Capítulo 5 Requisitos e Suportes de Rede para Multimídia

Roberto Willrich INE-CTC-UFSC

E-Mail: willrich@inf.ufsc.br

Introdução

Objetivos do Capítulo

- Identificação os principais requisitos de rede de comunicação para transmissão de áudio e vídeo
- Analisar algumas tecnologias de rede

Conteúdo

- Definição de alguns parâmetros de desempenho de redes de computadores importantes para a comunicação multimídia
 - Taxa de bits, vazão, atraso, variação de atraso, taxa de perdas de pacote
- Caracterização das fontes de áudio e vídeo tempo-real
- Identificação dos principais requisitos de rede para a comunicação de áudio e vídeo
- Análise de algumas tecnologias: Ethernet, Fast-Ethernet,
 Gigabit-Ethernet e ADSL

Taxa de bits

 Taxa de bits é o número de dígitos binários que a rede é capaz de transportar por unidade de tempo (expresso em Kbps, Mbps, Gbps, etc)

Vazão (Throughput)

- Taxa de bits efetiva vista do ponto de vista do aplicativo
 - A taxa de bits realmente útil para as aplicações
- Exemplo: tráfego HTTP
 - Pacotes http para ser transmitido
 - Sobrecarga de 20 bytes na camada de transporte (TCP) e mais 20 bytes na camada de rede (IP), ...
- Vazão da maioria das redes varia com o tempo
 - Alguns fatores que afetam a vazão:
 - congestionamento (devido a sobrecarga ou gargalos)
 - falha de nós e ligações
 - controle de fluxo limita a taxa de transferência

- Atraso Fim-a-Fim (usuário a usuário)
 - Tempo levado para transmitir um bloco de dados de um emissor a um receptor
 - Componentes:
 - · Atraso de processamento na fonte
 - Atraso de transmissão: nas interfaces de rede (NIC Network Interface Card) da fonte/dest. e na rede
 - Atraso de processamento no destino

Atraso de transmissão

- Atraso na interface: tempo entre o tempo de o dado estar pronto para ser transmitido e o tempo em que a interface transmite para a rede (pelo enlace de saída)
 - Atraso associado ao controle de acesso ao meio e criação da conexão (se for orientada a conexão)
 - Nas redes Ethernet depende do dispositivo de rede local utilizado (hub ou switch)
 - Hub gera atrasos e variação de atrasos (CSMA-CD)

Proc. Fonte

Placa de Rede (NIC)

Rede

Placa de Rede (NIC)

Proc. Destino

Ethernet: usa CSMA/CD

A: examina canal, se em silêncio então { transmite e monitora o canal; Se detecta outra transmissão então { aborta e envia sinal de "jam" (reforço de colisão); atualiza número de colisões: espera como exigido pelo algorit. "exponential backoff"; vá para A senão { quadro transmitido; zera contador de colisões senão {espera até terminar a transmissão em curso vá para A}

Atraso de transmissão

- Atraso na rede: tempo entre o tempo de o dado é enviado pelo enlace de saída da fonte e é entregue na interface de rede do receptor.
 - Atraso na rede local até chegar no roteador
 - Atraso em cada hop (salto) da rede: atraso entre a chegada do pacote no roteador e a entrega do pacote no outro roteador

- Atraso de transmissão
 - Atraso na rede: tempo entre o tempo de o dado é enviado pelo enlace de saída da fonte e é entregue na interface de rede do receptor.

Atraso em cada hop

- Atraso de processamento: verificação do quadro, identif. do enlace de saída, e encaminhamento para porta de saída
 - na ordem de microssegundos
- Atraso de enfileiramento: tempo de espera no enlace de saída até a transmissão
 - · depende do nível de congestionamento do roteador
 - · na ordem de mili ou microseg.
- Atraso de serialização: tem necessário para serializar o quadro no enlace
 - · Depende da taxa de bits do enlace
- Atraso de propagação: tempo necessário para os bits se propagarem pelo enlace até o destino

- Atraso de serialização:
 - R=largura de banda do enlace (bps)
 - L=compr. do pacote (bits)
 - tempo para enviar os bits no enlace = L/R

