Dinamica Non Lineare.

Edoardo Gabrielli

9 marzo 2021

Indice

1	Intr	oduzione ai Sistemi Dinamici	3
	1	Definire un Sistema dinamico	3
	2	Esistenza ed unicità della soluzione di IVP	13
	3	Introduzione ai Manifold	17
	4	Mappe Ricorsive	18
	5	Spazio delle fasi esteso (SD a tempi continui)	21
	6	Flusso di fase	23
	7	Soluzioni speciali di Sistemi Dinamici	28
	8	Campi Vettoriali e Proprietà dei SD a t. con. autonomi	31
	9	Teorema di Liuville	36
	10	Phase Portrait	42
	11	Soluzioni stazionarie di SD	43

Capitolo 1

Introduzione ai Sistemi Dinamici

Un sistema dinamico può essere descritto, a livello intuitivo, come un sistema fisico il cui stato evolve nel tempo.

1 Definire un Sistema dinamico

Prendiamo un insieme X^1 , lo stato x di un sistema al tempo iniziale è definito da $x_0=x(t=0)$.

Definizione 1.0.1: (Sistema Dinamico Deterministico). Un sistema dinamico si dice deterministico quando la sua evoluzione temporale segue regole deterministiche.

In Figura 1.1 abbiamo un esempio di sistema dinamico con evoluzione deterministica.

Prendiamo un altro sistema preparato ad un istante iniziale in x_0 . Se al tempo t il sistema è caratterizzato da una certa probabilità di trovarsi in x² allora il Sistema Dinamico si dice stocastico (o processo stocastico).

Un processo stocastico $\boldsymbol{x} \in \mathbb{R}^n$ è caratterizzato da due parametri: $\boldsymbol{x}(t,\omega)$. Il primo indica il tempo, il secondo è legato alla parte stocastica del processo.

Il parametro ω appartiene allo spazio degli eventi Ω :

 $\omega \in \Omega$.

Significa che $\forall \ \omega^* \in \Omega$ corrisponde un punto $\boldsymbol{x}(t,\omega^*)$ che è definito come la realizzazione di ω^* .

1 Che definiremo avanti come Spazio degli stati, Spazio degli eventi o Spazio delle fasi.

Figura 1.1: Evoluzione temporale deterministica di x all'interno di X.

² P diversa dalla distribuzione $\delta(x)$, altrimenti il processo è deterministico!

Figura 1.2: Evoluzione 1D di processo stocastico date le condizioni iniziali x_0 .

4

Definizione 1.0.2: (Processo stocastico). Collezione di funzioni $\forall t \ al \ variare \ di \ \omega \ nello \ spazio \ degli \ eventi.$

1.1 Rappresentazione di un Sistema Dinamico

Sistema dinamico a tempo continuo. Un SD a tempo continuo è rappresentato in generale da un sistema di equazioni differenziali:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, t, \boldsymbol{u}); \qquad \boldsymbol{x} \in U \subset \mathbb{R}^n, \ \boldsymbol{u} \in \mathbb{R}^p.$$

La funzione F è definita nel seguente dominio:

$$F: U \times I \times \Gamma \to V \subset \mathbb{R}^n.$$

- U è il dominio della funzione x.
- I è l'intervallo di definizione della soluzione (non ché l'intervallo temporale studiato).
- Γ è il sottospazio dell'insieme dei parametri \mathbb{R}^p .
- V L'insieme in cui viene mappato il dominio iniziale dalla F.

Definizione 1.1.1: (Notazione semplificata). Nel seguito si sceglie di alleggerire la notazione dei sottospazi. Abuseremo del termine \mathbb{R} per definire tutti gli spazi

$$U, I, \Gamma, V$$
.

Con l'opportuna dimensionalità.

Sarà **importante** saper ricostruire i giusti insiemi di definizione di tutti i termini per i casi di studio analizzati.

Sistemi di equazioni differenziali Una equazione differenziale è definita dalla seguente:

$$E\left(\frac{\mathrm{d}^n x}{\mathrm{d}t^n}, \dots, \frac{\mathrm{d}x}{\mathrm{d}t}, x, t\right) = 0 \qquad x \in \mathbb{R}, \ t \in \mathbb{R}$$
 (1.1)

In cui si fa uso della notazione semplificata. Il grado di una equazione differenziale è l'ordine massimo delle sue derivate (n in questo caso).

Se è possibile riscrivere la 1.1 isolando il termine di ordine n:

$$\frac{\mathrm{d}^n x}{\mathrm{d}t^n} = G\left(\frac{\mathrm{d}^{n-1} x}{\mathrm{d}t^{n-1}}, \dots, x, t\right).$$

Allora l'equazione differenziale iniziale è scomponibile in n equazioni differenziali del primo ordine con il seguente cambio di variabili:

$$y_1(t) = x(t);$$
 ... $y_n(t) = \frac{d^{n-1}x}{dt^{n-1}}.$

Quindi è possibile definire un nuovo vettore di \mathbb{R}^n :

$$\mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$$
.

In conclusione il sistema da risolvere è:

$$\frac{dy_1}{dt} = y_2$$

$$\frac{dy_2}{dt} = y_3$$

$$\vdots$$

$$\frac{dy_n}{dt} = G(y_n, y_{n-1}, \dots, y_1, t).$$

Esempio 1.1.1: (SD a tempo continuo: Oscillatore armonico) Prendiamo un sistema descritto dalla seguente Hamiltoniana:

$$H = \frac{1}{2}ky_1^2 + \frac{1}{2}my_2^2.$$

In questo caso lo stato del sistema è descritto dalla variabile x:

$$\boldsymbol{x}(t) = (y_1, y_2).$$

Il sistema è conservativo: fissate le condizioni iniziali la quantità H è conservata, questo di fatto significa che l'energia è conservata.

$$E = \frac{1}{2}ky_1^2 + \frac{1}{2}my_2^2 = \cos t.$$

Di conseguenza lo spazio delle fasi (o spazio degli stati) è definito in un sottoinsieme di \mathbb{R}^2 : un'ellisse.

$$\frac{y_1^2}{2E/k} + \frac{y_2^2}{2E/m} = 1.$$

I semiassi dell'ellisse sono:

$$a^2 = \frac{2E}{k} \qquad b^2 = \frac{2E}{m}.$$

Notiamo che l'orbita nello spazio delle fasi è chiusa: il sistema è periodico.

Definizione 1.1.2: (Spazio delle fasi). Sottoinsieme di \mathbb{R}^n con le soluzioni (gli stati).

Figura 1.3: Spazio delle fasi con una soluzione per il sistema Hamiloniano (a tempo continuo).

³ Valida per i sistemi dinamici "fisici" che studieremo, più tardi daremo anche una definizione più generale ed astratta.

Figura 1.4: Andamento delle macchie solari (wikipedia).

Figura 1.5: Andamento della soluzione *N* al variare del parametro *r*.

Sistema dinamico a tempo discreto Una prima rappresentazione di SD a tempo discreto³ è la seguente:

$$\boldsymbol{x}_n = G(\boldsymbol{x}_{n-1}, \boldsymbol{u}); \quad \boldsymbol{x}_n \in U \subset \mathbb{R}^n, \ \boldsymbol{u} \in \mathbb{R}^p.$$

$$G: U \times \mathbb{R}^p \to V \subset \mathbb{R}^n.$$

Possiamo immaginare che tra lo step n e lo step n-1 vi sia un intervallo temporale Δt . Fisicamente può essere la distanza tra due osservazioni sperimentali oppure l'andamento giornaliero di una popolazione.

Ovviamente l'intervallo Δt dipende dal contesto e dal tipo di sistema sotto esame.

Esempio 1.1.2: (Osservazione delle macchie solari.)

Un SD a tempi discreti può essere realizzato con l'osservazione delle macchie solari ogni 6 mesi.

Nella pratica si ottengono degli andamenti come in Figura 1.4.

Esempio 1.1.3: (Andamento degli individui di una popolazione, modello lineare.)

Prendiamo una popolazione di individui descritta dallo stato N_i : il numero di individui al tempo $t = i \in \mathbb{N}$.

La dinamica dello stato è descritta dal legame tra N_i e N_{i-1} . Nota questa legge è possibile predire i futuri andamenti della popolazione.

Il modello più semplice da studiare è il modello lineare:

$$N_n = rN_{n-1} \qquad r \in \mathbb{R}^+.$$

Ipotizzando che il numero di individui all'istante iniziale (arbitrario) sia N_0 è possibile ricostruire una legge temporale che lega l'istante iniziale all'istante n:

$$N_1 = rN_0;$$
 $N_2 = rN_1 = r^2N_0$ \Longrightarrow $N_n = r^nN_0.$

Quindi lo stato n-esimo è definito tramite una rete deterministica legata allo stato iniziale. Dalla Figura 1.5 si può osservare come l'andamento delle soluzioni dipende esclusivamente dal parametro r: sono possibili soltanto 3 casi.

Il modello lineare è il più semplice che si possa costruire per studiare le popolazioni e, per quasi tutti i casi, non basta a spiegare i fenomeni fisici che ci circondano: è necessario elaborare un modello più complesso...

Principio di sovrapposizione Riprendiamo l'Esempio 1.1.3, abbiamo concluso che l'andamento dello stato del sistema (la popolazione) seguiva la legge:

$$N_n = r^n N_0$$
.

Ipotizziamo che l'analisi prenda in considerazione l'andamento di due distinte popolazioni che seguono tale legge:

$$N_n = r^n N_0; \qquad M_n = r^n M_0.$$

Se lo studio prevede che queste due popolazioni si uniscano⁴ allora si ottiene la nuova popolazione \overline{N} :

$$\overline{N}_n = N_n + M_n = r^n(N_n + M_n) = r^n \overline{N}.$$

Teorema 1.1.1: (Principio di sovrapposizione.). Dati due sistemi che evolvono linearmente con la stessa legge: l'evoluzione della somma dei due ha lo stesso andamento della evoluzione dei singoli.

Cosa avviene se i due sistemi non evolvono linearmente?

1.2 Introduzione al Modello Logistico

Prendiamo il seguente modello di popolazione:

$$N_{n+1} = r(N_n) \cdot N_n.$$

A differenza dell'esempio 1.1.3 il rate della popolazione r adesso non è costante: dipende dalla popolazione all'istante n.

Un caso particolare di questa classe di sistemi è stato al centro di molti studi, in particolare per la sua versatilità nel modellizzare sistemi in ogni branca scientifica:

Definizione 1.2.1: (Modello logistico). Il modello logistico descrive l'andamento di una popolazione N_n con il seguente rate r:

$$r(N_n) = \mu \left(1 - \frac{N_n}{k} \right).$$

Quindi lo stato del sistema si esprime con la legge:

$$N_{n+1} = \mu \left(1 - \frac{N_n}{k} \right) N_n.$$

Questo rappresenta un modello non lineare.

Nel modello logistico la dipendenza di r dalla popolazione permette un meccanismo di retroazione che sfavorisce la crescita della popolazione stessa.

Figura 1.6: Andamento del Rate in funzione della popolazione, notiamo l'antimonotonia di r che garantisce il fenomeno di retroazione.

Figura 1.7: Porzione di spazio considerata per il modello, la stella con il contorno rosso è una stella in procinto di esplodere. M è la quantità di materia totale all'interno di tale spazio, composta da stelle formate e gas interstellare.

Esempio 1.2.1: (Modello logistico a popolazioni stellari.)

Il modello logistico può essere utilizzato come "toy model" per descrivere il fenomeno di formazione delle stelle del tipo "Supernovae Triggered": stelle che nascono in seguito all'esplosione di supernovae.

Il modello prevede che le stelle neonate si trasformino in supernovae (al termine della loro vita) diventando anche loro sorgenti di stelle.

Ipotizziamo che ad un istante i la popolazione di stelle sia S_i e la massa del gas interstellare sia M. Tutte le stelle del modello hanno la stessa massa m e sono identiche.

