det d(\varphi_{\alpha} \circ \varphi_{\beta}^{-1}) > 0$, 那么就称 M 为**可定向流形**, 这样的一组图册称为给出了 M 的一个**定向**; 否则称 M 为**不可定向流形**.

- **例 0.2.8.** (1) \mathbb{R}^3 的一组基对应了一个坐标卡, 转移函数的行列式就是过渡矩阵的行列式. 我们知道 \mathbb{R}^3 的基有左手系和右手系的区分, 右手系到右手系的过渡矩阵行列式为正, 右手系到左手系的过渡矩阵行列式为负. 因此左手系和右手系分别决定了 \mathbb{R}^3 的一种定向, 这也是定向这一概念的来源.
 - (2) 如果流形 M 的一个图册中只有两个坐标卡, 那么 M 一定可定向: 设 这两个坐标卡是 (U_1, φ_1) 与 (U_2, φ_2) , 如果 $\det d(\varphi_1 \circ \varphi_2^{-1}) > 0$, 那么 已经完成证明; 否则我们复合一个 \mathbb{R}^n 上的反射变换 r, 得到新的坐 标卡 $\varphi_3 = r \circ \varphi_2 : U_2 \to \mathbb{R}^n$, 那么新的图册 $\{(U_1, \varphi_1), (U_2, \varphi_3)\}$ 就满足 $\det d(\varphi_1 \circ \varphi_3^{-1}) = \det d(\varphi_1 \circ \varphi_2^{-1}) \det r^{-1} > 0$, 从而 M 可定向.
 - (3) 按照上面的判别法, 单位球面 \mathbb{S}^n 拥有两个球极投影构成的图册, 所以是可定向的.

关于流形的定向有一个基础的结论:

命题 0.2.9. 一个连通的可定向流形恰好有两个定向.

证明. 证明这个命题需要一些拓扑论证, 但我们不希望在这份笔记里出现太多的拓扑, 所以我们直接引用 [4,引理 1.1.2].

事实上确实存在不可定向的流形,比如大家熟悉的 Möbius 带, 我们在 之后再来讨论这个例子.

0.3 切空间与微分映射

用"切"的手段来研究流形是微分几何学的基本想法,我们在这一节建立有关切的几个概念. 首先我们使用内蕴的方法定义切向量,并定义切空间与切丛. 然后我们讨论切空间之间的微分映射,以及通过链式法则得到的重要推论,即维度的微分同胚不变性.

切向量与切空间

在数学分析课程中,我们会考虑由函数图像给定的曲面,并使用这个函数的微分映射的像来定义切平面.但是在一般的微分流形中,我们没有办法先验地给坐标卡定义微分,所以我们要寻找其他的办法来定义流形的切向量.

对于曲面 $S \perp p$ 点处的一个切向量 v, 我们可以找到一条曲线 $c: I \to S$ 使得 p = c(0), v = c'(0) (这里的导数定义为逐分量求导). 为了去掉全空间, 我们考虑一个函数 $f: S \to \mathbb{R}$, 那么由链式法则有

$$(f\circ c)'(0)=\langle \operatorname{grad} f(p),c'(0)\rangle$$

我们熟悉右侧是由切向量决定的方向导数. 由梯度与内积的线性性可知

$$((\lambda f + \mu g) \circ c)'(0) = \lambda (f \circ c)'(0) + \mu (g \circ c)'(0)$$
 (0.3.1)

又由乘积函数的求导法则, 可以得到

$$((fg) \circ c)'(0) = (f \circ c)(0)(g \circ c)'(0) + (g \circ c)(0)(f \circ c)'(0) \tag{0.3.2}$$

通过以上式子,我们可以看出方向导数可以被 S 上的曲线决定,从而并不需要全空间.

图 2: 曲面上的切向量

事实上, (0.3.1) 和 (0.3.2) 两个性质就足够给出方向导数的定义了.

定义 0.3.1. 对 n 维微分流形 M 与 $p \in M$, 点 p 处的一个切向量 v 是一个 $C^{\infty}(M)$ 到 \mathbb{R} 的 \mathbb{R} -线性映射,并且满足 Leibniz 法则:对任意 $f,g \in C^{\infty}(M)$ 有 v(fg) = f(p)v(g) + g(p)v(f). p 处所有的切向量的集合构成 p 处的**切空间** T_pM .

