1a.
$$y(t) = \frac{c}{t^2} + \frac{1}{t}$$

1b.
$$y(x) = -\frac{1}{2} \ln \left(\frac{2}{3} e^{-3x} - c \right)$$

2. The differential equation should be $Q'(t) = 2\gamma - 2Q(t)/3$, Q(0) = 1. The solution is $Q(t) = 3\gamma(1 - e^{-2t/3}) + e^{-2t/3}$. Using the condition $Q(\ln 8) = 13/16$, we get $\gamma = 1/4$.

3a.
$$y(t) = c_1 e^{5t} t + c_2 e^{5t} + \frac{1}{2} e^{5t} t^2$$

- 3b. After a substitution $y = v(t)t^3$, we get $t^2v'' tv' = 0$. Then substituting u(t) = v'(t), we get $t^2u' tu = 0$. We solve to get $u = c_1t$. We integrate to get $v = c_1t^2 + c_2$. Therefore $y = c_1t^5 + c_2t^3$. So one (simplest) possible choice for the second solution is t^5 .
- 4. The differential equation is $\frac{1}{4}u'' + ku = 0, u(0) = 1, u'(0) = 1$. The solution is $u(t) = \frac{1}{2\sqrt{k}}\sin\left(2\sqrt{k}t\right) + \cos\left(2\sqrt{k}t\right)$, which has amplitude $\sqrt{\frac{1}{4k}+1}$. Equating this with 5/4 and solving for k, we get k = 4/9.
- 5. The equation is $\frac{1}{8}u'' + \frac{1}{2}u' + 5u = 0$, $u(0) = -\frac{1}{2}$, u'(0) = -2, which has the solution $-\frac{1}{2}e^{-2t}(\sin(6t) + \cos(6t))$. This is zero when $\sin(6t) + \cos(6t) = 0$, which happens when $\tan(6t) = -1$, which first happens when $6t = 3\pi/4$, that is, when $t = \pi/8$.
- 6. [Assuming the exam writer meant y'' + 2y' + 2y = g(t)] We write $g(t) = -1 + (t-1)u_1(t) + (-\frac{4}{3}t + 4)u_3(t) + (\frac{1}{3}t 2)u_6(t)$. Using $Y = \mathcal{L}\{y\}$, we have as the Laplace transform of the differential equation

$$Y(s^{2} + 2s + 2) = -\frac{1}{s} + \frac{e^{-s}}{s^{2}} - \frac{(4/3)e^{-3s}}{s^{2}} + \frac{(1/3)e^{-6s}}{s^{2}}.$$

Setting $F(s) = \frac{1}{s(s^2 + 2s + 2)}$ and $H(s) = \frac{1}{s^2(s^2 + 2s + 2)}$, we can write this as

$$Y = -F(s) + e^{-s}H(s) - (4/3)e^{-3s}H(s) + (1/3)e^{-6s}H(s).$$

Using partial fractions, we get

$$F(s) = \frac{1/2}{s} + \frac{(-1/2)s - 1}{(s+1)^2 + 1} = \frac{1}{2} \left[\frac{1}{s} - \frac{s+1}{(s+1)^2 + 1} - \frac{1}{(s+1)^2 + 1} \right].$$

The inverse Laplace transform is $f(t) = \frac{1}{2} - \frac{1}{2}e^{-t}(\cos t + \sin t)$ Repeating the process, we get

$$H(s) = \frac{1}{2} \left(\frac{1}{s^2} - \frac{1}{s} + \frac{s+1}{(s+1)^2 + 1} \right),$$

which has inverse Laplace transform $h(t) = \frac{1}{2}(t-1+e^{-t}\cos t)$. So the inverse Laplace transform of Y is

$$y(t) = -f(t) + h(t-1)u_1(t) - \frac{4}{3}h(t-3)u_3(t) + \frac{1}{3}h(t-6)u_6(t).$$