Vogliamo modellare la popolazione stellare ad un istante successivo: i+1.

La quantità di gas insterstellare disponibile (per la formazione di altre stelle) al tempo t è data dalla massa totale M meno la massa delle stelle presenti in tale istante:

$$m_{\text{gas}} = M - S_i \cdot m.$$

Quindi il numero di stelle al tempo i+1 può essere espresso tramite un modello logistico:

$$S_{i+1} = cS_i(M - S_i \cdot m).$$

Cambiando variabili si arriva ad un sistema avente una notazione "classica" nello studio dei modelli logistici:

$$x_i = \frac{mS_i}{M}$$
 $r = \frac{cM}{4}$ \Longrightarrow $x_{i+1} = 4rx_i(1 - x_i).$

1.3 Definizione Formale di Sistema Dinamico

Spazio metrico Prima di generalizzare le definizioni si SD è necessario definire uno spazio metrico:

Definizione 1.3.1: (Spazio metrico). L'inseme X è spazio metrico se $\exists d$:

$$d: X \times X \to \mathbb{R}^+ \cup \{0\}.$$

Che soddisfa le seguenti proprietà:

$$\begin{split} d(x,y) &\geq 0; & d(x,y) = d(y,x); \\ d(x,y) &= 0 \iff x = y; & d(x,y) \leq d(x,z) + d(z,y). \end{split}$$

Esempio 1.3.1: (Spazio metrico)

Prendiamo l'insieme di funzioni:

$$C(I) = \{f(x) | x \in I \subset \mathbb{R}; f \text{ continua} \}.$$

Possiamo definire una distanza d come:

$$d(f(x), g(x)) = \sup_{x \in I} |f(x) - g(x)|.$$

Definizione di SD a tempo discreto

Definizione 1.3.2: (SD a tempo discreto). Un sistema dinamico a tempo discreto è rappresentato da una mappa $G: X \to X$ tale che

- $G^{n+m} = G^n \circ G^m \ \forall n, m \in \mathbb{N}_0 \cup \{0\}.$
- Se G è invertibile $\Longrightarrow G^{-n} = G^{-1} \circ G^{-1} \circ \dots \circ G^{-1}$, in cui la composizione viene applicata n volte. In questo caso $n, m \in \mathbb{Z}$.

Esempio 1.3.2: (Shift Map)

Un esempio astratto di SD a tempo discreto è la Shift Map. L'insieme di partenza è così composto:

$$S_k = \{1, 2, \dots, k\};$$
 Insieme di k simboli.

Ci concentriamo su S_2^5 , definiamo uno spazio s come:

$$s = (s_1, s_2, \dots, s_\infty) \quad s_i \in S_2.$$

E chiamiamo l'insieme delle possibili stringhe Σ_2

$$\Sigma_2 = \{s | s = (s_1, s_2, s_3, \ldots); s_i \in \Sigma_2\}.$$

Su questo spazio definiamo un operatore $\sigma:\Sigma\to\Sigma$ tale che

$$\sigma(s) = (s_2, s_3, s_4 \ldots) \in \Sigma_2.$$

L'operatore σ definisce, insieme allo spazio Σ , il sistema dinamico. Siano $s,t \in \Sigma_2$, possiamo definire una distanza $d: \Sigma_2 \times \Sigma_2 \to \mathbb{R}^+ \cup \{0\}$ come:

$$d(s,t) = \sum_{j=0}^{\infty} \frac{|s_j - t_j|}{2^j}.$$

Notiamo che questa quantità è limitata, infatti:

$$d(s,t) \le \sum_{j=0}^{\infty} \frac{1}{2^j} = 2 \quad \forall t, s.$$

⁵ di fatto è uno spazio binario (a due simboli: 0,1)

Esercizio 1.3.1: (Σ_2 spazio metrico) Dimostrare che Σ_2 è uno spazio metrico.

Teorema 1.3.1: (Continuità di σ). Dati lo spazio metrico Σ_2 , la trasformazione σ e la distanza d allora la trasformazione σ è continua.

Esercizio 1.3.2: (Sulla continuità di σ) dimostrare che σ è continua in $\bar{s} = (0, 0, \dots, 0)$.

Cerchiamo i **punti fissi** della mappa iterata n volte: $s \in \Sigma_2$ tale che

$$\sigma^n(s) = s$$
.

Nel nostro sistema i punti sono stringe. Utilizziamo la notazione per indicare le stringhe fisse: $s^{n,j}$. Il primo indice corrisponde al numero di iterazioni per il quale la stringa s è punto fisso, il secondo indice corre tra tutte le possibili stringhe che sono fisse per la n-esima iterazione.

$$\sigma^n(s^{n,j}) = s^{n,j}.$$

Nel caso di n = 1 abbiamo (sempre per la shift map):

$$s^{1,1} = (0, 0, 0, \dots, 0)$$

 $s^{1,2} = (1, 1, 1, \dots, 1).$

Infatti shiftando verso sinistra la mappa queste due stringhe risultano invarianti.

Nel caso di n=2 le stringhe invarianti sono:

$$s^{2,1} = (0, 1, 0, 1...) \equiv (\overline{01})$$

 $s^{2,2} = (1, 0, 1, 0...) \equiv (\overline{10})$

Non è un caso che, per entrambi i casi, le stringhe fisse presentino una periodicità negli elementi (n-periodicità).

Definizione di SD a tempo continuo

Definizione 1.3.3: (Sistema dinamico a tempo continuo). Sia X uno spazio metrico e φ_t ($t \in \mathbb{R}$) una famiglia di mappe definite da:

$$\varphi_t: X \to X.$$

e tale per cui

- $\varphi_0 = \mathbb{I}$.
- $\bullet \ \varphi_{t+s} = \varphi_t \circ \varphi_s.$

Inoltre si possono distinguere due tipi di SD a tempo continuo:

- 1. $t \in \mathbb{R}^+ \implies Semi \ Dynamical \ System.$
- 2. $t \in \mathbb{R} \implies Dynamical System$.

Nel caso 2. la mappa è detta invertibile, infatti si ha che:

$$\varphi_{s+t} = \varphi_0 = \mathbb{I} \iff s = -t.$$

Esempio 1.3.3: (Traslazione)

Sia $y \in \mathbb{R}^n$ fissato; $t \in \mathbb{R}$. La mappa per il sistema agisce negli spazi:

$$\varphi_t : \mathbb{R}^n \to \mathbb{R}^n \quad \forall \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{x} \to \varphi_t(\boldsymbol{x}).$$

Operativamente la mappa è:

$$\varphi_t(\boldsymbol{x}) = \boldsymbol{x} + t\boldsymbol{y}.$$

La mappa trasla il vettore x di un fattore ty, possiamo chiederci se questa rispecchia le proprietà di sistema dinamico:

- $\bullet \ \varphi_0(\boldsymbol{x}) = \boldsymbol{x}.$
- $t, s \in \mathbb{R}$;

$$\varphi_s(\boldsymbol{x}) = \boldsymbol{x} + t\boldsymbol{y}$$
 $\varphi_t(\boldsymbol{x}) = \boldsymbol{x} + t\boldsymbol{y}.$

$$\varphi_t(\boldsymbol{x}) \circ \varphi_s(\boldsymbol{x}) = \varphi_t(\varphi_s)(\boldsymbol{x}) =$$

$$= \boldsymbol{x} + s\boldsymbol{y} + t\boldsymbol{y} = \varphi_{t+s}(\boldsymbol{x}).$$

Soluzione, grafico e orbita di SD a tempi continui Si dice sistema dinamico autonomo un SD a tempi continui indipendente in modo esplicito dal tempo:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x},t) \qquad \boldsymbol{x} \in \mathbb{R}^n, F : \mathbb{R}^n \to \mathbb{R}^n.$$

Per gli insiemi di appartenenza si è usata la notazione semplificata. Viceversa un sistema non autonomo:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x},t) \qquad \boldsymbol{x} \in \mathbb{R}^n, t \in I \subset \mathbb{R}, F : \mathbb{R}^n \to \mathbb{R}^n.$$

Supponiamo di avere il seguente problema alle condizioni iniziali

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, t)$$
$$\boldsymbol{x}(t=0) = \boldsymbol{x}_0.$$

e supponiamo che la soluzione esista.

Definizione 1.3.4: (Soluzione del problema alle C.I.). La soluzione del problema alle condizioni iniziali $x(t, t_0, \mathbf{x}_0)$ è chiamata:

- Traiettoria per x_0 .
- Curva di Fase.

Ed ha l'ovvia proprietà:

$$x(t, t_0, \mathbf{x_0}): \qquad x(t_0, t_0, \mathbf{x_0}) = \mathbf{x_0}.$$

Definizione 1.3.5: (Grafico). Si definisce grafico della soluzione del problema alle CI l'insieme:

$$\Gamma(\boldsymbol{x}_0) = \{(\boldsymbol{x},t) \in \mathbb{R}^n \times \mathbb{R} | \boldsymbol{x} = x(t,t_0,\boldsymbol{x}_0) \}.$$

Definizione 1.3.6: (Orbita). Si definisce orbita della soluzione del problema alle CI:

$$O(\boldsymbol{x}_0) = (\boldsymbol{x} \in \mathbb{R}^n | \boldsymbol{x} = x(t, t_0, \boldsymbol{x}_0)).$$

Esempio 1.3.4: (Oscillatore armonico)

$$\begin{cases} \dot{u} = v \\ \dot{v} = -u \\ u_0 = 1 \\ v_0 = 0 \end{cases}$$

La variabile e le condizioni iniziali del problema sono:

$$\boldsymbol{x} = \begin{pmatrix} u(t) \\ v(t) \end{pmatrix}; \quad \boldsymbol{x}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Si può dimostrare (esercizio) che la soluzione è:

$$x(t, t_0, \mathbf{x}_0) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}.$$

Figura 1.8: Soluzione, grafico e orbita per l'oscillatore armonico.

1.4 Linearità di un Sistema Dinamico

Prendiamo un sistema dinamico a tempi continui così definito:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, t) \qquad \boldsymbol{x} \in \mathbb{R}^n; t \in \mathbb{R}; F : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$$
 (1.2)

$$x = (x_1, x_2, \dots, x_n)$$
 $F = (F_1, F_2, \dots, F_n).$

Definizione 1.4.1: (Condizione di linearità). Un SD a tempi continui come quello di equazione 1.2 è lineare se:

$$F(\boldsymbol{x} + \boldsymbol{y}, t) = F(\boldsymbol{x}, t) + F(\boldsymbol{y}, t) \qquad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n.$$

Questa condizione è sufficiente ma non necessaria.

Esempio 1.4.1: (Circuito RC)

Prendiamo il circuito RC come in figura 1.9, l'equazione che regola la carica nel circuito è la seguente:

$$\frac{\mathrm{d}q}{\mathrm{d}t} = \frac{V}{R} - \frac{q}{RC}.$$

In questo caso la variabile x corrisponde con la carica.

Il sistema non rispetta la condizione 1.4.1, infatti nello sviluppare il calcolo per due correnti, q_1 e q_2 , rimane un termine 2V/R. Nonostante questo il sistema è ancora lineare.

Figura 1.9: Circuito RC.

Esempio 1.4.2: (Pendolo)

Prendiamo il sistema del pendolo classico, le equazioni del moto della massa m sono:

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\frac{g}{l} \sin \theta \implies \begin{cases} \frac{\mathrm{d}\theta}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{g}{l} \sin \theta \end{cases}.$$

Questo sistema è non lineare (c'è il seno).

Definizione 1.4.2: (Criterio generale per la linearità). Un SD si dice lineare se la sua dipendenza dalle variabili di stato è lineare.

Figura 1.10:

2 Esistenza ed unicità della soluzione di IVP

Dato un SD a tempo continuo ed un IVP (initial value problem) vorremmo sapere, per studiare la dinamica, se:

- Il problema ha soluzione?
- La soluzione, se esiste, è unica?

