Introduction to Sequencing Data Analysis

Lecture 15

Thursday, November 23, 2021

Gavin Ha, Ph.D.

Assistant Professor Computational Biology Program Public Health Sciences

Overview

I. Introduction to sequence data and resources

II. Tools for analyzing and visualizing sequencing data

Overview: Learning Objectives

1.Sequence data

- Databases and online resources for sequence data
- Learn the common sequence data file formats

2. Tools for sequencing data

- Tools to query, inspect, visualize an aligned sequence file
- Learn the contents of sequence data files
- Learn to generate sequencing metrics and to process sequence data
- Learn about Python and R libraries/packages to read sequence data
- 3.Genome variant analysis (Background; Next Lecture)
 - Types of genomic variation
 - Tools to predict genomic variations
 - Learn the common file formats for variation data
 - Databases and online resources for human variation data

Sequence Data: International Consortia and Projects

1000 Genomes Project (https://www.internationalgenome.org/)

UK10K (https://www.uk10k.org/)

The 100,000 Genomes Project (https://www.genomicsengland.co.uk/)

Rare disease, cancer, infectious disease

Genome 10K Project (https://genome10k.soe.ucsc.edu/)

Genomic "zoo" of 16,000 vertebrate species

Exome Aggregation Consortium (ExAC) (http://exac.broadinstitute.org/)

Genome Aggregation Database (gnomAD) (https://gnomad.broadinstitute.org/)

The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/)

International Cancer Genome Consortium (ICGC) (https://icgc.org/)

UK10K

Rare Genetic Variants in Health and Disease

#100kThankYous

Common Repositories/Databases for human sequence data

1.NCBI Sequence Read Archive (SRA)

- Publicly available data submitted from studies (e.g. Gene Expression Omnibus [GEO])
- https://www.ncbi.nlm.nih.gov/gds/
- Controlled access (e.g. dbGaP)

2. European Genome Phenome Archive (EGA)

https://www.ebi.ac.uk/ega/home

3.NIH NCI Genomic Data Commons (GDC) Data Portal

- https://portal.gdc.cancer.gov/
- Harmonized Cancer Datasets

4.ICGC Data Portal

https://dcc.icgc.org/

Cancer genomics data sets visualization, analysis and download.

Sequence Read Archive (SRA) & GEO example (GSE71378)

Sequence Read

GSE71378_CA01.bb

GSE71378 CH01.bb

GSE71378_IH01.bb

GSE71378 IH02.bb

SRA Run Selector 2

325.0 Mb (ftp)(http)

319.7 Mb (ftp)(http)

296.6 Mb (ftp)(http)

248.3 Mb (ftp)(http)

BB

BB

BB

Sequence Data: File formats

Sequences

- Genome sequences FASTA (.fasta or .fa)
- Sequenced reads FASTQ (.fastq or .fq)

Sequence Alignment/Map Format

- https://samtools.github.io/hts-specs/SAMv1.pdf
- Sequence Alignment SAM (.sam)
- Binary Alignment BAM (.bam) or CRAM (.cram)

Sequence Read Archive (SRA) & GEO example (GSE71378)

SRA Toolkit required to download and extract .sra files

Download .sra file

```
prefetch SRR2130004
```

Convert .sra file to fastq

```
fastq-dump SRR2130004 # use accession
fastq-dump SRR2130004.sra # use file if already downloaded
```

Convert .sra file to SAM/BAM file

```
# will write data to a SAM file
sam-dump --header SRR2130004.sra > SAMN03160688.sam
# will write data to a BAM file
sam-dump --header SRR2130004.sra | samtools view -bS - > BRCA_IDC_cfDNA.bam
```


Sequence Data: Sequence alignment

Burrows-Wheeler Aligner, bwa (http://bio-bwa.sourceforge.net/)

- aln for 35bp to 100bp reads
- mem for reads with length 70bp to 1Mb (Recommended for most)

```
# If two fastq files, one for each mate of paired-end reads
bwa mem -M reference.fa BRCA_IDC_cfDNA_R1.fq BRCA_IDC_cfDNA_R2.fq > BRCA_IDC_cfDNA.bam

# If single fastq file with paired-end reads interleaved
bwa mem -M -p reference.fa BRCA_IDC_cfDNA.fq > BRCA_IDC_cfDNA.bam
```

Li H. and Durbin R. (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60. [PMID: 19451168]

Tools for Sequencing Data: Overview

1. Inspecting and Reading SAM/BAM files

SAMtools

2. Interactive Visualization

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

3. Sequencing metrics and Processing

- SAMtools
- Genomic Analysis Toolkit (GATK) and Picard Tools

Tools for Sequencing Data: Overview

1. Inspecting and Reading SAM/BAM files

SAMtools

2. Interactive Visualization

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

3. Sequencing metrics and Processing

- SAMtools
- Genomic Analysis Toolkit (GATK) and Picard Tools

1. Inspecting and Reading BAM Files

SAMtools (http://www.htslib.org/)