- Atraso de propagação:
 - d = compr. do enlace
 - s = velocidade de propagação no meio (~2x10⁸ m/seg)
 - atraso de propagaçãod/s

- Atraso Fim-a-Fim
 - Atraso de transmissão

- Atraso Fim-a-Fim: Medidas
 - Atraso de ida-e-volta (RTT Round-trip time)
 - Tempo em que o pacote leva para sair da fonte e a volta de uma resposta do destino

- Atraso de ida (OWD One way delay)
 - · Tempo que o pacote leva para sair da fonte e chegar no destino

- Variação de atraso (*Jitter*)
 - Fluxo de vídeo e de áudio são normalmente enviados separadamente
 - Em redes a pacotes, fluxos são divididos em blocos de dados e cada bloco é transmitido em seqüência
 - Se a rede é capaz de enviar todos os blocos com uma latência uniforme, então cada bloco deveria chegar no destino após um atraso uniforme
 - · Muitas redes hoje em dia não garantem um atraso uniforme
 - Variações de atrasos são comuns
 - Causas da variação de atraso na transmissão:
 - diferenças de tempo de processamento dos pacotes, diferenças de tempo de acesso à rede e diferenças de tempo de enfileiramento
 - No projeto de uma rede multimídia, é importante colocar um limite superior na variação de atraso

Variação de atraso (*Jitter*)

- Taxa de Perda de Pacotes
 - Razão entre o número médio de pacotes corrompidos ou errados e o número total de pacotes transmitidos
 - Erros ocorrem quando:
 - · pacotes são perdidos ou descartados no trânsito
 - possivelmente devido a espaço de buffer insuficiente no receptor causado pela congestionamento na rede
 - pacotes são atrasados
 - pacotes chegam fora de ordem

Resumo do Capítulo até o momento

- Definição de alguns parâmetros de desempenho de redes de computadores
 - Taxa de bits, vazão, atraso, variação de atraso, taxa de perdas de pacote
- Caracterização das fontes de áudio e vídeo tempo-real
 - variação de vazão com o tempo, simetria bidirecional,
 dependência temporal, sincronização intramídia e intermídia,
 tolerância a perda de pacotes

Tipos de Transmissão

- Transmissão assíncrona (download)
 - Dado é transferido completamente antes da apresentação
 - gera atraso inicial muito grande
 - · exige grande capacidade de armazenamento no receptor
- Transmissão síncrona (streaming)
 - fluxos de áudio e vídeo são transferidos e apresentados em tempo real
 - impõe severos requisitos a nível de comunicação

Escopo do estudo

 Estudo dos requisitos de rede para transmissão síncrona de áudio e vídeo

- Fluxos de dados multimídia são caracterizados de acordo com:
 - variação de vazão com o tempo
 - simetria bidirecional
 - dependência temporal
 - sincronização multimídia: intramídia e intermídia
 - tolerância a perda de pacotes

- Variação de vazão com o tempo
 - tráfego multimídia pode ser caracterizado como uma taxa de bits constante (CBR) ou taxa de bits variável (VBR)
- Tráfego a taxa de bits constante (CBR)
 - Gerada por alguns codecs
 - É importante que a rede transporte estes fluxos de dado a uma taxa de bits constante
 - · senão é necessário realizar uma buferização em cada sistema final
 - Em muitas redes tal como ISDN é natural transportar dados CBR

- Variação de vazão com o tempo
 - tráfego multimídia pode ser caracterizado como uma taxa de bits constante (CBR) ou taxa de bits variável (VBR)
- Tráfego a taxa de bits variável (VBR)
 - Gerada por tecnologias de compressão de dados
 - tráfego com uma taxa de bits que varia com o tempo
 - ocorrem em rajadas, caracterizado por períodos aleatórios de relativa inatividade quebradas com rajadas de dados

(G.711 com supressão de silêncio)

Simetria Bidirecional

- Existem dois tipos: Simétrica e Assimétricas
- Tráfego simétrico
 - Taxas aproximadas nas duas direções
 - P.e. tráfego VoIP um-a-um