In assenza di unicità il sistema non può essere deterministico. I sistemi dinamici che studiamo devono sempre essere deterministici.

Esempio 2.0.1: (Due soluzioni)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = 3x^{2/3} = F(x) \\ x(0) = x_0 = 0 \end{cases}.$$

Il sistema non è lineare poiché

$$(x+y)^{2/3} \neq x^{2/3} + y^{2/3}$$

Possiamo subito notare che una prima soluzione è la nulla: $x_1(t) = 0$. Un'altra soluzione è invece $x_2(t) = t^3$, infatti sostituendo nella equazione per la derivata di x:

$$3t^2 = 3(t^3)^{2/3}.$$

Che è appunto verificata.

Possiamo notare che F(x) è continua in x_0 , tuttavia non lo è la sua derivata rispetto a x: diverge a $\pm \infty$. Questo fatto è strettamente correlato alla non unicità della soluzione.

La non unicità della soluzione non è l'unico problema nel caso di sistemi dinamici a tempo continuo, può anche accadere che la soluzione non esista per tutti i tempi $\in \mathbb{R}$.

Esempio 2.0.2: (Soluzione con discontinuità nel tempo)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x^2 = F(x) \\ x(0) = 1 \end{cases}$$

In questo caso F(x) è derivabile infinite volte e le sue derivata sono sempre continue. Cerchiamo la soluzione:

$$\int \frac{dx}{x} = \int dt \implies x(t) = -\frac{1}{t+c}.$$

Inserendo la condizione iniziale:

$$x(t) = \frac{1}{1 - t}.$$

Notiamo che la soluzione non è continua $\forall t \in \mathbb{R}$, infatti è definita in $]-\infty,1[\ \cup\]1,\infty[$.

La soluzione del problema di Cauchy non deve necessariamente esser definita in tutto \mathbb{R} , quello che conta per noi è che sia definita almeno asintoticamente.

Definizione 2.0.1: (Funzione C^r). Una funzione F(x):

$$F(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}^n \qquad \boldsymbol{x} \in \mathbb{R}^n.$$

si dice C^r se è r volte derivabile e le derivate fino all'ordine r sono continue.

Teorema 2.0.1: (Esistenza locale della soluzione). Dato un SD a tempo continuo:

$$\begin{cases} \frac{d\mathbf{x}}{dt} = F(\mathbf{x}, t) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$$

Con $(\mathbf{x}_0, t_0) \in U \times \mathbb{R} \in$. Assumendo che:

- F(x,t) sia C^r rispetto a x con $r \ge 1$.
- F(x,t) continua in t.

Allora esiste un intorno di t_0 $(t_0 - \epsilon < t < t_0 + \epsilon)$ nel quale la soluzione dell'IVP esiste ed è unica.

Questo teorema è locale poiché ci assicura una soluzione in un intervallo temporale, non asintoticamente.

Alcuni libri sostituiscono la richiesta di avere F(x,t) funzione C^r con la richiesta che quest'ultima funzione sia Lipschitziana:

$$|F(\boldsymbol{x},t) - F(\boldsymbol{y},t)| \le k |\boldsymbol{x} - \boldsymbol{y}|.$$

In cui se k è una quantità indipendente dal punto \boldsymbol{x} considerato allora si ha una ed una sola soluzione all'IVP.

Esercizio 2.0.1: (Esercizio)

Studiare al variare del parametro x_0 il seguente IVP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x^2\\ x(0) = x_0 \end{cases}$$

Esercizio 2.0.2: (Esercizio)

Studiare al variare del parametro a il seguente IVP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{x} \\ x(0) = a \end{cases}$$

Teorema 2.0.2: (Esistenza Globale della soluzione). Supponiamo di avere il sistema di equazioni differenziali:

$$\frac{d\mathbf{x}}{dt} = F(\mathbf{x}, t); \qquad \mathbf{x}(0) = \mathbf{x}_0.$$

Con le quantità definite nei seguenti intervalli:

$$x \in \mathbb{R}^n$$
; $t \in [a, \infty[$; $F : \mathbb{R}^n \times [a, \infty[\to \mathbb{R}^n.$

Se valgono i due sequenti:

- $F \stackrel{.}{e} C^r con r > 1 e continua in t.$
- $\exists h(t), k(t) con [h, k > 0 \forall t] tali che$:

$$|F(\boldsymbol{x},t)| \le h(t) |\boldsymbol{x}| + k(t); \quad per \, \boldsymbol{x}, t \in \mathbb{R}^n \times [a, \infty[.]]$$

Allora esiste ed è unica la soluzione dell'IVP definito in $\mathbb{R}^n \times [a, \infty[$.

Esempio 2.0.3: (Applicazione del teorema)

$$\begin{cases} \frac{dx}{dt} = \frac{3t^2x(t)}{1+x(t)^2} + x(t) = F(x,t) \\ x(t_0) = x_0 \end{cases}$$

La soluzione esiste? É unica?

La funzione F sicuramente è almeno C^1 in x ed è continua in t, quindi sicuramente la soluzione esiste almeno in un intorno del punto iniziale ed è unica sempre in questo intorno.

Per l'esistenza ed unicità globali invece è necessario qualche altro passaggio algebrico:

$$|F(x,t)| = \left| \frac{3t^2x(t)}{1+x^2(t)} + x(t) \right| \le |x| + \left| \frac{3t^2x}{1+x^2} \right| \le |x| \left| 3t^2 + 1 \right|.$$

Quindi scegliendo le funzioni:

$$k(t) = 0$$
 $h(t) = 3t^2 + 1.$

Abbiamo che le ipotesi del teorema di esistenza globale sono rispettate, quindi la soluzione esiste globalmente (asintoticamente). Un ulteriore esercizio (per il lettore) è quello di dimostrare che x(t) non diverge per $t \to \infty$. Un suggerimento: moltiplicare l'equazione differenziale a destra e sinistra per 2x, scrivere la nuova eq. differenziale per x^2 e minorare la $F(x^2)$...

Definizione 2.0.2: (Sistema deterministico). Un SD a tempo continuo descritto da

$$\frac{d\mathbf{x}}{dt} = F(\mathbf{x}, t); \qquad \mathbf{x}(t_0) = \mathbf{x}_0.$$

si dice deterministico se esiste ed è unica la corrispondente soluzione dell'IVP.

3 Introduzione ai Manifold

Abbiamo fin'ora affermato che lo stato di un sistema dinamico è descritto da un vettore di \mathbb{R}^n , in questa sezione cerchiamo di essere più precisi riguardo a questa quantità.

Esempio 3.0.1: (Pendolo nello spazio delle fasi)

$$\begin{cases} \frac{\mathrm{d}\theta}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{g}{l}\sin\theta \end{cases}$$

In questo caso abbiamo che lo stato $\boldsymbol{x}=(\theta,y)$ non è un vettore di \mathbb{R}^n generico:

- θ è un angolo.
- \bullet y è una velocità angolare.

Lo stato è descritto in \mathbb{R}^2 , la dinamica del sistema giace su una superficie dello spazio delle fasi detto **Manifold**.

Il manifold per il problema del pendolo è una superficie cilindrica:

$$\theta \in S_1$$
 $y \in \mathbb{R}$ Con S_1 cerchio.

Anche se un manifold non coincide con \mathbb{R}^n localmente (sulla varietà) può essere caratterizzato da \mathbb{R}^n .

Definizione 3.0.1: (Omomorfismo). Sia $h: U \to V$ con $U, V \subset \mathbb{R}^n$. Supponiamo che $\exists h^{-1}$, allora h è omomorfismo se h e h^{-1} sono entrambe continue.

Definizione 3.0.2: (Manifold n-dimensionale). Sia $M \subset \mathbb{R}^n$ e $\mathbf{x} \in M$, sia W un intorno di \mathbf{x} . Diciamo che M è un manifold k-dimensionale (k < n) se \exists un omomorfismo $h : W \to \mathbb{R}^n$.

In pratica l'omomorfismo manda i punti appartenenti al manifold in un sottoinsieme $U \subset \mathbb{R}^n$. L'insieme U, in cui viene mappato l'intorno W di $x \in M$ è detto carta del manifold: U = h(W).

Definizione 3.0.3: (Atlante di un manifold). Se è possibile costruire per tutti i punti di M un intorno in cui vale l'omomorfismo allora l'insieme $U \subset \mathbb{R}^n$ in cui i punti di M vengono mappati è detto Atlante di M.

La cosa importante è che tramite h è possibile introdurre le proprietà di differenziabilità sul manifold utilizzando le definizioni di differenziabilità su \mathbb{R}^n che sono ben definite.

Figura 1.11: Azione dell'omomorfismo sul manifold.

3.1 Mappare la dinamica di un Manifold in \mathbb{R}^n

Supponiamo di avere la mappa $G: W \to W$, ovvero manda punti di W (un intorno del punto $x \in M$) in punti di W.

Prendiamo $x_1 \in W$: $x_2 = G(x_1) \in W$.

Possiamo mappare la G in \mathbb{R}^n nel seguente modo:

$$y_1 = h(x_1);$$
 $y_2 = h(x_2).$

I punti $y_{1,2}$ appartengono a \mathbb{R}^n . Il modo in cui si trasporta la differenziabilità all'interno del manifold è il seguente:

$$y_2 = h(G(x_1)) = h(G(h^{-1}(y_1))).$$

Visto che h e G sono note, che h è omomorfismo e che $y_1, y_2 \in \mathbb{R}^n$ abbiamo che le proprietà di diff. sono applicabili ai funzionali sul manifold nello stesso modo in cui le applichiamo su \mathbb{R}^n .

4 Mappe Ricorsive

Ricordiamo che una mappa ricorsiva è definita da:

$$oldsymbol{x}_{n+1} = G(oldsymbol{x}_n) \qquad oldsymbol{x}_n \in \mathbb{R}^n; \qquad G: \mathbb{R}^n o \mathbb{R}^n.$$

- 1. La mappa è invertibile se $\exists G^{-1}$.
- 2. La mappa è C^r se esistono e sono continue le derivate⁶ di Gfino all'ordine r.

 6 Intese come parziali in più dimensioni

Se valgono la 1) e la 2) allora si ha un **Diffeomorfismo** C^r .

4.1 Orbita per mappa ricorsiva invertibile

Se la mappa è invertibile allora preso un punto x_0 è possibile muoversi verso destra (con G) o verso sinistra con G^{-1} .

$$\ldots, G^{-1}(\boldsymbol{x}_0), G^{-1}(\boldsymbol{x}_0), \boldsymbol{x}_0, G(\boldsymbol{x}_0), G^2(\boldsymbol{x}_0), \ldots$$

Esempio 4.1.1: (Mappa lineare)

$$x_{n+1} = ax_n \qquad a \in \mathbb{R} - \{0\}.$$

Questa mappa è invertibile: basta spostare il parametro a a sinistra per ricavare la preimmagine.

Le mappe più studiate sono quelle non invertibili, questo perché al variare dei loro parametri si possono generare dei comportamenti particolari (caos).

Ci sono casi in cui anche le mappe all'apparenza invertibili possono generare situazioni complicate, ad esempio quelle che presentano un modulo come vedremo negli esempi di questa sezione.

4.2 Orbita per mappa ricorsiva non invertibile

Preso un punto x_0 per una mappa non invertibile è possibile spostarsi soltanto verso destra tramite la G.

$$x_0, G(x_0), G^2(x_0), \ldots$$

Esempio 4.2.1: (Mappa logistica)

$$x_{n+1} = 3.5x_n (1 - x_n)$$
 $x_n \in [0, 1]$.

Questa mappa non è invertibile: la preimmagine non è univoca (un'equazione del secondo grado ha due soluzioni).

Esempio 4.2.2: (Mappa di Bernoulli)

$$x_{n+1} = 2x_n \mod(1).$$

Questa mappa è parente della shift-map poiché, scegliendo di rappresentare x in base due, la mappa agisce allo stesso modo sui

Figura 1.12: Mappa di Bernoulli, si vede come la linea rossa non rappresenti una funzione iniettiva: non può essere invertibile.

