Lecture 2 - Tensor review, Anisotropic Elasticity

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

February 4, 2021

1

schedule

- Feb 4 Tensor review, Anisotropic Elasticity
- Feb 9 Coordinate Transformation
- Feb 11 1D Micromechanics (HW1 Due)
- Feb 16 Orientation Averaging

outline

- index notation
- anisotropic elasticity

index notation

index notation

- Consider the following
- s = a1x1 + a2x2 + ... + anxn
- Which we could also write as

$$s = \sum_{i=1}^{n} a_i x_i$$

• Using index notation, and Einstein's summation convention, we can also write this as s = aixi

4

dummy index

- In index notation, a repeated index implies summation
- This index is also referred to as a dummy index
- It is called a "dummy index" because the expression would have the same meaning with any index in its place
- i.e. i, j, k, etc. would all have the same meaning when repeated

dummy index

Note, no index may be repeated more than once, thus the expression

$$s = \sum_{i=1}^{n} a_i b_i x_i$$

could not be directly written in index notation

6

free index

- Any index which is not repeated in an index notation expression is referred to as a free index
- The number of free indexes in an expression indicate the tensor order of that expression
- No free indexes = scalar expression (0-order tensor)
- One free index = vector expression (1st-order tensor)
- Two free indexes = matrix expression (2nd-order tensor)

- Free index is not repeated (on any term)
- Free index takes all values (1,2,3)
- e.g. $u_i = \langle u_1, u_2, u_3 \rangle$
- Free indexes must match across terms in an expression or equation

Dummy index is repeated on at least one term Dummy index indicates summation over all values e.g. $\sigma_{ii} = \sigma_{11} + \sigma_{22} + \sigma_{33}$ Index can not be used more than twice in the same term $(A_{ij}B_{jk}C_{kl})$ is good, $A_{ij}B_{ij}C_{ij}$ is not)

8

dummy index

- The dummy index can be triggered by any repeated index in a term
- Summation or not?
 - $a_i + b_{ij}c_j$
 - a_{ii}b_{ii}
 - a_{ij} + b_{ij}c_j

matrix multiplication

• How can we write matrix multiplication in index notation?

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

10

special symbols

kronecker delta

- For convenience we define two symbols in index notation
- Kronecker delta is a general tensor form of the Identity
 Matrix

$$\delta_{ij} = \left\{ \begin{array}{ll} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{array} \right. = \left[\begin{array}{ll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Is also used for higher order tensors

- -

kronecker delta

- $\bullet \quad \delta_{ij} = \delta_{ji}$
- $\delta_{ii} = 3$
- $\delta_{ij}a_j=a_i$
- $\bullet \quad \delta_{ij}b_{ij}=b_{ii}$

alternating symbol

alternating symbol or permutation symbol

$$\epsilon_{ijk} = \left\{ \begin{array}{rl} 1 & \text{if } ijk \text{ is an even permutation of } 1,2,3 \\ -1 & \text{if } ijk \text{ is an odd permutation of } 1,2,3 \\ 0 & \text{otherwise} \end{array} \right.$$

13

alternating symbol

- This symbol is not used as frequently as the Kronecker delta
- For our uses in this course, it is enough to know that 123, 231, and 312 are even permutations
- 321, 132, 213 are odd permutations
- all other indexes are zero
- $\epsilon_{ijk}\epsilon_{imn} = \delta_{jm}\delta_{kn} \delta_{jn}\delta_{mk}$

tensor algebra

substitution

- When solving tensor equations, we often need to manipulate expressions
- We need to make sure the correct indexes are used when substituting, for example

$$a_i = U_{im}b_m \tag{1}$$

$$b_i = V_{im}c_m \tag{2}$$

• To substitute (2) into (1), we first need to change indexes

substitution

- We need to change the free index, i, to m in (2)
- Since m is already used as the dummy index, we need to change that too

