SVEUČILIŠTE U RIJECI **TEHNIČKI FAKULTET**

Diplomski studij računarstva

Diplomski rad

Upravljanje robotom i mapiranje okoline u Unity 3D (Robot control and mapping with Unity 3D)

Rijeka, rujan 2020.

Aleks Marković 0069069268

SVEUČILIŠTE U RIJECI **TEHNIČKI FAKULTET**

Diplomski studij računarstva

Diplomski rad

Upravljanje robotom i mapiranje okoline u Unity 3D (Robot control and mapping with Unity 3D)

Mentor: prof.dr.sc. Kristijan Lenac

Rijeka, rujan 2020.

Aleks Marković 0069069268

Umjesto ove stranice umetnuti zadatak za završni ili diplomski rad

Izjava o samostalnoj izradi rada

Izjavljujem da sam samostalno izradio	ovaj rad.
Rijeka, rujan 2020.	Ime Prezime

Zahvala

Zahvaljujem xxxxxx na podršci tijekom pisanja ovoga rada i korisnim raspravama i savjetima. Zahvaljujem xxxxx na podršku tijekom studiranja.

Sadržaj

P	opis s	slika	viii												
P	opis (tablica	ix												
1	Uvo	m od	1												
	1.1	Naslov sekcije	1												
	1.2	Naslov sekcije	1												
2	Softverski alati														
	2.1	ROS	2												
	2.2	Unity	3												
		2.2.1 Editor	4												
		2.2.2 Skripte	6												
	2.3	ROS#	7												
B	ibliog	grafija	9												
P	ojmo	vnik	10												
Sa	ažeta	k	11												

Sadržaj

\mathbf{A}	Nas	Naslov priloga														
	A.1	Naslov sekcije	12													
	A.2	Naslov sekcije	12													

Popis slika

າ 1	Unity Editor																													E
$\angle .1$	Omey Editor	•	٠	•		 •	 •	•	•	•	•	٠	٠	•	•	•	٠	•	•	•	•	٠	•	٠	٠	٠	٠	•	•	J

Popis tablica

0.1	DOC 1 : DOC 0 1 : 1 1:1	•
2.1	ROS 1 i ROS 2 bitne razlike	 ٠

Poglavlje 1

Uvod

Tema ovog diplomskog rada je napraviti funkcionalnu aplikaciju za upravljanje robotom i mapiranje okoline koristeći Unity 3D razvojni program. Zahvaljujući Unity-ju biti će lakše ostvariti cilj da se napravi univerzalni i multiplatformski softver s kojim će se moći upravljati s više vrsta robota.

Kao glavni alat za spajanje i upravljanje na robota koristi se ROS (Robotski Operacijski Sustav) 1. Za omogućavanje komunikacije između ROS-a, tj. robota i Unity aplikacije, koristiti ćemo ROS# knjižnicu. Za svrhu implementacije i testiranja kao testnog robota odabran je popularni Turtlebot 3. Konkretnije koristit ćemo simulirano okruženje (simulaciju) Turtlebot-a i njegovog modela..

1.1 Naslov sekcije

1.2 Naslov sekcije

Poglavlje 2

Softverski alati

Prije samog riješavanja problematike kako napraviti navedenu aplikaciju, potrebno je objasniti što su i kako funkcioniraju korišteni softverski alati. Definirati ?e se i koji su preduvjeti, tj. knjižnice ili alati koji svaki od njih zahtjeva da se mo?e odraditi funkcija koja im se zada za prethodno navedenu svrhu.

Korištene su najnovije dostupne a stabilne inačice korištenih alata:

- 1. ROS Noetic Ninjemys datum izlaska 23. svibnja 2020.
- 2. Unity 2019. LTS izašlo polovicom 2020. godine
- 3. ROS# 1.6 datum izlaska 20. prosinca 2019.

2.1 ROS

Robotski Operacijski Sustav (ROS) je radni okvir (eng. framework) koji se instalira u Linux operacijski sustav i unatoč tome što sadrži riječi operacijski sustav, on to nije. Postoji i eksperimentalna verzija za Windows 10 i OS X, no ovaj će se rad usredotočiti na razvoj na Linux-u. Jedna od najbitnijih karakteristika ROS sustava jest da je omogućena komunikacija i upravljanje hardverom robota preko softverskih alata ROS-a bez da se treba imati posebno znanje o korištenom hardveru.

ROS se ponajviše koristio u znanstvene i obrazovne svrhe, ali se zbog svoje praktičnosti i potencijala ubrzo proširio i u ostale grane robotike. Prije prelaska na

ROS, svaki proizvođač robota je je trebao razvijati svoj API (Application Programming Interface) za komunikaciju i upravljanje svojim robotima. Sada roboti diljem svijeta većinom koriste ROS kao svoj primarni sustav za komunikaciju i upravljanje, te je zbog toga vrlo korisno naučiti ROS. Sa istim znanjem i vještinama moguće je razvijati softver koji će poslužiti na različitim robotima, različitih proizvođača, upravo radi ROS unificiranja.