Figura 1.13: Rappresentazione della Circle Rotation Map.

coefficienti della espansione (di base due) di come agiva con i simboli la shift map.

L'operazione di modulo 1 invece si occupa di traslare in [0,1] il punto x_{n+1} ogni volta che esce dall'intervallo a causa all'applicazione della mappa.

L'operazione di traslazione avviene tramite un intero n tale che:

$$n = \min(k \in \mathbb{Z}): \ 0 \le x + n \le 1.$$

Pur essendo lineare (all'apparenza) questa mappa può esibire un comportamento complesso. La presenza del modulo infatti fa si che la mappa non sia invertibile, come si può vedere in figura 1.12.

Esempio 4.2.3: (Circle Rotation Map)

Prendiamo una classe di mappe generale del seguente tipo:

$$x_{n+1} = G(x_n) \qquad x_n \in S_1.$$

 S_1 rappresenta il cerchio di raggio unitario, quindi i punti della mappa appartengono tutti al cerchio e sono rappresentati da una variabile: l'angolo di rotazione $x \cdot 2\pi$ (con $x \in [0, 1]$).

La Circle Rotation Map è un caso particolare di queste mappe, ovvero:

$$x_{n+1} = x_n + \alpha \mod(1); \qquad \alpha \in [0, 1[.$$

La caratteristica principale di questa mappa è che può essere:

- k-periodica se α razionale: le orbite degli x_n si richiudono.
- Quasi periodica se α irrazionale: i punti della mappa si distribuiscono uniformemente sul cerchio unitario (questo è il caso mostrato in figura 1.13).

La mappa è sempre invertibile.

Esempio 4.2.4: (Mappa di Arnold)

$$x_{n+1} = x_n + \omega - \frac{k}{2\pi}\sin(2\pi x_n) \quad \text{mod}(1).$$

 k,ω sono costanti e k>0,la mappa non è lineare a causa della presenza del sin.

Il parametro ω può essere interpretato come il rapporto tra due frequenze: una intrinseca del sistema ed una forzante esterna.

$$\omega \sim \frac{\omega_{\mathrm{int}}}{\omega_{\mathrm{ext}}}; \qquad \omega \in [0, 1].$$

La mappa mostra le seguenti peculiarità:

- 0 ≤ k ≤ 1: la mappa di comporta come la Circle Map, presenta orbite periodiche o quasi periodiche a seconda della razionalità di ω.
- k > 1: la mappa può esibire comportamenti caotici.

Nel caso di k = 1 la mappa inizia a riscontrare alcune "anomalie", è il valore per il quale iniziano a rompersi le "lingue di Arnold".

Esercizio 4.2.1: (Sulla mappa di Arnold)

Dimostrare che la mappa di Arnold è invertibile se $0 \le k \le 1$.

Soluzione: Come possiamo vedere in figura 1.14 la mappa non è invertibile per tutti i valori di k.

Prendiamo ad esempio la mappa con k=0.1 e valutiamo⁷ il punto $x_n=0$: la linea blu in figura 1.14, che rappresenta la mappa, a destra di questo punto vale $\omega+\epsilon$, a sinistra di questo punto vale $\omega-\epsilon$. La pendenza della curva in questo punto è quindi positiva. La presenza della perturbazione oscillante fa si che i due "rami" della mappa si avvicinino l'un l'altro "distorcendosi", di conseguenza se la perturbazione è abbastanza forte è possibile che in un punto tra 0 e 1 il ramo in alto e quello in basso abbiano la stessa x_{n+1} : si perde l'iniettività e quindi l'invertibilità.

Nel grafico la perdita di iniettività si ha quando la mappa oltrepassa la linea tratteggiata (che rappresenta la separatrice tra i rami). Per capire quando questo succede possiamo studiare la pendenza della mappa nei pressi di $x_n = 0$ (considerandola di fatto come una funzione continua).

$$x_{n+1} = x_n + \omega + kx_n = (1-k)x_n + \omega.$$

Se in un intorno (destro) di questo punto la pendenza della curva è negativa allora significa che la mappa è scesa sotto ω e quindi ha perso l'iniettività: deve essere $k \leq 1$ per avere pendenza positiva.

Si prende un sistema dinamico a tempi continui autonomo e lo si perturba con una componente dipendente dal tempo (un fattore esterno). Il sistema in questo modo diventa non autonomo, l'equazione generale che regola questo tipo di sistema è:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x},t) \qquad \boldsymbol{x} \in \mathbb{R}^n; \ F : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n.$$

Figura 1.14: Mappa di Arnold al variare di k con $\omega = 0.4$ fissato.

Questa corrisponde (circa) alla circle rotation map

Possiamo ricondurre questo sistema ad un sistema autonomo tramite una trasformazione nella variabile temporale:

$$t = m(s) = s \implies \frac{\mathrm{d}}{\mathrm{d}t} = \frac{\mathrm{d}s}{\mathrm{d}t} \frac{\mathrm{d}}{\mathrm{d}s}.$$

Inserendo nella equazione del moto:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \frac{\mathrm{d}s}{\mathrm{d}t} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}s} = F(\boldsymbol{x}, t).$$

Possiamo definire il differenziale di t rispetto a s: dt/ds = 1.

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}(s)}{\mathrm{d}s} = F(\boldsymbol{x}, t) \\ \frac{\mathrm{d}t}{\mathrm{d}s} = 1 \end{cases}$$

Definizione 5.0.1: (Spazio delle fasi esteso). Si definisce spazio delle fasi esteso la quantità:

$$\mathbf{y} = (\mathbf{x}, t) \in \mathbb{R}^n \times \mathbb{R}.$$

In questo modo, definendo anche il funzionale esteso:

$$H = (F(x, t), 1).$$

Si possono generalizzare le equazioni del moto come:

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}s} = H(\boldsymbol{y}).$$

Per quanto il problema sia formalmente risolto si deve tenere in considerazione che il nuovo spazio delle fasi potrebbe non essere più un compatto.

Questa mancanza potrebbe diventare un problema nei nostri scopi in quanto siamo spesso interessati alla soluzione asintotica del sistema (che potrebbe smettere di esistere).

In ogni caso aggiungiamo che, se la forzante è periodica, il sistema può essere sempre gestito con questo metodo.

Esempio 5.0.1: (Forzante oscillante)

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -x + A\sin(\omega t).$$

Come sempre si riporta l'equazione ad una di primo ordine:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -x + A\sin(\omega t) \end{cases}$$

Adesso si introduce la variabile $\theta(t) = \omega t$. Il nuovo sistema, con questa variabile, è descritto nello spazio delle fasi generalizzato e le equazioni sono le seguenti:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}x}{\mathrm{d}t} = -x + A\sin\theta\\ \frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega \end{cases}$$

Si noti che la variabile θ non è limitata, quindi lo spazio delle fasi non è più un compatto.

6 Flusso di fase

Dato un sistema dinamico a tempo continuo in \mathbb{R}^2 :

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x}.$$

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \qquad A = \begin{pmatrix} -\Gamma & 0 \\ 0 & \Gamma \end{pmatrix}; \ \Gamma \in \mathbb{R}.$$

Studiamone l'evoluzione risolvendo il problema alle condizioni iniziali:

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = -\Gamma x_1\\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = \Gamma x_2\\ \boldsymbol{x}(0) = \boldsymbol{x}_0 \end{cases}$$

La soluzione può essere espressa tramite il seguente vettore:

$$\boldsymbol{x}(t) = \begin{pmatrix} x_{10}e^{-\Gamma t} \\ x_{20}e^{\Gamma t} \end{pmatrix}.$$

Oppure possiamo scriverla in termini di matrice:

$$\boldsymbol{x}(t) = \begin{pmatrix} e^{-\Gamma t} & 0 \\ 0 & e^{\Gamma t} \end{pmatrix} \begin{pmatrix} x_{10} \\ x_{20} \end{pmatrix} \equiv \varphi_t(\boldsymbol{x}_0).$$

Definizione 6.0.1: (Flusso di fase). L'operatore φ_t definito come

$$\varphi_t : \mathbb{R}^2 \to \mathbb{R}^2; \quad \varphi_t = \begin{pmatrix} e^{-\Gamma t} & 0 \\ 0 & e^{\Gamma t} \end{pmatrix}.$$

Si dice flusso di fase del sistema.

Proprietà del flusso di fase

- 1. $\varphi_t(\boldsymbol{x}_0)$ è una soluzione dell'IVP.
- 2. $\varphi_0(x_0) = x_0$
- 3. $\varphi_{t+s}(\boldsymbol{x}_0) = \varphi_t(\varphi_s(\boldsymbol{x}_0))$

Esercizio 6.0.1: (Sul flusso di fase)

Verificare la validità delle 3 proprietà per:

$$\varphi_t = \begin{pmatrix} e^{-\Gamma t} & 0\\ 0 & e^{\Gamma t} \end{pmatrix}.$$

Notiamo che se φ_t è invertibile allora il suo inverso è φ_{-t} .

Esempio 6.0.1: (Flusso unodimensionale)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x^2 - 1\\ x(0) = x_0 \end{cases}.$$

Prima di ricavare il flusso di fase determiniamo la soluzione:

$$\frac{dx}{x^2-1}=dt\implies dx\left[\frac{1}{x-1}-\frac{1}{x+1}\right]=dt.$$

Integrando a destra e sinistra:

$$\log(\frac{|x-1|}{|x+1|}) = 2t + c.$$

Per ricavare x(t) è necessario uno studio di funzione all'interno del logaritmo per capire quando è necessaria una inversione di segno nel suo argomento.

Per |x| > 1 l'argomento è positivo, possiamo procedere in tal caso a risolvere con l'elevamento a potenza:

$$\frac{x-1}{x+1} = e^{2t}B.$$

La costante B si determina imponendo la condizione iniziale $x(0) = x_0$:

$$B = \frac{x_0 - 1}{x_0 + 1}.$$

In conclusione la soluzione è:

$$x(t) = \frac{(x_0 + 1) + e^{2t}(x_0 - 1)}{(x_0 + 1) - e^{2t}(x_0 - 1)} = \varphi_t(x_0).$$

In questo caso abbiamo un flusso che non è rappresentato da una matrice ma da un funzionale. Possiamo dimostrare che è un flusso: le prime due richieste sono ovvie. La terza invece è lasciata per esercizio, si tratta di fare tanti conti.

6.1 Flusso di Fase per sistemi non autonomi

Prendiamo nuovamente la definizione di Flusso partendo dal solito sistema:

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}) \\ \boldsymbol{x}(0) = \boldsymbol{x_0} \end{cases} F \in C^r, \ F : \mathbb{R}^n \to \mathbb{R}^n; \ \boldsymbol{x}_0 \in \mathbb{R}^n.$$

Possiamo caratterizzare la soluzione tramite il funzionale flusso:

$$\varphi(t, \boldsymbol{x}) : \mathbb{R}^n \to \mathbb{R}^n.$$

L'applicazione del funzionale manda la variabile x nella soluzione, in questo modo il funzionale caratterizza completamente il sistema. Le proprietà della φ sono:

- 1. $\varphi(t, \boldsymbol{x}) \in C^r$.
- 2. $\varphi(0, \mathbf{x}_0) = \mathbf{x}_0$.
- 3. $\varphi(t+s, \mathbf{x}_0) = \varphi(t, \varphi(s, \mathbf{x}_0)).$

Introduciamo adesso il flusso nel caso in cui il sistema non è autonomo. Un sistema non autonomo è generalmente caratterizzato dalle equazioni:

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x},t) \\ \boldsymbol{x}(t_0) = \boldsymbol{x}_0 \end{cases} \quad \boldsymbol{x} \in \mathbb{R}^n; \ F \in C^r; \ F : \mathbb{R}^n \to \mathbb{R}^n$$

Notiamo che nella condizione iniziale si è messo come tempo iniziale t_0 , questo è dovuto al fatto che, in un sistema non autonomo, la soluzione dipende dalla variabile t_0 (e non solo da $t-t_0$ come si avrebbe per un sistema autonomo). Questa caratteristica corrisponde alla perdita di invarianza per traslazione temporale della soluzione.