Simetria Bidirecional

- Existem dois tipos: Simétrica e Assimétricas
- Tráfego assimétrico
 - Tráfego em uma direção pode ser muito maior que o tráfego em outra direção
 - P.e. Vídeo sob Demanda (VoD), TV sobre IP (IPTV), ...
 - Em muitos casos, o canal de retransmissão é projetado para transportar o fluxo, enquanto o canal de retorno transporta apenas tráfego a rajadas curtas

Dependência temporal

- Para aplicações pessoa-a-pessoa
 - · atraso total deveria ser abaixo de um nível de tolerância
 - possibilitando a interatividade
- Na VoIP, videofonia e videoconferência
 - atraso total de transmissão das imagens e da voz de um interlocutor da fonte para o destino deve ser pequena
 - senão a conversação perde em interatividade
 - atraso fim-a-fim deve ser de no máximo 400 ms
 - Na rede deve sem menor (50 ms)
- Nas aplicações pessoa-sistema
 - Atraso pode ser na ordem de segundos

- Sincronização multimídia
 - Objetivo final das aplicações multimídia
 - Apresentar aos usuário de forma satisfatória as informações expressas em vários tipos de mídia de apresentação
 - Sincronização é a apresentação temporalmente correta dos componentes multimídia que compõem uma aplicação
 - · uma das principais problemáticas de sistemas multimídia

- Para mídias contínuas (vídeo e áudio)
 - Sincronização intramídia: apresentação temporalmente correta significa que amostras de áudio e quadros de vídeo devem ser apresentados em intervalos regulares
 - senão a qualidade percebida será baixa
 - Exemplo:
 - Voz de telefonia digital codificada na forma de amostras de 8-bits a todo 125 μs
 - Para uma boa qualidade de apresentação, estas amostras devem ser apresentadas em intervalos de 125 μs +/- uma pequena variação
 - amostras são descartadas caso não possam ser apresentada no instante correto

- Para descrever relacionamentos temporais entre componentes multimídia
 - Sincronização intermídia: Apresentação temporalmente correta significa que os relacionamentos temporais desejados entre os componentes devem ser mantidos
 - São dependências temporais artificiais especificadas explicitamente pelo autor da aplicação
 - Em muitas aplicações multimídia, diversas mídias podem estar relacionadas no tempo, sendo que na apresentação deve ser mantida a sincronização intermídia
 - fluxo de dados multimídia devem ser apresentados de maneira sincronizadas no receptor
 - por exemplo, áudios e vídeos devem ser sincronizados na apresentação (sincronização labial).

- Sincronização Intermídia: Distorção intermídia
 - Parâmetro que mede a diferença entre:
 - · tempo efetivo da apresentação de um componente, e
 - tempo ideal definido na relação temporal especificada
 - Valor aceitável para a distorção intermídia é dependente dos tipos de mídia relacionadas

Mídias envolvida	Modo ou Aplicação	Distorção intermídia permitida
Vídeo e animação	correlacionados	+/- 120ms
Vídeo e áudio	sincronização labial	+/- 80ms
Vídeo e imagem	superposição	+/- 240ms
Vídeo e imagem	sem superposição	+/- 500ms
Vídeo e texto	superposição	+/- 240ms
Vídeo e texto	sem superposição	+/- 500ms
Áudio e animação	correlacionados	+/- 80ms
Áudio e áudio	relacionamento estrito (estéreo)	+/- 11μs
Áudio e áudio	relacionamento fraco	+/- 120ms
Áudio e áudio	relacionamento fraco (música de fundo)	+/- 500ms
Áudio e imagem	relacionamento forte (música com notas)	+/- 5ms
Áudio e imagem	relacionamento fraco (apres. de slides)	+/- 500ms
Áudio e texto	anotação de texto	+/- 240ms
Áudio e ponteiro	áudio relaciona para mostrar item	- 500ms a + 750ms

Causas da Perda de Sincronismo

 Processos envolvidos na comunicação fim-a-fim em aplicações conversacionais

 Processos envolvidos na comunicação fim-a-fim em aplicações baseadas em servidores

· Tolerância a Perda de Pacotes

- Transferência livre de erro não é essencial para obter uma qualidade de comunicação aceitável
 - · informações multimídia toleram certa quantidade de erros
- Taxa de erro tolerável é dependente do método de compressão

