Additional Question

Consider the following model structure where. second order process is in parallel with first order process.

Preliminary test shows. Hat $K_1 = -3$ and $Z_4 = 20$.

Preliminary test shows that
$$K_1 = -3$$
 and $T_4 = 20$.

Preliminary test shows that $K_1 = -3$ and $T_4 = 20$.

An additional test is made by giving an a step change of additional test is made by giving an a step change of $T_4 = 10$.

Preliminary test shows that $T_4 = 10$ and $T_4 = 10$ and $T_4 = 10$ and $T_4 = 10$.

Time: $T_4 = 10$ and $T_4 =$

Estimate
$$P(t) = 4-2 = 2$$
.

Argure $P(s) = 2/s$.

$$P(t) = 4 - 2 = 7$$
 $P(s) = 2/s$
 $P(s) = \frac{1}{2}$
 $P(s) = \frac{1}{2}$

$$\frac{Q(s)}{P(s)} = \frac{K_1}{T_1 s + 1}$$

$$Q(s) = \frac{K_1}{T_1 s + 1} \times \frac{2}{s} \Rightarrow \frac{1}{2}(t) = \frac{2K_1(1 - e^{t/21})}{2(t)} = \frac{2K_1(1 - e^{t/21})}{2(1 - e^{t/21})}$$

$$= \frac{2(s)}{T_1 s + 1} \times \frac{2}{s} \Rightarrow \frac{1}{2}(t) = \frac{2(s)}{2}(1 - e^{t/21})$$

$$= -4(1 - e^{t/21})$$

$$= -4(1 - e^{t/21})$$

$$P_{m}(s) = R(s) + Q(s)$$

 $P_{m}(t) = R'(t) + Q'(t)$
 $P_{m}(t) = R'(t) + Q'(t) + Q'(t) + P_{m}(t)$

$$p_{m}(t) = R'(t) + q'(t)$$

 $p_{m}(t) = P'(t) + q'(t) + p_{m}(0)$
 $p_{m}(t) - p_{m}(0) = r'(t) + q'(t) + p_{m}(0)$
 $p_{m}(t) = r'(t) + q'(t) - p_{m}(0)$

$$(t) = r'(t) + q(t)$$

 $(t) = p_m(t) - p_m(0) - q'(t)$

$$| r'(t) = P_{m}(t) - 12 + 6(1 - e^{4/20})
 | R = \frac{r'(t - \infty)}{p(t - \infty) - p(t - \infty)} = \frac{18 - 12 + 6(1 - 0)}{4 - 2} = 6.$$

$$| R = \frac{r'(t - \infty)}{|R|} = \frac{18 - 12 + 6(1 - 0)}{4 - 2} = 6.$$

$$| R = \frac{r'(t - \infty)}{|R|} = \frac{15 - r'(t - \infty)}{r'(t - \infty)} - 12$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-15/20}) - 12}{r'(t - \infty)}$$

$$| = \frac{28 - 6 + 6(1 - e^{-$$