Le metodologie che permettono di introdurre il flusso in questi sistemi sono 2:

- Process Formulation.
- Skew Product Flow Formulation.

Process Formulation. Supponiamo che esista e sia unica la soluzione del IVP e che tale soluzione sia globale (definita $\forall t$). Definiamo il flusso di questo sistema come la soluzione dell'IVP $\Phi(t, t_0, x_0)$. Le proprietà di Φ sono:

- 1. $\Phi(t, t_0, \mathbf{x}_0)$ eredità tutte le proprietà del funzionale F.
- 2. $\Phi(t, t_0, \mathbf{x}_0) = \mathbf{x}_0$ (Proprietà di identità).
- 3. $\Phi(t_2, t_0, \boldsymbol{x}_0) = \Phi(t_2, t_1, \Phi(t_1, t_0, \boldsymbol{x}_0)) \text{ con } t_0 \le t_1 \le t_2.$

Potremmo essere più formali definendo lo spazio:

$$\mathbb{R}^2_{>} \equiv \left\{ (t, t_0) \in \mathbb{R}^2 \mid t \ge t_0 \right\}.$$

Quindi definiamo il flusso di fase come il funzionale (di variabile generica *):

$$\varphi(t, t_0, *) : \mathbb{R}^n \to \mathbb{R}^n \quad \text{con } (t, t_0) \in \mathbb{R}^2_{\geq}.$$

Che gode delle solide proprietà di flusso, che ripetiamo:

- 1. $\varphi(t, t_0, x_0) \in C^r \text{ con } r \ge 1$.
- 2. $\varphi(t, t_0, \boldsymbol{x}_0) = \boldsymbol{x}_0$ (Proprietà di identità).
- 3. $\varphi(t_2,t_0,\boldsymbol{x}_0) = \varphi(t_2,t_1,\varphi(t_1,t_0,\boldsymbol{x}_0))$ con $(t_2,t_1) \in \mathbb{R}^2_{\geq}$, e anche $(t_1,t_0) \in \mathbb{R}^2_{>}$.

Esempio 6.1.1: (Flusso per Process Formulation) Prendiamo il sistema:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -2tx \\ x(t_0) = x_0 \end{cases}.$$

Si può dimostrare (esercizio) che la soluzione ha la forma:

$$x(t) = x_0 e^{-(t^2 - t_0^2)} \equiv \varphi(t, t_0, x_0).$$

La dipendenza da t_0 non può essere eliminata in questo caso con una traslazione temporale, questo è dovuto al fatto che l'argomento dell'esponenziale non è riscrivibile come funzione di $t-t_0$:

$$t^2 - t_0^2 = (t - t_0)^2 + 2(t - t_0)t_0.$$

Skew Product Flow Formulation L'idea alla base del metodo è quella di aggiungere ulteriori equazioni del moto in modo tale da rendere il sistema nuovamente autonomo. A quel punto il flusso di fase sarà quello già visto in precedenza.

Esempio 6.1.2: (Pendolo)

Nel caso del pendolo l'equazione del moto abbiamo visto che è:

$$\ddot{x} = -x + A\sin(\omega t).$$

E per rendere autonomo il sistema nuovamente abbiamo introdotto la variabile $\theta = \omega t$. La chiave del funzionamento del metodo è proprio il fatto che θ ha una evoluzione autonoma.

Formalmente prendiamo di nuovo il sistema di partenza:

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x},t) \\ \boldsymbol{x}(t_0) = \boldsymbol{x}_0 \end{cases} \quad \boldsymbol{x} \in \mathbb{R}^n; \ F \in C^r; \ F : \mathbb{R}^n \to \mathbb{R}^n$$

Introduciamo un sistema dinamico da affiancare a questo:

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{q}}{\mathrm{d}t} = G(\boldsymbol{q}) \\ \boldsymbol{q}(t_0) = \boldsymbol{q}_0 \end{cases}.$$

Questo nuovo sistema è autonomo, possiamo allora risolvere il problema nel sistema di variabili:

$$y = (x, q) \in \mathbb{R}^n \times \mathbb{R}^d$$
.

Con \mathbb{R}^d spazio di definizione di q.

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, \boldsymbol{q}) \\ \boldsymbol{x}(t_0) = \boldsymbol{x_0} \\ \frac{\mathrm{d}\boldsymbol{q}}{\mathrm{d}t} = G(\boldsymbol{q}) \\ \boldsymbol{q}(t_0) = \boldsymbol{q}_0 \end{cases}.$$

Il sistema in q è definito "Driver", il sistema in x invece è spesso detto "schiavizzato" dal Driver. Il sistema complessivo risulta comunque autonomo.

Quindi possiamo definire il flusso come lo spazio delle soluzioni in \boldsymbol{x} e \boldsymbol{q} :

$$\varphi_t(\boldsymbol{x}_0,\boldsymbol{q}_0) = (\boldsymbol{x}(t,\boldsymbol{x}_0,\boldsymbol{q}_0),\boldsymbol{q}(t,\boldsymbol{q}_0)).$$

Essendo un sistema autonomo valgono le proprietà di flusso già viste:

- 1. $\varphi_t \in C^r \text{ con } r > 1$.
- 2. $\varphi_{t_0}(\mathbf{x}_0, \mathbf{q}_0) = (\mathbf{x}_0, \mathbf{q}_0).$

3.
$$\varphi_{t+s}(\boldsymbol{x}_0, \boldsymbol{q}_0) = \varphi_t(\varphi_s(\boldsymbol{x}_0, \boldsymbol{q}_0)).$$

Concentriamoci sulla terza proprietà ed esplicitiamola in modo diverso:

$$\begin{split} \varphi_{t+q}(\pmb{x}_0, \pmb{q}_0) = & (\pmb{x}(t+s, \pmb{x}_0, \pmb{q}_0), \pmb{q}(t+s, \pmb{q}_0)) = \\ = & (\pmb{x}(t, \pmb{x}(s, \pmb{x}_0, \pmb{q}_0) \pmb{q}(s, \pmb{q}_0)), \pmb{q}(t, \pmb{q}(s, \pmb{q}_0))) = \\ = & (\pmb{x}(t, \pmb{x}(s, \pmb{x}_0, \pmb{q}_0), \pmb{q}(s, \pmb{q}_0)), \pmb{q}(t+s, \pmb{q}_0)). \end{split}$$

Ed uguagliando la prima dopo l'uguale con l'ultima deve esser vero che:

Definizione 6.1.1: (Cocycle Property).

$$x(t+s, x_0, q_0) = x(t, x(s, x_0, q_0), q(s, q_0)).$$

Esempio 6.1.3: (Esempio di Cocycle Property) Prendiamo la seguente variabile "Driver":

$$q(t) = t \in \mathbb{R}$$
 $q(t_0) = t_0$.

La proprietà in questo caso si esprime come:

$$x(t+s, x_0, t_0) = x(t, x(s, x_0, t_0), t_0 + s).$$

7 Soluzioni speciali di Sistemi Dinamici

Analizziamo il regime asintotico di un sistema dinamico, i tipi di soluzione che si possono incontrare sono:

- 1. Stati Stazionari Costanti.
- 2. Stati Stazionari Dinamici.
 - Periodici.
 - Quasi Periodici.
 - Complessi.

7.1 Stati Stazionari Costanti

Questi stati sono indipendenti dal tempo, ipotizzando che la soluzione stazionaria si $\boldsymbol{x}(t)$ allora:

$$\boldsymbol{x}(t + \Delta t) = \boldsymbol{x}(t).$$

Nei libri sono spesso chiamati Punti Singolari, Punti Critici, Soluzioni Stazionarie.

7.2 Stati Stazionari Dinamici

Lo stato per questi sistemi non è costante nel tempo, analizziamo le più comuni situazioni che si possono presentare in questi sistemi.

Orbite periodiche L'orbita di uno stato stazionario dinamico periodico è un'orbita che si ripete nel tempo.

Esempio 7.2.1: (Oscillatore non lineare)

Un oscillatore non lineare è un sistema che presenta un'orbita periodica come in figura . . .

Se lo stato x_1 si trova (con le condizioni iniziali) sull'orbita allora rimarrà su tale orbita a stazionarietà. Se uno stato x_2 si trova invece in un altro punto dello spazio delle fasi inizialmente allora evolverà per raggiungere l'orbita stabile (a stazionarietà).

Orbite quasi periodice Sono orbite che non si ripetono nel tempo, sono più complesse delle orbite periodiche. La loro struttura verrà approfondita nel seguito.

Figura 1.15: Orbita Periodica che attrae la dinamica nello spazio delle fasi.

Comportamenti complessi Quando un sistema presenta, ad esempio, caos deterministico.

7.3 Orbite periodiche di sistema dinamico

Definizione 7.3.1: (Orbita periodica per SD a tempo continuo). Prendiamo un Sistema Dinamico a tempo continuo:

$$\begin{cases} \frac{d\mathbf{x}}{dt} = F(\mathbf{x}, t) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases} F : I \times \mathbb{R}^n \to \mathbb{R}^n.$$

Sia $\mathbf{x}_p(t)$ la soluzione dell'IVP, diciamo che $\mathbf{x}_p(t)$ è periodica se:

$$\exists T \in \mathbb{R}^+ : \boldsymbol{x}_p(t) = \boldsymbol{x}_p(t+T) \ \forall t \in I.$$

Definizione 7.3.2: (Orbita periodica per SD a tempo continuo). Dato un Sistema Dinamico a tempo discreto:

$$x_{k+1} = G(x_k)$$
 $x_k \in \mathbb{R}^n$.

Diciamo che \mathbf{x}_p è una orbita q-periodica con $q \in \mathbb{N}$ se:

$$G^q(\boldsymbol{x}_p) = \boldsymbol{x}_p.$$

Prima di procedere definiamo la seguente categoria di funzioni:

Definizione 7.3.3: (Funzioni quasi periodiche). Una funzione H si dice Quasi Periodica se può essere rappresentata nella seguente forma:

$$H(t) = H(\omega_1 t, \omega_2 t, \dots, \omega_n t).$$

Con l'insieme di frequenze $\{\omega_i\}$ tra di loro Incommensurabili. Questo significa che non esiste una combinazione lineare di queste frequenze con coefficienti in \mathbb{Q} che si annulla.

Preso un sistema a tempo continuo non autonomo e supponiamo di avere uno spazio delle fasi con un'orbita chiusa: l'orbita è necessariamente periodica? No.

Esercizio 7.3.1: (Sistema in \mathbb{R}^2)

Prendiamo il seguente:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = nt^{n-1}y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -nt^{n-1}x \end{cases}$$

Dimostrare che la soluzione è:

$$x(t) = A\sin(t^n) + B\sin(t^n)$$

$$y(t) = A\cos(t^n) - B\sin(t^n).$$

Verificare che $x^2 + y^2 = A^2 + B^2$.

Le soluzioni formano un cerchio di raggio $R^2 = A^2 + B^2$. Nonostante questo la soluzione non è periodica perché:

$$\nexists T \text{ t.c. } t^u = (t+T)^u.$$

Esercizio 7.3.2: (Verifica di non periodicità)

Data la seguente equazione differenziale:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = (1 + \sin(t)) \cdot x = F(x, t).$$

Dimostrare che, anche se il coefficiente $1 + \sin t$ è periodico, la soluzione non è periodica risolvendo il seguente IVP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = (1+\sin t) \cdot x\\ x(0) = x_0 \end{cases}$$

Dimostrare che la seguente funzione è soluzione:

$$x(t) = x_0 e^{1 + t - \cos t}.$$

e che questa funzione non è mai periodica $\forall x_0 \in \mathbb{R}$.