$$b_m = V_{mi}c_i \tag{3}$$

We can now make the substitution

$$a_i = U_{im} V_{mi} c_i \tag{4}$$

16

multiplication

- We need to be careful with indexes when multiplying expressions
- $p = a_m b_m$ and $q = c_m d_m$
- We can express, pq, but remember the dummy index cannot be repeated more than once
- $pq \neq a_m b_m c_m d_m$
- Instead we must change the dummy index in one of the expressions first
- $pq = a_m b_m c_n d_n$

factoring

- In the following expression, we would like to factor out n, but it has different indexes
- $\sigma_{ii}n_i \lambda n_i = 0$
- Recall $\delta_{ij}a_i=a_i$ we can rewrite $n_i=\delta_{ij}n_j$
- $\sigma_{ii}n_i \lambda \delta_{ii}n_j = 0$
- $(\sigma_{ij} \lambda \delta_{ij}) nj = 0$

18

contraction

- σ_{ii} is the contraction of σ_{ii}
- This can often be a useful tool in solving tensor equations
- $\sigma_{ii} = \lambda \Delta \delta_{ii} + 2\mu E_{ii}$
- $\sigma_{ii} = 3\lambda\Delta + 2\mu E_{ii}$

tensor calculus

partial derivative

- We indicate (partial) derivatives using a comma
- In three dimensions, we take the partial derivative with respect to each variable (x, y, z or x₁, x₂, and x₃)
- For example a scalar property, such as density, can have a different value at any point in space
- $\rho = \rho(x_1, x_2, x_3)$
- $\bullet \quad \rho_{,i} = \frac{\partial}{\partial x_i} \rho = \left\langle \frac{\partial \rho}{\partial x_1}, \frac{\partial \rho}{\partial x_2}, \frac{\partial \rho}{\partial x_3} \right\rangle$

partial derivative

Similarly, if we take the partial derivative of a vector, it produces a matrix

$$u_{i,j} = \frac{\partial}{\partial x_j} u_i = \begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} & \frac{\partial u_1}{\partial x_3} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \frac{\partial u_2}{\partial x_3} \\ \frac{\partial u_3}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \frac{\partial u_3}{\partial x_3} \\ \end{bmatrix}$$

-

dyadic notation

dyadic notation

- Dyadic notation is sometimes called tensor product notation
- Dyadic product: $C_{ij} = a_i b_j$ is written as $C = a \otimes b$
- Double dot product: $A_{ij}B_{ji} = c$ is written as A : B = c

22

transformation

linear transformation

- Let us consider some transformation, T, which transforms any vector into another vector
- If we transform T a = c and T b = d
- We call **T** a linear transformation (and a tensor) if

$$\mathsf{T}(\mathsf{a} + \mathsf{b}) = \mathsf{T}\mathsf{a} + \mathsf{T}\mathsf{b}$$
 $\mathsf{T}(\alpha\mathsf{a}) = \alpha\mathsf{T}\mathsf{a}$

• Where α is any arbitrary scalar and a, b are arbitrary vectors

23

coordinate transformation in two dimensions

coordinate transformation in two dimensions

- The vector, v, remains fixed, but we transform our coordinate system
- In the new coordinate system, the x_2' portion of v is zero.
- To transform the coordinate system, we first define some unit vectors.
- ê₁ is a unit vector in the direction of x₁, while ê'₁ is a unit vector in the direction of x'₁

25

coordinate transformation in two dimensions

coordinate transformation in two dimensions

- For this example, let us assume $v = \langle 2, 2 \rangle$ and $\theta = 45^{\circ}$
- We can write the transformed unit vectors, ê'₁ and ê'₂ in terms of ê₁, ê₂ and the angle of rotation, θ.

$$\hat{\mathbf{e}}_1' = \langle \hat{\mathbf{e}}_1 \cos \theta, \hat{\mathbf{e}}_2 \sin \theta \rangle
\hat{\mathbf{e}}_2' = \langle -\hat{\mathbf{e}}_1 \sin \theta, \hat{\mathbf{e}}_2 \cos \theta \rangle$$