Demo & Exercise

Sequence Data: Inspecting and Reading BAM Files

SAMtools (http://www.htslib.org/)

Indexing

```
samtools index BRCA_IDC_cfDNA.bam #required for all BAM files
```

File operations

```
samtools sort BRCA_IDC_cfDNA.bam #sort by coordinate
```

Statistics

```
samtools flagstat BRCA_IDC_cfDNA.bam #get general alignment metrics
```

Viewing

```
# view header information
samtools view -H BRCA_IDC_cfDNA.bam

# view aligned reads at chr17:37844393
samtools view BRCA_IDC_cfDNA.bam 17:37844393
```


https://samtools.github.io/hts-specs/SAMv1.pdf

A. Header information

```
samtools view -H BRCA IDC cfDNA.bam
@HD
       VN:1.2
               SO:coordinate
@SQ
       SN:1
               LN:249250621
@SO
       SN:2 LN:243199373
@SO
       SN:3
            LN:198022430
@SO
       SN:4
             LN:191154276
@SO
       SN:5
             LN:180915260
@SQ
       SN:6
             LN:171115067
@SQ
       SN:7
             LN:159138663
@SQ
       SN:8
             LN:146364022
@SQ
       SN:9
             LN:141213431
. . .
```


https://samtools.github.io/hts-specs/SAMv1.pdf

A. Header information

- @нр: Header line
 - SO: Sorting order of alignments (unknown, unsorted, coordinate, queryname)
- @SD: Reference sequence dictionary
 - SN: Reference sequence name typically, one row for each chromosome
 - LN: Length of reference sequence
- @RG: Read group
 - ID: Read group identifier (must be unique)
 - PL: Platform or technology used (e.g. ILLUMINA)
 - SM: Sample ID and/or pool being sequenced
- @PG: Program/tool information
 - ID: Unique name, PN: Program name; CL: Command line

https://samtools.github.io/hts-specs/SAMv1.pdf

B. Alignment information

https://samtools.github.io/hts-specs/SAMv1.pdf

B. Alignment information

```
samtools view BRCA_IDC_cfDNA.bam 17:37844393-37844393
                                                          Mate's
Query (Read)
                         Read
· · · Name
                                                   Reference and Position
                 Reference and Position
41976152
              163
                    17
                            37844359
                                          60
                                                 39M
                                                               37844477
157
ACTCTCCGCTGAAGTCCACACAGTTTAAATTAAAGTTCC
                                   RG:Z:P12.17.7_Breast NH:i:1 NM:i:0
                               Read Sequence
```


https://samtools.github.io/hts-specs/SAMv1.pdf

B. Alignment information

```
samtools view BRCA_IDC_cfDNA.bam 17:37844393-37844393
Template Length
                                         CIGAR
                                 Mapping
(Insert Size or
           Flag
                                  Quality
                                         string
             163
                   17
                         37844359
                                    60
                                          39M
                                                     37844477
  157
  RG:Z:P12.17.7 Breast NH:i:1
                      NM:i:0
```


https://samtools.github.io/hts-specs/SAMv1.pdf

B. Alignment Format

- 1. QNAME: query (read) template name
- 2. FLAG: bitwise value describing the alignment
 - e.g. 4 read is unmapped; 2 proper pair; 1024 PCR duplicate
 - https://www.samformat.info/sam-format-flag
- 3. RNAME: reference sequence name (i.e. chr1 or 1)
- 4. POS: position of aligned read (leftmost; 1-based)
- 5. MAPQ: Mapping quality
- 6. CIGAR: Code string to describe read alignment sequence match to reference
- 7. RNEXT: reference sequence name of mate read
- 8. PNEXT: position of mate read
- 9. TLEN: template (read) length; 0 if mates on different chromosomes
- 10.SEQ: sequence of mapped reads on forward genomic strand
- 11.QUAL: base qualities (Phred-scale)

Exercise: SAMtools

```
# While in dev container
conda activate samtools
# Go to directory where class data has been downloaded
cd myDataDirectory
```

1. Run samtools view header command on BRCA_IDC_cfDNA.bam a. What is the read group (@RG) ID?

2. Run samtools view at 17:7579472–7579472 a. What is the insert size?

Tools for Sequencing Data: Overview

- 1. Inspecting and Reading SAM/BAM files
 - SAMtools

2. Interactive Visualization

- Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)
- 3. Sequencing metrics and Processing
 - SAMtools
 - Genomic Analysis Toolkit (GATK) and Picard Tools

2. Interactive Visualization

Integrative Genomics Viewer

(https://software.broadinstitute.org/software/igv)

Demo + Exercise

Tools for Sequencing Data: Interactive Visualization

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

Tools for Sequencing Data: Interactive Visualization

m chr17:37,868,259

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

314M of 436M

Exercise: IGV

Instructions:

Launch IGV-Web (https://igv.org/app/).