Esercizio 7.3.3: (Esercizio con Simulazione)

Presa la seguente equazione differenziale:

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\frac{g}{l}\sin(\theta) - \frac{\gamma}{ml}\frac{\mathrm{d}\theta}{\mathrm{d}t} + \frac{r}{ml}\sin(\Omega t).$$

Ridefinire la variabile temporale e gli opportuni parametri per ricondurlo a:

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\sin(\theta) - b\frac{\mathrm{d}\theta}{\mathrm{d}t} + A\sin(\Omega t).$$

Verificare numericamente che per $b=0.05,~a=0.6,~\Omega=0.7$ il sistema presenta un comportamento asintotico complesso.

8 Campi Vettoriali e Proprietà dei SD a t. con. autonomi

Prendiamo il solito sistema:

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, t) \\ \boldsymbol{x}(t_0) = \boldsymbol{x}_0 \end{cases}$$

I campi di esistenza di tutte le quantità sono:

$$x \in \mathbb{R}^n$$
; $F: I \times \mathbb{R}^n \to \mathbb{R}^n$; $F \in C^r$ $(r \ge 1)$.

Assumiamo che le soluzioni siano definite globalmente, tale sistema dinamico viene spesso chiamato Campo Vettoriale.

Facciamo un esempio per capire da dove nasce l'idea che il sistema possa presentare un campo vettoriale.

Esempio 8.0.1: (Campo Vettoriale in \mathbb{R}^2)

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = F_1(x_1, x_2, t) \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = F_2(x_1, x_2, t) \end{cases}$$

Supponiamo di aver trovato una soluzione particolare $x_s(t)$ con condizioni iniziali $V_0 = (x_{10}, x_{20})$.

Preso un punto appartenente alla soluzione (o orbita) $P(t, x_1, x_2)$ si ha che la tangente alla curva ha come componenti $(F_1, F_2)|_P$. Questo vettore tangente definisce il campo vettoriale e può essere associato ad ogni punto dell'orbita.

Figura 1.16: Andamento della soluzione (ipotetica) e campo vettoriale nel punto *P* che appartiene alla traiettoria.

Dobbiamo aggiungere che, lo stesso sistema proiettato nello spazio delle fasi senza la componente temporale sarebbe una varietà schiacciata in due dimensioni. In questa proiezione può sembrare che le orbite si sovrappongano, questo in realtà non avviene: è dovuto all'aver effettuato una proiezione del moto reale.

Generalmente nel corso avremmo a che fare con SD autonomi.

8.1 Proprietà dei sistemi dinamici a tempo continuo autonomi

Prendiamo il problema:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}).$$

Con le opportune condizioni iniziali e

$$F \in C^r \ (r \ge 1); \ x \in \mathbb{R}^n; \ F : \mathbb{R}^n \to \mathbb{R}^n.$$

Chiamiamo l'intervallo di esistenza della soluzione con il nome I.

Teorema 8.1.1: (Invarianza per Shift). Sia $x_s(t)$ una soluzione dell'IVP per un SD a tempo continuo autonomo con le opportune condizioni iniziali. Allora:

$$x_s(t+\tau) \ con \ t+\tau \in I$$

è soluzione.

Dimostrazione. Calcoliamo la quantità:

$$\frac{\mathrm{d}\boldsymbol{x}_s(t+\tau)}{\mathrm{d}t}.$$

Per vedere se corrisponde anch'essa alla soluzione del problema. La dimostrazione si conclude con il semplice cambio di variabili:

$$t' = t + \tau \implies \frac{\mathrm{d}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t'}.$$

Infatti inserendo nella equazione differenziale otteniamo:

$$\frac{\mathrm{d}\boldsymbol{x}_s(t')}{\mathrm{d}t'} = F(\boldsymbol{x}_s(t')).$$

Che ci dice appunto che la soluzione traslata è ancora soluzione.

Esercizio 8.1.1: (Su campo vettoriale)

Preso il seguente campo vettoriale:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -(1+x^2).$$

e sia $x(t_0) = x_0$.

• Verificare che una soluzione è:

$$x(t) = -\tan(t - t_0 - \arctan(x_0)).$$

• Verificare che $x(t+\tau)$ è ancora soluzione.

Esercizio 8.1.2: (Teorema di Shift e sistemi non autonomi 1)

Preso il sistema

$$\frac{\mathrm{d}x}{\mathrm{d}t} = e^t; \qquad x(0) = x_0.$$

Dimostrare che la soluzione è:

$$x(t) = e^t - 1 + x_0.$$

e verificare che il teorema di invarianza per shift non è verificato.

Esercizio 8.1.3: (Teorema di Shift e sistemi non autonomi 2) Dato il sistema

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x},t);$$
 Soluzione: $\boldsymbol{x}_s(t)$.

Verificare che, posti $\boldsymbol{x}_{\tau}(t)$ e F_{τ} :

$$\boldsymbol{x}_{\tau}(t) = \boldsymbol{x}_{s}(t+\tau); \qquad F_{\tau}(\boldsymbol{x}_{\tau},t) = F(\boldsymbol{x}_{\tau},t+\tau).$$

Allora si ha che $x_s(t+\tau)$ è soluzione di:

$$\frac{\mathrm{d}\boldsymbol{x}_{\tau}}{\mathrm{d}t} = F_{\tau}(\boldsymbol{x}_{\tau}, t).$$

In pratica quindi lo shift temporale per un sistema non autonomo richiede di traslare anche il funzionale F.

Teorema 8.1.2: (<u>Unicità della soluzione</u>). Dato il sistema dinamico a tempo continuo autonomo:

$$\frac{d\boldsymbol{x}}{dt} = F(\boldsymbol{x}); \qquad F \in C^r \ (r \ge 1); \quad \boldsymbol{x} \in \mathbb{R}^n.$$

Allora $\forall \mathbf{x}_0 \in U \subset \mathbb{R}^n$ (U l'insieme delle soluzioni) \exists soltanto una unica soluzione (orbita) che passa per \mathbf{x}_0 .

Dimostrazione. Supponiamo esistano due soluzioni passanti per lo stesso punto x_0 :

$$oldsymbol{x}_1
eq oldsymbol{x}_2 : egin{cases} oldsymbol{x}_1(t_1) = oldsymbol{x}_0 \ oldsymbol{x}_2(t_2) = oldsymbol{x}_0 \end{cases}$$
 .

Definiamo allora

$$y_2(t) = x_2(t + t_2 - t_1).$$

Questa è ancora soluzione del sistema autonomo (per il teorema di invarianza sotto shift temporale), inoltre gode della proprietà:

$$y_2(t_1) = x_2(t_2) = x_0.$$

Ma al tempo t_1 per ipotesi anche la soluzione x_1 verifica la condizione iniziale.

Tuttavia per il teorema di unicità della soluzione di un IVP fissate le condizioni iniziali si deve avere:

$$x_1(t) = y_2(t) = x_2(t + t_2 - t_1).$$

Questo implica che le soluzioni x_1 e x_2 sono uguali: assurdo. \square

8.2 Flusso di fase e Campi Vettoriali

Prendiamo un SD a tempo continuo autonomo e consideriamo il flusso di fase di questo sistema con tutte le proprietà già discusse in precedenza.

Teorema 8.2.1: (Flusso e Campo Vettoriale). La relazione tra il flusso di un sistema dinamico a tempo continuo autonomo ed il suo Campo vettoriale F è:

$$F(\boldsymbol{x}) = \left. \frac{\partial \varphi(t, \boldsymbol{x})}{\partial t} \right|_{t=0}$$

Esempio 8.2.1: (Sulla relazione flusso-F)

Dato il campo vettoriale definito dalle seguente equazione differenziale:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x^2\\ x(0) = x_0 \end{cases}$$

In questo caso si ha il seguente flusso di fase:

$$\varphi(t, x_0) = x(t) = \frac{x_0}{1 - x_0 t}$$

Dobbiamo notare che tale flusso non è definito su tutto \mathbb{R} :

- $x_0 > 0 \implies] -\infty, \frac{1}{x_0}$ [è l'intervallo di definizione.
- $x_0 < 0 \implies \frac{1}{x_0}, \infty$ [è l'intervallo di definizione.
- $x_0 = 0 \implies \mathbb{R}$ è l'intervallo di definizione.

Si verifica immediatamente che, prendendo uno dei due casi non banali, la relazione tra flusso e campo vettoriale è rispettata (semplicemente derivando).

Teorema 8.2.2: (Relazione flusso-campo vettoriale per SD autonomi). $Sia \ \varphi(t, \mathbf{x}_0) \ associato \ all'IVP:$

$$\begin{cases} \frac{d\mathbf{x}}{dx} = F(\mathbf{x}) \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

Allora vale la relazione:

$$\frac{\partial \varphi(t, \boldsymbol{x}_0)}{\partial t} = F(\boldsymbol{x})$$

Dimostrazione.

$$\frac{\partial \varphi(t, \mathbf{x}_0)}{\partial t} = \lim_{\epsilon \to 0} \frac{\varphi(t + \epsilon, \mathbf{x}_0) - \varphi(t, \mathbf{x}_0)}{\epsilon} = \\
= \lim_{\epsilon \to 0} \frac{\varphi(\epsilon, \varphi(t, \mathbf{x}_0)) - \varphi(t, \mathbf{x}_0)}{\epsilon}$$
(8.1)

Visto che valgono le seguenti:

$$\varphi(t, \boldsymbol{x}_0) = \boldsymbol{x}(t); \qquad \varphi(t, \boldsymbol{x}_0) = \varphi(0, \varphi(t, \boldsymbol{x}_0))$$

Allora possiamo sviluppare ulteriormente il calcolo 9.1:

$$\begin{split} \frac{\partial \varphi(t, \boldsymbol{x}_0)}{\partial t} &= \lim_{\epsilon \to 0} \frac{\varphi(\epsilon, \boldsymbol{x}(t)) - \varphi(0, \varphi(t, \boldsymbol{x}_0))}{\epsilon} = \\ &= \lim_{\epsilon \to 0} \frac{\boldsymbol{x}(t+\epsilon) - \boldsymbol{x}(t)}{\epsilon} = \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}). \end{split}$$

Esercizio 8.2.1: (Esercizi sul teorema)

Determinare i campi vettoriali associati ai seguenti flussi:

•
$$\varphi(t,x) = \frac{xe^t}{xe^t - x + 1}$$
.

•
$$\varphi(t,x) = \frac{x}{(1-2x^2t)^{1/2}}$$
.

•
$$\varphi(t, x, y) = (xe^t, \frac{y}{1-yt}).$$

Figura 1.17: Evoluzione del volume nello spazio delle fasi per SD a tempo continuo autonomo.

⁸ In cui si ricorda che:

$$\nabla F = \sum_{\sigma=1}^{n} \frac{\partial F_i}{\partial x_i}$$

9 Teorema di Liuville

Preso un sistema dinamico a tempo continuo autonomo vogliamo capire come evolve lo spazio delle fasi in maniera non locale (con delle condizioni iniziali) ma globale, per far questo consideriamo l'evoluzione di un intero volume dello spazio delle fasi V(t).