Requisitos de rede para a comunicação de áudio e vídeo

- Identificação dos principais requisitos de rede para a comunicação de áudio e vídeo
 - Verificar quais os níveis de desempenho que a rede deve oferecer para ter boa qualidade de áudio e vídeo
- Onde podemos aplicar o conhecimento
 - Homologação de serviços de rede antes da implantação de serviços multimídia
 - Exemplo: para uma corporação ter um serviço de Voz sobre IP (VoIP) de boa qualidade, é necessário garantir a qualidade do serviço de rede
 - Seleção de codecs apropriados de acordo com a qualidade da rede
 - Na seleção manual
 - Na implementação de sistemas adaptativo às condições de rede.

Requisitos de rede para a comunicação de áudio e vídeo

Requisitos avaliados:

- Eficiência de uso de recursos da rede
 - A tecnologia usa de maneira eficiente seus recursos para transportar dados multimídia?
- Requisitos de vazão
 - A rede oferece banda suficiente para transportar minhas mídias?
- Requisitos de atraso e variação de atraso
 - A rede oferece um atraso pequeno e constante para meu tráfego de mídia?
- Requisitos de confiabilidade
 - A rede produz muita perda de pacotes que afeta a qualidade de apresentação das mídias?
- Capacidade de Multicasting
- Garantia de Qualidade de Serviços

Eficiência de uso de recursos da rede Comutação de Pacotes vs de Circuito

- Comutação
 - Processo de alocação de recursos para a transmissão.
- Existem dois tipos básicos de comutação
 - Comutação de pacotes
 - Não são reservados recursos
 - Os pacotes de uma comunicação usam os recursos sob demanda e, como consequência, poderão ter de aguardar (entrar na fila) para conseguir acesso ao enlace de rede.
 - Comutação de circuito
 - Recursos necessários ao longo de um caminho (bufers, taxa de transmissão de enlaces) para prover a comunicação entre os sistemas finais são reservados pelo período da sessão de comunicação
 - Circuito é implementando em um enlace por Multiplexação por Divisão de Frequência (FDM) ou Multiplexação por Divisão de Tempo (TDM)

Eficiência de uso de recursos da rede

Comutação de Pacotes vs de Circuito

Eficiência de uso de recursos da rede Comutação de Pacotes vs de Circuito

- Comutação de Circuito
 - Estabelecido um circuito onde o "dado" é transmitido
 - Amostras de áudio (na rede de telefonia pública PSTN

- Comutação de Circuito
 - Multiplexação
 - Compartilhamento do meio de transmissão por várias conexões
 - Multiplexação por divisão de tempo síncrona (STDM)
 - Tempo é dividido em quadros de tamanho fixo que por sua vez são divididos em intervalos de tamanho fixo
 - Canal
 - conjunto de intervalos, um em cada quadro e com posição fixa no quadro
 - » canal 3 é o terceiro intervalo de cada frame
 - são alocados às estações que desejam transmitir
 - Pode ser ponto-a-ponto ou multiponto

- Esquemas de multiplexação na comutação de circuito
 - Single-slot STDM
 - · É dedicado um intervalo para cada canal
 - supondo:
 - C bps a capacidade do meio (p.e. 2 Mbps)
 - B bps a capacidade de cada canal (p.e. 64 kbps)
 - N = C/B o número máximo de intervalos (2000/64=31) considerando
 T a duração de um quadro de 1s
 - t = T/N duração do intervalo onde K = Ct bits podem ser transmitidos (t=1/31=3,2ms; K = 64 Kbps)

- Deficiências do STDM
 - Uma conexão pode apenas usar o intervalo temporal de cada quadro dedicada a ela
 - Multiplexação STDM é feita por reserva
 - um intervalo de tempo pode apenas ser usado pela conexão que o reservou durante o seu estabelecimento
 - Se a fonte não tem dados a transmitir durante o intervalo, o intervalo é perdido (não pode ser usado por outra conexão)
 - Caso o transmissor ter mais dados a transmitir, ele deve aguardar o próximo quadro (ou reservar mais que um intervalo em cada quadro)