通过显然定义的加法与数乘, T_pM 构成一个 \mathbb{R} -向量空间. 我们接下来讨论一下 T_pM 的维度.

首先我们考虑一个包含 p 的坐标卡 (U,φ) , 定义 n 个切向量 $\left.\frac{\partial}{\partial x^i}\right|_p(i=1,2,\cdots,n)$, 满足

$$\left.\frac{\partial f}{\partial x^i}\right|_p = \frac{\partial (f\circ\varphi^{-1})}{\partial u^i}(\varphi(p))$$

等式右侧是 $\varphi(U)\subset\mathbb{R}^n$ 上的函数对 u^i 分量的偏导数². 为了简洁起见,之后在 p 点确定的时候我们会省略这个脚标. 按照我们前面的讨论,它们确实满足线性性和 Leibniz 法则,所以是切向量 (用古典微分几何的语言来说, $\frac{\partial f}{\partial x^i}$ 相当于 f 复合一个坐标曲线之后再求导). 我们期望它们刚好就是 T_pM 的一组基. 为此我们建立以下引理:

引理 0.3.2. 切向量 $\frac{\partial}{\partial x^i}(i=1,2,\cdots,n)$ 线性无关.

证明. 记函数 $x^i=\pi^i\circ\varphi^{-1}$, 其中 π^i 为向第 i 个分量的投影. 设有线性关系

$$\sum_{i} c_{i} \frac{\partial}{\partial x^{i}} = 0 \tag{0.3.3}$$

用 (0.3.3) 两端作用在 x^i 上,可以得到 $c_i=0$. 由 i 的任意性可知 $\frac{\partial}{\partial x^i}(i=1,2,\cdots,n)$ 线性无关.

记号 0.3.3. 我们第一次遇到了求和式. 以后如果遇到的是有限求和, 我们会省略求和上下限, 并且此时如果有多个指标, 可以交换求和顺序, 我们会把指标写在一个求和号底下. 不过我们永远不会使用 Einstein 求和约定.

我们接下来说明 $T_p M$ 可以被 $\frac{\partial}{\partial x^i} (i=1,2,\cdots,n)$ 生成.

引理 0.3.4. 设 U 是 \mathbb{R}^n 中 0 的一个邻域, $f\in C^\infty(U)$. 那么存在 $f_1,\cdots,f_n\in C^\infty(U)$ 使得

$$f(u) = f(0) + \sum_{i} u^{i} f_{i}(u)$$

$$\mathbb{A} f_i(0) = \frac{\partial f}{\partial u^i}(0).$$

8

 $^{^2}$ 虽然后面我们会看出 $\partial/\partial x^i$ 表现得确实很像偏导数,但是请仔细区分偏导数与切向量: 偏导数是定义在 \mathbb{R}^n 里的.

证明. 固定 $u \in U$, 考虑关于 t 的函数 f(tu), 我们有

$$f(u) - f(0) = \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} f(tu) \, \mathrm{d}t$$
$$= \int_0^1 \sum_i \frac{\partial f(tu)}{\partial u^i} u^i \, \mathrm{d}t \quad (链式法则)$$
$$= \sum_i u^i \int_0^1 \frac{\partial f(tu)}{\partial u^i} \, \mathrm{d}t$$

取
$$f_i(u) = \int_0^1 \frac{\partial f(tu)}{\partial u^i} dt$$
 即可 (光滑性容易验证).

命题 0.3.5. T_pM 可以被 $\frac{\partial}{\partial x^i}(i=1,2,\cdots,n)$ 生成,这组基称为关于坐标 卡 φ 的**坐标基**.

证明. 设 $v\in T_pM$,不妨设 $\varphi(p)=0$. 对任意一个 $f\in C^\infty(M)$,由引 理 0.3.4,可以将 $(f\circ \varphi^{-1})(u)$ 写成

$$(f \circ \varphi^{-1})(0) + \sum_{i} u^{i}(f_{i} \circ \varphi^{-1})(u) \tag{0.3.4}$$

设 x^i 定义如引理 0.3.2, 那么可以将 (0.3.4) 写成

$$f(p) + \sum_{i} x^{i} f_{i} \tag{0.3.5}$$

注意到对常函数 c 总有

$$v(c) = v(1\cdot c) = 1\cdot v(c) + cv(1) = 2v(c)$$

从而 v(c) = 0, 那么将 v 作用在 (0.3.5) 有

$$\begin{split} v(f) &= \sum_{i} v\left(x^{i} f_{i}\right) \\ &= \sum_{i} \left(x^{i}(p) v(f_{i}) + f_{i}(p) v(x^{i})\right) \end{split}$$