~-

coordinate transformation in two dimensions

- We can write the vector, v, in terms of the unit vectors describing our axis system
- $v = v_1 \hat{e}_1 + v_2 \hat{e}_2$
- (note: $\hat{e}_1 = \langle 1, 0 \rangle$ and $\hat{e}_2 = \langle 0, 1 \rangle$)
- $v = \langle 2, 2 \rangle = 2\langle 1, 0 \rangle + 2\langle 0, 1 \rangle$

coordinate transformation in two dimensions

- When expressed in the transformed coordinate system, we refer to v'
- $v' = \langle v_1 \cos \theta + v_2 \sin \theta, -v_1 \sin \theta + v_2 \cos \theta \rangle$
- $v' = \langle 2\sqrt{2}, 0 \rangle$
- We can recover the original vector from the transformed coordinates:
- $v = v_1' \hat{e}_1' + v_2' \hat{e}_2'$
- (note: $\hat{e}'_1 = \langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle$ and $\hat{e}'_2 = \langle -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle$)
- $v = 2\sqrt{2}\langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle, 0\langle -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle = \langle 2, 2 \rangle$

29

general coordinate transformation

- Coordinate transformation can become much more complicated in three dimensions, and with higher-order tensors
- It is convenient to define a general form of the coordinate transformation in index notation
- We define Q_{ij} as the cosine of the angle between the x'_i
 axis and the x_i axis.
- This is also referred to as the "direction cosine"

$$Q_{ij} = \cos(x_i', x_j)$$

mental and emotional health warning

- Different textbooks flip the definition of Q_{ij} (Elasticity and Continuum texts have opposite definitions, for example)
- The result gives the transpose
- Always use equations (next slide) from the same source as your Q_{ii} definition

31

general coordinate transformation

- We can transform any-order tensor using Q_{ij}
- Vectors (first-order tensors): $v_i' = Q_{ij}v_i$
- Matrices (second-order tensors): $\sigma'_{ij} = Q_{im}Q_{jn}\sigma_{mn}$
- ullet Fourth-order tensors: $C'_{ijkl}=Q_{im}Q_{jn}Q_{ko}Q_{lp}C_{mnop}$

general coordinate transformation

• We can use this form on our 2D transformation example

$$\begin{aligned} Q_{ij} &= \cos(x_i', x_j) \\ &= \begin{bmatrix} \cos(x_1', x_1) & \cos(x_1', x_2) \\ \cos(x_2', x_1) & \cos(x_2', x_2) \end{bmatrix} \\ &= \begin{bmatrix} \cos \theta & \cos(90 - \theta) \\ \cos(90 + \theta) & \cos \theta \end{bmatrix} \\ &= \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \end{aligned}$$

33

general coordinate transformation

- We can similarly use Q_{ij} to find tensors in the original coordinate system
- Vectors (first-order tensors): $v_j = Q_{ij}v'_i$
- Matrices (second-order tensors): $\sigma_{mn} = Q_{im}Q_{jn}\sigma'_{ij}$
- Fourth-order tensors: $C_{mnop} = Q_{im}Q_{jn}Q_{ko}Q_{lp}C'_{ijkl}$

general coordinate transformation

- We can derive some interesting properties of the transformation tensor, Q_{ii}
- We know that $v'_i = Q_{ii}v_i$ and that $v_i = Q_{ii}v'_i$
- If we substitute (changing the appropriate indexes) we find:
- $\mathbf{v}_i = Q_{ij} Q_{ik} v_k$
- We can now use the Kronecker Delta to substitute $v_i = \delta_{ik} v_k$
- $\bullet \quad \delta_{jk} v_k = Q_{ij} Q_{ik} v_k$

35

examples

example

- Find Q_{ij}^1 for rotation of 60° about x_2
- Find Q_{ij}^2 for rotation of 30° about x_3'
- Find e_i'' after both rotations