Comutação de Pacotes vs de Circuito

- Deficiências do STDM
 - Exemplo: se cada intervalo corresponde a 64 Kbps
 - conexão pode apenas ter uma largura de banda múltipla de 64
 Kbps
 - se a conexão necessita apenas de 16 Kbps
 - um intervalo de tempo deve ser reservado, assim 48 Kbps são perdidos
 - se uma conexão necessita de 70 Kbps, dois intervalos (128 Kbps)
 em cada quadro deve ser reservado e 58 Kbps são desperdiçados

- Dados multimídia são transmitidos em rajadas
 - Se usuário reserva uma largura de banda igual a seu pico de taxa de transmissão:
 - parte da largura de banda é desperdiçada em redes de comutação de circuitos
 - É baseada em reserva de recursos

- Largura de banda sob demanda ou multiplexação estatística
 - Oferecida pelas redes de comutação de pacotes
 - Melhor técnica para uso eficiente da rede
 - aplicação pode usar tanta largura de banda quanto necessário sujeito a um valor máximo
 - quando uma aplicação não usa toda a sua largura de banda outra aplicação pode usar

Requisitos de vazão

Requisito de vazão de transmissão

- Requisito dependentes da qualidade/codec escolhida para áudios e vídeos transmitidos e da técnica de compressão utilizada
- VoIP
 - 5.3 a 64 kbps de vazão gerados por fluxo de áudio (depende do codec)
 - 20 a 80 kbps ao nível de rede (depende do tamanho do pacote de voz)
- Videofonia/Videoconferência com H.261
 - 64 Kbps de vazão é aceitável apenas em alguns vídeos estáticos (vídeo mostrando apenas a cabeça da pessoa que fala)
 - 384 Kbps de vazão é interessante mesmo para vídeos mostrando cenas normais
- Transmissão de vídeo de qualidade
 - 1,4 Mbps para áudio e vídeo fornece uma boa qualidade de vídeo
 - 1,2 a 80 Mbps para MPEG e MPEG-2

Requisitos de vazão

- Requisito de continuidade temporal
 - Rede deve ser capaz de suportar a taxa gerada pela aplicação multimídia durante toda a sessão
 - Exemplo: VoIP com codec G.711 deve suportar uma taxa
 - CBR a 80 kbps no caso de não haver supressão de silêncio
 - VBR com taxa de pico de 80 kbps caso haja supressão de silêncio
 - Se existem vários fluxos na rede ao mesmo tempo
 - Rede deve ter uma capacidade de vazão igual ou maior que a taxa de bits agregada dos fluxos

Requisitos de atraso e variação de atraso

Atraso fim-a-fim

- Sempre existe um atraso entre a captura/leitura de uma informação em uma fonte e sua apresentação em um destino
 - gerado pelo processamento da informação na fonte, sistema de transmissão e processamento no destino
- Para videoconferência e VoIP: entre 150 e 400ms
- Para aplicações baseadas em servidor: na ordem de segundos

Requisitos de atraso e variação de atraso

Variação de atrasos

- Em redes a comutação de pacotes, os pacotes de dados não chegam ao destino em intervalos fixos
 - · necessário para transmissão de mídias contínuas
- Para videoconferência e VoIP: deve ser limitada a um pequeno valor (inferior a 30 a 60ms)
- Para aplicações baseadas em servidor: pode ser mais alta

Requisitos de atraso e variação de atraso

- Variação de Atraso é removida com buffer FIFO no destino
 - Técnica de bufferização:
 - pacotes que chegam são colocados no buffer em taxas variadas
 - · dispositivo de apresentação retira amostragens em uma taxa fixa
 - princípio: adicionar um valor de atraso variável a cada pacote de tal forma que o atraso total de cada pacote seja o mesmo

- Supondo:
 - dmin: tempo mínimo de atraso do pacote
 - dmax: tempo máximo de atraso
- Se um pacote com atraso de d é bufferizado durante (dmax-d)
 - todos os pacotes terão um atraso fixo de dmax
 - destino partirá a apresentação dmax
 - · cada pacote será apresentado em tempo
- Tempo máximo de bufferização é dmax-dmin
 - maior este valor, maior é o tamanho do buffer necessário
 - buffer não deve sofrer sobrecarga ou subtilização
 - tamanho do buffer não dever ser muito grande
 - · significa que o sistema é caro e o atraso fim-a-fim é grande

