109 Ag(12 C, α 2n γ):XUNDL-6 2025LiAA

Compiled by L. J. Sun and J. Chen (FRIB, MSU), June 15, 2025. Phys Rev C xxx, xxxxxx (2025).

2025LiAA: E=54 MeV 12 C beam was produced by the HI-13 tandem accelerator at the China Institute of Atomic Energy (CIAE). Target was a 1.03 mg/cm 2 109 Ag evaporated on a 10.6 mg/cm 2 Pb backing. The high-spin states of 115 Sb were populated by fusion-evaporation reactions and the deexciting γ rays were detected using 23 Compton-suppressed HPGe detectors, four Compton-suppressed clover detectors, and one clover detector without Compton-suppression at 60° , 90° , 120° , and 150° . Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$, and $\gamma\gamma$ (ADO). Deduced levels, J, π , γ -ray multipolarities. Comparisons with the relativistic mean-field theory (RMF) and the multiparticle plus rotor model (MPRM) calculations.

¹¹⁵Sb Levels

E(level)‡	$J^{\pi \dagger}$	E(level)‡	$J^{\pi \dagger}$	E(level)‡	$J^{\pi \dagger}$	E(level) [‡]	J^{π} †
0.0	5/2+	2795.1 7		3970.9 [@] 8			$(27/2^{-})$
1299.8 5				4109.1 [#] 8			$(27/2^{-})$
				4240.0 [@] 8			$(29/2^{-})$
						5369.2 [@] 10	$(29/2^{-})$
2637.6 6	$15/2^{-}$	3790.1 [#] 8	$(21/2^{-})$	4580.3 [@] 9	$(25/2^{-})$		

[†] As given in 2025LiAA.

γ (115Sb)

$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_i (level)	\mathtt{J}_i^{π}	\mathbf{E}_f	\mathbf{J}^π_f	Mult.‡	Comments
157.5 5	24.8 12	2795.1	19/2-	2637.6 1	5/2-	Q	R _{ADO} =2.06 11.
159.6 [#] 5	4.5 9	3702.4	$(19/2^{-})$	3542.8 (1	19/2-)	M1+E2	$R_{ADO} = 1.49 \ 20.$
180.7 [#] 5	1.3 6	3970.9	$(21/2^{-})$	3790.1 (2	$21/2^{-}$)		
200.6 5	2.0 2	2516.1	$15/2^{-}$	2315.3 1	$3/2^{-}$	D+Q	$R_{ADO} = 1.20 \ 30.$
206.9 5	75.0 26	3002.2	$21/2^{-}$	2795.1 1	$9/2^{-}$	D	$R_{ADO} = 0.80 \ 6.$
247.1 5	31 4	3790.1	$(21/2^{-})$	3542.8 (1	19/2-)	D+Q	$R_{ADO} = 1.24 6.$
268.5 [#] 5	5.4 21	3970.9	$(21/2^{-})$	3702.4 (19/2-)		
269.1 [#] 5	14.5 35	4240.0	$(23/2^{-})$	3970.9 (2	$21/2^{-}$)	D+Q	R _{ADO} =1.19 16.
279.0 5	70 <i>4</i>	2795.1	$19/2^{-}$	2516.1 1	$5/2^{-}$	Q	R _{ADO} =1.66 7.
318.9 5	22.8 30	4109.1	$(23/2^{-})$	3790.1 (2		D+Q	R _{ADO} =1.23 11.
322.3 5	4.2 3	2637.6	$15/2^{-}$	2315.3 1	$3/2^{-}$	D+Q	R _{ADO} =0.95 17.
340.4 [#] 5	7.9 15	4580.3	$(25/2^{-})$	4240.0 (2	$23/2^{-}$)	D+Q	R _{ADO} =1.16 19.
380.5 5	10.4 14	4489.6	$(25/2^{-})$	4109.1 (2	$23/2^{-}$)	D+Q	R _{ADO} =1.12 <i>13</i> .
385.1 [#] 5	5.8 17	4965.4	$(27/2^{-})$	4580.3 (2	25/2-)	D+Q	$R_{ADO} = 1.12 \ 23.$
403.8 [#] 5	3.8 11	5369.2	$(29/2^{-})$	4965.4 (2	$27/2^{-}$)	D+Q	R _{ADO} =1.19 28.
408.1 5	8.7 12	4897.8	$(27/2^{-})$	4489.6 (2	$25/2^{-}$)	D+Q	R _{ADO} =1.24 19.
428.2 [#] 5	4.9 18	3970.9	$(21/2^{-})$	3542.8 (1	$19/2^{-}$)	M1+E2	R _{ADO} =1.20 23.
434.4 5	5.1 10	5332.2	$(29/2^{-})$	4897.8 (2	$27/2^{-}$)	D+Q	$R_{ADO} = 1.23 \ 26.$
449.9 [#] 5	1.8 8	4240.0	$(23/2^{-})$	3790.1 (2	$21/2^{-}$)		
540.4 5	18.2 10	3542.8	$(19/2^{-})$	3002.2 2	$21/2^{-}$	M1+E2	R _{ADO} =0.98 8.
566.3 ^{#@} 5	<1.3	4109.1	$(23/2^{-})$	3542.8 (1	19/2-)		
609.3 ^{#@} 5	<1.3	4580.3	$(25/2^{-})$	3970.9 (2	$21/2^{-}$)		
699.6 5	3.5 12	4489.6	$(25/2^{-})$	3790.1 (2	21/2-)	Q	R _{ADO} =1.51 30.

