### ДРЕВОВИДНЫЕ МОДЕЛИ

Деревья решений, случайный лес

### Дерево решений

Деревья решений - это метод, позволяющий предсказывать значения зависимой переменной в зависимости от соответствующих значений одной или нескольких предикторных (независимых) переменных. Применяется в задачах классификации и (реже) регрессии.



## Графическая иллюстрация нелинейного разделения классов



На рисунки приведен пример классификации объектов по двум непрерывным признакам. Объекты, относящиеся к разным классам, отмечены знаками "+" и "—".

## Использование деревьев решений в задачах регрессии



#### Этапы построения дерева решений

- 1. Выбор критерия точности прогноза
- 2. Выбор типа ветвления
- 3. Определение момента прекращения ветвлений
- 4. Определение "подходящих" размеров дерева

#### Выбор критерия точности прогноза

Accuracy, precision, recall – в задачах классификации

MSE,MAE- в задачах регрессии

### Выбор типа ветвления (criterion)

- Есть различные способы выбирать очередной признак для текущего ветвления:
- <u>Алгоритм ID3</u>, где выбор атрибута происходит на основании прироста информации ( <u>Gain</u> ).
- <u>Алгоритм С4.5</u> (улучшенная версия ID3), где выбор атрибута происходит на основании нормализованного прироста информации ( <u>Gain Ratio</u>).
- Алгоритм <u>CART</u> где выбор атрибута происходит на основании <u>индекса Джини</u>.

### Энтропия

Энтропия Шеннона для системы с N возможными состояниями:

• H= 
$$-\sum_{i=1}^{s} p_i \log_2 p_i$$

 $p_i$  —вероятности нахождения системы в i — м состоянии В нашем случае:

Предположим, что имеется множество A, состоящее из n элементов, обладающих свойством S, которое может принимать s различных значений,  $m_i$  - количество объектов множества A, имеющих i-e значение свойства S. Тогда

$$p_i = \frac{m_i}{n}$$
, 
$$H(A, S) = -\sum_{i=1}^s \frac{m_i}{n} \log \frac{m_i}{n}.$$

### Прирост информации (ID3)

Предположим, что множество А элементов, характеризующихся свойством S, классифицировано посредством атрибута Q, имеющего q возможных значений. Тогда прирост информации (information gain) определяется как

$$Gain(A, Q) = H(A, S) - \sum_{i=1}^{q} \frac{|A_i|}{|A|} H(A_i, S),$$

где  $A_i$  — множество элементов  $A_i$  на которых атрибут Q имеет значение i.

Прогноз игры в футбол

| Соперник | Играем   | Лидеры     | Дождь | Победа |
|----------|----------|------------|-------|--------|
| Выше     | Дома     | На месте   | Да    | Нет    |
| Выше     | Дома     | На месте   | Нет   | Да     |
| Выше     | Дома     | Пропускают | Нет   | Да     |
| Ниже     | Дома     | Пропускают | Нет   | Да     |
| Ниже     | В гостях | Пропускают | Нет   | Нет    |
| Ниже     | Дома     | Пропускают | Да    | Да     |
| Выше     | В гостях | На месте   | Да    | Нет    |
| Ниже     | В гостях | На месте   | Нет   | ???    |



Нет

0

Соперник в



Второй вариант дерева

Первый вариант дерева

1

## Вычисление энтропии и прироста информации

$$H(A, \Pi$$
обеда) =  $-\frac{4}{7}\log_2\frac{4}{7} - \frac{3}{7}\log_2\frac{3}{7} \approx 0.9852$ .

$$\begin{split} \mathrm{Gain}(A,\mathrm{Coперник}) &= \mathsf{H}(A,\Pi\mathsf{o}\mathsf{бe}_{A}\mathsf{a}) - \frac{4}{7}\mathsf{H}(A_{\mathtt{Bыше}},\Pi\mathsf{o}\mathsf{бe}_{A}\mathsf{a}) - \frac{3}{7}\mathsf{H}(A_{\mathtt{Hucke}},\Pi\mathsf{o}\mathsf{fe}_{A}\mathsf{a}) \approx \\ &\approx 0.9852 - \frac{4}{7}\left(-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2}\right) - \frac{3}{7}\left(-\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3}\right) \approx 0.0202. \end{split}$$

$${
m Gain}(A, {
m Играем}) = {
m H}(A, {
m Победа}) - rac{5}{7} {
m H}(A_{
m дома}, {
m Победа}) - rac{2}{7} {
m H}(A_{
m в \ гостях}, {
m Победа}) \ pprox 0.4696.$$
  ${
m Gain}(A, {
m Лидеры}) = {
m H}(A, {
m Победа}) - rac{3}{7} {
m H}(A_{
m Ha \ Mectre}, {
m Победа}) - rac{4}{7} {
m H}(A_{
m пропускают}, {
m Победа}) \ pprox 0.1281.$   ${
m Gain}(A, {
m Дождь}) = {
m H}(A, {
m Победа}) - rac{3}{7} {
m H}(A_{
m да}, {
m Победа}) - rac{4}{7} {
m H}(A_{
m Her}, {
m Победа}) \ pprox 0.1281.$ 