注意到 $x^i(p) = \pi^i \circ \varphi(p) = 0$, 且由引理 0.3.4 可知

$$f_i(p) = (f_i \circ \varphi^{-1})(0) = \frac{\partial (f \circ \varphi^{-1})}{\partial u^i}(0) = \left. \frac{\partial f}{\partial x^i} \right|_p$$

所以有

$$v(f) = \sum_{i} v(x^{i}) \frac{\partial f}{\partial x^{i}}$$

注意到上式对所有 f 均成立, 所以有

$$v = \sum_{i} v(x^{i}) \left. \frac{\partial}{\partial x^{i}} \right|_{p} \tag{0.3.6}$$

推论 0.3.6. n 维流形上任意一点处的切空间维度为 n.

评注 0.3.7. 在一些文献中坐标卡的逆映射 φ^{-1} 会被称为**局部坐标系**, 而

$$c^i(t)=\varphi^{-1}(0,\cdots,\overset{\textstyle \hat{\pi}i \uparrow \hat{\gamma} \hat{\pm}}{t},\cdots,0)$$

被称为坐标曲线, 尤其是古典微分几何教材喜欢用这个术语. 那么就有

$$\frac{\partial f}{\partial x^i}(p) = (f \circ c^i)'(0)$$

(依然假设 $\varphi(p)=0$). 当局部坐标系成为 \mathbb{R}^n 的恒等映射时, 坐标曲线变成了坐标轴, $(f\circ c^i)'$ 刚好就是对第 i 个分量的偏导数, $\frac{\partial}{\partial x^i}$ 与数学分析中使用的偏导记号便一致了. 因此我们便选择了这样一个记号来表示切空间的基.

我们给出一个很重要的构造.

定义 0.3.8. 定义 $TM := \{(p,v)|p \in M, v \in T_pM\}$, 或者用不交并这个更代数的记号写作 $TM := \bigsqcup_{p \in M} T_pM$, 称为 M 的**切丛**. 切丛的**自然投影映射** $\pi : TM \to M$ 将每个 (p,v) 映为 p.

命题 0.3.9. n 维流形 M 的切丛 TM 是一个 2n 维流形.

证明. 我们承认 TM 是一个拓扑流形. 设 M 有微分结构 $\{(U_{\alpha},\varphi_{\alpha})\}_{\alpha\in A}$,我们按照如下方式赋予 TM 微分结构: 对一个坐标卡 (U,φ) , φ 的坐标基诱导了一个 T_pM 到 \mathbb{R}^n 的向量空间同构 $I_{\varphi}:T_pM\to\mathbb{R}^n$. 取开覆盖 $\{(U_{\alpha}\times\mathbb{R}^n,\varphi_{\alpha}\times I_{\varphi_{\alpha}})\}_{\alpha\in A}$,我们证明它是相容的,从而给出了 TM 的一个微分结构. 对 $(U_1\times\mathbb{R}^n,\varphi_1\times I_{\varphi_1})$ 与 $(U_2\times\mathbb{R}^n,\varphi_2\times I_{\varphi_2})$,容易验证

$$(\varphi_1\times I_{\varphi_1})^{-1}=\varphi_1^{-1}\times I_{\varphi_1}^{-1}$$

从而转移函数为

$$(\varphi_2\times I_{\varphi_2})\circ (\varphi_1\times I_{\varphi_1})^{-1}=(\varphi_2\circ \varphi_1^{-1})\times (I_{\varphi_2}\circ I_{\varphi_1}^{-1})$$

这显然是光滑的, 因此 φ_1, φ_2 是相容的. 由 φ_1, φ_2 的任意性可知命题成立. 因此 φ_1, φ_2 是相容的. 由 φ_1, φ_2 的任意性可知命题成立.

这应该是我们遇到的第一个与常见的曲线曲面相去甚远的流形.

评注 0.3.10. 命题 0.3.9 中给出的坐标卡 $\varphi \times I_{\varphi}$ 使得 TM 在局部同胚于 $V \times \mathbb{R}^n$, 这叫做 TM 的**局部平凡化**. 实际上这也是我们对切丛的直观: 每一点处长出了一根由切空间构成的纤维.