36

example

example

38

example

$$Q_{ij}^1 = \cos(x_i', x_j)$$

$$Q_{ii}^2 = \cos(x_i'', x_i')$$

$$Q_{ij}^{1} = \begin{bmatrix} \cos 60 & \cos 90 & \cos 150 \\ \cos 90 & \cos 0 & \cos 90 \\ \cos 30 & \cos 90 & \cos 60 \end{bmatrix}$$

$$Q_{ij}^2 = \begin{bmatrix} \cos 30 & \cos 60 & \cos 90 \\ \cos 120 & \cos 30 & \cos 90 \\ \cos 90 & \cos 90 & \cos 0 \end{bmatrix}$$

example

- We now use Q_{ij} to find \hat{e}'_i and \hat{e}''_i
- First, we need to write ê_i in a manner more consistent with index notation
- We will indicate axis direction with a superscript,
 - e.g. $\hat{e}_1 = e_i^1$
- $e'_i = Q^1_{ij}e_j$
- $e_i'' = Q_{ii}^2 e_i'$
- How do we find e_i'' in terms of e_i ?

40

anisotropic elasticity

In 3D, Hooke's Law for linearly elastic materials is

$$\sigma_{ij} = C_{ijkl}\epsilon_{kl}$$

- For isotropic materials, C_{ijkl} can be expressed in terms of two constants
- In general (anisotropic materials) more constants are needed and we use the full tensor

41

engineering notation

- Fourth-order tensors are cumbersome to write, we often use engineering notation
- σ and ε are written as vectors and C_{ijkl} is written as a matrix.
- NOTE: Although σ, ε and C_{ijkl} are tensors, their counterparts in engineering notation are NOT formal tensors
- This means that the usual transformation laws do not apply

engineering notation

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & C_{1123} & C_{1113} & C_{1112} \\ C_{1122} & C_{2222} & C_{2233} & C_{2223} & C_{1322} & C_{1222} \\ C_{1133} & C_{2223} & C_{3333} & C_{2333} & C_{1333} & C_{1233} \\ C_{1123} & C_{2223} & C_{2333} & C_{2323} & C_{1323} & C_{1223} \\ C_{1113} & C_{1322} & C_{1333} & C_{1323} & C_{1213} & C_{1213} \\ C_{1112} & C_{1222} & C_{1233} & C_{1223} & C_{1213} & C_{1212} \end{bmatrix} \begin{bmatrix} E_{11} \\ E_{22} \\ E_{33} \\ E_{23} \\ E_{24} \\ E_{12} \\ E_{13} \\ E_{13} \\ E_{14} \\ E_{15} \\ E_{15} \\ E_{15} \\ E_{15} \\ E_{16} \\ E_{17} \\ E_{18} \\ E_{18} \\ E_{18} \\ E_{18} \\ E_{18} \\ E_{18} \\ E_{19} \\ E$$

43

compliance

$$\begin{bmatrix} E_{11} \\ E_{22} \\ E_{33} \\ E_{23} \\ 2E_{13} \\ 2E_{12} \end{bmatrix} = \begin{bmatrix} S_{1111} & S_{1122} & S_{1133} & S_{1123} & S_{1113} & S_{1112} \\ S_{1122} & S_{2222} & S_{2233} & S_{2223} & S_{1322} & S_{1222} \\ S_{1133} & S_{2233} & S_{3333} & S_{2333} & S_{1333} & S_{1233} \\ S_{1123} & S_{2223} & S_{2333} & S_{2323} & S_{1323} & S_{1223} \\ S_{1113} & S_{1322} & S_{1333} & S_{1323} & S_{1313} & S_{1213} \\ S_{1112} & S_{1222} & S_{1233} & S_{1223} & S_{1213} & S_{1212} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{12} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{12} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{12} \\ \sigma_{12} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{12} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{12} \\ \sigma_{12} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{13} \\ \sigma_{12} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{13} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{13} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{14} \\ \sigma_{15} \\$$