 $[\]ddagger$ From a least-squares fit to γ -ray energies (by compiler).

[#] Band(A): Band 1 of chiral doublet bands with $\pi g_{9/2}^{-1} \otimes v h_{11/2} d_{3/2}$ configuration. Proposed in 1996Ch36 and confirmed in 2025LiAA

[@] Band(B): Band 2 of chiral doublet bands with $\pi g_{9/2}^{-1} \otimes v h_{11/2} d_{3/2}$ configuration. Newly proposed in 2025LiAA.

109 Ag(12 C, α 2n γ):XUNDL-6 2025LiAA (continued)

γ (115Sb) (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
725.5 ^{#@&} 5	<1.3	4965.4	(27/2-)	4240.0	$(23/2^{-})$		
747.8 [#] 5	11.9 <i>14</i>	3542.8	$(19/2^{-})$	2795.1	19/2-	D	R _{ADO} =1.53 17.
788.6 <i>5</i>	2.7 10	4897.8	$(27/2^{-})$	4109.1	$(23/2^{-})$	Q	R _{ADO} =1.42 33.
842.7 5	3.0 12	5332.2	$(29/2^{-})$	4489.6	$(25/2^{-})$	Q	R _{ADO} =1.47 34.
905.3 [#] 5	2.3 3	3542.8	$(19/2^{-})$	2637.6	$15/2^{-}$	E2	R _{ADO} =1.54 29.
1015.4 5	13.2 9	2315.3	$13/2^{-}$	1299.8	$11/2^{-}$	D	$R_{ADO} = 0.51 \ 5.$
1216.4 5	81 4	2516.1	$15/2^{-}$	1299.8	$11/2^{-}$	Q	R _{ADO} =1.51 7.
1299.8 5	100 5	1299.8	$11/2^{-}$	0.0	5/2+		R _{ADO} =1.57 7.
1337.8 5	26.2 13	2637.6	$15/2^{-}$	1299.8	$11/2^{-}$	Q	$R_{ADO} = 1.45 \ 8.$

 $^{^{\}dagger}$ From 2025LiAA. ‡ Deduced by compilers from measured $\gamma\gamma$ (ADO), except for 159.6, 428.2, 540.4, and 905.3 assigned by authors. Expected R_{ADO} values are ≈ 1.6 for stretched quadrupole (or $\Delta J=0$ dipole) and ≈ 0.8 for stretched dipole transitions.

[#] Newly observed γ transitions in 2025LiAA. [@] Weak γ transitions.

[&]amp; Placement of transition in the level scheme is uncertain.

109 Ag(12 C, α 2n γ):XUNDL-6 2025LiAA