关于切丛的一个简单的性质是:

命题 0.3.11. 无论 M 是否可定向, 切丛总是可定向的.

证明. 我们考虑命题 0.3.9 证明中的转移函数的行列式, 有

$$\det \operatorname{d}((\varphi_2 \times I_{\varphi_2}) \circ (\varphi_1 \times I_{\varphi_1})^{-1}) = \det \operatorname{d}(\varphi_2 \circ \varphi_1^{-1}) \det \operatorname{d}(I_{\varphi_2} \circ I_{\varphi_1}^{-1})$$

而对 (u^1,u^2,\cdots,u^n) ,我们有 $I_{\varphi_1^{-1}}(u^1,u^2,\cdots,u^n)=\sum_j u^j \frac{\partial}{\partial x^j}\bigg|_p$,而由 (0.3.6) 可知

$$I_{\varphi_2}^i \circ I_{\varphi_1^{-1}}(u^1,u^2,\cdots,u^n) = \left. \sum_i u^j \frac{\partial y^i}{\partial x^j} \right|_{\eta}$$

所以有

那么
$$\frac{\partial}{\partial u^j}(I^i_{\varphi_2}\circ I_{\varphi_1^{-1}})=\frac{\partial y^i}{\partial x^j}$$
那么 $\det \mathrm{d}(I_{\varphi_2}\circ I^{-1}_{\varphi_1})=\det \left[\frac{\partial y^i}{\partial x^j}\right]_{i,j}$. 又注意到
$$\frac{\partial y^i}{\partial x^i}=\frac{\partial(\pi^i\circ\varphi_2\circ\varphi_1)}{\partial u^j}$$
所以 $\left[\frac{\partial y^i}{\partial x^j}\right]_{i,j}=\mathrm{d}(\varphi_2\circ\varphi_1^{-1})$, 因此
$$\det \mathrm{d}((\varphi_2\times I_{\varphi_2})\circ(\varphi_1\times I_{\varphi_1})^{-1})=(\det \mathrm{d}(\varphi_2\circ\varphi_1^{-1}))^2>0$$

微分映射

我们把光滑性推广到任意两个流形间的映射上.

定义 0.3.12. 设 f 是微分流形 M,N 间的映射 $f:M\to N$, 如果对 M,N 的微分结构 $\{(U_{\alpha},\varphi_{\alpha})\}_{\alpha\in A}$, $\{(V_{\beta},\psi_{\beta})\}_{\beta\in B}$ 中任意两个坐标卡 φ,ψ 有 $\psi\circ f\circ \varphi^{-1}$ 是 C^{∞} 的, 那么称 f 是光滑的.

显然定义 0.3.12 与定义 0.2.5 是相容的.

对流形间的光滑映射,我们没有办法像数学分析中那样把微分定义为最佳逼近的线性映射。不过我们可以像上一小节那样考察一下切向量的行为。设 $f:\mathbb{R}^n\to\mathbb{R}^m$,f 在 x 点处的微分是 \mathbb{R}^n 到 \mathbb{R}^m 的一个线性映射,在各自的标准正交基下可以表示为一个 $m\times n$ 矩阵 L_x . L_x 把一个 $v\in\mathbb{R}^n$ 映到一个 $L_xv\in\mathbb{R}^m$. 考虑一个 \mathbb{R}^m 上的光滑函数 $g:\mathbb{R}^m\to\mathbb{R}$,设它的梯度表示为行向量 N,那么 g 在 f(x) 点处沿 L_xv 方向的方向导数为

$$\langle \operatorname{grad} g(f(x)), L_x v \rangle = g L_x v$$

由链式法则可知 gL_x 是 $g \circ f$ 在 x 点处的微分,因此 L_xv 在一个函数上的作用相当于 v 在这个函数复合 f 之后的函数上作用. 把这个过程整理一下,我们可以类比地给出流形间光滑映射的微分:

定义 0.3.13. 设 $f: M \to N$ 是光滑映射, 那么 f 在 $p \in M$ 点处的微分 $f_*|_p: T_pM \to T_{f(p)}N$ 将 $v \in T_pM$ 映为 $f_*|_p(v)$, $f_*|_p(v)$ 在 $C^{\infty}(N)$ 上的作用为 $f_*|_p(v)(g) = v(g \circ f)$.

显然微分映射是线性映射.