Un importante teorema nello studio di questo tipo di sistemi dinamici è il seguente:

Teorema 9.0.1: (<u>Teorema di Liuville</u>). Preso un sistema dinamico a tempo continuo autonomo:

$$\frac{d\mathbf{x}}{dt} = F(\mathbf{x}) \qquad F: U \subset \mathbb{R}^n \to \mathbb{R}^n; \ F \in C^r \ (r \ge 1)$$

e sia $V(0) \subset U$ un certo volume dello spazio delle fasi. Allora vale la sequente⁸:

$$\left. \frac{d}{dt} V(t) \right|_{t=0} = \int_{V(0)} \nabla F dx \tag{9.1}$$

Dimostrazione. L'evoluzione da un punto $\boldsymbol{x} \in V(0)$ a $\boldsymbol{y} \in V(t)$ è guidata dal flusso di fase:

$$\boldsymbol{y} = \varphi(t, \boldsymbol{x})$$

Possiamo pensare a \boldsymbol{y} come una trasformazione di coordinate.

$$\mathbf{y} = g(\mathbf{x})$$
 $g: \mathbb{R}^n \to \mathbb{R}^n; \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

Le variazioni in $d\boldsymbol{x}$ e in $d\boldsymbol{y}$ sono legate dal Jacobiano della trasformazione:

$$d\boldsymbol{y} = \det\left(J(\boldsymbol{x})\right) d\boldsymbol{x}$$

Dove ricordiamo la struttura di J:

$$J(\boldsymbol{x}) = \left[\frac{\partial g_i}{\partial x_J}\right]_{i,J=1,2,\dots,n}$$

Quindi vale che:

$$d\mathbf{y} = \det\left(\frac{\partial \varphi(t, \mathbf{x})}{\partial \mathbf{x}}\right) d\mathbf{x}$$

Integrando ambo i membri nel volume V(0):

$$\int\limits_{V(0)} d\boldsymbol{y} = V(t) = \int\limits_{V(0)} \det \left(\frac{\partial \varphi(t, \boldsymbol{x})}{\partial \boldsymbol{x}} \right) d\boldsymbol{x}$$

A questo punto si valuta una evoluzione per tempi:

$$0 \le t \ll 1$$

e si sviluppa il flusso di fase in t=0 al primo ordine:

$$\varphi(t, \mathbf{x}) \simeq \mathbf{x} + \frac{\partial}{\partial t} \varphi(t, \mathbf{x}) \Big|_{t=0} \cdot t + o(t^2) =$$

= $\mathbf{x} + F(\mathbf{x})t + o(t^2).$

Possiamo riscrivere la derivata di φ secondo questa ultima approssimazione:

$$\frac{\partial \varphi(t, \boldsymbol{x})}{\partial \boldsymbol{x}} = \left\{ \frac{\partial}{\partial x_J} \left[x_i + F_i(\boldsymbol{x})t + o(t^2) \right] \right\}_{i, J=1, 2, \dots, n} = \left\{ \delta_{iJ} + \frac{\partial}{\partial x_J} F_i(\boldsymbol{x})t + o(t^2) \right\}_{i, J=1, 2, \dots, n}$$

Calcoliamo adesso il determinante di questa quantità⁹:

⁹ Lo Jacobiano in questo caso si scrive come:

$$\det\left(\frac{\partial}{\partial \boldsymbol{x}}\varphi(t,\boldsymbol{x})\right) \simeq 1 + \operatorname{Tr}(J(\boldsymbol{x}))t + o(t^2) \qquad (9.2) \qquad J(\boldsymbol{x}) = \left\{\frac{\partial F_i}{\partial x_J}\right\}_{i,J=1,2,\dots,n}$$

Per una migliore comprensione dello Jacobiano si mostra un esempio pratico (mantenuto all'interno della dimostrazione):

Esempio 9.0.1: (Jacobiano in \mathbb{R}^2)

$$\left\{ \delta_{iJ} + \frac{\partial F_i}{\partial x_J} \right\}_{i,J=1,2} = \mathbb{I} + J(\boldsymbol{x})t = \begin{pmatrix} 1 + \frac{\partial F_1}{\partial x_1}t & \frac{\partial F_1}{\partial x_2}t \\ \frac{\partial F_2}{\partial x_2}t & 1 + \frac{\partial F_2}{\partial x_2}t \end{pmatrix} \equiv A.$$

$$\det(A) = 1 + t \left(\frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} \right) - \frac{\partial F_1}{\partial x_1} \frac{\partial F_2}{\partial x_2} t^2 - \frac{\partial F_1}{\partial x_2} \frac{\partial F_2}{\partial x_2} t^2$$

Approssimiamo prendendo solo i termini di ordine t ed emerge la relazione 9.2:

$$\det(A) = 1 + \operatorname{Tr}(J(\boldsymbol{x})) + o(t^2)$$

Continuiamo la dimostrazione partendo dalla equazione per il volume:

$$V(t) = \int\limits_{V_0} \det \left[rac{\partial arphi(t, oldsymbol{x})}{\partial oldsymbol{x}}
ight] doldsymbol{x}$$

Applichiamo l'approssimazione 9.2:

$$V(t) \simeq \int\limits_{V_0} \left[1 + \operatorname{Tr}(J(\boldsymbol{x}))t\right] d\boldsymbol{x} = V(0) + t \int\limits_{V(0)} \operatorname{Tr}(J(\boldsymbol{x})) d\boldsymbol{x}$$

A questo punto basta portare il termine V(0) a sinistra e dividere per il tempo per concludere:

$$\lim_{t \to 0} \frac{V(t) - V(0)}{t} = \left. \frac{\mathrm{d}V(t)}{\mathrm{d}t} \right|_{t=0} = \int_{V(0)} d\boldsymbol{x} \nabla F$$

Cambiando la notazione ed approssimando la φ in punti diversi da t=0 ci si accorge che il teorema deve valere \forall t.

Esempio 9.0.2: $(\nabla F \text{ costante})$

Preso un campo vettoriale del tipo: $\nabla F = k$ costante possiamo applicare il teorema:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \int_{V(t)} k dx = k(V(t))$$

Abbiamo allora una equazione differenziale per V, la soluzione è:

$$V(t) = e^{kt}V(0)$$

A seconda del segno di k si ha una espansione/contrazione dello spazio delle fasi, l'unico modo per avere una conservazione del volume è k=0.

9.1 SD a tempo continuo autonomi Conservativi e Dissipativi

Definizione 9.1.1: (Sistema dinamico conservativo). Dato un sistema dinamico a tempo continuo autonomo descritto da un campo vettoriale F, il sistema si dice conservativo se vale:

$$\nabla F = 0$$

Definizione 9.1.2: (Sistema dinamico dissipativo). Un sistema dinamico a tempo continuo autonomo descritto dal un campo vettoriale F si dice dissipativo se:

$$\nabla F < 0$$

Esempio 9.1.1: (Sistema Hamiltoninano)

Prendiamo un sistema di variabili $\boldsymbol{x} \in \mathbb{R}^n$ e $\boldsymbol{y} \in \mathbb{R}^n$ descritto da un funzionale H:

$$H: \mathbb{R}^{2n} \to \mathbb{R} \qquad H \subset C^2$$

e sia $(x,y) \in U \subset \mathbb{R}^{2n}$ l'insieme di definizione del problema. Le equazioni che descrivono il sistema sono:

$$\begin{cases} \frac{\partial x_i}{\partial t} = \frac{\partial H}{\partial \frac{\partial y_i}{\partial x}} \\ \frac{\partial y_i}{\partial t} = -\frac{\partial H}{\partial x_i} \end{cases}$$

Possiamo dimostrare che questo campo è conservativo. La forma vettoriale del campo F in questo caso è:

$$F(\boldsymbol{x}, \boldsymbol{y}) = \left(\frac{\partial H}{\partial \boldsymbol{y}}; -\frac{\partial H}{\partial \boldsymbol{x}}\right) = \left(\frac{\partial H}{\partial y_1}, \frac{\partial H}{\partial y_2}, \dots, \frac{\partial H}{\partial y_n}; -\frac{\partial H}{\partial x_1}, \dots, -\frac{\partial H}{\partial x_n}\right)$$

Calcoliamo la divergenza del campo¹⁰:

$$\nabla F = \sum_{J=1}^{n} \frac{\partial}{\partial x_{J}} \left(\frac{\partial H}{\partial \boldsymbol{y}} \right)_{J} + \sum_{J=1}^{n} \frac{\partial}{\partial y_{J}} \left(-\frac{\partial H}{\partial \boldsymbol{x}} \right)_{J} =$$

$$= \sum_{J=1}^{n} \frac{\partial^{2} H}{\partial x_{J} \partial y_{J}} - \sum_{J=1}^{n} \frac{\partial^{2} H}{\partial y_{J} \partial x_{J}} = 0.$$

() f e la componente f esima

In cui l'ultima uguaglianza è vera per il teorema di Schwartz e deve valere che $H\subset C^2$.

Esempio 9.1.2: (Sistema con forzante periodica)

Prendiamo il sistema descritto dalla seguente equazione differenziale:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\mu \frac{\mathrm{d}x}{\mathrm{d}t} + \omega^2 x = G\cos(\omega t)$$

Possiamo riscriverlo come un sistema di equazioni del primo ordine utilizzando le variabili:

$$\begin{cases} x_1 = x \\ x_2 = \frac{\mathrm{d}x}{\mathrm{d}t} \\ \theta = \omega t \end{cases}$$

Il campo vettoriale è un funzionale definito negli insiemi:

$$F: \mathbb{R}^2 \times S^1 \to \mathbb{R}^2 \times S^1$$

In particolare ha la seguente struttura:

$$F = (x_2, -\mu x_2 - \omega^2 x_1 + G\cos(\theta), \ \omega)$$

Ed in conclusione possiamo dire che:

$$\nabla F = \frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} + \frac{\partial F_3}{\partial \theta} = -2\mu$$

Esempio 9.1.3: (Calcolo numerico: Attrattore di Lorenz) Preso il seguente sistema dinamico:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = \rho x - y - xz \\ \dot{z} = -\beta z + xy \end{cases}$$

Utilizzando i seguenti parametri:

$$\sigma = 10; \quad \rho = 28; \quad \beta = \frac{8}{3}$$

Mostrare che il sistema dinamico è conservativo.

9.2 Mappe (autonome) Conservative o Dissipative

Data una mappa del tipo:

$$x_{k+1} = G(x_k)$$
 $G: U \to \mathbb{R}^n; x \in U \subset \mathbb{R}^n$

Si hanno le seguenti:

Definizione 9.2.1: (Mappa Dissipativa). Se vale la sequente:

$$|\det(J(G))|_{\boldsymbol{x}=\boldsymbol{x}_k} < 1$$

La mappa si dice Dissipativa.

Definizione 9.2.2: (Mappa Conservativa). Se vale la seguente:

$$|\det(J(G))|_{\boldsymbol{x}=\boldsymbol{x}_k}=1$$

La mappa si dice Conservativa.

Definizione 9.2.3: (Mappa Espansiva). Se vale la sequente:

$$|\det(J(G))|_{\boldsymbol{x}=\boldsymbol{x}_k} > 1$$

La mappa si dice Espansiva.

Dove J(G) è lo Jacobiano della trasformazione G.

Esempio 9.2.1: (Mappa di Henon)

Prendiamo il seguente sistema dinamico a tempo discreto autonomo:

$$\begin{cases} x_{n+1} = 1 + y_n - \alpha x_n^2 \\ y_{n+1} = \beta x_n \end{cases}$$

Le quantità in gioco sono:

$$V_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix} \implies V_{n+1} = G(V_n)$$

$$G = \begin{pmatrix} G_1(\boldsymbol{V}_n) \\ G_2(\boldsymbol{V}_n) \end{pmatrix} = \begin{pmatrix} 1 + y_n - \alpha x_n^2 \\ \beta x_n \end{pmatrix}$$

Lo Jacobiamo della trasformazione G è definito dalla matrice delle derivate:

$$J(G) = \begin{pmatrix} -2\alpha x_n & 1\\ \beta & 0 \end{pmatrix} \implies \det(J) = -\beta$$

Nota la matrice J possiamo anche affermare subito che la mappa è invertibile per $\beta \neq 0$. L'invertibilità non garantisce che la mappa presenti un comportamento "tranquillo", questa mappa infatti può mostrare chaos deterministico (e lo vedremo).

Si accenna qui al fatto che una mappa 1D invertibile non può presentare caos, questo non è più vero per dimensioni maggiori di 1.

Esempio 9.2.2: (Mappa logistica)

$$x_{n+1} = \mu x_n (1 - x_n)$$

Con $\mu \in [0, 4]$ e $x_n \in [0, 1]$.