ROS sadrži razne alate i knjižnice, koji su razvijeni i posloženi po određenoj ROS konvenciji. Sve zajedno jako pojednostavljuje razvoj novih robotskih softvera i omogućava kompleksno ponašanje robota. Također ROS sadrži razne upravljačke programe i algoritme, i sve je otvorenog koda - besplatno.[1]

Nedavno je razvijen i novi ROS, ROS 2. Prva službena verzija izdana je krajem 2017. Iako je preporučljivo koristiti više future-proof tehnologije, za ovaj rad odabran je ROS 1 iz razloga što neki od kritičnih alata za uspjeh rada nisu podržani na najnovijim verzijama ROS-a 2. Unatoč tome što je ROS 2 više future-proof i noviji, ROS 1 se i dalje razvija te nova verzija izlazi svake godine. Neke od razlika između ROS-a 1 i 2 navedene su u tablici 2.1.

ROS 1 Značajka ROS 2 Testirane platforme Ubuntu, OS X, Windows 10 Ubuntu C++C++14, C++17C++11Python Python 2 Python 3.5 Roslaunch XMLPython - kompleksnija logika Čvor u procesu Više od 1 Velika zajednica s puno stabilnih Minimalne ovisnosti, bolja prenosivost, i odličnih paketa. Ostalo pouzdanost, perzistentnost i rad Puno literature i tutorijala. u stvarnom vremenu (real-time).

Tablica 2.1 ROS 1 i ROS 2 bitne razlike

2.2 Unity

Unity je cross-platform (multi-platformsko) razvojno okruženje, primarno za razvijanje računalnih igra. Sveukupni razvoj Unity razvojnog okruženja radi američka korporacija Unity Technologies. Također, sam softver je besplatan za edukacijske i

osobne svrhe te komercijalne svrhe do 100.000 američkih dolara prihoda. Postoji veliki izbor besplatnih i ne besplatnih paketa koji se može koristiti za ubrzati i olakšati određene zadatke, a to se sve nalazi na tzv. "Unity Asset Store". [2]

Unity LTS (Long Term Support) verzija se u tekućoj godini dovrši za prošlu - Unity 2019. LTS je došao sredinom 2020. godine, a nova, 2020. verzija je već dostupna i ona se postepeno nadograđuje. LTS verzija se svakog tjedna ažurira novim zakrpama.

2.2.1 Editor

Unity Editor je glavni alat za razvoj (slika 2.1). U njemu se radi većina razvoja oko vizualnih elemenata i interakcije između njih. Glavne komponente uređivača su sljedeće:

- Hierarchy (hijerarhija) Hijerarhijski prikaz svih elemenata u trenutnoj sceni.
 Unity svoje elemente u sceni naziva GameObject (igrači objekt).
- Scene (scena) Glavni prozor gdje se radi sve u vezi s elementima koji se mogu grafički prikazati.
- Game (igra) Prozor koji služi kao emulacija igre. Pritiskom na "Play" gumb pokreće se igra i ovaj pokreće se ovaj prozor gdje se može igrati i vidjeti što i kako radi nakon izrade u prozoru scene.
- Inspector (inspektor) Nakon odabira određenog elementa iz hijerarhije (element se također može odabrati i u sceni), ovdje se prikazuju sve komponente nadodane na taj odabrani element tj. GameObject. Mogu se dodavati razne komponente koje Unity pruža, tipa prikaz slika i teksta, animacije, efekti i još mnogo toga, ali i skripte koje sama osoba koja razvija softver može napisati.
- Console (konzola) Mjesto gdje se ispisuju sve poruke, upozorenja i greške.
- Project (projekt) Ovime se može upravljati arhitekturom projekta. Od klasičnog stvaranja mapa i datoteka, imenovanja i ostalog, do dodavanja specifičnih Unity dodataka.
- Ostalo Meni traka u kojoj se mogu pristupiti svim ostalim postavkama (uključujući

Poglavlje 2. Softverski alati

i već navedenim stavkama). Dodatni alati se mogu postaviti kao aktivni i vidljivi, npr. pristup Asset Store-u, panel za animacije i animator te ostale stvari koje nisu vezane za zadatak ovog rada.

Slika 2.1 Unity Editor

2.2.2 Skripte

Unity također svojim korisnicima omogućava programiranje vlastitih (ili korištenje tuđih) skripta. Programiranje se vrši u C# programskom jeziku, koji se izvršava na *Mono* razvojnom okruženju. Također, moguće je skripte programirati u *JavaScriptu*, ali je podrška lošija.