记号 0.3.14. 微分映射传统的记号是 df_p 或者 df(p), 但现在更多会写成我们定义的这个形式. 具体为什么我们留到后面再讲. 和之前一样, 如果 p 点是明确的, 我们就不会写脚标.

我们接下来证明关于微分映射最重要的结论:

定理 0.3.15 (链式法则). 设流形 M,N,P 间有光滑映射 $f:M\to N,g:N\to P,\ h=g\circ f.$ 点 $p\in M,q\in N,r\in P$ 满足 f(p)=q,g(q)=r, 那么一定有 $h_*|_p=g_*|_q\circ f_*|_p$. 换言之,图表

交换蕴含以下图表交换

证明. 对 $v \in T_pM$ 与 $\psi \in C^{\infty}(P)$, 我们有

$$\begin{split} (g_* \circ f_*)(v)(\psi) &= g_*(f_*v)(\psi) \\ &= f_*(v)(\psi \circ g) \\ &= v(\psi \circ g \circ f) \\ &= v(\psi \circ h) \end{split}$$

 \Box

$$=h_*(v)(\psi)$$

由 $v = \psi$ 的任意性即知 $g_* \circ f_* = h_*$.

作为链式法则的第一个应用, 我们来证明之前被搁置的一个问题, 那就是微分流形维度的良定义性.

命题 0.3.16. 设开集 $U \subset \mathbb{R}^m$ 与开集 $V \subset \mathbb{R}^n$ 微分同胚, 即存在一个双射 $\varphi: U \to V$ 使得 φ, φ^{-1} 都是 C^{∞} 的, 那么一定有 m = n. 特别的, 微分流形的维度是良定义的.

证明. 由于 $\varphi^{-1} \circ \varphi = 1_{\mathbb{R}^m}, \varphi \circ \varphi^{-1} = 1_{\mathbb{R}^n},$ 在某一点取微分可以得到

$$\varphi_*^{-1}\circ\varphi_*=1_{\mathbb{R}^m}, \varphi_*\circ\varphi_*^{-1}=1_{\mathbb{R}^n}$$

从而 φ_* 同时有左右逆,是向量空间之间的同构,那么一定有 m=n. 对一个微分流形 M 而言,M 的维度定义为与微分结构中的一个开集 U 同胚的 $\varphi(U)$ 所在欧氏空间的维度. 而对两个不同的 $\varphi_1(U_1), \varphi_2(U_2)$ 而言,两个方向的转移函数构成了它们(的一部分)之间的微分同胚,按照上面的论证,它们所在的欧氏空间维度一定是一样的. 综上所述,微分流形的维度是良定义的.

评注 0.3.17. 实际上命题 0.3.16 的证明用到的只是数学分析课程中证明过的欧氏空间的链式法则,并没有用到流形上的链式法则. 不过由于想法是一样的, 所以我们仍然在这里陈述它的证明.

评注 0.3.18. 最后我们解释一下 f_* 这个记号. 首先, 我们更倾向使用 $f_*|_p$ 而不是 df(p) 的一个简单的理由是前者更紧凑一些, 在写微分映射作用在 切空间上的向量时会节约很多空间. 同时, df 更多特指欧氏空间之间的可微映射, 会有更多分析学上的用途 (比如用来写 Jacobi 矩阵和行列式).

其次,从范畴论的角度来看,微分对复合映射的作用 $(f\circ g)_*=f_*\circ g_*$ 表现得很像协变函子,而一类很常见的协变函子 $\mathrm{Hom}_{\mathcal{C}}(A,\quad):\mathcal{C}\to\mathsf{Set}$

0.4 子流形 15

作用在 $h \in \operatorname{Hom}_{\mathcal{C}}(B,C)$ 上得到的态射一般会记为 h_* . 选用这个记号可以一定程度上体现链式法则代表的协变性.

此外, 在微分几何传统中, f_* 也会被称为推前映射, 也许是因为 f_* 的箭头是向前的. 之后我们还会遇到一类与微分对偶的映射, 被称为拉回映射, 记作 f^* , 它的箭头是向后的. 拉回映射传统上就一直使用 f^* 作为记号, 因此用 f_* 表示推前映射也是恰当的.

最后,我们必须指出,虽然我们提到了协变性,推前,拉回这些词语,但是他们和范畴论中一样的词语含义并不一样.它们的相似性只是**巧合**,这些巧合让我们采用了相似的记号,但并不意味着可以把范畴论的观点生搬硬套进来.