Fracks > Local File > select BRCA_IDC_cfDNA.bam and BRCA_IDC_cfDNA.bam.bai

Questions:

- 1. Go to location chr17:7,579,517
 - a. Which gene and exon # is at this location?
 - b. How many reads match the reference? How many don't? What are the nucleotides bases?
- 2. Go to location chr13:32,912,062
 - a. Which gene and exon # is at this location?
 - b. What is the "Read length", "Insert size", and "CIGAR" for the read found here?
 - c. File > Load from Server > Annotations > Variation and Repeats > check dbSNP
 - i. What is the "Name" (rs ID) and "Class" of the SNP located at this position?

Tools for Sequencing Data: Overview

1. Inspecting and Reading SAM/BAM files

SAMtools

2. Interactive Visualization

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

3. Sequencing metrics and Processing

- SAMtools
- Genomic Analysis Toolkit (GATK) and Picard Tools

3. Tools for Sequence Data Processing

PICARD and **GATK**

https://broadinstitute.github.io/picard/

https://software.broadinstitute.org/gatk/best-practices/

Demo + Exercise

Tools for Sequencing Data: Processing

Picard Tools & GATK4: Best practices

- 1. Mark Duplicates
 - MarkDuplicates + SortSam (Picard)
- 2. Base Quality Score Recalibration (BQSR)
 - 1. BaseRecalibrator (GATK4)
 - 2. ApplyBQSR (GATK4)

```
picard MarkDuplicates \
INPUT=BRCA_IDC_cfDNA.bam \
REMOVE_DUPLICATES=false \
OUTPUT=BRCA_IDC_cfDNA.marked_duplicates.bam \
METRIC_FILE=BRCA_IDC_cfDNA.markDupMetrics.txt
```


Tools for Sequencing Data: Sequencing Metrics

Picard Tools & GATK4: Best practices

- 3. Generate alignment metrics
 - a. CollectMultipleMetrics
 - CollectAlignmentSummaryMetrics
 - CollectInsertSizeMetrics
 - b. Collect assay-specific metrics
 - CollectWgsMetrics Whole genome sequencing
 - CollectHsMetrics Hybrid Selection (i.e. whole exome)
 - CollectRnaSeqMetrics RNA-seq
 - CollectTargetedPcrMetrics Targeted PCR amplicon sequencing
 - C. EstimateLibraryComplexity
 - a. Estimates the number of unique molecules in the library

https://broadinstitute.github.io/picard/command-line-overview.html http://broadinstitute.github.io/picard/picard-metric-definitions.html

Tools for Sequencing Data: Sequencing Metrics

Picard Tools & GATK4: Best practices

3. Generate alignment metrics: (a) CollectWgsMetrics

```
picard CollectWgsMetrics \
INPUT=BRCA_IDC_cfDNA.bam \
OUTPUT=BRCA_IDC_cfDNA.alignMetrics.txt \
REFERENCE_SEQUENCE=hs37d5.fa \
VALIDATION_STRINGENCY=LENIENT
```

GENOME_TERRITORY	MEAN_COVERAGE	SD_COVERAGE	MEDIAN_COVERAGE	PCT_EXC_MAPQ	PCT_EXC_DUPE	PCT_1X	PCT_5X
2900340137	1.053882	1.383867	1	0.137741	0	0.578236	0.015963

https://broadinstitute.github.io/picard/command-line-overview.html https://broadinstitute.github.io/picard/picard-metric-definitions.html#CollectWgsMetrics.WgsMetrics

Exercise: PICARD

Run CollectAlignmentSummaryMetrics for BRCA_IDC_cfDNA.bam

```
#While in Dev container
conda activate Picard
# Go to directory where class data has been downloaded
cd myDataDirectory
# Run Picard command
picard CollectAlignmentSummaryMetrics \
. . .
```

How many PF_READS_ALIGNED for PAIR Category?

Tools for Sequencing Data: Accessing BAM files in R & Python

Python

PySam

https://pysam.readthedocs.io/en/latest/api.html

R and Bioconductor

- Rsamtools
 - Import BAM files into R
 - View the header information
 - Accessing read sequences, aligned positions, CIGAR, read names, etc
 - Large BAM files can be read in chunks to optimize memory
 - Create new BAM files using "Views" of a subset of reads

https://bioconductor.org/packages/release/bioc/vignettes/Rsamtools/inst/doc/Rsamtools-Overview.pdf

Preparations for Lecture 15

Install R Bioconductor packages:

- VariantAnnotation
- GenomicRanges
- plyranges

Download data:

https://drive.google.com/drive/folders/ 13jM29nhzELyThKQXI27MrRXxbziVunQr?usp=sharing