- Buffer de Apresentação
 - Existem duas classes de operação para os buffers de apresentação:
 - Tempo de bufferização fixo
 - Tempo de bufferização adaptável

Tempo de Bufferização fixo

- Primeiro pacote do fluxo é bufferizado por um período de tempo de B segundos antes de ser apresentado
- Pacote seguinte é apresentado numa taxa fixa se ele é disponível
- Quando a variação de atraso não é muito grande e B é apropriadamente selecionado
 - variação de atraso da rede pode ser removida eficientemente.

tempo de transmissão do pacote tempo de chegada do pacote tempo de apresentação

pacote

- Tempo de Bufferização fixo
 - Mas este esquema não considera o atraso real do pacote
 - Mesmo se o primeiro pacote sofrer o atraso máximo da rede, ele é atrasado de B segundos
 - Causando atraso extra desnecessário
 - Em VoIP em geral o tempo de bufferização é de duas vezes o tamanho de um pacote de voz
 - Exemplo: se o pacote de voz for de 20ms, o tempo de bufferização é de 40ms

tempo de transmissão do pacote

tempo de chegada do pacote

tempo de apresentação pacote

Tempo de Bufferização fixo

- Embora esta técnica seja fácil de implementar
 - Pode resultar em qualidade não satisfatória de áudio
 - Atrasos podem variar, e se aumentar aumenta o descarte de pacotes
 - Não há um atraso ótimo quando as condições de rede variam com o tempo

tempo de transmissão do pacote

tempo de chegada do pacote

tempo de apresentação pacote

Técnicas de bufferização adaptativas

- Realizam uma estimação contínua dos atrasos de rede
 - Via os parâmetros dos pacotes RTP e RTCP
- Permite acompanhar a situação da rede
- Várias operações devem ser realizadas para o cálculo do tempo de apresentação dos dados
 - · Compensação do desvios de relógio
 - Compensação do Comportamento do Emissor quando do uso de técnicas para aumentar a confiabilidade
 - · Compensação do Jitter
 - Compensação da trocas de rota
 - · Compensação da reordenação de pacotes
 - · Definição do momento de adaptar

· Análise baseada no modelo cliente/servidor

- Supondo:
 - destino consome dados a uma taxa constante
 - A(t) a função dos dados que chegam e C(t) a função de consumo
 - C(t) aumenta com o tempo em uma taxa constante
 - A(t) não aumenta a taxa fixa devido a variação de atrasos

– Assumindo:

- O: tempo de envio do primeiro pacote
- t1: tempo de chegada do primeiro pacote
- t2: tempo de apresentação do primeiro pacote
- Para satisfazer os requisitos de continuidade
 - A(t-t1) dever ser igual ou maior que C(t-t2)
 - a diferença é bufferizada

Técnica de Bufferização

- Requisitos de largura de banda
 - Inclinação de A(t-t1) representa a taxa de chegada de dados
 - Valor médio da taxa de chegada deve ser igual a taxa de consumo
 - Se a taxa de consumo é menor
 - diferença A(t-t1) e C(t-t2) (ocupação do buffer) aumenta com o tempo
 - para o sucesso da apresentação
 - tamanho do buffer é infinito ou
 - apresentação do fluxo pode apenas se mantida durante um tempo limitado
 - senão correrá sobrecarga do buffer

Técnica de Bufferização

- Requisitos de largura de banda
 - Conclusão: controle da taxa de transmissão deve ser usado para que a taxa de transmissão seja próxima a taxa de consumo

Técnica de Bufferização

- Requisitos de largura de banda
 - Se a taxa de consumo é maior que a taxa de chegada
 - para satisfazer o requisito que A(t-t1)-C(t-t2) não seja menor que O
 - t2 deve ser maior (atraso inicial maior)
 - » tempo de resposta mais longo
 - » requer tamanho de buffer maior
 - maior o fluxo a ser apresentado, maior é o atraso inicial e maior os requisitos do buffer
 - não são desejáveis nem praticáveis