In questo caso lo Jacobiano è definito dalla semplice derivata della mappa rispetto a x_n :

$$J(G) = \mu - 2\mu x_n = \mu(1 - 2x_n)$$

Quindi il sistema può cambiare drasticamente il suo comportamento al variare di μ :

- $\mu = 1 \implies J(G) = 1 2x_n$. In questo caso se $x_n \in [0, 1/2[$ il sistema dinamico è invertibile e la mappa è dissipativa.
- $\mu = 2 \implies J(G) = 2 4x_n$. In questo caso se $x_n \in [0, 1/4[$ la mappa può presentare un andamento espansivo in quando $\det(J) = J > 1$.

Per i sistemi "complessi" (caotici) lo spazio delle fasi può convergere (in un punto o in una intera zona) oppure può anche espandersi (a meno di vincoli, come può essere la conservazione della energia).

10 Phase Portrait

Si definisce Phase Portrait (PP) una determinata collezione di orbite nello spazio delle fasi.

Possiamo dire che il PP è una specie di arte: per fare un buon PP è necessario selezionare le orbite significative del sistema, quelle che esprimono al meglio tutta la possibile dinamica che il sistema può presentare.

Esempio 10.0.1: (Oscillatore armonico)

Partiamo da un esempio semplice di PP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -x \end{cases}$$

Espresso in termini di campo vettoriale:

$$V = \begin{pmatrix} x \\ y \end{pmatrix}; F(V) = \begin{pmatrix} y \\ -x \end{pmatrix} = \begin{pmatrix} F_1(V) \\ F_2(V) \end{pmatrix}$$

Il sistema presenta la seguente legge di conservazione:

$$\frac{\mathrm{d}}{\mathrm{d}t}(x^2 + y^2) = 0 \qquad \forall \ \boldsymbol{V}_0 \in \mathbb{R}^2$$

è possibile dimostrarlo semplicemente esplicitando le derivate ed inserendo le equazioni del moto.

Questa legge di conservazione ci permette di concludere subito che le orbite descritte dal sistema nello spazio delle fasi sono circonferenze centrate nell'origine.

$$x^2 + y^2 = \cos t = r_0^2$$
 $r_0 = \sqrt{x_0^2 + y_0^2}$

La direzione di rotazione è data dai segni nel campo vettoriale, ad esempio scegliendo $(x_0, y_0) = (1, 0)$ si vede che il campo è: $F_0 = (0, -1)$: rotazione antioraria.

Un'altra riprova del fatto che le orbite sono circonferenze è il fatto che il campo vettoriale è sempre tangente al vettore V nello spazio delle fasi:

$$\begin{pmatrix} -x \\ y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = 0 \qquad \forall \ (x, y) \in \mathbb{R}^2$$

Figura 1.18: Phase Portrait per l'oscillatore armonico.

Esempio 10.0.2: (Oscillatore di Duffling (semplificato)) Prendiamo il sistema descritto dalle seguenti equazioni:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = x - x^3 - by \end{cases}$$

Questo rappresenta una semplificazione dell'oscillatore di Duffling, nel sistema originale si ha in più una forzante periodica.

Il sistema presenta due punti che "arrestano la dinamica", ovvero ci sono delle condizioni iniziali per il quale vale che:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = 0 \qquad \forall \boldsymbol{x} = (x, y) \in \mathbb{R}^2$$

Infatti scegliendo $x_0 = (1,0)$ oppure $x_0 = (-1,0)$ entrambe le equazioni differenziali si annullano.

Questi punti sono detti *punti fissi*, gli approfondiremo nelle prossime sezioni.

11 Soluzioni stazionarie di SD

11.1 Sistema dinamico a tempo continuo

Definizione 11.1.1: (Stato stazionario o Soluzione Stazionaria per SD autonomo). Preso il sistema dinamico:

$$\frac{d\boldsymbol{x}}{dt} = F(\boldsymbol{x}) \qquad F: U \to \mathbb{R}^n; F \in C^r \ (r \ge 1); \ \boldsymbol{x} \in \mathbb{R}^n$$

Uno stato $x_s \in \mathbb{R}^n$ si dice stazionario se è soluzione del SD e vale che $F(x_s) = 0$.

La definizione non è valida nel caso di sistemi non autonomi.

Esempio 11.1.1: (Sistema non autonomo non ha sol. Stazionarie) Prendiamo il seguente:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -x + t\\ x(0) = x_0 \end{cases}$$

In questo caso la soluzione è dipendente dal tempo (in modo indipendente da $t-t_0$):

$$x(t) = e^{-t}(x_0 + 1) + t - 1$$

44

Quindi non può esistere la soluzione stazionaria in questo caso: non esiste una soluzione che annulli la F al variare di t.

Vediamo adesso un esempio molto esplicativo per il Phase Portrait e per le soluzioni stazionarie.

Esempio 11.1.2: (Sistema non lineare con parametro)

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x + ax^3 \equiv F(x)$$

Le soluzioni stazionarie devono rispettare la seguente equazione:

$$-x_s + ax_s^3 = 0 \implies \begin{cases} x_s = 0 & \forall a \in \mathbb{R} \\ x_s = \pm 1/\sqrt{a} & \forall a > 0 \end{cases}$$

Si vede che al variare del parametro di controllo a compaiono o scompaiono multipli punti fissi, questa è una peculiarità dei sistemi non lineari che approfondiremo in seguito.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x$$

Vogliamo classificare l'unica soluzione stazionaria in $x_s = 0$. Applicando una perturbazione a questa soluzione il sistema torna a stazionarietà o inizia una evoluzione diversa?

Per rispondere a questa domanda si può prendere delle condizioni iniziali a destra ed a sinistra dell'unico punto fisso come in figura 1.19: x_0^+, x_0^- .

Si può subito notare che in x_0^+ si ha F(x) negativa, quindi il punto tenderà ad avvicinarsi all'origine, viceversa per x_0^- . La soluzione stazionaria è quindi stabile.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x + ax^3$$

Le orbite hanno lo stesso comportamento del caso analizzato in precedenza, qui però si ha un avvicinamento all'origine non lineare per via del termine cubico (figura 1.20).

Figura 1.19: Caratterizzare la dinamica prendendo delle condizioni iniziali vicine al punto fisso nel caso a=0.

Figura 1.20: Caratterizzare la dinamica prendendo delle condizioni iniziali vicine al punto fisso nel caso a < 0, in arancio il punto fisso.

Figura 1.21: Caratterizzare la dinamica prendendo delle condizioni iniziali vicine al punto fisso nel caso a > 0, in arancione le 3 soluzioni stazionarie.

Le direzioni sono tracciate sempre valutando il segno di F(x), notiamo subito che il punto nell'origine attrae la dinamica (è ancora stabile) mentre le altre due soluzioni stazionare non godono della stessa proprietà.

Ponendo un punto nei pressi di $x_s = \pm 1/\sqrt{a}$ il SD tenderà a divergere o ad avvicinarsi a x = 0, queste soluzioni sono quindi stazionarie ma instabili.

L'esempio precedente mostra che per risolvere il sistema e determinare la dinamica non è sempre necessario trovare la soluzione analitica, è possibile determinare i punti fissi e valutarne la stabilità.

In questo modo si ottiene il quadro complessivo dell'evoluzione del sistema (possiamo disegnare una approssimazione del Phase Portrait). Questo tipo di approccio è stato inventato da un grande esperto di sistemi dinamici: Henry Poicaré.

11.2 Interpretazione fisica: Gradient Dynamical System

Quando è possibile esprimere il SD (a tempo continuo, autonomo) nel seguente modo:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}) = -\frac{\mathrm{d}V(\boldsymbol{x})}{\mathrm{d}t}$$

Allora il sistema si presta ad una interpretazione intuitivamente semplice: V(x) rappresenta il potenziale in cui il corpo che compie la traiettoria x(t) si trova immerso.

Riprendendo l'esempio unidimensionale visto sopra:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x + ax^3 = -\frac{\mathrm{d}V(x)}{\mathrm{d}t}$$

Possiamo integrare per ottenere il potenziale:

$$V(x) = \frac{x^2}{2} - \frac{a}{4}x^4$$

Tale potenziale gode delle seguenti proprietà:

- è simmetrico V(x) = V(-x).
- $\lim_{x \to \pm \infty} V(x) = -\infty$.
- Si annulla in $(0, \pm \sqrt{2/a})$ se a > 0, altrimenti si annulla solo nell'origine.

Figura 1.22: Andamento del potenziale per l'esempio sopra nel caso a > 0, i punti arancioni corrispondono alle 3 soluzioni stazionarie.

Per a > 0 il potenziale assume la forma a doppio monte in figura 1.22, negli altri due casi invece si ha un paraboloide con minimo in x = 0: l'unica soluzione stazionaria.

Esempio 11.2.1: (Punti fissi dell'oscillatore di Duffling)

Analizziamo la seguente equazione differenziale:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + k \frac{\mathrm{d}x}{\mathrm{d}t} + \alpha x + \beta x^3 = A\cos(\omega t)$$

Valutiamo il sistema nel caso semplificato:

$$A = 0$$
 $\alpha = 1$ $\beta = -1$ $k > 0$

Selezionare l'ultimo parametro nel dominio positivo (k > 0) significa dire che il sistema presenta dissipazione.

Conduciamo il SD ad un sistema di equazioni differenziali del primo ordine:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y \equiv F_1(x, y) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -ky - x + x^3 \equiv F_2(x, y) \end{cases}$$

Possiamo ricavare i punti fissi richiedendo l'annullamento di $F = (F_1, F_2)$:

$$\begin{cases} y = 0 \\ -ky - x + x^3 = 0 \end{cases}$$

Prendendo il caso semplice in cui k=0, è immediato trovare i seguenti punti fissi:

$$V_{1s} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 $V_{2s} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $V_{3s} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$

Lo studio della stabilità di questi punti non è scontato. Si deve considerare le direzioni di tutte le orbite in x e in y a destra e sinistra di ogni punto fisso.

Esercizio 11.2.1: (Stati Stazioari)

Trovare gli stati stazionari dei seguenti SD a tempo continuo autonomi:

• 1)
$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - \epsilon x \frac{\mathrm{d}x}{\mathrm{d}t} + x = 0$$
• 2)
$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -x + x^3 \\ \frac{\mathrm{d}y}{\mathrm{d}t} = x + y \end{cases}$$

• 3)
$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -y - \mu x - x^2 \end{cases}$$

11.3 Stati Stazionari di SD a tempo discreto autonomo

Definizione 11.3.1: (Stato Stazionario SD a tempo discreto). Data la mappa $\mathbf{x}_{k+1} = G(\mathbf{x}_k)$ con $G: U \subset \mathbb{R}^n \to \mathbb{R}^n$ e $\mathbf{x}_k \in U$. Una soluzione \mathbf{x}_s si dice stazionaria se:

$$\boldsymbol{x}_s = G(\boldsymbol{x}_s)$$

Questo in termini di risposta del sistema implica che l'input deve essere uguale all'output.

Esempio 11.3.1: (Mappa logistica)

Prendiamo la solita mappa logistica:

$$x_{k+1} = \mu x_k (1 - x_k)$$
 $x_k \in [0, 1]; \ \mu \in [0, 4]$

La richiesta di stato stazionario si traduce in:

$$x_s = G(x_s) \implies x_s = \mu x_s (1 - x_s)$$

Risolvendo l'equazione si trovano i candidati:

$$x_{s_1} = 0 x_{s_2} = \frac{\mu - 1}{\mu}.$$

Visto che la dinamica è definita tra 0 e 1 la condizione di esistenza del punto fisso x_{s_2} è $\mu>1.$

Esercizio 11.3.1: (Punto fisso della mappa logistica)

Dimostrare che per $0 \le \mu \le 1$ esiste solo uno stato stazionario.

Suggerimento: utilizzare l'espressione

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \mu - 2\mu x$$

con $y = \mu x(1-x)$ e fare uso della geometria analitica.