Cilj *Mono* razvojnog okruženja je da omogući korištenje .NET Framework-a na razne operacijske sustave, jer je inače .NET framework razvijen od strane Microsofta samo za Windows OS. Komponente *Mono* framework-a uključuju:

- C# kompajler Potpun kompajler, sa svim značajkama od C# 1.0 do 6.0.
- Mono Runtime [3] Glavne komponente:
 - Just-in-Time (JIT) kompajler kompilacija koda tokom izvršavanja programa.
 - Ahead-of-Time (AOT) kompajler kompilacija koda u nativni kod stroja gdje će se izvršavati, prije njegovog izvršavanja.
 - Čitač knjižnica omogućuje nam učitavanje vanjskih programskih knjižnica.
 - Sakupljač smeća (Garbage collector) automatsko brisanje objekata u memoriji koji se više ne koriste.
 - Dretveni sustav omogućava izvršavanje više dretva (threads) istovremeno, pospješuje brzinu i produktivnost određenog programa ako je isprogramirano na pametan način.
 - Interoperabilnost karakteristika da više programskih sustava mogu bez poteškoća međusobno funkcionirati.
- .NET Framework knjižnica klasa Mono platforma pruža set klasa kao temelj za razvijanje aplikacija. Navedene su klase kompatibilne s Microsoftovim .NET Framework klasama.
- *Mono* pruža i dodatne klase koje nisu uključene u Microsoftovim baznim klasama koje su posebice korisne za razvijanje Linux aplikacija, npr. Gtk+, Zip, OpenGL, Cairo, POSIX i druge.

Glavne značajke *Mono* radnog okruženja:

- Multi-platformsko radno okruženje Linux, macOS, BSD, Microsoft Windows.
- Multi-jezičan C#, VB 8, Java, Python, Ruby i još mnogi.
- Kompatibilan s binarnim kodom.
- Kompatibilan s Microsoft APIjem pokreće ASP.NET, ADO.NET, Silverlight i Windows.Forms.
- Otvorenog koda i besplatan sav Mono sadržaj, uključujući i knjižnice, distribuiran je koristeći MIT licencu.
- Opsežna pokrivenost implementacije mnogih popularnih knjižnica i protokola.

Programiranje prilagođenih skripti omogućava kompleksna ponašanja i radnje u igri/softveru kojega se razvija. Gotovo sve akcije koje se može napraviti u Editoru, može se i u skripti, te se time može drastično povećati opseg mogućnosti.

```
#include <stdio.h>
int main(int argc, char ** argv)
{
printf("Hello world!\n");
return 0;
}
```

2.3 ROS#

ROS# je set programskih knjižnica i alata otvorenog koda u C#-u koja omogućuje komunikaciju između ROS-a i .NET aplikacija - Unity-ja, razvijen od strane Siemens kompanije. ROS# je bio primarno razvijen za Windows OS, ali se uspješno može koristiti i na druge operacijske sustave. Paket se može preuzeti s Unity Asset Store-a ili direktno sa službenog Github repozitorija. [4] Ovo je ujedno i glavni alat koji će se koristiti u ovom radu za stvaranje mosta između ROS-a i Unity-a.

Glavni sadržaj ovog paketa je sljedeći:

Poglavlje 2. Softverski alati

- .NET riješenje za RosBridgeClient (knjižnica koja omogućuje spajanje vanjskih aplikacija na ROS sustav), Urdf (robotski modeli) i MessageGeneration (generiranje poruka).
- ROS paketi korišteni od strane ROS#-a.
- Unity projekt koji sadrži primjer scenu te RosBridgeClient, Urdf i MessageGeneration ekstenzije za Unity.

Bibliografija

- [1] Ros službene stranice., s Interneta, www.ros.org, 17. rujna 2020.
- [2] U. Technologies. Unity asset store. , s Interneta, https://assetstore.unity.com , 22. rujna 2020.
- [3] M. Project. Mono. , s Interneta, https://www.mono-project.com/docs/about-mono/, 21. rujna 2020.
- [4] Siemens. Ros#. , s Interneta, https://github.com/siemens/ros-sharp , 23. rujna 2020.

Sažetak

Ovo je tekst u kojem se opiše sažetak vašega rada. Tekst treba imati duh rekapitulacije što je prikazano u radu, nakon čega slijedi 3-5 ključnih riječi (zamijenite dolje postavljene općenite predloške riječi nekim suvislim vlastitim ključnim riječima).

 ${\it Ključne~riječi}$ — ključna riječ1,ključna riječ2,ključna riječ3

Abstract

This is a text where a brief summary of your work is outlined. The text should have a sense of recap of what was presented in the thesis, followed by 3-5 keywords (replace the general keyword templates below with some meaningful keywords of your own).

Keywords — keyword 1, keyword 2, keyword 3

Dodatak A

Naslov priloga

- A.1 Naslov sekcije
- A.2 Naslov sekcije