0.4 子流形

子结构在数学中随处可见,从最简单的子集(作为一切基础),到代数中的子群,子空间(先是子集,并且在大集合的运算下仍然具有相同的代数结构),大多具有"子集-相同结构"这一模式.因此子流形大约就是大流形中一个自己是流形的子集.但我们还需要更多的一些限制条件,以下我们从浸入,嵌入的概念开始介绍.

定义 0.4.1. 映射 $f: M \to N$ 被称为 M 到 N 的一个**浸人**, 如果对任意 $p \in M$ 都有 $f_*|_p$ 是单射. 如果进一步地, f 是 M 与赋予了 N 的子空间拓扑的 f(M) 之间的微分同胚, 那么 f 被称为是 M 到 N 的一个**嵌人**.

例 0.4.2. (1) 考虑最简单的的流形 R, 以及映射

$$\varphi: \mathbb{R} \to \mathbb{R}^2$$

$$t \mapsto \begin{bmatrix} \cos t \\ \sin t \end{bmatrix}$$

注意到 $\varphi_*|_t = (-\sin t, \cos t)^\mathsf{T}$, 由于 $\cos^2 t + \sin^2 t = 1$, 所以总有

 $\varphi_* \neq 0$, 从而 φ_* 是满秩的. 因此 φ 是一个浸入. 注意到 φ 不是双射, 从而不是一个嵌入.

- (2) \mathbb{R}^3 中的曲面片. 我们用古典的语言来说这件事. 设 U 是 \mathbb{R}^2 中的开集 (从而自然是一个 2 维流形), 映射 $r: U \mapsto \mathbb{R}^3$ 在某一点 p 处的两个偏导数 $r_1(p), r_2(p)$ 构成 \mathbb{R}^3 中的两个向量 $(r_i$ 表示对第 i 个分量求偏导). 如果对任意 $p \in U$ 都有 $r_1(p) \times r_2(p) \neq 0$, 那么 r 就是一个浸入,并得到了 \mathbb{R}^3 中的一块曲面片. 如果要解释一下的话, $r_1(p), r_2(p)$ 是 $T_pU \cong \mathbb{R}^2$ 的标准基在 r_* 下的像,而 $r_1(p) \times r_2(p) \neq 0$ 保证了他们线性无关,所以 r 是一个浸入.
- (3) ∞ 符号: $r(t) = (2\sin t, \sin(2t)), t \in (-\pi, \pi)$. 显然 r_* 总是非零的, 所

图 3: 双纽线

以 r 是一个浸入. 并且我们也能发现 r 是一个单射. 然而 r 不是一个嵌入: 作为 \mathbb{R} 的开子集, $(-\pi,\pi)$ 不是一个紧集, 但它在 r 下的像在 \mathbb{R}^2 的子空间拓扑下是一个紧集, 所以 r 不是一个同胚. 有时候这个曲线也被称为双纽线.

按照我们之前的想法,子流形是大流形的一个子集,而且自己也是一个流形.不过我们要求这个子集是要在大流形的拓扑下成为流形,不然会出现双纽线那样自交等各种情况.所以我们利用嵌入给出子流形的定义:

0.4 子流形 17

定义 0.4.3. 设微分流形 M,N 满足 $M\subset N$, 如果包含映射 $\iota:M\to N$ 是一个嵌入, 那么就称 M 为 N 的子流形. M 在 N 中的余维度定义为 $\operatorname{codim} M = \dim N - \dim M$.

参考文献

- [1] Felix Klein. "Vergleichende Betrachtungen über neuere geometrische Forschungen". Math. Ann. 1893, 43(1): 63–100.
- [2] John M. Lee. *Introduction to smooth manifolds*. Second. Springer, New York, **2013**: xvi+708.
- [3] Vladimir A. Zorich. *Mathematical analysis*. *I*. Second. Springer-Verlag, Berlin, **2015**, Translated from the 6th corrected Russian edition, Part I, 2012 by Roger Cooke, With Appendices A–F and new problems translated by Octavio Paniagua T: xx+616. https://doi.org/10.1007/978-3-662-48792-1.
- [4] 梅加强。流形与几何初步。北京:科学出版社,**2013**。
- [5] 欧几里得。几何原本。兰纪正,朱恩宽 译。西安:陕西科学技术出版 社,**2003**。