

Data Analysis Data Wrangling

Prof. Dr. Gero Szepannek Statistics, Business Mathematics & Machine Learning Stralsund University of Applied Sciences

no 2nd variable categorical Frequency tables Variable 1 numeric Histogram Kernel density plot mean Variance / standard deviation

2nd variable categorical Grouped Bars Stacked Bars Mosaic I

Boxplots Mean | group Variance | group

2nd variable numeric

Boxplots
Mean | group
Variance | group

Correlation

Inter quartile range

TIDY DATA is a standard way of mapping the meaning of a dataset to its structure.

-HADLEY WICKHAM

In tidy data:

- each variable forms a column
- each observation forms a row
- each cell is a single measurement

Wickham, H. (2014). Tidy Data. Journal of Statistical Software 59 (10). DOI: 10.18637/jss.v059.i10

https://allisonhorst.com/other-r-fun

Traditional

VS.

A Grammar for Data Wrangling

The verbs:

1. select() ...a subset of columns (variables).

2. filter() ...a subset of rows (observations).

3. mutate () Add or modify existing variables.

4. arrange() Sort the observations.

5. summarize () Aggregate the data accross observations according to some criteria.

General usage:

- 1. The first argument is a data frame.
- 2. The subsequent arguments describe what to do with the data frame, using the variable names (without quotes!).
- 3. The result is a new data frame.

Select and Filter

Mutate and Rename

mutate()

Arrange

arrange()


```
filter(presidential, party == "Republican")
# ... is the same as:

# install.packages("magrittr")
library(magrittr)
presidential %>% filter(party == "Republican")
```

```
by_day <- group_by(flights, year, month, day)
summarise(by_day, delay = mean(dep_delay, na.rm = TRUE))</pre>
```

useful summary functions:

```
• n()
• sum()
mean()
             location
median()
• sd()
• IQR()
                         variation
• mad()
• min()
max()
• quantile(x, 0.25)
• first()
• last()
• nth(x,2)
• n distinct()
• sum(!is.na(x))
```

Depending on the context there are 3 ways to deals with outliers:

- 1. Keep them
- 2. Remove them
- 3. Replace them

"...It's good practice to repeat your analysis with and without the outliers.

If they have a substantial effect on your results, you shouldn't drop them without justification. Try to figure out what caused them and disclose that you removed them in your write-up."

Always try to answer:

- Which values are the most common? Why?
- Which values are rare? Why? Does that match your expectations?
- Can you see any unusual patterns? What might explain them?

•	GEOID [‡]	NAME [‡]	variable [‡]	estimate [‡]	moe [‡]
1	01	Alabama	income	24476	136
2	01	Alabama	rent	747	3
3	02	Alaska	income	32940	508
4	02	Alaska	rent	1200	13
5	04	Arizona	income	27517	148
6	04	Arizona	rent	972	4
7	05	Arkansas	income	23789	165
8	05	Arkansas	rent	709	5
9	06	California	income	29454	109
10	06	California	rent	1358	3
11	08	Colorado	income	32401	109
12	08	Colorado	rent	1125	5
13	09	Connecticut	income	35326	195
14	09	Connecticut	rent	1123	5
15	10	Delaware	income	31560	247
16	10	Delaware	rent	1076	10
17	11	District of Columbia	income	43198	681
18	11	District of Columbia	rent	1424	17

^	GEOID [‡]	NAME [‡]	estimate_income	estimate_rent	moe_income [‡]	moe_rent
1	01	Alabama	24476	747	136	3
2	02	Alaska	32940	1200	508	13
3	04	Arizona	27517	972	148	4
4	05	Arkansas	23789	709	165	5
5	06	California	29454	1358	109	3
6	08	Colorado	32401	1125	109	5
7	09	Connecticut	35326	1123	195	5
8	10	Delaware	31560	1076	247	10
9	11	District of Columbia	43198	1424	681	17

- pivot_wider() Eine (oder mehrere) qualitative Variable wird verwendet um weitere Spalten zu erzeugen und mehrere Beobachtungen zu einer zusammenzufassen
- pivot_longer() Mehrere Variablen werden zu einer Variable zusammengefasst. Dadurch entstehen mehr Beobachtungen und eine qualitative Variable, die angibt, welche der Ursprungsvariablen in der zusammengefassten Variable eingetragen sind

taken from Lars Koppers @ stRalsund R Usertreffen 6/2022

```
head(airports) # look up table

# base R
nd <- merge(flights, airports, by.x="dest", by.y = "faa", all.x = TRUE)

# dplyr
named_dests <- left_join(flights, airports, by = c("dest" = "faa"))
named_dests <- rename(named_dests, dest_airport = name)
# ...note the difference in computation time!</pre>
```


https://r4ds.had.co.nz/index.html

chapter 3: Data transformation with dplyr

chapter 9: Tidy Data with tidyr

chapter 10: Relational Data with dplyr

(online: chapter 5, 7.3, 12 & 13)