 Conclusão: transmissor deveria enviar na taxa de consumo, e a largura de banda de transmissão fim-a-fim deve ser ao menos igual a taxa de consumo

Requisitos de confiabilidade

- Requisito de difícil quantificação
 - As aplicações multimídia são tolerantes a erros de transmissão
 - Devido aos limites da percepção sensorial humana
 - Consequência: perdas geram redução da qualidade de apresentação
 - Requisitos de controle de erro e de atraso fim-a-fim são contraditórios
 - pois muitos esquemas de controle de erro envolvem a detecção e retransmissão do pacote com erros ou perda
 - implica no aumento no atraso
 - para transmissão tempo-real de áudio e vídeo, o atraso é mais importante que a taxa de erros
 - é preferível ignorar o erro e trabalhar simplesmente com o fluxo de dado recebido
 - Para VoIP:
 - · ideal é inferior a 1%, acima de 25% não é tolerável

- Várias aplicações multimídia necessitam distribuir fluxos para vários destinos
 - É lento e dispendioso enviar uma cópia da informação para cada destino um-a-um
 - Melhor solução: fonte envia o dado apenas uma vez e a rede é responsável pela transmissão do dado a múltiplos destinos
 - · técnica chamada de Multicasting

- Broadcast e Multicast
 - Broadcast: comunicação ponto-a-multiponto onde todos os receptores potenciais podem receber a mensagem
 - Multicast: comunicação ponto-a-multiponto onde um grupo de receptores podem receber a mensagem
 - Multicast para grupos fechados: a lista de receptores é predefinida e sobre o controle de uma autoridade central
 - Multicast para grupos abertos: qualquer receptor potencial pode espontaneamente se juntar ou sair do grupo

- Múltiplas conexões ponto-a-ponto
 - Conexões ponto-a-ponto são estabelecidas entre os participantes
 - Vantagem
 - · confidencialidade é mais alta
 - Desvantagens
 - fonte deve gerar múltiplos fluxos de dados idênticos (um para cada destino)
 - não econômico em termos de processamento na fonte e de comunicação
 - apenas envolve membros especificamente aceitos

- Tecnologia multicast LAN/WAN
 - Suportar multicast em LAN é teoricamente simples
 - explorando a capacidade multicast inerente de LAN de meioscompartilhados (Ethernet, Token Ring, FDDI)
 - Sobre WANs, esta funcionalidade é disponível sobre vários tipos de rede sem conexão (IP)
 - Nem todas implementações asseguram confidencialidade
 - uso de técnicas de criptografia

IP Multicast

IP multicast é uma extensão do IPv4

- Permite envio de datagramas IP para um conjunto de máquinas
 - formam um grupo multicast identificado por um endereço
 IP

· Distinção entre pacotes unicast e multicast

- Roteador distingue entre pacotes normais e pacotes multicast olhando no formato do endereço destino contido no pacote
 - pacote multicast: 4 primeiros bits do endereço IP tem o valor "1110"(da classe D), o resto serve para identificar o grupo multicast

Requisito de Garantias de Desempenho

- Para garantir o desempenho nas redes de comutação de pacotes
 - Rede deve garantir que um pacote possa acessar a rede em um tempo especificado
 - Quando na rede, o pacote deve ser liberado dentro de um tempo fixo com limites de variação de atraso
 - Necessário o uso de redes a comutação de circuitos ou redes a pacotes com gerenciamento da Qualidade de Serviço

Análise de tecnologias de rede

Ethernet e a Comunicação Multimídia

Ethernet

- Protocolo Camada 2 (Enlace) de interconexão para redes locais baseada no envio de quadros.
- Define cabeamento e sinais elétricos para a camada física, e formato de quadros e protocolos para a camada de controle de acesso ao meio (Media Access Control -MAC)
- Bandas: 10, 100, 1000, 10000 Mbps

Dois Tipos

- Ethernet com meio compartilhado CSMA/CD
 - CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
 - Uso de Hubs Ethernet: repassa quadro entrante em uma porta nas outras portas
 - Banda é compartilhada pelos computadores ligados ao hub
- Ethernet Comutada (Switches Ethernet)
 - Uso de Switches Ethernet: repassa quadro entrante em uma porta em uma porta destinatária
 - Cada computador recebe a banda nominal