physical interpretation

• If we now consider the case of uniaxial tension, we see that

$$E_{11} = S_{1111}\sigma_{11}$$

$$E_{22} = S_{1122}\sigma_{11}$$

$$E_{33} = S_{1133}\sigma_{11}$$

$$2E_{23} = S_{1123}\sigma_{11}$$

$$2E_{13} = S_{1113}\sigma_{11}$$

$$2E_{12} = S_{1112}\sigma_{11}$$

• S1111 is familiar, acting like 1/EY

45

poisson's ratio

- For isotropic materials we defined Poisson's ratio as $\nu = -E_{22}/E_{11}$
- For anisotropic materials, we can have a different Poisson's ratio acting in different directions
- We define ν_{ij} = -E_{ij}/E_{ii} (with no summation), the ratio of the transverse strain in the j direction when stress is applied in the i direction
- For this example we can find u_{12} and u_{13} as

$$\nu_{12} = -E_{22}/E_{11} = -S_{1122}/S_{1111}$$
$$\nu_{13} = -E_{33}/E_{11} = -S_{1133}/S_{1111}$$

poisson's ratio

- Note that we cannot, in general, say that $\nu_{12} = \nu_{21}$
- However, due to the symmetry of the stiffness/compliance tensors, we know that

$$\nu_{21}E_{x} = \nu_{12}E_{y}$$

$$\nu_{31}E_{x} = \nu_{13}E_{z}$$

$$\nu_{32}E_{y} = \nu_{23}E_{z}$$

 Where E_x refer's to the Young's Modulus in the x-direction, etc.

47

shear coupling coefficients

- An unfamiliar effect is that shear strains can be introduced from a normal stress
- We define shear coupling coefficients as $\eta_{1112} = \eta_{16} = -2E_{12}/E_{11}$ due to σ_{11}
- These coupling terms can also effect shear strain in a different plane from the applied shear stress
- Like the Poisson's ratio, these are not entirely independent

$$\eta_{61}E_x = \eta_{16}G_6$$

• Where G_6 is the shear modulus in the 12 plane

shear coupling coefficients

- Shear coupling coefficients are sometimes placed in two groups
- Coefficients of mutual influence relate shear stress to normal strain and normal stress to shear strain
- Chentsov coefficients relate shear stress in one plane to shear strain in another plane
- In general we can say

$$\eta_{nm}E_m = \eta_{mn}G_n$$
 (m = 1,2,3) (n = 4,5,6)

and

$$\eta_{nm}G_m = \eta_{mn}G_n \quad (m,n = 4,5,6) \quad m \neq n$$

orthotropic symmetry

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & 0 & 0 & 0 & 0 \\ C_{1122} & C_{2222} & C_{2233} & 0 & 0 & 0 & 0 \\ C_{1133} & C_{2233} & C_{3333} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{2323} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{1313} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{1212} \end{bmatrix} \begin{bmatrix} E_{11} \\ E_{22} \\ E_{33} \\ E_{23} \\ 2E_{13} \\ 2E_{12} \end{bmatrix}$$

transversely isotropic symmetry

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & 0 & 0 & 0 & 0 \\ C_{1122} & C_{1111} & C_{1133} & 0 & 0 & 0 & 0 \\ C_{1133} & C_{1133} & C_{3333} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{1313} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{1313} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/2(C_{1111} - C_{2222}) \end{bmatrix} \begin{bmatrix} E_{1111} \\ E_{2111} \\ E_{21111} \\ E_{211111} \\ E_{2111111} \\ E_{21111111} \\ E_{211111111} \\ E_{2111111111} \\ E_{21111111} \\ E_{21111111} \\ E_{21111111} \\ E_{211111111}$$

51

isotropic symmetry

next class

 Next class we will develop transformation laws for engineering stress/strain and stiffness