# Нормализованный прирост информации (С4.5)

Проблема: прирост информации выбирает атрибуты, у которых

Gain Ratio учитывает не только количество информации, требуемое для записи результата, но и количество информации, требуемое для разделения по текущему атрибуту. Поправка:

$$SplitInfo(A, Q) = -\sum_{i=1}^{q} \frac{|A_q|}{|A|} \log_2 \frac{|A_q|}{|A|},$$

Сам критерий — максимизация величины

$$GainRatio(A, Q) = \frac{Gain(A, Q)}{SplitInfo(A, Q)}.$$

### Индекс Gini (CART)

Для набора тестов A и свойства S, имеющего s значений, этот индекс вычисляется как

$$Gini(A, S) = 1 - \sum_{i=1}^{s} \left( \frac{|A_i|}{|A|} \right)^2.$$

Соответственно, для набора тестов A, атрибута Q, имеющего q значений, и целевого свойства S, имеющего s значений, индекс вычисляется следующим образом:

$$Gini(A, Q, S) = Gini(A, S) - \sum_{j=1}^{q} \frac{|A_j|}{|A|} Gini(A_j, S).$$

### Правила разбиения (CART)

- 1) Вектор, подаваемый на вход дерева может содержать как порядковые так и категориальные переменные.
- 2) В каждом узле разбиение идет только по одной переменной.
- 2.1) Если переменная числового типа, то в узле формируется правило вида  $x_i <= c$ . Где c некоторый порог, который чаще всего выбирается как среднее арифметическое двух соседних *упорядоченных* значений переменной  $x_i$  обучающей выборки.
- 2.2) Если переменная категориального типа, то в узле формируется правило  $x_i \in V(x_i)$ , где  $V(x_i)$  некоторое непустое подмножество множества значений переменной  $x_i$  в обучающей выборке.

Следовательно, для n значений числового атрибута алгоритм сравнивает n-1 разбиений, а для категориального  $(2^{n-1}-1)$ .

### Правила остановки

- Минимальное число объектов, при котором выполняется расщепление (min\_samples\_split). В этом варианте ветвление прекращается, когда все терминальные вершины, содержащие более одного класса, содержат не более чем заданное число объектов (наблюдений).
- Минимальное число объектов в листьях (min\_samples\_leaf)
- Доля неклассифицированных. В этом варианте ветвление прекращается, когда все терминальные вершины, содержащие более одного класса, содержат не более чем заданную долю неправильно классифицированных объектов (наблюдений).
- Максимальная глубина деревьев (max\_depth)

### Механизм отсечения дерева (CART)

Обозначим |T| – число листов дерева, R(T) – ошибка классификации дерева, равная отношению числа неправильно классифицированных примеров к числу примеров в обучающей выборке. Определим  $C_{\alpha}\left(T\right)$  – полную стоимость (оценку/показатель затраты-сложность) дерева T как:

 $C_{\alpha}\left(T\right)=R\left(T\right)+\alpha*|T|$ , где |T| – число листов (терминальных узлов) дерева, – некоторый параметр, изменяющийся от 0 до  $+\infty$ . Полная стоимость дерева состоит из двух компонент – ошибки классификации дерева и штрафа за его сложность.



### Иллюстрация переобучения



### Случайный лес (Random forest)

 Случайный лес — алгоритм машинного обучения, заключающийся в использовании комитета (ансамбля) деревьев решений.

Тренировочный набор:

$$\{(X_1, A), (X_2, A), (X_3, B), (X_4, B), (X_5, C), (X_6, C)\}$$









### Обучение случайного леса

- Пусть обучающая выборка состоит из N примеров, размерность пространства признаков равна M, и задан параметр m (в задачах классификации обычно  $m \approx \sqrt{M}$ .
- Все деревья комитета строятся независимо друг от друга по следующей процедуре:
- Сгенерируем случайную подвыборку **с повторением** размером N из обучающей выборки. (Таким образом, некоторые примеры попадут в неё несколько раз, а в среднем  $N\left(1-\frac{1}{N}\right)^N$  , т.е. примерно N е примеров не войдут в неё вообще)
- Построим дерево, классифицирующее примеры данной подвыборки, причём в ходе создания очередного узла дерева будем выбирать признак, на основе которого производится разбиение, не из всех *М* признаков, а лишь из *т* случайно выбранных.
- Дерево строится до полного исчерпания подвыборки и не подвергается процедуре отсечения.
- Классификация объектов проводится путём голосования: каждое дерево комитета относит классифицируемый объект к одному из классов, и побеждает класс, за который проголосовало наибольшее число деревьев.
- Оптимальное число деревьев (n\_estimators) подбирается таким образом, чтобы минимизировать ошибку классификатора на валидационной выборке.

### Достоинства и недостатки

- Достоинства:
- Способность эффективно обрабатывать данные с большим числом признаков и классов.
- Нечувствительность к масштабированию значений признаков.
- Одинаково хорошо обрабатываются как непрерывные, так и дискретные признаки. Существуют методы построения деревьев по данным с пропущенными значениями признаков.
- Существуют методы оценивания значимости отдельных признаков в модели.
- Высокая параллелизуемость и масштабируемость.

#### Недостатки:

Большой размер получающихся моделей.