Ethernet CSMA/CD e a Comunicação Multimídia

Largura de Banda

- Bandas: 10, 100 Mbps
- Ethernet CSMA/CD não poderiam ser mais carregadas que 70% a 80% para manter as colisões a um nível aceitável

Método de acesso CSMA/CD

- Tem comportamento não determinista
 - · não permite o controle de tempo de acesso e da largura de banda
- Em redes carregadas gera atrasos e variação de atrasos consideráveis

Ethernet Comutada e a Comunicação Multimídia

Banda

Bandas: 10, 100, 1000, 10000 Mbps

Switch

- Não retransmite quadro que recebe nas outras portas
- Possui uma tabela de encaminhamento e retransmite o quadro apenas para a porta adequada (se conhecida)
- Equipamento que aumenta a eficiência da rede
 - Melhora a vazão total
 - · Reduz o atraso e variação de atraso na rede local

Ethernet e a Comunicação Multimídia

- Multicasting
 - Suporta multicast
- · Gerenciamento de tráfego
 - Nenhum mecanismo existe para assegurar uma distribuição igualitária da largura de banda nem mecanismos de prioridade
 - não se pode dar um tratamento diferenciado para tráfego tempo-real sobre dados convencionais

Priorização de Tráfego com 802.1Q e 802.1p

Padrão IEEE 802.1p

- Define uma metodologia para a introdução de classes de prioridade para o tráfego
 - Mecanismo de indicação da prioridade do quadro baseado no campo Priority do padrão 802.1Q.
- São suportadas 8 classes de tráfego (prioridades), com múltiplas filas de prioridade estabelecidas por porta
 - especifique um mecanismo de reordenar os pacotes nas filas
- Não gerencia a latência
 - requerida para redes de tempo real com suporte à áudio e vídeo

Asymmetric Digital Subscriber Line (ADSL)

Tecnologia de Acesso que usa a linha telefônica

- Utiliza os pares de cobre das linhas telefônicas para transportar informações digitais
- tecnologia baseada em modems que convertem linhas de telefones de par-trançado comuns existentes em caminhos de acesso para multimídia e comunicações de dados de alta velocidade.

· É uma tecnologia assimétrica

- Fornece maior largura de banda para downstream e outra para upstream
- torna esta tecnologia ideal para navegar na web, vídeo sob-demanda, acesso remoto a LAN
 - · Usuários destas aplicações tipicamente baixam mais dados que enviam

Nas provedoras brasileiras

- GVT:
 - 15Mbps de download e 1 Mbps de upload (ADSL2+)
 - 50Mpbs download e 5 Mbps upload (vdsl2)

Idéia Geral

Estrutura

ADSL

Vazão

- Taxa de passagem dos dados depende de vários fatores
 - comprimento da linha de cobre, diâmetro, presença de derivações, e interferência de outros pares.
 - atenuação da linha aumenta com o comprimento e a frequência, e diminui com aumento do diâmetro do fio
- Ignorando as derivações, o ADSL em o seguinte desempenho

Taxa	Fio	Distância	Diâmetro
1.5/2.0 Mbps	24 AWG	5.5 Km	0.5 mm
1.5/2.0 Mbps	26 AWG	4.6 Km	0.4 mm
6.1 Mbps	24 AWG	3.7 Km	0.5 mm
6.1 Mbps	26 AWG	2.7 Km	0.4 mm

ADSL e a Multimídia

Velocidades ADSL não é uma ciência exata

- Provedores de serviço fornecem um serviço "melhor esforço" cujo resultado depende muito da distância até a central
 - Geralmente garante 50% da largura de banda
- Atenuações e interferências interferem na taxa em distâncias após 3 Km e tornar inviável a comunicação após 5.5 Km

Para aplicações com tráfego simétrico

Deve-se considerar a vazão oferecida pelo upload

· DSL

- Susceptíveis a interferências
- Provocam perdas em rajadas
 - · Ruim para multimídia